常系数微分方程组求解算法

目录

1. 基础理论

2. 求解步骤与算法

3. 具体例子

• 例子 1: 具有不同特征值的微分方程

• 例子 2: 具有重特征值且可对角化的微分方程

• 例子 3: 具有重特征值且不可对角化的微分方程

• 例子 4: 三阶微分方程的矩阵方法

• 例子 5: 带有复特征值的微分方程

4. 广义特征向量的阶数判断

5. 总结

基础理论

考虑一个常系数线性微分方程系统:

$$rac{darphi(t)}{dt} = Aarphi(t)$$

其中,A 是一个 $n \times n$ 的常数矩阵。求解该系统的关键在于计算矩阵指数 e^{At} ,其解可以表示为:

$$arphi(t)=e^{At}arphi(0)$$

为了计算 e^{At} ,我们通常需要对矩阵 A 进行特征值分解或使用广义特征向量方法。

解空间分解与矩阵指数的计算

假设 A 的不同特征值分别为 $\lambda_1,\lambda_2,\cdots,\lambda_k$,其重数分别为 n_1,n_2,\cdots,n_k ,则对应于每个 λ_j ,有一个 n_j 维的子空间 U_j ,满足:

$$(A - \lambda_i E)^{n_j} u = 0$$

整个 n 维空间可以表示为这些子空间的直和:

$$\mathbb{R}^n = U_1 \oplus U_2 \oplus \cdots \oplus U_k$$

对于任意解 $\varphi(t)$, 可以表示为:

$$arphi(t) = \sum_{i=1}^k e^{\lambda_j t} \left[\sum_{i=0}^{n_j-1} rac{t^i}{i!} (A - \lambda_j E)^i
ight] v_j$$

其中, v_i 是对应于 λ_i 的特征向量或广义特征向量。

矩阵指数的计算步骤总结

- 1. 求特征值和特征向量: 找出矩阵 A 的所有特征值 λ_j 及其对应的特征向量 v_j 。
- 2. 构造广义特征向量: 对于重特征值,构造广义特征向量以确保解的线性无关性。
- 3. 构造基解矩阵: 通过特征值和特征向量 (包括广义特征向量) 构造基解矩阵 $\Phi(t)$ 。
- 4. 计算矩阵指数: 使用公式 $e^{At}=\Phi(t)\Phi^{-1}(0)$,由于 $\Phi(0)=E$,因此 $e^{At}=\Phi(t)$ 。
- 5. 写出通解: 通过基解矩阵与常数向量相乘得到微分方程的通解。

求解步骤与算法

以下是求解常系数线性微分方程系统的具体算法步骤:

- 1. 求特征值:
 - 计算矩阵 A 的特征多项式 $\det(A \lambda E) = 0$ 。
 - 求解特征多项式得到所有特征值 λ_i
- 2. 求特征向量和广义特征向量:
 - 对每个特征值 λ_i ,求解方程 $(A-\lambda_i E)v=0$ 得到特征向量。
 - 若特征值的代数重数大于几何重数,需构造广义特征向量:
 - $\mathbf{k} (A \lambda_j E)^k v = 0$,其中 k 是最小满足解空间不再扩大的整数。
 - 选择使 $(A-\lambda_j E)^{k-1}v
 eq 0$ 的向量作为广义特征向量。

- 3. 确定广义特征向量的阶数:
 - 对于每个广义特征向量 v,确定其阶数 m,即最小的 m 使得 $(A-\lambda_i E)^m v=0$ 。
 - 该阶数决定了解中 t 的多项式项的最高次数。
- 构造基解矩阵 Φ(t):
 - 对于每个特征值及其对应的特征向量和广义特征向量,构造对应的解形式:

$$arphi_j(t) = e^{\lambda_j t} \left[\sum_{i=0}^{m_j-1} rac{t^i}{i!} (A - \lambda_j E)^i
ight] v_j$$

- 将所有独立解作为列向量组成基解矩阵 $\Phi(t)$ 。
- 5. 计算矩阵指数 e^{At} :
 - 利用基解矩阵:

$$e^{At}=\Phi(t)\Phi^{-1}(0)$$

- 6. 写出通解:
 - 通解为:

$$arphi(t)=e^{At}{f c}$$

其中, c 是包含初始条件的常数向量。

例 9: 求解方程组及矩阵指数

考虑方程组:

$$egin{cases} x_1' = 3x_1 - x_2 + x_3, \ x_2' = 2x_1 + x_3, \ x_3' = x_1 - x_2 + 2x_3, \end{cases}$$

系数矩阵

$$A = egin{bmatrix} 3 & -1 & 1 \ 2 & 0 & 1 \ 1 & -1 & 2 \end{bmatrix},$$

初值条件:

$$\varphi(0) = \eta$$
.

