

Practical Deep Learning with Bayesian Principles

Kazuki Osawa ¹, Siddharth Swaroop ², Anirudh Jain ³, Runa Eschenhagen ⁴, Richard E. Turner ², Rio Yokota ¹, Mohammad Emtiyaz Khan ⁵

¹Tokyo Institute of Technology, Japan ²University of Cambridge, UK ³Indian Institute of Technology (ISM), India ⁴University of Osnabrück, Germany ⁵Center for Advanced Intelligence Project, RIKEN, Japan

Introduction

Motivation:

► Bayesian methods promise to fix many shortcomings of deep learning, but they are impractical and rarely match the performance of standard methods, let alone improve them.

Contributions:

- ► We demonstrate practical training of deep networks with **natural-gradient** variational inference with existing deep learning techniques.
- ► We achieve similar convergence as the Adam optimiser on ImageNet.
- ► This work enables practical deep learning while preserving benefits of Bayesian principles: predictive probabilities are well-calibrated, uncertainties on out- of-distribution data are improved, and continual-learning performance is boosted.

Natural Gradient Variational Inference (NGVI)

In a supervised leraning task, with a dataset $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$, we minimise a loss of the following form w.r.t. the weights **w**:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg \, min}} \, \overline{\ell}(\mathbf{w}) + \delta \mathbf{w}^{\top} \mathbf{w}, \, \text{where } \overline{\ell}(\mathbf{w}) := \frac{1}{N} \sum_{i} \ell(\mathbf{y}_i, \mathbf{f}_w(\mathbf{x}_i)),$$

 $\mathbf{f}_{w}(\mathbf{x}) \in \mathbb{R}^{K}$: the DNN outputs with weights \mathbf{w} , $\ell(\mathbf{y}, \mathbf{f})$: a differentiable loss function between an output \mathbf{y} and the function \mathbf{f} , $\delta > 0$: the L_2 regulariser. **Common optimisers** (e.g., SGD, RMSprop, Adam) update \mathbf{w} by:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \alpha_t \frac{\hat{\mathbf{g}}(\mathbf{w}_t) + \delta \mathbf{w}_t}{\sqrt{\mathbf{s}_{t+1}} + \epsilon}, \qquad \mathbf{s}_{t+1} \leftarrow (1 - \beta_t)\mathbf{s}_t + \beta_t \left(\hat{\mathbf{g}}(\mathbf{w}_t) + \delta \mathbf{w}_t\right)^2,$$

t: iteration, $\alpha_t > 0$ and $0 < \beta_t < 1$: learning rates, $\epsilon > 0$: a small scalar, $\hat{\mathbf{g}}(\mathbf{w}) := \frac{1}{M} \sum_{i \in \mathcal{M}_t} \nabla_{\mathbf{w}} \ell(\mathbf{y}_i, \mathbf{f}_{\mathbf{w}}(\mathbf{x}_i))$ with a minibatch \mathcal{M}_t of M data examples.

In contrast, the Bayesian approach aims to obtain the posterior distribution of \mathbf{w} using Bayes' rule: $p(\mathbf{w}|\mathcal{D}) = \exp\left(-N\bar{\ell}(\mathbf{w})/\tau\right)p(\mathbf{w})/p(\mathcal{D})$. **Gaussian Variational Inference** computes a Gaussian approximation $q(\mathbf{w}) := \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \approx p(\mathbf{w}|\mathcal{D})$ by maximizing the ELBO w.r.t. $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$:

$$oldsymbol{\mu}^*, oldsymbol{\Sigma}^* = rg \max_{oldsymbol{q}} - oldsymbol{\mathcal{N}} \mathbb{E}_q \left[ar{\ell}(\mathbf{w})
ight] - au \mathbb{D}_{\mathit{KL}}[q(\mathbf{w}) \, \| \, p(\mathbf{w})].$$

Natural Gradient Variational Inference (NGVI) update takes a simple form when estimating exponential-family approximations [1]. When $p(\mathbf{w}) := \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{I}/\delta)$, the update of the natural-parameter λ is performed by using the stochastic gradient of the *expected regularised-loss*:

$$\boldsymbol{\lambda}_{t+1} = (\mathbf{1} - \tau \rho) \boldsymbol{\lambda}_t - \rho \nabla_{\mu} \mathbb{E}_{\boldsymbol{q}} \left[\overline{\ell}(\mathbf{w}) + \frac{1}{2} \tau \delta \mathbf{w}^{\top} \mathbf{w} \right].$$

