Lineare Algebra II

Benjamin Dropmann

April 2, 2025

Polynome

Polynomdivision

Seien f und $g \neq 0$ zwei polynome in K[x] dann $\exists q(r), r(r) \in K[x]$ mit deg(r) = 0 oder deg(r) < deg(g) und f = qg + r.

Korollar 9.0.4

Sei $f(x) \in K[x], f(x) = 0$ sei $\lambda \in K$ so dass $f(\lambda) = 0$. Dann $\exists q(x) \in K[x]$ so dass $f(x) = (x - \lambda)q(x)$ **Beweis** $\exists q(x), r(x) \in K[x]$ $deg(r) < deg(x - \lambda) = 1$ so dass $f(x) = (x - \lambda)(q(x) + r(x), \rightarrow r \in K \Rightarrow f(\lambda) = 0$

Korollar 9.0.6

Sei $f(x) \in K[x]$, deg(f) = n > 0 Dann hat f(x) höchstens n Nullstellen. (Fundamentaler satz der Algebra sehr ähnlich).

Beispiele 9.0.7

Es sei $f(x) = x + 1(x^2 + 1)$, als poly in $\mathbb{R}[x]$ hat es nur eine nullstelle x = -1. Als polynom in $\mathbb{C}[x]$ gilt f(x) = (x+1)(x+i)(x-i)

Theorem 9.0.8 Fundamentaler Satz der Algebra

Es sei $f(x) \in \mathbb{C}[x]$, deg(f) = n > 0 dann hat f(x) in $\mathbb{C}[x]$ genau n nullstellen. Dass heisst es existieren $\exists \lambda_1, ..., \lambda_n$ nicht unbedingt verschieden, so dass $f(x) = (x - \lambda_1) \cdot \cdots \cdot (x - \lambda_n)$ Wir sagen \mathbb{C} is Algebraisch abgeschlossen.

Lemma 9.0.11

sei $f(x) \in K[x], \lambda \in K$ so dass $f(\lambda = 0$ Die Ordnung der Nullstelle (Vielfachheit) λ is die Ganze zahl $n \geq 1$ so dass $\exists q(x) \in K[x]$ so dass

$$f(x) = x - \lambda)^n q(x)$$

Beispiele 9.0.12

- 1. $f(x) = x + 1(x^2 + 1)$ Einfache nullstelle $\lambda = -1$ daher ist die ordnung 1
- 2. p > 2 $g(x) = x^p \in \mathbb{F}_p[x]$

 $\mathbb{F}_p = [a_n x^n + ... + a_1 x + a_0 | n \ge 0, a_i \in \mathbb{F}_p]$ Und $g(x) = x^p - 1 = (x - 1)^p$ (leicht ausrechnen) bemerkung 9.0.13 Analogien $\mathbb{Z} \leftrightarrow K[X]$

$\mathbb Z$	K[x]
±1	$K \backslash 0$
Primzahlen	Unzerlegbare Polynome grad<0
$\mathbb{Z}/_{p\mathbb{Z}}=\mathbb{F}_{\scriptscriptstyle ert}$	$f(x)$ ist unzerlegbar: $K[x]/_{f(x)}$ Körper

Eigenwerte und Eigenvektoren

Definition 10.1.1

V/K Vektorraum, $T:V\to V$ Endomorphismus.

- 1. $\lambda \in K$ ist ein Eigenwert von T wenn $\exists v \in V, v \neq 0_v$ so dass $T(v) = \lambda v$
- 2. Ein solches V heisst Eigenvektor mit Eigenwert λ

Bemerkung 10.1.12

Wenn v Eigenveltor von T ist, $T(v) = \lambda v$ dann ist auch αv Eigenveltor von T mit Eigenwer $\lambda, \forall \alpha \in K, \alpha \neq 0$

Beispiele 10.1.3

Rechnung von eigenwerte und Eigenvektoren

1.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 Eigenwerte $\lambda = 3$ und $\lambda = -1$

$$A \cdot \begin{pmatrix} x \\ b \end{pmatrix} = \lambda \cdot \begin{pmatrix} x \\ b \end{pmatrix}$$

Wir kommen dann auf

$$\begin{pmatrix} 1x & 2y \\ 2x & 1y \end{pmatrix} = \lambda \cdot \begin{pmatrix} x \\ b \end{pmatrix}$$

und also

$$2x + y = \lambda x$$
$$x + 2y = \lambda y$$

Wir bekommen also

$$y((1-\lambda)^2 - 4) = 0$$

 $y \neq 0, x \neq 0$ Da die nullvektoren keine Eigenvektoren sind $\Rightarrow (1 - \lambda)^2 = 4 \Rightarrow \lambda = [-1, 3]$ Warum spezifisch zwei?

2.
$$B = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$
 Wir Suchen ein λ sodass $b(v) = \lambda \cdot v$ für $v \in \mathbb{R}^2, v \neq 0$

$$\left(B - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Alsow für welche λ ist $B - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ nicht invertierbar (wann ist der kern nicht trivial) \Leftrightarrow Für welche $\lambda \in K$ ist

$$\det \begin{pmatrix} B - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = 0?$$

$$det\left(\begin{pmatrix}1-\lambda & -2\\ 1 & 4-\lambda\end{pmatrix}\right) = (1-\lambda)(4-\lambda) \Rightarrow \lambda = [2,3]$$

Und jetzt fur die Eigenvektoren: für $\lambda=2$

$$b(v) = 2v \Rightarrow v = \alpha \begin{pmatrix} -1\\2 \end{pmatrix}, \alpha \neq 0$$

Satz 10.1.4

 $T: V \to V$ linear. Dann gilt: $\lambda \in K$ eigenwert von $T \Leftrightarrow ker(T - \lambda 1_v) = 0$

Eigenwerttheorie

Fibonaccifolgen sei V der V-R der Fibonnacci Folgen. wir haben $S:V\to V$ ist die Verschiebungsabbiildung, (die ist definiert in satz 1.1.15) Die Basis war $B=\{\mathbb{F}_{0,1},\mathbb{F}_{1,0}<\}$ Und die matrix ist $[S]_B^B=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ und $det(S)=\lambda^2-\lambda-1$ eigenwerte sind also $\phi und\varphi$ und die Eigenfolgen sind $\{\mathbb{F}_{\phi,1},\mathbb{F}_{\varphi,0}<\}$ also die diagonal matrix ist dann $[S]_C^C=\begin{pmatrix} \phi & 0 \\ 0 & \varphi \end{pmatrix}$

Definition Das charakteristische polynom

Sei $A \in M_{m \times n}(K)$ Dann ist $X_A(x) = det(A - x \partial_n)$ das charakteristische polynom von A

Beispiele 10.2.2

 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ dann ist $X_a(x) = ichhabenichtabgeschrieben$ aber der konstante term des carachteristischen polynom ist die Determinante. $det(A - x1_n)$ Insbesondere $X_{1_2}(x) = x^3 - 2x + 1 = (x - 1)^2$

Definition 10.2.3

 $T:V\to V$ linear dann sei $X_T(x)=\det([T]^B_B-x1_n)$ dies ist unabhängig von der wahl der Basis B. 10.2.4: $X_T(x)$ ist wohldefiniert

Beweis $[T]_{c}^{C} = [D]_{C}^{B}[T]_{B}^{B}[D^{-1}]_{B}^{C}$ danns ist

$$det([T]_C^C - 1_n x) = det([D]_C^B [T]_B^B [D^{-1}]_B^C - 1_n x) = det(D[T]_B^B D^{-1} - xDD^{-1})$$

$$= det(D([T]_B^B - xT)D^{-1}) = det(D)det([T]_B^B - x)det(d^{-1} =) = det(D)det([T]_B^B - x)$$

Theorem 10.2.5

Es sei $T: V \to V$ linear. Dann gilt dans die Eigenverte von $T = \{\lambda \in K | X_T(\lambda) = 0\}$

Lemma 10.2.6

Sei $A = (a_{ij}) \in M_{n \times n}(K)$ eine obere Dreiecksmatrix fann gilt

$$X_A(x) = \prod_{n=1}^n (a_{ii} - x)$$

Sei $M = \begin{pmatrix} a & b \\ c & cd \end{pmatrix} \Rightarrow X_A = x^2 - (a+d)x + ad - bc$ Trace (noch nachzu sehen) $Tr: M_{n \times n}(K) \to A = (a_{ij}) \to \sum a_{ii} 1$

Definition 10.2.7

Sei $T:V\to V$ linear dann ist die Spur von T

$$Tr(T) = Tr([T]_B^B)$$

Korollar 10.2.8

Tr(T) ist wohldefiniert

Beweis Zu zeigen wann C eine Andere Basis un $D = id|_B^C$ dann gilt

$$Tr([T]^B_B) = Tr(D^{-1}[T]^C_CD)$$

Es reicht aus zu zeigen dass wenn $M_1, M-2 \in M_{n \times n}(K)$ dann gilt $Tr(M_1M_2) = Tr(M-2M_1)$ (mit explizite rechnung beweisen) Daher gilt auch 10.2.8 **Satz10.2.9** es sei $T: v \to V$ linear dann gilt

$$X_T = (-1)^n x^n + (-1)^{n-1} x^{n-1} Tr(T) + \dots + det(T)$$

Beweis es sei $A = \begin{bmatrix} B \\ B \end{bmatrix}$ Mit induktion kann man beweisen dass wenn es für eine $M_{n-1 \times n-1}$ geht dann geht es für $M_{n \times n}$ als übung zu machen. Der Zweite beweis geht wie folgt ab:

Sei $B \in M_{n \times n}$ und $b = (b_{ij})$ dann gitl die formel

$$\sum_{\sigma \in S_n} b_{\sigma(1,1)} \dots b_{\sigma(n,n)}$$

Sei $B = A - x1_n$ und $\sigma \in S_n$ Fur welche σ hat

$$b_{\sigma(1,1)}b_{\sigma(2,2)}....b_{\sigma(n,n)}$$

ein polynom von grad >n-1? Der beweis ist todlich, nacheher schauen ich tippe jetzt was ich nicht verstehe...

