Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Номер зач	етной книжки	
Преддипл	омная практиі	ка зачтена с оценкой
()
(цифрой)	(прописью)	
подпись руков	одителя практики от	БГУИР)
•	2024	

ОТЧЕТ

по преддипломной практике

Место прохождения практики: ООО «СТЭКЛЭВЭЛ ГРУПП» Сроки прохождения практики: с 25.03.2024 по 21.04.2024

Руководитель практики от предприятия: К.С. Улезко	Студент группы 013801 К.Г. Хоменок
(подпись руководителя)	Руководитель практики от БГУИР
М.П.	Шнейдеров Е.Н. – канд.техн.наук,
	доцент

СОДЕРЖАНИЕ

Введение	3
1 План-проспект дипломного проекта	4
2 Анализ исходных данных и постановка задач на дипломное	
проектирование	6
2.1 Анализ исходных данных к дипломному проекту	6
2.2 Обзор существующих облачных провайдеров по теме дипломного	
проекта	8
2.3 Обоснование и описание выбора облачного провайдера	16
2.4. Постановка задач на дипломное проектирование	18
3 Описание и проектирование облачной инфраструктуры	20
3.1 Terraform «инфраструктура как код»	20
3.2 Описание и обоснование используемых распределенных	
веб-сервисов	23
3.3 Контейнеризация и оркестрация с помощью Docker	
и Docker Compose	39
3.4 Описание и обоснование использования CI/CD	45
3.5 Проектирование облачной инфраструктуры	47
4 Практическая реализация облачной инфраструктуры для веб-сервиса	49
4.1 Обзор разворачиваемого веб-сервиса и используемых библиотек	49
5 Оценка количественных показателей функционирования программного	
средства	50
5.1 Оценка временных показателей программного средства	50
5.2 Оценка ресурсных показателей программного средства	50
5.3 Оценка показателей надёжности программного средства	50
Заключение	51
Список используемых источников	52

ВВЕДЕНИЕ

Современная технологическая эпоха требует эффективных и гибких инструментов для развертывания, управления и масштабирования вебсервисов. В контексте этой потребности возникает актуальность исследования и разработки DevOps технологий для поддержки распределенных вебсервисов на платформе AWS с использованием Terraform.

С увеличением объемов данных, скорости разработки и требований к безопасности, становится необходимым создание интегрированных и автоматизированных процессов управления инфраструктурой. DevOps методология предлагает подход, направленный на сближение разработки и эксплуатации, что позволяет сократить время развертывания проектов и улучшить их качество.

Целью данного дипломного проекта является разработка системы поддержки распределенных веб-сервисов на платформе AWS с применением DevOps технологий и инструментов автоматизации, основанных на Terraform.

Для достижения поставленной цели необходимо решить следующие задачи:

- изучение особенностей распределенных веб-сервисов для AWS;
- анализ требований и выбор соответствующих технологий;
- разработка и реализация инфраструктурной части системы с использованием Terraform;
- интеграция DevOps практик для оптимизации процессов развертывания и масштабирования веб-сервисов;
 - тестирование разработанной системы.

Объектом данного дипломного проекта является развертывание распределенного веб-сервиса на платформе Amazon Web Services (AWS). Предметом исследования являются DevOps-технологии и практики, включая Continuous Integration (CI) и Continuous Deployment (CD), а также использование инструмента инфраструктуры как кода Terraform для автоматизации процессов развертывания и управления инфраструктурой сервиса.

1 ПЛАН-ПРОСПЕКТ ДИПЛОМНОГО ПРОЕКТА

Содержание плана-проспекта дипломного проекта представлено в таблице 1.1.

Таблица 1.1 – План-проспект дипломного проекта

Этап	Описание	Сроки
		выполнения
Введение	Актуальности темы дипломного проекта; формулировка цели и задач дипломного проектирования; выделение объекта и предмета исследования дипломного	
	проектирования.	
Анализ исходных данных и постановка задач на дипломное проектирование	Изучение особенностей распределенных веб-сервисов для AWS; определение функциональных требований к разворачиваемому веб-сервису; анализ существующих облачных провайдеров по теме дипломного проектирования; обоснование и описание выбора облачного провайдера; постановка задач на дипломное проектирование.	
Описание и	Terraform «инфраструктура как код»,	01.04.2024 -
проектирование облачной инфраструктуры	описание и обоснование используемых распределенных веб-сервисов, контейнеризация и оркестрация с помощью Docker и Docker Compose, описание и обоснование использования СІ/СD, проектирование и разработка облачной инфраструктуры.	08.04.2024
Практическая реализация облачной инфраструктуры для веб-сервиса	Обзор разворачиваемого веб-сервиса, реализация инфраструктуры в виде кода для облачного окружения, настройка непрерывной интеграции и доставки (СІ/СD), описание технологий разворачивания распределенного Web-сервиса с использованием Terraform	

Продолжение таблицы 1.1

Этап	Описание	Сроки
		выполнения
Оценка	Оценка временных показателей; оценка	22.04.2024 -
количественных	ресурсных показателей.	04.05.2024
показателей		
функционирования		
разворачиваемого		
веб-сервиса		
Разработка	Выполнение чертежа «IDEF0 диаграмма	16.04.2024 -
графического	декомпозиции», выполнение плаката	14.05.2024
материала	«UML диаграмма развертывания веб-	
	сервиса», выполнение плаката	
	«Структура манифеста Terraform»,	
	выполнение плаката «Схема	
	инфраструктуры AWS», выполнение	
	плаката «Графический интерфейс веб-	
	сервиса», выполнение чертежа «Схема	
	алгоритма развертывания	
	инфраструктуры»	
Экономическое	Выполнение задания по экономическому	22.04.2024 -
обоснование	обоснованию применения DevOps-	04.05.2024
применения	технологий поддержки распределенных	
DevOps-	Web-сервисов для AWS с	
технологий	использованием Terraform.	
поддержки		
распределенных		
Web-сервисов		
Оформление	Составление введения, заключения,	02.05.2024 -
отчёта дипломного	списка используемой литературы,	20.05.2024
проекта	приложений, ведомости дипломного	
	проекта.	

Таким образом, дата окончания работы над дипломным проектом должна быть не позднее 27.05.2024.

2 АНАЛИЗ ИСХОДНЫХ ДАННЫХ И ПОСТАНОВКА ЗАДАЧ НА ДИПЛОМНОЕ ПРОЕКТИРОВАНИЕ

2.1 Анализ исходных данных к дипломному проекту

Анализ исходных данных к дипломному проекту представляет собой фундаментальный этап в разработке проекта, направленного на создание и поддержку распределенных веб-сервисов для платформы Amazon Web Services (AWS) с использованием DevOps технологий и инструментов автоматизации.

В соответствии с утвержденным приказом университета от 19.03.2024 № 595-с, тема проекта определена как «DevOps технологии поддержки распределенных Web сервисов для AWS с использованием Terraform». Этот проект предполагает разработку инфраструктуры и развертывания вебсервиса для поддержки распределенных веб-сервисов на платформе AWS с использованием современных методов DevOps.

Исходные данные к дипломному проекту описывают систему распределенных веб-сервисов, предназначенных для платформы Amazon Web Services (AWS). Цель данной системы заключается в обеспечении поддержки распределенных веб-сервисов на платформе AWS с применением DevOps технологий и инструментов автоматизации, а также в оптимизации процессов развертывания и масштабирования.

В соответствии с функциональными требованиями, веб-сервис должен предоставлять возможность регистрации и аутентификации пользователей, наличие личного кабинета, реляционной базы данных, логирования действий пользователей и поддержки нескольких ролей. Инфраструктурная часть включает использование облачных виртуальных серверов (AWS EC2), облачных сетевых функций, Terraform для реализации «инфраструктуры как код», Docker и Docker Compose для контейнеризации приложений, а также применение облачных технологий контейнеризации и СІ/СD.

Требования к графическому интерфейсу предполагают его соответствие принципам инженерного дизайна и современным подходам к проектированию. Программное окружение описывается как Amazon Web Services (VPC, Route Table, Internet Gateway, Public Subnet, Security Group, EC2, RDS, S3, Elastic IP, IAM Policy, IAM Role, CloudWatch), Terraform, GitHub Actions. Все подключаемые библиотеки должны иметь некоммерческую лицензию.

Проектирование системы должно соответствовать документам, включая общие требования к дипломным проектам, стандарты ISO/IEC по качеству

систем и программного обеспечения, а также нормативные документы по разработке программного обеспечения и созданию документации пользователя.

Исходные данные содержат подробное описание системы, ее назначение, требования к функциональности, графическому интерфейсу, программному окружению, а также указания по соответствующим стандартам и нормативам, которые должны учитываться при проектировании и разработке данного проекта.

Для анализа исходных данных к дипломному проекту также необходимо изучить особенности распределенных веб-сервисов Amazon Web Services (AWS). Распределенные веб-сервисы являются ключевым элементом сетевых приложений, способствующим эффективной обработке запросов от множества пользователей. Однако, для оптимальной реализации таких сервисов необходимо учитывать ряд особенностей, характерных для инфраструктуры облачных вычислений, таких как AWS.

Первоначально, эффективное проектирование и развертывание распределенных веб-сервисов на AWS требует глубокого понимания архитектурных принципов, присущих облачным вычислениям. Это включает в себя управление ресурсами, автомасштабирование, отказоустойчивость и обеспечение безопасности данных.

Далее, адаптация инфраструктуры распределенных веб-сервисов под AWS включает в себя использование соответствующих сервисов и инструментов, предоставляемых платформой. Например, для обеспечения высокой доступности и отказоустойчивости можно использовать сервисы, такие как Amazon Elastic Compute Cloud (EC2) для развертывания вебсерверов в различных регионах, а Amazon Relational Database Service (RDS) для хранения данных.

Наконец, обеспечение безопасности является критическим аспектом при развертывании распределенных веб-сервисов на AWS. Это включает в себя использование средств аутентификации, авторизации, а также механизмов шифрования данных, предоставляемых AWS Identity and Access Management (IAM).

Изучение особенностей распределенных веб-сервисов для AWS требует комплексного подхода, объединяющего понимание принципов облачных вычислений с практическим применением соответствующих сервисов и инструментов, предоставляемых платформой AWS.

Функциональные требования к разворачиваемому веб-сервису, ориентированному на платформу WordPress, включают следующие аспекты:

1 Регистрация и авторизация пользователей: веб-сервис должен обеспечивать возможность регистрации новых пользователей и

аутентификации уже зарегистрированных. Это включает в себя формы для ввода учетных данных пользователей, проверку их достоверности и управление процессом аутентификации.

2 Наличие личного кабинета: веб-сервис должен предоставлять зарегистрированным пользователям доступ к личному кабинету, где они могут просматривать и управлять своими персональными данными, настройками профиля и прочей информацией, связанной с их аккаунтом.

3 Наличие реляционной базы данных: для хранения информации о пользователях, их профилях, а также других сопутствующих данных (например, контента сайта) необходимо использовать реляционную базу данных. Это обеспечит структурированное хранение и эффективное управление данными.

4 Наличие логирования действий пользователей: веб-сервис должен осуществлять запись (логирование) действий пользователей, таких как вход в систему, изменение данных профиля, публикация контента и другие события, имеющие значение для безопасности и аналитики.

5 Наличие нескольких ролей: веб-сервис должен поддерживать механизм управления доступом на основе ролей пользователей. Это означает, различным категориям пользователей должны назначены соответствующие определенными правами роли c доступа К функциональности сайта.

