



#4

## N-TERMINAL AMINOACID SEQUENCES

Position

| Position | A   | B      | C   |
|----------|-----|--------|-----|
| 01       |     |        | LEU |
| 02       |     |        | ALA |
| 03       |     |        | VAL |
| 04       |     |        | PRO |
| 05       |     | ALA    | ALA |
| 06       |     | SER    | SER |
| 07       |     | ---    | ARG |
| 08       | --- | ---    | ASN |
| 09       | GLN | GLN    | GLN |
| 10       | SER | SER    | SER |
| 11       | SER | SER    | SER |
| 12       | --- | ---    | GLY |
| 13       | ASP | ASP    | ASP |
| 14       | THR | THR    | THR |
| 15       | VAL | VAL    | VAL |
| 16       | ASP | ASP    | ASP |
| 17       | GLN | GLN    |     |
| 18       |     | GLY    |     |
| 19       |     | TYR    |     |
| 20       |     | GLN    |     |
| 21       |     | ARG    |     |
| 22       |     | PHE    |     |
| 23       |     | SER    |     |
| 24       |     | GLU    |     |
| 25       |     | THR    |     |
| 26       |     | SER    |     |
| 27       |     | HIS    |     |
| 28       |     | LEU    |     |
| 29       |     | ARG    |     |
| 30       |     | (GLY)* |     |
| 31       |     | GLN    |     |
| 32       |     | TYR    |     |
| 33       |     | ALA    |     |
| 34       |     | PRO    |     |
| 35       |     | PHE    |     |
| 36       |     | PHE    |     |
| 37       |     | (ASP)  |     |
| 38       |     | LEU    |     |
| 39       |     | ALA    |     |

FIG. I A



## PEPTIDE AMINOACID SEQUENCES

| Position | A     | B      | C   | D   | E   |
|----------|-------|--------|-----|-----|-----|
| 01       | GLN   | (TRP)* | MET | ALA | VAL |
| 02       | ---   | SER    | MET | SER | VAL |
| 03       | GLN   | PHE    | GLN | SER | ASP |
| 04       | ALA   | ASP    | CYS | ALA | --- |
| 05       | GLU   | THR    | GLN | GLU | ARG |
| 06       | GLN   | ILE    | ALA | LYS | PHE |
| 07       | GLU   | SER    | GLU | GLY | PRO |
| 08       | PRO   | THR    | GLN | TYR | TYR |
| 09       | LEU   | SER    | GLU | ASP | THR |
| 10       | VAL   | THR    | PRO | LEU | GLY |
| 11       | (ARG) | VAL    | LEU | VAL | --- |
| 12       | VAL   | ASP    | VAL | VAL | ALA |
| 13       | LEU   | THR    | ARG |     |     |
| 14       | VAL   | LYS    | VAL |     |     |
| 15       | ASN   | LEU    | LEU |     |     |
| 16       | (ASP) | SER    | VAL |     |     |
| 17       | (ARG) | PRO    | ASN |     |     |
| 18       | (VAL) | PHE    | ASP |     |     |
| 19       | VAL   | (CYS)  | ARG |     |     |
| 20       | PRO   | (ASP)  |     |     |     |
| 21       |       | LEU    |     |     |     |
| 22       |       | PHE    |     |     |     |
| 23       |       | THR    |     |     |     |

FIG. 1B



## N-TERMINUS 100KD PROTEIN

### Position

|    |     |
|----|-----|
| 01 | VAL |
| 02 | VAL |
| 03 | ASP |
| 04 | GLU |
| 05 | ARG |
| 06 | PHE |
| 07 | PRO |
| 08 | TYR |
| 09 | THR |
| 10 | GLY |

FIG. I C



1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17    18    19    20  
 Peptide C: Leu-Ala-Val-Pro-Ala-Ser-Arg-Asn-Gln-Ser-Ser-Gly-Asp-Thr-Val-Asp  
 Ala-Ser-\*\*\*-\*\*\*-Gln-Ser-Ser-\*\*\*-Asp-Thr-Val Asp-Gln-Gly-Tyr-Gln-  
 \*\*\*-Gln-Ser-Ser-\*\*\*-Asp-Thr-Val-Asp-Gln  
 Peptide B:  
 Peptide A:

