FICHE DE COURS 5 : EQUATIONS DIFFÉRENTIELLES LINÉAIRES

 \mathbb{K} désigne l'un des corps de base \mathbb{R} ou \mathbb{C} , I un intervalle de \mathbb{R} .

1 Equations différentielles du premier ordre

1.1 Equations homogènes (sans second membre)

Théorème : (Equation différentielle y' + a(x)y = 0)

Soient $a \in \mathcal{C}(I, K)$, A une primitive de a sur I et y une fonction dérivable sur I. Les assertions suivantes sont équivalentes :

- (i) y' + ay = 0 sur I.
- (ii) Il existe $\lambda \in \mathbb{K}$, tel que $y = \lambda e^{-A}$ sur I.

Si de plus une condition initiale $y(x_0) = y_0$ est imposée, avec $x_0 \in I$ et $y_0 \in \mathbb{K}$, alors la valeur de la constante λ est fixée; l'équation avec condition initiale possède une unique solution.

1.2 Equations avec second membre

Théorème : (Equation différentielle y' + a(x)y = b(x))

Soient $a, b \in \mathcal{C}(I, K)$, A une primitive de a sur $I, x_0 \in I$ et $y_0 \in \mathbb{K}$.

Il existe une unique solution sur I de l'équation y' + a(x)y = b(x) telle que $y(x_0) = y_0$; elle est définie par :

$$\forall x \in I, y(x) = y_0 e^{A(x_0) - A(x)} + \int_{x_0}^x b(t) e^{A(t) - A(x)} dt.$$

Théorème : (Equation différentielle y' + a(x)y = b(x), solutions générale et particulière)

Soient $a, b \in \mathcal{C}(I, K)$, A une primitive de a sur I, \bar{y} une solution particulière de l'équation y' + a(x)y = b(x) sur I. Soit de plus y une fonction dérivable sur I. Les assertions suivantes sont équivalentes :

- (i) $y' + ay = b \operatorname{sur} I$.
- (ii) Il existe $\lambda \in \mathbb{K}$ tel que, sur I, on ait

$$\underbrace{y}_{\text{solution générale de l'équation avec second membre}} = \underbrace{\bar{y}}_{\text{solution particulière}} + \underbrace{\lambda e^{-A}}_{\text{solution générale de l'équation homogène}}$$

En d'autres termes, si on connaît une solution particulière de l'équation y' + a(x)y = b(x), alors on en connaît toutes les solutions.

Théorème : (Principe de superposition)

Soient $a, b_1, b_2 \in \mathcal{C}(I, \mathbb{K})$. Si y_1 est une solution particulière sur I de $y' + a(x)y = b_1(x)$ et si y_2 est une solution particulière sur I de $y' + a(x)y = b_2(x)$, alors $\lambda_1 y_1 + \lambda_2 y_2$ est une solution particulière sur I de $y' + a(x)y = \lambda_1 b_1(x) + \lambda_2 b_2(x)$, pour tous $\lambda_1, \lambda_2 \in \mathbb{K}$.

1.3 Recherche d'une solution particulière : méthode de variation de la constante

Pour résoudre une équation différentielle du premier ordre y' + a(x)y = b(x):

- Trouver toutes les solutions de l'équation homogène associée y' + a(x)y = 0. Ces solutions sont les $\lambda_0 e^{-A(x)}$, avec $\lambda_0 \in \mathbb{K}$ et A primitive de a sur I.
- Trouver une solution particulière \bar{y} de l'équation avec second membre y' + a(x)y = b(x), à l'aide de la méthode de variation de la constante :

On cherche \bar{y} sous la forme

$$\bar{y} = \lambda(x)e^{-A(x)}$$
.

On obtient $(\lambda' e^{-A} - \lambda A' e^{-A}) + a\lambda e^{-A} = b$ soit après simplifications $\lambda' = be^{A}$. On cherche alors λ primitive quelconque de be^{A} .

