# SEAM CARVING

JAY GUPTA 19BPS1009 AMAN KUMAR SINHA 19BPS1026 PRITISH VILIN ZUNKE 19BPS1119



# WHAT IS SEAM CARVING?

002

• Seam carving (or liquid rescaling) is an algorithm for content-aware image resizing, developed by Shai Avidan.

• It functions by establishing a number of seams (paths of least importance) in an image and automatically removes seams to reduce image size or inserts seams to extend it.

 Seam carving also allows manually defining areas in which pixels may not be modified, and features the ability to remove whole objects from photographs.



# IMAGE PROCESSING | CSE4019 | VIT CHENNAI

# TYPES OF SEAM CARVING

#### **SEAM REMOVAL**

Establish a number of seams (paths of least importance) in an image and automatically removes seams to reduce image size.

#### **SEAM INSERTION**

Seam insertion can be thought of as inversion of seam removal and insert new artificial pixels/seams into the image.









### SEAM REMOVAL









### SEAM INSERTION











# IMAGE PROCESSING | CSE4019 | VIT CHENNAI

### SEAM CARVING STEPS

#### Energy Calculation

The first step is to calculate the energy of each pixel, which is a measure of the importance of each pixel—higher the energy, the less likely that the pixel will be included as part of a seam. For energy calculation we will use the dual-gradient energy function.

### 2 Seam Identification

The next step is to find a vertical or horizontal seam of minimum total energy.

For this we find the shortest path from any of the W pixels in the top row to any of the W pixels in the bottom row

### Removal/Insertion

The final step is to add or remove from the image all of the pixels along the seam, which results in increase or decrease in dimensions of the image.

# IMAGE PROCESSING | CSE4019 | VIT CHENNAI

### ENERGY MAP





The purpose of an energy function is to assign to each pixel a value, e(i,j), indicating its importance to the image. Unnoticeable pixels that blend with their surroundings should have low energy values.

Here, after we use the energy function we assign energy values to each and every pixel, distinct features of the image are isolated after this conversion, cost of the streams/lines/paths are calculated horizontally or vertically and then, path with minimum cost is considered for removal. For the path calculation we use 8-path.

## AUTO ENCODER

An autoencoder is an unsupervised learning technique for neural networks that learns efficient data representations (encoding) by training the network to ignore signal "noise." Autoencoders can be used for image denoising, image compression, and, in some cases, even generation of image data. Autoencoders consist of 3 parts:

- 1. **Encoder**: A module that compresses the input data into an encoded representation that is typically several orders of magnitude smaller than the input data.
- 2. **Bottleneck:** A module that contains the compressed knowledge representations and is therefore the most important part of the network.
- 3. **Decoder:** A module that helps the network"decompress" the knowledge representations and reconstructs the data back from its encoded form. The output is then compared with a ground truth.

# AUTO ENCODER

In this project we have used auto encoder to train the model to generate energy map for a given input image.

| Auto Encoder | Unit Level | Conv Layer | Filter  | Stride | Output size |
|--------------|------------|------------|---------|--------|-------------|
| Encoding     | Level 1    | Conv 1     | 3x3/32  | 1      | 256x256x32  |
|              |            | Conv 1     | 3x3/32  | 1      | 256x256x32  |
| Encoding     | Level 2    | Conv 2     | 3x3/64  | 2      | 128x128x64  |
|              |            | Conv 2     | 3x3/64  | 1      | 128x128x64  |
| Encoding     | Level 3    | Conv 3     | 3x3/128 | 2      | 64x64x128   |
|              |            | Conv 3     | 3x3/128 | 1      | 64x64x128   |
| Encoding     | Level 4    | Conv 4     | 3x3/256 | 2      | 32x32x256   |
|              |            | Conv 4     | 3x3/256 | 1      | 32x32x256   |
| Bridge       | Level 5    | Conv 5     | 3x3/512 | 2      | 16x16x512   |
|              |            | Conv 5     | 3x3/512 | 1      | 16x16x512   |
| Decoding     | Level 6    | De-Conv1   | 3x3/256 | 1      | 32x32x256   |
|              |            | De-Conv1   | 3x3/256 | 2      | 32x32x256   |
| Decoding     | Level 7    | De-Conv2   | 3x3/128 | 1      | 64x64x128   |
|              |            | De-Conv2   | 3x3/128 | 2      | 64x64x128   |
| Decoding     | Level 8    | De-Conv3   | 3x3/64  | 1      | 128x128x64  |
|              |            | De-Conv3   | 3x3/64  | 2      | 128x128x64  |
| Decoding     | Level 9    | De-Conv4   | 3x3/32  | 1      | 256x256x32  |
|              |            | De-Conv4   | 3x3/32  | 2      | 256x256x32  |
| Output       |            | De-Conv5   | 1x1     | 1      | 256x256x1   |

























