Elektronikpraktikum Auswertung: Versuchstag 5 Sensorik, Steuerung und Regelung

Gruppe 01 Patrick Heuer Benjamin Lotter

Übersicht

- Sensoren
 - Einführung
 - Temperatursensoren: PTC- und NTC-Thermistoren
 - LDR (light dependent resistor)
 - Photodiode
 - Druck-/Kraftsensor
- 2 PID-Regler
 - Einführung
 - Manuelle REgelung: Kriterien für die Bestimmung der Stellgröße
 - P-Regler
 - I-Regler
 - PI-Regler
 - D-Regler
 - PD-Regler
 - PID-Regler

Übersicht

- Sensoren
 - Einführung
 - Temperatursensoren: PTC- und NTC-Thermistoren
 - LDR (light dependent resistor)
 - Photodiode
 - Druck-/Kraftsensor
- 2 PID-Regler
 - Einführung
 - Manuelle REgelung: Kriterien für die Bestimmung der Stellgröße
 - P-Regler
 - I-Regler
 - PI-Regler
 - D-Regler
 - PD-Regler
 - PID-Regler

Einführung

Versuchsziel

• Untersuchen des Verhaltens verschiedener Messwiderstände

Thermistoren

Aufgabenstellung

- Messen des Verhaltens bei
 - Raumptemperatur
 - Erwärmung durch Reibung
 - Anschluss an Konstantstromquelle

Problem:

PTCs nicht benannt

Problem:

PTCs nicht benannt

Thermistor	Widerstand
PTC: "langer" Streifen	$1.10k\Omega$
PTC: "kurzer" Streifen	$0.11k\Omega$
NTC: M87/G350 10k	$10.5k\Omega$

Problem:

PTCs nicht benannt

Thermistor	Widerstand
PTC: "langer" Streifen	$1.10k\Omega$
PTC: "kurzer" Streifen	$0.11k\Omega$
NTC: M87/G350 10k	$10.5k\Omega$

• langer Streifen: PTC1000

• kurzer Streifen: PTC100

Thermistor	$R_{DMM}/k\Omega$	T/°C
PTC1000	1.10	26
PTC100	0.11	26.85
NTC: M87/G350 10k	10.5	25

Verhalten bei Reibung

Thermistor	Verhalten
PTC1000	R steigt
PTC100	R steigt
NTC: M87/G350 10k	R sinkt

Verhalten bei Reibung

Thermistor	Verhalten
PTC1000	R steigt
PTC100	R steigt
NTC: M87/G350 10k	R sinkt

Erklärung

- PTC sind Kaltleiter: schlechtere Leitung bei hohen Temperaturen
- NTC sind Heißleiter: bessere Leitung bei hohen Temperaturen

Anschluss an Konstantstromquelle

Thermistor	U/V	I/A	$R_{ber}/k\Omega$	$T_{ber}/^{\circ}C$
PTC1000	12.5	0.010	1.25	64
PTC100	1.16	0.010	0.12	41.85
NTC: M87/G350 10k	16.8	0.010	1.68	80

Konstantstrom erwärmt Widerstände \rightarrow ungeeignet!

Verhalten des NTCs:

- U steigt auf 23V
 - I steigt bis 10mA
 - danach Abfall auf Messerte
- Erklärung: Aufwärmphase in der NTC höheren Widerstand hat

Auswertung

Thermistor	$R_{DMM}/k\Omega$	$\mid T_{DMM}/^{\circ}C \mid$	R_{ber}/Ω	$T_{ber}/^{\circ}C$
PTC1000	1.10	26	1.25	64
PTC100	0.11	26.85	0.12	41.85
NTC: M87	10.5	25	1.68	80

Messung des Widerstands

Konstantstromquelle

LDR

Aufgabenstellung

- Widerstandsmessung bei Verdunkeln
- Dämmerungsschaltung

Verdunkeln

	$R/k\Omega$	Lichstärke/ <i>Lux</i>
normale Beleuchtung	0.34	≈ 1000
Verdunkeln	70	≈ 0.5

• LDR erhöht Widerstand bei Abdunkelung

Sehr hohe Widerstände bei starker Verdunkelung $R \approx 2.5 M\Omega$ beobachtet

Dämmerungsschaltung

Wann leuchtet LED in der Nacht?

