Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1 punto)

Enuncie y demestre el Lema de Bombeo para Autómatas Finitos.

EJERCICIO 2 (1.5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky, donde L es el símbolo inicial.

L → NM F	$MT \rightarrow SM T$	T → producto	RP → rpar
$L \rightarrow LP \ LC$	$MT \rightarrow SM L$	$F \rightarrow ML T$	$NM \rightarrow num$
$L \rightarrow T MT$	$T \rightarrow NM F$	$LC \rightarrow L RP$	$SM \rightarrow plus$
$L \rightarrow producto$	$T \rightarrow LP \ LC$	$LP \rightarrow lpar$	$ML \rightarrow mul$

Verifique que la cadena "num mul lpar producto plus num mul producto rpar" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "#AABCAbbb..." devuelve en la cinta "#AABCAABCAbb...".

NOTA: Tenga en cuenta que no existe ningún espacio entre la cadena inicial y la copia.

EJERCICIO 4 (1.5 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Log(x+1,n), que calcula el logaritmo en base n de un número entero, es una función primitiva recursiva.

NOTA: El logaritmo está definido para números mayores o iguales a 1. Al utilizar el argumento (x+1) el caso base de la recursión es x=0.

$$Log(x+1, n) = y \mid n^{y} \le x+1 < n^{y+1}$$

EJERCICIO 6 (1 punto)

- (a) ¿Qué es un lenguaje NP?
- (b) ¿Qué es un verificador de un lenguaje?
- (c) Demuestre que un lenguaje es NP si y solo si es verificable polinomialmente.

- (a) ¿Qué es un problema PSPACE?
- (b) ¿Qué es un problema NPSPACE?
- (c) ¿Qué es un problema PSPACE-completo?

Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1 punto)

Enuncie y demestre el Lema de Bombeo para Autómatas Finitos.

EJERCICIO 2 (1.5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky, donde L es el símbolo inicial.

L → NM F	$MT \rightarrow SM T$	T → producto	RP → rpar
$L \rightarrow LP \ LC$	$MT \rightarrow SM L$	$F \rightarrow ML T$	$NM \rightarrow num$
$L \rightarrow T MT$	$T \rightarrow NM F$	$LC \rightarrow L RP$	$SM \rightarrow plus$
$L \rightarrow producto$	$T \rightarrow LP \ LC$	$LP \rightarrow lpar$	$ML \rightarrow mul$

Verifique que la cadena "num mul lpar producto plus num mul producto rpar" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "#AABCAbbb..." devuelve en la cinta "#AABCAABCAbb...".

NOTA: Tenga en cuenta que no existe ningún espacio entre la cadena inicial y la copia.

EJERCICIO 4 (1.5 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Log(x+1,n), que calcula el logaritmo en base n de un número entero, es una función primitiva recursiva.

NOTA: El logaritmo está definido para números mayores o iguales a 1. Al utilizar el argumento (x+1) el caso base de la recursión es x=0.

$$Log(x+1, n) = y \mid n^{y} \le x+1 < n^{y+1}$$

EJERCICIO 6 (1 punto)

- (a) ¿Qué es un lenguaje NP?
- (b) ¿Qué es un verificador de un lenguaje?
- (c) Demuestre que un lenguaje es NP si y solo si es verificable polinomialmente.

- (a) ¿Qué es un problema PSPACE?
- (b) ¿Qué es un problema NPSPACE?
- (c) ¿Qué es un problema PSPACE-completo?

Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1 punto)

Enuncie y demestre el Lema de Bombeo para Autómatas Finitos.

EJERCICIO 2 (1.5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky, donde L es el símbolo inicial.

