સુરેખ આયોજન

Nature is an infinite sphere of which the centre is everywhere and the circumference is nowhere.

- Blaise Pascal

In order to translate a sentence from English to French, two things are necessary.

First we must understend thoroughly the English sentence.

Second we must be familiar with the forms of expression peculiar to French language. The situation is very similar when we attempt to express in mathematical symbols a condition proposed in words. First we must understand thoroughly the condition. Second we must be familiar with the forms of mathemaical expression.

George Polya

8.1 પ્રાસ્તાવિક

સુરેખ આયોજન અને તેના ઉપયોગોની ચર્ચા શરૂ કરતા પહેલાં પ્રથમ આપણે શબ્દો 'સુરેખ' (Linear) અને 'આયોજન' (Programming)ની સમજૂતિ મેળવીએ. પ્રશ્નોમાં આવતા ચલ વચ્ચે સુરેખ સંબંધ હોવાથી 'સુરેખ' શબ્દનું પ્રયોજન થાય છે. આમ, કોઈ એક ચલમાં ફેરફાર કરવાથી બીજા ચલમાં પહેલા ચલના ફેરફારના સમપ્રમાણમાં પરિવર્તન થાય છે. ઉદાહરણ તરીકે જો કોઈ ચોક્કસ મ્યુચ્યુઅલ ફંડમાં રોકાણ બમણું કરવામાં આવે તો વળતર પણ બમણું મળે છે. 'આયોજન' શબ્દનો અર્થ એ રીતે થાય છે કે પ્રશ્નોના ઉકેલ યોગ્ય રીતે આયોજન કરીને ગાણિતિક રીતે મેળવવા. ઈ.સ. 1939માં રશિયન ગણિતશાસ્ત્રી લીયોનીદ્ કાન્તોર્વિચે (Leonid Kantorvich) સૌપ્રથમ સુરેખ આયોજનનો ખ્યાલ આપ્યો. બીજા વિશ્વયુદ્ધ દરમિયાન જયારે અમેરિકન હવાઈદળમાં જયોર્જ બી. ડેન્ટઝિંગ (George B. Dentzing) કામ કરતા હતા ત્યારે તેણે લશ્કરી સાજસરંજામ પૂરો પાડવાની કળાનો વિકાસ સુરેખ આયોજન દ્વારા કર્યો.

અગાઉના ધોરણમાં આપણે સુરેખ સમીકરણો અને તેની વ્યવહારિક પ્રશ્નોમાં ઉપયોગિતાનો અભ્યાસ કર્યો. ધોરણ XI માં આપણે એકચલ સુરેખ અસમતા અને દ્વિચલ સુરેખ અસમતા સંહતિનો અભ્યાસ આલેખની મદદથી કર્યો. આ પ્રકરણમાં આપણે સુરેખ અસમતા સંહતિનો ઉપયોગ વાસ્તવિક જીવનના પ્રશ્નો ઉકેલવામાં કરીશું એટલે કે એવા પ્રકારના પ્રશ્નોના ઉકેલ કે જેમાં મહત્તમ (લઘુત્તમ) નફો (ખર્ચ) થાય. તે પ્રશ્નો એક સામાન્ય વર્ગમાં મૂકી શકાય છે કે જેમને આપણે ઈષ્ટતમપણાના પ્રશ્નો (Optimisation) કહી શકીએ. મહત્તમ નફો, લઘુતમ ખર્ચ કે ઓછામાં ઓછા સંસાધનોના વપરાશ વગેરે પ્રકારના પ્રશ્નોનો ઈષ્ટતમપણાના પ્રશ્નોમાં સમાવેશ થાય છે.

એક વિશિષ્ટ પરંતુ ખૂબ જ મહત્ત્વ ધરાવતા વર્ગના ઈષ્ટતમપણાના પ્રશ્નો એ **સુરેખ આયોજનના પ્રશ્નો** હોય છે. સુરેખ આયોજનના પ્રશ્નો ખૂબ જ રસપ્રદ છે કારણ કે તેમનો ઉપયોગ લગભગ બધા જ પ્રકારના ક્ષેત્રો જેવા કે સંચાલન, વિમાનપરિવહન, કૃષિ, લશ્કરી સંચાલન, તેલ શુદ્ધિકરણ, શિક્ષણ, ઊર્જા આયોજન, પ્રદૂષણ નિયમન, પરિવહનના સમયપત્રકનું આયોજન, સંશોધન, તબીબી જેવાં ક્ષેત્રોમાં થાય છે.

આ પ્રકરણમાં આપણે કેટલાક સુરેખ આયોજનના પ્રશ્નો અને તેના ઉકેલની ચર્ચા કરીશું. આપણે ઉકેલ ફક્ત આલેખની રીતે મેળવીશું. આવા પ્રકારના પ્રશ્નોના ઉકેલ માટેની બીજી રીતો પણ છે.

8.2 સુરેખ આયોજનના પ્રશ્નનું ગાણિતીય સ્વરૂપ

આપણે એક ઉદાહરણ દ્વારા સમજણની શરૂઆત કરીએ. તે આપણને પ્રશ્નના દ્વિચલ ગાણિતીય સ્વરૂપ તરફ દોરી જશે. એક દુકાનદાર ફક્ત બે વસ્તુઓનું જ વેચાણ કરે છે - વાતાકુલન માટેના એ.સી. (Air conditioner) અને કૂલર્સ (Coolers). તેની પાસે રોકાણ કરવા માટેની મૂડી ₹ 5,00,000 છે અને વધુમાં વધુ 60 વસ્તુઓને સંગ્રહી શકે તેટલી જગ્યા છે. એક એ.સી.ની કિંમત ₹ 25,000 અને એક ફૂલરની કિંમત ₹ 5000 છે. દુકાનદારનો અંદાજ એવો છે કે એક નંગ એ.સી.ના વેચાણથી તેને ₹ 2500 નો નફ્રો મળે તથા એક નંગ ફૂલરના વેચાણથી તેને ₹ 750નો નફ્રો મળે. દુકાનદારને એ જાણવું છે કે તેની

પાસેની મૂડીથી તેણે કેટલાં એ.સી. અને કેટલાં ફૂલર્સ ખરીદવા જોઈએ કે જેથી તેને મહત્તમ નફ્રો મળે. આપણે સ્વીકારી લઈએ છીએ કે દુકાનદાર ખરીદ કરેલી બધી જ વસ્તુઓ વેચી શકે છે.

આ પ્રશ્નમાં આપશે નીચે પ્રમાશે અવલોકન કરી શકીએ છીએ :

- (1) દુકાનદાર તેની મૂડીનું રોકાશ તમામ એ.સી. ખરીદવામાં, તમામ કૂલર્સ ખરીદવામાં કે કેટલાંક એ.સી. અને કેટલાંક કૂલર્સ સાથે ખરીદવામાં કરી શકે છે. વળી, તે રોકાશની જુદી જુદી પદ્ધતિમાં જુદો જુદો નફ્રો મેળવી શકે છે.
- (2) અહીં કેટલીક મર્યાદાઓ છે જેમકે, દુકાનદાર પાસે ₹ 5,00,000 ની મૂડી છે અને તેની પાસે 60 વસ્તુઓ સંગ્રહી શકાય તેટલી જગ્યા છે.

ધારો કે દુકાનદાર ફક્ત એ.સી. જ ખરીદે અને કૂલર્સ ન ખરીદે તો તે 5,00,000 ÷ 25,000 = 20 એ.સી. ખરીદી શકે. આ વિકલ્પમાં તેનો નફો ₹ (2500 × 20) = ₹ 50,000 થાય.

જો તે ફક્ત ફૂલર્સ ખરીદે અને એ.સી. ન ખરીદે તો તે તેની ₹ 5,00,000ની મૂડીમાંથી 100 ફૂલર્સ ખરીદી શકે. પરંતુ તે ફક્ત 60 વસ્તુઓ જ સંગ્રહી શકે છે તેથી તેણે ફક્ત 60 ફૂલર્સ જ ખરીદવા પડે. તેથી તે ₹ (60 × 750) = ₹ 45,000નો નફો મેળવી શકે.

આ સિવાય બીજા વિકલ્પો પણ છે જેમકે, તે 10 એ.સી. અને 50 ફૂલર્સ પણ ખરીદી શકે (દુકાનદાર 60 વસ્તુઓ સંગ્રહી શકે છે). આ વિકલ્પમાં તેનો નફો ₹ (10 × 2500 + 50 × 750) = ₹ 62,500 વગેરે. આમ, દુકાનદાર જુદી જુદી પદ્ધતિઓ દ્વારા જુદો જુદો નફો મેળવી શકે છે. તેથી હવે પ્રશ્ન એ રહે કે, દુકાનદાર તેની મૂડીનું રોકાણ કેવી રીતે કરે કે જેથી તે મહત્તમ નફો મેળવી શકે ? આ પ્રશ્નનો ઉકેલ આપવા માટે આપણે તેનું ગાણિતીય સ્વરૂપ આપવાનો પ્રયત્ન કરીએ. પ્રશ્નને ગાણિતીય સ્વરૂપ :

ધારો કે દુકાનદાર x નંગ એ.સી. અને y નંગ કૂલર્સ ખરીદે છે.

દેખીતી રીતે,
$$x \ge 0$$
, $y \ge 0$

(અનુણ મર્યાદા) (i)

એક એ.સી.ની કિંમત ₹ 25,000 છે અને એક કૂલરની કિંમત ₹ 5000 છે. તદ્ઉપરાંત દુકાનદાર વધુમાં વધુ ₹ 5,00,000નું રોકાણ કરી શકે છે. ગાણિતીક રીતે,

 $25,000 \ x + 5000 \ y \le 5,00,000$

$$\therefore 5x + y \le 100$$

(મૂડીની મર્યાદા) (ii)

દુકાનદાર વધુમાં વધુ 60 વસ્તુઓ રાખી શકે છે.

$$\therefore x + y \le 60$$

(સંગ્રહ મર્યાદા) (iii)

દુકાનદાર એવી રીતે રોકાશ કરવા માગે છે કે તે મહત્તમ નફ્રો z મેળવી શકે.

અહીં આપેલ છે કે એક એ.સી.ના વેચાણ પર ₹ 2500 નફો મળે છે તથા એક કૂલરના વેચાણ પર ₹ 750નો નફો મળે છે. આમ, નફાનું વિધેય નીચે મુજબ લખી શકાય :

$$z = 2500x + 750 y$$

(હેતુલક્ષી વિધેય) (iv)

ગાણિતિક રીતે આપેલ પ્રશ્નને નીચે મુજબ લખી શકાય :

 $5x + y \le 100$

 $x + y \le 60$

 $x \ge 0, y \ge 0$ શરતોને અધીન :

મહત્તમ z = 2500 x + 750 y મેળવો.

આમ, આપણે સુરેખ વિધેય z ને અમુક શરતોને અધીન મહત્તમ બનાવવાનું છે. આ શરતો સુરેખ અસમતાઓના સ્વરૂપમાં હોય છે. ચલરાશિઓ અનૃણ હોય છે. અમુક એવા પ્રકારના પણ પ્રશ્નો હોય છે કે જેમાં આપણે સુરેખ વિધેયને અમુક શરતોને અધીન ન્યૂનતમ બનાવવાનું હોય છે (ઉદાહરણ તરીકે, ખર્ચનું વિધેય). અહીં પણ શરતો સુરેખ અસમતાઓના સ્વરૂપમાં હોય છે અને ચલરાશિઓ અનૃણ હોય છે. આવા પ્રકારની સમસ્યાઓને ઈષ્ટતમ મૂલ્ય શોધવાના પ્રશ્નો કહે છે.