 $T:V\to V$ linear, dann ist $\lambda\in K$ eine Eigenvector wenn $\exists v\in V, v\neq 0_v$ so dass $Tv=\lambda v$. Hier merken wir dass der skalar eines Eigenvektors, auch ein egeinvektor ist, und dass die addition von zwei vektoren mir den selben eigenwert, auch ein Eigenvektor ist, also hat dies die Struktur eines unterraums... Wir sind auf dem Folgenden Satz gekommen. Sei $T:V\to V$ linear, dann gilt $\lambda\in K$ ist genau dann Eigenwert von T wenn $ker(T-\lambda I_n)\neq\{\emptyset\}$

Beweis $\lambda \in K$ Eigenwert $\Leftrightarrow \exists v \in V, v \neq 0_v$ so dass $Tv = \lambda v \Leftrightarrow (T - \lambda I_n)v = 0_v$ Und daher ist $v \in ker(T - \lambda I_n)$ Das ist Praktisch da wenn $(T - \lambda I_n)$ nicht injektiv ist dann ist $ker(T - \lambda I_n) \neq \emptyset$ und wenn die Determinante nicht null ist dann ist $T - \lambda I_n$ kein endomorphismus.

Bemerkung

0 ist ein Eigenwert wenn T kein isomorphismus ist

Korollar

Folgende aussagen sind äquivalent:

- λ ist ein Eigenwert von T
- $ker(T_{\lambda}I_n) \neq = 0_v$
- $T \lambda I_n$ ist kein Isomorphismus
- $det(T \lambda I_n) = 0$

Der Beweis ist eine zusammenfassung von vorherigen beweisen Mit dieses wissen kann man Finden dass es hochstens n Unterschliedliche eigenwerte gibt, da die mit einen grad n polynom definiert sind.

Das charachteristische polynom

Definition 10.2.1

Sei $A \in M_{n \times n}(K)$. dann ist $X_a(x) = det(A - x1_n)$ das charakteristische polyom von A Für eine 2×2 Matrix ist dann

$$X_A(X) = x^2 - \underbrace{(a-d)x}_{Tr(A)} + \underbrace{ad-bc}_{det(A)}$$

Kleine errinerung, die Trace ist die Summe der Diagonale elemente. Diese bemerkung gilt auch für 3×3 . Wir rechnen jetzt für $n \times n$. Der Konstante term von $det(A - xI_n)$ ist det(A) (da es der Fall bei x = 0 ist)

Insbesondere:

$$X_1(x) = x^2 - 2x + 1 = (x - 1)^2$$

Definition 10.2.3

 $T: V \to V$ linear dann ist $X_T(x) = det([T]_b^b - xI_n)$ Für eine Basis B von V.

Lemma 10.2.4

 $X_T(x)$ ist wohldefiniert.

Beweis

$$[T]_C^C = [D]_C^B [T]_B^B [D^{-1}]_B^C$$

Multiplikativität von det:

$$det([T]_C^C - xI_n) = det([D]_C^B [T]_B^B [D^{-1}]_B^C - xI_n) = det([D]_C^B [T]_B^B [D^{-1}]_B^C - xD^{-1}D) = det(D)det([T]_B^B - xI_n)det(D^{-1}) = det(D)det([T]_B^B - xI_n)det(D^{-1}) = det(D)det(D^{-1})det(D^{-1}) = det(D^{-1})det(D^{-$$

Was unsere aussage zustimmt. Da das Charakteristische Polynom unabhängig von der Wahl der Basis, ist sie Eindeutig und daher Wohldefiniert.

Theorem 10.2.5

Es sei $T: V \to V$ linear, dann gilt dass

{Eigenwerte von
$$T$$
} = { $\lambda \in K | X_T(\lambda) = 0$ }

Lemma 10.2.6

Sei $A = (a_{ij}) \in M_{n \times n}(K)$ Eine Obere Dreiecksmatrix. Dann ist das Charakteristische Polynom

$$X_A(x) = \prod_{i=1}^n (a_{ii} - x)$$

 $Tr: M_{n \times n}(K) \to K$ $A = (a_{ij} \to \sum a_{ii})$ Ist wohldefiniert.

Definition 10.2.7

Sei $T: V \to V$ linear dann ist $Tr(T) = Tr([T]_B^B)$ Wobei B eine Basis, Wohldefiniert (Satz 10.2.8).

Beweis Zu Zeigen, wenn \mathbb{C} eine andere Basis ist, und $D = [id_v]_{\mathbb{C}}^B$ eine Basiswechselmatrix ist, dann gilt:

$$Tr[T]_B^B = Tr(D^{-1}[T]_{\mathbb{C}}^{\mathbb{C}})$$

Hier Bleibt nichts übrig ausser es auszurechnen, aber es funktioniert, es reicht aus zu zeigen, Wenn $M_1, M_2 \in M_{n \times n}(K)$ dann gilt $Tr(M_1 \cdot M_2) = Tr(M_2 \cdot M_1)$ Da wenn dass gilt dann kürzt sich der D, D^{-1} . Dass ist eine Explizite berechung.

Satz 10.2.9

Sei $T:V\to V$ linear, dann gilt

$$X_T(x) = (-1)^n x^n + (-1)^{n-1} Tr(T) x^{n-1} + \dots + det(T)$$

Beweis Es sei $A = [T]_B^B$

Satz 10.2.8

Tr(T) ist wohldefiniert.

Beweis Wenn C eine andere basis ist und $D = [id_v]_C^B$ dann gilt: $Tr[T]_B^B = Tr(D^{-1}[T]_C^C D)$ Hier bleibt in theorie nichts anderes als von hand zu zeigen dass $M_1, M_1 \in M_{n \times n}(K)$ dann gilt: $Tr(M_1 M_2) = Tr(M_2 M_1)$. Aber es ist immer noch nicht sehr schon.

Satz 10.2.9

Es sei $T:V\to V$ linear dann ist

$$X_T(x) = (-1)^n x^n + (-1)^{n-1} Tr(T) x^{n-1} + \dots + det(T)$$

Uber den rest kann man nicht viel sagen

Beweis Es sei $A = [T]_B^B$ dann ist $X_A(x) = det(A)$ Aber die A matrix ist sehr gross, dann muss man den beweis per induktion machen (Gute exams aufgabe). Hier ist die zweite idee die wir machen Wir wissen dass $B \in M_{n \times n}(K)$ dann gilt

$$det(B) = \sum_{\sigma \in S_n} sgn(\sigma)b_{\sigma(1),1} \cdot \cdot \cdot \cdot b_{\sigma(n),n}$$

Sei $B = A - xI_n$ und $\sigma \in S_n$, für welche σ ist $b_{\sigma(1),1} \cdot b_{\sigma(2),2} \cdots b_{\sigma(n),n} = (*)$ ein Polynom vom Grad $\geq n-1$? wenn $\sigma = id$ dann ist

$$(*) = (a_{1,1} - x) \cdots (a_{nn} - x) = (-1)^n x^n + (-1)^{n-1} \underbrace{(a_{1,1} + a_{2,2} + \dots + a_{n,n})}_{=Tr(B)} x^{n-1} + \text{Restterm von grad in-1}$$

Alle andere moglichkeiten für σ müssen also vom grad < n-1 sein (da nur auf der Diagonale $a_{j,j}-x$ steht, uberall sonst gibt es kein x und wenn wir nur ein element vertauschen, sind es zwei, und daher ist grad < n-1), und daher ist dass zweite vorfaktor vom polynom Welches dann beweist dass der zweite Restterm Tr(A) ist und also dass unsere gleichung stimmt (der konstante faktor muss ja = det(A) sein)

Korollar 10.2.11

 $T:V\to V$ mir V n-dim hat hochstens n Eigenwerte (da der Charachteristische polynom grad n ist.)

0.1 Diagonalisierung

Frage: es sei $T: V \to V$ ein Endomorphismus. Gibt es eine Basis in welche die abbildungsmatrix von T diagonal ist?

Satz 10.3.2

Es seien $\lambda_1, \dots, \lambda_n$ verschieden eigenwerte von T und $\forall i$ sei v_i ein Eigenvektor mit eigenwert λ_i dann sind v_1, \dots, v_m linear unabhängig.

Beweis Es sei zwei Eigenvektoren, v_a, v_b mit eigenwerte λ_a, λ_b dabei ist dann $Tv_a = \lambda_a v_a$ und $Tv_b = \lambda_b v_b$ wenn aber $v_a = cv_b$ (sie sind nicht linear unabhängig) dann gilt $Tcv_b = \lambda_a cv_b$ und damit ist $\lambda_a \cdot c = \lambda_a$ und also sind diese Eigenvektore nicht unterschiedlich, da sie beide den selben Eigenwert haben.

Korollar 10.3.4

Wenn Wir für $T:V\to V$ linear mit V n-dim, wenn T Genau n verschidene Eigenwerte hat, dann hat V eine Basis die aus $\lambda_1,\lambda_2,\cdots,\lambda_n$ besteht.

Definition 10.3.5

 $T:V\to V$ ist diagonalisierbar wenn \exists Basis von Eigenvektoren existiert. In diesem Fall ist die Abbildungsmatrix von T bezüglich dieser Basis diagonal, mit den Eigenwerte als einträge in der Matrix.

Bemerkung 10.3.6

Eine $A \in M_{n \times n}$ Matrix ist diagonalisierbar $\Leftrightarrow \exists B \in GL_n(K)$ so dass $B^{-1}AB$ diagonal ist (basiswechselmatrix).

Lemma 10.3.7

Wenn A Diagonalisierbar mit Eigenwerten $\lambda_1, \dots, \lambda_1$ ist, dann ist $X_A = \Pi(\lambda_i - x)$

Charachterische Polynom ist: $X_A = det(A - xI_n)$ und seine losungen sind die Eigenwerte der Matrix. Eine n-dim Matrix ist diagonalisierbar falls es n unterschiedliche Eigenwerte gibt, daher wenn es eine Basis von Eigenvektoren gibt. Wir wissen auch dass

$$A = [T]_B^B \Leftrightarrow \exists P \in GL_n(K)$$
 so dass $P^{-1}AP$ Diagonal ist

Frage, für welche A gibt es so ein P?

