Advanced Dogfood Eating

Interactive graphics from R with Shiny and GoogleVis

Josh Laurito

To Dos

- Feedback
- · Cover last module's homework
- · Moving to interactive graphics
- · googleVis
- · shiny
- Next module's reading
- · Next module's assignment

Announcemnents

- \cdot Understand that course has been confusing
- · When in doubt, check the syllabus
- · Also, ask me!
- $\cdot\,\,$ Meetup 3/10, will try to organize a social one for class as well

Last module's homework

- · Thank you all for being great about installing software early
- · How did you combine files? I used csvkit http://csvkit.readthedocs.org/
- · load what we need

```
library("ggplot2")
library("plyr")
library("bigvis")
pData <- read.csv("all_PLUTO_data.csv")</pre>
```

Last week's homework - data cleaning

```
builtFar <- pData$BuiltFAR[pData$YearBuilt > 1850 & pData$YearBuilt < 2017 & pData$NumFloors != 0 ]
numFloor <- pData$NumFloors[pData$YearBuilt > 1850 & pData$YearBuilt < 2017 & pData$NumFloors != 0 ]
yrBuilt <- pData$YearBuilt[pData$YearBuilt > 1850 & pData$YearBuilt < 2017 & pData$NumFloors != 0 ]
assessTot <- pData$AssessTot[pData$YearBuilt > 1850 & pData$YearBuilt < 2017 & pData$NumFloors != 0]
valPerFloor <- assessTot/numFloor</pre>
```

Last week's homework - lots of data

- · You probably noticed that there was a lot of data
- $\cdot\,\,$ Slows down analysis: viz becomes more important and harder to do

Global Environment →	
Data	
O pData	859464 obs. of 4 variables
Values	
assessTot	Large numeric (813057 elements, 6.2 Mb)
<pre>DbuiltFar</pre>	Large numeric (813057 elements, 6.2 Mb)
numFloor	Large numeric (813057 elements, 6.2 Mb)
<pre>valPerFloor</pre>	Large numeric (813057 elements, 6.2 Mb)
○ yrBuilt	Large integer (813057 elements, 3.1 Mb)

- · Poorly specified problem
- · General concept: what does it mean to be an 'old building'
- · We should start by checking when buildings were built

```
summary(yrBuilt)
yr <- condense(bin(yrBuilt, 1))
autoplot(yr)
ggsave('assets/img/yrBuilt.png',height=2, width = 3)</pre>
```


- · Oh no! Our data stinks!
- · Clearly estimated when year =< 1980
- · Can we proceed? Depends on context of questions

```
yr <- condense(bin(yrBuilt, 5))
autoplot(yr)
ggsave('assets/img/yrBuilt5.png', height=2, width = 3)</pre>
```


Last week's homework - double check suspicious data

Last week's homework - double check suspicious data

- · Criticism of data at http://brooklyn11211.com/2013/08/pluto-old/
- · Domain knowledge research is important!

Above is a comparison of the actual dates of construction and the PLUTO estimated date of construction for all 2,175 parcels in the study area. Just as with the larger Brooklyn dataset, the City's data for Bushwick Avenue skews to the period 1895 to 1934 (really 1899 to 1931). But Bushwick Avenue is not a 20th century street – even someone not versed in architecture history should be able to tell this just by walking down the street. Sure enough, the actual dates of construction shift the curve well to the left, with the majority of the buildings on the avenue having been constructed between 1880 and 1894. Which makes sense if you look at the buildings.

Not every neighborhood will have this exact distribution of building dates, but for much Brooklyn and Manhattan and some parts of the other boroughs, a distribution that skews to the early 20th century is just plain wrong. Used properly, the PLUTO data for building age can be useful, but only if you define 1901 as "everything before 1901" and then take the rest with a (smaller) grain of salt.

Last week's homework - finding cut-offs

```
yr2 <- condense(bin(yrBuilt, 1))
total <- sum(yr2$.count)
yr2$perc_built <- cumsum(yr2$.count)/total
ggplot(yr2, aes(x= yrBuilt, y=perc_built)) + geom_line() +ylab('')
ggsave('assets/img/cumcurve.png', height=2, width = 3, dpi = 100)</pre>
```

Last week's homework - finding cut-offs

· Similar question to previous, only with groups

· Overplotting issue


```
flrVsYr$stories <- 10*trunc(flrVsYr$numFloor/10)
flrVsYr$stories <- sapply(flrVsYr$stories, min, 50)
flrVsYr$num_built <- ave(flrVsYr$.count,flrVsYr$stories, FUN=cumsum)
flrVsYr$perc_built <- flrVsYr$num_built/ ave(flrVsYr$.count,flrVsYr$stories, FUN=sum)
ggplot(flrVsYr[complete.cases(flrVsYr),], aes(x=yrBuilt, y=perc_built, group=stories)) + geom_line() +
facet_wrap(~ stories) + theme(axis.text=element_text(size=5))
ggsave('assets/img/stories.png', height=2, width = 4, dpi = 300)</pre>
```


3/8/2016

Last week's homework - cut-offs by group

Advanced Dogfood Eating

Last week's homework - wartime

```
flrVal <- condense(bin(yrBuilt[assessTot < 5000000],5), z =valPerFloor[assessTot < 5000000] )
autoplot(flrVal) +xlab('') + ylab('$ per floor')
ggsave('assets/img/flrVal.png', height=2, width = 4, dpi = 300)</pre>
```

/

Moving to interactive graphics

- · Painful to create multiple different charts for investigation
- · We are moving away from statistics here and towards design
- ggplot2 is doing this too- moving to ggvis

Moving to interactive graphics - terms

- · 'Server-side': what happens on the server (back-end, database)
- · 'Client-side': what happens on the user's computer (Browser, JS)
- · Scalable: how a site handles many visits at once

googleVis

- · Often known as 'Hans Robling style charts'
- · Interface to Google Chart API
- · Compiles to HTML/Javascript
- Great demo by running demo('googleVis')

3/8/2016

googleVis - advantages

- Fast and Easy
- $\cdot\;$ Output is interactive and in-browser
- \cdot Very simple to combine charts

googleVis - drawbacks

- · Warning: not all google charts are secure
- · Need web access to run
- \cdot Risky: Google has history of deprecating projects

shiny

- · Sponsored by RStudio: similar to googleVis but has a server-side component
- · Can be integrated with googleVis
- · Open Source

Next module's reading

· All on Blackboard

Next module's assignment

· CDC Wonder Data http://wonder.cdc.gov/ucd-icd10.html