Exercise Sheet 3

Discrete Mathematics, 2020.9.25

- 1. a) Prove that $p \to (q \to p)$ is a tautology.
 - b) Prove that $(p \to q \to r) \to (p \to q) \to (p \to r)$ is a tautology.
 - c) Prove that $p \to q \to r \equiv (p \land q) \to r$.

Here, \rightarrow is right associative, i.e. $\phi \rightarrow \psi \rightarrow \chi$ means $\phi \rightarrow (\psi \rightarrow \chi)$.

- 2. (P35, Ex.22-24, [R])
 - a) Show that $(p \to q) \land (p \to r)$ and $p \to (q \land r)$ are logically equivalent.
 - b) Show that $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are logically equivalent.
 - c) Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent.
- 3. (P35, Ex.31, [R]) Show that $(p \to q) \to r$ and $p \to (q \to r)$ are not logically equivalent.
- 4. (P35, Ex.32, [R]) Show that $(p \land q) \to r$ and $(p \to r) \land (q \to r)$ are not logically equivalent.
- 5. Consider the compound proposition $\phi = p \to (q \oplus r)$ where p, q, r are propositional variables.
 - (a) Find a compound proposition ψ in CNF such that $\phi \equiv \psi$.
 - (b) Use the algorithm that we learned in class to construct a compound proposition ψ in CNF such that ϕ is satisfiable if and only if ψ is satisfiable.
- 6. (P36, Ex.52, [R]) In this exercise we will show that $\{|\}$ is a functionally complete collection of logical operators. (**Note**: p|q means p NAND q. The proposition p NAND q is true when either p or q, or both, are false; and it is false when both p and q are true. The operators | is called the Sheffer stroke after H. M. Sheffer)
 - a) Show that $\phi | \phi$ is logically equivalent to $\neg \phi$.
 - b) Show that $(\phi|\psi)|(\phi|\psi)$ is logically equivalent to $\phi \wedge \psi$.
 - c) Show that {|} is a functionally complete collection of logical operators based on the results above.
- 7. Consider potential process of determining whether

$$(\neg p_1 \lor p_2) \land (\neg p_1 \lor p_3 \lor p_5) \land (\neg p_2 \lor p_4) \land (\neg p_3 \lor \neg p_4) \land (p_1 \lor p_5 \lor \neg p_2) \land (p_2 \lor p_3) \land (p_2 \lor \neg p_3) \land (p_6 \lor \neg p_5)$$
 is SAT or UNSAT.

- a) Calculus UnitPro(\mathcal{J}_1) where $\mathcal{J}_1 = [p_1 \mapsto \mathbf{T}, p_3 \mapsto \mathbf{F}].$
- b) Calculus UnitPro(\mathcal{J}_2) where $\mathcal{J}_2 = [p_3 \mapsto \mathbf{F}]$.