Week 9

Task 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in Class Room A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

		-	oggi in F 03 Dicem				
	13:00	14:00	16:00	18:00	20:00	21:00	22:00
	LightCloud	LightCloud	PartlyCloud	LightCloud	Sun	Sun	Sun
Temperatura effettiva	9°C	10°C	8°C	6°C	4°C	2°C	2°C
Temperatura percepita	7°C	10°C	6°C	4°C	2°C	0°C	0°C
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Umidità	67 %	65 %	69 %	70 %	75 %	83 %	87 %
Pressione atmosferica	1025 hPa	1025 hPa	1025 hPa	1026 hPa	1027 hPa	1027 hPa	1028 hPa
Intensità del vento	15 km/h	14 km/h	9 km/h	9 km/h	7 km/h	8 km/h	8 km/h

From the chart, we can know some data at 20: 00

Umidita(relative humidity): ϕ =75%; Pressione atmosferica: Air total pressure: P=1027hpa=102.7kpa; Temperatura effettiva(temperature): T=4°C=277K

From the psychrometric chart, we can know that:

Humidity ratio: $\omega = 0.004$ kg water/kg of dry air

Wet bulb of temperature: $T_{\text{wet-bulb}} = 3^{\circ}C$

$$\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{P_v}{P - P_v} = 0.004, \ P = 102.7 kpa \rightarrow P_v = 0.656 kpa$$

For ideal gases:
$$m=\frac{PV}{R_{sp}T}$$
 , so for air; $m_a=\frac{P_aV_a}{R_aT}$,

And from the table we know : $R_a = 0.287$, $R_{
m v} = 0.4615$

$$P_a = P - P_v = 102.7 - 0.656 = 102.04 kpa$$

If we define the volume of classroom AULA is $\ensuremath{V_a}$

$$m_a = \frac{P_a V_a}{R_a T} = \frac{102.04 V_a}{0.287 \times 277} = 1.28 V_a$$
 kg of dry air

$$m_{\rm v} = \frac{P_{\rm v} V_a}{R_{\rm v} T} = \frac{0.656 V_a}{0.4615 \times 277} = 0.005 V_a \;\; {\rm kg \; of \; water \; vapour}$$

Task 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to <u>internal gains</u>, the <u>ventilation</u>, and the <u>infiltration</u> in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Q:

A building with a height of 2.5 m and an average construction quality, considering two occupants and one bed room calculate, and a conditioned floor area of 200 m2 and wall area is 144 m2, calculate the internal gains, infiltration, and ventilation loads.

ANSWER:

About the internal gains:

$$\begin{split} \dot{Q}_{ig_{sensible}} &= 136 + 2.2 A_{cf} + 22 N_{oc} = 136 + 2.2 \times 200 + 22 \times 2 = 620 W \\ \dot{Q}_{ig_{latent}} &= 20 + 0.22 A_{cf} + 12 N_{oc} = 20 + 0.22 \times 200 + 12 \times 2 = 88 W \end{split}$$

• About infiltration:

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²		
Tight	Construction supervised by air-sealing specialist	0.7		
Good	Carefully sealed construction by knowledgeable builder	1.4		
Average	Typical current production housing	2.8		
Leaky	Typical pre-1970 houses	5.6		
Very leaky	Old houses in original condition	10.4		

From the table, we can know when the building under a good construction, unit leakage areas are 1.4 cm2/m2, $A_{vl}=1.4cm^2/m^2$

Exposed surface = Wall area +roof area ,so $A_{\rm es} = 200 + 144 = 344 m^2$

The leakage area $A_L = A_{ul}A_{es} = 344 \times 1.4 = 481.6 cm^2$

Table 5 Typical IDF Values, L/(s·cm²)

Н.			ting Departur		Cooling Design Temperature, °C						
m	-40	-30	-20	-10	0	10	30	35	40		
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040		
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043		
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049		
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055		
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061		
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068		
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074		