Possible codons: 5' CTG-GCG-GTG-CCG-GCG-TCG-CGG-AAT-CAA-TCG-TGG-GAT-ACG-GTG-GAT-CAA-GGG-TAT-CAA-

|     |   |   |   |   |         |   |         |   |   |   |   |   |   |
|-----|---|---|---|---|---------|---|---------|---|---|---|---|---|---|
| A   | A | A | A | A | C       | G | A       | A | A | C | A | C | G |
| T   | T | T | T | T | T       | T | T       | T | T | T | T | T | T |
| C   | C | C | C | C | C       | C | C       | C | C | C | C | C | C |
| TTA |   |   |   |   | AGT AGA |   | AGT AGT |   |   |   |   |   |   |
| G   |   |   |   |   | C G     |   | C C     |   |   |   |   |   |   |

AB1024: 3'-CGG-CAG-GGG-CGG-TCG-GCG-TTG-GTC-TCG-TCG-CCG-CTG-TGG-CAG-CTG-GTC

AB1065: 3'-CCG-CTG-TGG-CAC-CTG-GTC

|         |   |   |   |   |   |                            |                 |   |   |   |  |  |  |
|---------|---|---|---|---|---|----------------------------|-----------------|---|---|---|--|--|--|
| AB1066: | A |   |   |   |   |                            |                 |   |   |   |  |  |  |
| AB1067: |   | A |   |   |   |                            |                 |   |   |   |  |  |  |
| AB1068: |   |   | A |   |   |                            |                 |   |   |   |  |  |  |
| AB1069: |   |   |   | A |   |                            |                 |   |   |   |  |  |  |
| AB1070: |   |   |   |   | A |                            |                 |   |   |   |  |  |  |
| AB1226: |   |   |   |   |   | 3'-CAG-CTG-GTC-CCG-ATG-GTC |                 |   |   |   |  |  |  |
| AB1227: |   |   |   |   |   | C A                        | A               | A | A | T |  |  |  |
| AB1298: |   |   |   |   |   | 3'-CAG-CTG-GTC-CCG-ATG-GTC | A C C A T C A T |   |   |   |  |  |  |

FIG.2A-1



(phytase N-terminus, continued)

Peptide B: (Arg)Phe-Ser-Glu-Thr-Ser-His-Leu-Arg-(Gly)-Gln-Tyr-Ala-Pro-Phe-Phe-(Asp)-Leu-Ala  
 CGG-TTT-TCG-GAG-ACG-TCG-CAT-CTG-CAT-A  
 T A C A A A C A A C C A C C C A A  
 T T T T T T T T T T T T  
 C C C C C C C C C C C C  
 AGG AGT TTG AGG TTG  
 A C C A A  
 AB1388: 3'-CCG-GTC-ATG-CGG-GGG-AAG-AAG-CTG-  
 C C C A

FIG.2A-2



Peptide A: (Gln-? -Gln-Ala-Glu-Gln-Glu-Pro-Leu-Val-(Ser/Arg)-Val-Leu-Val-(Asp/Asn))

|     |   |   |   |     |     |     |     |   |    |    |    |    |    |    |
|-----|---|---|---|-----|-----|-----|-----|---|----|----|----|----|----|----|
| 1   | 2 | 3 | 4 | 5   | 6   | 7   | 8   | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| A   | A | A | A | A   | A   | A   | A   | A | A  | A  | A  | A  | C  | C  |
| T   |   |   |   | T   | T   | T   | T   | T | T  | T  | T  | T  | T  | T  |
| C   |   |   |   | C   | C   | C   | C   | C | C  | C  | C  | C  | C  | C  |
| TTG |   |   |   | AGT | AGT | AGG | TTG |   |    |    |    |    |    |    |
|     |   |   |   | A   | C   |     |     | A |    |    |    |    |    |    |

AB1295:  
3'-GTC. CGC.CTC. GTC. CTC. GGG. GAG. CA-5'  
T G T T C A C

16            17            18            19            20            21            22  
-Asp/Thr/Arg-(Arg/Val))-Val-Pro-(Pro)-Met-Gly

|     |     |   |   |   |   |   |   |   |   |   |   |   |   |   |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C   | A   | A | A | A | A | A | A | A | A | A | A | A | A | A |
| T   |     |   | T | T | T | T | T | T | T | T | T | T | T | T |
| C   |     |   | C | C | C | C | C | C | C | C | C | C | C | C |
| AGG | AGG |   |   |   |   |   |   |   |   |   |   |   |   |   |
| A   | A   |   |   |   |   |   |   |   |   |   |   |   |   |   |

