Modelos e Aplicações - Aula 7

Caio Lopes, Henrique Lecco

ICMC - USP

29 de julho de 2020

Objetivo de hoje

Vamos provar um resultado que usamos muitas vezes:

Objetivo de hoje

Vamos provar um resultado que usamos muitas vezes: *DLO* é completo.

Objetivo de hoje

Vamos provar um resultado que usamos muitas vezes: *DLO* é completo.

Além disso, compreenderemos melhor a diferença entre *completo* e *modelo-completo*.

Completo, modelo-completo

Será que completo implica modelo-completo? Será que modelo-completo implica completo?

Completo, modelo-completo

Será que completo implica modelo-completo? Será que modelo-completo implica completo?

Definição

Uma teoria T é dita completa se dados $\mathcal{M} \models T$ e $\mathcal{N} \models T$, então $\mathcal{M} \equiv \mathcal{N}$.

Uma teoria T é dita modelo-completa se dados $\mathcal{M} \models T$ e $\mathcal{N} \models T$ e $\mathcal{M} \subset \mathcal{N}$, então $\mathcal{M} \prec \mathcal{N}$.

Complexidade de fórmulas

Vamos introduzir uma noção mais fraca de equivalência. Trata-se da *n*-equivalência.

Definição

Uma fórmula ϕ tem rank n se apresenta no máximo n quantificadores encadeados, sejam repetidos ou não.

Dois modelos \mathcal{M} e \mathcal{N} são ditos n-equivalentes ($\mathcal{M} \equiv_n \mathcal{N}$) se satisfazem as mesmas sentenças de rank no máximo n.

Complexidade de fórmulas

Vamos introduzir uma noção mais fraca de equivalência. Trata-se da *n*-equivalência.

Definição

Uma fórmula ϕ tem rank n se apresenta no máximo n quantificadores encadeados, sejam repetidos ou não.

Dois modelos \mathcal{M} e \mathcal{N} são ditos n-equivalentes ($\mathcal{M} \equiv_n \mathcal{N}$) se satisfazem as mesmas sentenças de rank no máximo n.

- rank $(\phi) = 0$, quando ϕ é livre de quantificadores;
- $\operatorname{rank}(\exists x \ \phi) = \operatorname{rank}(\forall x \ \phi) = \operatorname{rank}(\phi) + 1;$
- $\operatorname{rank}(\neg \phi) = \operatorname{rank}(\phi)$;
- $rank(\phi \wedge \psi) = max\{rank(\phi), rank(\psi)\}.$

Mais um jogo

Introduzimos o jogo de Ehrenfeucht-Fraïssé. Seja L um vocabulário com finitos símbolos não-lógicos e sem símbolos de função. Sejam \mathcal{A} e \mathcal{B} L-modelos.

Mais um jogo

Introduzimos o jogo de Ehrenfeucht-Fraïssé.

Seja L um vocabulário com finitos símbolos não-lógicos e sem símbolos de função. Sejam $\mathcal A$ e $\mathcal B$ L-modelos.

O jogo é jogado da seguinte maneira: define-se uma quantidade de rodadas n. A cada rodada i:

- **1** Alice escolhe um elemento $a_i \in A$ ou $b_i \in B$;
- ② Se Alice escolheu um elemento de A, Bob escolhe um elemento $b_i \in B$. Caso contrário, Bob escolhe um elemento a_i de A.

Mais um jogo

Introduzimos o jogo de Ehrenfeucht-Fraïssé.

Seja L um vocabulário com finitos símbolos não-lógicos e sem símbolos de função. Sejam \mathcal{A} e \mathcal{B} L-modelos.

O jogo é jogado da seguinte maneira: define-se uma quantidade de rodadas n. A cada rodada i:

- **1** Alice escolhe um elemento $a_i \in A$ ou $b_i \in B$;
- ② Se Alice escolheu um elemento de A, Bob escolhe um elemento $b_i \in B$. Caso contrário, Bob escolhe um elemento a_i de A.

Bob ganha se a função f que mapeia $a_i \mapsto b_i$ é um isomorfismo local.

Isomorfimos locais

Um isomorfismo local é uma função que indica que um pedaço de um modelo é idêntico a um pedaço de outro modelo.

Isomorfimos locais

Um isomorfismo local é uma função que indica que um pedaço de um modelo é idêntico a um pedaço de outro modelo.

Considere $\{a_1, ..., a_n\} \subset A$ e $\{b_1, ..., b_n\} \subset B$. Seja f uma função que leva a_i em b_i , para todo i.

