Метод Монте-Карло для исследования цепных и кольцевых полимеров

Введение

В настоящей лабораторной работе рассматриваются методы моделирования полимеров. Сначала приводятся краткие сведения о методе Монте-Карло его приложении в статистической механике. Затем подробно рассматриваются метод энтропического моделирования и алгоритм Ванга — Ландау. Далее описано применение этого алгоритма для моделирования полимера в виде свободно сочлененной цепи. В заключении следуют задания для самостоятельного выполнения.

1. Метод Монте-Карло в классической статистической механике

Задачи равновесной статистической термодинамики классических систем можно свести к вычислению статистического интеграла в каноническом ансамбле:

$$Z(N,V,T) = \frac{1}{N!(2\pi\hbar)^{3N}} \int \exp\{-\beta E(p,q)\} dpdq,$$

где N — число частиц, находящихся в объёме V при температуре T, $\beta = 1/kT$; E(p,q) — полная механическая энергия частиц; p,q — набор их импульсов и координат. Классическая энергия E(p,q) всегда может быть представлена в виде суммы кинетической K(p) и потенциальной U(q) энергий. Кинетическая энергия есть квадратичная функция от импульсов, и интегрирование по ним может быть произведено в общем виде. В результате получаем:

$$Z(N,V,T) = \frac{1}{N! \Lambda^{3N}} \int \exp\{-\beta U(q)\} dq,$$

где $\Lambda = \sqrt{\frac{2\pi\hbar^2}{mkT}}$ — тепловая длина волны де Бройля частиц массы m при температуре T. Таким образом, задача сводится к вычислению конфигурационного интеграла

$$Q(N,V,T) = \int \exp\{-\beta U(q)\}dq.$$

От интегрирования по координатам можно перейти к интегрированию по энергии:

$$Q = \int \Omega(E) \exp\{-\beta E\} dE, \qquad (1)$$

$$\Omega(E) = \int \delta(U(q) - E) dq,$$

где $\Omega(E)$ — объём части конфигурационного пространства, в которой энергия системы лежит в пределах от E до E+dE.

Вычисления по приведённым формулам в общем случае возможны только численными методами. Поэтому от интегралов следует перейти к интегральным суммам. Диапазон изменения энергии системы $E_{\min} \leq E \leq E_{\max}$ разбивается на конечное число ($N_{\rm b}$) равных отрезков. Определяются значения $\Omega(E_i)$, $i=1,2,...,N_{\rm b}$. О том, как их находят, рассказано в двух следующих параграфах. В итоге, для любой величины f её средние канонические могут быть вычислены по формуле

$$\langle f \rangle (\beta) = \frac{\sum_{i=1}^{N_b} f_i \Omega_i \exp\{-\beta E_i\}}{\sum_{i=1}^{N_b} \Omega_i \exp\{-\beta E_i\}},$$
(2)

где f_i — значение величины f для i-го отрезка энергии. Поскольку $\Omega(E)$ входит линейно и в числитель, и в знаменатель формулы (2), то $\Omega(E)$ можно понимать не только как объём, но и как долю конфигурационного пространства, соответствующую энергии E. В каждом состоянии (конфигурации) система обладает определённой энергией. Т. е. каждому состоянию (конфигурации) системы можно сопоставить точку на энергетической шкале (оси) в пространстве энергий (пространство одномерно, хотя можно придумать ситуации с большей размерностью). Последовательности случайных изменений конфигурации системы соответствует случайное блуждание точки в пространстве энергий. Моделируя процесс случайных блужданий с помощью метода Монте-Карло (МК) и зная или вычисляя величины Ω_i , мы можем находить средние значения физических величин.

2. Алгоритм энтропического моделирования

Алгоритм энтропического моделирования основан на следующем обстоятельстве. Совершая случайное блуждание в пространстве энергий с вероятностями перехода, пропорциональными обратной плотности состояний $1/\Omega(E)$, мы получаем равномерное распределение по энергиям. Иными словами, подобрав вероятности перехода такими, что посещение всех энергетических состояний стало бы равномерным, можно получить изначально неизвестную плотность состояний $\Omega(E)$.

Напишем конфигурационный интеграл в каноническом ансамбле в виде:

$$Q(\beta) = \int e^{-\beta E(q)} dq = \int \Omega(E) e^{-\beta E} dE = \int e^{S(E) - \beta E} dE,$$

где $S(E) = \ln \Omega(E)$ — энтропия при заданном значении E.

