Data Exploration and Visualisation Part 2: Data Visualisation

Dr Tom Diethe tom.diethe@bristol.ac.uk

University of Bristol

Recap and Outlook

- Lec 1 Intro
- Lec 2 Data Ingress
- Lec 3 Recommender Systems
- Lec 4 Databases
- Lec 5 Data Wrangling
 - ec 6 Data Fusion
- Lec 7 Data Exploration
 - Descriptive Statistics
 - Dimensionality Reduction
- Lec 8 Data Visualisation
- Lec 9 Data sharing, privacy and anonymisation
- ec 10 Deploying data science systems
- ec 11 The future of data science

Outline

Visualisation: A Psychological Perspective

Motivation Theory

Exploratory Data Analysis

EDA Example

EDA vs Descriptive Statistics

Time Series Data

Practical Considerations

Technologies

Demo

Resources

Outline

Visualisation: A Psychological Perspective

Motivation

Theory

Exploratory Data Analysis

EDA Example

EDA vs Descriptive Statistics

Time Series Data

Practical Considerations Technologies Demo

Why Visualise?

- Making sense of data
- **W** Discovery
- Communication
- Monitoring / Situational awareness
- We can detect information faster than we can move
- ₭ Humans are not very good at detecting patterns from numbers

Outline

Visualisation: A Psychological Perspective

Motivation

Theory

Exploratory Data Analysis

EDA Example

EDA vs Descriptive Statistics

Time Series Data

Practical Considerations
Technologies
Demo

Gestalt Principles (Bruce et al., 2003)

Preattentive Features

Criteria for evaluation:

- ► Which design minimises eye travel?
- ► Which design looks best as black and white? (or colourblind)
- Maximise information to ink ratio

What to choose when

- ► Line graph: to track changes over periods of time
- ► Pie Chart: (nearly) never!
- ▶ Divided Rectangle (Waffle): when you are trying to compare parts of a whole
- ▶ Bar Graph: to compare things between different groups
- ▶ Histogram: to track changes over time, or probability distributions. Note with histograms, the width is significant, as well as the height, unlike a bar graph

Criteria for evaluation:

- ▶ Which design minimises eye travel?
- ► Which design looks best as black and white? (or colourblind)
- Maximise information to ink ratio

What to choose when

- ► Line graph: to track changes over periods of time
- ► Pie Chart: (nearly) never!
- Divided Rectangle (Waffle): when you are trying to compare parts of a whole
- ▶ Bar Graph: to compare things between different groups
- Histogram: to track changes over time, or probability distributions. Note with histograms, the width is significant, as well as the height, unlike a bar graph

Age	1	1980	I	1985	I	1987	I	1989	I	1991	1	1993	I	1995	l	1997	1	1999	I	2001	1	2003
< 15	l	607	ī	624	Τ	578	Ī	523	ī	502	1	492	ī	479	ī	498	ī	497	ī	519	ī	537
15 - 19	İ	451		462	İ	449	ı	418		379	İ	364	ı	347	İ	346	İ	337		341	İ	337
20 - 24	İ	310		328		327		328		333		326		314		301		296		298		293
25 - 29	İ	213		219		216		213		224	ı	230		224		226		221		219		211
30 - 34	İ	213		203		197		189		192		189		179	İ	176		171		171		167
35 - 39		317		280		265		244		241		234		219		208		200		195		186
≥ 40	l	461		409		374		350		339	Ì	329		309		291		283		276		268

- Which group has the highest/lowest rates? When?
- Which group has an increasing/decreasing temporal trend?
- Which group has a faster/slower rate of change?

Age	1980	1985	1987	1989	1991	1993	1995	1997	1999	2001	2003
< 15	607	624	578	523	502	492	479	498	497	519	537
15 - 19	451	462	449	418	379	364	347	346	337	341	337
20 - 24	310	328	327	328	333	326	314	301	296	298	293
25 - 29	213	219	216	213	224	230	224	226	221	219	211
30 - 34	213	203	197	189	192	189	179	176	171	171	167
35 - 39	317	280	265	244	241	234	219	208	200	195	186
≥ 40	461	409	374	350	339	329	309	291	283	276	268

- Which group has the highest/lowest rates? When?
- Which group has an increasing/decreasing temporal trend?
- Which group has a faster/slower rate of change?

