Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

Um algoritmo baseado em programação dinâmica e renomeamento para minimização de formas normais

Matheus Pimenta

Universidade de Brasília

2016

Conteúdo

- Introdução
- Referencial teórico
- 3 O algoritmo
- 4 Resultados experimentais
- Conclusão
- 6 Referências

Conteúdo

- Introdução
- 2 Referencial teórico
- 3 O algoritmo
- 4 Resultados experimentais
- Conclusão
- 6 Referências

Introdução Referencial teórico O algorítmo Resultados experimentais Conclusão Referências

Lógica

• Lógicas são utilizadas para representar e raciocinar sobre problemas computacionais.

- Lógicas são utilizadas para representar e raciocinar sobre problemas computacionais.
- A representação se dá através de uma linguagem formal, de fórmulas.

- Lógicas são utilizadas para representar e raciocinar sobre problemas computacionais.
- A representação se dá através de uma linguagem formal, de fórmulas.
- Para atribuir um significado a cada fórmula, define-se para a lógica uma semântica

- Lógicas são utilizadas para representar e raciocinar sobre problemas computacionais.
- A representação se dá através de uma linguagem formal, de fórmulas.
- Para atribuir um significado a cada fórmula, define-se para a lógica uma *semântica*, que possui diferentes *interpretações*.

- Lógicas são utilizadas para representar e raciocinar sobre problemas computacionais.
- A representação se dá através de uma linguagem formal, de fórmulas.
- Para atribuir um significado a cada fórmula, define-se para a lógica uma semântica, que possui diferentes interpretações.
- Em lógicas clássicas, os significados possíveis são somente verdadeiro ou falso.

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

SAT

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

SAT

Satisfatibilidade: Determinar se existe uma interpretação sob a qual uma dada fórmula é verdadeira.

• Possui grande interesse prático:

- Possui grande interesse prático:
 - Síntese [1], otimização [2] e verificação [3] de hardware.

- Possui grande interesse prático:
 - Síntese [1], otimização [2] e verificação [3] de hardware.
 - Raciocínio automático [4].

- Possui grande interesse prático:
 - Síntese [1], otimização [2] e verificação [3] de hardware.
 - Raciocínio automático [4].
 - Biologia e medicina [5].

- Possui grande interesse prático:
 - Síntese [1], otimização [2] e verificação [3] de hardware.
 - Raciocínio automático [4].
 - Biologia e medicina [5].
- Interesse teórico fundamental:

- Possui grande interesse prático:
 - Síntese [1], otimização [2] e verificação [3] de hardware.
 - Raciocínio automático [4].
 - Biologia e medicina [5].
- Interesse teórico fundamental:
 - Primeiro problema NP-completo [6].

- Possui grande interesse prático:
 - Síntese [1], otimização [2] e verificação [3] de hardware.
 - Raciocínio automático [4].
 - Biologia e medicina [5].
- Interesse teórico fundamental:
 - Primeiro problema NP-completo [6].
 - Deu base para formalizar P versus NP [6].

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

VAL

Validade: Determinar se uma dada fórmula é verdadeira sob qualquer interpretação.

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

VAL

Validade: Determinar se uma dada fórmula é verdadeira sob qualquer interpretação.

SAT e VAL são redutíveis um ao outro!

Introdução Referencial teórico O algorítmo Resultados experimentais Conclusão Referências

Algoritmos para SAT e VAL

• Há diversos algoritmos de busca para SAT e VAL [7, 8, 9].

Algoritmos para SAT e VAL

- Há diversos algoritmos de busca para SAT e VAL [7, 8, 9].
- Conjectura-se que todos são exponenciais [6].

Algoritmos para SAT e VAL

- Há diversos algoritmos de busca para SAT e VAL [7, 8, 9].
- Conjectura-se que todos são exponenciais [6].
- Muitos são baseados em formas normais: subconjuntos de fórmulas.

Algoritmos para SAT e VAL

- Há diversos algoritmos de busca para SAT e VAL [7, 8, 9].
- Conjectura-se que todos são exponenciais [6].
- Muitos são baseados em formas normais: subconjuntos de fórmulas.
- Algoritmos baseados em formas normais precisam de pré-processamento eficiente.

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

O trabalho

Hipótese

Considerando melhorar a eficiência total de pré-processamento e busca: fórmulas menores produzem respostas mais rápido?

Hipótese

Considerando melhorar a eficiência total de pré-processamento e busca: fórmulas menores produzem respostas mais rápido?

Objetivo

Testar a hipótese experimentalmente.

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

O trabalho

• Investigamos algoritmos baseados na forma normal clausal.

- Investigamos algoritmos baseados na forma normal clausal.
- Tentamos obter fórmulas pequenas reduzindo o número de cláusulas

- Investigamos algoritmos baseados na forma normal clausal.
- Tentamos obter fórmulas pequenas reduzindo o *número de cláusulas*, através de *renomeamento*.

- Investigamos algoritmos baseados na forma normal clausal.
- Tentamos obter fórmulas pequenas reduzindo o número de cláusulas, através de renomeamento.
- Boy de la Tour [10] e Jackson et al. [11] propõem algoritmos para este problema.

- Investigamos algoritmos baseados na forma normal clausal.
- Tentamos obter fórmulas pequenas reduzindo o *número de cláusulas*, através de *renomeamento*.
- Boy de la Tour [10] e Jackson et al. [11] propõem algoritmos para este problema.
- Propomos um algoritmo baseado em programação dinâmica para este problema.

- Investigamos algoritmos baseados na forma normal clausal.
- Tentamos obter fórmulas pequenas reduzindo o *número de cláusulas*, através de *renomeamento*.
- Boy de la Tour [10] e Jackson et al. [11] propõem algoritmos para este problema.
- Propomos um algoritmo baseado em programação dinâmica para este problema.
- Comparamos experimentalmente o algoritmo que propomos com o de Boy de la Tour.

Conteúdo

- Introdução
- 2 Referencial teórico
- 3 O algoritmo
- 4 Resultados experimentais
- Conclusão
- 6 Referências

Símbolos proposicionais

 $\mathcal{P} = \{a, b, ..., a_1, a_2, ..., b_1, b_2, ...\} \text{ \'e dito o conjunto de } \textit{s\'embolos proposicionais}.$

Símbolos proposicionais

 $\mathcal{P} = \{a, b, ..., a_1, a_2, ..., b_1, b_2, ...\}$ é dito o conjunto de símbolos proposicionais.