Isomorfimos locais

Um isomorfismo local é uma função que indica que um pedaço de um modelo é idêntico a um pedaço de outro modelo.

Considere $\{a_1,...,a_n\} \subset A$ e $\{b_1,...,b_n\} \subset B$. Seja f uma função que leva a_i em b_i , para todo i.

f é um isomorfismo local se, para todo i e toda fórmula $\varphi(x)$ livre de quantificadores,

$$\mathcal{A} \models \varphi(a_i) \Leftrightarrow \mathcal{B} \models \varphi(b_i)$$

Modelos finitos

Se \mathcal{A} é um modelo com n+1 elementos e \mathcal{B} é um modelo com n elementos, então Alice tem estratégia vencedora no jogo $E(\mathcal{A}, \mathcal{B}, n+1)$.

Modelos finitos

Se \mathcal{A} é um modelo com n+1 elementos e \mathcal{B} é um modelo com n elementos, então Alice tem estratégia vencedora no jogo $E(\mathcal{A}, \mathcal{B}, n+1)$.

Basta que Alice sempre escolha elementos distintos de A na sua jogada. Olho no lance:

Alice Bob
$$a_1 b_1$$

$$a_2 \neq a_1 b_2$$

Alice Bob
$$a_1$$
 b_1
 $a_2 \neq a_1$ b_2

Se
$$b_2=b_1$$
, então $\mathcal{B}\models (b_1=b_2)$, mas $\mathcal{A}\not\models (a_1=a_2)$.

Alice Bob
$$a_1 b_1$$

$$a_2 \neq a_1 b_2$$

Se $b_2 = b_1$, então $\mathcal{B} \models (b_1 = b_2)$, mas $\mathcal{A} \not\models (a_1 = a_2)$. Então Bob já perderia de cara.

Alice Bob
$$a_1 b_1$$

$$a_2 \neq a_1 b_2$$

Se $b_2 = b_1$, então $\mathcal{B} \models (b_1 = b_2)$, mas $\mathcal{A} \not\models (a_1 = a_2)$. Então Bob já perderia de cara. Como Bob não é Bobo, ele vai escolher $b_2 \neq b_1$. Assim, em todas as rodadas, Alice segue sua estratégia: escolher qualquer elemento de A, desde que seja diferente de todos os anteriores.

Quando acabar a *n*-ésima rodada, o jogo estará assim:

Assim, em todas as rodadas, Alice segue sua estratégia: escolher qualquer elemento de A, desde que seja diferente de todos os anteriores.

Quando acabar a *n*-ésima rodada, o jogo estará assim:

Alice	Bob
a_1	b_1
a_2	b_2
a_n	b_n

Assim, em todas as rodadas, Alice segue sua estratégia: escolher qualquer elemento de A, desde que seja diferente de todos os anteriores.

Quando acabar a *n*-ésima rodada, o jogo estará assim:

Alice Bob
$$\begin{array}{ccc}
a_1 & b_1 \\
a_2 & b_2 \\
& \cdots & \cdots \\
a_n & b_n
\end{array}$$

Não sabemos exatamente quem são esses elementos, mas sabemos que:

- Para todos i, j distintos, $a_i \neq a_j$;
- Para todos i, j distintos, $b_i \neq b_j$.

Na jogada n + 1, Alice segue sua estratégia e escolhe o elemento restante de A (que tinha n + 1 elementos).

Esse elemento vai ser diferente de todos os anteriores que ela escolheu.

Na jogada n + 1, Alice segue sua estratégia e escolhe o elemento restante de A (que tinha n + 1 elementos).

Esse elemento vai ser diferente de todos os anteriores que ela escolheu.

Mas o conjunto B só tem n elementos, então Bob será forçado a repetir uma escolha anterior. Isto é, existe um i menor que n+1 tal que $b_i=b_{n+1}$.

Na jogada n+1, Alice segue sua estratégia e escolhe o elemento restante de A (que tinha n+1 elementos).

Esse elemento vai ser diferente de todos os anteriores que ela escolheu.

Mas o conjunto B só tem n elementos, então Bob será forçado a repetir uma escolha anterior. Isto é, existe um i menor que n+1 tal que $b_i=b_{n+1}$.

Assim, $\mathcal{B} \models (b_i = b_{n+1})$, mas $\mathcal{A} \not\models (a_i = a_{n+1})$.

