Quiz 2 (Signals and Systems)

---- C3 /C4/C8 for UoG 20162003&20162004

1 (40 points). Each of the following questions have one or two right answers, justify your answers and write it in the blank.

(1)Let $x_1(t) = u(t+1) - u(t-1)$ and $x(t) = x_1(t) * \sum_{k=-\infty}^{+\infty} \delta(t-6k)$. The Fourier series coefficients of

x(t) may be (c).

- (a) $a_{-k} = -a_k$ and $\text{Re}\{a_k\} = 0$ (b) $a_{-k} = -a_k$ and $\text{Im}\{a_k\} = 0$
- (c) $a_{-k} = a_k$ and $\text{Im}\{a_k\} = 0$ (d) $a_{-k} = -a_k$ and $\text{Im}\{a_k\} = 0$

(2) Consider two signals $x_1(t)$ and $x_2(t)$, as shown in Figure 1. The Fourier transform of $x_1(t)$ is $X_1(j\omega)$. Then the Fourier transform of $x_2(t)$ should be

- (a) $X_1(-j\omega)e^{-3j\omega}$
- **(b)** $X_1(j\omega)e^{3j\omega}$
- (c) $-X_1(j\omega)e^{-j\omega}$
- (d) $X_1(-j\omega)e^{j\omega}$

Figure 1

(3) Consider a continuous-time LTI system whose frequency response is $H(j\omega) = \frac{\sin(2\omega)}{\omega}$. If we know

the input signal x(t) is an odd periodic signal with fundamental period T=4, the output y(t) may

- (a) y(t) = 0 (b) y(t) = 1 (c) y(t) = 0.5 (d) y(t) = -1
- (4) The convolution integral $2e^{2t} * e^{-2t}u(t) = ($ c).
- (a) 2 (b) $\frac{1}{4}e^{2t}$ (c) $\frac{1}{2}e^{2t}$ (d) $\frac{1}{2}e^{2t}u(t)$

2. If $y_1(t) = x_1(t) * h(t)$, where $x_1(t)$ and h(t) are shown in Figure 3, determine $\int_{-\infty}^{+\infty} y_1(t)dt = ?$ (10 points)

Figure 3

3. Consider a signal x(t) with Fourier transform $X(j\omega) = \begin{cases} 2\cos\omega, & |\omega| \le \pi \\ 0, & |\omega| > \pi \end{cases}$. Find a close-form expression for x(t). (10 points)

$$\begin{aligned} \chi(jw) &= \begin{cases} 2 & \omega \leq w \\ |w| \leq h \end{cases} \\ |w| \leq h \end{cases} \\ |w| \leq h \end{aligned}$$

$$|v| = \begin{cases} 1 & |w| \leq h \end{cases} \\ |w| \leq h \end{cases}$$

$$|v| = \begin{cases} 1 & |w| \leq h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v| = \begin{cases} 1 & |w| = h \end{cases} \\ |v|$$

Tips: give the corresponding relationship between the signal in time domain and frequency domain.

Sol.
$$X(jw) = Let Y(jw) = \begin{cases} 2 & |w| \le \pi \\ 0 & |w| > \pi \end{cases}$$

Let $Y_{2}(jw) = Cosw$

$$(fw) = Y_{3}(jw) Y_{3}(jw) \stackrel{F}{\leftarrow} X(f) = \frac{1}{2}S(f+1)$$

$$X(jw) = Y_{3}(jw) Y_{3}(jw) \stackrel{F}{\leftarrow} X(f) = Y_{3}(f) \times Y_{3}(f)$$

$$X(fw) = \frac{Sin\pi(f+1)}{\pi(f+1)} + \frac{Sin\pi(f+1)}{\pi(f+1)}$$

$$\begin{array}{c} \chi(jw) = \{2\cos w, |w| \leq \pi \} \\ 0, |w| > \pi \} \\ 0, |w| > \pi \end{array} \\ \begin{array}{c} (0, |w| > \pi) \\ 0, |w| > \pi \end{array}$$

4. Consider a continuous-time LTI system whose frequency response $H(j\omega)$ is illustrated in Figure 4. If the input signal $x(t) = 1 + \cos 2t - \sin 4t + 2\cos 10t$, determine the output y(t) of this system.

4.
$$X(t) = 1 + \cos 2t - \sin 4t + 2\cos 10t$$
 $X(t) = 1 + \cos 2t - \sin 4t + 2\cos 10t$
 $X(t) = 1 + \cos 2t - \sin 4t + 2\cos 10t$
 $X(t) = 1 + \cos 2t - \sin 4t + 2\cos 10t$
 $X(t) = 1 + \cos 2t - \sin 4t + 2\cos 10t$
 $X(t) = 1 + \cos 2t - \sin 4t + 2\cos 10t$
 $X(t) = 1 + \cos 2t - \sin 4t + 2\cos 10t$
 $X(t) = 1 + \cos 2t + 2\cos 10t$
 $X(t) = 1 + \cos 2t + 2\cos 10t$
 $X(t) = 1 + \cos 2t + 2\cos 10t$
 $X(t) = 1 + \cos 2t + 2\cos 10t$

$$\chi(t) = 1 + \frac{1}{2} (e^{-j2t} + e^{j2t}) - \frac{1}{2j} (e^{-j4t})$$

$$+ (e^{j10t} + e^{-j10t})$$

$$= \sum_{k=0}^{\infty} a_k e^{jkt} (w_0 = 1)$$
where $a_0 = 1$, $a_2 = a_{-2} = \frac{1}{2}$, $a_4 = -\frac{1}{2j}$, $a_{4k} = \frac{1}{2j}$, $a_{10} = a_{10} = 1$.
$$\chi(jw) = \sum_{k=0}^{\infty} 2\pi a_k S(w - k)$$
Given $H(jw)$, only $k = 0, \pm 2$, ± 10 remain
$$S0 = y(t) = 1 + \cos 2t + 2 \cos t t$$

5.(20 points) Consider the system illustrated in Figure 5, if we know $h_1(t) = \frac{\sin 5\pi t - \sin 4\pi t}{\pi t}$ and $h_2(t) = \frac{\sin \pi t}{\pi t}$, sketch the spectrum of $r_1(t)$, $r_2(t)$, $r_3(t)$ and y(t).

Tips: Pay attention to the amplitude of signal and their relative notation.