Age	l	1980		1985	I	1987	I	1989	I	1991	١	1993	I	1995	l	1997		1999		2001	1	2003
< 15	ī	607	ī	624	ī	578	ī	523	ī	502	ı	492	ī	479	ī	498	ī	497	ī	519	ī	537
15 - 19	İ	451	ı	462	İ	449	ı	418		379	İ	364	1	347	İ	346	İ	337	ı	341	İ	337
20 - 24	İ	310	1	328		327	ı	328		333	İ	326		314		301	İ	296	1	298	İ	293
25 - 29	İ	213		219		216		213		224	İ	230		224		226		221		219		211
30 - 34	İ	213	ı	203	İ	197	İ	189	1	192	İ	189	1	179	İ	176	İ	171	ı	171	İ	167
35 - 39		317		280		265		244		241		234		219		208		200		195		186
≥ 40		461		409		374		350		339	İ	329		309		291		283		276		268

- Which group has the highest/lowest rates? When?
- Which group has an increasing/decreasing temporal trend?
- Which group has a faster/slower rate of change?

Age	l	1980		1985	I	1987	I	1989	I	1991	١	1993	I	1995	l	1997		1999		2001	1	2003
< 15	ī	607	ī	624	ī	578	ī	523	ī	502	ı	492	ī	479	ī	498	ī	497	ī	519	ī	537
15 - 19	İ	451	ı	462	İ	449	ı	418		379	İ	364	1	347	İ	346	İ	337	ı	341	İ	337
20 - 24	İ	310	1	328		327	ı	328		333	İ	326		314		301	İ	296	1	298	İ	293
25 - 29	İ	213		219		216		213		224	İ	230		224		226		221		219		211
30 - 34	İ	213	ı	203	İ	197	İ	189	1	192	İ	189	1	179	İ	176	İ	171	ı	171	İ	167
35 - 39		317		280		265		244		241		234		219		208		200		195		186
≥ 40		461		409		374		350		339	İ	329		309		291		283		276		268

- Which group has the highest/lowest rates? When?
- Which group has an increasing/decreasing temporal trend?
- Which group has a faster/slower rate of change?

Age	ļ	1980		1985		1987	1	1989		1991	1	1993		1995		1997		1999		2001	I	2003
< 15	Ī	607	ī	624	Ι	578	ī	523	ī	502	ī	492	ī	479	ī	498	ī	497	ī	519	ī	537
15 - 19	İ	451	ı	462	İ	449	İ	418	ı	379	İ	364	ı	347	İ	346	İ	337	1	341	İ	337
20 - 24	İ	310		328	ı	327		328	1	333	İ	326	ı	314	İ	301	1	296		298	İ	293
25 - 29	İ	213		219	İ	216		213	1	224	İ	230	ı	224	İ	226		221		219		211
30 - 34	İ	213	ı	203	İ	197	İ	189	ı	192	İ	189	ı	179	İ	176	İ	171	ı	171	İ	167
35 - 39		317		280		265		244		241		234		219		208		200		195		186
≥ 40	İ	461	ı	409	İ	374	İ	350	ı	339	İ	329	ı	309	İ	291	ı	283	1	276	İ	268

- Which group has the highest/lowest rates? When?
- Which group has an increasing/decreasing temporal trend?
- Which group has a faster/slower rate of change?

