MATURITÄTSPRÜFUNG PHYSIK

MÜNDLICHE PRÜFUNG

ORGANISATION

- Sie können drei Wunschthemen bestimmen und drei Themen abwählen.
- Die Grundlagen der Mechanik (Kapitel 1 bis 3) und der Wellenlehre (14) sind für alle obligatorisch.
- Kapitel, die mit einem Sternchen (*) markiert sind, sind freiwillig. Sie können als Wunschthema gewählt werden.
- Aus jedem der Bereiche weiterführende Mechanik (4 bis 6), Wärmelehre (7 und 8), Elektrizität und Magnetismus (9 bis 12), Schwingungen und Wellen (13 bis 16) und moderne Physik (17 bis 19) kann jeweils höchstens ein Wunschthema gewählt und ein Thema abgewählt werden. Kapitel 14 (Wellen) ist eine obligatorische Ergänzung zu den Kapiteln 15 (Schallwellen) und 16 (elektromagnetische Wellen).
- Alle Schülerinnen und Schüler einer Prüfungsgruppe erscheinen 15 Minuten vor Prüfungsbeginn vor dem Prüfungszimmer.
- Jeder Schüler/jede Schülerin wird während insgesamt 15 Minuten zu zwei Themen geprüft, wovon eines ein Wunschthema ist.
- Hilfsmittel (Taschenrechner oder Formelsammlung) sind nicht erlaubt.

HINWEISE FÜR DIE VORBEREITUNG

Neben den physikalischen Inhalten werden auch Fähigkeiten wie die folgenden geprüft:

- ▶ Elementare mathematische Kenntnisse:
 - Sicherheit bei algebraischen Umformungen
 - Umfang und Fläche von Kreisen, Oberfläche und Volumen von Kugeln
 - Definition der Winkelfunktionen und numerische Werte für einfache Winkel, Bogenmass
 - Umgang mit Vektoren: Summe und Differenz graphisch und in Komponentenschreibweise, Skalar- und Vektorprodukt (geometrische Bedeutung)
 - Näherungen, Grenzwerte
- ▶ Sicherer Umgang mit einfachen funktionalen Zusammenhängen, sowohl algebraisch als auch in graphischen Darstellungen:
 - Proportionalität und Linearität, lineare Funktion mit zwei Unbekannten
 - einfache Potenzen (Quadrate (Parabel), umgekehrte Proportionalität (Hyperbel), ...)
 - trigonometrische Funktionen (Amplitude, Periode, Phase)
 - Exponentialfunktionen (Halbwertszeit)
 - Physikalische Beispiele für diese Zusammenhänge kennen
- Umgang mit graphischen Darstellungen (siehe auch oben):
 - Werte aus Diagramm herauslesen bzw. in Diagramm eintragen (auch z.B. logarithmische Darstellung)
 - Gleichung für eine Gerade hinschreiben, z.B. aus Achsenabschnitten
 - graphische Mittelwerte (z.B. Leistungs-Zeit-Diagramm)
 - Graphen addieren/subtrahieren/multiplizieren/quadrieren
- ▶ Physikalische Phänomene sprachlich erfassen
 - Formale Zusammenhänge zwischen Grössen in Worten beschreiben
 - Verhalten von Kurven beschreiben
 - Präzise Verwendung der Fachsprache
- $\,\blacktriangleright\,\,$ Saubere, übersichtliche Skizzen (in vernünftiger Zeit), die zur Lösung führen
- ▶ Konstruktive Lösung von Aufgaben mit vernünftiger Genauigkeit
- ▶ Sicherer Umgang mit Verhältnissen (Wie ändert sich x, wenn y um den Faktor k oder um p % verändert wird?)
- ▶ Formelzeichen genau definieren; konsequentes Auseinanderhalten von verschiedenen Grössen, z.B. durch Indizes
- ▶ Abschätzen von Zehnerpotenzen
- ▶ Einheiten und Einheitenvorsätze, Umrechnen von Einheiten, sinnvolle Genauigkeit
- ▶ Grössenordnungen, z.B. Lichtgeschwindigkeit, Atomdurchmesser, Erdradius, Luftdichte, typische Kapazität eines Kondensators, ...
- ▶ Fehlerabschätzung und Fehlerrechnung

