Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Оширова Юлия, НФИбд-01-22

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Постановка задачи	7
	3.2 Построение модели	7
	3.3 Оптимизация модели двух стратегий обслуживания	11
4	Выводы	18

Список иллюстраций

3.1	Модель первой стратегии обслуживания	8
3.2	Отчёт по модели первой стратегии обслуживания	9
3.3	Модель второй стратегии обслуживания	10
3.4	Отчет по модели второй стратегии обслуживания	10
3.5	Модель двух стратегий обслуживания с 1 пропускным пунктом .	12
3.6	Отчёт по модели двух стратегий обслуживания с 1 пропускным	
	пунктом	12
3.7	Модель первой стратегии обслуживания с 3 пропускными пунктами	13
3.8	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	пунктами	13
3.9	Модель первой стратегии обслуживания с 4 пропускными пунктами	14
3.10	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	пунктами	15
3.11	Модель второй стратегии обслуживания с 3 пропускными пунктами	15
3.12	Отчёт по модели второй стратегии обслуживания с 3 пропускными	
	пунктами	16
3.13	Модель второй стратегии обслуживания с 4 пропускными пунктами	16
3.14	Отчёт по модели второй стратегии обслуживания с 4 пропускными	
	пунктами	17

Список таблиц

3.1	Сравнение стратегий	{#tbl:strategy}:	_				_				1	0

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

3.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

3.2 Построение модели

Целью моделирования является определение:

• характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. 3.1).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl_{1}; длина оч. 1= длине оч. 2
TRANSFER 0.5, Obsl_1, Obsl_2; длины очередей равны, ; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. 3.2).

■ lab16_1.1.	1 - KEPOR	ı									
	START	TIME	F	אדד מא	E BLO	OCKS F	FACILITIE	75	STORAG	FS	
		0.000		080.00							
							_				
	NAN				VALU						
	OBSL_1				5.0						
	OBSL_2				11.0						
	OTHER1				0000.0						
	OTHER2			_	0001.0						
	PUNKT1			_	0003.0						
	PUNKT2			1	0002.0	000					
LABEL			BLOCK TY				CURRENT				
			GENERATE			353		0		0	
			TEST			353		0		0	
			TEST			162		0		0 0	
0001 1		5	TRANSFER QUEUE			131 928		0 387		0	
OBSL_1			SEIZE			928 541		0		0	
			DEPART			541		0		0	
			ADVANCE			541		1		0	
		_	RELEASE			540		0		0	
		_	TERMINAT			540		0		0	
OBSL 2			OUEUE	E		925		388		0	
0555_2			SEIZE			537	,	0		0	
			DEPART			537		0		0	
			ADVANCE			537		1		0	
			RELEASE			536		0		0	
		16	TERMINAT	E	25	536		0		0	
		17	GENERATE			1		0		0	
		18	TERMINAT	E		1		0		0	
FACILITY		ENTRIES	UTIL.	AVE.	TIME A	AVAIL.	OWNER PR	END :	INTER	RETRY	DELAY
PUNKT2		2537	0.996		3.957	1	5078	0	0	0	388
PUNKT1		2541	0.997		3.955	1	5079	0	0	0	387
						_			-	-	
QUEUE		MAX C	ONT. ENTR	Y ENTR	Y(0) 1	AVE.CON	NT. AVE.1	TIME	AVE	. (-0)	RETRY
OTHER1			387 292								
OTHER2			388 292								
FEC XN	PRI	BDT	ASS	EM CU	RRENT	NEXT	PARAME?	TER	VAL	UE	
5855	0		102 585		0	1					
5079	0	10000	517 507		8	9					

