



#### CSCE 581: Introduction to Trusted Al

# Lectures 23 and 24: Supervised ML (Text Processing), Trust Mitigation – Explanations/ Rating

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE  $8^{TH}$  AND  $10^{TH}$  APRIL, 2025

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

### Organization of Lectures 23, 24

- Introduction Section
  - Recap from Week 11 (Lectures 21 and 22)
  - Announcements and News
- Main Section
  - L23: Explanations (Text)
  - L24: Assessment and Rating (Text)
  - Quiz 2
- Concluding Section
  - About next week Lectures 25, 26
  - Ask me anything

## Recap from Week 11 (Lectures 21, 22)

- We looked at
  - L21: Supervised ML (Text)
  - L22: Classification, Trust Issue
- We tested various classification problems; reviewed the importance of text pre-processing on model performance

### Al Trust News: LLMs and Turing Test

Large Language Models Pass the Turing Test, <a href="https://arxiv.org/abs/2503.23674">https://arxiv.org/abs/2503.23674</a>



#### Al Trust News: LLMs and Turing Test

Large Language Models Pass the Turing Test, https://arxiv.org/abs/2503.23674



Table 1: Win rates by AI witness and study.

| AI Witness         | Study          | Win Rate | Wins | Losses | Total |
|--------------------|----------------|----------|------|--------|-------|
| CDT 4.5 DEDCOMA    | Prolific       | 75.5%    | 111  | 36     | 147   |
| GPT-4.5-PERSONA    | Undergraduates | 69.2%    | 74   | 33     | 107   |
| LI AMA DEDGOMA     | Prolific       | 64.7%    | 90   | 49     | 139   |
| LLAMA-PERSONA      | Undergraduates | 45.4%    | 49   | 59     | 108   |
| II IMI NO DEDGOM   | Prolific       | 47.1%    | 33   | 37     | 70    |
| LLAMA-NO-PERSONA   | Undergraduates | 26.4%    | 14   | 39     | 53    |
| CDT 4.5 NO DEDGONA | Prolific       | 42.1%    | 32   | 44     | 76    |
| GPT-4.5-NO-PERSONA | Undergraduates | 27.7%    | 18   | 47     | 65    |
| ELIZA              | Prolific       | 27.4%    | 20   | 53     | 73    |
| ELIZA              | Undergraduates | 18.3%    | 11   | 49     | 60    |
| CDT 4. NO DEDCOMA  | Prolific       | 25.4%    | 18   | 53     | 71    |
| GPT-40-NO-PERSONA  | Undergraduates | 16.7%    | 9    | 45     | 54    |

#### Results

Prompting Strategies and Their Success

#### Al Trust News: How People View Al

#### How the U.S. Public and AI Experts View Artificial Intelligence,

https://www.pewresearch.org/internet/2025/04/03/how-the-us-public-and-ai-experts-view-artificial-intelligence/

#### All experts more likely than the public to say All will have a positive effect on the U.S. over next 20 years

% who say they think the impact of artificial intelligence (AI) on the U.S. over the next 20 years will be ...



Note: "Al experts" refer to individuals whose work or research relates to Al. The Al experts surveyed are those who were authors or presenters at an Al-related conference in 2023 or 2024 and live in the U.S. Expert views are only representative of those who responded. For more details, refer to the methodology. "Very/somewhat positive" and "very/somewhat negative" are combined. Those who did not give an answer are not shown.

Source: Survey of U.S. adults conducted Aug. 12-18, 2024. Survey of Al experts conducted Aug. 14-0ct. 31, 2024.

"How the U.S. Public and Al Experts View Artificial Intelligence"

#### PEW RESEARCH CENTER

### Large gaps between experts and the public on Al's potential impact on jobs, the economy; few in either group say Al will be good for elections, news

% who say the impact of artificial intelligence (AI) on each of the following in the U.S. over the next 20 years will be **very or somewhat positive** 



Note: "Al experts" refer to individuals whose work or research relates to Al. The Al experts surveyed are those who were authors or presenters at an Al-related conference in 2023 or 2024 and live in the U.S. Expert views are only representative of those who responded. For more details, refer to the methodology. Those who did not give an answer or gave responses of "equally positive or negative," very negative," "somewhat negative" or "not sure" are not shown.

Source: Survey of U.S. adults conducted Aug. 12-18, 2024. Survey of Al experts conducted Aug. 14-Oct. 31, 2024.

