

MODULE 3 -LIST, STACK AND QUEUE

03603342 : Module3

- 1. โครงสร้างข้อมูลแบบ list
- 2. การใช้ Array สร้าง list และ Operation
- 3. การใช้ pointer สร้าง Linked list และ operation
- 4. การใช้ pointer สร้าง Doubly linked list และ Operation
- 5. การใช้ pointer สร้าง Circular linked list
- 6. Stack และ Operation
- 7. Queue และ Operation

เนื้อหาที่เรียนในวันนี้

- เมื่อเรียนจบแล้ว สิ่งที่นิสิตสามารถทำได้คือ
- 1)สามารถแยกแยะระหว่าง list และ linked list ได้
- 2)เข้าใจการทำงานของ linked list
- 3)สามารถเขียนโปรแกรมทำการเก็บข้อมูลลงใน linked list ได้
- 4)สามารถเขียนโปรแกรมทำการลบข้อมูลลงใน linked list ได้
- 5)สามารถเขียนโปรแกรมทำการค้นหาข้อมูลลงใน linked list ได้
- 6)สามารถเขียนโปรแกรมทำการนับจำนวนข้อมูลลงใน linked list ได้
- 7)สามารถนำ linked list ไปใช้ในการปัญหาทางการโปรแกรมได้
- 8)หราบ BigO ทุก Operation

THE INCOMES AND ADDRESS OF THE PROPERTY OF THE

3.1 The List

A General list of the form A_1 , A_2 , A_3 ,..., A_N

For any list except the empty list, we say that A_{i+1} follows (or succeeds) A_i (i<N) and that A_{i-1} precedes A_i (i>1). The first element of the list is A_1 , and the last element A_i in a list is A_N

3.1.1 List Operation

- ☐ insert
- remove

- printList
- ☐ makeEmpty
- ☐ find

3.1.2 Array List

Insert

- 1. สร้าง Array โดยคาดคะเนว่า list จะมีข้อมูลมากที่สุดกี่ค่า int a[10];
- 2. กำหนดตัวแปร size คือจำนวนข้อมูล pos(position) คือตำแหน่งที่ ต้องการแทรก

01234567 10 | 20|30|40|50|60|

size = 6arrsize=10

3. การ insert จะทำโดยการหาตำแหน่งที่ต้องการแทรกข้อมูลก่อน เช่น ต้องการแทรก 35 ตำแหน่งที่จะแทรกคือ 3 ตำแหน่ง เก็บในตัวแปร pos


```
for(i=0;i<size;i++)
{
    if( data ...... a[i])
    {    pos= ......
        break;
    }
}</pre>
```

4. จะแทรกได้จะต้องขยับเลื่อนข้อมูลด้านหลังทุกตัวไป 1 ค่า ในช่วง possize

เลื่อนข้อมูลใน index 3-5 pos+1 ถึง size-1

5. ทำการแทรก


```
int main()
{ int a[10]={10,20,30,40,50,60};
  int size=6,arrsize=10, i,pos, data;
  cout << "Insert data : ";</pre>
  cin >> data;
  for(i=0;i<size;i++)
  { if(a[i]>data)
       pos=i;
       break;
```

a[index]=newNumber;

```
0 1 2 3 4 5 6 7 ... 10 20 30 40 50 60
```

4.ต้องเลื่อน ตั้งแต่ตัวที่ 3 - 5 หรือ ตั้งแต่ pos+1 ถึง size-1 ไป ตำแหน่งที่ 4-6

5. ทำการแทรก

2) Delete

- 1.หาตำแหน่งที่ต้องการลบใส่ตัวแปร index
- 2.ขยับข้อมูลตั้งแต่ลำดับ 4-6 คือ index+1 ถึง size 1 เลื่อนมาด้านหน้า
- 3.ลดขนาด size

<u>การบ้าน</u>

1.จงเขียนโปรแกรมโดยใช้ Array ขนาด 10 ช่อง สร้างเป็น list โดยมีการทำงานตาม menu ดังด้านล่าง

หมายเหตุ ให้ทดลอง insert 8 5 1 20 6 14 และลบ 8 20 1

=======Menu======

+ 1) Insert +

+ 2) Delete +

+ 3) Print +

+ 4) Exit +

Please choose >

ถ้าเลือกข้อ 1

Enter: 8

Output = 8 จากนั้นกลับไปที่เมนู

ถ้าเลือกข้อ 1

Enter: 5

Output = 5 8 จากนั้นกลับไปที่เมนู

ถ้าเลือกข้อ 2

Delete: 8

Output = 5 จากนั้นกลับไปที่เมนู

03603212: Module1 – Introduction 13

ถ้าเลือกข้อ 3 สมมุติว่ามีข้อมูล 10 20 30 40 50 60 จะแสดงข้อมูลดังนี้

Print : 10 20 30 40 50 60

Print first half : 10 20 30

Print second half: 40 50 60

หรือ

Print : 10 20 30 40 50

Print first half : 10 20

Print second half: 30 40 50

Avoid the linear cost of insertion and deletion of array.