Na jogada n+1, Alice segue sua estratégia e escolhe o elemento restante de A (que tinha n+1 elementos).

Esse elemento vai ser diferente de todos os anteriores que ela escolheu.

Mas o conjunto B só tem n elementos, então Bob será forçado a repetir uma escolha anterior. Isto é, existe um i menor que n+1 tal que $b_i=b_{n+1}$.

Assim, $\mathcal{B} \models (b_i = b_{n+1})$, mas $\mathcal{A} \not\models (a_i = a_{n+1})$. Isso significa que Alice ganhou a partida.

Jogos mais fáceis e mais difíceis

Veja que, quanto maior o número de rodadas, mais difícil o jogo fica para Bob.

Proposição

Se Alice tem estratégia vencedora em $E(\mathcal{A}, \mathcal{B}, n)$, então Alice também tem estratégia vencedora em $E(\mathcal{A}, \mathcal{B}, n+1)$.

Jogos mais fáceis e mais difíceis

Veja que, quanto maior o número de rodadas, mais difícil o jogo fica para Bob.

Proposição

Se Alice tem estratégia vencedora em E(A, B, n), então Alice também tem estratégia vencedora em E(A, B, n + 1).

Basta que Alice jogue da mesma maneira.

Ela consegue garantir que ganha já na rodada n.

Jogos mais fáceis e mais difíceis

Veja que, quanto maior o número de rodadas, mais difícil o jogo fica para Bob.

Proposição

Se Alice tem estratégia vencedora em E(A, B, n), então Alice também tem estratégia vencedora em E(A, B, n + 1).

Basta que Alice jogue da mesma maneira.

Ela consegue garantir que ganha já na rodada n.

Similarmente, Bob garante estratégia vencedora se um jogo é mais curto que um jogo para o qual ele sabe que ganha, com os mesmos modelos.

Colocando constantes

Existe uma outra maneira de interpretar os isomorfismos locais, que é por meio de extensões simples do vocabulário. Uma extensão simples consiste em adicionar novos símbolos de constantes a um dado vocabulário.

Sejam $a_1,...,a_n \in A$, $b_1,...,b_n \in B$, com $A \in B$ L-modelos.

Colocando constantes

Existe uma outra maneira de interpretar os isomorfismos locais, que é por meio de extensões simples do vocabulário. Uma extensão simples consiste em adicionar novos símbolos de constantes a um dado vocabulário.

Sejam $a_1, ..., a_n \in A$, $b_1, ..., b_n \in B$, com $A \in B$ L-modelos.

Considere $L^+ = L \cup \{\mathbf{c}_1, ..., \mathbf{c}_n\}$.

Colocando constantes

Existe uma outra maneira de interpretar os isomorfismos locais, que é por meio de extensões simples do vocabulário. Uma extensão simples consiste em adicionar novos símbolos de constantes a um dado vocabulário.

Sejam $a_1,...,a_n \in A$, $b_1,...,b_n \in B$, com $A \in B$ L-modelos.

Considere $L^+ = L \cup \{\mathbf{c}_1, ..., \mathbf{c}_n\}$.

Defina novos modelos \mathcal{A}^+ e \mathcal{B}^+ , idênticos a \mathcal{A} e \mathcal{B} respectivamente, mas com uma interpretação para as novas constantes:

$$\mathbf{c}_i^{\mathcal{A}^+} = a_i \in \mathbf{c}_i^{\mathcal{B}^+} = b_i.$$

Dizemos que uma função f que mapeia $a_i \mapsto b_i$ é um isomorfismo local se \mathcal{A}^+ e \mathcal{B}^+ satisfazem as mesmas L^+ -sentenças livres de quantificadores

Dizemos que uma função f que mapeia $a_i \mapsto b_i$ é um isomorfismo local se \mathcal{A}^+ e \mathcal{B}^+ satisfazem as mesmas L^+ -sentenças livres de quantificadores

Podemos denotar \mathcal{A}^+ como $\langle \mathcal{A}, a_1, ..., a_n \rangle$.

"Back-and-forth"

Bob tem estratégia vencedora em E(A, B, n + 1) se e somente se ambas as condições são válidas:

- **9** Para todo $a \in A$ existe $b \in B$ tal que Bob tem estratégia vencedora em $E(\langle A, a \rangle, \langle B, b \rangle, n)$;
- ② Para todo $b \in B$ existe $a \in A$ tal que Bob tem estratégia vencedora em $E(\langle A, a \rangle, \langle B, b \rangle, n)$.

