6. DATABASE SYSTEMS

Lecturer:

Elvira Aitmukhanbetova

Information and Communications Technologies

Elvira.aitmukhanbetova@astanait.edu.kz

6.1: Introduction to Database Systems

- 6.1: Introduction to Database Systems
- 6.2: Data Models
- 6.3: ER Diagram Representation

Learning Objectives

- Define database, DBMS and database systems
- Describe the database importance, its functions, advantages and disadvantages
- List database characteristics
- Understand business rules
- □ Define database users

Introduction

- Database
 - a collection of **related data** and its metadata organized in a **structured** format for optimized

information management

Introduction (2)

- Database ManagementSystem (DBMS)
 - is software that enables the easy creation, access, and modification of databases for efficient and effective database management

Introduction (3)

- Database System
 - of hardware, software, people, procedures, and data that define and regulate the collection, storage, management, and use of data within a database environment

Database Management System (DBMS)

Manages interaction between end users and database

Database System Environment

- Hardware
- Software

 - DBMS
 - Applications
- People
- Procedures
- Data

- Administrators
 - maintain the DBMS and are responsible for administrating the database
- Designers
 - the group of people who actually work on the designing part of the database
- End Users
 - are those who actually reap the benefits of having a DBMS

Database: Importance

- □ Purpose of databases
 - Optimizes data management
 - Transforms data into information

Database: Importance (2)

- Importance of Database Design
 - Defines the database's expected use
 - Avoid data redundancy & ensure data integrity
 - Poorly designed database generates errors

Database: Functions

- □ Functions of DBMS/Database System
 - Stores data and related data entry forms, report definitions, etc.
 - Hides the complexities of relational database model from the user
 - Enforces data integrity
 - Implements data security management
 - Provides backup and data recovery

Database Development Life Cycle

Business Rules

- Definition: Brief, precise, and unambiguous descriptions of operations in an organization
 - based on policies, procedures, or principles within a specific organization
 - help to create and enforce actions within that organization's environment
 - apply to any organization that stores and uses data to generate information

Business Rules (3)

- Sources
 - Interviews
 - Company managers
 - Policymakers
 - Department managers
 - End users
 - Written documentation
 - Procedures, Standards, Operations manuals
 - Observation
 - Business operations

Business Rules (2)

- Purposes
 - Enhance understanding & facilitate communication
 - Standardize company's view of data
 - Constitute a communications tool between users and designers
 - Allow designer to understand business process as well as the nature, role, and scope of data
 - Promote creation of an accurate data model

Database Characteristics

- □ 1) Real-world entity
 - A modern DBMS is more realistic and uses real-world entities to design its architecture
- 2) Relation-based tables
 - DBMS allows entities and relations among them to form tables

Database Characteristics (2)

- 3) Isolation of data and application
 - A database system is entirely different than its data
 - A database is an active entity, whereas data is passive (allowing change without resistance)
- 4) Less redundancy
 - DBMS follows the rules of normalization, which splits a relation when any of its attributes is having redundancy in values

Database Characteristics (3)

- □ 5) Consistency
 - Consistency is a state where every relation in a database remains consistent

- □ 6) Query Language
 - DBMS is equipped with query language, which makes it more efficient to retrieve and manipulate data

Database Characteristics (4)

- □ 7) ACID Properties
 - DBMS follows the concepts of Atomicity, Consistency, Isolation, and Durability (ACID)
 - These concepts are applied to transactions, which manipulate data in a database
 - ACID properties help the database stay healthy in multi-transactional environments and help prevent failure

Database Characteristics (5)

- 8) Multi User and Concurrent Access
 - DBMS supports multi-user environment and allows them to access and manipulate data in parallel
- 9) Multiple views
 - DBMS offers multiple views for different users

Database Characteristics (6)

- □ 10) Security
 - Features like multiple views offer security to some extent where users are unable to access data of other users and departments
 - DBMS offers methods to impose constraints while entering data into the database and retrieving the same at a later stage

