Finite-order approximations of scattering diagrams

Greg Muller

University of Michigan

May 28, 2015

Motivation

Scattering diagrams are piece-wise linear geometric objects which can be used to visualize the exchange graph of a cluster algebra and construct a canonical basis (in many cases).

Yet they may be defined without ever referring to cluster algebras!

At heart, they are a geometric visualization of commutation relations inside a group $\widehat{\mathbb{E}}(B);$ equivalently, a commutative diagram involving ring automorphisms called elementary transformations.

The initial ingredient is a skew-symmetric $r \times r$ integral matrix B.

$$\widehat{\mathcal{F}}(\mathsf{B}) := \mathbb{Z}[x_1^{\pm 1}, x_2^{\pm 1}, ..., x_r^{\pm 1}][[y_1, y_2, ..., y_r]]$$

Some notation! Let $m \in \mathbb{Z}^r$ and $n \in \mathbb{N}^r$.

$$x^m := x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r}, \quad \gcd(n) := \gcd(n_1, n_2, ..., n_r)$$

Def: Formal elementary transformations

For non-zero $n \in \mathbb{N}^r$, the formal elementary transformation $E_{n,B}$ is the automorphism of $\widehat{\mathcal{F}}(B)$ given by

$$E_{n,B}(x^m) = (1 + x^{Bn}y^n)^{\frac{n \cdot m}{\gcd(n)}}x^m, \quad E_{n,B}(y^{n'}) = y^{n'}$$

While $\frac{n \cdot m}{\gcd(n)}$ must be an integer, it may be negative (that's ok!).

Throughout, $J := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is the simplest non-trivial B.

Examples!

Let
$$B = J$$
.

$$E_{(1,0)}(x_1) = (1 + x_2 y_1) x_1, \quad E_{(1,0)}(x_2) = x_2$$

$$E_{(1,0)}(x_1^{-1}) = x_1 (1 - x_2 y_1 + x_2^2 y_1^2 - x_2^3 y_1^3 + \cdots)$$

$$E_{(0,1)}E_{(1,0)}(x_2) = (1 + (1 + x_1^{-1} y_2) x_2 y_1) x_2$$

$$E_{(1,0)}E_{(0,1)}(x_2) = (1 + x_2 y_1) x_2$$

Exercise

For any B, let $n, n' \in \mathbb{N}^r$ be such that $n \cdot Bn' = 1$. Prove that

$$E_n E_{n'} = E_{n'} E_{n+n'} E_n$$

as automorphisms of $\widehat{\mathcal{F}}$.

This fundamental relation implies others. Let B, n, n' as above.

$$E_n^2 E_{n'} = E_n(E_{n'} E_{n+n'} E_n)$$

$$= (E_{n'} E_{n+n'} E_n) E_{n+n'} E_n$$

$$= E_{n'} E_{n+n'}^2 E_{2n+n'} E_n^2$$

Exercise

Let B, n, n' as above. Prove that

$$E_n^3 E_{n'} = E_{n'} E_{n+n'}^3 E_{3n+2n'} E_{2n+n'}^3 E_{3n+n'} E_n^3$$

by repeatedly using the previous exercise.

We also want to have infinite limits of automorphisms. Since $\widehat{\mathcal{F}}$ is a topological ring, $Aut(\widehat{\mathcal{F}})$ has a topology of pointwise convergence.

$$\widehat{\mathbb{E}}(\mathsf{B}) := \overline{\mathsf{group} \ \mathsf{generated} \ \mathsf{by} \ \{ \mathit{E}_{\mathit{n},\mathsf{B}} \mid \mathit{n} \in \mathbb{N}^r \}} \subset \mathit{Aut}(\widehat{\mathcal{F}}(\mathsf{B}))$$

Elements of $\widehat{\mathbb{E}}(B)$ are infinite products of FETs and their inverses, which have finitely many copies of any given element.

Exercise

Let B and n be arbitrary. Prove that

$$E_nE_{2n}E_{4n}E_{8n}\cdots E_{2^kn}\cdots$$

converges to the automorphism of $\widehat{\mathcal{F}}$ which sends

$$x^m \mapsto (1 - x^{\mathsf{B}n} y^n)^{-\frac{n \cdot m}{\gcd(n)}} x^m$$
 and $y^{n'} \mapsto y^{n'}$

It will often be useful to work with $\widehat{\mathbb{E}}(B)$ to finite order. Let

$$\mathfrak{m} := \langle y_1, y_2, ..., y_r \rangle \subset \widehat{\mathcal{F}}$$

Each $E_{n,B}$ descends to an automorphism of $\widehat{\mathcal{F}}/\mathfrak{m}^d$ for all d. Then

$$\widehat{\mathbb{E}}(\mathsf{B}) = \varprojlim \left(\mathsf{group} \ \mathsf{gen.} \ \mathsf{by} \ \{ E_{n,\mathsf{B}} \mid n \in \mathbb{N}^r \} \subset \mathit{Aut}(\widehat{\mathcal{F}}(\mathsf{B})/\mathfrak{m}^d) \right)$$

That is, we only need finite products when working to finite order.