Variational Online Gauss-Newton (VOGN) [2] estimates a Gaussian with mean μ_t and a diagonal covariance matrix $\Sigma_t := \text{diag}(1/(N(s_t + \tilde{\delta})))$ using the following update (element-wise):

$$\mu_{t+1} \leftarrow \mu_t - \alpha_t \frac{\hat{\mathbf{g}}(\mathbf{w}_t) + \tilde{\delta}\mu_t}{\mathbf{s}_{t+1} + \tilde{\delta}}, \quad \mathbf{s}_{t+1} \leftarrow (1 - \tau\beta_t)\mathbf{s}_t + \beta_t \frac{1}{M} \sum_{i \in \mathcal{M}_t} (\mathbf{g}_i(\mathbf{w}_t))^2,$$

 $\mathbf{g}_i(\mathbf{w}_t) := \nabla_{\mathbf{w}} \ell(\mathbf{y}_i, f_{\mathbf{w}_t}(\mathbf{x}_i)), \, \mathbf{w}_t \sim \mathcal{N}(\mathbf{w}|\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t), \, \tilde{\delta} := \tau \delta/\mathcal{N}.$

Figure: Decision boundary and entropy plots on 2D-binary classification by MLPs trained with Adam and VOGN. VOGN optimises the posterior distribution of each weight (i.e., mean and variance of the Gaussian). A model with the mean weights draws the red boundary, and models with the MC samples from the posterior distribution draw light red boundaries. VOGN converges to a similar solution as Adam while keeping uncertainty in its predictions.

NGVI + Deep Learning Techniques

Since VOGN takes a similar form to common optimisers, we can easily borrow existing deep-learning techniques to improve performance.

- Batch normalisation
- Data augmentation
- Momentum and initialisation
- Learning rate scheduling
- -0.5

 POOL | 1.0 | 80 | 70 | 60 | 60 | 80 | 90 | 1.5 |

Figure: Effect of momentum and batch normalisation. (ResNet-18 on CIFAR-10)

NGVI + Distributed Deep Learning

We employ a combination of the following two parallelism techniques with different Monte-Carlo (MC) samples for different inputs.

- ▶ **Data parallelism**: different GPUs process different inputs (local minibatches) for accelerating the training.
- ► MC sample parallelism: different GPUs use different MC samples from the posterior for stabilising the training.

$\mathbf{w}^{(i)} \sim q(\mathbf{w})$ **Algorithm 1 Distributed VOGN** \mathcal{M} 1: Initialise μ_0 , \mathbf{s}_0 , \mathbf{m}_0 . 2: $N \leftarrow \rho N$, $\tilde{\delta} \leftarrow \tau \delta / N$. $oxed{\mathcal{M}_{local} \mid \mathcal{M}_{local} \mid \mathcal{M}_{local} \mid \mathcal{M}_{local}} \mathcal{M}_{local}$ 4: Sample a minibatch \mathcal{M} of size M. Split \mathcal{M} into each GPU (local minibatch \mathcal{M}_{local}). $\mathbf{w}^{(3)}$ $\mathbf{w}^{(5)}$ for each GPU in parallel do for k = 1, 2, ..., K do Sample $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. $\begin{bmatrix} \hat{\mathbf{g}} \ \hat{\mathbf{h}} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{g}} \ \hat{\mathbf{h}} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{g}} \ \hat{\mathbf{h}} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{g}} \ \hat{\mathbf{h}} \end{bmatrix}$ $\mathbf{w}^{(k)} \leftarrow \boldsymbol{\mu} + \epsilon \boldsymbol{\sigma} \text{ with } \boldsymbol{\sigma} \leftarrow (1/(N(\mathbf{s} + \tilde{\delta} + \gamma)))^{1/2}.$ Compute $\mathbf{g}_{i}^{(k)} \leftarrow \nabla_{w} \ell(\mathbf{y}_{i}, \mathbf{f}_{w^{(k)}}(\mathbf{x}_{i})), \forall i \in \mathcal{M}_{local}$

