Univerzitet u Beogradu Matematički fakultet

Milena, Jelena, Ana, Mirko, Anđelka, Nina

Zbirka programa

Beograd, 2015.

Predgovor

U okviru kursa *Programiranje 2* na Matematičkom fakultetu vežbaju se zadaci koji imaju za cilj da studente nauče rekurzivnom pristupu rešavanju problema, ispravan rad sa pokazivačima i dinamički alociranom memorijom, osnovne algoritme pretraživanja i sortiranja, kao i rad sa dinamičkim strukturama podataka, poput listi i stabala. Zadaci koji se nalaze u ovoj zbirci predstavljaju objedinjen skup zadataka sa vežbi i praktikuma ovog kursa, kao i primere zadataka sa kolokvijuma i ispita.

Autori velikog broja zadataka ove zbirke su ujedno i autori same zbirke, ali postoje i zadaci za koje se ne može tačno utvrditi ko je originalni autor jer su zadacima davali svoje doprinose različiti asistenti koji su držali vežbe iz ovog kursa u prethodnih desetak godina, pomenimo tu, pre svega, Milana Bankovića i doc dr Filipa Marića. Zbog toga smatramo da je naš osnovni doprinos što smo objedinili, precizno formulisali i rešili sve najvažnije zadatke koji su potrebni za uspešno savlađivanje koncepata koji se obrađuju u okviru kursa.

Zahvaljujemo se recenzentima na ..., kao i studentima koji su svojim aktivnim učešćem u nastavi pomogli i doprineli u obličavanju ovog materijala.

Autori

Sadržaj

1	Uvo	odni zadaci	3			
	1.1	Podela koda po datotekama	3			
	1.2	Algoritmi za rad sa bitovima	3			
	1.3	Rekurzija				
	1.4	Rešenja				
2	Pok	zazivači	15			
	2.1	Pokazivačka aritmetika	15			
	2.2	Višedimenzioni nizovi	20			
	2.3	Dinamička alokacija memorije	25			
	2.4	Pokazivači na funkcije	30			
	2.5	Rešenja	31			
3	Algoritmi pretrage i sortiranja 7					
	3.1	Pretraživanje	73			
	3.2	Sortiranje	76			
	3.3	Bibliotečke funkcije pretrage i sortiranja	82			
	3.4	Rešenja	84			
4	Din	amičke strukture podataka	97			
	4.1	Liste	97			
	4.2	Drveta	102			
	4.3	Rešenja	110			
5	Ispi	tni rokovi	113			
	$5.\overline{1}$	Programiranje 2, praktični deo ispita, jun 2015	113			
	5.2	Programiranje 2, praktični deo ispita, jul 2015				
	5.3	Rešenja				
Li	terat	oura	122			

Glava 1

Uvodni zadaci

1.1 Podela koda po datotekama

1.2 Algoritmi za rad sa bitovima

Zadatak 1.1

- (a) Napisati funkciju $print_bits$ koja štampa bitove u binarnom zapisu celog broja x.
- (b) Napisati program koja testira funkciju print_bits za brojeve koji se sa standardnog ulaza zadaju u heksadekasnom formatu.

```
Test 1
Ulaz:
        0x7F
        0000 0000 0000 0000 0000 0000 0111 1111
                                   Test 2
Ulaz:
         0x80
        0000 0000 0000 0000 0000 0000 1000 0000
                                   Test 3
Ulaz:
        0x00FF00FF
         0000 0000 1111 1111 0000 0000 1111 1111
                                   Test 4
Ulaz:
         1111 1111 1111 1111 1111 1111 1111 1111
Izlaz:
                                    Test
        0xABCDE123
        1010 1011 1100 1101 1110 0001 0010 0011
```

 ${\bf Zadatak~1.2~}$ Napisati funkciju koja broji bitove postavljene na 1 u zapisu broja x. Napisati program koji testira tu funkciju za brojeve koji se sa standardnog ulaza zadaju u heksadekasnom formatu.

Test 1 Test 2 Test 3 0x7F0x80 0x00FF00FF Ulaz: Ulaz: Izlaz: Test 4 Test 4 OxFFFFFFF 0xABCDE123 Ulaz: Ulaz: Izlaz: Izlaz:

Zadatak 1.3

- (a) Napisati funkciju **najveci** koja određuje najveći broj koji se može zapisati istim binarnim ciframa kao dati broj i funkciju **najmanji** koja određuje najmanji broj koji se može zapisati istim binarnim ciframa kao dati broj.
- (b) Napisati program koji testira prethodno napisane funkcije tako što prikazuje binarnu reprezentaciju brojeva koji se dobijaju nakon poziva funkcije najveci, ondosno najmanji za brojeve koji se sa standardnog ulaza zadaju u heksadekasnom formatu.

Test 1

1111 1111 1111 1111 0000 0000 0000 0000

0000 0000 0000 0000 1111 1111 1111 1111

Test 4

Zadatak 1.4 Napisati program za rad sa bitovima.

- (a) Napisati funkciju koja određuje broj koji se dobija kada se n bitova datog broja, počevši od pozicije p postave na 0.
- (b) Napisati funkciju koja određuje broj koji se dobija kada se n bitova datog broja, počevši od pozicije p postave na 1.
- (c) Napisati funkciju koja određuje broj koji se dobija kada se n bitova datog broja, počevši od pozicije p i vraća ih kao bitove najmanje težine rezultata.
- (d) Napisati funkciju koja vraća broj koji se dobija upisivanjem poslednjih n bitova broja y u broj x, počevši od pozicije p.
- (e) Napisati funkciju koja vraća broj koji se dobija invertovanjem n bitova broja x počevši od pozicije p.
- (f) Napisati program koji testira prethodno napisane funkcije.

Program treba da testira prethodno napisane funkcije nad neoznačenim celim brojem koji se unosi sa standardnog ulaza. Napomena: Pozicije se broje počev od pozicije najnižeg bita, pri čemu se broji od nule.

Zadatak 1.5

- (a) Napisati funkciju funkciju koja određuje broj koji se dobija rotiranjem u levo datog celog broja. Napomena: Rotiranje podrazumeva pomeranje svih bitova za jednu poziciju ulevo, s tim što se bit sa pozicije najviše težine pomera na mesto najmanje težine.
- (b) Napisati funkciju koja određuje broj koji se dobija rotiranjem u desno datog celog neoznačenog broja.

- (c) Napisati funkciju koja određuje broj koji se dobija rotiranjem u desno datog celog broja.
- (d) Napisati program koji testira prethodno napisane funkcije za brojeve koji se sa standardnog ulaza zadaju u heksadekasnom formatu.

Zadatak 1.6 Napisati funkciju mirror koja određuje ceo broj čiji binarni zapis je slika u ogledalu binarnog zapisa argumenta funkcije. Napisati i program koji testira datu funkciju za brojeve koji se sa standardnog ulaza zadaju u heksadekasnom formatu, tako što najpre ispisuje binarnu reprezentaciju unetog broja, a potom i binarnu reprezentaciju broja dobijenog nakon poziva funkcije mirror za uneti broj.

Zadatak 1.7 Napisati funkciju int Broj01(unsigned int n) koja za dati broj n vraća 1 ako u njegovom binarnom zapisu ima više jednica nego nula, a inače vraća 0. Napisati program koji tu funkciju testira za broj koji se zadaje sa standardnog ulaza.

Zadatak 1.8 Napisati funkciju koja broji koliko se puta kombinacija 11 (dve uzastopne jedinice) pojavljuje u binarnom zapisu celog neoznačenog broja x. Tri uzastopne jedinice se broje dva puta. Napisati program koji tu funkciju testira za broj koji se zadaje sa standardnog ulaza.

Zadatak 1.9 Napisati program koji sa standardnog ulaza učitava pozitivan ceo broj, a na standardni izlaz ispisuje vrednost tog broja sa razmenjenim vrednostima bitova na pozicijama i, j. Pozicije i, j se učitavaju kao parametri komandne linije. Smatrati da je krajnji desni bit binarne reprezentacije 0-ti bit. Pri rešavanju nije dozvoljeno koristiti pomoćni niz niti aritmetičke operatore +,-,/,*,%.

Zadatak 1.10 Napisati funkciju koja na osnovu neoznačenog broja x formira nisku s koja sadrži heksadekadni zapis broja x, koristeći algoritam za brzo prevođenje binarnog u heksadekadni zapis (svake 4 binarne cifre se zamenjuju jednom odgovarajućom heksadekadnom cifrom). Napisati program koji tu funkciju testira za broj koji se zadaje sa standardnog ulaza.

Zadatak 1.11 Napisati funkciju koja za dva data neoznačena broja x i y invertuje u podatku x one bitove koji se poklapaju sa odgovarajućim bitovima u broju y. Ostali bitovi ostaju nepromenjeni. Napisati program koji tu funkciju testira za brojeve koji se zadaju sa standardnog ulaza.

 ${f Zadatak~1.12~}$ Napisati funkciju koja računa koliko petica bi imao ceo neoznačen broj x u oktalnom zapisu. Napisati program koji tu funkciju testira za broj koji se zadaje sa standardnog ulaza.

Milena: Naredne zadatke prebaciti da budu nakon rekurzije.

Zadatak 1.13 Napisati rekurzivnu funkciju vraća broj bitova koji su postavljeni na 1, u binarnoj reprezentaciji njenog celobrojnog argumenta. Napisati program koji testira napisanu funkciju za brojeve koji se učitavaju sa standardnog ulaza zadati u heksadekadnom formatu.

Zadatak 1.14

Napisati rekurzivnu funkciju koja štampa bitovsku reprezentaciju neoznačenog celog broja, i program koji je testira za ulaz koji se zadaje sa standardnog ulaza.

Zadatak 1.15 Nina: Ovo je prebaceno iz poglavlja sa pokazivacima. Napisati rekurzivnu funkciju za određivanje najveće cifre u oktalnom zapisu neoznačenog celog broja korišćenjem bitskih operatora. Uputstvo: binarne cifre grupisati u podgrupe od po tri cifre, počev od bitova najmanje težine.

Zadatak 1.16 Nina: Ovo je prebaceno iz poglavlja sa pokazivacima. Napisati rekurzivnu funkciju za određivanje (dekadne vrednosti) najveće cifre u heksadekadnom zapisu neoznačenog celog broja korišćenjem bitskih operatora. Uputstvo: binarne cifre grupisati u podgrupe od po četiri cifre, počev od bitova najmanje težine.

```
Test 1
                                   Test 2
                                                             Test 3
        5
                                  16
                                                            18
                         Ulaz:
                                                   Ulaz:
Ulaz:
Izlaz: 5
                         Izlaz: 1
                                                  || Izlaz: 2
         Test 4
Ulaz:
        165
Izlaz: 10
```

1.3 Rekurzija

Zadatak 1.17 Napisati rekurzivnu funkciju koja sumira elemente niza celih brojeva. Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati dimenziju $n \ (0 < n \le 100)$ celobrojong niza, a zatim i elemente niza. Na standardni izlaz ispisati rezultat primene napisane funkcije nad učitanim nizom.

Zadatak 1.18 Napisati rekurzivnu funkciju koja izračunava x^k , za dati realni broj x i prirodan broj k. Napisati program koji testira napisanu funkciju za vrednosti koje se unose sa standardnog ulaza.

Zadatak 1.19 Koristeći uzajamnu (posrednu) rekurziju napisati naredne dve funkcije:

- fukciju paran koja proverava da li je broj cifara nekog broja paran i vraća 1 ako jeste, a 0 inače;
- i fukciju **neparan** koja vraća 1 ukoliko je broj cifara nekog broja neparan, a 0 inače.

Napisati program koji testira napisanu funkciju tako što se za heksadekadnu vrednost koja se unosi sa standardnog ulaza ispisuje da li je paran ili neparan.

Zadatak 1.20 Napisati repno-rekurzivnu funkciju koja izračunava faktorijel broja n. Napisati program koji testira napisanu funkciju za poizvoljan broj $n \ (n \le 12)$ unet sa standardnog ulaza.

Zadatak 1.21 Elementi funkcije F izračunavaju se na osnovu sledećih rekurentnih relacija:

$$F(0) = 0$$
$$F(1) = 1$$

$$F(n) = a * F(n-1) + b * F(n-2)$$

- (a) Napisati rekurzivnu funkciju koja računa n-ti element u nizu F.
- (b) Napisati rekurzivnu funkciju koja računa n-ti element u nizu F ali tako da se problemi manje dimenzije rešavaju samo jedan put.

Napisati program koji testira napisane funkcije za poizvoljan broj $n \ (n \in \mathbb{N})$ unet sa standardnog ulaza.

Zadatak 1.22 Napisati rekurzivnu funkciju koja prikazuje sve permutacije skupa $\{1, 2, ..., n\}$. Napisati program koji testira napisanu funkciju za poizvoljan prirodan broj $n \ (n \le 50)$ unet sa standardnog ulaza.

Zadatak 1.23 Paskalov trougao se dobija tako što mu je svako polje (izuzev jedinica po krajevima) zbir jednog polja levo i jednog polja iznad.

```
1
     1
          1
       2
            1
  1
     3
          3
1
               1
       6
            4
     10
         10
5
               5
```

- (a) Napisati rekurzivnu funkciju koja izračunava d_n kao sumu elemenata n-te hipotenuze Paskalovog trougla.
- (b) Napisati rekurzivnu funkciju koja izračunava vrednost polja (i, j). Milena: dodati sta je i a sta j tj odakle se broji

Zadatak 1.24 Napisati rekurzivnu funkciju koja određuje maksimum niza celih brojeva. Napisati program koji testira ovu funkciju, za niz koji se unosi sa standardnog ulaza. Niz neće imati više od 256 elemenata, i njegovi elementi se unose sve do kraja ulaza.

```
Test 1

| Ulaz: 3 2 1 4 21 | Ulaz: 2 -1 0 -5 -10 | Izlaz: 2

| Test 3 | Test 4 | Ulaz: 5 | Izlaz: 5
```

Zadatak 1.25 Napisati rekurzivnu funkciju koja izračunava skalarni proizvod dva data vektora. Napisati program koji testira ovu funkciju, za nizove koji se unose sa standardnog ulaza. Nizovi neće imati više od 256 elemenata. Prvo se unosi dimenzija nizova, a zatim i sami njihovi elementi.

```
Test 1

| Ulaz: 3 1 2 3 1 2 3 | Ulaz: 2 3 5 2 6 | Izlaz: 14

| Test 3 | Ulaz: 0 | Izlaz: 0
```

Zadatak 1.26 Napisati rekurzivnu funkciju koja sabira dekadne cifre datog celog broja x. Napisati program koji testira ovu funkciju, za broj koji se unosi sa standardnog ulaza.

```
Test 1
                                    Test 2
                                                               Test 3
           123
                                                               1432
                                     23156
Ulaz:
                          Ulaz:
                                                     Ulaz:
Izlaz:
                                                                10
          Test 4
                                    Test 5
Ulaz:
                          Ulaz:
Izlaz:
                         Izlaz:
```

Zadatak 1.27 Napisati rekurzivnu funkciju koja računa broj pojavljivanja elementa x u nizu a dužine n. Napisati program koji testira ovu funkciju, za x i niz koji se unose sa standardnog ulaza. Niz neće imati više od 256 elemenata. Prvo se unosi x, a zatim elementi niza sve do kraja ulaza.

Zadatak 1.28 Napisati rekurzivnu funkciju koja ispituje da li je data niska palindrom. Napisati program koji testira ovu funkciju. Pretposatviti da niska neće neće imati više od 31 karaktera, i da se unosi sa standardnog ulaza.

```
Test 1
                                                         Test 2
          programiranje
                                                   anavolimilovana
Ulaz:
                                        Ulaz:
Izlaz:
          ne
                                        Izlaz:
                                                   da
         Test 3
                                                               Test
                                    Test 4
Ulaz:
                          Ulaz:
                                     aba
                                                    Ulaz:
                                                               aa
                          Izlaz:
Izlaz:
          da
                                                    Izlaz:
                                                               da
```

Zadatak 1.29 Napisati rekurzivnu funkciju kojom se proverava da li su tri zadata broja uzastopni članovi niza. Potom, napisati program koji je testira. Sa standardnog ulaza se unose najpre tri tražena broja, a zatim elementi niza, sve do kraja ulaza. Pretpostaviti da neće biti uneto više od 256 brojeva.

Zadatak 1.30 Napisati rekurzivnu funkciju koja prikazuje sve varijacije sa ponavljanjem dužine n skupa $\{a,b\}$, i program koji je testira, za n koje se unosi sa standardnog ulaza.

Zadatak 1.31 Hanojske kule: Data su tri vertikalna štapa, na jednom se nalazi n diskova poluprečnika 1,2,3,... do n, tako da se najveći nalazi na dnu, a najmanji na vrhu. Ostala dva štapa su prazna. Potrebno je premestiti diskove na drugi štap tako da budu u istom redosledu, pri čemu se ni u jednom trenutku ne sme staviti veći disk preko manjeg, a preostali štap se koristi kao pomoćni štap prilikom premeštanja. Napisati program koji za proizvoljnu vrednost n, koja se unosi sa standardnog ulaza, prikazuje proces premeštanja diskova.

Zadatak 1.32 Modifikacija Hanojskih kula: Data su četiri vertikalna štapa, na jednom se nalazi n diskova poluprečnika 1,2,3,... do n, tako da se najveći nalazi na dnu, a najmanji na vrhu. Ostala tri štapa su prazna. Potrebno je premestiti diskove na drugi štap tako da budu u istom redosledu, premestajući jedan po jedan disk, pri čemu se ni u jednom trenutku ne sme staviti veći disk preko manjeg, pri čemu se preostala dva štapa koriste kao pomoćni štapovi prilikom premeštanja.

Napisati program koji za proizvoljnu vrednost n, koja se unosi sa standardnog ulaza, prikazuje proces premeštanja diskova.

1.4 Rešenja

- Rešenje 1.1
- Rešenje 1.2
- Rešenje 1.3

```
Rešenje 1.4
Rešenje 1.5
Rešenje 1.6
Rešenje 1.7
Rešenje 1.8
Rešenje 1.9
Rešenje 1.10
Rešenje 1.11
Rešenje 1.12
Rešenje 1.13
#include<stdio.h>
int main(){
  printf("Hello bitovi!\n"); /* Da li komentari rade čćžš*/
  return 0;
}
Rešenje 1.15
Rešenje 1.16
Rešenje 1.17
#include<stdio.h>
int main(){
  printf("Hello bitovi!\n"); /* Da li komentari rade čćžš*/
  return 0;
}
```

Rešenje 1.18

```
#include < stdio.h >

int main() {
   printf("Hello bitovi!\n"); /* Da li komentari rade čćžš*/
   return 0;
}
```

1 Uvodni zadaci

Rešenje 1.19

Rešenje 1.20

Rešenje 1.21

Rešenje 1.22

Rešenje 1.23

Rešenje 1.24

Rešenje 1.25

Rešenje 1.26

Rešenje 1.27

Rešenje 1.28

Rešenje 1.29

Glava 2

Pokazivači

2.1 Pokazivačka aritmetika

Zadatak 2.1 Milen: ovako definisan zadatak zahteva dva programa kao resenja, a ne jedan sa definisane dve funkcije. Za dati celobrojni niz dimenzije n, napisati funkciju koja obrće njegove elemente:

- (a) korišćenjem indeksne sintakse,
- (b) korišćenjem pokazivačke sintakse.

Napisati program koji testira napisanu funkciju. Sa standardnog ulaza učitati dimenziju niza n (0 < $n \le 100$), a zatim elemente niza. Prikazati sadržaj niza posle poziva funkcije za obrtanje elemenata niza.

Zadatak 2.2 Dat je niz realnih brojeva dimenzije n.

- (a) Napisati funkciju zbir koja izračunava zbir elemenata niza.
- (b) Napisati funkciju proizvod koja izračunava proizvod elemenata niza.
- (c) Napisati funkciju min element koja izračunava najmanji elemenat niza.
- (d) Napisati funkciju max element koja izračunava najveći elemenat niza.

Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati dimenziju n ($0 < n \le 100$) realnog niza, a zatim i elemente niza. Na standardni izlaz ispisati zbir, proizvod, minimalni i maksimalni element učitanog niza.

```
Ulaz: 3

-1.1 2.2 3.3

Izlaz: zbir = 4.400

proizvod = -7.986

min = -1.100

max = 3.300
```

Zadatak 2.3 Korišćenjem pokazivačke sintakse, napisati funkciju koja vrednosti elemenata u prvoj polovini niza povećava za jedan, a u drugoj polovini smanjuje za jedan. Ukoliko niz ima neparan broj elemenata, onda vrednost srednjeg elementa niza ostaviti nepromenjenim. Napisati program koji testira napisanu funkciju. Sa standardnog ulaza učitati dimenziju $n \ (0 < n \le 100)$ celobrojong niza, a zatim i elemente niza. Na standardni izlaz ispisati rezultat primene napisane funkcije nad učitanim nizom. Jelena: Sta kazete na to da prekoracenja dimenzije niza u razlicitim zadacima razlicito obradjujemo. Na primer, mozemo da unosimo dimenziju niza sve dok se ne unese broj koji je u odgovarajucem opsegu, ili mozemo da dimenziju postavimo na 1 ako je korisnik uneo broj manji od 1, a na MAX ako je korisnik uneo broj veci od MAX, itd?

Zadatak 2.4 Napisati program koji ispisuje broj prihvaćenih argumenata komandne linije, a zatim i same argumenate kojima prethode njihovi redni brojevi. Nakon toga ispisati prve karaktere svakog od argumenata. Zadatak rešiti:

- (a) korišćenjem indeksne sintakse,
- (b) korišćenjem pokazivačke sintakse.

Jelena: Da li je ok da ovaj zadatak pod a i b resim na nacin na koji sam resila, odnosno, da jedno od ta dva resenja iskomentarisem? Milena: Meni se cini da je bolje

bez komentarisanja, vec da su oba prisutna.

Test 1

Test 2

```
Poziv: ./a.out
Izlaz: 1
0 ./a.out
```

Zadatak 2.5 Korišćenjem pokazivačke sintakse, napisati funkciju koja za datu nisku ispituje da li je palindrom. Napisati program koji vrši prebrojavanje argumenata komandne linije koji su palindromi.

```
Test 1
```

```
Poziv: ./a.out programiranje anavolimilovana topot ana anagram t Izlaz: 4

Test 2

Test 3

Poziv: ./a.out a b 11 212

Izlaz: 4

Poziv: ./a.out
Izlaz: 0
```

Zadatak 2.6 Napisati program koji kao prvi argument komandne linije prihvata putanju do datoteke za koju treba proveriti koliko reči ima n karaktera, gde se n zadaje kao drugi argument komandne linije. Smatrati da reč ne sadrži više od 100 karaktera. U zadatku ne koristiti ugrađene funkcije za rad sa niskama, već implementirati svoje koristeći pokazivačku sintaksu.

```
Test 1
```

```
| Poziv: ./a.out ulaz.txt 2
| (ne postoji datoteka ulaz.txt)
| Izlaz: Greska: Neuspesno otvaranje datoteke ulaz.txt.
```

Zadatak 2.7 Napisati program koji kao prvi argument komandne linije prihvata putanju do datoteke za koju treba proveriti koliko reči ima zadati sufiks (ili prefiks), koji se zadaje kao drugi argument komandne linije. Smatrati da reč ne sadrži više od 100 karaktera. Program je neophodno pozvati sa jednom od opcija -s ili -p u zavisnosti od čega treba proveriti koliko reči ima zadati sufiks (ili prefiks). U zadatku ne koristiti ugrađene funkcije za rad sa niskama, već implementirati svoje koristeći pokazivačku sintaksu.

```
Test 1
          ./a.out ulaz.txt ke -s
ulaz.txt: Ovo je sadrzaj datoteke i u njoj ima reci koje se
          zavrsavaju na ke
                                  Test 2
          ./a.out ulaz.txt sa -p
ulaz.txt: Ovo je sadrzaj datoteke i u njoj ima reci koje
          pocinju sa sa
                                  Test 3
Poziv: ./a.out ulaz.txt sa -p
(ne postoji datoteka ulaz.txt)
Izlaz: Greska: Neuspesno otvaranje datoteke ulaz.txt.
                                  Test 3
Poziv:
        ./a.out ulaz.txt
Izlaz:
      Greska: Nedovoljan broj argumenata komandne linije.
        Program se poziva sa ./a.out ime_dat suf/pref -s/-p.
```

Zadatak 2.8 Milena: Ovo bi trebalo da ide u pretraživanje/sortiranje? Jelena: Slažem se. Molila bih Mirka da ovaj zadatak prebaci u poglavlje pretraživanje/sortiranje. Napisati funkciju koja u rastuće sortiranom nizu celih brojeva binarnom pretragom pronalazi prvi element veći od nule i kao rezultat vraća njegovu poziciju u nizu. Ukoliko nema elemenata većih od nule, funkcija kao rezultat vraća -1. Napisati program koji testira ovu funkciju za niz elemenata koji se učitavaju sa standardnog ulaza. Niz neće biti duži od 256, i njegovi elementi se unose sve do kraja ulaza.

Zadatak 2.9 Milena: Ovo bi trebalo da ide u pretraživanje/sortiranje? Jelena: Slažem se. Molila bih Mirka da ovaj zadatak prebaci u poglavlje pretraživanje/sortiranje. Napisati funkciju koja u opadajuće sortiranom nizu celih brojeva binarnom pretragom pronalazi prvi element manji od nule i kao rezultat vraća njegovu poziciju u nizu. Ukoliko nema elemenata manjih od nule, funkcija kao rezultat vraća -1. Napisati program koji testira ovu funkciju za niz elemenata koji se učitavaju sa standardnog ulaza. Niz neće biti duži od 256, i njegovi elementi se unose sve do kraja ulaza.

Zadatak 2.10 Milena: Ovo bi trebalo da ide u pretraživanje/sortiranje? Jelena: Slažem se. Molila bih Mirka da ovaj zadatak prebaci u poglavlje pretraživanje/sortiranje. Struktura Student čuva podatke o broju indeksa studenta i poenima sa kolokvijuma, pri čemu su brojevi indeksa i poeni sa kolokvijuma celi brojevi. Napisati program koji učitava podatke o studentima iz datoteke "kolokvijum.txt" u kojoj se nalazi najviše 500 zapisa o studentima. Sortirati ovaj niz studenata po broju poena opadajuće, a ako više studenata ima isti broj poena, onda po broju indeksa rastuće. Ispisati sortiran niz studenata na standardni izlaz.

```
Test 2
               Test 1
Kolokvijum.txt:
                                    Kolokvijum.txt:
                   20140015 25
                                                        20140015 25
                   20140115 24
                                                        20110010 12
                   20130250 3
                                                        20140105 0
                   20140001 4
                                                        20120110 13
                   20140038 25
                                    Izlaz:
                                                        20140015 25
Izlaz:
                   20140015 25
                                                        20120110 13
                   20140038 25
                                                        20110010 12
                                                        20140105 0
                   20140115 24
                   20140001
                   20130250 3
```

Zadatak 2.11 Jelena: Ovo je takođe zadatak za poglavlje pretraživanje/sortiranje. Međutim, kako je dosta sličan sa prethodnim, pitanje je da li ga zadržati. Možda u prethodnom zadatku dodati opcije a) i b)? Napisati strukturu Student koja čuva podatke o broju indeksa studenta i broju poena osvojenih na testu. Pretpostaviti da su brojevi indeksa celi brojevi, a poeni sa testa realni brojevi. Napisati program koji učitava podatke o studentima iz datoteke "studenti.txt" u kojoj se nalazi najviše 100 zapisa o studentima. Sortirati ovaj niz studenata po broju poena rastuće, a ako više studenata ima isti broj poena, onda po broju indeksa opadajuće. Ispisati sortiran niz studenata na standardni izlaz.

Test 1			$Test \ \mathcal{Z}$		
Kolokvijum.txt:	20140015	4.5	Kolokvijum.txt:	20130015	9.5
	20130115	4.5		20130010	9.5
	20140250	3.4		20090103	0.5
	20110304	1.2		20140005	10.0
Izlaz:	20110304	1.2		20140120	1.3
	20140250	3.4		20140038	2.5
	20140015	4.5	Izlaz:	20090103	0.5
	20130115	4.5		20140120	1.3
				20140038	2.5
				20130015	9.5
				20130010	9.5
				20140005	10.0

2.2 Višedimenzioni nizovi

Zadatak 2.12 Data je kvadratna matrica dimenzije n.

- (a) Napisati funkciju koja izračunava trag matrice (sumu elemenata na glavnoj dijagonali).
- (b) Napisati funkciju koja izračunava euklidsku normu matrice (koren sume kvadrata svih elemenata).
- (c) Napisati funkciju koja izračunava gornju vandijagonalnu normu matrice (sumu apsolutnih vrednosti elemenata iznad glavne dijagonale).

Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati dimanziju kvadratne matrice n ($0 < n \le 100$), a zatim i elemente matrice. Na standardni izlaz ispisati učitanu matricu a zatim trag, euklidsku normu i vandijagonalnu normu učitane matrice.

```
Ulaz: 3 1 -2 3 4 -5 6 7 -8 9
Izlaz: 1 -2 3
4 -5 6
7 -8 9
trag = 5
euklidska norma = 16.88
vandijagonalna norma = 11
```

Test 2

```
|| Ulaz: 0
|| Izlaz: Greska: neodgovarajuca dimenzija matrice.
```

Zadatak 2.13 Date su dve kvadratne matrice istih dimenzija n.

- (a) Napisati funkciju koja proverava da li su matrice jednake.
- (b) Napisati funkciju koja izračunava zbir matrica.
- (c) Napisati funkciju koja izračunava proizvod matrica.

Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati dimanziju kvadratnih matrica n (0 < $n \le 100$), a zatim i elemente matrica. Na standardni izlaz ispisati "da" ako su matrice jednake, "ne" ako nisu a zatim ispisati zbir i proizvod učitanih matrica.

Test 1

```
Ulaz: 3
    1 2 3 1 2 3 1 2 3
    1 2 3 1 2 3 1 2 3

Izlaz: da
    Zbir matrica je:
    2 4 6
    2 4 6
    2 4 6
    Proizvod matrica je:
    6 12 18
    6 12 18
    6 12 18
```

Zadatak 2.14 Relacija se može predstaviti kvadratnom matricom nula i jedinica na sledeći način: dva elementa i i j su u relaciji ukoliko se u preseku i-te vrste i j-te kolone matrice nalazi broj 1, a nisu u relaciji ukoliko se tu nalazi broj 0.

- (a) Napisati funkciju koja proverava da li je relacija zadata matricom refleksivna.
- (b) Napisati funkciju koja proverava da li je relacija zadata matricom simetrična.
- (c) Napisati funkciju koja proverava da li je relacija zadata matricom tranzitivna.

- (d) Napisati funkciju koja određuje refleksivno zatvorenje relacije (najmanju refleksivnu relaciju koja sadrži datu).
- (e) Napisati funkciju koja određuje simetrično zatvorenje relacije (najmanju simetričnu relaciju koja sadrži datu).
- (f) Napisati funkciju koja određuje refleksivno-tranzitivno zatvorenje relacije (najmanju refleksivnu i tranzitivnu relaciju koja sadrži datu) (Napomena: koristiti Varšalov algoritam).

Napisati program koji učitava matricu iz datoteke čije se ime zadaje kao prvi argument komandne linije. U prvoj liniji datoteke nalazi se dimenzija matrice n ($0 < n \le 64$), a potom i sami elementi matrice. Na standardni izlaz ispisati rezultat testiranja napisanih funkcija.

Test 1

```
Poziv: ./a.out ulaz.txt
ulaz.txt:
           1 0 0 0
           0 1 1 0
           0 0 1 0
           0 0 0 0
Izlaz:
           Refleksivnost: ne
           Simetricnost: ne
           Tranzitivnost: da
           Refleksivno zatvorenje:
           1 0 0 0
           0 1 1 0
           0 0 1 0
           0 0 0 1
           Simetricno zatvorenje:
           1 0 0 0
           0 1 1 0
               1 0
           0 0 0 0
           Refleksivno-tranzitivno zatvorenje:
           1 0 0 0
           0 1 1 0
           0 0 1 0
           0 0 0 0
```

Zadatak 2.15 Data je kvadratna matrica dimenzije n.

- (a) Napisati funkciju koja određuje najveći element matrice na sporednoj dijagonali.
- (b) Napisati funkciju koja određuje indeks kolone koja sadrži najmanji element matrice.
- (c) Napisati funkciju koja određuje indeks vrste koja sadrži najveći element matrice.

(d) Napisati funkciju koja određuje broj negativnih elemenata matrice.

Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati elemente celobrojne kvadratne matrice čija se dimenzija $n \ (0 < n \le 32)$ zadaje kao argument komandne linije. Na standardni izlaz ispisati najveći element matrice na sporednoj dijagonali, indeks kolone koja sadrži najmanji element, indeks vrste koja sadrži najveći element i broj negativnih elemenata učitane matrice.

Zadatak 2.16 Napisati funkciju kojom se proverava da li je zadata kvadratna matrica dimenzije n ortonormirana. Matrica je ortonormirana ako je skalarni proizvod svakog para različitih vrsta jednak nuli, a skalarni proizvod vrste sa samom sobom jednak jedinici. Napisati program koji testira napisanu funkciju. Sa standardnog ulaza učitati dimenziju celobrojne kvadratne matrice n (0 < $n \le 32$), a zatim i njene elemente. Na standardni izlaz ispisati rezultat primene napisane funkcije na učitanu matricu.

Test 3

```
Ulaz: 33
| Izlaz: Greska: neodgovarajuca dimenzija matrice.
```

Zadatak 2.17 Data je matrica dimenzije $n \times m$.

- (a) Napsiati funkciju koja učitava elemente matrice sa standardnog ulaza
- (b) Napsiati funkciju koja na standardni izlaz spiralno ispisuje elemente matrice.

Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati dimenzije matrice $n \ (0 < n \le 10)$ i $m \ (0 < n \le 10)$, a zatim i elemente matrice

(pozivom gore napisane funkcije). Na standardni izlaz spiralno ispisati elemente učitane matrice.

```
Test 1

| Ulaz: 3 3 | | Ulaz: 3 4 | | 1 2 3 4 | | 5 6 7 8 | | 9 10 11 12 | | Izlaz: 1 2 3 4 8 12 11 10 9 5 6 7 |

| Test 3
```

Ulaz: 11 4 | Izlaz: Greska: neodgovarajuce dimenzije matrice.

Zadatak 2.18 Milena: Ovo bi trebalo da ide u pretraživanje/sortiranje? Jelena: Slažem se. Molila bih Mirka da ovaj zadatak prebaci u poglavlje pretraživanje/sortiranje. Napisati funkciju koja vrši leksikografsko opadajuće sortiranje niza niski (pretpostaviti da ima najviše 1000 niski, od kojih svaka ima najviše 30 karaktera). Napisati program koji testira rad napisane funkcije. Niske učitati iz datoteke "niske.txt" (pretpostaviti da niske ne sadrže praznine). Na standardni izlaz ispisati leksikografski opadajuće sortirane niske.

```
Test 1

niske.txt Milica | (ne postoji datoteka niske.txt)
Vanja | Izlaz: Greska: Neuspesno otvaranje datoteke.
Goran
Milan
Izlaz: Vanja
Milica
Milan
Goran
```

Zadatak 2.19 Napisati funkciju koja izračunava k-ti stepen kvadratne matrice dimenzije n ($0 < n \le 32$). Napisati program koji testira napisanu funkciju. Sa standardnog ulaza učitati dimenziju celobrojne matrice n, elemente matrice i stepen k ($0 < k \le 10$). Na standardni izlaz ispisati rezultat primene napisane funkcije. Napomena: voditi računa da se prilikom stepenovanja matrice izvrši što manji broj množenja.

```
Test 1
```

```
Ulaz: 3

1 2 3

4 5 6

7 8 9

8

Izlaz: 510008400 626654232 743300064

1154967822 1419124617 1683281412

1799927244 2211595002 2623262760
```

2.3 Dinamička alokacija memorije

Zadatak 2.20 Napisati program koji sa standardnog ulaza učitava dimenziju niza celih brojeva a zatim i njegove elemente. Ne praviti nikakve pretpostavke o dimenziji niza. Na standardni izlaz ispisati ove brojeve u obrnutom poretku.

Zadatak 2.21 Napisati program koji sa standardnog ulaza učitava niz celih brojeva. Brojevi se unose sve dok se ne unese nula. Ne praviti nikakve pretpostavke o dimenziji niza. Na standardni izlaz ispisati ovaj niz brojeva u obrnutom poretku. Zadatak uraditi na dva načina:

- (a) realokaciju memorije niza vršiti korišćenjem malloc() funkcije,
- (b) realokaciju memorije niza vršiti korišćenjem realloc() funkcije.

Zadatak 2.22 Napisati funkciju koja kao rezultat vraća nisku koja se dobija nadovezivanjem dve niske, bez promene njihovog sadržaja. Napisati program koji testira rad napisane funkcije. Sa standardnog ulaza učitati dve niske karaktera (pretpostaviti da niske nisu duže od 1000 karaktera i da ne sadrže praznine). Na standardni izlaz ispisati nisku koja se dobija njihovim nadovezivanjem. Za rezultujuću nisku dinamički alocirati memoriju.

Ulaz: Jedan Dva Izlaz: JedanDva

Zadatak 2.23 Napisati program koji sa standardnog ulaza učitava matricu celih brojeva. Prvo se učitavaju dimenzije matrice n i m (ne praviti nikakve pretpostavke o njihovoj veličini), a zatim i elementi matrice. Na standardni izlaz ispisati trag matrice.

Test 1

```
Ulaz: 2 3
1.2 2.3 3.4
4.5 5.6 6.7
Izlaz: 6.80
```

Zadatak 2.24 Data je celobrojna matrica dimenzije $n \times m$ napisati:

- (a) Napisati funkciju koja vrši učitavanje matrice sa standardnog ulaza.
- (b) Napisati funkciju koja ispisuje elemente ispod glavne dijagonale matrice (uključujući i glavnu dijagonalu).

Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati n i m (ne praviti nikakve pretpostavke o njihovoj veličini), zatim učitati elemente matrice i na standardni izlaz ispisati elemente ispod glavne dijagonale matrice.

Test 1

```
Ulaz: 2 3
1 -2 3
-4 5 -6
Izlaz: 1
-4 5
```

Zadatak 2.25 Milena: Ovo bi trebalo da ide u pretraživanje/sortiranje? Jelena: Slažem se. Molila bih Mirka da ovaj zadatak prebaci u poglavlje pretraživanje/sortiranje. U datoteci "pesme.txt" nalaze se informacije o gledanosti pesama na Youtube-u. Format datoteke sa informacijama je sledeći:

- U prvoj liniji datoteke se nalazi ukupan broj pesama prisutnih u datoteci.
- Svaki naredni red datoteke sadrži informacije o gledanosti pesama u formatu izvođač - naslov, broj gledanja.

Napisati program koji učitava informacije o pesmama i vrši sortiranje pesama u zavisnosti od argumenata komandne linije na sledeći način:

• nema opcija, sortiranje se vrši po broju gledanja;

- prisutna je opcija -i, sortiranje se vrši po imenima izvođača;
- prisutna je opcija -n, sortiranje se vrši po naslovu pesama.

Na standardni izlaz ispisati informacije o pesmama sortirane na opisan način.

- (a) Uraditi zadatak uz pretpostavku da je maksimalna dužina imena izvođača 20 karaktera, a imena naslova pesme 50 kraraktera.
- (b) Uraditi zadatak bez pravljenja pretpostavki o maksimalnoj dužini imena izvođača i naslova pesme.

Jelena: Kako ovde da prikažem rešenje pod a) i b)? Milena: Mislim da bi bilo najbolje razdvojiti kod po datotekama i napisati dve main funkcije. Na taj nacin onda nedupliramo dva programa, vec oba ukljucuju zajednicke delove, ukoliko ima dovoljno tih zajednickih delova. Ukoliko ih ima malo, onda svaki zadatak posebno.

```
Test 1
                                                  Test 2
Poziv: ./a.out
                                   Poziv: ./a.out -i
Datoteka:
                                   Datoteka:
                                               5
           Ana - Nebo, 2342
                                               Ana - Nebo, 2342
           Laza - Oblaci, 29
                                               Laza - Oblaci, 29
           Pera - Ptice, 327
                                               Pera - Ptice, 327
           Jelena - Sunce, 92321
                                               Jelena - Sunce, 92321
           Mika - Kisa, 5341
                                               Mika - Kisa, 5341
           Jelena - Sunce, 92321
                                               Ana - Nebo, 2342
Izlaz:
                                   Izlaz:
           Mika - Kisa, 5341
                                               Jelena - Sunce, 92321
           Ana - Nebo, 2342
                                               Laza - Oblaci, 29
           Pera - Ptice, 327
                                               Mika - Kisa, 5341
           Laza - Oblaci, 29
                                               Pera - Ptice, 327
```

Test 3

```
Poziv: ./a.out -n
Datoteka: 5

Ana - Nebo, 2342
Laza - Oblaci, 29
Pera - Ptice, 327
Jelena - Sunce, 92321
Mika - Kisa, 5341
Izlaz: Mika - Kisa, 5341
Ana - Nebo, 2342
Laza - Oblaci, 29
Pera - Ptice, 327
Jelena - Sunce, 92321
```

Zadatak 2.26 Za zadatu matricu dimenzije $n \times m$ napisati funkciju koja izračunava redni broj kolone matrice čiji je zbir maksimalan. Napisati program koji testira ovu funkciju. Sa standardnog ulaza učitati dimenzije matrice n i m (ne praviti nikakve pretpostavke o njihovoj veličini), a zatim elemente matrice. Na standardni izlaz ispisati redni broj kolone matrice sa maksimalnim zbirom.

```
Ulaz: Unesite dimenzije matrice:
2 3
Unesite elemente matrice:
1 2 3
4 5 6
Izlaz: Kolona pod rednim brojem 3 ima najveci zbir.
```

Zadatak 2.27 Data je kvadratna realna matrica dimenzije n.

- Napisati funkciju koja izračunava zbir apsolutnih vrednosti matrice ispod sporedne dijagonale.
- Napisati funkciju koja menja sadržaj matrice tako što polovi elemente iznad glavne dijagonale, duplira elemente ispod glavne dijagonale, dok elemente na glavnoj dijagonali ostavlja nepromenjene.

Napisati program koji testira ove funkcije za matricu koja se učitava iz datoteke čije se ime zadaje kao argument komandne linije. U datoteci se nalazi prvo dimenzija matrice, a zatim redom elementi matrice.

Test 1

Zadatak 2.28 Jelena: Mirko, ovaj zadatak treba prebaciti u poglavlje sortiranje/pretraga. Za zadatu celobrojnu matricu dimenzije $n \times m$ napisati funkciju koja vrši sortiranje vrsta matrice, rastuće na osnovu sume elemenata u vrsti. Napisati program koji testira ovu funkciju. Sa standardnog ulaza se prvo unose dimenzije matrice, a zatim redom elementi matrice. Rezultujuću matricu ispisati na standardni izlaz.

```
Ulaz: Unesite dimenzije matrice:
3 2
Unesite elemente matrice:
6 -5
-4 3
2 1
Izlaz: Sortirana matrica je:
-4 3
6 -5
2 1
```

Zadatak 2.29 Petar sakuplja sličice igrača za predstojeće Svetsko prvenstvo u fudbalu. U datoteci "slicice.txt" se nalaze informacije o sličicama koje mu nedostaju u formatu: redni_broj_sličice ime_reprezentacije_kojoj_sličica_pripada. Pomozite Petru da otkrije koliko mu sličica ukupno nedostaje, kao i da pronađe ime reprezentacije čijih sličica ima najmanje. Dobijene podatke ispisati na standardni izlaz. Napomena: za realokaciju memorije koristiti realloc() funkciju. Jelena: treba dodati test primer.

Zadatak 2.30 U datoteci "temena.txt" se nalaze tačke koje predstavljaju temena nekog *n*-tougla. Napisati program koji na osnovu sadržaja datoteke na standardni izlaz ispisuje o kom *n*-touglu je reč, a zatim i vrednosti njegovog obima i površine. Pretpostavka je da će mnogougao biti konveksan. Jelena: treba dodati test primer.

Zadatak 2.31 Napisati program koji na osnovu dve matrice dimenzija $m \times n$ formira matricu dimenzije $2 \cdot m \times n$ tako što naizmenično kombinuje jednu vrstu prve matrice i jednu vrstu druge matrice. Matirce su zapisane u datoteci "matrice.txt". U prvom redu se nalaze dimenzije matrica m i n, u narednih m redova se nalaze vrste prve matrice, a u narednih m redova vrste druge matrice. Rezultujuću matricu ispisati na standardni izlaz. Jelena: treba dodati test primer.

Zadatak 2.32 Jelena: Mirko, ovaj zadatak treba prebaciti u poglavlje sortiranje/pretraga. Za zadatu kvadratnu matricu dimenzije n napisati funkciju koja sortira kolone matrice, opadajuće, na osnovu vrednosti prvog elementa u koloni. Napisati program koji testira ovu funkciju. Sa standardnog ulaza se prvo unosi dimenzija matrice, a zatim redom elementi matrice. Rezultujuću matricu ispisati na standardni izlaz. Jelena: treba dodati test primer.

Zadatak 2.33 Na ulazu se zadaje niz celih brojeva čiji se unos završava nulom. Napisati funkciju koja od zadatog niza formira matricu tako da prva vrsta odgovara unetom nizu, a svaka naredna se dobija cikličkim pomeranjem elemenata niza za jednu poziciju ulevo. Napisati program koji testira ovu funkciju. Sa standardnog ulaza se prvo unosi dimenzija matrice, a zatim redom elementi matrice. Rezultujuću matricu ispisati na standardni izlaz. Jelena: treba dodati test primer.

2.4 Pokazivači na funkcije

Zadatak 2.34 Napisati program koji tabelarno štampa vrednosti proizvoljne realne funkcije sa jednim realnim argumentom, odnosno izračunava i ispisuje vrednosti date funkcije na diskretnoj ekvidistantnoj mreži od n tačaka intervala [a,b]. Realni brojevi a i b (a < b) kao i ceo broj n ($n \ge 2$) se učitavaju sa standardnog ulaza. Ime funkcije se zadaje kao argument komandne linije (\sin , \cos , \tan , $a\tan$, $a\cos$, $a\sin$, \exp , \log 10, \log 10, qrt, floor, ceil, sqr).

Test 1

Test 2

Zadatak 2.35 Napisati funkciju koja izračunava limes funkcije f(x) u tački a. Adresa funkcije f čiji se limes računa se prenosi kao parametar funkciji za računanje limesa. Limes se računa sledećom aproksimacijom (vrednosti n i a uneti sa standardnog ulaza kao i ime funkcije):

$$lim_{x\to a}f(x) = lim_{n\to\infty}f(a+\frac{1}{n})$$

Zadatak 2.36 Napisati funkciju koja određuje integral funkcije f(x) na intervalu [a, b]. Adresa funkcije f se prenosi kao parametar. Integral se računa prema formuli:

$$\int_{a}^{b} f(x) = h \cdot (\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n} f(a + i \cdot h))$$

Vrednost h se izračunava po formuli h = (b - a)/n, dok se vrednosti n, a i b unose sa standardnog ulaza kao i ime funkcije iz zaglavlja math.h. Na standardni izlaz ispisati vrednost integrala. Jelena: treba dodati test primer.

Zadatak 2.37 Napisati funkciju koja približno izračunava integral funkcije f(x) na intervalu [a,b]. Funkcija f se prosleđuje kao parametar, a integral se procenjuje po Simpsonovoj formuli:

$$I = \frac{h}{3} \left(f(a) + 4 \sum_{i=1}^{n/2} f(a + (2i - 1)h) + 2 \sum_{i=1}^{n/2 - 1} f(a + 2ih) + f(b) \right)$$

Granice intervala i n su argumenti funkcije. Napisati program, koji kao argumente komandne linije prihvata ime funkcije iz zaglavlja $\mathtt{math.h}$, krajeve intervala pretrage i n, a na standardni izlaz ispisuje vrednost odgovarajućeg integrala. Jelena: treba dodati test primer.

