Exhib: + 17

CURRENT PROTOCOLS IN IMMUNOLOGY

VOLUME 1

EDITORIAL BOARD

JOHN E. COLIGAN

National Institute of Allergy and Infectious Diseases

ADA M. KRUISBEEK

Netherlands Cancer Institute

DAVID H. MARGULIES

National Institute of Allergy and Infectious Diseases

ETHAN M. SHEVACH

National Institute of Allergy and Infectious Diseases

WARREN STROBER

National Institute of Allergy and Infectious Diseases

SERIES EDITOR

Richard Coico

City University of New York Medical School

John Wiley & Sons, Inc.

CORE 10 (S42)

BEST AVAILABLE COPY

Copyright © 1991-1994 by Current Protocols Copyright © 1994-2001 by John Wiley & Sons, Inc.

All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

While the authors, editors, and publisher believe that the specification and usage of reagents, equipment, and devices, as set forth in this book, are in accord with current recommendations and practice at the time of publication, they accept no legal responsibility for any errors or omissions, and make no warranty, express or implied, with respect to material contained herein. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. This is particularly important in regard to new or infrequently employed chemicals or experimental reagents.

Library of Congress Cataloging in Publication Data:

Current protocols in immunology / edited by John R. Coligan ... [et al.].

p. cm.

Kept up to date by quarterly supplements.

4 vols. Includes index.

ISBN 0-471-52276-7

QR183.C87 1991 616.07°0'072—dc20

DNLM/DLC

for Library of Congress

90-15726

Printed in the United States of America

10

Proliferative Assays for T Cell Function

A number of agents can specifically or nonspecifically induce T cell activation, resulting in cytokine production, cytokine receptor expression, and ultimately proliferation of the activated T cells. Although proliferation is not a specific effector function of T lymphocytes—in contrast to helper function for B lymphocytes (*unit 3.10*) or cytotoxicity (*unit 3.11*)—proliferation assays are reliable, simple, and easy to perform and have been widely used to assess the overall immunocompetence of an animal. In addition, the assays described in this unit form the basis for identifying the appropriate cellular population that might be used to obtain T cell clones (*unit 3.13*) or T cell hybridomas (*unit 3.14*).

The assays have been divided into two groups on the basis of whether they are used to stimulate primed or unprimed T lymphocytes. The first basic protocol describes the use of agents that are capable of activating unprimed T lymphocytes in culture either by pharmacologic means (calcium ionophore and phorbol ester stimulation), by direct cross-linking of the T cell receptor (TCR) on a large percentage of responder cells (anti-CD3, anti-TCR-γδ, or anti-TCR-αβ monoclonal antibodies), by cross-linking the receptors on certain subpopulations of T cells with monoclonal antibodies specific for the V regions of β chains of the TCR (anti-V β) or with enterotoxins specific for certain VB-chain regions, or by indirectly cross-linking the TCR (lectins or monoclonal antibodies to non-TCR antigens). The first alternate protocol describes the use of plate-bound antibodies specific for the TCR to stimulate proliferation. The second alternate protocol describes the activation of unprimed T cells to cell-associated antigens in the mixed leukocyte reaction (MLR). The first support protocol describes the preparation and use of T cell-depleted accessory or stimulator cells and the second support protocol describes methods for blocking accessory cell proliferation. Finally, the second basic protocol describes the induction of a T cell proliferative response to soluble protein antigens or to cell-associated antigens against which the animal has been primed in vivo.

The assays in this unit employ murine T lymphocytes. Induction of proliferative responses of murine B lymphocytes is described in *UNIT 3.10*. Related assays for use with human peripheral blood lymphocytes are described in *UNIT 7.9*.

NOTE: All solutions and equipment coming into contact with cells must be sterile, and proper sterile technique should be used accordingly.

ACTIVATION OF UNPRIMED T CELLS

Unprimed T cells can be induced to proliferate by a variety of agents, including pharmacological agents, anti-CD3/TCR or anti-Thy-1 monoclonal antibodies, enterotoxins and lectins. The commentary briefly describes the specificities of these agents, while Table 3.12.1 lists sources and concentrations for use in this protocol. Although this procedure is intended to measure proliferation of T cells specifically, in many cases induction of T cell proliferation is dependent on the presence of non-T cells that function as accessory cells. The latter provide additional costimulatory signals for T cell proliferation as well as cross-link (via their Fc receptors) monoclonal antibodies bound to cell-surface antigens. The requirement for non-T accessory cells varies with the nature of the stimulatory ligand and can range from absolute dependence to accessory cell-independent T cell activation (see Table 3.12.1). The activation is calculated after determining the difference in incorporation of [³H]thymidine between stimulated and control cells.

