- **5.29** Let $\mathcal{Y} = L^1(\mu)$ where μ is the counting measure on \mathbb{N} , and let $\mathcal{X} = \{f \in \mathcal{Y} \mid \sum_{1}^{\infty} n |f(n)| < \infty\}$, equipped with the L^1 norm.
 - a. \mathcal{X} is a proper dense subspace of \mathcal{Y} ; hence \mathcal{X} is not complete.
 - b. Define $T: \mathcal{X} \to \mathcal{Y}$ by Tf(n) = nf(n). Then T is closed but not bounded.
 - c. Let $S = T^{-1}$. Then $S: \mathcal{Y} \to \mathcal{X}$ is bounded and surjective but not open.
- **Solution** a. It is easy to see that \mathcal{X} is a subspace. $0 \in \mathcal{X}$. It is closed under addition by using the triangle inequality and splitting the sum, and it is clearly closed under scaling, so \mathcal{Y} is a subspace of \mathcal{X} .

Let $f \in \mathcal{Y}$, and let $\varepsilon > 0$.

Since f is integrable, there exists $N \in \mathbb{N}$ so that

$$\sum_{n=N_1}^{\infty} |f(n)| < \frac{\varepsilon}{2}.$$

Then for $1 \le n \le N-1$, set g(n)=f(n), and for $n \ge N$, set g(n)=f(n) for $n \le N-1$ and 0 for $n \ge N$. Then

$$||f - g|| = \sum_{n=1}^{\infty} |f(n) - g(n)| = \sum_{n=N}^{\infty} |f(n)| < \varepsilon.$$

Moreover, ng(n) is summable since it has finite support. Thus, \mathcal{X} is dense in \mathcal{Y} .

It is also not dense, since $f(n) = 1/n^2$ is in $L^1(\mu)$, but nf(n) is not, since it diverges. Hence, \mathcal{X} is a proper dense subspace of \mathcal{Y} .

b. Let $\{Tf_k(n)\}\subseteq T(\mathcal{X})$ be a sequence which converges to f(n) in \mathcal{Y} . By definition

$$\sum_{n=1}^{\infty} |nf_k(n) - f(n)| \xrightarrow{k \to \infty} 0.$$

This forces $|nf_k(n) - f(n)| \xrightarrow{k \to \infty} 0$ for each $n \ge 1$. Thus, $f_k(n)$ must converge to f(n)/n, which is in \mathcal{X} since f(n) is summable. Hence, f(n) = Tf(n)/n, so T is closed.

Now consider $\chi_{\{m\}}$. It's clearly an element of \mathcal{X} with norm 1, but

$$||T\chi_{\{m\}}|| = \sum_{n=1}^{\infty} \chi_{\{m\}} = m.$$

This works for any m, which shows that T is unbounded.

c. Notice that $||T^{-1}f|| \le ||f||$, since each term is smaller, for any $f \in L^1(\mu)$. In particular, it works for ||f|| = 1, which shows that $||T^{-1}||$ is bounded by 1.

If $f(n) \in \mathcal{X}$, then by definition, $nf(n) \in L^1(\mu)$ and $T^{-1}nf(n) = f(n)$, so T^{-1} is surjective.

 T^{-1} being open is equivalent to T be continuous, which implies that it is bounded, which is impossible by part (b). Thus, T^{-1} is not open.

- **5.37** Let \mathcal{X} and \mathcal{Y} be Banach spaces. If $T: \mathcal{X} \to \mathcal{Y}$ is a linear map such that $f \circ T \in \mathcal{X}^*$ for every $f \in \mathcal{Y}^*$, then T is bounded.
- **Solution** By the closed graph theorem, it's enough to show that $\Gamma(T)$ is closed.

Let $\{(x_n, Tx_n)\}\subseteq \Gamma(T)$ be a sequence which converges to $(x,y)\in \mathcal{X}\times\mathcal{Y}$.

Suppose $y \neq Tx$. Since $f \circ T \in \mathcal{X}^*$, it is continuous, so $(f \circ T)(x_n) \xrightarrow{n \to \infty} (f \circ T)(x)$ for any $f \in \mathcal{Y}$. Similarly, f is continuous, so $f(Tx_n) \xrightarrow{n \to \infty} f(y)$.

By Hahn-Banach, \mathcal{Y}^* separates points, so there exists $f \in \mathcal{Y}$ so that $f(y) \neq f(Tx)$. But this contradicts the above, so y = Tx. Thus, $\Gamma(T)$ is closed, so T is bounded.

- **5.38** Let \mathcal{X} and \mathcal{Y} be Banach spaces, and let $\{T_n\}$ be a sequence in $L(\mathcal{X}, \mathcal{Y})$ such that $\lim T_n x$ exists for every $x \in \mathcal{X}$. Let $Tx = \lim T_n x$; then $T \in L(\mathcal{X}, \mathcal{Y})$.
- **Solution** We'll first show linearity: Let $x, y \in \mathcal{X}$ and $\lambda \in K$. Then because the limit of a sum of limits that exist is the sum of the limits,

$$T_n(x+y) = T_n(x) + T_n(y) \implies T(x+y) = T(x) + T(y).$$

Similarly, $T_n(\lambda x) = \lambda T_n x \implies T(\lambda x) = \lambda T x$, so T is linear. We now need to show that T is bounded.

