幾何学II 演習の解説 (12/3)

1

(1) q>0 ならば $\widetilde{H}_q(X)\cong H_q(X)$ ですから,X の可縮性より $\widetilde{H}_q(X)\cong 0$ を得ます. $x=\sum_{i=1}^k a_ix_i\in S_0(X)$ を 0 次の被約鎖群のサイクルとします.つまり

$$\epsilon(x) = \sum_{i=1}^{k} a_i = 0$$

です.このときxは境界になっていることが次のようにしてわかります:

$$x = \sum_{i=1}^{k-1} a_i x_i + a_k x_k = \sum_{i=1}^{k-1} a_i x_i - (a_1 + \dots + a_{k-1}) x_k$$
$$= \sum_{i=1}^{k-1} a_i (x_i - x_k) = \partial_1 \sum_{i=1}^{k-1} a_i [x_k x_i].$$

ここで [ab] は 1 次の特異単体で,1 単体 $\Delta^1=I$ の境界をそれぞれ a,b に写すようなものです.X は可縮なので特に連結であり,従ってこのような特異単体が存在します.以上により $\widetilde{H}_0(X)=0$ がわかりました.

(2) これも 0 次のところだけ見れば十分です.次の図式を考えましょう:

$$0 \longrightarrow S_1(Y) \longrightarrow S_1(X) \longrightarrow S_1(X,Y) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow S_0(Y) \longrightarrow S_0(X) \longrightarrow S_0(X,Y) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathbb{Z} \stackrel{id}{\longrightarrow} \mathbb{Z} \longrightarrow 0 \longrightarrow 0$$

この図式は明らかに可換で , しかも横の列は全て完全です . 従ってホモロジー群の完全列を誘導します . 具体的に , 境界作用素による $[z]\in H_1(X,Y)$ の像 $\partial_*[z]\in \widetilde{H}_0(Y)$ を書いてみましょう .

 $[z]\in S_1(X,Y)$ の代表元 $z+i_*y\in S_1(X)$ を取ります.ただしこの z の取り方には, $y\in S_1(Y)$ だけの不定性がある訳です.[z] が $H_1(X,Y)$ の元を表わしていましたが,これは $\partial z\in S_0(Y)$ と見なせることを意味します.従っ

T $\partial(z+i_*y)\in S_0(X)$ はそのまま $S_0(Y)$ の元 $\partial z+\partial y$ と見なせます. ∂y は ホモロジーの元としては自明ですから, ∂z が $\partial_*[z]\in \widetilde{H}_0(Y)$ を表わします.これは必ずしも 0 ではないことに注意しましょう.例えば Y が連結でなければ, ∂z は(X では 0 ホモローグですが)Y では 0 ホモローグでないことが起こり得ます.

結果を見ると, $\partial_*[z]$ は y の選び方にはよらずに決まっていることがわかります.また $\partial_*[z]$ は確かに $\widetilde{H}_0(Y)$ の元です.実際,任意の特異 1 単体 x に対して,定義から $\epsilon(\partial x)=0$ です.

 $\mathbf{2}$

(1) \mathbb{R}^n の場合だけ示します $.D^n$ の場合も全く同様です .

$$f: \mathbb{R}^n \longrightarrow \{0\}, \quad f(x) = 0,$$

 $g: \{0\} \longrightarrow \mathbb{R}^n, \quad g(0) = 0$

とおきます . $f\circ g=id_{\{0\}}$ は明らかです . $g\circ f:\mathbb{R}^n\to\mathbb{R}^n$ と $id_{\mathbb{R}^n}$ の間のホモトピーは以下のように構成されます:

$$h: \mathbb{R}^n \times [0,1] \longrightarrow \mathbb{R}^n, \quad h(x,t) = tx.$$

h の連続性と $h(x,0)=g\circ x,\ h(x,1)=id_{\mathbb{R}^n}$ であることは明らかでしょう.h により, \mathbb{R}^n が一点 $\{0\}$ に「潰されて」いるわけです.以上により,ホモトピー同値 $\mathbb{R}^n\sim\{0\}$ がわかります.

