

GRUNER: GRU-based Named Entity Recognition Model

Team: Dev Patel

Hasant Asalam

Ravi Pandey

Date: 05/08/2025

Introduction

Introduction

- Named Entity Recognition (NER) is the task of identifying and classifying entities in unstructured text.
- Entities can be locations, organizations, etc. In biomedical domain, entities can be genes, proteins, or diseases.
- This project focuses on biomedical NER using the CRAFT dataset, a collection of full-text biomedical articles annotated with domain-specific concepts.
- The final output is a trained GRU-based NER model, based on BioBERT embeddings.

Objective

Objective

- Generate IOB-tagged data by parsing Gene Ontology annotations from the CRAFT dataset's XML files.
- Develop a GRU-based Named Entity Recognition (NER) model that utilizes BioBERT embeddings for contextual understanding of biomedical text.
- Train and validate the model on the prepared IOB data to predict tags for word tokens.
- Experiment with hyperparameters (e.g., GRU hidden size, learning rate) to optimize model performance.
- Evaluate the model using key NER metrics: Precision, Recall, and F1 Score.

Methodology

Methodology

- Dataset
 - CRAFT GO annotations
- Data Preprocessing Pipeline
 - Word-Tag tuple
- Model Architecture and Configuration
 - A GRU-NER model
- Training Strategy and Enhancements
 - Trained model
- Evaluation and Performance Insights

Dataset

- The Colorado Richly Annotated Full-Text (CRAFT) Corpus
- A richly annotated biomedical corpus.
- Contains full-text biomedical journal articles with annotations for molecular function, biological process, and cellular component.

- Annotation Extraction
 - For each ontology XML file, we parse every element and collect its spans in a list of 4-tuples (start, end, spanned Text, next Start)
- Tokenization and Alignment
 - Used spaCy for sentence and token segmentation.
 - For each token, we computed its character-based start and end positions and match these against our span tuples.
 - When a discontinuous annotation is encountered, the words between it's tagged components are dropped from the final result.

- Overlap Resolution
 - When two annotations overlap in their character offsets, we discard the smaller span (shorter character length) to avoid conflicting labels.
- Output
 - For each input file, we produce a corresponding output file containing (word, tag) tuples.

```
def create_iob_tags_discontinuous(
    text: str,
    spans: List[Tuple[int,int,str,int]]
) -> List[List[Tuple[str,str]]]:
    """
    text: full document
    spans: list of (start, end, spanned_text, next_start)

- Drops any span fully contained in a larger one.
    - For discontinuous spans (next_start > 0), skips tokens in [end, next_start).
    - Emits B at the start of each new annotation, I for inside, O otherwise.
    """
```


Sample Output

```
IOB output for 15550985:

[['A', '0'], ['Chemoattractant', '0'], ['Role', '0'], ['for', '0'], ['NT-3', '0'], ['in', '0'], ['Proprioceptive', 'B'], ['Axon', 'B'], ['Guidance', 'I'], ['Deletion', '0'], ['of', '0'], ['the', '0'], ['proapoptotic', '0'], ['gene', '0'], ['Bax', '0'], ['in', '0'], ['NT-3', '0'], ['knockout', '0'], ['mice', ['TrkC', '0'], ['-', '0'], ['positive', '0'], ['peripheral', '0'], ['and', '0'], ['central', '0'], ['axons', 'B'], ['from', '0'], ['dorsal', '0'], ['root' ['Peripherally', '0'], [', ', '0'], ['muscle', '0'], ['spindles', '0'], ['are', '0'], ['and', '0'], ['IrkC', '0'], ['-', '0'], ['positive' ['Centrally', '0'], [', '0'], ['yroprioceptive', 'B'], ['axons', 'B'], ['branch', '0'], ['in', '0'], ['ectopic', '0'], ['regions', '0'], ['of', '0'], ['In', '0'], ['vitro', '0'], ['assays', '0'], ['reveal', '0'], ['chemoattractant', '0'], ['effects', '0'], ['of', '0'], ['NT-3', '0'], ['or', '0'], ['assays', '0'], ['assays', '0'], ['show', '0'], ['NT-3', '0'], ['show', '0'], ['assays', '0'], ['assays', '0'], ['assays', '0'], ['assays', '0'], ['assays', '0'], ['show', '0'], ['assays', '0'], ['assays', '0'], ['assays', '0'], ['assays', '0'], ['assays', '0'], ['show', '0'],
```

100%| 97/97 [01:49<00:00, 1.13s/it] Done!

- Training and validation split
 - Data is randomly split 80% for training and 20% for validation before training the model.
- Data normalization or filtering
 - We filter out the dataset based on I and B tags in any sentence.
 - Two filters are used
 - Four number of tags
 - Eight number of tags

Model Architecture and Configuration

- Bidirectional GRU—based sequence labeling model.
- Architecture:
 - Embedding layer:
 - Maps each token to a dense vector
 - Bidirectional GRU Layer:
 - Hidden size set by hyperparameter.
 - Captures forward and backward contextual dependencies.

Model Architecture and Configuration

- Architecture:
 - Activation:
 - Two variants used
 - Adam-activated GRU: standard GRU update with Adam optimizer
 - ReLU-activated GRU: applies a ReLU after the GRU outputs to improve gradient flow and stability
 - Linear Output Layer
 - Projects the bidirectional GRU hidden states to the IOB tag space, producing token-level classification logits.

