刚体转动惯量测量预习报告

郑晓旸

2024年5月10日

目录

1	实验	目的	2
2	实验	仪器	2
3	实验	原理	2
	3.1	转动定律法	2
	3.2	扭摆法	3
4	实验	· ·过程	3
	4.1	待测圆环参数测量	3
	4.2	转动定律法测量转动惯量	4
	4.3	扭摆法测量转动惯量	4
		4.3.1 测量扭力系数	4
		4.3.2 测量转动惯量	5
	4.4	系统摩擦力矩测量 (选做)	5
5	预习	思考题	5
	5.1	圆环转动惯量公式的推导	5
	5.2	消除摩擦力矩影响的方法	6

1 实验目的

- 通过实验加深对刚体运动定律的理解
- 学习两种测量刚体转动惯量的实验方法
- 练习用曲线拟合方法处理数据

2 实验仪器

- PASCO 转动及扭摆实验组件 (包含支架、转动传感器、力传感器、铝盘、测试圆环、挂钩、砝码、金属丝等)
- 550 通用接口
- Capstone 软件
- 其它: 水平尺, 螺旋测微计, 游标卡尺, 钢卷尺, 电子天平等

3 实验原理

3.1 转动定律法

如图 1所示,在转动惯量测量仪上,待测物体受到重力提供的外力矩 T 和摩擦力矩 T_{μ} 的作用,根据转动定律有:

$$T - T_{\mu} = (J + J_o + J_c)\beta \tag{1}$$

其中 J 为待测物体的转动惯量, J_c , J_o 分别为滑轮以及载物台等的转动惯量, β 为角加速度。外力矩大小为

$$T = m(g - r_0 \beta) r_0 \tag{2}$$

其中m为砝码的质量,g为重力加速度, r_0 为滑轮半径。

图 1: 转动惯量测量仪示意图

在一系列不同重物作用下测得角加速度 β_i , 绘制 T- β 图像。图像应为一条斜率为 I, 截距为 $-T_\mu$ 的直线。用最小二乘法拟合数据点,可得到总转动惯量 I 和摩擦力矩 T_μ 。

分别测量空载和负载两种情况下的总转动惯量 J_1 和 J_2 , 两者之差即为待测物体的转动惯量:

$$J = J_2 - J_1 \tag{3}$$

需要注意的是, 由于摩擦力矩可能随转速变化, 上述方法假设了 T_{μ} 为常数。为尽量减小误差, 应控制转速在较小的范围内变化。

3.2 扭摆法

将待测物体悬挂在扭丝上, 偏离平衡位置后释放, 在扭力矩 T 的作用下做扭摆运动。设转角为 θ , 扭丝的扭力系数为 k, 则根据胡克定律有:

$$T = -k\theta \tag{4}$$

由转动定律可得扭摆的运动方程为:

$$J\ddot{\theta} = -k\theta \tag{5}$$

其中 I 为待测物体与扭摆的总转动惯量。这是一个简谐振动方程, 特征角频率为

$$\omega = \sqrt{\frac{k}{I}} \tag{6}$$

实验中, 先测量扭力系数 k。在扭丝上施加一系列转角 θ_i , 测量相应的回复力矩 T_i , 绘制 T- θ 图像, 如图??所示。图像应为一条过原点的直线, 斜率即为 k。

然后测量扭摆周期T,由公式

$$\omega = \frac{2\pi}{T} \tag{7}$$

计算特征角频率,代入公式(6)即可求得总转动惯量:

$$J = \frac{kT^2}{4\pi^2} \tag{8}$$

分别测量空载和负载两种情况下的扭摆周期, 计算总转动惯量 J_1 和 J_2 , 两者之差即为待测物体的转动惯量:

