

Languages and Machines

L6: FSM Minimization

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and Al University of Groningen, Groningen, the Netherlands

Languages and Their Machines

Regular → **Finite State Machines (FSMs)**

Context-free → Pushdown Machines

Semi-decidable ↔ Turing Machines

Outline

Motivation

Equivalences and Partitions

Minimization, Formally

Quotient FSM

An Algorithm for the Equivalence

Brzozowski's algorithm

Given an FSM M:

Given an FSM M for the language

$$L = \{a, b\} \cup \{w \mid w \in \{a, b\}^* \land |w| \ge 3\}$$
:

Given an FSM M for the language

$$L = \{a, b\} \cup \{w \mid w \in \{a, b\}^* \land |w| \geq 3\}$$
:

We will minimize M into the equivalent FSM M':

Given an FSM M for the language

$$L = \{a, b\} \cup \{w \mid w \in \{a, b\}^* \land |w| \ge 3\}$$
:

We will minimize M into the equivalent FSM M':

Here 'equivalence' means L(M) = L(M') = L.

We want to minimize an (D)FSM M into M'

- ullet Minimizing M means **collapsing** some of its states
- M' is a different (but smaller) machine that accepts L(M)
- Key idea: Never collapse an accept state and a reject state

We want to minimize an (D)FSM M into M'

- ullet Minimizing M means **collapsing** some of its states
- M' is a different (but smaller) machine that accepts L(M)
- Key idea: Never collapse an accept state and a reject state

Observations:

1. If $p = \hat{\delta}(q_0, x) \in F$ and $q = \hat{\delta}(q_0, y) \notin F$. String x must be accepted but y must be rejected, even after collapsing.

We want to minimize an (D)FSM M into M'

- ullet Minimizing M means **collapsing** some of its states
- M' is a different (but smaller) machine that accepts L(M)
- Key idea: Never collapse an accept state and a reject state

Observations:

- 1. If $p = \hat{\delta}(q_0, x) \in F$ and $q = \hat{\delta}(q_0, y) \notin F$. String x must be accepted but y must be rejected, even after collapsing.
- 2. If p and q are collapsed then, to maintain determinism, also $\delta(p,a)$ and $\delta(q,a)$ must be collapsed.

We want to minimize an (D)FSM M into M'

- ullet Minimizing M means **collapsing** some of its states
- M' is a different (but smaller) machine that accepts L(M)
- Key idea: Never collapse an accept state and a reject state

Observations:

- 1. If $p = \hat{\delta}(q_0, x) \in F$ and $q = \hat{\delta}(q_0, y) \notin F$. String x must be accepted but y must be rejected, even after collapsing.
- 2. If p and q are collapsed then, to maintain determinism, also $\delta(p, a)$ and $\delta(q, a)$ must be collapsed.
- \Rightarrow If $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$, for some $x \in \Sigma^*$, then we cannot collapse p and q.

 Otherwise, p and q can be collapsed.

- Minimization depends on an equivalence relation \approx , defined on the set of states Q of the given FSM M.
- Intuitively, \approx formalizes which states should (not) be collapsed.

- Minimization depends on an equivalence relation \approx , defined on the set of states Q of the given FSM M.
- Intuitively, \approx formalizes which states should (not) be collapsed.
- Using \approx , we will define a minimized variant of M, denoted M/\approx (the 'quotient' of M).

- Minimization depends on an equivalence relation \approx , defined on the set of states Q of the given FSM M.
- Intuitively, \approx formalizes which states should (not) be collapsed.
- Using \approx , we will define a minimized variant of M, denoted M/\approx (the 'quotient' of M).
- We give a procedure to compute \approx .

- Minimization depends on an equivalence relation \approx , defined on the set of states Q of the given FSM M.
- Intuitively, \approx formalizes which states should (not) be collapsed.
- Using \approx , we will define a minimized variant of M, denoted $M/_{\approx}$ (the 'quotient' of M).
- We give a procedure to compute \approx .

We first recall key notions about equivalences and their partitions.

Outline

Motivation

Equivalences and Partitions

Minimization, Formally

Quotient FSN

An Algorithm for the Equivalence

Brzozowski's algorithm

Let \mathcal{R} be a relation on a set S.

