

CSARCH Lecture Series: Binary Floating-Point format for Double Precision (special cases) Sensei RL Uy
College of Computer Studies
De La Salle University
Manila, Philippines

Copyright Notice

This lecture contains copyrighted materials and is use solely for instructional purposes only, and not for redistribution.

Do not edit, alter, transform, republish or distribute the contents without obtaining express written permission from the author.

Overview

Reflect on the following questions:

- How are zeros and infinity represented in the memory?
- How large should a double-precision floating-point number be to considered an infinity?

Overview

- This sub-module introduces the IEEE-754 double-precision floatingpoint format involving special cases
- The objective is as follows:
 - ✓ Describe the process of representing special cases such as zero, infinity, denormalized and NaN using IEEE-754 standard

Special cases (IEEE-754 Double Precision)

- IEEE-754 supports the following special cases:
 - ✓ Zero (0)
 - ✓ Infinity (very big number)
 - ✓ Denormalized or subnormal (very small number)
 - ✓ NaN (log(-1), $\sqrt{-1}$)

Special cases

Sign bit	E' (11-bit)	Significand (52-bit)	Value
0	000 0000 0000	000 0000 0000 0000 0000 0000 0	+0 (Positive Zero)
1	000 0000 0000	000 0000 0000 0000 0000 0000 0	-0 (Negative Zero)
0/1	000 0000 0000	$\neq 0$	Denomalized
0	111 1111 1111	000 0000 0000 0000 00000	+ Infinity
1	111 1111 1111	000 0000 0000 0000 00000	- Infinity
X	111 1111 1111	0xx xxxx xxxx xxxx xxxx xxxxx	sNaN
X	111 1111 1111	1xx xxxx xxxx xxxx xxxx xxxxx	qNaN

Special cases use smallest (0000000000) and the largest (1111111111) exponent representation (e')

Special case (Denormalized)

- Denormalized are numbers so small (approaching 0) that it cannot be represented normally
- What is the smallest positive normal number?

Sign	Exponent representation	Fraction part of significand
0	0000 0001	0 0

The smallest possible e' is 1. Thus e=1-1023 = -1022The smallest positive normal number is $+1.0x2^{-1022}$ (or $2.23x10^{-308}$)

• What is the smallest-magnitude negative normal number?

The smallest-magnitude negative normal number is -1.0x2⁻¹⁰²² (or -2.23x10⁻³⁰⁸)

Special case (Denormalized)

The smallest positive normal number is $+1.0x2^{-1022}$ (or $2.23x10^{-308}$)

The smallest-magnitude negative normal number is -1.0x2⁻¹⁰²² (or -2.23x10⁻³⁰⁸)

To represent denormal number

- peg the exponent to -1022 and denormalized the significand
- e' = 0
- significand is the denormalized significand

Special case (Denormalized)

Example: $-1.1110_2 \times 2^{-1026}$

normalized format: $-0.0001111_2 \times 2^{-1022}$

Significand in binary?	Yes
Base-2?	Yes
Normalized?	Yes. But special case, need to denormalized
Sign bit	1
Exponent representation	special case: 000 0000 0000

Answer:

Sign	Exponent representation	Fraction part of significand
1	000 0000 0000	000 1111 00

Hex: 0x8001E0000000000

Special case (infinity)

- Infinity are very big numbers (approaching infinity) that it cannot be represented normally
- What is the largest positive normal number?

Sign	Exponent representation	Fraction part of significand
0	111 1111 1110	00

The largest possible e' is 2046. Thus e=2046-1023 = 1023

The largest positive normal number is $+1.1...1x2^{1023}$ (or $1.8x10^{308}$)

What is the largest-magnitude negative normal number?

The largest-magnitude negative normal number is -1. 1...1x2¹⁰²³ (or -1.8x10³⁰⁸)

Special case (infinity)

The largest positive normal number is $+1.1...1x2^{1023}$ (or $1.8x10^{308}$)

The largest-magnitude negative normal number is -1.1...1x2¹⁰²³

To represent infinity number

- e' = 11111111111
- significand is 0...0

Special case (Infinity)

Example: +1.111₂x 2⁹⁹⁹⁹

normalized format: $+1.111_2$ x 2^{9999} (Same)

Significand in binary?	Yes
Base-2?	Yes
Normalized?	Yes
Sign bit	0
Exponent representation	special case: 111 1111 1111

Answer:

Sign	Exponent representation	Fraction part of significand
0	111 1111 1111	00

Hex: 0x7FF000000000000

Special case (number line)

Special case (NaN)

- Indeterminate numbers are example of Not a Number (NaN)
- Sign bit is don't care
- there are 2 types of NaN representation:
 - Signaling NaN (sNaN)
 - Two most significant bit of the significand is 01
 - floating-point result using sNaN signals the invalid operation exception
 - Quiet NaN (qNaN)
 - most significant bit of the significand is 1
 - floating-point result using qNaN allows the result to be propagated

Sign Bit	E'	Significand	Value
X	1111 1111	01xx	sNaN
X	1111 1111	1xx	qNaN

To recall ...

- What have we learned:
 - ✓ Describe the process of representing special cases such as zero, infinity, denormalized and NaN using IEEE-754 standard