# **Swinburne University Of Technology**

Faculty of Information and Communication Technologies

# **ASSIGNMENT COVER SHEET**

| Subject Code:                                                     | COS30023                                                                                                                         |          |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|
| _                                                                 | ject Title:  gnment number and title:  date:  Languages in Software Development  4, Automata  September 8, 2014, 10:30, on paper |          |
| _                                                                 |                                                                                                                                  |          |
|                                                                   |                                                                                                                                  |          |
| Due date:                                                         |                                                                                                                                  |          |
| Lecturer:                                                         |                                                                                                                                  |          |
| Your name:                                                        | _                                                                                                                                |          |
| Marker's comments:                                                |                                                                                                                                  |          |
| Problem                                                           | Marks                                                                                                                            | Obtained |
| 3                                                                 | 100                                                                                                                              |          |
| Total                                                             | 100                                                                                                                              |          |
| <b>Extension certification:</b> This assignment has been given an | extension and is now du                                                                                                          | ie on    |
| Signature of Convener:                                            | extension and is now ad                                                                                                          |          |

# **Assignment 4**

# COS30023 - Languages in Software Development

Daniel Parker - 971328X

September 7, 2014

# 1. Problem 1

# 1.1. Finite Automaton



# 1.2. Equations and Rules

$$(S_1 \cdot S_2) \cdot S_3 = S_1 \cdot (S_2 \cdot S_3)$$

$$(S_1|S_2) \cdot T = S_1 \cdot T | S_2 \cdot T$$
  
 $T \cdot (S_1|S_2) = T \cdot S_1 | T \cdot S_2$ 

$$T \cdot (S_1|S_2) = T \cdot S_1|T \cdot S_2$$

$$S \cdot \epsilon = S$$

$$S \cdot \emptyset = \emptyset$$

$$S \cdot (T \cdot S)^* = (S \cdot T)^* \cdot S$$

#### 1.2.1. Arden's Rule

 $X = S \cdot X | T$  has solution  $S^* \cdot T$ 

# 1.3. Equation Set

$$\begin{split} q_0 &= 0 - 9 \oplus q_1 \\ q_1 &= \epsilon \oplus q_2 \\ q_2 &= 0 - 9 \oplus q_1 \mid . \oplus q_3 \mid \epsilon \oplus q_5 \\ q_3 &= \epsilon \oplus q_4 \\ q_4 &= 0 - 9 \oplus q_3 \mid \epsilon \oplus q_5 \\ q_5 &= E \oplus q_6 \mid \epsilon \oplus q_{10} \\ q_6 &= + \oplus q_7 \mid - \oplus q_7 \mid \epsilon \oplus q_7 \\ q_7 &= 0 - 9 \oplus q_8 \\ q_8 &= \epsilon \oplus q_9 \\ q_9 &= 0 - 9 \oplus q_8 \mid \epsilon \oplus q_{10} \\ q_{10} &= \epsilon \end{split}$$

## 1.3.1. Simplified Sets

$$\begin{aligned} q_0 &= 0 - 9 \oplus q_1 \\ q_1 &= q_2 \\ q_2 &= 0 - 9 \oplus q_1 \mid . \oplus q_3 \mid q_5 \\ q_3 &= q_4 \\ q_4 &= 0 - 9 \oplus q_3 \mid q_5 \\ q_5 &= E \oplus q_6 \mid q_{10} \\ q_6 &= (+|-|\epsilon) \oplus q_7 \\ q_7 &= 0 - 9 \oplus q_8 \\ q_8 &= q_9 \\ q_9 &= 0 - 9 \oplus q_8 \mid q_{10} \\ q_{10} &= \epsilon \end{aligned}$$

