Mathematische Methoden für Informatiker

Mitschrift zur Vorlesung Sommer Semester 2019

Bachelor of Science (B.Sc.)

Dozent: Prof. Dr. Ulrike Baumann vorgelegt von

" "

ABDELSHAFI MOHAMED
m.abdelshafi@mail.de
MAHMOUD KIKI

mahmoud.kiki@tu-dresden.de

...

Tag der Einreichung: 19. April 2019

Inhaltsverzeichnis

Einleitung

Wir schreiben hier die vorlesungen von INF-120-1 (Mathematische Methoden für Informatiker) mit. wenn Ihr Fragen habt oder Fehlern gefunden Sie können gerne uns eine E-mail schreiben oder Sie können einfach bei github eine Issue (link) erstellen. wir freuen uns wenn Sie mit uns mitschreiben möchten, oder helfen mit der Fehlerbehebung.

Abdelshafi Mohamed Mahmoud Kiki

Kapitel 1

Folge und Reihen

1.1 Folgen

1.1 Definition (Folgen).

Ein folge ist eine Abbildung

$$f: \mathbb{N} \to \underbrace{\mathbf{M}}_{Menge}: \mathbf{n} \mapsto \underbrace{x_n}_{folgenglied}$$

1.2 Bemerkung.

 $\mathbf{M} = \mathbb{R}$ reelewert Folge

 $\mathbf{M} = \mathbb{C}$ komplexwertig Folge

 $\mathbf{M} = \mathbb{R}^n$ vertical Folge

Bezeichnung (x_n) mit $(x_n) = \frac{n}{n+1}$

Aufzählung der folglieder: 0 , $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, \dots

1.3 Bemerkung.

zuwerten wird N durch N 0,1 ... erstellt.

1.4 Beispiel. 1. Konstante Folge (x_n) mit $x_n = a \in M, a \dots$

$$x_n = a \in \mathbf{M}$$

- 2. Harmonische Folge (x_n) mit $x_n = \frac{1}{n+1}$ $n \ge 1$
- 3. Geometrische folge (x_n) mit $x_n = q^n$, $q \in \mathbb{R}, ...$
- 4. Fibonaccifolge (x_n) mit

$$x_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

5. Fibonacci folgen (x_n)

$$X_0 = 0$$

 $X_1 = 1$
 $x_n + 1 = x_n + x_{n-1}$ $(n > 0)$

6. conway folge

7. folge aller Primzahlen:

$$2, 3, 5, 7, 11, 13, \dots$$

1.2 Rechnen mit Folgen

$$(M = \mathbb{R} \quad oder \quad M = \mathbb{C})$$

 $(x_n) + (y_n) := (x_n + y_n)$
 $K(x_n) := (Kx_n) \in \mathbb{R} \quad oder \quad \in \mathbb{C}$

1.5 Bemerkung.

Die Folge bildet ein Vektorraum.

1.6 Definition.

- 1. Eine reellwertige Funktion ist in der Mathematik eine Funktion, deren Funktionswerte reelle Zahlen sind.
- 2. Eine reellwertige heißt beschränkt wenn gilt

$$\exists r \in \mathbb{R}_+, \forall r \in \mathbb{N} : |x_n| \leq r$$
Betrag einer reellen oder komplexer Zahl

1.7 Beispiel.

$$(x_n)$$
 mit $x_n = (-1)^n \times \frac{1}{n}$
-1, $\frac{1}{2}$, $\frac{-1}{3}$, $\frac{1}{4}$, $\frac{-1}{5}$,...

1.8 Bemerkung.

 (X_n) ist beschränkt mit r=1 denn $|(-1)^n \frac{1}{n}| = |\frac{1}{n}| \le 1$

1.9 Bemerkung.

 (x_n) ist beschränkt mit r = 1 denn $|(-1)^n \frac{1}{n}| = |\frac{1}{n}| \le 1 \leftrightarrow r$

1.10 Beispiel.

$$(x_n)$$
 mit $x_n = (-1)^n$ $\frac{1}{n} + 1$ bechränkt $r = 3/2$
 $-3/2 \le x_n \le 3/2 \quad \forall n \in \mathbb{N}$

1.11 Beispiel.

Standard:

Die folge
$$\left(\left(1+\frac{1}{n}\right)^{n}\right)_{n=1}^{\infty}$$
 ist beschränkt durch 3

