Zusammenfassung Modellkategorien

© M Tim Baumann, http://timbaumann.info/uni-spicker

Kategorientheorie

Bem. Die Topologie-Zusammenfassung bietet eine Übersicht über Grundbegriffe der Kategorientheorie. Weiterführende Begriffe werden in der Homologische-Algebra-Zusammenfassung behandelt.

Def. Eine (schwache) 2-Kategorie C besteht aus

- einer Ansammlung Ob(C) von Objekten,
- \bullet für jedes Paar $(\mathcal{C}, \mathcal{D})$ von Objekten einer Kategorie

$$\operatorname{Hom}_{\mathbb{C}}(\mathcal{C},\mathcal{D}) = \left\{ \begin{array}{c} F \\ A \stackrel{F}{ } \\ G \end{array} \right\},$$

- für jedes Tripel $(\mathcal{C}, \mathcal{D}, \mathcal{E})$ von Objekten einem Funktor $\operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{D}) \times \operatorname{Hom}_{\mathbb{C}}(\mathcal{D}, \mathcal{E}) \to \operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{E}), \ (F, G) \mapsto G \circ F,$
- für jedes Objekt $\mathcal{C} \in \mathrm{Ob}(\mathbb{C})$ einem Objekt $\mathrm{Id}_{\mathcal{C}} \in \mathrm{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{C})$,
- für alle $\mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F} \in \mathrm{Ob}(\mathbb{C})$ einem natürlichen Isomorphismus

$$\alpha_{\mathcal{C},\mathcal{D},\mathcal{E},\mathcal{F}}: -\circ (-\circ -) \Longrightarrow (-\circ -)\circ -,$$

wobei beide Seiten Funktoren sind vom Typ

$$\operatorname{Hom}(\mathcal{E}, \mathcal{F}) \times \operatorname{Hom}(\mathcal{D}, \mathcal{E}) \times \operatorname{Hom}(\mathcal{C}, \mathcal{D}) \to \operatorname{Hom}(\mathcal{C}, \mathcal{F}),$$

 $\bullet\,$ und für alle $\mathcal{C},\mathcal{D}\in\mathrm{Ob}(\mathbb{C})$ natürlichen Isomorphismen

$$\lambda_{\mathcal{C},\mathcal{D}}: (\mathrm{Id}_{\mathcal{D}} \circ -) \Rightarrow \mathrm{Id}_{\mathrm{Hom}(\mathcal{C},\mathcal{D})}, \ \rho_{\mathcal{C},\mathcal{D}}: (-\circ \mathrm{Id}_{\mathcal{C}}) \Rightarrow \mathrm{Id}_{\mathrm{Hom}(\mathcal{C},\mathcal{D})},$$

sodass folgende Kohärenzbedingungen erfüllt sind:

• Für alle $(C \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E} \xrightarrow{H} \mathcal{F} \xrightarrow{K} \mathcal{G}) \in C$ kommutiert $K(H(GF)) \xrightarrow{\alpha_{C,\mathcal{E},\mathcal{F},\mathcal{G}}} (KH)(GF) \xrightarrow{\alpha_{C,\mathcal{D},\mathcal{E},\mathcal{G}}} ((KH)G)H$ $\downarrow^{K\alpha_{C,\mathcal{D},\mathcal{E},\mathcal{F}}} \xrightarrow{\alpha_{D,\mathcal{E},\mathcal{F},\mathcal{G}}} (K(HG)F) \xrightarrow{\alpha_{C,\mathcal{D},\mathcal{F},\mathcal{G}}} (K(HG)F)$

• Für alle $(C \xrightarrow{F} D \xrightarrow{G} \mathcal{E}) \in \mathbb{C}$ kommutiert

 ${\bf Bspe.} \ \bullet \ {\rm Die} \ {\rm Kategorie} \ {\bf Cat} \ {\rm der} \ {\rm Kategorien}$ ist eine 2-Kategorie.

- $\bullet\,$ Jede Kategorie $\mathcal C$ ist natürlich eine 2-Kategorie.
- Die Kategorie der Ringe $\mathbb R$ mit $\mathrm{Ob}(\mathbb R):=\{$ Ringe mit Eins $\}$ und $\mathrm{Hom}_{\mathbb R}(A,B):=$ Kat. der $B\text{-}A\text{-}\mathrm{Bimoduln}$ mit $N\circ M:=N\otimes_B M$ für $M\in\mathrm{Hom}(A,B)$ und $N\in\mathrm{Hom}(B,C)$. Dabei ist $\mathrm{Id}_A:=A$.

Def. Eine monoidale Kategorie ist eine 2-Kategorie mit genau einem Obiekt. In der Regel wird dann \otimes anstelle von \circ geschrieben.

Def. Sei $S: \mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{A}$ ein Funktor. Ein **Ende** $E \in \text{Ob}(\mathcal{A})$ von S ist eine Familie $\alpha_c: E \to S(c,c), c \in \text{Ob}(\mathcal{C})$ von Morphismen in \mathcal{A} , sodass für alle $(f: c \to c') \in \mathcal{C}$ das Diagramm

kommutiert, und E universell (terminal) mit dieser Eigenschaft ist. Sprechweise: Ein Ende ist ein terminaler S-Keil.

Notation.
$$E = \int_{c} S(c,c)$$
.

Bem. Enden sind spezielle Limiten, und umgekehrt sind Limiten spezielle Enden: $\lim F = \int_{c} F(c)$; der Integrand ist $\mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathcal{C} \xrightarrow{F} \mathcal{A}$.

Bem. Das duale Konzept ist das eines Anfangs Koendes $\int_{c}^{c} S(c,c)$.

