Some derivatives

So far in the examples and exercises we have found the following derivatives.

	f (x)	f O(x)
constant	С	0
linear	ax +b	а
	<i>x</i> 2	2 <i>x</i>
	<i>x</i> 3	3 <i>x</i> ²

Note that the example f(x) = ax + b includes the case f(x) = x, which has derivative f(x) = 1.

Since we have seen that

$$\frac{d}{dx}(x) = 1$$
, $\frac{d}{dx}(x^2) = 2x$ and $\frac{d}{dx}(x^3) = 3x$

it is natural to conjecture that the derivative of x^n is nx^{n-1} .

Even more generally, for any real number a, including irrational a, the derivative of

$$f(x)=x^a \qquad \text{is} \qquad f(x)=ax^{a-1}.$$

It is not obvious how to even *define* what it means to raise a number to the power of an irrational number. For instance, 2^3 just means $2 \times 2 \times 2$, and 2^7 just means $p^5 2^7$, but p what does 2^3 mean? In the module *Exponential and logarithmic functions*, we explore these issues, show how to define x^a precisely for any real number a, and show that the derivative of x^a is ax^{a-1} .

In summary, the following theorem is true.

Theorem

For any real number a, the derivative of $f(x) = x^a$ is $f(0) = ax^{a-1}$, wherever f(x) is defined.