11) Veröffentlichungsnummer:

0 401 790

A2

(12)

EUROPÄISCHE PATENTANMELDUNG

21) Anmeldenummer: 90110703.7

(a) Int. Cl.5: B01F 17/00, C09C 3/00,

2 Anmeldetag: 06.06.90

D21H 17/67, D21H 19/44

Priorität: 06.06.89 DE 3918461 1 19.12.89 DE 3941936

71) Anmelder: Plüss-Staufer AG

(43) Veröffentlichungstag der Anmeldung: 12.12.90 Patentblatt 90/50

CH-4665 Oftringen(CH)

Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IT LI LU NL SE (72) Erfinder: Buri, Matthias Mätteliweg 20 CH-4852 Rothrist(CH) Erfinder: Frey, Daniel Warthburgstrasse 7 CH-4663 Aarburg(CH)

(74) Vertreter: Reinhard, Skuhra, Weise Friedrichstrasse 31 D-8000 München 40(DE)

(S) Hochkonzentrierte wässrige Suspension aus Mineralien und/oder Füllstoffen und/oder Pigmenten.

Eine wäßrige Suspension aus Mineralien und/oder Füllstoffen und/oder Pigmenten mit einem Feststoffgehalt ≥ 60 Gew.%, wobei das Mineral bzw. der Füllstoff bzw. das Pigment mit einem oder mehreren Dispergiermitteln dispergiert ist, dadurch gekennzeichnet, daß das Dispergiermittel einen oder mehrere amphotere Polyelektrolyten und/oder kationische Polyelektrolyten und/oder amphotere kationische Polyelektrolyten und/oder amphotere anionische Polyelektrolyten und/oder teilweise neutralisierte anionische Polyelektrolyten und/oder teilweise neutralisierte amphotere anionische Polyelektrolyten enthält, wobei der Füllstoff und/oder das Pigment und/oder die Mineralteilchen eine gegen außen neutrale oder positive Ladung tragen.

Weiterhin wird ein Verfahren offenbart, wobei ein Teil der erfindungsgemäßen Polyelektrolyten vor dem Vermahlen, ein Teil während des Vermahlens und ein Teil nach dem Vermahlen zugegeben werden. Erfindungsgemäß können Vermahlung und Dispergierung in einem einzigen Arbeitsschritt vorgenommen werden.

Hochkonzentrierte wäßrige Suspension aus Mineralien und/oder Füllstoffen und/oder Pigmenten

Die vorliegende Erfindung betrifft eine wäßrige Suspension aus Mineralien und/oder Füllstoffen und/oder Pigmenten mit einem Feststoffgehalt ≥ 60 Gew.%, bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment, wobei das Mineral bzw. der Füllstoff bzw. das Pigment mit einem oder mehreren Dispergiermitteln dispergiert ist.

Unter "positive Ladungen" ist nachfolgend zu verstehen, daß die Partikeln auf ihrer Oberfläche ein positives Zeta-Potential aufweisen (vgl. P. Ney "Zeta-Potentiale und Flotierbarkeit von Mineralen", Applied Minerology 6, Springer Verlag, Wien, New York 1973, insbesondere Seite 22 ff.). Analoges gilt für die "negativen Ladungen", wie sie z. B. bei der Zellulosefaser und anionisch stabilisierten Suspensionen auftreten. Für die neutralen "Ladungen", bezogen auf die Teilchen, gilt, daß sich gegen außen die negativen und positiven Ladungen gegenseitig aufheben. Der isoelektrische Punkt muß nicht bei pH = 7 liegen. Der isoelektrische Punkt von Teilchenoberflächen und amphoteren Polyelektrolyten und oder deren Salzen, Teilsalzen und/oder Vollsalzen liegt bei dem pH-Wert, bei welchem sich die positiven und negativen Ladungen gegen außen gegenseitig neutralisieren.

Unter neutralen Monomereinheiten sind im Rahmen der Erfindung Monomereinheiten zu verstehen, die keine dissoziierbaren Gruppen (wie z.B. die -COOH Gruppe) enthalten, z. B. Ethylengruppen.

Die nach außen geladenen und nach außen neutralen Pclyelektrolyten der Erfindung werden bei der vorstehenden Anmeldung durch die Anzahl der positiven bzw. negativen Gruppen im Polymer definiert. Bei den amphoteren gegen außen neutralen Polyelektrolyten ist demnach die Anzahl positiven Ladungen in den kationischen Monomereinheiten gleich der Anzahl der negativen Ladungen in den anionischen Monomereinheiten. Bei den amphoteren kationischen Polyelektrolyten tragen die nicht neutralen Monomereinheiten überwiegend positive Ladungen. Bei den amphoteren anionischen Polyelektrolyten tragen die nicht neutralen Monomereinheiten überwiegend negative Ladungen.

Dies bedeutet jedoch nicht, daß beispielsweise bei einem Überschuß an positiven Ladungen der Polyelektrolyt automatisch elektrisch positiv ist. Dies deshalb, weil die "Säurestärke" und die "Basenstärke" je unterschiedlich sein können. So kann z.B. ein amphoterer Polyelektrolyt mit gleich vielen positiven und negativen Gruppen elektrisch entweder positiv oder negativ oder neutral sein. Dies gilt entsprechend auch für die amphoteren kationischen Polyelektrolyten und die amphoteren anionischen Polyelektrolyten. Durch Verschiebung des pH-Werts ist die Dissoziation der "Säure- respektive Basegruppen" beeinflußbar. Insbesondere bei pH-Werten zwischen 5 und 10 können die erfindungsgemäßen Polyelektrolyten folgende Ladungszustände nach außen aufweisen:

	pH 5-10	amphoterer Polyelektr.	kationischer Polyelektr.	amph.leicht kati.Polyele.	
35	А	+ neutral -	+	+ neutral -	+ neutral
40	В	+ = -	+	+ überwiegt etwas -	- überwiegt etwas +
45	С	+ oder neutral	+	+	+ oder neutral
	A =	Möglichkeit	der elektrisch	en Ladung nach	n außen
50	B =	Anzahl der	geladenen Monom	ereinheiten	
<i>50</i>	C =	Ladung der	Teilchen		

Auch die Neutralisation der negativen Gruppen mit ein-und/oder zwei- und/oder dreiwertigen Kationen beeinflußt deren Dissoziationsgrad und somit den Ladungszustand nach außen.

Anionisch stabilisierte, calciumhaltige Mineralien wie Calciumcarbonat, Dolomit etc. werden üblicherweise durch Mahlen mit anionischen Polyacrylaten, wie z.B. in den Patenten EP 0 100 947 oder FR 820806 beschrieben, hergestellt. Bei diesem Patent wird offenbart, daß bei anionisch stabilisierten Suspensionen teilneutralisierte Polyacrylsäuren bessere Viskositätsstabilitäten ergeben als vollneutralisierte. Der offenbarte Bereich der Neutralisation liegt zwischen 40 und 96 % Neutralisation, dies führt in der erfindungsgemäßen kationischen Suspension nicht zu befriedigenden Resultaten.

Aus den offenbarten Beispielen in FR 820 806 geht hervor, daß eine Neutralisation von < 50 % nicht zum Ziel führt, sondern daß 60 - 70 % Neutralisationsgrad das Optimum darstellt. Die Mineralien können auch, wie in der EP 0 256 312 beschrieben, mit amphoteren Dispergiermitteln in Suspension gebracht werden. Bei den in dieser Vorveröffentlichung offenbarten amphoteren Polyelektrolyten liegt der isoelektrische Punkt stark im sauren pH-Bereich, so daß sie für die erfindungsgemäßen Pig ment- und/oder Füllstoff- und/oder Mineralsuspensionen nicht geeignet sind. Zudem sind nur amphotere Polyelektrolyten erwähnt, welche in ihrer molaren Monomerzusammensetzung überwiegend anionische Monomere enthalten. Die Partikeln gemäß diesem Stand der Technik weisen eine negative Ladung auf ihrer Oberfläche auf.

Für manche Anwendungen ist die anionische Stabilisierung jedoch nicht erwünscht. Es wäre vielmehr sinnvoll, eine Aufschlämmung mit neutral oder positiv gelacenen Partikeln einzusetzen. Wenn Calciumcarbonat, beschichtet mit dem anionischen Dispergiermittel, als Füllstoff in der Papierindustrie eingesetzt wird, ist es notwendig, den negativ geladenen Füllstoff mit kationischen Retentionsmitteln an die, durch Carboxylgruppen von Natur her negativ geladene, Papierfaser zu binden.

Bei der Neutralisierung und Flockung der negativ geladenen Mineral- und/oder Füllstoff- und/oder Pigmentteilchen mit dem Ziel, möglichst hohe Füllgrade und gute Füllstoffretentionen im Papier zu erzielen, kann zugleich auch die negativ geladene Papierfaser mit geflockt werden, was zu einer schlechteren Papierformation und dadurch zu einer unregelmäßigeren Durchsicht des Papiers führen kann. Bei dem heutigen Stand der Technik ist dieser negative Effekt kaum zu umgehen. Daher werden heute noch mehrheitlich trockengemahlene, pulverförmige Produkte in der Papiererzeugung eingesetzt, die nur schwach negative oder gegen außen neutrale oder schwach positive Oberflächenladungen aufweisen.

Bei den trocken gemahlenen Produkten sind jedoch die notwendigen Feinheiten nur sehr schwer herstellbar. Zudem ergeben Pulver das Problem der Staubentwicklung.

<u>Durch Dispergieren hergestellte kationisch stabilisierte Mineral-und/oder Füllstoff- und/oder Pigment-Suspensionen:</u>

30

Kationisch stabilisierte, d.h. auf der Oberfläche positiv geladene, partiell calciumhaltige Minerale wie Calciumcarbonat, Dolomit usw. werden üblicherweise durch Dispergieren in Wasser mit neutralen und/oder kationischen Schutzkolloiden und/oder kationischen Dispergiermitteln (vgl. die Offenlegungsschriften DE 37 07 221 und DE 37 30 833) oder durch Dispergieren mit einer Kombination aus einem voll neutralisierten anlonischen und einem kationischen Dispergiermittel, wie im Europapatent 0 278 602 A 1 beschrieben, hergestellt, wobei beim zuletztgenannten soviel kationisches Polymer verwendet wird, daß die Teilchen in der Suspension eine positive Ladung besitzen.

In der EP 0 278 602 wird ebenfalls Polyacrylsäure offenbart. Reine, nicht neutralisierte Polyacrylsäure ist ungeeignet, da sie bei + 20°C bereits zu kristallisieren beginnt und somit nicht mehr dosierbar ist. Wenn Kristallisation einmal eingetreten ist, muß die Polymerlösung auf 100°C aufgeheizt werden, damit die Kristalle wieder aufgelöst werden.

Im Winter und in kälteren Regionen ist eine Produktion mit nicht neutralisierten Polyacrylsäuren undenkbar.

Diese Verfahren haben den Nachteil, daß der Zerkleinerungsprozeß, also das Mahlen, und das Dispergieren in getrennten Schritten vorgenommen werden müssen. Nach dem Stand der Technik bestehen folgende Möglichkeiten:

- a) das calciumhaltige Gestein wird auf trockenem Wege zerkleinert, um auf die notwendige Feinheit zu gelangen. Die Feinheit, die auf diesem Wege erreicht werden kann, ist limitiert. Reagglomeration durch van-der-Waals-Kräfte verhindern weitgehend ein Aufmahlen auf hohe Feinheiten. In einem separaten Schritt wird anschließend mit den vorstehend genannnten Dispergiermitteln dispergiert.
 - b) das calciumhaltige Gestein wird auf nassem Wege bei tiefem Feststoffgehalt (ca. 30 Gew.%) ohne Mahl- und Dispergiermittel gemahlen und muß über Filterpressen, durch Zusatz von Flockungsmitteln oder über Zentrifugen auf die gewünschte Konzentration gebracht werden. In einem separaten Schritt wird anschließend mit den vorstehend genannten Dispergiermitteln dispergiert.
 - c) das calciumhaltige Mineral wird auf nassem Wege mit anionischen Dispergiermitteln auf die gewünschte Feinheit gemahlen, getrocknet und anschließend mit den vorstehend genannten kationischen

Polyelektrolyten und/oder Schutzkolloiden wieder redispergiert. Bei der Trocknung entstehen Aggregate, die sich nicht wieder voll desaggregieren lassen, d.h. es resultiert eine geringere Feinheit als ursprünglich. Das beim Trocknen nicht zerstörte anionische Dispergiermittel kann zudem den anschließenden Dispergierprozeß stören und einen Mehrverbrauch an kationischem Polyelektrolyt bewirken.

Die Viskositätsstabilität über längere Zeit ist bei den genannten Herstellungsverfahren a - c nicht gegeben.

Die Herstellung der Mineral- und/oder Füllstoff- und/oder Pigment-Suspension muß dadurch zwangsläufig beim Verbraucher oder in der näheren Umgebung des Verbrauchers stattfinden und verdirbt in kurzer Zeit durch starken Viskositätsanstieg oder Sedimentation. Eine Viskositätssenkung durch Verdünnen ist in vielen Fällen nicht möglich, da die hohe Konzentration für die Weiterverarbeitung, z.B. in Streichfarben in der Papierindustrie, von ausschlaggebender Bedeutung ist.

Durch Mahlen erzeugte kationisch stabilisierte Mineral- und/oder Füllstoff- und/oder Pigment-Suspensionen:

In jüngster Zeit sind Bemühungen im Gange, kationisch stabilisierte, partiell calciumhaltige Füllstoffe durch Mahlen bei tiefen Feststoffgehalten herzustellen, wie dies im Vortrag von Loreen Goodwin, Columbia River Carbonates, gehalten am TAPPI Papermaker, April 89 in Washington DC., erläutert wurde.

Dieses Verfahren hat den Nachteil, daß der Feststoffgehalt auf 45 - 50 Gew.% limitiert ist. Bei höheren Konzentration sind die Viskositäten derart hoch, daß die Suspensionen nicht mehr verarbeitbar sind.

Die Viskositätsstabilität über längere Zeit ist nicht gegeben. Bedingt durch den tiefen Feststoffgehalt neigt die Suspension stark zum Absetzen, und sie ist dadurch nicht lagerstabil. Die Transportkosten, bezogen auf das Trockenprodukt, sind bei 45 Gew.%-igen Suspensionen ca. 50 % teurer als bei 70 Gew.%-igen Suspensionen. Zudem sind beim Produzenten und beim Verbraucher je ca. 50% mehr Lagerkapazität notwendig.

In der EP 0 104 904 wird eine wäßrige Aufschlämmung mineralischer Partikel mit einem Feststoffgehalt von wenigstens 40 Gew.% beschrieben. Diese Aufschlämmung enhält kationische und amphotere Polyelektrolyte mit Stickstoff-enthaltenden Gruppen, wobei aus der hier gemachten Offenbarung für den Durchschnittsfachmann nicht hervorgeht, was "amphoterer Polyelektrolyt" bedeutet. Eher wird man durch die einzige erwähnte amphotere Verbindung irregeführt, da diese keinen ersichtlichen amphoteren Charakter aufweist. Sowohl DMDAAC (Dimethyldiallylammoniumchlorid) wie Acrylamid, welche bei dem als amphoter bezeichneten Copolymer verwendet wurden, sind von ihrer Struktur her ausschließlich kationisch.

Bei den wäßrigen Aufschlämmungen wird eine Sedimentation der dispergierten Mineralpartikel über 3 - 7 Tage in Kauf genommen, was bei einem Schiffstransport von z.B. Skandinavien nach England über 4 - 7 Tage undenkbar ist, und ein Entleeren großer Schiffe, wie sie heute eingesetzt werden für Transporte dieser Art unmöglich machen würde.

Ein Rühren so großer Schiffsladungen ist praktisch ausgeschlossen. Auch ein Bahntransport von 4 - 7 Tagen im 56 t Kesselwagen von Österreich nach Norddeutschland ist aus denselben Gründen ausgeschlossen.

Sowohl Bahn- wie Schiffstransporte sind aus ökologischen Überlegungen heute sehr sinnvoll.

Folgende Anforderungen (Eigenschaften) an eine Suspension sind vom Verbraucher her gesehen wünschenswert:

- gute Lagerstabilität über Wochen bei tiefen Viskositäten
- Um die notwendigen Eigenschaften, wie z. B. eine geringe Abrasion der Papiermaschinensiebe bei der Papierherstellung und der Streichrakel in der Streichlage zu erhalten, ist es notwendig, sehr feinteilige Füllstoffe zu erzeugen. Ebenfalls neigen grobe Füllstoffe in der Papiermasse zum Stauben in Photokopierern etc.
- Papieropazität, Papierglanz und Papierweiße hängen stark von der Feinheit und den Füllgraden der Füllstoffe im und auf dem Papier ab. Opazität und Weiße sind heute für die Papierindustrie von ausschlaggebender Bedeutung.
- Für die Papiermasse sind heute üblicherweise Mineralien und/oder Füllstoffe und/oder Pigmente mit einem äquivalent sphärischen Durchmesser der Teilchen von 50 90 Gew.% < 2 μm (gemessen mit dem Sedigraph 5100) notwendig.
- Für Streichrezepturen werden heute üblicherweise Mineralien und/oder Füllstoffe und/oder Pigmente mit
 einem äquivalent sphärischen Durchmesser der Teilchen bis 99 Gew.% < 2 μm (gemessen auf dem Sedigraph 5100) eingesetzt.
 - Die Viskositätsstabilät über einige Wochen muß garantiert sein, damit beim Transport und bei der Lagerung kein Verderb der Suspension durch Sedimentation oder Viskositätserhöhung eintritt und keine

unnötig hohen Rührkosten entstehen. Um die Produktionssicherheit in der Papierindustrie heute zu gewährleisten, sind Lagerkapazitäten von tausenden von Kubikmetern solcher Suspensionen notwendig.

- Die Mineral- und/oder Füllstoff- und/oder Pigmentteilchen sollen sich ohne Einsatz hoher Mengen an Retentionshilfsmittel bei der Papierherstellung retendieren lassen. Die Festigkeitswerte des gefertigten Papiers sollen durch hohe Füllgrade an Mineralien und/oder Pigmenten und/oder Füllstoffen nicht stark beeinträchtigt werden.

Durch hohe Füllgrade kann Zellulose eingespart werden, was einen enormen ökonomischen Vorteil für die Papierindustrie bedeutet.

- Pigment- und/oder Füllstoff- und/oder Mineralstreichfarben sollen bei der Applikation auf das Papier möglichst wenig ins Papier eindringen, sondern auf der Papieroberfläche bleiben und so eine optimale Faserabdeckung bewirken. Ein kationischer Strich auf anionischer Zellulose bleibt wesentlich besser an der Oberfläche.
 - Möglichst hohe Feststoffkonzentrationen sollen erreicht werden.

Eine Aufgabe dieser Erfindung ist es, lagerstabile Füllstoff-und/oder Mineral- und/oder Pigment-Suspensionen mit hohem Feststoffgehalt bei tiefen Viskositäten zu schaffen.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß eine wäßrige Suspension gemäß dem Oberbegriff des Patentanspruchs 1 bereitgestellt wird, wobei das Dispergiermittel einen oder mehrere amphotere Polyelektrolyten, bei welchen die Anzahl der negativen Ladungen in den anionischen Monomereinheiten gleich der Anzahl der positiven Ladungen in den kationischen Monomereinheiten ist, und die wahlweise zusätzlich neutrale Monomereinheiten enthalten können, und/oder einen oder mehrere kationische Polyelektrolyten und/oder einen oder mehrere amphotere kationische Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen, und/oder einen oder mehrere amphotere anionische Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen und/oder

einen oder mehrere teilneutralisierte anionische Polyelektrolyten und/oder einen oder mehrere teilneutralisierte amphotere anionische Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen, enthält, wobei die Füllstoff- und/oder Pigment- und/oder Mineralteilchen eine gegen außen neutrale oder positive Ladung tragen.

Überraschend und nicht voraussehbar war die Tatsache, daß die erfindungsgemäßen amphoteren Polyelektrolyten im Gegensatz zum Stand der Technik, bei welchem die Füllstoff- und/oder Pigment- und/oder Mineralteilchen ebenfalls gegen außen neutrale oder positive Ladungen tragen, eine sehr gute Viskositätsstabilität über lange Zeit bei tiefen Viskositäten ergeben und trotzdem keine Sedimentation der Mineralteilchen eintritt, auch wenn nicht gerührt wird.

Im folgenden werden die amphoteren Polyelektrolyten, bei welchen die Anzahl der negativen Ladungen in den anionischen Monomereinheiten gleich der Anzahl der positiven Ladungen in den kationischen Monomereinheiten ist und die amphoteren kationischen Polyelektrolyten und die amphoteren anionischen Polyelektrolyten kurz als erfindungsgemäße amphotere Polyelektrolyten bezeichnet. Die amphoteren Polyelektrolyte, bei welchen die Anzahl der negativen Ladungen in den anionischen Monomereinheiten gleich der Anzahl der positiven Ladungen in den kationischen Monomereinheiten ist, werden kurz als "amphoter" bezeichnet.

Im Rahmen der Erfindung kann es vorteilhaft sein, wenn einige oder mehrere der amphoteren Polyelektrolyten teilneutralisiert sind.

Vorteilhafterweise trägt der amphotere anionische und der amphotere kationische Polyelektrolyt und der amphotere Polyelektrolyt, bei welchen die Anzahl der negativen Ladungen in den anionischen Monomereinheiten gleich der Anzahl der positiven Ladungen in den kationischen Monomereinheiten ist, die die positive Ladung erzeugende funktionelle Gruppe in einem Substituenten der ethylenischen Hauptkette.

Weiterhin vorteilhaft ist, daß der die kationische Ladung tragende Substituent über

II I II - C - N - oder - C -O-

an der Hauptkette gebunden ist. Vorzüglich geeignet ist die erstgenannte Gruppe.

Weiterhin vorteilhaft ist, wenn die erfindungsgemäßen amphoteren Polyelektrolyten quaternäre Ammoniumgruppen, Carboxyl gruppen und/oder Sulfonsäuregruppen und/oder saure phosphorsäureesterhaltige Gruppen enthalten

Vorteilhafterweise sind die erfindungsgemäßen amphoteren Polyelektrolyten eine oder mehrere Verbindungen aus der Gruppe der folgenden Verbindungen gemäß der folgenden allgemeinen Formel

und (An) = Chlorid und/oder Bromid und/oder Jodid und/oder HSO $_4$ und/oder CH $_3$ SO $_4$ und/oder Nitrit sein kann.

wobei $R_1,\,R_5,\,R_6$ und R_7 bevorzugt H

und/oder

- R₁ bis R₇ Alkyl, bevorzugt ein C₁ C₁₈-Alkyl, insbeson dere bevorzugt C₁ C₆, optimal -CH₃ und oder
- Aryl, bevorzugt ein 6-Ring, insbesondere ein nicht-substituierter 6-Ring sein kann,

Rs und Rs =

5 - H und/oder

- Alkyl, bevorzugt ein C1 C18-Alkyl, insbesondere bevor zugt C1 C6, optimal -CH3 oder H und oder
- Aryl, bevorzugt ein 6-Ring, insbesondere ein nicht- substituierter 6-Ring, $\rm R_8$ oder $\rm R_9$ auch

- -c 0

sein kann, wenn

30

Z = - C

ist, X = O und/oder N-H $Y = -CH_2$ - bis - C_5H_{10} -

55

5

$$-(CH_2)_n - C$$
 und/oder on

15

-
$$(CH_2)_n$$
 — $S=0$ und/oder OH

20

25

30

eine saure Phosphorsäureester-Gruppe und n = 1-18 sein kann.

Z kann teilweise neutralisiert sein durch 1-, 2- und/oder 3-wertige Kationen.

Erfindungsgemäß vorteilhaft sind Alkali und/oder Erdalkali-und/oder Erdmetallkationen einsetzbar, wobei Erdalkalikationen bevorzugt sind. Insbesondere bevorzugt sind Ca⁺⁺ und/oder Mg⁺⁺ und/oder Sr⁺⁺, insbesondere bevorzugt Ca⁺⁺ und/oder Mg⁺⁺.

Der Neutralisationsgrad von Z liegt bei 1 bis 99 Mol.%, vorteilhafterweise bei 50 bis 98 Mol.%, bevorzugt bei 70 bis 97 Mol.% und insbesondere bevorzugt bei 95 Mol.%, je bezogen auf Z in b.

Bei der Neutralisation mit einwertigen Kationen wie K⁺ und/oder Na⁺ und/oder Li⁺ beträgt der Neutralisationsgrad von Z 1 bis 99 Mol.%, vorteilhaft 1 bis 50 Mol.%, bevorzugt 1 bis 25 Mol.% und insbesondere bevorzugt < 5 Mol.%, je bezogen auf Z in b.

Z kann auch vollneutralisiert sein, wenn das Kation 2- und/oder 3-wertig ist oder es sich um NH₄, prim., sec., tert. Amine und/oder quart. Ammoniumionen handelt, wobei NH₄ zu sehr unangenehmer Geruchsbelästigung führt und gesundheitsschädlich sein kann.

Z kann auch nichtneutralisiert vorliegen.

