# LIMITE D'UNE FONCTION

# I) RAPPELLES ET COMPLEMENTS.

 $]a, b[= \{x \in \mathbb{R}/a < x < b\}$ 

- Le centre de l'intervalle ] a,b [ est le réel  $x_0 = \frac{a+b}{2}$
- Le rayon de l'intervalle ]a,b[ est le réel positif  $r=\frac{b-a}{2}$

## Activité:

Déterminer les bornes d'un intervalle ouvert de centre  $x_0$  et de rayon r (deux réels données)

## **Définition:**

L'ensemble :  $]a,b[^*=\{x\in\mathbb{R}/a < x < b\}/\{x_0\}\$  où  $x_0$  est le centre de l'intervalle ]a,b[, s'appelle l'intervalle pointé de bornes a et b.

## Remarque:

Si r est le rayon de l'intervalle ]a,b[ et  $x_0$  son centre alors :  $]a,b[^*=]x_0-r,x_0+r[/\{x_0\}$ 

## Activité:

Montrer que 
$$x \in ]x_0 - r, x_0 + r[/\{x_0\} \Leftrightarrow 0 < |x - x_0| < r$$

## Activité:

- 1-Rappeler l'image d'un ensemble par une application.
- 2- Rappeler  $f(A) \subset B$
- 3- Traduire en utilisant les valeurs absolues :  $f(]x_0 r, x_0 + r[^*) \subset ]l \beta, l + \beta[$

# II) LIMITE NULLE EN O.

Considérons la fonction :

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{x^3}{|x|}$$

- 1- Déterminer l'ensemble de définition de f.
- 2- Ecrire des expressions de f sur des intervalles sans valeur absolue.
- 3- La courbe de f est ci-contre :
  - a)- Déterminer un réel  $\alpha$  tel que :  $f(]-\alpha,\alpha[^*)\subset]-2$ ,2[
  - b)- Déterminer un réel  $\alpha$  tel que :  $f(] \alpha, \alpha[^*) \subset ] 10^{-2}$ ,  $10^2[$
  - c)- Déterminer un réel  $\alpha$  tel que :  $f(] \alpha, \alpha[^*) \subset ] \varepsilon, \varepsilon[$



$$(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < |x| < \alpha \Rightarrow |f(x)| < \varepsilon$$

On dit que la fonction f admet 0 comme limite en 0. et on écrit :  $\lim_{x\to 0} f(x) = 0$ 



#### **Définition:**

Soit f une fonction définie sur un intervalle pointé de centre 0. On dit que f admet la limite 0 en 0 si elle vérifie la propriété suivante :  $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < |x| < \alpha \Rightarrow |f(x)| < \varepsilon$ . On écrit :  $\lim_{x \to 0} f(x) = 0$ .

## Remarques:

- Le faite que f est définie sur un intervalle pointé est essentielle.  $g(x) = \sqrt{x} + \sqrt{-x}$  est définie en 0 et n'admet pas de limite en 0.  $D_q = \{0\}$ .
- $\checkmark$  On a pas préciser si dans la définition si f est définie en 0 ou non, même si f est définie en 0, l'image de f en 0 n'affecte pas sur la limite.

$$f_1: \mathbb{R} \to \mathbb{R}$$

$$\begin{cases} x \mapsto \frac{x^3}{|x|} & \text{si } x \neq 0 \\ 0 \mapsto 5 \end{cases}$$

$$f_2: \mathbb{R} \to \mathbb{R}$$

$$\begin{cases} x \mapsto \frac{x^3}{|x|} & \text{si } x \neq 0 \\ 0 \mapsto -3 \end{cases}$$

On a:

$$\lim_{x \to 0} f_1(x) = 0$$

$$\lim_{x \to 0} f_1(x) = 0 \qquad \text{et} \qquad \lim_{x \to 0} f_2(x) = 0$$

## Propriété:

Si 
$$f$$
 et  $g$  sont confondues sur un intervalle pointé de centre 0 et si  $\lim_{x\to 0} f(x) = 0$  alors  $\lim_{x\to 0} g(x) = 0$ 

## Propriété:

Les fonctions : 
$$x \mapsto x^n \ (n \in \mathbb{N}^*)$$
;  $x \mapsto \sqrt{|x|}$ ;  $x \mapsto kx$  tendent vers 0 quand  $x$  rend vers 0.

## III) LIMITE FINIE l EN a.

## <u>Définition:</u>

Soit f une fonction définie sur un intervalle pointé de centre a et l un réel. On dit que la fonction f tend vers lquand x tend vers a si :  $\lim_{x\to a} (f(x) - l) = 0$ . c.-à-d. :

$$(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < |x - \alpha| < \alpha \Rightarrow |f(x) - l| < \varepsilon$$

Exercice: Montrer en utilisant la définition que :

$$\lim_{x \to x_0} (ax + b) = (ax_0 + b) \quad (a \neq 0)$$

$$\lim_{x \to 1} (x^2 + 1) = 2.$$

## Propriété:

Si 
$$P$$
 est une fonction polynôme alors :  $\lim_{x \to a} P(x) = P(a)$ 

Une fonction polynôme P c'est une fonction qui s'écrit de la forme :  $P(x) = a_0 + a_1x + \cdots + a_nx^n$ 

#### Exemple:

$$\lim_{x \to 2} 3x^2 + x + 3 = 17.$$

## Propriété:

Si sur un intervalle pointé de centre 
$$a$$
 on a :  $|f(x) - l| \le u(x)$  et  $\lim_{x \to a} u(x) = 0$  alors  $\lim_{x \to a} f(x) = l$ 

#### Application:

Déterminer : 
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$$
.

## Propriété:

Si 
$$f$$
 et  $g$  sont confondues sur un intervalle pointé de centre  $a$  et si  $\lim_{x \to a} f(x) = l$  alors  $\lim_{x \to a} g(x) = l$ 

#### Exemple:

On se propose d'étudier la limite de la fonction  $f(x) = \frac{\sqrt{1+x^2}-1}{x}$  en 0.

On remarque que  $(\forall x \in \mathbb{R}^*)(f(x) = \frac{x^2}{x(1+\sqrt{1+x^2})} = \frac{x}{1+\sqrt{1+x^2}} = g(x))$  (on a multiplié par le conjugué)

D'autre part :  $(\forall x \in \mathbb{R}^*)(|g(x)| \le |x|)$  et puisque :  $\lim_{x \to 0} |x| = 0$  alors  $\lim_{x \to 0} g(x) = 0$ 

et par suite :  $\lim_{x\to 0} f(x) = 0$ .

## Propriété:

Si sur un intervalle pointé de centre a on a :  $g(x) \le f(x) \le h(x)$  et si  $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = l$  alors  $\lim_{x \to a} f(x) = l$ 

## Propriété:

Soit f une fonction définie sur un intervalle pointé de centre a; on a :  $\lim_{x \to a} |f(x)| = 0 \Leftrightarrow \lim_{x \to a} f(x) = 0$ 

#### Remarque:

$$\lim_{x \to a} |f(x)| = l \Leftrightarrow ou \begin{vmatrix} \lim_{x \to a} f(x) = l \\ \lim_{x \to a} f(x) = -l \end{vmatrix}$$

## Propriété:

Si f admet une limite l en a alors cette limite est **unique.** 

# III) LIMITE A DROITE, LIMITE A GAUCHE.

# 1) Définition

## Activité:

Soit la fonction  $f: \mathbb{R} \to \mathbb{R}$   $x \mapsto x - E(x)$  où E désigne la partie entière.

- 1- Ecrire les expressions de f sans utiliser la partie entière sur les intervalles ]0,1[ et ]1,2[.
- 2- Construire la courbe de la restriction de f sur [0,2].
- 3- La fonction f admet-elle une limite en 1.
- 4- Soit la fonction g(x) = x et h(x) = x 1
  - a) Remarquer que f et g sont confondues sur ]0,1[ et que f et h sont confondues sur ]1,2[
  - b) déterminer les limite de g et de h en 1.

#### **Définition:**

Soit f une fonction définie sur un intervalle de la forme a, a + r où b > 0 et b = 1 un réel.