Проанализировав исходные данные к проекту, можно сделать вывод о необходимости разработки и поддержки распределенных веб-сервисов для AWS с использованием DevOps технологий. Требования к функциональности включают регистрацию и аутентификацию пользователей, наличие личного кабинета, реляционной базы данных, логирования действий пользователей и управления ролями. Эффективная реализация проекта требует учета особенностей облачных вычислений, выбора соответствующих сервисов AWS и соблюдения современных методов решения развертывания веб-сервиса.

2.2 Обзор существующих облачных провайдеров по теме дипломного проекта

Анализ ключевых облачных провайдеров позволяет выявить характеристики, предлагаемые услуги и инструменты, что способствует принятию обоснованного решения при выборе провайдера для реализации проектов.

Среди ведущих облачных провайдеров выделяются Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), Alibaba Cloud и Oracle Cloud. Каждый из них обладает уникальными особенностями,

предлагая широкий спектр сервисов для обеспечения гибкости, масштабируемости и надежности в различных проектах (рисунок 2.1).

Рисунок 2.1 – Популярные облачные провайдеры [1]

В топ 5 облачных провайдеров входит AWS, Microsoft Azure, Google Cloud Platform (GCP), Alibaba и IBM Cloud [2].

Далее следует более детальное рассмотрение каждого облачного провайдера и его преимуществ в контексте дипломного проекта, ориентированного на поддержку распределенных веб-сервисов с использованием DevOps технологий.

2.2.1 Amazon Web Services как облачный провайдер

Первым облачным провайдером, который заслуживает внимания, является Amazon Web Services (AWS) – гигант в сфере облачных вычислений и один из лидеров среди топ-5 облачных провайдеров мира (рисунок 2.2).

Рисунок 2.2 – Облачный провайдер AWS [3]

AWS предлагает широкий спектр облачных услуг и инструментов, включая те, которые значительно облегчают применение методологии DevOps:

1 Вычислительные ресурсы: AWS предоставляет широкий спектр виртуальных машин (Amazon EC2) с различными типами экземпляров, а также управляемые контейнерные службы, такие как Amazon Elastic Container Service (ECS) и Amazon Elastic Kubernetes Service (EKS).

2 Хранилище данных: AWS предлагает различные сервисы хранения данных, такие как Amazon S3 для хранения неструктурированных данных, Amazon RDS для реляционных баз данных, Amazon DynamoDB для NoSQL баз данных и Amazon Redshift для аналитических данных.

3 Сетевые ресурсы: AWS предоставляет инструменты для создания и управления виртуальными сетями, балансировки нагрузки, контентной доставки, а также виртуальных частных сетей (Amazon VPC) для изоляции ресурсов.

4 Управление AWS ресурсами мониторинг: предоставляет И инструменты автоматизации развертывания управления ДЛЯ И такие как AWS CloudFormation, а также инфраструктурой, мониторинга и журналирования, такие как Amazon CloudWatch и AWS CloudTrail.

5 Инструменты разработки: AWS предлагает набор инструментов для разработчиков, включая AWS CodeCommit (сервис хранения кода), AWS CodeBuild (сервис для сборки кода), AWS CodeDeploy (сервис для автоматизации развертывания) и AWS CodePipeline (сервис для создания непрерывной интеграции и доставки).

6 Интеграция с открытыми источниками: AWS поддерживает множество открытых технологий и инструментов, таких как Docker, Kubernetes, Jenkins, Git и другие, что делает его привлекательным выбором для компаний, работающих в среде DevOps.

7 Безопасность: AWS обеспечивает широкий спектр инструментов и служб для обеспечения безопасности программных средств и данных, включая механизмы аутентификации, управления доступом, шифрования данных и т. д.

Amazon Web Services (AWS) была запущена в 2006 году и стала одним из ведущих облачных провайдеров в мире. Она предоставляет 105 зон доступности в 33 географических регионах с планами на расширение в 18 новых зон доступности и 6 новых регионов. Это обеспечивает высокую доступность и надежность для бизнес-приложений.

AWS предлагает широкий спектр сервисов (более 210). С долей рынка облачных услуг в 33% (по состоянию 2021 года), AWS является лидером в этой

области, что делает предпочтительным выбором AWS для многих организаций. Amazon EC2 предоставляет мощные виртуальные машины с возможностью масштабирования, а Amazon VPC позволяет создавать изолированные сети в облаке [4].

Среди клиентов AWS такие крупные компании, как Netflix, BMW и Samsung. Ценовая политика AWS включает гибкую ценовую модель, включая оплату за час, резервированные экземпляры и бесплатный уровень услуг.

Чистый объем продаж Amazon Web Services (AWS) вырос с примерно 8 миллиардов долларов в 2015 году до более чем 17 миллиардов долларов в 2017 году, достиг 35 миллиардов долларов к 2019 году и в настоящее время составляет 96,8 миллиарда долларов в год. Этот ошеломляющий рост был обусловлен расширением AWS с 32 зон доступности в 2015 году до 52 зон доступности в 2017 году и до 105 зон доступности в настоящее время. Параллельно компания запустила тысячи новых сервисов AWS, что также способствовало ее росту [6].

С учетом высокой производительности, масштабируемости и безопасности AWS остается одним из наиболее популярных облачных провайдеров среди разработчиков и инженеров по всему миру. Все эти факторы делают AWS предпочтительным выбором для различных типов проектов, включая дипломные работы, ориентированные на разработку и поддержку распределенных веб-сервисов. Возможность использования инфраструктуры как кода, широкий спектр сервисов DevOps и высокие стандарты безопасности делают AWS привлекательным решением для разработчиков, стремящихся к успешной реализации своих проектов в облаке.

2.2.2 Microsoft Azure как облачный провайдер

Заголовочная «About» страница, которая рассказывает о том, что такое Microsoft Azure объясняет, — «Облачная платформа Azure включает более 200 продуктов и облачных служб, которые помогут в создании новых решений для сегодняшних и будущих задач. Создавайте и запускайте приложения и управляйте ими в нескольких облаках, локально и в пограничной среде, используя удобные для вас инструменты и платформы». Логотип представлен на рисунке 2.3 [5].

Рисунок 2.3 – Облачный провайдер Microsoft Azure

Microsoft Azure предоставляет разнообразные услуги для обеспечения вычислительных ресурсов, хранилища данных, сетевых ресурсов, управления ресурсами и мониторинга, инструментов разработки, интеграции с открытыми источниками и обеспечения безопасности. В числе предоставляемых услуг – виртуальные машины различных конфигураций, хранилище данных Azure Blob Storage, Azure SQL Database, Azure Cosmos DB, виртуальные сети, службы балансировки нагрузки, а также инструменты разработки, такие как Azure DevOps Services, Azure DevTest Labs и Azure Repos. Безопасность также является одним из приоритетов Azure, что подтверждается инвестициями в сумме более 1 миллиарда долларов США за последний год. Обновления и платформы продолжаются, включая разработку инструментов и услуг для облегчения процесса разработки, развертывания и управления веб-сервисами.

Облачный провайдер Microsoft Azure был запущен в 2010 году и стал одним из ведущих в мире. Azure предоставляет доступ к более чем 64 регионам по всему миру и более чем 126 зонам доступности, обеспечивая высокую доступность и надежность для бизнес-приложений. Клиенты могут выбирать из различных географических локаций в зависимости от своих потребностей.

Аzure предлагает более 200 облачных сервисов, включая вычисления (виртуальные машины, контейнеры и серверы приложений), хранение данных (Azure Blob Storage, Azure SQL Database, Azure Cosmos DB), искусственный интеллект (Azure Machine Learning, Azure Cognitive Services), сетевые решения (виртуальные сети, балансировщики нагрузки, VPN-шлюзы), аналитику и большие данные (Azure Data Lake, Azure HDInsight).

С долей рынка облачных услуг в 20%, Azure является важным игроком на рынке, набирая популярность среди предприятий и разработчиков. В Azure используются виртуальные машины, аналогичные Amazon EC2, для развертывания приложений и обработки данных. Azure Virtual Network (VNet) позволяет создавать изолированные сети в облаке и управлять трафиком.

Среди клиентов Azure такие крупные компании, как Adobe, BMW и General Electric. Ценовая политика Azure основана на оплате использованных ресурсов за час.

По всему миру расположено более 300 физических центров обработки данных Microsoft Azure, в которых размещены компьютерные серверы, каждый из которых оснащен независимым питанием, охлаждением и сетями. Компания соединяет инфраструктуру дата-центров более чем 175 000 миль волоконно-оптических линий связи в 140 странах.

Доходы Microsoft от интеллектуального облака, включающего в себя доходы от Azure, других облачных сервисов и серверных продуктов, в последнем квартале достигли 25,9 млрд долларов, что на 19 % больше, чем в прошлом году. Таким образом, в годовом исчислении доход Microsoft от Intelligent Cloud составляет 103,5 миллиарда долларов. Однако Microsoft не раскрывает информацию о доходах от Azure, что означает, что Azure – это лишь часть общего дохода от Intelligent Cloud.

2.2.3 Google Cloud Platform как облачный провайдер

Google Cloud Platform (GCP) представляет собой мощный облачный провайдер, который предоставляет разнообразные услуги и инструменты для компаний, занимающихся разработкой и поддержкой программного обеспечения в контексте DevOps. Одним из ключевых преимуществ GCP является его гибкая и масштабируемая вычислительная инфраструктура, которая позволяет эффективно управлять вычислительными ресурсами и развертывать программное обеспечение в облаке с использованием виртуальных машин и контейнерных сред, таких как Kubernetes Engine. Логотип GCP представлен на рисунке 2.4.

Рисунок 2.4 – Google Cloud Platform

GCP предлагает широкий набор сервисов для хранения данных, включая Cloud Storage для объектов, Cloud SQL для реляционных баз данных и Firestore для NoSQL хранилищ, что обеспечивает разработчикам разнообразные решения для хранения и обработки данных.

Важным аспектом в области DevOps является эффективное управление и мониторинг ресурсов. GCP предоставляет инструменты автоматизации процессов развертывания и управления инфраструктурой, такие как Cloud Build и Stackdriver, которые позволяют разработчикам легко контролировать производительность и доступность своих проектов.

Инструменты разработки на GCP, такие как Cloud Source Repositories и интеграция с Jenkins, обеспечивают командам DevOps средства для эффективной совместной работы над кодом и автоматизации процессов разработки и развертывания.

Сервисы, созданные Google, используют ту же облачную инфраструктуру, которую компания использует для своих внутренних продуктов, таких как Gmail, Google Search, Google Photos и YouTube.

Год основания Google Cloud Platform — 2008 год. С тех пор GCP стал одним из ведущих провайдеров облачных услуг в мире. На сегодняшний день Google Cloud насчитывает 40 регионов и 121 зону доступности. Эти регионы и зоны доступности расположены в США, Северной и Южной Америке, Европе, Азиатско-Тихоокеанском регионе, а также на Ближнем Востоке и в Африке. Клиенты могут выбирать из различных географических локаций в соответствии с их потребностями.

Google Cloud Platform предлагает широкий спектр сервисов, включая вычисления (виртуальные машины, контейнеры, серверы приложений), хранилище данных (Google Cloud Storage, Google Cloud SQL), искусственный интеллект (Google AI Platform, TensorFlow), сеть (Virtual Private Cloud, Google Cloud Load Balancing).

Доля рынка GCP в облачных услугах составляет 9% и продолжает расти. Это делает его значимым игроком на рынке, привлекательным для разработчиков и организаций. В GCP используются виртуальные машины, предоставляющие масштабируемые ресурсы для развертывания приложений и обработки данных. Virtual Private Cloud (VPC) в GCP позволяет создавать изолированные сети и управлять трафиком.

