Отчет о выполнении лабораторной работы 2.4.1

Определение теплоты испарения жидкости

Выполнил: Тимонин Андрей

Группа: Б01-208

Дата: 15.05.2023

1 Введение

Цели работы:

- 1. Измерение давления насыщенного пара жидкости при разной температуре;
- 2. Вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиса.

В работе используются:

- 1. Герметический сосуд, заполненный исследуемой жидкостью;
- 2. Отсчетный микроскоп;
- 3. Термостат;

2 Теоретическая справка

2.1 Уравнение Клапейрона-Клаузиуса

Если считать что насыщенные пары подчиняются закона Менделеева-Клапейрона, и пренебречь удельным объемом жидкости относительно удельного объема паров то из уравнения Клапейрона-Клаузиуса получаем формулу для удельной теплоты испарения

$$L = \frac{RT^2}{\mu P} \frac{dP}{dT} = -\frac{R}{\mu} \frac{d(\ln P)}{d(1/T)} \tag{1}$$

Как видим, если измерить зависимость давления насыщенных паров от температуры по формуле (1) можно получить удельную теплоту испарения.

3 Экспериментальная установка

Рис. 1 Схема установки для определения теплоты испарения

С помощью термостата A выставляется желаемая температура, и при помощи микроскопа С измеряется положение менисков ртути в U-образном манометре 15. Давление насыщенных паров считается как разность высот менисков ртути.

4 Экспериментальные данные

$N_{\overline{0}}$	h_1 , MM	h_2 , MM	T, °C
1	0.00 ± 0.01	24.20 ± 0.01	24.04 ± 0.01
2	-1.38 ± 0.01	25.46 ± 0.01	26.09 ± 0.01
3	-2.18 ± 0.01	27.20 ± 0.01	28.10 ± 0.01
4	-4.33 ± 0.01	28.48 ± 0.01	30.13 ± 0.01
5	-6.33 ± 0.01	30.49 ± 0.01	32.13 ± 0.01
6	-8.27 ± 0.01	33.08 ± 0.01	34.12 ± 0.01
7	-10.48 ± 0.01	35.43 ± 0.01	36.09 ± 0.01
8	-13.88 ± 0.01	37.95 ± 0.01	38.14 ± 0.01
9	-15.66 ± 0.01	40.62 ± 0.01	40.07 ± 0.01
10	-18.15 ± 0.01	43.78 ± 0.01	42.12 ± 0.01
11	-21.27 ± 0.01	47.29 ± 0.01	44.13 ± 0.01

Таблица 1. Результаты измерений при нагревании жидкости

$N_{\overline{0}}$	h_1 , мм	h_2 , мм	T, °C
1	-26.52 ± 0.01	50.62 ± 0.01	46.06 ± 0.01
2	-21.44 ± 0.01	46.69 ± 0.01	44.13 ± 0.01
3	-18.06 ± 0.01	43.45 ± 0.01	41.97 ± 0.01
4	-15.43 ± 0.01	40.80 ± 0.01	39.95 ± 0.01
5	-13.13 ± 0.01	38.34 ± 0.01	37.97 ± 0.01
6	-10.88 ± 0.01	35.67 ± 0.01	35.96 ± 0.01
7	-8.57 ± 0.01	33.03 ± 0.01	33.94 ± 0.01
8	-6.54 ± 0.01	31.18 ± 0.01	31.95 ± 0.01
9	-4.80 ± 0.01	29.62 ± 0.01	30.10 ± 0.01
10	-3.30 ± 0.01	28.06 ± 0.01	28.26 ± 0.01

Таблица 2. Результаты измерений при охлаждении жидкости

График 1. Зависимость P от T в эксперименте

График 2. Зависимость lnP от $\frac{1}{t}$ в эксперименте

4.1 Анализ графика 2

Коэффициенты наклона графиков:

- Шрихов. график $k_1 = -4982.98$ (Нагревание)
- Сплошной график $k_2 = -4792.53$ (Охлаждение)

Погрешности коэффициентов наклона графиков из МНК:

- Шрихов. график $\sigma_{k_1} = 64.36$ (Нагревание)
- Сплошной график $\sigma_{k_2} = 60.41$ (Охлаждение)

Отсюда по формуле имеем:

$$L_1 = -8.31 \cdot -4982.98 = 41408.56 \simeq 41 \frac{\text{кДж}}{\text{моль}} (\text{Нагревание})$$
 (2)

$$L_2 = -8.31 \cdot -4792.53 = 39825.92 \simeq 40 \frac{\text{кДж}}{\text{моль}} (Охлаждение)$$
 (3)

Итого имеем из графика 2:

$$L_1 = 41409 \pm 535 \frac{\text{Дж}}{\text{моль}} (\text{Нагревание})$$
 (4)

$$L_2 = 39821 \pm 502 \frac{\text{Дж}}{\text{модь}} (\text{Охлаждение})$$
 (5)

4.2 Анализ графика 1

Найдем теплоту испарения жидкости из первого графика используя формулу:

$$L = \frac{R \cdot T^2}{P} \cdot \frac{dP}{dT} \tag{6}$$

Уравнение касательной к графику функции:

$$y = f(x_0) + f'(x_0) \cdot (x - x_0) \tag{7}$$

Тогда для первого графика для нагревания при $T=307.12~\mathrm{K}$ имеем:

$$k_1 = 0.0532 \cdot e^{-7.7412 + 0.0532 \cdot 307.12} = 288.27$$
(Нагревание) (8)

Для охлаждения при T = 308.96 K:

$$k_2 = 0.0505 \cdot e^{-6.8835 + 0.0505 \cdot 308.96} = 308.95 \text{(Охлаждение)}$$
 (9)

Итого имеем из графика 1:

$$L_1 = 288.27 \cdot \frac{8.31 \cdot 307.12^2}{5515.13} = 40969.10 \frac{\text{Дж}}{\text{моль}} (\text{Нагревание})$$
 (10)

$$L_2 = 308.95 \cdot \frac{8.31 \cdot 308.95^5}{6205.69} = 39488.95 \frac{\text{Дж}}{\text{моль}} (Охлаждение)$$
 (11)

5 Выводы

- Оба графика дают приблизительно одни и те же значения теплоты испарения исследуемой жидкости;
- Полученные результаты из графика 2 согласуются с табличным значением 40 $\frac{\kappa \mathcal{A} \mathbf{ж}}{\text{моль}}$;
- Полученные погрешности коэффициентов наклона 2 графика не превышают 3% ($\frac{535}{41409}=0.0129\simeq 1.3\%$);