The mandi Package

Paul J. Heafner (heafnerj@gmail.com)

February 25, 2021

Version v3.0.0f dated 2021-02-25 **PLEASE DO NOT DISTRIBUTE THIS VERSION.**

Contents

A	owledgements	3
\mathbf{C}	age History	4
Li	of GlowScript Programs	5
Li	of VPython Programs	5
Li	of Figures	5
1	troduction	6
_	Loading the Package	
	The Package Version	
	B Package Options	
	4 The mandisetup Command	
2	telligent Commands for Physical Quantities and Constants	7
	Physical Quantities	
	2.1.1 Typesetting Physical Quantities	
	2.1.2 Checking Physical Quantities	
	2.1.3 Commands For Predefined Physical Quantities	
	2.1.4 Defining and Redefining Your Own Physical Quantities	
	2.1.5 Predefined Units and Constructs	
	2.1.6 Setting Global Units	
	2.1.7 Setting Units for a Single Instance	
	2.1.8 Setting Units in an Environment	
	Physical Constants	
	2.2.1 Typesetting Physical Constants	
	2.2.3 Commands For Predefined Physical Constants	
	2.2.4 Defining and Redefining Your Own Physical Constants	
	2.2.5 Setting Global Precision	
	2.2.6 Setting Precision for a Single Instance	
	2.2.7 Setting Precision in an Environment	
3	owScript and VPython Program Listings	26
	1 The glowscriptblock Environment	26
	2 The vpythonfile Command	29
	The glowscriptinline and vpythoninline Commands	31
4	ommands for Writing Physics Problem Solutions	31
	Introductory Needs	
	4.1.1 Traditional Vector Notation	
	4.1.2 Coordinate-Free and Index Notation	
	4.1.3 Problems and Annoted Problem Solutions	
	2 Intermediate and Advanced Needs	
	3 Useful Math Commands	38
5	ommands Specific to Matter & Interactions	42
	The Momentum Principle	
	The Energy Principle	
	The Angular Momentum Principle	
6	ource Code	47
7	dex	68

Acknowledgements

TO BE COMPLETED

Change History

v3.0.0f								
General: Initial release							(ĥ

List	of GlowScript Programs	
1	A GlowScript program	28
List	of VPython Programs	
1	A VPython program	30
List	of Figures	
$\begin{array}{c} 1 \\ 2 \end{array}$	Image shown 20 percent actual size.	

1 Introduction

This is the documentation for the mandi,¹ which is designed primarily for students in introductory physics courses. This document serves to document what commands mandi provides and does not necessarily fully demonstrate how students would use them. There is a separate document that serves that purpose.

1.1 Loading the Package

Load mandi as you would any package in your preamble.

\usepackage[options]{mandi}

1.2 The Package Version

\mandiversion

Typesets the current version and build date.

The version is \mandiversion\ and is a stable build.

The version is v3.0.0f dated 2021-02-25 and is a stable build.

1.3 Package Options

N 2021-01-30 N 2021-01-30 units=\langle type of unit\rangle
preciseconstants=\langle boolean\rangle

(initially unspecified, set to alternate) (initially unspecified, set to false)

Now mandi uses a key-value interface for options. The units key can be set to base, derived, or alternate. The preciseconstants key is always either true or false.

1.4 The mandisetup Command

N 2021-02-17

\mandisetup{\langle options \rangle}

Command to set package options on the fly after loadtime. This can be done in the preamble or inside the \begin{document}...\end{document} environment.

\mandisetup{units=base}

 $^{^{1}}$ The package name can be pronounced either with two syllables, to rhyme with candy, or with three syllables, as M and I.

2 Intelligent Commands for Physical Quantities and Constants

2.1 Physical Quantities

2.1.1 Typesetting Physical Quantities

Typesetting physical quantities and constants using semantically appropriate names, along with the correct SI units, is the core function of mandi. Take momentum as the prototypical physical quantity in an introductory physics course.

N 2021-02-24

Command for momentum and its vector variant. The default units will depend on the options passed to mandi at load time. Alternate units are the default. Other units can be forced as demonstrated. The vector variant can take more than three components. Note the other variants for the quantity's value and units.

```
5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
\momentum{5}
\momentumvalue{5}
                                                                                                 5 \,\mathrm{m}\cdot\mathrm{kg}\cdot\mathrm{s}^{-1}
\momentumbaseunits{5}
                                                                                                 5 \, \text{N} \cdot \text{s}
\momentumderivedunits{5}
                                                                                                 5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
\momentumalternateunits{5}
                                                                                                 m \cdot kg \cdot s^{-1}
\momentumonlybaseunits
\momentumonlyderivedunits
                                                                                                 N \cdot s
\momentumonlyalternateunits \\
                                                                                                 kg \cdot m / s
\vectormomentum{2,3,4}
                                                                                                 \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
\momentumvector{2,3,4}
\momentum{\mivector{2,3,4}}
                                                                                                 \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
                                                                                                 \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
```

Commands that include the name of a physical quantity typeset units, so they shouldn't be used for algebraic or symbolic values of components. For example, one shouldn't use $\mbox{vectormomentum}(\mbox{mv}_x,\mbox{mv}_y,\mbox{mv}_z)$ but instead the generic $\mbox{mivector}(\mbox{mv}_x,\mbox{mv}_y,\mbox{mv}_z)$ instead.

2.1.2 Checking Physical Quantities

N 2021-02-16

$\checkquantity{\langle name \rangle}$

Command to check and typeset the command, base units, derived units, and alternate units of a defined physical quantity.

2.1.3 Commands For Predefined Physical Quantities

Every other defined physical quantity can be treated similarly. Just replace momentum with the quantity's name. Obviously, the variants that begin with \vector will not be defined for scalar quantities. Here are all the physical quantities, with all their units, defined in mandi. Remember that units are not present with symbolic (algebraic) quantities, so do not use the \vector variants of these commands for symbolic components. Use \mivector \(^{\top} P.32\) instead.

	\acceleration{\(magnitude \) \}			
N 2021-02-24	$(c_1, \vectoracceleration{(c_1, \vec$			
	(Vectoraccereration (121,	$, c_n / J$		
	name	base	derived	alternate
	\acceleration	$m\cdot s^{-2}$	N / kg	m/s^2
	\amount{\(magnitude\)}			
	name	base	derived	alternate
	\amount	mol	mol	mol
	\aggreen \angularacceleration { ($magreen$			
N 2021-02-24	\angularaccelerationvecto			
	\vectorangularacceleration	$\mathbf{n}(\langle c_1, \dots, c_n \rangle)$		
	name	base	derived	alternate
	\angularacceleration	$rad \cdot s^{-2}$	rad/s^2	rad/s^2
	\angularfrequency{\(magnite{magnite})}	ude)}		
	(
	name	base	derived	alternate
	\angularfrequency	$rad \cdot s^{-1}$	rad/s	rad/s
	\((magnitud)\)	e)}		
N 2021-02-24	$\langle c_1 \rangle$			
	$\vectorangularimpulse{\langle c_1, c_2, c_4, c_6, c_6 \rangle}$	$,\ldots,c_n\rangle\}$		
	name	base	derived	alternate
	\angularimpulse	$m^2 \cdot kg \cdot ^{-1}s$	$kg \cdot m^2 / s$	$kg \cdot m^2 / s$
	\(magnitu\)	de\}		
N 2021-02-24	$\langle c \rangle$			
	$\verb \vectorangularmomentum \{ \langle c \rangle c \rangle c \rangle c \rangle $			
		1	1 . 1	1,
	$ m name \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	base m ² ·kg· ⁻¹ s	derived kg·m²/s	alternate kg·m²/s
		J	ng m 75	ng m / o
N 2021-02-24	\(magnitu\)			
N 2021-02-24	$\langle c \rangle$			
	3	10.		
	name	base	derived	alternate
	\angularvelocity	$rad \cdot s^{-1}$	rad/s	rad/s
	$\area{(magnitude)}$			

N 2021-02-24

	name \current	base A	derived A	alternate A
N 2021-02-24	$\label{lem:currentdensity} $$ \operatorname{currentdensity}(and currentdensity) $$ \operatorname{corcurrentdensity}(c_1) $$ $$ corcurrentdensity(c_1) $$ $$ corcurrentdensity(c_1) $$ $$ corcurrentdensity(c_1) $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	$,\ldots,c_{n}\rangle\}$		
	name \currentdensity	$\begin{array}{c} \text{base} \\ m^{-2} \cdot A \end{array}$	$\begin{array}{c} \text{derived} \\ C \cdot s / m^2 \end{array}$	alternate A/m²
	$\verb \dielectricconstant{ } (magazine and a substant (magazine and a subst$	$nitude$ }}		
	name \dielectricconstant	base	derived	alternate
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	(c, c_n)		
	name \displacement	base m	derived m	alternate m
	$\delta constrain {\langle magnitude \rangle}$			
	name \duration	base s	derived s	alternate s
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\operatorname{cor}\{\langle c_1,\ldots,c_n \rangle\}$		
	name	$\begin{array}{c} base \\ m \cdot s \cdot A \end{array}$	derived C·m	
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , c_n \rangle }		
	name \electricfield	$\begin{array}{c} base \\ m \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$	derived V/m	alternate N/C
	\electricflux{\(magnitude\)}	-		
	name	$\begin{array}{c} base \\ m^3 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$		alternate $N \cdot m^2 / C$
	\electricpotential{\langle} magna	$itude$ }}		

	name \electricpotential	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$	derived V	alternate J/C
	\(magniti)	ide }		
	name \electroncurrent	base s ⁻¹	derived e/s	alternate e/s
	$\ensuremath{\mbox{emf}\{\langle magnitude \rangle\}}$			
	name \emf	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$	derived V	alternate J/C
	$\ensuremath{\mbox{energy}} \{\ensuremath{\mbox{magnitude}}\}$			
	name \energy	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \end{array}$	derived J	alternate J
	(magnitude	2)}		
	name \energydensity	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived J/m³	alternate J/m³
N 2021-02-24	$\label{eq:constraint} $$\operatorname{cnergyflux}((magnitude)) $$ \operatorname{ctorenergyflux}((c_1,\dots, w_1,\dots, w_n)) $$$			
	name \energyflux	base $kg \cdot s^{-3}$	derived W/m²	alternate W/m²
	$\verb \entropy{ } (magnitude) $			
	name \entropy	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \cdot K^{-1} \end{array}$	derived J/K	alternate J/K
N 2021-02-24	$\label{eq:constraint} $$ \operatorname{constant}(c_1,\dots,c_n) $$ \operatorname{constant}(c_1,\dots,c_n) $$$			
	name \force	$\begin{array}{c} \text{base} \\ \text{m} \cdot \text{kg} \cdot \text{s}^{-2} \end{array}$	derived N	alternate N
	\frequency{(magnitude)}			
	name	$\begin{array}{c} \text{base} \\ \text{s}^{-1} \end{array}$	derived Hz	alternate Hz

N 2021-02-24	\(magn\) \gravitationalfieldvector \vectorgravitationalfield	$\{\langle c_1,\ldots,c_n\rangle\}$		
	name \gravitationalfield	base $m \cdot s^{-2}$	derived N/kg	alternate N/kg
	<	$magnitude$ }}		
	name	$\begin{array}{c} \text{base} \\ \text{m}^2 \cdot \text{s}^{-2} \end{array}$	derived J/kg	$\begin{array}{c} \text{alternate} \\ \text{J/kg} \end{array}$
N 2021-02-24	$\label{eq:constraint} $$ \displaystyle \operatorname{(magnitude)} $$ \operatorname{(c_1, \dots, c_n)} $$ \operatorname{(c_1, \dots, c_n)} $$$			
	name \impulse	$\begin{array}{c} {\rm base} \\ {\rm m\cdot kg\cdot s^{-1}} \end{array}$		
	$\verb \indexofrefraction{ } \langle magnifold ma$	$itude \rangle \}$		
	${\rm name} \\ {\tt indexofrefraction}$	base	derived	alternate
	\inductance{\langle magnitude \range}			
	name \inductance	$\begin{array}{c} {\rm base} \\ {m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}} \end{array}$	derived H	$\begin{array}{c} \text{alternate} \\ \text{V}\cdot\text{s}/\text{A} \end{array}$
	(mag	$gnitude$ }}		
	${ m name}$ \linearchargedensity	$\begin{array}{c} \text{base} \\ \text{m}^{-1} \cdot \text{s} \cdot \text{A} \end{array}$	derived C/m	alternate C/m
	$\verb \linearmassdensity \{ \langle magni$	itude angle brace		
	${ m name}$ \linearmassdensity	$\begin{array}{c} \text{base} \\ m^{-1} \cdot kg \end{array}$	derived kg/m	alternate kg/m
	$\label{luminous} {\mbox{\mbox{\mbox{\langle magnitude}\rangle$}}$			
	name \luminous	base cd	derived cd	alternate cd

 $\verb|\magneticcharge| \{\langle magnitude \rangle\}|$

	name \magneticcharge	$\begin{array}{c} \text{base} \\ \text{m} \cdot A \end{array}$		
N 2021-02-24	<pre>(r \magneticdipolemomentvectormagneticdipolemoment)</pre>	$\mathtt{ctor}\{\langle c_1,\dots,c_n \rangle\}$		
	${\rm name} \\ {\tt \ \ \ \ \ }$	$\begin{array}{c} base \\ m^2 \cdot A \end{array}$		alternate J/T
N 2021-02-24	$\label{local_magnetic} $$\max_{magneticfield vector {\{c_1\}}} \end{constraints} $$ \operatorname{magneticfield {\{c_1\}}} $$$	$,\ldots,c_{n}\rangle\}$		
	name \magneticfield	$\begin{array}{c} base \\ kg \cdot s^{-2} \cdot A^{-1} \end{array}$	derived T	alternate $N/C \cdot (m/s)$
	$\verb \magneticflux{ } {\it agnitude} $) }		
	name \magneticflux	$\begin{array}{c} \text{base} \\ m^2 \cdot kg \cdot s^{-2} \cdot A^{-1} \end{array}$	$\begin{array}{c} \text{derived} \\ T \cdot m^2 \end{array}$	
	$\mbox{\mbox{$\mbox{mass}${\langle magnitude\rangle$}}}$			
	name \mass	base kg	derived kg	alternate kg
	\mobility {\(\magnitude\)}			
	name \mobility	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-4} \cdot A^{-1} \end{array}$	$\begin{array}{c} \text{derived} \\ m^2 / V \cdot s \end{array}$	alternate $(m/s)/(N/C)$
	$\mbox{$\$	ude }		
	name \momentofinertia	base m²·kg	$\begin{array}{c} \text{derived} \\ J \cdot s^2 \end{array}$	
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:			
	name \momentum	$\begin{array}{c} base \\ m \cdot kg \cdot s^{-1} \end{array}$	derived N·s	
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , $c_n angle \}$		

name \relativepermeability	base	derived	alternate
<r< td=""><td>$nagnitude angle \}$</td><td></td><td></td></r<>	$nagnitude angle \}$		
${ m name}$	base	derived	alternate
$\verb \resistance { } (magnitude) $			
name \resistance	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-2} \end{array}$	derived V/A	$_{\Omega}^{\rm alternate}$
\resistivity{(magnitude)}	ŀ		
name \resistivity	$\begin{array}{c} base \\ m^3 \cdot kg \cdot s^{-3} \cdot A^{-2} \end{array}$	$\frac{\mathrm{derived}}{\Omega \cdot \mathtt{m}}$	$\begin{array}{c} \text{alternate} \\ \left(\text{V} / \text{m} \right) / \left(\text{A} / \text{m}^2 \right) \end{array}$
$\sl \mbox{solidangle} {\mbox{\sl} \mbox{\sl}}$			
name \solidangle	$\begin{array}{c} base \\ m^2 \cdot m^{-2} \end{array}$	derived sr	alternate sr
<r< td=""><td>$nagnitude \}$</td><td></td><td></td></r<>	$nagnitude \} $		
name \specificheatcapacity	$\begin{array}{c} base \\ m^2 \cdot s^{-2} \cdot K^{-1} \end{array}$	derived J/K·kg	$\begin{array}{c} \text{alternate} \\ \text{J/K} \cdot \text{kg} \end{array}$
\springstiffness{\langle magnite}	ude }}		
name \springstiffness	base kg·s ⁻²	derived N/m	alternate N/m
$\arraycolor{\$	(e)}		
name \springstretch	base m	derived m	alternate m
\stress{\(magnitude\)}			
name \stress	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived Pa	alternate N/m²
$\operatorname{\mathtt{\baseline}}(magnitude)$			
name \strain	base	derived	alternate

	<pre>\temperature{(magnitude)}</pre>			
	name \temperature	base K	derived K	alternate K
N 2021-02-24	$\label{eq:condition} $$ \operatorname{cond}(c_1,\ldots,c_n) $$ \operatorname{cond}(c_1,\ldots,c_n) $$$			
	name \torque	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \end{array}$	$ \frac{\mathrm{derived}}{\mathtt{N} \cdot \mathtt{m}} $	$\begin{array}{c} \text{alternate} \\ \text{N}\cdot \text{m} \end{array}$
N 2021-02-24 N 2021-02-24	$\label{eq:continuous} $$\operatorname{coity}(\operatorname{magnitude}) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ $			
	name \velocity	$\begin{array}{c} {\rm base} \\ {\rm m\cdot s^{-1}} \end{array}$	derived m/s	alternate m/s
	name \velocityc	base c	derived	$_{\rm c}^{\rm alternate}$
	$\volume{(magnitude)}$			
	name \volume	base m ³	$_{m^3}^{\rm derived}$	
	$\verb \volumechargedensity \{ (magnited to the context of the contex$	ude }}		
	name \volumechargedensity	$\begin{array}{c} base \\ m^{-3} \cdot s \cdot A \end{array}$	derived C/m³	$\begin{array}{c} {\rm alternate} \\ {\rm C/m^3} \end{array}$
	$\verb \volumemassdensity \{ (magnitud \\$	$ e\rangle$		
	name \volumemassdensity	base m ⁻³ ⋅kg	derived kg/m³	$\begin{array}{c} \text{alternate} \\ \text{kg/m}^3 \end{array}$
	\wavelength{(magnitude)}			
	name \wavelength	base m	derived m	alternate m
N 2021-02-24	$\label{eq:wavenumber} $$ \operatorname{magnitude} $$ \operatorname{constant}(c_1,\dots,c_n) $$ \operatorname{constant}(c_1,\dots,c_n) $$$			

name \wavenumber	base m ⁻¹	derived /m	alternate /m
$\work{(magnitude)}$			
name \work	$\begin{array}{c} {\rm base} \\ {\rm m^2 \cdot kg \cdot s^{-2}} \end{array}$	derived J	$\begin{array}{c} \text{alternate} \\ \text{N} \cdot \text{m} \end{array}$
\widtharpoonup	e>}		
name \youngsmodulus	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived Pa	

2.1.4 Defining and Redefining Your Own Physical Quantities

N 2021-02-16 N 2021-02-21

```
\newscalarquantity{\(\(\lame\)\)} \[\(\derived units\)\] \[\(\derived units\)\] \[\(\derived units\)\] \[\(\derived units\)\] \[\(\derived units\)\] \[\(\derived units\)\]
```

Command to define/redefine a new/existing scalar quantity. If the derived or alternate units are omitted, they are defined to be the same as the base units. Do not use both this command and <code>\newvectorquantity</code> or <code>\renewvectorquantity</code> to define/redefine a quantity.