2.5 Rešenja

Rešenje 2.1

```
#include <stdio.h>
#include <stdib.h>

#define MAX 100

6  /* Funkcija obrce elemente niza koriscenjem indekse sintakse */
void obrni_niz_v1(int a[] , int n)

{
   int i, j;

for(i = 0, j = n-1; i < j; i++, j--) {
   int t = a[i];
   a[i] = a[j];
   a[j] = t;
}

}</pre>
```

```
18 /* Funkcija obrce elemente niza koriscenjem pokazivacke
     sintakse. Umesto "void obrni_niz(int *a, int n)" potpis
     metode bi mogao da bude i "void obrni_niz(int a[], int n)".
     U oba slucaja se argument funkcije "a" tumaci kao pokazivac,
     ili tacnije, kao adresa prvog elementa niza. U odnosu na
     njega se odredjuju adrese ostalih elemenata u nizu */
void obrni_niz_v2(int *a, int n)
    /* Pokazivaci na elemente niza a */
26
    int *prvi, *poslednji;
28
    for(prvi = a, poslednji = a + n - 1;
                  prvi < poslednji; prvi++, poslednji--) {</pre>
      int t = *prvi;
32
      *prvi = *poslednji;
      *poslednji = t;
34
 }
36
38 /* Funkcija obrce elemente niza koriscenjem pokazivacke
    sintakse - modifikovano koriscenje pokazivaca */
40 void obrni_niz_v3(int *a, int n)
    /* Pokazivaci na elemente niza a */
    int *prvi, *poslednji;
44
    /* Obrcemo niz */
    for(prvi = a, poslednji = a + n - 1; prvi < poslednji; ) {</pre>
46
      int t = *prvi;
48
      /* Na adresu na koju pokazuje pokazivac "prvi" postavlja se
       vrednost koja se nalazi na adresi na koju pokazuje
50
       pokazivac "poslednji". Nakon toga se pokazivac "prvi"
       uvecava za jedan sto za posledicu ima da "prvi" pokazuje
       na sledeci element u nizu */
      *prvi++ = *poslednji;
54
      /* Vrednost promenljive "t" se postavlja na adresu na koju
       pokazuje pokazivac "poslednji". Ovaj pokazivac se zatim
       umanjuje za jedan, sto za posledicu ima da pokazivac
58
       "poslednji" sada pokazuje na element koji mu prethodi u
       nizu */
60
       *poslednji-- = t;
62
  }
  int main()
66
    /* Deklaracija niza a od najvise MAX elemenata */
    int a[MAX];
    /* Broj elemenata niza a */
70
    int n;
    /* Pokazivac na elemente niza a */
```

```
int *p;
    /* Unosimo dimenziju niza */
76
    scanf("%d", &n);
    /* Proveravamo da li je prekoraceno ogranicenje dimenzije */
    if(n \le 0 | | n > MAX)  {
80
      fprintf(stderr, "Greska: neodgovarajuca dimenzija niza.\n");
      exit(EXIT_FAILURE);
84
    /* Unosimo elemente niza */
    for(p = a; p - a < n; p++)
      scanf("%d", p);
    obrni_niz_v1(a,n);
    // obrni_niz_v2(a,n);
    // obrni_niz_v3(a,n);
92
    /* Prikazujemo sadrzaj niza nakon obrtanja */
    for(p = a; p - a < n; p++)
      printf("%d ", *p);
    printf("\n");
    return 0;
```

```
#include <stdio.h>
2 #include <stdlib.h>
4 #define MAX 100
6 /* Funkcija racuna zbir elemenata niza */
  double zbir(double *a, int n)
    double s = 0;
   int i;
10
    for(i = 0; i < n; s += a[i++]);
    return s;
14
16
  /* Funkcija racuna proizvod elemenata niza */
double proizvod(double a[], int n)
    double p = 1;
20
    for(; n; n--)
      p *= *a++;
24
    return p;
26 }
```

```
/* Funkcija racuna najmanji element niza */
  double min(double *a, int n)
30 {
    /* Za najmanji element se najpre postavlja prvi element */
    double min = a[0];
    int i;
34
    /* Ispitujemo da li se medju ostalim elementima niza
       nalazi najmanji */
36
    for(i = 1; i < n; i++)
     if ( a[i] < min )
38
        min = a[i];
40
     return min;
42 }
44 /* Funkcija racuna najveci element niza */
  double max(double *a, int n)
46 {
    /* Za najveci element se najpre postavlja prvi element */
    double max = *a;
48
    /* Ispitujemo da li se medju ostalim elementima niza
       nalazi najveci */
    for(a++, n--; n > 0; a++, n--)
      if (*a > max)
        max = *a;
56
   return max;
  }
58
 int main()
60
    double a[MAX];
    int n, i;
64
    /* Ucitavamo dimenziju niza */
    scanf("%d", &n);
66
    /* Proveravamo da li je prekoraceno ogranicenje dimenzije */
68
    if(n \le 0 | | n > MAX)  {
      fprintf(stderr, "Greska: neodgovarajuca dimenzija niza.\n");
      exit(EXIT_FAILURE);
    }
72
    /* Unosimo elemente niza */
    for(i = 0; i < n; i++)
      scanf("%lf", a + i);
76
    /* Testiramo definisane funkcije */
    printf("zbir = \%5.3f\n", zbir(a, n));
    printf("proizvod = %5.3f\n", proizvod(a, n));
80
    printf("min = %5.3f\n", min(a, n));
    printf("max = %5.3f\n", max(a, n));
```

```
84 return 0;
}
```

```
#include <stdio.h>
  #include <stdlib.h>
  #define MAX 100
  /* Funkcija povecava za jedan sve elemente u prvoj polovini niza
     a smanjuje za jedan sve elemente u drugoj polovini niza.
     Ukoliko niz ima neparan broj elemenata, srednji element
     ostaje nepromenjen */
  void povecaj_smanji (int *a , int n)
10 {
    int *prvi = a;
    int *poslednji = a+n-1;
12
    while( prvi < poslednji ){</pre>
      /* Povecava se vrednost elementa na koji pokazuje
16
       pokazivac prvi */
    (*prvi)++;
18
    /* Pokazivac prvi se pomera na sledeci element */
20
    prvi++;
22
      /* Smanjuje se vrednost elementa na koji pokazuje
       pokazivac poslednji */
24
    (*poslednji)--;
      /* Pokazivac poslednji se pomera na prethodni element */
    poslednji--;
28
  }
30
  void povecaj_smanji_sazetije(int *a , int n)
    int *prvi = a;
    int *poslednji = a+n-1;
36
    while( prvi < poslednji ){</pre>
      (*prvi++)++;
38
      (*poslednji--)--;
40
  }
42
  int main()
44 {
    int a[MAX];
    int n;
46
    int *p;
48
    /* Unosimo broj elemenata */
```

```
scanf("%d", &n);
    /* Proveravamo da li je prekoraceno ogranicenje dimenzije */
52
    if(n \le 0 \mid \mid n > MAX) {
      fprintf(stderr, "Greska: neodgovarajuca dimenzija niza.\n");
      exit(EXIT_FAILURE);
56
    /* Unosimo elemente niza */
    for(p = a; p - a < n; p++)
      scanf("%d", p);
60
    povecaj_smanji(a,n);
62
    /* povecaj_smanji_sazetije(a,n); */
64
    /* Prikaz niza nakon modifikacije */
    for(p = a; p - a < n; p++)
      printf("%d ", *p);
    printf("\n");
68
    return 0;
```

```
#include <stdio.h>
  /* Argumenti funkcije main mogu da budu broj argumenta komandne
     linije (int argc) i niz arugmenata komandne linije
     (niz niski) (char *argv[] <=> char** argv) */
  int main(int argc, char *argv[])
    int i;
    /* Ispisujemo broj argumenata komandne linije */
    printf("%d\n", argc);
12
    /* Ispisujemo argumente komandne linije */
    /* koristeci indeksnu sintaksu */
    for(i=0; i<argc; i++) {</pre>
      printf("%d %s\n", i, argv[i]);
16
18
    /* koristeci pokazivacku sintaksu */
    i=argc;
20
    for (; argc>0; argc--)
      printf("%d %s\n", i-argc, *argv++);
22
24
    /* Nakon ove petlje "argc" ce biti jednako nuli a "argv" ce
       pokazivati na polje u memoriji koje se nalazi iza
       poslednjeg argumenta komandne linije. Kako smo u
       promenljivoj "i" sacuvali vrednost broja argumenta
28
       komandne linije to sada mozemo ponovo da postavimo
       "argv" da pokazuje na nulti argument komandne linije */
```

```
argv = argv - i;
    argc = i;
    /* Ispisujemo 0-ti karakter svakog od argumenata komandne linije
34
    /* koristeci indeksnu sintaksu */
36
    for(i=0; i<argc; i++)</pre>
      printf("%c ", argv[i][0]);
    printf("\n");
40
    /* koristeci pokazivacku sintaksu */
42
    for (i=0; i<argc; i++)
      printf("%c ", **argv++);
44
    return 0;
```

```
#include<stdio.h>
  #include<string.h>
  #define MAX 100
  /* Funkcija ispituje da li je niska palindrom */
6 int palindrom(char *niska)
  {
    int i, j;
    for (i = 0, j = strlen(niska)-1; i < j; i++, j--)
      if(*(niska+i) != *(niska+j))
        return 0;
    return 1;
12
14
  int main(int argc, char **argv)
16 {
    int i, n = 0;
18
    /* Nulti argument komandne linije je ime izvrsnog programa */
    for(i = 1; i < argc; i++)
      if(palindrom(*(argv+i)))
        n++;
22
    printf("%d\n", n);
    return 0;
26
```

```
#include<stdio.h>
#include<stdlib.h>

#define MAX_KARAKTERA 100
```

```
/* Funkcija strlen() iz standardne biblioteke */
 int duzina(char *s)
   int i;
    for(i = 0; *(s+i); i++)
11
    return i;
13 }
int main(int argc, char **argv)
    char rec[MAX_KARAKTERA];
    int br = 0, i = 0, n;
    FILE *in;
19
    /* Ako korisnik nije uneo trazene argumente,
       prijavljujemo gresku */
    if(argc < 3) {
23
      printf("Greska: ");
    printf("Nedovoljan broj argumenata komandne linije.\n");
    printf("Program se poziva sa %s ime_dat br_karaktera.\n",
                                                      argv[0]);
27
      exit(EXIT_FAILURE);
    }
29
    /* Otvaramo datoteku sa imenom koje se zadaje kao prvi
31
       argument komandne linije. */
    in = fopen(*(argv+1), "r");
33
    if(in == NULL){
      fprintf(stderr, "Greska: ");
35
      fprintf(stderr, "Neuspesno otvaranje datoteke %s.\n",
                                                  argv[1]);
37
      exit(EXIT_FAILURE);
39
    n = atoi(*(argv+2));
41
    /* Broje se reci cija je duzina jednaka broju zadatom drugim
43
       argumentom komandne linije */
    while(fscanf(in, "%s", rec) != EOF)
45
      if(duzina(rec) == n)
        br++;
47
    printf("%d\n", br);
49
    /* Zatvaramo datoteku */
    fclose(in);
    return 0;
53
```

```
#include < stdio.h > #include < stdlib.h >
```

```
#define MAX_KARAKTERA 100
  /* Funkcija strcpy() iz standardne biblioteke */
void kopiranje_niske(char *dest, char *src)
    int i;
    for (i = 0; *(src+i); i++)
      *(dest+i) = *(src+i);
11
13
  /* Funkcija strcmp() iz standardne biblioteke */
int poredjenje_niski(char *s, char *t)
  {
17
    int i;
    for (i = 0; *(s+i) == *(t+i); i++)
      if(*(s+i) == '\0')
19
        return 0;
    return *(s+i) - *(t+i);
21
  /* Funkcija strlen() iz standardne biblioteke */
25 int duzina niske(char *s)
  {
    int i;
    for(i = 0; *(s+i); i++)
29
    return i;
31 }
33 /* Funkcija ispituje da li je niska zadata drugim argumentom
     funkcije sufiks niske zadate prvi argumentom funkcije */
 int sufiks_niske(char *niska, char *sufiks) {
    if(duzina_niske(sufiks) <= duzina_niske(niska) &&
       poredjenje_niski(niska + duzina_niske(niska) -
37
                   duzina_niske(sufiks), sufiks) == 0)
      return 1;
39
    return 0;
41 }
  /* Funkcija ispituje da li je niska zadata drugim argumentom
     funkcije prefiks niske zadate prvi argumentom funkcije */
45 int prefiks_niske(char *niska, char *prefiks) {
    int i;
    if(duzina niske(prefiks) <= duzina niske(niska)) {</pre>
47
      for(i=0; i<duzina_niske(prefiks); i++)</pre>
        if(*(prefiks+i) != *(niska+i))
49
          return 0;
        return 1;
    else return 0;
55
  int main(int argc, char **argv)
 {
57
    /* Ako korisnik nije uneo trazene argumente,
```

```
prijavljujemo gresku */
    if(argc < 4) {
      printf("Greska: ");
61
    printf("Nedovoljan broj argumenata komandne linije.\n");
    printf("Program se poziva sa %s ime_dat suf/pref -s/-p.\n",
                                                      argv[0]);
      exit(EXIT_FAILURE);
65
    FILE *in;
    int br = 0, i = 0, n;
69
    char rec[MAX_KARAKTERA];
71
    in = fopen(*(argv+1), "r");
    if(in == NULL) {
73
      fprintf(stderr, "Greska: ");
      fprintf(stderr, "Neuspesno otvaranje datoteke %s.\n",
75
                                                  argv[1]);
      exit(EXIT_FAILURE);
77
    }
79
    /* Proveravamo kojom opcijom je pozvan program a zatim
       ucitavamo reci iz datoteke brojimo koliko reci
81
     zadovoljava trazeni uslov */
    if(!(poredjenje_niski(*(argv + 3), "-s")))
83
      while(fscanf(in, "%s", rec) != EOF)
        br += sufiks_niske(rec, *(argv+2));
85
    else if (!(poredjenje_niski(*(argv+3), "-p")))
      while(fscanf(in, "%s", rec) != EOF)
87
      br += prefiks_niske(rec, *(argv+2));
89
    printf("%d\n", br);
    fclose(in);
    return 0;
```