	BRINDISI, Italy												WMO#:	163200			
	Lat	40.65N	Long:	17.95E	Ele	v: 10	Std	P: 101.2		Time Zone	: 1.00 (EU	W)	Period	86-10	WBAN:	99999	
į	Annual He	eating and H	umidificat	tion Design C	Conditions	ř											
ſ	Coldest	Coldest Heating DB Humidification DP/					P/MCDB an	nd HR		T	Coldest month WS/MCDB			MCWS/PCWD		ľ	
1	Month	110000000		99.6%			99%							.6% DB			
ı	INIOUNI	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
	(0)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)		
	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		
7	Annual Co	ooling, Dehu	midification	on, and Enth	alpy Desig	gn Conditions											1
Γ		Hottest			Cooling	DB/MCWB			T	Evaporation WB/MCDB					MCWS/P		
1	Month Month 0.4%			0.4% 1%		1%	2%		0	0.4%		1%		2% to 0.4		% DB	ı
ı	Monus	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD]
	(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	_
	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	
Dehumidification DP/MCDB and HR Enthalpy/MCDB														Hours	1		
ľ	3	0.4%		1%			2%		0.4%			1%		2%		ı	
ľ	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCD8	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	1
ī	(a)	(0)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)	7
	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	
	Extreme #	Annual Desig	n Conditi	ons													1
Γ	Extreme Annual WS			Extreme Extreme Annual DB			T	n-Year Return Period Valu							1		
I.			Max Mean Standard deviation			n=5 years n=10 years					n=50		1				
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1
	(0)	(0)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(P)	
	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	

From the second table, we can know that in Brindisi, the heating design temperature is 4.1° C, the cooling design temperature is 31.1° C.

From the first table, we can know:

$$\begin{split} IDF_{\textit{heating}} &= 0.065 \frac{L}{\textit{s.cm}^2}, IDF_{\textit{cooling}} = 0.032 \frac{L}{\textit{s.cm}^2} \\ V_{\textit{infiltration}_{\textit{heating}}} &= A_L \times IDF_{\textit{heating}} = 481.6 \times 0.065 = 31.304 L/s \\ V_{\textit{infiltration}_{\textit{cooling}}} &= A_L \times IDF_{\textit{cooling}} = 481.6 \times 0.032 = 15.411 L/s \end{split}$$

About ventilation

$$q_{ig,s} = 136 + 2.2A_{cf} + 22N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W$$

$$q_{ig,l} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

$$A_{ul} = 1.4 \text{ cm}^2/\text{m}^2$$

$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \text{ m}^2$$

$$A_{L} = A_{es} * A_{ul} = 344 + 1.4 = 481.6 \text{ cm}^2$$

$$T_{cooling} = 24 \, ^{\circ}\text{C}, T_{heating} = 20 \, ^{\circ}\text{C}$$

In Brindisi, Italy,

$$\Delta T_{cooling} = 31.1 - 24 = 7.1 \,\, ^{\circ}\!\! \mathrm{C} \,, \label{eq:delta_cooling}$$

$$\Delta T_{heating} = 20$$
 – (– 4.1) = 24.1 $^{\circ}\mathrm{C}$

$$IDF_{heating} = 0.073 \frac{L}{s \cdot cm^2}$$

$$IDF_{cooling} = 0.033 \frac{L}{s \cdot cm^2}$$

$$Q_{i,heating} = A_L * IDF_{heating} = 481.6 * 0.073 = 35.16 \frac{L}{s}$$

$$Q_{i,cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 = 15.89 \frac{L}{s}$$

$$Q_v = 0.05A_{cf} * 3.5(N_{br} + 1) = 0.05 * 200 + 3.5(1 + 1) = 17\frac{L}{s}$$

$$Q_{i-v,heating} = Q_{i,heating} + Q_v = 15.16 + 17 = 52.16 \frac{L}{s}$$

$$Q_{i-v,cooling} = Q_{i,cooling} + Q_v = 15.89 + 17 = 32.89 \frac{L}{s}$$

$$C_{sensible}=1.23$$
 , $C_{latent}=3010$, $\Delta\omega_{cooling}=1.23*32.89*7.1=287.25~W$

$$\dot{q}_{inf-ventilation_{coolingsensible}} \, = \, C_{sensible} * Q_{i-v,cooling} * \Delta T_{cooling}$$

$$\dot{q}_{inf-ventilation_{coolinglatent}} \, = C_{latent} * Q_{i-v,cooling} * \Delta \omega_{cooling}$$

$$= 3010 * 32.89 * 0.0039 = 386.13 \text{ W}$$

$$\dot{q}_{inf-ventilation_{coolinglatent}} \, = \, C_{sensible} * \, Q_{i-v,heating} * \Delta T_{heating}$$