

CSE276C - Differential Geometry

Henrik I. Christensen

Computer Science and Engineering University of California, San Diego

November 2024

Introduction

- We can only touch on the basics, but valuable to have basic knowledge
- Differential Geometry is all about moving on a curve / manifold
- Robotics is all about moving considering not only kinematics, but also dynamics
- What motion is possible in a particular space

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

2/41

Basic Concepts

- Tangent vector
 - A vector anchored at a point p
 - Set of possible vectors for p is termed tangent space T_p

H. I. Christensen (UCSD)

Math for Robotics

Nov 202

Basic Concepts

- A space along with its tangent vectors
- If \mathbb{R}^n the underlying space and we have a tangent space of \mathbb{R}^n anchored at each of the relevant points
- \bullet Space is then $\mathbb{R}^n \times \mathbb{R}^n$
- \bullet So a tangent bundle for a circle would be $\mathcal{S}^1 \times \mathbb{R}^1$

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

4 / 41

Basic Concepts

- A function that maps a manifold to a tangent space
- $M \to T(M)$ and within it $p \to v_p \in T_p$
- \bullet Frequently denoted V(p) or V_p
- A classic question: does a manifold has a continuously changing vector field that is non-zero?

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

5/41

Basic Concepts

- A function that maps a manifold to a tangent space
- M o T(M) and within it $p o v_p \in T_p$
- ullet Frequently denoted V(p) or V_p
- A classic question: does a manifold has a continuously changing vector field that is non-zero?
- ullet The circle example with $M=S^1$ is one such vector field

Geometry of curves in \mathbb{R}^3

- Consider parameterized curves $\alpha(t) = (x(t), y(t), z(t))$
- In general a curve lpha is a mapping $lpha:I o\mathbb{R}^3$
- ullet I is an interval in ${\mathbb R}$ sometimes we will write it as $(lpha_1(t),lpha_2(t),lpha_3(t))$
- In general (x(t), y(t), z(t)) are differentiable
- I.e., has derivatives of all orders throughout I

H. I. Christensen (UCSD)

Math for Robotics

Nov 202

6 / 41

A simple 2D example

- $\alpha_1(\theta) = (r\cos(\theta), r\sin(\theta))$
- $\theta \in [0, 2\pi] = I \text{ OR}$
- $\alpha_2(\theta) = (r\cos(2\theta), r\sin(2\theta))$
- $\theta \in [0, \pi] = I$

Different curves / parameterizations can have the same trace

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

7 / 41

Simple 3D curve

• $\alpha(t) = (a\cos(t), a\sin(t), bt)$, with $t \in \mathbb{R}$

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

Velocity vector & Arclength

ullet The velocity vector of lpha at time t is the tangent vector of \mathbb{R}^3 given by

$$\alpha'(t) = (\alpha'_1(t), \alpha'_2(t), \alpha'_3(t))$$

- This vector is obviously also the tangent
- The speed of α is $v(t) = ||\alpha'(t)||$
- ullet The arclength traversed between t_0 and t_1 is

$$\int_{t_0}^{t_1} v(t)dt$$

ullet You can re-parameterize lpha(t) as eta(s) where s is the arc-length, which is the same as representing $\boldsymbol{\alpha}$ at unit speed

Simple Example – Helix

- Consider the helix: $\alpha(t) = (r\cos(t), r\sin(t), qt)$ then

 - Velocity: $\alpha'(t) = (-r\sin(t), r\cos(t), q)$ Speed: $v(t) = \sqrt{r^2 + q^2} = c$ a constant Arc-length: $s(t) = \int_0^t cdt = ct$. Thus $t(s) = \frac{s}{c}$ Re-parameterized: $\beta(s) = \alpha(\frac{s}{c}) = (r\cos(\frac{s}{c}), r\sin(\frac{s}{c}), q\frac{s}{c})$

Arclength?

So does the integral

$$s(t) = \int_{t_0}^{t_1} ||\alpha'(t)|| dt$$

always converge?

Arclength?

So does the integral

$$s(t) = \int_{t_0}^{t_1} ||\alpha'(t)|| dt$$

always converge?

