FARMBOT GROWROOM

Madison Beare

43939442

METR4900 Semester 1, 2020

Supervisor: Matthew D'Souza

PRESENTATION CONTENTS

- Thesis introduction, scope and relevance;
- Background information and literature review;
- Work completed so far and
- Work remaining to be done.

INTRODUCTION, SCOPE AND RELEVANCE

Why is this project important?

INTRODUCTION: RELEVANCE

- AgTech is the collection of digital technologies that provide the agricultural industry with the tools, data and knowledge to make more informed and timely on-farm decisions [1]
- Changes driving the agriculture industry:
 - increasing population;
 - changes in demographic trends;
 - depleting natural resources;
 - climate change and
 - consumer dietary demands.
- Thus begs the question:

'How can technology be used to improve and assist the agricultural sector?'

INTRODUCTION, SCOPE

This project will focus on the design of a robotic arm to be used in conjunction with a small scale spherical structure (the GrowRoom) that enables individuals to grow and monitor their own food.

In Scope	Out of Scope
Mechanical design	Construction and assembly of GrowRoom
Electronic design and build	End-effector design
Software development	
Component selection	
Modifications to current Farmbot Universal Tool Mount (UTM)	
Physical prototyping	

LITERATURE REVIEW

Background information and past works

LITERATURE REVIEW: GROWROOM

- Created by SPACE10, IKEA's external innovation hub, the GrowRoom is the spherical structure designed to promote local food production.
- This project will focus primarily on the design and build of a robotic arm to fit inside a small scale (approximately 0.8m x 0.5m x 0.5m GrowRoom).

LITERATURE REVIEW: FARMBOT

HARDWARE

- The CNC farming machine consists of a Cartesian co-ordinate, gantry style robotic system.
- FarmBot is capable of movement in the x,y and z planes, governed through different physical structures:
 - Tracks (x direction)
 - Gantry (y direction)
 - Lead Screw (z direction)

SOFTWARE

- A Raspberry Pi 3 is used as the "host computer" of FarmBot [16].
- This:
 - Runs the operating system
 - Communicates with the web application over ethernet or Wi-Fi.
 - Communicates to the Farmduino over a USB serial connection.

ELECTRICAL

"The 'Farmduino' is an electronics board that combines the functionality of an Arduino MEGA 2560 microcontroller and a RAMPS shield" [16].

- Integrates with stepper motors and monitors information.
- Receives commands from the Raspberry Pi.

LITERATURE REVIEW: SCARA

- SCARA is an acronym for Selective Compliance Articulated Robot Arm.
 - Compliant in the X-Y axis, and rigid in the Z-axis.
- The SCARA's structure consists of two arms joined at the base and the intersection of arms one and two.
- The final X-Y location at the end of arm two is a factor of the M1 angle, M2 angle, length of arm one and length of arm two.
- SCARAs are four-axis robots.

CURRENT PROGRESS

What has been done so far?

1. The support structure of the GrowRoom.

- 2. The differing diameters between shelves A and C and shelf B.
- 3. The size/shape of the space between support structures (the shelves).
- 4. The vertical distance between shelves.

ARM

Inverse Kinematics:

$$p = [p_{x-coord} \quad p_{y-coord}]$$

$$k = \frac{p_x^2 + p_y^2 - a_1^2 - a_2^2}{2a_1 a_2}$$

$$\theta_2 = \cos^{-1} k$$

$$m = \frac{p_x(a_1 + a_2C\theta_1) + p_ya_2S\theta_2}{a_1^2 + a_2^2 + 2a_1a_2C\theta_2}$$

$$\theta_1 = \cos^{-1} m$$

Deflection:

 $I = Area \ moment \ of \ intertia \ of \ beam \ (kgm^2)$

 $P = Force \ acting \ on \ beam \ (N)$

E = modulas of elasticity (Pa) l = length of beam (m)

 $\theta = angle \ of \ deflection \ (degrees)$

 $\delta_{max} = deflection(m)$

$$\delta_{max} = \frac{Pl^3}{3EI}$$

$$I_{filled_rectangle} = \frac{bh^3}{12}$$

$$I_{hollow_rectangle} = \frac{bh^3 - b_1{h_1}^3}{12}$$

Options	Material Dimensions	Deflection (mm)
Option 1	Steel plate (25 x 3mm)	0.028028571
Option 2	Steel plate (30 x 3mm)	0.023357143
Option 3	Steel plate (40 x 3mm)	0.017517857
Option 4	Steel plate (50 x 3mm)	0.014014286
Option 5	Steel rectangle (38 x 25 x 1.2mm)	0.000121974
Option 6	Steel rectangle (50 x 25 x 1.6mm)	7.18713E-05

