Aufgaben zum Vorrechnen sind unterstrichen!

1-1) Vereinfachen Sie oder fassen Sie zusammen!

a)
$$(x^2-y^2): (y-x)$$
 b) $\left(\frac{1}{x-y} - \frac{1}{x+y}\right): \left(\frac{1}{x} + \frac{1}{y}\right)$ c) $\sqrt[3]{64}$ d) $a \cdot \sqrt{1 + \frac{b^2}{a^2}}$, $a > 0$ e) $\sqrt[4]{a^3}: \sqrt[3]{a^2}$ f) $\frac{1}{\sqrt{2}} + \frac{1}{2}\sqrt{2}$ g) $\frac{1}{x} + \frac{4x+1}{x^2-x}$ h) $\frac{\sqrt{x^2 + a^2} - x \cdot \frac{x}{\sqrt{x^2 + a^2}}}{x^2 + a^2}$

In einer Parallelschaltung von 2 Widerständen
$$R_1$$
 und R_2 gilt für den Gesamtwiderstand R_P $R_P = \frac{R_1 R_2}{R_1 + R_2}$. Lösen Sie diese Beziehung nach R_2 auf!

- \underline{f}) Fassen Sie zusammen, ohne die Summanden einzeln aufzuschreiben: $\sum_{k=1}^{21} \frac{1}{k+2} \sum_{k=4}^{24} \frac{1}{k-2}$ Anleitung: Formen Sie so um, dass in beiden Summen im Nenner k+2 steht.
- b) $x^2 < 9$? 1-4) Für welche $x \in \mathbb{R}$ gilt a) $|x-3| \le 5$ Lösen Sie die Ungleichungen auch grafisch!
- 1-5) In einem rechtwinkligen Dreieck sind die Längen von 2 Seiten bekannt (s. Skizze). Bestimmen Sie die Länge a der 3. Seite sowie cosα.

1-6) Berechnen Sie die Summe der Vektoren u und v!

1-7) In einem Viereck mit den Eckpunkten A = (1|2), B = (-2|4), C = (-5|4) und D = (2|-2) habe jeder Eckpunkt die gleiche Einzelmasse m. Bestimmen Sie den Schwerpunkt S. Wie weit ist S von D entfernt?

Hinweis: Für den Schwerpunkt S gilt $M \mathbf{r}_s = \sum_{k=1}^{n} m_k \mathbf{r}_k$, wobei

M Gesamtmasse, **r**_s Ortsvektor von S, m_k Einzelmassen, **r**_k Ortsvektoren der Einzelmassen.

- des Vektors c um 20 Längeneinheiten weiter geht?

- 1-11) Bei der Reihenschaltung zweier Widerstände R_1 und R_2 ergibt sich ein Gesamtwiderstand von 200 Ω , bei Parallelschaltung (s.1-2) 37.5 Ω . Wie groß sind die beiden Widerstände R_1 und R_2 ?
- 1-12) Beschreiben Sie die unten skizzierte Kennlinie bzw. Spannung als Funktion (mit Einheiten).

 $\underline{1-13}$) a) Gegeben sei die Parabel $y = f(x) = -2x^2 - 2x + 4$.

Schreiben Sie f(x) in Scheitelpunktsform und als Produkt von Linearfaktoren. Skizzieren Sie f(x).

- <u>b)</u> Bestimmen Sie die Gleichung der Parabel, die durch den Punkt $(1 \mid 6)$ verläuft und den Scheitelpunkt $(3 \mid -2)$ hat. Geben Sie die Parabel in der Form $y=a_2 x^2+a_1 x+a_0$ an.
- <u>c)</u> Bestimmen Sie die Gleichung der Parabel, die durch den Punkt $(1 \mid 6)$ verläuft und die Nullstellen $x_{01} = 3$ und $x_{02} = -2$ hat. Geben Sie die Parabel in der Form $y = a_2 x^2 + a_1 x + a_0$ an.
- 1-14) Ein Ball wird aus 4m Höhe geworfen, d.h. Abwurfpunkt sei (0|4m). Die Wurfparabel geht durch die Punkte (1m| 8m) und (2m|10m).
 - a) Welche Höhe y_{max} erreicht der Ball? b) Wo trifft der Ball wieder auf die Erde (Höhe 0)?
- $\underline{1\text{-}15}) \text{ Leiten Sie ab: } \underline{a}) \text{ } f(x) = \frac{3}{x} \quad \underline{b}) \text{ } f(x) = 2 \sqrt{x} \quad \underline{c}) \text{ } f(t) = e^{-\frac{t}{\tau}}$

Berechnen Sie: <u>d</u>) $\int 2 x^2 dx$ <u>e</u>) $\int e^{-\frac{t}{\tau}} dt$ <u>f</u>) $\int_{1}^{2} \frac{1}{r^2} dr$

1-16) Die Leistung eines Gleichstroms ist $P = R I^2$. Widerstand R und Stromstärke I wurden gemessen:

$$R = (80 \pm 1) \Omega$$
, $I = (6.2 \pm 0.1) A$

Geben Sie P in der Form $P = P_0 \pm |\Delta P_{max}|$ an.

Berechnen Sie ΔP_{max} sowohl direkt als auch über die Formel für die Fehlerfortpflanzung.

Zum Vorrechnen: 1-1) b) (1), h) (1) 1-2) (1), 1-3) f) (1.5) 1-7) (1.5) 1-8) c) (1.5) 1-10) (1) 1-12) b) (1.5) 1-13) b) (1.5) c) (1.5) 1-14) (2.5) 1-15) a) (1) b) (1) c) (1) d) (1) e) (1) f) (1.5) 1-16) (1.5)

1-1) a)
$$-x-y$$
 b) $\frac{2xy^2}{(x-y)(x+y)^2}$ c) 2 d) $\sqrt{a^2+b^2}$ e) $\sqrt[12]{a}$ f) $\sqrt{2}$ g) $5/(x-1)$ für $x\neq 0$, $x\neq 1$ h) $a^2/(x^2+a^2)^{3/2}$ 1-2) $R_2 = \frac{R_1 R_p}{R_1 - R_p}$

$$1-3) \quad a) \quad \sum_{k=3}^{7} (2k-1) \quad b) \quad \sum_{k=2}^{5} \frac{k}{2^k} \quad c) \sum_{k=1}^{5} \frac{1}{k} (-1)^{k+1} \quad d) \quad \sum_{k=4}^{7} (k-1)^2 \quad e) \quad \sum_{k=0}^{4} \frac{1}{k+1} (-1)^k \quad f) \quad -\frac{21}{46} \quad 1-4) \quad a) \quad [-2, \, 8] \quad b) \quad]-3, \, 3[$$

$$1-5) \ \ a = \sqrt{3} \ b \ , \ cos\alpha = \frac{1}{2}\sqrt{3} \quad \ 1-6) \ \binom{4}{3} \quad \ 1-7) \ (-1|2), \ \ 5 \quad \ 1-8) \ \ b) \ \ \frac{\sqrt{13}}{3} \binom{1}{2}{2} \quad c) \ \ (11.49|-13.14|6.31)$$

1-10) L=
$$\{0, \pm \sqrt{6}\}$$
 1-11) 150 Ω , 50 Ω 1-12) a) I(U) = -0.1 Ω^{-1} U + 2A 1-13) a) f(x) = -2 (x+1/2)² + 9/2 = -2 (x-1) (x+2)

1-14)
$$y = -x^2 + 5x + 4$$
 a) 10.25m (Scheitel) b) 5.70m (Nullstelle). 1-16) $P = (3075.20 \pm 137.64) W$