Stembus Expander

The Stembus Expander is a standard module similar to an I/O Expander. It accesses local control pins and state to provide remote control capability over the Stem I2C bus. It rules over a distinct domain and will raise Stem INT events(1-Wire) when the domain is affected.

It can,

- Reset components
- Power on/off/suspend components
- Change component state and mode selection
- Raise relevant event flags

Ziloo has three expanders with distinct domains;

- T-USB Expander monitors and controls Module runtime, Battery charging, USB Power Delivery, and USB Alt. Mode.
- Faceboard Expander monitors IMU, m.2 modules
- The Smart Ambient Night Eye also monitors and controls sensors to determine change in ambient state. Sound, light and vision a monitored.

Available actions,

- Set T-USB 2.0 Alt. modes state (byte)
- Set T-USB 3.0 Alt. modes state (byte)
- Request

Open Points

- 2 * UART for programming MSP with SoM
- •

Components

 1 * MSP430 FR2032 IG56 TSSOP DGG56. Inventory 4870 at TO. @1000 \$0.766. 52 IO pins, 1 UART/I2C, 1 UART/SPI.

Alt. Components

- 3 * 74HC595 PW,118 shift register TSSOP-16. @1000 \$0.15, 15k in stock.
- 3 * compact 74HC595BQ,115 DHVQFN-16 that are not available until 2023.
- 3 * 771-74HC595D-Q100 SOIC-16
- 1 * MSP430FR4131IPMR low mem, 60 IO, in stock
- 1 * MSP430 FR2032 IPMR Available Aug 2023. \$1.2 @1000. 60 IO pins, P1 .. P8. Fast permanent storage. (Only UART bootloader). LQFP (64). Direct JTAG and sbw pins pins.
- 1 * MSP430 G2553 IRHB32R 2300 in stock. @1000 \$1.7. Large app 16KB. (Only UART bootloader)
- 1 * MSP430 G2433 IRHB32R VQFN-32 5mm x 5mm. Inventory 1238 at mouser. @1000 \$1.45. 24 IO pins, 1 UART/I2C, 1 UART/SPI. (Only UART bootloader)

There seem to be no 74HC595 alternatives.

NOTE: Port P3 is available on 28-pin and 32-pin devices only.

The G2553 routes debugging and programming over RST/TEST (even if not shown in diagram).

Programming

The MSP430 is programmed using the Bootloader. See bootloader section in the specific datasheet for pins.

Bootloader mode is triggered by a specific timing signal over the RST/DTR and TEST/RTS pins. Once in bootloader mode the UART_EX_TXD and UART_EX_RXD are used to upload the new firmware. These pins are exposed on the 50 pin connector and available to the i.MX SoM and Picoprobe socket. The SoM will use this to update firmware without opening the case. One the Expander has been flash a unique password is set on future writing. Future updates must use this password to be applied.

One way to program the MSP430 is via the Picoprobe running pico-uart-brige. This make it available as a Comm port over USB to a Linux host on Raspberry Pi or other CI Runner. See example code for implementation at MSP430TM Bootloader With SitaraTM Embedded Linux Host. Also consider How to securely update firmware in the field and MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for MSP430TM FRAM Large Memory Model Devices.

Simple sample video Programming MSP430G2553 through BSL | MSP430 on a breadboard | UART bridge programmer

The BSL Scripter is a PC application that allows to easily communicate with the BSL on MSP430 and MSP432 devices to modify the device's memory via UART, I2C, SPI or USB. Download MSPBSL_Scripter 3_04_00_02. Bootloader (BSL) Scripter (SLAU655) documentation.

12C access

The primary I2C bus, where the Expander exposes its connected gpio output and input, is the Stem I2C. The Stem I2C is mastered by one of the MCUs connected such as RT core in SoM or the RP2040 in the Smart Camera Module. The expander can also provide its service on the SYS I2C.

Interrupt events

It is important to consider the overall system interrupt events

- T-USB PD state change -> T-USB module raises STEM INT with a 1 wire origin signal.
- T-USB Charging state change -> T-USB module raises STEM INT with a 1 wire origin signal.
- Faceboard sensor event -> Faceboard module raises STEM INT with a 1 wire origin signal and MOTION_INT
- Faceboard m.2 event -> Faceboard module raises STEM INT with a 1 wire origin signal

After an MCU has raised a Stem INT it may not do so for again for 10ms. This allows other MCUs to raise their events.