- \bullet Wenn A diagonal ist dann ist P die identität.
- Wenn $X_A(x)$ n verschiedene Nullstellen hat, beachte, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} aber X(x) = (1-x)^2$ also diese bedingung ist nicht ausschlieslich.

Gibt es matizen die Nicht diagonlisierbar sind?

Beispiele 10.3.8

- $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \Rightarrow X_A(x) = x^2 \Rightarrow A$ hat nur einen Eigenwert, $\Rightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow$ Eigenvektoren sind $\alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Daraus kann man aber keine Basis machen, dies ist nicht diagonalisierbar.
- Es kann auch am Korper liegen dass wir nicht diagonaliseren konnen: $M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_{2\times 2}(\mathbb{R}) \Rightarrow X_M(x) = x^2 + 1$ dass konnen wir nicht in \mathbb{R} faktorisieren, aber in \mathbb{C} geht es mit Eigenwerte $\pm i$, Wir werden immer den Korper vergrossern so dass dieser Fall nicht aufkommt

Beispiele 10.3.9:

der Erste Fall in der Liste lässt sich verallgemeinern, Sei $n \ge 1, \lambda \in K$ Wir definieren die **Jordansche Blockmatrix**

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ 0 & 0 & \lambda & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

Und wir merken also dass $X_{J_n}(x)=(\lambda-x)^n$ Wobei der einzige Eigenwert $x=\lambda$ und die Dazugehorigen EigenVektoren

sind dann
$$\alpha \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 was natürlich für $n > 1$ keine Basis.

Folgerungen Dass Charakterische allein entscheidet nicht ob eine Matrix diagonalisierbar ist. Und dass Problem ist eine Mogliche Diskrepanz zwischen der Ordnung der Nullstelle und die Dimension des aufgespannten Unterraums der Eigenvektoren.

Eigenräume

Definition 10.4.1

Sei $T:V\to V$ linear und λ ein Eigenvektor von T. Der Eigenraum, ist der Aufgespannte unterraum vom λ -Eigenvektor, seine Defintion ist wie Folgt $E_{\lambda}=ker(T-\lambda id_v)=<\lambda$ Eigenvektoren >

Lemma 10.4.2

 $E_{\lambda} \subset V$ Beweis trivial. **10.4.3**

• $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ Dann ist $X_A(x) = -x^3 + 3x + 2$ und dann sind die Eigenwerte $X_A(2) = 0$ und dann konnen wir

Faktorisieren und es kommt $X_A(x) = -(x-2)(x+1)^2$ und die Dimensionen der Dazugehorigen Eigenräume sind:

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Rightarrow E_{\lambda=2} = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle$$

Und mit
$$E_{\lambda=-1} = \left\langle \begin{pmatrix} 1\\1\\-2 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \right\rangle$$

Aber mit eine Riesen matrix ist es schwierig zu sagen ob wenn wir alle Eigenräume zusammenstellen, wir eine Basis von V haben, oder nicht.

Definition 10.4.4

Sei V ein V-R, wir betrachten $U_1,...,U_k \subset V$ Sei $W=U_1+\cdots U_k$ Dann ist W die Direkte summe von $U_1,...,U_k$, wenn

$$\forall w \in W \quad \exists! u_1 \in U_1, ..., u_k \in U_k \text{ so dass } w = u_1 + ... + u_k$$

Man schreibt $W = U_1 \bigoplus ... \bigoplus U_k$ Ich glaube dies ist äquivalent zu $\bigcap U_i = \{0_v\}$ Der beweis ist schwierig.

Lemma 10.4.6

Es gilt $W = U_1 \bigoplus ... \bigoplus U_k$ genau wenn die Gleichung $u_1 + ... + u_k ==_v$ mit $u_i \in U_i$ $\forall i$ nur die Losung $u_i = 0_v$ $\forall i$ hat. Der beweis ist als übung zum Leser überlassen

Beispiele 10.4.7

- $\mathbb{R}^3 = \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\rangle \bigoplus \left\langle \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \right\rangle \bigoplus \left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle$ Dies wäare äquivalent zu sagen dass diese drei elemente eine Basis von \mathbb{R}^3 sind also ja
- $\mathbb{R}^2 = \left\langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\rangle + \left\langle \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \end{pmatrix} \right\rangle$ aber Keine Direkte summe da die zweite lineare Hülle unnotige elemente enthält

Bemerkung 10.4.8

Wenn W die Direkte Summe von $U_1...U_k$ ist dann gilt dass $\dim(W) = \dim(U_1) + ... \dim(U_k)$

Beweis Sei B_i Basis von U_i dann behaupten wir dass $B_1 \cup \cup B_k$ Basis von W ist. Dieser Teil des Beweis ist als Ubung überlassen

Satz 10.4.9

Es sei $T:V\to V$ linear und $\lambda_1,...,\lambda_k$ Eigenwerte von T mit $\lambda_i\neq\lambda_j \forall i\neq j$. Sei $W=E_{\lambda_1}+...+E_{\lambda_k}$ Dann gilt $W=E_{\lambda_1}\bigoplus...\bigoplus E_{\lambda_k}$.

Beweis Nehmen wir an dass $\exists u_1, ..., u_k \ u_i \in E_{\lambda_i}$ und dann da u_i jeweils in unterschiedliche Eigenräume sind, sind die alle von einander linear unabhängig, kann die summe den Nullvektor ergeben:

$$\exists u_1, ..., u_k \in E_{\lambda_i} \text{ so dass } u_1 + ... + u_k = 0_v$$

Doch $u_1,...,u_k$ sind linear unabhängig und wenn $u_i \neq 0_v \quad \forall i$ dann kriegen wir ein widerspruch.

Korollar 10.4.10

Sei $T:V\to V$ linear mit Eigenwerte $\lambda_1,...,\lambda_k$ dann ist T genau dann Diagonalisierbar, wenn die summe der dimensionen der dazugehorigen Eigenräume, die dimension von V ist:

$$T$$
 ist Diagonaliserbar $\Leftrightarrow \dim(V) = \sum_{i=1}^{k} \dim(E_{\lambda_i})$

Algebraische und Geometrische vielfachheit

Bemerkung 10.5.1

Es sei $n = \dim_K(V)$ mit $T: V \to V$ Dann hat $X_T(x)$ grad n und wenn $X_T(x) = (\lambda_1 - x)^{a_1} \cdot ... \cdot (\lambda_k - x)^{a_k}$ mit $\lambda_i \neq \lambda_j \forall i \neq j$ dann ist $n = \sum a_i$

Definition 10.5.2

sei λ Eigenwert von T dann ist

- Die Geometrische Vieflachheit; $g_{\lambda} = \dim(E_{\lambda})$
- Algebraische Vielfacheit a_{λ} ist die Ordnung der Nullstelle vom Faktor λ in $X_T(x)$

Beispiele 10.5.3

Im beispiel 10.4.3 hatten wir

- $\lambda_1 = -1 \text{ und } g_{\lambda_1} = a_{\lambda_1} = -2$
- $J_n(\lambda)$ $g_{\lambda} = 1$ $a_{\lambda} = n$
- λI_n $g_{\lambda} = a_{\lambda} = n$

Man merkt dass:

Satz 10.5.4

 $T: V \to V$ mir Eigenwert λ Dann gilt $g_{\lambda} \leq a_{\lambda}$

Beweis Sei $v_1, ..., v_k$ eine Basis von E_{λ}, v_k eine Basis von E_{λ} und wir erweitern sie zu einer Basis

$$B = \{v_1, ..., v_k, v_{k+1}, ..., v_n\}$$

von V. Dann ist

$$[T]_B^B = \begin{pmatrix} \lambda I_k & C \\ 0 & D \end{pmatrix}$$

Dann ist $\det([T]_B^B - xI_n) = (\lambda - x)^k \cdot \det(D - xI_{n-k})$ das bedeutet dass $k \leq a_\lambda$ da im $\det(D - xI_{n-k})$ auch eine Nullstelle vorkommen kann.

Korollar 10.5.5

Es seien $\lambda_1, ..., \lambda_k$ unterschiedliche Eigenwerte von T, dann gilt:

$$T$$
 ist diagonalisierbar $\Leftrightarrow g_{\lambda_i} = a_{\lambda_i} \quad \forall i$

Beweis Korollar 10.4.10 sagt dass

$$T \text{ ist Diagonalisierbar } \Leftrightarrow V = E_{\lambda_1} \bigoplus \ldots \bigoplus E_{\lambda_k} \Leftrightarrow \dim(V) = \sum \dim(E_{\lambda_i}) = \sum g_{\lambda_i} \leq \sum a_{\lambda_i} = n = \dim(V)$$

da beide seiten $\dim(V)$ haben, dann ist $\sum g_{\lambda_i} = \sum a_{\lambda_i}$ und da $a_{\lambda_i} \geq g_{\lambda_i}$ ist $a_{\lambda_i} = g_{\lambda_i}$ $\forall i$

Theorem 10.5.6

Sei $\dim(V) = n$ mit $T: V \to V$ dann sind folgende aussagen äquivalent:

- T ist Diagonalisierbar
- $\forall \lambda \text{ gilt } a_{\lambda} = g_{\lambda}$
- Seien $\lambda_1, ... \lambda_k$ Eigenwerte, dann gilt $X_T(x) = \Pi(\lambda_i x)^{g_{\lambda_i}}$
- $V = \bigoplus_{i=1}^{k} E_{\lambda_i}$

Die Beweise sind schon alle vorgeführt gewesen. Was machen wir mit den Matrizen die man nicht diagonalisieren kann?

Das minimale Polynom

Definition und Erste Eigenschaften

Definition 11.1.1

Sei $T:V\to V$ linear, dann ist $T^k=\underbrace{T\circ\ldots\circ T}_{k\text{ mal}}$ und $T^0=id_V.$ Die definition ist für Matrizen analog.

