EEE422 (EEE6082) Computational Vision

Bag of Features

Ling Shao

Bag-of-features models

Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Overview: Bag-of-features models

- · Origins and motivation
- · Image representation
 - Feature extraction
 - Visual vocabularies
- Discriminative methods
 - Nearest-neighbor classification
 - Distance functions
 - Support vector machines
 - Kernels
- Generative methods
 - Na we Bayes
 - Probabilistic Latent Semantic Analysis
- · Extensions: incorporating spatial information

Origin 1: Texture recognition

- * Texture is characterized by the repetition of basic elements or textons
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Origin 1: Texture recognition

Origin 2: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Origin 2: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Origin 2: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Origin 2: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salum & McGill (1983)

Bags of features for object recognition

* Works pretty well for image-level classification

Bag of features: outline

1. Extract features

Bag of features: outline

- 1. Extract features
- 2. Learn "visual vocabulary"

Bag of features: outline

- Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary

Bag of features: outline

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of

1. Feature extraction

- · Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005

1. Feature extraction

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
 - Interest point detector

 Csurka et al. 2004
 - Csurka et al. 2004
 Fei-Fei & Perona, 2005
 - Sivic et al. 2005

1. Feature extraction

- · Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005
- · Other methods
 - Random sampling (Vidal-Naquet & Ullman, 2002)
 - Segmentation-based patches (Barnard et al. 2003)

1. Feature extraction

Slide credit: Josef Sivic

1. Feature extraction

2. Learning the visual vocabulary

2. Learning the visual vocabulary

Slide credit: Josef Sivic

2. Learning the visual vocabulary

Slide credit: Josef Sivic

K-means clustering

• Want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers m_k

$$D(X,M) = \sum_{\text{cluster } k} \sum_{\substack{\text{point } i \text{in } \\ \text{cluster } k}} (x_i - m_k)^2$$

- · Algorithm:
- · Randomly initialize K cluster centers
- · Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to
 it

From clustering to vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
 - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word

Example visual vocabulary

Fei-Fei et al. 2005

Image patch examples of visual words

Sivic et al. 2005

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting
- Generative or discriminative learning?
- · Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)

3. Image representation

Image classification

 Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?

Evaluation: Invariance

Datasets	n	Scale Invariance			Scale and Rotation			Affine Invariance		
		нѕ	LS	HS+LS	HSR	LSR	HSR+LSR	на	и	HA+LA
UIUCTex	20	89.7±1.6	91.2±1.5	92.2±1.4	97.1 ± 0.6	97.7±0.6	98.0±0.5	97.5 ± 0.6	97.5±0.7	98.0±0.6
Xerox7	10 fold	92.0±2.0	93.9±1.5	94.7±1.2	88.1 ± 2.1	92.4±1.7	92.2±2.3	88.2 ± 2.2	91.3±2.1	91.4±1.8

- Best invariance level depends on datasets
- * Scale invariance is often sufficient for object categories
- Affine invariance is rarely an advantage

Comparison with state-of-the-art

→ Existing Datasets

Methods	Xerox7	CalTech6	Graz	CalTech101		
Our method	94.3	97.9	90.0	53.9		
Others	82.0 Csurka.et al. (ICPR 2004)	96.6 Csurka.et al (ICPR 2004)	83.7 Opelt et al eccv 04	43 Grauman and Darrel iccv 05		

→ PASCAL VOC Challenges

- Task: Predict the existence of an object given an image
- 2005: Four Categories
- 2006: Ten Categories; More Participants

Pattern Analysis, Statistical Modeling and Computational Learning
→ Europe-wide Network of Excellence with 57 partners