Bsp. Seien $F,G:\mathcal{C}\to\mathcal{A}$ zwei Funktoren. Dann ist $\int \operatorname{Hom}_{\mathcal{A}}(F(c),G(c)) \ \cong \ \operatorname{Nat}(F,G).$

 $\bf Satz$ (Fubini). Sei $S:\mathcal D^{\rm op}\times\mathcal D\times\mathcal C^{\rm op}\times\mathcal C\to\mathcal A$ ein Funktor. Dann gilt

$$\int_{(d,c)} S(d,d,c,c) \cong \iint_{dc} S(d,d,c,c),$$

falls die rechte Seite und $\int\limits_{\mathcal{Q}} S(d,d',c,c)$ für alle $d,d'\in\mathcal{D}$ existieren.

Bsp. Sei R ein Ring, aufgefasst als präadditive Kategorie mit einem Objekt *. Ein additiver Funktor $R^{(\text{op})} \to \mathbf{Ab}$ ist nichts anderes als ein R-Linksmodul (bzw. R-Rechtsmodul). Dann ist

$$A \otimes_R B \cong \int^{*\in R} A \otimes_{\mathbb{Z}} B.$$

Lem (Ninja-Yoneda-Lemma). Für jede Prägarbe $F: \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$ gilt

$$F \cong \int_{c}^{c} F(c) \times \operatorname{Hom}_{\mathcal{C}}(-, c).$$

Def. Sei \mathbb{C} eine 2-Kategorie. Seien $\mathcal{C}, \mathcal{D} \in \mathbb{C}$. Eine **Adjunktion** von $F \in \operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{D})$ und $G \in \operatorname{Hom}_{\mathbb{C}}(\mathcal{D}, \mathcal{C})$ ist geg. durch Morphismen $\eta : \operatorname{Id}_{\mathcal{C}} \Rightarrow G \circ F$ (genannt **Eins**) und $\epsilon : F \circ G \Rightarrow \operatorname{Id}_{\mathcal{D}}$ (**Koeins**) mit $G\epsilon \circ \eta G = \operatorname{Id}_{G}$ und $\epsilon F \circ F \eta = \operatorname{Id}_{F}$. Man notiert $F \dashv G$.

Lem. R/L-Adjungierte sind eindeutig bis auf eindeutige Isomorphie. Bem. Seien $F: \mathcal{C} \to \mathcal{D}$ und $G: \mathcal{D} \to \mathcal{C}$ Funktoren. Dann gilt $F \dashv G$

Bem. Seien $F: \mathcal{C} \to \mathcal{D}$ und $G: \mathcal{D} \to \mathcal{C}$ Funktoren. Dann gilt $F \dashv G$ genau dann, wenn es einen nat. Iso zwischen den Hom-Mengen gibt:

$$\operatorname{Hom}(F \circ -, -) \cong \operatorname{Hom}(-, G \circ -)$$

Bsp. $\exists_f \dashv f^* \dashv \forall_f$

 ${\bf Bsp.}$ Betrachte die 2-Kat. der Ringe. Dann gilt: Ein $B\text{-}A\text{-}\mathrm{Modul}\ M$ ist genau dann ein Linksadjungierter, wenn Mals Rechts- $A\text{-}\mathrm{Modul}$ endlich erzeugt und projektiv ist.

Bem. Sind η und ϵ in $F \dashv G$ sogar Isomorphismen, so heißt $F \dashv G$ auch **adjungierte Äquivalenz**. Jede beliebige Äquivalenz lässt sich stets (unter Beibehaltung von F und G sowie einem der Morphismen ϵ , η) zu einer adj. Äquivalenz verfeinern.

Kan-Erweiterungen

Def. Sei $\mathcal{A} \xleftarrow{T} \mathcal{M} \xrightarrow{K} \mathcal{C}$ ein Ausschnitt einer 2-Kategorie. Eine **Rechts-Kan-Erw.** (RKE) (R, ϵ) von T längs K besteht aus

• einem Morph. $R: \mathcal{C} \to \mathcal{A}$ • einem 2-Morph. $\epsilon: R \circ K \Rightarrow T$,

sodass gilt: Für alle Möchtegern-RKE $(S: \mathcal{C} \to \mathcal{A}, \eta: S \circ K \Rightarrow T)$ gibt es genau ein $\sigma: S \Rightarrow R$ mit $\epsilon \circ \sigma K = \eta$. Notation: $R = \operatorname{Ran}_K(T)$

Bem. Es sind äquivalent: • (R, ϵ) ist RKE von T längs K• $\eta \mapsto \epsilon \circ \eta K$: Nat $(S, R) \to \text{Nat}(S \circ K, T)$ ist bij. $\forall S : \mathcal{C} \to \mathcal{A}$

Bem. Es gilt $R = \operatorname{Ran}_K(T)$ genau dann, wenn es in $S \in [\mathcal{C}, \mathcal{A}]$ natürliche Isomorphismen $\operatorname{Nat}(S, R) \cong \operatorname{Nat}(S \circ K, T)$ gibt.

Prop. RKEs sind eindeutig bis auf eindeutige Isomorphie.

Bspe. • Die RKE eines bel. Morphismus $T: \mathcal{M} \to \mathcal{A}$ längs $\mathrm{Id}_{\mathcal{M}}$ existiert stets und ist gegeben durch $(T, T \circ \mathrm{Id}_{M} \Rightarrow T)$.

• In der 2-Kategorie der Ringe existieren alle RKE:

$$\operatorname{Ran}_K(T) = (\operatorname{Hom}_M(K,T), \ ev : \operatorname{Hom}_M(K,T) \otimes_C K \Rightarrow T).$$

Bsp. Sei $K: \mathcal{M} \to \mathbf{1}$, $* \mapsto 1$ und $T: \mathcal{M} \to \mathcal{A}$ irgendein Funktor. Dann ist eine RKE von T längs K dasselbe wie ein Limes von T.