N 2021-02-16 N 2021-02-21

```
\newvectorquantity{\((name\))} \[\((derived units\))\] \[\((derived units\))\] \[\((derived units\))\] \[\((derived units\))\] \[\((derived units\))\] \[\((derived units\))\] \[\((derived units\))\]
```

Command to define/redefine a new/existing vector quantity. If the derived or alternate units are omitted, they are defined to be the same as the base units. Do not use both this command and <code>\newscalarquantity</code> or <code>\renewscalarquantity</code> to define/redefine a quantity.

2.1.5 Predefined Units and Constructs

```
\per
\usk
\emptyunit
\ampere
\atomicmassunit
\candela
\coulomb
\degree
\electronvolt
\farad
\henry
\hertz
\joule
\kelvin
\kilogram
\lightspeed
\meter
```

```
\metre
\mole
\newton
\ohm
\pascal
\radian
\second
\siemens
\steradian
\tesla
\volt
\watt
\weber
                                                                                          (postfix)
\tothetwo
\tothethree
                                                                                          (postfix)
\tothefour
                                                                                          (postfix)
\inverse
                                                                                          (postfix)
\totheinversetwo
                                                                                          (postfix)
\totheinversethree
                                                                                          (postfix)
                                                                                          (postfix)
\totheinversefour
```

2.1.6 Setting Global Units

```
\alwaysusederivedunits
\alwaysusealternateunits
```

Modal commands (switches) for setting the default unit form for the entire document. When mandi is loaded, one of these three commands is executed depending on whether the optional units key is provided. See the section on loading the package for details. Alternate units are the default because they are the most likely ones to be seen in introductory physics textbooks.

2.1.7 Setting Units for a Single Instance

```
\hereusebaseunits{\(content\)}
\hereusedalternateunits{\(content\)}
```

Commands for setting the unit form on the fly for a single instance. The example uses momentum and the Coulomb constant, but they work for any defined quantity and constant.

2.1.8 Setting Units in an Environment

Inside these environments units are changed for the duration of the environment regardless of the global default setting.

```
\momentum{5}
                             11
\oofpez
\begin{usebaseunits}
                                                                                                        5 \, \mathrm{kg} \cdot \mathrm{m} \, / \, \mathrm{s}
                                                                                                       9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
   \momentum{5} \\
   \oofpez
                                                                                                        5\,\mathrm{m}\cdot\mathrm{kg}\cdot\mathrm{s}^{-1}
\end{usebaseunits}
                                                                                                       9 \times 10^9 \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^{-4} \cdot \mathrm{A}^{-2}
\begin{usederivedunits}
   \momentum{5} \\
                                                                                                       5 \, \text{N} \cdot \text{s}
   \oofpez
                                                                                                        9 \times 10^{9} \, \text{m} \, / \, \text{F}
\end{usederivedunits}
                                                                                                        5\,\mathrm{kg}\cdot\mathrm{m} / s
\begin{usealternateunits}
                                                                                                        9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
   \momentum{5} \\
\end{usealternateunits}
```

2.2 Physical Constants

2.2.1 Typesetting Physical Constants

Take the quantity $\frac{1}{4\pi\epsilon_o}$, sometimes called the Coulomb constant, as the prototypical physical constant in an introductory physics course. Here are all the ways to access this quantity in mandi. As you can see, these commands are almost identical to the corresponding commands for physical quantities.

\oofpez

Command for the Coulomb constant. The constant's numerical precision and default units will depend on the options passed to mandi at load time. Alternate units and approximate numerical values are the defaults. Other units can be forced as demonstrated.

```
9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
                                                                                        9 \times 10^{9}
\oofpez
\oofpezapproximatevalue
                                                                                        8.987551787 \times 10^9
\oofpezprecisevalue
\oofpezmathsymbol
                                                                                        9 \times 10^9 \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^{-4} \cdot \mathrm{A}^{-2}
\oofpezbaseunits
\oofpezderivedunits
                                                                                        9 \times 10^9 \, \text{m} \, / \, \text{F}
\oofpezalternateunits
                                                                                        9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
\oofpezonlybaseunits
                                                                                        m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}
\oofpezonlyderivedunits
\oofpezonlyalternateunits
                                                                                        m / F
                                                                                        N \cdot m^2 / C^2
```

2.2.2 Checking Physical Constants

N 2021-02-16

N 2021-02-02

$\checkconstant{\langle name \rangle}$

\avogadro

Command to check and typeset the constant's name, base units, derived units, alternate units, mathematical symbol, approximate value, and precise value.

2.2.3 Commands For Predefined Physical Constants

Every other defined physical constant can be treated similarly. Just replace oofpez with the constant's name. Unfortunately, there is no universal agreement on the names of every constant so consult the next section for the names that have been used. Here are all the physical constants, with all their units, defined in mandi. The constants $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$.

(4, 204, 20			
$\begin{array}{c} \text{name} \\ \texttt{\ } \texttt$	base mol^{-1} approximate 6×10^{23}	derived / mol precise $6.022140857 \times 10^{23}$	alternate / mol
\biotsavartconstant			
name \\delta iotsavartconstant \\delta jumbol \\ \frac{\mu_o}{4\pi} \end{ar}	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	derived H/m precise 10 ⁻⁷	alternate T·m/A
\bohrradius			
$\begin{array}{c} \text{name} \\ \texttt{\begin{tabular}{c} \textbf{bohrradius} \\ \textbf{symbol} \\ a_0 \end{array}}$	base m approximate 5.3×10^{-11}	derived m precise $5.2917721067 \times 10^{-11}$	alternate m

\boltzmann			
$\begin{array}{c} \text{name} \\ \texttt{\boltzmann} \\ \text{symbol} \\ k_B \end{array}$	base $m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}$ approximate 1.4×10^{-23}	derived J/K precise $1.38064852 \times 10^{-23}$	alternate J/K
\coulombconstant			
$\begin{array}{c} \text{name} \\ \texttt{\coulombconstant} \\ \text{symbol} \\ \frac{1}{4\pi\epsilon_o} \end{array}$	base $m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}$ approximate 9×10^9	derived $_{m/F}$ precise $8.9875517873681764 \times 10^{9}$	alternate $N \cdot m^2 / C^2$
\earthmass			
$egin{array}{l} { m name} \\ { m \ \ carthmass} \\ { m symbol} \\ M_{ m Earth} \end{array}$	base kg approximate 6.0×10^{24}	derived kg precise 5.97237 × 10 ²⁴	alternate kg
\earthmoondistance			
$\begin{array}{c} \text{name} \\ \texttt{\earthmoondistance} \\ \text{symbol} \\ d_{\text{EM}} \end{array}$	base m approximate 3.8×10^8	derived m precise 3.81550×10^8	alternate m
\earthradius			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ R_{\texttt{Earth}} \end{array}$	base m approximate 6.4×10^6	derived m precise 6.371 × 10 ⁶	alternate m
\earthsundistance			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ \\ d_{\texttt{ES}} \end{array}$	base m approximate 1.5×10^{11}	derived m precise 1.496×10^{11}	alternate m
\electroncharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \texttt{\ }$	base $A \cdot s$ approximate -1.6×10^{-19}	derived C precise $-1.6021766208 \times 10^{-19}$	alternate C

N 2021-02-02

\electronCharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \texttt{\ }$	base A·s approximate -1.6×10^{-19}	derived C precise $-1.6021766208 \times 10^{-19}$	alternate C
\electronmass			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ m_e \end{array}$	base kg approximate 9.1×10^{-31}	derived kg precise $9.10938356 \times 10^{-31}$	alternate kg
\elementarycharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ e \end{array}$	base A·s approximate 1.6×10^{-19}	derived C precise $1.6021766208 \times 10^{-19}$	alternate C
\finestructure			
$\begin{array}{c} \text{name} \\ \texttt{\finestructure} \\ \text{symbol} \\ \alpha \end{array}$	base approximate $\frac{1}{137}$	derived precise $7.2973525664 \times 10^{-3}$	alternate
\hydrogenmass			
$\begin{array}{c} \text{name} \\ \texttt{\hydrogenmass} \\ \text{symbol} \\ m_H \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.6737236 \times 10^{-27}$	alternate kg
\moonearthdistance			
$\begin{array}{c} \text{name} \\ \texttt{\moonearthdistance} \\ \text{symbol} \\ d_{\text{ME}} \end{array}$	base m approximate 3.8×10^8	derived m precise 3.81550×10^8	alternate m
\moonmass			
$\begin{array}{c} \text{name} \\ \texttt{\begin{tabular}{l} hoonmass \\ symbol \\ $M_{\textbf{Moon}}$ \\ \end{array}}$	base kg approximate 7.3×10^{22}	derived kg precise 7.342×10^{22}	alternate kg

\moonradius			
$\begin{array}{c} \text{name} \\ \texttt{`moonradius} \\ \text{symbol} \\ R_{\texttt{Moon}} \end{array}$	base m approximate 1.7×10^6	derived m precise 1.7371×10^6	alternate m
\mzofp			
name \mzofp symbol $\frac{\mu_o}{4\pi}$	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	derived H/m precise 10 ⁻⁷	
\neutronmass			
$\begin{array}{c} \text{name} \\ \texttt{\neutronmass} \\ \text{symbol} \\ m_n \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.674927471 \times 10^{-27}$	alternate kg
\oofpez			
name \oofpez symbol $\frac{1}{4\pi\epsilon_o}$	base $m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}$ approximate 9×10^9	derived m/F precise 8.987551787×10^9	$\begin{array}{c} {\rm alternate} \\ {\rm N\cdot m^2 / C^2} \end{array}$
\oofpezcs			
name \cofpexs symbol $\frac{1}{4\pi\epsilon_o c^2}$	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	derived $T \cdot m^2$ precise 10^{-7}	alternate $N \cdot s^2 / C^2$
\planck			
$\begin{array}{c} \text{name} \\ \texttt{\planck} \\ \text{symbol} \\ h \end{array}$	base $m^2 \cdot kg \cdot s^{-1}$ approximate 6.6×10^{-34}	derived J·s precise $6.626070040 \times 10^{-34}$	$\begin{array}{c} \text{alternate} \\ \text{J} \cdot \text{s} \end{array}$
\planckbar			
name \planckbar symbol ħ	base $m^2 \cdot kg \cdot s^{-1}$ approximate 1.1×10^{-34}	derived $J \cdot s$ precise $1.054571800 \times 10^{-34}$	$\begin{array}{c} \text{alternate} \\ \text{J} \cdot \text{s} \end{array}$

\planckc			
name \planckc	$\begin{array}{c} base \\ m^3 \cdot kg \cdot s^{-2} \end{array}$	derived J·m	$ \begin{array}{c} \text{alternate} \\ \text{J} \cdot \text{m} \end{array} $
$\begin{array}{c} {\rm symbol} \\ {\it hc} \end{array}$	approximate 2.0×10^{-25}	precise $1.98644568 \times 10^{-25}$	
\protoncharge			
$\begin{array}{c} \text{name} \\ \texttt{\protoncharge} \\ \text{symbol} \\ q_p \end{array}$	base A·s approximate $+1.6 \times 10^{-19}$	derived C precise $+1.6021766208 \times 10^{-19}$	alternate C
\protonCharge			
$\begin{array}{c} \text{name} \\ \texttt{\protonCharge} \\ \text{symbol} \\ Q_p \end{array}$	base $A \cdot s$ approximate $+1.6 \times 10^{-19}$	derived C precise $+1.6021766208 \times 10^{-19}$	alternate C
\protonmass			
$\begin{array}{c} \text{name} \\ \texttt{\protonmass} \\ \text{symbol} \\ m_p \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.672621898 \times 10^{-27}$	alternate kg
\rydberg			
$\begin{array}{c} \text{name} \\ \texttt{\t rydberg} \\ \text{symbol} \\ R_{\scriptscriptstyle \infty} \end{array}$	base m^{-1} approximate 1.1×10^7	derived ${\rm m}^{-1}$ precise 1.0973731568508 × 10 ⁷	$_{\rm m^{-1}}^{\rm alternate}$
\speedoflight			
$\begin{array}{c} \text{name} \\ \texttt{\symbol} \\ c \end{array}$	base $m \cdot s^{-1}$ approximate 3×10^8	derived m/s precise 2.99792458×10^8	alternate m/s
\stefanboltzmann			
$\begin{array}{c} \text{name} \\ \texttt{\stefanboltzmann} \\ \text{symbol} \\ \sigma \end{array}$	base $kg \cdot s^{-3} \cdot K^{-4}$ approximate 5.7×10^{-8}	derived $W/m^2 \cdot K^4$ precise 5.670367×10^{-8}	alternate $W/m^2 \cdot K^4$

\sunearthdistance			
$\begin{array}{c} \text{name} \\ \texttt{\summa} \\ \text{symbol} \\ d_{\texttt{SE}} \end{array}$	base m approximate 1.5×10^{11}	derived m precise 1.496×10^{11}	alternate m
\sunradius			
$\begin{array}{c} \text{name} \\ \texttt{\setminus sunradius} \\ \text{symbol} \\ R_{\texttt{Sun}} \end{array}$	base m approximate 7.0×10^8	derived m precise 6.957×10^8	alternate m
\surfacegravfield			
$\begin{array}{c} \text{name} \\ \texttt{\surfacegravfield} \\ \text{symbol} \\ g \end{array}$	base $m \cdot s^{-2}$ approximate 9.8	derived N/kg precise 9.807	alternate N/kg
\universalgrav			
$\begin{array}{c} \text{name} \\ \texttt{\colored} \\ \text{symbol} \\ G \end{array}$	base $m^3 \cdot kg^{-1} \cdot s^{-2}$ approximate 6.7×10^{-11}	derived $\begin{array}{c} \text{N}\cdot\text{m}^2 / \text{kg}^2 \\ \text{precise} \\ 6.67408 \times 10^{-11} \end{array}$	alternate $N \cdot m^2 / kg^2$
\vacuumpermeability			
$\begin{array}{c} \text{name} \\ \texttt{\baseline} \\ \text{symbol} \\ \mu_o \end{array}$	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate $4\pi \times 10^{-7}$	derived H/m precise $4\pi \times 10^{-7}$	$\begin{array}{c} \text{alternate} \\ \text{T} \cdot \text{m} / \text{A} \end{array}$
\vacuumpermittivity			
$\begin{array}{c} \text{name} \\ \texttt{\vacuumpermittivity} \\ \text{symbol} \\ \epsilon_o \end{array}$	base $m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$ approximate 9×10^{-12}	derived F/m precise $8.854187817 \times 10^{-12}$	alternate $C^2 / N \cdot m^2$

2.2.4 Defining and Redefining Your Own Physical Constants

N 2021-02-16

N 2021-02-21

[(derived units)] [(alternate units)]

Command to define/redefine a new/existing physical constant. If the derived or alternate units are omitted, they are defined to be the same as the base units.

2.2.5 Setting Global Precision

N 2021-02-16 N 2021-02-16

```
\alwaysuseapproximateconstants \alwaysusepreciseconstants
```

Modal commands (switches) for setting the default precision for the entire document. The default with the package is loaded is set by the presence or absence of the preciseconstants P.6 key.

2.2.6 Setting Precision for a Single Instance

N 2021-02-16 N 2021-02-16

```
\hereuseapproximateconstants{\(content\)}
\hereusepreciseconstants{\(content\)}
```

Commands for setting the precision on the fly for a single instance.

