

효소 열안정성 예측

Prediction

7조 김효진, 나다경, 안이현, 유도현

Goal, Data, EDA

Goal of competition

Test set Our prediction

seq_id	protein_sequence	tm (melting temperature)	rank
1	VPVNEPD	53.6	483
2	VPVNPAPD	61.2	318

Data

Train set

	protein_sequence	рН	data_source	tm
seq_id				
0	AAAAKAAALALLGEAPEVVDIWLPAGWRQPFRVFRLERKGDGVLVG	7.0	doi.org/10.1038/s41592- 020-0801-4	75.7

Melting temperature

Test set

28981 rows × 5 columns

test_enzyme = "VPVNPEPDATSVENVALKTGSGDSQSDPIKADLEVKGQSALPFDVDCWAILCKGAPNVLQRVNEKTKNSNRDRSGANKGPFKDPQKWGIKALPPKNPSWSAQDFKSPEE YAFASSLQGGTNAILAPVNLASQNSQGGVLNGFYSANKVAQFDPSKPQQTKGTWFQITKFTGAAGPYCKALGSNDKSVCDKNKNIAGDWGFDPAKWAYQYDEKNNKFNYVGK"

	protein_sequence (Original)	рН	data_source
seq_id	L		
31390	VPVNPEPDATSVENVAEKTGSGDSQSDPIKADLEVKGQSALPFDVD	8	Novozymes
31391	VPVNPEPDATSVENVAKKTGSGDSQSDPIKADLEVKGQSALPFDVD	8	Novozymes
31392	VPVNPEPDATSVENVAKTGSGDSQSDPIKADLEVKGQSALPFDVDC	8	Novozymes

One point mutation

We can check where

the mutation occurred.

2413 rows × 4 columns

PDB file

```
!pip install py3Dmol -q
import py3Dmol
with open("../input/novozymes-enzyme-stability-prediction/wildtype_structure_prediction_af2.pdb") as ifile:
    protein = "".join([x for x in ifile])
#view = py3Dmol.view(query='pdb:1DIV', width=800, height=600)
view = py3Dmol.view(width=800, height=600)
view.addModelsAsFrames(protein)
style = {'cartoon': {'color': 'spectrum'}, 'stick':{}}
view.setStyle({'model': -1}, style)
view.zoom(0.12)
view.rotate(235, {'x':0,'y':1,'z':1})
view.spin({'x':-0.2,'y':0.5,'z':1},1)
view.show()
```


Provide protein structure information

B-factor & pLDDT

Alphafold

- The best AI to predict protein structure.
- Alphafold provides a thermal stability feature called plddt.
- In general, it is known that the higher the plddt, the higher the thermal stability.

B-factor

- one of the protein properties provided in the "original" pdb file.(Not in our file)
- B-factor is an indicator of thermal motion about atom.
- It has a <u>high correlation with</u> <u>our target, tm.</u>

We can use pLDDT instead of B-factor.

EDA

	Train	Test
Protein sequence	Wild type + mutation	One – point mutation
рН	1-14	8 (fixed)
Data source	diverse	fixed
Sequence length	diverse	fixed(220 or 221)

Create new Train set similar to the Test set!

Feature Engineering

Adding features

Create new train data

Original Train set

	protein_sequence	рН	data_source	tm
seq_id				
0	AAAAKAAALALLGEAPEVVDIWLPAGWRQPFRVFRLERKGDGVLVG	7.0	doi.org/10.1038/s41592- 020-0801-4	75.7

Similar Wildtype Mutated enzyme (original) Amino dTm groups Amino acid acid

lTm

-> New target!

Using PDB file + fixing pH level

	PDB	WT	position	MUT	dTm	sequence	mutant_seq
0	GP01	L	89	Α	2.28642	MLVMTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRFFFFATSC	MLVMTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRI
1	GP01	Т	95	С	1.48642	MLVMTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRFFFFATSC	MLVMTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRI
2	GP01	Т	95	С	0.28642	MLVMTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRFFFFATSC	MLVMTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRI
3	GP01	Т	95	S	2.48642	MLVMTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRFFFFATSC	MLVMTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRI
4	GP01	Т	95	S	3.88642	MLVMTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRFFFFATSC	MLVMTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRI

Adding domain knowledge data

	Name	Abbr	Molecular Weight	Molecular Formula	Residue Formula	Residue Weight	pKa1	pKb2	рКх3	pl4
Letter										
Α	Alanine	Ala	89.10	C3H7NO2	C3H5NO	71.08	2.34	9.69	NaN	6.00
С	Cysteine	Cys	121.16	C3H7NO2S	C3H5NOS	103.15	1.96	10.28	8.18	5.07
D	Aspartic acid	Asp	133.11	C4H7NO4	C4H5NO3	115.09	1.88	9.60	3.65	2.77
E	Glutamic acid	Glu	147.13	C5H9NO4	C5H7NO3	129.12	2.19	9.67	4.25	3.22
F	Phenylalanine	Phe	165.19	C9H11NO2	C9H9NO	147.18	1.83	9.13	NaN	5.48
G	Glycine	Gly	75.07	C2H5NO2	C2H3NO	57.05	2.34	9.60	NaN	5.97
Н	Histidine	His	155.16	C6H9N3O2	C6H7N3O	137.14	1.82	9.17	6.00	7.59
1	Isoleucine	lle	131.18	C6H13NO2	C6H11NO	113.16	2.36	9.60	NaN	6.02
K	Lysine	Lys	146.19	C6H14N2O2	C6H12N2O	128.18	2.18	8.95	10.53	9.74
L	Leucine	Leu	131.18	C6H13NO2	C6H11NO	113.16	2.36	9.60	NaN	5.98
М	Methionine	Met	149.21	C5H11NO2S	C5H9NOS	131.20	2.28	9.21	NaN	5.74
N	Asparagine	Asn	132.12	C4H8N2O3	C4H6N2O2	114.11	2.02	8.80	NaN	5.41
0	Hydroxyproline	Нур	131.13	C5H9NO3	C5H7NO2	113.11	1.82	9.65	NaN	NaN
Р	Proline	Pro	115.13	C5H9NO2	C5H7NO	97.12	1.99	10.60	NaN	6.30
^	Q1	~ 1	44045	05114011000	0511011000	100 10	0 47	0.40	A 1 - A 1	- 0-

