Лабораторная работа №6

Научное программирование

Таубер Кирилл Олегович

Содержание

1	Цель работы	4
2	Теоретическое введение	5
3	Выполнение лабораторной работы	6
4	Вывод	13

Список иллюстраций

3.1	Оценка выражения под знаком предела
3.2	Оценка выражения под знаком предела
3.3	Частичные суммы
3.4	Сумма ряда
3.5	Вычисление интеграла
3.6	Аппроксимирование суммами
3.7	Аппроксимирование суммами
3.8	Аппроксимирование суммами - векторизованный код
3.9	Аппроксимирование суммами - векторизованный код
3.10	Сравнение кодов

1 Цель работы

Изучить в Octave методы расчета пределов, частичных сумм, суммы ряда, а также методы вычисления интегралов и аппроксимирования суммами.

2 Теоретическое введение

Анонимная функция - особый вид функций, которые объявляются в месте использования и не получают уникального идентификатора для доступа к ним. Обычно при создании анонимные функции либо вызываются напрямую, либо ссылка на функцию присваивается переменной, с помощью которой затем можно косвенно вызывать данную функцию.

В Octave анонимные функции определяются с помощью синтаксиса @(argument-list) expression. Любые переменные, которые не найдены в списке аргументов, наследованы от объема включения. Анонимные функции полезны для создания простых функций без имени от выражений или для обертывания вызовов к другим функциям для адаптации их к использованию функциями как quad, которая применяется при вычислении интегралов.

Более подробно см. в [@Octave 1:bash] и [@Octave 2:bash].

3 Выполнение лабораторной работы

Рассмотрим предел:

$$\lim_{n\to\infty} \big(1+\frac{1}{n}\big)^n$$

Оценим данное выражение. Для этого определим функцию с помощью метода анонимной функции. Создадим также индексную переменную, состоящую из целых чисел от 0 до 9. Возьмем степени 10, которые будут входными значениями, а затем оценим f(n) (рис. fig. 3.1) и (рис. fig. 3.2).

```
имя
                        diary
                        f =
                        @(n) (1 + 1 ./ n) .^n
                        >> k=[0:1:9]'
                        k =
                           0
                           1
                           2
                           3
                           4
                           5
                           6
                           7
                           8
                        >> format long
                        >> n=10.^k
                        n =
                                   1
                                  10
                                 100
                                1000
                               10000
                              100000
                             1000000
                            10000000
                            100000000
                           1000000000
```

Рис. 3.1: Оценка выражения под знаком предела

Рис. 3.2: Оценка выражения под знаком предела

Полученный результат близок к теоретическому значению предела - e.

Пусть $\sum_{n=2}^\infty a_n$ - ряд, n-й член равен $a_n=\frac{1}{n(n+2)}$. Определим индексный вектор n от 2 до 11 и вычислим члены. Для получения последовательности частичных сумм используем цикл и функцию sum(a). На выходе получаем 10-элементный вектор частичных сумм. Строим слагаемые и частичные суммы для $2\leq n\leq 11$ на графике (рис. fig. 3.3).

Рис. 3.3: Частичные суммы

Найдем сумму первых 1000 членов гармонического ряда (рис. fig. 3.4):

$$\sum_{n=1}^{1000} \frac{1}{n}$$

>> n=[1:1:1000]; >> a=1./n; >> sum(a)

ans = 7.4855

Рис. 3.4: Сумма ряда

Вычислим интеграл (рис. fig. 3.5):

$$\int_{0}^{\frac{\pi}{2}} e^{x^2} \cos(x) dx$$

Диспетчер файлов 🗗 🗙 Командное окно >> function y=f(x) /Desktop/Octave labs_4 $y=\exp(x.^2).*\cos(x);$ >> quad('f',0,pi/2) Имя ans = 1.8757diary >> $f=@(x) exp(x.^2).*cos(x)$ Pic 1.jpg Pic 2.jpg @(x) exp (x .^ 2) .* cos (x) Pic 3.jpg >> quad(f,0,pi/2) Pic 4.jpg ans = 1.8757>>

Рис. 3.5: Вычисление интеграла

Пишем код, чтобы вычислить указанный ранее интеграл по правилу средней точки для n=100: используем цикл, который добавляет значение функции к промежуточной сумме с каждой итерацией, а в конце сумму умножаем на Δx (рис. fig. 3.6) и (рис. fig. 3.7).

Рис. 3.6: Аппроксимирование суммами

Рис. 3.7: Аппроксимирование суммами

Напишем векторизованный код. Создадим вектор х-координат средних точек, далее оцениваем f по этому вектору средней точки, чтобы получить вектор значений функции. Аппроксимация средней точки - это сумма компонент вектора, умноженная на Δx (рис. fig. 3.8) и (рис. fig. 3.9).

Рис. 3.8: Аппроксимирование суммами - векторизованный код

Рис. 3.9: Аппроксимирование суммами - векторизованный код

Полученные результаты совпадают с предыдущими. Сравним время выполнения для каждой реализации. Получили, что векторизованный код более эффективен по времени, чем традиционный (рис. fig. 3.10).

```
RMN
                               >> tic; midpoint; toc
                               a = 0
b = 1.5708
diary
                               n = 100

dx = 0.015708
midpoint_v.m
C midpoint.m
                               approx = 1.8758
Elapsed time is 0.00568295 seconds.
Pic 1.jpg
                               >> tic; midpoint_v; toc
                               a = 0
b = 1.5708
Pic 2.jpg
Pic 3.jpg
                               n = 100
                               dx = 0.015708
approx = 1.8758
 Pic 4.jpg
                               Elapsed time is 0.00294685 seconds.
Pic 5.jpg
Pic 6.jpg
```

Рис. 3.10: Сравнение кодов

4 Вывод

В ходе выполнения данной лабораторной работы я изучил в Octave методы расчета пределов, частичных сумм, суммы ряда, а также методы вычисления интегралов и аппроксимирования суммами.