ALGEBRA e LOGICA

CdL in Ingegneria Informatica

prof. Fabio GAVARINI

profit action City in the
a.a. 2016–2017 — Sessione Autunnale, II appello
Esame scritto del 22 Settembre 2017 — Testo e Svolgimento
N.B.: compilare il compito in modo <u>sintetico</u> ma esauriente , spiegando chiaramente quanto si fa, e scrivendo in corsivo con grafia leggibile.

[1] Determinare tutti i numeri interi $x \in \mathbb{Z}$ per i quali si abbia simultaneamente
$-93 \cdot x \equiv 378 \pmod{15}$ e $[215]_7 \cdot [x]_7 = -[24]_7 \pmod{\mathbb{Z}_7}$
$[2]$ Si considerino i numeri naturali $M:=750486^{6457}$ e $N:=750483^{6455}$.
(a) Calcolare il resto della divisione di N per 20 .
(b) Determinare se esistano nell'anello \mathbb{Z}_{20} degli interi modulo 20 le classi \overline{M}^{-1} e \overline{N}^{-1} inverse della classe $\overline{M}:=[M]_{20}$ e della classe $\overline{N}:=[N]_{20}$ rispettivamente. In caso negativo, si spieghi perché una tale classe inversa non esista; in caso affermativo, si calcoli esplicitamente la classe inversa in questione.
$ \begin{array}{ll} \textbf{[3]} \ \ \text{Nell'insieme} \ \mathbb{N} \ \text{dei numeri naturali si consideri la relazione} \ \lessdot \ \text{definita da} \\ h \ \lessdot \ k \ \iff \ \left \left\{x \in \{2,5\} \ \middle \ x \delta_{\scriptscriptstyle \mathbb{N}} h \right\}\right \ \leq \ \left \left\{y \in \{2,5\} \ \middle \ y \delta_{\scriptscriptstyle \mathbb{N}} k \right\}\right \\ \text{dove} \ \delta_{\scriptscriptstyle \mathbb{N}} \ \text{indica la consueta relazione di divisibilità in } \mathbb{N} . \end{array} $

(a) Dimostrare che la relazione \lessdot è una relazione di preordine in \mathbb{N} .

- (b) Dimostrare che la relazione \lt non è una relazione di ordine in \mathbb{N} .
- (c) Dimostrare che la relazione $\Leftrightarrow := \lessdot \cap \gt = \lessdot \cap \lessdot^{-1}$ è una relazione di equivalenza in \mathbb{N} .
 - (d) Determinare la cardinalità dell'insieme quoziente \mathbb{N}/\otimes .
- (e) Descrivere esplicitamente le cinque classi di \Leftrightarrow –equivalenza $[28]_{\Leftrightarrow}$, $[15]_{\Leftrightarrow}$, $[21]_{\bigotimes}$, $[38]_{\bigotimes}$ e $[30]_{\bigotimes}$.

(continua...)

[4] Dimostrare per induzione che per ogni $n \in \mathbb{N}_+$ vale l'identità

$$\sum_{s=1}^{n} (2s - 1) = n^2$$

- [5] Dato l'insieme $\mathbb{T} := \{18, 3, 70, 1, 10, 630, 14\}$, si consideri in esso la relazione (d'ordine) di divisibilità, indicata qui di seguito con δ .
- (a) Verificare che l'insieme ordinato $(\mathbb{T}; \delta)$ è un reticolo, scrivendo esplicitamente tutti i valori $\sup(x, y)$ e $\inf(x, y)$ per ogni $x, y \in \mathbb{T}$.
- (b) Determinare il minimo, il massimo, tutti gli atomi e tutti gli elementi \vee -irriducibili del reticolo \mathbb{T} .
- (c) Determinare se esista una \vee -fattorizzazione non ridondante in fattori \vee -irriducibili per l'elemento 630 nel reticolo \mathbb{T} . In caso affermativo, si determini esplicitamente (almeno) una tale \vee -fattorizzazione; in caso negativo, si spieghi perché essa non esista.
- (d) Determinare se esista una \vee -fattorizzazione non ridondante in *atomi* per l'elemento 630 nel reticolo \mathbb{T} . In caso affermativo, si determini esplicitamente (almeno) una tale \vee -fattorizzazione; in caso negativo, si spieghi perché essa non esista.
- (e) Stabilire, giustificando adeguatamente la risposta, se il reticolo $(T; \delta)$ sia un'algebra di Boole oppure no.

