الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأوّل: (04 نقاط)

الفضاء منسوب إلى المعلم المتعامد و المتجانس $(O;\vec{i},\vec{j},\vec{k})$. نعتبر المستوبين (P') و (P') معادلتيهما على

x-2y+z-2=0 و 2x+y-z+1=0: الترتيب

- بيّن أنّ المستوبين (P) و (P') متقاطعان. (1)
- $d\left(M,(P)\right)=d\left(M,(P')\right)$ عيّن $d\left(M,(P)\right)=d\left(M,(P')\right)$ من الفضاء التي تحقّق $d\left(M,(P')\right)=d\left(M,(P')\right)$ مجموعة النقط $d\left(M,(P')\right)$ من الفضاء التي تحقّق $d\left(M,(P')\right)$ المسافة بين $d\left(M,(P')\right)$ المسافة بين النقطة $d\left(M,(P')\right)$ والمستوي $d\left(M,(P')\right)$
 - A(1;2;0) تتقق أنّ النقطة A(1;2;0) تتتمي إلى المجموعة (3).
 - 4) H و H المسقطان العموديان للنقطة A على المستويين H و H على الترتيب. H أ جد تمثيلا وسيطيا لكل من المستقيمين H و H و H
 - H' و H' و استنتج إحداثيات كل من النقطتين
 - . AHH' ميّن إحداثيات النقطة I منتصف القطعة [HH'] ثمّ احسب مساحة المثلث I

التمرين الثاني: (05 نقاط)

- $f(x) = \sqrt{2x+8}$ بـ [0;+∞] بين المعرّفة على المجال $f(\mathbf{I})$
- (C) . $(0;\vec{i},\vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C)
 - $\lim_{x \to +\infty} f(x) = 1 1$
 - ب ادرس اتجاه تغيّر الدّالة f ثمّ شكّل جدول تغيّراتها.
- معادلة له. y=x معادلة له. (C) مع المستقيم معادلة له.
 - $\cdot(\Delta)$ و (C) ارسم (3
- $u_{n+1}=f\left(u_{n}
 ight)$ ، $u_{n}=0$ و من أجل كل عدد طبيعي ، و $u_{0}=0$ و المتتالية العددية المعرّفة بـ و $u_{0}=0$
- ا) مثّل في الشكل السابق على محور الفواصل ، الحدود u_1 ، u_2 ، u_1 ، u_2 ، u_3 ، الحدود الفواصل ، الحدود u_1 ، الحدود u_3 ، u_4 ، الحدود u_5 ، الحدود u
 - 2) ضع تخمينا حول اتجاه تغيّر المتتالية (u_n) و تقاربها.
 - $0 \le u_n < 4$ ، n عدد طبیعي أنّه من أجل كل عدد أنّه من أجل 3
 - $\cdot (u_n)$ ادرس اتجاه تغیّر المتتالیة ادرس
 - $4-u_{n+1} \le \frac{1}{2}(4-u_n)$ ، n عدد طبیعي جابین أنّه من أجل كل عدد عدد طبیعي
 - $.4-u_n \le \frac{1}{2^n}(4-u_0) : n$ ثمّ استنتج أنّه من أجل كل عدد طبيعي
 - د استنج u_n استنج

صفحة 1 من 4

التمرين الثالث: (04,5 نقطة)

المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$. من أجل كل نقطة M من المستوي لاحقتها $z' = \frac{z-2}{z-1}$: z = z كيث z' = z كيث المعلم النقطة z' = z

. z'=z : z المعادلة ذات المجهول $\mathbb C$ في المعادلة ذات

 $\cdot z_2 = \overline{z_1}$ و $z_1 = 1 - i$ و $z_2 = z_1$ و النقطتان z_1 و النقطتان $z_1 = 1 - i$ و النقطتان $z_1 = 1 - i$

أ - اكتب $\frac{z_2}{z_1}$ على الشكل الأسي.

ب - بيّن أنّ النقطة B هي صورة للنقطة A بالدوران R الذي مركزه المبدأ O ، يُطلب تعيين زاوية له.

. نصع $z \neq z$ نعتبر النقطتين C و C لاحقتيهما $z \neq z$

عيّن (Γ) مجموعة النقط M حيث M تنتمي إلى محور التراتيب ثم أنشئ (Γ) .

.2 ونسبته O التحاكي الذي مركزه المبدأ O ونسبته h

أ - عيّن طبيعة التحويل النقطى $S=h\circ R$ وعناصره المميّزة .

S اكتب العبارة المركبة للتحويل

S النقطي المجموعة Γ صورة Γ بالتحويل النقطي S

التمرين الرابع: (06,5 نقطة)

 $g\left(x\right)=x^{2}+1-\ln x$ بــِ: $g\left(x\right)=x^{2}+1-\ln x$ بــِ: $g\left(x\right)=x^{2}+1-\ln x$ بادالة العددية المعرّفة على المجال

1) ادرس اتجاه تغيّر الدالة ع.

g(x)>0 ، g(x)>0 ، $g(\frac{\sqrt{2}}{2})$ من المجال $g(\frac{\sqrt{2}}{2})$ احسب (2

 $f(x) = \frac{\ln x}{x} + x - 1$ بالدالة العددية المعرّفة على المجال $0; +\infty$ إلى المعلم المتعامد والمتجانس $f(x) = \frac{\ln x}{x} + x - 1$ و $f(x) = \frac{\ln x}{x} + x - 1$ بالمعلم المياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $f(x) = \frac{\ln x}{x} + x - 1$

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to \infty} f(x)$ احسب (1

. $f'(x) = \frac{g(x)}{x^2}$ ، $]0; +\infty[$ من المجال x من عدد حقیقی x من الحجال کل عدد x من الحجال x عدد حقیقی x من الحجال تغیّرات الدالة x من الدال