Wenn Rs oder Rs nicht

45

50

ist, und wenn die amphoteren anionischen Polyelektrolyten in Kombination mit der amphoteren kationischen Polyelektrolyten verwendet werden und die Teilchen dadurch neutral sind oder positive Oberflächenladungen aufweisen, liegen a und b in den folgenden Verhältnissen vor:

amphoter anionisch	amphoter	amphoter kationisch
a = 5-49 Mol.%	a = 50 Mol.%	a = 51-99 Mol.%
b = 51-95 Mol.%	b = 50 Mol.%	b = 49- 1 Mol.%

wobei n = 1 - 18

und (An) = Chlorid und/oder Bromid und/oder Jodid und/oder HSO₄ und/oder CH₃SO₄ und/oder Nitrit sein kann.

Weiterhin vorteilhaft sind folgende Mischungen:

amphoter anionisch	amphoter	amphoter kationisch
a = 47-49 Mol.%	a = 50 Mol.%	a = 51-80 Mol.%
b = 51-53 Mol.%	b = 50 Mol.%	b = 49-20 Mol.%

wobei n = 1 - 18

und (An) = Chlorid und/oder Bromid und/oder Jodid und/oder HSO $_4$ = und/oder CH $_3$ SO $_4$ = und/oder Nitrit sein kann.

Wenn R₈ oder R₉ =

25

5

15

20

- c OH

30

ist, und wenn die amphoteren anionischen Polyelektrolyten in Kombination mit der amphoteren kationischen Polyelektrolyten verwendet werden und die Teilchen dadurch neutral sind oder positive Oberflächenladungen aufweisen, liegen a und b in den folgenden Verhältnissen vor:

35

amphoter anionisch	amphoter	amphoter kationisch
a = 10-66 Mol.%	a = 66,66 Mol.%	a = 67-99 Mol.%
b = 34-90 Mol.%	b = 33,33 Mol.%	b = 1-33 Mol.%

40

wobei n = 1 - 18

und (An)⁻ = Chlorid und/oder Bromid und/oder Jodid und/cder HSO₄⁻ und/oder CH₃SO₄⁻ und/oder Nitrit sein kann.

Weiterhin vorteilhaft sind folgende Mischungen:

50

amphoter anionisch	amphoter	amphoter kationisch
a = 64-66 Mol.%	a = 66,66 Mol.%	a = 67-90 Mol.%
b = 34-36 Mol.%	b = 33,33 Mol.%	b = 10-33 Mol.%

55

wobei n = 1 - 18

und (An) $^-$ = Chlorid und/oder Bromid und/oder Jodid und/oder HSO $_4$ $^-$ und/oder CH $_3$ SO $_4$ $^-$ und/oder Nitrit sein kann.

Insbesondere vorteilhaft ist, daß die erfindungsgemäßen amphoteren Polyelektrolyten eine Verbindung gemäß dieser allgemeinen Formel sind, wobei

R₁ = H oder -CH₃

 $R_2 = -CH_3 \text{ oder } -C_2H_5$

 $R_3 = -CH_3 \text{ oder } -C_2H_5$

R₄ = -CH₃ bis -C₄H₉ und Isomere

X = O oder N - H

 $Y = -CH_2$ -bis - C_5H_{10} -

 R_5 und $R_6 = H$

10 R₇ = H oder -CH₃

 R_8 und $R_9 = H$.

15

25

Ganz besonders vorteilhaft ist, wenn $(An)^- = Cl^-$ und $Y = -(CH_2)_3 -$ ist.

Gemäß der Erfindung bedeutet amphoter anionisch, daß die anionischen Ladungen im amphoteren Polyelektrolyten gegenüber den kationischen Ladungen überwiegen.

Amphoter kationisch bedeutet, daß die kationischen Lacungen im amphoteren Polyelektrolyten gegenüber den anionischen Ladungen überwiegen.

Amphoter schwach anionisch bzw. kationisch bedeutet erfindungsgemäß, daß die entsprechenden negativen oder positiven Überschußladungen im amphoteren Polyelektrolyten nur gering sind. Amphoter schwach anionisch bedeutet, daß das Verhältnis der anionischen Ladung zur kationischen Ladung im Bereich von 55: 45 bis 51: 49 Mol.% liegt.

Amphoter schwach kationisch bedeutet, daß das Verhältnis der anionischen zu den kationischen Ladungen im Bereich von 45 : 55 bis 49 : 51 Mol.% liegt.

Es ist darauf hinzuweisen, daß die Begriffe "schwach" und "leicht" in dieser Anmeldung synonym verwendet werden.

Besonders günstig sind erfindungsgemäß Polyelektrolyten gemäß der folgenden Formel

Wenn c = 0, dann z = 0

wobei

(Kat) = Alkali- und/oder Erdalkali- und/oder Erdmetallkationen und/oder Amine und/oder Alkanolamine und/oder quaternäre Ammonium-Kationen

(An) = Chlorid, Bromid, Jodid, HSO₄-, CH₃SO₄- und/oder Nitrit

und wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen:

55

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49-47 Moi.%	a = 50 Mol.%	a = 51-80 Mol.%
b+c = 51-53 Moi.%	b+c = 50 Mol.%	b+c = 49-20 Mol.%

wobei n = 1 - 18

Besonders vorteilhaft sind Polyelektrolyten gemäß dieser allgemeinen Formel, wobei (Kat) = Alkali- und/oder Erdalkalikationen

(An) = Chlorid, Bromid, Jodid, HSO₄-, CH₃SO₄- und/oder Nitrit

und wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen:

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49-48 Mol.%	a = 50 Mol.%	a = 51-70 Mol.%
b+c = 51-52 Mol.%	b+c = 50 Mol.%	b+c = 49-30 Mol.%

20

25

15

5

und wobei

z = _____

Wertigkeit (Kat)

30 Weiterhin vorteilhaft liegen in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vor :

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49-47 Mol.%	a = 50 Mol.% b = 0-50 Mol.%	a = 51-80 Mol.%
b+c = 51-53 Mol.%	c = 50-0 Mol.%	b+c = 49-20 Mol.%

40

45

35

Besonders vorteilhaft sind Polyelektrolyten gemäß dieser allgemeinen Formel, wobei (Kat) = Erdalkalikationen

(An) = Chlorid, Bromid, Jodid, HSO₄, CH₃SO₄ und/oder Nitrit

und wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen:

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49-48 Mol.%	a = 50 Mol.% b = 0-25 Mol.%	a = 51-70 Mol.%
b+c = 51-52 Mol.%	c = 25-50 Mol.%	b+c = 49-30 Mol.%

50

und wobei

С

z = ____

Wertigkeit (Kat)

5

Welterhin vorteilhaft sind Polyelektrolyten gemäß dieser allgemeinen Formel, wobei (Kat) = Na⁺, K⁺, Li⁺, Ca²⁺, Mg²⁺,

(An) = Chlorid, Bromid, Jodid, HSO₄-, CH₃SO₄- und/oder Nitrit

und wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen :

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49-48,5 Mol.%	a = 50 Mol.%	a = 51-60 Mol.%
b+c = 51-51,5 Mol.%	b+c = 50 Mol.%	b+c = 49-40 Mol.%

20 und wobei

25

15

Ganz besonders günstige Ergebnisse werden erzielt, wenn bei den erfindungsgemäßen Polyelektrolyten gemäß dieser allgemeinen Formein

(Kat) = Alkalikationen

30 (An) = Halogenidionen

und wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen:

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49 Mol.% b = 51 Mol.%	a = 50 Mol.% b = 50 Mol.%	a = 51 Mol.% b = 49 Mol.%
c = < 1 Mol.%	c = < 1 Mol.%	c = < 1 Mol.%

40

45

50

35

Weiterhin vorteilhaft sind Polyelektrolyten gemäß dieser allgemeinen Formel, wobei

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49-48,5 Mol.%	a = 50 Mol.% b = 0-10 Mol.%	a = 51-60 Mol.%
b+c = 51-51,5 Mol.%	c = 40-50 Mo%	b+c = 49-40 Mol.%

und wobei

Ganz besonders günstige Ergebnisse werden erzielt, wenn bei den Polyelektrolyten gemäß dieser allgemeinen Formeln

(Kat) = Erdalkalikationen

(An) = Halogenidionen

und wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen :

15

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49 Mol.%	a = 50 Mol.%	a = 51 Mol.%
b = 2 Mol.%	b = 2 Mol.%	b = 2 Mol.%
c = 49 Mol.%	c = 48 Mol.%	c = 47 Mol.%

25

30

Weiterhin vorteilhaft sind Mischungen aus amphoteren kationischen Polyelektrolyten und amphoteren Polyelektrolyten, bei welchen die Anzahl der kationischen Monomereinheiten gleich der Anzahl der anionischen Monomereinheiten ist, gemäß der oben angegebenen allgemeinen Formel, wobei

35 (Kat) = Alkali- und/oder Erdalkali- und/oder Erdmetallkationen und/oder Amine und/oder Alkanolamine und/oder quaternäre Ammonium-Kationen

(An)⁻ = Chlorid, Bromid, Jodid, HSO₄⁻, CH₃SO₄⁻ und oder Nitrit

und wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen:

40

amphoter	amphoter kationisch
a = 50 Mol.%	a = 70-9 Mol.%
b+c = 50 Mol.%	b+c = 30-1 Mol.%

45

Weiterhin vorteilhaft sind in der erfindungsgemäßen Mischung folgende Verhältnisse der Polyelektrolyten a und b und c gemäß der oben angegebenen allgemeinen Formel:

50

amphoter	amphoter kationisch
a = 50 Mol.%	a = 75-98 Mol.%
b+c = 50 Mol.%	b+c = 25-2 Mol.%

55

bevorzugt:

amphoter	amphoter kationisch
a = 50 Mol.%	a = 80-97 Mol.%
b+c = 50 Mol.%	b+c = 20-3 Mol.%

5

weiterhin bevorzugt:

10

amphoter	amphoter kationisch
a = 50 Mol.%	a = 90-96 Mol.%
b+c = 50 Mol.%	b+c = 10-4 Mol.%

15

insbesondere bevorzugt :

20

amphoter	amphoter kationisch
a = 50 Mol.%	a = 95 Mol.%
b+c = 50 Mol.%	b+c = 5 Mol.%

25

Weiterhin vorteilhaft sind Mischungen aus amphoter leicht anionischen und amphoter kationischen Polyelektrolyten gemäß der oben angegebenen allgemeinen Formel, wobei (Kat) = Alkali- und/oder Erdalkali- und/oder Erdmetallkationen und/oder Amine und/oder Alkanolamine

und/oder quaternäre Ammonium-Kationen (An) = Chlorid, Bromid, Jodid, HSO₄-, CH₃SO₄- und ode Nitrit

und wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen :

amphoter leicht anionisch	amphoter kationisch
a = 47-49 Mol.%	a = 70-99 Mol.%
b+c = 51-53 Mol.%	b+c = 30 -1 Mol.%

35

besser:

45

amphoter leicht anionisch	amphoter kationisch
a = 48-49 Mol.%	a = 75-98 Mol.%
b+c=51-52 Mol.%	b+c = 25- 2 Mol.%

bevorzugt:

amphoter leicht anionisch	amphoter kationisch
a = 48,5-49 Mol.%	a = 80-97 Mol.%
b+c = 51-51,5 Mol.%	b+c = 20-3 Mol.%

55

insbesodere bevorzugt :

amphoter leicht anionisch	amphoter kationisch
a = 49 Mol.% b+c = 51 Mol.%	a = 95 Mol.% b+c = 5 Mol.%

5

Weiterhin vorteilhaft sind Mischungen aus amphoter leicht kationischen und amphoter kationischen Polyelektrolyten gemäß der oben angegebenen allgemeinen Formel, wobei

(Kat) = Alkali- und/oder Erdalkali- und/oder Erdmetallkationen und/oder Amine und/oder Alkanolamine und/oder quaternäre Ammonium-Kationen

(An) = Chlorid, Bromid, Jodid, HSO₄-, CH₃SO₄- und oder Nitrit

und wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen:

15

amphoter leicht kationisch	amphoter kationisch
a = 51-53 Mol.%	a = 80-97 Mol.%
b+c = 49-47 Mol.%	b+c = 20-3 Mol.%

20

bevorzugt:

25

amphoter leicht kationisch	amphoter kationisch
a = 51-52 Mol.%	a = 90-96 Mol.%
b+c = 49-48 Mo.%	b+c = 10-4 Mol.%

30

insbesondere bevorzugt:

35

amphoter leicht	amphoter	
kationisch	kationisch	
a = 51 Mol.%	a = 95 Mol.%	
b+c = 49 Mol.%	b+c = 5 Mol.%	

40

Vorteilhafterweise ist der Neutralisationsgrad der anionischen Komponente im amphoteren kationischen und amphoteren schwach anionischen und amphoteren schwach kationischen und amphoteren Polyelektrolyten mit Erdalkalikationen, besonders mit Ca^{**} und/oder Mg^{**}, 0,1-100 Mol.%, besser 50-100 Mol.% und bevorzugterweise 70-99 Mol.%, am besten 98 Mol.% oder die anionische Komponente ist nicht-neutralisiert.

Vorteilhafterweise ist der Neutralisationsgrad der anionischen Komponente im amphoteren kationischen und amphoteren schwach anionischen und amphoteren schwach kationischen und amphoteren Polyelektrolyten mit einwertigen Kationen 0,1-100 Mol.%, besser 0,1-50 Mol.% und bevorzugterweise 0,1-39 Mol.% oder 0,1-30 Mol.%, weiterhin bevorzugt 0,1-35 Mol.% oder 0,1-25 Mol.% oder 0,1-15 Mol.%, am besten < 1 Mol.% oder die anionische Komponente ist nicht-neutralisiert. Wenn zweiwertige Kationen wie Ca⁺⁺ und Mg⁺⁺ verwendet werden, dann ist ein Neutralisationsgrad von > 90 % bevorzugt. Ein Neutralisationsgrad von > 90 % mit Ca⁺⁺ ist dabei erfindungsgemäß besser als ein Neutralisationsgrad < 1 % mit Na⁺.

Es ist vorteilhaft, daß der Polymerisationsgrad der erfindungsgemäßen Polyelektrolyten, gemessen über deren Viskosität in einer wäßrigen Lösung bei 32% Konzentration, im Bereich von 5 mPa.s bis 150 mPa.s liegt. Ganz besonders vorteilhaft ist die Viskosität im Bereich von 15 mPa.s bis 100 mPa.s, wobei ein Bereich von 25 mPa.s bis 70 mPa.s insbesondere bevorzugt wird.

Weiterhin vorteilhaft ist bei der Mischung aus amphoteren kationischen Polyelektrolyten und amphoteren leicht kationischen Polyelektrolyten und/oder amphoteren Polyelektrolyten und/oder amphoteren leicht

anionischen Polyelektrolyten, daß der Polymerisationsgrad der amphoteren kationischen Polyelektrolyten, gemesen über die Grenzviskosität, im Bereich von 5 ml/g bis 50 ml/g, bevorzugt im Bereich von 15 ml/g bis 40 ml/g, insbesondere bevorzugt von 25 ml/g bis 35 ml/g, und der Polymerisationsgrad der amphoteren leicht kationischen Polyelektrolyten und der amphoteren Polyelektrolyten und der amphoteren leicht anionischen Polyelektrolyten, gemessen über deren Viskosität in einer wäßrigen Lösung bei 32 Gew.% Konz. im Bereich von 5 bis 150 ml/g, bevorzugt von 15 bis 100 ml/g, insbesondere bevorzugt von 25 bis 70 ml/g liegen.

Weiterhin vorteilhaft enthält das Dispergiermittel einen oder mehrere amphotere Polyelektrolyten, bei welchen die Anzahl der negativen Ladungen in den anionischen Monomereinheiten gleich der Anzahl der positiven Ladungen in den kationischen Monomereinheiten ist.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten, und einem oder mehreren amphoteren kationischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten, und einem oder mehreren amphoteren, leicht kationischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten, und einem oder mehreren amphoteren kationischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen und einem oder mehreren amphoteren anionischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten, und einem oder mehreren amphoteren, leicht kationischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen und einem oder mehreren amphoteren anionischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten, und einem oder mehreren amphoteren kationischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen und einem oder mehreren amphoteren, leicht anionischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten, und einem oder mehreren amphoteren, leicht kationischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen und einem oder mehreren amphoteren, leicht anionischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel einen oder mehrere amphotere kationische Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel einen oder mehrere amphotere kationische Polyelektrolyten und einen oder mehrere amphotere, leicht kationische Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel einen oder mehrere amphotere, leicht kationische Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren kationischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen und einem oder mehreren amphoteren anionischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren, leicht kationischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen und einem oder mehreren amphoteren anionischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren kationischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen und einem oder mehreren amphoteren, leicht anionischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren, leicht kationischen Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen und einem oder mehreren amphoteren, leicht anionischen Polyelektrolyten, bei welchen

die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten, und einem oder mehreren amphoteren, leicht anionischen Polyelektrolyten, bei welchen die nichtneutralen Monomereinheiten überwiegend negative Ladungen tragen.

Weiterhin vorteilhaft enthält das Dispergiermittel eine oder mehrere amphotere, leicht anionische Polyelektrolyte, bei welchen die nichtneutralen Monomereinheiten überwiegend negative Ladungen tragen.

Die Füllstoffteilchen weisen bei Verwendung der amphoteren, leicht anionischen Polyelektrolyten trotz des leichten Überschusses an negativer Ladung (Carboxylgruppen) eine neutrale bzw. leicht positive Oberflächenladung auf. Dies rührt wahrscheinlich daher, daß ein Teil der Carboxylgruppen durch Ca⁺⁺-Ionen derart stark neutralisiert ist, daß diese nicht mehr dissoziiert vorliegen und deshalb gegen außen neutral wirken. Dadurch überwiegen die dissoziierten kationischen Gruppen, und die Füllstoffteilchen weisen, trotz Carboxylgruppenüberschuß im eigentlichen Dispergiermittel, keine negative Ladung auf.

Dies ist insbesondere der Fall bei einem Verhältnis von 51 -53 Mol.% Carboxylgruppen zu 47-49 Mol.% quaternären Ammoniumgruppen im Polymermolekül.

Weiterhin bevorzugt ist ein Verhältnis von 51 bis 52 Mol.% Carboxylgruppen zu 49 - 48 Mol.% quaternären Ammoniumgruppen im Polymermolekül. Insbesondere bevorzugt ist ein Verhältnis von 51 Mol.% Carboxylgruppen zu 49 Mol.% quaternären Ammoniumgruppen im Polymermolekül.

Vorzugsweise enthält das Dispergiermittel 0 bis 100 Gew.% eines ersten amphoteren Polyelektrolyten und 100 - 0 Gew.% eines zweiten amphoteren Polyelektolyten.

Weiterhin bevorzugt enthält das Dispergiermittel eine Mischung aus 0,1 bis 99,9 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 99,9 bis 0,1 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten.

Insbesondere bevorzugt enthält das Dispergiermittel eine Mischung aus 50 - 99,9 Gew.% bzw. 80 bis 99,9 Gew.% bzw. 10 - 50 Gew.% bzw. 10 - 30 Gew.% eines oder mehrerer amphoteren Polyelektrolyten und 0,1 bis 50 Gew.% bzw. 0,1 bis 20 Gew.% bzw. 50 - 90 Gew.% bzw. 70 - 90 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel 0,1 bis 99,9 Gew.% eines oder mehrerer amphoteren Polyelektrolyten und 99,9 bis 0,1 Gew.% eines oder mehrerer amphoterer leicht kationischer Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel eine Mischung aus 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer anionischer Polyelektrolyten.

30

Weiterhin bevorzugt enthält das Dispergiermittel eine Mischung aus 0,1 bis 20 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 60 bis 79,9 Gew.% eines oder mehrerer amphoteren kationischer Polyelektrolyten und 0,1 bis 20 Gew.% eines oder mehrerer amphoterer anionischer Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiemittel eine Mischung aus 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer leicht kationischer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49.8 Gew.% eines oder mehrerer amphoterer anionischen Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel eine Mischung aus 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer leicht anionischer Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel eine Mischung aus 0.1 bis 99,8 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer leicht kationischer Polyelektrolyten und 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer leicht anionischer Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel 0 bis 100 Gew.% eines ersten amphoteren kationischen Polyelektrolyten und 0 bis 100 Gew.% eines zweiten amphoteren kationischen Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel 0,1 bis 99,9 Gew.% eines ersten amphoteren leicht kationischen Polyelektrolyten und 0,1 bis 99,9 Gew.% eines zweiten amphoteren leicht kationischen Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel 50 bis 99,9 Gew.% bzw. 70 bis 99,9 Gew.% eines oder mehrerer amphoterer kationischer Polyelektroylten und 0,1 bis 50 Gew.% bzw. 0,1 bis 30 Gew.% eines oder mehrerer amphoterer anionischer Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel eine Mischung aus 90 bis 99,9 Gew.% bzw. 75 bis 90 Gew.% bzw. 80 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und 0,1 bis 10

Gew.% bzw. 25 bis 10 Gew.% bzw. 20 Gew.% eines oder rnehrerer amphoterer anionischer Polyelektrolyten enthält.

Weiterhin bevorzugt enthält das Dispergiermittel eine Mischung aus 80 bis 99,9 Gew.% eines oder mehrerer amphoterer leicht kationischer Polyelektrolyten und 0,1 bis 20 Gew.% eines oder mehrerer amphoterer anionischer Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel eine Mischung aus 0,1 bis 99,9 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und 99,9 bis 0,1 Gew.% eines oder mehrer amphoterer leicht anionischer Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel 50 bis 99,9 Gew.% bzw. 70 bis 90 Gew.% bzw. 75 few.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und 0,1 bis 50 Gew.% bzw. 10 bis 30 Gew.% bzw. 25 Gew.% eines oder mehrerer amphoterer leicht anionischer Polyelektrolyten enthält.

Weiterhin bevorzugt enthält das Dispergiermittel 0,1 bis 99,9 Gew.% eines oder mehrerer amphoterer leicht kationischer Polyelektrolyten und 99,9 bis 0,1 Gew.% eines oder mehrerer amphoterer leicht anionischer Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel eine Mischung aus 0,1 bis 99,9 Gew.% bzw. 50 bis 99,9 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 0,1 bis 99,9 Gew.% bzw. 0,1 bis 50 Gew.% eines oder mehrerer amphoterer leicht anionischer Polyelektrolyten.

Weiterhin bevorzugt enthält das Dispergiermittel 0 bis 100 Gew.% eines ersten und 0 bis 100 Gew.% eines zweiten amphoteren leicht anionischen Polyelektrolyten.

Erfindungsgemäß umfassen die Mineralien bzw. Füllstoffe bzw. Pigmente insbesondere Elemente aus der zweiten und/oder dritten Hauptgruppe und/oder aus der vierten Nebengruppe des Periodensystems der Elemente. Günstigerweise werden calcium- und/oder siliziumhaltige und/oder aluminiumhaltige und/oder titanhaltige Mineralien und/oder Füllstoffe und/oder Pigmente verwendet, wobei calciumcarbonathaltige Mineralien und/oder Füllstoffe und/oder Pigmente bevorzugt sind. Ganz besonders bevorzugt sind natürliches Calciumcarbonat und/oder präzipitiertes Calciumcarbonat und/oder Marmor und/oder Kreide und/oder Dolomit und/oder dolomithaltiges Calciumcarbonat.

Die wäßrige Suspension besteht bevorzugt aus 97,0 Gew.% bis 99,97 Gew.% Mineralien und oder Füllstoffen und/oder Pigmenten und Wasser und 0,03 Gew.% - 3,0 Gew.% der erfindungsgemäßen amphoteren Polyelektrolyten bei einem Feststoffgehalt von 60 - 80 Gew.%, bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment.

Weiterhin günstig ist es, daß die wäßrige Suspension aus 98,5 Gew.% bis 99,95 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und 0,05 Gew.% bis 1,5 Gew.% der erfindungsgemäßen amphoteren Polyelektrolyten bei einem Feststoffgehalt von 65 - 77 Gew.%, bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment, besteht.

Weiterhin gute Ergebnisse werden erzielt, wenn die wäßrige Suspension aus 98,8 Gew.% bis 99.90 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenter und Wasser und 0,1 Gew.% bis 1,2 Gew.% der erfindungsgemäßen amphoteren Polyelektrolyten bei einern Feststoffgehalt von 67 - 76 Gew.%, bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment besteht.

Hervorragende Ergebnisse werden erzielt, wenn die wäßrige Suspension besteht aus 99,5 Gew.% bzw. 98,8 Gew.% bzw. 99,6 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und 0,5 Gew.% bzw. 1,2 Gew.% bzw. 0,4 Gew.% eines amphoteren, gegen außen neutralen Polyelektrolyten mit einer Viskosität von 37 mPa.s bei einem Feststoffgehalt von 72 Gew.% bzw. 72 Gew.% bzw. 67 Gew.%, bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment, bei einer Kornverteilung, so daß 70 Gew.% bzw. 90 Gew.% bzw. 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 µm aufweisen.

Weiterhin ist es vorteilhaft, wenn die wäßrige Suspension aus 97 bis 99,89 Gew.% besser 98,5 bis 99,8 Gew.% besser 98,5 bis 99,8 Gew.% besser 99,2 bis 99,65 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und einer Dispergiermittelmischung aus amphoteren kationischen und amphoter leicht anionischen und/oder amphoteren und/oder amphoteren und/oder amphoteren leicht kationischen Polyelektrolyten im Bereich von 0,11 bis 3,00 Gew.% besser 0,2 bis 1,5 Gew.% besser 0,35 bis 0,8 Gew.% besteht, je bezogen auf einen Feststoffgehalt im Bereich von 60 --80 Gew.% bevorzugt 62 - 75 Gew.%, insbesondere 65 - 72 Gew.% bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment.

