

팀장 오재호 | 팀원 최수지 김종민 구현주 권동형

ID 투자증권

ID 투자증권

목차

- 1 주제 리뷰
- 2 데이터 전처리
- 3 모델 예측
- 4 대시보드
- 5 결과 정리 및 별첨

1. 주제 리뷰

1.1 주제 제안

1.2 분석 목표

1.3 요인 분석

주제 제안

▶ "주식 보유자의 수가 1천만명이 넘어"

▶ 제안발표(21.04.22)

주제 제안

분석 목표

요인 분석

2. Stock prediction model

오래전부터 주가 예측 연구는 끊임없이 진행됐다. 하지 만 수많은 변수와 정보는 반영하기 쉽지 않다. 주가 분석 방법에는 크게 기술적 분석(Technical Analysis)과 거시 적 경제 분석(Macroeconomics Analysis)으로 나눌 수 있다. 기술적 분석은 간단히 말하자면 과거 주가 움직임과 거래량을 바탕으로 예측을 하는 방법이며, 거시적 경제 분 석은 주가에 영향을 미치는 변수 즉 금값, 유가, 환율, 물 가상승률 등을 고려하여 예측하는 것이 대표적이다.

Reference : 장은아, 최회련, 이홍철(2020), "BERT를 활용한 뉴스 감성분석과 거시경제지표 조합을 이용한 주가지수 예측"

세 가지 분석 기법

- ▶ 기술적 분석 주가 데이터
- ▶ 거시적 경제 분석환율, 유가, 금리 +α
- ▶ 기업 내부요인 분석 기업 재무제표

2. 데이터 전처리

- 2.1 데이터셋 수집
- 2.2 결측치 대체
- 2.3 데이터셋 변환
- 2.4 탐색적 데이터 분석
- 2.5 상관관계 분석
- 2.6 차원축소

데이터셋 수집

SK하이닉스 주가

삼성전자 주가

기술적 분석

국제 유가

원달러환율

경제 성장률

기준 금리

반도체수출 금액지수 필라델피아 반도체지수

정기예금

코스피

코스닥

비트 코인

S&P 500

SK하이닉스 재무제표 삼성전자 재무제표

내부적 요인

데이터셋 수집

SK하이닉스 주가

삼성전자 주가

기술적 분석

국제 유가

필라델피아 반도체지수

정기예금

코스피

코스닥

비트코인

S&P 500

SK하이닉스 재무제표

삼성전자 재무제표

내부적 요인

데이터셋 수집

Df = pd.merge(df1, df2, how="left") // index는 d1에 맞춰서 인자 넣어주기

Α	В	С	D	E
Date	X1	X2	•••	Y
Data1				
Data2				
•••				

Α	В	C
Date	X1	X2
Data1		
Data2		

종가의 날짜(연별, 일별)를 기준으로 15개 데이터셋 Merge 진행

▶ 일별 데이터셋(주가,유가,환율,금리..등)연별 데이터셋(주가, 재무제표..등) 생성

결측치 대체

Α	В	С	D	E
Date	H종가	한국은행 기준금리	WTI 현물유가 등락률	•••
Data1	64319	0.75	4.98	
Data2	78568	NaN	NaN	
Data3	75829	NaN	2.96	

Merge한 데이터셋에서 NaN 발생

▶ 결측치 처리 진행

결측치 대체

보간법: 존재하는 값들 사이에 존재하지 않는 값을 새롭게 추정하는 방법

선형보간법

추정 값을 직선 거리에 따라 선형적으로 계산하는 보간법

후행보간법

결측치가 존재할 경우 직후 마지막 값을 끌어와서 메꾸는 보간법

▶ ARIMA 모델의 예측 결과

▶ Tslm 모델의 예측 결과

▶ Tslm 모델의 예측 결과

데이터셋 변환

▶ ARIMA 모델의 예측 결과

새 종속변수 '등락' f(종가 변동률 > **0**) = **1**

새 종속변수 '금리대비'

