Дифференциальное исчисление

Обозначим через Δx - приращение аргумента функции f(x), а через $\Delta f = f(x + \Delta x) - f(x)$ - приращение самой функции на соответствующем промежутке.

Определение. Функция y = f(x) называется дифференцируемой в точке x, если ее приращение можно представить в виде

$$\Delta f = A\Delta x + o(\Delta x) \quad (\Delta x \to 0).$$

B этом случае линейная часть приращения называется дифференциалом и обозначается

$$df(x) = A\Delta x$$
.

Пример 1. y = x, тогда $\Delta y = 1 \cdot \Delta x + 0$, то есть

$$dx = \Delta x. (1)$$

Пример 2. $y = x^2$. В этом случае (x - фиксировано! Это константа!)

 $\Delta y = \left(x + \Delta x\right)^2 - x^2 = 2x\Delta x + \left(\Delta x\right)^2$. Так как $\left(\Delta x\right)^2 = o\left(\Delta x\right)$ при $\Delta x \to 0$, то мы заключаем, что $d\left(x^2\right) = 2x\Delta x$, а с учетом формулы (1), $d\left(x^2\right) = 2xdx$.

Определение. Величина

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

называется производной функции f(x) в точке x.

Пример 1. c' = 0 (c - постоянная):

$$c' = \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = 0.$$

Пример 2.
$$f(x) = x$$
, $f'(x) = \lim_{\Delta x \to 0} \frac{x + \Delta x - x}{\Delta x} = 1$.

Пример 3. $f(x) = \sin x$,

$$\left(\sin x\right)' = \lim_{\Delta x \to 0} \frac{\sin\left(x + \Delta x\right) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x + \frac{\Delta x}{2}\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\frac{\Delta x}{2}\cos\left(x + \frac{\Delta x}{2}\right)}{\Delta x} = \cos x.$$

Задача. Найдите производную функции $y = \cos x$.

Пример. 4. $f(x) = a^x$,

$$\left(a^{x}\right)' = \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^{x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{a^{x}\left(a^{\Delta x} - 1\right)}{\Delta x} = a^{x} \ln a \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = a^{x} \ln a,$$

частный случай - $(e^x)' = e^x$.

Пример 5. $f(x) = \log_a x$,

$$\left(\log_{a} x\right)' = \lim_{\Delta x \to 0} \frac{\log_{a}\left(x + \Delta x\right) - \log_{a} x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\log_{a}\left(1 + \frac{\Delta x}{x}\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\ln\left(1 + \frac{\Delta x}{x}\right)}{\ln a \Delta x} = \lim_{\Delta x \to 0} \frac{\frac{\Delta x}{x} \ln a}{\Delta x} = \frac{1}{x \ln a}.$$

Пример 6. $f(x) = x^{\alpha} \quad (\alpha = 0)$:

$$(x^{\alpha})' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{\alpha} - x^{\alpha}}{\Delta x} = x^{\alpha} \lim_{\Delta x \to 0} \frac{\left(1 + \frac{\Delta x}{x}\right)^{\alpha} - 1}{\Delta x} = x^{\alpha} \lim_{\Delta x \to 0} \frac{\alpha \frac{\Delta x}{x}}{\Delta x} = \alpha x^{\alpha - 1}.$$

Связь между производной и дифференциалом

Теорема. Функция y = f(x) дифференцируема в точке x тогда и только тогда, когда в этой точке существует производная f'(x), и в этом случае df(x) = f'(x)dx.

Доказательство. Пусть y = f(x) дифференцируема в x, тогда существует предел

$$\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{A \Delta x + o(\Delta x)}{\Delta x} = A,$$

то есть f'(x) = A и, соответственно,

$$df(x) = f'(x)dx. (2)$$

Пусть теперь существует производная $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}$. Тогда

$$\frac{\Delta f(x)}{\Delta x} = f'(x) + \alpha(\Delta x),$$

где $\alpha(\Delta x)$ - бесконечно малая при $\Delta x \to 0$, но в этом случае

$$\Delta f = f'(x) \Delta x + \alpha(x) \Delta x = f'(x) \Delta x + o(\Delta x) \quad (\Delta x \to 0),$$

то есть y = f(x) дифференцируема в x, причем df(x) = f'(x)dx.

Из (2) получаем $\frac{df(x)}{dx} = f'(x)$, то есть отношение функций df(x) и dx постоянно и равно f'(x). По этой причине, следуя Лейбницу, производную часто обозначают символом $\frac{df(x)}{dx}$ наряду с предложенным впоследствии Лагранжем символом f'(x). В случаях, когда может возникнуть сомнение относительно переменной, по которой взята производная, эта переменная указывается в виде значка внизу: y'_x , $f'_x(x_0)$ и т.д.

Связь между дифференцируемостью и непрерывностью функции в точке

Вспомним определение непрерывности функции в точке.

Определение. Функция y = f(x) называется непрерывной в точке a, если существует предел $\lim_{x \to a} f(x) = f(a)$.

Запишем это определение в терминах приращений.

Определение. Функция y = f(x) называется непрерывной в точке x, если существует предел $\lim_{\Delta x \to 0} \Delta f(x) = 0$.

Теорема. Если функция y = f(x) дифференцируема в точке x, то она непрерывна в этой точке.

Доказательство. Запишем условие дифференцируемости функции f(x) в точке x:

$$\Delta f = f(x + \Delta x) - f(x) = f'(x)\Delta x + o(\Delta x) \quad (\Delta x \to 0).$$

Очевидно, что при $\Delta x \to 0\,$ приращение $\Delta f \to 0\,,$ что означает непрерывность функции в точке x .

Покажем, что обратное не всегда верно.

Пусть f(x) = |x|. Тогда в точке $x_0 = 0$

$$\lim_{x \to x_0 \to 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to 0} \frac{|x| - 0}{x} = \lim_{x \to 0} \frac{-x}{x} = -1, \quad \lim_{x \to x_0 \to 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to 0} \frac{|x| - 0}{x} = \lim_{x \to 0} \frac{x}{x} = 1.$$

Поскольку левый и правый пределы не равны, то «общего» предела не существует.

То есть в этой точке функция не имеет производной, а значит и не дифференцируема в ней.

Правила дифференцирования

Свойство 1. Пусть функция y = f(x) дифференцируема в x, а c - произвольная константа, тогда (cf(x))' = cf'(x).

Доказательство.
$$\lim_{\Delta x \to 0} \frac{cf\left(x + \Delta x\right) - cf\left(x\right)}{\Delta x} = c\lim_{\Delta x \to 0} \frac{f\left(x + \Delta x\right) - f\left(x\right)}{\Delta x} = cf'\left(x\right).$$

Свойство 2. Пусть функции f(x) и g(x) дифференцируемы в x, тогда

$$(f(x)+g(x))'=f'(x)+g'(x).$$

Доказательство.

$$\lim_{\Delta x \to 0} \frac{\left(f\left(x + \Delta x\right) + g\left(x + \Delta x\right)\right) - \left(f\left(x\right) + g\left(x\right)\right)}{\Delta x} = \lim_{\Delta x \to 0} \left(\frac{f\left(x + \Delta x\right) - f\left(x\right)}{\Delta x} + \frac{g\left(x + \Delta x\right) - g\left(x\right)}{\Delta x}\right) = f'(x) + g'(x).$$

Свойство 3. Пусть функции f(x) и g(x) дифференцируемы в x, тогда

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$

Доказательство.

