PREDICTING LOAN DEFAULTS USING LOGISTIC REGRESSION

Sonja Tilly

November 17

Approach and method

- Project
- Dataset
- Data exploration
- Feature engineering
- Classification
 - Building basic logistic regression model
 - Optimising model parameters
 - Feature selection
- Results
- Conclusion

Project

- Predict customers' creditworthiness
 (i.e. whether they will complete or default on a loan)
- Build and test a logistic regression model
- Use 70% of the data to build the model and then test the model using the remaining 30%

Lending Club dataset

- Each row represents a customer.
- Each column shows the features for approved loan applications.
- The column 'Class' shows that each customer has defaulted or completed their loan.

- The dataset is unbalanced, with defaulted loans only accounting for 18.17%.
- The unbalanced nature of the data will have to be considered when making predictions.

Data exploration

 Relationships between predictor and target variable are not always linear.

 Observations of features 'FICO Credit Score' and 'Address State' can be grouped in order to increase predictive power.

Feature engineering

- Convert 'Class' feature (= target) into numerical values
- Summarise Address States and FICO Credit Score features
- Create dummy variables for categorical features
- Encode remaining columns containing object data types
- Drop redundant features
- Deal with nan values
- Remove outliers

Classification: Build model

```
# build logistic regression model
# address unbalanced classes with parameter 'class_weights'
from sklearn import linear_model
from sklearn.metrics import roc_auc_score

estimator = linear_model.LogisticRegression(random_state=42, class_weight={0:0.1817, 1:0.8183})
estimator.fit(X_train, y_train)
y_pred_regr = estimator.predict_proba(X_test)
y_pred_regr = pd.DataFrame(y_pred_regr, index=y_test.index)
# how does the basic model perform?

AUC = roc_auc_score(y_test, y_pred_regr[1])
print("The AUC score for a simple Logistic Regression model is {:.4f}.".format(AUC))
```

The AUC score for a simple Logistic Regression model is 0.7207.

Initial AUC score: 0.7207

Classification: Optimise model

```
# tuning model parameters
from sklearn.model_selection import GridSearchCV
to find best model
parameters

param_grid = {'C': [0.01, 1, 2, 3], 'penalty':['11', '12']}

gsregr = GridSearchCV(estimator, param_grid, cv=9)

gsregr.fit(X_train, y_train)

y_pred_opt = gsregr.predict_proba(X_test)
y_pred_opt = pd.DataFrame(y_pred_opt, index = y_test.index)

# how does the optimised model perform?

AUC_opt = roc_auc_score(y_test, y_pred_opt[1])
print("The AUC score for an optimised Logistic Regression model is {:.4f}.".format(AUC_opt))
```

The AUC score for an optimised Logistic Regression model is 0.7216.

Optimised AUC score: 0.7216

Results: Feature selection

Highest odds for bad loans:

- FICO Credit Score Good
- FICO Credit Score Very Good
- Loan Purpose Small Business
- Loan Term 60 Months
- No. Adverse Public Records

Lowest odds for bad loans:

- Loan Purpose Credit Card
- Loan Purpose Car
- No. Of Public Record Bankruptcies
- Loan Purpose Wedding
- Loan Term 36 Months

Results: ROC Curve

- The optimised model delivered an AUC score of 0.7223.
- This can be interpreted as the probability that a randomly chosen positive example is deemed to have a higher probability of being positive than a randomly chosen negative example.
- Parameter tuning and feature selection improved the score.

Conclusion

- The model outperforms random guessing in predicting loan defaults.
- The model identifies features with high and low odds for bad loans.

Limitations

- Relationships between predictor variables and target are not necessarily linear.
- The amount of features and observations is not very large.

Recommendations

- Get more data.
- Build model using XG Boost, as this algorithm tends to perform well when variables exhibit non-linear relationships.