- Les solutions de y' + a(x)y = b(x) sont alors les $\bar{y} + \lambda_0 e^{-A(x)}$, $\lambda_0 \in \mathbb{K}$.
- Si de plus une condition initiale est imposée, alors on ajuste la constante λ_0 en conséquence.

1.4 Recherche d'une solution particulière pour des équations différentielles linéaires à coefficients constants, pour des seconds membres b(x) spécifiques

On considére l'équation différentielle linéaire à coefficients constants y' + ay = b(x), où $a \in \mathbb{K}$. Soit P un polynôme de degré n, à coefficients dans \mathbb{K} et $k \in \mathbb{K}$.

- Equations $y' + ay = P(x)e^{kx}$:
 On cherche une solution sous la forme $x \mapsto Q(x)e^{kx}$, où Q est un polynôme à coefficients dans \mathbb{K} , de degré:
 - 1. $deg(Q) \le n \text{ si } k \ne -a$;
 - $2. \ deg(Q) \le n+1 \text{ si } k = -a.$
 - Pour $\mathbb{K} = \mathbb{R}$: Equations $y' + ay = P(x)\cos(kx)$ ou $y' + ay = P(x)\sin(kx)$: On cherche, à l'aide de la méthode ci-dessus, une solution complexe $y_{\mathbb{C}}$ de $y' + ay = P(x)e^{ikx}$. Alors $\Re(y_{\mathbb{C}})$ est une solution particulière de $y' + ay = P(x)\cos(kx)$ et $\Im(y_{\mathbb{C}})$ est une solution particulière de $y' + ay = P(x)\sin(kx)$.
 - Pour $\mathbb{K} = \mathbb{R}$: Equations $y' + ay = P(x)\operatorname{ch}(kx)$ ou $y' + ay = P(x)\operatorname{sh}(kx)$: On cherche, à l'aide de la méthode ci-dessus, une solution y^+ de $y' + ay = P(x)e^{kx}$ et une solution y^- de $y' + ay = P(x)e^{-kx}$. Alors $\frac{y^+ + y^-}{2}$ est une solution particulière de $y' + ay = P(x)\operatorname{ch}(kx)$ et $\frac{y^+ - y^-}{2}$ est une solution particulière de $y' + ay = P(x)\operatorname{sh}(kx)$, d'après le principe de superposition.

2 Equations différentielles du second ordre à coefficients constants

2.1 Equations homogènes (sans second membre)

Théorème : (Equation différentielle ay'' + by' + cy = 0) Soient $a, b, c \in \mathbb{K}$ avec $a \neq 0$. On appelle polynôme caractéristique de l'équation ay'' + by' + cy = 0 le polynôme $aX^2 + bX + c$. Notons $\Delta = b^2 - 4ac$ son discriminant.

- Cas complexe ($\mathbb{K} = \mathbb{C}$).
 - 1. Si $\underline{\Delta \neq 0}$, soient r_1 et r_2 les racines distinctes de $aX^2 + bX + c$. Les solutions complexes de ay'' + by' + cy = 0 sont alors toutes les fonctions $x \mapsto \lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x}$, $\lambda_1, \lambda_2 \in \mathbb{C}$.
 - 2. Si $\underline{\Delta=0}$, soit r l'unique racine de aX^2+bX+c . Les solutions complexes de ay''+by'+cy=0 sont alors toutes les fonctions $x\mapsto (\lambda x+\mu)e^{rx}$, $\lambda,\mu\in\mathbb{C}$.

