Homework Week X

Ellen Ripley Foundations of Mathematics

August 20, 2023

Problem 1. Suppose that n is an even integer, and let m be any integer. Prove that nm is even.

Proof. Delete this and put your solution here.

Problem 2. Suppose that n is an odd integer. Prove that n^2 is an odd integer. (Hint: an integer n is odd if and only if there exists an integer k such that n = 2k + 1.)

Proof. Delete this and put your solution here.

Problem 3. Prove that if n^2 is even, then n is even. (Hint: see Section 1.4)

Proof. Delete this and put your solution here.

Problem 4. Negate the following sentences.

- 1. All triangles are isosceles.
- 2. Every door in the building was locked.
- 3. Some even numbers are multiples of three.
- 4. Every real number is less than 100.
- 5. Every integer is positive or negative.
- 6. If f is a polynomial function, then f is continuous at 0.
- 7. If $x^2 > 0$, then x > 0.
- 8. There exists a $y \in \mathbf{R}$ such that xy = 1.
- 9. (2 > 1) and $(\forall x, x^2 > 0)$
- 10. $\forall \epsilon > 0, \exists \delta > 0$ such that if $|x| < \delta$, then $|f(x)| < \epsilon$.

Here are a few LaTeX commands you might need. Delete this part before you submit your assignment

- $a \neq b$
- $n^2 + m$
- $\forall n \in \mathbb{Z}, \exists m \in \mathbb{N} \text{ such that } ..$