Лекции по аналитической геометрии: векторная алгебра, прямые и плоскости

П.А. Кожевников

18 января 2017 г.

Оглавление

L	Век	торы и системы координат 5
	§ 1.	Линейная зависимость. Базис
		Линейная зависимость
		Базис
		Координаты вектора в базисе
		Замена базиса
	§ 2.	Системы координат
	•	Декартова система координат
		Замена декартовой системы координат
		Полярные координаты
		Цилиндрические и сферические координаты
	§ 3.	Скалярное произведение векторов
	§ 4.	Ориентированные объемы
	Ü	Ориентация
		Ориентация
		Ориентированный объем
	§ 5.	Векторное произведение векторов
2	Пря	имые и плоскости 21
	_	Прямая на плоскости
	J	Способы задания
		Взаимное расположение двух прямых
		Линейное неравенство
		Пучок прямых
		Нормальное уравнение прямой и метрические задачи
	δ 2.	Плоскость в пространстве
	3	Способы задания
		Взаимное расположение плоскостей
		Линейное неравенство
		Пучок плоскостей
		Нормальное уравнение плоскости и метрические задачи
	8.3	Прямая в пространстве
	₃ 0.	Способы задания
		Взаимное расположение двух прямых
		Метрические задачи

Глава 1

Векторы и системы координат

Обозначим множество точек прямой, плоскости или пространства соответственно через $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ (или \mathcal{P} , если речь идет о любом из множеств $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$). Можно считать, что $\mathcal{P}_1 \subset \mathcal{P}_2 \subset \mathcal{P}_3$.

Упорядоченная пара точек $X,Y \in \mathcal{P}$ определяет направленный отрезок \overrightarrow{XY} (направленные отрезки и векторы обозначаем стрелкой или жирным шрифтом, например, \overrightarrow{XY} или \mathbf{a}). Точки X и Y называются соответственно началом и концом направленного отрезка. Для направленных отрезков определено (известным образом) понятие равенства, которое удовлетворяет следующим свойствам (для любых направленных отрезков $\mathbf{a}, \mathbf{b}, \mathbf{c}$):

- 1. $\mathbf{a} = \mathbf{a} \ (pe \phi_{\Lambda} e \kappa c u e h o c m b);$
- 2. если $\mathbf{a} = \mathbf{b}$, то $\mathbf{b} = \mathbf{a}$ (симметричность);
- 3. если $\mathbf{a} = \mathbf{b}$ и $\mathbf{b} = \mathbf{c}$, то $\mathbf{a} = \mathbf{c}$ (транзитивность).

Таким образом, множество направленных отрезков распадается на классы равных направленных отрезков. Эти классы называются векторами, или свободными векторами. Обозначим множество свободных векторов на прямой, плоскости или в пространстве соответственно через V_1, V_2, V_3 (или V, если речь идет о любом из множеств V_1, V_2, V_3). Можно считать, что $V_1 \subset V_2 \subset V_3$. Множество V будем называть векторным пространства, которое название дано в согласии с определением абстрактного векторного пространства, которое принято в алгебре).

Векторами мы, однако, будем иногда называть и направленные отрезки. (При этом из контекста будет ясно, фиксированы ли концы рассматриваемого вектора, то есть имеем ли мы в виду свободный вектор или направленный отрезок.) Часто используется тот факт, что от любой точки можно отложить единственный вектор, равный данному.

На множестве V известным образом вводятся операции сложения и умножения на число, удовлетворяющие свойствам (\forall **a**, **b**, **c** \in V, \forall λ , $\mu \in \mathbb{R}$):

- 1. $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$ (ассоциативность);
- 2. $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ (коммутативность);
- 3. $\exists \ \mathbf{0} \in V \ (\mathit{нулевой вектор}),$ удовлетворяющий равенству $\mathbf{a} + \mathbf{0} = \mathbf{a};$
- 4. $\mathbf{a} + (-1)\mathbf{a} = \mathbf{0}$ (вектор $(-1)\mathbf{a}$ обозначается также $-\mathbf{a}$ и называется *противоположеным* вектору \mathbf{a}).
 - 5. $(\lambda + \mu)$ **а** = λ **а** + μ **а** (линейность по константам);
 - 6. $\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$ (линейность по векторам);
 - 7. $1 \cdot \mathbf{a} = \mathbf{a}$;
 - 8. $(\lambda \mu) \mathbf{a} = \lambda(\mu \mathbf{a})$.

Отметим еще тождества $0 \cdot \mathbf{a} = \lambda \cdot \mathbf{0} = \mathbf{0}$, $-(\lambda \mathbf{a}) = (-\lambda)\mathbf{a} = \lambda(-\mathbf{a})$. Операцию вычитания векторов можно определить как $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$, при этом $(\lambda - \mu)\mathbf{a} = \lambda \mathbf{a} - \mu \mathbf{a}$, $\lambda(\mathbf{a} - \mathbf{b}) = \lambda \mathbf{a} - \lambda \mathbf{b}$.

Несколько векторов из V_3 коллинеарны, если существует прямая, которой они парал-

лельны. Несколько векторов из V_3 компланарны, если существует плоскость, которой они параллельны. (Условимся считать, что нулевой вектор параллелен любой прямой и любой плоскости, в частности нулевой вектор коллинеарен любому вектору.) Обозначение для коллинеарности двух векторов \mathbf{a} и \mathbf{b} : $\mathbf{a} \parallel \mathbf{b}$. Соответственно, запись $\mathbf{a} \not\parallel \mathbf{b}$ означает, что векторы \mathbf{a} и \mathbf{b} не коллинеарны. Отметим следующую связь между коллинеарностью и умножением на число. Пусть \mathbf{a} , $\mathbf{b} \in V$, $\mathbf{a} \neq \mathbf{0}$. Тогда $\mathbf{a} \parallel \mathbf{b} \Leftrightarrow \exists \lambda \in \mathbb{R}$: $\mathbf{b} = \lambda \mathbf{a}$.

Угол между ненулевыми векторами **a** и **b** из V_3 равен углу AOB между направленными отрезками $\overrightarrow{OA} = \mathbf{a}$ и $\overrightarrow{OB} = \mathbf{b}$ (где O — произвольная точка; как нетрудно видеть, определение угла не зависит от ее выбора). Обозначение: $\angle(\mathbf{a}, \mathbf{b})$. Угол между ненулевыми векторами принимает значения из отрезка $[0, \pi]$. Будем считать, что угол между нулевым вектором и любым другим не определен однозначно, то есть считаем верным равенство $\angle(\mathbf{a}, \mathbf{0}) = \alpha$ при любых $\mathbf{a} \in V$ и $\alpha \in [0, \pi]$. Если $\angle(\mathbf{a}, \mathbf{b}) = \frac{\pi}{2}$, то говорят, что векторы **a** и **b** перпендикулярные, или ортогональные (обозначение: $\mathbf{a} \perp \mathbf{b}$). Если $\angle(\mathbf{a}, \mathbf{b}) = 0$, то говорят, что векторы **a** и **b** сонаправленные (обозначение: $\mathbf{a} \uparrow \mathbf{b}$). Если $\angle(\mathbf{a}, \mathbf{b}) = \pi$, то говорят, что векторы **a** и **b** противоположно направленные (обозначение: $\mathbf{a} \uparrow \mathbf{b}$). В частности, $\forall \mathbf{a} \in V_3$ имеем: $\mathbf{a} \perp \mathbf{0}$, $\mathbf{a} \uparrow \mathbf{0}$, $\mathbf{a} \uparrow \mathbf{0}$, $\mathbf{0}$. Отметим, что для векторов $\mathbf{a} \neq \mathbf{0}$ и **b** из V_3 справедливы утверждения: $\mathbf{a} \uparrow \mathbf{b} \Leftrightarrow \exists \lambda \geqslant 0$: $\mathbf{b} = \lambda \mathbf{a}$; $\mathbf{a} \uparrow \mathbf{b} \Leftrightarrow \exists \lambda \geqslant 0$: $\mathbf{b} = \lambda \mathbf{a}$.

Если зафиксирована единица измерения, то для любого вектора **a** однозначно определена *длина*, или *норма* (обозначение: $|\mathbf{a}|$ или $||\mathbf{a}||$). Ясно, что $(\forall \mathbf{a}, \mathbf{b} \in V, \forall \lambda \in \mathbb{R})$:

 $|\mathbf{a}| = 0 \Leftrightarrow \mathbf{a} = \mathbf{0};$

 $|\lambda \mathbf{a}| = |\lambda||\mathbf{a}|;$

 $|\mathbf{a} + \mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}|$ (неравенство треугольника).

Иногда употребляют выражение "нормировать ненулевой вектор \mathbf{a} ", означающее "заменить вектор \mathbf{a} на сонаправленный единичный вектор $\frac{1}{|\mathbf{a}|}\mathbf{a}$ ".

В дальнейших рассмотрениях нам встретятся наборы или системы векторов (отличие набора от множества в том, что в наборе один элемент может содержаться в нескольких экземплярах). Пусть $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k \in V$ — некоторая конечная система векторов. Будем говорить, что система $\mathbf{a}_{i_1}, \mathbf{a}_{i_2}, \ldots, \mathbf{a}_{i_l}$, где $1 \leq i_1 < i_2 < \ldots < i_l \leq k$, является подсистемой системы $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$. Если в конечной системе векторов зафиксирован порядок, в котором перечисляются векторы, то говорят об упорядоченной системе векторов.

Система векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ векторного пространства V называется *ортогональной*, если $\mathbf{a}_i \perp \mathbf{a}_j$ для всех i, j таких, что $1 \leqslant i < j \leqslant k$. Ортогональная система векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ векторного пространства V называется *ортонормированной*, если $|\mathbf{a}_1| = |\mathbf{a}_2| = \dots = |\mathbf{a}_k| = 1$.

§ 1. Линейная зависимость систем векторов. Базис

Линейная зависимость

Определение. Пусть
$$\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \in V, \ \lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$$
. Сумма
$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \dots + \lambda_k \mathbf{a}_k \tag{1.1}$$

называется линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ с коэффициентами $\lambda_1, \lambda_2, \dots, \lambda_k$.

Если $|\lambda_1| + |\lambda_2| + \ldots + |\lambda_k| > 0$ (то есть хотя бы один из коэффициентов не равен 0), то говорят, что линейная комбинация (1.1) нетривиальная (в противном случае линейная комбинация называется тривиальной).

В том случае, когда $\mathbf{b} \in V$ равен линейной комбинации векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$, также говорят, что \mathbf{b} раскладывается по векторам $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ или линейно выражается через векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$.

Отметим, что выражение (1.1) иногда удобно записать в виде матричного перемножения

строки из векторов на столбец чисел: $(\mathbf{a}_1 \, \mathbf{a}_2, \, \dots \, \mathbf{a}_n) \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$.

Определение. Система векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \in V$ называется линейно зависимой, если некоторая их нетривиальная линейная комбинация равна $\mathbf{0}$, и линейно независимой в противном случае.

Примером линейно зависимой системы векторов является любая система, содержащая **0**. Полагают, что пустая система векторов линейно независима (формально это согласуется с определением).

Предложение 1.1. Система векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \in V \ (k \geqslant 2)$ линейно зависима \Leftrightarrow среди векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ найдется вектор, который линейно выражается через остальные k-1 векторов этой системы.

ightharpoonup Пусть $\lambda_1 {f a}_1 + \lambda_2 {f a}_2 + \ldots + \lambda_k {f a}_k = {f 0}$, и не все коэффициенты равны 0, скажем $\lambda_k \neq 0$. Тогда поделим равенство на $-\lambda_k$ и перенесем ${f a}_k$ в другую часть; получим ${f a}_k = \mu_1 {f a}_1 + \mu_2 {f a}_2 + \ldots + \mu_{k-1} {f a}_{k-1}$, где $\mu_i = -rac{\lambda_i}{\lambda_k}$, $i=1,2,\ldots,k-1$.

Предложение 1.2. 1) Если в конечной системе векторов из V имеется некоторая линейно зависимая подсистема, то и вся система линейно зависима.

- 2) Подсистема конечной линейно независимой системы линейно независима.
- \triangleright 1) Пусть, скажем, для системы векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ ее подсистема $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ (где $m \leqslant k$) линейно зависима, и некоторая нетривиальная линейная комбинация $\mu_1 \mathbf{a}_1 + \mu_2 \mathbf{a}_2 + \dots + \mu_m \mathbf{a}_m$ равна $\mathbf{0}$. Тогда $\mu_1 \mathbf{a}_1 + \mu_2 \mathbf{a}_2 + \dots + \mu_m \mathbf{a}_m + 0 \cdot \mathbf{a}_{m+1} + \dots + 0 \cdot \mathbf{a}_k$ нетривиальная линейная комбинация, равная $\mathbf{0}$.
 - 2) Это переформулировка утверждения 1). \square

Предложение 1.3. Пусть вектор **b** линейно выражается через векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Тогда коэффициенты λ_i в равенстве

$$\mathbf{b} = \lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \ldots + \lambda_k \mathbf{a}_k \tag{1.2}$$

определяются однозначно \Leftrightarrow система $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ линейно независима.

ightharpoonup Преположим, что напротив, система $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ линейно зависима. Тогда к правой части (1.2) можно прибавить нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$, равную $\mathbf{0}$. Получим линейное выражение \mathbf{b} через $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$, отличающееся от (1.2) хотя бы в одном коэффициенте. Противоречие.

