Diffusion Generative Model

Binxu Wang

Who is Binxu?

- Graduate Student in Ponce Lab @Harvard
- Incoming research fellow in <u>Kempner Institute</u>
- Generative models, Geometry x Visual neuroscience

Diffusion models are leading the charge...

Images

3d shapes

Videos

Principles of Diffusion Model

How does diffusion work at a high level?

Idea of Diffusion Generative Model

- Diffusion model learns a process that connects a simple distribution (e.g. Gaussian) with a complex one.
- To generate samples
 - Sample from the simple distribution
 - Transport it to the complex one through the process.

Denoising diffusion models

Forward / noising process

○ Sample noise $p_T(\mathbf{x}_T)$ → turn into data

Denoising via neural networks

- **Objective**: $\epsilon_{\theta}(\mathbf{x}, t)$ predicting the noise from a degraded image.
 - o a.k.a. Denoising Auto-Encoder
 - It approximates the gradient of data distribution, i.e. score function.

Training Process

- Sample time t. The noise scale is σ_t , signal scale is α_t .
- Sample a clean example $\mathbf{x}_0 \sim p_0(\mathbf{x})$
- Add Gaussian noise ϵ at the noise scale σ_t , $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Train the denoising neural network ϵ_{θ} to infer the noise from the noisy sample $\arg\min_{\alpha} \|\epsilon_{\theta}(\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, t) \boldsymbol{\epsilon}\|_2^2$
- Repeat sampling \mathbf{x}_0 , $\boldsymbol{\epsilon}$, t

Sampling by Reversing Noising Process

- Iteratively subtracting the "predicted noise" $\epsilon_{\theta}(\mathbf{x}_t,t)$ at t to turn the noise into data sample
- Various sampling process exists
 - o DDPM, DDIM, PNDM, Etc.

Math behind Diffusion Models

What's the theoretical justification of this model?

Score function enables the reverse of forward process

Forward / noising process

Reverse / denoising process

$$\dot{\mathbf{x}} = -\beta(t)\mathbf{x} + g(t)\boldsymbol{\eta}(t) - g(t)^2\mathbf{s}(\mathbf{x}, t)$$

•
$$\mathbf{s}(\mathbf{x}, t) = \nabla \log p_t(\mathbf{x}_t)$$

Drifting along score function

t runs backward from $T \rightarrow 0$

Time-reversal

Forward / noising process

Reverse / denoising process

$$\dot{\mathbf{x}} = -\beta(t)\mathbf{x} + g(t)\boldsymbol{\eta}(t) - g(t)^2\mathbf{s}(\mathbf{x}, t)$$

Meaning of the Denoising objective

Notice that the denoising objective is an **expectation** over noise ϵ , clean sample \mathbf{x}_0 and noise scales

$$\arg\min_{\theta} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0,I)} \|\boldsymbol{\epsilon}_{\theta}(\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, t) - \boldsymbol{\epsilon}\|_2^2$$

$$\mathbf{x}_0 \sim p_0(\mathbf{x})$$

This objective cannot be optimized to 0.

(NMA)

Denoising learns the **gradient of the**smoothed data distribution

• For this objective, the optimal $\hat{\epsilon}_{\theta}(.,t)$ matches the gradient of the smoothed distribution $p_t(\mathbf{x}_t)$,

$$\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}$$

$$\hat{\boldsymbol{\epsilon}}_{\theta}(\mathbf{x}, t) \approx -\frac{1}{\sigma_t} \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$$

- Score function: Gradient of log density
- a.k.a. Denoising score-matching

(NMA)

Score function enables sampling

$$\mathbf{s}(\mathbf{x},t) \coloneqq \nabla \log p_t(\mathbf{x})$$

- Time-varying **vector field** $\mathbf{s}(\mathbf{x},t): \mathcal{X} \times [\mathbf{0},\mathbf{1}] \to \mathcal{X}$
- Points towards the high-density domains.
- Enables us to *climb up* the data distribution to high density region.

Sample generation by solving the reverse ODE / SDE

- There exists a deterministic process that can also reverse the forward process, i.e. probability flow ODE.
- Advanced SDE or ODE solver (e.g. Runge Kutta) can sample diffusion models efficiently.

SDE
$$\dot{\mathbf{x}} = -\beta(t)\mathbf{x} + g(t)\boldsymbol{\eta}(t) - g(t)^2\mathbf{s}(\mathbf{x}, t)$$

ODE
$$\dot{\mathbf{x}} = -\beta(t)\mathbf{x} - \frac{1}{2}g(t)^2\mathbf{s}(\mathbf{x}, t)$$

(NMA)

Summary

- Score enables the reversal of forward process.
- Diffusion model learns the score function of the data distribution, via denoising.
- Sampling amounts to solving reverse SDE or ODE

Score Network Architecture

How to approximate the score function?

Analysis of the target: score function

- Score function $s(\mathbf{x}, t) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$
 - It's a continuous vector field in the domain of x
 - It's time *t* dependent.
 - \circ Its magnitude is larger for smaller t and noise scale σ_t
- Score function for specific domains
 - For image domain, it's an image-to-image mapping, modulated by time.

