Learning with Error and GSW's Homomorphic Encryption

June 28, 2019

Intuition of LWE

$$14s_1 + 15s_2 + 5s_3 + 2s_4 \approx 8 \pmod{17}$$
 $13s_1 + 14s_2 + 14s_3 + 6s_4 \approx 16 \pmod{17}$
 $6s_1 + 10s_2 + 13s_3 + s_4 \approx 3 \pmod{17}$
 $10s_1 + 4s_2 + 12s_3 + 16s_4 \approx 12 \pmod{17}$
 $9s_1 + 5s_2 + 9s_3 + 6s_4 \approx 9 \pmod{17}$
 $3s_1 + 6s_2 + 4s_3 + 5s_4 \approx 16 \pmod{17}$
 \vdots
 $6s_1 + 7s_2 + 16s_3 + 2s_4 \approx 3 \pmod{17}$

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

• Pick $\vec{a} \in \mathbb{Z}_q^n$ uniformly randomly

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

- Pick $\vec{a} \in \mathbb{Z}_q^n$ uniformly randomly
- ullet Pick e according to χ

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

- Pick $\vec{a} \in \mathbb{Z}_q^n$ uniformly randomly
- ullet Pick e according to χ
- Output $(\vec{a}, \langle \vec{a}, \vec{s} \rangle + e)$

Given samples from $A_{\vec{s},\chi}$,

• Search version: Find \vec{s} .

Given samples from $A_{\vec{s},\chi}$,

- Search version: Find \vec{s} .
- Decision version: Distinguish between $A_{\vec{s},\chi}$ and the uniform distribution.

Given samples from $A_{\vec{s},\chi}$,

- Search version: Find \vec{s} .
- Decision version: Distinguish between $A_{\vec{s},\chi}$ and the uniform distribution.
- Both are difficult

Given samples from $A_{\vec{s},\chi}$,

- Search version: Find \vec{s} .
- Decision version: Distinguish between $A_{\vec{s},\chi}$ and the uniform distribution.
- Both are difficult
- Decision isn't much easier than search

Works when $q \in O(poly(n))$ is prime.

• Inductive process; solve variable-by-variable

- Inductive process; solve variable-by-variable
- Guess $s_1 = k$

- Inductive process; solve variable-by-variable
- Guess $s_1 = k$
- Pick r at random

- Inductive process; solve variable-by-variable
- Guess $s_1 = k$
- Pick r at random

• Map
$$(\vec{a}, b)$$
 to $(\vec{a} + \begin{pmatrix} r \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, b + rk)$

Works when $q \in O(poly(n))$ is prime.

- Inductive process; solve variable-by-variable
- Guess $s_1 = k$
- Pick r at random

• Map
$$(\vec{a}, b)$$
 to $(\vec{a} + \begin{pmatrix} r \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, b + rk)$

• The above maps $A_{\vec{s},\gamma}$ to itself if the guess was correct.

- Inductive process; solve variable-by-variable
- Guess $s_1 = k$
- Pick r at random

• Map
$$(\vec{a}, b)$$
 to $(\vec{a} + \begin{pmatrix} r \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, b + rk)$

- The above maps $A_{\vec{s},\gamma}$ to itself if the guess was correct.
- Maps to the uniform distribution otherwise.

- Inductive process; solve variable-by-variable
- Guess $s_1 = k$
- Pick r at random

• Map
$$(\vec{a}, b)$$
 to $(\vec{a} + \begin{pmatrix} r \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, b + rk)$

- The above maps $A_{\vec{s},\chi}$ to itself if the guess was correct.
- Maps to the uniform distribution otherwise.
- Check using the oracle. Try another *k* until the guess is correct.

GSW's LWE formulation

• Define A_i as $b_i || \vec{a}_i$

GSW's LWE formulation

- Define A_i as $b_i || \vec{a}_i$
- Redefine \vec{s} as $(1, -\vec{s})$

GSW's LWE formulation

- Define A_i as $b_i || \vec{a}_i$
- Redefine \vec{s} as $(1, -\vec{s})$
- $A\vec{s} = \vec{e}$,

Allows secure communication by using the tools below:

• pk: "public key", used for encryption

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to \mathcal{U}$

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to \mathcal{U}$
- sk: "secret key", used for decryption

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to \mathcal{U}$
- sk: "secret key", used for decryption
- $\mathsf{Dec}_{sk}:U\to\Sigma^*$.