On dit que la fonction f tend vers l quand x tend vers a à droite si la proposition suivante est vraie :

$$(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < x - \alpha < \alpha \Rightarrow |f(x) - l| < \varepsilon$$

Et on écrit : 
$$\lim_{\substack{x \to a \\ x > a}} f(x) = l$$
 ou  $\lim_{\substack{x \to a^+ \\ x > a}} f(x) = l$ 

## **Exercice:**

La courbe ci-contre est la courbe de la fonction définie par

 $f: \mathbb{R} \to \mathbb{R}$ morceaux comme suite :  $\begin{cases} x \mapsto x^2 - x & \text{si } x \ge 2 \\ x \mapsto 3 - x^2 & \text{si } x < 2 \end{cases}$ 

Déterminer graphiquement les limites de la fonction f à droite et à gauche de 2.



Soit la fonction g définie par :

$$g: \mathbb{R} \to \mathbb{R}$$

$$\begin{cases} x \mapsto 2x^2 - x + 3 & \text{si } x \ge 1 \\ x \mapsto -x^2 + x + \alpha & \text{si } x < 1 \end{cases}$$

Déterminer  $\alpha$  pour que la fonction g admet une limite en 1.



#### Théorème:

Une fonction f admet une limite l en a si et seulement si elle admet une limite à droite de a égale à sa limite à gauche de a égale à l.

$$\lim_{x \to a} f(x) = l \Leftrightarrow \begin{cases} \lim_{x \to a^{+}} f(x) = l \\ \lim_{x \to a^{-}} f(x) = l \end{cases}$$

## 2) Propriétés

Toutes les propriétés mentionnées au paravent sont vraie à droite et à gauche de a en tenant compte des conditions

## Propriété:

Si sur un intervalle de la forme ]a, a + r[ on a:  $|f(x) - l| \le u(x)$  et  $\lim_{x \to a^+} u(x) = 0$  alors  $\lim_{x \to a^+} f(x) = l$ 

#### Propriété:

Si f et g sont confondues sur un intervalle de la forme ]a,a+r[ et si  $\lim_{x\to a^+}f(x)=l$  alors  $\lim_{x\to a^+}g(x)=l$ 

#### Propriété:

Si sur un intervalle de la forme ] a, a+r[ on  $a:g(x) \le f(x) \le h(x)$  et si  $\lim_{x \to a^+} g(x) = \lim_{x \to a^+} h(x) = l$  alors  $\lim_{x \to a^+} f(x) = l$ 

On peut citer les même propriétés à gauche de a.

3) Opérations sur les limites finies.

## **Propriété:**

Soient f et g deux fonctions tels que :  $\lim_{x \to a} f(x) = l \lim_{x \to a} g(x) = l'$  on a :

$$\lim_{x \to a} (f+g)(x) = l + l'$$

$$\lim_{x \to a} (f \times g)(x) = l \times l'$$

$$\lim_{x \to a} (|f|)(x) = |l|$$

$$\lim_{x \to a} \left(\frac{1}{g}\right)(x) = \frac{1}{l'} \qquad l' \neq 0$$

$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{l}{l'} \qquad l' \neq 0$$

$$\lim_{x \to a} \left(\sqrt{f}\right)(x) = \sqrt{l} \qquad l > 0$$

Ces propriétés sont vraies à droite et à gauche d'un réel a.

## **Exemple:**

$$\lim_{x \to -1} \frac{\sqrt{3x^2 + 1} + 2x + 1}{2x^2 + 3} = \frac{1}{5}$$

# IV) EXTENTION DE LA NOTION DE LIMITE.

## <u>1) Limite infinie à droite (à gauche) de α.</u>

#### Activité:

Considérons la fonction 
$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{1}{x}$$

La courbe représentative de f est l'hyperbole de centre O(0,0)

## 1- Compléter le tableau suivant :

| x    | $10^{-2}$ | $10^{-6}$ | $10^{-20}$ | <br>$10^{-p}$ |
|------|-----------|-----------|------------|---------------|
| f(x) |           |           |            |               |

Que remarquer-vous?

Considérons  $A = 10^{100}$  déterminer un réel  $\alpha$  tel que si  $0 < x < \alpha$  alors  $f(x) > 10^{100}$ .