Fórmulas

Se $\phi \in \mathcal{P}$, então ϕ é uma *fórmula*. Além disso, se $\phi_1,...,\phi_n$, $n \in \mathbb{N} \cup \{0\}$, são fórmulas, então também são:

Símbolos proposicionais

 $\mathcal{P} = \{a, b, ..., a_1, a_2, ..., b_1, b_2, ...\}$ é dito o conjunto de símbolos proposicionais.

Fórmulas

Se $\phi \in \mathcal{P}$, então ϕ é uma *fórmula*. Além disso, se $\phi_1,...,\phi_n$, $n \in \mathbb{N} \cup \{0\}$, são fórmulas, então também são:

• Negação: ¬φ₁

Símbolos proposicionais

 $\mathcal{P} = \{a, b, ..., a_1, a_2, ..., b_1, b_2, ...\}$ é dito o conjunto de símbolos proposicionais.

Fórmulas

Se $\phi \in \mathcal{P}$, então ϕ é uma *fórmula*. Além disso, se $\phi_1, ..., \phi_n$, $n \in \mathbb{N} \cup \{0\}$, são fórmulas, então também são:

- Negação: ¬φ₁
- **2** Conjunção: $\phi_1 \wedge ... \wedge \phi_n$

Símbolos proposicionais

 $\mathcal{P} = \{a, b, ..., a_1, a_2, ..., b_1, b_2, ...\}$ é dito o conjunto de símbolos proposicionais.

Fórmulas

Se $\phi \in \mathcal{P}$, então ϕ é uma *fórmula*. Além disso, se $\phi_1,...,\phi_n$, $n \in \mathbb{N} \cup \{0\}$, são fórmulas, então também são:

- Negação: ¬φ₁
- **2** Conjunção: $\phi_1 \wedge ... \wedge \phi_n$
- **3** Disjunção: $\phi_1 \vee ... \vee \phi_n$

Símbolos proposicionais

 $\mathcal{P} = \{a, b, ..., a_1, a_2, ..., b_1, b_2, ...\}$ é dito o conjunto de símbolos proposicionais.

Fórmulas

Se $\phi \in \mathcal{P}$, então ϕ é uma *fórmula*. Além disso, se $\phi_1, ..., \phi_n$, $n \in \mathbb{N} \cup \{0\}$, são fórmulas, então também são:

- Negação: ¬φ₁
- **2** Conjunção: $\phi_1 \wedge ... \wedge \phi_n$
- **3** Disjunção: $\phi_1 \lor ... \lor \phi_n$
- **1** Implicação: $\phi_1 \rightarrow \phi_2$

Símbolos proposicionais

 $\mathcal{P} = \{a, b, ..., a_1, a_2, ..., b_1, b_2, ...\}$ é dito o conjunto de símbolos proposicionais.

Fórmulas

Se $\phi \in \mathcal{P}$, então ϕ é uma *fórmula*. Além disso, se $\phi_1, ..., \phi_n$, $n \in \mathbb{N} \cup \{0\}$, são fórmulas, então também são:

- Megação: ¬φ₁
- **2** Conjunção: $\phi_1 \wedge ... \wedge \phi_n$
- **3** Disjunção: $\phi_1 \lor ... \lor \phi_n$
- **4** Implicação: $\phi_1 \rightarrow \phi_2$
- **5** Equivalência: $\phi_1 \leftrightarrow \phi_2$

Símbolos proposicionais

 $\mathcal{P} = \{a, b, ..., a_1, a_2, ..., b_1, b_2, ...\}$ é dito o conjunto de símbolos proposicionais.

Fórmulas

Se $\phi \in \mathcal{P}$, então ϕ é uma *fórmula*. Além disso, se $\phi_1, ..., \phi_n$, $n \in \mathbb{N} \cup \{0\}$, são fórmulas, então também são:

- Megação: ¬φ₁
- **2** Conjunção: $\phi_1 \wedge ... \wedge \phi_n$
- **3** Disjunção: $\phi_1 \lor ... \lor \phi_n$
- **4** Implicação: $\phi_1 \rightarrow \phi_2$
- **5** Equivalência: $\phi_1 \leftrightarrow \phi_2$

Denotamos o conjunto de fórmulas por \mathcal{L} .

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

•
$$\phi = (p \rightarrow q) \rightarrow \neg s$$

•
$$\phi = (p \rightarrow q) \rightarrow \neg s$$

•
$$\psi = (p \lor q) \leftrightarrow (r \land s)$$

•
$$\phi = (p \rightarrow q) \rightarrow \neg s$$

•
$$\psi = (p \lor q) \leftrightarrow (r \land s)$$

•
$$\xi = \neg(p \rightarrow q)$$

Introdução Referencial teórico O algorítmo Resultados experimentais Conclusão Referências

Lógica proposicional Sintaxe

Subfórmulas imediatas

Na definição anterior, as fórmulas ϕ_i são subfórmulas imediatas.

Subfórmulas imediatas

Na definição anterior, as fórmulas ϕ_i são subfórmulas imediatas.

Subfórmulas

Dizemos que ψ é subfórmula de ϕ se ψ é subfórmula imediata de ϕ , ou se ψ é subfórmula de ξ e ξ é subfórmula imediata de ϕ .

Subfórmulas imediatas

Na definição anterior, as fórmulas ϕ_i são subfórmulas imediatas.

Subfórmulas

Dizemos que ψ é subfórmula de ϕ se ψ é subfórmula imediata de ϕ , ou se ψ é subfórmula de ξ e ξ é subfórmula imediata de ϕ . Notação: $\psi \sqsubset \phi$ e $\{\psi \mid \psi \sqsubset \phi\} = SF(\phi)$

Subfórmulas imediatas

Na definição anterior, as fórmulas ϕ_i são subfórmulas imediatas.

Subfórmulas

Dizemos que ψ é subfórmula de ϕ se ψ é subfórmula imediata de ϕ , ou se ψ é subfórmula de ξ e ξ é subfórmula imediata de ϕ .

Notação: $\psi \sqsubset \phi$ e $\{\psi \mid \psi \sqsubset \phi\} = SF(\phi)$

Exemplo:
$$\phi = (p \land q \land (r \rightarrow s))$$

Subfórmulas imediatas

Na definição anterior, as fórmulas ϕ_i são subfórmulas imediatas.

Subfórmulas

Dizemos que ψ é subfórmula de ϕ se ψ é subfórmula imediata de ϕ , ou se ψ é subfórmula de ξ e ξ é subfórmula imediata de ϕ . Notação: $\psi \sqsubset \phi$ e $\{\psi \mid \psi \sqsubset \phi\} = SF(\phi)$

Exemplo:
$$\phi = (p \land q \land (r \rightarrow s))$$

 $p, q \in r \rightarrow s$ são subfórmulas imediatas de ϕ .

