PHL345 Problem Set 4

Minh Nguyen

April 8, 2021

Question 1(i)

Show that $t^{f\sigma} = f(t^{\sigma})$ for every term t

<u>Proof:</u> We will show this by induction on the complexity of t

Base Case: t is a single variable If t is a variable, it follows by definition that $t^{f\sigma}=f(t^\sigma)$

Inductive Step: Suppose that $t^{f\sigma} = f(t^{\sigma})$ for every variable t. WTS that

1.
$$(st)^{f\sigma} = f((st)^{\sigma})$$

We know that $(st)^{f\sigma} = s^{f\sigma}(t^{f\sigma})$. Since $t^{f\sigma} = f(t^{\sigma})$,

$$(st)^{f\sigma} = s^{f\sigma}(f(t^{\sigma})) = s^{*R}(f(t^{\sigma})) = *^{s}(f(t^{\sigma}))$$

But by definition, that means

$$s(t^{\sigma}) = f(t^{\sigma} + 1)$$

which is just $f((st)^{\sigma})$ as needed.

2. $(+rt)^{f\sigma} = f((+rt)^{\sigma})$ where r and t are any variables. We rewrite as

$$(+rt)^{f\sigma} = +^{f\sigma}(r^{f\sigma}t^{f\sigma})$$
$$= +^{f\sigma}(f(r^{\sigma})f(t^{\sigma})))$$

From the definition of addition in R and pseudo-addition in R, we get

$$= f(r^{\sigma})^* + f(t^{\sigma})$$
$$f(r^{\sigma} + t^{\sigma}) = f((+rt)^{\sigma})$$

3. $(\times rt)^{f\sigma} = f((\times rt)^{\sigma})$ where r and t are any variables. Using similar reasoning to 2., we get the following string of equalities:

$$(\times rt)^{f\sigma} = \times^{f\sigma} (r^{f\sigma} t^{f\sigma})$$

$$= \times^{f\sigma} (f(r^{\sigma} f(t^{\sigma})))$$

$$= f(r^{\sigma})^* \times f(t^{\sigma})$$

$$= f(r^{\sigma} t^{\sigma}) = f((\times rt)^{\sigma})$$

The final form our term could take would be of the single term 0, but our solution follows immediately by the expansion of f(0) = 0. This completes the inductive step, which completes our proof.

Question 1(ii)

Show that $f[\sigma(x/n)] = (f\sigma)(x/fn)$ for any variable x and number n

<u>Proof</u>: We know that $(f\sigma)(x/fn)$ is the valuation that is based on R, where if y is a variable, then

$$y^{(f\sigma)(x/fn)} = fn$$

Similarly, $\sigma(x/n)$ is the valuation based on R where

$$y^{\sigma(x/n)} = n$$

But notice that $f[\sigma(x/n)]$ has the range fn, where $n \in R$. That means,

$$y^{f[\sigma(x/n)]} = fn$$

Thus,

$$y^{f[\sigma(x/n)]} = y^{(f\sigma)(x/fn)}$$
$$f[\sigma(x/n)] = (f\sigma)(x/fn)$$

Question 1(iii)

Let f be an isomorphism between R to *R. Show that $\alpha^{f\sigma} = \alpha^{\sigma}$

We proceed with an induction proof on the complexity of α

Base Case: α is a term of L

By i), that means $\alpha^{f\sigma} = f(\alpha^{\sigma})$. But since f is an isomorphism, we know that R is an exact replica of R, so we can say that $f(\alpha^{\sigma}) = \alpha^{\sigma}$, so $\alpha^{f\sigma} = \alpha^{\sigma}$

Inductive Step: Assume that $\alpha^{f\sigma} = \alpha^{\sigma}$ for all terms α . We WTS that $\beta^{f\sigma} = \beta^{\sigma}$ for all formula β . We consider by cases:

1. $(\neg \alpha)^{f\sigma} = (\neg \alpha)^{\sigma}$

Since σ is based on R and $f\sigma$ is based on R and f is an isomorphism, we get that,

$$(\neg \alpha)^{f\sigma} = f(\neg \alpha^{\sigma}) = \neg \alpha^{\sigma}$$

2. $(\alpha \to \gamma)^{f\sigma} = (\alpha \to \gamma)^{\sigma}$ for all terms γ . Same reasoning as above, we get that,

$$(\alpha \to \gamma)^{f\sigma} = f((\alpha \to \gamma)^{\sigma} = (\alpha \to \gamma)^{\sigma}$$

3. $(\forall x\alpha)^{f\sigma} = (\forall x\alpha)^{\sigma}$ Now recall that

$$(\forall x\alpha)^{f\sigma} = (\alpha)^{f\sigma(x/u)}$$

for all $u \in^* R$

Notice that since f is an isomorphism, there is a bijective correspondence between every element in *R and R. Moreover, these elements behave exactly like there representations in either set. Thus, we can say that $u \in R$ as well, so we get that

$$(\alpha)^{\sigma(x/u)} = (\alpha)^{f\sigma(x/u)}$$

which is just $(\forall x\alpha)^{\sigma}$

This completes the inductive step, which shows that the condition in question holds for all formulas α .

Question 2(i)

Show that f is injective

<u>Proof</u>: To show this, fix $nnm \in N$. Suppose that the following relation is in Ω

$$f(n) = s_n^{*R} = f(m) = s_m^{*R}$$

We WTS that m = n

Given that it's in Ω , we can say that $R \models s_n^{*R}$ and $R \models s_m^{*R}$. In other words,

$$(s_n^{*R})^{\sigma} = s_m^{*R} = 1$$

$$f(n) = f(m) = 1$$

where σ is the valuation based on R

Question 2(ii)

Show that f is an embedding

<u>Proof:</u> We know from 2(i) that f is injective for all n. To show that f is an embedding, we consider by cases, and WTS that f satisfies each case.

1.
$$f(0) = 0$$

Since $0 = s_0^R$, $f(0) = s_0^{*R} = 0$

- 2. $f(m+1)=^*s(f(m))$ We know that $f(m+1)=s_{m+1}^{*R}=s^{*R}(s_m^{*R})$ But this just means that $=s^{*R}(f(m))=^*s(f(m))$
- 3. $f(m+n)=f(m)^*+f(n)$ We know that $f(m+n)=s_{m+n}^{*R}$ $=\underbrace{s^{*R}(s^{*R}(s^{*R}(...(s_m^{*R}))))}_{\text{n times}}$

But this is equivalent to

$$= s_m^{*R} * + s_n^{*R} = f(m)^* + f(n)$$

4. $f(mn) = f(m)^* \times f(n)$ This means $f(mn) = s_{mn}^{*R}$. Similar to the above argument, we get that

$$= s^{*R} * \times s_n^{*R}$$
$$= f(m)^* \times f(n)$$

Given that our function f is injective and satisfies all the conditions of an embedding from R to *R , we get that f is an embedding as needed.