#### Montrer que:

$$(P): (\forall A > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < x < \alpha \Rightarrow f(x) > A)$$

La propriété (P) veut dire qu'on peut rendre f(x) aussi grand qu'on veut ; on dit que la limite de f est  $+\infty$  quand x tend vers 0 à droite et on écrit :  $\lim_{x\to 0^+} f(x) = +\infty$ 



## Définition :

Soit f une fonction définie sur un intervalle de la forme ]a,a+r[ où r>0, on dit que la fonction f tend vers  $+\infty$  quand x tend vers a adroite si  $(\forall A>0)(\exists \alpha>0)(\forall x\in D_f)(0< x-a<\alpha\Rightarrow f(x)>A)$ 

On écrit : 
$$\lim_{x \to a^+} f(x) = +\infty$$

#### Propriétés:

les fonctions  $x \mapsto \frac{k}{|x|}$ ;  $x \mapsto \frac{k}{\sqrt{|x|}}$  et  $x \mapsto \frac{k}{|x|^n}$  où k un réel strictement positif et  $n \in \mathbb{N}^*$ , tendent vers  $+\infty$  quand x tend vers 0.

## **Définitions:**

$$\checkmark \quad \lim_{x \to a^+} f(x) = -\infty : (\forall A > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < x - a < \alpha \Rightarrow f(x) < -A)$$

$$\checkmark \lim_{x \to a^{-}} f(x) = +\infty : (\forall A > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < \alpha - x < \alpha \Rightarrow f(x) > A)$$

$$\checkmark \lim_{x \to a^{-}} f(x) = -\infty : (\forall A > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < \alpha - x < \alpha \Rightarrow f(x) < -A)$$

## Interprétations géométriques :





$$\lim_{+} f(x) = +\infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

**Exercice**: Compléter l'interprétation géométrique.

## **Définition:**

Si la fonction f vérifie l'une des limites suivantes :

$$\lim_{x \to a^{+}} f(x) = +\infty; \lim_{x \to a^{-}} f(x) = -\infty; \lim_{x \to a^{+}} f(x) = -\infty \text{ ou } \lim_{x \to a^{-}} f(x) = +\infty$$

Alors, on dit que la droite ( $\Delta$ ): x = a est une **asymptote verticale.** 

## <u>2) Limites finies en ±∞</u>

Activité : Considérons la fonction  $f: \mathbb{R} \to \mathbb{R}$  $x \mapsto \frac{1}{x}$ 

La courbe représentative de f est l'hyperbole de centre O(0,0)

1- Compléter le tableau suivant :

| x    | 10 <sup>2</sup> | $10^{6}$ | $10^{20}$ | ••• | 10 <sup>p</sup> |
|------|-----------------|----------|-----------|-----|-----------------|
| f(x) |                 |          |           |     |                 |

Que remarquer-vous?

Considérons  $\varepsilon = 10^{-100}$  déterminer un réel B tel que si x > B alors

$$|f(x)| < \varepsilon$$
.

En général, montrer que :

$$(\mathsf{P}): (\forall \varepsilon > 0)(\exists B > 0)(\forall x \in D_f)(x > B \Rightarrow |f(x)| < \varepsilon)$$



## **Définition:**

Soit f une fonction définie sur un intervalle de la forme  $]a,+\infty[$  (a un réel quelconque) et l un réel, on dit que la fonction f tend l quand x tend vers  $+\infty$  si :  $(\forall \varepsilon > 0)(\exists B > 0)(\forall x \in D_f)(x > B \Rightarrow |f(x) - l| < \varepsilon)$ 

On écrit :  $\lim_{x \to +\infty} f(x) = l$ 

## Propriétés :

les fonctions  $x\mapsto \frac{k}{|x|}$ ;  $x\mapsto \frac{k}{\sqrt{|x|}}$  et  $x\mapsto \frac{k}{|x|^n}$  où k un réel donné et  $n\in\mathbb{N}^*$ , tendent vers 0 quand x tend vers  $+\infty$ .