2.2.7 Setting Precision in an Environment

N 2021-02-16

N 2021-02-16

Inside these environments precision is changed for the duration of the environment regardless of the global default setting.

```
\begin{use approximate constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use approximate constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use approximate constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 8.987551787\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\ N\cdot m^2\ /\ C^2 \\ \end{use precise precise constants} & 9\times10^9\
```

3 GlowScript and VPython Program Listings

3.1 The glowscriptblock Environment

U 2021-02-11

```
\begin{glowscriptblock} [\langle options \rangle] (\langle link \rangle) \{\langle caption \rangle\} \\ \langle GlowScript\ code \rangle \\ \begin{glowscriptblock} \end{glowscriptblock} \end{glowscriptblock}
```

Code placed here is nicely formatted and optionally linked to its source on GlowScript.org. Clicking anywhere in the code window will open the link in the default browser. A caption is mandatory, and

a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly. For convenience, https:// is automatically prepended to the URL and can thus be omitted.

```
\begin{glowscriptblock}(tinyurl.com/y3lnqyn3){A \texttt{GlowScript} Program}
GlowScript 3.0 vpython
scene.width = 400
scene.height = 760
# constants and data
g = 9.8  # m/s^2
mball = 0.03 \# kg
Lo = 0.26 # m
ks = 1.8
             # N/m
deltat = 0.01 # s
# objects (origin is at ceiling)
ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,
             width=0.2)
ball = sphere(pos=vector(0,-0.3,0),radius=0.025,
             color=color.orange)
spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos,
              color=color.cyan,thickness=0.003,coils=40,
              radius=0.010)
# initial values
pball = mball * vector(0,0,0)
                                   # kg m/s
Fgrav = mball * g * vector(0,-1,0) # N
t = 0
# improve the display
scene.autoscale = False
                              # turn off automatic camera zoom
scene.center = vector(0,-Lo,0) # move camera down
scene.waitfor('click')
                              # wait for a mouse click
# initial calculation loop
# calculation loop
while t < 10:
   rate(100)
    # we need the stretch
    s = mag(ball.pos) - Lo
    # we need the spring force
    Fspring = ks * s * -norm(spring.axis)
    Fnet = Fgrav + Fspring
    pball = pball + Fnet * deltat
    ball.pos = ball.pos + (pball / mball) * deltat
    spring.axis = ball.pos - ceiling.pos
    t = t + deltat
\end{glowscriptblock}
```

GlowScript Program 1: A GlowScript program 1 GlowScript 3.0 vpython 2 scene.width = 4003 scene.height = 7604 # constants and data g = 9.8# m/s^2 mball = 0.03 # kgLo = 0.26 # m ks = 1.8# N/m **deltat = 0.01** # s 10 11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0), radius=0.025, color=color.orange) 16 17 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, color=color.cyan,thickness=0.003,coils=40, 18 radius=**0.010**) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 # turn off automatic camera zoom scene.autoscale = False 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene.waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 # calculation loop 32 while t < 10: 33 rate(100) 34 # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 Fnet = Fgrav + Fspring 39 pball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\GlowScript\ program \ref{gs:1} is nice. It's called \nameref{gs:1} and is on page \pageref{gs:1}.

GlowScript program 1 is nice. It's called A GlowScript program and is on page 28.
```

3.2 The vpythonfile Command

U 2021-02-11

\vpythonfile[\langle options \rangle] \{\langle file \rangle \} \{\langle caption \rangle \}

Command to load and typeset a VPython program. The file is read from $\{\langle file \rangle\}$. Clicking anywhere in the code window can optionally open a link, passed as an option, in the default browser. A caption is mandatory, and a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly. For convenience, https:// is automatically prepended to the URL and can thus be omitted.

VPython Program 1: A VPython program from vpython import * scene.width = 4003 scene.height = 7604 # constants and data 6 g = 9.8# m/s^2 mball = 0.03 # kgLo = 0.26 # m ks = 1.8# N/m deltat = 0.01 # s11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0), radius=0.025, color=color.orange) 16 17 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, color=color.cyan,thickness=0.003,coils=40, 18 radius=0.010) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 # turn off automatic camera zoom scene.autoscale = False 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene.waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 # calculation loop 32 while t < 10: 33 rate(100) 34 # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 39 Fnet = Fgrav + Fspringpball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\text{VPython\ program \ref{vp:1} is nice. It's called \nameref{vp:1} and is on page \pageref{vp:1}.}

VPython program 1 is nice. It's called A VPython program and is on page 30.
```

3.3 The glowscriptinline and vpythoninline Commands

```
U 2021-02-15
U 2021-02-15
```

```
\glowscriptinline{\langle GlowScript code \rangle}
\vpythoninline{\langle VPython code \rangle}
```

Typesets a small, in-line snippet of code. The snippet should be less than one line long.

```
\GlowScript\ programs begin with \glowscriptinline{GlowScript 3.0 VPython} and \VPython\ programs begin with \vpythoninline{from vpython import *}.

GlowScript programs begin with GlowScript 3.0 VPython and VPython programs begin with from vpython import *.
```

4 Commands for Writing Physics Problem Solutions

4.1 Introductory Needs

mandi provides a collection of commands physics students can use for writing problem solutions. This new version focuses on the most frequently needed tools. These commands should always be used in math mode.

4.1.1 Traditional Vector Notation

```
\ensuremath{\vec{\langle symbol\rangle}[\langle labels\rangle]} (use this variant for boldface notation) 
\ensuremath{\vec*{\langle symbol\rangle}[\langle labels\rangle]} (use this variant for arrow notation)
```

Powerful and intelligent command for symbolic vector notation. The mandatory argument is the symbol for the vector quantity. The optional label(s) consists of superscripts and/or subscripts and can be mathematical or textual in nature. If textual, be sure to wrap them in \symup{...} for proper typesetting. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels can be arbitrarily mixed, and order doesn't matter.

```
\zerovec (use this variant for boldface notation)
\zerovec* (use this variant for arrow notation)
```

Command for typesetting the zero vector. The starred version gives arrow notation whereas without the star you get boldface notation.

```
\(\zerovec \)\\\\(\zerovec*\)
```

```
\Dvec{\(symbol\)} \( \text{use this variant for boldface notation} \)
\( \text{\(symbol\)} \)
\( \text{use this variant for arrow notation} \)
```

Command for typesetting the change in a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported so if you need the symbol for the change in a subscripted or superscripted vector, just put \changein in front of it. This command must be used in math mode.

```
\(\Dvec{r}\\)\\\\(\Dvec*{r}\\)
```

```
\dirvec{\langle symbol\rangle} \( \text{use this variant for boldface notation} \\ \dirvec*{\langle symbol\rangle} \( \text{use this variant for arrow notation} \)
```

Command for typesetting the direction of a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported.

```
\( \dirvec{r} \) \\ \( \dirvec*{r} \) \widehat{r}
```

```
\magvec{(symbol)} (use this variant for boldface notation)
\magvec*{(symbol)} (use this variant for arrow notation)
```

Command for type setting the magnitude of a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported.

```
\(\magvec{r}\)\\\\(\magvec*{r}\)
```

Typesets a vector as either numeric or symbolic components with an optional unit (for numerical components only). There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma. The notation mirrors that of $Matter\ \mathcal{E}$ Interactions.

```
N 2021-02-21
N 2021-02-21
```

```
 \begin{array}{l} \texttt{\direction[(} delimiter)\texttt{]} \{ \langle c_1, \dots, c_n \rangle \} \\ \texttt{\unitvector[(} delimiter)\texttt{]} \{ \langle c_1, \dots, c_n \rangle \} \end{array}
```

Semantic aliases for $\backslash \text{mivector}^{\rightarrow P.32}$.

4.1.2 Coordinate-Free and Index Notation

Beyond the current level of introductory physics, we need intelligent commands for typesetting vector and tensor symbols and components suitable for both coordinate-free and index notations.

```
      \veccomp{(symbol)}
      (use this variant for coordinate-free vector notation)

      \tencomp*{(symbol)}
      (use this variant for index vector notation)

      \tencomp*{(symbol)}
      (use this variant for coordinate-free tensor notation)

      \tencomp*{(symbol)}
      (use this variant for index tensor notation)
```

Conforms to ISO 80000-2 notation.

```
\(\veccomp{r}\)\\
\(\veccomp*{r}\)\\
r\\(\tencomp*{r}\)\\
r\\(\tencomp*{r}\)\\
r
```

4.1.3 Problems and Annoted Problem Solutions

```
N 2021-02-03
```

.....

```
N 2021-02-03
```

Provides an environment for stating physics problems. Each problem will begin on a new page. See the examples for how to handle single and multiple part problems.

```
\begin{physicsproblem}{Problem 1}
This is a physics problem with no parts.
\end{physicsproblem}

Problem 1

This is a physics problem with no parts.
```

```
\begin{physicsproblem}{Problem 2}
This is a physics problem with multiple parts.
The list is vertical.
\begin{parts}
  \problempart This is the first part.
  \problempart This is the second part.
  \problempart This is the third part.
  \end{parts}
\end{parts}
\end{physicsproblem}
```

Problem 2

This is a physics problem with multiple parts. The list is vertical.

- (a) This is the first part.
- (b) This is the second part.
- (c) This is the third part.

```
\begin{physicsproblem*}{Problem 3}
This is a physics problem with multiple parts.
The list is in-line.
\begin{parts}
  \problempart This is the first part.
  \problempart This is the second part.
  \problempart This is the third part.
  \end{parts}
\end{physicsproblem*}
```

Problem 3

This is a physics problem with multiple parts. The list is in-line. (a) This is the first part. (b) This is the second part. (c) This is the third part.

U 2021-02-02

U 2021-02-02

This environment is only for mathematical solutions. The starred variant omits numbering of steps. See the examples.

```
(1)
                                                                          x = y + z
\begin{physicssolution}
 x &= y + z \\
                                                                                                    (2)
                                                                          z = x - y
 z &= x - y \\
                                                                          y = x - z
                                                                                                    (3)
 y &= x - z
\end{physicssolution}
\begin{physicssolution*}
 x &= y + z \\
 z &= x - y \\
                                                                          x = y + z
 y &= x - z
\end{physicssolution*}
                                                                          z = x - y
                                                                          y = x - z
```

U 2012-02-02

\reason{\(\text{reason}\)}

Provides an annotation in a step-by-step solution. Keep reasons short and to the point. Wrap mathematical content in math mode.

```
(4)
                                                                x = y + z
                                                                              This is a reason.
\begin{physicssolution}
  x \&= y + z \geq \{This is a reason.\}
                                                                                                                  (5)
                                                                 z = x - y
                                                                              This is a reason too.
  z &= x - y \reason{This is a reason too.} \\
y &= x - z \reason{final answer}
                                                                                                                  (6)
                                                                y = x - z
                                                                              final answer
\end{physicssolution}
\begin{physicssolution*}
  x &= y + z \reason{This is a reason.}
  z &= x - y \reason{This is a reason too.} \\
y &= x - z \reason{final answer}
                                                                 x = y + z
                                                                                 This is a reason.
\end{physicssolution*}
                                                                  z = x - y
                                                                                 This is a reason too.
                                                                  y = x - z
                                                                                 final answer
```

When writing solutions, remember that the physics solution $^{\rightarrow P.34}$ environment is only for mathematical content, not textual content or explanations.

```
\begin{physicsproblem}{Combined Problem and Solution}

This is an interesting physics problem.
\begin{physicssolution}

The solution goes here.
\end{physicssolution}

\end{physicsproblem}
```

```
\begin{physicsproblem}{Combined Multipart Problem with Solutions}
 This is a physics problem with multiple parts.
 \begin{parts}
   \problempart This is the first part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
    \problempart This is the second part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
    \problempart This is the third part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
 \end{parts}
\end{physicsproblem}
```

N 2021-02-06

Hilites the desired target, which can be an entire mathematical expression or a part thereof. The default color is magenta and the default shape is a rectangle.

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

```
\begin{align*}
  \Dvec{p} &= \vec{F}_{\sumup{net}}\,\Delta t \\
  \hilite[orange]{\Dvec{p}}[circle] &= \vec{F}_{\symup{net}}\,\Delta t \\
  \Delta\vec{p} &= \hilite[yellow!50]{\vec{F}_{\symup{net}}}[rounded rectangle]\,\Delta t \\
  \Delta\vec{p} &= \vec{F}_{\symup{net}}\,\hilite[olive!50]{\Delta t}[rectangle] \\
  \Delta\vec{p} &= \hilite[cyan!50]{\vec{F}_{\symup{net}}\,\Delta t}[ellipse] \\
  \hilite{\Delta\vec{p}}[rectangle] &= \vec{F}_{\symup{net}}\,\Delta t\\
  \end{align*}
```

$$\Delta p = F_{\text{net}} \Delta t$$

U 2021-02-04

$\label{label} $$ \mbox{image [(options)] {(caption)}}{(label)}{(image)} $$$

Simplified interface for importing an image. The images are treated as floats, so they may not appear at the most logically intuitive place.

\image[scale=0.20]{example-image-1x1}{Image shown 20 percent actual size.}{reffig1}

 1×1 (Original view 2001-200 kp)

Figure 1: Image shown 20 percent actual size.

Figure \ref{reffig1} is nice. It's captioned \nameref{reffig1} and is on page \pageref{reffig1}.

Figure 1 is nice. It's captioned Image shown 20 percent actual size and is on page 37.

\image[scale=0.20,angle=45]{example-image-1x1}{Image shown 20 percent actual size and)
\(\text{(rotated.)}{reffig1} \)

Figure 2: Image shown 20 percent actual size and rotated.

Figure $\rffig2$ is nice. It's captioned $\rffig2$ and is on page $\pgeref{reffig2}$.

Figure 2 is nice. It's captioned Image shown 20 percent actual size and rotated and is on page 37.

4.2 Intermediate and Advanced Needs

Typesets column vectors and row vectors as numeric or symbolic components. There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma.

```
\valence{\langle index\rangle} {\langle index\rangle} \valence*{\langle index\rangle} {\langle index\rangle}
```

Typesets tensor valence. The starred variant typesets it horizontally.

```
A vector is a \( \valence{1}{0} \) tensor. \\
A vector is a \( \valence*{1}{0} \) tensor.

A vector is a \( \valence*{1}{0} \) tensor.

A vector is a \( (1,0) \) tensor.
```

```
\contraction{\langle slot, slot \rangle} \contraction*{\langle slot, slot \rangle}
```

Typesets tensor contraction in coordinate-free notation. There is no standard on this so we assert one here.

```
\(\contraction{1,2} \)\\\\(\contraction*{1,2} \)\\\\\C_{1,2}\\(\contraction*{1,2} \)
```

```
\slot[(vector)]
\slot*[(vector)]
```

An intelligent slot command for coordinate-free vector and tensor notation. The starred variants suppress the underscore.

```
\( (\slot) \) \\
\( (\slot[\vec{a}]) \) \\
\( (\slot*) \) \\
\( (\slot*[\vec{a}]) \) \\
( a)
```

4.3 Useful Math Commands

```
\tento{(number)}
\timestento{(number)}
```

\xtento{\(\lamber\rangle\)}

Commands for powers of ten and scientific notation.

```
\tento{-4} \\
3\timestento{8} \\
3\xtento{8} \\
3 \timestento{8} \\
3 \timestento{8}
```

\changein

Semantic alias for \Delta.

```
\doublebars[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                              (double bars)
N 2021-02-21
N 2021-02-21
                         \doublebars*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                           (double bars for fractions)
                         \singlebars[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                                                                                                                                                               (single bars)
N 2021-02-21
                         \singlebars*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                             (single bars for fractions)
N 2021-02-21
                         \anglebrackets[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                          (angle brackets)
N 2021-02-21
                         \anglebrackets*[\langlesize\rangle] \{\langlequantity\rangle}
                                                                                                                                       (angle brackets for fractions)
N 2021-02-21
                         \parentheses[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                              (parentheses)
N 2021-02-21
                         \parentheses*[\langle size \rangle] {\langle quantity \rangle}
                                                                                                                                           (parentheses for fractions)
N 2021-02-21
                         \squarebrackets[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                        (square brackets)
                                                                                                                                     (square brackets for fractions)
                         \squarebrackets*[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
N 2021-02-21
                         \curlybraces[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                             (curly braces)
N 2021-02-21
                                                                                                                                          (curly braces for fractions)
                         \curlybraces*[\langle size \rangle] \{\langle quantity \rangle\}
```

If no argument is given, a placeholder is provided. Sizers like \big,\Big,\bigg, and \Bigg can be optionally specified. Beginners are encouraged not to use them. See the mathtools package documentation for details.

```
|\cdot|
\[\singlebars{} \]
\[\singlebars{x} \]
\[\singlebars*{\frac{x}{3}} \]
\[\singlebars[\Bigg]{\frac{x}{3}} \]
                                                                                                                                            |x|
                                                                                                                                            \left|\frac{x}{3}\right|
                                                                                                                                            (·)
                                                                                                                                            \langle a \rangle
\[ \anglebrackets{} \]
\[ \anglebrackets{\vec{a}} \]
\[ \anglebrackets*{\frac{\vec{a}}{3}} \]
(·)
\[ \parentheses{\} \]
\[ \parentheses{\x} \]
\[ \parentheses*{\frac{\x}{3}} \]
\[ \parentheses[\Bigg]{\frac{\x}{3}} \]
                                                                                                                                            (x)
                                                                                                                                           \left(\frac{x}{3}\right)
                                                                                                                                            [·]
\[ \squarebrackets{} \]
\[ \squarebrackets{x} \]
\[ \squarebrackets*{\frac{x}{3}} \]
                                                                                                                                            [x]
\[ \qquad \]  \[ \squarebrackets[\Bigg]{\frac{x}{3}} \]
```

```
N 2021-02-21
N 2021-02-21
N 2021-02-21
N 2021-02-21
N 2021-02-21
N 2021-02-21
```

Semantic aliases.

