Université d'Antananarivo Domaine Sciences et Technologies Mention Info & Technologies AU 2022-2023 TD SÉRIE N° 2 L1 - Semestre 1 MATHÉMATIQUES GÉNÉRALES

THÉORIE DE GROUPE

Exercice 1 Soient (G,\cdot) un groupe, H et H' deux sous-groupes de G.

- 1)- Montrer que $H \cap H'$ est un sous-groupe de G.
- 2)- $H \cup H'$ est-il un sous-groupe de G?

Exercice 2 Soient (G, \cdot) un groupe commutatif, H et H' deux sous-groupes de G. On définit l'ensemble $H + H' = \{x + x' \mid x \in H, x' \in H'\}$

Montrer que l'ensemble H+H' est un sous-groupe de G.

Exercice 3 Soit H un sous-groupe de G et soit $a \in G$. On note aHa^{-1} l'ensemble définie par: $aHa^{-1} = \{aha^{-1} \mid h \in H\}$.

- 1)- Montrer que aHa^{-1} est un sous-groupe de G.
- 2)- Si H est fini, que vaut $o(aHa^{-1})$?

Exercice 4 Soit G un groupe et H un sous-groupe de G.

On dit que H est un sous-groupe distingué de G si $\forall x \in G$, on a xH = Hx, où xH et Hx désignent respectivement la classe à gauche et la classe à droite de H par la relation d'équivalence définie par H notée \mathcal{R}_H :

$$(x\mathcal{R}_H y \quad ssi \quad x^{-1}y \in H).$$

- 1)- Montrer que les assertions suivantes sont équivalentes:
- (i) xH = Hx;
- (ii) $H = xHx^{-1}$;
- (iii) $H = x^{-1}Hx$
- 2)- Montrer que l'intersection de deux sous-groupes distingués de G est un sous-groupe distingué de G (i.e. $xH\cap xH'=x(H\cap H')$).

Exercice 5 Soit (G, \cdot) un groupe quelconque.

1- Pour tout $a \in G$, on appelle normalisateur ou centralisateur de a dans G l'ensemble noté N(a) et défini par:

$$N(a) = \{ x \in G \mid xa = ax \}.$$

Montrer que N(a) est un sous-groupe de G.

2- Soit H un sous-groupe de G. On appelle centralisateur de H l'ensemble défini noté C(H) définit par

$$C(H) = \{ x \in G \mid xh = hx, \forall h \in H \}$$

Montrer que C(H) est un sous-groupe de G.

3- On appelle $centre\;$ de G l'ensemble noté Z(G) défini par :

$$Z(G) = \{ z \in G \mid zx = xz, \forall x \in G \}$$

Montrer que Z(G) est un sous-groupe de G.

Exercice 6 Soient G un groupe et $a \in G$.

Montrer que l'application $\Phi: G \longrightarrow G$, $x \mapsto \Phi(x) = axa^{-1}$ est un isomophisme.

Exercice 7 Pour $a, b \in \mathbb{R}$, on définit l'application $\tau_{ab} : \mathbb{R} \longrightarrow \mathbb{R}$, $x \mapsto ax + b$. Notons G l'ensemble $G = \{\tau_{ab}(x) \mid a \neq 0\}$.

- 1)- Montrer que (G, \circ) muni de la composition d'aplication \circ est un groupe.
- 2)- Soit $H = \{ \tau_{ab} \mid a \text{ est rationnel} \}.$
- (a)-Montrer que H est un sous-groupe de G.
- (b) Énumérer toutes les classes à gauche de G et les classes à droite de G suivant H.
- 3)- Soit $N = \{ \tau_{ab} \in G \}$.
- (a)-Montrer que N est un sous-groupe distingué de G.
- (b)- Montrer que G/N est isomorphe au groupe des nombres $r\cdot s$ non nuls muni de la loi multiplication ".".