Thm. Seien $K:\mathcal{M}\to\mathcal{C}$ und $T:\mathcal{M}\to\mathcal{A}$ Funktoren. Existiere für alle $c\in \mathrm{Ob}(\mathcal{C})$ der Limes $R(c):=\lim((f:c\to Km)\mapsto Tm)$. Dabei ist die Indexkategorie des Limes die Kommakat. $\Delta(c)\downarrow K$. Dann lässt sich diese Setzung zu einem Funktor $\mathcal{C}\to\mathcal{A}$ ausdehnen und zwar zu einer RKE von T längs K.

Bem. Ist \mathcal{M} klein und \mathcal{C} lokal klein und ist \mathcal{A} vollständig, so sind die Voraussetzungen des Theorems für jeden Funktor $K: \mathcal{M} \to \mathcal{C}$, $T: \mathcal{M} \to \mathcal{A}$ erfüllt. Insbesondere ist dann jede solche RKE von der Form im Theorem. Solche RKE heißen auch **punktweise RKE**.

Lem. Eine RKE ist genau dann punktweise, wenn sie für alle $a \in \mathrm{Ob}(\mathcal{A})$ unter dem Funktor $\mathrm{Hom}_{\mathcal{A}}(a,-)$ erhalten bleibt.

Thm. Sei $K: M \to C$ ein Funktor. Betrachte $K^*: [\mathcal{C}, \mathcal{A}] \to [\mathcal{M}, \mathcal{A}]$.

- Wenn ein Funktor $\operatorname{Ran}_K : [\mathcal{M}, \mathcal{A}] \to [\mathcal{C}, \mathcal{A}]$ mit $K^* \dashv \operatorname{Ran}_K$ ex., so ist $\operatorname{Ran}_K(T)$ für alle $T : \mathcal{M} \to \mathcal{A}$ eine RKE von T längs K.
- Existiere für alle $T:\mathcal{M}\to\mathcal{A}$ eine RKE $\mathrm{Ran}_K(T)$. Dann kann man die Zuordnung $T\mapsto \mathrm{Ran}_K(T)$ zu einem Rechtsadjungierten von K^* ausdehnen.

Thm. Sei $G: \mathcal{A} \to \mathcal{X}$ in einer 2-Kategorie. Dann sind äquivalent:

- G besitzt einen Linksadjungierten.
- $\operatorname{Ran}_G(\operatorname{Id}_A)$ existiert und $G \circ \operatorname{Ran}_G(\operatorname{Id}_A) = \operatorname{Ran}_G(G \circ \operatorname{Id}_A)$.

In diesem Fall gilt $\operatorname{Ran}_G(\operatorname{Id}_{\mathcal{A}}) \dashv G$ und $\operatorname{Ran}_G(\operatorname{Id}_{\mathcal{A}})$ wird sogar von allen Morphismen $H: \mathcal{A} \to \mathcal{Y}$ bewahrt.

Thm. Rechtsadjungierte bewahren RKE.

Kor. Rechtsadjungierte bewahren Limiten (RAPL)

Algebraische Strukturen in Kategorien

Def. Eine Retrakt ist ein Morphismus $r: Y \to X$, sodass ein Morphismus $i: X \to Y$ mit $r \circ i = \mathrm{id}_X$ existiert. Sprechweise: X ist ein Retrakt von Y (vermöge i).

Bsp. Ein Modul U ist genau dann Retrakt von einem Modul M, wenn U ein direkter Summand von M ist.

Prop. "- ist Retrakt von -" ist eine reflexive und trans. Relation.

Def. Ein Retrakt eines Morphismus $(A \xrightarrow{f} B) \in \mathcal{C}$ ist ein Morph. $g: X \to Y$, sodass es ein komm. Diagramm folgender Form gibt:

$$\begin{array}{ccc}
A & \xrightarrow{i} & X & \xrightarrow{r} & A \\
\downarrow f & & \downarrow g & & \downarrow f \\
B & \xrightarrow{j} & Y & \xrightarrow{s} & B
\end{array}$$

Bem. Ein Retrakt von $f \in \text{Mor}(\mathcal{C})$ ist ein Retrakt von $f \in \text{Ob}(\mathcal{C}^{\rightarrow})$.

Prop. • Retrakte von Isomorphismen sind Isomorphismen.

• Sei $f \circ q = \text{id}$. Dann ist f ein Retrakt von $g \circ f$.

Prop. Sei $F: \mathcal{C} \to \mathcal{D}$ ein Funktor. Dann ist die Klasse $\{f \in \operatorname{Mor}(\mathcal{C}) \mid F(f) \text{ ist ein Iso}\}\ abgeschlossen unter Retrakten.}$

Def. Sei $i: A \to X$ und $p: E \to B$. Dann werden als äg. definiert:

- p ist i-injektiv i ist p-projektiv $i \boxtimes p$
- \bullet i hat die Linkshochhebungseigenschaft (LHHE) bzgl. p
- p hat die Rechtshochhebungseigenschaft (RHHE) bzgl. i
- Für alle f, q wie unten, sodass das Quadrat kommutiert, gibt es ein diagonales λ , sodass die Dreiecke kommutieren:

$$\begin{array}{ccc}
A & \xrightarrow{g} & E \\
\downarrow_{i} & \xrightarrow{\exists \lambda} & & \downarrow_{p} \\
X & \xrightarrow{f} & B
\end{array}$$

Bsp. Wegeliftung aus der Topologie: $i:\{0\} \rightarrow [0,1]$ erfüllt die LHHE bezüglich allen Überlagerungen $\pi: E \to B$.

Bsp. Ein Objekt P einer ab. Kat. A ist genau dann **projektiv**. wenn $(0 \to P)$ die LHHE bzgl. aller Epis in \mathcal{A} hat. Dual ist $I \in Ob(\mathcal{A})$ injektiv g.d.w. alle Monos in \mathcal{A} die LHHE bzgl. $(I \to 0)$ besitzen.

