Análise de complexidade

Como escolher um algoritmo?

- Tempo de processamento
 - Um algoritmo que realiza uma tarefa em 10 horas é melhor que outro que realiza em 10 dias
- Quantidade de memória necessária
 - Um algoritmo que usa 1MB de memória RAM é melhor que outro que usa 1GB

Tempo de processamento

- Medir o tempo gasto por um algoritmo
 - Não é uma boa opção
 - Depende do compilador
 - Pode preferir algumas construções ou otimizar melhor
 - Depende do hardware
 - GPU vs. CPU, desktop vs. smartphone
- Estudar o número de vezes que operações são executadas

Exemplo – tempo de processamento

Achar o máximo de um vetor

- Complexidade: f(n) = n-1
- Esse algoritmo é ótimo

Análise do tempo de processamento

- Análise de complexidade feita em função de n
 - n indica o tamanho da entrada
 - Número de elementos no vetor
 - Número de vértices num grafo
 - Número de linhas de uma matriz
- Diferentes entradas podem ter custo diferente
 - Melhor caso
 - Pior caso
 - Caso médio

Exemplo – Busca sequencial

- Recuperar um registro num arquivo procurando sequencialmente
- Quantos registros precisam ser processados em uma busca?
- Melhor caso:
- Pior caso:
- Caso médio:

Exemplo - MinMax

 Problema: encontrar o valores minimo e máximo em um vetor

```
void minmax(int *vec, int n, int *min, int *max) {
             int i;
             int *min = vec[0];
             int *max = vec[0];
    n-1
            for (i = 1; i < n; i++) {
    n-1
                if(vec[i] < *min) {</pre>
A < n-1
                   *min = vec[i];
    n-1
                if(vec[i] > *max)
B < n-1
                   *max = vec[i];
                                     melhor caso: f(n) = 2(n-1)
                                     pior caso: f(n) = 2(n-1)
                                     caso médio: f(n) = 2(n-1)
```

Exemplo - MinMax2

Se vec[i] < *min, então não precisamos checar se vec[i] > *max

```
void minmax2(int *vec, int n, int *min, int *max) {
               int i;
                                            melhor caso:
               int *min = vec[0];
               int *max = vec[0];
                                              (decrescente)
      n-1 for (i = 1; i < n; i++) {
                                              f(n) = n-1
      n-1
                  if(vec[i] < *min) {</pre>
  A < n-1
                     *min = vec[i];
                                            pior caso:
                  } else {
                                              (crescente)
    n-1-A
                     if(vec[i] > *max) {
                                              f(n) = 2(n-1)
B < n-1-A
                        *max = vec[i];
                                            caso médio:
                                              (aleatório)
                                              f(n) > 3(n-1)/2
```

MinMax, dá pra fazer melhor?

- Comparar elementos par-a-par
 - Custo: n/2 comparações

MinMax, dá pra fazer melhor?

- Comparar elementos par-a-par
 - Custo: n/2 comparações
- Elementos vermelhos são maiores que os azuis
- Encontrar o máximo entre os elementos vermelhos
 - Custo: n/2 comparações
- Encontrar o mínimo entre os elementos azuis
 - Custo: n/2 comparações

Exemplo - MinMax3

```
void minmax3(int *vec, int n, int *min, int *max) {
             int i;
             int *min = INT MAX;
             int *max = INT MIN;
    n/2
           for (i = 0; i < n; i += 2) {
    n/2
                 if(vec[i] < vec[i+1]) {
    n/4
                    a = i; v = i+1;
                                             melhor caso:
                 } else {
                                                f(n) = 3n/2
    n/4
                    a = i+1; v = i;
                                             pior caso:
    n/2
                 if(vec[a] < *min)</pre>
                                                f(n) = 3n/2
A < n/2
                    *min = vec[a];
    n/2
                 if(vec[v] > *max)
                                             caso médio:
B < n/2
                    *max = vec[v];
                                                f(n) = 3n/2
```

Algoritmo ótimo

MinMax, comparação

Algoritmo	f(n)		
	Melhor caso	Pior caso	Caso médio
MinMax1	2(n-1)	2(n-1)	2(n-1)
MinMax2	n-1	2(n-1)	> 3(n-1)/2
MinMax3	3n/2	3n/2	3n/2

Comportamento Assintótico de Funções

Comportamento assintótico

- Para valores suficientemente pequenos de n, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes
 - Escolha de um algoritmo não é um problema crítico
- Logo, analisamos algoritmos para grandes valores de n
 - Estudamos o comportamento assintótico das funções de complexidade de um programa (comportamento pra grandes valores de n)

Dominação assintótica

■ Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, temos $|g(n)| \le c |f(n)|$.