Zu zeigen: $-3 \le x_{n} \le 3$ für alle $n \in \mathbb{N}$

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} . b^{n.k} = \sum_{k=0}^{n} \binom{n}{k} a^{n.k} b^{k}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k!)} = \frac{n(n-1) - (n-k-1)}{k!}$$

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{23} + \frac{1}{234} + \dots$$

1.3 geometrische Summen Formel (Tafelwerk)

1.12 Definition.

Die Folge (x_n) heißt monoton $\{wachsend fallend\}$

wenn
$$gilt: \forall n \in \mathbb{N}: \begin{cases} x_n \leq x_n + 1 \\ x_n \geq x_n + 1 \end{cases}$$

 $man \ spricht \ von \ Streng \ monotonie \ wenn \leqq durch > und \geqq durch < \dots$

1.13 Bemerkung.

$$x_n \le X_{n+1} \iff x_n - X_{n+1} \le 0 \iff \frac{x_n}{X_{n+1}} \le 1$$

1.14 Beispiel.

$$(x_n) \ mit \ X_0 := 1 \ , X_{n+1} := \sqrt{x_n + 6}$$

ist Streng monoton wachsend Beweis mit Vollständiger Induktion

Standard Bsp: $((1+\frac{1}{n})^n)$ ist streng monoton wachsend

1.15 Bemerkung.

monoton	ja	nein
Beschränkkeit nein	$\binom{\frac{1}{n}}{(n)}$	$(-1)^n$ $(-1)^n$

1.16 Definition.

 (x_n) heißt Konvergenz wenn (x_n) ein grenzwert hat.

 (x_n) heißt **Divergenz** wenn sie keinen grenzwert hat.

1.17 Definition (grenzwert).

 $a \in \mathbb{R}$ heißt grenzwert von (x_n) , wenn gilt:

$$\underbrace{\forall \epsilon > 0}_{beliebes\ klein} \quad \underbrace{\exists \mathbf{N} \in \mathbb{N}}_{beliebes\ klein} \underset{a=\epsilon \leqslant r_n \leqslant a+\epsilon}{\underbrace{\exists \mathbf{N} \in \mathbb{N}}}, \forall n \in \mathbb{N} : n \ge \mathbb{N}$$

Sei
$$\varepsilon > 0$$
; ε fest

alle folglieder x_n mit $n \geq \mathbb{N} \curvearrowright$

ist die folge beschränkt, monoton?

$$(x_n)$$
 konvergierend : $\iff \exists a \in \mathbb{R} \quad \forall \epsilon > 0 \quad \exists n \in \mathbb{N} \quad \forall n \in \mathbb{N}$
 $n \ge N \Rightarrow |x_n - a| < \epsilon$

1.18 Satz. (X_n) konvergierend : \Rightarrow Der Grenzwert ist eindeutig beschränkt.

Beweis. Sei a eine Grenzwert von (X_n) , b eine Grenzwert von (X_n) d.h sei $\epsilon > 0, \epsilon$ beliebig, ϵ fest

$$\exists N_a \quad \forall n \ge N_a : |X_n - a| < \epsilon \tag{1.18.1}$$

$$\exists N_b \quad \forall n \ge N_b : |X_n - b| < \epsilon \tag{1.18.2}$$

Sei max $N_a, N_b = N$ dann gilt :

$$n \ge N \Rightarrow |X_n - a| < \epsilon \tag{1.18.3}$$

und

$$|X_n - b| < \epsilon \Rightarrow |X_n - a| + |X_n - b| < 2\epsilon \tag{1.18.4}$$

Annahme :- $a \neq b$, $d.h |a - b| \neq 0$

$$|a-b| = |a+0-b| = |(a-X_n) + (X_n-b)| \le |X_n-a| + |X_n-b| < 2\epsilon$$

also $|a-b| < 2\epsilon$

1.19 Beispiel.

$$\epsilon = \frac{|a-b|}{\epsilon}$$
 $dann \ gilt : |a-b| < 2\frac{|a-b|}{3}$

 $\Rightarrow 1 < \frac{2}{3} \quad falls \quad Aussage, Widerspruch \quad also \quad ist \quad die \quad Annahme \quad falsch \quad also \quad gilt \quad a = b$

1.20 Beispiel.

 X_n mit $X_n = \frac{1}{n}$ (harmonische Folge)

Beweis. Sei $\epsilon > 0, \epsilon belibig, \epsilon fest$ gesucht : N mit $n \geq$ N

$$\Rightarrow |X_n - a| = \left| \frac{1}{n} = 0 \right| = \frac{1}{n} < \epsilon \tag{1.20.1}$$

wähle $N := \left\lceil \frac{1}{\epsilon} \right\rceil + 1$

1.21 Beispiel.

 $\epsilon = \frac{1}{100}$, gesucht N mit $n \geq N \Rightarrow \frac{1}{n} < \frac{1}{100}$ wähle N = 101

Schreibweise: X_n hat den Grenzwert a Limes $\lim_{n\to\infty} x_n = a \ X_n$ geht gegen a für n gegen Unendlich.

7

1.22 Definition.

 X_n heißt Nullfolge ,wenn $\lim X_n = 0$ gilt.

1.23 Bemerkung.

Es ist leichter, die konvergente einer Folge zu beweisen, als den Grenzwert auszurechnen.

1.24 Beispiel.

$$x_n = \frac{1}{3} + \left(\frac{11-n}{9-n}\right)^9$$

Behauptung: $\lim_{n\to\infty} x_n = \frac{-2}{3}$

1.25 Lemma.

$$\lim_{n \to \infty} x_n + y_n = \left(\lim_{n \to \infty} x_n\right) + \left(\lim_{n \to \infty} y_n\right) \tag{1.25.1}$$

$$= \lim_{n \to \infty} \left(\left(\frac{1}{3} \right) + \left(\frac{11 - n}{9 + n} \right)^9 \right) = \lim_{n \to \infty} \frac{1}{3} + \lim_{n \to \infty} \left(\frac{11 - n}{9 + n} \right)^9 \tag{1.25.2}$$

$$= \frac{1}{3} + \left(\lim_{n \to \infty} \frac{11 - n}{9 + n}\right)^9 \tag{1.25.3}$$

$$= \frac{1}{3} + \lim_{n \to \infty} \left(\frac{n(\frac{1}{n} - 1)}{n(\frac{9}{n} + 1)} \right)^{9}$$
 (1.25.4)

$$= \frac{1}{3} + \left(\frac{\lim_{n \to \infty} \left(\frac{11}{n}\right)}{\lim_{n \to \infty} \left(\frac{9}{n} + 1\right)}\right)^{9} \tag{1.25.5}$$

$$= \frac{1}{3} + \left(\frac{\lim_{n \to \infty} \frac{11}{n} - \lim_{n \to \infty} 1}{\lim_{n \to \infty} \frac{9}{n} + \lim_{n \to \infty} 1}\right)^{9}$$
(1.25.6)

$$= \left(\frac{\lim_{n \to \infty} 11 \times \lim_{n \to \infty} \left(\frac{1}{n} - 1\right)}{\lim_{n \to \infty} 9 \times \lim_{n \to \infty} \left(\frac{1}{n} + 1\right)}\right)^{9}$$
(1.25.7)

$$\frac{1}{3} + (-1)^9 = \frac{1}{3} - 1 = \frac{-2}{3} \tag{1.25.8}$$

1.26 Definition.

Eine Folge (X_n) hat den unendliche Grenzwert ∞ , wenn gilt:

$$\forall r \in \mathbb{R} \quad \exists N \in N \quad \forall n \ge N : X_n > r$$

 $Schreibweise: \lim_{n\to\infty} X_n = \infty$

1.27 Bemerkung.

 ∞ ist keine Grenzwerte und keine reelle Zahl.

1.28 Bemerkung.

Grenzwertsätze gelten nicht für uneigentliche Grenzwerte.

1.29 Bemerkung.

$$gilt \lim_{n \to \infty} X_n = \infty \quad dann \quad schreibt \quad man \quad \lim_{n \to \infty} X_n = -\infty$$

1.30 Beispiel.

 $X_n \ mit \ X_n = q^n \ , \ q \in \mathbb{R} \ , \ q \ fest.$

$$\lim_{n\to\infty}q^n=\begin{cases} 0, & |q|<1\\ 1, & |q|=1\\ \infty, & q>1\\ ex.nicht, & q\leq -1 \end{cases}$$

1.4 Konvergenzkriterien

(zum Beweis der Existenz eine Grenzwert, nicht zum berechnen von Grenzwert)

(1) X_n konvergent \Rightarrow (X_n) beschränkt.

wenn (X_n) nicht beschränkt $\Rightarrow (X_n)$ nicht konvergent.

