TABLE OF CONTENTS

A sequence is a list of numbers A series is the sum of such a list.

Square of Area 1

Size of Tiles:

$$\frac{1}{2}$$

Size of Tiles:

$$\frac{1}{2}$$
, $\frac{1}{2^2}$

$$\frac{1}{2} + \frac{1}{2^2}$$

Size of Tiles:

$$\frac{1}{2}$$
, $\frac{1}{2^2}$, $\frac{1}{2^3}$

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3}$$

Size of Tiles:

$$\frac{1}{2}$$
, $\frac{1}{2^2}$, $\frac{1}{2^3}$, $\frac{1}{2^4}$

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4}$$

Size of Tiles:

$$\frac{1}{2}$$
, $\frac{1}{2^2}$, $\frac{1}{2^3}$, $\frac{1}{2^4}$, $\frac{1}{2^5}$

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5}$$

Size of Tiles:

$$\frac{1}{2}$$
, $\frac{1}{2^2}$, $\frac{1}{2^3}$, $\frac{1}{2^4}$, $\frac{1}{2^5}$, $\frac{1}{2^6}$

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6}$$

Size of Tiles:

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7}$$

Size of Tiles:

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8}$$

Size of Tiles:

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9}$$

12/159

Size of Tiles:

Covered Area:

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \cdots$$

13/159

Size of Tiles:

List of numbers, approaching

$$\frac{1}{2} \ , \frac{1}{2^2} \ , \frac{1}{2^3} \ , \frac{1}{2^4} \ , \frac{1}{2^5} \ , \frac{1}{2^6} \ , \frac{1}{2^7} \ , \frac{1}{2^8} \ , \frac{1}{2^9} \ , \ \dots$$

Covered Area:

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \cdots$$

Size of Tiles:

$$\frac{1}{2} \ , \, \frac{1}{2^2} \ , \, \frac{1}{2^3} \ , \, \frac{1}{2^4} \ , \, \frac{1}{2^5} \ , \, \frac{1}{2^6} \ , \, \frac{1}{2^7} \ , \, \frac{1}{2^8} \ , \, \frac{1}{2^9} \ , \ \cdots$$

Sequence

List of numbers, approaching **zero**.

Covered Area:

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \cdots$$

15/159

Size of Tiles:

List of numbers, approaching **zero**.

Series

$$\frac{1}{2}$$
, $\frac{1}{2^2}$, $\frac{1}{2^3}$, $\frac{1}{2^4}$, $\frac{1}{2^5}$, $\frac{1}{2^6}$, $\frac{1}{2^7}$, $\frac{1}{2^8}$, $\frac{1}{2^9}$, ...

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \cdots$$

16/159

Size of Tiles:

Sequence

List of numbers, approaching **zero**.

Series

Sum of numbers,

approaching

$$\frac{1}{2} \ , \, \frac{1}{2^2} \ , \, \frac{1}{2^3} \ , \, \frac{1}{2^4} \ , \, \frac{1}{2^5} \ , \, \frac{1}{2^6} \ , \, \frac{1}{2^7} \ , \, \frac{1}{2^8} \ , \, \frac{1}{2^9} \ , \ \cdots$$

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \cdots$$

Size of Tiles:

Sequence

List of numbers, approaching **zero**.

Series

Sum of numbers,

approaching **one**.

$$\frac{1}{2} \ , \frac{1}{2^2} \ , \frac{1}{2^3} \ , \frac{1}{2^4} \ , \frac{1}{2^5} \ , \frac{1}{2^6} \ , \frac{1}{2^7} \ , \frac{1}{2^8} \ , \frac{1}{2^9} \ , \ \dots$$

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \cdots$$

QUICK REVIEW: SIGMA NOTATION

Recall:

$$\sum_{n=1}^{5} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2}$$

QUICK REVIEW: SIGMA NOTATION

Recall:

$$\sum_{n=1}^{5} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2}$$

We informally interpret:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} =$$

QUICK REVIEW: SIGMA NOTATION

Recall:

$$\sum_{n=1}^{5} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2}$$

We informally interpret:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{9^2} + \frac{1}{10^2} + \cdots$$

(a more rigorous definition will be discussed soon)