5 Commands Specific to Matter & Interactions

mandi comes with an accessory package mandiexp which includes commands specific to *Matter & Interactions*². The commands are primarily for typesetting mathematical expressions used in the text. Use of mandiexp is optional and so must be manually loaded by including the line \usepackage{mandiexp} in your document's preamble.

5.1 The Momentum Principle

```
\lhsmomentumprinciple
                                                                 (LHS of delta form, bold vectors)
                                                                 (RHS of delta form, bold vectors)
\rhsmomentumprinciple
\lhsmomentumprincipleupdate
                                                                (LHS of update form, bold vectors)
\rhsmomentumprincipleupdate
                                                               (RHS of update form, bold vectors)
\momentumprinciple
                                                                         (delta form, bold vectors)
\momentumprincipleupdate
                                                                       (update form, bold vectors)
                                                                (LHS of delta form, arrow vectors)
\lhsmomentumprinciple*
\rhsmomentumprinciple*
                                                                (RHS of delta form, arrow vectors)
\lhsmomentumprincipleupdate*
                                                              (LHS of update form, arrow vectors)
\rhsmomentumprincipleupdate*
                                                              (RHS of update form, arrow vectors)
\momentumprinciple*
                                                                       (delta form, arrow vectors)
\momentumprincipleupdate*
                                                                      (update form, arrow vectors)
```

Variants of command for typesetting the momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta oldsymbol{p}_{	ext{svs}}
                                                                                                \mathbf{F}_{\text{sys,net}} \Delta t
\(\lhsmomentumprinciple\)
                                                               11
                                                                                                \boldsymbol{p}_{\mathrm{sys,final}}
\(\rhsmomentumprinciple\)
                                                               //
                                                                                                \mathbf{p}_{\mathrm{sys,initial}} + \mathbf{F}_{\mathrm{sys,net}} \Delta t

\Delta \mathbf{p}_{\mathrm{sys}} = \mathbf{F}_{\mathrm{sys,net}} \Delta t
\(\lhsmomentumprincipleupdate\)
\(\rhsmomentumprincipleupdate\)
\(\momentumprinciple\)
                                                                                                p_{\text{sys,final}} = p_{\text{sys,initial}} + F_{\text{sys,net}} \Delta t
                                                               //
\(\momentumprincipleupdate \)
                                                                                                \Delta \overline{p}_{\mathrm{sys}}
\(\lhsmomentumprinciple*\)
\(\rhsmomentumprinciple*\)
                                                                                                \vec{F}_{\rm sys,net} \, \Delta t
\( \lhsmomentumprincipleupdate* \)
                                                                                                \vec{p}_{\text{sys,final}}
\(\rhsmomentumprincipleupdate*\)\\
                                                                                                \vec{p}_{\text{sys,initial}} + \vec{F}_{\text{sys,net}} \Delta t
\(\momentumprinciple*\)
                                                               11
\(\momentumprincipleupdate* \)
                                                                                                \Delta \vec{p}_{\text{sys}} = \vec{F}_{\text{sys,net}} \Delta t
                                                                                                \overrightarrow{p}_{\text{sys,final}} = \overrightarrow{p}_{\text{sys,initial}} + \overrightarrow{F}_{\text{sys,net}} \Delta t
```

5.2 The Energy Principle

```
\lhsenergyprinciple (LHS of delta form) \rhsenergyprinciple[\((\rho\) process...\)] (RHS of delta form) \lhsenergyprincipleupdate (LHS of update form)
```

²See Matter & Interactions and https://matterandinteractions.org/ for details

```
\label{lem:continuous} $$ \energyprincipleupdate [ (+process...) ] $$ (RHS of update form) $$ (delta form) $$ (energyprincipleupdate [ (+process...) ] $$ (update form) $$ (update form) $$ (energyprincipleupdate [ (+process...) ] $$ (update form) $$ (update fo
```

Variants of command for typesetting the energy principle.

```
\Delta E_{\rm sys}
                                                                                       W_{\rm ext}
\( \lhsenergyprinciple \)
\(\rhsenergyprinciple\)
                                                                                       W_{\text{ext}} + Q
\(\rhsenergyprinciple[+Q]\)
                                                                                       \Delta E_{\rm sys} = W_{\rm ext}
\Delta E_{\rm sys} = W_{\rm ext} + Q
\( \energyprinciple \)
\(\energyprinciple[+Q]\)
\(\lhsenergyprincipleupdate\)
                                                                                       E_{\rm sys,final}
                                                                                      E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext}
E_{\rm sys,initial} + W_{\rm ext} + Q
E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext}
E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext} + Q
\(\rhsenergyprincipleupdate\)
\(\rhsenergyprincipleupdate[+Q]\)
\(\energyprincipleupdate\)
\(\energyprincipleupdate[+Q]\)
```

5.3 The Angular Momentum Principle

```
(LHS of delta form, bold vectors)
\lhsangularmomentumprinciple
                                                                (RHS of delta form, bold vectors)
\rhsangularmomentumprinciple
\lhsangularmomentumprincipleupdate
                                                              (LHS of update form, bold vectors)
\rhsangularmomentumprincipleupdate
                                                              (RHS of update form, bold vectors)
\angularmomentumprinciple
                                                                       (delta form, bold vectors)
                                                                      (update form, bold vectors)
\angularmomentumprincipleupdate
\lhsangularmomentumprinciple*
                                                               (LHS of delta form, arrow vectors)
\rhsangularmomentumprinciple*
                                                               (RHS of delta form, arrow vectors)
\lhsangularmomentumprincipleupdate*
                                                             (LHS of update form, arrow vectors)
\rhsangularmomentumprincipleupdate*
                                                             (RHS of update form, arrow vectors)
\angularmomentumprinciple*
                                                                      (delta form, arrow vectors)
\angularmomentumprincipleupdate*
                                                                    (update form, arrow vectors)
```

Variants of command for typesetting the angular momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta \mathbf{L}_{A, \mathrm{sys, net}}
                                                                                                          	au_{A, 	ext{sys,net}} \Delta t
                                                                                                          \mathbf{L}_{A, \mathrm{sys, final}}^{I, I, I}
\(\lhsangularmomentumprinciple\)
                                                                                    //
\(\rhsangularmomentumprinciple\)
                                                                                                          \boldsymbol{L}_{A, \mathrm{sys, initial}} + \boldsymbol{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\lhsangularmomentumprincipleupdate\)
                                                                                    //
                                                                                                          \Delta \mathbf{L}_{A, \mathrm{sys, net}} = \boldsymbol{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\rhsangularmomentumprincipleupdate\)
                                                                                                          \mathbf{L}_{A, \mathrm{sys, final}} = \mathbf{L}_{A, \mathrm{sys, initial}} + \boldsymbol{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\angularmomentumprinciple\)
                                                                                     //
\( \angularmomentumprincipleupdate \)
\( \lhsangularmomentumprinciple* \)
                                                                                     //
                                                                                                          \Delta \overline{L}_{A, \mathrm{sys, net}}
\(\rhsangularmomentumprinciple*\)
                                                                                                           \overrightarrow{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\lhsangularmomentumprincipleupdate*\)\\
                                                                                                          \overrightarrow{L}_{A, \rm sys, final}
\(\rhsangularmomentumprincipleupdate* \) \\
                                                                                                          \vec{L}_{A, \text{sys, final}}^{A, \text{sys, final}} + \vec{\tau}_{A, \text{sys, net}} \Delta t
\Delta \vec{L}_{A, \text{sys, net}} = \vec{\tau}_{A, \text{sys, net}} \Delta t
\vec{L}_{A, \text{sys, final}} = \vec{L}_{A, \text{sys, initial}} + \vec{\tau}_{A, \text{sys, net}} \Delta t
\( \angularmomentumprinciple* \)
\(\angularmomentumprincipleupdate* \)
```

5.4 Other Expressions

N 2021-02-13

$\ensuremath{\mbox{energyof}} \{\langle label \rangle\} [\langle label \rangle]$

Generic symbol for the energy of some entity.

<pre>\(\energyof{\symup{electron}} \) \\ \(\energyof{\symup{electron}}[\symup{final}] \)</pre>	$E_{ m electron} \ E_{ m electron,final}$
--	---

N 2021-02-13

\systemenergy $[\langle label \rangle]$

Symbol for system energy.

<pre>\(\systemenergy \) \\ \(\systemenergy[\symup{final}] \)</pre>	$E_{ m sys} \ E_{ m sys,final}$
--	---------------------------------

N 2021-02-13

$\protect\$ \protect $\protect\$ \prot

Symbol for particle energy.

<pre>\(\particleenergy \) \\ \(\particleenergy[\symup{final}] \)</pre>	$E_{ m particle} \ E_{ m particle,final}$
--	---

N 2021-02-13

$\rule (label)$

Symbol for rest energy.

```
\(\restenergy\)\\ \(\restenergy[\symup{final}]\) E_{\rm rest} = E_{\rm rest,final}
```

N 2021-02-13

$\time lenergy [\langle label \rangle]$

Symbol for internal energy.

<pre>\(\internalenergy \) \\ \(\internalenergy[\symup{final}] \)</pre>	$E_{ m internal} \ E_{ m internal,final}$
--	---

N 2021-02-13

\chemicalenergy $[\langle label \rangle]$

Symbol for chemical energy.

<pre>\(\chemicalenergy \) \\ \(\chemicalenergy[\symup{final}] \)</pre>	$E_{ m chem} \ E_{ m chem,final}$
--	-----------------------------------

N 2021-02-13

$\text{ \text{thermalenergy} [($label)$]}$

Symbol for thermal energy.

N 2021-02-13

\photonenergy [$\langle label \rangle$]

Symbol for photon energy.

<pre>\(\photonenergy \) \\ \(\photonenergy[\symup{final}] \)</pre>	$E_{ m photon} \ E_{ m photon,final}$
--	---------------------------------------

N 2021-02-13

N 2021-02-13

Symbol for translational kinetic energy. The starred variant gives ${\cal E}$ notation.

<pre>\(\translationalkineticenergy \) \\ \(\translationalkineticenergy[\symup{initial}] \) \\ \(\translationalkineticenergy* \) \\ \(\translationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m trans}$ $K_{ m trans,initial}$ $E_{ m K}$ $E_{ m K,initial}$
---	---

N 2021-02-13 N 2021-02-13

$\triangledown Trotational kinetic energy [\langle label \rangle]$

Symbol for rotational kinetic energy. The starred variant gives E notation.

<pre>\(\rotationalkineticenergy \) \\ \(\rotationalkineticenergy[\symup{initial}] \) \\ \(\rotationalkineticenergy* \) \\ \(\rotationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m rot} \ K_{ m rot,initial} \ E_{ m rot} \ E_{ m rot,initial}$
---	---

N 2021-02-13

N 2021-02-13

Symbol for vibrational kinetic energy. The starred variant gives E notation.

<pre>\(\vibrationalkineticenergy \) \\ \(\vibrationalkineticenergy[\symup{initial}] \) \\ \(\vibrationalkineticenergy* \) \\ \(\vibrationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m vib}$ $K_{ m vib,initial}$ $E_{ m vib}$ $E_{ m vib,initial}$
---	---

N 2021-02-13

$\gravitationalpotentialenergy[\langle label\rangle]$

Symbol for gravitational potential energy.

\(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<pre>\(\gravitationalpotentialenergy \) \\ \(\gravitationalpotentialenergy[\symup{final}] \)</pre>
---------------------------------------	--

N 2021-02-13

$\ensuremath{\mbox{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\sim}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\sim}}\e$

Symbol for electric potential energy.

```
\( \electricpotentialenergy \) \\ \( \electricpotentialenergy[\symup{final}] \) U_{\rm e} = U_{\rm e,final}
```

N 2021-02-13

\springpotentialenergy [$\langle label \rangle$]

Symbol for spring potential energy.

```
\(\springpotentialenergy \) \\ \(\springpotentialenergy[\symup{final}] \) U_{\rm S} = U_{\rm S,final}
```

6 Source Code

31 \RequirePackage{nicematrix}

33 \RequirePackage{tensor}

36 \RequirePackage{hyperref}

34 \RequirePackage{tikz}

37 \RequireLuaTeX

32 \RequirePackage[most]{tcolorbox}

35 \usetikzlibrary{shapes,fit,tikzmark}

Definine the package version and date for global use, exploiting the fact that in a .sty file there is now no need for \makeatletter and \makeatother. This simplifies defining internal commands, with @ in the name, that are not for the user to know about.

```
1 \def\mandi@Version{3.0.0f}
2 \def\mandi@Date{2021-02-25}
3 \NeedsTeXFormat{LaTeX2e}[1999/12/01]
4 \providecommand\DeclareRelease[3]{}
5 \providecommand\DeclareCurrentRelease[2]{}
6 \DeclareRelease{v3.0.0f}{2021-02-25}{mandi.sty}
7 \DeclareCurrentRelease{v\mandi@Version}{\mandi@Date}
8 \ProvidesPackage{mandi}[\mandi@Date\space v\mandi@Version\space Macros for introductory physics]
   Define a convenient package version command.
9 \newcommand*{\mandiversion}{v\mandi@Version\space dated \mandi@Date}
   Set up the fonts to be consistent with ISO 80000-2 notation. The unicode-math package loads the fontspec and xparse
packages. Note that xparse is now part of the IATFX kernel. Because unicode-math is required, all documents using mandi
must be compiled with an engine that supports Unicode. We recommend LuaLATEX.
10 \RequirePackage{unicode-math}
11 \unimathsetup{math-style=ISO}
12 \unimathsetup{warnings-off={mathtools-colon,mathtools-overbracket}}
13 \setmathfont[Scale=MatchLowercase] {TeX Gyre DejaVu Math} % single-storey g everywhere. Based on Arev.
   Use normal math letters from Latin Modern Math for familiarity with textbooks.
14 \setmathfont[Scale=MatchLowercase,range=it/]{Latin Modern Math}
   Borrow mathscr and mathbfscr from XITS Math.
See https://tex.stackexchange.com/a/120073/218142.
15 \setmathfont[Scale=MatchLowercase, range={\mathscr, \mathbfscr}]{XITS Math}
   Get original and bold mathcal fonts.
See https://tex.stackexchange.com/a/21742/218142.
16 \setmathfont[Scale=MatchLowercase,range={\mathcal,\mathbfcal},StylisticSet=1]{XITS Math}
   Borrow Greek letters from Latin Modern Math.
17 \setmathfont[Scale=MatchLowercase,range=
                                               it/{greek,Greek}]{Latin Modern Math}
18 \setmathfont[Scale=MatchLowercase, range bfit/{greek,Greek}]{Latin Modern Math}
19 \setmathfont[Scale=MatchLowercase,range=
                                               up/{greek,Greek}]{Latin Modern Math}
20 \setmathfont[Scale=MatchLowercase,range= bfup/{greek,Greek}]{Latin Modern Math}
21 \setmathfont[Scale=MatchLowercase, range=bfsfup/{greek, Greek}] {Latin Modern Math}
   Load third party packages, documenting why each one is needed.
                                              % AMS goodness (don't load amssymb or amsfonts)
22 \RequirePackage{amsmath}
23 \RequirePackage[inline] {enumitem}
                                              % needed for physicsproblem environment
24 \RequirePackage{eso-pic}
                                              % needed for \hilite
25 \RequirePackage[g]{esvect}
                                              % needed for nice vector arrow, style g
26 \RequirePackage{pgfopts}
                                              % needed for key-value interface
27 \RequirePackage{array}
                                              % needed for \checkquantity and \checkconstant
28 \RequirePackage{iftex}
                                              % needed for requiring LuaLaTeX
29 \RequirePackage{makebox}
                                              % needed for consistent \dirvect; \makebox
30 \RequirePackage{mathtools}
                                              % needed for paired delimiters; extends amsmath
```

% needed for column and row vectors

% needed for program listings

% needed for index notation

% needed for \hilite

% needed for \hilite

% require this engine

% load last

Need to tweak the esvect package fonts to get the correct font size. Code provided by @egreg. See https://tex.stackexchange.com/a/566676.

```
38 \DeclareFontFamily{U}{esvect}{}
39 \DeclareFontShape{U}{esvect}{m}{n}{%
   <-5.5> vect5
    <5.5-6.5> vect6
41
   <6.5-7.5> vect7
42
   <7.5-8.5> vect8
43
    <8.5-9.5> vect9
44
    <9.5-> vect10
45
46 }{}%
47 \directlua{%
  luaotfload.add_colorscheme("colordigits",
     {["8000FF"] = {"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "zero"}})
49
50 }%
51 \newfontfamily\colordigits{DejaVuSansMono} [RawFeature={color=colordigits}]
```

Set up a color scheme and a new code environment for listings. The new colors are more restful on the eye. All listing commands now use tcolorbox.