 \bullet $\,\mathcal{R}$ is an equivalence if it is reflexive, symmetric, and transitive.

Let \mathcal{R} be a relation on a set S.

- \bullet $\,\mathcal{R}$ is an equivalence if it is reflexive, symmetric, and transitive.
- That is, an equivalence \mathcal{R} on S satisfies:
 - $s \mathcal{R} s$ for all $s \in S$.
 - $s \mathcal{R} t$ implies $t \mathcal{R} s$.
 - $s \mathcal{R} t$ and $t \mathcal{R} u$ imply $s \mathcal{R} u$.

Let \mathcal{R} be a relation on a set S.

- \mathcal{R} is an equivalence if it is reflexive, symmetric, and transitive.
- That is, an equivalence \mathcal{R} on S satisfies:
 - $s \mathcal{R} s$ for all $s \in S$.
 - $s \mathcal{R} t$ implies $t \mathcal{R} s$.
 - $s \mathcal{R} t$ and $t \mathcal{R} u$ imply $s \mathcal{R} u$.

Examples:

- The '=' relation is an equivalence on \mathbb{R} .
- The '<' relation is *not* an equivalence on \mathbb{R} (why?).
- Define the relation \equiv_2 on \mathbb{Z} :
 - $a \equiv_2 b \iff a \text{ and } b \text{ have the same remainder when divided by 2}$

E.g.,
$$42 \equiv_2 24$$
, $0 \equiv_2 24$, $13 \equiv_2 31$, $1 \equiv_2 13$, but $13 \not\equiv_2 24$.

Let \mathcal{R} be a relation on a set S.

- \mathcal{R} is an equivalence if it is reflexive, symmetric, and transitive.
- That is, an equivalence \mathcal{R} on S satisfies:
 - $s \mathcal{R} s$ for all $s \in S$.
 - $s \mathcal{R} t$ implies $t \mathcal{R} s$.
 - $s \mathcal{R} t$ and $t \mathcal{R} u$ imply $s \mathcal{R} u$.

Examples:

- The '=' relation is an equivalence on \mathbb{R} .
- The '<' relation is *not* an equivalence on \mathbb{R} (why?).
- Define the relation \equiv_2 on \mathbb{Z} :

 $a \equiv_2 b \iff a$ and b have the same remainder when divided by 2

E.g., $42 \equiv_2 24$, $0 \equiv_2 24$, $13 \equiv_2 31$, $1 \equiv_2 13$, but $13 \not\equiv_2 24$. Is relation \equiv_2 is an equivalence?

• Given an equivalence \mathcal{R} on S, the equivalence class of $s \in S$ is the set

$$[s] = \mathcal{R}(s) = \{t \in S \mid s \, \mathcal{R}t\}$$

• This way, e.g., the equivalence classes of $\stackrel{\cdot}{\equiv}_2$:

$$[0] = \{a \in \mathbb{Z} \mid a \equiv_2 0\}$$

• Given an equivalence $\mathcal R$ on S, the equivalence class of $s \in S$ is the set

$$[s] = \mathcal{R}(s) = \{t \in S \mid s\,\mathcal{R}t\}$$

$$[0] = \{a \in \mathbb{Z} \mid a \equiv_2 0\} = \{0, 2, 4, \ldots\}$$

• Given an equivalence $\mathcal R$ on S, the equivalence class of $s \in S$ is the set

$$[s] = \mathcal{R}(s) = \{t \in S \mid s\,\mathcal{R}t\}$$

$$[0] = \{a \in \mathbb{Z} \mid a \equiv_2 0\} = \{0, 2, 4, \ldots\}$$

$$[1] =$$

• Given an equivalence \mathcal{R} on S, the equivalence class of $s \in S$ is the set

$$[s] = \mathcal{R}(s) = \{t \in S \mid s\,\mathcal{R}t\}$$

$$\begin{array}{ll} [0] &= \{a \in \mathbb{Z} \mid a \equiv_2 0\} = \{0, 2, 4, \ldots\} \\ [1] &= \{b \in \mathbb{Z} \mid b \equiv_2 1\} \end{array}$$

