Notes on Inequalities and Embedding

Kiyuob Jung

1 Introduction

In this note, we always denote $x = (x_1, x_2, \dots, x_n)$ to be a point in \mathbb{R}^n .

2 Definition

가나다라마바사

2.1 Definitions

Definition 2.1. Let p > 1 and define $q \in \mathbb{R}$ by

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Then p and q are called *conjugate exponents*.

Remark 2.2. A simple calculation shows the following:

(i)
$$pq = p + q$$
,

(ii)
$$1 = \frac{p+q}{pq}$$
,

(iii)
$$(p-1)(q-1) = 1$$
,

(iv)
$$q = \frac{p}{p-1}$$
.

3 Inequalities

4 Sobolev Embedding

In this section, we deal with embeddings of diverse Sobolev spaces into others. Given a Sobolev space, it automatically belongs to certain other space, depending on the relationship between the integrability p and the dimension n.¹ There are three cases:

$$p \in [1, n),$$

 $p = n,$
 $p \in (n, \infty].$

In particular, the second case p=n is called the *borderline case*. What are we trying to obtain from the Sobolev embedding theory? Broadly speaking, given a Sobolev space $W^{k,p}$, imbeddings of $W^{k,p}$ target two types of Banach spaces: either another Sobolev space $W^{j,q}$ or Hölder spaces $C^{j,\alpha}$ for some constants $j \leq k, q \geq p$, and $0 \leq \alpha \leq 1$.

¹The regularity of domains also affects the inclusion.

4.1 The case $1 \le p < n$

Definition 4.1. If $1 \le p < n$, the Sobolev conjugate p^* of p is defined by

$$p^* := \frac{np}{n-p}.$$

Remark 4.2. A simple calculation shows the following:

- (i) $p^* > p$,
- (ii) $\frac{1}{p^*} = \frac{1}{p} \frac{1}{n}$,
- (iii) $p^* \to \infty$ as $p \to n$.

Theorem 4.3. (Gagliardo-Nirenberg-Sobolev inequality) If $1 \le p < n$, then there exists a constant C, depending only on p and n, such that

$$||u||_{L^{p^*}(\mathbb{R}^n)} \le C||Du||_{L^p(\mathbb{R}^n)},$$

for all $u \in C_c^1(\mathbb{R}^n)$.

Theorem 4.4. (Estimates for $W^{1,p}$, $1 \le p < n$) Let U be a bounded, open subset of \mathbb{R}^n , and suppose ∂U is C^1 . Assume $1 \le p < n$ and $u \in W^{1,p}(U)$. Then $u \in L^{p^*}(U)$, with the estimate

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)},$$

the constant C depending only on p, n, and U.

4.2 The case p = n

4.3 The case n

For convenience as in the notation for the Sobolev conjugate, we write

$$\gamma := 1 - \frac{n}{p},$$

whenever n .

Theorem 4.5. (Morrey's inequality) If n , then there exists a constant C, depending only on p and n, such that

$$||u||_{C^{0,\gamma}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(\mathbb{R}^n)}$$

for all $u \in C^1(\mathbb{R}^n)$.

Theorem 4.6. (Estimates for $W^{1,p}$, n) Let <math>U be a bounded, open subset of \mathbb{R}^n , and suppose ∂U is C^1 . Assume $n and <math>u \in W^{1,p}(U)$. Then u has a version $u^* \in C^{0,\gamma}(\bar{U})$ with with the estimate

$$||u^*||_{C^{0,\gamma}(\bar{U})} \le C||u||_{W^{1,p}(U)},$$

the constant C depending only on p, n and U.

4.4 The case $p = \infty$

Theorem 4.7. (Characterization of $W^{1,\infty}$) Let U be open and bounded, with ∂U of class C^1 . Then $u: U \to \mathbb{R}$ is Lipschitz continuous if and only if $u \in W^{1,\infty}(U)$

2

4.5 The general case

 $\Omega \subset \mathbb{R}^n$ to be open and

Theorem 4.8 (Hypothesis). . The following are equivalent:

- (i) text.
- (ii) text.
- (iii) text.

Lemma 4.9 (Hypothesis). . The following hold:

- (a) text
- (b) text
- (c) text

$$= \begin{cases} , & \text{if} \\ , & \text{if} \\ , & \text{if} \end{cases}$$

then

- 1. the direct scattery problem is to determine u^s from u^i ;
- 2. the inverse scattery problem is to determine the nature of inhomogeneity to reconstruct the differential equation and/or its domain from a knowledge of the asymptotic behavior u^s .