Convolutional Neural Network

CNNs

Digital Images

• Images are stored as rectangular arrays of hundreds, thousands, or millions of discrete "picture elements," otherwise known as pixels. Each pixel can be thought of as a single square point of colored light.

Coordinate system in images

matrix = new int[5][5];

Color system

Color name	RGB triplet	Color
Red	(255, 0, 0)	
Lime	(0, 255, 0)	
Blue	(0, 0, 255)	
White	(255, 255, 255)	
Black	(0, 0, 0)	
Gray	(128, 128, 128)	
Fuchsia	(255, 0, 255)	
Yellow	(255, 255, 0)	
Aqua	(0, 255, 255)	
Silver	(192, 192, 192)	
Maroon	(128, 0, 0)	
Olive	(128, 128, 0)	
Green	(0, 128, 0)	
Teal	(0, 128, 128)	
Navy	(0, 0, 128)	
Purple	(128, 0, 128)	

Image Convolutions

See https://setosa.io/ev/image-kernels/

Stride length = 1

Stride length = 2 COGNIBOT

CNNs

What are CNN's?

- Convolutional Neural Networks are very similar to ordinary Neural Networks from the previous chapter: they are made up of neurons that have learnable weights and biases.
- The whole network still expresses a single differentiable score function: from the raw image pixels on one end to class scores at the other.
- ConvNet architectures make the explicit assumption that the inputs are images, which allows us to encode certain properties into the architecture.

Why CNN?

- Regular Neural Nets don't scale well to full images.
- For example, an image of more respectable size, e.g. 200x200x3, would lead to neurons that have 200*200*3 = 120,000 weights.
- Unlike a regular Neural Network, the layers of a ConvNet have neurons arranged in 3 dimensions: width, height, depth.
- The neurons in a layer will only be connected to a small region of the layer before it, instead of all of the neurons in a fully-connected manner.

Pooling layer

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

See Kaggle Notebook

See

https://cs231n.github.io/

https://keras.io/examples/ (example in class)

