CNRS interview

The Fine-Grained Complexity of Evaluating Database Queries

Nofar CARMELI

The Fine-Grained Complexity of Evaluating Queries

To use data: store & query

The Fine-Grained Complexity of Evaluating Queries

To use data: store & query

- Big data requires extremely efficient algorithms
 - Fine-grained complexity: 'polynomial' is not enough

The Fine-Grained Complexity of Evaluating Queries

To use data: store & query

- Big data requires extremely efficient algorithms
 - Fine-grained complexity: 'polynomial' is not enough
- What is the most efficient way of answering a database query?

My Past Work

- Query decompositions [PODS 17, DAM 20]
- Constant delay query answering:
 - DBs with constraints [ICDT 18, TOCS 19]
 - Unions of CQs [PODS 19, TODS 21]
 - Random order [PODS 20]
 - Ranked access [PODS 21, PODS 22]
- Uncertain data:
 - Repairing noisy DBs [ICDT 21]
 - Representing probabilistic DBs [PODS 21]
- Structured review summarization [WWW 20, WWW 21]

My Past Work

- Query decompositions [PODS 17, DAM 20]
- Constant delay query answering:
 - DBs with constraints [ICDT 18, TOCS 19]
 - Unions of CQs [PODS 19, TODS 21]
 - Random order [PODS 20]
 - Ranked access [PODS 21, PODS 22]
- Uncertain data:
 - Repairing noisy DBs [ICDT 21]
 - Representing probabilistic DBs [PODS 21]
- Structured review summarization [WWW 20, WWW 21]

My Past Work

- Query decompositions [PODS 17, DAM 20]
- Constant delay query answering:
 - DBs with constraints [ICDT 18, TOCS 19]
 - Unions of CQs [PODS 19, TODS 21]
 - Random order [PODS 20]
 - Ranked access [PODS 21, PODS 22]
- Uncertain data:
 - Repairing noisy DBs [ICDT 21]
 - Representing probabilistic DBs [PODS 21]
- Structured review summarization [WWW 20, WWW 21]

Enumeration Complexity of UCQs

- Goal
- Overview
- Explanations
 - Easy ∪ Hard
 - Why isn't it always hard?
 - When is it easy?
 - Hard ∪ Hard
 - Sometimes it is easy

Enumeration Complexity of UCQs

- Goal
- Overview
- Explanations
 - Easy ∪ Hard
 - Why isn't it always hard?
 - When is it easy?
 - Hard ∪ Hard
 - Sometimes it is easy

Goal

Which Unions of Conjunctive Queries can be answered with optimal time guarantees?

tutorials:

Person	Title
Alan Fekete	Making Consistency
Suresh Venkatasu	Algorithmic Fairness

schedule:

Title	Day
Making Consistency	Tue
Algorithmic Fairness	Wed
Regularizing Conjunct	Mon

tutorials:

Person	Title
Alan Fekete	Making Consistency
Suresh Venkatasu	Algorithmic Fairness

schedule:

Title	Day
Making Consistency	Tue
Algorithmic Fairness	Wed
Regularizing Conjunct	Mon

Conjunctive Query: Join + Project

tutorials:

Person	Title
Alan Fekete	Making Consistency
Suresh Venkatasu	Algorithmic Fairness

schedule:

Title	Day
Making Consistency	Tue
Algorithmic Fairness	Wed
Regularizing Conjunct	Mon

Conjunctive Query: Join + Project

 $Q_1(Person, Day) \leftarrow tutorials(Person, Title), schedule(Title, Day)$

tutorials:

Person	Title
Alan Fekete	Making Consistency
Suresh Venkatasu	Algorithmic Fairness

schedule:

Title	Day
Making Consistency	Tue
Algorithmic Fairness	Wed
Regularizing Conjunct	Mon

Person	Day
Alan Fekete	Tue
Suresh Venkatasu	Wed

Conjunctive Query: Join + Project

 $Q_1(Person, Day) \leftarrow tutorials(Person, Title), schedule(Title, Day)$

tutorials:

