

09/846,410

TITLE OF INVENTION: Multiple Data Rate Hybrid Walsh Codes for

CDMA

INVENTOR: Urbain A. von der Embse

Currently amended DRAWINGS AND PERFORMANCE DATA

Amendments to the original drawings and performance data are

- 1) minor corrections to the titles of FIG. 5,6, and
- 2) in FIG.6, the DFT decoding is placed in front of the complex Walsh decoding to be consistant with the specification. In the original drawings the DFT followed the Walsh which was my error.

APPLICATION NO. 09/846,410

TITLE OF INVENTION: Multiple Data Rate Hybrid Walsh Codes for

CDMA

INVENTOR: Urbain A. von der Embse

DRAWINGS AND PERFORMANCE DATA

APPLICATION NO. 09/846,410

TITLE OF INVENTION: Multiple Data Rate Complex Hybrid Walsh Codes

for CDMA

INVENTOR: Urbain -A. von der Embse

5

BACKGROUND OF THE INVENTION

I. Field of the Invention TECHNICAL FIELD

10

15

20

25

30

The present invention relates to CDMA (Code Division Multiple Access) cellular telephone and wireless communications with data rates up to multiple T1 (1.544 Mbps) and higher (>100 Mbps), and to optical CDMA with data rates in the Gbps and higher ranges. Applications are mobile, point-to-point and satellite communication networks. More specifically the present invention relates to novel multiple data rate algorithms for complex—hybrid and generalized hybrid complex Walsh orthogonal CDMA codes. These algorithms generate multiple code length complex Walsh and hybrid complex Walsh orthogonal codes the channelization codes for multiple data rate for use as These new algorithms and codes offer substantial improvements over the current real Walsh orthogonal variable spreading factor (OVSF) CDMA codes for the next generation wideband CDMA (W-CDMA).

CONTENTS

BACKGROUND ART	——————————————————————————————————————
SUMMARY OF INVENTION	page 13
BRIEF DESCRIPTION OF DRAWINGS	page 14
DISCLOSURE OF INVENTION	page-15
REFERENCES	page 44
DRAWINGS	— page 45

II. Description of the Related ArtBACKGROUND ART

5

10

15

20

25

30

Current art is represented by the work on orthogonal spreading factor (OVSF) real Walsh codes for wideband CDMA (W-CDMA) for the third generation CDMA (G3) proposed standard candidates and for broadband wireless communications, previous work on the real Walsh fast transform algorithms. These are documented in the references 1,2,3,4,5. Reference 1 is which include an issue of the IEEE communications journal devoted to wideband CDMA including OVSF.., References 2 and 3 are issues IEEE communications magazine that are devoted to "Multiple Access for Broadband Networks" and "Wideband CDMA"...". Reference 4 is an issue of the IEEE personal communications devoted to "Third Generation Mobile Systems in Europe"...", Reference 5 is and the widely used reference "Walsh functions and their Applications"—on real Walsh technology which includes algorithms for the fast Walsh transform. The new hybrid complex Walsh and generalized hybrid complex Walsh orthogonal CDMA codes being addressed in this invention for application to multiple data rate users, have been disclosed in a previous patent application [6]—09/826,117 for constant data rate communications.

Current art using real Walsh orthogonal CDMA channelization codes to generate OVSF codes for multiple data rate users is represented by the scenario described in the following with the aid of equations (1) and (2) and FIG. 1,2,3,4. This scenario considers CDMA communications spread over a common frequency band each of communication the channels. These communications channels for each of the multiple rate users are defined by assigning a unique real Walsh orthogonal spreading code to each user. This real Walsh code has a maximum length of N chips with $N=2^M$ where M is an integer, with shorter lengths of 2,4,..., N/2 for the higher data rate users. These multiple

Page 2 Specification amendments to 09/846,410

In line 2 please delete the strikethrough text and add the underlined text.

In lines 9,10,11 please delete the strikethrough text and add the underlined text.

In lines 13-19 please delete the strikethrough text and add the underlined text.

In lines 22 please delete the strikethrough number and add the underlined number.

Page 3 Specification amendments to 09/846,410

In line 30 please add the underlined words.

Page 7 Specification amendments to 09/846,410

In line 8 please add the underlined text.

length real Walsh codes have limited orthogonality properties and occupy the same frequency band. These Walsh encoded user signals are summed and then re-spread over the same frequency band by PN codes, to generate the CDMA communications signal which is modulated and transmitted. The communications link consists of a transmitter, propagation path, and receiver, as well as interfaces and control.

It is assumed that the communication link is in the 10 communications mode with the users communicating at rates equal to the code repetition rates of their respective communications channels and that the synchronization is sufficiently accurate and robust to support this communications mode. In addition, the power differences between users 15 differences in data rates and in communication link budget parameters is assumed to be incorporated in the data symbol amplitudes prior to the CDMA encoding in the CDMA transmitter, and the power is uniformly spread over the wideband by proper selection of the CDMA pulse waveform. It is self evident to anyone skilled in the CDMA communications art that these 20 communications mode assumptions are both reasonable representative of the current CDMA art and do not limit the applicability of this invention.

Transmitter equations (1) describe a representative real Walsh CDMA encoding for multiple data rate users for the transmitter in FIG. 1. These equations represent a considerably more sophisticated and improved implementation of current OVSF CDMA communications which has been developed to help support the new invention for <a href="https://www.hybrid.com/hybrid.

Lowest data rate users are assumed to communicate at the lowest symbol rate equal to the code repetition rate of the N chip real Walsh code, which means they are assigned N chip code

vectors from the NxN real Walsh code matrix W_N in $\ 1$ for their channelization codes. Higher data rate users will use shorter real Walsh codes. The reference real Walsh code matrix W_N has N Walsh row code vectors $W_N(c)$ each of length N chips and indexed by c=0,1,...,N-1, with $W_N(c)=[W_N(c,1),...,W_N(c,N)]$ wherein $W_N(c,n)$ is chip n of code u. Walsh code chip n of code vector u has the possible values $W_N(c,n)=+/-1$.

Multiple data rate menu in 2 lists the possible user data symbol rates R_s and the corresponding code lengths and symbols transmitted over each N chip reference code length. User symbol rate R_s =1/NT is the code repetition rate 1/NT of the N chip code over the code time interval NT. User data rate R_b in bits/second is equal to R_b = R_s b $_s$ where b_s is the number of data bits encoded in each data symbol. Assuming a constant b_s for all of the multiple data rate users, the user data rate becomes directly proportional to the user symbol rate R_b - R_s which means the user symbol rate menu in 1 is equivalent to the user data rate menu.

20

25

30

35

10

15

User data symbols and channelization codes are listed in 3 for the multiple rate users. Users are grouped into the data rate categories corresponding to their respective code chip lengths 2,4,8,...,N/2,N chips. User groups are indexed by m=1,2,...,M where group m consists of all users with $N(m)=2^m$ chip length codes drawn from the N(m)xN(m) real Walsh code matrix $W_{N(m)}$. Users within group m are identified by the index u_m which is set equal to the Walsh channelization code vector index in $W_{N(m)}$. Code chip n_m of the user code u_m is equal to $W_{N(m)}\left(u_m,\ n_m\right)$ where $n_m=0,1,2,...,N(m)-1$ is the chip index. User data symbols $Z(\mathbf{u}_{m,k_{m}})$ are indexed by $u_{m,k_{m}}$ where the index $k_{m}=0,1,2,...,N/N(m)-1$ identifies the data symbols of um which are transmitted over the N chip code block. The total number of user data symbols transmitted per N chip block is N which means the number of channel assignments $\{u_m, m=1,2,...,M\}$ will be less than N for multiple data rate CDMA communications when there is at least one user using a higher data rate.

- 5 Current multiple data rate real Walsh CDMA encoding (1) for transmitter
 - 1 N chip Walsh code block

 W_N = Walsh NxN orthogonal code matrix consisting of N rows of N chip code vectors

= $[W_N(c)]$ matrix of row vectors $W_N(c)$

= $[W_N(c,n)]$ matrix of elements $W_N(c,n)$

 $W_N(c)$ = Walsh code vector c for c=0,1,...,N-1

= $[W_N(c,0), W_N(c,1), ..., W_N(c,N-1)]$

= 1xN row vector of chips $W_N(c,0),...,W_N(c,N-1)$

 $W_N(c,n) = Walsh code c chip n$

= +/+1 possible values

- 2 Multiple data rate menu
- N chip real Walsh symbol rate

R_s = User symbol rate, symbols/second

= 1/NT where T = Chip repetition interval

Symbol rate menu for multiple data rates

25			Symbol rate,	Code length,	Symbols per
			Symbols/second	chips	N chips
	R _s	=	1/2T	2	N/2
		=	1/4T	4	N/4
		=	1/8T	8	N/8
30				•	
					•
		=	1/2NT	N/2	2
		=	1/NT	NN	1

35

10

15

3 User data symbols and channelization codes

Users are categorized into ${\tt M}$ groups according to the number of code chips.

m = Index of the user groups

= 1, 2, ..., M

 u_m = One of up to N(m)=2^m possible users in group m

N(m) = Number of code chips for the codes in the user

group m

 $10 = 2^{m+1}$

5

15

20

25

User data symbols

 $Z(u_{m,k_m})$ = User u_m data symbol k_m

= 0,1,2,..., N/N(m)-1

User channelization codes within each group are selected from a subset of the orthogonal codes in the Walsh code matrix.

 $W_{N\,(m)}\,(u_m) = \,Walsh \,\,1x2^m \,\,dimensional \,\,code\,\,vector\,\,u_m\,\,in$ the N(m)xN(m) Walsh code matrix, for user u_m in the group m

 $W_{N(m)}(u_m, n_m) = User u_m code chip n_m = 0, 1, 2, ..., N(m) - 1$

4 Real Walsh encoding and channel combining

 $\widetilde{Z}(n)$ = Real Walsh CDMA encoded chip n

$$= \sum_{m=1}^{M} \sum_{u_{m}} Z(u_{m,k}) W_{N(m)}(u_{m}, n=n_{m}+ k_{m} N(m))$$

5 PN scrambling

 $P_R(n)$, $P_I(n)$ = PN code chip n for real, imaginary axes axes

- Z(n) = PN scrambled real Walsh encoded data chips
 after summing over the users
 - = $\sum_{n} \widetilde{Z}(n) [P_{R}(n) + jP_{I}(n)]$ where $j = \sqrt{(-1)}$
 - $= \sum_{u} \widetilde{Z}(n) \left[\operatorname{sgn}\{P_{R}(n)\} + j \operatorname{sgn}\{P_{I}(n)\} \right]$

= Real Walsh CDMA encoded complex chips after PN scrambling

Walsh encoding and channel combining in $\bf 4$ encodes each of the users $\{u_m\}$ and their data symbols $\{Z(u_{m,k_m})\}$ with a Walsh code $W_{N(m)}(u_m)$ drawn from the group m of the N(m) chip channelization codes where u_m is the user code. A time delay of $k_mN(m)$ chips before start of the real Walsh encoding of the data symbol k_m in each of the user channels, is required for implementation of the multiple data rate user real Walsh encoding and for the summation of the encoded data chips over the users. Output of this multiple data rate real Walsh encoding and summation over the multiple data rate users is the set of real Walsh CDMA encoded chips $\{\widetilde{Z}(n)\}$ over the N chip block.