目标

求满足初值条件的解 $oldsymbol{arphi}(t)$,并求矩阵指数 e^{At} 。

求解步骤

步骤 1: 求特征值

首先, 求矩阵 A 的特征值 λ , 即解特征方程:

$$\det(\lambda E - A) = 0,$$

其中E为单位矩阵。

计算行列式:

$$\det(\lambda E-A) = \det egin{bmatrix} \lambda-3 & 1 & -1 \ -2 & \lambda & -1 \ -1 & 1 & \lambda-2 \end{bmatrix}.$$

利用展开法计算行列式:

$$\begin{split} \det(\lambda E - A) &= (\lambda - 3) \cdot \det \begin{bmatrix} \lambda & -1 \\ 1 & \lambda - 2 \end{bmatrix} - 1 \cdot \det \begin{bmatrix} -2 & -1 \\ -1 & \lambda - 2 \end{bmatrix} - 1 \cdot \det \begin{bmatrix} -2 & \lambda \\ -1 & 1 \end{bmatrix} \\ &= (\lambda - 3) \left(\lambda(\lambda - 2) - (-1)(1)\right) - 1 \left((-2)(\lambda - 2) - (-1)(-1)\right) - 1 \left((-2)(1) - \lambda(-1)\right) \\ &= (\lambda - 3)(\lambda^2 - 2\lambda + 1) - 1(-2\lambda + 4 - 1) - 1(-2 + \lambda) \\ &= (\lambda - 3)(\lambda - 1)^2 + (2\lambda - 3) + (-\lambda + 2) \\ &= (\lambda - 3)(\lambda^2 - 2\lambda + 1) + \lambda - 1 \\ &= \lambda^3 - 2\lambda^2 + \lambda - 3\lambda^2 + 6\lambda - 3 + \lambda - 1 \\ &= \lambda^3 - 5\lambda^2 + 8\lambda - 4. \end{split}$$

因此,特征方程为:

$$\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0.$$

通过因式分解,发现 $\lambda=1$ 是一个实根。进行多项式除法,将 $\lambda-1$ 因子除去:

$$\lambda^3-5\lambda^2+8\lambda-4=(\lambda-1)(\lambda^2-4\lambda+4)=(\lambda-1)(\lambda-2)^2.$$

因此,特征值为:

$$\lambda_1=1,\quad \lambda_2=2\quad (ext{ $\underline{x}=2$}).$$

步骤 2: 求特征向量和广义特征向量

特征值 $\lambda_1=1$

求解 $(\lambda_1 E - A)v = 0$:

$$(\lambda_1 E - A) = egin{bmatrix} -2 & 1 & -1 \ -2 & 1 & -1 \ -1 & 1 & -1 \end{bmatrix}.$$

解方程组:

$$egin{cases} -2v_1+v_2-v_3=0,\ -2v_1+v_2-v_3=0,\ -v_1+v_2-v_3=0. \end{cases}$$

简化得到:

$$-2v_1 + v_2 - v_3 = 0$$
 (方程1)
 $-v_1 + v_2 - v_3 = 0$ (方程3).

从方程3得:

$$v_1=v_2-v_3.$$

代入方程1:

$$-2(v_2-v_3)+v_2-v_3=-2v_2+2v_3+v_2-v_3=-v_2+v_3=0\quad\Rightarrow\quad v_2=v_3.$$

设 $v_3 = t$, 则:

$$v_1 = v_2 - v_3 = t - t = 0, \quad v_2 = t, \quad v_3 = t.$$

因此,特征向量为:

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 .

特征值 $\lambda_2=2$ (重数 2)

求解 $(\lambda_2 E - A)v = 0$:

$$(\lambda_2 E - A) = egin{bmatrix} -1 & 1 & -1 \ -2 & 2 & -1 \ -1 & 1 & 0 \end{bmatrix}.$$

解方程组:

$$egin{cases} -v_1+v_2-v_3=0,\ -2v_1+2v_2-v_3=0,\ -v_1+v_2=0. \end{cases}$$

从第三个方程得:

$$v_1 = v_2$$
.

代入第一个方程:

$$-v_1+v_1-v_3=-v_3=0 \quad \Rightarrow \quad v_3=0.$$

因此,特征向量为:

$$v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

几何重数: 1 (只有一个线性无关的特征向量) , 因此需要构造一个广义特征向量。

构造广义特征向量 v_q

求解 $(\lambda_2 E - A)v_g = v_2$:

$$(\lambda_2 E - A) = egin{bmatrix} -1 & 1 & -1 \ -2 & 2 & -1 \ -1 & 1 & 0 \end{bmatrix},$$

设
$$v_g = egin{pmatrix} a \ b \ c \end{pmatrix}$$
.