Hervorragende Ergebnisse werden erzielt, wenn die wäßrige Suspension aus 99,6 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und 0,4 Gew.% der oben ausgeführten erfindungsgemäßen Dispergiermittelmischung besteht.

Insbesonders gute Ergebnisse werden erzielt, wenn die wäßrige Suspension besteht aus 99,6 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und 0,4 Gew.% einer Dispergiermittelmischung, bestehend aus 0,35 Gew.% eines amphoteren kationischen Polyelektrolyten gemäß der allgemei-

nen Formel von Seite 17, wobei a = 95 Mol.% und b = 5 Mol.% und c = 0 Mol.% bei einer Grenzviskosität von 27,3 ml/g und 0,1 Gew.% eines amphoteren Polyelektrolyten gemäß der allgemeinen Formel von Seite 17, bei welcher a = 50 Mol.% und b = 50 Mol.% und c = 0 Mol.%, mit einer Viskosität, gemessen in einer wäßrigen Lösung von 32 Gew.%, von 37 mF'as bei einem Feststoffgehalt von 67 Gew.%, wobei 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 µm aufweisen.

Eine weitere Aufgabe dieser Erfindung ist es, ein Verfahren zu schaffen, mit dem eine lagerstabile, hochkonzentrierte Mineral- und/oder Füllstoff- und/oder Pigment-Suspension durch Mahlen bei hohen Feststoffgehalten hergestellt werden kann, wobei Mahlen und Dispergieren bei hohen Feststoffgehalten in einem Arbeitsgang erfolgen.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein Verfahren zur Herstellung einer wäßrigen Suspension bereitgestellt wird, welches durch folgende Verfahrensschritte gekennzeichnet ist:

- a) eine wäßrige Suspension von Mineralien und/oder Füllstoffen und/oder Pigmenten wird zusammen mit der erfindungsgemäßen Dispergier- und Mahlhilfsmittelmischung naßvermahlen, wobei
 - b) die erfindungsgemäßen amphoteren Polyelektrolyten voll ständig vor der Vermahlung oder
 - c) ein Teil der erfindungsgemäßen amphoteren Polyelektrolyten vor der Vermahlung und
 - d) ein Teil der erfindungsgemäßen amphoteren Polyelektkrolyten während der Vermahlung und/oder
- e) einen Teil der erfindungsgemäßen amphoteren Polyelektrolyten nach der Vermahlung hinzugegeben werden.

Besonders vorteilhaft ist ein Verfahren, wobei

15

20

35

40

45

- a) die amphoteren, leicht anionischen und/oder die amphoteren Polyelektrolyten vollständig vor der Vermahlung oder
- b) ein Teil der amphoteren , leicht anionischen und/oder der amphoteren Polyelektrolyten vor der Vermahlung und
- c) ein Teil der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten während der Vermahlung und/oder
- d) ein Teil der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten nach der Vermahlung hinzugegeben werden.

Weiterhin vorteilhaft ist ein Verfahren, in welchem

- a) die amphoteren und/oder die amphoteren kationischen Polyelektrolyten vollständig vor der Ver
 - b) ein Teil der amphoteren und/oder der amphoteren kationischen Polyelektrolyten vor der Vermahlung und
 - c) ein Teil der amphoteren und/oder der amphoteren kationischen Polyelektrolyten während der Vermahlung und/oder
 - d) ein Teil der amphoteren und/oder der amphoteren kationischen Polyelektrolyten nach der Vermahlung hinzugegeben werden.

Besonders vorteilhaft ist ein Verfahren, in welchem

- a) 50 100 Gew.% der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten vor der Vermahlung und
- b) 0 50 Gew.% der amphoteren, leicht anionischen und oder der amphoteren Polyelektrolyten während der Vermahlung und/oder
- c) 0 50 Gew.% der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten nach der Vermahlung zugegeben werden.

Weiterhin vorteilhaft ist ein Verfahren, in welchem

- a) 50 100 Gew.% der amphoteren und/oder der amphoteren kationischen Polyelektrolyten vor der Vermahlung und
- b) 0 50 Gew.% der amphoteren und/oder der amphoteren kationischen Polyelektrolyten während der Vermahlung und/oder
- c) 0 50 Gew.% der amphoteren und/oder der amphoteren kationischen Polyelektrolyten nach der
 Vermahlung zugegeben werden.

Sehr gute Resultate werden erzielt, wenn ein Verfahren angewandt wird, bei welchem

- a) 70 100 Gew.% der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten vor der Vermahlung und/oder
- b) 0 30 Gew.% der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten während der Vermahlung und/oder
- c) 0 30 Gew.% der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten nach der Vermahlung zugegeben werden.

Weiterhin vorteilhaft ist ein Verfahren, bei welchem

- a) 70 100 Gew.% der amphoteren und/oder der amphoteren kationischen Polyelektrolyten vor der Vermahlung und
- b) 0 30 Gew.% der amphoteren und/oder der amphoteren kationischen Polyelektrolyten während der Vermahlung und/oder
- c) 0 30 Gew.% der amphoteren und/oder der amphoteren kationischen Polyelektrolyten nach der Vermahlung zugegeben werden.

Weiterhin vorteilhaft ist ein Verfahren, bei welchem

5

10

15

40

- a) ein Teil der amphoteren, leicht kationischen und/oder der amphoteren und /oder der amphoteren, leicht anionischen Polyelektrolyten vor der Vermahlung und
- b) ein Teil der amphoteren, leicht kationischen und/oder der amphoteren und /oder der amphoteren, leicht anionischen Polyelektrolyten während der Vermahlung und/oder
- c) ein Teil der amphoteren, leicht kationischen und/oder der amphoteren und /oder der amphoteren, leicht anionischen Polyelektrolyten nach der Vermahlung zugegeben werden.

Weiterhin vorteilhaft ist ein Verfahren, bei welchem

- a) die amphoteren kationischen Polyelektrolyten vollständig vor der Vermahlung oder
- b) ein Teil der amphoteren kationischen Polyelektrolyten vor der Vermahlung und
- c) ein Teil der amphoteren kationischen Polyelektrolyten während der Vermahlung und/oder
- d) ein Teil der amphoteren kationischen Polyelektrolyten nach der Vermahlung zugegeben werden. Insbesondere vorteilhaft ist ein Verfahren, bei welchem
- 20 a) 10 90 Gew.% bzw. 20 40 Gew.% bzw. 30 Gew.% der amphoteren, leicht kationischen und/oder amphoteren und /oder amphoteren, leicht anionischen Polyeiektrolyten vor der Vermahlung und
 - b) 10 90 Gew.% bzw. 60 80 Gew.% bzw. 70 Gew.% der amphoteren, leicht kationischen und/oder amphoteren und /oder amphoteren, leicht anionischen Polye ektrolyten während der Vermahlung und/oder
 - c) 0 80 Gew.% bzw. 0 20 Gew.% der amphoteren, leicht ka tionischen und/oder amphoteren und
 /oder amphoteren, leicht anionischen Polyelektrolyten nach der Vermahlung zugegeben werden.

Insbesondere bevorzugt ist ein Verfahren, bei welchem

- a) 50 100 Gew.% bzw. 70 100 Gew.% der amphoteren kationischen Polyelektrolyten vor der Vermahlung und
- b) 0 50 Gew.% bzw. 0 30 Gew.% der amphoteren kationischen Polyelektrolyten während der Vermahlung und/oder
 - c) 0 50 Gew.% bzw. 0 30 Gew.% der amphoteren kationischen Polyelektrolyten nach der Vermahlung zugegeben werden.

Hervorragende Ergebnisse werden bei dem Verfahren erzielt, bei welchem einerseits 100 Gew.% der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten oder andererseits 100 Gew.% der amphoteren und/oder der amphoteren kationischen Polyelektrolyten vor der Vermahlung zugegeben werden, wenn die gewünschte Endfeinheit in einem Mühlendurchgang erreicht werden soll.

Bei mehreren Mühlendurchgängen zur Erreichung der Endfeinheit ergeben sich hervorragende Ergebnisse, wenn die notwendige Dispergiermittelmenge entsprechend der erreichten Zwischenfeinheit aufgeteilt wird.

Erfindungsgemäß erfolgt die Verwendung der wäßrigen Suspension von Mineralien und/oder Füllstoffen und/oder Pigmenten bei der Papierherstellung bzw. in der Papiererzeugung. Weitere Verwendungen betreffen die Oberflächenbehandlung (Pigmentierung) der Papieroberfläche in der Leimpresse der Papiermaschine, die Verwendung in der Papierstreicherei, im Vorstrich bzw. im Deckstrich bei der Papierstreicherei, im Holzschliff zur Störstoffbekämpfung, im Streichereiausschuß zur Störstoffbekämpfung (Pitchkontrolle), im Kreislaufwasser der Papiermaschine zur CSB-Erniedrigung (chemischer Sauerstoffbedarf-Erniedrigung), in der Kläranlage zur Abwasserbehandlung, zur Vorflokkung anionisch stabilisierter Pigment- und/oder Mineral- und/oder Füllstoff-Suspensionen in der Papiererzeugung bzw. zur Vorflockung (Immobilisierung) von Streichfarben in der Streicherei.

Es ist erfindungsgemäß gelungen, eine Mineral- und/oder Füllstoff- und/oder Pigment-Suspension durch Mahlen bei hohen Feststoffgehalten von ≥ 60 Gew.% herzustellen, bei welcher die Mineral- und/oder Füllstoff- und/oder Pigmentteilchen vermutlich sowohl elektrostatisch positiv wie auch sterisch stabilisiert sind und die Suspension über Wochen genügend viskositätsstabil bleibt "über lange Strecken sehr gut transportfähig ist "nicht absetzt und z. B. die Retention bei der Papierherstellung vorzüglich ist.

Überraschend und nicht voraussehbar war die Tatsache, daß bei der geeigneten Kombination eines oder mehrerer kationischer Monomere und eines oder mehreren anionischer Monomere sowie der geeigneten Zugabestelle der daraus polymerisierten amphoteren Polyelektrolyten vor, und/oder während und/oder nach dem Mahlprozess bei den hohen Scherkräften und Temperaturen, wie sie beim Naßvermahlen auftreten, keine gegenseitige Neutralisation der entgegengesetzt geladenen Monomereinheiten und somit

Koagulation der Polymere eintritt. Im Gegensatz dazu wird eine optimale Mahlung und Stabilisierung über längere Zeit der Suspension erreicht.

Die Zetapotentiale der Füllstoff- und/oder Pigment- und/oder Mineralteilchen weisen positive Vorzeichen auf oder sind gegen außen neutral, d.h. bei den neutralen Füllstoff- und/oder Pigment- und/oder Mineralteilchen heben sich die Summe der positiven und negativen Ladungen auf der Oberfläche der Teilchen gegen außen gegenseitig auf.

Eine gute Lagerstabilität in Bezug auf die Viskosität und das Absetzverhalten ist vor allem beim Transport und bei großen Lagertanks von ausschlaggebender Bedeutung, um den Verderb der Ware zu verhindern. Mit der erfindungsgemäß hergestellten Mineral- und/oder Füllstoff- und/oder Pigment-Suspension ist es möglich, den Produktionsort (Herstellungsort der Mineral- und/oder Füllstoff- und/oder Pigment-Suspension) sowie den Verbraucherort (z. B. Papierfabrik) frei zu wählen. Der Produktionsort kann so den geologischen Vorkommen der Mineral- und/oder Füllstoff- und/oder Pigment-Vorkommen angepaßt werden, und es muß nicht aus rein logistischen Gründen der Standort des Kunden mitberücksichtigt werden. Man ist dadurch auch völlig frei in der Wahl der Transportmittel und kann die ökologisch sinnvollste Variante wählen.

Eine wäßrige Suspension von Mineralien und/oder Füllstoffen und/oder Pigmenten mit einem Feststoffgehalt ≥ 60 Gew.%, bezogen auf die trockenen Mineralien und/oder Füllstoffe und/oder Pigmente, wird erfindungsgemäß durch Mahlen eines grob gebrochenen Rohgesteins hergestellt, wobei die erfindungsgemäßen amphoteren Polyelektrolyten zu Beginn der Vermahlung zugesetzt werden und/oder weitere Teile der erfindungsgemäßen amphoteren Polyelektrolyten während der Mahlung und/oder nach der Mahlung je in der erfindungsgemäßen Zusammensetzung zur Viskositätssenkung zugegeben werden.

Die für die Anwender, vornehmlich die Papierindustrie, ideale Kornverteilung, Konzentration und Lagerstabilität bei tiefer Viskosität der Mineral- und/oder Füllstoff- und/oder Pigment-Suspensionen können nach dem erfindungsgemäßen Verfahren in einem Arbeitsgang hergestellt werden, was einen enormen ökonomischen und qualitativen Fortschritt darstellt.

- Vorzugsweise beträgt die Konzentration der wäßrigen Auf schlämmung 60 78 Gew.%, bezogen auf das trockene Mineral.
- Vorzugsweise hat das Rohmaterial vor dem Mahlprozeß erfindungsgemäß einen mittleren äquivalent sphärischen Teilchendurchmeser von 10 -50 µm (gemessen auf dem Sedigraph 5100).

Vorbemerkungen zu den Beispielen :

a) Viskositätsmessung der amphoteren Polyelektrolyten

Die Viskositätsmessung erfolgte auf einen Brookfield Viskosimeter Typ PVF-100 bei 100 U/min. Für die einzelnen Messungen wurde die Spindel 1 verwendet:

Die Konzentration betrug bei allen Proben 32 Gew.% Polymer in Wasser. Der pH-Wert bei welchem die Viskosität gemessen wurde, entspricht dem angegebenen Wert bei den entsprechenden Beispielen. Die anionischen Gruppen lagen nicht neutralisiert vor.

Die Messung erfolgte in einem 400 ml-Becherglas von niedriger Form.

Die Temperatur während der Messung betrug 20°C. die Messung erfolgte nach 1 Min Rührzeit.

Diese Art der Viskositätsmessung wurde für alle folgenden Beispiele verwendet, mit Ausnahme der amphoteren kationischen Polyelektrolyten in der Mischung mit den amphoteren, leicht kationischen und/oder amphoteren und oder amphoteren, leicht anionischen Polyelektrolyten.

b) Feinheit der Mineral- und oder Füllstoff- und/oder Pigment-Suspension:

Die Feinheitsmerkmale der erfindungsgemäß hergestellten Suspensionen wurden durch Sedimentationsanalyse im Schwerefeld mit dem SEDIGRAPH 5100 der Firma Micromeritics, U.S.A., bestimmt.

Die Messung der kationisch stabilisierten Suspensionen erfolgte in destilliertem Wasser. Die Dispergierung der Proben wurde mittels Schnellrührer und Ultraschall vorgenommen.

Die Messung der Pulver erfolgte in 0,1 % Na₄P₂O₇-Lösung.

Die gemessene Teilchenverteilung wurde auf einem X-Y-Schreiber als Durchgangs-Summenkurve dargestellt (siehe z.B. Belger, P., Schweizerische Vereinigung der Lack- und Farben-Chemiker, XVII. FATIPEC-Kongreß, Lugano, 23. bis 28. September 1984), wobei auf der X-Achse der Teilchendurchmesser

30

eines entsprechenden sphärischen Durchmessers und auf der Y-Achse der Anteil an Teilchen in Gew.% aufgetragen wurde.

c) Viskositätsmessung der Mineral- und/oder Füllstoff- und/ocer Pigment-Suspension:

Die Viskositätsmessung erfolgte auf einen Brookfield Viskosimeter Typ PVF-100 bei 100 U/min. Für die einzelnen Messungen wurden die folgenden Spindeln verwendet:

10

Spindel	RV 2	40 - 320 mPas
	RV 3	320 - 800 mPas
	RV 4	800 - 1600 mPas
	RV 5	1600 - 3200 mPas
	RV 6	3200 - 3000 mPas

15

25

Die Messung erfolgte in einem 400 ml-Becherglas von niedriger Form.

Die Temperatur während der Messung betrug 20°C. Die Messung erfolgte nach 1 min. Rührzeit.

20 Vor den eigentlichen Messungen wurden alle Proben 2 Min. intensiv gerührt (5000 U/min, Rührscheibendurchmesser 50 mm).

Diese Art der Viskositätsmessung wurde für alle folgenden Beispiele verwendet.

d) Die spezifische Viskosität für die anionischen Dispergiermittel in den Anwendungsbeispielen, welche als Symbol den griechischen Buchstaben "Eta" hat, wurde wie folgt bestimmt:

Man stellt eine Lösung des Polymers/Copolymers, zur Messung 100% neutralisiert mit Natronlauge (pH 9), her, indem man 50 g, bezogen auf trockenes Polymer/Copolymer, in 1 lt, 60 g NaCl enthaltendes, destilliertes Wasser auflöst.

Danach mißt man mit einem Kapillarviskosimeter mit einer Baumekonstante von 0.000105 in einem auf 25°C thermostabiliserten Heizbad die Zeit, die ein genau definiertes Volumen der alkalischen Polymer/Copolymerlösung zum Durchströmen der Kapillare braucht und vergleicht mit der Zeit, die dasselbe Volumen der Blindlösung mit 60 g NaCl/1 zum Durchströmen der Kapillare braucht.

Es ist somit möglich, die spezifische Viskosität "Eta" wie folgt zu definieren:

Zeit des Durchströmens Zeit des Durchströ-35 mens der Polymerlösung der NaCl-Lösung

40

45

Zeit des Durchströmens der NaCl-Lösung

- Die besten Resultate werden erreicht, wenn der Kapillardurchmesser so gewählt wird, daß die Zeit, welche die Polymer/Copolymer enthaltende NaCl-Lösung benötigt, zwischen 90 und 100 sec. beträgt.
- e) Die Grenzviskosität der amphoteren kationischen Polyelektrolyten in der Mischung mit den amphoteren, leicht kationischen und/oder amphoteren und/oder amphoteren, leicht anionischen Polyelektrolyten sowie von Poly-DADMAC der Beispiele 1a) bis 1c) wurde nach folgender Literatur bestimmt:
- 50 B. Vollmert "Grundriß der Makromolekularen Chemie" Band III
 - E. Vollmert-Verlag, Karlsruhe 1985.

f) Ladungsmessung der Pigment-, Füllstoff- und Mineralsuspension mit SCD

Zur Bestimmung der Oberflächenladungen wurde der "Streaming Current Detector" der Fa. Mütek, Hersching b. München, verwendet, (Typ PCD-02)

Die Titrationen erfolgten nach den Ausführungen in der Dissertation "Untersuchungen zur Anwendung

der Polyelektrolyttitration auf dem Gebiet der Papierherstellung" von Peter Heß, Darmstadt, 1983, insbesondere gemäß den Seiten 33 ff. dieser Dissertation.

Als Titrierlösung wurde 0,01 M Kaliumpolyvinylsulfatlösung (KPVS) der Fa. SERVA verwendet.

Herstellungsbeispiele

I. Belspiele zum Stand der Technik

Beispiel 1a:

5

20

25

Eine 60 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einer Kornverteilung, so daß 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm aufweisen (gemessen auf dem Sedigraph 5100), wurden mit 0,1 Gew.% eines Poly(diallyldimethylammoniumchlorid), Grenz-Viskosität 25 ml/g, und 0,02 Gew.% eines Natriumpolyacrylats (spez. Viskosität 0,35; 100 % der Carboxylgruppen mit NaOH neutralisiert), je bezogen auf den trockenen Marmor, unter starken Scherkräften dispergiert (8000 U min, Rührscheiben Ø 50 mm).

	١			
-	nach 1 Std.	2 Tage	6 Tage	12 Tage
	204	420	640	1560

Beispiel 1 a zeigt, daß die Viskosität beim Stand der Technik nicht stabil ist und daß die Suspension nach zwei Wochen bereits unbrauchbar ist.

Beispiel 1 b:

Es wurde versucht, eine 67 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einem äquivalent sphärischen mittleren Teilchendurchmesser von 12 µm (gemessen auf dem Sedigraph 5100) nach folgender Rezeptur auf einer Dynomill (0,6 I Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 60 Gew.% der Teilchen einen äquivalenten sphärischen Durchmesser < 2 µm (gemessen auf dem Sedigraph 5100) aufweisen, aufzumahlen.

Rezeptur:

5000 g Marmor

15 g Poly(diallyldimethylammoniumchlorid) Grenz-Viskosität 25 ml/g

4,5 g Natriumpolyacrylat (spez. Viskosität 0,35, 100 % der Carboxylgruppen mit NaOH neutralisiert) 2472 g Wasser

Die Mahlung mußte abgebrochen werden, da der Viskositätsanstieg derart hoch war, daß eine Weitervermahlung nicht mehr möglich war, weil die Mühle blockierte. Die gewünschte Endfeinheit konnte nicht erreicht werden.

50 Beispiel 1 c:

Eine 60 Gew.%-ige wäßrige Aufschlämmung von natürlchem Marmor mit einem äquivalent spärischen mittleren Teilchendurchmesser von 12 μm (gemessen auf dem Sedigraph 5100) wurde in der folgenden Rezeptur auf einer Dynomill (0.6 I Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 60 Gew.% der Teilchen einen äquivalenten sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) aufwiesen, aufgemahlen.

5000 g Marmor

15 g Poly(diallyldimethylammoniumchlorid) Grenz-Viskosität 25 ml/g

4,5 g Natriumpolyacrylat (spez. Viskosität 0,35; 100 % der Carboxylgruppen mit NaOH neutralisiert) 3346 g Wasser

Auch bei einer Konzentration von 60 Gew.% ergab sich keine Verbesserung der Mahleigenschaften mit einem Poly(diallyldime-thylammoniumchlorid) gegenüber dem Versuch 1b.

Eine Vermahlung auf die gewünschte Feinheit bei Viskositäten < 2000 mPas war mit dem Stand der Technik nicht möglich.

II. Erfindungsgemäße Beispiele

Beispiel 2:

Eine 67 Gew.%-ige wäßrige Aufschlämmung von natürlichem Mamor mit einer Kornverteilung, so daß 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2μm aufweisen (gemessen auf dem Sedigraph 5100), wurde mit unterschiedlichen Mengen, bezogen auf den trockenen Marmor, des folgenden Copolymers hergestellt,

wobei das Copolymer zusätzlich im Molekulargewicht resp. Eigenviskosität der 32 Gew.%-igen wäßrigen Lösung variiert wurde. Es wurde unter starkem Rühren dispergiert (8000 U/min, Rührscheibendurchmesser 50 mm).

Das Ziel dieser Versuchsserie war es, die optimale Viskosität bzw. das Molekulargewicht der amphoteren Polyelektrolyten sowie die optimale Dispergiermittelmenge festzustellen.

45

50

TABELLE 1

5	Viskosität und pH-Wert des amphoteren Polyelektrolyten (32 Gew.%ig in H₂O)		Zugabemenge in Gew.% bez. auf trockenen Marmor	Viskosität der Suspension	
-	Viskosität	pH-Wert		sofort	nach 20 Tg.
10	95 mPas	3,3	0,1 0,15 0,2 0,25 0,3 0,35	1440 840 610 420 340 275	
15			0,4 0,5	215 165	155
20	61 mPas	3,3	0,1 0,2 0,3 0,4	1430 420 265 190	180
	37 mPas	3,3	0,1 0,2 0,3	950 250 145	230
25	24 mPas	3,5	0,1 0,2 0,3 0,4 0,5	1910 1180 670 455 360	
30			0,6 0,7	275 200	280

Die optimale Viskosität der amphoteren Polyelektrolyten liegt bei 30 - 50 mPas.

Beispiel 3:

35

45

50

55

Eine 67 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einer Kornverteilung, so daß 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm aufweisen (gemessen auf dem Sedigraph 5100), wurden mit unterschiedlichen Mengen, bezogen auf den trockenen Marmor, des folgenden Copolymers hergestellt,

wobei das Copolymer zusätzlich im Molekulargewicht resp. Eigenviskosität der 32 Gew.%-igen wäßrigen Lösung varriert wurde. Es wurde unter starkem Rühren dispergiert (8000 U/min Rührscheibendurchmesser 50 mm).

Das Ziel dieser Versuchsserie war es, die optimale Viskosität bzw. das Molekulargewicht der amphoteren kationischen Polyelektrolyten festzustellen, sowie die optimale Dispergiermittelmenge festzustellen.

TABELLE 2

25	Viskosität und pH-Wokationischen Polyelektroly		Zugabemenge in Gew.% bez. auf trockenen Marmor	Viskosität der Suspension	
	Viskosität	pH-Wert		sofort	nach 10 Tg.
30	106 mPas	. 3,7	0,1 0,2 0,3	465 260 200	345
35	44 mPas	3,7	0,1 0,2 0,3	535 220 140	375
40	33 mPas	3,7	0,1 0,2 0,3 0,4 0,5 0,6	1090 750 570 430 290 200	530

Beispiel 4:

Eine 67 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einer Kornverteilung, so daß 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm aufweisen (gemessen auf dem Sedigraph 5100), wurde mit unterschiedlichen Mengen, bezogen auf den trockenen Marmor, des folgenden Copolymers hergestellt,

55

45

wobei das Copolymer zusätzlich im Molekulargewicht resp. Eigenviskosität der 32 Gew.%-igen wäßrigen Lösung varriert wurde. Es wurde unter starkem Rühren dispergiert (8000 U/min Rührscheibendurchmesser 50 mm).

