Image Classification

In this project, you'll classify images from the <u>CIFAR-10 dataset (https://www.cs.toronto.edu/~kriz/cifar.html)</u>. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the <u>CIFAR-10 dataset for python (https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz)</u>.

```
In [1]:
        DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
        11 11 11
        from urllib.request import urlretrieve
        from os.path import isfile, isdir
        from tqdm import tqdm
        import problem unittests as tests
        import tarfile
        cifar10_dataset_folder_path = 'cifar-10-batches-py'
        # Use Floyd's cifar-10 dataset if present
        floyd cifar10 location = '/input/cifar-10/python.tar.gz'
        if isfile(floyd cifar10 location):
            tar gz path = floyd cifar10 location
        else:
            tar_gz_path = 'cifar-10-python.tar.gz'
        class DLProgress(tqdm):
            last block = 0
            def hook(self, block_num=1, block_size=1, total_size=None):
                self.total = total size
                self.update((block_num - self.last_block) * block_size)
                self.last block = block num
        if not isfile(tar gz path):
            with DLProgress(unit='B', unit scale=True, miniters=1, desc='CIFAR-1
        0 Dataset') as pbar:
                urlretrieve(
                     'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
                     tar gz path,
                    pbar.hook)
        if not isdir(cifar10_dataset_folder_path):
            with tarfile.open(tar gz path) as tar:
                tar.extractall()
                tar.close()
        tests.test_folder_path(cifar10_dataset_folder_path)
```

All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

- · airplane
- · automobile
- bird
- cat
- deer
- dog
- frog
- horse
- ship
- truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.

```
In [2]:
        %matplotlib inline
        %config InlineBackend.figure format = 'retina'
        import helper
        import numpy as np
        # Explore the dataset
        batch id = 1 #1
        sample id = 5 \# 5
        helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)
        Stats of batch 1:
        Samples: 10000
        Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 10
        30, 7: 1001, 8: 1025, 9: 981}
        First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3,
        2, 6]
        Example of Image 5:
        Image - Min Value: 0 Max Value: 252
        Image - Shape: (32, 32, 3)
        Label - Label Id: 1 Name: automobile
```


Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.

```
In [3]: def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data. The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # TODO: Implement Function
    np_x = np.asarray( x, np.float32)
    y = np_x/255
    return y

"""
    DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
    """
    tests.test_normalize(normalize)
```

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.

```
In [4]: def one_hot_encode(x):
    """"
    One hot encode a list of sample labels. Return a one-hot encoded vec
tor for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """

# TODO: Implement Function
#print(x)
    num_classes = 10
    y = np.zeros( (len(x), num_classes ))
    y[ np.arange(len(x)), x] = 1
    return y

"""

DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)
```

Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.

```
In [5]: """
    DON'T MODIFY ANYTHING IN THIS CELL
    """

# Preprocess Training, Validation, and Testing Data
    helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize,
    one_hot_encode)
```

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.

```
In [6]:
    """
    DON'T MODIFY ANYTHING IN THIS CELL
    """
    import pickle
    import problem_unittests as tests
    import helper

# Load the Preprocessed Validation data
    valid_features, valid_labels = pickle.load(open('preprocess_validation.
    p', mode='rb'))
```

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the <u>TensorFlow Layers</u>

(https://www.tensorflow.org/api_docs/python/tf/layers) or TensorFlow Layers (contrib) (https://www.tensorflow.org/api_guides/python/contrib.layers) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You **can** still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, <u>tf.layers.conv2d</u> (https://www.tensorflow.org/api_docs/python/tf/layers/conv2d), you would want to use the TF Neural Network version of conv2d, <u>tf.nn.conv2d</u> (https://www.tensorflow.org/api_docs/python/tf/nn/conv2d).