Exemplos

•
$$f(n) = n^2$$
, $g(n) = n$

$$f(n)$$
 domina assintoticamente $g(n)$
 $c = 1, m = 0$

$$|g(n)| \le 1 |f(n)|$$
 para todo $n \ge m = 0$

Exemplos

•
$$f(n) = n^2$$
, $g(n) = (n+1)^2$

f(n) e g(n) dominam assintoticamente uma à outra

$$|f(n)| \le 1 |g(n)|$$
 para todo $n \ge m = 0$

$$|g(n)| \le 4 |f(n)|$$
 para todo $n \ge m = 1$

Notação O

- Definimos g(n) = O(f(n)) se f(n) domina assintoticamente g(n)
 - Lê se g(n) é da ordem no máximo f(n)
- Quando dizemos que o tempo de execução de um programa $T(n) = O(n^2)$, existem constantes $c \in m$ tais que $T(n) \le cn^2$ para $n \ge m$

Notação O – Exemplos (1)

- $f(n) = (n+1)^2 = O(n^2)$
 - Pois $(n+1)^2 \le 4n^2$, para $n \ge m = 1$
- $f(n) = n^2 e g(n) = n$
 - $n = O(n^2)$, (faça m = 0 e c = 1)
 - Mas n^2 não é O(n)
 - Suponha que existam c e m tais que para todo $n \ge m$, $n^2 \le cn$
 - Logo $n \le c$ para todo $n \ge m$, contradição

Notação O – Exemplos (2)

- $f(n) = 3n^3 + 2n^2 + n = O(n^3)$
 - Basta mostrar que $f(n) \le 6n^3$, para $n \ge m = 0$
 - Podemos dizer que $f(n) = 3n^3 + 2n^2 + n = O(n^4)$, mas essa afirmação é mais fraca que $f(n) = O(n^3)$
- $f(n) = \log_5(n) = O(\log(n))$
 - $\log_b(n)$ difere de $\log_c(n)$ por uma constante $\log_b(c)$
 - $f(n) \le \log_5(e)\log(n)$, para todo $n \ge m = 0$

Notação O – Propriedades

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \quad c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Notação O – Exemplos (3)

- Imagine um programa com três fases
 - A primeira com custo O(n)
 - A segunda com custo $O(n^2)$
 - A terceira com custo $O(n \log(n))$
- Aplicando a regra da soma
 - O tempo de execução total do programa é $O(n^2)$

Notação Ω

- Uma função g(n) é $\Omega(f(n))$ se g(n) domina assintoticamente f(n)
- Notação O denota um limite superior e a notação Ω denota um limite inferior

Notação Ω – Exemplo

- $f(n) = 3n^3 + 2n^2 + n = \Omega(n^3)$
 - Basta mostrar que $n^3 \le 3n^3 + 2n^2 + n$, para $n \ge m = 0$
 - Podemos dizer que $f(n) = 3n^3 + 2n^2 + n = \Omega(n^2)$, mas essa afirmação é mais fraca que $f(n) = \Omega(n^3)$

Notação 🖯

- Uma função g(n) é $\Theta(f(n))$ se g(n) e f(n) dominam assintoticamente uma à outra
 - Definição equivalente: $g(n) = \Theta(f(n))$ se g(n) = O(n) e $g(n) = \Omega(f(n))$

Notação 😉

- Notação O é um limite assintótico firme
- Diz que duas funções crescem de forma similar e que a diferença é constante

Exercícios

- Prove que $4\log_2(n) + 16 = O(n)$
 - $4\log_2(n) + 16 \le n$ para $n \ge m = 64 = 2^6$
- Prove que $4\log_2(n) + 16 = O(\log_2 n)$
 - $4\log_2(n) + 16 \le 5\log_2(n)$ para $n \ge m = 2^{17}$
- $2^{n+1} = O(2^n)$. Verdadeiro ou falso?
 - Verdadeiro, faça c = 2 e m = 0
- $2^{2n} = O(2^n)$. Verdadeiro ou falso?
 - Falso.
 - Prova: Suponha $2^{2n} \le c2^n$, divida por 2^n e obtenha $2^n \le c$

Exercícios

- Por que falar "o tempo de execução do algoritmo A é pelo menos $O(2^n)$ " não faz sentido?
 - Um algoritmo com tempo de execução $O(2^n)$ realiza no máximo $c2^n$ operações. Falar que um algoritmo realiza *pelo menos no máximo* $c2^n$ operações não faz sentido.

