

Modeling moderate and extreme urban precipitation at high spatio-temporal resolution

Nicolas MEYER ¹ Thomas OPITZ ² Gwladys TOULEMONDE ¹

Abstract

- ► Fine spatial and temporal scale
- ► Univariate modeling of moderate and intense rainfall with EGPD
- ► Spatio-temporal dependence modeling with weighted least squares estimation
- ▶ Brown-Resnick dependence
- ► Relax separability assumption with advection consideration

Montpellier, South of France

- → Mediterranean episodes, localized rainfall
- → Urban area, flood risks

Chloé SERRE-COMBE ¹

→ Collaboration with hydrologists

Let $\mathcal{S} \subset \mathbb{R}^2$ be our spatial domain and let $\mathcal{T} \subset \mathbb{R}_+$ be our temporal domain with equidistant time points. Let $\Lambda_{\mathcal{S}} \subset \mathbb{R}^2$ and $\Lambda_{\mathcal{T}} \subset \mathbb{R}_+$ be sets of spatial and temporal lags respectively.

Univariate

Rainfall measurement: X_s at a given site $s \in \mathcal{S}$.

Extended GPD [3]

$$F(x) = G\left(H_{\xi}\left(\frac{x}{\sigma}\right)\right)$$
, with $G(y) = y^{\kappa}$, $\kappa > 0$

Data [1]

 $S_{\text{stations}} = \{17 \text{ rain gauge locations}\}$

- ► Period: [2019, 2022]
- ► High temporal resolution: Every minute → 5-minute aggregation
- Small spatial scale: Interdistance $\in [77, 1531]$ meters
- ► Other dataset: Hourly COMEPHORE data with a 1 $\rm km^2$ resolution over Montpellier [2]

where $a_{+} = \max(a, 0), \ \sigma > 0, \ x - u > 0$

Extreme

Dependence

Rainfall field: $X = \{X_{s,t}, (s,t) \in S \times T\}$ a stationary and isotropic process with a Brown-Resnick dependence [4].

Extreme dependence determined by the **spatio-temporal extremogram**:

$$\chi\left(\boldsymbol{h},\tau\right)=\lim_{q\to 1}\chi_{q}\left(\boldsymbol{h},\tau\right)\,,\quad\text{with}\quad\chi_{q}\left(\boldsymbol{h},\tau\right)=\mathbb{P}(X_{\boldsymbol{s},\,t}^{*}>q\mid X_{\boldsymbol{s}+\boldsymbol{h},t+\tau}^{*}>q),\,\boldsymbol{h}\in\Lambda_{\mathcal{S}},\tau\in\Lambda_{\mathcal{T}}$$
 with $q\in[0,1[$ and $X_{\boldsymbol{s},t}^{*}$ the standardized univariate margins.

 \blacktriangleright Dependence determined by the spatio-temporal variogram of W:

$$\gamma(\boldsymbol{h}, \tau) = \frac{1}{2} Var\left(W_{\boldsymbol{s},t} - W_{\boldsymbol{s}+\boldsymbol{h},t+\tau}\right), \, \boldsymbol{h} \in \Lambda_{\mathcal{S}}, \tau \in \Lambda_{\mathcal{T}}$$

Link extremogram-variogram and separabilty [5]

Assumption of additive separability: $\frac{1}{2}\gamma(\boldsymbol{h},\tau) = \beta_1 \|\boldsymbol{h}\|^{\alpha_1} + \beta_2 \tau^{\alpha_2}, \ 0 < \alpha_1, \alpha_2 \le 2, \ \beta_1, \beta_2 > 0$ With ϕ the std normal cdf,

Spatial dependence

Extremogram estimator: For a fixed $t \in \mathcal{T}$ and q a high quantile,

where C_h are equifrequent distance classes and $N_h = \{(s_i, s_j) \in S^2 \mid ||s_i - s_j|| \in C_h\}$.

 $\widehat{\chi}_{q}^{(t)}(\boldsymbol{h},0) = \frac{\frac{1}{|N_{\boldsymbol{h}}|} \sum_{i,j} |(\boldsymbol{s}_{i},\boldsymbol{s}_{j}) \in N_{\boldsymbol{h}}} \mathbb{1}_{\{X_{\boldsymbol{s}_{i},t}^{*} > q, X_{\boldsymbol{s}_{j},t}^{*} > q\}}}{\frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \mathbb{1}_{\{X_{\boldsymbol{s}_{i},t}^{*} > q\}}}$

r-Pareto

For all $s \in \mathcal{S}$ and $t \in \mathcal{T}$,

$$u^{-1}X_{s,t}^{\star}|X_{s_0,t_0}^{\star}>u\underset{u\to\infty}{\overset{d}{\to}}Z_{s,t}$$
,

and $Z_{s,t}=Re^{W_{s,t}-W_{s_0,t_0}-\gamma(s-s_0,t-t_0)}$, with (s_0, t_0) a given space-time location, $R \sim Pareto(1)$ and u a threshold.

