Single-Source Shortest Paths

Heejin Park

Division of Computer Science and Engineering
Hanyang University

Contents

- Definition
- Dijkstra's algorithm
- The Bellman-Ford algorithm
- Single-source shortest paths in directed acyclic graphs

Definition

- Edge weight
- Path weight
 - The sum of all edge weights in the path.
- A Shortest path from u to v.
 - A path from u to v whose weight is the smallest.
 - Vertex *u* is the *source* and *v* is the *destination*.
- The Shortest-path weight from u and v.
 - The weight of a shortest-path from u and v
 - $\delta(u,v)$

Definition

Shortest-path problems

- Single-source & single-destination
- Single-source (& all destinations)

Transpose

- Single-destination (& all sources)
- All pairs

• What is a shortest path from s to g?

Not define.

- Do all negative-weight edges cause a problem?
- Do all negative-weight cycles cause a problem?

Do all negative-weight cycles reachable from the source cause a problem?

Single-source shortest paths can be defined if there are not any *negative-weight cycles reachable from the source*.

Cycles

Cycles

- There is a shortest path that does not include cycles.
- A shortest-path length is at most |V|-1

Predecessor subgraph

- Predecessor subgraph
 Predecessor
 - Shortest-path tree (stores all SSSPs compactly.)
 - Optimal substructure

Predecessor subgraph

Relaxation

Relaxation

Dijkstra's algorithm

• It works properly when all edge weights are nonnegative.

```
BuildHeap: O(V)
    DIJKSTRA(G, w, s)
         INITIALIZE-SINGLE-SOURCE(G, s)
      S = \emptyset
Q = G.V
                                           tuble
         while Q \neq \emptyset
                                        V-0(V) V-0(1)
             u = \text{EXTRACT-MIN}(Q)
             S = S \cup \{u\}
             for each vertex v \in G.Adj[u]
                                       E-04) E-0(14)
                  RELAX(u, v, w)
```

U(V.V+F.I)

S	t	y	X	z
0	∞	∞	8	8

S	t	у	X	Z
0	8	8	∞	8
	10	5	1	7

$$S = \{s\}$$

S	t	у	X	z
0	8	8	8	8
	10	5	-	

$$S = \{s, y\}$$

S	t	у	x	Z
0	8	8	8	8
	10	5		7/19
	8		14	7

$$S = \{s, y\}$$

Q		M , !		1
S	t	y	x	Z
0	∞	∞	∞	∞
	10	5		

$$S = \{s, y, z, t\}$$

S	t	у	\boldsymbol{x}	Z
0	8	8	8	8
	10	5		2
	8		14	7
	8		13	
			9	

$$S = \{s, y, z, t\}$$

		303 /-		
S	t	y	\boldsymbol{x}	Z
0	8	8	8	8
	10	5	1	
	8		14	7
	8		13	
			9	

$$S = \{s, y, z, t, x\}$$

```
DIJKSTRA(G, w, s)
    INITIALIZE-SINGLE-SOURCE(G, s)
S = \emptyset
Q = G.V
    while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
         S = S \cup \{u\}
        for each vertex v \in G.Adj[u]
             RELAX(u, v, w)
```

Running time

- $O(V^2)$ if we use an (unsorted) array
- $O(V \lg V + E \lg V)$ if we use a heap
- $O(V \lg V + E)$ if we use a Fibonacci heap.

O(Elgy).

The Bellman-Ford algorithm

• it solves the single source shortest-paths problem in the general case in which edge weights may be negative.

```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE(G, s)
   for i = 1 to |G.V| - 1
           for each edge(u, v) \in G.E
                RELAX(u, v, w)
   for each edge(u, v) \in G.E
                                  cycle check
        if v.d > u.d + w(u, v)
           return FALSE
   return TRUE
```

Relaxation order

$$(t,x)$$
, (t,y) , (t,z) , (x,t) , (y,x) , (y,z) , (z,x) , (z,s) , (s,t) , (s,y)

Relaxation order

$$(t,x)$$
, (t,y) , (t,z) , (x,t) , (y,x) , (y,z) , (z,x) , (z,s) , (s,t) , (s,y)

Relaxation order

$$(t,x)$$
, (t,y) , (t,z) , (x,t) , (y,x) , (y,z) , (z,x) , (z,s) , (s,t) , (s,y)

- The Bellman-Ford algorithm
 - Running time : O(VE)

$$\sum_{i=1}^{k} d[v_i] \le \sum_{i=1}^{k} \left(d[v_{i-1}] + w(v_{i-1}, v_i) \right)$$

$$= \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}]$$

$$0 \le \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

DAG-SHORTEST-PATHS(G, w, s)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 **for** each vertex u, taken in topologically sorted order
- 4 **for** each vertex $v \in G.Adj[u]$
- 5 RELAX(u, v, w)

0(1)x E.

• Running time: O(V+E) time

PERT chart

o PERT

- Program evaluation and review technique
- Edges represent jobs to be performed.
- Edge weights represent the times required to perform particular jobs.

PERT chart

PERT

- If edge (u,v) enters vertex v and edge (v,x) leaves v, then job (u,v) must be performed prior to job (v,x).
- A path through this dag represents a sequence of jobs that must be performed in a particular order.
- A *critical path* is a longest path through the dag.

PERT chart

• Finding a critical path in a dag

 Negate the edge weights and run DAG-SHORTEST-PATHS or

• Run DAG-SHORTEST PATHS, with the modification that we replace " ∞ " by "- ∞ " and ">" by "<".