Rešenje 2.9

Rešenje 2.10

Rešenje 2.11

```
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#define MAX 100

/* Deklarisemo funkcije koje cemo kasnije da definisemo */
```

```
8 double euklidska_norma( int M[][MAX], int n);
  int trag(int M[][MAX], int n);
int gornja_vandijagonalna_norma(int M[][MAX], int n);
12 int main()
    int A[MAX][MAX];
14
    int i,j,n;
    /* Unosimo dimenziju kvadratne matrice */
    scanf("%d",&n);
18
    /* Proveravamo da li je prekoraceno ogranicenje */
    if(n > MAX | | n \le 0) {
      fprintf(stderr, "Greska: neodgovarajuca dimenzija ");
    fprintf(stderr, "matrice.\n");
      exit(EXIT_FAILURE);
24
26
    /* Popunjavamo vrstu po vrstu matrice */
    for(i = 0; i<n; i++)
28
      for (j=0 ; j< n; j++)
        scanf("%d",&A[i][j]);
30
    /* Ispis elemenata matrice koriscenjem indeksne sintakse.
       Ispis vrsimo vrstu po vrstu */
    for(i = 0; i<n; i++) {
34
      /* Ispisujemo elemente i-te vrste */
      for (j=0; j< n; j++)
36
        printf("%d ", A[i][j]);
      printf("\n");
38
    }
40
    /* Ispis elemenata matrice koriscenjem pokazivacke sintakse.
       Kod ovako definisane matrice, elementi su uzastopno
42
     smesteni u memoriju, kao na traci. To znaci da su svi
     elementi prve vrste redom smesteni jedan iza drugog. Odmah
44
     iza poslednjeg elementa prve vrste smesten je prvi element
     druge vrste za kojim slede svi elementi te vrste
     i tako dalje redom */
48
    for( i = 0; i<n; i++) {
      for (j=0; j< n; j++)
50
        printf("%d ", *(*(A+i)+j));
      printf("\n");
    }
    */
54
    int tr = trag(A,n);
56
    printf("trag = %d\n",tr);
58
    printf("euklidska norma = %.2f\n",euklidska_norma(A,n));
    printf ("vandijagonalna norma = %d\n",
60
                          gornja_vandijagonalna_norma(A,n));
    return 0;
```

```
64 }
66 /* Definisemo funkcije koju smo ranije deklarisali */
68 /* Funkcija izracunava trag matrice */
  int trag(int M[][MAX], int n)
70 {
    int trag = 0,i;
    for(i=0; i<n; i++)
      trag += M[i][i];
    return trag;
74
  }
  /* Funkcija izracunava euklidsku normu matrice */
78 double euklidska_norma(int M[][MAX], int n)
    double norma = 0.0;
    int i,j;
82
    for(i= 0; i<n; i++)
      for(j = 0; j < n; j++)
84
        norma += M[i][j] * M[i][j];
86
    return sqrt(norma);
  }
90 /* Funkcija izracunava gornju vandijagonalnu normu matrice */
  int gornja_vandijagonalna_norma(int M[][MAX], int n)
92 {
    int norma =0;
    int i,j;
94
    for(i=0 ;i<n; i++) {
96
      for(j = i+1; j < n; j++)
        norma += abs(M[i][j]);
98
100
    return norma;
102 }
```

```
#include <stdio.h>
#include <stdib.h>

#define MAX 100

/* Funkcija ucitava elemente kvadratne matrice dimenzije n sa standardnog ulaza */
void ucitaj_matricu(int m[][MAX], int n)
{
  int i, j;

for(i=0; i<n; i++)
  for(j=0; j<n; j++)</pre>
```

```
scanf("%d", &m[i][j]);
16
  /* Funkcija ispisuje elemente kvadratne matrice dimenzije n na
     standardni izlaz */
  void ispisi_matricu(int m[][MAX], int n) {
    int i, j;
20
    for(i=0; i<n; i++) {
      for(j=0; j<n; j++)
        printf("%d ", m[i][j]);
24
      printf("\n");
    }
26
  }
28
  /* Funkcija proverava da li su zadate kvadratne matrice a i b
     dimenzije n jednake */
  int jednake_matrice(int a[][MAX], int b[][MAX], int n) {
    int i, j;
32
    for(i=0; i<n; i++)
      for(j=0; j<n; j++)
      /* Nasli smo elemente na istim pozicijama u matricama
36
         koji se razlikuju */
        if(a[i][j]!=b[i][j])
38
        return 0;
40
    /* Prosla je provera jednakosti za sve parove elemenata koji
       su na istim pozicijama sto znaci da su matrice jednake */
42
    return 1;
44 }
46 /* Funkcija izracunava zbir dve kvadratne matice */
  void saberi(int a[][MAX], int b[][MAX], int c[][MAX], int n)
  {
48
    int i, j;
50
    for(i=0; i<n; i++)
      for(j=0; j<n; j++)
52
        c[i][j] = a[i][j] + b[i][j];
54
  }
56 /* Funkcija izracunava proizvod dve kvadratne matice */
  void pomnozi(int a[][MAX], int b[][MAX], int c[][MAX], int n)
58 {
    int i, j, k;
60
    for(i=0; i<n; i++)
      for(j=0; j < n; j++) {
62
    /* Mnozimo i-tu vrstu prve sa j-tom kolonom druge matrice */
    c[i][j] = 0;
64
    for (k=0; k< n; k++)
      c[i][j] += a[i][k] * b[k][j];
66
68 }
```

```
70 int main()
     /* Matrice ciji se elementi zadaju sa ulaza */
    int a[MAX][MAX], b[MAX][MAX], c[MAX][MAX];
    /* Matrice zbira i proizvoda */
    int zbir[MAX][MAX], proizvod[MAX][MAX];
76
    /* Dimenzija matrica */
     int n;
    int i, j;
80
    /* Ucitavamo dimenziju kvadratnih matrica i proveravamo njenu
       korektnost */
    scanf("%d", &n);
84
    /* Proveravamo da li je prekoraceno ogranicenje */
    if(n > MAX | | n <= 0) {
       fprintf(stderr, "Greska: neodgovarajuca dimenzija ");
88
    fprintf(stderr, "matrica.\n");
       exit(EXIT_FAILURE);
90
92
    /* Ucitavamo matrice */
    ucitaj_matricu(a, n);
94
    ucitaj_matricu(b, n);
96
     /* Izracunavamo zbir i proizvod matrica */
    saberi(a, b, zbir, n);
98
    pomnozi(a, b, proizvod, n);
100
     /* Ispisujemo rezultat */
     if(jednake_matrice(a, b, n) == 1)
       printf("da\n");
     else
104
      printf("ne\n");
106
    printf("Zbir matrica je:\n");
     ispisi_matricu(zbir, n);
108
    printf("Proizvod matrica je:\n");
     ispisi_matricu(proizvod, n);
     return 0;
114 }
```

```
#include <stdio.h>
#include <stdlib.h>

#define MAX 64

/* Funkcija proverava da li je relacija refleksivna. Relacija je refleksivna ako je svaki element u relaciji sam sa sobom,
```

```
odnosno ako se u matrici relacije na glavnoj dijagonali
     nalaze jedinice */
 int refleksivnost(int m[][MAX], int n)
  {
    int i;
12
    /* Obilazimo glavnu dijagonalu matrice. Za elemente na glavnoj
14
       dijagonali vazi da je indeks vrste jednak indeksu kolone */
    for(i=0; i<n; i++) {
      if(m[i][i] != 1)
        return 0;
18
    }
20
    return 1;
22 }
  /* Funkcija odredjuje refleksivno zatvorenje zadate relacije. Ono
     je odredjeno matricom koja sadrzi sve elemente polazne matrice
     dopunjene jedinicama na glavnoj dijagonali */
  void ref_zatvorenje(int m[][MAX], int n, int zatvorenje[][MAX])
  {
28
    int i, j;
30
    /* Prepisujemo vrednosti elemenata matrice pocetne matrice */
    for(i=0; i<n; i++)
32
      for(j=0; j<n; j++)
        zatvorenje[i][j] = m[i][j];
34
    /* Postavljamo na glavnoj dijagonali jedinice */
    for(i=0; i<n; i++)
      zatvorenje[i][i] = 1;
38
40
  /* Funkcija proverava da li je relacija simetricna. Relacija je
     simetricna ako za svaki par elemenata vazi: ako je element
42
     "i" u relaciji sa elementom "j", onda je i element "j" u
     relaciji sa elementom "i". Ovakve matrice su simetricne u
44
     odnosu na glavnu dijagonalu */
46 int simetricnost (int m[][MAX], int n)
48
    int i, j;
    /* Obilazimo elemente ispod glavne dijagonale matrice i
       uporedjujemo ih sa njima simetricnim elementima */
    for(i=0; i<n; i++)
      for(j=0; j<i; j++)
        if(m[i][j] != m[j][i])
        return 0;
56
    return 1;
  }
58
60 /* Funkcija odredjuje simetricno zatvorenje zadate relacije. Ono
     je odredjeno matricom koja sadrzi sve elemente polazne matrice
     dopunjene tako da matrica postane simetricna u odnosu na
     glavnu dijagonalu */
```

```
64 void sim_zatvorenje(int m[][MAX], int n, int zatvorenje[][MAX])
    int i, j;
66
    /* Prepisujemo vrednosti elemenata matrice m */
    for(i=0; i<n; i++)
      for(j=0; j<n; j++)
70
         zatvorenje[i][j] = m[i][j];
    /* Odredjujemo simetricno zatvorenje matrice */
    for(i=0; i<n; i++)
74
      for(j=0; j<n; j++)
         if(zatvorenje[i][j] == 1)
         zatvorenje[j][i] = 1;
78
  }
   /* Funkcija proverava da li je relacija tranzitivna. Relacija je
     tranzitivna ako ispunjava sledece svojstvo: ako je element "i"
82
     u relaciji sa elementom "j" i element "j" u relaciji sa
      elementom "k", onda je i element "i" u relaciji sa elementom
      "k" */
  int tranzitivnost (int m[][MAX], int n)
86
    int i, j, k;
88
    for(i=0; i<n; i++)
90
      for(j=0; j< n; j++)
        /* Pokusavamo da pronadjemo element koji narusava
92
        * tranzitivnost */
        for(k=0; k<n; k++)
94
         if(m[i][k] == 1 && m[k][j] == 1 && m[i][j] == 0)
           return 0;
96
    return 1;
98
100
  /* Funkcija odredjuje refleksivno-tranzitivno zatvorenje
      zadate relacije koriscenjem Varsalovog algoritma */
  void tran_zatvorenje(int m[][MAX], int n, int zatvorenje[][MAX])
104
  {
    int i, j, k;
106
    /* Kopiramo pocetnu matricu u matricu rezultata */
108
    for(i=0; i<n; i++)
         for(j=0; j<n; j++)
         zatvorenje[i][j] = m[i][j];
    /* Primenom Varsalovog algoritma odredjujemo
114
        refleksivno-tranzitivno zatvorenje matrice */
    for(k=0; k<n; k++)
      for(i=0; i<n; i++)
        for(j=0; j<n; j++)
           if((zatvorenje[i][k] == 1) && (zatvorenje[k][j] ==1)
                                   && (zatvorenje[i][j] == 0))
```

```
zatvorenje[i][j] = 1;
120
   /* Funkcija ispisuje elemente matrice */
void pisi_matricu(int m[][MAX], int n)
    int i, j;
126
     for(i=0; i<n; i++) {
       for(j=0; j < n; j++)
         printf("%d ", m[i][j]);
130
      printf("\n");
    }
132
  }
134
  int main(int argc, char* argv[])
136
    FILE* ulaz;
     int m[MAX][MAX];
138
     int pomocna[MAX][MAX];
     int n, i, j, k;
140
    /* Ako korisnik nije uneo trazene argumente,
142
        prijavljujemo gresku */
    if(argc < 2) {
      printf("Greska: ");
    printf("Nedovoljan broj argumenata komandne linije.\n");
146
    printf("Program se poziva sa %s ime_dat.\n", argv[0]);
       exit(EXIT_FAILURE);
148
150
     /* Otvaramo datoteku za citanje */
    ulaz = fopen(argv[1], "r");
     if(ulaz == NULL) {
       fprintf(stderr, "Greska: ");
154
       fprintf(stderr, "Neuspesno otvaranje datoteke %s.\n",
                                                   argv[1]);
156
      exit(EXIT_FAILURE);
    }
158
     /* Ucitavamo dimenziju matrice */
160
    fscanf(ulaz, "%d", &n);
     /* Proveravamo da li je prekoraceno ogranicenje */
    if(n > MAX | | n <= 0) {
164
       fprintf(stderr, "Greska: neodgovarajuca dimenzija ");
       fprintf(stderr, "matrice.\n");
166
       exit(EXIT_FAILURE);
168
    /* Ucitavamo element po element matrice */
170
    for(i=0; i<n; i++)
      for(j=0; j<n; j++)
         fscanf(ulaz, "%d", &m[i][j]);
     /* Ispisujemo trazene vrednosti */
```

```
printf("Refleksivnost: %s\n",
              refleksivnost(m, n) == 1 ? "da" : "ne");
178
    printf("Simetricnost: %s\n",
              simetricnost(m, n) == 1 ? "da" : "ne");
180
    printf("Tranzitivnost: %s\n",
182
              tranzitivnost(m, n) == 1 ? "da" : "ne");
    printf("Refleksivno zatvorenje:\n");
     ref_zatvorenje(m, n, pomocna);
186
     pisi_matricu(pomocna, n);
188
    printf("Simetricno zatvorenje:\n");
    sim_zatvorenje(m, n, pomocna);
190
    pisi_matricu(pomocna, n);
192
    printf("Refleksivno-tranzitivno zatvorenje:\n");
     tran_zatvorenje(m, n, pomocna);
194
     pisi_matricu(pomocna, n);
196
     /* Zatvaramo datoteku */
    fclose(ulaz);
198
     return 0;
```

```
#include <stdio.h>
  #include <stdlib.h>
  #define MAX 32
  int max_sporedna_dijagonala(int m[][MAX], int n)
    int i, j;
    /* Trazimo najveci element na sporednoj dijagonali. Za
       elemente sporedne dijagonale vazi da je zbir indeksa vrste
     i indeksa kolone jednak n-1. Za pocetnu vrednost maksimuma
11
     uzimamo element u gornjem desnom uglu */
    int max_na_sporednoj_dijagonali = m[0][n-1];
    for(i=1; i<n; i++)
      if(m[i][n-1-i] > max_na_sporednoj_dijagonali)
15
        max_na_sporednoj_dijagonali = m[i][n-1-i];
17
    return max_na_sporednoj_dijagonali;
19 }
21 /* Funkcija izracunava indeks kolone najmanjeg elementa */
  int indeks_min(int m[][MAX], int n)
23 {
    int i, j;
    /* Za pocetnu vrednost minimuma uzimamo element u gornjem
       levom uglu */
```

```
int min=m[0][0], indeks_kolone=0;
    for(i=0; i<n; i++)
29
      for(j=0; j<n; j++)
        /* Ako je tekuci element manji od minimalnog */
31
        if(m[i][j]<min) {
        /* cuvamo njegovu vrednost */
33
        min=m[i][j];
        /* i cuvamo indeks kolone u kojoj se nalazi */
        indeks_kolone=j;
37
    return indeks_kolone;
39 }
41 /* Funkcija izracunava indeks vrste najveceg elementa */
  int indeks_max(int m[][MAX], int n) {
    int i, j;
    /* Za maksimalni element uzimamo gornji levi ugao */
    int max=m[0][0], indeks_vrste=0;
45
    for(i=0; i<n; i++)
47
      for(j=0; j<n; j++)
        /* Ako je tekuci element manji od minimalnog */
49
        if(m[i][j]>max) {
51
        /* cuvamo njegovu vrednost */
        max=m[i][j];
        /* i cuvamo indeks vrste u kojoj se nalazi */
        indeks_vrste=i;
        }
    return indeks_vrste;
<sub>57</sub>|}
59 /* Funkcija izracunava broj negativnih elemenata matrice */
  int broj_negativnih(int m[][MAX], int n) {
   int i, j;
61
    int broj_negativnih=0;
63
    for(i=0; i<n; i++)
      for(j=0; j<n; j++)
        if(m[i][j]<0)
67
          broj_negativnih++;
    return broj_negativnih;
69
  }
  int main(int argc, char* argv[])
    int m[MAX][MAX];
    int n;
    int i, j;
    /* Proveravamo broj argumenata komandne linije */
    if(argc < 2) {
79
      printf("Greska: ");
    printf("Nedovoljan broj argumenata komandne linije.\n");
    printf("Program se poziva sa %s dim_matrice.\n", argv[0]);
```

```
exit(EXIT_FAILURE);
    }
85
    /* Ucitavamo vrednost dimenzije i proveravamo njenu
       korektnost */
87
    n = atoi(argv[1]);
89
    if(n > MAX | | n <= 0) {
      fprintf(stderr, "Greska: neodgovarajuca dimenzija ");
      fprintf(stderr, "matrice.\n");
      exit(EXIT_FAILURE);
93
    }
95
    /* Ucitavamo element po element matrice */
    for(i=0; i<n; i++)
97
      for(j=0; j<n; j++)
         scanf("%d", &m[i][j]);
99
    int max_sd = max_sporedna_dijagonala(m, n);
    int i_min = indeks_min(m, n);
    int i_max = indeks_max(m, n);
    int bn = broj_negativnih(m, n);
    /* Ispisujemo rezultat */
    printf("%d %d %d %d\n", max_sd, i_min, i_max, bn);
    /* Prekidamo izvrsavanje programa */
    return 0;
111 }
```

```
#include <stdio.h>
2 #include <stdlib.h>
4 #define MAX 32
6 /* Funkcija ucitava elemente kvadratne matrice sa
     standardnog ulaza */
8 void ucitaj_matricu(int m[][MAX], int n)
   int i, j;
10
    for(i=0; i<n; i++)
      for(j=0; j < n; j++)
        scanf("%d", &m[i][j]);
14
16
  /* Funkcija ispisuje elemente kvadratne matrice na
    standardni izlaz */
  void ispisi_matricu(int m[][MAX], int n)
20 {
    int i, j;
22
    for(i=0; i<n; i++) {
```

```
for(j=0; j<n; j++)
        printf("%d ", m[i][j]);
      printf("\n");
26
 }
28
30 /* Funkcija proverava da li je zadata matrica ortonormirana */
  int ortonormirana(int m[][MAX], int n)
32 {
    int i, j, k;
    int proizvod;
34
    /* Proveravamo uslov normiranosti, odnosno da li je proizvod
       svake vrste matrice sa samom sobom jednak jedinici */
    for(i=0; i<n; i++) {
38
      /* Izracunavamo skalarni proizvod vrste sa samom sobom */
      proizvod = 0;
42
      for(j=0; j < n; j++)
        proizvod += m[i][j]*m[i][j];
44
      /* Ako proizvod bar jedne vrste nije jednak jedinici, odmah
46
         zakljucujemo da matrica nije normirana */
      if(proizvod!=1)
48
        return 0;
50
    /* Proveravamo uslov ortogonalnosti, odnosno da li je proizvod
       dve bilo koje razlicite vrste matrice jednak nuli */
    for(i=0; i<n-1; i++) {
54
      for(j=i+1;j<n; j++) {
56
        /* Izracunavamo skalarni proizvod */
        proizvod = 0;
58
        for (k=0; k< n; k++)
60
        proizvod += m[i][k] * m[j][k];
62
        /* Ako proizvod dve bilo koje razlicite vrste nije jednak
           nuli, odmah zakljucujemo da matrica nije ortogonalna */
64
        if(proizvod!=0)
        return 0;
66
      }
    }
68
    /* Ako su oba uslova ispunjena, vracamo jedinicu kao
       rezultat */
    return 1;
72
  int main()
76 {
    int A[MAX][MAX];
    int n;
```

```
/* Ucitavamo vrednost dimenzije i proveravamo njenu
        korektnost */
    scanf("%d", &n);
82
    if(n > MAX | | n \le 0)  {
84
      fprintf(stderr, "Greska: neodgovarajuca dimenzija ");
      fprintf(stderr, "matrice.\n");
86
      exit(EXIT_FAILURE);
    }
    /* Ucitavamo matricu */
90
    ucitaj_matricu(A, n);
92
    /* Ispisujemo rezultat rada funkcije */
    if(ortonormirana(A,n))
94
      printf("da\n");
    else
      printf("ne\n");
98
    return 0;
100 }
```

```
#include <stdio.h>
  #include <stdlib.h>
4 #define MAX_V 10
  #define MAX_K 10
  /* Funkcija proverava da li su ispisani svi elementi iz matrice,
    odnosno da li se narusio prirodan poredak medju granicama */
  int krajIspisa(int top, int bottom, int left, int right)
10 {
    return !(top <= bottom && left <= right);</pre>
12 }
14 /* Funkcija spiralno ispisuje elemente matrice */
  void ispisi_matricu_spiralno(int a[][MAX_K], int n, int m)
16 {
    int i,j,top, bottom,left, right;
18
    top=left = 0;
    bottom=n-1;
20
    right = m-1;
22
    while( !krajIspisa(top, bottom, left, right) ) {
24
      /* Ispisuje se prvi red*/
      for(j=left; j<=right; j++)</pre>
        printf("%d ",a[top][j]);
26
      /* Spustamo prvi red */
28
      top++;
30
      if(krajIspisa(top,bottom,left,right))
```

```
break;
32
      for(i=top; i<=bottom; i++ )</pre>
34
        printf("%d ",a[i][right]);
36
      /* Pomeramo desnu kolonu za naredni krug ispisa
         blize levom kraju */
38
      right --;
40
      if(krajIspisa(top,bottom,left,right))
        break;
42
      /* Ispisujemo donju vrstu */
44
      for(j=right; j>=left; j-- )
        printf("%d ",a[bottom][j]);
46
      /* Podizemo donju vrstu za naredni krug ispisa */
48
      bottom --;
50
      if(krajIspisa(top,bottom,left,right))
        break;
52
      /* Ispisujemo prvu kolonu*/
54
      for(i=bottom; i>=top; i-- )
        printf("%d ",a[i][left]);
56
      /* Pripremamo levu kolonu za naredni krug ispisa */
58
      left++;
60
    putchar('\n');
62 }
64 void ucitaj_matricu(int a[][MAX_K], int n, int m)
    int i, j;
66
    for(i=0; i<n; i++)
68
      for(j=0; j<m; j++)
        scanf("%d", &a[i][j]);
72
  int main( )
74 {
    int a[MAX_V][MAX_K];
    int m,n;
76
    /* Ucitaj broj vrsta i broj kolona matrice */
    scanf("%d",&n);
    scanf("%d", &m);
80
    if( n > MAX_V \mid \mid n \le 0 \mid \mid m > MAX_K \mid \mid m \le 0) {
82
      fprintf(stderr, "Greska: neodgovarajuce dimenzije ");
      fprintf(stderr, "matrice.\n");
84
      exit(EXIT_FAILURE);
    }
```

```
ucitaj_matricu(a, n, m);
ispisi_matricu_spiralno(a, n, m);
return 0;
}
```

```
#include <stdio.h>
  #include <stdlib.h>
  #include <string.h>
  #define MAX_NISKI 1000
  #define MAX_DUZINA 33
8 void sort_leksikografski(char niske[][MAX_DUZINA], int n)
    int i, j;
10
    int max;
    char pom[MAX_DUZINA];
    for (i = 0; i < n - 1; i++) {
14
      max = i;
      for (j = i + 1; j < n; j++)
        if (strcmp(niske[j], niske[max])>0)
          max = j;
18
      if (max != i) {
        strcpy(pom, niske[i]);
        strcpy(niske[i], niske[max]);
22
        strcpy(niske[max], pom);
      }
 }
26
 int main() {
    int i,n;
30
    /* Deklarisemo niz niski koji moze imati najvise MAX_NISKI
       elementa od kojih je svaka niska duzine najvise
32
       MAX_DUZINA karaktera */
    char niske[MAX_NISKI][MAX_DUZINA];
34
    FILE *fp;
36
    /* Otvaramo datoteku za citanje */
    fp = fopen("niske.txt", "r");
38
    if(fp == NULL) {
40
      fprintf(stderr, "Greska: ");
      fprintf(stderr, "Neuspesno otvaranje datoteke.\n");
      exit(EXIT_FAILURE);
42
44
    for(i=0; fscanf(fp, "%s", niske[i]) != EOF && i < MAX_NISKI;</pre>
                                                              i++);
46
```

```
fclose(fp);
    n=i;

/* Leksikografski sortiramo niz niski */
sort_leksikografski(niske, n);

/* Ispisujemo leksikografski sortirane niske */
for(i=0; i<n; i++)
    printf("%s\n", niske[i]);
exit(EXIT_SUCCESS);
</pre>
```

```
#include <stdio.h>
  #include <stdlib.h>
  /* NAPOMENA: Primer demonstrira dinamicku alokaciju niza od n
     elemenata. Dovoljno je alocirati n * sizeof(T) bajtova, gde
     je T tip elemenata niza. Povratnu adresu malloc()-a treba
     pretvoriti iz void * u T *, kako bismo dobili pokazivac
     koji pokazuje na prvi element niza tipa T. Na dalje se
     elementima moze pristupati na isti nacin kao da nam
     je dato ime niza (koje se tako i ponasa - kao pokazivac
     na element tipa T koji je prvi u nizu) */
 int main()
    int *p = NULL;
14
    int i, n;
16
    /* Unosimo dimenziju niza. Ova vrednost nije ogranicena
       bilo kakvom konstantom, kao sto je to ranije bio slucaj
18
       kod staticke alokacije gde je dimenzija niza bila unapred
       ogranicena definisanim prostorom. */
20
    scanf("%d", &n);
22
    /* Alociramo prostor za n celih brojeva */
    if ((p = (int *) malloc(sizeof(int) * n)) == NULL) {
24
      fprintf(stderr, "malloc(): ");
      fprintf(stderr, "greska pri alokaciji memorije.\n");
      exit(EXIT_FAILURE);
    }
28
    /* Od ovog trenutka pokazivac "p" mozemo da koristimo kao da
       je ime niza, odnosno i-tom elementu se moze pristupiti
       sa p[i] */
32
    /* Unosimo elemente niza */
    for (i = 0; i < n; i++)
      scanf("%d", &p[i]);
36
    /* Ispisujemo elemente niza unazad */
```

```
for (i = n - 1; i >= 0; i--)
    printf("%d ", p[i]);
    printf("\n");

42
    /* Oslobadjamo prostor */
    free(p);

46    return 0;
}
```

```
#include <stdio.h>
  #include <stdlib.h>
  #define KORAK 10
  int main(void)
   /* Adresa prvog alociranog bajta*/
   int* a = NULL;
   /* Velicina alocirane memorije */
10
   int alocirano;
12
   /* Broj elemenata niza */
   int n;
14
   /* Broj koji se ucitava sa ulaza */
   int x;
   int i;
18
   int* b = NULL;
   /* Inicijalizacija */
   alocirano = n = 0;
22
   /* Unosimo brojeve sa ulaza */
   scanf("%d", &x);
26
   /* Sve dok je procitani broj razlicit od nule... */
   while(x!=0) {
28
     /* Ako broj ucitanih elemenata niza odgovara broju
30
        alociranih mesta, za smestanje novog elementa treba
        obezbediti dodatni prostor. Da se ne bi za svaki sledeci
32
        element pojedinacno alocirala memorija, prilikom
        alokacije se vrsi rezervacija za jos KORAK dodatnih
34
        mesta za buduce elemente */
36
     if(n == alocirano) {
       /* Povecava se broj alociranih mesta */
       alocirano = alocirano + KORAK;
38
       /* Vrsi se realokacija memorije sa novom velicinom */
40
       /* Resenje sa funkcijom malloc() */
42
```

```
/* Vrsi se alokacija memorije sa novom velicinom, a adresa
44
          pocetka novog memorijskog bloka se cuva u
          promenljivoj b */
46
       b = (int*) malloc (alocirano * sizeof(int));
48
       /* Ako prilikom alokacije dodje do neke greske */
       if(b == NULL) {
50
         /* poruku ispisujemo na izlaz za greske */
         fprintf(stderr, "malloc(): ");
         fprintf(stderr, "greska pri alokaciji memorije.\n");
54
         /* Pre kraja programa moramo svu dinamicki alociranu
            memoriju da oslobodimo. U ovom slucaju samo memoriju
            na adresi a */
         free(a);
58
         /* Zavrsavamo program */
         exit(EXIT_FAILURE);
62
       /* Svih n elemenata koji pocinju na adresi a prepisujemo
          na novu aderesu b */
       for(i = 0; i < n; i++)
66
         b[i] = a[i];
68
       /* Posle prepisivanja oslobadjamo blok memorije sa pocetnom
          adresom u a */
70
       free(a);
72
       /* Promenljivoj a dodeljujemo adresu pocetka novog, veceg
          bloka koji je prilikom alokacije zapamcen u
74
          promenljivoj b */
       a = b;
76
       78
       /* Resenje sa funkcijom realloc() */
       80
       /* Zbog funkcije realloc je neophodno da i u prvoj
          iteraciji "a" bude inicijalizovano na NULL */
82
       a = (int*) realloc(a,alocirano*sizeof(int));
84
       if(a == NULL) {
86
         fprintf(stderr, "realloc(): ");
         fprintf(stderr, "greska pri alokaciji memorije.\n");
88
         exit(EXIT FAILURE);
       }
90
92
      /* Smestamo element u niz */
94
      a[n++] = x;
96
      /* i ucitavamo sledeci element */
      scanf("%d", &x);
```

```
/* Ispisujemo brojeve u obrnutom poretku */
for(n--; n>=0; n--)
    printf("%d ", a[n]);
printf("\n");

/* Oslobadjamo dinamicki alociranu memoriju */
free(a);

/* Program se zavrsava */
exit(EXIT_SUCCESS);
}
```

```
#include <stdio.h>
  #include <stdlib.h>
  #include <string.h>
  #define MAX 1000
  /* NAPOMENA: Primer demonstrira "vracanje nizova iz funkcije".
     Ovako nesto se moze improvizovati tako sto se u funkciji
     dinamicki kreira niz potrebne velicine, popuni se potrebnim
     informacijama, a zatim se vrati njegova adresa. Imajuci u
     vidu cinjenicu da dinamicki kreiran objekat ne nestaje
     kada se izadje iz funkcije koja ga je kreirala, vraceni
12
     pokazivac se kasnije u pozivajucoj funkciji moze koristiti
     za pristup "vracenom" nizu. Medjutim, pozivajuca funkcija
14
     ima odgovornost i da se brine o dealokaciji istog prostora */
16
  /* Funkcija dinamicki kreira niz karaktera u koji smesta
     rezultat nadovezivanja niski. Adresa niza se vraca kao
18
     povratna vrednost. */
20 char *nadovezi(char *s, char *t) {
    /* Dinamicki kreiramo prostor dovoljne velicine */
    char *p = (char *) malloc((strlen(s) + strlen(t) + 1)
22
                                              * sizeof(char));
24
    /* Proveravamo uspeh alokacije */
    if (p == NULL) {
26
      fprintf(stderr, "malloc(): ");
      fprintf(stderr, "greska pri alokaciji memorije.\n");
      exit(EXIT_FAILURE);
    }
30
    /* Kopiramo i nadovezujemo stringove */
    /* Resenje bez koriscenja biblioteckih funkcija */
34
    /*
    int i,j;
    for (i=j=0; s[j]!='\setminus 0'; i++, j++)
      p[i]=s[j];
38
    for(j=0; t[j]!='\0'; i++, j++)
```

```
p[i]=t[j];
    p[i]='\0';
44
    /* Resenje sa koriscenjem biblioteckih funkcija iz zaglavlja
       string.h */
    strcpy(p, s);
48
    strcat(p, t);
50
    /* Vracamo pokazivac p */
    return p;
52
  }
54
  int main() {
    char *s = NULL;
56
    char s1[MAX], s2[MAX];
58
    /* Ucitavamo dve niske koje cemo da nadovezemo */
    scanf("%s", s1);
60
    scanf("%s", s2);
62
    /* Pozivamo funkciju da nadoveze stringove */
    s = nadovezi(s1, s2);
64
    /* Prikazujemo rezultat */
66
    printf("%s\n", s);
    /* Oslobadjamo memoriju alociranu u funkciji nadovezi() */
    free(s);
70
    return 0;
72
  }
```

```
#include <stdio.h>
  #include <stdlib.h>
  #include <math.h>
  int main()
  {
    int i,j;
    /* Pokazivac na dinamicki alociran niz pokazivaca na vrste
       matrice */
    double** A = NULL;
12
    /* Broj vrsta i broj kolona */
    int n = 0, m = 0;
14
    /* Trag matice */
16
    double trag = 0;
18
    /* Unosimo dimenzije matrice*/
```

```
scanf("%d%d", &n, &m);
    /* Dinamicki alociramo prostor za n pokazivaca na double */
22
    A = malloc(sizeof(double*) * n);
24
    /* Proveramo da li je doslo do greske pri alokaciji */
    if(A == NULL) {
26
      fprintf(stderr, "malloc(): ");
      fprintf(stderr, "greska pri alokaciji memorije.\n");
      exit(EXIT_FAILURE);
30
    /* Dinamicki alociramo prostor za elemente u vrstama */
32
    for(i = 0; i < n; i++) {
      A[i] = malloc(sizeof(double) * m);
34
      if(A[i] == NULL) {
        /* Alokacija je neuspesna. Pre zavrsetka programa
           moramo da oslobodimo svih i-1 prethodno alociranih
38
           vrsta, i alociran niz pokazivaca */
          for( j=0; j<i; j++)
40
            free(A[j]);
          free(A);
42
          exit( EXIT_FAILURE);
44
      }
    }
46
    /* Unosimo sa standardnog ulaza brojeve u matricu.
48
       Popunjavamo vrstu po vrstu */
    for(i = 0; i < n; i++)
50
      for(j = 0; j < m; j++)
        scanf("%lf", &A[i][j]);
52
    /* Racunamo trag matrice, odnosno sumu elemenata
54
       na glavnoj dijagonali */
    trag = 0.0;
56
    for(i=0; i<n; i++)
58
      trag += A[i][i];
60
    printf("%.2f\n", trag);
62
    /* Oslobadjamo prostor rezervisan za svaku vrstu */
    for( j=0; j<n; j++)
64
      free(A[j]);
    /* Oslobadjamo memoriju za niz pokazivaca na vrste */
    free(A);
68
    return 0;
```

```
#include <stdio.h>
  #include <stdlib.h>
  #include <math.h>
void ucitaj_matricu(int ** M, int n, int m)
    int i, j;
    /* Popunjavamo matricu vrstu po vrstu */
    for(i=0; i<n; i++)
      /* Popunjavamo i-tu vrstu matrice */
11
      for(j=0; j<m; j++)
        scanf("%d", &M[i][j]);
13
  }
  void ispisi_elemente_ispod_dijagonale(int ** M, int n, int m)
17 {
    int i, j;
19
    for(i=0; i<n; i++) {
      /* Ispisujemo elemente ispod glavne dijagonale matrice */
21
      for(j=0; j<=i; j++)
        printf("%d ", M[i][j]);
23
      printf("\n");
25
  }
27
  int main() {
    int m, n, i, j;
    int **matrica = NULL;
31
    /* Unosimo dimenzije matrice */
    scanf("%d %d",&n, &m);
33
    /* Alociramo prostor za niz pokazivaca na vrste matrice */
35
    matrica = (int **) malloc(n * sizeof(int*));
    if(matrica == NULL) {
37
      fprintf(stderr,"malloc(): Neuspela alokacija\n");
      exit(EXIT_FAILURE);
39
41
    /* Alociramo prostor za svaku vrstu matrice */
    for(i=0; i<n; i++) {
43
      matrica[i] = (int*) malloc(m * sizeof(int));
45
      if(matrica[i] == NULL) {
        fprintf(stderr, "malloc(): Neuspela alokacija\n");
47
        for(j=0; j<i; j++)
          free(matrica[j]);
49
        free(matrica);
        exit(EXIT_FAILURE);
    }
53
    ucitaj_matricu(matrica, n, m);
```

```
#include <stdio.h>
  #include <stdlib.h>
  #include <string.h>
  #define MAX 32
  /* Struktura koja opisuje jednu pesmu */
 typedef struct {
   char izvodjac[MAX];
   char naslov[MAX];
    int broj_gledanja;
12 } Pesma;
14 /* Funkcija za uporedjivanje pesama po broju gledanosti
   (potrebna za rad qsort funkcije) */
int uporedi_gledanost(const void* pp1, const void* pp2)
   Pesma* p1 = (Pesma*) pp1;
18
    Pesma* p2 = (Pesma*) pp2;
20
    return p2->broj_gledanja-p1->broj_gledanja;
22 }
24 /* Funkcija za uporedjivanje pesama po naslovu
    (potrebna za rad qsort funkcije) */
26 int uporedi_naslove(const void* pp1, const void* pp2)
    Pesma* p1 = (Pesma*) pp1;
28
    Pesma* p2 = (Pesma*) pp2;
    return strcmp(p1->naslov, p2->naslov);
32 }
34 /* Funkcija za uporedjivanje pesama po izvodjacu
    (potrebna za rad qsort funkcije) */
36 int uporedi_izvodjace(const void* pp1, const void* pp2)
  ₹
   Pesma* p1 = (Pesma*) pp1;
```

```
Pesma* p2 = (Pesma*) pp2;
    return strcmp(p1->izvodjac, p2->izvodjac);
 }
42
44 int main(int argc, char* argv[])
    FILE* ulaz;
46
    Pesma* pesme;
    int i, n;
48
    int duzina_naslova;
    /* Pripremamo datoteku za citanje */
    ulaz = fopen("pesme.txt", "r");
52
    if(ulaz == NULL) {
      fprintf(stderr, "Greska: ");
      fprintf(stderr, "Neuspesno otvaranje datoteke.\n");
      exit(EXIT_FAILURE);
56
58
    /* citamo informaciju o broju pesama */
    fscanf(ulaz, "%d", &n);
60
    /* Alociramo memoriju za niz pesama */
    pesme = (Pesma*) malloc(n * sizeof(Pesma));
    if(pesme == NULL) {
64
      printf("malloc(): neuspela alokacija!\n");
      exit(EXIT_FAILURE);
    }
68
    /* Ucitavamo informacije o pesmama */
    for(i=0; i<n; i++) {
      fscanf(ulaz, "%s - %s %d", pesme[i].izvodjac,
            pesme[i].naslov, &pesme[i].broj_gledanja);
72
      /* Eliminisemo zarez koji smo procitali uz naslov */
      duzina_naslova = strlen(pesme[i].naslov);
      pesme[i].naslov[duzina_naslova-1] = '\0';
    }
78
    /* Zatvaramo datoteku jer nam vise nece trebati */
80
    fclose(ulaz);
    /* Analiziramo argumente komandne linije */
    if(argc == 1)
84
    /* Nema dodatnih opcija - sortiramo po broju gledanja */
    qsort(pesme, n, sizeof(Pesma), uporedi_gledanost);
    else if(argc == 2 \&\& strcmp(argv[1], "-n") == 0)
      /* sortiramo po naslovu */
88
      qsort(pesme, n, sizeof(Pesma), uporedi_naslove);
    else if(argc == 2 && strcmp(argv[1], "-i") == 0)
        /* sortiramo po izvodjacu */
        qsort(pesme, n, sizeof(Pesma), uporedi_izvodjace);
92
    else {
      fprintf(stderr, "Nedozvoljeni argument komandne linije!\n");
```

```
free(pesme);
       exit(EXIT_FAILURE);
98
    /* Ispisujemo rezultat */
    for(i=0; i<n; i++)
100
      printf("%s - %s, %d\n", pesme[i].izvodjac, pesme[i].naslov,
                                            pesme[i].broj_gledanja);
104
    /* Oslobadjamo memoriju */
    free(pesme);
106
    /* Prekidamo izvrsavanje programa */
    return 0;
108
  }
```

```
#include<stdio.h>

int main(){
   printf("Hello pokazivaci!\n");
   return 0;
}
```

```
#include <stdio.h>
  #include <stdlib.h>
  #include <math.h>
  /* Funkcija izvrsava trazene transformacije nad matricom */
6 void izmeni (float** a, int n)
  {
    int i, j;
    for(i=0; i<n; i++)
10
      for(j=0; j<n; j++)
    /* Ako je indeks vrste manji od indeksa kolone */
12
    if(i<i)
      /* element se nalazi iznad glavne dijagonale
14
         pa ga polovimo */
        a[i][j]/=2;
16
    else
      /* Ako je indeks vrste veci od indeksa kolone */
18
      if(i>j)
20
        /* element se nalazi ispod glavne dijagonale
         pa ga dupliramo*/
        a[i][j] *= 2;
22
  }
24
  /* Funkcija izracunava zbir apsolutnih vrednosti elemenata ispod
    sporedne dijagonale */
 float zbir_ispod_sporedne_dijagonale(float** m, int n)
```

```
int i, j;
    float zbir=0;
30
    for(i=0; i<n; i++)
32
      for(j=0; j<n; j++)
        /* Ukoliko je zbir indeksa vrste i indeksa kolone
34
           elementa veci od n-1, to znaci da se element nalazi
           ispod sporedne dijagonale */
        if(i+j>n-1)
        zbir+=fabs(m[i][j]);
38
    return zbir;
42
  /* Funkcija ucitava elemente kvadratne matrice dimenzije n
     iz zadate datoteke */
44
  void ucitaj_matricu(FILE* ulaz, float** m, int n) {
    int i, j;
46
    for(i=0; i<n; i++)
      for(j=0; j<n; j++)
        fscanf(ulaz, "%f", &m[i][j]);
50
  }
52
  /* Funkcija ispisuje elemente kvadratne matrice dimenzije n
     na standardni izlaz */
  void ispisi_matricu(float** m, int n) {
   int i, j;
56
    for(i=0; i<n; i++){
58
      for(j=0; j<n; j++)
        printf("%.2f ", m[i][j]);
60
      printf("\n");
62
64
  /* Funkcija alocira memoriju za kvadratnu matricu dimenzije n */
66 float** alociraj_memoriju(int n) {
    int i, j;
    float ** m;
68
    m = (float**) malloc(n * sizeof(float*));
    if(m == NULL) {
      fprintf(stderr, "malloc(): Neuspela alokacija\n");
72
      exit(EXIT_FAILURE);
74
    /* Za svaku vrstu matrice */
76
    for(i=0; i<n; i++) {
      /* Alociramo memoriju */
78
      m[i] = (float*) malloc(n * sizeof(float));
80
      /* Proveravamo da li je doslo do greske pri alokaciji */
      if(m[i] == NULL) {
        /* Ako jeste, ispisujemo poruku */
```

```
printf("malloc(): neuspela alokacija memorije!\n");
         /* Oslobadjamo memoriju zauzetu do ovog koraka */
86
         for(j=0; j<i; j++)
         free(m[i]);
88
         free(m);
         exit(EXIT_FAILURE);
90
       }
     }
92
    return m;
  }
94
  /* Funckija oslobadja memoriju zauzetu kvadratnom matricom
      dimenzije n */
void oslobodi_memoriju(float** m, int n)
    int i;
    for(i=0; i<n; i++)
       free(m[i]);
     free(m);
104
106
  int main(int argc, char* argv[])
108
    FILE* ulaz;
    float ** a;
    int n;
112
    /* Ako korisnik nije uneo trazene argumente,
        prijavljujemo gresku */
114
     if(argc < 2) {
       printf("Greska: ");
116
       printf("Nedovoljan broj argumenata komandne linije.\n");
      printf("Program se poziva sa %s ime_dat.\n", argv[0]);
118
       exit(EXIT_FAILURE);
    }
120
    /* Otvaramo datoteku za citanje */
    ulaz = fopen(argv[1], "r");
    if(ulaz == NULL) {
124
      fprintf(stderr, "Greska: ");
       fprintf(stderr, "Neuspesno otvaranje datoteke %s.\n",
126
                                                   argv[1]);
       exit(EXIT_FAILURE);
128
    }
130
     /* citamo dimenziju matrice */
    fscanf(ulaz, "%d", &n);
    /* Alociramo memoriju */
134
    a = alociraj_memoriju(n);
136
    /* Ucitavamo elemente matrice */
    ucitaj_matricu(ulaz, a, n);
```

```
float zbir = zbir_ispod_sporedne_dijagonale(a, n);
140
     /* Pozivamo funkciju za modifikovanje elemenata */
142
     izmeni(a, n);
144
    /* Ispisujemo rezultat */
    printf("Zbir apsolutnih vrednosti ispod sporedne dijagonale ");
146
    printf("je %.2f.\n", zbir);
148
    printf("Transformisana matrica je:\n");
     ispisi_matricu(a,n);
     /* Oslobadjamo memoriju */
     oslobodi_memoriju(a, n);
154
     /* Zatvaramo datoteku */
    fclose(ulaz);
     /* i prekidamo sa izvrsavanjem programa */
158
    return 0;
160 }
```

```
#include <stdio.h>
  #include <stdlib.h>
4 /* Funkcija ucitava elemente matrice dimenzije n x m
     sa standardnog ulaza */
o void ucitaj_matricu(int** a, int n, int m)
    int i, j;
    printf("Unesite elemente matrice:\n");
10
    for(i=0; i<n; i++)
      for(j=0; j<m; j++)
        scanf("%d", &a[i][j]);
14 }
16 /* Funkcija odredjuje zbir v-te vrste matrice */
  int zbir_vrste(int** a, int v, int k)
18 {
    int i, zbir=0;
20
    for(i=0; i<k; i++)
      zbir+=a[v][i];
22
24
    return zbir;
  /* Funkcija sortira vrste matrice na osnovu zbira elemenata
    u vrsti koriscenjem selection sort algoritma */
  void sortiraj_vrste(int** a, int n, int m)
30 {
    int i, j, k, min, tmp;
```

```
min = 0;
32
    for(i=0; i<n-1; i++) {
34
      min=i;
36
      for(j=i+1; j<n; j++)
      if(zbir_vrste(a, j, m) < zbir_vrste(a, min, m))</pre>
38
        min=j;
40
    /* Zamenjujemo mesta vrstama sa indeksima "min" i "i" */
      if(min!=i)
42
      for(k=0; k<m; k++) {
        tmp=a[i][k];
          a[i][k]=a[min][k];
          a[min][k]=tmp;
46
      }
    }
48
50
  /* Funkcija ispisuje elemente matrice dimenzije n x m
    na standardni izlaz */
  void ispisi_matricu(int** a, int n, int m)
54 {
    int i, j;
56
    for(i=0; i<n; i++) {
      for(j=0; j<m; j++)
58
        printf("%d ", a[i][j]);
      printf("\n");
60
    }
62 }
64 /* Funkcija alocira memoriju za matricu dimenzije n x m */
  int** alociraj_memoriju(int n, int m)
66 {
    int i, j;
    int** a;
68
    a = (int**) malloc(n * sizeof(int*));
    if(a == NULL) {
      fprintf(stderr, "malloc(): neuspela alokacija!\n");
72
      exit(EXIT_FAILURE);
74
    /* Za svaku vrstu matrice */
76
    for(i=0; i<n; i++) {
      /* Alociramo memoriju */
      a[i] = (int*)malloc(m * sizeof(int));
80
      /* Proveravamo da li je doslo do greske pri alokaciji */
82
      if(a[i] == NULL) {
        /* Ako jeste oslobadjamo memoriju zauzetu do ovog koraka */
84
        for(j=0; j<i; j++)
        free(a[i]);
        free(a);
```

```
exit(EXIT_FAILURE);
90
    return a;
94
  /* Funkcija oslobadja memoriju zauzetu matricom */
96 void oslobodi_memoriju(int** a, int n, int m)
    int i;
98
    for(i=0; i<n; i++)
100
      free(a[i]);
    free(a);
  }
104
  int main(int argc, char* argv[])
106
     int** a;
     int n, m;
108
    /* citamo dimenziju matrice */
    printf("Unesite dimenzije matrice:\n");
    scanf("%d %d", &n, &m);
    /* Alociramo memoriju */
114
    a=alociraj_memoriju(n, m);
116
    /* Ucitavamo elemente matrice */
    ucitaj_matricu(a, n, m);
118
    /* Pozivamo funkciju koja sortira vrste matrice prema zbiru */
120
    sortiraj_vrste(a, n, m);
    /* Ispisujemo rezultujucu matricu */
    printf("Sortirana matrica je:\n");
    ispisi_matricu(a, n, m);
126
     /* oslobasamo memoriju */
128
    oslobodi_memoriju(a, n, m);
     /* i prekidamo sa izvrsavanjem programa */
130
    return 0;
132 }
```