Outline

Visualisation: A Psychological Perspective

Motivation Theory

Exploratory Data Analysis

EDA Example

EDA vs Descriptive Statistics

Time Series Data

Practical Considerations
Technologies
Demo

Exploratory Data Analysis (EDA)

obs	totbill	tip	sex	smoker	day	time	size
1	16.99	1.01	F	No	Sun	Night	2
2	10.34	1.66	M	No	Sun	Night	3
3	21.01	3.5	M	No	Sun	Night	3
4	23.68	3.31	M	No	Sun	Night	2
5	24.59	3.61	F	No	Sun	Night	4
6	25.29	4.71	M	No	Sun	Night	4
7	8.77	2	M	No	Sun	Night	2
8	26.88	3.12	M	No	Sun	Night	4
9	15.04	1.96	M	No	Sun	Night	2
10	14.78	3.23	M	No	Sun	Night	2
11	10.27	1.71	M	No	Sun	Night	2
12	35.26	5	F	No	Sun	Night	4
13	15.42	1.57	M	No	Sun	Night	2
14	18.43	3	M	No	Sun	Night	4
15	14.83	3.02	F	No	Sun	Night	2
16	21.58	3.92	M	No	Sun	Night	2
17	10.33	1.67	F	No	Sun	Night	3
18	16.29	3.71	M	No	Sun	Night	3
19	16.97	3.5	F	No	Sun	Night	3
20	20.65	3.35	M	No	Sat	Night	3
:	:	:	:	:	:	:	:
			-	:.	·		
244	18.78	3	F	No	Thu	Night	2

Primary Analysis

- Fit a linear regression model where the tip rate as the target variable, and a single feature party size
- The fitted model is

$$\mathrm{tip} = 0.18 - 0.01 \times \mathrm{size}$$

which says that as the size of the dining party increases by one person (leading to a higher bill), the tip rate will decrease by 1

Figure: Histogram of tip amounts where the bins cover £1 increments. The distribution of values is skewed right and unimodal, as is common in distributions of small, non-negative quantities.

ByVisnut-Ownwork, CCBY-SA3.0, https://commons.wikimedia.org/w/index.php?curid=25703575

Figure: Histogram of tip amounts where the bins cover £0.10 increments. An interesting phenomenon is visible: peaks occur at the whole-dollar and half-dollar amounts, which is caused by customers picking round numbers as tips. This behaviour is common to other types of purchases too.

ByVisnut-Ownwork, CCBY-SA3.0, https://commons.wikimedia.org/w/index.php?curid=25703577

Figure: Scatterplot of tips vs. bill. Points below the line correspond to tips that are lower than expected (for that bill amount), and points above the line are higher than expected. We might expect to see a tight, positive linear association, but instead variation increases with tip amount. In particular, there are more points far away from the line in the lower right than in the upper left, indicating that more customers are very cheap than very generous.

ByVisnut-Ownwork, CCBY-SA3.0, https://commons.wikimedia.org/w/index.php?curid=25703576

Figure: Tips vs. bill separated by gender and smoking section. Smoking parties have a lot more variability in the tips that they give. Males tend to pay the (few) higher bills, and the female non-smokers tend to be very consistent tippers (with three conspicuous exceptions shown in the sample).

By Visnut-Ownwork, CCBY-SA3.0, https://commons.wikimedia.org/w/index.php?curid=25703578

EDA Outcomes

- What is learnt from the plots is different from what is illustrated by the regression model, even though the experiment was not designed to investigate any of these other trends?
- Suggests hypotheses about tipping that may not have been anticipated in advance
- Could lead to interesting follow-up experiments where the hypotheses are formally stated and tested by collecting new data

EDA Virtuous Circle

Outline

Visualisation: A Psychological Perspective

Motivation Theory

Exploratory Data Analysis

EDA Example

EDA vs Descriptive Statistics

Time Series Data

Practical Considerations
Technologies
Demo

x	у	х					
		^	у	х	у	x	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.8

Da	itaset 1	Data	set 2	Data	aset 3	Datas	set 4
x	у	х	у	х	у	х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.8

$$\mu_x = 9$$
 (exact)

Da	taset 1	Data	set 2	Data	aset 3	Datas	set 4
х	у	х	у	х	у	х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.8

$$\mu_x = 9$$
 (exact) $\sigma_x^2 = 11$ (exact)

Da	taset 1	Data	set 2	Data	aset 3	Datas	set 4
x	у	х	у	х	у	х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.8

$$\begin{array}{l} \mu_x = 9 \text{ (exact)} \\ \sigma_x^2 = 11 \text{ (exact)} \\ \mu_y = 7.50 \text{ (to 2 d.p.)} \end{array}$$