L → NM F	$MT \rightarrow SM T$	T → producto	RP → rpar
$L \rightarrow LP \ LC$	$MT \rightarrow SM L$	$F \rightarrow ML T$	$NM \rightarrow num$
$L \rightarrow T MT$	$T \rightarrow NM F$	$LC \rightarrow L RP$	$SM \rightarrow plus$
$L \rightarrow producto$	$T \rightarrow LP \ LC$	$LP \rightarrow lpar$	$ML \rightarrow mul$

Verifique que la cadena "num mul lpar producto plus num mul producto rpar" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "#AABCAbbb..." devuelve en la cinta "#AABCAABCAbb...".

NOTA: Tenga en cuenta que no existe ningún espacio entre la cadena inicial y la copia.

EJERCICIO 4 (1.5 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Log(x+1,n), que calcula el logaritmo en base n de un número entero, es una función primitiva recursiva.

NOTA: El logaritmo está definido para números mayores o iguales a 1. Al utilizar el argumento (x+1) el caso base de la recursión es x=0.

$$Log(x+1, n) = y \mid n^{y} \le x+1 < n^{y+1}$$

EJERCICIO 6 (1 punto)

- (a) ¿Qué es un lenguaje NP?
- (b) ¿Qué es un verificador de un lenguaje?
- (c) Demuestre que un lenguaje es NP si y solo si es verificable polinomialmente.

- (a) ¿Qué es un problema PSPACE?
- (b) ¿Qué es un problema NPSPACE?
- (c) ¿Qué es un problema PSPACE-completo?

Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1 punto)

Enuncie y demestre el Lema de Bombeo para Autómatas Finitos.

EJERCICIO 2 (1.5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky, donde L es el símbolo inicial.

L → NM F	$MT \rightarrow SM T$	T → producto	RP → rpar
$L \rightarrow LP \ LC$	$MT \rightarrow SM L$	$F \rightarrow ML T$	$NM \rightarrow num$
$L \rightarrow T MT$	$T \rightarrow NM F$	$LC \rightarrow L RP$	$SM \rightarrow plus$
$L \rightarrow producto$	$T \rightarrow LP \ LC$	$LP \rightarrow lpar$	$ML \rightarrow mul$

Verifique que la cadena "num mul lpar producto plus num mul producto rpar" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "#AABCAbbb..." devuelve en la cinta "#AABCAABCAbb...".

NOTA: Tenga en cuenta que no existe ningún espacio entre la cadena inicial y la copia.

EJERCICIO 4 (1.5 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Log(x+1,n), que calcula el logaritmo en base n de un número entero, es una función primitiva recursiva.

NOTA: El logaritmo está definido para números mayores o iguales a 1. Al utilizar el argumento (x+1) el caso base de la recursión es x=0.

$$Log(x+1, n) = y \mid n^{y} \le x+1 < n^{y+1}$$

EJERCICIO 6 (1 punto)

- (a) ¿Qué es un lenguaje NP?
- (b) ¿Qué es un verificador de un lenguaje?
- (c) Demuestre que un lenguaje es NP si y solo si es verificable polinomialmente.

- (a) ¿Qué es un problema PSPACE?
- (b) ¿Qué es un problema NPSPACE?
- (c) ¿Qué es un problema PSPACE-completo?

Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1 punto)

Enuncie y demestre el Lema de Bombeo para Autómatas Finitos.

EJERCICIO 2 (1.5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky, donde L es el símbolo inicial.

L → NM F	$MT \rightarrow SM T$	T → producto	RP → rpar
$L \rightarrow LP \ LC$	$MT \rightarrow SM L$	$F \rightarrow ML T$	$NM \rightarrow num$
$L \rightarrow T MT$	$T \rightarrow NM F$	$LC \rightarrow L RP$	$SM \rightarrow plus$
$L \rightarrow producto$	$T \rightarrow LP \ LC$	$LP \rightarrow lpar$	$ML \rightarrow mul$

Verifique que la cadena "num mul lpar producto plus num mul producto rpar" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "#AABCAbbb..." devuelve en la cinta "#AABCAABCAbb...".