25

30

5

10

15

20

PN scrambling of the real Walsh CDMA encoded chips in $\bf 5$ is accomplished by encoding the $\{\widetilde{Z}(n)\}$ with a complex PN which is constructed as the complex code sequence $[P_R(n)+jP_I(n)]$ wherein $P_R(n)$ and $P_I(n)$ are independent PN sequences used for the real and imaginary axes of the complex PN. These PN codes are 2-phase with each chip equal to +/-1 which means PN encoding consists of sign changes with each sign change corresponding to the sign of

the PN chip. Encoding with PN means each chip of the summed Walsh encoded data symbols has a sign change when the corresponding PN chip is -1, and remains unchanged for +1 values. This operation is described by a multiplication of each chip of the summed Walsh encoded data symbols with the sign of the PN chip. Purpose of the PN encoding for complex data symbols is to provide scrambling of the summed Walsh encoded data symbols as well as isolation between groups of users. Output of this real Walsh CDMA encoding followed by the complex PN scrambling are the CDMA encoded chips over the N chip block $\{Z(n)\}$.

10

15

20

25

30

Receiver equations (2) describe a representative multiple data rate real Walsh CDMA decoding for the receiver in FIG. 3. $\{\hat{Z}(n)\}$ The receiver front end 5 provides estimates transmitted real Walsh CDMA encoded chips {Z(n)}. Orthogonality property 6 is expressed as a matrix product of the real Walsh code chips or equivalently as a matrix product of the Walsh code chip numerical signs, for any of the 2,4,8,..., N/2, N chip real Walsh channelization codes and their repetitions over the N chip code block. These codes are orthogonal with respect to the user codes within a group. They are also orthogonal between code groups for the allowable subsets of code assignments to the users, for all code repetitions over the N chip code block. means that the allowable codes $\{u_m\}$ in group m are orthogonal to the allowable codes $\{u_{m+p}\ \}$ in group m+p for all code repetitions of the codes $\{u_m\}$ over the N chip code block, for $p \ge 0$.

The 2-phase PN codes 7 have the useful decoding property that the square of each code chip is unity which is equivalent to observing that the square of each code chip numerical sign is unity. Decoding algorithms 8 perform the inverse of the signal processing for the encoding in equations (1) to recover estimates $\{\hat{Z}(u_{m,k_m})\}$ of the transmitter user symbols $\{Z(u_{m,k_m})\}$.

Current multiple data rate real Walsh CDMA decoding (2) for receiver

- 5 Receiver front end provides estimates $\{\hat{Z}(n) = \hat{R}(n) + j\hat{I}(n)\}$ of the encoded transmitter chip symbols $\{Z(n)\}$
 - 6 Orthogonality properties of the set of real Walsh $\{2x2, 4x4, 8x8, ... NxN\}$ matrices
- The $N(m) \times N(m)$ Walsh code matrices for all m are orthogonal

$$\begin{split} N(m)^{-1} \sum_{n_m} W_{N(m)}(\hat{c}_m, n_m) \, W_{N(m)}(n_m, c_m) &= \delta(\hat{c}_m, c_m) \\ \text{where } c_{\text{m}}, n_{\text{m}} &= 0, 1, ..., \text{N} \, (\text{m}) \\ \delta(\hat{c}_m, c_m) &= \text{Delta function of } \hat{c}_m \, \text{and } c_m \\ &= 1, 0 \quad \text{for } \hat{c}_m = c_m \,, \text{ otherwise} \end{split}$$

The N(m)xN(m) and N(m+p)xN(m+p) Walsh code matrices for all m and p ≥ 0 are orthogonal for a subset of codes $\{u_m\}$ and $\{u_{m+p}\}$

$$N(m)^{-1} \sum_{n_m} W_{N(m)}(u_m, n_m) \bullet W_{N(m+p)}(u_{m+p}, n_{m+p} = n_m + k_m N(m))$$

$$= 0 \text{ for } k_m = 0, 1, 2, ..., N/N(m) - 1$$

7 PN decoding property

$$P(n) P(n) = sgn{P(n) sgn{P(n)}}$$

= 1

25 **8** Decoding algorithm

5

15

20

$$\hat{Z}(u_{m,k_m}) =$$

$$(2\mathbf{N})^{-1} \sum_{\mathbf{n_m}} \hat{\mathbf{Z}}(\mathbf{n}) \left[\operatorname{sgn}\{P_R(\mathbf{n})\} - \operatorname{j} \operatorname{sgn}\{P_1(\mathbf{n})\} \right] \bullet$$

$$\operatorname{sgn}\{W_{N(\mathbf{m})}(\mathbf{n} = \mathbf{n_m} + \mathbf{k_m} N(\mathbf{m}), \mathbf{u_m}) \}$$

= Receiver estimate of the transmitted complex data symbol $Z(u_{m,k_m})$

Page 10 Specification amendments to 09/846,410

In lines 6-7,9-10 please delete the strikethrough words and add the underlined words.

In line 29 please add the underlined word.

FIG. 1 CDMA transmitter block diagram is representative of a current CDMA transmitter which includes an implementation of the current multiple data rate real Walsh CDMA channelization encoding in equations (1). This block diagram becomes a representative implementation of the CDMA transmitter which implements the new multiple data rate hybrid.complex— Walsh and generalized hybrid complex—Walsh CDMA encoding, when the current multiple data rate real Walsh CDMA encoding 13 is replaced by the new multiple data rate complex—hybrid Walsh and generalized hybrid complex—Walsh CDMA encoding of this invention.

5

10

15

20

25

30

Signal processing starts with the stream of user input data words 9. Frame processor 10 accepts these data words and performs the encoding and frame formatting, and passes the outputs to the symbol encoder 11 which encodes the frame symbols into amplitude and phase coded symbols $\{Z(u_{m,k})\}$ These symbols 12 are the inputs to the current multiple data rate real Walsh CDMA encoding in equations (1). Inputs $\{Z(u_{m,k})\}$ 12 are real Walsh encoded, summed over the users, and scrambled by PN in the current multiple date rate real Walsh CDMA encoder 13 to generate the complex output chips {Z(n)} 14. This encoding 13 is a representative implementation of equations (1). These output chips Z(n) are waveform modulated 15 to generate analog complex signal z(t) which is single upconverted, amplified, and transmitted (Tx) by the analog front end of the transmitter 15 as the real waveform v(t) 16 at the carrier frequency f_0 whose amplitude is the real part of the complex envelope of the baseband waveform z(t) multiplied by the carrier frequency and the phase angle ϕ which accounts for the phase change from the baseband signal to the transmitted signal.

It should be obvious to anyone skilled in the communications art that this example implementation in FIG. 1 clearly defines the fundamental CDMA signal processing relevant

to this invention disclosure and it is obvious that this example is representative of the other possible signal processing approaches.

5 FIG. 2 multiple data rate real Walsh CDMA encoding is a representative implementation of the multiple data rate real Walsh CDMA encoding 13 in FIG. 1 and in equations (1). are the complex user data symbols {Z(u)} **17**. Encoding of each user by the corresponding Walsh code is described in 18 by the 10 implementation of transferring the sign of each Walsh code chip to the user data symbol followed by a 1-to-N expander 1 N of each data symbol into an N chip sequence using the sign transfer of the Walsh chips. The sign-expander operation 18 generates the N-chip sequence $Z(u_{m,k})$ sgn{W(u_m, (n=n_m+k_mN(m))} for n=0,1,...,N-1 15 This Walsh encoding serves to spread each for each user $\{u_m\}$. user data symbol into an orthogonally encoded chip sequence which is spread over the CDMA communications frequency band. The Walsh encoded chip sequences for each of the user data symbols are summed over the users 19 followed by PN encoding with the 20 20. scrambling sequence $[P_R(n)+jP_I(n)]$ PN encoding is implemented by transferring the sign of each PN chip to the summed chip of the Walsh encoded data symbols. Output is the stream of complex multiple data rate real Walsh CDMA encoded chips $\{Z(n)\}$ 21.

25

30

It should be obvious to anyone skilled in the communications art that this example implementation in FIG. 2 clearly defines the fundamental CDMA signal processing relevant to this invention disclosure and it is obvious that this example is representative of the other possible signal processing approaches.

FIG. 3 CDMA receiver block diagram is representative of a current CDMA receiver which includes an implementation of the

describes the corresponding receiving signal processing for the hub and user terminals for applicability to this invention.

For optical communications applications the the microwave processing at the front end of both the transmitter and the receiver is replaced by the optical processing which performs the complex modulation for the optical laser transmission in the transmitter and which performs the optical laser receiving function of the microwave processing to recover the complex baseband received signal.

SUMMARY OF THE INVENTIONSUMMARY OF INVENTION

15

20

25

30

10

5

invention is a new set of discloses fast and computationally efficient algorithms for new multiple data rate orthogonal channelization encoding and decoding for CDMA using the new-hybrid complex Walsh codes and the generalized hybrid complex Walsh orthogonal and quasi-orthogonal codes in place of the current real Walsh orthogonal codes. Real Walsh codes are used for current CDMA applications and will be used for all of the future CDMA systems. The newly invented hybrid complex Walsh codes disclosed in [6]-09/826,117 provide the choice of using the new-hybrid complex Walsh codes or the real Walsh codes since the real Walsh codes are the real components of the hybrid complex This means an application capable of using the hybrid complex Walsh codes can simply turn-off the complex axis components of the hybrid complex Walsh codes for real Walsh CDMA coding and decoding.

Performance is improved for the multiple data rate CDMA communications when the <u>new-hybrid</u> 4-phase complex Walsh orthogonal CDMA codes replace the current 2-phase real Walsh

codes. These improvements include an increase in the carrier-tonoise ratio (CNR) for data symbol recovery in the receiver,
lower correlation side-lobes under timing offsets both with and
without PN spreading, lower levels of harmonic interference
caused by non-linear amplification of multi-carrier CDMA signals,
and reduced phase tracking jitter for code tracking to support
both acquisition and synchronization. These potential performace
improvements simply reflect the widely known principle that
complex CDMA is better than real CDMA.

10

15

20

5

In addition to the Greater flexibility in performance improvement, there are greater and code length choices for multiple data rate CDMA communications using—are available with the new-generalized hybrid complex Walsh orthogonal and quasiorthogonal CDMA codes in place of the which are generated by combining complex Walsh orthogonal CDMA codes which have been disclosed in [6]. Code length choices are increased by the combined use of hybrid complex Walsh and discrete Fourier transform complex orthogonal codes and the plurality of other including quasi-orthogonal PNusing Kronecker construction which is a tensor construction, direct constructioin, as well as the possibility for more general functional combining.

25

BRIEF DESCRIPTION OF THE DRAWINGS AND THE PERFORMANCE DATA

BRIEF DESCRIPTION OF DRAWINGS

The above-mentioned and other features, objects, design algorithms, and performance advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings and performance

data wherein like reference characters and numerals denote like elements, and in which:

- FIG. 1 is a representative CDMA transmitter signal processing implementation block diagram with emphasis on the current multiple data rate real Walsh CDMA encoding. which contains the signal processing elements addressed by this invention disclosure.
- 10 FIG. 2 is a representative real Walsh CDMA encoding implementation diagram with emphasis on the current multiple data rate real Walsh CDMA encoding which contains the signal processing elements addressed by this invention disclosure.
- 15 FIG. **3** is a representative CDMA receiver signal processing implementation block diagram with emphasis on the current multiple data rate real Walsh CDMA decoding which contains the signal processing elements addressed by this invention disclosure.

