2012—2013 学年第一学期 《概率论与数理统计》期末试卷

 埴空顋	(每题3分,	共15分)
会上版		75 IU /J /

P(A | B) = 0.2, III P(A) =_____.

1. 设A、B为随机事件,P(B) = 0.4,P(B|A) = 0.2,

` ' /	· ,	
2. 随	机变量 $X \sim B(2, p)$, $Y \sim B(3, p)$	p) (二项分布), 且
$P\{Y \ge 1\} =$	=19/27,则 <i>P</i> { <i>X</i> ≥1}=	
3. 己	知随机变量 X~P(3) (泊松分布	(z) ,则 $Z = X^2$ 的期望 $EZ = $
4. 设	随机变量 X 的数学期望 $EX=7$	75,方差 $DX = 5$ 且由切比雪夫不等式,有
$P\{ X-7\}$	$5 \ge k$ } ≤ 0.05, 则 $k =$	_·
5. 设	X 和 Y 独立同分布 $N(0,2^2)$,	$X_1, X_2, X_3, X_4 $ 和 Y_1, Y_2, Y_3, Y_4 是分
别来自 <i>X</i>	和 Y 的随机样本,则统计量 U	$=\frac{X_1+\cdots+X_4}{\sqrt{Y_1^2+\cdots+Y_4^2}}$ 服从分布.
二. 浅	选择题(每题3分,共15分	·):
1. 设	事件 A,B,C 两两独立,则 $A,B,$	C 相互独立的充要条件是 $_{}$.
(A) A与BC独立	(B) AB 与 A∪ C 独立
(0) AB与AC独立	(D) $A \cup B = A \cup C$ 独立
2. 设	随机变量 X , Y 相互独立,且周	
则	·	
(A)	$P\{X+Y\le 0\}=1/2$	(B) $P{X + Y \le 1} = 1/2$
(0)	$P\{X-Y \le 0\} = 1/2$	(D) $P{X-Y \le 1} = 1/2$
3. 设	随机变量 X_1, X_2 的分布函数为	$F_1(x)$, $F_2(x)$, 若 $F(x) = aF_1(x) + bF_2(x)$ 为
某一随机	变量的分布函数,则	
(A	$a = \frac{3}{5}, b = -\frac{2}{5}$	(B) $a = \frac{2}{3}, b = \frac{1}{3}$
(0)	$a = \frac{3}{5}, b = \frac{1}{5}$	(D) $a = \frac{3}{4}, b = \frac{1}{5}$
4. 设	随机变量 X , Y 的方差存在且不	下为零,若 $D(X+Y)=DX+DY$,则 X ,Y
必然	•	
(A)独立	(B) 相关系数为零
(0))不独立	(D) 相关系数不为零

- 5. 在假设检验中,记 H_0 为待检验假设,则所谓犯第二类错误指的是_____.

 - (A) H_0 为真时,接受 H_0 (B) H_0 为真时,拒绝 H_0
 - (C) H_0 为假时,接受 H_0 (D) H_0 为假时,拒绝 H_0

三. (10分) 己知 P(A) = 3/4, P(B|A) = 3/4, $P(B|\overline{A}) = 3/8$, 求: (1) $P(A \cup B)$; (2) $P(A \mid B)$.

四. (10分) 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以 X 表示取出的 3 只球中的最大号码,

- 求:(1) X 的分布律;
 - (2) X 的分布函数;
 - (3) $Y = (X-4)^2$ 的分布律.

五. (10 分) 设随机变量(X,Y)的分布密度为

$$f(x,y) = \begin{cases} \frac{1}{3}(x+y), & 0 < x < 1, 0 < y < 2\\ 0, & \text{#th} \end{cases}$$

- 求:(1)X,Y的边缘分布密度;
 - (2) Z = X + Y的概率分布.

六. (10分)设随机变量Z在区间[-2,2]上服从均匀分布,随机变量

$$X = \begin{cases} -1, \ \Xi Z \le -1, \\ 1, \ \Xi Z > -1, \end{cases}$$
 ; $Y = \begin{cases} -1, \ \Xi Z \le 1, \\ 1, \ \Xi Z > 1, \end{cases}$.

求:(1) X 和Y 的联合概率分布;

(2) $E(X+Y)^2$.

七. (10 分) 已知 X , Y 分别服从正态分布 $X \sim N(0,3^2)$, $Y \sim N(1,4^2)$,且 X 与 Y 相关系数 $\rho_{XY} = -\frac{1}{2}$,设 $Z = \frac{X}{3} + \frac{Y}{4}$

求:(1)数学期望 EZ, 方差 DZ;

(2) Y与Z的相关系数 ρ_{YZ} .

八. (10 分) 设总体 X 的分布密度为

$$f(x) = \begin{cases} \sqrt{\theta} x^{\sqrt{\theta} - 1}, & 0 \le x \le 1 \\ 0, & 其他 \end{cases}, \quad (\theta > 1),$$

 θ 为未知参数,且 X_1 ,…, X_n 是来自总体的简单随机样本,

- 求:(1)参数 θ 的矩估计量;
 - (2)参数 θ 的极大似然估计量.

九. (10 分) 设由来自总体 $X \sim N(\mu, \sigma^2)$ 的长度为 9 的样本得样本均值 $\overline{X} = 5$,样本标准差 S = 1.21,

求: (1)若已知 $\sigma=1$,求未知参数 μ 的置信度为0.95的置信区间;

(2) 若 σ 未知,求未知参数 μ 的置信度为0.95的置信区间.

 $\Phi(1.645) = 0.95, \Phi(1.96) = 0.975, P(t(8) > 1.8595) = 0.05,$

P(t(8) > 2.306) = 0.025, P(t(9) > 1.8331) = 0.05, P(t(9) > 2.2622) = 0.025,