BASIC PROTOCOL

Table 3.12.1 Agents Used to Activate Unprimed T Cells in Proliferative Assays

Agent ^a	Source/ cat. no. ^b	Concentration	Accessory cells ^c	Mode of action, etc.
PMA	SIG P8139	1-10 ng/ml	No	Use with ionomycin or A23187; pharmacologic
Ionomycin	CAL 407950	200-500 ng/ml	No	Use with PMA; pharmacologic
A23187	CAL 100105	100-500 ng/ml	No	Use with PMA; pharmacologic
PHA	WD HA16	1-5 μg/ml	Yes	Indirect TCR cross-linking
Con A	PH 17-0450-01	1-10 µg/ml	Yes	Indirect TCR cross-linking
Anti-Thy-1	PG mAb-G7	1-50 μg/ml	Yesc	Indirect TCR cross-linking
Anti-CD3	PG HM-CD3	0.1-5 μg/ml	Yesc	Use plate-bound or soluble; direct TCR cross-linking
Anti-TCR-αβ	PG HM-AB- TCR	0.1-10 μg/ml	Yes	Use plate-bound or soluble; direct TCR cross-linking
Anti-TCR-γδ	PG HM-GD- TCR-1; HM-GD-TCR-3	0.1-100 μg/ml	No	Use plate-bound; direct TCR cross-linking
Anti-Vβ-8.1, 8.2 ^c	PG MM-Vβ- TCR-1	0.1-100 μg/ml	No	Use plate-bound; direct TCR cross-linking
Anti-Vβ-6°	PG RM-Vβ- TCR-2	0.1-100 μg/ml	No	Use plate-bound; direct TCR cross-linking
Anti-Vβ-11	PG RM-Vβ- TCR-3	0.1-100 μg/ml	No	Use plate-bound; direct TCR cross-linking
Staph tox A	TTAT101	1-10 µg/ml	Yesc	Vβ-1,3,10,11,17- receptor specificity
Staph tox B	TT BT202; SIG S4881	1-100 µg/ml	Yesc	Vβ-3,7,8,17-receptor specificity
Staph tox E	TT ET404	1-10 µg/ml	Yes ^c	Vβ-11,15,17-receptor specificity

⁴Abbreviations: PMA, phorbol 12-myristate 13-acetate; PHA, phytohemagglutinin; Con A, concanavalin A; Staph tox A, B, & E, Staphylococcus enterotoxins A, B, & E.

bSupplier addresses and phone numbers are provided in APPENDIX 5. Abbreviations: CAL, Calbiochem; PG, Pharmingen; PH, Pharmacia LKB; SIG, Sigma; TT, Toxin Technology; WD, Wellcome Diagnostics.

When using anti-CD3 and anti-TCR antibodies in soluble form (rather than plate-bound), accessory cells are required. When using Staph enterotoxins, accessory cells must express appropriate MHC class II molecules. Accessory cell dependence is not absolute with anti-Thy-1 antibodies.

Materials

Complete RPMI-5 and RPMI-10 media (APPENDIX 2)

Responder cells: lymphocytes from nonimmunized mouse thymus, spleen, or lymph nodes (UNIT 3.1)

Activating agent(s) (Table 3.12.1)

Phosphate-buffered saline (PBS; APPENDIX 2)

Accessory cells: unfractionated mouse spleen cell suspension, irradiated or treated with mitomycin C (second support protocol) or T cell-depleted (first support protocol)

[3H]thymidine (APPENDIX 3)

15- and 4-ml disposable, polystyrene conical tubes with screw caps' Low-speed centrifuge with Sorvall H-1000B rotor (or equivalent)

1-, 5-, and 10-ml disposable polystyrene pipets

96-well flat- or round-bottom microtiter plates with lids (Costar #3596 or #3799)

25- to 100-µl single- and multichannel pipettors with disposable tips

Additional reagents and equipment for removing organs (UNIT 1.9), preparing single-cell suspensions (UNIT 3.1), and counting, labeling, and harvesting cells (APPENDIX 3)

1. Prepare responder leukocyte suspensions from thymus, spleen, or lymph node in complete RPMI-5 as described in UNIT 3.1.

The size of the intended experiment dictates the number of organs to be collected. See annotation to step 3 for an indication of cell number required, and UNIT3.1 for number of cells per organ. Spleen, thymus, and lymph node can be used as responder cells, while only spleen is a source of accessory cells. Purified T cells or subpopulations of T cells (i.e., CD4+ or CD8+) cells may also be used. See UNITS 3.1-3.6 for enrichment/depletion methods.

- 2. Centrifuge single-cell suspensions in 15-ml conical tubes for 10 min in Sorvall H-1000B rotor at \sim 1000 rpm (200 \times g), room temperature, and discard supernatant.
- Resuspend cell pellet in complete RPMI-5. Count responder cells and adjust to ~10⁶ cells/ml with complete RPMI-10.

While this concentration (1×10^6 cells/ml or 2×10^5 cells/well) will give satisfactory responses with most cell populations, it is useful to compare 2, 4, and 8×10^5 cells per well in initial pilot experiments. If unfractionated spleen or lymph node cells are used as the responder population, sufficient accessory cells are present and there is no need to supplement the cultures with additional cells. However, if highly purified T cells or T cell subpopulations are used as responders, it will be necessary to add non–T accessory cells depending on the nature of the activating agent (see Table 3.12.1). This is most easily accomplished by adding increasing numbers (0.1, 0.5, and 1.0 \times 105) of syngeneic spleen (accessory) cells in 0.1 ml to 2×10^5 T cells in 0.1 ml (see first support protocol). Also, a meaningful comparison of the responsiveness of different cell populations requires titrations of both the activating agents as well as the responding cell populations, and a kinetic experiment.

4. Prepare working solutions of activating agents in 4-ml conical tubes at room temperature as follows. For MAb, toxin, or lectin, make a series of four dilutions from 1 mg/ml stock solutions—e.g., 100, 30, 10, and 3 μg/ml in PBS. For the pharmacological agent, make single dilutions of 100 ng/ml solution of PMA and 1 μg/ml A23187 (or 4 μg/ml ionomycin) in PBS.

If MAb in supernatant or ascites form are being used, at least four dilutions should also be used. Working solutions should be used immediately, since the various proteins, especially MAb, may bind to the plastic.

See Table 3.12.1 for $V\beta$ specificities of staphylococcal enterotoxins. It is essential to verify that the mouse strain employed expresses the MHC class II surface molecules for which the enterotoxin has a specific binding affinity. See Marrack and Kappler (1989) for further discussion of various enteroxins and their specificities.

5. Add 20 μl of each dilution of activating reagent (MAb, enterotoxin or lectin) to each of three wells of a 96-well flat- or round-bottom microtiter plate. Include control wells with 20 μl of PBS only. Add 20 μl PMA or calcium ionophore at the single concentration indicated in step 4, as the dose-response curve for these agents is extremely narrow.

