18.650 - Fundamentals of Statistics

4. Parametric hypothesis testing

Objectives

At the end of this lecture, you will be able to do the following:

- Reformulate experimental questions in terms of a hypothesis test by specifying an appropriate null hypothesis and an alternative hypothesis.
- Design statistical tests to decide between a null and alternative hypothesis.
- Understand the types of error of a test
- Compute the power function of a test
- Design statistical tests with a specific level or asymptotic level.
- Apply a test to a given sample to determine whether or not the null hypothesis should be rejected.
- Compute a test from a confidence interval
- Compute and interpret the p-value associated to a statistical test.

Goals

Recall: waiting time in the ER

 $H_0: \mu \le 30$

 $H_1: \mu > 30$

How to perform this test based on data?

- test statistic
- rejection region
- p-value

How to measure the performance of a test?

- ► Type I and type II errors
- ► level
- power

Construct PARAMETRIC tests:

$$H_0: \mu \le 30$$

$$H_1: \mu > 30$$

- ► Wald test
- ► T-Test

Waiting time in the ER

- The average waiting time in the Emergency Room (ER) in the US is 30 minutes according to the CDC
- Some patients claim that the new Princeton-Plainsboro hospital has a longer waiting time. Is it true?
- Collect a sample: X_1, \ldots, X_n (waiting time in minutes for n random patients) with unknown expected value $\mathrm{I\!E}[X_1] = \mu$.
- ▶ We want to know if $\mu > 30$.

Statistical formulation

Consider a sample X_1, \ldots, X_n of i.i.d. random variables and a statistical model $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$.

- ▶ Let Θ_0 and Θ_1 be a partition of Θ .
- Consider the two hypotheses: $\begin{cases} H_0: & \theta \in \Theta_0 \\ H_1: & \theta \in \Theta_1 \end{cases}$
- $ightharpoonup H_0$ is the null hypothesis, H_1 is the alternative hypothesis.
- ▶ We say that we test H_0 against H_1 .

Testing lexicon

- For k = 0 (H_o) or k = 1 (H_I), we say that
 - Θ_k is a simple hypothesis if $\Theta_k = \{\theta_k\}$
 - $lackbox{$\triangleright$} \Theta_k$ is a *composite hypothesis* if Θ_k is of the following three forms

A test is typically either one-sided or two-sided

Two-sided

One-sided

Examples

1. Waiting time in the ER

composite

$$H_0: \mu \leq 30$$

$$H_1: \mu > 30$$
 $Couposte$

One- sided test

2. In the Kiss example, we want to test

Ho: p = .5 Simple $W_0 = \{.5\}$

$$H_0: p = .5$$

$$H_1: p \neq .5$$
 composite

Clinical trials

- Pharmaceutical companies use hypothesis testing to test if a new drug is efficient.
- To do so, they administer a drug to a group of patients (test group) and a placebo to another group (control group).
- We consider testing a drug that is supposed to lower LDL (low-density lipoprotein), a.k.a "bad cholesterol" among patients with a high level of LDL (above 200 mg/dL)

Notation and modelling

- Let $\mu_d > 0$ denote the expected decrease of LDL level (in mg/dL) for a patient that has used the drug.
- Let $\mu_c > 0$ denote the expected decrease of LDL level (in mg/dL) for a patient that has used the placebo.
- Hypothesis testing problem:

- We observe two independent samples:
 - $ightharpoonup X_1, \ldots, X_{\underline{n}} \overset{iid}{\sim} \mathcal{N}(\mbox{$\wp_{\rm d}$}\ , \sigma_{\rm d}^2)$ from the fest group and
 - $ightharpoonup Y_1, \ldots, Y_m \overset{iid}{\sim} \mathcal{N}(\norm{p}_c\ , \sigma_c^2)$ from the Control group.
- ► This is a two_sample test: these are very common (A/B testing).

