[ECDL3-Unit3] Series RLC Band-pass Filter and Parallel RLC Band-rejection Filter

Sewon Kim

Department of Electrical and Computer Engineering University of Seoul

2024.03.21

Contents

- Series RLC Band-pass Filter
 - Series RLC circuit
 - Frequency response of admittance I/V_s (RL = 1T Ohm)
 - Frequency response of voltage gain V_0/V_s (RL = 1T Ohm)
 - Frequency response of voltage gain V_0/V_s (RL = 1T Ohm or 50 Ohm)
 - Analysis table
- Parallel RLC Band-rejection Filter
 - Parallel RLC circuit
 - Frequency response of impedance V_s/I (RL = 0)
 - Frequency response of voltage gain V_0/V_s (RL = 50 Ohm or 2K Ohm)
 - Analysis table

Series RLC Band-pass Filter (a)

- $Q = 0.4, \ f_0 = 5000/\pi (= 1591.55) \ \text{Hz (RL} = \infty)$
- $Q=rac{1}{R}\sqrt{rac{L}{C}},\;w_0:=rac{1}{\sqrt{LC}}
 ightarrow {f R}={f 250}\Omega,\;{f C}={f 1}\mu{f F}$ (series RLC circuit)

Series RLC Band-pass Filter (b)

• $20\log(10^{-47.96/20}/\sqrt{2}) = -50.97~\mathrm{dB}$

Series RLC Band-pass Filter (c)

- I/V_s and V_o/V_s have the same resonance frequency and the same cutoff frequencies.
- I/V_s and V_o/V_s have consistent phase shifts with frequency.
- $20\log(1/\sqrt{2}) = -3.01 \text{ dB}$

Series RLC Band-pass Filter (d)

As the load resistance RL increases, the bandwidth increases.

Series RLC Band-pass Filter (e)

RL [Ω]	50		INF (1T)	
Cutoff frequency [Hz]	1294.2	1958.84	558.47	4539.42
Bandwidth [Hz]	664.64		3980.95	
Central frequency [Hz]	1592.21		1592.21	
Quality factor	2.40		0.40	

As the load resistance RL increases, the quality factor decreases.

$$R_{eq}=rac{R\cdot R_L}{R+R_L}=R-rac{R^2}{R+R_L}$$
, $Q=rac{1}{R_{eq}}\sqrt{rac{L}{C}}$ (series RLC circuit)

- The simulated resonant frequency (1592.21 Hz) matches the theoretical resonant frequency (1591.55 Hz) within 0.04%.
- That simulated quality factor (0.4) matches correctly with the theoretical quality factor (0.4) when RL = INF(1TOhm).

$$\bullet \ Q := \frac{ \left(\mathsf{Central \ frequency} \right) }{ \left(\mathsf{Bandwidth} \right) } = \frac{ \sqrt{\omega_{LO} \omega_{HI}} }{ \omega_{HI} - \omega_{LO} }$$

Parallel RLC Band-rejection Filter (a)

- Quality factor $Q=R\sqrt{\frac{C}{L}}=2.5$ (Parallel RLC circuit)
- Resonance frequency $f_0 = \frac{1}{2\pi\sqrt{LC}} = 1591.55~\mathrm{Hz}~\mathrm{(RL=0)}$

Parallel RLC Band-rejection Filter (b)

- The simulated resonant frequency (1592.21 Hz) matches the theoretical resonant frequency (1591.55 Hz) within 0.04% when RL = 0
- That simulated quality factor (2.51) matches correctly with the theoretical quality factor (2.5) when RL = 0.

Parallel RLC Band-rejection Filter (c)

- As the load resistance RL increases, the bandwidth decreases and the minimum value increases.
- V_s/I and V_o/V_s have the same resonance frequency regardless of RL and different phase shifts with frequency.
- $1 (1 0.17)/\sqrt{2} = 0.41$, $1 (1 0.89)/\sqrt{2} = 0.92$

Parallel RLC Band-rejection Filter (d)

RL [Ω]	50		2000	
Cutoff frequency [Hz]	783.43	3235.94	1380.38	1836.54
Bandwidth [Hz]	2452.51		456.16	
Central frequency [Hz]	1592.21		1592.21	
Quality factor	0.65		3.49	

- As the load resistance RL increases, the quality factor increases.
- The simulated resonant frequency (1592.21 Hz) matches the theoretical resonant frequency (1591.55 Hz) within 0.04% regardless of RL

Mistakes

• The cutoff frequency is the frequency where the maximum value is divided by the square root of 2 in the band-rejection filter also.