Rešenje 2.29

Rešenje 2.30

Rešenje 2.31

Rešenje 2.32

Rešenje 2.33

Rešenje 2.34

```
#include <stdio.h>
  #include <stdlib.h>
  #include <math.h>
  #include <string.h>
  /* NAPOMENA:
     Zaglavlje math.h sadrzi deklaracije raznih matematickih
     funkcija. đIzmeu ostalog, to su ćsledee funkcije:
     double sin(double x);
     double cos(double x);
     double tan(double x);
12
     double asin(double x);
     double acos(double x);
14
     double atan(double x);
     double atan2(double y, double x);
     double sinh(double x);
     double cosh(double x);
18
     double tanh(double x);
     double exp(double x);
     double log(double x);
     double log10(double x);
22
     double pow(double x, double y);
     double sqrt(double x);
     double ceil(double x);
     double floor(double x);
     double fabs(double x);
  */
28
30 /* Funkcija tabela() prihvata granice intervala a i b, broj
     ekvidistantnih čtaaka n, kao i čpokaziva f koji pokazuje
     na funkciju koja prihvata double argument, i ćvraa double
     vrednost. Za tako datu funkciju ispisuje njene vrednosti
     u intervalu [a,b] u n ekvidistantnih čtaaka intervala */
  void tabela(double a, double b, int n, double (*fp)(double))
36 {
    int i;
    double x;
38
                          ----\n");
    printf("-----
    for(i=0; i<n; i++) {
      x= a + i*(b-a)/(n-1);
42
      printf("| %8.5f | %8.5f |\n", x, (*fp)(x));
44
    }
    printf("----\n");
46 }
48 /* Umesto da koristimo stepenu funkciju iz zaglavlja
     math.h -> pow(a,2) ćpozivaemo čkorisniku sqr(a) */
50 double sqr (double a)
 {
```

```
return a*a;
54
  int main(int argc, char *argv[])
56 {
    double a, b;
     int n;
58
     /* Imena funkicja koja ćemo navoditi su ćkraa ili čtano duga
       5 karaktera */
60
     char ime_fje[6];
     /* Pokazivac na funkciju koja ima jedan argument tipa double i
62
        povratnu vrednost istog tipa */
    double (*fp)(double);
     /* Ako korisnik nije uneo žtraene argumente,
66
        prijavljujemo šgreku */
     if(argc < 2) {
       printf("Greska: ");
    printf("Nedovoljan broj argumenata komandne linije.\n");
70
    printf("Program se poziva sa %s ime_funkcije iz math.h.\n",
                                                          argv[0]);
72
      exit(EXIT_FAILURE);
74
     /* Niska ime_fje žsadri ime žtraene funkcije koja je navedena
76
        u komandnoj liniji */
    strcpy(ime_fje, argv[1]);
78
     /* Inicijalizujemo čpokaziva na funkciju koja treba da se
80
        tabelira */
    if(strcmp(ime_fje, "sin") == 0)
82
       fp=&sin;
     else if(strcmp(ime_fje, "cos") == 0)
84
       fp=&cos;
     else if(strcmp(ime_fje, "tan") == 0)
86
       fp=&tan;
     else if(strcmp(ime_fje, "atan") == 0)
88
       fp=&atan;
     else if(strcmp(ime_fje, "acos") == 0)
90
       fp=&acos;
    else if(strcmp(ime_fje, "asin") == 0)
92
      fp=&asin;
     else if(strcmp(ime_fje, "exp") == 0)
94
      fp=&exp;
     else if(strcmp(ime fje, "log") == 0)
96
       fp=&log;
     else if(strcmp(ime_fje, "log10") == 0)
98
       fp=&log10;
     else if(strcmp(ime_fje, "sqrt") == 0)
100
       fp=&sqrt;
     else if(strcmp(ime_fje, "floor") == 0)
       fp=&floor;
    else if(strcmp(ime_fje, "ceil") == 0)
104
       fp=&ceil;
     else if(strcmp(ime_fje, "sqr") == 0)
106
       fp=&sqr;
```

```
108
      printf("Program jos uvek ne podrzava trazenu funkciju!\n");
      exit(EXIT_SUCCESS);
112
    printf("Unesite krajeve intervala:\n" );
    scanf("%lf %lf", &a, &b);
114
    printf("Koliko tacaka ima na ekvidistantnoj mrezi ");
    printf("(ukljucujuci krajeve intervala)?\n");
    scanf("%d", &n);
118
    /* Mreza mora da čukljuuje bar krajeve intervala,
       tako da se mora uneti broj veci od 2 */
    if (n < 2) {
      fprintf(stderr, "Broj čtaaka žmree mora biti bar 2!\n");
      exit(EXIT_FAILURE);
124
126
    /* Ispisujemo ime funkcije */
    printf("
               x %10s(x)\n", ime_fje);
128
    /* đProsleujemo funkciji tabela() funkciju zadatu kao
130
       argument komandne linije */
    tabela(a, b, n, fp);
    exit(EXIT_SUCCESS);
134
```

Rešenje 2.35

Rešenje 2.36

Rešenje 2.37

Glava 3

Algoritmi pretrage i sortiranja

3.1 Pretraživanje

Zadatak 3.1 Napisati iterativne funkcije pretraga nizova. Svaka funkcija treba da vrati indeks pozicije na kojoj je pronađen traženi element ili broj -1 ukoliko element nije pronađen.

- (a) Napisati funkciju koja vrši linearnu pretragu niza celih brojeva a, dužine n, tražeći u njemu broj x.
- (b) Napisati funkciju koja vrši binarnu pretragu sortiranog niza a, dužine n, tražeći u njemu broj x.
- (c) Napisati funkciju koja vrši interpoacionu pretragu sortiranog niza a, dužine n, tražeći u njemu broj x.

Napisati i program koji generiše slučajni rastući niz dimenzije \mathbf{n} (prvi argument komandne linije), i u njemu već napisanim funkcijama traži element \mathbf{x} (drugi argument komandne linije). Potrebna vremena za izvršavanje ovih funkcija upisati u fajl vremena $\mathbf{t}\mathbf{x}\mathbf{t}$.

Test 1

```
Poziv: ./a.out 1000000 235423
Izlaz:
Linearna pretraga
Element nije u nizu
------
Binarna pretraga
Element nije u nizu
------
Interpolaciona pretraga
Element nije u nizu
```

Zadatak 3.2 Napisati rekurzivne funkcije algoritama linearne, binarne i interpolacione pretrage i program koji ih testira za brojeve koji se unose sa standardnog

ulaza. Pretpostaviti da niz brojeva koji se unosi neće biti duži od 1024 elemenata. Prvo se unosi broj koji se traži, a zatim sortirani elementi niza sve do kraja ulaza.

```
Test 1
                                                 Test 2
Ulaz: 11 2 5 6 8 10 11 23
                                  Ulaz: 14 10 32 35 43 66 89 100
Linearna pretraga
                                   Linearna pretraga
Pozicija elementa je 5.
                                   Element se ne nalazi u nizu.
Binarna pretraga
                                   Binarna pretraga
Pozicija elementa je 5.
                                   Element se ne nalazi u nizu.
Interpolaciona pretraga
                                   Interpolaciona pretraga
Pozicija elementa je 5.
                                   Element se ne nalazi u nizu.
```

Zadatak 3.3 Napisati program koji preko argumenta komandne linije dobija ime datoteke koja sadrži sortirani spisak studenta po broju indeksa rastuće. Za svakog studenta u jednom redu stoje informacije o indeksu, imenu i prezimenu. Program učitava spisak studenata u niz i traži od korisnika indeks studenta čije informacije se potom prikazuju na ekranu. Zatim, korisnik učitava prezime studenta i prikazuju mu se informacije o prvom studentu sa unetim prezimenom. Pretrage implementirati u vidu iterativnih funkcija što bolje manje složenosti. Pretpostaviti da u datoteci neće biti više od 128 studenata, i da su imena i prezimena svih kraća od 16 slova.

```
Test 1
Datoteka:
20140003 Marina Petrovic
20140012 Stefan Mitrovic
20140032 Dejan Popovic
20140049 Mirko Brankovic
20140076 Sonja Stevanovic
20140104 Ivan Popovic
20140187 Vlada Stankovic
20140234 Darko Brankovic
Ulaz:
                Izlaz:
20140076
                Indeks: 20140076, Ime i prezime: Sonja Stevanovic
Popovic
                Indeks: 20140032, Ime i prezime: Dejan Popovic
```

Zadatak 3.4 Modifikovati prethodni zadatak 3.3 tako da tražene funkcije budu rekurzivne.

Zadatak 3.5 U datoteci koja se zadaje kao prvi argument komandne linije, nalaze se koordinate tačaka. U zavisnosti od prisustva opcija komandne linije (-x ili -y), pronaći onu koja je najbliža x (ili y) osi, ili koordinatnom početku, ako nije prisutna nijedna opcija. Pretpostaviti da je broj tačaka u datateci veći od 0 i ne veći od 1024.

Test 1

```
Poziv: ./a.out dat.txt -x
Datoteka:
12 53
2.342 34.1
-0.3 23
-1 23.1
123.5 756.12
Izlaz: -0.3 23
```

Zadatak 3.6 Napisati funkciju koja određuje nulu funkcije cos(x) na intervalu [0,2] metodom polovljenja intervala. Algoritam se završava kada se vrednost kosinusne funkcije razlikuje za najviše 0.001 od nule. Uputstvo: korisiti algoritam analogan algoritmu binarne pretrage.

```
Test 1
```

Zadatak 3.7 Napisati funkciju koja u sortiranom nizu nalazi prvi element veći od 0. Napisati i program koji testira ovu funkciju za niz elemenata koji se zadaju kao argumenti komandne linije. Uputstvo: primeniti binarnu pretragu.

```
Test 1

| Poziv: ./a.out -43 -24 -5 -2 1 4 6 12 | Izlaz: 1

| Test 2 | Poziv: ./a.out -32 4 65 123 | Izlaz: 4
```

Zadatak 3.8 Napisati funkciju koja određuje ceo deo logaritma za osnovu 2 datog neoznačenog celog broja, koristeći samo bitske i relacione operatore.

- (a) Napisati funkciju, linearne složenosti, koja određuje logaritam pomeranjem broja udesno dok ne postane 0.
- (b) Napisati funkciju, logaritmske složenosti, koja određuje logaritam koristeći binarnu pretragu.

Tražene funkcije testirati programom koji broj učitava sa standardnog ulaza, a logaritam ispisuje na standardni izlaz.

** Zadatak 3.9 U prvom kvadrantu dato je $1 \le \mathbb{N} \le 10000$ duži svojim koordinatama (duži mogu da se seku, preklapaju, itd.). Napisati program koji pronalazi najmanji ugao $0 \le \alpha \le 90^\circ$, na dve decimale, takav da je suma dužina duži sa obe strane polupoluprave iz koordinatnog početka pod uglom α jednak (neke duži bivaju presečene, a neke ne). Program prvo učitava broj \mathbb{N} , a zatim i same koordinate temena duži. Uputstvo: vršiti binarnu pretragu intervala $[0,90^\circ]$.

```
Test 1
Ulaz:
2
2 0 2 1
1 2 2 2
Izlaz:
26.57
```

Zadatak 3.10 Napisati program u kome se prvo inicijalizuje statički niz struktura osoba sa članovima ime i prezime (uređen u rastućem poretku prezimena) sa manje od 10 elemenata, a zatim se učitava jedan karakter i pronalazi (bibliotečkom funkcijom bsearch) i štampa jedna struktura iz niza osoba čije prezime počinje tim karakterom. Ako takva osoba ne postoji, štampati -1 na standardni izlaz.

3.2 Sortiranje

Zadatak 3.11 U datom nizu brojeva pronaći dva broja koja su na najmanjem rastojanju. Niz se zadaje sa standardnog ulaza, sve do kraja ulaza, i neće sadržati

više od 256 elemenata. Na izlaz ispisati njihovu razliku. Uputstvo: prvo sortirati niz.

Zadatak 3.12 Dve niske su anagrami ako se sastoje od istog broja istih karaktera. Napisati program koji proverava da li su dve niske karaktera anagrami. Niske se zadaju sa standardnog ulaza, i neće biti duže od 127 karaktera. Uputstvo: napisati funkciju koja sortira slova unutar niske karaktera, a zatim za sortirane niske proveriti da li su identične.

Zadatak 3.13 Napisati program koji pronalazi broj koji se najviše puta pojavljivao u datom nizu. Niz se zadaje sa standardnog ulaza sve do kraja ulaza, i neće biti duži od 256 elemenata. Uputstvo: prvo sortirati niz, a zatim naći najdužu sekvencu jednakih elemenata.

Zadatak 3.14 Napisati funkciju koja proverava da li u datom nizu postoje dva elementa kojima je zbir zadati ceo broj. Napisati i program koji testira ovu funkciju. U programu se prvo učitava broj, a zatim i niz (pretpostaviti da za niz neće biti uneto više od 256 brojeva). Elementi niza se unose sve do kraja ulaza. Uputstvo: prvo sortirati niz.

Zadatak 3.15 Napisati funkciju potpisa int merge(int *niz1, int dim1, int *niz2, int dim2, int *niz3, int dim3) koja prima dva sortirana niza, i na osnovu njih pravi novi sortirani niz koji koji sadrži elemente oba niza. Treća dimenzija predstavlja veličinu niza u koji se smešta rezultat. Ako je ona manja od

potrebne dužine, funkcija vraća -1, kao indikator neuspeha, inače vraća 0. Napisati i program koji testira funkciju, u kome se nizovi unose sa standardnog ulaza, sve dok se ne unese 0. Dimenzija nizova neće biti preko 256.

Zadatak 3.16 Napisati program koji čita sadržaj dve datoteke od kojih svaka sadrži spisak imena i prezimena studenata iz jedne od dve grupe, rastuće sortiran po imenima i kreira jedinstven spisak studenata sortiranih takođe po imenu rastuće. Program dobija nazive datoteka iz komandne linije, i jedinstven spisak upisuje u datoteku ceo-tok.txt. Pretpostaviti da je ime studenta nije duže od 10, a prezime od 15 karaktera.

```
Test 1
Poziv: ./a.out prvi-deo.txt drugi-deo.txt
prvi-deo.txt:
                        drugi-deo.txt:
                                                ceo-tok.txt:
Andrija Petrovic
                        Aleksandra Cvetic
                                                (TODO)
Anja Ilic
                        Bojan Golubovic
Ivana Markovic
                        Dragan Markovic
Lazar Micic
                        Filip Dukic
Nenad Brankovic
                        Ivana Stankovic
Sofija Filipovic
                        Marija Stankovic
Vladimir Savic
                        Ognjen Peric
                        Uros Milic
```

Zadatak 3.17 Napraviti biblioteku sort.h i sort.c koja implementira algoritme sortiranja nizova celih brojeva. Biblioteka treba da sadrži selection, merge, quick, bubble, insertion i shell sort. Upotrebiti biblioteku kako bi se napravilo poređenje efikasnosti različitih algoritama sortiranja. Efikasnost meriti na slučajno generisanim nizovima, na već sortiranim nizovima i na naopako sortiranim nizovima. Izbor algoritma, veličine i početnog rasporeda elemenata niza birati kroz argumente komandne linije. Vreme meriti programom time. Analizirati porast vremena sa porastom dimenzije n.

Zadatak 3.18 Napisati funkcije koje sortiraju niz struktura tačaka na osnovu sledećih kriterijuma:

- (a) njihovog rastojanja od koordinatnog početka,
- (b) x koordinata tačaka,

(c) y koordinata tačaka.

Napisati program koji učitava niz tačaka iz datoteke čije se ime zadaje kao argument komandne linije, i u zavisnosti od prisutnih opcija u komandnoj liniji (-d, -x ili -y), sortira tačke po jednom od prethodna tri kriterijuma i rezultat upisuje u datoteku čije se ime zadaje kao drugi argument komandne linije. U ulaznoj datoteci nije zadato više od 128 tačaka.

Test 1

```
Poziv: a.out -x tacke.txt
sorttacke.txt
Ulazna datoteka:
3 4
11 6
7 3
2 82
-1 6
Izlazna datoteka:
-1 6
2 82
3 4
7 3
11 6
```

Zadatak 3.19 Napisati program koji učitava imena i prezimena građana (najviše njih 1000) iz datoteke biracki-spisak.txt, i kreira biračke spiskove. Jedan birački spisak je sortiran po imenu građana, a drugi po prezimenu. Program treba da ispisuje koliko građana ima isti redni broj u oba biračka spiska. Pretpostaviti da je za ime, odnosno prezime građana dovoljno 15 karaktera.

