香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2021年香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2021

數學延伸部分單元二(代數與微積分)MATHEMATICSEXTENDED PARTMODULE 2 (ALGEBRA AND CALCULUS)

評卷參考 MARKING SCHEME

本評卷參考乃香港考試及評核局專為今年本科考試而編寫,供閱卷員參考之 用。本評卷參考之使用,均受制於閱卷員有關之服務合約條款及閱卷員指引。 特別是:

- 本局擁有並保留本評卷參考的所有財產權利(包括知識產權)。在未獲本局之 書面批准下,閱卷員均不得複製、發表、透露、提供、使用或經營本評卷 參考之全部或其部份。在遵守上述條款之情況下,本局有限地容許閱卷員 可在應屆香港中學文憑考試的考試成績公布後,將本評卷參考提供任教本 科的教師參閱。
- 在任何情況下,均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers. The use of this marking scheme is subject to the relevant service agreement terms and Instructions to Markers. In particular:

- The Authority retains all proprietary rights (including intellectual property rights) in this marking scheme. This marking scheme, whether in whole or in part, must not be copied, published, disclosed, made available, used or dealt in without the prior written approval of the Authority. Subject to compliance with the foregoing, a limited permission is granted to markers to share this marking scheme, after release of examination results of the current HKDSE examination, with teachers who are teaching the same subject.
- Under no circumstances should students be given access to this marking scheme or any part of it. The Authority is counting on the co-operation of markers/teachers in this regard.

@香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved

Hong Kong Diploma of Secondary Education Examination Mathematics Extended Part Module 2 (Algebra and Calculus)

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks awarded for correct methods being used; 'A' marks awarded for the accuracy of the answers;

Marks without 'M' or 'A' awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 5. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.
- 6. Unless otherwise specified in the question, numerical answers not given in exact values should not be accepted.

Solution	Marks	Remarks
1. $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
$= \lim_{h \to 0} \frac{\frac{1}{3(x+h)^2 + 4} - \frac{1}{3x^2 + 4}}{h}$	1 M	
$= \lim_{h \to 0} \frac{(3x^2 + 4) - (3(x+h)^2 + 4)}{h(3(x+h)^2 + 4)(3x^2 + 4)}$		
$= \lim_{h \to 0} \frac{-3h(2x+h)}{h(3(x+h)^2+4)(3x^2+4)}$ $= \lim_{h \to 0} \frac{-3(2x+h)}{(3(x+h)^2+4)(3x^2+4)}$	1M IM	withhold 1M if this step is skippe
$\lim_{h \to 0} (3(x+h)^2 + 4)(3x^2 + 4)$ $= \frac{-6x}{(3x^2 + 4)^2}$	1A	withhold Twi it this step is skippe
	(4)	
Note that $\sum_{k=1}^{1} (3k^5 + k^3) = 4 = \frac{1^3 (1+1)^3}{2}$.		
Therefore, the statement is true for $n=1$.	1	
Assume that $\sum_{k=1}^{m} (3k^5 + k^3) = \frac{m^3(m+1)^3}{2}$, where m is a positive integer. $\sum_{k=1}^{m+1} (3k^5 + k^3)$ $= \sum_{k=1}^{m} (3k^5 + k^3) + 3(m+1)^5 + (m+1)^3$	IM	
$= \frac{m^3(m+1)^3}{2} + 3(m+1)^5 + (m+1)^3$ (by induction assumption)	IM	for using induction assumption
$=\frac{m^3(m+1)^3+6(m+1)^5+2(m+1)^3}{2}$		
$= \frac{(m+1)^3 (m^3 + 6(m+1)^2 + 2)}{2}$ $= \frac{(m+1)^3 (m^3 + 6m^2 + 12m + 8)}{2}$ $= \frac{(m+1)^3 (m+2)^3}{2}$ So, the statement is true for $n = m+1$ if it is true for $n = m$.	1M	
By mathematical induction, the statement is true for all positive integers n .	1 (5)	
021-DSE-MATH-EP(M2)3		