Exercise

Let B, n, n' be arbitrary. Prove that

$$E_n E_{n'} = E_{n'} E_n$$
 in $Aut(\widehat{\mathcal{F}}/\mathfrak{m}^d)$

if $y^{n+n'} \in \mathfrak{m}^d$, and that

$$E_n E_{n'} = E_{n'} E_{n+n'}^{\lambda} E_n \text{ in } Aut(\widehat{\mathcal{F}}/\mathfrak{m}^d), \ \lambda = \frac{n \cdot Bn' \gcd(n+n')}{\gcd(n) \gcd(n')}$$

if
$$y^{2n+n'}, y^{n+2n'} \in \mathfrak{m}^d$$
.

Goal

Use affine geometric objects to visualize relations in $\widehat{\mathbb{E}}(B)$.

Commutative diagrams will become scattering diagrams!

Elementary walls

Given B, an (affine elementary) wall is a pair (n, W) of

- ullet a non-zero $n\in\mathbb{N}^r$, and
- an affine polyhedral cone $W \subset \mathbb{R}^r$ which spans an affine hyperplane normal to n.

If r = 2, W must be a line or a ray in \mathbb{R}^2 .

Scattering diagrams

Given B, an (affine) scattering diagram is a multiset of walls which, for each n, has only finitely many walls with that n.

Let B = J. Then an example scattering diagram is below.

$$n = (1,0)$$
 $n = (0,1)$
 $n = (1,1)$

Note that n is determined by W and gcd(n). Lazyness: For unlabeled walls, assume n has gcd(n) = 1.

Geometric/algebraic correspondence: idea

A wall is a 'prism' which acts by E_n as we pass through it from side n points in, and by E_n^{-1} the other way.

Following this rule, we associate a path-ordered product to any path p in $\mathfrak D$ which avoids collisions of non-parallel walls.

Example

Path-ordered product: $E_{(0,1)}^{-1}E_{(1,0)}E_{(1,1)}E_{(1,1)}^{-1}E_{(1,1)}E_{(0,1)}$

Consistency

A scattering diagram is **consistent** (resp. **consistent mod** \mathfrak{m}^d) if every pair of paths with the same end points have the same path-ordered product in $Aut(\widehat{\mathcal{F}})$ (resp. $Aut(\widehat{\mathcal{F}}/\mathfrak{m}^d)$).

Sufficient: the POP around every small loop is the identity.

Example

Path-ordered prod. of $p_1=E_{(0,1)}E_{(1,0)}$ Path-ordered prod. of $p_2=E_{(1,0)}E_{(1,1)}E_{(0,1)}$ Consistent by fund. relation \checkmark

Exercise

Prove that a scattering diagram consisting of walls supported on hyperplanes is consistent mod \mathfrak{m}^2 .

Example

Example

$$E_{(0,1)}^2 E_{(1,0)}$$

Example

$$E_{(0,1)}^2 E_{(1,0)}$$

$$= E_{(0,1)} E_{(1,0)} E_{(1,1)} E_{(0,1)}$$

Example

$$E_{(0,1)}^{2}E_{(1,0)}$$

$$= E_{(0,1)}E_{(1,0)}E_{(1,1)}E_{(0,1)}$$

$$= E_{(1,0)}E_{(1,1)}E_{(0,1)}E_{(1,1)}E_{(0,1)}$$

Example

The following scattering diagram with B = J is consistent.

$$E_{(0,1)}^{2}E_{(1,0)}$$

$$= E_{(0,1)}E_{(1,0)}E_{(1,1)}E_{(0,1)}$$

$$= E_{(1,0)}E_{(1,1)}E_{(0,1)}E_{(1,1)}E_{(0,1)}$$

$$= E_{(1,0)}E_{(1,1)}^{2}E_{(1,2)}E_{(0,1)}^{2}$$

A wall (n, W) is outgoing if $\{p + \mathbb{R}_{\geq 0} B n\} \not\subset W$ for all p.