"How the U.S. Public and Al Experts View Artificial Intelligence"

#### PEW RESEARCH CENTER

#### Al Trust News: How People View Al

### How the U.S. Public and AI Experts View Artificial Intelligence, <a href="https://www.pewresearch.org/internet/2025/04/03/how-the-us-public-and-ai-experts-view-artificial-intelligence/">https://www.pewresearch.org/internet/2025/04/03/how-the-us-public-and-ai-experts-view-artificial-intelligence/</a>

#### Experts, public alike are more concerned about not enough government regulation of AI than too much

% who say that thinking about the use of artificial intelligence (AI) in the United States, they are more concerned that the U.S. government will \_\_\_ regulating its use



Note: "Al experts" refer to individuals whose work or research relates to Al. The Al experts surveyed are those who were authors or presenters at an Al-related conference in 2023 or 2024 and live in the U.S. Expert views are only representative of those who responded. For more details, refer to the methodology. Those who did not give an answer are not shown. Source: Survey of U.S. adults conducted Aug. 12-18, 2024. Survey of Al experts conducted Aug. 14-Oct. 31, 2024.

"How the U.S. Public and AI Experts View Artificial Intelligence"

#### PEW RESEARCH CENTER

### Experts and public largely see jobs for cashiers, journalists and factory workers at risk due to AI; views differ widely on truck drivers

% who say that over the next 20 years, artificial intelligence (AI) will lead to fewer jobs for \_\_ in the U.S.



Note: "Al experts" refer to individuals whose work or research relates to Al. The Al experts surveyed are those who were authors or presenters at an Al-related conference in 2023 or 2024 and live in the U.S. Expert views are only representative of those who responded. For more details, refer to the methodology. Those who did not give an answer or gave responses of "more jobs," "will not make much difference" or "not sure" are not shown. Source: Survey of U.S. adults conducted Aug. 12-18, 2024. Survey of Al experts conducted Aug. 14-Oct. 31, 2024.

"How the U.S. Public and Al Experts View Artificial Intelligence"

#### PEW RESEARCH CENTER

#### Views of men, White adults are seen as relatively well-represented in Al design; views of other groups seen as less so

% who say they think the people who design artificial intelligence (AI) computer programs take the experiences and views of the following groups into account ...



Note: "Al experts" refer to individuals whose work or research relates to Al. The Al experts surveyed are those who were authors or presenters at an Al-related conference in 2023 or 2024 and live in the U.S. Expert views are only representative of those who responded. For more details, refer to the methodology. Those who did not give an answer or gave responses of "not too well" or "not at all well" are not shown.

Source: Survey of U.S. adults conducted Aug. 12-18, 2024. Survey of Al experts conducted Aug. 14-Oct. 31, 2024.

"How the U.S. Public and Al Experts View Artificial Intelligence"

PEW RESEARCH CENTER

### Project Status and Timeline

- Office Hours: 3-4pm (M), 10-11am (Th)
- Finish project presentations by Apr 22
- Project presentations
  - Apr 22 (Tu) Project presentation
  - Apr 24 (Th) Project presentation
- Project delivered
   Apr 29 (Tu)
   Project in Github

| 19  | Mar 25 (Tu)   | AI - Unstructured (Text):                      |
|-----|---------------|------------------------------------------------|
| 17  | 17141 23 (14) | Representation, Common NLP                     |
|     |               | Tasks, Large Language Models                   |
|     |               | (LLMs)                                         |
| 20  | Mar 27 (Th)   | Natural Languages/ Language                    |
| = 0 | 1,141 27 (11) | Models and their Impact on AI                  |
| 21  | Apr 1 (Tu)    | AI - Unstructured (Text): Analysis             |
|     |               | - Supervised ML - Trust Issues                 |
| 22  | Apr 3 (Th)    | AI - Unstructured (Text): Analysis             |
|     |               | <ul> <li>Supervised ML – Mitigation</li> </ul> |
|     |               | Methods                                        |
| 23  | Apr 8 (Tu)    | AI - Unstructured (Text): Analysis             |
|     |               | -                                              |
|     |               | Rating and Debiasing Methods                   |
| 24  | Apr 10 (Th)   | Explanation Methods                            |
|     |               | Trust: AI Testing                              |
| 25  | Apr 15 (Tu)   | Trust: Human-AI Collaboration                  |
| 26  | Apr 17 (Th)   | Emerging Standards and Laws                    |
|     |               | Trust: Data Privacy -                          |
|     |               | Trusted AI for the Real World                  |
| 27  | Apr 22 (Tu)   | Project presentation                           |
|     |               |                                                |
| 28  | Apr 24 (Th)   | Project presentation                           |
| 29  | Apr 29 (Tu)   | Paper presentations                            |
|     | May 1 (Th)    |                                                |
| 30  | May 6 (Tu)    | 4pm – Final exam/ Overview                     |