.1 اكتب معادلة للمماس (T) للمنحنى (C) في النقطة التي فاصلتها

هـادلة له. y=x-1 :معادلة له معادلة له معادلة له y=x-1 أ - بيّن أنّ y=x-1 معادلة له (z=x-1

 (Δ) و (C) ب - ادرس الوضع النسبي لـ

(C) ارسم المستقيمين (T) و (Δ) ثمّ المنحنى

معادلة له. y=mx-m عدد حقیقی (Δ_m) المستقیم حیث m (6

اً - تحقّق أنّه من أجل كل عدد حقيقي m ، النقطة A(1;0) تنتمي إلى المستقيم (Δ_m) عدد حقيقي النقطة Δ_m

 $f\left(x
ight)=mx-m$ عدد حلول المعادلة: m عدم الوسيط الحقيقي عدم عدم بيانيا وحسب قيم الوسيط الحقيقي

 $[0;+\infty[$ ا - جد دالة أصلية للدالة $\frac{\ln x}{x}$ على المجال (7

 I_n ب - احسب I_n مساحة الحيّر المستوي المحدّد بالمنحنى I_n ، المستقيم (Δ) والمستقيمين اللذين معادلتيهما: x=n و x=n و x=n و x=n

 $I_n>2$: فإنّ $n>n_0$ بحيث إذا كان $n>n_0$ بحيث إذا كان معد طبيعي الموضوع الأول

صفحة 2 من 4

الموضوع الثاني

التمرين الأول: (04,5 نقطة)

A(5;-1;-2) و A(5;-1;-2) بعتبر النقطتين A(5;-1;-2) و المتجانس A(5;-1;-2) . نعتبر

.
$$\begin{cases} x=1+3k \\ y=1+2k \end{cases} ; \quad \left(k\in\mathbb{R}\right) :$$
 المستقيم المعرّف بالتمثيل الوسيطي التالي: (Δ

. الذي يشمل النقطة A و u(-2;1;1) شعاع توجيه له u(-2;1;1) أ) عيّن تمثيلا وسيطيا للمستقيم (Δ') الذي يشمل النقطة Δ'

ب) بيّن أنّ المستقيمين (Δ) و (Δ') متعامدان ، ثمّ تحقق أنّ النقطة C(1;1;0) نقطة تقاطعهما.

 (Δ') و (Δ) و المعيّن بالمستقيمين (Δ) و (Δ)

أ) بيّن أنّ الشعاع n(2;11;-7) ناظمي للمستوي (P)، ثمّ جد معادلة ديكارتية له.

(P) بيّن أنّ النقطة C هي المسقط العمودي للنقطة B على المستوي C

$$\begin{cases} x=3-eta \ y=12+12lpha+9eta : y=12+12lpha+9eta : eta$$
 من الفضاء المعرفة بـ $M\left(x;y;z
ight)$ مجموعة النقط α (3) $lpha$ عددان حقيقيان و $lpha$ مجموعة النقط $lpha$ النقط $lpha$ عددان حقيقيان و $lpha$ من الفضاء المعرفة بـ $lpha$ عددان عقيقيان و $lpha$ مجموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان عقيقيان و $lpha$ مجموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان عقيقيان و $lpha$ مجموعة النقط $lpha$ مجموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان عقيقيان و $lpha$ مجموعة النقط $lpha$ مجموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان عقيقيان و $lpha$ مجموعة النقط $lpha$ محموعة النقط $lpha$ مجموعة النقط $lpha$ محموعة النقط

. أَ أَثبت أَنَّ المجموعة (P') هي مستوِ ثمّ تحقق أنّ تحقق أنّ المجموعة (P') هي معادلة ديكارتية له

ب) عيّن إحداثيات D و E نقطتي تقاطع المستوي (P') مع المستقيمين (Δ) و (Δ') على الترتيب.

ج) احسب حجم رباعي الوجوه BCDE

التمرين الثاني: (04 نقاط)

. $f(x) = \frac{5x}{x+2}$ بــِ: $[0;+\infty[$ الدالة العددية المعرّفة على المجال $f(\mathbf{I})$

. $\lim_{\substack{x \to +\infty \\ y}} f(x)$ حسب (أ (1 الحسب اتجاه تغیّر الدالة f ثمّ شكّل جدول تغیّراتها.

. $f(x) \ge 0$: $[0;+\infty]$ من المجال عدد حقيقي x من عدد حقيقي (2

 $u_{n+1} = \frac{5u_n}{u_n+2}$ ، u_{n+2} على المعرّفة على الأول $u_0 = 1$ المتتالية العددية المعرّفة على $u_0 = 1$ بحدّها الأول $u_n = 1$

 $1 \le u_n \le 3$: n برهن بالتراجع أنه من أجل كل عدد طبيعي أ (1

ب) ادرس اتجاه تغیّر المتتالیة (u_n) ، ثمّ استتج أنها متقاربة .