Среди клиентов GCP такие компании, как Snap Inc., Spotify и HSBC. Ценообразование в Google Cloud Platform зависит от использованных ресурсов и предлагает гибкие опции оплаты за использованные ресурсы.

Подразделение Google Cloud компании Alphabet Inc получает доход за счет платы, взимаемой за инфраструктуру, платформу и другие услуги. В последнем квартале выручка Google Cloud составила 9,2 млрд долларов, что на 26 % больше, чем в прошлом году. Таким образом, в годовом исчислении выручка Google Cloud составляет 37 миллиардов долларов.

2.2.4 Alibaba Cloud как облачный провайдер

Alibaba Cloud, как облачный провайдер, играет ключевую роль в сфере DevOps, предоставляя комплексные решения для ускорения процессов разработки и обеспечения непрерывной доставки программных средств. С помощью своих сервисов и инструментов, Alibaba Cloud способствует созданию эффективной и безопасной среды для DevOps, что позволяет компаниям быстро адаптироваться к изменениям и оптимизировать рабочие процессы.

Подразделение Alibaba Group, занимающееся облачными вычислениями и известное как Alibaba Cloud, является четвертым по величине поставщиком облачных услуг в мире, основным поставщиком облачных услуг в Азиатско-Тихоокеанском регионе и крупнейшим поставщиком облачных услуг в Китае. Через Alibaba Cloud компания предлагает облачные услуги, включая эластичные вычисления, базы данных, хранилища, сетевую виртуализацию, крупномасштабные вычисления, безопасность, управление и услуги приложений, аналитику больших данных и машинное обучение.

В настоящее время Alibaba Cloud работает в 30 регионах и 89 зонах доступности. В континентальном Китае Alibaba является доминирующим поставщиком облачных услуг, имея 15 регионов по всей стране. За пределами материкового Китая Alibaba Cloud работает в США, Европе, Азиатско-Тихоокеанском регионе и на Ближнем Востоке.

Аlibaba Group в основном получает доходы от облачных вычислений от корпоративных клиентов в зависимости от продолжительности и использования их услуг. Выручка подразделения Cloud Intelligence Group, в которое входит Alibaba Cloud, за последний квартал составила 3,95 млрд долларов (28 066 млн юаней), что на 3 % больше, чем в прошлом году. Таким образом, в годовом исчислении выручка Alibaba Cloud в настоящее время составляет 15,8 млрд долларов.

В заключение, Alibaba Cloud предоставляет мощные инструменты и сервисы для DevOps, которые помогают компаниям достигать высокого качества и эффективности в доставке бизнес-приложений. С помощью продвинутых технологий и интеграции с другими продуктами Alibaba Cloud, DevOps-команды могут реализовывать сложные проекты с уверенностью в стабильности и безопасности своих решений [7][8].

2.2.5 Oracle Cloud как облачный провайдер

Oracle Cloud представляет собой облачную платформу, которая предлагает решения для DevOps, обеспечивая непрерывную интеграцию и непрерывную доставку (CI/CD) для команд разработчиков, работающих на Oracle Cloud Infrastructure (OCI). Это интегрированная служба, которая обеспечивает согласованность идентификации, безопасности, логирования и других аспектов инфраструктуры Oracle Cloud, а также предварительно настроенные безопасные развертывания в OCI Compute Services.

OCI DevOps гибко интегрируется с существующими рабочими процессами и инструментами, такими как GitHub, GitLab, Jenkins и другие, включая частные и облачные ресурсы. Это позволяет командам разработчиков

сосредоточиться на коде и рабочих процессах, не заботясь о серверах, поскольку платформа масштабируется для поддержки параллельных сборок.

Облачные сервисы корпорации Oracle включают в себя Oracle Cloud Software-as-a-Service (SaaS) и Oracle Cloud Infrastructure (OCI). В рамках ОСІ компания является поставщиком облачных услуг, предоставляя инфраструктурные технологии как услугу, включая вычисления, хранение и сетевые сервисы.

В настоящее время Oracle Cloud имеет 48 регионов и 58 зон доступности. Эти регионы и зоны доступности расположены в США, Канаде, Европе, на Ближнем Востоке и в Африке (ЕМЕА), Латинской Америке и Азиатско-Кроме того, Oracle Cloud Тихоокеанском регионе. предлагает правительственные облачные правительства США, регионы ДЛЯ Министерства обороны США (DoD) и правительства Великобритании, а также два суверенных региона для клиентов из стран Европейского союза (ЕС).

Oracle Cloud Infrastructure (OCI) обычно взимает предоплату, которая постепенно снижается по мере потребления услуг ОСІ клиентом в течение определенного периода времени. В последнем квартале выручка Oracle Cloud IaaS достигла 1,8 млрд долларов, увеличившись на 49% по сравнению с предыдущим годом. Таким образом, в годовом исчислении выручка Oracle Cloud составляет 7,2 млрд долларов.

2.3 Обоснование и описание выбора облачного провайдера

Для обоснования выбора облачного провайдера необходимо провести анализ и сравнительную оценку нескольких провайдеров облачных услуг, включая AWS, в контексте требований и целей дипломного проекта. Этот анализ должен включать в себя составление сравнительных таблиц, в которых будут отображены ключевые параметры и характеристики каждого провайдера.

Сравнительные таблицы позволят объективно оценить преимущества и недостатки каждого провайдера и определить, какой из них лучше соответствует требованиям и целям дипломного проекта. Кроме того, при анализе необходимо учитывать факторы, специфичные для проекта, такие как поддержка DevOps методологии, совместимость с выбранными инструментами разработки и управления инфраструктурой, а также поддержка распределенных веб-сервисов.

После проведения анализа и сравнительной оценки провайдеров необходимо будет принять обоснованное решение о выборе оптимального облачного провайдера для реализации дипломного проекта.

В таблице 2.1 представлена сравнительная таблица облачных провайдеров (AWS, Azure, GCP).

Таблица 2.1 – Сравнительная таблица облачных провайдеров (AWS, Azure, GCP)

	AWS	Azure	GCP	
Год запуска	2004	2010	2008	
Зоны доступности	105	126	121	
Регионы	33	64	40	
Сервисы	210+	200+	100+	
Облачный рынок	33%	21%	8%	
Вычислительный	EC2 (Elastic			
движок	Compute	Virtual Machine	Compute Engine	
	Search)			
Сеть	VPC (Virtual	VNET (Virtual		
	Private	Network)	Cloud Virtual Network	
	Cloud)	INCLWOIK)		
Ценовая политика	по часам	по минутам	по минутам	

В таблице 2.2 представлен сравнительный анализ облачных провайдеров (Alibaba Cloud, Oracle Cloud).

Таблица 2.2 – Сравнительная таблица облачных провайдеров (Alibaba Cloud и Oracle Cloud)

	Alibaba Cloud	Oracle Cloud
Год запуска	2009	2016
Зоны доступности	89	58
Регионы	30	48
Сервисы	210+	200+
Облачный рынок	7.7%	2.1%
Вычислительный движок	Alibaba ECS	Compute
Сеть	VPC (Virtual Private Cloud)	VCN (Virtual Cloud Network)
Ценовая политика	постоянная или по мере	постоянная или по мере
	использования	использования

После анализа и сравнительной оценки нескольких ведущих облачных провайдеров, таких как AWS, Azure, GCP, Alibaba Cloud и Oracle Cloud, было

принято обоснованное решение о выборе AWS в качестве оптимального варианта.

Одним из основных факторов, подтверждающих выбор AWS, является его лидерство на мировом рынке облачных провайдеров. По данным сравнительной таблицы, AWS занимает второе место по количеству зон доступности, регионов и предоставляемых сервисов. Но приоритетом является то, что AWS имеет значительно большую долю рынка в сравнении с конкурентами, что свидетельствует о высокой степени доверия со стороны пользователей.

Кроме того, AWS предлагает широкий спектр вычислительных движков и сетевых решений, таких как EC2 и VPC, которые хорошо подходят для реализации распределенных веб-сервисов. Ценовая политика AWS, основанная на оплате за использование по часам, также является привлекательным фактором для студентов и начинающих специалистов, позволяя экономить ресурсы при разработке и тестировании проекта.

Важным аспектом выбора AWS является его простота в использовании и доступность документации. Интуитивно понятный интерфейс платформы и обширная база знаний делают процесс разработки и управления инфраструктурой более эффективным и прозрачным.

Таким образом, на основании представленного сравнительного анализа и учета основных факторов, обоснованным решением является выбор облачного провайдера AWS для реализации дипломного проекта. Учитывая все вышеперечисленные факторы, выбор Amazon Web Services (AWS) в качестве облачного провайдера для проекта по разработке и поддержке распределенных веб-сервисов на платформе AWS с использованием DevOps технологий и инструментов автоматизации является логичным и обоснованным решением. Все аспекты, начиная от широкого набора сервисов и высокой производительности, и заканчивая доступностью знаний и ресурсов поддержки, делают AWS оптимальным выбором для успешной реализации проекта.

2.4. Постановка задач на дипломное проектирование

Постановка задач на дипломное проектирование предполагает развертывание веб-сервиса на инфраструктуре облачного провайдера Amazon Web Services (AWS) с использованием распределенных веб-сервисов и инструментов DevOps. Для автоматизации управления инфраструктурой и ее конфигурацией необходимо применять Terraform, — инструмент инфраструктурного кодирования.

Перед началом развертывания веб-сервиса и применения DevOpsтехнологий необходимо провести анализ задания к дипломному проекту. Данный этап играет ключевую роль в формировании требований и ожиданий, предъявляемых к разрабатываемому дипломному проекту. Анализ задания позволяет выявить основные задачи и цели проекта, определить требования к функциональности и качеству разрабатываемого веб-сервиса, а также установить рамки и ограничения, с которыми необходимо работать. В типовом задании к дипломному проекту прописываются основные этапы работы, ожидаемые результаты и критерии оценки.

Графические материалы и пояснительная записка к дипломному проекту оформляются согласно установленным стандартам и требованиям. Используются соответствующие ГОСТы, регламентирующие оформление документации и графических материалов.

Проведение анализа документации по облачному провайдеру AWS, Terraform и реализации CI/CD позволит ознакомиться с теоретическими и практическими аспектами, необходимыми для успешной реализации дипломного проекта. Это включает изучение основных концепций и функциональных возможностей данных технологий, а также методов их применения в практике.

Следующим этапом является реализация DevOps технологий поддержки распределенных веб-сервисов для AWS с использованием Terraform в соответствии с требованиями, определенными в типовом задании дипломного проекта. Это включает проектирование инфраструктуры, ее описание и последующий запуск (создание) для тестирования или деплоя, а также реализацию DevOps-практики CI/CD с использованием Terraform и GitHub Actions.

Написание пояснительной разработка графического записки И являются важными составляющими процесса дипломного проектирования. Пояснительная записка должна содержать описание всех этапов работы, принятых решений и полученных результатов, а также анализ выполненной работы. Графический материал должен иллюстрировать основные аспекты проекта поддерживать И текст пояснительной записки.

Завершающим этапом, подтверждающим успешное выполнения задания к дипломному проекту, является защита как преддипломной практики, так и самого дипломного проекта.

