1. For each statement below, check "True" if the statement is *always* true and "False" otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −½ point; checking "I don't know" is worth +¼ point; and flipping a coin is (on average) worth +¼ point. You do *not* need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

If 2 + 2 = 5, then zero is odd.

The hypothesis is false, so the implication is true.

Language L is regular if and only if there is a DFA that accepts every string in L.

L is regular iff there is a DFA that accepts every string in *L* and rejects every string not in *L*.

Two languages L and L' are regular if and only if $L \cup L'$ is regular.

Let $L = \{0^n 1^n \mid n \ge 0\}$ and $L' = (0 + 1)^*$.

For every language L, if L^* is empty, then L is empty.

 L^* always contains the empty string ε , so the hypothesis is false, which means the implication is true. It is also true that if L^* is empty, then L is an elephant.

Every regular language is recognized by a DFA with exactly one accepting state.

Consider the language $\varepsilon + \mathbf{0}$.

If *L* has a fooling set of size 374, then *L* is regular.

Every non-regular language has an infinite fooling set, and every subset of a fooling set is a fooling set.

The language $\{0^{374n} \mid n \ge 374\}$ is regular.

This is $(0^{374})^{374}(0^{374})^*$

The language $\{0^{37n}1^{4n} \mid n \ge 374\}$ is regular.

Intuitively, any algorithm to detect strings in this language would need to count the number of 0s. More directly, $(0^{37})^*$ is a fooling set for this language.

The language $\{0^{3n}1^{74n} \mid n \leq 374\}$ is regular.

This language is finite.

Every language is either regular or context-free.

Every regular language is context-free, and most languages are not context-free.

Rubric: Max 10 points = +1 for each correct answer $-\frac{1}{2}$ for each incorrect answer $+\frac{1}{4}$ for each IDK. Round negative scores up to 0.

2. For any string $w \in \{0,1\}^*$, let slash(w) be the string in $\{0,1,/\}^*$ obtained from w by inserting a new symbol / between any two consecutive appearances of the same symbol. For example:

$$slash(\varepsilon) = \varepsilon$$

 $slash(10101) = 10101$
 $slash(001010111) = 0/010101/1/1$

For any language $L \subseteq \{0, 1\}^*$, let $slash(L) = \{slash(w) \mid w \in L\}$.

(a) Draw or describe a DFA that accepts the language $slash(\{0,1\}^*)$.

Rubric: 2½ points, standard DFA rubric (scaled). These are not the only correct solutions. The state names are not necessary for credit.

(b) Give a regular expression for the language $slash(\{0,1\}^*)$.

Solution:
$$(0(/0)^* + \varepsilon)(1(/1)^*0(/0)^*)^*(1(/1)^* + \varepsilon)$$

Rubric: 2½ points, standard regular expression rubric (scaled). This is not the only correct solution.

(c) **Prove** that for any regular language L, the language slash(L) is also regular.

Solution (direct): Given a DFA $M = (Q, s, A, \delta)$ for L, we construct an NFA $N = (Q, s, A, \delta)$ for slash(L) as follows. The second component of each state indicates the last one or two symbols read.

$$Q' = Q \times \{0, 0/, 1, 1/\} \cup \{s'\}$$

$$s' \text{ is a new explicit state}$$

$$A' = Q \times \{0, 1\} \cup \{s'\}$$

$$\delta'(s', \varepsilon) = \{(s, 0/), (s, 1/)\}$$

$$\delta'((q, 0), 1) = \{(\delta(q, 1), 1)\}$$

$$\delta'((q, 1), 0) = \{(\delta(q, 0), 0)\}$$

$$\delta'((q, 1), 0) = \{(q, 1/)\}$$

$$\delta'((q, 1), 0) = \{(q, 1/)\}$$

$$\delta'((q, 1), 0) = \{(\delta(q, 1), 1)\}$$

(All unspecified transitions go to the empty set \emptyset .)

Solution (almost-product): Let $M_1 = (Q_1, s_1, A_1, \delta_1)$ be an arbitrary DFA (over the alphabet $\{0, 1, /\}$) for the language $slash(\{0+1\}^*)$, and let $M_2 = (Q_2, s_2, A_2, \delta_2)$ be an arbitrary DFA (over the alphabet $\{0, 1\}$) for L. We construct a **DFA** $M = (Q, s, A, \delta)$ (over the alphabet $\{0, 1, /\}$) for slash(L) as follows:

$$Q = Q_1 \times Q_2$$

$$s = (s_1, s_2)$$

$$A = A_1 \times A_2$$

$$\delta((p, q), a) = \begin{cases} (\delta_1(p, a), q) & \text{if } a = /\\ (\delta_1(p, a), \delta_2(q, a)) & \text{otherwise} \end{cases}$$

Rubric: 5 points, standard language transformation rubric (scaled). These are not the only correct solutions.