Da	taset 1	Data	set 2	Data	aset 3	Datas	set 4
х	у	х	у	х	у	х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.8

$$\begin{array}{l} \mu_x=9 \text{ (exact)}\\ \sigma_x^2=11 \text{ (exact)}\\ \mu_y=7.50 \text{ (to 2 d.p.)}\\ \sigma_y^2=4.125\pm.003 \end{array}$$

Da	taset 1	Data	set 2	Data	aset 3	Datas	set 4
х	у	х	у	х	у	х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.8

$$\begin{array}{l} \mu_x = 9 \text{ (exact)} \\ \sigma_x^2 = 11 \text{ (exact)} \\ \mu_y = 7.50 \text{ (to 2 d.p.)} \\ \sigma_y^2 = 4.125 \pm .003 \\ Corr(x,y) = 0.813 \text{ (to 3 d.p.)} \end{array}$$

Dataset 1		Dataset 2		Dataset 3		Dataset 4	
х	у	х	у	х	у	х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.8

$$\begin{array}{l} \mu_x = 9 \text{ (exact)} \\ \sigma_x^2 = 11 \text{ (exact)} \\ \mu_y = 7.50 \text{ (to 2 d.p.)} \\ \sigma_y^2 = 4.125 \pm .003 \\ Corr(x,y) = 0.813 \text{ (to 3 d.p.)} \\ \text{Linear regression line:} \\ y = 3.00 + 0.500x \text{ (to 2 d.p.)} \end{array}$$

Descriptive statistics can hide important information!

Counter Examples

Per capita cheese consumption

correlates with

http://www.tylervigen.com/spurious-correlations

Counter Examples

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

http://www.tylervigen.com/spurious-correlations

Outline

Visualisation: A Psychological Perspective

Motivation Theory

Exploratory Data Analysis

EDA Example

EDA vs Descriptive Statistics

Time Series Data

Practical Considerations
Technologies
Demo

Time Series Visualisation (Aigner et al., 2011)

http://survey.timeviz.net/

- Frame of Reference
 - Abstract
 - Spatial
- Number of Variables
 - Univariate
 - Multivariate

- Arrangement
 - Linear
- CyclicTime Primitives
 - Instant
 - Interval

- Visualisation
 - Mapping
 - Static
 - Dynamic
 - Dimensionality2D
 - ▶ 3D

Outline

Visualisation: A Psychological Perspective

Motivation Theory

Exploratory Data Analysis

EDA Example

EDA vs Descriptive Statistics

Time Series Data

Practical Considerations

Technologies

Demo

Visualisation

- Language built-ins
 - R, Matlab, Octave, Mathematica ...
- OS-based
 - gnuplot
- Commerical tools
 - ► Tableau; Microsoft BI
- k python
 - Matplotlib; Seaborn; ggplot; bokeh
- - D3.js; DC.js; NVD3; Vega
 HighCharts/HighStock/HighMaps;
 plotly.js; Leaflet; MetricsGraphics.js
 - ► Many many others ...

Supporting Technology

- Pandas
- **⊮** Flask
- **K** Crossfilter
- W Underscore.is
- Keen Dashboards

Good news: lot of options

- we pandas: handy for simple plots; need to learn matplotlib to customize
- seaborn: supports some more complex visualisation approaches but still requires matplotlib knowledge to tweak. Colour schemes are a nice bonus.
- ggplot is a plotting system for Python based on R's ggplot2 and the Grammar of Graphics (Wilkinson, 2012)
- bokeh is a robust tool if you want to set up your own visualisation server but may be overkill for the simple scenarios
- ▶ plotly generates the most interactive graphs. You can save them offline and create very rich web-based visualisations ... but commercial license

Bad news: lot of options!