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

- Implement neural_net_image_input
 - Return a <u>TF Placeholder (https://www.tensorflow.org/api_docs/python/tf/placeholder)</u>
 - Set the shape using image_shape with batch size set to None.
 - Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the <u>TF Placeholder (https://www.tensorflow.org/api_docs/python/tf/placeholder)</u>.
- Implement neural net label input
 - Return a <u>TF Placeholder (https://www.tensorflow.org/api_docs/python/tf/placeholder)</u>
 - Set the shape using n_classes with batch size set to None.
 - Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the <u>TF</u> <u>Placeholder (https://www.tensorflow.org/api_docs/python/tf/placeholder)</u>.
- Implement neural net keep prob input
 - Return a <u>TF Placeholder (https://www.tensorflow.org/api_docs/python/tf/placeholder)</u> for dropout keep probability.
 - Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder (https://www.tensorflow.org/api_docs/python/tf/placeholder).

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.

```
In [7]: import tensorflow as tf
        def neural_net_image_input(image_shape):
            Return a Tensor for a batch of image input
            : image shape: Shape of the images
            : return: Tensor for image input.
            # TODO: Implement Function
            x = tf.placeholder( tf.float32, shape=(None, image_shape[0], image_s
        hape[1], image_shape[2]), name = "x")
            return x
        def neural_net_label_input(n_classes):
            Return a Tensor for a batch of label input
            : n classes: Number of classes
            : return: Tensor for label input.
            # TODO: Implement Function
            y = tf.placeholder( tf.float32, shape= (None, n classes), name = "y"
            return y
        def neural_net_keep_prob_input():
            Return a Tensor for keep probability
            : return: Tensor for keep probability.
            # TODO: Implement Function
            kp = tf.placeholder(tf.float32, name='keep prob')
            return kp
        DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
        tf.reset default graph()
        tests.test nn image inputs(neural net image input)
        tests.test nn label inputs(neural net label input)
        tests.test nn keep prob inputs(neural net keep prob input)
        Image Input Tests Passed.
```

Label Input Tests Passed. Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d maxpool to apply convolution then max pooling:

- Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
- Apply a convolution to x tensor using weight and conv strides.
 - We recommend you use same padding, but you're welcome to use any padding.
- · Add bias
- Add a nonlinear activation to the convolution.
- Apply Max Pooling using pool ksize and pool strides.
 - We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use <u>TensorFlow Layers (https://www.tensorflow.org/api_docs/python/tf/layers)</u> or <u>TensorFlow Layers (contrib) (https://www.tensorflow.org/api_guides/python/contrib.layers)</u> for **this** layer, but you can still use TensorFlow's <u>Neural Network (https://www.tensorflow.org/api_docs/python/tf/nn)</u> package. You may still use the shortcut option for all the **other** layers.

```
In [8]: def conv2d maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides,
        pool ksize, pool strides):
            Apply convolution then max pooling to x tensor
            :param x tensor: TensorFlow Tensor
            :param conv num outputs: Number of outputs for the convolutional lay
        er
            :param conv ksize: kernal size 2-D Tuple for the convolutional layer
            :param conv strides: Stride 2-D Tuple for convolution
            :param pool ksize: kernal size 2-D Tuple for pool
            :param pool strides: Stride 2-D Tuple for pool
            : return: A tensor that represents convolution and max pooling of x
        tensor
            # TODO: Implement Function
            # conv
            #print(conv ksize)
            #print(conv strides)
            #print(pool strides)
            #print(x_tensor.shape)
            color_index = 3
                                   #[batch,h,w,color ch]
            xs = x tensor.shape
            num color channels = int(xs[color index])
            W = tf. Variable( tf.truncated normal( [conv ksize[0], conv ksize[1],
        num color channels ,conv num outputs], mean=0.0, stddev=0.069 ) )
            b = tf.Variable( tf.zeros(conv num outputs )
            y = tf.nn.conv2d(x tensor, W, [1, conv strides[0], conv strides[1],
        1], padding = 'SAME')
            y = tf.nn.bias add(y, b)
            y = tf.nn.relu(y)
            # max pool
            y = tf.nn.max_pool(y, [1,pool_ksize[0],pool_ksize[1],1], [1,pool_str
        ides[0],pool strides[1],1 ], padding='SAME')
            return y
        11 11 11
        DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
        tests.test con pool(conv2d maxpool)
```