સુરેખ આયોજનના પ્રશ્નો :

આપણે આગળ વધતાં પહેલા હવે ઔપચારિક રીતે અમુક પારિભાષિક શબ્દોને વ્યાખ્યાયિત કરીએ કે જેનો ઉપયોગ આપણે સુરેખ આયોજનના પ્રશ્નોના ઉકેલમાં કરીશું.

સુરેખ આયોજનના પ્રશ્નના બંધારણમાં સામાન્ય રીતે ત્રણ વિભાગ હોય છે :

(1) નિર્ણાયક ચલરાશિઓ (Decision Variables): આપણે જુદા જુદા વિકલ્પો ચકાસીને હેતુલક્ષી વિધેયનું ઈષ્ટતમ મૂલ્ય (Optimum Value) શોધવું જરૂરી છે. સુરેખ આયોજનના પ્રશ્નોના ઉકેલ મેળવવા માટે જે ચલ રાશિઓ દાખલ થાય છે તેની યોગ્ય કિંમત શોધવી જોઈએ. એટલે કે, જો ચલ રાશિઓની શ્રેષ્ઠતમ કિંમતો પ્રાપ્ત થઈ જાય તો પ્રશ્નનો ઉકેલ મળી ગયો તેમ કહી શકાય. આ ચલરાશિઓને નિર્ણાયક ચલ રાશિઓ કહેવાય છે. સામાન્ય રીતે જો ચલની સંખ્યા બે હોય તો તેમને x, y વડે દર્શાવાય છે અથવા જો ચલની સંખ્યા વધુ હોય તો તેમને $x_1, x_2, ..., x_n$ વડે દર્શાવાય છે.

આગળ ચર્ચા કરેલ પ્રશ્નમાં x, y નિર્ણાયક ચલ છે.

(2) હેતુલક્ષી વિષેય (Objective Function) : દરેક સુરેખ આયોજનના પ્રશ્નમાં હેતુલક્ષી વિષેય (કે જેનું ઈપ્ટતમ મૂલ્ય જેમકે નફો, ખર્ચ વગેરે શોધવા) એ નિર્ણાયક ચલરાશિઓ ધરાવતું સુરેખ વિષેય હોય છે. આ વિષેય નીચે પ્રમાણે દર્શાવી શકાય છે :

```
z = c_1 x + c_2 y અથવા z = c_1 x_1 + c_2 x_2 + ... + c_n x_n
z નું ઈષ્ટતમ મૂલ્ય (મહત્તમ કે ન્યૂનતમ) શોધવાનું હોય છે.
```

આ પ્રકરણમાં આપણે આપેલ હેત્લક્ષી વિધેયનું ઈષ્ટતમ મૂલ્ય ફક્ત આલેખની રીતે શોધીશું.

(3) મર્યાદાઓ (પ્રતિબંધો) (Constraints) : કોઈ પણ સુરેખ આયોજનના પ્રશ્નમાં હંમેશાં સંસાધનો મર્યાદિત હોય છે જેમકે મજૂર, કાચો માલ, જગ્યા, મૂડી, સમય વગેરે. આવા નિયંત્રણોને સુરેખ સમતા કે અસમતાઓના સ્વરૂપમાં નિર્ણાયક ચલ દ્વારા દર્શાવી શકાય છે. સુરેખ આયોજનના પ્રશ્નનો ઉકેલ આ મર્યાદાઓનું સમાધાન કરે તે જરૂરી છે.

આમ, સુરેખ આયોજનના પ્રશ્નનું ગાણિતીય સ્વરૂપ નીચે મુજબ થશે :

$$a_{11}x + a_{12}y \quad (\leq, =, \geq) \ b_1$$
 $a_{21}x + a_{22}y \quad (\leq, =, \geq) \ b_2$ $a_{31}x + a_{32}y \quad (\leq, =, \geq) \ b_3$ $x \geq 0, \ y \geq 0 \quad$ શસ્તોને અધીન

નિર્ણાયક ચલ રાશિઓ x અને yની એવી કિંમત શોધો કે જેથી $z=c_1x+c_2y$ નું મૂલ્ય ઈષ્ટતમ (મહત્તમ કે ન્યૂનતમ) થાય.

વ્યાપક રીતે નીચે મુજબ લખી શકાય :

$$\begin{array}{ll} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n & (\leq, =, \geq) \ b_1 \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n & (\leq, =, \geq) \ b_2 \\ \vdots & \vdots & \vdots & \vdots \end{array}$$

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \ (\leq, =, \geq) \ b_m$$

અને $x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$ શસ્તોને અધીન

નિર્ણાયક ચલરાશિઓ $x_1,\ x_2,...,\ x_n$ ની એવી કિંમત શોધો કે જેથી

 $z=c_1x_1+c_2x_2+...+c_nx_n$ નું મૂલ્ય ઈષ્ટતમ (મહત્તમ કે ન્યૂનતમ) થાય.

જ્યાં સહગુણકો a_{ij} એ હેતુલક્ષી વિધેય માટેના નિર્ણાયક ચલ x_j ની એકમ દીઠ ફાળવણી દર્શાવે છે. a_{ij} ને નિવેશ-નિર્ગમ સહગુણકો કહે છે અને તે કુલ સ્રોત દર્શાવે છે, જે ધન, ઋણ કે શૂન્ય હોઈ શકે. b_i ને i માં સ્રોતની કુલ પ્રાપ્યતા દર્શાવે છે.

નીચેનું ઉદાહરણ સુરેખ આયોજનના પ્રશ્નને ગાણિતીય સ્વરૂપમાં કેવી રીતે દર્શાવી શકાય તે સમજાવે છે.

ઉદાહરણ 1 : એક ફર્નિચર ઉત્પાદક ત્રણ મશીન A, B અને C ના ઉપયોગથી તૈયાર થતા ખુરશી અને ટેબલનું ઉત્પાદન કરે છે. એક ખુરશીનું ઉત્પાદન કરવા માટે મશીન A ને 2 કલાક, મશીન B ને 1 કલાક અને મશીન C ને 1 કલાક થાય છે. એક ટેબલનું ઉત્પાદન કરવા માટે મશીન A તથા B ની 1 કલાક અને મશીન C ની 3 કલાક જરૂર પડે છે. ઉત્પાદકને એક ખુરશીના વેચાણ દ્વારા ₹ 300 નો નફો મળે છે, જ્યારે એક ટેબલના વેચાણ દ્વારા ₹ 600 નો નફો થાય છે. મશીન A એક અઠવાડિયામાં 70 કલાક માટે પ્રાપ્ય છે, મશીન B 40 કલાક તથા મશીન C 90 કલાક માટે પ્રાપ્ય છે. એક અઠવાડિયામાં કેટલી ખુરશી તથા કેટલા ટેબલનું ઉત્પાદન કરવું પડે કે જેથી મહત્તમ નફો મળે ? આ પ્રશ્નને ગાણિતીય સ્વરૂપમાં દર્શાવો.

ઉકેલ ઃ આપેલ માહિતીને નીચેના કોષ્ટક દ્વારા દર્શાવી શકાય ઃ

મશીન	ખુરશી દીઠ કલાકની સંખ્યા	ટેબલ દીઠ કલાકની સંખ્યા	અઠવાડિયામાં પ્રાપ્ય કુલ સમય (કલાકમાં)
A	2	1	70
В	1	1	40
С	1	3	90
પ્રતિ નંગ નફો	₹ 300	₹ 600	

ધારો કે મહત્તમ નફો મેળવવા માટે x નંગ ખુરશી અને y નંગ ટેબલનું ઉત્પાદન કરવામાં આવે છે.

ધારો કે
$$z$$
 એ કુલ નફો દર્શાવે છે. તેથી $z = 300x + 600y$

આપેલ છે કે 1 નંગ ખુરશી બનાવવા માટે મશીન Aની 2 કલાક જરૂર પડે છે અને 1 નંગ ટેબલ બનાવવા માટે મશીન Aની 1 કલાક જરૂર પડે છે. તેથી x ખુરશી અને y ટેબલનું ઉત્પાદન કરવા માટે મશીન Aની (2x+y) કલાક જરૂર પડે. આ સમય મશીન Aને અઠવાડિયામાં મળતા કુલ સમય જેટલો અથવા તેનાથી ઓછો હોય.

$$\therefore 2x + y \le 70$$

1 નંગ ખુરશી બનાવવા માટે તથા 1 નંગ ટેબલ બનાવવા માટે મશીન B અને C ની અનુક્રમે એક-એક કલાકની જરૂર પડે છે. તેથી x ખુરશી અને y ટેબલનું ઉત્પાદન કરવા માટે મશીન B ની (x+y) કલાક જરૂર પડે. આ સમય મશીન B ને અઠવાડિયામાં મળતા કુલ સમય જેટલો અથવા તેનાથી ઓછો હોય.

$$\therefore \quad x + y \le 40 \tag{iii)}$$

આ જ રીતે, મશીન C માટેની અસમતા નીચે મુજબ થશે :

$$x + 3y \le 90 \tag{iv}$$

ખુરશી તથા ટેબલની સંખ્યા ઋશ ન હોઈ શકે.

$$x \ge 0$$
 અને $y \ge 0$

આમ, આપેલ સુરેખ આયોજનના પ્રશ્નનું ગાણિતીય સ્વરૂપ નીચે મુજબ થશે :

$$2x + y \le 70$$

$$x + y \le 40$$

$$x + 3y \le 90$$

અને $x \ge 0, y \ge 0$ શસ્તોને અધીન

z = 300x + 600y ની મહત્તમ કિંમત શોધો.

હવે આપણે સુરેખ આયોજનના પ્રશ્નનો ઉકેલ કેવી રીતે મેળવી શકાય. તેની ચર્ચા કરીશું.

8.3 સુરેખ આયોજનના પ્રશ્નના ઉકેલ માટે આલેખની રીત

આ વિભાગમાં પ્રથમ આપણે સુરેખ આયોજનના પ્રશ્નના ઉકેલ સંબંધી કેટલીક વ્યાખ્યાઓની ચર્ચા કરીશું.

વ્યાખ્યા : નિર્ણાયક ચલરાશિઓ x_i ($i=1,\,2,...,\,n$) ના જે મૂલ્યોનો ગણ સુરેખ આયોજનના પ્રશ્નમાં આવેલ મર્યાદાઓની અસમતાઓનું સમાધાન કરે તે પ્રશ્નનો ઉકેલ રચે છે તેમ કહેવાય.

ઉદાહરણ તરીકે નીચેનાં સુરેખ આયોજનના પ્રશ્નનો વિચાર કરો :

$$2x + y \le 70$$

$$x + y \le 40$$

$$x + 3y \le 90$$

અને $x \ge 0$, $y \ge 0$ ને અધીન

z = 300x + 600yની મહત્તમ કિંમત શોધો.

અહીં, x=1, y=3; x=7, y=6; x=10, y=18 વગેરે આપેલ સુરેખ આયોજનના પ્રશ્નના ઉકેલો થશે કારણ કે તે મર્યાદાઓ $2x+y\leq 70, x+y\leq 40$ અને $x+3y\leq 90$ અને $x\geq 0, y\geq 0$ નું સમાધાન કરે છે. આપણે નોંધીએ કે x=10, y=30 એ આપેલ પ્રશ્નનો ઉકેલ નથી કારણ કે તે $x+3y\leq 90$ નું સમાધાન કરતો નથી.

શક્ય ઉકેલ (Feasible Solution) : ચલરાશિઓ x_1 , x_2 ,..., x_n ની એવી કિંમતો કે જે આપેલા પ્રતિબંધોનું (મર્યાદાઓનું) સમાધાન કરે તથા તે બધી ચલરાશિઓની કિંમત અનૃણ (ધન અથવા શૂન્ય) હોય તેવી કિંમતોને શક્ય ઉકેલ કહે છે.

