Analysis II Tutorat 04

Panajiotis Christotoforidis

16. Mai 2018

Inhaltsverzeichnis

1	Abgeschlossenheit Funktionen in metrischen Räumen	1
2	${f C}^1$ Raum	1
3	Zusammenhängende Mengen	2
4	Kontraktionen	2
5	Banach'scher Fixpunktsatz	2
1	Abgeschlossenheit Funktionen in metrischen Räumen	

Behauptung (1.1): $A \subset M'$ abgeschlossen $\implies f^{-1}(A) \subseteq M$ abgeschlossen Beweis.

Sei f stetig $, f: X \to Y$ und $A \subseteq Y$ abgeschlossen. Dann ist A^c offen und daher: $f^{-1}(A^c)f^{-1}(A)^c$ offen. Also $f^{-1}(A)$ abgeschlossen Sei nun $U \subseteq Y$ offen. Dann ist U^c abgeschlossen, also: $f^{-1}(U^c) = f^{-1}(U)^c$ abgeschlossen, d.h. $f^{-1}(U)$ offen

$2 C^1 Raum$

Auf Blatt 14:
$$f_n : [-1,1] \to \mathbb{R}, f_n(x) = \frac{nx^2}{1+n|x|}$$

Dann $f_n \in C^1$ und $f_n \to f$ mit $f(x) = |x|$. Aber $f \notin C^1$
 $||f||_{C^1} := ||f||_{\infty} + ||f'||_{\infty}$

3 Zusammenhängende Mengen

 $f: X \to Y$ stetig und surjektiv, X zusammenhängend, $f: M \to M'$

Behauptung (3.1): Y ist zusammenhängend.

Beweis. Annahme: es existieren offene Mengen $A_1, A_2 \subset M', A_1, A_2 \neq \emptyset, A_1 \cap A_2 = \emptyset, A_1 \cup A_2 = M'$

 $f^{-1}(A_1)$ und $f^{-1}(A_2)$ offen

Es gilt (da f surjektiv): $f^{-1}(A_1) \neq \emptyset$ und $f^{-1}(A_2) \neq \emptyset$

Angenommen $x \in f^{-1}(A_1) \cap f^{-1}(A_2) \to f(x) \in A_1 \land f(x) \in A_2 \quad \not A_1 \cap A_2 = \emptyset$

 $\Rightarrow f^{-1}(A_1) \cap f^{-1}(A_2) = \emptyset$

Sei $m \in M$ beliebig. $A_1 \cup A_2 = m'$

 $\Rightarrow f(m) \in A_1 \to m \in f^{-1}(A_1) \ (1)$

 $\Rightarrow f(m) \in A_2 \to m \in f^{-1}(A_2)$ (2)

 $\xrightarrow{(1),(2)} f^{-1}(A_1) \cup f^{-1}(A_2) = M$

 $\Rightarrow M$ nicht zusammenhängend

 $A_1, A_2 \in M'$ mit den geforderten Eigenschaften existiert nicht

 $\Rightarrow M'$ zusammenhängend

4 Kontraktionen

i)

$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \frac{1}{\sqrt{x} + \sqrt{y}} |\sqrt{x} - \sqrt{y}| = \frac{1}{2} |x - y|$$

ii)

 $M = [1, \infty)$ ist vollständig.

 $f: M \to M$, also hat f keinen Fixpunkt.

dann
$$f(x) = \sqrt{1 + x^2} > \sqrt{x^2} = x$$

kann also nicht kontrahierend sein.

5 Banach'scher Fixpunktsatz

a)

Sei f kontrahierend, $x \neq y, c < 1$ Lipschitzkonstante.:

$$\frac{|f(x) - f(y)|}{|x - y|} \le c$$

$$\Rightarrow \lim_{x \to y} \frac{|f(x) - f(y)|}{|x - y|} = |f'(y)| \le c < 1$$

Ist andererseits $f \in C^1$, |f'(x)| < 1 für $x \in [a, b]$ so ist $\sup_{[a, b]} |f'(x)| = \max_{[a, b]} |f'(x)| < 1$ Sind $x \neq y$ beliebig, so ist nach MWS:

$$\frac{|f(x) - f(y)|}{|x - y|} \le \sup_{[a,b]} |f'(x)| < 1$$

$$f: [0, \frac{\pi}{2}] \to \mathbb{R}, x \mapsto \frac{1}{2}(\sin(x) + 1)$$

$$f([0, \frac{\pi}{2}] \le [0, \frac{\pi}{2}] \quad \checkmark$$

ii)

$$|f'(x)| \le \frac{1}{2}$$
 und $f \in C^1$ Wähle $x_0 = 0 \Rightarrow x_1 = \frac{1}{2}, d(x_n, x) \le \frac{c^n}{1-c} d(x_0, x_1) \le 2^{-n}$ Mit $d(x_n, x) \le \frac{1}{10} \Rightarrow n = 4$ $x_4 \approx 0,887$