1 Homework1

- 1. Given the symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, suppose the $k(k \leq n)$ eigenvalues $\{\lambda_1, \dots, \lambda_k\}$ of \mathbf{A} are distinct and take any corresponding eigenvectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$, (i.e., $\mathbf{A}\mathbf{v}_j = \lambda_j \mathbf{v}_j$ for $j = 1, \dots, k$). Then, prove that $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ are orthogonal.
- 2. Given the matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, prove that the sum of the *n* eigenvalues of \mathbf{A} is the same as the trace of \mathbf{A} (i.e, $tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$).
- 3. Given the matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, prove that the product of the *n* eigenvalues of \mathbf{A} is the same as the determinant of \mathbf{A} (i.e, $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$).
- 4. Prove that if matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive definite, then the eigenvalues of \mathbf{A} are positive.
- 5. For any real invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, the product $\mathbf{A}^T \mathbf{A}$ is a positive definite matrix.
- 6. Do you agree with the statement that "If matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible, then \mathbf{A} can be eigendecomposed.". If no, please given the reasons/examples.
- 7. Do you agree with the statement that "If matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be eigendecomposed, then \mathbf{A} is invertible.". If no, please given the reasons or examples.
- 8. Given arbitrary matrices $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}, \mathbf{C} \in \mathbb{R}^{p \times m}$, prove that $tr(\mathbf{ABC}) = tr(\mathbf{BCA})$.