- Cas réel $(\mathbb{K} = \mathbb{R})$.
 - 1. Si $\Delta > 0$, soient r_1 et r_2 les racines (réelles) distinctes de $aX^2 + bX + c$. Les solutions réelles de ay'' + by' + cy = 0 sont alors toutes les fonctions $x \mapsto \lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x}$, $\lambda_1, \lambda_2 \in \mathbb{R}$.
 - 2. Si $\underline{\Delta=0}$, soit r l'unique racine de aX^2+bX+c . Les solutions réelles de ay''+by'+cy=0 sont alors toutes les fonctions $x\mapsto (\lambda x+\mu)e^{rx}$, $\lambda,\mu\in\mathbb{R}$.
 - 3. Si $\underline{\Delta < 0}$, soient $r + i\omega$ et $r i\omega$ les racines (complexes conjuguées) distinctes de $aX^2 + bX + c$. Les solutions réelles de ay'' + by' + cy = 0 sont alors toutes les fonctions $x \mapsto (\lambda \sin(\omega x) + \mu \cos(\omega x)) e^{rx}$, $\lambda, \mu \in \mathbb{R}$, que l'on peut aussi mettre sous la forme $x \mapsto \lambda \sin(\omega x + \phi)e^{rx}$ ou $x \mapsto \lambda \cos(\omega x + \phi)e^{rx}$, $\lambda, \phi \in \mathbb{R}$.

Si de plus une condition initiale de la forme $y(x_0) = y_0$ et $y'(x_0) = y_1$ est fixée, avec $x_0 \in I$ et $y_0, y_1 \in \mathbb{K}$, alors la valeur des constantes est fixée. L'équation avec condition initiale possède une unique solution.

2.2 Equations avec second membre

Théorème : (Equation différentielle ay'' + by' + cy = d(x))

Soient $a, b, c \in \mathbb{K}$ (avec $a \neq 0$), $d \in \mathcal{C}(I, \mathbb{K})$, $x_0 \in I$ et $y_0, y_1 \in \mathbb{K}$. Il existe une unique solution sur I de l'équation ay'' + by' + cy = d(x) telle que $y(x_0) = y_0$ et $y'(x_0) = y_1$.

Théorème : (Equation différentielle ay'' + by' + cy = d(x))

Soient $a,b,c \in \mathbb{K}$ (avec $a \neq 0$), $d \in \mathcal{C}(I,\mathbb{K})$ et \bar{y} une solution particulière de l'équation ay'' + by' + cy = d(x) sur I. Soit de plus $y:I \to \mathbb{K}$ une application deux fois dérivable sur I. Les assertions suivantes sont équivalentes :

(i) $ay'' + by' + cy = d \operatorname{sur} I$.

(ii)

 $\underbrace{y} \qquad \qquad = \qquad \underbrace{\bar{y}} \qquad + \qquad \underbrace{\tilde{y}} \qquad \qquad$

En d'autres termes, si on connaît une solution particulière de l'équation y' + a(x)y = b(x), alors on en connaît toutes les solutions.

Théorème : (Principe de superposition)

Soient $a, b, c \in \mathbb{K}$ avec $a \neq 0$, $d_1, d_2 \in \mathcal{C}(I, \mathbb{K})$. Si y_1 est une solution particulière sur I de $ay'' + by' + cy = d_1(x)$ et si y_2 est une solution particulière sur I de $ay'' + by' + cy = d_2(x)$, alors $\lambda_1 y_1 + \lambda_2 y_2$ est une solution particulière sur I de $ay'' + by' + cy = \lambda_1 d_1(x) + \lambda_2 d_2(x)$, pour tous $\lambda_1, \lambda_2 \in \mathbb{K}$.

2.3 Recherche d'une solution particulière pour des seconds membres spécifiques

Soient $a, b, c, k \in \mathbb{K}, a \neq 0, P$ un polynôme de degré n à coefficients dans \mathbb{K} .

– Equation de la forme $ay'' + by' + cy = P(x)e^{kx}$: On cherche les solutions sous la forme $x \mapsto Q(x)e^{kx}$, où Q est un polynôme à coefficients dans \mathbb{K} , de degré:

- 1. $deg(Q) \le n$ si k n'est pas racine du polynôme $aX^2 + bX + c$.
- 2. $deg(Q) \le n+1$ si k est racine simple du polynôme $aX^2 + bX + c$.
- 3. $deg(Q) \le n+2$ si k est racine double du polynôme $aX^2 + bX + c$.