. $v_n = 1 - \frac{3}{n}$: كما يلي كما المتتالية العددية المعرّفة على \mathbb{N} كما يلي (2

. v_0 أن رحمن أنّ (v_n) متتالية هندسية أساسها $\frac{2}{5}$ ، يطلب حساب حدها الأول

n بدلالة n عبارة v_n ثم استنتج عبارة n بدلالة ب

 (u_n) احسب نهایة المتتالیة (ج

. $S_n = \frac{1}{u_0} + \frac{1}{u_1} + \frac{1}{u_2} + ... + \frac{1}{u_n}$: حيث $S_n = \frac{1}{u_0} + \frac{1}{u_1} + \frac{1}{u_2} + ... + \frac{1}{u_n}$ (3)

التمرين الثالث: (04,5 نقطة)

.
$$\left(z - \frac{\sqrt{3}}{2} - \frac{1}{2}i\right)\left(z^2 + \sqrt{3}z + 1\right) = 0$$
 : المعادلة : \mathbb{C} المعادلة المركبة (1

لتي المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$ المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$

$$z_{C} = \overline{z_{B}}$$
 و $z_{B} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$ ، $z_{A} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ و لاحقاتها على الترتيب

- أ) اكتب z_A ، و z_C على الشكل الأسي .
- بيّن أنّه يوجد تشابه مباشر S مركزه B ويحوّل النقطة C إلى النقطة A يطلب تعيين عناصره المميزة.
 - 3) أ) عيّن لاحقة النقطة D حتى يكون الرباعي ABCD متوازي أضلاع ، ثمّ حدّد بدقة طبيعته.
- . z عيّن z مجموعة النقط z ذات الملاحقة z والتي تحقق z والتي تحقق z عيّن z هو مرافق

التمرين الرابع: (07 نقاط)

- . $g(x)=1+(x^2+x-1)e^{-x}$ بـ: $\mathbb R$ بـن المعرّفة على $g(\mathbf I)$
 - . $\lim_{x\to +\infty} g(x)$ و $\lim_{x\to \infty} g(x)$ احسب (أ (1
 - ب) ادرس اتجاه تغيّر الدالة g ، ثمّ شكّل جدول تغيّراتها .
- . $-1,52 < \alpha < -1,51$: مين أنّ للمعادلة g(x) = 0 حلّين في \mathbb{R} ، أحدهما معدوم والآخر α حيث g(x) = 0 على \mathbb{R} على \mathbb{R}
- البياني في $f(x) = -x + (x^2 + 3x + 2)e^{-x}$ بـ \mathbb{R} بـ \mathbb{R} بـ $f(x) = -x + (x^2 + 3x + 2)e^{-x}$ المستوي المنسوب إلى المعلم المتعامد و المتجانس $O(\vec{i}, \vec{j})$ (وحدة الطول $O(\vec{i}, \vec{j})$) وحدة المستوي المنسوب إلى المعلم المتعامد و المتجانس $O(\vec{i}, \vec{j})$
 - . $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (أ (1
 - ب). f'(x) = -g(x)، x عدد حقيقي عدد حقيقي). f'(x) = -g(x)
 - . ($f(\alpha) \approx 0.38$ غنگ) ، \mathbb{R} على على الدالة f على غيرات الدالة على ال
 - . ييّن دون حساب: $\lim_{h\to 0} \frac{f\left(\alpha+h\right)-f\left(\alpha\right)}{h}$ ، ثمّ فسّر النتيجة هندسيا
 - . $+\infty$ عند (C_f) عند مقارب مائل المنحنى y=-x عند عند (Δ) عند أنّ المستقيم (Δ)
 - . (Δ) ادرس وضعية المنحنى (C_f) بالنسبة للمستقيم
 - ج) بيّن أنّ للمنحنى $\left(C_{f}
 ight)$ نقطتي انعطاف يطلب تعيين إحداثييهما.
 - . $[-2;+\infty[$ ارسم (Δ) و (C_f) و (Δ)
 - (m-x) $e^x+(x^2+3x+2)=0$: على القش بيانيا وحسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة m-x. $[-2;+\infty[$
 - . $H(x) = (ax^2 + bx + c)e^{-x}$ و h(x) = x + f(x) ب ب \mathbb{R} ب ب h(x) = x + f(x) و h(x) = x + f(x)
 - . $\mathbb R$ على الأعداد الحقيقية a ، b ، a و b ، a على b ، الأعداد الحقيقية b ، a
 - (2) أ) احسب التكامل التالي : $A(\lambda) = \int_0^\lambda h(x) dx$ حيث λ عدد حقيقي موجب تماما وفسّر النتيجة هندسيا. (2) احسب التكامل التالي : $A(\lambda) = \int_0^\lambda h(x) dx$

انتهى الموضوع الثاني

التّمرين الأوّل:

الفضاء منسوب إلى المعلم المتعامد والمتجانس $(o;\vec{i};\vec{j};\vec{k})$ الفضاء منسوب إلى المعلم المتعامد والمتجانس (P'): x-2y+z-2=0 وَ (P): 2x+y-z+1=0

1) إثبات أنَّ (P) وَ (P) متقاطعان:

(P') متقاطعان يعني أنَّ $\overline{n_{(P')}}$ وَ $\overline{n_{(P')}}$ غير مرتبطان خطيّا.

$$n_{(P')}$$
 الدينا: $n_{(P')}$ و منه: $n_{(P')}$ غير مرتبطان خطيًا. $n_{(P')}$ غير مرتبطان خطيًا.

نستنتج أنَّ: (P) وَ(P) متقاطعان.

