

LEVEL

SCHOOL
OF
OPERATIONS RESEARCH
AND
INDUSTRIAL ENGINEERING

COLLEGE OF ENGINEERING CORNELL UNIVERSITY ITHACA, NEW YORK 14853

81 6 08 05

SCHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING COLLEGE OF ENGINEERING CORNELL UNIVERSITY ITHACA, NEW YORK

TECHNICAL REPORT NO. 495

March 1981

MULTIPLE COMPARISONS FOR ORTHOGONAL CONTRASTS:

EXAMPLES AND TABLES

by

Robert E. Bechhofer and Charles W. Dunnett*

Research supported by
U.S. Army Research Office - Durham Contract DAAG-29-80-C-0036
Office of Naval Research Contract N00014-75-C-0586
at Cornell University

and

*Natural Sciences and Engineering Research Council of Canada at McMaster University

Approved for Public Release; Distribution Unlimited

*Department of Clinical Epidemiology and Biostatistics, and Department of Mathematical Sciences, McMaster University.

TABLE OF CONTENTS

		rage
Abs	tract	
1.	Introduction	1
2.	Distribution theory and tables	3
	2.1 Distribution theory	3
	2.2 Construction of the tables	6
3.	Illustrations of uses of the tables	7
	3.1 Experiments involving a single qualitative factor	7
	3.2 2 ⁿ factorial experiments	16
	3.3 3 n factorial experiments, all factors quantitative	20
	3.4 An application to biological assay	22
4.	Acknowledgments	24
Ref	erences	25

Acces	sion For	
NTIS	GRALI	53)
DTIC	TAB	Ď
	ounced	
Justi	fication_	 .
	ibution/	odes.
	Avail and	
Dist	Special	••
	1	
Λ]	
И		

Abstract

In many experimental situations the pertinent inferences are made on the basis of orthogonal contrasts among the treatment means (as in 2ⁿ factorial experiments). In this setting a particularly useful form of inference is one involving multiple comparisons. The present paper describes situations in which such inferences are meaningful, gives examples of their use, and provides an extensive set of tables of constants needed to implement such multiple comparison procedures. The procedures can also be used for statistically legitimate data snooping (in the sense of Scheffe (1959), p. 80) to help decide which contrasts within a specified set warrant further study.

<u>KEY WORDS</u>: Multiple comparisons, orthogonal contrasts, joint confidence intervals, experimentwise error rates, Studentized maximum modulus, simultaneous inference.

1. INTRODUCTION

The results of many planned experiments can be analyzed in terms of meaningful orthogonal contrasts among treatment means. This is the situation, for example, in 2ⁿ factorial experiments, and in experiments with quantitative factors for which orthogonal polynomials (Fisher and Yates (1938-1963); Davies (1978), Appendix 8C) are employed to fit a regression curve or surface; Cochran and Cox (1957), Sections 3.4-3.5, discuss orthogonal contrasts in some detail. Ackermann (1979) proved a general formula to calculate the values of orthogonal polynomials for the case of nonequidistant levels and unequal numbers of observations.

For hypothesis testing the orthogonality of the treatment contrasts makes it possible to partition the sum of squares for treatments into a set of one-degree-of-freedom sums of squares which add up to the sum of squares for treatments; under normality each individual sum of squares associated with one of the treatment contrasts is distributed as χ^2 with one degree of freedom, independently of all of the other individual sums of squares. The orthogonality of the treatment contrasts also guarantees that their usual best linear unbiased estimators are normally and independently distributed.

If only <u>one</u> contrast is of interest, then Student's t can be used for hypothesis testing or for interval estimation. However, in most experiments there is more than one contrast which is of interest. The problem then becomes somewhat more complicated for <u>joint</u> inferences are now involved, and the experimenter may desire to control the <u>experimentwise</u> error rate. Thus, e.g., when two or more hypotheses are each tested separately at level of significance α using (say) Student's t, the experimentwise error rate (which controls the probability of at least one false positive) is greater

than α . To help compensate for this effect some experimenters use, for each test, a common value of α which is smaller than the one that would typically be employed if only one hypothesis were being tested; others use critical values based on Bonferoni inequalities. (The problem is further complicated by the fact that the individual tests are not independent since each usually employs the <u>same</u> residual mean square as the estimator of the underlying variance.) Analogous problems arise when two or more orthogonal contrasts are to be estimated jointly using one-sided or two-sided confidence intervals.

In the present paper we shall mainly consider joint two-sided confidence interval estimation of orthogonal contrasts; the joint confidence interval approach is usually more relevant than joint hypothesis testing. In any case, joint interval estimation can easily be re-formulated as joint hypothesis testing. We shall describe situations in which the joint interval estimation approach would appear to be appropriate, and show how to make exact confidence statements concerning the joint interval estimates of the orthogonal contrasts which are of interest. In Section 2 we provide an extensive set of tables of constants which are needed to implement the procedure. The constants are based on a special case of the multivariate Student's t of Dunnett and Sobel (1954) and Cornish (1954). The theory underlying these tables is given in Section 2 along with a description of the method underlying their construction, and comments on the accuracy of the entries therein. Section 3 describes some examples of the application of the tables.

DISTRIBUTION THEORY AND TABLES

2.1 Distribution theory

We assume that the random variables Y_{ij} $(1 \le i \le k; j = 1, 2, \ldots, N)$ are independent and normally distributed with $E\{Y_{ij}\} = \mu_i$ and $Var\{Y_{ij}\} = \sigma^2$, the $\{\mu_i\}$ and σ^2 being unknown. Define $\theta_m = \sum\limits_{i=1}^k c_{mi}\mu_i$ $(1 \le m \le p)$ where the c_{mi} $(1 \le i \le k, 1 \le m \le p)$ are specified constants k such that $\sum\limits_{i=1}^k c_{mi} = 0$ $(1 \le m \le p)$. The θ_m represent a family of p contrasts among the μ_i ; we suppose that the experimenter is interested in obtaining two-sided interval estimates of the θ_m with specified joint confidence coefficient $1-\alpha$. Such interval estimators with the required joint confidence coefficient are given by

$$B_{m} = \left\{ \theta_{m} : \theta_{m} \in \hat{\theta}_{m} \pm h \sqrt{\sum_{i=1}^{k} c_{mi}^{2} s^{2}/N} \right\} \quad (1 \leq m \leq p)$$

where $\hat{\theta}_{m} = \sum_{i=1}^{k} c_{mi} \hat{\mu}_{i}$; $\hat{\mu}_{i} = \sum_{j=1}^{N} Y_{ij}/N$, s^{2} is the usual unbiased estimate of σ^{2} based on v d.f. $(vS^{2}/\sigma^{2}$ is distributed as χ^{2}_{v} , independently of $\hat{\theta} = (\hat{\theta}_{1}, \dots, \hat{\theta}_{p})$, and h is a constant chosen to satisfy

$$P\{ \bigcap_{m=1}^{p} B_{m} \} = 1-\alpha.$$

In order to determine the value of h to be used, we note that $\hat{\xi}$ has a p-variate normal distribution $N(\hat{\xi}|\hat{\xi},\xi)$ where the elements of ξ are given by

$$\sigma_{m_1 m_2} = (\sum_{i=1}^{k} c_{m_1 i} c_{m_2 i}) \sigma^2 / N \quad (1 \le m_1, m_2 \le p).$$

Then the distribution of $T = (T_1, ..., T_p)$ where

$$T_{j} = (\hat{\theta}_{j} - \theta_{j}) / \sqrt{\sum_{i=1}^{p} c_{mi}^{2} s^{2}/N}$$

is a central p-variate Student t-distribution with ν d.f. Its joint density function (see Dunnett and Sobel (1954) or Cornish (1954)) is given by

$$f_{\nu}(t_{1},...,t_{p};\xi) = \frac{\left[A^{\frac{1}{2}}\Gamma[(\nu+p)/2]}{(\nu\pi)^{\frac{p}{2}}\Gamma(\nu/2)}\left[1+\frac{1}{\nu}\sum_{j_{1}=1}^{p}\sum_{j_{2}=1}^{p}a_{j_{1}}^{j_{2}}t_{j_{1}}^{t_{1}}t_{j_{2}}\right]^{-\frac{(\nu+p)}{2}}$$
(2.1)

where the $\{a_{j_1j_2}\}$ are the elements of $A = Z^{-1}$. Let $|I| = (|I_1|, ..., |I_p|)$ where I has the joint density function (2.1), and let

$$G_{V}(h;p,\xi) = P\{|T_{m}| \leq h \quad (1 \leq m \leq p)\}$$

$$= \int_{-h}^{h} \cdots \int_{-h}^{h} f_{V}(t_{1},\dots,t_{p};\xi)dt_{1}\dots dt_{p}$$

$$= \int_{0}^{\infty} \left[\int_{-hs < x_{m} < hs}^{\infty} \phi(x_{1},\dots,x_{p};\xi)dx_{1}\dots dx_{p} \right] g_{V}(s)ds$$

$$= \int_{0}^{\infty} \left[\int_{-hs < x_{m} < hs}^{\infty} \phi(x_{1},\dots,x_{p};\xi)dx_{1}\dots dx_{p} \right] g_{V}(s)ds$$

where $\phi(\mathbf{x}_1,\dots,\mathbf{x}_p;\mathbb{R})$ is the standard p-variate normal probability density function (pdf) with correlation matrix $\mathbb{R} = \{\rho_{m_1m_2}^{}\}$, and $\mathbf{g}_{\mathbb{Q}}(\mathbf{s})$ is the pdf of S. If $\rho_{m_1m_2} = \rho$ $(m_1 \neq m_2, 1 \leq m_1, m_2 \leq p)$ then the multiple integral within the square brackets of (2.2) can be expressed as an iterated integral (thus simplifying the problem of evaluating it numerically), and (2.2) reduces to

$$H_{\nu}(h;p,\rho) = \int_{0}^{\infty} \left\{ \Phi\left(\frac{hs+\rho^{1/2}y}{(1-\rho)^{1/2}}\right) - \Phi\left(\frac{-hs+\rho^{1/2}y}{(1-\rho)^{1/2}}\right) \right\}^{p} \times d\Phi(y) dy \right\} g_{\nu}(s) ds \quad (2.3)$$

where $\phi(\cdot)$ is the standard normal cdf.

The constants $h = h_V(p,\rho,\alpha)$ satisfying $H_V(h;p,\rho) = 1-\alpha$ have been tabulated to two decimal places by Dunnett (1964) for $\rho = 0.5$; p = 2(1)12,15,20; $\alpha = 0.05,0.01$; $\nu = 5(1)20,24,30,40,60,120,\infty$. Hahn and Hendrickson (1971) tabulated h to three decimal places for $\rho = 0.0,0.2,0.4,0.5$; p = 1(1)6(2)12,15,20; $\alpha = 0.10,0.05,0.01$; $\nu = 3(1)12,15(5)30,40,60$. Other earlier tabulations are cited in Hahn and Hendrickson. Krishnaiah and Armitage (1970) tabulated h^2 to two decimal places for $\rho = 0.1(0.1)0.9$; p = 1(1)10; $\alpha = 0.05,0.01$; $\nu = 5(1)35$.

