Data Day 2023

Analítica y Ciencia de Datos y Machine Learning para Seguridad, Ergonomia y Bienestar

Juan Baldemar Garza V. PhD.

Semblanza

Practitioner

.... Y académico....

... Interesado en la Mejora Continua, Ciencia de Datos, IA, Tecnología, Estrategia 4.0

y.....

... MEJORES EMPRESAS...

Contexto de DS en las empresas

Fuente: McKinsey & Company. Industry 4.0 at McKinsey's model factories.

¿Y la Seguridad Industrial?

Introducción

Basado en la literatura se sabe que las condiciones ambientales como temperatura, humedad, presión atmosférica, iluminación, ruido, carga de trabajo, nivel de energía, estrés, fatiga y aspectos ergonómicos pueden tener un impacto notorio sobre la probabilidad de cometer un acto inseguro en la actividad laboral que se traduzca en un accidente de trabajo.

O bien tener un impacto en la productividad o eficiencia.

El caso de este estudio es presentar un par de proyectos realizado en una empresa de manufactura haciendo uso de la Ciencia de Datos, Analítica y Machine Learning para anticipar este tipo de situaciones.

¿Qué es Seguridad Industrial?

Ofrecer un entorno seguro donde el operador cuente con la suficiente confianza de realizar su trabajo, teniendo el apoyo de la compañía

Integridad Personal

Monitoreo de la Salud de los empleados

Bienestar del empleado

Anticipar Eventos

Caso 1

Mediante el uso de un Modelo Predictivo

- Al tener un modelo predictivo se hace una diferencia entre tener una actitud reactiva en la que frecuentemente es tarde para actuar, a pasar a una actitud proactiva, anticipándose a eventos.
- La analítica predictiva permite extraer conclusiones confiables sobre eventos futuros mediante un análisis de hechos históricos y actuales para predecir eventos.

En una empresa de manufactura

2020

18 accidentes

(Incapacitantes y no Incapacitantes)

2021

25 accidentes

(Incapacitantes y no Incapacitantes)

En consecuencia...

10%

Pagos de Sustitución del personal + pagos a clínicas privadas

10%

Prima de Índice de Riesgo

Problemática

Objetivos Generales y Particulares

General

"Proveer un modelo predictivo para estimar probabilidades de riesgos de seguridad para la toma de decisiones en una empresa de manufactura."

Particulares

- Identificar las variables predictivas relevantes para la elaboración del modelo, mediante la recopilación de datos y análisis bibliográfico.
- Diseñar y desarrollar un modelo predictivo de riesgos de seguridad.
- Implementar el modelo en una plataforma para realizar predicciones correspondientes.
- Establecer criterios para la toma de decisiones mediante los resultados del modelo.

CRISP-DM

Cross- Industry Standard Process for Data Mining

Literatura

Seguridad Industrial 88%

33 Artículos

Predictive Analytics 64%

Data Mining 58%

Machine Learning 58%

Big Data 58%

Business Analytics 52%

Importancia de los tópicos de la literatura recabada

#	Variable	Apariciones en Artículos	
1	Ruido	24%	
2	Temperatura	2476	
3	Postura y ergonomía	21%	
4	Equipo de protección adecuado	18%	
5	Horas de capacitación	10 /6	
6	Condiciones inseguras y métricas de seguridad		
7	Iluminación	15%	
8	Mantenimiento de las máquinas a tiempo	13,6	
9	Experiencia del trabajador		
10	Edad del operador	12%	
11	Conocimiento del operador sobre la máquina		
12	Factores personales/psicológicos	9%	
13	Demanda excesiva (sobrecarga)		
14	Horas de trabajo extra		
15	Manipulación de químicos	6%	
16	Rotación de personal	0 76	
17	Ventilación		
18	Cantidad de errores cometidos por operadores		
19	Equipo respiratorio adecuado		
20	Existen procedimiento de trabajo seguro		
21	Herramienta en condiciones adecuadas	3%	
22	Hidratación		
23	Inspecciones rutinaruas		
24	Falta de comunicación adecuada		
25	Poco tiempo para realizar tareas		
26	Registros médicos		
27	Supervisor cumple su trabajo		
28	Velocidades inseguras		
29	Tipo de contrato del empleado		

