Вопросы для подготовки к РК N2 (Электромагнетизм)

- **1.** Закон Кулона. Напряженность электрического поля \vec{E} . Принцип суперпозиции электрических полей. Расчет поля длинной равномерно заряженной нити.
- **2.** Вывести теорему Гаусса для напряженности электрического поля \vec{E} . В каких случаях теорема Гаусса позволяет легко найти электрическое поле? Ответ обосновать.
- **3.** Показать независимость от пути работы сил электростатического поля. Вывести теорему о циркуляции для напряженности электрического поля \vec{E} (в электростатике).
- **4.** Разность потенциалов. Электрический потенциал φ и неоднозначность его определения. Вывести соотношение между напряженностью электрического поля \vec{E} и электрическим потенциалом φ и дифференциальное уравнение для электрического (скалярного) потенциала φ (в электростатике). Привести его общее решение.
- **5.** Электрическое поле вблизи поверхности проводника. Метод электрических изображений. Вывести связь между электрическим полем \vec{E} и поверхностной плотностью заряда σ .
- **6.** Емкость C конденсатора. Расчет емкости плоского, цилиндрического и сферического конденсаторов. На примере плоского конденсатора получить формулу для его энергии W_C и формулу для плотности энергии w_2 электрического поля \vec{E} в вакууме.
- 7. Закон Био-Савара-Лапласа. Сила Лоренца, сила Ампера. Расчет поля длинного провода. Вывести теорему о циркуляции магнитной индукции \vec{B} для случая системы длинных параллельных проводников с током.
- 8. Вывести из закона Био-Савара-Лапласа теорему Гаусса для магнитной индукции \vec{B} .
- **9.** Векторный потенциал \vec{A} . Неоднозначность его определения. Вывести дифференциальное уравнение для векторного потенциала \vec{A} и привести его общее решение (в магнитостатике).
- **10.** Электрический ток I, плотность тока \vec{j} . Электродвижущая сила \mathscr{E} . Закон Ома для участка цепи (в интегральной и в дифференциальной

 $^{^{1} \}mbox{Рекомендуемая}$ литература — Фейнмановские лекции по физике (ФЛФ), том 5, том 6

- форме). Закон Ома для полной цепи. Закон Джоуля-Ленца (в дифференциальной форме).
- **11.** Закон электромагнитной индукции Фарадея. Правило Ленца. Индуктивность контура L. Вывести формулу для энергии соленоида W_L и формулу для плотности энергии $w_{\scriptscriptstyle M}$ магнитного поля в вакууме. Полевая трактовка закона электромагнитной индукции.
- **12.** Используя теорему Гаусса для поля \vec{E} и закон сохранения заряда в дифференциальной форме, показать необходимость введения тока смещения и получить теорему о циркуляции для магнитного поля \vec{B} (в электродинамике).
- **13.** Используя уравнения Максвелла для полей \vec{E} и \vec{B} в отсутствие токов и зарядов, вывести волновое уравнение для электрического поля \vec{E} .
- **14.** Рассматривая плоскую волну, распространяющуюся в направлении оси X, показать, что электромагнитная волна является поперечной. Найти соотношение между полями \vec{E} и \vec{B} в плоской волне.
- **15.** Вывести теорему Пойнтинга. Найти вектор Пойнтинга для плоской электромагнитной волны в вакууме.
- **16.** Вывести из системы уравнений Максвелла закон сохранения заряда в локальной форме.
- **17.** Получить из уравнений Максвелла уравнения для скалярного φ и векторного \vec{A} потенциалов. Привести общее решение этих уравнений.
- **18.** Используя уравнение для векторного потенциала, найти магнитное поле \vec{B} для диполя Герца в волновой зоне $r \gg \lambda$. Найти также электрическое поле \vec{E} в волновой зоне, используя соотношение между \vec{B} и \vec{E} в плоской волне.