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (*Batch Size*, *Flattened Image Size*). Shortcut option: you can use classes from the TensorFlow Layers (https://www.tensorflow.org/api_docs/python/tf/layers) or TensorFlow Layers (contrib) (https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages.

```
In [9]: def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the im
age dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    shape = x_tensor.get_shape().as_list()
    dim = np.prod( shape[1:] )
    y = tf.reshape(x_tensor,[-1,dim] )
    return y

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)
```

Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers

(https://www.tensorflow.org/api_docs/python/tf/layers) or TensorFlow Layers (contrib)

(https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages.

```
In [10]: def fully conn(x_tensor, num_outputs):
             Apply a fully connected layer to x tensor using weight and bias
             : x tensor: A 2-D tensor where the first dimension is batch size.
             : num outputs: The number of output that the new tensor should be.
             : return: A 2-D tensor where the second dimension is num outputs.
             # TODO: Implement Function
             #print(x tensor,shape)
             # print(num outputs)
             x_shape = x_tensor.shape
             x_{en} = int(x_{shape}[1])
             num outputs = int(num outputs)
             W = tf.Variable( tf.truncated normal( [ x len, num outputs ], mean=
         0.0, stddev=0.088 ) )
             b = tf.Variable( tf.zeros( num_outputs) )
             y = tf.matmul( x_tensor, W)
             y = tf.nn.bias add(y, b)
             y = tf.nn.relu(y)
             return y
         .....
         DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
         tests.test fully conn(fully conn)
```

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (*Batch Size*, num_outputs). Shortcut option: you can use classes from the <u>TensorFlow Layers</u> (https://www.tensorflow.org/api_docs/python/tf/layers) or <u>TensorFlow Layers</u> (contrib) (https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.

```
In [11]: def output(x_tensor, num_outputs):
             Apply a output layer to x_tensor using weight and bias
             : x tensor: A 2-D tensor where the first dimension is batch size.
              : num outputs: The number of output that the new tensor should be.
              : return: A 2-D tensor where the second dimension is num outputs.
             # TODO: Implement Function
             x_shape = x_tensor.shape
             x_{en} = int(x_{shape}[1])
             num_outputs = int(num_outputs)
             W = tf. Variable( tf.truncated_normal( [ x len, num_outputs ], mean=
         0.0, stddev=0.088 ) )
             b = tf.Variable( tf.zeros( num outputs) )
             y = tf.matmul( x_tensor, W)
             y = tf.nn.bias_add(y, b)
             return y
         11 11 11
         DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
         tests.test_output(output)
```

