0.1. Lección 6

0.1.1. Dominio e imagen de una función. Funciones elementales.

Una función $f: A \subset \mathbb{R} \to \mathbb{R}$ es una ley o correspondencia que hace corresponder a cada $x \in A$ un único valor real que llamamos f(x) o imagen mediante f de x.

El dominio de una función f es el conjunto de los números reales para los que existe f(x). Si no se indica otra cosa, la función se considera definida en su dominio:

$$Dom(f) = \{x \in \mathbb{R} \text{ existe } f(x)\}.$$

El dominio es un subconjunto de \mathbb{R} .

Observación 1. El dominio puede ser incluso el cojunto vacío, considerar por ejemplo $f(x) = \frac{\sqrt{x}\sqrt{-x}}{x}$ cuyo dominio es el conjunto vacío o un único punto como para $g(x) = \sqrt{x}\sqrt{-x}$ cuyo dominio es $\{0\}$. Nosotros en general consideraremos funciones cuyos dominios son intervalos o unión (incluso infinita) de intervalos

La gráfica de una función f es el conjunto del plano:

$$G_f = \{(x, y): y = f(x), x \in Dom(f)\}$$

0.2. Algunas gráficas importantes.

Functiones constantes: f(x) = c

Rectas del tipo: y = mx + n

Gráfica de $f(x) = x^n, n \in \mathbb{N}$ > n par:

 $\triangleright n$ impar:

Gráficas de
$$f(x) = \frac{1}{x}$$
, $g(x) = \frac{1}{x^2}$, $h(x) = \frac{1}{x^3}$

$$Gráfica\ de\ f(x)=e^x$$

$$Grstfica\ de\ f(x) = \ln x$$

Gráfica de
$$f(x) = x^{1/n}$$

$$\triangleright n par:$$

 $\triangleright n impar$:

$$Gráfica\ de\ f(x) = [x]$$

 $Gr\'{a}ficas\ de\ funciones\ definidas\ a\ trozos$

$$f(x) = \begin{cases} x^2 \sin x \le 0 \\ |x| \sin x > 0 \end{cases}$$

$$g(x) = \begin{cases} |x| \ si \ x > 0 \\ 3 \ si \ x = 0 \\ \ln|x| \ si \ x < 0 \end{cases}$$

Translaciones de gráficas: gráficas de f(x-a), L+f(x).

0.2.1. Algunas funciones Elementales (Repaso)

En todo lo que sigue consideramos funciones elementales las siguientes funciones:

- Funciones polinómicas o polinomios: son funciones del tipo f(x) = a₀ + ··· + a_nxⁿ con a_i ∈ ℝ y n ∈ ℕ. Si a_n ≠ 0 a n se le llama el grado del polinomio. El dominio de una función polinómica es ℝ. Entre estas funciones destacamos las del tipo xⁿ con n par y xⁿ con n impar con gráficas de distinto tipo.
- 2. Funciones racionales: Una función racional es una función del tipo $f(x) = \frac{P(x)}{Q(x)}$ donde P(x), Q(x) son polinomios. En este caso:

$$Dom(f) = \{ x \in \mathbb{R} : Q(x) \neq 0 \}.$$

- 3. Función logaritmo: denotaremos por $f(x) = \ln x$ la función logaritmo neperiano de x. El dominio de esta función es $(0,\infty)$. Recordamos sus propiedades:
 - i) $\ln 1 = 0$, $\ln e = 1$.
 - *ii)* Si a, b > 0, $\ln(ab) = \ln a + \ln b$.
 - iii) Si a, b > 0, $\ln(\frac{a}{b}) = \ln a \ln b$.
 - i) Si a > 0, $\ln a^b = b \ln a$.
- 4. Funciones exponenciales: $f(x) = e^x$ cuyo dominio es \mathbb{R} . A partir de esta función podemos definir la función a^x con a > 0 se define como la función $a^x = e^{x \ln a}$. La función
- 5. Las funciones trigonométricas sen(x) y cos(x) tienen como dominio \mathbb{R} .
- 6. La función $f(x) = \tan x$ tiene como dominio

$$Dom(f) = \bigcup_{k \in \mathbb{Z}} \left(\frac{-\pi}{2} + k\pi, \frac{-\pi}{2} + (k+1)\pi \right)$$

7. La función $f(x) = x^x$ se define como $f(x) = e^{x \ln x}$ y por tanto $Dom(f) = (0, \infty)$. De forma más general, la función:

$$(f(x))^{g(x)} := e^{\ln f(x)}$$

por lo que su dominio es $\{x \in \mathbb{R} : f(x) > 0\}$.

Algunos ejercicios de dominios

Calcula el dominio de las siguientes funciones:

1.
$$f(x) = \frac{1}{\sqrt{\ln(x-3)}}$$

$$2. \ g(x) = \frac{1}{\sin x}$$

$$3. \ h(x) = \ln(1 + \cos x)$$

4.
$$F(x) = \frac{1}{1 - \ln(x - 3)}$$

5.
$$G(x) = \ln(x - [x])$$

0.2.2. Las funciones inversas.

Una función $f: A \to B$ es inyectiva si para cada $x, y \in A$ con $x \neq y$ se tiene que $f(x) \neq f(y)$. Para probar que una función es inyectiva tendremos que probar que:

$$f(x) = f(y), con \ x, y \in A \Rightarrow x = y$$

Observación 2. Es interesante observar que hay funciones que son inyectivas en un determinado conjunto y no lo son en otros; por ejemplo la función $f(x) = x^4$

- λes inyectiva en \mathbb{R} ?
- ¿Es inyectiva en $(0, \infty)$?
- ¿Es inyectiva en $\left(-\frac{1}{4}, \frac{1}{16}\right)$?