Asymmetry in the hypotheses

- We want to decide whether to reject H_0 (look for evidence against H_0 in the data).
- $ightharpoonup H_0$ and H_1 do not play a symmetric role: the data is only used to try to disprove H_0

$$H_0$$
: Status quo H_1 : a (Scientific) discovery

In particular lack of evidence, does not mean that H_0 is true ("innocent until proven guilty")

Examples

1. Waiting time in the ER

$$H_0: \mu \leq 30 \rightarrow \text{status quo}$$
 $H_1: \mu > 30$

Status quo: CDC statement. We collect data to show that Princeton-Plainsboro is different

2. Kiss

$$H_0: p = .5$$

 $H_1: p \neq .5$

Status quo: our intuition tells us there should be no preference. We collect data to show that there is one.

3. Clinical trials

$$H_0: \rho_{a} \leq \rho_{c}$$
 $H_1: \rho_{a} > \rho$

Status quo: The drug is not more effective than a placebo. We collect data to prove that the drug is effective.

What is a test?

- A test is a statistic $\psi \in \{0,1\}$ that does not depend on unknown quantities and such that:
 - ▶ If $\psi = 0$, H_0 is not rejected;
 - If $\psi = 1$, H_0 is rejected.

Important remark: Can always write $\psi = \mathbb{I}[R]$, where R is an event called rejection region.

► Waiting time in the ER:

$$\begin{array}{ll} H_0: & \mu \leq 30 \\ H_1: & \mu > 30 \end{array} \qquad \psi = \mathbb{A} \left\{ \overrightarrow{\times}_{\mathbf{k}} > \mathcal{C} \right\}$$

► Kiss:

$$\begin{array}{ll} H_0: & p=.5 \\ H_1: & p\neq .5 \end{array} \qquad \psi = 4 \left\{ \left(\left[\overline{\chi}_{\mathfrak{n}} - \frac{1}{2} \right] > C \right\} \end{array}$$

Clinical trials

$$H_0: \mu_d \leq \mu_c$$

 $H_1: \mu_d > \mu_c$ $\psi = M_c^{\dagger} \overline{\chi}_n - \overline{\chi}_n > C$

Errors

A test can make two types of errors:

	Fail to reject Null	Reject Null
H_0 true $(heta \in \Theta_0)$	/	type 1
H_1 true $(heta \in \Theta_1)$	type 2	V

Both errors can be computed from the power function

$$\beta(\theta) = \mathbb{P}_{\theta}[\psi = 1]$$

▶ If $\theta \in \Theta_0$,

$$\beta(\theta) = \mathbb{P}_{\theta}[\psi \text{ makes an error of type } 1]$$

We want $\beta(\theta)$ to be Small

 \blacktriangleright If $\theta \in \Theta_1$,

$$\beta(\theta) = 1 - \mathbb{P}_{\theta}[\psi \text{ makes an error of type } \mathcal{L}]$$

We want $\beta(\theta)$ to be large

The Neyman-Pearson paradigm

Recall the waiting time in the ER example

$$H_0: \mu \le 30$$

 $H_1: \mu > 30$ $\psi = \mathbb{I}\{\bar{X}_n > C\}$

How to choose C?

We are facing a dilemma: both errors should be small!

- ▶ To make Type I error $\rightarrow 0$, take $C \rightarrow + \infty$
- ▶ To make Type II error $\rightarrow 0$, take $C \rightarrow -\infty$

Cannot make both small at the same time.

The Neyman-Pearson paradigm:

- ▶ Make sure that $\mathbb{P}[\mathsf{Type}\ \mathsf{I}\ \mathsf{error}] \leq \mathsf{V}\ \mathsf{(e.g.},\ \alpha = 5\%, 1\%, \dots)$
- ► Minimize IP[Type II error] subject to this constraint

Level

The value of $\alpha \in [0,1)$ chosen in the Neyman-pearson paradigm is called α of a test

For which $\theta \in \Theta_o$ should we compute $\mathrm{IP}_{\theta}[\psi = 1]$ (probability of Type 1 error)?

ightharpoonup A test ψ has level α if

$$\mathbb{P}_{\theta}[\psi=1] \leq \alpha, \qquad \forall \theta \in \Theta_0.$$
 Then $\mathbb{P}_{\theta}[\psi=1] \leq \alpha$

ightharpoonup A test $\psi = \psi_n$ has asymptotic level α if

$$\lim_{\mathbf{n}\to\mathbf{n}} \max_{\mathbf{n}\in\mathbf{m}_{\mathbf{n}}} \mathbf{IP}_{\theta}[\psi_n=1] \leq \alpha,$$

Building a test from a confidence interval

Given a confidence interval, we can often build a test (and vice versa).