 \leftarrow Предположим, что вектор **b** разложен по векторам $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ еще каким-то способом:

$$\mathbf{b} = \mu_1 \mathbf{a}_1 + \mu_2 \mathbf{a}_2 + \ldots + \mu_k \mathbf{a}_k. \tag{1.3}$$

Вычитая (1.2) из (1.3), получаем $(\lambda_1 - \mu_1)\mathbf{a}_1 + (\lambda_2 - \mu_2)\mathbf{a}_2 + \ldots + (\lambda_k - \mu_k)\mathbf{a}_k = \mathbf{0}$. Так как $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ — линейно независимая система, то левая часть полученного равенства — тривиальная линейная комбинация, откуда $\lambda_i = \mu_i, i = 1, 2, \ldots, k$. \square

Заметим, что определение линейной зависимости давалось "алгебраически то есть через формулы, в которых используются операции над векторами. Выясним теперь геометрический смысл этого понятия.

Предложение 1.4. 1) Пусть $\mathbf{b} \in V$ раскладывается по коллинеарным векторам $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ из V. Тогда векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k, \mathbf{b}$ коллинеарны.

- 2) Пусть $\mathbf{b} \in V$ раскладывается по компланарным векторам $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ из V. Тогда векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k, \mathbf{b}$ компланарны.
- \triangleright 1) Пусть векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ параллельны прямой l. Отложим их от точки $O \in l$. По правилу сложения векторов и умножения вектора на число вектор (1.2), отложенный от точки O, лежит на прямой l.
- 2) Пусть векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ параллельны плоскости σ . Отложим их от точки $O \in \sigma$. По правилу сложения векторов и умножения вектора на число вектор (1.2), отложенный от точки O, лежит в плоскости σ . \square

Предложение 1.5. 1) Пусть векторы \mathbf{a}_1 и \mathbf{b} таковы, что $\mathbf{a}_1 \neq \mathbf{0}$ и $\mathbf{a}_1 \parallel \mathbf{b}$. Тогда \mathbf{b} линейно выражается через \mathbf{a}_1 .

- 2) Пусть векторы $\mathbf{a}_1, \mathbf{a}_2$ и \mathbf{b} таковы, что $\mathbf{a}_1 \not\parallel \mathbf{a}_2$ и векторы $\mathbf{a}_1, \mathbf{a}_2, \mathbf{b}$ компланарны. Тогда \mathbf{b} линейно выражается через $\mathbf{a}_1, \mathbf{a}_2$.
- 3) Пусть $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ тройка некомпланарных векторов из V. Тогда любой вектор $\mathbf{b} \in V$ линейно выражается через $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$.
 - ▶ 1) Очевидно.
- 2) Пусть векторы $\mathbf{a}_1, \mathbf{a}_2, \mathbf{b}$ параллельны плоскости σ . Отложим от некоторой точки $O \in \sigma$ векторы $\overrightarrow{OA_1} = \mathbf{a}_1$, $\overrightarrow{OA_2} = \mathbf{a}_2$ и $\overrightarrow{OB} = \mathbf{b}$. Тогда точки A_1, A_2, B лежат в плоскости σ . Проведем через точку B прямую $l \parallel OA_2$, и пусть прямые l и OA_1 (они не параллельны) пересекаются в точке B_1 . Тогда $\overrightarrow{OB} = \overrightarrow{OB_1} + \overrightarrow{B_1B}$. При этом $\overrightarrow{OB_1} \parallel \mathbf{a}_1$ и $\overrightarrow{B_1B} \parallel \mathbf{a}_2$. Из пункта 1) данного предложения вытекает (так как \mathbf{a}_1 и \mathbf{a}_2 ненулевые), что $\overrightarrow{OB_1} = \lambda_1 \mathbf{a}_1$ и $\overrightarrow{B_1B} = \lambda_2 \mathbf{a}_2$ для некоторых чисел λ_1 и λ_2 . Тем самым, $\overrightarrow{OB} = \lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2$.

 3) Отложим от некоторой точки O векторы $\overrightarrow{OA_1} = \mathbf{a}_1$, $\overrightarrow{OA_2} = \mathbf{a}_2$, $\overrightarrow{OA_3} = \mathbf{a}_3$ и $\overrightarrow{OB} = \mathbf{b}$.
- 3) Отложим от некоторой точки O векторы $OA_1' = \mathbf{a}_1, OA_2' = \mathbf{a}_2, OA_3' = \mathbf{a}_3$ и $OB = \mathbf{b}$. Проведем через точку B прямую $l \parallel OA_3$, и пусть прямая l и плоскость OA_1A_2 (они не параллельны) пересекаются в точке B_1 . Тогда $\overrightarrow{OB} = \overrightarrow{OB_1} + \overrightarrow{B_1B}$. При этом $\overrightarrow{OB_1}$ лежит в плоскости OA_1A_2 , и значит (как следует из пункта (2) данного предложения) линейно выражается через (не коллинеарные) векторы \mathbf{a}_1 и \mathbf{a}_2 : $\overrightarrow{OB_1} = \lambda_1\mathbf{a}_1 + \lambda_2\mathbf{a}_2$. Так как $\overrightarrow{B_1B} \parallel \mathbf{a}_3$, то из пункта (1) данного предложения вытекает (так как $\mathbf{a}_3 \neq \mathbf{0}$), что $\overrightarrow{B_1B} = \lambda_3\mathbf{a}_3$ для некоторого $\lambda_3 \in \mathbb{R}$. Тем самым, $\overrightarrow{OB} = \lambda_1\mathbf{a}_1 + \lambda_2\mathbf{a}_2 + \lambda_3\mathbf{a}_3$. \square

Теорема 1.1 (критерий линейной зависимости). 1) Система из одного вектора \mathbf{a}_1 линейно зависима $\Leftrightarrow \mathbf{a}_1 = \mathbf{0}$.

- 2) Система из двух векторов $\mathbf{a}_1, \mathbf{a}_2$ линейно зависима $\Leftrightarrow \mathbf{a}_1 \parallel \mathbf{a}_2$.
- 3) Система из трех векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ линейно зависима $\Leftrightarrow \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ компланарны.
- 4) Система из любых четырех векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ (в пространстве V_3) линейно зависима.
 - ▶ 1) Очевидно.
- 2) \implies Из предложения 1.1 следует, что один из векторов $\mathbf{a}_1, \mathbf{a}_2$ линейно выражается через другой. Пусть, скажем, $\mathbf{a}_2 = \lambda \mathbf{a}_1$. Но отсюда следует, что $\mathbf{a}_1 \parallel \mathbf{a}_2$.

Если же $\mathbf{a}_1 \neq \mathbf{0}$, то из коллинеарности $\mathbf{a}_1 \parallel \mathbf{a}_2$ вытекает (по предложению 1.5), что \mathbf{a}_2 линейно выражается через $\mathbf{a}_1 \Rightarrow$ согласно предложению 1.1 система $\mathbf{a}_1, \mathbf{a}_2$ линейно зависима.

- 3) \implies Из предложения 1.1 следует, что один из векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ линейно выражается через другой. Пусть, скажем, \mathbf{a}_3 раскладывается по векторам \mathbf{a}_1 и \mathbf{a}_2 . Тогда из предложения 1.4 следует (так как два вектора всегда компланарны), что $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ компланарны.
- \Leftarrow Если $\mathbf{a}_1 \parallel \mathbf{a}_2$, то система из двух векторов $\mathbf{a}_1, \mathbf{a}_2$ линейно зависима (по пункту (2) этой теоремы) \Rightarrow согласно предложению 1.2 система $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ также линейно зависима.

Если же $\mathbf{a}_1 \not\parallel \mathbf{a}_2$, то из компланарности $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ вытекает (по предложению 1.5), что \mathbf{a}_3 линейно выражается через \mathbf{a}_1 и $\mathbf{a}_2 \Rightarrow$ согласно предложению 1.1 система $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ линейно зависима.

4) Если $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ компланарны, то система из трех векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ линейно зависима (по пункту (3) этой теоремы) \Rightarrow согласно предложению 1.2 система $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ также линейно зависима.

Если же $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ не компланарны, то (по предложению 1.5) \mathbf{a}_4 линейно выражается через $\mathbf{a}_1, \mathbf{a}_2$ и $\mathbf{a}_3 \Rightarrow$ согласно предложению 1.1 система $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ линейно зависима. \square

Базис

Определение. Упорядоченная система векторов $e = (e_1, e_2, \dots, e_n)$ из V называется базисом векторного пространства V, если она линейно независима, и любой вектор из V раскладывается по векторам этой системы.

В частности, *ортогональный базис* — это ортогональная система векторов, являющаяся базисом, а *ортонормированный базис* (сокращенно — OHБ) — это ортонормированная система векторов, являющаяся базисом.

Теорема 1.2 (описание базисов). Упорядоченная система из n векторов $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ векторного пространства V является базисом в $V \Leftrightarrow$

- 1) в случае $V = V_1$: n = 1 и $\mathbf{e}_1 \neq \mathbf{0}$;
- 2) в случае $V = V_2$: n = 2 и $\mathbf{e}_1 \not \mid \mathbf{e}_2$;
- 3) в случае $V = V_3$: n = 3 и e_1, e_2, e_3 не компланарны.
- \triangleright 1) Очевидно, что базис в V_1 должен содержать хотя бы один ненулевой вектор.
- Из п. 2) теоремы 1.1 и предложения 1.2 следует, что базис в V_1 не может состоять более, чем из одного вектора.

Остается единственная возможность: базис может состоять из одного ненулевого вектора. Очевидно, система из одного ненулевого вектора удовлетворяет определению базиса в V_1 .

- 2) Предположим, что базис в V_2 состоит из нескольких коллинеарных векторов, и пусть эти векторы параллельны некоторой прямой l. Тогда вектор $\mathbf{a} \not\parallel l$ не раскладывается по векторам базиса противоречие. Отсюда, в частности, следует, что базис в в V_2 содержит не менее двух векторов.
- Из п. 3) теоремы 1.1 и предложения 1.2 следует, что базис в V_2 не может состоять более, чем из двух векторов.

Остается единственная возможность: базис может состоять из двух неколлинеарных векторов. Из п. 2) теоремы 1.1 и п. 2) предложения 1.5 следует, что система из двух неколлинеарных векторов в V_2 удовлетворяет определению базиса.

3) Предположим, что базис в V_3 состоит из нескольких компланарных векторов, и пусть эти векторы параллельны некоторой плоскости σ . Тогда вектор $\mathbf{a} \not \mid \sigma$ не раскладывается по

векторам базиса — противоречие. Отсюда, в частности, следует, что базис в в V_3 содержит не менее трех векторов.

Из п. 4) теоремы 1.1 и предложения 1.2 следует, что базис в V_3 не может состоять более, чем из трех векторов.

Осталась единственная возможность: базис может состоять из трех некомпланарных векторов. Из п. 3) теоремы 1.1 и п. 3) предложения 1.5 следует, что система из трех некомпланарных векторов в V_3 удовлетворяет определению базиса. \square

Из теоремы следует, что наши обозначения согласуются с количеством векторов в базисе: каждый базис пространства V_n (n=1,2,3) состоит из n векторов.

Координаты вектора в базисе

Определение. Пусть в векторном пространстве V зафиксирован базис $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$. Коэффициенты $\alpha_1, \alpha_2, \dots, \alpha_n$ в разложении $\mathbf{a} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_n \mathbf{e}_n$ вектора $\mathbf{a} \in V$ по этому базису называются коор-динатами вектора \mathbf{a} в базисе \mathbf{e} .

Из предложения 1.3 следует, что упорядоченный набор координат вектора в базисе однозначно определен. Для любого упорядоченного набора координат имеется вектор из V именно с таким набором координат. Таким образом, если в векторном пространстве V зафиксирован базис $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$, то имеется взаимно-однозначное соответствие между векторами \mathbf{a} из V и упорядоченными наборами $(\alpha_1, \alpha_2, \dots, \alpha_n)$ вещественных чисел. Стол-

бец
$$\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$
 называется *координатным столбцом*, или столбцом координат вектора **a** в базисе е Запись

$$\mathbf{a} = \mathbf{e}\alpha$$

будет означать, что ${\bf a}$ имеет координатный столбец α в базисе ${\bf e}$ (эта запись согласуется ${\bf c}$

символическим умножением матриц:
$$(\mathbf{e}_1 \, \mathbf{e}_2 \, \dots \, \mathbf{e}_n) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$
).