 $d\left(M,\left(P'\right)\right)=d\left(M,\left(P'\right)\right)$ حيث: $M\left(x;y;z\right)$ محموعة النقط (Γ) محموعة النقط (Σ)

 $\cdot (\Gamma)$ عيين طبيعة المجموعة

$$d(M,(P')) = \frac{|x-2y+z-2|}{\sqrt{(1)^2 + (-2)^2 + (1)^2}} \qquad d(M,(P)) = \frac{|2x+y-z+1|}{\sqrt{(2)^2 + (1)^2 + (-1)^2}}$$
$$d(M,(P')) = \frac{|x-2y+z-2|}{\sqrt{6}} \qquad d(M,(P)) = \frac{|2x+y-z+1|}{\sqrt{6}}$$

$$d(M,(P)) = d(M,(P')) \Leftrightarrow \frac{|2x + y - z + 1|}{\sqrt{6}} = \frac{|x - 2y + z - 2|}{\sqrt{6}}$$

$$\Leftrightarrow |2x + y - z + 1| = |x - 2y + z - 2|$$

$$\begin{cases} (2x + y - z + 1) = (x - 2y + z - 2) \\ (2x + y - z + 1) = -(x - 2y + z - 2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x + y - z + 1 - x + 2y - z + 2 = 0 \\ (2x + y - z + 1 - x + 2y - z + 2 = 0) \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 3y - 2z + 3 = 0 \\ (2x + y - z + 1 + x - 2y + z - 2 = 0) \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 3y - 2z + 3 = 0 \\ (2x + y - z + 1 + x - 2y + z - 2 = 0) \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \\ (2x + y - z + 1 + x - 2y + z - 2 = 0) \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 3y - 2z + 3 = 0 \\ (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y - z + 2 = 0 \\ (2x + y - z + 1 - x + 2y - z + 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y + z - 2 = 0 \\ (2x + y - z + 1 - x + 2y - z + 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y - z + 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y - z + 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y - z + 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y - z + 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y - z + 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y - z + 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 - x + 2y - z + 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z - 2 = 0 \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x - 2y + z + 2 = 0 \Rightarrow \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y - z + 1 + x + 2y + z + 2 \Rightarrow \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y + y + y + y + y + 2 \Rightarrow \end{cases}$$

$$\Leftrightarrow \end{cases} (2x + y + y + y + y + y + y + y + 2 \Rightarrow$$

4) لدينا: H وَ H' المسقطان العموديان للنقطة A على A' وَ A'' على الترتيب. A'' المستقيمين A'' و A'' A'' A'' A''

 $\left(\Gamma
ight)$ و منه: $A\left(1;2;0
ight)$ تنتمی إلی المجموعة

H المسقط العمودي للنقطة A على المستوي (P) يعني أنَّ $\overrightarrow{n_{(P)}}$ وَ \overrightarrow{AH} مرتبطان خطيا. $A \in (AH)$. وَ (AH). وَ (AH).

$$(AH): \begin{cases} x = 1 + 2t \\ y = 2 + t \\ z = -t \end{cases} : (AH): \begin{cases} x = x_A + 2t \\ y = y_A + t \\ z = z_A - t \end{cases}$$

المسقط العمودي للنقطة A على المستوي (P') يعني أنَّ $\overline{n_{(P')}}$ وَ $\overline{AH'}$ مرتبطان خطيا. H'

$$A\in (AH')$$
 هو شعاع توجيه المستقيم $\overline{n_{(P')}}$. وَ

$$(AH'): \begin{cases} x = 1 + t' \\ y = 2 - 2t' \dots; (t' \in \mathbb{R}) \end{cases} : (AH'): \begin{cases} x = x_A + 2t' \\ y = y_A + t' \\ z = z_A - t' \end{cases}$$

$$ig(AHig)\capig(Pig)=\{H\}:$$
المسقط العمودي للنقطة A على المستوي $ig(Pig)$ يعني أنَّ $H\in (AHig)$

لايجاد إحداثيات H

.
$$(P)$$
 نعوض (AH) في معادلة (R) الموجودة في التمثيل الوسيطي لـ (AH) في معادلة

$$m{\checkmark}$$
نبحث عن قيمة t . $m{\wedge}$ نعوض عن قيمة t المُحصَّل عليها سابقا في التمثيل الوسيطي للمستقيم $m{\wedge}$.

$$(AH) \cap (P) = \{H\} \Leftrightarrow 2(1+2t) + (2+t) - (-t) + 1 = 0$$
$$\Leftrightarrow 2+4t + 2+t + t + 1 = 0$$
$$\Leftrightarrow 6t + 5 = 0$$
$$\Leftrightarrow t = -\frac{5}{6}$$

(AH) نعوض $t=-rac{5}{6}$ في التمثيل الوسيطي للمستقيم

$$H\left(\frac{-2}{3}; \frac{7}{6}; \frac{5}{6}\right)$$
 التبسيط نجد $z_{H} = 1 - \frac{10}{6} = \frac{6 - 10}{6}$ $z_{H} = 2 - \frac{5}{6} = \frac{12 - 5}{6}$ $z_{H} = 2 + \left(-\frac{5}{6}\right)$ $z_{H} = -\left(-\frac{5}{6}\right)$

 $(AH')\cap (P')=\{H'\}$ أي: $\{H\in (P')\}$ يعني أنَّ (P') يعني أنَّ (P') يعني النقطة A على المستوي (P') يعني أنَّ (P')

لإيجاد إحداثيات 'H'

.
$$(P')$$
 في معادلة (AH') : نعوض $z;y;x$ الموجودة في التمثيل الوسيطى لـ (AH')

.
$$(AH')$$
 نعوض عن قيمة t' المُحصَّل عليها سابقا في التمثيل الوسيطي للمستقيم

$$(AH') \cap (P') = \{H'\} \Leftrightarrow (1+t') - 2(2-2t') + (t') - 2 = 0$$

$$\Leftrightarrow 1+t'-4+4t'+t'-2 = 0$$

$$\Leftrightarrow 6t'-5 = 0$$

$$\Leftrightarrow t' = \frac{5}{6}$$

نعوض
$$t=rac{5}{6}$$
 في التمثيل الوسيطي للمستقيم $t=rac{5}{6}$.