Advantages of DBMS

- Improved data sharing
- Improved data security
- Minimized data inconsistency
- □ Improved data access
- Improved decision making

Disadvantages of DBMS

- Increased costs
- Management complexity
- Maintaining currency
- Frequent upgrade/replacement cycles

Introduction to Database Systems Summary

Database System

- is an integrated system of hardware, software, people, procedures, and data
- that define and regulate the collection, storage, management, and use of data within a database environment

Business rules

- Brief, precise, and unambiguous descriptions of operations in an organization
- Users: administrators, end users, and designers
- Advantages of DBMS: improved data sharing, improved data security, minimized data inconsistency, improved data access, improved decision making
- Disadvantages of DBMS: increased costs, management complexity, maintaining currency, frequent upgrade/replacement cycles

6.2: Data Models

- 6.1: Introduction to Database Systems
- 6.2: Data Models
- 6.3: ER Diagram Representation

Learning Objectives

- Define data models
- Describe Entity-Relationship model
- Describe Relational model

Data Model

- Data models define how the logical structure of a database is modeled
 - Are fundamental entities to introduce abstraction in a DBMS
 - Define how data is connected to each other and how they are processed and stored in the system.

Data Models: Entity-Relationship Model

- Entity-Relationship (ER) Model is based on the notion of real-world entities and relationships among them
 - While formulating real-world scenario into the database model, the ER Model creates an entity set, a relationship set, general attributes, and constraints

Data Models: Entity-Relationship Model (2)

- ER Model is based on
 - Entities and their attributes
 - Relationships among entities

Data Models: Relational Model

- The most popular data model in DBMS is the Relational Model
 - Based on first-order predicate logic and defines a table as an n-ary relation

Data Models: Relational Model (2)

- Data is stored in tables called relations
- Relations can be normalized
- In normalized relations, values saved are atomic values
- Each row in a relation contains a unique value
- Each column in a relation contains values from the same domain

Data Models: Relational Model (4)

STUDENT_ID	STUDENT_NAME	COLLEGE_YEAR	MAJOR
1	Madina	2019	Computer Science
2	Dimash	2018	Finance
3	Kayrat	2019	Media Technologies
4	Batyr	1998	Economics
5	Kamila	2000	IT Management
6	John	2015	Economics

Data Models: Relational Model (3)

Entity-Set and Keys

- Key is an attribute or collection of attributes that uniquely identifies an entity among entity set.
- □ Types:
 - Primary Key (PK)
 - an attribute of the table that uniquely identifies every row in that table
 - value cannot be a NULL
 - function is to guarantee entity integrity
 - doesn't allow to appear the same value more than once
 - Foreign key (FK)
 - a field in the table whose values match the primary key of related table
 - may accept multiple null values
 - might be many foreign keys in a table

Database Schema

- Is the skeleton structure that represents the logical view of the entire database
- Defines its entities and the relationship among them

Database Schema (3)

Physical Database Schema

- Pertains to the actual storage of data and its form of storage like files, indices, etc.
- It defines how the data will be stored in secondary storage

Logical Database Schema

- Defines all the logical constraints that need to be applied to the stored data
- It defines tables, views, and integrity constraints

Database Schema (2)

Data Models Summary

- Data models define how the logical structure of a database is modeled.
- Entity-Relationship (ER) model is based on the notion of real-world entities and relationships among them.
- □ The **Relational model** is based on first-order predicate logic and defines a table as an **n-ary relation**.
- Database schema is the skeleton structure that represents the logical view of the entire database

40

6.3: ER Diagram Representation

- 6.1: Introduction to Database Systems
- 6.2: Data Models
- 6.3: ER Diagram Representation

Learning Objectives

- Understand entity representation
- Describe attribute representation
- Describe relationship representation
- Understand generalization
- Define specialization
- Describe inheritance

ER Diagram Representation: Entity

- □ **Entity** is a person, place, thing, or event about which data will be collected and stored.
- Entity is an object of interest to the end user
- Entities are represented using rectangles
- Rectangles are named with the entity set they represent

Student

Teacher

Projects

ER Diagram Representation: Attributes

- Attributes are the properties of entities
 - Every attribute is defined by its set of values called domains
- A required attribute is an attribute that must have a value, and it cannot be left empty
- An optional attribute is an attribute that does not require a value, it can be left empty.