FIG.2B-1



Peptide B: (Trp)-Ser-Phe-Asp-Thr-Ile-Ser-Thr- Ser-Thr-Val-Asp-Thr-Lys-Leu-Ser-Pro-Phe-

|     |     |     |     |   |   |   |   |   |    |    |    |    |    |    |     |     |    |
|-----|-----|-----|-----|---|---|---|---|---|----|----|----|----|----|----|-----|-----|----|
| 1   | 2   | 3   | 4   | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16  | 17  | 18 |
| A   | C   | C   | A   | T | A | A | A | A | C  | A  | A  | A  | A  | A  | A   | A   | C  |
| T   | T   | C   | T   | T | T | T | T | T | T  | T  | T  | T  | T  | T  | T   | T   | T  |
| C   | C   | C   | C   | C | C | C | C | C | C  | C  | C  | C  | C  | C  | C   | C   | C  |
| AGT | AGT | AGT | AGT |   |   |   |   |   |    |    |    |    |    |    | TTG | AGT |    |
| C   | C   | C   | C   |   |   |   |   |   |    |    |    |    |    |    | A   | C   |    |

AB1296 : 3'-AAG. CTG.TGC. TAG.AGG. TGG.AGG. TGG. CAC. CTG. TGC. TTC-5'  
TCC C TCC C AB1297: 3'-GGC.AAG.  
G

|     |    |    |    |    |    |    |    |    |    |     |    |    |    |    |     |   |  |
|-----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|-----|---|--|
| 19  | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29  | 30 | 31 | 32 | 33 |     |   |  |
| C   | C  | A  | C  | A  | A  | C  | T  | A  | C  | C   | A  | A  | C  | A  |     |   |  |
| T   | T  | T  | T  |    |    |    | C  | T  |    |     | T  | T  | T  | T  |     |   |  |
| C   | C  | C  | C  |    |    |    | C  |    |    | C   | C  | C  | C  | C  |     |   |  |
| TTG |    |    |    |    |    |    |    |    |    | AGG |    |    |    |    | TTG | A |  |
| A   |    |    |    |    |    |    |    |    |    |     |    |    |    |    |     |   |  |

(ACG). (CTG). GAG. AAG. TGC. (TGC). (CTG). (ACG). (TAG). (T)-5'  
C G G FIG.2B-2



1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17    18    19    20    21    22    23  
Phe-Ser-Tyr-Gly-Ala-Ala-Ile-Pro-Gln-Ser-Thr-Gln-Lys-Gln-Phe-Ser-Gln-Glu-Phe-Arg-Asp-Gly

5'-TTT-TCG-TAT-GGG-GCG-GCG ATA-CCG-CAG-TCG-ACG-CAG-GAG-AAG-CAG-TTT-TCG-CAG-GAG-TTT-CGG-GAT-GGG  
C   A   C   A   A   T   A   A   A   A   A   A   C   A   A   C   A   C   A  
T   T   T   C   T   T   T   T   T   T   C   C   C   C   C  
C   C   C   C   C   C   C   C   C   C   C   C   C   C  
AGT   AGT

AB1025: 3'-ATG-CCG-CGG-TAG-GGG-GTC-TCG-TGG-GTC-CTC-CTC-TTC-GTC-AAG-TCG-GTC-CTC-AAG-GC-5  
3'-GTC-CTC-TTC-GTC-AAG-TCG-GTC-CTC-AAG-GC-5  
AB1026:  
T   T   T   T   T   T   T   T   T   T   T   T   T   T   T

AB1027: 3'-ATG-CCG-GCG-CGC-TAA-GGC-GTC-5'  
A   T   T   G   G  
A   A  
G   G

FIG.3



FIG.4



FIG.5



2025 RELEASE UNDER E.O. 14176

**GTCGACTTCCCCTCCTATTGGGCCTCGTCCGCTGAAGATCCATCCCACCA**  
SalI

TTGCACGTGGGCCACCTTGTGAGCTTCTAACCTGAACGGTAGAGTATC 100

ACACACCATGCCAAGGTGGATGAACGGGTTATATGAGACCCTCGGTCC

GGCGCGATGCCGTAGCTGCCACTCGCTGCTGTGCAAGAAATTACTTCTC 200

ATAGGCATCATGGCGTCTTGCTGTTCTACTTCCTTGTATCTCCTGTC  
translation start

**TGGGTATGCTAAGCACCAATCAAAGTCTAATAAGGACCCCTCCCTCCG**  
start<----- 300

**AGGGCCCTGAAGCTCGGACTGTGTGGACTACTGATCGCTGACTATCTG**  
---intron-----

**TGCAGAGTCACCTCCGGACTGGCAGTCCCCGCTCGAGAAATCAATCCAG**  
->end 400

TTGCGATACGGTCGATCAGGGTATCAATGCTTCTCCGAGACTTCGCATC

TTTGGGGTCAATACGCACCGTTCTTCTCTGGCAAACGAATCGGTATC 500

TCCCCCTGAGGTGCCCGCCGATGCAGAGTCACTTCGCTCAGGTCTCTC

CCGTATGGAGCGCGGTATCCGACCGACTCCAAGGGCAAGAAATACTCCG 600

CTCTCATTGAGGAGATCCAGCAGAACGCGACCACCTTGACGGAAAATAT

GCCTTCCTGAAGACATACAACACTACAGCTTGGGTGCAGATGACCTGACTCC 700

CTTCGGAGAACAGGAGCTAGTCACACTCCGGCATCAAGTTCTACCAGCGGT

ACGAATCGCTACAAGGAACATCGTCCATTCAATCCGATCCTCTGGCTCC 800

AGCCGGGTATGCCCTCCGGCAAGAAATTATCGAGGGCTTCCAGAGCAC

CAAGCTGAAGGATCCTCGTGCCTGGCCAGCCCCGCAATCGTCGCCAAGATCG 900  
BamHI

ACGTGGTCATTCCGAGGCCAGCTCATCCAACACACTCTCGACCCAGGC

ACCTGCACTGTCTCGAAGACAGCGAATTGGCCGATACCGTCGAAGCCAA 1000

FIG.6A



TTTCACCGCCACGTTCGTCCCTCCATTGTCAACGTCTGGAGAACGACC  
TGTCCGGTGTGACTCTCACAGACACAGAAAGTACCTACCTCATGGACATG 1100  
TGCTCCTTCGACACCATCTCCACCAGCACCGTCGACACCAAGCTGTCCCC  
Sali  
CTTCTGTGACCTGTTCACCCATGACCAATGGATCAACTACGACTACCTCC 1200  
AGTCCTTGAAAAAGTATTACGGCCATGGTGCAGGTAACCCGCTCGGCCCG  
ACCCAGGGCGTCGGCTACGCTAACGAGCTACGCCCGTCTGACCCACTC 1300  
GCCTGTCCACGATGACACCAGTTCCAACCACACTTGGAACTCGAGCCCGG  
CTACCTTCCGCTCAACTCTACTCTACGGGACTTTGCGATGACAAC 1400  
GGCATCATCTCCATTCTCTTTGCTTAGGTCTGTACAACGGCACTAACCG  
GCTATCTACCACGACCGTGGAGAATATCACCCAGACAGATGGATTCTGT 1500  
CTGCTTGGACGGTCCGTTGCTTCGCGTTGTACGTCGAGATGATGCAG  
TGTCAGGCGGAGCAGGAGCCGCTGGTCCGTCTGGTTAATGATCGCGT 1600  
TGTCCCGCTGCATGGGTGTCCGTTGATGCTTGGGAGATGTACCCGG  
ATAGCTTGTGAGGGGTTGAGCTTGCTAGATCTGGGGTGATTGGCG 1700  
GAGTGTTTTGCTAGCTGAATTACCTGATGAATGGTATGTATCACATTG  
translation stop  
CATATCATTAGCACTTCAGGTATGTATTATCGAAGATGTATATCGAAAGG 1800  
ATCAATGGTGACTGTCACTGGTTATCTGAATATCCCTCTACCTCGTCC  
CACAAACCAATCATCACCCTTAAACAATCACACTCAACGCACAGCGTACA 1900  
AACGAACAAACGACAAAGAATATTTACACTCCTCCCCAACGCAATACC  
AACCGCAATTCATCATACCTCATATAAATACAATACAATACAATACATCC 2000