• Spannungsabfall an Transistor (über $R_{pot}+1k\Omega$) $U_{BE}\geq 0.58V$ um Transistor zu schalten

$$\frac{U_{BE}}{U_{LDR}} = \frac{R_{Pot} + 1k\Omega}{R_{LDR}}$$

$$R_{pot} = \frac{U_{BE}}{U_{LDR}} \cdot R_{LDR} - 1k\Omega$$

$$= \frac{0.58V}{8.42V} 70k\Omega - 1k\Omega \ge 3.8k\Omega$$

Dämmerungsschaltung

Funktionsweise

LED leuchtet wenn

$$R_{pot} \geq \frac{0.58k\Omega}{8.42k\Omega} \cdot R_{LDR} - 1k\Omega$$

• \rightarrow je höher R_{pot} , desto insensitiver ist die Schaltung (höhere Variabilität bei R_{LDR})

Photodiode

Aufgabenstellung

- Untersuchung
 - der Lichtschranke
 - des Operationsverstärkers
 - der Störquellen

Messungen

	zur Wand	zur Fenster
offen	-3.1V	-3.6 <i>V</i>
abgedeckt	-0.6V	−0.3 <i>V</i>

Störquellen

- Störung durch
 - Sonnenlicht
 - 100Hz Wechselspannung \rightarrow Leuchstoffröhren
 - Schattenwurf durch Aufbau/Personen
- Lichtmessung nur in abgedunkeltem Raum/Kasten möglich oder
- Filterung der Störsignale

Figure: Signal mit Diode zum Fenster ausgerichtet

$$U_{out} = -\frac{R}{R_D} \cdot U_{in} \qquad I_{in} = \frac{U_{in}}{R_D + R_2}$$
$$G = \frac{U_{out}}{U_{in}} = -R - \frac{R^2}{R_D}$$

mit

$$R=1M\Omega$$
 $R_D=$ Widerstand der Photodiode

Druck-/Kraftsensor

Aufgabenstellung

- Vermessen des Drucksensors
- Bestimmung der unbekannten Masse

Messung

Bestimmung von ???

- Ungefähr $R \sim -\frac{1}{m}$
- Graphenfit
- durch Ablesen am Graphen

$$m_i = \frac{\frac{1}{R_i} - t}{s}$$

t:Achsenabschnitt,s:Steigung

durch Mittelung:

Fehler

• Fehler aus Standardabweichung:

$$\Delta m = \frac{\sigma}{\sqrt{n}}$$

Messung

Bestimmung von ???

- Ungefähr $R \sim -\frac{1}{m}$
- Graphenfit
- durch Ablesen am Graphen

$$m_i=\frac{\frac{1}{R_i}-t}{s},$$

t:Achsenabschnitt,s:Steigung

• durch Mittelung: $m_{???} = 40.85, 2.84g$

• Fehler aus Standardabweichung:

$$\Delta m = \frac{\sigma}{\sqrt{n}}$$

Übersicht

- Sensoren
 - Einführung
 - Temperatursensoren: PTC- und NTC-Thermistoren
 - LDR (light dependent resistor)
 - Photodiode
 - Druck-/Kraftsensor
- 2 PID-Regler
 - Einführung
 - Manuelle REgelung: Kriterien für die Bestimmung der Stellgröße
 - P-Regler
 - I-Regler
 - PI-Regler
 - D-Regler
 - PD-Regler
 - PID-Regler

Einführung:

