# Lead Conversion case Study

Shailesh Khulbe Rohit Gupta Vikram Rajawat

#### Problem Statement

Identify the most promising leads and targeting them from the pool of generated leads that can will be joining the course which in turn will save manpower and cost involved in communication with the leads.

#### Approach Used

- DATA Analysis
- Data Cleaning: Missing Value Treatment, Outlier Treatment
- Univariate, Bi Variate, Multi Variate Analysis
- Final Data Preparation
- Model Building
- RFE for feature Selection
- Iterations to Select Final Model
- Metrices for Model strength
- Prediction On Test Set

#### Problem Solving Method

**Data Import**: Import data from csv file and check if data loaded correctly.

**Data Preparation**: Remove unwanted columns which has more than 99.5% in a single category, apply data cleaning on remaining columns such as missing value treatment, outlier treatment, binning if required and segregate numerical and categorical columns.

Analysis: Perform univariate, bi variate and multivariate to understand the range of data and how it is related to TARGET variable and decide which variables have impact on Target variab

Final Data Preparation:-Converting categorical variables to Dummy variables and making data ready for modelling.

Model Building : Building model with remaining variables, scaling the variables, using RFE, Analysing VIF and P value, Iterating to reach the final model.

Validation : Validating the model on various metrices and test data.

#### Data Preparation Steps

#### **Removing Columns**

• Remove columns with 40% missing values as we have 2 numerical columns meeting the criteria. Removing columns which have more than 99.5% in one category and ID columns

#### Missing Value/Outlier Treatment

- Impute missing values for remaining columns with mean or median.
- Replace with mean when variable is continuous and does not have outlier otherwise with median
- Replace with mode when variable is categorical
- Outliers are values that are different from the normal population. Replace outliers quantiles or by capping using +,- (IQR\*1.5) for 25th and 75<sup>th</sup> percentile or business understanding whichever is applicable.
- Delete rows for columns that have very few missing values.
- Deleting columns which have SELECT as value and missing resulting in more than 40% missing values.
- Grouping categories with less than 5% values to OTHER category.

#### Univariate/Bivariate

- Analyse cleaned data using Histogram, box plot, pair plot etc.
- For numerical variables use histogram, box plot, scatter plot, pair plot etc.
- For categorical use value counts, bar plot, pi chart ,group by etc.
- Find variables which have high influence on TARGET VARIABLE.

# Data Preparation For Modelling Train Test Split **Scaling Variables Dummy Variables** Creating dummy variables Splitting data inti training Scaling variables to make the for Categorical Variables scale even for all variables and test

#### Model Building

3

4

5

Use RFE for variable selection

Remove variables with high VIF and P value

Re run the model to receive a stable model

Validate the results on various matrices

Validate the result on Test data

# Numerical Variable Analysis

### Outliers using box plot









# Numerical Bi-variate And Target Variable Analysis





# Categorical Variable Analysis With Target Variable





# Multivariate Analysis With Target Variable



# First Iterations Results

| Dep. Variable:   | Converted        | No. Observations:   | 6467     |
|------------------|------------------|---------------------|----------|
| Model:           | GLM              | Df Residuals:       | 6451     |
| Model Family:    | Binomial         | Df Model:           | 15       |
| Link Function:   | Logit            | Scale:              | 1.0000   |
| Method:          | IRLS             | Log-Likelihood:     | -1970.3  |
| Date:            | Sun, 26 Feb 2023 | Deviance:           | 3940.6   |
| Time:            | 21:50:46         | Pearson chi2:       | 9.04e+03 |
| No. Iterations:  | 8                | Pseudo R-squ. (CS): | 0.5169   |
| Covariance Type: | nonrobust        |                     |          |

|                                                      | coef    | std err | Z       | P> z  | [0.025         | 0.975]         |
|------------------------------------------------------|---------|---------|---------|-------|----------------|----------------|
| const                                                | -4.8976 | 0.347   | -14.131 | 0.000 | <b>-</b> 5.577 | <b>-</b> 4.218 |
| Do Not Email                                         | -1.6431 | 0.183   | -8.997  | 0.000 | -2.001         | -1.285         |
| Total Time Spent on Website                          | 1.2842  | 0.050   | 25.617  | 0.000 | 1.186          | 1.382          |
| Lead Origin_Lead Add Form                            | 3.7761  | 0.246   | 15.380  | 0.000 | 3.295          | 4.257          |
| Lead Source_Olark Chat                               | 1.0281  | 0.119   | 8.672   | 0.000 | 0.796          | 1.260          |
| Lead Source_other                                    | 0.6424  | 0.227   | 2.827   | 0.005 | 0.197          | 1.088          |
| Last Activity_Olark Chat Conversation                | -1.0988 | 0.180   | -6.121  | 0.000 | -1.451         | -0.747         |
| Last Activity_SMS Sent                               | 0.5725  | 0.171   | 3.353   | 0.001 | 0.238          | 0.907          |
| What is your current occupation_Working Professional | 2.7517  | 0.244   | 11.259  | 0.000 | 2.273          | 3.231          |
| What is your current occupation_other                | 1.4302  | 0.295   | 4.850   | 0.000 | 0.852          | 2.008          |
| Tags_Closed by Horizzon                              | 8.8183  | 0.805   | 10.951  | 0.000 | 7.240          | 10.397         |
| Tags_Ringing                                         | -0.3814 | 0.412   | -0.925  | 0.355 | -1.189         | 0.427          |
| Tags_Will revert after reading the email             | 4.2518  | 0.343   | 12.382  | 0.000 | 3.579          | 4.925          |
| Tags_other                                           | 3.0785  | 0.354   | 8.705   | 0.000 | 2.385          | 3.772          |
| Last Notable Activity_Modified                       | -0.6881 | 0.110   | -6.274  | 0.000 | -0.903         | -0.473         |
| Last Notable Activity_SMS Sent                       | 1.3961  | 0.201   | 6.943   | 0.000 | 1.002          | 1.790          |
|                                                      |         |         |         |       |                |                |

