МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине «ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ»

Вариант №3433

Выполнил: Студент группы Р3134 Баянов Равиль Динарович Преподаватель: Бострикова Дарья Константиновна

Содержание

Цель	3
Задание	3
Текст исходной программы	
Описание программы	
Вывод	

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

4EE:	050	0	4FC:	EEF4
4EF:	020	0	4FD:	84F0
4F0:	E00	0	4FE:	CEF9
4F1:	020	0	4FF:	0100
4F2:	+ 020	0	500:	0000
4F3:	EEF	D	501:	0000
4F4:	AF0	3	502:	0000
4F5:	EEF	A		
4F6:	4EF	7		
4F7:	EEF	7		
4F8:	ABF	6		
4F9:	F00	3		
4FA:	AEF	6		
4FB:	070	0		

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии				
4EE	0500		Значение А				
4EF	0200		Значение В				
4F0	E000		Значение С				
4F1	0200		Значение D				
4F2	+ 0200	CLA	Обнулить аккумулятор АС (Безадресная)				
4F3	EEFD	ST EFD	Записать значение аккумулятора АС в ячейку памяти 4F1 (D) (Прямая относительная)				
4F4	AF03	LD F04	Записать значение в аккумулятор АС. АС=4 (Прямая загрузка)				
4F5	EEFA	ST EFA	Записать значение аккумулятора АС в ячейку памяти 4F0 (C) (Прямая относительная)				
4F6	4EF7	ADD EF7	Сложить значение аккумулятора АС и значение ячейки памяти 4EE. Результат сохранить в аккумулятор АС. AC = 4+4EE (Прямая относительная)				
4F7	EEF7	ST EF7	Записать значение аккумулятора АС в ячейку памяти 4EF (B) (Прямая относительная)				
4F8	ABF6	LD BF6	Записать значение ячейки 500 в аккумулятор АС. АС=500 (Косвенная автодекрементная)				
4F9	F003	BEQ 03	Переход к ячейке 4FD, если Z==1 (Ветвление)				
4FA	AEF6	LD EF6	Записать значение ячейки 4F1 в аккумулятор AC. AC=4F1 (Прямая относительная)				
4FB	0700	INC	Прибавить 1 к аккумулятору АС. АС=4F1+1(Безадресная)				
4FC	EEF4	ST EF4	Записать значение аккумулятора АС в ячейку памяти 4F1 (D) (Прямая относительная)				
4FD	84F0	LOOP 4F0	Значение ячейки памяти 4F0 (C) $-1 ->$ 4F0. Переход к адресу 4FE, если значение ячейки памяти 4F0 (C) $<=0$ уменьшается на 1(Прямая абсолютная)				
4FE	CEF9	JUMP EF9	Переход к адресу 4F8 (Прямая относительная)				
4FF	0100	HLT	Остановка (Безадресная)				
500	0000		A [0]				
501	0000		A [1]				
502	0000		A [2]				
503	0000		A [3]				

Описание программы

Подсчёт количества ненулевых элементов массива А.

- D результат подсчёта.
- С количество элементов массива.
- А адрес первого элемента массива.
- В адрес текущего элемента массива.

Расположение в памяти БЭВМ программы, исходных данных и результатов: Адреса первой и последней выполняемой инструкции программы:

4F2 – адрес первой инструкции

4FF – адрес последней инструкции

500, 501, 502, 4ЕЕ, 4F0 – исходные данные

4EF – промежуточный результат

4F1 – итоговый результат

4F2 - 4FF - команды

Область представления:

- А, В, С, D 16ти разрядные целые числа в прямом коде
- А[0], А[1], А[2] 16ти разрядные целые числа в дополнительном коде

Область допустимых значений

A[0] - A[3] – знаковые 16 – разрядные элементы массива (-32768; 32767)

C - (1, 255) – кол-во элементов.

Элементы массива начинаются с адреса 500.

2345

AEEF

0000

0009

Трассировка

Выполненная Команда		Содержание аккумуляторов процессора после выполнение команды							Ячейка, содержимое которой изменилось после выполнения команды			
Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Знчн
4F2	0200	4F2	0000	000	0000	000	0000	0000	004	0100		
4F2	0200	4F3	0200	4F2	0200	000	04F2	0000	004	0100		
4F3	EEFD	4F4	EEFD	4F1	0000	000	FFFD	0000	004	0100	4F1	0000
4F4	AF04	4F5	AF04	4F4	0004	000	0004	0004	000	0000		
4F5	EEFA	4F6	EEFA	4F0	0004	000	FFFA	0004	000	0000	4F0	0004
4F6	4EF7	4F7	4EF7	4EE	0500	000	FFF7	0504	000	0000		
4F7	EEF7	4F8	EEF7	4EF	0504	000	FFF7	0504	000	0000	4EF	0504
4F8	ABF6	4F9	ABF6	503	0009	000	FFF6	0009	000	0000	4EF	0503
4F9	F003	4FA	F003	4F9	F003	000	04F9	0009	000	0000		
4FA	AEF6	4FB	AEF6	4F1	0000	000	FFF6	0000	004	0100		
4FB	0700	4FC	0700	4FB	0700	000	04FB	0001	000	0000		
4FC	EEF4	4FD	EEF4	4F1	0001	000	FFF4	0001	000	0000	4F1	0001
4FD	84F0	4FE	84F0	4F0	0003	000	0002	0001	000	0000	4F0	0003
4FE	CEF9	4F8	CEF9	4FE	04F8	000	FFF9	0001	000	0000		
4F8	ABF6	4F9	ABF6	502	0000	000	FFF6	0000	004	0100	4EF	0502
4F9	F003	4FD	F003	4F9	F003	000	0003	0000	004	0100		
4FD	84F0	4FE	84F0	4F0	0002	000	0001	0000	004	0100	4F0	0002
4FE	CEF9	4F8	CEF9	4FE	04F8	000	FFF9	0000	004	0100		
4F8	ABF6	4F9	ABF6	501	AEEF	000	FFF6	AEEF	008	1000	4EF	0501
4F9	F003	4FA	F003	4F9	F003	000	04F9	AEEF	008	1000		
4FA	AEF6	4FB	AEF6	4F1	0001	000	FFF6	0001	000	0000		
4FB	0700	4FC	0700	4FB	0700	000	04FB	0002	000	0000		
4FC	EEF4	4FD	EEF4	4F1	0002	000	FFF4	0002	000	0000	4F1	0002
4FD	84F0	4FE	84F0	4F0	0001	000	0000	0002	000	0000	4F0	0001
4FE	CEF9	4F8	CEF9	4FE	04F8	000	FFF9	0002	000	0000		
4F8	ABF6	4F9	ABF6	500	2345	000	FFF6	2345	000	0000	4EF	0500
4F9	F003	4FA	F003	4F9	F003	000	04F9	2345	000	0000		
4FA	AEF6	4FB	AEF6	4F1	0002	000	FFF6	0002	000	0000		
4FB	0700	4FC	0700	4FB	0700	000	04FB	0003	000	0000		
4FC	EEF4	4FD	EEF4	4F1	0003	000	FFF4	0003	000	0000	4F1	0003
4FD	84F0	4FF	84F0	4F0	0000	000	FFFF	0003	000	0000	4F0	0000
4FF	0100	500	0100	4FF	0100	000	04FF	0003	000	0000		

Вывод

В ходе выполнения данной лабораторной работы я научился работать с циклами, ветвлениями, одномерными массивами, прямой относительной и косвенной адресацией, изучил цикл выполнения таких команд как LOOP и JUMP