Almost Fare Free: Impact of a Cheap Public Transport Ticket on Mobility Patterns and Infrastructure Quality

Mario Liebensteiner¹ **Jakob Losert**² Sarah Necker^{1 3} Florian Neumeier⁴ Jörg Paetzold^{2 5} Sebastian Wichert⁴

Data Challenge: Mobile Phone Data

November 12, 2024

¹University of Erlangen–Nürnberg (FAU)

²University of Salzburg

³ifo Institute, Fürth

⁴ifo Institute. Munich

⁵Liechtenstein-Institut

The German 9-Euro Ticket: A unique policy experiment in public transport

In 2022, Germany reduced the monthly fare for all local & regional public transport to 9 EUR

- A number of (European) countries currently discuss or have introduced fare-free public transport (e.g. LUX, SP, FR)
- Knowledge about the effects of such ticket schemes is scarce:
 - ▶ Most cited 'real-world' fare-free program from Tallinn shows only modest increase in public transport use and limited mode choice changes (Cats et al. 2017)
 - ▶ RCTs on fare-free public transport find large(r) increases in public transport usage but effects on mode choice unclear (Bull et al. 2021; Brough et al. 2022)
- ⇒ Germany as the first large-area country to introduce (almost) fare-free public transport

2/21

Jakob Losert (PLUS) 9EUR Ticket November 12, 2024

- February 2022: Russian invasion of Ukraine sharply rising energy prices
- May 2022: German government (SPD, FDP, Greens) decides to implement the 9-Euro Ticket to combat cost-of-living crisis
- June 2022: Start of the 9-Euro Ticket monthly ticket for all local and regional public transport (train, bus, metro, etc.) for 9 EUR
- September 2022: End of the 9-Euro Ticket 52 million tickets sold; 2.5 billion Euros in subsidies
- ⇒ Examine the effect of the ticket on mobility behavior, mode choice, and infrastructure quality

- February 2022: Russian invasion of Ukraine sharply rising energy prices
- May 2022: German government (SPD, FDP, Greens) decides to implement the 9-Euro Ticket to combat cost-of-living crisis
- June 2022: Start of the 9-Euro Ticket monthly ticket for all local and regional public transport (train, bus, metro, etc.) for 9 EUR
- September 2022: End of the 9-Euro Ticket 52 million tickets sold; 2.5 billion Euros in subsidies
- ⇒ Examine the effect of the ticket on mobility behavior, mode choice, and infrastructure quality

- February 2022: Russian invasion of Ukraine sharply rising energy prices
- May 2022: German government (SPD, FDP, Greens) decides to implement the 9-Euro Ticket to combat cost-of-living crisis
- June 2022: Start of the 9-Euro Ticket monthly ticket for all local and regional public transport (train, bus, metro, etc.) for 9 EUR
- September 2022: End of the 9-Euro Ticket 52 million tickets sold; 2.5 billion Euros in subsidies
- ⇒ Examine the effect of the ticket on mobility behavior, mode choice, and infrastructure quality

- February 2022: Russian invasion of Ukraine sharply rising energy prices
- May 2022: German government (SPD, FDP, Greens) decides to implement the 9-Euro Ticket to combat cost-of-living crisis
- June 2022: Start of the 9-Euro Ticket monthly ticket for all local and regional public transport (train, bus, metro, etc.) for 9 EUR
- September 2022: End of the 9-Euro Ticket 52 million tickets sold; 2.5 billion Euros in subsidies
- ⇒ Examine the effect of the ticket on mobility behavior, mode choice, and infrastructure quality

The 9-Euro Ticket: Impact on Sylt

Punks camping on Sylt: A striking contrast brought by the 9-Euro-Ticket Source: ZDF

The 9-Euro Ticket: Data

- GPS cellphone data (*Teralytics*): Measures hourly number of car/train trips between all German counties (incl. all trips > 30 km; approx. 10 million trips per day)
- Traffic volume monitoring stations (*BASt*): Hourly measure of traffic volume, allows differentiation by vehicle type such as cars, trucks, etc. (2,108 monitoring stations with approx. 60 million vehicles per day) Map
- Train delay data from Deutsche Bahn: Daily number/proportion of delayed trains per station (approx. 20,000 train connections per day)

Observation period: May-September 2019 & 2022 (due to Covid-19 & budget restrictions)

► Covid-19 Restrictions

Event-Study Analysis

$$Y_{swy} = \eta_{sy} + \alpha_w + \sum_{w \neq x} \beta_w \cdot D_{w|y=2022}^j + \gamma \mathbf{X}_{swy} + \varepsilon_{swy}$$
 (1)

- ullet Y_{swy} : traffic volume measured at station s in week w of year y
- $D_{w|y=2022}^{j}$: dummy variables equal to 1 in week w of the year 2022 and 0 otherwise omitted for the last week in May (reference week x) before the event date
- β_w : weekly deviations in traffic volume between 2022 and 2019 relative to the deviation measured for the reference week x
- η_{sy} (station-year FEs); α_w (week FEs); X' (temperature, precipitation, school holidays)

Percentage Effects (see Kleven et al. 2021)

$$p\%_w = \frac{\hat{\beta}_w}{E[\tilde{y}_w]}$$

6/21

• \tilde{y}_w : counterfactual outcome net contribution of event-study dummies \tilde{y}_w : New to 12 2004