Das Ziel dieser Versuchsserie war es, die optimale Viskosität bzw. das Molekulargewicht der amphoteren, leicht anionischen Polyelektrolyten festzustellen, sowie die optimale Dispergiermittelmenge festzustellen

TABELLE 3

25

	Viskosität und pH-Wert anionischen Polyelektroly	Viskosität und pH-Wert des amphoteren leicht anionischen Polyelektrolyten (32 Gew.%ig in H₂O)		Viskos Suspe	ität der ension
30	Viskosität pH-Wert			sofort	nach 10 Tg.
35	84 mPas	3,1	0,1 0,2 0,3 0,4 0,5	1500 840 420 275 185	165
40	40 mPas	3,0	0,1 0,2 0,3	1180 265 165	190

45 Beispiel 5:

Eine 72 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einem äquivalent sphärischen mittleren Teilchendurchmesser von 12 μm (gemessen auf dem Sedigraph 5100) wurde mit der folgenden Rezeptur in einer Dynomill (0,6 l Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 70 Gew.% der Teilchen einen äquivalenten sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) aufwiesen, aufgernahlen.

Rezeptur : 5000 g Marmor

25 g amphoteres Copolymer

entsprechend der Formel des Beispiels 2

(Viskosität 37 mPas)

1925 g Wasser zugeben

Viskosität :	nach 2 Std.	1 Tag	5 Tagen	8 Tagen	16 Tagen
	215	255	300	365	430
	nach 30 Tagen				
	515	mPas			

10

5

Oberflächenladung nach 7 Tagen + 7,9 µVal/g Feststoff

In Beispiel 5 ist deutlich zu erkennen, daß beim erfindungsgemäßen Einsatz der erfindungsgemäßen amphoteren Polyelektrolyten bei hohen Konzentrationen eine sehr tiefe und über Wochen ausreichend stabile Viskosität auch bei durch Mahlen erzeugten feintelligen Mineral- und/oder Füllstoff- und/oder Pigment Suspensionen herzustellen ist.

Beispiel 6:

20

Eine 72 Gew.%-ige wäßrige Aufschlämmung von Champagnekreide mit einem äquivalent sphärischen mittleren Teilchendurchmesser von 12 µm (gemessen auf dem Sedigraph 5100) wurde mit der folgenden Rezeptur in einer Dynomill (0,6 I Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 90 Gew.% der Teilchen einen äquivalenten sphärischen Durchmesser < 2 µm (gemessen auf dem Sedigraph 5100) aufwiesen, aufgemahlen.

Rezeptur:

5000 g Champagnekreide 60 g amphoteres Copolymer aus Beispiel 2 (Viskosität 37 mPas)

1715 g Wasser zugeben

35

Viskosität	пасh 1	1 Tag	10	20
: in mPas:	Std.		Tagen	Tage
	600	650	710	900

40

Beispiel 7:

Eine 72 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einem äquivalent sphärischen mittleren Teilchendurchmesser von 12 μm (gemessen auf dem Sedigraph 5100) wurde mit der folgenden Rezeptur in einer Dynomill (0,6 l Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 90 Gew.% der Teilchen einen äquivalenten sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) aufwiesen, aufgemahlen.

Rezeptur:

5000 g Marmor

50 55 g amphoteres Polymer aus Beispiel 2

1418 g Wasser zugeben

Viskosität in mPas:	nach 1 Std.	1 Tag	10 Tagen	20 Tage
	740	780	870	980

Oberflächenladung nach 7 Tagen + 10,1 µVal/g Feststoff

5 Beispiel 7a:

Im Pilot-plant-Maßstab wurde der im Beispiel 7 verwendete Marmor in einer vertikal angeordneten Permill (Süssmeier mit 180 Liter Inhalt) mit Mahlkörpern aus Glas (Ø 1-2 mm) auf eine Kornverteilungskurve, so daß 90 Gew.-% der Teilchen einen äquivalent sphärischen Durchmesser < 2 µm (gemessen auf dem Sedigraph 5100) aufwiesen, bei einer Konzentration von 74,5 Gew.-% vermahlen. Es wurden ca. 2 to dieser Slurry herge stellt.

Rezeptur:

1480 kg Marmor

10,4 kg amphoteres Polymer

5 aus Beispiel 2

510 kg Wasser zugeben

Viskosität in mPas:	nach 1 Std.	1 Tag	10 Tagen	20 Tage
	600	560		680

20

Oberflächenladung nach 7 Tagen + 11,9 µVal/g Feststoff

Beispiele 6 und 7 und 7a zeigen, daß auch sehr hohe Feinheiten, wie sie in Streichrezepturen Verwendung finden, problemlos durch Mahlen von grob gebrochenem Rohgestein bei hohen Konzentrationen herstellbar sind.

30 Beispiel 8:

Eine 67 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einem äquivalent sphärischen mittleren Teilchendurchmesser von 12 μm (gemessen auf dem Sedigraph 5100) wurden mit der folgenden Rezeptur in einer Dynomill (0,6 l Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 60 Gew.% der Teilchen einen äquivalenten sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) aufwiesen, aufgemahlen.

Rezeptur:

5000 g Marmor

20 g amphoteres Copolymer

entsprechend der Formel des Beispiel 2

(Viskosität 37 mPas)

2472 g Wasser zugeben

4	

Viskosität in mPas:	nach 2 Std.	1 Tag	5 Tagen	8 Tagen	16 Tagen
	120	130	140	212	208
	nach 30 Tagen				
	520				

50

55 Oberflächenladung nach 7 Tagen + 4,8 μVal/g Feststoff.

In Beispiel 8 ist deutlich zu erkennen, daß beim erfindungsgemäßen Einsatz von amphoteren, gegen außen neutrale Polyelektrolyten bei hohen Konzentrationen eine sehr tiefe und über Wochen ausreichend stabile Viskosität auch bei durch Mahlen erzeugten feinteiligen Mineral- und oder Füllstoff- und oder

Pigment Suspensionen herzustellen ist, wie sie als Füllstoff für die Papiererzeugung eingesetzt werden.

Beispiel 9:

5

20

25

30

Eine 72 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einem äquivalent sphärischen mittleren Teilchendurchmesser von 12 μm (gemessen auf dem Sedigraph 5100) wurde mit der folgenden Rezeptur in einer Dynomill (0,6 l Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 60 Gew.% der Teilchen einen äquivalenten sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) aufwiesen, aufgemahlen.

Rezeptur:

5000 g Marmor

25 g amphoteres Polymer

aus Beispiel 5 wobei bei a) 95 Mol.% der Carboxylgruppen mit Ca(OH)₂ neutralisiert und bei b) 95 Mol.% mit Mg (OH)₂ neutralisiert wurden.

2460 g Wasser zugeben

Viskosität in mPas:		nach 1 Std.	1 Tag	4 Tagen	8 Tagen	16 Tagen
	a) b)	96 104	110	130	140	160 155

Beispiel 9 zeigt, daß die erfindungsgemäße Calcium- und/oder Magnesiumneutralisation der Carboxylgruppen im amphoteren Polyelektkrolyten trotz erheblich höherem Feststoffgehalt und nur gering mehr Dispergiermittel gegenüber dem Beispiel 8 nochmals bessere Viskosität bringt als derselbe nicht neutralisierte amphotere Polyelektrolyt.

Beispiel 10:

Eine 67 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einem äquivalent sphärischen mittleren Teilchendurchmesser von 12 μm (gemessen auf dem Sedigraph 5100) wurde mit der folgenden Rezeptur in einer Dynomill (0,6 l Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 60 Gew.% der Teilchen einen äquivalenten sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) aufwiesen, aufgemahlen.

Rezeptur:

5000 g Marmor

17.5 g amphoteres kationisches Copolymer der folgenden Verbindung

2,5 g amphoteres Copolymer, wobei die anionischen und kationischen Gruppen im Verhältnis 1:1 vorliegen analog Beispiel 2 mit einer Viskosität von 37 mPas vor der Mahlung zugegeben 2,5 g "wie die ersten 2,5 g" während der Vermahlung zugegeben

2472 g Wasser

 Viskosität
 nach 2 Std.
 1 Tag
 4 Tagen
 8 Tagen
 16 Tagen

 450 cP
 450cP
 520cP
 615cP
 730cP

 30 Tagen
 830cP
 615cP
 730cP

10

15

5

Das Beispiel 10 zeigt, daß mit der erfindungsgemäßen Kombination von den erfindungsgemäßen amphoteren Polyelektrolyten eine transportfähige, nicht sedimentierende Aufschlämmung von Calciumcarbonat durch Mahlen von grob gebrochenem Stein möglich ist. Die Viskosität bei hoher Konzentration ist qut.

Die in den Herstellungsbeispielen 5 + 8 hergestellten Marmorslurries wurden im Vergleich zu einem, heute üblicherweise mit anionischen Dispergiermitteln hergestellten Marmorslurry auf ihre Retention bei der Papierherstellung untersucht.

20

Testbe		
Stoff:	80 % Birkensulfat 20 % Kiefersulfat	Mahigrad 23° SR
Retenti	onshilfsmittel:	0,05 % Polyacrylamid (Grenzviskosität 700 ml g)

25

35

- Durchführung der Retentionsuntersuchung nach Britt-Jar Firma Paper Research Material, SYRACUSE, U.S.A.:
 - 1. 275 mlg 2%-ige Fasersuspension (atro 3,63 g Fasern) sowie 275 ml des. Wasser ins Britt-Jar Gefäß geben;
 - 2. Britt-Jar Rührer auf 700 U min;
 - 3. 25,4 ml 5%-ige Mineral- und oder Füllstoff- und oder Pigmentsuspension zugeben;
 - 4. nach 20 sec. die entsprechende Menge Retentionsmittel zugeben;
 - 5. nach weiteren 25 sec. Ablaufhahn öffnen und 100 ml Siebwasser ablaufen lassen.
- 6. Im Siebwasser wird der CaCO₃-Anteil komplexometrisch nach aufschließen mit HCl oder mit Flammen-AAS bestimmt. Bei anderen Mineralien und/oder Füllstoffen und/oder Pigmenten wird das Siebwaser über Membranfilter filtriert, verascht bei 600 °C, über einen alkalischen Schmelzaufschluß, z. B. mit NaOH/KOH im Zirkontiegel, in eine wasserlösliche Form gebracht und im angesäuerten Zustand mittels AAS bestimmt. Unter Berücksichtigung der entsprechenden Umrechnungsfaktoren kann auf die jeweiligen Mineralien und/oder Füllstoffe und oder Pigmente geschlossen werden.

7. Über den eingetragenen Anteil an Mineralien und/oder Füllstoffen und/oder Pigmenten pro 100 ml und den im Siebwasser bestimmten Anteil an Mineralien und/oder Füllstoffen und/oder Pigmenten pro 100 ml jäßt sich die Füllstoffretention berechnen.

50

Resultate:				
Produkte:	Füllstoff-First-Pass-Retention			
Anionisch stabilisierte CaCO ₃ -Suspension mit 60 % < 2 µm (0,15 % Natriumpolyacrylat spez. Visk. 0.35)	41,1 %			
Anionisch stabilisierte CaCO ₃ -Suspension mit 70 % < 2 μm (0,3% Natriumpolyacrylat spez. Visk. 0.54)	35,3 %			
CaCO ₃ -Suspension aus Herstellungsbeispiel 8	62,4 %			
CaCO₃-Suspension aus Herstellungsbespiel 5	65,8 %			

Durch den Einsatz eines mit dem erfindungsgemäßen, neuen Herstellungsverfahren produzierten Marmorsuspension ist eine Steigerung der Füllstoffretention möglich ohne die Papierformation und Papierfestigkeit negativ zu beeinträchtigen, was einen enormen Sprung in der Entwicklung darstellt.

Die erfindungsgemäßen wäßrigen Suspensionen sowie das erfindungsgemäße Verfahren zu ihrer Herstellung weisen u.a. folgende Vorteile auf:

- Im Gegensatz zu den bis heute bekannten Verfahren ist es möglich, hochkonzentrierte (≥ 60 Gew.%) Mineral- und/oder Füllstoff- und/oder Pigment-Suspension durch Naßvermahlung aus grob gebrochenem Rohstein herzustellen.
- Ein Füllstofferhöhung ohne nennenswerten Abfall der Reißfestigkeit des Papiers ist möglich, wodurch sich ein enormer ökonomischer Vorteil in der Papierfabrikation ergibt. Weiterhin ergab sich mit der erfindungsgemäßen Zusammensetzung, daß eine Füllgraderhöhung von 15 Gew.% auf 17 Gew.% ohne nennenswerte Einbuße an Papierfestigkeit, speziell Reißfestigkeit, möglich ist.
- Neueste Praxisversuche haben gezeigt, daß eine Füllstofferhöhung von 16 % auf 26 % erreichbar ist, ohne die Papiereigenschaften negativ zu beeinflussen.
 - Die Suspensionen weisen eine ausgezeichnete Lagerstabilität bei tiefen Viskositäten ohne Sedimentationsproblem auf.
- In der Anwendung ergeben sich z.B. große Vorteile bezüglich der Füllstoffretention in der Papiererzeugung.
- Die Mahlung und Dispergierung ist unter hohen Mahlkräften und bei Siedetemperatur des Wassers möglich.
- Die ökologisch günstigste Transportmöglichkeit kann gewählt werden.

Eine vorzugsweise Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das Dispergiermittel eine Mischung aus einem oder mehreren kationischen Polyelektrolyten und/oder einem oder mehreren amphoteren kationischen Polyelektrolyten, bei welchen die nichtneutralen Monomereinheiten überwiegend positive Ladungen tragen, und einem oder mehreren teilneutrali sierten anionischen Polyelektrolyten und/oder einem oder mehreren teilneutralisierten amphoteren anionischen Polyelektrolyten, bei welchen die nichtneutralen Monomereinheiten überwiegend negative Ladungen tragen, ist.

Im folgenden werden die teilneutralisierten anionischen bzw. kationischen Polyelektrolyte und die teilneutralisierten amphoteren anionischen bzw. kationischen Polyelektrolyte kurz als erfindungsgemäße anionische bzw. erfindungsgemäße kationische Polyelektrolyte bezeichnet.

Vorteilhafterweise ist das Dispergiermittel eine Mischung aus einem oder mehreren homopolymeren kationischen Polyelektrolyten und/oder einem oder mehreren copolymeren amphoteren kationischen Polyelektrolyten, bei welchen die nichtneutralen Monomereinheiten überwiegend positive Ladungen tragen, und einem oder mehreren homo- und/oder copolymeren teilneutralisierten anionischen Polyelektrolyten und/oder einem oder mehreren amphoteren anionischen teilneutralisierten Polyelektrolyten, bei welchen die nichtneutralen Monomereinheiten überwiegend negative Ladungen tragen.

Vorteilhafterweise trägt der kationische Polyelektrolyt und/oder amphotere kationische Polyelektrolyt, bei welchen die nichtneutralen Monomereinheiten überwiegend positive Ladungen tragen, die die positive Ladung erzeugende funktionelle Gruppe in einem Substituenten der ethylenischen Hauptkette.

Weiterhin vorteilhaft ist, daß der Substituent über

5

10

an der Hauptkette gebunden ist.

Weiterhin vorteilhaft ist, daß der kationische Polyelektrolyt quaternäre Ammoniumgruppen enthält und daß der amphotere kationische Polyelektrolyt, bei welchem die nichtneutralen Monomereinheiten überwiegend positive Ladungen tragen, quaternäre Ammoniumgruppen und Carboxylgruppen und/oder Sulfonsäuregrup-

pen und/oder saure phosphorsäureesterhaltige Gruppen enthält.

Insbesondere vorteilhaft ist, daß der kationische Polyelektrolyt eine oder mehrere Verbindungen aus der Gruppe der folgenden Verbindungen gemäß der folgenden allgemeinen Formel ist

5

10

20

15

wobei R_1 , R_5 und R_6 = H

- und/oder R1 bis R6
- Alkyl und/oder
- Aryl,
- wobei R₅ auch

30

35

C=0

X

Y

R=-N+-R

R3

X = O und oder N-H

 $Y = -CH_2 - bis - C_5H_{0} -$

n = 20 bis 3000

und $(An)^-$ = Chlorid und oder Bromid und oder Jodid und oder HSO₄ - und oder CH₃SO₄ - und oder Nitrit sein kann.

Ganz besonders vorteilhaft ist, wenn gemäß dieser allgemeinen Formel

45 R₁ = H oder -CH₃

 $R_2 = -CH_3 \text{ oder } -C_2H_5$

 $R_3 = -CH_3 \text{ oder } -C_2H_5$

 $R_4 = -CH_3$ bis $-C_4H_9$ und Isomere

X = O oder N - H

50 $Y = -CH_2$ -bis - C_5H_{10} -

 R_5 und $R_6 = H$,

insbesondere, wenn $Y = -(CH_2)_3$ - und

X = -NH ist.

Vorteilhafterweise ist der amphotere kationische Polyelektrolyt, bei welchem die nichtneutralen Monomereinheiten überwiegend positive Ladungen tragen, eine oder mehrere Verbindungen aus der Gruppe der folgenden Verbindungen gemäß der folgenden allgemeinen Formel

$$\begin{bmatrix}
R_{5} & R_{1} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{6} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{6} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{6} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_{8} & R_{7} \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R$$

wobei R_1,R_5 , R_6 und $R_7 = H$

- und/oder R₁ bis R₇
- Alkyl und/oder
- Aryl,

wobei R5 auch

25

35

30

sein kann,

R₈ und R₉ =

- H und/oder
- Alkyl und/oder
- 40 Aryl sein kann;

R₈ oder R₉ auch

45

sein kann,

wenn

55

ist,

X = O und/oder N-H

 $Y = -CH_2$ - bis - C_5H_{10} -

- $(CH_2)_n$ - C und/oder OH

- (CH₂)_n S=0 und/oder

0 "S=0 und/oder OH

eine saure Phosphorsäureester-Gruppe

sein kann.

15

a = 70 - 99 Mol.%

b = 1 - 30 Mol.%

n = 1 - 18

35

und (An)⁻ = Chlorid und oder Bromid und/oder Jodid und/oder HSO₄⁻ und/oder CH₃SO₄⁻ und/oder Ni trit sein kann.

Insbesondere vorteilhaft ist, daß der amphotere kationische Polyelektrolyt eine Verbindung gemäß dieser allgemeinen Formel ist, wobei

 $R_1 = H \text{ oder -CH}_3$

 $R_2 = -CH_3 \text{ oder } -C_2H_5$

 $R_3 = -CH_3 \text{ oder } -C_2H_5$

R₄ = -CH₃ bis -C₄H₉ und Isomere

X = O oder N - H

 $Y = -CH_2$ -bis - C_5H_{-0} -

 R_5 und $R_6 = H$

R₇ = H oder -CH₃

 R_8 und $R_9 = H$.

Ganz besonders vorteilhaft ist, wenn $(An)^- = CI^-$ und $Y = -(CH_2)_3$ - ist.

Weiterhin vorteilhaft ist, wenn der anionische teilneutralisierte Polyelektrolyt eine oder mehrere Verbindungen aus der Gruppe der folgenden Verbindungen gemäß der folgenden allgemeinen Formel ist

$$Z = -C$$
 oder $-(CH_2)_n - C$

und/oder

-
$$(CH_2)_n$$
 ——— $S=0$ und/oder

15

5

eine saure phosphorsäureester-Gruppe

 $R_1 = -H \text{ oder } - CH_3$

 R_2 und $R_3 = -H$ und/oder

- Alkyl und/oder

- Aryl

wobei R2 oder R3 auch Z sein kann, wenn

30

35

u = +1 und/oder + II und/oder + III

Ka = Alkali- und/oder Erdalkali und/oder Erdmetallion

w = 59 bis 95 Mol.% pro Anzahl Z im Monomer

v = 5 bis 41 Mol.% geteilt durch u

0 n = 1 - 12.

Weiterhin ist vorteilhaft, daß der teilneutralisierte anioni sche Polyelektrolyt eine Mischung aus einem oder mehreren der Homo- und/oder Copolymerisate von Verbindungen gemäß dieser allgemeinen Formel ist.

Weiterhin vorteilhaft ist, daß der amphotere anionische teilneutralisierte Polyelektrolyt, bei welchem die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen, eine oder mehrere Verbindungen aus der Gruppe der Verbindungen gemäß der folgenden allgemeinen Formel ist:

50

wobei R_1 , R_5 , R_6 und $R_7 = H$

- und/oder R₅ bis R₇
- Alkyl und/oder
- Aryl,

wobei Rs auch

25

30

35

sein kann,

- R_8 und R_9 =
- H und/oder
- Alkyl und/oder - Aryl sein kann;
 - R₈ oder R₉ auch

45

sein kann,

50 wenn

55

ist,

$$X = O \text{ und/oder N-H}$$

 $Y = -CH_2$ - bis - C_5H_{10} -

10

-
$$(CH_2)_n$$
 - C und/oder

eine saure Phosphorsäureester-Gruppe sein kann.

a = 1 - 30 Mol.%

b = 70 - 99 Mol.%

n = 1 - 18

und $(An)^- = Chlorid und/oder Bromid und/oder Jodid und/oder HSO₄ - und/oder CH₃SO₄ - und/oder Nitrit sein kann.$

Insbesondere vorteilhaft ist, daß der amphotere anionische teilneutralisierte Polyelektrolyt eine oder mehrere Verbindungen gemäß dieser allgemeinen Formel st, wobei

 $R_1 = H \text{ oder -CH}_3$

 $R_2 = -CH_3 \text{ oder } -C_2H_5$

 $R_3 = -CH_3 \text{ oder } -C_2H_5$

R₄ = -CH₃ bis -C₄H₉ und Isomere

X = O oder N - H

 $Y = -CH_2$ -bis - C_5H_{10} -

 R_5 und $R_6 = H$

R₇ = H oder -CH₃

 R_8 und $R_9 = H_1$

sind.

50

55

Ganz besonders vorteilhaft ist, wenn $(An)^- = Cl^-$ und $Y = -(CH_2)_3$ - ist.

Eine weitere günstige Ausführungsform der Erfindung ist es, daß

der anionische teilneutralisierte Polyelektrolyt ein homo-und/oder copolymerer, und daß der amphotere anionische teilneutralisierte Polyelektrolyt, bei welchem die nichtneutralen Monomereinheiten überwiegend negative Ladungen tragen, je ein Carboxylgruppen- und/oder Sulfonsäuregruppen- und/oder saure Phosphorsäureestergruppen-enthaltender teilneutralisierter anionischer Polyelektrolyt ist.

Insbesondere ist es günstig, daß der teilneutralisierte anionische Polyelektrolyt eine teilneutralisierte Polyacrylsäure und oder ein teilneutralisiertes Copolymer aus diesen ist.

Vorteilhafterweise sind beim anionischen teilneutralisierten Polyelektrolyt und beim amphoteren anionischen teilneutralisierten Polyelektrolyt nur ein statistischer Teil der Säuregruppen mit einem ein- und/oder

mehrwertigen Kation neutralisiert.

Günstigerweise werden als Kationen Alkali- und/oder Erdalkali-und/oder Erdmetallkationen und/oder Amine und/oder Alkanolamine und/oder quaternäre Ammonium-Kationen verwendet, wobei insbesondere vorteilhaft als Kationen Na und/oder K und/oder Li und/oder NH4 und/oder Ca² und/oder Mg² und/oder Sr² verwendet werden. Ganz besonders gute Ergebnisse werden erhalten, wenn als Kationen Alkali- und/oder Erdalkalikationen verwendet werden, insbesondere Alkalikationen und hier insbesondere Na NH4 ist insbesondere ungeeignet, da es zu starker Geruchsbelästigung und Gesundheitsschädigung führt.

Dispergiermittel, die sich erfindungsgmäß besonders eignen, sind Mischungen gemäß den allgemeinen Formeln des Anspruchs 14 und/oder der amphoteren kationischen Polyelektrolyten des Anspruchs 15 und des Anspruchs 16 und/oder der amphoteren anionischen teilneutralisierten Polyelektrolyten des Anspruchs 15

Besonders günstig ist eine Dispergiermittelmischung gemäß der folgenden allgemeinen Formel

30

35

40

z (Kat) [†]

wobe

(Kat) - Alkali- und/oder Erdalkali- und/oder Erdmetallkationen und/oder Amine und/oder Alkanolamine und/oder quaternäre Ammonium-Kationen

⁴⁵ (An)⁻ = Chlorid, Bromid, Jodid, HSO₄ · CH₃SO₄ ⁻ und oder Nitrit

a = 60 - 99 Mol.%

b = 1 - 40 Mol.%

z = 1 - 70 Mol.%

w = 30 - 99 Mol.%.

Besonders vorteilhaft sind Dispergiermittelmischungen gernäß dieser allgemeinen Formel, wobei (Kat) = Alkali- und/oder Erdalkalikationen

(An)⁻ = Chlorid, Bromid, Jodid, HSO₄ CH₃SO₄ und/oder Nitrit

a = 80 - 98 Mol.%

b = 2 - 20 Mol.%

z = 2 - 50 Mol.%

w = 50 - 98 Mol.%.