3 ОПИСАНИЕ И ПРОЕКТИРОВАНИЕ ОБЛАЧНОЙ ИНФРАСТРУКТУРЫ

3.1 Terraform «инфраструктура как код»

НаshiCorp Terraform представляет собой инструмент инфраструктуры в формате кода, предназначенный для определения облачных и локальных ресурсов в читаемых человеком конфигурационных файлах. Эти файлы могут быть версионированы, повторно и совместно использоваться. Помимо этого, Terraform использует последовательный рабочий процесс для обеспечения и управления всей инфраструктурой на протяжении ее жизненного цикла. Возможности Terraform включают управление как низкоуровневыми компонентами, такими как вычислительные ресурсы, ресурсы хранения и сетевые ресурсы, так и высокоуровневыми компонентами, такими как записи DNS и функции SaaS.

Теrraform создает и управляет ресурсами на облачных платформах и других сервисах через их интерфейсы прикладного программирования (API). Провайдеры позволяют Terraform работать практически с любой платформой или сервисом с доступным API.

Рисунок 3.1 – Принцип работы Terraform [9]

В основе работы Terraform и принципа инфраструктуры как код лежит процесс, начинающийся с загрузки конфигурационных файлов Terraform. Эти файлы описывают желаемую инфраструктуру, включая ресурсы и их параметры. Этот этап представляет собой начальную точку, с которой Terraform начинает свою работу по созданию, изменению или удалению инфраструктурных ресурсов в соответствии с описанием, предоставленным в конфигурационных файлах. Ниже приведен алгоритм работы Terraform:

1 Анализ конфигурации: Terraform анализирует конфигурационные файлы и создает внутреннее представление желаемой инфраструктуры в виде

графа зависимостей между ресурсами. Этот граф описывает порядок, в котором ресурсы должны быть созданы и связаны друг с другом.

2 Инициализация провайдера: Terraform обращается к указанным провайдерам, используя предоставленные в конфигурации ключи доступа и настройки. Провайдеры — это компоненты, которые взаимодействуют с API конкретного облачного провайдера или другой системы для управления ресурсами.

3 Планирование изменений: Terraform включает в себя сравнение текущего состояния инфраструктуры, которое сохранено локально в файлах состояния, с желаемым состоянием, описанным в конфигурации. В результате этого процесса определяются ресурсы, которые требуется добавить, изменить или удалить для достижения желаемого состояния. На основе этого сравнения Terraform генерирует план изменений, который содержит необходимые действия для синхронизации текущего и желаемого состояний инфраструктуры.

4 Применение изменений: после того как план изменений сгенерирован и подтвержден пользователем, Terraform начинает внесение изменений в инфраструктуру, взаимодействуя с API провайдера для создания, изменения или удаления ресурсов. Terraform следит за порядком и зависимостями ресурсов, чтобы убедиться, что изменения применяются в правильном порядке.

5 Обновление состояния: по мере применения изменений Terraform обновляет локальное состояние инфраструктуры, чтобы отразить актуальное состояние. Это позволяет Terraform отслеживать текущее состояние инфраструктуры и использовать его при следующих операциях управления.

Таким образом, Terraform обеспечивает автоматизированное управление инфраструктурой с использованием концепции инфраструктуры как кода, упрощая процесс развертывания и управления облачными ресурсами.

HashiCorp и сообщество Terraform разработали значительное количество провайдеров для управления разнообразными типами ресурсов и сервисов. В реестре Terraform представлены все общедоступные провайдеры, включая Amazon Web Services (AWS), Azure, Google Cloud Platform (GCP), Kubernetes, Helm, GitHub, Splunk, Docker и многие другие.

Основной рабочий процесс Terraform включает три этапа:

1 Написание манифеста: на этом этапе определяются ресурсы, которые могут присутствовать у различных облачных провайдеров и сервисов. Например, необходимо создать конфигурацию для развертывания приложения на виртуальных машинах в сети виртуального частного облака (VPC) с группами безопасности и балансировщиком нагрузки.

2 Планирование (plan): Terraform генерирует план выполнения, который описывает инфраструктуру, предполагаемую для создания, обновления или уничтожения. Этот план формируется на основе существующего состояния инфраструктуры и конфигурации, предоставленной пользователем.

3 Применение (apply): после подтверждения пользователя Тегтаform выполняет предложенные операции в правильном порядке, учитывая все зависимости от ресурсов. Например, если происходит обновление свойств VPC и изменение количества виртуальных машин в этом VPC, Terraform создает VPC заново перед масштабированием виртуальных машин. Один из полезных функциональных возможностей Terraform заключается в возможности выполнения проверки после написания инфраструктуры в виде кода с помощью команды terraform plan в терминале. Эта команда, как правило, выявляет семантические ошибки, если таковые имеются, и выводит подробный план построения инфраструктуры, включая этапы выполнения (см. рисунок 3.2).

Рисунок 3.2 – Рабочий процесс Terraform [10]

Преимущества использования Terraform:

1 Управление любой инфраструктурой и провайдером: Terraform предоставляет доступ к реестру провайдеров для множества платформ и

сервисов, а также позволяет создавать собственные провайдеры. Использование неизменяемого подхода к инфраструктуре упрощает процесс обновления или модификации сервисов и инфраструктуры.

2 Отслеживание изменений инфраструктуры: Terraform генерирует план изменений и запрашивает подтверждение перед их применением. Файл состояния служит источником истины для среды, а Terraform использует его для определения изменений, необходимых для соответствия конфигурации.

3 Автоматизация изменений: Файлы конфигурации Terraform являются декларативными, что позволяет описывать конечное состояние инфраструктуры без необходимости написания пошаговых инструкций. Теrraform эффективно управляет логикой создания и изменения ресурсов, строя граф зависимостей и параллельно обрабатывая независимые ресурсы.

4 Стандартизация конфигураций: Terraform поддерживает модули — это многократно используемые компоненты конфигурации, что позволяет экономить время на создание настраиваемых коллекций инфраструктуры.

5 Совместная работа: Terraform позволяет фиксировать манифесты в системе контроля версий и использовать Terraform Cloud или другие облачные провайдеры для эффективного управления рабочими процессами в командах. Terraform Cloud обеспечивает безопасный доступ к общему состоянию, контроль доступа на основе ролей и другие полезные функции. Terraform — это программное обеспечение с открытым исходным кодом, которое позволяет описывать инфраструктуру кодом у специального провайдера, после чего проверять её, масштабировать и изменять.

Таким образом, Terraform, как инструмент (программное обеспечение) написания «инфраструктуры как кода», является важным элементом для того, чтобы эффективно и автоматизировано управлять инфраструктурой разворачиваемого проекта (веб-сервиса) в рамках данного дипломного проекта.

3.2 Описание и обоснование используемых распределенных вебсервисов

Распределенные веб-сервисы имеют стратегическое значение в сфере построения облачной инфраструктуры, обеспечивая необходимую масштабируемость и надежность при предоставлении онлайн-услуг.

Данная глава направлена на анализ и обоснование выбора распределенных веб-сервисов, включая VPC, Route Table, Internet Gateway, Public Subnet, Security Group, RDS Instance, S3, Elastic IP, IAM Policy, IAM Role и CloudWatch.

В этом контексте следующим этапом является рассмотрение первого из распределенных веб-сервисов – Virtual Private Cloud (VPC).

3.2.1 VPC

Атаzon Virtual Private Cloud (VPC) представляет собой сервис, предоставляющий возможность развертывать ресурсы AWS в логически изолированной виртуальной сети, настраиваемой пользователем. Это обеспечивает полный контроль над окружением виртуальной сети, включая возможность определения собственного диапазона IP-адресов, создание подсетей, а также конфигурацию таблиц маршрутизации и сетевых шлюзов. Для большинства ресурсов в VPC доступны как IPv4, так и IPv6, что обеспечивает безопасный и удобный доступ к ресурсам и приложениям (рисунок 3.3).

Рисунок 3.3 – Инфраструктура с использованием VPC [11]

В качестве одного из основополагающих сервисов AWS, Amazon VPC обеспечивает удобное настройка параметров сети VPC в соответствии с потребностями пользователя. Путем создания общедоступной подсети для веб-серверов с доступом к Интернету, а также частной подсети для серверных систем, таких как базы данных или серверы приложений, пользователи могут эффективно организовать свою инфраструктуру. Amazon VPC также предлагает использование многоуровневой системы безопасности, включающей в себя группы безопасности и сетевые списки контроля доступа. Эта система обеспечивает контроль доступа к виртуальным машинам Amazon Elastic Compute Cloud (Amazon EC2) в каждой подсети, повышая безопасность и управляемость сетевой инфраструктуры.

Помимо прочего, в рамках виртуальной частной сети (VPC) возможно настройка ряда сервисов, включая журналы потоков, IP Address Manager

(IPAM) для управления IP-адресами, входящую маршрутизацию, Network Access Analyzer для анализа доступа к сети, список контроля доступа к сети, сетевой менеджер, а также Reachability Analyzer - инструмент для анализа статических конфигураций. Кроме того, в рамках VPC предусмотрены группы безопасности и зеркалирование трафика.

Отображение VPC на рисунке 3.3 подчеркивает его значимость как главного и основополагающего распределенного веб-сервиса. VPC выступает в качестве центральной сети инфраструктуры, существенно важной для организации, так как находится выше только по уровню региона (включая доступные зоны и/или зоны доступности).

Выбор сервиса Amazon Virtual Private Cloud (VPC) обоснован его ключевой ролью в построении безопасной, масштабируемой и надежной облачной инфраструктуры на платформе AWS. VPC позволяет создавать изолированные виртуальные сети с гибкой настройкой параметров, таких как диапазон IP-адресов, подсети и таблицы маршрутизации. Этот сервис обеспечивает контроль доступа к ресурсам и приложениям, что является критическим аспектом в развертывании и управлении распределенными вебсервисами.

Добавление VPC в инфраструктуру разворачиваемого веб-сервиса является ключевым шагом для создания надежной и эффективной облачной инфраструктуры.

3.2.2 Route Table

Route Table — это один из сервисов AWS, основанный на AWS VPC, таблица маршрутов содержит набор правил, называемых маршрутами, которые определяют, куда направлять сетевой трафик из подсети или шлюза.

Основные концепции для таблицы маршрутов включают главную таблицу маршрутов, которая предоставляется автоматически с VPC и управляет маршрутизацией для всех подсетей, не связанных с другими таблицами маршрутов, а также пользовательскую таблицу маршрутов, создаваемую для конкретного VPC.

Каждый маршрут определяется понятиями «назначение» и «цель», где назначение указывает диапазон IP-адресов, куда должен быть направлен трафик (CIDR назначения), а цель определяет шлюз, сетевой интерфейс или соединение, через которые трафик будет направлен, например, интернетшлюз.

Для связи таблиц маршрутов с подсетями, интернет-шлюзами или виртуальными частными шлюзами используется ассоциация таблиц

маршрутов, а таблица маршрутов подсети связывается непосредственно с определенной подсетью.

Локальный маршрут представляет собой маршрут по умолчанию для внутренней связи в пределах VPC, в то время как распространение маршрутов включает автоматическое добавление маршрутов для VPN-соединения в таблицы маршрутов подсетей при подключении виртуального частного шлюза к VPC.

Таблица маршрутов шлюза связана с интернет-шлюзом или виртуальным частным шлюзом, а ассоциация с границами используется для маршрутизации входящего трафика VPC на конкретное устройство.

Таблица маршрутов транзитного шлюза связана с транзитным шлюзом, тогда как таблица маршрутов локального шлюза связана с локальным шлюзом Outposts.

Использование распределенного веб-сервиса Route Table на AWS обосновано его ключевой ролью в управлении трафиком между различными сегментами виртуальной сети. Route Table предоставляет возможность определения маршрутов для сетевого трафика в зависимости от его назначения, что обеспечивает эффективную маршрутизацию внутри облачной инфраструктуры.

