Data Mining (W4240 Section 001) Subset Selection

Giovanni Motta

Columbia University, Department of Statistics

November 9, 2015

Outline

Motivation: Linear Regression

Subset Selection

Optimism

Model Selection Criteria

Example

Outline

Motivation: Linear Regression

Subset Selection

Optimism

Model Selection Criteria

Example

Training data are the set of inputs and outputs, $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$

In $\it linear\ regression,$ the goal is to predict y from x using a linear function

Let's begin with some linear regression in R.

```
> n <- 100
> p <- 95
> x <- rnorm(n*p)
> dim(x) <- c(n,p)
> y <- x[,1] - 1.2*x[,2] + rnorm(n)
> fit.lm <- lm(y ~ x)</pre>
```

What are the coefficients? What about the residuals? Let's do this a few times.

High Dimensional Data

This is an example of a high-dimensional problem: $n \approx p$.

What are some legitimate assumptions for this type of problem?

- how many covariates actually matter?
- why would some not matter?
- should we fit a simple model or a complex model?
- how can we do it?

High Dimensional Data

This is an example of a high-dimensional problem: $n \approx p$.

What are some legitimate assumptions for this type of problem?

- how many covariates actually matter?
- why would some not matter?
- ▶ should we fit a simple model or a complex model?
- how can we do it?

Note: this $n \approx p$ problem motivates subset selection, but it is useful in many settings.

Outline

Motivation: Linear Regression

Subset Selection

Optimism

Model Selection Criteria

Example

Pick the best $k \ (\leq p)$ covariates to use in linear regression

Pick the best $k \leq p$ covariates to use in linear regression

Why?

- Predictive Accuracy: Linear least squares estimator has <u>low</u> <u>bias</u>, <u>high variance</u>. Reduce number of covariates, get a bit more bias but much less variance.
- Interpretability: Which variables matter? Which do not? Interpretability allows your model to say something about the data vs. just giving a prediction.

How to pick the best $k \leq p$ covariates for linear regression?

Best Subset Selection:

- enumerate possible subsets in a smart way for each k
- ▶ for each k, select subset that minimizes RSS
- pick best k: cross-validation or other model selection methods

Choose the one with min

▶ good method for p < 30 or 40

How to pick the best $k \leq p$ covariates for linear regression?

Algorithm 6.1 Best subset selection

- Let M₀ denote the null model, which contains no predictors. This
 model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these (^p_k) models, and call it M_k. Here best is defined as having the smallest RSS, or equivalently largest R².
- Select a single best model from among M₀,...,M_p using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R².

Best Subset Selection:

- ▶ at each step, fit $\binom{p}{k}$ models
- $\sum_{k=0}^{p} \binom{p}{k} = 2^p \text{ models}$

Subset Selection: credit card dataset

How to pick the best $k \leq p$ covariates for linear regression?

Best Subset Selection:

- for $k=1,\ldots,11$, fit $\binom{11}{k}$ models
- $ightharpoonup 2^{11} = 2048 \text{ models } !$

How to pick the best $k \leq p$ covariates for linear regression?

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For k = 0, ..., p 1: Added Predictor Selection Criterion: SSR or R^2
 - (a) Consider all p − k models that augment the predictors in M_k with one additional predictor.
 - (b) Choose the *best* among these p-k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- Select a single best model from among M₀,...,M_p using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R².

Stopping Criterion: Cp AIC BIC

Forward stepwise Selection:

- ▶ at each step, fit p k models
- $ightharpoonup 1 + \sum_{k=0}^{p-1} (p-k) = 1 + \frac{p(p+1)}{2}$ models
- ▶ 67 rather that 2048 models

How to pick the best $k \leq p$ covariates for linear regression?

Algorithm 6.3 Backward stepwise selection

- Let M_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in M_k, for a total of k − 1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Backward stepwise Selection:

- ▶ at each step, fit p k models
- $1 + \sum_{k=0}^{p-1} (p-k) = 1 + \frac{p(p+1)}{2}$ models
- ▶ 67 rather that 2048 models
- ▶ Backward selection requires that n > p. In contrast, forward stepwise can be used even when n < p, and so is the only viable subset method when p is very large.

Subset Selection: credit card dataset

How to pick the best $k \leq p$ covariates for linear regression?

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

- forward stepwise tends to do well in practice,
- ► HOWEVER: it is not guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors.

Model Selection

Cross-validation is not always the answer:

- here n is small compared to p by definition
- cross-validation may be too expensive since you have to fit all possible model combinations

Other methods like AIC and BIC <u>adjust training error to try to estimate testing error</u>

Training Error

The training error is *optimistic*: it under estimates the testing error. By how much? (Use <u>corrected training error</u> in place of testing error!)