Bsp. In Set gilt: Alle Inj. haben die LHHE bzgl. aller Surjektionen.

Lem (Retrakt-Argument). Sei $f = q \circ i$.

- Ist f q-projektiv $(f \boxtimes q)$, so ist f ein Retrakt von j.
- Ist f j-injektiv $(j \boxtimes f)$, so ist f ein Retrakt von g.

Zellenkomplexe

Def. Sei λ eine Ordinalzahl. Eine λ -Sequenz in einer Kategorie \mathcal{C} ist ein kolimesbewahrender Funktor $X: \lambda \to \mathcal{C}$ (wobei man λ als Präordnungskategorie aller $\beta < \lambda$ auffasst). Ihre **transfinite Komposition** ist der induzierte Morphismus $X_0 \to \operatorname{colim}_{\beta < \lambda} X_{\beta}$.

Bem. Kolimesbewahrung bedeutet: $\operatorname{colim}_{\alpha < \beta} X_{\alpha} = X_{\beta}$ für alle $\beta < \lambda$. Bsp. ({ Surjektionen }, { Injektionen }) ist ein (S)FS in Set

Def. Sei \mathcal{C} eine kovollständige Kategorie, $I \subset \operatorname{Mor}(\mathcal{C})$ eine Menge.

• Ein relativer I-Zellenkomplex ist eine transf. Komp. einer λ -Sequenz Z, sodass $\forall \alpha \in \mathcal{O}_n$ mit $\alpha + 1 < \lambda$ ein Pushoutdiagramm

$$\begin{array}{ll} C \longrightarrow Z_{\alpha} & \leftarrow \textbf{Anklebeabbildung} \\ \downarrow f & \vdash \downarrow \\ B \longrightarrow Z_{\alpha+1} & \leftarrow \textbf{Zelle} \end{array}$$

mit $f \in I$ existiert. Sprechweise:

 $Z_{\alpha+1}$ entsteht aus Z_{α} , indem wir B längs C ankleben"

• Ein Objekt $A \in Ob(\mathcal{C})$ heißt *I-Zellenkomplex*, wenn der Morph $0 \rightarrow A$ aus dem initialen Obj. ein relativer I-Zellenkomplex ist.

Bsp. CW-Komplexe aus der algebraischen Topologie sind I-Zellenkomplexe mit $I := \{S^{n-1} \hookrightarrow B^n \mid n \geq 0\}$ (und $C = \mathbf{Top}$).

Bspe. • Identitäten $A \rightarrow A$ sind relative *I*-Zellenkomplexe.

• Das initiale Objekt ist ein absoluter I-Zellenkomplex.

Lem. Sei $Z: \lambda \to \mathcal{C}$ eine λ -Sequenz. Sei jeder Morphismus $Z_{\beta} \to Z_{\beta+1}$ $(\beta+1<\lambda)$ ein Pushout eines Morphismus aus I. Dann ist die transfinite Komposition von Z ein I-Zellenkomplex.

Thm. Die Klasse der relativen I-Zellenkomplex ist abgeschl. unter:

• transfiniten Kompositionen • Isomorphismen • Koprodukten

Faktorisierungssysteme

Def. Eine Unterkat. $\mathcal{L} \subseteq \mathcal{C}$ heißt links-saturiert, falls \mathcal{L} abgeschl. ist unter Pushouts, transfiniten Kompositionen und Retrakten.

Lem. Sei $\mathcal{L} \subseteq \mathcal{C}$ links-saturiert. Dann ist \mathcal{L} unter Koprodukten abgeschlossen und enthält alle Isomorphismen.

Bsp. Sei $R \subset \operatorname{Mor}(\mathcal{C})$. Dann ist die Unterkategorie $\mathcal{L} \subseteq \mathcal{C}$ mit $\operatorname{Mor}(\mathcal{L}) := {}^{\square}R := \{i \in \operatorname{Mor}(\mathcal{C}) \mid \forall r \in R : i \square r\} \text{ links-saturiert.}$

Def. • $L \subseteq \operatorname{Mor}(\mathcal{C})$ heißt **proj.** abgeschlossen, falls $L \supseteq \square(L^{\square})$

• $R \subseteq \operatorname{Mor}(\mathcal{C})$ heißt injektiv abgeschlossen, falls $R \supseteq (\square L)^{\square}$.

Prop. • $\Box(L^{\Box})$ ist die projektive Hülle von L, d. h. die kleinste Klasse von Morphismen, die projektiv abgeschl. ist und L umfasst.

• Die projektive Hülle von L ist links-saturiert. Ist L schon projektiv abgeschlossen, so ist L insbesondere links-saturiert.

Def. • Ein Paar (L,R) von Klassen von Morphismen von \mathcal{C} **faktorisiert** C, falls $\forall f \in Mor(C) : \exists i \in L, p \in R : f = p \circ i$.

- Ein faktorisierendes Paar (L, R) heißt schwaches Faktorisierungssystem (SFS), falls $L = \square R$ und $R = L \square$.
- Ein SFS (L,R) heißt orth. Faktorisierungssystem, falls jedes $i \in L$ die eindeutige LHHE bzgl. allen $p \in R$ erfüllt.

Prop. Sei (L,R) faktorisierend. Dann ist (L,R) genau dann ein SFS, wenn $L \bowtie R$ und L und R unter Retrakten abgeschlossen sind.

Modellkategorien

Motto. Modellkat, sind ein Werkzeug, math. Theorien zu studieren.

Def. Eine Klasse $W \subseteq Mor(\mathcal{C})$ von Morphismen erfüllt die **2-aus-3-Eigenschaft**, falls für jede Komposition $h = q \circ f$ in \mathcal{C} gilt: Liegen zwei der drei Morphismen f, g, h in W, so auch der dritte.