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

- Apply 1, 2, or 3 Convolution and Max Pool layers
- · Apply a Flatten Layer
- Apply 1, 2, or 3 Fully Connected Layers
- Apply an Output Layer
- · Return the output
- Apply <u>TensorFlow's Dropout (https://www.tensorflow.org/api_docs/python/tf/nn/dropout)</u> to one or more layers in the model using keep_prob.

```
In [12]: def conv net(x, keep prob):
              11 11 11
             Create a convolutional neural network model
             : x: Placeholder tensor that holds image data.
              : keep prob: Placeholder tensor that hold dropout keep probability.
              : return: Tensor that represents logits
              11 11 11
             # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
                   Play around with different number of outputs, kernel size and s
         tride
             # Function Definition from Above:
                   conv2d maxpool(x tensor, conv num outputs, conv ksize, conv str
         ides, pool ksize, pool strides)
             filter size = (2,2)
             filter strides = (1,1)
             pool_size = (2,2)
             pool strides=(1,1)
             num outputs = 128 # num feature maps
             y = conv2d maxpool(x, num outputs, filter size, filter strides, pool
         size, pool strides )
             y = conv2d maxpool(y, num_outputs, filter_size, filter_strides, pool
         _size, pool_strides )
             y = conv2d maxpool(y, num outputs, filter size, filter strides, pool
         _size, pool_strides )
             # TODO: Apply a Flatten Layer
             # Function Definition from Above:
             # flatten(x tensor)
             y = flatten(y)
             # TODO: Apply 1, 2, or 3 Fully Connected Layers
                  Play around with different number of outputs
             # Function Definition from Above:
             #fully conn(x tensor, num outputs)
             y = fully conn( y, num outputs )
             y = tf.nn.dropout( y, keep prob )
             y = fully conn( y, num outputs)
             y = tf.nn.dropout( y, keep_prob )
             y = fully conn(y, 16)
             # TODO: Apply an Output Layer
                  Set this to the number of classes
             # Function Definition from Above:
                 output(x tensor, num outputs)
             num classes = 10
             y = output( y, num classes )
             # TODO: return output
             return y
```

```
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
######################################
## Build the Neural Network ##
###################################
# Remove previous weights, bias, inputs, etc..
tf.reset default graph()
# Inputs
x = neural net image input((32, 32, 3))
y = neural_net_label_input(10)
keep prob = neural_net_keep prob_input()
# Model
logits = conv_net(x, keep_prob)
# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')
# Loss and Optimizer
cost = tf.reduce mean(tf.nn.softmax cross entropy with logits(logits=log
its, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
# Accuracy
correct pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce mean(tf.cast(correct pred, tf.float32), name='accur
acy')
tests.test conv net(conv net)
```

Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

- x for image input
- · y for labels
- keep prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.

```
In [13]: def train_neural_network(session, optimizer, keep_probability, feature b
         atch, label batch):
             Optimize the session on a batch of images and labels
              : session: Current TensorFlow session
              : optimizer: TensorFlow optimizer function
              : keep probability: keep probability
              : feature batch: Batch of Numpy image data
              : label batch: Batch of Numpy label data
             # TODO: Implement Function
             with session.as default() as sess:
                    sess.run( optimizer, feed dict={ x:feature batch, y:label batc
         h, keep prob: keep probability } )
                 except:
                   pass
          11 11 11
         DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
         tests.test_train_nn(train_neural_network)
```

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.

Hyperparameters

Tune the following parameters:

- · Set epochs to the number of iterations until the network stops learning or start overfitting
- Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
 - **6**4
 - **128**
 - **256**
 - **...**
- Set keep_probability to the probability of keeping a node using dropout

```
In [14]: def print stats(session, feature batch, label batch, cost, accuracy):
             Print information about loss and validation accuracy
             : session: Current TensorFlow session
             : feature batch: Batch of Numpy image data
             : label batch: Batch of Numpy label data
             : cost: TensorFlow cost function
             : accuracy: TensorFlow accuracy function
             # TODO: Implement Function
             with session.as default() as sess:
               valid accuracy = accuracy.eval(feed dict={y:valid labels,x:valid f
         eatures,keep prob:1.0} )
               loss = cost.eval(feed dict={x:feature batch, y:label batch, keep p
         rob:1.0})
               print("loss: " + str(loss))
               print("validation accuracy: "+str(valid_accuracy ) )
In [15]: # TODO: Tune Parameters
         epochs = 20
         batch_size = 128
         keep probability = 0.5
```

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.

In [16]: DON'T MODIFY ANYTHING IN THIS CELL print('Checking the Training on a Single Batch...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): $batch_i = 1$ for batch features, batch labels in helper.load preprocess train ing_batch(batch_i, batch_size): train neural network(sess, optimizer, keep probability, batc h_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batc h_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy)