$$H'\left(\frac{11}{6}; \frac{1}{3}; \frac{5}{6}\right) : \text{dis} \quad \begin{cases} x_{H'} = 1 + \frac{5}{6} = \frac{6+5}{6} \\ y_{H'} = 2 - \frac{10}{6} = \frac{12-10}{6} : \text{dis} \end{cases} : \text{dis} \quad \begin{cases} x_{H'} = 1 + \left(\frac{5}{6}\right) \\ y_{H'} = 2 - 2\left(\frac{5}{6}\right) \\ z_{H'} = \frac{5}{6} \end{cases}$$

للتحقق:

$$d\left(A,\left(P'\right)\right)=d\left(A,\left(P'\right)\right)$$
: فإنَّ $A\in\left(\Gamma\right)$

$$d(M,(P)) = AH$$

$$= \sqrt{(x_H - x_A)^2 + (y_H - y_A)^2 + (z_H - z_A)^2}$$

$$= \sqrt{\left(\frac{-2}{3} - 1\right)^2 + \left(\frac{7}{6} - 2\right)^2 + \left(\frac{5}{6} - 0\right)^2}$$

$$= \sqrt{\left(\frac{-5}{3}\right)^2 + \left(\frac{-5}{6}\right)^2 + \left(\frac{5}{6}\right)^2}$$

$$= \sqrt{\frac{25}{9} + \frac{25}{36} + \frac{25}{36}}$$

$$= \sqrt{\frac{150}{36}} = \frac{5\sqrt{6}}{6}$$

$$d(M,(P')) = AH'$$

$$= \sqrt{(x_{H'} - x_A)^2 + (y_{H'} - y_A)^2 + (z_{H'} - z_A)^2}$$

$$= \sqrt{\left(\frac{11}{6} - 1\right)^2 + \left(\frac{1}{3} - 2\right)^2 + \left(\frac{5}{6} - 0\right)^2}$$

$$= \sqrt{\left(\frac{5}{6}\right)^2 + \left(\frac{-5}{3}\right)^2 + \left(\frac{5}{6}\right)^2}$$

$$= \sqrt{\frac{25}{36} + \frac{25}{9} + \frac{25}{36}}$$

$$= \sqrt{\frac{150}{36}} = \frac{5\sqrt{6}}{6}$$

$$d(A,(P)) = d(A,(P')) : \text{Ais } 9$$

5) إحداثيات I منتصف القطعة [HH']

$$x_{I} = \frac{\frac{-2}{3} + \frac{11}{6}}{2} = \frac{7}{12}$$

$$x_{I} = \frac{x_{H} + x_{H'}}{2}$$

$$x_{I} = \frac{x_{H} + x_{H'}}{2}$$

$$y_{I} = \frac{\frac{7}{6} + \frac{1}{3}}{2} = \frac{9}{12}$$

$$z_{I} = \frac{\frac{5}{6} + \frac{5}{6}}{2} = \frac{10}{12}$$

$$z_{I} = \frac{z_{H} + z_{H'}}{2}$$

مساحة المثلث 'AHH:

بِمَا أَنَّ :

$$S = \frac{HH' \times AI}{2}$$
 يلي: مساحة المثلث 'AHH تُعطى كما يلي:

$$HH' = \sqrt{(x_{H'} - x_H)^2 + (y_{H'} - y_H)^2 + (z_{H'} - z_H)^2}$$

$$= \sqrt{\left(\frac{11}{6} + \frac{2}{3}\right)^2 + \left(\frac{1}{3} - \frac{7}{6}\right)^2 + \left(\frac{5}{6} - \frac{5}{6}\right)^2}$$

$$= \sqrt{\left(\frac{15}{6}\right)^2 + \left(-\frac{5}{6}\right)^2}$$

$$= \sqrt{\frac{125}{18}}$$

$$AI = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2 + (z_A - z_I)^2}$$

$$= \sqrt{(1 - \frac{7}{12})^2 + (2 - \frac{3}{4})^2 + (0 - \frac{5}{6})^2}$$

$$= \sqrt{(\frac{5}{12})^2 + (\frac{5}{4})^2 + (\frac{5}{6})^2}$$

$$= \sqrt{\frac{25}{144} + \frac{25}{16} + \frac{25}{36}}$$

$$= \sqrt{\frac{350}{144}} = \sqrt{\frac{175}{72}}$$

$$S = \frac{\sqrt{\frac{125}{18}} \times \sqrt{\frac{175}{72}}}{2}$$

$$S = \frac{\sqrt{\frac{21875}{1296}}}{2} \approx 2.05 \quad (ua)$$

$$\lim_{x\to+\infty} f(x)$$
 -1

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{2x + 8} = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{2x + 8} = +\infty$$

ب- إنجاه تغيّر الدالة f

$$f'(x) = \frac{2}{2\sqrt{2x+8}} = \frac{1}{\sqrt{2x+8}}$$

 $[0;+\infty[$ على المجال $]\infty+,\infty[$ و هذا يعني أنَّ : f متزايدة على المجال $]\infty+,\infty[$

جدول التغيرات:

$$(\Delta): y = x$$
 مع المستقيم (C) مع المستقيم (C) على المعادلة (C)

$$\sqrt{\Delta} = 36$$
 و منه $\Delta = 2^2 - 4(-1)(8) = 36$ $x_2 = \frac{-2+6}{-2} = -2 \notin [0; +\infty[$ \tilde{g} $x_1 = \frac{-2-6}{-2} = 4$ المعادلة تقبل حلان: $-x^2 + 2x + 8 = 0$ هو $x = 4$ ومنه: المعادلة : $x = 4$ تقبل حل وحيد على $x = 4$ ومنه: المعادلة : $x = 4$ تقبل حل وحيد هو $x = 4$ ومنه: المعادلة : $x = 4$ تقبل حل وحيد هو $x = 4$

الرسم:

$$\begin{cases} U_{0} = 0 \\ U_{n+1} = \sqrt{2U_{n} + 8} \end{cases} \stackrel{?}{\sim} \begin{cases} U_{0} = 0 \\ U_{n+1} = f(U_{n}) \end{cases} \stackrel{?}{\sim} U_{n}$$

$$: 2U_{n+1} = \int_{0}^{\infty} \frac{1}{2U_{n}} \frac{1}{2U_{$$

 (U_n) التخمين: من الرسم نُحَمّن أنَّ (U_n) متزايدة .