I2C Interface (read/write)

T-USB Expander pin allocations for MSP430 G2553/G2x33/FR2032

Device Pinout, MSP430G2x13 and MSP430G2x53, 32-Pin Devices, QFN

TSSOP56: 14mm x 6.1mm x 1.2mm

Programming pins

Expander	VQFN32	LQFP	G56	Connected to
RST / NMI / T_SBWTDIO	23	10	16	Reset. Nunmaskable interrupte input. T_SWBTDIO on 50 pins, DTR on Comms

Expander	VQFN32	LQFP	G56	Connected to
TEST / SBWTCK	24	11	17	T_SWBTCK on 50 pins, RTS on Comms. Sel. test mode for JTAG pins on Port 1. Device protection fuse cnnctd to TEST
UART_T_TXD	1	24	28	Firmware transmit (see Bootloader section in datasheet)
UART_T_RXD	5	23	27	Firmware receive (see Bootloader section in datasheet)

The programming UART pins are not consistent across models. This matches FR2032(G56), FR413x(LQFP), G2433/G2553(VQFN32 P1.1 and P1.5).

MSP430 pin allocations

The intended FR2032 chip uses a TSSOP-56 (G56) package.

These pins are used in a special role

Function	VQFN32	LQFP	G56	Connected to
STEM INT	31	24	28	P1.0. 1-Wire event raising line between MCUs
UART3 RX	1	23	27	P1.1. USCI_A0. UCA0RXD.
UART3 TX	2	22	26	P1.2. USCI_A0. UCA0TXD.
MCU SYS INT	3	21	25	P1.3. 1-Wire event raising line between MCUs
SYS SCL	4	20	24	P1.4. 50 pin connector. TCK. JTAG test clock, input terminal for device programming and test
SYS SDA	5	19	23	P1.5. 50 pin connector. TMS. JTAG test clock, input terminal for device programming and test
MSP_TDI/analog	21	18	22	P1.6 TDI/TCLK. Host Alt. JTAG test data input or test clock input during programming and test.
MSP_TDO/analog	22	17	21	P1.7 TDO/TDI. Host Alt. JTAG test data output terminal or test data during programmign and test
UCB0_CE	nc	32	34	P5.0. nc
UCB0_CLK	nc	31	33	P5.1. nc
STEM SCL		29	31	P5.3. USCI_B0.
STEM SDA		30	32	P5.2. USCI_B0.
TA1.1/Cp	nc	12	18	P4.0 / Host Alt connector
XIN	nc	7	13	P4.1/XIN / Host Alt connector
XOUT	nc	6	12	P4.2/XOUT / Host Alt connector
TA1CLK/Compare	nc	14	20	P8.2 TA1CLK / Host Alt connector

Function	VQFN32	LQFP	G56	Connected to
TA1.2/Compare	nc	13	19	P8.3 / Host Alt connector

Pins used as GPIO

Function	VQFN32	LQFP	G56	Connected to
SHUTDOWN_BTN	9	40	42	P2.0. Shudown button pin on 3 pin Power Enable Connector
LOCK_BTN	10	39	41	P2.1. Lock button pin on 3 pin Power Enable Connector
POR_B_3P3	11	38	40	P2.2. Power on reset Input from PMIC. 50 pin connector
BOTH_VSOM	15	37	39	P2.3. Input from faceboard. 50 pin connector
T_USB_O_ALT_POL	16	36	38	P2.4. HD3SS460 (default = high-im)
T_USB_O_ALT_AMSEL	17	35	37	P2.5. HD3SS460 (default = high-im)
T_USB_H_ALT_POL	26	34	36	P2.6. HD3SS460 (default = high-im)
T_USB_H_ALT_AMSEL	25	33	35	P2.7. HD3SS460 (default = high-im)
T_USB_O_ALT_EN	SH1.0	56	56	P3.0. HD3SS460 (default = high-im)
T_USB_H_ALT_EN	SH1.1	55	55	P3.1. HD3SS460 (default = high-im)
HXA_SEL	SH1.2	54	54	P3.2. Select Host Extra A6/A7
HXB_SEL	SH1.3	53	53	P3.3. Select Host Extra B6/B7
HX_OE	SH1.4	52	52	P3.4. Select Host Extra Enable
OXA_SEL	SH1.5	51	51	P3.5. Select OTG Extra A6/A7
OXB_SEL	SH1.6	50	50	P3.6. Select OTG Extra B6/B7
OX_OE	SH1.7	49	49	P3.7. Select OTG Extra Enable
PWRBTN	SH2.0	5	11	P4.3. 50 pin connector
ALT_BOOT	SH2.1	4	10	P4.4. 50 pin connector
QSPI_BOOT_EN_3P3	SH2.2	3	9	P4.5. 50 pin connector
VSOM_LOCK_EN	SH2.3	2	8	P4.6. Data output enabling VSOM_LOCK(300mA VSOM).
SYS_RST_PMIC	SH2.4	1	7	P4.7. 50 pin connector
PMIC_ON_REQ	SH2.5	28	30	P5.4. 50 pin connector
PMIC_STBY_REQ	SH2.6	27	29	P5.5. 50 pin connector
	SH2.7			