STUDENT
PK student_id
student_name
college_year
major

Crow's Foot Model

Types of Attributes

- Simple attribute
- □ Composite attribute
- Derived attribute
- □ Single-value attribute
- Multi-value attribute

ER Diagram Representation: Attributes (2)

If the attributes are composite, they are further divided in a tree-like structure

LastName

Name

BirthDate

Student

FirstName

Roll_No.

- Every node is then connected to its attribute
- Composite attributes are represented by ellipses that are connected with an ellipse

ER Diagram Representation: Attributes (3)

Multivalued attributes are depicted by a double ellipse

ER Diagram Representation: Attributes (4)

Derived attributes are depicted by a dashed ellipse

ER Diagram Representation: Relationship

- Relationship the logical association among entities
 - Relationships are mapped with entities in various ways.
 - Mapping cardinalities define the number of association between two entities.
- In Chen model, relationships are represented by a diamondshaped box
 - The name of the relationship is written inside the diamond-box

performs

artist

All the entities (rectangles) participating in a relationship, are connected to it by a line

song

Relationship Cardinalities

Cardinality

the **number of instances** of an entity from a relation that can be associated with the relation

Crow's Foot Symbols	Cardinality	Comment
—○<	(0, N)	Zero or many; the "many" side is optional
	(1, N)	One or many; the "many" side is mandatory
	(1,1)	One and only one; the "1" side is mandatory
 0+	(0,1)	Zero or one; the "1" side is optional

Relationship Cardinalities (2)

One-to-one — when only one instance of an entity is associated with the relationship, it is marked as '1:1'.

Relationship Cardinalities (3)

One-to-many — When more than one instance of an entity is associated with a relationship, it is marked as '1:N'.

Relationship Cardinalities (4)

Many-to-many — more than one instance of an entity on the left and more than one instance of an entity on the right can be associated with the relationship.

Participation Constraints

□ Total Participation

- Where each entity is involved in the relationship.
- Total participation is represented by double lines.

Partial participation

- Not all entities are involved in the relationship.
- Partial participation is represented by single lines.

ER Model Notations

Chen Notation

Crow's Foot Notation

A one-to-many relationship. (1:M): A PAINTER paints many PAINTINGS, each PAINTING is painted by one PAINTER.

A many-to-many relationship. (M:N): A STUDENT can enroll to many SOCIAL CLUBS, each SOCIAL CLUB is enrolled by many STUDENTs.

A one-to-one relationship. (1:1): A CHAIRMAN manages one COMPANY, each COMPANY is managed by one CHAIRMAN.

Generalization

- The process of generalizing entities, where the generalized entities contain the properties of all the generalized entities, is called generalization.
- In generalization, a number of entities are brought together into one generalized entity based on their similar characteristics.

 Pigeon
 Sparrow
 Dove

Birds

Specialization

- Specialization is the opposite of generalization
- In specialization, a group of entities is divided into subgroups based on their characteristics

Inheritance

- Inheritance is an important feature of Generalization and Specialization
- It allows lower-level entities to inherit the attributes of higher-level entities

ER Diagram Representation Summary

- Entity is a person, place, thing, or event about which data will be collected and stored.
- Attributes are the properties of entities.
- Relationships are the logical association among entities.
- The process of generalizing entities, where the generalized entities contain the properties of all the generalized entities, is called generalization.
- In specialization, a group of entities is divided into sub-groups based on their characteristics.
- Inheritance allows lower-level entities to inherit the attributes of higher-level entities.