3.2.3 Internet Gateway

Интернет-шлюз представляет собой ключевой компонент горизонтально масштабируемой и высокодоступной виртуальной частной сети (VPC), обеспечивающий устойчивое соединение между VPC и Интернетом. С его помощью возможна передача трафика как по протоколу IPv4, так и IPv6, обеспечивая эффективное взаимодействие ресурсов как в публичных, так и в локальных сетях. Интернет-шлюз действует в качестве посредника для связи между ресурсами, обладающими публичными IPадресами, и обеспечивает возможность инициирования соединений как с внешних ресурсов, так и из внутренней сети.

Специфическим функционалом интернет-шлюза является обеспечение соответствующих маршрутов в таблицах маршрутизации VPC для трафика, направляемого через Интернет. Кроме того, для обмена данными по протоколу IPv4, Internet Gateway выполняет функцию трансляции сетевых адресов (NAT), что способствует эффективному использованию ресурсов и обеспечивает безопасность сетевого трафика. Однако, в случае использования IPv6, такая функция не требуется, поскольку IPv6-адреса являются общедоступными и не требуют дополнительной трансляции.

Экземпляры EC2 в облаке AWS, а также другие ресурсы, размещенные в публичных подсетях, могут взаимодействовать с Интернетом благодаря наличию публичных IP-адресов и обработке трафика через интернет-шлюз. Этот механизм обеспечивает эффективное управление сетевым трафиком и обеспечивает надежное соединение как для облачных, так и для локальных сред.

Internet Gateway (IGW) в AWS играет ключевую роль в обеспечении доступа к интернету для виртуальных ресурсов внутри Amazon Virtual Private Cloud (VPC). Этот компонент инфраструктуры позволяет виртуальным серверам и сервисам в VPC обмениваться данными с внешним миром, обеспечивая доступ к внешним ресурсам, веб-сервисам и клиентам через интернет.

В рамках дипломного проекта «DevOps технологии поддержки распределенных Web сервисов для AWS с использованием Terraform» использование Internet Gateway обоснован необходимостью обеспечения связности и доступности веб-приложений и сервисов, развернутых в облаке AWS. IGW гарантирует высокую доступность внешнего доступа к веб-приложениям, обеспечивает масштабируемость и гибкость в управлении сетевым трафиком, а также интегрируется с другими сервисами AWS, что позволяет создавать комплексные сетевые конфигурации с учетом требований безопасности и производительности.

3.2.4 Public Subnet

Public Subnet в Amazon Virtual Private Cloud (VPC) играет важную роль в архитектуре облачных приложений, предоставляя среду для размещения публичных ресурсов, которые требуют доступности извне. Этот сегмент сети обеспечивает прямой доступ к интернету через Internet Gateway на AWS, что позволяет веб-серверам, API-шлюзам и другим публичным ресурсам взаимодействовать с внешними клиентами и сервисами.

Использование Public Subnet обосновано необходимостью предоставления доступа к веб-сервису извне, чтобы потенциальный пользователь мог зайти по адресу домена веб-сервиса и получить к нему доступ. Этот подход позволяет изолировать публичные ресурсы от приватных, повышая уровень безопасности и обеспечивая контроль доступа к важным данным и сервисам. Такая конфигурация позволяет эффективно управлять и обеспечивать безопасность веб-инфраструктуры в облаке AWS, что является ключевым аспектом современных распределенных веб-сервисов.

Это включает в себя обслуживание внешних запросов и обмен информацией с внешним миром. При этом изоляция публичных ресурсов от

приватных обеспечивает повышенный уровень безопасности и контроля доступа к важным данным и сервисам.

3.2.5 Private Subnet

Private Subnet в Amazon Virtual Private Cloud (VPC) представляет собой сегмент сети, который не имеет прямого доступа к интернету и используется для размещения приватных ресурсов, таких как базы данных Amazon RDS. Этот компонент обеспечивает изоляцию приватных ресурсов от внешнего интернета, обеспечивая дополнительный уровень безопасности для данных, хранимых и обрабатываемых в облаке AWS.

Выбор использования Private Subnet с Amazon RDS обоснован необходимостью ограничения доступа к базе данных из внешних сетей. Этот подход способствует повышению уровня безопасности данных, хранимых в базе данных, и предотвращает несанкционированный доступ извне. Подключение базы данных к Private Subnet ограничивает доступ к ней только из ресурсов, находящихся в той же сети, что и RDS, обеспечивая дополнительный слой защиты.

При развертывании веб-сервиса на экземпляре EC2, который находится в публичной подсети (Public Subnet), взаимодействие с базой данных RDS, находящейся в Private Subnet, ограничивается. Экземпляр EC2 предоставляет доступ пользователям извне к веб-сервису, поскольку обладает Internet Gateway и принимает внешний трафик. Однако, Private Subnet принимает трафик исключительно из локальной сети, в которой размещен EC2, и не предоставляет доступ извне. Таким образом, доступ к базе данных RDS возможен только из экземпляра EC2, что создает дополнительный уровень безопасности. Учитывая, что доступ к EC2 осуществляется через SSH-ключ, скомпрометировать который является нереальной задачей, обеспечивается высокий уровень безопасности для базы данных RDS.

3.2.6 Security Group

Распределенный веб-сервис Security Group на AWS представляет собой виртуальный брандмауэр, который контролирует трафик входящий и исходящий для экземпляров Amazon EC2 в Amazon Virtual Private Cloud (VPC). Security Group позволяет определять правила доступа на основе IP-адресов, портов и протоколов, обеспечивая тем самым безопасность виртуальных серверов и приложений.

Выбор использования Security Group обоснован необходимостью обеспечения безопасности веб-приложений и сервисов в облаке AWS.

Использование Security Group позволяет настраивать правила доступа к виртуальным серверам и сервисам в соответствии с требованиями безопасности проекта, например, блокируя доступ к нежелательным IP-адресам или разрешая доступ только определенным портам и протоколам.

Кроме того, Security Group обеспечивает гибкость и управляемость в управлении правилами безопасности, позволяя администраторам быстро реагировать на изменения в требованиях безопасности и внесение соответствующих правок в конфигурацию. Таким образом, использование распределенного веб-сервиса Security Group в рамках проекта обеспечивает надежную защиту виртуальных серверов и приложений в облачной среде AWS, что является критически важным аспектом для обеспечения безопасности и целостности данных и сервисов.

3.2.7 EC2

Эластичное облако вычислений Amazon (Amazon EC2) предлагает самую широкую и глубокую вычислительную платформу с более чем 750 набором новейших инстансами И процессоров, хранилищ, операционных систем и моделей покупок, обеспечивая должное соответствие нуждам конкретной рабочей нагрузки. AWS EC2 – первый крупный облачный провайдер, который поддерживает работу процессоров Intel, AMD и Arm, единственное облако с инстансами EC2 Mac по требованию и с сетью Ethernet 400 Гбит/с. **AWS** EC2 предлагает лучшее соотношение производительности машинного обучения, а также самую низкую стоимость инстансов логических выводов в облаке. На AWS выполняется больше рабочих нагрузок SAP, высокопроизводительных вычислений (НРС), машинного обучения и Windows, чем в любом другом облаке.

На следующей схеме (рисунок 3.4) показана базовая архитектура экземпляра Amazon EC2, развернутого в виртуальном частном облаке Amazon (VPC). В этом примере экземпляр EC2 находится в зоне доступности региона. Экземпляр EC2 защищен с помощью группы безопасности, которая представляет собой виртуальный брандмауэр, контролирующий входящий и исходящий трафик. Закрытый ключ хранится на локальном компьютере, а открытый ключ — на экземпляре. Оба ключа указываются как ключевая пара для подтверждения личности пользователя. В этом сценарии за экземпляром закреплен том Amazon EBS. VPC взаимодействует с Интернетом с помощью интернет-шлюза.

Рисунок 3.4 – Базовая архитектура экземпляра AWS EC2 [12]

Cloud (Amazon Amazon Elastic Compute EC2) предоставляет масштабируемые вычислительные мощности по требованию в облаке Amazon Web Services (AWS). Использование Amazon EC2 позволяет сократить расходы на аппаратное обеспечение и ускорить разработку и развертывание приложений. С помощью Amazon EC2 можно запустить столько виртуальных серверов, сколько нужно, настроить безопасность и сетевое взаимодействие, а также управлять хранилищем. Помимо этого, можно увеличить мощность (масштабирование) для решения задач, требующих больших вычислений, таких как ежемесячные или ежегодные процессы или скачки посещаемости веб-сайта. При снижении нагрузки можно снова сократить мощность (уменьшить масштаб).

Amazon EC2 предоставляет следующие возможности высокого уровня:

- инстансы (instances): виртуальные серверы;
- образы машин Amazon (Amazon Machine Images): предварительно настроенные шаблоны для экземпляров, в которых собраны компоненты, необходимые для сервера (включая операционную систему и дополнительное программное обеспечение);
- типы экземпляров (Instances types): различные конфигурации процессора, памяти, хранилища, сетевых мощностей и графического оборудования для экземпляров;
- пары ключей (Key pairs): защищенная информация для входа в систему для экземпляров, AWS хранит открытый ключ, а пользователь хранит закрытый ключ в безопасном месте;

- тома хранилища инстансов (Instance store volumes): тома для хранения временных данных, которые удаляются при остановке, спящем режиме или завершении работы экземпляра;
- тома Amazon EBS: постоянные тома для хранения данных с помощью Amazon Elastic Block Store (Amazon EBS);
- регионы и зоны (Regions and Zones): несколько физических местоположений для ресурсов, таких как экземпляры и тома Amazon EBS;
- группы безопасности (security groups): виртуальный брандмауэр, позволяющий указать протоколы, порты и диапазоны IP-адресов источников, через которые могут подключаться инстансы, а также диапазоны IP-адресов получателей, к которым могут подключаться инстансы.
- эластичные IP-адреса (elastic ip addresses): статические IPv4-адреса для динамических облачных вычислений.
- теги (tags): метаданные, которые можно создавать и назначать ресурсам Amazon EC2;
- виртуальные частные облака (Virtual Private Clouds): виртуальные сети, которые вы можете создать, логически изолированные от остальной части облака AWS.

Виртуальные сети можно создать, чтобы они были логически изолированные от остальной части облака AWS. При желании можно подключить эти виртуальные сети к своей собственной сети.

Выбор использования EC2 в контексте дипломного проекта обоснован необходимостью предоставления инфраструктурных ресурсов для развертывания и запуска веб-сервиса. EC2 обеспечивает гибкость в выборе типа и размера инстансов, что позволяет оптимизировать использование ресурсов и обеспечить соответствие требованиям проекта в плане производительности и масштабируемости.

3.2.8 Amazon S3

Атагоп Simple Storage Service (Amazon S3) — это распределенный вебсервис хранения объектов, предлагающий лучшие в отрасли показатели производительности, масштабируемости, доступности и безопасности данных. Клиенты любой величины и из любой промышленной отрасли могут хранить и защищать необходимый объем данных для практически любого примера использования. Например, для пользовательский данных, облачных приложений и мобильных программных средств. Выгодные классы хранилища и простые в использовании инструменты администрирования позволяют оптимизировать затраты, организовать данные и точно настроить

ограничения доступа в соответствии с потребностями бизнеса или законодательными требованиями (рисунок 3.5).