FIG.6B



ATCCCTACCTCAAGTCCACCCATCCTATAATCAATCCCTACTTAC  
TTCTCCCCCTCCCCCTCACCCCTCCAGAACTCACCCCCGAAGTAGTAAT 2100  
AGTAGTAGTAGAAGAAGCAGACGACCTCTCCACCAATCTCTCGGCCTCT  
TATCCCCATACGCTACACAAAACCCCCACCCCGTTAGCATGCACTCAGAA 2200  
AATAATCAAAAATAACTAAGAAGGAAAAAAAAGAAGAAGAAAGGTTACAT  
ACTCCTCTCATACAAACTCCAAGACGTATACTCAAGATGGCAATCCCA 2300  
CCATTACTGATATCCATCTATGAACCCATTCCATCCCACGTTAGTTGAT  
TACTTTACTTAGAAGAAGAAAAGGGAAGGGAAGGGAAAGAAGTGGATGG 2400  
GATTGAGTTAGTGCTCACCGTCTCGCAGCAAGTTATATTCTTTGTTG  
GCGGATATCTTCACTGCTCCTGCTGGACGTTGTCACGGGTGGTAGTGG 2500  
TTGGCGGTGGTGAGGGTCCATGATCACTCTGGTTGGGGTTGTTGTT  
GTCGTTGTTGTTGGGTGGCATTTCCTTCTTCACTTGGGAT 2600  
TATTATTGGAATTGGTTAGTTGAGTGAGTGGTAATATTGAATGGGTG  
ATTATTGGGAATGAAGTAGATTGGCTATGAATGGTGATGGATGGAAT 2700  
GAATGGATGGATGAATAGATGGAGGCGGAAAGTCAGGTGGTTGAGGTT  
CGGATTATTATCTTGTGCCTGAGGCATCACTCTCCATCTATGTTGTTCT 2800  
TTCTATACCGATCTACCAGAGCTAAGTTGACTGATTCTACCACAGTGCAC  
AATAAGTATGTACTTATTCTAGAGTATTAGATTAACCCGCTGTGC 2900  
TATTTGCCGTAGCTTCCACCCAAATTGAGTTGAGAAGAAATTAAACTC  
ATCCTACAGTACAGAATAGAAGTAAAAGGAGAAGAGAAAAACAAGATAAT 3000

FIG.6C



201379705 3113232

ACAAACCAGTCCAGGTCCATTCTAGATCTGAATGACCACCAAATAAGAAA  
GCAACAAGCAAGTAAGCAAAGCATAAGTCTAAATGAACGCCAATAACTTC 3100  
ATCGCCTGCCTTGAAACTGAACGCTATGCACGAATGGCTCGAAATGATT  
CCCTTAACCTCCGTAGTATTGAGAGTGAGAGGAAAAGAAAAAGAGACAG 3200  
AAAAGCTGACCATGGAAAGAACATGATCAGTCGGGAATGGATCTGCGG  
GTTGAGATAGATATGAGTTGCCTCGCAGATCCGGTGACAAGATAAGAGAA 3300  
TTGGGAGATGTGATCAGCCACTGTAACCTCATCAAGCAGATCGACATTCAAC  
GGTCGGGTCTCGGGTTGAGATGCAAGTTGAGATGCCACGCAGACCCGAA 3400  
CAGAGTGAGAGATGTGAGACTTTGAACCACGTGACTTCATCAAGCAGTC  
AAAACACACTCCATGGTCAATCGGTTAGGGTGTGAGGGTTGATATGCCAG 3500  
GTTCGATGCCACGCAGACCCGAACCGACTGAGAAATATGAAAAGTTGGAC  
AGCCACTTCATCTTCATCAAGCGTAAACCCCAATCAATGGTAAATCGAA 3600  
AACGAATCTCGGGCTGATGTGGAAATGAGACGAATGCCTCGCAGATTG  
AAGACACGTAAATCGAGATGAACAATCACTTAACTTCATCAAAGCCTTA 3700  
AATCACCCAATGGCCAGTCTATTGGGTCTGGGGTTGAGGTTCTGTTG  
AGATGCCACGCAGACTGCGAACATGCGATGCATTATAAGTTGGACGAGTG 3800  
TAGACTGACCATTGATAACCGAGATAAACAAATCACTTCAACTTCATCAA  
GCCTTAAATCACTCAATGGCCAGTCTGTTGGGTCTGGGGCTGATACC 3900  
CAAGTTGCGATGCCACGCAGACTGCAAACATTGATCGAGAGACGAGAAAA  
ACAAACGCACCTTAACCTCAACAAAAGCCTTCAATCAGTCAATGCCAGT 4000