### Introduction Section

# Announcement: Change to Student Assessment

A = [920-1000]

B+ = [870-919]

B = [820-869]

C+ = [770-819]

C = [720-769]

D+ = [670-719]

D = [600-669]

F = [0-599]

| Tests                                                        | Undergrad      | Grad           |
|--------------------------------------------------------------|----------------|----------------|
| Course Project – report, in-class presentation               | 600            | 600            |
| Quiz – 2 quizzes                                             | 200            | 200            |
| Final Exam                                                   | 200            | 100            |
| Additional Final Exam – Paper summary, in-class presentation |                | 100            |
| Total                                                        | 1000<br>points | 1000<br>points |

**Change**: 4 quizzes to 2; no best of 3

# Intelligent Agent Model



E 580, 581 - FALL 2023

### Relationship Between Main Al Topics (Covered in Course)



E 580. 581 - FALL 2023 1

#### High Level Semester Plan (Adapted, Approximate)

#### CSCE 581 -

- Week 1: Introduction
- Week 2: Background: AI Common Methods
- Week 3: The Trust Problem
- Week 4: Machine Learning (Structured data) Classification
- Week 5: Machine Learning (Structured data) Classification Trust Issues
- Week 6: Machine Learning (Structured data) Classification Mitigation Methods
- Week 7: Machine Learning (Structured data) Classification Explanation Methods
- Week 8: Machine Learning (Text data, vision) Classification,

#### **Large Language Models**

- Week 9: Machine Learning (Text data) Classification Trust Issues, LLMs
- Week 10: Machine Learning (Text data) Classification Mitigation Methods
- Week 11: Machine Learning (Text data) Classification Explanation Methods
- Week 12: Emerging Standards and Laws, Real world applications
- Week 13: Project presentations
- Week 14: Project presentations, Conclusion

Increased focus on LLMs and projects now

Al/ ML topics and with a focus on fairness, explanation, Data privacy, reliability

# Main Segment

CCE 581: TRUSTED AI

# Recap: Trust Issue – Stability of Output

# <u>Demonstration</u>: ROSE: ResOurces to explore Instability of SEntiment Analysis Systems



#### References:

1. MUNDADA, GAURAV, KAUSIK LAKKARAJU, and BIPLAV SRIVASTAVA. "ROSE: Tool and Data ResOurces to Explore the Instability of SEntiment Analysis Systems."

# <u>Demonstration</u>: ROSE: ResOurces to explore Instability of SEntiment Analysis Systems



#### References:

1. MUNDADA, GAURAV, KAUSIK LAKKARAJU, and BIPLAV SRIVASTAVA. "ROSE: Tool and Data ResOurces to Explore the Instability of SEntiment Analysis Systems."

### Instability of AI is Well Recorded

- [Text] <u>Su Lin Blodgett, Solon Barocas, Hal Daumé III, Hanna Wallach,</u> Language (Technology) is Power: A Critical Survey of "Bias" in NLP, Arxiv <a href="https://arxiv.org/abs/2005.14050">https://arxiv.org/abs/2005.14050</a>, 2020 [NLP Bias]
- [Image] Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock, and Anders C. Hansen, On instabilities of deep learning in image reconstruction and the potential costs of AI, <a href="https://doi.org/10.1073/pnas.1907377117">https://doi.org/10.1073/pnas.1907377117</a>, PNAS, 2020
- •[Audio] Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha, Connor Toups, John R. Rickford, Dan Jurafsky, and Sharad Goel, Racial disparities in automated speech recognition, PNAS April 7, 2020 117 (14) 7684-7689, https://doi.org/10.1073/pnas.1915768117, March 23, 2020

### XAI for Text

SCE 581: TRUSTED AI 19



CSCE 590-1: TRUSTED AI

### Methods

- LIME:
  - Tools: LIME, InterpretML
- SHAP:
  - Tools: SHAP, ExplainerBoard

### LIME — Local Interpretable Model-Agnostic Explanations

**Paper**: "Why Should I Trust You?" Explaining the Predictions of Any Classifier, Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, ACM's Conference on Knowledge Discovery and Data Mining, KDD2016