Definition 11.1.2

Sei $g(x) = a_d x^d + ... + a_1 x + a_0 \in K$ ein Polynom, dann definieren wir $g(T) = a_d T^d + ... + a_1 T^1 + a_0 T^0 \in End_k(V)$. Es geht auch mit matrizen.

Beispiele e 11.1.4

- $A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$ $f(x) = x^2 x + 3 \Rightarrow f(A) = A$
- $g(x) = x^n$ dann ist $g(J_n(0)) = 0_{n \times n}$ im Jordanblock, verschiebt sich die diagonale nach oben rechts.

Satz 11.1.5

Sei $T \in End_K(V)$ dann $\exists g(x) \in K[x]$ so dass $g(T) = 0_v$

Beweis $\dim(End_k(V)) = n^2 \Leftrightarrow \dim(V) = n$ dass heisst dass $T^0, T^1, ... T^{n^2}$ sind alle linear unabhängig, und daher:

$$\exists a_0, ... a_{n^2} \in K \neq 0 \text{ so dass } a_0 T^0 + ... + a_{n^2} T^{n^2} = 0_v$$

Aber kann man dieses Polynom finden, und hat es einen zusammenhang mit den Charakteristischen Polynom

Bemerkung 11.1.6

Wenn $g(T) = 0_V$ dann gilt auch $(\alpha g)(T) = 0_V \quad \forall \alpha \in K$

Beispiele e 11.1.7

- Sei $n \ge 1$, $A = Id_n$ und g(x) = x 1 dann gilt $g(A) = 0_{n \times n}$
- Sei $A = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_k \end{pmatrix}$ dann haben wir $\forall g \ g(A) = \begin{pmatrix} g(\lambda_1) & 0 \\ & \ddots & \\ 0 & & g(\lambda_k) \end{pmatrix}$ Hier konnen wir also $X_A(A) = 0_{n \times n}$ nehmen

Gilt dies also für jede Matrix?

Gilt also dass $g(x) = X_A(x)$ für jede Matrix A?

Behauptung

Sei $A \in M_{n \times n}(K)$ dann ist $X_A(A) = 0_{n \times n}$ Hier kommen wir später zuruck

Definition 11.1.8

Sei $T:V\to V$ linear. Das minimale Polynom ist das monische $(\neq 0)$ Polynom kleinsetn Grades $m_T(x)\in K[x]$ so dass $m_T(T)=0_V$

Lemma 11.1.9:

Seien m(x) und m'(x) beide Monisch, vom kleinsten Grad $d \ge 1$ so dass $m(T) = m'(T) = 0_V$. Dann gilt m(x) = m'(x). Beweis Nimm an dass $m(x) \ne m'(x)$ Dann sei

$$q(x) = m(x) - m'(x) \neq \Rightarrow deq(q) < d \text{ und } q(T) = 0_V$$

Was ein Widerspruch bringt.

Satz 11.1.10

Sei $T: V \to V$ Linear und $g(x) \in K[x]$ monisch so dass $g(T) = 0_V$ Dann gilt dass $m_T(x)|g(x)$ ($m_T(x)$ teilt g(x))) **Beweis** Polynom division: $\exists q(x), r(x) \in K[x]$ mit deg(r) < deg(m) so dass g(x) = m(x)q(x) + r(x) und da $g(T) = 0_V = q(T) \underbrace{m(T)}_{m(T)=0} + r(T)$ also $r(T) = 0_V \Rightarrow r(x) = 0$

Beispiele 11.1.11

- $A = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \Rightarrow X_A(x) = (x \lambda)(x \mu)$ wir wissen dass $X_A(A) = 0_{2 \times 2}$ und wir wissen das der minimale polynom der Charakteristische Polynom teilt. Wenn also $\mu \neq \lambda \Rightarrow m_A(x) = X_A(x)$ aber wenn $\lambda = \mu \Rightarrow m_A(x) = x \lambda$
- Sei $A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{pmatrix}$ $X_A(x) = (\lambda x)^2 (\mu x) \Rightarrow m_A(x) = (\lambda x)(\mu x) \quad \lambda \neq \mu \text{ Wenn } \mu = \lambda \quad m_a(x) = x \lambda$
- $A = J_n(\lambda) \Rightarrow X_A(x) = (\lambda x)^n \Rightarrow m_A(x) = X_A(x)$
- $A = \lambda i d_n \Rightarrow X_A(x) = (\lambda x)^n$ und $m_A(x) = x \lambda$

Cayley Hamilton $A \in M_{n \times n} \Rightarrow X_A(A) = 0_{n \times n}$

Beweis

$$(A - xid_n)adj(A - xid_n) = X_A(x)id_n \qquad (*)$$

Hier schreibe man $adj(A - xI_n) = (p_{ij}(x))$ wobei $p_{ij}(x) \in K[x]$ mit $deg(p_{ij}) \le n - 1$

Bemerkung 11.3.2

$$adj(A - xid_n) = B_{n-1}x^{n-1} + \dots + B_1x + B_0 \quad B_i \in M_{n \times n}(K)$$
$$X_A(x)id_n = (-1)^n(x^n + a_{n-1}x^{n-1} + \dots + a_0)$$

Wir setzen diese letze gleichung in (*) ein und bekommen

$$AB_0 = (-1)^n a_0 i d_n$$
$$-B_0 + AB_1 = (-1)^n a_1 i d_n$$

und so weiter bis:

$$-B_{n-1} = (-1)^n id_n$$

Und zu zeigen ist

$$X_A(A) = =_{n \times n} \Leftrightarrow (-1)^n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 i d_n = 0_{n \times n}$$

Wir konnen jede gleichung vom system mit A^i multiplizieren (wo i = deg der linie) und summieren dass alles zusammen. Wir finden dass die Summe = 0 und dass $X_A(A) = 0_{n \times n}$

Jordansche Normalform

Definition Theorem

sei $\lambda \in K$ und $n \ge 1$ der Jordanblock der länge n und Eigenwert λ ist folgende Matrix:

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ 0 & & \lambda & \end{pmatrix}$$

Lemma 12.1.1

 $X_{J_n}(x)=(\lambda-x)^n$ und λ ist der Einzige eigenwert, $g_{\lambda}=1$ und $a_{\lambda}=n$ mit $m_{J_n}(x)=(-1)^nX_{J_n}(x)$

Theorem 12.1.2

Jordansche Normalenfor, Sei $T: V \to V$ Dann $\exists B$ eine Basis von V so dass

$$[T]_B^B = \begin{pmatrix} J_{n_1}(x_1) & & & 0 \\ & J_{n_2}(x_2) & & \\ & & \ddots & \\ 0 & & & J_{n_k}(x_k) \end{pmatrix}$$

Dies darstelleung ist eindeutig bis auf die Vertauschung der Blocke.

Theorem 12.1.3

Sei $A \in M_{n \times n}(K)$ dann $\exists B \in GL_n(K)$ so dass $B^{-1}AB$ die Jordansche Normalenform hat.

Lemma 12.2.2

Sei $C \in M_{n \times n}(K)$ wober $C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ und $A, B \in M_{(n-2) \times (n-2)}(K)$ Definiert jetzt $U_{<}e_1, ..., e_i >, W = < e_i, ...e_n >$ Sei $v = u + w \in V \neq 0_v, u \in U, w \in W$ Dann ist v denau dann ein Eigenvektor von T_C mit Eigenwert λ wenn $T_A(u) = \lambda_u \cap T_B(w) \lambda w \ E_{\lambda}(T_C) = E_{\lambda}(T_A) \bigoplus E_{\lambda}(T_B) \Rightarrow g_{\lambda}(T_C) = g_{\lambda}(T_A) + g_{\lambda}(T_B)$

Satz 12.2.3

Sei $T:V\to V$ linear und Nimm an $\exists B$ Basis von V So dass $[T]_B^B$ die Diagonal Jordansche normalenform annimt und sei λ Eigenwert von T Dann gilt $g_\lambda=\#\{i|1\leq i\leq k,\alpha_i=\lambda\}$ $a_\lambda=\sum_{\alpha_i=\lambda}\lambda_i=$ Die länge des geten Jordanblock mit eigenwert $\lambda=s(\lambda)=\max\{n_j|1\leq j\leq k,\alpha_j=\lambda\}$

 $\lambda = s(\lambda) = \max\{n_j | 1 \le j \le k, \alpha_j = \lambda\}$ $\mathbf{Beweis} \ B = \{b_1^{(1)}, ..., b_{n,1}^{(1)},, b_{1n}^{(k)}, ..., b_{kn}^{(k)}\} \text{ Sei } W_i = \langle b_1^{(i)}, ..., b_n^{(n)} \rangle \Rightarrow V = \bigoplus W_i \text{ und } T \text{ Sei } T_V \to V \text{ linear und } \lambda \text{ ein } Eigenwert \text{ von } T \text{ Dann ist}$

$$\tilde{E_{\lambda}} = \bigcup_{k>1}^{\infty} \ker(T - \lambda i d_v)^k$$

Der Verallgemeinerte Eigenraum von λ , wo alle Vektoren die sich durch eine Potenz von T auf einen Skalar von sich selber SChicken lassen. Wenn T Diagonlisierbar ist, dann ist V Die direkte summe der E_{λ} 's

Behauptung

$$V = \bigoplus_{\lambda = \text{Eigenwert}} \tilde{E_{\lambda}}$$

Lemma 12.3.3

Sei $n = \dim(V)$ dann gilt $\tilde{E}_{\lambda} = \ker(T - \lambda i d_v)^n$

Beweis Sei $V \in \tilde{E}_{\lambda}$ und sei k minimal so dass $T - \lambda i d_v)^k v = 0_v$ und $(T - \lambda i d_v)^{k-1} v \neq 0$ So ein k muss es per definition Geben. Wir wenden jetzt Lemma 12.2.2 an, dann sind $v, sv, \dots, s^{k-1}v$ linear unabhängig, und daraus folgt $k \leq n$

Definition 12.3.4

Sei $v \in \tilde{E}_{\lambda}$ mit $v \neq 0$ und $k \geq 1$ minimal so dass $(T - \lambda i d_v)^k v = 0_v$ Dann ist $\{v, (T - \lambda i d_v)v, \cdots, (T - \lambda i d_v)^{k-1}v\}$ die Jordankette von v der länge k

Bemerkung 12.3.5

 $(T - \lambda i d_v)^{k-1} v = w$ ist ein Eigenvektor von T mit Eigenwert λ Beweis $Tw = \lambda w \Leftrightarrow (T - \lambda i d_v) w = 0_v \Leftrightarrow (T - \lambda i d_v)^k v = 0_v$

Bemerkung 12.3.6

Jeder eigenvektor von T bildet/ist eine Jordankette von länge 1.