• Given an equivalence \mathcal{R} on S, the equivalence class of $s \in S$ is the set

$$[s] = \mathcal{R}(s) = \{t \in S \mid s\,\mathcal{R}t\}$$

[0] =
$$\{a \in \mathbb{Z} \mid a \equiv_2 0\} = \{0, 2, 4, \ldots\}$$

[1] = $\{b \in \mathbb{Z} \mid b \equiv_2 1\} = \{1, 3, 5, \ldots\}$

• Given an equivalence $\mathcal R$ on S, the equivalence class of $s \in S$ is the set

$$[s] = \mathcal{R}(s) = \{t \in S \mid s\,\mathcal{R}t\}$$

$$[0] = \{a \in \mathbb{Z} \mid a \equiv_2 0\} = \{0, 2, 4, \ldots\}$$

[1]
$$= \{b \in \mathbb{Z} \mid b \equiv_2 1\} = \{1, 3, 5, \ldots\}$$

$$[2] = \{a \in \mathbb{Z} \mid a \equiv_2 2\}$$

• Given an equivalence \mathcal{R} on S, the equivalence class of $s \in S$ is the set

$$[s] = \mathcal{R}(s) = \{t \in S \mid s\,\mathcal{R}t\}$$

$$[0] = \{a \in \mathbb{Z} \mid a \equiv_2 0\} = \{0, 2, 4, \ldots\}$$

[1]
$$= \{ b \in \mathbb{Z} \mid b \equiv_2 1 \} = \{1, 3, 5, \ldots \}$$

[2]
$$= \{a \in \mathbb{Z} \mid a \equiv_2 2\} = \{0, 2, 4, \ldots\}$$

• Given an equivalence $\mathcal R$ on S, the equivalence class of $s \in S$ is the set

$$[s] = \mathcal{R}(s) = \{t \in S \mid s\,\mathcal{R}t\}$$

$$\begin{aligned} [0] &= \{ a \in \mathbb{Z} \mid a \equiv_2 0 \} = \{ 0, 2, 4, \ldots \} \\ [1] &= \{ b \in \mathbb{Z} \mid b \equiv_2 1 \} = \{ 1, 3, 5, \ldots \} \\ [2] &= \{ a \in \mathbb{Z} \mid a \equiv_2 2 \} = \{ 0, 2, 4, \ldots \} \\ [3] &= \end{aligned}$$

• Given an equivalence $\mathcal R$ on S, the equivalence class of $s \in S$ is the set

$$[s] = \mathcal{R}(s) = \{t \in S \mid s\,\mathcal{R}t\}$$

$$\begin{aligned} [0] &= \{ a \in \mathbb{Z} \mid a \equiv_2 0 \} = \{ 0, 2, 4, \ldots \} \\ [1] &= \{ b \in \mathbb{Z} \mid b \equiv_2 1 \} = \{ 1, 3, 5, \ldots \} \\ [2] &= \{ a \in \mathbb{Z} \mid a \equiv_2 2 \} = \{ 0, 2, 4, \ldots \} \\ [3] &= \end{aligned}$$

• Given an equivalence $\mathcal R$ on S, the equivalence class of $s \in S$ is the set

$$[s] = \mathcal{R}(s) = \{t \in S \mid s \, \mathcal{R}t\}$$

• This way, e.g., the equivalence classes of $\stackrel{\cdot}{\equiv}_2$:

$$\begin{aligned} [0] &= \{ a \in \mathbb{Z} \mid a \equiv_2 0 \} = \{ 0, 2, 4, \ldots \} \\ [1] &= \{ b \in \mathbb{Z} \mid b \equiv_2 1 \} = \{ 1, 3, 5, \ldots \} \\ [2] &= \{ a \in \mathbb{Z} \mid a \equiv_2 2 \} = \{ 0, 2, 4, \ldots \} \\ [3] &= \{ b \in \mathbb{Z} \mid b \equiv_2 3 \} = \{ 1, 3, 5, \ldots \} \\ \vdots \end{aligned}$$

Notice: $[0] = [2] = [4] \dots$ and $[1] = [3] = [5] \dots$ ' \equiv_2 ' defines two equivalence classes, for even and odd integers.

