浓缩就是精华--SIGAI机器学习蓝宝书

原创: AI学习与实践平台

横屏观看哟

浓缩就是精华-SIGAI机器

学习蓝宝书

使用动

 $(\mathbf{m}_{t})_{i} = \beta_{1} (\mathbf{m}_{t-1})_{i} + (1 - \beta_{1}) (\mathbf{g}_{t})_{i}$ $(\mathbf{v}_{t})_{i} = \beta_{2} (\mathbf{v}_{t-1})_{i} + (1 - \beta_{2}) (\mathbf{g}_{t})_{i}^{2}$ $(\mathbf{x}_{t+1})_{i} = (\mathbf{x}_{t})_{i} - \alpha \frac{\sqrt{1 - (\beta_{2})_{t}^{t}}}{1 - (\beta_{1})_{i}^{t}} \frac{(\mathbf{m}_{t})_{i}}{\sqrt{(\mathbf{v}_{t})_{i}} + \varepsilon}$

特征分量

311/4

$$F(\mathbf{x}) = \sum_{i=1}^{T} \alpha_{i} f_{i}(\mathbf{x}) \leftarrow$$

弱分类器权重 弱分类器

> $\min_{\beta,f} \sum_{i=1}^{r} \exp(-1)^{i}$ AdaBoost = /

迭代求解,每

 $\min_{\beta,f} \sum_{i=1}^{r} w_i^{j-1} ex$ 分阶段优化,

样本权重初始化,所有样本权重均为1/1循环,依次训练每个弱分类器 $f_i(\mathbf{x})$,并计算它对训练样本集的错误率 e_i 计算弱分类器权重:

$$\alpha_i = \frac{1}{2} \log \left(\left(1 - e_i \right) / e_i \right)$$

更新所有样本的权重:

$$w_i^t = w_i^{t-1} \exp(-y_i \alpha_i f_t(\mathbf{x}_i)) / Z_t$$

正确分类错分类的

弱分类器

结束循环
得到强分类器:
$$\operatorname{sgn}(F(\mathbf{x})) = \operatorname{sgn}\left(\sum_{i=1}^{T} \alpha_i f_i(\mathbf{x})\right)$$

义加法模型+指数损失函数

$$V_i\left(F_{j-1}(\mathbf{x}_i) + \beta f(\mathbf{x}_i)\right)$$

次确定一个弱分类器及其权重

 $p\left(-\beta y_{i}f\left(\mathbf{x}_{i}\right)\right)$

先优化弱分类器, 然后确定其权重

}权重是错误率的减函数

的样本权重会增加,]样本权重会减小

 $\operatorname{sgn}\left(\mathbf{w}^{\mathrm{T}}\mathbf{x}+b\right)$

1.最大化分类间隔

满足Slater条件拉格朗日对偶

核映射与核函数

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j - \sum_{k=1}^{l} \alpha_k$$

$$0 \le \alpha_i \le C$$

$$\sum_{j=1}^{l} \alpha_j y_j = 0$$

凸优化问题

$$\operatorname{sgn}\left(\sum_{i=1}^{L}\alpha_{i}y_{i}\mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}+b\right)$$

sgn

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j K$$
$$0 \le \alpha_i \le C$$

$$\sum_{j=1}^{l} \alpha_j y_j = 0$$

凸优化问题

$$\operatorname{sgn}\left(\sum_{i=1}^{l} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}\right) + b\right)$$

子问题也是凸优化,求公式解,二元二次函数极值 $f(\alpha_i,\alpha_j) = \frac{1}{2} K_{ii} \alpha_i^2 + \frac{1}{2} K_{ji} \alpha_j^2 + s K_{ij} \alpha_i \alpha_j + y_i \nu_i \alpha_j - \alpha_i - \alpha_j + c$

$$0 \le \alpha_i \le C$$

$$0 \le \alpha_j \le C$$

$$y_i \alpha_i + y_j \alpha_j = \xi$$

 $\left(\mathbf{x}_{i}^{\mathrm{T}}\mathbf{x}_{j}\right) - \sum_{k=1}^{J} \alpha_{k}$