A series of four dilutions will form one row of each microtiter plate, allowing for efficient organization of the plates.

- 6. To the wells of the 96-well microtiter plate containing activating agent, add 2×10^5 cells in 0.2 ml.
- 7. Place microtiter plates in a humidified 37°C, 5% CO₂ incubator for 2 to 4 days.

Optimum culture periods for stimulating cells will vary depending on cell type and laboratory conditions and must be determined empirically (see critical parameters).

- 8. Add [3 H]thymidine to each well. Return the plates to CO₂ incubator to pulse 18 to 24 hr. Harvest cells using a semiautomated sample harvester and measure cpm in β scintillation counter.
- 9a. Compute the data as the difference in cpm of stimulated (experimental) and control (no activating agent added) cultures. This is done by subtracting the arithmetic mean of cpm from triplicate control cultures from the arithmetic mean of cpm from corresponding stimulated cultures. The results are referred to as "Δ cpm."
- 9b. Alternatively, compute the data as the ratio of cpm of stimulated and control cultures. This is done by dividing the arithmetic mean of cpm from stimulated cultures by the arithmetic mean of cpm from control cultures. The results are referred to "SI" (stimulation index).

The second method (step 9b) has the disadvantage that small changes in background values will result in large changes in SI and should be interpreted with caution. In most publications, Δ cpm rather than SI values are preferred.

ALTERNATE PROTOCOL

ACTIVATION OF UNPRIMED T CELLS WITH PLATE-BOUND ANTIBODIES

Although it is possible to induce T cell activation with monoclonal antibodies to the CD3/TCR complex in solution during culture, such activation depends on cross-linking of the antibody by Fc receptor-bearing accessory cells. This protocol describes the use of monoclonal antibodies to the CD3/TCR complex by coupling them to the wells of the microtiter plates. The T cell proliferative response induced under these conditions does not require the presence of significant numbers of accessory cells, although the responses obtained may be suboptimal (Jenkins et al., 1990).

Use of this protocol is recommended for use with those antibodies to the CD3/TCR complex which bind poorly to the Fc receptor present on murine accessory cells and which do not induce T cell activation in soluble form. Although all monoclonal antibodies readily couple to plastic under these conditions, it is very difficult to induce a proliferative response with certain antibodies such as the G7, anti-Thy-1 monoclonal antibody. In such cases, the conditions described in the basic protocol should be followed.

Additional Materials

PBS (APPENDIX 2), room temperature and 4°C

- 1 mg/ml purified anti-CD3 or anti-TCR MAb in PBS (for nonspecific activation of T cells) or 1 mg/ml purified anti-Vβ or anti-TCR-γδ MAb in PBS (for activation of T cells with specific receptors; see Table 3.12.1)
- In 4-ml conical polystyrene tubes, prepare a series of four dilutions of MAb from sterile 1 mg/ml stock solutions—e.g., 100, 10, 1, and 0.1 μg/ml—using room temperature PBS.

Sources and recommended concentrations of monoclonal antibodies can be found in Table 3.12.1; since MAb will bind to plastic, the working dilutions should be used immediately.

The ability of anti-TCR antibodies to cross-link receptor molecules varies depending on the purity of the MAb preparation and the affinity of the MAb for the TCR/CD3 complex. Optimum dilutions will have to be determined in dose-response experiments. Alternatively, preparations of ascites fluid from the MAb can be tested at different dilutions (e.g., 1:100, 1:200, 1:400, and 1:800), but use of purified antibody will allow for better standardization of the assay.

Because the efficacy of MAb-induced activation depends on the amount of antibody bound to the bottom of the wells, it is crucial to make the dilutions in a buffer without any additional source of proteins such as FCS or albumin; these would compete with the binding of the antibody, and therefore reduce the responsiveness. For this reason, it is also not recommended to perform the assay with culture supernatants of the appropriate hybridomas.

2. Add 30 µl of each concentration of MAb solution to each of three wells of a 96-well round-bottom microtiter plate. Include control wells of 30 µl PBS only.

A series of four dilutions will form one row of each plate, allowing for efficient organization of the plates. Consistently better responses are seen with round-bottom (compared with flat-bottom) plates in antibody-mediated experiments.

Most often, optimal responses are seen with 10 μ g/ml antibody. There is no point in adding more than the indicated amount of antibody, since the maximum amount that can bind to surface of the wells is -2 to 3 μ g (A.M.K., unpub. observ.).

3. Cover the plate and gently tap its side to ensure complete covering of the bottom of the wells. Incubate plates 90 min at 37°C. During incubation, proceed to step 4.

During this incubation, the antibodies bind to the plastic in the wells for subsequent cross-linking of the T cell receptors on responding T cells. Plates can also be prepared the night before an experiment and kept in the refrigerator overnight, after the 37°C incubation.

4. Prepare responder cell suspensions as in steps 1 to 3 of the basic protocol.

Highly purified T cell populations can be used in these studies as the proliferative response induced is accessory cell-independent. However, the presence of non-T accessory cells does not interfere with the proliferative response.

- 5. Wash the wells of the incubated plates by adding 200 µl cold PBS and inverting the plates with a flick of the hand on a stack of paper towels placed in a tissue culture hood. Repeat washing procedure two more times to remove excess antibody.
- 6. To the wells of the washed plates, add -2×10^5 cells in 0.2 ml.

If cells are not ready at this stage, plates may be kept in the refrigerator overnight after $100\,\mu\text{l}$ PBS has been added. Presumably, longer storage periods should be acceptable, but our experience is limited to ≤ 4 day periods. The PBS should be removed before the cells are added.

Most cell populations will give peak responsiveness at this cell dosage, but pilot experiments should be performed to establish optimal conditions.