	Solution	Marks	Remarks
3. (a)	$(1-4x)^n$		
	$=1-n(4x)+\frac{n(n-1)}{2}(4x)^2-\cdots+(-1)^n(4x)^n$	1M	
	$\frac{n(n-1)}{2}(4^2) = 240$	1M	
	$n^2 - n - 30 = 0$		
	n=6 or $n=-5$ (rejected)		
	Thus, we have $n = 6$.	IA	
(b)	$\left(1+\frac{2}{x}\right)^5$		
	$=1+5\left(\frac{2}{x}\right)+10\left(\frac{2}{x}\right)^2+10\left(\frac{2}{x}\right)^3+5\left(\frac{2}{x}\right)^4+\left(\frac{2}{x}\right)^5$	lM	
	$=1+\frac{10}{x}+\frac{40}{x^2}+\frac{80}{x^3}+\frac{80}{x^4}+\frac{32}{x^5}$		either one
	$(1-4x)^6$		
	$= 1 - 6(4x) + 15(4x)^{2} - 20(4x)^{3} + 15(4x)^{4} - 6(4x)^{5} + (4x)^{6}$		
	$= 1 - 24x + 240x^2 - 1280x^3 + 3840x^4 - 6144x^5 + 4096x^6$		
	The coefficient of x^4		
	= (1)(3840) + (10)(-6144) + (40)(4096)	1M	withhold 1M if this step is skipped
	= 106 240	1A (6)	
		(0)	
4. (a)	$\cos 2x + \cos 4x + \cos 6x$		
	$=2\cos^2 x - 1 + \cos 4x + \cos 6x$	īМ	
	$=2\cos^2 x - 1 + 2\cos 5x \cos x$	1M	
	$= 2\cos x (\cos x + \cos 5x) - 1$		either one
	$= 2\cos x (2\cos 3x \cos 2x) - 1$ $= 4\cos x \cos 2x \cos 3x - 1$	1	
		1	
(b)	$\cos 4\theta + \cos 8\theta + \cos 12\theta = -1$ $4\cos 2\theta \cos 4\theta \cos 6\theta - 1 = -1$ (by putting $x = 2\theta$ in (a)) $\cos 2\theta \cos 4\theta \cos 6\theta = 0$	l M	
	$\cos 2\theta = 0$, $\cos 4\theta = 0$ or $\cos 6\theta = 0$	IM	
	$\theta = \frac{\pi}{12}$, $\theta = \frac{\pi}{8}$, $\theta = \frac{\pi}{4}$, $\theta = \frac{3\pi}{8}$ or $\theta = \frac{5\pi}{12}$	l A	for all correct
	$\cos 4\theta + \cos 8\theta + \cos 12\theta = -1$		
	$1 + \cos 8\theta + \cos 4\theta + \cos 12\theta = 0$ $2\cos^2 4\theta + 2\cos 8\theta \cos 4\theta = 0$		
	$2\cos 4\theta + 2\cos 8\theta \cos 4\theta = 0$ $\cos 4\theta (\cos 4\theta + \cos 8\theta) = 0$	124	
	$2\cos 2\theta \cos 4\theta \cos 6\theta = 0$	IM	
	$\cos 2\theta = 0$, $\cos 4\theta = 0$ or $\cos 6\theta = 0$	1M	
	$\theta = \frac{\pi}{12}$, $\theta = \frac{\pi}{8}$, $\theta = \frac{\pi}{4}$, $\theta = \frac{3\pi}{8}$ or $\theta = \frac{5\pi}{12}$	1A	for all correct
		(6)	
2021-DSE-	MATH-EP(M2)-4	[]	

Solution	Marks	Remarks
(a) The equation of the vertical asymptote is $x-1=0$.	1A	
Note that $r(x) = x + 1 - \frac{x-2}{(x-1)^2}$.	1M	
Thus, the equation of the oblique asymptote is $y = x + 1$.	1A	f.t.
(b) $\frac{d}{dx}r(x)$ $= \frac{d}{dx}\left(x + 1 - \frac{x - 2}{(x - 1)^2}\right)$		
$=1-\frac{(x-1)^2-2(x-2)(x-1)}{(x-1)^4}$	IM	
$=1+\frac{x-3}{(x-1)^3}$	ΙA	
$\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{r}(x)$		
$=\frac{(x-1)^2(3x^2-2x-2)-2(x-1)(x^3-x^2-2x+3)}{(x-1)^4}$	1M	
$=\frac{x^3 - 3x^2 + 4x - 4}{(x - 1)^3}$	1 A	
(c) Note that $\frac{d^2}{dx^2} r(x) = \frac{(x-1)^3 - 3(x-1)^2(x-3)}{(x-1)^6} = \frac{-2(x-4)}{(x-1)^4}.$ So, we have $\frac{d^2}{dx^2} r(x) = 0 \iff x = 4.$ $\frac{x}{dx^2} r(x) + 0 - \frac{d^2}{dx^2} r(x) + $	1M	for testing
Therefore, there is only one point of inflexion of the graph of $y = r(x)$. Thus, the claim is agreed.	IA (7)	f.t.
I-DSE-MATH-EP(M2)-5		

