Honors Advanced Calculus, I

Solutions #1

1. Let + and \cdot be defined on $\{ \spadesuit, \dagger, \bigcirc, A \}$ through:

+	^	†	0	A
•	•	†	\bigcirc	A
†	†	0	A	•
0	0	A	•	†
A	A	•	†	0

	^	†	0	A
•	^	•	•	•
†	•	†	0	A
0	•	0	^	0
A	^	A	0	†

Do these turn $\{ \spadesuit, \dagger, \bigcirc, A \}$ into a field?

Solution: The neutral element of $\{ \spadesuit, \dagger, \bigcirc, A \}$ with respect to +, i.e., the zero, is \spadesuit . According to the second table, $\bigcirc \cdot \bigcirc = \spadesuit$ holds, which is impossible in a field.

2. Show that

$$\mathbb{Q}[i] := \{p+i\,q: p,q\in\mathbb{Q}\} \subset \mathbb{C}$$

with + and \cdot inherited from \mathbb{C} , is a field. Is there a way to turn $\mathbb{Q}[i]$ into an ordered field?

(*Hint*: Many of the field axioms are true for $\mathbb{Q}[i]$ simply because they are true for \mathbb{C} ; in this case, just point it out and don't verify the axiom in detail.)

Solution: Let $p, q, r, s \in \mathbb{Q}$. Then

$$(p+i\,q)+(r+i\,s)=(p+r)+i\,(q+s)\in\mathbb{Q}[i]$$

and

$$(p+iq)(r+is) = \underbrace{(pr-qs)}_{\in \mathbb{Q}} + i\underbrace{(qr+ps)}_{\in \mathbb{Q}} \in \mathbb{Q}[i]$$

hold, so that (F 1) is satisfied.

Since (F 2), (F 3), and (F 4) hold for \mathbb{C} , they also hold for $\mathbb{Q}[i]$.

Since $0 = 0 + i 0, 1 = 1 + i 0 \in \mathbb{Q}[i]$, (F 5) is satisfied as well.

Let $p, q \in \mathbb{Q}$, and let x = p + i q. Then $-x = -p + i (-q) \in \mathbb{Q}[i]$ as well. Suppose that $x \neq 0$, so that $p^2 + q^2 \neq 0$. Set

$$y:=\frac{p}{p^2+q^2}-i\,\frac{q}{p^2+q^2}\in\mathbb{Q}[i].$$

It is immediate that xy = 1. Hence, (F 6) is also satisfied.

Assume that there is $P \subset \mathbb{Q}[i]$ as in the definition of an ordered field. Then either $i \in P$ or $-i \in P$ holds, so that in either case $-1 = i^2 = (-i)^2 \in P$, which contradicts the fact that $1 \in P$.

- 3. Let $\emptyset \neq S \subset \mathbb{R}$ be bounded below, and let $-S := \{-x : x \in S\}$. Show that:
 - (a) -S is bounded above;
 - (b) S has an infimum, namely inf $S = -\sup(-S)$.

Solution:

- (a) Let L be a lower bound for S, i.e., $L \leq x$ for all $x \in S$. It follows that $-x \leq -L$ for each $x \in S$ and thus $x \leq -L$ for each $x \in -S$. Hence, -L is an upper bound for -S.
- (b) Let $C := \sup(-S)$, so that $x \leq C$ for all $x \in -S$. It follows that $-x \geq -C$ for all $x \in -S$, i.e., $x \geq -C$ for all $x \in S$. Hence, -C is a lower bound for S. Let C' be another other lower bound for S. In the solution to (a), we have seen that -C' is an upper bound for -S, and thus $-C' \geq C$ by the definition of a supremum. It follows that $C' \leq -C$. Hence, $-C = \inf S$ holds.
- 4. Find $\sup S$ and $\inf S$ in \mathbb{R} for

$$S := \left\{ (-1)^n \left(1 - \frac{1}{n} \right) : n \in \mathbb{N} \right\}.$$

Justify, i.e., prove, your findings.

Solution: For odd $n \in \mathbb{N}$, $(-1)^n \left(1 - \frac{1}{n}\right)$ is negative, and for even n, we have

$$(-1)^n \left(1 - \frac{1}{n}\right) = 1 - \frac{1}{n} \le 1.$$

Hence, S is bounded above by 1. Assume that $\sup S < 1$, and let $\epsilon := 1 - \sup S$. In class, we saw that there is $n \in \mathbb{N}$ with $0 < \frac{1}{n} < \epsilon$, so that

$$\underbrace{1 - \frac{1}{2n}}_{\in S} > 1 - \frac{1}{n} > 1 - \epsilon = \sup S,$$

which is impossible.

Similarly, one sees that inf S = -1.

5. Let $S, T \subset \mathbb{R}$ be non-empty and bounded above. Show that

$$S + T := \{x + y : x \in S, y \in T\}$$

is also bounded above with

$$\sup(S+T) = \sup S + \sup T.$$

Solution: Let $x \in S$ and $y \in T$. Then $x \leq \sup S$ and $y \leq \sup T$. It follows that

$$x + y \le \sup S + \sup T$$
,

so that $\sup S + \sup T$ is an upper bound for S + T. Consequently,

$$\sup(S+T) \le \sup S + \sup T$$

holds.

Assume that $\sup(S+T) < \sup S + \sup T$. Let $\epsilon := \frac{1}{2}(\sup S + \sup T - \sup(S+T))$. Choose $x \in S$ and $y \in T$ such that

$$x > \sup S - \epsilon$$
 and $y > \sup T - \epsilon$.

It follows that

$$x + y > \sup S + \sup T - 2\epsilon = \sup(S + T),$$

which is a contradiction.

6*. An ordered field \mathbb{O} is said to have the *nested interval property* if $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ for each decreasing sequence $I_1 \supset I_2 \supset I_3 \supset \cdots$ of closed intervals in \mathbb{O} .

Show that an Archimedean ordered field with the nested interval property is complete.

Solution: Let $\emptyset \neq S \subset \mathbb{O}$ be bounded above. Choose $a_1 \in S$ and let $b_1 > a_1$ be an upper bound for S. Let $I_1 := [a_1, b_1]$, and let $c_1 := \frac{1}{2}(b_1 - a_1)$. There are two possibilities:

Case 1: c_1 is an upper bound for S. In this case, let $a_2 := a_1$, $b_2 := c_1$, and $I_2 := [a_2, b_2]$.

Case 2: c_1 is not an upper bound for S. In this case, there is $a_2 \in S$ with $a_2 > c_1$. Let $b_2 := b_1$, and define $I_2 := [a_2, b_2]$.

Let $c_2 := \frac{1}{2}(b_2 - a_2)$. Depending on whether c_2 is an upper bound for S or not, we find a_3 and b_3 as we found a_2 and b_2 and define $I_3 := [a_3, b_3]$.

Continuing in this fashion, we obtain a decreasing sequence $I_1 \supset I_2 \supset I_3 \supset \cdots$ of closed intervals in \mathbb{O} with the following properties for all $n \in \mathbb{N}$:

- $I_n = [a_n, b_n]$, where $a_n \in S$ and $b_n \in \mathbb{O}$ is an upper bound for S;
- $(b_{n+1} a_{n+1}) \le \frac{1}{2}(b_n a_n).$

This second fact yields that

$$(b_{n+1} - a_{n+1}) \le \frac{1}{2^n} (b_1 - a_1) \le \frac{1}{n} (b_1 - a_1)$$

for all $n \in \mathbb{N}$ by induction on n.

Since \mathbb{O} has the nested interval property, there is $x \in \bigcap_{n=1}^{\infty} I_n$. We claim that x is the supremum of S in \mathbb{O} .

Assume that x is not an upper bound for S, i.e., there is $y \in S$ such that y > x. Use the fact that $\mathbb O$ is Archimedean to find $n \in \mathbb N$ such that

$$(b_{n+1} - a_{n+1}) \le \frac{1}{n}(b_1 - a_2) < y - x.$$

Since $x \geq a_{n+1}$, we obtain

$$y - x > b_{n+1} - a_{n+1} \ge b_{n+1} - x,$$

and adding x on both sides yields $y > b_{n+1}$, which contradicts b_{n+1} being an upper bound for S.

Hence, x is an upper bound for S.

Assume that there is an upper bound $y \in \mathbb{O}$ with y < x. Again use the fact that \mathbb{O} is Archimedean to find $n \in \mathbb{N}$ such that

$$(b_{n+1} - a_{n+1}) \le \frac{1}{n}(b_1 - a_2) < x - y.$$

Since $b_{n+1} \ge x$, we obtain

$$x-y > b_{n+1} - a_{n+1} \ge x - a_{n+1}$$
,

and subtracting x and multiplying with -1 on both sides yields that $a_{n+1} > y$ which contradicts y being an upper bound for S.

Hence, x is the least upper bound for S, i.e., $x = \sup S$.

Honors Advanced Calculus, I

Solutions #10

1. Let a, b > 0. Determine the area of the ellipse

$$E := \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}.$$

Solution: Use the following coordinate transformation:

$$\phi \colon \mathbb{R}^2 \to \mathbb{R}^2, \quad (r, \theta) \mapsto (ra\cos\theta, rb\sin\theta),$$

so that $E = \phi([0,1] \times [0,2\pi])$. Since

$$J_{\phi}(r,\theta) = \begin{bmatrix} a\cos\theta & -ra\sin\theta \\ b\sin\theta & rb\cos\theta \end{bmatrix}$$

and thus

$$\det J_{\phi}(r,\theta) = abr,$$

change of variables yields

$$\mu(E) = \int_{E} 1$$

$$= \int_{[0,1]\times[0,2\pi]} abr$$

$$= ab \int_{0}^{1} \left(\int_{0}^{2\pi} r \, d\theta \right) dr$$

$$= 2\pi ab \int_{0}^{1} r \, dr$$

$$= \pi ab$$

2. Let D in spherical coordinates be given as the solid lying between the spheres given by r=2 and r=4, above the xy-plane and below the cone given by the angle $\theta=\frac{\pi}{3}$. Evaluate the integral $\int_D xyz$.

Solution: In spherical coordinates, D is described as

$$\left\{ (r, \theta, \sigma) \in \mathbb{R}^3 : r \in [2, 4], \, \theta \in \left[\frac{\pi}{3}, \frac{\pi}{2} \right], \sigma \in [0, 2\pi] \right\}$$

so that

$$\int_{D} xyz = \int_{2}^{4} \left(\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \left(\int_{0}^{2\pi} (r\cos\theta\cos\sigma)(r\cos\theta\sin\sigma)(r\sin\theta)r^{2}\cos\theta\,d\theta \right) d\sigma \right) dr$$
$$= \left(\int_{2}^{4} r^{5} dr \right) \left(\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^{3}\theta\sin\theta\,d\theta \right) \left(\int_{0}^{2\pi} \cos\sigma\sin\sigma\,d\sigma \right).$$

Since (substitute $u = \sin \sigma$)

$$\int_0^{2\pi} \sin \sigma \cos \sigma \, d\sigma = \int_0^0 u \, du = 0,$$

we have $\int_D xyz = 0$.

3. Let $K \subset \mathbb{R}^2$ be the triangle with vertices (0,0), (1,3), and (0,3). Evaluate the line integral

$$\int_{\partial K} x^2 y^2 \, dx + 4xy^3 \, dy$$

where ∂K is oriented counterclockwise.

Solution: Note that

$$K = \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], y \in [3x, 3]\}.$$

Green's Theorem then yields

$$\begin{split} \int_{\partial K} x^2 y^2 \, dx + 4xy^3 \, dy &= \int_K \frac{\partial}{\partial x} 4xy^3 - \frac{\partial}{\partial y} x^2 y^2 \\ &= \int_K 4y^3 - 2x^2 y \\ &= \int_0^1 \left(\int_{3x}^3 4y^3 - 2x^2 y \, dy \right) dx \\ &= \int_0^1 y^4 - x^2 y^2 \big|_{3x}^3 \, dx \\ &= \int_0^1 81 - 9x^2 - 72x^4 \, dx \\ &= 81x - 3x^3 - \frac{72x^5}{5} \bigg|_0^1 \\ &= \frac{318}{5}. \end{split}$$

4. Let $\emptyset \neq U \subset \mathbb{R}^3$ be open, and let $f,g:U\to\mathbb{R}$ be twice continuously partially differentiable. Show that $\operatorname{div}(\nabla f\times \nabla g)=0$ on U, where \times denotes the cross product in \mathbb{R}^3 .