	- 0	_
Checking the Training on a Sin	gle B	atch
Epoch 1, CIFAR-10 Batch 1: 1	oss:	2.23498
validation accuracy: 0.2284		
Epoch 2, CIFAR-10 Batch 1: 1	oss:	1.99253
validation accuracy: 0.3228		
	oss:	1.96227
validation accuracy: 0.3658		
-	oss:	1.75708
validation accuracy: 0.3878		
	oss:	1.56109
validation accuracy: 0.447		
	oss:	1.37276
validation accuracy: 0.4598		
-	oss:	1.44607
validation accuracy: 0.4404		
-	oss:	1.21647
validation accuracy: 0.4962		
	oss:	1.13947
validation accuracy: 0.5118		
	oss:	0.971305
validation accuracy: 0.5084		
Epoch 11, CIFAR-10 Batch 1: 1	oss:	0.969991
validation accuracy: 0.5184		
Epoch 12, CIFAR-10 Batch 1: 1	oss:	0.841149
validation accuracy: 0.532		
Epoch 13, CIFAR-10 Batch 1: 1	oss:	0.808493
validation accuracy: 0.5364		
Epoch 14, CIFAR-10 Batch 1: 1	oss:	0.738829
validation accuracy: 0.5512		
Epoch 15, CIFAR-10 Batch 1: 1	oss:	0.670236
validation accuracy: 0.542		
	oss:	0.693221
validation accuracy: 0.5324		
Epoch 17, CIFAR-10 Batch 1: 1	oss:	0.608877
validation accuracy: 0.5514		
Epoch 18, CIFAR-10 Batch 1: 1	oss:	0.612272
validation accuracy: 0.5608		
Epoch 19, CIFAR-10 Batch 1: 1	oss:	0.557387
validation accuracy: 0.5694		
Epoch 20, CIFAR-10 Batch 1: 1	oss:	0.478256
validation accuracy: 0.5566		

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.

```
In [17]:
         DON'T MODIFY ANYTHING IN THIS CELL
         save model path = './image classification'
         print('Training...')
         with tf.Session() as sess:
             # Initializing the variables
             sess.run(tf.global_variables_initializer())
             # Training cycle
             for epoch in range(epochs):
                 # Loop over all batches
                 n_batches = 5
                 for batch_i in range(1, n_batches + 1):
                     for batch features, batch labels in helper.load preprocess_t
         raining batch(batch_i, batch_size):
                         train neural network(sess, optimizer, keep probability,
         batch features, batch labels)
                     print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1,
         batch_i), end='')
                     print_stats(sess, batch_features, batch_labels, cost, accura
         cy)
             # Save Model
             saver = tf.train.Saver()
             save path = saver.save(sess, save model path)
```

Masining		
Training Epoch 1, CIFAR-10 Batch 1:	loss:	2.18773
validation accuracy: 0.227		
Epoch 1, CIFAR-10 Batch 2:	loss:	1.86077
validation accuracy: 0.332		
Epoch 1, CIFAR-10 Batch 3:	loss:	1.64954
validation accuracy: 0.3366	1000.	1.01331
Epoch 1, CIFAR-10 Batch 4:	loss:	1.68228
validation accuracy: 0.3854	_025	
Epoch 1, CIFAR-10 Batch 5:	loss:	1.58426
validation accuracy: 0.4358		
Epoch 2, CIFAR-10 Batch 1:	loss:	1.65657
validation accuracy: 0.4598		
Epoch 2, CIFAR-10 Batch 2:	loss:	1.4244
validation accuracy: 0.485		
Epoch 2, CIFAR-10 Batch 3:	loss:	1.27049
validation accuracy: 0.5054		
Epoch 2, CIFAR-10 Batch 4:	loss:	1.36507
validation accuracy: 0.5298		
Epoch 2, CIFAR-10 Batch 5:	loss:	1.28938
validation accuracy: 0.5422		
Epoch 3, CIFAR-10 Batch 1:	loss:	1.3968
validation accuracy: 0.5336		
Epoch 3, CIFAR-10 Batch 2:	loss:	1.30198
validation accuracy: 0.5452		
Epoch 3, CIFAR-10 Batch 3:	loss:	1.06678
validation accuracy: 0.5424		
Epoch 3, CIFAR-10 Batch 4:	loss:	1.14664
validation accuracy: 0.5574		
Epoch 3, CIFAR-10 Batch 5:	loss:	1.13447
validation accuracy: 0.5742	_	
Epoch 4, CIFAR-10 Batch 1:	loss:	1.15147
validation accuracy: 0.5748	1	1 00006
Epoch 4, CIFAR-10 Batch 2:	loss:	1.08926
validation accuracy: 0.5902	1000.	0 000072
Epoch 4, CIFAR-10 Batch 3: validation accuracy: 0.5868	TOSS:	0.980972
Epoch 4, CIFAR-10 Batch 4:	1000	1.01201
validation accuracy: 0.6022	1055.	1.01201
Epoch 4, CIFAR-10 Batch 5:	1088.	0.948785
validation accuracy: 0.593	1000.	0.910703
Epoch 5, CIFAR-10 Batch 1:	loss:	1.06156
validation accuracy: 0.5996		
Epoch 5, CIFAR-10 Batch 2:	loss:	0.891953
validation accuracy: 0.608		
Epoch 5, CIFAR-10 Batch 3:	loss:	0.83146
validation accuracy: 0.6044		
Epoch 5, CIFAR-10 Batch 4:	loss:	0.929139
validation accuracy: 0.58		
Epoch 5, CIFAR-10 Batch 5:	loss:	0.893568
validation accuracy: 0.6198		
Epoch 6, CIFAR-10 Batch 1:	loss:	0.979329
validation accuracy: 0.619		
Epoch 6, CIFAR-10 Batch 2:	loss:	0.712039
validation accuracy: 0.641	-	0 50055
Epoch 6, CIFAR-10 Batch 3:	loss:	0.72366
validation accuracy: 0.62		