Model Architecture and Configuration

- Hyperparameter Settings:
 - Hidden dimensions: 64, 128, 256, 512, 1024, 2048, 4096
 - Learning rates: 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.09
 - Batch size: 32, 64, 128
 - Number of epochs: 1000, 2000, 3000
 - Optimizers:
 - Standard Adam
 - Adam
 - SDG

Training Strategy and Enhancements

- Grid Search:
 - Initially trained with a lower number of hidden dimensions (64 to 512)
 - Increased from 1024 to 4096 hidden dimensions to get better performance scores.
 - Learning rate 0.09 added for final training runs.
- Grid search was done to identify the optimal combination of hyperparameters
- Goal was to enhance the performance of the model on unseen data.

Training Strategy and Enhancements

- Data Enhancements:
 - Improved normalization and padding of input sequences.
 - Accounted for discontinuous and overlapping annotations. This showed a decreased F1 score but increased recall.
- Training Monitoring
 - Tracked loss, precision, recall, and F1 score at each configuration
 - Evaluated effect of ReLU on model convergence.

Results

Evaluation Approach

Precision

Proportion of correctly predicted entities out of all predicted entities.

Recall

Proportion of correctly predicted entities out of all actual entities.

F1 Score

 Harmonic mean of precision and recall - balances false positives and false negatives.

Two Evaluation Schemes

- Fine-Grained Evaluation:
 - Treats B (Beginning), I (Inside), O (Outside) as distinct classes.
 - Evaluates the model's ability to classify exact entity positions.
- Binary Grouped Evaluation:
 - Groups B & I as IB, and evaluates against O.
 - Emphasizes detection of entity vs. non-entity rather than exact boundaries.

Evaluation Approach

- First, we consider all 3 classes I,O and B.
- Excluding 'O' tags gives better view of actual NER quality.
- 'O' vs 'Non-O' entity classes used for metrics calculation
- Highlights challenges in identifying multi-token entities.

Best Performing Configuration

• Hidden Dimensions: 4096

• Learning Rate: 0.09

• Optimizer: Adam

• **Epochs**: 3000

• F1 Score:

■ ~0.418 (All Classes),

■ ~0.397 (Grouped IB vs. O)

Figure 1: Contigency matricies for best performing model configuration

- Higher Hidden Dimensions -> Better Recall
 - Recall improved from 0.22 (1024) to 0.34 (4096)
 - Captures complex biomedical patterns more effectively
- Learning Rate Impact
 - Higher LR = faster convergence and better recall
 - LR = 0.09 gave best F1 but risked instability without ReLU
- Precision Stability
 - Precision stayed near 0.5 across most configs
 - F1 was primarily driven by improvements in recall

Evaluation and Performance Summary

- Evaluation Strategy
 - Metrics: Precision, Recall, F1 Score
 - Schemes:
 - Multi-class: Evaluates B, I, O separately
 - Grouped: B & I as one class vs O (entity vs non-entity)
- Best Model Configuration
 - Hidden Units: 4096, Learning Rate: 0.09
 - Optimizer: Adam, Epochs: 3000
 - F1 Score: **0.418** (multi-class), **0.397** (grouped)
- Key Insights
 - Recall boosts drove most F1 gains; precision stayed ~0.5
 - ReLU activation stabilized high learning rate training
 - Data filtering had minimal impact; full dataset performed better

Precision-Recall Tradeoff

- Precision
 - Measures how many predicted entities were correct
 - Stayed stable across all configurations (~0.50)
- Recall
 - · Measures how many actual entities were correctly identified
 - Improved significantly with:
 - Higher hidden dimensions (1024 → 4096)
 - Higher learning rates (up to 0.09)
 - ReLU activation aiding gradient flow
- Trade-off Observed
 - Boosting recall led to F1 improvements
 - But increasing recall often came at the cost of training stability
 - Precision stayed flat → Recall was the main driver of model gains
- Insight
 - Careful balancing of model complexity and learning rate is key to optimizing recall without sacrificing precision

Conclusion

Conclusion

- This project developed a GRU-based NER model tailored for biomedical text using the CRAFT corpus.
- BioBERT embeddings enriched token representations, improving semantic understanding of domain-specific entities.
- A thorough grid search over hyperparameters revealed that:
 - 4096 hidden units, learning rate of 0.09, and Adam optimizer gave the best results.

Conclusion

- Evaluation using multi-class and grouped tagging showed that:
 - Recall improvements, aided by ReLU activation, were key to maximizing F1 Score.
- While filtering helped address class imbalance, using the full dataset yielded better performance overall.
- The study shows that domain-adapted embeddings + GRU architecture can effectively tackle biomedical NER, with further gains possible via architecture tuning and domain-specific optimization.

References

- Cohen, K. B., Verspoor, K., Fort, K., Funk, C., Bada, M., Palmer, M., & Hunter, L. E. (2017). The Colorado richly annotated full text (CRAFT) corpus: multi-model annotation in the biomedical domain. *In Handbook of Linguistic Annotation* (pp. 1379-1394). Springer, Dordrecht.
 - o CRAFT Corpus GitHub Repository

Thank You

