Topological vector spaces. Seminorms and convexity

(EXERCISES FOR LECTURES 1-2)

Convention. All vector spaces are over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$.

- **1.1.** Let X be a topological vector space. Show that the closure of a vector subspace $X_0 \subset X$ is a vector subspace as well.
- **1.2.** Let X and Y be topological vector spaces. Show that
- (1) a linear map $X \to Y$ is continuous iff it is continuous at 0;
- (2) the set $\mathcal{L}(X,Y)$ of all continuous linear maps from X to Y is a vector subspace of $\mathrm{Hom}_{\mathbb{K}}(X,Y)$.
- **1.3.** Let (X, P) be a polynormed space. Show that the topology on X generated by P makes X into a topological vector space.

Hint: the shortest way is to reduce everything to seminormed spaces.

- **1.4.** Let (X, P) be a polynormed space. Show that a sequence (x_n) in X converges to $x \in X$ w.r.t. the topology generated by P iff for all $p \in P$ we have $p(x_n x) \to 0$.
- **1.5.** Let (X, P) be a polynormed space. Show that $\overline{\{0\}} = \bigcap \{p^{-1}(0) : p \in P\}$.
- **1.6.** Give a reasonable definition of the canonical topology on $C^{\infty}(M)$, where M is a smooth manifold. (This was done at the lecture in the special cases where M is either a closed interval on \mathbb{R} or an open subset of \mathbb{R}^n .)
- **1.7.** Let $U \subset \mathbb{C}$ be an open set. Show that the topology of compact convergence on the space $\mathcal{O}(U)$ of holomorphic functions is the same as the topology inherited from $C^{\infty}(U)$.
- **1.8.** Let X be a vector space.
- (a) Show that $S \subset X$ is convex iff for all $\lambda, \mu \ge 0$ we have $(\lambda + \mu)S = \lambda S + \mu S$.
- (b) Give a similar characterization of absolutely convex sets.

Given a subset S of a vector space X, the *convex hull* of S is defined to be the intersection of all convex sets containing S. The convex hull of S is denoted by conv(S). The *circled hull*, circ(S), an the *absolutely convex hull*, $\Gamma(S)$, are defined similarly.

- **1.9.** Let X be a vector space, and let $S \subset X$. Show that
- (1) $\operatorname{conv}(S) = \left\{ \sum_{i=1}^{n} \lambda_i x_i : x_i \in S, \ \lambda_i \geqslant 0, \ \sum_{i=1}^{n} \lambda_i = 1, \ n \in \mathbb{N} \right\};$
- (2) $\operatorname{circ}(S) = \{ \lambda x : x \in S, \ \lambda \in \mathbb{K}, \ |\lambda| \leq 1 \};$
- (3) $\Gamma(S) = \left\{ \sum_{i=1}^{n} \lambda_i x_i : x_i \in S, \ \lambda_i \in \mathbb{K}, \ \sum_{i=1}^{n} |\lambda_i| \leqslant 1, \ n \in \mathbb{N} \right\}.$
- **1.10.** Let X be a topological vector space, and let $S \subset X$. Show that
- (1) if S is convex, then the closure \overline{S} and the interior Int S are convex;
- (2) if S is circled, then \overline{S} is circled; if, moreover, $0 \in \text{Int } S$, then Int S is circled;
- (3) if S is open, then conv(S) and $\Gamma(S)$ are open; if, moreover, $0 \in S$, then circ(S) is open.
- **1.11.** Let p and q be seminorms on a vector space. Show that $p \leq q$ iff $U_q \subset U_p$, and that $p \prec q$ iff $U_q \prec U_p$.
- **1.12.** Show that any seminorm p on a vector space X equals the Minkowski functional of the open ball $U_p = \{x \in X : p(x) < 1\}$ and of the closed ball $\overline{U}_p = \{x \in X : p(x) \leq 1\}$.

- **1.13.** Let S and T be absolutely convex, absorbing subsets of a vector space, and let p_S , p_T denote their Minkowski functionals. Prove that $p_S = p_T \iff U_{p_S} \subset T \subset \overline{U}_{p_S} \iff U_{p_T} \subset S \subset \overline{U}_{p_T}$.
- **1.14.** Let X be a topological vector space, let $V \subset X$ be an absolutely convex neighborhood of 0, and let p_V denote the Minkowski functional of V. Show that $\operatorname{Int} V = \{x : p_V(x) < 1\}$ and $\overline{V} = \{x : p_V(x) \leq 1\}$. Deduce that $V \mapsto p_V$ is a 1-1-correspondence between the collection of all absolutely convex open neighborhoods of 0 and the collection of all continuous seminorms on X. Moreover, the inverse map is given by $p \mapsto U_p$.
- **1.15.** Let X be a vector space. A function $p: X \to [0, +\infty)$ is an F-seminorm¹ if
- 1) $p(x+y) \le p(x) + p(y)$ $(x, y \in X)$;
- 2) $p(\lambda x) \leqslant p(x)$ $(x \in X, |\lambda| \leqslant 1)$;
- 3) if (λ_n) is a sequence in \mathbb{K} and $\lambda_n \to 0$, then for every $x \in X$ we have $p(\lambda_n x) \to 0$.
- If, moreover, p(x) > 0 whenever $x \neq 0$, then p is an F-norm. Prove that, for every F-seminorm p on X, the topology on X generated by the semimetric $\rho(x,y) = p(x-y)$ makes X into a topological vector space.
- **1.16.** Let (X, μ) be a σ -finite measure space, and let $0 . We define <math>L^p(X, \mu)$ to be the space of $(\mu$ -equivalence classes of) measurable functions $f: X \to \mathbb{K}$ such that $|f|^p$ is integrable. Given $f \in L^p(X, \mu)$, let

$$|f|_p = \int_X |f(x)|^p d\mu(x).$$

- (a) Show that $|\cdot|_p$ is an F-norm on $L^p(X,\mu)$. Thus $L^p(X,\mu)$ is a metrizable topological vector space.
- (b) Show that the only continuous linear functional on $L^p[0,1]$ is identically zero. As a corollary, $L^p[0,1]$ is not locally convex.
- (c) Can $L^p(X,\mu)$ be locally convex and infinite-dimensional?
- **1.17.** Let (X, μ) be a finite measure space. We define $L^0(X, \mu)$ to be the space of $(\mu$ -equivalence classes of) all measurable functions $f: X \to \mathbb{K}$. Choose a bounded monotone function $\varphi: [0, +\infty) \to [0, +\infty)$ satisfying the following conditions:
- 1) $\varphi(s+t) \leqslant \varphi(s) + \varphi(t) \quad (s,t \geqslant 0);$
- 2) $\varphi(0) = 0$;
- 3) φ is a homeomorphism between suitable neighborhoods of 0.

For example, we can let $\varphi(t) = t/(1+t)$ or $\varphi(t) = \min\{t,1\}$. Given $f \in L^0(X,\mu)$, let

$$|f|_0 = \int_X \varphi(|f(x)|) \, d\mu(x).$$

- (a) Show that $|\cdot|_0$ is an F-norm on $L^0(X,\mu)$. Thus $L^0(X,\mu)$ is a metrizable topological vector space.
- (b) Show that a sequence in $L^0(X,\mu)$ converges iff it converges in measure.
- (c) Show that the only continuous linear functional on $L^0[0,1]$ is identically zero. As a corollary, $L^0[0,1]$ is not locally convex.
- (d) Can $L^0(X,\mu)$ be locally convex and infinite-dimensional?

 $^{^{1}}$ "F" is for "Fréchet".