 $\hat{\mathbf{g}}_k \leftarrow \frac{1}{M} \sum_{i \in \mathcal{M}_{local}} \mathbf{g}_i^{(\kappa)}.$ $\hat{\mathbf{h}}_k \leftarrow \frac{1}{M} \sum_{i \in \mathcal{M}_{local}} (\mathbf{g}_i^{(k)})^2$. Learning rate end for $\hat{\mathbf{g}} \leftarrow \frac{1}{K} \sum_{k=1}^{K} \hat{\mathbf{g}}_k$ and $\hat{\mathbf{h}} \leftarrow \frac{1}{K} \sum_{k=1}^{K} \hat{\mathbf{h}}_k$. Momentum rate Exp. moving average rate β_2 AllReduce (aggregate) $\hat{\mathbf{g}}$, $\hat{\mathbf{h}}$ among all GPUs. Prior precision 17: $\mathbf{m} \leftarrow \beta_1 \mathbf{m} + (\hat{\mathbf{g}} + \tilde{\delta} \boldsymbol{\mu}).$ External damping factor 18: $\mathbf{s} \leftarrow (1 - \tau \beta_2) \mathbf{s} + \beta_2 \hat{\mathbf{h}}$. Tempering parameter 19: $\mu \leftarrow \mu - \alpha \mathbf{m}/(\mathbf{s} + \tilde{\delta} + \gamma)$. # MC samples for training K 20: **until** stopping criterion is met =0 Data augmentation factor ρ

Large-Scale VI on ImageNet classification

Training ResNet-18 on ImageNet (1000 class) with 128 GPUs

Performance comparisons on different dataset/architecture

		-						
	Dataset/ Architecture	Optimiser	Train/Validation Accuracy (%)	Validation NLL	Epochs	Time/ epoch (s)	ECE	AUROC
	CIFAR-10/ LeNet-5 (no DA)	Adam	71.98 / 67.67	0.937	210	6.96	0.021	0.794
		BBB	66.84 / 64.61	1.018	800	11.43^\dagger	0.045	0.784
		MC-dropout	68.41 / 67.65	0.99	210	6.95	0.087	0.797
		VOGN	70.79 / 67.32	0.938	210	18.33	0.046	8.0
	CIFAR-10/	Adam	100.0 / 67.94	2.83	161	3.12	0.262	0.793
	AlexNet	MC-dropout	97.56 / 72.20	1.077	160	3.25	0.140	0.818
	(no DA)	VOGN	79.07 / 69.03	0.93	160	9.98	0.024	0.796
	CIFAR-10/ AlexNet	Adam	97.92 / 73.59	1.480	161	3.08	0.262	0.793
		MC-dropout	80.65 / 77.04	0.667	160	3.20	0.114	0.828
		VOGN	81.15 / 75.48	0.703	160	10.02	0.016	0.832
	CIFAR-10/ ResNet-18	Adam	97.74 / 86.00	0.55	160	11.97	0.082	0.877
		MC-dropout	88.23 / 82.85	0.51	161	12.51	0.166	0.768
		VOGN	91.62 / 84.27	0.477	161	53.14	0.040	0.876
	ImageNet/ ResNet-18	SGD	82.63 / 67.79	1.38	90	44.13	0.067	0.856
		Adam	80.96 / 66.39	1.44	90	44.40	0.064	0.855
		MC-dropout	72.96 / 65.64	1.43	90	45.86	0.012	0.856
		OGN	85.33 / 65.76	1.60	90	63.13	0.128	0.854
		VOGN	73.87 / 67.38	1.37	90	76.04	0.029	0.854
		K-FAC	83.73 / 66.58	1.493	60	133.69	0.158	0.842
		Noisy K-FAC	72.28 / 66.44	1.44	60	179.27	0.080	0.852

Table: **DA**: Data Augmentation, **NLL**: Negative Log Likelihood, **ECE**: Expected Calibration Error, **AUROC**: Area Under ROC curve. Out of the 15 metrics (NLL, ECE, and AUROC on 5 dataset/architecture combinations), VOGN performs the best or tied best on 10, and is second-best on the other 5.

PyTorch Implementation

A PyTorch implementation is available as a plug-and-play optimiser.

import torch
+import torchsso

train_loader = torch.utils.data.DataLoader(train_dataset)
model = MLP()

-optimizer = torch.optim.Adam(model.parameters())
+optimizer = torchsso.optim.VOGN(model, dataset_size=len(train_loader.dataset))

https://github.com/team-approx-bayes/dl-with-bayes

References

- [1] M. E. Khan and D. Nielsen. Fast yet simple natural-gradient descent for variational inference in complex models. *CoRR*, abs/1807.04489, 2018.
- [2] M. E. Khan, D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal, and A. Srivastava. Fast and scalable Bayesian deep learning by weight-perturbation in Adam. In *Proceedings of 35 ICML*, pages 2611–2620, 2018.