"Back-and-forth"

Bob tem estratégia vencedora em E(A, B, n+1) se e somente se ambas as condições são válidas:

- **1** Para todo $a \in A$ existe $b \in B$ tal que Bob tem estratégia vencedora em $E(\langle A, a \rangle, \langle B, b \rangle, n)$;
- 2 Para todo $b \in B$ existe $a \in A$ tal que Bob tem estratégia vencedora em $E(\langle A, a \rangle, \langle B, b \rangle, n)$.

Basta enxergar a primeira jogada de Alice e a Resposta de Bob no jogo de n+1 rodadas como os elementos a e b, claro, dependendo se Alice escolheu a ou b e Bob escolhendo outro.

"Back-and-forth"

Bob tem estratégia vencedora em E(A, B, n + 1) se e somente se ambas as condições são válidas:

- **1** Para todo $a \in A$ existe $b \in B$ tal que Bob tem estratégia vencedora em $E(\langle A, a \rangle, \langle B, b \rangle, n)$;
- 2 Para todo $b \in B$ existe $a \in A$ tal que Bob tem estratégia vencedora em $E(\langle A, a \rangle, \langle B, b \rangle, n)$.

Basta enxergar a primeira jogada de Alice e a Resposta de Bob no jogo de n+1 rodadas como os elementos a e b, claro, dependendo se Alice escolheu a ou b e Bob escolhendo outro.

As n jogadas restantes no jogo com n+1 rodadas e o jogo com n rodadas serão iguais.

Sentido do jogo

Teorema

Bob tem estratégia vencedora em E(A, B, n) se e somente se $A \equiv_n B$.

Sentido do jogo

Teorema

Bob tem estratégia vencedora em E(A, B, n) se e somente se $A \equiv_n B$.

O caso n = 0 segue da definição:

Bob tem estratégia vencedora para $E(\mathcal{A}, \mathcal{B}, 0)$ quando a função vazia é um isomorfismo local entre \mathcal{A} e \mathcal{B} , ou seja, quando \mathcal{A} e \mathcal{B} satisfazem as mesmas sentenças de rank 0, com nenhuma constante adicional no vocabulário.

Sentido do jogo

Teorema

Bob tem estratégia vencedora em E(A, B, n) se e somente se $A \equiv_n B$.

O caso n = 0 segue da definição:

Bob tem estratégia vencedora para $E(\mathcal{A},\mathcal{B},0)$ quando a função vazia é um isomorfismo local entre \mathcal{A} e \mathcal{B} , ou seja, quando \mathcal{A} e \mathcal{B} satisfazem as mesmas sentenças de rank 0, com nenhuma constante adicional no vocabulário.

Isso é exatamente dizer que $\mathcal{A} \equiv_0 \mathcal{B}$

Suponha, então, que Bob tem estratégia para $E(\mathcal{A},\mathcal{B},n)$ se e somente se $\mathcal{A} \equiv_n \mathcal{B}$. Essa é nossa hipótese de indução. Queremos provar que vale para n+1.

Suponha que Bob tem estratégia vencedora em E(A, B, n + 1).

Suponha que Bob tem estratégia vencedora em E(A, B, n + 1).

Sabemos, por hipótese, que $A \equiv_n B$. Precisamos mostrar que, dada uma sentença do tipo $\exists x \ \varphi(x)$, com rank $(\varphi) \leq n$, então:

$$\mathcal{A} \models \exists x \ \varphi(x) \Leftrightarrow \mathcal{B} \models \exists x \ \varphi(x)$$

Suponha que Bob tem estratégia vencedora em E(A, B, n + 1).

Sabemos, por hipótese, que $\mathcal{A} \equiv_n \mathcal{B}$. Precisamos mostrar que, dada uma sentença do tipo $\exists x \ \varphi(x)$, com rank $(\varphi) \leq n$, então:

$$\mathcal{A} \models \exists x \ \varphi(x) \Leftrightarrow \mathcal{B} \models \exists x \ \varphi(x)$$

Suponha, então, que $A \models \exists x \ \varphi(x)$. Isso significa que existe $a \in A$ tal que $A \models \varphi(a)$.

Suponha que Bob tem estratégia vencedora em E(A, B, n + 1).