Weiterhin vorteilhaft sind Dispergiermittelmischungen gemäß dieser allgemeinen Formel, wobei (Kat) = Na, K, Li, Ca², Mg², und/oder Sr²

```
(An)^- = Chlorid, Bromid, Jodid, HSO<sub>4</sub> · CH<sub>3</sub>SO<sub>4</sub> - und/oder Nitrit a = 85 - 97 Mol.% b = 3 - 15 Mol.% z = 3 - 30 Mol.% w = 70 - 97 Mol.%.
```

Ganz besonders günstige Ergebnisse werden erzielt, wenn die Dispergiermittelmischung eine Mischung dieser allgemeinen Formel ist, wobei

```
(Kat) = Alkaliion

(An) = Halogenion

0 a = 90 - 96 Mol.%

b = 4 - 10 Mol.%

z = 4 - 20 Mol.%

w = 80 - 96 Mol.%.
```

Hervorragende Ergebnisse werden erzielt, wenn die Dispergiermittelmischung eine Mischung gemäß dieser allgemeinen Formel ist, wobei

```
(Kat) = Na

(An) = Cl = a = 95 Mol.%

b = 5 Mol.%

z = 5 Mol.%

w = 95 Mol.%.
```

30

45

Vorteilhafterweise sind der anionische Polyelektrolyt und/oder der amphotere anionische Polyelektrolyt mit Alkali-, und/oder Erdalkali und/oder Erdmetall-Kationen und/oder Aminen und/oder Alkanolaminen und/oder quaternären Ammonium-Kationen teilneutralisiert, wobei insbesondere Alkali- und/oder Erdalkali-Kationen, ganz besonders Alkali-Kationen und hier insbesondere Na + Kationen geeignet sind.

Günstigerweise sind beim anionischen Polyelektrolyten und/oder beim amphoteren anionischen Polyelektrolyten 1 bis 70 Mol.% der Säuregruppen neutralisiert. Besonders günstige Ergebnisse werden erzielt, wenn 2 bis 60 Mol.%, insbesondere wenn 3 bis 30 Mol.% der Säuregruppen neutralisiert sind, wobei ein Neutralisationsgrad von 5 Mol.% bis 10 Mol.% beste Ergebnisse erzielt.

Nichtneutralisierte Polyacrylsäure ist ungeeignet, da sie bei + 20°C bereits zu kristallisieren beginnt und somit nicht mehr dosierbar ist.

Wenn die Kristallisation einmal eingetreten ist, muß die Polymerlösung auf 100°C aufgeheizt werden, damit die Kristalle wieder aufgelöst werden.

Im Winter und in kälteren Regionen ist eine Produktion mit nichtneutralisierten Polyacrylsäuren undenkbar.

Es ist vorteilhaft, daß die spezifische Viskosität "Eta" des teilneutralisierten anionischen Polyelektrolyten und/oder des amphoteren anionischen Polyelektrolyten in der Mischung mit dem kationischen und/oder dem amphoteren kationischen Polyelektrolyten, gemessen in der vollen Salzform, zwischen 0,2 und 1,0 liegt. Insbesondere vorteilhaft ist, daß "Eta" zwischen 0,35 und 0,6 liegt und es ist ganz besonders günstig, wenn "Eta" 0,55 beträgt.

Es ist vorteilhaft, daß der Polymerisationsgrad des kationischen Polyelektrolyten und/oder des amphoteren kationischen Polyelektrolyten in der Mischung mit dern teilneutralisierten anionischen Polyelektrolyten und/oder dem amphoteren anionischen teilneutralisierten Polyelektrolyten, gemessen über die Grenzviskosität, im Bereich von 5 ml/g bis 50 ml/g liegt. Ganz besonders vorteilhaft ist ein Polymerisationsgrad im Bereich von 15 ml/g bis 40 ml/g, wobei ein Bereich von 25 ml/g bis 35 ml/g insbesondere bevorzugt wird.

Vorteilhafterweise besteht die Dispergiermittelmischung aus

70 - 98 Gew.% kationischem Polyelektrolyt und/oder amphoterem kationischen Polyelektrolyt und

2 - 30 Gew.% anionischem teilneutralisierten Polyelektroly: und/oder amphoterem teilneutralisierten anionischen Polyelektrolyt.

Weiterhin vorteilhaft kann eine Dispergiermittelmischung aus

75 - 95 Gew.% der erfindungsgemäßen kationischen Polyelektrolyten und 5 - 25 Gew.% der erfindungsgemäßen anionischen Polyelektrolyten verwendet werden. Weiterhin günstig sind Dispergiermittelmischungen aus 80 - 90 Gew.% der erfindungsgemäßen kationischen Polyelektrolyten und 10 bis 20 % der erfindungsgemäßen anionischen Polyelektrolyten. Ganz besonders vorteilhaft geeignet sind Dispergiermittelmischungen aus 80 bzw. 90 Gew.% der erfindungsgemäßen kationischen Polyelektrolyten und 20 bzw. 10 Gew.% der erfindungsgemäßen anionischen Polyelektrolyten.

Vorteilhafterweise beträgt das Mischungsverhältnis von kationischem Polyelektrolyt zu amphoterem kationischen Polyelektrolyt in der Mischung mit dem teilneutralisierten anionischen und/oder dem teilneutralisierten amphoteren anionischen Poly elektrolyt 0 - 100 Gew.% kationischer Polyelektrolyt und 100 -0

Gew.% amphoterer kationischer Polyelektrolyt. Weiterhin bevcrzugt ist ein Mischungsverhältnis von 0 bis 30 Gew.% kationischem Polyelektrolyt und 70 bis 100 Gew.% amphoterer kationischer Polyelektrolyt, insbesondere ein Mischungsverhältnis von 0 bis 20 Gew.% kationischer Polyelektrolyt und 80 bis 100 Gew.% amphoterer kationischer Polyelektrolyt.

Vorzugsweise beträgt die molare Zusammensetzung der einzelnen Komponenten im teilneutralisierten anionischen Polyelektrolyten in der Mischung mit dem katicnischen und/oder amphoteren kationischen Polyelektrolyten zwischen 0 Mol.% bis 100 Mol.% Acrylsäure und 100 Mol.% bis 0 Mol.% anderer Monomere. Günstigerweise sind

die anderen Monomere carboxylgruppenhaltig und/oder sulfonsäuregruppenhaltig und/oder saure phosphor-10 säureestergruppenhaltig.

Insbesondere günstig ist, daß die molare Zusammensetzung der einzelnen Komponenten im teilneutralisierten anionischen amphoteren Polyelektrolyten in der Mischung mit dem kationischen und oder amphoteren kationischen Polyelektrolyten zwischen 0 Mol.% bis 99 Mol.% Acrylsäure und 100 % bis 1 Mol.% anderer Monomere liegt.

Ganz besonders günstige Ergebnisse werden erzielt, wenn die anderen Monomere carboxylgruppenhaltig und/oder sulfonsäuregruppenhaltig und/oder saure phosphorsäureestergruppenhaltig und oder eine oder mehrere Verbindungen aus der Gruppe der Verbindungen gemäß der allgemeinen Formel des Anspruchs 6 sind.

Ganz besonders vorteilhaft ist. daß der anionische Polyelektrolyt teilneutralisierte Acrylsäure ist. Vorteilhafterweise sind 2 - 80 Mol.% der Säuregruppen des anionischen Polyelektrolyten neutralisiert, insbesondere vorteilhaft 3 bis 70 Mol.% und ganz besonders vorteilhaft 3 bis 10 Mol.% der Säure gruppen.

Erfindungsgemäß enthalten die Mineralien bzw. Füllstoffe bzw. Pigmente insbesondere Elemente aus der zweiten und/oder dritten Hauptgruppe und/oder aus der vierten Nebengruppe des Periodensystems der Elemente enthalten. Günstigerweise werden calcium- und/oder siliziumhaltige und/oder aluminiumhaltige und/oder titanhaltige Mineralien und oder Füllstoffe und/oder Pigmente verwendet, wobei calciumcarbonathaltige Mineralien und oder Füllstoffe und/oder Pigmente bevorzugt sind. Ganz besonders bevorzugt sind natürliches Calciumcarbonat und oder präzipitiertes Calciumcarbonat und/oder Marmor und oder Kreide und/oder Dolomit und oder dolomithaltiges Calciumcarbonat.

Die wäßrige Suspension besteht bevorzugt aus 97,0 Gew.% bis 99,89 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und 0,11 Gew.% - 3,0 Gew.% einer Mischung aus kationischem und/oder amphoterem kationischen und teilneutralisiertem anionischen und oder teilneutralisiertem amphoteren anionischen Polyelektrolyt, bei einem Feststoffgehalt von 60 -80 Gew.%, bezogen auf daß trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment.

Weiterhin günstig ist es, daß die wäßrige Suspension aus 98,5 Gew.% bis 99,8 Gew.% Mineralien und oder Füllstoffen und oder Pigmenten und Wasser und 0,2 Gew.% - 1,5 Gew.% einer Mischung aus kationischem und oder amphoterem kationischen und teilneutralisiertem anionischen und oder teilneutralisiertem amphoteren anionischen Polyelektrolyt, bei einem Feststoffgehalt von 60 - 75 Gew.%, bezogen auf daß trockene Mineral bzw. den trokkenen Füllstoff bzw. das trockene Pigment, besteht.

Weiterhin gute Ergebnisse werden erzielt, wenn die wäßrige Suspension aus 99,2 Gew.% bis 99,65 Gew.% Mineralien und oder Füllstoffen und oder Pigmenten und Wasser und 0,35 Gew.% - 0,8 Gew.% einer Mischung aus kationischem und/oder amphoterem katonischen und teilneutralisiertem anionischen und/oder teil neutralisiertem amphoteren anionischen Polyelektrolyt, bei einem Feststoffgehalt von 60 - 70 Gew.%, bezogen auf daß trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment besteht.

Hervorragende Ergebnisse werden erzielt, wenn die wäßrige Suspension besteht aus 99,6 Gew.% bzw. 99,05 Gew.% bzw. 99,1 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und 0,4 Gew.% bzw. 0,95 Gew.% bzw. 0.9 Gew.% einer Mischung aus kationischem und oder amphoterem kationischen und teilneutralisiertem anionischen und/oder teilneutralisiertem amphoteren anionischen Polyelektrolyt, bei einem Feststoffgehalt von 67 Gew.% bzw. 67 Gew.% bzw. 60 Gew.%, bezogen auf daß trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment, bei einer Kornverteilung, so daß 60 Gew.% bzw. 70 Gew.% bzw. 90 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm aufweisen.

Vorteilhafterweise ist der anionische Polyelektrolyt und/oder amphotere anionische Polyelektrolyt in der Mischung mit dem kationischen und oder amphoteren kationischen Polyelektrolyten mit einem ein- und oder mehrwertigen Kation teilneutralisiert. Besonders gute Ergebnisse werden erzielt, wenn der anionische Polyelektrolyt und oder amphotere anionische Polyelektrolyt in der Mischung mit dem kationischen und oder amphoteren kationischen Polyelektrolyten mit Alkalimetall-Kationen und oder Aminen und oder Alkanolaminen und/oder quaternären Ammoniumverbindungen, insbesondere aber mit Na und/oder Ca² und/oder Mg² teilneutralisiert ist.

Die Grenzviskosität der in der wäßrigen Suspension verwendeten kationischen und/oder amphoteren kationischen Polyelektrolyten liegt vorzugsweise im Bereich zwischen 9,2 ml/g und 48.5 ml/g, insbesondere bevorzugt aber im Bereich zwischen 16,2 ml/g und 31,2 ml/g.

Eine weitere vorzugsweise Ausführungsform des erfindlungsgemä ßen Verfahrens ist durch folgende Verfahrensschritte gekennzeichnet:

- a) eine wäßrige Suspension von Mineralien und/oder Füllstoffen und/oder Pigmenten wird zusammen mit der erfindungsgemäßen Dispergier- und Mahlhilfsmittelmischung naßvermahlen, wobei
- b) ein Teil des teilneutralisierten anionischen und/cder teilneutralisierten amphoteren anionischen Polyelektrolyts vor der Vermahlung und
- c) ein Teil des teilneutralisierten anionischen und/cder teilneutralisierten amphoteren anionischen Polyelektrolyts während der Vermahlung und/oder
- d) ein Teil des teilneutralisierten anionischen und/oder teilneutralisierten amphoteren anionischen Polyelektrolyts nach der Vermahlung,
- e) und der kationische und/oder amphotere kationische Polyelektrolyt vollständig vor der Vermahlung oder nur
- f) ein Teil des kationischen und/oder amphoteren kationischen Polyelektrolyts vor der Vermahlung und
- g) ein Teil des kationischen und/oder amphoteren kationischen Polyelektrolyts während der Vermahlung und/oder
- h) ein Teil des kationischen und/oder amphoteren kationischen Polyelektrolyts nach der Vermahlung hinzugegeben werden.

Besonders vorteilhaft ist ein Verfahren, in welchem

10

20

35

40

55

- a) 10 90 Gew.% des teilneutralisierten anionischen und oder teilneutralisierten amphoteren anionischen Polyelektrolyts vor der Vermahlung und
- b) 10 90 Gew.% des teilneutralisierten anionischen und oder teilneutralisierten amphoteren anionischen Polyelektrolyts während der Vermahlung und/oder
- c) 0 80 Gew.% des teilneutralisierten anionischer und/oder teilneutralisierten amphoteren anionischen Polyelektrolyts nach der Vermahlung,
- d) 50 100 Gew.% des kationischen und/oder kationischen amphoteren Polyelektrolyts vor der Vermahlung und
- e) 0 50 Gew.% des kationischen und/oder kationischen amphoteren Polyelektrolyts während der Vermahlung und/oder
- f) 0 50 Gew.% des kationischen und/oder amphoteren kationischen Polyelektrolyts nach der Vermahlung zugegeben werden.

Gute Resultate werden erzielt, wenn ein Verfahren angewandt wird, bei welchem

- a) 20 40 Gew.% des teilneutralisierten anionischen und oder teilneutralisierten amphoteren anionischen Polyelektrolyts vor der Vermahlung und
- b) 60 80 Gew.% des teilneutralisierten anionischen und oder teilneutralisierten amphoteren anionischen Polyelektrolyts während der Vermahlung und/oder
- c) 0 20 Gew.% des teilneutralisierten anionischen und oder teilneutralisierten amphoteren anionischen Polyelektrolyts nach der Vermahlung,
- d) 50 100 Gew.% des kationischen und/oder kationischen amphoteren Polyelektrolyts vor der Vermahlung und
- e) 0 50 Gew.% des kationischen und/oder kationischen amphoteren Polyelektrolyts während der Vermahlung und/oder
- f) 0 50 Gew.% des kationischen und/oder amphoteren kationischen Polyelektrolyts nach der Vermahlung zugegeben werden.

Sehr gute Resultate werden erzielt, wenn ein Verfahren angewandt wird, bei welchem

- a) 25 35 Gew.% des teilneutralisierten anionischen und oder teilneutralisierten amphoteren anionischen Polyelek trolyts vor der Vermahlung und
 - b) 65 75 Gew.% des teilneutralisierten anionischen und oder teilneutralisierten amphoteren anionischen Polyelektrolyts während der Vermahlung und/oder
 - c) 0 10 Gew.% des teilneutralisierten anionischen und oder teilneutralisierten amphoteren anionischen Polyelektrolyts nach der Vermahlung, und
 - d) 70 100 Gew.% des kationischen und/oder kationischen amphoteren Polyelektrolyts vor der Vermahlung und
 - e) 0 30 Gew.% des kationischen und/oder kationischen amphoteren Polyelektrolyts während der Vermahlung und/oder

f) 0 - 30 Gew.% des kationischen und/oder amphoteren kationischen Polyelektrolyts nach der Vermahlung zugegeben werden.

Hervorragende Ergebnisse werden bei einem Verfahren erzielt, wobei

- a) 30 Gew.% des teilneutralisierten anionischen und/oder teilneutralisierten amphoteren anionischen Polyelektrolyts vor der Vermahlung und
- b) 70 Gew.% des teilneutraliserten anionischen und/oder teilneutralisierten amphoteren anionischen Polyelektrolyts während der Vermahlung und
- c) 100 Gew.% des kationischen und/oder kationischen amphoteren Polyelektrolyts vor der Vermahlung zugegeben werden.

Erfindungsgemäß erfolgt die Verwendung der wäßrigen Suspension von Mineralien und oder Füllstoffen und/oder Pigmenten bei der Papierherstellung bzw. in der Papiererzeugung. Weitere Verwendungen betreffen die Oberflächenbehandlung (Pigmentierung der Papieroberfläche in der Leimpresse der Papiermaschine, die Verwendung in der Papierstreicherei, im Vorstrich bzw. im Deckstrich bei der Papierstreicherei, im Holzschliff zur Störstoffbekämpfung, im Streichereiausschuß zur Störstoffbekämpfung (Pitchkontrolle), im Kreislaufwasser der Papiermaschine zur CSB-Erniedrigung (chemischer Sauerstoffbedarf-Erniedri gung), in der Kläranlage zur Abwasserbehandlung, zur Vorflokkung anionisch stabilisierter Pigment- und oder Mineral- und/oder Füllstoff-Suspensionen in der Papiererzeugung bzw. zur Vorflokkung (Immobilisierung) von Streichfarben in der Streicherei.

Es ist erfindungsgemäß gelungen, eine Mineral- und/oder Füllstoff- und/oder Pigment-Suspension durch Mahlen bei hohen Feststoffgehalten von ≧ 60 Gew.% herzustellen, bei welcher die Mineral- und oder Füllstoff- und/oder Pigmentteilchen sowohl elektrostatisch positiv wie wahrscheinlich auch sterisch stabilisiert sind und die Suspension über Wochen viskositätsstabil bleibt und z. B. die Retention bei der Papierherstellung vorzüglich ist.

Überraschenderweise und nicht voraussehbar ist die Tatsache, daß bei der geeigneten Kombination eines oder mehrerer kationischer Polyelektrolyte und/oder eines oder mehrerer amphoterer kationischer Polyelektrolyte und eines oder mehrerer teilneutralisierter anionischer Polyelektrolyte und oder eines oder mehrerer amphoterer anionischer teilneutralisierter Polyelektrolyte sowie der geeigneten Zugabestelle der Polyelektrolyte vor, während und/oder nach dem Mahlprozeß, bei den hohen Scherkräften und Temperaturen, wie sie beim Naßvermahlen auftreten, keine gegenseitige Neutralisation der entgegengesetzt geladenen Polymere und somit Koagulation der Polymere eintritt. Im Gegensatz dazu wird eine optimale Mahlung und Stabilisierung der Suspension dadurch bewirkt, daß die erfindungsgemäßen anionischen Polyelektrolyte

- a) vermutlich als Brückenbildner zwischen den Mineral- und/oder Füllstoff- und oder Pigmentteilchen und den erfindungsgemäßen kationischen und/oder amphoteren kationischen Polyelektrolyten wirken, wobei der so auf der Mineral- und/oder Füllstoff- und/oder Pigmentoberfläche fixierte kationische und oder amphotere kationische Polyelektrolyt dem Mineral- und/oder Füllstoff- und/oder Pig mentteilchen eine positive Ladung gibt und dadurch zu einer elektrostatisch positiven Stabilisierung des Systems führt, und
- b) erfindungsgemäß durch weitere Zugaben der erfindungsgemäßen anionischen Polyelektrolyte während und oder nach der Mahlung diese vermutlich als Brückenbildner zwischen den kationischen Polymerketten des kationischen und oder amphoteren kationischen Polyelektrolyts wirken, wobei vermutlich eine Überstruktur entsteht, welche die Mineral-und/oder Füllstoff- und oder Pigmentteilchen sterisch stabilisiert, was zu einer wesentlich tieferen, stabilen Viskosität bei hoher Konzentration führt, als wenn die gesamte Menge an erfindungsgemäßem anionischem Polyelektrolyt zu Beginn der Mahlung zugegeben wird.

Überraschend und nicht voraussehbar ist ebenfalls die Tatsache, daß der Neutralisationsgrad der erfindungsgemäßen anionischen Polyelektrolyte mit ein- und/oder mehrwertigen Kationen einen ausschlaggebenden Einfluß auf die Lagerstabilität der Mineral- und/oder Füllstoff- und/oder Pigment-Suspension hat, d. h. auf die Viskositätskonstanz der Suspension über die Zeit.

Beim Einsatz von mit 100 Mol.% natriumneutralisierten anionischen Polyelektrolyten, wie sie in den Beispielen der EP 0278602 A 1 verwendet werden, steigt die Viskosität über die Zeit stark an, so daß die Suspension unbrauchbar wird.

Bei Verwendung eines erfindungsgemäß mit ein- und oder mehrwertigen Kationen teilneutralisierten anionischen Polyelektrolyten und oder teilneutralisierten amphoteren anionischen Polyelektrolyten bleibt dagegen die Viskosität proportional zum Neutralisationsgrad über Tage bis Wochen stabil. Je tiefer der Neutralisationsgrad mit einwertigen Kationen, desto besser die Lagerstabilität. Am besten geeignet sind Neutralisationsgrade von 5 - 10 Mol.%. Mehrwertige Kationen, wie Calcium und/oder Magnesium, haben einen geringeren negativen Einfluß auf die Lagerstabilität.

Bei nichtneutralisierten anionischen Polyelektrolyten, im speziellen bei Polyacrylsäure, ergibt sich das Problem, daß eine üblicherweise 40 Gew.-%ige wässrige Polymerlösung sehr hochviskos ist sowie

normalerweise eine Kristallisationstemperatur über 0°C aufweist. Polyacrylsäure kristallisiert bereits bei 20°C. Dies führt zu Problemen bei der Dosierung, vor allem in kalten Jahreszeiten und speziell in Skandinavien. Dadurch ergibt sich eine unregelmäßige Dosierung, die zu großen Viskositätsschwankungen bei den herzustellenden Mineral- und/oder Füllstoff- und/oder Pigmentsuspensionen führt.

Bei den erfindungsgemäßen, anionischen Polyelektrolyten ist dies jedoch nicht der Fall.

5

35

Eine gute Lagerstabilität in Bezug auf die Viskosität und das Absetzverhalten ist vor allem beim Transport und bei großen Lagertanks von ausschlaggebender Bedeutung, um den Verderb der Ware zu verhindern. Mit der erfindungsgemäß hergestellten Mineral- und/oder Füllstoff- und/oder Pigment-Suspension ist es möglich, den Produktionsort (Herstellungsort der Mineral-und/oder Füllstoff- und/oder Pigment-Suspension) sowie den Verbraucherort (z. B. Papierfabrik) frei zu wählen. Der Produktionsort kann so den geologischen Vorkommen der Mineral-und/oder Füllstoff- und/oder Pigment-Vorkommen angepaßt werden, und es muß nicht aus rein logistischen Gründen der Standort des Kunden mitberücksichtigt werden.

Eine wäßrige Suspension von Mineralien und/oder Füllstoffen und/oder Pigmenten mit einem Feststoffgehalt ≥ 60 Gew.%, bezogen auf die trockenen Mineralien und/oder Füllstoffe und/oder Pigmente, wird erfindungsgemäß durch Mahlen eines grob gebrochenen Rohgesteins hergestellt, wobei eine Kombination aus einem teilneutralisierten anionischen und/oder teilneutralisierten amphoteren anionischen Polyelektrolyten und einem kationi schen und/oder amphoteren kationischen Polyelektrolyten in der Weise eingesetzt wird, so daß der gesamte bzw. ein Teil des kationischen unc/oder des amphoteren kationischen Polyelektrolyten und nur ein Teil des teilneutralisierten anionischen Polyelektrolyten und oder des teilneutralisierten amphoteren anionischen Polyelektrolyten zu Beginn der Mahlung zugesetzt wird und weitere Teile der erfindungsgemäßen anionischen Polyelektrolyten während der Mahlung und/oder nach der Mahlung zur Viskositätssenkung zugegeben werden.

Obwohl der kationische und/oder amphotere kationische Polyelektrolyt im Überschuß vorhanden ist und sich dadurch eine positive Ladung auf den Mineral- und/oder Füllstoff- und/oder Pigmentteilchen befindet, bewirkt eine weitere Zugabe des erfindungsgemäßen aniorischen und/oder amphoteren anionischen Polyelektrolyten während dem Mahlen und/oder nach dem Mahlen eine nicht voraussehbare enorme Viskositätsabsenkung.

Bei der erfindungsgemäßen Teilneutralisation des anionischen und/oder amphoteren anionischen Polyelektrolyten mit ein-und/oder mehrwertigen Kationen ergibt sich zudem eine sehr stabile Viskosität über mehrere Wochen. Dieser Effekt konnte mit keinem, dem Stand der Technik entsprechenden System erreicht werden.

In den Beispielen nach dem Stand der Technik mußte die Mahlung wegen Blockierens der Mühle vor Erreichen der gewünschten Feinheit abgebrochen werden. Das Blockieren der Mühle kam durch einen enormen Viskositätsanstieg während dem Mahlen zustande.