- (2) Monotonie Kriterium: wenn (X_n) beschränkt ist können wir fragen ob (X_n) konvergent.
 - (X_n) beschränkt von Monotonie $\Rightarrow (X_n)$ konvergent.

1.31 Bemerkung.

1.32 Beispiel.

$$\lim_{n \to \infty} \frac{11+1}{9-n} \quad ? \quad X_n = \frac{11+1}{9-n} = \frac{n}{n} \frac{\frac{11}{n}+1}{\frac{9}{n}-1}$$
 (1.32.1)

$$\lim_{n \to \infty} \left(\frac{11}{n} + 1 \right) = 1 \tag{1.32.2}$$

$$\lim_{n \to \infty} \left(\frac{9}{n} + 1 \right) = -1 \tag{1.32.3}$$

$$\lim_{n \to \infty} (X_n) = \frac{1}{-1} = -1 \tag{1.32.4}$$

1.33 Lemma. Seien $(x_n) = (y_n)$ Folgen auf $\lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (y_n) = a$ und es gelte $x_n \le z_n \le y_n$ für fest alle " $n \in \mathbb{N}$

Dann gilt für die Folge (Z_n) $\lim_{n\to\infty} (z_n) = a$

1.34 Beispiel.

Ist die Folge $(-1)^n \frac{1}{n}$ konvergent ?

$$-\frac{1}{n} \le (-1)^n \left(\frac{1}{n}\right) \le 1\frac{1}{n}$$

$$\lim_{n \to \infty} -\left(\frac{1}{n}\right) = -1$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) = 0 \Rightarrow \lim_{n \to \infty} (-1)^n \frac{1}{n} = 0$$

1.35 Beispiel.

$$x_n \le \frac{a^n}{n!} = \frac{a}{n} \times \frac{a^{a-1}}{n-1!} \tag{1.35.1}$$

 $denn \ x_n = 0 \le \frac{a_n}{n!} \le y_n \ , \ gesucht! \qquad y_n \qquad f\"{u}r \ hinreichend \ großes \ n.$ $\frac{a^n}{n!} = \frac{a}{n} \times \frac{a^{n-1}}{(n-1)!}$ $\le \frac{1}{2} \times \frac{a^{n-1}}{(n-1)!}$ $= \frac{1}{2} \times \frac{a}{(n-1)} \times \frac{a^{n-2}}{(n-2)!}$ $\le \frac{1}{2} \times \frac{1}{2} \times \frac{a^{n-2}}{(n-2)!}$ $\le \frac{1}{2} \times \frac{1}{2} \times \frac{a^{n-3}}{(n-3)!}$ $y_n = (\frac{1}{2})^{n-k} \times \frac{a^k}{k!} \quad k \ ist \ fest$ (1.35.2)

Es gilt $\frac{a^n}{n!} \le y_n$ für hinreichend großes n und $\lim_{n \to \infty} (y_n)$

$$= \lim_{n \to \infty} \left(\frac{1}{2}\right)^{n-k} \times \underbrace{\frac{a^{l}}{k!}}_{Konst}$$

$$= \lim_{n \to \infty} \left(\frac{1}{2}\right)^{n} \times \lim_{n \to \infty} \left(\frac{1}{2}\right)^{-k} \times \lim_{n \to \infty} \left(\frac{a^{k}}{k!}\right)$$

$$= 0.\left(\frac{1}{2}\right)^{-k} \times \frac{a^{k}}{k!} = 0$$

$$(1.35.3)$$

1.5 Grenzwerte rekursive definierte Folgen:

man kann oft durch lösen Fixpunktgleichung" berechnen. x_0 , $x_n + 1 = ln(x_n)$

1.36 Beispiel.

$$(x_n)$$
 $x_0 = \frac{7}{5}$, $x_n + 1 = \frac{1}{3}(x_n^2 + 2)$

 $\ddot{U}\left(x_{n}\right)$ ist monoton fallend , beschränkt , konvergent .

$$\lim_{n \to \infty} x_n = a \quad , \quad \lim_{n \to \infty} x_n + 1 = a$$

$$\lim_{n \to \infty} x_n + 1 = \lim_{n \to \infty} \frac{1}{3} (x_n^2 + 2) \frac{1}{3} \lim_{n \to \infty} (x_n^2 + 2) = \frac{1}{3} (\lim_{n \to \infty} (x_n))^2 + 2)$$

