Parameterising the Complexity of Planning by the Number of Paths in the Domain-transition Graphs

Christer Bäckström

Outline

- Introduction
- Parameterised complexity
- Planning formalism and terminology
- Parameters used and treewidth
- Main results for plan decision
- Results for plan optimisation
- Application to delete relaxation heuristics
- Discussion

Introduction

Previous Results:

- Complexity results for various restrictions on the domain-transition graphs
- Complexity results for various restrictions on the causal graph
- Very few results on combined restrictions on both graph types

• Usually only binary: having a restriction or not

In This Paper:

- Exploits combination of properties of the causal graph and the domain-transition graphs
- Quantitative properties of the graphs, rather than binary ones, by exploiting parameterised complexity theory

Parameterised Complexity

Let n be instance size and k some parameter of the instance

Tractable in the standard way:

Time $O(n^c)$ for some constant c

Fixed-parameter tractable (fpt):

Time $O(f(k) \cdot n^c)$ for some function f and constant c

The expression is *separable* into

- ullet a hard part f(k) and
- ullet an easy part n^c

Example:

 $2^{k^2}n^3$ is fpt, but neither n^k nor $k^{\log n}$ are fpt.

FPT is the class of all fpt problems

There are harder classes and a completeness theory

$$P \subseteq FPT \subseteq W[1] \subseteq W[2] \subseteq \dots$$

No hardness results in this paper.

Planning (SAS⁺ formalism):

Planning instance $\mathbb{P} = \langle V, D, A, s_I, s_G \rangle$ where

- Variables $V = \{v_1, \dots, v_n\}$, each w. finite domain $D(v_i)$
- \bullet Actions A, each with precondition pre(a) and effect eff(a)
- ullet Initial state s_I and goal s_G

Let $V' \subseteq V$ and ω an action sequence

- ullet $\mathbb{P}[V']$ is the projection of \mathbb{P} to V'
- \bullet $\omega[V']$ is the subsequence of actions affecting variables in V'

Transition Graphs:

The transition graph for \mathbb{P} is the labelled digraph $TG = \langle S, E \rangle$ where

- ullet S is the state space for ${\mathbb P}$
- $\langle s, a, t \rangle \in E$ if action a is from s to t

The domain-transition graph (DTG) for a variable v is $DTG(v) = TG(\mathbb{P}[v])$

Causal Graphs:

The causal graph for \mathbb{P} is the digraph $CG(\mathbb{P}) = \langle V, E \rangle$ where

- ullet V are the variables
- \bullet $\langle u,v \rangle \in E$ if there is some action a such that either
 - $u \in eff(a)$ and $v \in pre(a)$ or
 - $u \in eff(a)$ and $v \in eff(a)$

Parameters and Assumptions

Three instance parameters will be considered:

d: Domain size of the variables

k: Max. number of paths in each DTG

w : Treewidth of the causal graph

These are all fpt to check

All results assume acyclic DTGs.

However, rather a consequence of parameter k than a restriction

Parameter d (max. variable domain size):

d is trivially polynomial-time checkable, thus also fpt

Parameter k (number of pahts in DTGs):

For each DTG, ask for the k+1 shortest paths and check if fewer than k+1 paths are returned.

Eppsteins algorithm (1998) can find the k+1 shortest paths in a DAG in O(|E|+k+1) time, so checking parameter k is fpt.

Parameter w (treewidth of the causal graph):

A tree decomposition of a graph $G = \langle V, E \rangle$ is a tuple $\langle N, T \rangle$ where $N = \{N_1, \dots, N_n\}$ is a family of subsets of V and T is a tree with nodes N_1, \dots, N_n , satisfying the following properties:

- 1. Every $v \in V$ appears in at least one tree node.
- 2. For each $v \in V$, the set of nodes containing v form a connected subtree of T.
- 3. For every $\{u,v\} \in E$, there is some $N_i \in N$ such that $u,v \in N_i$, i.e. every pair of adjacent variables in G must appear together in some node.

The width of a tree decomposition is the size of its largest node minus one.

The *treewidth* of a graph G is the minimum width of all possible tree decompositions of G. (Perhaps not surprisingly, every tree has treewidth 1.)

Testing the treewidth of a graph is **NP**-complete but fpt in the treewidth

Parameter w is the treewidth of $U(CG(\mathbb{P}))$

Tree decomposition width = (4-1) = 3

A graph

Tree decomposition width = 3

A graph

Optimal tree decomposition width = 2

Small nodes better than few nodes (usually)!