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x + \Delta x) + f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x + \Delta x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)$$

$$\lim_{\Delta x \to 0} g\left(x + \Delta x\right) \lim_{\Delta x \to 0} \frac{f\left(x + \Delta x\right) - f\left(x\right)}{\Delta x} + f\left(x\right) \lim_{\Delta x \to 0} \frac{g\left(x + \Delta x\right) - g\left(x\right)}{\Delta x} = f'\left(x\right) g\left(x\right) + f\left(x\right) g'\left(x\right).$$

Свойство 4. Пусть функции f(x) и g(x) дифференцируемы в точке x, причем в

этой точке
$$g\left(x\right)\neq 0$$
, тогда $\left(\frac{f\left(x\right)}{g\left(x\right)}\right)'=\frac{f'(x)g\left(x\right)-f\left(x\right)g'(x)}{g^{2}\left(x\right)}.$ Доказательство.
$$\lim_{\Delta x \to 0} \frac{\frac{f\left(x+\Delta x\right)}{g\left(x+\Delta x\right)}-\frac{f\left(x\right)}{g\left(x\right)}}{\Delta x}=\lim_{\Delta x \to 0} \frac{f\left(x+\Delta x\right)g\left(x\right)-f\left(x\right)g\left(x+\Delta x\right)}{\Delta x \cdot g\left(x+\Delta x\right)g\left(x\right)}=$$

$$\lim_{\Delta x \to 0} \frac{f(x+\Delta x)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x+\Delta x)}{\Delta x \cdot g(x+\Delta x)g(x)} =$$

$$\lim_{\Delta x \to 0} \frac{f(x+\Delta x)g(x) - f(x)g(x)}{\Delta x \cdot g(x+\Delta x)g(x)} + \lim_{\Delta x \to 0} \frac{f(x)g(x) - f(x)g(x+\Delta x)}{\Delta x \cdot g(x+\Delta x)g(x)} =$$

$$\lim_{\Delta x \to 0} \frac{(f(x+\Delta x) - f(x))g(x)}{\Delta x \cdot g(x+\Delta x)g(x)} + \lim_{\Delta x \to 0} \frac{f(x)(g(x) - g(x+\Delta x))}{\Delta x \cdot g(x+\Delta x)g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g^{2}(x)}.$$

Пример 7. f(x) = tgx

$$(tgx)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\left(\sin x\right)'\cos x - \sin x\left(\cos x\right)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

3адача. Докажите, что $\left(ctgx\right)' = -\frac{1}{\sin^2 x}$.

Производная обратной функции

Теорема. Пусть непрерывная строго монотонная функция y = f(x) имеет в точке x_0 конечную и отличную от нуля производную $f'(x_0)$.

Тогда для обратной функции $g\left(y\right)$ в соответствующей точке $y_0=f\left(x_0\right)$ также существует производная, равная $\frac{1}{f'(x_0)}$.

Доказательство. Придадим значению $y=y_0$ произвольное приращение Δy , пусть Δx - соответствующее ему приращение функции $x=g\left(y\right)$. Из монотонности функции $y=f\left(x\right)$ следует, что $\Delta x\neq 0$. Имеем

$$\frac{\Delta x}{\Delta y} = \frac{1}{\Delta y}.$$

Если $\Delta y \to 0$, то в силу непрерывности функции x = g(y) и $\Delta x \to 0$. Но тогда знаменатель правой части последнего равенства стремится к $f'(x_0)$, то есть

$$\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \frac{1}{f'(x_0)}.$$

Эту формулу можно записать в виде $x'_{y} = \frac{1}{y'_{x}}$.

Производные обратных тригонометрических функций

Пример 8. Рассмотрим функцию $y = \arcsin x \left(-1 < x < 1, -\frac{\pi}{2} < y < \frac{\pi}{2} \right)$. Она является обратной для функции $x = \sin y$, которая имеет положительную производную на интервале $\left(-\frac{\pi}{2} < y < \frac{\pi}{2} \right)$. Имеем

$$y'_x = \frac{1}{x'_y} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}},$$

корень берем со знаком плюс, так как $\cos y > 0$.

Пример 9. Рассмотрим теперь функцию $y = arctgx \left(-\infty < x < +\infty, -\frac{\pi}{2} < y < \frac{\pi}{2} \right)$.

Она является обратной функцией для $x = tgy(x'_y > 0)$. Имеем

$$y'_x = \frac{1}{x'_y} = \frac{1}{1/\cos^2 y} = \frac{1}{1+tg^2 y} = \frac{1}{1+x^2}.$$

Задача. Докажите, что

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, \ (\arccos x)' = -\frac{1}{1+x^2}.$$

Производная сложной функции

Теорема. Пусть функция $u = \varphi(x)$ имеет в некоторой точке x_0 производную $u_x' = \varphi'(x_0)$, а функция y = f(u) имеет в соответствующей точке $u_0 = \varphi(x_0)$ производную $y_u' = f'(u_0)$.

Тогда сложная функция $y = f(\varphi(x))$ в точке x_0 также имеет производную $\left[f(\varphi(x))\right]_x' = f_u'(\varphi(x_0))\varphi_x'(x_0)$, или, короче $y_x' = y_u'u_x'$.

Доказательство. Придадим x_0 произвольное приращение Δx , пусть Δu соответствующее ему приращение функции $\varphi(x)$: $\Delta u = \varphi(x_0 + \Delta x) - \varphi(x)$, а Δy приращение функции f(u), вызванное Δu : $\Delta y = f(u_0 + \Delta u) - f(u_0)$. Тогда

$$\Delta y = y'_u \Delta u + \alpha (\Delta u) \Delta u ,$$

где $\alpha(\Delta u)$ - бесконечно малая при $\Delta u \to 0$. Доопределим функцию $\alpha(t)$ в нуле, положив $\alpha(0)=0$, чтобы она стала (если не была до этого) непрерывной при $\Delta x=0$. Разделим последнее равенство на Δx :

$$\frac{\Delta y}{\Delta x} = y_x' \frac{\Delta u}{\Delta x} + \alpha \left(\Delta u\right) \frac{\Delta u}{\Delta x}.$$
 (1)

Так как функция $u = \varphi(x)$ непрерывна в x_0 , то при $\Delta x \to 0$, будет $\Delta u \to 0$, а значит, и $\alpha(\Delta u) \to 0$ (мы воспользовались теоремой о пределе сложной функции). Переходя в равенстве (1) к пределу при $\Delta x \to 0$, получим $y_x' = y_u' u_x'$.

Пример 10.
$$(shx)' = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x + e^{-x}}{2} = chx$$
.

Задача. Докажите, что
$$(chx)' = shx$$
, $(thx)' = \frac{1}{ch^2x}$, $(cthx)' = -\frac{1}{sh^2x}$, $(\ln|x|)' = \frac{1}{x}$.

С правилом дифференцирования сложной функции связано свойство, которое называется:

Инвариантность формы первого дифференциала.

Пусть функции y = f(x) и $x = \varphi(t)$ таковы, что из них может быть составлена сложная функция: $y = f(\varphi(t))$, и пусть существуют производные y_x' и x_t' . Тогда существует и производная $y_t' = y_x' \cdot x_t'$.

Дифференциал функции y как функции от независимой переменной x выглядит следующим образом:

$$dy = y'_x dx$$
.

Если рассматривать функцию $y=f\left(\varphi(t) \right)$ от независимой переменной t , то дифференциал будет равен

$$dy=y_t'dt.$$

Применив формулу для производной сложной функции, получим $dy = y_x' x_t' dt$.

Так как $x_t'dt = dx$ - дифференциал функции $x = \varphi(t)$, то мы снова приходим к формуле $dy = y_x'dx$. Но здесь уже dx не является приращением независимой переменной и в случае нелинейной функции $x = \varphi(t)$ не совпадает с приращением Δx .

Таким образом, видим, что форма дифференциала даже в том случае, если прежняя независимая переменная заменена новой.

Производная функции, заданной параметрически

Теорема. Пусть функции x(t), y(t) определены и непрерывны на отрезке $[\alpha, \beta]$, дифференцируемы на (α, β) , а функция x(t) строго монотонна на $[\alpha, \beta]$. Тогда система уравнений

$$\begin{cases} x = x(t), \\ y = y(t), \end{cases} t \in [\alpha, \beta],$$

определяет на отрезке [a,b] (с концами в точках $x(\alpha)$, $x(\beta)$) переменную y как однозначную функцию от x: y = f(x), причем эта функция непрерывна на [a,b], дифференцируема на (a,b), а ее производная в точке $x_0 = x(t_0)$ (если $x'(t_0) \neq 0$) вычисляется по формуле

$$f'(x_0) = \frac{y'_t(t_0)}{x'_t(t_0)}$$
 (короче, $y'_x = \frac{y'_t}{x'_t}$).

