CONTENTS

S.NO	TITLE	PAGE NO.
	Acknowledgements	iv
	Abstract	V
	List of Abbreviations	viii
	List of Figures	ix
	List of Tables	X
Chapter 1	Significance of Basics of Power Systems	1-5
1.1	Introduction	1
1.2	Basics of Power Systems	2
1.3	Power Transmission Lines	3
1.4	Problem Statement	4
Chapter 2	Background and Related Work	6-15
2.1	Introduction	6
2.2	Faults on Transmission Lines	6
	2.2.1 Series Faults	6
	2.2.2 Shunt Faults	6
2.3	Causes of Electric Faults	8
2.4	Literature Survey	9
2.5	Survey of Method	13
	2.5.1 Fault Classification Techniques	13
	2.5.2 Fault Location Identification Techniques	14
2.6	Performance Measures	15
Chapter 3	Machine Learning	16-26
3.1	Introduction	16
3.2	Artificial Neural Networks	17
	3.2.1 Importance and Learning Techniques of ANN	20
	3.2.2 Characteristics of ANN	21
	3.2.3 Advantages and Disadvantages of ANN	21
3.3	Deep Neural Network	23
3.4	Recurrent Neural Networks	24
Chapter 4	Simulations	27-33
4.1	Tools Used	27

	4.1.1 MATLAB/SIMULINK	27
	4.1.2 NeuroSolutions	28
4.2	Data Generation	28
4.3	Training Network	29
	4.3.1 Fault detection and classification	30
	4.3.2 Fault location identification	31
4.4	Testing network	32
	4.4.1 Fault detection and classification	32
	4.4.2 Fault location identification	33
Chapter 5	Results and Discussions	34-37
5.1	Results	34
5.2	Application of Proposed Methods in Smart Grids	34
5.3	Conclusions	35
5.4	Future Scope	36
5.5	Finance and Project Management	36
	5.5.1 Hardware	36
	5.5.2 Software	36
	5.5.3 Time Management	37
	5.5.4 Societal and Environmental Impact	37
	References	38