Function	VQFN32	LQFP	G56	Connected to
BOTH_VSOM2		48	48	P6.0. 50 pin connector
BAT_INT		47	47	P6.1. BQ24250
PD_CTL_INT_1		46	46	P6.2. TPS PD Controller
PD_CTL_INT_2		45	45	P6.3. TPS PD Controller
T_EXTRA	SH3.0	44	44	P6.4. 50 pin connector
BAT_CE	SH3.1	43	43	P6.5. BQ24250
BAT_EN1	SH3.2	6	6	P7.0. BQ24250
BAT_EN2	SH3.3	5	5	P7.1. BQ24250
PD_CTL_RESET	SH3.4	4	4	P7.2. TPS PD Controller
PD_EXT1	SH3.5	3	3	P7.3. TPS PD Controller
PD_EXT2	SH3.6	60	2	P7.4. TPS PD Controller
PD_VIN_EN	SH3.7	59	1	P7.5. TPS PD Controller

56 pin package excludes 8 pins: P8.0 P8.1 P5.6 P5.7 P6.6 P6.7 P7.6 P7.7 (only usable at 64 pin package)

Alt. Design using Shift registers (output only)

If a 48+ IO MSP430 chip is not available a setup is used with 24 IO. In this setup shift registers are used.

Three shift registers are chained off the 7 shift pins. Individual pins triggers the update of output for 8 bytes. A fourth output trigger pin is reserved for a future bank. This lessens the requirement to remember existing state. For the 64 pin package shift registers are not used.

Function	VQFN32	LQFP	G56	Connected to
SH1_DS	6			P3.1. 74HC595 DS
SH1_SHCP	12			P3.2. 74HC595 SHCP
SH1_MR	13			P3.3. 74HC595 MR
SH1_STCP	14			P3.4. 74HC595 STCP
SH2_STCP	18			P3.5. 74HC595 STCP
SH3_STCP	19			P3.6. 74HC595 STCP
SH4_STCP	20			P3.7. 74HC595 STCP

The output pins on the shift registers are grouped as,

- SH1 Alt mode bits,
- SH2 SoM Runtime control shift reg
- SH3 PD And Charging control shift reg

• SH4 unallocated shift register.

Function	VQFN32	Connected to
STEM INT	31	P1.0. 1-Wire event raising line between MCUs
UART3 RX	1	P1.1. USCI_A0. UCA0RXD.
UART3 TX	2	P1.2. USCI_A0. UCA0TXD.
MCU SYS INT	3	P1.3. 1-Wire event raising line between MCUs
SYS SCL	4	P1.4. 50 pin connector. TCK. JTAG test clock, input terminal for device programming and test
SYS SDA	5	P1.5. 50 pin connector. TMS. JTAG test clock, input terminal for device programming and test
STEM SCL	21	P1.6 USCI_B0. TDI/TCLK. JTAG test data input or test clock input during programming and test.
STEM SDA	22	P1.7 USCI_B0. TDO/TDI. JTAG test data output terminal or test data during programmign and test

Faceboard expander pin allocations

Pins used as GPIO

Function	VQFN32	LQFP	G56	Connected to
IMU_INTM	9	40	42	P2.0. IMU Motion Interrupt
IMU_INTA	10	39	41	P2.1. IMU Accelerator Interrupt
POR_B_3P3	11	38	40	P2.2. Power on reset Input from PMIC. 50 pin connector
(BOTH_VSOM)	15	37	39	P2.3. Input from faceboard. 50 pin connector
	16	36	38	P2.4.
	17	35	37	P2.5.
LEFT_ATT_INT	26	34	36	P2.6.
RIGHT_ATT_INT	25	33	35	P2.7.
LED_SHUTDOWN - SDB	SH1.0	56	56	P3.0.
	SH1.1	55	55	P3.1.
CSI1_PWR_DWN_B	SH1.2	54	54	P3.2.
LEFT_CAM_RESET	SH1.3	53	53	P3.3.