20

FIG. 4 is a representative CDMA decoding implementation diagram with emphasis on the current multiple data rate real Walsh CDMA decoding which contains the signal processing elements addressed by this invention disclosure.

25

- FIG. 5 is a representative CDMA encoding implementation diagram which describes the new-hybrid complex Walsh and generalized hybrid complex Walsh CDMA encoding of multiple data rate users and which contains the signal processing elements addressed by this invention disclosure.
- FIG. **6** is a representative CDMA decoding implementation diagram which describes the new-hybrid complex Walsh and generalized hybrid complex Walsh CDMA decoding of multiple data

rate users and which contains the signal processing elements addressed by this invention disclosure.

DISCLOSURE OF THE INVENTION

DISCLOSURE OF INVENTION

new invention provides the algorithms and The implementation architectures to support simultaneous multiple data rates or equivalently simultaneous multiple symbol rates using the new-hybrid complex Walsh and generalized hybrid complex Walsh orthogonal CDMA codes which have been disclosed in the invention application—[6]09/826,117. In this invention disclosure the complex Walsh codes are hybrid Walsh codes and generalized complex Walsh codes are generalized hybrid Walsh Simultaneous multiple data rates over the same CDMA frequency spectrum are well known in CDMA networking and been included in the next generation UMTS 3G evolving CDMA using wideband CDMA (W-CDMA) and real Walsh orthogonal CDMA channeliztion codes.

20

25

30

5

10

15

categories of techniques The current art uses three designed to accommodate multiple data rate users and these are A) multiple chip length codes for the multiple data rate users, same chip length codes with the number of codes adjusted as required for the multiple data rate users, and C) different frequency spectrums assigned to the multiple data rate users is frequency division multiplexing (FDM). The technique is the preferred choice for W-CDMA primarily because of the de-multiplexing and multiplexing required for the second technique and because of the configurable multi-rate filters required for the spectrum partitioning in the third approach. This new invention implements the second and third approaches without their disadvantages and moreover provides the added performance improvements that will be realized with the use of

the complex Walsh and generalized hybrid complex Walsh codes in place of the real Walsh codes. These new-4-phase complex Walsh orthogonal CDMA codes replacing the current 2-phase real Walsh codes will provide improvements that include an increase in the carrier-to-noise ratio (CNR) for data symbol recovery in the receiver, lower correlation side-lobes under timing offsets both with and without PN spreading, lower levels of harmonic interference caused by non-linear amplification of multi-carrier and reduced phase tracking jitter for code CDMA signals, tracking to support both acquisition and synchronization. potential performace improvements simply reflect the widely known principle that complex CDMA is better than real CDMA. The hybrid complex Walsh offers these same improvements together with the flexibility of more choices in the code lengths at the expense of increasing the number of code phases on the unit circle thereby introducing multiplications into the encoding and decoding implementations.

The new complex Walsh and hybrid complex Walsh CDMA orthogonal codes disclosed in [6] have been invented to be the natural development for the Walsh codes and therefore are the correct complex Walsh codes to within arbitrary factors that include scale and rotation, which are not relevant performance. This natural development of the complex Walsh codes in the N-dimensional complex code space C^N extended the correspondences between the real Walsh codes and the Fourier the N-dimensional real code space correspondences between the complex Walsh codes and the discrete Fourier transform (DFT) codes in C^N .

30

35

5

10

15

20

25

The new generalized hybrid complex Walsh orthogonal and quasi-orthogonal CDMA codes have been invented to increase the choices for the code length by and for the performance by allowing the combined use of combining complex Walsh and Walsh and discrete Fourier transform complex orthogonal codes and the

plurality of other codes including quasi-orthogonal PN using a Kronecker construction which is a tensor construction, direct sum construction, as well as the possibility for more and general functional combining.

5

Transmitter equations (3) describe a representative complex Walsh CDMA encoding for multiple data rate users for the transmitter in FIG. 1 using the definition of the complex Walsh CDMA codes in the invention application [6]09/826,117. The 10 Lowest data rate users are assumed to communicate at the lowest symbol rate equal to the code repetition rate of the N chip complex Walsh code, which means they areeach is assigned an N chip code vectors from the NxN complex Walsh code matrix $\widetilde{W}_{\scriptscriptstyle N}$ in 36 for their channelization codes. Higher data rate users will use shorter multiple complex Walsh codes from $\widetilde{W}_{\!\scriptscriptstyle N}$. Reference 15 complex Walsh code matrix $\widetilde{W}_{\scriptscriptstyle N}$ has N Walsh row code vectors $\widetilde{W}_{\scriptscriptstyle N}(c)$ each of length N chips and indexed by c=0,1,...,N-1, with $\widetilde{W}_{N}(c) = [\widetilde{W}_{N}(c,0),...,\widetilde{W}_{N}(c,N-1)]$ wherein $\widetilde{W}_{N}(c,n)$ is chip n of code c with the possible values $\widetilde{W}_{N}\left(\mathrm{c,n}\right)=+/-1$ +/-j. Complex Walsh 20 code vectors in the N dimensional complex code space C^N are defined using the real Walsh code vectors from the N dimensional real code space RN for the real and complex code vectors using the equation $\widetilde{W}_{\scriptscriptstyle N}(c)=$ W(cr)+jW(ci) where the mapping of the complex Walsh code index c into the real Walsh code indices cr 25 and ci is defined by the mapping of c into cr(c) and ci(c) in 36. These mappings are lexicographic permutations of the real Walsh which are derived in 09/826,117 from the 1-to-1 sequency~frequency, cosine~even, sine~odd correspondences with the discrete Fourier transform where the symbol "~" represents a 30 1-to-1 correspondence, sequency is the average rate of phase rotations of the complex Walsh code vectors, the cosine and sine refer to the DFT real and imaginary code vectors, and the even and odd are the even and odd real Walsh code vectors.

The multiple data rate menu in 37 lists the possible user data symbol rates R_s and the number of user code vectors or symbols transmitted over each N chip reference code length. User symbol rate $R_s=1/N\,(m)\,T$ for the users in group m is equal to the number of user data symbols or code vectors $N/N\,(m)$ over the N chip code block multiplied by the symbol rate rate 1/NT of the N chip code. User data rate R_b in bits/second is equal to $R_b=R_sb_s$ where b_s is the number of data bits encoded in each data symbol. Assuming a constant b_s for all of the multiple data rate users, the user data rate becomes directly proportional to the user symbol rate $R_b\sim R_s$ which means the user symbol rate menu in 37 is equivalent to the user data rate menu.

10

15

20

25

30

Data symbol vector 38 stores the N data symbols $\{Z(u_{m,k_m})\}$ for the N chip code block in an 1xN dimensional data symbol vector indexed by $d=d_0+d_12+d_24+...+d_{M-2}N/4+d_{M-1}N/2 = 0,1,2,...,N-$ 1, where the binary word represention is $d=d_0\cdots d_{M-1}$ and the $\{d_m\}$ are the binary coefficients. With the availability of this 1xN dimensional data symbol vector, it is observed that the real Walsh implementation for the multiple data rate users in 2,3 in equations (31) must assign the 2 chip data symbols $Z(u_0, z_k)$ to the d_{M-1} field, the 4 chip data symbols $Z(u_1, z_k)$ to the $d_{M-1}d_{M-2}$ field, ..., and the N chip data symbols $Z(u_{M-1}, z_k)$ to the $d_0 \cdots d_{M-1}$ field in order to provide orthogonality between the code vectors in the different groups. For the complex Walsh the same data assignment is used with the modification that the N/N(m) data symbols for the N(m) chip code vectors of group m assigned to $d_{M-m}d_{M-m+1} \bullet \bullet \bullet \bullet d_{M-1}$ of d using the real Walsh, are data field now mapped into N/N(m) N-chip code vectors over the same group m data field $d_{{\scriptscriptstyle M-m}}d_{{\scriptscriptstyle M-m+1}}\bullet \bullet \bullet \bullet d_{{\scriptscriptstyle M-1}}$ of d. This allows a fast algorithm

to be used and uses the N chip codes over the $d_{M-m}d_{M-m+1} \bullet \bullet \bullet \bullet d_{M-1}$ field of d which fieldand enables each user group to occupy occupies—the same sequency band as the frequency band for FDM. This removes the disadvantages of using technique "B" and "C" for W-CDMA, and helps to make the complex Walsh the preferred choice compared to technique "A" which is the current art preferred choice with real Walsh.

The This new—invention has found a means to use the same 10 data fields of the current W-CDMA for real Walsh, application to the complex Walsh with the added advantages of a fast transform, simultaneous transmission of the user data symbols, and the assignment of these user data symbols to a contiquous sequency band specified by the data field of d for 15 additional isolation between users. For a fully loaded CDMA communications frequency band the N data symbols for the multiple rate users occupy the N available data symbol locations in the data symbol vector $d = d_0 \cdots d_{M-1}$. The construction of the data symbol vector is part of this invention disclosure and provides a 20 means for the implementation of a fast complex Walsh encoding and decoding of the multiple data rate complex Walsh CDMA. 1 and 2 in 39 and 40 illustrate representative user assignments to the data fields of the data symbol vector. This mapping of the user data symbols into the data symbol vector is equivalent to 25 setting c=d which makes it possible to develop the fast encoding algorithm

New multiple Multiple data rate complex Walsh encoding for transmitter (3)

36 N chip complex Walsh code block

41.

 $\widetilde{W}_{\scriptscriptstyle N}$ = complex Walsh NxN orthogonal code matrix consisting of N rows of N chip code vectors

= [
$$\widetilde{W}_N$$
(c)] matrix of row vectors \widetilde{W}_N (c)
= [\widetilde{W}_N (c,n)] matrix of elements \hat{W}_N (c,n)

 \widetilde{W}_N (c) = complex Walsh code vector c = W_N (cr) + jW_N (ci) for c=0,1,..., N-1

5

 $W_N(cr)$, $W_N(ci)$ = Real Walsh 1xN code vectors cr,ci

c = 0, 1, 2, ..., N-1

= Real Walsh code index for N chip block

= (cr,ci) Pair of real Walsh code vectors
 cr=cr(c) and ci=ci(c) which are assigned to
 the real and to the imaginary axes

n = 0, 1, 2, ..., N-1

= Chip index for N chip block

15

10

Mapping of real Walsh to complex Walsh

Complex	Real Axis	Complex Axis
Walsh code	real Walsh	real Walsh
	codes	codes
c	cr(c)	ci(c)
0	0	0
1,2,,N/2-1	2c	2c-1
N/2	N-1	N-1
N/2+1,,N-1	2N-2c-1	2N-2c

25

20

 \widetilde{W} (c,n) = complex Walsh code u chip n

= +/-1 +/-j possible values

$$= (-1)^{n} \left[cr_{M-1}n_{0} + \sum_{i=1}^{i=M-1} (cr_{M-1-i} + cr_{M-i})n_{i} \right]$$

$$+ j(-1)^{n} \left[ci_{M-1}n_{0} + \sum_{i=1}^{i=M-1} (ci_{M-1-i} + ci_{M-i})n_{i} \right]$$

 $cr = \sum_{i=0}^{i=M-1} cr_i 2^i \quad \text{binary representation of cr}$

ci =
$$\sum_{i=0}^{i=M-1} ci_i 2^i$$
 binary representation of ci
n = $\sum_{i=0}^{i=M-1} n_i 2^i$ binary representation of n
 \widetilde{W} (c) = $W_N(cr) + jW_N(ci)$ for $c_m=0,1,...,2^m-1$

37 Multiple data rate menu

groups u_0 , u_1 , ..., u_{M-1} .

Symbol rate menu for multiple data rates

Symbol rate	Symbol rate,	Symbols <u>or code per</u>
	Symbols/second	vectors per N chips
R _s =	1/2T	N/2
=	1/4T	N/4
=	1/8T	N/8
=	1/2NT	2
=	1/NT	1

Data symbol vector field indexed by $d=d_0+d_12+d_24+...+d_{M-2}$ $N/4+d_{M-1}\,N/2$ is partitioned into M data fields with each assigned to one group of multiple data rate users. Writing d as a binary word $d=d_0d_1\cdot\cdot\cdot\cdot d_{M-1}$ enables the data fields to be identified as d_{M-1} , $d_{M-1}d_{M-2}$, $d_{M-1}d_{M-2}d_{M-3}$,..., $d_0\cdot\cdot\cdot d_{M-1}$ which respectively are assigned to the user

d_{M-1}	$d_{\mathtt{M-1}}d_{\mathtt{M-2}}$	$d_{\mathtt{M-1}}d_{\mathtt{M-2}}d_{\mathtt{M-3}}$		$d_0\cdots d_{{\tt M}-1}$
	00	000		0000
0	1	001		.
	01	010	·	
		011	•••••	
	10	100		
1		101		
	11	110	 	
	* . 6 . 1 .	111	, 	11, 11

	Menu of use		the data vector fields
20	User group		Field
	4 1	channalization	_
		codes	<u>in data vector</u>
	u_0	$u_0 = 0$	$d_{M-1} = 0$
25		$u_0=1$	=1
	u_1	$u_1 = 0$	$d_{M-1}d_{M-2} = \overline{0}\overline{0}$
		u ₁ =1	=01
		u ₁ =2	=10
	!	u ₁ =3	=11
30			
	•	•	•
			•
	•	:	:
	u _{M-1}	u _{M-1} =0	$d_0 \cdots d_{M-1} = 00 \cdots 00$
			.
35	: !		
	ĺ	$u_{M-1}=N-1$	=11···11

39 Example 1 of multiple data rate menu:

There is 1 user for each group $u_0, u_1, ..., u_{M-2}$ and 2 users for u_{M-1} with each user selecting the lowest sequency channel corresponding to the lowest index of channels available to the group.

 $d_0 \cdots d_{M-1}$

00...00

Example 1 of multiple data rate menu

 $d_{M-1}d_{M-2}d_{M-3} \\$

 $d_{M-1}d_{M-2}$!

N data symbol slots

 d_{M-1}

40 Example 2 of multiple data rate menu:

There is 1 user in each group u_0 and u_1 and 2 users in u_2 with each user selecting the highest sequency channel corresponding to the highest index of channels available to the group.

Example 2 of multiple data rate menu

$d_{\mathtt{M}-1}$	$d_{\mathtt{M-1}}d_{\mathtt{M-2}}$	$d_{\mathtt{M-1}}d_{\mathtt{M-2}}d_{\mathtt{M-3}}$	•••••	$d_0 \cdots d_{M-1}$
,	00			0000
0	 		•••••	:
		010		
		011		
	10	100		
	,	101	 	<u> </u>
	11	110		
		111	, 	11,,11

complex Walsh encoding and channel combining uses a computationally efficient fast encoding algorithm. This algorithm implements the encoding with an M pass computation. Passes 1,2,3,...,M respectively perform the 2,4,8,...,N chip complex Walsh encoding of the data symbol vector successively starting with the 2 chip encoding in pass 1, the 4 chip encoding in passes 1,2, the 8 chip encoding in pass 1,2,3, and the N chip encoding in passes 1,2,3,...,M where N=2^M. Using the binary word representations for both d and n, this M pass algorithm is:

Pass 1:
$$Z^{(1)}(n_{M-1}d_1\cdots d_{M-1})$$

$$= \sum_{d_0=dr_0=di_0=0,1} Z(d_0\cdots d_{M-1})[(-1)^*dr_0n_{M-1} + j(-1)^*di_0n_{M-1}]$$

$$= \sum_{d_0=dr_0=di_0=0,1} Z^{(m)}(n_{M-1}\cdots n_{M-m}d_{m-1})$$

$$= \sum_{d_0=dr_0=di_0=0,1} Z^{(m)}(n_{M-1}\cdots n_{M-m}d_{m-1})$$

$$= \sum_{d_0=dr_0=0,1} Z^{(m)}(n_{M-1}\cdots n_{M-m+1}d_{m-1}\cdots d_{M-1})$$

$$= \sum_{d_0=dr_0=0,1} Z^{(m)}(n_{M-1}\cdots n_{M-m+1}d_{m-1}\cdots d_{M-1})$$

 $d_{m-1}=dr_{m-1}=di_{m-1}=0,1$

15

20

25

30

Pass M:
$$Z^{(M)}(n_{M-1}n_{M-2}\cdots n_1n_0)$$

$$= \sum Z^{(M-1)}(n_{M-1}n_{M-2}\cdots n_1d_{M-1}) \cdot \left[(-1)^{d_{M-1}}(n_0+n_1) + j(-1)^{d_{M-1}}(n_0+n_1) \right]$$

$$d_{M-1} = dr_{M-1} = di_{M-1} = 0, 1$$

$$= \widetilde{Z}(n_{M-1}n_{M-2} \bullet \bullet \bullet n_1n_0)$$

An additional re-ordering pass is added to change the encoded N chip block \widetilde{Z} $(n_{M-1}n_{M-2}\bullet \bullet \bullet n_1n_0)$ in bit reversed ordering to the normal readout ordering

$$\hat{Z}(n_0n_1\bullet\bullet\bullet n_{M-2}n_{M-1})=\ \widetilde{Z}(n)$$

42 PN scrambling

 $P_R(n)$, $P_I(n)$ = PN code chip n for real and Imaginary axes

Z(n) = PN scrambled complex Walsh encoded data chips after summing over the users

$$= \sum_{u} \widetilde{Z}(n) [P_{R}(n) + j P_{I}(n)]$$

$$= \sum_{u} \widetilde{Z}(n) [sgn\{P_{R}(n)\} + j sgn\{P_{I}(n)\}]$$

The fast algorithm in 41 is a computationally efficient means to implement the complex Walsh encoding of each N chip code block for multiple data rate users whose lowest data rate corresponds to the data symbol rate of an N chip encoded user. It is easily demonstrated that the number of real additions R_{A} per data symbol is approximately equal to RA≈2M+2 in the implementation of this fast algorithm 41, where $N=2^{M}$. real Walsh encoding it is well known that the fast algorithm R_a≈M+1 real additions per data symbol. Although the number of real adds has been doubled in using the complex Walsh compared to the real Walsh, the add operations are a low complexity implementation cost which means that the complex Walsh maintains its attractiveness as a zero-multiplication CDMA encoding orthogonal code set.

10

15

.20

25

30

The fast algorithm in 41 consists of M signal processing passes on the stored data symbols to generate the complex Walsh CDMA encoded chips in bit reversed order. A re-ordering pass can changes the bit reversed output to the normal output. Advantage is taken of the equality c=d which allows the d to be used in the code indices for the complex Walsh: $d_m=c_m$, $dr=c_r$, di=ci. Pass 1 implements 2 chip encoding, pass 2 implements 4 chip encoding, ..., and the last pass M performs $N=2^M$ chip encoding.

PN scrambling of the complex Walsh CDMA encoded chips in 42 is accomplished by encoding the $\{\widetilde{Z}(n)\}$ with a complex PN which is constructed as the complex code sequence $[P_R(n)+jP_I(n)]$ wherein $P_R(n)$ and $P_I(n)$ are independent PN sequences used for the real and imaginary axes of the complex PN. These PN codes are 2-phase with each chip equal to +/-1 which means PN encoding

consists of sign changes with each sign change corresponding to the sign of the PN chip. Encoding with PN means each chip of the summed complex Walsh encoded data symbols has a sign change when the corresponding PN chip is -1, and remains unchanged for +1 values. This operation is described by a multiplication of each chip of the summed complex Walsh encoded data symbols with the sign of the PN chip. Purpose of the PN encoding for complex data symbols is to provide scrambling of the summed complex Walsh encoded data symbols as well as isolation between groups of users. Output of this complex Walsh CDMA encoding followed by the complex PN scrambling are the CDMA encoded chips over the N chip block $\{Z(n)\}$.

Transmitter equations (6) for generalized hybrid complex

Walsh orthogonal encoding of multiple data rate users are derived by starting with the hybrid complex Walsh orthogonal codes disclosed in the invention application [6].09/826,117. The discrete Fourier transform (DFT) CDMA codes used in the example generation of hybrid complex Walsh orthogonal CDMA codes in [6] are given in equations (4) along with a fast encoding algorithm.

N-chip DFT complex orthogonal CDMA codes (4)

25 **43** DFT code vectors

5

10

30

 E_N = DFT NxN orthogonal code matrix consisting of \dot{N} rows of N chip code vectors

= $[E_N(c)]$ matrix of row vectors E(c)

= $[E_N(c,n)]$ matrix of elements E(c,n)

 $E_N(c)$ = DFT code vector c

= $[E_N(c,0), E_N(c,1), ..., E_N(c,N-1)]$

= 1xN row vector of chips $E_N(c,0),..., E_N(c,N-1)$

 $E_N(c,n) = DFT \text{ code } c \text{ chip } n$

 $= e^{j2\pi cn/N}$

```
= cos(2\pi cn/N) + jsin(2\pi cn/N)
= N possible values on the unit circle
```

44 Fast encoding algorithm for N chip block of data in the data vector $d=d_0d_1\cdots d_{M-2}\ d_{M-1}$

Pass 1:
$$Z^{(1)}(d_0d_1\cdots d_{M-2} n_0)$$

= $\sum_{\mathbf{d}} Z(d_0d_1d_2\cdots d_{M-2}d_{M-1}) e^{j2\pi d_{M-1}n_0/2}$
 $d_{M-1}=0,1$

10

5

Pass m for m=2,...,M-1
$$Z^{(m)}(d_0\cdots d_{M-m-1}n_{m-1}\cdots n_0)$$

15

$$= \sum_{\mathbf{d}_{M-m}} \mathbf{Z}^{(m-1)} \left(\mathbf{d}_{0} \cdots \mathbf{d}_{M-m} \mathbf{n}_{m-2} \cdots \mathbf{n}_{0} \right) \bullet$$

$$= \mathbf{e}^{1} \mathbf{2} \pi \left[\mathbf{d}_{M-m} \left(\mathbf{n}_{0} + \mathbf{n}_{1} \mathbf{2} + \cdots + \mathbf{n}_{m-1} \mathbf{2}^{(m-1)} \right) / 2^{m} \right]$$

20

Pass M for
$$m=2,...,M-1$$

$$Z^{(M)}(n_{M-1} \cdots n_0)$$

$$= \sum Z^{(m-1)}(d_0n_{M-2}\cdots n_0) \bullet$$

$$e^{j2\pi}[d_0(n_0+n_12+\cdots+n_{M-1}2^{(M-1)})/2^M]$$

$$d_0$$

25

 $= \widetilde{Z} (n_{M-1}n_{M-2} \cdots n_1 n_0)$

An additional re-ordering pass is added to change the encoded N chip block \widetilde{Z} ($n_{M-1}n_{M-2}\bullet\bullet n_1n_0$) in bit reversed ordering to the normal readout ordering

$$\widetilde{Z}(n_0n_1 \bullet \bullet \bullet n_{M-2}n_{M-1}) = \widetilde{Z}(n)$$

Page 23 Specification amendments to 09/846,410 -

In line 8 please delete the strikethrough word and add the underlined words.