Die Viskositätserhöhung rührt vermutlich daher, daß normalerweise kationische polymere Polyelektrolyte mit polymeren anionischen Polyelektrolyten unter Salzbildung miteinander reagieren und sich gegenseitig neutralisieren und ausfallen. Bei der erfindungsgemäßen Polyelektrolytkombination und den erfindungsgemäßen Zugabestellen tritt dies überraschenderweise nicht ein, vielmehr tritt eine nicht eindeutig erklärbare starke Viskositätserniedrigung ein. Der während der Mahlung und/oder nachträglich zugegebene erfindungsgemäße anionische und/oder amphotere anionische Polyelektrolyt wirkt auf den kationischen und/oder amphoteren kationischen Polyelektrolyten nicht ladungsneutralisierend, wie dies eigentlich zu erwarten wäre.

Die für die Anwender, vornehmlich die Papierindustrie, ideale Kornverteilung, Konzentration und tiefe Viskosität der Mineral- und/oder Füllstoff- und/oder Pigment-Suspensionen können nach dem erfindungsgemäßen Verfahren in einem Arbeitsgang hergestellt werden, was einen enormen ökonomischen und qualitativen Fortschritt darstellt.

- Vorzugsweise beträgt die Konzentration der wäßrigen Aufschlämmung 60 70 Gew.%, bezogen auf das trockene Mineral.
- Vorzugsweise hat das Rohmaterial vor dem Mahlprozeß erfindungsgemäß einen mittleren äquivalent sphärischen Teilchendurchmeser von 10 -50 μ m (gemessen auf dem Sedigraph 5100).

Bei der Mahlung dient also vermutlich der erfindungsgemäße anionische und oder amphotere anionische Polyelektrolyt, welcher von seinen chemischen Eigenschaften her auf die beim Mahlen neu gebildete Oberfäche des Minerals und/oder Füllstoffs und/oder Pigments aufzieht, als Brückenbildner zwischen dem Mineral und/oder Füllstoff und/oder Pigment und dem kationischen und/oder amphoteren kationischen Polyelektrolyten. Der dadurch in genügendem Maße fixierte kationische und/oder amphotere kationische Polyelektrolyt gibt dem Mineral- und/oder Füllstoff-und oder Pigmentteilchen eine positive Ladung. Zudem wirkt vermutlich der in weiteren Schritten zur Mineral- und/oder Füllstoff- und/oder Pigment-Suspension zugegebene erfindungsge mäße anionische und/oder amphotere anionische Polyelektrolyt mit der erfin-

dungsgemäßen Kettenlänge als Brückenbildner zwischen den Polymerketten des kationischen und/oder amphoteren kationischen Polyelektrolyten, was zu größeren Polymerkettenverbänden führt, welche die Mineralteilchen vermutlich zusätzlich sterisch stabilisieren.

Bei der Mahlung dient der kationische und/oder amphotere kationische Polyelektrolyt, welcher, unterstützt durch den erfindungsgemäßen anionischen und/oder amphoteren anionischen Polyelektrolyten, vermutlich auf die Mineral- und/oder Füllstoff-und/oder Pigmentoberfläche aufzieht, als positiver Ladungsträger und stabilisert so die Mineral- und oder Füllstoff- und/oder Pigmentteilchen positiv.

Durch die vermutete Brückenbildung zwischen dem erfindungsgemäßen anionischen und/oder amphoteren anionischen Polyelektrolyten und dem kationischen und/oder amphoteren kationischen Polyelektrolyten wird zudem vermutlich eine sterische Stabilisierung der Mineral- und/oder Füllstoff- und/oder Pigmentteilchen bewirkt.

Geeignete Mischungen des erfindungsgemäßen anionischen und/oder amphoteren anionischen Polyelektrolyten und des kationischen und oder amphoteren kationischen Polyelektrolyten vor dem Mahlen sind erfindungsgemäß:

teilneutralisierter anionischer und oder teilneutralisierter amphoterer anionischer Polyelektrolyt zu kationischer und/oder amphoterer kationischer Polyelektrolyt = 1:10 bis 1:40

vorzugsweise

für Marmor 1:12

für Champagnekreide 1:30

Während und oder nach dem Mahlen wird je nach Konzentration und gewünschter Endviskosität nochmals teilneutralisierter an ionischer und/oder teilneutralisierter amphoterer anionischer Polyelektrolyt zugegeben. Vorzugsweise ca. doppelt so viel wie vor der Mahlung.

25 Weitere erfindungsgemäße Beispiele

Beispiel 11:

30 Wie Beispiel 1a (Stand der Technik), jedoch teilneutralisierte Polyacrylsäure wie Beispiel 12.

Viskosität in mPas				
nach 1 Std.	1 Tag	15 Tage		
144	152	280		

Das Beispiel 11 zeigt deutlich, daß im Gegensatz zum Beispiel 1a (Stand der Technik) mit einer teilneutralisierten Polyacrylsäure eine wesentlich bessere Lagerstabilität über mehrere Wochen erreicht wird.

45 Beispiel 12:

Eine 70 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einer Kornverteilung,so daß 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm aufweisen (gemessen auf dem Sedigraph 5100), wurden mit 0.33 Gew.%, bez. auf den trockenen Marmor, des folgenden Copolymers (amphoteres, kationisches Polymer),

55

sowie mit 0,06 Gew.%, bez. auf den trockenen Marmor, mit Natronlauge teilneutralisierter Polyacrylsäure (10 Mol. der Carboxylgruppen neutralisiert) verschiedener spezifischer Viskositäten resp. Molekulargewichten unter starkem Rühren dispergiert (8000 U·min. Rührscheibendurchmesser 50 mm).

Das Ziel dieser Versuchsserie war es, die optimale spezifische Viskosität bzw. das Molekulargewicht des

teilneutralisierten anionischen Polyelektrolyten festzustellen.

spez. Viskosität des teilneutralisierten Polyacrylats	Viskosität der Suspension
0,2	2640 mPas
0,35	370 mPas
0,54	350 mPas
0,71	1420 mPas

30

20

25

Die optimale spez. Viskosität des teilneutralisierten Polyacrylats liegt bei 0.35 - 0,54.

35 Beispiel 13:

Eine 67 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einer Kornverteilung, so daß 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 µm aufweisen (gemessen auf dem Sedigraph 5100), wurden mit 0,33 Gew.%, bez. auf den trockenen Marmor des Copolymers aus Beispiel 12, jedoch mit unterschiedlichen Grenzviskositäten resp. Molekulargewichten, und 0,06 Gew.%, bez. auf den trockenen Marmor, des teilneutralisierten Polyacrylats aus Beispiel 12 mit der spez. Viskosität von 0,35 unter starkem Rühren dispergiert (8000 U/min Rührscheibendurchmesser 50 mm).

Viskosität der Suspension 1

Std. nach dem Dispergieren

45

9,2 ml/g 730 mPas
12,8 ml/g 500 mPas
15,5 ml/g 350 mPas
16,2 ml/g 156 mPas
31,2 ml/g 112 mPas
48,5 ml/g 840 mPas

Grenzviskosität des

kationischen Copolymers

50

Die optimale Grenzviskosität des verwendeten kationischen Copolymers liegt zwischen 15 ml/g und 40 ml/g.

Beispiel 14:

Eine 70 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einer Kornverteilung, so daß 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm aufweisen (gemessen auf dem Sedigraph 5100), wurden mit 0,33 Gew.%, bez. auf den trockenen Marmor, des Copolymers aus Beispiel 12 und 0,06 Gew.%, bez. auf den trockenen Marmor, Polyacrylsäure (spez. Viskosität 0,35) mit einem verschiedenem Neutralisationsgrad der Carboxylgruppen mit Natronlauge, unter starkem Rühren dispergiert (8000 U/min Rührscheibendurchmesser 50 mm).

10	Neutralisationsgrad der Carboxylgruppen der Polyacrylsäure		Viskosität der Suspension		
		nach 1 Std.	nach 6 Tg.	nach 12 Tg.	nach 18 Tg.
15	100 Mol.% neutr. 70 Mol.% neutr. 50 Mol.% neutr. 30 Mol.% neutr.	148 mPas 128 mPas 112 mPas 112 mPas	640 mPas 350 mPas 176 mPas 172 mPas	1560 mPas 1075 mPas 720 mPas 460 mPas	>3000 mPas 1420 mPas 1075 mPas 720
20	10 Mol.% neutr.	112 mPas	128 m≌as	mPas 172 mPas	156 mPas

Die beste Langzeitstabilität wird mit einer Polyacrylsäure, bei welcher 5 - 10 Mol.% der Carboxylgruppen neutralisiert sind, erreicht.

Beispiel 15:

40

45

50

Eine 70 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einer Kornverteilung, so daß 60 Gew.% der Teilchen einen äugivalent sphärischen Durchmesser < 2 μm aufweisen (gemessen auf dem Sedigraph 5100), wurde mit 0,33 Gew.%, bez. auf den trockenen Marmor, verschiedener prozentualer molarer Zusammensetzungen des Copolymers aus Beispiel 12 und 0,06 Gew.%, bez. auf den trockenen Marmor, des teilneutralisierten Polyacrylats (spez. Viskosität 0,35, aus Beispiel 12) unter starkem Rühren dispergiert (8000 U:min Rührscheibendurchmesser 50 mm).

Mol.%	Mol.%	Viskosität der
kationisches	anionisches	Suspension
Monomer	Monomer	nach 1 Std.
80 Mol.%	20 Mol.%	680 mPas
87 Mol.%	13 Mol.%	580 mPas
95 Mol.%	5 Mol.%	172 mPas
100 Mol.%	0 Mol.%	420 mPas

Die optimale Monomerzusammensetzung des kationischen Polyelektrolyten liegt bei 95 Mol.% kationischer Verbindung und 5 Mol.% anionischer Verbindung.

Beispiel 16:

Eine 67 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einem äquivalent sphärischen mittleren Teilchendurchmesser von 12 μm (gemessen auf dem Sedigraph 5100) wurde mit der folgenden Rezeptur in einer Dynomill (0,6 I Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 60 Gew.% der Teilchen einen äquivalenten sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) aufwiesen, aufgemahlen.

Rezeptur:

5000 g Marmor

15 g amphoteres, kationisches Polymer entsprechend der Formel des Beispiels 12

1,35 g Polyacrylsäure (spez. Viskosität 0,54), 5 Mol.% der Carboxylgruppen neutr. mit NaOH, vor der Mahlung zugegeben

3,15 g Polyacrylsäure (spez. Viskosität 0,54), 5 Mol.% der Carboxylgruppen neutr. mit NaOH, während der Mahlung

zugegeben

2472 g Wasser

10

Viskosität:	nach 2 Std.	1 Tag	5 Tage	10 Tage	20 Tage
	200	116	148	104	104
	mPas				

15

In Beispiel 16 ist deutlich zu erkennen, daß bei der erfindungsgemäßen Art und Kombination von anionischen und kationischen Polyelektrolyten eine sehr tie und über Wochen stabile Viskosität auch bei durch Mahlen erzeugten feinteiligen Mineral- und/oder Füllstoff- und/oder Pigment Suspensionen herzustellen ist.

25 Beispiel 17:

Eine 67 Gew.%-ige wäßrige Aufschlämmung von Champagnekreide mit einem äquivalent sphärischen mittleren Teilchendurchmesser von

12 µm (gemessen auf dem Sedigraph 5100) wurde mit cer folgenden Rezeptur in einer Dynomill (0,6 I Mahlbehälter) unter Verwendung

von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskur ve, so daß 67 Gew.% der Teilchen einen äquivalenten sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) aufwiesen, aufgemahlen.

Rezeptur:

35 5000 g Champagnekreide

25 g amphoteres, kationisches Polymer aus Beispiel 12

 $0.5~{
m g}$ Polyacrylsäure (spez. Viskosität 0.54) 5 Mol.% der Carboxylgruppen neutr. mit NaOH, vor der Mahlung zugegeben

2472 g Wasser

40

Viskosität in mPas						
nach 1 Std.	1 Tag	5 Tage	10 Tage	20Tage		
2400	3900	>5000				

45

2,5 g Polyacrylsäure (spez. Viskosität 0,54), 5 Mol.% der Carboxylgruppen neutr. mit NaOH, 5 min nach der Mahlung unter intensivem Rühren zugegeben (8000 U/min, Rührscheibendurchmesser 50 mm)

Viskosität in mPas						
nach 1 Std.	1 Tag	5 Tage	10 Tage	20 Tage		
235	230	200	200	210		

Im Beispiel 17 ist deutlich zu erkennen, daß auch eine nachträgliche Zugabe des erfindungsgemäßen anionischen Polyelektrolyten eine enorme Viskositätssenkung zur Folge hat und die Viskosität über Wochen stabil bleibt.

Beispiel 18:

peisbiei i

5

15

Eine 60 Gew.%-ige wäßrige Aufschlämmung von natürlichem Marmor mit einem äquivalent sphärischen mittleren Teilchendurchmesser von 12 μm (gemessen auf dem Sedigraph 5100) wurde mit der folgenden Rezeptur in einer Dynomill (0,6 l Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 88 Gew.% der Teilchen einen äquivalent

sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) aufwiesen, aufgemahlen.

Rezeptur:

5000 g Marmor

40 g amphoteres, kationisches Polymer aus Beispiel 12

1,35 g Polyacrylsäure (spez. Viskosität 0,54), 5 Mol.% der Carboxylgruppen neutr. mit NaOH, vor der Mahlung zugegeben

2,65 g Polyacrylsäure (spez. Viskosität 0,54), 5 Mol.% der Carboxylgruppen neutr. mit NaOH, während der Mahlung zugegeben

3363 g Wasser

30

Viskosität:	nach 1 Std.	1 Tag	4 Таде	8 Tage	11 Tage	
	500	520	40C	400	390	
,	mPas					

35

40

Auch sehr hohe Feinheiten, wie sie in Streichrezepturen Verwendung finden, sind problemlos durch Mahlen von grob gebrochenem Rohgestein bei hohen Konzentrationen herstellbar.

Beispiel 19:

Eine 67 Gew.%-ige wäßrige Aufschlämmung von natürlicher Campagnekreide mit einem äquivalent sphärischen mittleren Teilchendurchmesser von 18 μm (gernessen auf dem Sedigraph 5100) wurde mit der folgenden Rezeptur in einer Dynomill (0,6 l Mahlbehälter) unter Verwendung von Mahlkörpern aus Glas (Ø 1 mm) auf eine Kornverteilungskurve, so daß 67 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) aufweisen, aufgemahlen.

50 5000 g Champagnekreide

37,5 g amphoteres, kationisches Polymer aus Beispiel 12

1,35 g Polyacrylsäure (spez. Viskosität 0,54), 5 Mol.% der Carboxylgruppen neutr. mit NaOH, vor der Mahlung zugegeben

7,65 g Polyacrylsäure (spez. Viskosität 0,54), 5 Mol.% der Carboxylgruppen neutr. mit NaOH, während der

55 Mahlung zugegeben

2486 g Wasser

Viskosität:	nach 1 Std.	1 Tag	4 Tage	7 Tage
	212	170	132	124 mPas

5

Beispiel 20:

Im Pilot-plant-Maßstab wurde der in Beispiel 16 verwendete natürliche Marmor in einer vertikal angeordneten Perlmill (Süssmeier mit 180 l Inhalt) mit Mahlkörpern aus Glas (Ø 1-2 mm) auf eine Kornverteilungskurve, so daß 63 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm (gemessen auf dem Sedigraph 5100) bei einer Konzentration von 67,6 Gew.% Feststoff aufwiesen, vermahlen.

In Batches von ca. 600 kg wurde 50 to dieser Suspension hergestellt.

Rezeptur:

400 kg Marmor

1,4 kg amphoteres, kationisches Polymer aus Beispiel 12

0,12kg Polyacrylsäure (spez. Viskosität 0,54) 5 Mol.% der Carboxylgruppen neutr. mit NaOH, vor der Mahlung zugegeben

0,24 kg Polyacrylsäure (spez. Viskosität 0,54) 5 Mol.% der Carboxylgruppen neutr. mit NaOH, während der Mahlung zugegeben

197 kg Wasser

Die Stundenleistung der Perlmill betrug 500 I Slurry/Stunde.

Viskosität:	nach 1 Std.	1 Tag	7 Tage	14 Tage	21 Tage
сР	230	230	150	150	160

35

30

Beispiel 21:

Im Pilot-plant-Maßstab wurde der im Beispiel 16 verwendete Marmor in einer vertikal angeordneten Perlmill (Süssmeier mit 180 l Inhalt) mit Mahlkörpern aus Glas (Ø 1-2 mm) auf eine Kornverteilungskurve, so daß 70 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 µm (gemessen auf dem Sedigraph 5100) aufwiesen, bei einer Konzentration von 70,6 Gew.% vermahlen. In Batches von ca. 600 kg wurden 4 to dieser Slurry hergestellt.

Rezeptur:

400 kg Marmor

2,0 kg amphoteres, kationisches Polymer aus Beispiel 12

0.12kg Polyacrylsäure (spez. Viskosität 0,54), 5 Mol.% der Carboxylgruppen neutr. mit NaOH, vor der Mahlung zugegeben

0,36kg Polyacrylsäure (spez. Viskosität 0,54), 5 Mol.% der Carboxylgruppen neutr. mit NaOH, während der Mahlung zugegeben

50 168 kg Wasser

Die Stundenleistung betrug 500 | Suspension/Std.

Viskosität:	nach 1 Std.	1 Tag	7 Tage	14 Tage	21 Tage
	450	420	400	400	400

Beispiel 22:

Eine 70 Gew.-%ige wäßrige Aufschlämmung von Titandioxyd mit einer Kornverteilung, so daß 94 Gew.-% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm aufweisen (gemessen auf dem Sedigraph 5100), wurden unter starken Scherkräften dispergiert (8000 U/min, Rührscheiben Ø 50 mm). Rezeptur:

1500 g TiO₂

7 g amphoteres, kationisches Polymer aus Beispiel 12 640 g Wasser zugeben

10

15

Viskosität in mPas					
nach 1 Std.	1 Tag	10 Tage	20 Tage		
275		300	290		

20

Beispiel 23:

Eine 65 Gew.-%ige wäßrige Aufschlämmung von Titandioxyd mit einer Kornverteilung, so daß 94 Gew.-% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm aufweisen (gemessen auf dem Sedigraph 5100), wurden unter starken Scherkräften dispergiert (8000 U/min, Rührscheiben Ø 50 mm). Rezeptur:

1250 g TiO₂

2 g amphoteres, kationisches Polymer aus Beispiel 2 675 g Wasser zugeben

30

Viskosität in mPas			
nach 1 Std.	1 Tag	10 Tage	20 Tage
350	370	400	420

40

35

Beispiel 24:

Eine 60 Gew.-%ige wäßrige Aufschlämmung von natürlichem CaSO₄ mit einer Kornverteilung, so daß 23 Gew.-% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm aufweisen (gemessen auf dem Sedigraph 5100 anionisch), wurden unter starken Scherkräften dispergiert (8000 U/min, Rührscheiben Ø 50 mm).

Rezeptur:

1000 g CaSO4

3,6g amphoteres, kationisches Polymer aus Beispiel 12

50 670 g Wasser zugeben

Viskosität in mPas			
nach 1 1 Tag 10 20 Std. Tage Tage			
350	390	400	

Beispiel 25:

Eine 63 Gew.-%ige wäßrige Aufschlämmung von CaCO₃ (74,5 %iger Slurry aus Bespiel 7A) und trockenem Talc wovon 47 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 μm aufweisen (gemessen auf dem Sedigraph 5100), wurden unter starken Scherkräften dispergiert (8000 U/min, Rührscheiben Ø 50 mm), so daß eine 1:1 Mischung Talc/CaCO₃ entsteht.

10 Rezeptur:

670 g Slurry 74,5 %ig aus Bespiel 7A 549 g Talc trocken 91 %ig 2,8 g amphoteres, kationisches Polymer aus Beispiel 12 594 g Wasser zugeben

15

5

Viskosität in mPas		
nach 1 Std.	1 Tag	2 Tagen
450		500

20

25

Anwendungsbeispiel

Die in den Herstellungsbeispielen 20 + 21 hergestellten Marmorslurries wurden im Vergleich zu einem, heute üblicherweise mit anionischen Dispergiermitteln hergestellten Marmorslurry auf ihre Retention bei der Papierherstellung untersucht.

Testbe	dingungen:	
Stoff:	80 % Birkensulfat 20 % Kiefersulfat	Mahlgrad 23° SR
Retenti	onshilfsmittel:	0,05 % Polyacrylamid (Grenzviskosität 700 ml/g)

40

35

Durchführung der Retentionsuntersuchung nach Britt-Jar Firma Paper Research Material, SYRACUSE, U.S.A.:

- 1. 275 ml 2%-ige Fasersuspension (atro 3,63 g Fasern) sowie 275 ml des. Wasser ins Britt-Jar Gefäß geben;
 - 2. Britt-Jar Rührer auf 700 U/min;
 - 3. 25,4 ml 5%-ige Mineral- und/oder Füllstoff- und/oder Pigmentsuspension zugeben;
 - 4. nach 20 sec. die entsprechende Menge Retentionsmittel zugeben;
 - 5. nach weiteren 25 sec. Ablaufhahn öffnen und 100 ml Siebwasser ablaufen lassen.
 - 6. Im Siebwasser wird der CaCO₃-Anteil komplexometrisch nach aufschließen mit HCl oder mit Flammen-AAS bestimmt. Bei anderen Mineralien und/oder Füllstoffen und/oder Pigmenten wird das Siebwaser über Membranfilter filtriert, verascht bei 600 °C, über einen alkalischen Schmelzaufschluß, z. B. mit NaOH/KOH im Zirkontiegel, in eine wasserlösliche Form gebracht und im angesäuerten Zustand mittels AAS bestimmt. Unter Berücksichtigung der entsprechenden Umrechnungsfaktoren kann auf die jeweiligen Mineralien und oder Füllstoffe und/oder Pigmente geschlossen werden.
 - 7. Über den eingetragenen Anteil an Mineralien uncl/oder Füllstoffen und/oder Pigmenten pro 100 ml und den im Siebwasser bestimmten Anteil an Mineralien und/oder Füllstoffen und/oder Pigmenten pro 100

ml läßt sich die Füllstoffretention berechnen.

Resultate:	
Produkte:	Füllstoff-First-Pass-Retention
Anionisch stabilisierte Slurry mit 60 % < 2 µm (0,15 % Natriumpolyacrylat spez. Visk. 0,35)	41,1 %
Anionisch stabilisierte Sturry mit 70 % < 2 µm (0,3% Natriumpolyacrylat spez. Vis. 0,54)	35,3 %
Slurry aus Herstellungsbeispiel 19	61,9 %
Slurry aus Herstellungsbeispiel 20	67.8 %

Durch den Einsatz eines mit dem erfindungsgemäßen, neuen Herstellungsverfahren produzierten Marmorslurry ist eine starke Steigerung der Füllstoffretention rnöglich ohne die Papierformation negativ zu beeinträchtigen, was einen enormen Sprung in der Entwicklung darstellt.

Die erfindungsgemäßen wäßrigen Suspensionen sowie das erfindungsgemäße Verfahren zu ihrer Herstellung weisen u.a. folgende Vorteile auf:

- Im Gegensatz zu den bis heute bekannten Verfahren ist es möglich, hochkonzentrierte (≥ 60 Gew.%) Mineral- und/oder Füllstoff- und/oder Pigment-Suspension durch Naßvermahlung aus grob gebrochenem Rohstein herzustellen.
- Die Suspensionen weisen eine ausgezeichnete Lagerstabilität bei tiefen Viskositäten auf.
 - In der Anwendung ergeben sich z.B. große Vorteile bezüglich der Füllstoffretention in der Papiererzeugung.
 - Die Mahlung und Dispergierung ist unter hohen Mahlkräften und bei Siedetemperatur des Wassers möglich.

Ansprüche

15

Wäßrige Suspension aus Mineralien und/oder Füllstoffen und/oder Pigmenten mit einem Feststoffge halt ≥ 60 Gew.%, bezogen auf das trockne Mineral bzw. den trocknen Füllstoff bzw. das trockne Pigment, wobei das Mineral bzw. der Füllstoff bzw. das Pigment mit einem oder mehreren Dispergiermitteln dispergiert ist,

dadurch gekennzeichnet,

daß das Dispergiermittel

einen oder mehrere amphotere Polyelektrolyten, bei welchen die Anzahl der negativen Ladungen in den anionischen Monomereinheiten gleich der Anzahl der positiven Ladungen in den kationischen Monomereinheiten ist, und die wahlweise zusätzlich neutrale Monomereinheiten enthalten können,

und/oder

einen oder mehrere kationische Polyelektrolyten

30 und/oder

einen oder mehrere amphotere kationische Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend positive Ladungen tragen,

und/oder

einen oder mehrere amphotere anionische Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen

und/oder

einen oder mehrere teilneutralisierte anionische Polyelektrolyten

und/oder

einen oder mehrere teilneutralisierte amphotere anionische Polyelektrolyten, bei welchen die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen, enthält, wobei die Füllstoff- und oder Pigment-und/oder Mineralteilchen eine gegen außen neutrale oder positive Ladung tragen.

