Университет ИТМО

Факультет программной инженерии и компьютерной техники

Индивидуальное домашнее задание №2

по «Математической статистике» Вариант 509

Выполнили:

Студенты группы Р3233

Хасаншин Марат

Шикунов Максим

Номер команд: 9

Санкт-Петербург 2024

Цель работы

На основе анализа малой выборки:

- 1) Построить вариационный ряд и выборочную функцию распределения
- 2) Найти оценки параметров распределения методом моментов
- 3) Получить оценки функции распределения и плотности распределения

Исходные данные

Ход выполнения

Вариационный ряд:

x_i	-0.71	-1.23	-1.71	-2.55	-3.41	-3.89	-3.97	-4.25	-4.27	-4.37	-4.42	-5.13
m_i	1	1	1	1	1	1	1	1	1	1	1	1
p_i	1	1	1	1	1	1	1	1	1	1	1	1
	16	16	16	16	16	16	16	16	16	16	16	16

x_i	-5.46	-5.58	-6.07	-7.14
m_i	1	1	1	1
p_i	1	1	1	1
	16	16	16	16

Выборочная функция распределения:

	x_i	-7.14	-6.07	-5.58	-5.46	-5.13	-4.42	-4.37	-4.27	-4.25	-3.97	-3.89	-3.41
Ī	F	1	2	3	4	5	6	7	8	9	10	11	12
		$\overline{16}$	16	16	16	16	16	16	$\overline{16}$	$\overline{16}$	$\overline{16}$	$\overline{16}$	$\overline{16}$

x_i	-2.55	-1.71	-1.23	-0.71
F	13	14	15	1
	$\overline{16}$	$\overline{16}$	16	

Выборочная функция распределения

Имеем равномерное распределение с параметрами a и b:

$$f(x) = \begin{cases} 0, & x < a \\ \frac{1}{b-a}, & a \le x \le b, \\ 0, & x > b \end{cases} \qquad F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

Выразим параметры распределения методом моментов:

$$v_{1} = M(x) = \int_{-\infty}^{+\infty} xf(x)dx = \int_{-\infty}^{a} 0 \cdot xdx + \int_{a}^{b} \frac{x}{b-a}dx + \int_{b}^{+\infty} 0 \cdot xdx =$$

$$= \frac{1}{b-a} \int_{a}^{b} xdx = \frac{1}{b-a} \left(\frac{x^{2}}{2}\Big|_{a}^{b}\right) = \frac{b^{2}-a^{2}}{2(b-a)} = \frac{(b-a)(b+a)}{2(b-a)} = \frac{b+a}{2}$$

$$\mu_{2} = M\left(\left(x - M(x)\right)^{2}\right) = \int_{-\infty}^{+\infty} \left(x - M(x)\right)^{2} \cdot f(x)dx = \int_{-\infty}^{a} \left(x - M(x)\right)^{2} \cdot 0dx +$$

$$+ \int_{a}^{b} \left(x - M(x)\right)^{2} \cdot \frac{1}{b-a}dx + \int_{b}^{+\infty} \left(x - M(x)\right)^{2} \cdot 0dx = \int_{a}^{b} \left(x - \frac{b+a}{2}\right)^{2} \cdot \frac{1}{b-a}dx =$$

$$= \int_{a}^{b} \left(x^{2} - (b+a)x + \frac{(b+a)^{2}}{4}\right) \cdot \frac{1}{b-a}dx = \int_{a}^{b} \frac{x^{2}}{b-a}dx - \int_{a}^{b} \frac{x(b+a)}{b-a}dx + \int_{a}^{b} \frac{(b+a)^{2}}{4(b-a)}dx$$

$$=$$

$$= \frac{b^{3}-a^{3}}{3(b-a)} - \frac{(b^{2}-a^{2})(b+a)}{2(b-a)} + \frac{(b+a)^{2}(b-a)}{4(b-a)} = \frac{a^{2}+ab+b^{2}}{3} - \frac{(b+a)^{2}}{2} + \frac{(b+a)^{2}}{4} =$$

$$= \frac{4(a^{2}+ab+b^{2})}{12} - \frac{6(a^{2}+2ab+b^{2})}{12} + \frac{3(a^{2}+2ab+b^{2})}{12} = \frac{a^{2}-2ab+b^{2}}{12} = \frac{(a-b)^{2}}{12}$$

$$m = \frac{a+b}{2}$$
, $\sigma^2 = \frac{(b-a)^2}{12}$, $b > a$

$$\begin{cases} 2m = b + a \\ \sigma \cdot 2\sqrt{3} = b - a \end{cases} \begin{cases} 2m + \sigma \cdot 2\sqrt{3} = 2b \\ 2m - \sigma \cdot 2\sqrt{3} = 2a \end{cases} \begin{cases} m + \sigma \cdot \sqrt{3} = b \\ m - \sigma \cdot \sqrt{3} = a \end{cases}$$
$$a = m - \sqrt{3}\sigma, \qquad b = m + \sqrt{3}\sigma$$

Подставляем точечные оценки:

$$\widehat{m} = \sum_{i=1}^{15} x_i \cdot p_i = -4.01$$

$$\widehat{\sigma}^2 = \frac{1}{16 - 1} \sum_{i=1}^{15} m_i \cdot (x_i - \widehat{m})^2 = 2.9188$$

$$\widehat{\sigma} = \sqrt{\widehat{\sigma}^2} = \sqrt{2.9188} = 1.7085$$

$$a = -4.01 - \sqrt{3} \cdot 1.7085 = -6.9691$$

 $b = -4.01 + \sqrt{3} \cdot 1.7085 = -1.0509$

$$f(x) = \begin{cases} 0, & x < a \\ \frac{1}{5.9183}, & a \le x \le b, \\ 0, & x > b \end{cases} \qquad F(x) = \begin{cases} 0, & x < a \\ \frac{x + 6.9691}{5.9183}, & a \le x \le b \\ 1, & x > b \end{cases}$$

Вывод

Получили оценки функции распределения и плотности распределения нашей выборки случайных величин