ANOVA III. Application to Categorical Predictors

Miaoyan Wang

Department of Statistics UW Madison

Two representations of multiple samples comparison

• Data table may look like:

Factor	Treatment(Trt) 1	Trt 2		Trt k
Observation	<i>y</i> 11	<i>y</i> 21		<i>y</i> _{k1}
	<i>y</i> ₁₂	<i>y</i> ₂₂	• • •	y_{k2}
	:	÷	Ė	÷
	y_{1n_1}	y_{2n_2}		y_{kn_k}
mean	\bar{y}_1 .	\bar{y}_2 .		\bar{y}_k .

• Or more often,

Trt	originally indexed y	re-indexed y'	
1	<i>y</i> 11	y' ₁	
÷	:	÷	
1	y_{1n_1}	y'_{n_1}	
:	<u>:</u>	• • •	
k	y_{k1}	$y'_{n_1++n_{k-1}+1}$	
k	y_{kn_k}	$y'_{n_1++n_{k-1}+n_k}$	

Model Formulation

Consider a linear model with a K-level categorical predictor:

$$Y_n' = \beta_1 \mathbb{1}_{Trt1} + \dots + \beta_k \mathbb{1}_{Trtk} + \varepsilon_n, \quad \text{for } n = 1, \dots, (n_1 + \dots + n_k).$$

Equivalently, let

$$Y_{ij}=\mu_i+\varepsilon_{ij},$$

where

- $j = 1, ..., n_i$ indexes sample unit and i = 1, ..., k indexes treatment levels.
- Y_{ij} is the response variable of the jth unit receiving the ith level of treatment (TrT).
- ullet μ_i is the population mean for the ith treatment level
- ε_{ij} is a random error for the *j*th sample unit and the *i*th treatment level. We assume $\varepsilon_{ij} \sim \text{iid } N(0, \sigma^2)$.
- The model parameters are $\mu_1, \ldots, \mu_k, \sigma^2$ estimated by $\bar{Y}_1, \ldots, \bar{Y}_k$, and MSE, respectively.

Alternative Model Formulation

Let

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$
, with constraints $\sum_{i=1}^k \alpha_i = 0$

where

- $j = 1, ..., n_i$ indexes sample unit and i = 1, ..., k indexes treatment levels.
- μ is the grand population mean $\mu = \frac{1}{k} \sum_{i=1}^{k} \mu_i$.
- $\alpha_i = \mu_i \mu$ is the difference between the *i*th treatment mean and the grand mean (note: $\sum_{i=1}^k \alpha_i = 0$).
- The random errors are assumed to follow

$$\varepsilon_{ij} \sim \text{iid } N(0, \sigma^2).$$

• The model parameters are $\mu, \alpha_1, \ldots, \alpha_k, \sigma^2$ estimated by $\bar{Y}_{...}$, $\bar{Y}_{1.} - \bar{Y}_{...}, \ldots, \bar{Y}_{k.} - \bar{Y}_{...}$, and MSE, respectively.

Test for Overall Trt Effect

• A one-way ANOVA analysis begins with testing

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_k$$
 vs $H_A:$ not all μ_i 's are equal.

Or equivalently, test

$$H_0: \alpha_i = 0$$
 for all i vs $H_A:$ not all α_i 's are zero.

- The approach is to partition the total sum of squares, construct an ANOVA table, and perform an F test.
- Notation regarding the means:
 - $ightharpoonup \overline{Y}_{..}$ is the grand mean,
 - $ightharpoonup ar{Y}_i$ is the *i*th group (Trt) mean.

Partition of Total Sum of Squares

• Partition the total sum of squares (SS):

$$SST = SSR + SSE$$
,

where

► Total SS: SST = $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{..})^2$ on df = N - 1. If balanced design: $\sum_{i=1}^{k} \sum_{i=1}^{n} (Y_{ij} - \bar{Y}_{..})^2$ on df = kn - 1.