અશક્ય ઉકેલ (Infeasible Solution) : જે ચલરાશિઓની કિંમતો આપેલ પૈકી ઓછામાં ઓછી એક મર્યાદાનું સમાધાન ન કરે તેને અશક્ય ઉકેલ કહે છે.

ઈપ્ટતમ શક્ય ઉકેલ (Optimal feasible Solution) : જે શક્ય ઉકેલ હેતુલક્ષી વિધેયને ઈપ્ટતમ (મહત્તમ અથવા ન્યુનતમ) બનાવે તે ઉકેલને ઈપ્ટતમ શક્ય ઉકેલ કહે છે.

શક્ય ઉકેલનો પ્રદેશ (Feasible region) : જ્યારે આપણે બધી જ મર્યાદાઓને (અનૃણ સહિત) આલેખ દ્વારા દર્શાવીએ ત્યારે આલેખના જે પ્રદેશના બિંદુઓના યામ બધી જ મર્યાદાઓનું સમાધાન કરે તે પ્રદેશને શક્ય ઉકેલનો પ્રદેશ કહે છે.

આકૃતિ 8.1

આકૃતિ 8.1માં પીળા રંગનો પ્રદેશ OABCD એ ઉદાહરણ 1 માટેના શક્ય ઉકેલનો પ્રદેશ છે.

અહીં નોંધીએ કે શક્ય ઉકેલના પ્રદેશની અંદર અને તેની સીમા પર આવેલા બિંદુઓ પ્રશ્નની મર્યાદાઓનું સમાધાન કરે છે તેથી તે શક્ય ઉકેલનો ગણ રચે છે. આકૃતિ 8.1માં શક્ય ઉકેલના પ્રદેશ OABCD ની અંદર અને તેની સીમા પર આવેલાં બધાં બિંદુઓ શક્ય ઉકેલનો ગણ દર્શાવે છે.

ઉદાહરણ તરીકે, બિંદુઓ (35, 0), (30, 10), (15, 25), (0, 30), (20, 0), (0, 10), (20, 10) વગેરે કેટલાક શક્ય ઉકેલો છે. બિંદુ (30, 20) એ આપેલ પ્રશ્નનો અશક્ય ઉકેલ છે. આપણે જોઈ શકીએ છીએ કે શક્ય ઉકેલના પ્રદેશ OABCD ના બધાં જ બિંદુઓ ઉદાહરણ 1ની બધી જ મર્યાદાઓનું સમાધાન કરે છે. આપણે અવલોકન કરી શકીએ છીએ કે શક્ય પ્રદેશમાં અનંત બિંદુઓ આવેલ છે. આ અસંખ્ય બિંદુઓમાંથી આપણે એક એવું બિંદુ શોધવું છે કે જે હેતુલક્ષી વિધેય z=300x+600y ને મહત્તમ બનાવે. આ પ્રકારની સ્થિતિમાંથી રસ્તો કાઢવા માટે આપણે સુરેખ આયોજનના પ્રશ્નોના ઉકેલ માટેના મૂળભૂત પ્રમેયોનો ઉપયોગ કરીશું. અહીં આપણે આ પ્રમેયોની સાબિતી આપ્યા વગર ફક્ત તેમના વિધાન આપીશું.

પ્રમેય 8.1 : ધારો કે \mathbf{R} એ સુરેખ આયોજનના પ્રશ્ન માટેના હેતુલક્ષી વિધેય z=ax+by માટેના શક્ય ઉકેલનો પ્રદેશ છે. (જે બહિર્મુખ બહુકોણ હોય). જ્યારે zને ઈષ્ટતમ મૂલ્ય (મહત્તમ અથવા ન્યૂનતમ) મળે ત્યારે તે ચલરાશિઓ x અને y થી બનતી અસમતાઓ દ્વારા રચાતા બહિર્મુખ બહુકોણના કોઈ પણ શિરોબિંદુ આગળ પ્રાપ્ત થાય છે.

પ્રમેય 8.2 : ધારો કે \mathbf{R} એ સુરેખ આયોજનના પ્રશ્ન માટેના હેતુલક્ષી વિધેય z=ax+by માટેના શક્ય ઉકેલનો પ્રદેશ છે. જો આ પ્રદેશ \mathbf{R} સીમિત (bounded) હોય, તો હેતુલક્ષી વિધેય z ને મહત્તમ તથા ન્યૂનતમ મૂલ્ય પ્રદેશ \mathbf{R} ના કોઈ પણ શિરોબિંદુ આગળ પ્રાપ્ત થાય.

ઉપરના ઉદાહરણ 1માં સીમિત પ્રદેશ Rના શિરોબિંદુઓ O, A, B, C, D છે અને તેમના યામ અનુક્રમે (0, 0), (35, 0), (30, 10), (15, 25) અને (0, 30) છે. આ બિંદુઓ આગળ આપણે z = 300x + 600y નું મૂલ્ય શોધીએ.

શક્ય ઉકેલ પ્રદેશના શિરોબિંદુ	z = 300x + 600y ની કિંમત (₹)	
O(0, 0)	0	
A(35, 0)	10,500	
B(30, 10)	15,000	
C(15, 25)	19,500	← મહત્તમ
D(0, 30)	18,000	

આપણે જોઈ શકીએ છીએ કે જો ફર્નિચર ઉત્પાદક એક અઠવાડિયામાં 15 ખુરશી તથા 25 ટેબલનું ઉત્પાદન કરે તો તેને મહત્તમ નફો ₹ 19,500 મળે.

નોંધ : જો R એ અસીમિત પ્રદેશ હોય, તો હેતુલક્ષી વિધેયને મહત્તમ કે ન્યૂનતમ કિંમત ન પણ મળે. તેમ છતાં જો મળે તો તે Rના કોઈ શિરોબિંદુ આગળ જ મળે. (પ્રમેય 8.1)

આ પ્રકારે સુરેખ આયોજનના પ્રશ્નો ઉકેલવાની પદ્ધતિને શિરોબિંદુની રીત કહે છે.

જો કોઈ પણ દ્વિચલ સુરેખ આયોજનના પ્રશ્નનો આલેખની મદદથી શિરોબિંદુની રીતે ઉકેલ શોધવો હોય, તો નીચે જણાવેલ મુદ્દાનો ઉપયોગ કરી શકાય :

- (1) જો સુરેખ આયોજનના પ્રશ્નને ગાણિતીય સ્વરૂપમાં ન આપેલ હોય, તો તેને ગાણિતીય સ્વરૂપમાં દર્શાવો.
- (2) આપેલ સુરેખ આયોજનના પ્રશ્નના શક્ય ઉકેલનો પ્રદેશ શોધો. આ પ્રદેશના શિરોબિંદુઓ શોધો. જે આલેખ પરથી શોધી શકાય અથવા પ્રશ્નમાં આવેલ મર્યાદાઓને ઉકેલીને પણ શિરોબિંદુઓ શોધી શકાય.

- (3) દરેક શિરોબિંદુ આગળ હેતુલક્ષી વિધેય z = ax + by ની કિંમત મેળવો. ધારો કે આ બિંદુઓ આગળ z ની મહત્તમ કિંમત તથા ન્યૂનતમ કિંમત અનુક્રમે M તથા m છે.
- (4) જો શક્ય ઉકેલનો પ્રશ્ન સીમિત હોય તો z ની મહત્તમ તથા ન્યૂનતમ કિંમત અનુક્રમે M તથા m થાય.
- (5) જો શક્ય ઉકેલનો પ્રદેશ અસીમિત હોય, તો નીચે મુજબ આગળ વધી શકાય :
 - (i) જો ax + by > M થી રચાતા ખુલ્લા અર્ધતલનું કોઈ પણ બિંદુ શક્ય ઉકેલના પ્રદેશ સાથે સામાન્ય ન હોય તો z ની મહત્તમ કિંમત M થાય. નહિ તો z ને મહત્તમ કિંમત ન મળે.
 - (ii) જો ax + by < m થી રચાતા ખુલ્લા અર્ધતલનું કોઈ પણ બિંદુ શક્ય ઉકેલના પ્રદેશ સાથે સામાન્ય ન હોય તો z ની ન્યૂનતમ કિંમત m થાય. નહિ તો z ને ન્યૂનતમ કિંમત ન મળે.

હવે આપણે શિરોબિંદુની રીતનો ઉપયોગ કરી કેટલાંક ઉદાહરણો જોઈએ.

ઉદાહરણ 2 : નીચે આપેલા સુરેખ આયોજનનો પ્રશ્ન આલેખની રીતે ઉકેલો :

$$180x+120y\leq 1500$$

$$x+y\leq 10$$
 અને $x\geq 0,\,y\geq 0$ શરતોને અધીન

z = 20x + 15y નું મહત્તમ મૂલ્ય શોધો.

63લ : અહીં $x \geq 0$ અને $y \geq 0$ હોવાથી ઉકેલગણ પ્રથમ ચરણમાં \overrightarrow{OX} , \overrightarrow{OY} કિરણ સુધી સીમિત રહેશે.

આકૃતિ 8.2

(i)
$$180x + 120y \le 1500$$

 $3x + 2y \le 25$
રેખા $3x + 2y = 25$ દોરો.
 $y = \frac{25 - 3x}{2}$

x	0	5	<u>25</u> 3	1
y	<u>25</u> 2	5	0	11

 $3x + 2y \le 25$ થી રચાતો પ્રદેશ નક્કી કરો.

(ii)
$$x + y \le 10$$

રેખા $x + y = 10$ દોરો.
$$\therefore y = 10 - x$$

x	0	10
у	10	0

એ જ આલેખપત્ર પર $x+y\leq 10$ થી રચાતો પ્રદેશ નક્કી કરો. બંને અસમતાઓનો સામાન્ય પ્રદેશ પીળા રંગનો છે. વળી, $x\geq 0,\ y\geq 0$. આકૃતિ 8.2માં પીળા રંગનો પ્રદેશ OABC એ શક્ય ઉકેલનો પ્રદેશ છે. બિંદુ B(5, 5) એ રેખાઓ 3x+2y=25 અને x+y=10 નું છેદબિંદુ છે.

બહિર્મુખ બહુકોણ OABC ના શિરોબિંદુઓ O(0,0), A $\left(\frac{25}{3},0\right)$, B(5,5) અને C(0,10) થશે. આ બિંદુઓ આગળ z ની કિંમત મેળવીએ.

શક્ય ઉકેલના પ્રદેશનું શિરોબિંદુ	z=20x+15y ની કિંમત
O(0, 0)	0
$A\left(\frac{25}{3},0\right)$	166.67
B(5, 5)	175 ← મહત્તમ
C(0, 10)	150

x = 5 તથા y = 5 આગળ z ની મહત્તમ કિંમત 175 મળે છે.

ઉદાહરણ 3 : શિરોબિંદુની રીતનો ઉપયોગ કરીને $3x+2y\leq 6$, $-2x+4y\leq 8$, $x+y\geq 1$, $x\geq 0$, $y\geq 0$ શરતોને અધીન z=2x+5yની મહત્તમ તથા ન્યૂનતમ કિંમત મેળવો.

6કેલ : અહીં $x \geq 0$ અને $y \geq 0$ હોવાથી ઉકેલગણ પ્રથમ ચરણમાં તથા $\overrightarrow{OX}, \overrightarrow{OY}$ કિરણ સુધી સીમિત રહેશે.

(1)
$$3x + 2y \le 6$$

રેખા $3x + 2y = 6$ દોરો.
 $y = \frac{6-3x}{2}$

x	0	2
у	3	0

અસમતા $3x + 2y \le 6$ થી રચાતો પ્રદેશ નક્કી કરો.