Sabemos, por hipótese, que $\mathcal{A} \equiv_n \mathcal{B}$. Precisamos mostrar que, dada uma sentença do tipo $\exists x \ \varphi(x)$, com rank $(\varphi) \leq n$, então:

$$\mathcal{A} \models \exists x \ \varphi(x) \Leftrightarrow \mathcal{B} \models \exists x \ \varphi(x)$$

Suponha, então, que $A \models \exists x \ \varphi(x)$. Isso significa que existe $a \in A$ tal que $A \models \varphi(a)$.

Como vimos, também podemos dizer que $\langle \mathcal{A}, a \rangle \models \varphi(\mathbf{c})$, com \mathbf{c} um novo símbolo de constante adicionado ao vocabulário.

Usando a técnica do back-and-forth, teremos que, como Bob tem estratégia vencedora em E(A, B, n+1), então:

Para todo $a \in A$ existe $b \in B$ tal que Bob tem estratégia vencedora em $E(\langle \mathcal{A}, a \rangle, \langle \mathcal{B}, b \rangle, n)$.

Usando a técnica do back-and-forth, teremos que, como Bob tem estratégia vencedora em E(A, B, n+1), então:

Para todo $a \in A$ existe $b \in B$ tal que Bob tem estratégia vencedora em $E(\langle \mathcal{A}, a \rangle, \langle \mathcal{B}, b \rangle, n)$.

Pela hipótese de indução, isso se traduz como:

Para todo $a \in A$ existe $b \in B$ tal que $\langle A, a \rangle \equiv_n \langle B, b \rangle$

Como $\varphi(\mathbf{c})$ é uma sentença de rank $\leq n$ e $\langle \mathcal{A}, a \rangle \equiv_n \langle \mathcal{B}, b \rangle$, então:

$$\langle \mathcal{A}, a \rangle \models \varphi(\mathbf{c}) \Leftrightarrow \langle \mathcal{B}, b \rangle \models \varphi(\mathbf{c})$$

Como $\varphi(\mathbf{c})$ é uma sentença de rank $\leq n$ e $\langle \mathcal{A}, a \rangle \equiv_n \langle \mathcal{B}, b \rangle$, então:

$$\langle \mathcal{A}, \mathsf{a} \rangle \models \varphi(\mathsf{c}) \Leftrightarrow \langle \mathcal{B}, \mathsf{b} \rangle \models \varphi(\mathsf{c})$$

Assim, como supomos que o lado esquerdo é verdade, então por consequência o lado direito também será.

Isso significa que existe um elemento $b \in B$ tal que $\mathcal{B} \models \varphi(b)$, ou seja:

Como $\varphi(\mathbf{c})$ é uma sentença de rank $\leq n$ e $\langle \mathcal{A}, a \rangle \equiv_n \langle \mathcal{B}, b \rangle$, então:

$$\langle \mathcal{A}, a \rangle \models \varphi(\mathbf{c}) \Leftrightarrow \langle \mathcal{B}, b \rangle \models \varphi(\mathbf{c})$$

Assim, como supomos que o lado esquerdo é verdade, então por consequência o lado direito também será.

Isso significa que existe um elemento $b \in B$ tal que $\mathcal{B} \models \varphi(b)$, ou seja:

$$\mathcal{B} \models \exists x \ \varphi(x)$$

As outras fórmulas (com \lor , \land , \neg , \forall) seguem como consequência desta, assim, temos a ida já feita.

Suponha, então, que $\mathcal{A} \equiv_{n+1} \mathcal{B}$.

Suponha, então, que $A \equiv_{n+1} B$.

Queremos mostrar que:

- **1** Para todo $a \in A$ existe $b \in B$ tal que $\langle A, a \rangle \equiv_n \langle B, b \rangle$;
- ② Para todo $b \in B$ existe $a \in A$ tal que $\langle A, a \rangle \equiv_n \langle B, b \rangle$.

Suponha, então, que $A \equiv_{n+1} B$.

Queremos mostrar que:

- **1** Para todo $a \in A$ existe $b \in B$ tal que $\langle A, a \rangle \equiv_n \langle B, b \rangle$;
- ② Para todo $b \in B$ existe $a \in A$ tal que $\langle A, a \rangle \equiv_n \langle B, b \rangle$.

Por hipótese de indução, ganharemos que:

- **1** Para todo $a \in A$ existe $b \in B$ tal que Bob tem estratégia vencedora em $E(\langle A, a \rangle, \langle B, b \rangle, n)$;
- 2 Para todo $b \in B$ existe $a \in A$ tal que Bob tem estratégia vencedora em $E(\langle A, a \rangle, \langle B, b \rangle, n)$.