$$\sum_{n=1}^{\infty} (C \cdot a_n) =$$

A.
$$\sum_{n=1}^{\infty} C \cdot \sum_{n=1}^{\infty} a_n$$

$$B. \sum_{n=1}^{\infty} C + \sum_{n=1}^{\infty} a_n$$

C.
$$C\sum_{n=1}^{\infty} a_n$$

D.
$$a_n \sum_{n=0}^{\infty} C$$

$$\sum_{n=1}^{\infty} (C \cdot a_n) =$$

A.
$$\sum_{n=1}^{\infty} C \cdot \sum_{n=1}^{\infty} a_n$$

$$B. \sum_{n=1}^{\infty} C + \sum_{n=1}^{\infty} a_n$$

C.
$$C\sum_{n=1}^{\infty}a_n$$

D.
$$a_n \sum_{i=1}^{\infty} C$$

$$\sum_{n=1}^{\infty} (a_n + b_n) =$$

A.
$$\sum_{n=1}^{\infty} a_n \cdot \sum_{n=1}^{\infty} b_n$$

$$B. \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

$$C. a_n + \sum_{n=1}^{\infty} b_n$$

D.
$$a_n \sum_{n=0}^{\infty} b_n$$

$$\sum_{n=1}^{\infty} (a_n + b_n) =$$

A.
$$\sum_{n=1}^{\infty} a_n \cdot \sum_{n=1}^{\infty} b_n$$

B.
$$\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

$$C. \ a_n + \sum_{n=1}^{\infty} b_n$$

D.
$$a_n \sum_{n=1}^{\infty} b_n$$

$$\sum_{n=1}^{\infty} (a_n)^C =$$

A.
$$\sum_{n=1}^{\infty} C \cdot \sum_{n=1}^{\infty} a_n$$

B.
$$\left(\sum_{n=1}^{\infty} a_n\right)^C$$

C.
$$C^n \sum_{n=1}^{\infty} a_n$$

D.
$$\sum_{n=1}^{\infty} C(a_n)^{C-1}$$

$$\sum_{n=1}^{\infty} (a_n)^C =$$

A.
$$\sum_{n=1}^{\infty} C \cdot \sum_{n=1}^{\infty} a_n$$

B.
$$\left(\sum_{n=1}^{\infty} a_n\right)^C$$

C.
$$C^n \sum_{n=1}^{\infty} a_n$$

D.
$$\sum_{n=1}^{\infty} C(a_n)^{C-1}$$

$$1-1+1-1+1-1+1-1+1-1+1-1+\cdots$$

$$\underbrace{1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + \dots}_{0} + \underbrace{1 - 1 + 1 - 1 + 1 - 1 + \dots}_{0} + \underbrace{1 - 1 + 1 - 1 + 1 - 1 + \dots}_{0}$$

$$\underbrace{1 - 1 + 1}_{1} \underbrace{- 1 + 1}_{0} \underbrace{- 1 + 1}_{0}$$

What does it really mean to add up infinitely many things?

$$1-1+1-1+1-1+1-1+1-1+1-1+\cdots$$

We need an unambiguous definition.

SEQUENCE OF PARTIAL SUMS

SEQUENCE OF PARTIAL SUMS

 $S_1 = 0.2000$

SEQUENCE OF PARTIAL SUMS

 $S_1 = 0.2000$

 $S_2 = 0.2400$

SEQUENCE OF PARTIAL SUMS

$$S_2 = 0.2400$$

HOW CAN WE ADD UP INFINITELY MANY THINGS?

SEQUENCE OF PARTIAL SUMS

 $S_1 = 0.2000$

 $S_2 = 0.2400$

 $S_3=0.2480$

 $S_4 = 0.2496$

-4

HOW CAN WE ADD UP INFINITELY MANY THINGS?

SEQUENCE OF PARTIAL SUMS

 $S_1 = 0.2000$

 $S_2 = 0.2400$

 $S_3=0.2480$

 $S_4 = 0.2496$

 $S_5 = 0.2499$

$$a_1 = \frac{1}{5} = 0.2$$

$$a_2 = \frac{1}{5^2} = 0.04$$

$$a_3 = \frac{1}{5^3} = 0.008$$

$$a_4 = \frac{1}{5^4} = 0.0016$$

$$a_5 = \frac{1}{5^5} = 0.00032$$

$$a_1 = \frac{1}{5} = 0.2$$

$$a_2 = \frac{1}{5^2} = 0.04$$

$$a_3 = \frac{1}{5^3} = 0.008$$

$$a_4 = \frac{1}{5^4} = 0.0016$$

$$a_5 = \frac{1}{5^5} = 0.00032$$

$$a_1 = \frac{1}{5} = 0.2$$

$$a_2 = \frac{1}{5^2} = 0.04$$

$$a_3 = \frac{1}{5^3} = 0.008$$

$$a_4 = \frac{1}{5^4} = 0.0016$$

$$a_5 = \frac{1}{5^5} = 0.00032$$

$$a_{1} = \frac{1}{5} = 0.2$$

$$a_{2} = \frac{1}{5^{2}} = 0.04$$

$$a_{3} = \frac{1}{5^{3}} = 0.008$$

$$a_{4} = \frac{1}{5^{4}} = 0.0016$$

$$a_{5} = \frac{1}{5^{5}} = 0.00032$$

$$a_{1} = \frac{1}{5} = 0.2$$

$$a_{2} = \frac{1}{5^{2}} = 0.04$$

$$a_{3} = \frac{1}{5^{3}} = 0.008$$

$$a_{4} = \frac{1}{5^{4}} = 0.0016$$

$$a_{5} = \frac{1}{5^{5}} = 0.00032$$

$$S_{1} = 0.2$$

$$S_{2} = 0.24$$

$$a_{1} = \frac{1}{5} = 0.2$$

$$a_{2} = \frac{1}{5^{2}} = 0.04$$

$$a_{3} = \frac{1}{5^{3}} = 0.008$$

$$a_{4} = \frac{1}{5^{4}} = 0.0016$$

$$a_{5} = \frac{1}{5^{5}} = 0.00032$$

$$S_{1} = 0.2$$

$$S_{2} = 0.24$$

$$a_1 = \frac{1}{5} = 0.2$$
 $S_1 = 0.2$ $S_2 = 0.24$ $S_3 = 0.24$ $S_4 = 0.008$ $S_5 = 0.248$ $S_6 = 0.0016$ $S_7 = 0.00032$

$$a_1 = \frac{1}{5} = 0.2$$
 $S_1 = 0.2$ $S_2 = 0.24$ $S_3 = 0.24$ $S_4 = 0.008$ $S_5 = 0.248$ $S_6 = 0.0016$ $S_7 = 0.00032$

$$a_1 = \frac{1}{5} = 0.2$$
 $S_1 = 0.2$ $a_2 = \frac{1}{5^2} = 0.04$ $S_2 = 0.24$ $a_3 = \frac{1}{5^3} = 0.008$ $S_3 = 0.248$ $a_4 = \frac{1}{5^4} = 0.0016$ $S_4 = 0.2496$ $a_5 = \frac{1}{5^5} = 0.00032$