See https://tex.stackexchange.com/a/529421/218142.

```
52 \newfontfamily{\gsfontfamily}{DejaVuSansMono}
                                                     % new font for listings
53 \definecolor{gsbggray}
                              {rgb}{0.90,0.90,0.90} % background gray
54 \definecolor{gsgray}
                              {rgb}{0.30,0.30,0.30} % gray
55 \definecolor{gsgreen}
                              {rgb}{0.00,0.60,0.00} % green
56 \definecolor{gsorange}
                              {rgb}{0.80,0.45,0.12} % orange
57 \definecolor{gspeach}
                              {rgb}{1.00,0.90,0.71} % peach
58 \definecolor{gspearl}
                              {rgb}{0.94,0.92,0.84} % pearl
                              \{rgb\}\{0.74,0.46,0.70\} % plum
59 \definecolor{gsplum}
60 \lstdefinestyle{vpython}{%
                                                     % style for listings
    backgroundcolor=\color{gsbggray},%
                                                     % background color
62
    basicstyle=\colordigits\footnotesize,%
                                                     % default style
                                                     % break at whitespace
63
    breakatwhitespace=true%
64
    breaklines=true,%
                                                     % break long lines
    captionpos=b,%
                                                     % position caption
65
                                                     % STILL DON'T UNDERSTAND THIS
    classoffset=1,%
66
    commentstyle=\color{gsgray},%
                                                     % font for comments
67
    deletekeywords={print},%
                                                     % delete keywords from the given language
68
    emph={self,cls,@classmethod,@property},%
                                                     % words to emphasize
69
70
    emphstyle=\color{gsorange}\itshape,%
                                                     % font for emphasis
71
    escapeinside={(*0}{0*)},%
                                                     % add LaTeX within your code
    frame=tb,%
                                                     % frame style
72
    framerule=2.0pt,%
                                                     % frame thickness
73
    framexleftmargin=5pt,%
                                                     % extra frame left margin
74
                                                      % style for identifiers
    %identifierstyle=\sffamily,%
75
    keywordstyle=\gsfontfamily\color{gsplum},%
                                                     % color for keywords
76
    language=Python,%
                                                     % select language
77
    linewidth=\linewidth,%
                                                     % width of listings
78
                                                     % VPython/GlowScript specific keywords
79
    morekeywords={%
      __future__,abs,acos,align,ambient,angle,append,append_to_caption,%
80
      append_to_title,arange,arrow,asin,astuple,atan,atan2,attach_arrow,%
81
      attach_trail,autoscale,axis,background,billboard,bind,black,blue,border,%
82
      bounding_box,box,bumpaxis,bumpmap,bumpmaps,camera,canvas,caption,capture,%
83
84
      ceil,center,clear,clear_trail,click,clone,CoffeeScript,coils,color,combin,%
      comp, compound, cone, convex, cos, cross, curve, cyan, cylinder, data, degrees, del, %
85
      delete,depth,descender,diff_angle,digits,division,dot,draw_complete,%
86
      ellipsoid, emissive, end_face_color, equals, explog, extrusion, faces, factorial, %
87
      False, floor, follow, font, format, forward, fov, frame, gcurve, gdisplay, gdots, %
88
      get_library,get_selected,ghbars,global,GlowScript,graph,graphs,green,gvbars,%
89
```

```
hat, headlength, headwidth, height, helix, hsv to rgb, index, interval, keydown, %
90
       kevup.label.length.lights.line.linecolor.linewidth.logx.logv.lower left.%
91
       lower_right, mag, mag2, magenta, make_trail, marker_color, markers, material, %
92
       max,min,mouse,mousedown,mousemove,mouseup,newball,norm,normal,objects,%
93
       offset, one, opacity, orange, origin, path, pause, pi, pixel_to_world, pixels, plot, %
94
       points, pos, pow, pps, print, print_function, print_options, proj, purple, pyramid, %
95
96
       quad, radians, radius, random, rate, ray, read_local_file, readonly, red, redraw, %
       retain, rgb to hsv, ring, rotate, round, scene, scroll, shaftwidth, shape, shapes, %
97
       shininess, show_end_face, show_start_face, sign, sin, size, size_units, sleep, %
98
       smooth, space, sphere, sqrt, start, start face_color, stop, tan, text, textpos, %
99
       texture, textures, thickness, title, trail_color, trail_object, trail_radius, %
100
       trail_type,triangle,trigger,True,twist,unbind,up,upper_left,upper_right,%
101
       userpan, userspin, userzoom, vec, vector, vertex, vertical_spacing, visible, %
102
       visual, vpython, VPython, waitfor, white, width, world, xtitle, yellow, yoffset, %
103
       ytitle%
104
     },%
105
106
     morekeywords={print,None,TypeError},%
                                                       % additional keywords
     morestring=[b]{"""},%
                                                       % treat triple quotes as strings
107
     numbers=left,%
                                                       % where to put line numbers
     numbersep=10pt,%
                                                       % how far line numbers are from code
     numberstyle=\bfseries\tiny,%
                                                       % set to 'none' for no line numbers
110
     showstringspaces=false,%
                                                       % show spaces in strings
111
     showtabs=false,%
                                                       % show tabs within strings
112
     stringstyle=\gsfontfamily\color{gsgreen},%
                                                       % color for strings
113
                                                       % how to typeset quotes
     upquote=true,%
114
115 }%
    Introduce a new, more intelligent glowscriptblock P. 26 environment.
116 \NewTCBListing[auto counter,list inside=gsprogs]{glowscriptblock}{ O{} D(){glowscript.org} m }{%
     breakable.%
117
     center,%
118
     code = \newpage,%
119
    %derivpeach,%
     enhanced, %
121
     hyperurl interior = https://#2,%
122
    label = {gs:\thetcbcounter},%
123
     left = 8mm, %
124
     list entry = \thetcbcounter~~~#3,%
125
126
     listing only,%
     listing style = vpython,%
127
     nameref = #3,%
128
     title = \texttt{GlowScript} Program \thetcbcounter: #3,%
130
    width = 0.9\textwidth,%
131
    #1.
132 }%
    A new command for generating a list of GlowScript programs.
133 \NewDocumentCommand{\listofglowscriptprograms}{}{\tcblistof[\section*]{gsprogs}
     {List of \texttt{GlowScript} Programs}}%
    Introduce a new, more intelligent \vpythonfile→P.29 command.
135 \NewTCBInputListing[auto counter,list inside=vpprogs]{\vpythonfile}{ 0{} m m }{%
136
    breakable,%
     center,%
137
138
     code = \newpage,%
139
     %derivgray,%
140
     enhanced, %
     hyperurl interior = https://,%
141
     label = {vp:\thetcbcounter},%
```

```
143
     left = 8mm, %
     list entry = \thetcbcounter~~~#3,%
144
     listing file = \{#2\},%
145
     listing only,%
146
     listing style = vpython,%
147
     nameref = #3,%
148
     title = \texttt{VPython} Program \thetcbcounter: #3,%
     width = 0.9\textwidth,%
     #1,%
151
152 }%
    A new command for generating a list of VPython programs.
153 \NewDocumentCommand{\listofvpythonprograms}{}{\tcblistof[\section*]{vpprogs}
     {List of \texttt{VPython} Programs}}%
    Introduce a new \glosscriptinline^{\rightarrow P.31} command.
155 \DeclareTotalTCBox{\glowscriptinline}{ m }{%
     bottom = Opt,%
156
     bottomrule = 0.0mm,%
157
158
     boxsep = 1.0mm,%
     colback = gsbggray,%
159
     colframe = gsbggray,%
160
     left = Opt,%
161
     leftrule = 0.0mm,%
162
     nobeforeafter,%
163
     right = Opt,%
164
     rightrule = 0.0mm,%
165
166
     sharp corners,%
     tcbox raise base,%
167
     top = Opt,%
168
     toprule = 0.0mm,%
169
170 }{\lstinline[style = vpython]{#1}}%
    Define \vpythoninline \(^{\text{P}}\). 31, a semantic alias for VPython in-line listings.
```

171 \NewDocumentCommand{\vpythoninline}{}{\glowscriptinline}%

Define units to be used with the unit engine. All single letter macros are now gone. We basically absorbed and adapted the now outdated Slunits package. We make use of \symup{...} from the unicode-math package.

```
172 \NewDocumentCommand{\per}{}{\nsuremath{\,/\,}}
173 \NewDocumentCommand{\usk}{}{\ensuremath{\,\cdot\,}}
174 \NewDocumentCommand{\unit}{ m m }{\ensuremath{{#1}\;{#2}}}
175 \NewDocumentCommand{\ampere}{}{\ensuremath{\symup{A}}}}
176 \NewDocumentCommand{\atomicmassunit}{}{\ensuremath{\symup{u}}}}
177 \NewDocumentCommand{\candela}{}{\ensuremath{\symup{cd}}}}
178 \NewDocumentCommand{\coulomb}{}{\ensuremath{\symup{C}}}}
179 \NewDocumentCommand{\degree}{}{\ensuremath{^{\circ}}}
180 \NewDocumentCommand{\electronvolt}{}{\ensuremath{\symup{eV}}}}
181 \NewDocumentCommand{\farad}{}{\ensuremath{\symup{F}}}
182 \NewDocumentCommand{\henry}{}{\ensuremath{\symup{H}}}}
183 \NewDocumentCommand{\hertz}{}{\ensuremath{\symup{Hz}}}}
184 \NewDocumentCommand{\joule}{}{\ensuremath{\symup{J}}}}
185 \NewDocumentCommand{\kelvin}{}{\ensuremath{\symup{K}}}}
186 \NewDocumentCommand{\kilogram}{}{\ensuremath{\symup{kg}}}
187 \NewDocumentCommand{\lightspeed}{}{\ensuremath{\symup{c}}}
188 \MewDocumentCommand{\meter}{}{\nsuremath{\symup{m}}}
189 \NewDocumentCommand{\metre}{}{\meter}
190 \NewDocumentCommand{\mole}{}{\ensuremath{\symup{mol}}}
191 \NewDocumentCommand{\newton}{}{\ensuremath{\symup{N}}}}
192 \NewDocumentCommand{\ohm}{}{\ensuremath{\symup\Omega}}
```

```
193 \NewDocumentCommand{\pascal}{}{\ensuremath{\symup{Pa}}}
194 \NewDocumentCommand{\radian}{}{\ensuremath{\symup{rad}}}}
195 \NewDocumentCommand{\second}{}{\ensuremath{\symup{s}}}
196 \NewDocumentCommand{\siemens}{}{\ensuremath{\symup{S}}}}
197 \NewDocumentCommand{\steradian}{}{\ensuremath{\symup{sr}}}
198 \NewDocumentCommand{\tesla}{}\ensuremath{\symup{T}}}
199 \NewDocumentCommand{\volt}{}{\ensuremath{\symup{V}}}}
200 \NewDocumentCommand{\watt}{}{\ensuremath{\symup{W}}}}
201 \NewDocumentCommand{\weber}{}{\ensuremath{\symup{Wb}}}
202 \NewDocumentCommand{\tothetwo}{}{\ensuremath{^2}}
                                                                  % postfix 2
                                                                  % postfix 3
203 \NewDocumentCommand{\tothethree}{}{\ensuremath{^3}}
204 \NewDocumentCommand{\tothefour}{}{\ensuremath{^4}}
                                                                  % postfix 4
205 \NewDocumentCommand{\inverse}{}{\ensuremath{^{-1}}}
                                                                  % postfix -1
206 \NewDocumentCommand{\totheinversetwo}{}{\ensuremath{^{-2}}}
                                                                  % postfix -2
207 \NewDocumentCommand{\totheinversethree}{}{\ensuremath{^{-3}}} % postfix -3
208 \NewDocumentCommand{\totheinversefour}{}{\ensuremath{^{-4}}}} % postfix -4
209 \NewDocumentCommand{\emptyunit}{}{\ensuremath{\mdlgwhtsquare}}
    The core unit engine has been completely rewritten in expl3 for both clarity and power.
    Generic internal selectors.
210 \newcommand*{\mandi@selectunits}{}
211 \newcommand*{\mandi@selectprecision}{}
    Specific internal selectors.
212 \newcommand*{\mandi@selectapproximate}[2]{#1}
                                                     % really \@firstoftwo
                                                     % really \@secondoftwo
213 \newcommand*{\mandi@selectprecise}[2]{#2}
214 \newcommand*{\mandi@selectbaseunits}[3]{#1}
                                                     % really \Offirstofthree
215 \newcommand*{\mandi@selectderivedunits}[3]{#2}
                                                    % really \@secondofthree
216 \newcommand*{\mandi@selectalternateunits}[3]{#3} % really \@thirdofthree
    Document level global switches.
217 \NewDocumentCommand{\alwaysusebaseunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectbaseunits}}%
219 \NewDocumentCommand{\alwaysusederivedunits}{}
     {\renewcommand*{\mandi@selectunits}}\%
221 \NewDocumentCommand{\alwaysusealternateunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectalternateunits}}%
223 \NewDocumentCommand{\alwaysuseapproximateconstants}{}
     {\renewcommand*{\mandi@selectprecision}{\mandi@selectapproximate}}%
225 \NewDocumentCommand{\alwaysusepreciseconstants}{}
     {\renewcommand*{\mandi@selectprecision}{\mandi@selectprecise}}%
    Document level localized variants.
227 \NewDocumentCommand{\hereusebaseunits}{ m }{\begingroup\alwaysusebaseunits#1\endgroup}%
228 \NewDocumentCommand{\hereusederivedunits}{ m }{\begingroup\alwaysusederivedunits#1\endgroup}%
229 \NewDocumentCommand{\hereusealternateunits}{ m }{\begingroup\alwaysusealternateunits#1\endgroup}%
230 \NewDocumentCommand{\hereuseapproximateconstants}{ m }{\begingroup\alwaysuseapproximateconstants#1\endgroup}%
231 \NewDocumentCommand{\hereusepreciseconstants}{ m }{\begingroup\alwaysusepreciseconstants#1\endgroup}%
    Document level environments.
232 \NewDocumentEnvironment{usebaseunits}{}{\alwaysusebaseunits}{}%
233 \NewDocumentEnvironment{usederivedunits}{}{\alwaysusederivedunits}{}%
234 \NewDocumentEnvironment{usealternateunits}{}{\alwaysusealternateunits}{}}
235 \NewDocumentEnvironment{useapproximateconstants}{}{\alwaysuseapproximateconstants}{}{}
236 \NewDocumentEnvironment{usepreciseconstants}{}{\alwaysusepreciseconstants}{}}
    Defining a new scalar quantity:
237 \NewDocumentCommand{\newscalarquantity}{ m m O{#2} O{#2} }{%
     \expandafter\newcommand\csname #1\endcsname[1]{##1\,\mandi@selectunits{#2}{#3}{#4}}%
```

```
239
     \expandafter\newcommand\csname #1value\endcsname[1]{##1}%
     \expandafter\newcommand\csname #1baseunits\endcsname[1]{##1\,\mandi@selectbaseunits{#2}{#3}{#4}}%
240
     \expandafter\newcommand\csname #1derivedunits\endcsname[1]{##1\,\mandi@selectderivedunits{#2}{#3}{#4}}%
241
     \expandafter\newcommand\csname #1alternateunits\endcsname[1]{##1\,\mandi@selectalternateunits{#2}{#3}{#4}}%
242
     \expandafter\newcommand\csname #1onlybaseunits\endcsname{\mandi@selectbaseunits{#2}{#3}{#4}}%
243
     \expandafter\newcommand\csname #1onlyderivedunits\endcsname{\mandi@selectderivedunits{#2}{#3}{#4}}%
244
245
     \expandafter\newcommand\csname #1onlyalternateunits\endcsname{\mandi@selectalternateunits{#2}{#3}{#4}}%
246 }%
    Redefining a new scalar quantity:
247 \NewDocumentCommand{\renewscalarquantity}{ m m 0{#2} 0{#2} }{%
     \expandafter\renewcommand\csname #1\endcsname[1]{##1\,\mandi@selectunits{#2}{#3}{#4}}%
     \expandafter\renewcommand\csname #1value\endcsname[1]{##1}%
249
     \expandafter\renewcommand\csname #1baseunits\endcsname[1]{##1\,\mandi@selectbaseunits{#2}{#3}{#4}}%
     \expandafter\renewcommand\csname #1derivedunits\endcsname[1]{##1\,\mandi@selectderivedunits{#2}{#3}{#4}}%
251
     \expandafter\renewcommand\csname #1alternateunits\endcsname[1]{##1\,\mandi@selectalternateunits{#2}{#3}{#4}}%
252
     \expandafter\renewcommand\csname #1onlybaseunits\endcsname{\mandi@selectbaseunits{#2}{#3}{#4}}%
253
     \expandafter\renewcommand\csname #1onlyderivedunits\endcsname{\mandi@selectderivedunits{#2}{#3}{#4}}%
254
     \expandafter\renewcommand\csname #1onlyalternateunits\endcsname{\mandi@selectalternateunits{#2}{#3}{#4}}%
255
256 }%
    Defining a new vector quantity. Note that a corresponding scalar is also defined.
257 \NewDocumentCommand{\newvectorquantity}{ m m O{#2} O{#2} }{%
     \newscalarquantity{#1}{#2}[#3][#4]
     \expandafter\newcommand\csname vector#1\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
259
260
     \expandafter\newcommand\csname #1vector\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
261 }%
    Redefining a new vector quantity. Note that a corresponding scalar is also redefined.
262 \NewDocumentCommand{\renewvectorquantity}{ m m 0{#2} 0{#2} }{%
     \renewscalarquantity{#1}{#2}[#3][#4]
263
264
     \expandafter\renewcommand\csname vector#1\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
265
     \expandafter\renewcommand\csname #1vector\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
266 }%
    Defining a new physical constant:
267 \NewDocumentCommand{\newphysicalconstant}{ m m m m 0{#5} 0{#5} }{%}
     \expandafter\newcommand\csname #1\endcsname
268
269
       \expandafter\newcommand\csname #1mathsymbol\endcsname{\ensuremath{#2}}%
270
271
     \expandafter\newcommand\csname #1approximatevalue\endcsname{\ensuremath{#3}}%
272
     \expandafter\newcommand\csname #1precisevalue\endcsname{\ensuremath{#4}}%
     \expandafter\newcommand\csname #1baseunits\endcsname
273
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectbaseunits{#5}{#6}{#7}}%
274
275
     \expandafter\newcommand\csname #1derivedunits\endcsname
276
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectderivedunits{#5}{#6}{#7}}%
     \expandafter\newcommand\csname #1alternateunits\endcsname
277
278
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectalternateunits{#5}{#6}{#7}}%
     \expandafter\newcommand\csname #1onlybaseunits\endcsname
279
       {\mandi@selectbaseunits{#5}{#6}{#7}}%
280
     \expandafter\newcommand\csname #1onlyderivedunits\endcsname
281
282
       {\mandi@selectderivedunits{#5}{#6}{#7}}%
     \expandafter\newcommand\csname #1onlyalternateunits\endcsname
283
       {\mandi@selectalternateunits{#5}{#6}{#7}}%
284
285 }%
    Redefining a new physical constant:
286 \NewDocumentCommand{\renewphysicalconstant}{ m m m m 0{#5} 0{#5} }{%
```

