

FIRST SEMESTER 2019-20 Course Handout (PART II)

01/08/2019

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CHEM F214

Course Title : Inorganic Chemistry I

Instructor-in-charge: N.Rajesh

- 1. **Course Description:** This course primarily is intended to give a basic foundation to the various aspects of inorganic chemistry such as periodicity, bonding, structures of simple compounds and chemistry of some main group elements.
- 2. **Learning outcomes**: The objective of this course is to provide a comprehensive survey in the topics detailed in the course plan with the following broad outcomes: -
- Interpret the relevance of electronegativity and other periodic properties
- ➤ Illustrate the importance of acid base chemistry and applications of Hard-soft acid base concept
- ➤ Discuss the chemistry of halogens, noble gases and their significance
- ➤ Outline the basic aspects of Solid state chemistry with real-world applications.
- Explore the basic features of silicon and phosphorous chemistry
- ➤ Recognize the importance of intercalation compounds (graphite, clays) inorganic chains, rings, cages and cluster compounds
- 3. **Text Book:** Huheey J. E., Keiter, Ellen A., Keiter, Richard L. Okhil K.Medhi, " **Inorganic Chemistry**", 4th ed., Pearson Education 2006.

Reference Books: I. Inorganic Chemistry by Shriver & Atkins, (4th edition), Oxford

II. Cotton F.A., Wilkinson G., Murillo, C.A., Bochmann, M. "**Advanced Inorganic Chemistry**", 6th ed., John Wiley and Sons, New York (2003).

4. Course Plan:

No. of	Learning Objectives	Topics to be covered	Ref. to text
lectur			
es			
	Concepts in inorgan		
3	Electronegativity	Definition, scales of electronegativity, applications	Chapter 5
6	Acid base chemistry	Measures of acid base strength, Systematics of acid	Chapter 8
		base interactions, Hard soft acid base(HSAB)	
		concept- relevance to diverse metal-ligand	
		interactions, symbiosis and other applications	
3	Solvents and molten	Chemistry of aqueous and non-aqueous solvents,	Chapter 9
	salts	molten salts (ionic liquids)	
1	Electrode potentials	Latimer diagram to calculate emf and Frost diagram	Chapter 9
	_	to predict the stability of oxidation states	

	Halogens and Noble					
3	Noble gas chemistry	Early discovery of noble gases, isolation, xenon	Chapter 12			
		compounds, bond strength in noble gases				
4	Chemistry of	Anomalous behavior of fluorine, Halogens oxides,	Chapter 12			
	halogens	oxy fluorides, interhalogens, polyhalides, oxy acids of				
		halogens, halogen cations and pseudohalides				
	Structure of molecul					
2	VSEPR theory	VSEPR rules, applications to simple compounds,	Chapter 6			
		atomic inversion and pseudorotation				
2	Structures of crystal	Lattice energy, structures of NaCl, CsCl, TiO ₂ , CaF ₂ ,	Chapter 4			
	lattices	ZnS, Radius ratio rules, Fajans rules- covalent				
		character				
3	Complex solids	Layered structures, spinels and superconductors.	Chapter 4			
		Basic aspects of band theory and crystal defects				
	Chemistry of main g					
3	Main group	First and second row anomalies, diagonal	Chapter 10			
	elements:	relationships, bonding in silicon and phosphorous				
	Periodicity	compounds, GroupIIIA, IVA anomalies, inert pair ,				
		relativistic effects and aurophilicity				
	Chemistry of Main g					
3	Inorganic chains	Catenation, heterocatenation, silicate minerals,	Chapter 11 and			
		intercalation chemistry, one dimensional conductors,	chapter 13 (for			
		isopoly and heteropolyanions	iso and hetro			
			polyanions)			
3	Inorganic rings	Borazines, phosphazenes, phosphazene polymers, few	Chapter 11			
		heterocyclic and homocyclic ring systems				
3	Inorganic cages	Boranes, carboranes, structure prediction for	Chapter 11			
		heteroboranes, and organometallic clusters				
3	Inorganic clusters	Metal clusters, (di, tri and tetra and hexa nuclear	Chapter 13			
		clusters- bonding in Rhenium and Molybdenum				
		compounds, Zintl ions, Chevrel phases and infinite				
		metal chains				

5 Evaluation Scheme:

EC	Evaluation	Durati	Weightage	Date & Time	Remarks
NO.	Component	on	(%)		
1,	Mid sem test	90	35	1/10, 9.00 10.30 AM	Closed book
		min.			
*2.	Assignment		15		Take home
	_				(Open book)
*3	Group discussion		5		Open book
4.	Comprehensive.	3 hrs	45	6/12 FN	Closed book
	Exam.				

*One take home assignment would be given and each student is expected to submit a report on the assigned topic which will be evaluated. Topic for Group discussion (GD) based on relevant journal articles would be announced in advance. GD is like an open book component since each group is permitted to bring /refer the journal articles with them during discussion. Date for Group discussion (preferably in the last week of November) would be displayed in

advance in the class and CMS. For Group discussion (GD) students would be divided into 5-6

members per group with duration of about 10min per group. Evaluation for each member would be done based on their level of participation and knowledge in the particular topic of discussion assigned to each group.

- **6 Make-up Policy:** Make-up will be granted for only very genuine and deserving cases.
- **7 Chamber Consultation hours:** To be announced in the class.
- 8. **Notices:** Relevant notices regarding the course will be displayed on Chemistry Notice Board/CMS.
- **9. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor in charge

CHEM F214