$$f$$
(변동률 $> \frac{금리}{365}$) = 1

변환된 데이터셋

일별 데이터셋

```
<class 'pandas.core.frame.DataFrame'>
                                                         유가저가
                                                                       2670 non-null
                                                                                      float64
                                                         유가변동률
DatetimeIndex: 2670 entries, 2010-07-19 to 2021-05-14
                                                                        2670 non-null
                                                                                       float64
                                                        한국기준급리
미국기준급리
할미기준급리차이
Data columns (total 45 columns):
                                                                         2670 non-null
                                                                                        float64
              Non-Null Count Dtype
    Column
                                                                         2670 non-null
                                                                                        float64
                                                                           2670 non-null
                                                                                        float64
                                                         정기예금환산
    S금리대비
                   2670 non-null
                                  int64
                                                                         2670 non-null
                                                                                       float64
    H금리대비
                                                         SOX종가
                                                                     2670 non-null
                   2670 non-null
                                  int64
                                                                                    float64
                                                         SOX변동률
                                                                      2670 non-null
                 2670 NON-NUTT
                                                                                     float64
    ಶಿಶಕ
                                THU64
    H름락
                                int64
                                                         BTC종가
                 2670 non-null
                                                                     2670 non-null
                                                                                    float64
    H등락분류
                                                         BTC변동률
                                                     30
                   2670 non-null
                                 int64
                                                                      2670 non-null
                                                                                    float64
    S종가
                 2670 non-null
                                                         코스피종가
                                float64
                                                                        2670 non-null
                                                                                      float64
    S등락률
                 2670 non-nul
                                                         코스피고기
                                                                        2670 non-null
                                float64
                                                                                       float64
    H종가
                 2670 non-null
                                                         코스피저가
                                float64
                                                                        2670 non-null
                                                                                       float64
    HCH HT
                 2670 non-null
                                                         코스피거래량
                                int64
                                                                         2670 non-null
                                                                                        float64
    H등락률
                 2670 non-nul
                                                         코스피변동
                                float64
                                                                        2670 non-null
                                                                                       float64
                                                         코스닥총가
    씨가
                 2670 non-null
                                float64
                                                                        2670 non-null
                                                                                       float64
    H고가
                                                         코스닥시가
                                                                        2670 non-null
                 2670 non-null
                                int64
                                                                                       float64
    H저가
                                                         코스닥고가
                 2670 non-null
                                int64
                                                                        2670 non-null
                                                                                       float64
    H거래량
H거래대금
                                                         코스닥저가
                                int64
                                                                                       float64
                 2670 non-null
                                                                        2670 non-null
                                                         코스닥거래량
                  2670 non-null
                                                                         2670 non-null
                                 float64
                                                                                       float64
    H시가총액
                                                         코스닥변동
                                                                        2670 non-null
                   2670 non-null
                                 float64
                                                                                       float64
    H상장추식수
                                                         SP종가
                   2670 non-null
                                                                     2670 non-null
                                  int64
                                                                                   float64
    원달러환율
유가종가
유가오픈
                                                         SP변동률
                   2670 non-null
                                                                      2670 non-null
                                                                                    float64
                                  float64
                                                        반도체수출금액지수 2670 non-null float64
                  2670 non-null
                                  float64
                                                    dtypes: float64(35), int64(10)
                   2670 non-null
                                  float64
    유가고가
                   2670 non-null
                                 float64
                                                    memory usage: 959.5 KB
```