Some curves have infinite arclength (ex fractals - Koch Snowflake)

Vector fields of β

- - $T=\beta'$ the unit tangent field $N=\frac{T'}{\|T'\|}$ the principal normal vector field $B=T\times N$ called the bi-normal vector field of β
- The quantity ||T'|| is also named the curvature function K(s) = ||T'(s)||
- ullet The triple (T,N,B) is called the Frenet Frame field of eta

Curvature

- Let $\alpha:I\to\mathbb{R}^3$ be a curve parameterized by arclength
- Curvature is then defined as $||\alpha''(s)|| = K(s)$
- $\alpha'(s)$ the tangent vector of s
- $\alpha''(s)$ the change in the tangent vector
- R(s) = 1/K(s) is called the radius of curvature

Simple examples

$$\alpha(s) = us + v, u, v \in \mathbb{R}^2$$
 $\alpha'(s) = u$
 $\alpha''(s) = 0 \Rightarrow ||\alpha''(s)|| = 0$

Circle

$$\alpha(s) = (a\cos(s/a), a\sin(s/a)), s \in [0, 2\pi a]$$

 $\alpha'(s) = (-\sin(s/a), \cos(s/a))$
 $\alpha''(s) = (-\cos(s/a)/a, -\sin(s/a)/a) \Rightarrow ||\alpha''(s)|| = 1/a$

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

14 / 4

Curvature examples

- Cornu Spiral K(s) = s
- Generalized Cornu Spirals K(s) -Polynomial of s

H I Christensen (IICSD)

Math for Robotics

Nov 2024

15 / 41

Normals

ullet When lpha is parameterized by arc length

$$\alpha'(s) \cdot \alpha'(s) = 1$$

- From Vector Calculus
 - If f, g: $I \to \mathbb{R}^3$ and $f(t) \cdot g(t) = const$ for all t
 - then

$$f'(t) \cdot g(t) = -f(t) \cdot g'(t)$$

for f * f this is only true for $f^{\prime}(t)\;f(t)=0$

• This implies that

$$\alpha''(s) \cdot \alpha'(s) = 0$$

or $\alpha''(s)$ is orthogonal to $\alpha'(s)$

• Its proportional to the normal of the curve

Normals

- $||\alpha'(s)||$ arc length • $\alpha''(s) = T'(s)$ – normal direction
- $||\alpha''(s)||$ curvature
- If $||\alpha''(s) \neq 0$ then $\alpha''(s) = T'(s) = K(s)N(s)$

H. I. Christensen (UCSD

Math for Robotics

Nov 202

17 / 41

Osculating Plane

 \bullet The local plane determined by the unit tangent and the normal vectors - T(s) and N(s) is call the osculating plane at s

Source: M. Ben-Chen, Stanford

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

18 / 41

The Bi-normal Vector

• The binormal is defined for $K(s) \neq 0$ by

$$B(s) = T(s) \times N(s)$$

• The bi-normal defines the osculating plane

Source: R. Gardner, ETSU

The Frenet Frame

Source: A. J. Hanson, LBL

- The system $\{T(s), N(s), B(s)\}$ for an ortho-normal basis for \mathbb{R}^3 called the Fernet Frame
- The obvious question How does it change along a curve? I.e., what are T'(s), N'(s), and B'(s)?

H. I. Christensen (UCSD

Math for Robotics

Nov 2024

20 / 4

T'(s)

We have already covered T'(s)

$$T'(s) = K(s)N(s)$$

• As it is in the direction of N(s) it is orthogonal to B(s) and T(s).