Предложение 1.6 (линейность сопоставления координат). Пусть в V_n зафиксирован базис $e = (e_1, e_2, \ldots, e_n)$. Тогда при сложении векторов соответствующие координаты складываются, а при умножении вектора на число $\lambda \in \mathbb{R}$ соответствующие координаты умножаются на λ .

(То есть если
$$\mathbf{a} = \mathbf{e} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$
 $u \mathbf{b} = \mathbf{e} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$, mo $\mathbf{a} + \mathbf{b} = \mathbf{e} \begin{pmatrix} \alpha_1 + \beta_1 \\ \alpha_2 + \beta_2 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}$ $u \lambda \mathbf{a} = \mathbf{e} \begin{pmatrix} \lambda \alpha_1 \\ \lambda \alpha_2 \\ \vdots \\ \lambda \alpha_n \end{pmatrix}$.)

ightharpoonup По условию $\mathbf{a} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \ldots + \alpha_n \mathbf{e}_n$, $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \ldots + \beta_n \mathbf{e}_n$. Сложив равенства, имеем $\mathbf{a} + \mathbf{b} = (\alpha_1 + \beta_1)\mathbf{e}_1 + (\alpha_2 + \beta_2)\mathbf{e}_2 + \ldots + (\alpha_n + \beta_n)\mathbf{e}_n$. Умножив первое равенство на λ , имеем $\lambda \mathbf{a} = (\lambda \alpha_1)\mathbf{e}_1 + (\lambda \alpha_2)\mathbf{e}_2 + \ldots + (\lambda \alpha_n)\mathbf{e}_n$. \square

Замена базиса

Пусть $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ и $\mathbf{e}' = (\mathbf{e}'_1, \mathbf{e}'_2, \dots, \mathbf{e}'_n)$ — два базиса в векторном пространстве V_n . (Условно назовем их *старый* и *новый*.)

Определение. Матрица S размера $n \times n$, j-ый столбец которой равен координатному столбцу вектора \mathbf{e}'_j в базисе \mathbf{e} , называется mampuueй nepexoda от базиса \mathbf{e} к базису \mathbf{e}' .

Определение матрицы перехода можно символически записать в виде матричного умножения, используя строки из векторов $e = (e_1, e_2, \dots, e_n)$ и $e' = (e'_1, e'_2, \dots, e'_n)$:

$$e' = eS$$
.

Теорема 1.3. Пусть $\mathbf{a} \in V_n$ имеет в базисах $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ и $\mathbf{e}' = (\mathbf{e}'_1, \mathbf{e}'_2, \dots, \mathbf{e}'_n)$ координатные столбцы α и α' . Тогда

$$\alpha = S\alpha'$$

 $rde\ S$ — матрица перехода от базиса е κ базису e'.

ightharpoonup "Символическое доказательство" (проверьте эту выкладку в координатах) выглядит так: $\mathbf{a} = \mathbf{e}'\alpha' = (\mathbf{e}S)\alpha' = \mathbf{e}(S\alpha')$. Это означает, что $S\alpha'$ является координатным столбцом вектора \mathbf{a} в базисе \mathbf{e} , то есть совпадает со столбцом α . \square

- 1. Если e=e', то матрица перехода от e к e' имеет вид $S=E_n$, где $E_n-e\partial u h u u h a mampuu a$.
- 2. Если $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2)$ ОНБ на плоскости, а базис $\mathbf{e}' = (\mathbf{e}_1', \mathbf{e}_2')$ получен из е поворотом на угол φ (в направлении от \mathbf{e}_1 к \mathbf{e}_2), то матрица перехода от \mathbf{e} к \mathbf{e}' имеет вид $S = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$.

Предложение 1.7. Пусть e, e', e'' — три базиса e V. Пусть S — матрица перехода от e κ e', a R — матрица перехода от e' κ e''. Тогда матрица перехода от e κ e'' равна SR.

 \triangleright Символическое "доказательство": e'' = e'R = (eS)R = e(SR). \square

§ 2. Системы координат

Декартова система координат

При фиксации начала координат O положение точки M задается однозначно paduyc-вектором \overrightarrow{OM} .

Определение. Декартовой системой координат (примем сокращение ДСК) на прямой, на плоскости или в пространстве будем называть пару (O, e), где $O \in \mathcal{P}$ — некоторая точка, называемая началом координат, а e — некоторый базис в V.

Определение. ДСК (O, e) будем называть *прямоугольной* (примем сокращение ПДСК), если e — OHБ.

Определение. Koopduhamamu точки M в декартовой системой координат (O,e) называются координаты вектора \overrightarrow{OM} в базисе \mathbf{e} .

Таким образом, $\kappa oop duнаm ный столбец$ точки M в ДСК (O, e) — это координатный столбец вектора \overrightarrow{OM} в базисе e. Тот факт, что точка $M \in \mathcal{P}$ имеет в ДСК (O, \mathbf{e}) координатный

столбец
$$X=\begin{pmatrix} x_1\\x_2\\ \vdots\\x_n\end{pmatrix}$$
 будем записывать $M \overset{\longleftrightarrow}{(O,\mathrm{e})} X$. Таким образом,

$$M \stackrel{\longleftrightarrow}{O,e} X \Leftrightarrow \overrightarrow{OM} = eX.$$

Сохраняется привычная терминология: для ДСК в \mathcal{P}_3 координаты x_1, x_2, x_3 называются соответственно абсиисса, ордината, аппликата и часто обозначаются буквами x, y, z. Прямые Ox, Oy, Oz, проходящие через начало координат O параллельно базисным векторам $e_1, e_2, e_3,$ называются осями координат, а плоскости Oxy, Oyz, Ozx — координатными плоскостями. Помимо обозначения (O, e) ДСК на плоскости и в пространстве будем обозначать Oxy и Oxyz.

 $M \overset{\longleftrightarrow}{\underset{(O,e)}{\longleftrightarrow}} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{pmatrix}, N \overset{\longleftrightarrow}{\underset{(O,e)}{\longleftrightarrow}} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y \end{pmatrix}. Tor \partial a \overrightarrow{MN} = e \begin{pmatrix} y_1 - x_1 \\ y_2 - x_2 \\ \vdots \\ y - x \end{pmatrix}.$

ightharpoonup Следует из векторного равенства $\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM}$ и предложения 1.6. \square

Предложение 2.2 (Деление отрезка в данном отношении). Пусть $(O, e) - \mathcal{A}CK$, $M \ u \ N$

Предложение 2.2 (Деление отрезка в данном отношении).
$$\mathit{Hycmb}\ (O, e) - \mathit{ДCK}, \ \mathit{M}\ \mathit{u}\ \mathit{N}$$
 — некоторые точки, причем $M \overset{\longleftrightarrow}{(O, e)} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \ N \overset{\longleftrightarrow}{(O, e)} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$. $\mathit{Hycmb}\ \mathit{moчкa}\ P\ \mathit{делит}\ \mathit{ompesok}$

$$MN$$
 в отношении $\lambda \in \mathbb{R}$, то есть $\overrightarrow{MP} = \lambda \overrightarrow{MN}$. Тогда $P \overset{\longleftrightarrow}{(O,e)} \begin{pmatrix} (1-\lambda)x_1 + \lambda y_1 \\ (1-\lambda)x_2 + \lambda y_2 \\ \vdots \\ (1-\lambda)x_n + \lambda y_n \end{pmatrix}$.

ightharpoonup Следует из векторного равенства $\overrightarrow{OP} = \overrightarrow{OM} + \lambda \overrightarrow{MN} = (1-\lambda)\overrightarrow{OM} + \lambda \overrightarrow{ON}$ и предложения 1.6. □

Замена декартовой системы координат

Выясним, как связаны координаты одной и той же точки в разных ДСК.

Теорема 2.1 (о замене системы координат). Пусть (O, e) и $(O', e') - \partial e \in \mathcal{A}CK$, причем

$$O' \underset{(O,e)}{\longleftrightarrow} \gamma = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix}$$
, a mampuya nepexoda om basuca e κ basucy e' pabha S .

Пусть точка
$$M$$
 имеет в ДСК (O, e) координатный столбец $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, а в ДСК

$$(O',\mathrm{e}')$$
 координатный столбец $X'=egin{pmatrix} x_1'\\x_2'\\\vdots\\x_n' \end{pmatrix}$. Тогда

$$X = SX' + \gamma.$$

ightharpoonup По условию $\overrightarrow{OO'}=\mathrm{e}\gamma$, $\overrightarrow{OM}=\mathrm{e}X$, $\overrightarrow{O'M}=\mathrm{e}'X'$. Из теоремы 1.3 о замене базиса вытекает, что $\overrightarrow{O'M}=\mathrm{e}(SX')$. Из равенства $\overrightarrow{OM}=\overrightarrow{O'M}+\overrightarrow{OO'}$, с использованием предложения 1.6, получаем требуемое равенство $X=SX'+\gamma$. \square

Полярные координаты

Рассмотрим на плоскости некоторую ПДСК Oxy. Для точки M(x,y) обозначим $r = \sqrt{x^2 + y^2} - nonsphuй paduyc$. Если $r \neq 0$, то пусть φ — угол поворота против часовой стрелки от \mathbf{e}_1 до \overrightarrow{OM} (nonsphuй угол). Можно считать, что $\varphi \in [0, 2\pi)$ или что φ определен с точностью до слагаемого вида $2\pi k, k \in \mathbb{Z}$. Пара (r, φ) — это nonsphue координаты точки M.

Формулы перехода от полярных координат к согласованной ПДСК: $\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi. \end{cases}$

Цилиндрические и сферические координаты

Пусть в пространстве задана некоторая ПДСК Oxyz, а в плоскости Oxy введены полярные координаты, согласованные с ПДСК Oxy.

Пусть проекция M' точки M(x,y,z) на координатную плоскость Oxy имеет полярные координаты (r,φ) . Положение точки M определяется точкой M' и аппликатой z.

Тройка (r, φ, z) представляет собой *цилиндрические координаты* точки M(x, y, z) (согласованные с данной прямоугольной декартовой системой координат).

Пусть $R=|\overrightarrow{OM}|$. По положению точки M определим $\theta\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ следующим образом. Если $z\geqslant 0$ и $M'\neq O$, положим $\theta=\angle MOM'$ (в частности, $\theta=0$, если $M\in Oxy, M\neq O$); если z<0 и $M'\neq O$, положим $\theta=-\angle MOM'$; если z>0 и M'=O, положим $\theta=\frac{\pi}{2}$; если z<0 и M'=O, положим $\theta=-\frac{\pi}{2}$; если M=O, считаем, что M=O0 равно произвольному значению из отрезка $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Легко видеть, что M=O1 глим формулам можно, исходя из цилин-

Легко видеть, что $z=R\sin\theta,\,r=R\cos\theta.$ По этим формулам можно, исходя из цилиндрических координат, вычислить $R,\varphi,\theta,$ и наоборот, зная $R,\varphi,\theta,$ определить цилиндрические координаты.

Тройка (R, φ, θ) представляет собой *сферические координаты* точки M(x, y, z) (согласованные с данной ПДСК).

Формулы перехода от сферических координат к ПДСК:
$$\begin{cases} x = R\cos\varphi\cos\theta, \\ y = R\sin\varphi\cos\theta, \\ z = R\sin\theta. \end{cases}$$

§ 3. Скалярное произведение векторов

Определение. Пусть \mathbf{a}, \mathbf{b} — векторы из V, и φ — угол между ними. Число $|\mathbf{a}| \cdot |\mathbf{b}| \cos \varphi$ называется скалярным произведением векторов а и b.

Скалярное произведение векторов ${\bf a}$ и ${\bf b}$ обозначается $({\bf a},{\bf b})$ (иногда пишут ${\bf ab}$), тем самым, определение можно записать формулой

$$\overline{(\mathbf{a}, \mathbf{b}) = |\mathbf{a}| \cdot |\mathbf{b}| \cos \varphi}$$

Из определения сразу вытекает

Предложение 3.1. Пусть $a, b \in V$. Тогда

- 1) $(\mathbf{a}, \mathbf{a}) = |\mathbf{a}|^2$;
- $2) \mathbf{a} \perp \mathbf{b} \Leftrightarrow (\mathbf{a}, \mathbf{b}) = 0$

⊳ Следует из определений с учетом того, что если хотя бы один из векторов а и b нулевой, то $(\mathbf{a}, \mathbf{b}) = 0$. \square

Проекцию вектора ${\bf a}$ на прямую с направляющим вектором ${\bf b} \neq {\bf 0}$ будем обозначать $\operatorname{pr}_{\mathbf{b}} \mathbf{a}$.