$$a_1 = \frac{1}{5} = 0.2$$
 $S_1 = 0.2$ $a_2 = \frac{1}{5^2} = 0.04$ $S_2 = 0.24$ $a_3 = \frac{1}{5^3} = 0.008$ $S_3 = 0.248$ $a_4 = \frac{1}{5^4} = 0.0016$ $S_4 = 0.2496$ $a_5 = \frac{1}{5^5} = 0.00032$

$$a_1 = \frac{1}{5} = 0.2$$
 $S_1 = 0.2$ $S_2 = 0.24$ $S_3 = 0.248$ $S_4 = 0.248$ $S_4 = 0.2496$ $S_5 = 0.24992$

We define
$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n = \lim_{N \to \infty} S_N$$
.

$$a_1 = \frac{1}{5} = 0.2$$
 $S_1 = 0.2$ $a_5 = \frac{1}{5^5} = 0.00032$ $S_5 = 0.24992$ $a_2 = \frac{1}{5^2} = 0.04$ $S_2 = 0.24$ $a_6 = \frac{1}{5^6} = 0.000064$ $S_6 = 0.249984$ $a_3 = \frac{1}{5^3} = 0.008$ $S_3 = 0.248$ $a_7 = \frac{1}{5^7} = 0.0000128$ $S_7 = 0.2499968$ $a_4 = \frac{1}{5^4} = 0.0016$ $S_4 = 0.2496$ $a_8 = \frac{1}{5^8} = 0.00000256$ $S_8 = 0.24999936$

From the sequence of partial sums, we guess

$$\sum_{n=1}^{\infty} = \lim_{N \to \infty} S_N =$$

50/159

We define
$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n = \lim_{N \to \infty} S_N$$
.

$$a_1 = \frac{1}{5} = 0.2$$
 $S_1 = 0.2$ $a_5 = \frac{1}{5^5} = 0.00032$ $S_5 = 0.24992$ $a_2 = \frac{1}{5^2} = 0.04$ $S_2 = 0.24$ $a_6 = \frac{1}{5^6} = 0.000064$ $S_6 = 0.249984$ $a_3 = \frac{1}{5^3} = 0.008$ $S_3 = 0.248$ $a_7 = \frac{1}{5^7} = 0.0000128$ $S_7 = 0.2499968$ $a_4 = \frac{1}{5^4} = 0.0016$ $S_4 = 0.2496$ $a_8 = \frac{1}{5^8} = 0.00000256$ $S_8 = 0.24999936$

From the sequence of partial sums, we guess

$$\sum_{n=1}^{\infty} \frac{1}{5^n} = \lim_{N \to \infty} S_N = \frac{1}{4}$$

 $S_1 = a_1$ $S_2 = a_1 + a_2$

$$S_2 = a_1 + a_2$$
 $S_3 = a_1 + a_2 + a_3$
 $a_4 \quad a_5 \quad a_6$

$$S_2 = a_1 + a_2$$
 $S_3 = a_1 + a_2 + a_3$
 $a_5 \quad a_6$
 $S_4 = a_1 + \dots + a_4$

Suppose
$$\sum_{n=1}^{\infty} a_n$$
 has partial sums $S_N = \sum_{n=1}^{N} a_n = \frac{N}{N+1}$.

ightharpoonup Evaluate $\sum_{n=1}^{100} a_n$.

► Evaluate $\sum_{n=1}^{\infty} a_n$.

Suppose
$$\sum_{n=1}^{\infty} a_n$$
 has partial sums $S_N = \sum_{n=1}^{N} a_n = \frac{N}{N+1}$.

► Evaluate
$$\sum_{n=1}^{100} a_n$$
. $\sum_{n=1}^{100} a_n = S_{100} = \frac{100}{101}$

$$\blacktriangleright \text{ Evaluate } \sum_{n=1}^{\infty} a_n. \qquad \sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \frac{N}{N+1} = 1$$

Andrew brings a plate of cookies to the professor's desk. When he puts them down, there are 10 cookies on the desk.

Andrew brings a plate of cookies to the professor's desk. When he puts them down, there are 10 cookies on the desk.

Then, Joel brings a plate of cookies. When he puts them down, there are 19 cookies on the desk.

How many cookies did each person bring?

Andrew brings a plate of cookies to the professor's desk. When he puts them down, there are 10 cookies on the desk.

Then, Joel brings a plate of cookies. When he puts them down, there are 19 cookies on the desk.

How many cookies did each person bring?

Andrew brought 10, and Joel brought 19 - 10 = 9.

Andrew brings a plate of cookies to the professor's desk. When he puts them down, there are 10 cookies on the desk.

Then, Joel brings a plate of cookies. When he puts them down, there are 19 cookies on the desk.

How many cookies did each person bring?

Andrew brought 10, and Joel brought 19 - 10 = 9.

Andrew brings a plate of cookies to the professor's desk. When he puts them down, there are 10 cookies on the desk.

Then, Joel brings a plate of cookies. When he puts them down, there are 19 cookies on the desk.

How many cookies did each person bring?

Andrew brought 10, and Joel brought 19 - 10 = 9.

Suppose
$$\sum_{n=1}^{\infty} a_n$$
 has partial sums $S_N = \sum_{n=1}^N a_n = \frac{N}{N+1}$.

- ▶ Find a_1 .
- ► Give an explicit expression for a_n , when n > 1.