(2)
$$-2x + 4y \le 8$$

$$\therefore -x + 2y \le 4$$

રેખા $-x + 2y = 4$ દોરો.

$$\therefore \quad y = \frac{x+4}{2}$$

અસમતા $-x + 2y \le 4$ થી રચાતો પ્રદેશ નક્કી કરો.

$$(3) \quad x + y \ge 1$$

રેખા x+y=1 દોરી એ જ આલેખપત્ર પર અસમતા $x+y\geq 1$ થી રચાતો પ્રદેશ નક્કી કરો.

હવે, ત્રણેય અસમતાઓથી રચાતો સામાન્ય પ્રદેશ પીળા રંગ વડે દર્શાવેલ છે.

આકૃતિ 8.3 માં દર્શાવ્યા મુજબ પીળા રંગનો પ્રદેશ ABCDE એ શક્ય ઉકેલનો પ્રદેશ થશે. બિંદુ C(0.5, 2.25) એ રેખાઓ 3x + 2y = 6 અને -2x + 4y = 8નું છેદબિંદુ થશે.

બહિર્મુખ બહુકોણ ABCDE ના શિરોબિંદુઓ A(1, 0), B(2, 0), C(0.5, 2.25), D(0, 2), E(0, 1) થશે. આ બિંદુઓ આગળ z ની કિંમત મેળવીએ.

શિરોબિંદુ	$z = 2x + 5y - i + 4e^{2}$	
A(1, 0)	2	← ન્યૂનતમ
B(2, 0)	4	
C(0.5, 2.25)	12.25	← મહત્તમ
D(0, 2)	10	
E(0, 1)	5	

આમ, x=1 તથા y=0 આગળ z ની ન્યૂનતમ કિંમત 2 મળે છે અને $x=0.5,\ y=2.25$ આગળ z ની મહત્તમ કિંમત 12.25 મળે છે.

ઉદાહરણ $4: x+2y \ge 10; 3x+y \ge 10; x \ge 0; y \ge 0$ શરતોને અધીન 2x+4y ની ન્યૂનતમ કિંમત શોધો. ઉકેલ: અહીં $x \ge 0$ અને $y \ge 0$ હોવાથી ઉકેલગણ પ્રથમ ચરણમાં તથા \overrightarrow{OX} , \overrightarrow{OY} કિરણ સુધી સીમિત રહેશે.

(1)
$$x + 2y \ge 10$$

રેખા $x + 2y = 10$ દોરો.
 $y = \frac{10 - x}{2}$

x	0	10
у	5	0

અસમતા $x + 2y \ge 10$ થી રચાતો પ્રદેશ નક્કી કરો.

(2) $3x + y \ge 10$ રેખા 3x + y = 10 દોરો.

x	0	2
у	10	4

$$\therefore y = 10 - 3x$$

એ જ આલેખપત્ર પર અસમતા $3x + y \ge 10$ થી રચાતો પ્રદેશ નક્કી કરો.

બંને અસમતાઓથી રચાતા સામાન્ય પ્રદેશને પીળા રંગ વડે દર્શાવેલ છે. આકૃતિ 8.4 માં શક્ય ઉકેલનો પ્રદેશ દર્શાવેલો છે જે અસીમિત પ્રદેશ છે.

આ પ્રદેશના શિરોબિંદુઓ (0, 10), (2, 4), (10, 0) થશે. આ શિરોબિંદુઓ આગળ zની કિંમત નીચે મુજબ છે :

શિરોબિંદુ	z = 2x + 4y - 1 કિંમત
(0, 10)	40
(2, 4)	20
(10, 0)	20

ઉપરના કોષ્ટક પરથી માલૂમ પડે છે કે બિંદુ (2,4), (10,0) આગળ z ની ન્યૂનતમ કિંમત 20 હોઈ શકે. શક્ય ઉકેલનો પ્રદેશ અસીમિત હોવાથી z ની ન્યૂનતમ કિંમત 20 હોય પણ ખરી અને ન પણ હોય. આ નક્કી કરવા માટે આપણે અસમતા 2x+4y<20 (શિરોબિંદુની રીતનો મુદ્દા ક્રમાંક 5(ii))ને આલેખીએ.

હવે,
$$2x + 4y < 20$$

$$\therefore \quad x + 2y < 10$$

આપણે ચકાસવું પડશે કે x+2y<10 થી રચાતા ખુલ્લા અર્ધતલનું કોઈ બિંદુ શક્ય ઉકેલના પ્રદેશનું પણ બિંદુ છે કે નહિ. જો બંને પ્રદેશોને સામાન્ય બિંદુ મળે તો z ની ન્યૂનતમ કિંમત 20 થાય નહિ. આકૃતિ 8.4 માં દર્શાવ્યા મુજબ ખુલ્લા અર્ધતલનું કોઈ પણ બિંદુ શક્ય ઉકેલના પ્રદેશનું બિંદુ નથી. તેથી z ની ન્યૂનતમ કિંમત 20 થાય. ખરેખર, રેખા x+2y=10 પરનું કોઈ પણ બિંદુ z માં મૂકતાં z ની ન્યૂનતમ કિંમત 20 થાય. આમ, આપેલી શરતોને અધીન z=2x+4y ને ન્યૂનતમ બનાવે તેવાં અસંખ્ય બિંદુઓ મળે છે.

ઉદાહરણ
$$5:2x-y \ge -5$$

$$3x + y \ge 3$$

$$2x - 3y \le 12$$

 $x \ge 0, \ y \ge 0$ શરતોને અધીન આલેખની રીતે z = -50x + 20yની ન્યૂનતમ કિંમત શોધો.

ઉકેલ : અહીં $x \geq 0$ અને $y \geq 0$ હોવાથી ઉકેલગણ પ્રથમ ચરણમાં તથા $\overrightarrow{\mathrm{OX}}, \, \overrightarrow{\mathrm{OY}}$ કિરણ સુધી સીમિત રહેશે.

(1) $2x - y \ge -5$ રેખા 2x - y = -5 દોરો. y = 2x + 5

અસમતા $2x - y \ge -5$ થી રચાતો પ્રદેશ \cdot	નક્કી	કરો.
---	-------	------

(2)	$3x + y \ge 3$	
	રેખા $3x + y = 3$ દોરો.	
	અસમતા $3x + y \ge 3$ થી રચાતો પ્રદેશ નક્ક	કી કરો.

(3)	$2x - 3y \le 12$ રેખા $2x - 3y = 12$ દોરો.
	$y=\frac{2x-12}{3}$

અસમતા	2x	-3ν	_ ≤	12	થી	રચાતો	પ્રદેશ	નક્કી	કરો.
-------	----	---------	-----	----	----	-------	--------	-------	------

x	0	1
у	5	7

x	0	1
y	3	0

x	9	6
y	2	0

ત્રણેય અસમતાથી રચાતા સામાન્ય પ્રદેશને પીળા રંગ વડે દર્શાવેલ છે. આકૃતિ 8.5માં શક્ય ઉકેલનો પ્રદેશ દર્શાવેલો છે જે અસીમિત પ્રદેશ છે. આ પ્રદેશના શિરોબિંદુઓ (0, 5), (0, 3), (1, 0) અને (6, 0) છે. આ શિરોબિંદુઓ આગળ zની કિંમત નીચે પ્રમાણે છે :

શિરોબિંદુ	z = -50x + 20y + 1 કિંમત	
A(0, 5)	100	
B(0, 3)	60	
C(1, 0)	-50	
D(6, 0)	-300	← ન્યૂનત

આકૃતિ 8.5

ઉપરના કોષ્ટક પરથી માલૂમ પડે છે કે બિંદુ (6,0) આગળ zની ન્યૂનતમ કિંમત -300 હોઈ શકે. શક્ય ઉકેલનો પ્રદેશ અસીમિત હોવાથી zની ન્યૂનતમ કિંમત -300 હોય પણ ખરી અને ન પણ હોય. આ નક્કી કરવા માટે આપણે અસમતા -50x + 20y < -300 એટલે કે -5x + 2y < -30 ને આલેખીએ અને ચકાસીએ કે તેનાથી રચાતા ખુલ્લા અર્ધતલનું કોઈ બિંદુ શક્ય ઉકેલના પ્રદેશનું પણ બિંદુ છે કે નહિ. જો બંને પ્રદેશોને સામાન્ય બિંદુ મળે તો z ની ન્યૂનતમ કિંમત -300 થાય નહિ. આકૃતિ 8.5 માં દર્શાવ્યા મુજબ બંને પ્રદેશોને સામાન્ય બિંદુ મળે છે. આથી, આપેલી શરતોને અધીન z=-50x+20y ની ન્યૂનતમ કિંમત ન મળે.

[ઉપરના ઉદાહરણમાં, આપણે એવું કહી શકીએ કે (0,5) આગળ z=-50x+20y ની મહત્તમ કિંમત 100 થાય ?] ઉદાહરણ 6: શરતો $x-y\leq -1$

$$-x + y \leq 0$$

$$x \ge 0, y \ge 0$$
 ને અધીન

z = 3x + 4y ની મહત્તમ કિંમત (જો શક્ય હોય, તો) શોધો.

ઉકેલ : પ્રથમ આપણે આપેલ અસમતાઓ $x-y \leq -1, -x+y \leq 0, x \geq 0$ અને $y \geq 0$ ને એક જ આલેખપત્ર પર આલેખીએ.

આકૃતિ 8.6 માં આપણે જોઈ શકીએ છીએ કે આપેલ બધી મર્યાદાઓનું એક સાથે સમાધાન થાય તેવું કોઈ પણ બિંદુ મળતું નથી. આમ, શક્ય ઉકેલનો પ્રદેશ મળતો નથી તેથી આપેલ સુરેખ આયોજનના પ્રશ્નનો ઉકેલ મળતો નથી.

આપણે અગાઉના ઉદાહરણોની ચર્ચા કર્યા પછી નીચે મુજબના અવલોકનોની નોંધ કરીએ :

- (1) શક્ય ઉકેલનો પ્રદેશ હંમેશાં બહિર્મુખ બહિકોણ હોય છે.
- (2) હેતુલક્ષી વિધેયની મહત્તમ (ન્યૂનતમ) કિંમત બહિર્મુખ બહુકોણના શિરોબિંદુ આગળ મળે છે. જો હેતુલક્ષી વિધેયની મહત્તમ (ન્યૂનતમ) કિંમત બે શિરોબિંદુ આગળ મળે તો આ બે બિંદુઓને જોડતા રેખાખંડ પરના કોઈ પણ બિંદુ આગળ હેતુલક્ષી વિધેયની સમાન મહત્તમ (ન્યૂનતમ) કિંમત મળે.