Solution	Marks Remarks	
$y = e^{2x-6}$ $\frac{dy}{dx} = 2e^{2x-6}$ $\frac{dy}{dx}\Big _{x=3} = 2e^{2(3)-6} = 2$ The equation of L is	1M	
$y-1 = \frac{-1}{2}(x-3)$ $x+2y-5 = 0$		
Putting $x = c$ and $y = 0$ in $x + 2y - 5 = 0$, we hat Thus, we have $c = 5$.	ave $c+2(0)-5=0$. 1M 1A	
(b) The required area $= \int_{3}^{5} \left(e^{2x-6} - \left(\frac{-x}{2} + \frac{5}{2} \right) \right) dx$	IM+1A	
$= \int_{3}^{5} \left(e^{2x-6} + \frac{x}{2} - \frac{5}{2} \right) dx$		
$= \left[\frac{e^{2x-6}}{2} + \frac{x^2}{4} - \frac{5x}{2} \right]_3^5$	1M	
$=\frac{e^4-3}{2}$	1A (7)	
$G = \begin{cases} G & Y^2 \end{cases}$		
(a) $\int (\ln x)^2 dx$ $= x(\ln x)^2 - \int x \left(\frac{2 \ln x}{x}\right) dx$	1M	
$= x(\ln x)^2 - 2\left(x\ln x - \int x\left(\frac{1}{x}\right)dx\right)$	IM	
$= x(\ln x)^2 - 2x \ln x + 2x + \text{constant}$ (b) The required volume	1A	
$= \int_0^1 \pi \left(\sqrt{x} \ln(x^2 + 1) \right)^2 dx$	1 M	
$=\pi \int_0^1 x \left(\ln(x^2+1)\right)^2 dx$		
$= \frac{\pi}{2} \int_{1}^{2} (\ln u)^{2} du \qquad \text{(by letting } u = \frac{\pi}{2} \int_{1}^{2} (\ln u)^{2} du$		
$= \frac{\pi}{2} \left[u(\ln u)^2 - 2u \ln u + 2u \right]_1^2 $ (by (a)) = $\pi ((\ln 2)^2 - 2\ln 2 + 1)$	1M for using the result of (a))
21-DSE-MATH-EP(M2)–6	(/)	

	Solution	Marks	Remarks
. (a)	Note that $\begin{vmatrix} 1 & d-1 & d+3 \\ 2 & d+2 & -1 \\ 3 & d+4 & 5 \end{vmatrix}$ = 5(d+2)+2(d+4)(d+3)+3(-1)(d-1)-3(d+2)(d+3)-10(d-1)-(-1)(d+4) = -d^2-8d+33		
	As (E) has infinitely many solutions, we have $\begin{vmatrix} 1 & d-1 & d+3 \\ 2 & d+2 & -1 \\ 3 & d+4 & 5 \end{vmatrix} = 0.$	1M 1M	
	So, we have $-d^2 - 8d + 33 = 0$. Solving, we have $d = -11$ or $d = 3$.		
	When $d = -11$, the augmented matrix of (E) is $ \begin{pmatrix} 1 & -12 & -8 & & 15 \\ 2 & -9 & -1 & & -27 \\ 3 & -7 & 5 & & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -12 & -8 & & 15 \\ 0 & -15 & -15 & & 57 \\ 0 & -29 & -29 & & 43 \end{pmatrix} \sim \begin{pmatrix} 1 & -12 & -8 & & 15 \\ 0 & -15 & -15 & & 57 \\ 0 & 0 & 0 & & 1 \end{pmatrix} $ Since (E) is consistent, we have $d \neq -11$.	1M 1M	
	Therefore, we have $d = 3$.	1 A	f.t. either one
	Hence, the augmented matrix of (E) is $ \begin{pmatrix} 1 & 2 & 6 & & 1 \\ 2 & 5 & -1 & & 1 \\ 3 & 7 & 5 & & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 6 & & 1 \\ 0 & -1 & 13 & & 1 \\ 0 & -1 & 13 & & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 6 & & 1 \\ 0 & -1 & 13 & & 1 \\ 0 & 0 & 0 & & 0 \end{pmatrix} $		
	Thus, the solution set of (E) is $\{(3-32t, 13t-1, t): t \in \mathbb{R} \}$.	1A	
	Putting $x=3-32t$, $y=13t-1$ and $z=t$ in $xy+2xz=3$, we have $(3-32t)(13t-1)+2(3-32t)t=3$. Therefore, we have $-480t^2+77t-6=0$. Note that $77^2-4(-480)(-6)=-5591<0$. So, (E) does not have a real solution (x,y,z) satisfying $xy+2xz=3$. Thus, the claim is not correct.	1M 1A (8)	f.t.
		· constant	

