

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =85V, I_D =80A $R_{DS(ON)}$ =7.5m Ω , typical @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST08N075-TC	VST08N075	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	85	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	80	A A A W	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	60		
Pulsed Drain Current	I _{DM}	320		
Maximum Power Dissipation	P _D	100		
Derating factor		0.67	W/°C	
Single pulse avalanche energy (Note 4)	E _{AS}	352	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case	$R_{ heta JC}$	1.5	°C/W
-------------------------------------	----------------	-----	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	85		-	V
Zero Gate Voltage Drain Current	Voltage Drain Current I _{DSS} V _{DS} =85V,V _{GS} =0V		-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0	3.0	4.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	7.5	8.0	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =40A		50	-	S
Dynamic Characteristics (Note3)			•	•		
Input Capacitance	C _{lss}	V _{DS} =40V,V _{GS} =0V,	-	2059	-	pF
Output Capacitance	C _{oss}		-	393	-	pF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	25.4	-	pF
Switching Characteristics (Note 3)			•	•		
Turn-on Delay Time	t _{d(on)}	V_{DD} =40V, I_{D} =40A V_{GS} =10V, R_{G} =1.6 Ω	-	12	-	nS
Turn-on Rise Time	t _r		-	9	-	nS
Turn-Off Delay Time	t _{d(off)}		-	29	-	nS
Turn-Off Fall Time	t _f		-	7	-	nS
Total Gate Charge	Qg	V _{DS} =40V,I _D =40A, V _{GS} =10V	-	41.4	-	nC
Gate-Source Charge	Q _{gs}		-	14.9	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	12.5	-	nC
Drain-Source Diode Characteristics			•	•		
Diode Forward Voltage (Note 2)	V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Diode Forward Current	ard Current I _S		-	-	80	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = 40A$	-	55	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	98	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 3. Guaranteed by design, not subject to production
- 4. EAS condition : Tj=25 $^{\circ}\text{C}$,V $_{DD}$ =50 V ,V $_{G}$ =10 V ,L=0.25 mH ,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 5 Source- Drain Diode Forward

Figure 6 Capacitance vs Vds

200

10 0 50 100 150

80 70

60

50 40

30

20

Ip- Drain Current (A)

Figure 8 Safe Operation Area

T_J-Junction Temperature (°C)

Figure 9 Current De-rating

Figure 10 Rdson-Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance