Hashtag Popularity Prediction

Avirup, Soumyadeep, Srinidhi, Kushal, Abhay

IIT Kharagpur

October 11, 2017

Introduction

Goals

Problem formulation

Model

Results

Conclusion

References

Introduction

To improve the efficacy of Twitter, prediction of hashtag flow (e.g., early detection of trending hashtags [Mathioudakis and Koudas, 2010; Chakraborty et al., 2017]) is important.

Introduction

- To improve the efficacy of Twitter, prediction of hashtag flow (e.g., early detection of trending hashtags [Mathioudakis and Koudas, 2010; Chakraborty et al., 2017]) is important.
- Thus, a large amount of research on viral marketing and information cascades [Cheng et al., 2016; Chakraborty et al., 2016; Sikdar et al., 2016] have focused on analyzing hashtag-popularity and its role in tweet propagation.

Introduction

- To improve the efficacy of Twitter, prediction of hashtag flow (e.g., early detection of trending hashtags [Mathioudakis and Koudas, 2010; Chakraborty et al., 2017]) is important.
- Thus, a large amount of research on viral marketing and information cascades [Cheng et al., 2016; Chakraborty et al., 2016; Sikdar et al., 2016] have focused on analyzing hashtag-popularity and its role in tweet propagation.
- In this project we aim to predict the popularity of hashtags by modeling the occurrence of tweets bearing the hashtag as a temporal point process.

Prior works and their limitations

Research on predictive aspects of hashtag-popularity primarily follows two kinds of models:

 Static feature-based models ([Rosenfeld et al., 2016; Bourigault et al., 2014; Shi et al., 2016])

Prior works and their limitations

Research on predictive aspects of hashtag-popularity primarily follows two kinds of models:

- Static feature-based models ([Rosenfeld et al., 2016; Bourigault et al., 2014; Shi et al., 2016])
- ► Temporal models ([Zhao et al., 2015; Kobayashi and Lambiotte, 2016; Farajtabar et al., 2015; Bi and Cho, 2016; De et al., 2016a; Iwata et al., 2013; De et al., 2014; Kupavskii et al., 2012; Hua-Wei et al., 2014; Shuai and Jun, 2015; Gao et al., 2016; Ferraz Costa et al., 2015; Bao et al., 2015; Gomez-Rodriguez et al., 2011; De et al., 2016b])

Prior works and their limitations

► In the static models, the temporal properties (e.g., time of posts, no. of retweets) are embedded into feature maps, and the parameters are learned following a supervised approach.

Prior works and their limitations

- In the static models, the temporal properties (e.g., time of posts, no. of retweets) are embedded into feature maps, and the parameters are learned following a supervised approach.
- However, in practice, future temporal properties are not known in advance, which in turn constrains their forecasting prowess.

Prior works and their limitations

► The temporal models aim to address this shortcoming by modeling the stochastic nature of hashtag-dynamics, using point-process, survival theory, etc.

Prior works and their limitations

- ► The temporal models aim to address this shortcoming by modeling the stochastic nature of hashtag-dynamics, using point-process, survival theory, etc.
- However, most existing temporal models focus on tweet-propagation rather than hashtags, thereby skirting several realistic aspects of hashtag-flow, and resulting in modest prediction performance.

Prior works and their limitations

- ► The temporal models aim to address this shortcoming by modeling the stochastic nature of hashtag-dynamics, using point-process, survival theory, etc.
- However, most existing temporal models focus on tweet-propagation rather than hashtags, thereby skirting several realistic aspects of hashtag-flow, and resulting in modest prediction performance.
- More importantly, they are largely unable to reproduce any microscopic feature in hashtag dynamics (e.g., relative popularity variation, sudden trend change etc.).

Goals

➤ To model hashtag popularity as a temporal point process in terms of popularity of tweet-chains.

Goals

- ► To model hashtag popularity as a temporal point process in terms of popularity of tweet-chains.
- To build a neural network based framework to predict hashtag popularity based on the above model.

Goals

- ► To model hashtag popularity as a temporal point process in terms of popularity of tweet-chains.
- To build a neural network based framework to predict hashtag popularity based on the above model.
- To test the model on real-world datasets.

Problem formulation

▶ We model the conditional intensity, $\lambda(t)$ of the temporal point process in terms of the tweet-popularity index k and the event history of the point process.

Problem formulation

- ▶ We model the conditional intensity, $\lambda(t)$ of the temporal point process in terms of the tweet-popularity index k and the event history of the point process.
- We use this conditional intensity to predict the expected number of tweets bearing the same hashtag posted in a subsequent time interval.

Problem formulation

- ▶ We model the conditional intensity, $\lambda(t)$ of the temporal point process in terms of the tweet-popularity index k and the event history of the point process.
- We use this conditional intensity to predict the expected number of tweets bearing the same hashtag posted in a subsequent time interval.
- We evaluate the accuracy of the prediction by comparing our predicted value with the ground truth.

Definitions

▶ Formally, a tweet-chain C_i , corresponding to tweet i, can be written as $C_i = \{t_i | \text{tweet } i \text{ is (re)tweeted at time } t_i\}$.

Definitions

- ▶ Formally, a tweet-chain C_i , corresponding to tweet i, can be written as $C_i = \{t_i | \text{tweet } i \text{ is (re)tweeted at time } t_i\}$.
- ▶ Similarly, a hashtag \mathbf{H} can be expressed in terms of the tweet-chains, $\mathbf{H} = \{C_i | C_i \text{ is a tweet-chain bearing } \mathbf{H}\}.$

Definitions

- ▶ Formally, a tweet-chain C_i , corresponding to tweet i, can be written as $C_i = \{t_i | \text{tweet } i \text{ is (re)tweeted at time } t_i\}$.
- ▶ Similarly, a hashtag \mathbf{H} can be expressed in terms of the tweet-chains, $\mathbf{H} = \{C_i | C_i \text{ is a tweet-chain bearing } \mathbf{H}\}.$
- Finally, the *history* of the hashtag H until and excluding time t, $\mathcal{H}_H(t)$ can be represented as the union of the posting times of the corresponding (re)tweets posted before t.

$$\mathcal{H}_{\boldsymbol{H}}(t) = \cup_{\boldsymbol{C}_i \in \boldsymbol{H}} \{t_i | t_i \in \boldsymbol{C}_i \text{ and } t_i < t\}$$

Definitions

▶ Given a hashtag H, we define the counting variable as $N_H(t)$, where $N_H(t) \in \{0\} \cup \mathbb{Z}^+$ counts the number of (re)tweets posted until and excluding time t.

Definitions

- ▶ Given a hashtag H, we define the counting variable as $N_H(t)$, where $N_H(t) \in \{0\} \cup \mathbb{Z}^+$ counts the number of (re)tweets posted until and excluding time t.
- ► The conditional probability of observing an event in infinitesimal time interval [t, t + dt] is characterized as

$$\mathbb{P}(\text{An event triggers in } [t, t + dt) | \mathcal{H}_{H}(t)) = \lambda_{H}(t) dt$$
 (1)

i.e.,
$$\mathbb{E}_{dN_{\mathbf{H}}(t)\sim\{0,1\}}[dN_{\mathbf{H}}(t)|\mathcal{H}_{\mathbf{H}}(t)] = \lambda_{\mathbf{H}}(t)dt$$
 (2)

Definitions

▶ Here $dN_H(t)$ indicates the number of (re)tweets in the infinitesimal time-window [t, t + dt) and $\lambda_H(t)$ stands for the associated hashtag intensity, which further depends on the history $\mathcal{H}_H(t)$.

Definitions

- ▶ Here $dN_H(t)$ indicates the number of (re)tweets in the infinitesimal time-window [t, t + dt) and $\lambda_H(t)$ stands for the associated hashtag intensity, which further depends on the history $\mathcal{H}_H(t)$.
- ▶ We estimate $\lambda_H(t)$ using parameters learned from a given dataset using a neural network model.

Overview

We divide both training and

test sets into several time intervals of equal width. Jump to conclusion

Training model

W1, W2 and b are learned by

minimizing the SSE in training intervals.

Training model

We use the following features:

▶ t_count: Count of the tweets observed so far bearing a given hashtag. This value is reset to zero at the beginning of every interval.

Training model

We use the following features:

- t_count: Count of the tweets observed so far bearing a given hashtag. This value is reset to zero at the beginning of every interval.
- k_sum: Sum of the popularity indices of all tweets observed so far in the current interval bearing a given hashtag.

Training model

We use the following features:

- t_count: Count of the tweets observed so far bearing a given hashtag. This value is reset to zero at the beginning of every interval.
- k_sum: Sum of the popularity indices of all tweets observed so far in the current interval bearing a given hashtag.
- We use a modified linear combination of these two features with a bias.
- sign(k_sum) = 0 if k_sum = 0 and 1 if k_sum > 0. This avoids false predictions in empty intervals.

Intuition behind Test model

We don't know the values of k_sum for the test intervals.

Intuition behind Test model

- We don't know the values of k_sum for the test intervals.
- ▶ If the intervals are of sufficiently small width, the value of k_sum for the current interval will be roughly the same as the value for the last interval.

Intuition behind Test model

- We don't know the values of k_sum for the test intervals.
- If the intervals are of sufficiently small width, the value of k_sum for the current interval will be roughly the same as the value for the last interval.
- We have to estimate the value of k_sum for the last interval from the given data.

