

Review Sheet: Hyperbolic Functions

Content Review

Overview

Basic Definitions

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
$$\cosh x = \frac{e^x + e^{-x}}{2}$$

For the remaining hyperbolic functions, apply the same relationships that you already know for basic trigonometry:

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\coth x = \frac{\cosh x}{\sinh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\operatorname{csch} x = \frac{1}{\sinh x}$$

Basic Properties

Notice that the hyperbolic functions have effectively the same properties as their trigonometric counterparts

$$\sinh(-x) = -\sinh x$$

$$\cosh(x) = \cosh x$$

$$\tanh(-x) = -\tanh x$$

$$\coth(-x) = -\coth x$$

$$\operatorname{sech}(-x) = \operatorname{sech}x$$

$$\operatorname{csch}(-x) = -\operatorname{csch}x$$

Identities

Note that the signs for these identities are not the same as trigonometric identities. Be very careful of which signs you use.

$$\cosh^2 x - \sinh^2 x = 1$$
$$\tanh^2 x + \operatorname{sech}^2 x = 1$$

Additive identities for hyperbolic functions can also be derived in a similar way to trigonometric functions.

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$$
$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$$

Double angle identities for hyperbolic functions are as follows:

$$\sinh 2x = 2\sinh x \cosh x$$
$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

Inverse Hyperbolic Functions

$$\sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1})$$
$$\cosh^{-1}(x) = \ln(x + \sqrt{x^2 - 1})$$
$$\tanh^{-1}(x) = \frac{1}{2} \ln \frac{1 + x}{1 - x}$$

An example of deriving these inverses is shown below:

Note: $y = \sinh x \iff \sinh^{-1} y = x$

Thus,

$$y = \sinh x = \frac{e^x - e^{-x}}{2} \longleftrightarrow 2y = e^x - e^{-x}$$

$$\Rightarrow 2y = e^x - \frac{1}{e^x}$$

$$\Rightarrow 2y = \frac{e^{2x} - 1}{e^x}$$

$$\Rightarrow 2ye^x = e^{2x} - 1$$

$$\Rightarrow e^{2x} - 2ye^x - 1 = 0$$
 Solve this by treating e^x as a variable and applying the quadratic formula
$$\Rightarrow e^x = \frac{2y \pm \sqrt{4y^2 + 4}}{2} = y \pm \sqrt{y^2 + 1}$$
 Since log only takes positive numbers, choose the positive sign
$$\Rightarrow x = \ln(y + \sqrt{y^2 + 1})$$

$$\Rightarrow \sinh^{-1}(y) = \ln(y + \sqrt{y^2 + 1})$$

Derivatives of Hyperbolic Functions

$$\frac{d}{dx}\sinh x = \cosh x$$

$$\frac{d}{dx}\cosh x = \sinh x$$

$$\frac{d}{dx}\tanh x = \operatorname{sech}^{2}x$$

$$\frac{d}{dx}\coth x = \operatorname{csch}^{2}x$$

$$\frac{d}{dx}\operatorname{sech}x = \tanh x \cdot \operatorname{sech}x$$

$$\frac{d}{dx}\operatorname{csch}x = -\coth x \cdot \operatorname{csch}x$$

Resources

Related Rates

- Content: Hyperbolic Functions (Whitman Edu)
- Content: Derivatives of Hyperbolic Functions (Paul's Online Notes)
- Content: Hyperbolic Functions Explained (MathCenter UK)
- Video: Hyperbolic Trig Functions, Basic Introduction (Organic Chemistry Tutor, 10 min)
- Video: Graphs of Hyperbolic Trig Functions (Organic Chemistry Tutor, 23 min)
- Video: Evaluating Hyperbolic Trig Functions (Organic Chemistry Tutor, 9min)

- Video: Hyperbolic Trig Identities (Organic Chemistry Tutor, 10 min)
- Practice Problems: Hyperbolic Functions
- Practice Problems: Hyperbolic Function (Calculus)

Acknowledgement

Questions in the Worked Problems section of this sheet have been taken from external sources that have been linked where appropriate. All solutions have been created independently.

Worked Problems

Find the derivative of the following functions:

1.

