

Universidad Nacional Autónoma de México Inferencia Prof. Jimmy Hernández Morales

- 1. Si L(X) y U(X) satisface que $P_{\theta}(L(X) \leq \theta) = 1 \alpha_1$ y $P_{\theta}(U(X) \leq \theta) = 1 \alpha_2$, mostrar que $P_{\theta}(L(X) \leq \theta \leq U(X)) = 1 \alpha_1 \alpha_2$
- 2. Sea X_1 una única observación de un modelo $beta(\theta,1)$
 - Sea $Y = -(\log X)^{-1}$. Evalúa el coeficiente de confianza del conjunto [y/2, y]
 - Encontrar una cantidad pivotal y usarlo para construir un intervalo de confianza que tenga el mismo coeficiente de confianza con en el inciso anterior.
 - Compare los dos intervalos
- 3. Suponga que T es un estadístico de valor real. Suponga que $Q(t, \theta)$ es una función monotona de t para cada valor de θ . Mostrar que si la p.d.f de T, $f(t; \theta)$ puede ser expresada como:

$$f(t;\theta) = g((Q(t,\theta))) \left| \frac{\partial}{\partial t} Q(t,\theta) \right|$$
 (1)

para alguna función g entonces $Q(T, \theta)$ es un pivote

- 4. Sea $X_1, ..., X_n$ m.a. de una la distribución gamma con parámetros β y α un entero positivo conocido, sabemos que $\sum_{i=1}^{n} X_i$ es un estadístico suficiente para β , $T_n(\beta) = \frac{\sum_{i=1}^{n} X_i}{2\beta}$ se distribuye χ^2_{kn} . Halle lo siguiente
 - un intervalo de confianza para β
 - la longitud del intervalo l y $\mathbb{E}_{\beta}l$.
- 5. Sea $X_1, ..., X_n$ una m.a. con densidad:

$$f(x;\theta) = \exp(-(x-\theta))$$
 $\theta < x < \infty$ $-\infty < \theta < \infty$

y $Y_1 = X_{(1)}$. Mostrar que

- \bullet La p.d.f de Y_1 esta dado por $f(y) = n \exp(-n(y-\theta)) I_{(\theta,\infty)}(y)$
- Que la v.a. $T_n = 2n(Y_1 \theta)$ se distribuye como χ_2^2
- Un intervalo de confianza para θ basado en $T_n(\theta)$ con coeficiente de confianza 1α es $[Y_1 (b/2n), Y_1 (a/2n)]$
- 6. Sea $X_1, ..., X_n \sim F$ y \hat{F} la función de distribución empírica . Sea a < b números fijos y definimos $\theta = T(F) = F(a) F(b)$. Sea $\hat{\theta} = T(\hat{F}_n) = \hat{F}_n(b) \hat{F}_n(a)$. Encontrar el error estándar estimado de $\hat{\theta}$. Encontrar una expresión para un intervalo de confianza 1α aproximado para θ

- 7. Sea $X_1,...,X_n \sim \text{Bernulli}(p)$ y sea $Y_1,...,Y_m \sim \text{Bernulli}(q)$. Encontrar el estimador plug-in y el error estándar estimado para p. Encontrar un intervalo de confianza al 90 % para p. Hallar el estimador plug-in para p-q. Encontrar un intervalo de confianza al 90 % para p-q.
- 8. Sea $\theta = T(F)$, $\hat{\theta}_n = T(\hat{F}_n)$ y definamos la cantidad pivotal $R_n = \hat{\theta}_n \theta$. Denotemos $\hat{\theta}_{n,1}^*, ..., \hat{\theta}_{n,B}^*$ las muestras bootstrap de $\hat{\theta}_n$, y $H(r) = \mathbb{P}_F(R_n \leq r)$ la función de distribución acumulada. Definamos $C_n^* = (a,b)$ donde

$$a = \hat{\theta}_n - H^{-1}(1 - \frac{\alpha}{2}) \quad b = \hat{\theta}_n - H^{-1}(\frac{\alpha}{2}).$$
 (2)

Demuestra que $C_n^* = (a, b)$ es un intervalo de confianza exacto $1 - \alpha$ para θ .

- 9. Sea $X_1, ..., X_n \sim N(\mu, 1)$. Sea $\theta = e^{\mu}$ y $theta = e^{\bar{X}}$. Crear un conjunto de datos usando $\mu = 5$ con n = 100 observaciones.
 - Use bootstrap para obtener el error estándar y un intervalo de confianza al 95 % para θ
 - Genere un histograma con las muestras bootstrap. Esto es un estimado de la distribución de $\hat{\theta}$. Compare esto con la verdadera distribución muestral de $\hat{\theta}$