优化变量的选择-KKT条件 $\alpha_i = 0 \Leftrightarrow y_i g(x_i) \ge 1$

 $0 < \alpha_i < C \Leftrightarrow y_i g(\mathbf{x}_i) = 1$

 $\alpha_i = C \Leftrightarrow y_i g(x_i) \le 1$

$$g(\mathbf{x}_{i}) = \sum_{j=1}^{l} \alpha_{j} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) + b$$

正向传成的变

8

播时,从输入层开始,逐层向后计算,每个层完 换为:

$$\mathbf{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}$$

$$\mathbf{x}^{(l)} = f(\mathbf{u}^{(l)})$$

$$= \nabla_{\mathbf{u}^{(l)}} L = \begin{cases} \left(\mathbf{x}^{(l)} - \mathbf{y}\right) \odot f'\left(\mathbf{u}^{(l)}\right) & l = n_l \\ \left(\mathbf{W}^{(l+1)}\right)^{\mathrm{T}} \left(\delta^{(l+1)}\right) \odot f'\left(\mathbf{u}^{(l)}\right) & l \neq n_l \end{cases}$$

根据误差项可以计算出对权重,偏置的梯度值,然后用梯度下降法更新: $\nabla_{\mathbf{x}^{(l)}} L = \delta^{(l)} \left(\mathbf{x}^{(l-1)}\right)^{\mathrm{T}}$

$$\nabla_{\mathbf{w}^{(l)}} L = \delta^{(l)} \left(\mathbf{x}^{(l-1)} \right)^{\mathrm{T}}$$
$$\nabla_{\mathbf{b}^{(l)}} L = \delta^{(l)}$$

正向传播
$$x_{ij}^{(l)} = \sum_{p=1}^{s} \sum_{q=1}^{s} x_{i+p-1,j+q-1}^{(l-1)} \times k_{pq}^{(l)} + b^{(l)} \quad \mathbf{x}^{(l)} = f\left(\mathbf{x}^{(l-1)}\right) \qquad \mathbf{X}^{(l)} = \operatorname{down}\left(\mathbf{X}^{(l-1)}\right) \qquad \mathbf{u}^{(l)} = \mathbf{W}^{(l)}$$

$$x_{ij} = \sum_{p=1}^{N} \sum_{q=1}^{N} \sum_{i+p-1, j+q-1}^{N} \sum_{i} \sum_{q=1}^{N} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{$$

反向传播时,如果本层有参数,则根据从后一层传入的误差项计算损失函数对本层参数的梯度值 然后根据从后一层传入的误差项计算本层的误差项,并传播到前一层 后层传入的误差项,是损失函数对本层输出值的梯度值;本层的误差项,是损失函数对本层输入值的梯度 值

反向传播

 $\delta^{(l-1)} = \delta^{(l)} * rot180 (K)$

 $\delta^{(l-1)} = \delta^{(l)} \odot f'\left(\mathbf{x}^{(l-1)}\right) \quad \delta^{(l-1)} = \mathrm{up}\left(\delta^{(l)}\right)$

 $\delta^{(l-1)} = (1)$

 $\nabla_{\mathbf{b}^{(l)}} L = \delta$

 $\nabla_{\mathbf{w}^{(l)}} L = c$

 $\nabla_{\mathbf{K}^{(l)}} L = \operatorname{conv}\left(\mathbf{X}^{(l-1)}, \boldsymbol{\delta}^{(l)}\right)$

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})} \left[\log D(\mathbf{x}) \right]$

判別模型要正确[即真实样本要被] 器生成的样本尽] 最大化,这意味。

生成器要让它生J即 $\log(1-D(G(z))$ 接近于1

Ш

输出值为[0,1]内的 实数,表示一个样 是真实样本的概率

相等

$$\Big] + \mathbf{E}_{z-\rho_{z}(z)} \Big[\log \Big(1 - D \Big(G \Big(z \Big) \Big) \Big) \Big]$$

