School of Computing National University of Singapore CS5340: Uncertainty Modeling in AI Semester 1, AY 2020/21

Exercise 2

Question 1

Fig. 1.1

The restricted Boltzmann machine is a Markov Random Field (MRF) defined on a bipartite graph as shown in Fig. 3.1. It consists of a layer of visible variables $\mathbf{v} = [v_1, ..., v_V]^T$ and hidden variables $\mathbf{h} = [h_1, ..., h_H]^T$, where all variables are binary taking states $\{0,1\}$. The joint distribution of the MRF is given by:

$$p(\boldsymbol{v},\boldsymbol{h}) = \frac{1}{Z(\boldsymbol{W},\boldsymbol{a},\boldsymbol{b})} \exp(\boldsymbol{v}^T \boldsymbol{W} \boldsymbol{h} + \boldsymbol{a}^T \boldsymbol{v} + \boldsymbol{b}^T \boldsymbol{h}),$$

where $\theta = \{ \boldsymbol{W}_{V \times H}, \boldsymbol{a}_{V \times 1}, \boldsymbol{b}_{H \times 1} \}$ are the parameters of the potential functions, and Z(.) is the partition function.

a) Given that:

$$p(h_i = 1 \mid \boldsymbol{v}) = \sigma(b_i + \sum_i W_{ii} v_i),$$

where $\sigma(x) = \frac{e^x}{1+e^x}$ is the sigmoid activation function. Show that the distribution of hidden units conditioned on the visible units factorizes as:

$$p(\mathbf{h} \mid \mathbf{v}) = \prod_{i} p(h_i \mid \mathbf{v}).$$

Show all your workings clearly.

b) Assuming that the restricted Boltzmann machine consists of only 2 visible and 1 hidden variables, and the joint distribution of the MRF is given by:

h	v_1	v_2	$\exp(\boldsymbol{v}^T\boldsymbol{W}h + \boldsymbol{a}^T\boldsymbol{v} + bh)$
0	0	0	1.00
0	0	1	2.13
0	1	0	4.65
0	1	1	9.90
1	0	0	3.65
1	0	1	8.66
1	1	0	4.22
1	1	1	10.01

Find the unknown parameters, i.e. $\theta = \{W_{2\times 1}, \boldsymbol{a}_{2\times 1}, b\}$.

Question 2

Fig. 2.1

Fig. 4.1 shows a Markov Random Field (MRF) representation of a Hidden Markov Model (HMM) over three time steps. The hidden variables z_1, z_2, z_3 are discrete random variables that take three possible states $z_n \in \{F, H, M\}$, and x_1, x_2, x_3 are the observed variables that take on real values $x_n \in \mathbb{R}$. The joint distribution is given by:

$$p(z_1, z_2, z_3, x_1, x_2, x_3) = \frac{1}{z} \prod_{n=2}^{3} \psi_t(z_n, z_{n-1}) \prod_{n=1}^{3} \psi_e(x_n, z_n),$$

where Z is the partition function, and the transition potential $\psi_t(z_n, z_{n-1})$ and the emission potentials $\psi_e(x_n, z_n)$ are given by:

$\psi_t(z_n, z_{n-1})$	$z_n = F$	$z_n = H$	$z_n = M$
$z_{n-1} = F$	2.0	3.0	5.0
$z_{n-1} = H$	1.0	6.0	3.0
$z_{n-1} = M$	4.5	2.0	2.5

z_1	$\psi_e(x_1,z_1)$
F	1.0
Н	8.0
М	1.0

Z_2	$\psi_e(x_2,z_2)$
F	7.0
Н	1.0
М	2.0

Z_3	$\psi_e(x_3,z_3)$
F	2.0
Н	3.0
М	5.0

Decode the message that corresponds to the states of the hidden variables that give the maximal probability. Show all your workings clearly.

Question 3

Fig. 3.1 shows a Bayesian network of the mixture of Bernoulli Distribution. X_n is a binary random variable, i.e. $x_n \in \{0,1\}$. N is the total number of observations. Z_n is the 1-of-k indicator random variable, $z_{nk} = 1 \Rightarrow z_{n,j \neq k} = 0$ indicates the assignment of the random variable x to the k^{th} Bernoulli density. $z_{nk} \in \{0,1\}$ and $\sum_k z_{nk} = 1$.

Fig. 3.1

Given the expressions for the Bernoulli distribution:

$$p(x \mid \mu) = \prod_{n=1}^{N} \mu^{x_n} (1 - \mu)^{(1-x_n)}$$
,

and marginal distribution of Z_n , which is a categorical distribution specified in terms of the mixing coefficients λ_k :

$$p(\mathbf{z_n}) = \prod_{k=1}^K \lambda_k^{z_{nk}} = \mathrm{cat}_{\mathbf{z_n}}[\lambda]$$
 , where $0 \leq \lambda_k \leq 1$ and $\sum_k \lambda_k = 1$.

