Atividade 1

Tiago de Paula Alves (187679) tiagodepalves@gmail.com Vinicius da Silva (206734) v206734@dac.unicamp.br

8 de junho de 2025

1 Modelo

1.1 Descrição do Problema

Uma companhia possui *F* fábricas para atender a demanda de *J* clientes. Cada fábrica pode escolher dentre *L* máquinas e *M* tipos de matéria-prima para produzir *P* tipos de produtos. A companhia precisa desenvolver um plano de produção e transporte com o objetivo de minimizar os custos totais. Mais especificamente, a companhia deve determinar a quantidade de cada tipo de produto a ser produzida em cada máquina de cada fábrica e a quantidade que deve ser transportada de cada produto partindo de cada fábrica para cada consumidor.

1.2 Parâmetros

1.2.1 Dimensões

Esses valores são necessariamente inteiros, já que medem contagem de itens.

J quantidade de clientes;

F quantidade de fábricas;

L quantidade de máquinas em cada fábrica;

M quantidade de tipos de matéria-prima;

P quantidade de tipos de produtos;

1.2.2 Parâmetros de Restrição

Valores usados nas restrições do problema e podem ser reais.

 $D_{j,p}$ demanda do cliente j, em toneladas, do produto p;

 $R_{m,f}$ quantidade de matéria-prima m, em toneladas, disponível na fábrica f;

 $C_{l,f}$ capacidade disponível de produção, em toneladas, da máquina l na fábrica f;

1.2.3 Parâmetros de Relação de Variáveis

Relação entre matéria-prima e produto e entre produtos, clientes e custo. Também podem ser reais.

 $r_{m,p,l}$ quantidade de matéria-prima m, em toneladas, necessária para produzir uma tonelada do produto p na máquina l;

 $p_{p,l,f}$ custo de produção por tonelada do produto p utilizando a máquina l na fábrica f;

 $t_{p,f,j}$ custo de transporte por tonelada do produto p partindo da fábrica f até o cliente j;

1.3 Variáveis de Decisão

As variáveis desse problema podem assumir quaisquer valores reais, considerando as restrições abaixo.

 $x_{p,l,f}$ toneladas produzidas de p na máquina l da fábrica f;

 $y_{p,f,j}$ toneladas transportadas de p da fábrica f para o cliente j;

1.4 Restrições

Não-negatividade

$$x_{p,l,f} \ge 0$$
 para toda produção de p na máquina l da fábrica f $y_{p,f,j} \ge 0$ para toda transporte de p da fábrica f para o cliente j

Atendimento às demandas dos clientes

$$\sum_{f=1}^{F} y_{p,f,j} = D_{j,p}$$
 para todo cliente j e produto p

Limite de matéria-prima disponível

$$\sum_{n=1}^{P} \sum_{l=1}^{L} r_{m,p,l} x_{p,l,f} \leq R_{m,f}$$
 para toda matéria-prima m e fábrica f

Capacidade de produção

$$\sum_{p=1}^{p} x_{p,l,f} \le C_{l,f}$$
 para toda máquina l na fábrica f

Equivalência de produção e transporte

$$\sum_{l=1}^{L} x_{p,l,f} = \sum_{i=1}^{J} y_{p,f,j}$$
 para toda produção de p na fábrica f

1.5 Função Objetivo

O objetivo final da otimização é minimizar o custo total, garantindo a demanda dos clientes. O custo é separado nos seguintes tipos:

custo de produção =
$$\sum_{f=1}^{F} \sum_{p=1}^{P} \sum_{l=1}^{L} x_{p,l,f} p_{p,l,f}$$
custo de transporte =
$$\sum_{f=1}^{F} \sum_{p=1}^{P} \sum_{i=1}^{J} y_{p,f,j} t_{p,f,j}$$

Assim, o objetivo é minimizar:

custo total = custo de produção + custo de transporte
=
$$\sum_{f=1}^{F} \sum_{p=1}^{P} \left(\sum_{l=1}^{L} x_{p,l,f} p_{p,l,f} + \sum_{j=1}^{J} y_{p,f,j} t_{p,f,j} \right)$$

2 Experimentos

A partir da escolha de *J*, a instância é gerada com valores aleatórios seguindo as restrições do enunciado. Tudo foi feito em Python 3, inclusive a implementação do modelo, usando o Gurobi.

2.1 Resultados

Os resultados a seguir foram obtidos em um Macbook Pro M1 com 16 GB de memória RAM.

J	F	L	M	Р	Vars.	Restrs.	Iters.	Tempo de Execução	Custo Final
100	126	5	8	5	66 150	2768	12753	8.9 s	160 268.5
200	299	5	8	5	306 475	6382	58689	5 min 13 s	309 782.7
300	393	8	8	5	605 220	9753	93678	26 min 37 s	455 172.4
400	_								
500	_								
600	_								
700	_								
800	_								
900							_		
1000		_	_				_		

3 Análise dos Resultados

Figura 1: Tempo de execução em relação a quantidade de clientes e o número de variáveis de otimização.

Infelizemente, não conseguimos executar todos os experimentos. Um dos possíveis problemas é que o número de variáveis no modelo, que é dado por:

número de variáveis =
$$PLF + PFJ = PF(L + J)$$

Considerando os limites da instância no enunciado, temos que

$$5 \cdot J(5+J) \le$$
número de variáveis $\le 10 \cdot 2J(10+J)$
 $5J^2 + 25J \le$ número de variáveis $\le 20J^2 + 200J$

Portanto, o número de variáveis cresce de forma quadrática com o parâmetro *J*. Considerando que, no melhor dos casos, o tempo de execução depende linearmente do número de variáveis, então o tempo também cresce de forma quadrática.