THEMENÜBERSICHT PHYSIK (SCHWERPUNKTFACH)

BEMERKUNGEN

- Physik besteht nicht aus Formeln, sondern aus den Konzepten, die dahinter stecken. Es nützt Ihnen also nichts, wenn Sie die Formeln in dieser Zusammenstellung auswendig lernen ohne verstanden zu haben, was die zugrunde liegenden Sachverhalte sind.
- Die Liste der aufgeführten Formeln ist nicht abschliessend.
- ▶ Zu Beginn jedes Abschnitts sind Begriffe aufgeführt, deren Bedeutung und Definition Sie kennen müssen, da sie für das Verständnis der Physik wesentlich sind.
- ▶ Die Fertigkeiten beschreiben Vorgänge, die über das blosse "Rechnen" hinausgehen.
- Die Konstanten zu Beginn eines Abschnittes sollten Sie mit einer sinnvollen Genauigkeit kennen.
- Machen Sie sich bei den Vorbereitungen auch klar, was wichtige Anwendungen und der Gültigkeitsbereich der jeweiligen physikalischen Gesetze sind.

1. Kinemati	K	
Тнемен:	gleichförmige Bewegung:	Zeit, Ort, Geschwindigkeit
	gleichmässig beschleunigte Bewegung:	Durchschnitts- und Momentangeschwindigkeit, Beschleunigung
	Würfe:	freier Fall, vertikaler Wurf, zusammengesetzte Bewegungen, horizontaler und schiefer Wurf
	Kreisbewegung:	Umlaufzeit und Frequenz, Bahn- und Winkelgeschwindigkeit, Radialbeschleunigung
FERTIGKEITEN:	s(t)-, $v(t)$ - und $a(t)$ -Diagramme erstelle	n, interpretieren, ineinander umwandeln
Konstanten:	Fallbeschleunigung auf Erde und Mond	d
DEFINITIONEN:	Geschwindigkeit	$v = \frac{\Delta s}{\Delta t}$
	Beschleunigung	$a = \frac{\Delta v}{\Delta t}$
	Frequenz	$f = \frac{n}{\Delta t}$
	Umlaufzeit	$T = \frac{1}{f}$
	Kreisfrequenz	$\omega = \frac{2\pi}{T} = 2\pi f$ Winkel im Bogenmass
Gesetze:	Bahngeschwindigkeit	$v = \omega r$
	Radialbeschleunigung	$a_R = \omega^2 r = \frac{v^2}{r}$

2	D	YN	ΛМ	τĸ
Z .	$\boldsymbol{\nu}$	IIN	TAILE.	ıĸ

THEMEN:	Trägheit und Masse:	Masse, Dichte
	Impuls und Impulserhaltung:	Impuls, abgeschlossenes System, Impulserhaltung
	Newton-Axiome:	Trägheits-, Aktions- und Wechselwirkungsprinzip; Kraft
	Dynamik der Kreisbewegung:	Zentripetalkraft
FERTIGKEITEN:	Kräfte einzeichnen, addieren und zerle	egen (graphisch und rechnerisch)
	Bewegungsgleichung aufstellen und lö	sen
Konstanten:	Dichten von Luft und Wasser	
Definitionen:	Dichte	$ \rho = \frac{m}{V} $
	Impuls	$\vec{p} = m\vec{v}$
Gesetze:	Aktionsprinzip	$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = m\vec{a}$
	Gewichtskraft	$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = m\vec{a}$
	Federkraft	$F_F = D \Delta l$
	Reibungskräfte	$F_{R,G} = \mu_G F_N$ Gleitreibung
		$F_{R,H} \le \mu_H F_N$ Haftreibung (Ungleichung)
	Luftwiderstand	$F_L = \frac{1}{2} c_w \rho A v^2$