Subfórmulas imediatas

Na definição anterior, as fórmulas ϕ_i são subfórmulas imediatas.

Subfórmulas

Dizemos que ψ é subfórmula de ϕ se ψ é subfórmula imediata de ϕ , ou se ψ é subfórmula de ξ e ξ é subfórmula imediata de ϕ . Notação: $\psi \sqsubset \phi$ e $\{\psi \mid \psi \sqsubset \phi\} = SF(\phi)$

Exemplo:
$$\phi = (p \land q \land (r \rightarrow s))$$

 $p, q \in r \rightarrow s$ são subfórmulas imediatas de ϕ .

$$SF(\phi) = \{p, q, r \rightarrow s, r, s\}$$

Introdução **Referencial teórico** O algoritmo Resultados experimentais Conclusão Referências

Lógica proposicional Semântica

Valorações booleanas

Dizemos que v_0 é uma valoração booleana se $v_0 : \mathcal{P} \longmapsto \{V, F\}$.

Valorações booleanas

Dizemos que v_0 é uma *valoração booleana* se $v_0 : \mathcal{P} \longmapsto \{V, F\}$.

Interpretações

Lógica proposicional Semântica

Valorações booleanas

Dizemos que v_0 é uma *valoração booleana* se $v_0 : \mathcal{P} \longmapsto \{V, F\}$.

Interpretações

① Se
$$\phi_1 \in \mathcal{P}$$
, então $v(\phi_1) = v_0(\phi_1)$.

Lógica proposicional Semântica

Valorações booleanas

Dizemos que v_0 é uma valoração booleana se $v_0 : \mathcal{P} \longmapsto \{V, F\}$.

Interpretações

- ① Se $\phi_1 \in \mathcal{P}$, então $v(\phi_1) = v_0(\phi_1)$.

Valorações booleanas

Dizemos que v_0 é uma valoração booleana se $v_0 : \mathcal{P} \longmapsto \{V, F\}$.

Interpretações

- ① Se $\phi_1 \in \mathcal{P}$, então $v(\phi_1) = v_0(\phi_1)$.
- $(\phi_1 \wedge ... \wedge \phi_n) = V$ se, e somente se, $(\phi_i) = V$, para todo i.

Lógica proposicional Semântica

Valorações booleanas

Dizemos que v_0 é uma valoração booleana se $v_0 : \mathcal{P} \longmapsto \{V, F\}$.

Interpretações

- ① Se $\phi_1 \in \mathcal{P}$, então $v(\phi_1) = v_0(\phi_1)$.
- 2 $\mathbb{V}(\neg \phi_1) = V$ se, e somente se, $\mathbb{V}(\phi_1) = F$.
- $(\phi_1 \wedge ... \wedge \phi_n) = V$ se, e somente se, $(\phi_i) = V$, para todo i.
- $(\phi_1 \lor ... \lor \phi_n) = V$ se, e somente se, $v(\phi_i) = V$, para algum i.

Lógica proposicional Semântica

Valorações booleanas

Dizemos que v_0 é uma valoração booleana se $v_0 : \mathcal{P} \longmapsto \{V, F\}$.

Interpretações

Seja v_0 é uma valoração booleana. Dizemos que $v: \mathcal{L} \longmapsto \{V, F\}$ é uma interpretação definida por v_0 , se:

- ① Se $\phi_1 \in \mathcal{P}$, então $v(\phi_1) = v_0(\phi_1)$.

- \P $\mathbb{V}(\phi_1 \vee ... \vee \phi_n) = V$ se, e somente se, $\mathbb{V}(\phi_i) = V$, para algum i.

14 / 48

Matheus Pimenta

Valorações booleanas

Dizemos que v_0 é uma valoração booleana se $v_0 : \mathcal{P} \longmapsto \{V, F\}$.

Interpretações

Seja v_0 é uma valoração booleana. Dizemos que $v: \mathcal{L} \longmapsto \{V, F\}$ é uma interpretação definida por v_0 , se:

- **1** Se $\phi_1 \in \mathcal{P}$, então $\mathbb{V}(\phi_1) = \mathbb{V}_0(\phi_1)$.
- $(\neg \phi_1) = V$ se, e somente se, $\forall (\phi_1) = F$.
- $(\phi_1 \wedge ... \wedge \phi_n) = V$ se, e somente se, $(\phi_i) = V$, para todo i.
- \emptyset $\forall (\phi_1 \vee ... \vee \phi_n) = V$ se, e somente se, $\forall (\phi_i) = V$, para algum i.
- $(\phi_1 \rightarrow \phi_2) = V$ se, e somente se, $v(\phi_1) = F$ ou $v(\phi_2) = V$.

◆□▶◆□▶◆壹▶◆壹▶ 壹 か९○

Matheus Pimenta 14 / 48

Seja v definida por
$$v_0 = \{(p, V), (q, F), (r, V), (s, V)\}$$
 e considere $\phi = \neg((p \lor (q \land r \land s)) \leftrightarrow (q \rightarrow \neg s))$. Então:

$$(p \lor (p \lor (q \land r \land s))) = V$$

Seja v definida por
$$v_0 = \{(p, V), (q, F), (r, V), (s, V)\}$$
 e considere $\phi = \neg((p \lor (q \land r \land s)) \leftrightarrow (q \rightarrow \neg s))$. Então:

6
$$v(\phi) = F$$

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

Lógica proposicional Semântica – Algumas definições

1 Se existe v tal que $v(\phi) = V$, dizemos que ϕ é satisfatível.

- Se existe v tal que $v(\phi) = V$, dizemos que ϕ é satisfatível.
- ② Se existe v tal que $v(\phi) = F$, dizemos que ϕ é falsificável.

- Se existe v tal que $v(\phi) = V$, dizemos que ϕ é satisfatível.
- ② Se existe v tal que $v(\phi) = F$, dizemos que ϕ é falsificável.
- **3** Se $v(\phi) = V$ para toda v, dizemos que ϕ é uma tautologia.

- Se existe v tal que $v(\phi) = V$, dizemos que ϕ é satisfatível.
- ② Se existe v tal que $v(\phi) = F$, dizemos que ϕ é falsificável.
- **3** Se $v(\phi) = V$ para toda v, dizemos que ϕ é uma tautologia.
- **9** Se $v(\phi) = F$ para toda v, dizemos que ϕ é uma contradição, ou que ϕ é insatisfatível.

- Se existe v tal que $v(\phi) = V$, dizemos que ϕ é satisfatível.
- ② Se existe v tal que $v(\phi) = F$, dizemos que ϕ é falsificável.
- 3 Se $v(\phi) = V$ para toda v, dizemos que ϕ é uma tautologia.
- **9** Se $v(\phi) = F$ para toda v, dizemos que ϕ é uma contradição, ou que ϕ é insatisfatível.
- **5** Se ϕ é satisfatível e falsificável, dizemos que ϕ é uma contingência.