Transformer ESM features + embeddings

PCA

```
ESM2(
 (embed_tokens): Embedding(33, 1280, padding_idx=1) 1280: large dimension
 (layers): ModuleList(
   (0): TransformerLayer(
     (self_attn): MultiheadAttention(
      (k_proj): Linear(in_features=1280, out_features=1280, bias reduce dimension
       (v_proj): Linear(in_features=1280, out_features=1280, bias: 1280 to 32
       (q_proj): Linear(in_features=1280, out_features=1280, bias=True)
       (out_proj): Linear(in_features=1280, out_features=1280, bias=True)
       (rot_emb): RotaryEmbeddi
                              # REDUCE EMBEDDING DIM FROM 1280 TO 32 OR 16 WITH PCA
     (self_attn_layer_norm): La
                              from cuml import PCA
     (fc1): Linear(in_features=
                              pca_pool = PCA(n_components=32)
     (fc2): Linear(in_features=
                              pca_embeds = pca_pool.fit_transform(all_pdb_embed_pool.astype('float32'))
     (final_layer_norm): LayerN
                              pca_local = PCA(n_components=16)
                              pca_local.fit(all_pdb_embed_tmp.astype('float32'))
                              pdb_map = {x:y for x,y in zip(all_pdb,range(len(all_pdb)))}
                              pdb_map['kaggle'] = len(all_pdb)
                              del all_pdb_embed_tmp
                              _ = qc.collect()
```

Feature engineering

VPVNPEPDATSVENVALKTGSGDSQSDPIKADLEVKGQSALPFDVDCWAILCKGAPN VLQRVNEKTKNSNRDRSGANKGPFKDPQKWGIKALPPKNPSWSAQDFKSPEEYAFAS SLQGGTNAILAPVNLASQNSQGGVLNGFYSANKVAQFDPSKPQQTKGTWFQITKFTG AAGPYCKALGSNDKSVCDKNKNIAGDWGFDPAKWAYQYDEKNNKFNYVGK

Wild Type & Mutant Sequences

Wild Type Structure information(pLDDT)

Amino acids properties

Transfomer ESM + Embeddings

Extracting embeddings from proteins...

GP01 , GP02 , GP03 , GP04 , GP06 , GP07 , GP08 , GP09 , GP10 , GP11 , GP12 , GP13 , GP14 , GP15 , GP16 , GP17 , GP18 , GP19 , GP20 , GP21 , GP22 , GP23 , GP24 , GP 25 , GP26 , GP27 , GP28 , GP29 , GP30 , GP31 , GP32 , GP33 , GP34 , GP35 , GP36 , GP37 , GP38 , GP39 , GP40 , GP41 , GP42 , GP43 , GP44 , GP45 , GP46 , GP48 , GP49

PCA Model

127 features

Modeling

Predict dTM

Models

Data set

127 features

- \Rightarrow The problem of overfitting
- \Rightarrow We have to solve this problem!

Feature importance

<Best features>

- 1. Pl_delta
- 2. Pca_mutant
- 3. Pca_pool
- 4. Pca local
- 5. pca_wt

- ⇒ the polarity difference of a single amino acid has a high effect on thermal stability.
- => the overall structure of the protein has a significant impact on thermal stability

K-fold vs Group K-fold

Randomly divide the fold

- Each group appears **Once** across all folds
- ⇒ The same group is **Not** represented in both testing / validation and training sets
- ⇒ make it possible to **detect overfitting** situations

Comparison

XGBoost

Test preds histogram

Spearman Metric: 0.341, Leader Board Score: 0.273

LGBM

Test preds histogram

Spearman Metric: 0.346, Leader Board Score: 0.291

Comparison

Ridge

Test preds histogram

Spearman Metric: 0.331 Leader Board Score: 0.255

Randomforest

Spearman Metric: 0.341, Leader Board Score: 0.273

Submission

Best model

Model	XGBoost	LGBM	RandomForest	Ridge
RMSE	0.269	0.2704	0.272	0.278
Spearman Metric (predicting dTm)	0.341	0.3455	0.348	0.331
Leader Board Score	0.273	0.291	0,264	0.255

	seq_id	tm	rank
0	31390	0.504586	2167.0
1	31391	0.511375	1512.0
2	31392	0.511383	1472.0
3	31393	0.517814	95.0
4	31394	0.515988	414.0

Thank You