Page 29 Specification amendments to 09/846,410

In lines 14,17,19 please delete the strikethrough text and add the underlined text.

Page 31 Specification amendments to 09/846,410

In lines 1-4 please delete the strikethrough text.

In lines 16,20 please delete the strikethrough word and add the underlined words.

In lines 24-34 please delete the strikethrough text and add the underlined text.

5

10

15

20

25

30

DFT code matrix and the row code vectors are defined in 43 for an N chip block. A fast algorithm for the encoding of the N chip data vector $Z(d_0d_1d_2\cdots d_{M-2}d_{M-1})$ is defined in 44 in a format similar to the fast algorithm for the complex Walsh encoding in equations (3). It is well known that the computational complexity of the fast DFT encoding algorithm is $R_A \approx 2M$ real additions per data symbol plus $R_M \approx 3M$ real multiplications per data symbol. The relatively high complexity implementation cost of multiplies makes it desirable to limit the use of DFT codes to applications such as the generalized hybrid complex Walsh wherein the number of real multiplies per data symbol can be kept more reasonable.

Generalized Hybrid complex Walsh orthogonal CDMA codes increase the flexibility in choosing the code lengths for users at the implementation multiple data rate introducing multiply operations into the CDMA encoding and Two of severalother means for construction given in the patent application [6] 09/826,117 are the Kronecker product and the direct sum. and functional combining. The direct sum and functional combining have fast encoding and decoding algorithms for multiple data rate applications and will not be considered since the addition of the zero matrix in the construction is generally not desirable for CDMA communications although the direct sum construction provides greater flexibility in the choice of N without necessarily introducing a multiply penality. Other codes considered for construction include the orthogonal Walsh and the quasi-orthogonal PN as well as the plurality of Page 32 Specification amendments to 09/846,410

In lines 1-3,6,8 please delete the strikethrough text and add the underlined words.

In line 26 please delete the strikethrough word and add the underlined word.

possible codes—Using the Kronecker product construction in reference [6] the hybrid complex Walsh orthogonal CDMA codes can be constructed as demonstrated in equations (4).

Equations (5) list construction and examples of generalized hybrid-complex Walsh orthogonal CDMA codes using the DFT matrices E_N to expand the complex Kronecker approach and Walsh to a hybridgeneralized —complex Walsh. Low order CDMA code examples 45 illustrate fundamental relationships between the DFT, complex Walsh, and the real Walsh or equivalently Hadamard. Kronecker construction is defined in 46. CDMA current and developing standards use the prime 2 which generates a code length N=2^M where M=integer. For applications requiring greater flexibility in code length N, additional primes can used using the Kronecker construction. We illustrate this in the examples 47 with the addition of prime=3. The use of prime=3 in addition to the prime=2 in the range of N=8 to 64 is observed to increase the number of N choices from 4 to 9 at a modest cost penality of using multiples of the angle increment 30 degrees for prime=3 in addition to the angle increment 90 degrees for prime=2. As noted in 46 there are several choices in the ordering of the Kronecker product construction and 2 of these choices are used in the construction.

25

20

5

10

15

Examples of <u>generalized</u> hybrid complex Walsh orthogonal codes (5)

45 Examples of low-order codes

30

$$2 \times 2 \qquad E_2 \qquad = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$= (e^{-j\pi/4} / \sqrt{2}) * \widetilde{W}_2$$

$$= H_2 \qquad 2 \times 2 \text{ Hadamard}$$

Page 33 Specification amendments to 09/846,410

In line 21 please add the underlined word.

5

$$4 \times 4 \qquad \widetilde{W_4} = \begin{bmatrix} 1+j & 1+j & 1+j & 1+j \\ 1+j & -1+j & -1-j & 1-j \\ 1+j & -1-j & 1+j & -1-j \\ 1+j & 1-j & -1-j & -1+j \end{bmatrix}$$

10

$$\mathbf{E}_{4} = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{bmatrix}$$

15

$$= (e^{-j\pi/4}/\sqrt{2}) \widetilde{W}_4$$

20

25

6 Kronecker product construction for $N = \prod_k N_k$

Code matrix $C_N = NxN$ generalized hybrid orthogonal CDMA code matrix

Kronecker product construction of C_{N}

$$C_{N} = C_{0} \prod_{k>0} \otimes C_{N_{k}}$$

Kronecker product definition

 $A = N_a x N_a$ orthogonal code matrix

 $B = N_b x N_b orthogonal code matrix$

30

 $A \otimes B$ = Kronecker product of matrix A and matrix B

= $N_a N_b \times N_a N_b$ orthogonal code matrix consisting of the elements $[a_{ik}]$ of matrix A multiplied by the matrix B

Page 34 Specification amendments to 09/846,410

In lines 25-26 please delete the strikethrough word and equation and add the underlined word and equation.

Kronecker product construction examples for primes 5 p=2,3 and the range of sizes $8 \le N \le 64$ $C_8 = \widetilde{W}_{s}$ 8x8 $12 \times 12 \quad C_{12} \quad = \widetilde{W}_4 \otimes E_3$ $C_{12} = E_3 \otimes \widetilde{W}_4$ $16x16 \quad C_{16} = \widetilde{W}_{16}$ $18 \times 18 \quad C_{18} = \widetilde{W}_2 \otimes E_3 \otimes E_3$ 10 $C_{18} = E_3 \otimes E_3 \otimes \widetilde{W}_2$ $24 \times 24 \quad C_{24} = \widetilde{W}_8 \otimes E_3$ $C_{24} = E_3 \otimes \widetilde{W}_8$ $32x32 \quad C_{32} = \widetilde{W}_{3},$ 36x36 $C_{36} = \widetilde{W}_4 \otimes \widetilde{W}_3 \otimes \widetilde{W}_3$ 15 $C_{36} = \widetilde{W}_3 \otimes \widetilde{W}_3 \otimes \widetilde{W}_4$ $48 \times 48 \quad C_{48} \quad = \quad \widetilde{W}_{16} \otimes \widetilde{W}_{3}$ $C_{48} = \widetilde{W}_3 \otimes \widetilde{W}_{16}$ $64 \times 64 \quad C_{64} \quad = \quad \widetilde{W}_{64}$

20

25

A fast algorithm for the encoding of the hybrid generalized complex Walsh CDMA orthogonal codes is described in equations (6) for the representative example 48 which constructs the NxN hybrid generalized complex Walsh orthogonal CDMA code matrix $C_N = \frac{\widetilde{W}_{N_0} \otimes E_{N_1}}{E_{N_1}} \underbrace{E_{N_1}}_{N_0} \underbrace{\otimes}_{N_0} \underbrace{\widetilde{W}_{N_0}}_{N_0}$ —as the Kronecker product of the $N_0 \times N_0$ complex Walsh \widetilde{W}_{N_0} and the $N_1 \times N_1$ complex DFT, where $N = N_0 N_1$. Each chip element of C_N is the product 49 of the chip elements of the

Page 35 Specification amendments to 09/846,410

In line 22 please delete the strikethrough word and add the underlined word.

In lines 29-31 please delete the strikethrough text.

complex Walsh and complex DFT code matrices. The complex Walsh and DFT codes are phase codes which means the phase of each C_{N} chip element is the sum of the phases of the chip elements for the complex Walsh and complex DFT. Chip element equations are $C_N(c,n) = \widetilde{W}_{N_0}(c\widetilde{w},n\widetilde{w})E_{N_1}(ce,ne)$ with $c = ce + c\widetilde{w}N_1$ and n $ne + n\widetilde{w} N_1$. For multiple data rate data symbol assignments and for the construction of the fast encoding algorithm, convenient to use a binary word representation of the chip Binary word representation 50 element indices c,n. $\mathbf{c} = \mathbf{c} \mathbf{e}_0 c \mathbf{e}_1 \cdots c \mathbf{e}_{M_1 - \mathbf{l}} c \widetilde{\mathbf{w}}_{M_1} c \widetilde{\mathbf{w}}_{M_1 + \mathbf{l}} \cdots c \widetilde{\mathbf{w}}_{M - \mathbf{l}} = \mathbf{c}_0 \mathbf{c}_1 \cdots \mathbf{c}_{M - 2} \mathbf{c}_{M - 1} \text{ where the first binary}$ word is a function of the binary words for the complex Walsh and complex DFT code indices, and the second binary word is a direct representation of the C_{N} indices which will be used for the data vector construction. The same binary word representations apply for the chip index n upon substituting the n for c. in equations (3) for the N chip code block is mapped into the N data symbol vector $d = d_0 \cdots d_{M-1}$ which is obtained from the binary word for c by substituting the index d for the index c in the binary word representation.

20

25

30

15

10

The multiple data rate data symbol mapping 51 in equations (6) for the generalized hybrid—complex Walsh codes remains the same as used in 38, 39, 40 in equations (3) for the complex Walsh codes. The data symbol mapping assigns the N/2 data symbols of the 2 chip data symbol transmission rate users to the d_{M-1} field, the N/4 data symbols of the 4 chip data symbol transmission rate users are assigned to the $d_{M-1}d_{M-2}$ field,, and the single data symbols of the N chip data symbol transmission rate users are assigned to the $d_0 \cdots d_{M-1}$ field, where the data vector index "d" is represented as the binary number $d=d_0 \cdots d_{M-1}$ and the $\{d_m\}$ are the binary coefficients. For a fully loaded CDMA communications frequency band the N data symbols occupy the N available data symbol locations in the data symbol vector $d=d_0 \cdots d_{M-1}$. The

Page 36 Specification amendments to 09/846,410

In lines 10-11 please delete the strikethrough word and add the underlined words.

In line 19 please delete the strikethrough equation and add the underlined equation.

In line 26 please delete the strikethrough word and add the underlined word.

menu of available user assignments to the data vector fields is given in 38 in equations (3). Examples 1 and 2 in 39 and 40 in equations (3) illustrate representative user assignments to the data fields of the data symbol vector. This mapping of the user data symbols into the data symbol vector is equivalent to setting c=d which makes it possible to develop the fast encoding algorithm 51.

