Recap with some changes in notations:

In gradient descent, the core formula was:

$$X_{(i+1)} = X_i - h * d/dx f(x)$$

But the above formula is valid only for a Loss function with one variable x. For a loss function in two variables, this formula will become like this:

$$X_{(i+1)} = X_i - h * [d/dx f(x, y) + d/dy f(x, y)]$$

For n number of variables:

$$\chi_{t+1} = \chi_t - \eta \left[\frac{\partial}{\partial \chi_1} f(\chi_1, \chi_2, ..., \chi_n) + \frac{\partial}{\partial \chi_2} f(\chi_1, \chi_2, ..., \chi_n) + ... + \frac{\partial}{\partial \chi_n} f(\chi_1, \chi_2, ..., \chi_n) \right]$$

$$\therefore \chi_{t+1} = \chi_t - \eta \sum_{i=1}^{\infty} \frac{\partial}{\partial \chi_i} f$$
Now by neplacing χ_t by θ_t on θ^t & χ_{t+1} by θ_{t+1} on θ^{t+1} :
$$\theta^{t+1} = \theta^t - \eta \geq \frac{\partial}{\partial \theta^t} f$$

Constrained Optimization Problem:

As we know, our loss function is-
$$L = \leq \frac{\overrightarrow{w} + \omega_0}{\|\overrightarrow{w}\|} \cdot \exists i$$

While computing gradient, we will need to differentiate this function and the division will add complexity in the differentiation.

Constrained optimization problem is a strategy in which we simplify our problem by adding some constraints (some limitation) so that it becomes easy (less complex) to optimize it.

In this case, $\|\vec{\omega}\|$ in the denominator is increasing the complexity so, let's take a constraint - $\|\vec{\omega}\| = 1$

Now with this constraint, we want to find the values of $\overrightarrow{\omega} \stackrel{\wedge}{=} \omega_0$ for which the value of Loss function becomes minimum. This can be also written as the following

along with our constraint:

argmin
$$- \leq \frac{\overrightarrow{\omega_1}.\overrightarrow{x_i} + \omega_0}{\|\overrightarrow{\omega}\|} \cdot \forall_i \leq t. \|\overrightarrow{\omega}\| = 1$$
 $(\overrightarrow{\omega}, \omega_0)$ Such that | Subject to

Now, let's calculate the ghadrent
$$\nabla L$$

$$\frac{\partial}{\partial \omega_1} L = -\frac{\partial}{\partial \omega_1} (\omega_1 x_1 y_1 + \omega_2 x_2 y_2 + \dots + \omega_n x_n y_n + \omega_0 y_0)$$

$$= -x_1 y_1$$

$$\frac{\partial}{\partial \omega_1} L = -x_2 y_2 \dots \frac{\partial}{\partial \omega_n} L = -x_n y_n$$

$$\nabla L = \frac{\partial}{\partial w_1} L + \frac{\partial}{\partial w_2} L + \dots + \frac{\partial}{\partial w_n} L = -\left(\chi_1 \zeta_1 + \chi_2 \zeta_2 + \dots + \chi_n \zeta_n\right)$$

$$\nabla L = -\sum \chi_1 \zeta_1$$

Mow, putting this note gradient descent formula to predict next value of w

$$\omega_{i+1} = \omega_i - \eta \nabla L$$

$$\omega_{i+1} = \omega_i - \gamma \left(-2 \omega_i j_i\right)$$

The above formula is valid for all components of wo other than wo

For wo.

$$\omega_o^{t+1} = \omega_o^t - \eta(-\Sigma y_i)$$

A deeper dive into constrained optimization:

Example - 1:

Suppose there is a function $f(x) = x^2 - 3x - 3$ that we want to minimize and, we also want to put a constraint that our minima must also satisfy the function $g(x) = x^2 - 2x - 3$ then our constrained optimized problem can be represented as:

The goal here is to minimize the f(x) in a way that the constraint g(x) is also taken care of. But there is a problem with the above equation - how to differentiate a formula with "s.t." part in it? Answer to this question is known as - Lagrange's Multiplier.

Instead of differentiating (or working with) the above equation, we will first transform it in the following form:

argmin
$$f(x) + \lambda g(x)$$

 $> \lambda$
 $> \lambda$

Now this equation doesn't have the "s.t." part in it hence this form is called "Unconstrained Problem".

This equation \bigcirc is considering only one constraint. What if we have multiple constraints?

angmin
$$f(x) + \lambda_1 g_1(0) + \lambda_2 g_2(x) + \dots + \lambda_n g_n(0)$$

In the above formula, λ_1 , I_2 , I_3 , ..., I_n are called **Lagrange's Multipliers**.