Def. $W \subseteq \mathcal{C}$ wie eben heißt Unterkat. schwacher Äquivalenzen, falls \mathcal{W} die 2-aus-3-Eig, erfüllt und abgeschl, unter Retrakten ist.

Bsp. Sei $F: \mathcal{C} \to \mathcal{D}$ ein Funktor. Dann ist $\mathcal{W} := F^{-1}(\{ \text{Isos in } \mathcal{D} \})$ eine Unterkategorie schwacher Äquivalenzen.

Def. Ein Tripel $(\mathcal{W}, \mathcal{C}, \mathcal{F})$ von Unterkategorien einer Kategorie \mathcal{M} heißt Modellstruktur auf \mathcal{M} , falls sowohl $(\mathcal{C}, \mathcal{F} \cap \mathcal{W})$ als auch $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ schwache Faktorisierungssysteme sind und \mathcal{W} die 2-aus-3-Eigenschaft erfüllt.

Def. Eine bivollständige Kategorie \mathcal{M} zusammen mit einer Modellstruktur (W, C, F) heißt eine **Modellkategorie**.

Sprechweise. Man verwendet folgende Bezeichnungen und Pfeile:

 $\stackrel{\sim}{\longrightarrow}$ schwache Äquivalenz azyklische Kofaserung \mathcal{F} Faserung $\mathcal{F} \cap \mathcal{W} \stackrel{\sim}{\longrightarrow}$ azyklische Faserung

Bem. Ist $(\mathcal{W}, \mathcal{C}, \mathcal{F})$ eine Modellstruktur auf \mathcal{M} , so ist $(\mathcal{W}^{\mathrm{op}}, \mathcal{F}^{\mathrm{op}}, \mathcal{C}^{\mathrm{op}})$ eine Modellstruktur auf $\mathcal{M}^{\mathrm{op}}$.

Bem. Wegen $\mathcal{C} = \mathbb{Z}(\mathcal{F} \cap \mathcal{W})$ bzw. $\mathcal{F} = (\mathcal{C} \cap \mathcal{W})^{\mathbb{Z}}$ ist das Datum $(\mathcal{W}, \mathcal{C}, \mathcal{F})$ überbestimmt.

Bsp. Sei \mathcal{M} bivollständig. Sei $\mathcal{W} := \mathcal{C} := \{ \text{Isos in } \mathcal{M} \}.$ Dann wird \mathcal{M} mit $\mathcal{F} := \mathcal{M}$ eine Modellkategorie.

Prop. In einer Modellkategorie sind \mathcal{C} und $\mathcal{C} \cap \mathcal{W}$ links-saturiert.

Lem. \mathcal{W} enthält alle Isomorphismen und ist unter Retrakten abgeschlossen, bildet also eine Unterkat, schwacher Äquivalenzen.

Notation. Das initiale Objekt von \mathcal{M} wird mit \emptyset , das terminale Objekt mit * bezeichnet.

- **Def.** Ein Objekt $X \in Ob(\mathcal{M})$ heißt **kofasernd**, falls $\emptyset \to X$ eine Kofaserung ist. Eine azyklische Faserung $q: QX \xrightarrow{\sim} X$ mit QXkofasernd heißt kofasernder Ersatz (oder Approx.) von X.
- Dual heißt $X \in Ob(\mathcal{M})$ fasernd, falls X in \mathcal{M}^{op} kofasernd ist und $X \stackrel{\sim}{\hookrightarrow} RX$ mit RX fasernd heißt fasernder Ersatz von X.

Bsp. Sei $X \in \text{Ob}(\mathcal{M})$ beliebig. Dann faktorisiere $\emptyset \to X$ wie folgt:

Man erhält also immer einen kofasernden Ersatz QX für X. Dual gibt es immer einen fasernden Ersatz RX für X.

Prop. Seien $g: QX \xrightarrow{\sim} X$ und $g': Q'X \xrightarrow{\sim} X$ zwei kofasernde Approximationen von X. Dann existiert eine schwache Äquivalenz $\xi: QX \xrightarrow{\sim} Q'X \text{ mit } q' \circ \xi = q.$

Def. Ein Obj. X heißt **bifasernd**, falls es fasernd und kofasernd ist.

Prop. Für alle $X \in Ob(\mathcal{M})$ sind RQX und QRX schwach äquivalent und beide bifasernd.

Lem (Ken Brown). Sei $F: \mathcal{M} \to \mathcal{N}$ ein Funktor, \mathcal{M} eine Modellkategorie, \mathcal{N} besitze eine Unterkat, \mathcal{W}' schwacher Äquivalenzen. Wenn F azyklische Kofaserungen zwischen kofasernden Objekten nach \mathcal{W}' abbildet, so bildet F alle schwachen Äquivalenzen zwischen kofasernden Objekten nach W' ab.

Def. Sei \mathcal{M} eine Modellkategorie. Ein **Zylinderobjekt** $X \times I$ zu einem $X \in Ob(\mathcal{M})$ ist ein Obj. zusammen mit Morphismen wie folgt:

Der Zylinder $X \times I$ heißt **gut**, falls $X \coprod X \to X \times I$ eine Kofaserung ist. Ein guter Zylinder heißt sehr gut, falls $p: X \times I \to X$ eine azyklische Faserung ist.

Bem. Sei die Kodiagonale $\nabla: X \coprod X \to X$ wie folgt faktorisiert:

Dann erhalten wir ein Zylinderobjekt $X \times I$ für X.

Def. Zwei Morphismen $f, g: X \to Y$ in \mathcal{M} heißen links-homotop (notiert $f \sim^l q$), falls ein Zylinder $X \times I$ und ein Diagramm der Form

existiert. Wir definieren $\pi^l(X,Y) := \operatorname{Hom}_{\mathcal{M}}(X,Y)/\langle \sim^l \rangle$, wobei $\langle \sim^l \rangle$ die von der symmetrischen, refl. Relation \sim^l erzeugte Äq'relation ist. Die Homotopie heißt (sehr) gut, wenn der Zylinder $X \times I$ es ist.

