PROBLEM STATEMENT

This program will calculate the end time and cost of a call given the start time, duration, and the different pay rates at certain times of the day.

Output Display

N=2	e(1) = 2	e(2) = 2.5	delta = 0.5
N = 3	e(2) = 2.5	e(3) = 2.67	delta = 0.17
N = 4	e(3) = 2.667	e(4) = 2.708	delta = 0.041
N = 5	e(4) = 2.7083	e(5) = 2.7167	delta = 0.0084
N = 6	e(5) = 2.71667	e(6) = 2.71805	delta = 0.00138
N = 7	e(6) = 2.71805	e(7) = 2.71825	delta = 0.00020
N = 8	e(7) = 2.71825	e(8) = 2.71827	delta = 0.00002
N = 9	e(8) = 2.71827	e(9) = 2.71828	delta = 0.00001
N = 10	e(9) = 2.7182815	e(10) = 2.7182818	delta = 0.0000003

Structure Chart

Flowchart for Main

Pseudo Code for Main

Start of algorithm for Main

- 1. Define variables n = 0, old_e = 0, new_e = 1
- 2. While(new_e old_e > 0.000001)
 - old_e = new_e
 - $new_e = new_e + 1.0 / (factorial(n++))$
 - Display output
- 3. Display final output

End of algorithm for Main

Flowchart for Factorial

Pseudo Code for Factorial

Start of algorithm for Factorial

- 1. If (n == 0)
 - return 1
- 2. Else
 - return(n * factorial(n-1))

End of algorithm for Factorial

Output

```
C:\WINDOWS\system32\cmd.exe
                                                                                                                                X
                                            Factorial Program
                                                                                            delta = 1.0000000

delta = 0.5000000

delta = 0.1666667

delta = 0.0416667

delta = 0.0083333

delta = 0.0013889

delta = 0.0001384
                                               e(1) = 2.00000000
e(2) = 2.50000000
e(3) = 2.6666667
e(4) = 2.7083333
e(5) = 2.7166667
e(6) = 2.7180556
e(7) = 2.7182540
e(8) = 2.7182788
e(9) = 2.7182815
  = 1 e(0) = 1.0000000
             e(1) = 2.0000000
e(2) = 2.5000000
e(3) = 2.6666667
N = 2
             e(4) = 2.7083333
e(5) = 2.7166667
e(6) = 2.7180556
N = 7
                                                                                              delta = 0.0000248
             e(7) = 2.7182540
N = 9 e(8) = 2.7182788
N = 10 e(9) = 2.7182815
N = 9
                                                                                                     delta = 0.0000028
                                                         e(10) = 2.7182818
                                                                                                     delta = 0.0000003
N = 10
e(9) = 2.7182815
e(10) = 2.7182818
Press any key to continue . . . _
```

User Instructions

This program requires no input from the user. Simply run the program and it will calculate the difference between two sequential factorial numbers until the difference is less than 0.000001.

Comment

This lab was real nice, quick and easy. It was cool to see how a recursive function works and it is interesting that a function can call itself. I'm interested in how I am going to use this new technique in the future.