Consistent completion theorem [GSP, KS, GHKK]

Given a scattering diagram consistent mod \mathfrak{m}^d , there is an essentially unique way to add outgoing walls to make it consistent.

The proof is constructive, and adds new walls order-by-order.

- Given a scattering diagram consistent mod \mathfrak{m}^d , compute the path-ordered product around tiny loops mod \mathfrak{m}^{d+1} .
- Add outgoing walls to make these products trivial.
 (It should not be obvious how to do this yet!)
- Repeat, and take the limit as $d \to \infty$.

For consistency mod $\mathfrak{m}^{d'}$, stop after (d'-d)-many steps.

Sage Goal 1

Implement the consistent completion algorithm to finite-order.

Sage Goal 1

Implement the consistent completion algorithm to finite-order.

Goal 1 Status: Crudely implemented for B = J.

Class: ScatteringDiagram(walls)

A finite-order scattering diagram for J, where walls is a list of

• SDWall(n,point=p): a wall normal to n through p.

Some associated methods:

- .improve() adds outgoing walls to increase order of consistency by one.
- .draw() plots the walls and collisions.

How do we actually find the outgoing walls for .improve()?

Example

Let B = J, as usual. Start with 4 hyperplane walls.

Example

Let B = J, as usual. Start with 4 hyperplane walls.

Example

Let B = J, as usual. Start with 4 hyperplane walls.

Example

Let B = J, as usual. Start with 4 hyperplane walls.

Consistent mod m⁵

Example

Let B = J, as usual. Start with 4 hyperplane walls.

Consistent mod m⁶

Example

Let B = J, as usual. Start with 4 hyperplane walls.

In fact, consistent!

Let B = J, as usual. Start with 4 hyperplane walls.

Consistent mod m²

Let B = J, as usual. Start with 4 hyperplane walls.

Consistent mod m³

Let B = J, as usual. Start with 4 hyperplane walls.

Consistent mod m⁴

Let B = J, as usual. Start with 4 hyperplane walls.

We have gone as far as the fund. relation will take us...or have we?

What walls do we need to add to an arbitrary collision?

Key trick: all consistent collisions between pairs of walls reduces to understanding certain consistent scattering diagrams for B=J.

$$\mathfrak{D}(b,c):=\mathsf{cons.}$$
 comp. of $\{b\cdot(e_1,e_1^\perp),c\cdot(e_2,e_2^\perp)\}$ for $\mathsf{B}=\mathsf{J}$

These diagrams help us understand generic collisions as follows.

Local models for generic collisions (rough idea)

A collision between two walls (n_1, W_1) and (n_2, W_2) in a consistent scattering diagram is locally equivalent to an affine transformation of $\mathfrak{D}\left(\frac{n_1 \cdot B n_2}{\gcd(n_1)}, \frac{n_1 \cdot B n_2}{\gcd(n_2)}\right)$, though the wall multiplicities can change.

Simple example

Consider the consistent scattering diagram below.

Simple example

Consider the consistent scattering diagram below.

Simple example

Consider the consistent scattering diagram below.

In general, collisions which look locally like $\mathfrak{D}(1,1)$ are an instance of the fund. relation.

Great! So, how can we compute the $\mathfrak{D}(b,c)$?

We can find $\mathfrak{D}(b,c)$ by taking the input walls, perturbing them, computing the cons. comp., and then linearizing the walls.

Let's return to the problem from before!

Example (resumed)

Dang it! Back where we started! Problem:

We need $\mathfrak{D}(2,2)$ to compute $\mathfrak{D}(2,2)$

Dang it! Back where we started! Solution:

We need $\mathfrak{D}(2,2) \mod \mathfrak{m}^d$ to compute $\mathfrak{D}(2,2) \mod \mathfrak{m}^{2d}$

A giant recursive computation

 $\mathfrak{D}(b,c)$ may be computed to any finite order, using only finitely many scattering diagrams of the form $\mathfrak{D}(b',c')$ to lower order.

Hence, approximating any $\mathfrak{D}(b,c)$ to any finite order is suitable to computer implementation!

Since these are the building blocks of all consistent scattering diagrams, this is a great place to start.

Sage Goal 1.A

Implement a table of finite-order approximations of scattering diagrams of the form $\mathfrak{D}(b,c)$, which dynamically increases each diagram's order as needed by internal and external computations.

Goal 1.A status: Crudely implemented.

Class: SDTable()

Initializes a dictionary of model scattering diagrams.