- Pour $\mathbb{K} = \mathbb{R}$: Equations $ay'' + by' + cy = P(x)\cos(kx)$ ou $ay'' + by' + cy = P(x)\sin(kx)$: On cherche, à l'aide de la méthode ci-dessus, une solution complexe $y_{\mathbb{C}}$ de $ay'' + by' + cy = P(x)e^{\imath kx}$. Alors $\Re(y_{\mathbb{C}})$ est une solution particulière de $ay'' + by' + cy = P(x)\cos(kx)$ et $\Im(y_{\mathbb{C}})$ est une solution particulière de $ay'' + by' + cy = P(x)\sin(kx)$.
- Pour $\mathbb{K} = \mathbb{R}$: Equations $ay'' + by' + cy = P(x)\operatorname{ch}(kx)$ ou $ay'' + by' + cy = P(x)\operatorname{sh}(kx)$: On cherche, à l'aide de la méthode ci-dessus, une solution y^+ de $ay'' + by' + cy = P(x)e^{kx}$ et une solution y^- de $ay'' + by' + cy = P(x)e^{-kx}$. Alors $\frac{y^+ + y^-}{2}$ est une solution particulière de $ay'' + by' + cy = P(x)\operatorname{ch}(kx)$ et $\frac{y^+ y^-}{2}$ est une solution particulière de $ay'' + by' + cy = P(x)\operatorname{sh}(kx)$, d'après le principe de superposition.

3 Rappel: primitives des fonctions usuelles

On suppose a > 0.

Fonction	Primitive	Ensemble de définition de la primitive
x^{α} avec $\alpha \neq -1$	$\frac{x^{\alpha+1}}{\alpha+1}$	$\mathbb{R}_+^* \ (\mathbb{R} \ \mathrm{si} \ \alpha \in \mathbb{N})$
$\frac{1}{x}$	$\ln x $	\mathbb{R}_+^* ou \mathbb{R}^*
a^x avec $a > 0, a \neq 1$	$\frac{a^x}{\ln a}$	\mathbb{R}
$\cos x$	$\sin x$	\mathbb{R}
$\sin x$	$-\cos x$	\mathbb{R}
$\tan x$	$-\ln \cos x $	$]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi[,k\in\mathbb{Z}$
$\cosh x$	$\sinh x$	\mathbb{R}
$\sinh x$	$\cosh x$	\mathbb{R}
$\tanh x$	$\ln \cosh x$	\mathbb{R}
$\tan^2 x$	$\tan x - x$	$]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi[,k\in\mathbb{Z}$
$\frac{1}{\cos^2 x}$	$\tan x$	$]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi[,k\in\mathbb{Z}$
$\frac{1}{\sin^2 x}$	$-\coth x = -\frac{\cos x}{\sin x}$	$]k\pi,\pi+k\pi[,k\in\mathbb{Z}$
$\frac{1}{\sin x}$	$\ln \left \tan \left(\frac{x}{2} \right) \right $	$]k\pi,\pi+k\pi[,k\in\mathbb{Z}$
	$\ln \left \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right $	$] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[, k \in \mathbb{Z}$
$\frac{\cos x}{\tanh^2 x}$	$x - \tanh x$	\mathbb{R}
$\frac{1}{\cosh^2 x}$	$\tanh x$	$\mathbb R$
$\frac{1}{\sinh^2 x}$	$\frac{1}{\tanh x}$	\mathbb{R}_+^* ou \mathbb{R}^*
$\frac{1}{x^2 + a^2}$	$\frac{1}{a}\arctan\frac{x}{a}$	\mathbb{R}
$\frac{1}{a^2 - x^2}$	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $	$]-\infty,-a[$ ou $]-a,a[$ ou $]a,+\infty[$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\arcsin \frac{x}{a}$]-a,a[
$\frac{1}{\sqrt{x^2 + a^2}}$	$\ln\left(x + \sqrt{x^2 + a^2}\right)$	\mathbb{R}
$\frac{1}{\sqrt{x^2 - a^2}}$	$\left \ln \left x + \sqrt{x^2 - a^2} \right \right $	$]-\infty,-a[\text{ ou }]a,+\infty[$