$\lim_{n \to \infty} \Pr\left[S_n > \lfloor n/2 \rfloor\right] = 1.$

Now, the expected value (i.e., mean μ) of the voter random variables X_i is: $\mathbb{E}[X_i] = 1 \cdot p + 0 \cdot (1 - p)$

$$\mathbb{E}[X_i] = 1 \cdot p + 0 \cdot (1 - p)$$

$$= p,$$

We need to show that:

sired conclusion.

and the Weak Law of Large Numbers gives us that, for any $\varepsilon > 0$:

 $\lim_{n \to \infty} \Pr\left[\left| \frac{S_n}{n} - p \right| > \varepsilon \right] = 0.$

Choosing ε appropriately and massaging this expression we obtain the de-