Solutions

Assignment four

Problem 1. Compute the coefficient of x^7 in $(1 + x^4 + x^{12})^{15}$.

Answer: 0 (in $(1 + x^4 + x^{12})^{15}$ every power of x is divisible by 4.)

Problem 2. Compute the coefficient of x^{10} in $(1+x)/(1-x)^2$.

 $(1+x)/(1-x)^2 = (1+x)(1+2x+3x^2+4x^3+\dots)$ and so the answer is 11+10=21.

Problem 3. Compute the coefficient of x^3 in $(1+x^2)(1+x)^{100}$.

Use the binomial theorem. $(1+x)^{100} = 1 + \binom{100}{1}x + \binom{100}{2}x^2 + \binom{100}{3}x^3 + \dots$ thus the answer is $\binom{100}{3} + \binom{100}{1}$.

Problem 4. Compute the coefficient of x^{10} in $(1+x)^{10}(1-x)^{10}$.

We have that $(1-x)^{10}(1+x)^{10} = (1-x^2)^{10}$. So the answer is $-\binom{10}{5}$.

Problem 5. Compute the coefficient of x^n in (2+x)/(2-x).

Observe that $1/(2-x) = \frac{1}{2(1-x/2)} = \sum_{i=0}^{\infty} 2^{-(i+1)} x^i$. It follows that the answer is $2/2^{n+1} + 1/2^n = 1/2^{n-1}$ if n > 0 and is equal to 1 if n = 1.

Assignment five

Problem 1. In how many ways can we put 31 people in 3 rooms such that each room has an odd number of people?

The solution is the coefficient of x^{31} in $(x+x^3/3!+x^5/5!+\dots)^3$ multiplied by 31!. Using $x+x^3/3!+x^5/5!+\dots=(e^x-e^{-x})/2$ we get $(x+x^3/3!+x^5/5!+\dots)^3=(e^x-e^{-x})^3/8$. This is equal to $(e^{3x}-3e^x+3e^{-x}-e^{-3x})/8$. So the answer is: $(3^{31}-3-3+3^{31})/8=(3^{31}-3)/4$.

Problem 2. Compute the coefficient of x^{10} in $\left(\sum_{i=1}^{\infty} x^i/i!\right)^3$. (Warning: the summation goes from 1 and not from 0.)

We need to compute the coefficient of x^{10} in $(e^x-1)^3 = e^{3x}-3e^{2x}+3e^x-1$. This is $(3^{10}-3\times 2^{10}+3)/10!$.

Problem 3. Check that the exponential generating function of the sequence $\{i^2\}_{i=0}^{\infty}$ is equal to $x(x+1)e^x$. (*Hint*: use that $i^2 = i(i-1) + i$)

We have that
$$\sum_{i=0}^{\infty} i^2/i! x^i = \sum_{i=0}^{\infty} (i(i-1)+i)/i! x^i = \sum_{i=0}^{\infty} i(i+1)/i! x^i + \sum_{i=0}^{\infty} i/i! x^i = x^2 e^x + x e^x$$
.

Problem 4. Six people draw their names from a hat. What is the probability that nobody draws his/her own name? (*Hint:* use the inclusion-exclusion formula in the set of all possible draws.)

$$(6! - 6 \times 5! + {6 \choose 2}4! - {6 \choose 3}3! + {6 \choose 4}2! - {6 \choose 5} + 1)/6! = (1 - 1 + 1/2! - 1/3! + 1/4! - 1/5! + 1/6!)$$

Problem 5. Let $V = \{1, 2, ..., 100\}$ and let G_1 be the graph on the vertex set V in which a, b are connected if a - b is odd. Let G_2 be the graph on V in which a, b are connected if $a \neq b$ and a - b is even. Are the graphs G_1 and G_2 isomorphic?

Solution: The degree of every point in G_1 is 50 and the degree of every point in G_2 is 49.