SVOLGIMENTO

- N.B.: lo svolgimento qui presentato è molto lungo... Questo non significa che lo svolgimento ordinario di tale compito (nel corso di un esame scritto) debba essere altrettanto lungo. Semplicemente, questo lo è perché si approfitta per spiegare in diversi modi, con lunghe digressioni, ecc. ecc. in dettaglio e con molti particolari tutti gli aspetti della teoria toccati più o meno a fondo dal testo in questione.
- [1] L'equazione modulare $[215]_7 \cdot [x]_7 = -[24]_7$ nell'anello \mathbb{Z}_7 chiaramente è equivalente all'equazione congruenziale $215 \cdot x = -24 \pmod{7}$ in \mathbb{Z} ; perciò risolvere il problema assegnato equivale a risolvere il sistema di equazioni congruenziali

$$\circledast : \begin{cases}
-93 x \equiv 378 & \pmod{15} \\
215 x \equiv -24 & \pmod{7}
\end{cases} \tag{1}$$

Riducendo i coefficienti e i termini noti nelle due equazioni congruenziali il sistema in (1) si trasforma nel sistema equivalente

$$\circledast : \begin{cases} -3x \equiv 3 & \pmod{15} \\ 5x \equiv -3 & \pmod{7} \end{cases}$$

che a sua volta, dividendo per 3 coefficiente, termine noto e modulo nella prima equazione, e sommando $28 = 4 \cdot 7$ al termine noto della seconda, si trasforma in

$$\circledast : \begin{cases} -1 \, x \equiv 1 & \pmod{5} \\ 5 \, x \equiv 25 & \pmod{7} \end{cases}$$

e infine (facile...) in

$$\circledast : \begin{cases} x \equiv 4 \pmod{5} \\ x \equiv 5 \pmod{7} \end{cases}$$

Quest'ultimo sistema di equazioni congruenziali è "in forma cinese" — cioè le due equazioni, separatamente, sono già risolte — con i due moduli tra loro coprimi; quindi tale sistema ammette soluzioni, che possono essere calcolate tramite il Teorema Cinese del Resto, o anche per sostituzione. In ogni caso, l'insieme delle soluzioni cercato è $\{x \in \mathbb{Z} \mid x \equiv 19 \pmod{35}\} = 19 + 35\,\mathbb{Z}$.

[2] — Ricordiamo che una classe $[X]_{20}$ in \mathbb{Z}_{20} è invertibile se e soltanto se si ha M.C.D. $(X,20)=\pm 1$. Poiché M è divisibile per 2 che è un divisore comune anche a 20, si ha certamente M.C.D. $(M,20)\neq \pm 1$, e quindi possiamo concludere che in \mathbb{Z}_{20} una classe inversa di \overline{M} non esiste. Invece per N osserviamo facilmente che M.C.D.(N,20)=1 — semplicemente perché i divisori primi di 20, che sono 2 e 5, non dividono 750483 e quindi non dividono neanche la potenza $750483^{6455}=:N$; concludiamo allora che esiste in \mathbb{Z}_{20} una classe inversa di \overline{N} . Tutto ciò risponde alla prima parte del quesito in (b).

