Tutorial 5

(21.
$$y = e^{2x} [A\cos(3x) + B\sin(3x)]$$
 $= (2x)e^{2x} [A\cos(3x) + B\sin(3x)]$
 $= (2x)e^{2x} [A\cos(3x) + B\sin(3x)]$
 $= 2e^{2x} [A\cos(3x) + B\sin(3x)] + e^{2x} (A - \sin(3x) + B\cos(3x))$
 $= 2e^{2x} [A\cos(3x) + B\sin(3x)] + e^{2x} (-3A\sin(3x) + 3B\cos(3x))$
 $= 2e^{2x} [A\cos(3x) + B\sin(3x)] + e^{2x} (-3A\sin(3x) + 3B\cos(3x))$
 $= e^{2x} [(2A + 3B)\cos(3x) + (2B - 3A)\sin(3x)]$
 $= 2e^{2x} [(2A + 3B)\cos(3x) + (2B - 3A)\sin(3x)]$
 $= 2e^{2x} [(2A + 3B)\cos(3x) + (2B - 3A)\sin(3x)]$
 $= 2e^{2x} [(2A + 3B)\cos(3x) + (2B - 3A)\sin(3x)]$
 $= 2e^{2x} [(2A + 3B)\cos(3x) + (2B - 3A)\sin(3x)]$
 $= 2e^{2x} [(2A + 3B)\cos(3x) + (2B - 3A)\sin(3x)]$
 $= 2e^{2x} [(2A + 3B)\cos(3x) + (2B - 3A)\sin(3x)]$
 $= 2e^{2x} [(2A + 3B)\cos(3x) + (2B - 3A)\cos(3x)]$

$$= e^{2x} \left[(4A + 6B + 6B - 9A) \cos(3x) + (4B - 6A - 6A - 9B) \sin(3x) \right]$$

$$= e^{2x} \left[(12B - 5A) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(12B - 5A) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= 4 \left[e^{2x} \left((2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right] + 13e^{2x} \left[A \cos(3x) + B \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (2B - 3A) \sin(3x) \right] + 13e^{2x} \left[A \cos(3x) + B \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (2B - 3A) \sin(3x) \right] + (-2A - 5B - 8B + 12A + 13B) \sin(3x)$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x} \left[(2A + 3B) \cos(3x) + (-12A - 5B) \sin(3x) \right]$$

$$= e^{2x}$$

$$f(n) = \begin{cases} \sin x & \text{if } n \mod 4 = 0. \\ \cos x & \text{if } n \mod 4 = 1. \\ -\sin x & \text{if } n \mod 4 = 2. \\ -\cos x & \text{if } n \mod 4 = 3. \end{cases}$$
(b)
$$f(311)(x) = -\cos x. \text{ because } 6311 \mod 4 = 3.$$

[a)
$$f(x) = 2x^3 - 15x^2 + 24x - 5 \ne$$

 $f'(x) = 6x^2 - 30x + 24 = 6(x^2 - 5x + 4) = 6(x - 4)(x - 1) = 0$
Critical points $x = 1$, and $x = 4$.

$$\begin{cases} (1 \times 4)(x-1) > 0 & x > 4 \text{ or } x < 1 \text{ increasing} \\ (4,+\infty) & (-\infty,1) \end{cases}$$

$$(4,+\infty) & (-\infty,1) \end{cases}$$

$$(4,+\infty) & (-\infty,1) \end{cases}$$

$$(4,+\infty) & (-\infty,1) \end{cases}$$

$$(4,+\infty) & (-\infty,1) \end{cases}$$

(b)
$$f(x) = \frac{x^4 e^{-x}}{4x}$$

 $f'(x) = f(x)g(x) + f(x)g'(x)$
 $= 4x^3 e^{-x} + x^4 \cdot (-e^{-x})$
 $= x^3 e^{-x} (4-x) = 0$ $x=0$, $x=4$

when
$$x=-1$$
 $f(-1)=(-1)^3e'(4-(-1))=-5e<0$
 $f(x)$ decreases on $(-10,0)$.
When $x=1$ $f'(1)=1^3(e')(4-1)=3e>0$.
 $f(x)$ increases on $(0,4)$.
When $x=5$ $f'(5)=5^3e^{-5}(-1)<0$.

(C)
$$f(x) = \chi + \frac{4}{\chi^2} = \frac{\chi}{1 + 4\chi^{-2}}$$
.
 $f(x) = 1 - 8\chi^{-3} = 1 - \frac{8}{\chi^3} = 0 \Rightarrow 1 = \frac{8}{\chi^3} \Rightarrow k = 2$.
 $\chi = 0$ is also a critical point as $f(x) = 1 = \frac{8}{\chi^3} \Rightarrow k = 2$.
Not differentiable at $\chi = 0$.

f(x) decroses on (-10, 2)f(x) increases on (-10, 0) and (2, +10)