Intuition behind Test model

- We don't know the values of k_sum for the test intervals.
- If the intervals are of sufficiently small width, the value of k_sum for the current interval will be roughly the same as the value for the last interval.
- We have to estimate the value of k_sum for the last interval from the given data.
- We perform this estimation by using the learned values of the parameters together with the values of t_count observed for the last and 2nd last intervals.

Test model

reset

Here W1, W2 and bare fixed.

Prediction in the test set

Evaluation Metrics

▶ Mean Absolute Percentage Error (MAPE): It captures the mean deviation between the observed and the predicted popularity for a hahstag up to time *t*. It is defined by the formula

$$\mathsf{MAPE}(\boldsymbol{H}) = \frac{1}{M_{\boldsymbol{H}}} \sum_{i=0}^{M_{\boldsymbol{H}}-1} \left| \frac{\hat{N}_{\boldsymbol{H}}(t_i) - N_{\boldsymbol{H}}(t_i)}{N_{\boldsymbol{H}}(t_i)} \right|.$$

Evaluation Metrics

▶ Mean Absolute Percentage Error (MAPE): It captures the mean deviation between the observed and the predicted popularity for a hahstag up to time *t*. It is defined by the formula

MAPE(
$$\mathbf{H}$$
) = $\frac{1}{M_{H}} \sum_{i=0}^{M_{H}-1} \left| \frac{\hat{N}_{H}(t_{i}) - N_{H}(t_{i})}{N_{H}(t_{i})} \right|$.

Here $\hat{N}_{H}(t)$ and $N_{H}(t)$ are the estimated and actual number of retweets for a hashtag H respectively, at time t. M_{H} denotes the total number messages of hashtag H in the test-set.

Evaluation Metrics

▶ Spearman's Rank Correlation Coefficient (SRCC): The Spearman's Rank Correlation Coefficient between predicted rank-list $\hat{R}_{\mathbb{H}}$, and actual rank-list $R_{\mathbb{H}}$ of a hashtag set \mathbb{H} can be defined as,

$$ho(\hat{R}_{\mathbb{H}},R_{\mathbb{H}}) = rac{\mathsf{Cov}(\hat{R}_{\mathbb{H}},R_{\mathbb{H}})}{\sqrt{\mathsf{Var}(\hat{R}_{\mathbb{H}})\mathsf{Var}(R_{\mathbb{H}})}}.$$

Evaluation Metrics

▶ Spearman's Rank Correlation Coefficient (SRCC): The Spearman's Rank Correlation Coefficient between predicted rank-list $\hat{R}_{\mathbb{H}}$, and actual rank-list $R_{\mathbb{H}}$ of a hashtag set \mathbb{H} can be defined as,

$$\rho(\hat{R}_{\mathbb{H}}, R_{\mathbb{H}}) = \frac{\mathsf{Cov}(\hat{R}_{\mathbb{H}}, R_{\mathbb{H}})}{\sqrt{\mathsf{Var}(\hat{R}_{\mathbb{H}})\mathsf{Var}(R_{\mathbb{H}})}}.$$

Here Cov(.) defines covariance of the two variables, and Var(.) denotes the variance.

Evaluation Metrics

▶ Avg. Recall (AvRe) and Avg. Precision (AvPr) (for jump detection): If in two consecutive time-intervals there is a sudden change in the rank of a hashtag by more than half the total no. of competing hashtags, we call it a *jump*.

Evaluation Metrics

- ▶ Avg. Recall (AvRe) and Avg. Precision (AvPr) (for jump detection): If in two consecutive time-intervals there is a sudden change in the rank of a hashtag by more than half the total no. of competing hashtags, we call it a *jump*.
- ▶ Let a hashtag $H \in \mathbb{H}$ have a rank $\operatorname{rank}_{H,[t_i,t_{i+1})}$ in the time-interval $[t_i,t_{i+1})$. Then, if $|\operatorname{rank}_{H,[t_i,t_{i+1})} \operatorname{rank}_{H,[t_{i-1},t_i)}|$ $\geq |\mathbb{H}|/2$, it is considered a jump.

Evaluation Metrics

- ▶ Avg. Recall (AvRe) and Avg. Precision (AvPr) (for jump detection): If in two consecutive time-intervals there is a sudden change in the rank of a hashtag by more than half the total no. of competing hashtags, we call it a *jump*.
- ▶ Let a hashtag $H \in \mathbb{H}$ have a rank $\operatorname{rank}_{H,[t_i,t_{i+1})}$ in the time-interval $[t_i,t_{i+1})$. Then, if $|\operatorname{rank}_{H,[t_i,t_{i+1})} \operatorname{rank}_{H,[t_{i-1},t_i)}|$ $\geq |\mathbb{H}|/2$, it is considered a jump.
- Recall measures the fraction of cases in which an algorithm rightly identifies a jump, while precision measures the fraction of cases where a real jump has occurred when the algorithm predicts a jump.