For the special case of orthogonal contrasts with which we are concerned here, we have $\sum_{i=1}^k c_{m_1} i^c_{m_2} i = 0 \quad (m_1 \neq m_2, \quad 1 \leq m_1, m_2 \leq p); \text{ hence } p = 0 \quad \text{and (2.3) becomes}$

$$H_{v}(h;p,0) = \int_{0}^{\infty} [\Phi(hs) - \Phi(-hs)]^{p} g_{v}(s) ds.$$
 (2.4)

Since $\rho=0$ we see that Hahn and Hendrickson's Table 1 is applicable. In this case the statistic $M(p,v)=\max_{1\leq m\leq p}|\hat{\theta}_m-\theta_m|\sqrt{\sum\limits_{i=1}^p c_{mi}^2 S^2/N}$ is known as the Studentized maximum modulus, and $P\{M(p,v)\leq h\}=H_v(h;p,0)$. Pillai and Ramachandran (1954) had earlier tabulated h for $\rho=0$ to two decimal places for p=2(1)8; $\alpha=0.05$; $v=5(5)20,24,30,60,120,\infty$. Stoline and Ury (1979) have tabulated h to three decimal places for p=k(k-1)/2, k=3(1)20; $\alpha=0.2,0.1,0.05,0.01$; $v=5,7,10,12(4)24,30,40,60,120,\infty$; in a later paper (Ury, Stoline and Mitchell (1980)) these tables were extended to cover k=20(2)50(5)80,90,100; $\alpha=0.2,0.1,0.05,0.01$; $v=20(1)40(2)60(5)120,240,480,\infty$. (The constants tabulated by Stoline et al. were to be used for joint two-sided interval estimates for the k(k-1)/2 pairwise contrasts $\mu_i = \mu_i$ between the k population means. $\frac{1}{1}$ Such contrasts are not orthogonal, but as a consequence of an inequality of

Sidák (1967), the use of constants h determined for the case $\rho=0$ results in intervals which are conservative, i.e., they achieve a joint confidence coefficient which exceeds the nominal 1- α at the cost of having intervals which are somewhat broader than they need be.) Earlier, Games (1977), employing Šidák's (1967) multiplicative inequality, computed conservative constants, specifically for the problem of multiple comparisons for non-orthogonal contrasts, his tables give upper bounds to h to three decimal places for p=2(1)10(5)50; $\alpha=0.20,0.10,0.05,0.01$; $\nu=2(1)30,40,60,120,\infty$. (We mention that Chen (1979) tabulated percentage points associated with random variables arising from a multivariate Student t-distribution (2.1) with zero correlations. However, his tables are not related to ours; they are used, for example, to find an interval estimate of $\max\{\mu_1,\ldots,\mu_k\}$ when the estimates $\hat{\mu}_i$ ($1 \leq i \leq k$) are based on sample sizes which are not necessarily all equal.)

In applications involving multiple comparisons for orthogonal contrasts, our tables provide the constants needed to obtain two-sided interval estimates of p contrasts with joint confidence coefficient exactly equal to the nominal value of 1- α . The tables give h = h_v(p, ρ , α) to five significant figures for ρ = 0; p = 2(1)31; α = 0.2,0.1,0.05,0.01, ν = 2(1)30(5)60,120,240, ∞ .

2.2 Construction of the tables

In order to construct the tables it was necessary to obtain the solution in h to $H_{\nu}(h;p,0)=1-\alpha$ where $H_{\nu}(h;p,0)$ is given by (2.4). To evaluate the infinite integral for finite values of ν , a 96-point Legendre quadrature formula was used (see Abromowitz and Stegun (1964), p, 919); for $\nu=\infty$ we have s=1 and the infinite integral disappears. This method of calculation is not appropriate for $\nu=1$ (since the pdf

 $g_{\nu}(s)$ is then infinite at s=0), and no h-values were computed for $\nu=1$. The general computer program which was written for arbitrary ρ and h was first used for $\rho=1/2$, p=2, and the probabilities obtained were then checked against those given in Table 1 of Dunnett and Sobel (1954) which had been computed using an exact series expansion; agreement was found to the five decimal places given in each. The h-values were also checked against those given in Hahn and Hendrickson's Table 1 and in Stoline and Ury (1979), and agreed to the three decimal places given in these tables. Our h-values are believed to be correct to the four decimal places given.

3. ILLUSTRATIONS OF USES OF THE TABLES

In this section we consider several types of planned experiments in which the pertinent inferences are made on the basis of orthogonal contrasts among the treatment means. We shall point out some of the issues involved, and indicate how the multiple comparisons procedures used with the appropriate constants in our tables can control the experimentwise error rates for such inferences.

3.1 Experiments involving a single qualitative factor Example 1: A 5-level experiment

Bennett and Franklin (1954), Section 7.34, consider an experiment involving five different methods of analyzing the concentration of iron in a standard solution. Two methods included agitation and three methods did not; four analyses were made with each method. The orthogonal contrasts under consideration (see their Table 7.9) were $(c_{m1}, c_{m2}, \ldots, c_{m5}) = (3,3,-2,-2,-2), (1,-1,0,0,0), (0,0,2,-1,-1), (0,0,0,1,-1)$ for m = 1,2,3,4, respectively. Here p = 4, v = 15 and from our Tables 1 and 2 we find

Table 1

G (r	•	•	u	•	r	c	c		:			:		•
	7	n	•		c		æ	יע	81	7	7.1	·	7	15	9 (
~ ~	12.7266	14.4366	15.5338	16.5916 8 9187	17.3507	17.9860	18.5307	19.0067	19,4286	19.8070	20.1497	20.4626	20.7503	.016	21.2637
. ←	5.4619	985	6.3624				274	428		68	÷.	7.905	8,000	- 8	1.152 8.171
ب	700	105	5.3974	•	•	5	_	. 226		43	•	. 599	674	.743	808
ď	27.1		. 85	. 04	. 201	. 334	448	. 549	639	127	795	. 86.3	926	985	910
7	166	. 295	. 51	.6	. 814	.930	030	. 119	198	269	334	394	450	503	549
œ (808	079	. 27	. 42	. 547	.651	. 742	.822	.893	. 958	.017	.071	. 121	167	211
	3.6716	3.9215	4.0999	4.2388	4.3526	4.4488	4.5322	4.6058	4.6716	4.7310	4.7853	4.8351	4.8813	4.9241	4.9642
3	נ נ			Ŝ.	. 204	. 294	. 372	. 441	. 502	. 558	. 608	. 655	. 698	738	.776
Ξ	1.4845	3.70	3.8452	. 988	.088	.173	. 247	. 312	370	. 42	. 470	. 514	. 554	. 592	628
~ :	3.4182	3.63	. 78	.899	.995	.075	. 146	. 207	. 263	. 31	358	. 400	.439	.475	. 508
Ξ:	3.3536	m' (3.7138	3.8264	3.9183	3.9959	4.0631	4.1224	4.1753	4.2232	4.2668	4.3069	4.3440	4.3785	4.4107
e v	1.31/8	10.4		. j.	854	928	. 993	. 050	. 101	. 14	190	. 228	. 264	. 297	. 328
2	1.2170		•	:	. 13	7/8.	. 934	. 990	.039	8	124	. 162	. 196	. 228	. 259
15	45	3.4338	. 566	3.5692	.752	.823	.884	.938	.986	. 02		. 105	. 138	. 169	99.
7	9	3.4007	. 530	•	.712	. 781	.840	.892	.939	. 98	•	.055	. 088	118	147
æ :	3.1913	3.3717		3.5968	3.6766	3.7439	3.8020	3.8532	3.8988	3.9401	3.9777	4.0122	4.0441	4.0738	4.1016
2 5	9	1.1461.	0/6.		24.		.768	818.	. 862	96	•	. 973	. 005	.034	. 061
	D	323	. 445	. 540	.61	. 682	.737	. 787	.830	. 87	•	. 939	.970	. 999	. 025
	3.1310	۳.	•	. 516	. 592	. 656	.710	.759	802	8	.876	.90	. 939	.967	. 993
	3.1149	3.284	•	. 495	. 569	.632	. 685	.734	776	8	.849	. 88	. 911	939	964
 	3.1003	m -	3.3855	3.4760	3.5495	3,6113	3.6646	3.7115	3.7534	3.7911	3.8255	3.8570	3.8862	3.9133	3.9386
	0/80.5	3.252	•	458	. 530	. 592	644	. 690	732	9	. 803	. 83	.863	.889	. 914
	3.0.49	3.239	•	. 142	. 514	. 574	. 626	.672	712	7	. 783	8	.842	.868	. 893
56	. 063	3.2263	. 340	4.	. 198	.558	.609	4	.69	.731	.764	.794	.823	. 849	. 873
27	.053	214	. 327	₹.	. 484	. 543	. 594	.638	.678	.714	.747	m.	. 805	.831	. 855
8 6	9	3.2039	3.3157	40	3.4711	3.5296	3.5800	3.6243	3.6637	3.6993	3.7317	3.7514	3.7889	3.8144	3.8382
30		193	. 200	יי	456	71.5	. 56h	919.	649	685	.717	. 746	. 773	. 799	. 822
	•	5		•		. 20.2	• 004	. 398	. 535	. 5/1	. 703	. 132	. 759	. 784	. 808
32	•	3.1467	. 253	. 33	.401	. 456	. 50	. 546	. 583	9.	.648		702	. 726	. 748
C :	•	118	. 222	200	.367	. 421	.46	. 508	. 544	3	.607		629	683	. 705
4 T	1956.5	3.09/2	3.1994		340	.393	.43	. 479	. 514	'n.	. 576		627	650	.671
25	2.9230	955	165	3.2419	3,3033	3,3547	3.3989	3.4377	3.4721	3,5628	1.5514	3.5//5	3.5018	3.6242	3.6452
ď		9	•	ć					•	•	•	•	٦ ٢		•
0.0	2.9129	3.0549	3.1554	3.2285	. 289	.340	. 383	. 422	•	.48	. 514	. 540	. 563	. 585	•
240	. 832	963		122	. 17. 178	767.	203	7000	•		. 425	. 449	. 471	. 491	•
8	806	934	3.0222	680	3.1428	3.1876	3.2260	3.2595	3.2893	3.3160	3.3402	3,3624	3.4266	3.4462	3.4645

Table 1 (continued)

