

Class XI

by Zaariya

16 November 2019.

TIME ALLOTTED: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
- 2. This examination paper contains **EIGHTY(80)** questions and comprises **TWENTY TWO(22)** printed pages.
- 3. There are **FOUR(4)** parts in this question paper A, B, and C and D having 20 questions each.
- 4. Part A and Part B are common for all students, where as those who have opted for PCM and, for PCB are to attempt Part C and, Part D respectively.
- 5. The **last 5 questions** of each part are worth **+FOUR(4)** marks each and a wrong answer will result in deduction of **ONE(1)** mark.
- 6. The remaining questions are worth +TWO(2) marks and a wrong answer will result in deduction of HALF(1/2) mark from the total score.
- 7. Unattempted questions will not affect your score.
- 8. There is only one correct response to each question. Filling up more than one response in any question will be treated as a wrong response.
- 9. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.

	Personal Details
Name of the Candidate	
Registration Number	
Centre Code	

Part A- PHYSICS

1.	• •	perience and in what di	•	ing at an altitude above the om earth's frame? (Neglect
	(a) $mR\omega 2cos\lambda$ along	ng the North-South axis		
	(b) $mR\omega 2sin\lambda$ along	ng the North-South axis	·.	
	(c) $mR\omega 2cos\lambda$ per	pendicular to the North-	-South axis.	
	(d) $mR\omega 2sin\lambda$ per	pendicular to the North-	-South axis.	
2.	dU = Q - W can be de	educed to $dU = Q - PdV$	if the process is:	
	(a) quasi-static	(b) no quasi-static	(c) both a and b	(d) none of the a and b
3.	entropy S and total in	_	artitioned the container	perature T, density D, molar in two equal halves. Which
	(a) V	(b) S	(c) U	(d) D
4.	- '	•	,	gh surface with linear speed e coefficient of friction, μ
	(a) $\frac{5u}{7\mu g}$	(b) $\frac{2u}{7\mu g}$	(c) $\frac{3u}{\mu g}$	(d) none of the above
5.	While orbiting Earth air drag):	, a satellite releases an o	object towards it. It w	ill hit at a point (neglect the
	(a) exactly below		(b) it will never rea	ch earth
	(c) at the front		(d) at the back	
		Space for r	ough work	

6. A pulse or a wave train travels along a stret	tched string and reaches the fixed end of the string.
It will be reflected back with:	
(a) Same phase as the initial but different	velocity
(b) A phase change of 180° with no revers	sal of velocity
(c) Same phase as the incident pulse with	no reversal of velocity
(d) A phase change of 180° with velocity	reversed
7. If the density of a metal wire is decreased it	ts young's modulus
(a) increases	(b) decreases
(c) first increases, then decreases	(d) first decreases, then increases
	ss piston of a vertical Cylinder at a temperature T. much work should be performed by some external othermally? (Neglect the friction of piston)
(a) $RT(ln2 - 1)$ (b) $RT(\frac{ln2}{ln3})$	(c) $RT(1 - ln2)$ (d) $RT(\frac{ln3}{ln2})$
is sealed. It is seen that the mass falls dow	d it in a hollow closed tube, such that the closed end on fast, comes to a halt, and then moves downward iter a long time. What are the processes which took
(a) Isothermal, isobaric	(c) Adiabatic, isothermal
(b) Isothermal, adiabatic	(d) Adiabatic, isobaric
	the top to the bottom of a building. For the velocity the pipe. How should the diameter of the pipe vary? respectively.

(a) $d_1 < d_2$ (b) $d_2 < d_1$

(c) $d_1 = d_2$ (d) $d_1 d_2 = constant$

11. There is an incline whose surface is shaped like a quarter of a circle. If the time taken by a ball to reach the bottom when released from end A and end B is t_A and t_B respectively, then which of the following is true?

