Question number	Scheme	Marks
10	$\frac{\log_2 x}{\log_2 4} + \frac{\log_2 x}{\log_2 16} + \log_2 x = 10.5$	M1
	$\frac{\log_2 x}{2} + \frac{\log_2 x}{4} + \log_2 x = 10.5$	M1
	$\frac{7}{4}\log_2 x = 10.5$ $x = 2^{6}$ $x = 64$	M1
	$x = 2^{6}$	M1
	x = 64	A1
		(5)
	Total 5 mar	

Mark	Notes		
The first two marks are common to both methods			
M1	Changes the base of any log correctly seen anywhere. Accept change to \log_x or even \log_{10} Base 2 $\frac{\log_2 x}{\log_2 4}, \frac{\log_2 x}{\log_2 16}$ Base 4 $\frac{\log_4 x}{\log_4 16}, \frac{\log_4 x}{\log_4 2}$		
	Base 16 $\frac{\log_{16} x}{\log_{16} 4}, \frac{\log_{16} x}{\log_{16} 2}$		
M1	For forming an equation (in any form) in a single base in any base For example; Base 2 $ \frac{\log_2 x}{2} + \frac{\log_2 x}{4} + \log_2 x = 10.5 \text{or e.g., } \frac{\log_2 x}{\log_2 4} + \frac{\log_2 x}{4} + \log_2 x = 10.5 $ Base 4 $ \text{e.g } \log_4 x + \frac{\log_4 x}{2} + \frac{\log_4 x}{\frac{1}{2}} = 10.5 $ Base 16 $ \frac{\log_{16} x}{\frac{1}{2}} + \log_{16} x + \frac{\log_{16} x}{\frac{1}{4}} = 10.5 $ NB - This is an A mark in Epen		

Method	Method 1		
	For simplifying to the form $A \log_{\text{(any base)}} = B$ where A and B are constants		
M1	For example;		
	Base 2		
	$1.75\log_2 x = 10.5$		
	Base 41		
	$3.5\log_4 x = 10.5$		
	Base 16		
	$7\log_{16} x = 10.5$		
	For undoing the log		
	For example:		
	Base 2		
M1	$x = 2^6$		
IVII	Base 4		
	$x = 4^3$		
	Base 16		
	$x = 16^{1.5}$		
Method	Method 2		
M1	Uses the addition law to simplify to the form:		
	$\log_n \left(x^a \times x^b \times x^c \right) = 10.5 \Longrightarrow \left(a + b + c \right) \log_n x = 10.5$		
	For example: B Base 2		
	$\log_2\left(x^{\frac{1}{2}} \times x^{\frac{1}{4}} \times x\right) = 10.5 \Rightarrow \frac{7}{4}\log_2 x = 10.5$		
	Base 4		
	$\log_4\left(x \times x^{\frac{1}{2}} \times 2x\right) = 10.5 \Longrightarrow \frac{7}{2}\log_4 x = 10.5$		
	Base 16		
	$\log_{16} \left(2x \times x \times 5x \right) = 10.5 \Longrightarrow 7 \log_{16} x = 10.5$		
M1	For undoing the log:		
	Base 2		
	$2^{10.5} = x^{\frac{7}{4}}$		
	Base4		
	$4^{10.5} = x^{\frac{1}{2}}$		
	Base 16		
	$16^{10.5} = x^7$		
A1	For $x = 64$		