(2) 錘の頂点にあたる点を p=[x,1] と書きます . CX を一点 p に「潰す」ことを考えます .

$$\begin{split} f:CX &\longrightarrow \{p\}, \quad f([x,s]) = p, \\ g:\{p\} &\longrightarrow CX, \quad g(p) = p \end{split}$$

とおきます.明らかに $f\circ g=id_{\{p\}}$ です. $g\circ f:CX\to CX$ と id_{CX} の間の ホモトピーは,(1) と同様に次のようにすればよいことがわかります:

$$h: CX \times [0,1] \longrightarrow CX$$
, $h([x,s],t) = [x,(1-t)s+t]$.

問題になるのは h の連続性でしょう.これは次の図式を見ればわかります:

 $\pi: X \times I \to CX$ は商写像です.また

$$\tilde{h}((x,s),t) = (x,(1-t)s+t)$$

です.この図式が可換であることはすぐにわかります.また, \tilde{h} は定義から連続で,商写像 π も連続です(商位相とは π が連続になるような位相です). 従って $\pi \times id_{[0,1]}$ も連続になります.

h の連続性を示すには,CX の任意の開集合 U に対して, $h^{-1}(U) \subset CX \times I$ が開集合であることを示せばよいわけです.まず $V=(\pi\circ \tilde{h})^{-1}(U) \subset (X \times I) \times [0,1]$ を考えます(上の図式で,上回り」で U を戻したわけです). $\pi\circ \tilde{h}$ の連続性から V は開集合です.

図式の可換性から,U を「下回り」で戻した $(h\circ (\pi\times id_{[0,1]}))^{-1}(U)=V$ で,これは開集合でした.知りたいのは $W=h^{-1}(U)$ ですが,明らかに $(\pi\times id_{[0,1]})^{-1}(W)=V$ です.一方,商位相及び積空間の位相の定義から

$$W$$
 が開集合 $\iff (\pi \times id_{[0,1]})^{-1}(W)$ が開集合

がすぐにわかります.これらと V が開集合であることから $W=h^{-1}(U)$ が 開集合であることが従い,h の連続性がわかります.

(3) K の頂点を任意に一つ選び,これを u と書くことにします.|K| の各点と u を繋ぐような「ただ一つの」道があり,これに沿って |K| を「縮めて」いけば,|K| は一点に潰れる,というのが大筋です.

まず,一つの1 単体でu と繋がっているような頂点 v_1,\ldots,v_k を考えます.これらとu を繋ぐ1 単体 e_1,\ldots,e_k に,u に向かうような向きを与えましょう.

$$v_j$$
 e_j u

次に,一つの 1 単体で v_1 と繋がっているような頂点 w_{11},\ldots,w_{1,n_1} に対し,これらと v_1 を繋ぐ 1 単体 e_{11},\ldots,e_{1,n_1} に,同じように v_1 に向かう向きをつけます. v_2,\ldots,v_k についても同じことを考えます.

以下同様にして,全ての 1 単体に向きをつけていきます.K が tree であることから,各 1 単体の向きは一意に定まります.つまり,u から他の頂点に向かう道は本質的に一通りしかないので,頂点 $v_1,\ldots,v_k,w_{11},\ldots,w_{1,n_1},w_{21},\ldots$ の中に同じものは決して現れず,従って一つの 1 単体に二つの向きがつくことはないのです.

この向きを使うと,|K| の各点 x に対し,u へ向かう「最短経路」 γ_x が定まり,しかもそれは x に対し連続に依存します.そこで

$$\begin{split} f:|K| &\longrightarrow \{u\}, \quad f(x) = u, \\ g:\{u\} &\longrightarrow |K|, \quad g(u) = u, \\ h:|K| \times [0,1] &\longrightarrow |K|, \quad h(x,t) = \gamma_x(t) \end{split}$$

とおけば , $f\circ g=id_{\{u\}},$ またホモトピー h により $g\circ f\sim id_{|K|}$ となります .

別解として,辺の数に関する帰納法を用いることもできます.第3回の解説にもあるとおり,treeKは必ず「端」を持ちます.端とは頂点vであって,

v を端点に持つような辺がただ一つであるようなものです.この辺を e とします.e の端点は v ともう一つあり,これを w とします.辺 e を一点 w に縮めると新たな $tree\ K'$ ができますが,これは明らかに K とホモトピー同値です.しかも K' は K より辺が一本少なくなっていますから,帰納法の仮定が使えて $K\sim K'\sim *$ となります.詳しくは各自で検証して下さい.