	dilid_illid	ge_classification
Epoch 6, CIFAR-10 Batch 4: validation accuracy: 0.6412	loss:	0.753985
Epoch 6, CIFAR-10 Batch 5: validation accuracy: 0.6346	loss:	0.857092
Epoch 7, CIFAR-10 Batch 1:	loss:	0.793168
validation accuracy: 0.6514 Epoch 7, CIFAR-10 Batch 2:	loss:	0.709464
validation accuracy: 0.6168 Epoch 7, CIFAR-10 Batch 3:	loss:	0.711974
validation accuracy: 0.6186 Epoch 7, CIFAR-10 Batch 4:	loss:	0.741894
validation accuracy: 0.653 Epoch 7, CIFAR-10 Batch 5:	loss:	
validation accuracy: 0.6454		
Epoch 8, CIFAR-10 Batch 1: validation accuracy: 0.6532	loss:	0.69014
Epoch 8, CIFAR-10 Batch 2: validation accuracy: 0.6542	loss:	0.674392
Epoch 8, CIFAR-10 Batch 3: validation accuracy: 0.6486	loss:	0.545731
Epoch 8, CIFAR-10 Batch 4: validation accuracy: 0.6636	loss:	0.668319
Epoch 8, CIFAR-10 Batch 5:	loss:	0.631801
validation accuracy: 0.654 Epoch 9, CIFAR-10 Batch 1:	loss:	0.624855
validation accuracy: 0.6604 Epoch 9, CIFAR-10 Batch 2:	loss:	0.622428
validation accuracy: 0.6516 Epoch 9, CIFAR-10 Batch 3:	loss:	0.553882
validation accuracy: 0.6458 Epoch 9, CIFAR-10 Batch 4:	loss:	0.701822
<pre>validation accuracy: 0.6768 Epoch 9, CIFAR-10 Batch 5:</pre>	loss:	0.632018
validation accuracy: 0.6662 Epoch 10, CIFAR-10 Batch 1:	1055:	0.543743
validation accuracy: 0.6818		
Epoch 10, CIFAR-10 Batch 2: validation accuracy: 0.6692		0.590026
Epoch 10, CIFAR-10 Batch 3: validation accuracy: 0.65	loss:	0.473595
Epoch 10, CIFAR-10 Batch 4: validation accuracy: 0.6728	loss:	0.626424
Epoch 10, CIFAR-10 Batch 5: validation accuracy: 0.6434	loss:	0.617814
Epoch 11, CIFAR-10 Batch 1: validation accuracy: 0.673	loss:	0.544614
Epoch 11, CIFAR-10 Batch 2: validation accuracy: 0.6682	loss:	0.503699
Epoch 11, CIFAR-10 Batch 3: validation accuracy: 0.673	loss:	0.428082
Epoch 11, CIFAR-10 Batch 4:	loss:	0.525878
validation accuracy: 0.6792 Epoch 11, CIFAR-10 Batch 5:	loss:	0.535992
validation accuracy: 0.6668 Epoch 12, CIFAR-10 Batch 1:	loss:	0.494917
validation accuracy: 0.6742 Epoch 12, CIFAR-10 Batch 2:	loss:	0.473314