Рисунок 3.5 – Принцип работы Amazon S3 [13]

Атагоп S3 используют для хранения большого объема данных, аналитики, искусственного интеллекта, машинного обучения, высокопроизводительных вычислений, резервного копирования и восстановления критических важных файлов, запуска веб-сервисов с оптимизацией для облака. Помимо этого, стоимость архивации данных составляет наименьшую цену.

3.2.9 RDS

Amazon RDS – это управляемый сервис реляционных баз данных для MySQL, PostgreSQL, MariaDB, Oracle (с поддержкой собственных лицензий) или SQL Server.

Атагоп RDS представляет собой сервис реляционных баз данных, который призван облегчить управление базами данных и оптимизировать совокупную стоимость владения. Этот сервис обладает простотой в управлении, что позволяет легко настраивать, эксплуатировать и масштабировать его в зависимости от потребностей клиента. Amazon RDS автоматизирует множество рутинных задач управления базами данных, включая выделение ресурсов, настройку, выполнение резервного копирования и установку исправлений.

Клиентам предоставляется возможность создавать новую базу данных всего за несколько минут и гибко настраивать базу данных в соответствии с нужными потребностями. Сервис предлагает широкий выбор движков баз данных и вариантов развертывания, что позволяет клиентам оптимизировать

производительность в соответствии с их требованиями. Оптимизированные операции записи и чтения, множество зон доступности с резервными инстансами и возможность выбора из различных вариантов ценообразования делают Amazon RDS привлекательным выбором для эффективного управления базами данных и управления затратами.

AWS предоставляет самый широкий выбор специализированных баз данных, которые позволяют вам экономить, развиваться и внедрять инновации быстрее. Выбор состоит из более чем 15 специализированных моделей баз данных, например реляционную, документную, графовую, реестровую, а также модель базы данных на основе пар «ключ-значение», базы данных в памяти, базы данных с широким столбцом и базы данных временных рядов.

Производительность при любом масштабе – реляционные базы данных, которые в 3–5 раз быстрее, чем популярные альтернативы, или нереляционные базы данных, обеспечивающие минимальную задержку в микро- или миллисекунды.

Принцип работы Amazon RDS представлен на рисунке 3.6.

Рисунок 3.6 – Принцип работы Amazon RDS [14]

Выбор распределенного веб-сервиса Amazon RDS обоснован несколькими факторами, включая требования по безопасности и надежности, а также необходимость эффективного взаимодействия с развертываемым веб-сервисом. Размещение Amazon RDS в Private Subnet, в отличие от Public Subnet, обеспечивает дополнительный слой защиты для базы данных, ограничивая доступ к ней извне и минимизируя риски уязвимостей безопасности.

Использование Amazon RDS в качестве виртуальной машины с реляционной базой данных MySQL 5.7 обусловлено требованиями к поддержке конкретной версии базы данных и ее функциональности для

развертываемого веб-сервиса. MySQL 5.7 предоставляет широкие возможности по управлению данными и обеспечивает совместимость с множеством приложений и инструментов разработки.

Также стоит отметить, что Amazon RDS предоставляет высокий уровень автоматизации и управления базами данных, что позволяет уменьшить время и усилия, затрачиваемые на настройку и поддержку инфраструктуры базы данных. Это включает в себя автоматическое выделение ресурсов, резервное копирование и установку исправлений, что способствует оптимизации процесса развертывания и обеспечивает стабильную работу развертываемого веб-сервиса.

3.2.10 Elastic IP

Elastic IP address является ключевым элементом в инфраструктуре облачных вычислений, обеспечивая статический IPv4-адрес, который может быть динамически назначен различным облачным ресурсам. Это предоставляет гибкость и надежность в управлении сетевой конфигурацией, позволяя пользователям AWS сохранить постоянную точку доступа к своим облачным вычислениям. Эластичный IP-адрес является уникальным для каждой учетной записи AWS и остается в ее распоряжении до тех пор, пока не будет освобожден, обеспечивая постоянство в сетевых настройках в течение всего времени использования.

Использование Elastic IP address позволяет эффективно управлять отказами экземпляров или программного обеспечения, предоставляя возможность быстрого переназначения адреса на другой экземпляр в рамках той же учетной записи AWS. Это существенно сокращает время простоя и обеспечивает непрерывную доступность облачных ресурсов. Кроме того, Elastic IP address может быть легко интегрирован в DNS-записи для доменов, обеспечивая удобный механизм указания доменного имени на экземпляр в облаке AWS.

Использование Elastic IP (EIP) предоставляет ряд значительных преимуществ для облачной инфраструктуры. Первое преимущество заключается в стабильности и надежности EIP, поскольку он обеспечивает постоянный IP-адрес, который остается неизменным при перезапуске экземпляров EC2 или других виртуальных ресурсов. Это обеспечивает стабильный доступ к приложениям, что является критическим для непрерывной работы системы.

Второе преимущество связано с управлением и масштабируемостью. EIP позволяет гибко управлять IP-адресами и привязывать их к различным экземплярам EC2 и другим ресурсам в облаке AWS. Такая гибкость обеспечивает удобство при настройке сетевой инфраструктуры и позволяет эффективно масштабировать приложения в соответствии с потребностями.

Третье преимущество состоит в предоставлении бесплатной зоны переноса для EIP со стороны AWS. Это позволяет безопасно и эффективно переносить IP-адреса между различными экземплярами EC2 и регионами AWS, что является важным аспектом обеспечения гибкости и доступности при работе с облачной инфраструктурой.

Четвертое преимущество заключается в обеспечении безопасности. Использование EIP позволяет избежать блокировки IP-адресов в списке антиспам-фильтров или других систем безопасности, так как он остается постоянным и надежным, что повышает уровень защиты и предотвращает потенциальные проблемы с безопасностью в сети.

Выбор использования Elastic IP для распределенного веб-сервиса на **AWS** обоснован несколькими факторами, необходимость включая обеспечения безопасного и надежного соединения с постоянным доменным именем. При развертывании веб-сервиса в облаке AWS часто требуется использование SSL-сертификата для защищенной передачи данных между клиентами и сервером. Кроме того, для удобства пользователей веб-сервиса доменное чтобы важно иметь постоянное имя, они могли идентифицировать и запомнить адрес сайта.

Поскольку при создании нового экземпляра EC2 каждый раз выдается новый Public IPv4-адрес, использование ручно созданного и постоянного Elastic IP address является эффективным решением. Это позволяет назначить один и тот же постоянный IPv4-адрес каждый раз при создании нового экземпляра EC2 через Terraform. Такой подход обеспечивает постоянство IP-адреса, что необходимо для создания А-записи в DNS домена на Cloudflare, обеспечивая постоянное доменное имя для веб-сервиса.

Таким образом, использование Elastic IP в данном контексте позволяет обеспечить надежную и устойчивую работу веб-сервиса, обеспечивая постоянное соединение с постоянным доменным именем, что повышает удобство использования и безопасность сервиса для его пользователей.

3.2.11 IAM Policy

С помощью IAM Policy можно управлять доступом в AWS, создавая политики и прикрепляя их к IAM-идентификаторам (пользователям, группам пользователей или ролям) или ресурсам AWS. Политика — это объект в AWS, который, будучи связанным с идентификатором или ресурсом, определяет их разрешения. AWS оценивает эти политики, когда принципал IAM (пользователь или роль) делает запрос. Разрешения в политиках определяют,

будет ли запрос разрешен или отклонен. Большинство политик хранятся в AWS в виде документов JSON. AWS поддерживает шесть типов политик: политики на основе идентификации, политики на основе ресурсов, границы разрешений, организационные SCP, ACL и политики сессий.

Политики IAM определяют разрешения на действие независимо от метода, который использует пользователь для выполнения операции.

Например, если политика разрешает действие GetUser, то пользователь с такой политикой может получить информацию о пользователе из AWS Management Console, AWS CLI или AWS API.

При создании пользователя IAM предоставляется возможность выбора типа доступа — консольного или программного. Если разрешен доступ к консоли, пользователь IAM может войти в консоль, используя предоставленные учетные данные. В случае разрешенного программного доступа пользователь может использовать ключи доступа для работы с СLI или API. Эти два варианта предоставления доступа представляют собой различные методы взаимодействия с облачными ресурсами и предназначены для разных сценариев использования.

Распределенный веб-сервис IAM Policy на AWS (Identity and Access Management) играет важную роль в управлении доступом к ресурсам и сервисам облака. Выбор использования IAM Policy обусловлен необходимостью реализации распределенного веб-сервиса CloudWatch для мониторинга логирования, где необходима IAM Policy.

Основные преимущества использования IAM Policy:

1 Гранулированное управление доступом: IAM Policy позволяет создавать гранулированные политики доступа, определяющие, какие пользователи или роли могут выполнять какие операции над определенными ресурсами. Это обеспечивает принцип минимальных привилегий и улучшает безопасность инфраструктуры.

2 Гибкость и масштабируемость: IAM Policy позволяет настраивать политики доступа для различных типов ресурсов, включая EC2, S3, RDS и другие, а также для различных типов действий, таких как чтение, запись, удаление и т. д. Это обеспечивает гибкость в настройке доступа и масштабируемость при добавлении новых ресурсов и пользователей.

3 Интеграция с другими сервисами AWS: IAM Policy интегрируется с другими сервисами AWS, такими как S3, EC2, RDS и другими, обеспечивая возможность управления доступом к различным ресурсам и сервисам из единого интерфейса.

4 Мониторинг и аудит доступа: IAM Policy позволяет отслеживать и анализировать действия пользователей и ролей в рамках вашей учетной записи

AWS, обеспечивая возможность мониторинга и аудита доступа для обеспечения безопасности и соответствия требованиям.

Использование IAM Policy в контексте дипломного проекта обеспечивает необходимый уровень безопасности и контроля доступа к ресурсам и сервисам облака AWS. Помимо этого, использование IAM Policy необходимо для реализации распределенного веб-сервиса CloudWatch. Это позволяет эффективно управлять пользователями, ролями и политиками безопасности, обеспечивая соблюдение правил доступа и минимизацию рисков безопасности.

3.2.12 IAM Role

IAM Role - это идентификатор в IAM, который создается в учетной записи и обладает определенными разрешениями. Этот вид идентификатора похож на IAM User в том смысле, что он также обладает политиками разрешений, определяющими его возможности в AWS. В отличие от IAM User, роль не привязана к конкретному пользователю, а предназначена для использования любым лицом, которому она необходима. Кроме того, роль не обладает постоянными учетными данными, такими как пароль или ключи доступа. Вместо этого, при принятии роли пользователем предоставляются временные учетные данные безопасности для сеанса работы с данной ролью.

Роли могут быть использованы для передачи доступа к ресурсам AWS пользователям, приложениям или службам, которые обычно не имеют прямого доступа к ним. Например, это может включать предоставление доступа пользователям учетной записи AWS к ресурсам, к которым они обычно не имеют доступа, либо предоставление доступа пользователям из одной учетной записи AWS к ресурсам из другой учетной записи. Также роли могут быть использованы для разрешения мобильным программных средствам использовать ресурсы AWS, избегая встраивания ключей AWS в исходный код программного средства.

Выбор использования распределенного веб-сервиса IAM Role на AWS обусловлен необходимостью обеспечения безопасного и гибкого управления доступом к ресурсам облака, особенно в контексте среды с множеством различных сервисов. IAM Role представляет собой эффективный механизм для предоставления временных учетных записей с ограниченными привилегиями, которые могут использоваться в определенные временные интервалы или автоматически для выполнения конкретных задач или операций.

