Lois usuelles de probabilités

1 Lois usuelles discrètes

1.1 Loi de Bernoulli

C'est la loi d'une variable aléatoire X ne pouvant prendre que les deux valeurs 1 ou 0. Ainsi $X(\Omega) = \{0,1\}$ avec:

$$P(X = 1) = p,$$
 $P(X = 0) = 1 - p$

C'est à dire: $X: \Omega \to \{0,1\}$ avec

$$X(\omega) = \begin{cases} 1 & \text{si A est r\'ealis\'e} \\ 0 & \text{sinon} \end{cases}$$

On dit que X suit la loi de Bernoulli de paramètre p, ce qu'on écrit symboliquement $X \rightsquigarrow B(1,p) = B(p)$.

$$P(X = x) = p^{x}(1 - p)^{1-x}, \qquad x = 0.1$$

avec E(X) = p et V(X) = p.q = p(1 - p)

1.2 Loi Binomiale

On répète l'experience de Bernoulli de façons indépendantes n fois et soit X: le nombre de fois que A est réalisé.

$$X:\Omega\to E=\{0,\!1,\!2,\!3,\!\ldots,\!n\}$$

On dit que X suit une loi Binomiale de paramètres n et p et on écrit: $X \rightsquigarrow B(n,p)$. $\forall x \in E$, la loi de X est donnée par:

$$P(X = x) = C_n^x p^x (1 - p)^{n-x}, \qquad x = 0,1,2,...,n$$

avec E(X) = np et V(X) = np.q = np(1-p)

Remarque 0.1. Si $X_1 \rightsquigarrow B(n_1,p)$ et $X_2 \rightsquigarrow B(n_2,p)$, les deux variables étant indépendantes alors $X_1 + X_2 \rightsquigarrow B(n_1 + n_2,p)$

Exemple 0.1. On jette un dé 10 fois. Soit X le nombre de nombre premiers obtenus.

On pose
$$X_i = \begin{cases} 1 & \text{si on a un nombre premier} \\ 0 & \text{sinon} \end{cases}$$

 $i = 1, 2, 3, ..., 10, \ \forall i, \ X_i \leadsto B(p) = B(\frac{1}{2})$
 $X = \sum_{i=1}^{10} X_i \leadsto B(10, p) = B(10, \frac{1}{2})$

$$P(X=x) = C_{10}^{x} p^{x} (1-p)^{10-x} = C_{10}^{x} (\frac{1}{2})^{x} (1-\frac{1}{2})^{10-x}$$

1.3 Loi de Poisson

Définition 0.1. Une variable aléatoire X suit une loi de Poisson de paramètre λ , $(\lambda > 0)$ si sa fonction de masse P est donnée par:

$$P(X = x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}, \qquad x = 0,1,2,3.....$$

On note $X \rightsquigarrow P(\lambda)$, on a aussi $E(X) = V(X) = \lambda$.

Définition 0.2. Soit X_T la variable aléatoire qui compte le nombre d'apparitions d'un phénomène aléatoire pendant une période de temps T.

Soit θ le nombre moyen d'apparitions du phénomène pendant une unité de temps alors X_T suit une loi de Poisson de paramètre $\lambda = \theta.T$.

Exemple 0.2. La variable aléatoire qui compte le nombre de clients qui arrivent à l'instant t à une fille d'attente devant un guichet suit une loi de Poisson de paramètre λ , $\lambda = \theta.t$. θ le nombre moyen de clients qui arrivent au guichet pendant l'unitéde temps.