Beob. Sei $X \coprod X \xrightarrow{i} C \xrightarrow{p} X$ irgendein Zylinderobjekt. Faktorisiere $i = q \circ i'$ in Kofaserung und azyklische Faserung. Dann ist auch

$$X \coprod X \stackrel{i'}{\hookrightarrow} X' \stackrel{pq}{\longrightarrow} X$$

ein Zylinderobjekt, sogar ein gutes. Ebenso kann man p faktorisieren und ein ein anderes Zylinderobjekt erhalten.

Lem. Sei X kofasernd, $X \coprod X \to X \times I \to X$ ein gutes Zylinderobj. Dann sind $i_{0,1}: X \to X \coprod X \to X \times I$ azyklische Kofaserungen.

Lem. Sei $h: f \simeq^l g$. Dann: $f \in \mathcal{W} \iff g \in \mathcal{W}$.

Def. Ein **Pfadobjekt** X^I ist eine Faktorisierung

$$X \xrightarrow[\sim]{i} X^I \xrightarrow[\sim]{p} X \times X$$

des Diagonalmorph, $\Delta: X \to X \times X$. Das Pfadobiekt X^I heißt gut. wenn p eine Faserung und sehr gut, wenn zus. i eine Kofaserung ist.

Def. Eine Rechtshomotopie $h: f \simeq^r q$ ist ein Diagramm der Form

Bem. Ein Pfadobjekt in \mathcal{M} ist dasselbe wie ein Zylinderobj. in $\mathcal{M}^{\mathrm{op}}$.

Lem. Seien $f, g: X \to Y$ und $e: W \to X, d: Y \to Z$.

- $\exists h: f \simeq^l q \iff \exists h': f \simeq^{l, \text{gut}} q$.
- Sei Y fasernd. Dann: $\exists h : f \simeq^{l,\text{gut}} q \iff \exists h' : f \simeq^{l,\text{sehr gut}} q$
- $\exists h: f \simeq^l g \implies \exists h': d \circ f \simeq^l d \circ g$
- $\exists h: f \simeq^{l, \text{sehr gut}} q \implies \exists h': f \circ e \simeq^{l, \text{sehr gut}} q \circ e$
- Sei X kofasernd. Dann ist \simeq^l eine Äg'relation auf $\operatorname{Hom}_{\mathcal{M}}(X,Y)$

Kor. Sei Y fasernd. Dann induziert Komposition eine Abbildung $\pi^l(X,Y) \times \pi^l(W,X) \to \pi^l(W,Y), \quad ([q],[f]) \mapsto [q \circ f].$

Prop. Seien $f, g: X \to Y$.

- Sei X kofasernd. Dann: $f \simeq^l g \implies f \simeq^r g$
- Sei Y fasernd. Dann: $f \simeq^l q \iff f \simeq^r q$

Notation. Wenn X kofasernd und Y fasernd ist, schreibt man $\pi(X,Y) := \pi^l(X,Y) = \pi^r(X,Y).$

ofasernd. Sei
$$n: \mathbb{Z} \xrightarrow{\sim} Y$$
 eine azvklische Faserung

Thm. Sei X kofasernd. Sei $p:Z \xrightarrow{\sim} Y$ eine azyklische Faserung. Dann ist $p_*:\pi^l(X,Z) \to \pi^l(X,Y), [f] \mapsto [p\circ f]$ eine Bijektion.

Thm (Whitehead). Sei $f: X \to Y$ ein Morphismus zwischen bifasernden Objekten. Dann gilt

$$f \in \mathcal{W} \iff f$$
 ist eine Homotopieäquivalenz.

Lem. Sei $f: X \to Y$. Seien RX und RY fixierte fasernde Approx. an X bzw. Y. Dann hängt $Rf: RX \to RY$ bis auf Rechts- und auch Linkshomotopie nur von der Rechtshomotopieklasse von $r \circ f$ ab.

Achtung. I. A. ist $f \mapsto R(f)$ nicht funktoriell.

Die Homotopiekategorie einer Modellkategorie

Def. Sei \mathcal{C} ein Kategorie, $S \subset \operatorname{Mor}(\mathcal{C})$ eine Klasse von Morphismen. Die Lokalisierung $C[S^{-1}]$ von C ist eine Kategorie, die folgende 2-universelle Eigenschaft erfüllt:

- $\gamma: \mathcal{C} \to \mathcal{C}[S^{-1}]$ schickt Morphismen aus S aus Isos.
- Für jede Kategorie \mathcal{D} ist $\gamma^* : [\mathcal{C}[S^{-1}], \mathcal{D}] \to [\mathcal{C}, \mathcal{D}]_{S \mapsto I_{SOS}}$ eine Kategorienäquivalenz.

Bem. Die Homologische-Algebra-Zusammenfassung behandelt Lokalisierung von Kategorien.

Def. Die Homotopiekategorie Ho \mathcal{M} einer Modellkategorie \mathcal{M} ist die Lokalisierung von \mathcal{M} an der Klasse der schwachen Äquivalenzen.

Konstruktion. Ganz explizit:

$$Ob(Ho \mathcal{M}) := Ob(\mathcal{M})$$

 $Hom_{Ho \mathcal{M}}(X, Y) := \pi(RQX, RQY)$

Nach einem früheren Lemma ist die Komposition $([f], [g]) \mapsto [f \circ g]$ wohldefiniert. Der Funktor $\gamma: \mathcal{M} \to \operatorname{Ho} \mathcal{M}$ ist gegeben durch

$$X \mapsto X, \quad f \mapsto [RQf].$$

Lem. Sei $f: X \to Y$ in \mathcal{M} . Dann gilt $f \in \mathcal{W} \Leftrightarrow Qf \in \mathcal{W} \Leftrightarrow RQf \in \mathcal{W}$.

