Berechnungen und Logik Hausaufgabenserie 8

Henri Heyden, Nike Pulow stu240825, stu239549

$\mathbf{A1}$

Vor.: $L := \{ \langle M \rangle \in \{0,1\}^* | \forall w : w \in L(M) \Leftrightarrow w = w^R \}$

Beh.: L ist unentscheidbar.

Bew.: Sei $f: \{0,1\}^* \to \{0,1\}^*, \langle M \rangle \mapsto \langle M \circ l \rangle$, wobei $l \in L$ und \circ so, dass erst M berechnet wird und dann l berechnet wird.

 $M \circ l \in L$ gilt also genau dann, wenn M und l in einem akzeptierenden Zustand enden.

Dann gilt: $w \in \text{HALT}_{\text{TM}}^{\epsilon} \Rightarrow f(w) \in L \text{ und } w \notin \text{HALT}_{\text{TM}}^{\epsilon} \Rightarrow f(w) \notin L^{1}$

Somit sind beide Richtungen gezeigt damit f Reduktionsfunktion für die Reduktion $\text{HALT}_{\text{TM}}^{\epsilon} \leq L$ ist.

Nach Satz "Eigenschaften der Reduktion" ist somit L nicht entscheidbar. \square

A3

a)

Es gilt: $\overline{\text{NONSTOP}_{\text{TM}}^{\epsilon}} = \text{HALT}_{\text{TM}}^{\epsilon}$. Wir zeigen also, dass $\text{HALT}_{\text{TM}}^{\epsilon}$ erkennbar ist.

Folgende Turingmaschine erkennt HALT $_{\mathrm{TM}}^{\epsilon}$:

$$M: \{0,1\}^* \to \mathbb{B}, \langle w \rangle \mapsto \begin{cases} \text{wahr h\"alt } w? \\ \text{falsch sonst} \end{cases}$$

Diese TM erkennt dann also alle haltenden Turingmaschinen, hält sie nicht interessiert uns das nicht, da wir nur zeigen wollten, dass $NONSTOP_{TM}^{\epsilon}$ coerkennbar ist.

 $^{^1{\}rm Wir}$ haben hier die Äquivalenz aufgeteilt und die Zweite, also die "Rückrichtung" mittels Kontraposition gezeigt.

b)

Definiere die TM H so, dass H für jede Eingabe hält, außer der leeren Eingabe, also ϵ . Sei $f: \{0,1\}^* \to \{0,1\}^*, \langle w \rangle \mapsto \langle w \circ H \rangle$ so, dass $w \circ H$ erst w simuliert und dann H simuliert für die gleiche Eingabe.

Dann gilt folgendes:

Ist $\langle w \rangle \in \text{NONSTOP}_{\text{TM}}^{\epsilon}$, dann hält $w \circ H$, also f(w) "decodiert" für keine Eingabe, also es gilt $f(w) = \langle w \circ H \rangle \in \text{NONSTOP}_{\text{TM}}$.

Ist $\langle w \rangle \notin \text{NONSTOP}_{\text{TM}}^{\epsilon}$, dann existiert ein Eingabewort, sodass w hält und damit dann auch $w \circ H$, also gilt dann $f(w) = \langle w \circ H \rangle \notin \text{NONSTOP}_{\text{TM}}$. Somit eignet sich f als Reduktionsfunktion für die zu zeigende Reduktion $\text{NONSTOP}_{\text{TM}}^{\epsilon} \leq \text{NONSTOP}_{\text{TM}}$.

A4

Es gilt $\varphi_1, \varphi_3 \notin F_{AL}$ und $\varphi_2, \varphi_4 \in F_{AL}$. Eine für φ_2 gültige Belegung β_1 ist $[\![\varphi_2]\!]_{\beta_1} = 1$. Eine für φ_4 gültige Belegung β_2 ist $[\![\varphi_4]\!]_{\beta_2} = 0$.