(a) Show that the mixture of Bernoulli distribution is given by:

$$p(x \mid \mu, \lambda) = \prod_{n=1}^{N} \sum_{k=1}^{K} \lambda_k \mu_k^{x_n} (1 - \mu_k)^{(1-x_n)}.$$

(b) Derive the responsibility $\gamma(z_{nk}) = p(z_{nk} = 1 \mid x)$, and show that the updates for the unknown parameters μ and λ in the maximization step of the EM algorithm are given by:

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n,$$

$$\lambda_k = \frac{N_k}{N}, \text{ where } N_k = \sum_{n=1}^N \gamma(z_{nk}).$$

Show all your workings clearly.

Question 4

Fig 4.1

(Image source: "Computer Vision: Models, Learning and Inference", Simon Prince)

Compute the **MAP solution** to the three-pixel graph cut problem in Fig. 4.1 by

- (i) computing the cost of all eight possible solutions explicitly and finding the one with the minimum cost, and
- (ii) running the augmenting paths algorithm on this graph by hand and interpreting the minimum cut.

Consider the simple 3-node graph shown in Fig. 5.1 in which the observed node X is given by a Gaussian distribution $\mathcal{N}(x|\mu,\tau^{-1})$ with mean μ and precision τ . Suppose that the marginal distributions over the mean and precision are given by $\mathcal{N}(\mu|\mu_0,s_0)$ and $\mathrm{Gam}(\tau|a,b)$, where $\mathrm{Gam}(.|.,.)$ denotes a gamma distribution. Write down expressions for the conditions distributions for the conditional distributions $p(\mu|x,\tau)$ and $p(\tau|x,\mu)$ that would be required in order to apply Gibbs sampling to the posterior distribution $p(\mu,\tau|x)$.

Fig. 5.1

Question 6

Figure 6.1 shows a Markov Random Field (MRF) with two random variables X_1 and X_2 , where $x_i \in \{0,1\}$. Furthermore, let $\phi_1(x_1)$ and $\phi_2(x_2)$ denote the unary potentials, and $\psi_{12}(x_1, x_2)$ denotes the pairwise potential. Given the observations over 14 trials as shown in Table 6.1, find the unknown value of $\psi_{12}(x_1 = 0, x_2 = 0)$ in the potential tables shown in Table 6.2. Show all your workings clearly.

T.::-1 N	Outcomes		
Trial Number	X_1	X_2	
1	0	0	
2	1	0	
3	1	1	
4	1	0	
5	0	0	
6	0	1	
7	1	1	
8	0	0	
9	1	0	
10	1	1	
11	0	0	
12	0	0	
13	1	0	
14	1	1	

Table 6.1

X_1	$\phi_1(x_1)$
0	2
1	1

X_2	$\phi_2(x_2)$
0	1
1	2

X_1	X_2	$\psi_{12}(x_1,x_2)$
0	0	$\psi_{12}(x_1=0, x_2=0)$
0	1	1
1	0	2
1	1	2

Table 6.2

The Bayesian network shown in Figure 7.1 has five random variables X_1, X_2, X_3, X_4, X_5 , where $x_i \in \{0,1,2\}$ for i = 1, 2 and $x_i \in \{0,1\}$ for i = 3, 4, 5.

Figure 7.1

(a) Given the following numbers drawn from a uniform distribution $u \sim U(0,1)$:

$$u = [0.4387 \ 0.4898 \ 0.7513 \ 0.4984 \ 0.2760],$$

generate one set of samples from the joint distribution $p(x_1, x_2, x_3, x_4, x_5)$ using Gibbs sampling. Use $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$ as the initialization. Show all your workings clearly.

- (b) Table 7.1 shows 10 sets of samples drawn from Gibbs sampling. Ignoring the burn-in effect and initialization, find the approximation for the following probabilities using the generated samples:
 - i. $p(x_2)$
 - ii. $p(x_3, x_5)$
 - iii. $p(x_3, x_4 = 1, x_5 = 1)$
 - iv. $p(x_3|x_2=1)$

Sample #	<i>X</i> ₁	X_2	X_3	X_4	X_5
0	0	0	0	0	0
1	2	0	1	1	0
2	2	0	0	1	0
3	0	0	0	1	1
4	1	1	1	0	0
5	2	2	1	1	0
6	2	0	1	0	1
7	1	2	0	0	0
8	2	1	0	0	0
9	1	0	1	1	0
10	1	0	1	1	1

Table 7.1

a. Figure 8.1 shows a homogeneous hidden Markov Model (HMM) over three time steps. The latent random variables are Y_1, Y_2, Y_3 , where $Y_n \in \{0, 1, 2\}$, and the observed random variables are X_1, X_2, X_3 , where $X_n \in \mathbb{R}$.