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

21 / 41

N'(s)

- From our earlier lemma (vector calculus) $N'(s) \cdot N(s) = 0$
- We know $N(s) \cdot T(s) = 0$ from the lemma $N'(s) \cdot T(s) = -N(s) \cdot T'(s)$
- Given $K(s) = N(s) \cdot T'(s)$
- ullet It must be true that $N'(s)\cdot T(s)=-K(s)$

H. I. Christensen (UCSD)

Math for Robotics

Nov 202

Torsion

$$\tau(s) = N'(s) \cdot B(s)$$

• We can then express

$$N'(s) = K(s)T(s) + \tau(s)B(s)$$

H. I. Christensen (UCSD

Math for Robotics

Nov 202

23 / 4

Curvature vs Torsion

- Curvature indicates how much the normal changes in the direction of the tangent
- Torsion indicates how much the normal change in the direction orthogonal to the osculating plane
- Curvature is always positive, the torsion can be negative
- Neither depend on the choice of parameterization

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

24 / 41

B'(s)

- We know that $B(s) \cdot B(s) = 1$
- From the lemma we know $B'(s) \cdot B(s) = 0$
- We further know: $B(s) \cdot T(s) = 0$ and $B(s) \cdot N(s) = 0$
- From the lemma:

$$B'(s) \cdot T(s) = -B(s) \cdot T'(s) = B(s) \cdot K(s)N(s) = 0$$

• We get

$$B'(s) \cdot N(s) = -B(s) \cdot N'(s) = -\tau(s)$$

and from this we have

$$B'(s) = -\tau(s)N(s)$$

H. I. Christensen (UCSD)

Math for Robotics

Nov 202

The Frenet Formulas

$$T'(s) = K(s)N(s)$$

 $N'(s) = -K(s)T(s) + \tau(s)B(s)$
 $B'(s) = -\tau(s)N(s)$

In Matrix Form

$$\left(\begin{array}{ccc|c} & & & & & \\ T'(s) & N'(s) & B'(s) \\ & & & & \end{array}\right) = \left(\begin{array}{ccc|c} & & & & \\ T(s) & N(s) & B(s) \\ & & & & \end{array}\right) \left(\begin{array}{ccc|c} 0 & K(s) & 0 \\ K(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{array}\right)$$

H. I. Christensen (UCSD)

Math for Robotics

Nov 202

26 / 41

Example - Back to the helix

- For: $\alpha(t) = (a\cos(t), a\sin(t), bt)$
- Re-parameterized: $\alpha(s) = (a\cos(s/c), a\sin(s/c), bs/c)$ where $c = \sqrt{a^2 + b^2}$
- Curvature is then: $K(s) = \frac{a}{a^2 + b^2}$
- Torsion is then $\tau(s) = \frac{1}{a^2 + b^2}$
- Note for this example both curvature and torsion are constants

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

27 / 41

Covariant Derivatives and Lie Brackets

- Suppose V&W are two vector fields in \mathbb{R}^n so that for each point $p\in\mathbb{R}^n$ V(p) and W(p) are vectors in \mathbb{R}^n
- The covariant derivative of W wrt V is

$$(\nabla_v W)(p) = \frac{d}{dt} W(p + tV_p)|_{t=0}$$

ullet $abla_{v}W$ measures the change in W as one moves along V

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

Examples - covariant derivatives

• The
$$\nabla_v W = \nabla_w V = 0$$

• For a circle in 2D,
$$p = (x, y) \in \mathbb{R}^2$$

$$W = \frac{(x,y)}{\sqrt{x^2 + y^2}}$$
 and $V = \frac{(-y,x)}{\sqrt{x^2 + y^2}}$

• Then
$$\nabla_v W = rac{v}{\sqrt{x^2+y^2}}$$
 and of course $\nabla_w V = 0$

H. I. Christensen (UCSD)

Math for Robotics

Nov 202

29 / 41

A few things about covariant derivatives

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

30 / 41

Lie Bracket

• The Lie Bracket [V, W] of the two vector fields is defined to be

$$[V, W] = \nabla_V W - \nabla_W V$$

- Basically measure flow in the directions of V, -V, W, -W
- Lets illustrate this with a real robot example

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

Parallel Parking

- The configuration (x, y, θ)
- The controls are (v, ϕ)
- The controls are

 $\begin{array}{lll} \dot{x} & = & v\cos\phi\cos\theta\\ \dot{y} & = & v\cos\phi\sin\theta \end{array}$

 $\dot{\theta} = \frac{v}{I} \sin \phi$

• We can consider nominal motion $(1, \phi_1)$ and $(1, \phi_2)$ as wheel directions