解方程:

$$egin{cases} -a+b-c = 1, \ -2a+2b-c = 1, \ -a+b = 0. \end{cases}$$

从第三个方程得:

$$a = b$$
.

代入第一个方程:

$$-a+a-c=-c=1$$
 \Rightarrow $c=-1$.

代入第二个方程:

$$-2a+2a-c=-c=1$$
 \Rightarrow $c=-1$ (已满足).

因此,广义特征向量为:

$$v_g = egin{pmatrix} a \ a \ -1 \end{pmatrix}.$$

取a=0(任意值),则:

$$v_g = egin{pmatrix} 0 \ 0 \ -1 \end{pmatrix}.$$

步骤 3:构造基解矩阵 $\Phi(t)$

基于特征向量和广义特征向量,构造基解矩阵 $\Phi(t)$ 。

**特征值 $\lambda_1=1$ 的解: **

$$arphi_1(t)=e^{1t}egin{pmatrix}0\1\1\end{pmatrix}=e^tegin{pmatrix}0\1\1\end{pmatrix}.$$

特征值 $\lambda_2=2$ 的解:

1. 特征向量部分:

$$arphi_2(t) = e^{2t} egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}.$$

2. 广义特征向量部分:

$$arphi_3(t)=e^{2t}\left(egin{pmatrix}0\0\-1\end{pmatrix}-tegin{pmatrix}1\1\0\end{pmatrix}
ight)=e^{2t}egin{pmatrix}-t\-t\-1\end{pmatrix}$$

因此, 基解矩阵为:

$$\Phi(t) = egin{bmatrix} arphi_1(t) & arphi_2(t) & arphi_3(t) \end{bmatrix} = egin{bmatrix} 0 & e^{2t} & -te^{2t} \ e^t & e^{2t} & -te^{2t} \ e^t & 0 & -e^{2t} \end{bmatrix}$$

步骤 4: 计算矩阵指数 e^{At}

根据定义:

$$e^{At}=\Phi(t)\Phi^{-1}(0).$$

计算 $\Phi(0)$:

$$\Phi(0) = egin{bmatrix} 0 & 1 & 0 \ 1 & 1 & 0 \ 1 & 0 & -1 \end{bmatrix}.$$

计算 $\Phi^{-1}(0)$

$$\Phi(0)^{-1} = egin{bmatrix} -1 & 1 & 0 \ 1 & 0 & 0 \ -1 & 1 & -1 \end{bmatrix}$$

因此

$$e^{At} = egin{bmatrix} 0 & e^{2t} & -te^{2t} \ e^t & e^{2t} & -te^{2t} \ e^t & 0 & -e^{2t} \end{bmatrix} egin{bmatrix} -1 & 1 & 0 \ 1 & 0 & 0 \ -1 & 1 & -1 \end{bmatrix} . = e^{At} = egin{bmatrix} e^{2t}(1+t) & -te^{2t} & te^{2t} \ e^{2t}(1+t) - e^t & e^t - te^{2t} & te^{2t} \ e^{2t} - e^t & e^t - e^{2t} & e^{2t} \end{bmatrix} .$$

微分方程组解答汇总

以下是根据给定算法对三题进行求解的结果整理。

问题 5(1)

**给定矩阵和初始条件: **

$$m{A} = egin{bmatrix} 1 & 2 \ 4 & 3 \end{bmatrix}, \quad m{\eta} = egin{bmatrix} 3 \ 3 \end{bmatrix}$$

特征值与特征向量

• **特征值: **

$$\lambda_1=5, \quad \lambda_2=-1$$

• **对应特征向量: **

$$oldsymbol{v}_1 = egin{bmatrix} 1 \ 2 \end{bmatrix}, \quad oldsymbol{v}_2 = egin{bmatrix} 1 \ -1 \end{bmatrix}$$

基解矩阵 $\Phi(t)$

$$\Phi(t) = egin{bmatrix} e^{5t} & e^{-t} \ 2e^{5t} & -e^{-t} \end{bmatrix}$$

矩阵指数 e^{At}

$$e^{At} = egin{bmatrix} rac{e^{5t} + 2e^{-t}}{3} & rac{e^{5t} - e^{-t}}{3} \ rac{2e^{5t} - 2e^{-t}}{3} & rac{2e^{5t} + e^{-t}}{3} \end{bmatrix}$$

通解

$$oldsymbol{arphi}(t) = egin{bmatrix} 2e^{5t} + e^{-t} \ 4e^{5t} - e^{-t} \end{bmatrix}$$

问题 5(2)

**给定矩阵和初始条件: **

$$oldsymbol{A} = egin{bmatrix} 1 & 0 & 3 \ 8 & 1 & -1 \ 5 & 1 & -1 \end{bmatrix}, \quad oldsymbol{\eta} = egin{bmatrix} 0 \ -2 \ -7 \end{bmatrix}$$