Осуществляя блуждание в конфигурационном пространстве с вероятностями перехода, удовлетворяющими соотношению детального баланса

$$\frac{p(q_1 \to q_2)}{p(q_2 \to q_1)} = e^{-\beta(E(q_2) - E(q_1))},$$

получают каноническую выборку состояний $P(q) \sim e^{-\beta E(q)}$ (или $P(E) \sim e^{S(E)-\beta E}$). Произвольной выборке энергетических состояний $P(E) \sim e^{A(E)} = e^{S(E)-J(E)}$, где A(E) — произвольная функция, J(E) = S(E) - A(E), соответствует условие

$$\frac{p(q_1 \to q_2)}{p(q_2 \to q_1)} = e^{-\beta(J(E(q_2)) - J(E(q_1)))}.$$

При J(E) = S(E), в процессе блуждания должна получиться равномерная, в пределах статистического разброса, выборка энергетических состояний, $P(E) \sim$ const. В этом случае из определения энтропии следует

$$\frac{p(q_1 \to q_2)}{p(q_2 \to q_1)} = \frac{\Omega(E(q_1))}{\Omega(E(q_2))}.$$

Таким образом, если при некотором выборе вероятностей перехода получить равномерное посещение энергетических состояний, то можно вычислить плотность состояний $\Omega(E)$, а следовательно, и конфигурационный интеграл $Q(\beta)$.

3. Алгоритм Ванга — Ландау

Алгоритм Ванга — Ландау является реализацией метода энтропического моделирования. Он решает проблему подбора подходящих вероятностей перехода для получения требуемого при энтропическом моделировании равномерного посещения энергетических состояний и, следовательно, позволяет получить плотность состояний $\Omega(E)$. Алгоритм состоит в следующем.

Диапазон изменения энергии системы $E_{\min} \leq E \leq E_{\max}$ разбивается на конечное число (N_b) равных отрезков («ящиков»). Заводится массив Ω , состоящий из N_b элементов, каждый из которых соответствует отрезку разбиения энергии. Изначально все элементы Ω_k берутся равными единице. Моделирование системы выполняется в течение M серий с разным числом шагов. В процессе вычислительного эксперимента на каждом шаге метода Монте-Карло происходит изменение конфигурации системы. Пусть E_1 и E_2 — это энергии системы до изменения и после. Каждая из них попадает в свой «ящик» — i-й и j-й, соответственно, (номера i и j могут совпадать). В таком случае изменения в системе принимаются с вероятностью

$$p(E_1 \to E_2) = \min\left(1, \frac{\Omega_i}{\Omega_j}\right). \tag{3}$$

В случае отказа система возвращается в исходное состояние. После принятия или не принятия новой конфигурации системы всё повторяется на новом МК-шаге. Напомним, что для изменения состоянии системы с некоторой вероятностью p, генерируется случайным образом число $0 \le r \le 1$. Если $r \le p$, то изменение состояния принимается, в противном случае состояние системы не изменяется.

Каждый раз при посещении k-го «ящика» (в случае принятия изменений системы k=j, при отказе k=i) проводится изменение k-го элемента массива Ω . Он умножается на инкремент a>1, т. е.

$$\Omega_k \to \Omega_k \cdot a$$

(в работе Ванга и Ландау 1 a изначально бралось равным $a=a_0=e\approx 2,71828$). На протяжении серии МК-шагов величина инкремента остаётся неизменной. На каждой последующей серии значение параметра a уменьшается. Это обеспечивает более точную настройку элементов массива Ω . В работе Ванга и Ландау использовалось рекуррентное соотношение

$$a_m = \sqrt{a_{m-1}} ,$$

где m = 1,...M — номер серии. Отметим, что для модификации величины a подходит любая функция, которая монотонно стремится к единице. В результате использования этого алгоритма происходит автоматическая (динамическая) настройка весов вероятности перехода (3),

¹ Wang F., Landau D. P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett., 2001, v. 86, pp. 2050–2053.

которые одновременно являются плотностями состояний. По окончании вычислительного эксперимента производится нормирование массива Ω на единицу:

$$\Omega_k o rac{\Omega_k}{\displaystyle\sum_{i=1}^{N_{
m b}} \Omega_i}$$
 .

Получившийся массив Ω , согласно выражению (1) определяет функцию распределения по энергиям.

Одновременно с массивом Ω заводится массив посещений V, элементы которого изначально равны нулю. На каждом МК-шаге в ячейку V_k , соответствующую посещению k-го «ящика», добавляется единица. Критерием того, что моделирование выполняется правильно, является равномерность с достаточной степенью точности гистограммы посещений. В работе Ванга и Ландау относительное отклонение получаемого распределения от равномерного не превышало 20 %.