Exercícios

- Prove que $\max(f(n), g(n)) = \Theta(f(n) + g(n))$
 - $\max(f(n), g(n)) \le 1(f(n) + g(n))$ para $n \ge m = 0$
 - $\max(f(n), g(n)) \ge (1/2)(f(n) + g(n)),$ para $n \ge m = 0$

Classes de Comportamento Assintótico

Complexidade Assintótica (1)

- Se f é uma função de complexidade para um algoritmo, então O(f) é considerada a complexidade assintótica do algoritmo
- Podemos comparar algoritmos usando suas complexidades assintóticas
 - Um algoritmo O(n) é melhor do que um $O(n^2)$
 - Algoritmos com a mesma complexidade assintótica são equivalentes

Complexidade Assintótica (2)

- Às vezes, a constante da função de complexidade de um algoritmo importar
 - Um algoritmo com complexidade $2n^2$ é melhor do que um com complexidade 100n para valores de n menores que 50
 - Quando dois algoritmos têm a mesma complexidade assintótica, podemos desempatar usando a constante da função de complexidade

$$f(n) = O(1)$$

- Complexidade constante
- Tempo de execução do algoritmo independe do tamanho da entrada
- Os passos do algoritmo são executados um número fixo de vezes

Exemplo: determinar se um número é ímpar

$f(n) = O(\log(n))$

- Complexidade logarítmica
- Típico de algoritmos que dividem um problema transformando-o em problemas menores (dividir para conquistar)
- Tempo de execução pode ser considerado menor do que uma constante grande
 - Quando n é um milhão, $\log(n) \approx 20$
 - A base do logarítmo tem impacto pequeno
- Exemplo: busca binária

$$\mathbf{f}(n) = \mathbf{O}(n)$$

- Complexidade linear
- O algoritmo realiza um número fixo de operações sobre cada elemento da entrada
- Melhor situação para um algoritmo que processa n elementos de entrada e produz n elementos de saída
- Exemplo: busca sequencial, calcular fatorial

$f(n) = O(n \log(n))$

 Típico de algoritmos que dividem um problema em subproblemas, resolve cada subproblema de forma independente, e depois combina os resultados

Exemplo: ordenação (eficiente)

$$f(n) = O(n^2)$$

- Complexidade quadrática
- Típico de algoritmos que operam sobre pares dos elementos de entrada
 - Comumente em um anel dentro de outro
- Útil para resolver problemas de tamanhos relativamente pequenos
- Exemplos: ordenação (ineficiente), imprimir uma matriz

$$f(n) = O(n^3)$$

- Complexidade cúbica
- Útil para resolver problemas pequenos
- Exemplo: multiplicação de matrizes

$$\mathbf{f}(n) = \mathbf{O}(c^n)$$

- Complexidade exponencial
- Típicos de algoritmos que fazem busca exaustiva (força bruta) para resolver um problema
- Não são úteis do ponto de vista prático
 - Quando n é 20, $O(2^n)$ é um milhão

$$f(n) = O(n!)$$

- Complexidade exponencial
 - Pior do que $O(c^n)$
- Não são úteis do ponto de vista prático
 - Quando n é 20, O(n!) é maior que 2 quintilhões

Comparação de Classes de Complexidade

Função	Tamanho n					
de custo	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
n^3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n^5	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2^n	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	séc.
3^n	0,059	58	6,5	3855	10 ⁸	10 ¹³
	s	min	anos	séc.	séc.	séc.

Velocidade de Processamento vs. Tamanho da Entrada

Função de	Computador	Computador	Computador	
custo	atual	100 vezes	1.000 vezes	
de tempo	(tamanho)	mais rápido	mais rápido	
n	t_1	$100 \ t_1$	$1000 \ t_1$	
n^2	t_2	$10 \ t_2$	$31,6 t_2$	
n^3	t_3	$4,6 t_3$	$10 \ t_3$	
2^n	t_4	$t_4 + 6, 6$	$t_4 + 10$	

Algoritmo Polinomial

Algoritmo polinomial no tempo de execução tem função de complexidade O(f(n)), onde f(n) é um polinômio

 Algoritmos polinomiais geralmente são obtidos através de um entendimento mais profundo da estrutura do problema

- Enquanto algoritmos exponenciais são típicos de soluções força bruta
- Um problema é considerado
 - Intratável: se não existe algoritmo polinomial para resolvê-lo
 - Bem resolvido: se existe algoritmo polinomial para resolvê-lo

Algoritmos Exponenciais – Exceções

- Existem algoritmos de complexidade exponencial que são úteis
 - Por exemplo, o algoritmo simplex tem pior caso de tempo de execução exponencial, mas na média executa muito mais rápido do que isso
 - Infelizmente, estas exceções são incomuns e a maioria dos algoritmos exponenciais conhecidos não são muito úteis

