butional sense.

Do of A such that $C_C^\infty \subseteq D_O$ and Af = Af in the sense of distributions for all $f \in D_O$. Then A satisfies Kato's inequality in the sense of distributions. In fact, let $0 \le \phi \in C_C^\infty(\mathbb{R}^n)$. Then $\langle Af, \phi \rangle = \langle Af, \phi \rangle = \langle f, A^*\phi \rangle$ for all $f \in D_O$. Since D_O is a core of A, this implies that $\phi \in D(A')$ and $A'\phi = A^*\phi$. Thus (K) gives $Re < ((sign \ \overline{f})Af, \phi \rangle = Re < ((sign \ \overline{f})Af), \phi \rangle \le \langle |f|, A'\phi \rangle = \langle |f|, A^*\phi \rangle = \langle A|f|, \phi \rangle$ for all $f \in C_C^\infty(\mathbb{R}^n)$, $0 \le \phi \in C_C^\infty(\mathbb{R}^n)$. This is Kato's inequality in the distri-

Remark. It has been proved by Miyajima and Okasawa (1984) that (K_d) implies that $m \le 2$ and that the principal part $A_o = \sum_{|\alpha|=2} a_\alpha D^\alpha$ of A is elliptic; i.e., if we write the operator A_o in the form $A_o = \sum_{i,j=1}^2 b_{ij} \frac{\partial^2}{\partial x_i} \partial x_j$, then the matrix $(b_{ij}(x))$ is positive semidefinite for all $x \in \mathbb{R}^n$.

Finally we formulate Theorem 2.4 for the space $E:=C_O(X)$ (X locally compact) (which is not σ -order complete unless X is σ -Stonian). Recall, for $f\in C_O(X)$, sign f is defined as a Borel function and for any bounded Borel function g on X and any $\phi\in M(X)=C_O(X)$ we let $\langle g, \phi \rangle = \int g(x) \ d\phi(x)$ (see B-II,Sec.2).

<u>Theorem</u> 2.6. Let X be a locally compact space and A be the generator of a strongly continuous positive semigroup on $C_{O}(X)$. Then

(K) Re<(sign
$$\overline{f}$$
) Af, ϕ > \leq <|f|, A' ϕ > (f \in D(A) , ϕ \in D(A')₊).

The proof of Theorem 2.4 can be taken over literally. Also the analogue of the proof given for L^p -spaces (preceding Theorem 2.4) is valid if one uses B-II,Lemma 2.6.

3. A CHARACTERIZATION OF GENERATORS OF POSITIVE SEMIGROUPS

In this section we confine ourselves to real Banach lattices. This does not mean a restriction since every positive semigroup on a complex Banach lattice leaves the real part of the space invariant.