2. Wäßrige Suspension nach Anspruch 1,

dadurch gekennzeichnet,

daß das Dispergiermittel einen oder mehrere amphotere Polyelektrolyten oder

eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten und einem oder mehreren amphoteren kationischen Polyelektrolyten oder

eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten und einem oder mehreren amphoteren, leicht kationischen Polyelektrolyten oder

eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten und einem oder mehreren amphoteren kationischen Polyelektrolyten und einem oder mehreren amphoteren anionischen Polyelektrolyten oder eine Mischung aus einem oder mehreren amphoteren Polye ektrolyten und einem oder mehreren amphoteren, leicht kationischen Polyelektrolyten und einem oder mehreren amphoteren anionischen Polyelektrolyten oder

eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten und einem oder mehreren amphoteren kationischen Polyelektrolyten und einem oder mehreren amphoteren, leicht anionischen Polyelektrolyten oder

eine Mischung aus einem oder mehreren amphoteren Polyelek trolyten und einem oder mehreren amphoteren, leicht kationischen Polyelektrolyten und einem oder mehreren amphoteren. leicht anionischen

Polyelektrolyten oder

einen oder mehrere amphotere kationische Polyelektrolyten oder

einen oder mehrere amphotere, leicht kationische Polyelektrolyten oder

eine Mischung aus einem oder mehreren amphoteren kationischen Polyelektrolyten und einem oder mehreren amphoteren anionischen Polyelektrolyten oder

eine Mischung aus einem oder mehreren amphoteren, leicht kationischen Polyelektrolyten und einem oder mehreren amphoteren anionischen Polyelektrolyten oder

eine Mischung aus einem oder mehreren amphoteren kationischen Polyelektrolyten und einem oder mehreren amphoteren, leicht anionischen Polyelektrolyten oder

10 eine Mischung aus einem oder mehreren amphoteren, leicht kationischen Polyelektrolyten und einem oder mehreren amphoteren, leicht anionischen Polyelektrolyten oder

eine Mischung aus einem oder mehreren amphoteren Polyelektrolyten und einem oder mehreren amphoteren, leicht anionischen Polyelektrolyten

oder einen oder mehrere amphotere, leicht anionische Polyelektrolyten

oder einen oder mehrere kationische Polyelektrolyten und einen oder mehrere amphotere leicht kationische Polyelektrolyten, enthält, wobei eine oder mehrere der erfindungsgemäßen Polyelektrolyten teilneutralisiert sind und wobei die Füllstoff- und/oder Pigment- und/oder Mineralteilchen eine gegen außen neutrale oder positive Ladung tragen.

3. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß der amphotere anionische und der amphotere und der amphotere kationische Polyelektrolyt die die positive Ladung erzeu gende funktionelle Gruppe in einem Substituenten der ethylenischen Hauptkette trägt, und quaternäre Ammoniumgruppen, Carboxylgruppen und/oder Sulfonsäuregruppen und/oder saure phosphorsäureesterhaltige Gruppen enthält und der die kationische Ladung tragende Substituent über

an der Hauptkette gebunden ist.

4. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß der amphotere anionische und der amphotere und der amphotere kationische Polyelektrolyt eine oder mehrere Verbindungen aus der Gruppe der folgenden Verbindungen gemäß der folgenden allgemeinen Formel ist:

50

wobei R_1 , R_5 , R_6 und R_7 bevorzugt H ist, und/oder R_1 bis R_7 =

- Alkyl, bevorzugt ein C1 C18-Alkyl, insbesondere bevorzugt C1 C6, optimal -CH3 oder H und/oder
- Aryl, bevorzugt ein 6-Ring, insbesondere ein nicht-substituierter 6-Ring sein kann.

 R_8 und R_9 =

- H und/oder

- Alkyl, bevorzugt ein C1 - C18-Alkyl, insbesondere bevorzugt C1 - C6, optimal -CH3 oder H und/oder - Aryl, bevorzugt ein 6-Ring, insbesondere ein nicht-substituierter 6-Ring, wobei bevorzugt R₁ = H oder -CH₃ $R_2 = -CH_3 \text{ oder } -C_2H_5$ $R_3 = -CH_3 \text{ oder } -C_2H_5$ $R_4 = -CH_3$ bis $-C_4H_9$ und Isomere X = O oder N - H $Y = -CH_2$ -bis - C_5H_{10} -10 R_5 und $R_6 = H$ $R_7 = H \text{ oder -CH}_3$ R_8 und $R_9 = H$, R₈ oder R₉ auch 15 sein kann, wenn Z = 25 30 X = 0 und/oder N-H $Y = -CH_2$ - bis - C_5H_{10} -35 40

50

45

5

10

15

-
$$(CH_2)_n$$
 - C und/oder OH

20

25

und/oder

35 eine saure Phosphorsäureester-Gruppe und n≈ 1-18 ist,

wobei der Substituent Z durch 1- und/oder 2- und/oder 3-wertige Kationen, vorteilhaft durch Alkali- und/oder Erdalkali-und/oder Erdmetallkationen und insbesondere vorteilhaft durch Ca^{**} und/oder Mg^{**} und/oder Sr^{**}, wobei Ca^{**} und/oder Mg^{**} bevorzugt sind, teilweise neutralisiert sein kann,

wobei der Neutralisationsgrad von Z bei mehrwertigen Kationen 1 bis 99 Mol.%, vorteilhafterweise bei 50 bis 98 Mol.%, bevorzugt bei 70 bis 97 Mol.% und insbesondere bevorzugt bei 95 Mol.%, je bezogen auf Z in b, liegt,

wobei bei der Neutralisation mit einwertigen Kationen wie K und/oder Na und/oder Li der Neutralisationsgrad von Z 1 bis 99 Mol.%, vorteilhaft 1 bis 50 Mol.%, bevorzugt 1 bis 25 Mol.% und insbesondere bevorzugt < 5 Mol.%, je bezogen auf Z in b, beträgt,

oder das Z vollneutralisiert ist, wenn das Kation 2- und/cder 3-wertig ist oder es sich um NH2, primäre, sekundäre und/oder tertiäre Amine und/oder quartäre Ammoniumionen handelt, oder daß der Substituent Z nicht neutralisiert vorliegt, und wobei (An) = Chlorid, Bromid, Jodid, HSO4.

CH₃SO₄ [−] und/oder Nitrit sein kann, und wobei .

50 wenn R₈ oder R₉ nicht

55

ist, und wenn die amphoteren anionischen Polyelektrolyten in Kombination mit den amphoteren kationischen Polyelektrolyten verwendet werden und die Teilchen dadurch neutral sind oder positive Oberflächen-

ladungen aufweisen, a und b in den folgenden Verhältnissen vorliegen:

amphoter anionisch	amphoter	amphoter kationisch
a = 5-49 Mol.%	a = 50 Mol.%	a = 51-99 Mol.%
b = 51-95 Mol.%	b = 50 Mol.%	b = 49- 1 Mol.%

und wobei weiterhin folgende Mischungen vorteilhaft sind:

ampho anionis		amphoter	amphoter kationisch
1 -	7-49 Mol.%	a = 50 Mol.%	a = 51-80 Mol.%
	1-53 Mol.%	b = 50 Mol.%	b = 49-20 Mol.%

20 und wobei, wenn R₈ oder R₉ =

5

15

25

35

45

50

ist, und wenn die amphoteren anionischen Polyelektrolyten in Kombination mit den amphoteren kationischen Polyelektrolyten verwendet werden und die Teilchen dadurch neutral sind oder positive Oberflächenla dungen aufweisen, a und b in den folgenden Verhältnissen vorliegen:

amphoter anionisch	amphoter	amphoter kationisch
a = 10-66 Mol.%	a = 66,66 Mol.%	a = 67-99 Mol.%
b = 34-90 Mol.%	b = 33,33 Mol.%	b = 1-33 Mol.%

wobei n = 1 - 18 und (An)⁻ = Chlorid und oder Bromid und/oder Jodid und/oder HSO₄⁻ und/oder CH₃SO₄⁻ und/oder Nitrit sein kann, und wobei weiterhin folgende Mischungen vorteilhaft sind:

amphoter anionisch	amphoter	amphoter kationisch
a = 64-66 Mol.%	a = 66,66 Mol.%	a = 67-90 Mol.%
b = 34-36 Mol.%	b = 33,33 Mol.%	b = 10-33 Mol.%

und wobei das Verhältnis der anionischen Ladung zur kationischen Ladung im Bereich von 55:45 bis 51:49 Mol.%, bevorzugt im Bereich von 45:55 bis 49:51 Mol.% liegt.

5. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche,

dadurch gekennzeichnet.

daß die erfindungsgemäßen Polyelektrolyten Verbindungen gemäß der folgenden Formel sind:

15

20

und wenn c = 0, dann z = 0, und wobei

(Kat) = Alkali- und/oder Erdalkali- und/oder Erdmetallkationen und/oder Amine und/oder Alkanolamine und/oder quaternäre Ammonium-Kationen, bevorzugt Ca²*, Mg²*, Na*, K*, Li* (An) = Chlorid, Bromid, Jodid, HSO4*, CH₃SO4* und/oder Nitrit, bevorzugt die Halogenidionen, und wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen, jeweils bevorzugter werdend, vorliegen:

30

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49-47 Mol.%	a = 50 Mol.%	a = 51-80 Mol.%
b+c = 51-53 Mol.%	b+c = 50 Mol.%	b+c = 49-20 Mol.%

35

oder:

40

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49-48 Mol.%	a = 50 Mol.%	a = 51-70 Mol.%
b+c = 51-52 Mol.%	b+c:50 Mol.%	b+c = 49-30 Mol.%

45

oder:

50

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49-47 Mol.%	a = 50 Mol.% b = 0-50 Mol.%	a = 51-80 Mol.%
b+c = 51-53 Mol.%	c = 50-0 Mol.%	b+c = 49-20 Mol.%

55

oder:

amphoter leicht anionisch	amphoter	amphoter kationisch
a = 49-48 Mol.%	a = 50 Mol.% b = 0-25 Mol.%	a = 51-70 Mol.%
b+c = 51-52 Mol.%	c = 25-50 Mol.%	b+c = 49-30 Mol.%

oder:

5

amphoter leicht anionisch

a = 49-48.5 Mol.% a = 50 Mol.% b+c = 51-51,5 Mol.% b+c : 50 Mol.% b+c = 49-40 Mol.%

<u>oder</u> :

 amphoter
 amphoter
 amphoter kationisch

 leicht anionisch
 a = 50 Mol.%
 a = 51 Mol.%

 b = 51 Mol.%
 b = 50 Mol.%
 b = 49 Mol.%

30 oder:

25

35

45

50

 amphoter
 amphoter
 amphoter

 leicht anionisch
 a = 50 Mol.%
 a = 51 Mol.%

 b = 51 Mol.%
 b = 50 Mol.%
 b = 49 Mol.%

 c = < 1 Mol.%</td>
 c = < 1 Mol.%</td>
 c = < 1 Mol.%</td>

40 oder:

 amphoter leicht anionisch
 amphoter kationisch

 a = 49 Mol.% b = 2 Mol.% c = 49 Mol.% c = 48 Mol.% c = 47 Mol.%
 a = 50 Mol.% b = 2 Mol.% b = 2 Mol.% c = 47 Mol.%

 Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,

daß der Neutralisationsgrad der anionischen Komponente aller Polyelektrolyten mit Ausnahme der rein kationischen bei Neutralisation mit Erdalkalikationen, besonders mit Ca^{**} undroder Mg^{**}, 0.1 - 100 Mol.%, besser 50-100 Mol.% und bevorzugterweise 70-99 Mol.%, am besten 98 Mol.% beträgt, bei Neutralisation mit einwertigen Kationen 0,1 - 100 Mol.%, besser 0,1-50 Mol.% und bevorzugterweise 0,1-39 Mol.% oder 0,1-30 Mol.%, weiterhin bevorzugt 0,1-35 Mol.% oder 0,1-25 Mol.% oder 0,1-15 Mol.%, am besten < 1

Mol.% beträgt, oder daß die anionische Komponente nicht-neutralisiert ist, bei Neutralisation mit zweiwertigen Kationen, insbesondere bei Ca⁺⁺ und Mg⁺⁺, > 90 % ist, und daß der Polymerisationsgrad der amphoteren anionischen und der amphoteren neutralen und der amphoteren kationischen Polyelektrolyten, gemessen über die Viskosität, im Bereich von 5 mPa.s bis 150 mPa.s liegt, wobei die Viskosität besonders bevorzugt im Bereich von 15 mPa.s bis 100 mPa.s, insbesondere bevorzugt im Bereich von 25 mPa.s bis 70 mPa.s liegt, und daß das Verhältnis der Carboxylgruppen zu den quaternären Ammoniumgruppen im Polymermolekül der amphoteren leicht anionischen Polyelektrolyten 51-53 Mol.% zu 47-49 Mol.% beträgt.

7. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß die wäßrige Suspension aus 97,0 Gew.% bis 99,97 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und 0,03 Gew.% - 3,0 Gew.% der erfindungsgemäßen amphoteren Polyelektrolyten bei einem Feststoffgehalt von 60 - 80 Gew.%, bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment,

oder bevorzugt aus 98,5 Gew.% bis 99,95 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und 0,05 Gew.% bis 1,5 Gew.% der erfindungsgemäßen amphoteren Polyelektrolyten bei einem Feststoffgehalt von 65 - 77 Gew.%, bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment,

weiterhin bevorzugt aus 98,8 Gew.% bis 99,90 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und 0,1 Gew.% bis 1,2 Gew.% der erfindungsgemäßen amphoteren Polyelektrolyten bei einem Feststoffgehalt von 67 - 76 Gew.%, bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment,

und insbesondere bevorzugt aus 99,5 Gew.% bzw. 98,8 Gew.% bzw. 99,6 Gew.% Mineralien und/oder Füllstoffen und/oder Pigmenten und Wasser und 0,5 Gew.% bzw. 1,2 Gew.% bzw. 0,4 Gew.% eines amphoteren Polyelektrolyten mit einer Viskosität von 37 mPa.s bei einem Feststoffgehalt von 72 Gew.% bzw. 72 Gew.% bzw. 67 Gew.%, bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment, bei einer Kornverteilung, so daß 70 Gew.% bzw. 90 Gew.% bzw. 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 µm aufweisen, besteht, wobei die Mineralien bzw. Füllstoffe bzw. Pigmente insbesondere Elemente aus der zweiten und/oder dritten Hauptgruppe und/oder aus der vierten Nebengruppe des Periodensystems der Elemente umfassen, wobei calcium- und/oder siliziumhaltige und/oder aluminiumhaltige und/oder titanhaltige, insbesondere jedoch calciumcarbonathaltige Mineralien und/oder Füllstoffe und/oder Pigmente verwendet werden und hierbei natürliches Calciumcarbonat und/oder präzipitiertes Calciumcarbonat und/oder Marmor und/oder Kreide und/oder Dolomit und/oder dolomithaltiges Calciumcarbonat bevorzugt sind.

8. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß das Dispergiermittel 0 bis 100 Gew.% eines ersten amphoteren Polyelektrolyten und 100 - 0 Gew.% eines zweiten amphoteren Polyelektrolyten oder

eine Mischung aus 0,1 bis 99,9 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 99,9 bis 0,1 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten oder

eine Mischung aus 50 - 99,9 Gew.% bzw. 80 bis 99,9 Gew.% bzw. 10 - 50 Gew.% bzw. 10 - 30 Gew.% eines oder mehrerer amphoteren Polyelektrolyten und 0,1 bis 50 Gew.% bzw. 0,1 bis 20 Gew.% bzw. 50 - 90 Gew.% bzw. 70 - 90 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten oder

eine Mischung aus 0,1 bis 99,9 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 99,9 bis 0,1 Gew.% eines oder mehrerer amphoterer leicht kationischer Polyelektrolyten oder

eine Mischung aus 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer anionischer Polyelektrolyten oder

eine Mischung aus 0,1 bis 20 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 60 bis 79,8 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und 0,1 bis 20 Gew.% eines oder mehrerer amphoterer anionischer Polyelektrolyten oder

eine Mischung aus 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer leicht kationischer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer anionischer Polyelektrolyten oder

eine Mischung aus 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und

0,1 bis 99,8 Gew.%, bevorzugt 0,1 bis 49,8 Gew.% eines oder mehrerer amphoterer leicht anionischer Polyelektrolyten oder

eine Mischung aus 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer leicht kationischer Polyelektrolyten und 0,1 bis 99,8 Gew.% eines oder mehrerer amphoterer leicht anionischer Polyelektrolyten cder

eine Mischung aus 0 bis 100 Gew.% eines ersten amphoteren kationischen Polyelektrolyten und 0 bis 100 Gew.% eines zweiten amphoteren kationischen Polyelektrolyten oder

eine Mischung aus 0,1 bis 99,9 Gew.% eines ersten amphoteren leicht kationischen Polyelektrolyten und 0,1 bis 99,9 Gew.% eines zweiten amphoteren leicht kationischen Polyelektrolyten oder

eine Mischung aus 50 bis 99,9 Gew.% bzw. 70 bis 99,9 Gew.% eines oder mehrerer amphoterer kationischer Polyelektroylten und 0,1 bis 50 Gew.% bzw. 0,1 bis 30 Gew.% eines oder mehrerer amphoterer anionischer Polyelektrolyten oder

eine Mischung aus 90 bis 99,9 Gew.% bzw. 75 bis 90 Gew.% bzw. 80 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und 0,1 bis 10 Gew.% bzw. 25 bis 10 Gew.% bzw. 20 Gew.% eines oder mehrerer amphoterer anionischer Polyelektrolyten oder

eine Mischung aus 80 bis 99,9 Gew.% eines oder mehrerer amphoterer leicht kationischer Polyelektrolyten und 0,1 bis 20 Gew.% eines oder mehrerer amphoterer anionischer Polyelektrolyten oder

eine Mischung aus 0,1 bis 99,9 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und 99,9 bis 0,1 Gew.% eines oder mehrer amphoterer leicht anionischer Polyelektrolyten oder

eine Mischung aus 50 bis 99,9 Gew.% bzw. 70 bis 90 Gew.% bzw. 75 Gew.% eines oder mehrerer amphoterer kationischer Polyelektrolyten und 0,1 bis 50 Gew.% bzw. 10 bis 30 Gew.% bzw. 25 Gew.% eines oder mehrerer amphoterer leicht anionischer Polyelektrolyten oder

eine Mischung aus 0,1 bis 99,9 Gew.% eines oder mehrerer amphoterer leicht kationischer Polyelektrolyten und 99,9 bis 0,1 Gew.% eines oder mehrerer amphoterer leicht anionischer Polyelektrolyten oder

eine Mischung aus 0,1 bis 99,9 Gew.% bzw. 50 bis 99,9 Gew.% eines oder mehrerer amphoterer Polyelektrolyten und 0,1 bis 99,9 Gew.% bzw. 0,1 bis 50 Gew.% eines oder mehrerer amphoterer leicht anionischer Polyelektrolyten oder

0 bis 100 Gew.% eines ersten und 100 bis 0 Gew.% eines zweiten amphoteren leicht anionischen Polyelektrolyten enthält.

Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß das Dispergiermittel eine Mischung aus amphoteren kationischen Polyelektrolyten und amphoteren Polyelektrolyten gemäß der allgemeinen Formel von Anspruch 5 ist,

wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen:

amphoter	amphoter kationisch
a = 50 Mol.% b+c = 50 Mol.%	a = 70-99 Mol.% b+c = 30-1 Mol.%

oder :

35

40

45

50

amphoter amphoter kationisch a = 50 Mol.% b+c = 50 Mol.% b+c = 25-2 Mol.%

bevorzugt:

 amphoter
 amphoter kationisch

 a = 50 Mol.%
 a = 80-97 Mol.%

 b+c = 50 Mol.%
 b+c = 20-3 Mol.%

weiterhin bevorzugt:

5

amphoter	amphoter kationisch
a = 50 Mol.%	a = 90.96 Mol.%
b+c = 50 Mol.%	b+c = 10-4 Mol.%

insbesondere bevorzugt :

amphoter .	amphoter kationisch
a = 50 Mol.%	a = 95 Mol.%
b+c = 50 Mol.%	b+c = 5 Mol.%

oder :

daß das Dispergiermittel eine Mischung aus amphoter leicht anionischen und amphoter kationischen Polyelektrolyten gemäß der allgemeinen Formel des Anspruchs 5 ist, wobei in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen:

25

15

amphoter leicht anionisch	amphoter kationisch
a = 47-49 Mol.%	a = 70-99 Mol.%
b+c = 51-53 Mol.%	b+c = 30 -1 Mol.%

30

besser:

35

amphoter leicht anionisch	amphoter kationisch
a = 48-49 Mol.%	a = 75-98 Mol.%
b+c=51-52 Mol.%	b+c = 25- 2 Mol.%

40

bevorzugt:

45

amphoter leicht anionisch	amphoter kationisch
a = 48,5-49 Mol.%	a = 80-97 Mol.%
b+c = 51-51,5 Mol.%	b+c = 20-3 Mol.%

insbesodere bevorzugt :

amphoter leicht anionisch	amphoter kationisch
a = 49 Mol.%	a = 95 Mol.%
b+c = 51 Mol.%	b+c = 5 Mol.%

oder:

daß die Dispergiermittelmischung amphoter kationische und amphoter leicht kationische Polyelektrolyten gemäß der Formel des Anspruchs 5 enthält, wobei

in den erfindungsgemäßen Polyelektrolyten a und b und c in folgenden Verhältnissen vorliegen:

amphoter leicht kationisch	amphoter kationisch
a = 51-53 Mol.%	a = 80-97 Mol.%
b+c = 49-47 Mol.%	b+c = 20-3 Mol.%

bevorzugt:

15

5

10

amphoter leicht kationisch	amphoter kationisch
a = 51-52 Mol.%	a = 90-96 Mol.%
b+c = 49-48 Mo.%	b+c = 10-4 Mol.%

insbesondere bevorzugt:

25

20

amphoter leicht kationisch	amphoter kationisch
a = 51 Mol.%	a = 95 Mol.%
b+c = 49 Mol.%	b+c = 5 Mol.%

30

10. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,

daß die wäßrige Suspension aus 97 bis 99,89 Gew.% bzw. 98,5 bis 99,8 Gew.% bzw. 99,2 bis 99,65 Gew.% bzw. 99,6 Gew.% Mineralien und/oder Füllstoffen und oder Pigmenten und Wasser und einer Dispergiermittelmischung aus amphoteren anionischen und amphoter leicht anionischen und oder amphoteren und/oder amphoter leicht kationischen Polyelektrolyten im Bereich von 0.11 bis 3,00 Gew.% bzw. 0,2 bis 1,5 Gew.% bzw. 0.35 bis 0,8 Gew.% bzw. 0,4 Gew.% besteht, je bezogen auf einen Feststoffgehalt im Bereich von 60 - 80 Gew.%, bezogen auf das trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pig ment, wobei

die wäßrige Suspension bevorzugt besteht aus 99,6 Gew.% Mineralien und oder Füllstoffen und oder Pigmenten und Wasser und 0,4 Gew.% einer Dispergiermittelmischung, bestehend aus 0.35 Gew.% eines amphoteren kationischen Polyelektrolyten gemäß der allgemeinen Formel von Anspruch 5. wobei a = 95 Mol.% und b = 5 Mol.% und c = 0 Mol.% bei einer Grenzviskosität von 27,3 ml.g und 0,1 Gew.% eines amphoteren Polyelektrolyten gemäß der allgemeinen Formel von Anspruch 5, wobei a = 50 Mol.% und b = 50 Mol.% und c = 0 Mol.%, bei einer Viskosität in wässeriger 32%iger Lösung von 37mPas bei einem Feststoffgehalt von 67 Gew.%, wobei 60 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2 µm aufweisen.