Suponha, então, que $A \equiv_{n+1} B$.

Queremos mostrar que:

- **1** Para todo $a \in A$ existe $b \in B$ tal que $\langle A, a \rangle \equiv_n \langle B, b \rangle$;
- ② Para todo $b \in B$ existe $a \in A$ tal que $\langle A, a \rangle \equiv_n \langle B, b \rangle$.

Por hipótese de indução, ganharemos que:

- **1** Para todo $a \in A$ existe $b \in B$ tal que Bob tem estratégia vencedora em $E(\langle A, a \rangle, \langle B, b \rangle, n)$;
- 2 Para todo $b \in B$ existe $a \in A$ tal que Bob tem estratégia vencedora em $E(\langle A, a \rangle, \langle B, b \rangle, n)$.

E assim, pelo lema do back-and-forth, obteremos que Bob tem estratégia vencedora em E(A, B, n+1).

O outro caso é análogo. Seja, então, $a \in A$.

O outro caso é análogo. Seja, então, $a \in A$.

Suponha que não exista tal b.

Assim, para cada $b \in B$, deve existir uma fórmula $\psi_b(x)$ tal que $\mathcal{A} \models \psi_b(a)$ mas $\mathcal{B} \not\models \psi_b(b)$.

O outro caso é análogo. Seja, então, $a \in A$.

Suponha que não exista tal b.

Assim, para cada $b \in B$, deve existir uma fórmula $\psi_b(x)$ tal que $A \models \psi_b(a)$ mas $\mathcal{B} \not\models \psi_b(b)$.

Considere, então, a seguinte fórmula:

$$\exists x \bigwedge_{b \in B} \psi_b(x)$$

O outro caso é análogo. Seja, então, $a \in A$.

Suponha que não exista tal b.

Assim, para cada $b \in B$, deve existir uma fórmula $\psi_b(x)$ tal que $A \models \psi_b(a)$ mas $B \not\models \psi_b(b)$.

Considere, então, a seguinte fórmula:

$$\exists x \bigwedge_{b \in B} \psi_b(x)$$

Veja que \mathcal{A} satisfaz todas as $\psi_b(x)$ com a valoração que leva x em a. Portanto, $\mathcal{A} \models \bigwedge_{b \in \mathcal{B}} \psi_b(a)$.

Como
$$\mathcal{A} \models \bigwedge_{b \in B} \psi_b(a)$$
, então:

$$\mathcal{A} \models \exists x \ \bigwedge_{b \in B} \psi_b(x)$$

Como $\mathcal{A} \models \bigwedge_{b \in B} \psi_b(a)$, então:

$$\mathcal{A} \models \exists x \bigwedge_{b \in B} \psi_b(x)$$

Mas

$$\mathcal{B} \not\models \exists x \ \bigwedge_{b \in B} \psi_b(x)$$

Pois, para cada elemento $b \in B$, $\mathcal{B} \not\models \psi_b(b)$.

Como $\mathcal{A} \models \bigwedge_{b \in B} \psi_b(a)$, então:

$$\mathcal{A} \models \exists x \ \bigwedge_{b \in B} \psi_b(x)$$

Mas

$$\mathcal{B} \not\models \exists x \ \bigwedge_{b \in B} \psi_b(x)$$

Pois, para cada elemento $b \in B$, $\mathcal{B} \not\models \psi_b(b)$.

Cada fórmula $\psi_b(x)$ tem rank $\leq n$.

$$\operatorname{\mathsf{rank}}\left(igwedge_{b\in B}\psi_b(x)
ight) = \max\{\operatorname{\mathsf{rank}}(\psi_b(x)) \; : \; b\in B\} \leq n$$

Como $\mathcal{A} \models \bigwedge_{b \in B} \psi_b(a)$, então:

$$\mathcal{A} \models \exists x \ \bigwedge_{b \in B} \psi_b(x)$$

Mas

$$\mathcal{B} \not\models \exists x \ \bigwedge_{b \in B} \psi_b(x)$$

Pois, para cada elemento $b \in B$, $\mathcal{B} \not\models \psi_b(b)$.

Cada fórmula $\psi_b(x)$ tem rank $\leq n$.

$$\operatorname{\mathsf{rank}}\left(igwedge_{b\in B}\psi_b(x)
ight) = \max\{\operatorname{\mathsf{rank}}(\psi_b(x)) \; : \; b\in B\} \leq n$$

Desse modo, $\exists x \bigwedge_{b \in B} \psi_b(x)$ tem rank $\leq n+1$

Nossa hipótese era de que $A \equiv_{n+1} B$.