Main Theorem

Deciding if an instance $\mathbb P$ w. acyclic DTGs and arbitrary causal graph has a plan is fpt in parameters d,k,w.

Proof sketch

- 1. Construct a CSP instance $\mathbb C$ corresponding to $\mathbb P$
- 2. Prove that $\mathbb C$ solvable iff $\mathbb P$ solvable
- 3. Prove that constructing $\mathbb C$ and solving it is fpt in parameters $\langle d,k,w \rangle$

Constraint Satisfaction Problem (CSP):

A binary CSP instance $\mathbb{C} = \langle X, D, C \rangle$

- Set $X = \{x_1, \dots, x_n\}$ of variables, each with finite domain $D(x_i)$
- Set C of constraints, i.e. relations of type $R_{i,j} \subseteq D(x_i) \times D(x_j)$

A *solution* for $\mathbb C$ is an assignment of variable values such that all relations in C are satisfied.

CSP Construction:

Let $\mathbb{P} = \langle V, D, A, s_I, s_G \rangle$ be an instance with acyclic DTGs.

Let $\langle N, T \rangle$ be a tree decomposition of $CG(\mathbb{P})$

Define CSP instance $\mathbb{C} = \langle X, D, C \rangle$ as follows

- X contains one variable x_i for each node $N_i \in N$
- ullet For each x_i , $D(x_i)$ is the set of plans for $\mathbb{P}[N_i]$
- For all adjacent N_i, N_j in T (i < j), define $R_{i,j} \subseteq D(x_i) \times D(x_j)$ such that $R_{i,j}(\omega_i, \omega_j) \Leftrightarrow \omega_i[N_i \cap N_j] = \omega_j[N_i \cap N_j]$

That is, $R_{i,j}(\omega_i, \omega_j)$ holds if plans ω_i and ω_j agree for the common variables.

 $\omega_i \in D(x_i)$ i.e. ω_i is a plan for $\mathbb{P}[N_i]$ $\omega_j \in D(x_j)$ i.e. ω_j is a plan for $\mathbb{P}[N_j]$

$$R_{i,j}(\omega_i,\omega_j) \Leftrightarrow \underline{\omega_i[\{v_2,v_4\}]} = \underline{\omega_j[\{v_2,v_4\}]}$$

Correctness Lemma:

 \mathbb{P} has a plan $\Leftrightarrow \mathbb{C}$ has a solution

 \Rightarrow :

Suppose ω is a plan for \mathbb{P} . Suppose N_i, N_j adjacent nodes in T. Let $\omega_i = \omega[N_i]$ and $\omega_j = \omega[N_j]$ Then trivially $\omega_i[N_i \cap N_j] = \omega[N_i \cap N_j] = \omega_j[N_i \cap N_j]$

Hence $R_{i,j}(\omega_i,\omega_j)$ holds, so \mathbb{C} is solvable.

⟨=:

Suppose $\omega_1, \ldots, \omega_n$ is a solution to \mathbb{C} We must prove that these plan fragments can be merged into one single plan for \mathbb{P} .

All nodes containing v form a subtree

If $\omega_1, \omega_2, \omega_3, \omega_4$ are part of a solution then $R_{1,2}(\omega_1, \omega_2) \Rightarrow \omega_1[v] = \omega_2[v]$ $R_{2,3}(\omega_2, \omega_3) \Rightarrow \omega_2[v] = \omega_3[v]$ $R_{2,4}(\omega_2, \omega_4) \Rightarrow \omega_2[v] = \omega_4[v]$

so
$$\omega_1[v] = \omega_2[v] = \omega_3[v] = \omega_4[v]$$

 N_4 Hence, all node plans can be merged to one single plan for ${\mathbb P}$

Complexity Analysis:

1. Compute an optimal tree decomposition $\langle N,T\rangle$ of $CG(\mathbb{P})$. This is fpt in the treewidth w of G.

2. Suppose $N_i = \{v_1, ..., v_m\}$

Each DTG has $\leq k$ paths of length $\leq d$

$$\Downarrow |N_i| \leq w + 1$$

 $TG(N_i)$ has $\leq k^{w+1}$ paths of length $\leq d^{w+1}$

$$\Downarrow |N_i| \leq w + 1$$

 $TG(N_i)$ has $\leq (kd)^{w+1}$ edges

Find the paths with Eppsteins algorithm in time $O((kd)^{w+1} + k^{w+1}) = O((kd)^{w+1})$