• Given some $S \neq \emptyset$, a partition \mathcal{P} is a set $\{P_1, P_2, \dots, P_n\}$ consisting of non-empty subsets of S, called **blocks**,

- Given some $S \neq \emptyset$, a partition \mathcal{P} is a set $\{P_1, P_2, \dots, P_n\}$ consisting of non-empty subsets of S, called **blocks**,where:
 - 1. The partition \mathcal{P} covers S. That is: $P_1 \cup P_2 \cup \cdots \cup P_n = S$.

- Given some $S \neq \emptyset$, a partition \mathcal{P} is a set $\{P_1, P_2, \dots, P_n\}$ consisting of non-empty subsets of S, called **blocks**,where:
 - 1. The partition \mathcal{P} covers S. That is: $P_1 \cup P_2 \cup \cdots \cup P_n = S$.
 - 2. The blocks are *disjoint*: $P_i \cap P_j = \emptyset$, for all $P_i, P_j \in \mathcal{P}$ with $i \neq j$.

Two useful theorems.

1. Equivalences induce partitions

Let \mathcal{R} be an equivalence on S. Let \mathcal{P} be the set of all equivalence classes [s], with $s \in S$. Then \mathcal{P} is a partition of S.

- Given some $S \neq \emptyset$, a partition \mathcal{P} is a set $\{P_1, P_2, \dots, P_n\}$ consisting of non-empty subsets of S, called **blocks**,where:
 - 1. The partition \mathcal{P} covers S. That is: $P_1 \cup P_2 \cup \cdots \cup P_n = S$.
 - 2. The blocks are *disjoint*: $P_i \cap P_j = \emptyset$, for all $P_i, P_j \in \mathcal{P}$ with $i \neq j$.

Two useful theorems.

- 1. Equivalences induce partitions Let \mathcal{R} be an equivalence on S. Let \mathcal{P} be the set of all equivalence classes [s], with $s \in S$. Then \mathcal{P} is a partition of S.
- 2. Partitions induce equivalences Let $\mathcal{P} = \{P_i \mid i \in I\}$ be a partition of S. Define the relation $\mathcal{R}_{\mathcal{P}}$:

 $a \mathcal{R}_{\mathcal{P}} b \iff a \text{ and } b \text{ belong to the same block of } \mathcal{P}$

 $\mathcal{R}_{\mathcal{P}}$ is an equivalence; the blocks P_i are its equivalence classes.

Outline

Motivation

Equivalences and Partitions

Minimization, Formally

Quotient FSM

An Algorithm for the Equivalence

Brzozowski's algorithm

• Define the relation \approx on Q, which will determine collapsing:

$$oxed{ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)}$$

Because of ' \forall ', even a single x serves to prove non-equivalence.

Minimization, Formally

• Define the relation \approx on Q, which will determine collapsing:

$$oxed{ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)}$$

Because of ' \forall ', even a single x serves to prove non-equivalence.

Minimization, Formally

• Define the relation \approx on Q, which will determine collapsing:

$$oxed{ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)}$$

Because of ' \forall ', even a single x serves to prove non-equivalence.

• Relation \approx is an equivalence. Convince yourself!

Minimization, Formally

• Define the relation \approx on Q, which will determine collapsing:

$$oxed{ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)}$$

Because of ' \forall ', even a single x serves to prove non-equivalence.

- Relation \approx is an equivalence. Convince yourself!
- Equivalence class for state *p*:

$$[p] = \{q \mid q pprox p\}$$

• Every $p \in Q$ is contained in one class [p] and

$$p \approx q \iff [p] = [q]$$

• Every equivalence class is a subset of *F* or disjoint from *F*.

$$ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)$$

$$[p_5] =$$

$$ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)$$

$$[p_5] = \{p_5\},$$

$$ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)$$

$$[p_5] = \{p_5\}, \ [p_3] =$$

$$ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)$$

$$[p_5] = \{p_5\}, \ [p_3] = \{p_3, p_4\}$$

$$ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)$$

$$[p_5]=\{p_5\},\ [p_3]=\{p_3,p_4\}=[p_4],$$

$$ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)$$

$$[p_5] = \{p_5\}, \ [p_3] = \{p_3, p_4\} = [p_4], \ [p_1] = [p_2] = \{p_1, p_2\}, \ [p_0] = \{p_0\}.$$

$$ppprox q\iff orall x\in \Sigma^*\left(\hat{\delta}(p,x)\in F\iff \hat{\delta}(q,x)\in F
ight)$$

We have:

$$[p_5] = \{p_5\}, \ [p_3] = \{p_3, p_4\} = [p_4], \ [p_1] = [p_2] = \{p_1, p_2\}, \ [p_0] = \{p_0\}.$$

We also have, e.g., $p_2 \not\approx p_3$, because $\hat{\delta}(p_3, a) \in F$ but $\hat{\delta}(p_2, a) \not\in F$.