7. Proceed as in steps 7 to 9 of the basic protocol, but incubate cultures for 2 to 3 days before adding [3H]thymidine.

Kinetic assays should be performed to determine the optimum culture period.

ALTERNATE PROTOCOL

T CELL PROLIFERATION IN MIXED LYMPHOCYTE CULTURES

In the mixed lymphocyte culture (MLC) or reaction (MLR), suspensions of responder T cells are cultured with allogeneic stimulator lymphocytes. The activating stimulus is the foreign histocompatibility antigen (usually MHC class I or class II molecules) expressed on the allogeneic stimulator cells. Responder cells need not be primed because a sufficiently high number of T cells in the MLC will respond to the stimulator population. If the stimulator cell population contains T cells, their uptake of [3H]thymidine must be prevented by irradiation or treatment with mitomycin C; alternatively the stimulator cell suspension can be depleted of T cells (see support protocols).

Additional Materials

Responder cells: lymphocytes from nonimmunized mouse thymus, spleen, or lymph nodes (UNITS 1.9 & 3.1) or purified T cells or T cell subpopulations (UNITS 3.1-3.6)

Stimulator cells: allogeneic mouse spleen cells that differ from the responder cells at H-2 or Mls loci, irradiated or treated with mitomycin C (second support protocol) or T cell-depleted (first support protocol)

1. Prepare responder cell populations as in steps 1 to 3 of the basic protocol. Although unfractionated cell populations can be used as responders in certain situations, it may be preferable to use purified T cells or T cell subsets.

To estimate the MLR of a cell population, it is necessary to perform a dose-response assay with different numbers of responder cells. Typically, three replicate wells are set up containing each of the following: 0.5. I, 2, and 4×10^5 cells (optimal responses are usually obtained with the latter two densities). The setup for these four cell densities will occupy one row (12 wells) of a microtiter plate.

For thymocytes, it may be necessary to use 8×10^5 cells per well because the frequency of responding T cells is lower; the lowest number of responder cells could then be 1×10^5 and the doses in between would be 2 and 4×10^5 . Using this range of higher numbers of responder cells may also be preferred when experimental manipulations are expected to reduce the frequency of responding T cells.

2. To a 96-well microtiter plate, add 5×10^4 to 4×10^5 responder cells in 0.1 ml to each well. For each experimental group, set up three replicate wells.

Stimulation of leukocytes for proliferation in 96-well microtiter plates can be run in parallel with cytotoxic T lymphocyte (CTL) generation (UNIT 3.11), which is performed in 24-well microtiter plates. For example, cells can be diluted to 4×10^6 cells/ml and added to 24-well plates in 1.0 ml/well for CTL generation and to 96-well plates in 0.1 ml/well for proliferation.

Prepare a single-cell suspension of irradiated or mitomycin C-treated stimulator cells.
 Alternatively, prepare a suspension of T-cell depleted stimulator cells. Add 0.1 ml to each well of the plates containing responder cells.

The optimum number of stimulator cells must be determined for each MLC and for different responder cells. For a range of responder cells from $0.5\text{-}4 \times 10^5$, test stimulator cells at densities of 2, 4, and 8×10^5 /ml (i.e., 2, 4, and 8×10^5 /well). It should be noted that the stimulator cell suspension provides both the specific antigen to be recognized by the responder T cells as well as nonspecific accessory cells. If

highly purified T cells are used as the responder population, it is therefore not necessary to supplement the cultures with non-T accessory cells syngeneic to the responder T cells.

Separate wells with control cultures should be set up that include—for each dose of responder and stimulator cells—replicate wells of responder cells with irradiated or mitomycin C-treated syngeneic stimulator cells. Values obtained from these controls reflect "background" proliferation values (see step 9 of basic protocol). Other negative controls often included are wells with stimulator cells alone and wells with responder cells alone. These are not used for the calculation of the data, but are useful to compare with the background proliferation values; the latter should not be much higher (<2-fold) than those obtained with stimulator or responder cells alone. Higher background values indicate potential autoreactivity.

4. Follow steps 7 to 9 of the basic protocol, but incubate the cultures for 3 to 6 days.

Optimum culture periods for stimulating cells will vary depending on cell type and laboratory conditions, and must be determined empirically (see critical parameters).

DEPLETION OF T CELLS FROM ANTIGEN-PRESENTING/STIMULATOR CELL SUSPENSIONS

Although normal unfractionated spleen cell populations can be used as a source of accessory cells, in certain types of experiments it may be preferable to use spleen cell populations from which the T cells have been removed. This procedure ensures that none of the observed proliferative responses of the responder population result from T cell factors derived from the accessory cell population. For example, even T cells whose cell division has been blocked (second support protocol) can produce cytokines. In the following steps, T cell-depleted spleen cell suspensions are prepared using a lytic monoclonal antibody to the T cell antigen, Thy-1. Because almost all the antigen presentation or stimulator cell activity in spleen resides in the non-T cell fraction, this procedure also leads to enrichment of functional antigen-presenting cell function. Further enrichment of antigen-presenting cells (APC) by flotation of the T cell-depleted spleen cells on Percoll gradients is also described. Other procedures leading to enrichment of APC are described elsewhere; the method described in UNIT 3.7 does not deplete T cells and therefore is not recommended here; the method described in UNIT 3.15 leads to higher levels of enrichment that are not required in the protocols presented here.

Additional Materials

Spleen cells from nonimmunized mice
Hanks balanced salt solution (HBSS; APPENDIX2)
Low-Tox rabbit complement (Cedarlane #CL3051), reconstituted with ice-cold distilled water and filter-sterilized

Anti-Thy-1.2 ascites (HO-13-4; ATCC #TIB 99) or anti-Thy-1.1 ascites (HO-22-1; ATCC #TIB 100; alternatively, see Table 3.4.1 for other anti-Thy-1 MAb and UNIT 2.6 for production of ascites)

70% Percoll solution (UNIT 3.8 and reagents and solutions)

1. Centrifuge the spleen cell suspension derived from single spleen down to a pellet.

The spleen cells should always be from nonprimed animals and should be syngeneic to the responder T cells unless they are to be used as stimulator cells in the MLC.