Outline

Motivation: Linear Regression

Subset Selection

Optimism

Model Selection Criteria

Example

Training data: $\mathcal{T} = \{(x_1, y_1), \dots, (x_n, y_n)\}$

New data: X^0 , Y^0

Generalization error (extra-sample error):

$$\operatorname{Err}_{\mathcal{T}} = \mathbb{E}_{X^0, Y^0} [L(Y^0, \hat{f}(X^0)) \mid \mathcal{T}]$$

Expected error (we asked about re: bootstrap):

$$\operatorname{Err} = \underline{\mathbb{E}_{\mathcal{T}}} \mathbb{E}_{X^0, Y^0} [L(Y^0, \hat{f}(X^0)) \,|\, \mathcal{T}]$$

Training error:

$$\operatorname{Err}_{train} = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(x_i))$$

To understand training error,

$$\operatorname{Err}_{train} = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(x_i)),$$

look at *in-sample error* (not a training error!):

$$\operatorname{Err}_{in} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Y^{0}} [L(Y^{0}, \hat{f}(x_{i})) \mid \mathcal{T}]$$

(Fix covariates, randomize responses.)

The *optimism* is the difference between Err_{in} and Err_{train} :

$$op \equiv Err_{in} - Err_{train}$$

The average optimism is the expectation over the training sets

$$\mathbb{E}_y(\mathrm{op})$$

In-sample error vs. training sample error vs. extra-sample error:

- Extra-sample error: expected error over new covariates and new responses
 - need to approximate distribution of responses and covariates
- ► In-sample error: expected error over <u>new responses for given</u> <u>covariates</u>
 - current covariate sample approximates true distribution
 - expectation over new responses eliminates bias from correlation between observed responses and fitted responses
- ▶ Training sample error: error averaged over training samples
 - **ightharpoonup** correlation between y_i and \hat{y}_i causes underestimate of error
 - but, hey, it is easy to compute

Can show for loss functions,

$$\mathbb{E}_y(\text{op}) = \frac{2}{n} \sum_{i=1}^n \text{Cov}(\hat{y}_i, y_i)$$

If method overfits, this value will be high.

$$\mathbb{E}_{y}(\mathrm{Err}_{in}) = \mathbb{E}_{y}(\mathrm{Err}_{train}) + \frac{2}{n} \sum_{i=1}^{n} \mathrm{Cov}(\hat{y}_{i}, y_{i})$$

In the case of a linear model,

$$\mathbb{E}_{y}(\mathrm{Err}_{in}) = \mathbb{E}_{y}(\mathrm{Err}_{train}) + \frac{2p}{n}\sigma_{\epsilon}^{2}$$

Can use this to get in-sample estimates of prediction error

Estimating In-Sample Prediction Error

Model selection criteria vs. cross-validation:

- Cross-validation:
 - possibly more accurate
 - ▶ no need for <u>asymptotic</u> approximations (is *n* large enough to justify asymptotics?)
 - more flexible (can be used for things other than MLE)
- Model selection criteria:
 - often easy to compute
 - theoretically justifiable

Outline

Motivation: Linear Regression

Subset Selection

Optimism

Model Selection Criteria

Example

Estimating In-Sample Prediction Error

In general, an estimate of the in-sample error is the training sample error plus an estimate of the optimism,

$$\hat{\text{Err}}_{in} = \text{Err}_{train} + \hat{\text{op}}$$

Suppose that we use a <u>log-likelihood loss function</u> (<u>squared error</u> <u>= Gaussian log-likelihood</u>). The <u>Akaike Information Criterion</u> is an asymptotic approximation for Err_{in} :

$$-2\mathbb{E}[\log \Pr_{\hat{\theta}}] \approx -\frac{2}{n} \sum_{i=1}^{n} \log \Pr_{\hat{\theta}}(y_i) + 2\frac{d(\alpha)}{n}$$
$$AIC(\alpha) = \operatorname{Err}_{train}(\alpha) + 2\frac{d(\alpha)}{n} \hat{\sigma}_{\epsilon}^{2}$$

Here $\hat{\theta}$ is the MLE estimate. Choose α that minimizes $AIC(\alpha)$.

Estimating In-Sample Prediction Error

Are there other ways to estimate $\hat{\omega}$? Of course.

The Bayesian Information Criterion uses the approximation $\log(n) \frac{d(\alpha)}{n} \hat{\sigma}^2_{\epsilon}$ instead of $2 \frac{d(\alpha)}{n} \hat{\sigma}^2_{\epsilon}$,

$$AIC(\alpha) = \operatorname{Err}_{train}(\alpha) + 2\frac{d(\alpha)}{n}\hat{\sigma}_{\epsilon}^{2}$$
$$BIC(\alpha) = \frac{n}{\sigma_{\epsilon}^{2}} \left[\operatorname{Err}_{train}(\alpha) + (\log n) \frac{d(\alpha)}{n} \hat{\sigma}_{\epsilon}^{2} \right]$$

BIC:

- chooses right model size as $n \to \infty$
- ightharpoonup ...but chooses too simple models when n is small

AIC:

- chooses better models with small n
- lacktriangleright ...but chooses too complicated models when n is large

Adjusted R^2

Recall from linear regression:

$$R^{2} = 1 - \frac{SS_{res}}{SS_{tot}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

 R^2 explains the reduction in variance of a model.... but a model with a large p might be overfitting.