Solution: First, note that

$$\nabla f \times \nabla g = \left(\frac{\partial f}{\partial y} \frac{\partial g}{\partial z} - \frac{\partial f}{\partial z} \frac{\partial g}{\partial y}, -\frac{\partial f}{\partial x} \frac{\partial g}{\partial z} + \frac{\partial f}{\partial z} \frac{\partial g}{\partial x}, \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x}\right).$$

It follows that

$$\operatorname{div}(\nabla f \times \nabla g)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \frac{\partial g}{\partial z} - \frac{\partial f}{\partial z} \frac{\partial g}{\partial y} \right) - \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial z} + \frac{\partial f}{\partial z} \frac{\partial g}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x} \right)$$

$$= \frac{\partial^2 f}{\partial x \partial y} \frac{\partial g}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial^2 g}{\partial x \partial z} - \frac{\partial^2 f}{\partial x \partial z} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial z} \frac{\partial^2 g}{\partial x \partial y}$$

$$- \frac{\partial^2 f}{\partial y \partial x} \frac{\partial g}{\partial z} - \frac{\partial f}{\partial x} \frac{\partial^2 g}{\partial y \partial z} + \frac{\partial^2 f}{\partial y \partial z} \frac{\partial g}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial^2 g}{\partial y \partial x}$$

$$+ \frac{\partial^2 f}{\partial z \partial x} \frac{\partial g}{\partial y} + \frac{\partial f}{\partial x} \frac{\partial^2 g}{\partial z \partial y} - \frac{\partial^2 f}{\partial z \partial y} \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \frac{\partial^2 g}{\partial z \partial x}$$

$$= \frac{\partial f}{\partial x} \left(-\frac{\partial^2 g}{\partial y \partial z} + \frac{\partial^2 g}{\partial z \partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{\partial^2 g}{\partial x \partial z} - \frac{\partial^2 g}{\partial z \partial x} \right) + \frac{\partial f}{\partial z} \left(-\frac{\partial^2 g}{\partial x \partial y} + \frac{\partial^2 g}{\partial y \partial x} \right)$$

$$+ \frac{\partial g}{\partial x} \left(\frac{\partial^2 f}{\partial y \partial z} - \frac{\partial^2 f}{\partial z \partial y} \right) + \frac{\partial g}{\partial y} \left(-\frac{\partial^2 f}{\partial x \partial z} + \frac{\partial^2 f}{\partial z \partial x} \right) + \frac{\partial g}{\partial z} \left(\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \right)$$

$$= 0$$

by Clairaut's Theorem.

5. Let

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x, y, z) \mapsto (x \cos^2 y + \arctan(yz)), (y + e^z), z \sin^2 y)$.

Evaluate $\int_S f \cdot n \, d\sigma$ where S is the sphere with radius r > 0 centered at the origin, and n is the outward pointing normal unit vector.

Solution: Let V denote the solid ball with radius r > 0 centered at the origin, so that $S = \partial V$. Gauß' Theorem asserts that

$$\int_{S} f \cdot n \, d\sigma = \int_{V} \operatorname{div} f.$$

As

$$\operatorname{div} f = \frac{\partial}{\partial x} (x \cos^2 y + \arctan(yz)) + \frac{\partial}{\partial y} (y + e^z) + \frac{\partial}{\partial z} z \sin^2 y = \cos^2 y + 1 + \sin^2 y = 2,$$

this means that

$$\int_{S} f \cdot n \, d\sigma = 2 \, \mu(V) = \frac{8}{3} r^3 \pi.$$

6*. Let $D \subset \mathbb{R}^2$ be the trapeze with vertices (1,0), (2,0), (0,-2), and (0,-1). Evaluate $\int_D \exp\left(\frac{x+y}{x-y}\right)$. (*Hint*: Consider

$$\phi \colon \mathbb{R}^2 \to \mathbb{R}^2, \quad (u, v) \mapsto \left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)$$

and apply Change of Variables.)

Solution: Let

$$K := \{(u, v) \in \mathbb{R}^2 : 1 \le v \le 2, \quad -v \le u \le v\}.$$

Then K is compact with content such that $\phi(K) = D$. Obviously, ϕ is injective, and as

$$\det J_{\phi}(u,v) = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = \frac{1}{2},$$

the Change of Variables Theorem applies and yields

$$\begin{split} \int_D \exp\left(\frac{x+y}{x-y}\right) &= \frac{1}{2} \int_D \exp\left(\frac{u}{v}\right) \\ &= \frac{1}{2} \int_1^2 \left(\int_{-v}^v \exp\left(\frac{u}{v}\right) du\right) dv \\ &= \frac{1}{2} \int_1^2 \left(v \exp\left(\frac{u}{v}\right)\Big|_{u=-v}^{u=v}\right) dv \\ &= \frac{1}{2} \int_1^2 \left(e - \frac{1}{e}\right) v dv \\ &= \frac{3}{4} \left(e - \frac{1}{e}\right). \end{split}$$

Honors Advanced Calculus, I

Solutions #2

1. For any set S, its power set $\mathfrak{P}(S)$ is defined to be the set consisting of all subsets of S. Show that there is no surjective map from S to $\mathfrak{P}(S)$. (Hint: Assume that there is a surjective map $f: S \to \mathfrak{P}(S)$ and consider the set $\{x \in S : x \notin f(x)\}$.)

Solution: Assume there is a surjective map $f: S \to \mathfrak{P}(S)$, and let

$$T := \{ s \in S : s \notin f(s) \} \in \mathfrak{P}(S).$$

Since f is surjective, there must be $s \in S$ such that T = f(s). By the definition of T, we have

$$s \in T \iff s \notin f(s) = T,$$

which is nonsense. Hence, there can be no surjective map $f: S \to \mathfrak{P}(S)$.

- 2. Which of the following sets are convex:
 - (i) $\{(x,y) \in \mathbb{R}^2 : x > y\};$
 - (ii) $\{x \in \mathbb{R}^N : ||x|| > 2\};$
 - (iii) $\mathbb{R} \setminus \mathbb{Q}$;
 - (iv) $\{(x, y, z) \in \mathbb{R}^3 : x + y + z \ge 2020\}$?

Justify your answers.

Solution: In each of the following, let C be the set under consideration.

(a) Let $(x_1, y_1), (x_2, y_2) \in C$, and let $t \in [0, 1]$. It is clear that $t(x_1, y_1) + (1 - t)(x_2, y_2) \in C$ if t = 0 or t = 1. We may thus suppose without loss of generality that $t \in (0, 1)$. We have

$$x_1 > y_1 \qquad \text{and} \qquad x_2 > y_2.$$

Multiplying these inequalities with t and 1-t, respectively, we obtain

$$tx_1 > ty_2$$
 and $(1-t)x_2 > (1-t)y_2$.

Adding these two inequalities, eventually yields

$$tx_1 + (1-t)x_2 > ty_1 + (1-t)y_2$$

so that $t(x_1, y_1) + (1 - t)(x_2, y_2) \in C$. Hence, C is convex.

(b) Let $x \in C$. Then ||-x|| = ||x|| > 2, so that $-x \in C$ as well. Since

$$0 = \frac{1}{2}x + \frac{1}{2}(-x) \notin C,$$

the set C cannot be convex.

- (c) Let $x, y \in C$, and suppose, without loss of generality, that x < y. As we have seen in class, there is $q \in (x, y) \cap \mathbb{Q}$. Set $t := \frac{y-q}{y-x}$, so that $t \in [0, 1]$ and q = tx + (1-t)y. Hence, C is not convex.
- (d) Let $(x_1, y_1, z_1), (x_2, y_2, z_2) \in C$, and let $t \in [0, 1]$. Then

$$x_i + y_i + z_i \ge 2020$$

folds for j = 1, 2 and therefore

$$t(x_1 + y_1 + z_1) \ge t \, 2020$$
 and $(1-t)(x_2 + y_2 + z_2) \ge (1-t)2020$.

Adding these two inequalities yields

$$t(x_1 + y_1 + z_1) + (1 - t)(x_2 + y_2 + z_2) > 2020.$$

Hence, C is convex.

3. Let \mathcal{C} be a family of convex sets in \mathbb{R}^N . Show that $\bigcap_{C \in \mathcal{C}} C$ is again convex. Is $\bigcup_{C \in \mathcal{C}} C$ necessarily convex?

Solution: Let $x, y \in \bigcap_{C \in \mathcal{C}} C$, i.e., $x, y \in C$ for each $C \in \mathcal{C}$. Let $t \in [0, 1]$. Since each $C \in \mathcal{C}$ is convex, we have $tx + (1 - t)y \in C$ for each $C \in \mathcal{C}$. Hence, $tx + (1 - t)y \in \bigcap_{C \in \mathcal{C}} C$. Consequently, $\bigcap_{C \in \mathcal{C}} C$ is convex.

Let $x, y \in \mathbb{R}^N$ be such that $x \neq y$, and set $\mathcal{C} = \{\{x\}, \{y\}\}\}$. Then $\{x\}$ and $\{y\}$ are convex, but $\frac{1}{2}x + \frac{1}{2}y \notin \{x\} \cup \{y\}$.

4. Show that \mathbb{Z} is closed in \mathbb{R} , but not open, and that $\mathbb{Q} \subset \mathbb{R}$ is neither open nor closed.

Solution: Let $x \in \mathbb{R} \setminus \mathbb{Z}$, and let $\lfloor x \rfloor$ be the largest integer less than or equal to x, e.g., $\lfloor 2 \rfloor = 2$, $\lfloor \pi \rfloor = 3$, or $\lfloor -\frac{9}{5} \rfloor = -5$. It follows that $\lfloor x \rfloor < x < \lfloor x \rfloor + 1$ (as $x \notin \mathbb{Z}$, the equalities must be strict). Set

$$\epsilon := \min\{x - \lfloor x \rfloor, \lfloor x \rfloor + 1 - x\},$$

so that

$$(x - \epsilon, x + \epsilon) \subset (|x|, |x| + 1).$$

It follows that $(x - \epsilon, x + \epsilon) \cap \mathbb{Z} = \emptyset$. Hence, $\mathbb{R} \setminus \mathbb{Z}$ is open, and \mathbb{Z} is closed.

Assume that \mathbb{Q} is open. Then, for any $q \in \mathbb{Q}$, there is $\epsilon > 0$ such that $(q - \epsilon, q + \epsilon) \subset \mathbb{Q}$. Choose $n \in \mathbb{N}$ so large that $\frac{\sqrt{13}}{n} < \epsilon$; it follows that $q + \frac{\sqrt{13}}{n} \in (q - \epsilon, q + \epsilon)$, but $q + \frac{\sqrt{13}}{n} \notin \mathbb{Q}$, which is a contradiction.

Assume that \mathbb{Q} is closed, i.e., $\mathbb{R} \setminus \mathbb{Q}$ is open. Then, for any $x \in \mathbb{R} \setminus \mathbb{Q}$, there is $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset \mathbb{R} \setminus \mathbb{Q}$. In class, however, it was shown that there is a rational number between $x - \epsilon$ and $x + \epsilon$. Hence, $\mathbb{R} \setminus \mathbb{Q}$ cannot be open, so that \mathbb{Q} is not closed.

5. Let $\varnothing \neq S \subset \mathbb{R}^N$ be arbitrary, and let $\varnothing \neq U \subset \mathbb{R}^N$ be open. Show that

$$S+U:=\{x+y:x\in S,\,y\in U\}$$

is open.

Solution: Let $x \in S$, and define

$$x + U := \{x + y : y \in U\}.$$

We claim that x + U is open. Let $\tilde{x} \in x + U$, so that $\tilde{x} - x \in U$. Let $\epsilon > 0$ be such that $B_{\epsilon}(\tilde{x} - x) \subset U$, and let $\tilde{y} \in \mathbb{R}^N$ be such that $\|\tilde{x} - \tilde{y}\| < \epsilon$. It follows that

$$\|(\tilde{y} - x) - (\tilde{x} - x)\| = \|\tilde{y} - \tilde{x}\| < \epsilon,$$

i.e., $\tilde{y} - x \in B_{\epsilon}(\tilde{x} - x) \subset U$ and thus $\tilde{y} \in x + U$. Hence, x + U is open.

Since

$$S + U := \bigcup_{x \in S} (x + U),$$

it is clear that S + U is also open.

 6^* For $x = (x_1, \dots, x_N) \in \mathbb{R}^N$, set

$$||x||_1 := |x_1| + \dots + |x_N|$$
 and $||x||_{\infty} := \max\{|x_1|, \dots, |x_N|\}.$

- (a) Show that the following are true for $j=1,\infty,\,x,y\in\mathbb{R}^N$ and $\lambda\in\mathbb{R}$:
 - (i) $||x||_j \ge 0$ and $||x||_j = 0$ if and only if x = 0;
 - (ii) $\|\lambda x\|_j = |\lambda| \|x\|_j$;
 - (iii) $||x+y||_i \le ||x||_i + ||y||_i$.
- (b) For N=2, sketch the sets of those x for which $||x||_1 \le 1$, $||x|| \le 1$, and $||x||_{\infty} \le 1$.
- (c) Show that

$$||x||_1 \le \sqrt{N}||x|| \le N \, ||x||_{\infty}$$

for all $x \in \mathbb{R}^N$.

Solution:

- (a) The verification of (a) is routine (just use the corresponding properties of the absolute value on \mathbb{R}).
- (b) Your sketch should look like this:

(c) Let $x=(x_1,\ldots,x_N)\in\mathbb{R}^N$, and let $y=(1,\ldots,1)$. The Cauchy–Schwarz Inequality then yields that

$$||x||_1 = \sum_{j=1}^N |x_j y_j| \le ||x|| ||y|| = \sqrt{N} ||x||.$$

Moreover, we have

$$||x|| = \sqrt{\sum_{j=1}^{N} x_j^2} \le \sqrt{\sum_{j=1}^{N} ||x||_{\infty}^2} = \sqrt{N} ||x||_{\infty}.$$

Honors Advanced Calculus, I

Solutions #3

1. Let $S \subset \mathbb{R}^N$. Show that $x \in \mathbb{R}^N$ is a cluster point of S if and only if each neighbourhood of x contains an infinite number of points in S.

Solution: Let $x \in \mathbb{R}^N$ be a cluster point of S, and assume that there is a neighborhood U of x such that $U \cap S$ contains only finitely many. If $U \cap S = \{x\}$, then x cannot be a cluster point by definition, so suppose that $(U \cap S) \setminus \{x\}$ is a non-empty finite set. Define

$$\epsilon := \min\{\|x - y\| : y \in (U \cap S) \setminus \{x\}\}.$$

Then $\epsilon > 0$, and $U \cap B_{\epsilon}(x)$ is a neighborhood of x of which the intersection with S contains at most x. Hence, x cannot be a cluster point of S.

For the converse, let U be any neighborhood of x. Then $U \cap S$ is infinite and therefore has to contain at least one point from $S \setminus \{x\}$.

2. Let $S \subset \mathbb{R}^N$ be any set. Show that ∂S is closed.

Solution: Let $x \in \mathbb{R}^N \setminus \partial S$. Then there is $\epsilon_0 > 0$ such that $B_{\epsilon_0}(x) \cap S = \emptyset$ or $B_{\epsilon_0}(x) \cap S^c = \emptyset$.

Suppose that $B_{\epsilon_0}(x) \cap S = \emptyset$, and let $y \in B_{\epsilon_0}(x)$. Since $B_{\epsilon_0}(x)$ is open, there is $\epsilon > 0$ such that $B_{\epsilon}(y) \subset B_{\epsilon_0}(x)$; it follows that $B_{\epsilon}(y) \cap S = \emptyset$ as well, so that $y \notin \partial S$.

The case where $B_{\epsilon_0}(x) \cap S^c = \emptyset$ is treated analogously.

- 3. Which of the following sets are compact:
 - (a) $\{x \in \mathbb{R}^N : r \le ||x|| \le R\}$ with 0 < r < R;
 - (b) $\{(x,y) \in \mathbb{R}^2 : x y \in [0,1]\};$
 - (c) $\{(t\cos t, t\sin t) : t \in (0, \infty)\}$?

Justify your answers.

Solution: In each of the solutions let the set under consideration be denoted by K.

(a) It is clear that K is bounded. Since

$$K = B_R[x_0] \cap R_r(x_0)^c$$

it is also closed and therefore compact by the Heine-Borel Theorem.

(b) Since $(x, x - 1) \in K$ for each $x \in \mathbb{R}$, K is not bounded and thus not compact.

(c) We claim that K is not closed by showing that (0,0) is a cluster point of K, but not in K. Since

$$||(t\cos t, t\sin t)|| = \sqrt{t^2((\cos t)^2 + (\sin t)^2)} = t$$

for $t \in (0, \infty)$, it is clear that $(0, 0) \notin K$. Let $\epsilon > 0$, and choose $t_0 \in (0, \epsilon)$; then we have

$$||(0,0) - (t_0 \cos t_0, t_0 \sin t_0)|| = t_0 < \epsilon,$$

so that $(t_0 \cos t_0, t_0 \sin t_0) \in B_{\epsilon}((0,0)) \cap K$. Hence, (0,0) is a cluster point of K.

Alternatively, one can observe that K is not bounded and thus not compact.

4. Show that:

- (a) if $U_1 \subset \mathbb{R}^N$ and $U_2 \subset \mathbb{R}^M$ are open, then so is $U_1 \times U_2 \subset \mathbb{R}^{N+M}$;
- (b) if $F_1 \subset \mathbb{R}^N$ and $F_2 \subset \mathbb{R}^M$ are closed, then so is $F_1 \times F_2 \subset \mathbb{R}^{N+M}$;
- (c) if $K_1 \subset \mathbb{R}^N$ and $K_2 \subset \mathbb{R}^M$ are compact, then so is $K_1 \times K_2 \subset \mathbb{R}^{N+M}$.

Solution:

(a) Let $(x_0, y_0) \in U_1 \times U_2$. As U_1 and U_2 are open, there are $\epsilon_1, \epsilon_2 > 0$ such that $B_{\epsilon_1}(x_0) \subset U_1$ and $B_{\epsilon_2}(y_0) \subset U_2$. Set $\epsilon := \min\{\epsilon_1, \epsilon_2\}$. Let $(x, y) \in B_{\epsilon}((x_0, y_0))$. Then we have

$$||x-x_0|| \le ||(x,y)-(x_0,y_0)|| < \epsilon_1$$
 and $||y-y_0|| \le ||(x,y)-(x_0,y_0)|| < \epsilon_2$

so that $(x,y) \subset B_{\epsilon_1}(x_0) \times B_{\epsilon_2}(y_0) \subset U_1 \times U_2$. Hence, $U_1 \times U_2$ is open.

(b) Note that

$$(F_1 \times F_2)^c = (\mathbb{R}^N \times F_2^c) \cup (F_1^c \times \mathbb{R}^M)$$

is open by (a), so that $F_1 \times F_2$ has to be closed.

(c) By (b), $K_1 \times K_2$ is closed. Let $r_1, r_2 > 0$ be such that $K_j \subset B_{r_j}[0]$ for j = 1, 2. For $(x, y) \in K_1 \times K_2$, it follows that

$$\|(x,y)\| = (\|x\|^2 + \|y\|^2)^{\frac{1}{2}} \le \sqrt{2} \max\{\|x\|, \|y\|\} \le \sqrt{2} \max\{r_1, r_2\}.$$

so that $K_1 \times K_2 \subset B_{\sqrt{2}\max\{r_1,r_2\}}[0]$. Hence, $K_1 \times K_2$ is also bounded and thus compact by the Heine–Borel Theorem.

5. Show that a subset K of \mathbb{R}^N is compact if and only if it has the *finite intersection* property, i.e., if $\{F_i : i \in \mathbb{I}\}$ is a family of closed sets in \mathbb{R}^N such that $K \cap \bigcap_{i \in \mathbb{I}} F_i = \emptyset$, then there are $i_1, \ldots, i_n \in \mathbb{I}$ such that $K \cap F_{i_1} \cap \cdots \cap F_{i_n} = \emptyset$.

Solution: Suppose that K is compact and that $\{F_i : i \in \mathbb{I}\}$ is a family of closed sets in \mathbb{R}^N such that $K \cap \bigcap_{i \in \mathbb{I}} F_i = \emptyset$. It follows that

$$K \subset \left(\bigcap_{i \in \mathbb{I}} F_i\right)^c = \bigcup_{i \in \mathbb{I}} F_i^c,$$

so that $\{F_i^c : i \in \mathbb{I}\}$ is an open cover for K. Since K is compact, there are $i_1, \ldots, i_n \in \mathbb{I}$ such that

$$K \subset F_{i_1}^c \cup \cdots \cup F_{i_n}^c = (F_{i_1} \cap \cdots \cap F_{i_n})^c$$

and thus

$$K \cap F_{i_1} \cap \cdots \cap F_{i_n} = \varnothing$$
.

Conversely, suppose that K has the finite intersection property, and let $\{U_i : i \in \mathbb{I}\}$ be an open cover for K, so that

$$K \cap \bigcap_{i \in \mathbb{I}} U_i^c = \varnothing.$$

It follows that there are $i_1, \ldots, i_n \in \mathbb{I}$ such that

$$K \cap U_{i_1}^c \cap \dots \cap U_{i_n}^c = \varnothing$$

and thus

$$K \subset U_{i_1} \cup \cdots \cup U_{i_n}$$
.

Hence, K is compact.

6*. For j = 1, ..., N, let $I_j = [a_j, b_j]$ with $a_j < b_j$, and let $I := I_1 \times \cdots \times I_N$. Determine ∂I . (*Hint*: Draw a sketch for N = 2 or N = 3.)

Solution: Since I is closed by part (b) of Problem 4, it is clear that $\partial I \subset I$.

For $j = 1, \ldots, N$ let

$$J_j := I_1 \times \cdots \times I_{j-1} \times \{a_j, b_j\} \times I_{j+1} \times \cdots \times I_N.$$

and let $J := J_1 \cup \cdots \cup J_N$.

We claim that $\partial I = J$.

It is immediate from this definition that

$$I \setminus J = (a_1, b_1) \times \cdots \times (a_N, b_N),$$

which is open by part (a) of Problem 4. Hence, for any $x \in I \setminus J$, there is $\epsilon > 0$ such that $B_{\epsilon}(x) \subset I \setminus J \subset I$. It follows that $B_{\epsilon}(x) \cap I^{c} = \emptyset$, so that x cannot be a boundary point. It follows that $\partial I \subset J$.

For the converse inclusion, let $x \in J$. Without loss of generality, suppose that $x \in J_1$, i.e., $x_1 = a_1$ or $x_1 = b_1$. Without loss of generality also suppose that $x_1 = a_1$. Let $\epsilon > 0$, and let $\delta < \min\{\epsilon, b_1 - a_1\}$. Define

$$y := (x_1 + \delta, x_2, \dots, x_N)$$
 and $z := (x_1 - \delta, x_2, \dots, x_N).$

Then $y, z \in B_{\epsilon}(x)$, but $y \in I$, whereas $z \notin I$. Hence, x is a boundary point of I.

Honors Advanced Calculus, I

Solutions #4

1. For $0 \le r \le R$ and $\epsilon \in (0,1)$, determine whether or not the set

$$\{(x, y, z) \in \mathbb{R}^3 : r^2 \le x^2 + y^2 \le R^2, z^2 \in [\epsilon, 1] \}$$

is (a) open, (b) closed, (c) compact, or (d) connected.

Solution: Let the set under consideration be called S.

Let $((x_n, y_n, z_n))_{n=1}^{\infty}$ be a sequence in S converging to $(x, y, z) \in \mathbb{R}^3$. It follows that

$$r^2 \le x_n^2 + y_n^2 \le R^2$$
 and $z_n^2 \in [\epsilon, 1]$

for all $n \in \mathbb{N}$. Since $x_n \to x$, $y_n \to y$, and $z_n \to z$, the properties of the limit in \mathbb{R} and the fact that $[\epsilon, 1]$ is closed in \mathbb{R} yield that

$$r^2 \le x^2 + y^2 \le R^2 \quad \text{and} \quad z^2 \in [\epsilon, 1],$$

so that $(x, y, z) \in S$. Consequently, S is closed.

Note that

$$x^2 + y^2 + z^2 \le R^2 + 1,$$

for $(x,y,z) \in S$, so that $S \subset B_{\sqrt{R^2+1}}[(0,0,0)]$, i.e., S is bounded. Hence, S is compact by the Heine Borel Theorem.

As $\emptyset \neq S \neq \mathbb{R}^3$, it is clear that S cannot be open.

Finally, S is not connected because $\{U, V\}$ with

$$U := \{(x, y, z) \in \mathbb{R}^3 : z < 0\}$$
 and $V := \{(x, y, z) \in \mathbb{R}^3 : z > 0\}$

is a disconnection for S as one checks easily.

2. A set $S \subset \mathbb{R}^N$ is called *star shaped* if there is $x_0 \in S$ such that $tx_0 + (1-t)x \in S$ for all $x \in S$ and $t \in [0,1]$. Show that every star shaped set is connected, and give an example of a star shaped set that fails to be convex.

Solution: Let S be star shaped, and let $x_0 \in S$ be as in the definition. Assume that there is a disconnection $\{U, V\}$ of S. Without loss of generality suppose that $x_0 \in U$. Let $x \in V \cap S$, and set

$$\tilde{U} := \{ t \in \mathbb{R} : tx_0 + (1-t)x \in U \}$$
 and $\tilde{V} := \{ t \in \mathbb{R} : tx_0 + (1-1)t \in V \}.$

1

As in the proof for the connectedness of convex sets, one sees that $\{\tilde{U}, \tilde{V}\}$ is a disconnection for [0, 1], which is impossible.

Set, for instance,

$$S := \{(x, y) \in \mathbb{R}^2 : y \le |x| \}.$$

For $(x,y) \in S$, i.e., such that $y \leq |x|$, and $t \in [0,1]$, we have $(1-t)y \leq |(1-t)x|$, so that $((1-t)x, (1-t)y) = t(0,0) + (1-t)(x,y) \in S$. Hence, S is star shaped. Clearly, $(1,1), (-1,1) \in S$ whereas

$$(0,1) = \frac{1}{2}(1,1) + \frac{1}{2}(-1,1) \notin S.$$

Hence, S is not convex.

3. Let $C \subset \mathbb{R}^N$ be connected. Show that \overline{C} is also connected.

Solution: Assume that there is a disconnection $\{U,V\}$ for \overline{C} . It is then obvious that $(C \cap U) \cap (C \cap V) = \emptyset$ and $(C \cap U) \cup (C \cup V) = C$. Assume that $C \cap U = \emptyset$, i.e., $C \subset U^c$. As U is open, U^c is closed, so that $\overline{C} \subset U^c$ as well, i.e., $\overline{C} \cap U = \emptyset$. But this is impossible because $\{U,V\}$ is a disconnection for \overline{C} . Similarly, one sees that $C \cap V \neq \emptyset$.

All in all, $\{U, V\}$ is a disconnection for C, which is impossible because C is connected.

4. Let $S \subset \mathbb{R}^N$, and let $x \in \mathbb{R}^N$. Show that $x \in \overline{S}$ if and only if there is a sequence $(x_n)_{n=1}^{\infty}$ in S such that $x = \lim_{n \to \infty} x_n$.

Solution: Suppose that there is a sequence $(x_n)_{n=1}^{\infty}$ in S such that $x = \lim_{n \to \infty} x_n$. As $(x_n)_{n=1}^{\infty}$ is also contained in \overline{S} and since \overline{S} is closed, it follows that $x \in \overline{S}$.

Conversely, let $x \in \overline{S}$. If $x \in S$, there certainly is a sequence $(x_n)_{n=1}^{\infty}$ converging to x: just set $x_n := x$ for $n \in \mathbb{N}$. If $x \notin S$, then x must be a cluster point of S by the definition of \overline{S} , i.e., for each $n \in \mathbb{N}$, there is $x_n \in B_{\frac{1}{n}}(x) \cap S$, so that $x_n \to x$.