В случае реализации сервиса логирования CloudWatch в инфраструктуре разворачиваемого веб-сервиса, необходимо реализовать соответствующие

IAM Policy для обеспечения необходимых разрешений. После этого IAM Policy ассоциируется с созданной до этого IAM Role. Создание IAM Role позволяет эффективно управлять доступом к ресурсам облака и делегировать необходимые привилегии на выполнение операций с логами CloudWatch. Кроме того, использование IAM Role обеспечивает высокий уровень безопасности за счет предоставления временных учетных записей, что снижает риск компрометации учетных данных и распространения привилегий.

Далее, на основе созданной IAM Role и связанной с ней IAM Policy, необходимо формировать IAM Instance Profile, который затем прикрепляется к создаваемому в инфраструктуре EC2. Этот шаг обеспечивает автоматическое предоставление необходимых привилегий экземпляру EC2 для выполнения операций с логами CloudWatch без необходимости явного указания учетных данных в конфигурации или коде приложения. Такой метод управления доступом упрощает процесс администрирования и повышает общий уровень безопасности инфраструктуры за счет сокращения возможных точек уязвимости и рисков безопасности.

3.2.13 CloudWatch

Атаzon CloudWatch — это служба, которая отслеживает работу приложений, реагирует на изменения производительности, оптимизирует использование ресурсов и предоставляет информацию о состоянии операционной системы. Собирая данные по всем ресурсам AWS, CloudWatch обеспечивает видимость производительности всей системы и позволяет пользователям устанавливать сигналы тревоги, автоматически реагировать на изменения и получать единое представление о работоспособности системы (рисунок 3.7).

Рисунок 3.7 – Принцип работы Amazon CloudWatch [15]

Amazon CloudWatch собирает и визуализирует журналы, метрики и данные о событиях в реальном времени в виде автоматизированных панелей, чтобы упростить обслуживание инфраструктуры и приложений.

Выбор использования распределенного веб-сервиса CloudWatch на AWS обусловлен потребностью в мониторинге, анализе и управлении ресурсами облака для обеспечения их надежной и эффективной работы. CloudWatch предоставляет широкий спектр инструментов для сбора, отображения и анализа метрик, журналов и событий, что позволяет оперативно реагировать на изменения и проблемы в инфраструктуре.

Выбор использования CloudWatch обоснован несколькими факторами.

Во-первых, сервис обеспечивает мониторинг и анализ метрик для различных ресурсов облака, что позволяет оперативно отслеживать производительность и использование ресурсов, а также оптимизировать инфраструктуру.

Во-вторых, CloudWatch предоставляет возможность мониторинга журналов и событий, что позволяет выявлять проблемы и нештатные ситуации для оперативной реакции на них. Кроме того, сервис предоставляет инструменты для управления и оптимизации ресурсов, таких как автоматическое масштабирование или использование правил мониторинга для определенных событий.

Наконец, интеграция CloudWatch другими сервисами AWS обеспечивает возможность автоматизации процессов мониторинга ресурсами. Таким образом, использование CloudWatch управления обеспечивает надежный и эффективный мониторинг, анализ и управление ресурсами облака, что делает его важным компонентом для обеспечения безопасности, надежности и эффективности работы в облачной среде.

3.3 Контейнеризация и оркестрация с помощью Docker и Docker Compose

Docker представляет собой открытую платформу, предназначенную для разработки, доставки и запуска приложений. Его основное преимущество заключается в возможности изолировать приложения от инфраструктуры, что обеспечивает быструю поставку программного обеспечения. С Docker можно управлять как приложениями, так и инфраструктурой, что значительно сокращает время между написанием кода и его запуском в производственной среде.

Основой Docker являются контейнеры, которые представляют собой слабо изолированную среду для упаковки и запуска приложений. Эти

контейнеры обеспечивают изоляцию и безопасность, что позволяет запускать множество контейнеров одновременно на одном хосте. Контейнеры компактны и содержат все необходимое для работы приложения, что позволяет избежать зависимости от конфигурации хоста. Более того, контейнеры могут легко обмениваться во время выполнения, гарантируя, что все пользователи получат одинаковый контейнер, работающий в точности так же.

Docker предоставляет инструменты и платформу для управления жизненным циклом контейнеров. Разработчики могут создавать приложения компоненты с помощью контейнеров, связанные которые используются для распространения и тестирования приложения. После этого приложение может быть развернуто в производственной среде в виде контейнера или оркестрированной службы, независимо от того, где находится производственная среда – на локальном сервере, в облачном окружении или в Docker гибридной упрощает разработку, среде. предоставляя стандартизированные среды для работы разработчиков с локальными контейнерами, содержащими приложения и сервисы. Контейнеры также удобны для использования в рабочих процессах непрерывной интеграции и непрерывной доставки (CI/CD).

С помощью Docker также описывается процесс разработки программного обеспечения. Предположим, что есть следующий сценарий:

- 1 Разработчики создают код локально и обмениваются им с коллегами через контейнеры Docker.
- 2 Затем наработки кода передаются в тестовую среду с помощью Docker, где запускаются как автоматические, так и ручные тесты.
- 3 В случае обнаружения ошибок в процессе тестирования, исправления вносятся разработчиками в локальной среде, а затем переносятся в тестовую среду для проверки и утверждения.
- 4 После завершения тестирования обновленные приложения могут быть легко развернуты в производственной среде, что упрощает доставку исправлений клиентам.

Использование Docker позволяет эффективно использовать оборудование, так как он обеспечивает высокую плотность размещения и может быть эффективной альтернативой виртуальным машинам на базе гипервизора. Это особенно полезно для малых и средних развертываний, где требуется максимальное использование ресурсов.

Архитектура Docker основана на клиент-серверном принципе. Клиентский компонент Docker взаимодействует с демоном Docker, который отвечает за создание, запуск и управление контейнерами Docker. Возможно использование как локального соединения клиента Docker с демоном Docker на той же системе, так и подключение клиента Docker к удаленному демону Docker. Для обмена данными между клиентом Docker и демоном Docker используются REST API, сокеты UNIX или сетевой интерфейс. Кроме того, существует еще один инструмент, известный как Docker Compose, который позволяет управлять множеством контейнеров, составляющих приложение (рисунок 3.8).

Рисунок 3.8 – Архитектура Docker [16]

Демон Docker (dockerd) прослушивает запросы API Docker и управляет объектами Docker, такими как образы, контейнеры, сети и тома. Демон взаимодействует с другими демонами для управления службами Docker.

Клиент Docker, известный как docker, представляет собой основной интерфейс для взаимодействия множества пользователей с Docker. Когда выполняются команды, такие как docker run, клиент передает их на исполнение демону Docker (dockerd). Этот процесс осуществляется с использованием API Docker. Клиент Docker может взаимодействовать с несколькими демонами.

Образ (Image) в Docker — это шаблон, который доступен только для чтения и содержит инструкции по созданию контейнера Docker. Зачастую образ основан на другом образе, к которому добавлены определенные дополнительные настройки. Например, если создать образ, основанный на образе ubuntu, с установленным веб-сервером Арасhе и статическим вебсайтом, а также необходимыми настройками конфигурации для его функционирования.

Кроме того, Docker позволяет создавать собственные образы или использовать те, которые были созданы другими и опубликованы в реестре. Для создания собственного образа необходимо создать Dockerfile с простым синтаксисом, определяющим этапы, необходимые для создания и запуска образа. Каждая инструкция в Dockerfile создает слой в образе, который содержит определенный объем информации (например, RUN, COPY, ADD, CMD).

Когда происходит изменение Dockerfile и пересобирание образа, пересобираются только те слои, которые изменились. Именно это делает образы такими легкими, маленькими и быстрыми по сравнению с другими технологиями виртуализации.

Контейнер в Docker представляет собой запускаемый экземпляр образа. Создание, запуск, остановка, перемещение или удаление контейнера осуществляется с помощью Docker API или CLI. Контейнер можно подключить к одной или нескольким сетям, присоединить к нему хранилище или создать новый образ на основе его текущего состояния.

По умолчанию контейнер хорошо изолирован от других контейнеров и хост-машины. Управление степенью изоляции сети, хранилища и других базовых подсистем контейнера от других контейнеров или хост-машины возможно.

Контейнер определяется образом и параметрами конфигурации, предоставленными при его создании или запуске. При удалении контейнера все изменения его состояния, не сохраненные в постоянном хранилище, удаляются.

Docker разработан на языке программирования Go и использует возможности ядра Linux для обеспечения своей функциональности. Применение технологии пространств имен позволяет Docker создавать изолированные рабочие пространства, называемые контейнерами. При запуске контейнера Docker формирует набор пространств имен для его работы.

Docker Compose — это инструмент для определения и запуска многоконтейнерных приложений. Это ключ к оптимизации и повышению эффективности разработки и развертывания.

Сотрове упрощает управление всем стеком приложений, обеспечивая простое управление сервисами, сетями и томами в едином конфигурационном файле YAML. После создания этого файла вы можете запустить все службы с помощью одной команды.

Compose поддерживает работу в различных средах, включая продакшн, стейджинг, разработку, тестирование и процессы СІ. Он также предоставляет команды для управления жизненным циклом приложения, включая запуск,

остановку, восстановление служб, просмотр состояния запущенных служб, потоковый вывод журнала запущенных служб и выполнение разовых команд для службы.

Docker Compose основан на конфигурационном файле YAML, который часто называется compose.yaml или docker-compose.yml.

Модель Docker Compose. Вычислительные компоненты приложения определяются как сервисы. Пример реализации docker-compose.yml:

```
version: '3.8'
services:
  wordpress:
    image: wordpress
    restart: always
    ports:
      - 8080:80
    environment:
      WORDPRESS DB HOST: db
      WORDPRESS DB USER: exampleuser
      WORDPRESS DB PASSWORD: examplepass
      WORDPRESS DB NAME: exampledb
    volumes:
      - wordpress:/var/www/html
  db:
    image: mysql:8.0
    restart: always
    environment:
      MYSQL DATABASE: exampledb
     MYSQL USER: exampleuser
      MYSQL PASSWORD: examplepass
      MYSQL RANDOM ROOT PASSWORD: '1'
    volumes:
      - db:/var/lib/mysql
volumes:
  wordpress:
  db:
```

Сервис – это абстрактная концепция, реализуемая на платформах путем запуска одного и того же образа контейнера и его конфигурации один или несколько раз.

Сервисы взаимодействуют друг с другом через сети. В спецификации Сотрове сеть представляет собой абстракцию возможностей платформы, позволяющую создавать ІР-маршруты между контейнерами внутри сервисов, соединенных между собой.

Для хранения и обмена постоянными данными между сервисами используются тома. Спецификация описывает такие постоянные данные как высокоуровневое монтирование файловой системы с глобальными опциями.

Некоторые сервисы требуют конфигурационных данных, которые зависят от времени выполнения или платформы. Для этого в спецификации определена специальная концепция configs. С точки зрения контейнера сервисов, конфигурации можно сравнить с томами, поскольку они представляют собой файлы, монтируемые в контейнер. Однако фактическое определение включает в себя отдельные ресурсы платформы и сервисы, которые абстрагируются этим типом.

Секрет — это особый вид конфигурационных данных для конфиденциальных данных, которые не должны быть открыты без учета соображений безопасности. Секреты предоставляются сервисам в виде файлов, монтируемых в их контейнеры, но ресурсы платформы для предоставления конфиденциальных данных достаточно специфичны, чтобы заслужить отдельное понятие и определение в спецификации Compose.