Comprensión de los datos

Literatura

- Ruido (Co)
- Hidratación (D)
- Iluminación (Co)
- Horas extras (D)
- Temperatura (Co)
- EPP adecuado (C)
- Enfermedades (D)
- Espacio Suficiente (C)
- Edad del operador (D)
- Años en la máquina (D)
- Contacto Sust. Químicas (D)
- Fatigada del operador (D)
- Herramienta adecuada (C)
- Antigüedad en la empresa (D)
- Conocimientos suficientes (D)
- Preocupación del empleado (C)
- Horas de descanso trabajado (Co)
- Horas de capacitación de seguridad (Co)
- Horas de capacitación de producción (Co)
- Tiempo suficiente para realizar tareas (D)
- Iluminación percibida por el empleado (D)

Features

- + Cliente
- + Dep. Seguridad
- + Dep. Médico

Sugeridas

- Categoría del empleado (D)
- Calificación examen teórico (D)
- Nivel de riesgo por máquina (D)
- Calificación examen práctico (D)
- Actividades correctivas cerradas (D)

Modelado


```
<class 'pandas.core.frame.DataFrame'>
           RangeIndex: 855 entries, 0 to 854
           Data columns (total 34 columns):
                          Non-Null Count Dtype
           # Column
                          -----
           0 ID
                          855 non-null
               EDAD
                          855 non-null
               A_MAQ
                          855 non-null
                                        int64
           3
               ANT
                          855 non-null
                                        int64
           4 CAT_EMP
                          855 non-null
                                        int64
               HORAS_CAP 855 non-null
                                        int64
               CAL_EXTEOR 855 non-null
               CAL_EXPRAC 855 non-null
                                        int64
                                        int64
                          855 non-null
           9 RIESG
                          855 non-null
           10 ILUM_TOM
                          855 non-null
                                        int64
           11 RUIDO
                          855 non-null
                                        int64
           12 HORAS_EXTR 855 non-null
                                        float64
           13 HORAS_DES 855 non-null
           14 LIQUID
                          855 non-null
                                        int64
           15 EPP
                          855 non-null
           16 HERRAM
                          855 non-null
                                        int64
           17 PREOCUP
                          855 non-null
           18 SUST_QUI
                          855 non-null
           19 ILUM_ENC
                          855 non-null
                                        int64
           20 ESPA_SUF
                          855 non-null
                                        int64
           21 FATIGA
                          855 non-null
                                        int64
           22 TIEMPO_SUF 855 non-null
           23 CONOC
                          855 non-null
                                        int64
           24 TEMP
                          855 non-null
                                        float64
           25 ACC
                          855 non-null
            26 ACA
                          855 non-null
           27 CI
                          855 non-null
           28 AI
                          855 non-null
                                        int64
           29 CI_1
                          855 non-null
                                        int64
           30 AI_1
                          855 non-null
                                        int64
           31 AI_LOG
                          855 non-null
                                        int64
           32 CI_LOG
                          855 non-null
                                        int64
           33 ACA_LOG
                          855 non-null
           dtypes: float64(4), int64(29), object(1)
           memory usage: 227.2+ KB
```


	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
nb	Naive Bayes	0.9466	0.8814	0.7300	1.0000	0.8374	0.8071	0.8254	0.0130
ridge	Ridge Classifier	0.9366	0.0000	0.7467	0.9405	0.8207	0.7835	0.7986	0.0120
lda	Linear Discriminant Analysis	0.9299	0.8619	0.7467	0.9038	0.8059	0.7643	0.7770	0.0120
xgboost	Extreme Gradient Boosting	0.9299	0.8794	0.7467	0.9133	0.8106	0.7689	0.7816	0.0380
rf	Random Forest Classifier	0.9266	0.8885	0.7300	0.8971	0.7971	0.7534	0.7641	0.0880
lightgbm	Light Gradient Boosting Machine	0.9266	0.8640	0.7467	0.8848	0.7970	0.7533	0.7656	0.2090
catboost	CatBoost Classifier	0.9266	0.8853	0.7300	0.8900	0.7946	0.7510	0.7609	2.0990
Ir	Logistic Regression	0.9132	0.8474	0.7467	0.8411	0.7768	0.7243	0.7354	0.5780
gbc	Gradient Boosting Classifier	0.9099	0.8571	0.7300	0.8267	0.7642	0.7095	0.7187	0.0460
et	Extra Trees Classifier	0.9099	0.8770	0.7300	0.8233	0.7589	0.7047	0.7164	0.0690
ada	Ada Boost Classifier	0.9032	0.8585	0.7300	0.8048	0.7451	0.6871	0.7020	0.0390
dt	Decision Tree Classifier	0.8697	0.8299	0.7633	0.6444	0.6892	0.6084	0.6194	0.0160
qda	Quadratic Discriminant Analysis	0.8061	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0140
dummy	Dummy Classifier	0.8061	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0110
svm	SVM - Linear Kernel	0.7154	0.0000	0.4800	0.3677	0.3590	0.2482	0.2710	0.0150
knn	K Neighbors Classifier	0.6422	0.6366	0.5733	0.2955	0.3859	0.1741	0.1923	0.3450


```
In [22]: Ir= create_model('lr')
```