5. Let $(x_n)_{n=1}^{\infty}$ be a convergent sequence in \mathbb{R}^N with limit x. Show that $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ is compact.

Solution: Let $\{U_i : i \in \mathbb{I}\}$ be an open cover for $K := \{x_n : n \in \mathbb{N}\} \cup \{x\}$. Choose $i_0 \in \mathbb{I}$ such that $x \in U_{i_0}$. Since U_{i_0} is open, it is a neighborhood of x. Hence, there is $n_0 \in \mathbb{N}$ such that $x_n \in U_{i_0}$ for all $n \geq n_0$. For $j = 1, \ldots, n_0 - 1$, choose $i_j \in \mathbb{I}$ such that $x_j \in U_{i_j}$. It follows that

$$K \subset U_{i_0} \cup U_{i_1} \cup \cdots \cup U_{i_{n_0-1}},$$

so that K is compact as claimed.

6*. Show that $\mathbb{R}^N \setminus \{0\}$ is disconnected if and only if N=1.

Solution: If N=1, then $\{(-\infty,0),(0,\infty)\}$ is a disconnection for $S:=\{x\in\mathbb{R}^N:x\neq 0\}$.

Let $N \geq 2$ and assume that there is a disconnection $\{U, V\}$ for S. Fix $x \in U \cap S$ and $y \in V \cap S$.

Suppose first that $x + t(y - x) \neq 0$ for all $t \in \mathbb{R}$. Define

$$\tilde{U} := \{ t \in \mathbb{R} : x + t(y - x) \in U \cap S \}$$

and

$$\tilde{V} := \{ t \in \mathbb{R} : x + t(y - x) \in V \cap S \}.$$

As in the proof of the connecteness of convex sets, one sees that $\{\tilde{U}, \tilde{V}\}$ is a disconnection for \mathbb{R} , which is not possible.

Suppose now that there is $t_0 \in \mathbb{R}^N$ such that $x + t_0(y - x) = 0$. Since $y \neq 0$, we have $t_0 \neq 1$ and thus $x = -\frac{t_0}{1 - t_0}y$. Let $j \in \{1, \dots, N\}$ be such that $y_j \neq 0$; then we have $-\frac{t_0}{1 - t_0} = \frac{x_j}{y_j}$ and thus $x = \frac{x_j}{y_j}y$. Let $\epsilon > 0$ be such that $B_{\epsilon}(x) \subset U \cap S$. Fix $k \in \{1, \dots, N\} \setminus \{j\}$, and define $\tilde{x} \in \mathbb{R}^N$ by letting

$$\tilde{x}_l := \left\{ \begin{array}{ll} x_l, & l \neq k, \\ x_k + \epsilon, & k = l, \end{array} \right.$$

for $l=1,\ldots,N$. It follows that $\tilde{x}\in B_{\epsilon}(x)\subset U\cap S$. Assume that there is $\tilde{t}_0\in\mathbb{R}$ such that $\tilde{x}+\tilde{t}_0(y-\tilde{x})=0$. Then—as before—it follows that

$$\tilde{x} = \frac{\tilde{x}_j}{y_j} y = \frac{x_j}{y_j} y = x,$$

which is impossible by the definition of \tilde{x} . Hence, $\tilde{x} + t(y - \tilde{x}) \neq 0$ must hold for all $t \in \mathbb{R}$, which is impossible as we just saw.

Honors Advanced Calculus, I

Solutions #5

1. (a) Let $(x_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R}^N such that there is $\theta \in (0,1)$ with

$$||x_{n+2} - x_{n+1}|| \le \theta ||x_{n+1} - x_n||$$

for $n \in \mathbb{N}$. Show that $(x_n)_{n=1}^{\infty}$ converges.

(Hint: Show first that

$$||x_{n+1} - x_n|| \le \theta^{n-1} ||x_2 - x_1||$$

for $n \in \mathbb{N}$, and then use this and the fact that $\sum_{n=0}^{\infty} \theta^n$ converges to show that $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence.)

(b) (Banach's Fixed Point Theorem.) Let $\emptyset \neq F \subset \mathbb{R}^N$ be closed, and let $f: F \to \mathbb{R}^N$ be such that $f(F) \subset F$ and that there is $\theta \in (0,1)$ with

$$||f(x) - f(y)|| < \theta ||x - y||$$

for $x, y \in F$. Show that there is a unique $x_0 \in F$ such that $f(x_0) = x_0$. Solution:

(a) We use induction to prove that

$$||x_{n+1} - x_n|| \le \theta^{n-1} ||x_2 - x_1||$$

for $n \in \mathbb{N}$. The claim is trivially true for n = 1. Suppose now that the claim has been proven for a particular $n \in \mathbb{N}$. Then

$$||x_{n+2} - x_{n+1}|| \le \theta ||x_{n+1} - x_n|| \le \theta \theta^{n-1} ||x_2 - x_1|| = \theta^n ||x_2 - x_1||$$

holds, which proves the claim for n+1.

Let $m > n \ge 2$. We obtain:

$$||x_{m} - x_{n}|| \le ||x_{m} - x_{m-1}|| + \dots + ||x_{n+1} - x_{n}||$$

$$= \sum_{k=n}^{m-1} ||x_{k+1} - x_{k}||$$

$$\le \sum_{k=n}^{m-1} \theta^{k-1} ||x_{2} - x_{1}||$$

$$= \sum_{k=n-1}^{m-2} \theta^{k} ||x_{2} - x_{1}||$$

$$= ||x_{2} - x_{1}|| \left(\sum_{k=0}^{m-2} \theta^{k} - \sum_{k=0}^{n-2} \theta^{k}\right)$$

Let $\epsilon > 0$. Since $\sum_{n=0}^{\infty} \theta^n$ converges, $(\sum_{k=0}^n \theta^k)_{n=1}^{\infty}$ is a Cauchy sequence. Hence, there is $n_{\epsilon} \in \mathbb{N}$ such that

$$\left| \sum_{k=0}^{m-2} \theta^k - \sum_{k=0}^{m-2} \theta^k \right| < \frac{\epsilon}{\|x_2 - x_1\| + 1}$$

for $n, m \in \geq n_{\epsilon}$.

Let $n, m \ge n_{\epsilon}$. If n = m, we have $||x_m - x_n|| = 0 < \epsilon$. If n > m, note that $||x_m - x_n|| = ||x_n - x_m||$ and switch the roles of n and m. Hence, we may suppose that m > n. We thus have

$$||x_m - x_n|| \le ||x_2 - x_1|| \left(\sum_{k=0}^{m-2} \theta^k - \sum_{k=0}^{n-2} \theta^k \right) < \frac{\epsilon ||x_2 - x_1||}{||x_2 - x_1|| + 1} < \epsilon.$$

Hence, $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence and therefore converges.

(b) Define $(x_n)_{n=1}^{\infty}$ inductively as follows. Let $x_1 \in F$ be arbitrary, and for $n \in \mathbb{N}$, set $x_{n+1} := f(x_n)$. It follows that

$$||x_{n+2} - x_{n+1}|| = ||f(x_{n+1}) - f(x_n)|| \le \theta ||x_{n+1} - x_n||$$

for $n \in \mathbb{N}$. By Problem 4 on Assignment #4, $(x_n)_{n=1}^{\infty}$ converges to some $x_0 \in \mathbb{R}^N$, and as F is closed we have $x \in F$. Since f is continuous, we have

$$f(x_0) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n = x_0.$$

This proves the existence of x_0 .

To see that x_0 is unique, let $\tilde{x}_0 \in F$ be such that $f(\tilde{x}_0) = \tilde{x}_0$. It follows that

$$||x_0 - \tilde{x}_0|| = ||f(x_0) - f(\tilde{x}_0)|| \le \theta ||x_0 - \tilde{x}_0||.$$

As $\theta \in (0,1)$, this means that $||x_0 - \tilde{x}_0|| = 0$ and thus $x_0 = \tilde{x}_0$.

2. Let $D := \{(x, y) \in \mathbb{R}^2 : y \neq 0\}$, and let

$$f: D \to \mathbb{R}, \quad (x,y) \mapsto \frac{x^2}{y}$$

Show that:

- (a) $\lim_{\substack{t\to 0\\t\neq 0}} f(tx_0, ty_0) = 0$ for all $(x_0, y_0) \in D$;
- (b) $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Solution:

(a) Let $(x_0, y_0) \in D$. For $t \in \mathbb{R} \setminus \{0\}$, we then have that $(tx_0, ty_0) \in D$ as well such that

$$f(tx_0, ty_0) = \frac{t^2 x_0^2}{t y_0} = t \frac{x_0^2}{y_0}$$

It follows that $\lim_{\substack{t\to 0\\t\neq 0}} f(tx_0, ty_0) = 0.$

(b) For $n \in \mathbb{N}$, set $(x_n, y_n) := (\frac{1}{n}, \frac{1}{n^2})$, so that

$$f(x_n, y_n) = \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = 1.$$

It follows that $\lim_{n\to\infty} f(x_n, y_n) = 1$. Since by (a), $\lim_{n\to\infty} f\left(\frac{1}{n}, \frac{1}{n}\right) = 0$, we conclude that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

3. Let $\emptyset \neq D \subset \mathbb{R}^N$ have the property that every continuous function $f:D \to \mathbb{R}$ is bounded. Show that D is compact.

Solution: Assume that D is not compact. By Heine–Borel, there are two possibilities.

Case 1: D is unbounded. Then

$$f: D \to \mathbb{R}, \quad x \mapsto ||x||$$

is an unbounded continuous function.

Case 2: D is not closed, i.e., there is $x_0 \in \overline{D} \setminus D$. Then

$$f: D \to \mathbb{R}, \quad x \mapsto \frac{1}{\|x - x_0\|}$$

is an unbounded continuous function.

Both cases lead to contractions, so that D must be both closed and bounded, i.e., compact.

4. Let $\emptyset \neq D \subset \mathbb{R}^N$. A function $f: D \to \mathbb{R}^M$ is called *Lipschitz continuous* if there is $C \geq 0$ such that

$$||f(x) - f(y)|| \le C||x - y||$$

for all $x, y \in D$.

Show that:

- (a) each Lipschitz continuous function is uniformly continuous;
- (b) if $f:[a,b] \to \mathbb{R}$ is continuous such that f is differentiable on (a,b) with f' bounded on (a,b), then f is Lipschitz continuous;
- (c) the function

$$f: [0,1] \to \mathbb{R}, \quad x \mapsto \sqrt{x}$$

is uniformly continuous, but not Lipschitz continuous.

Solution:

(a) Suppose that, for $f: D \to \mathbb{R}^M$, there is $C \ge 0$ such that

$$||f(x) - f(y)|| \le C||x - y||$$

for all $x, y \in D$. Let $\epsilon > 0$, and choose $\delta := \frac{\epsilon}{C+1}$. For $x, y \in D$ with $||x-y|| < \delta$, it follows that

$$||f(x) - f(y)|| \le C||x - y|| < C\frac{\epsilon}{C + 1} < \epsilon.$$

Hence, f is uniformly continuous.

(b) Set $C := \sup_{\xi \in (a,b)} |f'(\xi)|$. Let $x, y \in [a,b]$, and suppose without loss of generality that x < y. By the Mean Value Theorem, there is $\xi \in (x,y)$ such that

$$f'(\xi) = \frac{f(y) - f(x)}{y - x},$$

so that

$$|f(x) - f(y)| = |f'(\xi)||x - y| \le C|x - y|.$$

(c) As f is continuous and as [0,1] is compact, it follows that f is uniformly continuous. Assume that there is $C \geq 0$ as in the definition of Lipschitz continuity. It then follows that

$$\frac{1}{2\sqrt{x}} = f'(x) \le C$$

for $x \in (0,1]$, which is impossible.

5. Let $C \subset \mathbb{R}^N$. We say that $x_0, x_1 \in C$ can be *joined by a path* if there is a continuous function $\gamma : [0,1] \to \mathbb{R}^N$ with $\gamma([0,1]) \subset C$, $\gamma(0) = x_0$, and $\gamma(1) = x_1$. We call C path connected if any two points in C can be joined by a path.

Show that any path connected set is connected.

Solution: Assume that C is not connected, i.e., there is a disconnection $\{U,V\}$ for C. Choose $x_0 \in U \cap C$ and $x_1 \in V \cap C$. Since C is path connected, there is a continuous function $\gamma : [0,1] \to \mathbb{R}^N$ with $\gamma([0,1]) \subset C$, $\gamma(0) = x_0$, and $\gamma(1) = x_1$. Since γ is continuous, there are open sets $\tilde{U}, \tilde{V} \subset \mathbb{R}$ such that

$$\tilde{U} \cap [0,1] = \gamma^{-1}(U)$$
 and $\tilde{V} \cap [0,1] = \gamma^{-1}(V)$.

It is easy to see that $\{\tilde{U}, \tilde{V}\}$ is a disconnection for [0, 1], which is impossible.

 6^* . Let

$$C := \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) : x > 0 \right\} \subset \mathbb{R}^2.$$

Show that \overline{C} is connected, but not path connected. (*Hint*: Show that $\{0\} \times [-1, 1] \in \overline{C}$ and that any point in $\{0\} \times [-1, 1]$ cannot be joined by a path with any point of the form $(x, \sin(\frac{1}{x}))$ with x > 0.)

Solution: The map

$$(0,\infty) \to \mathbb{R}^2, \quad t \mapsto \left(t, \sin\left(\frac{1}{t}\right)\right)$$

is continuous and has C as its range. As $(0, \infty)$ is connected, C is connected as is \overline{C} by Solution 3 to Assignment #4.

