Lecture 02: Powers and Roots of Complex Numbers

Tasaduq Hussain

August 20, 2024

1 Powers of Complex Numbers

Given a complex number $z = r(\cos \theta + i \sin \theta)$ in polar form, the *n*-th power of z is calculated using De Moivre's Theorem:

$$z^{n} = [r(\cos\theta + i\sin\theta)]^{n} = r^{n} (\cos(n\theta) + i\sin(n\theta))$$

where n is a positive integer.

Example:

Let's find $(1+i)^3$.

First, express 1 + i in polar form:

$$z = 1 + i$$
 where $r = \sqrt{1^2 + 1^2} = \sqrt{2}$, $\theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4}$

So, $z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$. Now, using De Moivre's Theorem for n = 3:

$$z^{3} = \left(\sqrt{2}\right)^{3} \left[\cos\left(3 \times \frac{\pi}{4}\right) + i\sin\left(3 \times \frac{\pi}{4}\right)\right]$$
$$z^{3} = 2\sqrt{2} \left[\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right]$$
$$\cos\frac{3\pi}{4} = -\frac{1}{\sqrt{2}}, \quad \sin\frac{3\pi}{4} = \frac{1}{\sqrt{2}}$$
$$z^{3} = 2\sqrt{2} \left[-\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right]$$

Now, simplifying further:

$$z^{3} = 2\sqrt{2} \times -\frac{1}{\sqrt{2}} + 2\sqrt{2} \times \frac{1}{\sqrt{2}}i$$
$$z^{3} = -2 + 2i$$

2 Roots of Complex Numbers

To find the *n*-th root of a complex number $z = r(\cos \theta + i \sin \theta)$, we use the formula:

$$z^{1/n} = r^{1/n} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right], \quad k = 0, 1, 2, \dots, n - 1$$

This expression gives all the n different roots of the complex number.

Problem Set 13.2

Question 22

Find and graph all roots of $\sqrt[3]{3+4i}$ in the complex plane. We are tasked with finding the cube roots of the complex number z=3+4i and graphing them in the complex plane.

Step 1: Convert z to Polar Form

First, we find the modulus r and the argument θ of the complex number z = 3 + 4i.

$$r = |z| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

$$\theta = \tan^{-1}\left(\frac{4}{3}\right) \approx 0.93 \text{ radians} \approx 53^{\circ}$$

Thus, the polar form of z is:

$$z = 5(\cos(0.93) + i\sin(0.93))$$

Step 2: Finding the Cube Roots

The general formula for the *n*-th roots of a complex number $z = r(\cos \theta + i \sin \theta)$ is:

$$z^{1/n} = r^{1/n} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right]$$

where $k = 0, 1, 2, \dots, n - 1$.

For n=3 and r=5, we find the cube roots as follows:

Root 1:
$$z_1 = \sqrt[3]{5} \left[\cos(17.8^\circ) + i \sin(17.8^\circ) \right]$$
 (at angle 17.8°)

Root 2:
$$z_2 = \sqrt[3]{5} \left[\cos(137.8^\circ) + i \sin(137.8^\circ) \right]$$
 (at angle 137.8°)

Root 3:
$$z_3 = \sqrt[3]{5} \left[\cos(257.8^\circ) + i\sin(257.8^\circ)\right]$$
 (at angle 257.8°)

Step 3: Graphing the Roots in the Complex Plane

Question 26

Find and graph all roots of $\sqrt[8]{1}$ in the complex plane. The eighth roots of 1 are given by the formula:

$$z_k = \cos\left(\frac{2\pi k}{8}\right) + i\sin\left(\frac{2\pi k}{8}\right), \quad k = 0, 1, 2, \dots, 7$$

These roots are:

$$z_0 = 1 \qquad \text{(at angle 0°)}$$

$$z_1 = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) \qquad \text{(at angle 45°)}$$

$$z_2 = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) \qquad \text{(at angle 90°)}$$

$$z_3 = \cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right) \qquad \text{(at angle 135°)}$$

$$z_4 = \cos(\pi) + i\sin(\pi) \qquad \text{(at angle 180°)}$$

$$z_5 = \cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right) \qquad \text{(at angle 225°)}$$

$$z_6 = \cos\left(\frac{3\pi/2}{4}\right) + i\sin\left(\frac{3\pi/2}{4}\right) \qquad \text{(at angle 270°)}$$

$$z_7 = \cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right) \qquad \text{(at angle 315°)}$$

Graphing the Roots