Person	Title
Alan Fekete	Making Consistency
Suresh Venkatasu	Algorithmic Fairness

schedule:

Title	Day
Making Consistency	Tue
Algorithmic Fairness	Wed
Regularizing Conjunct	Mon

Person	Day
Alan Fekete	Tue
Suresh Venkatasu	Wed

research talks:

Person	Title
Pablo Barceló	Regularizing Conjunct
Peter Lindner	Probabilistic Database
Muhammad Tibi	Query Evaluation in

Conjunctive Query: Join + Project

 $Q_1(Person, Day) \leftarrow tutorials(Person, Title), schedule(Title, Day)$

tutorials:

Person	Title
Alan Fekete	Making Consistency
Suresh Venkatasu	Algorithmic Fairness

schedule:

Title	Day
Making Consistency	Tue
Algorithmic Fairness	Wed
Regularizing Conjunct	Mon

Person	Day
Alan Fekete	Tue
Suresh Venkatasu	Wed

research talks:

Person	Title
Pablo Barceló	Regularizing Conjunct
Peter Lindner	Probabilistic Database
Muhammad Tibi	Query Evaluation in

Conjunctive Query: Join + Project

 $Q_1(Person, Day) \leftarrow tutorials(Person, Title), schedule(Title, Day)$ $Q_2(Person, Day) \leftarrow research(Person, Title), schedule(Title, Day)$

tutorials:

Person	Title
Alan Fekete	Making Consistency
Suresh Venkatasu	Algorithmic Fairness

schedule:

Title	Day
Making Consistency	Tue
Algorithmic Fairness	Wed
Regularizing Conjunct	Mon

research talks:

Person	Title
Pablo Barceló	Regularizing Conjunct
Peter Lindner	Probabilistic Database
Muhammad Tibi	Query Evaluation in

Conjunctive Query: Join + Project

Person	Day
Alan Fekete	Tue
Suresh Venkatasu	Wed
Person	Day
Pablo Barceló	Mon
Peter Lindner	Mon
Muhammad Tibi	Mon

 $Q_1(Person, Day) \leftarrow tutorials(Person, Title), schedule(Title, Day)$

 $Q_2(Person, Day) \leftarrow research(Person, Title), schedule(Title, Day)$

tutorials:

Person	Title
Alan Fekete	Making Consistency
Suresh Venkatasu	Algorithmic Fairness

schedule:

Title	Day
Making Consistency	Tue
Algorithmic Fairness	Wed
Regularizing Conjunct	Mon

research talks:

Person	Title
Pablo Barceló	Regularizing Conjunct
Peter Lindner	Probabilistic Database
Muhammad Tibi	Query Evaluation in

Union of Conjunctive Query: Join + Project + Union

Person	Day
Alan Fekete	Tue
Suresh Venkatasu	Wed
Person	Day
Pablo Barceló	Mon
Peter Lindner	Mon
Muhammad Tibi	Mon

 $Q_1(Person, Day) \leftarrow tutorials(Person, Title), schedule(Title, Day)$

 $Q_2(Person, Day) \leftarrow research(Person, Title), schedule(Title, Day)$

tutorials:

Person	Title
Alan Fekete	Making Consistency
Suresh Venkatasu	Algorithmic Fairness

schedule:

Title	Day
Making Consistency	Tue
Algorithmic Fairness	Wed
Regularizing Conjunct	Mon

research talks:

Person	Title
Pablo Barceló	Regularizing Conjunct
Peter Lindner	Probabilistic Database
Muhammad Tibi	Query Evaluation in

Union of Conjunctive Query: Join + Project + Union

Person	Day
Alan Fekete	Tue
Suresh Venkatasu	Wed
Person	Day
Pablo Barceló	Mon
Peter Lindner	Mon
Muhammad Tibi	Mon

 $Q_1(Person, Day) \leftarrow tutorials(Person, Title), schedule(Title, Day)$ $Q_2(Person, Day) \leftarrow research(Person, Title), schedule(Title, Day)$

$$Q_3 = Q_1 \cup Q_2$$

tutorials:

