Содержание

1	Teo	ретические вопросы	
	1.1	Сформулируйте определение наклонной асимптоты	
	1.2	Сформулируйте определение производной функции в точке	
	1.3	Сформулируйте определение односторонней производной функции	
	1.4	Сформулируйте определение производной n -го порядка	
	1.5	Сформулируйте определение дифференцируемой функции в точке	
	1.6	Сформулируйте определение дифференциала первого порядка	
	1.7	Сформулируйте определение дифференциала n -го порядка	
	1.8	Сформулируйте определение возрастающей функции	
	1.9	Сформулируйте определение невозрастающей функции	
	1.10	Сформулируйте определение убывающей функции	
	1.11	Сформулируйте определение неубывающей функции	
	1.12	Сформулируйте определение монотонной функции	
	1.13	Сформулируйте определение строго монотонной функции	
	1.14	Сформулируйте определение локального минимума	
	1.15	Сформулируйте определение строгого локального минимума	
	1.16	Сформулируйте определение локального максимума	
	1.17	Сформулируйте определение строгого локального максимума	
	1.18	Сформулируйте определение экстремума	
	1.19		
	1.20	Сформулируйте определение стационарной точки	
		Сформулируйте определение критической точки	
	1.22	Сформулируйте определение выпуклости функции на промежутке	
	1.23	Сформулируйте определение точки перегиба графика функции	
2	Teo	Теоретические вопросы (формулировки теорем)	
	2.1	Сформулируйте необходимое и достаточное условие наличия наклонной асимп-	
		тоты	
	2.2	Сформулируйте необходимое и достаточное условие дифференцируемости	
		функции в точке	
	2.3	Сформулируйте теорему о связи дифференцируемости и непрерывности функ-	
		ции	
	2.4	Сформулируйте теорему о производной произведения	
	2.5	Сформулируйте теорему о производной частного	
	2.6	Сформулируйте свойство инвариантности формы записи дифференциала	
	a =	первого порядка	
	2.7	Сформулируйте теорему Ферма	
	2.8	Сформулируйте теорему Ролля	
	2.9	Сформулируйте теорему Лагранжа	
	2.10	Сформулируйте теорему Коши	

1 Теоретические вопросы

1.1 Сформулируйте определение наклонной асимптоты

Определение 1.

1.2 Сформулируйте определение производной функции в точке

Определение 2. Производной функции y = f(x) в точке x_0 называется предел отношения приращения функции к приращению аргумента при стремлении последнего к нулю.

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

1.3 Сформулируйте определение односторонней производной функции

Определение 3. Производной функции y = f(x) в точке x_0 справа(слева) или правосторонней (левосторонней) производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю справа(слева).

$$y'_{+}(x_0) = \lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x} \qquad y'_{-}(x_0) = \lim_{\Delta x \to 0-} \frac{\Delta y}{\Delta x}$$

1.4 Сформулируйте определение производной *п*-го порядка

Определение 4. Производной n-го порядка или n-ой производной функции y=f(x) называется производная от (n-1)-ой производной функции y=f(x)

$$y^{(n)} = \left(y^{(n-1)}\right)'$$

1.5 Сформулируйте определение дифференцируемой функции в точке

Определение 5. Функция y = f(x) называется дифференцируемой в точке x_0 , если существует константа A такая, что приращение функции в этой точке представимо в виде:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$

2

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x o 0$

1.6 Сформулируйте определение дифференциала первого порядка

Пусть функция y = f(x) определена в окрестности точки x_0 и дифференцируема в точке x_0 .

Тогда по определению дифференцируемой функции:

$$\Delta y = f'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x \tag{1}$$

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$

Определение 6. Дифференциалом функции y = f(x) в точке x_0 называется главная часть приращения функции Δy или первое слагаемое в равенстве (1).

$$dy = f'(x_0) \cdot \Delta x \tag{2}$$

1.7 Сформулируйте определение дифференциала *n*-го порядка

Определение 7. n-ым дифференциалом или **дифференциалом** n-го порядка называется дифференциал от дифференциала (n-1)-го порядка.

$$d^n y = d(d^{n-1}y), \quad n = 2, 3, \dots$$

1.8 Сформулируйте определение возрастающей функции

Определение 8. Функция f(x) называется возрастающей на промежутке I, если для любых точек $x_1, x_2 \in I$, таких что $x_2 > x_1$ выполняется неравенство $f(x_2) > f(x_1)$.