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to \mathcal{U}$
- sk: "secret key", used for decryption
- $\mathsf{Dec}_{sk}:U\to\Sigma^*$.
- $Dec_{sk} \circ Enc_{pk}(x, r) = x$ with overwhelming probability over r

Typical use of such a scheme:

• Alice generates (pk, sk)

- Alice generates (pk, sk)
- Alice sends pk to Bob

- Alice generates (pk, sk)
- Alice sends pk to Bob
- Sob encrypts his message using pk

- Alice generates (pk, sk)
- Alice sends pk to Bob
- Sob encrypts his message using pk
- Bob sends the ciphertext to Alice

- Alice generates (pk, sk)
- Alice sends pk to Bob
- Bob encrypts his message using pk
- Observe to Alice
 Observe the serve to Alice
- Alice decrypts it using sk

Security

• What does it mean for an encryption scheme to be secure?

Security

- What does it mean for an encryption scheme to be secure?
- Chosen plaintext attack (CPA): The "intuitive" definition. An (efficient) adversary who's able to encrypt anything shouldn't be able to decrypt anything.

Security

- What does it mean for an encryption scheme to be secure?
- Chosen plaintext attack (CPA): The "intuitive" definition. An (efficient) adversary who's able to encrypt anything shouldn't be able to decrypt anything.
- Ciphertext indistinguishability

Homomorphic encryption

• Allows computation on ciphertext without decrypting

Homomorphic encryption

- Allows computation on ciphertext without decrypting
- Given function f and Enc(x), allows computing Enc(f(x)).

Homomorphic encryption

- Allows computation on ciphertext without decrypting
- Given function f and Enc(x), allows computing Enc(f(x)).
- May involve an evaluation key.

Homomorphic encryption

- Allows computation on ciphertext without decrypting
- Given function f and Enc(x), allows computing Enc(f(x)).
- May involve an evaluation key.
- Application includes quantum computing

Intuitive idea as follows:

• Using the "approximate eigenvector": $C \vec{v} \approx \lambda \vec{v}$

- Using the "approximate eigenvector": $C\vec{v} \approx \lambda \vec{v}$
- \vec{v} is the private key

- Using the "approximate eigenvector": $C\vec{v} \approx \lambda \vec{v}$
- \vec{v} is the private key
- *C* is the ciphertext

- Using the "approximate eigenvector": $C\vec{v} \approx \lambda \vec{v}$
- \vec{v} is the private key
- *C* is the ciphertext
- ullet λ is the plaintext

- Using the "approximate eigenvector": $C\vec{v} \approx \lambda \vec{v}$
- \vec{v} is the private key
- *C* is the ciphertext
- ullet λ is the plaintext
- $\bullet \ (C_1+C_2)\vec{v}\approx (\lambda_1+\lambda_2)\vec{v}$

- Using the "approximate eigenvector": $C\vec{v} \approx \lambda \vec{v}$
- \vec{v} is the private key
- *C* is the ciphertext
- λ is the plaintext
- $(C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$
- $(C_1C_2)\vec{v}\approx (\lambda_1\lambda_2)\vec{v}$

- Using the "approximate eigenvector": $C\vec{v} \approx \lambda \vec{v}$
- \vec{v} is the private key
- C is the ciphertext
- ullet λ is the plaintext
- $(C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$
- $(C_1C_2)\vec{v}\approx(\lambda_1\lambda_2)\vec{v}$
- When plaintexts are booleans, $I_N C_1C_2$ encodes NAND.

Define the following functions on \mathbb{Z}_q^* . Easier to understand with examples. Take $q=2^4$.

