МФТИ

Алгоритмы и структуры данных, осень 2022 Семинар №08. Быстрое преобразование Фурье

Везде, где не сказано иное, предполагается, что используемые числа помещаются в стандартные типы данных; погрешностями округления пренебречь.

- **1.** Пусть $a=(a_0,a_1,\ldots,a_{n-1})$ и $b=(b_0,b_1,\ldots,b_{m-1})$ два вектора. Для каждого $i\in[0,n-m]$ найдите $a_ib_0+a_{i+1}b_1+\ldots+a_{i+m-1}b_{m-1}$, то есть скалярное произведение (a_i,\ldots,a_{i+m-1}) и b. Асимптотика: $O(n\log n)$.
- **2.** Пусть $a=(a_0,\ldots,a_{n-1})$ и $b=(b_0,\ldots,b_{n-1})$ два вектора. Для каждого $i\in[0,n-1]$ найдите $a_ib_0+a_{i+1}b_1+\ldots+a_{i+n-1}b_{n-1},$ считая, что $a_{k+n}=a_k$ для любого k.
- **3.** Пусть $s = s_0 s_1 \dots s_{n-1}$ текст, а $p = p_0 p_1 \dots p_{m-1}$ шаблон. Скажем, что p почти входит в s, начиная с позиции i, если p отличается от $s_i s_{i+1} \dots s_{i+m-1}$ не более чем в k символах. Предложите способ найти все почти-вхождения p в s за:
 - a) $O(kn + n \log n)$;
 - 6) $O(|\Sigma| \cdot n \log n)$.
- **4.** Дана строка a из n битов. Найти количество троек (i,j,k), таких что $i < j < k, \ a_i = a_j = a_k = 1$ и k-j=j-i.
- **5.** Найдите число правильных структур AVL-дерева (то есть без учёта значений ключей) на n вершинах глубины h. Асимптотика: $O(nh\log n)$.
- **6.** Пусть $a_n = \sum_{i=0}^{s-1} b_i a_{n-s+i}$ линейная рекуррента. По начальным членам a_0, \dots, a_{s-1} и коэффициентам b_1, \dots, b_s найдите a_n за
 - a) $O(s^3 \log n)$;
 - б) $O(s^2 \log n)$;
 - B) $O(s \log s \log n)$.
- 7. Многочлен от двух переменных x, y можно задать таблицей коэффициентов $(n+1) \times (m+1)$, если его степень по x равна n, а по y-m. Предложите способ перемножения двух таких многочленов за $O(nm\log(nm))$.
- **8.** Дан набор различных положительных чисел a_1, \ldots, a_n , каждое из которых не превосходит m. Для каждого i существует сколь угодно много предметов веса a_i .
 - а) В пакет можно сложить сколько угодно предметов каких угодно весов (из имеющихся), но только при условии, что их суммарный вес положителен и не превосходит m. Проверьте, верно ли, что любой собранный пакет имеет один из весов a_1, \ldots, a_n . Иными словами, верно ли, что других весов набрать нельзя? Асимптотика: $O(m \log m)$.
 - б) В предположении, что условие пункта а) выполнено, найдите все i, такие что нельзя собрать пакет веса a_i без использования предмета i. Асимптотика: $O(m \log m)$.
- 9. Дан белый клетчатый квадрат размером $n \times n$, окружённый чёрным цветом. За один ход можно выбрать любой белый квадрат размером $m \times m$ для произвольного нечётного m, который окружён клетками чёрного цвета, и закрасить в нём центральный столбец и центральную строку чёрной краской. (После этого квадрат либо исчезает, либо порождает 4 квадрата меньших размеров). По данным n и k определите число различных последовательностей действий длины k. Асимптотика: $O(k \log k \log n)$.

- **1.** Достаточно развернуть b и воспринимать векторы как многочлены (набор коэффициентов). Перемножьте их и проследите за полученными коэффициентами.
- 2. Раздвойте массив а. Задача сведётся к предыдущей.

3.