	31	23.7117 12.3509 8.9968 7.4609	6.5925 6.0374 5.6531 5.3718	4.9881 4.8516 4.7392 4.6450	4.4961 4.4363 4.3838 4.3375 4.2962	4.2592 4.2259 4.1957 4.1683 4.1432	4.1203 4.0991 4.0796 4.0616	3.9762 3.9258 3.8871 3.8565	3.8111 3.7010 3.6475 3.5952
	30	23.5940 12.2930 8.9567 7.4290	6.5654 5.0135 5.6314 5.3517 5.1384	4.9704 4.8348 4.7230 4.6294	4.4815 4.4220 4.3699 4.2829	4.2461 4.2130 4.1831 4.1558 4.1309	4.1081 4.0871 4.0678 4.0498	3.9651 3.9149 3.8765 3.8461	3.8011 3.6917 3.6386 3.5866
	59	23.4719 12.2329 8.9151 7.3961	6.5374 5.9887 5.6090 5.3310	4.9520 4.8173 4.7063 4.6133	4.4663 4.4073 4.3555 4.3098	4.2326 4.1997 4.1700 4.1429	4.0956 4.0747 4.0555 4.0377	3.9535 3.9037 3.8656 3.8354 3.8109	3.7907 3.6821 3.6294 3.5778
	28	23.3451 12.1706 8.8720 7.3619	6.5084 5.9631 5.5857 5.3095 5.0989	4.9330 4.7992 4.6889 4.5966	4.4506 4.3920 4.3406 4.2952	4.2186 4.1860 4.1564 4.1296	4.0826 4.0619 4.0428 4.0251	3.9416 3.8921 3.8543 3.8243	3.7800 3.6721 3.6198 3.5686
(CONT.)	27	23, 2133 12, 1058 8, 8271 7, 3264	6.4783 5.9365 5.5615 5.2872 5.0780	4.9133 4.7804 4.6709 4.5792	4.4344 4.3762 4.3252 4.2801	4.2040 4.1717 4.1424 4.1157 4.0914	4.0691 4.0485 4.0296 4.0120 3.9957	3.9291 3.8801 3.8425 3.8128	3.7688 3.6618 3.6099 3.5591
66. r V	26	23,0759 12,0383 8,7805 7,2894	4459 5.9088 5.5365 5.2640	4.8928 4.7609 4.6523 4.5613	4.4175 4.3597 4.2644 4.2246	4.1889 4.1568 4.1278 4.1013	4.0550 4.0347 4.0159 3.9985 3.9823	3.9162 3.8676 3.8303 3.8008 3.7769	3.7572 3.6510 3.5995 3.5491
1^1. Pua	25	22.9327 11.9680 8.7319 7.2510	6.4143 5.8800 5.5104 5.2400 5.0338	4.8716 4.7406 4.6328 4.5425 4.4658	4.3999 4.3426 4.2924 4.2481 4.2085	4.1732 4.1414 4.1126 4.0853 4.0624	4.0404 4.0203 4.0016 3.9844 3.9683	3.9028 3.8546 3.8175 3.7884	3.7451 3.6398 3.5888 3.5888
MODULUS FOR	24	22.7830 11.8946 8.6813 7.2109	5.3804 5.8500 5.4832 5.2149	4.8494 4.7195 4.6126 4.5230 4.4470	4.3816 4.3248 4.2750 4.2311	4.1569 4.1253 4.0967 4.0707	4.0252 4.0052 3.9868 3.9696	3.8888 3.8410 3.8044 3.7754	3.7325 3.6281 3.5776 3.5280
IMIM MOD	23	22.6263 11.8178 8.6283 7.1690	6.3448 5.8187 5.4548 5.1887	4.8262 4.6975 4.5915 4.4273	4.3625 4.3062 4.2569 4.2133	4.1398 4.1085 4.0802 4.0545	4.0094 3.9895 3.9712 3.9543	3.8742 3.8268 3.7905 3.7385	3.7193 3.6159 3.5658 3.5167
STUDENFIZED MAXIMUM	22	22.4620 11.7374 8.5728 7.1251	6.3077 5.7859 5.4251 5.1613	4.8020 4.5744 4.5694 4.4814	4.3426 4.2868 4.2379 4.1948	4.1219 4.0910 4.0529 4.0374	3.9928 3.9731 3.9550 3.9382 3.9226	3.8589 3.8120 3.7750 3.7476	3.7055 3.6031 3.5535 3.5049
STUDENT	21	22.2892 11.6528 8.5146 7.0791	6.2508 5.7515 5.3940 5.1326 4.9334	4.7767 4.6503 4.5463 4.4592 4.3852	4.3217 4.2664 4.2181 4.1753	4.1032 4.0726 4.0448 4.0195 3.9965	3.9754 3.9560 3.9380 3.9214 3.9060	3.8429 3.7965 3.7609 3.7327 3.7099	3.6911 3.5897 3.5406 3.4925
	20	22.1072 11.5539 8.4533 7.0308	6.2278 5.7155 5.3613 5.1024 4.9052	4.7501 4.6250 4.5220 4.4358 4.3626	4.2997 4.2451 4.1972 4.1549	4.0836 4.0533 4.0258 4.0009 3.9781	3.9572 3.9379 3.9202 3.9037 3.8885	3.8251 3.7801 3.7449 3.7171 3.6945	3.6759 3.5756 3.5271 3.4795
	19	21.9149 11.4700 8.3887 6.9798	6.1847 5.6775 5.3269 5.0707	4.7221 4.5983 4.4965 4.4112	4.2756 4.2226 4.1753 4.1334	4.0630 4.0330 4.0058 3.9811 3.9586	3.9179 3.9189 3.9014 3.8851	3.8084 3.7629 3.7281 3.7006 3.6783	3.5599 3.5508 3.5127 3.4657
	18	21.7112 11.3707 8.3204 6.9250	6.1392 5.6374 5.2906 5.0372 4.8443	4.6925 4.5702 4.4695 4.3853	4.2522 4.1989 4.1521 4.1108	4.0411 4.0115 3.9847 3.9503	3.8989 3.88815 3.8855 3.8555	3.7896 3.7448 3.7104 3.6832	3.5430 3.5451 3.4975 3.4512
	11	21.4946 11.2652 8.2480 5.8690	5.0910 5.5949 5.2522 5.0018	4.6413 4.5404 4.4410 4.3578 4.2872	4.2255 4.1738 4.1275 4.0858 4.0505	4.0181 3.9888 3.9524 3.9383	3.8952 3.8775 3.8505 3.8447	3.7698 3.7255 3.6916 3.6448	3.5250 3.5284 3.4815 3.4357
	. D. F.		م 1 و 1	11 12 13 14	15 17 18 19 20	21 22 23 24 25	25 27 28 30	35 40 50 50 55	50 120 240 8

Table 2

STUDENTIZED MAXIMUM MODULUS FOR 1.-ALPHA = .95

					•			
91	9.3902 6.3284 5.2210 4.6574	4.3172 4.0898 3.9270 3.8048	3.6336 3.5712 3.5192 3.4753	3.4048 3.3762 3.3510 3.3285 3.3084	3.2904 3.2740 3.2591 3.2456 3.2331	3.2217 3.2111 3.2013 3.1922 3.1838	3.1490 3.1231 3.1031 3.0872 3.0743	3.0635 3.0051 2.9763 2.9478
15	9.2801 6.2586 5.1662 4.6105	4.2751 4.0510 3.8907 3.7704 3.6767	3.6018 3.5404 3.4893 3.4460	3.3768 3.3486 3.3238 3.3017 3.2820	3.2642 3.2481 3.2335 3.2202 3.2080	3.1967 3.1863 3.1767 3.1678 3.1595	3.1253 3.0999 3.0803 3.0647 3.0520	3.0414 2.9841 2.9558 2.9278
1.4	9.1616 6.1836 5.1074 4.5601	4.2300 4.0094 3.8517 3.7334 3.6413	3.5677 3.5074 3.4572 3.4147	3.3467 3.3190 3.2947 3.2730 3.2536	3.2362 3.2204 3.2061 3.1930	3.1700 3.1598 3.1504 3.1416	3.0999 3.0750 3.0558 3.0405	3.0177 2.9614 2.9337 2.9063
13	9.0335 6.1027 5.0439 4.5057	4.1813 3.9646 3.8098 3.6936	3.5310 3.4718 3.4226 3.3809	3.3142 3.2872 3.2633 3.2421 3.2231	3.2060 3.1905 3.1765 3.1637 3.1519	3.1411 3.1311 3.1219 3.1133	3.0725 3.0482 3.0293 3.0144 3.0022	2.9920 2.9370 2.9099 2.8831
12	8.8941 6.0147 4.9750 4.4468	4.1285 3.9160 3.7643 3.6504	3.4912 3.433 3.3851 3.3443	3.2791 3.2526 3.2292 3.2085 3.1899	3.1732 3.1581 3.1444 3.1319	3.1098 3.1001 3.0911 3.0827 3.0749	3.0428 3.0190 3.0006 2.9860 2.9741	2.9642 2.9105 2.8840 2.8578
11	8.7414 5.9185 4.8997 4.3824	4.0709 1.8631 3.7145 3.6034	3.4478 3.3912 3.3442 3.3044	3.2407 3.2149 3.1921 3.1719	3.1375 3.1227 3.1094 3.0972 3.0860	3.0757 3.0662 3.0574 3.0492	3.0104 2.9871 2.9692 2.9550 2.9434	2.9338 2.8814 2.8557 2.8302
10	8.5727 5.8124 4.8168 4.3116	4.0076 3.8048 3.6601 3.5517	3.4001 3.3450 3.2992 3.2605	3.1985 3.1734 3.1512 3.1316 3.1140	3.0981 3.0838 3.0708 3.0589	3.0381 3.0288 3.0203 3.0123	2.9746 2.9520 2.9346 2.9208 2.9095	2.9002 2.8494 2.8244 2.7996
6	8.3846 5.6944 4.7247 4.2330	3.9373 3.7402 3.5996 3.4943	3.3471 3.2937 3.2493 3.2117	3.1517 3.1273 3.1059 3.0868 3.0698	3.0544 3.0406 3.0280 3.0165	2.9952 2.9873 2.9790 2.9714 2.9542	2.9348 2.9130 2.8961 2.8827 2.8718	2.8628 2.8136 2.7895 2.7655
80	8.1723 5.5615 4.6212 4.1447	3.8584 3.6677 3.5317 3.4299 3.3508	3.2877 3.2362 3.1933 3.1570	3.0991 3.0756 3.0549 3.0365	3.0053 2.9919 2.9798 2.9687 2.9585	2.9492 2.9406 2.9326 2.9252 2.9183	2.8900 2.8590 2.8528 2.8399 2.8294	2.8207 2.7733 2.7500 2.7270
7	7.9291 5.4098 4.5031 4.0442	3.7685 3.5851 3.4544 3.3566	3.2201 3.1706 3.1294 3.0946	3.0391 3.0166 2.9967 2.9791 2.9634	2.9492 2.9364 2.9248 2.9142	2.8955 2.8872 2.8796 2.8725 2.8659	2.8388 2.8187 2.8031 2.7908 2.7807	2.7724 2.7271 2.7048 2.6828
ve	7.6454 5.2334 4.3661 3.9275	3.6644 3.4894 3.3648 3.2716 3.1993	3.1416 3.0945 3.0553 3.0222 2.9939	2.9694 2.9480 2.9292 2.9124 2.8974	2.8840 2.8718 2.8508 2.8507 2.8414	2.8330 2.8251 2.8179 2.8111 2.8049	2.7791 2.7600 2.7453 2.7335 2.7240	2.7161 2.6731 2.6519 2.6310
'n	7.3041 5.0232 4.2032 3.7890	3.5407 3.3757 3.2583 3.1706	3.0483 3.0040 2.9571 2.9360 2.9094	2.8854 2.8553 2.8485 2.8328 2.8188	2.8061 2.7947 2.7843 2.7749 2.7652	2.7582 2.7509 2.7441 2.7378 2.7319	2.4898 2.6759 2.6759 2.6549 2.6560	2.6485 2.6082 2.5884 2.5688
4	5.8863 4.7644 4.0030 3.6189	3.3888 3.2361 3.1275 3.0453	2.9333 2.8924 2.8584 2.8296 2.8051	2.7838 2.7553 2.7489 2.7344 2.7214	2.7098 2.6992 2.6897 2.6809	2.6656 2.6588 2.6525 2.6467 2.6413	2.6190 2.6025 2.5897 2.5795 2.5713	2.5644 2.5273 2.5090 2.4909
m	6.3405 4.4297 3.7446 3.3992	3.1924 3.0555 2.9580 2.8852 2.8289	2.7839 2.7472 2.7168 2.6910	2.6500 2.6334 2.5187 2.6057 2.5941	2.5837 2.5743 2.5657 2.5579 2.5507	2.5441 2.5381 2.5324 2.5272	2.5024 2.4875 2.4762 2.4671 2.4597	2.4536 2.4203 2.4039 2.3877
8	5.5714 3.9502 3.3820 3.0905	2.9161 2.8004 2.7181 2.5567 2.6091	2.5712 2.5402 2.5145 2.4928 2.4742	2.4581 2.4441 2.4317 2.4207 2.4109	2.4021 2.3941 2.3869 2.3803 2.3743	2.3687 2.3535 2.3588 2.3544 2.3503	2.3334 2.3209 2.3113 2.3035 2.2973	2.2922 2.2640 2.2502 2.2365
64	~ m 4 v	~ r & o c	~ 0 m 4 v	₹ F B 6 C	20020	203872	80808	6888

