1

Matrices and Determinants

EE24BTECH11001 - ADITYA TRIPATHY

6. If f(x) =

$$\begin{vmatrix} 1 & x & x+1 \\ 2x & x(x-1) & (x+1)x \\ 3x(x-1) & x(x-1)(x-2) & (x+1)x(x-1) \end{vmatrix}$$

then f(100) is equal to

(1999 - 2Marks)

a) 0

b) 1

c) 100

d) -100

7. If the system of equations

$$x - ky - z = 0,$$

 $kx - y - z = 0, x + y - z = 0$

has a non-zero solution, then the possible values of k are

(2000S)

a) -1,2

b) 1,2

c) 0,1

d) -1,1

8. Let $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Then the value of the determinant

(2002S)

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 - \omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{vmatrix}$$

a) 3ω

b) $3\omega(\omega-1)$

c) $3\omega^2$

d) $3\omega(1-\omega)$

9. The number of values of k for which the system of equations

$$(k + 1) x + 8y = 4k;$$

 $kx + (k + 3) y = 3k - 1$

has infinitely many solutions is

(2002S)

a) 0

b) 1

c) 2

d) infinte

10. If
$$A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}$, then value of α for which $A^2 = B$, is (2003S)

a) 1

b) 4

c) 2

d) infinite

11. If the system of equations x + ay = 0, az + y = 0 and ax + z = 0 has infinite solutions, then the value of a is (2003S)

a) -1

b) 1

c) 0

d) no real values

12. Given

$$2x - y + 2z = 2,$$

$$x - 2y + z = -4,$$

$$x + y + \lambda z = 4$$

then the value of λ such that the given system of equation has NO solution, is

(2004S)

a)) 3	b) 1	c) 0	d) -3				
13. I	3. Is $A = \begin{pmatrix} \alpha & 2 \\ 2 & \alpha \end{pmatrix}$ and $ A^3 = 125$ then the value α is							
) ±1	b) ±2	c) ±3	d) ±5				
	$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{pmatrix} $ and $I =$ are	$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} 2005S \text{ and}$	$A^{-1} = \left(\frac{1}{6}\left(A^2 + cA + dI\right)\right)$, then the value of c and a (2005 S)				
a)) (-6, -11)		b) (6,11)					
c)) (-6,11)		d) (6, -11)					
15. I	If $P = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$ and $A = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$ and $Q = PAP^T$ and $X = P^TQ^{2005}P$ then X is equal to							
b)	$\begin{vmatrix} 1 & 2005 \\ 0 & 1 \end{vmatrix} $ $\begin{vmatrix} 4 + 2005 \sqrt{3} & 600 \\ 2005 & 4 - 200 \end{vmatrix}$ $\begin{vmatrix} \frac{1}{4} & 2 + \sqrt{3} & 1 \\ -1 & 2 - \sqrt{3} \\ 2005 & 2 - \sqrt{3} \\ 2 + \sqrt{3} & 2005 \end{vmatrix}$	$\begin{vmatrix} 15 \\ 05 \sqrt{3} \end{vmatrix}$						
	$ \begin{vmatrix} \frac{1}{4} & 2005 & 2 - \sqrt{3} \\ 2 + \sqrt{3} & 2005 \end{vmatrix} $ Consider 3 points							
$P = (-\sin(\beta - \alpha), -\cos\beta), Q = (\cos(\beta - \alpha), \sin\beta)$								
г	and							
	$R = (\cos(\beta - \alpha + \theta), \sin(\beta - \theta))$							
where $0 < \alpha, \beta, \theta < \frac{\pi}{4}$. Then, a) P lies on the same segment RQ b) Q lies on the line segment PR c) R lies on the line segment QP d) P,Q,R are non-collinear								
d) P,Q,R are non-collinear 17. The number of 3x3 matrices A whose entries are either 0 or 1 and for which the system $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ has exactly two distinct solutions is (2008)								
ł	has exactly two distinct	solutions is		(2008)				

18. Let $\omega \neq 1$ be a cube root of unity and S be the set of all non-singular matrices of the form

b) $2^9 - 1$

a) 0

$$\begin{vmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{vmatrix}$$

c) 168

d) 2

where each of a, b and c is either ω or ω^2 . Then the number of distinct matrices in the set S is (2008)

d) 8

d) 205

19.	Let $P = (a_{ij})$ be 3x3 matrix and let $Q = (b_{ij})$, where $b_{ij} = 2^{i+j}a_{ij}$ for $1 \le i, j \le 3$. If the determinant of P is 2, then the determinant of the matrix Q is (2012)					
	a) 2 ¹⁰	b) 2 ¹¹	c) 2 ¹²	d) 2 ¹³		
20.	If P is a 3x3 matrix such that $P^T = 2P + I$, where P^T is the transpose of P and I is the 3x3 identity					
	matrix, then there exists a column matrix $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ (2012)					
	a) $PX = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$		b) $PX = X$			
	c) $PX = 2X$		d) $PX = -X$			
21.	Let $P = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{pmatrix}$ at $P^{50} - Q = I$, then $\frac{q_{31} + q_3}{q_{21}}$	and I be the identity mat $\frac{1}{2}$ equals	rix of order 3. If $Q = 0$	$\left(q_{ij}\right)$ is a matrix such that $\left(JEEAdv.2016\right)$		

c) 201

c) 4

b) 6

b) 103

a) 2

a) 52