Prevalence_rate

December 6, 2020

[12]: from IPython.display import Image Image("../Images/Logo.jpg")

[12]:

#
Graduate Project ENEL 698
Github Link

[13]: Image("../Images/Covid-19.png")

[13]:

0.1 This Notebook constitues of analysis of Infection prevalence rate and Infection fatality rate of COVID-19 Canada Specific data.

```
[1]: import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

1 Data Loading

• Data Source (https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavir

```
[3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4107 entries, 0 to 4106
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	pruid	4107 non-null	 int64
1	prname	4107 non-null	
2	prnameFR	4107 non-null	J
3	date	4107 non-null	object
4	numconf	4107 non-null	ū
5	numprob	4107 non-null	int64
6	numdeaths	3988 non-null	float64
7	numtotal	4107 non-null	int64
8	numtested	4050 non-null	float64
9	numrecover	3583 non-null	float64
10	percentrecover	3379 non-null	float64
11	ratetested	3768 non-null	float64
12	numtoday	4107 non-null	int64
13	percentoday	4107 non-null	float64
14	ratetotal	3837 non-null	float64
15	ratedeaths	3837 non-null	float64
16	${\tt numdeathstoday}$	3988 non-null	float64
17	percentdeath	3710 non-null	float64
18	${\tt numtestedtoday}$	4050 non-null	float64
19	${\tt numrecoveredtoday}$	3583 non-null	float64
20	percentactive	3710 non-null	float64
21	numactive	3710 non-null	float64
22	rateactive	3837 non-null	float64

```
23
     numtotal_last14
                           3855 non-null
                                            float64
                                            float64
 24
     ratetotal_last14
                           3598 non-null
 25
     numdeaths_last14
                           3855 non-null
                                            float64
 26
     ratedeaths_last14
                           3598 non-null
                                            float64
     numtotal last7
                                            float64
 27
                           3855 non-null
 28
     ratetotal_last7
                           3598 non-null
                                            float64
 29
     numdeaths last7
                           3855 non-null
                                            float64
 30
     ratedeaths_last7
                           3598 non-null
                                            float64
     avgtotal_last7
                           3855 non-null
                                            float64
 31
 32
     avgincidence_last7
                           3598 non-null
                                            float64
     avgdeaths_last7
 33
                           3855 non-null
                                            float64
     avgratedeaths_last7
                           3598 non-null
                                            float64
dtypes: float64(27), int64(5), object(3)
```

memory usage: 1.1+ MB

Visualizing Null values in the dataset

[4]: sns.heatmap(df.isnull())

[4]: <matplotlib.axes._subplots.AxesSubplot at 0x21435154c08>


```
[5]: #### Getting the canada specific data(not the provincial data)

df = df[df['prname']=='Canada']
#df.head()
```

```
[6]: df['date'] = pd.to_datetime(df['date'])
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 286 entries, 2 to 4106
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	pruid	286 non-null	int64
1	prname	286 non-null	object
2	prnameFR	286 non-null	object
3	date	286 non-null	datetime64[ns]
4	numconf	286 non-null	int64
5	numprob	286 non-null	int64
6	numdeaths	286 non-null	float64
7	numtotal	286 non-null	int64
8	numtested	270 non-null	float64
9	numrecover	242 non-null	float64
10	percentrecover	242 non-null	float64
11	ratetested	270 non-null	float64
12	numtoday	286 non-null	int64
13	percentoday	286 non-null	float64
14	ratetotal	286 non-null	float64
15	ratedeaths	286 non-null	float64
16	${\tt numdeathstoday}$	286 non-null	float64
17	percentdeath	286 non-null	float64
18	${\tt numtestedtoday}$	270 non-null	float64
19	${\tt numrecoveredtoday}$	242 non-null	float64
20	percentactive	286 non-null	float64
21	numactive	286 non-null	float64
22	rateactive	286 non-null	float64
23	${\tt numtotal_last14}$	257 non-null	float64
24	ratetotal_last14	257 non-null	float64
25	numdeaths_last14	257 non-null	float64
26	ratedeaths_last14	257 non-null	float64
27	numtotal_last7	257 non-null	float64
28	ratetotal_last7	257 non-null	float64
29	numdeaths_last7	257 non-null	float64
30	ratedeaths_last7	257 non-null	float64
31	avgtotal_last7	257 non-null	float64
32	avgincidence_last7	257 non-null	float64

```
33 avgdeaths_last7 257 non-null float64
34 avgratedeaths_last7 257 non-null float64
dtypes: datetime64[ns](1), float64(27), int64(5), object(2)
memory usage: 80.4+ KB
```

• So our data is nicely formatted and we have converted the date column to datetime formating now we will calculate the infection prevalence rate, and fatality rate

2 Prevalence

source (https://www.cdc.gov/csels/dsepd/ss1978/lesson3/section2.html) ###
Definition of prevalence

Prevalence, sometimes referred to as prevalence rate, is the proportion of persons in a population who have a particular disease or attitude at a specified point in time or over a specified period of time.

- Point Prevalence refers to the prevalence measured at a particular point in time. It is the proportion of persons with a particular disease or attribute on a particular disease or attribute on a particular date.
- Period Prevalence refers to prevalence measured over an interval of time. It is the proportion of persons with a particular disease or attribute at any time during the interval.

Method of Calculating prevalence of disease (All new and pre-existing cases during a given time period/Population during the same time period)*100

3 Infection Prevalence rate

• The rate is calculated on number of tested people only.

```
[10]: plt.figure(figsize=(20,15))
ax = sns.lineplot(x=df['date'],y=(df['numconf']*100/(df['numtested'])),

data=df, label='Infection Prevalence rate')
ax.axvline(pd.to_datetime('2020-03-16'),color='r', linestyle='--', lw=2, label

→= 'Lockdown Announced')
plt.title('Infection Prevalence rate in Canada')
```

[10]: Text(0.5, 1.0, 'Infection Prevalence rate in Canada')

• From this graph we can see a high prevalance rate of 6.5% in the month of april, which dropped to around 2% by october.

4 Infection fatality prevalence rate

• The rate is calculated on number of tested people only.

```
[8]: plt.figure(figsize=(20,15))
ax = sns.lineplot(x=df['date'],y=(df['numdeaths']*100/df['numtested']),

data=df, label='Fatality Prevalence rate')
ax.axvline(pd.to_datetime('2020-03-16'),color='r', linestyle='--', lw=2, label

→= 'Lockdown Announced')
plt.title('Fatality Prevalence rate in Canada')
```

[8]: Text(0.5, 1.0, 'Fatality Prevalence rate in Canada')

• From this graph we can see that fatality prevalence rate also dropped to around 0.1% from 0.4%.