- 3. Let *L* be the language $\{0^a 1^b 0^c \mid 2a = b + c\}$.
 - (a) *Prove* that *L* is not a regular language.

Solution: Let $F = 0^*$.

Let x and y be arbitrary distinct strings in F.

Then $x = 0^i$ and $y = 0^j$ for some integers $i \neq j$.

Let $z = 1^i 0^i$.

Then $xz = 0^i 1^i 0^i \in L$ because 2i = i + i.

But $yz = 0^j 1^i 0^i \notin L$ because $2j \neq i + i$.

We conclude that F is an infinite fooling set for L.

Rubric: 5 points, standard fooling set rubric (scaled). This is not the only correct solution.

(b) Describe a context-free grammar for L.

Solution:

$$S \rightarrow 0S00 \mid 0A10 \mid A$$

language specifications for the non-terminals are not necessary for credit.

$$A \rightarrow 0A11 \mid \varepsilon$$

$$\left\{ \mathbf{0}^{a}\mathbf{1}^{b}\mathbf{0}^{c} \mid 2a = b + c \right\}$$
$$\left\{ \mathbf{0}^{a}\mathbf{1}^{b} \mid 2a = b \right\}$$

Rubric: 5 points, standard CFG rubric (scaled). This is not the only correct solution. The

- 4. For each of the following languages L, give a regular expression that represents L and draw or describe a DFA that recognizes L.
 - (a) All strings in $\{0,1\}^*$ that do not contain either 100 or 011 as a substring

Rubric: 5 points = $2\frac{1}{2}$ for regular expression (standard rubric, scaled) + $2\frac{1}{2}$ for DFA (standard rubric, scaled). These are not the only correct solutions.

(b) All strings in $\{0,1,2\}^*$ that do not contain either 01 or 12 or 20 as a substring

Rubric: 5 points = $2\frac{1}{2}$ for regular expression (standard rubric, scaled) + $2\frac{1}{2}$ for DFA (standard rubric, scaled). These are not the only correct solutions.

- 5. For any string $w \in \{0,1\}^*$, let stupefy(w) denote the string obtained from w by deleting the first 1 (if any) and replacing each remaining 1 with a 0. Let L be an arbitrary regular language.
 - (a) **Prove** that the language $\{stupefy(w) \mid w \in L\}$ is regular.

Solution: Let L' denote the language $\{stupefy(w) \mid w \in L\}$.

Let $M = (Q, s, A, \delta)$ be a DFA for L. We construct an NFA $M' = (Q', s', A', \delta')$ for L' as follows. Intuitively, we need to nondeterministically guess (1) where the first 1 (if any) was deleted, and (2) which later 0s (if any) were originally 1s.

$$Q' = Q \times \{before, after\}$$

$$s' = (s, before)$$

$$A' = A \times \{before, after\}$$

$$\delta'((q, before), \varepsilon) = \{(\delta(q, 1), after)\}$$

$$\delta'((q, after), \varepsilon) = \emptyset$$

$$\delta'((q, before), \emptyset) = \{(\delta(q, \emptyset), before)\}$$

$$\delta'((q, after), \emptyset) = \{(\delta(q, \emptyset), after), (\delta(q, 1), after)\}$$

$$\delta'((q, before), 1) = \emptyset$$

$$\delta'((q, after), 1) = \emptyset$$

Alternatively, we can assume that the input alphabet for M' is just $\{0\}$.

Rubric: 5 points: standard transformation rubric (scaled). This is not the only correct solution. No penalty for implicitly assuming the alphabet of M' is just $\{\emptyset\}$.

(b) **Prove** that the language $\{w \in \{0,1\}^* \mid stupefy(w) \in L\}$ is regular.

Solution: Let L' denote the language $\{w \in \{0,1\}^* \mid stupefy(w) \in L\}$. Given any DFA $M = (Q, s, A, \delta)$ for L, we construct a **DFA** $M' = (Q', s', A', \delta')$ for L' as follows. Intuitively, we need to remember whether we've deleted the first 1.

$$Q' = Q \times \{before, after\}$$

$$s' = (s, before)$$

$$A' = A \times \{before, after\}$$

$$\delta'((q, before), \emptyset) = (\delta(q, \emptyset), before)$$

$$\delta'((q, after), \emptyset) = (\delta(q, \emptyset), after)$$

$$\delta'((q, before), 1) = (q, after)$$

$$\delta'((q, after), 1) = (\delta(q, \emptyset), after)$$

Rubric: 5 points: standard transformation rubric (scaled). This is not the only correct solution.