3. Energetik

THEMEN:	Energie und Energieerhaltung:	Lageenergie, kinetische Energie, Spannenergie einer Feder, Gravitationsenergie; Energieerhaltung	
	Stösse:	elastische und unel	lastische Stösse
	Arbeit und Leistung:	Arbeit, Leistung, W	Virkungsgrad
FERTIGKEITEN:	Energieerhaltungssatz sauber aufstellen	(auch mit nichtme	chanischen Energieformen)
	Stossprobleme algebraisch korrekt mit	Energie- und Impul	serhaltungssatz lösen.
DEFINITIONEN:	Lageenergie	$E_{\rm pot} = mgh$	Nullpunkt beliebig
	kinetische Energie	$E_{\rm kin} = \frac{1}{2} m v^2$	
	Spannenergie einer Feder	$E_{\rm S} = \frac{1}{2} D \Delta l^2$	
	Arbeit	$W = F_s s$	auch Einheit kWh
	Leistung	$P = \frac{W}{\Delta t} = F_s \nu$	F_s ist die Kraftkomponente parallel zur Bewegungsrichtung
	Wirkungsgrad	$\eta = \frac{E_{\text{out}}}{E_{\text{in}}} = \frac{P_{\text{out}}}{P_{\text{in}}}$	

4. GRAVITATION	ľ
----------------	---

THEMEN:	Keplergesetze:	Planetenbahnen, Flächensatz		
	Gravitation:	Gravitationskraft, Gravitationsenergie,		
		Fluchtgeschwindigkeit, Schwarzschildradius		
FERTIGKEITEN:	Planetenbahnen um eine Sonne zeichnen			
	Masse eines Himmelskörper aus d	ler Umlaufzeit eines Satelliten berechnen		
	Fluchtgeschwindigkeit aus Masse	und Radius eines Himmelskörpers berechnen		
Konstanten: Gravitationskonstante				
	Masse und Radius von Erde, Mond und Sonne; Abstände Erde – Sonne und Erde – Mond			
GESETZE:	Kepler 1	Planeten bewegen sich auf elliptischen Bahnen mit der		
		Sonne im einen Brennpunkt		
	Kepler 2 (Flächensatz)	Der Radiusstrahl von der Sonne zu einem Planeten überstreicht in gleichen Zeiten gleiche Flächen.		
	Kepler 3	$(T_1:T_2)^2=(a_1:a_2)^3$		
	Gravitationskraft	$F_G = G \frac{m_1 m_2}{r^2}$		
	Arbeit im Gravitationsfeld	$W_{A\to B} = G m_1 m_2 \left(\frac{1}{r_A} - \frac{1}{r_B} \right)$		

5. Starrer Körper*

THEMEN:	Hebelgesetz:	Drehmoment, Drehmomentengleichgewicht	
	Schwerpunkt und Gleichgewicht:	Schwerpunkt; stabiles, instabiles und indifferentes Gleichgewicht	
Fertigkeiten:	Gleichgewichtsbedingungen für einen starren Körper sauber aufschreiben		
	Schwerpunkt aus Teilschwerpunkten bestimmen		
DEFINITIONEN:	Drehmoment einer Kraft	$\vec{M} = \vec{r} \times \vec{F}$	
Gesetze:	Drehmomentengleichgewicht	$\sum_{i} \vec{M}_{i} = 0$	

6. Hydrostatik

Тнемен:	Satz von Pascal:	Druck, hydraulische Systeme	
	Schweredruck in Flüssigkeiten:	hydrostatisches Paradoxon, kommunizierende Gefässe	
	Auftrieb:	Prinzip von Archimedes, Schwimmkörper	
Fertigkeiten:	Funktionsweise eines Quecksilberbarometers erklären		
	Eintauchtiefe eines schwimmenden Körpers bestimmen		
DEFINITIONEN:	Druck	$p = \frac{F_{\perp}}{A}$	
Gesetze:	Schweredruck in Flüssigkeiten	$\Delta p = \rho g h$	
	Auftrieb (Archimedes)	Der Auftrieb entspricht dem Gewicht der verdrängten Flüssigkeit.	