Suppose
$$\sum_{n=1}^{\infty} a_n$$
 has partial sums $S_N = \sum_{n=1}^{N} a_n = \frac{N}{N+1}$.

- Find a_1 . $a_1 = \sum_{n=1}^{1} a_n = S_1 = \frac{1}{2}$
- ► Give an explicit expression for a_n , when n > 1.

$$a_n = \left(\sum_{k=1}^n a_k\right) - \left(\sum_{k=1}^{n-1} a_k\right) = S_n - S_{n-1}$$
$$= \frac{n}{n+1} - \frac{n-1}{n} = \frac{1}{n(n+1)}$$

$$S_N = \sum_{n=1}^N a_n = \frac{N}{N+1}$$

$$S_N = \sum_{n=1}^N a_n = \frac{N}{N+1}$$

 $S_1 = 1/(1+1)$

$$S_N = \sum_{n=1}^N a_n = \frac{N}{N+1}$$

$$S_1 = 1/(1+1)$$

$$S_2=2/(2+1)$$

70/159

$$S_N = \sum_{n=1}^N a_n = \frac{N}{N+1}$$

$$S_1 = 1/(1+1)$$

$$S_2 = 2/(2+1)$$

$$S_3 = 3/(3+1)$$

 a_4

 a_5

 $a_6 \ a_7 \ a_8$

71/159

$$S_N = \sum_{n=1}^N a_n = \frac{N}{N+1}$$

$$S_1 = 1/(1+1)$$

$$S_2 = 2/(2+1)$$

 $S_3 = 3/(3+1)$

$$a_5$$

$$S_4 = 4/(4+1)$$

Definition

The N^{th} partial sum of the series $\sum_{n=1}^{\infty} a_n$ is the sum of its first N terms

$$S_N = \sum_{n=1}^N a_n.$$

The partial sums form a sequence $\{S_N\}_{N=1}^{\infty}$. If this sequence of partial sums converges $S_N \to S$ as $N \to \infty$ then we say that the series $\sum_{n=1}^{\infty} a_n$ converges to S and we write

$$\sum_{n=1}^{\infty} a_n = S$$

If the sequence of partial sums diverges, we say that the series diverges.

Geometric Series

Let *a* and *r* be two fixed real numbers with $a \neq 0$. The series

$$a + ar + ar^2 + ar^3 + \cdots$$

is called the **geometric series** with first term a and ratio r.

We call *r* the *ratio* because it is the quotient of consecutive terms:

$$\frac{ar^{n+1}}{ar^n} = r$$

Geometric Series

Let *a* and *r* be two fixed real numbers with $a \neq 0$. The series

$$a + ar + ar^2 + ar^3 + \cdots$$

is called the **geometric series** with first term *a* and ratio *r*.

We call *r* the *ratio* because it is the quotient of consecutive terms:

$$\frac{ar^{n+1}}{ar^n} = r$$

Another useful way of identifying geometric series is to determine whether all pairs of consecutive terms have the same ratio.

- Geometric: $1 + \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \frac{1}{5^4} + \cdots$
- Geometric: $\sum_{n=0}^{\infty} \frac{1}{2^n}$
- ► Not geometric: $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \cdots$

$$S_N = a + ar + ar^2 + ar^3 + \dots + ar^N$$

$$S_N = a + ar + ar^2 + ar^3 + \dots + ar^N$$

$$rS_N =$$

$$S_N = a + ar + ar^2 + ar^3 + \dots + ar^N$$

 $rS_N = ar + ar^2 + ar^3 + \dots + ar^N + ar^{N+1}$

$$S_N = a + ar + ar^2 + ar^3 + \dots + ar^N$$

$$rS_N = ar + ar^2 + ar^3 + \dots + ar^N + ar^{N+1}$$

$$rS_N - S_N =$$

ans

$$S_N = a + ar + ar^2 + ar^3 + \dots + ar^N$$

 $rS_N = ar + ar^2 + ar^3 + \dots + ar^N + ar^{N+1}$
 $rS_N - S_N = -a + ar^{N+1}$

$$S_N = a + ar + ar^2 + ar^3 + \dots + ar^N$$

 $rS_N = ar + ar^2 + ar^3 + \dots + ar^N + ar^{N+1}$
 $rS_N - S_N = -a + ar^{N+1}$
 $S_N(r-1) = ar^{N+1} - a$

If $r \neq 1$, then

$$S_N = \frac{ar^{N+1} - a}{r - 1} = a\frac{r^{N+1} - 1}{r - 1}$$

Geometric Series and Partial Sums

Let *a* and *r* be constants with $a \neq 0$, and let *N* be a natural number.

► If
$$r \neq 1$$
, then $a + ar + ar^2 + ar^3 + \dots + ar^N = a \frac{r^{N+1} - 1}{r - 1}$.

$$If r = 1, then a + ar + ar^2 + ar^3 + \cdots + ar^N =$$

$$If |r| < 1, then \sum_{n=0}^{\infty} ar^n =$$

$$If r = 1, then \sum_{n=0}^{\infty} ar^n$$

$$If r = -1, then \sum_{n=0}^{\infty} ar^n$$

► If
$$|r| > 1$$
, then $\sum_{n=0}^{\infty} ar^n$

82/159 Example 3.2.4

Geometric Series and Partial Sums

Let *a* and *r* be constants with $a \neq 0$, and let *N* be a natural number.