Introdução **Referencial teórico** O algoritmo Resultados experimentais Conclusão Referências

Lógica proposicional Semântica – Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

Lógica proposicional Semântica – Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

Lógica proposicional Semântica – Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

$$\bullet$$
 $\phi \lor \neg \phi$

Lógica proposicional Semântica – Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

- \bullet $\phi \lor \neg \phi$
- $\bullet \phi \to \phi$

Lógica proposicional Semântica – Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

- \bullet $\phi \lor \neg \phi$
- \bullet $\phi \to \phi$
- $\bullet \phi \leftrightarrow \phi$

Semântica – Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

- \bullet $\phi \lor \neg \phi$
- \bullet $\phi \to \phi$
- $\bullet \phi \leftrightarrow \phi$
- \bullet $\neg \psi_2$

Semântica – Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

- \bullet $\phi \lor \neg \phi$
- \bullet $\phi \rightarrow \phi$
- $\bullet \phi \leftrightarrow \phi$
- \bullet $\neg \psi_2$

São contradições:

Semântica – Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

- \bullet $\phi \lor \neg \phi$
- \bullet $\phi \to \phi$
- $\bullet \phi \leftrightarrow \phi$
- $\bullet \neg \psi_2$

São contradições:

 \bullet $\phi \land \neg \phi$

Semântica – Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

- \bullet $\phi \lor \neg \phi$
- \bullet $\phi \rightarrow \phi$
- $\bullet \phi \leftrightarrow \phi$
- $\bullet \neg \psi_2$

São contradições:

- $\phi \land \neg \phi$
- $\bullet \phi \leftrightarrow \neg \phi$

Semântica - Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

- \bullet $\phi \lor \neg \phi$
- $\bullet \ \phi \to \phi$
- $\bullet \phi \leftrightarrow \phi$
- \bullet $\neg \psi_2$

São contradições:

- $\phi \land \neg \phi$
- $\quad \phi \leftrightarrow \neg \phi$
- \bullet $\neg \psi_1$

Semântica - Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

- \bullet $\phi \lor \neg \phi$
- \bullet $\phi \to \phi$
- $\bullet \phi \leftrightarrow \phi$
- $\bullet \neg \psi_2$

São contradições:

- $\phi \land \neg \phi$
- $\bullet \ \phi \leftrightarrow \neg \phi$
- \bullet $\neg \psi_1$

Semântica - Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

- \bullet $\phi \lor \neg \phi$
- $\bullet \phi \leftrightarrow \phi$
- \bullet $\neg \psi_2$

São contradições:

- $\phi \land \neg \phi$
- \bullet $\neg \psi_1$

São contingências:

p

Semântica - Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

$$\bullet$$
 $\phi \lor \neg \phi$

$$\bullet \phi \leftrightarrow \phi$$

$$\bullet$$
 $\neg \psi_2$

São contradições:

•
$$\phi \land \neg \phi$$

$$\bullet$$
 $\neg \psi_1$

Semântica - Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

$$\bullet$$
 $\phi \lor \neg \phi$

$$\bullet \phi \leftrightarrow \phi$$

$$\bullet$$
 $\neg \psi_2$

São contradições:

•
$$\phi \land \neg \phi$$

Semântica - Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

$$\bullet$$
 $\phi \lor \neg \phi$

$$\bullet \phi \rightarrow \phi$$

$$\bullet \phi \leftrightarrow \phi$$

$$\bullet$$
 $\neg \psi_2$

São contradições:

•
$$\phi \land \neg \phi$$

$$\bullet \neg \psi_1$$

Semântica - Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

$$\bullet$$
 $\phi \lor \neg \phi$

$$\bullet \phi \rightarrow \phi$$

$$\bullet \phi \leftrightarrow \phi$$

$$\bullet$$
 $\neg \psi_2$

São contradições:

•
$$\phi \land \neg \phi$$

$$ullet$$
 $p o q$

Semântica - Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

$$\bullet$$
 $\phi \lor \neg \phi$

$$\bullet \phi \leftrightarrow \phi$$

$$\bullet$$
 $\neg \psi_2$

São contradições:

•
$$\phi \land \neg \phi$$

$$\bullet$$
 $p \rightarrow q$

$$\bullet$$
 $p \leftrightarrow q$

Semântica - Exemplos

Seja ϕ uma fórmula qualquer, ψ_1 uma tautologia, ψ_2 uma contradição e ψ_3 uma contingência. Então:

São tautologias:

$$\bullet$$
 $\phi \lor \neg \phi$

$$\bullet \phi \to \phi$$

$$\bullet \phi \leftrightarrow \phi$$

$$\bullet$$
 $\neg \psi_2$

São contradições:

•
$$\phi \land \neg \phi$$

$$\bullet \neg \psi_1$$

$$\bullet$$
 $p \rightarrow q$

•
$$p \leftrightarrow q$$

$$\bullet$$
 $\neg \psi_3$

Introdução **Referencial teórico** O algoritmo Resultados experimentais Conclusão Referências

Problemas da lógica proposicional

Seja $L \subseteq \mathcal{L}$. Se nos referimos a L como um *problema*, referimo-nos ao problema de, dada ϕ qualquer, determinar se $\phi \in L$ ou se $\phi \notin L$.

- **2** UNSAT = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e insatisfat\'ivel}\}$

- $② \ \ \mathsf{UNSAT} = \{\phi \in \mathcal{L} \mid \phi \ \mathsf{\acute{e}} \ \mathsf{insatisfat} \mathsf{\'{insat}} \mathsf{\'{in$

- **2** UNSAT = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e insatisfat\'ivel}\} = \overline{\mathsf{SAT}}$
- **3** VAL = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e tautologia}\}$

Seja $L \subseteq \mathcal{L}$. Se nos referimos a L como um *problema*, referimo-nos ao problema de, dada ϕ qualquer, determinar se $\phi \in L$ ou se $\phi \notin L$.

- **2** UNSAT = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e insatisfat\'ivel}\} = \overline{\mathsf{SAT}}$
- **3** VAL = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e tautologia}\}$

Seja $L \subseteq \mathcal{L}$. Se nos referimos a L como um *problema*, referimo-nos ao problema de, dada ϕ qualquer, determinar se $\phi \in L$ ou se $\phi \notin L$.