Jakob Losert (PLUS) 9EUR Ticket November 12, 2024

Event-Study Analysis

$$Y_{swy} = \eta_{sy} + \alpha_w + \sum_{w \neq x} \beta_w \cdot D_{w|y=2022}^j + \gamma \mathbf{X}_{swy} + \varepsilon_{swy}$$
 (1)

- ullet Y_{swy} : traffic volume measured at station s in week w of year y
- $D_{w|y=2022}^{j}$: dummy variables equal to 1 in week w of the year 2022 and 0 otherwise omitted for the last week in May (reference week x) before the event date
- β_w : weekly deviations in traffic volume between 2022 and 2019 relative to the deviation measured for the reference week x
- η_{sy} (station-year FEs); α_w (week FEs); X' (temperature, precipitation, school holidays)

Percentage Effects (see Kleven et al. 2021):

$$p\%_{w} = \frac{\hat{\beta}_{w}}{E[\tilde{y}_{w}]}$$

(2)
PARIS
LODRÓN
UNIVERSITÁT
SALZBURG

6/21

• \tilde{y}_w : counterfactual outcome net contribution of event-study dummies \sim

Jakob Losert (PLUS) 9EUR Ticket November 12, 2024

Train vs. Car Trips using Cell Phone-based Mobility Data

Event-Study

(b) Car trips 2022 vs. 2019

Results from Traffic Volume Data

Event Study

Results from Train Delay Data

Event Study

Difference-in-Difference Estimation of Overall Treatment Effect

Table: Results from DiD Estimation

	(1)	(2)	(3)	(4)
	Train	Car	Traffic Volume	Train delay
Treatment effect	122.461	-36.006	-5111.090	0.0423
	[64.112,180.809]	[-53.855,-18.157]	[-7458.816,-2763.365]	[0.032,0.053]
Treatment effect (in %)	34.465	-5.124	-1.365	29.90
Counterfactual	355.319	702.650	374424.957	0.14

Heterogeneity: Traffic Volume Data

Heterogeneity: Cell Phone-based Mobility Data

Heterogeneity: Train Delay Data

Summary

In 2022, Germany became the first large-area country to introduce fare-free public transport

- Car traffic decreased by ca. 1-5% while public transport trips increased by ca. 35%
 - ⇒ Suggests large increase in overall mobility
 - ⇒ Suggests only little substitution between individual and public transport
- Especially leisure train trips increased substantially
- Commuter car trips decreased the least
- Quality of public transport decreased significantly (ca. 30% increase in delays)
 - \Rightarrow Calls for some caution regarding environmental benefits of fare-free 'go-anywhere' public transport tickets

(Andor et al. estimate abatement cost of 9-Euro Ticket of €2,800 per t/CO²)

Thanks for listening!

Appendix: Fuel prices 2022

Appendix: Covid-19 Restrictions in Germany

✓ Return

Appendix: Traffic Volume Monitoring Stations

Appendix: Summary Statistics - GPS-based Mobility Data

Table: Summary Statistics – GPS-based Mobility Data

		Train trips			Car trips		
	Year 2019	Year 2022	Total	Year 2019	Year 2022	Total	
Observations	1,972,951	1,652,412	3,625,363	4,032,897	3,806,539	7,839,436	
Mean	115.6	126.2	120.4	455.5	389.9	423.6	
Std. Dev.	963.2	887.0	929.3	2584.3	2179.3	2396.4	

Difference-in-Difference Estimation

$$Y_{swy} = \eta_{sy} + \alpha_w + \beta_{treat} \cdot D_{treat} + \beta_{post} \cdot D_{post} + \gamma \mathbf{X}_{swy} + \varepsilon_{swy}$$
(3)

- ullet Y_{swy} : traffic volume measured at station s in week w of year y
- $\eta_{s,y}$: station-year-fixed effects
- α_w : week-fixed effects
- *D_{treat}*: dummies indicating treatment period (June-August 2022)
- D_{post} : dummies indicating post treatment period (September 2022)
- \bullet X_{swy} : matrix of covariates (temperature, precipitation, school holidays)
- ullet $arepsilon_{swy}$: Standard errors clustered at station level. Regression weighted by traffic volume

Jakob Losert (PLUS) 9EUR Ticket November 12, 2024 20 / 21

Appendix: Potential Effect of the "Tankrabatt" on Estimation Results

Solving for the hypothetical number of car trips without "Tankrabatt" $\Delta y_{\text{no tr}}$ and elasticity e = -0.2 (Frondel et al. 2021):

$$\Delta y_{\text{no tr}} = \Delta y_{\text{with tr}} \cdot \left[1 + \left(1 - \frac{p_{\text{with tr}}}{p_{\text{no tr}}}\right) \cdot e\right] \tag{4}$$

Table: Counterfactual excluding 'Tankrabatt'

	Car use (elasticity)				Train use (cross elasticity)		
	GPS mobility data		Traffic volume data		GPS mobility data		
	Level	Percent	Level	Percent	Level	Percent	
Main estimate	-36.006	-5.124	-5111.090	-1.365	122.461	34.465	
Corrected estimate	-36.864	-5.246	-5233.664	-1.397	123.899	35.870	
Change in %	-2.4	-2.4	-2.4	-2.4	1.2	1.2	