DAY-10

Nuclear

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\nuclear.csv")[0:500]
df

Out[2]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longitude
0	USA	Alamogordo	DOE	32.54	-105.57
1	USA	Hiroshima	DOE	34.23	132.27
2	USA	Nagasaki	DOE	32.45	129.52
3	USA	Bikini	DOE	11.35	165.20
4	USA	Bikini	DOE	11.35	165.20
495	USA	Nts	DOE	37.00	-116.00
496	USSR	Semi Kazakh	MTM	50.00	78.00
497	USA	Johnston Is	DOE	16.45	-169.32
498	USSR	Mtr Russ	DOE	48.00	46.00
499	USSR	Nz Russ	UGS	73.40	54.90

500 rows × 16 columns

In [3]: df.head(10)

Out[3]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longitude
0	USA	Alamogordo	DOE	32.54	-105.57
1	USA	Hiroshima	DOE	34.23	132,27
2	USA	Nagasaki	DOE	32.45	129.52
3	USA	Bikini	DOE	11.35	165.20
4	USA	Bikini	DOE	11.35	165.20
5	USA	Enewetak	DOE	11.30	162.15
6	USA	Enewetak	DOE	11.30	162.15
7	USA	Enewetak	DOE	11.30	162.15
8	USSR	Semi Kazakh	DOE	48.00	76.00
9	USA	Nts	DOE	37.00	-116.00
4.0	_				•

In [4]: df.describe()

Out[4]:

	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.Magnitude
count	500.000000	500.000000	500.000000	
mean	36.870452	-5.856688	0.156600	
std	23.508740	112.909903	0.799309	
min	-49.500000	-169.320000	0.000000	
25%	26.000000	-116.000000	0.000000	
50%	37.000000	51.950000	0.000000	
75%	50.000000	78.000000	0.000000	
max	75.100000	165.200000	4.900000	
4				•

```
In [5]: | df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 500 entries, 0 to 499
        Data columns (total 16 columns):
             Column
                                           Non-Null Count Dtype
             WEAPON SOURCE COUNTRY
                                                           object
         0
                                           500 non-null
             WEAPON DEPLOYMENT LOCATION
         1
                                           500 non-null
                                                           object
         2
             Data.Source
                                           500 non-null
                                                           object
                                                           float64
         3
            Location.Cordinates.Latitude
                                           500 non-null
                                                           float64
         4
            Location.Cordinates.Longitude 500 non-null
         5
             Data.Magnitude.Body
                                           500 non-null
                                                           float64
                                                          float64
            Data.Magnitude.Surface
                                           500 non-null
         7
             Location.Cordinates.Depth
                                           500 non-null
                                                           float64
         8
            Data.Yeild.Lower
                                           500 non-null
                                                           float64
            Data.Yeild.Upper
                                           500 non-null
                                                          float64
         10 Data.Purpose
                                           500 non-null
                                                           object
                                           500 non-null
                                                           object
         11 Data.Name
                                           500 non-null
                                                           object
         12 Data. Type
         13 Date.Day
                                           500 non-null
                                                           int64
         14 Date.Month
                                           500 non-null
                                                           int64
         15 Date.Year
                                           500 non-null
                                                           int64
        dtypes: float64(7), int64(3), object(6)
        memory usage: 62.6+ KB
In [6]:
       df.columns
Out[6]: Index(['WEAPON SOURCE COUNTRY', 'WEAPON DEPLOYMENT LOCATION', 'Data.Source',
               'Location.Cordinates.Latitude', 'Location.Cordinates.Longitude',
               'Data.Magnitude.Body', 'Data.Magnitude.Surface',
               'Location.Cordinates.Depth', 'Data.Yeild.Lower', 'Data.Yeild.Upper',
               'Data.Purpose', 'Data.Name', 'Data.Type', 'Date.Day', 'Date.Month',
               'Date.Year'],
              dtype='object')
In [7]: x=df[['Location.Cordinates.Latitude', 'Location.Cordinates.Longitude',
               'Data.Magnitude.Body', 'Data.Magnitude.Surface',
               y=df['Date.Year']
In [8]: |#to split my dataset into traning and test data
        from sklearn.model selection import train test split
        x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [9]: | from sklearn.linear model import LinearRegression
        lr = LinearRegression()
        lr.fit(x_train,y_train)
Out[9]: LinearRegression()
```

Ridge Regression

```
In [13]: from sklearn.linear_model import Ridge,Lasso
In [14]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[14]: Ridge(alpha=10)
In [15]: rr.score(x_test,y_test)
Out[15]: -0.0023464494652720713
```

Lasso Regression

```
la=Lasso(alpha=10)
In [16]:
         la.fit(x_train,y_train)
Out[16]: Lasso(alpha=10)
In [17]: la.score(x_test,y_test)
Out[17]: -0.08134692102745356
In [18]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[18]: ElasticNet()
In [19]: | print(en.intercept_)
         1956.4905355643978
In [20]: |print(en.coef_)
          [ 0.0298699 -0.00623519 0.
                                                 0.
                                                            -0.00810022 -0.00028627
                                    0.04594014]
           0.00038146 -0.
```

Evaluation Metrix

Model saving

```
In [27]: import pickle
In [28]: filename="predict"
  pickle.dump(lr,open(filename,'wb'))
In []:
```