Table 2 (continued)

					STUDENT	IZED MAX	TOW WOW!	STUDENTIZED MAXIMUM MODULUS FOR	1ALPHA	7	(COMT.)				
D.F.	17	18	19	20	21	22	23	24	25	56	2.7	28	59	30	31
~ ~	9.4930	9.5893	9.6800	9.7685	9.8465	9.9233	9.9964	. 066	10.1326	10.1963	10.2574	10.3160	10.3724	10.4266	.47
- 4	5.2723	5.3204	5.3558	5.4087	449	5 / B	22	5.5598	593	625	65	. 68	714	742	7 69
on (4.7014	742	4.7817	4.8185	.853	.886	6	948	.977	004	.03	.05	. 081	105	. 128
œ	4.3547		4.4287	.461	. 493	. 522	. 551	578	604	629	. 653	676	698	2119	74
7	•	4.1602		4.2229	4.2518	4.2793	4,3055	4.3305	4,3545	4.3775	4.3995	4.4207	4.4411	4.4608	4.4798
œ	3.9511		. 02	.051	.079	104	. 129	. 152	. 175	. 196	. 217	. 237	. 256	. 275	. 29
6	3.8371	3.8475	3.8942	3.9233	.949	.973	.996	.019	.040	.060	. 080	.099	.117	. 135	15
01	3.7406	•	. 79	. 823	. 847	. 871	. 893	. 914	. 935	. 954	. 973	. 991	. 009	. 026	. 04
			.117	•	. 76	. 789	.810	831	.851	.869	. 88	. 905	. 922	. 938	. 954
		•	.652	•	2.	.721	.742	762	. 781	.800	. 81	.834	.850	.866	. 881
		•	. 598	•	. 64	.665	.686	705	.724	.741	. 75	.775	.791	.806	.821
T	3.5026	3.5284	3.5527	3.5757	3.5976	3.6183	3.6381	3.6571	3.6752	3.6926	3.7093	3.7253	3.7408	3.7557	3.7701
			. 513	•	• 55	. 577	. 597	615	633	. 650	• 65	. 682	. 697	.712	. 726
16	3.4311	3.455	. 479	. 501	. 522	. 542	. 561	. 57	. 596	.613	٠.	. 644	629	674	. 687
11	3.4021	ŗ.	3.449	. 471	. 491	.511	. 529	. 54	.564	. 581	'n	.612	626	.640	.654
æ ~	3.3764	3.4004	ë.	3.4443	3.4646	3.4839	3.5023	3.5198	3.5367	3.5528	3.5683	3.5832	3.5976	3.6114	3.6248
<u>6</u>	3.3534	m'	3.399	. 420	. 440	. 459	. 477	. 49	.51	. 527	٠.	. 557	571	. 585	. 598
20	3, 3332	_	3,378	. 399	.419	. 437	. 455	. 47	. 489	. 504	'n	. 534	548	. 561	. 574
1;	3.3148		35	3.3801	399	. 418	. 435	. 452	. 468	. 484	. 499	. 513	. 527	. 540	. 553
22	•	۳.	34	3, 3628	382	.400	.417	434	. 450	. 465	. 480	. 494	. 508	. 521	. 534
23	3.2831	3, 3056	3. 3259	3.3470	3.3561	3.3842	3.4015	3.4181	3.4339	3.4491	3.4636	3.4777	3.4912	3.5042	3.5168
54	•	<u>.</u>	3	3.3326	351	. 369	. 386	. 403	. 418	. 433	.448	.462	.475	. 488	. 500
25	•	m.	29	3.3194	338	. 355	. 372	. 389	. 404	. 419	. 433	. 447	. 460	. 473	. 486
58	3.2450	•	3.2977	3.3072	32.5	. 343	. 360	376	39	. 406	. 420	. 434	. 447	. 460	. 472
27	3.2343	3.2560	3.276	3.2960	3.3145	3.3320	3.3487	3.3647	3.3800	3.3947	3.4087	3.4223	3.4353		3.4600
28	3.2243	•	ë.	3.2856	304	. 321	.338	. 353	. 36	. 383	. 397	. 411	. 423	. 436	448
53	. 215	•	3.256	3.2750	294	. 311	. 328	. 343	. 35	. 373	. 387	. 400	. 413	. 425	.437
<u>.</u>	. 204	•	3.248	3.2670	285	. 302	. 318	. 334	. 34	. 363	. 377	. 390	. 403	. 415	. 427
3.5	3.1711	3.1	3.211	3.2301	. 247	. 264	. 280	. 295	. 31	. 324		350	. 362	374	386
40	3.1448	3.1	3.184	3.2026	. 219	. 236	. 251	. 266	. 28	294	· ~	320	332	344	355
45	3.1245	~	3.1635	3.1914	3,1983	3.2145	3,2298	3.2445	3.2585	3.2720	3.2849	3.2974	3.3093	3.3209	3.3320
20	3.1083	3.1	3.146	3.1645	. 181	. 197	. 212	. 226	. 24	. 253	۲,	278	. 290	. 302	. 313
ç	3.0952	7.	3.133	3.1507	. 167	. 183	. 198	. 212	. 52	. 239		263	. 275	. 286	. 297
90	. 084	. 10	3.1220	3.139	155	171.	•	3.2003	. 21	. 226	. 239	. 251	. 263	. 274	. 284
120	. 024	.04	3.0405	3.077	092	. 107	•	3.1350	. 14	. 160	. 172	. 183	. 194	. 204	. 215
240	2.9955	3.0135	3.0304	3.046	3.0616	3.0760	3.0897	3.1028	3.1153	3.1273	3.1388	3.1498	3.1604	3.1707	3.1806
Ŷ	. 965	86.	3.0004	<u>.</u>	030	. 044	•	3.0708	80.	. 094	. 105	. 116	. 126	. 136	. 146

Table 3

					STUDENTIZ	ED MA	MIMIM MODIX	MODULIIS FOR	-	H					
D. F.	~	æ	•	s	œ	7	œ	6	10	11	12	13	14	15	91
0 r z	3.8310 2.9894 2.6524	4.37873.3585	4.7659 3.6371 3.1969	5.0630 3.8439 3.3676	5.3028 4.0113 3.5059		5.6746 4.2720 3.7217	5.8242 4.3773 3.8090	5.9567 4.4708 3.8866	6.0754 4.5547 3.9563	- 60	6.2809 4.7002 4.0774	6.3710 4.7641 4.1306	6.4543 4.8232 4.1799	6.5317 4.8782 4.2258
S	490	•	2.9549	•	. 238	.341	429	•	. 576	.638	694	.745	. 793	. 837	.877
(.38	•	.822	•	. 073	. 168	249	. 320	. 383	440	. 49	. 539	. 583	. 623	199
~ «	2.3137	2.5555	2,7253	2.8557	2.9515	3.0502	3.1265	3.1934	3, 2528	3,3063	3.3549	3.3994	3.4403	3.4783	3.5137
; o	. 22		. 602	• •	.819	900	970	.031	. 085	134	. 17	219	. 257	. 292	324
10	. 19	•	. 561	.677	. 771	.849	. 917	. 976	. 029	. 075	Ξ.	. 159	. 195	. 229	. 260
	. 15		. 528	2.6415	.732	. 809	.875	. 932	. 983	. 029	.071	Ξ.	. 145	.178	. 208
12	7	•	. 501	2.6119	701	.775	.840	. 896	. 946	. 991	.032	. 06	104	. 135	. 165
<u> </u>		•	2.4/88	2.5871	٠. د د	7.5	2.8109	2.8650		35	2.0	6.0	• •	•	3.1298
15	: 2	2,3053	. 443		632	703	764	18	865	908	9	9	1.4	3.0448	.073
16		•		2.5324	.616	. 686	.746	. 798	.845	. 887	. 925	. 960	. 99	. 022	. 05
11	•		•	•	. 601	670	.729	. 781	.827	.869	. 907	.941	. 97	.002	.030
8 :	•	•	•	'n.	. 588	. 656	.715	992.	.812	. 853	. 890	.924	.95	. 985	.012
6 P	2.0452	2.2530	2.3854	2.4852	2.5665	2.6336	2.7027	2.7535	2,7987	2.8392	2.8529	2.9097	2.9407	2.9695	2.9963
12				2,4775	557	623	680	730	775	9.0	ď	88	ã	947	90
22	.05	7			. 548	.614	. 671	721	765	. 804	8.	.873	. 903	.931	.957
23	9.5	7.		٠,	. 541	.606	. 663	.712	755	. 795	.83	. 863	. 893	. 921	. 946
25	2.0410	2.2259	2.3532	2.4498	2.5276	2.5924	2.6480.	2.6955	2.7397	2.7785	2.8138	2.8457	2.8839	2.9027	2.9283
80			2.3481	2.4443	. 521	.58	.641	68	.732	.771	80	8.8	8	894	92
27			~		. 516	58	635	. 58	726	764	. 79	.830	.86	. 887	<u>.</u>
58	•	•	£.	₹.	. 511	3	629	.67	. 720	. 758	. 79	.824	. 85	. 880	8
30	2.0252	2.2057	2.3314	2.4260	2.5019	2.5453	2.6196	2.6570 2.6570	2,7090	2.7522	2.7866 2.7810	2.8180	2.8470	2.8738	2.8988
. 35	. 014	. 19	2.3150	2.4091	. 483	. 546	. 599	.646	.687	.724	.757	. 788	.816	. 843	.867
40	. 005	. 18	30	. 396	.470	. 531	. 584	.630	.671	.707	.740	.770	. 798	. 824	. 848
45	999	. 17	5.3	۳,	. 459	. 520	. 572	.618	.658	. 694	.727	.757	. 784	.810	. 833
\$ S	1.9899	2.1639	2.2828	2.3720	2.4448	2.5047	2.5559	2.6006	2.6402	2.6758	2.7166 2.7079	2.7373	2.7644	2.7894	2.8222
60	. 985	. 15	278	2.3675	439	498	549	594	633	668	200	720	756	78.1	80.8
120	.967		. 251		408	.466	. 515	558	596	630	. 661	689	715	739	761
240	1.9581		2, 2391	2.3247	2, 3931	2.4499	2.4984	2.5406	2.5779	2.6113	2.6415	2.6691	2.6945	2.7179	2.7397
8	. 948	=	. 226	•	. 378	. 433	. 481	. 522	. 559	. 592	. 622	. 649	. 673	. 696	718

