Medios fisicos (2)

Refracción de las ondas de radio en la ionósfera

Ing. Ruben J. Fusario

Refracción ionosférica Punto de reflexión Capa F2 Onda Onda reflejada incidente **TIERRA** Zonas Zona central adyacentes de de mayor menor densidac ionización de iones

Efecto de la curvatura de las ondas electromagnéticas

Ing. Ruben J. Fusario

Componentes de un sistema de comunicaciones por satélite

Aspectos generales

Un sistema de comunicaciones satelital está compuesto por los siguientes elementos fundamentales:

- Segmento espacial o satélite.
- Segmento terrestre o estaciones terrestres. Estos están compuestos por:
 - Sistemas de seguimiento, telemetría y control.
 - Otros sistemas auxiliares y complementarios.
- Estaciones de usuarios y telefuertes.

Características de algunos satélites del consorcio INTELSAT

ubicación en órbita geoestacionaria

	Satélite	Fecha de	Transpondedores			Duración	Capacidad	Peso
		lanzamiento	Nro.	Frec. (GHz)	Potencia (W)	(años)	Circuitos TV + Telefónicos	(kg)
	INTELSAT I	1965	2	6/4	6	1,5	240 o 1	38
	INTELSAT II	1966	1	6/4	18	3	240 o 1	87
	INTELSAT III	1968	2	6/4	11	5	1500 + 2	146
	INTELSAT IV	1971	12	6/4	6	7	4000 + 2	709
	INTELSAT IV A	1975	20	6/4	8	7	6000 + 2	862
	INTELSAT V	1980	21/6	6/4 14/12	8 20	7	12000 + 2	1012
	INTELSAT V. A.	1985		6/4 14/12		7	15000 + 2	1160
	INTELSAT VI	1989	50	6/4 14/12	5,5-16 8,5	14	120000 + 3	2000
	INTELSAT VII	1993		6/4 14/12		15	90000 + 3	1500

Ing. Ruben J. Fusario

Instalación de un sistema láser entre dos edificios

Distintos tipos de láser

El láser puede ser, según su diseño y construcción, de cuatro tipos diferentes:

- Gaseoso.
- Líquido.
- Sólido.
- Semiconductor.

..

Guía de Onda

Medio de transmisión especialmente apto para conducir señales de longitud de onda micrométricas.

Estas señales se utilizan en los sistemas de comunicaciones que trabajan a frecuencias elevadas, y se emplean en distancias cortas, principalmente para efectuar la conexión entre la antena y los equipos transmisor y receptor.

Onda en Ghz No por cobre

Causas:

- ·Radiación de energía
- Efecto pelicular (la energía solo circula por la superficie)

Solución: Guías de Onda

Características generales

- Construidas en tubos huecos
- Longitud de 5 a 15 metros
- Su sección permite la propagación de las ondas electromagnéticas en su interior
- Sufren atenuación: menor longitud
- Mayores pérdidas a menor λ
- Aire libre de humedad (la atenuación crece con el aumento de esta, solución: sobrepresión con aire seco, nitrógeno, o bien calentamiento electrico) 14

Materiales

λ entre 9 mm a 3 mm Cobre rojo o aluminio con tratamiento anódico

λ 10 a 25 cm

Al, Cu o latón

Dimensiones

Según la frecuencia

Atenuación en función de la frecuencia

Frecuencia Mhz	Longitud de onda (cm)	Dimensione s exteriores (cm)	Atenuación (dB/m)
26500 – 40000	0,9	0,71 x 0,355	0,51 – 0,58
8200 - 12400	3,2	2,28 – 1,03	0,10 - 0,15
2600 - 3950	10,0	7,22 – 3,49	0,02 -0,05
1120 - 1700	25,0	16,50 – 8,25	0,01 - 0,07

PROPAGACIÓN

A través de su dieléctrico (normalmente aire tratado)

Por medio de ondas electromagnéticas que se reflejan en las paredes de la guía (zig – zag)

Regidas por las leyes que describen el comportamiento de los campos eléctrico y magnético

Perfil transversal de una guía de onda rectangular

a y b dimensiones interiores (a debe ser del orden de la λ de la señal a transmitir)

c y d dimensiones exteriores

Ing. Ruben J. Fusario

Par Trenzado

		UTP		STP	
Categoría	BW (Mhz)	At (dB / 100mt)		At (dB / 100mt)	
1	Voz				
2	4 - 10				
3	10 - 16	9.7	13.1	3.2	4.4
4	16 - 20	8.9	10.0	4.3	4.9
5	20 - 100	9.3	22.0	5.3	12.3
R	OHM / 100mt	< 9.4		< 5.7	
Z	ОНМ	100 + 15 %		150 + 15 %	
С	nF / 100mt	< 5		<	0.1

PRUEBAS BÁSICAS DE LOS CABLES

Cable de Par Trenzado

Las corrientes circulan en sentido contrario creando campos electromagnéticos opuestos que se anulan. (DIAFONIA)

MICROONDAS

Definición y uso

Por sistema de comunicaciones por microondas se entiende:

Sistemas de telecomunicaciones que trabajan en la banda de **frecuencias ultraelevadas (UHF)**, y aún más altas, y utilizan un haz radioeléctrico como si fuera un rayo de luz para establecer un enlace punto a punto entre dos estaciones transreceptoras.

Distancias entre saltos de microondas

en función de la frecuencia de operación

Intervalo de frecuencias expresados en gigahertz	Longitud del salto expresados en kilómetros
1,5 a 2,5	60
4 a 6	50
7 a 8	45
11 a 13	25 a 35
15 a 20	10 a 20
30	5
40 a 60	2 a 0,5

Relación entre el método de modulación y el ancho de banda

Sict	Sistema de modulación	Ancho de banda necesario (MHz)				
		34 Mbps	68 Mbps 34 Mbps × 2	100 Mbps 34 Mbps × 3	140 Mbps 34 Mbps × 4	
2	PSK	34,4	68,8	103,2	139,3	
4	PSK	17,2	34,4	51,6	69,7	
8	PSK	11,5	22,9	34,4	46,4	
16	QAM	8,6	17,2	25,8	34,8	
64	QAM	5,7	11,5	17,2	23,2	

Rendimiento de los distintos modos de transmisión para señales de banda base a 140 Mbps

Método o	de modulación	Número de bits por baudio	Ancho de banda necesario		
2	PSK	1	140	MHz	
4	PSK	2	70	MHz	
8	PSK	3	47	MHz	
16	QAM	4	35	MHz	
32	QAM	5	28	MHz	
64	QAM	6	23	MHz	
128	QAM	7	20	MHz	
256	QAM	8	14	MHz	
512	QAM	9	10	MHz	