MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. INDUSTRIAL E GESTÃO | 2013-14

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A desistência só é possível após 1 hora do início da prova;
- * Não é permitido o uso de telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [8,0] Seja $U = \{\vec{a}, \vec{b}, \vec{c}\}$, em que $\vec{a} = (1,1,0,-1)$, $\vec{b} = (2,3,1,-1)$ e $\vec{c} = (0,1,1,1)$, um conjunto de vetores do espaço vetorial \mathbb{R}^4 , e $M = \{(x, y, z, w) \in \mathbb{R}^4 : w + z + y = 0\}$ um subespaço de \mathbb{R}^4 ; considere o vetor $\vec{r} = (1,3,-1,2)$.
 - a) Determine o subespaço gerado pelo conjunto U. Indique, para este subespaço, a dimensão e uma base, V, formada unicamente por elementos de U; justifique.
 - b) Tendo em atenção o resultado obtido em a), classifique o conjunto U quanto à (in)dependência linear do seus elementos. Será o conjunto $W = \{\vec{a}, \vec{b}, \vec{r}\}$ linearmente independente? Justifique.
 - c) Obtenha uma base ortogonal, S, para \mathbb{R}^4 formada por elementos do conjunto U e do subespaço M.
 - d) Obtenha as coordenadas do vetor $\vec{r} = (1, 3, -1, 2)$ em relação à base S.
- **2.** [1,5] Considere, no espaço vetorial \mathbb{R}^3 , o vetor \vec{w} e as retas $r: X(t) = P + t\vec{a}$, $t \in \mathbb{R}$ e $s: X(u) = Q + u\vec{c}$, $u \in \mathbb{R}$, em que $P \neq Q$. Seja o conjunto $S = \{\vec{a}, \vec{c}, \vec{w}\}$.
 - a) Mostre que se S é linearmente dependente, então $\vec{w} \cdot \vec{a} \times \vec{c} = 0$.
 - b) Recorrendo às propriedades dos produtos vetorial e misto, estabeleça uma condição necessária e suficiente para P, Q, \vec{a} e \vec{c} , de modo que as retas dadas sejam não complanares (enviesadas). Justifique a resposta.

.....(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

- 3. [2,5] Sejam \vec{a} , \vec{u} , \vec{c} e \vec{w} elementos do espaço vetorial \mathbb{R}^3 , tais que $\|\vec{a}\| = \|\vec{u}\| = 1$, $\|\vec{w}\| = \sqrt{5}$, $\angle(\vec{a}, \vec{u}) = 60^\circ$, $\vec{w} = \vec{a} \times \vec{c} 2\vec{a}$, $\vec{c} \cdot \vec{a} = 1$ e $\vec{c} \cdot \vec{a} \times \vec{u} = -2$. Calcule:
 - a) A norma dos vetores $\vec{a} \times \vec{c}$ e \vec{c} .
 - **b**) O ângulo formado pelos vetores $\vec{a} \times \vec{c} = \vec{w}$.
 - c) A área do paralelogramo definido pelos vetores \vec{u} e \vec{w} .

GRUPO II

- **4.** [1,0] Sejam os conjuntos $S = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_r\} \subset \mathbb{R}^n$ e $T = \{\vec{y}_1, \vec{y}_2, ..., \vec{y}_s\} \subset \mathbb{R}^n$. Mostre que L(S) = L(T) se e só se $\vec{x}_i \in L(T)$, i = 1, ..., r e $\vec{y}_i \in L(S)$, j = 1, ..., s.
- **5.** [7,0] Considere o ponto Q = (1,0,3), o plano M : y-z=3 e a reta $r : X(u) = P + u\vec{a}$, $u \in \mathbb{R}$, em que P = (1,0,0) e $\vec{a} = (1,1,2)$. Determine:
 - a) O ponto, R, da reta r que está mais próximo do ponto Q e a distância de Q ao plano M.
 - b) A equação vetorial da reta, *s*, contida no plano *M*, ortogonal à reta *r* e que passa no ponto, *T*, do plano *M* mais próximo de *Q*.
 - c) A equação cartesiana de um plano, α , que passa no ponto Q, faz um ângulo de 45° com o eixo dos yy e é paralelo à reta r.