The linked list consists of a series of nodes, which are not necessary adjacent in memory. Each node contains the element and a link to a node containing its successor. We call this the next link. The last cell's next link points to NULL.

2.3.3 Linked List

Insert

<u>Delete</u>

<u>Delete</u>

ข้อแตกต่างระหว่าง Array list และ Linked list

1. <u>การประกาศตัวแปร</u>

Array list จะต้องประกาศตัวแปรก่อน จึงต้องคาดคะเน จำนวนข้อมูลไว้ ว่า list จะมีจำนวนกี่ตัว

Linked list ไม่จำเป็นจะต้องประกาศตัวแปรก่อน สามารถ สร้าง node ขณะที่ run โปรแกรมได้

2. การ insert และ delete

Array list ทำได้ยากกว่า เพราะโครงสร้างไม่เหมาะสม Linked list สามารถโปรแกรมได้ง่ายกว่ามาก

ข้อแตกต่างระหว่าง Array list และ Linked list(ต่อ)

3. การเขียนโปรแกรม

Array list เขียนโปรแกรมโดยใช้การวน loop Linked list เขียนโปรแกรมต้องใช้ pointer

03603212 : Module3-List, stq

1การ Insert แยกกรณี

1. กรณีที่ไม่มีข้อมูล

head

head

กรณีที่มีข้อมูล

- insert หน้าสุด
- insert ตรงกลาง
- insert ท้าย

Insert linked list

```
กรณี head ใม่มีข้อมูล
    if(head==NULL)
       สร้างโหนด
       ทำการ insert และให้ head ชี้โหนดนี้
else ( head มีข้อมูล)
   insert หน้า head?
        insert และให้ head มาชื้
   else (insert หลัง head คือตรงกลางหรือห้าย )
        - หาตำแหน่งที่จะ insert
        - ทำการ insert
```


//กำหนด structure ของ linked list


```
int menu()
{ int choose;
  cout << " 1) Insert list\n";
 cout << " 2) Delete list\n";
 cout << " 3) Print list\n";</pre>
 cout << " 4) Exit\n";
 cout << " Please choose > ";
 cin >> choose;
 return choose;
```

1024

03603212 : Module3–List 1. กรณีไม่มีข้อมูล

struct record *insert(struct record *head,int data)

1 { struct record *node,*p;

2 if (head == NULL)

3 { head=new struct record;

4 head-> value = data;

5 head-> next = NULL;

7 return head;

03603212 : Module3–List, s

- 2. กรณีมีข้อมูลอยู่แล้ว
- -Insert ด้านหน้า

```
struct record *insert(struct record *head,int data)

1 { struct record *node,*p;

2 if (head == NULL)

3 { head=new struct record;

4 head-> value = data;

5 head-> next = NULL;

6 }
```


7 else /**head !=NULL **/ 8 { node=new struct record; แล้ว node-> value = data; -Insert ด้านหน้า

if(data < head->value) 10

node->next = head; 11

12 head=node;

13}

14}

15return head;

WITT THE MINISTER STATE OF THE STATE OF THE

```
struct record *insert(struct record *head,int data)
      struct record *node,*p;
                                      3. กรณีแทรกกลาง
     if ( head == NULL )
                                           หรือท้าย
         head=new struct record;
         head-> value = data;
         head-> next = NULL;
                head
                          1050
                           2000
                          1050
                                     1024
                                               1080
                                                        2015
```



```
7 else /**head !=NULL **/
                                 3. กรณีแทรกกลาง
8 {
      node=new struct record;
      node-> value = data;
      if( data < head->value)
10
11
            แทรกหน้า list กรณี 2 เรียนแล้ว 🤎
12
13
```

```
node
else
                               2040
       ็แทรกกลาง/ท้าย
                                         2040
                               4000
```


