Source: [KBe2020math401index]

1 | Limit Laws

 $See~\tt [KBe20math401srcLimitLawsBrainstorm].pdf$

2 | Openstax Calculus Vol1 2.3 Exercises

• Link ## 84

$$\lim_{x \to 1} \frac{x^3 + 3x^2 + 5}{4 - 7x} = \frac{1 + 3 + 5}{4 - 7} = \frac{9}{-3} = \boxed{-3}$$

85

$$\lim_{x \to -2} \sqrt{x^2 - 6x + 3} = \sqrt{4 - (-12) + 3} = \boxed{\sqrt{19}}$$

86

$$\lim_{x \to 1} (9x+1)^2 = (-9+1)^2 = \boxed{64}$$

94

$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \frac{0}{4 - 4} = \frac{0}{0}$$

$$\Rightarrow \lim_{x \to 2} \frac{x - 2}{x(x - 2)} = \lim_{x \to 2} \frac{1}{x} = \boxed{\frac{1}{2}}$$

98

$$\lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h} \Rightarrow \frac{\lim_{h \to 0} \frac{1}{a+h} - \lim_{h \to 0} \frac{1}{a}}{\lim_{h \to 0} h}$$

now what ..?

This is just the derivative of $\frac{1}{a}$ where a is a real valued, non zero constant. So, it should just be $\boxed{0}$. ## 100

$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} \Rightarrow \lim_{x \to 1} \frac{\cancel{(x - 1)}(x^2 + 1 + x)}{\cancel{(x + 1)}\cancel{(x - 1)}} = \lim_{x \to 1} \frac{x^2 + x + 1}{x + 1} = \boxed{\frac{3}{2}}$$

Time Check It's been an 45 minutes. ## 108

$$\lim_{x \to 6} \frac{g(x) - 1}{f(x)} = \frac{\lim_{x \to 6} g(x) - 1}{\lim_{x \to 6} f(x)} = \boxed{2}$$

109 \$\$