Neural Network and Deep Learning

Outline

- McCulloch-Pitts Neuron
- Linearly separable

The first computational model of a neuron

- The McCulloch-Pitts model was proposed by Warren MuCulloch (neuroscientist) and Walter Pitts (logician) in 1943.
- McCulloch and Pitts modeled computationally able to emulate the behavior of a few boolean functions or logical gates, like the AND gate and the OR gate.
- Neurons can be seen as biological computational devices, in the sense that they
 can receive inputs, apply calculations over those inputs algorithmically, and then
 produce outputs.
- The McCulloch-Pitts model is **the first computational model** of a neuron and it was an extremely simple artificial neuron. **The inputs could be either a zero or a one. And the output was a zero or a one.**

McCulloch-Pitts Neuron **Computation**

Emulate the behavior of **simple logical gates**.

x ₁	X ₂	Target
1	1	1
1	0	1
0	1	1
0	0	0

x ₁	X ₂	Target
1	1	1
1	0	1
0	1	1
0	0	0

assume: $w_1=1.5$ $w_2=0.5$

x ₁	\mathbf{x}_2
1	1

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}

$$w_1 = 1.5$$
$$w_2 = 0.5$$

x ₁	\mathbf{x}_2
1	1

$u = w_1 x_1 + w_2 x_2$	\hat{y}
(1.5*) + (0.5*) = U	

$$w_1 = 1.5$$
$$w_2 = 0.5$$

x ₁	X ₂
1	1

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	

$$w_1 = 1.5$$
$$w_2 = 0.5$$

 $w_1 = 1.5$

 $w_2 = 0.5$

x ₁	x ₂
1	1
1	0

$u = w_1 x_1 + w_2 x_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	

x ₁	\mathbf{x}_2
1	1
1	0

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5* 1) + (0.5* 1) = 2.0	
$(1.5*) + (0.5*) = \mathcal{U}$	

$$w_1 = 1.5$$
$$w_2 = 0.5$$

 $w_1 = 1.5$

 $w_2 = 0.5$

x ₁	x ₂
1	1
1	0

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	
(1.5*1) + (0.5*0) = 1.5	

 $w_2 = 0.5$

x ₁	\mathbf{x}_2
1	1
1	0
0	1

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	
(1.5*1) + (0.5*0) = 1.5	

x ₁	x ₂
1	1
1	0
0	1

$u = w_1 x_1 + w_2 x_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	
(1.5* 1) + (0.5* 0) = 1.5	
$(1.5*) + (0.5*) = \mathcal{U}$	

$$w_1 = 1.5$$
$$w_2 = 0.5$$

x ₁	\mathbf{x}_2	
1	1	
1	0	
0	1	

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	
(1.5*1) + (0.5*0) = 1.5	
(1.5* 0) + (0.5* 1) = 0.5	

$$w_1 = 1.5$$

$$w_2 = 0.5$$

x ₁	x ₂
1	1
1	0
0	1
0	0

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	
(1.5*1) + (0.5*0) = 1.5	
(1.5* 0) + (0.5* 1) = 0.5	

$$w_1 = 1.5$$
$$w_2 = 0.5$$

x ₁	x ₂
1	1
1	0
0	1
0	0

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	
(1.5* 1) + (0.5* 0) = 1.5	
(1.5* 0) + (0.5* 1) = 0.5	
$(1.5*) + (0.5*) = \mathcal{U}$	

 $w_1 = 1.5$

 $w_2 = 0.5$

 $w_1 = 1.5$

 $w_2 = 0.5$

x ₁	x ₂
1	1
1	0
0	1
0	0

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	
(1.5*1) + (0.5*0) = 1.5	
(1.5* 0) + (0.5* 1) = 0.5	
(1.5* 0) + (0.5* 0) = 0.0	

Now we have **u** of all data.

Then set the "threshold"

$$the shold = 0.25$$

$$\hat{y} = \begin{cases} 1; & u \ge the shold \\ 0; & u < the shold \end{cases}$$

x ₁	x ₂
1	1
1	0
0	1
0	0

$u = w_1 x_1 + w_2 x_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	
(1.5*1) + (0.5*0) = 1.5	
(1.5* 0) + (0.5* 1) = 0.5	
(1.5* 0) + (0.5* 0) = 0.0	

$$w_2 = 0.5$$

$$the shold = 0.25$$

$$\hat{y} = \begin{cases} 1; & u \ge the shold \\ 0; & u < the shold \end{cases}$$

x ₁	x ₂
1	1
1	0
0	1
0	0

$$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$$
 $\hat{\mathbf{y}}$

$$(1.5*\mathbf{1}) + (0.5*\mathbf{1}) = \mathbf{2.0}$$
 $\mathbf{1}$

$$(1.5*\mathbf{1}) + (0.5*\mathbf{0}) = \mathbf{1.5}$$

$$(1.5*\mathbf{0}) + (0.5*\mathbf{1}) = \mathbf{0.5}$$

$$(1.5*\mathbf{0}) + (0.5*\mathbf{0}) = \mathbf{0.0}$$

$$w_2 = 0.5$$

$$the shold = 0.25$$

$$\hat{y} = \begin{cases} 1; & u \ge the shold \\ 0; & u < the shold \end{cases}$$