Beispiele 12.3.7

- Sei $A = J_n(\lambda)\tilde{T}_A : K^n \to K^n$ und $S = T_A \lambda i d_{K^n}$ Dann ist die längste Jordankette von länge n.
- Seien $\lambda \neq \mu \in K$ mit

$$A = \begin{pmatrix} J_2(\lambda) & & & & 0 \\ & J_3(\lambda) & & & \\ & & \lambda & & \\ & & & J_2(\mu) & \\ 0 & & & & \mu \end{pmatrix}$$

Eine 9×9 Matrix, gibt es Folgende Jordanketten von A:

$$e_5 \rightarrow e_4 \rightarrow e_3$$
 $e_8 \rightarrow e_7$ e_6 $e_2 \rightarrow e_1$ e_9

• Wir haben jetzt: $J_2(\lambda) - \lambda i d_n = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = S$ Dann ist $\ker S^2 = K^2$ und doch $\ker(S) = \langle e_1 \rangle$ dass heisst wir haben eine Jordankette $e_2 \rightarrow e_1 \rightarrow 0$

Lemma 12.3.8

 $\tilde{E_{\lambda}}$ ist ein T invarianter unterraum von V. (T invariant heisst: $T(\tilde{E_{\lambda}}) \subset \tilde{E_{\lambda}}$)

Beweis Sei $v \in \tilde{E_{\lambda}} \Leftrightarrow (T - \lambda i d_v)^n v = 0_v$. Zu zeigen ist $Tv \in \tilde{E_{\lambda}}$ Dies ist klar. Wir nehmen dann $(T - \lambda i d_V)^n Tv =$ $T(T - \lambda i d_V)^n v = T 0_V = 0_V$ Da T kommutiert

Satz 12.3.9

 λ ist der Einzige Eigenwert von $T|_{\tilde{E_{\lambda}}}$

Beweis Sei $v \in \tilde{E}_{\lambda}$ mit Eigenwert μ d.h. $Tv = \mu v$. Sei $k \ge 1$ minimal so dass $(T - \lambda i d_V)^k v = 0$. Sei $w = (T - \lambda i d_v)^{k-1} v$ da die k-1 Potenz der Einzige eigenvektor der Jordankette ist. Dann gilt $(T-\lambda id_V)w=0 \Leftrightarrow Tw=\lambda w$ aber $(T - \mu i d_v)w = (T - \mu i d_V)(T - \lambda i d_V)^{k-1}v = (T - \lambda i d_V)^{k-1}(T - \mu i d_v)v = 0_V$ Also gibt es hier einen Widerspruch da ein vektor nicht zwei unterschiedliche Eigenwerte haben kann, d.h. $\lambda = \mu$

vektor nicht zwei unterschiedliche Eigenwerte haben kann, d.h.
$$\lambda = \mu$$
Sei $A = \begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$ Dann ist λ der Eigenwert von A mit $X_A(x) = (\lambda - x)^4$. $\ker(A - \lambda id) = \langle e_1 \rangle = E_\lambda$ Wass passiert

wenn wir jetzt E_{λ} suchen:

$$\tilde{E_{\lambda}} = \underbrace{\ker(A - \lambda id)}_{=E_{\lambda}} \cup \underbrace{\ker(A - \lambda id)^{2}}_{=} \cup \underbrace{\ker(A - \lambda id)^{3}}_{=} \cup \underbrace{\ker(A - \lambda id)^{4}}_{N^{4} = 0_{4 \times 4} \Rightarrow \ker = K}$$

Also ist $\tilde{E}_{\lambda} = K$

Korollar 12.3.10

Sei $T' = T|_{\tilde{E_{\lambda}}}$ Dann gilt dass $X_{T'}(x) = (\lambda - x)^{k\lambda}$ mit $k\lambda \leq a_{\lambda}(T)$ **Beweis** Dies ist klar da hier hat T' λ als einziges eigenwert, und der $X_{T'}(x)$ muss ja $X_{T}(x)$ Teilen.

Lemma 12.3.11

Seien μ, λ verschieden Eigenwerte von T dann gilt $\tilde{E_{\lambda}} \cap \tilde{E_{\mu}} = \{0_V\}$ und daher gilt $\tilde{E_{\lambda}} + \tilde{E_{\mu}} = \tilde{E_{\lambda}} \oplus \tilde{E_{\mu}}$

Lemma 12.3.12

Es seien $\lambda_1, \dots, \lambda_k$ verschiedene Eigenwerte von T Dann gilt $\sum_{i=1}^k \tilde{E_{\lambda_i}} = \bigoplus_{i=1}^k \tilde{E_{\lambda_i}}$

Behauptung

V ist die Direkte summe seiner Verallgemeinerten Eigenräume.

Beweis Die idee ist dass wir ein T-invarianten Unterraum $U \subset V$ finden so dass $V = (\bigoplus \tilde{E_{\lambda_i}}) \oplus U \ker(T - \lambda - id_v)^n \oplus U = V$ Hier kann man $U = im(T - \lambda id_v)$ nehmen, da $\ker \oplus im = K$

Lemma 12.3.14

Sei $T:V\to V$ mit $\dim(V)=n$ Linear, λ ein Eigenwert und $g(x)=(x-\lambda)^n$ dann ist $\operatorname{im}(g(T))$ eom T-invarianter unterraum von V und es gilt das $V = \tilde{E_{\lambda}} \oplus \operatorname{im}(g(T))$

Beweis Zu beweisen: $w \in im(g(T))$ Dass ist einfach, $Tw \neq 0 \Leftrightarrow w = g(T)v$ für $v \in V$ $g(T)Tv = Tg(T)v = Tw \Rightarrow$ $Tw \in \operatorname{im}(g(T))$ Mit dem Theorem 4.2.9 $(dim(V) = dim(\ker(V)) + \operatorname{im}(V))$ ist jetzt nur zu zeigen ist das $\ker(g(T)) \cap$ $\operatorname{im}(g(T)) = \{0_V\}$ Sei $w \in \operatorname{im}(g(T))$ also w = g(T)v und wenn $w \in \tilde{E_\lambda}$ dann gilt $g(T)w = 0_v$ das ist aber dass gleiche als $(T - \lambda i d_v)^{2n} v = 0_v \Rightarrow (T - \lambda i d_v)^n v = 0_v$

Lemma 12.3.14

Sei $\mu \neq \lambda$ Eigenwerte. Dann gilt $E_{\mu} \in \operatorname{im}(g(T))$ und $\operatorname{im}((T - \lambda i d_v)^n)$ ist T invariant

Theorem 12.3.15

Sei $T: V \to V$ linear dann gilt

$$V = \bigoplus_{\lambda: \text{ Eigenwert}} \tilde{E_{\lambda}}$$

Beweis Induction über die $n = \dim V$ Es sei λ ein Eigenwert dann gilt vom lemma 12.3.14 dass $V = \tilde{E}_{\lambda} \oplus \operatorname{im}(T - \lambda i d_v)^n$). Sei $U = (T - \lambda i d_v)^n$ Dann ist U T-invariant und es gilt dass $\dim(U) < n$, dauraus folgt dass

$$U = \bigoplus_{\mu \text{ Ew von } T|_{\mu}} \tilde{E}_{\mu} \Rightarrow V = \tilde{E}_{\lambda} \oplus \bigoplus_{\mu} \tilde{E}_{\mu}$$

Dank dieses Resultat, können wir dann annehmen dass $V = \tilde{E_{\lambda}}$, daher um Theorem 12.1.2 zu zeigen, reicht es zu zeigen dass jeder $\tilde{E_{\lambda}}$ eine Jordanbasis besitzt

Beweis der Jordanschen Normalenform

Wir Fangen mit dem Spezialfall $S: V \to V$ nilpotent

Theorem 12.4.1

Sei V n-dimensional und $S: V \to V$ nilpotent dann $\exists k \geq n, \dots n_k \leq 1$ so dass $n_1 + \dots + n_k = n$ und eine Basis B von V die aus Jordanketten der länge n_i besteht.

$$B = \{S^{n_1 - 1}u_1, ..., Su_1, u_1, S^{n_2 - 1}u_2, ..., Su_2, u_2, \cdots, S^{n_k - 1}u_k, ..., Su_k, u_k\} \qquad \forall S^{n_i}u_i \neq 0$$

Die n_i sind hier auch eindeutig bestimmt. Diese Basis der solchen Form, heisst Jordanbasis.

Bemerkung 12.4.3

Die abbildungsmatrix [S] in der Jordanbasis B nimmt folgende form an:

$$[S]_B^B = \begin{pmatrix} J_{n_1}(0) & 0 \\ & \ddots \\ 0 & J_{n_k}(0) \end{pmatrix}$$

Was die Jordan'sche normalenform annimt

Beweis Dass beweist man mit Induktion über n-dim von V. n = 1 ist klar. Dann nehmen wir an es klappt für dimV < n Beachte dass $S(V) \subseteq V$ weil $\ker(S) \supseteq 0_v$. Also im Fall $\ker(S) = V$ dann ist S die nullabbildung und das Theorem hält. Also ist $\ker(S) \neq \{0_v\}$.