Osservando che $\overline{750483}=\overline{3}$ in \mathbb{Z}_{20} , che $\varphi(20)=8$ e che $6455\equiv 7\pmod 8$, il Teorema di Eulero ci permette di calcolare

$$\overline{750483^{6455}} = \overline{750483}^{6455} = \overline{3}^{6455} = \overline{3}^{6455} = \overline{3}^{7} = \overline{3}^{4} \cdot \overline{3}^{3} = \overline{81} \cdot \overline{27} = \overline{1} \cdot \overline{7} = \overline{7}$$
 (2)

dove abbiamo anche sfruttato l'osservazione che $\overline{3}^4=\overline{3^4}=\overline{81}=\overline{1}$, grazie alla quale troviamo che $\overline{3}^4=\overline{1}$ e quindi, se anche non conosciamo o non ricordiamo il Teorema di Eulero, possiamo procedere allo stesso modo sostituendo, nella potenza $\overline{3}^{6455}$, l'esponente 6455 con il suo resto nella divisione per 4, che è 3.

In particolare la (2) ci dice che $\overline{750483^{6455}} = \overline{7}$ in \mathbb{Z}_7 , e quindi da questa uguaglianza di classi otteniamo che $750483^{6455} \equiv 7 \pmod{20}$: dato che $0 \le 7 \le 20$, questo ci permette di concludere che il resto di $N := 750483^{6455}$ nella divisione per 20 è r = 7, risolvendo così il quesito in (a).

Sempre dalla (1) otteniamo anche che $\overline{N}^{-1} = \overline{7}^{-1}$. Inoltre, avendo osservato che

$$\overline{3}^3 = \overline{27} = \overline{7}$$
 e $\overline{3}^3 \cdot \overline{3} = \overline{3}^4 = \overline{81} = \overline{1}$

concludiamo che $\overline{N}^{-1}=\overline{7}^{-1}=\overline{3}$. In alternativa, l'inversa $\overline{N}^{-1}=\overline{7}^{-1}$ richiesta è la soluzione (unica!) dell'equazione modulare $\overline{7}\cdot\overline{x}=\overline{1}$ in \mathbb{Z}_{20} , che equivale alla equazione congruenziale $7\,x\equiv 1\pmod{20}$ in \mathbb{Z} , la quale a sua volta equivale all'equazione diofantea $7\,x+20\,y=1$; per quest'ultima, una possibile soluzione è data dalla coppia (x,y)=(3,-1), da cui ricaviamo le soluzioni $x\equiv 3\pmod{20}$ dell'equazione congruenziale intermedia e la soluzione $\overline{x}=\overline{3}$ dell'equazione modulare di partenza, per cui in conclusione $\overline{N}^{-1}=\overline{7}^{-1}=\overline{3}$.

In ogni caso, questo completa la risposta al quesito in (b).

[3] — (a) Per semplificare la notazione (e magari chiarire le idee...) consideriamo la funzione $f: \mathbb{N} \longrightarrow \{0,1,2\}$ definita da $f(n) := \left|\left\{x \in \{2,5\} \mid x \, \delta_{\mathbb{N}} n \,\right\}\right|$. Dalle definizioni segue allora che

$$h \lessdot k \iff f(h) \leq f(k)$$
 $\forall h, k \in \mathbb{N}$

Da questa caratterizzazione della relazione « segue subito che essa è riflessiva e transitiva, e dunque è un preordine.

(b) La relazione \lessdot non è una relazione d'ordine perché non è antisimmetrica, in quanto esistono elementi $h, k \in \mathbb{N}$ per i quali si ha $h \lessdot k$ e $k \lessdot h$ ma $h \neq k$ (mentre l'antisimmetria imporrebbe che fosse h = k). Ad esempio, questo si verifica per h := 14 e k := 15, per i quali si ha

$$f(14) := \left| \left\{ \, x \in \{2,5\} \, \middle| \, x \, \delta_{\scriptscriptstyle \mathbb{N}} 14 \, \right\} \right| \, = \, 1 \, = \, \left| \left\{ \, y \in \{2,5\} \, \middle| \, y \, \delta_{\scriptscriptstyle \mathbb{N}} 15 \, \right\} \right| =: f(15) \qquad (3)$$

