The idea is to compose a policy with following form: $TU_{\theta}(a(S) = N(a|M_{em_{\theta}}(S), D_{iag}Var_{\theta})$ Where $Mean_{\theta}(S) = d_{TV} \cdot a^{ref}(S) + (1-d_{TV}) \cdot a^{explore}_{\theta}(S)$ (0) (1)- $\alpha^{ref}(s)$ comes directly from a planning method on dynamics model, while $\alpha_{\theta}^{emplore}(s)$ is a neural network policy to be aggregated to the reference policy $\alpha^{ref}(s)$ with a weight of $f \to d\tau v$. * LTV denotes a measure of Trust Value of reference policy.

Trust Value should be dependent on the discrepency between actual reward in real environment V(S,a) and simulated reward from obvious model V(S,a). So, Z_{TV} should depend on V(S,a) = V(

· Supervised learning for rolliff with parameter of · Then, LTV, for example, could be formulated as: - rate (s,a) = exp(-ratiff(s,a))

- rate (s,a) = exp(-ratiff(s,a))

- rate (s,a) = |r(s,a) - r(s,a)|

- rat (2) (3) · In summary, total loss could be: min $L(\theta, \phi) = -L(\theta) + \beta \cdot L(\phi)$, where β is a hyperparameter. θ, ϕ $L(\theta) = \mathbb{E}_{S \sim P_{\theta}, ul, a \sim TO_{\theta}, ul} \left[\frac{T_{U\theta new}(als)}{T_{U\theta}, ul} \Delta_{\theta}(s, a) \right] (4)$ $L(\phi) = || Y_{\theta}(s, a) - Y_{label}(s, a) ||$ Discussions of rolls, a)

- · ϕ Network learns $|r(s,a) \hat{r}(s,a)|$?

 or by normalizing $|r(s,a) \hat{r}(s,a)|$?

 if normalize, what is denominator? $|\hat{r}(s,a)|$ or |r(s,a)| or? · if r(S,a) > f(S,a), should we assume (Tr(rdiff) = 1? . Should we consider $r_0^{diff} \in [0, +\infty)$, or $\in [0, 1]$, or $\in (-\infty, +\infty)$ · Exact function XTV of rp? XTV = enp(-rp)? $(1-r_{\phi}^{aff})^{\frac{1}{2}}$ or other functions such as $(1-r_{\phi}^{aff})^{\frac{1}{2}}$ $(1-r_{\phi}^{aff})^{\frac{1}{2}}$ (

Discussions of der aref · more generally linear transformation of a ref? ie. Lov. I. a ref
where T is a error sformation
material. Most generally, XTV. f.w (aref), where for is a NN with w as parameter.

(multiplied)

ATV. f.w (aref), where for is a NN with w

as parameter. (some dimension (1-x7v). ag(s) as a ref