В том случае, если система может принимать состояния с энергией меньшей E_{\min} или большей E_{\max} , заводятся дополнительные «ящики»: один для $E \leq E_{\min}$, второй для $E \geq E_{\max}$. В ряде систем возможны самоналожения, или самопересечения. Например, наложение молекул друг на друга при моделировании молекул в виде упругих шариков. Формально значение энергии системы при наличии самопересечений обращается в бесконечность. Однако зачастую бывает полезно отдельно отслеживать самопересекающиеся состояния. Поэтому этим состояниям ставится в соответствие ещё один «ящик», а если доля самопересекающихся состояний велика, то несколько «ящиков», соответствующих разному числу самопересечений. Например, для фантомных цепей полимеров объёмом конфигурационного пространства известен (подробнее об этом будет рассказано в следующем параграфе), а для самонепересекающихся — нет. При этом самонепересекающиеся цепи являются подмножеством фантомных. Можно провести МК-эксперимент с фантомной цепью, сложить доли всех самонепересекающихся состояний (или из единицы вычесть доли всех самопересекающихся состояний), умножить на объём конфигурационного пространства фантомной цепи и получить объём конфигурационного подпространства самонепересекающейся цепи. Алгоритм при этом не меняется: на каждом МК-шаге система «переходит» из одного «ящика» в другой, этот переход принимается с вероятностью (3), изменяются соответствующие элементы массивов Ω и V, и всё повторяется на новом МК-шаге.

Описанную выше процедуру можно сделать более удобной для машинного счёта, если перейти к энтропии состояний S(E):

$$S(E) = \ln \Omega(E)$$
.

Вместо массива Ω заводится массив энтропий S. В таком случае, вероятность перехода (3) перепишется как

$$p(E_1 \to E_2) = \min(1, \exp\{S_i - S_i\})$$
.

Вместо изменения Ω_k на $\Omega_k \cdot a$ на каждом МК-шаге, будет изменяться энтропия принятого состояния

$$S_k \to S_k + \Delta S_m$$
,

где $\Delta S_m = \ln a_m$, индекс m — номер серии. По окончании вычислительного эксперимента функция распределения по энергиям вычисляется по формуле:

$$\Omega_k = \frac{\exp(S_k)}{\sum_i \exp(S_i)}.$$

В лабораторной работе добавка к энтропии ΔS_m уменьшается от серии к серии согласно соотношению $\Delta S_m = \Delta S_0 \cdot c^{m-1}$, где $\Delta S_0 = 0,1$ — начальное значение добавки к энтропии, c = 0,9, m — номер серии. Вы можете выбрать любой другой алгоритм изменения добавки к энтропии и внести его в программу. Проводится M = 67 серий, в которых число МК-шагов постепенно увеличивается обратно пропорционально добавке к энтропии ΔS_m . За 67 серий проводится около 10 млн МК-шагов.

Отметим, что при использовании алгоритма Ванга — Ландау не является обязательным получение равномерного посещения состояний, сортируемых *именно по энергии*. К примеру, в рассматриваемом в лабораторной работе применении алгоритма к континуальной полимерной системе (в отличие от полимерных систем на решетке) используется равномерное распределение цепей по параметру ξ (наименьшему расстоянию между несоседними мономерами). В этом случае нет прямой необходимости говорить о распределении по энергиям.

4. Свободносочленённая цепь

Исследуемой моделью является свободносочленённая цепь с длиной сегмента равной 1, в узлах которой расположены твёрдые шарики (мономеры) диаметром d. Цепь называется фантомной, если d=0. Конфигурацию полимера принято называть конформацией. Поэтому здесь и далее вместо слов «конфигурация» и

«конфигурационное пространство» используются соответственно «конформация» и «конформационное пространство». Конформационное пространство цепи является подпространством (подмножеством) конформационного пространства фантомной цепи той же длины. При нулевом диаметре мономеров цепь превращается в фантомную, и ей доступно всё конформационное пространство фантомной цепи. При ненулевом диаметре мономеров доступная область конформационного пространства уменьшается. Т. о., уменьшается объём доступной области конформационного пространства. Это и называется эффектом исключённого объёма. Всё взаимодействие в системе сводится только к эффекту исключённого объёма изза запрета наложения мономеров друг на друга. Взаимодействие состоит в том, что любые два мономера могут находиться на расстоянии больше d и не могут находиться на расстоянии меньше d друг от друга. Силовое взаимодействие не выражается гладкой функцией (потенциальная энергия равна либо нулю, либо бесконечности).

Исключённый объём характеризуется избыточной энтропией системы по сравнению с фантомной цепью той же длины. Энтропию фантомной цепи можно определить как $S_0 = \ln W_0$, где $W_0 = (4\pi)^N$ — объём конформационного пространства фантомной цепи, N — число сегментов цепи. Для полимера с конечным диаметром мономеров объём конформационного пространства уменьшается с W_0 до $W(d) = W_0 \cdot v(d)$, v(d) < 0, а энтропия — с S_0 до $S(d) = S_0 + \ln v(d)$. Таким образом, избыточная энтропия равна $\Delta S(d) = S(d) - S_0 = \ln v(d) < 0$, а исключенный объем — $W_0 - W(d)$. Для определения значения v(d) будем проводить случайные блуждания в конформационном пространстве фантомной цепи.