7. Gase				
Тнемеи:	Gasgesetze:	ideales Gas, Prozess vs. Zustand; Stoffmenge, Molmasse		
	kinetische Gastheorie:	Teilchenmodell, Geschwindigkeitsverteilung		
Fertigkeiten:	: Zustandsdiagramme erstellen, interpretieren und ineinander umwandeln			
Konstanten:	Molmassen wichtiger Elemente (Wass	serstoff, Helium, Sauerstoff, Stickstoff, Kohlenstoff)		
	Avogadrozahl			
	universelle Gaskonstante			
Definitionen:	Molmasse	$M = \frac{m}{}$		
Gesetze:	Gesetz von Avogadro	$\frac{n}{N = n N_A}$		
	Zustandsgleichung für ideale Gase	pV = nRT		
8 TEMPERAT	fur und Wärme			
THEMEN:		thermisches Gleichgewicht; Celsius- und Kelvinskala		
IHEMEN:	Temperatur: Innere Energie:	tnermisches Gieicngewicht; Ceisius- und Keivinskala Arbeit und Wärme bei Gasen		
	Wärmemaschinen:	Stirling-Prozess; Wärmekraftmaschine, Wärmepumpe und Kühlmaschine; idealer Wirkungsgrad		
	spezifische Wärme:	spezifische und molare Wärme von Gasen, Flüssigkeiter und festen Körpern; Mischkalorimetrie		
	Wärmetransport:	Konvektion, Wärmeleitung, Wärmestrahlung		
	Phasenübergänge:	Phasenübergänge; latente Wärme; Dampfdruckdiagramm, Tripelpunkt, kritischer Punkt		
Fertigkeiten:	Wärmeaustausch bei Mischvorgänger	aftmaschinen zeichnen und interpretieren n korrekt formulieren (auch mit Phasenübergang) n Temperaturen als Funktion der Wellenlänge skizzieren		
Konstanten:	typischer Wirkungsgrad eines thermispezifische Wärme von Wasser	_		
	Solarkonstante			
	Spezifische Schmelz- und Verdampfu	ngswärme von Wasser		
Definitionen:		$H = \frac{Q^{\mathcal{I}}}{m}$		
	spezifische Wärme	$c = \frac{Q}{m \Delta T}$		
	Strahlungsintensität	$J = \frac{P}{A}$		
	latente Wärme	$L_{f,\nu} = \frac{Q_{f,\nu}}{m}$		
Gesetze:	1. Hauptsatz der Wärmelehre	$\Delta U = Q^{\nearrow} + W^{\nearrow}$		
	idealer Wirkungsgrad (Carnot-	$\eta_C = 1 - rac{T_k}{T_h}$ entsprechende Ausdrücke für Wärmepumpe und Kältemaschine		
	Kreisprozess)	"		
	Wärmeleitgleichung	$\frac{Q}{\Delta t} = -\lambda A \frac{\Delta T}{d}$		
		bzw.		
		$\frac{Q}{\Delta t} = -U A \Delta T$		
	Kirchhoff sches Strahlungsgesetz	$J = \varepsilon J_S$		
	Gesetz von Stefan-Boltzmann	$J_S = \sigma T^4$		
	Wien'sches Verschiebungsgesetz	$\lambda_{\max} T = b$		

Themen:	Grundphänomene:	Elementarladung, Leiter und Isolatoren, Influenz
	Coulombkraft:	Kraft zwischen Punktladungen
	elektrisches Feld:	Feldlinienbilder, Überlagerung von Feldern, Felder von Punktladung und Plattenkondensator; Satz von Gauss
	Spannung und Potential:	Arbeit im elektrischen Feld, Beschleunigung von geladenen Teilchen
	Erzeugung elektrischer Felder:	Felder von Platten und Punktladungen
	Kondensatoren:	Plattenkondensator, Materie im elektrischen Feld, elektrische Feldenergie
Fertigkeiten:	Feldlinienbild einer Ladungsverteilung	g skizzieren, für Punktladungen Feldstärken bestimmer
	Geschwindigkeit eines Teilchens aus B	Beschleunigungsspannung berechnen (Einheit eV)
Konstanten:	Elementarladung	
	elektrische Feldkonstante	
Definitionen:	elektrische Feldstärke	$\vec{E} = \frac{\vec{F}}{a}$
	Spannung	$\vec{E} = \frac{\vec{F}}{q}$ $U_{12} = \frac{W_{1 \to 2}}{q}$
	Kapazität	$C = \frac{Q}{U}$
Gesetze:	Coulombkraft zwischen zwei Punktladungen	$F_C = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{Q_1 Q_2}{r^2}$
	Spannung im homogenen Feld	U = E d
	Potential einer Punktladung	$\varphi(r) = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{q}{r}$
	Kapazität eines Plattenkondensators	$\varphi(r) = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{q}{r}$ $C = \varepsilon_0\varepsilon_r \frac{A}{d}$
	Energie im Feld eines Kondensators	$W_{\rm el} = \frac{1}{2}QU = \frac{1}{2}CU^2 = \frac{1}{2}\frac{Q^2}{C}$
	Energiedichte im elektrischen Feld	$w_{\rm el} = \frac{1}{2} \varepsilon_{\rm o} \varepsilon_r E^2$

