Práctica 3: Autómatas finitos

Lothar Soto Palma DNI:49079173W

November 2014

Ejercicio 1:

Obtener un AFD capaz de aceptar las cadenas $u \in \{0,1\}^*$, que contengan simultáneamente las subcadenas 000 y 111.

En primer lugar vamos del estado q_0 a q_1,q_2 con un 0 o con un 1, ahora si se introduce un valor que rompa la cadena 000 o 111 se vuelve al inicio de la cadena para posteriormente seguir con los estados q_5,q_6 que continuan con la cadena opuesta a la leida con la obligación de tener que leerse completa puesto que si es un valor distinto volvemos al principio de la siguiente subcadena.

Ejercicio 2:

Obtener un AFD equivalente al siguiente AFND:

Solución:

- Comenzamos por q_1 con un 0 se dirige a si mismo y con un 1 genera el estado q_1, q_2, q_3 puesto que q_2 admite una palabra vacia que lleva a q_3 .
- q_1, q_2, q_3 con un 0 genera el estado, final puesto que contiene a q_4, q_1, q_3, q_4 debido a que q_3 va a q_4 con un 0 o un 1, y con un 1 genera un estado con q_1, q_2, q_3, q_4 también final.
- q_1, q_3, q_4 con un 0 genera el estado q_1, q_4 ya que el estado q_3 se pierde, y con un 1 vuelve a q_1, q_2, q_3, q_4 .
- q_1, q_2, q_3, q_4 con un 1 vuelve a él mismo y con un 0 regresa a q_1, q_3, q_4 .
- \bullet Por último el estado final q_1,q_4 con un 0 va a él mismo y con un 1 vuelve al estado $q_1,q_2,q_3,q_4.$

Ejercicio 3:

Construir un AFND a partir de cada una de las siguientes expresiones regulares:

 $(aa)^*b^*$

 $a(b+a)^*b$

b) Transformar los AFND's obtenidos en el apartado anterior a AFD's.

$$(aa)*b^*$$

 $a(b+a)^*b$

