

TRABAJO FIN DE GRADO INGENIERÍA INFORMÁTICA

Dockerización de Aplicación Paralela y Distribuida para Clasificación de EEGs: Análisis de Viabilidad y Rendimiento

DockEEG

Autor

Fernando Cuesta Bueno

Director

Juan José Escobar Pérez

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, septiembre de 2025

DockEEG

Dockerización de Aplicación Paralela y Distribuida para Clasificación de EEGs: Análisis de Viabilidad y Rendimiento

Autor

Fernando Cuesta Bueno

Director

Juan José Escobar Pérez

DockEEG: Dockerización de Aplicación Paralela y Distribuida para Clasificación de EEGs: Análisis de Viabilidad y Rendimiento

Fernando Cuesta Bueno

 ${\bf Palabra_clave1},\ palabra_clave2,\ palabra_clave3,\$

Resumen

Poner aquí el resumen.

DockEEG: Dockerization of a Parallel and Distributed Application for EEG Classification: Feasibility and Performance Analysis

Fernando Cuesta Bueno

Keywords: Keyword1, Keyword2, Keyword3,

Abstract

Write here the abstract in English.

Agradecimientos

Poner aquí agradecimientos...

Índice general

Ac	rónimos	1
1.	Introducción	3
	1.1. Motivación	3
	1.2. Objetivos	3
	1.2.1. Objetivos específicos	3
2.	Gestión del Proyecto	5
	2.1. Tareas	5
	2.2. Planificación temporal	5
	2.3. Estimación de costes	5
3.	Estado del arte	9
	3.1. Sección	9
	3.1.1. Sub-seccion	9
4.	Propuesta principal	11
	4.1. Background	11
	4.2. Herramientas utilizadas	11
	4.3. Implementación	11
5.	Experimentación	13
	5.1. Setup experimental	13
	5.1.1. Escenario 1: bla bla bla	13
	5.2. Resultados y discusión	13
6.	Conclusiones y trabajo futuro	15
	6.1. Contribuciones	15
	6.2. Retos y trabajo futuro	15
7.	Bibliografía	17
Α.	Anexo A	19

Índice de figuras

Índice de tablas

2.1.	Planificación temporal de tareas y horas estimadas	5
2.2.	Costes estimados de hardware para el proyecto	7
2.3.	Costes estimados de recursos humanos para el proyecto	7
2.4.	Coste total estimado del proyecto	7

Acrónimos

[Ejemplo de introducción y referencia de acrónimos Programmable Logic Controller (PLC). Para introducir nuevos acrónimos, ir al fichero acro_list.tex]

PLC Programmable Logic Controller

Introducción

[La introducción tiene que poner en contexto al lector contando, a modo de historia, el origen y contexto del problema, motivando por qué es necesario abordarlo y finalizando con lo que se propone en el proyecto.

También es importante que sigas cierto orden y estructura a la hora de presentar (introducir) los contenidos, siguiendo un patrón que atienda al qué, para describir el contexto; al por qué, para dar razón o motivar el trabajo, y al por tanto, para definir objetivos consecuentes con la motivación y el contexto del trabajo.

1.1. Motivación

[Opcional si se ha motivado la realización del proyecto en los párrafos anteriores.]

1.2. Objetivos

Analizar la viabilidad y las limitaciones del uso de contenedores, concretamente Docker, para encapsular y ejecutar aplicaciones de alto rendimiento (HPC) en arquitecturas heterogéneas modernas —como big.LITTLE— y entornos multiplataforma, con el fin de facilitar su portabilidad, uso y adopción por parte de la comunidad científica.

1.2.1. Objetivos específicos

■ **OB1**. Investigar el estado actual de la tecnología de contenedores, especialmente Docker, y su aplicación en entornos de computación de alto rendimiento.

4 1.2. Objetivos

■ **OB2**. Estudiar el comportamiento de aplicaciones HPC ejecutadas en contenedores sobre sistemas operativos mayoritarios: Microsoft Windows, Linux y macOS.