- **2** UNSAT = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e insatisfat\'ivel}\} = \overline{\mathsf{SAT}}$
- **3** VAL = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e tautologia}\}$

Observações:

4 Há algoritmos para SAT [7, 8, 9].

Seja $L \subseteq \mathcal{L}$. Se nos referimos a L como um *problema*, referimo-nos ao problema de, dada ϕ qualquer, determinar se $\phi \in L$ ou se $\phi \notin L$.

- **2** UNSAT = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e insatisfat\'ivel}\} = \overline{\mathsf{SAT}}$
- **3** VAL = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e tautologia}\}$

- Há algoritmos para SAT [7, 8, 9].
- 2 SAT e UNSAT são redutíveis um ao outro.

Seja $L \subseteq \mathcal{L}$. Se nos referimos a L como um *problema*, referimo-nos ao problema de, dada ϕ qualquer, determinar se $\phi \in L$ ou se $\phi \notin L$.

- **2** UNSAT = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e insatisfat\'ivel}\} = \overline{\mathsf{SAT}}$
- **3** VAL = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e tautologia}\}$

- Há algoritmos para SAT [7, 8, 9].
- 2 SAT e UNSAT são redutíveis um ao outro. (claro!)

Seja $L \subseteq \mathcal{L}$. Se nos referimos a L como um *problema*, referimo-nos ao problema de, dada ϕ qualquer, determinar se $\phi \in L$ ou se $\phi \notin L$.

- **2** UNSAT = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e insatisfat\'ivel}\} = \overline{\mathsf{SAT}}$
- **3** VAL = $\{\phi \in \mathcal{L} \mid \phi \text{ \'e tautologia}\}$

- Há algoritmos para SAT [7, 8, 9].
- SAT e UNSAT são redutíveis um ao outro. (claro!)
- 3 SAT e VAL são redutíveis um ao outro.

Seja A_{UNSAT} um algoritmo para UNSAT e $R_{\text{VAL}} =$ "Sobre a entrada $\phi \in \mathcal{L}$: Dê a resposta de A_{UNSAT} sobre $\neg \phi$."

ϕ	$\neg \phi$	$A_{UNSAT}(\neg \phi)$	$R_{VAL}(\phi)$
Tautologia	Contradição	Sim	Sim
Contradição	Tautologia	Não	Não
Contingência	Contingência	Não	Não

Seja A_{UNSAT} um algoritmo para UNSAT e $R_{\text{VAL}}=$ "Sobre a entrada $\phi \in \mathcal{L}$: Dê a resposta de A_{UNSAT} sobre $\neg \phi$."

ϕ	$\neg \phi$	$A_{UNSAT}(\neg \phi)$	$R_{VAL}(\phi)$
Tautologia	Contradição	Sim	Sim
Contradição	Tautologia	Não	Não
Contingência	Contingência	Não	Não

Seja A_{VAL} um algoritmo para VAL e $R_{UNSAT} =$ "Sobre a entrada $\phi \in \mathcal{L}$: Dê a resposta de A_{VAL} sobre $\neg \phi$."

Q.		$\neg \phi$	$A_{VAL}(\neg \phi)$	$R_{UNSAT}(\phi)$
Tauto	logia	Contradição	Não	Não
Contra	dição	Tautologia	Sim	Sim
Contin	gência	Contingência	Não	Não

Introdução Referencial teórico O algoritmo Resultados experimentais Conclusão Referências

Formas normais Regras de reescrita

Uma regra de reescrita que transforma ϕ em ψ , escrito $\phi \longmapsto \psi$,

Formas normais Regras de reescrita

Uma regra de reescrita que transforma ϕ em ψ , escrito $\phi \longmapsto \psi$,

• preserva equivalência se, e somente se, $v(\phi) = v(\psi), \forall v$.

Formas normais Regras de reescrita

Uma regra de reescrita que transforma ϕ em ψ , escrito $\phi \longmapsto \psi$,

- preserva equivalência se, e somente se, $v(\phi) = v(\psi), \forall v$.
- ② preserva satisfatibilidade se, e somente se, $\phi, \psi \in \mathsf{SAT}$ ou $\phi, \psi \notin \mathsf{SAT}.$

Forma normal negada (FNN)

$$(p \wedge \neg q \wedge \neg r) \vee (x \wedge \neg y \wedge (r \vee s))$$

Forma normal negada (FNN)

$$(p \land \neg q \land \neg r) \lor (x \land \neg y \land (r \lor s))$$

Forma normal negada (FNN)

$$(p \wedge \neg q \wedge \neg r) \vee (x \wedge \neg y \wedge (r \vee s))$$

$$\bullet \neg \neg \phi_1 \longmapsto \phi_1$$
 (eliminação de dupla negação)

Forma normal negada (FNN)

$$(p \land \neg q \land \neg r) \lor (x \land \neg y \land (r \lor s))$$

- $\bullet \neg \neg \phi_1 \longmapsto \phi_1$ (eliminação de dupla negação)

Forma normal negada (FNN)

$$(p \land \neg q \land \neg r) \lor (x \land \neg y \land (r \lor s))$$

- $\bullet \neg \neg \phi_1 \longmapsto \phi_1$ (eliminação de dupla negação)

Formas normais

Forma normal negada (FNN)

$$(p \land \neg q \land \neg r) \lor (x \land \neg y \land (r \lor s))$$

As transformações:

- $\bullet \neg \neg \phi_1 \longmapsto \phi_1$ (eliminação de dupla negação)

Formas normais

Forma normal negada (FNN)

$$(p \land \neg q \land \neg r) \lor (x \land \neg y \land (r \lor s))$$

As transformações:

- $\bullet \neg \neg \phi_1 \longmapsto \phi_1$ (eliminação de dupla negação)

Formas normais

Forma normal negada (FNN)

$$(p \land \neg q \land \neg r) \lor (x \land \neg y \land (r \lor s))$$

As transformações:

- \bullet $\neg \neg \phi_1 \longmapsto \phi_1$ (eliminação de dupla negação)

preservam equivalência!

Formas normais Forma normal clausal (FNC)

$$(p \vee \neg q \vee \neg r) \wedge (x \vee \neg y \vee r \vee s) \wedge (a \vee \neg b \vee c)$$

Formas normais Forma normal clausal (FNC)

$$(p \vee \neg q \vee \neg r) \wedge (x \vee \neg y \vee r \vee s) \wedge (a \vee \neg b \vee c)$$

A transformação:

$$\phi \lor (\psi \land \xi) \longmapsto (\phi \lor \psi) \land (\phi \lor \xi)$$
 (distribuição)

Formas normais Forma normal clausal (FNC)

$$(p \vee \neg q \vee \neg r) \wedge (x \vee \neg y \vee r \vee s) \wedge (a \vee \neg b \vee c)$$

A transformação:

$$\phi \lor (\psi \land \xi) \longmapsto (\phi \lor \psi) \land (\phi \lor \xi)$$
 (distribuição)

preserva equivalência!