Рис. 3.2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. 3.3, 3.4).

```
Punkt STORAGE 2
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
QUEUE Other; присоединение к очереди 1
ENTER punkt,1; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt,1; освобождение пункта 1
TERMINATE; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.3: Модель второй стратегии обслуживания

lab16_2.4	.1 - REPORT	Г								
	START								STORAGES	
	0	.000		10080	.000	9		0	1	
	NAM	Œ				VALUE				
	OTHER				100	01.000				
	PUNKT				100	00.000				
LABEL		LOC	BLO	CK TYPE	Е	NTRY C	OUNT	CURRENT C	OUNT RETRY	
		1	GEN	ERATE		5719		0	0	
		2	QUE	UE		5719		668	0	
		3	ENT	ER		5051		0	0	
		4	DEP.	ART		5051		0	0	
		5	ADV.	ANCE		5051		2	0	
		_		VE		5049		C	0	
				MINATE		5049		C	-	
		_		ERATE		1		C	-	
		9	TER	MINATE		1		C	0	
QUEUE		MAX C	ONT.	ENTRY E	NTRY ((0) AVE	.con	T. AVE.TIM	ME AVE.(-0)	RETR
OTHER		668	668	5719	4	344	.466	607.13	88 607.56	2 0
STORAGE		CAP.	REM.	MIN. MA	AX. E	NTRIES	AVL	. AVE.C.	UTIL. RETRY	DELAY
PUNKT		2	0	0	2	5051	1	2.000	1.000 0	668
FEC XN	PRI	BDI		ASSEM	CURF	RENT N	EXT	PARAMETER	NALUE	
5721	0			5721			1			
5051	0	10081.	269	5051	5	5	6			
5052	0	10083.	431	5052	5	,	6			
5722	0	20160.	000	5722	0)	8			

Рис. 3.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. ??).

Таблица 3.1: Сравнение стратегий {#tbl:strategy}:

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	

Показатель	стратегия 1			стратегия 2
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

3.3 Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. 3.5).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1

SEIZE punkt; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

RELEASE punkt; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 3.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. 3.5).

lab16_2.6.1	- REPORT							
	START TIM	E	END '	TIME	BLOCKS	FACILITIES	STORAGES	
	0.00	0	10080	.000	9	1	0	
l								
•								
	NAME			V	ALUE			
	OTHER			1000	0.000			
	PUNKT			1000	1.000			
LABEL		LOC BLO	CK TYPE	EN	TRY COU	NT CURRENT	COUNT RETRY	
		1 GEN			5744		0 0	
		2 QUE	UE		5744	323	33 0	
		3 SEI	ZE		2511		0 0	
		4 DEP			2511		0 0	
		5 ADV	ANCE		2511		1 0	
		6 REL	EASE		2510		0 0	
		7 TER	MINATE		2510		0 0	
		8 GEN			1		0 0	
		9 TER	MINATE		1		0 0	
					_			
FACILITY	ENT	RIES UT	IL. AV	E. TIM	E AVAIL	. OWNER PEN	ND INTER RETRY	DELAY
PUNKT	2	511 1	.000	4.0	14 1	2512	0 0 0	3233
QUEUE	M	AX CONT.	ENTRY E	NTRY(0) AVE.C	ONT. AVE.T	ME AVE. (-0)	RETRY
OTHER							319 2839.313	
FEC XN	PRI	BDT	ASSEM	CURRE	NT NEX	T PARAMETE	ER VALUE	
2512	0 10	080.255	2512	5	6			
5746		080.384	5746	0	1			
		160.000			8			

Рис. 3.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. 3.7, 3.8).

Рис. 3.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

LABEL		YPE ENTRY COUN		
	1 GENERAT		0	0
	2 TRANSFE		0	0
GO	3 TRANSFE		0	0
OBSL_1	4 QUEUE	1853	1	0
	5 SEIZE	1852	0	0
	6 DEPART	1852	0	0
	7 ADVANCE	1852	1	0
	8 RELEASE		0	0
	9 TERMINA	ATE 1851	0	0
OBSL_2	10 QUEUE	1829	0	0
	11 SEIZE	1829	0	0
	12 DEPART	1829	0	0
	13 ADVANCE	1829	0	0
	14 RELEASE	1829	0	0
	15 TERMINA	TE 1829	0	0
OBSL 3	16 QUEUE	1865	3	0
_	17 SEIZE	1862	0	0
	18 DEPART	1862	0	0
	19 ADVANCE	1862	1	0
	20 RELEASE	1861	0	0
	21 TERMINA	TE 1861	0	0
	22 GENERAT	E 1	0	0
	23 TERMINA	ATE 1	0	0
FACILITY	ENTRIES UTIL.	AVE. TIME AVAIL	. OWNER PEND IN	ITER RETRY DELAY
PUNKT2	1829 0.717		0 0	0 0 0
PUNKT3	1862 0.740	4.006 1	5534 0	0 0 3
PUNKT1	1852 0.727		5546 0	
				-
OUEUE	MAX CONT. FNT	RY ENTRY(0) AVE.CO	ONT. AVE.TIME	AVE.(-0) RETRY
OTHER2			12 6.126	
OTHER3		65 513 1.13		
OTHER1	9 1 18		29 5.055	7.075 0
OTHERI	9 1 10	329 0.92	3.033	7.073
FEC XN PRI	BDT AS	SEM CURRENT NEXT	r parameter	VALUE
5549 0	10081.799 55			
5534 0	10082.440 55			
5546 0	10085.099 55			
5550 0	20160.000 55			

Рис. 3.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. 3.9, 3.10).

Рис. 3.9: Модель первой стратегии обслуживания с 4 пропускными пунктами

ı	26 AD	VANCE	1413	1	0	
		LEASE	1412	0	o	
		RMINATE	1412	0	0	
	29 GE1		1	0	0	
		RMINATE	1	0	0	
	30 12.	MIINAIL	-	·	·	
FACILITY	ENTRIES U	TIL. AVE. T	IME AVAIL. O	WNER PEND	INTER RETRY	DELAY
PUNKT4	1413	0.557 3	3.971 1	5623 0	0 0	0
PUNKT3	1378	0.545 3	3.989 1	0 0	0 0	0
PUNKT2	1366	0.541 3	3.993 1	0 0	0 0	0
PUNKT1	1465	0.584 4	.018 1	5621 0	0 0	0
QUEUE OTHER4 OTHER3 OTHER2 OTHER1	7 0 8 0 6 0	. ENTRY ENTRY 1413 62 1378 65 1366 62 1465 59	0.415 55 0.345 25 0.363	2.958 2.527 2.676	5.325 4.816 4.934	0 0
FEC XN PRI	BDT	ASSEM CUR	RENT NEXT	PARAMETER	VALUE	
5624 0	10080.041	5624	0 1			
5621 0	10080.398	5621	8 9			
5623 0	10082.255	5623 2	26 27			
5625 0	20160.000	5625	0 29			

Рис. 3.10: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются *оптимальным* количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. 3.11, 3.12).

