MÉTODO SIMPLEX:

- Menor ou igual (<=): + adiciona-se as variáveis de folga
- Maior ou igual (>=): subtraiem-se as variáveis de folga
- Igualdade (=): adiciona-se variável artificial (não há folga).
- Solução Ótima (Região Limitada)

Max -> Solução ÓTIMA quando não existem valores NEGATIVOS na linha da função objetivo

-> Escolhe a variável com o coeficiente MAIS NEGATIVO para entrar na base.

Min -> Solução ÓTIMA quando não existem valores POSITIVOS na linha da função objetivo

- -> Escolhe a variável com o coeficiente MAIS POSITIVO para entrar na base.
- Para decidir qual sai da base: usa o TESTE DA RAZÃO (lado direito / coeficiente positivo da coluna). Considerar a menor razão POSITIVA (incluindo o 0)
- Uma solução é DEGENERADA quando uma variável básica tem o valor 0.
- Numa solução básica admissível (viável), as variáveis básicas são não-negativas, mas podem assumir valor zero é o caso da degeneração.
- Se escolheste uma linha pivô errada no Simplex Primal, no próximo quadro algum b ficará negativo) ou seja, deixar-se-á de ter uma solução admissível.
- Uma solução básica tem exatamente *n + m 1 variáveis básicas*, onde: n = número de variáveis de decisão; m = número de restrições.

TIPOS DE SOLUÇÕES:

- -> *Ótima*: critério de otimalidade satisfeito.
- -> *Múltiplas soluções ótimas(Região Limitada, Várias Extremidades)*: surgem quando uma variável não-básica tem coeficiente rero na linha Z.
- -> *Ilimitada (Região Não Limitada)*: Na coluna que vai entrar na base, o teste da razão não revela candidatos a sair da base (coluna toda negativa ou nula). A variável que entra pode crescer infinitamente, assim como Z.
 - -> *Inviável*: soma das variáveis artificiais > 0 na fase 1 do método das duas fases.

MÉTODO DAS DUAS FASES:

- Fase 1: Minimiza-se a soma das variáveis artificiais: MIN z = a1 + a2
- -> Se o valor mínimo for > 0, o problema é INVIÁVEL.
- Fase 2: Continua-se com a função objetivo original, já com base viável.
- -> Retira-se as variáveis artificiais e mantém-se apenas as de floga

MÉTODO DUAL SIMPLEX:

- A coluna dos b's passa a ser a função objetivo.
 - -> Max: Paramos quando os b's forem todos NEGATIVOS
 - -> Min: Paramos quando os b's forem todos POSITIVOS
- Passos:
 - -> Verifica se a função objetivo já está ótima (não há coeficientes negativos em max).
 - -> Procura uma linha com valor de b negativo → é a linha pivô.
 - -> Na linha pivô, escolhe a variável com coeficiente negativo que minimiza o quociente: z_i/a_i_j (considerar apenas os a's < 0)
 - -> Faz o pivô normalmente.
 - -> Repete até todos os $b \ge 0 \rightarrow$ solução viável e ótima.

ARCOS NO PROBLEMA DE TRANSPORTE:

Variáveis básicas:

- Variáveis não-básicas:
- -> Em transportes SEM capacidade: Um arco não-básico é atrativo se: Ganho_i_j = c_i_j (u_i u_j) < 0
- -> Em transportes COM capacidade: Um arco não-básico é atrativo se:
 - $-> x_{i_j} = 0$ (está no limite inferior) && Ganho_i_j = c_i_j (u_i u_j) < 0
 - $-> x_i = u_i$ (está no limite superior) & Ganho_i = c_i (u_i u_j) > 0

MÉTODO DE PARTIÇÃO E AVALIAÇÃO:

- Restrições de Partição são do tipo: x1 <= 2 e x1 >= 3
- Minimização: o valor de Z aumenta quando se adicionam restrições de partição
- Maximização: o valor de Z diminui quando se adicionam restrições de partição

MÉTODO DO PLANO DE CORTE:

- Escolher a restrição em que o b FRACIONÁRIO é o maior valor fracionário possível.
- A restrição do plano de corte é sempre >= (depois multiplica-se por -1 para inserir no simplex).

