Gödel's Incompleteness Theorems

The way Gödel did it

Savyasachi Deval Sanidhya Kaushik Naman Mishra Mehul Shrivastava 16 March 2024

Formal Proof Systems

- A formal proof system provides a notion of well-formed formulas (WFFs), and a set of axioms along with rules of inference.
- A proof is a sequence of WFFs, each of which is either an axiom or follows from previous statements by a rule of inference.
- A sentence is a WFF with no free variables.
- A sentence is *provable* if there is a proof of it. For a sentence φ, we write

$$\vdash \phi$$

to denote that ϕ is provable. We say that ϕ is a *theorem*.

Theories and Theorems

ullet For a sentence ϕ , we write

$$\models \phi$$

to denote that ϕ is true.

Consistency and Completeness

• A formal proof system (taken with a theory) is *consistent* if every theorem is true.

$$\vdash \phi \implies \models \phi$$

 A formal proof system is complete if every true sentence is a theorem.

$$\models \phi \implies \vdash \phi$$

The Language of Arithmetic

The language of arithmetic consists of:

- the constants 0 and 1,
- ullet the binary operations + and \cdot ,
- the relation =,
- symbols for variables, and
- symbols from first-order logic.

First Incompleteness Theorem

Theorem (1931)There cannot exist a sound and complete proof system for arithmetic.

Efforts to prove that mathematics is consistent

There existed a significant number of people who thought that mathematics is consistent. That is there exists a set of axioms which can be used to prove every true statement.

Their main idea was to start with a set of axioms and keep on including the statements which are true but unprovable.

The Gigachad Big-Brain Metamove

Let ϕ be the statement "This statement is unprovable."

An Encoding of Symbols

 We can assign a unique positive integer to each symbol in the language. For example,

$ op \mapsto 1$	$\perp\mapsto 2$
$\wedge \mapsto 3$	$\lor\mapsto 4$
$\rightarrow \mapsto 5$	$\leftrightarrow \mapsto 6$
$\neg \mapsto 7$	$=\mapsto 8$
$\forall \; \mapsto 9$	$\exists \mapsto 10$
$0\mapsto 11$	$1\mapsto 12$
$+\mapsto 13$	$\cdot\mapsto 14$
$x \mapsto 15$	$y \mapsto 16$
$z\mapsto 17$	$\ldots \mapsto \ldots$

An Encoding of WFFs

- Let p_n denote the *n*-th prime number.
- \bullet We define the encoding of a WFF ϕ as

$$\phi = p_1^{\phi_1} \cdot p_2^{\phi_2} \cdot \ldots \cdot p_k^{\phi_k}$$

where $\phi_1, \phi_2, \dots, \phi_k$ are the symbols in ϕ .