Induktionshypothese: $\exists v_1...v_l \in S(V) \text{ und } b_1,...,b_l \geq 1 \text{ so dass } \sum b_i = \dim S(V) \text{ und } b_i$

$$B' = \{v_1, ..., S^{b_1 - 1}v_1, v_2, ..., S^{b_2 - 1}v_2, ..., v_l, ..., S^{b_l - 1}v_l\}$$

eine Basis von S(V) ist. Nach unsere Annahme ist $v_i \in im(S) \forall i$ daher $\exists u_i \in V$ so dass $Su_i = v_i$ (uhrbild) und damit kann man immer die Jordankette immer ein stück länger machen:

$$B'' = \{u_1, \underbrace{Su_1}_{=v_1}, ..., \underbrace{S^{b_1}u_1}_{=S^{b_1-1}v_1}, ...u_l, \underbrace{Su_l}_{=v_l}, ..., \underbrace{S^{b_l}u_l}_{=S^{b_l-1}v_l}\}$$

Zur übung steht jetzt zu zeigen dass B'' linear unabhängig ist. Hier fehlt noch der teil der in ker(S) ist, $\forall i$ ist doch $S^{b_i}u_i \in ker(S)$. Wir erweitern also die menge $\{S^{b_1}u_1, ... S^{b_l}u_l\}$ zu einer Basis von ker(S)

$$\{u_1, S^{b_1}u_1, ... S^{b_l}u_l, \underbrace{w_1, w_2, ..., w_m}_{\notin \text{Jordanketten}}\}$$

Jetzt Behaupten wir dass diese Erweiterung eine Basis von V in der gewünschten Form ist. Die Länge der Jordanketten ist also von der unteren Basis ablesbar

$$\{\underbrace{u_1, Su_1, ..., S^{b_1}u_1}_{b_1+1}, \underbrace{v_l, Su_l, ..., S^{b_l}u_l}_{b_l+1}, \underbrace{w_1}_{1}, \underbrace{w_2}_{1}, ..., \underbrace{w_m}_{1}\}$$

Es bleibt doch noch zu zeigen dass dies eine Basis von S ist:

- Linear unabhängigkeit ist eine übung da der Beweis nicht sehr schwierig ist
- Zeigen dass diese Basis ein Erzeugendensystem von V ist, merken wir dass $\dim(\ker(S)) = l + m$ und $\dim(\operatorname{im}(\sum b_i))$ $\Rightarrow l + m + \sum b_i$ und unsere basis hat $m + \sum b_i + 1$ elemente und da es l mal den b_i gibt gilt $\dim(S) = \dim(B'') = m + l + \sum b_i$ und unsere Basis ist ein Erzeugenden System

Der beweis ist komplex, den Beweis mit einen konkreten beispiel auszuführen ist wichtig da diese Sache im Examen seien wird.

Korollar 12.4.4

Es sei $T: V \to V$ linear, λ ein Eigenwert und $U = \tilde{E}_{\lambda}$ dann existiert eine Basis B von U so dass $[T|_U]_B^B$ in der Jordan normal form ist (JNF).

Beweis Es sei $S: (T - \lambda i d_v)|_U$ Dann ist S per definition der nilpotenz, nilpotent. Dass heisst das wir per Theorem 12.4.1 diese in JNF stellen können. Und dann ist $T|_U = S + \lambda i d_v$ und daher ist T in derselben Basis auch in JNF.

Bemerkung 12.4.5

Seien $A, B \in M_{m \times n}(K)$ dann gilt A und B sind ähnlich wenn sie die gleiche JNF haben abgesehen von einer Vertauschung der Blöcke. Die Jordanbasen Jedoch sind nicht eindeutig.

12.5 Berechnung der Jordan normalenform

Beispiele 12.5.1

Was ist die JNF der Folgenden Matrix?

$$A = \begin{pmatrix} 1 & 1 & 6 & -2 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 2 \end{pmatrix} \in M_{4 \times 4}(\mathbb{C})$$

 $\mathbf{X_A}(\mathbf{x})$, Eigenwerte und vielfachheiten finden. In diesem Fall $X_A(x) = (1-x)^3(2-x) \Rightarrow \lambda_1 = 1$ $\lambda_2 = 2$ Da $1 = g_{\lambda_1} \neq a_{\lambda_1} = 3$ und $a_{\lambda_2} = g_{\lambda_2} = 1$ Dann wissen wir dass Die anzahl jordanblöcke von einen Eigenwert λ die geometrische vielfacheit g_{λ} ist, Um zu wissen wie gross die Dazugehörigen JB sind schaut man sich die Dazugehörige Jordanketten an, bzw wir schauen $\forall i \in E_{\lambda}$ ob $\exists ?v \in K$ so dass $(D - \lambda i d_V)v = i$ wenn nein dann ist die Kette von länge 1 und wenn ja dann mindestens von länge 2, die Lange des Kurzestens Jordanblock ist auch die Potenz des minimalen Polynoms.

$$\Rightarrow [A]_B^B = \begin{pmatrix} J_{a_{\lambda_1}}(\lambda_1) & 0\\ 0 & J_{a_{\lambda_2}}(\lambda_2) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Wir können jetzt dank der JNF eine Jordankette für $\tilde{E_{\lambda_1}}$. Daher wollen wir $v \in \mathbb{C}^4$ finden so dass

$$v, (A - \lambda_1 i d_V) v, \dots, (A - \lambda_1 i d_V)^2$$

Eine Basis von $\tilde{E_{\lambda_1}}$ ist (wir gehen bis 2 da die länge des blocks 3 ist) Die Jordanbasis zu finden ist dasselbe als alle Jordanketten zu finden.

13 Euklidische und Hermitesche Räume

13.1 Normierte Räume

Definition 13.1.1

Es sei $K = \mathbb{R}$ oder \mathbb{C} und V ein K vektorraum. Eine Norm auf V ist ein Funktion $||\cdot|| : V \to \mathbb{R}^+$. Eine Norm hat folgende Axiome:

- i. Dreiecksungeichung $||u+v|| \le ||u|| + ||v||$
- ii. Linearität $||\lambda v|| = |\lambda| \cdot ||v||$
- iii. Wohldefinitheit $||v|| = 0 \Rightarrow v = 0_V$

Beispiele 13.1.2

$$\bullet ||v|| = \sqrt{a^2 + b^2}$$

$$||v|| = |a| + |b|$$

$$||v|| = \sqrt[p]{|a|^p + |b|^p}$$

$$||v|| = max(|a|, |b|)$$

Bemerkung 13.1.4

Sei
$$p \ge 1$$
 und $v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ Dann definiert $||v||_p = (|x_1| + \ldots + |x_n|)^{\frac{1}{p}}$ eine Norm auf \mathbb{R}^n

Beispiele 13.1.5

V ist ein Vektorraum der Stetige funktionen $f:[0,1]\to\mathbb{R}$ Dann definieren wir $|f|_{max}=max\{|f(x)|,x\in[0,1]\}$

Definition 13.1.6

Sei $v \in V$ ein Einheitsvektor, dann igl
t||v||=1 und die Distasnz zwischen zwei vektoren
 $u,v \in V$ ist ||u-v||=d(u,v)

Bemerkung 13.1.7

Es sei $v \in V, v \neq 0$ Dann ist $\frac{v}{||v||}$ ein Einheitsvektor, nähmlich die normalisierung von v.

Bemerkung 13.1.8

Die Menge der Einheitsvektoren kann von der Norm viel varianz ziehen. Wir schauen uns zum beispielGgg die menge von Einheitsvektoren in \mathbb{R}^2 an:

Die menge der Einheitsvektoren unterschiedlicher p-normen

Für $p = \infty$ kann man auch die maximumsnorm von vorher nehmen.

13.2 Innere Produkte

Definition 13.2.1

Sei V ein $\mathbb R$ vektorraum. Dann ist ein Inneres Produkt auf V ist eine funktion $<\cdot>: V\times V\to \mathbb R$ so dass :

- Symmetrie: $\langle u, v \rangle = \langle v, u \rangle \quad \forall u, v \in V$
- Bilinearität: $<\alpha u, v>= alpha < u, v>$ und < u+v, w>=< u, w>+< v, w> Und natürlich das gleiche in der zweiten variable
- Positiv definitheit: $\langle v, v \rangle > 0 \quad \forall v \neq 0_v$

Wenn wir $(V, <\cdot>)$ nehmen dann ist dass ein Euklidischer Raum.

Beispiele 13.2.2

Der Standard innere Produkt ist $\mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ wobei $\langle e_i, e_j \rangle = \delta_{ij}$

Beispiele 13.2.3

Sei $V = \mathbb{R}^2$ und sei $u = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ und $v = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ dann ist $\langle u, v \rangle = 2x_1x_2 - x_1y_2 - y_1x_2 + y_1y_2$ dies ist ein inneres produkt da es Symetrisch ist (klar), bilinear da nur lineare termen vorkommen und positiv da es immer positiv ist wenn wir den selben vektor zweimal nehmen.

Bemerkung 13.2.4

Eine wichtige bemerkung ist dass dieses inneres Produkt auch als matrix multiplication dargestellt werden kann. Zum beispiel kann man der vorherige Beispiel wie folgt definieren: $\langle u, v \rangle = u^t \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} v$. Für dass Standard innere Produkt ist $\langle u, v \rangle = u^t v$.