## **Définitions:**

Soit f une fonction définie sur un intervalle de la forme ]  $-\infty$ , a[ (a un réel quelconque) et l un réel, on dit que la fonction f tend l quand x tend vers  $-\infty$  si :  $(\forall \varepsilon > 0)(\exists B > 0)(\forall x \in D_f)(x < -B \Rightarrow |f(x) - l| < \varepsilon)$ 

On écrit : 
$$\lim_{x \to -\infty} f(x) = l$$

## Interprétation géométrique :





Completer les autres intérprétations.

## **Définition:**

Si la fonction f vérifie l'une des limites suivantes :

$$\lim_{x \to +\infty} f(x) = l \quad \text{ou} \lim_{x \to -\infty} f(x) = l$$

Alors, on dit que la droite ( $\Delta$ ): y = l est une **asymptote horizontale.** 

#### Remarque:

La position de la courbe  $\mathcal{C}_f$  par rapport à son asymptote horizontale se détermine par le signe de f(x)-l:

- Si  $f(x) l \ge 0$  alors  $C_f$  est au-dessus de  $(\Delta)$ : y = l
- Si  $f(x) l \le 0$  alors  $C_f$  est au-dessous de  $(\Delta)$ : y = l

## 3) Limite infinies en ±∞

## Activité : Considérons la fonction $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$

La courbe représentative de f est la parabole de centre O(0,0)

1- Compléter le tableau suivant :

| x    | $10^{2}$ | $10^{6}$ | $10^{20}$ | <br>$10^{p}$ |
|------|----------|----------|-----------|--------------|
| f(x) |          |          |           |              |

Que remarquer-vous?

Considérons  $A = 10^{100}$  déterminer un réel B tel que si x > B alors

$$f(x) > A.$$

En général, montrer que :

$$(P): (\forall A > 0)(\exists B > 0)(\forall x \in D_f)(x > B \Rightarrow f(x) > A)$$



## **Définition:**

Soit f une fonction  $]a, +\infty[$  (où a est un réel quelconque) on dit que la fonction f tend vers  $+\infty$  quand x tend vers  $+\infty$  si :  $(\forall A>0)(\exists B>0)(\forall x\in D_f)(x>B\Rightarrow f(x)>A)$  ; on écrit :  $\lim_{x\to+\infty}f(x)=+\infty$ 

## Propriété:

Les fonctions  $x\mapsto x^2$ ;  $x\mapsto x^n$   $(n\in\mathbb{N}^*)$ ;  $x\mapsto \sqrt{x}$  et  $x\mapsto |x|$  tendent  $+\infty$  quand x tend vers  $+\infty$ 

#### **Définitions:**

$$\circ \lim_{x \to +\infty} f(x) = +\infty \text{ si } (\forall A > 0)(\exists B > 0)(\forall x \in D_f)(x > B \Rightarrow f(x) > A)$$

$$\circ \lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = -\infty \text{ si } (\forall A > 0)(\exists B > 0)(\forall x \in D_f)(x > B \Rightarrow f(x) < -A)$$

$$\circ \lim_{x \to a} f(x) = +\infty \text{ si } (\forall A > 0)(\exists B > 0)(\forall x \in D_f)(x < -B \Rightarrow f(x) > A)$$

$$\circ \lim_{x \to \infty} f(x) = -\infty \text{ si } (\forall A > 0)(\exists B > 0)(\forall x \in D_f)(x < -B \Rightarrow f(x) < -A)$$

#### Remarque:

Pour l'interprétation géométrique, il y' a plusieurs cas qu'on va étudier par la suite (Etude de fonction).

# V) OPERATIONS SUR LES LIMITES.

## 1) Limites et ordres.

#### Propriété:

Si sur un intervalle pointé de centre a on a :  $|f(x) - l| \le u(x)$  et  $\lim_{x \to a} u(x) = 0$  alors  $\lim_{x \to a} f(x) = l$ 

#### Propriété:

Si f et g sont confondues sur un intervalle pointé de centre a et si  $\lim_{x\to a} f(x) = l$  alors  $\lim_{x\to a} g(x) = l$ 

## Propriété:

Si sur un intervalle pointé de centre a on a :  $g(x) \le f(x) \le h(x)$  et si  $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = l$  alors  $\lim_{x \to a} f(x) = l$ 

Les propriétés précédentes sont vraies si x tend vers a à droite, ou a à gauche , ou  $+\infty$  ou  $-\infty$  en tenant compte des conditions pour chaque cas.