FIG.6D



CTGTTCGCGGTCTCGGGCTGATATGCGAGTTGAGGTGCCCTCGCAGACCG  
CGAACATGCGATGTAATTCTTAGTTAGACGAGTGCCTGCCATTGAGAA 4100  
ACGAGAGAAACAACCACTTAACTTCATGAAAGCCTTGAACTACTCAATG  
ACCCGTCTGTTGGCGGTCTCGGGCTGATATTGAGTTGAGATGCCACGC 4200  
AGACCGCCAACATGCGATGTATCATGTAAGTTAGATGAGTGACTGCCAT  
TGAGAAACGAGAGAAACAACCACTTCATGAGAGCCTTAAATTATTCAA 4300  
TGACCAGTCTGTTCACGGTCTCGGGTTGGTATGCGAGTCGAGGTGCCTC  
GCAGACCGCGAACATGCGATGTTTCGATGGACGAGTGAAGCCTGACGAT 4400  
CGAGAACTATCTCAGTTGGGTTGCCATTGGCTGGCGTTGGTTAGT  
ATTAGGATCGTCAGGTTGTCGATGGAACGTTCCGTTGCGTGCCTGG 4500  
CGCGACGAGCCCTCTCCTCGCGTGATTCTGAAATTCTGCAATCAGGGCA  
GCCGCAGCACGGCGACGGGACGTCCCTCCAGGAGCTGTGTTGAAGTTCGG 4600  
GGTGGCGGTCCAGAAGGGGGAGTTACATTAAAAGCCTCATAGATGTCTT  
GGGTGGTCCGGGGGCCATCGCAAGATCTTCTGGAGTTGCGTCTGA 4700  
TCATCTCTTGAGTGTAAATTGCGACGCAGACCGAGCTTCAGGATTTGGAA  
GGGCTGGATCGCTCCTGCTGACTCTTCCCTCAGCGGGCTTCGTCGGC 4800  
AGTCTTCATTCGGCGGGCTGATCTTCATCTCAGAATGGGATCGCTTTC  
TGGTCGCTGCACCCGCTCCCTCAAGGTCAGCTTGATGCGCAGCGTC 4900  
TTGGGCGGCTCAGCTGGTGGAGTTGGTCCGGCTCTGGCTCCCTCCGGCG  
TCGCTTGGGCACTTGAGTAGTCTCTGAGGCTCGCCGCCGCCGTTGC 5000



GAGTCGGCTCCTGGTCTCTTGGCTTTCACTCACCTGGACCGTCT  
TTCGGGGCGGTTTCATCGTGCTGAGCGATCAAGGTTGGATGTAGGCAGC 5100  
CGGCATCATTGATCAACGGAATTCCCTCTTGCAGGGCTCCTCCGAG  
CCTTGATTGTCGCCTGACCTCGTCCACGTTTCGAAGAAGAAAGGCATC 5200  
TTGTTATCCTGAGGCAAGTTGCGCTCTCCATGCGTGGGATATCCGAAG  
ATGCGGTCTTCTCGAACTGTTCATGAGACTTCAGACGAATTGGAGGCTG 5300  
GGGGAGCAATTGCTCCGTAGGTGTTAGGGCGAACCAAGAATAGC  
CTTCGCCTACAACGACAAGCTTCGCCAAATTATTTTTGGCCTGTA 5400  
AAAACGAACCCATCCTCGTCAGTCCACCGGTGCGTCTGGACGTAGAGAT  
TGGCTTACTTATTCCCTCAACGCCATCTGCCTGGGCTGCGCTTCGG 5500  
ATGCGGCCTCGGTACGGCTCCGCCTCGGACTGCACCGCTGGAGTTCGG  
TCTTCTTCTCCTGCTTCTCCAGGTACTCCTGCGTAACCTTCGATCAGC 5600  
CTCGGCTTCCGATGACTGCTCAAATTCTGGAGCAACAGCTGCCGGCCA  
GGTCAAGCAGGCGGTTGCTAAAACGCCATTTCCATCGACACCTGCC 5700  
TCCGACGCCGTGCAAAACCAGCTGTTTCGCATTGGCCTGTTGGC  
ACCGGTCTTCTGACTGCTGCCCTTACTCCTTGAGAGCAGACT 5800  
CTGGCTTAGATGGTGCACGGTTCTGCGGAAGCGCCGCTCAGATTCC  
AAAGATTCCATAGCTTAATGGTAGGCTTCTGGTTCTCCAGAAGTGC 5900  
CGCAGCTGACGTAGTGGTTGAGTAGCTGGCAGTTGGGATCCTGGCCCT  
CATTGGAACCATCAAGACCAAATTGTTCCATACATATCAGCATGGTAT 6000