- (a) $t_A = t_B t_A > t_B$ (b) t_B
- $> t_A Cannot be determined$
- (2) A vertical tunnel is dug through the earth (radius= R) which passes through the center and opens to the other side of the earth. A particle of mass 'm' is thrown inside the tunnel. For the particle to execute SHM, the density should be proportional to:
 - (a) R
- (b) $\frac{1}{R}$
- (c) R²
- (d) None of these
- 13. Of the molecules chosen at random from a closed isolated container, the velocity of most of them was found to be $5 \times 10^4 cm/sec$. What would the root mean square speed of the molecules under the same conditions?
 - (a) $5.6 \times 10^4 cm/sec$

(b) $6.1 \times 10^4 cm/sec$

(c) $5.6 \times 10^6 cm/sec$

(d) $6.1 \times 10^6 cm/sec$

Space for rough work

	(2)	Third law of therr	modynamics	(b) Clasius statemen	ıt
	(a)	Time law of their	modynamics	(b) Clasius statemen	·
	(c)	Kelvin - planck st	tatement	(d) None of these	
15.		be and a sphere of unding to cool. The	-	material are heated to	370K and are then left in
	(a)	Cube will cool fas	ster because it has less	surface area.	
	(b)	Sphere will cool f	faster because it has le	ss surface area.	
	(c)	Cube will cool fas	ster because it has mor	e surface area.	
	(d)	Sphere will cool f	faster because it has m	ore surface area.	
16.	lande failed at tha how	er of the Chandrya I when the lander at instant, at the sa	an-2 mission. From the was at an altitude of the time it's horizontal listance it would have	e data, you got to know 2.1 km and had the ver l velocity was reported	to relocate the lost Vikram what the engines of lander rtical velocity of 160m/sec to be 96m/sec. Determine the lunar surface. (Take
	(a)	600m	(b) 1.2km	(c) 6km	(d) 1.8km
17.	lande done room debri	er exploded and the on earth, you obset temperature (300	e temperature of debri erved that a similar ma K). The next data from	s was detected to be 70 aterial took 6 hours to a the orbiter after 8 hou	e it was a crash landing, the 00K. From the experiments cool from 600K to 400K at rs reported the temp. of the surface temp. of the moon
	(a)	125K	(b) 500K	(c) 75K	(d) 200K
			Space for re	ough work	

14. "No process is possible whose sole result is the transfer of heat from a colder object to a hotter

object." This is:

18. A ball is dropped from a height and it bounces off from the surface several times before coming to rest. The velocity-time graph for the first two bounce is given. Find the maximum height of the ball after the first bounce?

- (a) 0.45m
- (b) 0.25m
- (c) 0.3m
- (d) 0.9m
- 19. One mole of an ideal gas with adiabatic exponent 'y' has its volume changed according to the relation V=a/T, where a is a constant. Find the amount of heat absorbed by the gas in this process, if the temperature rises by dT.
 - (a) (3-y)/(y-1)RdT

(b) (2-y)/(y-1)RdT

(c) (y-4)/(y-1)RdT

- (d) (y-1)/(4-y)RdT
- 20. The equation $y = Acos2(2\pi nt 2\pi x/\lambda)$ represents a wave with:
 - (a) Amplitude A/2, frequency 2n and wavelength $2/\lambda$
 - (b) Amplitude A/2, frequency 2n and wavelength λ
 - (c) Amplitude A, frequency 2n and wavelength 2λ
 - (d) Amplitude A, frequency 2n and wavelength $\boldsymbol{\lambda}$

Part B- CHEMISTRY

21.	A red litmus paper wh		tion turns White. The	bed by alkaline pyrogallol. gas evolved is used during olid be?
	(a) Na_2O_2	(b) Na_2O	(c) NaOCl	(d) CaO
22.	Which of these pairs a	are paramagnetic accord	ling to the molecular or	bital theory?
	(a) F ₂ and CO	(b) NO^+ and O_2COa	$n(0)_2F_2^+$ and NO	
23.	When Sodium metal i due to:-	s dissolved in liquid an	nmonia, The solution a	appears to be blue in color
	(a) Solvated electron	ns present in the solution	n	
	(b) Electron clusters	are formed		
	(c) The sodium Met	al dispersed through the	e solution reflects off th	e light
	(d) None of the above	ve		
24.	Which process will ha	we the highest slope in	a Pressure vs Volume c	urve?
	(a) Isobaric	(b) Isochoric	(c) Isothermal	(d) Adiabatic
25.	Which conformation i	s more stable for ethane	e-1,2-diol?	
	(a) Stagerred	(b) Eclipsed	(c) Gauche	(d) None of these
26.		-		thite powder that dissolves hin White layer on the top
	(a) $Ca(OH)_2$	(b) CaCO ₃	(c) $Ca(N_3)_2$	(d) Ca_3N_2
		Space for ro	ough work	