Figure 2.1

The prior probability of the random variable Y_1 is $p(Y_1 \mid \pi) = \prod_k \pi_k^{y_{1k}}$, where $\pi = \{0.2, 0.5, 0.3\}$. Furthermore, the transition probability is given by:

$$p(Y_n \mid Y_{n-1}, A) = \prod_k \prod_j A_{jk}^{y_{n-1,j}y_{nk}}$$
, where $A = \begin{bmatrix} 0.2 & \alpha & \beta \\ 0.1 & 0.6 & 0.3 \\ 0.4 & 0.5 & 0.1 \end{bmatrix}$, and

the emission probabilities of the respective observed random variables X_n are shown in Table 8.1.

	k = 0	k = 1	k = 2
X_1	0.3	0.6	0.4
X_2	0.5	0.4	0.4
X_3	0.3	0.8	0.5

Table 8.1

Given that the minimum probability of the joint distribution $p(Y_1, Y_2, Y_3, X_1, X_2, X_3)$ is 0.000216 and occurs at $Y_1 = 0$, $Y_2 = 1$, $Y_3 = 0$, find the unknown values α and β in the transition probability.

b. Figure 8.2 shows an undirected graphic model with six random variables X_1, X_2, X_3, X_4, X_5 and X_6 , where $X_i \in \{0,1,2\}$. The potential $\psi(X_i, X_j)$ between any pair of nodes X_i and X_j , where i < j is given in Table 2.2. Given $X_1 = 0, X_3 = 1$ and $X_5 = 2$, find the states of X_2 , X_4 and X_6 that maximizes the joint distribution $p(X_1, X_2, X_3, X_4, X_5, X_6)$.

X_i	X_{j}	$\psi(X_i,X_j)$
0	0	1
0	1	5
0	2	7
1	0	2
1	1	4
1	2	8
2	0	3
2	1	6
2	2	9

Table 8.2

Figure 9.1 shows a Bayesian network with both binary and continuous state latent random variables, i.e., $Z \in \{0,1\}$ and $T \in \mathbb{R}$. In addition, X = 0.5 is the observed random variable. The maximum log-likelihood of T:

$$\operatorname*{argmax} \log p(T \mid X),$$

can be obtained from the Expectation-Maximization (EM) algorithm. The EM algorithm iterates between the Expectation step that evaluates the expected complete data log-likelihood with respect to $p(Z \mid X, T^{old})$ and the Maximization step that maximizes T over the expected complete data log-likelihood with respect to $p(Z \mid X, T^{old})$. T^{old} is the value of T from the previous iteration of the EM algorithm. $\{\lambda = 0.1, w_{a0} = 0.5, w_{a1} = 0.5, w_{b0} = 0.8, w_{b1} = 0.2, \tau_a = 1.0, \tau_b = 1.2, U = 0.6\}$ are known hyperparameters of the following distributions:

$$\begin{split} p(Z) &= \lambda^Z (1-\lambda)^{(1-Z)}, \\ p(X \mid T, Z) &= \mathcal{N}(X \mid w_{a0} + w_{a1}T, \tau_a)^Z \mathcal{N}(X \mid w_{b0} + w_{b1}T, \tau_b)^{(1-Z)}, \\ \mathcal{N}(X \mid w_0 + w_1T, \tau) &= \sqrt{\frac{\tau}{2\pi}} \exp\{-0.5\tau(X - w_0 - w_1T)^2\}, \\ p(T) &= U. \end{split}$$

Figure 3.1

- a. Derive the expression for the posterior $p(Z \mid X, T^{old})$ from the Bayesian Network.
- b. Derive the expression for T that maximizes the expected complete data log-likelihood with respect to $p(Z \mid X, T^{old})$.
- c. Given the initial value of T = 2.0, find the value of T in the next EM iteration.

a. The objective of image denoising is to recover the clean image (noise-free) from a given noisy image. Figure 10.1 shows a Markov Random Field (MRF) to solve a four-pixel binary image denoising problem. The latent random variable $X_i \in \{-1, +1\}$ represents the pixels of the desired clean image, and the observed random variables $Y_i \in \{-1, +1\}$ represents the pixels of the noisy image. We use the Ising model, i.e., $\psi(X_i, X_j) = \exp(JX_iX_j)$ as the edge potentials, where J is the coupling strength of the smoothness prior between neighboring pixels X_i and X_j . The observation model follows a Gaussian distribution: $p(Y_i \mid X_i) = \mathcal{N}(Y_i \mid X_i, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-0.5\frac{(Y_i - X_i)^2}{\sigma^2}\right\}$.

Figure 10.1

Given that we observe $Y_1 = +1$, $Y_2 = -1$, $Y_3 = -1$, $Y_4 = +1$, and the following random numbers are drawn from a uniform distribution $u \sim \mathcal{U}(0,1)$:

$$u = [0.6557 \ 0.0357 \ 0.9340 \ 0.8491],$$

generate one set of samples from the joint distribution p(X,Y) using Gibbs sampling. Use $X_1 = -1, X_2 = -1, X_3 = -1, X_4 = -1$ as the initialization and set J = 0.01, $\sigma^2 = 1.0$. Show all workings clearly.

- b. Draw the Bayesian Network and write down the factorized joint probability distribution that encodes all the following conditional independences:
 - 1. $X_4 \perp \{X_1, X_2, X_5\} \mid X_3$
 - 2. $X_5 \perp \{X_1, X_3, X_4\} \mid X_2$
 - 3. $X_3 \perp X_5 \mid \{X_1, X_2\}$
 - 4. $X_1 \perp X_2 \mid \emptyset$
 - 5. $X_1 \perp \{X_2, X_5\} \mid \emptyset$