EXAMEN DE ESTADÍSTICA (DESCRIPTIVA Y REGRESIÓN)

1º Farmacia Modelo A **26 de octubre de 2020**

Duración: 1 hora.

(4 pts.) 1. La siguiente tabla recoge el número de pacientes diarios que ingresaron en un hospital durante el mes de septiembre.

Pacientes	Frecuencia
(10, 14]	6
(14, 18]	10
(18, 22]	7
(22, 26]	6
(26, 30]	1

Se pide:

- a) Estudiar la dispersión del 50 % de los datos centrales.
- b) Calcular la media y estudiar la dispersión con respecto a ella.
- c) Estudiar la normalidad de los datos.
- d) Se sabe que en mismo hospital durante el mes de abril la media fue 35 pacientes y la varianza 40 pacientes². ¿En qué mes hubo más variabilidad relativa?
- e) ¿Qué número de ingresos es relativamente mayor, 20 ingresos en septiembre o 40 en abril?

Usar las siguientes sumas para los cálculos:

$$\sum x_i n_i = 544$$
 pacientes, $\sum x_i^2 n_i = 10464$ pacientes², $\sum (x_i - \bar{x})^3 n_i = 736,14$ pacientes³ y $\sum (x_i - \bar{x})^4 n_i = 25367,44$ pacientes⁴.

Solución

- a) Han aprobado el 66.5 % de los estudiantes no trabajadores y el 59 % de los trabajadores.
- b) No trabajadores: $\bar{x}=18,1333,\ s^2=19,9822,\ s=4,4701$ y cv=0,2465. Trabajadores: $\bar{y}=163,\ s^2=46,\ s=1,8578$ y cv=0,8779.

La muestra de los alumnos que no trabajan tiene una dispersión relativa con respecto a la media ligeramente mayor ya que su coeficiente de variación es mayor.

c) No trabajadores: $g_1 = 0.2747$.

Trabajadores: $g_1 = 1,0922$.

Así pues, la muestra de los alumnos que no trabajan es más asimétrica ya que su coeficiente de asimetría está más lejos de 0.

d) No trabajadores: $\bar{y} = 26,7933$.

Trabajadores: $\bar{x} = 3,5686$.

El coeficiente de asimetría no cambia al ser la pendiente de la transformación positiva.

e) No trabajadores: $z(7) = -2{,}7143$.

Trabajadores: z(6) = -83,9682.

Así pues, un 7 en la muestra de alumnos que no trabajan es relativamente mayor que un 6 en la muestra de alumnos que trabajan.

(1 pts.) 2. El siguiente diagrama muestra la distribución de notas en tres asignaturas distintas.

- a) ¿Qué asignatura es más difícil?
- b) ¿En qué asignatura hay más variabilidad central de los datos?
- c) ¿En qué asignaturas hay datos atípicos?
- d) ¿Qué asignatura tiene una distribución más asimétrica?

Solución

- a) Diagrama de cajas
- b) Si porque la valla inferior es $v_1 = 3$.

(5 pts.) 3. Se quiere estudiar si la estatura de los hijos depende de la estatura de los padres y para ello se ha tomado una muestra de 10 familias con un hijo mayor de 20 años y se ha medido la estatura del padre (X), de la madre (Y) y del hijo (Z) en centímetros, obteniendo los siguientes resultados:

$$\sum x_i = 1774 \text{ cm}, \sum y_i = 1630 \text{ cm}, \sum z_i = 1795 \text{ cm},$$
$$\sum x_i^2 = 315300 \text{ cm}^2, \sum y_i^2 = 266150 \text{ cm}^2, \sum z_i^2 = 322737 \text{ cm}^2,$$
$$\sum x_i y_j = 289364 \text{ cm}^2, \sum x_i z_j = 318958 \text{ cm}^2, \sum y_i z_j = 292757 \text{ cm}^2.$$
Se pide:

- a) ¿De qué estatura depende más linealmente la estatura del hijo, de la estatura del padre o de la madre?
- b) Utilizando el mejor modelo lineal, predecir la estatura de un hijo cuyo padre mide 181cm y cuya madre mide 163cm.
- c) ¿Cuánto aumentará la estatura del hijo por cada centímetro que aumente la estatura del padre? ¿Y de la madre?
- d) ¿Cómo afectaría a la fiabilidad de los modelos que las estaturas se hubiesen medido en pulgadas? (Una pulgada son $2.54~\mathrm{cm}$).

Solución