Michael Love

Hierarchical Models for RNA-seq

Hierarchical Models for RNA-seq

Michael Love Dept of Biostatistics Dept of Genetics

DNA => RNA

Figure 1:

Figure 2:

Why measure RNA: molecular phenotype

Figure 3:

Why measure RNA: tissue diversity

Figure 4:

Why measure RNA: tissue diversity

Figure 5:

Why measure RNA: within tissue over time

Figure 6:

Zhang, et al. Circadian gene expression atlas (2014)

Why measure RNA: disease sub-types

Figure 7:

Step back: pre-sequencing

Before sequencing was microarray

Figure 8:

Step back: pre-sequencing

Signal was captured light (positive, "continuous")

Motivating problem

- ▶ Gene expression for i=1,...,N genes and j=1,...,M samples
- ▶ log of gene expression values are in a tall matrix X
- log here is convenient because gene expression is non-negative and has a long tail
- 2 equal sized groups of samples A and B

$$X_{ij} \sim N(\mu_{ij}, \sigma_i)$$

 $\mu_{ij} = \mu_{i0}, \quad j \in A$
 $\mu_{ij} = \mu_{i0} + \delta_i, \quad j \in B$

 $\delta_i \neq 0$ implies DE (differential expression)

Note σ_i

This is *critical*: different genes *i* have different amount of variability.

$$X_{ij} \sim N(\mu_{ij}, \sigma_i)$$

$$\mu_{ij} = \mu_{i0}, \quad j \in A$$

$$\mu_{ij} = \mu_{i0} + \delta_i, \quad j \in B$$

Goal of differential expression testing

- ▶ Find a set of genes for which $\delta_i \neq 0$
- ▶ And which obeys false discovery rate bounds
- ▶ For genes in our set G at FDR threshold z

$$E\left(\sum_{i\in G}1_{\{\delta_i=0\}}\right)\leq |G|\,z$$

Is this realistic?

- ▶ Can we accomplish this if all $\delta_i \neq 0$
- no, because methods often rely on global scaling normalization
- Are any $\delta_i = 0$?
- maybe not, but many are very small for controlled experiment

Is this realistic?

- ▶ What about σ_i for both groups?
- ▶ often this is enough, larger variance dominates
- not for single cell experiments
- More complex parametric models: baySeq
- Non-parametric: SAM / SAMseq

Back to the model

$$X_{ij} \sim N(\mu_{ij}, \sigma_i)$$

 $\mu_{ij} = \mu_{i0}, \quad j \in A$
 $\mu_{ij} = \mu_{i0} + \delta_i, \quad j \in B$

- ► N = 5000, M = 6
- $\delta_i = 0$ for 90%
- $\delta_i = \pm 2$ for 10%

Distribution of σ_i

Figure 10: plot of chunk sigmadist

Try simple row t-tests

Figure 11: plot of chunk boxt

Just looking at ranks

Figure 12: plot of chunk roc

Characterize the false positives

$$med(t) \equiv median(|t_i|)$$
 for $i : \delta_i \neq 0$

Estimates of σ_i

$$med(t) \equiv median(|t_i|)$$
 for $i : \delta_i \neq 0$

Figure 14: plot of chunk fp

New estimator for σ_i

$$\bar{\sigma} = \frac{1}{N} \sum_{i=1}^{N} \hat{\sigma}_{i}$$
$$\tilde{\sigma}_{i}^{B} = B\bar{\sigma} + (1 - B)\hat{\sigma}_{i}$$

Figure 15: plot of chunk tildesigma

New estimator performance by rank

Figure 16: plot of chunk roc2

Summary

- lacktriangle Top false positives were coming from genes with too low $\hat{\sigma}_i$
- ▶ Replace $\hat{\sigma}_i$ with an estimate which is closer to $\bar{\sigma}$
- Depending on "close", new estimator dominates at all thresholds

How is this hierarchical?

Not your standard diagram, need to formalize

limma

- Smyth, G. K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
- Developed the hierarchical model introduced by Lonnstedt and Speed (2002) for single sample into method for any experiment represented as linear model

$$\frac{1}{\sigma_i^2} \sim \frac{1}{d_0 \sigma_0^2} \chi_{d0}^2$$

Why inverse χ^2 ?