- seaborn: supports some more complex visualisation approaches but still requires matplotlib knowledge to tweak. Colour schemes are a nice bonus
- ggplot is a plotting system for Python based on R's ggplot2 and the Grammar of Graphics (Wilkinson, 2012)
- bokeh is a robust tool if you want to set up your own visualisation server but may be overkill for the simple scenarios
- ✓ plotly generates the most interactive graphs. You can save them offline and create very rich web-based visualisations ... but commercial license

- seaborn: supports some more complex visualisation approaches but still requires matplotlib knowledge to tweak. Colour schemes are a nice bonus.
- ggplot is a plotting system for Python based on R's ggplot2 and the Grammar of Graphics (Wilkinson, 2012)
- bokeh is a robust tool if you want to set up your own visualisation server but may be overkill for the simple scenarios
- plotly generates the most interactive graphs. You can save them offline and create very rich web-based visualisations ... but commercial license

- seaborn: supports some more complex visualisation approaches but still requires matplotlib knowledge to tweak. Colour schemes are a nice bonus.
- ggplot is a plotting system for Python based on R's ggplot2 and the Grammar of Graphics (Wilkinson, 2012)
- bokeh is a robust tool if you want to set up your own visualisation server but may be overkill for the simple scenarios
- ▶ plotly generates the most interactive graphs. You can save them offline and create very rich web-based visualisations ... but commercial license

seaborn: supports some more complex visualisation approaches but still

- requires matplotlib knowledge to tweak. Colour schemes are a nice bonus.
- ggplot is a plotting system for Python based on R's ggplot2 and the Grammar of Graphics (Wilkinson, 2012)
- bokeh is a robust tool if you want to set up your own visualisation server but may be overkill for the simple scenarios
- ▶ plotly generates the most interactive graphs. You can save them offline and create very rich web-based visualisations ... but commercial license

- seaborn: supports some more complex visualisation approaches but still requires matplotlib knowledge to tweak. Colour schemes are a nice bonus.
- ggplot is a plotting system for Python based on R's ggplot2 and the Grammar of Graphics (Wilkinson, 2012)
- bokeh is a robust tool if you want to set up your own visualisation server but may be overkill for the simple scenarios

- seaborn: supports some more complex visualisation approaches but still requires matplotlib knowledge to tweak. Colour schemes are a nice bonus.
- ggplot is a plotting system for Python based on R's ggplot2 and the Grammar of Graphics (Wilkinson, 2012)
- bokeh is a robust tool if you want to set up your own visualisation server but may be overkill for the simple scenarios
- ▶ plotly generates the most interactive graphs. You can save them offline and create very rich web-based visualisations ... but commercial license

Outline

Visualisation: A Psychological Perspective

Motivation Theory

Exploratory Data Analysis

EDA Example

EDA vs Descriptive Statistics

Time Series Data

Practical Considerations

Technologies

Demo

- Dataset: TalkingData Mobile User Demographics
- First pass: Pandas, matplotlib, and seaborn:

 $\label{lem:https://github.com/njtwomey/ADS/blob/master/04_data_exploration_and_visualisation/02_d3_demo/BasicVisualisations.ipynb$

Flask

A minimal Flask application:

```
from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
    return 'Hello, World!'
```

Then run the app:

```
$ export FLASK_APP=hello.py
```

\$ python -m flask run

- \$ npm install -g bower
- \$ bower install dcjs d3-queue bootstrap leaflet underscore keen-dashboards keen-js

- We Our real server will serve up the pandas dataframe, output as ison
- ★ The raw data: http://localhost:5000/data

Summary

Visualisation: A Psychological Perspective

Motivation Theory

Exploratory Data Analysis

EDA Example

EDA vs Descriptive Statistics

Time Series Data

Practical Considerations

Technologies

Demo

Selected References

- Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski. *Visualization of time-oriented data*. Springer Science & Business Media, 2011.
- Francis J Anscombe. Graphs in statistical analysis. *The American Statistician*, 27(1): 17–21, 1973.
- Vicki Bruce, Patrick R Green, and Mark A Georgeson. *Visual perception: Physiology, psychology, & ecology.* Psychology Press, 2003.
- Leland Wilkinson. The grammar of graphics. In *Handbook of Computational Statistics*, pages 375–414. Springer, 2012.