THEMEN:	Stromstärke und Leistung:	einfacher Stromkreis, Leistung des elektrischen Stroms
	Widerstand:	Kennlinien nicht ohmscher Widerstände, ohmsche Widerstände, spezifischer Widerstand, Temperaturabhängigkeit
	Widerstandsnetzwerke:	Serie- und Parallelschaltung; reale Spannungsquelle, Messgeräte
	Aufladen und Entladen von Kondensatoren:	Zeitkonstante und Halbwertszeit der Entladung
	Leitungsmechanismen:	metallische Leiter, Elektrolyte, Halbleiter
Fertigkeiten:	Schaltschema zeichnen (mit Messgeräte	en) und interpretieren
Konstanten:	spezifischer Widerstand von Kupfer	
DEFINITIONEN:	Stromstärke	$I = \frac{\Delta Q}{\Delta t}$
	Widerstand	$R = \frac{U}{I}$
Gesetze:	Leistung des elektrischen Stroms	P = UI
	ohmsches Gesetz	$U \propto I$ nur für ohmsche Widerstände
	Widerstand von Drähten	$R = \rho \frac{l}{A}$
	Temperaturabhängigkeit	$\Delta \rho = \rho_{T_o} \alpha_{T_o} \Delta T$ bzw. $\Delta R = R_{T_o} \alpha_{T_o} \Delta T$
	Serieschaltung ohmscher Widerstände	$R_T = R_1 + R_2 + \dots$
	Parallelschaltung ohmscher Widerstände	$R_T = \left(\frac{1}{R_1} + \frac{1}{R_2} + \ldots\right)^{-1}$
	Zeitkonstante	$\tau = RC$
	Halbwertszeit	$T_{1/2} = \tau \ln 2$

11. Magnetismus

THEMEN:	Ferromagnetismus		
	Magnetfelder:	Feldlinienbilder, Kra	aft auf stromdurchflossene Leiter
	Lorentzkraft:	Bewegung geladene	r Teilchen im (homogenen) Feld
	Erzeugung von Magnetfeldern:	Feld von: langem, ge Spule, Helmholtzspi	eradem Leiter, Kreisstrom, dünner ılen
	Induktion:	magnetischer Fluss, Wirbelströme	Induktionsgesetz, Lenz'sche Regel,
	Selbstinduktion:	Selbstinduktion, Ein Feldenergie	nschalt-/Ausschaltstrom, magnetische
FERTIGKEITEN:	Feldlinienbilder von Magneten skizzie graphisch ableiten und integrieren (Inc		nd magnetischer Fluss)
Konstanten:	Erdmagnetfeld in Zürich (Horizontalk magnetische Feldkonstante	omponente und Inkl	ination)
DEFINITIONEN:	magnetische Feldstärke	$\vec{F} = I \vec{l} \times \vec{B}$	
	magnetischer Fluss	$\Phi = BA_{\perp}$	Richtung mit Rechte-Hand-Regel
Gesetze:	Lorentzkraft	$\vec{F}_L = q \vec{v} \times \vec{B}$	Elektronen: linke Hand
	Magnetfeld um geraden Leiter	$B = \frac{\mu_{\rm o}}{2\pi} \frac{I}{r}$	
	Magnetfeld in langer, dünner Spule	$B = \mu_0 \frac{NI}{l}$	
	induzierte Spannung in bewegtem Leiterstück	U = vBl	
	induzierte Spannung	$U(t) = -N\dot{\Phi}(t)$	
	selbstinduzierte Spannung	$U(t) = -L\dot{I}(t)$	
	Induktivität einer dünnen Spule	$L = \frac{\mu_{\rm o} \mu_r N^2 A}{l}$	
	Ausschaltstrom	$I(t) = I_0 e^{-t/\tau}$	
	Zeitkonstante	$\tau = \frac{L}{R}$	
	Energie im Magnetfeld einer Spule	$W_{\text{mag}} = \frac{1}{2}LI^2$	vgl. Energie im elektrischen Feld
	Energiedichte im Magnetfeld	$w_{\rm mag} = \frac{1}{2\mu_{\rm o}\mu_r} B^2$	vgl. Energie im elektrischen Feld