Fixpunktgleichung

$$a = \frac{1}{3}(a^2 + 2)$$
, gesucht = a

$$3a = a^2 + 2 \Leftrightarrow a^2 - 3a + 2 = 0$$

$$\Leftrightarrow a_{1/2} = \frac{3}{2} \pm \sqrt{\frac{9}{4} - \frac{8}{4}} = \frac{3}{2} \pm \frac{1}{2}$$

Lösung: $a_1 = 2$ (keine Lösung), $a_2 = 1$

1.37 Beispiel.

$$(x_n)$$
 mit $(x_0) = c \in \mathbb{R}, c \text{ fest } x_{n+1} = \frac{1}{2}(x_n + \frac{c}{x_n})$

(1) (x_n) beschränkt \checkmark

(2) (x_n) Monoton \checkmark

Also (x_n) konvergent

Sei
$$\lim_{n \to \infty} x_n = a$$
. Dann $\lim_{n \to \infty} x_{n-1} = \lim_{n \to \infty} \frac{1}{2}(x_n) + \frac{c}{x_n} = \frac{1}{2}(a + \frac{a}{c}) = a$

$$\Leftrightarrow 2a = a + \frac{c}{a} \Leftrightarrow a = \frac{c}{a} \Leftrightarrow a^2 = c \Leftrightarrow a = \sqrt{c}$$

1.38 Bemerkung.

Der Nachweis der konvergent der rekursiv definierte Folge darf nicht weggelassen werden, denn Z.B $x_0 = 2$, $x_n + 1 = x_n^2$ 2, 4,16,256, ... divergent gegen + ∞

Annahme:
$$\lim_{n \to \infty} x_n = a$$
 $\underbrace{\lim_{n \to \infty} x_{n+1}}_{a} = \underbrace{\lim_{n \to \infty} x_n^2}_{a} \Rightarrow a \in \{0, 1\}$

1.6 Reihen:

1.39 Definition.

 $Sei(a_n)$ eine reellefolge (komplexwertig) Folge

$$\sum_{k=0}^{n} a_k = a_a, a_1, \dots, a_n,$$

heißt n-k heißt partielle Summe. (S_n) heißt unendliche Reihe. schriebweise : $(S_n)^{\infty} = bsw(S_n)$

$$\left(\sum_{l=0}^{n} a_l\right)$$

bzw

$$\left(\sum_{l=0}^{\infty} a_l\right)$$

1.40 Bemerkung.

Reihen sind spezielle Folgen, alle konvergent oder divergent.

1.41 Definition.

Für eine konvergente Reihen wird der Grenzwert auch wert der Reihe genannt.

1.6.1 Schreibweise

$$: \lim_{n \to \infty} S_n =$$

$$\lim_{n\to\infty}\sum_{k=0}^n a_k$$

bzw

$$\sum_{k=0}^{\infty} a_k$$

1.42 Beispiel.

Teleskopreihe

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) in \ Grenzwert \ der \ Reihe \ ist$$

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k-1}\right) = 1$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k-1}\right)$$

$$= \lim_{n \to \infty} \left(\frac{-1}{2}\right) + \frac{1}{2} \left(\frac{1}{3} + \frac{1}{3}\right) \left(-\frac{1}{4}\right) + \cdots + \left(\frac{1}{n}\right) - \frac{1}{n+1}$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$
(1.42.1)

1.43 Beispiel.

geometrische Reihe $\sum_{k=0}^{\infty}q^k$ ist für |q|<1 konvergent . wert der Reihe für |q|<1 : ist für

konvergent . wert der Reihe für $|q|<1~\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}$ für

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

 $f\ddot{u}r \; |q| < 1 \; |q| < 1 \; konvergent \; , \; werte \; der \; Reihe \; f\ddot{u}r$

$$|q| < 1 : \sum_{k=0}^{n} q^{k} = \dots$$

$$S_{n} = q^{0} + q^{1} + \dots + q^{n}| * q$$

$$-qS_{n} = q^{1} + q^{2} + \dots + q^{n+1}$$

$$(1 - q)S_{n} = q^{0} - q^{n} + 1$$

$$S_{n} = \frac{1 - q^{n+1}}{1 - q} = \frac{1}{1 - q} (1 - q)^{n+1}$$

$$\Rightarrow \lim_{n \to \infty} S_{n} = \frac{1}{1 - q} \times \lim_{n \to \infty} ((1 - q)^{n+1})$$

$$= \frac{1}{1 - q} (1 - \lim_{n \to \infty} q^{n+1}) = \frac{1}{1 - q} (1 - \lim_{n \to \infty} q^{n+1})$$

$$(1.43.1)$$

1.7 Rechnenreglen für Regeln:

Konvergenden Reige kann man addieren , subtrahieren, mit einem Skaler multiplizieren wie endlichen Summen

