Сравнение вращаемой и сдвиговой множественных развёрток по количеству вычислений целевой функции в задачах без ограничений

1 Реализация алгоритма с множественными развёртками

Алгоритм реализован на языке C++ с использованием линейных структур данных для хранения поисковой информации. Сложность выполнения каждой итерации алгоритма O(k), где k — номер итерации.

Реализация поддерживает полноценную индексную схему, ε -резервирование и локальную адаптацию (схема Маркина-Стронгина). Поддержки параллельных вычислений нет.

Данная реализация не использует код системы Globalizer.

2 Классы тестовых задач и методика проведения экспериментов

Операционные характеристики метода с различными множественнными развёртками сторились на следующих классах задач: функции Гришагина (F_{GR}), GKLS 2d Simple (gklsS2d), GKLS 2d Hard (gklsH2d), GKLS 3d Simple (gklsS3d).

Для каждого класса задач и каждого типа развёртки были предприняты попытки провести следующие эксперименты:

- 1. решить все задачи при одинаковом для всех развёрток значении r с остановкой по попаданию в окрестность известного оптимума;
- 2. решить все задачи при одинаковом для всех развёрток значении r с остановкой по точности;
- 3. решить все задачи при минимальном допустимом для каждой конфигурации развёртки в отдельности значении параметра r с остановкой по попаданию в окрестность известного оптимума;
- 4. решить все задачи при минимальном допустимом для каждой конфигурации развёртки в отдельности значении параметра r с остановкой по точности;

В последних двух случаях подбор минимального значения r такого, что решаются все задачи класса, осуществлялся с точностью 0.1 для каждого типа развёртки в отдельности и для каждого значения L (количество развёрток).

В связи с тем, что в представленной реализации АГП используются только линейные структуры данных, не для всех классов указанные 4 типа эспериментов были проведены. Решение некоторых задач из сложных классов требует порядка 10^6 испытаний и занимает несколько часов на одну задачу. В этом случае подобрать минимальное значение r для каждой развёртки очень затратно.

В таблицах 1, 2, 3, 6 указаны эксперименты, которые были проведены. Каждый эксперимент включает в себя решение всех задач класса при l=1,2,3 для вращаемой развёртки и l=1,2,3,4 для сдвиговой.

Таблица 1: Эксперименты, проведённые при минимальном значении r с остановкой по попаданию в окрестность оптимума

Тип развёртки	F_{GR}	gklsS2d	gklsH2d	gklsS3d
вращаемая, $L=1$	+	+	+	+
вращаемая, $L=2$	+	+	+	+
вращаемая, $L=3$	+	+	+	+
сдвиговая, $L=1$	+	+	+	+
сдвиговая, $L=2$	+	+	+	+
сдвиговая, $L=3$	+	+	+	+
сдвиговая, $L=4$	+	+	-	-

Таблица 2: Эксперименты, проведённые при минимальном значении r с остановкой по точности

Тип развёртки	F_{GR}	gklsS2d	gklsH2d	${ m gklsS3d}$
вращаемая, $L=1$	+	+	+	-
вращаемая, $L=2$	+	+	+	=
вращаемая, $L=3$	+	+	=	=
сдвиговая, $L=1$	+	+	+	-
сдвиговая, $L=2$	+	+	=	=
сдвиговая, $L=3$	+	+	-	-
сдвиговая, $L=4$	+	+	-	-

Таблица 3: Эксперименты, проведённые при одинаковом значении r с остановкой по попаданию в окрестность оптимума

Тип развёртки	F_{GR}	gklsS2d	gklsH2d	gklsS3d
вращаемая, $L=1$	+	+	+	+
вращаемая, $L=2$	+	+	+	+
вращаемая, $L=3$	+	+	+	+
сдвиговая, $L=1$	+	+	+	+
сдвиговая, $L=2$	+	+	+	+
сдвиговая, $L=3$	+	+	+	+
сдвиговая, $L=4$	+	+	-	-

Таблица 4: Эксперименты, проведённые при одинаковом значении r с остановкой по точности

Тип развёртки	F_{GR}	${ m gklsS2d}$	gklsH2d	${ m gklsS3d}$
вращаемая, $L=1$	+	+	+	+
вращаемая, $L=2$	+	+	+	+
вращаемая, $L=3$	+	+	-	-
сдвиговая, $L=1$	+	+	+	+
сдвиговая, $L=2$	+	+	-	-
сдвиговая, $L=3$	+	+	-	-
сдвиговая, $L=4$	+	+	-	=

Рис. 1: F_{GR} , остановка по попаданию в окрестность, минимальное значение r

Во всех экспериментах с остановкой по попаданию в окрестность глобального минимума использовалось значение $\varepsilon=10^{-2}$. При остановке по точности $\varepsilon\in[10^{-3};5\cdot10^{-3}]$ в зависимости от класса задач. Также в некоторых случаях для ограничения, порождаемого сдвиговой развёрткой, использовалось ε -резервирование величиной 0.05. Для сложных классов был задействован смешанный локально-глобальный алгоритм с параметром смешивания q=4.