12. WECHSELSTROM

THEMEN:	Wechselstromkreis:	Impedanz und Phasenverschiebung, Wirkleistung
	Transformator	
	elektrische Energieübertragung:	Dreiphasenwechselstrom, Hochspannung
Fertigkeiten:	Amplitude, Frequenz, Phasenverschieb	oung, anhand eines Diagramm bestimmen
	Phasenbeziehungen im Zeigerdiagramm darstellen bzw. ablesen	
	Energieübertragung vom Kraftwerk bis zur Steckdose beschreiben	
Konstanten:	Frequenz und Effektivwert der Haushaltspannung	
DEFINITIONEN:	harmonische Wechselspannung	$u(t) = \hat{u}\cos(\omega t - \varphi_{o})$
	Impedanz	$Z = \frac{\hat{u}}{\hat{i}}$
	Effektivwerte von Spannung und Strom	$U = \frac{\hat{u}}{\sqrt{2}}, I = \frac{\hat{i}}{\sqrt{2}}$
Gesetze:	Phasen- und Zeitverschiebung	$\frac{\Delta \varphi}{2\pi} = \frac{\Delta t}{T}$
	Wirkleistung	$P = UI \cos \Delta \varphi$
	ohmscher Widerstand	$Z_R = R, \Delta \varphi = 0$
	kapazitiver Widerstand	$Z_C = \frac{1}{\omega C}, \Delta \varphi = -\frac{\pi}{2}$
	induktiver Widerstand	$Z_L = \omega L, \Delta \varphi = +\frac{\pi}{2}$
	unbelasteter Transformator	$\frac{U_1}{U_2} = \frac{n_1}{n_2}$
	kurzgeschlossener Transformator	$\frac{I_1}{I_2} = \frac{n_2}{n_1}$

Themen:	harmonische Schwingung:	Kinematik, Dynamik und Energetik
	Dämpfung und Resonanz:	Energieverlust durch Dämpfung, Hüllkurve, Rückkopplungsmechanismen, erzwungene Schwingung
	Überlagerung von Schwingungen:	Überlagerung von gleichfrequenten Schwingungen (Zeigerdiagramm), Schwebung
	gekoppelte Schwingungen:	Kopplungsarten, Eigenschwingungen
Fertigkeiten:	charakteristische Gleichung erkennen u	ınd daraus Periodendauer bestimmen
	Diagramme für Auslenkung, Geschwindigkeit, Beschleunigung, Energie	
Definitionen:	$\ddot{y}(t) = -\omega^2 y(t)$	
Gesetze:	Bewegungsgleichung	$y(t) = \hat{y}\cos(\omega t)$
	Geschwindigkeitsamplitude	$\hat{v} = \omega \hat{y}$
	Beschleunigungsamplitude	$\hat{a} = \omega^2 \hat{y}$
	Periodendauer	$T = \frac{2\pi}{\omega}$
	Gesamtenergie	$E \propto \hat{y}^2$
	Periodendauer eines Federpendels	$T = 2\pi \sqrt{\frac{m}{D}}$
	Periodendauer eines Fadenpendels	$T pprox 2\pi \sqrt{rac{l}{g}}$ für kleine Amplituden
	Periodendauer eines elektrischen Schwingkreises	$T = 2\pi \sqrt{LC}$
	gedämpfte Schwingung	$y(t) = \hat{y}(t)\cos(\omega t)$
	Halbwertszeit bei exponentieller Hüllkurve	$T_{1/2} = \tau \ln 2$
	Zeitkonstante für gedämpften elektrischen Schwingkreis	$\tau = 2 \frac{L}{R}$
	Schwebungsfrequenz	$f_S = f_1 - f_2 $

