Table 1. The densities in the simulation testbed

	$f(x), x \in [0, 1]$	Description
1	$140x^3(1-x)^3$	Beta(4,4)
2	$1120 \left[x^3 (1 - 2x)^3 I_{\{x \le 1/2\}} \right]$	$\frac{1}{2}Beta_{[0,1/2]}(4,4) + \frac{1}{2}Beta_{[1/2,1]}(4,4)$
	$+8\left(x-\frac{1}{2}\right)^3(1-x)^3I_{\{x\geq 1/2\}}$	
3	$3x^2$	Beta(3,1)
4	$\frac{3}{2}\left\{x^2 + (1-x)^2\right\}$	$\frac{1}{2}$ Beta $(3,1) + \frac{1}{2}$ Beta $(1,3)$
5	$\{\pi\sqrt{x(1-x)}\}^{-1}$	$\operatorname{Beta}(\frac{1}{2},\frac{1}{2})$
6	$\frac{231}{463}(1+3x)^5(1-x)^5$	Truncated $Beta_{[-1/3,1]}(6,6)$
7	$2e^{-2x}(1-e^{-2})^{-1}$	Truncated Exponential(2)
8	$\frac{2240}{1759} \left\{ 1 - \left(x - \frac{1}{2} \right)^2 \right\}^3$	Truncated $Beta_{[-1/2,3/2]}(4,4)$
9	$\frac{35}{16}(1-x^2)^3$	Truncated $Beta_{[-1,1]}(4,4)$
10	$2\{\pi\sqrt{x(2-x)}\}^{-1}$	Truncated $Beta_{[0,2]}(1/2,1/2)$
11	$2e^{-2x^2} \left[\sqrt{2\pi} \left\{ \Phi(2) - \frac{1}{2} \right\} \right]^{-1}$	Truncated $2\phi(2x)$
12	$\frac{1}{2} + 280 \left(2x - \frac{1}{2}\right)^3 \left(\frac{3}{2} - 2x\right)^3 I_{\{1/4 \le x \le 3/4\}}$	$\frac{1}{2}$ Beta $(1,1) + \frac{1}{2}$ Beta $[1/4,3/4](4,4)$
13	$294x(1-x)^{19} + 33x^{9}(1-x)$	$\frac{7}{10}$ Beta $(2,20) + \frac{3}{10}$ Beta $(10,2)$
14	$102060 \left[\sum_{i=1}^{3} \left\{ x - \frac{(i-1)}{3} \right\}^{3} \right]$	$\frac{1}{3} \sum_{i=1}^{3} \text{Beta}_{[(i-1)/3, i/3]}(4, 4)$
	$\times \left(\frac{i}{3} - x\right)^3 I_{\{(i-1)/3 \le x \le i/3\}}$	
15	c(x, 0.7; 0.7)	Gaussian copula
16	$5e^{-\left x-\frac{1}{2}\right }(1-e^{-5})^{-1}$	Truncated Laplace $(1/2, 1/10)$

In the table, $I_{\{A\}}$ is the indicator function which equals 1 if A is true and 0 otherwise, $c(x,y;\rho)$ is specifically the Gaussian copula given by (4), $\operatorname{Beta}(a,b)$ denotes the beta density with parameters a and b, $\operatorname{Beta}_{[c,d]}(a,b)$ denotes the beta density rescaled to the interval [c,d] and "truncated" means truncated to [0,1].

Fig. 4. Densities used in the simulation study. Their formulae are given in Table 1.