Let $y \in [-1, 1]$, and let $x_y > 0$ be such that $\sin x_y = y$. For $n \in \mathbb{N}$, let $x_n := \frac{1}{2n\pi + x_y}$. It follows that

$$\left(x_n, \sin\left(\frac{1}{x_n}\right)\right) = (x_n, \sin x_y) = (x_n, y) \to (0, y),$$

so that $(0, y) \in \overline{C}$.

Let $y \in [-1, 1]$, let $t_0 > 0$, and suppose that there is a continuous function $\gamma = (\gamma_1, \gamma_2) : [0, 1] \to \overline{C}$ such that $\gamma(0) = (0, y)$ and $\gamma(1) = \left(t_0, \sin\left(\frac{1}{t_0}\right)\right)$. Let $a := \sup\{t \in [0, 1] : \gamma_1(t) = 0\}$. It follows that $\gamma_1(a) = 0$, $a \in [0, 1)$, and $\gamma_2(t) = \sin\left(\frac{1}{\gamma_1(t)}\right)$ for $t \in (a, 1]$. Consider

$$\tau: [0,1] \to [a,1], \quad t \mapsto a + t(1-a)$$

Then $\gamma \circ \tau$ is a path joining $(0, \gamma_2(a))$ with $\left(t_0, \sin\left(\frac{1}{t_0}\right)\right)$. Replacing γ by $\gamma \circ \tau$, we can thus suppose without loss of generality that $\gamma_1(t) > 0$ for all $t \in (0, 1]$.

Let $n \in \mathbb{N}$, and note that $\lim_{t\to 0} \gamma_1(t) = 0 < \gamma_1\left(\frac{1}{n}\right)$. Choose $m_n \in \mathbb{N}$ such that:

- if n is even, then so is m_n , and if n is odd, so is m_n ;
- $\frac{1}{m_n\pi + \frac{\pi}{2}} \le \gamma_1\left(\frac{1}{n}\right)$.

Then use the Intermediate Value Theorem to find $t_n \in (0, \frac{1}{n}]$ such that $\gamma_1(t_n) = \frac{1}{m_n \pi + \frac{\pi}{n}}$

It follows that $t_n \to 0$, so that $\gamma(t_n) \to (0, y)$. However, we have

$$\gamma_2(t_n) = \sin\left(m_n \pi + \frac{\pi}{2}\right) = (-1)^n$$

for $n \in \mathbb{N}$, which does not converge as $n \to \infty$.

Honors Advanced Calculus, I

Solutions #6

1. Determine the Jacobians of

$$\mathbb{R}^3 \to \mathbb{R}^3, \quad (r, \theta, \phi) \mapsto (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$$

and

$$\mathbb{R}^3 \to \mathbb{R}^3$$
, $(r, \theta, z) \mapsto (r \cos \theta, r \sin \theta, z)$.

Solution: The first Jacobian is

$$\begin{bmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi \\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \\ \cos\theta & -r\sin\theta & 0 \end{bmatrix}$$

and the second one

$$\begin{bmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- 2. An $N \times N$ matrix X is *invertible* if there is $X^{-1} \in M_N(\mathbb{R})$ such that $XX^{-1} = X^{-1}X = I_N$ where I_N denotes the unit matrix.
 - (a) Show that $U := \{X \in M_N(\mathbb{R}) : X \text{ is invertible}\}\$ is open. (*Hint*: $X \in M_N(\mathbb{R})$ is invertible if and only if det $X \neq 0$.)
 - (b) Show that the map

$$f: U \to M_N(\mathbb{R}), \quad X \mapsto X^{-1}$$

is totally differentiable on U, and calculate $Df(X_0)$ for each $X_0 \in U$. (Hint: You may use that, by Cramer's Rule, f is continuous.)

Solution:

- (a) Since det: $M_N(\mathbb{R}) \to \mathbb{R}$ is continuous and $\mathbb{R} \setminus \{0\}$ is open, $U = \det^{-1}(\mathbb{R} \setminus \{0\})$ is open.
- (b) Let $X_0 \in U$. Since U is open by (i), $X_0 + H \in U$ for ||H|| sufficiently small. Note that

$$(X_0 + H)^{-1} - X_0^{-1} = -X_0^{-1}((X_0 + H) - X_0)(X_0 + H)^{-1}$$
$$= -X_0^{-1}H(X_0 + H)^{-1}.$$

1

Define

$$T: M_N(\mathbb{R}) \to M_N(\mathbb{R}), \quad X \mapsto -X_0^{-1}XX_0^{-1}.$$

For ||H|| sufficiently small, we have

$$\frac{\|f(X_0 + H) - f(X_0) - TH\|}{\|H\|} = \frac{1}{\|H\|} \|X_0^{-1} H (X_0 + H)^{-1} - X_0^{-1} H X_0^{-1}\|$$
$$= \|X_0^{-1} \frac{H}{\|H\|} \left((X_0 + H)^{-1} - X_0^{-1} \right) \|.$$

As $||H|| \to 0$, the term $X_0^{-1} \frac{H}{||H||}$ stays bounded whereas $(X_0 + H)^{-1} - X_0^{-1} \to 0$ by the continuity of f. It follows that

$$\lim_{\|H\| \to 0} \frac{\|f(X_0 + H) - f(X_0) - TH\|}{\|H\|} = 0.$$

Hence, f is differentiable at X_0 and $Df(X_0) = T$.

3. Let

$$p: (\mathbb{R} \setminus \{0\}) \times \mathbb{R} \to \mathbb{R}^2, \quad (r, \theta) \mapsto (r \cos \theta, r \sin \theta),$$

let $\emptyset \neq U \subset \mathbb{R}^2$ be open, and let $f:U\to\mathbb{R}$ be twice continuously partially differentiable. Show that

$$(\Delta f) \circ p = \frac{\partial^2 (f \circ p)}{\partial r^2} + \frac{1}{r} \frac{\partial (f \circ p)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 (f \circ p)}{\partial \theta^2}$$

on $p^{-1}(U)$. (*Hint*: Apply the chain rule twice.)

Solution: First, note tht

$$J_p(r,\theta) = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}.$$

The chain rule implies that

$$\begin{split} &\left(\frac{\partial (f \circ p)}{\partial r}(r, \theta), \frac{\partial (f \circ p)}{\partial \theta}(r, \theta)\right) \\ &= J_{f \circ p}(r, \theta) \\ &= J_{f}(p(r, \theta))J_{p}(r, \theta) \\ &= \left(\cos \theta \frac{\partial f}{\partial x}(p(r, \theta)) + \sin \theta \frac{\partial f}{\partial y}(p(r, \theta)), -r \sin \theta \frac{\partial f}{\partial x}(p(r, \theta)) + r \cos \theta \frac{\partial f}{\partial y}(p(r, \theta))\right), \end{split}$$

so that

$$\frac{\partial (f \circ p)}{\partial r}(r, \theta) = \cos \theta \frac{\partial f}{\partial x}(p(r, \theta)) + \sin \theta \frac{\partial f}{\partial y}(p(r, \theta))$$

and

$$\frac{\partial (f \circ p)}{\partial \theta}(r, \theta) = -r \sin \theta \frac{\partial f}{\partial x}(p(r, \theta)) + r \cos \theta \frac{\partial f}{\partial y}(p(r, \theta)).$$

It follows that

$$\begin{split} &\frac{\partial^2 (f \circ p)}{\partial r^2}(r,\theta) \\ &= \cos\theta \frac{\partial}{\partial r} \frac{\partial f}{\partial x}(p(r,\theta)) + \sin\theta \frac{\partial}{\partial r} \frac{\partial f}{\partial y}(p(r,\theta)) \\ &= (\cos\theta)^2 \frac{\partial^2 f}{\partial x^2}(p(r,\theta)) + \cos\theta \sin\theta \frac{\partial^2 f}{\partial x \partial y}(p(r,\theta)) \\ &+ \sin\theta \cos\theta \frac{\partial^2 f}{\partial x \partial y}(p(r,\theta)) + (\sin\theta)^2 \frac{\partial^2 f}{\partial y^2}(p(r,\theta)) \\ &= (\cos\theta)^2 \frac{\partial^2 f}{\partial x^2}(p(r,\theta)) + 2\cos\theta \sin\theta \frac{\partial^2 f}{\partial x \partial y}(p(r,\theta)) + (\sin\theta)^2 \frac{\partial^2 f}{\partial y^2}(p(r,\theta)) \end{split}$$

and

$$\begin{split} &\frac{\partial^2 (f \circ p)}{\partial \theta^2}(r,\theta) \\ &= \frac{\partial}{\partial \theta} \left(-r \sin \theta \frac{\partial f}{\partial x}(p(r,\theta)) + r \cos \theta \frac{\partial f}{\partial y}(p(r,\theta)) \right) \\ &= -r \cos \theta \frac{\partial f}{\partial x}(p(r,\theta)) - r \sin \theta \frac{\partial}{\partial \theta} \frac{\partial f}{\partial x}(p(r,\theta)) \\ &- r \sin \theta \frac{\partial f}{\partial y}(p(r,\theta)) + r \cos \theta \frac{\partial}{\partial \theta} \frac{\partial f}{\partial y}(p(r,\theta)) \\ &= -r \cos \theta \frac{\partial f}{\partial x}(p(r,\theta)) + r^2 (\sin \theta)^2 \frac{\partial^2 f}{\partial x^2}(p(r,\theta)) - r^2 \cos \theta \sin \theta \frac{\partial^2 f}{\partial x \partial y}(p(r,\theta)) \\ &- r \sin \theta \frac{\partial f}{\partial y}(p(r,\theta)) - r^2 \cos \theta \sin \theta \frac{\partial^2 f}{\partial x \partial y}(p(r,\theta)) + r^2 (\cos \theta)^2 \frac{\partial^2 f}{\partial y^2}(p(r,\theta)) \\ &= -r \frac{\partial (f \circ p)}{\partial r}(r,\theta) + r^2 (\sin \theta)^2 \frac{\partial^2 f}{\partial x^2}(p(r,\theta)) - 2r^2 \cos \theta \sin \theta \frac{\partial^2 f}{\partial x \partial y}(p(r,\theta)) \\ &+ r^2 (\cos \theta)^2 \frac{\partial^2 f}{\partial y^2}(p(r,\theta)). \end{split}$$

This means that

$$r^{2} \frac{\partial^{2}(f \circ p)}{\partial r^{2}}(r, \theta) + r \frac{\partial(f \circ p)}{\partial r}(r, \theta) + \frac{\partial^{2}(f \circ p)}{\partial \theta^{2}}(r, \theta)$$

$$= r^{2}(\cos \theta)^{2} \frac{\partial^{2}f}{\partial x^{2}}(p(r, \theta)) + 2r^{2}\cos \theta \sin \theta \frac{\partial^{2}f}{\partial x \partial y}(p(r, \theta)) + r^{2}(\sin \theta)^{2} \frac{\partial^{2}f}{\partial y^{2}}(p(r, \theta))$$

$$+ r^{2}(\sin \theta)^{2} \frac{\partial^{2}f}{\partial x^{2}}(p(r, \theta)) - 2r^{2}\cos \theta \sin \theta \frac{\partial^{2}f}{\partial x \partial y}(p(r, \theta))$$

$$+ r^{2}(\cos \theta)^{2} \frac{\partial^{2}f}{\partial y^{2}}(p(r, \theta))$$

$$= r^{2}((\cos \theta)^{2} + (\sin \theta)^{2}) \frac{\partial^{2}f}{\partial x^{2}}(p(r, \theta)) + r^{2}((\cos \theta)^{2} + (\sin \theta)^{2}) \frac{\partial^{2}f}{\partial y^{2}}(p(r, \theta))$$

$$= r^{2} \frac{\partial^{2}f}{\partial x^{2}}(p(r, \theta)) + r^{2} \frac{\partial^{2}f}{\partial y^{2}}(p(r, \theta))$$

$$= r^{2}(\Delta f)(p(r, \theta)).$$

Division by r^2 then yields the claim.

4. Let

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \mapsto \begin{cases} \frac{xy^3}{x^2 + y^4}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Show that:

- (a) f is continuous at (0,0);
- (b) for each $v \in \mathbb{R}^2$ with ||v|| = 1, the directional derivative $D_v f(0,0)$ exists and equals 0;
- (c) f is not totally differentiable at (0,0).

(*Hint for* (c): Assume towards a contradiction that f is totally differentiable at (0,0), and compute the first derivative of $\mathbb{R} \ni t \mapsto f(t^2,t)$ at 0 first directly and then using the chain rule. What do you observe?)

Solution:

(a) Note that, for $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, we have

$$|f(x,y)| = |y| \frac{\sqrt{x^2 y^4}}{x^2 + y^4} \le |y| \frac{1}{2} \frac{x^2 + y^4}{x^2 + y^4} = \frac{|y|}{2}.$$

Hence, if $(x_n, y_n) \to 0$, it follows that $|f(x_n, y_n)| \leq \frac{|y_n|}{2} \to 0 = f(0, 0)$.

(b) Let $v = (v_1, v_2)$ have norm one. For $t \neq 0$, we have

$$f(tv_1, tv_2) = \frac{t^4 v_1 v_2^3}{t^2 (v_1^2 + t^2 v_2^4)} = t^2 \frac{v_1 v_2^3}{v_1^2 + t^2 v_2^4},$$

so that

$$\frac{f((0,0)+tv)-f(0,0)}{t}=t\frac{v_1v_2^3}{v_1^2+t^2v_2^4}.$$

It follows that

$$D_v f(0,0) = \lim_{\substack{t \to 0 \\ t \neq 0}} \frac{f((0,0) + tv) - f(0,0)}{t} = 0.$$

(c) Let

$$g: \mathbb{R} \to \mathbb{R}^2, \quad t \mapsto (t^2, t),$$

so that

$$(f \circ g)(t) = \frac{t^2t^3}{t^4 + t^4} = \frac{t}{2}$$

for $t \in \mathbb{R}$ and thus $\frac{d(f \circ g)}{dt}(t)\Big|_{t=0} = \frac{1}{2}$.