$$J = J_2 - J_1 \tag{9}$$

需要注意的是,由于存在空气阻力等因素,扭摆并非理想的无阻尼简谐振动,实际测得的周期会略大于理论值。为尽量减小误差,应使扭摆的初始振幅较小,并尽快测量周期。

4 实验过程

4.1 待测圆环参数测量

- 1. 用游标卡尺测量圆环的外径 D, 重复测量 5 次, 每次将卡尺的位置略作变动, 记录数据如表 1所示。
- 2. 用同样的方法测量圆环的内径 d, 重复测量 5 次, 记录数据如表 1所示。
- 3. 用电子天平测量圆环的质量 m, 记录数据如表 1所示。
- 4. 计算外径和内径的平均值 \bar{D} 和 \bar{d} . 代入公式计算圆环的理论转动惯量 I_0 :

$$I_0 = \frac{1}{8}m(\bar{D}^2 + \bar{d}^2) \tag{10}$$

表 1.	圆环参数测量数据
~~ I.	

	·		12	<i>/// // // /</i>	1-	× √ √ ⊢	
测量次数	1	2	3	4	5	平均值	质量
外径 <i>D</i> /mm						\bar{D}	
内径 d/mm						$ar{d}$	m

4.2 转动定律法测量转动惯量

- 1. 将转动传感器连接到 Capstone 接口的通道 1, 选择测量角度 (或角速度), 线性刻度选择大滑轮, 采样率设为 200Hz。在采样选项中设置合适的开始和停止条件, 使只记录加速过程的曲线。
- 2. 设置图表,y 轴为角度 (或角速度),x 轴为时间。
- 3. 在空载情况下, 将砝码质量 m 依次设为 5g、10g、15g、20g、25g、30g 和 35g, 每次测量开始 前将转盘复位, 然后释放砝码, 记录角度-时间 (或角速度-时间) 曲线。
- 4. 对每条曲线进行二次多项式拟合 (如果测角度) 或一次多项式拟合 (如果测角速度), 得到角加速度 β_i 。
- 5. 由公式 (2) 计算各个砝码质量下的力矩 T_i , 数据记入表 2。
- 6. 绘制 T_{i} - β_{i} 图像, 进行线性拟合, 斜率即为空载情况下的总转动惯量 I_{1} 。
- 7. 将待测圆环装到转盘上, 重复步骤 3-6, 得到负载情况下的总转动惯量 I_2 。
- 8. 由公式 (3) 计算圆环的转动惯量 I。

表 2: 转动定律法测量数据 (空载)

m/g	5	10	15	20	25	30	35
$\beta_i/(\mathrm{rad/s^2})$							
$T_i/({ m N}{\cdot}{ m m})$							

4.3 扭摆法测量转动惯量

4.3.1 测量扭力系数

- 1. 将转动传感器和力传感器分别连接到 Capstone 接口的通道 1 和通道 2, 通用采样率设为 10Hz。 在采样选项中设置合适的延迟启动和自动停止条件。
- 2. 设置图表,y 轴为力,x 轴为角度。
- 3. 将细线缠绕在扭摆上,逐步增大拉力,测量 3 次力与角度的关系,记录数据如表 3所示。要求拟合直线的相关系数达到 0.9999 以上。
- 4. 计算 3 次测量的扭力系数 k_i 和平均值 \bar{k} 。

表 3: 扭力系数测量数据								
	θ_1/rad	θ_2/rad	θ_3/rad	θ_4/rad				
F_1/N								
$F_2/{ m N}$								
F_3/N								
$k_i/(N \cdot m/rad)$	k_1	k_2	k_3	\bar{k}				

4.3.2 测量转动惯量

- 1. 在空载情况下, 手动将扭摆偏离平衡位置一小角度 ($<5^{\circ}$) 并释放, 记录 θ -t 曲线, 测量周期 T, 重复测量 5 次, 计算平均周期 T₁。
- 2. 由公式 (8) 计算空载情况下的转动惯量 I_1 。
- 3. 将待测圆环装到扭摆上, 重复步骤 1-2, 得到负载情况下的平均周期 \bar{T}_2 和转动惯量 I_2 。
- 4. 由公式 (9) 计算圆环的转动惯量 I。

4.4 系统摩擦力矩测量 (选做)