Test 1

```
biracki-spisak.txt: Izlaz:
Andrija Petrovic (TODO)
Anja Ilic
Aleksandra Cvetic
Bojan Golubovic
Dragan Markovic
Filip Dukic
Ivana Stankovic
Ivana Markovic
Lazar Micic
Marija Stankovic
```

Zadatak 3.20 Definisana je struktura podataka

```
typedef struct dete
{
    char ime[MAX_IME];
    char prezime[MAX_IME];
    unsigned godiste;
```

} Dete;

Napisati funkciju koja sortira niz dece po godištu, a kada su deca istog godišta, tada ih sortira leksikografski po prezimenu i imenu. Napisati program koji učitava podatke o deci koji se nalaze u datoteci, čije se ime zadaje kao prvi argument komandne linije, sortira ih i sortirani niz upisuje u datoteku čije se ime zadaje kao drugi argument komandne linije. Pretpostaviti da u ulaznoj datoteci nisu zadati podaci o više od 128 dece.

Test 1

```
Poziv: ./a.out ulaz.txt izlaz.txt
Ulazna datoteka: Izlazna datoteka:
Petar Petrovic 2007 Marija Antic 2007
Milica Antonic 2008 Ana Petrovic 2007
Ana Petrovic 2007 Petar Petrovic 2007
Ivana Ivanovic 2009 Milica Antonic 2008
Dragana Markovic 2010 Ivana Ivanovic 2009
Marija Antic 2007 Dragana Markovic 2010
```

Zadatak 3.21 Napisati funkciju koja sortira niz niski po broju suglasnika u niski, ukoliko reči imaju isti broj suglasnika tada po dužini niske, a ukoliko su i dužine jednake onda leksikografski. Napisati program koji testira ovu funkciju za niske koje se zadaju u datoteci niske.txt. Pretpostaviti da u nizu nema više od 128 elemenata, kao i da svaka niska sadrži najviše 32 karaktera.

Test 1

```
Ulazna datoteka:
ana petar andjela milos nikola aleksandar ljubica matej milica
Izlaz:
ana matej milos petar milica nikola andjela ljubica aleksandar
```

Zadatak 3.22 Napisati program koji simulira rad kase u prodavnici. Kupci prilaze kasi, a prodavac unošenjem bar-koda kupljenog proizvoda dodaje njegovu cenu na ukupan račun. Na kraju, program ispisuje ukupnu vrednost svih proizvoda. Sve artikle, zajedno sa bar-kodovima, prozivođačima i cenama učitati iz datoteke artikli.txt. Pretraživanje niza artikala vršiti binarnom pretragom.

Zadatak 3.23 Napisati program koji iz datoteke aktivnost.txt čita podatke o aktivnosti studenata na praktikumima i u datoteke dat1.txt, dat2.txt i dat3.txt upisuje redom tri spiska. Na prvom su studenti sortirani leksikografski po imenu

rastuće. Na drugom su sortirani po ukupnom broju urađenih zadataka opadajuće, a ukoliko neki studenti imaju isti broj rešenih zadataka sortiraju se po dužini imena rastuće. Na trećem spisku kriterijum sortiranja je broj časova na kojima su bili opadajuće. Ukoliko neki studenti imaju isti broj časova, sortirati ih opadajuće po broju urađenih zadataka, a ukoliko se i on poklapa sortirati po prezimenu opadajuće. U datoteci se nalazi ime, prezime studenta, broj časova na kojima je prisustvovao, kao i ukupan broj urađenih zadataka. Pretpostaviti da studenata neće biti više od 500 i da je za ime studenta dovoljno 20, a za prezime 25 karaktera.

```
Test 1
aktivnosti.txt:
   Izlaz:
                               (
Aleksandra Cvetic 4 6
   TODO)
Bojan Golubovic 4 3
Dragan Markovic 3 5
Filip Dukic 2 0
Ivana Stankovic 3 1
Marija Stankovic 1 3
Ognjen Peric 1 2
Uros Milic 2 5
Andrija Petrovic 2 5
Anja Ilic 3 1
Ivana Markovic 2 5
Lazar Micic 1 3
Nenad Brankovic 2 4
```

** Zadatak 3.24 Razmatrajmo dve operacije: operacija U je unos novog broja x, a operacija N određivanje n-tog po veličini od unetih brojeva. Implementirati program koji izvršava ove operacije. Može postojati najviše 100000 operacija unosa, a uneti elementi se mogu ponavljati, pri čemu se i ponavljanja računaju prilikom brojanja. Napomena: brojeve čuvati u sortiranom nizu i svaki naredni element umetati na svoje mesto. Optimizovati program, ukoliko se zna da neće biti više od 500 različitih unetih brojeva.

```
Test~1 \\ | \texttt{Ulaz}:~\texttt{U}~\texttt{2}~\texttt{U}~\texttt{0}~\texttt{U}~\texttt{6}~\texttt{U}~\texttt{4}~\texttt{N}~\texttt{1}~\texttt{U}~\texttt{8}~\texttt{N}~\texttt{2}~\texttt{N}~\texttt{5}~\texttt{U}~\texttt{2}~\texttt{N}~\texttt{3}~\texttt{N}~\texttt{5} \\ | \texttt{Izlaz}:~\texttt{0}~\texttt{2}~\texttt{8}~\texttt{2}~\texttt{6} \\ |
```

** Zadatak 3.25 Šef u restoranu je neuredan i palačinke koje ispeče ne slaže redom po veličini. Konobar pre serviranja mora da sortira palačinke po veličini, a jedina operacija koju sme da izvodi je da obrne deo palačinki. Na primer, sledeća slika po kolonama predstavlja naslagane palačinke posle svakog okretanja. Na početku, palačinka veličine 2 je na dnu, iznad nje se redom nalaze najmanja, najveća, itd... Na slici crtica predstavlja mesto iznad koga će konobar okrenuti palačinke. Prvi potez konobara je okretanje palačinki veličine 5, 4 i 3 (prva kolona), i tada će veličine palačinki odozdo nagore biti 2, 1, 3, 4, 5 (druga kolona). Posle još dva

okretanja, palačinke će biti složene.

3	5	2	1
4	4	1	2
5	3	3	3
1	1	4	4
2	2	5	5

Napisati program koji u najviše 2n-3 okretanja sortira učitani niz. Uputstvo: imitirati selection sort i u svakom koraku dovesti jednu palačinku na svoje mesto korišćenjem najviše dva okretanja.

3.3 Bibliotečke funkcije pretrage i sortiranja

Zadatak 3.26 Napisati program koji ilustruje upotrebu bibiliotečkih funkcija za pretraživanje i sortiranje nizova, i mogućnost zadavanja različitih kriterijuma sortiranja. Sa standardnog ulaza se unosi dimenzija niza celih brojeva (ne veća od 100), a potom i sami elementi niza. Upotrebom funkcije qsort sortirati niz u rastućem poretku, sa standardnog ulaza učitati broj koji se traži u nizu, pa zatim funkcijama bsearch i lfind utvrditi da li se zadati broj nalazi u nizu i na standardni izlaz ispisati odgovarajuću poruku.

Test 1

| TODO

Zadatak 3.27 Napisati program koji sa standardnog ulaza učitava dimenziju niza celih brojeva (ne veću od 100), a potom i same elemente niza. Upotrebom funkcije qsort sortirati niz u rastućem poretku prema broju delilaca i tako dobijeni niz odštampati na standardni izlaz.

Test 1

TODO

Zadatak 3.28 Korišćenjem bibiliotečke funkcije qsort napisati program koji sortira niz niski po sledećim kriterijumima:

- (a) leksikografski,
- (b) po dužini.

Niske se učitavaju iz fajla niske.txt, neće ih biti više od 1000, i svaka će biti dužine najviše 30 karaktera. Program prvo leksikografski sortira niz, primenjuje binarnu pretragu (bsearch) zarad traženja niske unete sa standardnog ulaza, a potom linearnu pretragu koristeći funkciju lfind. Na kraju, niske bivaju sortirane po dužini. Rezultate svih sortiranja i pretraga ispisati na standardni izlaz.

Test 1

| TODO

Zadatak 3.29 Uraditi prethodni zadatak 3.28 sa dinamički alociranim niskama, i sortiranjem niza pokazivača (umesto niza niski).

Test 1

| TODO

Zadatak 3.30 Napisati program koji korišćenjem bibliotečke funkcije qsort sortira studente prema broju poena osvojenih na kolokvijumu. Ukoliko više studenata ima isti broj bodova, sortirati ih po prezimenu leksikografski rastuće. Korisnik potom unosi broj bodova i prikazuje mu se jedan od studenata sa tim broker bodova, ili poruka ukoliko nema takvog. Potom, sa standardnom ulaza, unosi se prezime traženog studenta, i prikazuje se osoba sa tim prezimenom, ili poruka da se nijedan student tako ne preziva. Za pretraživanje, koristiti odgovarajuće bibliotečke funkcije. Podaci o studentima čitaju se iz datoteke čije se ime zadaje preko argumenata komandne linije. Za svakog studenta u datoteci postoje ime, prezime i bodovi osvojeni na kolokvijumu. Pretpostaviti da neće biti vise od 500 studenata, i da je za ime i prezime svakog studenta dovoljno po 20 karaktera.

Test 1

TODO

Zadatak 3.31 Uraditi zadatak 3.12, ali korišćenjem bibliotečke qsort funkcije.

Zadatak 3.32 Napisati program koji sa standardnog ulaza učitava prvo ceo broj n $(n \leq 10)$, a zatim niz S od n stringova (maksimalna dužina stringa je 32 karaktera). Sortirati niz S (bibliotečkom funkcijom qsort) i proveriti da li u njemu ima identičnih stringova.

Zadatak 3.33 Datoteka studenti.txt sadrži spisak studenata. Za svakog studenta poznat je nalog na Alas-u (oblika npr. mr97125, mm09001), ime i prezime i broj poena. Napisati program koji sortira (korišćenjem funkcije qsort) studente

po broju poena (ukoliko je prisutna opcija -p) ili po nalogu (ukoliko je prisutna opcija -n). Studenti se po nalogu sortiraju tako što se sortiraju na osnovu godine, zatim na osnovu smera, i na kraju na osnovu broja indeksa. Ukoliko je u komandnoj liniji uz opciju -n naveden i nalog nekog studenta, funkcijom bsearch potražiti i prijaviti broj poena studenta sa tim nalogom. Sortirane studente upisati u datoteku izlaz.txt.

```
Test 1

| Poziv: ./a.out -n mm13321 | Izlaz: | mr14123 Marko Antic 20 | mm13321 Marija Radic 12 | ml13011 Ivana Mitrovic 19 | ml13066 Pera Simic 15 | mv14003 Jovan Jovanovic 17
```

Zadatak 3.34 Definisana je struktura:

```
typedef struct { int dan; int mesec; int godina; } Datum;}
```

Napisati funkciju koja poredi dva datuma i program koji učitava datume iz datoteke koja se zadaje kao prvi argument komandne linije (ne više od 128 datuma), sortira ih pozivajući funkciju qsort iz standardne biblioteke i potom pozivanjem funkcije bsearch iz standardne biblioteke proverava da li datumi učitani sa standardnog ulaza (sve do kraja ulaza) postoje među prethodno unetim datumima.

```
Test 1
Poziv: ./a.out datoteka.txt
Datoteka:
           Ulaz:
                                    Izlaz:
1.1.2013
                  13.12.2016
                                    postoji
                  10.5.2015
13.12.2016
                                    ne postoji
                  5.2.2009
11.11.2011
                                    postoji
3.5.2015
5.2.2009
```

3.4 Rešenja

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MAX 1000000

/* pri prevodjenju program linkovati sa bibliotekom librt opciom
-lrt zbog funkcije clock_gettime() */
```

```
9/* Funkcija pretrazuje niz celih brojeva duzine n, trazeci u
     njemu element x. Pretraga se vrsi prostom iteracijom kroz
     niz. Ako se element pronadje funkcija vraca indeks pozicije
     na kojoj je pronadjen. Ovaj indeks je uvek nenegativan. Ako
     element nije pronadjen u nizu, funkcija vraca -1, kao
     indikator neuspesne pretrage. */
int linearna_pretraga(int a[], int n, int x)
  ₹
17
    int i;
    for (i = 0; i < n; i++)
      if (a[i] == x)
19
        return i;
    return -1;
  }
  /* Funkcija trazi u sortiranom nizu a[] duzine n broj x. Vraca
     indeks pozicije nadjenog elementa ili -1, ako element nije
     pronadjen */
  int binarna_pretraga(int a[], int n, int x)
27
    int levi = 0;
    int desni = n - 1;
    int srednji;
31
    /* Dokle god je indeks levi levo od indeksa desni */
    while (levi <= desni) {
      /* Racunamo srednji indeks */
      srednji = (levi + desni) / 2;
35
      /* Ako je srednji element veci od x, tada se x mora nalaziti
         u levoj polovini niza */
37
      if (x < a[srednji])</pre>
        desni = srednji - 1;
39
      /* Ako je srednji element manji od x, tada se x mora
         nalaziti u desnoj polovini niza */
41
      else if (x > a[srednji])
        levi = srednji + 1;
43
      else
        /* Ako je srednji element jednak x, tada smo pronasli x na
45
           poziciji srednji */
        return srednji;
47
    /* ako nije pronadjen vracamo -1 */
49
    return -1;
51 }
53 /* Funkcija trazi u sortiranom nizu a[] duzine n broj x. Vraca
     indeks pozicije nadjenog elementa ili -1, ako element nije
     pronadjen */
  int interpolaciona_pretraga(int a[], int n, int x)
57
    int levi = 0;
    int desni = n - 1;
    int srednji;
    /* Dokle god je indeks levi levo od indeksa desni... */
61
    while (levi <= desni) {</pre>
      /* Ako je element manji od pocetnog ili veci od poslednjeg
         clana u delu niza a[levi],...,a[desni] tada nije u tom
```

```
delu niza. Ova provera je neophodna, da se ne bi dogodilo
          da se prilikom izracunavanja indeksa srednji izadje izvan
          opsega indeksa [levi,desni] */
67
       if (x < a[levi] || x > a[desni])
        return -1;
69
       /* U suprotnom, x je izmedju a[levi] i a[desni], pa ako su
          a[levi] i a[desni] jednaki, tada je jasno da je x jednako
71
          ovim vrednostima, pa vracamo indeks levi (ili indeks
          desni, sve jedno je). Ova provera je neophodna, zato sto
          bismo inace prilikom izracunavanja srednji imali deljenje
         nulom. */
75
       else if (a[levi] == a[desni])
        return levi;
77
       /* Racunamo srednji indeks */
       srednji =
79
           levi +
           ((double) (x - a[levi]) / (a[desni] - a[levi])) *
81
           (desni - levi);
       /* NAPOMENA: Indeks srednji je uvek izmedju levi i desni,
83
          ali ce verovatno biti blize trazenoj vrednosti nego da
          smo prosto uvek uzimali srednji element. Ovo se moze
          porediti sa pretragom recnika: ako neko trazi rec na
          slovo 'B', sigurno nece da otvori recnik na polovini, vec
87
          verovatno negde blize pocetku. */
       /* Ako je srednji element veci od x, tada se x mora nalaziti
89
         u levoj polovini niza */
       if (x < a[srednji])</pre>
91
         desni = srednji - 1;
       /* Ako je srednji element manji od x, tada se x mora
93
         nalaziti u desnoj polovini niza */
       else if (x > a[srednji])
95
         levi = srednji + 1;
       else
97
         /* Ako je srednji element jednak x, tada smo pronasli x na
            poziciji srednji */
99
         return srednji;
    /* ako nije pronadjen vracamo -1 */
    return -1;
103
  /* Funkcija main */
int main(int argc, char **argv)
  {
    int a[MAX];
109
    int n, i, x;
    struct timespec time1, time2, time3, time4, time5, time6;
111
    FILE *f;
    /* provera argumenata komandne linije */
    if (argc != 3) {
115
      fprintf(stderr,
               "koriscenje programa: %s dim_niza trazeni_br\n",
117
               argv[0]);
       exit(EXIT_FAILURE);
```

```
121
    /* Dimenzija niza */
    n = atoi(argv[1]);
    if (n > MAX || n <= 0) {
      fprintf(stderr, "Dimenzija niza neodgovarajuca\n");
      exit(EXIT_FAILURE);
    }
    /* Broj koji se trazi */
    x = atoi(argv[2]);
    /* Elemente niza odredjujemo slucajno, tako da je svaki
       sledeci veci od prethodnog. srandom() funkcija obezbedjuje
       novi seed za pozivanje random() funkcije. Kako nas niz ne
       bi uvek isto izgledao seed smo postavili na tekuce vreme u
       sekundama od Nove godine 1970. random()%100 daje brojeve
       izmedju 0 i 99 */
    srandom(time(NULL));
    for (i = 0; i < n; i++)
139
      a[i] = i == 0 ? random() % 100 : a[i - 1] + random() % 100;
141
    /* Lineara pretraga */
    printf("Linearna pretraga\n");
143
    /* Racunamo vreme proteklo od Nove godine 1970 */
    clock_gettime(CLOCK_REALTIME, &time1);
    /* Pretrazujemo niz */
    i = linearna_pretraga(a, n, x);
147
    /* Racunamo novo vreme i razlika predstavlja vreme utroseno za
       lin pretragu */
149
    clock_gettime(CLOCK_REALTIME, &time2);
    if (i == -1)
151
      printf("Element nije u nizu\n");
    else
      printf("Element je u nizu na poziciji %d\n", i);
    printf("----\n"):
    /* Binarna pretraga */
157
    printf("Binarna pretraga\n");
    clock_gettime(CLOCK_REALTIME, &time3);
159
    i = binarna_pretraga(a, n, x);
    clock_gettime(CLOCK_REALTIME, &time4);
161
    if (i == -1)
      printf("Element nije u nizu\n");
163
    else
      printf("Element je u nizu na poziciji %d\n", i);
165
    printf("----\n");
167
    /* Interpolaciona pretraga */
    printf("Interpolaciona pretraga\n");
    clock_gettime(CLOCK_REALTIME, &time5);
171
    i = interpolaciona_pretraga(a, n, x);
    clock_gettime(CLOCK_REALTIME, &time6);
    if (i == -1)
      printf("Element nije u nizu\n");
    else
      printf("Element je u nizu na poziciji %d\n", i);
```

```
printf("----\n");
177
    /* Upisujemo podatke o izvrsavanju programa u log fajl */
    if ((f = fopen("vremena.txt", "a")) == NULL) {
      fprintf(stderr, "Neuspesno otvaranje log fajla.\n");
181
      exit(EXIT_FAILURE);
183
    fprintf(f, "Dimenzija niza od %d elemenata.\n", n);
    fprintf(f, "\tLinearna pretraga:%10ld ns\n",
            (time2.tv_sec - time1.tv_sec) * 1000000000 +
187
            time2.tv_nsec - time1.tv_nsec);
    fprintf(f, "\tBinarna: %19ld ns\n",
            (time4.tv_sec - time3.tv_sec) * 1000000000 +
            time4.tv_nsec - time3.tv_nsec);
    fprintf(f, "\tInterpolaciona: %12ld ns\n\n",
            (time6.tv\_sec - time5.tv\_sec) * 1000000000 +
193
            time6.tv_nsec - time5.tv_nsec);
195
    fclose(f);
197
    return 0;
  }
199
```

```
#include <stdio.h>
  int lin_pretgraga_rek(int a[], int n, int x)
  {
    int tmp;
    /* izlaz iz rekurzije */
    if (n \le 0)
      return -1;
    /* ako je prvi element trazeni */
    if (a[0] == x)
                                   /* if (a[n-1] == x) */
      return 0;
                                   /* return n - 1; */
    /* pretraga ostatka niza */
12
    tmp = lin_pretgraga_rek(a + 1, n - 1, x);
    return tmp < 0 ? tmp : tmp + 1;
14
    /* return lin_pretgraga_rek(a, n - 1, x); */
16 }
 int bin_pretgraga_rek(int a[], int 1, int d, int x)
18
    int srednji;
20
    if (1 > d)
22
    /* srednja pozicija na kojoj se trazi vrednost x */
    srednji = (1 + d) / 2;
24
    /* ako je sredisnji element trazeni */
    if (a[srednji] == x)
26
      return srednji;
    /* ako je trazeni broj veci od srednjeg, pretrazujemo desnu
       polovinu niza */
```

```
if (a[srednji] < x)</pre>
      return bin_pretgraga_rek(a, srednji + 1, d, x);
    /* ako je trazeni broj manji od srednjeg, pretrazujemo levu
32
       polovinu niza */
34
    else
      return bin_pretgraga_rek(a, l, srednji - 1, x);
36 }
  int interp_pretgraga_rek(int a[], int 1, int d, int x)
40 {
    int p;
    if (x < a[1] || x > a[d])
42
      return -1;
    if (a[d] == a[1])
44
      return 1;
    /* pozicija na kojoj se trazi vrednost x */
    p = 1 + (d - 1) * (x - a[1]) / (a[d] - a[1]);
    if (a[p] == x)
48
      return p;
    if (a[p] < x)
      return interp_pretgraga_rek(a, p + 1, d, x);
52
      return interp_pretgraga_rek(a, 1, p - 1, x);
54 }
56 #define MAX 1024
58 int main()
  {
    int a[MAX];
60
    int x;
    int i, indeks;
62
    /* ucitavamo trazeni broj */
64
    scanf("%d", &x);
66
    /* ucitavamo elemente niza sve do kraja ulaza - ocekujemo da
       korisnik pritisne CTRL+D za naznaku kraja */
68
    while (scanf("%d", &a[i]) == 1) {
70
      i++;
72
    printf("Linearna pretraga\n");
74
    indeks = lin_pretgraga_rek(a, i, x);
    if (indeks == -1)
      printf("Element se ne nalazi u nizu.\n");
78
      printf("Pozicija elementa je %d.\n", indeks);
80
    printf("Binarna pretraga\n");
    indeks = bin_pretgraga_rek(a, 0, i - 1, x);
82
    if (indeks == -1)
      printf("Element se ne nalazi u nizu.\n");
    else
```

```
printf("Pozicija elementa je %d.\n", indeks);

printf("Interpolaciona pretraga\n");
indeks = interp_pretgraga_rek(a, 0, i - 1, x);
if (indeks == -1)
    printf("Element se ne nalazi u nizu.\n");
else
    printf("Pozicija elementa je %d.\n", indeks);

return 0;
}
```

```
#include <stdio.h>
  #include <stdlib.h>
  #include <string.h>
  #define MAX_STUDENATA 128
6 #define MAX_DUZINA 16
s /* O svakom studentu imamo 3 informacije i njih objedinjujemo u
     strukturu kojom cemo predstavljati svakog studenta. */
10 typedef struct {
    /* indeks mora biti tipa long jer su podaci u datoteci
       preveliki za int, npr. 20140123 */
12
    long indeks;
    char ime[MAX_DUZINA];
    char prezime[MAX_DUZINA];
16 } Student;
18 /* Ucitan niz studenata ce biti sortiran prema indeksu, jer cemo
     ih, redom, kako citamo smestati u niz, a u datoteci su vec
     smesteni sortirani rastuce prema broju indeksa. Iz tog
     razloga pretragu po indeksu cemo vrsiti binarnom pretragom,
     dok pretragu po prezimenu moramo vrsiti linearno, jer nemamo
     garancije da postoji uredjenje po prezimenu. */
24
  /* Funkcija trazi u sortiranom nizu a[] duzine n broj x. Vraca
     indeks pozicije nadjenog elementa ili -1, ako element nije
     pronadjen */
28 int binarna_pretraga(Student a[], int n, long x)
    int levi = 0;
    int desni = n - 1;
    int srednji;
32
    /* Dokle god je indeks levi levo od indeksa desni */
    while (levi <= desni) {
      /* Racunamo srednji indeks */
      srednji = (levi + desni) / 2;
      /* Ako je srednji element veci od x, tada se x mora nalaziti
         u levoj polovini niza */
38
      if (x < a[srednji].indeks)
        desni = srednji - 1;
40
      /* Ako je srednji element manji od x, tada se x mora
```

```
nalaziti u desnoj polovini niza */
      else if (x > a[srednji].indeks)
        levi = srednji + 1;
44
      else
        /* Ako je srednji element jednak x, tada smo pronasli x na
46
           poziciji srednji */
        return srednji;
48
    /* ako nije pronadjen vracamo -1 */
    return -1;
52 }
54 int linearna_pretraga(Student a[], int n, char x[])
  {
    int i;
56
    for (i = 0; i < n; i++)
      /* poredimo prezime i-tog studenta i poslato x */
      if (strcmp(a[i].prezime, x) == 0)
        return i;
60
    return -1;
62 }
64 /* Main funkcija mora imate argumente jer se ime datoteke dobija
     kao argument komandne linije */
int main(int argc, char *argv[])
    /* Ucitacemo redom sve studente iz datoteke u niz. */
68
    Student dosije[MAX_STUDENATA];
    FILE *fin = NULL;
70
    int i;
    int br_studenata = 0;
    long trazen_indeks = 0;
    char trazeno_prezime[MAX_DUZINA];
74
    /* Proveravamo da li nam je korisnik prilikom poziva prosledio
       ime_datoteke sa informacijama o studentima */
    if (argc != 2) {
78
      fprintf(stderr,
               "Greska: Program se poziva sa %s ime_datoteke\n",
80
              argv[0]);
      exit(EXIT_FAILURE);
82
84
    /* Otvaramo datoteku */
    fin = fopen(argv[1], "r");
86
    if (fin == NULL) {
      fprintf(stderr,
               "Neuspesno otvaranje datoteke %s za citanje\n",
              argv[1]);
90
      exit(EXIT_FAILURE);
92
    /* Citamo sve dok imamo red sa informacijama o studentu */
94
    i = 0;
    while (1) {
      if (i == MAX_STUDENATA)
```

