Data = Tourist trip data contains the number of personal domestic trips by month of departure for the European Union (28 countries). Trip for one night or over.

VISUALISATION

- Seasonal data
- Non-stationary data

MODEL ESTIMATION

ETS Model

Model tried are ("AAA", "AAM", "AMA", "AMM","AAA", "AAM", "AMM"). with and without damping. All relevant models performance are compared together with other models in the end.

AICc	MASE_train	MASE_test	RMSE_train	RMSE_test	Damping
AAA 1257.681	0.5487212	0.7909307	2499477	3414669	0
AAM 1255.242	0.5178507	0.6968166	2416203	2926220	0
AMA 1257.497	0.5477295	0.7950889	2493087	3484329	0
AMM 1255.957	0.5509747	0.7290236	2440333	3087198	0
AAA 1265.449	0.5459671	0.7992570	2483304	3422145	1
AAM 1262.535	0.5049619	0.7363699	2384784	2967937	1
AMA 1265.426	0.5454732	0.7993224	2482505	3433198	1
AMM 1262.172	0.5102791	0.7201045	2372800	3002103	1

ARIMA model

Stabilizing data: Seasonal diff = 1 & Non-Seasonal diff = 0.

Based on ACF and PACF, a first model could be ARIMA (1,0,2) (0,1,2) /12. Also testing other combination for p and q at D = 1.

MODEL SELECTION

			MASE	MASE				
SR	MODEL	Aicc	TRAIN	TEST	RMSE TRAIN	RMSE TEST	Damping	D
1	AAM	1255.242	0.518	0.697	2416203.000	2926220.000	0	
2	AMM	1262.172	0.510	0.720	2372800.000	3002103.000	1	
3	order=c(1,0,1) seasonal=c(0,1,1)	798.733	0.376	0.671	2041128.000	2686365.000		1
4	order=c(1,0,1) seasonal=c(0,1,3)	803.434	0.261	0.930	1438862.000	3914141.000		1

Best model of all considered model is **ARIMA (1,0,1) (0,1,1) /12.** Also Succeeded in LjungBox Test.

Final Forecast with best model

Forecasts from ARIMA(1,0,1)(0,1,1)[12]