▶ 일별 데이터셋의 독립변수 개수 **44개**

데이터셋

연도별 데이터셋

```
11 H거래대금
                                                                         20 non-null
                                                                                         float64
<class 'pandas.core.frame.DataFrame'>
                                                    12 H시가총액
13 H상장주식수
                                                                         20 non-null
                                                                                         float64
Int64Index: 20 entries, 2001 to 2020
                                                                                          int64
                                                                          20 non-null
Data columns (total 26 columns):
                                                        H/ROA
                                                                     20 non-null
                                                                                     float64
                 Non-Null Count
    Column
                                 Dtype
                                                       H/R0E
                                                                                     float64
                                                                     20 non-null
                                                       H주당배당금
H배당수익률
H배당금총액
                                                                          20 non-null
                                                                                          int64
    S종가
                   20 non-null
                                   int64
                                                                          20 non-null
                                                                                          float64
    S/ROE
                 20 non-null
                                 float64
                                                                          20 non-null
                                                                                          float64
    S/ROA
                 20 non-null
                                 float64
                                                        H/당기순미익
                                                                          20 non-null
                                                                                          float64
    S/영업이익
                     20 non-null
                                     float64
                                                        H매출액증가율
                                                                           20 non-null
                                                                                           float64
    S/당기순이익
                      20 non-null
                                      float64
                                                                                         float64
                                                                         20 non-null
    H종가
                   20 non-null
                                   int64
                                                        반도체 수출금액지수
금리 20 nd
                                                                              20 non-null
                                                                                              float64
    H등락률
                    20 non-null
                                    float64
                                                                       20 non-null
                                                    23
                                                                                       float64
    HAI가
                   20 non-null
                                   int64
                                                        ₩TI 현물유가등락률
                                                                            20 non-null
                                                                                            float64
    H고가
                   20 non-null
                                   int64
                                                        원달러환율(원)
                                                                           20 non-null
                                                                                           float64
    H저가
                   20 non-null
                                   int64
                                                   dtypes: float64(18), int64(8)
10 H거래량
                                    int64
                    20 non-null
                                                   memory usage: 4.2 KB
```

▶ 연도별 데이터셋의 독립변수 개수 **25개**

탐색적 데이터 분석

X EDA (Exploratory Data Analysis)

연도별 데이터셋

Ldata.info()

중요한 독립변수 위주

```
<class 'pandas core.frame DataFrame'>
Int64Index: 20 entries, 2001 to 2020
Data columns (total 10 columns):
    Column Non-Null Count Dtype
    S종가
             20 non-null
                              int64
    H종가
              20 non-null
                              int64
    S/ROE
            20 non-null
                            float64
    S/영업이익
                 20 non-null
                                float64
             20 non-null
                            float64
    S/당기순이익 20 non-null
                                 float64
                            float64
             20 non-null
    H/영업이익
                 20 non-null
                                float64
             20 non-null
                            float64
    H/당기순이익 20 non-null
                                 float64
dtypes: float64(8), int64(2)
memory usage: 1.7 KB
```

▶ 연도별 데이터셋의 데이터 개수는 20개, 기간은 2001년부터 2020년까지 존재한다.

탐색적 데이터 분석

X EDA (Exploratory Data Analysis)

일별 데이터셋

Sdata.info()

중요한 독립변수 위주

```
<class 'pandas core frame.DataFrame'>
DatetimeIndex: 2670 entries, 2010-07-19 to 2021-05-14
Data columns (total 10 columns)
    Column
             Non-Null Count Dtype
    S금리대비
               2670 non-null
                               int64
              2670 non-null
    H금리대비
                               int64
               2670 non-null float64
    코스피변동
    코스닥변동
               2670 non-null float64
    S종가
               2670 non-null float64
    H종가
               2670 non-null float64
    유가종가
                 2670 non-null float64
    한국기준금리
                   2670 non-null float64
    SOX변동률
                2670 non-null float64
    반도체수출금액지수 2670 non-null float64
dtypes: float64(8), int64(2)
memory usage: 229.5 KB
```

▶ 일별 데이터셋의 데이터 개수는 2670개, 기간은 2010년 7월 19일부터 2021년 5월 14일까지 이다.

탐색적 데이터 분석

X EDA (Exploratory Data Analysis)

▶ SK하이닉스 금리대비 및 삼성전자 금리대비 모두 각각의 등락 비율이 유사함을 알 수 있다.

상관관계 분석

연도별 데이터셋

- 보간법을 적용하지 않음 - 시계열 데이터의 특징인 추세 존재
- ▶ 차분 진행 후 피어슨 상관 계수를 확인

차분?

: 시계열 데이터 `처리 시 추세를 제거하여 기존 값을 유동성 값으로 변경함

상관관계 분석

연도별 데이터셋

SK하이닉스의 종가, ROE, ROA, 영업이익, 당기순이익 및

삼성전자의 종가, ROE, ROA, 영업이익, 당기순이익의 상관계수 확인

- ▶ SK하이닉스 종가는 SK하이닉스의 당기순이익과 0.31의 상관성
 - ▶ 삼성전자는 삼성전자의 당기순이익과 0.78의 상관성
- ▶ 서로의 당기순이익은 0.80의 높은 상관성

상관관계 분석

일별 데이터셋

SK하이닉스의 금리대비 등락 여부/ 삼성전자의 금리대비 등락 여부 둘과 거시적 경제 지표들의 상관계수 확인

► SK하이닉스와 삼성전자의 금리대비 등락여부 값은 코스피변동에 각각 0.39, 0.51의 상관성을 보인다.

