Global, Satellite-Remote-Sensing Aerosol Studies: What We Do, and Why It Matters

Ralph Kahn NASA Goddard Space Flight Center

Radiative Forcing Components

FIGURE SPM-2. Global-average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O) and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of the forcing and the assessed level of scientific understanding (LOSU). The net anthropogenic radiative forcing and its range are also shown. These require summing asymmetric uncertainty estimates from the component terms, and cannot be obtained by simple addition. Additional forcing factors not included here are considered to have a very low LOSU. Volcanic aerosols contribute an additional natural forcing but are not included in this figure due to their episodic nature. Range for linear contrails does not include other possible effects of aviation on cloudiness. {2.9, Figure 2.20}

IPCC AR3, 2001 (Pre-EOS)

IPCC AR4, 2007 (EOS + ~ 6 years)

Earth Process Space & Time Scales

To account for the *energy*, *momentum*, and *material* budgets in the Earth System, exchanges among the *atmosphere*, *hydrosphere*, *biosphere*, *aryosphere*, & *lithosphere* must all be considered

What Drives Data Volume

"Betherton Diagram"

Average Radius of Earth = 6371 km Area of Earth ~ 5 x 10⁸ km²

~10 vertical elements, 100 horizontal elements/km, 100 parameters Even with just 4 meas/day (to resolve diurnal cycle):

2 x 10¹⁴ meas/day [with 14-bit encoding] → ~ 3 x 10³ Tbit/day!

Smoke from Mexico -- 02 May 2002

Aerosol:
Amount
Size
Shape

Medium
Spherical
Smoke
Particles

Dust blowing off the Sahara Desert -- 6 February 2004

Large
Non-Spherical
Dust
Particles

Typical MODIS & MISR Data Volumes

Earth System Science → ~ 3 x 10³ Tbit/day!

MODIS Level 1B2 radiances = ~ 660 GB/day

[~2.2 GB /granule x 20 granules/orbit x 15 orbits/day]

MISR Level 1B2 *radiances* = ~ 33 *GB/day* [~2.2 GB /orbit x 15 orbits/day]

MODIS Level 2 *Aerosol* = ~40 MB/orbit, ~ 600 MB/day MISR Level 2 *Aerosol* = ~25 MB/orbit, ~ 375 MB/day

14+ YEARS of MISR & MODIS data

MISR Product Organization

Ten Years of Seasonally Averaged Mid-visible Aerosol Optical Depth from MISR

...includes bright desert dust source regions

MISR Aerosol Type Distribution MISR Version 22, July 2007

Cluster Analysis: Identifying Aerosol Air Mass Types

value = 507 Accum dust = 0.567 Coarse dust = 0.270 Sulfate = 0.122 Carbonaceous = 0.040

Carbonaceous = 0.125

Pre-Launch, Model-Derived Aerosol Air Mass Types

CLASSIFICATION	Component 1	Component 2	Component 3	Component 4
1. Carbonaceous +	<u>Sulfate</u>	Sea Salt	Carbonaceous	Accum. Dust
Dusty Maritime				
1a.	0.67	0.13	0.10	0.10
1b.	0.41	0.13	0.27	0.19
1c.	0.40	0.32	0.17	0.11
2. Dusty Maritime +	<u>Sulfate</u>	Sea Salt	Accum. Dust	Coarse Dust
Coarse Dust	10 10			
2a.	0.52	0.17	0.21	0.10
2b.	0.29	0.13	0.39	0.19
3. Carbonaceous +	<u>Sulfate</u>	Sea Salt	Carbonaceous	Black Carbon
Black Carbon Maritin	ne			
3a.	0.51	0.18	0.26	0.05
3b.	0.35	0.10	0.47	0.08
4. Carbonaceous +	<u>Sulfate</u>	Accum. Dust	Coarse Dust	<u>Carbonaceous</u>
Dusty Continental				
4a.	0.61	0.21	0.05	0.10
4b.	0.40	0.35	0.09	0.16
4c.	0.22	0.51	0.16	0.11
5. Carbonaceous +	<u>Sulfate</u>	Accum. Dust	<u>Carbonaceous</u>	Black Carbon
BC Continental				
5a.	0.59	0.12	0.23	0.06
5b.	0.25	0.12	0.54	0.09
5c.	0.44	0.23	0.26	0.07
				Kahn et al., JGR

4-Dimensional, 4-Parameter Sensitivity Tests

MISR V22-AERONET AOD Comparison for 5,156 Coincidences

MISR-AERONET AOD Comparison for 5,156 Coincidences

MISR Version 22 – Stratified by expected aerosol air mass type

Needed Aerosol Types – Medium Spherical Mode

Histograms of Lowest Residual & All Successful Aerosol Type Mixture Groups

MISR and MODIS Footprints - Not Exactly Co-located

MISR-MODIS Aerosol Optical Depth Comparison

[MISR V22 vs. MODIS/Terra Collection 5; January 2006 Coincident Data]

Over-ocean regression coefficient **0.90** Regression line slope 0.75MODIS QC ≥ 1

Over-land regression coefficient **0.71**Regression line slope 0.60
MODIS QC = 3

MISR-MODIS Coincident AOT Outlier Clusters

Dark Blue [MISR > MODIS] – N. Africa Mixed Dust & Smoke
 Cyan [MODIS > MISR, AOD large] – Indo-Gangetic Plain Dark Pollution Aerosol
 Green [MODIS >> MISR] – Patagonia and N. Australia MODIS Unscreened Bright Surface

MISR Stereo-Derived Plume Heights 07 May 2010 Orbit 55238 Path 216 Blk 40 UT 12:39

D. Nelson and the MISR Team, JPL and GSFC

MISR Stereo-Derived Plume Heights 07 May 2010 Orbit 55238 Path 216 Blk 40 UT 12:39

Height: Blue = Wind-corrected

MISR Research Aerosol Retrievals 07 May 2010 Orbit 55238 Path 216 Blk 40 UT 12:39

Plume Particles

- Distinct from background
 - -- larger, darker
 - -- much higher AOD
- Non-spherical dominated
- Brighten downwind
- Tend to decrease in size downwind

MODIS-GoCART Total Column AOD Comparisons

Sample Case: Siberia July 20 2006

Ratio of GOCART to MODIS average AOD

For each case, for 12 emission estimates

Air Quality: BL Aerosol Concentration [MISR + MODIS] AOD & GEOS-Chem Vertical Distribution

However, the *Biggest* Issue We Face Is:

People Over-Interpreting the Data

And:

The Easier It is to make "pretty plots,"
The more this tends to happen...

Thoughts??