```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read_csv("/content/Titanic-Dataset.csv")
data.head()
```

₹	Passe	ngerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	ıl.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
4	1				Futrelle, Mrs. Jacques Heath		^- ^		^			0.400	^	>
Next	steps:	Generate	e code with	data	 View recommended plots 	Ne	w inter	active sh	eet					

data.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 891 entries, 0 to 890
    Data columns (total 12 columns):
        Column
                     Non-Null Count Dtype
         PassengerId 891 non-null
     a
                                     int64
                     891 non-null
     1
         Survived
                                     int64
     2
         Pclass
                      891 non-null
                                     int64
     3
         Name
                      891 non-null
                                     object
     4
         Sex
                      891 non-null
                                     object
         Age
                      714 non-null
                                     float64
         SibSp
                      891 non-null
                                     int64
         Parch
                      891 non-null
                                     int64
```

8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

data.isnull().sum()

dtype: int64

sns.countplot(x=data['Pclass'],hue=data['Survived'])

<Axes: xlabel='Pclass', ylabel='count'>

sns.countplot(x=data['Age'],hue=data['Sex'])

##replacing null values
data['Age']=data['Age'].fillna(round(data['Age'].mean(),2))

data.isnull().sum()

Next steps:

Generate code with data

View recommended plots

New interactive sheet

data.head()

у

```
₹
         Survived Pclass
                                                       Sex Age
                                       SibSp Parch
      0
                0
                            male
                                  22.0
                                                       П
      1
                                  38.0
                                                   0
                          female
                                            0
                          female
                                  26.0
      3
                                  35.0
                                                   0
                          female
                            male 35.0
                                            0
                                                   0
     Distributions
     Categorical distributions
     2-d distributions
     Time series
     Values
     Faceted distributions
     <string>:5: FutureWarning:
     Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set
                             <string>:5: FutureWarning:
     Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set
                             <string>:5: FutureWarning:
     Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the \dot{y} variable to `hue` and set
                             <string>:5: FutureWarning:
     Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set
    4
                                                                       New interactive sheet
 Next steps:
              Generate code with data
                                        View recommended plots
## display data in x and y
y=data['Survived'].values
x=data.drop(['Survived'],axis=1).values
```

∓ ₹		Survived
	0	0
	1	1
	2	1
	3	1
	4	0
	886	0
	887	1
	888	0
	889	1
	890	0

891 rows × 1 columns

##split the data into

from sklearn.model_selection import train_test_split

 $x_train, x_test, y_train, y_test=train_test_split(x, y, train_size=0.8, random_state=0)$

len(x_train)

∑▼ 712

len(x_test)

→ 179

len(y_test)
len(v train)