We can adjust the \mathbb{R}^2 for the number of explanatory terms relative to the number of data points: with more data, more explanatory terms are acceptable.

$$\bar{R}^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

The adjusted \mathbb{R}^2 corrects for the extra degrees of freedom associated with more predictors.

Estimating In-Sample Prediction Error

Model selection criteria vs. cross-validation:

- Model selection criteria:
 - often easy to compute
 - theoretically justifiable
- Cross-validation:
 - possibly more accurate
 - ▶ no need for asymptotic approximations (is *n* large enough to justify asymptotics?)
 - more flexible (can be used for things other than MLE)

Outline

Motivation: Linear Regression

Subset Selection

Optimism

Model Selection Criteria

Example

Example: Prostate Data

Data in Prostate.txt (also available on ESL website)

```
Predictors (columns 1–8): Icavol (log cancer volume), Iweight (log
weight), age, lbph (log amount of benign prostatic hyperplasia),
svi (seminal vesicle inversion), lcp (log capsular penetration),
gleason, pgg45 (percentage of Gleason scores 4 or 5)
outcome (column 9): Ipsa (level of prostate-specific antigen)
train/test indicator (column 10)
> prostate <- read.table("Prostate.txt",header=TRUE, sep="\t")</pre>
> names(prostate)
 [1] "X"
         "lcavol" "lweight" "age"
 [5] "lbph" "svi" "lcp" "gleason"
 [9] "pgg45" "lpsa" "train"
> prostate.train <- prostate[prostate$train==T,2:10]</pre>
> prostate.test <- prostate[prostate$train==F,2:10]</pre>
```

Example: Prostate Data

[1] 0.521274

Note: the data in ESL was scaled before use, so $\hat{\beta}$ differs

> prostate.lm <- lm(lpsa ~ lcavol + lweight + age + lbph</pre>

Best Subset Selection

Use the package leaps

```
> library(leaps)
> prostate.bss <- regsubsets(lpsa ~ ., data=prostate.train)</pre>
> # Let's see the outputs
> summary(prostate.bss)
> coef(prostate.bss,1:4)
> plot(prostate.bss, scale="bic")
> # Get a prediction
> coef.bss <- coef(prostate.bss,2)</pre>
> y.pred.bss <- coef.bss[1]</pre>
  + coef.bss[2]*prostate.test$lcavol
  + coef.bss[3]*prostate.test$lweight
> mean((v.pred.bss-prostate.test$lpsa)^2)
[1] 0.4924823
```

What happens if p > 40? We can't search all subsets...

Forward stepwise selection:

- start with intercept
- add in one predictor that improves the fit the most
- repeat until we run out of predictors
- \triangleright select k through cross-validation, AIC, BIC, adjusted R^2
- ▶ "fit improvement" determined by F-statistics or AIC scores

This is called a greedy algorithm

Why greedy algorithms?

- ▶ computational: only search through $\mathcal{O}(p\min(n,p))$ subsets (at most)
- statistical: more constrained search means some additional estimator bias, but less variance

FIGURE 3.6. Comparison of four subset-selection techniques on a simulated linear regression problem $Y = X^T \beta + \varepsilon$. There are N = 300 observations on p = 31 standard Gaussian variables, with pairwise correlations all equal to 0.85. For 10 of the variables, the coefficients are drawn at random from a N(0,0.4) distribution; the rest are zero. The noise $\varepsilon \sim N(0,0.25)$, resulting in a signal-to-noise ratio of 0.64. Results are averaged over 80 simulations. Shown is the mean-squared error of the estimated coefficient $\beta(k)$ at each step from the true $\beta(k)$

Backward stepwise selection:

- start with all predictors
- remove one that contributes the least
- repeat until we are left with the intercept
- ightharpoonup select k through cross-validation, AIC, BIC, adjusted R^2
- "fit improvement" determined by F-statistics or AIC scores
- ▶ note: only works if n > p

```
Use the function step (you can also use regsubsets() with method="forward" or method="backward")

> prostate.fwd <- step(prostate.lm)
> summary(prostate.fwd)
> y.pred.fwd <- predict(prostate.fwd,prostate.test)
> mean((y.pred.fwd-prostate.test$lpsa)^2)
[1] 0.5165135
```

```
...or we can step(..., direction="backward").
```

Forward Stagewise Regression

Forward stagewise regression:

- start with intercept as mean
- compute residuals based on current model
- compute correlation between each covariate and residuals
- compute simple linear regression on residuals against variable with highest correlation
- ▶ add coefficient to existing coefficient for that variable
- repeat until no correlation between residuals and variables

Takes many steps to converge, but often good for very high dimensional problems; can be implemented in lars package