स्वाध्याय 8.1

- 1. એક કંપની બે જુદી જુદી બનાવટની વસ્તુઓ A અને Bનું વેચાણ કરે છે. કંપનીને એક નંગ A તથા એક નંગ B ના વેચાણથી અનુક્રમે ₹ 40 અને ₹ 30 નો નફો મળે છે. આ વસ્તુઓનું ઉત્પાદન એક જ જગ્યાએ થાય છે તથા તેમનું બે જુદા જુદા બજારમાં વેચાણ કરવામાં આવે છે. આ વસ્તુઓનું ઉત્પાદન કરવા માટેની કુલ ક્ષમતા 3,000 માનવ-કલાકોની છે. એક નંગ A નું ઉત્પાદન કરવા માટે 3 કલાકની જરૂર પડે છે, જ્યારે એક નંગ B નું ઉત્પાદન એક કલાકમાં કરી શકાય છે. આ વસ્તુઓના વેચાણ માટે બજારમાં મોજણી કરાવવાથી કંપનીના અધિકારીઓને લાગ્યું કે Aનું વેચાણ 8,000 નંગ કરી શકાય જયારે Bનું વેચાણ 1200 નંગ કરી શકાય. આ શરતોને અધીન A તથા Bના ગમે તેટલા નંગનું વેચાણ કરી શકાય. આ માહિતીને સુરેખ આયોજનના પ્રશ્ન તરીકે મહત્તમ નફો મેળવવા માટે ગાણિતીય સ્વરૂપમાં દર્શાવો.
- 2. F₁ અને F₂ પ્રકારના ખોરાકમાંથી વિટામીન A તથા B મળે છે. એક એકમ ખોરાક F₁ ત્રણ એકમ વિટામીન A ધરાવે છે તથા ચાર એકમ વિટામીન B ધરાવે છે. એક એકમ ખોરાક F₂ છ એકમ વિટામીન A તથા ત્રણ એકમ વિટામીન B ધરાવે છે. એક એકમ ખોરાક F₁ તથા F₂ ની કિંમત અનુક્રમે ₹ 4 અને ₹ 5 છે. એક વ્યક્તિની દૈનિક જરૂરિયાત ઓછામાં ઓછા 80 એકમ વિટામીન A તથા 100 એકમ વિટામીન Bની છે. આપણે ધારી લઈશું કે ન્યૂનતમ જરૂરિયાત કરતા વધુ એકમ વિટામીન A અને B લેવાથી વ્યક્તિને નુકસાન થતું નથી. ખોરાક F₁ અને F₂ નું ઈષ્ટતમ મિશ્રણ એવી રીતે કરો કે જેથી ઓછામાં ઓછા ખર્ચમાં વ્યક્તિની વિટામીન A અને Bની ન્યૂનતમ દૈનિક જરૂરિયાત પૂરી કરી શકાય. ઉપરોક્ત માહિતીને સુરેખ આયોજનના પ્રશ્ન તરીકે ગાણિતીય સ્વરૂપમાં દર્શાવો.
- એક પેન્શન ભંડોળ સંચાલક A અને B કંપનીના શેરમાં રોકાશ કરવાનું વિચારે છે. નીચે મુજબની ધારશા રાખવામાં આવે છે :
 - (1) A કંપનીના શેરમાં વાર્ષિક 12 ટકા ડિવિડન્ડ મળે અને B કંપનીના શેરમાં વાર્ષિક 4 ટકા ડિવિડન્ડ મળે.
 - (2) A કંપનીના શેરમાં ₹ 1 ના રોકાણ પર વાર્ષિક 10 પૈસા તથા B કંપનીના શેરમાં વાર્ષિક 20 પૈસાનો બજારભાવમાં વધારો થાય.

સંચાલક વધુમાં વધુ રોકાણ નીચે આપેલી શરતોને અધીન રહી કરે છે :

- (1) ડિવિડન્ડની વાર્ષિક આવક ₹ 600 થાય તથા
- (2) મૂળ રોકાણ પર વાર્ષિક ઓછામાં ઓછા ₹ 1000નો વધારો થાય.

સંચાલકનો હેતુ સિદ્ધ થાય તે રીતે ઓછામાં ઓછું રોકાણ કરવું છે. ઉપરોક્ત માહિતીને સુરેખ આયોજનના પ્રશ્ન તરીકે તેને ગાણિતીય સ્વરૂપમાં દર્શાવો :

નીચેના સુરેખ આયોજનના પ્રશ્નોને આલેખની રીતે ઉકેલો (4 થી 12) :

- 4. $x + 2y \le 40$, $3x + y \ge 30$, $4x + 3y \ge 60$ અને $x \ge 0$, $y \ge 0$ શરતોને અધીન z = 20x + 10y ની મહત્તમ કિંમત શોધો.
- 5. $x + y \le 50$, $3x + y \le 90$ અને $x \ge 0$, $y \ge 0$ શરતોને અધીન z = 4x + y ની મહત્તમ કિંમત શોધો.
- 6. $x + 2y \ge 10$, $3x + 4y \le 24$ અને $x \ge 0$, $y \ge 0$ શરતોને અધીન z = 200x + 500y ની ન્યૂનતમ કિંમત શોધો.
- 7. $x + 3y \le 60$, $x + y \ge 10$, $x \ge y$, $x \ge 0$, $y \ge 0$ શરતોને અધીન z = 3x + 9y ની મહત્તમ તથા ન્યૂનતમ કિંમત શોધો.
- 8. $x + y \ge 8$, $3x + 5y \le 15$, $x \ge 0$, $y \ge 0$ શસ્તોને અધીન z = 3x + 2y ની ન્યૂનતમ કિંમત શોધો.
- 9. $x + y \le 4, x \ge 0, y \ge 0$ શરતોને અધીન z = 3x + 4y ની મહત્તમ કિંમત શોધો.

10. $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$ શરતોને અધીન z = 3x + 4y ની મહત્તમ કિંમત શોધો.

11. $x \ge 3$, $x + y \ge 5$, $x + 2y \ge 6$, $y \ge 6$ શરતોને અધીન z = -x + 2y ની મહત્તમ કિંમત શોધો.

12. $x + 2y \le 120$, $x + y \ge 60$, $x - 2y \ge 0$, $x \ge 0$, $y \ge 0$ શરતોને અધીન z = 5x + 10y ની ન્યૂનતમ કિંમત શોધો.

8.4 સુરેખ આયોજનના જુદા જુદા પ્રકારના પ્રશ્નો

આહાર સંબંધી સમસ્યાઓ : આ પ્રકારના પ્રશ્નમાં આપણે જુદા જુદા પ્રકારના ઘટકો ધરાવતો આહાર એવી રીતે બનાવવાનો હોય છે કે જેનો ખર્ચ લઘુત્તમ થાય અને જરૂરી દરેક પ્રકારના પોષક દ્રવ્યોનો સમાવેશ થાય.

ઉદાહરણ 7 : એક ગૃહિણી X અને Y બે પ્રકારનો ખોરાક એવી રીતે મિશ્ર કરવા માંગે છે કે જેથી એ મિશ્રણમાં વિટામીન Aના ઓછામાં ઓછા 10 એકમ હોય, વિટામીન Bના ઓછામાં ઓછા 12 એકમ હોય અને વિટામીન Cના ઓછામાં ઓછા 8 એકમ હોય. 1 કિલોગ્રામ ખોરાકમાં વિટામીનનું પ્રમાણ નીચે આપેલા કોષ્ટકમાં દર્શાવેલ છે.

	વિટામીન A	વિટામીન B	વિટામીન C
આહાર X	1	2	3
આહાર Y	2	2	1

X પ્રકારના ખોરાકનો પ્રતિ કિગ્રા ભાવ ₹ 60 છે અને Y પ્રકારના ખોરાકનો ભાવ પ્રતિ કિગ્રા ₹ 100 છે. X અને Y પ્રકારનો ઉપર મુજબની શરતોને અધીન મિશ્રિત આહાર બનાવવા માટેનો લઘુતમ ખર્ચ શોધો.

63લ : ધારો કે x કિલોગ્રામ X પ્રકારનો ખોરાક અને y કિલોગ્રામ Y પ્રકારનો ખોરાક મિશ્ર કરી માંગેલો આહાર બનાવાય છે.

X પ્રકારના 1 કિલોગ્રામ ખોરાકમાં વિટામીન Aનું પ્રમાણ 1 એકમ અને Y પ્રકારના 1 કિલોગ્રામ ખોરાકમાં વિટામીન Aનું પ્રમાણ 2 એકમ હોવાથી x કિલોગ્રામ X પ્રકારના અને y કિલોગ્રામ Y પ્રકારના મિશ્ર ખોરાકમાં વિટામીન Aનું પ્રમાણ x+2y એકમ થાય. અહીં આપેલ છે કે આ મિશ્રણમાં વિટામીન Aનું પ્રમાણ ઓછામાં ઓછું 10 એકમ હોય.

$$\therefore \quad x + 2y \ge 10$$

આ જ રીતે, x કિલોગ્રામ X પ્રકારના અને y કિલોગ્રામ Y પ્રકારના મિશ્ર ખોરાકમાં વિટામીન Bનું પ્રમાણ 2x + 2y એકમ અને વિટામીન Cનું પ્રમાણ 3x + y એકમ થાય. વિટામીન B અને વિટામીન Cના લઘુતમ પ્રમાણ અનુક્રમે 12 અને 8 એકમ હોવાથી.

$$\therefore 2x + 2y \ge 12 \tag{ii}$$

અને
$$3x + y \ge 8$$
 (iii)

X અને Y પ્રકારના ખોરાકનો જથ્થો ઋણ ન હોઈ શકે તેથી,

$$\therefore \quad x \ge 0, \, y \ge 0 \tag{iv}$$

આપેલ છે કે X પ્રકારના ખોરાકનો પ્રતિ કિગ્રા ભાવ ₹ 60 અને Y પ્રકારના ખોરાકનો પ્રતિ કિગ્રા ₹ 100 હોવાથી, x કિલોગ્રામ X પ્રકારના અને y કિલોગ્રામ Y પ્રકારના મિશ્ર ખોરાકની કિંમત ₹ (60x + 100y) થાય. આપેલ સુરેખ આયોજનનો પ્રશ્ન નીચે મુજબ થશે :

 $x+2y \ge 10$, $2x+2y \ge 12$, $3x+y \ge 8$ અને $x \ge 0$, $y \ge 0$ શરતોને અધીન z=60x+100y ની ન્યૂનતમ કિંમત શોધો.

આપણે આ પ્રશ્નને આલેખની રીતે ઉકેલીશું.

આ સુરેખ આયોજનના પ્રશ્નને ઉકેલવા માટે પ્રથમ રેખાઓ x + 2y = 10, 2x + 2y = 12 એટલે કે x + y = 6 અને 3x + y = 8 દોરો અને આપેલ અસમતાઓની મદદથી શક્ય ઉકેલનો પ્રદેશ નક્કી કરો જે આકૃતિ 8.7 દર્શાવ્યા મુજબ અસીમિત પ્રદેશ છે.

પીળા રંગનો પ્રદેશ ABCDના શિરોબિંદુઓ A(10, 0), B(2, 4), C(1, 5) અને D(0, 8) છે. આપેલ રેખાઓના સમીકરણો ઉકેલથી પણ આ બિંદુઓ મેળવી શકાય છે. નીચેના કોપ્ટકમાં આ બિંદુઓ આગળ હેતુલક્ષી વિધેયની કિંમત મેળવી છે.

શિરોબિંદુ	હેતુલક્ષી વિધેય $z=60x+100y$ ની કિંમત
A(10, 0)	600
B(2, 4)	520 ← ન્યૂનતમ
C(1, 5)	560
D(0, 8)	800

x=2 અને y=4 આગળ z ની ન્યૂનતમ કિંમત મળી શકે. શક્ય ઉકેલનો પ્રદેશ અસીમિત હોવાથી આપણે અસમતા 60x+100y<520 એટલે કે, 3x+5y<26 ને આલેખવી પડે અને ચકાસવું જોઈએ કે તેનાથી રચાતાં ખુલ્લાં અર્ધતલને શક્ય ઉકેલના પ્રદેશ સાથે કોઈ સામાન્ય બિંદુ મળે છે કે નહિ. આકૃતિ 8.7 પરથી આપણે જોઈ શકીએ છીએ કે આવું સામાન્ય બિંદુ મળશે નહિ. તેથી, z ની ન્યૂનતમ કિંમત 520 થશે.

આમ, માંગેલો મિશ્ર ખોરાક (આહાર)ની ન્યૂનતમ કિંમત ₹ 520 થશે.

