系外惑星形成の最前線

Shigeru Ida #田茂

(ELSI 地球生命研究所, Tokyo Tech)

OUTLINE – review current status of planet formation studies

- Observations of exoplanets
 - diversity & ubiquity
- Many ideas: proposed to account for the observations
 - interaction of pebbles/planets with a protoplanetary gas disk
- Current status of planet formation model
 - many ideas, many clues: diverged, not converged yet

系外惑星の観測

- 系外惑星系の多様性
- Super-Earths/Earths の遍在性
- TESS (2018~) までは一段落?
- Microlensing は発展?

Planet formation theory

Classical planet formation model

e.g., Hayashi et al. (1985)

Newly proposed physical processes

To explain diversity,

turbulent disk

- → inhibit planetesimal formation
- →building blocks: pebbles?

close-in exoplanets

- orbital migration due to disk-planet int.
- → 多様性もいいが、 太陽系も統一的に 説明する必要

Key: Interactions with disk gas

- pebbles (~10cm): aerodynamic gas drag
- Earth-mass planets: grav. interaction (type I migration)
- Jupiter-mass planets: grav. interaction (type II migration)

Planet formation theory: Pebble accretion

Pebbles

- Building blocks? Not km-planetesimals? -

■ "radial drift barrier" serious difficulty for µm-grains → km-planetesimals too rapid migration of pebbles by gas drag

(←→ classical planetesimal accretion)

- ✓ formation of 1000km-sized bodies (seeds) by jams during pebble fast migration
 Johansen et al (2007)
- ✓ the seeds catch migrating pebbles

Lambrechts & Johansen (2012)

Gas rotation velocity: slower by $\eta \sim 10^{-3}$ - 10^{-2}

- → Bodies suffer "head wind" from gas
- ⇒ inward drift (migration) $v_r \sim \text{St/}(1+\text{St}^2) \times \eta v_K$

Pebbles

- Building blocks? Not km-planetesimals? -

■ "radial drift barrier" serious difficulty for µm-grains → km-planetesimals too rapid migration of pebbles by gas drag

New accretion model: Pebble accretion?

(←→ classical planetesimal accretion)

- ✓ formation of 1000km-sized bodies (seeds) by jams during pebble fast migration
 Johansen et al (2007)
- ✓ the seeds catch migrating pebbles

Lambrechts & Johansen (2012)

Planetesimal vs. Pebble Accretion

easy to make diversity of planetary systems?
 depends sensitively on disk parameters

Ida, Guillot, Morbidelli (2016), Chambers (2016)

ガス惑星の形成も違う

Dependence of critical core mass on solid accretion rate (e.g., Ikoma+ 2000)

$$M_{c, \text{crit}} \simeq 10 \left(\frac{\dot{M}_c}{10^{-6} M_{\oplus} \text{ yr}^{-1}} \right)^{0.2-0.3} \left(\frac{\kappa}{1 \text{ cm}^2 \text{ g}^{-1}} \right)^{0.2-0.3} M_{\oplus}$$

- ✓ planetesimal accretion (5AU) (e.g., Ida & Lin 2004) $\frac{\mathrm{d}M_{\mathrm{c}}/\mathrm{d}t \sim 10^{-7} \, (M_{\mathrm{c}}/5\mathrm{M}_{\oplus})^{-1/3} \, \mathrm{M}_{\oplus}/\mathrm{yr} }{\to M_{\mathrm{c,crit}} \sim 5 \, \mathrm{M}_{\oplus}} \leftarrow \to \mathrm{planetesimal} \; \mathrm{isolation} \; \mathrm{mass} \; \; \mathrm{Kokubo} \; \& \; \mathrm{Ida} \; 1998$
- ✓ pebble accretion (e.g., Ida, Guillot & Morbidelli 2016) $\frac{dM_c/dt}{dt} \sim 10^{-4} \left(\frac{M_c}{5} M_{\oplus}\right)^{-1/3} M_{\oplus}/yr$ → $M_{c,crit} \sim 25 M_{\oplus} \leftarrow \rightarrow$ pebble isolation mass Lambrechts + 2014 [effect of pollution?]
- → Core mass may be larger for pebble accretion
- ho Total gas accretion timescale $\sim 10^7 \, (M_{\rm c,crit}/5 {
 m M}_{\oplus})^{-3.5} \, {
 m yr}$ Ikoma & Genda 200)
 - → 300 times shorter for pebble accretion

