

Physique : Interrogation n°3

Jeudi 5 Mars Durée : 1h30

CORRIGE

Barème sur

EXE	RCICE 1 : Son et musique/Tuyau d'orgue	10 + bonus 1
1)	Chaque extrémité débouche à l'air libre, c'est-à-dire <u>qu'on fait tendre à chaque extremité la section vers l'infini</u> , les conditions de continuité des débits et des surpressions impose alors une supression qui tend vers 0.	0,5
2)	La surpression p(x,t) dans le tuyau est solution de l'équation de d'Alembert :	
	$ \frac{\partial^{2} p}{\partial x^{2}} - \frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}} = 0 $ On considère une onde stationnaire de surpression : $ p(x,t) = A\cos(\omega t + \varphi)\cos(kx + \varphi) $	0,25
	En reportant cette solution dans l'équation de D'Alembert, on obtient :	
	$-k^2 + \frac{\omega^2}{c^2} = 0 \text{ donc } k = \frac{\omega}{c} \text{ (en choisissant k>0)}$	0,75 pour la démo pas pour le résultat dans le formulaire
3)	L'onde stationnaire doit vérifier les conditions aux limites : $p(0,t)=0$ et $p(L,t)=0$. Cela impose :	0,5
	• $p(0,t) = A\cos(\omega t + \varphi)\cos(\varphi) = 0$ soit $\cos(\varphi) = 0$ c'est à dire $\varphi = \pm \pi/2 + p\pi$,
	• $p(L,t) = A\cos(\omega t + \varphi)\cos(kL \pm \pi/2) = 0$ soit $\sin(kL) = 0$	0,5
	On en déduit : $kL = p\pi$ avec p entier. Or $k = \frac{\omega}{c} = \frac{2\pi f}{c}$ On en déduit les fréquences propres $f_p = \frac{pc}{2L}$	0,25
	On en déduit les fréquences propres $f_p = \frac{pc}{2L}$	0,25
	Mode 1 :	
	p(x,t)	0,5
	mode 2 :	

	D'où $f_{do^3} = 2^{-9/12} f_{la_3}$	0,5
	Par ailleurs $f_{do_2} = \frac{f_{do_3}}{2}$ et $f_{do_1} = \frac{f_{do_2}}{2}$ A.N $f_{do_3} = 262 Hz$ $f_{do_2} = 131 Hz$ $f_{do_1} = 65,5 Hz$	0,25+ 0,25+0,25
7)	La longueur du tuyau d'orgue prise entre la bouche et l'extrémité permet d'imposer un neud de surpression à ces deux extrémités ouvertes. Cette longueur correspond ainsi à la longueur L du tuyau étudié.	
	La fréquence fondamentale du son s'écrit $f_1 = \frac{c}{2L}$.	0,5
	La note de fréquence la plus haute est obtenue pour la longueur L la plus petite. A.N: L autour de 1.3, f autour de 120 Hz	0,75
	La note de fréquence la plus grave est obtenue pour la longueur L la plus grande. A.N: L autour de 4,6, f autour de 36 Hz	0,75
8)	La note la plus grave est obtenue pour la longueur L la plus grande. Le fa_2 , de fréquence fondamentale $fa_2 = 2^{5/12} f_{do_2} = 175 Hz$, est donc joué par le tuyau le plus grand, de longueur: $L_0 = \frac{c}{2 f_{fa_2}} = 0.97 m$	Bonus (pas demandé): 0,5 +0,5
	La fréquence fondamentale du son joué par le tuyau de longueur L_i s'écrit $f_i = \frac{c}{2L_i}$ Or $f_i = 2^{\frac{i}{12}} f_{fa_2} = 2^{\frac{i}{12}} \frac{c}{2L_g}$	
	On en déduit : $L_i = 2^{-\frac{i}{12}} L_g$	1
	La longueur des tuyaux diminue lorsque l'on augmente la fréquence. On peut mesurer expérimentale la longueur Li des tuyaux et vérifier cette relation avec 5 mesures. Incertitude tolérée 10%.	0,5
	·	

EXERCICE 2:		11 points
1)	La relation de Descartes donne $n_c \sin(\theta) = n_g \sin(r)$	
	Si $n_c > n_g$, il y a réflexion totale pour un angle $\theta > \theta_c$ tel que $n_c \sin(\theta_c) = n_g$	0.5
	Soit $\theta_c = arc \sin\left(\frac{n_g}{n_c}\right)$	0,5
2)	Les équations de Maxwell s'écrivent $ \vec{rot} \stackrel{\rightarrow}{E} = -\frac{\partial \stackrel{\rightarrow}{B}}{\partial t}, \ div \stackrel{\rightarrow}{E} = 0, \ \vec{rot} \stackrel{\rightarrow}{B} = \varepsilon \ \mu_0 \frac{\partial \stackrel{\rightarrow}{E}}{\partial t} = \frac{n^2}{c^2} \frac{\partial \stackrel{\rightarrow}{E}}{\partial t} $ En utilisant l'identité relative au rotationnel On en déduit	0,5 (pour avoir correctement utilisé absence de courant et de charge)

		T
	$\Delta \vec{E} = \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$	0,5 (pour démo juste , 0 pour toute erreur)
3)	Expressions correctes du Laplacien et de la dérivée seconde de E	0,5+0,25
	Avec l'équation d'onde on obtient	
	$f''(x)g(z) + f(x)g''(z) = -\frac{n^2}{c^2}\omega^2 f(x)g(z)$	0.25
	$\frac{g''(z)}{g(z)} = -\frac{f''(x)}{f(x)} - \frac{n^2}{c^2}\omega^2$	
	g''/g est donc indépendant de z.	
	Afin d'obtenir des solutions sinusoïdales, on doit poser $g(z) = e^{-ik_z z}$ K_z constante réelle positive pour qu'il n'y ait pas d'atténuation	0.5 0.5
	$\frac{g''(z)}{g(z)} = -k_z^2$	0.25
	avec k _z une constante qui ne dépend ni de z ni de x.	
4)	La fonction f vérifie $\frac{f''(x)}{f(x)} = k_z^2 - \frac{n^2}{c^2}\omega^2$	0.25
	$-k_{cx}^{2} = k_{z}^{2} - \frac{n^{2}}{c^{2}}\omega^{2} \text{ et } k_{gx}^{2} = k_{z}^{2} - \frac{n^{2}}{c^{2}}\omega^{2}$	0.75+0.75
	k_{cx} et k_{gx} réels => $k_{cx}^2 > 0$ et $k_{gx}^2 > 0$, => $\frac{n_g \omega}{c} < k_z < \frac{n_c \omega}{c}$	1
	donc $n_c > n_g$ on retrouve la condition de réflexion totale	0.5
5)	La continuité de la composante tangentielle de E donne $A\cos(\frac{k_{cx}a}{2}) = C'$	0.75
	Avec $\overrightarrow{rot} \stackrel{\rightarrow}{E} = -\frac{\partial \stackrel{\rightarrow}{B}}{\partial t}$, on obtient $\frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}$	0.5
	B_z est continue donc $\frac{\partial E_y}{\partial x}$	Bonus : 0.25
	$Ak_{cx}\sin(\frac{k_{cx}a}{2}) = C'k_{gx}$	1
	On obtient bien $\tan(\frac{k_{cx}a}{2}) = \frac{k_{gx}}{k_{cx}}$	0.25
6)	Allure de la fonction f(x) en fonction de x.	

	f(x)	0.5
	x a/2	
7)	On a d'après 5): $\tan(\frac{k_{cx}a}{2}) = \frac{k_{gx}}{k_{cx}}$ En utilisant les expressions de kg (x) et $\ker(x)$ de la question 4, obtient: $\tan(\frac{a}{2}\sqrt{\frac{n_c^2\omega^2}{c^2}-k_z^2}) = \frac{\sqrt{k_z^2-\frac{n_g^2\omega^2}{c^2}}}{\sqrt{\frac{n_c^2\omega^2}{c^2}-k_z^2}}$ Relation non linéaire	0.5
Questions de cours		2 points
1)	c)	1 (-1 par réponse fausse, sans points négatifs)
	c) d)	0,5 0,5 (-1 par réponse fausse sans points négatifs)