	components form		eless at the end because	se it reacts with the acidic
28.	concentration and the	rest are 10^{-3} in concent of the following will pre-	tration. When 10^{-16} n	Fe ²⁺ and Mn ²⁺ are 10 ⁻⁴ in nolar sulfide ions are added n, Ksp of MnS,FeS,HgS,ZnS
	(a) FeS	(b) MnS	(c) HgS	(d) ZnS
29.	How many aliphatic h	ydrocarbons are possib	le with the molecular f	Formula $C_4H_{10}O$
	(a) 6	(b) 7	(c) 8	(d) 10
30.	The pH of hot boiling	water is (approximatel	y):-	
	(a) Greater than 7			
	(b) Less than 7			
	(c) 7			
	(d) Cannot be predic	eted		
31.	What is the pH of 0.50	M aqueous NaCN sol	ution? pKb of CN ⁻ is	4.70.
	(a) 12.4	(b) 3.5	(c) 11.5	(d) 8.6
32.		n is polytropic index, l	•	relation PV^n =K where P is 2 moles of gas undergoing
	(a) $n = \gamma, \Delta W = \frac{P}{2}$	$\frac{1}{\gamma - 1} \frac{V_1 - P_2 V_2}{\gamma - 1}$		
	(b) $n = 3, \Delta W = \frac{21}{3}$	$\frac{R(T_2-T_1)}{2}$		
	(c) $n = \gamma \Delta Q = 0$			
	(d) $n = 3R(T_1 - T_2)$			
	Space for rough work			

27. In Solvay's process for making Na₂CO₃, Ammonia is bubbled through the brine before bubbling

(b) The Na₂CO₃ formed in the next step will not precipitate because of excess brine.
(c) The NaHCO₃ formed in the next step will not precipitate due to acidic by-product.

CO₂ through it. What would happen if Ammonia isn't bubbled through, and why?

(a) The Na₂CO₃ will be impure because of NaHCO₃.

		Space for rot	ign work
	(d)	Crystallization of cane sugar	agh work
	` /	Formation of ammonia from H2 and N2	
	` ′	Freezing of water	
		Boiling of egg	
		_	ges are accompanied by an increase in entropy?
			ble for being converted into work, or the degree
	(d)	O has sp ³ hybridisation	
	(c)	O occupies axial position	
	(b)	It has square pyramidal geometry	
	(a)	S has sp ³ d ² hybridisation	
36. Т	The	correct statement about OSF ₄ is:-	
	(b)	58 gm/mol	(d) 53 gm/mol
	(a)	49 gm/mol	(c) 55 gm/mol
35. V	Vhi	ch of the following has the most acidic pro	oton:
		buffer pair should have almost the same i	•
	(c)	A buffer solution loses its usefulness wh 10	en one component of the buffer pair is less than
	(b)	Weak bases and their salts form a buffer	with pH¿7
	(a)	Weak acids and their salts form a buffer f	for pH;7
34. V	Vhi	ch of the following statements about buffe	r solutions are wrong?
	(d)	N_2 ; ClF_3 ; K_2O ; LiF	
	(c)	K2O; N ₂ ; SO ₂ ; ClF ₃ ; LiF	
	(b)	SO_2 ; ClF_3 ; LiF ; K_2O ; N_2	
	(a)	$LiF; K_2O; N_2; SO_2; ClF_3$	

33. Arrange the bonds in order of increasing ionic character in the molecules: LiF; K_2O ; N_2 ; SO_2

and ClF₃.