- 10 Fast multiple data rate <u>generalized</u> hybrid complex Walsh encoding <u>for transmitter</u> (6)
- The fast algorithm will be described for the example NxN complex orthogonal CDMA code matrix $C_{\rm N}$ which is generated by the Kronecker product of the ${\rm N_0xN_0}$ complex Walsh matrix \widetilde{W}_{N_0} and the complex ${\rm N_1xN_1}$ DFT matrix E_{N_1}

 $\mathrm{C_N}$ = Kronecker product of \widetilde{W}_{N_0} and E_{N_1}

$$= \widetilde{W}_{N_0} \otimes E_{N_1} \underline{\otimes} \ \widetilde{W}_{N_0}$$

 $where N = N_0N_1$

 $= 2^M$

 $M = M_0 + M_1$

 $N_0 = 2^M_0$

 $N_1 = 2^N_1$

25

30

5

- 49 N chip $\frac{hybrid}{generalized}$ complex Walsh code block C_N
 - C_N = hybrid complex Walsh NxN orthogonal code matrix consisting of N rows of N chip code vectors
 - = $[C_N(c)]$ matrix of row vectors $C_N(c)$

= $[C_N(c,n)]$ matrix of elements $C_N(c,n)$

 $C_N(c,n)$ = hybrid complex Walsh code c chip n

 $= \widetilde{W}_{N_0}(c\widetilde{w}, n\widetilde{w}) E_{N_1}(ce, ne)$

$$= [+/-1 +/-j] \quad E_{N_1}(ce,ne) \qquad \text{values}$$
 where c = $ce + c\widetilde{w} \, N_1$
$$n = ne + n\widetilde{w} \, N_1$$

50 Binary indexing of codes in the matrix C_N $c = ce_0 + ce_1 2 + \cdots + ce_{M_1-1} 2^{\wedge} (M_1 - 1) \\ + c\widetilde{w}_{M_1} 2^{\wedge} M_1 + c\widetilde{w}_{M_1+1} 2^{\wedge} (M_1 + 1) + \cdots + c\widetilde{w}_{M-1} 2^{\wedge} M - 1$ $= ce_0 ce_1 \cdots ce_{M_1-1} c\widetilde{w}_{M_1} c\widetilde{w}_{M_1+1} \cdots c\widetilde{w}_{M-1} \quad \text{Binary word}$ $n = ne_0 + ne_1 2 + \cdots + ne_{M_1-1} 2^{\wedge} (M_1 - 1) \\ + n\widetilde{w}_{M_1} 2^{\wedge} M_1 + n\widetilde{w}_{M_1+1} 2^{\wedge} (M_1 + 1) + \cdots + n\widetilde{w}_{M-1} 2^{\wedge} M - 1$ $= ne_0 ne_1 \cdots ne_{M_1-1} n\widetilde{w}_{M_1} n\widetilde{w}_{M_1+1} \cdots n\widetilde{w}_{M-1} \quad \text{Binary word}$

- symbol vector d and mapping of the user groups u₀, u₁,, u_{M-1} into the data fields of d. This mapping is identical to the mapping defined in equations (3) for the multiple data rate complex Walsh orthogonal encoding of the CDMA over an N chip block. However, the fast algorithm for the hybrid complex Walsh encoding is modified to accommodate the Kronecker construction as illustrated by the following fast algorithm for the hybrid complex Walsh example in 48. Using the binary representations of d,n
- 20 $d = d_0 d_1 \cdot \cdots \cdot d_{M_1 1} d_{M_1} \cdot \cdots \cdot d_{M 1}$ $= de_0 de_1 \cdot \cdots \cdot de_{M_1 1} d\widetilde{w}_{M_1} \cdot \cdots \cdot d\widetilde{w}_{M 1}$ $n = n_0 n_1 \cdot \cdots \cdot n_{M_1 1} n_{M_1} \cdot \cdots \cdot n_{M 1}$ $= ne_0 ne_1 \cdot \cdots \cdot ne_{M_1 1} n\widetilde{w}_{M_1} \cdot \cdots \cdot n\widetilde{w}_{M 1}$

10

15

and the same approach used to derive the fast algorithms 41 in equations (3) and 44 in equations (4), enables the M pass fast algorithm to be defined

Pass 1 for complex Walsh codes

$$Z^{(1)} (d_0 \cdots d_{M_1-1} n_{M_1} d_{M_1+1} \cdots d_{M-1})$$

$$= \sum_{i=1}^{M_1} Z (d_0 \cdots d_{M-1}) \cdot d_{M_1} n_{M_1} + j (-1) \wedge d_{M_1}$$

Pass m for $m=2,...,M_0$ for complex Walsh codes

$$\begin{array}{c} \mathbb{Z}^{(m)} \left(\mathsf{d}_0 \cdots d_{M_1 - 1}^n M_0 - 1 \cdots n_{M_0 - m} d_{M_1 + m} \cdots \mathsf{d}_{\mathsf{M} - 1} \right) \\ = \mathbb{\Sigma} \quad \mathbb{Z}^{(m - 1)} \left(\begin{array}{c} \mathsf{d}_0 \cdots d_{M_1 - 1} n_{M_0 - 1} \cdots n_{M_0 - m + 1} d_{M_1 + m - 1} \cdots \mathsf{d}_{\mathsf{M} - 1} \right) \cdot \\ \\ = \mathbb{E} \quad \mathbb{Z}^{(m - 1)} \left(\begin{array}{c} \mathsf{d}_0 \cdots d_{M_1 - 1} n_{M_0 - 1} \cdots n_{M_0 - m + 1} d_{M_1 + m - 1} \cdots \mathsf{d}_{\mathsf{M} - 1} \right) \cdot \\ \\ = \mathbb{E} \quad \mathbb{E} \left[\left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) + \\ \\ + \mathbb{E} \left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) + \\ \\ + \mathbb{E} \left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) \right] \\ \\ = \mathbb{E} \quad \mathbb{E} \left[\left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) + \\ \\ + \mathbb{E} \left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) \right] \\ \\ = \mathbb{E} \quad \mathbb{E} \left[\left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) \right] \\ \\ = \mathbb{E} \quad \mathbb{E} \left[\left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) \right] \\ \\ = \mathbb{E} \quad \mathbb{E} \left[\left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) \right] \\ \\ = \mathbb{E} \quad \mathbb{E} \left[\left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) \right] \\ \\ = \mathbb{E} \quad \mathbb{E} \left[\left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) \right] \\ \\ = \mathbb{E} \quad \mathbb{E} \left[\left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) \right] \\ \\ = \mathbb{E} \quad \mathbb{E} \left[\left(-1 \right) \wedge dr_{m - 1} \left(n_{M_0 - m} + n_{M_0 - m + 1} \right) \right]$$

Pass $M_0+m=M_0+1,\ldots,M_0+M_1-1=M-1$ for complex DFT codes $Z^{(M_0+m)}\left(\mathrm{d}_0\cdots d_{M_1-m-1}{}^n M_0+m-1\cdots n_0\right)$

$$\begin{array}{c} M_1^{-m-1} M_0^{+m-1} \\ = \sum Z^{(M_0+m-1)} \left(d_0 \cdots d_{M_1-m} n_{M_0+m-2} \cdots n_0 \right) \bullet \\ \\ \bullet \\ e^{j2\pi} \wedge d_{M_1-m} \left(n_{M_0} + n_{M_0+1} + n_{M_0+m-1} + n_{M_0+m-1}$$

Page 39 Specification amendments to 09/846,410

In line 16 please delete the strikethrough word and add the underlined word.

Pass M for complex DFT codes

$$Z^{(M)}(n_{M-1}\cdots n_{1}n_{0})$$

$$= \sum_{A} Z^{(M-1)}(d_{0}n_{M-2}\cdots n_{1}n_{0}) \circ \left[e^{\lambda}j2\pi \wedge d_{0}(n_{M_{0}} + n_{M_{0}} + 1^{2 + \cdots + n_{M-1}2\wedge M_{0} - 1)/2\wedge M_{0}} \right]$$

$$d_{0}=0,1$$

$$= \widetilde{Z}(n_{M-1}n_{M-2}\cdots n_{1}n_{0})$$

An additional re-ordering pass is added to change the encoded N chip block \widetilde{Z} $(n_{M-1}n_{M-2}\circ \circ n_1n_0)$ in bit reversed ordering to the normal readout ordering

$$\hat{Z}(n_0n_1 \circ \circ \circ n_{M-2}n_{M-1}) = \widetilde{Z}(n)$$

5

10

The fast algorithm in 51 is a computationally efficient means to implement the <u>hybrid-generalized</u> complex Walsh encoding of each N chip code block for multiple data rate users whose lowest data rate corresponds to the data symbol rate of an N chip encoded user. The computational complexity of this fast encoding algorithm can be estimated using the computational complexities of the complex Walsh and the DFT fast encoding algorithms, which gives the estimate: $R_A \approx 2M + M_1 + 2$ real additions per data symbol, and $R_M \approx 2M_1$ real multiplies per data symbol.

25 The fast algorithm in **51** consists of M signal processing passes on the stored data symbols, followed by a re-ordering pass for readout of the N chip block of encoded data symbols. Advantage is taken of the equality c=d which allows the d to be used in the code indices for the complex Walsh: d_m=c_m, dr=cr, di=ci. Pass 1 implements 2 chip encoding, passes m=2,....,M₀ implement 2^m chip encoding with the complex Walsh codes, passes

Page 40 Specification amendments to 09/846,410

In line 4 please delete the strikethrough numbers and add the underlined numbers.

In lines 14-15 please delete the strikethrough text.

In lines 20-22 please delete the strikethrough text and add the underlined text.

In lines 28-29 please delete the strikethrough text.

 M_0+1 , M_0+2 ,..., $M_0+M_1-1=M-1$ implement 2^M_0+m chip encoding with the complex DFT codes, and the last pass M encodes the $N=2^M$ chip data symbols with the DFT codes. This fast algorithm only differs from the fast algorithms in 46-41, 44 in equations (3), (4) in the use of both the complex Walsh codes and the complex DFT codes with their Kronecker indexing. Unlike the fast algorithm for the real Walsh encoding as well as the algorithm for the complex DFT encoding, the complex Walsh portion of the fast algorithm 51 uses both the sign of the complex Walsh code from the current pass and from the previous pass starting with pass 2.

10

15

20

25

30

The generalization of the fast algorithm in 51 in equations (6) to other Kronecker product constructions for C_N and to the more general constructions for C_N discussed in reference (6) should be apparent to anyone skilled in the CDMA communications art.

Receiver equations (7) describe a representative multiple data rate complex Walsh CDMA decoding for multiple data users for receiver in FIG. 3 using the definition of the hybrid complex Walsh CDMA codes in 36 in equations (3) the invention The receiver front end 52 provides estimates application [6]. $\{\hat{Z}(n)\}$ of the transmitted multiple data rate complex Walsh CDMA encoded chips {Z(n)}. Orthogonality property 53 is expressed as a matrix product of the complex Walsh code chips or equivalently as a matrix product of the complex Walsh code chip numerical signs of the real and imaginary components, for any of the 2,4,8,...,N/2,N chip complex Walsh channelization codes and their repetitions over the N chip code block. The 2-phase PN have the useful decoding property that the square of each code chip is unity which is equivalent to observing that the square of each code chip numerical sign is unity.

Page 41 Specification amendments to 09/846,410

In lines 2-3 please delete the strikethrough words and add the underlined words.

In line 23 please delete the strikethrough words and add the underlined words.

