Première partie

Appendice

A Résultats élémentaires d'Algèbre Linéaire

Rappelons une série de résultats classiques d'Algèbre Linéaire pertinents à la Mécanique Quantique.

Définition A.1 (Produit Hermitien). Soit V un espace vectoriel sur \mathbb{C} . On y définit le produit hermitien, c'est à dire une application

$$egin{array}{cccc} V imes V &
ightarrow & \mathbb{C} \ (oldsymbol{x},oldsymbol{y}) &
ightarrow & oldsymbol{x} \cdot oldsymbol{y} \end{array}$$

tel que $\forall x,y,x',y' \in V$, et tout $\lambda \in \mathbb{C}$,

- 1. $y \cdot x = \bar{x} \cdot \bar{y}$
- 2. $(x+x')\cdot y = x\cdot y + x'\cdot y$, et $x\cdot (y+y') = x\cdot y + x\cdot y'$
- 3. $(\lambda x) \cdot y = \lambda (x \cdot y)$ et $x \cdot (\lambda y) = \bar{\lambda}(x \cdot y)$
- 4. $x \cdot x \in \mathbb{R}_{\geq 0} \forall x, etx \cdot x = 0$ si et seulement si x = 0.

Un espace hermitien est un espace vectoriel V sur \mathbb{C} muni d'un produit hermitien.

Proposition A.2. Soit V un espace Hermitien de dimension n. Si $E \doteq (e_1, ..., e_n)$ est un ensemble de vecteurs deux à deux orthogonales, alors E est une base de V.

Proposition A.3. Soit V un espace Hermitien. Alors il existe une base orthonormale V.

Nous pouvons utiliser l'algorithme de Gram-Schmidt pour ortogonaliser une base de V d'un espace vectoriel sur \mathbb{C} ou \mathbb{R} .

Définition A.4. Une matrice $a \in GL(V_{\mathbb{C}})$ est unitaire si $a^{-1} = \bar{a}^T$. L'ensemble des matrices unitaires de taille $n \times n$ est dénotée par U_n .

Définition A.5. Une matrice $a \in Mat(\mathbb{C})$ est Hermitienne si $\bar{a}^T = a$.

Remarque A.6. Dans le formalisme de Dirac, un opérateur \hat{A} est dit hermitien si et seulement si $\hat{A}^{\dagger} = \hat{A}$.

Proposition A.7. A est une isométrie si et seulement si a est unitaire (si $V_{\mathbb{C}}$).

Voici une série de propriétés classiques des isométries :

- 1. Les isométries conservent les distances (normes) et les angles.
- 2. Supposons que E est orthonormale. Alors A est une isométrie si et suelement si les vecteur qui forment les colonnes de a sont :
 - (a) deux à deux orthogonaux
 - (b) de norme 1.
- 3. Si λ est une valeur propre de A, alors $\|\lambda\| = 1$.
- 4. Si A est une isométrie, alors ||det(a)|| = 1.
- 5. Si E et F sont des bases orthonormales de V, alors il existe une unique isométrie A tel que $A(e_i) = f_i$.
- 6. Tous les éléments de O_3 sont d'un des trois types suivants :
 - (a) Rotations autour d'une droite passant par l'origine.
 - (b) Symétries par rapport à un plan passant par l'origine.
 - (c) Une composition d'isométries de type (I) et (II).

Lemme A.8. Toutes les valeurs propres d'une matrice Hermitienne sont réelles.

Théorème A.9. Soit $a \in Mat_{n \times n}(\mathbb{C})$ Hermitienne. Il existe une base orthonormale de V contenant que des vecteurs propres de a. En d'autres mots, il existe une matrice O, unitaire, tel que

$$O^{-1}aO = \bar{O}^TaO \tag{1.1}$$

Définition A.10. Soit \mathbb{H} un espace de Hilbert. \mathbb{H} est séparable si il possède une base dénombrable.

Remarque A.11. Soit u_i une base $\forall i \in \mathbb{N}$. Par Gram-Schmidt, nous pouvons prendre la base orthonormée $(u_i, u_j) = \delta_{ij}$.

Définition A.12 (Base de Hilbert). On dit que F est une base de Hilbert de H si et seulement si

- F est une famille orthonormale de H;
- la famille est complète, c'est à dire que

$$\forall x \in \mathcal{H}, \exists (\lambda_i)_{i \in I} \ tel \ que \ \sum_{i \in I} \lambda_i e_i = x.$$
 (1.2)

B Approximation BKW

En cours de réaction.

C Opérateur parité

En cours de rédaction.

D Changement de base dans le formalisme de Dirac

Nous allons ici tenter de changer de représentation d'un ket (ou d'un bra, ou encore d'un opérateur) en une autre. Concrètement, nous voulons trouver la relation de changement de base.

Supposons donc que nous souhaitons passer d'une base orthonormée $\{|u_i\rangle\}$ à une autre base orthonormée $\{|e_l\rangle\}$. On définit le changement de base comme la donnée de chaque composante du ket étudié dans l'ancienne et la nouvelle base. On définit alors

$$\hat{U}_{il} = \langle u_i | e_l \rangle \qquad \qquad \hat{U}^{\dagger} = \langle e_l | u_i \rangle \qquad (1.3)$$

où U est la matrice de changement de base. Dans la suite, nous utiliserons les deux relations relations de fermetures

$$\sum_{l} |e_l\rangle \langle e_l| = \hat{\mathcal{I}} \tag{1.4a}$$

$$\sum_{i} |u_{i}\rangle \langle u_{i}| = \hat{\mathcal{I}} \tag{1.4b}$$

D.1 Changement de base d'un ket et d'un bra

Le calcul est extrêmement simple. Nous insérons la relation de fermeture (1.4) idoine le braket $\langle e_l | \psi \rangle$:

$$\langle e_l | \psi \rangle = \langle e_l | \mathcal{I} | \psi \rangle = \sum_i \langle e_l | u_i \rangle \langle u_l | \psi \rangle = \sum_i \hat{S}^{\dagger} \langle u_l | \psi \rangle \tag{1.5}$$

Similairement, nous pouvons démontrer la relation de transformation inverse et la loi de transformation d'un bra.

Proposition D.1. Soit $|\psi\rangle$ un ket défini au sein d'un espace de Hilbert. En particulier, les relations de changement de base entre $\{|u_i\rangle\}$ et $\{|e_l\rangle\}$ pour $|\psi\rangle$ et $\langle\psi|$ seront

$$\langle e_l | \psi \rangle = \sum_i \hat{U}_{li}^{\dagger} \langle u_l | \psi \rangle \qquad \langle u_i | \psi \rangle = \sum_l \hat{U}_{il} \langle u_l | \psi \rangle \qquad (1.6)$$

D.2 Changement de base d'un opérateur

E Projecteurs

En cours de rédaction.