Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів » Варіант 12

Виконала студентк	III-15 Коваленко Марія Олександрівна		
•	(шифр, прізвище, ім'я, по батькові)		
Перевірила	Вечерковська Анастасія Сергіївна		
	(прізвище, ім'я, по батькові)		

Лабораторна робота 6 Дослідження рекурсивних алгоритмів

Мета — дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Індивідуальне завдання

Варіант 12

Завдання

12.

Обчислити суму елементів арифметичної прогресії, що убуває: початкове значення -3π , кінцеве -4π , крок $-\pi/2$

Постановка задачі

Задати змінну answer для позначення кінцевих даних. Обчислити значення суми за допомогою рекурсивної функції. Вивести результат.

Побудова математичної моделі

Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
для позначення відповіді	дійсний	answer	вихідні дані
для позначення даних, які поверне рекурсивна функція	дійсний	sum	проміжні дані
для позначення першго члену прогресії в рекурсивній функції	дійсний	first_member	проміжні дані
для позначення останнього	дійсний	last_member	проміжні дані
члену прогресії в рекурсивній			
функції			
для позначення кроку прогресії в рекурсивній функції	дійсний	step	проміжні дані
рекурсивна функція	дійсний	progression_sum	обчислення суми прогресії

Основи програмування – 1. Алгоритми та структури даних

ргоgression_sum - рекурсивна функція для обчислення суми прогресії. Функція приймає три параметри типу ціле число. Термінальна гілка виконується у випадку, якщо останній член прогресії рівний першому, в такому випадку значенню суми буде присвоєно значення першого члену прогресії. В іншому випадку (рекурсивна гілка) значенню суми буде присвоєна сума останнього члену прогресії та значенню функції для останнього зміненого на $\pi/2$ члену прогресії.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії;

Крок 2. Деталізуємо знаходження суми

Псевдокод

Крок 1

початок

знаходження суми

виведення answer

кінець

Крок 2

початок

answer = progression sum $(3\pi, -4\pi, \pi/2)$

виведення answer

кінець

підпрограма:

progression_sum(first_member, last_member, step)

якщо last_member != first_memeber

T0

sum = last_member +

progression sum(first member,last member + step, step)

інакше

sum = first member

return sum

кінець

Блок-схеми

Крок 1 Крок 2

Підпрограма

Код

```
- 🐾 lab_6_asd.Program
 using System;
¤namespace lab_6_asd
     class Program
         static void Main(string[] args)
             double answer;
             answer = progression_sum(3*Math.PI, -4 * Math.PI, Math.PI / 2);
             Console.WriteLine(answer);
        static double progression_sum(double first_member, double last_member, double step)
             double sum;
             if (last_member != first_member)
                 sum = last_member + progression_sum(first_member, last_member + step, step);
             else
                 sum = first_member;
          return sum;
```

Тестування

```
-23,561944901923457

C:\Users\Ria\Desktop\kpi study\1 курс\Алгоритми та структури даних\labs_asd\lab_e ехе (процесс 10200) завершил работу с кодом 0.
Чтобы автоматически закрывать консоль при остановке отладки, включите параметр "Стоматически закрыть консоль при остановке отладки".
Нажмите любую клавишу, чтобы закрыть это окно...
```

Висновок:

Ми дослідили особливості роботи рекурсивних алгоритмів та набули практичних навичок їх використання під час складання програмних специфікацій підпрограм.