ઉત્પાદનને લગતી સમસ્યાઓ : આ પ્રકારના પ્રશ્નમાં આપશે કંપની દ્વારા જુદા જુદા પ્રકારની વસ્તુઓની સંખ્યાનું ઉત્પાદન અને વેચાશ અમુક નિયંત્રશોને અધીન મહત્તમ નકો મેળવવા માટે કરવાનું હોય છે. આ નિયંત્રશો આવાં હોઈ શકે, દરેક વસ્તુનું ઉત્પાદન કરવા ચોક્કસ માનવ-કલાકોની જરૂર, મશીન (યંત્ર)ના કલાકો, મજૂરી, ઉત્પાદિત વસ્તુઓને સંગ્રહ કરવાની જગ્યા વગેરે.

ઉદાહરણ 8 : એક નાની કંપની સોનાની ચેઇન અને વીંટીનું ઉત્પાદન કરે છે. એક દિવસમાં તે ચેઇન અને વીંટી મળીને વધુમાં વધુ 24 નંગ ઉત્પાદન કરી શકે છે. વીંટી બનાવવા માટે 1 કલાક અને ચેઇન બનાવવા માટે 30 મિનિટનો સમય લાગે છે. એક દિવસમાં વધુમાં વધુ 16 કલાકનું કામ થાય છે. એક વીંટીના વેચાણથી ₹ 300 અને એક ચેઈનના વેચાણથી ₹ 190નો નફો મળે છે. મહત્તમ નફ્રો મેળવવા કંપનીએ એક દિવસમાં કેટલાં નંગ વીંટી અને કેટલાં નંગ ચેઈનનું ઉત્પાદન કરવું જોઈએ? આ પ્રશ્નને સુરેખ આયોજનના પ્રશ્ન તરીકે આલેખની રીતે ઉકેલો.

63લ : ધારો કે કંપની એક દિવસમાં x નંગ સોનાની વીંટી અને y નંગ ચેઈન બનાવે છે. આપેલ માહિતીને નીચેના કોષ્ટકમાં દર્શાવેલી છે :

વસ્તુ	નંગ	ઉત્પાદન સમય	નફો (₹)
સોનાની વીંટી	x	x કલાક	300x
સોનાની ચેઈન	у	$\frac{1}{2}y$ કલાક	1 90 y
કુલ	x + y	$\left(x+\frac{1}{2}y\right)$ sens	300x + 190y

આપણે z = 300x + 190y ની મહત્તમ કિંમત નીચે આપેલી શરતોને અધીન શોધવી છે :

$$x \ge 0, y \ge 0$$

$$x + \frac{1}{2}y \le 16$$

$$\therefore 2x + y \le 32$$

અને $x+y \le 24$

આપણે રેખાઓ 2x + y = 32 અને x + y = 24 દોરી આપેલી અસમતાઓનો ઉપયોગ કરી ઉકેલનો પ્રશ્ન નક્કી કરીએ જે આકૃતિ 8.8માં દર્શાવેલ છે. શક્ય ઉકેલોનો પ્રદેશ OABCના શિરોબિંદુઓ O(0, 0), A(16, 0), B(8, 16), C(0, 24) છે. નીચેના કોષ્ટકમાં આ શિરોબિંદુ આગળ z ની કિંમત દર્શાવેલ છે.

આકૃતિ 8.8

શિરોબિંદુ	z = 300x + 190y ની કિંમત (₹)
(0, 0)	0
(16, 0)	4800
(8, 16)	5440 ← મહત્તમ
(0, 24)	4560

આપણે જોઈ શકીએ છીએ કે x=8 અને y=16 માટે મહત્તમ નફો ₹ 5440 મળે છે.

આમ, મહત્તમ નફો મેળવવા એક દિવસમાં 8 નંગ વીંટી અને 16 નંગ ચેઈનનું ઉત્પાદન કરવું જોઈએ.

પરિવહનને લગતી સમસ્યાઓ : આ પ્રકારના પ્રશ્નમાં આપણે ઉત્પાદિત માલસામાનને જુદા જુદા સ્થળે આવેલા ઉત્પાદન-સ્થળે (કારખાના)થી જુદા જુદા સ્થળે આવેલા બજાર કે વખારમાં પહોંચાડવા માટેનો રસ્તો એવી રીતે પસંદ કરવો જોઈએ કે જેથી પરિવહન ખર્ચ ન્યૂનતમ થાય.

ઉદાહરણ 9 : એક ઈંટ ઉત્પાદકને ઉત્પાદિત ઈંટો મૂકવા માટે બે જગ્યા A અને B છે. જગ્યા A અને Bમાં તે અનુક્રમે 30,000 અને 20,000 નંગ ઈંટો મૂકી શકે છે. તેને બાંધકામ સંબંધી ત્રણ કંપની P, Q અને R ને અનુક્રમે 15,000, 20,000 અને 15,000 ઈંટો પૂરી પાડવાની છે. નીચે આપેલા કોષ્ટકમાં જુદી જુદી જગ્યાએથી જુદી જુદી બાંધકામ કંપનીઓને 1000 ઈંટો પૂરી પાડવાનો ખર્ચ દર્શાવેલ છે.

સુધી માંથી	P	Q	R
A	₹ 80	₹ 40	₹ 60
В	₹ 40	₹ 120	₹ 80

ઈંટ ઉત્પાદક આ કંપનીઓને કેવી રીતે ઈંટો પહોંચાડશે કે જેથી તેના પરિવહનનો ખર્ચ ન્યૂનતમ થાય ? ઉકેલ: આપેલ માહિતીને નીચેની આકૃતિ 8.9માં દર્શાવેલ છે.

ધારો કે જગ્યા A થી x હજાર ઈંટો કંપની P માં, y હજાર ઈંટો કંપની Q માં પહોંચાડવામાં આવે છે. જગ્યા A માં 30,000 ઈંટોનો સંગ્રહ કરેલ હોવાથી બાકીની ઈંટો 30-(x+y) હજાર કંપની R માં પહોંચાડવામાં આવે છે. ઈંટોની સંખ્યા હંમેશાં અનૃણ હોવાથી,

$$x \ge 0, y \ge 0$$
 અને $30 - (x + y) \ge 0$ એટલે કે $x + y \le 30$

હવે, કંપની P ની જરૂરિયાત 15,000 ઈંટોની છે અને x હજાર ઈંટો જગ્યા A થી આવેલ છે તેથી બાકીની (15 -x) હજાર ઈંટો જગ્યા B થી મંગાવવી પડે. કંપની Q ની જરૂરિયાત 20,000 ઈંટોની છે અને y હજાર ઈંટો જગ્યા Aથી આવેલ છે તેથી બાકીની (20 -y) હજાર ઈંટો જગ્યા Bથી મંગાવવી પડે. હવે, જગ્યા B પર,

$$20-(15-x+20-y)=x+y-15$$
 હજાર ઈંટો બાકી રહે જેને કંપની Rમાં મોકલવાની રહેશે. વળી, $15-x\geq 0$, $20-y\geq 0$ અને $x+y-15\geq 0$ $x\leq 15$, $y\leq 20$ અને $x+y\geq 15$

જગ્યા A થી કંપની P, Q અને R પર ઈંટો પહોંચાડવાનો પરિવહન ખર્ચ અનુક્રમે ₹ 80x, ₹ 40y અને ₹ 60(30 - (x + y)) થશે. તે જ રીતે, જગ્યા B થી કંપની P, Q અને R પર ઈંટો પહોંચાડવાનો પરિવહન ખર્ચ અનુક્રમે ₹ 40(15 - x), ₹ 120(20 - y) અને ₹ 80(x + y - 15) થશે. તેથી કુલ પરિવહન ખર્ચ નીચે પ્રમાણે મળે :

$$z = 80x + 40y + 60(30 - x - y) + 40(15 - x) + 120(20 - y) + 80(x + y - 15)$$

z = 60x - 60y + 3600

ગણિત 12

(ii)

આમ, ઉપરના સુરેખ આયોજનના પ્રશ્નને ગાણિતીય રીતે નીચે મુજબ દર્શાવી શકાય :

 $x+y \le 30, \ x \le 15, \ y \le 20, \ x+y \ge 15$ અને $x \ge 0, \ y \ge 0$ શરતોને અધીન z=60x-60y+3600ની ન્યૂનતમ કિંમત શોધો.

અહીં, x અને y ની કિંમત હજારમાં છે.

આપણે આ પ્રશ્નને આલેખની રીતે ઉકેલીશું. રેખાઓ x + y = 30, x = 15, y = 20 અને x + y = 15 દોરી આપેલ અસમતાઓનો ઉપયોગ કરી શક્ય ઉકેલનો પ્રશ્ન નક્કી કરો, જે આકૃતિ 8.10માં દર્શાવ્યા પ્રમાણે છે.

આકૃતિ 8.10

શક્ય ઉકેલના પ્રદેશ ABCDEના શિરોબિંદુઓ A(15, 0), B(15, 15), C(10, 20), D(0, 20), E(0, 15) છે. આપણે આ શિરોબિંદુઓ આગળ z ની કિંમત મેળવીશું.

શિરોબિંદુઓ	z = 60x - 60y + 3600 ની કિંમત
(15, 0)	4500
(15, 15)	3600
(10, 20)	3000
(0, 20)	2400 ← ન્યૂનતમ
(0, 15)	2700

કોષ્ટક પરથી માલૂમ પડે છે કે x=0 અને y=20 આગળ z ની ન્યૂનતમ કિંમત 2400 થાય છે.

આમ, ઉત્પાદકે જગ્યા Aથી કંપની P, Q, Rને અનુક્રમે 0, 20,000 અને 10,000 ઈટો પહોંચાડવી જોઈએ તથા જગ્યા B થી કંપની P, Q, R ને અનુક્રમે 15,000, 0 અને 5,000 ઈટો પહોંચાડવી જોઈએ.

આ સંજોગોમાં પરિવહનનો ન્યુનતમ ખર્ચ ₹ 2400 થશે.

અન્ય વિષયક સમસ્યાઓ : જાહેરાત અભિયાન ચલાવવા માટે કેટલા પ્રમાણમાં પ્રચાર માધ્યમનો ઉપયોગ કરવો તે સુરેખ આયોજનથી નક્કી કરી શકાય છે. ધારો કે પ્રચાર માધ્યમ રેડિયો, ટેલિવિઝન અને અખબાર છે. જાહેરખબરની કિંમત કયા માધ્યમમાં આપીએ છીએ તેના પર આધારિત છે. આપણે એ નક્કી કરવાનું હોય છે કે કેટલી જાહેરાત કયા માધ્યમમાં આપવી છે કે જેથી જાહેરાતનો ખર્ચ ઓછામાં ઓછો આવે અને વધુમાં વધુ વ્યક્તિઓમાં પ્રસાર થાય.

ઉદાહરણ 10 : એક જાહેરખબર આપતી સંસ્થા બે પ્રકારના દર્શકોમાં પહોંચવા માગે છે : એવા ગ્રાહકો કે જેમની વાર્ષિક આવક રૂપિયા એક લાખ કરતા વધુ હોય (લક્ષ્ય દર્શકો A) અને એવા ગ્રાહકો કે જેમની વાર્ષિક આવક રૂપિયા એક લાખ કરતા ઓછી હોય (લક્ષ્ય દર્શકો B). જાહેરાત માટેનું કુલ બજેટ ₹ 2,00,000 છે. ટેલિવિઝનની એક જાહેરખબરનો ભાવ ₹ 50,000 છે જયારે ટેડિયો પરની એક જાહેરખબરનો ભાવ ₹ 20,000 છે. એ પ્રકારનો કરાર કરવામાં આવે છે કે ટેલિવિઝન પર ઓછામાં ઓછી ત્રણ અને રેડિયો પર વધુમાં વધુ 5 જાહેરખબર આપી શકાય. મોજણી કરવાથી એવું માલૂમ પડ્યું કે ટેલિવિઝન પરની એક જાહેરખબર A પ્રકારના 4,50,000 દર્શકો સુધી પહોંચે છે જયારે B પ્રકારના 50,000 દર્શકો સુધી પહોંચે છે. રેડિયો પરની એક જાહેરખબર A પ્રકારના 20,000 શ્રોતા સુધી પહોંચે છે જયારે B પ્રકારના 80,000 શ્રોતા સુધી પહોંચે છે. વધુમાં વધુ દર્શકો (શ્રોતા)ઓ સુધી પહોંચવા માટે ટેલિવિઝન પર કેટલી અને રેડિયો પર કેટલી જાહેરખબર આપવી જોઈએ ?