Renomeamento

1 Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.

- **1** Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.
- **2** Para cada $\psi \in R$:

- **1** Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.
- ② Para cada $\psi \in R$:
 - **1** Escolhemos um símbolo proposicional novo $s(\psi) \in \mathcal{P}$.

- **1** Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.
- ② Para cada $\psi \in R$:
 - **1** Escolhemos um símbolo proposicional novo $s(\psi) \in \mathcal{P}$.
 - 2 Trocamos todas as ocorrências de ψ por $s(\psi)$.

- **1** Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.
- ② Para cada $\psi \in R$:
 - **1** Escolhemos um símbolo proposicional novo $s(\psi) \in \mathcal{P}$.
 - **2** Trocamos todas as ocorrências de ψ por $s(\psi)$.
 - **3** Incluímos a definição $s(\psi) \rightarrow \psi$ em conjunção.

- **1** Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.
- ② Para cada $\psi \in R$:
 - **1** Escolhemos um símbolo proposicional novo $s(\psi) \in \mathcal{P}$.
 - 2 Trocamos todas as ocorrências de ψ por $s(\psi)$.
 - **3** Incluímos a definição $s(\psi) \rightarrow \psi$ em conjunção.

Exemplo:
$$(\neg p_1 \land p_2 \land p_3) \lor (\neg q_1 \land q_2 \land \neg q_3) \lor (r_1 \land r_2 \land \neg r_3)$$

- **1** Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.
- **2** Para cada $\psi \in R$:
 - **1** Escolhemos um símbolo proposicional novo $s(\psi) \in \mathcal{P}$.
 - 2 Trocamos todas as ocorrências de ψ por $s(\psi)$.
 - **3** Incluímos a definição $s(\psi) \rightarrow \psi$ em conjunção.

Exemplo:
$$(\neg p_1 \land p_2 \land p_3) \lor (\neg q_1 \land q_2 \land \neg q_3) \lor (r_1 \land r_2 \land \neg r_3)$$

Seja $\phi_1 = \neg p_1 \land p_2 \land p_3$ e $\phi_2 = \neg q_1 \land q_2 \land \neg q_3$.

- **1** Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.
- **2** Para cada $\psi \in R$:
 - **1** Escolhemos um símbolo proposicional novo $s(\psi) \in \mathcal{P}$.
 - 2 Trocamos todas as ocorrências de ψ por $s(\psi)$.
 - **3** Incluímos a definição $s(\psi) \rightarrow \psi$ em conjunção.

Exemplo:
$$(\neg p_1 \land p_2 \land p_3) \lor (\neg q_1 \land q_2 \land \neg q_3) \lor (r_1 \land r_2 \land \neg r_3)$$

Seja $\phi_1 = \neg p_1 \land p_2 \land p_3$ e $\phi_2 = \neg q_1 \land q_2 \land \neg q_3$.
Escolhendo $R = \{\phi_1, \phi_2\}, s(\phi_1) = a \in s(\phi_2) = b$, temos

- **1** Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.
- **2** Para cada $\psi \in R$:
 - **1** Escolhemos um símbolo proposicional novo $s(\psi) \in \mathcal{P}$.
 - **2** Trocamos todas as ocorrências de ψ por $s(\psi)$.
 - **3** Incluímos a definição $s(\psi) \rightarrow \psi$ em conjunção.

Exemplo:
$$(\neg p_1 \land p_2 \land p_3) \lor (\neg q_1 \land q_2 \land \neg q_3) \lor (r_1 \land r_2 \land \neg r_3)$$

Seja $\phi_1 = \neg p_1 \land p_2 \land p_3$ e $\phi_2 = \neg q_1 \land q_2 \land \neg q_3$.
Escolhendo $R = \{\phi_1, \phi_2\}, \ s(\phi_1) = a$ e $s(\phi_2) = b$, temos

$$(a \lor b \lor (r_1 \land r_2 \land \neg r_3)) \land (a \to (\neg p_1 \land p_2 \land p_3)) \land (b \to (\neg q_1 \land q_2 \land \neg q_3))$$

- **1** Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.
- **2** Para cada $\psi \in R$:
 - **1** Escolhemos um símbolo proposicional novo $s(\psi) \in \mathcal{P}$.
 - 2 Trocamos todas as ocorrências de ψ por $s(\psi)$.
 - **3** Incluímos a definição $s(\psi) \rightarrow \psi$ em conjunção.

Exemplo:
$$(\neg p_1 \land p_2 \land p_3) \lor (\neg q_1 \land q_2 \land \neg q_3) \lor (r_1 \land r_2 \land \neg r_3)$$

Seja $\phi_1 = \neg p_1 \land p_2 \land p_3$ e $\phi_2 = \neg q_1 \land q_2 \land \neg q_3$.
Escolhendo $R = \{\phi_1, \phi_2\}, \ s(\phi_1) = a \ e \ s(\phi_2) = b$, temos

$$(\mathsf{a} \lor \mathsf{b} \lor (\mathsf{r}_1 \land \mathsf{r}_2 \land \neg \mathsf{r}_3)) \land (\mathsf{a} \to (\neg \mathsf{p}_1 \land \mathsf{p}_2 \land \mathsf{p}_3)) \land (\mathsf{b} \to (\neg \mathsf{q}_1 \land \mathsf{q}_2 \land \neg \mathsf{q}_3))$$

Não preserva equivalência.

- **1** Escolhemos um conjunto de subfórmulas $R \subseteq SF(\phi)$.
- **2** Para cada $\psi \in R$:
 - **1** Escolhemos um símbolo proposicional novo $s(\psi) \in \mathcal{P}$.
 - 2 Trocamos todas as ocorrências de ψ por $s(\psi)$.
 - **3** Incluímos a definição $s(\psi) \rightarrow \psi$ em conjunção.

Exemplo:
$$(\neg p_1 \land p_2 \land p_3) \lor (\neg q_1 \land q_2 \land \neg q_3) \lor (r_1 \land r_2 \land \neg r_3)$$

Seja $\phi_1 = \neg p_1 \land p_2 \land p_3$ e $\phi_2 = \neg q_1 \land q_2 \land \neg q_3$.
Escolhendo $R = \{\phi_1, \phi_2\}, \ s(\phi_1) = a$ e $s(\phi_2) = b$, temos

$$(a \lor b \lor (r_1 \land r_2 \land \neg r_3)) \land (a \to (\neg p_1 \land p_2 \land p_3)) \land (b \to (\neg q_1 \land q_2 \land \neg q_3))$$

Não preserva equivalência. Mas preserva satisfatibilidade!

