Due: Nov. 03, 2021 (Wednesday)

Window Kernel Function

1. $h(t)=cos(2\pi t)$ is sampled with T=1/4 to get h[n]=h(nT), n=0,1,2,3,...,15. Let H_k be the DFT of h[n], please analytically derive the H_k based on Rectangular Window Kernel Function. Compare your theoretical results of H_k with the calculated results of H_k using DFT or FFT algorithm.

Leakage, and Frequency Resolution

- 2. Please first calculate and then re-plot the DTFT functions appeared in Figure 10.3 (a) to (e), page 823-824, in the book by A.V. Oppenheim and R.W. Schafer, 3rd Ed., 2010, *Example* 10.3, "Effect of Windowing on Fourier Analysis of Sinusoidal Functions"
- 3. Please first calculate and then re-plot the DFT and IDFT appeared in Figure 10.5 (a) to (f), page 828-829, in the book by A.V. Oppenheim and R.W. Schafer, 3rd Ed., 2010, *Example* 10.4, "Illustration of the Effect of Spectral Sampling"

Windowing

- 4. $h(t) = cos(2\pi *1.1) + 0.07cos(2\pi *2.9)$, sampling h(t) with T=0.1 and get h[n] = h(nT), n = 0, 1, 2, 3, ..., 31.
 - (a). Using a rectangular window to calculate the DFT of h[n], that is H_k . Plot the $|H_k|$ with respect to k (k= 0, 1, 2, ..., 31) and frequency f (Hz);
 - (b). Redo (a), but using a Hamming window, $w_{hm}[n]$, please plot h[n], $w_{hm}[n]$, and h[n] $w_{hm}[n]$ with respect to n, and the H_k with respect to h0, 1, 2, ..., 31) and frequency h1, h2, ..., 31)
 - (c). Redo (b), but using a Blackman window, $w_b[n]$,
 - (d). Please explain the difference in $/H_k/$ calculated from (a), (b), (c).
- 5. Signal $v(t) = \cos(2\pi f_1 t) + \cos(2\pi f_2 t)$ where $f_1 = 1$ kHz $f_2 = 1.01$ kHz. One decides to first sample the signal v(t) with a sampling frequency f_S and totally f_S and totally f_S sampled data points, { f_S | f_S |
- 6. Please verify your answers to Problem #5 by calculating the DTFT and DFT of related digital data.