- Conjugacy provides closed form solution
- ▶ Posterior mean for $1/\sigma_i^2$ given $\hat{\sigma}_i^2$ is $1/\tilde{\sigma}_i^2$ with

$$\tilde{\sigma}_i^2 = \frac{d_0 \hat{\sigma}_0^2 + d_i \hat{\sigma}_i^2}{d_0 + d_i}$$

And d_i as the standard residual degrees of freedom

Note that d_0 controls B

$$\tilde{\sigma}_{i}^{2} = \frac{d_{0}\hat{\sigma}_{0}^{2} + d_{i}\hat{\sigma}_{i}^{2}}{d_{0} + d_{i}}
= \left(\frac{d_{0}}{d_{0} + d_{i}}\right)\hat{\sigma}_{0}^{2} + \left(\frac{d_{i}}{d_{0} + d_{i}}\right)\hat{\sigma}_{i}^{2}
= B\hat{\sigma}_{0}^{2} + (1 - B)\hat{\sigma}_{i}^{2}$$

Proper hierarchical model

Figure 18:

Estimation of hyperparameters

- Need to estimate d_0 , $\hat{\sigma}_0^2$, which control strength and location of shrinkage or moderation
- $d_0, \hat{\sigma}_0^2$ estimated via first two moments of $\log \hat{\sigma}_i^2$
- (Also need to estimate v_0 , another parameter giving variance of coefficients)

limma vs. naive estimators by rank

Figure 19: plot of chunk roc3

Rank is not the full picture

Figure 20: plot of chunk roc4

Summary

- limma provides a hierarchical model for moderation of variance estimates in the context of linear models
- ► Avoids false positives from under-estimation of variance
- Also addresses the gain in degrees of freedom from moderation

RNA-seq: counting molecules

Figure 21:

RNA-seq: counting molecules

```
@SRR1265495.1 1/1
+
@SRR1265495.2 2/1
@C@FFFDFHHHHGGIIAGHI9GIIIIIGIIIIIGI@@FHGDDDH@GGIBBO5?B>ACC
@SRR1265495.3 3/1
+
@C@DFFFFGGHDHTTEGDHCGGHT.JGEHTT.JTT.JTEEHGTGEGDDB@@@CDDDDEDDDI
for ~30 million reads (often pairs of reads)
```

RNA-seq: counting molecules

Align to genome or transcriptome

Figure 22:

RNA-seq: counting molecules

- Now for each gene and each sample we can obtain a count or estimated count of fragments
- Why estimated? Because some fragments cannot be uniquely associated with genes or isoforms
- ► Fast algorithms for probabilistically assigning:
- Salmon
- ► Sailfish (2014)
- ▶ kallisto (2016)
- Assume we have integer counts K_{ij} of unique fragments or from rounding estimated counts

Counts

- Either model data with count distributions and inference with GLM
- ▶ DESeq2 (2014)
- edgeR (2010)
- many more
- 2. Learn weights associated with log normalized counts and use limma
- ▶ limma-voom (2014)

Most important for statistical analysis

- ▶ Total number of fragments is technical artifact
- Heteroskedasticity of counts
- ► Each gene has different variability

Total number of fragments

Figure 23: plot of chunk totalnumber

Sampling fragments

Figure 24: plot of chunk sampfrags

Poisson across technical replicates

- ▶ From Bullard 2010 take 7 technical replicates
- ▶ Calculate expected value $\hat{\lambda}_{ij}$ using DESeq2 norm
- ▶ $P(K_{ij} < \hat{\lambda}_{ij})$ assuming $K_{ij} \sim \operatorname{Pois}(\hat{\lambda}_{ij})$

Figure 25: plot of chunk poisson

However, expression not equal across biological replicates

Figure 26:

Negative Binomial / Gamma Poisson

$$K_{ij} \sim NB(\mu_{ij}, \alpha_i)$$

$$Var(K_{ij}) = \mu_{ij} + \alpha_i \mu_{ij}^2$$

NB model for RNA-seq

- ► Similar to our microarray model for Xii
- ightharpoonup Added an s_j to deal with sequencing depth

$$K_{ij} \sim \mathrm{NB}(\mu_{ij}, \alpha_i)$$
 $\mu_{ij} = s_j q_{ij}$
 $\log_2(q_{ij}) = \beta_{i0}, \quad j \in A$
 $\log_2(q_{ij}) = \beta_{i0} + \delta_i, \quad j \in B$

 $\delta_i \neq 0$ implies DE (differential expression)

Moderation of dispersion

- ▶ In DESeq2, a prior on $log(\alpha_i)$
- ▶ Calculate the mean of normalized counts $\bar{\mu}_i$
- ▶ A trend line of dispersion over mean $\alpha_{tr}(\mu)$
- ▶ Width of the prior σ^2 estimated via assumption of normal sampling variance of $\log(\hat{\alpha}_i)$

$$\log(\alpha_i) \sim N(\log(\alpha_{tr}(\bar{\mu}_i)), \sigma^2)$$

Moderation of dispersion

Figure 28:

Moderation of dispersion

Figure 29: plot of chunk disp

Evaluate via simulation

Figure 30: plot of chunk rnasim

Summary

- ► Model for counts similar to the hierarchical linear model, but constructed for the dispersion parameter
- ► Final dispersion estimate plug-in value in DESeq2, edgeR
- edgeR quasi-likelihood takes into account dispersion estimation uncertainty
- limma-voom uses weights on log normalized counts