Espace Étalé of a Presheaf

Sahil Karawade

<u>Remark:</u> This is actually given as a exercises question in Hartshorne.

Let X be the topological space and \mathcal{F} be the presheaf on X.

Define topological space $Sp\acute{e}(\mathcal{F})$, called espace étalé of \mathcal{F} as follows:

As a set $Sp\acute{e}(\mathcal{F}) = \bigcup_{p \in X} \mathcal{F}_p$ and define projection map $\pi : Sp\acute{e}(\mathcal{F}) \longrightarrow X$ given by $s_p \mapsto p$. For each open set $U \subseteq X$ and each sectiom $S \in \mathcal{F}(U)$ we obtain $\bar{s} : U \longrightarrow Sp\acute{e}(\mathcal{F})$ given by $p \mapsto s_p = [U, s] \in \mathcal{F}_p$. Then we have $\pi \circ \bar{s} = id_U$. We make $Sp\acute{e}(\mathcal{F})$ into topological space by giving it the strongest topology such that $\bar{s} : U \longrightarrow Sp\acute{e}(\mathcal{F})$ for all U, and all $s \in \mathcal{F}(U)$ are continuous.

Denote $\mathcal{O}(X)$ to be the set of all open subsets of X then $\bar{s}(U)$ form the basic open subset of $Sp\acute{e}(\mathcal{F})$ for $U\in\mathcal{O}(X)$: fix $x\in X$ and $s_x\in Sp\acute{e}(\mathcal{F})$ then $s_x\in\mathcal{F}$ so there exists $U\subseteq X$ such that $x\in U$ and $s\in\mathcal{F}(U)\Longrightarrow s_x\in\bar{s}$. Therefore $\{\bar{s}(U)\}_{U\in\mathcal{O}(X)}$ cover $Sp\acute{e}(\mathcal{F})$. Now, take $u_x\in\bar{s}(U)\cap\bar{t}(V)$ which will imply that $u_x=s_x$ and $u_x=t_x$ and hence there will exist $W\subset U\cap V$ with $x\in W$ and $s|_W=u|_W=t|_W\in\mathcal{F}(W)$, So we have the following maps $\bar{s}|_W:W\to Sp\acute{e}(\mathcal{F})$ and similarly maps $\bar{u}|_W$ and $\bar{t}|_W$. From above we have $s|_W(W)=u|_W(W)=t|_W(W)$. For $x\in W$ and $u|_W\in\mathcal{F}(W)$, $(u|_W)_x\in \overline{u|_W}(W)$. Therefore $u_x=(u|_W)_x\in\overline{u|_W}(W)=t|_W(W)=s|_W(W)\subseteq\bar{s}(U)$ and similarly

 $\begin{array}{l} u_x = \underbrace{(u|_W)_x \in \overline{u|_W}(W) = \overline{s|_W}(W) = \overline{t|_W}(W) \subset \overline{t}(v).} \text{Hence} \\ u_x \in \overline{u|_W}(W) \subseteq \overline{s}(U) \bigcap \overline{t}(V). \text{ Also, } \overline{s} : U \longrightarrow Sp\acute{e}(\mathcal{F}) \text{ is continuous since for} \\ \overline{t}(V) \text{ a basic open subset of } Sp\acute{e}(\mathcal{F}) \text{ we have } \overline{s}^{-1}(\overline{t}(V)) = \{p \in U | \overline{s}(p) \in \overline{t}(V)\} = \{p \in U \bigcap V | s_p = t_p\} \text{ which is open: let } x \in \overline{s}^{-1}(\overline{t}(V)) \text{ then } s_p = t_p \text{ and by definition there exists } W \subseteq U \bigcap V \text{ with } x \in W \text{ and } s|_W = t|_W. \text{ Therefore } W \subseteq \overline{s}^{-1}(\overline{t}(V)). \text{Inclusion,} i, \text{ of } \overline{s}(U) \text{ in } Sp\acute{e}(\mathcal{F}) \text{ is continuous and } \pi \text{ is continuous} \\ \text{so } \pi \circ i \text{ is continuous.} \end{array}$

Definition 1 (Local homeomorphism) $f: X \longrightarrow Y$ is continuous then for all $x \in X$ there exists open set U containing x such that f(U) is open in Y and $f|_{U}: U \longrightarrow f(U)$ is homeomorphism.

Now we show that $\pi: Sp\acute{e}(\mathcal{F}) \longrightarrow X$ is local homeomorphism. Let $s_p \in Sp\acute{e}(\mathcal{F})$ then there exists $U \in \mathcal{O}(X)$ and $s \in \mathcal{F}(U)$. By definition $s_p = [U, s]$ with $p \in U$ and $s \in \mathcal{F}(U)$ and $\pi(\bar{s}(U)) = U$ is open.

To show: $\pi|_{\bar{s}(U)}: \bar{s}(U) \longrightarrow \pi(\bar{s}(U))$ is homeomorphism.

 $\pi|_{\bar{s}(U)}: \bar{s}(U) \longrightarrow U$ is continuous and $\bar{s}: U \longrightarrow \bar{s}(U)$ is continuous. Therefore $\pi_{\bar{s}(U)}$ has continuous inverse given by \bar{s} . Hence π is local homeomorphism and \bar{s} is a section of $Sp\acute{e}(\mathcal{F})$.

Now, $\mathcal{F}^+(U) = \{\bar{s}: U \longrightarrow Sp\acute{e}(\mathcal{F}) | \bar{s}(x) = s_x \text{ for all } s \in \mathcal{F}(U) \}$. For open subset U define $\varphi(U): \mathcal{F}(U) \longrightarrow \mathcal{F}^+(U)$ by $s \mapsto \bar{s}$. Consider the following construction,let \mathcal{F} and \mathcal{G} be presheaves on $X.\psi: \mathcal{F} \longrightarrow \mathcal{G}$ be morphism of presheaves. If $\sigma \in \mathcal{F}^+(U)$ and x is point in U then $\sigma(x) \in \mathcal{F}_x$, that is $\sigma(x) = [V, s]$ for $s \in \mathcal{V}$. Define $\sigma'(x) = (\psi_V(s))_x$ then $\sigma': U \longrightarrow Sp\acute{e}(\mathcal{G})$ is well defined and continuos such that $\pi \circ \sigma' = id_U$. Define $\psi_U^+(\sigma) = \sigma'$. This gives $\psi_U^+: \mathcal{F}^+(U) \longrightarrow \mathcal{G}^+(U)$ morphism of sheaves and ψ is unique since sheafification does not alter stalks. If \mathcal{G} is a sheaf then we get that \mathcal{F}^+ is the sheafification of \mathcal{F} .