

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN COMPLEMENTOS DE MATEMÁTICA II

Práctica 1: Relaciones de orden

- 1. Probar que en el conjunto $\{a,b\}$, hay tres órdenes posibles. ¿Y en $\{a,b,c\}$ y $\{a,b,c,d\}$?
- **2.** (\mathbb{N}, \mathbb{I}) , donde \mathbb{I} denota la relación "divide a".
 - 1. Verificar que $(\mathbb{N}, |)$ es un conjunto ordenado.
 - 2. ¿Es también un conjunto totalmente ordenado?
 - 3. Si S es el conjunto de los divisores de 60, graficar el conjunto ordenado inducido por | en S.
- **3. Yoneda Lemma.** Probar que en un preorden (P, \preceq) vale: $x \preceq y$ sii $\forall z.z \preceq x \Rightarrow z \preceq y$.
- **4.** Sea A un conjunto arbitrario. Verificar que $(\mathcal{P}(A), \subset)$ es un conjunto ordenado. ¿Es también un conjunto totalmente ordenado?
- **5.** Sea $V = \{a, b, c, d, e\}$. El grafo dirigido de la sgte. figura define un orden en V de la siguiente manera: $x \leq y$ sii x = y o existe un xy-camino dirigido.

- 1. Insertar el símbolo correcto, \preceq , \succeq o \parallel (no comparable), entre cada par de elementos:
 - (a) a e
- (b) b c
- (c) d a
- (d) c d
- 2. ¿Es un conjunto totalmente ordenado? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?
- **6.** Sea (P, \preceq) un conjunto ordenado, X un conjunto, y $p: X \to P$ una función. Se define la relación H sobre elementos de X como xHx' sii $p(x) \preceq p(x')$. ¿Qué tipo de relación es H? Dar condiciones para que H sea un conjunto ordenado.
- 7. (Prop, D), donde Prop son las fórmulas del cálculo proposicional y $\phi D \psi$ sii $\{\phi\} \vdash \psi$.
 - 1. Verificar si (Prop, D) es un conjunto ordenado. En caso de no serlo, clasificarlo.

- 2. ¿La relación es total? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?
- **8.** (Prop, I), donde $\phi I \psi$ vale sii $\emptyset \vdash \phi \Rightarrow \psi$.
 - 1. Verificar si (Prop, I) es un conjunto ordenado. En caso de no serlo, clasificarlo.
 - 2. ¿La relación es total? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?
 - 3. Explique el nexo entre esta relación y la del ejercicio anterior.
- **9.** Sea (P, \preceq) un preorden. Construir un conjunto ordenado $(P/\sim, \sqsubseteq)$, donde $x \sim y$ sii $x \preceq y$ y $y \preceq x$, tal que $\pi: P \to P/\sim$ sea monótona.

Aplicar esta construcción a la relación (Prop, D) del ejercicio anterior. Para este caso particular, la construcción se llama álgebra de Lindenbaum-Tarski.

- 10. Probar que
 - 1. Si R define un orden en el conjunto V, entonces R^{-1} también define un orden en V, llamado $orden\ inverso$.
 - 2. Si R define un orden total en el conjunto V, entonces R^{-1} también define un orden total en V.
 - 3. Si (A, \preceq) es un orden, pero no total, puede existir un $S \subset A$ tal que (S, \preceq) es un orden total.
- 11. Sea (P, \preceq) un preorden. Probar que si existe un elemento máximo, entonces todos los maximales son máximos.
- 12. Sean (A, \leq_1) y (A, \leq_2) dos conjuntos ordenados (con el mismo conjunto subyacente).
 - 1. ¿Define $\leq_1 \cap \leq_2$ un orden en A?
 - 2. ¿Define $\leq_1 \cup \leq_2$ un orden en A?
- 13. Probar que el conjunto de todos los elementos maximales (minimales) de un conjunto ordenado, es una anticadena.
- 14. Considerar el conjunto de los enteros positivos \mathbb{Z}^+ y el de los enteros negativos \mathbb{Z}^- con sus órdenes usuales. Probar que $\mathbb{Z}^+ \not\simeq \mathbb{Z}^-$.
- **15.** Sea (A, \preceq) un conjunto ordenado. Para todo elemento $a \in A$ definamos

$$S(a) = \{ x \in A : x \prec a \}.$$

- Si $\mathcal{A} = \{S(a) : a \in A\}$, ordenado por la inclusión, demostrar que $A \simeq \mathcal{A}$.
- **16.** Sean (X, \preceq_X) y (Y, \preceq_Y) dos conjuntos ordenados.

- 1. Dar un ejemplo de conjuntos (X, \preceq_X) y (Y, \preceq_Y) y una función $f: X \to Y$ que sea sobreyectiva y preserve el orden pero que no sea un isomorfismo de conjuntos ordenados.
- 2. Probar que son equivalentes:
 - a) $X \in Y$ son isomorfos.
 - b) Existe $f: X \to Y$ sobreyectiva tal que $f(a) \leq_Y f(b)$ si y sólo si $a \leq_X b$.
 - c) Existen $f: X \to Y$ y $g: Y \to X$ homomorfismos de conjuntos ordenados tales que $f \circ q = id_Y$ y $g \circ f = id_X$.
- 3. Mostrar que $(X \to Y, \preceq_{X \to Y})$ es un conjunto ordenado, donde $X \to Y$ representa las funciones entre (X, \preceq_X) y (Y, \preceq_Y) , y el orden está definido por $f \preceq_{X \to Y} g$ sii $\forall x. f(x) \preceq_Y g(x)$.
- 4. Mostrar que $(X \times Y, \preceq_{X \times Y})$ es un conjunto ordenado, donde $(x, y) \preceq_{X \times Y} (x', y')$ sii $x \preceq_X x'$ y $y \preceq_Y y'$.
- 17. Sean (X, \preceq_X) y (Y, \preceq_Y) dos conjuntos ordenados. Una conexión Galois es un par de funciones (f_*, f^*) con $f_*: X \to Y$, $f^*: Y \to X$ tal que para todos $x \in X$ y $y \in Y$ vale: $f_*(x) \preceq_Y y$ sii $x \preceq_X f^*(y)$.
 - 1. Probar que si $f_*:X\to Y$ es un isomorfismo, entonces (f_*,f_*^{-1}) es una conexión Galois.
 - 2. Dada una función $f:A\to B$, probar que se puede construir una conexión Galois entre el conjunto potencia de A y el de B utilizando los operadores que calculan la imagen de f sobre un subconjunto de A y la imagen inversa de f sobre un subconjunto de B.
 - 3. Considerando los órdenes usuales sobre \mathbb{N} y \mathbb{Q}_0^+ , encontrar f^* tal que (f_*, f^*) sea una conexión Galois donde $f_* : \mathbb{N} \to \mathbb{Q}_0^+$ es la inclusión.
 - 4. Dada una conexión Galois (f_*, f^*) entre X y Y, probar que para todo $x \in X$, $y \in Y$, vale $x \leq_X f^*(f_*(x))$ y $f_*(f^*(y)) \leq_Y y$.
 - 5. Dada una conexión Galois (f_*, f^*) entre X y Y, probar que f_* y f^* son monótonas.
- 18. Probar que la relación de isomorfismo entre conjuntos ordenados es una relación de equivalencia.