Function	VQFN32	LQFP	G56	Connected to
LEFT_ATT_XSHUT	SH1.4	52	52	P3.4.
CSI2_PWR_DWN_B	SH1.5	51	51	P3.5.
RIGHT_CAM_RESET	SH1.6	50	50	P3.6.
RIGHT_ATT_XSHUT	SH1.7	49	49	P3.7.
PWRBTN	SH2.0	5	11	P4.3. 50 pin connector
ALT_BOOT	SH2.1	4	10	P4.4. 50 pin connector
QSPI_BOOT_EN_3P3	SH2.2	3	9	P4.5. 50 pin connector
	SH2.3	2	8	P4.6.
SYS_RST_PMIC	SH2.4	1	7	P4.7. 50 pin connector
PMIC_ON_REQ	SH2.5	28	30	P5.4. 50 pin connector
PMIC_STBY_REQ	SH2.6	27	29	P5.5. 50 pin connector
	SH2.7			
(BOTH_VSOM2)		48	48	P6.0. 50 pin connector
B_CONFIG_1		47	47	P6.1. m.2 Key B
B_LED / DAS / DSS		46	46	P6.2. m.2 Key B
		45	45	P6.3. m.2 Key B
M2B_PWROFF	SH3.0	44	44	P6.4. m.2 Key B
DEVSLP	SH3.1	43	43	P6.5. m.2 Key B
	SH3.2	6	6	P7.0. on m.2 Key E
M2E_PWROFF	SH3.3	5	5	P7.1. on m.2 Key E
W_DISABLE1#	SH3.4	4	4	P7.2. on m.2 Key E
W_DISABLE2#	SH3.5	3	3	P7.3.
	SH3.6	60	2	P7.4.
	SH3.7	59	1	P7.5.

56 pin package excludes 8 pins: P8.0 P8.1 P5.6 P5.7 P6.6 P6.7 P7.6 P7.7 (only usable at 64 pin package)

Expander	Connected to
EX6.0	E_COEX4
EX6.1	E_DEV_WLAN_WAKE
EX6.2	E_ALERT / I2C_IRQ

Expander	Connected to
EX6.3	E_LED / DAS / DSS
EX6.4	E_UART WAKE
EX6.5	E_SDIO WAKE
EX6.6	E_LED2#
EX6.8	B_RESET#
EX6.9	B_ALERT / I2C_IRQ
EV6 10	

EX6.10

The system expander #0 is used by the SoM via SYS I2C. The system expander input triggers interrupt via SYS_nINT (GPIO4_IO19). This expander deals with activity relevant during waking state.

This first expander, which is also on the dev. board maps,

	Expander	Connected to	
-	EX0.0	mPCle_PERST on M2 Key B	
	EX0.1	- reserved for second mPCle -	
	EX0.3		

- LED ControllerMotion Sensor
- Sound Sensor
- Nighttime camera attached sensors

The EX4 expander input triggers interrupt via STEM_INT.

Expander	Pin	Connected to
EX4.0		
EX4.1	O0.1	SD Card Chip Select SPI
EX4.2	00.2	SD Card Chip Select SDIO
EX4.8	I1.0	MIC VM3011 DOUT

Enable CS SD Card connector LCD CS SPI MMC CS m.2 WiFi CS SDIO

The EX6 expander input triggers interrupt via SYS_nINT (GPIO4_IO19).

Articles

- 1-Wire OneWire implementation for MSP430
- MSP430 CCS Code Examples

- MoaT owslave
- Three-state logic
- MSP430 IO Expander Firmware
- MSP430 build on Raspberry Pi
- Programming the MSP430 using docker
- mspdebug
- A BETTER USI I2C LIBRARY FOR THE MSP430 Jan's blog post: I2C using USI on the MSP430
- msp430 USI I2C lib
- TI MSP 430, UART, I2C & ADCs, 7-Segments....
- MSP430F5438A-EP: Writing and Reading MSP430 Flash using MSP-FET
- MSP430Flasher compiled to run on ARM architecture
- MSPDS MSP Debug Stack Developers Package
- Guide and script to install mspdebug on Raspberry Pi in order to flash and debug MSP430 devices
- UART with MSP430
- Rust Quickstart for MSP430
- Riot OS with MSP430
- Software UART example for MSP430 using mps430-gcc on Linux
- 74HC125 tri-state conversion of 4 signals

Other MSP430 options

MSP430FR2033IPMR - inventory 893 @1000 \$1.55 60 pins, 15KB / 2KB, 1 I2C, 1 SPI alt SMD package LQFP-64

MSP430 FR4132 - Available january \$1.32. 60 IO.