本科试题(五)

一、选择题 (每小题 2 分, 共 20 分)

1.	A_3 , A_2 , A_1 ,	A ₀ 是四位二进制码,	若电路采用奇校验,	则校验位C的逻辑表
	达式是	0		

 $A_1 \oplus A_2 \oplus A_1 \oplus A_0 \oplus 1$ $B_1 \oplus A_3 \oplus A_2 \oplus A_1 \oplus A_0$

 $A_3 \oplus A_2 \oplus A_1 \oplus A_0 \oplus 0$ $D A_3 + A_2 + A_1 + A_0$

2. 要使 3:8 线译码器 (74LS138) 能正常工作, 使能控制端 G_1, G_{2A}, G_{2B} 的由 平信号应是____。

A. 001

B. 011

C. 100 D. 111

3. 最小项 *ABCD* 的逻辑相邻项是_____。

A ABCD B $\overline{AB}CD$ C $\overline{AB}\overline{C}D$ D $A\overline{B}C\overline{D}$

4. 设 $F = AB + \overline{CD}$,则它的非函数是_____。

A $\overline{F} = \overline{A + B} \cdot \overline{\overline{C} + \overline{D}}$ B $\overline{F} = (\overline{A} + \overline{B}) \cdot (C + D)$

 $\overline{F} = (A+B) \cdot (\overline{C} + \overline{D})$ $D, \overline{F} = \overline{AB} + \overline{\overline{CD}}$

5. 下列各函数相等,其中无冒险现象的逻辑函数是。

 $A \quad F = AC + B\overline{C} + CD$

 $B = F = CD + B\overline{C} + AC\overline{D}$

 $C ext{ } F = AC + B\overline{C} + CD + BD + AB ext{ } D ext{ } F = AC + CD + B\overline{CD} + BD$

6. 为实现将D触发器转换为T触发器,图1所示电路的虚线框内应是

- a) 或非门
- b) 与非门
- c) 异或门
- d) 同或门

7. 用计数器产生 110010 序列,至少需要 图 1

A. 2 B. 3

C. 4

D. 8

8. 从编程功能讲,E²PROM 的与阵列______,或阵列_____。

- A. 固定,可编程 B. 可编程,固定
- C. 可编程,可编程 D. 固定,固定

9. 在图 2 所示电路中,不能完成 $Q^{n+1}=Q^n$ 逻辑功能的电路是

C. 10

D. 16

10. 图 3 所示计数器的模值为_____

B. 8

图 3

A. 4

二、简答题 (每小题 5 分, 共 10 分)

- 1. 时序逻辑设计的一般步骤是什么?
- 2. 图 4 所示电路的功能是什么?。

三、综合题(10分)

(1) 简化下面函数表达式

 $F(A,B,C,D) = \sum m(0,3,6,9) + \sum \Phi(10,11,12,13,14,15)$

(2)用与非门画出简化表达式的逻辑电路图(设输入既有原变量又有反变量)。

(3) 用 VHDL 语言写出实现该函数的源代码。

四、硬件描述语言设计(15分)

有一时序状态机如图 5 所示,请用 ISP 器件设计该时序状态机电路,写出 ABEL —HDL 语言设计源文件。

五、时序电路分析 (15分)

D 触发器组成的同步时序电路如图 6 所示,写出 Q_0 、 Q_1 、 Q_2 表达式、电路状态图,并说明此电路的逻辑功能。

图 6

六、组合逻辑设计(15分)

设计一个逻辑电路用于监视交通信号灯工作状态的。每一组信号灯由红 R、黄 Y、绿 G 三盏灯组成。正常工作情况下,任何时候必有一盏灯点亮,而且只允许有一盏灯点亮。而当出现其他五种点亮状态时,电路发生故障,发出报警信号。

七、控制器设计(15分)

- 一数字系统,它能对两个 8 位二进制数进行比较。其操作过程如下: 先将两个 8 位二进制数存入寄存器 A 和 B,然后进行比较,最后将大数移入寄存器 A 中。要求:
 - (1) 画出此系统数据通路图。
 - (2) 构造 ASM 流程图。
 - (3) 设计实现 ASM 流程图的计数器型控制器,设状态发生变化在 T_1 节拍,打入寄存器操作发生在 T_2 节拍,写出控制信号表达式及控制器 激励方程表达式,画出控制器逻辑电路图。

<u>关闭</u>