Доказательство. Непрерывная строго монотонная функция x=x(t) имеет непрерывную строго монотонную обратную функцию t=t(x), определенную на отрезке [a,b]. Так как функция x=x(t) дифференцируема на интервале (α,β) , то ее обратная функция x=x(t) будет дифференцируемой на интервале (a,b), а ее производная будет равна $t_x'=\frac{1}{x'}$.

Выразим у через x: y = y(t(x)) = f(x). Тогда

$$f'(x) = (y(t(x)))'_x = y'_t t'_x = y'_t \frac{1}{x'_t}$$

Пример. Написать уравнение касательной и нормали к кривой $x = 2t - t^2 + 1$, $y = 3t - t^3 - 2$ в точке t = 0.

Решение. Имеем

$$x(0) = 1$$
, $y(0) = -2$, $x'_t = (2 - 2t)|_{t=0} = 2$, $y'_t = (3 - 3t^2)|_{t=0} = 3$, $y'_x(0) = \frac{3}{2}$.

Окончательно получаем:

уравнение касательной $y = \frac{3}{2}(x-1)-2$,

уравнение нормали $y = -\frac{2}{3}(x-1)-2$.

Касательная, геометрический смысл производной и дифференциала

Определение. Касательной к графику функции y = f(x) в точке $(x_0, f(x_0))$ называется предельное положение секущей, проведенной через точки $(x_0, f(x_0))$ и $(x_1, f(x_1))$ при $x_1 \to x_0$.

Все описанные секущие проходят через одну точку, а при $\Delta x = (x_1 - x_0) \to 0$ их угловые коэффициенты (тангенсы углов наклона их к оси Ox) стремятся к определенному числу – угловому коэффициенту касательной: $tg\alpha = \lim_{x_1 \to x_0} tg\beta$.

Пусть $\Delta y = f(x_1) - f(x_0)$, тогда угловой коэффициент секущей равен $\frac{\Delta y}{\Delta x}$, а его предельное значение при $\Delta x \to 0$ (если оно существует) совпадет с производной функции y = f(x) в точке x_0 :

$$tg\alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0).$$

Уравнение касательной в таком случае выглядит следующим образом:

$$y = f'(x_0)(x - x_0) + f(x_0).$$

Следовательно, геометрический смысл производной $f'(x_0)$ – это тангенс угла наклона к оси Ox касательной, проведенной к графику функции y = f(x) в точке $(x_0, f(x_0))$.

Обратимся к геометрическому истолкованию понятия дифференциала. Итак,

$$df(x_0) = f'(x_0) \Delta x$$
.

Нетрудно заметить, что это – приращение ординаты касательной, соответствующее приращению абсциссы Δx .

Односторонние производные.

Пусть функция y = f(x) задана на отрезке [a,b]. Говорят, что в точке a существует односторонняя правая производная, если существует предел $\lim_{\Delta x \to +0} \frac{f(a+\Delta x)}{\Delta x}$, который обозначается $f'_+(a)$. Аналогично определяется односторонняя левая производная $f'_-(b) = \lim_{\Delta x \to -0} \frac{f(b+\Delta x)}{\Delta x}$. Из свойств предела функции вытекает, что функция дифференцируема в точке x_0 тогда и только тогда, когда существуют и равны обе односторонние производные: $\exists f'(x_0) \Leftrightarrow \exists f'_+(x_0) = f'_-(x_0)$.

Иногда и во внутренней точке существуют только односторонние производные. Примером может служить функция y=|x|. В точке x=0 она не дифференцируема, но в ней существуют обе односторонние производные: $|x|_{-}^{'}=-1$, а $|x|_{+}^{'}=1$.

Производные и дифференциалы высших порядков

Если функция y = f(x) дифференцируема в любой точке $x \in (a,b)$, то на интервале (a,b) возникает новая функция y = f'(x). Функция y = f'(x) сама может иметь производную (f'(x))' на (a,b), которая по отношению к исходной функции f называется второй производной от f и обозначается f''(x) или $\frac{d^2f(x)}{dx^2}$, а если хотят явно указать переменную дифференцирования, то пишут, например, $f''_{xx}(x)$.

Если определена производная $f^{(n)}(x)$ порядка n, то производная порядка n+1 определяется формулой $f^{(n+1)}(x) = \left(f^{(n)}(x)\right)'$. Для производной порядка n приняты обозначения $f^{(n)}(x)$, $\frac{d^n f(x)}{dx^n}$. Условились считать, что $f^{(0)}(x) = f(x)$.

Рассмотрим несколько примеров вычисления производных высших порядков.

	f(x)	f'(x)	f''(x)	 $f^{(n)}(x)$
1	a^{x}	$a^x \ln a$	$a^x \ln^2 a$	 $a^{x} \ln^{n} a$
2	e^{x}	e^{x}	e^{x}	 e^{x}
3	sin x	$\cos x$	$-\sin x$	 $\sin\left(x+n\frac{\pi}{2}\right)$
4	$\cos x$	$-\sin x$	$-\cos x$	 $\cos\left(x+n\frac{\pi}{2}\right)$
5	x^{α}	$\alpha x^{\alpha-1}$	$\alpha(\alpha-1)x^{\alpha-2}$	 $\alpha(\alpha-1)\cdot\ldots\cdot(\alpha-n+1)x^{\alpha-n}$
6	ln x	$\frac{1}{x}$	$-\frac{1}{x^2}$	 $\frac{\left(-1\right)^{n-1}\left(n-1\right)!}{x^{n}}$

Формула Лейбница.

Теорема. Пусть функции u(x) и v(x) имеют на интервале (a,b) производные до порядка п включительно. Тогда для п-й производной их произведения справедлива следующая формула Лейбница: $(uv)^{(n)} = \sum_{n=0}^{\infty} C_n^m (u)^{(n-m)} (v)^{(m)}$.

Доказательство. При n = 1 формула совпадает с уже доказанной формулой для производной произведения. Пусть формула верна при n = k, то есть

$$(uv)^{(k)} = \sum_{m=0}^{k} C_k^m u^{(k-m)} v^{(m)}.$$

Тогда для n = k + 1 имеем

$$(uv)^{(k+1)} = \left(\sum_{m=0}^{k} C_k^m u^{(k-m)} v^{(m)}\right)' = \sum_{m=0}^{k} C_k^m u^{(k+1-m)} v^{(m)} + \sum_{m=0}^{k} C_k^m u^{(k-m)} v^{(m+1)} =$$

$$= C_k^0 u^{(k+1)} v + \sum_{m=1}^{k} C_k^m u^{(k+1-m)} v^{(m)} + \sum_{m=0}^{k-1} C_k^m u^{(k-m)} v^{(m+1)} + C_k^k u v^{(k+1)} .$$

Воспользуемся тем, что $C_{k+1}^0 = C_k^0 = C_k^k = C_{k+1}^{k+1} = 1$ и перейдем в отдельных слагаемых последнего выражения к индексу k+1. Теперь займемся второй суммой:

$$\sum_{m=0}^{k-1} C_k^m u^{(k-m)} v^{(m+1)} = \begin{cases} m' = m+1 \\ m = m'-1 \\ m \Big|_0^{k-1} \Rightarrow m' \Big|_1^k \end{cases} = \sum_{m'=1}^k C_k^{m'-1} u^{(k-(m'-1))} v^{(m')} = \{m' \to m\} = \sum_{m=1}^k C_k^{m-1} u^{(k+1-m)} v^{(m)}.$$
UMBER

Имеем

$$(uv)^{(k+1)} = C_{k+1}^{0} u^{(k+1)} v + \sum_{m=1}^{k} C_{k}^{m} u^{(k+1-m)} v^{(m)} + \sum_{m=1}^{k} C_{k}^{m-1} u^{(k+1-m)} v^{(m)} + C_{k+1}^{k+1} uv^{(k+1)} =$$

$$C_{k+1}^{0} u^{(k+1)} v + \sum_{m=1}^{k} (C_{k}^{m} + C_{k}^{m-1}) u^{(k+1-m)} v^{(m)} + C_{k+1}^{k+1} uv^{(k+1)} = \sum_{m=0}^{k+1} C_{k+1}^{m} u^{(k+1-m)} v^{(m)}$$

(мы вспомнили, что $(C_k^m + C_k^{m-1}) = C_{k+1}^m$).