Backbone of Score Network - UNet

 Convolutional architecture for imageto-image mapping (e.g. segmentation, denoising)

- Key features:
 - Downsampling stream
 - Upsampling stream
 - Skip-Connections

Comparing with CNN and Autoencoder

- Downsampling stream is like a normal CNN
 - Extracting features of different scale.
- Upsampling stream is like an inverted CNN, DCGAN
 - Create features of different scale.
- Skip-connection is the main difference from Autoencoder
 - AE cares about the **latent representation in bottleneck**
 - UNet doesn't care about the **bottleneck representation**, just the output

Binxu Wang • Diffusion Generative Models

21

Time Modulation of Score Network

- The score function is *time-dependent*.
- Add time dependency
 - Assume time dependency is spatially homogeneous.
 - Add one scalar value f(t) per feature channel
 - Parametrize f(t) by MLP / linear of the Fourier basis.

Conditional Diffusion model

How to control the diffusion process

Conditional generative model

- For a paired dataset $\{x, y\}$, we want to model p(x|y)
- Conditional signal y could be
 - Class of object
 - Artistic style of image
 - Text description of images

"A picture of a cute cat running on a grassland in Van Gogh style"

Conditional diffusion model

ullet Train a score network to denoise, conditioned on y.

$$\epsilon_{\theta}(\mathbf{x}, \mathbf{y}, t)$$

Approximates the score function of the conditional distribution

$$\epsilon_{\theta}(\mathbf{x}, \mathbf{y}, t) \propto -\nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{y})$$

Same sampling procedure applies.

Conditional Score Function

Training of conditional diffusion model

- For each t, find the noise scale σ_t , signal scale α_t .
- Sample a pair of clean example and conditional from the joint $\mathbf{x}_0, \mathbf{y} \sim p_0(\mathbf{x}, \mathbf{y})$
- Add Gaussian noise ϵ at the noise scale σ_t , $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- lacktriangle Train the conditional denoising neural network $m{\epsilon}_{ heta}$ to infer the noise from the noisy sample

$$\arg\min_{\theta} \|\boldsymbol{\epsilon}_{\theta}(\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, \boldsymbol{y}, t) - \boldsymbol{\epsilon}\|_2^2$$

• Repeat sampling $\mathbf{x}_0, y, \boldsymbol{\epsilon}, t$

Condition modulation of Score Network

- The score function is class-dependent.
- If the class variable y is a fixed length variable.
 - Assume condition dependency is spatially homogeneous.
 - Multiply one scalar value g(y) per feature channel
 - Parametrize g(y) by MLP / linear of the y embedding.

Advanced Diffusion Model Architecture

- Use Attention to inject conditional information flexibly
- Compress images into latent space to improve efficiency.

Advanced Conditional Modulation via Attention

Challenge

- Conditional signal (e.g. text sentence) could have variable shape / length. A single MLP do not suffice.
- The conditional modulation of feature is **not homogeneous** over space.

Solution

Cross attention mechanism

Cross Attention Conditioning

Encoded Word Vectors

Latent State

of Image

Spatial Dimensions Channel **Dimensions**

" A ballerina chasing her cat running on the grass in the style of Monet "

Cross Attention: Image to Words

Spatial Transformer

- Rearrange spatial feature tensor to sequence.
- Cross Attention
- Self Attention
- Multi-layer Perceptron
- Rearrange back to spatial tensor (same shape)

Improve Efficiency of Diffusion Model

Challenge

- Diffusion in pixel space is computationally costly, due to large state space.
- Solution: Combine Autoencoder with Diffusion
 - Use Diffusion model to learn low-resolution, high level information, e.g. object, scene.
 - Use Autoencoder to generate high-resolution details, e.g. textures.

Latent Diffusion Model

- Train an autoencoder \mathcal{E}, \mathcal{D} to compress image into a compact latent space
- Learn a diffusion model for the latent vectors in the latent space
- Example:
 - Stable diffusion

34

Ethical Considerations

- Unleash the creativity
- Copyright and IP issue
- Spread of misinformation
- Fairness and bias

Unleash Creativity to the People

Normal people can create
 personalized and artistic posters,
 illustrations, storybooks etc.
 efficiently and almost for free.

Binxu Wang • Diffusion Generative Models

Threat to the Art Community

Dispute

- Credit Assignment: Is the person entering prompt regarded artist? Who receives credit for Al generated images? Is Al stealing credit from the artist?
- Job loss: Will Al put currently active artists out of job? (esp. by learning from their styles)

Binxu Wang • Diffusion Generative Models

37

Copyright and Intellectual Property

Original from Gettylmages

Generated by Diffusion

- Ongoing lawsuits between
 Gettylmage and Stability Al
 (Stable Diffusion), arguing that
 SD can generate images
 substantially similar to its
 copyrighted training data.
 - Can we train generative model on "copyright" images?

Binxu Wang • Diffusion Generative Models

Fairness and Biases

Portrait of a librarian, SD2

Portrait of a designer, DallE 2

By training on textimage pairs over the
internet, models learn
existing biased
associations regarding
gender, race,
profession, etc.

Binxu Wang • Diffusion Generative Models

Misinformation

- Generative models can make "fake news" far more convincing, by producing photorealistic images guided by text.
- Generated video, audio could be used in scam.

Ongoing efforts on research and legislation

- Technology to protect images or art styles, e.g.
 - Provable Copyright Protection for Generative Models <u>2302.10870</u>
 - GLAZE: Protecting Artists from Style Mimicry by Text-to-Image Models <u>2302.04222</u>

- Legislation to enforce disclosure of Al generated content.
 - Clarke introduces legislation to regulate Al in political advertisements May 2nd 2023