Improve HiC Resolution Based on Relationship Between Epigenetic Features and Chromatin Interaction Structures

1000

Minzhen Yi 12/10/2015

Motivations

- * Resolution for Hi-C experiment data is relatively low¹
- * ChIA-PET can only detect partial interaction in each experiment²
- Significance of genome-wide chromatin interaction map
- * Difficulties in improving Hi-C resolution by experiment

Idea illustrated by Venn Diagram

Assumptions

* Chromatin interaction structures are related to epigenetic features³

Data Resource

- * ChIP-seq: Encode ChIP-seq Experiment Matrix
- * Other data reflecting epigenetic features (DNase, Replication timing): Encode
- * ChIA-PET: Encode, GEO, published articles
- * Hi-C: GEO, publish articles

Data Format

- * To be selected: narrowpeak, broadpeak, bam, bed
- * Selected: bam at first; narrowpeak, bed at present

Failed Models

* Nonlinear Regression: Y: n by n interaction matrix, X: m by n feature matrix, A: m by m coefficient matrix

$$Y = XAX^T$$

❖ Multi Linear Regression: Y: 1 by n interaction vector, A: 1 by m*m coefficient matrix, F: m*m by n interaction matrix

$$Y = AF$$
 $y_i = \sum_{j=1}^{m} \sum_{k=1}^{m} a_{jk} h_{ij} t_{ik}$

Note that m is the number of features, n is the number of fragment pairs

F-test for Linear Relationship

$$cov(X,Y) = E[X - E(X)][Y - E(Y)]$$

$$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{D(X)D(Y)}}$$

$$L_{yy} = \sum_{i=1}^{N} (y_i - \overline{y})^2 = \sum_{i=1}^{N} y_i^2 - N\overline{y}^2 = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2$$

TSS

ESS RSS

$$F = \frac{ESS / f_E}{RSS / f_R} = \frac{(n - m^2 - 1)ESS}{m^2 RSS}$$

Methods⁴

* Model: Binary Classification

* Two strategies to represent an interaction pair: PRODUCT and CONTACT

* Feature quantification: continuous or binary

Results

GM12878, ChIA-PET CTCF

K562, ChIA-PET CTCF

Reference

- 1. Melissa J. Fullwood et al. An oestrogen-receptor--bound human chromatin interactome. *Nature* **462**, 58-64 (5 November 2009)
- 2. Erez Lieberman-Aiden. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science Vol. 326 no. 5950 pp. 289-293 (9 October 2009)
- 3. Suhas S.P. Rao et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell Vol. 159 Issue 7 pp. 1665-1680 (18 December 2014)
- 4. A predictive modeling approach for cell line-specific long-range regulatory interactions