Sea $C = \{4, 6, 8, 9, 10, ...\}$ el conjunto de los números compuestos enteros positivos. Para cada $n \in C$, sea a_n el menor número k tal que k! es divisible entre n. Determina si la siguiente serie converge:

$$\sum_{n \in C} \left(\frac{a_n}{n}\right)^n$$

Solución:

Por el criterio de la raíz, una serie $\sum b_n$ es convergente si y solo si $\lim_{n\to\infty} \sqrt[n]{b_n} < 1$. Entonces, si $b_n = \left(\frac{a_n}{n}\right)^n$, la serie converge si $\lim_{n\to\infty} \frac{a_n}{n} < 1$.

Conviene ver algunos casos particulares:

$$n = 4 \Longrightarrow a_4 = 4 \Longrightarrow 4! = 24 \Longrightarrow \frac{a_4}{4} = 1$$

$$n = 6 \Longrightarrow a_6 = 3 \Longrightarrow 3! = 6 \Longrightarrow \frac{a_6}{6} = \frac{1}{2}$$

$$n = 8 \Longrightarrow a_8 = 4 \Longrightarrow 4! = 24 \Longrightarrow \frac{a_8}{8} = \frac{1}{2}$$

$$n = 9 \Longrightarrow a_9 = 6 \Longrightarrow 6! = 720 \Longrightarrow \frac{a_9}{9} = \frac{2}{3}$$

$$n = 10 \Longrightarrow a_{10} = 5 \Longrightarrow 5! = 120 \Longrightarrow \frac{a_{10}}{10} = \frac{1}{2}$$

Parece que $\frac{a_n}{n} \leqslant \frac{2}{3}$ para n > 4. A continuación, se muestran las posibles formas de n:

Sea $n = p_1 \cdot p_2$, con p_i números primos y $p_1 < p_2$, entonces, $a_n = p_2$, ya que $p_2! = p_2 \cdot (p_2 - 1) \cdots p_1 \cdot (p_1 - 1) \cdots 1$. Por tanto, $n \mid k$, y $\frac{a_n}{n} = \frac{1}{p_1} \leqslant \frac{1}{2}$, ya que 2 es el menor número primo positivo.

Si
$$n = p_1 \cdots p_m$$
, con $p_1 < \dots < p_m$, entonces $a_n = p_m$ y $\frac{a_n}{n} = \frac{1}{p_1 \cdot p_2 \cdots p_{m-1}} \leqslant \frac{1}{2}$.

Por otro lado, cuando $n = p^{\alpha}$, con $\alpha \ge 2$, se tiene que $a_n = \alpha p$, porque se cumple que $(\alpha p)! = \alpha p \cdots (\alpha - 1) p \cdots p \cdots 1$, y por tanto, $n \mid (\alpha p)!$. Y entonces, el cociente $\frac{a_n}{n} = \frac{\alpha}{p^{\alpha-1}} \le \frac{2}{3}$, ya que $n = 4 = 2^2$ es un caso aparte.

Y generalizando, si $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2}$, con $p_1^{\alpha_1} < p_2^{\alpha_2}$, se sigue que $a_n = \alpha_2 p_2$, y por tanto $\frac{a_n}{n} \leqslant \frac{2}{3}$. Y este caso se puede generalizar para m, de manera similar al caso anterior.

Entonces, queda probado que $\frac{a_n}{n} \leqslant \frac{2}{3}$ para n > 4. Y entonces $\lim_{n \to \infty} \frac{a_n}{n} \leqslant \lim_{n \to \infty} \frac{2}{3} = \frac{2}{3} < 1$, y por tanto, la serie del enunciado es convergente.