 $y = \tanh x$

Note: You can just remember the answer. But treat this problem as an exercise in what to do if you don't know the answer.

$$y = tanh(x) = \frac{sinh(x)}{cosh(x)} - v$$

Apply Quotient Rule:

$$U = Sinh(x)$$
 $V = Cosh(x)$
 $U' = Cosh(x)$ $V' = Sinh(x)$

By Quotient Rule:

$$\frac{d}{dx} \frac{\sinh(x)}{\cosh(x)} = \frac{u't - v'u}{v^2} = \frac{\cosh^2(x) - \sinh^2 x}{\cosh^2 x}$$

Remember hyperbolic identity: $Cosh^2x-sinh^2x=1$

simplifying using identity:

$$\frac{d}{dx} \frac{\sinh(x)}{\cosh(x)} = \frac{1}{\cosh^2 x} = \operatorname{Sech}^2(x) = \frac{dy}{dx} = \operatorname{Sech}^2 x$$

2.

$$y = e^x \cosh x$$

Need to apply Product Rule:

$$u = e^x$$
 $y = coshx$
 $u' = e^x$ $y' = sinhx$

Applying product Rule:

Applying product records
$$\frac{dy}{dx} = e^{x}(coshx + e^{x}sinhx) = e^{x}(coshx + sinhx)$$

$$y = \cosh x^3$$

y=
$$cosh(x^3)$$
 Goal: Find dy dx

Need to apply chain Rule.

Let y = $cosh(a)$ \longrightarrow dy = $sinh(a)$

and $a = x^3$ \longrightarrow da = $3x^2$

Applying Chain Rule:

 $cosh(x^3)$ \longrightarrow $cosh(a)$ \longrightarrow $osh(a)$ \longrightarrow $cosh(a)$ \longrightarrow $osh(a)$ \longrightarrow $cosh(a)$ \longrightarrow

$$\frac{dy}{dx} = \sinh(a) \cdot 3x^2 = \sinh(x^3) \cdot 3x^2$$

4.

 $y = \cosh \ln x$

$$y = \cosh(\ln(x))$$
 Goal: Find $\frac{dy}{dx}$

Need to apply chain Rule.

Need to apply chain Rule:

Let
$$y = \cosh(a) \longrightarrow \frac{dy}{da} = \sinh(a)$$

and $a = \ln(x) \longrightarrow \frac{da}{dx} = \frac{1}{x}$

Applying Chain Rule:

$$\frac{dy}{dx} = \frac{dy}{da} \cdot \frac{da}{dx}$$

$$\frac{dy}{dx} = \sinh(a) \cdot \frac{1}{x} = \sinh(\ln(x)) \cdot \frac{1}{x}$$

$$y = \sin^{-1}(\tanh x^2)$$

Note: It might be tempting to directly apply chain rule. But unless you know the derivative of sin- (x), this can get messy. We will use a much cleaner method involving implicit differentiation.

$$y = \sin^{-1}(\tanh(x^2))$$
 \Longrightarrow $\sin(y) = \tanh(x^2)$

Now take derivative w.r.t. x on both sides.

$$(os(y) \cdot dy = sech^2(x^2) \cdot 2x$$
 dx
 $comes from chain rule implicit differentiation$

Rearranging in terms of dy:

$$\frac{dy}{dx} = \frac{\operatorname{sech}^{2}(x^{2}) \cdot 2x}{\cos(y)}$$

$$\frac{dy}{dx} = \frac{\operatorname{Sech}^{2}(x^{2}) \cdot 2x}{\cos(\sin^{-1}(\tanh(x^{2})))}$$
substituting y in terms of x.

Find the following antiderivatives: (Source)

1.

$$\int \sinh^4(x) \cdot \cosh x dx$$

$$\int \sinh^4(x) \cdot \cosh(x) \ dx$$

Strategy: Try to apply u substitution. Notice that cosh(x) is a derivative of sinh(x). So, if we set sinh(x) = u then something might cancel out.

Let
$$u = \sinh(x) \longrightarrow r \frac{du}{dx} = \cosh(x) \longrightarrow r dx = \frac{1}{\cosh(x)} du$$

Performing substitution:

Performing substitution:
$$\int \frac{\sinh^4(x) \cdot \cosh(x)}{u^4} \frac{dx}{\cos h(x)} = \int u^4 \cdot \cosh(x) \cdot \frac{1}{\cosh(x)} du = \int u^4 du$$

Integrating: we want final
$$\int u^4 du = \frac{u^5}{5} + c$$
 answer in terms of x not u. Substitute $u = \sinh(x)$
$$= \frac{\sinh^5(x)}{5} + c$$

$$\int e^x \cdot \cosh e^x \cdot \sinh e^x dx$$

$$\int e^{x} \cosh(e^{x}) \sinh(e^{x}) dx$$

Strategy: Notice that
$$\frac{d}{dx}$$
 Sinh(x) = (osh(x) and by chain rule, $\frac{d}{dx}$ Sinh(ex) = (osh(ex) ex