Пояснение: Функция f(x) называется возрастающей на промежутке I, если бо́льшему значению аргумента соответствует бо́льшее значение функции.

1.9 Сформулируйте определение невозрастающей функции

Определение 9. Функция f(x) называется невозрастающей на промежутке I, если для любых точек $x_1, x_2 \in I$, таких что $x_2 > x_1$ выполняется неравенство $f(x_2) \leq f(x_1)$.

Пояснение: Функция f(x) называется **невозрастающей** на промежутке I, если бо́льшему значению аргумента соответствует не бо́льшее значение функции.

1.10 Сформулируйте определение убывающей функции

Определение 10. Функция f(x) называется убывающей на промежутке I, если для любых точек $x_1, x_2 \in I$, таких что $x_2 > x_1$ выполняется неравенство $f(x_2) < f(x_1)$.

Пояснение: Функция f(x) называется убывающей на промежутке I, если бо́льшему значению аргумента соответствует меньшее значение функции.

1.11 Сформулируйте определение неубывающей функции

Определение 11. Функция f(x) называется неубывающей на промежутке I, если для любых точек $x_1, x_2 \in I$, таких что $x_2 > x_1$ выполняется неравенство $f(x_2) \ge f(x_1)$.

Пояснение: Функция f(x) называется **неубывающей** на промежутке I, если бо́льшему значению аргумента соответствует не меньшее значение функции.

1.12 Сформулируйте определение монотонной функции

Определение 12. Возрастающая, убывающая, невозрастающая и неубывающая функции называются **монотонными**.

1.13 Сформулируйте определение строго монотонной функции

Определение 13. Возрастающая и убывающая функции называются **строго монотонными**.

1.14 Сформулируйте определение локального минимума

Теорема.

Функция f(x) имеет локальный минимум в точке x_0 , если существует окрестность $U(x_0)$ точки x_0 такая, что для любого $x \in U(x_0)$ выполняется неравенство:

$$f(x) \ge f(x_0)$$

Определение 14. Точка x_0 , в которой функция f(x) имеет локальный минимум, называется точкой **локального минимума** этой функции.

1.15 Сформулируйте определение строгого локального минимума

Теорема.

Функция f(x) имеет строгий локальный минимум в точке x_0 , если существует окрестность $U(x_0)$ точки x_0 такая, что для любого $x \in U(x_0)$ выполняется неравенство:

$$f(x) > f(x_0)$$

Определение 15. Точка x_0 , в которой функция f(x) имеет строгий локальный минимум, называется точкой **строгого локального минимума** этой функции.

1.16 Сформулируйте определение локального максимума

Теорема.

Функция f(x) имеет локальный максимум в точке x_0 , если существует окрестность $U(x_0)$ точки x_0 такая, что для любого $x \in U(x_0)$ выполняется неравенство:

$$f(x) \le f(x_0)$$

Определение 16. Точка x_0 , в которой функция f(x) имеет локальный максимум, называется точкой **локального максимума** этой функции.

1.17 Сформулируйте определение строгого локального максимума

Теорема.

Функция f(x) имеет строгий локальный максимум в точке x_0 , если существует окрестность $U(x_0)$ точки x_0 такая, что для любого $x \in U(x_0)$ выполняется неравенство:

$$f(x) < f(x_0)$$

Определение 17. Точка x_0 , в которой функция f(x) имеет строгий локальный максимум, называется точкой **строгого локального максимума** этой функции.

1.18 Сформулируйте определение экстремума

Определение 18. Минимум, максимум, строгий минимум, строгий максимум функции f(x) называются **экстремумами** этой функции.

Определение. Точка x_0 , в которой функция f(x) имеет экстремум, называется **точкой экстремума** этой функции.

1.19 Сформулируйте определение строгого экстремума

Определение 19. Строгий минимум и строгий максимум функции f(x) называются **строгими экстремумами** этой функции.

Определение. Точка x_0 , в которой функция f(x) имеет строгий экстремум, называется **точкой строго экстремума** этой функции.

1.20 Сформулируйте определение стационарной точки

Определение 20. Точка x_0 , в которой производная функции f(x) равна нулю, называется **стационарной точкой** этой функции.