- а) Постройте суффиксный массив на p#s. Затем прикладывайте p в каждой позиции, находите максимальный совпадающий кусок и пропускайте ошибочные символы.
- б) Для каждого символа алфавита $c \in \Sigma$ постройте битовый вектор для p и для s: на каких позициях встречается этот символ в обеих строках. Затем для каждого i нужно скалярно умножить кусок строки s на строку p, результат равен числу совпадающих символов c. Если просуммировать такие числа по всем c, мы получим число расхождений (совпадений) между $s_i s_{i+1} \dots s_{i+m-1}$ и p для всех i
- **4.** Очевидно, k-j=j-i ровно тогда, когда 2j=k+i. Построим многочлен $P(x)=a_0+a_1x+a_2x^2+\ldots+a_{n-1}x^{n-1}$. Используя FFT, можно быстро вычислить P^2 . Тогда его коэффициент при x^{2j} равен $\sum_{k+i=2j}a_ia_k$. Если $a_j=1$, то коэффициент равен $1+2\sum_{k+i=2j;\ k>i}a_ia_k$. Отсюда можно очень просто извлечь ответ.
- **5.** Пусть dp(n,h) число нужных деревьев. Из определения практически моментально следует, что

$$dp(n,h) = \sum_{a+b=n-1} dp(a,h-1) \cdot dp(b,h-1) + dp(a,h-1) \cdot dp(b,h-2) + dp(a,h-2) \cdot dp(b,h-1).$$

Если представлять набор значений $dp(\cdot,h)$ как строку-многочлен, то h-я строка может быть найдена из (h-1)-й и (h-2)-й двумя перемножениями многочленов.

6. Первый способ — бинарно возвести матрицу в степень.

Второй способ — переходить от a_n к a_{2n} . Пусть мы знаем выражение a_n через первые s членов рекурренты: $a_n = \sum_{i=0}^{s-1} c_i a_i$. Для 2n можно записать $a_{2n} = \sum_{i=0}^{s-1} c_i a_{n+i}$ (для этого можно представить, что первые члены рекурренты есть $a_n, a_{n+1}, \ldots, a_{n+s-1}$).

Расписывая каждое a_{n+i} внутри суммы, получим

$$a_{2n} = \sum_{i=0}^{s-1} c_i \sum_{j=0}^{s-1} c_j a_{i+j} = \sum_{i,j} c_i c_j a_{i+j}.$$

Возведя c (как многочлен) в квадрат, мы получим выражение a_{2n} через члены a_0, \ldots, a_{2s-2} . Теперь нужно просто "прокинуть" коэффициенты на члены с меньшими номерами. Наивно это можно сделать за $\Theta(s^2)$, что вместе с квадратичным перемножением многочленов даст уже асимптотику $\Theta(s^2 \log n)$. Наконец, если рассмотреть характеристический многочлен $P = x^s - b_{s-1}x^{s-1} - \ldots - b_0x^0$, то $\alpha_s x^s$ после взятия остатка по модулю P даст как раз нужное разложение по x^0, \ldots, x^{s-1} . Поэтому протакливание можно осуществить за $\Theta(s \log s)$ делением многочленов.

7. При каждой степени y стоит многочлен по x, проведите над ним преобразование Фурье; затем нужно рассмотреть многочлены от y. То есть сначала выполняем преобразование Фурье по столбцам, затем по строкам. После этого значение (i,j)-го элемента равно значению в точке $x=\omega_x^i, y=\omega_y^j$. Затем таблицы можно перемножить поточечно и выполнить обратное преобразование сначала для строк, затем для столбцов.

8.

- а) Составим многочлен P степени m, в котором j-й коэффициент равен 1, если и только если j делится на какое-то из a_i , иначе коэффициент равен 0. Такой многочлен можно построить за $O(m \log m)$, поскольку $\sum_{j=1}^m \frac{m}{j} = O(m \log m)$. Тогда нужно проверить, что многочлен P^2 (обрубленный на x^m) не содержит положительных коэффициентов при каких-то новых степенях x.
- б) Нужно лишь проверить, что коэффициент при x^{a_i} равен 2.

9. Если P_n — многочлен, k-коэффициент которого равен ответу для квадрата $n \times n$ и k действий, то при $k \geqslant 1$ верно, что $[x^k]P_n = \sum\limits_{a+b+c+d=k-1} [x^a]P_{\frac{n-1}{2}} \cdot [x^b]P_{\frac{n-1}{2}} \cdot [x^c]P_{\frac{n-1}{2}} \cdot [x^d]P_{\frac{n-1}{2}}$, где $[x^k]P$ — коэффициент при x^k в многочлене P. Поэтому для перехода от $\frac{n-1}{2}$ к n нужно всего лишь возвести некий многочлен в 4-ю степень.