FIG.6F



TCAAAAGGAAAACCTTCGCCGTACGGAGTACTGCCTCGATTCCGGGTGT  
ATCCAAGTCGTATCCAGACATGGTGTGAATTCAAGCCTTGCTGTCAAGAG 6100  
CAGGGTACTTCAATGCTGTCAGCAACCACGCCAAAGGGCGTCTTC  
GGGAAAGAAGGTTTCAAGAGAACGCGTACCCACGCCCTGGCTGGC 6200  
GTTGATTGCAGACTTCGACTAGATCGCTGAGGTGCGAAGTGGCTCGAG  
TAGCAACCTGTGAATTGGCAGCCTGTGACTGCTCGATTCACTGCAGAG 6300  
ACGGAGTAGACTGCACTGATTGGAATTCTGAGTCGCAGCCATTCTGGAT  
TTGCGTTGGCGCGACGAGATCTCGAGTCGTGGTACGAGGAGTAGAGCG 6400  
AGGCTGCGTAGCAGTGGTGGCAGACGCAGCAGAATTAGCGGAGCTTATCGC 6500  
TTGCCGCTCTGAGCGTTGGAGTAGAAGTGGAGAGAGAGTAGAGTCCA  
CGGAAGAAGTCTCTCGCTGTTCAAAGCCGTTCAAGCTTGTGGCATA 6600  
GACTTACGCGTCTTGGCTGTTGGAAGCGGAAGAGAGTTCATGGCGGGAGA  
GGAGACGTTAGAAGTAGACATGGTGGGTTGTTGACGGGTTTGAGTAA 6700  
CAAGAGACTTGCCTCGATCTTGAGTGTCTTGACAGAAAGTTATGCAAC  
  
**GTCGAC 6756**  
**Sall**

**FIG.6G**



PHYTASE LOCUS



FIG. 7



ATGGCGCTCTGCTGTTCTACTCCCTTGATCTCCTGTCTGGAGTCAC  
 M G V S A V L L P L Y L L S G V T  
 -23 -20 -10  
 CTCCGGACTGGCAGTCCCCGCCTCGAGAAATCAATCCAGTTGCGATACGG 100  
 S G L A V P A S R N Q S S C D T  
 ' ' -1 +1 10  
 TCGATCAGGGTATCAATGCTTCTCCGAGACTTCGATCTTGGGTCAA  
 V D Q G Y Q C F S E T S H L W G Q  
 ' ' 20  
 TACGCACCGTTCTCTCTGGCAAACGAATCGGTATCTCCCTGAGGT 200  
 Y A P F F S L A N E S V I S P E V  
 30 40  
 GCCCGCCGGATGCAGAGTCACTTCGCTCAGGTCTCTCCGTATGGAG  
 P A G C R V T F A Q V L S R H G  
 ' 50 60  
 CGCGGTATCCGACCGACTCCAAGGGCAAGAAATACTCCGCTCTCATTGAG 300  
 A R Y P T D S K G K K Y S A L I E  
 ' 70  
 GAGATCCAGCAGAACCGACCCACCTTGACGGAAAATATGCCTTCCTGAA  
 E I Q Q N A T T F D G K Y A F L K  
 80 90  
 GACATACAACACTACAGCTGGTGCGAGATGACCTGACTCCCTCGGAGAAC 400  
 T Y N Y S L G A D D L T P F G E  
 ' 100 110  
 AGGAGCTAGTCAACTCCGGCATCAAGTTCTACCAGCGGTACGAATCGCTC  
 Q E L V N S G I K F Y Q R Y E S L  
 ' 120  
 ACAAGGAACATCGTCCATTCCATCGATCTCTGGCTCCAGCCGCGTGAT 500  
 T R N I V P F I R S S G S S R V I  
 130 140  
 CGCCTCCGGCAAGAAATCATCGAGGGCTCCAGAGCACCAAGCTGAAGG  
 A S G K K F I E G F Q S T K L K  
 ' 150 160  
 ATCCTCGTCCCCAGCCGCCAATCGTCGCCAAGATCGACGTGGTCATT 600  
 D P R A Q P G Q S S P K I D V V I  
 ' 170  
 TCCGAGGCCAGCTCATCCAACAAACACTCTCGACCCAGGCACCTGCACTGT  
 S E A S S S N N T L D P G T C T V  
 180 190  
 CTTCGAAGACAGCGAATTGGCCGATACCGTCGAAGCCAATTTCACCGCCA 700  
 F E D S E L A D T V E A N F T A  
 ' 200 210