Table 3 (continued)

		7.2960 5.4241 4.6827 4.2856	4.0376 3.8676 3.7436 3.6490	3.5140 3.4640 3.4220 3.3862 3.3862	3.3283 3.3045 3.2835 3.2647	3.2325 3.2187 3.2060 3.1944 3.1838	3.1740 3.1649 3.1564 3.1486	3.1109 3.0882 3.0705 3.0564	3.0352 2.9824 2.9560 2.9297
	30	7.2594 5.3978 4.6606 4.2659	4.0194 3.8505 3.7273 3.6333	3.4991 3.4495 3.4078 3.3722	3.3147 3.2912 3.2703 3.2516 3.2340	3.2197 3.2060 3.1934 3.1819	3.1616 3.1526 3.1442 3.1364	3.0991 3.0765 3.0590 3.0450	3.0241 2.9717 2.9456 2.9195
	53	7.2213 5.3705 4.6377 4.2454	4.0005 3.8327 3.7103 3.6169	3.4837 3.4345 3.3931 3.3576 3.3273	3.3007 3.2774 3.2566 3.2381	3.2065 3.1928 3.1804 3.1690	3.1488 3.1399 3.1316 3.1239	3.0868 3.0645 3.0471 3.0333	3.0125 2.9606 2.9348 2.9089
	28	7.1818 5.3422 4.6140 4.2242	3.9809 3.8142 3.6927 3.6000	3.4678 3.4189 3.3778 3.3428	3.2862 3.2630 3.2424 3.2241 3.2076	3.1927 3.1792 3.1668 3.1556	3.1356 3.1267 3.1108 3.1108	3.0741 3.0520 3.0348 3.0211	3.0005 2.9491 2.9235 2.8980
(CONT.)	7.7	7.1406 5.3128 4.5893 4.2021	3.9505 3.7950 3.6744 3.5824 3.5099	3.4512 3.4027 3.3520 3.3272	3.2711 3.2481 3.2277 3.2095 3.1932	3.1784 3.1650 3.1528 3.1416	3.1218 3.1130 3.1049 3.0973	3.0609 3.0390 3.0220 3.0084 2.9973	2.9880 2.9372 2.9119 2.8866
06	56	7.0978 5.2821 4.5636 4.1792	3.9393 3.7751 3.6553 3.5641	3.4339 3.3859 3.3455 3.3110	3.2554 3.2326 3.2124 3.1944	3.1636 3.1503 3.1382 3.1271	3.1075 3.0988 3.0907 3.0832	3.0472 3.0255 3.0067 2.9952 2.9842	2.9750 2.9248 2.8997 2.8747
1A LPHA	25	7.0531 5.2501 4.5368 4.1552	3.9172 3.7543 3.6155 3.5450	3.4160 3.3683 3.3283 3.2941	3.2390 3.2165 3.1965 3.1786	3.1481 3.1349 3.1229 3.1120	3.0926 3.0840 3.0760 3.0585 3.0616	3.0329 3.0114 2.9948 2.9815 2.9706	2.9615 2.9118 2.8870 2.8623
ULUS POR	24	7.0064 5.2167 4.5088 4.1302	3.8942 3.7326 3.6148 3.5251	3.3972 3.3500 3.3104 3.2765	3.2220 3.1996 3.1798 3.1621	3.1319 3.1169 3.1070 3.0962 3.0862	3.0770 3.0685 3.0606 3.0532	3.0180 2.9968 2.9903 2.9671 2.9564	2.9474 2.8983 2.8738 2.8494
MAXIMUM MODULUS	23	6.9575 5.1818 4.4795 4.1041	3.8701 3.7099 3.5932 3.5043	3.3776 3.3309 3.2916 3.2581	3.2041 3.1820 3.1524 3.1449	3.1150 3.1022 3.0904 3.0797	3.0607 3.0523 3.0445 3.0372	3.0024 2.9814 2.9551 2.9521 2.9415	2.9326 2.8843 2.8599 2.8358
IZED MAX	22	6.9062 5.1451 4.4188	3.8448 3.6861 3.5705 3.4825	3.3571 3.3109 3.2720 3.2389	3.1854 3.1636 3.1442 3.1259	3.0973 3.0846 3.0730 3.0624 3.0527	3.0437 3.0353 3.0276 3.0204	2.9850 2.9553 2.9492 2.9364 2.9259	2.9172 2.8593 2.8454 2.8217
STUDENTIZED	21	6.8522 5.1066 4.4166 4.0480	3.8183 3.6611 3.5467 3.4596 3.3910	3.3356 3.2898 3.2514 3.2187	3.1442 3.1251 3.1251 3.1080	3.0788 3.0552 3.0548 4.0443	3.0258 3.0075 3.0099 3.0028 2.9952	2.9489 2.9484 2.9325 2.9199	2.9009 2.8537 2.8302 2.8067
	20	3 5.7954 2 5.0660 9 4.3827 8 4.0177	3.7904 3.6349 3.5217 3.4356 3.3577	3.3129 3.2677 3.2297 3.1974 3.1695	3.1452 3.1239 3.1050 3.0881 3.0729	3.0593 3.0459 3.0356 3.0252	3.0059 2.9988 2.9913 2.9843	2.9508 2.9305 2.9150 2.9025 2.8923	2.8838 2.8373 2.6141 2.7910
	19	6.7353 5.0232 4.3459 3.9858	3.7609 3.6072 3.4953 3.4102	3.2890 3.244 3.2069 3.1750	3.1215 3.1024 3.0837 3.0871 3.0521	3.0387 3.0254 3.0153 3.0051 2.9957	2.9791 2.9791 2.9717 2.9648 2.9583	2.9317 2.9119 2.8955 2.8842 2.8741	2.8558 2.8199 2.7971 2.7744
	18	5.5716 4.9778 4.3090 3.9520	3.7297 3.5779 3.4574 3.3833	3.2638 3.2197 3.1827 3.1512	3.1005 3.0797 3.0513 3.0449	3.0048 2.9939 2.9838 2.9838	2.9561 2.9582 2.9509 2.9441 2.9178	2.9116 2.8920 2.8759 2.8648 2.8649	2.8455 2.8015 2.7792 2.7558
	7.1	6.5039 4.9295 4.2687 3.9161	3.5967 3.5468 3.4378 3.3549	3. 2370 3. 1935 3. 1571 3. 1261 3. 0993	3.0741 3.0556 3.0375 3.0214 3.0049	2.9936 2.9919 2.9711 2.9512 2.9521	2.9438 2.9288 2.9222 2.9159	2.8710 2.8710 2.8561 2.8442 2.8344	2.8264 2.7821 2.7501 2.7382
	D.F.	0 ~ 4 0	A L & Q O	122	114	22 23 24 25 25 25	25.00 20.00 20.00 20.00	40 40 50 50 50 50	50 120 240 3

