MATERIA DE SISTEMAS EMBEBIDOS PROYECTO FINAL

Paulo C. Garrido-Lechón Cristian S. Hernández-Ramírez Luis A. Lima-Pambaquishpe

14 de diciembre de 2018

1. Introducción

En el siguiente laboratorio se va a realizar un sistema con una determinada estructura que pueda tomar sus propias decisiones sobre el conjunto de datos a trabajar, implementando una base de datos, librerías creadas y los algoritmos aprendidos en clase como los son

CNN y K-NN, probando el rendimiento de cada matriz encontrada con k-nn y la matriz de datos de prueba, analizando la que tiene mejor rendimiento y finalmente descartando el resto de las matrices de datos.

2. Diseño del Sistema

2.1. Diagrama de Flujo

Diagrama de flujo realizado en DIA.

Diagrama de bloques para el funcionamiento del programa.

Figura 2: Diagrama de bloques

3. Desarrollo

3.1. Simulación

Simulación en Proteus

Figura 3: Simulación en proteus Arduino Uno

Código KNN realizado en el software Arduino IDE.

Figura 4: Código en Arduino 1

Figura 5: Código en Arduino $2\,$

SknnArduino Arduino 1.8.5

Archivo Editar Programa Herramientas Ayuda

Figura 6: Código en Arduino 3

KnnArduino Arduino 1.8.5

Archivo Editar Programa Herramientas Ayuda

```
KnnArduino

Serial.print("EL valor es:");
Serial.print(lata);
Serial.print(lata);
Serial.print("Ingrese el cuarto valor");
data=0;
break;
case 4:
vector[on-1]=data;
str="";
Serial.print("EL valor es:");
Serial.print("EL valor es:");
Serial.print("EL valor es:");
Serial.print("Ingrese la etiqueta valor");
str="";
data=0;
break;
case 5:
vector[on-1]=data;
str="";
Serial.print("Ingrese la etiqueta valor");
str="";
data=0;
break;
case 5:
vector[on-1]=data;
str="";
Serial.print("La etiqueta es :");
Serial.print("Ingrese la etiqueta es :");
Serial.print("La etiqueta es :");
Serial.print("La etiqueta es :");
Serial.println("El vector es");
Serial.println("El vector es");
Serial.println(");
serial.print(",");
serial.print(",");
```

Figura 7: Código en Arduino $4\,$

4. Análisis de Resultados

Armado del circuito para el programa realizado.

Simulación realizada con el Arduino Mega.

Figura 9: Simulación en Proteus en la placa Arduino Mega

Figura 10: Verificación del código

Simulación en Proteus en la placa Arduino Uno.

Figura 13: Verificación del código

Figura 14: Nuevo dato

Figura 15: Nuevo dato

Figura 16: Nuevo dato

Figura 17: Nuevo dato

Figura 18: Nuevo dato

Figura 19: Nuevo dato

Figura 20: Nuevo dato

Figura 21: Dato existente

Figura 22: Dato existente

Figura 23: Dato existente

Figura 24: Dato existente

Figura 25: Dato existente

Conductor Archivo 163

**Conductor Archivo 1

Figura 26: Dato existente

5. Conclusiones y Recomendaciones

- Las librerías .h realizadas facilitó el desarrollo de la programación logrando comprender de mejor forma el código ya que se vuelve comprensible, eficiente y no se satura de líneas de código en un solo archivo.
- El mejor algoritmo de selección de datos en este caso es K-NN por la razón de que es más efectivo en el rendimiento al escoger datos que el algoritmo CNN.
- El algoritmo de selección de datos es muy dinámico para la obtención y filtrado de datos ya que se encuentra en constante aprendizaje, por lo que si se ingresa un dato nuevo por comunicación serial, el algoritmo establece si el dato le sirve o no para el mejoramiento de datos.
- * Verificar si los componentes a utilizar están en buen estado sin fallas para realizar el armado.
- * Conectar ordenadamente los pines para no perderse al momento de armar y/o probar.
- * Realizar simulaciones previas al armado del circuito para verificar el correcto funcionamiento del programa.
- * Tener en cuenta las especificaciones de cada elemento para realizar el armado del circuito y no cometer errores.
- * Se considera esencial comentar cada línea de programación realizado debido a que el código maneja varias variables lo que podría causar equivocaciones y si fuera el caso necesario de efectuar una mejora en la programación sería más fácil hacerlo.