- 1. 在转动定律法的实验装置上, 在空载情况下, 给转盘一个初始角速度, 记录角速度衰减到零的过程。
- 2. 对 ω -t 曲线进行指数拟合, 得到角速度与时间的关系:

$$\omega(t) = \omega_0 e^{-\frac{t}{\tau}} \tag{11}$$

其中 τ 为衰减时间常数。

3. 由转动定律得到系统的摩擦力矩为:

$$T_{\mu} = -I_1 \frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{I_1}{\tau}\omega \tag{12}$$

- 4. 取 ω 在 ω_0/e 处的值代入公式 (12), 计算摩擦力矩 T_{μ} 。
- 5. 将测得的 T_{μ} 与转动定律法中拟合得到的 T_{μ} 比较。

5 预习思考题

5.1 圆环转动惯量公式的推导

假设圆环的质量为 m, 内径为 d, 外径为 D。取圆环的微元 $\mathrm{d}m$, 其到转轴的距离为 r, 则其转动 惯量为

$$dI = r^2 dm (13)$$

假设圆环的密度均匀,则微元的质量与其所占的体积成正比,有

$$dm = \frac{m}{V}dV = \frac{m}{\pi(R^2 - r^2)} \cdot 2\pi r dr$$
(14)

其中 R = D/2 是圆环的外半径,r = d/2 是圆环的内半径。将公式 (14) 代入公式 (13) 并积分,得到

$$I = \int_{r}^{R} r^{2} dm = \int_{r}^{R} \frac{2mr^{3}}{R^{2} - r^{2}} dr$$

$$= \frac{m}{2} \left[(R^{2} + r^{2}) - \frac{(R^{2} - r^{2})^{2}}{R^{2} + r^{2}} \right]$$

$$= \frac{m}{2} \left(R^{2} + r^{2} - \frac{R^{4} + r^{4} - 2R^{2}r^{2}}{R^{2} + r^{2}} \right)$$

$$= \frac{m}{2} \cdot \frac{2R^{2}r^{2}}{R^{2} + r^{2}} = \frac{mR^{2}r^{2}}{R^{2} + r^{2}}$$
(15)

将 R = D/2, r = d/2 代入, 得到

$$I = \frac{1}{8}m(D^2 + d^2) \tag{16}$$

这就是圆环绕对称轴转动的转动惯量公式。

5.2 消除摩擦力矩影响的方法

在转动定律法和扭摆法测量转动惯量时,都需要考虑摩擦力矩 T_{μ} 的影响。 T_{μ} 会使测量结果偏大,因此需要想办法消除其影响。在转动定律法中,假设 T_{μ} 是常值,则有

$$T - T_{\mu} = I\beta \tag{17}$$

其中 T 为外力矩,I 为待测物体与转盘的总转动惯量, β 为角加速度。通过改变外力矩 T 的大小,测量一系列 T_i 和对应的 β_i (i=1,2,3...),然后作 T_i - β_i 图,如图??所示。图像应为一条斜率为 I,截距为 $-T_\mu$ 的直线。用最小二乘法拟合数据点,可以得到 I 和 T_μ 的值。由于 T_μ 被当作拟合直线的一个参数处理,其影响可以被消除。需要注意的是,上述方法假设 T_μ 为常值。如果 T_μ 与转速有关,则拟合结果会有一定误差。为了尽量减小误差,应控制转速在较小的范围内变化。在扭摆法中,由于扭摆做简谐振动,摩擦力矩主要影响振幅的衰减,对振动周期的影响很小。因此,在测量扭摆周期时,只要振幅足够小,就可以近似认为周期不受摩擦力矩的影响。此外,在计算转动惯量时,分别测量空载和负载两种情况下的扭摆周期,然后计算对应的转动惯量 I_1 和 I_2 ,由

$$I = I_2 - I_1 \tag{18}$$

得到待测物体的转动惯量。由于空载和负载两种情况下摩擦力矩的大小近似相等,因此在式 (17) 中相互抵消了。这也是一种消除摩擦力矩影响的方法。当然,为了进一步减小误差,应尽量使扭摆的振幅小,周期长,以减小空气阻力等因素的影响。