2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (1)

Zeitliche Darstellung einer gekoppelten Schwingung an festen Orten

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (2)

Momentaufnahmen einer gekoppelten Schwingung

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (3)

2. Newtonsches Axion

$$F_{\text{rück}} = dm \cdot a$$

⇒ Kraftmessung

$$F = \frac{4 \cdot I^2}{n^2} \cdot \rho \cdot A \cdot f_n^2$$

Teilstück einer gespannten Saite [E. Hering, R. Martin, M. Stohrer: Physik für Ingenieure]

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (4)

Prinzip des

DPharp-Druckaufnehmers

[© Yokogawa]

Prinzip eines Resonanzdraht-Druckaufnehmers

[G. Strohrmann: Messtechnik im Chemiebetrieb]

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (5)

Freie gedämpfte (links) und erzwungene gedämpfte (rechts) (Feder-)Schwingung

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (6)

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (7)

Schwingsonde als Vibrationsgrenzschalter [VEGA]

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (8)

Phasengeschwindigkeit
$$c = \lambda \cdot f = \frac{\lambda}{T} = \frac{\lambda \cdot \omega}{2\pi} = \frac{\omega}{k}$$

Wellenfronten einer Punktquelle (links) und einer ausgedehnten Quelle (rechts)

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (9)

Ausbreitung einer Wellenfront

$$c=\frac{s}{t_0}$$

$$\Rightarrow$$
 Abstandsmessung $d = \frac{c \cdot t_0}{2}$

Füllstandsmessprinzip [Buerkert]

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (10)

Ultraschallpuls

[Bosch: Kraftfahrtechnisches Taschenbuch]

Schallgeschwindigkeit in Gasen

$$C = \sqrt{\kappa \cdot R_i \cdot T}$$

 κ : Isentropenkoeffizient

 R_i : spezielle Gaskonstante

T: Temperatur (in K)

Gas	R_i / kJ/(kg K)	K
Не	2,07901	1,66
H ₂	4,12174	1,41
N_2	0,29675	1,40
O ₂	0,25978	1,40
trockene Luft	0,28704	1,40
СО	0,29695	1,40
CO ₂	0,18878	1,31
H ₂ O-Dampf	0,46151	1,33
SO ₂	0,12984	1,40
CH ₄	0,51877	1,30
NH ₃	0,48834	1,31

Gasparameter

[F.Hell: Thermische Energietechnik]

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (11)

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (12)

Laufzeitdifferenzverfahren (1)

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (13)

Laufzeitdifferenzverfahren (2)

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (14)

Laufzeitdifferenzverfahren: Verschiedene technische Ausführungen

[H.-J. Gevatter: Automatisierungstechnik 1]

2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (15)

zeitlicher Abstand zwischen Registrierung zweier Wellenberge: $\Delta t = T_Q = \frac{1}{f_Q} = \frac{\lambda_Q}{c}$

 \Rightarrow Registrierung der Frequenz f_0

Doppler-Effekt (1)

2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (16)

zeitlicher Abstand zwischen Registrierung zweier Wellenberge: $\Delta t = \frac{\lambda_Q}{c + V_R}$

$$\Rightarrow \text{Registrierung der Frequenz } \textit{f}_{\scriptscriptstyle B} = \frac{\textit{c} + \textit{v}_{\scriptscriptstyle B}}{\textit{\lambda}_{\scriptscriptstyle Q}} = \frac{\textit{c}}{\textit{\lambda}_{\scriptscriptstyle Q}} \cdot \left(1 + \frac{\textit{v}_{\scriptscriptstyle B}}{\textit{c}}\right) = \textit{f}_{\scriptscriptstyle Q} \cdot \left(1 + \frac{\textit{v}_{\scriptscriptstyle B}}{\textit{c}}\right)$$

Doppler-Effekt (2)

2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (17)

zeitlicher Abstand zwischen Registrierung zweier Wellenberge: $\Delta t = \frac{\lambda_{\rm Q}}{c - v_{\rm R}}$

$$\Rightarrow$$
 Registrierung der Frequenz $f_{\rm B} = \frac{C - V_{\rm B}}{\lambda_{\rm O}} = \frac{C}{\lambda_{\rm O}} \cdot \left(1 - \frac{V_{\rm B}}{C}\right) = f_{\rm Q} \cdot \left(1 - \frac{V_{\rm B}}{C}\right)$

Doppler-Effekt (3)

2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (18)

zeitlicher Abstand zwischen Registrierung zweier Wellenberge: $\Delta t = \frac{\lambda_{\rm B}}{c} = \frac{\lambda_{\rm Q} - v_{\rm Q} \cdot T_{\rm Q}}{c}$

$$\Rightarrow \text{Registrierung der Frequenz } f_{\text{B}} = \frac{c}{\lambda_{\text{Q}} - v_{\text{Q}} \cdot T_{\text{Q}}} = \frac{\frac{c}{\lambda_{\text{Q}}}}{1 - v_{\text{Q}} \frac{T_{\text{Q}}}{\lambda_{\text{Q}}}} = \frac{f_{\text{Q}}}{1 - v_{\text{Q}} \cdot \frac{1}{\lambda_{\text{Q}}}} = \frac{f_{\text{Q}}}{1 -$$

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (19)

zeitlicher Abstand zwischen Registrierung zweier Wellenberge: $\Delta t = \frac{\lambda_{\rm B}}{c} = \frac{\lambda_{\rm Q} + v_{\rm Q} \cdot T_{\rm Q}}{c}$

$$\Rightarrow \text{Registrierung der Frequenz } f_{\text{B}} = \frac{c}{\lambda_{\text{Q}} + v_{\text{Q}} \cdot T_{\text{Q}}} = \frac{\frac{c}{\lambda_{\text{Q}}}}{1 + v_{\text{Q}} \frac{T_{\text{Q}}}{\lambda_{\text{Q}}}} = \frac{f_{\text{Q}}}{1 + v_{\text{Q}} \cdot \frac{1}{\lambda_{\text{Q}}}} = \frac{f_{\text{Q}}}{1 +$$

2. SENSORPRINZIPIEN DER MECHANIK: 2.5 SENSORPRINZIPIEN AUS MECHANISCHEN SCHWINGUNGEN UND WELLENAUSBREITUNG (20)

⇒ Bestimmung der mittleren Strömungsgeschwindigkeit

$$V_{\rm m} = -\frac{\Delta f}{2 \cdot f_{\rm O}} \cdot \frac{c}{\cos \alpha}$$

Ultraschalldoppler-Durchflussmesser: Technische Ausführung

[F. Hofmann: Ultraschall-Durchflussmessung]