Now let's try to solve the **Example - 1** using this approach:

$$f(x) = x^2 - 3\alpha - 3$$
, $g(x) = x^2 - 2x - 3$

To minimize this, we need to calculate its gradient:

$$\nabla h = \begin{bmatrix} \frac{\partial}{\partial x} h(x,\lambda) \\ \frac{\partial}{\partial \lambda} h(x,\lambda) \end{bmatrix} = \begin{bmatrix} 2x-3+2\lambda x - 2\lambda \\ x^2 - 2x - 3 \end{bmatrix}$$

At the minima, the differentiation (gradient) is O.

$$\therefore \nabla h = 0$$

$$\frac{1}{2} \cdot 2x - 3 + 2x - 2x = 0$$

$$\frac{1}{2} \cdot 2x - 3 = 0$$

By pulting x=-1 In x=3 into A: x(x-3)+1(x-3)=0 |x=-1| OR |x=3|

$$2(-1) - 3 + 2\lambda (-1) - 2\lambda = 0$$

$$\begin{array}{ccc} \cdot \cdot \cdot & -2 - 3 - 2\lambda & -2\lambda & = 0 \\ \cdot \cdot & -4\lambda & = 5 \end{array} \Rightarrow \begin{array}{c} \lambda & = -\frac{5}{4} \end{array}$$

For
$$\chi=3$$
: $2(3)-3+2\lambda(3)-2\lambda=0$
 $\therefore 3+6\lambda-2\lambda=0$
 $\lambda=\frac{-3}{4}$

: The two minima maxima are
$$\left(-1, -\frac{5}{4}\right) + \left(3, -\frac{3}{4}\right)$$

To identify the minimum of these two:
$$f(x) + \lambda g(0) \quad \text{For} \quad \chi = -1 \quad \text{In} \quad \lambda = \left(\frac{-5}{4}\right):$$

$$2^{2}-3x-3+\lambda x^{2}-2\lambda x-3\lambda = 1+\beta-\beta-\frac{5}{4}-\frac{2x5}{4}+\frac{3x5}{4}$$

$$=\frac{4-5-10+15}{4}=\frac{4}{4}=1$$

$$=\frac{4-5-10+15}{4}=\frac{4}{4}=1$$

$$=\frac{4-5-10+15}{4}=\frac{4}{4}=1$$

$$9'-9'-3+\frac{-3}{4}x^{9}-2x\frac{(-3)}{4}x^{3}-3(\frac{-3}{4})=\frac{-12-27+18+9}{4}$$

$$=\frac{-12}{4}=-3$$

$$x=3$$

$$x=3$$

$$x=\frac{-3}{4}$$

:. Our minim is at
$$\left(3, -\frac{3}{4}\right)$$
 ____ solution

Now let's apply this approach to minimize the loss function of our G.D.

$$f(x)=L=-\underbrace{\sum \overrightarrow{wT}.\overrightarrow{x}+\omega_0}_{||\overrightarrow{w}||} \cdot J_i \quad \text{s.t.} \quad ||\overrightarrow{w}||=1$$

$$A+ \text{ this place it most be}$$
of the form $J(x)=0$

$$\therefore \nabla h = \begin{bmatrix} \frac{\partial}{\partial \vec{w}} & h(\vec{w}, \lambda) \end{bmatrix} \rightarrow component - 1$$

$$\frac{\partial}{\partial \lambda} & h(\vec{w}, \lambda) \end{bmatrix} \rightarrow component - 2$$

Before calculating these components, let's see 3 interesting hery Its:

$$\| \vec{w} \| = \sqrt{\omega_1^2 + \omega_2^2 + \dots + \omega_n^2}$$

$$\|\vec{\omega}\| = \sqrt{[\omega_1, \omega_2, --- \omega_n] \cdot \begin{bmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \omega_n \end{bmatrix}}$$

$$||\vec{\omega}|| = ||\vec{\omega}||$$

$$\frac{\partial}{\partial x} \overrightarrow{z} \cdot \overrightarrow{x} = 2\overrightarrow{x}$$

$$\frac{d}{dx}\sqrt{x} = \frac{d}{dx}x^{\frac{1}{2}}$$

$$= \frac{1}{2} \times \frac{1}{2} - 1$$

$$= \frac{1}{2} \times \frac{-1}{2}$$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1$$

$$=\frac{1}{2 x^{2}}$$

$$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$$

First component: $\frac{\partial}{\partial \vec{\omega}} h(\vec{\omega}, \lambda)$:

$$\frac{\partial}{\partial \vec{\omega}} h(x,\lambda) = -\sum \frac{\partial}{\partial \vec{\omega}} (\vec{\omega} \vec{r} \cdot \vec{x} + \omega_0) \cdot \vec{y} + \frac{\partial}{\partial \vec{\omega}} \lambda (||\vec{\omega}|| - 1)$$

~ I ->--->

Second Component:
$$\frac{\partial}{\partial \lambda} h(\lambda, \lambda)$$
:

$$= \frac{\partial}{\partial \lambda} \left[-2 \left(\vec{\omega} \cdot \vec{x} + \omega_0 \right) \cdot \vec{\beta}; + \lambda \left(||\vec{\omega}|| - 1 \right) \right]$$
$$= -20 + \left(||\vec{\omega}|| - 1 \right) \cdot 1$$

$$\frac{\partial}{\partial \lambda} h(\chi_i \lambda) = - \mathbb{Z} (\|\vec{\omega}\| - 1)$$