PCA

X Principal Component Analysis

Dimension: 2

Plot : SK하이닉스 등락 기준 PCA

▶ PCA 방식으로는 등락 여부가 잘 구분되질 않음을 알 수 있다.

t-SNE

*** t-Stochastic Neighbor Embedding**

Dimension: 2

Plot : SK하이닉스 등락 기준 t-SNE

- ▶ PCA방식보다 안정적인 임베딩 결과를 보인다.
- ▶ 그럼에도 등락 여부가잘 구분되질 않음을 알 수 있다.

tsne_result = tsne.fit_transform(df.drop(['H등락', 'H금리대비','S금리대비','S등락'], axis=1)) points = ax.scatter(tsne_result[:,0], tsne_result[:,1], c=df['H등락'], s=50, cmap=plt.cm.get_cmap('seismic', 2))

3. 모델 예측

- 3.1 데이터셋 나누기
- 3.2 모델 하한선 구축
- 3.3 모델 예측
- 3.4 평가지표 비교

데이터셋 나누기

random_seed = np.random.seed(2021)
x_train, x_test, y_train, y_test = train_test_split(features, target, test_size=0.1, random_state=random_seed)

Date	S종가	H종가	유가	H금리대비	S금리대비
2010-07-19				1	0
				0	1
2021-05-14				0	0

Y1 Y2

Random Sampling

Train set: Test set = 0.9:0.1

모델 하한선(Baseline) 구축

Key point1: 모델 성능 최소 하한선 제공

Key point2: tight한 하한선으로 평가지표 생성

ML Baseline,

Logistic Regression

[Vanilia] SK하이닉스 정확도: 46.81%, 삼성전자 정확도: 49.81%

[Min-Max Scailing] SK하이닉스 정확도: 61.42%, 삼성전자 정확도: 75.65%

[Standardization] SK하이닉스 정확도: 64.04%, 삼성전자 정확도: 78.2%

모델 하한선(Baseline) 구축

Key point1: 모델 성능 최소 하한선 제공

Key point2: tight한 하한선으로 평가지표 생성

Standardization 적용 Logic Regression을 하한선

[Vanila] (정확도 64.04%, 78.2%).81%

[Min-Max Scailing] SK하이닉스 정확도: 61.42%, 삼성전자 정확도: 75.65%

[Standardization] SK하이닉스 정확도: 64.04%, 삼성전자 정확도: 78.2%

AutoML

※ 여러 학습 모델 자동화 프로세스

Google Colab Library Pycaret

SMOTE **Synthetic Minority Oversampling technique

AutoML을 통한 모델 학습 시 SMOTE 자동 적용

▶ 데이터 개수가 적은 종속변수 값의 표본을 가져와 임의의 값 추가 후 새로운 데이터를 만들어 기존 데이터에 추가하는 Over Sampling 방식