Пример 1. Найти $d^{10}(x^2 \sin x)$.

Решение:
$$\left(x^2 \sin x\right)^{(10)} = C_{10}^0 \sin^{(10)} x \cdot x^2 + C_{10}^1 \sin^{(9)} x \cdot 2x + C_{10}^2 \sin^{(8)} x \cdot 2 = \sin\left(x + 10\frac{\pi}{2}\right) \cdot x^2 + 10\sin\left(x + 9\frac{\pi}{2}\right) \cdot 2x + \frac{10 \cdot 9}{1 \cdot 2}\sin\left(x + 8\frac{\pi}{2}\right) \cdot 2 = \sin\left(x + \pi\right) \cdot x^2 + 20\sin\left(x + \frac{\pi}{2}\right) \cdot x + 90\sin x = 20x\cos x + \left(90 - x^2\right)\sin x,$$

$$d^{10}\left(x^2 \sin x\right) = \left(20x\cos x + \left(90 - x^2\right)\sin x\right)dx^{10}.$$

Пример 2. Найти
$$d^4 \left(\frac{sh2x}{\sqrt[3]{x}} \right)$$
.

Решение.

Запишем формулы для производных функций, составляющих произведение.

Сначала вспомним, что, что sh'x = chx, а ch'x = shx, то есть $sh^{(2k)}x = shx$ и $sh^{(2k+1)}x = chx$. В нашем случае $sh^{(2k)}(2x) = 2^{2k}sh2x$ и $sh^{(2k+1)}(2x) = 2^{2k+1}ch2x$.

Для вычисления производных второй функции воспользуемся формулой со страницы 47 при $\alpha = -\frac{1}{3}$ или попросту продифференцируем функцию $\frac{1}{\sqrt[3]{x}}$ четыре раза:

$$\left(\frac{1}{\sqrt[3]{x}}\right)' = -\frac{1}{3x^{\frac{4}{3}}}, \left(\frac{1}{\sqrt[3]{x}}\right)^{(2)} = \frac{4}{9x^{\frac{7}{3}}}, \left(\frac{1}{\sqrt[3]{x}}\right)^{(3)} = -\frac{28}{27x^{\frac{10}{3}}}, \left(\frac{1}{\sqrt[3]{x}}\right)^{(4)} = \frac{280}{81x^{\frac{13}{3}}}.$$

А теперь вспомним, как выглядит «треугольник Паскаля», состоящий из биномиальных коэффициентов:

Окончательно получаем

$$d^{4}\left(\frac{sh2x}{\sqrt[3]{x}}\right) = \left(\frac{2^{4}sh2x}{\sqrt[3]{x}} - \frac{4 \cdot 2^{3}ch2x}{3x^{\frac{4}{3}}} + \frac{6 \cdot 2^{2} \cdot sh2x \cdot 4}{9x^{\frac{7}{3}}} - \frac{4 \cdot 2 \cdot ch2x \cdot 28}{27x^{\frac{10}{3}}} + \frac{sh2x \cdot 280}{81x^{\frac{13}{3}}}\right)dx^{4}.$$

Основные теоремы дифференциального исчисления

Определение. Точка x_0 называется точкой локального максимума (минимума), а значение функции в ней – локальным максимумом (минимумом) функции f(x), если существует окрестность $O_{\delta}(x_0)$ такая, что для любой точки $x \in O_{\delta}(x_0)$ будет справедливо неравенство $f(x) \le f(x_0) (f(x) \ge f(x_0))$.

Определение. Точки локального максимума и минимуму называются точками локального экстремума, а значение функции в них – локальными экстремумами функции.

Пример. Точка x=0 является точкой локального максимума, а точка $x=\pi$ точкой локального минимума для функции $y=\cos x$.

Определение. Точка x_0 называется внутренней точкой промежутка X, если она принадлежит ему вместе со своей окрестностью.

Теорема (**Ферма**). Если функция y = f(x) определенная на промежутке X, дифференцируема в точке внутреннего экстремума $x_0 \in X$, то ее производная в этой точке равна нулю: $f'(x_0) = 0$.

Доказательство. \triangleright Предположим для определенности, что x_0 - точка локального максимума, то есть для всех точек x из некоторой окрестности $O_{\delta}(x_0)$ будет справедливо

$$f(x) \le f(x_0)$$
.

Тогда

$$f'_{+}(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$
,

в то время как

$$f'_{-}(x_0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

Поскольку f(x) дифференцируема в x_0 , то левая и правая производные в этой точке совпадают между собой и значением производной:

$$f'(x_0) = f'_+(x_0) = f'_-(x_0),$$

а это возможно только в случае $f'(x_0) = 0$. \triangleleft

Замечание. Теорема Ферма дает необходимое условие внутреннего экстремума дифференцируемой функции, это условие не является достаточным.

Пример. У функции $y = x^3$ в нуле производная обращается в нуль, но x = 0 не является точкой локального экстремума этой функции.

Теорема (**Ролля**). Если функция f(x) определена и непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и f(a) = f(b), то найдется точка $c \in [a,b]$, в которой f'(c) = 0.

Доказательство. \triangleright Поскольку функция f(x) непрерывна на отрезке, то по второй теореме Вейерштрасса найдутся точки c_1 и c_2 , в которых она принимает соответственно минимальное и максимальное из своих значений на этом отрезке, то есть для

$$m = f(c_1) \le f(x) \le f(c_2) = M \quad (x \in [a,b]).$$

Если m=M, то функция постоянна на [a,b] и f'(x)=0 для всех $x\in(a,b)$. Если же m< M, то поскольку f(a)=f(b), одна из точек c_1,c_2 обязана лежать в интервале (a,b), а, следовательно, являться точкой внутреннего экстремума f(x). По теореме Ферма производная в ней обращается в ноль. \triangleleft

Теорема (Лагранжа о конечном приращении). Если функция f(x) определена и непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), то найдется точка $c \in [a,b]$ такая, что

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

 $c \in (a,b)$, в которой

Доказательство. > Рассмотрим вспомогательную функцию

$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$
, которая, очевидно, непрерывна на отрезке $[a,b]$, дифференцируема на интервале (a,b) и принимает на концах этого отрезка равные значения: $F(a) = F(b) = f(a)$. По теореме Ролля найдется точка

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0. \triangleleft$$

Геометрически теорема Лагранжа означает, что в некоторой точке $c \in (a,b)$ касательная к графику функции y = f(x) будет параллельна секущей, проведенной через точки (a, f(a)) и (b, f(b)).

Доказанная формула

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 или
$$f(b) - f(a) = f'(c)(b - a)$$

называется формулой Лагранжа или формулой конечных приращений. Она, очевидно, сохраняет силу и для случая a > b.

Теорема (**Коши о конечных приращениях**). Пусть функции f(x), g(x) непрерывны на отрезке [a,b] и дифференцируемы на интервале (a,b), причем $g(x) \neq 0$ $(x \in (a,b))$.

Тогда найдется точка $c \in (a,b)$ такая, что

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}.$$

Доказательство. ⊳ Перепишем нужную нам формулу в виде

$$(f(b)-f(a))g'(c)-(g(b)-g(a))f'(c)=0.$$

Введем вспомогательную функцию

$$\varphi(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x).$$

Эта функция непрерывна на отрезке [a,b], дифференцируема на интервале (a,b), а непосредственной подстановкой убеждаемся, что $\varphi(a) = \varphi(b)$:

$$\varphi(a) = (f(b) - f(a))g(a) - (g(b) - g(a))f(a) = f(b)g(a) - g(b)f(a),$$

$$\varphi(b) = (f(b) - f(a))g(b) - (g(b) - g(a))f(b) = -f(a)g(b) + g(a)f(b).$$

Поэтому по теореме Ролля на интервале (a,b) найдется точка c, в которой $\varphi'(c) = 0$, то есть $\varphi'(c) = (f(b) - f(a))g'(c) - (g(b) - g(a))f'(c) = 0$, а это и есть нужное нам равенство. \triangleleft

Правило Бернулли-Лопиталя.

