# Convolution Neural Network (CNN)

### Output Size After Convolution Layer

### Formula for Convolution Layer Output Size

$$W_{out} = rac{W_{in} - F + 2P}{S} + 1$$
  $H_{out} = rac{H_{in} - F + 2P}{S} + 1$ 

#### Where:

- $W_{in}$  = Width of input image
- $H_{in}$  = Height of input image
- F = Filter size (Kernel size)
- P = Padding (adding zeros around the image to preserve size)
- S = Stride (step size of filter)
- $W_{out}$  = Width of output image
- $H_{out}$  = Height of output image

### Examples

### 1) Given:

Input Image Size = 32 × 32

Filter Size =  $5 \times 5$ 

Stride = 1

Padding = **0** (no padding)

2) Input Image Size =  $32 \times 32$ 

Filter Size =  $5 \times 5$ 

Stride = 1

Padding = 2

## Output Size After Pooling Layer (Max/Average Pooling)

 Pooling reduces the spatial dimensions of the image. The most common type is 2x2 Max Pooling

$$W_{out} = rac{W_{in} - F}{S} + 1$$
  $H_{out} = rac{H_{in} - F}{S} + 1$ 

### Where:

- **F** = Pooling filter size (commonly 2×2)
- **S** = Stride (commonly 2)

### **Max Pooling Layer**

### Given:

- Input Image Size = 28 × 28 (from previous Convolution output)
- Pooling Size = 2 × 2
- Stride = **2**
- W out= (28-2)/2=(26/2)+1=14

Image size is :14\*14

### What is a Kernel in CNN

- A **kernel** is a small **matrix of weights** (usually of size **3x3, 5x5, or 7x7**) used to **extract features** like edges, colors, gradients, and textures from an image.
- It performs a **dot product operation** with the input image, producing an **output feature map** (also called an activation map).
- The kernel moves across the input image using a certain stride (step size).

## Types of Kernels in CNN

| Kernel Type           | Purpose                                        | Example                       |
|-----------------------|------------------------------------------------|-------------------------------|
| Edge Detection Kernel | Detects edges in images (horizontal, vertical) | Sobel, Prewitt, Scharr, Canny |
| Sharpening Kernel     | Enhances edges and sharpens images             | Laplacian Kernel              |
| Blur Kernel           | Blurs or smoothens the image                   | Gaussian Blur, Average Blur   |
| Emboss Kernel         | Highlights edges to give a 3D effect           | Emboss Filter                 |

## Edge Detection Kernel (for detecting edges in images)

- When you want to detect edges like **borders**, **boundaries**, **or outlines** of objects in an image.
- Useful in tasks like object detection, image segmentation, and feature extraction.

**Example: Sobel Kernel for Horizontal Edge Detection** 

**Kernel Matrix (3x3):** 
$$K_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

This kernel detects horizontal edges in an image.

### Vertical Edge Detection Kernel

This kernel detects **vertical edges** in an image.

**Kernel Matrix (3x3):** 

$$K_y = egin{bmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ 1 & 2 & 1 \end{bmatrix}$$

- Face detection (detect facial boundaries).
- Number plate recognition (detect boundaries of the number plate).
- Object recognition (detect outlines of objects).

## Blurring Kernel (for blurring or smoothing an image)

This kernel **smoothens the image** by averaging pixel values around a central pixel.

### **Kernel Matrix (3x3):**

$$K = rac{1}{16} egin{bmatrix} 1 & 2 & 1 \ 2 & 4 & 2 \ 1 & 2 & 1 \end{bmatrix}$$

- Preprocessing images before feeding them to a CNN.
- Reducing noise in medical images (X-ray, MRI).
- Face recognition (to remove background noise).

## Sharpening Kernel (for enhancing edges and features)

- When you want to enhance edges, textures, or fine details in an image.
- Useful in object detection, face recognition, and medical imaging.
- Kernel Matrix:

$$K = egin{bmatrix} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \end{bmatrix}$$

This kernel increases the contrast around edges, making objects sharper.

- Medical imaging (highlight fractures in X-ray).
- Object recognition (enhance object boundaries).
- Image enhancement (sharpen blurry images)

### Emboss Kernel (for 3D effect)

- When you want to give a 3D effect or depth to an image.
- Useful in artistic image processing, texture analysis, or stylized filters.

**Kernel Matrix:** 

$$K = egin{bmatrix} -2 & -1 & 0 \ -1 & 1 & 1 \ 0 & 1 & 2 \end{bmatrix}$$

This kernel highlights the edges by giving them a raised or embossed look.

- Artistic image processing.
- Texture analysis.
- 3D effect generation.

## Identity Kernel (No effect, just pass the image as it is)

- When you want to simply pass the image as it is without modification.
- This kernel is useful in preprocessing pipelines when you don't want to alter the image.
- Kernel Matrix:

$$K = egin{bmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

The image will remain unchanged after applying this kernel.

- No change in the image.
- Passing input directly to CNN without modification