AutoML

※ 여러 학습 모델 자동화 프로세스

SMOTE + Standardization AutoML결과

삼성전자 금리대비 예측

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	ИСС	II	(Sec)
lr	Logistic Regression	0.7548	0.8446	0.7633	0.7510	0.7562	0.5096	0.5111		0.315
ridge	Ridge Classifier	0.7479	0.0000	0.7601	0.7422	0.7504	0.4957	0.4968		0.018
lda	Linear Discriminant Analysis	0.7473	0.8404	0.7601	0.7414	0.7501	0.4947	0.4957		0.022
gbc	Gradient Boosting Classifier	0.7323	0.8246	0.7516	0.7236	0.7365	0.4647	0.4663		0.676
rf	Random Forest Classifier	0.7297	0.8118	0.7312	0.7304	0.7292	0.4593	0.4613		0.766
ada	Ada Boost Classifier	0.7291	0.8149	0.7548	0.7185	0.7354	0.4582	0.4601		0.225
lightgbm	Light Gradient Boosting Machine	0.7190	0.8152	0.7259	0.7169	0.7207	0.4379	0.4389		0.258
svm	SVM - Linear Kernel	0.7018	0.0000	0.6896	0.7159	0.6976	0.4036	0.4089		0.022
et	Extra Trees Classifier	0.7018	0.7736	0.7045	0.7018	0.7020	0.4036	0.4049		0.567
knn	K Neighbors Classifier	0.6697	0.7192	0.6725	0.6698	0.6699	0.3395	0.3408		0.120
dt	Decision Tree Classifier	0.6617	0.6617	0.6605	0.6630	0.6605	0.3233	0.3245		0.037
qda	Quadratic Discriminant Analysis	0.6510	0.7392	0.8128	0.6174	0.6990	0.3022	0.3237		0.021
nb	Naive Bayes	0.6370	0.7268	0.8171	0.6053	0.6908	0.2744	0.2997		0.017

AutoML

※ 여러 학습 모델 자동화 프로세스

SMOTE + Standardization AutoML결과

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
lr	Logistic Regression	0.7548	0.8446	0.7633	0.7510	0.7562	0.5096	0.5111	0.315
ridge	Ridge Classifier	0.7479	0.0000	0.7601	0.7422	0.7504	0.4957	0.4968	0.018
lda	Linear Discriminant Analysis	0.7473	0.8404	0.7601	0.7414	0.7501	0.4947	0.4957	0.022
<u>정</u>	Gadient Bookin COffee	737.5).8246	(75 A	7236	人	J 47	0.4663	0.676
<u> </u>	Random Aust Classiflur	u.7297	J.8118	0.731	J.7304	0.7292	0.4_93	0.4613	0.766
ada	Ada Boost Classifier	0.7291	0.8149	0.7548	0.7185	0.7354	0.4582	0.4601	0.225
lightgbm	Light Gradient Boosting Machine	0.7190	0.8152	0.7259	0.7169	0.7207	0.4379	0.4389	0.258
svm	SVM - Linear Kernel	0.7018	0.0000	0.6896	0.7159	0.6976	0.4036	0.4089	0.022
et	Extra Trees Classifier	0.7018	0.7736	0.7045	0.7018	0.7020	0.4036	0.4049	0.567
knn	K Neighbors Classifier	0.6697	0.7192	0.6725	0.6698	0.6699	0.3395	0.3408	0.120
dt	Decision Tree Classifier	0.6617	0.6617	0.6605	0.6630	0.6605	0.3233	0.3245	0.037
qda	Quadratic Discriminant Analysis	0.6510	0.7392	0.8128	0.6174	0.6990	0.3022	0.3237	0.021
nb	Naive Bayes	0.6370	0.7268	0.8171	0.6053	0.6908	0.2744	0.2997	0.017

Ridge Classifier

Ridge Classifier은 기존 Ridge Regression을 Classification 모델로 변경

▶ [Standardization] SK하이닉스 정확도: 64.41%, 삼성전자 정확도: 78.65%

LDA **Linear Discriminant Analysis

LDA는 지도학습의 분류에 사용되는 차원 축소 방법이며, 종속변수의 0, 1를 최대한 분리할 수 있는 축을 구축하는 방법

▶ [Standardization] SK하이닉스 정확도: 64.04%, 삼성전자 정확도: 78.27%

XGBoost + Optimization

XGBoost: Kaggle에서 Boosting 모델 중 평가지표 GBC보다 상위권

Hyperparameter Optimization: 모델 하이퍼파라미터 최적화로 성능 향상

XGBoost architecture

XGBoost는 CART(Classification and Regression Tree)기반 앙상블 모델

모델 내부에 과적합 제약식이 존재, Depth-Wise(=Level-wise) 알고리즘 채택

XGBoost + Optimization

XGBoost: Kaggle에서 Boosting 모델 중 평가지표 GBC보다 상위권 Hyperparameter Optimization: 모델 하이퍼파라미터 최적화로 성능 향상