```
| lab16_3.gps
 punkt STORAGE 3;
 GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
 ; моделирование работы пункта 1
 QUEUE Other ; присоединение к очереди 1
 ENTER punkt ; занятие пункта 1
 DEPART Other ; выход из очереди 1
 ADVANCE 4,3 ; обслуживание на пункте 1
 LEAVE punkt ; освобождение пункта 1
 TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
 GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
 ; (7 дней х 24 часа х 60 мин = 10080 мин)
 TERMINATE 1 ; остановить моделирование
 START 1 ; запуск процедуры моделирования
```

Рис. 3.11: Модель второй стратегии обслуживания с 3 пропускными пунктами

	OTHER PUNKT	10001.000 10000.000
LABEL		LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 5683 0 0 2 QUEUE 5683 0 0 3 ENTER 5683 0 0 4 DEPART 5683 0 0 5 ADVANCE 5683 3 0 6 LEAVE 5680 0 0 7 TERMINATE 5680 0 0 8 GENERATE 1 0 0
OUEUE		9 TERMINATE 1 0 0 MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
OTHER		12 0 5683 2521 1.063 1.885 3.388 0
STORAGE PUNKT		CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 3 0 0 3 5683 1 2.243 0.748 0 0
	0 0 0	BDT ASSEM CURRENT NEXT PARAMETER VALUE 10080.434 5680 5 6 10080.631 5683 5 6 10082.068 5685 0 1 10085.592 5684 5 6 20160.000 5686 0 8

Рис. 3.12: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. 3.11, 3.12).

```
punkt STORAGE 4;
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; молелирование работы пункта 1
QUEUE Other; присоединение к очереди 1
ENTER punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.13: Модель второй стратегии обслуживания с 4 пропускными пунктами

LABEL		LOC	BLOCK TY	PE ENTR	Y COUNT	CURRENT	COUNT	RETRY	
		1	GENERATE	5	719		0	0	
		2	QUEUE	5	719		0	0	
		3	ENTER	5	719		0	0	
		4	DEPART	5	719		0	0	
		5	ADVANCE	5	719		4	0	
		6	LEAVE	5	715		0	0	
		7	TERMINAT	E 5	715		0	0	
		8	GENERATE		1		0	0	
		9	TERMINAT	E	1		0	0	
QUEUE		MAX C	ONT. ENTR	Y ENTRY(0)	AVE.CON	T. AVE.TI	IME I	AVE.(-0)	RETRY
OTHER		7	0 571	9 4356	0.194	0.3	341	1.431	0
				MAX. ENTR					
PUNKT		4	0 0	4 57	19 1	2.253	0.56	3 0	0
FEC XN	PRI	BDT	ASS	EM CURRENT	NEXT	PARAMETE	ER '	VALUE	
5718	0	10082.	346 571	8 5	6				
5717	0	10082.	412 571	7 5	6				
5719	0			9 5					
5721	0	10084.	393 572	1 0	1				
	0	10085.	162 572	0 5	6				
5720									

Рис. 3.14: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

4 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.