(3

 $0 \! \leq \! U_n < \! 4: n$ أ- البرهان بالتراجع أنَّه من أجل كل عدد طبيعي

n=0 التحقق : من أجل -1

لدينا: $0 \le U_0 = 0 < 4$ إذن الخاصية مُحققة

 $0 \le U_n < 4$: نفرض أنَّ الخاصية صحيحة من اجل n أي: -2

و نبرهن صحتها من أجل **n+1 أي:** 4 < 0

لدينا حسب الفرضية : 4 < U_n

 $0 \le 2U_n < 8$ بالضرب في العدد 2 نجد:

 $8 \le 2U_n + 8 < 16$: نضيف العدد

 $0 < \sqrt{8} \le \sqrt{2U_n + 8} < \sqrt{16}$: فإنَّ الدَّالة \sqrt{V} متزايدة و $2U_n + 8 > 0$ فإنَّ الدَّالة

 $0 \le U_{n+1} < 4$: و منه

. $0 \le U_n < 4$ أنَّ الخاصية صحيحة من اجل n أي: -3

 (U_n) ب- دراسة إتجاه تغيّر المتتالية $U_{n+1} - U_n : U_{n+1} - U_n$ ندرس إشارة الفرق

لدينا

$$\begin{split} U_{n+1} - & \frac{U}{n} = \sqrt{2U_n + 8} - \frac{U}{n} \\ & = \frac{\left(\sqrt{2U_n + 8} - \frac{U}{n}\right)\left(\sqrt{2U_n + 8} + \frac{U}{n}\right)}{\left(\sqrt{2U_n + 8} + \frac{U}{n}\right)} \ : \\ & = \frac{-U_n^2 + 2U_n + 8}{\left(\sqrt{2U_n + 8} + U_n\right)} \end{split}$$

المقام موجب, و البسط ينعدم من أجل القيمتين 2- وَ 4

 $U_{n+1} - U_n \ge 0$ فَإِنَّ $0 \le U_n < 4$ و منه $U_n < 0$ و منه $0 \le U_n < 4$ و منه $0 \le U_{n+1} - U_n \ge 0$ و منه $0 \le U_n < 4$ و منه $0 \le U_n <$

 $4-U_n>0$ و منه: $U_n<4$

إذن:

$$\frac{1}{2}(4-U_n) \le (4-U_n)$$

$$\begin{split} \boldsymbol{U}_{n+1} - \boldsymbol{U}_{n} &\geq 0 \Leftrightarrow \boldsymbol{U}_{n+1} \geq \boldsymbol{U}_{n} \\ &\Leftrightarrow -\boldsymbol{U}_{n+1} \leq -\boldsymbol{U}_{n} \\ &\Leftrightarrow 4 - \boldsymbol{U}_{n+1} \leq 4 - \boldsymbol{U}_{n} \\ &\Leftrightarrow 4 - \boldsymbol{U}_{n+1} \leq \frac{1}{2} \Big(4 - \boldsymbol{U}_{n} \Big) \end{split}$$

$$4-U_{n+1} \le \frac{1}{2}(4-U_n)$$
 :و منه

$$: 4-U_n \le \frac{1}{2^n} (4-U_0)$$
 - إستنتاج أنَّ: $4-U_n \le \frac{1}{2^n} (4-U_n)$ لدينا: $(4-U_n)$

$$\begin{cases} 4 - U_{1} \leq \frac{1}{2} (4 - U_{0}) \\ 4 - U_{2} \leq \frac{1}{2} (4 - U_{1}) \\ \dots \\ 4 - U_{n-1} \leq \frac{1}{2} (4 - U_{n-2}) \\ 4 - U_{n} \leq \frac{1}{2} (4 - U_{n-1}) \end{cases}$$

 $4-U_n \leq \frac{1}{2^n} (4-U_o)$: نا جراء عملية جداء أطراف المتباينة و بعد الإختزال نجد

: $\lim_{n\to\infty} U_n$ د- إستنتاج

$$\lim_{n\to+\infty} \left(4-U_n\right) \le \lim_{n\to+\infty} \frac{4}{2^n} : 0$$

$$\lim_{n \to +\infty} \left(4 - U_n \right) = 0 : \underbrace{0}_{n \to +\infty} \quad 4 - U_n > 0 \quad \underbrace{0}_{n \to +\infty} \quad \underbrace{0}_{n \to +\infty}$$

$$\lim_{n\to+\infty} U_n = 4 : 0$$

التّمرين الثّالث:

المستوي المركب منسوب الى معلم متعامد و متجانس $\left(0\,;\vec{u}\,;\vec{v}\,
ight)$ من أجل كل نقطة M من المستوي لاحقتها العدد $z'=rac{z-2}{z-1}$: عرفق النقطة M' لاحقتها العدد المركب z حيث z'=z

1) حل المعادلة z'=z في مجموعة الأعداد المركبة:

$$z' = z \Leftrightarrow \frac{z-2}{z-1} = z$$

$$\Leftrightarrow (z-2) = z (z-1)$$

$$\Leftrightarrow z-2 = z^2 - z$$

$$\Leftrightarrow z^2 - 2z + 2 = 0$$

 $z^2 - 2z + 2 = 0,....(\zeta)$ خىل المعادلة:

$$\begin{cases} z' = \frac{2-i\sqrt{|-4|}}{2} = 1-i \\ z'' = \frac{2+i\sqrt{|-4|}}{2} = 1+i \end{cases}$$
 إذن للمعادلة (خ) حلاًن مركبين مترافقين هما:
$$\Delta = -4$$

$$z_2 = z_B = 1 + i$$
 وَ $z_1 = z_A = 1 - i$ (2) لدينا:

$$\frac{z_2}{z_1} = e^{i\frac{\pi}{2}} : \mathring{\ddot{z}} = e^{i\frac{\pi}{2}}$$

ب-إثبات أنَّ النقطة B صورة النقطة A بالدوران R الذي مركزه المبدأ .