38. For the wave function of hydrogen,

$$\Psi_{3s} = \frac{1}{81\pi} \left(\frac{1}{a_0^{3/2}} \right) \left[27 - \frac{18h}{a_0} + \frac{2h^2}{a_0^2} \right] e^{-r/3a_0}$$

(a) The probability distribution function plotted against radial distance is

- (b) The radial node is $27^{1/2}a^{\circ}$
- (c) The probability distribution function plotted against radial distance is

(d) The number of angular nodes is 0

- 39. A gas cylinder of capacity 20 litres contains a hypothetical combustible gas at a pressure of 4.5 atm at room temperature. The calorific value of the gas is 50 kilojoule/Kg. What is the work that can be done using the gas in the cylinder at STP before it needs refilling? Molar mass of the gas is 20 gm/mole.
 - (a) 28.25 kJ

(b) 30kJ

(c) 22.32kJ

- (d) 27.9kJ
- 40. H⁺ concentration of 0.2 molar solution of formic acid is 6.4×10^{-3} mol/litre. To this solution sodium formate is added so that its concentration is 1 mol/litre. Find the pH of this solution.

$$K\alpha_{HCOOH} = 2.4 \times 10^{-4}$$

 $\alpha_{HCOONa} = 0.75$

(a) 4.0

(c) 4.19

(b) 3.89

(d) 4.56

41. $y = \sqrt{x + \sqrt{x + \sqrt{x}...}}$

Then what is $\frac{dy}{dx}$ in terms of y?

- (a) $\frac{1}{2u-1}$
- (b) $\frac{1}{2y+1}$
- (c) $\frac{1}{2\sqrt{y}}$
- (d) None the above

- 42. f(x+y) = f(x) + f(y)f(5) = 10f'(0) = 6What is f'(5)?
 - (a) 0

- (b) 16
- (c) 4

(d) 60

- 43. If $\sin \alpha$ and $\cos \alpha$ are the roots of $px^2 + qx + r = 0$ Then what is the relation between p, q, r?
 - (a) $p^2 + q^2 + 2pr = 0$
 - (b) $p^2 + q^2 2pr = 0$
 - (c) $(p+r)^2 = q^2 r^2$
 - (d) $(p-r)^2 = q^2 + r^2$

44. if $T = \sum_{k=1}^n \frac{1}{k}$ and $Y = {n \choose 1} C - {n \choose 2} * \frac{1}{2} + ... (-1)^{n-1} * {n \choose n} C * \frac{1}{n}$ If T = kY, where k is a real number. Find k

- (a) 0.5
- (b) 1

- (c) -1
- (d) -0.5

- 45. $\lim \sin \pi \sqrt{n^2 + n + 1} =$
 - (a) 1

(b) $\frac{2}{3}$

- (c) $\frac{1}{2}$
- (d) $\sqrt{\frac{3}{4}}$

46. If $\frac{\binom{n}{n-1}C)^6 + \binom{n}{k}C)^6 + \binom{n+3}{n+1}C)^3}{3(\binom{n-2}{k}C)^2) * \binom{n+3}{2}C} = n^2$

Then what is the possible solution (n,k):

- (a) (6,3)
- (b) (6,2)
- (c) (2,4)
- (d) (4,2)

