Limbaje Formale, Automate și Compilatoare

Curs 4

2019-19

- Corectitudinea algoritmului pentru determinarea relaţiei ρ
- Gramatici de tip 3 şi automate finite
- Proprietăţi de închidere pentru clasa limbajelor de tip 3
- Expresii regulate

- lacktriangle Corectitudinea algoritmului pentru determinarea relaţiei ho
- Gramatici de tip 3 şi automate finite
- Proprietăţi de închidere pentru clasa limbajelor de tip 3
- Expresii regulate

Algoritm pentru determinarea relaţiei ρ

```
//initializarea tablourilor,
se marchează perechile F \times (Q - F) si (Q - F) \times F
1.for (i=0; i \le n-1; i++)
2. .
      for (j=i+1, j <= n; j++) {
3.
           lista[qi,qi]=\emptyset;
4.
           if ((qi \in F \&\& qj \notin F) || (qi \notin F \&\& qj \in F))
5.
               separabil[qi,qj]=1;
6.
           else
7.
               separabil[qi,qj]=0;
8.
```

```
9.for (i=0; i \le n-1; i++)
10.
      for (j=i+1, j <= n; j++) {
        //se selecteaza doar starile inseparabile
11.
             if (separabil[qi,qj]==0) {
                 //daca exista a astfel incat \delta(qi,a) sep \delta(qi,a)
                 //inseamna ca qi si qj sunt separabile
12.
                 if (\exists a \in \Sigma : separabil[\delta(qi, a), \delta(qj, a)] == 1)
                     // qi si qj devin separabile si la fel toate
                     // perechile de stari dependente de qi,qj
13.
                     update_separabil(qi, qi);
14.
15.
                 else {
                        for (a \in \Sigma : \delta(qi, a) \neq \delta(qj, a) \&\& (qi, qj) \neq (\delta(qi, a), \delta(qj, a)))
16.
17.
                             adauga (qi, qj) la lista[\delta(qi, a), \delta(qj, a)]
18.
19.
20.
```

Algoritm pentru determinarea relaţiei ρ

```
// qi si qj devin separabile si la fel toate 

// perechile de stari dependente de qi,qj 

update_separabil(qi,qj){ 

    separabil[qi,qj] = 1; 

    for ((q'_i,q'_j) \in lista[qi,qj]){ 

        if (separabil[q'_i,q'_j] == 0) 

            update_separabil(q'_i,q'_j); 

    } 

}
```

Corectitudinea algoritmului

Teorema 1

Algoritmul se termină întotdeauna și în final se obține, pentru orice două stări q_i și q_j , $0 \le i < j \le n$: separabil $[q_i, q_j] = 1$ ddacă q_i sep q_j

Corectitudinea algoritmului

Teorema 1

Algoritmul se termină întotdeauna şi în final se obține, pentru orice două stări q_i şi q_j , $0 \le i < j \le n$: separabil $[q_i, q_j] = 1$ ddacă q_i sep q_j

(⇐=) Se arată că:

P(k): Pentru orice două stări q_i şi q_j ($0 \le i < j \le n$) separabile de către un cuvânt w cu $|w| \le k$ ($\delta(q_i, w) \in F$, $\delta(q_j, w) \notin F$), are loc:

$$separabil[q_i, q_j] = 1.$$

Inducţie după |w|.

Corectitudinea algoritmului

Teorema 1

Algoritmul se termină întotdeauna şi în final se obţine, pentru orice două stări q_i şi q_j , $0 \le i < j \le n$: separabil $[q_i, q_j] = 1$ ddacă q_i sep q_j

(⇒) Se arată că:

pentru oricare două stări q_i , q_j ($0 \le i < j \le n$) pentru care $separabil[q_i, q_j] = 1$, are loc:

 q_i sep q_j .

Inducţie asupra momentului în care algoritmul face separabil $[q_i, q_j] = 1$.