الدينا:
$$\frac{z_B - z_o}{z_A - z_o} = e^{i\frac{\pi}{2}}$$
 و هذا يكافئ: $\frac{z_B - z_o}{z_A - z_o} = e^{i\frac{\pi}{2}}$ و هذا يكافئ: $\frac{z_B}{z_A} = \frac{z_B}{z_A} = e^{i\frac{\pi}{2}}$ الدينا:

$$(z_B - z_o) = e^{i\frac{\pi}{2}}(z_A - z_o)$$
: وهذا يكافئ

 $\theta = \frac{\pi}{2}$ ومنه: النقطة B صورة النقطة A بالدوران R الذي مركزه المبدأ و زاويته

$$z_D = 1_{\tilde{g}} z_C = 2_{\tilde{g}}$$
 (3)

- تعيين (۲) :

ر تنتمي الى محور التراتيب يعني أنَّ
$$z' \in i \mathbb{R}$$
, $(i^2 = -1)$ تنتمي الى محور التراتيب يعني أنَّ M'

$$z' \in i \mathbb{R} \Leftrightarrow \frac{z-2}{z-1} = i \mathbb{R}$$

$$\Leftrightarrow arg\left(\frac{z-2}{z-1}\right) = arg\left(i\,\mathbb{R}\right)$$

$$arg\left(\frac{z-2}{z-1}\right) = arg\left(i\,\mathbb{R}\right) \Leftrightarrow arg\left(\frac{z-z_C}{z-z_D}\right) = arg\left(i\,\mathbb{R}\right)$$

$$\Leftrightarrow \left(\overrightarrow{DM};\overrightarrow{CM}\right) = \frac{\pi}{2} + k\pi$$

$$\Leftrightarrow \left(\overrightarrow{DM}; \overrightarrow{CM}\right) = \frac{\pi}{2} + k\pi$$

$$z_D = 1_{\tilde{\mathcal{G}}} z_C = 2$$

Cو منه: Γ هي الدائرة التي قطرها و Γ ما عدا

$$\omega = \left(rac{3}{2};0
ight)$$
 منه

$$z_{\omega}=rac{z_{D}+z_{C}}{2}$$
مرکزها ω ذات اللاحقة $=rac{1+2}{2}$ مرکزها ω دات اللاحقة $z_{\omega}=rac{3}{2}$

$$r = \frac{|z_C - z_D|}{2}$$

$$= \frac{|2 - 1|}{2} = \frac{1}{2} : \text{ be in the proof of } z$$

(Γ) :

- h (4 هو التحاكي الذي مركزه المبدأ و نسبته 2
- أ- تعيين طبيعة التحويل $S=h\circ R$ و إعطاء عناصره المميزة:

$$S = h_{(0;2;0)} \circ R_{\left(0;1;\frac{\pi}{2}\right)}$$

$$S = S_{\left(0; 2 \times 1; 0 + \left(\frac{\pi}{2}\right)\right)}$$

$$S = S_{\left(0; 2; \frac{\pi}{2}\right)}$$

و منه : S تشابه مباشر مرکزه المبدأ و نسبته 2 و زاویته S .

ب-العبارة المركبة للتشابه 5:

$$z' = 2e^{\frac{\pi}{2}}z$$
 : $(z' - z_o) = 2e^{\frac{\pi}{2}}(z - z_o)$

$$z_{\omega'} = 2iz_{\omega}$$
 اَنَّ: $2e^{\frac{\pi}{2}} = 2i$ عَا اَنَّ:

 (Γ') صورة (Γ) بالتشابه Γ

$$(\Gamma')$$
 صورة بالتشابه (Γ) کافئ ω' صورة ω بالتشابه (Γ) حیث ω' مرکز الدائرة (Γ) .

$$z_{\omega'} = 2i\left(\frac{3}{2}\right)$$
: و منه $z_{\omega'} = 2iz_{\omega}$ في $z_{\omega'} = 2iz_{\omega}$ في $z_{\omega'} = 3i$

$$\omega = \left(\frac{3}{2};0\right)$$
 فات المركز (Γ') هي الدائرة ذات المركز $\omega'(0;3)$. $\omega'(0;3)$ و نصف قطرها $c'' = 2r = 2 \times \frac{1}{2} = 1$ إنشاء (Γ') :

$$D_{g} =]0; +\infty[: g(x) = x^{2} + 1 - ln(x):$$
لينا (I

$$g$$
 دراسة تغيرات الدالة: g دراسة تغيرات الدالة: g دراسة تغيرات الدالة: $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x^2 + 1 - \ln(x) = +\infty$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x^2 + 1 - \ln(x) = +\infty$$

$$g'(x) = 2x - \frac{1}{x} = \frac{2x^2 - 1}{x}$$
ب-المشتقة: $\frac{2x^2 - 1}{x}$