Notice that $\sup_n ||T_n x|| < \infty$ for all $x \in \mathcal{X}$, since the limit exists for each x. By the uniform boundedness principle, $\sup_n ||T_n|| < \infty$, so $||T|| < \infty$. Hence, T is bounded.

- **5.45** The space $C^{\infty}(\mathbb{R})$ of all infinitely differentiable functions on \mathbb{R} has a Fréchet space topology with respect to which $f_n \to f$ iff $f_n^{(k)} \to f^{(k)}$ uniformly on compact sets for all $k \geq 0$.
- **Solution** For each $j \ge 1$, consider the compact set $K_j := \overline{B(0,j)}$, and for each $k \ge 0$, consider the seminorms

$$\rho_{(j,k)}(f) \coloneqq \sup_{x \in K_j} \left| f^{(k)}(x) \right|.$$

This is a seminorm since it is a norm on $C(\mathbb{R})$, and there are countably many since \mathbb{N}^2 is countable.

With this topology, $C^{\infty}(\mathbb{R})$ is complete, as seen on a previous homework assignment. Indeed, if f'_n converges uniformly to g, then f_n converges to a function f with f' = g, i.e., the limit function is in $C^1(\mathbb{R})$. By induction, this tells us that the limit function is in $C^{\infty}(\mathbb{R})$.

The space is also Hausdorff, since $p_{(j,1)}$ will separate different functions for j sufficiently large.

$$"\Longrightarrow"$$

Suppose $f_n \to f$ in the topology generated by these seminorms.

Let K be a compact set in \mathbb{R} . Then there exists $j \geq 1$ so that $K \subseteq K_j$. By definition,

$$\sup_{x \in K} \left| f^{(k)}(x) - f_n^{(k)}(x) \right| \le \sup_{x \in K_j} \left| f^{(k)}(x) - f_n^{(k)}(x) \right| = \rho_{(j,k)}(f - f_n) \xrightarrow{n \to \infty} 0,$$

for any $k \ge 0$, so $f_n^{(k)}$ converges to $f^{(k)}$ locally uniformly.

Suppose $f_n^{(k)} \to f^{(k)}$ locally uniformly. In particular, the sequences converges uniformly on each K_j , so

$$\rho_{(j,k)}(f - f_n) = \sup_{x \in K_j} \left| f^{(k)}(x) - f_n^{(k)}(x) \right| \xrightarrow{n \to \infty} 0$$

for every $j \geq 1$, so $f_n \to f$ in the topology generated by the seminorms.

Thus, $C^{\infty}(\mathbb{R})$ is a Fréchet space.

- **5.51** A vector subspace of a normed vector space \mathcal{X} is norm-closed iff it is weakly closed.
- **Solution** Let \mathcal{M} be a vector subspace of \mathcal{X} .

$$"\Longrightarrow"$$

For any $x \in \mathcal{X} \setminus \mathcal{M}$, because \mathcal{M} is norm-closed, Hahn-Banach gives us a linear functional $f_x \in \mathcal{X}^*$ so that $f_x|_{\mathcal{M}} = 0$ and $f_x(x) \neq 0$. Notice that ker f_x is weakly closed, since ker $f_x = f_x^{-1}(\{0\})$. Lastly,

$$\mathcal{M} = \bigcap_{x \in \mathcal{X} \setminus \mathcal{M}} \ker f_x.$$

" \subseteq " is clear from construction of each f_x . Conversely, if x is in the right-hand side, then $x \in \mathcal{M}$, or else $f_x(x) \neq 0$. Thus, \mathcal{M} is a weakly closed subspace of \mathcal{X} .

Let $\{x_n\}\subseteq \mathcal{M}$ converge to x in \mathcal{X} in norm, and let f be a linear functional on \mathcal{X} . Then

$$|f(x - x_n)| \le ||f|| ||x - x_n|| \xrightarrow{n \to \infty} 0$$

by assumption. This is holds for any f, so $x_n \to x$ weakly, so $x \in \mathcal{M}$.

- **5.53** Suppose that \mathcal{X} is a Banach space and $\{T_n\}$, $\{S_n\}$ are sequences in $L(\mathcal{X}, \mathcal{X})$ such that $T_n \to T$ strongly and $S_n \to S$ strongly.
 - a. If $\{x_n\} \subseteq \mathcal{X}$ and $||x_n x|| \to 0$, then $||T_n x_n Tx|| \to 0$.
 - b. $T_n S_n \to TS$ strongly.
- **Solution** a. By Exercise 47(a), we have $M := \sup_n ||T_n|| < \infty$. Thus,

$$||T_n x_n - Tx|| \le ||T_n x_n - T_n x|| + ||T_n x - Tx||$$

$$\le ||T_n|| ||x_n - x|| + ||T|| ||x_n - x||$$

$$\le 2M ||x_n - x|| \xrightarrow{n \to \infty} 0$$

as required.

b. Let $x \in \mathcal{X}$. By definition, we know that $||S_n x - Sx|| \xrightarrow{n \to \infty} 0$. Thus, if we set $y_n = Sx_n$ and y = Sx, part (a) gives

$$||T_n S_n x - T S x|| = ||T_n y_n - T y|| \xrightarrow{n \to \infty} 0,$$

so $T_nS_n \to TS$ strongly.