- **OB3**. Analizar el impacto de las arquitecturas heterogéneas big.LITTLE en el rendimiento de aplicaciones HPC containerizadas, investigando específicamente los problemas de detección de núcleos de eficiencia y el balanceamiento de carga de trabajo entre núcleos de alto rendimiento y eficiencia energética.
- OB4. Analizar las capacidades de Docker para aprovechar recursos hardware avanzados, como núcleos eficientes y GPUs (integradas y dedicadas), en diferentes plataformas y arquitecturas.
- OB5. Detectar y documentar los problemas de compatibilidad y portabilidad que dificultan la creación de imágenes Docker universales para entornos heterogéneos.
- **OB6**. Proponer recomendaciones o estrategias para mejorar la ejecución y portabilidad de aplicaciones HPC en entornos contenedorizados y heterogéneos.
- **OB7**. Caracterizar el soporte GPU en contenedores, evaluando las limitaciones y capacidades de Docker para el aprovechamiento de recursos GPU tanto integrados como dedicados, analizando la compatibilidad con diferentes fabricantes (NVIDIA y AMD) y las restricciones impuestas por los drivers.
- OB8. Desarrollar un marco de evaluación que establezca métricas y metodologías de benchmarking para la evaluación sistemática del rendimiento de aplicaciones HPC containerizadas en arquitecturas big.LITTLE.
- OB9. Analizar la reproducibilidad científica, determinando en qué medida la containerización con Docker contribuye a la reproducibilidad y portabilidad de experimentos científicos computacionales.

Gestión del Proyecto

2.1. Tareas

Tareas del OB1 (X):

- 1. X
- 2. Y

2.2. Planificación temporal

Tarea	Horas estimadas
Tarea 1	20
Tarea 2	15
Tarea 3	35
Tarea 4	20
Tarea 5	10
Tarea 6	5
Total	105

Tabla 2.1: Planificación temporal de tareas y horas estimadas

2.3. Estimación de costes

Los recursos necesarios para llevar a cabo el proyecto son:

Hardware

- Ordenador portátil LG Gram 14Z90Q-G.AA75B, este equipo se utilizará para el desarrollo general del trabajo: creación del código para las pruebas, gestión de las pruebas en el clustery creación de la memoria. Cuenta con un procesador Intel Core i7-1260P, 16 GB de RAM y 512 GB de almacenamiento SSD.
- Ordenador portátil Lenovo Legion 5, será el equipo donde se ejecutarán las pruebas TODO. Cuenta con un procesador AMD Ryzen 7 4800H, 16 GB de RAM, 512 GB de almacenamiento SSD y una tarjeta gráfica NVIDIA RTX 2060 con 6 GB de VRAM.
- Ordenador portátil Apple MacBook Air M4, será el equipo de pruebas en entornos Apple. Cuenta con un procesador Apple M4 de TODO.
- Cluster de computación con 4 nodos, cada uno con TODO.

Para la ejecución de las pruebas en un cluster de computación, no se ha podido contar en el que pone la Universidad de Granada a disposición de los estudiantes, por lo que se ha optado por hacer uso de un cluster de computación en la nube, concretamente el servicio de Digital Ocean ¹. Este servicio permite crear y gestionar clusters de computación con diferentes configuraciones de hardware, lo que facilita la ejecución de aplicaciones HPC en entornos distribuidos. Además, ofrece 200\$ de crédito inicial para estudiantes, lo que permite realizar pruebas y experimentos sin coste adicional.

Software

- Sistema operativo Ubuntu 24.04 LTS. Será la distribución Linux principal con la que vamos a trabajar, tanto en forma nativa, así como en los contenedores y en el cluster de computación.
- Sistema operativo Microsoft Windows 11. Será la distribución con la que se ejecutarán las pruebas de compatibilidad y rendimiento en entornos Windows.
- Sistema operativo macOS TODO. Será la distribución con la que se ejecutarán las pruebas de compatibilidad y rendimiento en entornos Apple.