ABER:

Das gilt im Allgemein nicht für das multiplizieren

1.8 Reihen

1.44 Beispiel.

Zur geometrischen Reihen gesucht : A

$$2A = 1^2 + (\frac{1}{2})^2 + (\frac{1}{4})^2 + \dots + (\frac{1}{k})^2 + \dots$$

$$= \left(\frac{1}{4}\right)^0 + \left(\frac{1}{4}\right)^1 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{2^2}\right)^3 + \left(\frac{1}{2^2}\right)^k + \dots$$

$$9 = \frac{1}{4} = \frac{1}{1 - \frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3} = 2A \Rightarrow A = \frac{2}{3}$$

1.45 Beispiel.

$$0, 4\overline{3} = \frac{3}{4} + \frac{3}{100} + \frac{3}{10000} + \dots$$

$$\frac{4}{10} + \frac{3}{100} (\frac{1}{10})^0 + \frac{1}{10} + \frac{3}{10^2} + \dots$$

$$= \frac{4}{10} + \frac{3}{100} \times \frac{1}{1 - \frac{1}{10}}$$

$$= \frac{4}{10} + \frac{1}{30} = \frac{12 + 1}{30} = \frac{13}{30}$$

$$(1.45.1)$$

wenn $0,4\overline{3}$ erlaubt wäre, dann,

$$\frac{4}{10} + \frac{9}{100} \times \frac{10}{9} = \frac{4}{10} + \frac{1}{10} = \frac{5}{10} = \frac{1}{2} = 0.5$$

1.46 Beispiel.

$$\sum_{R=1}^{\infty} \frac{1}{K} \text{ ist divergent , denn } \lim_{\infty} \sum_{K=1}^{n} \frac{1}{k} \text{ ex. nicht}$$

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \dots + \frac{1}{16} + \dots + \frac{1}{n}$$

$$> 1 + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{10} + \frac{1}{16} + \dots + \frac{1}{n}}_{n \to \infty}$$

$$1 + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{10} + \frac{1}{16} + \dots + \frac{1}{n}}_{n \to \infty} s_n = \infty$$

1.9 Allgemeine harmonische Reihe

$$\sum_{K=1}^{\infty} \frac{1}{k^{\alpha}} \quad (\infty \text{fest}) \qquad \alpha > 1 \to \mathbb{R}$$

$$\alpha \leq \to dev$$

1.47 Beispiel.

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \quad ist \ konvergent$$

Beweis mit Monotoniekriterium für Folge

Reihe ist konvergent
$$\begin{cases} (1) & \sum_{K=1}^{n} \frac{1}{k^2} \text{ ist monoton wachsend;} \\ (2) & \sum_{K=1}^{n} \frac{1}{k^2} \text{ ist beschränkt.} \end{cases}$$

$$\begin{split} \sum_{K=1}^{\infty} \frac{1}{k^2} &= \frac{1}{1} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots + \frac{1}{8^2} \\ &< 1 + \frac{1}{4} + \underbrace{\frac{1}{2^2} + \frac{1}{2^2}}_{2 \cdot \frac{1}{4}} + \underbrace{\frac{1}{4^2} + \dots + \frac{1}{4^2}}_{4 \cdot \frac{1}{4^2}} + \end{split}$$

$$1 + \frac{1}{4} + \frac{1}{2} \cdot 1 + \underbrace{\frac{1}{4}}_{(\frac{1}{2})^2} + \underbrace{\frac{1}{8}}_{(\frac{1}{2})^3} = 1 + \frac{1}{4} + \underbrace{\frac{\frac{9}{4}}{1 - \frac{1}{2} - 1}}_{1 - \frac{1}{2} - 1}$$

1.10 Expotentiale Reihe

$$\sum_{k=0}^{\infty} \frac{1}{k!} = \lim_{n \to \infty} (1 - \frac{1}{n})^n =: e \text{ist konvergent}$$