Reduzindo o número de cláusulas Contando cláusulas

Denotamos o *número de cláusulas* geradas por ϕ ao ser colocada na FNC por $p(\phi)$.

Reduzindo o número de cláusulas Contando cláusulas

Denotamos o *número de cláusulas* geradas por ϕ ao ser colocada na FNC por $p(\phi)$.

Forma de ϕ	$oldsymbol{p}(\phi)$
$\phi_1 \wedge \wedge \phi_n$	$p(\phi_1) + + p(\phi_n)$
$\phi_1 \vee \vee \phi_n$	$p(\phi_1)\cdot\cdot p(\phi_n)$
x ou $\neg x, x \in \mathcal{P}$	1

Reduzindo o número de cláusulas Contando cláusulas

Denotamos o *número de cláusulas* geradas por ϕ ao ser colocada na FNC por $p(\phi)$.

Forma de
$$\phi$$
 $p(\phi)$

$$\phi_1 \wedge ... \wedge \phi_n \qquad p(\phi_1) + ... + p(\phi_n)$$

$$\phi_1 \vee ... \vee \phi_n \qquad p(\phi_1) \cdot ... \cdot p(\phi_n)$$

$$x \text{ ou } \neg x, x \in \mathcal{P} \qquad 1$$

Exemplo:
$$\phi = (\neg p_1 \land p_2 \land p_3) \lor (\neg q_1 \land q_2 \land \neg q_3) \lor (r_1 \land r_2 \land \neg r_3)$$

Reduzindo o número de cláusulas Contando cláusulas

Denotamos o *número de cláusulas* geradas por ϕ ao ser colocada na FNC por $p(\phi)$.

Forma de
$$\phi$$
 $p(\phi)$ $\phi_1 \wedge ... \wedge \phi_n$ $p(\phi_1) + ... + p(\phi_n)$ $\phi_1 \vee ... \vee \phi_n$ $p(\phi_1) \cdot ... \cdot p(\phi_n)$ $p(\phi_1) \cdot ... \cdot p(\phi_n)$

Exemplo: $\phi = (\neg p_1 \land p_2 \land p_3) \lor (\neg q_1 \land q_2 \land \neg q_3) \lor (r_1 \land r_2 \land \neg r_3)$ Temos que

$$p(\phi) = (1+1+1)(1+1+1)(1+1+1) = 3^3 = 27$$

Reduzindo o número de cláusulas O problema

Problema

Escolher $R \subseteq SF(\phi)$ de modo que o número de cláusulas $p(\phi, R)$ da transformação por renomeamento seja mínimo.

Reduzindo o número de cláusulas Algoritmo de Boy de la Tour

Árvores lineares

Seja ϕ uma fórmula na FNN. Se cada subfórmula de ϕ ocorre somente uma vez, dizemos que ϕ é uma árvore linear.

Reduzindo o número de cláusulas Algoritmo de Boy de la Tour

Árvores lineares

Seja ϕ uma fórmula na FNN. Se cada subfórmula de ϕ ocorre somente uma vez, dizemos que ϕ é uma *árvore linear*.

Se ϕ é uma árvore linear, o algoritmo de Boy de la Tour encontra um conjunto $R \subseteq SF(\phi)$ tal que $p(\phi, R)$ é ótimo (mínimo).

Reduzindo o número de cláusulas Algoritmo de Boy de la Tour

Árvores lineares

Seja ϕ uma fórmula na FNN. Se cada subfórmula de ϕ ocorre somente uma vez, dizemos que ϕ é uma *árvore linear*.

Se ϕ é uma árvore linear, o algoritmo de Boy de la Tour encontra um conjunto $R\subseteq SF(\phi)$ tal que $p(\phi,R)$ é ótimo (mínimo).

Seu custo de tempo no pior caso é $O(|SF(\phi)|^2)$.

Reduzindo o número de cláusulas Algoritmo de Boy de la Tour

É feita uma busca na fórmula, incluindo cada $\psi \sqsubset \phi$ que satisfaz

$$a_{\psi}^{\phi}\cdot p(\psi)>a_{\psi}^{\phi}+p(\psi)$$

Reduzindo o número de cláusulas Algoritmo de Boy de la Tour

É feita uma busca na fórmula, incluindo cada $\psi \sqsubset \phi$ que satisfaz

$$a_{\psi}^{\phi}\cdot p(\psi)>a_{\psi}^{\phi}+p(\psi)$$

Exemplo:

TODO

Conteúdo

- Introdução
- 2 Referencial teórico
- 3 O algoritmo
- 4 Resultados experimentais
- Conclusão
- 6 Referências

Uma afirmação

Afirmação

Seja $R\subseteq SF(\phi)$ um renomeamento ótimo entre os que contêm no máximo j subfórmulas. Então $R-\{\psi\}$ é ótimo entre os que não consideram ψ e contêm no máximo j-1 subfórmulas.

Uma afirmação

Afirmação

Seja $R\subseteq SF(\phi)$ um renomeamento ótimo entre os que contêm no máximo j subfórmulas. Então $R-\{\psi\}$ é ótimo entre os que não consideram ψ e contêm no máximo j-1 subfórmulas.

Contraexemplo:

TODO

Uma afirmação

Logo, a afirmação não é verdadeira.

Uma afirmação

Logo, a afirmação não é verdadeira. Mas a usaremos como heurística!

Seja $SF(\phi) = \{\phi_1, ..., \phi_n\}$ e denote por f(i,j) um renomeamento ótimo entre os que contêm no máximo j subfórmulas e consideram somente as subfórmulas em $\{\phi_1, ..., \phi_i\}$.

Seja $SF(\phi) = \{\phi_1, ..., \phi_n\}$ e denote por f(i,j) um renomeamento ótimo entre os que contêm no máximo j subfórmulas e consideram somente as subfórmulas em $\{\phi_1, ..., \phi_i\}$. Então

$$f(i,0) = f(0,j) = \emptyset, \forall i,j$$

Seja $SF(\phi) = \{\phi_1, ..., \phi_n\}$ e denote por f(i,j) um renomeamento ótimo entre os que contêm no máximo j subfórmulas e consideram somente as subfórmulas em $\{\phi_1, ..., \phi_i\}$. Então

$$f(i,0) = f(0,j) = \emptyset, \forall i,j$$

е

$$f(i,j) = \begin{cases} f(i-1,j-1) \cup \{\phi_i\} & \text{ se } p(\phi,f(i-1,j-1) \cup \{\phi_i\}) < p(\phi,f(i-1,j)) \\ f(i-1,j) & \text{ caso contrário} \end{cases}$$

Seja $SF(\phi) = \{\phi_1, ..., \phi_n\}$ e denote por f(i,j) um renomeamento ótimo entre os que contêm no máximo j subfórmulas e consideram somente as subfórmulas em $\{\phi_1, ..., \phi_i\}$. Então

$$f(i,0) = f(0,j) = \emptyset, \forall i,j$$

е

$$f(i,j) = \begin{cases} f(i-1,j-1) \cup \{\phi_i\} & \text{se } p(\phi,f(i-1,j-1) \cup \{\phi_i\}) < p(\phi,f(i-1,j)) \\ f(i-1,j) & \text{caso contrário} \end{cases}$$

Queremos f(n, n)!