Let I = [A, B] be a confidence interval at level $1 - \alpha$ for a parameter θ :

$$\mathbb{P}_{\theta}(\theta \in [A, B]) \ge 1 - \alpha$$

 \blacktriangleright We want to use this I to build a test at level α for

$$H_0: \quad \theta = \theta_0$$

 $H_1: \quad \theta \neq \theta_0$

Natural candidate:

$$\psi = \mathbb{I} \{ \Theta_o \notin [A, S] \}$$

Level of test:

$$\mathbb{P}_{\theta_0}[\psi = 1] = \mathbb{P}_{\theta_0}[\theta_0 \notin I] =$$

lacktriangle Therefore ψ is a test with level

A test for the Kiss example

We want to test:

$$H_0: p = 0.5$$

 $H_1: p \neq 0.5$

We observe $R_1, \ldots, R_n \stackrel{iid}{\sim} \mathsf{Ber}(p)$.

Recall that

$$I_{\text{conserv}} = \left[\overline{R_n} - \frac{1.96}{2\sqrt{n}} , \overline{R_n} + \frac{1.76}{2\sqrt{n}} \right]$$

is a confidence interval of asymptotic level $1-\alpha$ for p.

Consider the test:

$$\psi = 1 \{0.54 \text{ Traces}\}$$

$$iP_K = 95\%$$

$$Town = L0.56, 0.73$$
 Ly reget.

We have

ightharpoonup Therefore ψ is a test with asymptotic level \propto

Meaning of the level

Recall that

 ${\cal I}$ is a CI at level 95% for θ

means that if we repeat the experiment many times, at least 95% confidence intervals will contain the true parameter θ .

Similarly:

 ψ is a test at level 5% for H_0 vs H_1

means that if we repeat the experiment many times, at most 5% of the tests will make an error of type 4

What if we change the level?

, Cuel 95%

With our data $\mathcal{I}_{\text{conserv}} = [0.56, 0.73]$ so we reject the at level 5%

α	$q_{\alpha/2}$	$\mathcal{I}_{conserv}$	decision
10%	1.64	[0.57, 0.72]	Reject
5%	1.96	[0.56, 0.73]	Reject
1%	2.76	[0.52, 0.77]	Reject
.1%	3.29	[0.497, 0.79]	Foil to reject
.01%	3.89	[0.47, 0.82]	Fail to regent

The value of α across which we switch from "reject" to "fail to reject" is called the $\ \ .$

p-value

Definition

The (asymptotic) *p-value* of a test ψ is the smallest (asymptotic) level α at which ψ rejects H_0 .

Golden rule

p-value $\leq \alpha \Leftrightarrow H_0$ is rejected by ψ , at the (asymptotic) level α .

Kiss example: we need to find α_0 such that $\bar{R}_n - \frac{q_{\alpha_0/2}}{2\sqrt{n}} = 0.5$

If $\bar{R}_n = .645, \ n = 124$ we get $q_{\alpha_0/2} = 3.23$. To find α_0 :

$$\frac{\alpha_0}{2} = \text{P[2]9x_0} = \text{P[2]3.23} = 1.9994 = 0.06\% \Rightarrow \alpha_0 = 0.12\%$$

where $Z \sim \mathcal{N}(0,1)$ and $\text{IP}(Z \leq 3.24) = 0.9994$ (read from table).

The evidence scale

- Statisticians, and more generally researchers, are used to communicating directly in terms of p-values rather than "reject/fail to reject at level..."
- ► The mental conversion is as follows:

p-value	evidence against H_0
> 10%	almost none
[5%, 10%]	weak
[1%, 5%]	strong
[.1%, 1%]	very strong
< .1%	undisputable