Beispiele 13.2.5

Seien $a \leq b$ und $C[a,b] = \{f: [a,b] \to \mathbb{R}\}$ wobei f stetig ist. Wir definieren also $< f,g> = \int_a^b f(x)g(x)dx$ als inneres Produkt. Die Symmetrie und linearität sind offensichtlich und sei $f \in C[a,b]$ $f \neq 0$ Dann $\exists y \in [a,b], \delta > 0$ so dass $[y-\delta,y+delta]$ und $f(x) \neq 0 \ \forall x \in [y-\delta,y+\delta]$ dann gilt $< f,f> = \int_a^b f(x)^2 dx \geq \int_{y-\delta}^{y+\delta} f(x)^2 dx \geq 2\delta min_{[y-\delta,y+\delta]}f(x) > 0$

Definition 13.2.6

Sei V ein $\mathbb C$ vektorraum, ein Inneres Produkt ist $<\cdot>: V\times V\to \mathbb C$ Dies ist der Hermitesche Produkt und es ist:

- Linearität der ersten Variable: $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$ und $\langle \alpha v, w \rangle = \alpha \langle v, w \rangle$
- Sesquilinearität in der Zweiten Variable: $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$ und $\langle v, \alpha w \rangle = \overline{\alpha} \langle v, w \rangle$
- Hermitesche eigenschaft: $\langle v, w \rangle = \overline{\langle w, v \rangle} \Rightarrow \langle v, v \rangle \in \mathbb{R}$
- Positivität: $\langle v, v \rangle > 0 \forall v \neq 0$

 $(V, <\cdot>)$ ist eine Hermitescher oder unitärer raum. Das standard innere Produkt auf \mathbb{C}^n ist $< u, w> = \sum_{i=1}^n x_i \overline{y_i}$

Lemma 13.2.9

Sei V ein Euklidischer oder Hermitescher VR dann gilt:

- \bullet < 0_v, v >=< v, 0_v >= 0
- \bullet < v, w >= 0 dann gilt v = 0 oder w = 0
- Wenn $\langle v, w_1 \rangle = \langle v, w_2 \rangle$ $\forall v \in V$ dann ist $w_1 = w_2$

Satz 13.2.10

Sei $(V, <\cdot>)$ eine Euklidischer oder Hermitescher raum dann definieren wir $||v|| = \sqrt{< v, v>}$ dann ist $|\cdot|$. Hier ist der problem die Dreiecksunglechung

Lemma 13.2.11 Cauchy-Schwarz ungleichung

besagt dass $|< u, v>| \ge ||u|| \cdot ||v|| \quad \forall u, v \in V$ mit gleichheit wenn $u \in < v>$ also wenn u und v linear abhängig sind. **Beweis** Wenn u oder v der nullvektor ist dann ist es Klar. Winn nehmen an dass $u \ne 0_v$ WIr definieren jetzt $\lambda = \frac{< u, v>}{||u||^2}$ und $w = v - \lambda u$ dieser Vektor ist was übrig bleibt nach der Projektion von v auf u. Wir merken dass $< w, u> = < v, u> -\lambda < u, u> = 0$ Nun gilt

$$0 \ge ||w||^2 = < v - \lambda u, v - \lambda u > = ||v||^2 - \lambda \overline{\lambda} ||u||^2 - \overline{\lambda} \lambda ||u||^2 + \lambda \overline{\lambda} ||u||^2 = ||v||^2 - \frac{|\langle u, v \rangle|}{||u||^2} \Rightarrow |\langle u, v \rangle| \le ||u|| \cdot ||v||$$

Beweis von Satz 13.2.10 Für Hermitesche VR da für euklidische VR analog gelten. Seien $u, v \in V$ dann gilt $||u+v||^2 = \langle u+v, u+v \rangle = ||u||^2 + 2Re(\langle u,v \rangle) + ||v||^2$ Beachte $\forall z \in \mathbb{C}$ gilt $Re(z) \leq |z|$ Dass bedeutet dass $Re(\langle u,v \rangle) \leq |Re(\langle u,v \rangle)| \leq |\langle u,v \rangle|$ und also $||u+v||^2 \leq ||u||^2 + 2|\langle u,v \rangle| + ||v||^2 \leq (||u|| + ||v||)^2$

Lemma 13.2.12

Sei $(V, <\cdot>)$ ein Euklidischer Raum dann gilt $< u, v>=\frac{1}{2}(||u+v||-||u||^2-||v||^2)$ wobei $||\cdot||$ die induzierte Norm ist. Der Beweis ist durch Expansion gemacht, und mit diesem Lemma kann man zeigen dass nicht alle Normen aus einen Inneren Produkt stammen.

Konstruktion von innere Produkte

Beispiele 13.3.1

Sei $A \in M_{n \times n}(\mathbb{R})$ Wir definieren $(\cdot, \cdot)_A : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ mit $(u, v)_A = u^t Q v$. Diese Paarung ist bilinear aber nicht unbedingt für alle Matrizen A symmetrisch: z.B $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ geht es nicht. Wir Brauchen eine Invariante matrix unter der transposition

Definition 13.3.2

Eine Matrix $A \in M_{n \times n}(K)$ ist symmetrisch wen $A = A^t$

Lemma 13.3.3

Es sei $A \in M_{n \times n}(K)$ symmetrisch dann gilt dass $(u, v)_A = (v, u)_A$

Definition 13.3.4

Eine Matrix $A \in M_{n \times n}(K)$ ist Positiv definit wenn sie Symmetrisch ist und alle ihre Eigenvektoren Positiv sind, anallog kann man sagen dass wenn $\forall x \neq 0 \in V \ x^t Ax > 0$ gilt.

Satz 13.3.7

Sei $A \in M_{n \times n}(\mathbb{R})$ dann ist $(\cdot, \cdot)_A$ genau dann ein Inneres Produkt wenn A Positiv definit ist

Definition 13.3.9

Es sei $B \in M_{n \times n}(\mathbb{C})$ dann definieren wir $(\cdot, \cdot) : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ mit $(u, v)_B = u^t B \overline{v}$

Definition 13.3.10

Schreibe $\overline{B} = (\overline{b_{ij}})$ die adjungierte Matrix von B ist die matrix $B^* = \overline{B^t}$ wir sagen dass B Hermitesch ist wenn $B = B^*$

Beispiele 13.3.11

•
$$A = \begin{pmatrix} -1 & 1+i & 2i \\ 1-i & 0 & 1-2i \\ -2i & 1+2i & 1 \end{pmatrix} \Rightarrow \text{Hermitesch}$$

•
$$B = \begin{pmatrix} -i & 1+1 & 2i \\ 1-i & 0 & 1-2i \\ -2i & 1+2i & i \end{pmatrix}$$
 \Rightarrow Nicht Hermitesch da auf der Ditagonale i ist

Sei
$$B=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 ist Hermitesch wenn $a,d\in\mathbb{R}$ und $c=\bar{b}$

Bemerkung 13.3.12

Wenn B hermitesch ist dann erfüllt $(\cdot, \cdot)_B$ alle kriterium des Komplexen inneren Produktes Und Sei B Hermitesch und $v \in \mathbb{C}^n$ Dann gilt $(v, v)_B \in \mathbb{R}$ um dies zu beweisen Schaut man sich $\overline{(v, v)_B}$ an.

Definition 13.3.13

Eine Hermitesche Matrix $B \in M_{n \times n}(\mathbb{C})$ Wenn $v^t B \overline{v} > 0 \quad \forall v \neq 0$

Satz 13.3.15

Sei $B \in M_{n \times n}(\mathbb{C})$ dann ist $(\cdot, \cdot)_B$ ein Inneres Produkt wen B Hermitesch und Positiv definit ist **Beweis** " \Leftarrow " ist offensichtlich.

" \Rightarrow " Wir nehmen An (\cdot, \cdot) ein Inneres Produkt ist, dann ist B Hermitesch da: $b_{ij} = \overline{b_{ji}}$ $\forall i, j$ Da $b_{ij} = (e_i, e_j)_B = \overline{(e_j, e_i)} = \overline{b_{ji}}$ Und Positiv definitheit zu zeigen:

$$(v,v)_B > 0 \quad \forall v \in \mathbb{C}^n, v \neq 0 \Leftrightarrow B \text{ ist positiv definit}$$

13.4 Orthogonalität

Definition 13.4.1

Sei V ein Inneres Produkt raum. Orthogonalität ist wie folgt definiert

- $v, w \in V$ sind Orthogonal wenn $\langle v, w \rangle = 0$ man Schreibt $u \perp v$
- $S \subset V$ ist ein Orthogonales system wenn $u \perp v \quad \forall u, v \in V$ mit $u \neq v$
- Ein Orthogonales system S ist Orthonormal wenn $||v|| = 1 \quad \forall v \in S$

Beispiele 13.4.2

- Die elemente der Standarbasis e_1, \ldots, e_n in \mathbb{R}^n sind alle orthogonal aufeinander.
- Jeder Vektor ist orthogonal zu 0_v

Satz 13.4.3 Satz des pythagoras

Sei $(V, <\cdot>)$ ein inneren Produkt raum und seien $u, v \in V$ mit $u \perp v$ dann gilt

$$||u+v||^2 = ||u||^2 + ||v||^2$$

Beweis Expandieren

Definition 13.4.4

Es sei $(V, <\cdot, \cdot>)$ ein IP raum und $v \neq 0 \in V$ dann definiren wir die projektion $proj_v : V \to V$ und mit $u \to \frac{< u, v>}{< v, v>} \cdot v$

Lemma 13.4.7

 $u \in V$ ist orthogonal zu $v \Leftrightarrow proj_v(u) = 0$

13.5 Gram-Schmidt orthogonalisierung

Satz 13.5.1

Sei $(V, <\cdot, \cdot>)$ ein IP raum. Wenn $S\subseteq V$ ein orthogonales system ist das nicht den 0_v enthält dann sind die elemente von S alle linear unabhängig. Zusätslich wenn v_1, \ldots, v_n ein orthogonales system ist mit $v_i \neq 0 \quad \forall i$ und $v = \sum \alpha_i v_i$ dann gilt $\alpha_i = \frac{< v, v_i>}{< v, v_i>}$

gilt $\alpha_i = \frac{\langle v, v_i \rangle}{\langle v_i, v_i \rangle}$ **Beweis** Es seien $v_i, \dots, v_n \subset S$ und wir nehmen an dass α_i existieren so dass $\alpha_i v_i + \dots + \alpha_n v_n = 0_V$ wir nehmen dann den vektor $\langle \alpha_i v_i + \dots + \alpha_n v_n, v_i = \langle 0_v, v_i \rangle = 0 = \sum \alpha_j \langle a_j, v_i A = \alpha_i \underbrace{\langle v_i, v_i \rangle}_{\neq 0} \Rightarrow \alpha_i = 0$ Also müssen alle vektoren

in S lineare unabhängig.