Person	Title
Alan Fekete	Making Consistency
Suresh Venkatasu	Algorithmic Fairness

schedule:

Title	Day
Making Consistency	Tue
Algorithmic Fairness	Wed
Regularizing Conjunct	Mon

research talks:

Person	Title
Pablo Barceló	Regularizing Conjunct
Peter Lindner	Probabilistic Database
Muhammad Tibi	Query Evaluation in

Union of Conjunctive Query: Join + Project + Union

Person	Day
Alan Fekete	Tue
Suresh Venkatasu	Wed
Pablo Barceló	Mon
Peter Lindner	Mon
Muhammad Tibi	Mon

$$Q_1(Person, Day) \leftarrow tutorials(Person, Title), schedule(Title, Day)$$

 $Q_2(Person, Day) \leftarrow research(Person, Title), schedule(Title, Day)$
 $Q_3 = Q_1 \cup Q_2$

• Query = problem

- Query = problem
- Time complexity, data complexity, RAM model

- Query = problem
- Time complexity, data complexity, RAM model
- Achievable time bounds:

- Query = problem
- Time complexity, data complexity, RAM model
- Achievable time bounds:
 - Need to print every answer (|OUT| >> |IN|)

- Query = problem
- Time complexity, data complexity, RAM model
- Achievable time bounds:
 - Need to print every answer (|OUT| >> |IN|)
 - Need to read the input before the first answer

- Query = problem
- Time complexity, data complexity, RAM model
- Achievable time bounds:
 - Need to print every answer (|OUT| >> |IN|)
 - Need to read the input before the first answer

time

- Query = problem
- Time complexity, data complexity, RAM model
- Achievable time bounds:
 - Need to print every answer (|OUT| >> |IN|)
 - Need to read the input before the first answer
- DelayC_{lin}: solvable in linear preprocessing and constant delay

time

- Query = problem
- Time complexity, data complexity, RAM model
- Achievable time bounds:
 - Need to print every answer (|OUT| >> |IN|)
 - Need to read the input before the first answer
- DelayC_{lin}: solvable in linear preprocessing and constant delay

Which queries are in DelayC_{lin}?

Starting Point

[BaganDurandGrandjean CSL'2007] [Brault-Baron 2013]

CQs: $\in DelayC_{lin} \Leftrightarrow * free-connex$

- * Hardness results assume:
- (1) no self-joins
- (2) hardness of Boolean matrix multiplication and hyperclique

Free-connex Definition

1. a node for every atom 2. tree 3. for every variable X: the nodes containing X form a subtree

Free-connex Definition

1. a node for every atom 2. tree 3. for every variable X: the nodes containing X form a subtree

Free-connex Definition

- 1. a node for every atom possibly also subsets
- 2. tree
- 3. for every variable X: the nodes containing X form a subtree

Starting Point

[BaganDurandGrandjean CSL'2007] [Brault-Baron 2013]

CQs: $\in DelayC_{lin} \Leftrightarrow * free-connex$

- * Hardness results assume:
- (1) no self-joins
- (2) hardness of Boolean matrix multiplication and hyperclique

Starting Point

[BaganDurandGrandjean CSL'2007] [Brault-Baron 2013]

CQs: $\in DelayC_{lin} \Leftrightarrow^* free-connex$

- * Hardness results assume:
- (1) no self-joins
- (2) hardness of Boolean matrix multiplication and hyperclique

Enumeration Complexity of UCQs

- Goal
- Overview
- Explanations
 - Easy ∪ Hard
 - Why isn't it always hard?
 - When is it easy?
 - Hard ∪ Hard
 - Sometimes it is easy