Recursos humanos.

En cuanto al software, los sistemas operativos Microsoft Windows 11 y macOS TODO vienen incluidos en los dispositivos correspondientes, por lo que no se ha considerado un coste adicional. El sistema operativo Ubuntu 24.04 LTS es de código abierto y gratuito, por lo que tampoco se ha considerado un coste adicional.

¹https://www.digitalocean.com/

Dispositivo	Descripción	Coste (€)
LG Gram 14Z90Q-G.AA75B	Portátil principal de desarrollo	1 200
Lenovo Legion 5	Portátil de pruebas	1 000
Apple MacBook Air M4	Portátil de pruebas Apple	1059
Cluster de computación (4 nodos)	Nube Digital Ocean	400
Total		2 600

Tabla 2.2: Costes estimados de hardware para el proyecto

Recursos humanos

En la tabla 2.3 se detalla el coste por hora, las horas estimadas y el coste total de los recursos humanos necesarios para llevar a cabo el proyecto.

Recurso	Puesto	/h	Horas	Total (€)
Fernando Cuesta Bueno	Desarrollador	30	100	3 000
Juan José Escobar Pérez	Tutor/Supervisor	40	50	2000
Total				5 000

Tabla 2.3: Costes estimados de recursos humanos para el proyecto

Coste total del proyecto

El coste total del proyecto se calcula sumando los costes de hardware, software y recursos humanos. En la tabla 2.4 se detalla el coste total estimado.

Concepto	Coste (€)
Hardware	2600
Software	0
Recursos humanos	5000
Total	7 600

Tabla 2.4: Coste total estimado del proyecto

Estado del arte

[En el estado del arte se necesita hacer un estudio tanto sobre la tecnología que soporta el proyecto como sobre el problema que se aborda en él. Se puede estructurar por secciones y se aconseja utilizar referencias a los documentos e información que se describe aquí.

Como norma general y más en proyectos con carácter investigador, se recomienda añadir un párrafo por cada documento/referencia que estudie del estado del arte, finalizando esta sección con un párrafo explicativo de la novedad/característica que propone, modifica o añade el proyecto sobre dicho estado del arte.]

3.1. Sección

3.1.1. Sub-seccion

Propuesta principal

[En esta sección se ha de introducir y explicar la propuesta principal del trabajo. Se puede y es recomendable dividir en secciones, incluso, este capítulo puede contemplar varios capítulos a su vez.]

- 4.1. Background
- 4.2. Herramientas utilizadas
- 4.3. Implementación

Experimentación

[Exponer aquí los requisitos, diseño y la implementación de la propuesta realizada. Este capítulo podría integrarse el de la propuesta si es necesario.]

Ejemplo de código en LATEX

5.1. Setup experimental

[Se definen aquí los *setups* necesarios así como su configuración para poder evaluar y validar la propuesta de proyecto y objetivos del mismo. Es posible que se divida en secciones correspondientes a escenarios diferentes para evaluar diferentes casos de uso o funcionalidades.]

5.1.1. Escenario 1: bla bla bla ...

5.2. Resultados y discusión

Conclusiones y trabajo futuro

[En este capítulo se presentan las conclusiones obtenidas al llevar a cabo el presente trabajo]

6.1. Contribuciones

[En esta sección se presentan las principales contribuciones del trabajo realizado.]

- Contribución 1 ...
- \blacksquare Contribución 2 ...

6.2. Retos y trabajo futuro

[Exponer aquí los retos y trabajos futuros.]

Bibliografía

Apéndice A

Anexo A

[En los anexos se expone aquella información que es complementaria a la propia memoria pero que, por su contenido o longitud, no encajan como un capítulo al uso. Piezas de código fuente, explicación en detalle de algoritmos, tablas adicionales, etc., son algunos ejemplos de información que podría ir en un anexo.]