2021-DSE-MATH-EP(M2)-7

	Solution	Marks	Remarks
. (a) (i) $\frac{d}{d\theta} \ln(\sec \theta +$	an heta)		
=(1	$(\sec\theta\tan\theta+\sec^2\theta)$		
$ \left(\sec \theta + \tan \theta \right) = \sec \theta $		1A	
(ii) - Par (a) (i) - a a 1 a	d , , , , , , , , , , , , , ,		
_	we $\frac{d}{d\theta} \ln(\sec \theta + \tan \theta) = \sec \theta$.		
•	$\operatorname{ec} \theta \mathrm{d} \theta = \ln(\operatorname{sec} \theta + \tan \theta) + \operatorname{constant}$.	1A	
<u> </u>	$\theta \tan \theta - \int \tan^2 \theta \sec \theta d\theta$	1M	
•	$\theta \tan \theta - \int (\sec^2 \theta - 1) \sec \theta d\theta$		
	$c\theta \tan \theta + \int \sec \theta d\theta$		
$\int \sec^3 \theta \mathrm{d}\theta = \frac{1}{2} (9)$	$\sec \theta \tan \theta + \ln(\sec \theta + \tan \theta)) + \text{constant}$	1A (1)	
c a	r -a r a	(4)	
(b) Note that $\int_{-a}^{a} g(x)h($	$f(x) dx = -\int_{a}^{-a} g(-x)h(-x) dx = \int_{-a}^{a} g(-x)h(x) dx$.	1M	
$\int_{-a}^{a} g(x) h(x) dx$			
$= \frac{1}{2} \left(\int_{-a}^{a} g(x) h(x) dx \right)$	$+ \int_{-a}^{a} g(x)h(x)dx$		
$= \frac{1}{2} \left(\int_{-a}^{a} g(x) h(x) dx \right)$	$+\int_{-a}^{a} g(-x)h(x) dx$		
$= \frac{1}{2} \int_{-a}^{a} (g(x) + g(-x))$	h(x)dx		
$=\frac{1}{2}\int_{-a}^{a}\mathbf{h}(x)\mathrm{d}x$			
$=\frac{1}{2}\left(\int_{-a}^{0} h(x) dx + \int_{0}^{a}$	h(x)dx	IM	
$= \frac{1}{2} \left(-\int_{a}^{0} h(-y) dy + \frac{1}{2} dy \right)$	$\int_0^a h(x) dx$ (by letting $x = -y$)		
$=\frac{1}{2}\left(\int_0^a h(-x)dx + \int_0^a h(-x)dx + \int_$	$\int_{0}^{a} h(x) dx$		
$=\frac{1}{2}\left(\int_0^a h(x)dx + \int_0^a$	h(x)dx		
$= \frac{1}{2} \left(2 \int_0^a h(x) dx \right)$			
$= \int_{0}^{a} h(x) dx$		1	
J 0		(3)	