(perché $2\,\delta_{\scriptscriptstyle \mathbb{N}}14$, $5\,\delta_{\scriptscriptstyle \mathbb{N}}14$, dunque f(14)=1, mentre dall'altra parte abbiamo $2\,\delta_{\scriptscriptstyle \mathbb{N}}15$, $5\,\delta_{\scriptscriptstyle \mathbb{N}}15$, così che f(15)=1) per cui la (3) ci dà $14\lessdot 15$ e $15\lessdot 14$ con $14\neq 15$.

(c) Per definizione la relazione ⇔ è data da

$$m \Leftrightarrow n \iff m \lessdot n \& n \lessdot m \qquad \forall m, n \in \mathbb{N}$$

Ma allora dalla caratterizzazione di

data in (4) otteniamo anche

$$m \Leftrightarrow n \iff f(m) \leq f(n) \& f(n) \leq f(m) \iff f(m) = f(n)$$
 (per ogni $m, n \in \mathbb{N}$) così che $m \Leftrightarrow n \iff f(m) = f(n)$, da cui si vede facilmente che \Leftrightarrow è una relazione di equivalenza (precisamente, è la relazione di equivalenza associata canonicamente alla funzione f).

(d) L'insieme quoziente \mathbb{N}/\otimes ha cardinalità 3, cioè esistono esattamente 3 classi di \otimes –equivalenza in \mathbb{N} . Precisamente (anche se non è richiesto), tali classi sono

$$C_0 := \{ \text{ numeri in } \mathbb{N} \text{ che } \text{non siano multipli n\'e di 2 n\'e di 5} \} = \mathbb{N} \setminus (2 \mathbb{N} \cup 5 \mathbb{N})$$
 $C_1 := \{ \text{ multipli di 2 oppure di 5 ma } \text{non } \text{di entrambi } \} = (2 \mathbb{N} \cup 5 \mathbb{N}) \setminus 10 \mathbb{N}$
 $C_2 := \{ \text{ multipli sia di 2 sia di 5 (cioè multipli di 10)} \} = 10 \mathbb{N}$

Esprimendosi in termini dell'analisi fatta al punto al punto (c), questo risultato si ottiene come segue. Siccome \Leftrightarrow è l'equivalenza ρ_f associata alla funzione $f:\mathbb{N}\longrightarrow\{0,1,2\}$ lì considerata, abbiamo automaticamente che le classi di \Leftrightarrow -equivalenza sono tutte e sole le controimmagini — secondo f — dei valori assunti dalla funzione f: dato che f assume tutti e tre i possibili valori 0, 1 e 2, concludiamo che esistono esattamente tre classi di \Leftrightarrow -equivalenza, precisamente

$$C_0 := f^{-1}(0) = \{ n \in \mathbb{N} \mid f(n) = 0 \} = \{ \text{numeri non multipli n\'e di 2 n\'e di 5} \}$$

$$C_1 := f^{-1}(1) = \{ n \in \mathbb{N} \mid f(n) = 1 \} = \{ \text{multipli di uno solo tra 2 e 5} \}$$

$$C_2 := f^{-1}(1) = \{ n \in \mathbb{N} \mid f(n) = 1 \} = \{ \text{multipli di entrambi 2 e 5} \}$$

(e) Utilizzando la notazione introdotta in (d), le classi in esame sono $[28]_{\Leftrightarrow} = C_1$, $[15]_{\Leftrightarrow} = C_1$, $[21]_{\Leftrightarrow} = C_0$, $[38]_{\Leftrightarrow} = C_1$, $[30]_{\Leftrightarrow} = C_2$.

[4] — La tesi da dimostrare è che valga l'identità $\sum_{s=1}^{n} (2s-1) = n^2$ per ogni $n \in \mathbb{N}_+$. Vogliamo dimostrarla per induzione (debole, o semplice), che procede in due passi: Base dell'Induzione e Passo Induttivo.