x ₁	x ₂
1	1
1	0
0	1
0	0

$$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$$
 $\hat{\mathbf{y}}$
 $(1.5*\mathbf{1}) + (0.5*\mathbf{1}) = \mathbf{2.0}$ 1
 $(1.5*\mathbf{1}) + (0.5*\mathbf{0}) = \mathbf{1.5}$ 1
 $(1.5*\mathbf{0}) + (0.5*\mathbf{1}) = \mathbf{0.5}$
 $(1.5*\mathbf{0}) + (0.5*\mathbf{0}) = \mathbf{0.0}$

$$w_2 = 0.5$$

$$the shold = 0.25$$

$$\hat{y} = \begin{cases} 1; & u \ge the shold \\ 0; & u < the shold \end{cases}$$

x ₁	X ₂
1	1
1	0
0	1
0	0

$$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$$
 $\hat{\mathbf{y}}$
 $(1.5*\mathbf{1}) + (0.5*\mathbf{1}) = \mathbf{2.0}$ 1
 $(1.5*\mathbf{1}) + (0.5*\mathbf{0}) = \mathbf{1.5}$ 1
 $(1.5*\mathbf{0}) + (0.5*\mathbf{1}) = \mathbf{0.5}$ 1
 $(1.5*\mathbf{0}) + (0.5*\mathbf{0}) = \mathbf{0.0}$

$$w_2 = 0.5$$

$$the shold = 0.25$$

$$\hat{y} = \begin{cases} 1; & u \ge the shold \\ 0; & u < the shold \end{cases}$$

x ₁	x ₂
1	1
1	0
0	1
0	0

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	1
(1.5*1) + (0.5*0) = 1.5	1
(1.5* 0) + (0.5* 1) = 0.5	1
(1.5* 0) + (0.5* 0) = 0.0	0

$$w_2 = 0.5$$

$$the shold = 0.25$$

$$\hat{y} = \begin{cases} 1; & u \ge the shold \\ 0; & u < the shold \end{cases}$$

x ₁	x ₂	Target	$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}	$w_1 = 1.5$
1	1	1	(1.5*1) + (0.5*1) = 2.0	1	$w_2 = 0.5$ $the shold = 0.25$
1	0	1	(1.5*1) + (0.5*0) = 1.5	1	
0	1	1	(1.5* 0) + (0.5* 1) = 0.5	1	$\hat{y} = \begin{cases} 1; & u \ge the sho \\ 0; & u < the sho \end{cases}$
0	0	0	(1.5* 0) + (0.5* 0) = 0.0	0	

Discuss!!

If threshold = 1?

x ₁	X ₂
1	1
1	0
0	1
0	0

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	
(1.5*1) + (0.5*0) = 1.5	
(1.5* 0) + (0.5* 1) = 0.5	
(1.5* 0) + (0.5* 0) = 0.0	

$$the shold = 1$$

$$\hat{y} = \begin{cases} 1; & u \ge the shold \\ 0; & u < the shold \end{cases}$$

 $w_1 = 1.5$

 $w_2 = 0.5$

x ₁	x ₂
1	1
1	0
0	1
0	0

$\mathbf{u} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2$	\hat{y}
(1.5*1) + (0.5*1) = 2.0	1
(1.5*1) + (0.5*0) = 1.5	1
(1.5* 0) + (0.5* 1) = 0.5	0
(1.5* 0) + (0.5* 0) = 0.0	0

$$\hat{y} = \begin{cases} 1; & u \ge the shold \\ 0; & u < the shold \end{cases}$$

 $w_2 = 0.5$

x ₁	x ₂	Target	$u = w_1 x_1 + w_2 x_2$	\hat{y}	$w_1 = 1.5$
1	1	1	(1.5*1) + (0.5*1) = 2.0	1	$w_2 = 0.5$ $the shold = 1$
1	0	1	(1.5*1) + (0.5*0) = 1.5	1	$\hat{y} = \begin{cases} 1; & u \ge the sho \\ 0; & u < the sho \end{cases}$
0	1	1	(1.5* 0) + (0.5* 1) = 0.5	0	
0	0	0	(1.5* 0) + (0.5* 0) = 0.0	0	

$$\begin{cases} 1; & u \ge the shold \\ 0; & u < the shold \end{cases}$$

Limitation of McCulloch-Pitts Neuron

Do we always need to hand set the weights & threshold?

Hands On

Linear equation

X	у	class
0	0	
0	1	
1	0	
1	1	

$$y = mx + c$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0.5 - 0}{0 - 0.5} = -1$$

$$f(x,y) = -x - y + 0.5$$

