Assignment-3 (Anish Singh) 21BCE3775

In [2]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 %matplotlib inline

In [4]: data = pd.read\_csv('Titanic-Dataset.csv')
 data.head()

## Out[4]:

|   | Passengerld Survived |   | Pclass N m |                                                               | Sex    | Age  | SibSp | Parch | Ticket              | Fare    | Cabin | Embarked |
|---|----------------------|---|------------|---------------------------------------------------------------|--------|------|-------|-------|---------------------|---------|-------|----------|
| 0 | 1                    | 0 | 3          | Bra nd,<br>Mr. C en<br>F rris                                 | male   | 22.0 | 1     | 0     | A/5 21171           | 7.2500  | NaN   | s        |
| 1 | 2                    | 1 | 1          | Cumi gs,<br>Mrs. John<br>Brælley<br>(Florence<br>Briggs<br>Th | female | 38.0 | 1     | 0     | PC 17599            | 71.2833 | C85   | С        |
| 2 | 3                    | 1 | 3          | Heikkinen,<br>Miss.<br>Laina                                  | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.9250  | NaN   | S        |
| 3 | 4                    | 1 | 1          | Futrelle,<br>Mrs.<br>Jacques<br>Heath<br>(Lily May<br>Peel)   | female | 35.0 | 1     | 0     | 113803              | 53.1000 | C123  | s        |
| 4 | 5                    | 0 | 3          | Allen, Mr.<br>William<br>Henry                                | male   | 35.0 | 0     | 0     | 373450              | 8.0500  | NaN   | s        |
| 4 |                      |   |            |                                                               |        |      |       |       |                     |         |       | •        |

In [5]: sns.heatmap(data.isnull(),yticklabels=False,cbar=False,cmap='viridis')

Out[5]: <Axes: >



In [6]: sns.countplot(x='Survived',data=data,palette='RdBu\_r')

Out[6]: <Axes: xlabel='Survived', ylabel='count'>



In [7]: sns.countplot(x='Survived',hue='Sex',data=data,palette='RdBu\_r')

Out[7]: <Axes: xlabel='Survived', ylabel='count'>



In [8]: sns.countplot(x='Survived',hue='Pclass',data=data,palette='rainbow')

Out[8]: <Axes: xlabel='Survived', ylabel='count'>



In [11]: sns.displot(data['Age'].dropna(),kde=False,color='darkred',bins=30)

Out[11]: <seaborn.axisgrid.FacetGrid at 0x209004ef790>



In [12]: sns.countplot(x='SibSp',data=data)

Out[12]: <Axes: xlabel='SibSp', ylabel='count'>



In [13]: sns.boxplot(x='Pclass',y='Age',data=data,palette='winter')

Out[13]: <Axes: xlabel='Pclass', ylabel='Age'>



```
In [20]: def impute_age(cols):
         Age = cols[0]
         Pclass = cols[1]

         if pd.isnull(Age):
               if Pclass == 1:
                    return 37

               elif Pclass == 2:
                    return 29

               else:
                   return 24

               else:
                   return Age
```

```
In [21]: data['Age'] = data[['Age', 'Pclass']].apply(impute_age,axis=1)
In [22]: sns.heatmap(data.isnull(),yticklabels=False,cbar=False,cmap='viridis')
```

Out[22]: <Axes: >



```
In [23]: data.drop('Cabin',axis=1,inplace=True)
```

data.head() In [24]:

Out[24]:

|   | Passengerld | Survived | Pclass | Name                                                     | Sex    | Age  | SibSp | Parch | Ticket              | Fare    | Embarked |
|---|-------------|----------|--------|----------------------------------------------------------|--------|------|-------|-------|---------------------|---------|----------|
| 0 | 1           | 0        | 3      | Br und, Mr.<br>Ow in Harris                              | male   | 22.0 | 1     | 0     | A/5 21171           | 7.2500  | S        |
| 1 | 2           | 1        | 1      | Cumi igs, Mrs.<br>John Bradley<br>(Florence<br>Briggs Th | female | 38.0 | 1     | 0     | PC 17599            | 71.2833 | С        |
| 2 | 3           | 1        | 3      | Heikkinen,<br>Miss. Laina                                | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.9250  | S        |
| 3 | 4           | 1        | 1      | Futrelle, Mrs.<br>Jacques Heath<br>(Lily May Peel)       | female | 35.0 | 1     | 0     | 113803              | 53.1000 | S        |
| 4 | 5           | 0        | 3      | Allen, Mr.<br>William Henry                              | male   | 35.0 | 0     | 0     | 373450              | 8.0500  | S        |

In [25]: data.dropna(inplace=True)

In [26]: data.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 889 entries, 0 to 890 Data columns (total 11 columns):

Non-Null Count Dtype # Column 0 PassengerId 889 non-null int64 889 non-null 1 Survived int64 2 Pclass 889 non-null int64 Name 3 889 non-null object 4 889 non-null object Sex 5 889 non-null float64 Age 6 889 non-null int64 SibSp 7 889 non-null int64 Parch 8 Ticket 889 non-null object 9 Fare 889 non-null float64 10 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(4) memory usage: 83.3+ KB

```
In [27]: sex = pd.get_dummies(data['Sex'],drop_first=True)
```

```
In [28]:
         embark = pd.get_dummies(data['Embarked'],drop_first=True)
```

```
In [29]: data.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True)
```

In [30]: data = pd.concat([data,sex,embark],axis=1)

```
In [31]: data.head()
```

Out[31]:

|   | Passengerld | Survived | Pclass | Age  | SibSp | Parch | Fare    | male | Q | S |
|---|-------------|----------|--------|------|-------|-------|---------|------|---|---|
| 0 | 1           | 0        | 3      | 22.0 | 1     | 0     | 7.2500  | 1    | 0 | 1 |
| 1 | 2           | 1        | 1      | 38.0 | 1     | 0     | 71.2833 | 0    | 0 | 0 |
| 2 | 3           | 1        | 3      | 26.0 | 0     | 0     | 7.9250  | 0    | 0 | 1 |
| 3 | 4           | 1        | 1      | 35.0 | 1     | 0     | 53.1000 | 0    | 0 | 1 |
| 4 | 5           | 0        | 3      | 35.0 | 0     | 0     | 8.0500  | 1    | 0 | 1 |

```
In [87]: from sklearn.model_selection import train_test_split
```

```
In [88]: X = train.drop('Survived',axis=1)
y = train['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101
```

```
In [89]: from sklearn.linear_model import LinearRegression
```

```
In [107]: lm = LinearRegression()
```

```
In [108]: Lm.fit(X_train,y_train)
```

Out[108:

```
+ LinearRegression
LinearRegression()
```

```
In [ ]: predictions=lm.predict(X_test)
```

```
In [110]: sns.displot((y_test-predictions),bins=50,kde=False);
```



```
In [111]: from sklearn import metrics
```

```
In [112]: print('MAE:', metrics.mean_absolute_error(y_test, predictions))
    print('MSE:', metrics.mean_squared_error(y_test, predictions))
    print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

MAE: 7.128336721601204e-16 MSE: 8.392407869408556e-31 RMSE: 9.16100860681211e-16

```
In [ ]:
```