CSE 151: Homework 2 Solutions

1. Norms.

(a)
$$||x||_1 = \sum_{i=1}^d |x_i| = 1 + 2 + \dots + d = \frac{d(d+1)}{2}$$

(b)
$$||x||_2 = \sqrt{\sum_{i=1}^d x_i^2} = \sqrt{1^2 + 2^2 + \dots + d^2} = \sqrt{\frac{d(d+1)(2d+1)}{6}}$$

- (c) $||x||_{\infty} = \max_{i} |x_{i}| = d$
- 2. The points in \mathbb{R}^d whose ℓ_1 and ℓ_2 norm are both 1 are $\pm e_1, \pm e_2, \dots, \pm e_d$, where e_i is the *i*th coordinate vector (i.e. all coordinates zero, except for a 1 in the *i*th position): a total of 2d points.
- 3. Properties of metrics. Recall that d is a distance metric if and only if it satisfies the following properties:
 - (P1) $d(x,y) \ge 0$
 - (P2) $d(x,y) = 0 \iff x = y$
 - (P3) d(x,y) = d(y,x) (symmetry)
 - (P4) $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality)
 - (a) Hamming distance is a metric.
 - (P1) $d(x,y) \ge 0$ because number of positions at which two strings differ can't be negative.
 - (P2) d(x, x) = 0 because a string differs from itself at no positions. Also, if $x \neq y$, there will be at least one position where x and y differ and hence d(x, y) > 0.
 - (P3) d(x,y) = d(y,x) because x differs from y at exactly the same positions where y differs from x.
 - (P4) Pick any $x, y, z \in \Sigma^m$. Let A denote the positions at which x, y differ: $A = \{i : x_i \neq y_i\}$, so that d(x, y) = |A|. Likewise, let B be the positions at which y, z differ and let C be the positions at which x, z differ.

Now, if
$$x_i = y_i$$
 and $y_i = z_i$, then $x_i = z_i$. Thus $C \subseteq A \cup B$, whereupon $d(x, z) = |C| \le |A| + |B| = d(x, y) + d(y, z)$.

(b) Squared Euclidean distance is not a metric as it does not satisfy the triangle inequality. Consider the following three points in \mathbb{R} : x = 1, y = 4, z = 5.

$$d(x,z) = (1-5)^2 = 16$$

$$d(x,y) = (1-4)^2 = 9$$

$$d(y,z) = (4-5)^2 = 1$$

Here d(x, z) > d(x, y) + d(y, z).

- 4. If d_1 and d_2 are metrics, then so is $g(x,y) = d_1(x,y) + d_2(x,y)$. All four properties can be verified directly.
 - (P1) $g(x,y) \ge 0$ because it is the sum of two nonnegative values.
 - (P2) Pick any x, y.

$$g(x,y) = 0 \iff d_1(x,y) + d_2(x,y) = 0$$

 $\iff d_1(x,y) = 0 \text{ and } d_2(x,y) = 0 \text{ (since both nonnegative)}$
 $\iff x = y$

1

(P3)
$$g(x,y) = d_1(x,y) + d_2(x,y) = d_1(y,x) + d_2(y,x) = g(y,x).$$

(P4) For any x, y, z,

$$g(x,z) = d_1(x,z) + d_2(x,z)$$

$$\leq (d_1(x,y) + d_1(y,z)) + (d_2(x,y) + d_2(y,z))$$

$$= (d_1(x,y) + d_2(x,y)) + (d_1(y,z) + d_2(y,z))$$

$$= g(x,y) + g(y,z)$$

- 5. Classification or Regression Problem
 - (a) Classification problem since dependent variable 'state of person' takes categorical values.
 - (b) Regression problem since dependent variable 'speed of car' takes continuous values.
 - (c) Regression problem since dependent variable 'GPA' takes continuous values.
 - (d) Classification problem since dependent variable takes binary values.
- 6. Probability space

(a)
$$\Omega = \{H, T\}, \Pr(H) = \Pr(T) = \frac{1}{2}$$

(b)
$$\Omega = \{1, 2, 3, 4, 5, 6\}, \Pr(1) = \Pr(2) = \Pr(3) = \Pr(4) = \Pr(5) = \Pr(6) = \frac{1}{6}$$

- (c) $\Omega = \{H, T\}^{10}$, each outcome in Ω has probability $1/2^{10}$
- 7. Probabilities

(a)
$$\Pr(d) = 1 - (\Pr(a) + \Pr(b) + \Pr(c)) = \frac{1}{8}$$

(b)
$$Pr(A) = Pr(a) + Pr(b) + Pr(c) = \frac{7}{8}$$

(c)
$$A \cap B = \{a, c\}$$
, so $\Pr(A \cap B) = \Pr(a) + \Pr(c) = \frac{3}{4}$

- 8. Two fair dice
 - (a) For sum to be 10 given that first roll is 6, second roll should be 4.

$$Pr(sum = 10 \mid first \ roll = 6) = Pr(second \ roll = 4) = \frac{1}{6}$$

(b) Using the formula for conditional probabilities,

$$\begin{aligned} \Pr(\text{sum} = 10 \mid \text{first roll is even}) &= \frac{\Pr(\text{sum} = 10 \text{ AND first roll is even})}{\Pr(\text{first roll is even})} \\ &= \frac{\Pr(\{(4,6),(6,4)\})}{1/2} = \frac{2/36}{1/2} = \frac{1}{9} \end{aligned}$$

(c) Let A be the event when both rolls have same value: $A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}.$

2

$$\Pr(A) = \frac{6}{36} = \frac{1}{6}$$

- 9. Bayes rule. The information we are given is:
 - Pr(male) = Pr(female) = 0.5
 - $Pr(disease \mid male) = 0.05$
 - Pr(disease | female) = 0.01

Applying Bayes' rule,

$$\Pr(\text{male} \mid \text{disease}) = \Pr(\text{male}) \times \frac{\Pr(\text{disease} \mid \text{male})}{\Pr(\text{disease})} = \frac{1}{2} \times \frac{0.05}{0.05*0.5 + 0.01*0.5} = \frac{5}{6}$$

10. Programming assignment

- (a) Error rate with l_1 distance = 21.667% Error rate with l_2 distance = 23.33%
- (b) Confusion matrix for l_1 distance:

		NO	DH	SL
N	10	14	0	2
	Н	9	9	0
5	SL	1	1	24

Confusion matrix for l_2 distance:

	NO	DH	SL
NO	12	1	3
DH	9	9	0
SL	1	0	25