<u>Base dell'Induzione</u>: La tesi è vera per il più piccolo valore utile di n (per il quale l'enunciato abbia senso).

Nel caso in esame, il suddetto "valore più piccolo" è $n_0=1$, dunque la base dell'induzione consiste nel dimostrare che $(\bigstar):\sum_{s=1}^{n_0}(2\,s-1)=n_0^2$ per $n_0:=1$.

 $\underline{Dimostrazione}$: Nella (\bigstar) il membro di sinistra è

$$\sum_{s=1}^{n_0} (2s - 1) = \sum_{s=1}^{1} (2s - 1) = (2 \cdot 1 - 1) = 2 - 1 = 1$$

e quello di destra è $n_0^2=1^2=1$, quindi l'identità è effettivamente valida.

Passo Induttivo (in forma debole): Per ogni valore utile di n, SE è vero l'enunciato per n ALLORA è vero anche l'enunciato per n+1.

Nel caso in esame, il suddetto passo induttivo assume la forma seguente:

Sia
$$n \in \mathbb{N}_+$$
. SE (Ipotesi Induttiva) si ha $\sum_{s=1}^n (2s-1) = n^2$,

ALLORA (Tesi Induttiva) si ha anche
$$(\otimes)$$
: $\sum_{s=1}^{n+1} (2s-1) = (n+1)^2$.

<u>Dimostrazione</u>: Per cominciare riscriviamo il membro di sinistra della (\otimes) nella forma

$$\sum_{s=1}^{n+1} (2s-1) = \sum_{s=1}^{n} (2s-1) + (2(n+1)-1) = \sum_{s=1}^{n} (2s-1) + 2n + 1$$
 (4)

e quello di destra nella forma

$$(n+1)^2 = n^2 + 2n + 1 (5)$$

Ora, l'*Ipotesi Induttiva* garantisce che $\sum_{s=1}^{n} (2s-1) = n^2$, quindi utilizzando questa uguaglianza la (4) si riscrive nella forma

$$\sum_{s=1}^{n+1} (2s-1) = n^2 + 2n + 1 \tag{6}$$

e a questo punto confrontando la (6) con la (5) otteniamo proprio la (\otimes) , q.e.d.

[5] — Per comodità di visualizzazione disegnamo qui sotto il diagramma di Hasse dell'insieme ordinato $(T; \delta)$, che a priori non è necessario (e infatti non è richiesto...). Tale diagramma è

(a) Ovviamente, in tutti i "casi banali", cioè quelli in cui sia $a \, \delta_{\mathbb{N}} b$ oppure $b \, \delta_{\mathbb{N}} a$, abbiamo che esiste sup $(\{a,b\}) = b$ e inf $(\{a,b\}) = a$ se $a \, \delta_{\mathbb{N}} b$ mentre invece sup $(\{a,b\}) = a$ e inf $(\{a,b\}) = b$ se $b \, \delta_{\mathbb{N}} a$. Per tutti gli altri casi non banali possibili, direttamente dall'analisi del diagramma di Hasse vediamo che esistono

sempre $\sup (\{a,b\})$ e $\inf (\{a,b\})$, dati esplicitamente da

$$\sup \left(\left\{ \, 3\,,10\, \right\} \right) \, = \, 630 \ , \quad \sup \left(\left\{ \, 10\,,14\, \right\} \right) \, = \, 70 \ , \quad \sup \left(\left\{ \, 3\,,14\, \right\} \right) \, = \, 630$$

$$\sup \left(\left\{ \, 3\,,70\, \right\} \right) \, = \, 630 \ , \quad \sup \left(\left\{ \, 18\,,10\, \right\} \right) \, = \, 630$$

$$\sup \left(\left\{ \, 18\,,14\, \right\} \right) \, = \, 630 \ , \quad \sup \left(\left\{ \, 18\,,70\, \right\} \right) \, = \, 630$$