1.21 Сформулируйте определение критической точки

Определение 21. Точка x_0 , в которой производная функции f(x) равна нулю или не существует, называется **критической точкой** этой функции.

1.22 Сформулируйте определение выпуклости функции на промежутке

Определение 22. Пусть функция f(x) определена на интервале (a;b). Функция f(x) называется выпуклой вверх (вниз) на этом интервале, если любая точка касательной, проведённой к графику функции f(x) (кроме точки касания) лежит выше (ниже) точки графика функции f(x) с такой же абсциссой.

1.23 Сформулируйте определение точки перегиба графика функции

Определение 23. Пусть функция f(x) определена на интервале (a;b). Точка $x_0 \in (a;b)$ называется **точкой перегиба** функции f(x), если эта функция непрерывна в точке x_0 и если существует число $\delta > 0$ такое, что направление выпуклости функции f(x) на интервалах $(x_0 - \delta, x_0)$ и $(x_0, x_0 + \delta)$ различны. При этом точка $(x_0, f(x_0))$ называется **точкой перегиба графика функции** f(x).

Пояснение: Точка $x_0 \in (a;b)$ является **точкой перегиба** функции f(x), если при переходе через эту точку, направление выпуклости функции меняется на противоположное.

- 2 Теоретические вопросы (формулировки теорем)
- 2.1 Сформулируйте необходимое и достаточное условие наличия наклонной асимптоты

Теорема 1.

2.2 Сформулируйте необходимое и достаточное условие дифференцируемости функции в точке

Теорема 2 (Необходимое и достаточное условие дифференцируемости функции). Функция y = f(x) дифференцируема в точке x_0 тогда и только тогда, когда она имеет в этой точке конечную производную.

2.3 Сформулируйте теорему о связи дифференцируемости и непрерывности функции

Теорема 3 (Связь дифференцируемости и непрерывности функции). Если функция дифференцируема в точке x_0 , то она в этой точке непрерывна.

2.4 Сформулируйте теорему о производной произведения

Теорема 4 (Производная произведения).

Пусть функции $u=u(x),\ \upsilon=\upsilon(x)$ дифференцируемы в точке x.

Тогда в этой точке дифференцируемо их произведение и справедливо равенство:

$$(u \cdot v)' = u' \cdot v + v' \cdot u$$

2.5 Сформулируйте теорему о производной частного

Теорема 5 (Производная частного).

Пусть функции $u = u(x), \ v = v(x)$ дифференцируемы в точке x.

Тогда в этой точке дифференцируемо их частное и справедливо равенство:

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - v' \cdot u}{v^2}$$

2.6 Сформулируйте свойство инвариантности формы записи дифференциала первого порядка

Теорема 6 (Инвариантность формы первого дифференциала).

Форма записи первого дифференциала не зависит от того, является ли x независимой переменной или функцией другого аргумента.

2.7 Сформулируйте теорему Ферма

Теорема 7 (Теорема Ферма (о нулях производной)).

Пусть функция y = f(x) определена на промежутке X и во внутренней точке c этого промежутка достигает наибольшего или наименьшего значения. Если в этой точке существует производная f'(c), то f'(c) = 0.

2.8 Сформулируйте теорему Ролля

Теорема 8 (Теорема Ролля).

Пусть y = f(x)

- 1. непрерывна на [a; b]
- 2. дифференцируема на (a; b)
- 3. f(a) = f(b)

Тогда $\exists c \in (a;b) \colon f'(c) = 0$

2.9 Сформулируйте теорему Лагранжа

Теорема 9 (Теорема Лагранжа).

Пусть функция y = f(x)

- 1. непрерывна на [a; b]
- 2. дифференцируема на (a;b)

Тогда $\exists \ c \in (a;b)$: $\boxed{f(b) - f(a) = f'(c) \cdot (b-a)}$

2.10 Сформулируйте теорему Коши

${ m Teopema}$ 10 (${ m \it Teopema}$ ${ m \it \it Kouu}$).

Пусть функции f(x) и $\varphi(x)$

- 1. непрерывны на [a;b]
- 2. дифференцируемы на (a; b)
- 3. $\forall x \in (a; b) : \varphi'(x) \neq 0$

Тогда $\exists \ c \in (a;b)$:

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}$$

8