ME 165 Basic Mechanical Engineering

Lecture 01

Introduction

Sadia Tasnim

Lecturer

Department of Mechanical Engineering, BUET

Course Outcomes

- Upon the successful completion of the course, you should be able to-
- ✓ **Recognize** the significance of using engineering mechanics in modern lives in various forms
- ✓ **Distinguish** between different types of mechanics especially the theories and problems of statics and dynamics in various kinds of real-life situations
- ✓ Calculate the magnitude and directions of forces in a system using engineering mechanics theories
- ✓ Explain the working principles of statics and dynamics
- ✓ **Assess** the nature and impact of the engineering mechanics and also how to utilize procedure of mechanics in many applications

Course Content (Partial)

- > Statics of Particles and Rigid Bodies
- > Forces in Trusses and Frames
- ➤ Relative Motion
- **Example 2** Kinematics of Particles

References

- □ Vector Mechanics for Engineers (Statics & Dynamics)
 - Ferdinand P. Beer and E. Russell Johnston

- **□** Engineering Mechanics (Statics & Dynamics)
 - R. C. Hibbeler

✓ Class Materials

Course Assessment

Attendance & Class Performance	10%
Class Tests & Assignments	20%
Term Final Exam	70%
Total	100%

Definition of Mechanics

Mechanics: A branch of physics which describes and predicts the conditions of rest or motion of bodies under the action of forces.

Classical Mechanics→ Macroscopic objects

Quantum Mechanics Atoms and sub-atomics particles

Classification of Classical Mechanics

- A) Mechanics of Rigid Bodies:
 - i) Statics
 - ii) Dynamics:
- a) Kinematics;
- b) Kinetics;
- B) Mechanics of **Deformable bodies**
- C) Mechanics of Fluids:
 - i) Incompressible;
 - ii) Compressible;

Fundamental Concepts of Mechanics

Space: Associated with the notion of the position of a point.

σ (0, 2, 0) m

C(1, 1, 0.5) m

position

Time: Describes succession of events.

Statics: time-

independent

Dynamics: time-

dependent

Fundamental Concepts of Mechanics

Mass Vs Weight

Force: An action of one body on another body.

Characteristics of Force:

- **✓** Magnitude
- **✓** Point of application
- **✓** Line of action
- **✓** Direction

Fundamental Concepts of Mechanics

Tensile Force:

Compressive Force:

Bending Force:

Fundamental Principles of Mechanics

Newton's 1st Law of Motion:

$$\mathbf{F}_R = \mathbf{0}$$

$$\mathbf{a} = \frac{\mathbf{F}_R}{m} = \mathbf{0}$$

Newton's 2nd Law of Motion:

Fundamental Principles of Mechanics

Newton's 3rd Law of Motion:

Newton's Law of Gravitation:

Assumptions or Idealizations

Particle

• Rigid Body

Concentrated or Point Load