Advanced Probability Revision

Kexing Ying

January 9, 2023

Martingale

Regarding the optional stopping theorem, it is useful to write the stopped value of a process as the following:

$$X_T = X_0 + \sum_{k=0}^{\infty} (X_k - X_{k-1}) \mathbb{1}_{\{T \ge k\}}.$$

The stopped process is useful to bound the stopped value should one be able to find an applicable rule such that

 $\mathbb{E}[X_T] = \mathbb{E}\left[\lim_{n \to \infty} X_{T \wedge n}\right] = \lim_{n \to \infty} \mathbb{E}[X_{T \wedge n}].$

Brownian motion

Definition (Brownian motion). A continuous stochastic process $(B_t)_{t\geq 0}$ is a Brownian motion in \mathbb{R}^n if

- $B_0 = x$ a.e. for some constant $x \in \mathbb{R}^n$;
- $B_t B_s \sim \mathcal{N}(0, (t-s)id_n)$ for all s < t;
- $(B_t)_t$ has independent increments which are also independent of B_0 .

if x = 0 we say the Brownian motion is standard.

Proposition. The standard Brownian motion in \mathbb{R}^n is the unique Gaussian process $(B_t)_t$ (i.e. $(B_{t_1}, \dots, B_{t_k})$ is a Gaussian random vector) satisfying $\mathbb{E}[B_t] = 0$ and $Cov(B_s, B_t) = (s \wedge t)id_n$ for all $s, t \geq 0$.

Proposition. A Brownian motion does not reach its maximum almost surely, i.e. for any t > 0, the event $\{B_t = \sup_{0 \le s \le t} B_s\}$ is a null-set.

Proof. Fix t > 0 and we observe

$$B_t = \sup_{0 \le s \le t} B_s \iff \inf_{0 \le s \le t} (B_t - B_s) \ge 0 \iff \inf_{0 \le s \le t} (B_t - B_{t-s}) \ge 0.$$

Now, it is clear that $(B_t - B_{t-s})_{s \in [0,1]}$ is a standard Brownian motion and thus, the right hand side occurs with probability 0 proving the claim.

To show a random time is *not* a stopping time, one may invoke the strong Markov property of Brownian motions. Namely, if we want to show T is not a stopping time it suffices to show $(B_{T+t} - B_T)_t$ is not a Brownian motion.

Proposition. A Brownian motion is α -Hölder continuous for all $\alpha < 1/2$.

Proof. By continuity, it suffices to show Hölder continuity on the Dyadic numbers for which we invoke the Kolmogorov's continuity criterion. Namely, if for all $s, t \in \mathcal{D}$,

$$\mathbb{E}[|B_s - B_t|^p] \le c|s - t|^{1 + \epsilon}$$

for some constant c, then (B_t) is α -Hölder continuous on $\mathcal D$ for all $\alpha \in (0, \epsilon/p)$. To show this we observe that (WLOG. s < t) $B_t - B_s \sim \mathcal N(0, (t-s)\mathrm{id}_n)$ and so,

$$\mathbb{E}[|B_t - B_s|^p] \le \mathbb{E}[|Z|^p]|t - s|^{p/2},$$

where $Z \sim \mathcal{N}(0,1)$. Hence, as $\mathbb{E}[|Z|^p] < \infty$ for all p, we have (B_t) is α -Hölder continuous for all $\alpha \in \left(0, \frac{p/2-1}{p}\right) = \left(0, \frac{1}{2} - \frac{1}{p}\right)$. Finally, for all $\alpha < 2$, there exists some p such that $\frac{1}{2} - \frac{1}{p} > \alpha$ and so, (B_t) is α -Hölder continuous.