- .diagrams: A dictionary with key:value pairs
 - (b,c): the current finite-order approx. of $\mathfrak{D}(b,c)$
- .multiplicity((b,c),n): Returns the multiplicity of the wall with normal n in $\mathfrak{D}(b,c)$.
- .mtable((b,c),d): Prints a table of multiplicities in $\mathfrak{D}(b,c)$ with order $\leq d$.

Both methods create and improve diagrams as needed to achieve the required order of consistency.

Sage Goal 1.B

Implement linear scattering diagrams with r=3 with corresponding .improve().

Reasons linear scattering diagrams with r = 3 shouldn't be so bad:

- Collisions between walls are a line or ray.
- Maybe visualized using stereographic projection.
- Are completely determined by a certain 2-dimensional 'slice'.

Intuitively, linear r = 3 is still 'essentially 2 dimensional'.

Sage Goal 1.B

Implement linear scattering diagrams with r=3 with corresponding .improve().

Reasons linear scattering diagrams with r = 3 shouldn't be so bad:

- Collisions between walls are a line or ray.
- Maybe visualized using stereographic projection.
- Are completely determined by a certain 2-dimensional 'slice'.

Intuitively, linear r = 3 is still 'essentially 2 dimensional'.

Goal 1.B Status: Not implemented (some stereo. proj. code).

Example

Consider a scattering diagram in \mathbb{R}^3 with a wall for each coordinate plane, visualized with a stereographic projection.

$$\mathsf{B} = \left[\begin{array}{ccc} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{array} \right]$$

Consistent mod m²

Example

Consider a scattering diagram in \mathbb{R}^3 with a wall for each coordinate plane, visualized with a stereographic projection.

$$\mathsf{B} = \left[\begin{array}{ccc} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{array} \right]$$

Consistent mod m³

Example

Consider a scattering diagram in \mathbb{R}^3 with a wall for each coordinate plane, visualized with a stereographic projection.

$$B = \left[\begin{array}{ccc} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{array} \right]$$

Consistent ✓

What about cluster algebras? Given B, let

$$\mathfrak{D}(\mathsf{B}) := \mathsf{cons.} \ \mathsf{comp.} \ \{(e_i, e_i^\perp) \mid 1 \leq i \leq r\} \ \mathsf{for} \ \mathsf{B}$$

$$\mathcal{A}(\mathsf{B}) := \mathsf{cluster} \; \mathsf{algebra} \; \mathsf{of} \; \mathsf{B}$$

Chamber: connected component in the complement of the walls. Reachable: connected to positive orthant by a path which crosses finitely-many walls.

Cluster combinatorics from $\mathfrak{D}(B)$ [GHKK]

There is a bijection

clusters of $\mathcal{A}(\mathsf{B}) \stackrel{\sim}{\longrightarrow} \mathsf{reachable}$ chambers of $\mathfrak{D}(\mathsf{B})$

which sends a cluster to its cone of g-vectors.

Equivalently, the g-fan is the union of the reachable chambers.

For each $m \in \mathbb{Z}^r$, there is a formal series Θ_m called a theta function whose coefficients count certain broken lines in $\mathfrak{D}(B)$.

$$\Theta_{(0,-1)} = x^{(-1,0)} + x^{(-1,-1)} + x^{(0,-1)}$$
$$= \frac{x_2 + 1 + x_1}{x_1 x_2}$$

Cluster algebra from $\mathfrak{D}(B)$ [GHKK]

Every cluster monomial is the theta function of its g-vector, and (in many cases) the theta functions are a basis for $\mathcal{A}(B)$.

Convergence of theta functions is still an open question.

Sage Goal 2

Use finite-order approximations of $\mathfrak{D}(\mathsf{B})$ to study cluster algebras.

I have two specific research questions in mind.

Sage Goal 2.A

Is there a B such that $\mathfrak{D}(B)$ has more than two reachable components of open chambers?

Sage Goal 2.B

When B corresponds to the once-punctured torus, do the non-reachable theta functions coincide with the notched arc elements of Fomin, Shapiro, and Thurston?

Sage Goal 2

Use finite-order approximations of $\mathfrak{D}(\mathsf{B})$ to study cluster algebras.

I have two specific research questions in mind.

Sage Goal 2.A

Is there a B such that $\mathfrak{D}(B)$ has more than two reachable components of open chambers?

Sage Goal 2.B

When B corresponds to the once-punctured torus, do the non-reachable theta functions coincide with the notched arc elements of Fomin, Shapiro, and Thurston?

Goal 2 status: 'tis a consummation devoutly to be wished.