- ► If $r \neq 1$, then $a + ar + ar^2 + ar^3 + \dots + ar^N = a \frac{r^{N+1} 1}{r 1}$.
- ► If r = 1, then $a + ar + ar^2 + ar^3 + \dots + ar^N = (N+1)a$.
- ► If |r| < 1, then $\sum_{n=0}^{\infty} ar^n = \lim_{N \to \infty} a \frac{r^{N+1} 1}{r 1} = a \frac{1}{1 r}$
- ► If r = 1, then $\sum_{n=0}^{\infty} ar^n$ diverges
- ► If r = -1, then $\sum_{n=0}^{\infty} ar^n$ diverges
- ► If |r| > 1, then $\sum_{n=0}^{\infty} ar^n$ diverges

$$\sum_{n=0}^{\infty} ar^n, r=1, a\neq 0$$

 $S_0 = a$

n=0

$$S_0 = a$$

$$S_1 = 2a$$

$$S_0 = a$$

$$S_1 = 2a$$

$$S_1 = 2a$$

$$S_2 = 3a$$

$$S_3 = 4a$$

$$S_0 = a$$

$$S_1 = 2a$$

$$S_2 = 3a$$

$$S_3 = 4a$$

$$S_4 = 5a$$

 $S_0 = a$

 $S_1 = 2a$

 $S_2 = 3a$

 $S_3 = 4a$

 $S_4 = 5a$

 $S_5 = 6a$

_

$$S_0 = a$$

$$S_1 = 2a$$

$$S_2 = 3a$$

$$S_3 = 4a$$

$$S_4 = 5a$$

$$S_5=6a$$

 $\sum_{n=0}^{\infty}ar^n,\,r=-1,\,a\neq 0$

$$S_0 = a$$

$$S_0 = a$$

$$S_1 = 0$$

$$S_0 = a$$

$$S_1 = 0$$

$$S_2 = a$$

$$\sum_{n=0}^{\infty} ar^n, r=-1, a\neq 0$$

$$S_0 = a$$

$$S_1 = 0$$

$$S_2 = a$$

$$S_3 = 0$$

$$\sum_{n=0}^{\infty} ar^n, r=-1, a\neq 0$$

$$S_0 = a$$

$$S_1 = 0$$

$$S_2 = a$$

$$S_3 = 0$$

$$S_4 = a$$

$$S_0 = a$$

$$S_1 = 0$$

$$S_2 = a$$

$$S_3 = 0$$

$$S_4 = a$$

$$S_5 = 0$$

$$\sum_{n=0}^{\infty} ar^n, r=-1, a\neq 0$$

$$S_0 = a$$

$$S_1 = 0$$

$$S_2 = a$$

$$S_3 = 0$$

$$S_4 = a$$

$$S_5 = 0$$

 $\sum_{n=0}^{3.2 \, \text{Series}} ar^n, \, r>1, \, a\neq 0$

 $S_0 = a$

$$ar^2$$
 ar^3 ar^4

$$S_0 = a$$

$$S_1 = a \frac{r^2 - 1}{r - 1}$$

$$S_0 = a$$
$$S_1 = a \frac{r^2 - 1}{r - 1}$$

$$S_2 = a \frac{r^3 - 1}{r - 1}$$

$$S_0 = a$$

$$S_1 = a \frac{r^2 - 1}{r - 1}$$

$$S_2 = a \frac{r^3 - 1}{r - 1}$$

$$S_3 = a \frac{r^4 - 1}{r - 1}$$

$$S_0 = a$$

$$S_1 = a \frac{r^2 - 1}{r - 1}$$

$$S_2 = a \frac{r^3 - 1}{r - 1}$$

$$S_3 = a \frac{r^4 - 1}{r - 1}$$

$$S_4 = a \frac{r^5 - 1}{r - 1}$$

$$S_0 = a$$

$$S_1 = a \frac{r^2 - 1}{r - 1}$$

$$S_2 = a \frac{r^3 - 1}{r - 1}$$

$$S_3 = a \frac{r^4 - 1}{r - 1}$$

$$S_4 = a \frac{r^5 - 1}{r - 1}$$

 $S_0 = a$

$$S_0 = a$$
$$S_1 = a \frac{r^2 - 1}{r - 1}$$

n=0

$$S_0 = a$$

$$S_1 = a \frac{r^2 - 1}{r - 1}$$

$$S_2 = a \frac{r^3 - 1}{r - 1}$$

$$S_3 = a \frac{r^4 - 1}{r - 1}$$

n=0

$$\sum_{n=0}^{\infty} ar^n, r < -1, a \neq 0$$

$$S_0 = a$$

$$S_1 = a \frac{r^2 - 1}{r - 1}$$

$$S_2 = a \frac{r^3 - 1}{r - 1}$$

$$S_3 = a \frac{r^4 - 1}{r - 1}$$

$$S_4 = a \frac{r^5 - 1}{r - 1}$$

112/159

$$S_0 = a$$

$$S_1 = a \frac{r^2 - 1}{r - 1}$$

$$S_2 = a \frac{r^3 - 1}{r - 1}$$

$$S_3 = a \frac{r^4 - 1}{r - 1}$$

$$S_4 = a \frac{r^5 - 1}{r - 1}$$

$$S_5 = a \frac{r^6 - 1}{r - 1}$$

113/159

n=0

$$S_0 = a$$

$$S_1 = a \frac{r^2 - 1}{r - 1}$$

$$S_2 = a \frac{r^3 - 1}{r - 1}$$

$$S_3 = a \frac{r^4 - 1}{r - 1}$$

$$S_4 = a \frac{r^5 - 1}{r - 1}$$

$$S_5 = a \frac{r^6 - 1}{r - 1}$$

114/159

New bitcoins are produced when a particular type of computational problem is solved. Every time 210,000 solutions are found, the number of bitcoins each solution can produce is cut in half.