Lem. γ wie definiert ist ein Funktor.

Lem. $f \in \mathcal{W} \iff \gamma(f)$ ist ein Iso.

Bem. Sei X kofasernd und Y fasernd. Dann ist die Abbildung

$$\pi(X,Y) \to \operatorname{Hom}_{\operatorname{Ho} \mathcal{M}}(X,Y), \quad [f] \mapsto [RQf]$$

eine Bijektion.

Lem. Ist $F: \mathcal{M} \to \mathcal{C}$ ein Funktor, der schwache Äq. auf Isos schickt, dann identifiziert F links- bzw. rechtshomotope Morphismen.

Lem. Jeder Morphismus in Ho \mathcal{M} ist Komposition von Morphismen der Form $\gamma(f)$, $f \in \text{Mor}(\mathcal{M})$ und der Form $\gamma(f)^{-1}$, $f \in \mathcal{W}$.

Lem. Sei $\mathcal{M}_c \subset \mathcal{M}$ die volle Unterkategorie der kofasernden Objekte und $F: \mathcal{M}_c \to \mathcal{C}$ ein Funktor, der azyklische Kofaserungen auf Isos schickt. Dann identifiziert F rechtshomotope Morphismen.

Thm. Ein Morphismus $p: Z \to Y$ zw. fasernden Objekten ist genau dann eine schwache Äquivalenz, wenn $p_*: \pi(X,Z) \to \pi(X,Y)$ bijektiv ist für alle kofasernden Objekte $X \in \mathcal{M}$.

Lokal präsentierbare Kategorien

Motto. Eine lokal präsentierare Kategorie ist eine große Kategorie, welche erzeugt wird von kleinen Objekten unter kleinen Kolimiten.

Def. Eine ∞ -große Kardinalzahl κ heißt genau dann **regulär**, wenn die Vereinigung von weniger als κ vielen Mengen, die alle weniger als κ -viele Elem. enthalten, selbst weniger als κ -viele Elemente enthält.

Bem. Zu jeder Kardinalzahl λ existiert ein reguläres κ mit $\lambda \leq \kappa$.

Def. Sei κ eine Kardinalzahl. Eine Kategorie heißt κ -klein, falls sie nur κ -viele Morphismen besitzt.

Bem. Sei κ regulär. Dann ist eine Kat. bereits dann κ -klein, falls sie nur κ -viele Objekte besitzt und alle Hom-Mengen κ -klein sind.

Def. Eine Kategorie heißt genau dann κ -filtriert, wobei κ eine reguläre Kardinalzahl ist, wenn jedes κ -kleine Diagramm in der Kategorie einen Kokegel besitzt.

Bem. Sei $\lambda \geqslant \kappa$. Dann ist jede λ -filtrierte Kategorie auch κ -filtriert.

Def. Ein Objekt X einer Kat. C heißt genau dann κ -kompakt, wenn $\text{Hom}(X, -) : C \to \mathbf{Set}$ mit κ -filtrierten Kolimiten vertauscht:

$$\operatorname{colim}_i \operatorname{Hom}_{\mathcal{C}}(X, T_i) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(X, \operatorname{colim}_i T_i)$$

für alle κ -filtrierte Diagramme T_i .

Def. Ein Objekt heißt genau dann klein, wenn es κ -kompakt ist für irgendeine reguläre Kardinalzahl κ .

Bspe. • Jede endliche Menge ist \aleph_0 -kompakt in **Set**.

- Jeder endlich-dim. VR ist \aleph_0 -kompakt in $\mathbf{Vect}(\mathbb{R})$.
- Jeder endlich-präsentierte Modul ist \aleph_0 -kompakt in $\mathbf{Mod}(R)$.
- Unendliche Mengen sind nicht \aleph_0 -kompakt in **Set**.
- Jeder nicht diskrete topologische Raum ist nicht \%0-kompakt.
- $\mathbf{Mod}(R)$ ist lokal \aleph_0 -präsentierbar mit $S = \{R^n / \operatorname{im}(A) \mid n \ge 0, A \in R^{n \times m}, m \ge 0\}$

Def. Eine lokal κ -präsentierbare Kategorie ist eine lokal kleine und kovollständige Kategorie, sodass eine Menge $S \subseteq \mathrm{Ob}(\mathcal{C})$ von κ -kompakten Objekten existiert, sodass jedes Objekt aus \mathcal{C} kleiner Kolimes von Objekten aus S ist.

Def. Eine Kategorie heißt genau dann lokal präsentierbar, wenn sie lokal κ -präsentierbar für eine reguläre Kardinalzahl κ ist.

Bspe. • sSet ist lokal präsentierbar.

- Sei \mathcal{C} klein. Dann ist $\mathbf{PSh}(\mathcal{C}) = [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ lokal präsentierbar.
- FinSet ist nicht lokal präsentierbar (weil nicht kovollständig)

Fun Fact. Sei $\mathcal C$ lokal präsentierbar. Wenn auch $\mathcal C^{\mathrm{op}}$ lokal präsentierbar ist, dann ist $\mathcal C$ die zu einer Quasiordnung gehörige Kategorie!

Anhang: Die Ordinalzahlen

Def. Eine Wohlordnung auf einer Menge S ist eine Totalordnung auf S bezüglich der jede nichtleere Teilmenge $A \subseteq S$ ein kleinstes Element besitzt. Eine wohlgeordnete Menge ist ein Tupel (S, \leq) bestehend aus einer Menge S und einer Wohlordnung \leq auf S.

Bem. Eine äquivalente Bedingung lautet: Es gibt in S keine nach rechts unendlichen absteigenden Folgen ... > $a_i > a_{i+1} > a_{i+2} > ...$

Bem. Äquivalent zum Auswahlaxiom ist:

Axiom (Wohlordnungssatz). Auf jeder Menge ex. eine Wohlord.