## **Propriété**

- Si sur un intervalle de la forme ] a, a+r[ on a :  $u(x) \le v(x)$  et  $\lim_{x\to a^+} u(x) = +\infty$  alors :  $\lim_{x\to a^+} v(x) = +\infty$
- Si sur un intervalle de la forme ] a, a+r[ on a :  $u(x) \le v(x)$  et  $\lim_{x\to a^+} v(x) = -\infty$  alors :  $\lim_{x\to a^+} u(x) = -\infty$

La propriété précédente est vraie si x tend vers a à gauche , ou  $+\infty$  ou  $-\infty$  en tenant compte des conditions pour chaque cas.

#### **Exercice:**

Soit 
$$f(x) = \frac{2 + sin(\frac{1}{x})}{x^2}$$

- 1- Montrer que  $(\forall x \in \mathbb{R}^*)(f(x) \ge \frac{1}{x^2})$
- 2- En déduire  $\lim_{x\to o} f(x)$

## 2) Opérations sur les limites

Toutes les propriétés qui seront citées dans ce paragraphe sous forme de tableau sont admises et on peut les démontrer en utilisant les définitions des limites.

#### 1) Limite de la somme

| $\lim_{x \to a} f(x)$       | l      |    | l  | +∞ | -∞ | -∞                   |
|-----------------------------|--------|----|----|----|----|----------------------|
| $\lim_{x\to a}g(x)$         | l'     | +∞ | -∞ | +∞ | -8 | +∞                   |
| $\lim_{x \to a} (f + g)(x)$ | l + l' | +∞ | -∞ | +∞ | -∞ | Formes indéterminées |

Ces propriétés sont vraies si x tend vers  $a^+$ ;  $a^-$ ;  $+\infty$  ou  $-\infty$ 

Formes indéterminées: Veut dire qu'on peut pas calculer la limite directement, il faut faire d'autres calcules car il y a plusieurs cas.

## **Exemples:**

$$\mathbf{0}f(x) = 2 + x^2$$
,  $g(x) = 5 - x^2$  on a  $\lim_{x \to +\infty} f(x) = +\infty$ ;  $\lim_{x \to +\infty} g(x) = -\infty$  et  $\lim_{x \to +\infty} (f + g)(x) = 7$ 

$$\mathbf{Q}f(x)=2+x^2$$
 ,  $g(x)=5-x$  on a  $\lim_{x\to+\infty}f(x)=+\infty$  ;  $\lim_{x\to+\infty}g(x)=-\infty$  et

$$\lim_{x \to +\infty} (f+g)(x) = \lim_{x \to +\infty} x^2 - x + 7 = \lim_{x \to +\infty} x^2 \left(1 - \frac{1}{x} + \frac{7}{x^2}\right) = +\infty$$

Dans les deux exemples on a le même cas que dans la dernière colonne du tableau mais on a deux résultats différents

## 2) Limites des produits

| $\lim_{x \to a} f(x)$            | l     | l > 0 | ou +∞     | l < 0 o | u −∞ | ±∞                   |
|----------------------------------|-------|-------|-----------|---------|------|----------------------|
| $\lim_{x\to a}g(x)$              | l'    | +∞    | $-\infty$ | +∞      | -∞   | 0                    |
| $\lim_{x \to a} (f \times g)(x)$ | l. l' | +∞    | -∞        | -∞      | +∞   | Formes indéterminées |

#### 3) Limites des inverses

| $\lim_{x \to a} f(x)$ | $l \neq 0$ | 0+ | 0- | ±∞ |
|-----------------------|------------|----|----|----|

| $\lim \left(\frac{1}{a}\right)(x)$ | 1 - | +∞ | -∞ | 0 |
|------------------------------------|-----|----|----|---|
| $x \to a \setminus f$              | l   |    |    |   |

**<u>Remarque:</u>**  $\lim_{x\to a} f(x) = 0^+$  veut dire que f tend vers 0 mais de la droite.

 $\lim_{x \to +\infty} \left(\frac{1}{x}\right) = 0 \ (0^+) \quad \lim_{x \to -\infty} \left(\frac{1}{x}\right) = 0 \ (0^-) \quad \text{chose qu'on voit bien sur la courbe de la fonction } f$ 