Setting up u-substitution:

Setting up u-substitution:

$$u = sinh(e^x) \longrightarrow \frac{du}{dx} = cosh(e^x) \cdot e^x \longrightarrow r dx = \frac{1}{e^x cosh(e^x)} du$$

Performing u-substitution:

$$\int e^{x} (\cosh(e^{x}) \sinh(e^{x}) dx = \int e^{x} \cosh(x) \cdot u \cdot \frac{1}{e^{x} (\cosh(x))} du = \int u du$$

Integrating:
$$\int u \, du = \frac{u^2}{2} + c$$

$$= \frac{\sinh^2(e^x)}{2} + c$$

$$= \frac{\sinh^2(e^x)}{2} + c$$

$$\int \frac{\sinh x}{1 + \cosh x}$$

Strategy: Notice that d (1+ coshx) = Sinhx So if we use u= 1+ coshx then some terms might cancel out.

Let
$$u = 1 + \cosh x \implies \frac{du}{dx} = \sinh x \implies du = \sinh x dx \implies dx = \frac{1}{\sinh x} du$$

Applying u-substitution:

Applying u-substitution:
$$\int \frac{\sinh x}{1 + \cosh x} \, dx = \int \frac{\sinh x}{u} \cdot \frac{1}{\sinh x} \, du = \int \frac{1}{u} \, du$$

Integrating: Resubstitute u = 1+ cosh x
$$\int \frac{1}{u} du = 2n|u| + c$$

$$= 2n|1 + cosh x| + c$$

Answer the following questions (Source and Source)

1. At what point on the curve $y = \cosh x$ does the tangent to the curve have a slope of 1?

Slope of the tangent is given by the derivative To rephrase the question: at what point on the curve y = coshx is the derivative equal to 1?

· Find the derivative of y=coshx

$$\frac{dy}{dx} = \sinh x$$

o Solve the equation $\frac{dy}{dx} = 1$

$$\frac{dy}{dx} = \sinh x = 1$$

Recall from definition of hyperbolic functions that $\sinh x = \frac{e^x - e^{-x}}{2}$

==
$$\sinh(x) = \frac{e^x - e^{-x}}{2} = 1$$

$$= e^{x} - e^{-x} = 2$$

$$\implies e^{x} - \frac{1}{e^{x}} = 2$$

$$\Rightarrow \frac{e^{2x}-1}{\rho x} = 2$$

$$\Rightarrow e^{2x} - 1 = 2e^{x}$$

 $\implies e^{2x} - 2e^{x} - 1 = 0 \longrightarrow \text{Notice that this is a quadratic in } e^{x}$. i.e. if $m = e^x$, then $e^{2x} - 2e^x - 1 = 0$ becomes $m^2 - 2m - 1 = 0$

Solve using the quadratic formula:

$$e^{x} = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(1)(-1)}}{2(1)}$$

$$e^{x} = 1 + \sqrt{2} \longrightarrow x = \ln(1 + \sqrt{2})$$

Remember that for all real values of x, $e^{x} = 2 \pm \sqrt{4 + 4} = 2 \pm 2\sqrt{2} = 1 \pm \sqrt{2}$ | e^{x} is always positive, so discard the (-)

Recall: Quadratic Formula

 $\chi = -b \pm \sqrt{b^2 - 4ac}$

Created for the MSP by Asmi Kawatkar

2. Show that

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

want to show that $sinh^{-1}(x) = ln(x + Jx^2 + 1)$

Let
$$x = sinh(y)$$

Thus $sinh^{-1}(x) = y$ — want to find an expression for y.

$$\therefore \sinh(y) = \frac{e^{y} - e^{-y}}{2} = x \longrightarrow \text{solve for } y$$

$$\implies e^{y} - \frac{1}{e^{y}} = 2x$$

$$percent = 2xe^{y}$$

= $e^{2y} - 2xe^{y} - l = 0$ \longrightarrow Notice that this is also a quadratic in e^{y} . Solve using quadratic formula.

$$e^{y} = (-2x) \pm \sqrt{(-2x)^2 - 4(1)(-1)}$$

$$e^{y} = \frac{2(1)}{2x \pm \sqrt{4x^2 + 4}} = \frac{2x \pm \sqrt{4(x^2 + 1)}}{2} = \frac{2x \pm 2\sqrt{x^2 + 1}}{2} = x \pm \sqrt{x^2 + 1}$$

Since ey is always positive for all real values of y, we choose (+) answermore intuition on this:

$$X = \sqrt{X^2} \implies X < \sqrt{X^2 + 1} \implies X - \sqrt{X^2 + 1} < 0$$

:.
$$e^{y} = x + \sqrt{x^2 + 1}$$

$$y = ln(x + \sqrt{x^2 + 1})$$

$$\sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1})$$

3. Find expressions for $\cosh^{-1} x$ and $\tanh^{-1} x$

Mant to find expression for cosh-1(x).