2. To the pellet, add 0.9 ml HBSS, 0.1 ml complement, and 25 μ l anti-Thy-1 ascites.

If cells from more than a single spleen are needed, the procedure should be scaled up accordingly.

SUPPORT PROTOCOL

In Vitro Assays for Mouse B and T Cell Function

3.12.7

The choice of anti-Thy-I reagent to be used depends on the strain of animal from which the spleen was derived. The great majority of commonly available mouse strains (except AKR) express the Thy-I.2 allele.

- 3. Incubate the mixture at 45 min in a 37°C water bath.
- 4. Centrifuge 10 min in Sorvall H-1000B rotor at \sim 1000 rpm (200 \times g), room temperature, and discard supernatant. Resuspend pellet in HBSS and wash two more times.
- 5. Count viable cells (APPENDIX 3) and resuspend in complete RPMI-10 or PBS for inactivation as in the second support protocol, or in HBSS to prepare low-density accessory cells (see below).

The T cell-depleted spleen cell population is comprised of B cells, macrophages, and dendritic cells. Further enrichment of cells with enhanced accessory cell function can be obtained by fractionation of this population on Percoll.

- Dilute 70% Percoll solution to 55% by mixing 23.58 ml of the 70% Percoll with 6.42 ml HBSS. Resuspend T cell-depleted spleen cells from step 5 in HBSS at 20 x 106 cells/ml.
- 7. Layer 3 ml cell suspension over 3 ml of 55% Percoll solution in a 15-ml conical centrifuge tube.
- 8. Spin 13 min in H-1000B rotor at 3000 rpm (1900 \times g), room temperature.
- 9. Remove cells that band at the Percoll/HBSS interface with a 5-in. Pasteur pipet and wash 3 times in HBSS as in step 4.
- Count viable cells and resuspend in complete RPMI-10 for inactivation according to the second support protocol.

The population obtained from steps 6 to 10 is comprised of large cells including macrophages, dendritic cells, and activated B lymphocytes. This population of cells is enriched in accessory cell function. When used in either of the basic protocols with purified T responder cells, fewer of the Percoll-purified cells should be needed to provide accessory function.

SUPPORT PROTOCOL

BLOCKING CELLULAR DIVISION OF ACCESSORY/STIMULATOR CELLS

There are two situations in which inhibition of accessory or stimulator cell division should be blocked. When purified T cells rather than unfractionated lymphoid populations are used in the basic protocol, cultures are frequently supplemented with accessory cells syngeneic to the responder T cells. If accessory cell DNA synthesis is inhibited, one can then be certain that the resultant proliferative response is comprised entirely of responder T cells and does not contain a component of recruited B cell proliferation derived from the accessory cell populations. In the MLR, the stimulator cells are spleen cells from mice that differ from the responder cells in H-2 and/or Mls gene expression (see APPENDIX 1, Tables A.1C.1 and A.1F.1) and they can also recognize alloantigens on the responder cells. This responsiveness of stimulator cells against responder cells in an MLR (so-called back-stimulation) must be prevented by blocking cellular division. This can be done by treatment of stimulator cells with mitomycin C (a DNA cross-linking reagent) or by g irradiation. Many investigators prefer mitomycin C treatment when antigenic differences encoded for by Mls genes are to be measured, or when an irradiation source is not available. For more information on the loci encoding Mls genes, see Tables A.1F.2 and A.1F.3.

Proliferative Assays for T Cell Function

Mitomycin C Treatment

Additional Materials

Mitomycin C (Sigma #M-0503; store in dark)

3.12.8

- 1. In a 15-ml aluminum foil-wrapped tube, prepare a solution of mitomycin C in PBS at 0.5 mg/ml and filter sterilize.
 - Since mitomycin C is very light-sensitive, it is necessary to prepare a fresh stock solution each day for each experiment.
- 2. Prepare spleen cell suspension as described in steps 1 and 2 of the basic protocol at a concentration of 5×10^7 cells/ml in PBS.
- 3. Add mitomycin C to a final concentration of 50 μ g/ml (100 μ l/ml of cell suspension) and wrap the tube in aluminum foil. Incubate 20 min at 37°C.
- 4. Add an excess of complete RPMI-5 (i.e., fill tube with ~12 ml) and centrifuge 10 min in Sorvall H-1000B rotor at 1200 rpm (300 × g). Discard supernatant and repeat washing procedure two more times.
 - Three washes are crucial, because any traces of mitomycin C left among the cells will reduce proliferative responses when the cells are added to an MLC.
- 5. Resuspend pellet in complete RPMI-10. Count cells with hemacytometer. Adjust to desired concentration as described in the annotation to step 6 of the basic protocol.

Irradiation Treatment

Prepare a spleen cell suspension as described in steps 1 to 3 of the basic protocol, at a final concentration of $5-10\times10^6$ cells/ml in complete RPMI-10. Using a source of ionizing irradiation (60 Co or 137 Cs γ -irradiator; e.g., Gammacell 1000, Nordion), deliver 1000 to 2000 rad of irradiation to the cells.