Uma implementação por computação ascendente

```
1: seja dp[0..n] um novo arranjo com dp[j] = \emptyset para todo j
2: para i \leftarrow 1 até n faça
3: para j \leftarrow n descendo até 1 faça
4: alt \leftarrow dp[j-1] \cup \{\phi_i\}
5: se p(\phi, alt) < p(\phi, dp[j]) então
6: dp[j] \leftarrow alt
7: fim se
8: fim para
9: fim para
```

Uma implementação por computação ascendente

```
1: seja dp[0..n] um novo arranjo com dp[j] = \emptyset para todo j
 2: para i \leftarrow 1 até n faça
       para i \leftarrow n descendo até 1 faça
 3:
          alt \leftarrow dp[i-1] \cup \{\phi_i\}
 4.
          se p(\phi, alt) < p(\phi, dp[i]) então
 5:
 6:
             dp[i] \leftarrow alt
          fim se
 7:
 8:
       fim para
 9: fim para
O custo de tempo no pior caso é O(|SF(\phi)|^3).
```

Conjectura para árvores lineares

Conjectura

Se ϕ é uma árvore linear e $SF(\phi) = {\phi_1, ..., \phi_n}$, então f(n, n) é ótimo.

Conjectura para árvores lineares

Conjectura

Se ϕ é uma árvore linear e $SF(\phi) = {\phi_1, ..., \phi_n}$, então f(n, n) é ótimo.

Apresentamos resultados experimentais para a conjectura na próxima seção.

Conteúdo

- Introdução
- 2 Referencial teórico
- O algoritmo
- 4 Resultados experimentais
- Conclusão
- 6 Referências

Metodologia

Representações de fórmulas

Metodologia Implementação

Metodologia Implementação

Foi implementado um programa em C++11 que realiza, em ordem, as seguintes transformações:

Análise sintática

- Análise sintática
- Conversão para FNN

- Análise sintática
- Conversão para FNN
- Aplainamento

- Análise sintática
- Conversão para FNN
- Aplainamento
- Conversão para DAG

- Análise sintática
- Conversão para FNN
- Aplainamento
- Conversão para DAG
- Renomeamento

- Análise sintática
- Conversão para FNN
- Aplainamento
- Conversão para DAG
- Renomeamento
- Conversão para FNC

Metodologia

Implementação – Análise sintática

$$(p \leftrightarrow p) \leftrightarrow (p \leftrightarrow p) \longmapsto$$

Cadeia

Árvore sintática

Metodologia Implementação – Conversão para FNN

Coloca-se a fórmula na forma normal negada.

Metodologia Implementação – Conversão para FNN

Coloca-se a fórmula na forma normal negada.

 Simplifica a implementação dos algoritmos de renomeamento e a conversão para FNC.

Metodologia Implementação – Conversão para FNN

Coloca-se a fórmula na forma normal negada.

- Simplifica a implementação dos algoritmos de renomeamento e a conversão para FNC.
- Permite testar nossa conjectura para árvores lineares.

Metodologia

Implementação - Aplainamento

$$p \wedge (q \wedge r) \longmapsto p \wedge q \wedge r$$

е

$$p \lor (q \lor r) \longmapsto p \lor q \lor r$$

Metodologia

Implementação - Aplainamento

$$p \wedge (q \wedge r) \longmapsto p \wedge q \wedge r$$

e

$$p \lor (q \lor r) \longmapsto p \lor q \lor r$$

Viabiliza mais simplificações!

Metodologia Implementação – Conversão para DAG

Metodologia Experimentos propostos

Conteúdo

- Introdução
- 2 Referencial teórico
- 3 O algoritmo
- 4 Resultados experimentais
- 6 Conclusão
- 6 Referências

content...

Conteúdo

- Introdução
- 2 Referencial teórico
- O algoritmo
- 4 Resultados experimentais
- Conclusão
- 6 Referências

Referências I

- [1] R. Bloem, U. Egly, P. Klampfl, R. Könighofer, and F. Lonsing, "SAT-based methods for circuit synthesis," in *Proceedings of the 14th Conference on Formal Methods in Computer-Aided Design*, pp. 31–34, FMCAD Inc, 2014.
- [2] R. Nieuwenhuis and A. Oliveras, "On SAT modulo theories and optimization problems," in *Theory and Applications of Satisfiability Testing-SAT 2006*, pp. 156–169, Springer, 2006.
- [3] A. Gupta, M. K. Ganai, and C. Wang, "SAT-based verification methods and applications in hardware verification," in *Formal Methods for Hardware Verification*, pp. 108–143, Springer, 2006.

Referências II

- [4] J. Harrison, Handbook of practical logic and automated reasoning.
 Cambridge University Press, 2009.
- [5] E. J. Horvitz, Automated reasoning for biology and medicine. Knowledge Systems Laboratory, Section on Medical Informatics, Stanford University, 1992.
- [6] S. A. Cook, "The complexity of theorem-proving procedures," in *Proceedings of the third annual ACM symposium on Theory of computing*, pp. 151–158, ACM, 1971.

Referências III

- [7] M. Davis and H. Putnam, "A computing procedure for quantification theory," *Journal of the ACM (JACM)*, vol. 7, no. 3, pp. 201–215, 1960.
- [8] M. Davis, G. Logemann, and D. Loveland, "A machine program for theorem-proving," *Communications of the ACM*, vol. 5, no. 7, pp. 394–397, 1962.
- [9] A. Biere, M. Heule, H. van Maaren, and T. Walsh, "Conflict-driven clause learning SAT solvers," *Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications*, pp. 131–153, 2009.

Referências IV

- [10] T. Boy de la Tour, "An optimality result for clause form translation," *Journal of Symbolic Computation*, vol. 14, no. 4, pp. 283–301, 1992.
- [11] P. Jackson and D. Sheridan, "Clause form conversions for boolean circuits," in *Theory and applications of satisfiability* testing, pp. 183–198, Springer, 2004.