

Mini Project

DỰ ĐOÁN GIÁ BÁN XE Ô TÔ

Outline

Giới thiệu: Giới thiệu đề tài

• Mô tả đề tài: sử dụng Linear Regression... và sử dụng các dữ liệu gồm 8 thuộc tính của xe: tên xe, số năm sử dụng, giá bán hiện tại trên thị trường, số kilomet đã đi, loại dầu/xăng, mô hình kinh doanh, xe số/xe tự động, chủ sở hữu xe... để dự đoán giá bán xe

Giới thiệu: Dataset

Bộ dữ liệu sử dụng: lấy từ tập dataset Kaggle: Vehicle Dataset

- Car_Name: tên của xe
- Year: năm xe được mua
- Present_Price: Giá hiện tại của xe trên thị trường
- Kms_Driven: Quãng đường xe đã đi
- Fuel_Type: Loại xăng/dầu mà xe sử dụng
- Seller_Type: Mô hình kinh doanh (cá nhân/tổ chức)
- Transmission: Động cơ xe
- Owner: Số lượng người từng sở hữu xe
- Selling_Price: Giá bán

- Thực hiện một số khảo sát về dữ liệu
 - Thống kê dữ liệu
 - Phân tích dữ liệu
 - Xử lý dữ liệu

- - -

Thống kê dữ liệu

Tập dữ liệu chứa 301 hàng bản ghi và 9 cột thuộc tính.

Các loại dữ liệu của các thuộc tính bao gồm 3 thuộc tính kiểu số nguyên rời rạc,2 thuộc tính số thực liên tục và 4 thuộc tính kiểu đối tượng

Sử dụng không gian bộ nhớ ít nhất là 21.3 kilobyte (KB).

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 301 entries, 0 to 300
Data columns (total 9 columns):
    Column
                   Non-Null Count
                                   Dtype
                                   object
                   301 non-null
    Car Name
                   301 non-null
                                   int64
    Year
                                   float64
    Selling Price 301 non-null
                                   float64
    Present Price 301 non-null
    Kms Driven
                                   int64
                   301 non-null
    Fuel Type
                                   object
                   301 non-null
    Seller Type 301 non-null
                                   object
     Transmission 301 non-null
                                   object
                   301 non-null
                                   int64
    0wner
dtypes: float64(2), int64(3), object(4)
memory usage: 21.3+ KB
```

Thống kê dữ liệu

	Car_Name	Year	Selling_Price	Present_Price	Kms_Dri∨en	Fuel_Type	Seller_Type	Transmission	Owner	1
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0	
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0	
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0	
3	wagon r	2 0 11	2.85	4.15	5200	Petrol	Dealer	Manual	0	
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0	
5	vitara brezza	2018	9.25	9.83	2071	Diesel	Dealer	Manual	0	
6	ciaz	2015	6.75	8.12	18796	Petrol	Dealer	Manual	0	
7	s cross	2015	6.50	8.61	33429	Diesel	Dealer	Manual	0	
8	ciaz	2016	8.75	8.89	20273	Diesel	Dealer	Manual	0	
9	ciaz	2015	7.45	8.92	42367	Diesel	Dealer	Manual	0	

Hình ảnh minh họa dữ liệu trong tập dữ liệu


```
data.isnull().sum()
    Car Name
Гэ
    Year
    Selling Price
                     0
    Present Price
    Kms Driven
    Fuel Type
    Seller Type
    Transmission
    0wner
                     0
    dtype: int64
```

Số lượng giá trị Null trong các thuộc tính của tập dữ liệu

Số giá trị khác nhau (cardinality) của các thuộc tính

Biểu đồ histogram

Xử lý dữ liệu

- Bổ sung cột "Age" là số năm xe được sử dụng

Xử lý dữ liệu

Chuyển dữ liệu dạng "String" thành số

Xử lý dữ liệu

- Bổ sung cột "Age" là số năm xe được sử dụng

3. Cài đặt mô hình

Bộ dữ liệu bao gồm: 301 hàng

- 80% bộ dữ liệu được sử dụng làm tập train: 240 hàng
- 20% bộ dữ liệu được sử dụng làm tập test: 61 hàng

3. Mô hình Linear Regression

Độ chính xác: 91.3%

```
[188] from sklearn.linear_model import LinearRegression

clf = LinearRegression()

clf.fit(X_train, Y_train)

print("Accuracy: ", clf.score(X_test, Y_test))

Accuracy: 0.9134181721224436
```

3. Mô hình Linear Regression

Độ chính xác: 84 (k = 5) - 87 (k = 10)%

```
#Train the model
model.fit(X_train, y_train) #Training the model
print(f"Accuracy for the fold no. {i} on the test set: {r2_score(y_test, model.predict(X_test))}")
i += 1

[> Accuracy for the fold no. 1 on the test set: 0.8348249360765898
Accuracy for the fold no. 2 on the test set: 0.7751260264750783
Accuracy for the fold no. 3 on the test set: -94.6110521346414
Accuracy for the fold no. 4 on the test set: 0.6108862836379172
Accuracy for the fold no. 5 on the test set: 0.8389219725701988

[190] print("R2-score: %.2f" % r2_score(y_test , model.predict(X_test) ))

R2-score: 0.84
```


Thank you