• Powersof2 $(1_2, 11_2) = (1000_2, 100_2, 100_2, 10_2, 1_2, 1000_2, 1100_2, 110_2, 11_2)$

- Powersof2 $(1_2, 11_2) = (1000_2, 100_2, 100_2, 10_2, 1_2, 1000_2, 1100_2, 110_2, 11_2)$
- BitDecomp $(1001_2, 0010_2) = (1, 0, 0, 1, 0, 0, 1, 0)$

- Powersof2 $(1_2, 11_2) = (1000_2, 100_2, 100_2, 10_2, 1_2, 1000_2, 1100_2, 110_2, 11_2)$
- BitDecomp $(1001_2, 0010_2) = (1, 0, 0, 1, 0, 0, 1, 0)$
- BitDecomp⁻¹ $(1,0,0,1,0,0,1,0) = (1001_2,0010_2)$

- Powersof2 $(1_2, 11_2) = (1000_2, 100_2, 10_2, 10_2, 1_2, 1000_2, 1100_2, 110_2, 11_2)$
- BitDecomp $(1001_2, 0010_2) = (1, 0, 0, 1, 0, 0, 1, 0)$
- BitDecomp⁻¹ $(1,0,0,1,0,0,1,0) = (1001_2,0010_2)$
- BitDecomp⁻¹ $(0,0,10_2,0,0,1,10_2,1) = (0100_2,1001_2)$

- Powersof2 $(1_2, 11_2) = (1000_2, 100_2, 100_2, 10_2, 1_2, 1000_2, 1100_2, 110_2, 11_2)$
- BitDecomp $(1001_2, 0010_2) = (1, 0, 0, 1, 0, 0, 1, 0)$
- BitDecomp⁻¹ $(1,0,0,1,0,0,1,0) = (1001_2,0010_2)$
- BitDecomp⁻¹ $(0,0,10_2,0,0,1,10_2,1) = (0100_2,1001_2)$
- Flatten = $BitDecomp \circ BitDecomp^{-1}$

$$\begin{aligned} \text{Flatten} \big(110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2 \big) \end{aligned}$$

$$\begin{aligned} \text{Flatten} \big(110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2 \big) \end{aligned}$$

$$= \mathsf{BitDecomp} \circ \mathsf{BitDecomp}^{-1} (110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2)$$

$$\begin{aligned} \text{Flatten} \big(110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2 \big) \end{aligned}$$

$$= \mathsf{BitDecomp} \circ \mathsf{BitDecomp}^{-1} (110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2)$$

$$=\mathsf{BitDecomp}(1001_2,1001_2)$$

Flatten(
$$110_2, 101_2, 1_2, 11_2, 110_2, 101_2, 1_2, 11_2$$
)

$$= \mathsf{BitDecomp} \circ \mathsf{BitDecomp}^{-1} \big(110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2 \big)$$

$$= \mathsf{BitDecomp}(1001_2, 1001_2)$$

$$=(1,0,0,1,1,0,0,1)$$

GSW's tools cont.

Some basic properties

• $\langle \mathsf{BitDecomp}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle = \langle \vec{a}, \vec{b} \rangle$

GSW's tools cont.

Some basic properties

- $\langle \mathsf{BitDecomp}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle = \langle \vec{a}, \vec{b} \rangle$
- ullet $\langle ec{a}, \mathsf{Powersof2}(ec{b})
 angle = \langle \mathsf{BitDecomp}^{-1}(ec{a}), ec{b}
 angle$

GSW's tools cont.

Some basic properties

- $\langle \mathsf{BitDecomp}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle = \langle \vec{a}, \vec{b} \rangle$
- ullet $\langle ec{a}, \mathsf{Powersof2}(ec{b})
 angle = \langle \mathsf{BitDecomp}^{-1}(ec{a}), ec{b}
 angle$
- = $\langle \mathsf{Flatten}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle$

Choose the following parameters:

• Modulus $q = 2^l$ (to simplify some proofs)

Choose the following parameters:

- Modulus $q = 2^l$ (to simplify some proofs)
- Lattice dimension n

Choose the following parameters:

- Modulus $q = 2^l$ (to simplify some proofs)
- Lattice dimension n
- Error distribution $\chi(\lambda, L)$

Choose the following parameters:

- Modulus $q = 2^l$ (to simplify some proofs)
- Lattice dimension n
- Error distribution $\chi(\lambda, L)$
- $m \in O(n \log q)$

GSW's Construction - Secret Keygen

• Sample $\vec{s} \leftarrow \mathbb{Z}_q^n$ uniformly. This represents the solution of the LWE system of equations.

