2.10. Geometrical optics: Optical instruments

os15

Explain this magic!

Agenda:

- use reflection and refraction to study lenses and optical instruments
- introduces key concepts such as image formation, aberrations, and optical limitations

Lens shapes

- lenses have two surfaces which can be planar, convex or concave
- convex lenses are converging
- concave lenses are diverging

from wikipediaCC Attribution-ShareAlike 3.0 Unported

Ray tracing at a (thick) lens

sim - ray tracing thick lens

 when a ray enters air-to-lens and then lens-toair, it is refracted according to Snell's law

Ray tracing at a (thick) lens (cont')

os15

[left] from wikipedia by DrBob CC Attribution-ShareAlike
3.0 Unported [right] from wikipedia under CC AttributionShareAlike 4.0 International

Thin Lens Model: Key assumptions

- negligible lens thickness & single principal plane:
 - both refractions are occurring at a single plane at the center of the lens
- paraxial ray approximation
 - only rays close to and nearly parallel with the optical axis are considered
 - small-angle approximations applies: $sin(\theta) \approx \theta$, $tan(\theta) \approx \theta$, $cos(\theta) \approx 1$

Thin Lens Model: Advantages

- simplifies ray tracing and widely used in geometric optics
- focal length is the same on both sides in the thin lens approximation

from <u>wikipedia</u> under <u>CC Attribution-ShareAlike 4.0</u>
<u>International</u>

Lensmaker's equation

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

- n is the index of refraction
- R₁ and R₂ are the radii of curvature (positive for convex and negative for concave)
- only valid for thin lenses

from <u>wikipedia</u> under <u>CC Attribution-ShareAlike 4.0</u>
<u>International</u>

Thin lens model: Converging / convex lens

os01

- parallel rays converge at **focal point**, i.e image point for an object a infinite distance
- focal plane: perpendicular to axis, through focal point

from <u>wikipedia by DrBob</u> <u>CC Attribution-ShareAlike 3.0</u>
<u>Unported</u>

Thin lens model: Diverging / concave lens

os01

 parallel rays appear to diverge from a virtual focal point

from <u>wikipedia by DrBob</u> <u>CC Attribution-ShareAlike 3.0</u>
<u>Unported</u>

Image formation at thin lenses via ray tracing

sim - image formation thin lens

- to locate image, trace these three principal rays:
 - parallel ray: travels parallel to the principal axis; becomes focal point ray after refraction
 - focal point ray: passes through the focal point; becomes parallel ray after refraction
 - central (optical center) ray: goes through the lens center; remains central ray

Image formation at converging / convex lens

os08

- parallel ray refracts through the focal point on the opposite side
- real for $d_0 > f$ and virtual image for $d_o < f$

[left] from wikipedia by DrBob CC Attribution-ShareAlike
3.0 Unported [right] from wikipedia by DrBob CC
Attribution-ShareAlike 3.0 Unported

Image formation at diverging / concave lens

os08

- refracted rays appear to diverge from the focal point on the same side as the object
- virtual image

from wikipedia by DrBob CC Attribution-ShareAlike 3.0
Unported

Image formation summary

	Real Image	Virtual Image
lmage	Convex lens:	Convex lens:
enlarged	$f < d_o < 2f$	$d_o \le f$
Image	Convex lens:	Concave
diminished	$d_o > 2f$	lens: always

from wikipediaCC Attribution-ShareAlike 3.0 Unported

Thin lens equation: Definitions

we define:

- object distance: do (from lens to object)
- image distance: d_i (from lens to image)
- object height: ho
- image height: hi
- → these are all measured along the **principal axis**

Thin lens equation: Derivation

- consider a ray through the **optical center** (undeviated, straight line).
- using similar triangles:

$$\frac{h_i}{h_o} = \frac{d_i}{d_o}$$

[left] from wikipedia by DrBob CC Attribution-ShareAlike 3.0 Unported

Thin lens equation: Derivation (cont')

- now analyze the geometry of rays through the focal point.
- for a convex/converging lens, similar triangles give:

$$\frac{h_i}{h_o} = \frac{d_i - f}{f}$$

using both equations:

$$\frac{d_i - f}{f} = \frac{d_i}{d_o}$$

• solving for f:

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

virtually the same as for mirrors

[left] from wikipedia by DrBob CC Attribution-ShareAlike 3.0 Unported

Sign conventions for thin lenses

- $h_o > 0$ (always)
- $h_i > 0$ if image is **upright**, $h_i < 0$ if **inverted**
- d_o > 0 for real objects (light comes from that side)
- $d_i > 0$ for **real images** (on opposite side of lens)
- $d_i < 0$ for **virtual images** (same side as object)
- f > 0 for **converging** lenses
- f < 0 for **diverging** lenses

Lateral magnification

defined as:

$$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

- $|\mathbf{m}| > 1$: image is **enlarged**
- |m| < 1: image is **diminished**
- m > 0: upright
- m < 0: inverted

FYI: same formula as for mirrors

Combining lenses

to analyze a system of two lenses:

- step 1: First lens
 - use thin lens equation \rightarrow find d_{i1}
 - compute magnification:

$$\mathbf{m}_1 = -\frac{\mathbf{d}_{i1}}{\mathbf{d}_{o1}}$$

- step 2: Second lens
 - use image from lens 1 as object
 - d_{o2} = separation d_{i1}
 - use thin lens equation \rightarrow find d_{i2}
 - $\blacksquare \quad m_2 = -\frac{d_{i2}}{d_{o2}}$

Total effect of two lenses

• effective magnification:

$$m_{eff} = m_1 \times m_2$$

- important: watch out for sign conventions
 - negative d_i: virtual image
 - positive d_i: real image
 - same applies for object distances and focal lengths
- → consider a ray diagram to double-check your reasoning!