Korollar 13.5.2

Ein Orthogonales System in einem n-dimensionalen VR, dass nicht den nullvektor enthält hat höchstens n vektoren. Ab jetzt ist $\langle \langle \cdots \rangle \rangle$ die lineare hülle und $\langle \cdot, \cdot \rangle$ das innere produkt

Theorem 13.5.4 Der Gram-Schmidt Orthogonalisierungsverfahren

Sei $(V, \langle \cdot, \cdot \rangle)$ eom IP raum und sei $n = \dim(V)$ mit basis v_1, \ldots, v_n . Definiere $w_1, \ldots, w_n \in V$ so dass:

$$w_{i} = \begin{cases} w_{1} = v_{1} \\ 2 \ge j \ge n \text{ sei } w_{j} = v_{j} - \sum_{i=1}^{j-1} proj_{w_{i}}(v_{j}) \end{cases}$$

Dann ist w_1, \ldots, w_n eine Orthogonale Basis von V

Beispiele 13.5.6

Seien
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ Dann ist $w_1 = v_1$ und $w_2 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = v_2 - proj_{w_1}(v_2)$

Beweis Vom theorem \mathbf{GS} Wir benutzen eine Induktion über j:

- 1. $w_i \neq 0$, $\forall 1 < i < j$
- 2. w_1, \dots, w_i ist ein orthogonales system und linear unabhängig
- 3. $\langle \langle w_1, \cdots, w_i \rangle \rangle = \langle \langle v_1, \cdots v_i \rangle \rangle$

Bedingungen 1. bis 3. sind erfüllt also ist die Induktionshypothese erfüllt. Wir nehmen also an es gilt für j-1: Wenn $w_j=0_v$ dann gilt $v_j=\sum \frac{\langle v_j,w_i\rangle}{\langle w_i,w_i\rangle}w_i\in \langle\langle w_1,\cdots w_{j-1}\rangle\rangle=\langle\langle v_i\cdots v_{j-1}\rangle\rangle$ dies gibt aber ein Widerspruch da v_1,\cdots,v_j eine Bassis ist und daher linear unabhängig. Zu zeigen jetzt bleibt dass

$$\langle w_i, w_i \rangle = 0 \quad \forall 1 \le i \le j-1$$

$$< w_{j}, w_{k} > = \left\langle v_{j} - \sum_{i=1}^{j-1} \frac{< v_{j}, w_{i} >}{< w_{i}, w_{i} >}, w_{k} \right\rangle = < v_{j}, v_{k} > - \sum_{i=1}^{j-1} \frac{< v_{j}, w_{i} >}{< w_{i}, w_{i} >} \underbrace{< w_{i}, w_{k} >}_{= \delta_{ij}} = < v_{j}, w_{k} > - \frac{< v_{j}, w_{k} >}{< w_{k}, w_{k} >} \left\langle w_{k}, w_{k} \right\rangle$$

Und jetzt endlich bleibt noch die Induktionshypothese $\langle \langle w_1, \cdots, w_j \rangle \rangle = \langle \langle v_1, \cdots v_j \rangle \rangle$:

$$v_i - w_i \in \langle \langle w_1, \cdots, w_{i-1} \rangle \rangle \Rightarrow \langle \langle v_1, \cdots, v_i \rangle \rangle = \langle \langle w_1, \cdots w_i \rangle \rangle$$

Korollar 13.5.5

Sei $(V, <\cdot, \cdot>)$ ein enldich-dim IP raum dann besitzt V eine orthonormale Basis v_1, \cdots, v_p Dann gilt für $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$ wobei $\alpha_i = < v, v_i > \text{und } ||v||^2 = \sum |\alpha_i|^2$

Bemerkung 13.5.9

Sei V ein K-VR mit $K = \mathbb{R}$ oder \mathbb{C} endlich dimensional und die Basis v_1, \dots, v_n . Dann existiert ein Inneres Produkt so dass die basis Orthonormal ist.

13.6 das Orthogonale Komplement

Definition 13.6.2

Sei $(V, <\cdot>)$ ein IP raum und $\emptyset \neq S \subseteq V$ dann ist das orthogonale Komplement von S:

$$S^{\perp} = \{ v \in V | \langle v, s \rangle = 0 \forall s \in S \}$$

Bemerkung 13.6.3

$$\{0_V\}^{\perp} = V$$
 und $V^{\perp} = \{0_V\}$. Zusätslich $(V^{\perp})^{\perp} = V$

Lemma 13.6.4

Sei $\emptyset \neq S \subseteq V$ Dann gilt

- i. $S^{\perp} \subset V$
- ii. Entweder $S \cap S^{\perp} = \emptyset$ oder $S \cap S^{\perp} = \{0_V\}$
- iii. Wenn $S \subset T \subset V$ dann gilt $T^{\perp} \subset S^{\perp}$
- iv. $\langle\langle S\rangle\rangle^{\perp} = S^{\perp}$
- $\text{v. } S^{\perp} \subset (S^{\perp})^{\perp} = \left\{ v \in V | < v, t > = 0 \quad \forall t \in S^{\perp} \right\}$

Beweis

- i. Axiome
- ii. Nim an dass $S \cap S^{\perp} \neq \emptyset$ sei dann $v \in S \cap S^{\perp}$ Dann gilt $\langle v, v \rangle = 0 \Rightarrow v = 0_V$ Sei $w \in \langle \langle S \rangle \rangle$, $w = \alpha_1 s_1 + \cdots + \alpha_n s_n$ $\forall \alpha_i \in K$ Dann ist also $\langle w, v \rangle = \sum \alpha_i \langle s_i, v \rangle = 0$
- iii. Ubung
- iv. $\langle \langle S \rangle \rangle^{\perp} \subset S^{\perp}$ Sei $v \in S^{\perp}$ dager $\langle s, v \rangle = 0 \quad \forall s \in S$
- v. Wir nehmen an $S \nsubseteq (S^{\perp})^{\perp}$ dann $\exists v \in S^{\perp}$ so dass $\langle s, v \rangle \neq 0$

Theorem 13.6.5

Sei $(V, \langle \cdot, \cdot \rangle)$ ein IP raum und sei $U \subset V$ endlich-dim dann gilt: $V = S \oplus S^{\perp}$

Beweis Wir wissen dass $U \cap U^{\perp} = \{0_V\}$ Sei jetzt $r = \dim(U)$ und $B = \{u_1, ..., u_n\}$ eine Basis von U. Wir definieren also

$$pr_B: V \to U$$
 $v \to < v, u > u_1 + \dots + < v, u_r > u_r$

Sei $w = v - pr_B(v)$ dann ist $w \in U^{\perp}$ da $< w, u_i > = 0 \quad \forall 1 \leq i \leq r$

Beispiele 13.6.6

Wir nehmen \mathbb{R}^3 mit den Standard IP, dann setzen wir

$$U = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \middle| x_1 + x_2 - x_3 = 0 \right\}$$

Die Basis von U ist dann $\left\langle \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle \right\rangle$ und dann kann man daraus $U^{\perp} = \left\langle \left\langle \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\rangle \right\rangle$

Definition 13.6.8

Sei $(V, < \cdot, \cdot >)$ ein IP raum und sei $U \subset V$ endlich-dim. Dank den Obigen Theorem kann jeder vektor $v \in V$ eindeutig geschrieben werden als v = u + v, mit $u \in U$ und $w \in U^{\perp}$ ein IP raum und sei $U \subset V$ endlich-dim. Dank den Obigen Theorem kann jeder vektor $v \in V$ eindeutig geschrieben werden als v = u + v, mit $u \in U$ und $w \in U^{\perp}$ Wir definieren dann auch die Orthogonale Projection: $pr_U(v) = u$ daher gilt $pr_u(v) = pr_B(v)$ für für B eine Orthonomale Basis von U:w

Satz 13.6.10

Sei $(V, <\cdot, \cdot)$ ein IP raum und $U \subset V$ endlich-dim. Dann gilt $U = (U^{\perp})^{\perp}$

Beweis Wir wissen dass $U \in (U^{\perp})^{\perp}$ sei dann $v \in (U^{\perp})^{\perp} \subset V$ Es gilt also $V = U \oplus U^{\perp} \Rightarrow \exists u \in U, \exists w \in U^{\perp}$ so dass v = u + w (oben bewiesen). Dann behaupten wir also $w = 0_V$ Da $v \in (U^{\perp})^{\perp}$ festgesetz ist, gilt $\langle v, x \rangle = 0 \forall x \in U^{\perp}$ Also $\langle v, w \rangle = 0 = \langle u + w \rangle = \langle u, w \rangle + \langle w, w \rangle = 0$ da $\langle u, w \rangle = 0$ per definition gilt dann mus auch $w = 0_V$ sein.

13.7 Die QR Zerlegung

Definition 13.7.1

 $A \in M_{n \times n}(\mathbb{R})$ ist orthogonal wenn die Spaltenvektoren eine orthonormale Basis von \mathbb{R}^n mit den Standard IP bilden. $B \in M_{n \times n}(\mathbb{C})$ ist unitär wenn die Spaltenvektoren eine Orthonormale Basis von \mathbb{C}^n mit dem Standard IP bilden Wir haben also die Mengen von Unitäre und Orthogonale Matrizen O(n) und U(n)

Lemma 13.7.3

$$A \in O(n) \Leftrightarrow A^{-1} = A^{t}$$
$$B \in U(n) \Leftrightarrow B^{-1} = B^{*} = \overline{B}^{t}$$

Beweis Zu zeigen ist dass $AA^t = id_n$ Die Spaltenvektoren $(v_1, ..., v_n) = A$: $(A^tA)_{ij} = \langle v_i, v_j \rangle = \delta_{ij}$ da der Standard IP von der id_n Matrix definiert ist. Wenn wir transponieren.