GSW's Construction - Secret Keygen

- **①** Sample $\vec{s} \leftarrow \mathbb{Z}_q^n$ uniformly. This represents the solution of the LWE system of equations.
- ② Output sk as 1 on the first coordinate, followed by $-\vec{s}$.

① Generate $B \leftarrow \mathbb{Z}_q^{m \times n}$ uniformly

- **①** Generate $B \leftarrow \mathbb{Z}_q^{m \times n}$ uniformly
- ② Sample $\vec{e} \leftarrow \chi^m$

- ② Sample $\vec{e} \leftarrow \chi^m$
- 3 Set pk as $B\vec{s} + \vec{e}$ on the first column, followed by the columns of B.

- $\textbf{9} \ \, \mathsf{Generate} \ \, B \leftarrow \mathbb{Z}_q^{m \times n} \ \, \mathsf{uniformly}$
- ② Sample $\vec{e} \leftarrow \chi^m$
- 3 Set pk as $B\vec{s} + \vec{e}$ on the first column, followed by the columns of B.
- **4** Observe that $pk \cdot sk = \vec{e}$

GSW's Construction - Encryption

Input: μ

● Sample $R \in \{0,1\}^{N \times m}$

GSW's Construction - Encryption

Input: μ

- Sample $R \in \{0,1\}^{N \times m}$
- **②** Output Flatten $(\mu \cdot I + BitDecomp(R \cdot pk))$

GSW's Construction - Decryption

$$\mathsf{Flatten}(\mu \cdot I + \mathsf{BitDecomp}(R \cdot pk)) \cdot \mathsf{Powersof2}(sk)$$

GSW's Construction - Decryption

```
Flatten(\mu \cdot I + BitDecomp(R \cdot pk)) · Powersof2(sk) = (\mu \cdot I + BitDecomp(R \cdot pk)) · Powersof2(sk)
```

```
Flatten(\mu \cdot I + BitDecomp(R \cdot pk)) · Powersof2(sk)
= (\mu \cdot I + BitDecomp(R \cdot pk)) · Powersof2(sk)
= \muPowersof2(sk) + R \cdot pk \cdot sk
```

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

• The second term is small.

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first coordinates of the first term are $2^{l-1}\mu, 2^{l-2}\mu, \dots, \mu$

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first coordinates of the first term are $2^{l-1}\mu, 2^{l-2}\mu, \dots, \mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first coordinates of the first term are $2^{l-1}\mu, 2^{l-2}\mu, \dots, \mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$
- Recover μ 's next bit by $2^{l-2}(\mu LSB(\mu))$

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first coordinates of the first term are $2^{l-1}\mu, 2^{l-2}\mu, \dots, \mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$
- Recover μ 's next bit by $2^{l-2}(\mu LSB(\mu))$
- ullet Similar for all other bits of μ .

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first coordinates of the first term are $2^{l-1}\mu, 2^{l-2}\mu, \dots, \mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$
- Recover μ 's next bit by $2^{l-2}(\mu LSB(\mu))$
- Similar for all other bits of μ .
- Decryption breaks down when the error reaches q/4.

• BitDecomp⁻¹(C) = μ · BitDecomp⁻¹(I) + R · A

- BitDecomp⁻¹(C) = μ · BitDecomp⁻¹(I) + R · A
- Fact: The joint distribution $(A, R \cdot A)$ is indistinguishable from uniform, if m > 2nl

- BitDecomp⁻¹(C) = μ · BitDecomp⁻¹(I) + R · A
- Fact: The joint distribution $(A, R \cdot A)$ is indistinguishable from uniform, if m > 2nl
- \Rightarrow BitDecomp⁻¹(C) hides μ

- $BitDecomp^{-1}(C) = \mu \cdot BitDecomp^{-1}(I) + R \cdot A$
- Fact: The joint distribution $(A, R \cdot A)$ is indistinguishable from uniform, if m > 2nl
- \Rightarrow BitDecomp⁻¹(C) hides μ
- $C = \mathsf{Flatten}(C) = \mathsf{BitDecomp} \circ \mathsf{BitDecomp}^{-1}(C)$ hides μ

GSW's Construction - NAND

•
$$(I - C_1 \cdot C_2)\vec{v} = (1 - \mu_1\mu_2)\vec{v} - \mu_2\vec{e}_1 - C_1\vec{e}_2$$

GSW's Construction - NAND

•
$$(I - C_1 \cdot C_2)\vec{v} = (1 - \mu_1\mu_2)\vec{v} - \mu_2\vec{e}_1 - C_1\vec{e}_2$$

• Error increased by a factor of N + 1.

