Lista de exercicíos - Polinômio de Taylor

- 1. Considere a função $f(x) = \operatorname{sen}(\pi x/2)$ e seja $P_n(x)$ seu polinômio de Taylor de ordem n na origem. Determine n de modo que, para todo $0 \le x \le 2\pi$, o polinômio $P_n(x)$ seja uma aproximação de f(x) para a qual as 6 primeiras casas decimais são corretas.
- 2. Seja $f: [-a, a] \to \mathbb{R}$ a função definida por $f(x) = e^x$.
 - (a) Calcule o polinômio de Taylor $P_2(x)$ de ordem dois de f(x) na origem.
 - (b) Qual o maior valor de a para o qual podemos usar $P_2(x)$ para aproximar f(x) com erro inferior a 0.005 em todo o intervalo [-a, a]?

3. Resolva:

- (a) Use o polinômio de Taylor para $f(x) = \sin x$ em torno de $x_0 = 0$ para estimar o erro da aproximação de $\sin x \approx x$ em x = 1.
- (b) Suponha que queiramos aproximar o valor de $\sin(2)$ com erro de no máximo 10^{-7} , quantos termos do polinômio precisamos calcular?
- 4. Use um polinômio de Taylor para aproximar $\sqrt{1.01}$ corretamente em seis casas decimais. Defina explicitamente a função f(x) usada e o ponto em torno do qual o polinômio é calculado.
- 5. Seja $f(x) = \ln(x+1)$. Aproxime f(1.5) usando o polinômio de Taylor de terceira ordem. Quantos dígitos corretos possui a aproximação? Quantos termos deve ter o polinômio para o erro de truncamento ser menor que 10^{-8} ?