1.3.1 Approximation de la loi binomiale par une loi de Poisson:

Soit $X \leadsto B(n,p)$. Losque n est grand et np tend vers une limite finie alors:

$$P(X = x) = C_n^x p^x (1 - p)^{n - x} \simeq P(X = x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$

avec $\lambda = n.p.$

En pratique cette approximation est possible si $n \ge 30$ et n.p < 5

Exemple 0.3. Soit $X \rightsquigarrow B(100,0.01)$, x = 0,1,2,3,4,5 ainsi que leurs approximations à 10^{-3} avec une loi de Poisson de paramètre $\lambda = n.p = 1$ sont données dans le tableau suivant:

k	0	1	2	3	4	5
P(X=x)	0.336	0.370	0.185	0.061	0.015	0.000
Approximation	0.368	0.368	0.184	0.061	0.015	0.003

2 Lois usuelles continues

2.1 Loi uniforme sur [a,b]

On dit qu'une v.a X suit une loi uniforrme sur l'intervalle [a,b] si sa fonction de densité est donnée par:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{sinon} \end{cases}$$

La fonction de répartition est donnée par:

$$F(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } a \le x \le b \\ 1 & \text{si } x > b \end{cases}$$

Avec
$$E(X) = \frac{a+b}{2}$$
 et $V(X) = \frac{(b-a)^2}{12}$

2.2 Loi exponentielle de paramètre θ

On dit qu'une v.a X suit une loi exponentielle de paramètre $\theta > 0$, si sa fonction de densité est positive donnée par:

$$f(x) = \begin{cases} \theta \cdot e^{-\theta x}, & \text{si } x \ge 0\\ 0, & \text{si } x < 0 \end{cases}$$

On note $X \leadsto \exp(\theta)$.

Avec $E(X) = \frac{1}{\theta}$ et $V(X) = \frac{1}{\theta^2}$

La fonction de répartition est:

$$F(x) = \begin{cases} 1 - e^{-\theta x}, & \text{si } x \ge 0 \\ 0, & \text{si } x < 0 \end{cases}$$

La variable X est souvent utilisé pour représenter une durée de vie (durée de chomage, durée d'hospitalisation).

2.3 loi normale ou de Laplace-Gauss

C'est la loi d'une v.a X à valeurs dans \mathbb{R} , de densité

$$f(x) = \frac{1}{\sigma\sqrt{2\Pi}}exp(-\frac{(x-m)^2}{2\sigma^2})$$

qui est définie par deux paramètres E(X)=m et $V(X)=\sigma^2$. On écrit $X\leadsto N(m,\sigma^2)$ ou bien $X\leadsto N(m,\sigma)$

2.3.1 Loi normale centée et réduite: (loi standard]

En faisant le changement de variable $U=\frac{X-m}{\sigma}$, alors U est une v.a de moyenne nulle (E(U)=0) et de variance 1 (V(U)=1) Donc

$$f(u) = \frac{1}{\sqrt{2\Pi}} exp(-\frac{x^2}{2})$$

La fonction de répartition est

$$\Phi(x) = \frac{1}{\sqrt{2\Pi}} \int_{-\infty}^{x} exp(-\frac{u^2}{2}) du$$

Les valeurs de $\Phi(x)$ sont fournées dans une table statistique pour les valeurs $x \geq 0$. Pour x < 0, on utilise le fait que Φ est une fonction paire $\Phi(u) = \Phi(-u)$ P(U < -x) = P(u > x) donc $\Phi(-x) = 1 - \Phi(x)$, de cette symétrie découle la probabilité suivante:

$$P(\mid U \mid < a) = P(-a < U < a) = \Phi(a) - \Phi(-a)$$

= $\Phi(a) - (1 - \Phi(a))$
= $2\Phi(a) - 1$

Remarque 0.2. pour déterminer les valeurs de la fonction de répartition d'une loi normale quelconque, on se ramène à la loi standard qui est tabulée à partir de:

$$F(x) = P(X \le x) = P(\frac{X - m}{\sigma} \le \frac{x - m}{\sigma}) = P(U \le \frac{x - m}{\sigma}) = \Phi(\frac{x - m}{\sigma})$$

2.3.2 Approximation de la loi binomiale par une loi normale:

Soit $X \rightsquigarrow B(n,p)$.

Losque n est grand et n.p tend vers une limite finie alors:

$$X \leadsto B(n,p) \simeq X \leadsto N(np,npq)$$

En pratique cette approximation est possible si $n \ge 30$ et $n \cdot p \ge 5$.