This dose range of irradiation is suitable for most immunologic applications employing spleen cell suspensions. However, antigen presentation by different spleen cells is differentially affected by irradiation (Ashwell et al., 1984): at low doses (500 to 1000 rad), antigen-presenting function of B cells is preserved; after doses of 1100 to 2000 rad, a substantial decline is observed; and doses >2000 rad abolish the participation of B cells as APC. Macrophages and dendritic cells, on the other hand, maintain antigen presentation through doses of 3000 rad. To ensure that B cells do not participate in the responses measured, some investigators prefer to use doses of 2000 rad. However, responsiveness to Mls antigens can best be measured with stimulator cells that received doses of <1000 rad, since B cells present Mls more effectively. Alternatively, Mls responsiveness can be measured after mitomycin C treatment of stimulator cells, since it also preserves the antigen-presentation function of B cells.

When transformed cell lines are used as antigen-presenting or accessory cells, higher doses must be used to ensure blockage of cell division. The appropriate dose will have to be determined empirically for each cell line, but is likely to be at least 5000 rad; some transformed cell lines require as much as 10,000 to 12,000 rad, and may be more sensitive to mitomycin C treatment.

ACTIVATION OF PRIMED T CELLS

Proliferative responses to viruses, protein antigens, minor transplantation antigens, and the male H-Y antigen require in vivo immunization followed by in vitro stimulation. Furthermore, enhanced proliferative responses to those antigens that will generate primary in vitro responses (i.e., MHC antigens) can be obtained by in vivo priming. Multiple immunizations usually elevate in vitro responses.

To immunize animals for in vitro secondary responses to soluble protein antigens or peptides, dissolve antigens and emulsify in complete Freunds adjuvant (UNIT 2.5). For strong responses by draining lymph node cells, immunize animals in a hind footpad. For

BASIC PROTOCOL

In Vitro Assays for Mouse B and T Cell Function

3.12.9

strong responses by spleen cells, immunize intraperitoneally. Tail-base immunization also can be used as an efficient route of immunization; follow procedure for intradermal injection. To prime animals against cellular antigens, inject intraperitoneally with $1-5 \times 10^7$ cells that express the antigen. Immunization protocols are described in *UNIT 1.6*.

Within 2 to 3 weeks after in vivo priming, in vitro responsiveness of primed T cells can usually be measured. This assay is often used as a preparation for subsequent in vitro cloning procedures (UNIT 3.14) and T cell hybridoma preparation (UNIT 3.13).

Materials

Complete RPMI-10 medium (APPENDIX 2)

Responder cells: Purified T cells isolated from lymph nodes (UNITS 3.1-3.6) of in vivo primed mice

Antigen: 1 mg/ml sterile protein antigen(s) (UNIT 3.13), in PBS or suspension of irradiated or mitomycin C-treated stimulator cells expressing alloantigens at 8 × 10⁶ cells/ml (UNIT 3.11, support protocol) in complete RPMI-10 medium (APPENDIX 2)

Accessory cells: suspension of irradiated or mitomycin C-treated (or T cell-depleted) spleen cells syngeneic to the responding T cells at 5×10^6 cells/ml in complete RPMI-10 medium

4-ml conical tubes

96-well flat-bottom microtiter plates with lids

- 1. Follow steps 1 to 3 of the first basic protocol for preparation of responder cells.
- 2. Prepare 4-fold dilution series of the antigens in 4-ml conical tubes, using complete RPMI-10.

The following dilutions are recommended: 100, 10, 1, and 0.1 μ g/ml protein antigens and 8, 4, 2, and 1×10^6 cells/ml of stimulator cells in complete medium.

3. Add antigens to 96-well flat-bottom microtiter plates, at 30 μ l/well for protein antigens or 100 μ l/well for cellular antigens. For each experimental group, set up three replicate wells and include control wells with medium only (no antigen).

By using four concentrations of antigens and three replicate wells for each dose, one row of a microtiter plate will cover the entire tested range.

4. Add responder T cells in 0.1 ml to each well.

Purified T cells are recommended; otherwise extremely high background values may be obtained. This appears to be due in part to proliferation of recruited cells (T and non-T) that are not antigen-specific. If unfractionated lymph node cells from recently primed mice are used, add $1-2\times10^5$ cells per well and proceed to step 6.

5. If purified lymph node T cells specific for protein antigens are used, add 0.1 ml of accessory spleen cells syngeneic to the donor of the responder T cells at 5×10^5 cells per well.

Purified T cells require an exogenous source of accessory non-T cells. Accessory cells function both as antigen-presenting cells and as a source of undefined "second signals." They are not required for cell preparations primed against cellular antigens, because accessory cell function is provided by the stimulator cells.

6. Proceed as in steps 7 to 9 of the basic protocol.

Culture periods before labeling can vary widely and kinetic assays should be performed. In general, for T cells from primed mice, it is likely that the response will peak at day 4 or 5.

REAGENTS AND SOLUTIONS

Percoll solution

Diluent: 45 ml 10× PBS, pH 7.4 (APPENDIX 2) 3 ml 0.6 M HCl 132 ml H₂O Filter sterilize

70% Percoll solution:
63 ml Percoll (Pharmacia LKB #170891-01)
37 ml sterile diluent (above)
Final osmolarity should be 310 to 320 osM

COMMENTARY

Background Information

Proliferative assays for measuring T cell function have certain advantages and disadvantages compared to the cytotoxic Tlymphocyte (CTL) assay described in UNIT 3.11 or the lymphokine production assays in UNIT 3.11 or the lymphokine production assays in UNIT 3.15 & 6.3. Advantages are that proliferative assays are less time-consuming, less labor-intensive, less cell-consuming, and less expensive than "true" effector T cell function assays. A disadvantage is that antigen specificity is not as easily demonstrated in proliferative assays as in CTL assays, unless antigen-specific clones of proliferating cells are used. Furthermore, the proliferative assay only detects dividing cells instead of measuring true effector T cell function.

