

КАКВО ВСЪЩНОСТ Е БРОЙНА СИСТЕМА

• Начин за представяне на числата посредством дадена азбука

- Основа:
 - градуси, минути и секунди 60
 - часове 24
 - RGB 16
 - финанси 10
 - машинен код 2

ДЕСЕТИЧНА БРОЙНА СИСТЕМА

- Азбука 0-9
- Основа 10

• Число в десетичен запис, преведено в десетична бройна система $43\ 671 = 4x10^4 + 3x10^3 + 6x10^2 + 7x10^1 + 1x10^0$

ДВОИЧНА БРОЙНА СИСТЕМА

- Азбука 0-1
- Основа 2

• Число в двоичен запис, преведено в десетична бройна система $110010_{(2)} = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 50$

ШЕСТНАЙСЕТИЧНА БРОЙНА СИСТЕМА

- Азбука 0-F A=10, B=11, C=12, D=13, E=14, F=15
- Основа 16
- Число в шестнайсетичен запис, преведено в десетична бройна система $F6A_{(16)} = 15x16^2 + 6x16^1 + 10x16^0 = 3946$

decimal	hexadecimal	binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15	F	1111

ПРЕМИНАВАНЕ В И ОТ ДЕСЕТИЧНА БРОЙНА СИСТЕМА

- Преминаването в десетична бройна вече е показано в предните слайдове
- Преминаване в друга бройна система n
 - Делим на n и запазваме остатъка, докато не получим 0

```
36/2 = 18 (остатьк 0)
18/2 = 9 (остатьк 0)
9/2 = 4 (остатьк 1)
4/2 = 2 (остатьк 0)
2/2 = 1 (остатьк 0)
1/2 = 0 (остатьк 1)
```

• Записваме остатьците в обратен ред

$$=> 36 = 100100_{(2)}$$

ПРЕМИНАВАНИЯ В БРОЙНИ СИСТЕМИ С ОСНОВИ, КОГАТО ЕДНА ОТ ОСНОВИТЕ Е СТЕПЕН НА ДРУГАТА

•
$$100100_{(2)} = 1 \times 2^5 + 1 \times 2^2 = 36$$

 $36 / 16 = 2 \text{ (Остатьк 4)}$
 $2 / 16 = 0 \text{ (Остатьк 2)}$

• $100100_{(2)} = 24_{(16)}$

Ами ако имаме 1010101010111101010101111010₍₂₎???

КОНВЕРТИРАНЕ НА БРОЙНИ СИСТЕМИ, КОГАТО ЕДНА ОТ ОСНОВИТЕ Е СТЕПЕН НА ДРУГАТА

- 101010100011110101010111010₍₂₎
- 010101010001111010101010111010₍₂₎ стойността не се променя
- 0101 | 0101 | 0001 | 1110 | 1010 | 1011 | 1010₍₂₎
- 5 5 1 E A B A
- =>1010101000111101010101111010₍₂₎ = $551EABA_{(16)}$

МИНИМАЛЕН БРОЙ БИТОВЕ ЗА ПРЕДСТАВЯНЕ НА ЧИСЛО В ДЕСЕТИЧНА СИСТЕМА В ДВОИЧЕН ВИД

- За да се представи дадено число от десетична бройна система в двоична, са ни нужни толкова бита, колкото е логаритъм при основа 2 на числото + 1
- Ако числото е отрицателно, ни е нужен и още един бит, за да укажем знака
- Важно е да се уточни, че това е минималния брой нужни битове, а не някаква система за записване на числа

KAKBO E VOLABNIPWS

- Логаритьмът е математическа функция, обратна на степенуването. Това означава, че логаритьмът на дадено число х е степента, на която друго постоянно число, основата а, трябва да бъде повдигната, за да се получи това число b.
- $\log_a b = x$, тогава и само тогава, когато $a^x = b$.
- Пример:

$$\log_2 64 = 6$$
, тъй като $64 = 2^6$.

• Допустими стойности:

$$a > 0$$
, $a \ne 1$, $b > 0$

МИНИМАЛЕН БРОЙ БИТОВЕ ЗА ПРЕДСТАВЯНЕ НА ЧИСЛО В ДЕСЕТИЧНА СИСТЕМА В ДВОИЧЕН ВИД

- За да запишем числото 11 в двоичен вид (1011) са ни нужни $\log_{(2)}$ 11 + 1 = 4 бита
- За да запишем числото -11 в двоичен вид (1 1011) са ни нужни $\log_{(2)} 11 + 1 + 1 = 5$ бита
- Възможно е да запишем 11 и като 0 1011, но в такъв случай това няма да е минималният брой нужни битове

ВРПЬОСИ

ЗАДАЧИ

Задача 1: Превърнете в двоична бройна система:

- 10₍₁₀₎;
- 132₍₁₀₎;
- 1010₍₁₀₎;
- AF1₍₁₆₎;
- 21₍₁₆₎;

Задача 2: Превърнете в шестнадесетична бройна система:

- 10₍₁₀₎;
- 132₍₁₀₎;
- 1010₍₁₀₎;
- 1101₍₂₎;
- 11010001₍₂₎;
- $10101\overline{01110}_{(2)}$;

Задача 3:Колко най-малко бита са необходими, за да се представят в двоичен вид числата:

- 10₍₁₀₎;
- -132₍₁₀₎;
- -1010₍₁₀₎;
- 65₍₁₀₎;
- -65₍₁₀₎;
- -1024₍₁₀₎;