Outline

Motivation

Equivalences and Partitions

Minimization, Formally

Quotient FSM

An Algorithm for the Equivalence

Brzozowski's algorithm

Quotient FSM

Given $M=(Q,\Sigma,\delta,q_0,F)$, we define $M/_{\approx}$: the quotient FSM of M:

$$M/_{\approx}=\left(\,Q^{\prime},\,\Sigma,\,\delta^{\prime},\,q_{0}^{\prime},\,F^{\prime}
ight)$$

where:

$$egin{aligned} Q' &= \{[p] \,|\, p \in Q\} \ \delta'([p], a) &= [\delta(p, a)] \ q'_0 &= [q_0] \ F' &= \{[p] \,|\, p \in F\} \end{aligned}$$

Quotient FSM

Given $M = (Q, \Sigma, \delta, q_0, F)$, we define $M/_{\approx}$: the quotient FSM of M:

$$M/_{\approx}=\left(\,Q^{\prime},\,\Sigma,\,\delta^{\prime},\,q_{0}^{\prime},\,F^{\prime}
ight)$$

where:

$$egin{aligned} Q' &= \{[p] \,|\, p \in Q\} \ \delta'([p], a) &= [\delta(p, a)] \ q'_0 &= [q_0] \ F' &= \{[p] \,|\, p \in F\} \end{aligned}$$

- ullet The states of $M/_pprox$ are the equivalence classes of pprox
- We must show: (i) $M/_{\approx}$ is well-defined and (ii) $L(M) = L(M/_{\approx}).$

Quotient FSM

Given $M = (Q, \Sigma, \delta, q_0, F)$, we define $M/_{\approx}$: the quotient FSM of M:

$$M/_{\approx}=\left(\,Q^{\prime},\,\Sigma,\,\delta^{\prime},\,q_{0}^{\prime},\,F^{\prime}\,
ight)$$

where:

$$egin{aligned} Q' &= \{[p] \,|\, p \in Q\} \ \delta'([p], a) &= [\delta(p, a)] \ q'_0 &= [q_0] \ F' &= \{[p] \,|\, p \in F\} \end{aligned}$$

- The states of $M/_{\approx}$ are the equivalence classes of \approx
- We must show: (i) $M/_{\approx}$ is well-defined and (ii) $L(M) = L(M/_{\approx}).$
- Some crucial properties for (i): (P1) $p \approx q$ implies $\delta(p, a) \approx \delta(q, a)$. That is: [p] = [q] implies $[\delta(p, a)] = [\delta(q, a)]$ (P2) $p \in F \iff [p] \in F'$.

Properties of $M/_{\approx}$

We have $\forall x \in \Sigma^*$, $\hat{\delta'}([p], x) = [\hat{\delta}(p, x)]$. The proof is by induction on x:

▶ Base case, $x = \epsilon$:

$$\hat{\delta'}([p],\epsilon) = [p]$$
 Def of δ' $= [\hat{\delta}(p,\epsilon)]$ Def of δ

▶ Inductive step (with $a \in \Sigma$):

$$egin{aligned} \hat{\delta'}([p],xa) &= \delta'(\hat{\delta'}([p],x),a) & ext{Def of } \delta' \ &= \delta'([\hat{\delta}(p,x)],a) & ext{IH} \ &= [\delta(\hat{\delta}(p,x),a)] & ext{Def of } \delta' \ &= [\hat{\delta}(p,xa)] & ext{Def of } \hat{\delta} \end{aligned}$$

Properties of $M/_{\approx}$

We have
$$L(M) = L(M/_{\approx})$$

For the proof, suppose $x \in \Sigma^*$.

$$x \in L(M/_pprox) \iff \hat{\delta'}(q_0',x) \in F'$$
 Def of acceptance $\iff \hat{\delta'}([q_0],x) \in F'$ Def of q_0' $\iff [\hat{\delta}(q_0,x)] \in F'$ Previous slide $\iff \hat{\delta}(q_0,x) \in F$ Well-defined acceptance (P2) $\iff x \in L(M)$ Acceptance

Consider the FSM:

Same transitions as before, here with different accepting states.

