Search for source code on the internet, identify any errors, highlight them, and explain why they are incorrect. Then, rewrite the entire program to improve the source code.

This is an example

The source code originates from:

https://www.geeksforgeeks.org/java-program-for-factorial-of-a-number/

```
// Java program to find factorial
   // of given number
                                                 Bad Class Name
4 // Driver Class
   class Test
6
        // method to find factorial

    Lack of Input Validation

 7
        // of given number
8
        static int factorial (int n)
9
10
            if (n == 0)
                                                            - Lack of Iterative Implementation Option
11
                return 1;
12
13
            return n * factorial(n - 1);
14
                                                           No Handling for Large Inputs
        }
15
16
        // main method
17
        public static void main(String[] args)
18
        {
                                              — Magic Number
19
            int num = (5;
20
             System.out.println("Factorial of " + num + " is "
21
                             + factorial(5));
22
        }
23
24
```

The program after improvement.

```
// Improved Java program to calculate factorial
import java.math.BigInteger; // Required for handling large factorials
// Class name updated for better readability
class FactorialCalculator {
  // Factorial method with input validation and BigInteger for large numbers
  static BigInteger factorial(int number) {
     if (number < 0) {
       throw new IllegalArgumentException("Factorial is not defined for negative numbers.");
     }
     BigInteger resultFactorials = BigInteger.ONE;
       int round = 1
for (round <= number; round++) {
        resultFactorials = resultFactorials.multiply(BigInteger.valueOf(i));
     return resultFactorials;
  // Main method
  public static void main(String[] args) {
     int number = 5; // Avoid magic numbers, make it user-defined if necessary
     System.out.println("Factorial of " + number + " is " + factorial(number));
  }
```

```
class GfG {
                                 -not descriptive and meaningful class
  // Function to print fibonacci series
  static void printFib(int n) {
    if (n < 1)
       System.out.println("Invalid Number of terms");
                                                           -lack input validation
       return;
    }
    // When number of terms is greater than 0
    int prev1 = 1;
                                                          should be clear.
    int prev2 = 0;
                                                           now is mix logic
    System.out.print(prev2 + " ");
                                                             and output
    // If n is 1, then we do not need to
    // proceed further
    if (n == 1)
       return;
                                                             bad output format
    System.out.print(prev1 + " ");
    // Print 3rd number onwards using
    // the recursive formula
    for (int i = 3; i \le n; i++) {
       int curr = prev1 + prev2;
       prev2 = prev1;
       prev1 = curr;
       System.out.print(curr + " ");
    }
  }
  // Driver code
  public static void main(String[] args) {
                                 -hard coded magic number
   (int n = 9;
    printFib(n);
  }
}
```

The program after improvement.

```
import java.util.Scanner;
public class FibonacciPrinter {
  // Generates the Fibonacci sequence up to n terms and returns an array
  public static int[] generateFibonacci(int n) {
     if (n \le 0) {
       throw new IllegalArgumentException("Number of terms must be positive.");
     int[] fibSeries = new int[n];
     fibSeries[0] = 0;
     if (n > 1) {
       fibSeries[1] = 1;
     }
     for (int i = 2; i < n; i++) {
       fibSeries[i] = fibSeries[i - 1] + fibSeries[i - 2];
     }
     return fibSeries;
  }
  // Prints the Fibonacci series
  public static void printFibonacciSeries(int[] series) {
     System.out.print("Fibonacci Series: ");
     for (int num : series) {
       System.out.print(num + " ");
     System.out.println(); // newline for cleanliness
  }
  public static void main(String[] args) {
     try (Scanner scanner = new Scanner(System.in)) {
       System.out.print("Enter number of terms to generate Fibonacci Series: ");
       if (scanner.hasNextInt()) {
          int n = scanner.nextInt();
          int[] fib = generateFibonacci(n);
          printFibonacciSeries(fib);
       } else {
          System.out.println("Invalid input. Please enter a positive integer.");
     } catch (Exception e) {
```

```
System.out.println("An error occurred: " + e.getMessage());
}
}
```