NOTA: Tenga en cuenta que no existe ningún espacio entre la cadena inicial y la copia.

EJERCICIO 4 (1.5 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Log(x+1,n), que calcula el logaritmo en base n de un número entero, es una función primitiva recursiva.

NOTA: El logaritmo está definido para números mayores o iguales a 1. Al utilizar el argumento (x+1) el caso base de la recursión es x=0.

$$Log(x+1, n) = y \mid n^{y} \le x+1 < n^{y+1}$$

EJERCICIO 6 (1 punto)

- (a) ¿Qué es un lenguaje NP?
- (b) ¿Qué es un verificador de un lenguaje?
- (c) Demuestre que un lenguaje es NP si y solo si es verificable polinomialmente.

- (a) ¿Qué es un problema PSPACE?
- (b) ¿Qué es un problema NPSPACE?
- (c) ¿Qué es un problema PSPACE-completo?

Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1 punto)

Enuncie y demestre el Lema de Bombeo para Autómatas Finitos.

EJERCICIO 2 (1.5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky, donde L es el símbolo inicial.

L → NM F	$MT \rightarrow SM T$	T → producto	RP → rpar
$L \rightarrow LP \ LC$	$MT \rightarrow SM L$	$F \rightarrow ML T$	$NM \rightarrow num$
$L \rightarrow T MT$	$T \rightarrow NM F$	$LC \rightarrow L RP$	$SM \rightarrow plus$
$L \rightarrow producto$	$T \rightarrow LP \ LC$	$LP \rightarrow lpar$	$ML \rightarrow mul$

Verifique que la cadena "num mul lpar producto plus num mul producto rpar" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "#AABCAbbb..." devuelve en la cinta "#AABCAABCAbb...".

NOTA: Tenga en cuenta que no existe ningún espacio entre la cadena inicial y la copia.

EJERCICIO 4 (1.5 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Log(x+1,n), que calcula el logaritmo en base n de un número entero, es una función primitiva recursiva.

NOTA: El logaritmo está definido para números mayores o iguales a 1. Al utilizar el argumento (x+1) el caso base de la recursión es x=0.

$$Log(x+1, n) = y \mid n^{y} \le x+1 < n^{y+1}$$

EJERCICIO 6 (1 punto)

- (a) ¿Qué es un lenguaje NP?
- (b) ¿Qué es un verificador de un lenguaje?
- (c) Demuestre que un lenguaje es NP si y solo si es verificable polinomialmente.

- (a) ¿Qué es un problema PSPACE?
- (b) ¿Qué es un problema NPSPACE?
- (c) ¿Qué es un problema PSPACE-completo?

Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1 punto)

Enuncie y demestre el Lema de Bombeo para Autómatas Finitos.

EJERCICIO 2 (1.5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky, donde L es el símbolo inicial.

L → NM F	$MT \rightarrow SM T$	T → producto	RP → rpar
$L \rightarrow LP \ LC$	$MT \rightarrow SM L$	$F \rightarrow ML T$	$NM \rightarrow num$
$L \rightarrow T MT$	$T \rightarrow NM F$	$LC \rightarrow L RP$	$SM \rightarrow plus$
$L \rightarrow producto$	$T \rightarrow LP \ LC$	$LP \rightarrow lpar$	$ML \rightarrow mul$

Verifique que la cadena "num mul lpar producto plus num mul producto rpar" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "#AABCAbbb..." devuelve en la cinta "#AABCAABCAbb...".

NOTA: Tenga en cuenta que no existe ningún espacio entre la cadena inicial y la copia.

EJERCICIO 4 (1.5 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Log(x+1,n), que calcula el logaritmo en base n de un número entero, es una función primitiva recursiva.