Cases for UCQs

All CQs are Easy
Some Easy, Some Hard
All CQs are Hard

All CQs are Easy

Some Easy, Some Hard

All CQs are Hard

All CQs are Easy

always easy

Some Easy, Some Hard

All CQs are Hard

All CQs are Easy

always easy

Some Easy, Some Hard

All CQs are Hard

All CQs are Hard

All CQs are Hard

All CQs are Hard

$$Q_{1}(x,y) \leftarrow R_{1}(x,y), R_{2}(y,z), R_{3}(z,x)$$
$$Q_{2}(x,y) \leftarrow R_{1}(x,y), R_{2}(y,z)$$

always easy

Some Easy, Some Hard

sometimes hard

All CQs are Hard

$$Q_1(x,y) \leftarrow R_1(x,y), R_2(y,z), R_3(z,x)$$
 non free – connex

$$Q_2(x,y) \leftarrow R_1(x,y), R_2(y,z)$$
 free – connex

All CQs are Easy

always easy

Some Easy, Some Hard

sometimes hard

All CQs are Hard

$$Q_1(x,y) \leftarrow R_1(x,y), R_2(y,z), R_3(z,x)$$
 non free – connex

$$Q_2(x,y) \leftarrow R_1(x,y), R_2(y,z)$$
 free – connex

$$Q_1 \subseteq Q_2$$

All CQs are Easy

always easy

Some Easy, Some Hard

sometimes hard

All CQs are Hard

$$Q_1(x,y) \leftarrow R_1(x,y), R_2(y,z), R_3(z,x)$$
 non free – connex

$$Q_2(x,y) \leftarrow R_1(x,y), R_2(y,z)$$
 free – connex

$$Q_1 \subseteq Q_2 \qquad \Longrightarrow \qquad Q_1 \cup Q_2 = Q_2$$

All CQs are Hard

$$Q_{1}(x,y) \leftarrow R_{1}(x,y), R_{2}(y,z), R_{3}(z,x) \text{ non free - connex}$$

$$Q_{2}(x,y) \leftarrow R_{1}(x,y), R_{2}(y,z) \text{ free - connex}$$

$$Q_{1} \subseteq Q_{2} \qquad \Rightarrow \qquad Q_{1} \cup Q_{2} = Q_{2}$$

All CQs are Hard

non-redundant unions?

All CQs are Hard

non-redundant unions?

Claimed [ICDT 2018]: hard if contains a hard CQ

All CQs are Hard

some non-redundant unions
with a hard CQ
are easy

All CQs are Hard

* Even for non-redundant unions

some non-redundant unions
with a hard CQ
are easy

All CQs are Hard

* Even for non-redundant unions

some non-redundant unions
with a hard CQ
are easy

All CQs are Hard

* Even for non-redundant unions

If each CQ in Q is hard and there is no body-isomorphism

 \Rightarrow Q \notin Delay C_{lin}

All CQs are Hard

* Even for non-redundant unions

UCQs containing **only hard** CQs can be **easy**!

* Even for non-redundant unions

UCQs containing **only hard** CQs can be **easy**!

* Even for non-redundant unions

UCQs containing **only hard** CQs can be **easy**!

Enumeration Complexity of UCQs

- Goal
- Overview
- Explanations
 - Easy ∪ Hard
 - Why isn't it always hard?
 - When is it easy?
 - Hard ∪ Hard
 - Sometimes it is easy

Acyclic non-free-connex:

$$Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$$

[BaganDurandGrandjean CSL'2007]

Assumption: Boolean $n \times n$ matrices cannot be multiplied in time $O(n^2)$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}$$

Acyclic non-free-connex:

$$Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$$

[BaganDurandGrandjean CSL'2007]

Assumption: Boolean $n \times n$ matrices cannot be multiplied in time $O(n^2)$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}$$

Acyclic non-free-connex:

$$Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$$

Δ

R	С
1	1
1	2
2	2

[BaganDurandGrandjean CSL'2007]

Assumption: Boolean $n \times n$ matrices cannot be multiplied in time $O(n^2)$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}$$

Acyclic non-free-connex:

$$Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$$

Q

R	С
1	2
2	2

Α

R	С
1	1
1	2
2	2

В

R	С
1	2
2	2
2	2

[BaganDurandGrandjean CSL'2007]

