Value Function Iteration in Matlab

Michael Kotrous

John Munro Godfrey, Sr. Department of Economics

University of Georgia

Econ 8040: Macroeconomic Theory I Fall 2023

Matlab

- ▶ Popular programming language among economists
- Advantages:
 - Efficient matrix math
 - Built-in functionality
 - Simple syntax
 - Documentation
- Disadvantages:
 - Proprietary
 - Limited add-ons
 - Non-numeric data

Getting Started

- ► UGA installation guide
- Useful add-ons
 - Optimization
 - Parallel Computing
- Useful Links
 - Matlab documentation
 - eLC: Download Matlab > Tutorials > matlab_tutorial_files.zip

$$V(k) = \max_{k'} \{ \log(zk^{\alpha} + (1 - \delta)k - k') + \beta V(k') \}$$

subject to

$$0 \le k' \le zk^{\alpha} + (1-\delta)k$$

- When $\delta = 1$, $g(k) = \alpha \beta z k^{\alpha}$
- ▶ When δ < 1, solve numerically

Value Function Iteration

- ► Solve models numerically
- ▶ Solution: approximation of V(k)
- ▶ Method: Iterate on V(k), reach fixed point
- ► Works b/c Bellman = contraction mapping
- ► Implement grid search in Matlab

Outline

Value Function Iteration

Calibrate Parameters

Discretize State Space

Calculate Flow Utility

Converge to Fixed Point

Policy Functions

Conclusion

VFI Algorithm

- 1 Calibrate parameters $(\alpha, \beta, \delta, \mathbf{z})$
- 2 Set tolerance $\varepsilon > 0$
- 3 Discretize state space

$$\mathcal{K} = \{k_1, k_2, \dots, k_n\}$$

4 Calculate flow utility u(k, k') for $(k, k') \in \mathcal{K} \times \mathcal{K}$

VFI Algorithm (cntd.)

- **5** Define initial guess $V_0(k) = \{V_0(k_1), V_0(k_2), \dots, V_0(k_n)\}$
- 6 For each $k \in \mathcal{K}$, solve

$$V_1(k) = \max_{k'} \{ \log(zk^{\alpha} + (1 - \delta)k - k') + \beta V_0(k') \}$$

subject to
$$0 \le k' \le zk^{\alpha} + (1 - \delta)k$$
, $k' \in \mathcal{K}$

- \bigcirc Calculate $||V_1(k) V_0(k)||$
- 8 Stopping criteria $||V_{n+1}(k) V_n(k)|| < \varepsilon$

Calibration

Table: Calibrated Parameters, Tolerance

Parameter	Value(s)
α	0.39
β	0.95
δ	1
Z	274
Tolerance	Value
ε	10 ⁻⁸

Calibration (in code)

```
1 a = 0.39;
_{2} b = 0.95;
3 d = 1;
4 z = 274;
6 \text{ tol} = 1e-8;
```

Discretize State Space

Increasing nodes

- ► ↑ precision
- ▶ ↑ compute time

► griddle.m

Discretize State Space (in code)

```
1 n = 5;
2 kss = ((z*a)./(1/b - 1 + d))^(1/(1-a));
3 kgrid = griddle(0.1*kss, 2*kss, n, 1.5);
```

Fall 2023 Econ 8040: VFI in Matlab 10 / 22

Flow Utility

$$u(k,k') = \begin{cases} \log(zk^{\alpha} + (1-\delta)k - k') & \text{if } zk^{\alpha} + (1-\delta)k - k' > 0\\ -10^{20} & \text{otherwise} \end{cases}$$

Table: Flow Utility for all $(k, k') \in \mathcal{K} \times \mathcal{K}$

		k '				
		k ₁	k_2	k ₃	k_4	k_5
	k ₁	7.5737	7.3024	6.4588	-1e20	-1e20
	k_2	8.0852	7.9315	7.5694	6.7369	-1e20
k	k 3	8.4241	8.3171	8.0857	7.6745	6.7524
	k_4	8.6458	8.5610	8.3844	8.0966	7.5941
	k_5	8.8087	8.7371	8.5912	8.3638	8.0039