ج- إشارة المشتقة:

$$x \in]0; +\infty[$$
المقام: موجب تماما لأنَّ:

$$g'(x) = 0 \Leftrightarrow 2x^2 - 1 = 0$$

$$\Leftrightarrow x = \frac{\sqrt{2}}{2}$$

x	0	$\frac{\sqrt{2}}{2}$		+∞
g'(x)	-	0	+	

$$: g\left(\frac{\sqrt{2}}{2}\right)$$
 -- culp (2)

$$g\left(\frac{\sqrt{2}}{2}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 + 1 - \ln\left(\frac{\sqrt{2}}{2}\right)$$
$$= \frac{3}{2} - \ln\left(\frac{\sqrt{2}}{2}\right) \approx 1.85$$

$$g\left(x\right)>0$$
 وَ هِي قيمة حدّية صغرى للدالة g . و منه g فإنَّ $g\left(\frac{\sqrt{2}}{2}\right)>0$ *

$$D_f =]0; +\infty[\quad \underbrace{f(x)}_{f} = \frac{\ln x}{x} + x - 1 \text{ (II)}$$

1) النهايات

$$\lim_{x \to +\infty} \left(\frac{\ln x}{x} \right) = 0$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{\ln x}{x} + x - 1 \right) = +\infty$$

$$\lim_{x \to 0} \left(\frac{\ln x}{x} \right) = \lim_{x \to 0} \left(\ln x \times \frac{1}{x} \right) = -\infty$$

$$\lim_{x \to 0} \left(\frac{\ln x}{x} + x - 1 \right) = -\infty$$

(2

$$f'(x) = \frac{g(x)}{r}$$
 فَإِنَّ $\forall x \in]0; +\infty[$ أ-

$$f'(x) = \frac{\left(\frac{1}{x} \times x\right) - \left(1 \times \ln x\right)}{x^2} + 1$$
$$= \frac{1 - \ln x}{x^2} + 1$$
$$= \frac{x^2 + 1 - \ln x}{x^2}$$
$$= \frac{g(x)}{x^2}$$

 $:f^{'}$ إشارة الدالة

$$g(x) > 0 \land x^2 > 0$$
 : لأنَّ: $f'(x) = \frac{g(x)}{x^2} > 0$

: f الدالة f

دات الفاصلة 1 في النقطة ذات الفاصلة 1 (T) معادلة الماس (3

$$(x - 1) = 2$$
 $(x - 1) = 0$ $(x - 1) = 0$ $(x - 1) = 0$ $(x - 1) = 0$

(T): y = 2x - 2: إذن: معادلة الماس المطلوبة هي

(4

$$y = x - 1$$
 أنَّ أ $y = x - 1$ أنْ

$$\lim_{x\to +\infty} f(x) - y = 0$$
: يعني (C) يعني مقارب مائل ل $y = x - 1$

$$\lim_{x \to +\infty} (f(x) - y) = \lim_{x \to +\infty} \left(\frac{\ln x}{x} \right) = 0$$

$$+\infty$$
 مستقیم مقارب مائل (C) في جوار $(\Delta): y = x-1$

x	0	1 +∞
f(x)-y	- +	

$$(\Delta)_{\tilde{g}}(C)$$
 ب-الوضع النسبي ك:

$$f(x)-y$$
 ندرس إشارة الفرق

$$f(x)-y=\frac{\ln x}{x}$$
: لدينا

نستنتج أنَّ:

$$x \in]0;1[: \cup (\Delta)]$$
 گت (C)

$$x \in]1; +\infty[: \sqcup (\Delta)$$
 فوق (C)

$$x=1: \cup (\Delta)$$
يقطع (C)

(T) إنشاء (Δ) , (C)

:
$$m \in \mathbb{R}$$
 وَ (Δ_m) : $y = mx - m$ (6) لدينا:

$$: \, orall m \in \mathbb{R}: A \in \left(\Delta_m
ight)$$
أ- التحقق أنَّ

لدينا: (1; 0) . لدينا

$$A \in (\Delta_m) \Leftrightarrow y_A = mx_A - m$$

.
$$\forall m \in \mathbb{R} : A \in (\Delta_m)$$
: $mx_A - m = m(1) - m = 0 = y_A$

$$f(x) = mx - m$$
 ب-المناقشة البيانية

$$f(x) = mx - m = m(x - 1),(\Pi)$$
 $f(x) = (x - 1):$ لله المحادلة (Π) من الشكل (Π) من الشكل $m = 1$ المحادلة $m = 1$ المحادلة (Π) من الشكل $f(x) = mx - m:$ المحادلة (Π) من الشكل (Π) من الشكل . $f(x) = 2(x - 1):$ لمحادلة (Π) من الشكل . $f(x) = 2(x - 1):$ لمحادلة (Π) من الشكل . $f(x) = mx - m:$ المحادلة . $f(x) = 0(x - 1):$ لمحادلة (Π) من الشكل . $f(x) = mx - m:$ من المحادلة . $f(x) = mx - m:$ من المحدلة . $f(x) = mx - m:$ من المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ من المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ مساحة الحيز المحدد . $f(x) = mx - m:$ مساحة الحيز . $f(x) = mx - m:$ من المحدد . $f(x) = mx - m:$ من المحدد . $f(x) = mx - m:$ من المحدد . $f(x$

و منه:

$$I_{n} = \int_{1}^{n} (f(x) - (x - 1)) dx$$

$$= \int_{1}^{n} \left(\frac{\ln x}{x}\right) dx$$

$$= \left[\frac{1}{2} (\ln x)^{2}\right]_{1}^{n}$$

$$= \frac{1}{2} (\ln n)^{2} \quad ua$$

 $I_n>2$: فإنَّ $n>n_0$ غيين أصغر عدد طبيعي n_0 بحيث إذا كان:

 $I_n>2$: فإنَّ $n>n_0$ فإنَّ عدد طبيعي و منه: عدد طبيعي و منه: المات إذا كان

n=8 هي: