Hw5 Solution

1.

(a)
$$p_o = N_a = 10^{16} \text{ cm}^{-3}$$

 $n_o = \frac{n_i^2}{p_o} = \frac{\left(1.5 \times 10^{10}\right)^2}{10^{16}} = 2.25 \times 10^4 \text{ cm}^{-3}$
 $\sigma = e\mu_n (n_o + \delta n) + e\mu_p (p_o + \delta p)$
 $\approx e\mu_p p_o + e(\mu_n + \mu_p) \delta n$
Now $\delta n = \delta p = g' \tau_{n0} \left(1 - e^{-t/\tau_{n0}}\right)$
 $= \left(8 \times 10^{20}\right) \left(5 \times 10^{-7}\right) \left(1 - e^{-t/\tau_{n0}}\right)$
 $= 4 \times 10^{14} \left(1 - e^{-t/\tau_{n0}}\right) \text{ cm}^{-3}$
Then $\sigma = \left(1.6 \times 10^{-19}\right) \left(380\right) \left(10^{16}\right)$
 $+ \left(1.6 \times 10^{-19}\right) \left(900 + 380\right)$
 $\times \left(4 \times 10^{14}\right) \left(1 - e^{-t/\tau_{n0}}\right)$
 $\sigma = 0.608 + 0.0819 \left(1 - e^{-t/\tau_{n0}}\right) \left(\Omega - \text{cm}\right)^{-1}$
(b) (i) $\sigma(0) = 0.608 \left(\Omega - \text{cm}\right)^{-1}$

2.

$$I = \frac{V}{R}; \quad R = \frac{L}{\sigma A}$$

$$\Rightarrow I = \frac{\sigma A}{L} \cdot V$$
For $N_I = N_d + N_a = 8 \times 10^{15} + 2 \times 10^{15}$

$$= 10^{16} \text{ cm}^{-3}$$
Then, $\mu_n \cong 1300 \text{ cm}^2/\text{V-s}$

$$\mu_p \cong 400 \text{ cm}^2/\text{V-s}$$

$$\sigma \cong e\mu_n n_o + e(\mu_n + \mu_p) \delta p$$
where $\delta p = g' \tau_{p0} e^{-t/\tau_{p0}}$

$$= (8 \times 10^{20}) (5 \times 10^{-7}) e^{-t/\tau_{p0}}$$

$$= 4 \times 10^{14} e^{-t/\tau_{p0}} \text{ cm}^{-3}$$

$$\sigma = (1.6 \times 10^{-19}) (1300) (8 \times 10^{15} - 2 \times 10^{15})$$

$$+ (1.6 \times 10^{-19}) (1300 + 400)$$

$$\times (4 \times 10^{14}) e^{-t/\tau_{p0}}$$

$$\sigma = 1.248 + 0.109 e^{-t/\tau_{p0}}$$

$$I = \frac{1.248 + 0.109 e^{-t/\tau_{p0}}}{0.05} (10^{-5}) (10)$$

$$0.05$$

$$= 2.496 \times 10^{-3} + 2.18 \times 10^{-4} e^{-t/\tau_{p0}} \text{ A}$$
or $I = 2.496 + 0.218 e^{-t/\tau_{p0}} \text{ mA}$

3.

(a) For
$$0 \le t \le 2 \times 10^{-6} \text{ s}$$

$$\delta n(t) = g' \tau_{n0} e^{-t/\tau_{n0}}$$

$$= (10^{21})(5 \times 10^{-7}) e^{-t/\tau_{n0}}$$

$$= 5 \times 10^{14} e^{-t/\tau_{n0}} \text{ cm}^{-3}$$

At
$$t = 2 \times 10^{-6} \text{ s}$$
,
 $\delta n_1 = 5 \times 10^{14} e^{-(2 \times 10^{-6})/(5 \times 10^{-7})}$
 $= 9.16 \times 10^{12} \text{ cm}^{-3}$
For $t \ge 2 \times 10^{-6} \text{ s}$

$$\delta n = \left(5 \times 10^{14} - 9.16 \times 10^{12}\right) \left(1 - e^{-(t - 2 \times 10^{-6})/\tau_{g0}}\right) + 9.16 \times 10^{12}$$

=
$$4.908 \times 10^{14} \Big(1 - e^{-(t - 2 \times 10^{-6})/\tau_{g0}} \Big) + 9.16 \times 10^{12} \text{ cm}^{-3}$$

(b) (i) $\delta n(0) = 5 \times 10^{14} \text{ cm}^{-3}$
(ii) $\delta n(2 \times 10^{-6}) = 9.16 \times 10^{12} \text{ cm}^{-3}$
(iii) $\delta n(\infty) = 5 \times 10^{14} \text{ cm}^{-3}$

4.

(a) p-type;
$$p_{pO} = 10^{14} \text{ cm}^{-3}$$

and
$$n_{pO} = \frac{n_i^2}{p_{pO}} = \frac{\left(1.5 \times 10^{10}\right)^2}{10^{14}} = 2.25 \times 10^6 \text{ cm}^{-3}$$

(b) Excess minority carrier concentration $\delta n = n_p - n_{pO}$

At
$$x = 0$$
, $n_p = 0$ so that

$$\delta n(0) = 0 - n_{nQ} = -2.25 \times 10^6 \text{ cm}^{-3}$$

(c) For the one-dimensional case,

$$D_n \frac{d^2(\delta n)}{dx^2} - \frac{\delta n}{\tau_{nQ}} = 0$$

or

$$\frac{d^2(\delta n)}{dx^2} - \frac{\delta n}{L_n^2} = 0 \text{ where } L_n^2 = D_n \tau_{nO}$$

The general solution is of the form

$$\delta n = A \exp\left(\frac{-x}{L_n}\right) + B \exp\left(\frac{+x}{L_n}\right)$$

For $x \to \infty$, δn remains finite, so B = 0.

Then the solution is

$$\delta n = -n_{pO} \exp\left(\frac{-x}{L_n}\right)$$

5.

n-type, so minority carriers are holes and

$$D_{p}\nabla^{2}(\delta p) - \mu_{p} \mathbf{E} \bullet \nabla(\delta p) + g' - \frac{\delta p}{\tau_{pO}} = \frac{\partial(\delta p)}{\partial t}$$

We have $\tau_{p0} = \infty$, E = 0, and

$$\frac{\partial(\delta p)}{\partial t} = 0$$
 (steady-state). Then we have

$$D_{p} \frac{d^{2}(\delta p)}{dx^{2}} + g' = 0 \text{ or } \frac{d^{2}(\delta p)}{dx^{2}} = -\frac{g'}{D_{p}}$$

For -L < x < +L, $g' = G'_o = \text{constant}$. Then

$$\frac{d(\delta p)}{dx} = -\frac{G_o'}{D_n}x + C_1$$

and

$$\delta p = -\frac{G_o'}{2D_p} x^2 + C_1 x + C_2$$

For L < x < 3L, g' = 0 so we have

$$\frac{d^2(\delta p)}{dx^2} = 0$$
 so that $\frac{d(\delta p)}{dx} = C_3$ and

$$\delta p = C_3 x + C_4$$

For
$$-3L < x < -L$$
, $g' = 0$ so that

$$\frac{d^2(\delta p)}{dx^2} = 0$$
 so that $\frac{d(\delta p)}{dx} = C_5$ and

$$\delta p = C_5 x + C_6$$

The boundary conditions are:

(1)
$$\delta p = 0$$
 at $x = +3L$

(2)
$$\delta p = 0 \text{ at } x = -3L$$

(3)
$$\delta p$$
 continuous at $x = L$

(4)
$$\delta p$$
 continuous at $x = -L$

(5)
$$\frac{d(\delta p)}{dx}$$
 continuous at $x = L$

(6)
$$\frac{d(\delta p)}{dx}$$
 continuous at $x = -L$

Applying the boundary conditions, we find

$$\delta p = \frac{G_o'}{2D_p} \left(5L^2 - x^2 \right) \text{ for } -L < x < +L$$

$$\delta p = \frac{G_o'L}{D_p} (3L - x) \text{ for } L < x < 3L$$

$$\delta p = \frac{G_o'L}{D_n} (3L + x) \text{ for } -3L < x < -L$$