\expandafter\renewcommand\csname #1\endcsname

```
{\mandi@selectprecision{#3}{#4}\.\mandi@selectunits{#5}{#6}{#7}}%
288
               \expandafter\renewcommand\csname #1mathsymbol\endcsname{\ensuremath{#2}}%
289
               \expandafter\renewcommand\csname #1approximatevalue\endcsname{\ensuremath{#3}}%
290
               \expandafter\renewcommand\csname #1precisevalue\endcsname{\ensuremath{#4}}%
291
               \expandafter\renewcommand\csname #1baseunits\endcsname
292
                     {\mandi@selectprecision{#3}{#4}\,\mandi@selectbaseunits{#5}{#6}{#7}}%
293
294
               \expandafter\renewcommand\csname #1derivedunits\endcsname
                     {\mandi@selectprecision{#3}{#4}\,\mandi@selectderivedunits{#5}{#6}{#7}}%
295
               \expandafter\renewcommand\csname #1alternateunits\endcsname
296
                     {\bf \{\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mb
297
               \expandafter\renewcommand\csname #1onlybaseunits\endcsname
298
                     {\mandi@selectbaseunits{#5}{#6}{#7}}%
299
               \expandafter\renewcommand\csname #1onlyderivedunits\endcsname
300
                     {\mandi@selectderivedunits{#5}{#6}{#7}}%
301
               \expandafter\renewcommand\csname #1onlyalternateunits\endcsname
302
                     {\mandi@selectalternateunits{#5}{#6}{#7}}%
303
304 }%
```

mandi now has a key-value interface, implemented with pgfopts and pgfkeys. There are two options: units $^{P.6}$, with values base, derived, or alternate selects the default form of units preciseconstants $^{P.6}$, with values true and false, selects precise numerical values for constants rather than approximate values.

First, define the keys. The key handlers require certain commands defined by the unit engine, and thus must be defined and processed after the unit engine code.

```
305 \newif\ifusingpreciseconstants
306 \pgfkeys{%
    /mandi/options/.cd,
307
     initial@setup/.style={%
308
       /mandi/options/buffered@units/.initial=alternate,%
309
     },%
310
311
     initial@setup,%
312
     preciseconstants/.is if=usingpreciseconstants,%
     units/.is choice,%
313
     units/.default=derived,%
314
     units/alternate/.style={/mandi/options/buffered@units=alternate},%
315
     units/base/.style={/mandi/options/buffered@units=base},%
     units/derived/.style={/mandi/options/buffered@units=derived},%
318 }%
```

Process the options.

319 \ProcessPgfPackageOptions{/mandi/options}

Write a banner to the console showing the options in use. The value of the $units^{\rightarrow P.6}$ key is used in situ to set the default units.

```
320 \newcommand*{\mandi@linetwo}{\typeout{mandi: Loadtime options...}}
321 \newcommand*{\mandi@do@setup}{%
     \typeout{}%
322
     \typeout{mandi: You are using mandi \mandiversion.}%
323
324
     \csname alwaysuse\pgfkeysvalueof{/mandi/options/buffered@units}units\endcsname%
325
     \typeout{mandi: You will get \pgfkeysvalueof{/mandi/options/buffered@units}\space units.}%
326
     \ifusingpreciseconstants
327
       \alwaysusepreciseconstants
328
329
       \typeout{mandi: You will get precise constants.}%
330
       \alwaysuseapproximateconstants
331
       \typeout{mandi: You will get approximate constants.}%
332
333
334
     \typeout{}%
```

```
335 }%
336 \mandi@do@setup
```

Define a setup command that overrides the loadtime options when called with new options. A new banner is written to the console.

```
337 \NewDocumentCommand{\mandisetup}{ m }{%

338 \IfValueT{#1}-{%

339 \pgfqkeys{/mandi/options}{#1}

340 \renewcommand*{\mandi@linetwo}{\typeout{mandi: mandisetup options...}}

341 \mandi@do@setup

342 }%

343 }%
```

Define every quantity we need in introductory physics, alphabetically for convenience. This is really the core feature of mandi that no other package offers. There are commands for quantities that have no dimensions or units, and these quantities are defined for semantic completeness.

```
344 \newvectorquantity{acceleration}%
     {\meter\usk\second\totheinversetwo}%
     [\newton\per\kilogram]%
346
347
     [\meter\per\second\tothetwo]%
348 \newscalarquantity{amount}%
     {\mole}%
349
350 \newvectorquantity{angularacceleration}%
     {\radian\usk\second\totheinversetwo}%
351
     [\radian\per\second\tothetwo]%
352
     [\radian\per\second\tothetwo]%
354 \newscalarquantity{angularfrequency}%
355
     {\radian\usk\second\inverse}%
356
     [\radian\per\second]%
     [\radian\per\second]%
358 %\ifmandi@rotradians
359 % \newphysicalquantity{angularimpulse}%
        {\meter\tothetwo\usk\kilogram\usk\second\inverse\usk\radian\inverse}%
360 %
361 %
        [\joule\usk\second\per\radian]%
        [\newton\usk\meter\usk\second\per\radian]%
362 %
363 %
      \newphysicalquantity{angularmomentum}%
        {\meter\tothetwo\usk\kilogram\usk\second\inverse\usk\radian\inverse}%
364 %
        [\kilogram\usk\meter\tothetwo\per(\second\usk\radian)]%
365 %
        [\newton\usk\meter\usk\second\per\radian]%
366 %
367 %\else
368
     \newvectorquantity{angularimpulse}%
       {\meter\tothetwo\usk\kilogram\usk\inverse\second}%
369
       [\kilogram\usk\meter\tothetwo\per\second]% % also \joule\usk\second
370
       [\kilogram\usk\meter\tothetwo\per\second]% % also \newton\usk\meter\usk\second
371
     \newvectorquantity{angularmomentum}%
372
       {\meter\tothetwo\usk\kilogram\usk\inverse\second}%
373
       [\kilogram\usk\meter\tothetwo\per\second]% % also \joule\usk\second
374
       [\kilogram\usk\meter\tothetwo\per\second] % % also \newton\usk\meter\usk\second
375
376 %\fi
377 \newvectorquantity{angularvelocity}%
     {\radian\usk\second\inverse}%
378
     [\radian\per\second]%
379
     [\radian\per\second]%
381 \newscalarquantity{area}%
     {\meter\tothetwo}%
383 \newscalarquantity{areamassdensity}%
     {\meter\totheinversetwo\usk\kilogram}%
384
     [\kilogram\per\meter\tothetwo]%
385
386
     [\kilogram\per\meter\tothetwo]%
```

```
387 \newscalarquantity{areachargedensity}%
     {\meter\totheinversetwo\usk\second\usk\ampere}%
388
     [\coulomb\per\meter\tothetwo]%
389
     [\coulomb\per\meter\tothetwo]%
390
391 \newscalarquantity{capacitance}%
     {\meter\totheinversetwo\usk\kilogram\inverse\usk\second\tothefour\usk\ampere\tothetwo}%
     [\coulomb\per\volt]% % also \coulomb\tothetwo\per\newton\usk\meter, \second\per\ohm
394
395 \newscalarquantity{charge}%
     {\ampere\usk\second}%
     [\coulomb]%
397
     [\coulomb]% % also \farad\usk\volt
398
399 \newvectorquantity{cmagneticfield}%
     {\meter\usk\kilogram\usk\second\totheinversethree\usk\ampere\inverse}%
     [\volt\per\meter]%
401
     [\newton\per\coulomb]%
402
403 \newscalarquantity{conductance}%
     {\meter\totheinversetwo\usk\kilogram\inverse\usk\second\tothethree\usk\ampere\tothetwo}%
     [\siemens]%
     [\ampere\per\volt]%
407 \newscalarquantity{conductivity}%
     {\meter\totheinversethree\usk\kilogram\inverse\usk\second\tothethree\usk\ampere\tothetwo}%
408
     [\siemens\per\meter]%
409
     [(\ampere\per\meter\tothetwo)\per(\volt\per\meter)]%
410
411 \newscalarquantity{conventionalcurrent}%
     {\ampere}%
412
     [\coulomb\per\second]%
413
     [\ampere]%
414
415 \newscalarquantity{current}%
     {\ampere}%
416
417 \newscalarquantity{currentdensity}%
     {\meter\totheinversetwo\usk\ampere}%
     [\coulomb\usk\second\per\meter\tothetwo]%
420
     [\ampere\per\meter\tothetwo]%
421 \newscalarquantity{dielectricconstant}%
     {}%
422
423 \newvectorquantity{displacement}%
     {\meter}
425 \newscalarquantity{duration}%
     {\second}%
427 \newvectorquantity{electricdipolemoment}%
     {\meter\usk\second\usk\ampere}%
428
     [\coulomb\usk\meter]%
429
     [\coulomb\usk\meter]%
431 \newvectorquantity{electricfield}%
     {\meter\usk\kilogram\usk\second\totheinversethree\usk\ampere\inverse}%
433
     [\volt\per\meter]%
     [\newton\per\coulomb]%
434
435 \newscalarquantity{electricflux}%
     {\meter\tothethree\usk\ampere\inverse}}
436
     [\volt\usk\meter]%
437
     [\newton\usk\meter\tothetwo\per\coulomb]%
438
439 \newscalarquantity{electricpotential}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversethree\usk\ampere\inverse}%
440
     [\volt]%
441
     [\joule\per\coulomb]%
442
443 \newscalarquantity{electroncurrent}%
444
     {\second\inverse}%
```

445

[\ensuremath{\symup{e}}\per\second]%

```
[\ensuremath{\symup{e}}\per\second]%
446
447 \newscalarquantity{emf}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversethree\usk\ampere\inverse}}
448
     [\volt]%
449
     [\joule\per\coulomb]%
450
451 \newscalarquantity{energy}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo}%
     [\joule]% % also \newton\usk\meter
453
     [\joule]%
454
455 \newscalarquantity{energydensity}%
     {\meter\inverse\usk\kilogram\usk\second\totheinversetwo}%
456
457
     [\joule\per\meter\tothethree]%
     [\joule\per\meter\tothethree]%
459 \newscalarquantity{energyflux}%
     {\kilogram\usk\second\totheinversethree}%
460
     [\watt\per\meter\tothetwo]%
461
     [\watt\per\meter\tothetwo]%
462
463 \newscalarquantity{entropy}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo\usk\kelvin\inverse}%
465
     [\joule\per\kelvin]%
     [\joule\per\kelvin]%
466
467 \newvectorquantity{force}%
     {\meter\usk\kilogram\usk\second\totheinversetwo}%
468
469
     [\newton]% % also \kilogram\usk\meter\per\second\tothetwo
470
471 \newscalarquantity{frequency}%
     {\second\inverse}%
473
     [\hertz]%
     [\hertz]%
474
475 \newvectorquantity{gravitationalfield}%
     {\meter\usk\second\totheinversetwo}%
476
     [\newton\per\kilogram]%
477
     [\newton\per\kilogram]%
479 \newscalarquantity{gravitationalpotential}%
     {\meter\tothetwo\usk\second\totheinversetwo}%
     [\joule\per\kilogram]%
481
     [\joule\per\kilogram]%
482
483 \newvectorquantity{impulse}%
     {\meter\usk\kilogram\usk\second\inverse}%
     [\newton\usk\second]%
     [\newton\usk\second]%
486
487 \newscalarquantity{indexofrefraction}%
488
489 \newscalarquantity{inductance}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
490
491
     [\henry]%
     [\volt\usk\second\per\ampere]% % also \square\meter\usk\kilogram\per\coulomb\tothetwo, \Wb\per\ampere
492
493 \newscalarquantity{linearchargedensity}%
     {\meter\inverse\usk\second\usk\ampere}%
494
     [\coulomb\per\meter]%
495
     [\coulomb\per\meter]%
496
497 \newscalarquantity{linearmassdensity}%
     {\meter\inverse\usk\kilogram}%
     [\kilogram\per\meter]%
499
     [\kilogram\per\meter]%
500
501 \newscalarquantity{luminous}%
     {\candela}%
503 \newscalarquantity{magneticcharge}%
     {\meter\usk\ampere}%
```

```
505 \newvectorquantity{magneticdipolemoment}%
506
     {\meter\tothetwo\usk\ampere}%
     [\ampere\usk\meter\tothetwo]%
507
     [\joule\per\tesla]%
508
509 \newvectorquantity{magneticfield}%
     {\kilogram\usk\second\totheinversetwo\usk\ampere\inverse}%
     [\tesla]%
     [\newton\per\coulomb\usk(\meter\per\second)]% % also \Wb\per\meter\tothetwo
512
513 \newscalarquantity{magneticflux}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo\usk\ampere\inverse}%
     [\tesla\usk\meter\tothetwo]%
     [\volt\usk\second]% % also \Wb and \joule\per\ampere
516
517 \newscalarquantity{mass}%
     {\kilogram}%
519 \newscalarquantity{mobility}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversefour\usk\ampere\inverse}%
520
521
     [\meter\tothetwo\per\volt\usk\second]%
     [(\meter\per\second)\per(\newton\per\coulomb)]%
522
523 \newscalarquantity{momentofinertia}%
     {\meter\tothetwo\usk\kilogram}%
     [\joule\usk\second\tothetwo]%
525
     [\kilogram\usk\meter\tothetwo]%
526
527 \newvectorquantity{momentum}%
     {\meter\usk\kilogram\usk\second\inverse}%
528
     [\newton\usk\second]%
529
     [\kilogram\usk\meter\per\second]%
530
531 \newvectorquantity{momentumflux}%
     {\meter\inverse\usk\kilogram\usk\second\totheinversetwo}%
532
     [\newton\per\meter\tothetwo]%
533
     [\newton\per\meter\tothetwo]%
534
535 \newscalarquantity{numberdensity}%
     {\meter\totheinversethree}%
536
537
     [\per\meter\tothethree]%
     [\per\meter\tothethree]%
539 \newscalarquantity{permeability}%
     {\meter\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
540
     [\tesla\usk\meter\per\ampere]%
541
542
     [\henry\per\meter]%
543 \newscalarquantity{permittivity}%
     {\meter\totheinversethree\usk\kilogram\inverse\usk\second\totheinversefour\usk\ampere\tothetwo}%
545
     [\farad\per\meter]%
     [\coulomb\tothetwo\per\newton\usk\meter\tothetwo]%
547 \newscalarquantity{planeangle}%
     {\meter\usk\meter\inverse}%
548
549
     [\radian]%
     [\radian]%
551 \newscalarquantity{polarizability}%
     {\kilogram\inverse\usk\second\tothefour\usk\ampere\tothetwo}%
552
     [\coulomb\usk\meter\tothetwo\per\volt]%
553
     [\coulomb\usk\meter\per(\newton\per\coulomb)]%
554
555 \newscalarquantity{power}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversethree}%
556
     [\watt]%
557
     [\joule\per\second]%
558
559 \newvectorquantity{poynting}%
560
     {\kilogram\usk\second\totheinversethree}%
     [\watt\per\meter\tothetwo]%
561
562
     [\watt\per\meter\tothetwo]%
```