Теорема. Пусть функции f(x) и g(x) определены и дифференцируемы на интервале (a,b), причем $g'(x) \neq 0$ на (a,b), и пусть $\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = 0$.

Тогда, если существует предел

$$\lim_{x\to a+0}\frac{f'(x)}{g'(x)}=K,$$

то существует также и предел

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = K.$$

Доказательство. ⊳ Доопределим функции f(x) и g(x) в точке a , полагая f(a) = g(a) = 0 , тогда они будут непрерывны уже на всем отрезке [a,x] при любом

 $x \in (a,b)$. Применим к паре f(x), g(x) на отрезке [a,x] теорему Коши о приращениях двух функций:

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Так как $c \rightarrow a+0$ при $x \rightarrow a+0$, то получаем

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(c)}{g'(c)} = \lim_{c \to a+0} \frac{f'(c)}{g'(c)} = K . \triangleleft$$

Аналогичное утверждение справедливо и для случая $x \to b - 0$.

Задача. Сформулируйте и докажите это утверждение.

Пример.
$$\lim_{x \to 1} \frac{\cos \frac{\pi x}{2}}{x^2 + 3x - 4} = \left[\frac{0}{0} \right] = \lim_{x \to 1} \frac{-\frac{\pi}{2} \sin \frac{\pi x}{2}}{2x + 3} = -\frac{\pi}{10}.$$

Применяя правило Лопиталя несколько раз, можно доказать следующее утверждение.

Теорема. Пусть функции f(x) и g(x) определены на некотором интервале (a,b), n раз дифференцируемы на этом интервале, причем производные $g'(x),...,g^{(n)}(x)$ не обращаются в ноль на (a,b), и пусть $\lim_{x\to a+0} f^{(k)}(x) = \lim_{x\to a+0} g^{(k)}(x) = 0$, (k=0,...,n-1).

Тогда, если существует предел

$$\lim_{x \to a+0} \frac{f^{(n)}(x)}{g^{(n)}(x)} = K,$$

то существует также и предел

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = K.$$

Доказательство.
$$\lim_{x \to a+0} \frac{f^{(n)}\left(x\right)}{g^{(n)}\left(x\right)} = K \Rightarrow \lim_{x \to a+0} \frac{f^{(n-1)}\left(x\right)}{g^{(n-1)}\left(x\right)} = K \Rightarrow \dots \exists \lim_{x \to a+0} \frac{f\left(x\right)}{g\left(x\right)} = K \ .$$

Аналогичная теорема справедлива и для случая $x \rightarrow b - 0$.

Пример

$$\lim_{x \to 0} \frac{tgx - \sin x}{x^3} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{\frac{1}{\cos^2 x} - \cos x}{3x^2} = \lim_{x \to 0} \frac{1 - \cos^3 x}{\cos^2 x \cdot 3x^2} = \lim_{x \to 0} \frac{1 - \cos^3 x}{3x^2} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{-3\cos^2 x \cdot \sin x}{6x} = -\frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} = -\frac{1}{2}.$$

Теорема. Пусть функции f(x) и g(x) определены и дифференцируемы на $(a,+\infty)$, причем $g'(x) \neq 0$ на $(a,+\infty)$, и пусть $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$.

Тогда, если существует предел $\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = K$,

то существует также и предел $\lim_{x\to a+0} \frac{f(x)}{g(x)} = K$.

Доказательство. \triangleright Введем новую переменную $t = \frac{1}{x}$. Для функций $f\left(\frac{1}{t}\right)$ и $g\left(\frac{1}{t}\right)$ справедливы условия теоремы 1. В самом деле, $f\left(\frac{1}{t}\right)$ и $g\left(\frac{1}{t}\right)$ непрерывны на $\left(0,\frac{1}{a}\right]$ по теореме о непрерывности сложной функции, обе функции дифференцируемы на $\left(0,\frac{1}{a}\right)$ $\left(f\left(\frac{1}{t}\right)\right)' = f'\left(\frac{1}{t}\right)\left(-\frac{1}{t^2}\right)$, (то же для $g\left(\frac{1}{t}\right)$), при этом $\left(g\left(\frac{1}{t}\right)\right)' = g'\left(\frac{1}{t}\right)\left(-\frac{1}{t^2}\right) \neq 0$ на $\left(0,\frac{1}{a}\right)$, а также существует предел $\lim_{t \to +0} \frac{\left(f\left(\frac{1}{t}\right)\right)'}{\left(g\left(\frac{1}{t}\right)\right)'} = \lim_{t \to +0} \frac{f'\left(\frac{1}{t}\right)\left(-\frac{1}{t^2}\right)}{g'\left(\frac{1}{t}\right)\left(-\frac{1}{t^2}\right)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = K$. Тогда существует и предел $K = \lim_{t \to +0} \frac{f\left(\frac{1}{t}\right)}{g\left(\frac{1}{t}\right)} = \lim_{x \to +\infty} \frac{f(x)}{g(x)}$. \triangleleft

Аналогичная теорема справедлива и для промежутка $(-\infty, a)$ при $x \to -\infty$.

Пример.
$$\lim_{x \to +\infty} \frac{x^{-1}}{arcctgx} = \left[\frac{0}{0}\right] = \lim_{x \to +\infty} \frac{-x^{-2}}{\frac{-1}{\left(x^2+1\right)}} = \lim_{x \to +\infty} \frac{x^2+1}{x^2} = 1$$
. Мы доказали, что $arcctgx \sim \frac{1}{x}$ при $x \to +\infty$.

Выведем правило Бернулли-Лопиталя для раскрытия неопределенности $\frac{\infty}{\infty}$.

Теорема. Пусть функции f(x) и g(x) непрерывны и дифференцируемы на интервале (a,b), причем $g'(x) \neq 0$ на (a,b), и пусть $\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = \infty$.

Тогда, если существует конечный предел

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = K, \tag{1}$$

то существует также и

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = K. \tag{2}$$

Доказательство. Фиксируем произвольное $\varepsilon > 0$. Покажем, что существует $\delta > 0$, при котором $\varepsilon > 0$ в промежутке $(a, a + \delta)$ будет справедливо неравенство $\left| \frac{f(x)}{g(x)} - K \right| < \varepsilon$.

Из (1) следует, что в некотором интервале (a,d) будет выполнено неравенство

$$\left| \frac{f'(x)}{g'(x)} - K \right| < \frac{\varepsilon}{2} \,. \tag{3}$$

На любом отрезке [x,d] $(x \in (a,d))$ функции f(x) и g(x) удовлетворяют условиям теоремы Коши. Поэтому для некоторого $c \in (x,d)$ будет справедливо неравенство

$$\frac{f(x)-f(d)}{g(x)-g(d)} = \frac{f'(c)}{g'(c)}.$$

Так как $c \in (a,d)$, то мы можем воспользоваться (3) и записать

$$\left| \frac{f(x) - f(d)}{g(x) - g(d)} - K \right| < \frac{\varepsilon}{2}. \tag{4}$$

Последнее неравенство означает также, что функция $\frac{f(x)-f(d)}{g(x)-g(d)}$ ограничена на (a,d).

