CS420 Chapter 4: Decidability Turing-recognizable Wed March 24, 2021 decidable context-free regular

Announcements

• HW 6 due Sun 3/28 11:59pm EST

• HW 7 due Sun 4/4 11:59pm EST

• Covers Ch 4 material (starting today)

Turing Machines and Algorithms

- Turing Machines can express any "computation"
 - I.e., a Turing Machine is just a (Python, Java, Racket, ...) program!
- 2 classes of Turing Machines
 - Recognizers may loop forever
 - Deciders always halt
- Algorithms are an important class of programs
 - In this class, an algorithm is any program that always halts
- So deciders model algorithms!

Algorithms (i.e., Decidable Problems) about Regular Languages

Flashback: HW2, Problem 1: The "run" fn

← → C 🗎 cs.umb.edu/~stchang/cs420/s21/hw2.html

1 Simulating Computation for DFAs

Recall the formal definition of computation from page 40 of the textbook:

A finite automata $M=(Q,\Sigma,\delta,q_0,F)$ accepts a string $w=w_1,\ldots,w_n$, where each character $w_i\in\Sigma$, if there exists a sequence of states r_0,\ldots,r_n , where $r_i\in Q$, and:

1.
$$r_0 = q_0$$

2.
$$\delta(r_i, w_{i+1}) = r_{i+1}$$
, for $i = 0, \dots, n-1$

3.
$$r_n \in F$$

This problem asks you to demonstrate, with code, that you understand this concept.

Your Tasks

1. Write a "run" predicate (a function or method that returns true or false) that takes two arguments, an instance of your DFA representation (as defined in A Data Representation for DFAs) and a string, and "runs" the string on the DFA.

The "run" algorithm as a Turing Machine

- HW2's "run" function is a Turing Machine.
 - Remember: (Python) programs = Turing Machines
- What is the language recognized by this Turing Machine?
 - I.e., what are the inputs?

Flashback: HW2, Problem 1: The "run" fn

← → C 🗎 cs.umb.edu/~stchang/cs420/s21/hw2.html

1 Simulating Computation for DFAs

Recall the formal definition of computation from page 40 of the textbook:

A finite automata $M=(Q,\Sigma,\delta,q_0,F)$ accepts a string $w=w_1,\ldots,w_n$, where each character $w_i\in\Sigma$, if there exists a sequence of states r_0,\ldots,r_n , where $r_i\in Q$, and:

1.
$$r_0 = q_0$$

2.
$$\delta(r_i, w_{i+1}) = r_{i+1}$$
, for $i = 0, \dots, n-1$

3.
$$r_n \in F$$

This problem asks you to demonstrate, with code, that you understand this concept.

Your Tasks

1. Write a "run" predicate (a function or method that returns true or false) that takes two arguments, an instance of your DFA representation (as defined in A Data Representation for DFAs) and a string, and "runs" the string on the DFA.

The language of the "run" function

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$

Interlude: Encoding Things into Strings

- A Turing machine's input is always a string
- So anything we want to give to TM must be encoded as string
- <u>Notation</u>: <Something> = encoding for Something, as a string
 - E.g., Something might be a DFA
 - Can you think of a string "encoding" for DFAs????
 - Used in HW1, HW2, ...
- Use a tuple to combine multiple encodings, e.g., <B,w> (from prev slide)

Interlude: Informal TMs and Encodings

- An informal TM description:
 - Doesn't need to describe exactly how input string is encoded
 - Assumes input is a "valid" encoding
 - Invalid encodings are automatically rejected

The language of the "run" function

$$A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$$

- "run" program is a Turing machine
- But is it a decider or recognizer?
 - I.e., is it an algorithm?
- To show it's an algo, need to prove: A_{DFA} is a decidable language

How to prove that a language is decidable?

• Create a Turing machine that <u>decides</u> that language!

Remember:

 A <u>decider</u> is Turing Machine that always halts, and, for any input, either accepts or rejects it.

How to Design Deciders

- If TMs = Programs ...
- ... then **Creating** a TM = Programming
- E.g., if HW asks "Show that lang L is decidable" ...
 - .. you must create a TM that decides L; to do this ...
 - ... think of how to write a (halting) program that does what you want

Thm: A_{DFA} is a decidable language

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$

Decider for A_{DFA} :

M = "On input $\langle B, w \rangle$, where B is a DFA and w is a string:

- 1. Simulate B on input w.
- 2. If the simulation ends in an accept state, *accept*. If it ends in a nonaccepting state, *reject*."

Where "Simulate" =

- Start in the starting state "q0" ...
- For each input char x ...
 - Call delta fn with current state and x to compute "next state"
- This is just the answer to HW2's "run" function!
- Your HW2 solution already "proved" this!

