"A que horas vai terminar isso aí?"

Você está trabalhando em uma grande empresa que virtualiza soluções na nuvem. Isso é tudo muito motivador, disruptivo, inovador e quântico, mas tem problemas como qualquer empresa e você agora tem que resolver um deles: seus clientes querem processar grandes conjuntos de tarefas que precisam ser feitas na ordem certa e levam tempos diferentes para serem realizadas. Se eles "comprarem" apenas um processador da sua nuvem, é claro que o tempo de completar tudo será a soma de todos os tempos das tarefas, mas quanto tempo demora se eles comprarem dois processadores? E três? E quatro? E cento e quarenta e dois? Você está cansado de fazer continhas à mão para responder esse tipo de pergunta e resolveu automatizar o cálculo.

Você recebe dos clientes um esquema das tarefas que devem ser processadas: é uma longa lista de nomes de tarefas como na listagem abaixo, onde

significa que a tarefa blabla_213 deve ser realizada antes que a tarefa tititi_53 possa ser iniciada. Tentando desenhar todas as conexões que existem na listagem abaixo, você termina com um desenho como o que está à direita. Você sabe que o número que faz parte do nome de cada tarefa indica quanto tempo ela leva para ser realizada.

Proc 4 $lsq_263 \rightarrow yuqfx_370$ $llkgx_112 \rightarrow lsq_263$ $llkgx_112 \rightarrow ubf_402$ gh_225 -> llkgx_112 gh 225 -> stxd 282 gh_225 -> rhkhp_104 gh_225 -> ilt_48 evdpw_387 -> gh_225 evdpw_387 -> fb_149 ubf_402 -> wiv_201 ab_70 stxd_282 -> wh_360 stxd_282 -> su_393 lu_428 bbn_214 ac_475 bbn_214 -> evdpw_387 rhkhp_104 -> wx_222 evdpw_387 cvhn_483 rhkhp_104 -> rnhso_338 fb_149 -> llmj_337 gh_225 fb_149 jl_442 fb_149 -> kveba_91 fb_149 -> 1d_234 stxd_282 rhkhp_104 ilt_48 llmj_337 kveba_91 ld_234 llkgx_112 $ab_70 \rightarrow bbn_214$ ab_70 -> lu_428 su_393 lsq_263 ubf_402 wx_222 rnhso_338 uouhl_481 $ab_70 -> ac_475$ ilt_48 -> uouhl_481 yuqfx_370 wiv 201 $ac_{475} -> cvhn_{483}$ $cvhn_483 \rightarrow jl_442$

Você tem algumas informações extras:

• A linha inicial

Proc n

indica quantos processadores vão ser usados para as tarefas.

- Só um processador pode trabalhar em cada tarefa e a tarefa é terminada sem interrupção;
- Diversos processadores podem trabalhar em tarefas ao mesmo tempo para terminar o mais depressa possível;
- Quando uma tarefa está livre para ser realizada um processador ocioso (se houver) é imediatamente alocado para o trabalho;
- Quando existem várias tarefas que podem ser escolhidas, você oferece duas políticas de escolha:
 - Política MIN: um processador é alocado para a tarefa que leva menos tempo (2178 unidades de tempo neste exemplo);
 - Política MAX: um processador é alocado para a tarefa que leva mais tempo (2337 unidades de tempo neste exemplo).
 - ATENÇÃO: em caso de empate neste critério, será feita a tarefa cujo nome vem primeiro alfabeticamente: "blabla" vem antes de "tititi" e tem preferência se as duas tarefas tiverem a mesma duração.

Você deve escrever o programa para encontrar o tempo de realização das tarefas de acordo com cada uma das políticas para que seu cliente possa escolher qual vai ser usada, depois testá-lo com os arquivos colocados na página da disciplina e entregar um relatório contando:

- Qual o problema sendo resolvido;
- Como o problema foi modelado;
- Como é o processo de solução, apresentando exemplos e algoritmos;
- Os resultados dos casos de teste;
- Conclusões.