563 \newscalarquantity{pressure}%

```
{\meter\inverse\usk\kilogram\usk\second\totheinversetwo}%
564
     [\pascal]%
565
     [\newton\per\meter\tothetwo]%
566
567 \newscalarquantity{relativepermeability}
569 \newscalarquantity{relativepermittivity}%
570
571 \newscalarquantity{resistance}%
     {\meter\tothetwo\usk\kilogram\usk\second\totheinversethree\usk\ampere\totheinversetwo}%
572
     [\volt\per\ampere]%
573
     [\ohm]%
574
575 \newscalarquantity{resistivity}%
     {\meter\tothethree\usk\kilogram\usk\second\totheinversethree\usk\ampere\totheinversetwo}%
     [\ohm\usk\meter]%
577
     [(\volt\per\meter)\per(\ampere\per\meter\tothetwo)]%
578
579 \newscalarquantity{solidangle}%
     {\meter\tothetwo\usk\meter\totheinversetwo}%
580
     [\steradian]%
581
     [\steradian]%
583 \newscalarquantity{specificheatcapacity}%
     {\meter\tothetwo\usk\second\totheinversetwo\usk\kelvin\inverse}%
584
     [\joule\per\kelvin\usk\kilogram]%
585
     [\joule\per\kelvin\usk\kilogram]
586
587 \newscalarquantity{springstiffness}%
     {\kilogram\usk\second\totheinversetwo}%
588
     [\newton\per\meter]%
589
     [\newton\per\meter]%
590
591 \newscalar
quantity{springstretch} \% % This is really just a displacement.
     {\meter}%
592
593 \newscalarquantity{stress}%
     {\meter\inverse\usk\kilogram\usk\second\totheinversetwo}%
594
     [\pascal]%
     [\newton\per\meter\tothetwo]%
597 \newscalarquantity{strain}%
    {}%
598
599 \newscalarquantity{temperature}%
    {\kelvin}%
601 %\ifmandi@rotradians
602 % \newphysicalquantity{torque}%
603 %
        {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo\usk\radian\inverse}%
604 %
        [\newton\usk\meter\per\radian]%
605 %
        [\newton\usk\meter\per\radian]%
606 %\else
     \newvectorquantity{torque}%
607
608
       {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo}%
609
       [\newton\usk\meter]%
       [\newton\usk\meter]%
610
611 %\fi
612 \newvectorquantity{velocity}%
     {\meter\usk\second\inverse}%
     [\meter\per\second]%
614
     [\meter\per\second]%
616 \newvectorquantity{velocityc}%
     {\lightspeed}%
617
     []%
618
619
     [\lightspeed]%
620 \newscalarquantity{volume}%
     {\meter\tothethree}%
622 \newscalarquantity{volumechargedensity}%
```

```
{\meter\totheinversethree\usk\second\usk\ampere}%
623
624
     [\coulomb\per\meter\tothethree]%
     [\coulomb\per\meter\tothethree]%
625
626 \newscalarquantity{volumemassdensity}%
    {\meter\totheinversethree\usk\kilogram}%
     [\kilogram\per\meter\tothethree]%
628
     [\kilogram\per\meter\tothethree]%
630 \newscalarquantity{wavelength}% % This is really just a displacement.
    {\meter}%
632 \newvectorquantity{wavenumber}%
   {\meter\inverse}%
633
     [\per\meter]%
634
     [\per\meter]%
636 \newscalarquantity{work}%
    {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo}%
637
    [\joule]%
638
     [\newton\usk\meter]%
640 \newscalarquantity{youngsmodulus}% % This is really just a stress.
    {\meter\inverse\usk\kilogram\usk\second\totheinversetwo}%
    [\newton\per\meter\tothetwo]%
643
   Define physical constants for introductory physics, again alphabetically for convenience.
644 \newphysicalconstant{avogadro}%
    {N_A}
645
    \{6 \times \{23\}\} \{6.022140857 \times \{23\}\} \%
646
     {\mole\inverse}%
647
     [\per\mole]%
648
     [\per\mole]%
649
650 \newphysicalconstant{biotsavartconstant}% % alias for \mzofp
    {\frac{\mu_o}{4\pi^0}}
652
    {\left(-7\right)}{\left(-7\right)}
    {\meter\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
653
    [\henry\per\meter]%
654
    [\tesla\usk\meter\per\ampere]%
655
656 \newphysicalconstant{bohrradius}%
    {a_0}%
657
    {5.3\times -11}}{5.2917721067\times -11}}%
658
    {\meter}%
660 \newphysicalconstant{boltzmann}%
    \{k_B\}\%
661
    {1.4\times -23}}{1.38064852\times -23}}%
662
    {\meter\tothetwo\usk\kilogram\usk\second\totheinversetwo\usk\kelvin\inverse}%
663
    [\joule\per\kelvin]%
664
665
     [\joule\per\kelvin]%
666 \newphysicalconstant{coulombconstant}% % alias for \oofpez
     {\frac{1}{4\pi\epsilon_o}}%
    {9\timestento{9}}{8.9875517873681764\timestento{9}}}%
668
    669
     [\meter\per\farad]%
670
     [\newton\usk\meter\tothetwo\per\coulomb\tothetwo]%
671
672 \newphysicalconstant{earthmass}%
    {M_{\symup{Earth}}}%
673
    \{6.0 \times \{24\}\} \{5.97237 \times \{24\}\} \%
674
    {\kilogram}%
675
676 \newphysicalconstant{earthmoondistance}%
    \{d_{\sim}\{symup\{EM\}\}\}%
    {3.8\times 1550\times 8}
678
679
    {\meter}%
```

```
680 \newphysicalconstant{earthradius}%
    {R_{\symup{Earth}}}%
681
    \{6.4 \times \{6.4 \times \{6.371 \times \{6.371 \times \{6.4\}\}\}\}
682
    {\meter}%
683
684 \newphysicalconstant{earthsundistance}%
    {d_{\symup{ES}}}%
    \{1.5\timestento\{11\}\}\{1.496\timestento\{11\}\}\%
    {\meter}%
687
688 \newphysicalconstant{electroncharge}%
    {q_e}%
689
    {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
690
    {\ampere\usk\second}%
691
692
     [\coulomb]%
     [\coulomb]%
694 \newphysicalconstant{electronCharge}%
    {Q_e}%
695
    696
    {\ampere\usk\second}%
697
698
    [\coulomb]%
     [\coulomb]%
700 \newphysicalconstant{electronmass}%
    {m_e}
    {9.1\times -31}
702
    {\kilogram}%
703
704 \newphysicalconstant{elementarycharge}%
705
    {e}%
    706
    {\ampere\usk\second}%
707
    [\coulomb]%
708
     [\coulomb]%
709
710 \newphysicalconstant{finestructure}%
    {\alpha}%
    {\frac{1}{137}}{7.2973525664\times{-3}}%
713
714 \newphysicalconstant{hydrogenmass}%
    {m_H}%
715
    {1.7}\times{-27}}{1.6737236}\times{-27}}%
716
    {\kilogram}%
718 \newphysicalconstant{moonearthdistance}%
    {d_{\symup{ME}}}%
    {3.8\times 1550\times 18}
720
    {\meter}%
721
722 \newphysicalconstant{moonmass}%
    {M_{\symup{Moon}}}%
    {7.3\timestento{22}}{7.342\timestento{22}}%
724
    {\kilogram}%
726 \newphysicalconstant{moonradius}%
    {R_{\symup{Moon}}}%
    {1.7}\times{6}}{1.7371}\times{6}}%
728
    {\meter}%
729
730 \newphysicalconstant{mzofp}%
    {\frac{\mu_o}{4\pi}}%
731
    {\left(-7\right)}{\left(-7\right)}
732
    {\meter\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
733
     [\henry\per\meter]%
734
     [\tesla\usk\meter\per\ampere]%
735
736 \newphysicalconstant{neutronmass}%
    {m_n}%
737
    {1.7}\times{0.674927471}\times{0.674927471}
```

```
{\kilogram}%
739
740 \newphysicalconstant{oofpez}%
     {\frac{1}{4\pi\epsilon o}}%
     {9\timestento{9}}{8.987551787\timestento{9}}%
742
     {\meter\tothethree\usk\kilogram\usk\second\totheinversefour\usk\ampere\totheinversetwo}%
743
744
     [\meter\per\farad]%
     [\newton\usk\meter\tothetwo\per\coulomb\tothetwo]%
746 \newphysicalconstant{oofpezcs}%
     {\frac{1}{4\pi\epsilon_o c^2}}%
747
     {\left(-7\right)}{\left(-7\right)}
748
     {\meter\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
749
750
     [\tesla\usk\meter\tothetwo]%
     [\newton\usk\second\tothetwo\per\coulomb\tothetwo]%
752 \newphysicalconstant{planck}%
     {h}%
753
     \{6.6\timestento\{-34\}\}\{6.626070040\timestento\{-34\}\}\%
754
     {\meter\tothetwo\usk\kilogram\usk\second\inverse}%
755
     [\joule\usk\second]%
756
     [\joule\usk\second]%
758 \newphysicalconstant{planckbar}%
     {\hslash}%
759
     \{1.1\timestento\{-34\}\}\{1.054571800\timestento\{-34\}\}\%
760
     {\meter\tothetwo\usk\kilogram\usk\second\inverse}%
761
     [\joule\usk\second]%
762
     [\joule\usk\second]
763
764 \newphysicalconstant{planckc}%
     {hc}%
765
     \{2.0 \times \{-25\}\} \{1.98644568 \times \{-25\}\} \%
766
     {\meter\tothethree\usk\kilogram\usk\second\totheinversetwo}%
767
     [\joule\usk\meter]%
768
     [\joule\usk\meter]%
769
770 \newphysicalconstant{protoncharge}%
771
     {q_p}%
     {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
772
    {\ampere\usk\second}%
773
     [\coulomb]%
774
     [\coulomb]%
775
776 \newphysicalconstant{protonCharge}%
     {Q_p}
     {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
778
779
     {\ampere\usk\second}%
     [\coulomb]%
780
781
     [\coulomb]%
782 \newphysicalconstant{protonmass}%
783
    {m_p}%
    {1.7}\times{-27}{1.672621898}\times{-27}%
784
    {\kilogram}%
785
786 \newphysicalconstant{rydberg}%
     {R {\infty}}%
787
     {1.1\times 1073731568508\times 1073731568508}
788
     {\meter\inverse}%
789
790 \newphysicalconstant{speedoflight}%
791
     {3\neq 0}
792
793
     {\meter\usk\second\inverse}%
794
     [\meter\per\second]%
     [\meter\per\second]
796 \newphysicalconstant{stefanboltzmann}%
     {\sigma}%
```

```
\{5.7\timestento\{-8\}\}\{5.670367\timestento\{-8\}\}\%
798
     {\kilogram\usk\second\totheinversethree\usk\kelvin\totheinversefour}%
799
     [\watt\per\meter\tothetwo\usk\kelvin\tothefour]%
800
     [\watt\per\meter\tothetwo\usk\kelvin\tothefour]
801
802 \newphysicalconstant{sunearthdistance}%
     \{d_{\text{symup}}(SE)\}\
     \{1.5\timestento\{11\}\}\{1.496\timestento\{11\}\}\%
805
806 \newphysicalconstant{sunmass}%
     {M_{\scriptstyle Symup}}
807
     {2.0\times {30}}{1.98855\times {30}}
808
     {\kilogram}%
809
810 \newphysicalconstant{sunradius}%
     {R_{symup{Sun}}}
     \{7.0 \neq 8\} \{6.957 \neq 8\} \%
812
     {\meter}%
813
814 \newphysicalconstant{surfacegravfield}%
     {g}%
815
     {9.8}{9.807}%
816
817
     {\meter\usk\second\totheinversetwo}%
     [\newton\per\kilogram]%
818
     [\newton\per\kilogram]%
819
820 \newphysicalconstant{universalgrav}%
821
     \{6.7\timestento\{-11\}\}\{6.67408\timestento\{-11\}\}\%
822
     {\meter\tothethree\usk\kilogram\inverse\usk\second\totheinversetwo}%
823
     [\newton\usk\meter\tothetwo\per\kilogram\tothetwo]% % also \joule\usk\meter\per\kilogram\tothetwo
     [\newton\usk\meter\tothetwo\per\kilogram\tothetwo]%
825
826 \newphysicalconstant{vacuumpermeability}%
     {\mu_o}%
827
     {4\pi -7}}{4\pi -7}}{4\pi -7}}%
828
     {\meter\usk\kilogram\usk\second\totheinversetwo\usk\ampere\totheinversetwo}%
829
     [\henry\per\meter]%
     [\tesla\usk\meter\per\ampere]%
831
832 \newphysicalconstant{vacuumpermittivity}%
     {\epsilon_o}%
833
     {9\times -12}{8.854187817\times -12}%
834
     {\meter\totheinversethree\usk\kilogram\inverse\usk\second\tothefour\usk\ampere\tothetwo}%
835
     [\farad\per\meter]%
836
     [\coulomb\tothetwo\per\newton\usk\meter\tothetwo]%
    A better, intelligent coordinate-free \vec<sup>→P.31</sup> command. Note the use of the e{_^} type of optional argument. This
accounts for much of the flexibility and power of this command. Also note the use of the TFX primitives \sb{} and \sp{}.
Why doesn't it work when I put spaces around #3 or #4? Because outside of \ExplSyntaxOn...\ExplSyntaxOff, the
character has a different catcode and is treated as a mathematical entity.
See https://tex.stackexchange.com/q/554706/218142.
See also https://tex.stackexchange.com/a/531037/218142.
838 \RenewDocumentCommand{\vec}{ s m e{_^} }{%
     \ensuremath{%
839
       % Note the \, used to make superscript look better.
840
       \IfBooleanTF {#1}
                                 % check for *
841
         {\vv{#2}% % * gives an arrow
842
            % Use \sp{} primitive for superscript.
843
844
            % Adjust superscript for the arrow.
            \sp{\IfValueT{#4}{\,#4}\vphantom{\smash[t]{\big|}}}
845
846
         {\sc {\sc w}} % no * gives us bold
847
```

% Use \sp{} primitive for superscript.

% No superscript adjustment needed.

848

849

```
\sp{\IfValueT{#4}{#4}\vphantom{\smash[t]{\big|}}}
850
         }%
851
       % Use \sb{} primitive for subscript.
852
       \sh\{\IfValueT{#3}{#3}\vphantom{\smash[b]{|}}}
853
     }%
854
855 }%
    The zero vector.
856 \NewDocumentCommand{\zerovec}{ s }{%
     \IfBooleanTF {#1}
       {\vv{0}}%
858
       {\symbfup{0}}%
859
860 }%
    A command for the change in a vector.
861 \NewDocumentCommand{\Dvec}{ s m }{%
     \Delta
862
     \IfBooleanTF{#1}
863
864
       {\vec*}%
865
       {\vec}%
     {#2}
866
867 }%
```

A command for the direction of a vector. We use a slight tweak is needed to get uniform hats that requires the makebox package.

See https://tex.stackexchange.com/a/391204/218142.

```
868 \NewDocumentCommand{\dirvec}{ s m }{%
     \widetilde{\mbox{(w)}}{\%}
869
870
       \ensuremath{%
          \IfBooleanTF{#1}%
871
            {#2}%
872
            {\symbfit{#2}}%
873
         ጉ%
874
       }%
875
876
     }%
877 }%
```

A command for the magnitude of a vector.

```
878 \NewDocumentCommand{\magvec}{ s m }{%

879 \doublebars{%

880 \IfBooleanTF{#1}

881 {\vec*}%

882 {\vec}%

883 {#2}

884 }%
```

