Idempotent for Fun!

An idempotent matrix, \mathbf{A} , is such that $\mathbf{A}^2 = \mathbf{A}$. Prove that the eigenvalues of an (a). idempotent matrix are 0 or 1.

SOLUTION Consider $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

Then, $\mathbf{A}^2\mathbf{x} = \lambda^2 \mathbf{x}$.

Since $\mathbf{A}^2 = \mathbf{A}$, $\lambda^2 \mathbf{x} = \lambda \mathbf{x}$.

$$(\lambda^2 - \lambda)\mathbf{x} = \mathbf{0}$$

$$\lambda(\lambda-1)\mathbf{x}=\mathbf{0}$$

Since the eigenvector **x** is non-zero, then $\lambda(\lambda - 1) = 0$.

Solving, we have $\lambda = 0$ or $\lambda = 1$.

(b). If **A** is an $n \times n$ matrix and λ is an eigenvalue of **A**, then the union of **0** and the set of all the eigenvectors \mathbf{e}_k corresponding to eigenvalues λ_k , is a subspace of \mathbb{R}^n . The subspace is known as an eigenspace. Prove that the eigenspace is a subspace of \mathbb{R}^n under usual matrix addition and scalar multiplication.

SOLUTION

$$\mathbf{e}_k = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \lambda_k \, \mathbf{x} \right\}$$

Let $\mathbf{A}\mathbf{x} = \lambda_k \mathbf{x}$, $\mathbf{A}\mathbf{v} = \lambda_k \mathbf{v}$.

Then, $\mathbf{A}(\mathbf{x}+\mathbf{v}) = \mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{v}$

$$= \lambda_k \mathbf{x} + \lambda_k \mathbf{v}$$

$$=\lambda_k(\mathbf{x}+\mathbf{v})$$

⇒ Eigenspace is closed under usual matrix addition.

Let $\alpha \in \mathbb{R}$.

Then, $\mathbf{A}(\alpha \mathbf{x}) = \alpha \mathbf{A} \mathbf{x}$

$$=\alpha\lambda_k \mathbf{x}$$

$$=\lambda_k(\alpha \mathbf{x})$$

- ⇒ Eigenspace is closed under scalar multiplication.
- (c). Using results from (a) and (b), show that any idempotent matrix is diagonalisable.

SOLUTION

$$\mathbf{e}_k = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \lambda_k \mathbf{x} \right\}$$

Note that $\lambda = 0$ and 1.

Consider eigenspaces $\mathbf{e}_0 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0}\}$ and $\mathbf{e}_1 = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{x}\}.$

Let rank $(\mathbf{A}) = r$. Then ker $(\mathbf{A}) = n - r$ by Rank-Nullity Theorem.

Suppose the vectors \mathbf{y}_1 , \mathbf{y}_2 ,..., \mathbf{y}_r form a basis for the range space of \mathbf{A} .

Then
$$\mathbf{A}\mathbf{x}_i = \mathbf{y}_i \ \forall i = [1, r].$$

$$\Rightarrow \mathbf{A}^2 \mathbf{x}_i = \mathbf{A} \mathbf{y}_i$$

Since **A** is idempotent, $\mathbf{A}\mathbf{x}_i = \mathbf{A}\mathbf{y}_i$.

Then,
$$\mathbf{x}_i = \mathbf{y}_i \Rightarrow \mathbf{y}_i \in \mathbf{e}_1$$
.

$$\therefore \dim(\mathbf{e}_1) = r$$

$$\dim(\mathbb{R}^n)=n$$

$$\dim(\mathbf{e}_0) + \dim(\mathbf{e}_1) = n - r + r \text{ since } \mathbf{e}_0 \cap \mathbf{e}_1 = \mathbf{0}$$

$$= n$$

$$\Rightarrow \dim(\mathbb{R}^n) = \dim(\mathbf{e}_0) + \dim(\mathbf{e}_1)$$

$$\therefore \mathbb{R}^n = \mathbf{e}_0 \oplus \mathbf{e}_1$$