## 1.3.2. Substitute $q_{10}$

$$q_5 = E \oplus q_6 \mid q_{10}$$
$$= E \oplus q_6 \mid \epsilon$$

$$q_9 = 0 - 9 \oplus q_8 \mid q_{10}$$
$$= 0 - 9 \oplus q_8 \mid \epsilon$$

#### **1.3.3.** Substitute $q_9$

$$q_8 = 0 - 9 \oplus q_8 \mid \epsilon$$
  
=  $(0 - 9)^* \oplus \epsilon$  Arden's Rule  
=  $(0 - 9)^*$ 

## 1.3.4. Substitute $q_8$

$$q_7 = 0 - 9 \oplus (0 - 9)^*$$

#### **1.3.5.** Substitute $q_7$

$$q_6 = (+|-|\epsilon) \oplus (0 - 9 \oplus (0 - 9)^*)$$

#### **1.3.6.** Substitute $q_6$

$$q_5 = E \oplus ((+|-|\epsilon) \oplus (0-9 \oplus (0-9)^*)) | \epsilon$$

#### 1.3.7. Substitute $q_5$

$$q_{4} = 0 - 9 \oplus q_{3} \mid (E \oplus ((+ \mid - \mid \epsilon) \oplus (0 - 9 \oplus (0 - 9)^{*})) \mid \epsilon)$$
$$q_{2} = 0 - 9 \oplus q_{1} \mid . \oplus q_{3} \mid (E \oplus ((+ \mid - \mid \epsilon) \oplus (0 - 9 \oplus (0 - 9)^{*})) \mid \epsilon)$$

#### 1.3.8. Substitute $q_4$

$$q_3 = 0 - 9 \oplus q_3 \mid (E \oplus ((+ \mid - \mid \epsilon) \oplus (0 - 9 \oplus (0 - 9)^*)) \mid \epsilon)$$
  
=  $(0 - 9)^* \oplus (E \oplus ((+ \mid - \mid \epsilon) \oplus (0 - 9 \oplus (0 - 9)^*)) \mid \epsilon)$  Arden's Rule

#### **1.3.9.** Substitute $q_3$

$$q_{2} = 0 - 9 \oplus q_{1}$$

$$| . \oplus ((0 - 9)^{*} \oplus (E \oplus ((+ | - | \epsilon) \oplus (0 - 9 \oplus (0 - 9)^{*})) | \epsilon))$$

$$| (E \oplus ((+ | - | \epsilon) \oplus (0 - 9 \oplus (0 - 9)^{*})) | \epsilon)$$

#### **1.3.10.** Substitute $q_2$

$$q_{1} = 0 - 9 \oplus q_{1}$$

$$| . \oplus ((0 - 9)^{*} \oplus (E \oplus ((+ | - | \epsilon) \oplus (0 - 9 \oplus (0 - 9)^{*})) | \epsilon))$$

$$| (E \oplus ((+ | - | \epsilon) \oplus (0 - 9 \oplus (0 - 9)^{*})) | \epsilon)$$

$$= (0 - 9)^{*} \oplus (. \oplus ((0 - 9)^{*} \oplus (E \oplus ((+ | - | \epsilon) \oplus (0 - 9 \oplus (0 - 9)^{*})) | \epsilon))$$

$$| (E \oplus ((+ | - | \epsilon) \oplus (0 - 9 \oplus (0 - 9)^{*})) | \epsilon))$$

## 1.3.11. Substitute $q_1$

$$q_0 = 0 - 9 \oplus ((0 - 9)^* \oplus (. \oplus ((0 - 9)^* \oplus (E \oplus ((+ | - | \epsilon) \oplus (0 - 9 \oplus (0 - 9)^*)) | \epsilon)))$$
$$| (E \oplus ((+ | - | \epsilon) \oplus (0 - 9 \oplus (0 - 9)^*)) | \epsilon)))$$

## 1.4. Regular Expression

$$[0-9]^+ ... [0-9]^* (E[+-]?[0-9]^+)?$$
\$

# 1.5. Token Type

The token defined above is an unsigned IEEE floating point number. Here are some strings that are valid in the above definition.

- 123
- 123.123
- 123.123E + 123
- 123.123E 123
- 123.123*E*123
- 123E + 123
- etc.