Assume that f is totally differentiable at (0,0). From (b), it is clear that Df(0,0) = (0,0). The chain rule then yields that

$$\frac{d(f \circ g)}{dt}(t)\bigg|_{t=0} = Df(g(0))Dg(0) = (0,0)Dg(0) = 0,$$

which is a contradiction.

5. Let $x, y \in \mathbb{R}$. Show that there is $\theta \in [0, 1]$ such that

$$\sin(x+y) = x + y - \frac{1}{2}(x^2 + 2xy + y^2)\sin(\theta(x+y)).$$

Solution: Let

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \mapsto \sin(x+y).$$

By Taylor's Theorem, there is $\theta \in [0, 1]$, such that

$$f(x,y) = f(0,0) + (\text{grad } f)(0,0) \cdot (x,y) + \frac{1}{2} (\text{Hess } f)(\theta x, \theta y)(x,y) \cdot (x,y).$$

Clearly, f(0,0) = 0 holds. Since

$$\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial y}(x,y) = \cos(x+y),$$

we have

$$(\text{grad } f)(0,0) \cdot (x,y) = (1,1) \cdot (x,y) = x + y.$$

Moreover, since

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{\partial^2 f}{\partial y^2}(x,y) = \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y) = -\sin(x+y)$$

we also have

$$(\text{Hess } f)(\theta x, \theta y)(x, y) \cdot (x, y)$$

$$= \begin{pmatrix} \begin{bmatrix} -\sin(\theta(x+y)) & -\sin(\theta(x+y)) \\ -\sin(\theta(x+y)) & -\sin(\theta(x+y)) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \begin{bmatrix} -\sin(\theta(x+y))(x+y) \\ -\sin(\theta(x+y))(x+y) \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= -(x^2 + 2xy + y^2)\sin(\theta(x+y)).$$

Hence,

$$\sin(x+y) = x + y - \frac{1}{2}(x^2 + 2xy + y^2)\sin(\theta(x+y))$$

holds.

6*. Let $\varnothing \neq C \subset \mathbb{R}^N$ be open and connected, and let $f: C \to \mathbb{R}$ be differentiable such that $\nabla f \equiv 0$. Show that f is constant. (*Hint*: First, treat the case where C is convex using the chain rule; then, for general C, assume that f is not constant, let $x, y \in C$ such that $f(x) \neq f(y)$, and show that $\{U, V\}$ with $U := \{z \in C : f(z) = f(x)\}$ and $V := \{z \in C : f(z) \neq f(x)\}$ is a disconnection for C.)

Solution: First, suppose that C is convex, and assume that f is not constant, i.e., there are $x, y \in C$ with $f(x) \neq f(x)$. Since C is convex, $\{x + t(y - x) : t \in [0, 1]\}$ is contained in C. Define

$$g: [0,1] \to \mathbb{R}, \quad t \mapsto f(x + t(y - x)).$$

Then g is continuous and differentiable on (0,1). The chain rule yields

$$g'(t) = (\nabla f(x + t(y - x))) \cdot (y - x) = 0$$

for $t \in (0,1)$. From one variable calculus, we know that this means that g is constant. However, we have $g(0) = f(x) \neq f(y) = g(1)$, which is a contradiction.

For the general case, assume that f is not constant, and let $x, y \in C$ such that $f(x) \neq f(y)$. Define

$$U := \{ z \in C : f(z) = f(x) \}$$
 and $V := \{ z \in C : f(z) \neq f(x) \}.$

As f is continuous, there is an open set $\tilde{V} \subset \mathbb{R}^N$ such that $V = C \cap \tilde{V}$. Since C is also open, this means that V is open.

We claim that U is open as well. Let $z \in U$, and choose $\epsilon > 0$ such that $B_{\epsilon}(z) \subset C$. As $B_{\epsilon}(z)$ is convex, it follows from the convex case that f is constant on $B_{\epsilon}(z)$, i.e., f(z') = f(x) for all $z' \in B_{\epsilon}(z)$, so that $B_{\epsilon}(x) \subset U$. As $z \in U$ is arbitrary, this proves the claim.

By definition, $U \neq \emptyset \neq V$, $U \cap V = \emptyset$, and $U \cup V = C$. Hence, $\{U, V\}$ is a disconnection for C, which is a contradiction.

Honors Advanced Calculus, I

Solutions #7

1. Determine and classify all stationary points of

$$f: (-\pi, \pi) \times (-3, 4) \to \mathbb{R}, \quad (x, y) \mapsto (3 + 2\cos x)\cos y.$$

If f attains a local minimum or maximum at one of its stationary points, evaluate it there.

Solution: The first order partial derivatives of f are computed as

$$\frac{\partial f}{\partial x} = -2(\sin x)\cos y$$
 and $\frac{\partial f}{\partial y} = -(3 + 2\cos x)\sin y$.

Since $3+2\cos x \neq 0$ for all $x \in \mathbb{R}$, a necessary and sufficient condition for $\frac{\partial f}{\partial y}(x,y) = 0$ is that $\sin y = 0$, i.e., $y \in \pi \mathbb{Z}$. Since $y \in (-3,4)$, this means that $y \in \{0,\pi\}$. Since $\cos y \neq 0$ for those y, we require that $\sin x = 0$ in order to have $\frac{\partial f}{\partial x}(x,y) = 0$, i.e., x = 0 (because $x \in \pi \mathbb{Z} \cap (-\pi,\pi)$).

Hence, (0,0) and $(0,\pi)$ are the only stationary points of f.

The next step is to compute Hess f. We have

$$\frac{\partial^2 f}{\partial x^2} = -2(\cos x)\cos y, \qquad \frac{\partial^2 f}{\partial y^2} = -(3+2\cos x)\cos y,$$

and

$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 f}{\partial x \, \partial y} = 2(\sin x)(\sin y),$$

so that

$$(\operatorname{Hess} f)(0,0) = \begin{bmatrix} -2 & 0\\ 0 & -5 \end{bmatrix}$$

and

$$(\operatorname{Hess} f)(0,\pi) = \left[\begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \right].$$

Hence, (Hess f)(0,0) is negative definite, so that f attains a local maximum at (0,0), namely 5, whereas $(\text{Hess } f)(0,\pi)$ is positive definite, so that f attains a local minimum at $(0,\pi)$, namely -5.

2. Determine and classify the stationary points of

$$f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}, \quad (x,y) \mapsto \frac{1}{y} - \frac{1}{x} - 4x + y.$$

1

If f attains a local minimum or maximum at a stationary point, evaluate the function there.

Solution: We have

$$\frac{\partial f}{\partial x}(x,y) = \frac{1}{x^2} - 4$$
 and $\frac{\partial f}{\partial y}(x,y) = -\frac{1}{y^2} + 1$.

Hence, the set of stationary points of f is

$$\left\{ \left(\frac{1}{2},1\right), \left(-\frac{1}{2},1\right), \left(\frac{1}{2},-1\right), \left(-\frac{1}{2},-1\right) \right\}$$

Since

$$\frac{\partial^2 f}{\partial x^2}(x,y) = -\frac{2}{x^3}, \qquad \frac{\partial^2 f}{\partial y^2}(x,y) = \frac{2}{y^3},$$

and

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y) = 0,$$

we have

(Hess
$$f$$
) $(x,y) = \begin{bmatrix} -\frac{2}{x^3} & 0\\ 0 & \frac{2}{y^3} \end{bmatrix}$.

It follows that (Hess f)(x,y) is indefinite at $\left(\frac{1}{2},1\right)$ and $\left(-\frac{1}{2},-1\right)$ —so that f has saddles at those points—, positive definite at $\left(-\frac{1}{2},1\right)$, and negative definite at $\left(\frac{1}{2},-1\right)$. Hence, f has a local minimum at $\left(-\frac{1}{2},1\right)$, namely $f\left(-\frac{1}{2},1\right)=6$, and a local maximum at $\left(\frac{1}{2},-1\right)$, namely $f\left(\frac{1}{2},-1\right)=-6$.

3. Determine the minimum and the maximum of

$$f: D \to \mathbb{R}, \quad (x, y) \mapsto \sin x + \sin y + \sin(x + y),$$

where $D:=\left\{(x,y)\in\mathbb{R}^2:0\leq x,y\leq\frac{\pi}{2}\right\}$, and all points of D where they are attained.

Solution: By the compactness of D and the continuity of f, the function attains both a minimum and a maximum on D.

Note that int $D = \{(x, y) \in \mathbb{R}^2 : 0 < x, y < \frac{\pi}{2}\}$. We start with classifying the stationary points of f on int D.

First, determine the gradient of f:

$$\frac{\partial f}{\partial x}(x,y) = \cos x + \cos(x+y)$$
 and $\frac{\partial f}{\partial y}(x,y) = \cos y + \cos(x+y)$.

For $(x,y) \in \text{int } D$ to be a stationary point, it is thus necessary and sufficient that

$$\cos x + \cos(x+y) = 0 = \cos y + \cos(x+y)$$

or, equivalently, that

$$\cos x = \cos y = -\cos(x+y).$$

Since cos in injective on $(0, \frac{\pi}{2})$, this means that x = y and thus $\cos x = -\cos(2x)$. For $x \in (0, \frac{\pi}{2})$, this is possible only if $x = \frac{\pi}{3}$. Hence, $(\frac{\pi}{3}, \frac{\pi}{3})$ is the only stationary point of f.

Next, we calculate the Hessian:

$$(\text{Hess } f)(x,y) = \begin{bmatrix} -\sin x - \sin(x+y) & -\sin(x+y) \\ -\sin(x+y) & -\sin y - \sin(x+y) \end{bmatrix}.$$

Since

$$-\sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{2\pi}{3}\right) = -\sqrt{3}$$

and

$$\left(\sin\left(\frac{\pi}{3}\right) + \sin\left(\frac{2\pi}{3}\right)\right)^2 - \left(\sin\left(\frac{2\pi}{3}\right)\right)^2 = 3 - \frac{3}{4} > 0$$

the Hessian matrix is negative definite at $(\frac{\pi}{3}, \frac{\pi}{3})$. Hence, f has a local maximum at $(\frac{\pi}{3}, \frac{\pi}{3})$, namely $f(\frac{\pi}{3}, \frac{\pi}{3}) = \frac{3}{2}\sqrt{3}$.

Therefore, we know that f attains a local maximum in int D, which is the only local extremum there. We thus have to check the behaviour of f on ∂D .

Let

$$f_1: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \quad x \mapsto f(x, 0) = 2\sin x;$$

$$f_2: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \quad y \mapsto f\left(\frac{\pi}{2}, y\right) = 1 + \sin y + \cos y;$$

$$f_3: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \quad y \mapsto f\left(x, \frac{\pi}{2}\right) = 1 + \sin x + \cos x;$$

$$f_4: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \quad x \mapsto f(0, y) = 2\sin y.$$

It is immediate that f_1 and f_4 attain their respective minimum—0—at 0 and their respective maximum—2—at $\frac{\pi}{2}$.

Since

$$f_2'(y) = \cos y - \sin y,$$

there is only one candidate for a local extremum of f_2 on $\left(0, \frac{\pi}{2}\right)$, namely $y = \frac{\pi}{4}$. We have

$$f_2(0) = f_3(0) = f_2\left(\frac{\pi}{4}\right) = f_3\left(\frac{\pi}{4}\right) = 2$$
 and $f_2\left(\frac{\pi}{4}\right) = f_3\left(\frac{\pi}{4}\right) = 1 + \sqrt{2}$.

Any extremal point of f which is not in int D, must lie on the boundary and hence be either one of $\{(0,0), (0,\frac{\pi}{2}), (\frac{\pi}{2},0), (\frac{\pi}{2},\frac{\pi}{2})\}$ or a local extremal point of f_1 , f_2 , f_3 , or f_4 . Comparing the values of f at those possible values, we obtain that

- f attains its minimum—0—at (0,0);
- f attains its maximum— $\frac{3}{2}\sqrt{3}$ —at $(\frac{\pi}{3}, \frac{\pi}{3})$.
- 4. Let $(x_n)_{n=1}^{\infty}$ be a convergent sequence in \mathbb{R}^N with limit x. Show that $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ has content zero.

Solution: Let $\epsilon > 0$, and choose $a_1, b_1, \ldots, a_N, b_N$ with $a_j < b_j$ for $j = 1, \ldots, N$ such that

$$x \in (a_1, b_1) \times \dots (a_N, b_N) =: J_0 \quad \text{and} \quad \prod_{j=1}^N b_j - a_j < \frac{\epsilon}{2}.$$

As $\lim_{n\to\infty} x_n = x$, and since J_0 is a neighborhood of x, there is $n_0 \in \mathbb{N}$ such that $x_n \in J_0$ for all $n \geq n_0$. Set

$$I_0 := [a_1, b_1] \times \cdots [a_N, b_N]$$

Then I_0 is a compact interval in \mathbb{R}^N with

$$\{x_n : n \ge n_0\} \cup \{x\} \subset I_0$$
 and $\mu(I_0) < \frac{\epsilon}{2}$.

