7. The table below provides a training data set containing six observations, three predictors, and one qualitative response variable.

Obs.	X_1	X_2	X_3	Y
1	0	3	0	Red
2	2	0	0	Red
3	0	1	3	Red
4	0	1	2	Green
5	-1	0	1	Green
6	1	1	1	Red

Suppose we wish to use this data set to make a prediction for Y when $X_1 = X_2 = X_3 = 0$ using K-nearest neighbors.

- (a) Compute the Euclidean distance between each observation and the test point, $X_1 = X_2 = X_3 = 0$.
- (b) What is our prediction with K = 1? Why?
- (c) What is our prediction with K = 3? Why?
- (d) If the Bayes decision boundary in this problem is highly non-linear, then would we expect the best value for K to be large or small? Why?

a) Euclidean Distances

$$d = \int (0-0)^2 + (3-0)^2 + (0-0)^2$$

=
$$\int_{3^2} = 3$$

$$d = \int_{2^2 + o^2 + o^2} = \int_{2^2 = 2}$$

$$\lambda = \int (-1)^2 + 0^2 + 1^2 = \int (-1)^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0$$

$$d = \sqrt{12 + 12 + 12} = \sqrt{3}$$

: d=1.732

b) When K=1, our prediction will be

Green since the point (-1,0,1) is the

closest to the test point (0,0,0); and

the point (1,0,1) belongs to class 'Green'.

c) When K=3, the points that we'll take

ento consideration will be:

(-1,0,1) Green

(1,1,1) Red

(2,0,0) Red

Since 2/3 of the closest points belong to class 'Red', our prediction for (0,0,0) with K=3 will be 'Red'.

d) If the Bayes decision boundary is highly nonlinear, we can expect the best k value to be small as a model with a smaller k value would only look at few of the nearest neighbours of a test point for prediction, thus allowing the model to estimate a highly non-linear Bayes decision boundary.