

Introduzione

Nei problemi che vengono formulati come modelli di miscelazione si dispone di un insieme di **materie prime** ("ingredienti") ciascuna caratterizzata da un contenuto noto di determinati "componenti"

Introduzione

Nei problemi che vengono formulati come modelli di miscelazione si dispone di un insieme di **materie prime** ("ingredienti") ciascuna caratterizzata da un contenuto noto di determinati "componenti"

L'obiettivo è miscelare (combinare) gli ingredienti secondo opportune proporzioni, per ottenere un prodotto finito ("miscela") che soddisfi determinati requisiti di qualità esprimibili in termini di contenuto complessivo dei componenti della miscela

Introduzione

Nei problemi che vengono formulati come modelli di miscelazione si dispone di un insieme di **materie prime** ("ingredienti") ciascuna caratterizzata da un contenuto noto di determinati "componenti"

L'obiettivo è miscelare (combinare) gli ingredienti secondo opportune proporzioni, per ottenere un prodotto finito ("miscela") che soddisfi determinati requisiti di qualità esprimibili in termini di contenuto complessivo dei componenti della miscela

Un esempio classico è quello del problema della dieta

Il problema della dieta è uno dei primi problemi di ricerca operativa studiato a inizio degli anni '40

Il problema della dieta è uno dei primi problemi di ricerca operativa studiato a inizio degli anni '40

Il problema era motivato dal desiderio dell'esercito statunitense di nutrire "correttamente" le truppe in Europa, ma spendendo lo stretto necessario

Il problema della dieta è uno dei primi problemi di ricerca operativa studiato a inizio degli anni '40

Il problema era motivato dal desiderio dell'esercito statunitense di nutrire "correttamente" le truppe in Europa, ma spendendo lo stretto necessario

Uno dei primi ricercatori ad affrontare il problema è stato **George Stigler** (Stigler diet:

https://en.wikipedia.org/wiki/Stigler_diet)

Il problema della dieta è uno dei primi problemi di ricerca operativa studiato a inizio degli anni '40

Il problema era motivato dal desiderio dell'esercito statunitense di nutrire "correttamente" le truppe in Europa, ma spendendo lo stretto necessario

Uno dei primi ricercatori ad affrontare il problema è stato **George Stigler** (Stigler diet:

https://en.wikipedia.org/wiki/Stigler_diet)

Risolvendo il modello "a mano" con un *metodo euristico* trovò una soluzione che costava 39.93\$ per anno (prezzi del 1939)

Nell'autuno del 1947, Jack Laderman usò il metodo del simplesso (da poco proposto da **George Dantzig**) per risolvere *esattamente* il modello di Stigler

Nell'autuno del 1947, Jack Laderman usò il metodo del simplesso (da poco proposto da **George Dantzig**) per risolvere *esattamente* il modello di Stigler

Il problema di programmazione lineare aveva 77 variabili e 9 vincoli

Nell'autuno del 1947, Jack Laderman usò il metodo del simplesso (da poco proposto da **George Dantzig**) per risolvere *esattamente* il modello di Stigler

Il problema di programmazione lineare aveva 77 variabili e 9 vincoli

Fu necessario il lavoro di 9 impiegati usando un calcolatore semi-manuale per un totale di 120 mesi uomo per trovare la soluzione ottima di 39.69\$

Una dieta prescrive fabbisogni minimi giornalieri di nutrienti: carboidrati (150g), proteine (50g) e grassi (70g)

Una dieta prescrive fabbisogni minimi giornalieri di nutrienti: carboidrati (150g), proteine (50g) e grassi (70g)

Questi sono assunti da cinque alimenti base: pane, latte, uova, carne, dolci

Una dieta prescrive fabbisogni minimi giornalieri di nutrienti: carboidrati (150g), proteine (50g) e grassi (70g)

Questi sono assunti da cinque alimenti base: pane, latte, uova, carne, dolci

I nutrienti contenuti in 100g di ciascun alimento sono i seguenti:

	pane	latte	uova	carne	dolci
carboidrati	80	4	0	0	80
proteine	0	10	50	60	0
grassi	14	60	35	20	20

continua...

Il costo (in euro) per 100g di ciascun alimento e la sua dose massima giornaliera sono:

	pane	latte	uova	carne	dolci
costo	0.3	0.5	1.5	3	2
dose max (g)	100	120	50	300	100

Var	ıα	bi li	:		Χ1	,)	X.	, Х	3 ,	Хц	, }	5		-		q	Mar	hta	` (tegl	ı a	lıme	ሎተ	\l	l e	H						_
F.0	:		W	lη		0.	. 3	Xι	+	0	5	Χı	+	ι.	5)	(3	+	3 x	\\	+	2	X 5										
7 (N			•		8 C) Х	1	t	ιx	2	t :	80	ΧĘ	5 2	2 1	50)		cat	ibo	ıdz	ah										_
nut	u U	enti	•		[0)	(2	+	50	Х3 -	-60	Хч	>	5	٥					blo	te	ın e											
					lh '	χ _ι	+ (60	Χ _l	t 3	5χ	} +	2	ο λ	(L	+ 2	.o X	ι,	≥ 7	0		gu	188	2								
(ĺΛ	eth)		χ,	۷	l		χ	۲ ۷	l.	2	X	٤ ۲	0.	5	Χ	h <u></u>	3		×	` (5 /	٤ (<u>-</u>	do	h (na	ħM	2	
					χį	2	0	i	=	٦,.	., 5																					

Il costo (in euro) per 100g di ciascun alimento e la sua dose massima giornaliera sono:

	pane	latte	uova	carne	dolci
costo	0.3	0.5	1.5	3	2
dose max (g)	100	120	50	300	100

Formulare un modello di Programmazione Lineare che permetta di decidere la dieta di costo minimo

Supponiamo di avere n sostanze diverse S_1, \ldots, S_n ciascuna contenente una certa quantità di m componenti C_1, \ldots, C_m

Supponiamo di avere n sostanze diverse S_1, \ldots, S_n ciascuna contenente una certa quantità di m componenti C_1, \ldots, C_m Supponiamo che ogni sostanza S_j abbia costo unitario p_j , $j=1,\ldots,n$

Supponiamo di avere n sostanze diverse S_1, \ldots, S_n ciascuna contenente una certa quantità di m componenti C_1, \ldots, C_m

Supponiamo che ogni sostanza S_j abbia costo unitario p_j , $j=1,\ldots,n$

Sia a_{ij} la quantità di componente C_i presente nella sostanza S_j

Supponiamo di avere n sostanze diverse S_1, \ldots, S_n ciascuna contenente una certa quantità di m componenti C_1, \ldots, C_m

Supponiamo che ogni sostanza S_j abbia costo unitario p_j , $j=1,\ldots,n$

Sia a_{ij} la quantità di componente C_i presente nella sostanza S_j

Si vuole ottenere la miscela di S_1, \ldots, S_n più economica che soddisfi determinati requisiti qualitativi, ovvero contenga una quantità non inferiore a b_i di ciascun C_i , $i = 1, \ldots, m$

• Variabili: $x_1, x_2, ..., x_n$ rappresentano la quantità di sostanza S_i da utilizzare nella miscela, j = 1, ..., n

- Variabili: $x_1, x_2, ..., x_n$ rappresentano la quantità di sostanza S_i da utilizzare nella miscela, j = 1, ..., n
- Funzione Obiettivo: minimizzare il costo della miscela

- Variabili: $x_1, x_2, ..., x_n$ rappresentano la quantità di sostanza S_j da utilizzare nella miscela, j = 1, ..., n
- Funzione Obiettivo: minimizzare il costo della miscela

$$\min p_1 x_1 + p_2 x_2 + \ldots + p_n x_n = \min p^T x$$

- Variabili: $x_1, x_2, ..., x_n$ rappresentano la quantità di sostanza S_j da utilizzare nella miscela, j = 1, ..., n
- Funzione Obiettivo: minimizzare il costo della miscela

$$\min p_1 x_1 + p_2 x_2 + \ldots + p_n x_n = \min p^T x$$

Vincoli:

• vincoli di qualità: la miscela deve contenere una quantità non inferiore a b_i di ciascun componente c_i

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \ge b_j, \quad j = 1, \ldots, n; \ i = 1, \ldots, m$$

- Variabili: $x_1, x_2, ..., x_n$ rappresentano la quantità di sostanza S_j da utilizzare nella miscela, j = 1, ..., n
- Funzione Obiettivo: minimizzare il costo della miscela

$$\min p_1 x_1 + p_2 x_2 + \ldots + p_n x_n = \min p^T x$$

Vincoli:

• vincoli di qualità: la miscela deve contenere una quantità non inferiore a b_i di ciascun componente c_i

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \ge b_j, \quad j = 1, \ldots, n; \ i = 1, \ldots, m$$

• vincoli di non negatività: $x_i \ge 0$, i = 1, ..., n

L'acciaio è uno dei prodotti più facilmente riciclabili (e riciclati) al mondo

L'acciaio è uno dei prodotti più facilmente riciclabili (e riciclati) al mondo

È sufficiente fondere qualsiasi rottame di ferro per incenerire tutti gli eventuali residui plastici o di vernice contenuti nel rottame, restando così con solo metallo liquido

L'acciaio è uno dei prodotti più facilmente riciclabili (e riciclati) al mondo

È sufficiente fondere qualsiasi rottame di ferro per incenerire tutti gli eventuali residui plastici o di vernice contenuti nel rottame, restando così con solo metallo liquido

Il problema nasce in quanto è difficile separare i diversi metalli presenti nel rottame, per cui, insieme al ferro, si ritrovano nel metallo liquido anche rame, nichel, cromo e altri metalli

