Faculté des Sc. Exactes et Sc. de la Nature et la Vie

Master 1: Modèle linéaire

Solution de la Série N°1

Exercie 2. Soit la matrice

$$\mathbf{A} = \left(\begin{array}{ccc} 0 & 2 & 2 \\ 2 & 0 & -2 \\ 2 & -2 & 0 \end{array} \right).$$

- 1- Vérifier que A est une matrice symétrique.
- 2- Calculer le déterminant de A.
- 3- Déterminer les valeurs propres de A.
- 4- Déterminer les vecteurs propres de $\mathbf A$ associés à ces valeurs propres. Vérifier que ces derniers sont linéairement indépendants.
- 5- A est-elle diagonalisable?.
- 6- En utilisant l'algorithme (ou procédé) de Gram-Schmidt, déterminer une base orthonormée formée de ces valeurs propres.
- 7- Déterminer deux matrices \mathbf{D} et \mathbf{P} telles que: $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^t$. Vérifier par calcul cette égalité matricielle.
- 8- Calculer \mathbf{A}^n , $n \geq 1$.

Solution. 1) Nous allons montrer que $A^t = A$. En effet

$$\mathbf{A}^t = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & -2 \\ 2 & -2 & 0 \end{pmatrix}^t = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & -2 \\ 2 & -2 & 0 \end{pmatrix}.$$

Donc A est symétrique.

2) le déterminant de A est

$$\det A = \begin{vmatrix} 0 & 2 & 2 \\ 2 & 0 & -2 \\ 2 & -2 & 0 \end{vmatrix} = -16.$$

3) les valeurs propres de A sont les racines du polynôme caractéristique:

$$P(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}_3) = \begin{vmatrix} 0 - \lambda & 2 & 2 \\ 2 & 0 - \lambda & -2 \\ 2 & -2 & 0 - \lambda \end{vmatrix}$$
$$= \begin{vmatrix} -\lambda & 2 & 2 \\ 2 & -\lambda & -2 \\ 2 & -2 & -\lambda \end{vmatrix} = \begin{vmatrix} -\lambda & 2 & 0 \\ 2 & -\lambda & \lambda - 2 \\ 2 & -2 & -\lambda + 2 \end{vmatrix}$$
$$= (\lambda - 2) \begin{vmatrix} -\lambda & 2 & 0 \\ 2 & -\lambda & 1 \\ 2 & -2 & -1 \end{vmatrix} = (\lambda - 2)^2 \begin{vmatrix} -1 & 2 & 0 \\ -1 & -\lambda & 1 \\ 0 & -2 & -1 \end{vmatrix}$$
$$= -(\lambda - 2)^2 (\lambda + 4).$$

Les solutions sont $\lambda_1 = -4$ (racine simple) et $\lambda_2 = 2$ (racines doubles).

4) le premier vecteur propre vérifie:

$$\mathbf{A}\mathbf{v} = -4\mathbf{v} \Longleftrightarrow (\mathbf{A} + 4\mathbf{I}_3)\mathbf{v} = 0. \tag{1}$$

Soit $\mathbf{v} = (x, y, z)^t$, alors

$$(\mathbf{A} + 4\mathbf{I}_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0+4 & 2 & 2 \\ 2 & 0+4 & -2 \\ 2 & -2 & 0+4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \begin{pmatrix} 4x + 2y + 2z \\ 2x + 4y - 2z \\ 2x - 2y + 4z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Ce qui implique

$$4x + 2y + 2z = 0$$
, $2x + 4y - 2z = 0$

et

$$2x - 2y + 4z = 0.$$

De la première équation en tire z = -2x - y. En remplaçant celle-ci dans la deuxième équation on obtient

$$2x + 4y - 2(-2x - y) = 0 \iff 6x + 6y = 0 \iff y = -x.$$

De même on substituant cette dernière dans la troisième équation on trouve

$$2x - 2(-x) + 4z = 0 \Longleftrightarrow 4x + 4z = 0 \Longleftrightarrow x = -z.$$

En conclusion on y = z = -x, ce qui implique que les $\mathbf{v} = x(1, -1, -1)^t$ sont tous des solutions de l'équation (1). Donc particulier

$$\mathbf{v}_1 = \left(\begin{array}{c} 1\\ -1\\ -1 \end{array}\right)$$

est le vecteur propre associé la valeur propre $\lambda_1 = -4$. Par le même principe on cherche un vecteur propre associé à $\lambda_2 = 2$. Alors

$$(\mathbf{A} - 2\mathbf{I}_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 - 2 & 2 & 2 \\ 2 & 0 - 2 & -2 \\ 2 & -2 & 0 - 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \begin{pmatrix} 2y - 2x + 2z \\ 2x - 2y - 2z \\ 2x - 2y - 2z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Donc $2y - 2x + 2z = 0 \iff x = y + z$. Ce qui implique que

$$\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y+z \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ y \\ 0 \end{pmatrix} + \begin{pmatrix} z \\ 0 \\ z \end{pmatrix}$$
$$= y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Donc $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ sont les deux vecteurs propres associés à $\lambda_2 = 2$. Vérifiant

que les vecteurs propres sont indépendants: soit $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ telles que

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3 = 0_{\mathbb{R}^3}.$$

Donc

$$\alpha \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 0.$$

En d'autres termes

$$\begin{pmatrix} \alpha + \beta + \gamma \\ \beta - \alpha \\ \gamma - \alpha \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Ce qui implique que $\alpha + \beta + \gamma = 0$, $\beta - \alpha = 0$ et $\gamma - \alpha = 0$. La deuxième et la troisième équation donnent $\alpha = \beta = \gamma$. La troisième donne $3\alpha = 0$, donc $\alpha = \beta = \gamma = 0$.

- 5) A est-elle diagonalisable: la dimension de l'espace égale au nombre de vecteurs propres (qui égale 3), donc A est diagonalisable. D'après le théorème spectral en dimension finie en déduit que toute matrice symétrique à coefficients réels est diagonalisable à l'aide d'une matrice de passage orthogonale.
- 6) Cherchons une base orthonormée formée des valeurs propres:

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

L'algorithme (ou procédé) de Gram-Schmidt est donné par:

$$\left\{ \begin{array}{cccc} \mathbf{u}_1 := \mathbf{v}_1 & \longrightarrow & \mathbf{u}_1^* := \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \\ \mathbf{u}_2 := \mathbf{v}_2 - \mathbf{Proj}_{\mathbf{u}_1} \mathbf{v}_2 & \longrightarrow & \mathbf{u}_2^* := \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} \\ \mathbf{u}_3 := \mathbf{v}_3 - \mathbf{Proj}_{\mathbf{u}_1} \mathbf{v}_3 - \mathbf{Proj}_{\mathbf{u}_2} \mathbf{v}_3 & \longrightarrow & \mathbf{u}_3^* := \frac{\mathbf{u}_3}{\|\mathbf{u}_3\|} \end{array} \right.$$

Nous avons

$$\|\mathbf{u}_1\| = \|\mathbf{v}_1\| = \sqrt{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} = \sqrt{\mathbf{v}_1^t \mathbf{v}_1} = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3},$$

ainsi

$$\mathbf{u}_1^* = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ -1\\ -1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{3}\\ -1/\sqrt{3}\\ -1/\sqrt{3} \end{pmatrix}.$$

Déterminons maintenant \mathbf{u}_2 :

$$\mathbf{Proj}_{\mathbf{u}_1}\mathbf{v}_2 = \frac{\langle \mathbf{v}_2, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2}\mathbf{u}_1 = \frac{\mathbf{v}_2^t \mathbf{u}_1}{\left(\sqrt{3}\right)^2}\mathbf{u}_1 = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}^t \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = 0,$$

en conséquence $\mathbf{u}_2 := \mathbf{v}_2$. Par ailleurs, nous avons $\|\mathbf{u}_2\| = \|\mathbf{v}_2\| = \sqrt{2}$, donc

$$\mathbf{u}_2^* = \frac{1}{\sqrt{2}}\mathbf{u}_2 = \frac{1}{\sqrt{2}}\mathbf{v}_2 = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2}\\1/\sqrt{2}\\0 \end{pmatrix}.$$

Pour le dernier vecteur \mathbf{u}_3 :

$$\mathbf{Proj}_{\mathbf{u}_1}\mathbf{v}_3 = \frac{\langle \mathbf{v}_3, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2}\mathbf{u}_1 = \frac{\mathbf{v}_3^t \mathbf{u}_1}{\left(\sqrt{3}\right)^2}\mathbf{u}_1 = \frac{1}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}^t \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = 0,$$

et

$$\mathbf{Proj}_{\mathbf{u}_2}\mathbf{v}_3 = \frac{\langle \mathbf{v}_3, \mathbf{u}_2 \rangle}{\|\mathbf{u}_2\|^2} \mathbf{u}_2 = \frac{\mathbf{v}_3^t \mathbf{u}_2}{\|\mathbf{u}_2\|^2} \mathbf{u}_2 = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}^t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}.$$

Alors

$$\mathbf{u}_3 = \mathbf{v}_3 - \mathbf{Proj}_{\mathbf{u}_1} \mathbf{v}_3 - \mathbf{Proj}_{\mathbf{u}_2} \mathbf{v}_3$$

$$= \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - 0 - \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1/2 \\ 1 \end{pmatrix}.$$

Nous avons

$$\|\mathbf{u}_3\| = \left\| \begin{array}{c} 1/2 \\ -1/2 \\ 1 \end{array} \right\| = \sqrt{\frac{3}{2}},$$

ainsi

$$\mathbf{u}_{3}^{*} = \frac{\mathbf{u}_{3}}{\|\mathbf{u}_{3}\|} = \sqrt{\frac{2}{3}} \begin{pmatrix} 1/2 \\ -1/2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{6} \\ -1/\sqrt{6} \\ \sqrt{2/3} \end{pmatrix}.$$

Donc la base orthonormée formée des valeurs propres est:

$$\mathbf{u}_{1}^{*} = \begin{pmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ -1/\sqrt{3} \end{pmatrix}, \ \mathbf{u}_{2}^{*} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \mathbf{u}_{3}^{*} = \begin{pmatrix} 1/\sqrt{6} \\ -1/\sqrt{6} \\ \sqrt{2/3} \end{pmatrix}.$$

8) Soit

$$\mathbf{P} = [\mathbf{u}_1^*, \mathbf{u}_2^*, \mathbf{u}_3^*] = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ -1/\sqrt{3} & 0 & \sqrt{2/3} \end{pmatrix},$$

la matrice de passage. Comme A est diagonalisable alors $A = PDP^{-1}$, ou

$$\mathbf{D} = \left(\begin{array}{ccc} -4 & 0 & 0 \\ 0 & 2 & -0 \\ 0 & 0 & 2 \end{array} \right).$$

En plus \mathbf{P} est formée par des vecteurs propres (indépendants) orthonormés, ceci implique que $\mathbf{P}^{-1} = \mathbf{P}^t$, ainsi $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^t$.

8) Nous avons

$$\mathbf{A}^n = (\mathbf{P}\mathbf{D}\mathbf{P}^t)^n = (\mathbf{P}\mathbf{D}\mathbf{P}^{-1})^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^t.$$

Exercie 3. Soit la matrice

$$\mathbf{M} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 4 & 6 \end{array}\right)^{-1}.$$

- 1. Montrer que \mathbf{M} est inversible puis déterminer sa matrice inverse \mathbf{M}^{-1} .
- 2. Déduire de la question 1 une matrice ${\bf X}$ telle que

$$2XM = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}.$$

Solution. Nous avons

$$\det \mathbf{M} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 4 & 6 \end{vmatrix} = -2 \neq 0,$$

donc M est inversible et sa matrice inverse est

$$\mathbf{M}^{-1} = \frac{{}^{t}\mathbf{com}M}{\det M} = \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & -3 & 1 \\ 0 & 2 & -\frac{1}{2} \end{pmatrix}.$$

2) Il est clair que

$$\mathbf{XMM^{-1}} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \mathbf{M^{-1}} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & -3 & 1 \\ 0 & 2 & -\frac{1}{2} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{4} \\ 0 & -\frac{3}{2} & \frac{1}{2} \\ 0 & 4 & -\frac{5}{4} \end{pmatrix}.$$

Comme $\mathbf{M}\mathbf{M}^{-1} = \mathbf{I}_4$, donc

$$\mathbf{X} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{4} \\ 0 & -\frac{3}{2} & \frac{1}{2} \\ 0 & 4 & -\frac{5}{4} \end{pmatrix}.$$

Exercie 4.Soit f une application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 dont la matrice relativement aux bases canoniques et

$$\mathbf{M} = \left(\begin{array}{rrrr} 1 & 0 & -1 & 4 \\ 2 & 1 & 0 & 9 \\ -1 & 2 & 5 & -5 \end{array} \right).$$

- 1. Déterminer la rang de la matrice \mathbf{M} et donner une base de sous-espace vectoriel image de f (noté $\operatorname{Im} f$).
- 2. Déduire de la question 1, la dimension de sous-espace vectoriel noyau de f (noté $\ker f$), puis donner une base à ce dernier.

Solution. Nous allons utiliser la technique d'échelonnement de Gauss. Rappelons que la matrice \mathbf{M} est en fait la matrice associée à une application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ par rapport aux bases canoniques $\mathcal{B}_{\mathbb{R}^4} = (e_1, e_2, e_2, e_4)$ et $\mathcal{B}_{\mathbb{R}^3} = (e'_1, e'_2, e'_2)$. Plus précisément

$$\mathbf{M} = \begin{pmatrix} f(e_1) & f(e_2) & f(e_3) & f(e_4) \\ 1 & 0 & -1 & 4 \\ 2 & 1 & 0 & 9 \\ -1 & 2 & 5 & -5 \end{pmatrix} \begin{pmatrix} e'_1 \\ e'_2 \\ e'_3 \end{pmatrix}$$

En d'autres termes

$$V_1 := f(e_1) = f(e_1) = e'_1 + 2e'_2 - e'_3$$

$$V_2 := f(e_2) = e'_2 + 2e'_3$$

$$V_3 := f(e_1) = -e'_1 + 5e'_3$$

$$V_4 := f(e_1) = 4e'_1 + 9e'_2 - 5e'_3$$

Rappelons aussi que le sous-espace vectoriel image de f est l'espace engendré par les vecteurs $\{V_1, V_2, V_3, V_4\}$:

$$\operatorname{Im} f = \operatorname{Vect} \{V_1, V_2, V_3, V_4\}.$$

En outre, le rang de A (ou rang de f) est la dimension du sous-espace vectoriel Im f:

$$\operatorname{rg}(A) \equiv \operatorname{rg}(f) = \dim \operatorname{Im} f = \dim \operatorname{Vect} \{V_1, V_2, V_3, V_4\}.$$

En d'autres termes est le nombre maximal des vecteurs non-nulls indépendants que l'on peut extraire, par des combinaisons linaires, de $\{V_1, V_2, V_3, V_4\}$. La technique d'échelonnement est basée sur le fait que toute combinaison linéaire effectuée sur ces vecteurs ne change pas le sous-espace engendré par ceux-ci. A titre d'exemple, pour un scalaire $\alpha \in \mathbb{R}$, on a

$$Vect \{V_1, V_2, V_3, V_4\} = Vect \{V_1, V_2 + \alpha V_1, V_3, V_4\}.$$

Commencons par les combinaisons suivantes sur M:

$$V_1' := V_1 \quad V_2' := V_2 \quad V_3' := V_3 + V_1 \quad V_4' := V_4 - 4V_1,$$

qui donnent

$$\mathbf{M}' = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 1 & 2 & 1 \\ -1 & 2 & 4 & -1 \end{array} \right).$$

Faisons encore une fois les combinaisons linaires suivantes sur M':

$$V_1'':=V_1' \quad V_2'':=V_2' \quad V_3'':=V_3'-2V_2' \quad V_4'':=V_4'-V_2',$$

qui produisent

$$\mathbf{M}'' = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & 2 & 0 & -3 \end{array} \right).$$

Rappelons que

$$\operatorname{Vect} \{V_1, V_2, V_3, V_4\} = \operatorname{Vect} \{V_1'', V_2'', V_3'', V_4''\}$$
$$= \operatorname{Vect} \{V_1'', V_2'', V_4''\}.$$

De plus, il est clair que $\{V_1'',V_2'',V_4''\}$ sont linéairement indépendants. Donc

$$\operatorname{rg} \mathbf{M} = \dim \operatorname{Vect} \left\{ V_1'', V_2'', V_4'' \right\} = 3,$$

ainsi $\{V_1'',V_2'',V_4''\}$ est une base de ${\rm Im}\,f.$

2) D'après le théorème du rang:

$$rgf + \dim \ker f = \dim \mathbb{R}^4 = 4.$$

Donc dim ker f=1. D'un autre coté, nous avons $V_3''=0$, c'est-à-dire

$$V_3'' = V_3' - 2V_2' = V_3 + V_1 - 2V_2 = 0_{\mathbb{R}^4}.$$

Ce qui est équivalent à écrire $\mathbf{M}W = 0_{\mathbb{R}^4}$, où

$$W := \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}.$$

ce qui implique que $W \in \ker M$. Comme dim $\ker M = 1$, donc W constitue une base de $\ker M$.