Table 4

STUDENTIZED MAXIMUM MOINLUS FOR 1.-ALPHA + . 80

91	4584 6750 3399 1521	0318 9479 8859 8381	7693 7436 7219 7034 6873	6733 6609 6499 6400	6231 6159 6092 6031 5975	5923 5875 5830 5788 5749	5588 5467 5372 5296 5234	5183 4898 4755 4611
_	4 m m m	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	20000	~~~~	44444	~~~~	~~~~	2222
15	4.4044 3.6329 3.3016 3.1167	2.9982 2.9156 2.8546 2.8077 2.7704	2.7400 2.7148 2.6935 2.6753 2.6595	2.6457 2.6336 2.6228 2.6131 2.6044	2.5966 2.5894 2.5829 2.5769	2.5663 2.5616 2.5572 2.5531 2.5493	2.5335 2.5216 2.5124 2.5050 2.4989	2.4939 2.4660 2.4521 2.4381
=	4.3462 3.5865 3.2605 3.0786	2.9621 2.8810 2.8211 2.7750 2.7384	2.7086 2.6838 2.6630 2.6451 2.6451	2.6161 2.6042 2.5937 2.5842 2.5757	2.5680 2.5610 2.5546 2.5488 2.5488	2.5384 2.5338 2.5295 2.5255 2.5255	2.5063 2.4947 2.4857 2.4785 2.4785	2.4676 2.4405 2.4268 2.4132
13	4.2833 3.5364 3.2160 3.0374	2.9231 2.8435 2.7848 2.7396 2.7037	2.6746 2.6504 2.6299 2.6125 2.5974	2.5842 2.5725 2.5622 2.5529 2.5529	2.5371 2.5303 2.5241 2.5183 2.5183	2.5082 2.5037 2.4995 2.4956 2.4920	2.4770 2.4656 2.4569 2.4498 2.4440	2.4392 2.4128 2.3996 2.3863
12	4.2147 3.4818 3.1676 2.9926	2.8027 2.8027 2.7453 2.7011 2.6661	2, 5375 2, 6140 2, 5940 2, 5770 2, 5623	2.5494 2.5380 2.5280 2.5189 2.5108	2.5035 2.4959 2.4908 2.4852 2.4862	2.4754 2.4710 2.4570 2.4532 2.4532	2.450 2.4340 2.4254 2.4186 2.4130	2.4083 2.3827 2.3698 2.3570
::	4.1396 3.4219 3.1146 2.9435	2.8342 2.7582 2.7021 2.6591 2.6249	2.5972 2.5741 2.5547 2.5382 2.5238	2.5113 2.5003 2.4905 2.4817 2.4817	2.4668 2.4603 2.4544 2.4490 2.4440	2.4395 2.4352 2.4313 2.4276 2.4242	2.4100 2.3993 2.3910 2.3844 2.3790	2.3745 2.3496 2.3372 2.3248
10	4.0564 3.3558 3.0561 2.8894	2.7829 2.7089 2.6545 2.6126 2.5195	2.5525 2.5302 2.5114 2.4953 2.4814	2.4693 2.4586 2.4491 2.4407 2.4330	2.4262 2.4199 2.4142 2.4090 2.4042	2.3998 2.3956 2.3918 2.3883 2.3850	2.3713 2.3610 2.3530 2.3466 2.3414	2.3131 2.3131 2.3012 2.2892
Φ.	3.9535 3.2821 2.9908 2.8290	2.7258 2.6541 2.6014 2.5509 2.5288	2.5028 2.4812 2.4630 2.4475 2.4341	2.4224 2.4121 2.4030 2.3948 2.3875	2.3809 2.3749 2.3594 2.3643 2.3597	2.3555 2.3478 2.3478 2.3444 2.3412	2.3281 2.3182 2.3105 2.3044 2.2994	2.2952 2.2723 2.2608 2.2494
•	3.8585 3.1988 2.9172 2.7609	2.6613 2.5923 2.5415 2.5025 2.4717	2.4467 2.4259 2.4085 2.3936 2.3808	2.3696 2.3597 2.3509 2.3431 2.3431	2. 3298 2. 3240 2. 3187 2. 3139 2. 3095	2.3054 2.3016 2.2981 2.2949 2.2918	2.2793 2.2698 2.2625 2.2567 2.2557	2.2260 2.2260 2.2151 2.2042
,	3.7380 3.1033 2.8329 2.6829	2.5876 2.5214 2.4729 2.4357 2.4052	2.3824 2.3626 2.3460 2.3319 2.3196	2.3090 2.2996 2.2912 2.2838 2.2711	2.2711 2.2656 2.2607 2.2561 2.2519	2.2480 2.2444 2.2411 2.2380 2.2351	2.2232 2.2143 2.2074 2.2018 2.1973	2.1935 2.1729 2.1626 2.1523
æ	3.5970 2.9918 2.7344 2.5919	2.5014 2.4388 2.3928 2.3576 2.3298	2.3073 2.2887 2.2730 2.2597 2.2481	2.2381 2.2293 2.2214 2.2145 2.2082	2.2025 2.1974 2.1927 2.1884 2.1845	2.1808 2.1775 2.1744 2.1715 2.1587	2.1576 2.1492 2.1427 2.1375 2.1333	2.1298 2.1104 2.1008 2.0912
•	3.4277 2.8582 2.6165 2.4830	2.3983 2.3398 2.2969 2.2642 2.2583	2.2173 2.2000 2.1855 2.1731 2.1524	2.1511 2.1449 2.1375 2.1311 2.1253	2.1201 2.1153 2.1110 2.1070 2.1034	2.1000 2.0959 2.0940 2.0914 2.0889	2.0785 2.0708 2.0548 2.0561	2.0529 2.0351 2.0263 2.0175
~	3.2173 2.6925 2.4703 2.3479	2.2704 2.2169 2.1778 2.1480 2.1244	2.1054 2.0896 2.0764 2.0552 2.0555	2.0471 2.0395 2.0331 2.0272 2.0272	2.0172 2.0129 2.0090 2.0054 2.0021	1.9991 1.9963 1.9937 1.9913 1.9890	1.9797 1.9728 1.9574 1.9531	1.9566 1.9406 1.9327 1.9248
~	2.9419 2.4757 2.2791 2.1710	2.1028 2.0558 2.0215 1.9953	1.9580 1.9443 1.9328 1.9230	1.9072 1.9007 1.8950 1.8899	1.8812 1.8775 1.8741 1.8710 1.6681	1.8555 1.8510 1.8508 1.8567	1.8485 1.8425 1.8379 1.8342 1.8312	1.8287 1.8148 1.6080 1.8011
~	2.5493 2.1464 2.0057 1.9175	1.8420 1.8238 1.7959 1.7747 1.7580	1.7446 1.7115 1.7242 1.7163	1.7015 1.6983 1.6937 1.6896 1.6896	1.6826 1.6796 1.6759 1.6744	1.6790 1.6680 1.6652 1.6545	1.6545 1.6516 1.6479 1.6449	1.6404 1.6294 1.5239 1.6184
D. F.	~~~	~~ee;	1777	47 8 6 C	22 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25	25 27 28 29 30	* 5 \$ \$ \$	50 120 240

Table 4 (continued)

					STUDENT	UNENTEZED MAXIMUM	INUM MODI	MONUTER FOR	1 1. 111	8.	(CONT.)				
0	11	81	61	20	21	22	23	24	25	26	27	28	29	30	31
, , ,	4.5088 3.7162 3.3756 3.1852	4.5550 3.7540 3.4091 3.2163	4.6003 3.7894 3.4406 3.2455	4.6422 3.8229 3.4703 3.2731	4.6818 3.8546 3.4985 3.2992	4.7194 3.8847 3.5252 3.3240	4.7551 3.9133 3.5507 3.3476	4.7891 3.9405 3.5749 3.3701	4.8216 3.9456 3.5981 3.3917	4.8527 3.9915 3.6203	4.8825 4.0154 3.6415 3.4320	4.9111 4.0383 3.6620 3.4509	4.9386 4.0604 3.6816 3.4692	4.9650 4.0816 3.7005 3.4867	4.9905 4.1021 3.7187
4600	3.0532 2.9780 2.9151 2.8656	3.0925 3.0053 2.9425 2.8933	3.1203 3.0329 2.9583 2.9184	3.1465 3.0581 2.9926 2.9422	3.1713 3.0819 3.0157 2.9647	3.1948 3.1045 3.0375 2.9860	3.2172 3.1260 3.0585 3.064	3.2385 3.1445 3.0784 3.0257	3.2590 3.1661 3.0974 3.0443	3.2785 3.1849 3.1156 3.0520	3.2972 3.2029 3.1330 3.0791	3.3152 3.2202 3.1498 3.0954	3, 3325 3, 2369 3, 1659 3, 1111	3.3492 3.2529 3.1815 3.1263	3.2683 3.2683 3.1965 3.1409
12575	795 770 748 729	282 292 275 754	845 819 795 777 750		8.08.0 6.48.0 6.48.0 6.00.0 7.00.0	. 911 . 883 . 860 . 839	931 902 979 858	. 949 . 921 . 897 . 858	967 938 914 918 93	. 984 . 931 . 931 . 931	. 000 . 971 . 946 . 925	. 962 . 962 . 940 . 920	. 976 . 976 . 955	. 991 . 969 . 950	. 050 . 030 . 004 . 982
21 1 2 5 C C C C C C C C C C C C C C C C C C	2.5990 2.5854 2.5752 2.5552 2.5552	2.7231 2.7103 2.5989 2.5887 2.5796	2.7459 2.7329 2.7213 2.7109	2.7574 2.7542 2.7424 2.7319	2.7877 2.7743 2.7624 2.7518 2.7422	2.8070 2.7935 2.7814 2.7707 2.7609	2.8254 2.8117 2.7995 2.7886 2.7788	2.8429 2.8291 2.8168 2.8058 2.7958	2.8597 2.8457 2.8333 2.8221 2.8121	2.8517 2.8517 2.8491 2.8378	2.8912 2.8759 2.8642 2.8529	2.9060 2.8916 2.8788 2.8573	2.9202 2.9057 2.8928 2.8812 2.8708	2.9339 2.9193 2.9063 2.8946 2.8841	2.9472 2.9324 2.9193 2.9076 2.8970
22 23 24 24	2.5480 2.5405 2.5338 2.5275 2.5218	2.6537 2.6537 2.6568 2.6505 2.6447	2.6932 2.6855 2.6785 2.6721 2.6652	2.7139 2.7062 2.6990 2.6925 2.6865	2.7336 2.7257 2.7185 2.7118	2.7522 2.7442 2.7369 2.7302 2.7240	2.7699 2.7519 2.7545 2.7477 2.7414	2.7869 2.7787 2.7712 2.7643 2,7580	2.8030 2.7948 2.7872 2.7803 2.7739	2.8185 2.8102 2.8026 2.7955 2.7891	2.8334 2.8250 2.8173 2.8102 2.8036	2.8477 2.8392 2.8314 2.8242 2.8176	2.8614 2.8528 2.8450 2.8378 2.8311	2.8746 2.8660 2.8581 2.8508 2.8508	2.874 2.8787 2.8707 2.8634 2.8566
25 29 30	2.6165 2.6116 2.6071 2.6028 2.6028	2.6393 2.6343 2.6297 2.6253 2.6213	2.6554 2.6554 2.6509 2.6455	2.6809 2.6758 2.6710 2.6665 2.6624	2.7001 2.6949 2.6900 2.6855	2.7183 2.7130 2.7081 2.7035 2.6992	2.7356 2.7303 2.7253 2.7206 2.7163	2.7522 2.7467 2.7417 2.7370 2.7326	2.7680 2.7625 2.7574 2.7526 2.7481	2.7831 2.7775 2.7724 2.7676 2.7631	2.7976 2.7920 2.7868 2.7819	2.8115 2.8059 2.8006 2.7957 2.7911	2.8250 2.8192 2.8139 2.8090 2.8043	2.8321 2.8321 2.8267 2.8217 2.8171	2.8503 2.8445 2.8391 2.8341 2.8293
w 4 4 % & & & & & & & & & & & & & & & & & &	2.5824 2.5700 2.5504 2.5525 2.5525	2.5045 2.5919 2.5821 2.5742 2.5578	2.6254 2.6125 2.6025 2.5945 2.5880	2.6450 2.6320 2.6218 2.6137 2.6070	2.6637 2.6504 2.6401 2.6318 2.6251	2.6814 2.6680 2.6575 2.6491 2.6422	2.6982 2.6846 2.6740 2.6555	2.7143 2.7005 2.6898 2.6811 2.6740	2.7295 2.7157 2.7048 2.6951 2.6889	2.7443 2.7302 2.7192 2.7104 2.7031	2.7584 2.7442 2.7330 2.7241 2.7168	2.7720 2.7575 2.7463 2.7373	2.7850 2.7705 2.7591 2.7500	2.7975 2.7829 2.7714 2.7622 2.7546	2.8097 2.7949 2.7833 2.7740 2.7663
50 120 240 &	2.5410 2.5119 2.4973 2.4827	2.5524 2.5327 2.5178 2.5028	2.5825 2.5522 2.5370 2.5218	2.5707 2.5707 2.5552 2.5397	2.5194 2.5881 2.5724 2.556	2.6364 2.6047 2.5887 2.5727	2.6527 2.6204 2.6042 2.5879	2.6681 2.5355 2.6190 2.6025	2.6829 2.6498 2.6332 2.6164	2.6971 2.6636 2.6467 2.6297	2.7106 2.6767 2.6596 2.6425	2.7237 2.6894 2.6721 2.6547	2.7362 2.7015 2.6841 2.6665	2.7483 2.7133 2.6956 2.6778	2.7599 2.7246 2.7067 2.6887

that $h_{15}(4,0,\alpha)$ = 3.6082 and 2.8051 for α = 0.01 and 0.05, respectively. The joint confidence intervals with an experimentwise error rate of α are thus given by

$$\begin{cases}
\hat{\theta}_{1} \pm h_{15}(4,0,\alpha) \sqrt{30s^{2}/4} \\
\hat{\theta}_{2} \pm h_{15}(4,0,\alpha) \sqrt{2s^{2}/4} \\
\hat{\theta}_{3} \pm h_{15}(4,0,\alpha) \sqrt{6s^{2}/4} \\
\hat{\theta}_{4} \pm h_{15}(4,0,\alpha) \sqrt{2s^{2}/4}
\end{cases}$$
(3.1)

As pointed out in the text, the breakdown into single degrees of freedom in any particular situation will be dictated by the characteristics of the experiment. Two cases frequently used for 4-level experiments are $(c_{m1}, c_{m2}, c_{m3}, c_{m4}) = (1,1,-1,-1), (1,-1,1,-1), (1,-1,-1,1)$ and $(c_{m1}, c_{m2}, c_{m3}, c_{m4}) = (1,-1,0,0), (1,1,-2,0), (1,1,1,-3)$ for m = 1,2,3, respectively.