	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
Fold							
0	0.9000	0.6319	0.5000	1.0000	0.6667	0.6154	0.6667
1	0.9333	0.9583	0.8333	0.8333	0.8333	0.7917	0.7917
2	0.9000	0.7917	0.6667	0.8000	0.7273	0.6667	0.6708
3	0.8667	0.8125	0.6667	0.6667	0.6667	0.5833	0.5833
4	0.9333	0.9097	0.6667	1.0000	0.8000	0.7619	0.7845
5	0.7667	0.8403	0.6667	0.4444	0.5333	0.3860	0.4001
6	0.9667	0.8542	0.8333	1.0000	0.9091	0.8889	0.8944
7	0.9333	0.8333	0.8333	0.8333	0.8333	0.7917	0.7917
8	0.9667	1.0000	1.0000	0.8333	0.9091	0.8889	0.8944
9	0.9655	0.8417	0.8000	1.0000	0.8889	0.8688	0.8764
Mean	0.9132	0.8474	0.7467	0.8411	0.7768	0.7243	0.7354
Std	0.0580	0.0952	0.1327	0.1705	0.1185	0.1533	0.1496

precision

---- $t_f = 0.31$

0.2

0.6

discrimination threshold

0.8

0.0

Derechos reservados @jbgv, 2023

1.0

▶ predict_model(lr) In [28]: Model Accuracy AUC Recall F1 Kappa 0 Logistic Regression 0.9302 0.9296 0.7600 0.8636 0.8085 0.7661 0.7684 Out[28]: EDAD ANT RUIDO EPP PREOCUP ILUM_ENC FATIGA TIEMPO_SUF TEMP AI ACA_LOG prediction_label prediction_score 4 34.000000 0 0.9228 335 31 5 35.599998 0 0 0 0.7704 0.7267 19 3 35.299999 0 3 4 37.700001 1 264 0 0.9627 360 85 0 2 4 35.099998 0 0 0 0.8776 4 34.900002 1 0.9935 283 0 3 3 34.900002 0 0 0 0.9217 150 48 21 0 3 4 35.400002 0 0 0 0.9384 5 2 0 0 211 0 5 37.200001 0 0.8074 31 4 34.500000 0 0 0.8230

Python – Explainer Dashboard

netric	Score
ccuracy	0.93
precision	0.864
ecall	0.76
1	0.809
oc_auc_score	0.93
or_auc_score	0.882
og_loss	0.252

Python – Explainer Dashboard

Acto Inseguro Preocupación

Python – Drift Target

Target Drift: not detected, drift score=0.696348 (Z-test p_value)

Python – Gradio – Test user

Python – Fast API

Resultados

Mediante los resultados que realizó el modelo predictivo, se toman decisiones que favorecen la seguridad industrial.

- Reducción de accidentes De 25 accidentes a 0.
- Reducción de costos por accidentes.
- Aumento de la productividad.
- Mantener la integridad de la persona.
- Enfoque proactivo.

"Si eres capaz de predecir un accidente, eres capaz de prevenirlo."

Caso 2 – Seguridad, Ergonomía y Bienestar

Tecnología e infraestructura CPS - Cámara, Pulsera y sensor

Basado en la literatura se sabe que las condiciones ambientales como temperatura, humedad, presión atmosférica, iluminación, ruido, tiempo de actividad de trabajo, estrés, carga de trabajo, nivel de energía de las personas y aspectos ergonómicos pueden tener un impacto notorio sobre la eficiencia en una estación de trabajo. Incluso llevando a los colaboradores a incrementar el riesgo de una lesión y la probabilidad de cometer un acto inseguro en la actividad laboral.

