Chapter 07: Fundamentals of Inferential Statistics

X

Introduction to Statistics in Kinesiology

Furtado JR., O

Cal State Northridge

updated: 2022-02-16

From sample to population

- Inferential statistics: the process of estimating population parameters based on sample statistics.
- 1. Difficult to access entire population
- 2. Population estimation is made based on sample

Statistic > Parameter

Parameter vs Statistic

Parameter is a characteristic of the population, while *stastistic* is an estimate of a parameter based on the information obtained from a sample.

Measurement	statistics	parameter
Population Proportion	р	Р
Data points	X	Χ
Population mean	$ar{x}$	μ
Standard deviation	S	σ
Variance	s^2	σ^2
Number of persons/objects	n	N
Correlation coefficient	r	ρ

Also:

H₀: for **null hypothesis**

H₁: for alternate hypothesis

Sampling error

the amount of error in the estimate of a population parameter

Standard error of the mean (SE_m)

$$\sigma_{ar{X}} = rac{s}{\sqrt{N}}$$

(SE_m) = estimate of the amount of error when a sample mean (\bar{x}) is used to estimate the population mean (μ).

Since the μ cannot be known, we use the \bar{x} and a estimate of the error (SE_m) we should to expect.

LOC and Probability error

Levels of confidence (LOC)

• A percentage value that establishes the probability that a statement is correct

Probability error

Common values:

- at 68% LOC, probability of error = 32%
- at 90% LOC, probability of error = 10%
- at 95% LOC, probability of error = 5%

Hypothesis testing

even odd

id	scores
1	2
2	4
3	7
4	11
5	12
6	14

Median, cont.

- Represents the score at the **50th percentile**
- Divides the data set in two (visible in a boxplot)
- If *N* is odd, **median** is the middle score¹
- If *N* is even, do one of the following:
 - Use the higher of the two middle scores
 - Compute the average of the two middle scores

Median (cont.)

When to use the **median**?

- use with ordinal data or cases of highly skewed distributions

Important: not affected by extreme scores

Mean

The **mean**¹ is the most popular index of central tendency

Equation for the sample mean:

$$ar{x} = rac{\sum x}{n}$$

Equation for the population mean:

$$\mu = rac{\sum x}{N}$$

Mean (cont.)

The most sensitive of the central tendency indices

- 1. affected by every score in the
- 2. greatly affected by outliers

Play important role on statistical inference

Used with interval and ratio data¹

Test

tab1

tab2

content tab1

The holy passion of Friendship is of so sweet and steady and loyal and enduring a nature that it will last through a whole lifetime...