Tomamos um a qualquer e supomos que não havia nenhuma escolha de $b \in B$ de modo que $\langle \mathcal{A}, a \rangle \equiv_n \langle \mathcal{B}, b \rangle$. Fazendo isso, conseguimos uma fórmula de rank < n+1 que é satisfeita por \mathcal{A} mas não por \mathcal{B} .

Nossa hipótese era de que $A \equiv_{n+1} B$.

Tomamos um a qualquer e supomos que não havia nenhuma escolha de $b \in B$ de modo que $\langle \mathcal{A}, a \rangle \equiv_n \langle \mathcal{B}, b \rangle$. Fazendo isso, conseguimos uma fórmula de rank $\leq n+1$ que é satisfeita por \mathcal{A} mas não por \mathcal{B} .

Mas isso é uma contradição! Então deve existir tal b e o resultado segue como mostrado anteriormente.

Mas calma...

Será que $\bigwedge_{b \in B} \psi_b(x)$ é de fato uma fórmula?

B pode ser infinito, e conjunções infinitas não caracterizam fórmulas de primeira ordem!

Mas calma...

Será que $\bigwedge_{b \in B} \psi_b(x)$ é de fato uma fórmula?

B pode ser infinito, e conjunções infinitas não caracterizam fórmulas de primeira ordem!

É por isso que assumimos no começo que o vocabulário tem finitos símbolos não-lógicos e nenhum deles é um símbolo de função.

Mas calma...

Será que $\bigwedge_{b \in B} \psi_b(x)$ é de fato uma fórmula?

B pode ser infinito, e conjunções infinitas não caracterizam fórmulas de primeira ordem!

É por isso que assumimos no começo que o vocabulário tem finitos símbolos não-lógicos e nenhum deles é um símbolo de função.

Sob essas condições, temos apenas finitas fórmulas, a menos de equivalência, de rank $\leq n$ com no máximo k variáveis livres, para cada k e cada n.

O que provamos, mesmo?

Bob tem estratégia vencedora em $E(\mathcal{A},\mathcal{B},n)$ se e somente se $\mathcal{A}\equiv_n\mathcal{B}$

Estendendo para equivalência

Observe que $A \equiv B$ se e somente se, para todo n, $A \equiv_n B$.

Estendendo para equivalência

Observe que $\mathcal{A} \equiv \mathcal{B}$ se e somente se, para todo n, $\mathcal{A} \equiv_n \mathcal{B}$. Ou seja, se para cada n, Bob tem uma estratégia vencedora para $E(\mathcal{A}, \mathcal{B}, n)$, então $\mathcal{A} \equiv \mathcal{B}$

Estendendo para equivalência

Observe que $A \equiv \mathcal{B}$ se e somente se, para todo n, $A \equiv_n \mathcal{B}$. Ou seja, se para cada n, Bob tem uma estratégia vencedora para $E(A, \mathcal{B}, n)$, então $A \equiv \mathcal{B}$

Observações:

- Isso n\u00e3o significa que a estrat\u00e9gia \u00e9 mesma para todo n;
- Isso n\u00e3o significa que Bob ganha na vers\u00e3o do jogo com infinitas rodadas.

Uma aplicação

Consideramos o vocabulário $\{<\}$ e a teoria DLO. Isto é, a teoria de ordens totais densas sem maior nem menor elemento. Sejam \mathcal{A} e \mathcal{B} dois modelos para a teoria.

Uma aplicação

Consideramos o vocabulário $\{<\}$ e a teoria DLO. Isto é, a teoria de ordens totais densas sem maior nem menor elemento. Sejam \mathcal{A} e \mathcal{B} dois modelos para a teoria.

Queremos mostrar que Bob tem uma estratégia vencedora para qualquer $E(\mathcal{A},\mathcal{B},n)$.

Nesse caso, a estratégia vai ser a mesma.

Suponha que Alice escolheu $a_n \in A$ (se ela tiver escolhido de B, é análogo).

Suponha que Alice escolheu $a_n \in A$ (se ela tiver escolhido de B, é análogo).

Então, ocorre uma das três opções:

- \bullet $a_n > a_i$, para todo i < n;
- 2 $a_n < a_i$, para todo i < n;
- 3 Existem r, s < n tais que $a_r < a_n < a_s$ e não há mais nenhum a_i entre a_r e a_s .

