

Fig. 2 100 101

Fig. 3

Fig. 8

Fig. 9

Fig. 10

Fig. 12

Fig 13

Fig. 16B

Fig. 16C

Fig. 17 Relation between heating time and crystallization rate by GRTA method.

Ni concentration added to amouphous silicon film: 10 ppm, warm-up period to 650°C by GRTA method: 3'30, observation: optical microscope ×1000 transmission.

Fig. 18 Heating time dependency of peak intensity ratio of TO (
amorphous silicon: 480 cm⁻¹) and TO (crystallized silicon:
apploximately 520 cm⁻¹).

Ni concentration added to amouphous silicon film: 10 ppm, warm-up period to 650℃ by GRTA method: 3°30, observation: optical microscope ×1000 transmission, Raman: ×500, 20sec.

Fig. 19 Relation between crystallization rate and residual nickel concentration (temperature in gettering: 625℃).

Ni concentration added to amouphous silicon film: 10 ppm, warm-up period to 625°C by GRTA method: 3'30, observation: optical microscope ×1000 transmission, gettering site: amorphous silicon film of 500 Å to which Ar is added.

Fig. 20 Relation between crystallization rate and residual nickel concentration (temperature in gettering: 650°C).

Ni concentration added to amouphous silicon film: 10 ppm, warm-up period to 650°C by GRTA method: 3'30, observation: optical microscope ×1000 transmission, gettering site: amorphous silicon of 500 Å to which Ar is added.

Fig. 21 Ni concentration distribution in semiconductor film by secondary ion composition analysis method.

point A: Ni concentration increases in upper portion of crystallized silicon film as energy density of laser light increases. point B: Ni concentration decreases in lower portion of crystallized silicon film as energy density of laser light increases.

Fig. 22 Energy density dependency of laser light of Ni concentration at a surface of semiconductor film.

Fig. 23 Energy density dependency of laser light of Raman shift in semiconductor film.

Ni concentration added to amporphous silicon film: 10ppm. warm-up period to 650℃: 3°30, heating time: 1'20, Raman: ×500, 15sec. 15 points, 5 μm pitch.

Fig. 24

Fig. 25A

Fig. 25B

Fig. 25C

accelating voltage: 200kV (wavelength: 2.51 Å) camera length: 0.4m (on figure: 0.8m) beam diameter: approximately 10 Å ϕ

Table. 1 Distance of lattice planes and corresponding crystal orientation.

distance of lattice planes	crystal
2.677 Å	$Ni_3Si_2(420)=2.6637 \text{ Å}$ $Ni_3Si_2(330)=2.700 \text{ Å}$ $Ni_2Si(122)=2.68 \text{ Å}$
3.08 Å	Si(111)
1.24 Å	Si(331)