It is not clear which T cell function is measured in proliferative assays; the proliferative response should therefore be used solely as general indicators of T cell reactivity. Data obtained in proliferative assays might variously reflect proliferation of CTL, lymphokine-producing T cells, or nonactivated "bystander" cells, and will be severely affected by the function of non-T cells such as accessory cells (see below). Since the majority of T cells respond to and produce IL-2 upon activation. differences in responsiveness in a proliferative assay in part reflect differences in IL-2 production by the responding T cells. Proliferative assays therefore become more meaningful when combined with the lymphokine detection assays presented in UNITS 3.15 & 6.3. Since responsiveness to IL-2 is also determined by the levels and functionality of IL-2 receptors, further information will be added by including measurements of IL-2 receptors (UNIT 61) or by flow cytometry (UNIT 5.4). Yet, as a first approximation of cellular activation, proliferative assays are valuable.

Critical Parameters and Troubleshooting

Parameters affecting the magnitude of T cell proliferative responses include cell concentration, type of medium, source of serum, incubator conditions (CO₂ level and humidity), type and concentration of activating agent, type of responding T cells, type of accessory/stimulator cells, mouse strain, and culture time. Optimal conditions for individual laboratories and experiments must be derived empirically with respect to these variables, but general guidelines are provided below.

A number of agents can be employed in the first basic protocol to induce T cell proliferation (Table 3.12.1). T cells may be activated by pharmacologic means by producing an elevation of intracellular free calcium with a calcium ionophore combined with activation of protein kinase C with a phorbol ester. The most direct means of inducing T cell activation involves stimulation with monoclonal antibodies that interact with the CD3/TCR complex—i.e., anti-CD3, anti-TCR-αβ or -γδ, as well as anti-VB antibodies that are capable of interacting with a subset of cells bearing a specific TCR. A vigorous T cell proliferative response of defined subsets can also be induced with certain bacterial toxins known as staphylococcal enterotoxins. These toxins are often referred to as "superantigens" (Marrack and Kappler, 1989) because they stimulate T cells via the variable (V) gene segment of the TCR. Different toxins have affinities for different VB chains and these specificities make them valuable reagents for activating T cells. The activating capacity of toxins is also dependent on their ability to bind to MHC class II molecules (i.e., responding T cells react with the toxin/class II complex); thus, responsiveness varies with the

mouse strain used. Lectins such as phytohemagglutinin (PHA) and concanavalin A (Con A) have been widely used for many years to activate T cells. Although the precise mechanism of action of these agents is unknown, it is likely that lectins activate T cells by indirectly cross-linking the TCR because TCR-negative cells will not respond to these agents. Lastly, it is also possible to induce T cell activation with monoclonal antibodies to cell-surface antigens other than the TCR; this protocol employs the G7 monoclonal antibody, one of the most effective of the anti-Thy-1 activators (Gunter et al., 1984).

When comparing the reactivity of different cell populations, it is essential to perform dose-response assays for responder T cells and activating agents and for both responder and stimulator T cells (in MLR), since each population may yield optimal responses at different cell numbers. This may reflect differences in frequency of responding cells, and hence may indicate a need to perform limiting dilution assays (UNIT 3.15). Since peak responsiveness of different times, it is also essential to perform kinetic experiments—i.e., compare responsiveness at days 2, 3, 4, and 5.

Differences in responsiveness need not necessarily be due to differences in the frequency of responding T cells, but may also indicate differences in the efficacy with which co-stimulatory activity or "second signals" are delivered by the accessory cells present in different cell populations. The type of interactions pertinent to the generation of primary responses by T cells is explained in the commentaries of UNITS 3.8, 3.11, & 3.13. Specific requirements for inducing activation with immobilized antibodies have been described (Staerz and Bevan, 1986; Hathcock et al., 1989; Jenkins et al., 1990). A responding cell population completely devoid of accessory cells (such as purified populations of splenic or lymph node T cells or cloned T cells) will yield fine responsiveness in an MLC, since accessory cell function is provided by the stimulator cells; however, the same population will generally not yield responses when mitogens, antigens, or enterotoxins are used. In such a setting, accessory cells may also function as antigen-presenting cells (APC). Addition of irradiated or mitomycin C-treated syngeneic sources of accessory cells (either whole spleen cells or purified APC; see first support protocol) can be used to restore responsiveness in purified T cells. The need for accessory cells can sometimes be bypassed when anti-TCR monoclonal antibodies are coupled to plastic, or when certain anti-Thy-1 monoclonal antibodies are used; however, these conditions do not necessarily result in optimal responsiveness (Jenkins et al., 1990).

The level of [³H]thymidine incorporation should not be regarded only as a reflection of cellular proliferation: some nondividing cells will synthesize DNA and "cold" thymidine released by disintegrating cells will compete with incorporation of labeled thymidine. Therefore, measurements of DNA synthesis should be accompanied by counting viable cells over the length of the culture period if a true estimate of cellular proliferation is to be obtained. Of course, cell death of nonactivated cells will also interfere with the accuracy of this last parameter.

The sensitivity of proliferation assays is such that small errors in cell numbers will result in large differences in [3H]thymidine incorporation values. When values obtained in triplicate cultures correspond poorly (e.g., >5% difference in cpm values >1000), technical problems such as cell clumping, dilution, and pipetting should be considered. Excessively high values may be obtained from contaminated wells, as [3H]thymidine will be incorporated into replicating bacteria; therefore, it is good practice to check the wells from microtiter plates under an inverted microscope for contamination. Contamination may also interfere with proliferation of the activated lymphocytes.

It is also useful to check for blast formation by microscopic examination of the cultures: activated lymphocytes will tend to enlarge, and detection of blasts will give a general indication of successful activation.

The main problem that may occur with proliferative response assays is high levels of background [3H]thymidine incorporation in control cultures without antigens. This problem is frequently due to the fetal calf serum (FCS) used to supplement the cultures, which may be mitogenic for B cells. Different lots of FCS should be screened to select those that are nonstimulatory or only weakly stimulatory in the absence of other stimuli, and that support strong proliferative responses upon antigenic stimulation of T cells.