NOTA: El logaritmo está definido para números mayores o iguales a 1. Al utilizar el argumento (x+1) el caso base de la recursión es x=0.

$$Log(x+1, n) = y \mid n^{y} \le x+1 < n^{y+1}$$

EJERCICIO 6 (1 punto)

- (a) ¿Qué es un lenguaje NP?
- (b) ¿Qué es un verificador de un lenguaje?
- (c) Demuestre que un lenguaje es NP si y solo si es verificable polinomialmente.

- (a) ¿Qué es un problema PSPACE?
- (b) ¿Qué es un problema NPSPACE?
- (c) ¿Qué es un problema PSPACE-completo?

Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1 punto)

Enuncie y demestre el Lema de Bombeo para Autómatas Finitos.

EJERCICIO 2 (1.5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky, donde L es el símbolo inicial.

L → NM F	$MT \rightarrow SM T$	T → producto	RP → rpar
$L \rightarrow LP \ LC$	$MT \rightarrow SM L$	$F \rightarrow ML T$	$NM \rightarrow num$
$L \rightarrow T MT$	$T \rightarrow NM F$	$LC \rightarrow L RP$	$SM \rightarrow plus$
$L \rightarrow producto$	$T \rightarrow LP \ LC$	$LP \rightarrow lpar$	$ML \rightarrow mul$

Verifique que la cadena "num mul lpar producto plus num mul producto rpar" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "#AABCAbbb..." devuelve en la cinta "#AABCAABCAbb...".

NOTA: Tenga en cuenta que no existe ningún espacio entre la cadena inicial y la copia.

EJERCICIO 4 (1.5 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Log(x+1,n), que calcula el logaritmo en base n de un número entero, es una función primitiva recursiva.

NOTA: El logaritmo está definido para números mayores o iguales a 1. Al utilizar el argumento (x+1) el caso base de la recursión es x=0.

$$Log(x+1, n) = y \mid n^{y} \le x+1 < n^{y+1}$$

EJERCICIO 6 (1 punto)

- (a) ¿Qué es un lenguaje NP?
- (b) ¿Qué es un verificador de un lenguaje?
- (c) Demuestre que un lenguaje es NP si y solo si es verificable polinomialmente.

- (a) ¿Qué es un problema PSPACE?
- (b) ¿Qué es un problema NPSPACE?
- (c) ¿Qué es un problema PSPACE-completo?

Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1 punto)

Enuncie y demestre el Lema de Bombeo para Autómatas Finitos.

EJERCICIO 2 (1.5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky, donde L es el símbolo inicial.

L → NM F	$MT \rightarrow SM T$	T → producto	RP → rpar
$L \rightarrow LP \ LC$	$MT \rightarrow SM L$	$F \rightarrow ML T$	$NM \rightarrow num$
$L \rightarrow T MT$	$T \rightarrow NM F$	$LC \rightarrow L RP$	$SM \rightarrow plus$
$L \rightarrow producto$	$T \rightarrow LP \ LC$	$LP \rightarrow lpar$	$ML \rightarrow mul$

Verifique que la cadena "num mul lpar producto plus num mul producto rpar" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "#AABCAbbb..." devuelve en la cinta "#AABCAABCAbb...".

NOTA: Tenga en cuenta que no existe ningún espacio entre la cadena inicial y la copia.

EJERCICIO 4 (1.5 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Log(x+1,n), que calcula el logaritmo en base n de un número entero, es una función primitiva recursiva.

NOTA: El logaritmo está definido para números mayores o iguales a 1. Al utilizar el argumento (x+1) el caso base de la recursión es x=0.

$$Log(x+1, n) = y \mid n^{y} \le x+1 < n^{y+1}$$

EJERCICIO 6 (1 punto)

- (a) ¿Qué es un lenguaje NP?
- (b) ¿Qué es un verificador de un lenguaje?
- (c) Demuestre que un lenguaje es NP si y solo si es verificable polinomialmente.

- (a) ¿Qué es un problema PSPACE?
- (b) ¿Qué es un problema NPSPACE?
- (c) ¿Qué es un problema PSPACE-completo?