The Human eye

os19 - the eye

- eye works like a biological camera, with fixed image distance and dynamic focusing
- eye accommodates by adjusting the lens curvature
- key components:
 - Cornea (n \approx 1.376): primary refraction
 - Aqueous humor (n \approx 1.336): fluid behind cornea
 - **Lens** (n \approx 1.385–1.405): changes shape to focus
 - Vitreous humor (n \approx 1.337): gel-like interior
 - Iris and pupil: control light entry
 - Retina and fovea: light detection; fovea = sharp vision

[left] from <u>wikipedia</u> under <u>CC Attribution-ShareAlike 3.0</u> <u>Unported</u> [right] from <u>wikipedia</u> under <u>CC0 1.0 Universal</u>

Vision errors & correction

os01 - Haftoptik with Auge

- nearsightedness (Myopia)
 - image forms in front of the retina
 - corrected with diverging (-) lenses
- farsightedness (Hyperopia)
 - image forms behind the retina
 - corrected with converging (+) lenses

from <u>wikipedia</u> under <u>CC Attribution-ShareAlike 4.0</u>
<u>International</u>

Introduction to aberration

os10 - Linsenfehler

- **abberration** = image imperfections caused by deviations from ideal lens behavior
- arises when the small-angle (paraxial)
 approximation breaks down
- real lenses:
 - have non-negligible thickness
 - exhibit material and surface imperfections
- results in **blurring**, **distortion**, or **color fringing**

Types of aberrations

- monochromatic aberrations (single wavelength):
 - caused by geometry, not color
 - include:
 - spherical aberration: rays far from axis focus incorrectly
 - coma: off-axis points appear cometshaped
 - astigmatism: radial and tangential rays focus differently
 - field curvature: image forms on a curved surface
 - distortion: magnification varies with position (barrel/pincushion)
- chromatic aberration:
 - caused by **dispersion**: refractive index varies with wavelength
 - different colors focus at different points → results in color fringing,

especially at edges

Spherical aberration

- rays farther from the optical axis focus closer to the lens than paraxial rays
- leads to image blur or a circle of least confusion instead of a sharp point
- common in **spherical lenses and mirrors**
- reduced by:
 - using aspherical surfaces
 - limiting aperture size (e.g. with a stop)
 - combining lenses in a compound system

from wikipedia by Mglg, public domain

Coma

- off-axis points appear as asymmetrical,
 comet-shaped blurs
- caused by off-axis rays being refracted differently depending on their height in the lens
- image blur increases with distance from the optical axis
- reduced by:
 - using aspherical lenses
 - optimizing lens shape in compound systems

from <u>wikipedia</u> under <u>CC Attribution-ShareAlike 3.0</u> <u>Unported</u>

Astigmatism

- occurs when a lens or mirror has different
 focal lengths in two perpendicular planes
- a point object appears as two short, perpendicular line segments (radial and tangential foci)
- corrected using cylindrical lenses or specially designed compound lenses

[left] from wikipedia by Sebastian Kosch under CC
Attribution-ShareAlike 3.0 Unported [right] from wikipedia, public domain

Curvature of field

- cause: geometry of lenses; even if the lens focuses rays properly, the image forms on a curved surface
- the image of a flat object forms on a curved surface instead of a flat image plane
- leads to a sharp center with blurred edges, or vice versa
- corrected using field-flattening lenses or optimized multi-element designs

from <u>wikipedia</u> under <u>CC Attribution-ShareAlike 3.0</u>
<u>Unported</u>

Distortion

- cause: different magnification at different parts of the image field, often due to lens design
- shape of the image to differ from the shape of the object
- barrel distortion: straight lines bow outward
- pincushion distortion: straight lines bow inward
- reduced using symmetric compound lenses or software correction

from wikipedia under CC Attribution-ShareAlike 3.0
Unported

Chromatic aberration

- caused by dispersion refractive index depends on wavelength
- different colors focus at different points along the optical axis
- leads to color fringing, especially at highcontrast edges
- reduced using achromatic doublets, lowdispersion glass, or digital correction

[left] from wikipedia by DrBob under CC Attribution-ShareAlike 3.0 Unported [right] from wikipedia.jpg) under CC Attribution-ShareAlike 3.0 Unported

Aberrations in mirrors

- spherical aberration in mirrors occurs for the same geometric reasons as in lenses
- parabolic mirrors can correct spherical aberration for objects at infinity
- mirrors do not exhibit chromatic aberration because reflection is independent of wavelength

from <u>wikipedia</u>.svg) under <u>CC Attribution-ShareAlike 3.0</u>
<u>Unported</u>

Summary of aberrations

Aberration	Cause	Effect	Correcti Method
Spherical Aberration	Spherical shape of lens/mirror causing varying focal points.	Blurred image, circle of least confusion.	Asphe lenses apertustops, compulenses
Coma	Off-axis rays focusing at different points.	Comet- shaped blur for off-axis points.	Asphe lenses compositions satisfy Abbe conditions
Astigmatism	Different focal lengths in perpendicular planes for off-axis points.	Point objects imaged as lines.	Comb of lens cylind lenses

Aberration	Cause	Effect	Correcti Method
Curvature of Field	Focal points lie on a curved surface.	Image of a flat object is curved, edges may be blurred.	Field- flatter lenses specif design
Distortion	Non-uniform magnification across the field of view.	Straight lines appear curved (barrel or pincushion).	Symm compositions lenses softwat correc
Chromatic Aberration	Dispersion (variation of refractive index with wavelength).	Colored fringes in the image.	Achro doubl apoch lenses