• What is *L*(*M*)?

Consider the FSM:

Same transitions as before, here with different accepting states.

• What is L(M)? The language $L = \{w \, | \, |w| \geq 2\}$

Consider the FSM:

Same transitions as before, here with different accepting states.

- What is L(M)? The language $L = \{w \, | \, |w| \geq 2\}$
- What is $M/_{\approx}$?

Consider the FSM:

Same transitions as before, here with different accepting states.

- What is L(M)? The language $L = \{w \mid |w| \geq 2\}$
- What is $M/_{\approx}$?

Outline

Motivation

Equivalences and Partitions

Minimization, Formally

Quotient FSN

An Algorithm for the Equivalence

Brzozowski's algorithm

How to compute \approx ?

We have defined $M/_{\approx}$ but how to compute \approx ?

How to compute \approx ?

We have defined $M/_{\approx}$ but how to compute \approx ?

Consider a DFSM with no inaccessible states.

The following algorithm computes \approx by analyzing pairs of states.

We mark $\{p, q\}$ when we discover that p and q are not equivalent.

How to compute \approx ?

We have defined $M/_{\approx}$ but how to compute \approx ?

Consider a DFSM with no inaccessible states.

The following algorithm computes \approx by analyzing pairs of states. We mark $\{p,q\}$ when we discover that p and q are not equivalent.

The algorithm:

- 1. Write down a table with all pairs $\{p, q\}$, initially unmarked.
- 2. Mark $\{p, q\}$ if $p \in F$ and $q \notin F$ (or viceversa).
- 3. Repeat the following, until no more changes occur: If there is an unmarked pair $\{p, q\}$ such that the pair $\{\delta(p, a), \delta(q, a)\}$ is marked (for some $a \in \Sigma$) then mark $\{p, q\}$.
- 4. At the end, we have that $p \approx q$ iff $\{p, q\}$ is not marked.

Example (1/2)

Step 1 (initialization):

```
0
- 1*
- - 2*
- - 3
- - - 4
- - - 5*
```

Example (1/2)

Step 1 (initialization):

Step 2 (initial marking):

Example (1/2)

Step 1 (initialization):	Step 2 (initial marking):	Step 3 (first pass):
0	0	0
- 1*	√ 1∗	√ 1∗
2*	√ - 2*	√ - 2∗
3	- √ √ 3	- √ √ 3
4	- 🗸 🗸 - 4	- 🗸 - 4

Example (2/2)

Step 3 (first pass, prev slide):

```
0

1*

- 2*

- √ √ 3

- √ √ - 4

√ √ √ √ √ 5
```

Example (2/2)

Step 3 (first pass, prev slide):

0					
\checkmark	1*				
\checkmark	-	2*			
-	\checkmark	\checkmark	3		
-	\checkmark	\checkmark	-	4	
✓	√	1	✓	✓	5

Step 3 (second pass)

Step 3	,,,,,,,	ona p	Juou		
0					
\checkmark	1*				
\checkmark	-	2*			
\checkmark	\checkmark	\checkmark	3		
\checkmark	\checkmark	\checkmark	-	4	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	5*

Example (2/2)

Step 3 (first pass, prev slide):

Step 3 (second pass):

0					
\checkmark	1*				
\checkmark	-	2*			
\checkmark	\checkmark	\checkmark	3		
\checkmark	\checkmark	\checkmark	-	4	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	5

At this point, the remaining unmarked pairs are $\{1,2\}$ and $\{3,4\}$. They lead to unmarked pairs, indicating that $p_1 \approx p_2$ and $p_3 \approx p_4$.

Step 2 (initial marking):

Step 3 (analysis for the first pass):

0

./

v 1↑ - √ :

- 🗸 - 3

√ - √ √ 4×

- / - - / !