#### **Blogs**:

- https://homes.cs.washington.edu/~marcotcr/blog/lime/
- <a href="https://www.oreilly.com/content/introduction-to-local-interpretable-model-agnostic-explanations-lime/">https://www.oreilly.com/content/introduction-to-local-interpretable-model-agnostic-explanations-lime/</a>

Code: https://github.com/marcotcr/lime

#### Figures credit: Marco Tulio Ribeiro

# LIME Key Idea

- Generate a local, linear explanation for any model
- How
  - Perturb near the neighborhood of a point of interest, X (Local)
  - Fit a linear function to the model's output (Linear)
  - Interpret coefficients of the linear function (Explain)
  - Visualize
- Applicability
  - Any classification model!



CSCE 590-1: TRUSTED AI

#### LIME on Text

Question: Why is a classifier with >90% accuracy predicting based on?

**Task**: classifying religious inclination from email text

Prediction probabilities

atheism 0.58 christian 0.42

atheism



christian

#### Text with highlighted words

From: johnchad@triton.unm.edu (jchadwic) Subject: Another request for Darwin Fish

Organization: University of New Mexico, Albuquerque

Lines: 11

NNTP-Posting-Host: triton.unm.edu

Hello Gang,

There have been some notes recently asking where to obtain the DARWIN fish.

This is the same question I have and I have not seen an answer on the

net. If anyone has a contact please post on the net or email me.

"If we remove the words **Host** and **NNTP** from the document, we expect the classifier to predict **atheism** with probability 0.58 - 0.14 - 0.11 = 0.31"

Source: https://github.com/marcotcr/lime

# Review Example in Code

**Github**: <a href="https://github.com/biplav-s/course-tai-s25/blob/main/sample-code/LIME(Text)%20Classification.ipynb">https://github.com/biplav-s/course-tai-s25/blob/main/sample-code/LIME(Text)%20Classification.ipynb</a>

### InterpretML

- **Details**: <a href="https://github.com/interpretml/interpretml/">https://github.com/interpretml/interpretml/</a>
  - Whitebox (Glassbox) models: change learning code to introduce explainability support
  - Blackbox models: don't change learning code

| Interpretability Technique  | Туре               |  |  |
|-----------------------------|--------------------|--|--|
| Explainable Boosting        | glassbox model     |  |  |
| APLR                        | glassbox model     |  |  |
| Decision Tree               | glassbox model     |  |  |
| Decision Rule List          | glassbox model     |  |  |
| Linear/Logistic Regression  | glassbox model     |  |  |
| SHAP Kernel Explainer       | blackbox explainer |  |  |
| LIME                        | blackbox explainer |  |  |
| Morris Sensitivity Analysis | blackbox explainer |  |  |
| Partial Dependence          | blackbox explainer |  |  |

CSCE 580, 581 - FALL 2023

# Interpret (Text)

See: <a href="https://github.com/interpretml/interpret-text">https://github.com/interpretml/interpret-text</a>

#### Explainers for sophisticated classifiers:

- Classical Text Explainer (Default: Bag-of-words with Logistic Regression)
- Unified Information Explainer
- Introspective Rationale Explainer
- Likelihood Explainer
- Sentence Embedder Explainer
- Hierarchical Explainer

### Classification - Multimodal

- Data is multimodal, i.e., two or more models.
- Example: financial (stock) prediction
  - In the domain of finance, data can be both numeric (stock price) and textual data (news).
  - Sample exercises:
    - <a href="https://github.com/Joeyipp/predict-stock-trends-news">https://github.com/Joeyipp/predict-stock-trends-news</a> [Joey Yipp, CSCE 771, 2020]
    - <a href="https://www.kaggle.com/code/shtrausslearning/news-sentiment-based-trading-strategy">https://www.kaggle.com/code/shtrausslearning/news-sentiment-based-trading-strategy</a>
- Example: emergency room delay prediction
  - Electronic Health Record can have both numeric (pulse, heart rate) and textual data (clinical notes)
  - Reference: Utilizing Predictive Analysis to Aid Emergency Medical Services
    - https://link.springer.com/chapter/10.1007/978-3-030-93080-6\_17

# Certifying/ Rating with Text-based Al

CSCE 581: TRUSTED AI 29

## Trust Issues – Mitigate via Ratings

- Communicate behavior via certificates / ratings (increase transparency)
  - But, let humans make decisions

| _   |     |    | • |    | •  |    |    |
|-----|-----|----|---|----|----|----|----|
| Tru | IST | Di | m | en | SI | or | 15 |