Flow Utility (in code)

```
ucgrid = zeros(n,n);
_{2} for i = 1:n
      for j = 1:n
          c = z * kgrid(i)^a + (1-d) * kgrid(i) - kgrid(j);
          if c > 0
               ucgrid(i,j) = log(c);
          else
               % exclude infeasible choices
               ucgrid(i,j) = -1e20;
          end
      end
12 end
```

Define Initial Guess

- Solution: fixed point
- ► Blackwell sufficient conditions Theorem
 - Discounting
 - Monotonicity
- ► Bellman operator = contraction mapping
- ► Any initial guess works!

```
1 V = linspace(0,1,n);
2 Tv = zeros(1,n);
3 g = zeros(1,n);
```

Update Guess

```
for i = 1:n
    [vmax, kmax] = max(ucgrid(i,:) + b*V);

Tv(i) = vmax;

g(i) = kgrid(kmax);

end
```

Update Guess (cntd.)

Table: Updating Value, Policy Functions

				k'				
		<i>k</i> ₁	k ₂	<i>k</i> ₃	<i>k</i> ₄	<i>k</i> ₅	Tv	g(k)
	<i>k</i> ₁	7.5737	7.5399	6.9338	0.7125	0.9500	7.5737	<i>k</i> ₁
	k_2	8.0852	8.1690	8.0444	7.4494	0.9500	8.1690	k_2
k				8.5607				<i>k</i> ₃
	k_4	8.6458	8.7985	8.8594	8.8091	8.5441	8.8594	k_3
	<i>k</i> ₅	8.8087	8.9746	9.0662	9.0763	8.9539	9.0763	k_4

Test for Convergence

Table: Distance between Initial, Updated Guess

V	Tv	V – Tv
0	7.5737	-7.5737
0.25	8.1690	-7.9190
0.50	8.5607	-8.0607
0.75	8.8594	-8.1094
1	9.0763	-8.0763

Iteration & Convergence

```
1 V = Tv; % update V
2 err = err1; % use Euclidean norm for stopping criteria
3 it = 0; % count iterations
4 while err >= tol && it < 500
      for i = 1 \cdot n
           [vmax, kmax] = max(ucgrid(i,:) + b*V);
          Tv(i) = vmax;
          g(i) = kgrid(kmax);
      end
      % check for convergence and update guess
      err = norm(Tv-V);
      V = Tv;
      it = it+1;
14 end
```

Figure: Policy Function, $\delta = 1$, n = 5

► Solved in 0.000481 seconds

Figure: Policy Function, $\delta = 1$, n = 100

► Solved in 0.003190 seconds

Figure: Policy Function, $\delta = 1$, n = 1,000

► Solved in 0.003492 seconds

Figure: Policy Function, $\delta = 0.04$, n = 1,000

► Solved in 0.003404 seconds

Conclusion

- Many models can't be solved analytically
- ► VFI solves models numerically
- ► We implemented VFI in Matlab
- ► We restricted policy function to grid
 - Pros: simpler code, flow utility before iteration
 - Cons: inaccurate when n small, high n inefficient
- ► Alternative: interpolate between grid points
 - Accurate policy functions with small n
 - Useful for multi-dimensional state spaces
 - See Karen Kopecky and Eric Sim's VFI notes

griddle.m

```
function g = griddle(a,b,n,p)

gr = zeros(1,n);

gr(1) = a;

gr(n) = b;

for k = 2:n-1

    gr(k) = a + (b-a)*((k-1)/(n-1))^p;

end

g = gr;

end
```

◆ Back

Blackwell Sufficient Conditions

Let $X \subseteq \mathbb{R}^{\ell}$ and B(X) be the space of bounded functions $f: X \to \mathbb{R}$ with d being the sup-norm. Let $T: B(X) \to B(X)$ be an operator satisfying

- **Monotonicity**: If $f, g \in B(X)$ are such that $f(x) \leq g(x)$ for all $x \in X$, then $(Tf)(x) \leq (Tg)(x)$ for all $x \in X$.
- **2 Discounting**: Let the function f + a, for $f \in B(X)$ and $a \in \mathbb{R}_+$, be defined as (f + a)(x) = f(x) + a. There exists $\beta \in (0, 1)$ such that for all $f \in B(X)$, all $a \ge 0$, and all $x \in X$

$$[T(f+a)(x)] \leq [Tf](x) + \beta a$$

Then the operator T is a contraction mapping with modulus β .