6-8 考虑一个有两个产地、三个销地的不平衡运输问题. 有关的供、求数量及单位运费如下表:

单位运费 销 地	B_1	B ₂	B ₃	供应量(单位)
A_1	10	4	12	3000
A_2	8	10	3	4000
需求量 (单位)	2000	1500	5000	8500

现有以下各级目标:

- P_1 : 销地 B_3 的需求必须全部满足;
- P_2 : 至少要满足每个销地需求量的 75%;
- P_3 : 总的运输费用最小;
- P4: 由于合同规定,至少要产地 A2 供应销地 B1 1000 个单位;
- P_5 : 出于运输安全考虑,尽量减少产地 A_1 向销地 B_2 的调运和产地 A_2 向销地 B_2 的调运;
- P_6 : 销地 B_1 和 B_2 实际调人数与其需求数的比值应相等,即 B_1 、 B_2 满足需求量的百分比应该一致. 试 建立这个问题的目标规划模型.

6-9 试用目标规划序列法(SLGP)、<u>多阶段算法(MLGP</u>)、单纯形算法分别解下列目标规划模型. (利定以) $\min Z = P_1(d_1^- + d_2^+) + P_2d_4^+ + P_3d_3^- + P_4(2d_1^- + d_2^-)$

$$x_{1} + d_{1}^{-} - d_{1}^{+} = 30$$

$$x_{2} + d_{2}^{-} - d_{2}^{+} = 15$$
s. t.
$$\begin{cases} 8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 1000 \\ 2x_{1} + 3x_{2} + d_{4}^{-} - d_{4}^{+} = 8 \\ x_{1}, x_{2}, d_{i}^{-}, d_{i}^{+} \geqslant 0 \quad i = 1, 2, 3, 4 \end{cases}$$

は用学権者第代(2) $\min Z = P_1 d_1^- + P_2 d_{11}^+ + P_3 (5d_2^- + 3d_3^-) + P_4 d_1^+$

s. t.
$$\begin{cases} x_1 + x_2 + d_1^- - d_1^+ = 80 \\ x_1 + d_2^- = 70 \end{cases}$$
$$x_2 + d_3^- = 45$$
$$d_1^+ + d_{11}^- - d_{11}^+ = 10$$
$$x_1, x_2 \geqslant 0, d_i^-, d_i^+ \geqslant 0 \quad i = 1, 2, 3, 11$$

 $\langle 4/(1 - g) \rangle$ (3) $\min Z = P_1 d_1^- + P_2 (d_2^- + d_2^+) + P_3 [2d_3^+ + (d_4^+ + d_4^-)]$

$$\begin{cases} 9x_1 + 3x_2 \leqslant 720 \\ -x_1 + x_2 \geqslant 30 \\ x_2 + d_1^- - d_1^+ = 50 \end{cases}$$
s. t.
$$\begin{cases} 70x_1 + 30x_2 + d_2^- - d_2^+ = 4000 \\ 3x_1 + 9x_2 + d_3^- - d_3^+ = 540 \\ 5x_1 + 5x_2 + d_4^- - d_4^+ = 450 \\ x_1, x_2, d_1^-, d_1^+ \geqslant 0 \quad i = 1, 2, \dots, 4 \end{cases}$$