47.	Let a,b,c be integers in AP with $a-c=2$. If ω is a cube root of 1 excluding 1 itself and $\alpha^{\frac{1}{3}}$ be the minimum value of $ a\omega^2+b\omega+c + a+b\omega^2+c\omega $ Then α is:			
	(a) 1624	(b) 1728	(c) 432	(d) 442
48.	$f(x) = ax^3 + bx^2 + cx$ Given i) $a + b + c + d = 0$ What conclusion can yo	= -4 ii) 3a + 2b + c =	= 0	
	(a) No root in [0,1]			
	(b) Exactly one root in	n [0,1]		
	(c) All three roots in [[0,1]		
	(d) No conclusion			
49.	A polygon has 44 diago	onals. How many sides	does the diagonal have	?
	(a) 10	(b) 11	(c) 12	(d) 13
50.	If A gets 1 B gets 4 and cookies are required so	=		Progression. How many
	(a) 145	(b) 210	(c) 176	(d) 150
51.	If $f(x+1) + f(x-1)$ Then $f(5) = -5k$ find k (f(1) is a fixed real		ion f)	
	(a) f(-1)	(b) f(1)	(c) 0	(d) 1
52.	if $\alpha \neq \beta$ and $\alpha, \beta \neq 1$.	3 1 + f(1) 1 +	- f(2)	
	$f(x) = \alpha^n + \beta^n \text{ and } 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	- * *	-f(3)	
	has determinant to be k then find k			
	(a) 1	(b) -1	(c) $\alpha\beta$	(d) $\frac{1}{\alpha\beta}$

	set{w is a comple	st n such that the region reconstruction is such that the region reconstruction is $ w-4-i \le w-i $	n } is contained in the	
	set $\{z \text{ is a comply}\}$	$\frac{\text{number} z-1 \le z+i }{\text{(b)} \frac{5}{\sqrt{2}}}$	(c) $\sqrt{17}$	(d) $\frac{3}{\sqrt{2}}$
56.	numbers defined by $T_{(a)}$	emplex numbers. Then T_0 $\alpha_{\alpha,\beta}(z)= z-\alpha + z-\beta $ g equation $T_{(\pi,2\sqrt{2})}=\frac{1}{2010}$	3	mplex numbers to the real
	(a) circle	(b) eclipse	(c) hyperbola	(d) Straight line
57.	now, normal at a varia	entricity e and equation $\frac{x^2}{a^2}$ ble point p on σ meets the the midpoint of the line jo	e axes of the ellipse at A_p	
	(a) a,e and ϵ are	e independent		
	(b) $e = \epsilon$			
	(c) $e = \frac{1}{\epsilon}$ (d) $\epsilon = 1$			
58.	and $27a\beta^2 - 4(\beta - 2a)$	vation $Y^2 = 4aX$. Now ($e^3 < -(2019!)$) stinct normals that can be		
	(a) 3	(b) 2	(c) 1	(d) 0
		Space for	rough work	

(c) $\frac{2}{9}$ (d) $\frac{-7}{9}$

53. If $5(\tan^2(\theta) - \cos^2(\theta)) = 2\cos(2\theta) + 9$

(b) $\frac{4}{5}$

54. The shortest distance between the parabola $y^2 = 4x$ and $x^2 + y^2 + 6x - 12y + 20 = 0$

(a) $4\sqrt{2} + 5$ (b) $4\sqrt{2} - 5$ (c) $2\sqrt{2} + 5$ (d) $2\sqrt{2} - 5$

Then, the value of $cos(4\theta)$ is

(a) $\frac{-3}{5}$

59. There are 12 intermediate stations between Cuttack and Bhubaneswar.A train can be made to stop at 4 of these 12 stations in n ways provided none of these 4 stations must be consecutive stations. Then, Then, the sum of the digits of n is:

(a) 6

(b) 7

(c) 8

(d) 9

60. If $\frac{\sin x + \cos x}{\sin x - \cos x} = \frac{\alpha}{\tan x + \beta}$ then, $\alpha^2 + \beta^2$ equals?

(a) 2

(b) 5

(c) 1

(d) 8

Part D- BIOLOGY

61.	Varicose veins are those veins in which valves do not close properly, so the blood starts flowing backward. The condition most commonly appears in the legs and feet, with blue, dark and purple appearance. Why?
	(a) a.Legs are situated at the greatest distance from the heart, as compared to other organs.
	(b) The longest bone, Femur is present in the legs.
	(c) Increased blood pressure in the lower veins
	(d) None of these
62.	Rahul wants to prepare a recipe, that needs ripe tomatoes, on Monday. On Sunday night, he finds out that he only has five unripe tomatoes in his refrigerator. What should he do to ripen the tomatoes he

- (b) Store bananas and tomatoes together in the fridge
- (c) Reduce the temperature of the fridge
- (d) Store the tomatoes separately inside the fridge

(b) 9

63.	A diploid(2n) organism contains 6 chromosomes. Assuming that there are no crossover recombination
	events and all genes are present in heterozygous pairs, how many different kinds of gametes(n) will
	be formed through meiosis?