2.1 Операционные характеристики

Операционные характеристики были построены практически для всех столбцов таблиц из предыдущего раздела. В случае сдвиговой развёртки наличие дополнительного ограничения не учитывались при построении операционных характеристик. При проведении экспериментов было замечено, что включение ε -резервирования практически не влияет на среднее количество вычислений целевой функции и на вид операционной характеристики.

2.1.1 Класс F_{GR}

Преимущество сдвиговой развёртки над стандартным методом наблюдается только при минимальном значении r, причём в случае остановки по точности, ускорение сходимости более заметно. Ускорения от использования вращаемой развёртки нет.

В случае остановки по попаданию в окрестность, сдвиговая развёртка теряет преимущество, но наблюдается интересный эффект ускорения от её использования при L=1, когда метод работает с одной развёрткой и "нулевым"ограничением.

Рис. 2: F_{GR} , остановка по точности, минимальное значение r

Рис. 3: F_{GR} , остановка по попаданию в окрестность, r=3.0

Рис. 4: F_{GR} , остановка по точности, r=3.1

2.1.2 Класс gklsS2d

В случае остановки по попаданию в окрестность оптимума, преимуществ от использования множественных развёрток нет.

При остановке по точности ускорение от сдвиговой развёртки отностительно других есть как с минимальным подобранным r, так и при одинаковом значении надёжности для всех экспериментов.

Эффект ускорения при использовании одной сдвиговой развёртки так же проявляется в некоторых экспериментах.

Рис. 5: gklsS2d, остановка по попаданию в окрестность, минимальное значение r

Рис. 6: gklsS2d, остановка по точности, минимальное значение r

Рис. 7: gklsS2d, остановка по попаданию в окрестность, r=5.0

Рис. 8: gklsS2d, остановка по точности, r=4.6

Рис. 9: gklsH2d, остановка по попаданию в окрестность, минимальное значение r

2.1.3 Класс gklsH2d

Для этого класса удалось провести только эксперименты с одинаковым r для всех вариантов метода. Преимуществ от использования множетвенных развёрток не выявлено.

Рис. 10: gklsH2d, остановка по попаданию в окрестность, r=6.6

2.1.4 Класс gklsS3d

Для этого класса удалось провести только эксперименты с одинаковым для всех вариантов метода значением r. При подборе минимального r сдвиговая развёртка демонстирирует преимущество.

Рис. 11: gklsS3d, остановка по попаданию в окрестность, минимальное значение r

Рис. 12: gklsS3d, остановка по попаданию в окрестность, r=5.0

2.2 Среднее количество вычислений целевой функции

В этом разделе приведено среднее значение количества обращений к целевой функции и к дополнительному ограничению в случае вращаемой развёртки для каждого эксперимента. Также в каждом эксперименте вычислены отношение количества обращений к нулевому ограничению к количеству обращений к целевой функции ($\frac{constraint}{objective}$ ratio) и ускорение по обращениям к целевой функции от использования сдвиговой развёртки сравнению с методом с одной развёрткой ($\frac{single_objective}{shifted_objective}$).

Таблица 5: Класс F_{GR} , остановка по точности, минимальное значение $r, \varepsilon_r = 0$

L	Constraint	Objective (shifted)	$\frac{constraint}{objective}$ ratio	Objective (rotated)	$\frac{single_objective}{shifted_objective}$ ratio
1	1529.98	941.89	1.64	1216.72	1.29
2	1835.45	928.93	1.97	1215.93	1.31
3	1893.67	840.6	2.25	1532.94	1.45
4	2690.71	737.18	3.65	=	1.65

Таблица 6: Класс F_{GR} , остановка по попаданию в окрестность, минимальное значение r, $\varepsilon_r=0$

L	Constraint	Objective (shifted)	$\frac{constraint}{objective}$ ratio	Objective (rotated)	$\frac{single_objective}{shifted_objective}$ ratio
1	356.15	169.52	2.10	189.16	1.12
2	555.52	172.94	3.21	193.65	1.09
3	476.61	162.34	2.93	216.94	1.17
4	931.61	188.43	4.94	=	1.00

3 Предварительные выводы

- Вращаемая развёртка в лучшем случае не приносит увеличения количества вычислений целевой функции по сравнению с одной развёрткой, а чаще всего оно увеличивается. Это лучше всего видно в таблицах (столбец Objective (rotated)).
- При использовании сдвиговой развёртки количество обращений к дополнительному ограничению может на порядок превышать количество обращений к целевой функции, а это значит, что объем поисковой информации значительно превосходит таковой при использовании сдвиговых развёрток. Это продемонстрировано в столбце constraint objective ratio таблиц из предыдущего раздела.
- Использование множественных развёрток ведёт к более качественной оценке константы Гёльдера, а значит, можно использовать меньшее значение r, чем для метода с одной развёрткой. Завышение r чаще всего ведёт к более медленной сходимости метода с множественными развёртками, чем метода с одной развёрткой и тем же значением r. Это зависит от задач и критерия остановки.
- Сдвиговая развёртка обеспеивает преимущество над вращаемой при остановке по точности даже без подбора r (но только ели задачи достаточно сложные с токи зрения метода). Если работает критерий остановки по попаданию в окрестность оптимума, то ускорения от сдвиговой развёртки обнаружено не было.