3. Suppose $N_i = \{v_1, ..., v_m\}$

 $TG(N_i), TG(N_j)$ have $\leq k^{w+1}$ paths \downarrow $|D(x_i)|, |D(x_j)| \leq k^{w+1}$ \downarrow $|R_{i,j}| \leq (k^{w+1})^2 = k^{2(w+1)}$

Paths are of length $\leq d^{w+1}$ \Downarrow

Compare paths in time $O(d^{w+1})$

$$\checkmark$$

Compute $R_{i,j}$ in time $O((kd)^{2(w+1)}d^{w+1}) \subseteq O((kd)^{3(w+1)})$

There are at most n nodes, so this construction takes time $O((kd)^{3(w+1)} \cdot n)$, which is fpt in $\langle d, k, w \rangle$

4. \mathbb{C} is a binary CSP over a tree with $\leq n$ nodes where $D(x_i) \leq k^{w+1}$ for all x_i .

Using Decters and Pearls result (1989) for such CSPs we can solve $\mathbb C$ in time $O((k^{w+1})^2 \cdot n) = O(k^{w+1} \cdot n)$, which is fpt in $\langle k, w \rangle$.

It follows that constructing and solving $\mathbb C$ is fpt in $\langle d, k, w \rangle$.

Polytree Causal Graphs

A digraph G is a polytree if its undirected version U(G) is a tree

Corollary to Main Theorem:

Deciding if an instance \mathbb{P} with acyclic DTGs has a plan is fpt in parameter k if $CG(\mathbb{P})$ is a polytree

Proof sketch:

Suppose $CG(\mathbb{P})$ is a polytree. Then w=1.

Above, d always appears in the form d^{w+1}

This becomes d^2 when w = 1.

The dominating expression is $O((kd)^{3(w+1)}) = O(k^6d^6n)$.

However, $d \le n$ so we get $O(k^6 \cdot n^7)$ which is fpt in k alone.

Optimisation

CSOP is the problem of finding the minimum weight solution for a weighted CSP instance.

Färnqvists corollary (2012): Solving CSOP is fpt in the parameters

- max. domain size and
- treewidth of the constraint graph.

Can be used to prove that the two previous fpt results for planning hold also for finding an *optimal* plan.

1. Define the weight of a path as its length.

2. Let $\omega_1, \ldots, \omega_n$ be a solution to \mathbb{C} .

Each action a that has an effect on variable v will appear in ω_i for each N_i s.t. $v \in N_i$.

Arbitrarily associate a with exactly one such N_i and count a only when it occurs in ω_i .

This will give the correct count for the final plan for \mathbb{P} .

3. Using the previous proof we get that also finding a shortest plan for \mathbb{P} is fpt in $\langle d, k, w \rangle$.

Delete Relaxation Heuristics

Acyclic DTGs may seem very restricted However, the results can easily be applied to compute the *delete* relaxation heuristic h^+

 h^+ : Length of shortest plan when negative effects of actions are ignored

DTGs have loops, but each action occurs at most once in a shortest plan

Hence, the number of relevant paths is bounded

a:
$$\{\} \Rightarrow \{x = 1, y = 1\}$$

b:
$$\{\} \Rightarrow \{x = 1, z = 1\}$$

a, b, ab, ba possible (4 paths) aa, aab, abb, bba,... irrelevant

a possible (1 path)
aa, aa, aaa,... irrelevant

b possible (1 path) bb,bbb,... irrelevant

Conclusions

Deciding if there is a plan, and even finding an optimal plan, is fpt in $\langle d, k, w \rangle$, when all DTGs are acyclic.

Deciding if there is a plan, and even finding an optimal plan, is fpt in k, when all DTGs are acyclic and the causal graph is a polytree.

The results imply that computing the h^+ heuristic is fpt in $\langle d,k,w\rangle$, and fpt in k if the causal graph is a polytree

All parameters are fpt testable

Future Work

Study other types of restricted causal graphs than polytrees

Non-acyclic DTGs. Many ways forward, for instance:

- \bullet Identify SCCs and let k denote # of paths in condensed DTG. Add parameters for the SCCs.
- Allow only very restricted forms of acyclicity, with appropriate parameters
- Parameterize the number of turns in loops and unroll the loops