

Project 1:

Aircraft Risk Assessment for Diversification

Team:

Jason - Sakeah - Ron

<u>Airplanes For Commercial</u> & Private Enterprise Use

The Problem

 Finding which airplane manufacturer provides highest safety to passengers & lowest risk of investment

Data Used

- NTSB Aviation Accident Data in the US & Int. Waters
- ~56K data records

Solution

 Filtering data provided based on specific values

Tools Utilized

- Python
- Tableau
- Jupyter Notebook

Engine Types

Metrics used showing Fatalities vs Aircraft Damages ---->

Results indicate these engines had the lowest fatalities against all others

Number Of Engines

Turbo Fan & Turbo Jet data ---->

3 engine aircrafts yield best overall in safety for passengers even when airplanes are completely destroyed

Top Makes & Manufacturer

Top 3 Makes based on all safety and reliability metrics ----->

Douglas scored the best in safety with under 1% of passenger fatalities.

Make & Model: 3 Engines

McDonnell-Douglas models with the desired specifications

DC-10-30 has a low fatality % even with some destroyed airplanes.

Drum Roll Please

McDonnell Douglas

Professional Recommendation

McDonnell Douglas

Model: DC 10 series

Engine Type: Turbo Fan

of Engines: 3

Next Steps

- Include more data with modern engines
- Predict airplane safety based on airplane specs

Thank You