Competent

Reliable

Upholds human values

Allows human interaction

### Transparency Through Documentation of Rating

#### Documentation about

- Outcome (e.g., Nutrition label, Electronic DataSheet, Factsheet)
- Process (e.g., SEI Capability Maturity Model, ISO 9001)

#### Documentation by

- Producer (e.g., Nutrition label)
- Consumer (e.g., Yelp rating)
- Independent 3<sup>rd</sup> Party (e.g., JD Powers, NHTSA car crash)

Reference: AboutML Project at PAI - https://www.partnershiponai.org/about-ml-get-involved/#read

# ARC Tool and Rating

Tool: <a href="http://casy.cse.sc.edu/causal\_rating">http://casy.cse.sc.edu/causal\_rating</a>

- See Sentiment Assessment Systems (SAS)



# Quiz 2

# Project Discussion

### Course Project

#### Framework

- 1. (Problem) Think of a problem whose solution may benefit people (e.g., health, water, air, traffic, safety)
- 2. (User) Consider how the primary user (e.g., patient, traveler) may be solving the problem today
- 3. (Al Method) Think of what the solution will do to help the primary user
  - 1. Solution => ML task (e.g. classification), recommendation, text summarization, ...
  - 2. Use a foundation model (e.g., LLM-based) solution as the baseline
- 4. (Data) Explore the data for a solution to work
- 5. (Reliability: Testing) Think of the evaluation metric we should employ to establish that the solution will works? (e.g., 20% reduction in patient deaths)
- 6. (Holding Human Values) Discuss if there are fairness/bias, privacy issues?
- 7. (Human-AI) Finally, elaborate how you will explain the primary user that your solution is trustable to be used by them

CSCE 590-1: TRUSTED AI 35

### Project Discussion: What to Focus on?

- Problem: you should care about it
- Data: should be available
- Method: you need to be comfortable with it. Have at least two one serves as baseline
- Trust issue
  - Due to Users
    - Diverse demographics
    - Diverse abilities
    - Multiple human languages
  - Or other impacts
- What one does to mitigate trust issue

### Rubric for Evaluation of Course Project

#### **Project**

- Project plan along framework introduced (7 points)
- Challenging nature of project
- Actual achievement
- Report
- Sharing of code

#### **Presentation**

- Motivation
- Coverage of related work
- Results and significance
- Handling of questions

# **Concluding Section**

### Week 11 (L23 and 24): Concluding Comments

#### We looked at

- L23: Explanations (Text)
- L24: Assessment and Rating (Text)
- Quiz 2

# About Next Week – Lectures 25, 26

# Lectures 25, 26

- Trust in Human-Al systems/ Chatbots
- Trust Standards and Laws, Privacy;
   Acceptable systems for the Real-world

| 19 | Mar 25 (Tu) | AI - Unstructured (Text):                        |
|----|-------------|--------------------------------------------------|
|    |             | Representation, Common NLP                       |
|    |             | Tasks, Large Language Models                     |
|    |             | (LLMs)                                           |
| 20 | Mar 27 (Th) | Natural Languages/ Language                      |
|    |             | Models and their Impact on AI                    |
| 21 | Apr 1 (Tu)  | AI - Unstructured (Text): Analysis               |
|    |             | <ul> <li>Supervised ML – Trust Issues</li> </ul> |
| 22 | Apr 3 (Th)  | AI - Unstructured (Text): Analysis               |
|    |             | - Supervised ML - Mitigation                     |
|    |             | Methods                                          |
| 23 | Apr 8 (Tu)  | AI - Unstructured (Text): Analysis               |
|    |             | _                                                |
|    |             | Rating and Debiasing Methods                     |
| 24 | Apr 10 (Th) | Explanation Methods                              |
|    |             | Trust: AI Testing                                |
| 25 | Apr 15 (Tu) | Trust: Human-AI Collaboration                    |
| 26 | Apr 17 (Th) | Emerging Standards and Laws                      |
|    |             | Trust: Data Privacy -                            |
|    |             | Trusted AI for the Real World                    |
| 27 | Apr 22 (Tu) | Project presentation                             |
|    |             |                                                  |
| 28 | Apr 24 (Th) | Project presentation                             |
| 29 | Apr 29 (Tu) | Paper presentations                              |
|    | May 1 (Th)  |                                                  |
| 30 | May 6 (Tu)  | 4pm – Final exam/ Overview                       |