Linear Models

Weizi Li

Department of Computer Science University of Memphis

Outline 1

- Linear Classification
- Margins, Regularization, and Optimization
- Overfitting vs. Underfitting
- Bias-Variance Trade-off
- Linear Regression

Linear Classification

- $\theta \cdot X + \theta_0 = 0$
- X: both a vector and a point in high-dimensional space

- $m{ heta}$: also a vector, determine the orientation of the decision boundary
 - Consider $\theta \cdot X = 0$ (a linear classifier goes through the origin), θ is perpendicular to X, thus determine the orientation

■ Note that different θ can result in the same linear classifier, i.e., $c\theta \cdot X = \theta \cdot X = 0$

- $\theta \cdot X + \theta_0 = 0$
- \bullet θ_0 : determine the location of the decision boundary

- Why it's called linear classifier?
- Linear operations
 - Addition
 - Multiplication with a constant
- \bullet $\theta \cdot X$: only linear operations conducted on the elements of X

Linear classifier go beyond a "line"

- For n training examples $S_n = \{(X^{(i)}, y^{(i)}), i = 1, \ldots, n\}$ if there exist θ and θ_0 such that $y^{(i)}(\theta \cdot X^{(i)} + \theta_0) > 0$ for all $i = 1, \ldots, n$, we call these training examples linearly separable
 - \triangleright $X^{(i)}$: *i*th training example
 - \triangleright $y^{(i)}$: *i*th training example's label (+ or -)
 - $\theta \cdot X^{(i)} + \theta_0$: result of the classifier (+ or -)
- $y^{(i)}$ and $\theta \cdot X^{(i)} + \theta_0$ should have the same sign if the classifier works correctly

- Occurs when classifier makes a mistake
- For linear classification, occurs when data are not linearly separable, otherwise there exist algorithms guarantee no error
- Denote *h* as the classifier, *n* as the total number of training examples, we have the classification error:

$$\epsilon_n(h) = \frac{1}{n} \sum_{i=1}^n \left[\left[h(X^{(i)}) \neq y^{(i)} \right] \right]$$

Margins, Regularization, and Optimization

 Large margin: more robust classifier (against noise), less accurate

■ Small margin: less robust classifier, more accurate

- Hinge loss encourages large margins
- Denote ζ as the distance from the margin boundary to the decision boundary:
 - When $y^{(i)}(\theta \cdot X^{(i)} + \theta_0) > \zeta$, loss = 0
 - ▶ When $y^{(i)}(\theta \cdot X^{(i)} + \theta_0) \le \zeta$, loss $= \zeta y^{(i)}(\theta \cdot X^{(i)} + \theta_0)$

■ Recall the decision boundary of linear classification

$$\theta \cdot X + \theta_0 = 0$$

■ Then, the margin boundary of the decision boundary

$$\theta \cdot X + \theta_0 = \zeta$$

- If divide both sides by $\|\theta\|$, the decision boundary won't change but the margin boundary $\left(\frac{\zeta}{\|\theta\|}\right)$ will decrease if $\|\theta\|$ increases
- In general, the goal of regularization is to obtain a more robust classifier, thus prefer large margins (small $\|\theta\|$)

Objective function

$$J(\theta, \theta_0) = \epsilon_n(h) + \frac{\lambda}{2} \|\theta\|^2$$

lacksquare λ : regularization parameter (a hyperparameter)

Overfitting vs. Underfitting

- Recall the objective function $J(\theta, \theta_0) = \epsilon_n(h) + \frac{\lambda}{2} \|\theta\|^2$
- Increase λ will encourage smaller θ (less complex model), thus prevent overfitting

Bias-Variance Trade-off

Notation 17

- Assume the underlying true relationship between X and y is $y = f(X) + \epsilon$
- X, y: data and label
- f: actual mapping (unknown)
- \bullet : irreducible error (unknown)
- \hat{f} : trained model depends on the training set (not fixed)

- $\mathbb{E}\left[\left(y \hat{f}(x)\right)^{2}\right] = \left(f(x) \mathbb{E}\left[\hat{f}(x)\right]\right)^{2} + \mathbb{E}\left[\left(\hat{f}(x) \mathbb{E}\left[\hat{f}(x)\right]\right)^{2}\right] + \mathbb{E}\left[\epsilon^{2}\right]$
- $\left(f(x) \mathbb{E}\left[\hat{f}(x) \right] \right)^2$: bias
- $\mathbb{E}\left[\left(\hat{f}(x) \mathbb{E}\left[\hat{f}(x)\right]\right)^2\right]$: variance
- \blacksquare $\mathbb{E}\left[\epsilon^2\right]$: irreducible error
- \blacksquare Because the left-hand side and $\mathbb{E}\left[\epsilon^2\right]$ are fixed, when bias increases variance decreases, and vice versa

- Overfitting: low bias and high variance
- Underfitting: high bias and low variance
- Desired model: balancing bias and variance (neither overfit nor underfit)

Linear Regression

- Denote $h(X^{(i)}) = \theta \cdot X^{(i)} + \theta_0$
- Classification
 - y takes discrete values
 - Example loss: $\frac{1}{n} \sum_{i=1}^{n} \left[\left[h(X^{(i)}) \neq y^{(i)} \right] \right]$
- Regression
 - y takes continuous values
 - Example loss: $\frac{1}{n} \sum_{i=1}^{n} \frac{\left(y^{(i)} h\left(X^{(i)}\right)\right)^2}{2}$

- Compact representation: $\theta \cdot X + \theta_0 \rightarrow \theta' X'$ ($\theta' = [\theta, \theta_0]$, X' = [X, 1])
- Step 1: initialize θ'
- Step 2: randomly select a training example (X', y)
- Step 3: update θ' via $\theta' \leftarrow \theta' + \alpha(y \theta' \cdot X')X'$
 - $ightharpoonup \alpha$: learning rate
 - ▶ Where does this formula come from?
 - ► Why +?
- Step 4: if stopping criteria not meet, go to Step 2

- Compact representation: $\theta \cdot X + \theta_0 \rightarrow \theta' X'$ ($\theta' = [\theta, \theta_0]$, X' = [X, 1])
- Step 1: initialize θ'
- Step 2: randomly select a training example (X', y)
- Step 3: update θ' via $\theta' \leftarrow \theta' + \alpha(y \theta' \cdot X')X'$
 - $ightharpoonup \alpha$: learning rate
 - ► Where does this formula come from? $\nabla_{\theta} \frac{(y-\theta' \cdot X')^2}{2}$
 - Why +? we need to go the opposite direction of the gradient
- Step 4: if stopping criteria not meet, go to Step 2

- Small learning rate: slow learning
- Large learning rate: overshoot (miss the optimal point)

- Only applicable to linear problems (matrix operation is linear)
- Solution: $\theta' = \left(\frac{1}{n} \sum_{i=1}^{n} X^{(i)} \left(X^{(i)}\right)^{T}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} y^{(i)} X^{(i)}\right)$
- Pros: obtain the solution in one go
- Cons: 1) needs the matrix to be invertible, 2) matrix computation can be expensive