Receiver <u>multiple</u> data rate decoding of <u>hybrid</u> complex Walsh and generalized hybrid complex Walsh CDMA **(7)**

5

Receiver front end in FIG. 3 provides estimates 28 of the encoded transmitter chip symbols $\{Z(n)\}\$ 41 in equations (3)

10

53 Orthogonality properties of the complex Walsh NxN matrix

$$\sum_{n} \widetilde{W}_{N}(\hat{c}, n) \, \widetilde{W}_{N}^{*}(n, c) =$$

 $\sum_{n} [\operatorname{sgn} \{ W_{N}(\hat{c}r, n) + j \operatorname{sgn} \{ W_{N}(\hat{c}i, n) \}] [\operatorname{sgn} \{ W_{N}(n, cr) \} - j \operatorname{sgn} \{ W_{N}(n, ci) \}]$

= 2N $\delta(\hat{c}, c)$

15

where $\hat{c}, c, n = 0, 1, ..., N$

 $\delta(\hat{c}, c)$ = Delta function of \hat{c} and c

= 1 for \hat{c} = c

= 0 otherwise

cr=cr(c), ci=ci(c) are defined

20

in equations (3)

PN de-scrambling of the receiver estimates of the 54 complex hybrid and generalized hybrid complex Walsh encoded data chips

25

- $P_R(n)$, $P_I(n)$ = PN code chip n for real and imaginary axes

 $\widetilde{\hat{Z}}(n)$ = PN de-scrambled receiver estimates of the

transmitted CDMA encoded chips $\hat{Z}(n)$

 $= \hat{Z}(n) [P_{p}(n) - i P_{t}(n)]$

30

efficient fast encoding algorithm. This algorithm implements the decoding with an M pass computation. Passes 1,2,3,...,M respectively perform the 2,4,8,...,N chip complex Walsh decoding of the data symbol vector successively starting with the 2 chip decoding in pass 1, the 4 chip decoding in passes 1,2, and the N chip decoding in passes 1,2,3,...,M where N=2^M. Using the binary word representations for both d and n, this M pass algorithm is:

Pass 1:

$$\hat{Z}^{(1)} (d_{M-1}n_1n_2 \cdots n_{M-2} n_{M-1})$$

$$= \sum \hat{Z} (n_0n_1n_2 \cdots n_{M-2}n_{M-1}) \bullet$$

$$= \sum_{n_0=0,1} \hat{Z} (n_0n_1n_2 \cdots n_{M-2}n_{M-1}) \bullet$$

$$= \sum_{n_0=0,1} \hat{Z} (n_0n_1n_2 \cdots n_{M-2}n_{M-1}) \bullet$$

:

Pass m for m=2,...,M-1

20

5

10

15

$$\hat{Z}^{(m)} (d_{M-1}d_{M-2} \cdots d_{M-m}n_m \cdots n_{M-2}n_{M-1})$$

$$= \sum \hat{Z}^{(m-1)} (d_{M-1}d_{M-2} \cdot \cdot \cdot d_{M-m+1}n_{m-1} \cdot \cdot \cdot n_{M-2}n_{M-1}) \cdot \\ [(-1)^{n_{m-1}} (dr_{M-m} + dr_{M-m+1}) - j(-1)^{n_{m-1}} (di_{M-m} + di_{M-m+1})] \\ n_{m-1} = 0,1$$

25

30

Pass M

$$\hat{Z}^{(M)} (d_{m-1}d_{m-2} \cdots d_{0})$$

$$= \sum \hat{Z}^{(M-1)} (d_{M-1}d_{M-2} \cdots d_{1}n_{0}) \cdot \left[(-1)^{n} n_{M-1} (dr_{0} + dr_{1}) - j (-1)^{n} n_{M-1} (di_{0} + di_{1}) \right]$$

$$= N \hat{Z} (d_{m-1}d_{m-2} \cdots d_{0})$$

42

Page 43 Specification amendments to 09/846,410

In line 11 please delete the strikethrough word and add the underlined word.

An additional re-ordering pass is added to change the decoded N chip block \hat{Z} $(d_{m-1}d_{m-2}\cdots d_0)$ in bit reversed ordering to the normal readout ordering. In this representative fast implementation the scaling factor N has been removed in the re-ordering pass whereas a typical implementation will re-scale each pass. The output of this final pass is the receiver estimate of the transmitted data symbol vector

$$\hat{Z} (d_0 d_2 \cdots d_{M-1}) = \hat{Z}(d)$$

10

15

20

5

55b Hybrid Generalized complex Walsh decoding uses a computationally

efficient fast encoding algorithm. Similar to the complex Walsh this algorithm implements the decoding with an M pass computation 1,2,3,...,M:

Pass $m=1,...,M_1$ for complex DFT codes

25

Pass $M_1+m=M_1+1, M_1+2, ..., M-1$ for complex Walsh codes

$$\hat{z}^{(M_1+m)}(d_{M-1}\cdots d_{M-m}n_m\cdots n_{M_0-1}d_{M_1-1}\cdots d_0)$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-m-1} n_{m-1} \cdots n_{M_0-1} d_{M_1-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-m-1} n_{m-1} \cdots n_{M_0-1} d_{M_1-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-m-1} n_{m-1} d_{M-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-m-1} n_{m-1} \cdots n_{M_0-1} d_{M_1-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-m-1} n_{m-1} \cdots n_{M_0-1} d_{M_1-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} n_{m-1} d_{M-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} n_{m-1} \cdots n_{M_0-1} d_{M_0-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} n_{m-1} \cdots n_{M_0-1} d_{M_0-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_{M-1} \cdots d_0) \bullet$$

$$= \sum_{m=0}^{\infty} \hat{Z}^{(M_1+m-1)} (d_{M-1} \cdots d_0) \bullet$$

 $n_{m-1} = 0, 3$

Pass M for complex Walsh codes

$$\hat{Z}^{(M)}(d_{M-1}\cdots d_{1}d_{0})$$

$$= \sum_{\mathbf{A}} \hat{Z}^{(M-1)}(d_{M-1}\cdots d_{M-m-1}n_{M_{0}-1}d_{M_{1}-1}\cdots d_{0}) \bullet$$

$$\begin{bmatrix} (-1)^{n}n_{M_{0}-1}(dr_{0}+dr_{1}) \\ -j(-1)^{n}n_{M_{0}-1}(di_{0}+di_{1}) \end{bmatrix}$$

$$n_{M_{0}-1} = 0,1$$

 $= \hat{Z} \left(d_{M-1} d_{M-2} \cdots d_1 d_0 \right)$

An additional re-ordering pass is added to change the decoded N chip block \hat{Z} ($d_{m-1}d_{m-2}\cdots d_0$) in bit reversed ordering to the normal readout ordering. In this representative fast implementation the scaling factor N has been removed in the re-ordering pass whereas a typical implementation will re-scale each pass. The output of this final pass is the receiver estimate of the transmitted data symbol vector

$$\hat{Z}$$
 (d₀d₂···d_{M-1}) = $\hat{Z}(d)$

25

15

20

Page 45 Specification amendments to 09/846,410

In line 3 please delete the strikethrough word and add the underlined word.

In line 6 please delete the strikethrough text.

In line 13 please delete the strikethrough word and add the underlined word.

In line 24 please delete the strikethrough word and add the underlined word.

In lines 32-34 please delete the strikethrough text and add the underlined text.

The fast decoding algorithms 55a, 55b perform the inverse of the signal processing for the encoding 41, 51 in equations (3),(6) of the complex, generalized hybrid—complex Walsh to recover estimates $\{\hat{Z}(d)\}$ of the transmitter respectively, {Z(d)}. These algorithms are computationally user data symbols efficient means to implement the complex and hybrid complex Walsh decoding of each N chip code block for multiple data rate users whose lowest data rate corresponds to the data symbol rate of an For the fast Walsh decoding algorithm in N chip encoded user. the number of required real additions RA per data symbol is approximately equal to RA≈2M+2 which is identical to the complexity metric for the fast encoding algorithm. For the fast generalized hybrid complex Walsh decoding algorithm in 55b the $R_A \approx 2M + M_1 + 2$ real additions per data computational complexity is symbol and $R_{w}\approx 2M_1$ real multiplies per data symbol which is identical to the complexity metric for the fast encoding algorithm.

5

10

15

20

25

30

For the complex Walsh decoding the fast algorithm implements M signal processing passes on the N chip block of received data chips after de-scrambling, followed by a reordering pass of the receiver recovered estimates of the data symbols. Passes m=1,2,...,M implement 2^m chip decoding. For the generalized hybrid complex Walsh the fast algorithm 55b combines the complex Walsh algorithm with a DFT algorithm in M signal processing passes where $M=M_0+M_1$ with M_0 , M_1 respectively designating the complex Walsh, DFT decoding passes. $m=1,...,M_1$ implement the complex DFT decoding and the remaining passes $M_1+1,..., M-1$ implement decoding with the complex Walsh codes, and the last pass M completes the complex decoding.

FIG. 5 complex/hybrid and generalized hybrid complex Walsh CDMA encoding is a representative implementation of the complex and hybrid complex (complex/hybrid complex) Walsh CDMA encoding

Page 46 Specification amendments to 09/846,410

In lines 7-9 please delete the strikethrough words and add the underlined words.

In lines 22,24 please delete the strikethrough text and add the underlined text.

In lines 31-34 please delete the strikethrough text and add the underlined text.

which replaces the current real Walsh encoding 13 in FIG. 1, and is defined in equations (3) and (6). The input user data 56 are mapped into the data symbol vector 57 symbols $\{Z(u_{mk})\}$ Z(d) as described in equations (3). Data symbols $\{Z(d)\}$ are encoded and summed over the user data symbols in by the fast encoding algorithm in equations 41 in (3) for the and in equations 51 in (6) hybrid complex Walsh for the generalized hybrid complex Walsh. For the generalized hybrid 59 follows the fast complex Walsh, the fast DFT encoding complex Walsh encoding 58. This encoding and summing over the user data symbols is followed by PN encoding with the scrambling sequence $\{P_R(n)+jP_I(n)\}$ 60. Output is the stream of complex CDMA encoded chips {Z(n)} 61.

10

25

30

15 It should be obvious to anyone skilled in the communications art that this example implementation in FIG. 5 clearly defines the fundamental CDMA signal processing relevant to this invention disclosure and it is obvious that this example is representative of the other possible signal processing approaches.

FIG. 6 complexhybrid and generalized /hybrid complex-Walsh CDMA decoding representative implementation is a complex/hybrid Walsh CDMA decoding which replaces the current real Walsh decoding 27 in FIG. 3 and is defined in equations Inputs are the received estimates of the complex CDMA encoded chips $\{\hat{Z}(n)\}$ 62. The PN scrambling code is stripped off from these chips 63 by changing the sign of each chip according to the numerical sign of the real and imaginary components of the complex conjugate of the PN code as per the decoding algorithms in equations (7). The eomplex/hybrid and generalized hybrid complex Walsh channelization coding is removed by the fast 55 decoding algorithms in equations in (7) for the complex/hybrid complex Walsh, to recover the receiver estimates

Page 47 Specification amendments to 09/846,410

In lines 1--3 please delete the strikethrough words and add the underlined words.

In line 23 please delete the strikethrough word.

In line 29 please delete the strikethrough words and add the underlined words.

 $\{\hat{Z}(d)\}$ of the transmitted data symbols $\{Z(d)\}$. The complex Walsh DFT fast decoding 64 is followed by the complex DFT Walsh fast decoding 65 for the generalized hybrid complex Walsh. Decoded outputs are the estimated data vector $\hat{Z}(d)$ 66 whose entries are read out as the set of receiver estimates $\{\hat{Z}(u_{m,k_m})\}$ 67 of the transmitted data symbols.

It should be obvious to anyone skilled in the communications art that this example implementation in FIG. 6 clearly defines the fundamental CDMA signal processing relevant to this invention disclosure and it is obvious that this example is representative of the other possible signal processing approaches.

Preferred embodiments in the previous description is provided to enable any person skilled in the art to make or use the present invention. The various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein but is not not be accorded the wider scope consistent with the principles and novel features disclosed herein.

It should be obvious to anyone skilled in the communications art that this example implementation of the complex hybrid Walsh and generalized hybrid complex Walsh for multiple data rate users in equations (3),..., (7) clearly defines the fundamental CDMA signal processing relevant to this invention disclosure and it is obvious that this example is representative of the other possible signal processing approaches. For example,

Page 48 Specification amendments to 09/846,410

In lines 1-4 please delete the strikethrough comma and add the underlined text.

In lines 7,9-11 please delete the strikethrough text and add the underlined text.