1. GridSearch 방식

▶ 모든 hyperparameter의 경우의 수에 대하여 cross-validation 결과가 가장 좋은 수를 선택

장점: 전역적 탐색 가능

단점: Hyperparameter의 개수에 따라 탐색 시간 기하급수적 증가

2. Bayesian TPE 방식

XTree-structured Parzen Estimator

▶ 어느 입력값(x)를 받는 미지의 목적 함수(f(x))를 상정하여,

그 함숫값(f(x))을 최대로 만드는 최적해를 찾는 방법

장점: 적은 시간으로 최적해 찾기 가능

단점: 사용하는 함수에 따라 성능이 크게 변화함

XGBoost + Optimization

XGBoost: Kaggle에서 Boosting 모델 중 평가지표 GBC보다 상위권 Hyperparameter Optimization: 모델 하이퍼파라미터 최적화로 성능 향상

1. GridSearch 방식 평가지표

▶ [Standardization] SK하이닉스 정확도: 72.78%, 삼성전자 정확도: 82.01%

2. Bayesian TPE 방식 평가지표

XTree-structured Parzen Estimator

▶ [Standardization] SK하이닉스 정확도: 78%, 삼성전자 정확도: 87%

CNN

X Convolutional Neural Network

```
from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam
```

Layer 3개, 활성화함수 Relu Dropout 설정 X

```
model = Sequential()
```

```
model.add(Dense(64,input_shape=(29,),activation='relu'))
model.add(Dense(64,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
```

```
model.compile(loss='binary_crossentropy',
optimizer='Adam',
metrics=['accuracy'])
```

손실함수 Binary_crossEntropy 옵티마이저 Adam 평가지표 정확도 Epochs = 100

▶ SK하이닉스 정확도: 58.05%, 삼성전자 정확도: 77.53%

MTL **Multi-Task Learning

MTL는 서로 연관성이 있는 Task를 동시에 학습하여

Task 수행 성능을 전반적으로 향상시키는 학습 패러다임

Layer 3개, 활성화함수 Relu Dropout 설정 X

Model = Sequential()

```
model.add(Dense(128, input_shape(29,), activation = 'relu', kernel_initializer='random_uniform')) model.add(Dense(128, input_shape(29,), activation = 'relu', kernel_initializer='random_uniform')) model.add(Dense(128, activation='relu', kernel_initializer='normal')) Model.add(Dense(data_y.shape[1], activation='sigmoid', kernel_initializer='random_uniform'))
```

Model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Model.fit(data_x, data_y, epochs=i, batch_size=j, validation_split=0.1, verbose=2)

손실함수 Binary_crossEntropy 옵티마이저 Adam 평가지표 정확도

> epochs = [32, 64, 128] batch_size = [8, 16, 32]

MTL **Multi-Task Learning

```
Epoch 117/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 118/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 119/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 120/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 121/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 122/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 123/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 124/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 125/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 126/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 127/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
Epoch 128/128
76/76 - 0s - loss: 0.6932 - accuracy: 0.8294 - val_loss: 0.6932 - val_accuracy: 0.8427
INFO:tensorflow:Assets written to: model_128_32/assets
```

▶ SK하이닉스 정확도: 82.94%, 삼성전자 정확도: 84.27%

모델 예측 평가지표

베이스라인 모델	SK하이닉스 정확도	삼성전자 정확도
Standardization + Logistic Regression	64.04%	78.2%

	SK하이닉스 정확도	삼성전자 정확도
Ridge Classifier	64.41%	78.65%
Linear Discriminant Analysis	64.04%	78.27%
XGBoost	78%	87%
Convolutional Neural Network	58.05%	77.53%
MTL	82.94%	84.27%

모델 예측 평가지표

베이스라인 모델	SK하이닉스 정확도	삼성전자 정확도
Standardization + Logistic Regression	64.04%	78.2%

대시보드 기획 개요

모델링을 통한 전략

+ 차트를 통한 분석 대시보드

기획 배경 및 타겟

반도체 우량주에 '투자'하려는 20대 청년들에게

분석 결과를 통하여 전략적 투자를 도와줄 수 있는 대시보드

주요 기능

모델링으로 주가 예측 + Drill Down으로 주식 투자 안정성 확인 + 영향력 있는 지수 확인

기대 효과

우량주라는 이유로 사실상 투기에 가까운 투자가 아닌, 전략적 투자 가능

대시보드 페르소나

24살 군대 적금을 막 깬 대학생(남)