的区分真实样本与生成器生成的样本,则定为正样本, $\log D(x)$ 要最大化;生成量被判定为负样本,即 $\log(1-D(G(z)))$ 着D(G(z))最小化即接近于0

成的模型被判定为正样本的概率最大化,))最小化,这意味着 D(G(z))最大化即

1.用参数的当前估计值 构造下界函数

科普类

【获取码】SIGAI0413

机器学习——波澜壮阔四十年

【获取码】SIGAI0620

理解计算: 从√2到AlphaGo ——第1季 从√2谈起

【获取码】SIGAI0704

理解计算:从√2到AlphaGo ——第2季 神经计算的历史背景

【获取码】SIGAI0713

理解计算:从√2到AlphaGo ——第3季 神经计算的数学模型

【获取码】SIGAI0815

理解计算:从√2到AlphaGo ——第4季 凛冬将至

数学类 【获取码】SIGAI0417 学好机器学习需要哪些数学知识 【获取码】SIGAI0511 理解梯度下降法 【获取码】SIGAI0518 理解凸优化 【获取码】SIGAI0531 理解牛顿法 机器学习类 【获取码】SIGAI0428 用一张图理解SVM的脉络 【获取码】SIGAI0505 理解神经网络的激活函数 【获取码】SIGAI0522 【实验】理解SVM核函数和参数的作用 【获取码】SIGAI0601 【群话题精华】五月集锦一机器学习和深度学习中一些值得思考的问题 【获取码】SIGAI0602 大话AdaBoost算法 【获取码】SIGAI0606 理解主成分分析 (PCA) 【获取码】SIGAI0611

【获取码】SIGAI0613

理解决策树

用一句话总结常用的机器学习算法 【获取码】SIGAI0618 理解过拟合 【获取码】SIGAI0627 k近邻算法 【获取码】SIGAI0704 机器学习算法地图 【获取码】SIGAI0706 反向传播算法推导—全连接神经网络 【获取码】SIGAI0711 如何成为一名优秀的算法工程师 【获取码】SIGAI0723 流形学习概述 【获取码】SIGAI0725 随机森林概述 深度学习类 【获取码】SIGAI0426 卷积神经网络为什么能够称霸计算机视觉领域? 【获取码】SIGAI0508 深度卷积神经网络演化历史及结构改进脉络-40页长文全面解读 【获取码】SIGAI0515 循环神经网络综述一语音识别与自然语言处理的利器 【获取码】SIGAI0625 卷积神经网络的压缩与加速 【获取码】SIGAI0709 生成式对抗网络模型综述

【获取码】SIGAI0718

【获取码】SIGAI0723

基于深度负相关学习的人群计数方法

关于感受野的总结

【获取码】SIGAI0806

反向传播算法推导--卷积神经网络

【获取码】SIGAI0810

理解Spatial Transformer Networks

机器视觉类

【获取码】SIGAI0420

人脸识别算法演化史

【获取码】SIGAI0424

基于深度学习的目标检测算法综述

【获取码】SIGAI0503

人脸检测算法综述

【获取码】SIGAI0525

【SIGAI综述】行人检测算法

【获取码】SIGAI0604

FlowNet到FlowNet2.0: 基于卷积神经网络的光流预测算法

【获取码】SIGAI0608

人体骨骼关键点检测综述

【获取码】SIGAI0615

目标检测算法之YOLO

【获取码】SIGAI0622

场景文本检测——CTPN算法介绍

【获取码】SIGAI0629

自然场景文本检测识别技术综述

【获取码】SIGAI0716

人脸检测算法之S3FD

【获取码】SIGAI0727

基于内容的图像检索技术综述——传统经典方法

【获取码】SIGAI0817

基于内容的图像检索技术综述——CNN方法

自然语言处理

【获取码】SIGAI0803

基于深度神经网络的自动问答概述

【获取码】SIGAI0820

文本表示简介

工业应用类

【获取码】SIGAI0529

机器学习在自动驾驶中的应用-以百度阿波罗平台为例【上】

本文为SIGAI原创

如需转载, 欢迎发消息到本订号