Remember:

TMs = programs
Creating TM = programming

Thm: A_{NFA} is a decidable language

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | \ B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA} :

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

1. Convert NFA B to an equivalent DFA C, using the procedure for this conversion given in Theorem 1.39.

Remember:

TMs = programs
Creating TM = programming
Previous theorems = library

How to Design Deciders, Part 2

- If TMs = Programs ...
- ... then **Creating** a TM = Programming
- E.g., if HW asks "Show that lang L is decidable" ...
 - .. you must create a TM that decides L; to do this ...
 - ... think of how to write a (halting) program that does what you want

Hint:

- Previous (constructive) theorems are a "library" of reusable TMs
- When creating a TM, try to use these theorems to help you
 - Just like you use <u>libraries</u> when programming!
- E.g., "Library" for DFAs:
 - NFA->DFA, Regexp->NFA,
 - union, intersect, star, homomorphism, FLIP,
 - A_{DFA}, A_{NFA}, A_{REX}, ...

Thm: A_{REX} is a decidable language

 $A_{\mathsf{REX}} = \{\langle R, w \rangle | \ R \text{ is a regular expression that generates string } w\}$

Decider:

- P = "On input $\langle R, w \rangle$, where R is a regular expression and w is a string:
 - 1. Convert regular expression R to an equivalent NFA A by using the procedure for this conversion given in Theorem 1.54.

DFA TMs Recap (So Far)

<u>Remember:</u> **TMs = programs**

Creating TM = programming
Previous theorems = library

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$
 - Deciding TM = program = HW2 "run" function
- $A_{\mathsf{NFA}} = \{\langle B, w \rangle | B \text{ is an NFA that accepts input string } w\}$
 - Deciding TM = program = HW3 NFA->DFA + DFA "run"
- $A_{REX} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$
 - Deciding TM = program = HW4 Regexp->NFA + NFA->DFA + DFA "run"

Thm: E_{DFA} is a decidable language

$$E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$$

Decider:

T = "On input $\langle A \rangle$, where A is a DFA:

1. Mark the start state of A.

I.e., this is a "reachability" algorithm we check if accept states are "reachable" from start state

Thm: EQ_{DFA} is a decidable language

 $EQ_{\mathsf{DFA}} = \{\langle A, B \rangle | \ A \ \mathrm{and} \ B \ \mathrm{are} \ \mathsf{DFAs} \ \mathrm{and} \ L(A) = L(B) \}$

Trick: Use Symmetric Difference

Symmetric Difference

Bonus Pts:
prove negation,
i.e., set complement,
is closed for regular
languages

$$L(A)$$
 $L(C)$
 $L(C)$

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

$$L(C) = \emptyset \text{ iff } L(A) = L(B)$$

Thm: EQ_{DFA} is a decidable language

$$EQ_{\mathsf{DFA}} = \{\langle A, B \rangle | \ A \ \mathrm{and} \ B \ \mathrm{are} \ \mathsf{DFAs} \ \mathrm{and} \ L(A) = L(B) \}$$

Construct decider using 2 ingredients:

- Symmetric Difference algo: $L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$
 - Construct C = Union, intersection, negation of machines A and B
- decider (from "library") for: $E_{DFA} = \{\langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
 - Because $L(C) = \emptyset$ iff L(A) = L(B)
 - F = "On input $\langle A, B \rangle$, where A and B are DFAs:
 - 1. Construct DFA C as described.
 - **2.** Run TM T deciding E_{DFA} on input $\langle C \rangle$.
 - 3. If T accepts, accept. If T rejects, reject."

Summary: Decidable DFA Langs (i.e., algorithms)

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$
- $A_{\mathsf{NFA}} = \{\langle B, w \rangle | B \text{ is an NFA that accepts input string } w\}$
- $A_{\mathsf{REX}} = \{ \langle R, w \rangle | \ R \text{ is a regular expression that generates string } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

Remember:

TMs = programs
Creating TM = programming
Previous theorems = library

Next time:

Decidable Problems (i.e., Algorithms) about Context-Free Languages (CFLs)

Next time: A_{CFG} is a decidable language

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | \ G \text{ is a CFG that generates string } w \}$

- This a is very practically important problem ...
- ... equivalent to:
 - Is there an algorithm to parse programming lang with grammar G?
- A Decider for this problem could ...?
 - Try all possible derivations of G?
 - But this might never halt
 - e.g., if there is a rule like: S -> OS or S -> S
 - This TM would be a recognizer but not a decider
- Idea: can the TM stop checking after some length?
 - i.e., Is there upper bound on the number of derivation steps?

Check-in Quiz 3/24

On gradescope