H. I. Christensen (UCSD

Math for Robotics

Nov 202

32 / 41

Parallel Parking - Cont

Two vector fields

Then

$$\nabla_{V_1} V_2 = (\nabla(\cos\phi_1\cos\theta)V_2, \nabla(\cos\phi_1\sin\theta)V_2, \nabla(\frac{\sin\phi_1}{I})V_2)$$

skipping calculations

$$\nabla_{V_1} V 2 = \frac{\sin \phi_1 \cos \phi_2}{I} (-\sin \theta, \cos \theta, 0)$$

and similarly for the

$$[V_1, V_2] = \frac{\sin(\phi_1 - \phi_2)}{I} (-\sin\theta, \cos\theta, 0)$$

So we can move perpendicular to the axis as long as $(\phi_1 - \phi_2) \neq 0$

H. I. Christensen (UCSD)

Math for Robotics

Nov 202

33 / 41

Moving to manifolds

- Smooth Manifolds
 - A manifold is a set M with an associated one-to-one map $\phi:U o M$ from an open subset $U\subset\mathbb{R}^m$ called a global chart or coordinate system of M

 \rightarrow

H. I. Christensen (UCSD)

Math for Robotics

Nov 2024

Smooth Manifolds

- A smooth manifold is a pair (M, A) where:
 - M is a set
 - ullet ${\mathcal A}$ is a family of 1-1 charts: $\phi:U o M$ from some open subset $U=U_\phi\subset{\mathbb R}^m$

Differentiable and smooth functions

$$(y_1,\ldots,y_q)=f(x_1,\ldots,x_n)$$

ullet f is of a class C^r if f has continuous partial derivatives

$$\frac{\partial^{r_1+\ldots+r_n}y_k}{\partial x_1^{r_1}\ldots\partial x_n^{r_n}}$$

• If $r = \infty$, then f is **smooth**, the main focus in robotics

Diffeomorphism

- - if f is 1-1, f and f^{-1} are both C^r
 - \Rightarrow f is a C^r-diffeomorphism
 - Smooth diffemorphisms are simply referred as diffeomorphisms
- Inverse Function Theorem:
 - f diffeomorphism $\Rightarrow det(J_x f) \neq 0$
 - $det(J_x f) \neq 0 \Rightarrow f$ is local diffeomorphism in a neighborhood of x

Example - Gaussian Distribution

- The space of n-dimensional Gaussian distributions is a smooth manifold
- Global chart: $(\mu, \Sigma) \in \mathbb{R}^n \times \mathcal{P}(n)$

H. I. Christensen (UCSD)

Math for Robotics

Nov 202

38 / 41

Manifolds can generate multiple charts

- The sphere $\mathcal{S}^2 = \{(x,y,x), x^2 + y^2 + z^2 = 1\} \text{ has multiple projections/charts}$
- We can project from the North Pole, of a point P = (x,y,z) given by

$$\phi(P) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

• is a large coordinate system around the south pole

H. I. Christensen (UCSD

Math for Robotics

Nov 2024

9 / 41

Manifolds requiring multiple chartss

The Moebius Strip

$$u \in [0, 2\pi], v \in [-1/2, 1/2]$$

$$\left(\begin{array}{c} \cos(u) \left(1 + \frac{1}{2}v\cos\left(\frac{u}{2}\right)\right) \\ \sin(u) \left(1 + \frac{1}{2}v\cos\left(\frac{u}{2}\right)\right) \\ \frac{1}{2}v\sin\left(\frac{u}{2}\right) \end{array} \right)$$

2D Torus

$$(u, v) \in [0, 2\pi]^2, R >> r > 0$$

$$\begin{pmatrix}
\cos(u)(R+r\cos(v)) \\
\sin(u)(R+r\cos(v)) \\
r\sin(v)
\end{pmatrix}$$

H. I. Christensen (UCSD)

Math for Robotics

Nov 202

Summary

- Covering basics of movement along curves
- Many more derivations can be provided for movement on manifolds
- Covering basic characteristics of curves and manifolds
- Definition of the Frenet frame and associated characteristics
- Brief coverage of covariant derivatives and Lie bracket

I Christensen (IICSD)

ath for Robotics

Nov 202