© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°04

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Intégrales de Wallis et formule de Stirling

Partie I – Intégrales de Wallis

On pose pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$$

- **1.** Calculer I_0 et I_1 .
- **2.** En intégrant par parties, trouver une relation de récurrence entre I_n et I_{n+2} .
- **3.** En déduire une expression de I_{2n} et I_{2n+1} pour tout $n \in \mathbb{N}$ à l'aide de factorielles.
- **4.** Vérifier que $(I_n)_{n\geq 0}$ est décroissante. En déduire que $\frac{n+1}{n+2}I_n\leq I_{n+1}\leq I_n$ pour tout $n\in\mathbb{N}$.
- **5.** Démontrer que $I_{n+1} \sim I_n$.
- **6.** Établir que pour tout $n \in \mathbb{N}$, $(n+1)I_{n+1}I_n = \frac{\pi}{2}$.
- 7. En déduire que $I_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

Partie II - Formule de Stirling

On pose pour tout $n \in \mathbb{N}^*$, $u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}$

- **1.** Pour tout $n \in \mathbb{N}^*$, on pose $v_n = \ln \frac{u_{n+1}}{u_n}$. Montrer que $v_n = \mathcal{O}\left(\frac{1}{n^2}\right)$.
- **2.** En déduire que (u_n) converge vers une certaine limite $\ell \in \mathbb{R}_+^*$.
- 3. Montrer que $\ell = \frac{1}{\sqrt{2\pi}}$ et en déduire un équivalent de n!.