Latent variables: part II

What is a latent (or hidden) variable?

A random variable that is unmeasured but not necessarily unmeasureable.

-P Spirtes (2001)

A variable that is not directly observable but is inferred from other variables that can be measured

-Generative AI (yesterday)

Variables that can only be inferred indirectly through a mathematical model from other observable variables

-Wikipedia (also yesterday)

What is a latent (or hidden) variable?

Everything is a latent variable – LA Dyer

Is temperature a latent variable?

A random variable that is unmeasured but not necessarily unmeasureable.
-P Spirtes (2001)

Temperature is the average kinetic energy of particles

Temperature is a latent variable

Temperature is the average kinetic energy of particles

Survival

S: survival of a population, S': survival of a marked sample

Size

'Size' is a human construct

Forest maturity

These 'seral stages' are human constructs

Forest maturity [expanded]

We could structure this differently

We don't have to use latent variables!

They're just very useful...

We generally assume they're normally distributed

$$\boldsymbol{m} \sim \operatorname{normal}(\mu, \sigma_m^2)$$

We assume that they are zero-centered b/c they're human constructs

i.e., what should the scale of forest maturity be?

$$\boldsymbol{m} \sim \text{normal}(0, \sigma_m^2)$$

Assigning an intercept would be entirely subjective, plus the math is easier if $\mu = 0$

So let's talk about this 'fixing a loading to 1' thing

Let's simulate some data

$$\delta y = \delta x \beta$$

Clarifying a loading...

$$\delta y = \delta x \beta$$
$$3 = 6\beta$$

Now, let's build a model

Shoot...

Forest maturity

Forest maturity

Forest maturity

Forest maturity

There's a big problem:

We don't know the range of maturity

 $m \sim \text{normal}(0, \sigma_m^2)$

Small groups!

Forest maturity

Forest maturity

Forest maturity

Forest maturity

How could we scale maturity, i.e., what should the minimum and maximum values of maturity be?

$$\delta y = \delta x \beta$$

 $m \sim \text{normal}(0, \sigma_m^2)$

What if we fix a beta?

Forest maturity

Forest maturity

Forest maturity

Forest maturity

$$\delta y = \delta x \beta$$
$$1.5 = ? \times 1$$

$$1.5 = ? \times 1$$

$$m \sim \text{normal}(0, \sigma_m^2)$$

Now we can calculate σ_m

Forest maturity

Forest maturity

Forest maturity

Forest maturity

$$\delta y = \delta x \beta$$
$$1.5 = ? \times 1$$

$$1.5 = ? \times 1$$

Our x-axis must have a range of 1.5!

Now we have a scale!!

Now we know the x-axis for everything!

$$\delta y = \delta x \beta$$

$$\delta y = \delta x \beta$$
$$1.5 = 1.5 \times 1$$

So what's the effect of m on s?

$$\delta y = \delta x \beta$$
$$3 = 1.5 \times ?$$

$$3 = 1.5 \times 3$$

So what's the effect of m on s

$$\delta y = \delta x \beta$$
$$3 = 1.5 \times 2$$

$$3 = 1.5 \times 2$$

What about effect of *m* on *y*?

$$\delta y = \delta x \beta$$

$$\delta y = \delta x \beta$$
$$4.5 = 1.5 \times ?$$

What about effect of *m* on *y*?

$$\delta y = \delta x \beta$$
$$4.5 = 1.5 \times 3$$

$$4.5 = 1.5 \times 3$$

Let's do it again!!

$$\delta y = \delta x \beta$$

Play with the script some later!

Today's coding exercise... build a SEM to estimate 'size'

- Adult body size varies by ~25%
- Egg size can range from 50 cm³ to >100 cm³

We take multiple morphometric measurements

And we'll attempt to estimate the effect of size on clutch size

I've left a couple of things 'blank' in the model for you to supply