2021-DSE-MATH-EP(M2)-8

Solution	Marks	Remarks
(c) Let $g(x) = \frac{3^x}{3^x + 3^{-x}}$ and $h(x) = \frac{x^2}{\sqrt{x^2 + 1}}$ for all $x \in \mathbb{R}$.		
Note that $g(x) + g(-x) = \frac{3^x}{3^x + 3^{-x}} + \frac{3^{-x}}{3^{-x} + 3^{-(-x)}} = 1$ and $h(-x) = h(x)$.	1M	withhold 1M if this step is skipped
$\int_{-1}^{1} \frac{3^{x} x^{2}}{(3^{x} + 3^{-x})\sqrt{x^{2} + 1}} dx$		
$= \int_{-1}^{1} g(x)h(x) dx$		
$= \int_0^1 h(x) dx \qquad (by putting a=1 in (b))$	IM	
$= \int_0^1 \frac{x^2}{\sqrt{x^2 + 1}} \mathrm{d}x$		
$= \int_0^{\frac{\pi}{4}} \frac{\tan^2 \theta \sec^2 \theta}{\sqrt{\tan^2 \theta + 1}} d\theta \qquad (by letting x = \tan \theta)$	1M	
$= \int_0^{\frac{\pi}{4}} \tan^2 \theta \sec \theta \mathrm{d}\theta$		
$= \int_0^{\frac{\pi}{4}} (\sec^3 \theta - \sec \theta) \mathrm{d}\theta$		
$= \int_0^{\frac{\pi}{4}} \sec^3 \theta d\theta - \int_0^{\frac{\pi}{4}} \sec \theta d\theta$		
$= \left[\frac{1}{2}(\sec\theta\tan\theta + \ln(\sec\theta + \tan\theta))\right]_0^{\frac{\pi}{4}} - \left[\ln(\sec\theta + \tan\theta)\right]_0^{\frac{\pi}{4}} \text{(by (a)(ii))}$	1M	for using the results of (a)(ii)
$=\frac{1}{2}\Big(\sqrt{2}-\ln(\sqrt{2}+1)\Big)$	1A	
	(5)	
021-DSE-MATH-EP(M2)-9		

Solution	Marks Remarks
. (a) <i>PQ</i>	
$=\sqrt{u^2+36}+\sqrt{(20-u)^2+16}$	1M
$\frac{\mathrm{d}PQ}{\mathrm{d}u}$	
$=\frac{u}{\sqrt{u^2+36}}-\frac{20-u}{\sqrt{(20-u)^2+16}}$	1M
· · · · · · · · · · · · · · · · · · ·	
$=\frac{u\sqrt{(20-u)^2+16}-(20-u)\sqrt{u^2+36}}{\sqrt{u^2+36}\sqrt{(20-u)^2+16}}$	
$=\frac{-20(u-12)(u-60)}{\sqrt{u^2+36}\sqrt{(20-u)^2+16}\left(u\sqrt{(20-u)^2+16}+(20-u)\sqrt{u^2+36}\right)}$	
,	
For $\frac{dPQ}{du} = 0$, we have $u = 12$.	1M
Thus, we have $a = 12$.	1A
	(4)
(b) (i) Let Λ square units be the area of the rectangle $PQSR$.	
Then, we have $A = u \left(\sqrt{u^2 + 36} + \sqrt{(20 - u)^2 + 16} \right)$.	1M
d <i>A</i>	
$\frac{dA}{du}$	
$= u \left(\frac{u}{\sqrt{u^2 + 36}} - \frac{20 - u}{\sqrt{(20 - u)^2 + 16}} \right) + \sqrt{u^2 + 36} + \sqrt{(20 - u)^2 + 16}$	1M
$-u \left(\sqrt{u^2 + 36} - \sqrt{(20 - u)^2 + 16} \right) + \sqrt{u^2 + 36} + \sqrt{(20 - u)^2 + 16}$	1141
Therefore, we have $\frac{dA}{du}\Big _{u=12} = 10\sqrt{5} \neq 0$.	IM
Hence, A does not attain its minimum value when $u = 12$.	
Thus, the claim is disagreed.	IA f.t.
(ii) Since $OP = \sqrt{u^2 + u^2 + 36}$, we have $OP = \sqrt{2u^2 + 36}$.	
	134
At time t minutes, we have $\frac{dOP}{dt} = \frac{2u}{\sqrt{2u^2 + 36}} \left(\frac{du}{dt}\right).$	1M
As $28 = \frac{2(12)}{\sqrt{2(12^2) + 36}} \left(\frac{du}{dt} \Big _{u=12} \right)$, we have $\frac{du}{dt} \Big _{u=12} = 21$.	1M
$\sqrt{2(12^2) + 36} \left(\frac{dt}{dt} \Big _{u=12} \right)$, we have $\frac{dt}{dt} \Big _{u=12} = 21$.	1 ivi
Let w units be the perimeter of the rectangle PQSR.	
Then, we have $w = 2\left(u + \sqrt{u^2 + 36} + \sqrt{(20 - u)^2 + 16}\right)$.	IM
dw (20 w) dw	
Therefore, we have $\frac{\mathrm{d}w}{\mathrm{d}t} = 2 \left(1 + \frac{u}{\sqrt{u^2 + 36}} - \frac{(20 - u)}{\sqrt{(20 - u)^2 + 16}} \right) \frac{\mathrm{d}u}{\mathrm{d}t}$. 1M
$\frac{\mathrm{d}w}{\mathrm{d}t}\Big _{u=12}$	
, " · "	
$=2\left(1+\frac{12}{\sqrt{180}}-\frac{8}{\sqrt{80}}\right)(21)$	
= 42	1A
Thus, the required rate of change is 42 units per minute.	(9)
1-DSE-MATH-EP(M2)10	1

	Solution	Marks	Remarks
l. (a)	Note that $P^{-1} = \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}$.	ΙA	
	$PAP^{-1} = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix} \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}$ $= \begin{pmatrix} \alpha \sin \theta + \beta \cos \theta & \beta \sin \theta - \alpha \cos \theta \\ -\alpha \cos \theta + \beta \sin \theta & -\beta \cos \theta - \alpha \sin \theta \end{pmatrix} \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}$ $= \begin{pmatrix} \alpha \sin^2 \theta + 2\beta \sin \theta \cos \theta - \alpha \cos^2 \theta & -2\alpha \sin \theta \cos \theta - \beta \cos^2 \theta + \beta \sin^2 \theta \\ -2\alpha \sin \theta \cos \theta - \beta \cos^2 \theta + \beta \sin^2 \theta & -\alpha \sin^2 \theta - 2\beta \sin \theta \cos \theta + \alpha \cos^2 \theta \end{pmatrix}$ $= \begin{pmatrix} -\alpha \cos 2\theta + \beta \sin 2\theta & -\beta \cos 2\theta - \alpha \sin 2\theta \\ -\beta \cos 2\theta - \alpha \sin 2\theta & \alpha \cos 2\theta - \beta \sin 2\theta \end{pmatrix}$	1M	
		(3)	
(b)	(i) By (a), we have $PBP^{-1} = \begin{pmatrix} -\cos 2\theta + \sqrt{3}\sin 2\theta & -\sqrt{3}\cos 2\theta - \sin 2\theta \\ -\sqrt{3}\cos 2\theta - \sin 2\theta & \cos 2\theta - \sqrt{3}\sin 2\theta \end{pmatrix}$.		
	For $PBP^{-1} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$, we have $-\sqrt{3}\cos 2\theta - \sin 2\theta = 0$.	1M	
	So, we have $\tan 2\theta = -\sqrt{3}$.		
	Since $\frac{\pi}{2} < \theta < \pi$, we have $\theta = \frac{5\pi}{6}$.	1A	
	(ii) Since $\theta = \frac{5\pi}{6}$, we have $\lambda = -2$ and $\mu = 2$.		
	So, we have $PBP^{-1} = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$.		
	Therefore, we have $B = P^{-1} \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} P$.		
	B^n		
	$= \left(P^{-1} \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} P\right)^n$		
	$=P^{-1}\begin{pmatrix} -2 & 0\\ 0 & 2\end{pmatrix}^{n}P$	1M	
	$=P^{-1}\begin{pmatrix} (-2)^n & 0\\ 0 & 2^n \end{pmatrix} P$	lM	
	$= \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} (-2)^n & 0 \\ 0 & 2^n \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$	1M	
	$=\frac{1}{4}\begin{pmatrix} (-1)^n 2^n & \sqrt{3}(2^n) \\ \sqrt{3}(-1)^{n+1} 2^n & 2^n \end{pmatrix} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$		
	$=2^{n-2}\begin{pmatrix} (-1)^n+3 & \sqrt{3}(-1)^{n+1}+\sqrt{3} \\ \sqrt{3}(-1)^{n+1}+\sqrt{3} & 3(-1)^n+1 \end{pmatrix}$	1	

2021-DSE-MATH-EP(M2)-11

Solution	Marks	Remarks
(iii) B^{555} $= 2^{555-2} \begin{pmatrix} (-1)^{555} + 3 & \sqrt{3}(-1)^{556} + \sqrt{3} \\ \sqrt{3}(-1)^{556} + \sqrt{3} & 3(-1)^{555} + 1 \end{pmatrix} $ (by (b)(ii)) $= 2^{553} \begin{pmatrix} 2 & 2\sqrt{3} \\ 2\sqrt{3} & -2 \end{pmatrix}$	IM	for using (b)(ii)
$(B^{-1})^{555}$ $= (B^{555})^{-1}$ $= \frac{1}{2^{553}} \begin{pmatrix} 2 & 2\sqrt{3} \\ 2\sqrt{3} & -2 \end{pmatrix}^{-1}$	IM	
$= \frac{1}{2^{553}} \begin{pmatrix} \frac{1}{8} & \frac{\sqrt{3}}{8} \\ \frac{\sqrt{3}}{8} & \frac{-1}{8} \end{pmatrix}$ $= \frac{1}{2^{556}} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$	1A	
$B = \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ $B^{2} = \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2^{2} I$ $B^{4} = (B^{2})^{2} = (2^{2} I)^{2} = 2^{4} I$ $B^{6} = 2^{6} I$ $B^{554} = 2^{554} I$	lM	
$= \frac{1}{-4} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$ $= \begin{pmatrix} \frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{-1}{4} \end{pmatrix}$		
$(B^{-1})^{555}$ $= (B^{555})^{-1}$ $= (B(B^{554}))^{-1}$ $= (2^{554}B)^{-1}$	1M	
$= \frac{1}{2^{554}} B^{-1}$ $= \frac{1}{2^{556}} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$	1A	
2021-DSE-MATH-EP(M2)–12		

機密 (只限閱卷員使用)

CONFIDENTIAL (FOR MARKER'S USE ONLY)

	Solution	Marks	Remarks
. (a)	(i) Note that $\overrightarrow{AB} = (12 - t)\mathbf{i} - (s + 14)\mathbf{j} - (2 + s)\mathbf{k}$.		
	Since \overrightarrow{AB} is parallel to $5\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$, we have		
	$\frac{12-t}{5} = \frac{-(s+14)}{-4} = \frac{-(2+s)}{-2}$	13.6	
	32	1M	
	Solving, we have $s = 10$ and $t = -18$.	1A	for both correct
	(ii) Note that $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 30 & -24 & -12 \\ 30 & -30 & 0 \end{vmatrix} = -360 \mathbf{i} - 360 \mathbf{j} - 180 \mathbf{k}$.	1M	
	The area of $\triangle ABC$		
	$=\frac{1}{2}\left \overrightarrow{AB}\times\overrightarrow{AC}\right $	1M	
	$=\frac{1}{2}\sqrt{360^2+360^2+180^2}$		
	2 · = 270	1 A	
	(iii) Note that $\overrightarrow{AD} = 36\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$.		
	The required volume		
	$= \frac{1}{6} \left (\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} \right $	1M	
	,		
	$= \frac{1}{6} \left (-360i - 360j - 180k) \cdot (36i - 2j + 4k) \right $		
	$= \frac{1}{6} (-360)(36) + (-360)(-2) + (-180)(4) $		
	$=\frac{1}{6}\Big -12960\Big $		
	= 2160	1A	
	(iv) Let d be the shortest distance from D to Π .		
	$\frac{1}{3}(270)d = 2160$	IM	
	d = 24	IA	
	Thus, the shortest distance from D to Π is 24.		
		(9)	
(b)	Note that $\overrightarrow{AB} \times \overrightarrow{AC} = -360\mathbf{i} - 360\mathbf{j} - 180\mathbf{k}$ and $(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} < 0$.		
	\overrightarrow{DE}		
	$= \frac{24}{\sqrt{(-360)^2 + (-360)^2 + (-180)^2}} (-360i - 360j - 180k)$	1M	
	$\sqrt{(-360)^2 + (-360)^2 + (-180)^2}$ = -16i -16j -8k		
	Also note that $\overrightarrow{EA} = -20\mathbf{i} + 18\mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{EB} = 10\mathbf{i} - 6\mathbf{j} - 8\mathbf{k}$.	1M	for either one
	Let M be the mid-point of AB .	111/1	Tor ornior one
	$\overrightarrow{EM} = \frac{1}{2}(\overrightarrow{EA} + \overrightarrow{EB}) = -5\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$		
	$\overrightarrow{EM} \cdot \overrightarrow{AB} = (-5)(30) + (6)(-24) + (-2)(-12) = -270 \neq 0$	1M	
	So, EM is not perpendicular to AB .		
	Thus, E is not the circumcentre of ΔABC .	1A	f.t.
		(4)	•
21-DSE-	MATH-EP(M2)-13		