$$\inf \left(\left\{ \, 3\,,10\, \right\} \right) \, = \, 1 \ , \quad \inf \left(\left\{ \, 10\,,14\, \right\} \right) \, = \, 1 \ , \quad \inf \left(\left\{ \, 3\,,14\, \right\} \right) \, = \, 1$$

$$\inf \left(\left\{ \, 3\,,70\, \right\} \right) \, = \, 1 \ , \quad \inf \left(\left\{ \, 18\,,10\, \right\} \right) \, = \, 1$$

$$\inf \left(\left\{ \, 18\,,14\, \right\} \right) \, = \, 1 \ , \quad \inf \left(\left\{ \, 18\,,70\, \right\} \right) \, = \, 1$$

Così concludiamo che l'insieme ordinato $(T; \delta)$ è effettivamente un reticolo.

<u>NOTA</u>: È opportuno sottolineare che, in generale, a priori non possiamo sapere se sup $\{a,b\}$ = m.c.m.(a,b) né se inf $\{a,b\}$ = M.C.D.(a,b), sebbene la relazione d'ordine sia la divisibilità! Di fatto, dalla tavola qui sopra possiamo osservare che in molti casi si ha sup $\{a,b\}$ ≠ m.c.m.(a,b) e/o inf $\{a,b\}$ ≠ M.C.D.(a,b). Questa apparente "anomalia" si verifica proprio perché si tratta di casi di elementi $a,b \in \mathbb{T}$ per i quali m.c.m. $(a,b) \notin \mathbb{T}$ e/o M.C.D. $(a,b) \notin \mathbb{T}$.

(b) Il minimo del reticolo \mathbb{T} è 1, e il massimo è 630. Gli atomi, per definizione, sono gli elementi che coprono il minimo, quindi in questo caso sono 3, 10, 14. Tutti questi atomi sono ovviamente \vee -irriducibili; in aggiunta, gli unici altri elementi \vee -irriducibili sono quello "banale", cioè il minimo 1, e anche 18. Riassumendo,

$$\min(\mathbb{T}) = 1 \quad , \quad \max(\mathbb{T}) = 630$$

$$\left\{atomi\ di\ \mathbb{T}\right\} = \left\{3, 10, 14\right\} \quad , \quad \left\{\vee-irriducibili\ di\ \mathbb{T}\right\} = \left\{1, 3, 10, 14, 18\right\}$$

(c) Siccome il reticolo \mathbb{T} è finito, sicuramente esiste (almeno) una \vee -fattorizzazione (non ridondante) in \vee -irriducibili per ogni suo elemento, quindi anche per 630. Analizzando direttamente il diagramma di Hasse, troviamo che tutte le possibili \vee -fattorizzazioni non ridondanti in \vee -irriducibili per questo elemento sono date da

$$630 = 18 \lor 10 \lor 14$$
 , $630 = 3 \lor 10 \lor 14$
 $630 = 18 \lor 10$, $630 = 18 \lor 14$
 $630 = 3 \lor 10$, $630 = 3 \lor 14$

(d) A priori, una \vee -fattorizzazione (non ridondante) in atomi di 630 potrebbe esistere oppure no, diversamente da quanto possiamo dire per una fattorizzazione in \vee -irriducibili; in ogni caso, dato che ogni atomo è sempre \vee -irriducibile, un'eventuale \vee -fattorizzazione (non ridondante) in atomi sarebbe una particolare \vee -fattorizzazione (non ridondante) in \vee -irriducibili, che abbiamo trattato nel precedente punto (c). Così analizzando quanto già trovato al punto (c) osserviamo che tra le sei \vee -fattorizzazioni (non ridondanti) in \vee -irriducibili di 630 lì elencate troviamo che esistono esattamente tre \vee -fattorizzazioni non ridondanti di 630 in atomi, date da

