Dashboard / My courses / SC482 A 2020SP / 4 May - 10 May / Quiz 4

Started on Wednesday, 6 May 2020, 1:29 PM **State** Finished Completed on Wednesday, 6 May 2020, 1:57 PM **Time taken** 27 mins 52 secs **Grade 9.00** out of 10.00 (**90**%) Question **1** MVUEs have the invariance property just like MLEs. Correct Select one: Mark 1.00 out of 1.00 True False Correct. The correct answer is 'False'. Question **2** Describe a useful result that can be proven using Basu's Theorem. Complete A useful result that can be proven using Basu's Theorem is the fact that the sample mean (X bar) and sample variance Mark 2.00 out of 2.00 (S^2) taken from a Normal(\mu, \sigma^2) population are independent. In particular, X bar is complete sufficient for \mu and S^2 is ancillary for \sigma^2. Comment: Question **3** Although there are many sufficient statistics, there is only one unique minimal sufficient statistic. Correct Select one: Mark 1.00 out of 1.00 True False Correct The correct answer is 'False'. Question 4 The asymptotic variance of the MVUE cannot be smaller than the asymptotic variance of the MLE. Incorrect Select one: Mark 0.00 out of 1.00 True False X This is false since the MLE is asymptotically efficient. The correct answer is 'True'.

Question 5 Correct	If a distribution has q unknown parameters, then it must have at least q jointly sufficient statistics.		
Mark 1.00 out of	Select one:		
1.00	● True		
	○ False		
	Correct		
	The correct answer is 'True'.		
Question 6 Complete Mark 2.00 out of 2.00	Describe the difference between a sufficient statistic and an ancillary statistic in your own words. A sufficient statistic is one that captures all of the available information in the sample concerning a parameter. Ancillary statistics are those with distributions that don't depend on the parameter(s) of interest and contain no information about		
	them. Ancillary statistics are kind of like the "opposite" of sufficient statistics. Comment:		
Question 7 Correct	For each statistic, indicate whether it is location-invariant, scale-invariant, or location-scale invariant.		
Mark 2.00 out of	t-statistic	Location-scale invariant	✓
2.00	Median	None	✓
	min(x_1,x_2,,x_n)/max(x_1,x_2,,x_n)	Scale-invariant	✓
	Range	Location-invariane	✓
	Your answer is correct.		
	The correct answer is: t-statistic \rightarrow Location-scale invariant, Median \rightarrow None, min(x_1,x_2,,x_n)/max(x_1,x_2,,x_n) \rightarrow Scale-invariant, Range \rightarrow Location-invariane		
■ Basu's theorem and ancillarity Jump to		0	Most powerful tests ►