Предложение 3.2. Пусть $a, b \in V, b \neq 0$. Тогда

$$\operatorname{pr}_{\mathbf{b}} \mathbf{a} = \frac{(\mathbf{a}, \mathbf{b})}{|\mathbf{b}|^2} \mathbf{b}.$$

ightharpoonup Проекция $\mathrm{pr}_{\mathbf{b}}\,\mathbf{a}$ длину $|\mathbf{a}|\cdot|\cosarphi|$, где $arphi=\angle(\mathbf{a},\mathbf{b})$. Кроме того, она сонаправлена с ${f b}$ в случае $\cos arphi \geqslant 0$ и противоположно направлена вектору ${f b}$ в случае $\cos arphi < 0$. Поэтому $\operatorname{pr}_{\mathbf{b}} \mathbf{a} = (|\mathbf{a}| \cos \varphi) \frac{\mathbf{b}}{|\mathbf{b}|}$. (Величина $|\mathbf{a}| \cos \varphi$ иногда называется алгебраической проекцией

вектора \mathbf{a} на направление \mathbf{b}). Преобразуем: $\operatorname{pr}_{\mathbf{b}}\mathbf{a} = (|\mathbf{a}|\cdot|\mathbf{b}|\cos\varphi)\frac{\mathbf{b}}{|\mathbf{b}|^2} = \frac{(\mathbf{a},\mathbf{b})}{|\mathbf{b}|^2}\mathbf{b}$, что и требовалось. 🗆

В частности, если $|\mathbf{b}| = 1$, то по предыдущему предложению $\operatorname{pr}_{\mathbf{b}} \mathbf{a} = (\mathbf{a}, \mathbf{b}) \mathbf{b}$.

Теорема 3.1. \forall **a**, **b**, **c** \in V, \forall λ \in \mathbb{R} выполнены следующие равенства:

- 1) $|(\mathbf{a}, \mathbf{a}) \geqslant 0|$, причем $(\mathbf{a}, \mathbf{a}) = 0 \Leftrightarrow \mathbf{a} = \mathbf{0}$.
- $(2) \mid (\mathbf{b}, \mathbf{a}) = (\mathbf{a}, \mathbf{b}) \mid (cummempuчнocmb);$
- (3a) $(\mathbf{a} + \mathbf{b}, \mathbf{c}) = (\mathbf{a}, \mathbf{c}) + (\mathbf{b}, \mathbf{c})$
- 36) $(\lambda \mathbf{a}, \mathbf{c}) = \lambda(\mathbf{a}, \mathbf{c})$
 - ▶ 1) и 2) следует сразу из определений.
- 3) Равенства очевидны, если ${f c}={f 0}.$ Если же ${f c} \neq {f 0},$ рассмотрим проекции векторов на с. Воспользуемся тем, что операция проектирования линейна. (Действительно, рассмотрим направленные отрезки $\overrightarrow{AB} = \mathbf{a}$ и $\overrightarrow{BC} = \mathbf{b}$. Пусть A', B', C' — проекции соответственно точек A, B, C на прямую, параллельную \mathbf{c} . Тогда $\operatorname{pr}_{\mathbf{c}} \mathbf{a} = \overrightarrow{A'B'}$, $\operatorname{pr}_{\mathbf{c}} \mathbf{b} = \overrightarrow{B'C'}$, $\operatorname{pr}_{\mathbf{c}}(\mathbf{a} + \mathbf{b}) = \operatorname{pr}_{\mathbf{c}} \overrightarrow{AC} = \overrightarrow{A'C'}$, $\operatorname{pr}_{\mathbf{c}}(\lambda \mathbf{a}) = \lambda \overrightarrow{A'B'}$).

 Имеем $\operatorname{pr}_{\mathbf{c}}(\mathbf{a} + \mathbf{b}) = \frac{(\mathbf{a} + \mathbf{b}, \mathbf{c})}{|\mathbf{c}|^2} \mathbf{c}$, $\operatorname{pr}_{\mathbf{c}} \mathbf{a} + \operatorname{pr}_{\mathbf{c}} \mathbf{b} = \frac{(\mathbf{a}, \mathbf{c})}{|\mathbf{c}|^2} \mathbf{c} + \frac{(\mathbf{b}, \mathbf{c})}{|\mathbf{c}|^2} \mathbf{c}$. Отсюда

 $\frac{(\mathbf{a}+\mathbf{b},\mathbf{c})}{|\mathbf{c}|^2}\mathbf{c} = \frac{(\mathbf{a},\mathbf{c})}{|\mathbf{c}|^2}\mathbf{c} + \frac{(\mathbf{b},\mathbf{c})}{|\mathbf{c}|^2}\mathbf{c}$. Приравнивая коэффициенты при \mathbf{c} и домножая на $|\mathbf{c}|^2$,

получаем требуемое равенство $(\mathbf{a} + \mathbf{b}, \mathbf{c}) = (\mathbf{a}, \mathbf{c}) + (\mathbf{b}, \mathbf{c})$.

Аналогично,
$$\frac{(\lambda \mathbf{a}, \mathbf{c})}{|\mathbf{c}|^2} \mathbf{c} = \mathrm{pr}_{\mathbf{c}}(\lambda \mathbf{a}) = \lambda \, \mathrm{pr}_{\mathbf{c}}(\mathbf{a}) = \lambda \frac{(\mathbf{a}, \mathbf{c})}{|\mathbf{c}|^2} \mathbf{c}$$
, откуда $(\lambda \mathbf{a}, \mathbf{c}) = \lambda (\mathbf{a}, \mathbf{c})$. \square

Равенства 3) из предыдущей теоремы означают, что скалярное произведение линейно по первому аргументу. Но тогда из равенства 2) следует линейность и по второму аргументу.

Теорема 3.2. Пусть е — ОНБ в
$$V$$
, u $\mathbf{a} = \mathbf{e} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$, $\mathbf{b} = \mathbf{e} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$ Тогда

$$(\mathbf{a}, \mathbf{b}) = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \ldots + \alpha_n \beta_n.$$

 $ightharpoonup (\mathbf{a}, \mathbf{b}) = (\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \ldots + \alpha_n \mathbf{e}_n, \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \ldots + \beta_n \mathbf{e}_n)$. После раскрытия скобок (пользуемся линейностью — см. предыдущую теорему), с учетом того, что $(\mathbf{e}_i, \mathbf{e}_j)$ равно 0 для различных i и j, и равно 1 для равных i и j, получаем нужное выражение. \square

Следствие. Пусть
$$\mathbf{e}=(\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n)$$
 — ОНБ в $V,$ u $\mathbf{a}=\mathbf{e}\begin{pmatrix} \alpha_1\\\alpha_2\\ \vdots\\\alpha_n \end{pmatrix}$. Тогда $\alpha_i=(\mathbf{a},\mathbf{e}_i).$

Теорема 3.2 дает рецепт для вычислений в ПДСК длин векторов или расстояний между точками (ибо $|\mathbf{a}| = \sqrt{(\mathbf{a}, \mathbf{a})}$), углов между векторами (поскольку $\cos \angle(\mathbf{a}, \mathbf{b}) = \frac{(\mathbf{a}, \mathbf{b})}{|\mathbf{a}| \cdot |\mathbf{b}|}$) и проекций вектора на заданное направление.

Замечание. Можно вывести формулу для вычисления скалярного произведения в произвольном базисе (раскрывая скобку $(\mathbf{a}, \mathbf{b}) = (\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \ldots + \alpha_n \mathbf{e}_n, \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \ldots + \beta_n \mathbf{e}_n)$). В матричном виде формула имеет вид $(\mathbf{a}, \mathbf{b}) = \alpha^T \Gamma \beta$, где $\mathbf{a} = \mathbf{e} \alpha$, $\mathbf{b} = \mathbf{e} \beta$ (т.е. α и β — координатные столбцы выкторов \mathbf{a} и \mathbf{b}), а Γ — матрица Γ рама (γ_{ij}) , где $\gamma_{ij} = (\mathbf{e}_i, \mathbf{e}_j)$. (Матрицу Γ рама можно назвать таблицей скалярного умножения.)

§ 4. Ориентированные объемы и площади

Ориентация на плоскости

На плоскости и в пространстве введем понятие ориентации базиса.

Будем предполагать, что плоскость \mathcal{P}_2 лежит в пространстве \mathcal{P}_3 . Пусть в плоскости \mathcal{P}_2 выбран базис, то есть зафиксирована упорядоченная пара неколлинеарных векторов **a** и **b**. Для удобства отложим эти векторы от одной точки O. Одно из полупространств, на которые \mathcal{P}_2 делит пространство, объявим *положительным*. Существует поворот против часовой стрелки (при взгляде из положительного полупространства) вокруг O на угол $\varphi \in (0,2\pi)$, переводящий вектор **a** в вектор, сонаправленный с вектором **b**. (Этот угол φ иногда называют углом поворота (против часовой стрелки) от вектора **a** до вектора **b**). Если $\varphi \in (0,\pi)$, то базис **a**, **b** назовем *положительно ориентированным*, в противном случае (то есть если $\varphi \in (\pi,2\pi)$) — *отрицательно ориентированным*. Легко видеть, что данное определение не зависит от выбора точки O.

Предложение 4.1. Базисы a, b и b, a имеют разную ориентацию.

ightharpoonup Следует прямо из определения, поскольку сумма угла поворота от ${\bf a}$ до ${\bf b}$ и угла поворота от ${\bf b}$ до ${\bf a}$ равна 2π . \square

Подчеркнем, что ориентация базиса на плоскости зависит от выбора положительного полупространства. Если в качестве положительного полупространства выбрать противоположное полупространство, то положительно ориентированные базисы станут отрицательно ориентированными, и наоборот.

Ориентация в пространстве

Пусть в пространстве выбран базис \mathbf{a} , \mathbf{b} , \mathbf{c} . Отложим эти векторы от одной точки O, то есть построим векторы $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$. Из двух полупространств относительно плоскости OAB, объявим положительным то, которое содержит точку C. Тем самым мы вводим ориентацию упорядоченных пар неколлинеарных векторов, лежащих в плоскости OAB. Если в описанной ситуации упорядоченная пара векторов \mathbf{a} , \mathbf{b} является положительно ориентированной, то будем говорить, что базис \mathbf{a} , \mathbf{b} , \mathbf{c} положительно ориентирован, или что тройка \mathbf{a} , \mathbf{b} , \mathbf{c} является правой тройкой. В противном случае \mathbf{a} , \mathbf{b} , \mathbf{c} назовем отрицательно ориентированным базисом, или левой тройкой. Ясно, что данное определение не зависит от выбора точки O.

Предложение 4.2. Упорядоченные тройки b, c, a и c, a, b имеют ту эксе ориентацию, что и тройка a, b, c, a тройки b, a, c, c, b, a, a, c, b имеют ориентацию, противоположную ориентации тройки a, b, c.

ightharpoonup Пусть, определенности, тройка ${\bf a}, {\bf b}, {\bf c}$ правая (для левой тройки доказательство аналогично). Пусть векторы отложены от одной точки $O: \overrightarrow{OA} = {\bf a}, \overrightarrow{OB} = {\bf b}, \overrightarrow{OC} = {\bf c}$. Рассматривая трехгранный угол вершиной O и ребрами OA, OB, OC, видим, что угол поворота против часовой стрелки (при взгляде из полупространства относительно плоскости OBC, содержащего точку A) от ${\bf b}$ до ${\bf c}$ равен $\angle BOC \in (0,\pi)$. Следовательно, тройка ${\bf b}, {\bf c}, {\bf a}$ правая. Так же показывается, что тройка ${\bf c}, {\bf a}, {\bf b}$ правая.

Далее, из определения ориентации и предложения 4.1 сразу следует, что ориентация у троек $\mathbf{a}, \mathbf{b}, \mathbf{c}$ и $\mathbf{b}, \mathbf{a}, \mathbf{c}$ различная. То же верно для троек $\mathbf{b}, \mathbf{c}, \mathbf{a}$ и $\mathbf{c}, \mathbf{b}, \mathbf{a}$, а также для троек $\mathbf{c}, \mathbf{a}, \mathbf{b}$ и $\mathbf{a}, \mathbf{c}, \mathbf{b}$. \square

Ориентированный объем параллелепипеда. Ориентированная площадь параллелограмма

Отложим векторы **a**, **b**, **c** от точки O. Достроим конструкцию до параллелепипеда $P(\mathbf{a}, \mathbf{b}, \mathbf{c})$, отвечающего тройке **a**, **b**, **c** (параллелепипед $P(\mathbf{a}, \mathbf{b}, \mathbf{c})$ имеет вершины, заданные радиусвекторами $\overrightarrow{OO} = \mathbf{0}$, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$, $\overrightarrow{OD} = \mathbf{a} + \mathbf{b}$, $\overrightarrow{OE} = \mathbf{b} + \mathbf{c}$, $\overrightarrow{OF} = \mathbf{c} + \mathbf{a}$, одной плоскости; в этом случае считаем, что $P(\mathbf{a}, \mathbf{b}, \mathbf{c})$ — параллелепипед нулевого объема (вырожденный).

Определение. Ориентированным объемом параллелепипеда $P(\mathbf{a}, \mathbf{b}, \mathbf{c})$ называется число $\pm V$, где V — объем $P(\mathbf{a}, \mathbf{b}, \mathbf{c})$, знак "+" берется в случае правой тройки $\mathbf{a}, \mathbf{b}, \mathbf{c}$, а знак "-" — в случае левой тройки $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

Будем обозначать ориентированный объем $V_{\pm}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ или просто $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ (если это не вызовет двусмысленности). Число $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ называется также *смешанным произведением* упорядоченной тройки векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ (см. теорему 5.1).

Аналогично определяется ориентированная площадь $S_{\pm}(\mathbf{a}, \mathbf{b})$ параллелограмма, соответствующего упорядоченной паре векторов $\mathbf{a}, \mathbf{b} \in V_2$.

Предложение 4.3. Если $e=({\bf e}_1,{\bf e}_2,{\bf e}_3)-OHB$ в V_3 , то $V_\pm({\bf e}_1,{\bf e}_2,{\bf e}_3)=\pm 1$, где знак "+" соответствует случаю правой тройки ${\bf e}_1,{\bf e}_2,{\bf e}_3$, а знак "-" — случаю левой тройки ${\bf e}_1,{\bf e}_2,{\bf e}_3$.

ightharpoonup Так как $P({f e}_1,{f e}_2,{f e}_3)$ — это единичный куб, то $|V_\pm({f e}_1,{f e}_2,{f e}_3)|=1$. Выбор знака вытекает из определений. \square

Предложение 4.3.' Если $e = (\mathbf{e}_1, \mathbf{e}_2)$ — ОНБ в V_3 , то $S_{\pm}(\mathbf{e}_1, \mathbf{e}_2) = \pm 1$, где знак "+" соответствует случаю положительно ориентированного базиса, а знак "—" — отрицательно ориентированного.

⊳ Аналогично предыдущему предложению. □

Предложение 4.4. Векторы $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V_3$ компланарны $\Leftrightarrow V_{\pm}(\mathbf{a}, \mathbf{b}, \mathbf{c}) = 0$.

⊳ Следует из определений. □

Предложение 4.4. Векторы $\mathbf{a}, \mathbf{b} \in V$ коллинеарны $\Leftrightarrow S_{\pm}(\mathbf{a}, \mathbf{b}) = 0$.

⊳ Следует из определений. □

Теорема 4.1. \forall **a**, **b**, **c**, **d** \in V_3 , \forall λ \in \mathbb{R} выполнены следующие равенства для ориентированных объемов:

- 1) $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{b}, \mathbf{c}, \mathbf{a}) = (\mathbf{c}, \mathbf{a}, \mathbf{b}) = -(\mathbf{b}, \mathbf{a}, \mathbf{c}) = -(\mathbf{c}, \mathbf{b}, \mathbf{a}) = -(\mathbf{a}, \mathbf{c}, \mathbf{b})$
- 2) $|(\mathbf{a}, \mathbf{b}, \lambda \mathbf{c}) = \lambda(\mathbf{a}, \mathbf{b}, \mathbf{c})|$;
- 3) $(\mathbf{a}, \mathbf{b}, \mathbf{c} + \mathbf{d}) = (\mathbf{a}, \mathbf{b}, \mathbf{c}) + (\mathbf{a}, \mathbf{b}, \mathbf{d})$
 - ▶ 1) Следует из определения ориентированного объема и предложения 4.2.
 - 2), 3) В случае а || b свойства очевидны.

Пусть $\mathbf{a} \not\parallel \mathbf{b}$. Рассмотрим такой вектор \mathbf{e} , что $|\mathbf{e}| = 1$, $\mathbf{e} \perp \mathbf{a}$, $\mathbf{e} \perp \mathbf{b}$, и тройка $\mathbf{a}, \mathbf{b}, \mathbf{e}$ — правая тройка. Из формулы объема $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = |S_{\pm}(\mathbf{a}, \mathbf{b})| \cdot (\pm h)$, где h — высота параллеленипеда $P(\mathbf{a}, \mathbf{b}, \mathbf{c})$. Заметим, что множитель $\pm h$ равен алгебраической проекции вектора \mathbf{c} на \mathbf{e} . Отсюда $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = |S_{\pm}(\mathbf{a}, \mathbf{b})| \cdot (\mathbf{c}, \mathbf{e})$. Теперь свойства 2) и 3) вытекают из линейности скалярного произведения (см. теорему 3.1).

Равенства 2) и 3) из предыдущей теоремы означают, что ориентированный объем линеен по третьему аргументу. Но тогда из равенства 1) следует линейность по каждому из трех аргументов. Теорема, аналогичная предыдущей, верна и для ориентированных площадей.

Теорема 4.1.' \forall **a**, **b**, **c** \in V_2 , \forall λ \in \mathbb{R} выполнены следующие равенства:

- 1) $S_{\pm}(\mathbf{a}, \mathbf{b}) = -S_{\pm}(\mathbf{b}, \mathbf{a})$;
- 2) $S_{\pm}(\mathbf{a}, \lambda \mathbf{b}) = \lambda S_{\pm}(\mathbf{a}, \mathbf{b})$;
- 3) $S_{\pm}(\mathbf{a}, \mathbf{b} + \mathbf{c}) = S_{\pm}(\mathbf{a}, \mathbf{b}) + S_{\pm}(\mathbf{a}, \mathbf{c})$

⊳ Доказательство аналогично доказательству предыдущей теоремы. □

В следующих теоремах раскрывается геометрический смысл определителей второго и третьего порядка.

Теорема 4.2 (ориентированный объем в координатах). Пусть $e = (e_1, e_2, e_3) - basuc$ (произвольный) в V_3 ;

$$\mathbf{a} = \mathbf{e} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}, \ \mathbf{b} = \mathbf{e} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} \mathbf{c} = \mathbf{e} \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix}. \ \Pi$$
оложим $\Delta = \begin{vmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{vmatrix}. \ T$ огда $V_{\pm}(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \Delta \cdot V_{\pm}(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3).$

B частности, $\mathbf{a}, \mathbf{b}, \mathbf{c}$ компланарны $\Leftrightarrow \Delta = 0$.

ightharpoonup Воспользовавшись предложением 4.3 и теоремой 4.1, а так же тем фактом, что $(\mathbf{e}_i, \mathbf{e}_j, \mathbf{e}_k) = 0$ если хотя бы два из индексов i, j, k совпадают (см. предложение 4.4), получаем: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3, \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3, \gamma_1 \mathbf{e}_1 + \gamma_2 \mathbf{e}_2 + \gamma_3 \mathbf{e}_3) =$ $= \alpha_1 \beta_2 \gamma_3 (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) + \alpha_1 \beta_3 \gamma_2 (\mathbf{e}_1, \mathbf{e}_3, \mathbf{e}_2) + \alpha_2 \beta_1 \gamma_3 (\mathbf{e}_2, \mathbf{e}_1, \mathbf{e}_3) + \alpha_2 \beta_3 \gamma_1 (\mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_1) +$ $+ \alpha_3 \beta_1 \gamma_2 (\mathbf{e}_3, \mathbf{e}_1, \mathbf{e}_2) + \alpha_3 \beta_2 \gamma_1 (\mathbf{e}_3, \mathbf{e}_2, \mathbf{e}_1) = \alpha_1 \beta_2 \gamma_3 (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) - \alpha_1 \beta_3 \gamma_2 (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) - \alpha_2 \beta_1 \gamma_3 (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) + \alpha_2 \beta_3 \gamma_1 (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) + \alpha_3 \beta_1 \gamma_2 (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) - \alpha_3 \beta_2 \gamma_1 (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) =$ $= \Delta \cdot (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3). \square$

Следствие. Если в условиях теоремы е — положительно ориентированный ОНБ, то $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \Delta$.

Теорема 4.2.' Пусть
$$\mathbf{e}=(\mathbf{e}_1,\mathbf{e}_2)$$
 — базис (произвольный) в V_2 ; $\mathbf{a}=\mathbf{e}\begin{pmatrix}\alpha_1\\\alpha_2\end{pmatrix},\,\mathbf{b}=\mathbf{e}\begin{pmatrix}\beta_1\\\beta_2\end{pmatrix}$. Положим $\delta=\begin{vmatrix}\alpha_1&\alpha_2\\\beta_1&\beta_2\end{vmatrix}$. Тогда

$$S_{\pm}(\mathbf{a}, \mathbf{b}) = \delta \cdot S_{\pm}(\mathbf{e}_1, \mathbf{e}_2).$$

В частности, $\mathbf{a} \parallel \mathbf{b} \Leftrightarrow \delta = 0$.

⊳ Доказательство аналогично доказательству предыдущей теоремы. □

Следствие. Если в условиях теоремы е — положительно ориентированный ОНБ, то $S_{+}(\mathbf{a}, \mathbf{b}) = \delta$.

§ 5. Векторное произведение векторов

Определение. Векторным произведением вектора **a** на вектор **b** $(\mathbf{a}, \mathbf{b} \in V_3)$ называется такой вектор $\mathbf{c} \in V_3$, что

- 1) $|\mathbf{c}| = |S_{\pm}(\mathbf{a}, \mathbf{b})|;$
- 2) $\mathbf{c} \perp \mathbf{a}, \mathbf{c} \perp \mathbf{b};$
- 3) (при $\mathbf{a} \not\parallel \mathbf{b}$) тройка векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ положительно ориентирована.

Для векторного произведения используем обозначение $[\mathbf{a}, \mathbf{b}]$ (также используется обозначение $\mathbf{a} \times \mathbf{b}$).

Определение однозначно задает способ построения вектора [a, b] по векторам a и b. Следующие два предложения вытекают непосредственно из определений.

Предложение 5.1. Если $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ — правый ОНБ в V_3 , то $[\mathbf{e}_1, \mathbf{e}_2] = \mathbf{e}_3$, $[\mathbf{e}_2, \mathbf{e}_3] = \mathbf{e}_1$, $[\mathbf{e}_3, \mathbf{e}_1] = \mathbf{e}_2$.

 \triangleright Следует из рассмотрения единичного куба $P(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$. \square

Предложение 5.2. Для векторов $\mathbf{a}, \mathbf{b} \in V_3$ следующие условия эквивалентны: 1) $\mathbf{a} \parallel \mathbf{b}$; 2) $[\mathbf{a}, \mathbf{b}] = \mathbf{0}$; 3) $\mathbf{a}, \mathbf{b}, [\mathbf{a}, \mathbf{b}]$ компланарны.

▶ Из определения следует, что в случае а | b условия 2) и 3) выполнены, а в случае а∦ в оба эти условия нарушаются. □

Следующая теорема проясняет, почему ориентированный объем также называется смешанным произведением.

Теорема 5.1. \forall **a**, **b**, **c** \in V_3 выполнено

1)
$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = ([\mathbf{a}, \mathbf{b}], \mathbf{c})$$

1)
$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = ([\mathbf{a}, \mathbf{b}], \mathbf{c});$$

2) $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a}, [\mathbf{b}, \mathbf{c}]).$

 \triangleright 1) Если **a** \parallel **b**, то обе части равенства равны 0.

Пусть а 🖟 b. Из определения векторного произведения вытекает, что вектор \mathbf{e} , используемый в доказательстве теоремы 4.1, равен $\frac{\mathbf{d}}{|\mathbf{d}|}$, где $\mathbf{d}=[\mathbf{a},\mathbf{b}]$. Отсюда

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = |S_{\pm}(\mathbf{a}, \mathbf{b})| \cdot (\mathbf{e}, \mathbf{c}) = |[\mathbf{a}, \mathbf{b}]| \cdot \left(\frac{\mathbf{d}}{|\mathbf{d}|}, \mathbf{c}\right) = |\mathbf{d}| \cdot \frac{(\mathbf{d}, \mathbf{c})}{|\mathbf{d}|} = (\mathbf{d}, \mathbf{c}) = ([\mathbf{a}, \mathbf{b}], \mathbf{c}).$$

2) Из предыдущего пункта и теоремы 4.1 следует, что

$$(\mathbf{a}, [\mathbf{b}, \mathbf{c}]) = ([\mathbf{b}, \mathbf{c}], \mathbf{a}) = (\mathbf{b}, \mathbf{c}, \mathbf{a}) = (\mathbf{a}, \mathbf{b}, \mathbf{c}).$$

Теорема 5.2 (антисимметричность и линейность векторного произведения). \forall **a**, **b**, **c** \in V_3 , $\forall \lambda \in \mathbb{R}$ выполнены следующие равенства:

- 1) $|[\mathbf{b}, \mathbf{a}] = -[\mathbf{a}, \mathbf{b}]|$ (антисимметричность);
- 2) $\left[[\lambda \mathbf{a}, \overline{\mathbf{b}}] = \overline{\lambda[\mathbf{a}, \mathbf{b}]} \right];$
- 3) $\overline{[\mathbf{a} + \mathbf{b}, \mathbf{c}] = [\mathbf{a}, \mathbf{c}] + [\mathbf{b}, \mathbf{c}]}$

 \triangleright 1) Если $\mathbf{a} \parallel \mathbf{b}$, то обе части равенства равны $\mathbf{0}$.

Иначе тройка $\mathbf{b}, \mathbf{a}, -[\mathbf{a}, \mathbf{b}]$ — правая, и значит вектор $-[\mathbf{a}, \mathbf{b}]$ удовлетворяет всем условиям в определении векторного произведения **b** на **a**.

(2), (3) Рассмотрим OHБ (2) (3), (3) Рассмотрим OHБ (3), (4), динатно (см. предложение 1.6), пользуясь предыдущей теоремой, следствием из теоремы 3.2 и линейностью ориентированного объема (теорема 4.1).

Имеем (для i=1,2,3): ([$\lambda \mathbf{a},\mathbf{b}$], \mathbf{e}_i) = ($\lambda \mathbf{a},\mathbf{b},\mathbf{e}_i$) = $\lambda(\mathbf{a},\mathbf{b},\mathbf{e}_i)=\lambda([\mathbf{a},\mathbf{b}],\mathbf{e}_i)$, то есть i-я координата вектора $[\lambda \mathbf{a}, \mathbf{b}]$ получается из i-й координаты вектора $[\mathbf{a}, \mathbf{b}]$ домножением на λ .

Далее: $([\mathbf{a} + \mathbf{b}, \mathbf{c}], \mathbf{e}_i) = (\mathbf{a} + \mathbf{b}, \mathbf{c}, \mathbf{e}_i) = (\mathbf{a}, \mathbf{c}, \mathbf{e}_i) + (\mathbf{b}, \mathbf{c}, \mathbf{e}_i) = ([\mathbf{a}, \mathbf{c}], \mathbf{e}_i) + ([\mathbf{b}, \mathbf{c}], \mathbf{e}_i)$, то есть i-я координата вектора $[\mathbf{a}+\mathbf{b},\mathbf{c}]$ равна сумме i-х координат векторов $[\mathbf{a},\mathbf{c}]$ и $[\mathbf{b},\mathbf{c}]$. \square

Равенства 2) и 3) из предыдущей теоремы означают, что векторное произведение линейно по второму аргументу. Но тогда из равенства 1) следует линейность и по первому аргументу.

Теорема 5.3 (координаты векторного произведения). Пусть $e = (e_1, e_2, e_3) - nonoжcu$ тельно ориентированный ОНБ в V_3 ;

$$\mathbf{a} = \mathbf{e} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}, \ \mathbf{b} = \mathbf{e} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}. \ \textit{Torda} \ [\mathbf{a}, \mathbf{b}] = \mathbf{e} \begin{pmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{pmatrix}, \ \textit{rde}$$

$$\delta_1 = \begin{vmatrix} \alpha_2 & \alpha_3 \\ \beta_2 & \beta_3 \end{vmatrix}, \ \delta_2 = \begin{vmatrix} \alpha_3 & \alpha_1 \\ \beta_3 & \beta_1 \end{vmatrix}, \ \delta_3 = \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix}.$$

 \triangleright Пользуясь предложением 5.1 и теоремой 5.2, и учитывая, что $[\mathbf{e}_i, \mathbf{e}_i] = \mathbf{0}$, получим $[\mathbf{a}, \mathbf{b}] = [\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3, \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3] =$

$$= \alpha_1 \beta_2[\mathbf{e}_1, \mathbf{e}_2] + \alpha_2 \beta_1[\mathbf{e}_2, \mathbf{e}_1] + \alpha_1 \beta_3[\mathbf{e}_1, \mathbf{e}_3] + \alpha_3 \beta_1[\mathbf{e}_3, \mathbf{e}_1] + \alpha_2 \beta_3[\mathbf{e}_2, \mathbf{e}_3] + \alpha_3 \beta_2[\mathbf{e}_3, \mathbf{e}_2] =$$

$$= (\alpha_1\beta_2 - \alpha_2\beta_1)[\mathbf{e}_1, \mathbf{e}_2] + (\alpha_3\beta_1 - \alpha_1\beta_3)[\mathbf{e}_3, \mathbf{e}_1] + (\alpha_2\beta_3 - \alpha_3\beta_2)[\mathbf{e}_2, \mathbf{e}_3] = \delta_3\mathbf{e}_3 + \delta_2\mathbf{e}_2 + \delta_1\mathbf{e}_1. \ \Box$$

Равенство
$$\begin{bmatrix} [\mathbf{a},\mathbf{b}] = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix}$$
 представляет собой удобное символическое правило для

утверждения предыдущей теоремы: раскрываем определитель и получаем разложение [**a**, **b**] по правому ОНБ е.

Замечание. Формула для вычисления векторного произведения в произвольном базисе имеет вид:

$$[\mathbf{a}, \mathbf{b}] = \begin{bmatrix} \mathbf{e}_2, \mathbf{e}_3 \end{bmatrix} & [\mathbf{e}_3, \mathbf{e}_1] & [\mathbf{e}_1, \mathbf{e}_2] \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{bmatrix}$$

Ее можно получить, повторив доказательство теоремы 5.3 вплоть до последнего знака равенства.

Завершая разговор о векторном произведении, докажем формулу раскрытия двойного произведения, в устном математическом фольклоре именуемую "бац минус цаб".

Предложение 5.3. \forall **a**, **b**, **c** \in V_3 выполнено равенство

$$\boxed{ [\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b}(\mathbf{a}, \mathbf{c}) - \mathbf{c}(\mathbf{a}, \mathbf{b}). }$$

ightharpoonup Выберем правый ОНБ $e = (\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3})$ в V_3 так, чтобы $\mathbf{e_1}$ и \mathbf{c} были коллинеарны, а векторы $\mathbf{e_1}$, $\mathbf{e_2}$ и \mathbf{b} компланарны. Тогда координаты векторов \mathbf{a} , \mathbf{b} , \mathbf{c} будут выглядеть следующим образом: $\mathbf{a} = e \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$, $\mathbf{b} = e \begin{pmatrix} \beta_1 \\ \beta_2 \\ 0 \end{pmatrix}$, $\mathbf{c} = e \begin{pmatrix} \gamma \\ 0 \\ 0 \end{pmatrix}$. Тогда (пользуясь теоремой 5.3) получаем: $[\mathbf{b}, \mathbf{c}] = e \begin{pmatrix} 0 \\ 0 \\ -\beta_2 \gamma \end{pmatrix}$, $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = e \begin{pmatrix} -\alpha_2 \beta_2 \gamma \\ \alpha_1 \beta_2 \gamma \\ 0 \end{pmatrix}$. С другой стороны, $(\mathbf{a}, \mathbf{c}) = \alpha_1 \gamma$, $(\mathbf{a}, \mathbf{b}) = \alpha_1 \beta_1 + \alpha_2 \beta_2$, поэтому $\mathbf{b}(\mathbf{a}, \mathbf{c}) - \mathbf{c}(\mathbf{a}, \mathbf{b}) = e \begin{pmatrix} \alpha_1 \gamma \beta_1 \\ \alpha_1 \gamma \beta_2 \\ 0 \end{pmatrix} - \begin{pmatrix} (\alpha_1 \beta_1 + \alpha_2 \beta_2) \gamma \\ 0 \\ 0 \end{pmatrix} = e \begin{pmatrix} -\alpha_2 \beta_2 \gamma \\ \alpha_1 \beta_2 \gamma \\ 0 \end{pmatrix}$. \square

Глава 2

Прямые и плоскости

В этой главе предполагается, что на плоскости \mathcal{P}_2 или в пространстве \mathcal{P}_3 введена ДСК (O, \mathbf{e}) , где $\mathbf{e} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ — базис (n=2 для плоскости и n=3 для пространства). Абсциссы, ординаты и аппликаты точек в данной ДСК обозначаются соответственно x, y, z. Как обычно, прямые Ox, Oy, Oz называются осями координат, а плоскости Oxy, Oyz, Ozx — координатными плоскостями.

§ 1. Прямая на плоскости.

Способы задания.

Прямая l однозначно задается точкой $M_0 \in l$ и ненулевым направляющим вектором \mathbf{a} . Пусть M_0 имеет радиус-вектор \mathbf{r}_0 , и пусть некоторая точка M имеет радиус-вектор \mathbf{r} . Тогда $M \in l \Leftrightarrow$ векторы $\overrightarrow{M_0M} = \mathbf{r} - \mathbf{r}_0$ и \mathbf{a} коллинеарны $\Leftrightarrow \mathbf{r} - \mathbf{r}_0$ пропорционален вектору \mathbf{a} . Таким образом, имеем векторно-параметрическое уравнение

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{a}.\tag{2.1}$$

Это уравнение имеет координатную запись $\begin{bmatrix} x=x_0+\alpha_1t\\y=y_0+\alpha_2t, \end{bmatrix}$ где $\begin{pmatrix} x\\y \end{pmatrix}$, $\begin{pmatrix} x_0\\y_0 \end{pmatrix}$, $\begin{pmatrix} \alpha_1\\\alpha_2 \end{pmatrix}$ —

координатные столбцы точек M, M_0 и вектора $\overline{\mathbf{a}}$ соответственно.

При $\alpha_1 \neq 0$, $\alpha_2 \neq 0$ уравнение (2.1) легко переводится в *каноническое* уравнение

$$\boxed{\frac{x - x_0}{\alpha_1} = \frac{y - y_0}{\alpha_2}}.1$$
(2.2)

Также прямая l задается общим уравнением

$$Ax + By + C = 0, (2.3)$$

где |A|+|B|>0. Иногда для краткости будем обозначать линейную функцию Ax+By+C через L(x,y) или L, тем самым общее уравнение (2.3) будет записываться как L=0. С общим уравнением (2.3) свяжем conymcmeyющий вектор $\mathbf{n}=\begin{pmatrix}A\\B\end{pmatrix}$. 2

 $^{^{1}}$ Иногда запись (2.2) используют и в случае $lpha_{1}=0$ или $lpha_{2}=0.$

 $^{^2}$ Как увидим далее, в предложении 1.3, для ПДСК сопутствующий вектор является нормальным (то есть перпендикулярным) к прямой.

Предложение 1.1 (критерий параллельности). Для того, чтобы вектор $\mathbf{a} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$ был параллелен прямой Ax + By + C = 0 необходимо и достаточно, чтобы $A\alpha_1 + B\alpha_2 = 0$. A Налогично предложению 2.1 (только проще). \Box

Следствие 1. Вектор $\binom{-B}{A}$ является направляющим для прямой (2.3).

Следствие 2. Сопутствующий вектор п не параллелен прямой (2.3).

Взаимное расположение двух прямых

Предложение 1.2. Две прямые, заданные общими уравнениями $L_1 = 0$, $L_2 = 0$ вида (2.3) парамленьны ими совпадают \Leftrightarrow $\mathbf{n}_1 \parallel \mathbf{n}_2$, причем прямые совпадают \Leftrightarrow L_1 и L_2 пропорциональны.

ightharpoonup В случае $\mathbf{n}_1 \parallel \mathbf{n}_2$ столбцы $\begin{pmatrix} A_1 \\ B_1 \end{pmatrix}$ и $\begin{pmatrix} A_2 \\ B_2 \end{pmatrix}$ пропорциональны, значит уравнения прямых имеют вид $A_1x+B_1y+C_1=0$ и $\lambda(A_1x+B_1y)+C_2=0$. При $C_2=\lambda_1$ эти уравнения пропорциональны, значит задают одну и ту же прямую. Иначе система из этих двух уравнений имеет пустое множество решений, т.е. l_1 и l_2 не имеют общих точек.

В случае $\mathbf{n}_1 \not\parallel \mathbf{n}_2$ система уравнений $L_1=0, L_2=0$ имеет единственное решение, т.е. прямые пересекаются в одной точке. \square

Линейное неравенство

От некоторой точки прямой l, заданной общим уравнением L=0, отложим вектор ${\bf n}$. Ту полуплоскость, в которой лежит конец этого вектора (по следствию из предложения 1.1 он не лежит на прямой), объявим положительной, а другую полуплоскость — отрицательной. (Если изменить знак в уравнении, то есть рассматривать уравнение -L=0, то положительная и отрицательная полуплоскости поменяются ролями.)

Теорема 1.1. Точка $M \binom{x}{y}$ лежит в положительной полуплоскости относительно прямой, заданной уравнением L=0 вида $(2.3) \Leftrightarrow L(x,y)>0$.

⊳ Аналогично доказательству теоремы 2.1. □

Пучок прямых

Определение. Пучком прямых с центром M называется множество прямых, проходящих через M.

Пучок обозначаем $\Pi(M)$. Пучок определяется двумя пересекающимися прямыми.

Теорема 1.2. Пусть $L_i = 0$ — общие уравнения вида (2.3) прямых l_i , i = 1, 2, 3, при этом прямые l_1 и l_2 пересекаются в точке M. Прямая l_3 принадлежит пучку $\Pi(M) \Leftrightarrow \exists \lambda_1, \lambda_2$ такие, что $L_3 = \lambda_1 L_1 + \lambda_2 L_2$.

⊳ Аналогично доказательству теоремы 2.2. □

Нормальное уравнение прямой и метрические задачи

С этого момента до конца параграфа предполагаем, что ДСК прямоугольная.

Предложение 1.3. Пусть l-nрямая, заданная общим уравнением L=0. Тогда $\mathbf{n}\perp l$.

⊳ Аналогично доказательству предложения 2.4 (только проще). □

Таким образом, в ПДСК сопутствующий вектор является перпендикулярным, или нормальным к прямой.

Общее уравнение прямой (в силу теоремы 3.2 главы 1) приобретает вид

$$(\mathbf{r}, \mathbf{n}) + C = 0. \tag{2.4}$$

Уравнение (2.4) называется нормальным уравнением прямой.

Выведем формулы для решения основных метрических задач (то есть задачах об измерении расстояний и углов).

Предложение 1.4 (расстояние от точки до прямой). Пусть l-nрямая, заданная нормальным уравнением (2.4) или общим уравнением (2.3). Тогда расстояние от точки $M_0 \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ до прямой l равно $\rho(M_0, l) = \frac{|(\mathbf{r}_0, \mathbf{n}) + C|}{|\mathbf{n}|}$ или $\rho(M_0, l) = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$ со-

$$o \left[\rho(M_0, l) = \frac{1}{2} \right]$$

$$\frac{|C|}{|C|} u$$

$$\rho(M_0, l) = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \left| co-\frac{Ay_0 + By_0 + C}{\sqrt{A^2 + B^2}} \right| co-\frac{Ay_0 + By_0 + C}{\sqrt{A^2 + B^2}}$$

⊳ Аналогично доказательству предложения 2.5. □

Задача поиска угла между прямыми сводится к задачи отыскании угла между их направляющими или их нормальными векторами.

$\S~2.\,\Pi$ лоскость в пространстве

Способы задания

Плоскость $\sigma \subset \mathcal{P}_3$ однозначно задается точкой $M_0 \in \sigma$ и парой неколлинеарных векторов ${\bf a}$ и ${\bf b}$, параллельных плоскости σ . (Векторы ${\bf a}$ и ${\bf b}$ иногда называют направляющими для плоскости σ .)

Пусть M_0 имеет радиус-вектор \mathbf{r}_0 , и пусть некоторая точка M имеет радиус-вектор \mathbf{r} . Тогда $M \in \sigma \Leftrightarrow$ векторы $\overrightarrow{M_0M} = \mathbf{r} - \mathbf{r_0}$, а и \mathbf{b} компланарны $\Leftrightarrow \mathbf{r} - \mathbf{r_0}$ линейно выражается через векторы а и b.

Таким образом, имеем векторно-параметрическое уравнение

$$\mathbf{r} = \mathbf{r_0} + t\mathbf{a} + s\mathbf{b},\tag{2.5}$$

где а∦ b.

Это уравнение имеет координатную запись
$$\begin{cases} x = x_0 + \alpha_1 t + \beta_1 s \\ y = y_0 + \alpha_2 t + \beta_2 s \\ z = z_0 + \alpha_3 t + \beta_3 s \end{cases}, \text{ где } \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix},$$

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$$
, $\begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$ — координатные столбцы точек M , M_0 и векторов ${\bf a}$ и ${\bf b}$ соответственно.

Тользуясь критерием компланарности (предложение 4.4 главы 1), получаем уравнение

$$(\mathbf{r} - \mathbf{r}_0, \mathbf{a}, \mathbf{b}) = 0. \tag{2.6}$$

Также плоскость σ задается общим уравнением

$$Ax + By + Cz + D = 0, (2.7)$$

где |A|+|B|+|C|>0 (то есть линейная функция L=L(x,y,z)=Ax+By+Cz+D отлична от константы). С уравнением плоскости (2.7), свяжем сопутствующий вектор $\mathbf{n} \begin{pmatrix} A \\ B \\ C \end{pmatrix}$.

Предложение 2.1 (критерий параллельности вектора и плоскости). Вектор $\mathbf{a} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$ naраллелен плоскости σ , заданной уравнением (2.7) $\Leftrightarrow A\alpha_1 + B\alpha_2 + C\alpha_3 = 0$

ho Пусть $M_0 \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ — некоторая точка в плоскости σ , так что $Ax_0 + By_0 + Cz_0 + D = 0$. Отложим от M_0 вектор \mathbf{a} , концом этого вектора будет точка $M_1 \begin{pmatrix} x_0 + \alpha_1 \\ y_0 + \alpha_2 \\ z_0 + \alpha_3 \end{pmatrix}$.

Имеем: $\mathbf{a} \parallel \sigma \Leftrightarrow M_1 \in \sigma \Leftrightarrow A(x_0 + \alpha_1) + B(y_0 + \alpha_2) + C(z_0 + \alpha_3) + D = 0$ $(Ax_0 + By_0 + Cz_0 + D) + (A\alpha_1 + B\alpha_2 + C\alpha_3) = 0 \Leftrightarrow A\alpha_1 + B\alpha_2 + C\alpha_3 = 0. \square$

Следствие 1. Если в уравнении (2.7) $A \neq 0$, то в качестве пары неколлинеарных направляющих векторов плоскости можно взять векторы $\begin{pmatrix} -B \\ A \\ \Omega \end{pmatrix}$ и $\begin{pmatrix} -C \\ 0 \\ A \end{pmatrix}$.

Следствие 2. Сопутствующий вектор n не параллелен плоскости (2.7). 3

Взаимное расположение плоскостей

Предложение 2.2 (две плоскости). Пусть две плоскости σ_1 и σ_2 заданы общими уравнениями $L_1 = 0$ и $L_2 = 0$ вида (2.7). Тогда справедливы следующие утверждения:

- 1) $\sigma_1 \parallel \sigma_2 \text{ unu } \sigma_1 = \sigma_2 \Leftrightarrow \mathbf{n}_1 \parallel \mathbf{n}_2, \text{ npuvem}$ $\sigma_1 = \sigma_2 \Leftrightarrow L_1 \ u \ L_2 \ пропорциональны.$
- $(2)\ \textit{Если }\sigma_1 \not \mid \sigma_2,\ \textit{то прямая }\sigma_1 \cap \sigma_2 \ \textit{имеет направляющий вектор } \mathbf{d} = egin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ A_1 & B_1 & C_1 \\ A_1 & B_2 & C \end{bmatrix}.$

ightharpoonup В случае $\mathbf{n}_1 \parallel \mathbf{n}_2$ столбцы $egin{pmatrix} A_1 \\ B_1 \\ C_1 \end{pmatrix}$ и $egin{pmatrix} A_2 \\ B_2 \\ C_2 \end{pmatrix}$ пропорциональны, значит уравнения плоскостей σ_1 и σ_2 имеют вид $A_1x + B_1y + C_1z + D_1 = 0$ и $\lambda(A_1x + B_1y + C_1z) + D_2 = 0$. При $D_2 = \lambda D_1$ эти уравнения пропорциональны, значит задают одну и ту же плоскость. Иначе система из этих двух уравнений имеет пустое множество решений, т.е. плоскости σ_1 и σ_2 не имеют общих точек.

³Как увидим далее, в предложении 2.4, для ПДСК сопутствующий вектор является нормальным к

⁴В ПДСК это утверждение находится в согласии с теоремой 5.3 главы 1: $\mathbf{d} = \pm [\mathbf{n}_1, \mathbf{n}_2]$.

В случае $\mathbf{n}_1 \not\parallel \mathbf{n}_2$ предъявленный в формулировке вектор \mathbf{d} ненулевой. Непосредственно проверяется, что его координаты $\delta_1 = \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}, \, \delta_2 = \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix}, \, \delta_3 = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$ удовлетворяют равенствам $A_i\delta_1 + B_i\delta_2 + C_i\delta_2 = 0, \, i = 1, 2$ (левая часть представляет собой раскрытие определителя $\begin{vmatrix} A_i & B_i & C_i \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$). Эти равенства, в силу предложения 2.1, означают, что $\mathbf{d} \parallel \sigma_i$, i = 1, 2. \square

Предложение 2.3 (три плоскости). Пусть даны три плоскости σ_i , заданные общими уравнениями $L_i = 0$ вида (2.7), i = 1, 2, 3. Плоскости σ_1 , σ_2 и σ_3 пересекаются в одной точке \Leftrightarrow \mathbf{n}_1 , \mathbf{n}_2 и \mathbf{n}_3 некомпланарны $\Leftrightarrow \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} \neq 0$.

ightharpoonup В случае $\mathbf{n}_1 \parallel \mathbf{n}_2$ векторы \mathbf{n}_1 , \mathbf{n}_2 и \mathbf{n}_3 компланарны. По предложению 2.2, в этом случае $\sigma_1 \parallel \sigma_2$ или $\sigma_1 = \sigma_2$, поэтому σ_1 , σ_2 и σ_3 не могут пересекаться в одной точке.

Далее считаем, что $\mathbf{n}_1 \not\parallel \mathbf{n}_2$. По предложению 2.2, в этом случае $\sigma_1 \cap \sigma_2$ — это пря-

мая с направляющим вектором
$$\mathbf{d} \begin{pmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{pmatrix}$$
, где $\delta_1 = \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}$, $\delta_2 = \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix}$, $\delta_3 = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$.

В таком случае плоскости σ_1 , σ_2 и σ_3 пересекаются в одной точке \Leftrightarrow $\mathbf{d} \not\parallel \sigma_3$. В силу предложения 2.1, последнее условие переписывается как $A_3\delta_1 + B_3\delta_2 + C_3\delta_3 \neq 0$. Но выражение

$$A_3\delta_1 + B_3\delta_2 + C_3\delta_3$$
 равно $\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix}$. \square

Линейное неравенство

От некоторой точки плоскости σ , заданной общим уравнением L=0, отложим вектор ${\bf n}$. То полупространство относительно σ , в котором лежит конец этого вектора (по следствию из предложения 2.1 он не будет лежать в σ), объявим положительным, а другое полупространство — отрицательным. (Если изменить знак в уравнении, то есть рассматривать уравнение -L=0, то положительное и отрицательное полупространства поменяются ролями.)

Теорема 2.1. Точка $M_1 \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$ лежит в положительной полуплоскости относительно плоскости σ , заданной уравнением L=0 вида $(2.7) \Leftrightarrow L(x_1,y_1,z_1)>0$.

ightharpoonup Через точку M_1 проведем прямую, параллельную вектору ${\bf n}$. Пусть эта прямая пересекает плоскость σ в точке $M_0\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$. Пусть $\overline{M_0M_1}=\lambda {\bf n}$, тогда $x_1=x_0+\lambda A, \ y_1=y_0+\lambda B,$ $z_1=z_0+\lambda C$. Очевидно, M_1 лежит в положительном полупространстве $\Leftrightarrow \lambda>0$. С другой стороны, $L(x_1,y_1,z_1)>0 \Leftrightarrow A(x_0+\lambda A)+B(y_0+\lambda B)+C(z_0+\lambda C)+D>0$ $\Leftrightarrow (Ax_0+By_0+Cz_0+D)+\lambda (A^2+B^2+C^2)>0 \Leftrightarrow \lambda (A^2+B^2+C^2)>0 \Leftrightarrow \lambda>0$. \square

Пучок плоскостей

Определение. Пучком плоскостей с осью l называется множество плоскостей, проходящих через прямую l.

Пучок обозначаем $\Pi(l)$. Пучок определяется двумя пересекающимися плоскостями.

Теорема 2.2. Пусть $L_i=0$ — общие уравнения вида (2.7) плоскостей $\sigma_i,\ i=1,2,3,\ npu$ этом плоскости σ_1 и σ_2 пересекаются по прямой l. Плоскость σ_3 принадлежит пучку $\Pi(l) \Leftrightarrow \exists \lambda_1, \lambda_2 \text{ maxue, } \forall mo \ L_3 = \lambda_1 L_1 + \lambda_2 L_2.$

 $ightharpoonup igotimes \Delta$ ля любой точки $M_0 igg(x_0 \\ y_0 \\ z_0 igg)$, лежащей на прямой l, выполнено $L_1(x_0,y_0,z_0) = 0$ и $L_2(x_0,y_0,z_0) = 0 \Rightarrow \lambda_1 L_1(x_0,y_0,z_0) + \lambda_2 L_2(x_0,y_0,z_0) = 0 \Rightarrow L_3(x_0,y_0,z_0) = 0 \Rightarrow M_0 \in \sigma_3$. Тем самым, $l \subset \sigma_3$. \Rightarrow Рассмотрим точку $M_3 igg(x_3 \\ y_3 \\ z_3 igg)$, не лежащую на прямой l, но лежащую в плоско-

сти σ_3 . Положим $\mu_1 = L_2(x_3, y_3, z_3), \ \mu_2 = -L_1(x_3, y_3, z_3)$. Хотя бы одно из чисел μ_1 , μ_2 ненулевое, иначе $M_3 \in \sigma_1 \cap \sigma_2 = l$ с противоречием с выбором точки M_3 . Положим $L_3' = \mu_1 L_1 + \mu_2 L_2$. Уравнение $L_3' = 0$ линейное (имеет вид (2.7)) с коэфициентами $\mu_1A_1+\mu_2A_2,\ \mu_1B_1+\mu_2B_2,\ \mu_1C_1+\mu_2C_2$ при $x,\ y,\ z.$ Хотя бы один из коэффициентов не равен 0, поэтому уравнение $L_3' = 0$ задает некоторую плоскость σ_3' . Согласно первой части доказательства, плоскость σ_3' содержит прямую l. Кроме того, $L_3'(x_3,y_3,z_3)=\mu_1L_1(x_3,y_3,z_3)+\mu_2L_2(x_3,y_3,z_3)=\mu_1(-\mu_2)+\mu_2\mu_1=0$, поэтому плоскость σ_3' проходит и через точку M_3 . Значит, σ_3' совпадает с σ_3 . \square

Нормальное уравнение плоскости и метрические задачи

С этого момента до конца параграфа предполагаем, что ДСК прямоугольная.

Предложение 2.4. Пусть σ — плоскость, заданная общим уравнением L=0. Тогда $\mathbf{n} \perp \sigma$.

ightharpoonup Согласно предложению 2.1, для любого направляющего вектора $\mathbf{a} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$ плоскости σ верно равенство $A\alpha_1 + B\alpha_2 + C\alpha_3 = 0$. Поскольку мы рабатаем в ПДКС, это равенство означает, что $\mathbf{n} \perp \mathbf{a}$. Итак, \mathbf{n} ортогонален любому направляющему вектору, а значит ортогонален плоскости σ . \square

Таким образом, в ПДСК сопутствующий вектор является перпендикулярным, или нормальным к плоскости.

Общее уравнение плоскости (в силу теоремы 3.2 главы 1) приобретает вид

$$(\mathbf{r}, \mathbf{n}) + D = 0. \tag{2.8}$$

Уравнение (2.8) называется нормальным уравнением плоскости.

Выведем формулы для решения основных метрических задач.

Предложение 2.5 (расстояние от точки до плоскости). Пусть σ — плоскость, заданная нормальным уравнением (2.8) или общим уравнением (2.7) в ПДСК. Тогда

расстояние от точки
$$M_1 \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$
 до плоскости σ равно $\rho(M_1, \sigma) = \frac{|(\mathbf{r}_1, \mathbf{n}) + D|}{|\mathbf{n}|}$ или
$$\rho(M_1, \sigma) = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}$$
 соответственно.

$$\rho(M_1, \sigma) = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}$$
 соответственно.

Выберем в плоскости σ произвольную точку M_0 , заданную радиус-вектором \mathbf{r}_0 , так что $(\mathbf{r}_0, \mathbf{n}) + D = 0$. Заметим, что $\rho(M_1, \sigma)$ равно длине проекции вектора $\overline{M_0M_1}$ на нормаль: $\rho(M_1, \sigma) = |\operatorname{pr}_{\mathbf{n}} \overline{M_0M_1}| = |\operatorname{pr}_{\mathbf{n}}(\mathbf{r}_1 - \mathbf{r}_0)| = \left|\frac{(\mathbf{r}_1 - \mathbf{r}_0, \mathbf{n})}{|\mathbf{n}|^2} \mathbf{n}\right| = \frac{|(\mathbf{r}_1, \mathbf{n}) - (\mathbf{r}_0, \mathbf{n})|}{|\mathbf{n}|^2} \cdot |\mathbf{n}| = \frac{|(\mathbf{r}_1, \mathbf{n}) + D|}{|\mathbf{n}|}.$

Задача поиска угла между плоскостями сводится к задачи отыскании угла между их нормальными векторами \mathbf{n}_1 и \mathbf{n}_2 .

§ 3. Прямая в пространстве

Способы задания

Так же, как и прямая на плоскости, прямая l в пространстве однозначно задается точкой $M_0 \in l$ и ненулевым направляющим вектором **a**. Повторяя рассуждения для прямой на плоскости, выводим векторно-параметрическое уравнение

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{a}. \tag{2.9}$$

Это уравнение имеет координатную запись $\begin{bmatrix} x = x_0 + \alpha_1 t \\ y = y_0 + \alpha_2 t \\ z = z_0 + \alpha_3 t \end{bmatrix}, \ \text{где} \ \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}, \ \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$

— координатные столбцы точек M, M_0 и вектора **a** соответственно.

При $\alpha_1 \neq 0$, $\alpha_2 \neq 0$, $\alpha_2 \neq 0$ уравнение (2.9) легко переводится в каноническое уравнение

$$\frac{x - x_0}{\alpha_1} = \frac{y - y_0}{\alpha_2} = \frac{z - z_0}{\alpha_3} . 5$$
 (2.10)

На самом деле каноническое уравнение (2.10) представляет собой систему двух линейных уравнений. Геометрически это означает, что прямая является пересечением двух плоскостей. Вообще, прямую в пространстве можно задать системой двух непропорциональных

линейных уравнений
$$egin{bmatrix} L_1=0 \ L_2=0 \end{bmatrix}$$

Уравнение (2.9) равносильно коллинеарности $\mathbf{r} - \mathbf{r}_0 \parallel \mathbf{a}$, а это условие можно переписать с помощью векторного произведения (см. предложение 5.2 главы 1): $[\mathbf{r} - \mathbf{r}_0, \mathbf{a}] = \mathbf{0}$ или $[\mathbf{r}, \mathbf{a}] = [\mathbf{r}_0, \mathbf{a}]$. Положив $\mathbf{b} = [\mathbf{r}_0, \mathbf{a}]$, мы получаем задание прямой с помощью векторного произведения

$$[\mathbf{r}, \mathbf{a}] = \mathbf{b}, \tag{2.11}$$

где \mathbf{a} — направляющий вектор прямой, \mathbf{a} \mathbf{b} \perp \mathbf{a} . Наоборот, при $\mathbf{a} \neq \mathbf{0}$ и \mathbf{b} \perp \mathbf{a} уравнение (2.11) задает прямую. Действительно, положив $\mathbf{r}_0 = \frac{[\mathbf{a}, \mathbf{b}]}{|\mathbf{a}|^2}$, имеем (с учетом предложения 5.3 главы 1 и того, что $(\mathbf{a}, \mathbf{b}) = 0$) $[\mathbf{r}_0, \mathbf{a}] = \frac{1}{|\mathbf{a}|^2}[[\mathbf{a}, \mathbf{b}], \mathbf{a}] = -\frac{1}{|\mathbf{a}|^2}[\mathbf{a}, [\mathbf{a}, \mathbf{b}]] = -\frac{1}{|\mathbf{a}|^2}(\mathbf{a}(\mathbf{a}, \mathbf{b}) - \mathbf{b}|\mathbf{a}|^2) = \mathbf{b}$. Таким образом, уравнение (2.11) приводится к виду $[\mathbf{r}, \mathbf{a}] = [\mathbf{r}_0, \mathbf{a}]$, или $[\mathbf{r} - \mathbf{r}_0, \mathbf{a}] = \mathbf{0}$, что равносильно $\mathbf{r} - \mathbf{r}_0 \parallel \mathbf{a}$.

 $^{^{5}}$ Иногда запись (2.10) допускают и в случае $lpha_{i}=0$ для некоторого i.

Взаимное расположение двух прямых

Предложение 3.1. Пусть две прямые l_1 и l_2 в пространстве заданы векторнопараметрическими уравнениями $\mathbf{r} = \mathbf{r}_1 + t\mathbf{a}_1$ и $\mathbf{r} = \mathbf{r}_2 + t\mathbf{a}_2$. Тогда верны следующие утверждения.

B случае $\mathbf{a}_1 \parallel \mathbf{a}_2$:

 $\mathbf{r}_2 - \mathbf{r}_1 \not\parallel \mathbf{a}_1 \Leftrightarrow l_1 \parallel l_2;$

 $\mathbf{r}_2 - \mathbf{r}_1 \parallel \mathbf{a}_1 \Leftrightarrow l_1 = l_2.$

B случае $\mathbf{a}_1 \not\parallel \mathbf{a}_2$:

 $\mathbf{r}_2 - \mathbf{r}_1, \mathbf{a}_1, \mathbf{a}_2$ компланарны $\Leftrightarrow l_1$ и l_2 пересекаются;

 $\mathbf{r}_2 - \mathbf{r}_1, \mathbf{a}_1, \mathbf{a}_2$ некомпланарни $\Leftrightarrow l_1$ и l_2 скрещиваются.

ightharpoonup Следует из геометрического смысла векторов ${f r}_1, {f a}_1, {f r}_2, {f a}_2.$

Взаимное расположение прямой и плоскости (принадлежность, пересечение в одной точке или параллельность) можно определить, используя предложение 2.1.

Метрические задачи

Предложение 3.2 (расстояние от точки до прямой). Пусть l-nрямая, заданная урав-

нением (2.9). Тогда расстояние от точки
$$M_1$$
, заданной радиус-вектором \mathbf{r}_1 до прямой l равно $\rho(M_1,l) = \frac{|S_{\pm}(\mathbf{r}_1 - \mathbf{r}_0, \mathbf{a})|}{|\mathbf{a}|}$ или $\rho(M_1,l) = \frac{|[\mathbf{r}_1 - \mathbf{r}_0, \mathbf{a}]|}{|\mathbf{a}|}$.

ightharpoonup Построим на векторах ${f r}_1-{f r}_0$ и ${f a}$ параллелограмм. Тогда его высота к основанию длины $|\mathbf{a}|$ равна $\rho(M_1,l)$ и нужная формула получается из формулы площади параллелограмма. 🗆

Предложение 3.3 (расстояние между скрещивающимися прямыми). Пусть $l_1, l_2 - c\kappa pe$

щивающиеся прямые
$$\mathbf{r} = \mathbf{r}_1 + t\mathbf{a}_1$$
 и $\mathbf{r} = \mathbf{r}_2 + t\mathbf{a}_2$ ($\mathbf{a}_1 \not\parallel \mathbf{a}_2$). Тогда расстояние между ними равна $\rho(l_1, l_2) = \frac{|V_{\pm}(\mathbf{r}_2 - \mathbf{r}_1, \mathbf{a}_1, \mathbf{a}_2)|}{|S_{\pm}(\mathbf{a}_1, \mathbf{a}_2)|}$ или $\rho(l_1, l_2) = \frac{|(\mathbf{r}_2 - \mathbf{r}_1, \mathbf{a}_1, \mathbf{a}_2)|}{|[\mathbf{a}_1, \mathbf{a}_2)]|}$.

 \triangleright Построим на векторах ${\bf r}_2 - {\bf r}_1$, ${\bf a}_1$ и ${\bf a}_2$ параллеленинед. Этот параллеленинед имеет грань площади $|S_{\pm}(\mathbf{a}_1, \mathbf{a}_2)|$, а высота к этой грани равна $\rho(l_1, l_2)$. Тогда нужная формула получается из формулы объема параллелепипеда. 🗆

Задача поиска угла между прямыми сводится к задачи отыскании угла между их направляющими. А чтобы найти угол между прямой и плоскостью, достаточно найти угол между направляющим вектором прямой и нормальным вектором плоскости.

⁶Имеется и другой вид формулы $\rho(M_1, l) = |\mathbf{r}_1 - \mathbf{r}_0 - \mathrm{pr}_{\mathbf{a}}(\mathbf{r}_1 - \mathbf{r}_0)|$.

 $^{^7}$ Заметим, что $ho(l_1,l_2)=0$ соответствует случаю пересекающихся прямых — см. предложение 3.1. Другой вид формулы $\rho(l_1, l_2) = |\operatorname{pr}_{[\mathbf{a}_1, \mathbf{a}_2]}(\mathbf{r}_2 - \mathbf{r}_1)|.$