Package 'eSEM'

November 1, 2023

Type Package
Title Enzyme activity inference from Structural Equation Modeling
Version 1.0
Date 2023-09-13
Author Dehui Kong
Maintainer Dehui Kong <dkong3@uthsc.edu></dkong3@uthsc.edu>
Imports lavaan(>= 0.6-11), tidyr(>= 1.2.0), stringr(>= 1.4.0), dplyr(>= 1.0.9), psych(>= 2.2.5), devtools(>= 2.4.5), EFAtools(>= 0.4.1)
Description eSEM is used to infer enzyme activity.
Depends R (>= $3.5.0$)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Suggests knitr, rmarkdown VignetteBuilder knitr
R topics documented:
aceAdjacency catchActRaw eSEM getFa inputTransformPSP mastInput motifEx pspAdjacency pspMotifAdjacency singleEnzymeAff singleHatAct singleKinaseAct singleLigaseAct ubiAdjacency
don agaconey

eSEM

aceAdjacency

aceAdjacency

Description

This script is used to build HUMAN HAT-substrate adjacency matrix.

Usage

```
aceAdjacency()
```

catchActRaw

catchResults

Description

Catch Activity and Affinity. Activity contains Raw-Activity, Mean-Center, Z-scaled.

Usage

```
catchActRaw(x)
```

Arguments

Х

The results from modeling fitting.

rawData

Input raw data (quantitative phospho-proteomics / ubiqutin-proteomics data)

eSEM

eSEM

Description

Infer enzyme activity from phosphoralation, ubiquitination, acetylation

Usage

```
eSEM(
  input = NULL,
  datatype = NULL,
  organism = NULL,
  enzyme.organism = NULL,
  cor.off = 0.95,
  kmo.off = 0,
  enzyList = NULL,
  input.log2.norm = FALSE,
  whole.log2.trans = FALSE,
  whole.proteome = NULL,
  motif = NULL,
  output.folder = getwd()
)
```

eSEM 3

Arguments

input Dataframe. Your quantitative ubiquiti-proteomics, phospho-proteomic and acetyl-

proteomics data.

datatype Factor. Data type: ubiquitination or phosphoralation or acetylation; ("ubi",

"psp", "ace")

organism Vector. Substrate species; ("human", "mouse", "rat")

enzyme.organism

Vector. Enzyme species; ("human", "mouse", "rat")

cor.off Numeric. Set up correlation cutoff value 0-1 to remove high collinear variables.

Default is 0.95.

kmo.off Numeric. Set up KMO cutoff value 0-1. Default is 0.

enzyList Vector. Program only calculate the enzyme in the enzyList. Default is to output

ALL enzyme activities and affinities.

input.log2.norm

Logical. FALSE or TRUE. Need program to do log2 transforming of the input

file or not. Default is FALSE.

whole.log2.trans

Logical. FALSE or TRUE. Need program to do log2 transforming of the whole

proteome or not. (Ignore if -whole.proteome is missing). Default is FALSE.

whole.proteome Dataframe. Set up whole proteome used to normalize phosphor-proteome or

ubiquitin-proteome whole proteome. Default is NULL.

motif Matrix. Added kinase-subatrate relationships from motif discovery.

output.folder Character. Character vector of location to save files if desired. Default is current

directory.

Details

You can use eSEM package to get enzyme activity.

Value

List

Examples

4 inputTransformPSP

```
datatype = "ace",
organism = "human",
input.log2.norm = FALSE)
```

getFa

Build MEME input

Description

script to extract MEME input .fa file

Usage

```
getFa(ss = NULL, es = NULL, filePath)
```

Arguments

ss Vector; Substrate species; ("mouse", "rat", "human")
es Vector; Kinase species; ("mouse", "rat", "human")

filePath The path is used to save .fa files. Recommend to create a new folder to save all

.fa.files.

Examples

```
getFa(ss = "human", es = c("human", "mouse", "rat"), filePath = getwd())
```

input Transform PSP

input Transform

Description

This script is used to log2 transform AND/OR whole proteome normalize input data.