As a finite set, $\{x_1, \ldots, x_{n_0-1}\}$ has content zero, i.e., there are compact intervals $I_1, \ldots, I_m \subset \mathbb{R}^N$ such that

$$\{x_1,\ldots,x_{n_0-1}\}\subset \bigcup_{j=1}^m I_j$$
 and $\sum_{j=1}^m \mu(I_j)<\frac{\epsilon}{2}$.

It follows that

$$\{x_n : n \in \mathbb{N}\} \cup \{x\} \subset \bigcup_{j=0}^m I_j$$
 and $\sum_{j=0}^m \mu(I_j) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

As $\epsilon > 0$ is arbitrary, we conclude that $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ has content zero.

5. Let $I \subset \mathbb{R}^N$ be a compact interval. Show that ∂I has content zero.

Solution: Let

$$I = [a_1, b_1] \times \cdots \times [a_N, b_N].$$

For j = 1, ..., N and $x \in \mathbb{R}^N$, set

$$S_{j,x} := [a_1,b_1] \times \cdots \times [a_{j-1},b_{j-1}] \times \{x\} \times [a_{j+1},b_{j+1}] \times \cdots \times [a_N,b_N]$$

In Problem 6* on Assignment #3, you showed that

$$\partial I = \bigcup_{j=1}^{N} S_{j,a_j} \cup S_{j,b_j}$$

It is therefore sufficient to show that, $\mu(S_{j,x}) = 0$ for any j = 1, ..., N and $x \in \mathbb{R}$. Let $\epsilon > 0$, and let

$$J := [a_1, b_1] \times \cdots \times [a_{j-1}, b_{j-1}] \times [x - \delta, x + \delta] \times [a_{j+1}, b_{j+1}] \times \cdots \times [a_N, b_N],$$

where

$$\delta < \frac{1}{2} \prod_{\substack{k=1\\k\neq j}}^{N} \frac{\epsilon}{b_k - a_k}.$$

We then have

$$S_{j,x} \subset J$$
 and $\mu(J) = 2\delta \prod_{\substack{k=1\\k\neq j}}^{N} (b_k - a_k) < \epsilon$,

so that $\mu(S_{j,x}) = 0$.

6*. Let $I_1, \ldots, I_n \subset \mathbb{R}$ be compact intervals such that $\mathbb{Q} \cap [0,1] \subset I_1 \cup \cdots \cup I_n$. Show that $\sum_{i=1}^n \mu(I_i) \geq 1$.

Solution: Let $\epsilon > 0$. For $j = 1, \ldots, n$ and $I_j = [a_j, b_j]$ with $0 \le a_j$ and $b_j \le 1$, set $J_j := (a_j - \epsilon, b_j + \epsilon)$. We claim that $[0, 1] \subset J_1 \cup \cdots \cup J_n$. To see this, let $x \in [0, 1]$. Then there is $q \in \mathbb{Q} \cap [0, 1]$ such that $|x - q| < \epsilon$, i.e., $q - \epsilon < x < q + \epsilon$. Let $j_q \in \{1, \ldots, n\}$ be such that $q \in I_{j_q}$, i.e., $a_{j_q} \le q \le b_{j_q}$. It follows that

$$a_{j_q} - \epsilon \le q - \epsilon < x < q + \epsilon \le b_{j_q} + \epsilon$$

i.e., $x \in J_{j_q}$.

Let $0 = t_0 < t_1 < \dots < t_m = 1$ such that $\{t_0, t_1, \dots, t_m\}$ consists precisely of 0 and 1 and those boundary points of J_1, \dots, J_n that lie in [0, 1]. Then we obtain that

$$1 = \sum_{k=1}^{m} t_k - t_{k-1} \le \sum_{j=1}^{n} \sum_{(t_{k-1}, t_k) \subset J_j} t_k - t_{k-1}$$

$$\le \sum_{k=1}^{n} (b_n + \epsilon) - (a_n - \epsilon) = 2n\epsilon + \sum_{k=1}^{n} b_k - a_k = 2n\epsilon + \sum_{k=1}^{n} \mu(I_k).$$

As $\epsilon > 0$ is arbitrary, this yields the claim.

Honors Advanced Calculus, I

Solutions #8

1. Let I be a compact interval, and let $f = (f_1, \ldots, f_M) : I \to \mathbb{R}^M$. Show that f is Riemann integrable if and only if $f_j : I \to \mathbb{R}$ is Riemann integrable for each $j = 1, \ldots, M$ and that, in this case,

$$\int_{I} f = \left(\int_{I} f_{1}, \dots, \int_{I} f_{M} \right)$$

holds.

Solution: Suppose that f is Riemann integrable. Fix $k \in \{1, ..., M\}$, and let $y = (y_1, ..., y_M)$ be the Riemann integral of f over I. Let $\epsilon > 0$. Then there is a partition \mathcal{P}_{ϵ} of I such that, for each refinement \mathcal{P} of \mathcal{P}_{ϵ} and each associated Riemann sum $S(f, \mathcal{P})$, we have

$$|S(f_k, \mathcal{P}) - y_k| \le ||S(f, \mathcal{P}) - y|| < \epsilon.$$

This means that f_k is Riemann integrable with $\int_I f_k = y_k$.

Conversely, suppose that f_j is Riemann integrable with integral y_j for j = 1, ..., M. Set $y := (y_1, ..., y_M)$. Let $\epsilon > 0$. For each j = 1, ..., M, there is a partition \mathcal{P}_j of I such that, for each refinement \mathcal{P} of \mathcal{P}_j , we have

$$|S(f_j, \mathcal{P}) - y_j| < \frac{\epsilon}{\sqrt{M}}$$

for each Riemann sum $S(f_j, \mathcal{P})$. Let \mathcal{P}_{ϵ} be a common refinement of $\mathcal{P}_1, \dots, \mathcal{P}_M$. Then for every refinement \mathcal{P} of \mathcal{P}_{ϵ} and each Riemann sum $S(f, \mathcal{P})$, we obtain

$$||S(f, \mathcal{P}) - y|| \le \sqrt{M} \max_{j=1,\dots,M} |S(f_j, \mathcal{P}) - y_j| < \sqrt{M} \frac{\epsilon}{\sqrt{M}} = \epsilon.$$

Consequently, f is Riemann integrable with $\int_I f = y$.

2. Let $I \subset \mathbb{R}^N$ be a compact interval, and let $f: I \to \mathbb{R}^M$ be Riemann integrable. Show that f is bounded.

Solution: Assume towards a contradiction that f is not bounded.

Let \mathcal{P} be a partition of I—with corresponding subdivision $(I_{\nu})_{\nu}$ of I—such that

$$\left\| S(f, \mathcal{P}) - \int_{I} f \right\| < 1$$

for each Riemann sum $S(f, \mathcal{P})$ of f corresponding to \mathcal{P} . In particular, this means that

$$||S(f, \mathcal{P})|| \le 1 + \left\| \int_I f \right\| =: C$$

1

for each such Riemann sum $S(f, \mathcal{P})$. Since f is assumed to be unbounded and since $I = \bigcup_{\nu} I_{\nu}$, there is at least one ν_0 such that f is unbounded on I_{ν_0} . Choose $x_{\nu_0} \in I_{\nu_0}$ such that

$$||f(x_{\nu_0})|| > \frac{1}{\mu(I_{\nu_0})} \left(C + \left\| \sum_{\nu \neq \nu_0} f(x_{\nu}) \mu(I_{\nu}) \right\| \right).$$

For the Riemann sum

$$S_0(f,\mathcal{P}) := \sum_{\nu} f(x_{\nu}) \mu(I_{\nu}),$$

we thus obtain

$$||S_{0}(f,\mathcal{P})|| = \left\| \sum_{\nu} f(x_{\nu})\mu(I_{\nu}) \right\|$$

$$\geq \left| ||f(x_{\nu_{0}})||\mu(I_{\nu_{0}}) - \left\| \sum_{\nu \neq \nu_{0}} f(x_{\nu})\mu(I_{\nu}) \right\| \right|$$

$$= ||f(x_{\nu_{0}})||\mu(I_{\nu_{0}}) - \left\| \sum_{\nu \neq \nu_{0}} f(x_{\nu})\mu(I_{\nu}) \right\|$$

$$> C.$$

which is impossible.

3. Let $\emptyset \neq D \subset \mathbb{R}^N$ be bounded, and let $f,g:D \to \mathbb{R}$ be Riemann-integrable. Show that $fg:D \to \mathbb{R}$ is Riemann-integrable.

Do we necessarily have

$$\int_D fg = \left(\int_D f\right) \left(\int_D g\right)?$$

(*Hint*: First, treat the case where f = g and then the general case by observing that $fg = \frac{1}{2}((f+g)^2 - f^2 - g^2)$

Solution: Without loss of generality suppose that D is a compact interval I.

Let $C \geq 0$ such that $|f(x)| \leq C$ for $x \in I$. Let $\epsilon > 0$ and let \mathcal{P}_{ϵ} be a partition of I such that

$$|S_1(f, \mathcal{P}_{\epsilon}) - S_2(f, \mathcal{P}_{\epsilon})| < \frac{\epsilon}{2(C+1)}$$

for all Riemann sums $S_1(f, \mathcal{P}_{\epsilon})$ and $S_2(f, \mathcal{P}_{\epsilon})$ corresponding to \mathcal{P}_{ϵ} . Let $(I_{\nu})_{\nu}$ the subdivision of I induced by \mathcal{P}_{ϵ} , and let $x_{\nu}, y_{\nu} \in I_{\nu}$ be support points. As in the proof of Proposition 4.2.12(iii), one sees that

$$\sum_{\nu} |f(x_{\nu}) - f(y_{\nu})| \mu(I_{\nu}) < \frac{\epsilon}{2(C+1)}.$$

It follows that

$$\sum_{\nu} |f(x_{\nu})^{2} - f(y_{\nu})^{2}| \mu(I_{\nu}) = \sum_{\nu} |f(x_{\nu}) + f(y_{\nu})| |f(x_{\nu}) - f(y_{\nu})| \mu(I_{\nu})$$

$$\leq \sum_{\nu} 2C|f(x_{\nu}) - f(y_{\nu})| \mu(I_{\nu})$$

$$< 2C \frac{\epsilon}{2(C+1)}$$

$$< \epsilon$$

Hence, f^2 is Riemann-integrable by Corollary 4.2.6.

For Riemann-integrable $f, g: I \to \mathbb{R}$, we have

$$fg = \frac{1}{2}((f+g)^2 - f^2 - g^2),$$

so that fg is also Riemann-integrable.

However, we have, for instance,

$$\int_0^1 x^2 \, dx = \frac{1}{3} \neq \frac{1}{4} = \left(\int_0^1 x \, dx\right)^2.$$

4. Let $\emptyset \neq D \subset \mathbb{R}^N$ have content zero, and let $f: D \to \mathbb{R}^M$ be bounded. Show that f is Riemann-integrable on D such that

$$\int_{D} f = 0.$$

Solution: Let $C \ge 0$ be such that $||f(x)|| \le C$ for $x \in D$.

Let $I \subset \mathbb{R}^N$ be a compact interval such that $D \subset I$, and extend f to $\tilde{f}: I \to \mathbb{R}^M$ as pointed out in class. Let $\epsilon > 0$, and choose a partition \mathcal{P} of I with corresponding subdivision $(I_{\nu})_{\nu}$ of I such that

$$\sum_{I_{\nu}\cap D\neq\varnothing}\mu(I_{\nu})<\frac{\epsilon}{C+1}.$$

Let \mathcal{Q} be a refinement of \mathcal{P} with corresponding subdivision $(J_{\lambda})_{\lambda}$. It follows that

$$\sum_{J_{\lambda} \cap D \neq \varnothing} \mu(J_{\lambda}) < \frac{\epsilon}{C+1}.$$

For each λ , pick a support point $y_{\lambda} \in J_{\lambda}$. Then we have

$$\left\| \sum_{\lambda} \tilde{f}(y_{\lambda}) \mu(J_{\lambda}) \right\| = \left\| \sum_{J_{\lambda} \cap D \neq \emptyset} f(y_{\lambda}) \mu(J_{\lambda}) \right\| \le C \sum_{J_{\lambda} \cap D \neq \emptyset} \mu(J_{\lambda}) < \epsilon.$$

It follows that $\int_D f = 0$.

5. Let $\varnothing \neq U \subset \mathbb{R}^N$ be open with content, and let $f: U \to [0, \infty)$ be bounded and continuous such that $\int_U f = 0$. Show that $f \equiv 0$ on U.

Solution: Assume that there is $x_0 \in U$ such that $f(x_0) \neq 0$, i.e., $f(x_0) > 0$. By the continuity of f, there is $\delta > 0$, such that $B_{\delta}(x_0) \subset U$ and $f(x) > \frac{f(x_0)}{2}$ for all $x \in B_{\delta}(x_0)$. Let

$$J := \left[x_{0,1} - \frac{\delta}{3\sqrt{N}}, x_{0,1} + \frac{\delta}{3\sqrt{N}} \right] \times \dots \times \left[x_{0,N} - \frac{\delta}{3\sqrt{N}}, x_{0,N} + \frac{\delta}{3\sqrt{N}} \right],$$

so that $J \subset B_{\delta}(x_0)$. We thus obtain

$$\int_{I} f \ge \int_{I} f \chi_{J} = \int_{I} f \ge \int_{I} \frac{f(x_{0})}{2} = \frac{f(x_{0})}{2} \mu(J) > 0,$$

which is a contradiction.

6*. The function

$$f: [0,1] \times [0,1] \to \mathbb{R}, \quad (x,y) \mapsto xy$$

is continuous and thus Riemann integrable. Evaluate $\int_{[0,1]\times[0,1]} f$ using only the definition of the Riemann integral, i.e., in particular, without use of Fubini's Theorem.