In lines 27-35 please delete the strikethrough text.

the Kronecker matrices E_N and H_N can be replaced by a plurality of codes and the Kronecker construction can be replaced by direct sum construction and by functionals— and the resultant codes can be quasi-orthogonal.

5

10

For cellular applications the transmitter description which includes equations (18) describes is representative of the transmission signal processing applicable to this invention for both the hub and user terminals, and the receiver description is corresponding to the decoding of equations (18) describes is representative of the corresponding receiving signal processing for the hub and user terminals for applicability to this invention.

For optical communications applications the the microwave processing at the front end of both the transmitter and the receiver is replaced by the optical processing which performs the complex modulation for the optical laser transmission in the transmitter and which performs the optical laser receiving function of the microwave processing to recover the complex baseband received signal.

25

REFERENCES:

- [1] IEEE Journal on selected areas in communications August 2000 Vol. 18 No. 8, "Wideband CDMA"
- 30 [2] IEEE Communications magazine July 2000 Vol. 38 No. 7, "Multiple Access for Broadband Networks"
 - [3] IEEE Communications magazine September 1998 Vol. 36 No. 9, "Wideband CDMA"
 - [4] IEEE Personal Communications April 1998 Vol. 5 No. 2, "Third
- 35 Generation Mobile Systems in Europe"

Page 49 Specification amendments to 09/846,410

In lines 1-4 please delete the strikethrough text

```
[5] K.G. Beauchamp's book "Walsh functions and their Applications", Academic Press 1975
[6] Patent application, filed Jan. 9, 2001, by U.A. von der Embse
```

NOV 0 3 2005

TION . 09/846,410

TITLE OF INVENTION: Multiple Data Rate Hybrid Walsh Codes for

CDMA

INVENTOR: Urbain A. von der Embse

Currently amended ABSTRACT OF THE DISCLOSURE

APPLICATION NO. 09/846,410

TITLE OF INVENTION: Multiple Data Rate Complex Hybrid Walsh Codes

for CDMA

INVENTOR: Urbain A. von der Embse

ABSTRACT OF THE DISCLOSURE

ABSTRACT

The present invention describes newA method and system using the fast encoding and decoding of hybrid Walsh CDMA and generalized hybrid Walsh CDMA codes for simultaneous transmission of multiple data rate users with the different data rate groups of users separated in the sequency domain of these complex CDMA channelization codes. multiple data rate algorithms for complex Walsh and hybrid complex Walsh orthogonal CDMA channelization encoding and decoding of multiple data rate users, which generate a means to accomodate multiple data rate users over the same CDMA frequency band using complex Walsh and hybrid complex Walsh orthogonal codes. Complex Walsh and hybrid complex Walsh orthogonal CDMA codes have been disclosed in a previous patent application for constant data rate communications. The means of this invention is to provide complex Walsh and hybrid complex Walsh with the means to separate the different data rate users in the sequency domain of the complex Walsh analogous to the current use of different frequency bands for the different data rate users. Sequency for complex Walsh and hybrid complex Walsh codes is the average rate of phase angle rotations of the code vectors,— and is for hybrid Walsh codes analogus—sequency is in a 1-to-1 correspondence with to frequency for the discrete Fourier transform codes. in the Fourier domain. Hybrid Walsh codes are derived from lexicographic permutations of the real Walsh and can take values $\{1,j,-1,-j\}$. Generalized hybrid Walsh codes are orthogonal and quasiorthogonal complex codes derived from tensor (Kronecker) product construction, direct product construction, and functional combining of the plurality of codes including the hybrid Walsh and discrete Fourier transform codes.

Current art uses algorithms to generate multiple code length real Walsh CDMA orthogonal codes for the next generation wideband CDMA (W-CDMA), which are orthogonal variable spreading factor (OVSF) CDMA codes. Variable spreading factor refers to a variable code length. The present invention provides a means to significantly improve CDMA performance for multiple data rate users by allowing the use of the new complex Walsh and hybrid complex Walsh CDMA orthogonal codes in place of the real Walsh OVSF CDMA orthogonal codes and with implementation means for fast and computationally efficient encoding and decoding.

APPLICATION NO. 09/846,410

TITLE OF INVENTION: Multiple Data Rate Hybrid Walsh Codes for

CDMA

INVENTOR: Urbain A. von der Embse

Currently amended CLAIMS

APPLICATION NO. 09/846,410

TITLE OF INVENTION: Multiple Data Rate Hybrid Walsh Codes for

CDMA

INVENTOR: Urbain A. von der Embse

List of claims and status

Claim 1 (cancelled)

Claim 2 (cancelled

Claim 3 (cancelled)

Claim 4 (cancelled)

Claim 5 (currently amended)

Claim 6 (currently amended)

TITLE OF INVENTION: Multiple Data Rate Complex Hybrid Walsh Codes for CDMA

INVENTORS: Urbain A. von der Embse

CLAIMS

WHAT IS CLAIMED IS:

Claim 1. (cancelled) —A means for the implementation of new fast algorithms for complex Walsh orthogonal CDMA encoding and decoding of multiple data rate users over a CDMA frequency band with properties which

provide a complex Walsh orthogonal code with the real component equal to the real Walsh orthogonal code, and with the imaginary component equal to a reordering of the real Walsh orthogonal code which makes the complex Walsh orthogonal code the correct complex version of the real Walsh orthogonal code to within arbitrary angle rotations and scale factors

--- provide complex Walsh orthogonal CDMA codes which reduce to the real Walsh orthogonal CDMA codes upon removal of the imaginary code components

provide a means to encode and decode multiple data rate users with complex Walsh orthogonal codes for simultaneous transmission over the same CDMA frequency band with computationally efficient algorithm means to implement the encoding and decoding

—— provide a computationally efficient algorithm mmeans to encode and decode multiple data rate users with complex Walsh orthogonal codes with values +/-1 +/-j, for simultaneous transmission over the same CDMA frequency band

Claim 2. (cancelled) A means for the implementation of new hybrid complex Walsh orthogonal CDMA encoding and decoding of multiple data rate users over a CDMA frequency band with properties

provide a means for the construction of hybrid complex Walsh orthogonal CDMA codes which are functional combinations of the complex Walsh, discrete Fourier transform (DFT), Hadamard (real Walsh), and other orthogonal codes and which offer wider choices of code lengths

provide a means to extend the complex Walsh orthogonal CDMA codes to include the complex discrete Fourier transform (DFT) codes and other orthogonal codes to allow greater flexibility in the choices for the code lengths

provide new fast algorithm means for the encoding and decoding of hybrid complex Walsh codes for multiple data rate users

Claim 3. (cancelled) A means for the design of hybrid complex Walsh orthogonal CDMA encoding and decoding of multiple data rate users over a CDMA frequency band with properties

provide a means to provide greater flexibility in the selection of the code length by combining the complex Walsh orthogonal CDMA codes with the complex DFT orthogonal CDMA codes as well as with other orthogonal codes

provide a Kronecker product means to combine the complex Walsh orthogonal CDMA codes with complex DFT orthogonal CDMA codes as well as with other orthogonal CDMA codes t

provide a direct sum means to combine the complex Walsh orthogonal CDMA codes with complex DFT orthogonal CDMA codes as well as with other orthogonal CDMA codes

provide a functionality means to combine the complex Walsh orthogonal CDMA codes with complex DFT orthogonal CDMA codes as well as with other orthogonal CDMA codes

provide new fast algorithm means for the encoding and decoding of hybrid complex Walsh codes for multiple data rate users

Claim 4. (cancelled) A means to provide unconstrained flexibility in the selection of the code length by functional combining of appropriate orthogonal CDMA codes drawn from a set of code candidates that include the complex Walsh and the complex DFT

provide a functional means for the generation of orthogonal CDMA codes with unconstrained flexibility in the selection of the code length

provide a fast algorithm means for the encoding and decoding of CDMA codes designed with a functional means for the generation of orthogonal CDMA codes with unconstrained flexibility in the selection of the code length

provide a functional means for the generation of orthogonal CDMA codes for multiple data rate users with unconstrained flexibility in the selection of the code length

provide a fast algorithm means for multiple data rate encoding and decoding of orthogonal CDMA codes which are generated by a functional means for multiple data rate users to provide unconstrained flexibility in the selection of the code length

Claim 5. (currently amended) A method for the design and implementation of fast encoders and fast decoders for Hybrid Walsh complex orthogonal and generalized Hybrid Hybrid Walsh complex orthogonal and quasi-orthogonal CDMA channelization codes for multiple data rate users comprising over a frequency band with properties

means to generate inphase and quadrature code components

Hybrid Walsh inphase (real axis) codes and quadrature (imaginary

axis) codes are defined of the hybrid Walsh by lexicographic reordering permutations of the Walsh code,

Hybrid Walsh codes have a 1-to-1 sequency-frequency, correspondence with the DFT codes and have a 1-to-1 even-cosine, and odd-sine correspondences of the hybrid Walsh with the DFT codes,

Hybrid Walsh codes take values {1+j, -1+j, -1-j, 1-j} or equivalently take values {1, j, -1, -j} with a (-45) rotation of axes and a renormalization

means to construct generalized Hybrid Walsh orthogonal and quasi-orthogonal codes generalized Hybrid Walsh codes can be constructed for a wide range of code lengths by combining Hybrid from hybrid Walsh, Walsh, with DFT (discrete Fourier transform), Hadamard quasi-orthogonal PN (pseudo-noise) codes, and the plurality of other orthogonal codes, and quasi-orthogonal PN codes using tensor product, direct product, and functional combining,

<u>fast encoding and fast decoding implementation algorithms</u>

means algorithms are defined to map multiple data rate user data symbols onto the code input data symbol vector for fast encoding and the inverse mapping for inverses of these algorithms are defined for recovery of the data symbols with fast decoding, and

representative algorithms to implement fast encoding and decoding.

encoders perform complex multiply encoding of complex data to replace the current Walsh real multiply encoding of inphase and quadrature data

decoders perform complex conjugate transpose multiply decoding of complex data to replace the current Walsh real multiply decoding of inphase and quadrature data

Claim 6. (currently amended) <u>Complex A method for the design and implementation of encoders and decoders for complex orthogonal CDMA and generalized complex orthogonal and quasi-orthogonal complex orthogonal CDMA channelization codes for multiple data rate users <u>comprising over a frequency band with properties</u></u>

means to generate complex codes inphase (real axis) codes and quadrature code components (imaginary axis) codes are defined of the complex code by reordering permutations of the real Walsh codes,

means to construct generalized orthogonal and quasiorthogonal codes from the codes in Claim 5, Walsh, complex codes
can be constructed for a wide range of code lengths by combining
the complex codes with DFT, (discrete Fourier transform), Hybrid
Walsh, Hadamard and other orthogonal codes, and quasi-orthogonal
PN codes, and the plurality of other codes using tensor product,
direct product, and functional combining,

means to map multiple data rate user data symbols onto the code input data symbol vector for fast encoding and the inverse mapping for fast decoding, and

representative algorithms to implement fast encoding and fast decoding. implementation algorithms are defined

algorithms are defined to map multiple data rate user data symbols onto the code input data symbol vector for fast encoding and the inverses of these algorithms are defined for recovery of the data symbols with fast decoding

encoders perform complex multiply encoding of complex data to replace the current Walsh real multiply encoding of inphase and quadrature data

decoders perform complex conjugate transpose multiply decoding of complex data to replace the current Walsh real multiply decoding of inphase and quadrature data