<u>Dashboard</u> / My courses / <u>Graph Theory-HK3-0405</u> / <u>Tuần 6 - 7 - Đường đi ngắn nhất trên đồ thị</u> / <u>Bài tập 3 - Thuật toán Moore - Dijkstra (đường đi)</u>

Started on	Saturday, 21 June 2025, 9:06 PM
State	Finished
Completed on	Saturday, 21 June 2025, 9:20 PM
Time taken	14 mins 22 secs
Marks	2.00/2.00
Grade	10.00 out of 10.00 (100 %)

Question **1**Correct

Mark 1.00 out of

1.00

Viết chương trình đọc một **đơn đồ thị có hướng, có trọng số không âm** từ bàn phím, tìm đường đi ngắn nhất từ đỉnh s đến đỉnh t (s và t cũng được đọc từ bàn phím).

Đầu vào (Input)

Dữ liệu đầu vào được nhập từ bàn phím với định dạng:

- Dòng đầu tiên chứa 2 số nguyên n và m $(1 \leq n < 100; 0 \leq m < 500)$
- m dòng tiếp theo mỗi dòng chứa 3 số nguyên u, v, w mô tả cung (u, v) có trọng số w $(0 \le w \le 100)$.
- Dòng cuối cùng chứa 2 số nguyên s và t.

Đầu ra (Output)

• In đường đi ngắn nhất từ s đến t theo mẫu:

```
s -> u1 -> u2 -> ... -> t
```

• Xem thêm ví dụ bên dưới.

Gợi ý

• Lần ngược theo p[u] để có được đường đi ngắn nhất.

For example:

Inpu	t R	Result			
3 3	1	->	2	->	3
1 2 3	3				
2 3 5	;				
1 3 1	.0				
1 3					

Answer: (penalty regime: 10, 20, ... %)

```
1
    #include <stdio.h>
 2
 3
    #define MAX_N 100
 4
   #define NO_EDGE -1
 5
   #define oo 99999
   int mark[MAX_N];
    int pi[MAX_N], p[MAX_N];
 8
   int path[MAX_N];
 9
10
    typedef struct{
11 🔻
12
        int n,m;
13
        int W[MAX_N][MAX_N];
14
    }Graph;
15
16 ▼
    void init_graph (Graph *pG, int n){
17
        pG->n = n;
18
        pG->m = 0;
19
        for (int u = 1; u <= n; u++){
20
            for (int v = 1; v \le n; v++){
21
                pG->W[u][v] = NO\_EDGE;
22
            }
```

	Input	Expected	Got	
~	3 3 1 2 3 2 3 5 1 3 10 1 3	1 -> 2 -> 3	1 -> 2 -> 3	✓
*	3 3 1 3 5 3 2 3 1 2 10 1 2	1 -> 3 -> 2	1 -> 3 -> 2	~
~	6 9 1 2 7 1 3 9 1 5 14 2 3 10 2 4 15 3 4 11 3 5 2 4 6 6 5 6 9 1 5	1 -> 3 -> 5	1 -> 3 -> 5	*
~	6 9 1 2 7 1 3 9 1 5 14 2 3 10 2 4 15 3 4 11 3 5 2 4 6 6 5 6 9 2 6	2 -> 3 -> 5 -> 6	2 -> 3 -> 5 -> 6	*
*	6 9 1 2 7 1 3 9 1 5 14 2 3 10 2 4 15 3 4 11 3 5 3 4 6 6 6 5 9 2 5	2 -> 3 -> 5	2 -> 3 -> 5	~

Passed all tests! 🗸

Question author's solution (C):

```
#include <stdio.h>

#define MAXN 100
#define oo 999999
#define NO_EDGE -1

typedef struct {
   int n, m;
   int W[MAXN][MAXN];
}
Graph;

void init graph(Graph *nG_int n) {
```

Correct

Marks for this submission: 1.00/1.00.

Question **2**Correct

Mark 1.00 out of

1.00

Viết chương trình đọc một **đơn đồ thị vô hướng, có trọng số không âm** từ bàn phím, tìm đường đi ngắn nhất từ đỉnh s đến đỉnh t (s và t cũng được đọc từ bàn phím).

Đầu vào (Input)

Dữ liệu đầu vào được nhập từ bàn phím với định dạng:

- Dòng đầu tiên chứa 2 số nguyên n và m $(1 \le n < 100; 0 \le m < 500)$
- m dòng tiếp theo mỗi dòng chứa 3 số nguyên u, v, w mô tả cung (u, v) có trọng số w $(0 \le w \le 100)$.
- Dòng cuối cùng chứa 2 số nguyên s và t.

Đầu ra (Output)

• In đường đi ngắn nhất từ s đến t theo mẫu:

```
s -> u1 -> u2 -> ... -> t
```

• Xem thêm ví dụ bên dưới.

Gợi ý

Lần ngược theo p[u] để có được đường đi ngắn nhất.

For example:

Input		Result				
3 3		3	->	2	->	1
1 2	3					
2 3	5					
1 3	10					
3 1						

Answer: (penalty regime: 10, 20, ... %)

```
1
 2
 3
    #include <stdio.h>
 4
   #define MAX_N 100
 5
   #define NO_EDGE -1
   #define oo 99999
 7
   int mark[MAX_N];
   int pi[MAX_N], p[MAX_N];
 9
   int path[MAX_N];
10
11
12 ▼
    typedef struct{
13
        int n,m;
14
        int W[MAX_N][MAX_N];
15
    }Graph;
16
17 ▼
   void init_graph (Graph *pG, int n){
18
        pG->n = n;
19
        pG->m = 0;
20
        for (int u = 1; u <= n; u++){
21 v
            for (int v = 1; v \le n; v++){
22
                pG->W[u][v] = NO\_EDGE;
```

	Input	Expected	Got	
~	3 3 1 2 3 2 3 5 1 3 10 3 1	3 -> 2 -> 1	3 -> 2 -> 1	~
~	3 3 1 3 5 3 2 3 1 2 10 2 1	2 -> 3 -> 1	2 -> 3 -> 1	~
~	6 9 1 2 7 1 3 9 1 5 14 2 3 10 2 4 15 3 4 11 3 5 2 4 6 6 5 6 9 6 2	6 -> 4 -> 2	6 -> 4 -> 2	>
~	6 9 1 2 7 1 3 9 1 5 14 2 3 10 2 4 15 3 4 11 3 5 2 4 6 6 5 6 9 6 1	6 -> 5 -> 3 -> 1	6 -> 5 -> 3 -> 1	*
~	6 9 1 2 7 1 3 9 1 5 14 2 3 10 2 4 15 3 4 11 3 5 3 4 6 6 6 5 9 5 2	5 -> 3 -> 2	5 -> 3 -> 2	~

Passed all tests! 🗸

Question author's solution (C):

```
#include <stdio.h>

#define MAXN 100
#define oo 999999
#define NO_EDGE -1

typedef struct {
    int n, m;
    int W[MAXN][MAXN];
} Graph;

yoid init graph(Graph *nG_int n) {
```

```
1010 11110 Brahillarahii paj 1110 11) (
  14
          pG->n = n;
  15
          pG->m = 0;
          for (int u = 1; u <= n; u++)
  16
  17
              for (int v = 1; v <= n; v++)
               pG->W[u][v] = NO_EDGE;
  18
  19 }
  20
  21 void add_edge(Graph *pG, int u, int v, int w) {
Correct
Marks for this submission: 1.00/1.00.
```

■ Bài tập 2 - Thuật toán Moore -Dijkstra (chiều dài)

 Bài tập 4* - Mê cung số ►