```
break;
       if (fscanf
           (fin, "%ld %s %s", &dosije[i].indeks, dosije[i].ime,
100
            dosije[i].prezime) != 3)
         break;
       i++;
    }
104
    br_studenata = i;
106
    /* Nakon citanja datoteka nam vise nije neophodna i odmah je
        zatvaramo */
108
    fclose(fin);
    printf("Unesite indeks studenta cije informacije zelite: ");
    scanf("%ld", &trazen_indeks);
    i = binarna_pretraga(dosije, br_studenata, trazen_indeks);
    if (i == -1)
114
      printf("Ne postoji student sa indeksom %ld\n",
              trazen_indeks);
    else
      printf("Indeks: %ld, Ime i prezime: %s %s\n",
118
              dosije[i].indeks, dosije[i].ime, dosije[i].prezime);
120
    printf("Unesite prezime studenta cije informacije zelite: ");
    scanf("%s", trazeno_prezime);
    i = linearna_pretraga(dosije, br_studenata, trazeno_prezime);
    if (i == -1)
124
      printf("Ne postoji student sa prezimenom %s\n",
              trazeno_prezime);
126
      printf("Indeks: %ld, Ime i prezime: %s %s\n",
128
              dosije[i].indeks, dosije[i].ime, dosije[i].prezime);
130
    return 0;
  }
132
```

```
#include <stdio.h>
#include <string.h>
#include <math.h>

#include <stdlib.h>

6 /* struktura koja opisuje tacku u ravni */
typedef struct Tacka {
    float x;
    float y;

10 } Tacka;

/* funkcija koja racuna rastojanje zadate tacke od koordinatnog
    pocetka (0,0) */
float rastojanje(Tacka A)
{
    return sqrt(A.x * A.x + A.y * A.y);
}
```

```
/* funkcija koja pronalazi tacku najblizu koordinatnom pocetku u
    nizu zadatih tacaka t dimenzije n */
  Tacka najbliza_koordinatnom(Tacka t[], int n)
22 {
    Tacka najbliza;
    int i;
24
    najbliza = t[0];
    for (i = 1; i < n; i++) {
      if (rastojanje(t[i]) < rastojanje(najbliza)) {</pre>
        najbliza = t[i];
28
      }
    }
30
    return najbliza;
32 }
  /* funkcija koja pronalazi tacku najblizu x osi u nizu zadatih
     tacaka t dimenzije n */
  Tacka najbliza_x_osi(Tacka t[], int n)
38
    Tacka najbliza;
    int i;
40
    najbliza = t[0];
    for (i = 1; i < n; i++) {
      if (fabs(t[i].x) < fabs(najbliza.x)) {</pre>
        najbliza = t[i];
44
      }
    }
46
    return najbliza;
48 }
  /* funkcija koja pronalazi tacku najblizu y osi u nizu zadatih
     tacaka t dimenzije n */
52 Tacka najbliza_y_osi(Tacka t[], int n)
    Tacka najbliza;
54
    int i;
    najbliza = t[0];
    for (i = 1; i < n; i++) {
      if (fabs(t[i].y) < fabs(najbliza.y)) {</pre>
58
        najbliza = t[i];
      }
60
    }
    return najbliza;
62
  }
  #define MAX 1024
66
  int main(int argc, char *argv[])
68 {
    FILE *ulaz;
    Tacka tacke[MAX];
70
    Tacka najbliza;
    int i, n;
```

```
/* ocekujemo da korisnik unese barem ime izvrsne verzije
        programa i ime datoteke sa tackama */
    if (argc < 2) {
76
      fprintf(stderr,
               "koriscenje programa: %s ime_datoteke\n", argv[0]);
78
      return EXIT_FAILURE;
    }
80
    /* otvaramo datoteku za citanje */
    ulaz = fopen(argv[1], "r");
    if (ulaz == NULL) {
84
      fprintf(stderr, "Greska prilikom otvaranja datoteke %s!\n",
               argv[1]);
      return EXIT_FAILURE;
    }
88
    /* sve dok ima tacaka u datoteci, smestamo ih u niz sa
       tackama; i predstavlja indeks tekuce tacke */
92
    while (fscanf(ulaz, "%f %f", &tacke[i].x, &tacke[i].y) == 2) {
      i++;
94
    n = i;
96
    /* Proveravamo koji su dodatni argumenti komandne linije. Ako
98
       nema dodatnih argumenata */
    if (argc == 2)
100
      /* trazimo najblizu tacku u odnosu na koordinatni pocetak */
      najbliza = najbliza_koordinatnom(tacke, n);
    /* Inace proveravamo koji je dodatni argument. Ako je u
       pitanju opcija -x */
104
    else if (strcmp(argv[2], "-x") == 0)
      /* racunamo rastojanje u odnosu na x osu */
106
      najbliza = najbliza_x_osi(tacke, n);
    /* ako je u pitanju opcija -y */
108
    else if (strcmp(argv[2], "-y") == 0)
       /* racunamo rastojanje u odnosu na y osu */
      najbliza = najbliza_y_osi(tacke, n);
    else {
112
       /* ako nije zadata opcija -x ili -y, ispisujemo obavestenje
          za korisnika i prekidamo izvrsavanje programa */
114
      fprintf(stderr, "Pogresna opcija\n");
      return EXIT_FAILURE;
116
    }
118
    /* stampamo koordinate trazene tacke */
    printf("%g %g\n", najbliza.x, najbliza.y);
120
    fclose(ulaz);
124
    return 0;
  }
```

```
#include <stdio.h>
  #include <math.h>
  /* tacnost */
  #define EPS 0.001
  int main()
  {
    double 1, d, s;
10
    /* posto je u pitanju interval [0, 2] leva granica je 0, a
       desna 2 */
12
    1 = 0;
    d = 2;
14
    /* sve dok ne pronadjemo trazenu vrednost argumenta */
16
    while (1) {
      /* pronalazimo sredinu intervala */
18
      s = (1 + d) / 2;
      /* ako je vrednost kosinusa u ovoj tacki manja od zadate
20
         tacnosti, prekidamo pretragu */
      if (fabs(cos(s)) < EPS) {
22
        break;
24
      /* ako je nula u levom delu intervala, nastavljamo pretragu
         na intervalu [1, s] */
26
      if (\cos(1) * \cos(s) < 0)
        d = s;
28
      else
        /* inace, nastavljamo pretragu na intervalu [s, d] */
30
        1 = s;
    }
32
    /* stampamo vrednost trazene tacke */
34
    printf("%g\n", s);
    return 0;
 }
38
```

```
#include<stdio.h>

int main(){
   printf("Hello bitovi!\n");
   return 0;
}
```

Glava 4

Dinamičke strukture podataka

4.1 Liste

Zadatak 4.1 Napisati program koji koristi jednostruko povezanu listu za čuvanje elemenata koji se unose sa standardnog ulaza. Unošenje novih brojeva u listu prekida se učitavanjem kraja ulaza (EOF). Svako dodavanje novog broja u listu ispratiti ispisivanjem trenutnog sadržaja liste.

- (a) Definisati strukturu Cvor koja predstavlja čvor liste.
- (b) Milena:Da li ovde treba dodati i funkciju koja kreira cvor? Nemam resenje kod sebe pa ne znam kako to vec ide, ali mislim da bi trebalo
- (c) Napisati funkciju koja dodaje novi elemenat na početak liste.
- (d) Napisati funkciju koja dodaje novi elemenat na kraj liste.
- (e) Milena: Da li bi ovo trebalo izdvojiti u poseban zadatak? Nekako, ako dodajemo na pocetak i kraj, nemamo garanciju sortiranosti liste, tako da mi to nekako deluje da smo dva zadatka strpali u jedan. Napisati funkciju koja dodaje novi elemenat u listu tako da lista ostane rastuće sortirana.
- (f) Napisati funkciju koja oslobađa memoriju koju je zauzela lista.
- (g) Milena: Ova funkcija bi mogla razlicito da se implementira sa pretpostavkom da je lista sortirana i da nije sortirana, i zato mi dodatno deluje da bi ta dva zadatka trebalo razdvojiti Napisati funkciju koja pretražuje listu za elementom koji ima vrednost koja je argument funkcije.
- (h) Napisati funkciju koja briše sve elemente u listi koji imaju vrednost koja je argument funkcije.
- (i) Milena: Da li ovde nedostaje funckija koja oslobadja celu memoriju?

Sve funckije za rad sa listom najpre implementirati iterativno, a zatim i rekurzivno.

Zadatak 4.2 Napisati program koji koristi dvostruko povezanu listu za čuvanje celih brojeva koji se unose sa standardnog ulaza. Unošenje novih brojeva u listu se prekida učitavanjem kraja ulaza (EOF). Svako dodavanje novog broja u listu ispratiti ispisivanjem trenutnog sadržaja liste. I ovde isto mozda razdvojiti sortiranost od obične liste.

- (a) Napisati funkciju koja dodaje novi elemenat na početak liste.
- (b) Napisati funkciju koja dodaje novi elemenat na kraj liste.
- (c) Napisati funkciju koja dodaje novi elemenat u listu tako da lista ostane rastuće sortirana.
- (d) Napisati funkciju koja oslobađa memoriju koju je zauzela lista.
- (e) Napisati funkciju koja pretražuje listu za elementom koji ima vrednost koja je argument funkcije.
- (f) Napisati funkciju koja briše sve elemente u listi koji imaju vrednost koja je argument funkcije.

Sve funckije za rad sa listom implementirati iterativno.

Zadatak 4.3 Sadržaj datoteke je aritmetički izraz koji može sadržati zagrade {, [i (. Napisati program koji učitava sadržaj datoteke i korišćenjem steka utvrđuje da li su zagrade u aritmetičkom izrazu dobro uparene. Program štampa odgovarajuću poruku na standardni izlaz. Milena: promenjeni test primeri, voditi racuna u resenjima sta se stampa!

```
Test 1

| Datoteka: {[23 + 5344] * (24 - 234)} - 23
| Izlaz: Zagrade su ispravno uparene.

| Test 2
| Datoteka: {[23 + 5] * (9 * 2)} - {23}
| Izlaz: Zagrade su ispravno uparene.

| Test 3
| Datoteka: {[2 + 54) / (24 * 87)} + (234 + 23)
| Izlaz: Zagrade nisu ispravno uparene.
```

Zadatak 4.4 Napisati program koji proverava ispravnost uparivanja etiketa u HTML datoteci. Ime datoteke se zadaje kao argument komandne linije . Milena: A sta ako se ne navede argument komandne linije? Uputstvo: za rešavanje problema koristiti stek implementiran preko listi čiji su čvorovi HTML etikete.

Test 1

Test 2

```
Poziv: ./a.out datoteka.html
Datoteka.html: Izlaz:
<html> Neispravno uparene etikete.
<head><title>Primer</title></head>
<body>
</html>
```

Test 3

```
Poziv: ./a.out datoteka.html

Datoteka.html: Izlaz:

<html> Neispravno uparene etikete.

<head><title>Primer</title></head>

<body>

</body>
```

Zadatak 4.5 Milena: Problem sa ovim zadatkom je sto je program najpre na usluzi korisnicima, a zatim na usluzi sluzbeniku i to nekako zbunjuje u formulaciji. Formulacija mi nije bila jasna bez citanja resenja, pokusala sam da je preciziran, u nastavku je izmenjena formulacija.

Medjutim, ja i dalje nisam bas zadovoljna i zato predlazem da se formulacija izmeni tako da je program stalno na usluzi sluzbeniku. Program ucitva podatke o prijavljenim korisnicima iz datoteke. Sluzbenik odlucuje da li ce da obradjuje redom korisnike, ili ce u nekim situacijama da odlozi rad sa korisnikom i stavi ga na kraj reda. Program ga uvek pita da na osnovu jmbg-a i zahteva odluci da li ce ga staviti na kraj reda, ako hoce, on ide na kraj reda, ako nece, onda sluzbenik daje odgovor na zahtev i jmbg, zahtev i odgovor se upisuju u izlaznu datoteku.

Napisati program kojim se simulira rad jednog šaltera na kojem se prvo zakazuju termini, a potom službenik uslužuje korisnike redom, kako su se prijavljivali.

Korisnik se prijavljuje unošenjem svog jmbg broja (niska koja sadrži 13 karaktera) i zahteva (niska koja sadrži najviše 999 karaktera). Prijavljivanje korisnika se

prekida unošenjem karaktera za kraj ulaza (EOF).

Službenik redom proziva korisnike čitanjem njihovog jmbg broja, a zatim odlučuje da li korisnika vraća na kraj reda ili ga odmah uslužuje. Službeniku se postavlja pitanje Da li korisnika vracate na kraj reda? i ukoliko on da odgovor Da, korisnik se vraća na kraj reda. Ukoliko odgovor nije Da, tada službenik čita korisnikov zahtev. Posle svakog 10 usluženog korisnika, službeniku se nudi mogućnost da prekine sa radom, nevezano od broja korisnika koji i dalje čekaju u redu.

Za čuvanje korisničkih zahteva koristiti red implementiran korišćenjem listi.

Zadatak 4.6 Milena: Dodati sta se desava ako nije zadat argument komandne linije ili ako datoteka ne postoji Napisati program koji prebrojava pojavljivanja etiketa HTML datoteke čije se ime zadaje kao argument komandne linije. Rezultat prebrojavanja ispisati na standardni izlaz. Etikete smeštati u listu, a za formiranje liste koristiti strukturu:

```
typedef struct _Element
{
  unsigned broj_pojavljivanja;
  char etiketa[20];
  struct _Element *sledeci;
} Element;
```

Test 1

```
Poziv: ./a.out datoteka.html
Datoteka.html:
                                                     Izlaz:
<html>
                                                     a - 4
                                                     br - 1
  <head><title>Primer</title></head>
                                                     h1 - 2
    <h1>Naslov</h1>
                                                     body - 2
    Danas je lep i suncan dan. <br>
                                                     title - 2
    A sutra ce biti jos lepsi.
                                                     head - 2
    <a link="http://www.google.com"> Link 1</a>
                                                     html - 2
    <a link="http://www.math.rs"> Link 2</a>
  </body>
</html>
```

Zadatak 4.7 Milena: i ovde dodati sta ako nema argumenata i ako nema datoteka, kao i u svim ostalim zadacima, a ne bih stalno ovaj komentar ponavljala. Takodje, malo me muci u ovom zadatku sto nema neki smisao. Naime, ako se samo vrsi ucitavanje iz datoteka i ispisivanje, onda su ove liste zapravo visak jer isti rezultat moze da se dobije i bez koriscenja listi. Zato mi fali da program uradi nesto sto ne bi mogao da uradi bez koriscenja listi, npr da na osnovu unetog broja ispisuje svaki n-ti broj rezultujuce liste pa to u nekoj petlji da korisnik moze da ispisuje za razlicite unete n ili tako nesto...

Napisati program koji objedinjuje dve sortirane liste. Funkcija ne treba da kreira nove čvorove, već da samo postojeće čvorove preraspodeli. Prva lista se učitava iz datoteke koja se zadaje kao prvi argument komandne linije, a druga iz datoteke čije

se ime zadaje kao drugi argument komandne linije. Rezultujuću listu ispisati na standardni izlaz.

Test 1

```
Poziv: ./a.out dat1.txt dat2.txt dat1.txt: 2 4 6 10 15 dat2.txt: 5 6 11 12 14 16 Izlaz: 2 4 5 6 6 10 11 12 14 15 16
```

Zadatak 4.8 Napisati funkciju koja formira listu studenata tako što se podaci o studentima učitavaju iz datoteke čije se ime zadaje kao argument komandne linije. U svakom redu datoteke nalaze se podaci o studentu i to broj indeksa, ime i prezime. Napisati rekurzivnu funkciju koja određuje da li neki student pripada listi ili ne. Ispisati zatim odgovarajuću poruku i rekurzivno osloboditi memoriju koju je data lista zauzimala. Student se traži na osnovu broja indeksa, koji se zadaje sa standardnog ulaza.

Test 1

```
Poziv: ./a.out studenti.txt
Datoteka: Ulaz: Izlaz:
123/2014 Marko Lukic 3/2014 da: Ana Sokic
3/2014 Ana Sokic 235/2008 ne
43/2013 Jelena Ilic 41/2009 da: Marija Zaric
41/2009 Marija Zaric
13/2010 Milovan Lazic
```

Milena: Imamo dva zadatka sa labelom 608!

Zadatak 4.9 Neka su date dve jednostruko povezane liste L1 i L2. Napisati funkciju koja od tih lista formira novu listu L koja sadrži alternirajući raspoređene elemente lista L1 i L2 (prvi element iz L1, prvi element iz L2, drugi element L1, drugi element L2, itd). Ne formirati nove čvorove, već samo postojeće čvorove rasporediti u jednu listu. Prva lista se učitava iz datoteke koja se zadaje kao prvi argument komandne linije, a druga iz datoteke čije se ime zadaje kao drugi argument komandne linije. Rezultujuću listu ispisati na standardni izlaz. Milena: Sta ako je neka lita duza? To precizirati. I ovde me muci sto nedostaje neki smisao zadatku, nesto sto ne bi moglo da se uradi da nismo kristili liste.

Test 1

```
Poziv: ./a.out dat1.txt dat2.txt dat1.txt: 2 4 6 10 15 dat2.txt: 5 6 11 12 14 16 Izlaz: 2 5 4 6 6 11 10 12 15 14 16
```

Zadatak 4.10 Data je datotka brojevi.txt koja sadrži cele brojeve, po jedan u svakom redu.

- (a) Napisati funkciju koja iz zadate datoteke učitava brojeve i smešta ih u listu.
- (b) Napisati funkciju koja u jednom prolazu kroz zadatu listu celih brojeva pronalazi maximalan strogo rastući podniz.

Napisati program koji u datoteku Rezultat.txt upisuje nađeni strogo rastući podniz. Milena: I ovde me muci sto bi zadatak mogao da se resi i bez koriscenja listi...

Milena: Prirodni oblik testa ovde bi bio horizontalan, a ne ovako vertikalan.

7	7 /	1
1	ρST	- /

Ulaz:	brojevi.txt 43 12 15 16 4 2	I:	zlaz:	Rezultat.txt 12 15 16
	16 4 2			

Zadatak 4.11 Grupa od n plesača na kostimima imaju brojeve od 1 do n, redom, u smeru kazaljke na satu. Plesači izvode svoju plesnu tačku tako što formiraju krug iz kog najpre izlazi k-ti plesač. Odbrojava se počevši od plesača označenog brojem 1 u smeru kretanja kazaljke na satu. Preostali plesači obrazuju manji krug iz kog opet izlazi k-ti plesač. Odbrojavanje počinje od sledećeg suseda prethodno izbačenog, opet u smeru kazaljke na satu. Izlasci iz kruga se nastavljaju sve dok svi plesači ne budu isključeni. Celi brojevi n, k (k < n) se učitavaju sa standardnog ulaza. Napisati program koji će na standardni izlaz ispisati redne brojeve plesača u redosledu napuštanja kruga. Uputstvo: u implementaciji koristiti kružnu listu.

Test 1

```
Ulaz: 5 3
Izlaz: 3 1 5 2 4
```

Milena: Bilo bi lepo dodati i prethodni zadatak u kojem se smer izbacivanja stalno menja, tako da se onda korsti dvostruko povezana kružna lista.

4.2 Drveta

Zadatak 4.12

(a) Definisati strukturu Cvor kojom se opisuje čvor binarnog pretraživačkog drveta koja sadrži ceo broj b i pokazivače levo i desno redom na levo i desno

poddrvo¹.

- (b) Napisati funkciju Cvor* napravi_cvor(int b) koja alocira memoriju za novi čvor drveta i vrši njegovu inicijalizaciju zadatim celim brojem b.
- (c) Napisati funkciju Cvor* dodaj_u_drvo(Cvor* koren, int b) koja u drvo sa korenom koren dodaje ceo broj b.Funkcija vraća pokazivač na novodobijeno drvo.
- (d) Napisati funkciju Cvor* pretrazi_drvo(Cvor* koren, int b) koja proverava da li se ceo broj b nalazi u drvetu sa korenom koren. Funkcija vraća pokazivač na čvor drveta koji sadrži traženu vrednost ili NULL ukoliko takav čvor ne postoji.
- (e) Napisati funkciju Cvor* pronadji_najmanji(Cvor* koren) koja pronalazi čvor koji sadrži najmanju vrednost u drvetu sa korenom koren.
- (f) Napisati funkciju Cvor* pronadji_najveci(Cvor* koren) koja pronalazi čvor koji sadrži najveću vrednost u drvetu sa korenom koren.
- (g) Napisati funkciju Cvor* obrisi_element(Cvor* koren, int b) koja briše čvor koji sadrži vrednost b iz zadatog drveta sa korenom koren i vraća pokazivač na novodobijeno drvo.
- (h) Napisati funkciju void ispisi_drvo_infiksno(Cvor* koren) koja infiksno ispisuje sadržaj drveta sa korenom koren. Infiksni ispis podrazumeva ispis levog poddrveta, korena, a zatim i desnog poddrveta.
- (i) Napisati funkciju void ispisi_drvo_prefiksno(Cvor* koren) koja prefiksno ispisuje sadržaj drveta sa korenom koren. Prefiksni ispis podrazumeva ispis korena, levog poddrveta, a zatim i desnog poddrveta.
- (j) Napisati funkciju void ispisi_drvo_postfiksno(Cvor* koren) koja postfiksno ispisuje sadržaj drveta sa korenom koren. Postfiksni ispis podrazumeva ispis levog poddrveta, desnog poddrveta, a zatim i korena.
- (k) Napisati funkciju Cvor* oslobodi_drvo(Cvor* koren) koja oslobađa memoriju zauzetu drvetom sa korenom koren.

Korišćenjem gorenavedenih funkcija, napisati program koji sa standardnog ulaza učitava cele brojeve sve do kraja ulaza, dodaje ih u binarno pretraživačko drvo i ispisuje ga u svakoj od navedenih notacija. Zatim omogućiti unos još dva cela broja i demonstrirati rad funkcije za pretragu nad prvim unetim brojem i rad funkcije za brisanje elemenata nad drugim unetim brojem.

 $^{^1\}mathrm{U}$ zadacima ove glave u kojima nije eksplicitno naglašen sadržaj čvorova drveta, podrazumevaće se ova struktura.

Test 1

```
Unesite brojeve (CRL+D za kraj unosa): 7 2 1 9 32 18
Infiksni ispis: 1 2 7 9 18 32
Prefiksni ispis: 7 2 1 9 32 18
Postfiksni ispis: 1 2 18 32 9 7
Trazi se broj: 11
Broj se ne nalazi u drvetu!
Brise se broj: 7
Rezultujuce drvo: 1 2 9 18 32

Unesite brojeve (CRL+D za kraj unosa): 8 -2 6 13 24 -3
Infikeni ispis: -3 -2 6 8 13 24
```

```
Unesite brojeve (CRL+D za kraj unosa): 8 -2 6 13 24 -3 Infiksni ispis: -3 -2 6 8 13 24 Prefiksni ispis: 8 -2 -3 6 13 24 Postfiksni ispis: -3 6 -2 24 13 8 Trazi se broj: 6 Broj se nalazi u drvetu! Brise se broj: 14 Rezultujuce drvo: -3 -2 6 8 13 24
```

Zadatak 4.13 Napisati program koji izračunava i na standardnom izlazu ispisuje broj pojavljivanja svake reči datoteke čije se ime zadaje kao argument komandne linije. Program realizovati korišćenjem binarnog pretraživackog drveta uređenog leksikografski prema rečima ne uzimajući u obzir razliku između malih i velikih slova. Ukoliko prilikom pokretanja programa korisnik ne navede ime ulazne datoteke ispisati poruku "Nedostaje ime ulazne datoteke!".