Intelligent commands for typesetting vector and tensor symbols and components suitable for use with both coordinate-free and index notations. Use starred form for index notation, unstarred form for coordinate-free.

```
886 \NewDocumentCommand{\veccomp}{ s m }{%
     % Consider renaming this to \vectorsym.
887
     \IfBooleanTF{#1}
888
889
     {\%} We have a *.
890
       \ensuremath{\symnormal{#2}}%
891
     {% We don't have a *.
892
       \ensuremath{\symbfit{#2}}%
893
     }%
894
895 }%
```

```
896 \NewDocumentCommand{\tencomp}{ s m }{%
     % Consider renaming this to \tensororsym.
897
     \IfBooleanTF{#1}
898
     {% We have a *.
899
       \ensuremath{\symsfit{#2}}%
900
     }%
901
902
     {% We don't have a *.
       \ensuremath{\symbfsfit{#2}}%
903
904
     }%
905 }%
    An environment for problem statements. The starred version allows for in-line lists.
906 \NewDocumentEnvironment{physicsproblem}{ m }{%
     \newpage%
907
     \section*{#1}%
908
     \newlist{parts}{enumerate}{2}%
909
     \setlist[parts]{label=\bfseries(\alph*)}}%
910
911
912 \NewDocumentEnvironment{physicsproblem*}{ m }{%
     \newpage%
     \section*{#1}%
914
     \newlist{parts}{enumerate*}{2}%
915
     \setlist[parts]{label=\bfseries(\alph*)}}%
916
917
918 \NewDocumentCommand{\problempart}{}{\item}%
    An environment for problem solutions.
919 \NewDocumentEnvironment{physicssolution}{ +b }{%
     % Make equation numbering consecutive through the document.
920
     \begin{align}
921
       #1
922
923
     \end{align}
924 }{}%
925 \NewDocumentEnvironment{physicssolution*}{ +b }{%
     % Make equation numbering consecutive through the document.
     \begin{align*}
927
       #1
928
     \end{align*}
929
930 }{}%
    A simplified command for importing images.
931 \NewDocumentCommand{\image}{ O{scale=1} m m m }{%
     \begin{figure}[ht!]
932
       \begin{center}%
933
         \includegraphics[#1]{#2}%
934
935
       \end{center}%
       \caption{#3}%
936
       \label{#4}%
937
     \end{figure}%
938
939 }%
    See https://tex.stackexchange.com/q/570223/218142.
940 \NewDocumentCommand{\reason}{ O{4cm} m }{&&\begin{minipage}{#1}}\raggedright\small #2\end{minipage}}
    Notation for column and row vectors. \mivector→P.32 is a workhorse command.
 Orginal code provided by @egreg.
See https://tex.stackexchange.com/a/39054/218142.
941 \ExplSyntaxOn
942 \NewDocumentCommand{\mivector}{ 0{,} m o }%
```

```
943 {%
      \mi_vector:nn { #1 } { #2 }
944
      \IfValueT{#3}{\;{#3}}
945
946 }%
947 \seq_new:N \l__mi_list_seq
948 \cs_new_protected:Npn \mi_vector:nn #1 #2
     \ensuremath{%
950
       \seq_set_split:Nnn \l_mi_list_seq { , } { #2 }
951
       \int_compare:nF { \seq_count:N \l__mi_list_seq = 1 } { \left\langle }
952
       \seq_use:Nnnn \l__mi_list_seq { #1 } { #1 } { #1 }
953
       \int_compare:nF { \seq_count:N \l__mi_list_seq = 1 } { \right\rangle }
954
     }%
955
956 }%
957 \NewDocumentCommand{\colvec}{ O{,} m }{%
     \vector_main:nnnn { p } { \\ } { #1 } { #2 }
959 }%
960 \NewDocumentCommand{\rowvec}{ O{,} m }{%
961
     \vector_main:nnnn { p } { & } { #1 } { #2 }
962 }%
963 \seq_new:N \l__vector_arg_seq
964 \cs_new_protected:Npn \vector_main:nnnn #1 #2 #3 #4 {%
     \seq_set_split:Nnn \l__vector_arg_seq { #3 } { #4 }
965
     \begin{#1NiceMatrix}[r]
966
       \seq_use:Nnnn \l__vector_arg_seq { #2 } { #2 } { #2 }
967
     \end{#1NiceMatrix}
968
969 }%
970 \ExplSyntaxOff
    Commands for scientific notation.
971 \NewDocumentCommand{\tento}{ m }{\command{10^{#1}}}
972 \NewDocumentCommand{\timestento}{ m }{\ensuremath{\;\times\;\tento{#1}}}
973 \NewDocumentCommand{\xtento}{ m }{\ensuremath{\;\times\;\tento{#1}}}
974 \NewDocumentCommand{\changein}{}{\Delta}
    Intelligent delimiters provided via the mathtools package. Use the starred versions for fractions. You can supply optional
sizes. Note that default placeholders are used when the argument is empty.
975 \DeclarePairedDelimiterX{\doublebars}[1]{\lVert}{\rVert}{\ifblank{#1}{\:\cdot\:}{#1}}
976 \DeclarePairedDelimiterX{\singlebars}[1]{\lvert}{\rvert}{\ifblank{#1}}{\:\cdot\:}{#1}}
977 \DeclarePairedDelimiterX{\anglebrackets}[1]{\langle}{\rangle}{\ifblank{#1}{\:\cdot\:}{#1}}
978 \DeclarePairedDelimiterX{\parentheses}[1]{()}\}{\ifblank{#1}{\:\cdot\:}{#1}}
979 \DeclarePairedDelimiterX{\squarebrackets}[1]{\lbrack}{\rbrack}{\ifblank{#1}{\:\cdot\:}{#1}}
980 \DeclarePairedDelimiterX{\curlybraces}[1]{\lbrace}{\rbrace}{\ifblank{#1}{\:\cdot\:}{#1}}
    Some semantic aliases.
981 \NewDocumentCommand{\magnitude}{}{\doublebars}
982 \NewDocumentCommand{\norm}{}{\doublebars}
983 \NewDocumentCommand{\absolutevalue}{}{\singlebars}
984 \NewDocumentCommand{\direction}{}{\mivector}
985 \NewDocumentCommand{\unitvector}{}{\mivector}
    Command for highlighting parts of, or entire, mathematical expressions.
Original code by anonymous user @abcdefg, modified by me.
See https://texample.net/tikz/examples/beamer-arrows/.
See also https://tex.stackexchange.com/a/406084/218142.
See also https://tex.stackexchange.com/a/570858/218142.
See also https://tex.stackexchange.com/a/570789/218142.
See also https://tex.stackexchange.com/a/79659/218142.
```

```
See also https://tex.stackexchange.com/q/375032/218142.
    See also https://tex.stackexchange.com/a/571744/218142.
  986 \newcounter{tikzhighlightnode}
  987 \NewDocumentCommand{\hilite}{ O{magenta!60} m O{rectangle} }{%
                  \stepcounter{tikzhighlightnode}%
                  \tikzmarknode{highlighted-node-\number\value{tikzhighlightnode}}{#2}%
 989
                  \edef\temp{%
 990
                        \noexpand\AddToShipoutPictureBG{%
 991
                              \noexpand\begin{tikzpicture}[overlay,remember picture]%
  992
                              \noexpand\iftikzmarkoncurrentpage{highlighted-node-\number\value{tikzhighlightnode}}%
  993
                                 \noexpand\node[inner sep=1.0pt,fill=#1,#3,fit=(highlighted-node-\number\value{tikzhighlightnode})]{};%
  994
                              \noexpand\fi
  995
  996
                              \noexpand\end{tikzpicture}%
  997
                       }%
                 }%
  998
 999
                 \temp%
1000 }%
              Intelligent slot command for coordinate-free tensor notation.
1001 \NewDocumentCommand{\slot}{ s d[] }{%
                 % d[] must be used because of the way consecutive optional
                 \% arguments are handled. See xparse docs for details.
1003
                 \IfBooleanTF{#1}
1004
1005
                  \{\%\ We have a *.
                       \IfValueTF{#2}
1006
1007
                        {% Insert a vector, but don't show the slot.
                              \smash{\makebox[1.5em]{\ensuremath{#2}}}
1008
                       }%
1009
                        {% No vector, no slot.
1010
                              \smash{\makebox[1.5em]{\ensuremath{}}}
1011
1012
                       }%
                 }%
1013
                 {% We don't have a *.
1014
                        \IfValueTF{#2}
1015
                        {% Insert a vector and show the slot.
1016
                              \underline{\smash{\makebox[1.5em]{\ensuremath{#2}}}}
1017
1018
                        {% No vector; just show the slot.
1019
1020
                              \underline{\smash{\makebox[1.5em]{\ensuremath{}}}}
                       }%
1021
1022
                }%
1023 }%
              Intelligent notation for contraction on pairs of slots.
1024 \NewDocumentCommand{\contraction}{ s m }{\%
                 \IfBooleanTF{#1}
1025
                 {\mathbf C}}% {\mathbf C}}% {\mathbf C}% {\mathbf C}}% {\mathbf C}% {\mathbf C}}% {\mathbf C}% {\mathbf C}}% {\mathbf 
1026
                 {\sc {\sc We don't have a *.}}
1027
                 _{#2}
1028
1029 }%
              Intelligent differential (exterior derivative) operator.
1030 \NewDocumentCommand{\dd}{ s }{%
                 \mathop{}\!
1031
                 \IfBooleanTF{#1}
1032
                 {\symbfsfup{d}}% We have a *.
1033
                 {\simeq d} We don't have a *.
```

1035 }%

Command to typeset tensor valence.

```
1036 \NewDocumentCommand{\valence}{ s m m }{% 1037 \IfBooleanTF{#1} 1038 {(#2,#3)} 1039 {\binom{#2}{#3}}
```

Diagnostic commands to provide sanity checks on commands that represent physical quantities and constants.

```
1041 \NewDocumentCommand{\checkquantity}{ m }{%
1042
      % Works for both scalar and vector quantities.
1043
      \begin{center}
        \begin{tabular}{>{\centering}p{4cm} >{\centering}p{3cm} >{\centering}p{4cm} >{\centering}p{3cm}}
1044
          name & base & derived & alternate \tabularnewline
1045
1046
          \ttfamily\small{\expandafter\string\csname #1\endcsname} &
          \small{\csname #1onlybaseunits\endcsname} &
1047
          \small{\csname #1onlyderivedunits\endcsname} &
1048
          \small{\csname #1onlyalternateunits\endcsname}
1049
        \end{tabular}
1050
      \end{center}
1051
1052 }%
1053 \NewDocumentCommand{\checkconstant}{ m }{\%}
      \begin{center}
1054
        \begin{tabular}{>{\centering}p{4cm} >{\centering}p{3cm}} >{\centering}p{4cm} >{\centering}p{3cm}}
1055
          name & base & derived & alternate \tabularnewline
1056
          \ttfamily\small{\expandafter\string\csname #1\endcsname} &
1057
          \small{\csname #1onlybaseunits\endcsname} &
1058
          \small{\csname #1onlyderivedunits\endcsname} &
1059
          \small{\csname #1onlyalternateunits\endcsname} \tabularnewline
1060
          symbol & approximate & precise \tabularnewline
1061
          \small{\csname #1mathsymbol\endcsname} &
1062
          \small{\csname #1approximatevalue\endcsname} &
1063
          \small{\csname #1precisevalue\endcsname} \tabularnewline
1064
1065
        \end{tabular}
1066
      \end{center}
1067 }%
```

7 Index

Page numbers refer to page where the corresponding entry is documented and/or referenced.

A	\checkquantity
	• •
\absolutevalue	\chemicalenergy
•	\cmagneticfield 9
\acceleration	\cmagneticfieldvector 9
\accelerationvector 8	\colvec
alternate value 6, 53	\conductance9
\alwaysusealternateunits	\conductivity 9
\alwaysuseapproximateconstants 26	\contraction
\alwaysusebaseunits	\contraction* 38
\alwaysusederivedunits	\conventionalcurrent 9
\alwaysusepreciseconstants 26	\coulomb 17
\amount 8	\coulombconstant
\ampere 17	\curlybraces
\anglebrackets 39	\curlybraces* 39
\anglebrackets* 39	\current 9
\angularacceleration 8	\currentdensity 10
\angularaccelerationvector 8	\currentdensityvector 10
\angularfrequency 8	_
\angularimpulse 8	D
$\verb \angularimpulsevector \dots \dots$	\degree 17
\angularmomentum 8	derived value
\angularmomentumprinciple 43	\dielectricconstant 10
\angularmomentumprinciple* 43	\direction 33
\angularmomentumprincipleupdate $\dots 43$	\dirvec 32
$\angular momentum principle update*$	\dirvec* 32
\angularmomentumvector 8	\displacement 10
\angularvelocity 8	\displacementvector 10
$\verb \angularvelocityvector 8$	\doublebars 39
\area 8	\doublebars* 39
\areachargedensity 9	\duration 10
\areamassdensity 9	\Dvec 32
\atomicmassunit 17	\Dvec* 32
\avogadro 20	
	${f E}$
В	\earthmass 21
base value 6, 53	\earthmoondistance 21
\biotsavartconstant 20	\earthradius
\bohrradius 20	\earthsundistance 21
\boltzmann 21	\electricdipolemoment 10
	\electricdipolemomentvector 10
\mathbf{C}	\electricfield 10
\candela 17	$\verb \electricfield vector \dots \dots$
\capacitance 9	\electricflux 10
\changein 39	$\verb \electric potential \dots \dots$
\charge 9	\electricpotentialenergy 46
(onargo	
\checkconstant	\electronCharge 22

\electroncharge 21	\hilite 36
\electroncurrent 11	\hydrogenmass 22
\electronmass 22	
\electronvolt 17	I
\elementarycharge 22	\image 37
\emf 11	\impulse 12
\emptyunit 17	\impulsevector 12
\energy 11	$local_loc$
\energydensity 11	\inductance 12
\energyflux 11	\internalenergy 45
\energyfluxvector 11	\inverse 18
\energyof 44	
\energyprinciple 43	J
\energyprincipleupdate 43	\joule 17
\entropy 11	
Environments	K
glowscriptblock 26	\kelvin 17
physicsproblem	Keys
physicsproblem* 33	${\tt preciseconstants} \dots \dots 6$
physicssolution 34	units 6
physicssolution* 34	\kilogram 17
usealternateunits 19	
useapproximateconstants $\dots 26$	L
usebaseunits 19	\lhsangularmomentumprinciple
usederivedunits 19	\lhsangularmomentumprinciple* 43
usepreciseconstants	\lambda \lambd
	\lambda \lambd
\mathbf{F}	\lhsenergyprinciple42
false value 6, 53	\lhsenergyprincipleupdate 42
\farad 17	\lambda \lambd
\finestructure 22	\lambda \lambd
\force 11	\lhsmomentumprincipleupdate 42
\forcevector 11	\lambda \lambd
\frequency 11	\lightspeed
	\linearchargedensity
\mathbf{G}	\linearmassdensity 12
glowscriptblock environment	\luminous 12
$\verb \glowscriptinline $	D.C.
\gravitationalfield 12	M
\gravitationalfieldvector 12	\magneticcharge 12
\gravitationalpotential 12	\magneticdipolemoment
$\verb \gravitational potential energy 46 $	\magneticdipolemomentvector 13
	\magneticfield
H	\magneticfieldvector
\henry 17	\magneticflux 13
\hereuseapproximateconstants 26	\magnitude
\hereusebaseunits	\magnitude* 41
\hereusedalternateunits 18	\magvec 32
\hereusederivedunits 18	\magvec* 32
\hereusepreciseconstants 26	\mandisetup 6
\hertz 17	$\mbox{\mbox{$\backslash$}}$ mandiversion 6

\mass 13	\planckc 24
\meter 17	\planeangle 14
\metre 18	\polarizability 14
\mivector 32	\power 14
\mobility 13	\poynting 14
\mole 18	\poyntingvector 14
\momentofinertia 13	preciseconstants key 6
\momentum 7, 13	\pressure 14
\momentumflux	\protonCharge 24
\momentumfluxvector 13	\protoncharge 24
\momentumprinciple 42	\protonmass 24
\momentumprinciple* 42	
\momentumprincipleupdate 42	\mathbf{R}
\momentumprincipleupdate* 42	\radian 18
\momentumvector 7	\reason 35
\momentumvectordemo 13	\relativepermeability 14
\moonearthdistance 22	\relativepermittivity 15
\moonmass 22	\renewphysicalconstant
\moonradius	\renewscalarquantity 17
\mzofp 23	\renewvectorquantity 17
,—————————————————————————————————————	\resistance
N	\resistivity
\neutronmass 23	\restenergy 44
\newphysicalconstant	\rhsangularmomentumprinciple 43
\newscalarquantity 17	\rhsangularmomentumprinciple* 43
\newton 18	\rhsangularmomentumprincipleupdate 43
\newvectorquantity 17	\rhsangularmomentumprincipleupdate* 43
\norm	\rhsenergyprinciple 42
\norm*	\rhsenergyprincipleupdate 43
\numberdensity 14	\rhsmomentumprinciple 42
,—————————————————————————————————————	\rhsmomentumprinciple* 42
0	\rhsmomentumprincipleupdate 42
\ohm 18	\rhsmomentumprincipleupdate* 42
\oofpez 19, 23	\rotationalkineticenergy
\oofpezcs 23	\rotationalkineticenergy* 45
•	\rowvec
P	\rydberg 24
\parentheses 39	(1)40018
\parentheses* 39	\mathbf{S}
\particleenergy 44	\second 18
\pascal 18	\siemens 18
\per 17	\singlebars
\permeability 14	\singlebars*
\permittivity 14	\slot
\photonenergy 45	\slot*
physicsproblem environment	\solidangle
physicsproblem* environment	\specificheatcapacity
physicssolution environment 34	\speedoflight 24
physicssolution* environment 34	\springpotentialenergy 46
\planck 23	\springstiffness
\planckbar 23	,- _r 0
•	

\springstretch 15	base 6, 53
\squarebrackets 39	derived 6, 53
\squarebrackets* 39	false 6, 53
\stefanboltzmann 24	true 6, 53
\steradian 18	\vec 31
\strain 15	\vec* 31
\stress 15	\veccomp 33
\sunearthdistance	\veccomp* 33
\sunradius 25	\vectoracceleration 8
\surfacegravfield 25	\vectorangularacceleration 8
\systemenergy 44	\vectorangularimpulse 8
<u> </u>	\vectorangularmomentum 8
T	\vectorangularvelocity 8
\temperature 16	\vectorcmagneticfield 9
\tencomp 33	\vectorcurrentdensity 10
\tencomp* 33	\vectordisplacement 10
\tento 38	\vectorelectricdipolemoment 10
\tesla 18	\vectorelectricfield 10
\thermalenergy 45	\vectorenergyflux 11
\timestento 38	\vectorforce 11
\torque 16	$\vectorgravitational field \dots 12$
\torquevector 16	\vectorimpulse 12
\tothefour 18	\vectormagneticdipolemoment 13
\totheinversefour 18	\vectormagneticfield
\totheinversethree 18	\vectormomentum
\totheinversetwo 18	\vectormomentumflux 13
\tothethree 18	\vectorpoynting 14
\tothetwo 18	\vectortorque 16
\translationalkineticenergy 45	\vectorvelocity 16
\translationalkineticenergy* 45	\vectorvelocityc 16
true value 6, 53	\vectorwavenumber 16
	\velocity 16
U	\velocityc 16
\unit	\velocitycvector 16
units key 6	\velocityvector 16
\unitvector 33	\vibrationalkineticenergy $\dots 46$
\universalgrav	\forall vibrationalkineticenergy*
usealternateunits environment	\volt 18
useapproximateconstants environment 26	\volume 16
usebaseunits environment	$\verb \volumechargedensity $
usederivedunits environment	\volumemassdensity
usepreciseconstants environment 26	\vpythonfile 29
\usk 17	\vpythoninline 31
V	***
\vacuumpermeability	W
\vacuumpermittivity	\watt
\valence	\wavelength
\valence*	\wavenumber
Values	\wavenumbervector
alternate 6, 53	/wener 19
-,	

\work	٠.	 	 	•	•	 •		•	•				. 1	. 1
\xtento	X	 	 	•		 •				•			. 3	39
\youngsmodulus	Y	 	 			 •				•			. 1	
\zerovec	\mathbf{Z}												q	2
\zerovec*														