Design Statement

"Design an assistive device to aid elderly users and disabled users with handlebar control to stabilize a bicycle travelling on a straight, flat path."

elderly cyclists occur due to a loss of control on a

Elderly Cyclists who ride bicycles on trails or in neighbourhoods

· Has various Health Benefits · Is an enjoyable Recreational Activity

3x more likely to suffer fatal injuries

· Is an Economic and Eco-friendly form of Mobility

and are at higher risk of other injuries including: • Fractures (Hip, Clavical etc...) · Ulnar Neuropathy

Problem Space

· Cyclists with motor skill disabilities For the elderly, cycling

HOWEVER, elderly cyclists are:

- The elderly rely more on handlebar maneuvers than trunk sway to maintain their balance
- the roll angle of a bicycle and steering angle

Mathemátical Modelling

Non-linear General Equation

$$\begin{split} &\left(I_{1}+mh^{2}\right)\vec{\theta}+\left(I_{3}-I_{2}-mh^{2}\left(\frac{v_{r}\tan\delta}{b}\right)^{2}\sin\theta\cos\theta\\ &-mgh\sin\theta=-mh\cos\theta\left(\frac{av_{r}}{b\cos^{2}\delta}\vec{\delta}+\frac{v_{r}^{2}}{b}\tan\delta\right) \end{split}$$

Linear General Equation

$$(I_1 + mh^2)\ddot{\theta} - mgh\theta = -\frac{mh}{-b}(av_r\dot{\delta} + v_r^2\delta).$$

Simulink Model

Ground Plane Geometry & Rear View of Bike System

Figure	Part Name	Model	Quantity	Manufacturer
	EC Motor	EC 45 (845 mm, brushless, 150 Watz, with Hall sensors	1	Maxon
5	Battery pack	Mini Portable DC-168 12V Rechargeable U-ion Battery Pack	1	Generic
	Sensor	6DOF Sparkfun Razor IMU	1	Sperkfum
	MicroController	Arduino Uno R3	1	Arduno
0	Frame gear	Cylindrical Spur Gear, Module 15, DIN 6, Z 20	1	DE Groups
	Motor gear	Witoys A949	1	Whoys
	Set screw	Witoys A949-5	1	Witoys
-	Gearhead	Planetary Gearhead (42 C Ø42 mm	SP 1	Maxon
屬	Motor Controller	Adafruit Motor Shie v2.3	ble	1 Adafruit

Why Handlebar Control?

Target Users:

There is a direct physical relationship between

- Increasing speed would increase accident risk

Optimization

Objective Function

Minimize Squared Error between Step input of 1

U function [3] = pid_bike(x)
Kp = x(1); Ki = x(2); Kd = x(3);
% pushes variables to workspace assignin('base','x_base',x);
<pre>a = sim('model_1','SimulationMode','normal'); b = a.pet('simul');</pre>
dt = 0.01; r = 0.dt.11;

 $K_{pr} \; K_{dr}$ and $K_{\parallel} \;$ values from the population with the smallest J value is chosen for our PID Controller

Testing and Evaluation

T. = 0.17s, OS% = 41.9%

Lead/Lag System

Matlah's Tuned System

T_s = 0.24s, OS% = 27.9%

T_s = 0.0682s, OS% = 0%

Technical Challenges:

- Gear pulley system (string)
- Solid rods instead of string
- Custom motor shaft fitting and set screw
- Fixing rods with circular fixture

- Added rate limiter to limit rate at which angle can change in order to mimic realistic response
- Motor and Battery Decisions
- Make PCB board to plug in batteries
- Created casing for water proofing

Final Design Concept Sketch

· Carpal Tunnel Syndrome

Genetic Algorithm Optimization

Varying Speed Test

Speed (km/h)	1% Settling Time (s)	Overshoot %	
13	0.1198	6.1	
14	0.1132	5.1	
15	0.1	3.1	
16	0.0706	1.3	
17	0.0602	0	
18	0.0682	0	
19	0.0758	0	
20	0.0774	0	
21	0.08	0	
22	0.0824	0	
23	0.0842	0	
24	0.0866	0	
25	0.0886	0	

		-	
13	0.1198	6.1	
14	0.1132	5.1	
15	0.1	3.1	
16	0.0706	1.3	
17	0.0602	0	
18	0.0682	0	
19	0.0758	0	
20	0.0774	0	
21	0.08	0	
22	0.0824	0	
23	0.0842	0	
24	0.0866	0	
25	0.0886	0	

	speeds
	Overshoot is negligible after 16
	km/h
•	Settling time change varying
	incrementally after 18 km/h
	15 km/h to 25km/h satisfy
	Danier of Englishment

· Greater Overshoot at slower

- o settling time maximum 0.1
- o Overshoot maximum of 5%
- · G.A. better than Lead/Lag system

Recommendations

- 1) Planetary gears Mechanism for high torque output
- 2) Intentional turns vs tilts Decrease error rate
- 3) Road conditions

 - Damping system