Функции f(x) и g(x) бесконечно большие при $x \to a+0$, поэтому

$$\frac{f(x)-f(d)}{g(x)-g(d)} \sim \frac{f(x)}{g(x)}, \quad x \to a+0.$$

Это означает, что

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(d)}{g(x) - g(d)} (1 + \alpha(x)),$$

где $\alpha(x)$ - бесконечно малая функция при $x \to a+0$. Поскольку $\frac{f(x)-f(d)}{g(x)-g(d)}$ ограничена в нашей окрестности, то

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(d)}{g(x) - g(d)} + \beta(x),\tag{5}$$

где $\beta(x)$ - бесконечно малая функция при $x \to a+0$. Возьмем $\delta > 0$, при котором $\left|\beta(x)\right| < \frac{\varepsilon}{2}$ в (a,δ) . Используя (4), (5) и последнюю оценку, получим

$$\left|\frac{f(x)}{g(x)} - K\right| = \left|\frac{f(x) - f(d)}{g(x) - g(d)} + \beta(x) - K\right| \le \left|\frac{f(x) - f(d)}{g(x) - g(d)} - K\right| + \left|\beta(x)\right| < \varepsilon.$$

Утверждение (2) доказано.

Пример.
$$\lim_{x \to +0} x \ln x = \lim_{x \to +\infty} \frac{\ln x}{x^{-1}} = \left[\frac{\infty}{\infty} \right] = \lim_{x \to +0} \frac{x^{-1}}{-x^{-2}} = -\lim_{x \to +0} x = 0.$$

Алогичные теоремы справедливы и для случаев $x \to b-0$, $x \to \pm \infty$.

Пример.
$$\lim_{x \to +\infty} \frac{x^n}{e^x} = \left[\frac{\infty}{\infty}\right] \lim_{x \to +\infty} \frac{nx^{n-1}}{e^x} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to +\infty} \frac{n(n-1)x^{n-2}}{e^x} = \dots = \lim_{x \to +\infty} \frac{n!}{e^x} = 0.$$

Формула Тейлора

Рассмотрим многочлен n -й степени $P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$. Он однозначно определяется своими коэффициентами (алгебраический факт) в том смысле, что, если многочлен m -й степени $Q(x) = b_0 + b_1 x + b_2 x^2 + ... + b_m x^m$ совпадает с P(x), то m = n и $b_k = a_k$ (k = 0,...,n).

Сделав замену переменных $t = x - x_0$, можно получить разложение P(x) по степеням $x - x_0$:

$$P(x) = a_0 + a_1(t + x_0) + a_2(t + x_0)^2 + \dots + a_n(t + x_0)^n = c_0 + c_1t + c_2t^2 + \dots + c_nt^n =$$

$$= c_0 + c_1(x - x_0) + c_2(x - x_0)^2 + \dots + c_n(x - x_0)^n.$$

Такое представление тоже единственным образом определяется коэффициентами c_k (k = 0, ..., n).

Выведем формулы, связывающие эти коэффициенты со значениями многочлена P(x) и его производных в точке x_0 . Для этого запишем

$$P(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)^2 + c_3(x - x_0)^3 + \dots + c_n(x - x_0)^n ,$$

$$P'(x) = c_1 + 2c_2(x - x_0) + 3c_3(x - x_0)^2 + \dots + nc_n(x - x_0)^{n-1} ,$$

$$P''(x) = 2c_2 + 3 \cdot 2 \cdot c_3(x - x_0) + \dots + n(n-1)c_n(x - x_0)^{n-2} ,$$

 $P^{(n)}(x) = n \cdot c$

$$P^{(n)}(x) = n!c_n.$$

Подставив в эти формулы $x = x_0$, получим

$$c_0 = P(x_0), c_1 = \frac{P'(x_0)}{1!}, c_2 = \frac{P''(x_0)}{2!}, ..., c_n = \frac{P^n(x_0)}{n!}.$$
 (1)

Пусть нам задана функция f(x), имеющая в точке x_0 все производные до порядка n включительно. И пусть нам надо найти многочлен $P_n(x) = P_n(x_0; x)$ степени не выше n такой, что $P_n(x_0) = f(x_0)$, $P_n(x_0) = f'(x_0)$,..., $P_n^{(n)}(x_0) = f^{(n)}(x_0)$.

Учитывая выведенные только что формулы (1), можем записать

$$P_n(x_0;x) = P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$
 (2)

Определение. Алгебраический полином, заданный соотношением (2), называется полиномом Тейлора порядка n функции f(x) в точке x_0 .

Определение. Величина $r_n(x_0;x) = f(x) - P_n(x_0;x)$

называется n-м остатком или n-м остаточным членом формулы Тейлора (3):

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + r_n(x_0; x).$$
 (3)

Для того чтобы последнее равенство имело интерес, нам нужна информация об остаточном члене.

Формула Тейлора-Лагранжа.

Теорема. Пусть функция f(x)(n+1) раз дифференцируема в некоторой окрестности $O_{\delta}(x_0)$, тогда для любого x из этой окрестности справедлива формула

$$r_n(x_0;x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}, \ \epsilon \partial e \ c = x_0 + \theta(x-x_0) \quad (0 < \theta < 1).$$

Доказательство. \blacktriangleright Для удобства записи доказательства обозначим $r(x) = r_n(x_0; x)$

и $g(x) = (x - x_0)^{n+1}$. Имеем

$$r(x_0) = r'(x_0) = r''(x_0) = \dots = r^{(n)}(x_0) = 0, \ r^{(n+1)}(x) = f(x);$$

$$g(x_0) = g'(x_0) = g''(x_0) = \dots = g^{(n)}(x_0) = 0, \ g^{(n+1)}(x) = (n+1)!.$$

Применим к паре r(x), g(x) последовательно (n+1) раз теорему Коши о приращениях двух функций:

$$\frac{r(x)}{g(x)} = \frac{r(x) - r(x_0)}{g(x) - g(x_0)} = \frac{r'(c_1)}{g'(c_1)} = \frac{r'(c_1) - r'(x_0)}{g'(c_1) - g'(x_0)} = \frac{r''(c_2)}{g''(c_2)} = \dots = \frac{R^{(n)}(c_n) - R^{(n)}(x_0)}{g^{(n)}(c_n) - g^{(n)}(x_0)} = \frac{r^{(n+1)}(c)}{g^{(n+1)}(c)},$$

$$\text{rge}$$

$$c_1 = x_0 + \theta_1(x - x_0); \quad c_{k+1} = c_k + \theta_{k+1}(c_k - x_0) \quad (k = 1, ..., n-1);$$

$$c = c_n + \theta_{n+1}(c_n - x_0), \quad (0 < \theta_k < 1, k = 0, ..., n+1).$$

Перепишем начало и конец цепочки равенств, получим $\frac{r(x)}{(x-x_0)^{n+1}} = \frac{f^{(n+1)}(c)}{(n+1)!}$ или

$$r_n(x_0;x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}.$$

Формула Тейлора-Пеано.

Теорема. Пусть функция f(x) определена и имеет все производные до (n-1)-го порядка включительно в некоторой окрестности $O(x_0)$ точки x_0 , и пусть существует n-s производная $f^{(n)}(x_0)$. Тогда справедливо следующее представление

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n)$$

$$npu \ x \to x_0.$$

Доказательство. ⊳ Запишем нужное нам представление более кратко

$$f(x) = P_n(x) + o((x - x_0)^n).$$

Вспомним, что $P_n\left(x_0\right) = f\left(x_0\right), \quad P_n'\left(x_0\right) = f'\left(x_0\right), ..., \quad P_n^{(n)}\left(x_0\right) = f^{(n)}\left(x_0\right),$ а также, что $r_n\left(x\right) = o\left(\left(x-x_0\right)^n\right),$ если $\lim_{x \to x_0} \frac{f\left(x\right) - P_n\left(x\right)}{\left(x-x_0\right)^n} = 0$. Итак, вычислим нужный нам предел:

$$\lim_{x \to x_0} \frac{f(x) - P_n(x)}{(x - x_0)^n} = \left[\frac{0}{0}\right] = \lim_{x \to x_0} \frac{f'(x) - P'_n(x)}{n(x - x_0)^{n-1}} = \dots = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - P_n^{(n-1)}(x)}{n!(x - x_0)}.$$

Использовать далее правило Лопиталя мы не имеем права, поскольку нам не гарантировано существование $n-\tilde{u}$ производной функции f(x) в окрестности $O(x_0)$.