Planetesimal vs. Pebble Accretion

- R << 100km embryos: slow & inefficient:
- R > 100km embryos: fast & moderately efficient gravitational focusing & gas drag: capture all pebbles within R_{Bondi} or R_{Hill}

Difficulty of Streaming Instability

pebble accretion の問題点:

- >100kmの種の形成
- streaming 不安定?

streaming不安定条件 実現は一般に困難 Ida & Guillot, in prep

solid/gas ratio

→ 現状では pebble & planetesimal のどちらが効くのか 0.01 不明

Stokes number

Carrera, Johansen & Davies (2015))

Planet formation theory: Planet orbital migration

type I migration 1-10M_⊕ planets

- $M_{\text{gas}} \sim 100 M_{\text{solid}}$ → planet orbital change by grav. interaction with disk gas
- **■** residual of 4 similar mag. torques
- **■** isothermal disk

linear calc: Tanaka, Takeuchi, Ward (2002)

hyrdo sims: many

inward, very fast

→ 10^{5} y for $1M_{earth}$ @1AU $10M_{earth}$ @5AU [←→ disk lieftime > 10^{6} yr]

serious problem;

but account for close-in super-Earths?

(a double-edged sword)

type I migration 1-10M_⊕ planets

- Inon-isothermal disk linear calc: Paardekooper+(2010, 2011) balance of 4 torques changes: very fast but either inward or outward migration direction: sensitively depends on disk params.
- perturbations from density fluctuation of disk turbulence → random walk Ida+(2008), Okuzumi & Ormel (2012)
- planetesimal-driven migration Ida+(2000), Kirsh+ (2009)

Not well understood; need detailed hydro, N-body

type II migration >100M_⊕ planets

gap opening ← jupiter-mass planet

- > inward
- migrate with disk accretion onto a host star (relatively slow)

Lin & Papaloizou (1986)

- → origin of hot jupiters? Lin+(1996)
- → terminate growth of gas giants
- recently questioned growth is not terminated?

hydro: D'Angelo et al. (2002),

Lubow & D'Angelo (2006)

gas mass flux $2\pi r v_r \Sigma$: conserved across gap?

hydro: Duffell+ (2014)

Dynamical/thermal evolution of disks

- disk evolution
 - > controls pebble accretion & type I, II migration
 - viscous diffusion + photoevaporation by stellar UV radiation ? (+ disk wind??)
 - Neither viscosity nor young stellar UV flux is certain

viscosity?

Magneto-Rotational Instability

磁気回転流体不安定

- ✓ "dead zone" 静穏領域 exists?
 - MRI turbulence ← ionization degree ← dust growth ← turbulence

10AU

dead zone

✓ saturation level ← seed magnetic field ← star formation

No self-consistent global model exists

Migration trap?

inward migration ← gas: slower rotation (headwind)

■ MRI dead zone inner edge -- gas: faster rotation (tail wind)

0.1AU

→ migration trap

- disk inner edge
 - > migration trap
 - stellar magnetic field vs. disk accretion onto star

disk inner edge

close-in super-earths?

Ogihara & Ida (2009)

Chatejee & Tan (2014)

dead zone inner edge
reproduce Solar system?
Hansen (2009)
Ebisuzaki & Imaeda (2015)

0.3AU

1AU
3AU
Me V E Ma

10AU

1AU

MRI dead zone

high density

Summary

- Observations of exoplanets
 - diversity of exoplanetary systems
 - ubiquity of super-earths/earths
- Many ideas: proposed to account for the observations
 - > interactions with gas of a protoplanetary disk
 - pebble accretion
 - type I & II migration
 - disk evolution, migration trap
- Current status of planet formation model
 - many ideas, many clues: diverged, not converged
 - Observations will constrain the chaotic status of theory!

Young people: many things to do! many topics to write papers!

Ubiquity of "super-Earths/Earths"

Planet Candidates by transit 食 obs of Kepler space telescope

 $\eta_{\text{superEarth/Earth}} \sim 20 - 50\% (!)$

Gap formation in a pebble disk

- pebbles: marginally coupled to gas
- ➤ migration ← deviation of gas motion from Kepler
 - ✓ uniform gas → inward migration
- $ightharpoonup ext{when } M > M_{ ext{iso}} \qquad M_{ ext{iso}} pprox 20 \left(\frac{a}{5 \, ext{AU}} \right)^{3/4} ext{M}_{ ext{E}}. \text{ Lambrechts + 2014}$
 - ✓ gap opening in gas disk → disk outer edge: super-Kepler
 - → migration of pebbles: halted
 - → gap opening in a *pebble* disk

