Energy Limitations on Optical Data Transport and Switching

Rod Tucker *University of Melbourne*

Summary

- Top-down estimate of energy consumption of the Internet
 - Projections of current trends (BAU)
 - Switches and routers
 - Optical transport
- Bottom-up estimate
 - Based on theoretical and practical lower bounds
 - Transport energy
 - Switching energy
 - Network energy
- Putting the GreenTouch factor of 1000 into context

Top-Down Analysis

OLT: 50 nJ/b

DSL Modem: 500 nJ/b

Set-top Box: 1000 nJ/b

HD IPTV: 10,000 nJ/b

Network Energy Model

Tier 1 Network Core Network Metro/Edge Network **Access Network** Fiber **Broadband** Core Router **DSLAM** Network Gateways **Ethernet** DSL Switch Cabinet Fiber Edge Routers **OLT** FTTP Splitter Cabinet Cu **OLT**

DSLAM

ONU

Video Distribution Network

Efficiency Trends – Transport Systems

20% p.a. efficiency improvement in routers (Neilson, JSTQE, 2006)
13% p.a. efficiency improvement in routers (Tamm, BLTJ, 2010)
15% p.a. efficiency improvements in transport (Han, IEEE Comms. Mag. 2010)

Top-Down Analysis

Global Network Energy Consumption

Summary

- Top-down estimate of energy consumption of the Internet
 - Projections of current trends
 - Switches and routers
 - Optical transport
- Bottom-up estimate
 - Based on theoretical and practical lower bounds
 - Transport energy
 - Switching energy
 - Network energy
- Putting the GreenTouch factor of 1000 into context

Lower Limit on Optical Transport Energy

Total Amplifier Energy per Bit

$$E_{\mathit{AMP}} = \sum \frac{P_{\mathit{AMP}}}{B_{\mathit{r}}} \, \Box \, \frac{\mathit{SNR}_{\mathit{bit}} \, \mathit{m}^{2} e^{\alpha L_{\mathit{stage}}} \, \mathit{h} \, \mathit{v}}{\eta_{\mathit{AMP}}} \qquad \text{Amplifier}$$
 Efficiency

Total TX/RX Energy per Bit

$$E_{TX/RX} = \frac{P_{Encode} + P_{TX} + P_{RX} + P_{Decode}}{B_r}$$
 Dominates Bit Rate

R. S. Tucker, "Green optical communications - Part I: Energy limitations in transport," *JSTQE*, March/April 2011.

Optical Transmitter

Lower Limit on Transport Energy per Bit

Shannon Bound

Energy per Bit per 1000-km

Loss/Efficiencies and Energy Overheads

Key Conclusion:

Minimizing $E_{\it min}$ is not necessarily the best strategy for minimizing $E_{\it Total}$

Network Energy

Switching Energy

R. S. Tucker, "Green optical communications - Part II: Energy limitations in networks," *JSTQE*, March/April 2011.

Switch Energies per Bit

Technology			Energy per Bit			
			2010-era technology		Target	
			2 x 2 Switch	$10^3 \times 10^3$ Switch	2 x 2 Switch	10 ³ x 10 ³ Switch
O/O/O	Е-О	Lumped	20 fJ	-	20 fJ	-
		TW	1.8 pJ	-	1 pJ	20 pJ
	SOA Gate Array		8 pJ	1	4 pJ	75 pJ
O/E/O	Wavelength- routed		-	-	-	10 pJ
	CMOS		200 fJ (+ 70 pJ)	4 pJ (+70 pJ)	20 fJ (+ 6 pJ)	400 fJ (+ 6 pJ)

O/E Converters MUX/DEMUX

Energy Improvements

Packet Switching

Electronic Packet Switch - No buffers

Optical Packet Switch

Lower Bound on Energy in Packet Switching

Bit Rate per Wavelength or Waveband, B (Gb/s)

Conclusions

- Top-down and bottom-up estimates of energy differ by ~ x10⁴
- Theoretical limits on optical transmission are well defined
- Not so for networks
- Optical packet switching offers no clear advantage over electronic packet switching