Datasets

Seven datasets were created by carefully selecting a few hashtags from raw data obtained using Twitter search API to collect all the tweets related to the following events (corresponding to a 2-3 weeks period around the event date):

Datasets

- Seven datasets were created by carefully selecting a few hashtags from raw data obtained using Twitter search API to collect all the tweets related to the following events (corresponding to a 2-3 weeks period around the event date):
- Events: (i) The Academy Awards 2016 (Oscars), (ii) MTV Awards 2016 (MTV), (iii) Earthquake in Nepal 2015 (Nepal-Earthquake), (iv) Democratic Primaries for US Presidential Election 2016 (Dem-Primary), (v) Big Billion Day sale of e-commerce site Flipkart 2014 (BBD), (vi) Copa America Football Tournament 2016 (Copa), and (vii) T20 Cricket World Cup 2016 (T20WC).

MAPE and SRCC Data

	MAPE(%)								SRCC							
Datasets	New	LMPP	HTR	RPP	Hawkes	SEISMIC	SpikeM	New	LMPP	HTR	RPP	Hawkes	SEISMIC	SpikeM		
Oscars	15.90	18.90	21.78	24.30	19.23	24.79	27.11	0.86	0.85	0.68	0.80	0.52	0.10	0.74		
MTV-Awards	4.46	05.14	06.76	15.37	13.57	19.09	24.45	0.97	0.87	0.86	0.81	0.75	0.70	0.82		
Nepal-Earthquake	6.72	07.50	08.54	22.28	15.42	13.73	17.95	0.92	0.91	0.87	0.63	0.32	0.63	0.75		
Dem-Primary	6.68	08.33	10.50	11.33	11.62	26.09	19.12	0.92	0.86	0.68	0.80	0.51	0.10	0.73		
BBD	12.86	15.40	17.94	19.09	15.94	18.03	20.89	0.96	0.95	0.79	0.90	0.91	0.43	0.79		
Copa	11.59	17.67	20.07	17.75	19.18	23.32	22.44	0.96	0.91	0.42	0.75	0.88	0.42	0.64		
T20WC	9.85	10.25	11.90	13.10	15.08	25.55	41.74	0.98	0.87	0.58	0.83	0.31	0.56	0.47		

The cells with yellow (blue) color indicate the best (second best) predictor.

Jump Detection Statistics

	Avg. Precision								Avg. Recall							
Datasets	New	LMPP	HTR	RPP	Hawkes	SEISMIC	SpikeM	New	LMPP	HTR	RPP	Hawkes	SEISMIC	SpikeM		
Oscars	0.62	0.74	0.54	0.32	0.38	0.31	0.33	0.80	0.75	0.45	0.32	0.37	0.33	0.34		
MTV-Awards	0.86	0.31	0.30	0.30	0.31	0.31	0.30	0.75	0.33	0.32	0.33	0.33	0.30	0.32		
Nepal-Earthquake	0.78	0.61	0.60	0.37	0.28	0.40	0.44	0.92	0.70	0.54	0.37	0.33	0.52	0.57		
Dem-Primary	0.73	0.69	0.56	0.48	0.30	0.45	0.34	1.0	0.72	0.49	0.48	0.29	0.57	0.36		
BBD	0.89	0.66	0.48	0.32	0.55	0.31	0.43	1.0	0.67	0.48	0.32	0.64	0.28	0.40		
Copa	1.0	0.72	0.29	0.42	0.60	0.29	0.34	0.88	0.59	0.33	0.42	0.53	0.33	0.42		
T20WC	0.75	1.0	0.32	0.64	0.10	0.29	0.65	1.0	0.67	0.32	0.64	0.10	0.21	0.54		

In general our model has high recall but it tends to make false jump predictions.

Conclusion

Jump to overview

We have proposed a linear neural-network based framework to model the hashtag flows as a temporal point process.

Conclusion

Jump to overview

- We have proposed a linear neural-network based framework to model the hashtag flows as a temporal point process.
- We achieve better results than all baselines in almost all datasets.

Conclusion

Jump to overview

- We have proposed a linear neural-network based framework to model the hashtag flows as a temporal point process.
- We achieve better results than all baselines in almost all datasets.
- This model can perhaps be improved further by introducing nonlinearity and explicitly modeling the interactions between hashtags.

References

- Samanta, Bidisha, Abir De, Abhijnan Chakraborty, and Niloy Ganguly. "LMPP: A Large Margin Point Process Combining Reinforcement and Competition for Modeling Hashtag Popularity."
- Du, Nan, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song. "Recurrent marked temporal point processes: Embedding event history to vector." In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1555-1564. ACM, 2016.