8/10/2019

	_	<i>o</i> –
validation accuracy: 0.6796 Epoch 12, CIFAR-10 Batch 3:	1088.	0.36458
validation accuracy: 0.6686	1055.	0.30430
Epoch 12, CIFAR-10 Batch 4:	loss:	0.462133
validation accuracy: 0.6792	1000.	0.102100
Epoch 12, CIFAR-10 Batch 5:	loss:	0.45809
validation accuracy: 0.6818		
Epoch 13, CIFAR-10 Batch 1:	loss:	0.449702
validation accuracy: 0.6794		
Epoch 13, CIFAR-10 Batch 2:	loss:	0.49355
validation accuracy: 0.6854		
Epoch 13, CIFAR-10 Batch 3:	loss:	0.380194
validation accuracy: 0.6484		
Epoch 13, CIFAR-10 Batch 4:	loss:	0.449708
validation accuracy: 0.6856		
Epoch 13, CIFAR-10 Batch 5:	loss:	0.426374
validation accuracy: 0.6898		
Epoch 14, CIFAR-10 Batch 1:	loss:	0.454345
validation accuracy: 0.676	_	
Epoch 14, CIFAR-10 Batch 2:	loss:	0.448912
validation accuracy: 0.6712	-	
Epoch 14, CIFAR-10 Batch 3:	loss:	0.316436
validation accuracy: 0.6716		0 420452
Epoch 14, CIFAR-10 Batch 4:	loss:	0.430453
validation accuracy: 0.6832	loss:	0.379218
Epoch 14, CIFAR-10 Batch 5: validation accuracy: 0.6732	ross:	0.3/9218
Epoch 15, CIFAR-10 Batch 1:	loss:	0.413772
validation accuracy: 0.6808	1055:	0.413//2
Epoch 15, CIFAR-10 Batch 2:	loss:	0.401006
validation accuracy: 0.6856	1055.	0.401000
Epoch 15, CIFAR-10 Batch 3:	loss:	0.249886
validation accuracy: 0.6924	_000	01213000
Epoch 15, CIFAR-10 Batch 4:	loss:	0.435337
validation accuracy: 0.6852		
Epoch 15, CIFAR-10 Batch 5:	loss:	0.346251
validation accuracy: 0.6724		
Epoch 16, CIFAR-10 Batch 1:	loss:	0.348382
validation accuracy: 0.681		
Epoch 16, CIFAR-10 Batch 2:	loss:	0.386274
validation accuracy: 0.6818		
Epoch 16, CIFAR-10 Batch 3:	loss:	0.260445
validation accuracy: 0.6836		
Epoch 16, CIFAR-10 Batch 4:	loss:	0.37473
validation accuracy: 0.6892	_	
Epoch 16, CIFAR-10 Batch 5:	loss:	0.34794
validation accuracy: 0.6742	-	
Epoch 17, CIFAR-10 Batch 1:	loss:	0.337967
validation accuracy: 0.6914	1	0 260625
Epoch 17, CIFAR-10 Batch 2:	loss:	0.368635
validation accuracy: 0.6786 Epoch 17, CIFAR-10 Batch 3:	1000	0.235005
validation accuracy: 0.6656	1022;	0.233003
Epoch 17, CIFAR-10 Batch 4:	1055.	0.333753
validation accuracy: 0.6848	±055 •	0.333/33
Epoch 17, CIFAR-10 Batch 5:	loss:	0.253867
validation accuracy: 0.685		

