Topic 02. Mechanics

ANSWERS

1. (a)
$$x(t) = \frac{At^3}{6} - \frac{Bt^4}{12}$$
, $v_x(t) = \frac{At^2}{2} - \frac{Bt^3}{3}$; (b) $v_{\text{max}} = \frac{A^3}{6B^2} \approx 39.1 \text{ m/s}$

2. (a)
$$0.625 \text{ m/s}^3$$
; (b) 107 m

3. (a)
$$x = v_0 t \left(1 - \frac{t}{2\tau}\right)$$
; $x = 0.24$, 0 and -4.0 m; (b) 1.1, 9.0 and 11 s;

(b) 1.1, 9.0 and
$$1\overline{1}$$
 s

(c)
$$s = \begin{cases} \left(1 - \frac{t}{2\tau}\right) v_0 t, & t \le \tau \\ \left[1 + \left(1 - \frac{t}{\tau}\right)^2\right] \frac{v_0 t}{2}, & t \ge \tau \end{cases}$$
; 24 and 34 cm

4. (a)
$$\vec{v}=\vec{c}(1-2\alpha t), \ \vec{a}=-2\alpha \vec{c}=\mathrm{const};$$
 (b) $\Delta t=\frac{1}{\alpha}, \ s=\frac{c}{2\alpha}$

(b)
$$\Delta t = \frac{1}{\alpha}$$
, $s = \frac{c}{2\alpha}$

5. (a)
$$\vec{v}(t) = v_x \hat{i} + v_y \hat{j}$$
, $\vec{r}(t) = x \hat{i} + y \hat{j}$
 $v_x = v_{0x} + \frac{\alpha t^3}{3} = (1.00 + 0.833t^3) \text{ m/s}$, $v_y = v_{0y} + \beta t - \frac{\gamma t^2}{2} = (7.00 + 9.00t - 0.700t^2) \text{ m/s}$
 $x = v_{0x}t + \frac{\alpha t^4}{12} = (1.00t + 0.208t^4) \text{ m}$, $y = v_{oy}t + \frac{\beta t^2}{2} - \frac{\gamma t^3}{6} = (7.00t + 4.50t^2 - 0.233t^3) \text{ m}$
(b) 341 m, (c) 3.85×10^4 m

6. (a)
$$x = \left(\frac{\alpha}{2v_0}\right) y^2;$$

6. (a)
$$x = \left(\frac{\alpha}{2v_0}\right) y^2$$
;
(b) $a = \alpha v_0, a_{\tau} = \frac{\alpha^2 y}{\sqrt{1 + \left(\frac{\alpha y}{v_0}\right)^2}}, a_n = \frac{\alpha v_0}{\sqrt{1 + \left(\frac{\alpha y}{v_0}\right)^2}}$

7. (a)
$$F = \frac{(k_1 - k_2)m_1m_2g\cos\alpha}{m_1 + m_2};$$
 (b)
$$\tan\alpha_{\min} = \frac{k_1m_1 + k_2m_2}{m_1 + m_2}$$

(b)
$$\tan \alpha_{\min} = \frac{k_1 m_1 + k_2 m_2}{m_1 + m_2}$$

8.
$$\tan \beta = k$$
; $T_{\min} = \frac{mg(\sin \alpha + k \cos \alpha)}{\sqrt{1 + k^2}}$

9.
$$W = \vec{F} \cdot (\vec{r}_2 - \vec{r}_1) = -17 \text{ J}$$

10.
$$W = \frac{3mg}{4\alpha}$$
; $\Delta U = \frac{mg}{2\alpha}$

11.
$$\vec{v} = -\vec{u} \ln \frac{m_0}{m}$$

12.
$$F = \sqrt{-\frac{2\alpha U}{\sin 2\theta}} = 2.4 \text{ N}$$

14.
$$\theta = \frac{\pi}{2} + \arcsin \frac{1}{n} = 120^{\circ}$$

15.
$$F_D = m\sqrt{g^2 + (\omega^2 r)^2 + (2v'\omega)^2} \approx 7.9 \text{ N}$$