- ► Each of the first 210,000 solutions can produce 50 bitcoins.
- ► Each of the next 210,000 solutions can produce $\frac{50}{2}$ bitcoins.
- ► Each of the next 210,000 solutions can produce $\frac{50}{2^2}$ bitcoins.
- ► Each of the next 210,000 solutions can produce $\frac{50}{2^3}$ bitcoins.

Assume that this continues forever, and that bitcoins are infinitely divisible. How many bitcoins can possibly be produced?

 $^{^{1}}$ Actually the smallest allowed division of a bitcoin is 10^{-8} .

New bitcoins are produced when a particular type of computational problem is solved. Every time 210,000 solutions are found, the number of bitcoins each solution can produce is cut in half.

- ► Each of the first 210,000 solutions can produce 50 bitcoins.
- ► Each of the next 210,000 solutions can produce $\frac{50}{2}$ bitcoins.
- ► Each of the next 210,000 solutions can produce $\frac{50}{2^2}$ bitcoins.
- ► Each of the next 210,000 solutions can produce $\frac{50}{2^3}$ bitcoins.

Assume that this continues forever, and that bitcoins are infinitely divisible. How many bitcoins can possibly be produced? We start by writing the total number of bitcoin produced as a series. Since we want to know an upper bound, we'll assume that infinite solutions can be found and used to make bitcoin.

$$210\,000(50) + 210\,000\left(\frac{50}{2}\right) + 210\,000\left(\frac{50}{2^2}\right) + \dots = \sum_{n=0}^{\infty} (210\,000)\left(\frac{50}{2^n}\right)$$

 $^{^{1}}$ Actually the smallest allowed division of a bitcoin is 10^{-8} .

$$\sum_{n=0}^{\infty} (210\,000) \left(\frac{50}{2^n}\right) =$$

$$\sum_{n=0}^{\infty} (210\,000) \left(\frac{50}{2^n}\right) = \sum_{n=0}^{\infty} (210\,000 \cdot 50) \left(\frac{1}{2}\right)^n$$

$$= (210\,000 \cdot 50) \frac{1}{1 - \frac{1}{2}}$$

$$= (210\,000 \cdot 50)(2)$$

$$= 21\,000\,000$$

So there will never be more than 21,000,000 bitcoins produced this way.

$$\sum_{n=0}^{\infty} 210\,000 \left(\frac{50}{2^n}\right) = 21\,000\,000$$

$$\sum_{n=0}^{\infty} 210\,000 \left(\frac{50}{2^n}\right) = 21\,000\,000$$

 $S_0 = 10\,500\,000$

$$\sum_{n=0}^{\infty} 210\,000 \left(\frac{50}{2^n}\right) = 21\,000\,000$$

 $S_0 = 10\,500\,000$

 $S_1 = 15750000$

$$\sum_{n=0}^{\infty} 210\,000 \left(\frac{50}{2^n}\right) = 21\,000\,000$$

$$S_1 = 15\,750\,000$$

$$\sum_{n=0}^{\infty} 210\,000 \left(\frac{50}{2^n}\right) = 21\,000\,000$$

 $S_0 = 10\,500\,000$

 $S_1 = 15\,750\,000$

 $S_2 = 18\,375\,000$

 $S_3 = 19687500$

$$\sum_{n=0}^{\infty} 210\,000 \left(\frac{50}{2^n}\right) = 21\,000\,000$$

$$S_0 = 10\,500\,000$$

$$S_1 = 15\,750\,000$$

$$S_2 = 18\,375\,000$$

$$S_3 = 19687500$$

$$S_4 = 20343750$$

Arithmetic of Series

Let S, T, and C be real numbers. Let the two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge to S and T respectively. Then

$$\sum_{n=1}^{\infty} [a_n + b_n] = S + T$$

$$\sum_{n=1}^{\infty} [a_n - b_n] = S - T$$

$$\sum_{n=1}^{\infty} [Ca_n] = CS$$

Geometric Series and Partial Sums

Let *a* and *r* be fixed numbers, and let *N* be a positive integer. Then

$$\sum_{n=0}^{N} ar^{n} = \begin{cases} a \cdot \frac{1 - r^{N+1}}{1 - r} & \text{if } r \neq 1 \\ a(N+1) & \text{if } r = 1 \end{cases}$$

so

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \text{ provided } |r| < 1$$

Evaluate
$$\sum_{n=0}^{\infty} \left(\frac{2}{3^n} + \frac{4}{5^n} \right)$$

$$\sum_{n=0}^{\infty} \left(\frac{2}{3^n} + \frac{4}{5^n} \right) =$$

$$\sum_{n=0}^{\infty} \left(\frac{2}{3^n} + \frac{4}{5^n}\right) = \sum_{n=0}^{\infty} \frac{2}{3^n} + \sum_{n=0}^{\infty} \frac{4}{5^n}$$

$$= \sum_{n=0}^{\infty} 2\left(\frac{1}{3}\right)^n + \sum_{n=0}^{\infty} 4\left(\frac{1}{5}\right)^n$$

$$= \frac{2}{1 - \frac{1}{3}} + \frac{4}{1 - \frac{1}{5}}$$

$$= \frac{2}{2/3} + \frac{4}{4/5}$$

$$= 3 + 5 = 8$$

Geometric Series and Partial Sums

Let *a* and *r* be fixed numbers, and let *N* be a positive integer. Then

$$\sum_{n=0}^{N} ar^{n} = \begin{cases} a \cdot \frac{1 - r^{N+1}}{1 - r} & \text{if } r \neq 1 \\ a(N+1) & \text{if } r = 1 \end{cases}$$

so

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \text{ provided } |r| < 1$$

Evaluate
$$\sum_{n=6}^{\infty} \left(\frac{3^{n-1}}{5^{2n}} \right)$$

$$\sum_{n=6}^{\infty} \left(\frac{3^{n-1}}{5^{2n}} \right) =$$

$$\sum_{n=6}^{\infty} \left(\frac{3^{n-1}}{5^{2n}} \right) = \sum_{n=6}^{\infty} \frac{1}{3} \left(\frac{3^n}{5^{2n}} \right) = \sum_{n=6}^{\infty} \frac{1}{3} \left(\frac{3^n}{25^n} \right) = \sum_{n=6}^{\infty} \frac{1}{3} \left(\frac{3}{25} \right)^n$$

Set k = n - 6. Then n = k + 6 and when n = 6, k = 0.

$$= \sum_{k=0}^{\infty} \frac{1}{3} \left(\frac{3}{25}\right)^{k+6} = \sum_{k=1}^{\infty} \frac{1}{3} \left(\frac{3}{25}\right)^{6} \left(\frac{3}{25}\right)^{k}$$
$$= \frac{1}{3} \left(\frac{3}{25}\right)^{6} \cdot \frac{1}{1 - 3/25} = \frac{3^{5}}{25^{6}} \cdot \frac{25}{22} = \frac{3^{5}}{25^{5} \cdot 22}$$

Geometric Series and Partial Sums

Let *a* and *r* be fixed numbers, and let *N* be a positive integer. Then

$$\sum_{n=0}^{N} ar^{n} = \begin{cases} a \cdot \frac{1 - r^{N+1}}{1 - r} & \text{if } r \neq 1 \\ a(N+1) & \text{if } r = 1 \end{cases}$$

so

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \text{ provided } |r| < 1$$

Evaluate
$$\sum_{n=0}^{\infty} \left(\frac{2^{2n}}{3^n} \right)$$

$$\sum_{n=0}^{\infty} \left(\frac{2^{2n}}{3^n} \right) =$$

$$\sum_{n=0}^{\infty} \left(\frac{2^{2n}}{3^n}\right) = \sum_{n=0}^{\infty} \left(\frac{4^n}{3^n}\right)$$
$$= \sum_{n=1}^{\infty} \left(\frac{4}{3}\right)^n$$

Since $\left|\frac{4}{3}\right| > 1$, the series diverges.

$$\sum_{n=0}^{\infty} \left(\frac{2^{2n}}{3^n} \right) \text{ diverges}$$

$$\sum_{n=0}^{\infty} \left(\frac{2^{2n}}{3^n} \right) \text{ diverges}$$

 $S_0 = 1.0000$

$$\sum_{n=0}^{\infty} \left(\frac{2^{2n}}{3^n} \right) \text{ diverges}$$

 $S_0 = 1.0000$

 $S_1 = 2.3333$

$$\sum_{n=0}^{\infty} \left(\frac{2^{2n}}{3^n} \right) \text{ diverges}$$

 $\frac{64}{27}$

256 81

$$S_1 = 2.3333$$

$$S_2=4.1111$$

$$\sum_{n=0}^{\infty} \left(\frac{2^{2n}}{3^n} \right) \text{ diverges}$$

$$S_1 = 2.3333$$

$$S_2=4.1111$$

$$S_3 = 6.4815$$

$$\sum_{n=0}^{\infty} \left(\frac{2^{2n}}{3^n} \right) \text{ diverges}$$

 $\tfrac{1024}{243}$

 $S_0=1.0000$

 $S_1 = 2.3333$

 $S_2 = 4.1111$

 $S_3=6.4815$

 $S_4=9.6420$

$$\sum_{n=0}^{\infty} \left(\frac{2^{2n}}{3^n} \right) \text{ diverges}$$

 $S_0=1.0000$

 $S_1 = 2.3333$

 $S_2 = 4.1111$

 $S_3 = 6.4815$

 $S_4 = 9.6420$

 $S_5=13.856$

TELESCOPING SUMS

Evaluate
$$\sum_{n=1}^{800} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

Evaluate
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
.

TELESCOPING SUMS

Evaluate
$$\sum_{n=1}^{800} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

$$a_{1}: \quad \frac{1}{1} \quad - \quad \frac{1}{2} \qquad S_{1} = \\ a_{2}: \quad \frac{1}{2} \quad - \quad \frac{1}{3} \qquad S_{2} = \\ a_{3}: \quad \frac{1}{3} \quad - \quad \frac{1}{4} \qquad S_{3} = \\ a_{4}: \quad \frac{1}{4} \quad - \quad \frac{1}{5} \qquad S_{4} = \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ a_{N-1}: \quad \frac{1}{N-1} \quad - \quad \frac{1}{N} \qquad S_{N} = \\ a_{N}: \quad \frac{1}{N} \quad - \quad \frac{1}{N+1} \qquad S_{N} = \\ \vdots$$

Evaluate
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
.

$$S_1 = \frac{1}{1} - \frac{1}{2}$$
 $S_2 = S_3 = S_4 = \vdots$

$$S_N =$$

TELESCOPING SUMS

Evaluate
$$\sum_{n=1}^{800} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

Evaluate
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
.

$$S_1 = \frac{1}{1} - \frac{1}{2}$$
 $S_2 = \frac{1}{1} - \frac{1}{3}$
 $S_3 = S_4 = \vdots$

$$S_N =$$

Evaluate
$$\sum_{n=1}^{800} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

Evaluate
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
.