特征值与特征向量

• **特征值: **

$$\lambda_1=-3,\quad \lambda_2=2+\sqrt{7},\quad \lambda_3=2-\sqrt{7}$$

• **对应特征向量: **

$$oldsymbol{v}_1 = egin{bmatrix} -3 \ 7 \ 4 \end{bmatrix}, \quad oldsymbol{v}_2 = egin{bmatrix} \sqrt{7}-1 \ 11-3\sqrt{7} \ 2 \end{bmatrix}, \quad oldsymbol{v}_3 = egin{bmatrix} -\sqrt{7}-1 \ 11+3\sqrt{7} \ 2 \end{bmatrix}$$

基解矩阵 $\Phi(t)$

$$\Phi(t) = \left[e^{-3t} oldsymbol{v}_1, \; e^{(2+\sqrt{7})t} oldsymbol{v}_2, \; e^{(2-\sqrt{7})t} oldsymbol{v}_3
ight]$$

通解

$$oldsymbol{arphi}(t) = c_1 e^{-3t} oldsymbol{v}_1 + c_2 e^{(2+\sqrt{7})t} oldsymbol{v}_2 + c_3 e^{(2-\sqrt{7})t} oldsymbol{v}_3$$

其中,系数 c_1, c_2, c_3 通过初始条件确定。

问题 5(3)

**给定矩阵和初始条件: **

$$oldsymbol{A} = egin{bmatrix} 1 & 2 & 1 \ 1 & -1 & 1 \ 2 & 0 & 1 \end{bmatrix}, \quad oldsymbol{\eta} = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$$

特征值与特征向量

• **特征值: **

$$\lambda_1=3$$
, $\lambda_2=-1$ (代数重数 2)

• **对应特征向量: **

$$oldsymbol{v}_1 = egin{bmatrix} 2 \ 1 \ 2 \end{bmatrix}, \quad oldsymbol{v}_2 = egin{bmatrix} -2 \ 1 \ 2 \end{bmatrix}$$

• **广义特征向量: **

$$oldsymbol{w} = egin{bmatrix} 1 \ -2 \ 0 \end{bmatrix}$$

基解矩阵 $\Phi(t)$

$$\Phi(t) = egin{bmatrix} 2e^{3t} & -2e^{-t} & (1-2t)e^{-t} \ e^{3t} & e^{-t} & (-2+t)e^{-t} \ 2e^{3t} & 2e^{-t} & 2te^{-t} \end{bmatrix}$$

矩阵指数 e^{At}

$$e^{At} = \Phi(t) \cdot \Phi(0)^{-1}$$

其中:

$$\Phi(0) = egin{bmatrix} 2 & -2 & 1 \ 1 & 1 & -2 \ 2 & 2 & 0 \end{bmatrix}, \quad \Phi(0)^{-1} = rac{1}{16} egin{bmatrix} 4 & 2 & 3 \ -4 & -2 & 5 \ 0 & -8 & 4 \end{bmatrix}$$

通解

根据初始条件 $oldsymbol{arphi}(0)=egin{bmatrix}1\\0\\0\end{bmatrix}$,求解得到:

$$oldsymbol{arphi}(t) = rac{1}{4}e^{3t}egin{bmatrix} 2 \ 1 \ 2 \end{bmatrix} + rac{1}{4}e^{-t}egin{bmatrix} 2 \ -1 \ -2 \end{bmatrix} = egin{bmatrix} rac{e^{3t} + e^{-t}}{2} \ rac{e^{3t} - e^{-t}}{4} \ rac{e^{3t} - e^{-t}}{2} \end{bmatrix}$$

**最终解: **

$$m{arphi}(t) = egin{bmatrix} rac{e^{3t} + e^{-t}}{2} \ rac{e^{3t} - e^{-t}}{4} \ rac{e^{3t} - e^{-t}}{2} \end{bmatrix}$$

总结

通过以上步骤,我们系统地介绍了如何使用**解空间分解与矩阵指数**的方法求解常系数线性微分方程系统。关键步骤包括:

- 1. 求解特征值与特征向量: 确定矩阵 A 的所有特征值及其对应的特征向量。
- 2. 构造广义特征向量(如需要): 对于代数重数大于几何重数的特征值,构造广义特征向量以确保解的完整性。
- 3. 构造基解矩阵: 利用特征向量和广义特征向量构造基解矩阵 $\Phi(t)$ 。
- 4. 计算矩阵指数: 通过基解矩阵 $\Phi(t)$ 和其逆矩阵 $\Phi^{-1}(0)$ 计算矩阵指数 e^{At} 。
- 5. 写出通解: 将矩阵指数与初值条件相结合,得到微分方程的通解。