## 3) Limites des quotients

| e, annual de ductione                        |                |       |       |         |      |                      |                      |
|----------------------------------------------|----------------|-------|-------|---------|------|----------------------|----------------------|
| $\lim_{x \to a} f(x)$                        | l              | l > 0 | ou +∞ | l < 0 o | u –∞ | 0                    | ±∞                   |
| $\lim_{x\to a}g(x)$                          | $l' \neq 0$    | 0+    | 0-    | 0+      | 0-   | 0                    | ±∞                   |
| $\lim_{x \to a} \left(\frac{f}{g}\right)(x)$ | $\frac{l}{l'}$ | +∞    | -8    | -∞      | +∞   | Formes indéterminées | Formes indéterminées |

## **Exemple:**

On veut déterminer la  $\lim_{x\to 1^+} \frac{3x+1}{x^2+x-2}$  on a :

On a : 
$$\begin{cases} \lim_{x \to 1^+} (3x + 1) = 4\\ \lim_{x \to 1^+} (x^2 + x - 2) = 0^+ \end{cases}$$

Donc  $\lim_{x \to 1^+} \frac{3x+1}{x^2+x-2} = +\infty$ 

| х             | -∞ -2 | 1,← +∞ |
|---------------|-------|--------|
| $x^2 + x - 2$ | + 0 - | 0 +    |

#### **Remarque:**

- Eviter d'écrire ces expressions qui n'ont pas de sens mathématique :  $\frac{?}{0^+}$ ,  $\frac{?}{0^-}$
- Ne pas utiliser  $+\infty$  ou  $-\infty$  dans les opérations dans  $\mathbb{R}$  ( $+\infty$  et  $-\infty$  ne sont pas des réels)

## **Exercices**

Déterminer les limites suivantes :  $\lim_{x \to 1} \frac{3x^2 - x}{2x^3 + 2x - 4}$   $\lim_{x \to 2} \frac{\sqrt{4x + 1} - 3}{x^2 - 3x + 2}$ 

## 3) Limites d'une fonction polynôme en ±∞

Soit f une fonction polynôme de degré n tel que :  $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$  avec  $a_n \neq 0$ 

On a : 
$$f(x) = a_n x^n \left( \frac{a_0}{a_n x^n} + \frac{a_1}{a_n x^{n-1}} + \dots + \frac{a_{n-1}}{a_n x} + 1 \right)$$
 puisque  $\lim_{n \to +\infty} \left( \frac{a_0}{a_n x^n} + \frac{a_1}{a_n x^{n-1}} + \dots + \frac{a_{n-1}}{a_n x} + 1 \right) = 1$  alors

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} a_n x^n$$

Même chose si x tend vers -∞

#### Propriété:

La limite d'une fonction polynôme en  $+\infty$   $(-\infty)$ est la limite de son plus grand terme en  $+\infty$   $(-\infty)$ 

## 4) Limites d'une fonction rationnelle en $\pm \infty$

Une fonction rationnelle est le rapport de deux fonctions polynômes :  $h(x) = \frac{f(x)}{g(x)}$  où :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \quad \text{avec } a_n \neq 0 \ \text{ et } g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m \quad \text{avec } b_m \neq 0$$

$$h(x) = \frac{a_n x^n \left(\frac{a_0}{a_n x^n} + \frac{a_1}{a_n x^{n-1}} + \dots + \frac{a_{n-1}}{a_n x} + 1\right)}{b_m x^m \left(\frac{b_0}{b_m x^m} + \frac{b_1}{b_m x^{m-1}} + \dots + \frac{b_{m-1}}{b_n x} + 1\right)} \quad \text{et puisque}:$$

$$\lim_{x \to +\infty} \left( \frac{a_0}{a_n x^n} + \frac{a_1}{a_n x^{n-1}} + \dots + \frac{a_{n-1}}{a_n x} + 1 \right) = 1 \text{ et } \lim_{x \to +\infty} \left( \frac{b_0}{b_m x^m} + \frac{b_1}{b_m x^{m-1}} + \dots + \frac{b_{m-1}}{b_n x} + 1 \right) = 1 \text{ alors}$$