$$S_{1} = \frac{1}{1} - \frac{1}{2}$$

$$S_{2} = \frac{1}{1} - \frac{1}{3}$$

$$S_{3} = \frac{1}{1} - \frac{1}{4}$$

$$S_{4} = \vdots$$

$$S_N =$$

Evaluate
$$\sum_{n=1}^{800} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

$$a_{2}: \frac{1}{2} - \frac{1}{3}$$

$$a_{3}: \frac{1}{3} - \frac{1}{4}$$

$$a_{4}: \frac{1}{4} - \frac{1}{5}$$

$$\vdots$$

$$a_{N-1}: \frac{1}{N-1} - \frac{1}{N}$$

$$a_{N}: \frac{1}{N} - \frac{1}{N+1}$$

Evaluate
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
.

$$S_N =$$

Evaluate
$$\sum_{n=1}^{800} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

$$a_{2}: \frac{1}{2} - \frac{1}{3}$$

$$a_{3}: \frac{1}{3} - \frac{1}{4}$$

$$a_{4}: \frac{1}{4} - \frac{1}{5}$$

$$\vdots$$

$$a_{N-1}: \frac{1}{N-1} - \frac{1}{N}$$

$$a_{N}: \frac{1}{N} - \frac{1}{N+1}$$

Evaluate
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
.

$$S_N =$$

Evaluate
$$\sum_{n=1}^{800} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

Evaluate
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
.

$$S_N = \frac{1}{1} - \frac{1}{N+1} = \frac{N}{N+1}$$

Evaluate
$$\sum_{n=1}^{800} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

Evaluate
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
.

$$S_3 = \frac{1}{1} - \frac{1}{4}$$
 $S_4 = \frac{1}{1} - \frac{1}{5}$
 \vdots
 $S_N = \frac{1}{1} - \frac{1}{N+1} = \frac{N}{N+1}$

 $\sum_{n=0}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = S_{800} = \frac{800}{801} \qquad \sum_{n=0}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \lim_{N \to \infty} S_N = 1$

Evaluate
$$\sum_{n=1}^{1000} \log \left(\frac{n+1}{n} \right)$$
.

Evaluate
$$\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right)$$
.

Evaluate
$$\sum_{n=1}^{1000} \log \left(\frac{n+1}{n} \right)$$
.

Evaluate
$$\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right)$$
.

$$a_1$$
 : $\log(2) - \log(1)$ S_1 = $\log(2)$
 a_2 : $\log(3) - \log(2)$ S_2 = $\log(3)$
 a_3 : $\log(4) - \log(3)$ S_3 = $\log(4)$
:
:
:
:
: a_{n-1} : $\log(n) - \log(n-1)$

 a_n : $\log(n+1) - \log(n)$ $S_n = \log(n+1)$

So,
$$\sum_{n=1}^{1000} \log \left(\frac{n+1}{n} \right) = S_{1000} = \log(1001)$$
 and $\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right) = \lim_{n \to \infty} \log(n+1) = \infty$

$$\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right) \text{ diverges}$$

 $\log 2 \qquad \log \frac{3}{2} \quad \log \frac{4}{3} \, \log \frac{5}{4} \, \log \frac{6}{5} \, \log \frac{7}{6} \, \log \frac{8}{7}$

$$\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right)$$
 diverges

$$S_1=0.6931$$

$$\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right)$$
 diverges

 $S_2 = 1.0986$

$$\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right)$$
 diverges

 $S_1=0.6931$

 $S_2 = 1.0986$

 $S_3 = 1.3863$

 $\log \tfrac{5}{4} \, \log \tfrac{6}{5} \, \log \tfrac{7}{6} \, \log \tfrac{8}{7}$

$$\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right)$$
 diverges

 $S_2 = 1.0986$

 $S_3 = 1.3863$

$$\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right)$$
 diverges

 $S_2 = 1.0986$

 $S_3 = 1.3863$

 $S_4 = 1.6094$

 $S_5 = 1.7917$

$$\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right)$$
 diverges

 $S_2 = 1.0986$

 $S_3 = 1.3863$

 $S_4 = 1.6094$

 $S_5 = 1.7917$

 $S_6 = 1.9459$

$$\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right)$$
 diverges

$$S_1 = 0.6931$$

$$S_2 = 1.0986$$

$$S_3 = 1.3863$$

$$S_4 = 1.6094$$

$$S_5 = 1.7917$$

$$S_6 = 1.9459$$

$$S_7 = 2.0794$$

Included Work

P'Balloon' by Simon Farkas is licensed under CC-BY (accessed November 2022, edited), 92-99, 107-114 'Waage/Libra' by B. Lachner is in the public domain (accessed April 2021, edited), 33-38, 52-58, 68-72, 84-114, 119-124, 135-141, 152-159 Weight' by Kris Brauer is licensed under CC-BY(accessed May 2021), 33–38, 52–58, 68-72, 84-114, 119-124, 135-141, 152-159 61–65 bov' by Xinh Studio is licensed under CC BY 3.0 (accessed 6 June 2023), 61–65 cookies' by Azam Ishaq is licensed under CC BY 3.0 (accessed 6 June 2023), 61–65 'cookies' by Vectors Point is licensed under CC BY 3.0 (accessed 6 June 2023), 61 - 65office desk' by Abdul Baasith is licensed under CC BY 3.0 (accessed 6 June 2023), 61 - 65Man' by Xinh Studio is licensed under CC BY 3.0 (accessed 6 June 2023), 61–65 Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021, modified), 142-149 'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021), 116, 126, 129, 132