北京邮电大学 2023—2024 学年第二学期

《概率论与数理统计》期末考试试题(4学分·A卷)

试 师指定座位就坐。

一、学生参加考试须带学生证或学院证明,未带者不准进入考场。学生必须按照监考教

注 二、书本、参考资料、书包等物品一律放到考场指定位置。 意 三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考场违纪或 事 作弊行为者,按相应规定严肃处理。 四、学生必须将答题内容做在试题答卷上,做在草稿纸上一律无效。
一、填空选择题(每小题 4 分,共 40 分)
1. 已知男性有5%是色盲者,女性有0.25%是色盲者。从男女人数相等的人群中
随机地挑选一人,恰好是色盲者。问此人是女性的概率为。
2. 设 A,B 为相互独立的随机事件, $P(A) = P(B) = \frac{1}{2}$,则 A,B 中 至少一个 发生的
概率为。
3. 一个质点在随机外力的作用下,从原点0出发,每次等可能地向左或向右移
动一个单位长度, 共移动4次。则质点刚好回到原点的概率为。
4. 某公安局在长度为 t 的时间间隔内收到的紧急呼救次数 X 服从参数为 $\frac{t}{2}$ 的
2 泊松分布,而与时间间隔的起点无关(时间以小时计)。则某天下午 12 时至
下午4时 正好 收到2次紧急呼救的概率为。
5. 设随机变量 Y 服从指数分布,且 $E(Y)=2$, a 为常数且大于零,
则 $P{Y \ge a+1 \mid Y > a} = $ 。
6. 设随机变量 X_1, X_2, X_3 相互独立,且 $X_1 \sim U(0,6)$, $X_2 \sim N(1,3)$, $X_3 \sim B(16,\frac{1}{4})$ 。
则 $Y = X_1 + 2X_2 - X_3$ 的方差为。
7. 设 $X_1, X_2,, X_n$ 为来自总体 X 的简单随机样本,其中总体 X 的概率密度函数
为 $f_{x}(x) = \begin{cases} 3x^{2}, & 0 < x < 1, \\ 0, & $ 其他.
定理可得 $P\{\sum_{i=1}^{80} X_i \leq 66\}$ 的近似值为。
(A) $1-\Phi(1)$ (B) $\Phi(\sqrt{3})$ (C) $\Phi(2\sqrt{3})$ (D) $\Phi(6)$

8. 设总体 X 的概率分布为

$$\begin{array}{c|ccccc} X & -1 & 0 & 1 \\ \hline P & p & 1-2p & p \end{array}$$

其中 $p(0 是未知参数。设<math>X_1, X_2, ..., X_n$ 为来自总体X的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本方差。若 $\overline{X} + kS^2$ 为 p 的无偏估计,则 $k = \underline{\hspace{1cm}}$?

- 9. 设 X_1, X_2, X_3 为来自正态总体 $X \sim N(0,1)$ 的简单随机样本,则当常数 $\alpha =$ _______时,统计量 $S = \frac{X_1 - X_2}{\alpha | X_3|}$ 服从_______分布。
 - (A) $\sqrt{2}$, F(1,2)
- (B) 2, F(1,1)(D) 2, t(2)
- (C) $\sqrt{2}$, t(1)

- 10. 设某批矿砂中的镍含量(以%计)服从正态分布 $X \sim N(\mu, \sigma^2)$, 从中任取n个 样本。其平均镍含量为 \bar{x} ,标准差为s。则这批矿砂中镍含量的**方差** σ^2 的置信 水平为 $1-\alpha=0.9$ 的**双侧置信区间**为

 - (A) $\left(\frac{(n-1)s^2}{\chi_{0.05}^2(n-1)}, \frac{(n-1)s^2}{\chi_{0.95}^2(n-1)}\right)$ (B) $\left(\overline{x} \frac{s}{\sqrt{n}}t_{0.05}(n-1), \overline{x} + \frac{s}{\sqrt{n}}t_{0.05}(n-1)\right)$

 - (C) $\left(\frac{(n-1)s^2}{\chi_{0.95}^2(n-1)}, \frac{(n-1)s^2}{\chi_{0.05}^2(n-1)}\right)$ (D) $\left(\overline{x} \frac{s}{\sqrt{n}}t_{0.95}(n-1), \overline{x} + \frac{s}{\sqrt{n}}t_{0.95}(n-1)\right)$