Epoch 18, CIFAR-10 Batch 1: validation accuracy: 0.667	loss:	0.358298
Epoch 18, CIFAR-10 Batch 2: validation accuracy: 0.6928	loss:	0.359959
Epoch 18, CIFAR-10 Batch 3:	loss:	0.216147
validation accuracy: 0.6652	-	
Epoch 18, CIFAR-10 Batch 4:	loss:	0.342233
validation accuracy: 0.687	1	0 266175
Epoch 18, CIFAR-10 Batch 5:	loss:	0.266175
validation accuracy: 0.6772	1	0 247252
Epoch 19, CIFAR-10 Batch 1:	loss:	0.347352
validation accuracy: 0.6698	1	0 227027
Epoch 19, CIFAR-10 Batch 2:	loss:	0.337837
validation accuracy: 0.6872	1	0 101042
Epoch 19, CIFAR-10 Batch 3:	loss:	0.191942
validation accuracy: 0.6846	7	0 254001
Epoch 19, CIFAR-10 Batch 4:	loss:	0.354801
validation accuracy: 0.6738	1	0 206067
Epoch 19, CIFAR-10 Batch 5:	loss:	0.206867
validation accuracy: 0.6944	-	
Epoch 20, CIFAR-10 Batch 1:	loss:	0.298942
validation accuracy: 0.677	-	0 011100
Epoch 20, CIFAR-10 Batch 2:	loss:	0.314409
validation accuracy: 0.6912	-	
Epoch 20, CIFAR-10 Batch 3:	loss:	0.203522
validation accuracy: 0.6938	_	
Epoch 20, CIFAR-10 Batch 4:	loss:	0.288115
validation accuracy: 0.6768	_	
Epoch 20, CIFAR-10 Batch 5:	loss:	0.271713
validation accuracy: 0.6814		

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.

```
In [18]:
         DON'T MODIFY ANYTHING IN THIS CELL
         %matplotlib inline
         %config InlineBackend.figure format = 'retina'
         import tensorflow as tf
         import pickle
         import helper
         import random
         # Set batch size if not already set
         try:
             if batch size:
                 pass
         except NameError:
             batch size = 64
         save model path = './image classification'
         n \text{ samples} = 4
         top n predictions = 3
         def test_model():
             Test the saved model against the test dataset
             test features, test labels = pickle.load(open('preprocess test.p', m
         ode='rb'))
             loaded graph = tf.Graph()
             with tf.Session(graph=loaded graph) as sess:
                  # Load model
                  loader = tf.train.import meta graph(save model path + '.meta')
                  loader.restore(sess, save model path)
                  # Get Tensors from loaded model
                  loaded x = loaded graph.get tensor by name('x:0')
                  loaded y = loaded graph.get tensor by name('y:0')
                  loaded keep prob = loaded graph.get tensor by name('keep prob:0'
         )
                  loaded logits = loaded graph.get tensor by name('logits:0')
                  loaded acc = loaded graph.get tensor by name('accuracy:0')
                  # Get accuracy in batches for memory limitations
                 test batch acc total = 0
                  test batch count = 0
                  for test feature batch, test label batch in helper.batch feature
         s labels(test features, test labels, batch size):
                      test batch acc total += sess.run(
                          loaded acc,
                          feed_dict={loaded_x: test_feature_batch, loaded_y: test_
         label batch, loaded keep prob: 1.0})
                      test batch count += 1
```

INFO:tensorflow:Restoring parameters from ./image_classification
Testing Accuracy: 0.6889833860759493

Softmax Predictions

Why 50-80% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 80%

(http://rodrigob.github.io/are we there yet/build/classification datasets results.html#43494641522d3130). That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.