If the number of analyses made with each method were not all equal, some (and possibly all) of the contrasts under consideration would not be orthogonal. Then the use of our h-values yields a confidence coefficient greater than 1-a. (See Šidák (1967), equation (8).)

3.2 2ⁿ factorial experiments

Example 2: A 2 experiment

Cochran and Cox (1957), Section 5.24a, analyze the yields obtained in a 2^{4} experiment with four fertilizers (m = manure, n = nitrogen, p = phosphorus, k = potassium), each at two levels, conducted in four randomized complete blocks: the experiment was carried out to study the effects of these fertilizers on the yield of grass. The 64 yields per

plot (total over 6 harvests, km. per 3-meter row) were used to compute the affect means which were given as M=13.0, N=21.3, P=5.5, k=24.1, MN=3.2, MP=-0.3, MK=-7.5, MP=3.5, NK=10.9, PK=3.2, MNP=-1.4, MNK=-3.5, MPK=0.8, MPK=0.5, MNPK=-1.6. The estimated standard error of an effect mean was computed to be $\sqrt{s^2/2^{n-2}r} = \sqrt{(90.5)/4(4)} = 2.38 \text{ where } s^2 = 90.5 \text{ is the error mean}$ square based on v=45 d.f., r=4 is the number of replications of each treatment combination, and n=4 is the number of factors. For v=45 the Student t-values are 2.690 and 2.014 for $\alpha=0.01$ and $\alpha=0.05$, respectively. The effect means $\pm t \frac{\pi}{445}(2.38)$ are exhibited in Columns 2 and 3 of Tably 5 for $\alpha=0.01$ and $\alpha=0.05$, respectively. Cochran and Cox give analogous information in the lower half of their Table 5.1a where they indicate effects that are statistically significant at the 1% ($\frac{\pi}{4}$) and 5%($\frac{\pi}{4}$) levels, namely ($\frac{\pi}{4}$, $\frac{\pi}{4}$, $\frac{\pi}{4}$, $\frac{\pi}{4}$ and 5%($\frac{\pi}{4}$) levels, namely ($\frac{\pi}{4}$, $\frac{\pi}{4}$

To control the experimentwise error rate, the corresponding h-values from our Tables 1 and 2 are $h_{45}(15,0,0.01) = 3.6503$ and $h_{45}(15,0,0.05) = 3.0803$ for $\alpha = 0.01$ and $\alpha = 0.05$, respectively. The effect means $\pm h_{45}(15,0,\alpha)$ (2.38) are exhibited in Columns \pm and 5 of Table 5 for $\alpha = 0.01$ and $\alpha = 0.05$, respectively. We note from Columns ? and $\alpha = 0.05$, respectively. We note from Columns ? and $\alpha = 0.05$ that MK and MNK are now "significant" at the 5% (rather than at the 1% level) and that P is not significant at the 5% level. Thus for this experiment, controlling the experimentwise error rate has reduced the number of statistically significant results.

The experimenter must decide whether the per contrast or the experimentwise error rate is more pertinent in his particular experiment. In the
extreme case of a single significant contrast, the experimenter using
per contrast error rates would be left feeling unsure whether the effect

Table 5
A 2⁴ complete factorial experiment $\frac{1}{2}$ (p = 15, v = 45)

	Cor	nfidence interva	al on effect mean	2/
Effect	Error r per cor		Error mer expe	
	α = 0.01	α = 0.05	α = 0.01	α = 0.05
	t ₄₅ = 2.690	$t_{45}^{\alpha} = 2.014$	$h_{45}^{\alpha} = 3.6503$	$h_{45}^{\alpha} = 3.0803$
М	18.0±6.4(**)	18.0±4.8(*)	18.0±8.7(**)	18.0±7.3(*)
N	21.3±6.4(**)	21.3±4.8(*)	21.3±8.7(**)	21.3±7.3(*)
P	5.5±6.4	5.5±4.8(*)	5.5±8.7	5.5±7.3
K	24.1±6.4(**)	24.1±4.8(*)	24.1±8.7(**)	24.1±7.3(*)
MN	3.2±6.4	3.2±4.8	3.2±8.7	3.2±7.3
MP	- 0.3±6.4	- 0.3±4.8	- 0.3±8.7	- 0.3±7.3
MK	- 7.5±6.4(**)	- 7.5±4.8(*)	- 7.5±8.7	- 7.5±7.3(*)
NР	3.5±6.4	3.5±4.8	3.5±8.7	3.5±7.3
NK	10.9±6.4(**)	10.9±4.8(*)	10.9±8.7(**)	10.9±7.3(*)
PK	3.2±64	3.2±4.8	3.2±8.7	3.2±7.3
MNP	- 1.4±6.4	- 1.4±4.8	- 1.4±8.7	- 1.4±7.3
MNK	- 8.5±6.4(**)	- 8.5±4.8(*)	- 8.5±8.7	- 8.5±7.3(*)
MPK	0.8±6.4	0.8±4.8	0.8±8.7	0.8±7.3
NPK	0.5±6.4	0.5±4.8	0.5±8.7	0.5±7.3
MNPK	- 1.6±6.4	- 1.6±4.8	- 1.6±8.7	- 1.6±7.3

 $[\]frac{1}{2}$ Cochran and Cox (1957), Table 5.1a.

^{2/}Standard error of effect mean is $\sqrt{s^2/2^{n-2}}r = \sqrt{(90.5)/4(4)} = 2.38$. The entry in each cell in the body of the table is either (effect mean) $\pm t_{45}^{\alpha}(2.38)$ or (effect mean) $\pm h_{45}^{\alpha}(2.38)$. The intervals indicated by (**) or (*) do not cover zero.

was a real one, given that the experiment has provided multiple opportunities for one of them to be significant. On the other hand, in an experiment with several significant contrasts as in the present example, strict use of the experimentwise error rate procedure makes it more difficult for the smaller effects to be declared significant after the larger ones have been identified.

We have assumed in the above analysis that a priori the experimenter was interested in controlling the experimentwise error for all 15 contrasts. If, a priori, he had been interested in only the 4 main effects and the 6 two-factor interactions (and he had made that decision without being influenced by the data) then p = 10, v = 45, and the appropriate h-value for α = 0.01 and α = 0.05 would be 3.5149 and 2.9346, respectively; now MK is still significant at the 5% level and P is still not significant at the 5% level, while the status of MNK (as well as MNP, MPK, NPK and MNPK) in terms of possible significance would be unknown. If, after looking at the data, the experimenter decided that only M,N,K,NK and MNK were of interest, then he still must use the original factor $h_{\mu 5}(15,0,\alpha)$ in reporting his final results. Effectively, what he has done here is "data snooping" in the sense of Scheffé (1959), p. 30, and he must pay for that privilege by using the larger h-value if he desires to make statistically legitimate confidence statements with experimentwise control over the error rate. In this situation the inference must be limited to a particular set of orthogonal contrasts specified in advance.

It thus is clear that in 2ⁿ complete factorial experiments where n is "large," it is to the experimenter's advantage if he can specify

à priori which contrasts are and/or are not of interest; analogous considerations hold for fractional factorial experiments. In certain types of experiments it is easy to identify certain contrasts which are not of interest. We consider such a problem in Example 3.

Example 3: A 23 experiment with two classification factors

Consider a 3-factor experiment, each factor at two levels, where the factors are diet (Diet 1 vs. Diet 2), sex (male vs. female), and age (old vs. young). The purpose of the experiment is to study the effect of change in diet on gain in weight. Here the treatment factor of interest is diet while sex and age are classification variables. Thus, denoting the main effect of diet, sex and age by A, B and C, respectively, and analogously for their interactions, the experimenter would be interested in the p = 4 orthogonal contrasts associated with A, AB, AC and ABC rather than in all 7 orthogonal contrasts. Similarly, in a 2⁴ experiment two of which are classification factors, the experimenter would be interested in at most the p = 12 orthogonal contrasts A, B, AB, AC, AD, ACD, BC, BD, BCD, ABC, ABD, ABCD. See Cox (1958), Examples 6.3 and 6.4, for a discussion of treatment factors and classification factors.

3.3 3 factorial experiments, all factors quantitative Example 4: A 3 experiment

Davies (1978), pp. 332-336, reports the results of a 3³ experiment, each factor quantitative and equally spaced, all treatment combinations replicated twice. The variable under study is the yield of a chemical process, the three factors being: i) C, the concentration of an

inorganic material (A) in the free water present in the reaction mixture, ii) V, the volume of free water present in the reaction mixture, and iii) N, the amount of a second inorganic material (B) in the reaction mixture. Each factor was studied at three equally spaced levels, and two replications of each of the 27 treatment combinations was obtained. A quadratic response surface was fit to the data using orthogonal polynomials, and the total d.f. for treatments was partitioned into 18 individual d.f. associated with the 8 main effects $(C_L, C_Q, V_L, V_Q, N_L, N_Q)$ and the 12 two-factor interactions $(C_L \times V_L, C_Q \times V_L, C_L \times V_Q, C_Q \times V_Q, C_L \times N_L, C_Q \times N_L, C_L \times N_Q, C_Q \times N_Q, V_L \times N_L, V_Q \times N_L, V_L \times N_Q, V_Q \times N_Q)$: the remaining 8 degrees of freedom representing the three-factor interactions were pooled. Here the subscripts L and Q represent linear and quadratic, respectively. There were 27 d.f. associated with the error mean square.