A5

a)

$$\begin{split} \llbracket \varphi_1 \rrbracket_\beta &= (\llbracket \neg X_0 \rrbracket_\beta \wedge \llbracket Y_0 \rrbracket_\beta) \vee ((\llbracket X_0 \rrbracket_\beta \leftrightarrow \llbracket Y_0 \rrbracket_\beta) \wedge \varphi_0) & \text{Definition Semantik} \\ &= (\neg 0 \wedge 0) \vee ((0 \leftrightarrow 0) \wedge \top) & \beta, \varphi_0 &= \top, \text{Basiselement} \\ &= (1 \wedge 0) \vee (1 \wedge \top) & \text{Auswertung Junktoren} \\ &= 0 \vee \top & \text{Auswertung } \vee \\ &= \top & \\ \llbracket \varphi_2 \rrbracket_\beta &= (\llbracket \neg X_1 \rrbracket_\beta \wedge \llbracket Y_1 \rrbracket_\beta) \vee ((\llbracket X_1 \rrbracket_\beta \leftrightarrow \llbracket Y_1 \rrbracket_\beta) \wedge \varphi_1) & \text{Definition Semantik} \\ &= (\neg 0 \wedge 1) \vee ((0 \leftrightarrow 1) \wedge \top) & \text{Auswertung } \neg, \leftrightarrow, \varphi_1 &= \top \end{split}$$

$$= (1 \land 1) \lor (0 \land \top) \qquad \text{Auswertung } \land$$

$$= 1 \lor 0 \qquad \text{Auswertung } \lor$$

$$= 1 = \top$$

$$\llbracket \varphi_3 \rrbracket_\beta = (\llbracket \neg X_2 \rrbracket_\beta) \land \llbracket Y_2 \rrbracket_\beta \lor ((\llbracket X_2 \rrbracket_\beta \leftrightarrow \llbracket Y_2 \rrbracket_\beta) \land \varphi_2) \qquad \text{Definition Semantik}$$

$$= (\neg 1 \land 0) \lor ((1 \leftrightarrow 0) \land \top) \qquad \text{Auswertung } \neg, \leftrightarrow, \varphi_2 = \top$$

$$= (0 \land 0) \lor (0 \land \top) \qquad \text{Auswertung } \land$$

$$= 0 \lor 0 \qquad \text{Auswertung } \lor$$

$$= 0 = \bot = \llbracket \varphi_3 \rrbracket_\beta$$

b)

Betrachte:

- $\bigwedge_{i=0}^{n-1} (X_i \leftrightarrow Y_i)$ (1)
- $\bigvee_{i=0}^{n-1} (\neg X_i \wedge Y_1 \wedge (\mathbf{3}))$ $\bigvee_{j=i+1}^{n-1} (X_j \leftrightarrow Y_j))$
- (1) stellt sicher, dass die Bits von X und Y an der Stelle i gleich sind. Kommt
- (3) zur Anwendung, dann sind X und Y an Stelle j immer gleich, während in (2) die große Disjunktion dafür sorgt, dass die Bits $\neg X_i$ und Y_i nicht beide zu 0 ausgewertet werden und dass alle nachfolgenden Bits gleich sind.

Alle Teile der Relation sorgen also für einen Vergleich der beiden Binärzahlen X und Y: Entweder alle Bits an Stelle i sind gleich **oder** es gibt eine Stelle i,an der $[\![X_1]\!]=0$ und $[\![Y_1]\!]=1$ und an allen weiteren Positionen j sind die Bits gleich.

Zusammengefasst bedeutet dies: Entweder die durch X_n und Y_n repräsentierten Binärzahlen sind gleich, oder unterscheiden sich nur bis zu einer bestimmten Stelle i und alle nachfolgenden Bits sind gleich.

A6

Die Menge aller aussagenlogischen Variablen, die in $\varphi \in F_{AL}$ vorkommen, $vars(\varphi): F_{AL} \to \mathcal{P}(V_{AL})$, definieren wir induktiv wie folgt:

IA: Sei $\varphi_0 \in F_{AL}$. Dann definieren wir $vars(\varphi_0) := \{\varphi_0\}$.

IS: Sind $\varphi_0, \ldots, \varphi_n \in V_{AL}$ mit $n \in \mathbb{N}_0$ durch beliebigen n-stelligen Junktor C verbunden, sodass $C(\varphi_0, \ldots, \varphi_n) \in F_{AL}$ gilt, dann definieren wir $vars(C(\varphi_0, \ldots, \varphi_n)) := \{\varphi_0, \ldots, \varphi_n\}.$