Total Pages: 3

5518

MCA/DX DISCRETE MATHEMATICAL STRUCTURES

Paper: MCA-103

Time: Three Hours] [Maximum Marks: 80

Note: Attempt *five* questions. Question No. 1 is compulsory and attempt *one* question from each unit.

Compulsory Question

- (a) Let (z, t) be the group of integers with respect to the operation addition and (6z, t) be a subgroup of (z, t).
 Write all left cosets of (6z, t) and describe their intersection.
 - (b) Write generating set of an element of a finite group.
 - (c) Draw complete group k_5 and k_4 respectively. Which graph represents an Euler circuit?
 - (d) What is reachability matrix of digraph? When a digraph is called strongly connected?
 - (e) Prove that a field is an integral domain.
 - (f) Prove that $f(x) = x^3 + x + 1$ is reducible over z_3 .
 - (g) Write V operation table for the lattice $L = \{1, 2, 3, 5, 30\}$ under the relation divides.
 - (h) Show that the lattice $L = \{1, 2, 3, 5, 30\}$ under the relation divides is not distributive lattice. 3×8

UNIT-I

2. (a) Let $(P_3, 0)$ be a permutation group over $A = \{1, 2, 3\}$. Express each permutation in terms of transpositions and

prove that set of even permutations is a normal subgroup of (P₃, 0).

- (b) Define group homomorphism and kernel. State and prove *two* properties of group homomorphism.
- 3. (a) Define grammar and its types. Find a regular grammar G which generates the language L consisting of all words on a and b with exactly one b.
 - (b) Let $A = \{a, b\}$. Find the regular expression for the language $L = \{b^m a b^n : m \text{ and } n \text{ positive}\}$. Draw finite state machine that accepts the given language.

UNIT-II

4. (a) Write algorithm for depth-first spanning tree. Implement the algorithm to the following graph:

- (b) If G is a simple connected planner graph with more than one edge then prove the following:
 - (i) $2|E| \ge 3R$.
 - (ii) $|E| \le 3|V| 6$.

E is the set of edges and v is the set of vertices in G.

5. Let D = {V, E} be a directed graph such that V = {1, 2, 3, 4, 5, 6} and E = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (4, 3), (5, 4), (5, 6)}. Using matrix determine whether digraph is acyclic. Determine the number of directed paths of length 4 from a node to another node.

UNIT-III

- 6. Let D_{30} denote the set of all positive divisors of 30. Verify whether D_{30} under the relation divides is a Boolean algebra.
- 7. (a) Define atom of a Boolean algebra. Let A = {1, 2, 3}. Prove that power set of A under the relation ⊆ (subset) is a Boolean algebra and atoms of the Boolean algebra generate P(A).
 - (b) Consider the Boolean expression

$$f(x_1, x_2, x_3) = (\overline{x_3} \wedge x_2) \vee (\overline{x_1} \wedge x_3) \vee (\overline{x_2} \wedge x_3)$$

on [B₂, -, \(\neq\), \(\neq\)].

- (i) Simplify f using basic Boolean algebra laws.
- (ii) Draw the switching circuit and gate circuit diagram for the simplified f.

UNIT-IV

8. Find splitting field for the polynonimial

$$f = x^2 + 2x + 2$$
 over z_3 .

- 9. (a) Write an example of a finite integral domain.
 - (b) Prove that a polynomial of degree n over a field f has at most n roots.