Advanced Design for Signal Integrity and Compliance

Dr. Hubert Harrer
IBM Deutschland Research and Development GmbH
Schoenaicherstr. 220
71032 Böblingen

hharrer@de.ibm.com

IBM Deutschland Research & Development GmbH

Overview:

Biggest Server Lab Outside The US

• Founded: 1953

Employees:ca. 1.300

Location: Böblingen

Key Competencies:

- Hardware
- Firmware
- OS
- Software
- Cloud

We Are Working On:

IBM POWER Server

IBM Storage Products

IBM Quantum Computer

Agenda

- ☐ Why is Signal Integrity and Power Integrity essential for designing modern computers
 - > How does a high end server look like
 - ➤ How is this SI class related to real problems and daily business of a SI or PI engineer in development
 - Modeling and Simulation
 - Technology trends in packaging

Today's Challenges in High End Servers

- > System Architecture Design
- > Chip Design
- > SCM/MCM (Single/Multi Chip Module) Design
- > PCB (Printed Circuit Board) Design
- Signal Integrity
- Power Integrity
- ➤ Mechanical Design
- > Thermal Design
- > RAS (Reliablity and Service)
- EMC (Electromagnetic compatibility)
- > ..

Drawer Architecture

- ➤ Low latency MBUS on DCM with 226 GB/s
- ➤ Fully connected XBUS on the drawer to all other chips with 47 GB/s
- ➤ Redundant SMP to each drawer with 70 GB/s
- ➤ 48 Memory Dimms 12.8 GB/s for each Dimm
 - > RAIM redundancy for group of 8 (102 GB/s)
- ➤ 12 IO slots with Gen 4 PCIE at 32 GB/s

Bandwidths are given for single direction only (double the numbers for tx+rx)

Basic Topolgies of High Speed Nets

On MCM Signal Connection

On Drawer Signal Connection

On Drawer Memory Signal Connection

Drawer to Drawer Signal Connection

DCM and Chip

- ➤ 8 processor cores running at 5.2GHz in 7nm technology
- > 1060 mm² chip area with 22.5 Billion transistors per DCM
 - Digital modeling
 - > Analog modeling for IOs, PLL, voltage regulators
- > Dual Chip Module 79.0 mm x 71.5 mm
- ➤ MBUS with 1388 data lanes at 2.6Gb/s
- > Synchronous chip operation

Processor Board

- > 40 layer PCB (12S26P2MP) at 434 mm x 486 mm
- > Trace lengths 1177 m
- > 26918 Vias
- ➤ LGA with 4753 IOs at 1.5mm interstitial for Processor DCM
- > Redundant 4000 W max power capability
- ➤ 20 voltage domains
- > Redundant water cooling of processors

	1				_		100	-						W		24		1						
	1	11 11 11 11))))		•	15	Ö		1		1	1	1					76						
		11 11 11 11	(((((٠.	1	Ж,	7		1											٠.	٠.	٠.	٠.
		11 11 11 11))))		•		20	1																
		11 11 11 11	11 11 1		٠.					• //					//		1	16	1	1/0	1	٠.		٠.
		11 11 11	11 11															10	10					
		11 11 11 1		0						77	. *													٠.,
		((((() ()	11 11														1.							
		1) 1) 1) 1																						
		11 11 11 11	(((((
	//	11 11 11 11)))))) 8	0-	٠.		٠.	12	5	5	Ç.	5	3	38	38	38	- 8	38	S.	- 8	3	e.	0
		11 11 11 11															- 0							
	[[11 11 11	11 11		٠.	٠.	٠.	•	- 8	2	2	μ,	2 6		10	. 2	-2	\mathbf{P}_{2}		10)	\sim	-2	-2	
		1) 1) 11 1						•)		8)					15					0	
		((((() ()	11 11							9							- (10						
		1 1 1 1 1			٠.	٠.		•	1	e e	ď	C	60		0		6	16					. 6	
			17 ((()						10								
		11 11 11 11	\\ // \	γ.				٠.	14	8	S	8	8	8		es.	8	- 8		4	-5		4	
		11 11 13 11	K R																					
		((() 1) 1)				٠.	٠.	•	-5	1	2	χ,	7			1		12	-2	1	-2	-2	12	
												•												
									10	8	S	Ç	5	8	38	75	-8	18	18	Z.	- 3	3.5	-8	٠.
					\geq										- ((
					٠.	٠.	•	٠.	- %	2	2		2 6				-2	12	-2			•2	. 9	
				1				•		5			5				Ю	15					6	
					//								6 6	S (
					×	1	8	•	-5			1	0	0		d		16				6		
								. *	- 2	\$	\$	8	5 3	, Q	48	38		L S	88	38	-8	38		

Chip Substrate Modeling

chip C4 Top layers uVia

RFP: Resin filled PTH (plated through hole)

Bottom layers BSM (bottom surface metal)

Power delivery: Current per plane, u-via, RFP or LGA

Signal integrity: impedance, shielding and spacing for minimizing cross talk, ...

Processor Board Cross Section

Cross section:

- Underetching leads to nonrectangular lines
- Copper smoothness important for skin effect due to increasing attenuation
- Material choice depending on attenuation budget
 - Standard loss material
 - Low loss material
 - Ultra low loss material
- Hybrid designs for cost reduction

IO Compensation Techniques

TX Side

- FFE (Feedback Forward Equalization)
 - · Amplifies or weakens the output level depending
 - on the previous pattern
- Boost
 - Small output level increase for a short bit time

- DFE (Decision Feedback Equalization)
 - Moves the RCV threshold level depending on the previous pattern
- CTLE (Continuous Time Linear Equalization or Peaking)
 - Linear frequency bandpass filter to compensate for the channel transfer function
 - represents the inverse filter function of the channel
 - "no notches" in the transfer function

Jitter

- Jitter is defined as the variation of the signal edges crossing the center of the eye
- Jitter can be caused by
 - Duty cycle distortions of clock signals
 - Power noise
 - Wiring Skew
 - ISI
 - Different Rise/Fall transitions

Simulation Flow

Signal Integrity

Equalizer:

CTLE

FFE: 5 taps

DFE: 12 taps

Signal Integrity

Signal Integrity

Signal Integrity – Impedance Discontinuities

18

Signal Integrity - Crosstalk

Most significant crosstalk sources are the vertical connections.

Running XBUS at 20.8 Gbps

Insertion Loss @10.4GHz = 23.4 dB

Signal to Crosstalk Ratio @10.4GHz = 13.2 dB

Heye = 29.3%, Veye = 41mV

- TX: FFE (Feed-Forward Equalization)
- RX: DFE (Decision Feedback Equalization)
- RX: CTLE (Continuous Time Linear Equalization)

Power Integrity

➤ Challenges

- > 12V PSUs, 4000W
- > DCM up to 480W
- ➤ 240A per chip
- ➤ Delta I ~120 A within nanoseconds
- ➤ Limited voltage tolerances
- ➤ Physically fitting capacitors
- \geq Z(f) = 0

➤ Decoupling Importance

- > Device functionality
- ➤ Device reliability
- > Yield vs power vs performance

> Trends

- ➤ Integrated/embedded capacitors
- > Advanced power management

CMOS Scaling

Transistor Scaling

Dennard, et al., 1974

p substrate, doping N_A

RESULTS:

Higher Density: α^2 Higher Speed: α Lower Power: $1/\alpha^2$

per circuit

Power Density: Constant

Chip Technology

➤ Continued shrinking of transistor geometries in chip technologies

C

➤ Traditional FET (> ~22nm)

- > FinFET (~22nm, ... ~5nm)
- Nanosheets with Gate-All-Around (~3nm, ...)
 - > ~50% less power, 45% area improvement, 30% performance improvement

May 15, 2019 by Yongjoo Jeon, https://news.samsung.com/global/editorial-making-semiconductor-history-contextualizing-samsungs-latest-transistor-technology

High Speed IO Trends

ISSCC 2021, Marcel Kossel & others, An 8b DAC-based SST TX using metal gate resistors with 1.4pJ/b efficiency at 112Gb/s PAM4 and 8-taps FFE in 7nm CMOS

System Integration Technologies

Electrical cabling between chip carriers

- > Bypass loss and crosstalk of PCB
- > Better shielding properties
- ➤ High speeds at low costs

Summary

- >SI and PI are essential for enabling high data bandwidths
 - > Requires detailed modeling and simulation techniques
 - > Si class should give you an better imagination about the job of a SI/PI development engineer
- ➤ Technology and bandwidth scaling will continue and provide increased performance
 - > Nanotechnology will lead to denser devices requiring more detailed modeling
 - ➤ High speed IOs will continue to increase speed
 - > Heterogeneous system integration will continue to get increased importance
- ➤ The future for packaging engineers is bright