For v=27 the Student t-values are 2.771 and 2.052, for $\alpha=0.01$ and $\alpha=0.05$, respectively. Using these values (actually the corresponding $\mathbf{r}_{27}^1=(\mathbf{t}_{27}^-)^2$ values were used) Davies reported the 8 effects $(\mathbf{C}_L,\ \mathbf{C}_Q,\ \mathbf{V}_L,\ \mathbf{V}_Q,\ \mathbf{C}_L\times\mathbf{V}_L,\ \mathbf{C}_Q\times\mathbf{V}_L,\ \mathbf{C}_L\times\mathbf{V}_Q,\ \mathbf{C}_L\times\mathbf{V}_L)$ as being statistically significant at the 1% level and the 1 effects $(\mathbf{N}_Q,\ \mathbf{C}_L\times\mathbf{N}_L)$ significant at the 1% level and the 1 effects $(\mathbf{N}_Q,\ \mathbf{C}_L\times\mathbf{N}_L)$ significant at the 10% level. (Note: We are reporting the results here as tests of significance to conform with Davies, but we would have preferred to present our results as interval estimates as in our Table 5.)

To control the experimentwise error rate the corresponding h-values from our Tables 1, 2 and 3 are $h_{27}(13,0,0.01) = 3.3989$, $h_{27}(13,0,0.05) = 3.2560$, and $h_{27}(18,0,0.10) = 2.9582$ for $\alpha = 0.01$, $\alpha = 0.05$ and $\alpha = 0.10$, respectively. Thus, if the experimenter wished to control the

experimentwise error rate for the 18 orthogonal contrasts of interest he would assert that the 3 effects (C_L , C_Q , $C_L \times V_L$) are significant at the 1% level, the 3 effects (V_L , V_Q , $C_Q \times N_L$) are significant at the 5% level, the one effect ($C_Q \times V_L$) is significant at the 10% level, and the remaining 11 effects are not significant at the 10% level. (The experimenter had decided a priori that the 3 effects associated with the three-factor interactions were not of interest, and hence this total sum of squares based on 8 d.f. was not partitioned into the 3 individual one d.f. sums of squares associated with each of the remaining relevant orthogonal contrasts.)

Thus the same considerations arise in the analysis of this experiment as arose in the analysis of the 2^4 experiment of Example 2. And the same caveats hold here as well.

3.4 An application to biological assay

The purpose of biological assay is to estimate the potency ratio, ρ , of two biological preparations which have dose-response curves which can be represented by the same form of regression function and which differ only in the factor ρ in the dose scale. (We use the symbol ρ here as in Finney (1978), ρ . 41.) A common situation is one in which the response scale is linear in log dose. In this case parallel straight lines can be fit to the two sets of data; an estimate of $\log \rho$ is then given by the horizontal distance between them. A useful experimental design for such situations is the so-called symmetric (k,k)-point design in which k dose levels equally spaced on a log scale are used for each preparation (the k levels being different for the two preparations) with ρ observations being taken at each of the ρ design points;

the usual values for k are 2, 3 or 4. See Finney (1978), p. 105.

In analyzing the data from a (k,k) bioassay, the sum of squares between treatments has 2k-1 d.f. which can be separated into 3k-1 meaningful orthogonal components. See Finney (1978). pp. 105-109, for an example with k=3 where the 5 orthogonal contrasts are denoted by 1p (preparations), 1p (average linear regression), 1p (parallelism), 1p (average quadratic regression), 1p (difference between quadratics). The first two enter into the calculation of the estimated relative potency while the remaining three are used to test the validity of the assay. However, significance tests at level 1p = 0.05 for each of these three will result in an error rate for the assay approaching 1p = 0.14. If it is desired to control the experimentwise error rate at a specified value 1p0, then the constants 1p1 tabulated in our paper can be used.

To apply our constants to Finney's example, the largest of the three mean squares for the validity contrasts, which here is L_2 having a value of 0.001606 (see Finney's table 5.2.2), is expressed as a ratio to the error mean square based on 30 d.f.; this ratio then is compared for $\alpha = 0.05$ with $(h_{30}(3,0,0.05))^2 = (2.5224)^2 = 6.36$ instead of referring it to tables of $F_{30}^1 = (t_{30}^1)^2 = (2.042)^2 = 4.17$. In this experiment the ratio is only 0.52, a clearly non-significant result.

In Finney's description, the contrast L_p is also considered as a test of a type of assay validity, and as such it could be included with the other three to form a set of four simultaneous tests involving orthogonal contrasts. Actually, L_p provides a measure of how successful the experimenter has been in choosing comparable dose levels of the two preparations, and a significant value provides a signal to the experimenter that he might

be comparing the two preparations at different portions of the doseresponse curve rather than necessarily invalidating the assay. Thus it might be preferable to consider it separately from the other three validity contrasts, as illustrated in the preceding paragraph.

Similar considerations apply with more than three dose levels of each preparation. For example, in a (4,4) bioassay there would be 5 orthogonal contrasts in addition to L_p and L_1 . If linearity is assumed then these provide 5 separate tests for assay validity which can be tested by using $h_{\nu}(5,0,\alpha)$ from our tables in order to achieve an experimentwise error α for the validity tests. On the other hand, if a quadratic dose response curve is assumed, two of them enter into the calculation of the estimated potency, as described by Finney (1978), p. 122, leaving a set of 3 orthogonal contrasts to test the validity of the bioassay.

4. ACKNOWLEDGMENTS

The research of the first author was supported by U.S. Army Research Office-Durham contract DAAG29-80-C-0036 and Office of Naval Research Contract N00014-75-C-0586 at Cornell University, and that of the second author by the Natural Sciences and Engineering Research Council of Canada at McMaster University.

REFERENCES

- Abramowitz, M. and Stegun, I.A. (1964). <u>Handbook of Mathematical Functions</u>. National Bureau of Standards, Applied Mathematics Series 55, Washington, D.C.: U.S. Government Printing Office.
- Ackermann, H. (1979). A concise formula to compute general orthogonal contrast coefficients. Biometrical Journal, 21, 597-606.
- Bennett, C.A. and Franklin, N.L. (1954). Statistical Analysis in Chemistry and the Chemical Industry, New York: John Wiley & Sons.
- Chen, H.J. (1979). Percentage points of multivariate t distribution with zero correlations and their application. Biometrical Journal, 21, 347-359.
- Cochran, W.G. and Cox, G.M. (1957). Experimental Designs (Second edition), New York: John Wiley & Sons.
- Cornish, E.A. (1954). The multivariate small t-distribution associated with a set of normal sample deviates. Australian Journal of Physics, 7, 531-542.
- Cox, D.R. (1958). Planning of Experiments, New York: John Wiley & Sons.
- Davies, O.L., Editor (1978). The Design and Analysis of Industrial Experiments (Second edition), London and New York: Longman Group Limited.
- Dunnett, C.W. (1964). New tables for multiple comparisons with a control. Biometrics, 20, 482-491.
- Dunnett, C.W. and Sobel, M. (1954). A bivariate generalization of student's t-distribution with tables for certain special cases. Biometrika 41, 153-159.
- Finney, D.J. (1978). <u>Statistical Method in Biological Assay</u> (Third edition), New York: <u>Macmillan Publishing Co.</u>, Inc.
- Fisher, R.A. and Yates, F. (1938-1963). <u>Statistical Tables for Biological</u>, <u>Agricultural and Medical Research</u> (Sixth edition), New York: Hafner <u>Publishing Company</u>.
- Games, P.A. (1977). An improved t table for simultaneous control on g contrasts. <u>Journal of the American Statistical Association</u>, 72, 531-534.
- Hahn, G.J. and Hendrickson, R.W. (1971). A table of percentage points of the distribution of the largest absolute value of k Student t variates and its applications. Biometrika, 58, 323-332.
- Krishnaiah, P.R. and Armitage, J.V. (1979). On a multivariate F-distribution.
 Essays in Probability and Statistics (ed. by R.C. Bose et al.),
 University of North Carolina Press.

- Pillai, K.C.S. and Ramachandran, K.V. (1954). On the distribution of the ratio of the ith observation in an ordered sample from a normal population to an independent estimate of the standard deviation.

 Annals of Mathematical Statistics, 25, 565-572.
- Scheffe, H. (1959). The Analysis of Variance, New York: John Wiley & Sons.
- Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. <u>Journal of the American Statistical Association</u>, 62, 626-633.
- Stoline, M.R. and Ury, H.K. (1979). Tables of the Studentized maximum modulus distribution and an application to multiple comparisons among means. Technometrics, 21, 87-93.
- Ury, H.K., Stoline, M.R. and Mitchell, B.T. (1980). Further tables of the Studentized maximum modulus distribution. Communications in Statistics, B9(2), 167-178.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Phon Date Enters READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 1. RECIPIENT'S CATALOG NUMBER I. REPORT NUMBER No. 495 ESR PPOA 4. TITLE (and Substitle) TYPE OF REPORT & PERSON COVERED Multiple Comparisons for Orthogonal Technical Repert Contrasts: Examples and Tables. PERFORMING ORG. REPORT NUMBER AUTHOR(+) CONTRACT OR GRANT NUMBER Robert E./ Bechhofer DAAG 29-80-C-0036 Charles W./Dunnett N00014-75-C-3586 PERFORMING ORGANIZATION NAME AND ADDRESS School of Operations Research and Industrial Engineering, College of Engineering, Cornell University, Ithaca, New York 14853 11. CONTROLLING OFFICE NAME AND ADDRESS REPORT OFFE Mareh 81 NUMBER OF PAGES 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)
Sponsoring Military Activities: U.S. Army IS. SECURITY CLASS. (of the report) Unclassified Research Office, P.O. Box 12211, Research Triangle Park, NC 27709, and Statistics and Probability 184. DECLASSIFICATION/DOWNGRADING Program, Office of Naval Research, Arlington, 78 G. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Multiple comparisons, orthogonal contrasts, joint confidence intervals, experimentwise error rates, Studentized maximum modulus, simultaneous inference. 24. ABSTRACT (Castless on reverse slds if necessary and identify by block number) ON REVERSE SIDE

DD 144 7 1473 EDITION OF I NOV 65 IS OBSOLETE

Unclassified 409869

SECURITY CLASSIFICATION OF THIS PAGE (Mich Date Entered)

ABSTRACT

In many experimental situations the pertinent inferences are made on the basis of orthogonal contrasts among the treatment means (as in 2ⁿ factorial experiments). In this setting a particularly useful form of inference is one involving multiple comparisons. The present paper describes situations in which such inferences are meaningful, gives examples of their use, and provides an extensive set of tables of constants needed to implement such multiple comparison procedures. The procedures can also be used for statistically legitimate "data snooping" (in the sense of Scheffé (1959), p. 30) to help decide which contrasts within a specified set warrant further study.

KEY WORDS: Multiple comparisons, orthogonal contrasts, joint confidence intervals, experimentwise error rates, Studentized maximum modulus, simultaneous inference.