22살 아르바이트를 하고 있는 대학생(여)

공통점

주식이 두려움 / 주식 입문자, 또는 주식 경험 없음(관심 有) / 시드머니 100만원 이상 / 수익률은 금리보다 높길 바람

▶ 페르소나 특징을 반영하여 대시보드 기능 정의

대시보드 스타일

대표 캐릭터

상업용 폰트

주제: 카페24 아네모네

내용: 넥슨 Lv.2 고딕 Bold

색상 차트

대시보드 제작

▶ 안정성 지표

하단 버튼을 통하여 각 종목의 일정 기 간 동안 상승(빨강), 하락(파랑)의 비율 확인 가능

▶ 머신러닝을 통한 주가 등락예측

XGBoost 모델을 통하여 등락 예측 결과를 라인 차트로 표현 상단의 회색 바는 모델이 적중했는지에 대한 여부를 알 수 있음

대시보드 제작

▶ SK하이닉스와 삼성전자 전일대비 등락 분포

기준연월(2010.07~2021.05)

▶ 전체 등락 분포

SK하이닉스(빨강), 삼성전자(파랑)의 전체 기간 동안 등락 %로 얼마나 오르내렸는지 확인 가능

대시보드 제작

▶ 주가관련지수 외부요인 상관성 분석

▶ 주가 상관성 지수 차트

두 데이터셋의 지표를 통하여 주가와 상관성을 보이는 지수 확인

양의 상관성(빨강), 음의 상관성(파랑)

대시보드 최종

https://iddashboard.github.io/

프로젝트 결론

데이터를 다방면으로 수집하고,
전처리를 진행하며
예측 모델을 구축하고
최적화를 통하여 모델의 성능을 향상시켰습니다.

또한, 모델 구축에서 그치지 않고 실제 대시보드를 만들어 모델을 적용한 뒤 호스팅하는 과정까지 겪었습니다.

아쉬운 점도 분명히 존재하지만, 이러한 경험을 쌓을 수 있도록 기회를 주신 교수님들과 학우 분들 모두에게 감사 인사를 드립니다.

이상 발표를 마칩니다.

Reference

Slide 6 논문: 장은아, 최회련, 이홍철(2020), "BERT를 활용한 뉴스 감성분석과 거시경제지표 조합을 이용한 주가지수 예측"

Slide 12_선형보간법_그림: https://ko.wikipedia.org/wiki/%EC%84%A0%ED%98%95_%EB%B3%B4%EA%B0%84%EB%B2%95

Slide 12_후행보간법_그림: https://maelfabien.github.io/statistics/TimeSeries5/

Slide 34_SMOTE_그림: https://john-analyst.medium.com/smote%EB%A1%9C-%EB%8D%B0%EC%9D%B4%ED%84%B0-

%EB%B6%88%EA%B7%A0%ED%98%95-%ED%95%B4%EA%B2%B0%ED%95%98%EA%B8%B0-5ab674ef0b32

Slide 37_Ridge Classifier_그림: https://deepai.org/machine-learning-glossary-and-terms/ridge-regression

Slide 38_LDA_그림: https://www.analyticssteps.com/blogs/introduction-linear-discriminant-analysis-supervised-learning

Slide 39_XGBoost_그림: https://medium.com/analytics-vidhya/introduction-to-xgboost-algorithm-d2e7fad76b04

Slide 49 캐릭터: https://www.sktinsight.com/109145

대시보드 아이콘 : https://fontawesome.com/

대시보드 폰트: https://noonnu.cc/

전체 테마 그림 : https://stock.adobe.com/kr/

데이터셋 출처 : 딥서치, KRX, e-나라지표, K-stat, SK hynix 홈페이지, Ecos 한국은행 경제통계시스템, fred 사이트

데이터마이닝 프로젝트 code(github) : https://github.com/Data-mining-Information-design/TEAM-ID

정보디자인 프로젝트 code(github): https://github.com/IDdashboard/IDdashboard.github.io