Solution: For $n \in \mathbb{N}$, let

$$\mathcal{P}_n := \left\{ \frac{j}{n} : j = 0, \dots, n \right\} \times \left\{ \frac{k}{n} : k = 0, \dots, n \right\}.$$

For $(j,k) \in \{0,\ldots,n\}$, let $x_{j,k} := \left(\frac{j}{n},\frac{k}{n}\right)$. The corresponding Riemann sum is then

$$S_n(f, \mathcal{P}_n) = \sum_{j=0}^n \sum_{k=0}^n \frac{jk}{n^2} \frac{1}{n^2}$$
$$= \frac{1}{n^4} \left(\sum_{j=1}^n j \right) \left(\sum_{k=1}^n k \right)$$
$$= \frac{1}{n^4} \frac{n^2 (n+1)^2}{4}$$
$$\to \frac{1}{4}.$$

We claim that $\int_{[0,1]^2} f = \frac{1}{4}$.

Let $\epsilon > 0$, and choose $\delta > 0$ such that $|(f(x,y) - f(x',y'))| < \frac{\epsilon}{3}$ for all $(x,y), (x',y') \in [0,1]^2$ such that $||(x,y) - (x',y')|| < \delta$. Choose a partition \mathcal{P}_0 of I such that the following are true for the corresponding subdivision $(I_{\nu})_{\nu}$ of $[0,1]^2$:

• if $(x, y), (x', y') \in I_{\nu}$ for some ν , then $||(x, y) - (x', y')|| < \delta$;

• if \mathcal{P} is any refinement of \mathcal{P}_0 , then $\left|S(f,\mathcal{P}) - \int_I f\right| < \frac{\epsilon}{3}$ for any Riemann sum $S(f,\mathcal{P})$ corresponding to \mathcal{P}).

Choose $n_0 \in \mathbb{N}$ be such that the following are true for the corresponding subdivision $(J_{\mu})_{\mu}$ of $[0,1]^2$:

- if $(x, y), (x', y') \in J_{\mu}$ for some μ , then $||(x, y) (x', y')|| < \delta$;
- for any $n \ge n_0$, we have $\left|\frac{1}{4} S_n(f, \mathcal{P}_n)\right| < \frac{\epsilon}{3}$.

Let \mathcal{Q} be any common refinement of \mathcal{P}_0 and \mathcal{P}_{n_0} , and let $(K_{\lambda})_{\lambda}$ be the corresponding partition of $[0,1]^2$, and let $S(f,\mathcal{Q})$ be a corresponding Riemann sum. Then we have

$$\left| \frac{1}{4} - \int_{[0,1]^2} f \right| \leq \underbrace{\left| \frac{1}{4} - S_{n_0}(f, \mathcal{P}_{n_0}) \right|}_{<\frac{\epsilon}{3}} - \left| S_{n_0}(f, \mathcal{P}_{n_0}) - S(f, \mathcal{Q}) \right| + \underbrace{\left| S(f, \mathcal{Q}) - \int_{[0,1]^2 f} \right|}_{<\frac{\epsilon}{3}} \\
< \frac{2}{3} \epsilon + \left| S_{n_0}(f, \mathcal{P}_{n_0}) - S(f \mathcal{Q}) \right|$$

Let $S(f, \mathcal{Q}) = \sum_{\lambda} f(x_{\lambda}) \mu(K_{\lambda})$ with $x_{\lambda} \in K_{\lambda}$, and $S_{n_0}(f, \mathcal{P}_{n_0}) = \sum_{\nu} f(y_{\nu}) \mu(I_{\nu})$. It follows that

$$|S_{n_0}(f, \mathcal{P}_{n_0}) - S(f\mathcal{Q})| = \left| \sum_{\nu} f(y_{\nu}) \mu(I_{\nu}) - \sum_{\lambda} f(x_{\lambda}) \mu(K_{\lambda}) \right|$$

$$\leq \sum_{\nu} \sum_{K_{\lambda} \subset I_{\nu}} \underbrace{|f(y_{\nu}) - f(x_{\lambda})|}_{\leq \frac{\epsilon}{3}} \mu(K_{\lambda})$$

$$\leq \frac{\epsilon}{3},$$

so that, all in all, $\left|\frac{1}{4} - \int_{[0,1]^2} f\right| < \epsilon$. As $\epsilon > 0$ was arbitrary, this means that $\int_{[0,1]^2} f = \frac{1}{4}$ as claimed.

Honors Advanced Calculus, I

Solutions #9

1. Let $I \subset \mathbb{R}^N$ be a compact interval. Show that

$$\mathcal{A} := \{ A \subset I : A \text{ has content} \}$$

is an algebra over I, i.e.,

- (a) $\varnothing, I \in \mathcal{A}$,
- (b) if $A \in \mathcal{A}$, then $I \setminus A \in \mathcal{A}$, and
- (c) if $A_1, \ldots, A_n \in \mathcal{A}$, then $A_1 \cup \cdots \cup A_n \in \mathcal{A}$.

Solution: As the constant functions $0 = \chi_{\varnothing}$ and $1 = \chi_I$ are trivially Riemann integrable on I, (a) is clear.

Let $A \in \mathcal{A}$, i.e., χ_A is Riemann integrable on I. Consequently, $\chi_{I \setminus A} = \chi_I - \chi_A$ is Riemann integrable, so that $I \setminus A \in \mathcal{A}$.

For (c), we may suppose that n=2. So, let $A,B\in\mathcal{A}$. By (b), this means that $I\setminus A,I\setminus B\in\mathcal{A}$. As $\chi_{(I\setminus A)\cap\chi(I\setminus B)}=\chi_{I\setminus A}\chi_{I\setminus B}$, it follows from Problem 3 on Assignment #8, that $(I\setminus A)\cap(I\setminus B)\in\mathcal{B}$ and—by (b) again— $A\cup B=I\setminus((I\setminus A)\cap(I\setminus B))\in\mathcal{A}$.

2. Define

$$f: [0,1]^3 \to \mathbb{R}, \quad (x,y,z) \mapsto \begin{cases} xy, & z \le xy, \\ z, & z \ge xy. \end{cases}$$

Evaluate $\int_{[0,1]^3} f$.

Solution: By Fubini's Theorem, we have

$$\int_{[0,1]^3} f = \int_0^1 \left(\int_0^1 \left(\int_0^1 f(x,y,z) \, dz \right) dy \right) dx.$$

Let $(x,y) \in [0,1]^2$, so that $xy \in [0,1]$. Consequently, we obtain for the innermost integral that

$$\int_0^1 f(x, y, z) dz = \int_0^{xy} xy dz + \int_{xy}^1 z dz = x^2 y^2 + \left[\frac{z^2}{2} \right]_{z=xy}^{z=1} = \frac{1}{2} (x^2 y^2 + 1)$$

1

It follows that

$$\int_{[0,1]^3} f = \int_0^1 \left(\int_0^1 \frac{1}{2} x^2 y^2 + 1 \, dy \right) dx$$

$$= \frac{1}{2} \int_0^1 \left(\int_0^1 x^2 y^2 \, dy \right) dx + \frac{1}{2}$$

$$= \frac{1}{2} \left(\int_0^1 x^2 \, dx \right) \left(\int_0^1 y^2 \, dy \right) + \frac{1}{2}$$

$$= \frac{1}{18} + \frac{1}{2}$$

$$= \frac{5}{9}.$$

3. Let

$$D := \{(x, y) \in \mathbb{R} : x, y \ge 0, \ x^2 + y^2 \le 1\},\$$

and let

$$f: D \to \mathbb{R}, \quad (x,y) \mapsto \frac{4y^3}{(x+1)^2}$$

Evaluate $\int_D f$.

Solution: Define $\phi,\psi\colon [0,1]\to \mathbb{R}$ through

$$\phi(x) = 0$$
 and $\psi(x) = \sqrt{1 - x^2}$

for $x \in [0, 1]$, so that

$$D = \{(x, y) \in \in \mathbb{R} : x \in [0, 1], \ \phi(x) \le y \le \psi(x)\}.$$

It follows that

$$\int_{D} f = \int_{0}^{1} \left(\int_{0}^{\sqrt{1-x^{2}}} \frac{4y^{3}}{(x+1)^{2}} dy \right) dx$$

$$= \int_{0}^{1} \left(\frac{y^{4}}{(x+1)^{2}} \Big|_{y=0}^{y=\sqrt{1-x^{2}}} \right) dx$$

$$= \int_{0}^{1} \frac{(1-x^{2})^{2}}{(x+1)^{2}} dx$$

$$= \int_{0}^{1} (1-x)^{2} dx$$

$$= -\frac{(1-x)^{3}}{3} \Big|_{x=0}^{x=1}$$

$$= \frac{1}{3}.$$

4. Let a < b, let $f : [a, b] \to [0, \infty)$ be continuous, and let

$$D:=\{(x,y):x\in [a,b],\,y\in [0,f(x)]\}.$$

Show that D has content and that

$$\mu(D) = \int_{a}^{b} f(x) \, dx.$$

Solution: Note that

$$\begin{split} \partial D &= \{(a,y): y \in [0,f(a)]\} \\ & \cup \{(x,f(x)): x \in [a,b]\} \cup \{(b,y): y \in [0,f(b)]\} \cup \{(x,0): x \in [a,b]\}. \end{split}$$

Each of the sets on the right hand side of this equality has content zero, so that ∂D has content zero, and D has content.

From Fubini's Theorem, we obtain that

$$\mu(D) = \int_{D} 1$$

$$= \int_{a}^{b} \left(\int_{0}^{f(x)} dy \right) dx$$

$$= \int_{a}^{b} f(x) dx.$$

5. Let R > 0, and define, for $0 < \rho < R$,

$$A_{\rho,R} := \{(x,y,z) \in \mathbb{R}^3 : \rho^2 \le x^2 + y^2 + z^2 \le R^2\}.$$

Determine

$$\lim_{\rho \to 0} \int_{A_{\rho,R}} \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Solution: Use spherical coordinates. This means that, for $0<\rho< R,$ we have $A_{\rho,R}=\phi(K)$ where

$$K:=\left\{(r,\theta,\sigma)\in\mathbb{R}^3:r\in[\rho,R],\,\theta\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right],\,\theta\in[0,2\pi]\right\}.$$

It follows that

$$\int_{A_{\rho,R}} \frac{1}{\sqrt{x^2 + y^2 + z^2}} = \int_{K} \frac{r^2 \cos \theta}{r}$$

$$= \int_{K} r \cos \theta$$

$$= \int_{\rho}^{R} \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\int_{0}^{2\pi} r \cos \theta \, d\sigma \right) d\theta \right) dr$$

$$= 2\pi \int_{\rho}^{R} \left(r \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, d\sigma d\theta \right) dr$$

$$= 4\pi \int_{\rho}^{R} r \, dr$$

$$= 2\pi (R^2 - \rho^2)$$

$$\stackrel{\rho \to 0}{\to} 2\pi R^2.$$

6*. Define $f: [0,1] \times [0,1] \to \mathbb{R}$ by letting

$$f(x,y) = \begin{cases} 2^{2n}, & \text{if } (x,y) \in [2^{-n},2^{-n+1}) \times [2^{-n},2^{-n+1}) \text{ for some } n \in \mathbb{N}, \\ -2^{2n+1}, & \text{if } (x,y) \in [2^{-n-1},2^{-n}) \times [2^{-n},2^{-n+1}) \text{ for some } n \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{cases}$$

Show that the iterated integrals

$$\int_0^1 \left(\int_0^1 f(x,y) \, dy \right) dx \quad \text{and} \quad \int_0^1 \left(\int_0^1 f(x,y) \, dx \right) dy$$

both exist, but that

$$\int_{0}^{1} \left(\int_{0}^{1} f(x, y) \, dy \right) dx \neq \int_{0}^{1} \left(\int_{0}^{1} f(x, y) \, dx \right) dy.$$

Why doesn't this contradict Fubini's Theorem?

Solution: Fix $y_0 \in [0,1)$; let $n \in \mathbb{N}$ be such that $y_0 \in [2^{-n}, 2^{-n+1})$. We then have that

$$f(x, y_0) = \begin{cases} 2^{2n}, & \text{if } x \in [2^{-n}, 2^{-n+1}), \\ -2^{2n+1}, & \text{if } x \in [2^{-n-1}, 2^{-n}), \\ 0, & \text{otherwise} \end{cases}$$

and therefore

$$\int_0^1 f(x, y_0) dx = \int_{2^{-n}}^{2^{-n+1}} 2^{2n} dx - \int_{2^{-n-1}}^{2^{-n}} 2^{2n+1} dx = 2^n - 2^n = 0.$$

All in all,

$$\int_0^1 \left(\int_0^1 f(x, y) \, dx \right) dy = 0$$

holds. Similarly, if $x_0 \in \left[0, \frac{1}{2}\right)$, we obtain

$$\int_0^1 f(x_0, y) \, dy = 0.$$

If, however, $x_0 \in \left[\frac{1}{2}, 1\right)$, we get

$$f(x_0, y) = \begin{cases} 4, & \text{if } y \in \left[\frac{1}{2}, 1\right) \\ 0, & \text{otherwise} \end{cases}$$

Therefore, we have

$$\int_0^1 \left(\int_0^1 f(x,y) \, dy \right) dx = \int_{\frac{1}{2}}^1 \left(\int_{\frac{1}{2}}^1 4 \, dy \right) dx = 1.$$

As f is unbounded, it cannot be Riemann integral. Hence, Fubini's Theorem does not apply.