Assumption: Boolean $n \times n$ matrices cannot be multiplied in time $O(n^2)$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

Acyclic non-free-connex:

$$Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$$

Q

R	С
1	2
2	2

Α

R	С
1	1
1	2
2	2

В

<u> </u>
2
2

[BaganDurandGrandjean CSL'2007]

Assumption: Boolean $n \times n$ matrices cannot be multiplied in time $O(n^2)$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

Acyclic non-free-connex:

$$Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$$

Q R C 1 2 2

A	
R	С
1	1
1	2
2	2

R C 1 2
1 2
2 2

[BaganDurandGrandjean CSL'2007]

Assumption: Boolean $n \times n$ matrices cannot be multiplied in time $O(n^2)$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

Acyclic non-free-connex:

$$Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$$

	Q		
	R	С	
(1	2	
	2	2	

[BaganDurandGrandjean CSL'2007]

Assumption: Boolean $n \times n$ matrices cannot be multiplied in time $O(n^2)$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

Acyclic non-free-connex:

Q(x,z)	$\leftarrow R_{\star}$	$(x \ v)$	R_{2}	(v z	7)
$Q(\lambda, Z)$	` 11'	(λ, y)	, 1\2\	(y, z)	ノ

Q		
R	С	
1	2)
2	2	

$$Q_1(x, z, w) \leftarrow R_1(x, y), R_2(y, z), R_3(z, w)$$

$$\underbrace{R_1(x, y), R_2(y, z), R_3(z, w)}_{\text{not free connex}}$$

$$Q_1(x, z, w) \leftarrow R_1(x, y), R_2(y, z), R_3(z, w)$$

$$\underbrace{R_1(x, y), R_2(y, z), R_3(z, w)}_{\text{not free connex}}$$

R_1		R_2	
1	1	1	2
1	2	2	2
2	2		

$$Q_1(x, z, w) \leftarrow R_1(x, y), R_2(y, z), R_3(z, w)$$

$$\underbrace{R_1(x, y), R_2(y, z), R_3(z, w)}_{\text{not free connex}}$$

Q_1		
1	2	Τ
2	2	T

R_1		R_2			R_3	
1	1	1	2		2	T
1	2	2	2			
2	2			1		

$$Q_1(x,z,w) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w)$$

$$U$$

$$Q_2(x',y',z') \leftarrow R_1(x',y'), R_2(y',z')$$

Q_1		
1	2	T
2	2	T

R_1		R_2		R_3	
1	1	1	2	2	1
1	2	2	2		
2	2				

$$Q_1(x,z,w) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w)$$

$$\cup$$

$$Q_2(x',y',z') \leftarrow R_1(x',y'), R_2(y',z')$$

Q_1		
1	2	Τ
2	2	Τ
Q_2		
1	1	2
1	2	2

R_1	
1	1
1	2
2	2

$$Q_1(x,z,w) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w)$$

$$U$$

$$Q_2(x',y',z') \leftarrow R_1(x',y'), R_2(y',z')$$

Q_1		
1	2	Τ
2	2	Τ
Q_2		
1	1	2
1	2	2
2	2	2

 $O(n^3)$ solutions: The computation does not contradict the assumption

R_1		R_2			R_3	
1	1	1	2		2	Τ
1	2	2	2			
2	2			•		

$$Q_1(x,z,w) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w)$$

$$U$$

$$Q_2(x',y',z') \leftarrow R_1(x',y'), R_2(y',z')$$

Q_1		
1	2	Τ
2	2	Τ
Q_2		
1	1	2
1	2	2
2	2	2

 $O(n^3)$ solutions: The computation does not contradict the assumption

R_1		R_2		R_3	
1	1	1	2	2	Τ
1	2	2	2		
2	2				

The hardness results do not hold within a union

Enumeration Complexity of UCQs

- Goal
- Overview
- Explanations
 - Easy ∪ Hard
 - Why isn't it always hard?
 - When is it easy?
 - Hard ∪ Hard
 - Sometimes it is easy

