Trabajo práctico N° 4

Arquitectura y organización de computadoras

FECHA DE FINALIZACIÓN: 26 DE MAYO

Introducción a la computación Departamento de Ingeniería de Computadoras Facultad de Informática - Universidad Nacional del Comahue

Objetivo: Comprender la organización y el funcionamiento básico de una computadora simple. Se involucran conocimientos de los componentes hardware y sus interacciones para ejecutar instrucciones.

Recursos bibliográfico:

• Andrew S. Tanenbaum. Organización de computadoras: un enfoque estructurado. Cuarta edición, editorial Pearson Educación, 2000. ISBN 970-170-399-5.

Lectura obligatoria:

Apuntes de cátedra. Capitulo 5: Arquitectura y Organización de Computadoras. Disponible en PEDCO: https://pedco.uncoma.edu.ar/mod/url/view.php?id=203642

1. Modelo Computacional Binario Elemental (MCBE)

- 1. Con respecto a la memoria de la MCBE, indique:
 - a) Cantidad de celdas de memoria.
 - b) Tamaño de una celda de memoria en bits y bytes.
 - c) Tamaño total en bytes.
 - d) Dirección de la primera y de última celda de memoria.
- 2. Con respecto a la *CPU* de la *MCBE*, indique:
 - a) Registros y sus propósitos.
 - b) ¿Qué representación y tamaño (en bits) de números utilizan las instrucciones aritméticas?
 - c) ¿En qué dirección de memoria debe ubicarse la primera instrucción del programa?
 - d) ¿Qué efecto tendría ubicar los datos del programa a partir de la posición de memoria
 0 y las instrucciones a continuación?
- 3. Con respecto a la Entrada/Salida de la MCBE, indique:
 - a) ¿Para qué se utilizan las direcciones **30** y **31**? ¿Qué dispositivos podrían conectarse en esas direcciones?

- b) ¿Cuántas lecturas son necesarias si se quiere leer el dato: 0x01A397BCFF? Y si en lugar de lecturas fueran escrituras ¿cuántas son necesarias?
- 4. Suponga la máquina *MCBE* en su estado inicial con contenido de memoria indicado en cada inciso (el resto de la memoria no indicada puede tener cualquier valor). Describir el efecto de la ejecución de cada una de las instrucciones del programa, desde su inicio hasta su finalización.

<i>a</i>)	Dirección	Contenido binario
	0	0100 0100
	1	1000 0100
	2	0110 0100
	3	0010 0000
	4	0000 0011

Ejemplo de Resolución:

_	eda de la ucción		ación de la ucción		Ejecución de la instru	cción	
PC	IR	Cod. Op.	Operando	Acumulador	Memoria	Salida	PC
0000 0000	0100 0100	010	00100	0000 0011	-	-	0000 0001
0000 0001	1000 0100	100	00100	0000 0110	-	-	0000 0010
0000 0011	0110 0100	011	00100	-	$(00100) \leftarrow 0000\ 0110$	-	0000 0011
0000 0011	0010 0000	001	00000	-	-	-	-

	Dirección	Contenido binario
b)	0	0100 0110
	1	1010 1000
	2	0110 0110
	3	1010 0111
	4	1110 0000
	5	0010 0000
	6	0000 1101
	7	0000 1100
	8	0000 0010

	Dirección	Contenido binario
c)	0	01011110
	1	10000101
	2	10100110
	3	01111111
	4	00100000
	5	00010100
	6	00000101

	Dirección	Contenido binario
	0	01011110
	1	01100110
	2	10000110
d)	3	10100111
	4	01111111
	5	00100000
	6	00000000
	7	00000110

	Dirección	Contenido binario
	0	01011110
	1	10001011
	2	01101011
	3	01001001
	4	10101010
e)	5	01101001
	6	11100010
	7	11011001
	8	00100000
	9	00000100
	10	00000001
	11	00000000

	Dirección	Contenido binario
f)	0	01011110
	1	01100111
	2	01000110
	3	10000111
	4	01101000
	5	00100000
	6	00000101
	7	00000000
	8	00000000

Anexo

Descripción del Modelo Computacional Binario Elemental (MCBE)

Memoria: consta de 32 posiciones de 8 bits. Las direcciones 0 a 29 corresponden a direcciones que pueden ser escritas y leídas. La dirección 30 es de sólo lectura, permite leer datos del dispositivo de entrada, por ejemplo un teclado. La dirección 31 es de sólo escritura, permite escribir datos en el dispositivo de salida, por ejemplo en una pantalla o una impresora.

Registro PC: registro de 8 bits, contiene la dirección de la próxima instrucción a ejecutar. Se inicializa en cero.

Registro IR: registro 8 bits donde se guarda la instrucción que se esta decodificando o ejecutando.

Registro acumulador: registro de 8 bits donde se almacena un número entero representado en *complemento a 2*.

Instrucciones: de 8 bits, los 3 bits más significativos almacenan el código de operación, y los 5 menos significativos almacenan el operando.

Código de	Operando	Descripción
operación		
3 bits	5 bits	
010	dirección	$\mathbf{Memoria} \to \mathbf{Acumulador}$. Copia un byte desde la direc-
		ción de memoria al acumulador.
100	dirección	Acumulador o Memoria. Copia el contenido del acumu-
		lador en esa dirección de memoria.
100	dirección	Suma. El contenido de la dirección se suma al acumulador,
		y el resultado se almacena en el acumulador.
101	dirección	Resta. El contenido de la dirección se resta al acumulador,
		y el resultado se almacena en el acumulador.
110	desplazamiento	Salto incondicional. Se suma (en complemento a 2) el des-
		plazamiento al PC .
111	desplazamiento	Salto condicional. Si el acumulador es cero, se suma (en
		complemento a 2) el desplazamiento al PC , en caso contrario
		el PC se incrementa en uno.
001	(sin uso)	Detiene la maquina. No se ejecutan nuevas instrucciones.
		Los registros y la memoria quedan con el último valor que
		tenían.
001	(sin uso)	No operación. No tiene ningún efecto sobre el acumulador
		ni memoria. El PC se incremente en uno.