- Corectitudinea algoritmului pentru determinarea relaţiei ρ
- Gramatici de tip 3 şi automate finite
- 3 Proprietăți de închidere pentru clasa limbajelor de tip 3
- Expresii regulate

De la gramatici de tip 3 la automate finite

 Pentru orice gramatică G de tip 3 (în formă normală) există un automat A (nedeterminist) astfel ca L(A) = L(G):

În gramatica G	În automatul A
T	$\Sigma = T$
N	$Q = N \cup \{f\}, F = \{f\}$
S	$q_0 = S$
q o ap	$oldsymbol{ ho} \in \delta(oldsymbol{q},oldsymbol{a})$
q o a	$f \in \delta(q,a)$
dacă $\mathcal{S} ightarrow \epsilon$	se adaugă S la F

De la automate finite la gramatici de tip 3

 Pentru orice automat finit (nedeterminist) există o gramatică G de tip 3 astfel ca L(A) = L(G):

În automatul A	În gramatica G
Σ	$T = \Sigma$
Q	N = Q
q_0	$S=q_0$
$oldsymbol{ ho} \in \delta(oldsymbol{q},oldsymbol{a})$	q o ap
$\delta(q,a)\cap F eq\emptyset$	q o a
dacă $q_0 \in {\mathcal F}$	se adaugă $q_0 ightarrow \epsilon$

- lacktriangle Corectitudinea algoritmului pentru determinarea relaţiei ho
- 2 Gramatici de tip 3 şi automate finite
- Proprietăţi de închidere pentru clasa limbajelor de tip 3
- Expresii regulate

Închiderea la intersecție

• Dacă $L_1, L_2 \in \mathcal{L}_3$, atunci $L_1 \cap L_2 \in \mathcal{L}_3$

Fie $A_1=(Q_1,\Sigma_1,\delta_1,q_{01},F_1)$ şi $A_2=(Q_2,\Sigma_2,\delta_2,q_{02},F_2)$ automate deterministe astfel încât $L_1=L(A_1)$ şi $L_2=L(A_2)$. Automatul A (determinist) care recunoaște $L_1\cap L_2$:

$$A = (Q_1 \times Q_2, \Sigma_1 \cap \Sigma_2, \delta, (q_{01}, q_{02}), F_1 \times F_2)$$

$$\delta((q_1,q_2),a))=(q_1',q_2')$$
 ddacă

- $\delta_1(q_1, a) = q'_1$
- $\delta_2(q_2, a) = q_2'$

Închiderea la diferență

• Dacă $L \in \mathcal{L}_3$ atunci $\overline{L} = (\Sigma^* \setminus L) \in \mathcal{L}_3$

Fie $A = (Q, \Sigma, \delta, q_0, F)$ automat cu L(A) = L.

Automatul A' care recunoaşte $\overline{L} = \overline{L(A)}$:

$$A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$$

Închiderea la diferență

• Dacă $L \in \mathcal{L}_3$ atunci $\overline{L} = (\Sigma^* \setminus L) \in \mathcal{L}_3$

Fie
$$A = (Q, \Sigma, \delta, q_0, F)$$
 automat cu $L(A) = L$.

Automatul A' care recunoaşte $\overline{L} = \overline{L(A)}$:

$$A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$$

• Dacă $L_1, L_2 \in \mathcal{L}_3$ atunci $L_1 \setminus L_2 \in \mathcal{L}_3 : L_1 \setminus L_2 = L_1 \cap \overline{L_2}$

Închiderea la produs

• Fie $A_1=(Q_1,\Sigma,\delta_1,q_{01},\{f_1\})$ şi $A_2=(Q_2,\Sigma,\delta_2,q_{02},\{f_2\})$ automate cu o singură stare finală astfel încât $L_1=L(A_1)$ şi $L_2=L(A_2)$.