LINEAR TRANSMISSION ANALYSIS

		A	В	С	D	E
		Cost	Accuracy	Size	Stability	Availability
A	Cost		AB	A	AD	A
В	Accuracy			В	BD	В
С	Size				D	CE
D	Stability					D
E	Availability					

Weightings					
A	0.29				
В	0.29				
С	0.07				
D	0.29				
E	0.07				

Linear Transmission System						
Туре	Cost	Accuracy	Size	Stability	Availability	Weighted Total
Lead Screw	1.43	0.57	0.29	0.29	0.07	2.6
Ball Screw	1.43	0.29	0.29	0.29	0.07	2.4
Timing Belt	0.57	0.86	0.07	0.57	0.07	2.1
Rack and Pinion	1.43	0.29	0.14	0.57	0.36	2.8

CURRENT PROGRESS: ANALYSIS

CURRENT PROGRESS: ANALYSIS

CURRENT PROGRESS: ANALYSIS

MOTOR SELECTION ANALYSIS

Linear Actuation							
Motor	Precision/Control	Torque Capability	Size/Weight	Cost	Total		
AC	5	Yes		4	9		
DC Brushed	5	Yes		3	8		
DC Brushed with Encoder	1	Yes		4	5		
DC Brushless	5	Yes	Implementation Dependent	2	7		
DC Brushless with Encoder	1	Yes		4	5		
Servo Motors	2	Maybe		1	3		
Stepper Motors	1	Yes		2	3		

Motor	Torque (Ncm)	Torque (Nm)	Cost (AUD)	Weight (kg)	Dimensions (mm)
Nema 17 Unipolar 1.8deg 15.8Ncm (22.4oz.in) 0.31A 12V 42x42x33mm 6 Wires	15.8	0.158	13.77	0.22	42 x 42 x 33
Nema 17 Bipolar 1.8deg 16Ncm (22.6oz.in) 1A 3.7V 42x42x20mm 4 Wires	16	0.16	12.08	0.14	42 x 42 x 20
Nema 17 Unipolar 1.8deg 16Ncm (22.7oz.in) 0.95A 4V 42x42x33mm 6 Wires	16	0.16	13.77	0.22	42 x 42 x 33
Dual Shaft Nema 14 1.8deg 18Ncm (25.56oz.in) 0.8A 5.4V 35.2x35.2x34mm 4 Wires	18	0.18	14.96	0.17	35.2 x 35.2 x 34
Nema 14 Bipolar 1.8deg 18Ncm (25.5oz.in) 0.8A 5.4V 35x35x34mm 4 Wires	18	0.18	12.56	0.19	35 x 35 x 34

MOTOR SELECTION ANALYSIS

Linear Actuation							
Motor	Precision/Control	Torque Capability	Size/Weight	Cost	Total		
AC	5	Yes		4	9		
DC Brushed	5	Yes		3	8		
DC Brushed with Encoder	1	Yes		4	5		
DC Brushless	5	Yes	Implementation Dependent	2	7		
DC Brushless with Encoder	1	Yes	Implementation Dependent	4	5		
Servo Motors	2	Requirement Dependent		1	3		
Stepper Motors	1	Yes		2	3		

Motor	Torque (Ncm)	Torque (Nm)	Cost (AUD)	Weight (kg)	Dimensions (mm)
Nema 17 Unipolar 1.8deg 15.8Ncm (22.4oz.in) 0.31A 12V 42x42x33mm 6 Wires	15.8	0.158	13.77	0.22	42 x 42 x 33
Nema 17 Bipolar 1.8deg 16Ncm (22.6oz.in) 1A 3.7V 42x42x20mm 4 Wires	16	0.16	12.08	0.14	42 x 42 x 20
Nema 17 Unipolar 1.8deg 16Ncm (22.7oz.in) 0.95A 4V 42x42x33mm 6 Wires	16	0.16	13.77	0.22	42 x 42 x 33
Dual Shaft Nema 14 1.8deg 18Ncm (25.56oz.in) 0.8A 5.4V 35.2x35.2x34mm 4 Wires	18	0.18	14.96	0.17	35.2 x 35.2 x 34
Nema 14 Bipolar 1.8deg 18Ncm (25.5oz.in) 0.8A 5.4V 35x35x34mm 4 Wires	18	0.18	12.56	0.19	35 x 35 x 34

FUTURE PLAN

What is left to do?