Problema do Caixeiro Viajante

- Um caixeiro viajante deseja visitar n cidades de tal forma que sua viagem inicie e termine em uma mesma cidade
- Cada cidade deve ser visitada uma única vez
- Duas cidades i, j podem ser ligadas por uma estrada de comprimento $c_{i,j}$
- O problema é encontrar a menor rota para a viagem

Problema do Caixeiro Viajante

- A figura abaixo mostra 4 cidades (c1, c2, c3 e c4) e os pesos nas arestas mostram os comprimentos de cada estrada
- O percurso c1, c3, c4, c2, c1
 é a solução para o problema,
 cujo percurso total tem
 distância 24

Problema do Caixeiro Viajante

- Um algoritmo simples seria verificar todas as rotas e escolher a menor delas
- Há (n 1)! rotas possíveis e a distância total percorrida em cada rota envolve n adições, logo o número total de adições é n!
- No exemplo anterior teríamos 24 adições; se tivéssemos 50 cidades, o número de adições seria aproximadamente 10⁶⁴
- Em um computador que executa 109 adições por segundo, o tempo total para resolver o problema com 50 cidades seria maior do que 10⁴⁵ séculos só para executar as adições

Técnicas de Análise de Algoritmos

Análise de Algoritmos

- Determinar o tempo de execução de um algoritmo pode ser complexo
- Determinar a complexidade assintótica, sem preocupação com as constantes envolvidas, pode ser uma tarefa mais simples
- Análise de algoritmos utiliza técnicas de matemática discreta
 - Manipulação de somas, produtos, permutações, coeficientes binomiais, equações de recorrência

Análise do Tempo de Execução

- Comando simples (atribuição, comparação, operação aritmética, acesso a memória): O(1)
- Sequência de comandos: máximo dos tempos de execução dos comandos
- Comando condicional: tempo dos comandos dentro do condicional mais o tempo pra testar a condição, que é O(1)
- Anel: Tempo de execução dos comandos do anel mais teste de parada (geralmente O(1)), multiplicado pelo número de iterações

Análise do Tempo de Execução

- Para funções não recursivas:
 - Comece pelas funções que não chamam nenhuma outra função
 - Depois analise funções que chamam apenas funções analisadas no passo anterior
 - E assim sucessivamente até chegar ao programa principal (main)

Exemplo

```
- int soma_acumulada(int n) {
- int i;
1 int acumulador = 0;
n for(i = 0; i < n; i++) {
n acumulador += i;
- }
1 return acumulador;
- }</pre>
```

- Qual a função de complexidade do número de atribuições para o acumulador?
- Qual a ordem de complexidade da função soma acumulada?

Exemplo

```
- void exemplo(int n)
- {
        int i, j;
        int a = 0;
        n for(i = 0; i < n; i++)
        n(n+1)/2 for(j = n; j > i; j--)
        n(n+1)/2 a += i + j;
        exemplo1(n);
        - }
```

• Qual a complexidade assintótica da função exemplo?

Exemplo – Ordenação

- Encontre o menor valor no vetor
- Troque-o com o primeiro elemento V [0]
- Repita os passos acima com os n-1 itens restantes, depois com os n-2 restantes, até que reste apenas 1

Exemplo – Ordenação

```
void ordena(int *V, int n) {
                 int i, j, min, x;
                 for (i = 0; i < n - 1; i++) {
         n-1
         n-1
                    min = i;
    n(n-1)/2
                    for(j = i + 1; j < n; j++)
    n(n-1)/2
                        if(V[j] < V[min])
A < n(n-1)/2
                           min = j;
                    /* troca A[min] e A[i]: */
         n-1
                    x = V[min];
         n-1
                    V[min] = V[i];
                    V[i] = x;
         n-1
                    Qual a complexidade assintótica
                    do número de comparações?
```

Exercício 1

```
- // A, B e C sao vetores globais
       void e1(int n) {
          int i, j, k;
          for (i = 0; i < n; i++)
    n
             for(j = 0; j < n; j++) {
  n*n
                C[i][j] = 0;
  n*n
                 for (k = n-1; k >= 0; k--) {
n*n*n
n*n*n
                    C[i][j] = C[i][j] +
                       A[i][k] * B[k][j];
               O que faz essa função? Qual sua
```

O que faz essa função? Qual sua complexidade assintótica?

Exercício 2

```
void e2(int n)
             int i, j, x, y;
             x = y = 0;
             for(i = 1; i <= n; i++) {
       n
                for(j = i; j \le n; j++)
n(n+1)/2
n(n+1)/2
                   x = x + 1;
n(n-1)/2
                 for(j = 1; j < i; j++)
n(n-1)/2
                   y = y + 1;
```