Usage

```
inputTransformPSP(
  input_raw,
  input_log2_trans = FALSE,
  whole_log2_trans = FALSE,
  whole_proteome = NULL
)
```

mastInput 5

Arguments

input_raw Input raw data (quantitative phospho-proteomics/ubiquitin-proteomics data) input_log2_trans

> FALSE or TRUE. Need program to do log2 transforming of the input file or not. Default is FALSE.

whole_log2_trans

Need program to do log2 transforming of the whole proteome or not. Ignore if -whole.proteome is missing. Default is FALSE.

whole_proteome Set up whole proteome used to normalize phospho-proteomics/ubiquitin-proteomics data by whole proteome. Default is NULL.

mastInput

Build MAST input

Description

Script to extract MAST input FASTA file.

Usage

```
mastInput(input, savePath = getwd())
```

Arguments

input The same quantitative phosphoproteomics data as eSEM() input file. The path to save built MAST input file. Default is the current directory. savePath

Examples

```
mastInput(input = input_psp_example)
```

motifEx

motifEx

Description

This script is used to extract kinase-substrate relationships from motif scanning and build motif_input file for KSEM().

Usage

```
motifEx(mastFile, savePath = getwd())
```

Arguments

mastFile The output file "extract_result.txt" from Step: 03step_ExtractMASTresult.sh. savePath Path to save motif_input.txt file. Default is current directory.

6 pspMotifAdjacency

Description

This script is used to build kinase-substrate adjacency matrix with only PSP database.

Usage

```
pspAdjacency(sp, ep)
```

Arguments

sp	Substrate species; ("mouse", "rat", "human").
ер	Enzyme species: ("mouse", "rat", "human").

pspMotifAdjacency pspMotifAdjacency

Description

This script is used to build enzyme-substrate adjacency matrix with PSP database + Motif.

Usage

```
pspMotifAdjacency(sp, ep, motif.ref)
```

Arguments

sp	Substrate species; ("mouse", "rat", "human").
ер	Enzyme species; ("mouse", "rat", "human").
motif.ref	Added enzyme-subatrate relationships from motif discovery. Same as KSEM -motif parameter.

singleEnzymeAff 7

Description

Get single enzyme affinity.

Usage

```
singleEnzymeAff(enzyme, input, adj, cor.off, kmo.off)
```

Arguments

enzyme	Single enzyme name.
input	Normalized and transformed phospho-proteomics / ubiqutin-proteomics data.
adj	Adjacency matrix.
cor.off	Set up correlation cutoff value 0-1 to remove high collinear variables. Default is 0.95.
kmo.off	Set up KMO cutoff value 0-1. Default is 0.

singleHatAct	singleHatAct	

Description

Get single HAT activity.

Usage

```
singleHatAct(HAT, input, adj, cor.off, kmo.off)
```

Arguments

HAT	Single HAT name.
input	Normalized and transformed acetyl-proteomics data.
adj	Adjacency matrix.
cor.off	Set up correlation cutoff value 0-1 to remove high collinear variables. Default is 0.95.
kmo.off	Set up KMO cutoff value 0-1. Default is 0.

8 singleLigaseAct

singleKinaseAct		
-----------------	--	--

Description

Get single kinase activity.

Usage

```
singleKinaseAct(kinase, input, adj, cor.off, kmo.off)
```

Arguments

kinase Single kinase name.

input Normalized and transformed phosphoproteomics data.

adj Adjacency matrix.

cor.off Set up correlation cutoff value 0-1 to remove high collinear variables. Default is

0.95.

kmo.off Set up KMO cutoff value 0-1. Default is 0.

singleLigaseAct singleLigaseAct

Description

Get single ligase activity.

Usage

```
singleLigaseAct(ligase, input, adj, cor.off, kmo.off)
```

Arguments

input Normalized and transformed ubiquiti-proteomics data.

adj Adjacency matrix.

cor.off Set up correlation cutoff value 0-1 to remove high collinear variables. Default is

0.95.

kmo.off Set up KMO cutoff value 0-1. Default is 0.

ubiAdjacency 9

ubiAdjacency

ubiAdjacency

Description

This script is used to build ligase-substrate adjacency matrix with only PSP database.

Usage

```
ubiAdjacency(sp)
```

Arguments

sp

Substrate species; ("mouse", "rat", "human").