Observación 3. Gráficamente la inyectividad repercute en que trazando una recta horizontal en los valores de la imagen dicha recta sólo corta a la gráfica en un valor. Si alguna horizontal corta a la gráfica en dos o más valores claramente dicha función no sería inyectiva. Gráficamente la función es sobreyectiva sobre un conjunto B si trazando una horizontal sobre cada punto de B la gráfica de f corta en algún punto a la horizontal.

Definición 4. Función inversa. Si $f: A \to B$ dada por y = f(x) es una función biyectiva (es decir inyectiva y sobreyectiva) entonces para cada $y \in B$ hay un único $x \in A$ tal que y = f(x). Esto nos permite definir una función, que llamaremos función inversa de f y denotamos por f^{-1} , $f^{-1}: B \to A$, con $x = f^{-1}(y)$ de modo que:

$$f^{-1}(f(x)) = x, \quad x \in A$$
 $f(f^{-1}(y)) = y, \quad y \in B$

Si f es inyectiva en A y $B = f(A) = \{f(x) : x \in A\}$ entonces $f : A \to B$ es sobreyectiva y podemos definir la función inversa $f^{-1} : B \to A$.

 \boldsymbol{x}

0.2.3. Funciones raíces *n*-ésimas y trigonométricas inversas.

- *> Las funciones raíces n-ésimas:*
 - 1. Si n es impar la función $f(x) = x^n$ es una función biyectiva de \mathbb{R} en \mathbb{R} siendo la función inversa la función $f(x) := x^{1/n} = \sqrt[n]{x}$.
 - 2. Si n es par la función $f(x) = x^n$ es inyectiva en $[0, \infty)$ con imagen en $[0, \infty)$, por tanto la inversa $x^{1/n}$ está definida en $[0, \infty)$.

 \triangleright Las funciones arcsen, arccos, arctan,...

La función $f(x) = \operatorname{sen} x$ es biyectiva de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ en $\left[-1, 1\right]$; la función inversa es arcsen

$$\mathrm{sen}: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1] \qquad \to \qquad \mathit{arcsen}: [-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$$

De la misma forma, se define la función arccos.

$$\cos: [0,\pi] \to [-1,1] \qquad \to \qquad \arccos: [-1,1] \to [0,\pi]$$

La función $\tan x$ es inyectiva en $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ y su imagen en $\left(-\infty, \infty\right) = \mathbb{R}$; la función arctan es la inversa

$$tan: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R} \qquad \to \qquad arctan: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$$

0.2.4. Funciones pares, impares, periódicas...

Diremos que una función es par si para todo $x \in Dom(f)$ con $-x \in Dom(f)$ se tiene que f(x) = f(-x).

Diremos que una función es impar si para todo $x \in Dom(f)$ con $-x \in Dom(f)$ se tiene que f(-x) = -f(x).

Diremos que una función es periódica con período T>0 si para todo $x\in Dom(f)$ se tiene que

$$f(x+T) = f(x)$$

⊠ Indica si las siguientes funciones son pares, impares o nada. ¿ Son periódicas?

$$\frac{x^2}{1-|x|}, \qquad \operatorname{sen} x, \qquad \sqrt[5]{x^3} \qquad x^2 + \frac{1}{x}$$

$$** f(x) = x - [x]$$

Observación 5. Estas propiedades tienen una gran repercusión en la gráfica:

- 1. Las gráficas de las funciones pares en \mathbb{R} son simétricas con respecto al eje vertical, es decir, la recta x = 0.
- 2. Las gráficas de las funciones impares en \mathbb{R} son simétricas con respecto al origen.
- 3. En las gráficas de las funciones periódicas en \mathbb{R} con período T > 0 la gráfica en (0,T) se repite en cada intervalo (kT,(k+1)T) con $K \in \mathbb{Z}$, por lo tanto basta obtener la gráfica en (0,T) y trasladar.

Ejercicios: • Completa la gráfica de una función f conociendo la gráfica en $[0, \infty)$ en el caso de funciones pares e impares. • Completa la gráfica para funciones periódicas:

por ejemplo la función $f(x) = \begin{cases} x & 0 \le x \le 1 \\ =1 \text{ si } 1 < x \le 2 \end{cases}$, y que sea periódica de período 2.

 $\circledast \circledast$ Considera la función f(x) = 1 si $x \in \mathbb{Q}$ y f(x) = 0 si $x \notin \mathbb{Q}$: ¿es par? ¿es impar? ¿es periódica?

Composición de funciones

Definición 6. (Composición de funciones:) Sea $f:A\to B$ y $g:B\to C$, de modo que $Im(f)\subset B$ definimos la función composición de f con g, denotada por $g\circ f$ a la función

$$(g \circ f)(x) = g(f(x)).$$

Observación 7. Nótese que para que la composición de f con g esté bien definida $Im(f) \subset Dom(g)$.

Observación 8. En general no es cierto que $f \circ g = g \circ f$. Para verlo, consideramos el siguiente ejemplo $f(x) = x^2$ y $g(x) = \operatorname{sen} x$; es claro que $(g \circ f)(x) = g(f(x)) = \operatorname{sen} x^2$ y $(f \circ g)(x) = f(g(x)) = \operatorname{sen}^2 x$ y no coinciden.

 \boxtimes Calcula $f \circ g \ y \ g \circ f \ si$:

$$f(x) = \begin{cases} x \ si \ x \ge 0 \\ 0; si \ x < 0 \end{cases} \qquad g(x) = \begin{cases} 0 \ si \ x \ge 0 \\ -x^2; si \ x < 0 \end{cases}$$