Midterm Exam, Spring 2019

Time: 1 hour 15 minutes. Exam is closed book, notes and any other aids including electronic.

Name: ID:

Problem 1 20%

Find a regular expression corresponding to each of the following languages over $\Sigma = \{a, b\}$

- 1. (6%) The language consisting of all strings in which every third symbol is an a if they are longer than 3 symbols.
- 2. (7%) Given two strings $w, z \in \{a, b\}^*$. The recursive definition of L is

 $\Lambda, a \in L$ $\forall x \in L$ wx, and zx are in L

You can use w, and z in the regular expression. There is no need to rewrite them as concatenations of their letters.

3. (7%) The language of all strings that do not end with *ab*.

Problem 2 20%

For each statement below, decide whether it is true or false. If it is true, prove it. If it is not true, give a counterexample. If you prove it, you can use any theorem we saw in class. All items refer to languages over the alphabet $\{a,b\}$.

- (a) (5%) If L_1 can be accepted by an FA and neither L_2 nor $L_1 \cap L_2$ can, then $L_1 \cup L_2$ cannot.
- (b) (5%) If each of the languages $L_1, L_2, ...$ can be accepted by an FA, then $\bigcup_{n=1}^{\infty} L_n$ can.
- (c) (10%) If none of the languages $L_1, L_2, ...$ can be accepted by an FA, and $L_i \subseteq L_{i+1}$ for each i, then $\bigcup_{n=1}^{\infty} L_n$ cannot be accepted by an FA.

Problem 3 20%

- 1. (5%) Formulate the Pumping Lemma. (If you cannot formulate it rigorously, write its main ideas.)
- 2. (15%) Rigorously establish the regularity or nonregularity of the following language over alphabet $\{a\}$

 $L = \{a^n \mid n \text{ is a power of } 2\}$

Problem 4 15%

Construct FAs that accept

- 1. union
- 2. intersection
- 3. difference

of languages $L(M_1)$, and $\overline{L(M_2)}$.

Problem 5 25%

- 1. (15%) Eliminate nondeterminism in an NFA (with $\Sigma = \{a, b\}$) in two steps
 - a) (10%) Eliminate Λ -transitions.
 - b) (5%) Convert NFA with no Λ -transitions to FA.

2. (10%) For a string $x \in \Sigma^*$, define sort(x) to be the string obtained by rearranging the symbols of x such that all a's appear before b's, i.e., we sort the symbols of x in the lexicographic order. For a language L we define a language $sort(L) = \{sort(x) \mid x \in L\}$. Prove or disprove the following proposition "If L is regular then sort(L) is also regular".

Solution to Problem 1

1.
$$((a+b)(a+b)a)^*(\Lambda + a + b + (a+b)(a+b))$$

2.
$$(w + z)^*(a + \Lambda)$$

3.
$$\Lambda + b + (a+b)^* a + (a+b)^* bb$$

Solution to Problem 2

1. False. Example: $L_1 = \Sigma^*$, and $L_2 = PAL$

2. False. Every language is a one-element palindrome language. Their union is not regular.

3. False. Each L_i is PAL \cup {i first lexicographically ordered words from Σ^* }

Solution to Problem 3

1. See lecture notes for the formulation.

2. Expecting a contradiction, assume L is regular and let $n \ge 1$ be the PL integer. Define $s = a^{2^n}$ and let s = uvw, where $|uv| \le n$, and $|v| \ge 1$. Then, $uv^2w = a^{2^n+k}$ for some k s.t. |v| = k. Next string in L that is longer than s is $a^{2^{n+1}} = a^{2^n+2^n}$.

Since $|v| \ge 1$ but $k \le 2^n$, string $uv^2w \not\in L$, contradicting the PL, i.e., L is not regular.

Solution to Problem 4

Accepting states:

1. Union: AQ,AR, AS, BR, BS

2. Intersection: AR, AS

3. Difference: AQ

7

Solution to Problem 5

- 2. $(a+b)^*$
- 3. False. $L = (ab)^*$ is regular, and $sor t(L) = \{a^n b^n\}$ is not.