Tempo en estación de trabajo
Mapa de calor de movimiento

Presión
Iluminación
Ruido

PC con modelos de riesgo

Alertas / Prob. Riesgo

Recursos Humanos

Industria 4.0

Seguridad Industrial

Seguridad Industrial

Objetivo contar con Información en tiempo real que nos permita anticipar **riesgos**:

Medio: Dashboard

Tecnología e infraestructura CPS – cámara, Pulsera y sensor Figonomia Sudap Peads Vener de foregra Nesser a segura de carea de segura de

Output

-Seguimiento EHS

-Seguimiento Producción

Se busca evaluar la tecnología para revisar factibilidad técnica y económica de transferir a otras líneas o estaciones de trabajo una solución

RULA método. ¿Quién lo desarrolló?

La adopción continuada o repetida de posturas inadecuadas durante el trabajo genera fatiga y a la larga puede ocasionar trastornos en el sistema musculo esquelético. Esta carga estática o postural es uno de los factores a tener en cuenta en la evaluación de las condiciones de trabajo, y su reducción es una de las medidas fundamentales a adoptar en la mejora de puestos.

Fue desarrollado por los doctores McAtamney y Corlett de la Universidad de Nottingham en 1993 (Institute for Occupational Ergonomics)

Este método es utilizado para evaluar la exposición de los trabajadores a factores de riesgo que pueden ocasionar trastornos en los miembros superiores del cuerpo: posturas, repetitividad de movimientos, fuerzas aplicadas, actividad estática del sistema músculo

esquelético.

Aplicable a oficinas o piso de trabajo. Ej. Baldemar con mala postura.

Método Rula – Seleccionado.

Se revisaron 2 métodos REBA y RULA — **Método elegido fue RULA**

RULA – Evaluación – Niveles de riesgos

Información en tiempo real.

-Riesgo ergonómico RULA

- 1-2 Aceptable sin riesgo
- 3-4 Aceptable, pero se sugieren evaluar cambios en la operación
- 5-6 No aceptable, se sugieren cambios en corto plazo
- 7 No aceptable, cambios urgentes

RULA – Rapid Upper Limb Assessment - Evaluación de carga postural

Medición de bienestar en estación de trabajo.

Podemos evaluar el bienestar del colaborador con tres aspectos relevantes:

Carga de trabajo

Nivel de energía

Nivel de estrés

KPI	descripción	verde	amarillo	rojo
Carga de trabajo	La carga de trabajo se estima a partir de la frecuencia cardíaca, se considera trabajo moderado cuando hay más de 90 latidos por minuto y trabajo pesado cuando hay más de 110 latidos por minuto.	x > 90 (-50%)	x > 90 (+50%)	x > 110 (+3%)
Nivel de energía	La función Body Battery analiza la actividad física, estrés y descanso para informar sobre los niveles de energía del cuerpo.	x >= 25	25 > x > 15	x <= 15
Nivel de estrés	La función Estrés calcula los niveles de estrés (de 0 a 100) principalmente mediante la combinación de datos de frecuencia cardiaca y variabilidad de la frecuencia cardiaca.	x > 50 (-50%)	x > 50 (+50%)	x > 75 (+50%)

Nos alarmará cuando el operador tiene sobre carga de trabajo, nivel bajo de energía o alto estrés

Fundamento técnico - evidencia

Eficiencia vs # Estiramientos

- En el ciclo los estiramientos corresponden principalmente a la operación principal.
- Podemos ver que después de 1600 repeticiones la eficiencia disminuye por debajo del promedio que es 77%.
- En un cálculo muy general corresponde a 88 piezas, el promedio de piezas por persona por día es 112.

Resultados

Mediante los resultados que desarrolló el modelo predictivo, se podrán tomar decisiones que favorezcan la seguridad, ergonomia y bienestar de los empleados.

- Incremento estimado de aumento de eficiencia (5%)
- Reducción de lesiones por posturas incorrectas o actos inseguros.
- Bienestar de los empleados.

Conclusiones

- Se muestran 2 casos de uso aplicados a Manufactura de forma exitosa.
- Mucho potencial de Analítica, Data Science y ML en la Manufactura en México.
- Beneficios relevantes para las empresas y colaboradores.

Gracias

Juan Baldemar Garza V. PhD.