Step 3 (analysis for the first pass):

- ▶ $\{0, 2\} \rightarrow \{1, 3\}$, so $\{0, 2\}$ is marked

Step 2 (initial marking):

0

Step 3 (analysis for the first pass):

- ▶ $\{0,2\} \to \{1,3\}$, so $\{0,2\}$ is marked
- $\blacktriangleright \ \{0,3\} \rightarrow \{1,4\}, \, so \, \{0,3\} \, \, stays \, unmarked$
- ▶ $\{0,5\} \to \{1,0\}$, so $\{0,5\}$ is marked

Step 2 (initial marking):

o

Step 2 (initial marking):

0

Step 3 (analysis for the first pass):

$$\blacktriangleright \ \{0,2\} \rightarrow \{1,3\},\, \text{so}\, \{0,2\} \text{ is marked}$$

$$\blacktriangleright \ \{0,3\} \rightarrow \{1,4\}, \, \text{so} \, \{0,3\} \, \, \text{stays unmarked}$$

$$\blacktriangleright \ \{0,5\} \rightarrow \{1,0\} \text{, so } \{0,5\} \text{ is marked}$$

$$ightharpoonup \{1,4\}
ightarrow \{2,5\},$$
 so $\{1,4\}$ stays unmarked

▶
$$\{2,3\} \rightarrow \{3,4\}$$
, so $\{2,3\}$ is marked

$$\blacktriangleright \ \{2,5\} \rightarrow \{0,3\}, \, \text{so} \, \{2,5\} \, \, \text{stays unmarked}$$

$$\blacktriangleright$$
 {3, 5} \rightarrow {0, 4}, so {3, 5} is marked

Step 3 (analysis for the first pass, prev slide):

- $\blacktriangleright \ \{0,2\} \rightarrow \{1,3\}, \, \text{so} \, \{0,2\} \, \text{is marked}$
- $\blacktriangleright \ \{0,3\} \rightarrow \{1,4\}, \, \text{so} \, \{0,3\} \, \, \text{stays unmarked}$
- $\blacktriangleright \ \{0,5\} \rightarrow \{1,0\}, \, \text{so} \, \{0,5\} \, \text{is marked}$
- $ightharpoonup \{1,4\}
 ightarrow \{2,5\}$, so $\{1,4\}$ stays unmarked
- $\blacktriangleright \ \{2,3\} \rightarrow \{3,4\}, \, \text{so} \, \{2,3\} \, \text{is marked}$
- ▶ $\{2,5\} \rightarrow \{0,3\}$, so $\{2,5\}$ stays unmarked
- ▶ ${3,5} \rightarrow {0,4}$, so ${3,5}$ is marked

Another Example (2/2)

Step 3 (analysis for the first pass, prev slide):

- ▶ $\{0,2\} \rightarrow \{1,3\}$, so $\{0,2\}$ is marked
- ▶ $\{0,3\} \rightarrow \{1,4\}$, so $\{0,3\}$ stays unmarked
- ▶ $\{0,5\} \rightarrow \{1,0\}$, so $\{0,5\}$ is marked
- $\blacktriangleright \ \{1,4\} \rightarrow \{2,5\}, \, \text{so} \, \{1,4\} \, \, \text{stays unmarked}$
- ▶ $\{2,3\} \rightarrow \{3,4\}$, so $\{2,3\}$ is marked
- ▶ $\{2,5\} \rightarrow \{0,3\}$, so $\{2,5\}$ stays unmarked
- ▶ $\{3,5\} \rightarrow \{0,4\}$, so $\{3,5\}$ is marked

Step 3 (result of the first pass):

A second pass gives $\{0,3\} \rightarrow \{1,4\} \rightarrow \{2,5\} \rightarrow \{0,3\}$. All unmarked: we are done.

Another Example (2/2)

Step 3 (analysis for the first pass, prev slide):

- \blacktriangleright $\{0,2\} \rightarrow \{1,3\}$, so $\{0,2\}$ is marked
- ▶ $\{0,3\} \rightarrow \{1,4\}$, so $\{0,3\}$ stays unmarked
- ▶ $\{0,5\} \rightarrow \{1,0\}$, so $\{0,5\}$ is marked
- \blacktriangleright $\{1,4\} \rightarrow \{2,5\}$, so $\{1,4\}$ stays unmarked
- ▶ $\{2,3\} \rightarrow \{3,4\}$, so $\{2,3\}$ is marked
- ▶ $\{2,5\} \rightarrow \{0,3\}$, so $\{2,5\}$ stays unmarked
- ▶ ${3,5} \rightarrow {0,4}$, so ${3,5}$ is marked

Step 3 (result of the first pass):

A second pass gives $\{0,3\} \rightarrow \{1,4\} \rightarrow \{2,5\} \rightarrow \{0,3\}$. All unmarked: we are done.

