Tutorial – Normal Distribution – Bayes classifier – Various cases

Code available at -

https://github.com/bhavi289/Plotting-Multivariate -Normal-Distribution

 Find the discriminant (show it geometrically) for a two class two dimensional problem, when

(1)
$$\mu_1=\begin{pmatrix}0\\0\end{pmatrix}$$
, $\mu_2=\begin{pmatrix}4\\10\end{pmatrix}$, $\Sigma_1=\Sigma_2=\begin{bmatrix}2&0\\0&2\end{bmatrix}$ with equal priors.

(2) Do the problem 1 when $P(\omega_1) = 0.75$, and $P(\omega_2) = 0.25$.

• (3) Take means to be same along with same Σ_1 , but, let $\Sigma_2 = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ with equal priors.

(4) Take
$$\Sigma_1 = \Sigma_2 = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
 with equal priors.

(5) Take same means, but let $\Sigma_1 = I$ and $\Sigma_2 = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ with equal priors.

(1)
$$\mu_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\mu_2 = \begin{pmatrix} 4 \\ 10 \end{pmatrix}$, $\Sigma_1 = \Sigma_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ with equal priors.

Mean = [0 0], Covariance Matrix = [[2 0] [0 2]], Prior = 0.5

Mean = [4 10], Covariance Matrix = [[2 0] [0 2]], Prior = 0.5

g1(x) g2(x)

(1) $\mu_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\mu_2 = \begin{pmatrix} 4 \\ 10 \end{pmatrix}$, $\Sigma_1 = \Sigma_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ with equal priors.

Decision boundary

(2) Do the problem 1 when $P(\omega_1) = 0.75$, and $P(\omega_2) = 0.25$.

(2) Do the problem 1 when $P(\omega_1) = 0.75$, and $P(\omega_2) = 0.25$.

(3) Take means to be same along with same Σ_1 , but, let $\Sigma_2 = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ with equal priors.

g1(x) g2(x)

(3) Take means to be same along with same Σ_1 , but,

let $\Sigma_2 = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ with equal priors.

g1(x) and g2(x)

(4) Take
$$\Sigma_1 = \Sigma_2 = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
 with equal priors.

(4) Take $\Sigma_1 = \Sigma_2 = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ with equal priors.

Decision boundary

(5) Take same means, but let $\Sigma_1 = I$ and $\Sigma_2 = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ with equal priors.

(5) Take same means, but let $\Sigma_1 = I$ and $\Sigma_2 = I$

 $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ with equal priors.

g1(x) and g2(x)

Decision boundary