В предложенной здесь реализации случайных блужданий начальные конформации цепей строятся следующим образом. Для построения фантомной цепи случайным образом генерируются N пар переменных (θ_i, ϕ_i) $(i=1,2,\ldots,N)$, являющихся локальными сферическими координатами центра i-го мономера в системе координат, в которой центр (i-1)-го мономера находится в начале координат, а оси параллельны лабораторным осям. Угол ϕ_i равномерно выбирается случайным образом из отрезка $0 \le \phi_i \le 2\pi$, $\cos \theta_i$ равномерно выбирается случайным образом из отрезка $-1 \le \cos \theta_i \le 1$. Далее все локальные координаты переводятся в лабораторные декартовые координаты. В лабораторной системе отсчёта центр нулевого мономе-

ра располагается в начале координат $\mathbf{r}_0 = (0,0,0)$. Положение центров мономеров $\mathbf{r}_i = (x_i,y_i,z_i)$ определяется из рекурсивного соотношения:

$$\begin{cases} x_i = x_{i-1} + \sin \theta_i \cos \varphi_i, \\ y_i = y_{i-1} + \sin \theta_i \sin \varphi_i, & i = 1, 2, \dots, N. \\ z_i = z_{i-1} + \cos \theta_i, \end{cases}$$

Конформация цепи изменяется одним из двух способов, выбираемых с равными вероятностями: 1) перестройкой «хвоста» цепи случайно выбранной длины; 2) отбрасыванием начала цепи случайно выбранной длины, смещением оставшейся части в начало координат и достраиванием «хвоста» цепи до прежней длины (рептации).

Конформации цепей сортируются по наименьшему расстоянию ξ между не соседними мономерами $\xi = \min_{|i-j| \ge 2} \left| \mathbf{r}_i - \mathbf{r}_j \right|$, где i,j — номера мономеров, $\mathbf{r}_{i,j}$ — радиус-векторы центров мономеров. Очевидно, что данная величина лежит в пределах $0 \le \xi \le 2$ (объясните, почему). Этот отрезок [0;2] разбивается на $N_b = 100$ «ящиков»-отрезков одинаковой длины:

В результате вычислительного эксперимента с использованием алгоритма Ванга — Ландау определяется функция распределения по «ящикам» (Ω_k). Интегрирование (суммирование) этой функции от k-го до последнего «ящика» даёт значение $\nu(d_k) = \sum_{i=k}^{N_b} \Omega_i$, где $d_k = 2(k-1)/N_b$.

Таким образом, в результате *одного* компьютерного эксперимента определяются значения избыточной энтропии $\Delta S(d_k) = \ln \nu(d_k)$ для всего спектра диаметров мономеров ($0 \le d \le 2$).

5. Задания

1. Запустите программу и проверьте равномерность посещения «ящиков» (файл «visit.txt»). Если вас не устраивает полученный результат, изменением переменных ds0, c, mc0 и sweep, алгоритма уменьшения прибавки к энтропии (ds=ds0*pow(c,j)) и/или длительностей серий (mc=int(mc0/ds)) добейтесь меньшего отклонения от равномерного числа посещений по «ящкам».

- 2. Измените алгоритм проверки пробного состояния системы на безусловный:
 - а) Напишите функцию free(), в которой новое состояние принимается без всяких условий, массив посещений увеличивается на единицу, а массив S не используется вообще;
 - b) напишите функцию calc_omega_free(), в которой массив посещений нормировался бы на единицу и полученные значения сохранялись в массив отеда;
 - с) в главном теле программы измените вызываемые функции на написанные в пунктах а и b и запустите программу при том же полном числе совершаемых МКшагов, что и в задании 1;
 - d) сравните полученные с использованием двух алгоритмов значения массива отеда между собой.
- 3. Рассчитайте доли самонепересекающихся полимеров и избыточные энтропии в зависимости от диаметра мономеров. Постройте графики.
- 4. Повторите расчёты при других длинах полимера N. Значения N выбирайте из соображений разумной длительности счета, принимая во внимание, что число выполняемых в алгоритме операций растет квадратично с ростом длины полимера.
- 5. Постройте зависимости удельной избыточной энтропии ($\Delta S/N$) от обратной длины полимера (N^{-1}) при различных диаметрах мономеров.
- 6. Сделайте выводы.