UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING

INFORMATICS 1 - COMPUTATION AND LOGIC

SCHOOL OF INFORMATICS

Tuesday 17 August 2010

14:30 to 16:30

Convener: J Bradfield External Examiner: A Preece

INSTRUCTIONS TO CANDIDATES

- 1. Note that ALL QUESTIONS ARE COMPULSORY.
- 2. DIFFERENT QUESTIONS MAY HAVE DIFFERENT NUMBERS OF TOTAL MARKS. Take note of this in allocating time to questions.

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

1. (a) Using logical equivalences below, show that the following expressions are equivalent. Show precisely which rules are applied.

i.
$$\neg(\neg A \to B) \lor \neg(\neg C)$$
 is equivalent to $(A \lor B) \to C$

[5 marks]

ii.
$$\neg (A \land B) \land (\neg A \lor C)$$
 is equivalent to $A \to (\neg B \land C)$

[5 marks]

Rule	Equivalence		
1	$X \to Y \leftrightarrow \neg X \lor Y$		
2	$\neg\neg X \leftrightarrow X$		
3	$\neg(X \lor Y) \leftrightarrow \neg X \land \neg Y$		
4	$\neg (X \land Y) \leftrightarrow \neg X \lor \neg Y$		
5	$X \vee (Y \wedge Z) \leftrightarrow (X \vee Y) \wedge (X \vee Z)$		

(b) Using a truth table show that

$$\neg(\neg A \to B) \lor \neg(\neg C) \leftrightarrow (A \lor B) \to C$$

is a tautology.

[10 marks]

2. Using the rules below prove the following, showing precisely which rules are applied.

(a)
$$[(p \to q) \land (q \to s)] \vdash p \to (s \lor q)$$

[10 marks]

(b)
$$[\vdash ((p \land q) \to s) \to (p \to (q \to s))]$$

[10 marks]

Rule	Sequent	Supporting proofs
1	$\mathcal{F} \vdash A$	$A \in \mathcal{F}$
2	$\mathcal{F} \vdash A \to B$	$[A \mathcal{F}] \vdash B$
3	$\mathcal{F} \vdash A \land B$	$\mathcal{F} \vdash A, \mathcal{F} \vdash B$
4	$\mathcal{F} \vdash A \lor B$	$\mathcal{F} \vdash A$
5	$\mathcal{F} \vdash A \lor B$	$\mathcal{F} \vdash B$
6	$\mathcal{F} \vdash B$	$A \to B \in \mathcal{F}, \mathcal{F} \vdash A$
7	$\mathcal{F} \vdash C$	$A \land B \in \mathcal{F}, [A, B \mathcal{F}] \vdash C$

3. Given the following premises:

$$[x \vee w, (z \to y) \wedge (x \to z), \neg (z \wedge y)]$$

(a) Convert them to a single expression in:

i. Conjuctive Normal Form using logical equivalences

[6 marks]

ii. Clausal Form (CF)

[2 marks]

(b) Prove w from the premises using the Resolution proof rule. Show each step in detail.

[12 marks]

4. (a) Draw a FSM that accepts the language of strings over the alphabet $\{a,b\}$ with at least two a's followed by either two or more b's, or a b and then an a.

[2 marks]

- (b) Draw separate FSMs that accept the language of strings over the alphabet $\{a,b\}$ that have the following properties:
 - i. an even number of b's

[2 marks]

ii. an odd number of a's

[2 marks]

Then compose the two machines together to create a new machine that accepts strings which have an even number of b's followed by an odd number of a's.

[2 marks]

(c) Use the subset procedure to convert the following non-deterministic FSM to a deterministic FSM. Either draw or give the formal definition of the resulting deterministic FSM.

[12 marks]

5. (a) Give a regular expression for the language that describes all the strings over the alphabet $\{a, b\}$ that have the following properties:

i. end in three a's

[2 marks]

ii. contain at least two a's and two b's.

[6 marks]

(b) Write a regular expression for the language accepted by the following FSM.

[4 marks]

(c) Show that the following regular expression:

$$(b(ab)^*ac)|((ba)^*c)$$

is equivalent to:

$$(ba)^*c$$

using the given algebraic laws below. Indicate which rules are used.

[8 marks]

Rule	Equivalence		
1	R R	=	R
2	R^*	=	$RR^* \varepsilon$
3	R^*R	=	RR^*
4	R S	=	S R
5	(R S)T	=	RT ST
6	R (S T)	=	(R S) T
7	$(RS)^*R$	=	$R(SR)^*$