

第10章 控制单元的设计

10.1 组合逻辑设计

10.2 微程序设计

10.1 组合逻辑设计

- 一、组合逻辑控制单元框图
 - 1. CU 外特性

2. 节拍信号

二、微操作的节拍安排

任一微操作均由 统一基准时标 的时序信号控制 一个 机器周期 内有 3个节拍(时钟周期)

CPU 内部结构采用非总线方式

1. 安排微操作时序的原则

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作 尽量安排在 一个节拍 内完成

原则三 占用 时间较短 的微操作 尽量 安排在 一个节拍 内完成 并允许有先后顺序

2. 取指周期 微操作的 节拍安排

$$T_0$$
 $PC \longrightarrow MAR$ $原则二$ $1 \longrightarrow R$ T_1 $M (MAR) \longrightarrow MDR$ $原则二$ $(PC) + 1 \longrightarrow PC$ T_2 $MDR \longrightarrow IR$ $原则三$ $OP (IR) \longrightarrow ID$

3. 间址周期 微操作的 节拍安排

4. 执行周期 微操作的 节拍安排

① CLA
$$T_0$$
 T_1
 T_2 0 \longrightarrow AC
② COM T_0
 T_1
 T_2 \overline{AC} \longrightarrow AC
③ SHR T_0
 T_1
 T_1
 T_2 L(AC) \longrightarrow R(AC)
 $\xrightarrow{\text{AR}_1}$ AC $_0$ \longrightarrow AC $_0$

4 CSL T_0

 T_1

 T_2 $R(AC) \longrightarrow L(AC) \qquad AC_0 \longrightarrow AC_n$

(5) STP T_0

 T_1

 $T_2 \quad 0 \longrightarrow G$

 $T_1 \longrightarrow \overline{M(MAR)} \longrightarrow \overline{MDR}$

 T_2 (AC) + (MDR) \longrightarrow AC

 $\bigcirc \text{TSTA} \times T_0 \quad \text{Ad} (IR) \longrightarrow MAR \qquad 1 \longrightarrow W$

 $T_1 \longrightarrow MDR$

 T_2 $MDR \longrightarrow M(MAR)$

$$T_1$$
 M (MAR) \longrightarrow MDR

$$T_2$$
 MDR \longrightarrow AC

$$T_1$$

$$T_2$$
 Ad (IR) \longrightarrow PC

$$T_1$$

 T_0

$$T_2$$
 $A_0 \cdot Ad$ [4] $A_0 \cdot PC \longrightarrow PC$ 上海理工大学

5. 中断周期 微操作的 节拍安排

1→W 硬件关中断

 T_1 PC \longrightarrow MDR

T₂ MDR → M (MAR) 向量地址 → PC

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T		PC→MAR						
	T_0		1→ R						
	T		$M(MAR) \longrightarrow MDR$						
FE	T_1		$(PC)+1 \longrightarrow PC$						
取指			MDR→ IR						
	T_2		$OP(IR) \longrightarrow ID$						
	12	_/ I	1→ IND						
		/ ī	1→ EX						

间址特征

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T		$Ad (IR) \longrightarrow MAR$						
	T_0		1→ R						
IND 间址	T_1		$M(MAR) \longrightarrow MDR$						
山山州	T		MDR→ Ad (IR)						
	T_2	IND	$1 \longrightarrow EX$						

间址周期标志

工作周期标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
			$Ad (IR) \longrightarrow MAR$						
	T_{0}		$1 \longrightarrow R$						
			$1 \longrightarrow W$						
EX	T	T	$M(MAR) \longrightarrow MDR$						
执行	T_1		AC→MDR						
			$(AC)+(MDR) \rightarrow AC$						
	T_2		$MDR \longrightarrow M(MAR)$						
	12		MDR→ AC						
			$0 \longrightarrow AC$						

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T	PC→MAR	1	1	1	1	1	1	
	T_0		1→ R	1	1	1	1	1	1
	$oldsymbol{ au}$	T	$M(MAR) \longrightarrow MDR$	1	1	1	1	1	1
FE	T_1		$(PC)+1 \longrightarrow PC$	1	1	1	1	1	1
取指			$MDR \rightarrow IR$	1	1	1	1	1	1
	T_2		$OP(IR) \longrightarrow ID$	1	1	1	1	1	1
	12	I	1→ IND			1	1	1	1
		Ī	$1 \longrightarrow EX$	1	1	1	1	1	1

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T	T	Ad (IR) → MAR			1	1	1	1
	T_0		1 → R			1	1	1	1
IND 间址	T_1		$M(MAR) \longrightarrow MDR$			1	1	1	1
山竹TT	T		MDR→ Ad (IR)			1	1	1	1
	T_2	IND	$1 \longrightarrow EX$			1	1	1	1

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
			$Ad (IR) \longrightarrow MAR$			1	1	1	
	T_{0}		1→ R			1		1	
			$1 \longrightarrow W$				1		
EX	T		$M(MAR) \longrightarrow MDR$			1		1	
执行	T_1		AC→MDR				1		
			(AC)+(MDR)→AC			1			
	T_2		$MDR \longrightarrow M(MAR)$				1		
	12		MDR→ AC					1	
			$0 \longrightarrow AC$	1					

2. 写出微操作命令的最简表达式

 $M(MAR) \longrightarrow MDR$

$$= \mathbf{FE} \cdot T_1 + \mathbf{IND} \cdot T_1 (\mathbf{ADD} + \mathbf{STA} + \mathbf{LDA} + \mathbf{JMP} + \mathbf{BAN})$$

$$+ \mathbf{EX} \cdot T_1 (\mathbf{ADD} + \mathbf{LDA})$$

 $= T_1 \{ FE + IND (ADD + STA + LDA + JMP + BAN) + EX (ADD + LDA) \}$

3. 画出逻辑图

- 特点
- > 思路清晰, 简单明了
- > 庞杂,调试困难,修改困难
- ▶ 速度快 (RISC)

10.2 微程序设计

一、微程序设计思想的产生

存入 控制存储器

- ◇ 微指令:同一个机器周期内发出的微操作命令的组合
- ◈ 微程序: 一系列微指令的有序集合
- ◈一段微程序对应一条机器指令
- ◈ 控制存储器: 用于存放微程序的专用存储器

二、微程序控制单元框图及工作原理

1. 机器指令对应的微程序

2. 微程序控制单元的基本框图

3. 工作原理

主存

LDA X
ADD Y

STA Z

STP

用户程序

控制存储器 M+1 M M+1M+2XXX M+2P+1 P P+2 P+1 P+2 M Q+1 Q Q+2**Q**+1 Q+2 M K+1 K K+2 K+1 M K+2

邵清

上海理工人学

取指周期 微程序

对应 LDA 操 作的微程序

对应 ADD 操 作的微程序

对应 STA 操作的微程序

25

3. 工作原理

(1) 取指阶段 执行取指微程序

 $\mathbf{M} \longrightarrow \mathbf{CMAR}$

CM (CMAR) → CMDR 由 CMDR 发命令 形成下条微指令地址 M+1 Ad (CMDR) → CMAR
CM (CMAR) → CMDR
由 CMDR 发命令
形成下条微指令地址 M+2

 $Ad(CMDR) \longrightarrow CMAR$

 $CM (CMAR) \longrightarrow CMDR$

由 CMDR 发命令

LDKM + 2

邵清

上海理工大学

(2) 执行阶段 执行 LDA 微程序

 $\overline{\text{Ad}(\text{CMDR})} \longrightarrow \overline{\text{CMA}}$

27

(3) 微程序分析

微程序的执行过程:将微指令从CM中读出

- 关键 ▷ 微指令的操作控制字段如何形成微操作命令
 - > 微指令的 后续地址如何形成

三、微指令的编码方式(控制方式)

1.直接控制方式

在微指令的操作控制字段中,

每一位代表一个微操作命令

某位为"1"表示该控制信号有效

2. 字段直接编码方式

将互斥的微操作合在一起作为一个"段", 每段经译码后发出控制信号

缩短了微指令字长,增加了译码时间

3. 字段间接编码方式

4. 混合编码

直接编码和字段编码(直接和间接)混合使用

5. 其他

四、微指令序列地址的形成

- 1. 微指令的 下地址字段 指出
- 2. 根据机器指令的 操作码 形成
- 3. 增量计数器

$$(CMAR) + 1 \longrightarrow CMAR$$

4. 分支转移

操作控制字段	转移方式	转移地址	
转移方式	指明判别	条件	
转移地址	指明转移 上海理工大学	成功后的去向	j

五、微指令格式

- 1. 水平型微指令
 - 一次能定义并执行多个并行操作
- 如 直接编码、字段直接编码、字段间接编码、 直接和字段混合编码
- 2. 垂直型微指令

类似机器指令操作码 的方式

由微操作码字段规定微指令的功能

垂直型微指令

- 采用短格式, 一条微指令只能执行一、二个微命令;
- 微操作码字段确定微指令的功能;
- 地址码指定微操作数所在的寄存器地址或微指令转移地址,也可表示立即数或标志码等。

- 3. 两种微指令格式的比较
 - (1) 水平型微指令比垂直型微指令并行操作能力强, 灵活性强
 - (2) 水平型微指令执行一条机器指令所要的 微指令 数目少,速度快
 - (3) 水平型微指令 用较长的微指令结构换取较短的 微程序结构

(4) 水平型微指令与机器指令 差别大