11. Verfahren zur Herstellung einer wäßrigen Suspension (Slurry), insbesondere nach einem oder mehreren der vorhergehenden Ansprüche,

gekennzeichnet durch folgende Verfahrensschritte:

- a) eine wäßrige Suspension von Mineralien und/oder Fülls:offen und/oder Pigmenten wird zusammen mit einer Dispergier- und Mahlhilfsmittelmischung insbesondere nach einem oder mehreren der Ansprüche 1 10 naßvermahlen, wobei
- b) die erfindungsgemäßen amphoteren Polyelektrolyten vollständig vor der Vermahlung oder
- c) ein Teil der erfindungsgemäßen amphoteren Polyelektrolyten vor der Vermahlung und
- d) ein Teil der erfindungsgemäßen amphoteren Polyelektkrolyten während der Vermahlung und/oder
- e) ein Teil der erfindungsgemäßen amphoteren Polyelektro lyten nach der Vermahlung

hinzugegeben werden, oder

- a) die amphoteren, leicht anionischen und/oder die amphoteren Polyelektrolyten vollständig vor der Vermahlung oder
- b) ein Teil der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten, bevorzugt 50-100 Gew.%, insbesondere bevorzugt 70-100 Gew.%, vor der Vermahlung und
- c) ein Teil der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten, bevorzugt 0-50 Gew.%, insbesondere bevorzugt 0-30 Gew.%, während der Vermahlung und/oder
- d) ein Teil der amphoteren, leicht anionischen und/oder der amphoteren Polyelektrolyten, bevorzugt 0-50 Gew.%, insbesondere bevorzugt 0-30 Gew.%, nach der Verrnahlung

10 hinzugegeben werden, oder

- a) die amphoteren und/oder die amphoteren kationischen Polyelektrolyten vollständig vor der Vermahlung oder
- b) ein Teil der amphoteren und/oder der amphoteren kationischen Polyelektrolyten, bevorzugt 50-100 Gew.%, insbesondere bevorzugt 70-100 Gew.%, vor der Vermahlung und
- 15 c) ein Teil der amphoteren und/oder der amphoteren kationischen Polyelektrolyten, bevorzugt 0-50 Gew.%, insbesondere bevorzugt 0-30 Gew.%, während der Vermahlung und/oder
 - d) ein Teil der amphoteren und/oder der amphoteren kationischen Polyelektrolyten, bevorzugt 0-50 Gew.%, insbesonde re bevorzugt 0-30 Gew.%, nach der Vermahlung hinzugegeben werden, oder
- 20 a) die amphoteren kationischen Polyelektrolyten vollständig vor der Vermahlung oder
 - b) ein Teil der amphoteren kationischen Polyelektrolyten, bevorzugt 50 100 Gew.%, insbesondere bevorzugt 70-100 Gew.%, vor der Vermahlung und
 - c) ein Teil der amphoteren kationischen Polyelektrolyten, bevorzugt 0-50 Gew.%, insbesondere bevorzugt 0-30 Gew.%, während der Vermahlung und/oder
- d) ein Teil der amphoteren kationischen Polyelektrolyten, bevorzugt 0-50 Gew.%, insbesondere bevorzugt
 0-30 Gew.%, nach der Vermahlung
 zugegeben werden, oder
- a) ein Teil der amphoteren, leicht kationischen und/oder der amphoteren und /oder der amphoteren, leicht anionischen Polyelektrolyten, bevorzugt 10 90 Gew.% bzw. 20 40 Gew.% bzw. 30 Gew.%, vor der 30 Vermahlung und
 - b) ein Teil der amphoteren, leicht kationischen und/oder der amphoteren und /oder der amphoteren, leicht anionischen Polyelektrolyten, bevorzugt 10 90 Gew.% bzw. 60 80 Gew.% bzw. 70 Gew.%, während der Vermahlung und/oder
- c) ein Teil der amphoteren, leicht kationischen und/oder der amphoteren und /oder der amphoteren, leicht
 anionischen Polyelektrolyten, bevorzugt 0 80 Gew.% bzw. 0 20 Gew.%, nach der Vermahlung zugegeben werden, wobei
 - wenn die gewünschte Endfeinheit in einem Mühlendurchgang erreicht werden soll -
- 100 Gew.% der amphoteren leicht anionischen und/oder der amphoteren gegen außen neutralen Polyelektrolyten oder 100 Gew.% der amphoteren gegen außen neutralen und/oder der amphoteren kationischen Polyelektrolyten vor der Vermahlung zugegeben werden, oder
 - die notwendige Dispergiermittelmenge entsprechend der erreichten Zwischenfeinheit aufgeteilt wird.
 - 12. Wäßrige Suspension insbesondere nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,
 - daß das Dispergiermittel eine Mischung aus einem oder mehreren kationischen Polyelektrolyten und/oder einem oder mehreren amphoteren kationischen Polyelektrolyten, bei welchen die nichtneutralen Monomereinheiten überwiegend positive Ladungen tragen, und einem oder mehreren teilneutralisierten anionischen Polyelektrolyten und/oder einem oder mehreren teilneutralisierten amphoteren anionischen Polyelektrolyten, bei welchen die nichtneutralen Monomereinheiten überwiegend negative Ladungen tragen, ist, wobei der kationische Polyelektrolyt und/oder der amphotere kationische Polyelektrolyt in einer Menge vorliegt, daß die dispergierten Mineral- bzw. Füllstoff- bzw. Pigment-Partikeln positive Ladungen tragen.
 - 13. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet.
 - daß das Dispergiermittel eine Mischung aus einem oder mehreren homopolymeren kationischen Polyelektrolyten und/oder einem oder mehreren copolymeren arnphoteren kationischen Polyelektrolyten, bei welchen die nichtneutralen Monomereinheiten überwiegend positive Ladungen tragen, und einem oder mehreren homo- und/oder copolymeren teilneutralisierten anionischen Polyelektrolyten und/oder einem oder mehreren amphoteren anionischen teilneutralisierten Polyelektrolyten, bei welchen die nichtneutralen Monomereinheiten überwiegend negative Ladungen tragen, ist. und

der kationische Polyelektrolyt und/oder amphotere kationische Polyelektrolyt, bei welchen die nichtneutralen Monomereinheiten überwiegend positive Ladungen tragen, die die positive Ladung erzeugende funktionelle Gruppe in einem Substituenten der ethylenischen Hauptkette trägt, wobei der Substituent über

O H O C - C - O - an der

Hauptkette gebunden ist, und

der kationische Polyelektrolyt quaternäre Ammoniumgruppen und der amphotere kationische Polyelektrolyt, bei welchem die nichtneutralen Monomereinheiten überwiegend positive Ladungen tragen, quaternäre Ammoniumgruppen und Carboxylgruppen und/oder Sulfonsäuregruppen und/oder saure phosphorsäureesterhaltige Gruppen enthält, und der anionische teilneutralisierte und der amphotere anionische teilneutralisierte Polyelektrolyt je Carboxylgruppen tragen und der anionische teilneutralisierte Polyelektrolyt ein homound/oder copolymerer Polyelektrolyt ist.

14. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,

15 daß der kationische Polyelektrolyt eine oder mehrere Verbindungen aus der Gruppe der folgenden Verbindungen gemäß der folgenden allgemeinen Formel ist

wobei R_1 , R_2 und R_6 =
- H und/oder R_1 bis R_6 =
Alkyl und/oder
- Aryl,
wobei R_5 auch

20

25

30

40

45

50

C=0 X Y R₂ - N+- F₄

X = O und oder N-H $Y = -CH_2$ - bis - C_5H_{10} -

n = 20 bis 3000

und $(An)^- = Chlorid und/oder Bromid und/oder Jodid und/oder HSO₄ und/oder CH₃SO₄ und/oder Nitrit, bevorzugt Chlorid sein kann,$

wobei bevorzugt

R₁ = H oder -CH₃

 $R_2 = -CH_3 \text{ oder } -C_2H_5$

 $R_3 = -CH_3 \text{ oder } -C_2H_5$

R₄ = -CH₃ bis -C₄H₉ und Isomere

X = O oder bevorzugt N - H

 $Y = -CH_2$ -bis - C_5H_{10} -, bevorzugt - $(CH_2)_3$ -,

 R_s und $R_6 = H$

sein kann.

15. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichent,

daß der amphotere kationische Polyelektrolyt, bei welchem die nichtneutralen Monomereinheiten überwiegend positive Ladungen tragen, eine oder mehrere der Verbindungen aus der Gruppe der folgenden Verbindungen gemäß der folgenden allgemeinen Formel ist

15

20

25

10

30

wobei R_1 , R_5 , R_6 und R_7 = H und/oder R_1 bis R_7 = Alkyl und/oder - Aryl, wobei R_5 auch

40

C=0 |X |Y |Y | +- R4

50

45

sein kann,

 R_8 und R_9 =

- H und/oder

5 - Alkyl und/oder

- Aryl sein kann;

R₈ oder R₉ auch

sein kann, wenn

10 Z =

ist. X = O und/oder N-H $Y = -CH_2$ - bis - $C_5H_{\cdot O}$ -

Z = - C und/oder OH

- $(CH_2)_n$ - C und/oder OH

O Und/oder

eine saure Phosphorsäureester-Gruppe,

a = 70 - 99 Mol.%

b = 1 - 30 Mol.%

n = 1 - 18

und (An) = Chlorid und/oder Bromid und oder Jodid und/oder HSO₄ und/oder CH₃SO₄ und/oder Nitrit sein kann, wobei bevorzugt

R₁ = H oder -CH₃

 $R_2 = -CH_3 \text{ oder } -C_2H_5$

 $R_3 = -CH_3 \text{ oder } -C_2H_5$

R₄ = -CH₃ bis -C₄H₉ und Isomere

X = O oder bevorzugt N - H

 $Y = -CH_2$ -bis - C_5H_{10} -, bevorzugt - $(CH_2)_3$ -,

 R_5 und $R_6 = H$

R₇ = H oder -CH₃

 R_8 und R_9 = H ist, und

der amphotere anionische teilneutralisierte Polyelektrolyt, bei welchem die nicht neutralen Monomereinheiten überwiegend negative Ladungen tragen, eine oder mehrere der Verbindungen aus der Gruppe der Verbindungen gemäß der vortehenden allgemeinen Formel ist, wobei

a = 1 - 30 Mol.% und b = 70 - 99 Mol.%

sind.

16. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,

daß der anionische teilneutralisierte Polyelektrolyt eine oder mehrere der Verbindungen aus der Gruppe der folgenden Verbindungen gemäß der folgenden allgemeinen Formel ist

20

O
$$Z = -C$$
 und/oder $-(CH_2)_n - C$ und/oder OH

30 - $(CH_2)_n$ - S = 0

und/oder

35

eine saure Phosphorsäureester-Gruppe

 $R_1 = - H \text{ oder } - CH_3$

 R_2 und $R_3 = -H$ und/oder

- Alkyl und/oder

- Aryl

wobei R2 oder R3 auch Z sein kann, wenn

$$Z = -C$$
OH

u = +1 und/oder + 11 und/oder + 111Ka = Alkali- und/oder Erdalkali und:oder Erdmetallion w = 59 bis 95 Mol.% pro Anzahl Z im Monomer v = 5 bis 41 Mol.% geteilt durch u

n = 1 - 12, und bevorzugt

eine Mischung aus einem oder mehreren der Homo- und/ocler Copolymerisate von Verbindungen gemäß der vorstehenden Formel ist. \cdot

- 17. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche.
- 5 dadurch gekennzeichnet,

daß der anionische teilneutralisierte Polyelektrolyt ein homo-und/oder copolymerer und der amphotere anionische teilneutra lisierte Polyelektrolyt, bei welchem die nichtneutralen Monomereinheiten überwiegend negative Ladungen tragen, je ein Carboxylgruppen- und/oder Sulfonsäuregruppen- und/oder saure Phosphorsäureestergruppen enthaltender Polyelektrolyt ist, wobei

der teilneutralisierte anionische Polyelektrolyt eine teilneutralisierte Polyacrylsäure und oder eine teilneutralisierte Polymethacrylsäure und oder ein teilneutralisiertes Copolymer aus diesen ist, und bevorzugt

beim anionischen teilneutralisierten Polyelektrolyten und beim amphoteren anionischen teilneutralisierten Polyelektrolyten nur ein statistischer Teil der Säuregruppen mit einem ein-und/oder mehrwertigen Kation neutralisiert ist, wobei

als Kationen Alkali- und/oder Erdalkali- und/oder Erdmetallkationen und/oder Amine und oder Alkanolamine und/oder quaternäre Ammonium-Kationen verwendet werden, bevorzugt Na und/oder K und/oder Li und/oder Ca² und/oder Mg² und oder Sr².

18. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,

daß das Dispergiermittel eine Mischung gemäß den allgemeinen Formeln des Anspruchs 14 und/oder des Anspruchs 15 und des Anspruchs 16 ist oder

daß das Dispergiermittel eine Mischung gemäß der folgenden allgemeinen Formel ist

wobei

(Kat) = Alkali- und oder Erdalkali- und oder Erdmetallkationen und/oder Amine und oder Alkanolamine und/oder quaternäre Ammonium-Kationen

(An) = Chlorid und oder Bromid und oder Jodid und oder HSO $_{4}$ = und/oder CH $_{3}$ SO $_{4}$ = und oder Nitrit sein kann und

a = 60 - 99 Mol.%

b = 1 - 40 Mol.%

z = 1 - 70 Mol.%

w = 30 - 99 Mol.%, oder

(Kat) = Alkali- und oder Erdalkalikationen

(An)" = Chlorid und oder Bromid und oder Jodid und/oder HSO4" und/oder CH₃SO4" und oder Nitrit sein

kann und

a = 80 - 98 Mol.%

schen Polyelektrolyt oder aus

schen Polyelektrolyt oder aus

Polyelektrolyt oder aus

```
b = 2 - 20 \text{ Mol.}\%
    z = 2 - 50 \text{ Mol.}\%
5 w = 50 - 98 \text{ Mol.}\%, oder
     (Kat) = Na und/oder K und/oder Li und/oder NH4 und/oder Ca2 und/oder Mg2 und/oder Sr2
    (An)<sup>-</sup> = Chlorid und/oder Bromid und/oder Jodid und/oder HSO<sub>4</sub><sup>-</sup> und/oder CH<sub>3</sub>SO<sub>4</sub><sup>-</sup> und/oder Nitrit sein
    kann und
    a = 85 - 97 \text{ Mol.}\%
10 b = 3 - 15 Mol.%
    z = 3 - 30 \text{ Mol.}\%
     w = 70 - 97 \text{ Mol.\%}, \text{ oder}
     (Kat) = Alkaliion
     (An) = Halogenidion
15 a = 90 - 96 Mol.%
     b = 4 - 10 \text{ Mol.}\%
     z = 4 - 20 \text{ Mol.}\%
    w = 80 - 96 \text{ Mol.\%}, \text{ oder}
    (Kat) = Na
20 (An) = CI
    a = 95 \text{ Mol.}\%
    b = 5 \text{ Mol.}\%
    z = 5 \text{ Mol.}\%
    w = 95 \text{ Mol.\%}, wobei
25 der anionische Polyelektrolyt und/oder der amphotere anionische Polyelektrolyt mit Alkali-, und/oder
    Erdalkali und/oder Erdmetall-Kationen und/oder Aminen und/oder Alkanolaminen und/oder quartären
    Ammonium-Kationen, insbesondere mit Na, teilneutralisiert ist.
         19. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche,
     dadurch gekennzeichnet,
    daß beim anionischen Polyelektrolyten und/oder beim amphoteren anionischen Polyelektrolyten, jeweils
    bevorzugter werdend, 1 bis 70 Mol.% oder 2 - 60 Mol.% oder 3 - 30 Mol.% oder 5 Mol.% der
    Säuregruppen neutralisiert sind, wobei
    die spezifische Viskosität "Eta" des teilneutralisierten anicnischen Polyelektrolyten und/oder des amphote-
     ren anionischen Polyelektrolyten in der Mischung mit dem kationischen und/oder dem amphoteren kationi-
    schen Polyelektrolyten, gemessen in der vollen Salzform, zwischen 0,2 und 1,0, oder zwischen 0,35 und 0,6
     oder 0.55 beträgt und
    der Polymerisationsgrad des kationischen Polyelektrolyten und/oder des amphoteren kationischen Polyelek-
    trolyten in der Mischung mit dem teilneutralisierten anionischen Polyelektrolyten und/oder dem amphoteren
     anionischen teilneutralisierten Polyelektrolyten, gemessen über die Grenzviskosität, im Bereich von 5 ml/g
    bis 50 ml/g, oder im Bereich von 15 ml/g bis 40 ml/g oder im Bereich von 25 ml/g bis 35 ml/g liegt und die
     Grenzviskosität der in der wäßrigen Suspension verwendeten kationischen und/oder amphoteren kationi-
    schen Polyelektrolyten im Bereich zwischen 9,2 ml/g und 48,5 ml/g oder zwischen 16,2 ml/g und 31,2 ml/g
    liegt.
         20. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche,
45 dadurch gekennzeichnet,
    daß die Dispergiermittelmischung, eweils bevorzugter werdend, aus
    70 - 98 Gew.% kationischem Polyelektrolyt und/oder amphoterem kationischen Polyelektrolyt und
    2 - 30 Gew.% anionischem teilneutralisierten Polyelektrolyt und/oder amphoterem teilneutralisierten anioni-
    schen Polyelektrolyt oder aus
```

75 - 95 Gew.% kationischem Polyelektrolyt und/oder amphoterem kationischen Polyelektrolyt und

80 - 90 Gew.% kationischem Polyelektrolyt und/oder amphoterem kationischen Polyelektrolyt und

80 Gew.% kationischem Polyelektrolyt und/oder amphoterem kationischen Polyelektrolyt und

5 - 25 Gew.% anionischem teilneutralisierten Polyelektrolyt und/oder amphoterem teilneutralisierten anioni-

10 - 20 Gew.% anionischem teilneutralisierten Polyelektrolyt und/oder amphoterem teilneutralisierten anioni-

20 Gew.% anionischem teilneutralisierten Polyelektrolyt und/oder amphoterem teilneutralisierten anionischen

- 90 Gew.% kationischem Polyelektrolyt und/oder amphoterem kationischen Polyelektrolyt und
- 10 Gew.% anionischem teilneutralisierten Polyelektrolyt und/oder amphoterem teilneutralisierten anionischen Polyelektrolyt besteht, wobei
- das Mischungsverhältnis von kationischem Polyelektrolyt zu amphoterem kationischen Polyelektrolyt in der Mischung mit dem teilneutralisierten anionischen und/oder dem teilneutralisierten amphoteren anionischen Polyelektrolyt 0 100 Gew.% oder 0-30 Gew.% oder 0-20 Gew.% kationischer Polyelektrolyt und 100 0 Gew.% oder 70 100 Gew.% oder 80 100 Gew.% amphoterer kationischer Polyelektrolyt ist, oder 0 Gew.% kationischer Polyelektrolyt und 100 Gew.% amphoterer kationischer Polyelektrolyt ist.
- 21.Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,
 - daß die molare Zusammensetzung der einzelnen Komponenten im teilneutralisierten anionischen Polyelektrolyten in der Mischung mit dem kationischen und/oder amphoteren kationischen Polyelektrolyten zwischen 0 Mol.% bis 100 Mol.% Acrylsäure und 100 Mol.% bis 0 Mol.% anderer Monomere liegt, wobei
- die anderen Monomere carboxylgruppenhaltig und oder sulfonsäu regruppenhaltig und oder saure phosphorsäureestergruppenhaltig sind, und
 - die molare Zusammensetzung der einzelnen Komponenten im teilneutralisierten anionischen amphoteren Polyelektrolyten in der Mischung mit dem kationischen und oder amphoteren kationischen Polyelektrolyten zwischen 0 Mol.% bis 99 Mol.% Acrylsäure und 100 % bis 1 Mol.% anderer Monomere liegt, wobei
- die anderen Monomere carboxylgruppenhaltig und/oder sulfonsäuregruppenhaltig oder saure phosphorsäu-20 reestergruppenhaltig und/oder eine oder mehrere Verbindungen aus der Gruppe der Verbindungen gemäß der allgemeinen Formel des Anspruchs 14 sind.
 - 22. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche. dadurch gekennzeichnet,
- daß je bevorzugter werdend 2 80 Mol.% oder 3 70 Mol.% oder 3-39 Mol.% oder 3-35 Mol.% oder 3-30
 Mol.% oder 3 10 Mol.% der Säuregruppen des anionischen Polyelektrolyten neutralisiert sind, wobei der anionische Polyelektrolyt insbesondere eine teilneutralisierte Acrylsäure ist.
 - 23. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,
- daß die Mineralien bzw. Füllstoffe bzw. Pigmente Elemente aus der zweiten und oder dritten Hauptgruppe und/oder aus der vierten Nebengruppe des Periodensystems der Elemente enthalten, wobei
 - calcium- und/oder siliziumhaltige und/oder aluminiumhaltige und/oder titanhaltige Mineralien und/oder Füllstoffe und/oder Pigmente verwendet werden, wobei
 - calciumcarbonathaltige Mineralien und oder Füllstoffe und oder Pigmente, insbesondere
 - natürliches Calciumcarbonat und oder präzipitiertes Calci umcarbonat und oder Marmor und oder Kreide und oder Dolomit und oder dolomithaltiges Calciumcarbonat bevorzugt sind.
 - 24. Wäßrige Suspension nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,
 - daß sie, jeweils bevorzugter werden, besteht aus
 - 97,0 Gew.% bis 99,89 Gew.% oder 98,5 Gew.% 99,8 Gew.% oder 99,2 Gew.% bis 99,65 Gew.% Mineralien und oder Füllstoffen und oder Pigmenten und Wasser und
- 0,11 Gew.% 3,0 Gew.% oder 0,2 Gew.% bis 1,5 Gew.% oder 0,35 Gew.% bis 0,8 Gew.% einer Mischung aus kationischem und oder amphoterem kationischen und teilneutralisiertem anionischen und oder teilneutralisiertem amphoteren anionischen Polyelektrolyt, bei einem Feststoffgehalt von 60 80 Gew.% oder 60 75 Gew.% oder 60 70 Gew.%, bezogen auf daß trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment, oder
 - daß sie besteht aus
 - 99,6 Gew.% bzw. 99,05 Gew.% bzw. 99,1 Gew.% Mineralien und oder Füllstoffen und oder Pigmenten und Wasser und
- 0,4 Gew. bzw. 0,95 Gew.% bzw. 0,9 Gew.% einer Mischung aus kationischem und oder amphoterem kationischen und teilneutralisiertem anionischen und oder teilneutralisiertem amphoteren anionischen Polyelektrolyt, bei einem Feststoffgehalt von 67 Gew.% bzw. 67 Gew.% bzw. 60 Gew.%, bezogen auf daß trockene Mineral bzw. den trockenen Füllstoff bzw. das trockene Pigment, bei einer Kornverteilung, so daß 60 Gew.% bzw. 70 Gew.% bzw. 90 Gew.% der Teilchen einen äquivalent sphärischen Durchmesser < 2
 - 25. Verfahren zur Herstellung einer wäßrigen Suspension (Slurry) insbesondere nach einem oder mehreren der vorhergehenden Ansprüche,

gekennzeichnet durch

folgende Verfahrensschritte:

- a) eine wäßrige Suspension von Mineralien und/oder Füllstoffen und/oder Pigmenten wird zusammen mit einer Dispergier- und Mahlhilfsmittelmischung insbesondere nach einem oder mehreren der Ansprüche 1 24 naßvermahlen, wobei
- b) ein Teil des teilneutralisierten anionischen und/oder teilneutralisierten amphoteren anionischen Polyelektrolyten vor der Vermahlung und
- c) ein Teil des teilneutralisierten anionischen und/oder teilneutralisierten amphoteren anionischen Polyelektrolyten während der Vermahlung und/oder
- d) ein Teil des teilneutralisierten anionischen und/oder teilneutralisierten amphoteren anionischen Polyelektrolyten nach der Vermahlung,
- e) und der kationische und/oder amphotere kationische Polyelektrolyt vollständig vor der Vermahlung oder nur
 - f) ein Teil des kationischen und/oder amphoteren kationischen Polyelektrolyten vor der Vermahlung und
 - g) ein Teil des kationischen und/oder amphoteren kationischen Polyelektrolyten während der Vermahlung und/oder
- h) ein Teil des kationischen und/oder amphoteren kationischen Polyelektrolyten nach der Vermahlung hinzugegeben werden.
 - 26. Verfahren zur Herstellung einer wäßrigen Suspension von Füllstoffen nach Anspruch 25, dadurch gekennzeichnet, daß
- a) 10 90 Gew.% bzw. 20 40 Gew.% bzw. 25 35 Gew.% bzw. 30 Gew.% des teilneutralisierten anionischen und/oder teilneutralisierten amphoteren anionischen Polyelektrolyten vor der Vermahlung und b) 10 90 Gew.% bzw. 60 80 Gew.% bzw. 65 75 Gew.% bzw. 70 Gew.% des teilneutralisierten anionischen und/ oder teilneutralisierten amphoteren anionischen Polyelektrolyten w\u00e4hrend der Vermahlung und/oder
- c5 c) 0 80 Gew.% bzw. 0 20 Gew.% bzw. 0 10 Gew.% des teilneutralisierten anionischen und/oder teilneutralisierten amphoteren anionischen Polyelektrolyten nach der Vermahlung, und
 - d) 50 100 Gew.% bzw. 50 100 Gew.% bzw. 70 100 Gew.% bzw. 100 Gew.% des kationischen und oder kationischen amphoteren Polyelektrolyten vor der Vermahlung und
 - e) 0 50 Gew.% bzw. 0 50 Gew.% bzw. 0 30 Gew.% des kationischen und/oder kationischen amphoteren Polyelektrolyten während der Vermahlung und/oder
 - f) 0 50 Gew.% bzw. 0 50 Gew.% bzw. 0 30 Gew.% des kationischen und/oder amphoteren kationischen Polyelektrolyten nach der Vermahlung zugegeben werden.
- 27. Verwendung der wäßrigen Suspension von Mineralien und/oder Füllstoffen und/oder Pigmenten nach einem oder mehreren der vorhergehenden Ansprüche bei der Papierherstellung bzw. in der Papiererzeugung, weiterhin zur Oberflächenbehandlung (Pigmentierung) der Papieroberfläche in der Leimpresse der Papiermaschine und
- in der Papierstreicherei, bevorzugt im Vorstrich bzw. im Deckstrich bei der Papierstreicherei, im Holzschliff zur Störstoffbekämpfung, im Streichereiausschuß zur Störstoffbekämpfung (Pitchkontrolle), im Kreislaufwasser der Papiermaschine zur CSB-Erniedrigung (chemischer Sauerstoffbedarf-Erniedrigung), in der Kläranlage zur Abwasserbehandlung, zur Vorflockung anionisch stabilisierter Pigment- und/oder Mineral- und/oder Füllstoff-Suspensionen in der Papiererzeugung bzw. zur Vorflockung (Immobilisierung) von Streichfarben in der Streicherei.

45

50