FIG.8A



CGTTCGTCCCCTCCATTGTCAACGCTGGAGAACGACCTGTCCGGTGTG  
 T F V P S I R Q R L E N D L S G V  
 220

ACTCTCACAGACACAGAAGTGACCTACCTCATGGACATGTGCTCCTTCGA 800  
 T L T D T E V T Y L M D M C S F D  
 230 240

CACCATCTCCACCAGCACCGTCGACACCAAGCTGTCCCCCTCTGTGACC  
 T I S T S T V D T K L S P F C D  
 250 260

TGTTCACCCATGACGAATGGATCAACTACGACTACCTCCAGTCCTGAAA 900  
 L F T H D E W I N Y D Y L Q S L K  
 270

AAGTATTACGGCCATGGTGCAGGTAAACCGCTCGGCCCGACCCAGGGCGT  
 K Y Y G H G A G N P L G P T Q G V  
 280 290

CGGCTACGCTAACGAGCTACGCCCTGTGACCCACTCGCCTGTCCACG 1000  
 G Y A N E L I A R L T H S P V H  
 300 310

ATGACACCAAGTTCCAACCAACACTTGGACTCGAGCCGGTACCTTCG  
 D D T S S N H T L D S S P A T F P  
 320

CTCAAECTACTCTACGCCGACTTTCGCATGACAACGGCATCATCTC 1100  
 L N S T L Y A D F S H D N G I I S  
 330 340

CATTCTCTTGCTTAGGTCTGTACAACGGCACTAACCGCTATCTACCA  
 I L F A L G L Y N G T K P L S T  
 350 360

CGACCGTGGAGAATATCACCCAGACAGATGGATTCTCGTCTGCTTGGACG 1200  
 T T V E N I T Q T D G F S S A W T  
 370

GTTCCGTTGCTTCGCGTTGTACGTCGAGATGATGCAGTGTCAAGCGGA  
 V P F A S R L Y V E M M Q C Q A E  
 380 390

GCAGGAGCCGCTGGTCCGTCTGGTTAATGATCGCCTGTCCCGCTGC 1300  
 Q E P L V R V L V N D R V V P L  
 400 410

ATGGGTGTCCGGTTGATGCTTGGGGAGATGTACCCGGATAGCTTGTG  
 H G C P V D A L G R C T R D S F V  
 420

AGGGGGTTGAGCTTGCTAGATCTGGGGTGATTGGCGGAGTGTGGTGC 1400  
 R G L S F A R S G G D W A E C F A  
 430 440

TTAG 1404



FIG.9



A



Figure 10A

B



Figure 10B



100379709 1103172

A

1 2 3 4



Figure 11A

B

1 2 3 4



Figure 11B



FIG.12



## AG/PHYTASE GENE FUSIONS BY PCR



FIG. 13



FIG. I 4



FIG. I 5A



FIG. I 5B



FIG.15C



FIG. I 6



FIG. 17



FIG. 18



Figure 19A



1 2 3 4 5 6 7 8 9 10 11

Kb  
12 -  
9 -  
6 -  
3 -  
1.6 -



Figure 19B