Но все-таки, поскольку $P_n^{(n-1)}\left(x_0\right) = f^{(n-1)}\left(x_0\right)$ и $P_n^{(n)}\left(x_0\right) = f^{(n)}\left(x_0\right)$, то имеем

$$\lim_{x \to x_0} \frac{f^{(n-1)}(x) - P_n^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0) - \left(P_n^{(n-1)}(x) - P_n^{(n-1)}(x_0)\right)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0) - \left(P_n^{(n-1)}(x) - P_n^{(n-1)}(x_0)\right)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0) - \left(P_n^{(n-1)}(x) - P_n^{(n-1)}(x_0)\right)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0) - \left(P_n^{(n-1)}(x) - P_n^{(n-1)}(x_0)\right)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n!(x - x_0)} = \lim_{x \to x_0} \frac{f^{(n-1)}(x)}{n!(x - x_0)$$

$$= \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{n!(x - x_0)} - \lim_{x \to x_0} \frac{\left(P_n^{(n-1)}(x) - P_n^{(n-1)}(x_0)\right)}{n!(x - x_0)} = f^{(n)}(x_0) - P_n^{(n)}(x_0) = 0.$$

Нужное нам соотношение доказано. ⊲

Примеры.

Проще всего формула Тейлора выглядит при $x_0 = 0$ (часто ее в этом случае называют формулой Маклорена):

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + r_n(x),$$

остаток в форме Пеано –

$$r_n(x) = o(x^n),$$

в форме Лагранжа -

$$r_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$
, где $c = \theta x \ (0 < \theta < 1)$.

- 1. Пусть $f(x) = e^x$. Тогда $f^{(k)}(x) = e^x (k = 1, 2, 3...)$. В таком случае f(0) = 1, $f^{(k)}(0) = 1$ для всех $k \ge 1$, и $e^x = 1 + x + \frac{x^2}{2!} + ... + \frac{x^n}{n!} + o(x^n)$.
- 2. Пусть $f(x) = \sin x$. Тогда $f^{(k)}(x) = \sin\left(x + k\frac{\pi}{2}\right)$, $f^{(k)}(0) = \sin\left(k\frac{\pi}{2}\right)$. Получаем f(0) = 0, $f^{(2m)}(0) = \sin m\pi = 0$, $f^{(2m+1)}(0) = \sin\left(m\pi + \frac{\pi}{2}\right) = (-1)^m \quad (m = 0, 1, 2, ...)$, и $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + ... + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$.
- 3. Пусть $f(x) = \cos x$. Тогда $f^{(k)}(x) = \cos\left(x + k\frac{\pi}{2}\right)$. Получаем $f^{(2m)}(0) = \cos m\pi = (-1)^m, \ f^{(2m+1)}(0) = \cos\left(m\pi + \frac{\pi}{2}\right) = 0 \ (m = 0, 1, 2, ...),$ и $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + ... + \frac{(-1)^2 x^{2n}}{(2n)!} + o(x^{2n+1}).$
- 4. Пусть $f(x) = \ln(1+x)$. Тогда $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k}$ (k=1,2,3...). Получаем f(0) = 0, $f^{(k)}(0) = (-1)^k (k-1)!$ $(k \ge 1)$, и $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + ... + \frac{(-1)^{n-1}x^n}{n} + o(x^n).$

5. Пусть
$$f(x) = (1+x)^{\alpha} (\alpha \neq 0)$$
. Тогда

$$f^{(k)}\left(x\right) = \alpha(\alpha - 1) \cdot \dots \cdot (\alpha - k + 1)(1 + x)^{\alpha - k} \quad \left(k = 1, 2, 3 \dots\right). \ \text{Получаем} \quad f\left(0\right) = 1,$$

$$f^{(k)}\left(0\right) = f^{(k)}\left(x\right) = \alpha(\alpha - 1) \cdot \dots \cdot (\alpha - k + 1) \quad \left(k \ge 1\right), \ \text{и}$$

$$\left(1 + x\right)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha - 1)x^{2}}{2!} + \frac{\alpha(\alpha - 1)(\alpha - 2)x^{3}}{2!} + \dots + \frac{\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - n + 1)x^{n}}{n!} + o\left(x^{n}\right).$$

При
$$\alpha = -1$$
 будет

$$\frac{1}{1+x} = 1 - x + \frac{-1(-2)x^2}{2!} + \frac{-1(-2)(-3)x^3}{3!} + \dots + \frac{-1(-2) \cdot \dots \cdot (-n)x^n}{n!} + o(x^n) = 1 - x + \dots + (-1)^n x^n + o(x^n).$$

Последняя формула чаще приводится в виде

$$\frac{1}{1-x} = 1 + x + \dots + x^n + o(x^n).$$

Пример. Вычислить число e с точностью 0,01.

Решение. Запишем формулу Тейлора-Лагранжа для e^x при x = 1:

$$e = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{e^{c}}{(n+1)!}, \quad (0 < c < 1),$$

Для достижения требуемой точности нужно, чтобы

$$\frac{e^c}{(n+1)!} < \frac{1}{100} \Leftarrow \frac{e}{(n+1)!} < \frac{1}{100} \Leftarrow \frac{3}{(n+1)!} < \frac{1}{100} \Leftrightarrow (n+1)! > 300.$$

Для этого достаточно взять n = 5 (6!= 720). Получаем

$$e \approx 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} = 2 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} = 2,71(6) \approx 2,72.$$

Пример. Вычислить число sin1 с точностью 0,01.

Решение. Запишем формулу Тейлора-Лагранжа для $\sin x$ при x = 1:

$$\sin 1 = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots + \frac{(-1)^n}{(2n+1)!} + \frac{\sin^{(2n+3)}(c)}{(2n+3)!}, \quad (0 < c < 1).$$

Для достижения требуемой точности нужно, чтобы

$$\left| \frac{\sin^{(2n+3)}(c)}{(2n+3)!} \right| \le \frac{1}{(2n+3)!} < \frac{1}{100} \Leftrightarrow (2n+3)! > 100.$$

Для чего достаточно взять n=1 (5!=120), то есть

$$\sin 1 \approx 1 - \frac{1}{3!} = 1 - \frac{1}{6} = \frac{5}{6} = 0.8(3) \approx 0.83.$$

Исследование функций методами дифференциального исчисления.

Условия монотонности функции

Теорема. Между характером монотонности дифференцируемой на интервале (a,b) функции f(x) и знаком ее производной на этом интервале существует следующая зависимость:

- 1) $f'(x) \ge 0 \Leftrightarrow f(x)$ не убывает,
- 2) $f'(x) \equiv 0 \Leftrightarrow f(x) \equiv conct$,
- 3) $f'(x) \le 0 \Leftrightarrow f(x)$ не возрастает,

4) $f'(x) > 0 \Rightarrow f(x)$ возрастает,

5)
$$f'(x) < 0 \Rightarrow f(x)$$
 убывает.

Доказательство. \triangleright 1) Пусть $f'(x) \ge 0$ на (a,b), тогда, используя формулу конечных приращений Лагранжа при $x_1, x_2 \in (a,b)$ таких, что $x_1 < x_2$, получим $f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \ge 0 \Rightarrow f(x_2) \ge f(x_1)$, то есть f(x) не убывает.

Обратно, пусть f(x) не убывает, тогда

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$$

и если $\Delta x > 0$, то $f(x + \Delta x) - f(x) \ge 0$, если же $\Delta x < 0$, то и $f(x + \Delta x) - f(x) \le 0$, поэтому выражение под знаком предела неотрицательно, а значит, предел неотрицателен.

Третье утверждение доказывается аналогично.

Пусть теперь $f(x) \equiv conct$, тогда $f'(x) \equiv 0$. Если же $f'(x) \equiv 0$, то для любых $x_1, x_2 \in (a,b)$ будет $f(x_2) - f(x_1) = f'(c)(x_2 - x_1) = 0$, что означает постоянство нашей функции.