# Final Iterations Results

| Dep. Variable:   | Converted        | No. Observations:   | 6467     |
|------------------|------------------|---------------------|----------|
| Model:           | GLM              | Df Residuals:       | 6453     |
| Model Family:    | Binomial         | Df Model:           | 13       |
| Link Function:   | Logit            | Scale:              | 1.0000   |
| Method:          | IRLS             | Log-Likelihood:     | -1995.1  |
| Date:            | Sun, 26 Feb 2023 | Deviance:           | 3990.3   |
| Time:            | 22:02:30         | Pearson chi2:       | 8.50e+03 |
| No. Iterations:  | 8                | Pseudo R-squ. (CS): | 0.5132   |
| Covariance Type: | nonrobust        |                     |          |

|                                                      | coef    | std err | z       | P> z  | [0.025 | 0.975] |
|------------------------------------------------------|---------|---------|---------|-------|--------|--------|
| const                                                | -4.9468 | 0.205   | -24.134 | 0.000 | -5.349 | -4.545 |
| Do Not Email                                         | -1.5872 | 0.182   | -8.711  | 0.000 | -1.944 | -1.230 |
| Total Time Spent on Website                          | 1.2902  | 0.050   | 25.746  | 0.000 | 1.192  | 1.388  |
| Lead Origin_Lead Add Form                            | 3.7703  | 0.244   | 15.421  | 0.000 | 3.291  | 4.250  |
| Lead Source_Olark Chat                               | 1.0381  | 0.117   | 8.884   | 0.000 | 0.809  | 1.267  |
| Lead Source_other                                    | 0.6020  | 0.226   | 2.669   | 0.008 | 0.160  | 1.044  |
| Last Activity_Olark Chat Conversation                | -0.9141 | 0.178   | -5.122  | 0.000 | -1.264 | -0.564 |
| Last Activity_SMS Sent                               | 1.5774  | 0.089   | 17.665  | 0.000 | 1.402  | 1.752  |
| What is your current occupation_Working Professional | 2.7666  | 0.245   | 11.291  | 0.000 | 2.286  | 3.247  |
| What is your current occupation_other                | 1.4875  | 0.295   | 5.042   | 0.000 | 0.909  | 2.066  |
| Tags_Closed by Horizzon                              | 9.0541  | 0.758   | 11.940  | 0.000 | 7.568  | 10.540 |
| Tags_Will revert after reading the email             | 4.3959  | 0.200   | 21.960  | 0.000 | 4.004  | 4.788  |
| Tags_other                                           | 3.2939  | 0.217   | 15.203  | 0.000 | 2.869  | 3.719  |
| Last Notable Activity_Modified                       | -1.1251 | 0.093   | -12.100 | 0.000 | -1.307 | -0.943 |

#### Validations Results

```
TP / float(TP+FN)
  Out[270]: 0.8085782366957903
In [271]: # Let us calculate specificity
           TN / float(TN+FP)
   Out[271]: 0.9278298303367941
In [272]: | # Calculate false postive rate - predicting Converted when customer does not convert
           print(FP/ float(TN+FP))
           0.07217016966320587
In [273]: # positive predictive value
           print (TP / float(TP+FP))
           0.8772080999569152
In [274]: ▶ # Negative predictive value
           print (TN / float(TN+ FN))
           0.88374336710082
```

AMT\_ANNUITY

# ROC Curve



#### Prediction On test Set

```
# Let's check the overall accuracy.
metrics.accuracy_score(y_pred_final.Converted, y_pred_final.final_predicted)
```

0.8643578643578643

```
# Let's see the sensitivity of our logistic regression model
TP / float(TP+FN)
```

0.836852207293666

```
# Let us calculate specificity
TN / float(TN+FP)
```

0.8809248554913295

### Result in Business Terms

|                                                      | coef    | Absolute |
|------------------------------------------------------|---------|----------|
| const                                                | -4.3972 | 4.3972   |
| Tags_Will revert after reading the email             | 4.3024  | 4.3024   |
| Lead Origin_Lead Add Form                            | 4.2262  | 4.2262   |
| Tags_other                                           | 3.7069  | 3.7069   |
| What is your current occupation_Working Professional | 2.9169  | 2.9169   |
| Last Activity_Olark Chat Conversation                | -2.1973 | 2.1973   |
| Last Activity_Page Visited on Website                | -1.4706 | 1.4706   |
| Last Activity_other                                  | -1.4646 | 1.4646   |
| Total Time Spent on Website                          | 1.2784  | 1.2784   |
| Do Not Email                                         | -1.2691 | 1.2691   |
| What is your current occupation_other                | 1.2638  | 1.2638   |
| Lead Source_Olark Chat                               | 0.9581  | 0.9581   |
| Last Notable Activity_other                          | 0.6534  | 0.6534   |
| Lead Source_other                                    | 0.3445  | 0.3445   |

- Overall we see 13 variables coming the final model equation. Few top variables of these are
- 1) Tags assigned to the customer indicating the current status of the lead
- 2) Lead Origin The origin identifier with which the customer was identified. So, one which is added by add form is is contributing
- 3) Current Occupation Working Profession is adding a lot of value