Questions?

Thank-you for listening!

Instructions for use

EDIT IN GOOGLE SLIDES

Click on the button under the presentation preview that says "Use as Google Slides Theme".

You will get a copy of this document on your Google Drive and will be able to edit, add or delete slides.

You have to be signed in to your Google account.

EDIT IN POWERPOINT®

Click on the button under the presentation preview that says "Download as PowerPoint template". You will get a .pptx file that you can edit in PowerPoint.

Remember to download and install the fonts used in this presentation (you'll find the links to the font files needed in the <u>Presentation design slide</u>)

More info on how to use this template at <u>www.slidescarnival.com/help-use-presentation-</u>template

This template is free to use under <u>Creative Commons Attribution license</u>. You can keep the Credits slide or mention SlidesCarnival and other resources used in a slide footer.

hello!

I am Jayden Smith

I am here because I love to give presentations. You can find me at @username

1. Transition headline

Let's start with the first set of slides

66

Quotations are commonly printed as a means of inspiration and to invoke philosophical thoughts from the reader.

This is a slide title

- Here you have a list of items
- And some text
- But remember not to overload your slides with content

Your audience will listen to you or read the content, but won't do both.

You can also split your content

White

Is the color of milk and fresh snow, the color produced by the combination of all the colors of the visible spectrum.

Black

Is the color of coal, ebony, and of outer space. It is the darkest color, the result of the absence of or complete absorption of light.

In two or three columns

Yellow

Is the color of gold, butter and ripe lemons. In the spectrum of visible light, yellow is found between green and orange.

Blue

Is the colour of the clear sky and the deep sea. It is located between violet and green on the optical spectrum.

Red

Is the color of blood, and because of this it has historically been associated with sacrifice, danger and courage.

A picture is worth a thousand words

A complex idea can be conveyed with just a single still image, namely making it possible to absorb large amounts of data quickly.

Use charts to explain your ideas

And tables to compare data

	A	В	С
Yellow	10	20	7
Blue	30	15	10
Orange	5	24	16

89,526,124

Whoa! That's a big number, aren't you proud?

89,526,124\$

That's a lot of money

185,244 users

And a lot of users

100%

Total success!

Our process is easy

Let's review some concepts

Yellow

Is the color of gold, butter and ripe lemons. In the spectrum of visible light, yellow is found between green and orange.

Yellow

Is the color of gold, butter and ripe lemons. In the spectrum of visible light, yellow is found between green and orange.

Blue

Is the colour of the clear sky and the deep sea. It is located between violet and green on the optical spectrum.

Blue

Is the colour of the clear sky and the deep sea. It is located between violet and green on the optical spectrum.

Red

Is the color of blood, and because of this it has historically been associated with sacrifice, danger and courage.

Red

Is the color of blood, and because of this it has historically been associated with sacrifice, danger and courage.

You can copy&paste graphs from Google Sheets

Mobile project

Show and explain your web, app or software projects using these gadget templates. Place your screenshot here

Tablet project

Show and explain your web, app or software projects using these gadget templates.

Place your screenshot here

Desktop project

Show and explain your web, app or software projects using these gadget templates.

thanks!

Any questions?

You can find me at
@username
user@mail.me

Credits

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Unsplash</u>

Presentation design

This presentations uses the following typographies:

■ Titles: **Playfair Display**

■ Body copy: **PT Serif**

You can download the fonts on this page:

https://www.fontsquirrel.com/fonts/playfair-display

https://www.fontsquirrel.com/fonts/pt-serif

You don't need to keep this slide in your presentation. It's only here to serve you as a design guide if you need to create new slides or download the fonts to edit the presentation in PowerPoint®

Now you can use any emoji as an icon!

And of course it resizes without losing quality and you can change the color.

How? Follow Google instructions

https://twitter.com/googledocs/status/730087240156643328

and many more...46

Free templates for all your presentation needs

For PowerPoint and 100% free for personal Google Slides

or commercial use

Ready to use, professional and customizable

Blow your audience away with attractive visuals