$$630 = 3 \lor 10 \lor 14$$
 , $630 = 3 \lor 10$, $630 = 3 \lor 14$

(e) L'insieme \mathbb{T} è finito, con esattamente 7 elementi. Ora, come conseguenza del Teorema di Rappresentazione di Stone è noto che ogni algebra di Boole finita ha un numero di elementi che è una potenza di 2, cioè è del tipo 2^n per un certo esponente $n \in \mathbb{N}$. Siccome $|\mathbb{T}| = 7$ non è una potenza di 2, possiamo concludere che $(\mathbb{T}; \delta)$ non è un'algebra di Boole. In particolare si osservi che con questo metodo non c'è neanche bisogno di analizzare come sia fatta la relazione d'ordine fissata in \mathbb{T} : qualunque essa sia, la conclusione sarà sempre la stessa, perché dipende esclusivamente da una proprietà insiemistica di \mathbb{T} stesso.

In alternativa, possiamo procedere tramite un'analisi diretta delle proprietà di reticolo di $(\mathbb{T}; \delta)$, come segue.

Ricordiamo che, per definizione, un reticolo è detto algebra di Boole se e soltanto se è limitato, distributivo e complementato. Ora, il reticolo \mathbb{T} è limitato, con minimo 1 e massimo 630. D'altronde, dall'analisi del diagramma di Hasse deduciamo che il reticolo (\mathbb{T} ; δ) non è distributivo. Infatti, ricordiamo che un reticolo è distributivo se e soltanto se non contiene nessun sottoreticolo che sia isomorfo al reticolo \mathfrak{N}_5 , dove il reticolo indicato con \mathfrak{N}_5 è quello rappresentato dal diagramma di Hasse

Ora, il reticolo $(\mathbb{T};\delta)$ contiene ben sette sottoreticoli isomorfi al reticolo \mathfrak{N}_5 , precisamente

$$\begin{array}{lll} \textit{quattro di tipo} & \mathbb{E}'_{x,y} := \left\{1\,,x\,,70\,,y\,,630\right\} & \forall \, x \in \left\{10\,,14\right\}, \, y \in \left\{3\,,18\right\} \\ & \text{con l'isomorfismo} & \mathbb{E}'_{x,y} \longrightarrow \mathfrak{N}_5 \;, & 1 \mapsto 0\,, \, x \mapsto a\,, \, 70 \mapsto b\,, \, y \mapsto c\,, \, 630 \mapsto 1 \\ & \text{tre di tipo} & \mathbb{E}''_z := \left\{1\,,z\,,3\,,18\,,630\right\} & \forall \quad z \in \left\{10\,,14\,,70\right\} \\ & \text{con l'isomorfismo} & \mathbb{E}''_z \longleftrightarrow \mathfrak{N}_5 \;, & 1 \mapsto 0\,, \, 3 \mapsto a\,, \, 18 \mapsto b\,, \, z \mapsto c\,, \, 630 \mapsto 1 \end{array}$$

per cui possiamo concludere che il reticolo $(T; \delta)$ non è distributivo.

Da un altro punto di vista, osserviamo che $(\mathbb{T}; \delta)$ è complementato, poiché ogni elemento ha un complemento. D'altra parte, ci sono casi in cui tale complemento

non è unico; precisamente, la situazione è la seguente:

```
1 ha come complemento (unico) 630
3 ha come complementi 10, 14 e 70
18 ha come complementi 10, 14 e 70
10 ha come complementi 3 e 18
14 ha come complementi 3 e 18
70 ha come complementi 3 e 18
```

Ma da questo ricaviamo di nuovo che il reticolo non è distributivo, perché in qualsiasi reticolo distributivo il complemento di un elemento, se esiste, è sempre unico, mentre in questo caso esiste sempre ma è unico soltanto nei casi di 630 e di 1 (com'è ovvio, perché questi sono il massimo e il minimo del reticolo), e non invece per gli altri cinque elementi.

630 ha come complemento (unico) 1