12/16/2019 OneNote

WEEK 9

Monday, December 16, 2019 2:46 AM

Musa Bayzada

 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Il tempo oggi in Piacenza Mercoledì, 04 Dicembre 2019							
	05:00	07:00	10:00	14:00	18:00	19:00	21:00
	×4c	xx	*	yk.	Jk.	*	*
	LightCloud	PartlyCloud	Sun	Sun	LightCloud	PartlyCloud	PartlyCloud
Temperatura effettiva	2°C	0°C	4°C	7°C	2°C	1°C	0°C
Temperatura percepita	1°C	-3°C	3°C	5°C	0°C	-1°C	-2°C
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Umidità	83 %	93 %	79 %	66 %	88 %	89 %	93 %
Pressione atmosferica	1027 hPa	1027 hPa	1027 hPa	1025 hPa	1025 hPa	1025 hPa	1025 hPa
Intensità del vento	5 km/h	8 km/h	5 km/h	9 km/h	6 km/h	6 km/h	6 km/h
Direzione del vento	\leftarrow	\leftarrow	^	\leftarrow	Ţ	✓*	✓*
	E	E	NE	E	S	SW	SW
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Punto di rugiada	0°C	-1°C	1°C	1°C	0°C	0°C	-1°C
Nuvole	13 %	59 %	12 %	9 %	17 %	70 %	91 %
Nuvole basse	6 %	8 %	12 %	9 %	2 %	1 %	0 %
Nuvole medie	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Nuvole alte	8 %	56 %	0 %	0 %	16 %	70 %	91 %

According to the table

T = 4°C

w = 79%

P = 102.7kPa

Water saturation pressure at 4 degree C: 0.813 kPa

ClassroomA: 12m x6mx 5m

From the chart,

Twb = 3℃

w = 0.004

w=0.622 P_v/P_a =0.622 P_v/P - P_v =0.004

introduce

P = 102.7kPa

Pv= 0.656kPa

For ideal gas

 $m_{sp} = PV / R_{sp} \times T$

Rsp = 0.4615

 $m_V = 1.847 kg$

mg = 2.338kg

ha = 1.005 '3 = 3.015 kJ / kgdryair

hv = 2501.3 + 1.82 '3 = 2506.76kJ / kgwater

h = ha + whv = 3.015 + 0.004 '2506.76 = 13.04kJ / kgdryAir

 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Aul=1.4cm2/m2

Q i gsensible=136 + 2.2 A + 22 N = 136 + 2.2 200 + 22 2 = 620 W

12/16/2019 OneNote

 $Q_{ig | latent} = 20 + 0.22 A + 12N = 20 + 0.22 '200 + 12 '2 = 88W$

Aes= 200 + 144 = 344m2

AL = AesxAul = 344'1.4 = 481.6m2

DFheating =0.065L/scm3

IDFheating=0.032L/scm3

V&inf iltrationheating= A $^{\prime}$ IDF = 481.6 $^{\prime}$ 0.065 = 31.304 L/S

V&inf iltrationcooling= A ' IDF = 481.6 ' 0.032 = 15.411 L/S

 $V_{\text{eventilaion}} = 0.05 \text{Acf} + 3.5 (\text{Nbr} + 1) = 0.05 \ 200 + 3.5 \ 2 = 17 \text{ L/S}$

V&inf-ventilationHEATING= 31.304 + 17 = 48.30 L/S

V&inf-ventilationCOOLING= 15.411 + 17 = 32.41 L/S

Qinf-- ventilation heating sensible = Csensiblev&DTheating = 1.23 ' 48.30 ' 15.9 = 944.60W

 $\label{eq:Qinf-ventilation} Qinf-- \mbox{ ventilation heating latent} = Clatent V\& \mbox{Dwheating} = 3010\ \ '48.30\ \ '0.0065 = 944.99W$

Qinf-- ventilation cooling sensible = Csensible V&DTcooling = $1.23 \ '\ 32.41'\ 7.1 = 283.04W$

Qinf-- ventilation cooling latent = $ClatentV\&Dwcooling = 3010\ '32.41'\ 0.0039 = 380.46W$