L'acciaio è uno dei prodotti più facilmente riciclabili (e riciclati) al mondo

È sufficiente fondere qualsiasi rottame di ferro per incenerire tutti gli eventuali residui plastici o di vernice contenuti nel rottame, restando così con solo metallo liquido

Il problema nasce in quanto è difficile separare i diversi metalli presenti nel rottame, per cui, insieme al ferro, si ritrovano nel metallo liquido anche rame, nichel, cromo e altri metalli

In diverse produzioni alcuni metalli sono desiderati e altri no

Ad esempio, nella produzione dell'acciaio 18/10 (utilizzato nella produzione di pentole), si vuole avere il 18% di cromo ed il 10% di nichel nel prodotto finito

Ad esempio, nella produzione dell'acciaio 18/10 (utilizzato nella produzione di pentole), si vuole avere il 18% di cromo ed il 10% di nichel nel prodotto finito

L'eventuale presenza di questi metalli nei rottami di ferro è altamente desiderabile, in quanto cromo e nichel sono molto più costosi sia dei rottami che dello stesso acciaio 18/10

Ad esempio, nella produzione dell'acciaio 18/10 (utilizzato nella produzione di pentole), si vuole avere il 18% di cromo ed il 10% di nichel nel prodotto finito

L'eventuale presenza di questi metalli nei rottami di ferro è altamente desiderabile, in quanto cromo e nichel sono molto più costosi sia dei rottami che dello stesso acciaio 18/10

Al contrario i rame è un'impurità che rovina le caratteristiche estetiche dell'acciaio 18/10

ACC-ricrea è un'azienda che produce acciaio 18/10

ACC-ricrea è un'azienda che produce acciaio 18/10

L'azienda ha analizzato le caratteristiche di sei lotti di rottami di ferro, riportate nella seguente tabella, dove sono riportati anche il peso di ciascun lotto e il costo unitario di acquisto:

ACC-ricrea è un'azienda che produce acciaio 18/10

L'azienda ha analizzato le caratteristiche di sei lotti di rottami di ferro, riportate nella seguente tabella, dove sono riportati anche il peso di ciascun lotto e il costo unitario di acquisto:

	L1	L2	L3	L4	L5	L6
Ferro (%)	93	76	74	65	76	68
Nichel (%)	5	13	11	16	6	23
Cromo (%)	0	11	12	14	20	8
Impurità (%)	2	0	3	5	2	1
Peso	30	90	50	70	60	50
Costo	50	100	80	85	92	115

ACC-ricrea è un'azienda che produce acciaio 18/10

L'azienda ha analizzato le caratteristiche di sei lotti di rottami di ferro, riportate nella seguente tabella, dove sono riportati anche il peso di ciascun lotto e il costo unitario di acquisto:

	L1	L2	L3	L4	L5	L6
Ferro (%)	93	76	74	65	76	68
Nichel (%)	5	13	11	16	6	23
Cromo (%)	0	11	12	14	20	8
Impurità (%)	2	0	3	5	2	1
Peso	30	90	50	70	60	50
Costo	50	100	80	85	92	115

L'obiettivo per ACC-ricrea è produrre, al costo minimo, almeno 100 quintali di acciaio 18/10 con una presenza del 18% di cromo e 10% di nichel, almeno il 65% di ferro e al più un 1% di impurità

variabi	.1 -	X	1, X	l /	۸۶	, ለኒ	, X	5,	λc			4	wo	(111) 	o` 1,	,	qı 6	uAŢ	all	d	ιŒ	ntaa	ne	dı		ripo	, J			
F.O :	MIN	50																												
ııncolı	dı (Juali	ta'	:	F	ezi	۵	•		0.ე	3 x	\d_+	0.	1 6)	(2 +	0.	₹ų X	, +	9.0	5 X	L +	0.	76 X	(₅ -	- 0.	.68	Χe	≥ 0	.65 Ž	<u>6</u> > X
					(.W(Nο		C	11.0	χ,	+ 0	1.12	Χĵ	+ 0	.Լե	Хц.	t 0.	r or	5 †	0.0) 8 X	6	= ()	<u>د</u> ک	Xi_			
					1	Jic	he	:	0.0	5)	(,	+ 0.	13	Xz	+ C). Li	Χı	+ 0	.16	χ, ·	+ 0	.W	Х5	+	0.0)&	Χc	= (0.10	6 2 i=1
					lſ	Λbn	ut	α' :	0	.0:	ЗΧ,	+ 0	.05	Χų	+ 0	.02	Х5	+ (10.0	X 6	٤ (10.0	5	х;						
										Χı	+	χ, .	t X	3 +	Χų -	+ X	5 +	Χe	ا <u>د</u>	00	,	Χi	<i>>,</i> 0		i =	: 1,	, 6			
					d	ı sp	ovip	ılıte	ι`		Χ, :	£ 30	, X	٤.	₩,	Х, (50	(ر	(ر د	70,	Χ,	5 4 (ر ٥٥	, Χ.	٤ 5	50				