Konvergentkreterium für Reihen

für Folge

Kreterien für absolute konvergenz

Hauptkriterium

konvergent Reihen

Hauptkriterium $\sum_{K=0}^{\infty} a_k$ konvergent $\rightarrow (a_k)$ Nullfolge $\lim_{k\to\infty} a_k = 0 \neq 0 \Rightarrow (a_k)$ nullkonvergent $\lim_{k\to-\infty} a_k ex.null$

1.48 Beispiel.

$$\sum_{K=1}^{\infty} \frac{3k^2+1}{4k^2-1} \quad divergend, \quad ABER \sum_{K=1}^{\infty} \frac{1}{k} \quad divergend und \ \frac{1}{k} \ \textit{Null folge}$$

1.49 Beispiel.

$$\sum_{K=0}^{\infty} a_k konv. \Rightarrow \underbrace{\left(a_k Null folge\right)}_{\underset{k\to\infty}{\lim} a_k=0}$$

$$\begin{split} s_n &= \sum_{K=0}^n a_k, s_{n+1} = \sum_{k=0}^{n+1} \qquad s_{n+1} = s_n + a_{n+1} \\ s &= \lim_{n \to \infty} s_n = \lim_{n \to \infty} s_{n+1} \qquad \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} s_{n+1} - \lim_{n \to \infty} s_n = s - s = 0 \end{split}$$

1.11 Kriterium für Alternierende Reihe

1.50 Beispiel.

Alternierende $\sum_{K=0}^{\infty} (-1)^k \frac{1}{k}$ ist konvergent $\sum_{K=0}^{\infty} (-1)^k a_k$ wobei (a_k) einer Streng monoton fallend Nullfolge mit $a_k \ge 0$ \Rightarrow Die Reihe ist konvergent. Also $\sum_{K=0}^{\infty} (-1)^k \frac{1}{k}$ ist konvergent.

1.51 Definition (Reihe).

Reihe $\sum_{K=0}^{\infty} a_k$ heiß absolute konvergent wenn $\sum_{K=0}^{\infty} |a_k|$ konvergent ist.

1.52 Beispiel.

$$\sum_{K=1}^{\infty} (-1)^k \frac{1}{k} \text{ ist konvergent , aber nicht absolute konvergent}$$

$$\sum_{K=1}^{\infty} (-1)^k \frac{1}{k^2} \text{ ist kovergend und abslute konvergent}$$

1.53 Satz. Reihe $\sum_{K=0}^{\infty} a_k$ abslot konvergent \Rightarrow Reihe $\sum_{K=0}^{\infty} a_k$ ist kovergend

1.54 Bemerkung.

Abslote konvergente Reihe kann man multiplizieren wie endliche summen d Reihen null

1.12 Quotionkriterium

(QK) für (endliche) d

$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$$

 $\langle 1 \Rightarrow \sum_{K=0}^{\infty} a_k \text{ in absolut d} \rangle$

 $> 1 \Rightarrow \text{ist divergend}$

= 1 kriterium ist nicht anwendbar

1.13 Wurzel kriterium

[WK] (WK) für (abslute) d $\lim_{k\to\infty} \sqrt[k]{|a_k|}$ $< 1 \Rightarrow \sum_{K=0}^{\infty} a_k$ in (abslute) d $> 1 \Rightarrow$ divergend = 1 kriterium ist nicht anwendbar

1.55 Beispiel (QK).

$$\sum_{k=0}^{\infty} \frac{1}{k!} \lim_{k \to \infty} \left| \frac{\frac{1}{(k+1)!}}{\frac{1}{k!}} \right| = \lim_{k \to \infty} \frac{k!}{(k+1)!}$$
$$= \lim_{n \to \infty} \frac{1}{k+1}$$
$$= 0 < 1 \Rightarrow Reihe \quad als \quad konv.$$

1.56 Beispiel (WK).

$$\lim_{k \to \infty} \sqrt[k]{\frac{1}{k!}} = \lim_{k \to \infty} \frac{\sqrt[k]{1}}{\sqrt[k]{k!}} = \frac{1}{\lim_{k \to \infty} \sqrt[k]{k!}} = 0$$

$$< 1$$

$$\Rightarrow Reihe \quad als \quad konv.$$

List of Theorems

List of Theorems