$$Q_1(x,z,w) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w)$$

$$\cup$$

$$free - connex Q_2(x',y',z') \leftarrow R_1(x',y'), R_2(y',z')$$

$$\in DelayC_{lin}$$

$$Q_1(x,z,w) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w)$$

$$Q_2(x',y',z') \leftarrow R_1(x',y'), R_2(y',z')$$

$$= \frac{1}{2} \frac{1}{$$

$$\begin{array}{c} \text{hard part} \\ \text{non free - connex} \ Q_1(x,z,w) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w) \\ \text{free - connex} \ Q_2(x',y',z') \leftarrow R_1(x',y'), R_2(y',z') \end{array}$$

$$\begin{array}{c} \text{hard part} \\ \text{non free - connex} \ Q_1(x,z,w) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w) \\ \text{free - connex} \ Q_2(x',y',z') \leftarrow R_1(x',y'), R_2(y',z') \end{array}$$

$$Q_1'(x,z,w) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w), Q_2(x,y,z)$$

$$\begin{array}{c} & \text{hard part} \\ & \text{non free - connex} \ Q_1(x,z,w) \leftarrow R_1(x,y), R_2(y,z), R_3(z,w) \\ & \text{Body-homomorphism} \\ & Q_2(x',y',z') \leftarrow R_1(x',y'), R_2(y',z') \end{array}$$

Enumeration Complexity of UCQs

- Goal
- Overview
- Explanations
 - Easy ∪ Hard
 - Why isn't it always hard?
 - When is it easy?
 - Hard ∪ Hard
 - Sometimes it is easy

Hard ∪ Hard = Easy

Example: CQs with isomorphic bodies.

$$Q_1(x, z, w, u) \leftarrow R_1(x, y), R_2(y, z), R_3(z, w), R_4(w, u)$$

$$Q_2(x, y, z, u) \leftarrow R_1(x, y), R_2(y, z), R_3(z, w), R_4(w, u)$$

Hard ∪ Hard = Easy

Example: CQs with isomorphic bodies.

$$Q_{1}(x, z, w, u) \leftarrow R_{1}(x, y), R_{2}(y, z), R_{3}(z, w), R_{4}(w, u)$$

$$Q_{2}(x, y, z, u) \leftarrow R_{1}(x, y), R_{2}(y, z), R_{3}(z, w), R_{4}(w, u)$$
hard part

Hard ∪ Hard = Easy

• Example: CQs with isomorphic bodies.

$$Q_{1}(x, z, w, u) \leftarrow R_{1}(x, y), R_{2}(y, z), R_{3}(z, w), R_{4}(w, u)$$

$$Q_{2}(x, y, z, u) \leftarrow R_{1}(x, y), R_{2}(y, z), R_{3}(z, w), R_{4}(w, u)$$
hard part

	Step	Output	Side Effect
1	Solve ${Q_2}^\prime$	$\subseteq Q_2$	Find $R_1 \bowtie R_2$
2	Solve Q_1^+	Q_1	Find $R_3 \bowtie R_4$
3	Solve Q_2^+	Q_2	

Enumeration Complexity of UCQs

- Goal
- Overview
- Explanations
 - Easy ∪ Hard
 - Why isn't it always hard?
 - When is it easy?
 - Hard ∪ Hard
 - Sometimes it is easy

Research Project

To use data: store & query

- Big data requires extremely efficient algorithms
 - Fine-grained complexity: 'polynomial' is not enough
- What is the most efficient way of answering a database query?

What is the most efficient way of answering a database query?

enumeration vs. direct access

[C+, PODS'20] [C+, PODS'21]

Integration

	IRIF	LaBRI	LIRMM
Example common interests	Graph DBs	DBs with constraints	Ontologies
	Uncertain data	Ontologies	Dynamic data
Natural collaborators	Cristina Sirangelo	Diego Figueira	David Carral
	Amélie Gheerbrant	Meghyn Bienvenu	Federico Ulliana

Thank you.