Automatul A (cu ϵ -tranziţii) care recunoaşte $L_1 \cdot L_2$:

$$A = (Q_1 \cup Q_2, \Sigma, \delta, q_{01}, \{f_2\})$$

Închiderea la reuniune

• Fie $A_1 = (Q_1, \Sigma_1, \delta_1, q_{01}, \{f_1\})$ şi $A_2 = (Q_2, \Sigma_2, \delta_2, q_{02}, \{f_2\})$ automate cu o singură stare finală astfel încât $L_1 = L(A_1)$ şi $L_2 = L(A_2)$.

Automatul A (cu ϵ -tranziţii) care recunoaşte $L_1 \cup L_2$:

$$A = (Q_1 \cup Q_2 \cup \{q_0, f\}, \Sigma_1 \cup \Sigma_2, \delta, q_0, \{f\})$$

Închiderea la iterație

• Fie $A = (Q, \Sigma, \delta, q_{01}, \{f\})$ automat cu o singură stare finală astfel încât L(A) = L.

Automatul A (cu ϵ -tranziţii) care recunoaşte L^* (= $L(A)^*$):

$$A = (Q \cup \{q_0, f\}, \Sigma, \delta', q_0, \{f\})$$

- 1 Corectitudinea algoritmului pentru determinarea relaţiei
- Gramatici de tip 3 şi automate finite
- 3 Proprietăți de închidere pentru clasa limbajelor de tip 3
- Expresii regulate

Expresii regulate - definiție

Reprezentarea limbajelor de tip 3 prin expresii algebrice

Definiție 1

Dacă Σ este un alfabet atunci o expresie regulată peste Σ se definește inductiv astfel:

- \emptyset , ϵ , a ($a \in \Sigma$) sunt expresii regulate ce descriu respectiv limbajele \emptyset , $\{\epsilon\}$, $\{a\}$.
- Dacă E, E₁, E₂ sunt expresii regulate atunci:
 - $(E_1|E_2)$ este expresie regulată ce descrie limbajul $L(E_1) \cup L(E2)$
 - $(E_1 \cdot E_2)$ este expresie regulată ce descrie limbajul $L(E_1)L(E_2)$
 - (E*) este expresie regulată ce descrie limbajul L(E)*

Expresii regulate - definiție

Reprezentarea limbajelor de tip 3 prin expresii algebrice

Definiție 1

Dacă Σ este un alfabet atunci o expresie regulată peste Σ se definește inductiv astfel:

- \emptyset , ϵ , a ($a \in \Sigma$) sunt expresii regulate ce descriu respectiv limbajele \emptyset , $\{\epsilon\}$, $\{a\}$.
- Dacă E, E₁, E₂ sunt expresii regulate atunci:
 - $(E_1|E_2)$ este expresie regulată ce descrie limbajul $L(E_1) \cup L(E2)$
 - $(E_1 \cdot E_2)$ este expresie regulată ce descrie limbajul $L(E_1)L(E_2)$
 - (E*) este expresie regulată ce descrie limbajul L(E)*
- Ordinea de prioritate a operatorilor este ∗, ⋅, |

Exemple

- \bullet $(a|b)|(c|d) \longrightarrow \{a,b,c,d\}$
- $(0|1) \cdot (0|1) \longrightarrow \{00, 01, 10, 11\}$
- $a^*b^* \longrightarrow \{a^nb^k|n,k\geq 0\}$
- $(a|b)^* \longrightarrow \{a,b\}^*$
- (0|1|2|...|9)(0|1|2...|9)* descrie mulţimea întregilor fără semn
- $(a|b|c|...|z)(a|b|c|...|z|0|1|2...|9)^*$ descrie mulţimea identificatorilor

Două expresii regulate E_1, E_2 sunt echivalente, şi scriem $E_1 = E_2$ dacă $L(E_1) = L(E_2)$

Proprietăți

- (p|q)|r = p|(q|r)
- (pq)r = p(qr)

- $\bullet \ \emptyset \cdot p = p \cdot \emptyset = \emptyset$
- (p|q)r = pr|qr
- $\bullet \ \epsilon | pp^* = p^*$
- \bullet $\epsilon | p^* p = p^*$