64.	A healthy person undergoes haemodialysis. Subsequently, the person dies. An investigation reveals
	that the dialysis machine was contaminated with a lethal amount of Arsenic. In an autopsy, where
	would you expect to find high concentrations of Arsenic in his body?

(c) 12

(d) 8

- (a) Kidney
- (b) Liver

(a) 6

has?

- (c) Uniformly distributed in the whole body
- (d) Uniformly distributed in the whole body, but absent in kidney

	how does cornea meet its gaseous requirements and nutrition. How will you clear her							
	(a) Diffusion occurs from the tear fluid at the outside and the aqueous humor at the inside							
	(b) Cornea is a dead tissue							
	(c)	The teacher is wro	ong because our cornea	is v	rascularised			
	(d) Cornea does not require nutrition							
66.	Reptiles were very successful on land while amphibians were not. What evolutionary development was primarily responsible for the success of reptiles on land?							
	(a) Scales over skin			(b)	(b) Thoracic breathing			
	(c)	Amniotic egg		(d)	Strong jaws			
67.	67. If the egg of an organism has 10 pg of DNA in its nucleus. How much DNA would a dip the same organism have in the G2-Phase of meiosis?					NA would a diploid cell of		
	(a)	10pg	(b) 5pg	(c)	20pg	(d) 40pg		
68.	How many ATPs are liberated from the conversion of one citric acid to oxaloacetic acid through Electron Transport System?							
	(a)	10	(b) 11	(c)	12	(d) 16		
69.	The human heart is called myogenic i.e. it has the ability to contract independent of the nervous input. Let us suppose an assassin(a professional killer) with his special assassin skills directly takes out the entire heart of a person. What will happen to the heart immediately after it is completely taken out of the body?							
	(a) It will stop beating immediately							
	(b) Will beat for a short time and then stops							
	(c) Continue beating for a long time							
	(d) Will burst like a bubble							
	Space for rough work							

65. One day, Priya's biology teacher told her that the human cornea is not vascularised, but she pondered

ing will definitely occur won't grow will die sooner al rings will be observe will be harder than the amed Lydia Angiyou sa	extremely hard g autumn season for the enur? ed e normal saved several children by figman strength is known as H						
tly to develop as of now ating bacteriophage is enthe above vironment maintaining ing will definitely occur won't grow will die sooner all rings will be observed will be harder than the named Lydia Angiyou sa	extremely hard g autumn season for the enur? ed e normal saved several children by figman strength is known as H	ghting a polar bear until a local					
ating bacteriophage is enthe above vironment maintaining ing will definitely occur won't grow will die sooner al rings will be observed will be harder than the amed Lydia Angiyou sa	extremely hard g autumn season for the enur? ed e normal saved several children by figman strength is known as H	ghting a polar bear until a local					
the above vironment maintaining ing will definitely occur won't grow will die sooner al rings will be observe will be harder than the	g autumn season for the en ar? ed e normal saved several children by fig man strength is known as H	ghting a polar bear until a local					
ing will definitely occur won't grow will die sooner al rings will be observe will be harder than the amed Lydia Angiyou sa	ed e normal saved several children by fig man strength is known as H	ghting a polar bear until a local					
will die sooner al rings will be observe will be harder than the amed Lydia Angiyou sa	e normal saved several children by fig man strength is known as H						
al rings will be observed will be harder than the amed Lydia Angiyou sa	e normal saved several children by fig man strength is known as H						
will be harder than the amed Lydia Angiyou sa	e normal saved several children by fig man strength is known as H						
amed Lydia Angiyou sa	saved several children by figman strength is known as H						
	man strength is known as H						
In 2006, a woman named Lydia Angiyou saved several children by fighting a polar bear until a local hunter shot it. This presentation of superhuman strength is known as Hysteric Strength and is a display of extreme strength by humans, beyond what is believed to be normal. It usually occurs when people are in a life-and-death situation. Which of the following hormone do you think is responsible for this phenomenon?							
n (b) thyroxine	e (c) Adrenaline	(d) Testosterone					
Transcription is the making of RNA from DNA. Some organisms can also make DNA from RNA using a process known as reverse transcription. From the following organisms, which is most likely to have this mechanism of reverse transcription?							
(b) Nerve ce	ell (c) DNA virus	(d) RNA virus					
:							
otato (b) potato	(c) Ginger	(d) Zaminkand					
	Space for rough work						
	tato (b) potato	tato (b) potato (c) Ginger					

