

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

ÄPPLICANT(S):

Masatsugu Suwabe

ATTY DOCKET NO.:

FICE 09792909-5087

SERIAL NO.

09/893,248

GROUP ART UNIT:

1773

DATE FILED:

June 27, 2001

EXAMINER:

N. Uhlir

INVENTION:

"MAGNETO-OPTICAL RECORDING MEDIUM AND PROCESS

FOR MANUFACTURING A MAGNETO-OPTICAL RECORDING

MEDIUM"

Commissioner for Patents Box 1450, Alexandria, Virginia 22313-1450

AMENDMENT "B"

SIR:

This Amendment "B" is filed in response to the Office Action of April 16, 2003. Please reconsider the application in view of the amendment and remarks presented below.

IN THE CLAIMS

Please amend claims 1 and 2 as follows:

1. (Amended) A magnetically induced super resolution-type magneto-optical recording medium comprising, on a light-transmitting substrate, at least a recording layer for recording and retaining information therein, and a read-out layer for copying therein the information retained in said recording layer during reproduction of the information, wherein:

an exchange-coupling breaking layer is disposed between said recording layer and said read-out layer, a first surface of the exchange-coupling breaking layer being disposed in contact with the recording layer and a second surface of the exchange-coupling breaking layer opposite the first surface being disposed in contact with the read-out layer, and

said exchange-coupling breaking layer comprises a layer of a nitride of either one of GdFeCo or TbFeCo.

2. (Amended) A magnetically induced super resolution-type magneto-optical recordingmedium comprising, on a light-transmitting substrate, at least a recording layer for recording and retaining information therein, a read-out layer for copying therein the information retained in said recording layer during reproduction of the information, and a read-out auxiliary layer disposed between the recording layer and the read-out layer and in contact with the recording layer, wherein: