Key ID: 026

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 3$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1: sample 2:	215 76	232 104	210 92	204	217	215

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.02? (yes or no)

۱.	(a)					2	. 0	0	0
	(b)					6	. 9	6	0
	(c)					8	9	3	9
	(d)		-	1	8	7	. 5	1	5
	(e)			-	6	3	. 0	8	5
	(f)				1	4	. 0	1	7
	(g)					0	. 0	0	5
	(h)					0	. 0	1	0

(i) yes

Key ID: 026

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 216$$

$$\overline{x_2} = 90.7$$

$$s_1 = 9.35$$

$$s_2 = 14$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 3) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 6.96$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(9.35)^2}{6} + \frac{(14)^2}{3}} = 8.939$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-187.515, -63.085)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{X_2} - \overline{X_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(90.7 - 216) - 0}{8.939} = -14.02$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 14.02$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

Thus, we reject the null hypothesis. Also notice the confidence interval does not contain 0.

- (a) 2
- (b) 6.96
- (c) 8.939
- (d) -187.515
- (e) -63.085
- (f) 14.017
- (g) 0.005
- (h) 0.01
- (i) yes