GSW's Construction - NAND

•
$$(I - C_1 \cdot C_2)\vec{v} = (1 - \mu_1\mu_2)\vec{v} - \mu_2\vec{e}_1 - C_1\vec{e}_2$$

- Error increased by a factor of N + 1.
- Final error increase by a factor of $(N+1)^L$

```
Input: C, \alpha
• Set M_{\alpha} = \mathsf{Flatten}(\alpha I)
```

Input: C, α

- Set $M_{\alpha} = \mathsf{Flatten}(\alpha I)$
- Output Flatten $(M_{\alpha} \cdot C)$

Input: C, α

- Set $M_{\alpha} = \text{Flatten}(\alpha I)$
- Output Flatten($M_{\alpha} \cdot C$)
- Observe $M_{\alpha} \cdot C\vec{v} = M_{\alpha} \cdot (\mu \vec{v} + \vec{e}) = \alpha \mu \vec{v} + M_{\alpha} \cdot e$

Input: C, α

- Set $M_{\alpha} = \mathsf{Flatten}(\alpha I)$
- Output Flatten($M_{\alpha} \cdot C$)
- Observe $M_{\alpha} \cdot C\vec{v} = M_{\alpha} \cdot (\mu \vec{v} + \vec{e}) = \alpha \mu \vec{v} + M_{\alpha} \cdot e$
- ullet Error increases by a factor of N

GSW's Construction - Addition

• Output Flatten($C_1 + C_2$)

GSW's Construction - Addition

- Output Flatten($C_1 + C_2$)
- Error increases by a factor of 2

Output Flatten(C₁C₂)

- Output Flatten(C₁C₂)
- $C_1 \cdot C_2 \vec{v} = C_1(\mu_2 \vec{v} + \vec{e}_2) = \mu_1 \mu_2 \vec{v} + \mu_2 \vec{e}_1 + C_1 \vec{e}_2$

- Output Flatten(C₁C₂)
- $C_1 \cdot C_2 \vec{v} = C_1 (\mu_2 \vec{v} + \vec{e}_2) = \mu_1 \mu_2 \vec{v} + \mu_2 \vec{e}_1 + C_1 \vec{e}_2$
- Error increase depends on what's encrypted

- Output Flatten(C₁C₂)
- $C_1 \cdot C_2 \vec{v} = C_1(\mu_2 \vec{v} + \vec{e}_2) = \mu_1 \mu_2 \vec{v} + \mu_2 \vec{e}_1 + C_1 \vec{e}_2$
- Error increase depends on what's encrypted
- May need to assume bounds on the values being computed

$$ullet$$
 $\frac{q}{B} > 4(N+1)^L$ for NANDs

- $\frac{q}{R} > 4(N+1)^L$ for NANDs
- $\frac{q}{B} > 4(N+T)^L$ for arithmetic circuit, where T is the upper bound on plaintexts

- $\frac{q}{B} > 4(N+1)^L$ for NANDs
- $\frac{q}{B} > 4(N+T)^L$ for arithmetic circuit, where T is the upper bound on plaintexts
- N increases linearly with $\log \frac{q}{B}$ for LWE's security

- $\frac{q}{B} > 4(N+1)^L$ for NANDs
- $\frac{q}{B} > 4(N+T)^L$ for arithmetic circuit, where T is the upper bound on plaintexts
- N increases linearly with $\log \frac{q}{B}$ for LWE's security
- Pick (q, B, N) accordingly

References

- O. Regev. The Learning with Errors Problem.
- C. Gentry, A. Sahai, B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based.