Def. Zwei wohlgeordnete Mengen heißen isomorph, wenn es eine monotone Bijektion zwischen ihnen gibt.

Def. Eine Ordinalzahl ist eine Isomorphieklasse von wohlgeordneten Mengen.

Bem. Die Klasse aller Ordinalzahlen wird mit \mathcal{O}_n bezeichnet und ist eine echte Klasse, keine Menge. Sie ist selbst wohlgeordnet mittels

$$[(S, \leq_S)] \leq [(T, \leq_T)] : \iff \exists \text{ inj. monotone Abb. } (S, \leq_S) \to (T, \leq_T).$$

Notation. • $0 := [\varnothing]$, • $n := [\{1, \ldots, n\}]$ für $n \in \mathbb{N}$, • $\omega := [\mathbb{N}]$ mit der jeweils kanonischen Ordnungsrelation.

Bem. Die ersten Ordinalzahlen sind

$$0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega \cdot 2, \omega \cdot 2 + 1, \ldots, \omega \cdot 3, \ldots, \omega^{\omega}, \ldots$$

Prinzip (Transfinite Induktion).

Sei $P: \mathcal{O}_n \to \mathbf{Prop}$ eine Aussage über Ordinalzahlen. Dann gilt:

$$(\forall \beta \in \mathcal{O}_n : (\forall \gamma < \beta : P(\gamma)) \implies P(\beta)) \implies \forall \alpha \in \mathcal{O}_n : P(\alpha)$$

Def. Arithmetik von Ordinalzahlen ist folgendermaßen definiert: Für $\alpha = [(S, \leq_S)]$ und $\beta = [(T, \leq_T)] \in \mathcal{O}_n$ ist

• $\alpha + \beta := [(S \coprod T, \leq_{S \coprod T})]$, wobei gilt:

$$\leq_{S \coprod T} |_{S \times S} := \leq_S, \quad \leq_{S \coprod T} |_{T \times T} := \leq_T, \quad S <_{S \coprod T} T.$$

• $\alpha \cdot \beta := [(S \times T, \leq_{S \times T})]$ mit der lexikogr. Ordnung

$$(s_1, t_1) \leqslant_{S \rtimes T} (s_2, t_2) := t_1 < t_2 \lor (t_1 = t_2 \land s_1 \leqslant_S s_2)$$

• $\alpha^{\beta} := [(\{Abb. \ f: S \to T \ \text{mit} \ f(s) = 0 \ \text{für fast alle} \ s \in S\}, \leq)] \ \text{mit}$ $f < g : \iff \exists t \in T : f(t) < g(t) \land (\forall t_2 >_T t : f(t_2) = g(t_2))$

Bem. Es gibt drei Typen von Ordinalzahlen:

- a) Die Null $0 := [(\emptyset, \leq)] \in \mathcal{O}_n$.
- b) Die Nachfolgerzahl $\alpha + 1$ einer Zahl $\alpha \in \mathcal{O}_n$.
- c) Die Limeszahl $\lim A := \sup A$ einer Teil*menge* $A \subset \mathcal{O}_n$.

Bem. Die Rechenop, können auch rekursiv definiert werden durch $\alpha + 0 := \alpha \quad \alpha + (\beta + 1) := (\alpha + \beta) + 1 \quad \alpha + \lim A := \lim \{\alpha + \gamma \mid \gamma \in A\}$ $\alpha \cdot 0 := 0$ $\alpha \cdot (\beta + 1) := (\alpha \cdot \beta) + \alpha$ $\alpha \cdot \lim A := \lim \{\alpha \cdot \gamma \mid \gamma \in A\}$ $\alpha^0 := 1$ $\alpha^{\beta+1} := \alpha^{\beta} \cdot \alpha$ $\alpha^{\lim A} := \lim \left\{ \alpha^{\gamma} \mid \gamma \in A \right\}$

Def. Ein Fast-Halbring ist ein Tupel $(S, +, \cdot, 0)$, sodass (S, +, 0)ein Monoid und (S, \cdot) eine Halbgruppe ist mit

 \bullet $a \cdot (b+c) = a \cdot b + a \cdot c$, \bullet $a \cdot 0 = 0$.

Lem (Rechengeln in \mathcal{O}_n). • $\alpha \cdot 0 = 0 = 0 \cdot \alpha$ • $\alpha \cdot 1 = \alpha = 1 \cdot \alpha$

- $\alpha^0 = 1$ $0^{\alpha} = 0$ für $\alpha > 0$ $1^{\alpha} = 1$ $\alpha^1 = \alpha$ $\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta + \gamma}$ $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$
- \mathcal{O}_n ist ein Fast-Halbring (mit einer Klasse statt Menge)
- Das andere Distributivgesetz stimmt nicht!
- Weder Addition noch Multiplikation sind kommutativ.
- Addition und Mult. erlauben das Kürzen von Elementen nur links.
- Addition, Multiplikation und Potenzieren sind in beiden Argumenten monoton, allerdings nur im zweiten strikt monoton:

$$\forall \beta < \gamma : \alpha + \beta < \alpha + \gamma, \quad \alpha \cdot \beta < \alpha \cdot \gamma \quad (\alpha > 0), \quad \alpha^{\beta} < \alpha^{\gamma} \quad (\alpha > 1).$$

Lem. Jedes $\alpha \in \mathcal{O}_n$ kann geschrieben werden in **Cantor-NF**:

$$\alpha = \omega^{\beta_1} c_1 + \omega^{\beta_2} c_2 + \ldots + \omega^{\beta_k} c_k$$

mit $k \in \mathbb{N}$, $c_1, \ldots, c_k \in \mathbb{N}_{>0}$ und $\beta_1 > \ldots > \beta_k \in \mathcal{O}_n$.