PASCAL VOC 2005

→ Testset 2: "Harder" Google images

2 2612 616			7746	
motorbikes	bicycles	people	cars	
EER	EER	EER	EER	7/// 1115
0.767	0.667	0.663	0.703	780
0.769	0.665	0.669	0.716	111111
0.663	-	-	0.551	
0.683	_	_	0.658	the protect
0.698	0.575	0.519	0.633	Figure 11: Competition 2.2: set2: bicycles (all entries)
0.614	0.527	0.601	0.655	ST SCHOOL TOWN
0.624	0.604	0.614	0.676	
0.594	0.524	0.574	0.644	
0.635	0.616	0.587	0.692	17.5
0.798	0.728	0.719	0.720	W. P.C.
0.698	0.616	0.591	0.677	Figure 13: Competition 2.3: test2: necole (all entries)
	motorbikes EER 0.767 0.769 0.663 0.683 0.698 0.614 0.624 0.594 0.635	motorbikes bicycles EER EER 0.767 0.667 0.769 0.668 0.663 - 0.698 0.575 0.614 0.527 0.624 0.604 0.594 0.534 0.635 0.616 0.798 0.738	motorbikes bicycles people EER EER EER 0.767 0.667 0.663 0.769 0.665 0.669 0.663 0.698 0.575 0.519 0.614 0.527 0.601 0.624 0.604 0.614 0.594 0.524 0.574 0.635 0.616 0.587 0.798 0.728 0.719	motorbikes bicycles people cars

33

PASCAL VOC 2006

- More than 20 participants from different institutions
- → More challenges: Highly deformed pose, shape, viewpoint changes

2.4

AUC by Method and Class

	bicycle	bus	car	cat	cow	dog	horse	motor bike	person	sheep
AP06_Batra	0.791	0.637	0.833	0.733	0.756	0.644	0.607	0.672	0.550	0.792
AP06_Lee	0.845	0.916	0.897	0.859	0.838	0.766	0.694	0.829	0.622	0.875
Cambridge	0.873	0.864	0.887	0.822	0.850	0.768	0.754	0.844	0.715	0.866
INRIA_Larlus	0.903	0.948	0.943	0.870	0.880	0.743	0.850	0.890	0.736	0.892
INRIA_Marszalek	0.929	0.984	0.971	0.922	0.938	0.856	0.908	0.964	0.845	0.944
INRIA_Moosmann	0.903	0.933	0.957	0.883	0.895	0.825	0.824	-	0.780	0.930
INRIA_Nowak	0.924	0.973	0.971	0.906	0.892	0.797	0.904	0.961	0.814	0.940
INSARouen	-	1.5	0.895		177	0.764			-	0.869
MUL_1vALL	0.857	0.852	0.914	0.562	0.632	0.584	0.525	0.831	0.616	0.758
MUL 1v1	0.864	0.945	0.928	0.826	0.789	0.764	0.733	0.906	0.718	0.872
QMUL_HSLS	0.944	0.984	0.977	0.936	0.936	0.874	0.922	0.966	0.845	0.946
OMUL LSPCH	0.948	0.981	0.975	0.937	0.938	0.876	0.926	0.969	0.855	0.956
RWTH_DiscHist	0.874	0.955	0.930	0.879	0.910	0.799	0.854	0.938	0.764	0.906
RWTH_GMM	0.882	0.935	0.942	0.866	0.856	0.825	0.802	0.905	0.718	0.892
RWTH_SparseHists	0.863	0.941	0.935	0.883	0.883	0.704	0.844	0.858	0.776	0.907
Siena	0.671	0.749	0.842	0.696	0.774	0.677	0.644	0.701	0.660	0.768
TKK	0.857	0.928	0.943	0.871	0.892	0.811	0.806	0.908	0.781	0.900
UVA_big5	0.897	0.929	0.945	0.845	0.862	0.785	0.806	0.923	0.774	0.885
UVA_weibull	0.855	0.880	0.910	0.818	0.849	0.762	0.759	0.888	0.723	0.811
XRCE	0.943	0.978	0.967	0.933	0.940	0.866	0.925	0.957	0.863	0.951

6