ઉકેલ 🖫 આપણે નીચે મુજબ નિર્ણાયક ચલરાશિઓ વ્યાખ્યાયિત કરીએ.

x એ ટેલિવિઝન પર પ્રસારિત થતી જાહેરખબરની સંખ્યા છે અને y એ રેડિયો પર પ્રસારિત થતી જાહેરખબરની સંખ્યા છે. અહીં આપેલ છે કે ટેલિવિઝન પરની એક જાહેરાત A પ્રકારના 4,50,000 દર્શકો સુધી પહોંચે છે અને B પ્રકારના 50,000 દર્શકો સુધી પહોંચે છે. રેડિયો પરની એક જાહેરખબર A પ્રકારના 20,000 શ્રોતા સુધી પહોંચે છે અને B પ્રકારના 80,000 શ્રોતા સુધી પહોંચે છે.

આમ, આપણે
$$z = (4,50,000 + 50,000)x + (20,000 + 80,000)y$$

= $5,00,000x + 1,00,000y$ ની મહત્તમ કિંમત શોધવાની રહેશે. (i)

જાહેરખબર માટેનું કુલ બજેટ

 $50,000x + 20,000y \le 2,00,000$

એટલે કે,
$$5x + 2y \le 20$$
 (ii)

વળી, જાહેરખબરની સંખ્યા પર પણ મર્યાદા છે. ટેલિવિઝન પર ઓછામાં ઓછી 3 અને રેડિયો પર વધુમાં વધુ 5 જાહેરખબર આપી શકાય.

$$x \ge 3$$
 અને $y \le 5$ (iii) વળી, જાહેરખબરની સંખ્યા ઋણ ન હોઈ શકે.

$$x \ge 0$$
 અને $y \le 0$ (iv)

 $5x + 2y \le 20, x \ge 3, y \le 5$ અને $x, y \ge 0$ શસ્તોને અધીન z = 5,00,000x + 1,00,000yનું મહત્તમ મૂલ્ય શોધીએ.

આપણે આ પ્રશ્નને આલેખની રીતે ઉકેલીએ. રેખાઓ 5x + 2y = 20, x = 3, y = 5 દોરી આપેલ અસમતાઓનો ઉપયોગ કરી શક્ય ઉકેલનો પ્રદેશ નક્કી કરો, જે આકૃતિ 8.11માં દર્શાવેલ છે.

શક્ય ઉકેલનો પ્રદેશ $\triangle ABC$ ના શિરોબિંદુઓ A(3,0), B(4,0) અને C(3,2.5) છે. આપણે આ શિરોબિંદુઓ આગળ z ની કિંમત મેળવીશું.

શિરોબિંદુઓ	z = 5,00,000x + 1,00,000y ની કિંમત	
(3, 0)	15,00,000	
(4, 0)	20,00,000 ← મહત્તમ	
$\left(3,\frac{5}{2}\right)$	17,50,000	

આગળ z નું મહત્તમ મૂલ્ય 20,00,000 મળે છે. આમ, જાહેરખબર આપતી સંસ્થાએ જો વધુમાં વધુ દર્શકોમાં જાહેરખબર પ્રસરાવવી હોય તો ટેલિવિઝન પર 4 જાહેરખબર આપવી જોઈએ અને રેડિયો પર જાહેરખબર આપવી જોઈએ નહિ.

સ્વાધ્યાય 8

આલેખની રીતે નીચેના સુરેખ આયોજનના પ્રશ્નો ઉકેલો : (1 થી 6)

- 1. $x + 2y \le 10$, $x + y \le 6$, $x y \le 2$, $x 2y \le 1$ અને $x \ge 0$, $y \ge 0$ શરતોને અધીન z = 2x + y ની મહત્તમ કિંમત શોધો.
- 2. $-x + 3y \le 10$, $x + y \le 6$, $x y \le 2$ અને $x \ge 0$, $y \ge 0$ શરતોને અધીન z = -x + 2y ની ન્યૂનતમ કિંમત શોધો.
- 3. $5x + y \ge 10$, $x + y \ge 6$, $x + 4y \ge 12$ અને $x \ge 0$, $y \ge 0$ શરતોને અધીન z = 3x + 2y ની ન્યૂનતમ કિંમત શોધો.
- **4.** $x + y \ge 3$, $x + y \le 4$, $0 \le x \le \frac{5}{2}$, $0 \le y \le \frac{3}{2}$ શરતોને અધીન z = 7x + 3y ની મહત્તમ કિંમત શોધો.
- 5. $x + 2y \le 40$, $3x + y \ge 30$, $4x + 3y \ge 60$ અને $x \ge 0$, $y \ge 0$ શરતોને અધીન z = 20x + 10y ની ન્યૂનતમ કિંમત શોધો.
- **6.** $x + y \le 1$, $-3x + y \ge 3$ અને $x \ge 0$, $y \ge 0$ શરતોને અધીન z = x + y ની મહત્તમ કિંમત શોધો.
- 7. એક કારખાનાનો માલિક A અને B બે પ્રકારના યંત્રોની ખરીદી કરે છે. આ યંત્રોની જરૂરિયાત અને મર્યાદા નીચે મુજબ છે :

યંત્ર	જરૂરી જગ્યા	યંત્ર પર કામ કરવા જરૂરી કારીગરની સંખ્યા	દૈનિક ઉત્પાદન (એકમ)
Α	1000 મી ²	12 વ્યક્તિઓ	60
В	1200 મી ²	8 વ્યક્તિઓ	40

કારખાનાના માલિક પાસે કુલ 9000 m^2 જગ્યા છે અને 72 યોગ્ય તાલીમ પામેલા કારીગરો છે. જે બંને યંત્રો પર કામ કરી શકે છે. કારખાનાના માલિકે દરેક પ્રકારનાં કુલ કેટલા યંત્રો ખરીદવાં જોઈએ કે જેથી દૈનિક ઉત્પાદન મહત્તમ થાય. આ પ્રશ્નને સુરેખ આયોજનના પ્રશ્ન તરીકે ગાણિતીય સ્વરૂપમાં દર્શાવો અને આલેખની રીતે ઉકેલો.

- 8. એક બીમાર વ્યક્તિનાં સમતોલ આહારમાં ઓછામાં ઓછા 4000 એકમ વિટામીન, 50 એકમ ખનીજતત્ત્વો અને 1400 એકમ કેલરી જરૂરી છે. A અને B બે પ્રકારનો ખોરાક ઉપલબ્ધ છે. A પ્રકારના એક એકમ ખોરાકની કિંમત ₹ 5 છે અને B પ્રકારના એક એકમ ખોરાકની કિંમત ₹ 4 છે. A પ્રકારનો એક એકમ ખોરાક 200 એકમ વિટામીન, 1 એકમ ખનીજતત્ત્વ અને 40 એકમ કેલરી ધરાવે છે જયારે B પ્રકારનો એક એકમ ખોરાક 100 એકમ વિટામીન, 2 એકમ ખનીજતત્ત્વો અને 40 એકમ કેલરી ધરાવે છે. ઓછામાં ઓછા ખર્ચમાં બીમાર વ્યક્તિનો જરૂરી સમતોલ આહાર બનાવવા માટે A અને B બંને પ્રકારના કેટલા એકમ ખોરાકનો ઉપયોગ કરવો જોઈએ ? આ પ્રશ્નને સુરેખ આયોજનના પ્રશ્ન તરીકે ગાણિતીય સ્વરૂપમાં દર્શાવો અને આલેખની રીતે ઉકેલો.
- 9. એક દુકાનદાર 5 લિટર તેલના ડબ્બા અને 1 કિગ્રા ઘીના ડબ્બા ખરીદવા ઇચ્છે છે. તેની પાસે રોકાણ કરવા માટે ₹ 5760 છે અને 20 ડબ્બા સંગ્રહી શકાય તેટલી જગ્યા છે. 5 લિટર તેલના એક ડબ્બાનો ભાવ ₹ 360 અને 1 ઘીના ડબ્બાનો ભાવ ₹ 240 છે. એક ડબ્બા તેલમાંથી તેને ₹ 22 નફો મળે છે જ્યારે એક ડબ્બા ઘીના વેચાણથી તેને ₹ 18 નફો મળે છે. ધારો કે દુકાનદાર જે વસ્તુ ખરીદે છે તે બધાનું વેચાણ થાય છે. દુકાનદાર તેની પાસે રહેલ રકમનું કેવી રીતે રોકાણ કરે કે જેથી તેને મહત્તમ નફો થાય ? આ પ્રશ્નને સુરેખ આયોજનના પ્રશ્ન તરીકે ગાણિતીય સ્વરૂપમાં દર્શાવો અને આલેખની રીતે ઉકેલો.
- 10. એક પ્રકારની કેક બનાવવા માટે 300 ગ્રામ લોટ અને 15 ગ્રામ મલાઈની જરૂર પડે છે જ્યારે બીજા પ્રકારની કેક બનાવવા માટે 150 ગ્રામ લોટ અને 30 ગ્રામ મલાઈની જરૂર પડે છે. 7.5 કિલોગ્રામ લોટ અને 600 ગ્રામ મલાઈથી વધુમાં વધુ કેટલી કેક બનાવી શકાય ? અહીં આપણે ધારી લઈશું કે કેક બનાવવા માટેના બીજા જરૂરી પદાર્થો ઉપલબ્ધ છે જ. આ પ્રશ્નને સુરેખ આયોજનના પ્રશ્ન તરીકે ગાણિતીય સ્વરૂપમાં દર્શાવો અને આલેખની રીતે ઉકેલો.
- 11. ઈંધણ તેલ ઉત્પાદક એક કંપનીને જુદી જુદી ક્ષમતા ધરાવતી A અને B બે પ્રકારની જગ્યા છે. A અને B જગ્યાએ અનુક્રમે 7000 લિટર અને 4000 લિટર ઇંધણનો સંગ્રહ કરી શકાય છે. કંપની ત્રણ પેટ્રોલ પંપ D, E અને F અનુક્રમે 4500 લિટર, 3000 લિટર અને 3500 લિટર ઇંધણની જરૂરરિયાત પૂરી પાડે છે. ઇંધણની સંગ્રહિત જગ્યા અને પેટ્રોલ પંપ વચ્ચેનું અંતર (કિમી) નીચેના કોષ્ટકમાં દર્શાવેલ છે.

ક્યાં ક્યાંથી	A	В
D	7	3
E	6	4
F	3	2

ધારો કે 10 લિટર ઈંધણનો પરિવહન ખર્ચ એક કિમી દીઠ ₹ 1 છે. સંગ્રહિત જગ્યાએથી પેટ્રોલ પંપ પર ઈંધણ કેવી રીતે મોકલવું જોઈએ કે જેથી પરિવહન ખર્ચ ન્યૂનતમ આવે ? ન્યૂનતમ પરિવહન ખર્ચ શોધો.

