Instructies

Geef een duidelijk antwoord op alle vragen die hieronder worden gesteld.

Geef een toelichting als dat wordt gevraagd!

Maak van je antwoorden een verslag in **pdf**-vorm en lever dat in op de **DLO**.

Opgave 2b

In deze opgave gaan we de **stack** gebruiken.

We doen dit aan de hand van een (zeer handige) notatie voor berekeningen.

De zogenaamde : **reversed polish notation** (oftewel : RPN).

Deze notatie maakt het gebruik van haakjes in een berekening overbodig! De wijze waarop de berekening wordt uitgevoerd is gebaseerd op een **stack**!

Voorbeeld:

```
de berekening: (4 + 5) * 2 - 24 / 4
wordt in RPN: 4 5 + 2 * 24 4 / -
```

een berekening in RPN bevat alleen getallen en rekenkundige operaties (+, -, *, /).

Instructies voor het gebruik van de stack:

- 1. we lezen de berekening van links naar rechts.
- 2. bij een **getal**:
 - push dit **getal** op de stack
- 3. bij een **operatie**:
 - pop 2 keer een getal van de stack.
 - voer de **operatie** uit op deze 2 getallen (let op de volgorde !!)
 - push het resultaat op de stack.
- 4. Aan het eind van een (correcte) berekening staat nog maar 1 getal op de stack. Dit is de **uitkomst**.

Uitwerking van het voorbeeld:

voor de eenvoud van notatie van een **stack** gebruiken we een regel met komma gescheiden items in plaats van een kolom , zoals de stack (= 'stapel') meestal wordt getoond.

We geven in een tabel de situatie weer na elke stap in de berekening.

Hierbij staat op elke regel in de tabel : stap volgnummer , stack , (resterend deel) berekening.

#	Stack	(rest) berekening	token	toelichting
0	leeg	4 5 + 2 * 24 4 / -	4	Start situatie, Push 4
1	4	5 + 2 * 24 4 / -	5	Push 5

2	4,5	+ 2 * 24 4 / -	+	2x pop : bereken : 4+5 = 9 , push 9
3	9	2 * 24 4 / -	2	Push 2
4	9,2	* 24 4 / -	*	2x pop : bereken : 9 * 2 = 18 , push 18
5	18	24 4 / -	24	Push 24
6	18,24	4 / -	4	Push 4
7	18,24,4	/ -	/	2x pop : bereken : 24 / 4 = 6 , push 6
8	18,6	-	-	2x pop : bereken : 18 – 6 = 12 , push 12
9	12	klaar		Dit is de uitkomst!

Actie 1

Gegeven de volgende berekening : 4 8 4 5 - + *

Vraag 1 : geef alle stappen van deze berekening met behulp van een tabel zoals in het voorbeeld.

Actie 2

Gegeven de volgende berekening: 4 1 + 1 2 3 * - 15 8 - * +

Vraag 2 : geef alle stappen van deze berekening met behulp van een tabel zoals in het voorbeeld.

Actie 3

Gegeven de volgende berekening : (6 + 2) * 3 / (11 + 1) + 16.

Vraag 3a: geef de RPN vorm van deze berekening.

Vraag 3b: geef alle stappen van deze berekening met behulp van een tabel zoals in het voorbeeld.

Actie 4

Compileer het programma : **rpn.c** op de standaard manier en gebruik dit om je uitkomsten te controleren.

Het programma verwacht de RPN-berekening als 1 parameter op de command-line.

Omdat we hier meerdere getallen en operatoren hebben, gescheiden door spaties, moeten we deze tussen quotes aanbieden.

Voorbeeld: \$./rpn '4 5 +'

Vraag 4 : geef de output van dit programma met de volgende berekeningen :

1. 1 2 3 4 5 6 + * - *
2. 1 2 3 4 5 6 + * - * +
3. 6 5 4 3 2 1 + * - * +
4. 6 5 4 3 2 1 + * - * +