Problem 1

Proof. Prove that $M = \sup(E)$ iff M is an upper bound and there exists an element $x \in E$ such that $M - \epsilon < x$. Assume that there exists no $x \in E$ such that $x > M - \epsilon$ which would mean that for all $x \in E$, $x \le M - \epsilon$. This would then make $M - \epsilon$ and upper bound. This creates a contradiction as if $M - \epsilon$ was an upper bound then $M < M - \epsilon$ would have to be true. However, we know that it is impossible since $\epsilon > 0$

Problem 2

Proof. Assume that U is open and that h = 0. Then for all $x \in U$ it will be that $(x, x) \subseteq U$. But if the range is (x, x) then $x \notin (x, x)$. In order for $x \in (a, b)$ it has to be so that $|b-a| \ge 2$. Which is why h > 0 so that when the intervals are (x - h, x + h), There will at least be a large enough difference between the bounds so that $x \in (a, b)$ is true.

Problem 3

Proof. Assume that u_1 and u_2 are open subsets. And that $U = u_1 \cap u_2$. Prove that U is also an open subset in \mathbb{R} . Saying that $U = u_1 \cap u_2$ means that for any $x \in U$, $x \in u_1$ and $x \in u_2$. Since both u_1, u_2 are open, it means that x is never at the boundaries.

Assume that U is not open. Then that statement $U = u_1 \cap u_2$ implies that x is on the bounds of either u_1 or u_2 . But since we discussed earlier that x has to be on the interior of the bounds, then this is a contradiction. Hence proving that the intersection of open subsets is open in \mathbb{R}

Problem 4

Let us take some arbitrary open set with the intervals (x - h, x + h) for all h > 0. To show a limit point, we need to find some point $y \in \mathbb{Q}$ such that $y \neq x$. We know that since \mathbb{Q} is dense in \mathbb{R} which means (x - h, x + h) has an infinite number of rational numbers in between the bounds. Which means that the set of limit points of \mathbb{Q} is \mathbb{R}

Problem 5

a) Show that A^0 is an open set.

Proof. We can say that x is an interior point such that $x \in (x - h, x + h) \subseteq A$. Let us take some interior point $p \in (x - h, x + h)$, this implies that p is also an interior point of A. We can then say that $(x - h, x + h) \subseteq A^0$ and that $p \in A^0$. This then implies that A^0 is also an open set.

Using the same argument as above. We can replace the open intervals with U such that it is an open subset of \mathbb{R} . That will then show that if $U \subseteq A$ then $U \subseteq A^0$