二、计算题(共10分)

设随机变量 X 的分布函数为 F(x) = $\begin{cases} a, & x < 1, \\ \ln x, & 1 \le x < e, \\ 1, & x \ge e. \end{cases}$

- (1)确定常数a;
- (2) 求 $P{X < 2}$;
- (3) 求概率密度 f(x)。

三、计算题(共10分)

设圆的**直径** $X \sim U(0,1)$,求圆的面积 $Y = \frac{\pi X^2}{4}$ 的概率密度函数、以及 E(Y) 。

四、计算题(共10分)

设随机变量(X,Y)服从二维正态分布 $N(1,-1;1,4;-\frac{1}{2})$ 。

- (1) X+Y和 X-Y 分别服从什么分布?给出分布类型和参数取值。
- (2) 求协方差 Cov(X+Y,X), X+Y 与 X 是否相关?
- (3) $\sqrt{5}(X+Y)$ 与 X 是否相互独立? 为什么。

五、计算题(共10分)

设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \theta x^{-(\theta+1)}, & x>1, \\ 0, & \text{其他.} \end{cases}$, 其中 $\theta>1$ 是未知参数。

 $X_1, X_2, ..., X_n$ 是来自总体 X 的简单随机样本, $x_1, x_2, ..., x_n$ 为样本观测值。

- (1) 求 θ 的矩估计量;
- (2) 求 θ 的最大似然估计量。

六、计算题(共10分)

在 20 世纪 70 年代后期人们发现,酿造啤酒时,在麦芽干燥过程中会形成致癌物质亚硝基二甲胺 (NDMA)。20 世纪 80 年代初期开发了一种新的麦芽干燥过程。设老过程中形成 NDMA 含量(以 10 亿份中的含量计)服从正态分布 $N(\mu_1,\sigma^2)$,新过程中形成 NDMA 含量服从正态分布 $N(\mu_2,\sigma^2)$,参数 μ_1,μ_2,σ^2 均未知。

技术人员独立地对两种过程中形成 NDMA 含量做抽样测试,测得数据如下:

老过程: $n_1 = 11$, $\bar{x}_1 = 5.2$, $s_1^2 = 0.98$

新过程: $n_2 = 11$, $\overline{x}_2 = 1.7$, $s_2^2 = 1.00$

在检验水平 α =0.10下,能否认为新过程比老过程中形成 NDMA 含量的均值降低量**显著地大于** 2? 即 $\mu_1 - \mu_2 > 2$ 。

在解题过程中,你可能需要用到数据: $F_{0.05}(10,10) = 2.98$ 、 $F_{0.05}(11,11) = 2.81$ 、 $t_{0.05}(20) = 1.7247$ 、 $t_{0.10}(20) = 1.3253$ 。

七、计算题(共10分)

生活经验告诉我们,儿子的身高与父亲的身高不仅线性相关,而且还是正相关的。即父亲的身高较高时,儿子的身高通常也较高。为了进一步研究两者之间的关系,有人调查了某所高校 5 名男大学生的身高及其父亲的身高,得到的统计数据如下表:

编号	1	2	3	4	5
父亲身高 x/cm	175	171	173	169	182
儿子身高 y /cm	177	175	172	171	185

计算得到

$\sum_{i=1}^{5} x_i = 870$	$\sum_{i=1}^{5} x_i^2 = 151480$		$n\overline{x}^2 = 151380$
$\sum_{i=1}^{5} y_i = 880$	$\sum_{i=1}^{5} y_i^2 = 155004$	$\sum_{i=1}^{5} x_i y_i = 153225$	$n\overline{y}^2 = 154880$

- (1) 求线性回归方程 $\hat{y} = \hat{a} + \hat{b}x$;
- (2)在显著性水平 $\alpha = 0.05$ 下对回归方程 $\hat{y} = \hat{a} + \hat{b}x$ 作显著性检验。

在解题过程中, 你可能需要用到数据: $F_{0.05}(1,3) = 10.1$ 、 $F_{0.05}(1,4) = 7.71$ 。