- Between-Trt SS: $SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{Y}_{i.} - \bar{Y}_{..})^2 \text{ on df } = k-1.$ If balanced design: $n \sum_{i=1}^{k} (\bar{Y}_{i.} - \bar{Y}_{..})^2 \text{ on df } = k-1.$
- SS for error: $SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i.})^2 \text{ on } df = N - k.$ If balanced design: $\sum_{i=1}^{k} \sum_{j=1}^{n} (Y_{ij} - \bar{Y}_{i.})^2 \text{ on } df = k(n-1).$
- Recall that MSE is an estimate of the error variance σ^2 .

ANOVA Table

SS: Sum of squares

MS: Mean sum of squares

Within-group SS S_{Within} , Between-group SS $S_{Between}$

	SS	df	MS	E(MS)
Between	$S_{Between} = \sum_{i} n_j (y_{j.} - y_{})^2$	K – 1	$S_{Between}/(K-1)$	$\sigma^2 + (K-1)^{-1} \sum_{j=1}^k n_j t_j^2$
Treatment SS (Model)	,			
Within Treatment SS (Error)	$S_{Within} = \sum_{j} \sum_{k=1}^{n_j} (y_{jk} - y_{j.})^2$	n – K	$S_{Within}/(n-K)$	σ^2
Total SS	$S_{Total} = \sum_{j} \sum_{k=1}^{n_j} (y_{jk} - y_{})^2$	n-1	$S_{Total}/(n-1)$	

where $t_j = \mu_j - \mu$ and $\mu = n^{-1} \sum_j n_j \mu_j$. Q: simplify in a balanced design $n_1 = \ldots = n_K$?

• In a general one-way ANOVA, under the H_0 : $\alpha_i = 0$ for all i,

$$F = \frac{MSR}{MSE} \sim F_{k-1,N-k}.$$

Example

```
library(ggplot2)
y <- c(14, 20, 10, 14, 17, 13, 8, 10, 16, 8, 16, 14, 24, 21, 19, 8, 14, 19, 12, 15)
trt <- factor(rep(1:4, each = 5))
cbind(y, trt)
```

```
y trt
## [1,] 14
## [2,] 20
## [3,] 10
## [4,] 14
## [5,] 17
## [6,] 13
## [7,] 8
## [8,] 10
## [9,] 16
## [10,] 8
## [11.] 16
## [12,] 14
## [13,] 24
## [14,] 21
## [15,] 19
## [16,] 8
## [17,] 14
## [18.] 19
## [19,] 12
## [20,] 15
```

Example

```
ggnlt(data.frame(response=y, trt = trt), aes(x = trt, y = response)) +
geom_boxplot(aes(colour=factor(trt)), fill="#A4A4A4", color="black")+
geom_point(aes(color = factor(trt)), size = 4)+
scale_colour_manual(values = c("#E569F00", "#56B4E9", "#009E73", "#F0E442"))+
scale_fill_manual(values = c("#E569F00", "#56B4E9", "#009E73", "#F0E442"))+
labs(colour = "Treatments")+xlab("")+ylab("Response")+
theme(axis.text=element_text(size=12),
axis.title=element_text(size=14, face="bold"),
legend.text=element_text(size=14, face="bold"),
legend.title=element_text(size=14, face="bold"),
legend.title=element_text(size=14, face="bold"),
legend.title=element_text(size=14, face="bold"),
legend.title=element_text(size=14, face="bold"),
legend.position = "top")
```


Example

```
anova(lm(y~trt))
## Analysis of Variance Table
##
## Response: y
##
            Df Sum Sq Mean Sq F value Pr(>F)
             3 158.8 52.933 3.6506 0.03533 *
## trt
## Residuals 16 232.0 14.500
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Marginal evidence against the null hypothesis.
Note that
1-pf(3.6506,3,16)
## [1] 0.03532877
pf(3.6506,3,16,lower.tail = FALSE)
## [1] 0.03532877
```