Проект — это отдельное развертывание спецификации приложения на платформе. Имя проекта, задаваемое с помощью атрибута пате верхнего уровня, используется для объединения ресурсов в группы и изоляции их от других приложений или других установок того же приложения, специфицированного Compose, с различными параметрами. Если вы создаете ресурсы на платформе, вы должны префиксировать имена ресурсов проектом и установить метку com.docker.compose.project.

Сотрове предлагает возможность задать пользовательское имя проекта и переопределить его, чтобы один и тот же файл compose.yaml можно было развернуть дважды на одной и той же инфраструктуре без изменений, просто передав другое имя. Пример присваивания имени в запускаемом docker-compose.yml (с помощью флага -p):

```
docker-compose -p PROJECT NAME BSUIR up -d
```

Выбор инструментов контейнеризации и оркестрации для реализации DevOps-технологий поддержки распределенных веб-сервисов на базе AWS с использованием Terraform обоснован рядом факторов.

Во-первых, Docker и Docker Compose являются широко используемыми инструментами в индустрии разработки программного обеспечения. Они обеспечивают возможность контейнеризации приложений, что обеспечивает консистентность окружений разработки, тестирования и производства. Это

особенно важно при работе с распределенными веб-сервисами, где необходимо обеспечить надежное и единое окружение для запуска приложений на различных этапах их жизненного цикла.

Во-вторых, Docker и Docker Compose позволяют создавать и управлять множеством контейнеров, что идеально подходит для распределенных вебсервисов, где требуется масштабирование. Docker Compose упрощает конфигурацию и развертывание нескольких сервисов, обеспечивая целостное управление всем стеком приложений в едином конфигурационном файле YAMI.

3.4 Описание и обоснование использования CI/CD

Непрерывная интеграция (Continuous Integration, CI) и непрерывная доставка (Continuous Delivery, CD) представляют собой методологию, основанную на культуре, наборе принципов и практиках, обеспечивающих более частое и надежное развертывание изменений в программном обеспечении.

CI/CD являются ключевыми практиками в рамках DevOps и также относятся к agile-подходам. Автоматизация процесса развертывания позволяет разработчикам сосредоточиться на реализации бизнес-требований, а также на качестве кода и безопасности.

Непрерывная интеграция и непрерывная поставка являются составными частями более обширной методологии DevOps. Они взаимодействуют между собой, стремясь к устранению сложностей, возникающих в процессе непрерывных инноваций. Эти два процесса тесно взаимосвязаны и совместно обеспечивают методологию DevOps.

Рисунок 3.9 – DevOps и CI/CD [17]

Непрерывная интеграция (Continuous integration, CI) — это процесс разработки, заключающийся в автоматической сборке и выполнении модульных тестов после внесения изменений в исходный код. СІ требует от команд разработчиков ежедневно по несколько раз интегрировать изменения кода в общий репозиторий исходного кода.

Основная цель непрерывной интеграции — создать последовательный, постоянный метод автоматической сборки и тестирования приложений, гарантирующий, что изменения, внесенные одним разработчиком, пригодны для использования во всей кодовой базе. Благодаря непрерывной интеграции разработчики могут решить проблемы, с которыми они сталкиваются при написании, интеграции, тестировании и доставке программных приложений конечным пользователям.

Непрерывная доставка (CD) – ЭТО продолжение непрерывной интеграции. Это процесс, в котором команды DevOps разрабатывают и поставляют полные части программного обеспечения в репозиторий например, GitHub или реестр контейнеров – короткими, контролируемыми циклами. Непрерывная доставка делает релизы регулярными предсказуемыми событиями для сотрудников DevOps и незаметными для конечных пользователей.

СІ рассматривается как первый шаг, а CD — как второй для создания и развертывания кода. CI — это скорее подготовка кода к выпуску (сборка/тестирование), а CD — собственно выпуск кода (выпуск/развертывание).

Таким образом, в контексте данного дипломного проекта, применение непрерывной интеграции и непрерывной поставки (CI/CD) обосновано сразу несколькими аспектами.

Во-первых, развертывание и обновление изменений веб-сервиса с использованием распределенных веб-сервисов на платформе AWS требует некоторой степени автоматизации и контроля процесса. СІ/СD позволяет автоматизировать сборку и развертывания веб-сервиса, обеспечивая быстрое и надежное внедрение изменений в инфраструктуру. Это особенно важно для эффективного управления проектом.

Во-вторых, в контексте DevOps методологии, внедрение CI/CD способствует ускорению цикла разработки, улучшению уменьшению рисков. Оно позволяет разработчикам чаще и безопаснее вносить изменения в код, а также проводить тестирование и развертывание в автоматизированном режиме. Это особенно важно для проектов, где высокая необходима скорость разработки поставки конкурентного ДЛЯ преимущества, именно поэтому это является технологией в мире DevOps.

Частота использования CI/CD зависит от конкретного проекта и его требований. Однако, в современной разработке программного обеспечения, CI/CD является стандартной практикой, которая широко применяется в индустрии. Это подтверждается популярностью инструментов CI/CD, таких как Jenkins, CircleCI, GitLab CI/CD и других, а также активным обсуждением этой темы в сообществе разработчиков и специалистов по DevOps.

Исходя из описания, изучения и анализа практики DevOps – CI/CD, её применение оправдано как с технической, так и с методологической точек зрения, и соответствует современным требованиям и практикам разработки программного обеспечения.

3.5 Проектирование облачной инфраструктуры

Для проектирования облачной инфраструктуры необходимо предварительно изобразить инфраструктуру (рисунок 3.10).

Рисунок 3.10 – Облачная инфраструктура

Облачная инфраструктура, основанная на AWS Cloud, представляет собой сложную систему, построенную для поддержки распределенных вебсервисов. Внутри AWS Cloud располагается Region, который является выбором региона доступности. Одним из ключевых элементов этой инфраструктуры является Amazon VPC, который обеспечивает изоляцию и безопасность ресурсов. Внутри VPC используются доступные зоны (availability доступности zones), развернуты экземпляры EC2, где выступающие в качестве хостов для веб-сервисов.

Для обеспечения безопасности сети внутри каждой доступной зоны доступности используются Security Group и Public Subnet. Соединение между ними осуществляется через Route Table и Router, а трафик маршрутизируется через Internet Gateway, обеспечивая доступ к веб-сервисам извне. Благодаря Route Table, Router, Internet Gateway и Public Subnet внешний пользователь сможет получить доступ к веб-сервису извне.

Контроль доступа и мониторинг безопасности обеспечиваются через использование IAM Policy (Permissions) и Flow Logs Role, интегрированных с EC2 Instance. Данные мониторинга передаются в Amazon Cloudwatch для последующего анализа и мониторинга.

AWS Management Console играет важную роль в управлении всей инфраструктурой, предоставляя возможность отслеживать и управлять ресурсами. Однако основным инструментом управления инфраструктурой является Terraform. Terraform позволяет создавать, конфигурировать и управлять всеми ресурсами в инфраструктуре, используя подход «инфраструктура как код».

Таким образом, проектирование облачной инфраструктуры для поддержки распределенных веб-сервисов на AWS с использованием Terraform – это сложный и многогранный процесс, охватывающий широкий спектр аспектов. Начиная с разработки сетевой архитектуры, где необходимо учитывать доступность зон и безопасность ресурсов, и заканчивая выбором и настройкой инструментов управления и мониторинга. Этот комплексный подход обеспечивает не только эффективное функционирование веб-сервисов, но и их масштабируемость, что является ключевым для успешного предоставления услуг в облачной среде.

4 ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ ОБЛАЧНОЙ ИНФРАСТРУКТУРЫ ДЛЯ ВЕБ-СЕРВИСА

- 4.1 Обзор разворачиваемого веб-сервиса и используемых библиотек
- 4.2 Реализация инфраструктуры в виде кода

5 ОЦЕНКА КОЛИЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ФУНКЦИОНИРОВАНИЯ ПРОГРАММНОГО СРЕДСТВА

5.1 Оценка временных показателей программного средства

Some text. Some text.

5.2 Оценка ресурсных показателей программного средства

Some text. Some text.

5.3 Оценка показателей надёжности программного средства

Some text. Some text.

ЗАКЛЮЧЕНИЕ

Text.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- [1] Top 10 Cloud Provider Comparison 2023 [Электронный ресурс]. Режим доступа: https://dev.to/dkechag/cloud-vm-performance-value-comparison-2023-perl-more-1kpp. Дата доступа: 27.03.2024.
- [2] 11 Top Cloud Service Providers Globally In 2024 [Электронный ресурс]. Режим доступа: https://www.cloudzero.com/blog/cloud-service-providers/. Дата доступа: 27.03.2024.
- [3] Top 10 AWS Services for Data Engineering Projects [Электронный ресурс]. Режим доступа : https://www.projectpro.io/article/aws-services-for-data-engineering/644. Дата доступа : 27.03.2024.
- [4] Top Cloud Service Providers in 2021: AWS, Microsoft Azure and Google Cloud Platform | CloudThat [Электронный ресурс]. Режим доступа : https://www.cloudthat.com/resources/blog/top-cloud-service-providers-in-2021-aws-microsoft-azure-and-google-cloud-platform. Дата доступа : 27.03.2024.
- [5] What is Azure Microsoft Cloud Services | Microsoft Azure [Электронный ресурс]. Режим доступа : https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure. Дата доступа : 27.03.2024.
- [6] Top 10 Cloud Service Providers Globally in 2024 Dgtl Infra [Электронный ресурс]. Режим доступа : https://dgtlinfra.com/top-cloud-service-providers/. Дата доступа : 27.03.2024.
- [7] Alibaba Cloud DevOps Pipeline (Flow): Enterprise Continuous Delivery Tool [Электронный ресурс]. Режим доступа : https://www.alibabacloud.com/en/product/apsara-deveops/flow?_p_lc=1. Дата доступа : 28.03.2024.
- [8] DevOps Capability Improvement Model Alibaba DevOps Practice Part 26 [Электронный ресурс]. Режим доступа : https://www.alibabacloud.com/blog/devops-capability-improvement-model---alibaba-devops-practice-part-26_598658. Дата доступа : 28.09.2024.
- [9] What is Terraform | Terraform | HashiCorp Developer [Электронный ресурс]. Режим доступа : https://developer.hashicorp.com/terraform/intro. Дата доступа : 01.04.2024.
- [11] Логически изолированное виртуальное частное облако Цены на Amazon VPC Amazon Web Services [Электронный ресурс]. Режим доступа : https://aws.amazon.com/ru/vpc/features/. Дата доступа : 02.04.2024.
- [12] What is Amazon EC2? Amazon Elastic Compute Cloud [Электронный ресурс]. Режим доступа :

- <u>https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html.</u> Дата доступа: 02.04.2024.
- [13] Cloud Object Storage Amazon S3 AWS [Электронный ресурс]. Режим доступа : https://aws.amazon.com/s3/?nc1=h_ls. Дата доступа : 02.04.2024.
- [14] Managed SQL Database Amazon Relational Database Service (RDS) AWS [Электронный ресурс]. Режим доступа : https://aws.amazon.com/rds/?nc1=h_ls. Дата доступа : 03.04.2024.
- [15] APM Tool Amazon CloudWatch AWS [Электронный ресурс]. Режим доступа : https://aws.amazon.com/cloudwatch/. Дата доступа : 03.04.2024.
- [16] Docker overview | Docker Docs [Электронный ресурс]. Режим доступа : https://docs.docker.com/get-started/overview/. Дата доступа : 03.04.2024.
- [17] What's the Difference Between CI/CD and DevOps? [Электронный ресурс]. Режим доступа : https://www.navisite.com/blog/insights/ci-cd-vs-devops/. Дата доступа : 04.04.2024.