Max-stable

For all $s \in \mathcal{S}$ and $t \in \mathcal{T}$,

$$X_{s,t} = \bigvee_{j=1}^{\infty} \xi_j e^{W_{s,t}^{(j)} - \gamma(s,t)}$$

- j=1 $(\xi_j)_{j\geq 1}$: Poisson process with intensity $\xi^{-2}d\xi$
- $W^{(j)}$: indep. rep. of a Gaussian random field $oldsymbol{W}$
- $ightharpoonup \gamma$: spatio-temporal variogram of W

Validation of the separable model

For 100 realisations of a spatio-temporal max-stable Brown-Resnick process

		True	Mean	RMSE	MAE
Spatial Temporal	$\widehat{\beta}_1$	0.4	0.445	0.11	0.084
	$\widehat{\alpha}_1$	1.5	1.465	0.159	0.129
Temporal	$\widehat{\beta}_2$	0.2	0.263	0.092	0.075
	$\widehat{\alpha}_2$	1	0.888	0.137	0.118

A realisation of a max-stable Brown-Resnick process

Beyond separability: advection

Advection vector V

- ► What? Horizontal transport of air masses
- ► Why? To relax the separability assumption
- ► In the model? Lagrangian/Euleurian: $\gamma_L(\boldsymbol{h},\tau) = \gamma(\boldsymbol{h} - \tau \boldsymbol{V},\tau)$ Model: $\frac{1}{2}\gamma_L(\boldsymbol{h},\tau) = \beta_1 \|\boldsymbol{h} - \tau \boldsymbol{V}\|^{\alpha_1} + \beta_2 \tau^{\alpha_2}$

Estimation? Parameter optimization of $\boldsymbol{\Theta} = (\beta_1, \beta_2, \alpha_1, \alpha_2, \boldsymbol{V})$

Excesses: for all spatial pairs (s_i, s_j) ,

$$k_{ij} = \sum_{t=1}^{n} \mathbb{1}_{\{X_{\mathbf{s}_i, t} > q, X_{\mathbf{s}_j, t} > q\}} \mid n_j \sim \mathcal{B}(n_j, \chi_{ij, \mathbf{\Theta}}) \text{, with } n_j = \sum_{t=1}^{n} \mathbb{1}_{\{X_{\mathbf{s}_j, t} > q\}}$$

Composite log-likelihood:

$$l_C(\mathbf{\Theta}) \propto \sum_{ij} k_{ij} \log \chi_{ij,\mathbf{\Theta}} + (n_j - k_{ij}) \log(1 - \chi_{ij,\mathbf{\Theta}})$$

Future work

- → Combination of the two datasets: downscaling
- → Considering non-constant advection
- → More complex variogram with anisotropic structure
- → Dry events modeling
- → Stochastic generator of precipitation

R package on GitHub: chloesrcb/generain Website: chloesrcb.github.io

Temporal dependence

Extremogram estimator:

For $s \in \mathcal{S}$, a high quantile q and $t_k \in \{t_1, \dots, t_T\}$,

Empirical extremogram with q = 95%

$$\widehat{\chi}_{q}^{(\boldsymbol{s})}(\boldsymbol{0},\tau) = \frac{\frac{1}{T-\tau} \sum_{k=1}^{T-\tau} \mathbb{1}_{\{X_{\boldsymbol{s},t_k}^* > q, X_{\boldsymbol{s},t_k+\tau}^* > q\}}}{\frac{1}{T} \sum_{k=1}^{T} \mathbb{1}_{\{X_{\boldsymbol{s},t_k}^* > q\}}}$$

Spatial variogram estimate $\widehat{\gamma}(\boldsymbol{h},0) = 2\widehat{\beta}_1 \|\boldsymbol{h}\|^{\widehat{\alpha}_1}$

References

- Pascal Finaud-Guyot et al. Rainfall data collected by the HSM urban observatory (OMSEV). 2023.
- Pierre Tabary et al. "A 10-year (1997—2006) reanalysis of Quantitative Precipitation Estimation over France: methodology and first results". In: IAHS-AISH (2012).
- Philippe Naveau et al. "Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection". In: Water Resources Research (2016).
- Bruce M. Brown and Sidney I. Resnick. "Extreme values of independent stochastic processes". In: Journal of Applied Probability (1977).
- Sven Buhl et al. "Semiparametric estimation for isotropic max-stable space-time processes". In: Bernoulli (2019).