- 75. Two media, one containing heavy water and the other containing normal water, are separated by a semi-permeable membrane. Which of the following will be observed if the two media are isotonic to each other, after leaving the apparatus for some time?
 - (a) No overall water movement.
 - (b) Both the media contain heavy water.
 - (c) Both the media contain normal water.
 - (d) All of the above.
- 76. A line is drawn from the exterior of an animal cell to the center of the nucleus, crossing through one mitochondria. What is the minimum number of membrane bilayers that the line will cross?
 - (a) 4
- (b) 3
- (c) 5
- (d) 6
- 77. Suppose you are Peter currently working under a pharmaceutical company named Stark Pharma. You were working on evolving the WBCs to function as guided nanobots but the company stopped funding your work when they found about your research, and they tried to destroy your work. For preventing your work from being destroyed you injected those cells into your body. Now, you can modify your body cells and their function on your wish. Considering no side effects will occur, which command will you give these cells to get a super memory (remember everything):
 - (a) Change all the chemical synapse to electrical synapse
 - (b) Shutting down the filter that decides which information is not necessary to retain.
 - (c) Supplying blood directly to CNS.
 - (d) Giving the neurons the ability to divide.
- 78. Shubham was having a high fever, so his friends visited his home to meet him and they found that his mother was giving wet cloth treatment to his head on the doctor's recommendation. Shubham asked his friends for a valid reason for the treatment, and Harshit answered it in terms of enzymatic activity. He explained it with the help of a graph between enzymatic activity and temperature. Choose the correct shape of the graph and the maxima in terms of normal body temperature for a human. Also, assuming that the activity of a particular brain enzyme was halved at 104 degrees Fahrenheit, then at what temperature less than optimum temperature, would the activity will be again halved?
 - (a) Bell-shaped, 98.6°F; 96°F
 - (b) Parabola, 98.6°F; 96 °F
 - (c) Parabola, 98.6 °F; 93.2 °F
 - (d) Bell-shaped, 98.6 °F; 93.2 °F

79. A cell is taken from Arabidopsis thaliana (Thale cress), an Asian weed, and is put in the following solutions:

A:
$$\psi_p = 2 \text{ Pa}$$
; $\psi_s = -1.8 \text{ Pa}$

B:
$$\psi_p = 8 \ 10 \ -10 \ \text{GPa}$$
; $\psi_s = -8000 \ \text{mPa}$

C:
$$\psi_p = 5 \text{ Pa}$$
; $\Psi_s = -3.250 \text{ 103 mPa}$

Where ψ_p is pressure potential and ψ_s is solute potential What will be the state of the cell in these solutions assuming the cell to be at a water potential of +1 Pa in solution A, B, and C respectively?

- (a) Shrinked, Turgid, Turgid
- (b) Turgid, Shrinked, Turgid
- (c) Shrinked, Shrinked, Turgid
- (d) Turgid, Turgid, Shrinked
- 80. Considering the average molecular mass of a base to be 500 Da, what is the molecular mass of a double-stranded DNA of 100 base pairs? Also calculate the number of helical turns if at each base pair, the strand turns 36°
 - (a) 500 Da; 50 turns
 - (b) 100 kDa; 10 turns
 - (c) 10 kDa; 1 turns
 - (d) 500 kDa; 50 turns

Space for rough work

END OF QUESTIONS