Hence: $p_0 \approx p_3$, $p_1 \approx p_4$, and $p_2 \approx p_5$.

Outline

Motivation

Equivalences and Partitions

Minimization, Formally

Quotient FSN

An Algorithm for the Equivalence

Brzozowski's algorithm

Another, less efficient way of obtaining a minimal FSM, using some operations on machines:

- ightharpoonup rev(M) denotes the reverse of M
- lacktriangledown det(M) denotes the powerset construction applied to M
- reach(M) discards inaccessible states from M

Another, less efficient way of obtaining a minimal FSM, using some operations on machines:

- ightharpoonup rev(M) denotes the reverse of M
- ightharpoonup det(M) denotes the powerset construction applied to M
- ightharpoonup reach(M) discards inaccessible states from M

The algorithm:

1. Obtain rev(M): an NFSM that recognizes the reverse of L(M).

Another, less efficient way of obtaining a minimal FSM, using some operations on machines:

- ightharpoonup rev(M) denotes the reverse of M
- ightharpoonup det(M) denotes the powerset construction applied to M
- ightharpoonup reach(M) discards inaccessible states from M

The algorithm:

- 1. Obtain rev(M): an NFSM that recognizes the reverse of L(M).
- 2. Obtain det(rev(M)), the deterministic FSM that still recognizes the reverse of L(M).

Another, less efficient way of obtaining a minimal FSM, using some operations on machines:

- ightharpoonup rev(M) denotes the reverse of M
- ightharpoonup det(M) denotes the powerset construction applied to M
- ightharpoonup reach(M) discards inaccessible states from M

The algorithm:

- 1. Obtain rev(M): an NFSM that recognizes the reverse of L(M).
- 2. Obtain det(rev(M)), the deterministic FSM that still recognizes the reverse of L(M).
- 3. Obtaining N = reach(det(rev(M)))

Another, less efficient way of obtaining a minimal FSM, using some operations on machines:

- ightharpoonup rev(M) denotes the reverse of M
- ightharpoonup det(M) denotes the powerset construction applied to M
- ightharpoonup reach(M) discards inaccessible states from M

The algorithm:

- 1. Obtain rev(M): an NFSM that recognizes the reverse of L(M).
- 2. Obtain det(rev(M)), the deterministic FSM that still recognizes the reverse of L(M).
- 3. Obtaining N = reach(det(rev(M)))
- 4. Apply steps 1-3 to N, obtaining an FSM that recognizes L(M):

$$min(M) = reach(det(rev(reach(det(rev(M))))))$$

[Adapted from slides by Jan Rutten (2012)]

M:

[Adapted from slides by Jan Rutten (2012)]

M: rev(M):

[Adapted from slides by Jan Rutten (2012)]

M: rev(M): det(rev(M)):

[Adapted from slides by Jan Rutten (2012)]

M: rev(M):

det(rev(M)):

reach(det(rev(M))):

[Adapted from slides by Jan Rutten (2012)]

M: rev(M): det(rev(M)):

reach(det(rev(M))):

rev(reach(det(rev(M)))):

[Adapted from slides by Jan Rutten (2012)]

M: rev(M): det(rev(M)):

reach(det(rev(M))):

rev(reach(det(rev(M)))): min(M):

Taking Stock

FSMs can be minimized by collapsing their states

- ightharpoonup A characterization of \approx , a "collapsing" equivalence on Q
- ▶ The quotient FSM $M/_{\approx}$
- ▶ An algorithm for computing ≈
- Briefly: Brzozowski's algorithm

This concludes our study of regular languages (and their machines)

Next Lecture

- Context-free languages, revisited
- Pushdown machines

A Pushdown Machine

Accepting the (non-regular language) $L_1 = \{a^n b^n \mid n \ge 1\}$:

• a X/Y means: a is read, and in the stack symbol X is replaced by symbol Y (symbols a, X, Y can be ϵ)