- 12. એક વિમાન વધુમાં વધુ 200 મુસાફરોને લઈ જઈ શકે છે. એક ઉચ્ચ વર્ગની ટિકિટમાંથી વિમાની કંપનીને ₹ 1000નો નફો થાય છે તેમજ એક સામાન્ય વર્ગની ટિકિટમાંથી કંપનીને ₹ 600 નફો થાય છે. વિમાની કંપની ઓછામાં ઓછી 20 બેઠકો ઉચ્ચ વર્ગ માટે અનામત રાખે છે. આમ છતાં ઉચ્ચવર્ગના મુસાફરો કરતાં સામાન્ય વર્ગમાં ઓછામાં ઓછા 4 ગણા મુસાફરો મુસાફરી કરતાં હોય છે. વિમાની કંપનીએ દરેક વર્ગની કેટલી ટિકિટોનું વેચાણ કરવું જોઈએ કે જેથી મહત્તમ નફો થાય ? મહત્તમ નફો કેટલો થશે ?
- 13. એક ઉત્પાદક એક જ વસ્તુના બે જુદા જુદા મોડલ X અને Y બનાવે છે. મોડલ Xના વેચાણથી ₹ 50 નો નફો થાય છે જ્યારે મોડલ Yના વેચાણથી ₹ 30નો નફો થાય છે. ઉત્પાદન માટે કાચો માલ r_1 અને r_2 ની જરૂરિયાત પડે છે. દૈનિક ઓછામાં ઓછા 18 કિગ્રા r_1 અને 12 કિગ્રા r_2 નો વપરાશ થાય છે. વળી, વધુમાં વધુ 34 કલાક માનવ-કલાકોનો ઉપયોગ થાય છે. મોડલ X બનાવવા માટે 2 કિગ્રા r_1 અને 1 કિગ્રા r_2 વપરાય છે. જ્યારે મોડલ Y બનાવવા માટે 1 કિગ્રા r_1 અને 1 કિગ્રા r_2 વપરાય છે. જ્યારે મોડલ Y બનાવવા

માટે 2 કલાકનો સમય લાગે છે. મહત્તમ નફ્ષો મેળવવા માટે કેટલા નંગ X અને Y પ્રકારના મોડેલનું ઉત્પાદન કરવું જોઈએ.

14.	નીચે	આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા	વિકલ્પો (a), (b), (c) અથવા (d) માંથી યોગ્ય વિકલ	ય પસંદ				
	કરી	તે 🔛 માં લખો :						
	વિભાગ A : (1 ગુણ)							
	(1) સુરેખ આયોજનના પ્રશ્નમાં આલેખ હેત્લક્ષી વિધેય							
		(a) અચળ હોય	(b) નું ઈપ્ટતમ મૂલ્ય શોધવાનું હોય	200				
		(c) અસમતા હોય	(d) દિઘાત સમીકરણ હોય					
	(2)	ધારો કે x અને y એ સુરેખ આયોજનના પ્રશ્નનો	ઈષ્ટતમ ઉકેલ હોય, તો					
	(a) $z = \lambda x + (1 - \lambda)y$, $\lambda \in \mathbb{R}$ પણ ઈષ્ટતમ ઉકેલ હોય (b) $z = \lambda x + (1 - \lambda)y$, $0 \le \lambda \le 1$ પણ ઈષ્ટતમ ઉકેલ હોય (c) $z = \lambda x + (1 + \lambda)y$, $0 \le \lambda \le 1$ પણ ઈષ્ટતમ ઉકેલ હોય							
		(d) $z = \lambda x + (1 + \lambda)y$, $\lambda \in \mathbb{R}$ પણ ઈષ્ટત	ામ ઉકેલ હોય					
	(3)	હેતુલક્ષી વિધેયનું ઈષ્ટતમ મૂલ્ય કયાં બિંદુએ પ્રાપ	તથાય છે ?					
(a) અસમતા સમીકરણના અક્ષો સાથેના છેદબિંદુએ								
	(b) અસમતા સમીકરણના ફક્ત X-અક્ષ સાથેના છેદબિંદુએ							
		(c) શક્ય ઉકેલ પ્રદેશના શિરોબિંદુ આગળ						
		(d) ઊગમબિંદુએ						
(4) કોઈક મર્યાદાઓની અસમતા સંહતિથી રચાતા શક્ય ઉકેલના પ્રદેશના શિરોબિંદુઓ (0, 10), (5, 15),				
	$(0,\ 20)$ છે. ધારો કે $z=px+qy$ જયાં $p,\ q>0$. જો z ની મહત્તમ કિંમત શિરોબિંદુ $(15,\ 15)$ $(0,\ 20)$ બંને આગળ મળે તો p તથા q વચ્ચેનો સંબંધ							
		(a) $p = q$ (b) $p = 2q$	(c) $q = 2p$ (d) $q = 3p$					
	(5)	નીચે આપેલામાંથી કયું વિધાન સત્ય છે ?						
		(a) કોઈ પણ સુરેખ આયોજનના પ્રશ્નને ઓછામ	ાં ઓછો એક ઈષ્ટતમ ઉકેલ હોય જ					
	(b) દરેક સુરેખ આયોજનના પ્રશ્નને અનન્ય ઈપ્ટતમ ઉકેલ હોય (c) જો કોઈ પણ સુરેખ આયોજનના પ્રશ્નને બે બિંદુઓએ ઈપ્ટતમ ઉકેલ મળે તો તેને અનંત બિંદુઓએ							
		ઉકેલ મળે.						
			સુરેખ આયોજનના પ્રશ્નને ઈષ્ટતમ ઉકેલ ન જ મળે					
	0 શરતોને અધીન $z=6x+10y$ ની ન્યૂનતમ કિંમ α	ત શોધો.						
		ઉપરના સુરેખ આયોજનના પ્રશ્નમાં કઈ મર્યાદા !	-					
		(a) $x \ge 6$, $y \ge 2$	(b) $2x + y \ge 10, x \ge 0, y \ge 0$					
		(c) $x \ge 6$	(d) $x \ge 6, y \ge 0$					
	(7)	સુરેખ આયોજનના પ્રશ્નનો શક્ય ઉકેલ						
	(a) બધી જ મર્યાદાઓનું સમાધાન કરે જ. (b) અમુક જ મર્યાદાઓનું સમાધાન કરે.							
		(c) હંમેશાં શક્ય ઉકેલના પ્રદેશનું શિરોબિંદુ હોય	. °x.					
		(d) હંમેશાં હેતુલક્ષી વિધેયનું ઈષ્ટતમપણાનું મૂલ્ય						

વિભાગ B: (2 ગુણ)

- (8) $3x + 6y \le 6$, $4x + 8y \ge 16$ અને $x \ge 0$, $y \ge 0$ શરતોને અધીન z = x + 4y ની મહત્તમ કિંમત... □ (a) 4
- (b) 8
- (c) શક્ય ઉકેલનો પ્રદેશ અસીમિત છે.
- (d) શક્ય ઉકેલનાં પ્રદેશનું અસ્તિત્વ નથી.
- (9) સીમિત શક્ય ઉકેલના પ્રદેશના શિરોબિંદુઓ A(3, 3), B(20, 3), C(20, 10), D(18, 12) અને E(12, 12) છે. હેતુલક્ષી વિધેય z = 2x + 3yની મહત્તમ કિંમત...
 - (a) 72
- (b) 80
- (c) 82
- (d) 70
- (10) સીમિત શક્ય ઉકેલના પ્રદેશના શિરોબિંદુઓ A(3, 3), B(20, 3), C(20, 10), D(18, 12) અને E(12, 12) છે. હેતુલક્ષી વિધેય z = 2x + 3yની ન્યૂનતમ કિંમત...
 - (a) 49
- (b) 15
- (c) 10
- (d) 05

વિભાગ C (3 ગુણ)

- (11) $-x + y \le 1$, $2x + y \le 2$ અને $x \ge 0$, $y \ge 0$ શસ્તોને અધીન z = 2x + 6y ની મહત્તમ કિંમત છે.
 - (a) $\frac{4}{3}$
- (b) $\frac{1}{3}$
- (c) $\frac{26}{3}$ (d) શક્ય ઉકેલના પ્રદેશનું અસ્તિત્વ નથી.
- (12) $0 \le x \le 4$, $1 \le y \le 6$, $x + y \le 5$ શરતોને અધીન z = -3x + 2y ની ન્યૂનતમ કિંમત છે.
 - (a) -10
- (b) 0
- (c) 2
- (d) 10

વિભાગ D: (4 ગુણ)

- (13) નીચે દર્શાવેલ આલેખ શક્ય ઉકેલનો પ્રદેશ દર્શાવે છે. હેતુલક્ષી વિધેય z=5x+4y ની ન્યૂનતમ કિંમત છે.
 - (a) 150
- (b) 145
- (c) 160
- (d) 250

આકૃતિ 8.12

- (14) જો સીમિત શક્ય ઉકેલના પ્રદેશના શિરોબિંદુઓના યામ (0, 4), (6, 0), (12, 0), (12, 16) અને (0, 10) હોય તો હેતુલક્ષી વિધેય z=8x+12y માટે...
 - (i) z ની ન્યૂનતમ કિંમત કયા શિરોબિંદુએ મળે છે ?
 - (ii) z ની મહત્તમ કિંમત કયા શિરોબિંદુએ મળે છે ?
 - (iii) z ની મહત્તમ કિંમત છે.
 - (iv) z ની ન્યૂનતમ કિંમત છે.
 - (a) (i) (6, 0) (ii) (12, 0) (iii) 288 (iv) 48
 - (b) (i) (0, 4) (ii) (12, 16) (iii) 288 (iv) 48
 - (c) (i) (0, 4) (ii) (12, 16) (iii) 288 (iv) 96
 - (c) (i) (6, 0) (ii) (12, 0) (iii) 288 (iv) 96

સારાંશ

આ પ્રકરણમાં આપણે નીચે મુજબના મુદ્દાઓનો અભ્યાસ કર્યો :

- 1. સુરેખ આયોજનના પ્રશ્નનું ગાણિતીય સ્વરૂપ
- 2. નિર્જાયક ચલ રાશિઓ, હેતુલક્ષી વિધેય, મર્યાદાઓ (પ્રતિબંધો)ની સમજ
- 3. સુરેખ આયોજનના પ્રશ્નના ઉકેલ માટેની આલેખની રીત
- 4. શક્ય ઉકેલ, અશક્ય ઉકેલ, ઈપ્ટતમ ઉકેલ, શક્ય ઉકેલનો પ્રદેશ, અશક્ય ઉકેલનો પ્રદેશ વગેરેની સમજ

Fields of Indian mathematics

Some of the areas of mathematics studied in ancient and medieval India include the following:

Arithmetic: Decimal system, Negative numbers (see Brahmagupta), Zero (see Hindu numeral system), Binary numeral system, the modern positional notation numeral system, Floating point numbers (see Kerala school of astronomy and mathematics), Number theory, Infinity (see Yajur Veda), Transfinite numbers

Geometry: Square roots (see Bakhshali approximation), Cube roots (see Mahavira), Pythagorean triples (see Sulba Sutras; Baudhayana and Apastamba) statement of the Pythagorean theorem without proof), Transformation (see Panini), Pascal's triangle (see Pingala)

Algebra: Quadratic equations (see Sulba Sutras, Aryabhata, and Brahmagupta), Cubic equations and Quartic equations (biquadratic equations) (see Mahavira and Bhaskara II)

Mathematical logic: Formal grammars, formal language theory, the Panini-Backus form (see Panini), Recursion (see Panini)

General mathematics: Fibonacci numbers (see Pingala), Earliest forms of Morse code (see Pingala), infinite series, Logarithms, indices (see Jain mathematics), Algorithms, Algorism (see Aryabhata and Brahmagupta)

Trigonometry: Trigonometric functions (see Surya Siddhanta and Aryabhata), Trigonometric series (see Madhava and Kerala school)