14. WELLEN

THEMEN:	Wellen:	Störung, Trägermedium, Kopplung; Longitudinal- und Transversalwellen
	lineare Wellen:	Orts- und Zeitbild, Reflexion
	harmonische Wellen:	Wellenlänge, stehende Welle
FERTIGKEITEN:	Wechsel zwischen Orts- und Zeitbild, U	Überlagerung einlaufender und reflektierter Welle
DEFINITIONEN:	charakteristische Gleichungen	y(x,t) = f(x - vt) lineare Welle
	harmonische Welle	$y(x,t) = \hat{y}\cos(\omega t - kx)$
GESETZE:	Wellenzahl	$k = \frac{2\pi}{\lambda}$
	Ausbreitungsgeschwindigkeit	$v = \lambda f$

15. SCHALLWELLEN

THEMEN:	Schallwellen:	Schallgeschwindigkeiten in ve	rschiedenen Medien
	Tonhöhe und Intervalle:	Frequenz und Frequenzverhä	ltnisse, Stimmungen
	Lautstärke:	Schallintensität und Schallpeş	gel; Dezibel- und Phonskala
	Instrumente:	Stehende Wellen; Saiteninstru Klangspektrum	ımente und Pfeifen;
	Dopplereffekt:	bewegte Quelle und/oder Beo Frequenzverschiebung bei Rej	
FERTIGKEITEN:	stehende Wellen auf Saiten und in dünnen Pfeifen skizzieren		
	"Addition" von Intervallen		
	"Addition" von Schallpegeln		
	Polardiagramme für Richtcharakteristil	k von Lautsprechern interpret	ieren
Konstanten:	Schallgeschwindigkeit in Luft		
	wichtigste Intervalle		
	Hörschwelle und Hörbereich des menschlichen Ohrs		
DEFINITIONEN:	Schallintensität	$J = \frac{P}{A}$	
	Schallpegel	$L = 10 \log \frac{J}{J_0}$	Faustregeln
Gesetze:	Schallgeschwindigkeit in Gasen	$v_S = \sqrt{\frac{\kappa RT}{M}}$	
	Schallgeschwindigkeit in Flüssigkeiten	$v_S = \sqrt{\frac{1}{\chi \rho}}$	
	Transversalwellen auf Saiten	$v_S = \sqrt{\frac{\sigma}{\rho}} = \sqrt{\frac{F}{m^*}}$	
	schwingende Saite (n-ter Oberton)	$f_n = (n+1)f_0 = (n+1)\frac{v_s}{2l}$ $f_n = (n+1)f_0 = (n+1)\frac{v_s}{2l}$ $f_n = (2n+1)f_0 = (2n+1)\frac{v_s}{4l}$	Knoten an den Enden
	offene Pfeife (n-ter Oberton)	$f_n = (n+1)f_0 = (n+1)\frac{v_s}{2l}$	Schwingungsbäuche an den Enden
	gedackte Pfeife (n-ter Oberton)	$f_n = (2n+1)f_0 = (2n+1)\frac{v_s}{4l}$:
	Dopplereffekt	$f_B = f_Q \frac{v_S \pm v_B}{v_s \mp v_Q}$	Vorzeichen für Zähler und Nenner separat überlegen