If flat-bottom microtiter plates are used in the procedure and weak responses occur, it may be useful to switch to round-bottom plates. Our laboratory has found consistently better responses in round-bottom plates when

thymocytes are used as responder cells or with slight alloantigenic differences between responding and stimulating cells. In addition, antibody-mediated experiments yield better results with round-bottom plates. Presumably, this reflects better cell contact obtained in such plates; optimal responses will almost certainly occur at different cell numbers than in flat-bottom plates and densities will have to be adjusted accordingly.

Although satisfactory responses to most alloantigens can be obtained with complete RPMI-10 medium, it may be necessary to compare different media. This need arises when the proliferative responses are weak (i.e., when [3H]thymidine values for activated cultures are <10-fold higher than those for control cultures) and may occur under various circumstances: weak alloantigenic differences between responder and stimulator cells, weak T cell proliferative function in the responder cells or diminished APC function in the stimulator cells due to experimental manipulations, or a low precursor frequency of responding T cells. Thymocytes in particular do not contain a high level of responding T cells. Frequently, proliferation can be improved when complete Clicks or Dulbeccos media are used (with additives as described in APPENDIX 2), presumably because these media contain additional nutrients and have an osmolarity more compatible with mouse serum than RPMI.

When RPMI is used as medium, 5% CO₂ will be sufficient, but for other media, a 7.5% CO₂ concentration in the incubator will be more satisfactory. Generally, the buffering capacity of DMEM is insufficient at 5%, but fine at 7.5%. Much will also depend on the proliferative activity of the responding population of T cells (e.g., vigorous proliferation will reduce the pH in the cultures); it is therefore recommended to compare responsiveness in initial pilot experiments in incubators set at different CO₂ concentrations.

The culture period required for stimulation—after which the cells are to be labeled varies for different laboratories, media, and types of responding and stimulator cells. Conditions eliciting weak responses, such as those obtained with thymocytes or a weak alloantigenic difference, will require a longer culture period (5 to 6 days) than those which elicit a higher frequency of responding T cells (3 to 4 days). Because laboratory conditions vary, it will be necessary to run a kinetic assay to determine the optimal time for T cell proliferation. Addition of [³H] thymidine on days 2, 3, 4, 5, and 6 will provide a useful test; further extension of the culture period will not yield any improvements, due to exhaustion of nutrients in the medium.

Anticipated Results

For proliferative assays described in the basic protocol, which activate the majority of the responding T cells, responses of 100,000 cpm should be obtained; in the MLR or following activation with monoclonal antibodies to subpopulations of T cells (anti-V β), responses up to 100,000 cpm may be observed; however, measurements of 20,000 cpm (with tight standard errors) can be quite satisfactory. Background values of <1000 cpm should be expected. Reported results (as described in step 9a) should be mean cpm of experimental wells minus background cpm (Δ cpm).

Time Considerations

The time required to set up proliferative assays is not more than a day, with the number of hours depending on the number of different groups of responder cells that must be prepared. The time required for incubation of cells ranges from 2 to 6 days, as noted above in critical parameters. Following an additional 18- to 24-hr incubation period for pulsing, harvesting the cells and measuring cpm will require several hours depending on the number of plates (~15 min for harvesting each plate and ~100 min for counting each plate at 1 min/sample).

Literature Cited

- Ashwell, J.D., DeFranco, A.L., Paul, W.B., and Schwartz, R.H. 1984. Antigen presentation by resting B cells: Radiosensitivity of the antigenpresentation function and two distinct pathways of T cell activation J. Exp. Med. 159:861-869.
- Gunter, K.C., Malek, T.R., and Shevach, E.M. 1984. T cell activating properties of an anti-Thy-1 monoclonal antibody: Possible analogy to OKT3/ Leu-4. J. Exp. Med. 159:716-730.
- Hathcock, K.S., Segal, D.M., and Hoder, R.J. 1989. Activation of Lyt2[†] (CD8[†]) and Lyt2[†] (CD4[†]) T cell subsets by anti-receptor antibody. *J. Immunol.* 142:2181-2186.
- Jenkins, M.K., Chen, C., Jung, G., Mueller, D.L., and Schwartz, R.H. 1990. Inhibition of antigenspecific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J. Immunol. 144:16-22.
- Marrack, P. and Kappler, J. 1989. The staphylococcal enterotoxins and their relatives. Science 248:705-711.

Staerz, U.D. and Bevan, M.J. 1986. Activation of resting Tlymphocytes by a monoclonal antibody directed against an allotypic determinant on the T cell receptor. Eur. J. Immunol. 16:263-268.

Key References

Corradin, G., Etlinger, H.M., and Chiller, M. 1977. Lymphocyte specificity to protein antigens. I. Characterization of the antigen-induced in vitro T cell dependent proliferative response with lymph node cells from primed mice. J. Immunol. 119:1048-1055.

Rosenwasser, L.J. and Rosenthal, A.S. 1978. Adherent cell function in murine Tlymphocyte antigen recognition. I. A macrophage-dependent T cell proliferation assay in the mouse. *J. Immunol.* 120:1991-1998.

Both of the above describe how specific proliferation of antigen-primed T cells can be measured. Strong, D.M., Ahmed, A.A., Thurman, G.B., and Sell, K.W. 1973. In vitro stimulation of murine spleen cells using a microculture system and a multiple automated sample harvester. J. Immunol. Methods 2:279-287.

Details the MLC proliferation assay.

Contributed by Ada M. Kruisbeek Netherlands Cancer Institute Amsterdam, The Netherlands

Ethan Shevach
National Institute of Allergy and
Infectious Diseases
Bethesda, Maryland

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.