Доказательства четвертого и пятого утверждений аналогичны доказательствам соответствующих частей доказательств первого и третьего утверждений. Примеры функций $y = x^3$ и $y = -x^3$ на интервале (-1;1) показывают, что следование в четвертом и пятом пункте – одностороннее. \triangleleft

Условия внутреннего экстремума функции.

Учитывая теорему Ферма, можно сформулировать следующее условие внутреннего экстремума функции:

Утверждение (необходимое условие внутреннего экстремума). Пусть функция f(x) определена в некоторой окрестности $O_{\mathcal{S}}(x_0)$, и пусть x_0 - точка экстремума f(x), тогда либо функция недифференцируема в x_0 , либо $f'(x_0) = 0$.

Теорема (достаточные условия экстремума в терминах первой производной). Пусть функция f(x) непрерывна в окрестности $O_{\delta}(x_0)$ точки x_0 и дифференцируема в проколотой окрестности $\mathring{O}_{\delta}(x_0)$.

Тогда справедливы следующие утверждения:

1) если
$$f'(x) > 0$$
 в $O^-(x_0)$ и $f'(x) < 0$ в $O^+(x_0)$, то x_0 - точка локального максимума $f(x)$

2) если f'(x) < 0 в $O^{-}(x_0)$ и f'(x) > 0 в $O^{+}(x_0)$, то x_0 - точка локального минимума f(x).

Доказательство. Докажем утверждение из первого пункта. Из непрерывности функции f(x) в точке x_0 следует существование предела $\lim_{x \to x_0 = 0} f(x) = f(x_0)$. Так как (по предыдущей теореме)

f(x) возрастает на $O_{\delta}^{-}(x_{0})$, то по теореме о пределе монотонной функции (см. картинку слева)

$$f(x_0) = \lim_{x \to x_0 - 0} f(x) = \sup_{x \in O_{\delta}^-(x_0)} f(x)$$
, а из трогой монотонности $f(x)$ следует, что $f(x) < f(x_0)$ в $O_{\delta}^-(x_0)$.

Аналогично доказывается, что $f(x) < f(x_0)$ в $O_{\delta}^+(x_0)$.

То есть $f(x) < f(x_0)$ в $\mathring{O_\delta}(x_0)$, а это означает, что x_0 - точка строгого локального максимума функции f(x).

Аналогично доказывается, что x_0 - точка строгого локального минимума f(x).

Теорема (достаточное условие экстремума в терминах второй производной). Пусть функция f(x) определена и дифференцируема в окрестности точки x_0 , дважды дифференцируема в этой точке и $f'(x_0) = 0$.

Тогда если $f''(x_0) > 0$, то x_0 - точка локального минимума, а если $f''(x_0) < 0$, то x_0 - точка локального максимума f(x).

Доказательство. \triangleright Запишем для функции f(x) в точке x_0 формулу Тейлора-Пеано для n=2 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2} + o((x - x_0)^2).$$

В нашем случае имеем $f(x) = f(x_0) + f''(x_0) \frac{(x - x_0)^2}{2} + o((x - x_0)^2)$. Тогда

 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{(x - x_0)^2} = \frac{f''(x_0)}{2} \neq 0$ и по теореме о сохранения знака функции, имеющей

предел, существует окрестность $O(x_0)$, в которой знак $\frac{f(x)-f(x_0)}{\left(x-x_0\right)^2}$ совпадает со знаком

 $f''(x_0)$, а поскольку $(x-x_0)^2 > 0$ в $O(x_0)$, то со знаком $f''(x_0)$ также будет совпадать и знак разности $f(x) - f(x_0)$. \triangleleft

Условия выпуклости функции.

Определение. Дифференцируемая в точке x_0 функция f(x) называется выпуклой вниз в этой точке, если в некоторой окрестности $O(x_0)$ будет выполнено

Геометрически условие выпуклости вниз функции в точке означает, что в окрестности $O(x_0)$ график функции y = f(x) лежит выше касательной, проведенной к нему в точке $(x_0, f(x_0))$.

Определение. Дифференцируемая в точке x_0 функция f(x) называется выпуклой вверх в этой точке, если в некоторой окрестности $O(x_0)$ будет выполнено

$$f(x) \le f(x_0) + f'(x_0)(x - x_0).$$

Геометрически условие выпуклости вверх функции в точке означает, что в окрестности $O(x_0)$ график функции y = f(x) лежит ниже касательной, проведенной к нему в точке $(x_0, f(x_0))$.

Определение. Дифференцируемая на интервале (a,b) функция f(x) называется выпуклой вниз (вверх) на этом интервале, если она выпукла вниз (вверх) во всех точках этого интервала.

Достаточное условие выпуклости функции.

Теорема. Пусть функция f(x) определена и дифференцируема в окрестности точки x_0 , дважды дифференцируема в этой точке, и пусть $f''(x_0) > 0$ $(f''(x_0) < 0)$.

Tогда f(x) выпукла вниз (вверх) в этой точке.

Доказательство. \triangleright Запишем для функции f(x) в точке x_0 формулу Тейлора-Пеано для n=2 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2} + o((x - x_0)^2).$$

Рассмотрим функцию $g(x) = \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{(x - x_0)^2} = \frac{f''(x_0)}{2} + o((x - x_0)^2)$. Так как

 $\lim_{x \to x_0} g\left(x\right) = \frac{f''(x_0)}{2} \neq 0 \text{ , то по теореме о сохранения знака функции, имеющей предел,}$ существует окрестность $\overset{\circ}{O}(x_0)$, в которой знак $g\left(x\right)$ совпадает со знаком $f''(x_0)$, а поскольку $\left(x-x_0\right)^2 > 0$ в $\overset{\circ}{O}(x_0)$, то со знаком $f''(x_0)$ также будет совпадать и знак

y a 3

разности $f(x) - f(x_0) - f'(x_0)(x - x_0)$. \triangleleft

Асимптоты

Определение. Прямая x = a называется вертикальной асимптотой графика функции y = f(x), если $\lim_{x \to a} f(x) = \infty$.

Определение. Прямая y = b называется правой (левой) горизонтальной асимптотой графика функции y = f(x), если $\lim_{x \to +\infty} f(x) = b$ ($x \to -\infty$ для левой).

Если левый предел равен правому, то говорят просто о горизонтальной асимптоте.

Определение. Прямая y = kx + b называется наклонной асимптотой графика функции y = f(x), если $f(x) = kx + b + \alpha(x)$, где $\alpha(x)$ - бесконечно малая функция при $x \to \infty$. Если $\alpha(x)$ - бесконечно малая при $x \to +\infty$ ($x \to -\infty$), то говорят о правой

y = f(x) y = kx + b y = kx + b

(соответственно, левой) наклонной асимптоте. **Утверждение**. Если прямая y = kx + b -

наклонная асимптота графика функции y = f(x), то

$$k = \lim_{x \to \infty} \frac{f(x)}{x}$$
, $a \ b = \lim_{x \to \infty} (f(x) - kx)$.

Доказательство. В самом деле,

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{kx + b + \alpha(x)}{x} = \lim_{x \to \infty} \left(k + \frac{b}{x} + \frac{\alpha(x)}{x} \right) = k,$$

И

$$\lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} (kx + b + \alpha(x) - kx) = \lim_{x \to \infty} (b + \alpha(x)) = b.$$

Пример. Найдем наклонную асимптоту функции $f(x) = \frac{2x^3 + x^2 + 2x + 2}{x^2 + 1}$.

Имеем:

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{2x^3 + x^2 + 2x + 2}{x^3 + x} = \lim_{x \to \infty} \frac{2x^3}{x^3} = 2,$$

$$b = \lim_{x \to \infty} \left(\frac{2x^3 + x^2 + 2x + 2}{x^2 + 1} - 2x \right) = \lim_{x \to \infty} \left(\frac{2x^3 + x^2 + 2x + 2 - 2x^3 - 2x}{x^2 + 1} \right) = \lim_{x \to \infty} \left(\frac{x^2 + 2}{x^2 + 1} \right) = 1.$$

Наклонная асимптота графика прямая y = 2x + 1 (графики пары чуть выше).