THEMEN:	Entstehung und Ausbreitung:	stehende Wellen, Dipolanten Ausbreitungsgeschwindigkeit elektromagnetisches Spektrui	im Vakuum und in Medien
	Polarisation:	Polarisationsfilter, Drehung o	
	Wellenoptik:	Prinzip von Huygens, Beugu	ng
	Strahlenoptik	Reflexion und Brechung, Tota Linsen	alreflexion, Abbildung mit
FERTIGKEITEN:	Überblick über das elektromagnetisch	ne Spektrum (mit Wellenlänger	nbereich)
	Abbildung mit Linsen konstruieren (vgl. Praktikum)		
Konstanten:	Lichtgeschwindigkeit im Vakuum		
	Brechzahl von Glas		
Definitionen:	Brechzahl	$n = \frac{c_{\text{Vakuum}}}{c_{\text{Medium}}}$	
Gesetze:	Lichtgeschwindigkeit im Vakuum	$c_{ m Vakuum} = \frac{1}{\varepsilon_{ m o}\mu_{ m o}}$	
	Lichtgeschwindigkeit im Medium	$c_{\text{Medium}} = \frac{c_{\text{Vakuum}}}{n} = \frac{c_{\text{Vakuum}}}{\sqrt{\varepsilon_r \mu_r}}$	<u>n</u>
	Feldvektoren	$\vec{E} = \vec{B} \times \vec{c}$	
	Intensität	$J = \frac{\varepsilon_0 \varepsilon_r}{2} c E^2 = \frac{1}{2\mu_0 \mu_r} c B^2$	
	Poyntingvektor	$\vec{S} = \frac{1}{2\mu_0\mu_r}\vec{E} \times \vec{B}$	
	Reflexionsgesetz	$\alpha = \alpha'$	
	Brechungsgesetz	$n_1 \sin \alpha = n_2 \sin \beta$	Merkregel für Richtung der Ablenkung
	Totalreflexion (kritischer Winkel)	$\sin \alpha_c = \frac{n_2}{n_1}$	$nur f \ddot{u} r n_1 > n_2$
	Abbildungsgleichung (für dünne Linsen)	$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$	Vorzeichenkonvention beachten
	Lateralvergrösserung	$\frac{B}{G} = -\frac{b}{g}$	
	Bedingung für konstruktive Interferenz	$\Delta r = m\lambda, m = 0, \pm 1, \pm 2, \dots$	
	Beugung am Doppelspalt/Gitter (Maxima)	$\sin \alpha_m = m \frac{\lambda}{d}$	
	Beugung am Einzelspalt (Minima)	$\sin \alpha_k = k \frac{\lambda}{s}$	

17. RELATIV	ITÄTSTHEORIE		
THEMEN:	Postulate der SRT:	Experiment von Michelson-Mund absolute Lichtgeschwind	, , ,
	Kinematik:	Gleichzeitigkeit, Zeitdilatatio Längenkontraktion	n (Lichtuhr),
	Dynamik:	relativistischer Impuls, relativ von Energie und Masse, Mas.	~ -
FERTIGKEITEN:	Geschwindigkeit eines Teilchens aus der Beschleunigungsspannung berechnen		
	bei Kernspaltung oder Kernfusion frei	gesetzte Energie berechnen	
DEFINITIONEN:	einheitenlose Geschwindigkeit	$\beta = \frac{v}{c}$	
	Lorentzfaktor	$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$	nicht-relativistisch heisst $\gamma - 1 \ll 1$
Gesetze:	Zeitdilatation	$t = \gamma \tau$	
	Längenkontraktion	$l = \frac{\lambda}{\gamma}$	nur entlang Bewegungsrichtung
	Energie-Impuls-Beziehung	$E^2 = (mc^2)^2 + (pc)^2$	
	Äquivalenz von Energie und Masse	$E_{\rm o} = mc^2$	Ruheenergie
	relativistische Energie	$E = E_{\rm o} + E_{\rm kin} + \ldots = \gamma E_{\rm o}$	
	Massendefekt	$\Delta m = m_X - Zm_p - (N - Z)m_p$	1

18. Quantenphysik		
THEMEN:	Photoeffekt:	Austrittsarbeit, Photon
	Dualismus Teilchen – Welle:	de Broglie-Beziehung
	Atomphysik:	Energieniveaus, Resonanzabsorption
Konstanten:	Planck'sches Wirkungsquantum	
GESETZE:	Photonenergie	$E = hf = \hbar\omega$
	Photoelektrische Gleichung	$W_{\max} = hf - W_A$
	Grenzfrequenz	$f_{\min} = \frac{W_A}{h}$
	de Broglie-Wellenlänge	$\lambda_B = \frac{h}{p}$

Dopplereffekt für Licht (longitudinal)

19. KERNPHYSIK		
THEMEN:	radioaktiver Zerfall:	α-, β- und y-Zerfall, Tochterkerne; Zerfallsgesetz und Halbwertszeit
FERTIGKEITE	EN: Tochterkerne beim α- und β-Zerfall bestimmen	
	aus Zerfallskurve Halbwer	tszeit ablesen
Gesetze:	Zerfallsgesetz	$N(t) = N_{\rm o} e^{-\lambda t} = N_{\rm o} 2^{-t/T_{\rm t/2}}$
	Halbwertszeit	$T_{1/2} = \frac{\ln 2}{\lambda}$