5

5

We claim:

1. A method of managing communications between service components in a cluster-

based computing environment, the cluster-based computing environment comprising a plurality

of processing nodes interconnected via a network switching system, each of the service

components being programmed on a respective one of the processing nodes, the method

comprising:

configuring filter logic in the cluster-based computing environment with rules

representative of allowed inter-node communications between service components;

detecting an attempted inter-node communication between service components;

applying the filter logic to determine that the attempted inter-node communication is not

allowed; and

responsively blocking the attempted inter-node communication.

2. The method of claim 1,

wherein each of the service components is associated with a respective service-access-

point (SAP) in the cluster-based computing environment; and

wherein configuring the filter logic with rules representative of allowed inter-node

communications between service components comprises configuring the filter logic with rules

indicating allowed communications between respective SAPs in the cluster-based computing

environment.

- 39 -

3. The method of claim 2, wherein the respective SAP of each service component

comprises an Internet Protocol address of the respective processing node on which the service

component is programmed.

4. The method of claim 3, wherein at least one of the SAPs further comprises a port

selected from the group consisting of a TCP port and a UDP port.

5. The method of claim 1,

wherein the communications between service components are packet-based; and

wherein configuring the filter logic with rules representative of allowed inter-node

communications between service components comprises configuring the filter logic with rules

each indicating an allowed combination of at least (i) a packet transport protocol, (ii) a source

address in the cluster-based computing environment and (iii) a destination address in the cluster-

based computing environment.

6. The method of claim 1, wherein the network switching system comprises a

switch, and wherein configuring filter logic in the cluster-based computing environment

comprises setting up the switch to enforce the rules.

7. The method of claim 6,

wherein the switch comprises a packet-filtering agent and a provisioning-interface

through which instructions may be provided to set up the packet-filtering agent, the switch being

- 40 -

SEVERE DE LEONEDE

arranged to translate the instructions into packet-filtering logic executable by the packet-filtering

agent; and

5

wherein setting up the switch to enforce the rules comprises providing the switch, via the

provisioning-interface, with instructions representative of the rules.

8. The method of claim 6, wherein:

each inter-node communication comprises a packet including a VLAN tag; and

setting up the switch to enforce the rules comprises setting up the switch with VLAN

logic associating each service component with a respective VLAN tag, whereby the switch may

allow a given packet to be routed to a given service component only if the VLAN tag of the

given packet is associated with the given service component.

9. The method of claim 6, wherein setting up the switch to enforce the rules

comprises setting up the switch with a plurality of static packet routes, each static packet route

correlating a respective source service-access-point with a respective destination service-access-

point.

10. The method of claim 1,

wherein at least a given one of the processing nodes includes a firewall for restricting

communications with the given processing node; and

wherein configuring filter logic in the cluster-based computing environment comprises

provisioning the firewall of the given processing node to allow communications between at least

- 41 -

5

one service component programmed on the given processing node and at least one service

component programmed on another processing node.

11. The method of claim 1, wherein the attempted inter-node communication

comprises an attempted inter-node communication between antagonistic service components.

12. The method of claim 1, wherein:

the attempted inter-node communication comprises an attempted communication of a

packet comprised of data; and

applying the filter logic to determine that the attempted inter-node communication is not

allowed comprises using the data of the packet to determine that the inter-node communication is

not allowed.

The method of claim 12, wherein the data represents information selected from 13.

the group consisting of (i) source, (ii) destination and (iii) service level.

14. The method of claim 12, wherein using the data of the packet to determine that

the attempted inter-node communication is not allowed comprises determining, based at least in

part on the data of the packet, that the attempted inter-node communication does not satisfy any

of the rules representative of allowed inter-node communications between service components.

15. The method of claim 1, wherein the attempted inter-node communication

comprises an attempted communication of a packet from a first processing node to a second

- 42 -

packet.

16. A method for managing application logic in a public computing platform, the

public computing platform comprising a network of processing nodes interconnected by a

processing node, and wherein blocking the attempted communication comprises dropping the

switching system, the method comprising:

receiving specifications of at least two computer-program applications, the applications

cooperatively comprising a number of application components;

generating access control rules defining allowed communications between the application

components;

5

15

loading the application components of the at least two applications onto at least two of

the processing nodes of the public computing platform, whereby the processing nodes may then

execute the application components; and

provisioning the public computing platform to allow inter-node communications

comprising the allowed communications between application components and to disallow other

inter-node communications,

whereby, in response to an attempted communication between application components,

the public computing platform may determine that the attempted communication is not allowed

and may responsively block the attempted communication.

17. The method of claim 16, further comprising:

- 43 -

McDONNELL BOEHNEN HULBERT & BERGHOFF 300 SOUTH WACKER DRIVE CHICAGO, ILLINOIS 60606 TELEPHONE (312) 913-0001

10

5

assigning to each application component a respective trustworthiness measure and a

respective criticality measure, and using the trustworthiness and criticality measures of a given

application component to select a given processing node of the public computing platform onto

which the given application component should be loaded,

wherein loading the application components onto the processing nodes of the public

computing platform comprises loading the given application component onto the given

processing node.

18. A public computing platform comprising:

a network switching system;

a plurality of processing nodes interconnected via the network switching system;

a plurality of application components loaded onto the processing nodes, each application

component having a respective service-access-point defining (i) a network address of the

processing node on which the application component is loaded and (ii) a port at the processing

node, the port being associated with the application component;

logic indicating allowed inter-node communications between application components;

the logic being executable, in response to an attempted inter-node communication, to

make a determination of whether the attempted inter-node communication is allowed; and

the logic being executable, in response to a determination that the attempted inter-node

communication is not allowed, to block the attempted inter-node communication.

- 44 -

5 the time that the test that the time that the 19. The public computing platform of claim 18, wherein the switching system

comprises a network switch having a packet-filtering agent, and wherein the logic is embodied at

least in part in the packet-filtering agent.

20. The public computing platform of claim 18, wherein, for a given attempted inter-

node communication between a first application component and a second application component,

the logic is executable to determine whether the given attempted inter-node communication is

allowed based at least in part on a parameter selected from the group consisting of (i) the service-

access-point of the first service application component and (ii) the service-access-point of the

second application component.

21. The public computing platform of claim 18,

wherein at least a first one of the application components loaded onto a first processing

node of the public computing platform is owned by a first application provider, and at least a

second one of the application components loaded onto a second processing node of the public

computing platform is owned by a second application provider; and

wherein the first application provider is in competition with the second application

provider for business.

22. The public computing platform of claim 21, wherein the first application

component is a component of a first application, the second application component is a

- 45 -

component of a second application, and the first application and second application are competing applications.