Note: will be using similar method to previous question.

$$X = \cosh(y) \implies X = e^{\frac{y}{2}} + e^{-\frac{y}{2}}$$

$$\cos(h^{-1}(x)) = y \longrightarrow \text{want to find an expression for } y.$$

$$e^{y} + e^{-y} = x$$

$$=$$
 $e^{y} + \frac{1}{e^{y}} = 2x$

$$\implies \frac{e^{2y}+1}{e^{y}} = 2x$$

$$= r e^{2y} + 1 = 2xe^{y}$$

=
$$e^{2y} - 2xe^{y} + 1 = 0$$
 Solve as a quadratic in e^{y} using the quadratic formula.

$$e^{y} = -(-2x) \pm \sqrt{(-2x)^{2} - 4(1)(1)}$$

$$e^{y} = \frac{-(-2x) \pm \sqrt{(-2x)^2 - 4(1)(1)}}{2(1)}$$

$$e^{y} = \frac{2x \pm \sqrt{4x^2 - 4}}{2} = \frac{2x \pm x\sqrt{x^2 - 1}}{2} = x \pm \sqrt{x^2 - 1}$$

We choose the positive sign $e^{y} = x + \sqrt{x^2 - 1}$

$$\cosh^{-1}(x) = \ln(x + \sqrt{x^2 - 1})$$

Want to find an expression for tanh-1(x)

$$\chi = \tanh(y) \implies \chi = \frac{\sinh(y)}{\cosh(y)} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$(7 \tanh^{-1}(x) = y \longrightarrow \text{want to find an expression for } y.$$

$$\chi = \frac{e^y - e^{-y}}{e^y + e^{-y}}$$

$$= \times \times (e^{y} + e^{-y}) = e^{y} - e^{-y}$$

$$= \times \left(e^{y} + \frac{1}{e^{y}} \right) = e^{y} - \frac{1}{e^{y}}$$

$$\Rightarrow \times \left(\frac{e^{2y}+1}{e^y}\right) = \frac{e^{2y}-1}{e^y}$$

$$\implies$$
 $\times (e^{2y} + 1) = e^{2y} - 1$

$$\implies \times e^{2y} + x = e^{2y} - 1$$

$$\implies xe^{2y}-e^{2y}+x+1=0$$

$$\implies e^{2y}(x-1)+(x+1)=0$$

Solve this as a quadratic in e

$$\implies e^{2y}(x-1) = -(x+1)$$

$$= e^{2y} = -\frac{(x+1)}{x-1}$$

$$\Rightarrow e^{2y} = \frac{1+x}{1-x}$$

=
$$e^{2y} = \frac{1+x}{1-x}$$
Absolute value because logarithms only take positive values.

= $e^{2y} = \frac{1+x}{1-x}$

$$\longrightarrow y = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| \longrightarrow \tanh^{-1}(x) = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|$$

4. Find all values of x that satisfy

$$\sinh 2x - 3\tanh x - \sinh x = 0$$

o Use double angle formula to write expression in terms of sinh(x) and cosh(x)

Recall:
$$sinh(2x) = 2sinh(x) cosh(x)$$

Sinh(2x) = $2sinh(x) - sinh(x) = 0$
 $\Rightarrow 2sinh(x) (cosh(x) - 3sinh(x) - sinh(x) = 0$
 $\Rightarrow 2sinh(x) (cosh^2(x) - 3sinh(x) - sinh(x) cosh(x)$
 $\Rightarrow 2sinh(x) (cosh^2(x) - 3sinh(x) - sinh(x) cosh(x) = 0$
 $\Rightarrow sinh(x) \left[2cosh^2(x) - 3 - cosh(x) \right] = 0$

Recall: $sinh(x) = 0$
 $\Rightarrow sinh(x) \left[2cosh^2(x) - 3sinh(x) - sinh(x) cosh(x) = 0$
 $\Rightarrow sinh(x) \left[2cosh^2(x) - 3 - cosh(x) \right] = 0$

Sinh(x) = 0
 $\Rightarrow cosh(x) = 0$
 $\Rightarrow cosh(x) = 0$

From prev. questions in this worksheet, we know that:
 $cosh(x) = 0$
 $\Rightarrow cosh(x) = 0$
 $\Rightarrow c$