TP #2

Collections et boucles

I. Création d'un nouveau projet

Ouvrez l'IDE de votre choix (VSCode ou PyCharm), et initiez un projet vierge (tp 2).

Créez un fichier de type python (tp2.py).

II. Collections

2.1. Listes

Exercice 1

Instanciez la liste suivante:

```
list = [1990, 1996, 1994, 1997, 1993, 2001, 1999, 2000]
```

Affichez le 2^{ème} plus petit élément (astuce : en supprimant le plus petit, le 2^{ème} plus petit devient à son tour le plus petit)

Réponse attendue

1993

2.2. Dictionnaires

Exercice 2

Instanciez les dictionnaires suivants :

```
maroc = {"president": "Mohammed VI" , "capitale": "Rabat" , "superficie":
710850}
algerie = {"president": "Abdelaziz Bouteflika" , "capitale": "Alger" ,
"superficie": 2382000}
tunisie = {"president": "Kaïs Saïed" , "capitale": "Tunis", "superficie":
163610}
```

Mettez à jour le nom du président Algérien (par la valeur « Abdelmadjid Tebboune ») puis intégrez ces 3 dictionnaires dans 1 seul.

Réponse attendue

```
{'maroc': {'president': 'Mohammed VI', 'capitale': 'Rabat',
'superficie': 710850}, 'algerie': {'president': 'Abdelmadjid
Tebboune', 'capitale': 'Alger', 'superficie': 2382000}, 'tu
nisie': {'president': 'Kaïs Saïed', 'capitale': 'Tunis', 'su
perficie': 163610}}
```

III. Boucles

Exercice 3

Instanciez le dictionnaire suivant :

```
etudiants = {
     "etudiant 1":13,
     "etudiant_2":17,
     "etudiant_3":9,
     "etudiant_4":15,
     "etudiant_5":8,
     "etudiant_6":14,
     "etudiant_7":14,
     "etudiant_8":12,
     "etudiant_9":13,
     "etudiant 10":15,
     "etudiant_11":14,
     "etudiant_112":9,
     "etudiant_13":12,
     "etudiant 14":12,
     "etudiant_15":13,
     "etudiant 16":7,
     "etudiant 17":12,
     "etudiant_18":15,
     "etudiant_19":9,
     "etudiant 20":17
```

Ecrire un programme Python qui ajoute l'étudiant 21 (ayant eu 18), et partitionne ce dictionnaire en deux sous dictionnaires : etudiantAdmis (note >= 10) et etudiantNonAdmis (note < 10)

Réponse attendue

```
Admis: {'etudiant_1': 13, 'etudiant_2': 17, 'etudiant_4': 1 5, 'etudiant_6': 14, 'etudiant_7': 16, 'etudiant_8': 12, 'etudiant_9': 13, 'etudiant_10': 15, 'etudiant_11': 14, 'etudiant_13': 10, 'etudiant_14': 12, 'etudiant_15': 13, 'etudiant_17': 12, 'etudiant_18': 15, 'etudiant_20': 17, 'etudiant_21': 18 }

Non admis: {'etudiant_3': 9, 'etudiant_5': 8, 'etudiant_112 ': 9, 'etudiant_16': 7, 'etudiant_19': 9}
```

Exercice 4

Soit le dictionnaire suivant, dont les clés sont les noms des élèves et les valeurs sont les listes des notes :

```
d = {
    "Adam": [12, 15 , 17],
    "Karim" : [15, 12 , 16],
    "Joshua": [13, 15 , 7]
}
```

Ecrire un programme qui remplace les listes des notes par leurs moyennes.

Réponse attendue

```
{'Adam': 14.67, 'Karim': 14.33, 'Joshua': 11.67}
```

Exercice 5

Écrire un programme qui demande à l'utilisateur de saisir un chiffre N, puis qui calcule et affiche le résultat de factorielle de N.

Rappel Factorielle de N : Fact(N) = $1 \times 2 \times ... \times N$

Réponse attendue

```
Saisir un nombre : 4
24
```

Exercice 6

Écrire un programme qui calcule et retourne la moyenne de N notes.

Le programme demande préalablement de saisir le nombre de notes à comptabiliser, puis l'utilisateur saisit les N notes.

Réponse attendue

```
Nombre de notes ? 3
Note #0 ? 12
Note #1 ? 14
Note #2 ? 16
14.0
```

Exercice 7

Ecrire un programme qui permet d'afficher à l'écran une table de multiplication de dimension n, ayant la forme donnée par l'exemple suivant.

Par exemple si n==4:

- 1 2 3 4
- 2 4 6 8
- 3 6 9 12
- 4 8 12 16

Réponse attendue

```
n ? 4
1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
```