Wiederholung PID-Regler

• P:

$$P=k_p(W-X)$$

I

$$I = \frac{1}{t_i} \int_0^t (W - X) dt'$$

D

$$D = t_d \frac{d(W - X)}{dt}$$

Versuchsziel

- Untersuchen bei manueller Regelung
- Untersuchen der P-, I-, D-Anteile der Rückkopplung

Manuelle Regelung

Sensoren

Kriterien der Regelung

- Absolute Position (

 P Regelung)
- Steigung (\(\hat{D} \) Regelung)

P-Regler

Versuchsziel

• Untersuchen verschiedener k_p Werte für P-Regler

P-Regler $k_p = 5$

Verhalten

- Schrittgröße zu hoch
- konstantes "Über-/Unterspringen" des Limits

P-Regler $k_p = 5$

Verhalten

- Schrittgröße zu klein
- Korrektur kann nicht für Wärmeabgabe kompensieren
- Stagnation weit unter Ziel

P-Regler $k_p = 5$

Verhalten

- Schrittgröße liegt im Mittelbereich
- trotzdem Stagnation weit unterhalb Ziel

Wieso stagniert $k_p = 1$? unter dem Ziel

Verhalten

- P ist stets positiv
- P sinkt linear bis nah an $T = 60^{\circ} C$
- $P = K_p(W X)$ wird zu klein um für Abkühlung zu kompensieren (vgl. $k_p = 0.1$)
- P schwingt zurück auf $T_0 < 60^{\circ} C$ und stagniert

P-Regulierung alleine kann niemals das Limit erreichen

I-Regler

Versuchsziel

- Untersuchung der I-Regelung
- Untersuchung des "anti-wind-ups"

I-Regler

- Durch fit am Graphen
 - $|\Delta T| \le 1K$ bei t = 361s
 - $|\Delta T| \leq 0.1K$ bei t = 651s

anti-Windup

anti-windup

AW-Funktion limitiert Werte so dass

•
$$P + I + D = I_{max}$$

•
$$P + I + D = 0$$

wenn sonst I_{max} übeschritten würde

• Kurve läuft schneller gegen geringere Amplitutde

PI-Regler

Versuchsziel

- Untersuchung der PI-Funktion
- Variation von k_p

Messung

Beobachtung

- Solltemperatur wird nach ca.
 55 Sek erreicht
- besseres Ergebnis als nur durch P oder I

Regelung

- P-Regelung zum stellen Ansteuern
- I-Regelung zur"Feineinstellung"

Verschieden k_p Werte

D-Regler

Versuch

• Untersuchung des D-Reglers

D-Regler

Beobachtung

• T fällt in beiden Fällen stark ab

Erklärkung

•

$$D = t_d \frac{d(W - X)}{dt} = \frac{-X}{dt}$$

- für T > 0 ist D < 0
- D-Regler "weiß nichts" vom Sollwert

PD-Regler

Versuch

Zusammenspiel von P und D

Messung

Problem

- Sehr starke Störungen
- Gründe
 - Platz an der Tür
 - Klimaanlage
- T pendelt sich nicht wirklich ein
- keine aufschlussreichen Messungen möglich

Messung

- ungedämpfte Schwungung ab ca. $k_p = 4.6$
- D-Regler dämpft Schwingung ab

PID-Regler

Versuch

- Verhalten mit Ziegler/Nichols Parameter
- Verhalten mit/ohne anti-wind-up
- Reaktion auf Störung

Ziegler/Nichols

Werte

- $k_p = 3, t_i = 2.5, t_d = 0, 6$
- Einschwingzeit 60 55: $T_{60.55} = 51s$
- Einschwingzeit 55 60: $T_{55.60} = 39s$

Einschwingverhalten ohne/mit anti-wind-up

Störung

Einschwingzeit

• mit $k_p = 1, t_i = 1.5, t_d = 0.3$ Verbesserung der Eingschwingzeit auf 6s.