```
Test 1
                                                  Test 2
                                   Ulazna datoteka suma.txt:
Ulazna datoteka test.txt:
Sunce utorak raCunar SUNCE
                                   lipa zova hrast ZOVA breza LIPA
   programiranje
jabuka PROGramiranje sunCE
                                   Poziv: ./a.out suma.txt
   JABUka
                                    Izlaz:
Poziv: ./a.out test.txt
                                    breza: 1
                                   hrast: 1
Izlaz:
                                   lipa: 2
jabuka: 2
                                    zova: 2
programiranje: 2
racunar: 1
sunce: 3
utorak: 1
```

Zadatak 4.14 U svakoj liniji datoteke čije se ime zadaje sa standardnog ulaza nalazi se ime osobe, prezime osobe i njen broj telefona, npr. Pera Peric 064/123-4567. Napisati program koji korišćenjem binarnog pretraživačkog drveta implementira mapu koja sadrži navedene informacije i koja će omogućiti pretragu brojeva telefona za zadata imena i prezimena. Imena i prezimena se unose sve

do unosa reči KRAJ, a za svaki od unetih podataka ispisuje se ili broj telefona ili obaveštenje da traženi broj nije u imeniku. Može se pretpostaviti da imena, prezimena i brojevi telefona neće biti duži od 30 karaktera.

Test 1

```
Ulazna datoteka imenik.txt:
Pera Peric 011/3240-987
Marko Maric 064/1234-987
Mirko Maric 011/589-333
Sanja Savkovic 063/321-098
Zika Zikic 021/759-858

.....
Unesite ime datoteke: imenik.txt
Unesite ime i prezime: Pera Peric
Broj je: 011/3240-987
Unesite ime i prezime: Marko Markovic
Broj nije u imeniku!
Unesite ime i prezime: KRAJ
```

Zadatak 4.15 U datoteci prijemni.txt nalaze se podaci o prijemnom ispitu učenika jedne osnovne škole tako što je u svakom redu navedeno ime i prezime učenika (niz najviše 50 karaktera), broj poena na osnovu uspeha (realan broj), broj poena na prijemnom ispitu iz matematike (realan broj) i broj poena na prijemnom ispitu iz maternjeg jezika (realan broj). Za učenika koji u zbiru osvoji manje od 10 poena na oba prijemna ispita smatra se da nije položio prijemni. Napisati program koji na osnovu podataka iz ove datoteke formira i prikazuje rang listu učenika. Rang lista sadrži redni broj učenika, njegovo ime i prezime, broj poena na osnovu uspeha, broj poena na prijemnom ispitu iz matematike, broj poena na prijemnom ispitu iz maternjeg jezika i ukupan broj poena i sortirana je opadajuće po ukupnom broju poena. Na rang listi se prvo navode oni učenici koji su položili prijemni ispit, a potom i učenici koji ga nisu položili. Između ovih dveju grupa učenika postoji i horizontalna linija koja ih vizuelno razdvaja.

Test 1

```
Datoteka prijemni.txt:
Marko Markovic 45.4 12.3 11
Milan Jevremovic 35.2 1.3 9
Maja Agic 60 19 20
Nadica Zec 54.2 10 15.8
Jovana Milic 23.3 2 5.6

Izlaz:
1. Maja Agic 60 19 20 99
2. Nadica Zec 54.2 10 15.8 80
3. Marko Markovic 45.4 12.3 11 68.7
4. Milan Jevremovic 35.2 1.3 9 45.5
------
5. Jovana Milic 23.3 2 5.6 30.9
```

Zadatak 4.16 Napisati program koji implementira podsetnik za rođendane. Informacije o rođendanima se nalaze u datoteci čije se ime zadaje kao argument komandne linije u formatu *Ime Prezime DD.MM.YYYY*. - za svaku osobu po jedna linija datoteke. Korisnik unosi datum u naznačenom formatu, a program pronalazi i ispisuje ime i prezime osobe čiji je rođendan zadatog datuma ili ime i prezime osobe koja prva sledeća slavi rođendan. Ovaj postupak treba ponavljati dokle god korisnik ne unese komandu za kraj rada. Informacije o rođendanima uneti u mapu koja je implementirana preko binarnog pretraživačkog stabla i uređena po datumima. Može se pretpostaviti da će svi korišćeni datumi biti validni i u formatu DD.MM.YYYY.

Test 1

```
Ulazna datoteka rodjendani.txt:
Marko Markovic 12.12.1990.
Milan Jevremovic 04.06.1989.
Maja Agic 23.04.2000.
Nadica Zec 01.01.1993.
Jovana Milic 05.05.1990.

...
Unesite datum: 23.04.
Slavljenik: Maja Agic
Unesite datum: 01.01.
Slavljenik: Nadica Zec
Unesite datum: 01.05.
Slavljeni: Jovana Milic 05.05.
Unesite datum: CTRL+D
```

Zadatak 4.17 Dva binarna drveta su identična ako su ista po strukturi i sadržaju tj. ako oba korena imaju isti sadržaj i identična odgovarajuća podstabla. Napistati funkciju int identitet(Cvor* koren1, Cvor* koren2) koja proverava da li su binarna drveta koren1 i koren2 koja sadrže cele brojeve identicna, a zatim i glavni program koji testira njen rad. Elemente pojedinačnih drveta unositi sa standardnog ulaza sve do pojave broja 0.

```
Test 1

| Ulaz:
| Prvo drvo: 10 5 15 3 2 4 30 12 14 13 0 |
| Drugo drvo: 10 15 5 3 4 2 12 14 13 30 0 |
| Izlaz:
| Jesu identicna. |
| Test 2 |
| Ulaz:
| Prvo drvo: 10 5 15 4 3 2 30 12 14 13 0 |
| Drugo drvo: 10 15 5 3 4 2 12 14 13 30 0 |
| Izlaz:
| Nisu identicna.
```

Zadatak 4.18 Napisati program koji za dva binarna pretraživačka drveta čiji se elementi zadaju sa standardnog ulaza, sve do kraja ulaza, ispisuje uniju, presek i razliku drveta.

Test 1

```
Ulaz:
Prvo drvo: 1 7 8 9 2 2
Drugo drvo: 3 9 6 11 1

Izlaz:
Unija: 1 2 3 6 7 8 9 11
Presek: 1 9
Razlika: 2 7 8
```

Zadatak 4.19 Napisati funkciju void sortiraj(int a[], int n) koja sortira niz celih brojeva a dimenzije n korišćenjem binarnog pretraživačkog drveta. Napisati i program koji sa standardnog ulaza učitava ceo broj n manji od 50 i niz a celih brojeva dužine n, poziva funkciju sortiraj i rezultat ispisuje na standardnom izlazu.

Test 1

```
Ulaz:
n: 7
a: 1 11 8 6 37 25 30

Izlaz:
1 6 8 11 25 30 37
```

Test 2

```
Ulaz:
n: 55

Izlaz:
Greska: pogresna dimenzija niza!
```

Zadatak 4.20 Dato je binarno pretraživačko drvo celih brojeva.

- (a) Napisati funkciju koja izračunava broj čvorova drveta.
- (b) Napisati funkciju koja izračunava broj listova drveta.
- (c) Napisati funkciju koja štampa pozitivne vrednosti listova drveta.
- (d) Napisati funkciju koja izračunava zbir čvorova drveta.
- (e) Napisati funkciju koja izračunava najveći element drveta.
- (f) Napisati funkciju koja izračunava dubinu drveta.
- (g) Napisati funkciju koja izračunava broj čvorova na *i*-tom nivou drveta.

4 Dinamičke strukture podataka

- (h) Napisati funkciju koja ispisuje sve elemente na i-tom nivou drveta.
- (i) Napisati funkciju koja izračunava maksimalnu vrednost na *i*-tom nivou drveta.
- (j) Napisati funkciju koja izračunava zbir čvorova na *i*-tom nivou drveta.
- (k) Napisati funkciju koja izračunava zbir svih vrednosti drveta koje su manje ili jednake od date vrednosti x.

Napisati program koji testira gorenavedene funkcije. Drvo formirati na osnovu vrednosti koje se unose sa standardnog ulaza, sve do kraja ulaza, a vrednosti parametara i i x pročitati kao argumente komandne linije.

Test 2

```
Poziv: ./a.out 2 15

Ulaz:
10 5 15 3 2 4 30 12 14 13

Izlaz:
broj cvorova: 10
broj listova: 4
pozitivni listovi: 2 4 13 30
zbir cvorova: 108
najveci element: 30
dubina stabla: 5
broj cvorova na 2. nivou: 3
elementi na 2. nivou: 30
zbir na 2. nivou: 45
zbir elemenata manjih ili jednakih od 15: 7
```

Zadatak 4.21 Dopuniti prethodni zadatak sledećim zahtevima:

- (a) Napisati funkciju koja pronalazi čvor u drvetu sa maksimalnim proizvodom vrednosti iz desnog poddrveta.
- (b) Napisati funkciju koja pronalazi čvor u drvetu sa najmanjom sumom vrednosti iz levog poddrveta.
- (c) Napisati funkciju koja štampa sadržaj svih čvorova drveta na putanji od korena do najdubljeg čvora.
- (d) Napisati funkciju koja štampa sadržaj svih čvorova drveta na putanji od korena do čvora koji ima najmanju vrednost u drvetu.

Test 1

```
Poziv: ./a.out 2 15

Ulaz:
10 5 15 3 2 4 30 12 14 13

Izlaz:
Cvor sa maksimalnim desnim proizvodom: 10
Cvor sa najmanjom levom sumom: 2
Putanja do najdubljeg cvora: 10 15 12 14 13
Putanja do najmanjeg cvora: 10 5 3 2
```

Zadatak 4.22 Napisati program koji ispisuje sadržaj binarnog pretraživačkog drveta po nivoima.

Test 1

```
Ulaz:
10 5 15 3 2 4 30 12 14 13

Izlaz:
0.nivo: 10
1.nivo: 5 15
2.nivo: 3 12 30
3.nivo: 2 4 14
4.nivo: 13
```

Zadatak 4.23 Dva binarna stabla su *slična kao u ogledalu* ako su ili oba prazna ili ako oba nisu prazna i levo poddrvo svakog drveta je *slično kao u ogledalu* desnom poddrvetu onog drugog (bitna je struktura drveta, ali ne i njihov sadržaj). Napisati funkciju koja proverava da li su dva binarna pretraživačka drveta *slična kao u ogledalu*, a potom i program koji testira rad funkcije nad drvetima čiji se elementi unose sa standardnog ulaza sve do unosa broja 0 i to redom za prvo drvo, pa zatim i za drugo drvo.

$Test\ 1$

```
Ulaz:
Prvo drvo: 11 20 5 3
Drugo drvo: 8 14 30 1

Izlaz:
Jesu slicna kao u ogledalu.
```

```
Test 2

| Ulaz:
| Prvo drvo: 11 20 5 3
| Drugo drvo: 8 20 15

| Izlaz:
| Nisu slicna kao u ogledalu.
```

Zadatak 4.24 AVL-drvo je binarno drvo pretrage kod koga apsolutna razlika visina levog i desnog poddrveta svakog elementa nije veća od jedan. Napisati funkciju int avl(Cvor* koren) koja izračunava broj čvorova drveta sa korenom koren koji ispunjavaju uslov za AVL stablo. Napisati zatim i glavni program koji ispisuje rezultat avl funkcije za drvo čiji se elementi unose sa standardnog ulaza sve do kraja ulaza.

Zadatak 4.25 Binarno drvo se naziva HEAP ako je kompletno (svaki njegov čvor, izuzev listova, ima i levog i desnog potomka) i za svaki čvor u drvetu važi da je njegova vrednost veća od vrednosti svih ostalih čvorova u njegovim podstablima. Napisati funkciju int heap(Cvor* koren) koja proverava da li je dato binarno drvo celih brojeva HEAP. Napisati zatim i glavni program koji ispisuje rezultat heap funkcije za drvo čiji se elementi unose sa standardnog ulaza sve do kraja ulaza.

4.3 Rešenja

Rešenje 4.1

```
#include<stdio.h>

int main(){
   printf("Hello bitovi!\n");
   return 0;
}
```

Rešenje 4.2

```
#include<stdio.h>

int main(){
   printf("Hello bitovi!\n");
   return 0;
}
```

Rešenje 4.8

```
#include<stdio.h>

int main(){
   printf("Hello bitovi!\n");
   return 0;
}
```

Rešenje 4.4

```
#include<stdio.h>

int main(){
   printf("Hello bitovi!\n");
   return 0;
}
```

Rešenje 4.5

```
#include < stdio.h >

int main() {
   printf("Hello bitovi!\n");
   return 0;
}
```

Rešenje 4.6

```
#include<stdio.h>

int main(){
   printf("Hello bitovi!\n");
   return 0;
}
```

Rešenje 4.7

```
#include<stdio.h>

int main(){
   printf("Hello bitovi!\n");
   return 0;
}
```

Rešenje 4.8

```
#include<stdio.h>

int main(){
    printf("Hello bitovi!\n");
    return 0;
}
```

Rešenje 4.9

```
#include<stdio.h>

int main(){
   printf("Hello bitovi!\n");
   return 0;
}
```

Rešenje 4.10

```
#include<stdio.h>

int main(){
   printf("Hello bitovi!\n");
   return 0;
}
```

Rešenje 4.11

```
#include<stdio.h>

int main(){
   printf("Hello bitovi!\n");
   return 0;
}
```

Glava 5

Ispitni rokovi

5.1 Programiranje 2, praktični deo ispita, jun 2015.

Zadatak 5.1

Kao argument komandne linije zadaje se ime ulazne datoteke u kojoj se nalaze niske. U prvoj liniji datoteke nalazi se informacija o broju niski, a zatim u narednim linijama po jedna niska ne duža od 50 karaktera.

Napisati program u kojem se dinamički alocira memorija za zadati niz niski, a zatim se na standardnom izlazu u redosledu suprotnom od redosleda čitanja ispisuju sve niske koje počinju velikim slovom.

U slučaju pojave bilo kakve greške na standardnom izlazu ispisati vrednost -1 i prekinuti izvršavanje programa.

Zadatak 5.2

Data je biblioteka za rad sa binarnim pretrazivačkim stablima čiji čvorovi sadrže cele brojeve. Napisati funkciju int sumirajN (Cvor * koren, int n) koja izračunava zbir svih čvorova koji se nalaze na n-tom nivou stabla (koren se nalazi na nultom nivou, njegova deca na prvom nivou i tako redom). Ispravnost napisane funkcije testirati na osnovu zadate main funkcije i biblioteke za rad sa pretraživačkim stablima.

Napisati program koji sa standardnog ulaza učitava najpre prirodan broj n, a potom i brojeve sve do pojave nule koje smešta u stablo i ispisuje rezultat pozivanja funkcije prebrojN za broj n i tako kreirano stablo. U slučaju greške na standardni izlaz za grešku ispisati -1.

Zadatak 5.3 Sa standardnog ulaza učitava se broj vrsta i broj kolona celobrojne matrice A, a zatim i elementi matrice A. Napisati program koji će ispisati indeks kolone u kojoj se nalazi najviše negativnih elemenata. Ukoliko postoji više takvih kolona, ispisati indeks prve kolone. Može se pretpostaviti da je broj vrsta i broj kolona manji od 50. U slučaju greške ispisati vrednost -1 na standardni izlaz za greške.

```
Test 1

Test 2

Test 3

Ulaz:
4
5
1 2 3 4 5
-1 2 -3 4 -5
-5 -4 -3 -2 1
-1 0 0 0 0 0

Izlaz:
0
```

5.2 Programiranje 2, praktični deo ispita, jul 2015.

Zadatak 5.4

Napisati program koji kao prvi arugment komandne linije prima ime dokumenta u kome treba prebrojati sva pojavljivanja tražene niske (bez preklapanja) koja se navodi kao drugi argument komandne linije (iskoristiti funkciju standardne biblioteke strstr). U slučaju bilo kakve greške ispisati -1 na standardni izlaz za greške. Pretpostaviti da linije datoteke neće biti duže od 127 karaktera.

Potpis funkcije strstr:

```
char *strstr(const char *haystack, const char *needle);
```

Funkcija traži prvo pojavljivanje podniske needle u nisci haystack, i vraća pokazivač na početak podniske, ili NULL ako podniska nije pronađena.

```
Test 1

Poziv: ./a.out fajl.txt test | Poziv: ./a.out | Datoteka: Ovo je test primer. | Izlaz (na stderr): -1 | U njemu se rec test | javlja | vise puta. testtesttest | Izlaz: 5

Test 3

Test 4

Poziv: ./a.out fajl.txt foo | Poziv: ./a.out fajl.txt . Datoteka: (prazna) | Izlaz (na stderr): -1 | Izlaz: 0
```

Zadatak 5.5

Na početku datoteke "trouglovi.txt" nalazi se broj trouglova čije su koordinate temena zapisane u nastavku datoteke. Napisati program koji učitva trouglove, i ispisuje ih na standardni izlaz sortirane po površini opadajuće (koristiti Heronov obrazac: $P = \sqrt{s*(s-a)*(s-b)*(s-c)}$, gde je s poluobim trougla). U slučaju bilo kakve greške ispisati -1 na standardni izlaz za greške. Ne praviti nikave pretpostavke o broju trouglova u datoteci, i proveriti da li je datoteka ispravno zadata.

```
Test 1

Datoteka: 4

0 0 0 1.2 1 0
0.3 0.3 0.5 0.5 0.9 1

-2 0 0 0 0 1
2 0 2 2 -1 -1

1zlaz: 2 0 2 2 -1 -1
-2 0 0 0 0 1
0 0 0 1.2 1 0
0.3 0.3 0.5 0.5 0.9 1

Test 3

Test 4

Datoteka: 0
1.2 3.2 1.1

4.3

Izlaz: -1
```

Zadatak 5.6 Data je biblioteka za rad sa binarnim pretraživačkim stablima celih brojeba. Napisati funkciju

```
int f3(Cvor *koren, int n)
```

koja u datom stablu prebrojava čvorove na *n*-tom nivou, koji imaju tačno jednog potomka. Pretpostaviti da se koren nalazi na nivou 0. Ispravnost napisane funkcije testirati na osnovu zadate main funkcije i biblioteke za rad sa stablima.

```
Test 1
                                Test 2
                                                        Test 3
Ulaz:
                       Ulaz:
                                              Ulaz:
 1 5 3 6 1 4 7 9
                        2 5 3 6 1 0 4 7 9
                                                0 4 2 5
Izlaz:
                       Izlaz:
                                               Izlaz:
                        2
 1
                                Test 5
         Test 4
Ulaz:
                       Ulaz:
                         -1 4 5 1 7
  3
Izlaz:
                        Izlaz:
 0
                        0
```

5.3 Rešenja

```
#include <stdio.h>
  #include <stdlib.h>
  #include <ctype.h>
  #define MAX 50
  void greska(){
      printf("-1\n");
      exit(EXIT_FAILURE);
  }
int main(int argc, char* argv[]){
      FILE* ulaz;
      char** linije;
      int i, j, n;
15
      /* Proveravamo argumente komandne linije.
17
      if(argc!=2){
19
          greska();
21
      /* Otvaramo datoteku čije ime je navedeno kao argument komandne
     linije neposredno nakon imena programa koji se poziva. */
      ulaz=fopen(argv[1], "r");
      if(ulaz==NULL){
25
          greska();
27
      /* čUitavamo broj linija. */
      fscanf(ulaz, "%d", &n);
31
      /* Alociramo memoriju na osnovu čuitanog broja linija.*/
      linije=(char**)malloc(n*sizeof(char*));
```

```
if(linije==NULL){
          greska();
      for(i=0; i<n; i++){
37
          linije[i]=malloc(MAX*sizeof(char));
          if(linije[i] == NULL){
               for(j=0; j<i; j++){
                   free(linije[j]);
41
               free(linije);
43
               greska();
          }
45
      }
47
      /* čUitavamo svih n linija iz datoteke. */
      for(i=0; i<n; i++){
49
          fscanf(ulaz, "%s", linije[i]);
      }
51
      /* Ispisujemo u ćodgovarajuem poretku čuitane linije koje
53
      zadovoljavaju kriterijum. */
      for(i=n-1; i>=0; i--){
          if(isupper(linije[i][0])){
               printf("%s\n", linije[i]);
          }
      }
59
      /* đOslobaamo memoriju koju smo čdinamiki alocirali. */
      for(i=0; i<n; i++){
61
          free(linije[i]);
      }
63
      free(linije);
      /* Zatvaramo datoteku. */
67
      fclose(ulaz);
      /* šZavravamo sa programom. */
      return 0;
```

```
#include <stdio.h>
#include "stabla.h"

int sumirajN (Cvor * koren, int n){
   if(koren==NULL){
        return 0;
   }

if(n==0){
    return koren->broj;
```

```
}
      return sumirajN(koren->levo, n-1) + sumirajN(koren->desno, n-1);
14
16
18 int main(){
      Cvor* koren=NULL;
      int n;
      int nivo;
22
      /* Čitamo vrednost nivoa */
      scanf("%d", &nivo);
26
      while(1){
28
           /* Čitamo broj sa standardnog ulaza */
          scanf("%d", &n);
30
          /* Ukoliko je korisnik uneo 0, prekidamo dalje čitanje. */
32
          if(n==0){
               break;
34
          }
36
           /* A ako nije, dodajemo procitani broj u stablo. */
          dodaj_u_stablo(&koren, n);
38
      }
40
      /* Ispisujemo rezultat rada žtraene funkcije */
42
      printf("%d\n", sumirajN(koren,nivo));
44
      /* đOslobaamo memoriju */
      oslobodi_stablo(&koren);
46
48
      /* Prekidamo šizvravanje programa */
      return 0;
50
```

```
#include <stdio.h>
#include <stdlib.h>
#include "stabla.h"

Cvor* napravi_cvor(int b ) {
    Cvor* novi = (Cvor*) malloc(sizeof(Cvor));
    if( novi == NULL)
        return NULL;

/* Inicijalizacija polja novog čvora */
    novi->broj = b;
    novi->levo = NULL;
    novi->desno = NULL;

return novi;
```

```
}
  void oslobodi_stablo(Cvor** adresa_korena) {
        /* Prazno stablo i nema šta da se đoslobaa */
      if( *adresa_korena == NULL)
          return;
23
      /* Rekurzivno đoslobaamo najpre levo, a onda i desno podstablo*/
25
      if( (*adresa_korena)->levo )
          oslobodi_stablo(&(*adresa_korena)->levo);
      if( (*adresa_korena)->desno)
27
          oslobodi_stablo(&(*adresa_korena)->desno);
29
      free(*adresa_korena);
      *adresa_korena =NULL;
31
33
 void proveri_alokaciju( Cvor* novi) {
      if( novi == NULL) {
          fprintf(stderr, "Malloc greska za nov cvor!\n");
37
          exit(EXIT_FAILURE);
      }
39
  }
41
  void dodaj_u_stablo(Cvor** adresa_korena, int broj) {
      /* Postojece stablo je prazno*/
      if( *adresa_korena == NULL){
          Cvor* novi = napravi_cvor(broj);
45
          proveri_alokaciju(novi);
          *adresa_korena = novi; /* Kreirani čvor novi će biti od
47
     sada koren stabla*/
          return;
      }
49
      /* Brojeve šsmetamo u đureeno binarno stablo, pa
51
      ako je broj koji ubacujemo manji od broja koji je u korenu */
      if( broj < (*adresa_korena)->broj)
                                                  /* dodajemo u levo
     podstablo */
          dodaj_u_stablo(&(*adresa_korena)->levo, broj);
      /* ako je broj manji ili jednak od broja koji je u korenu stabla
      , dodajemo nov čvor desno od korena */
      else
          dodaj_u_stablo(&(*adresa_korena)->desno, broj);
57
  }
```

```
#ifndef __STABLA_H__
#define __STABLA_H__ 1

/* Struktura kojom se predstavlja čvor drveta */
typedef struct dcvor{
   int broj;
   struct dcvor* levo, *desno;
} Cvor;
```

```
/* Funkcija alocira prostor za novi čvor drveta, inicijalizuje polja
strukture i ćvraa čpokaziva na nov čvor */
Cvor* napravi_cvor(int b );

/* đOslobaamo čdinamiki alociran prostor za stablo
* Nakon đoslobaanja se u ćpozivajuoj funkciji koren
* postavljana NULL, jer je stablo prazno */
void oslobodi_stablo(Cvor** adresa_korena);

/* Funkcija proverava da li je novi čvor ispravno alociran,
* i nakon toga prekida program */
void proveri_alokaciju( Cvor* novi);

/* Funkcija dodaje nov čvor u stablo i
* žaurira vrednost korena stabla u ćpozivajuoj funkciji.
*/
void dodaj_u_stablo(Cvor** adresa_korena, int broj);

#endif
```

```
#include <stdio.h>
  #define MAX 50
  int main(){
      int m[MAX][MAX];
      int v, k;
      int i, j;
      int max_broj_negativnih, max_indeks_kolone;
      int broj_negativnih;
      /* čUitavamo dimenzije matrice */
      scanf("%d", &v);
      scanf("%d", &k);
14
      if(v<0 \mid | v>MAX \mid | k<0 \mid | k>MAX){
16
           fprintf(stderr, "-1\n");
           return 0;
18
      }
20
      /* čUitavamo elemente matrice */
      for(i=0; i<v; i++){
22
          for(j=0; j< k; j++){
24
               scanf("%d", &m[i][j]);
      }
26
      /*Pronalazimo kolonu koja žsadri ćnajvei broj negativnih
28
      elemenata */
      max_indeks_kolone=0;
```

```
max_broj_negativnih=0;
      for(i=0; i<v; i++){
           if(m[i][0]<0){
               max_broj_negativnih++;
34
           }
36
      }
38
      for(j=0; j< k; j++){
40
           broj_negativnih=0;
           for(i=0; i<v; i++){
               if(m[i][j]<0){
42
                   broj_negativnih++;
44
               if(broj_negativnih>max_broj_negativnih){
                   max_indeks_kolone=j;
46
               }
           }
48
      }
50
      /* Ispisujemo žtraeni rezultat */
      printf("%d\n", max_indeks_kolone);
      /* šZavravamo program */
      return 0;
56
```

```
#include <stdio.h>
  #include <stdlib.h>
3 #include <string.h>
  #define MAX 128
  int main(int argc, char **argv) {
    FILE *f;
    int brojac = 0;
    char linija[MAX], *p;
    if (argc != 3) {
11
      fprintf(stderr, "-1\n");
      exit(EXIT_FAILURE);
13
    }
    if ((f = fopen(argv[1], "r")) == NULL) {
      fprintf(stderr, "-1\n");
      exit(EXIT_FAILURE);
19
    while (fgets(linija, MAX, f) != NULL) {
      p = linija;
      while (1) {
23
        p = strstr(p, argv[2]);
        if (p == NULL)
```

```
break;
    brojac++;
    p = p + strlen(argv[2]);

}

fclose(f);

printf("%d\n", brojac);

return 0;

}
```