Suponha que Alice escolheu $a_n \in A$ (se ela tiver escolhido de B, é análogo).

Então, ocorre uma das três opções:

- \bullet $a_n > a_i$, para todo i < n;
- 2 $a_n < a_i$, para todo i < n;
- **3** Existem r, s < n tais que $a_r < a_n < a_s$ e não há mais nenhum a_i entre a_r e a_s .

Bob responde escolhendo b_n da seguinte maneira:

- Qualquer b_n maior que todos os b_i (existe pois não há elemento máximo);
- ② Qualquer b_n menor que todos os b_i (existe pois não há elemento mínimo);
- **3** Qualquer b_n entre b_r e b_s (existe pois a ordem é densa).

Fazendo isso, Bob sempre ganha o jogo. Prova-se, por indução, que se $f:\{a_1,...,a_n\} \to \{b_1,...,b_n\}$ é um isomorfismo local, então, com a escolha adequada de Bob, $f:\{a_1,...,a_{n+1}\} \to \{b_1,...,b_{n+1}\}$ também é.

Fazendo isso, Bob sempre ganha o jogo.

Prova-se, por indução, que se $f:\{a_1,...,a_n\} \to \{b_1,...,b_n\}$ é um isomorfismo local, então, com a escolha adequada de Bob, $f:\{a_1,...,a_{n+1}\} \to \{b_1,...,b_{n+1}\}$ também é.

Por isso, quaisquer dois modelos de *DLO* são equivalentes, isto é, a teoria é completa.

Fazendo isso, Bob sempre ganha o jogo.

Prova-se, por indução, que se $f:\{a_1,...,a_n\} \to \{b_1,...,b_n\}$ é um isomorfismo local, então, com a escolha adequada de Bob, $f:\{a_1,...,a_{n+1}\} \to \{b_1,...,b_{n+1}\}$ também é.

Por isso, quaisquer dois modelos de *DLO* são equivalentes, isto é, a teoria é completa.

Vamos mostrar um exemplo de teoria que é completa mas não modelo-completa.

DLOE

Considere *DLOE* a teoria de ordens totais densas *com máximo e mínimo*.

DLOE

Considere *DLOE* a teoria de ordens totais densas *com máximo e mínimo*.

Exemplos de modelos para essa teoria são intervalos fechados nos reais.

DLOE

Considere *DLOE* a teoria de ordens totais densas *com máximo e mínimo*.

Exemplos de modelos para essa teoria são intervalos fechados nos reais.

Dados dois modelos \mathcal{M} e \mathcal{N} para DLOE e um n qualquer, Bob tem estratégia vencedora em $E(\mathcal{M}, \mathcal{N}, n)$.

Basta que ele jogue de maneira similar ao que estava fazendo em *DLO*, mas com poucas diferenças:

- Se Alice escolhe o máximo de \mathcal{A} ou \mathcal{B} , Bob escolhe o máximo do outro modelo;
- Se Alice escolhe o mínimo de \mathcal{A} ou \mathcal{B} , Bob escolhe o mínimo do outro modelo;
- Se Alice escolhe um elemento maior que todos já escolhidos, mas menor que o máximo, Bob faz a mesma coisa no outro modelo;
- Se Alice escolhe um elemento menor que todos já escolhidos, mas maior que o mínimo, Bob faz a mesma coisa no outro modelo;
- Para elementos entre outros dois, joga-se da mesma forma.

Essa é uma estratégia vencedora, logo *DLOE* é completo. Mas não é modelo-completo.

Essa é uma estratégia vencedora, logo *DLOE* é completo. Mas não é modelo-completo.

Veja que $[0,1] \subset [0,2]$ (com as ordens usuais). Seja $\varphi(x)$ a seguinte fórmula: $\forall y \ (y=x \lor y < x)$. Ou seja, $\varphi(x)$ diz "x é o maior elemento". Essa é uma estratégia vencedora, logo *DLOE* é completo. Mas não é modelo-completo.

Veja que $[0,1] \subset [0,2]$ (com as ordens usuais). Seja $\varphi(x)$ a seguinte fórmula: $\forall y \ (y=x \lor y < x)$. Ou seja, $\varphi(x)$ diz "x é o maior elemento".

Assim, $[0,1] \models \varphi(1)$, mas $[0,2] \not\models \varphi(1)$.

Modelo-completo, completo

ACF é modelo completo, mas não é completo (características diferentes);

DLOE é completo, mas não é modelo-completo.