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{a_n x^n}{b_m x^m}$$

Même chose si x tend vers  $-\infty$ 

#### Propriété:

La limite d'une fonction rationnelle en  $+\infty$   $(-\infty)$ est la limite du rapport des termes de plus grand degré en  $+\infty$   $(-\infty)$ 

## **Exemples:**

1- 
$$\lim_{x \to +\infty} \frac{7x^3 + 2x^2 + 8}{3x^4 + 2x^2 - 5x} = \lim_{x \to +\infty} \frac{7x^3}{3x^4} = \lim_{x \to +\infty} \frac{7}{3x} = 0$$

$$2 - \lim_{x \to -\infty} \frac{-6x^5 + 2x^4 + 8x}{5x^3 + 2x^2 + 5x + 3} = \lim_{x \to -\infty} \frac{-6x^5}{5x^3} = \lim_{x \to -\infty} \frac{-6}{5}x^2 = -\infty$$

**Remarque**: La propriété précédente n'est vraie que si x tend vers  $+\infty$  ou  $-\infty$ 

**Exercice**: Déterminer  $\lim_{x\to +\infty} \frac{x^2\sqrt{x}-x\sqrt{x}}{x^3+2x\sqrt{x}}$  vous pouvez poser  $\sqrt{x}=t$ 

# 5) Limites des fonctions trigonométriques.

## Activité:

Dans le plan muni d'un repère  $\mathcal{R}(O,\vec{\iota},\vec{j})$ , On considère le cercle trigonométrique d'origine A(1,0).  $x\in ]0,\frac{\pi}{2}[$  et B le point sur le cercle trigonométrique tel que :  $\left(\overline{OA},\overline{OB}\right)\equiv x$   $[2\pi]$ .

1-Déterminer en fonction de x la surface du domaine circulaire  $\mathcal D$  limité par [OA) , [OB) et l'arc géométrique  $\widehat{AB}$ 

2- Soit H la projection orthogonale de B sur (OA).

a) Déterminer en fonction de x l'aire du triangle OAB



b) Comparer les aires du domaine  ${\mathcal D}$  et du triangle , que peut-on conclure ?

- 3- Montrer que :  $(\forall x \in [\frac{-\pi}{2}, \frac{\pi}{2}])$   $(|sinx| \le |x|)$ .
- 4- Déterminer les limites  $\lim_{x \to 0} sinx$  ;  $\lim_{x \to a} sinx$  et  $\lim_{x \to a} cosx$
- 5- Considérons la droite ( $\Delta$ ) la droite tangente au cercle ( $\mathcal{C}$ ) en A
  - a) Soit T l'intersection de  $(\Delta)$  et (OB), Déterminer en fonction de x la surface de OAT
  - b) En déduire que  $(\forall x \in ]0, \frac{\pi}{2}[)$   $(x \le tanx)$
  - c) En déduire que  $(\forall x \in ]\frac{-\pi}{2}, \frac{\pi}{2}[)(|x| \le |tanx|)$
- 6- En utilisant les résultats précédents. Montrer que :
  - a)  $\lim_{x\to 0} \frac{\sin x}{x} = 1$
  - b)  $\lim_{x \to 0} \frac{\tan x}{x} = 1$
  - c)  $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$

## Propriété:

Soit a un réel on a :

- $\lim \sin x = \sin a$
- $\lim cosx = cosa$
- si  $a \neq \frac{\pi}{2} + k\pi \lim_{x \to a} tanx = tana$

## Propriété:

- a.  $\lim_{x \to 0} \frac{\sin x}{x} = 1$
- b.  $\lim_{x \to 0} \frac{\hat{x}}{x} = 1$

#### **Exercices:**

Déterminer les limites suivantes :

$$\lim_{x\to 0} \frac{\sin 7x}{\tan 3x}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x}$$

$$\lim_{x \to 0} \frac{\sin 7x}{\tan 3x} \qquad \lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x} \qquad \lim_{x \to 0} \frac{2\cos^2 x + \cos x - 3}{1 - \cos^2 x} \qquad \lim_{x \to 0} \frac{\tan x + \tan 2x}{\tan 3x + \tan 4x} \qquad \lim_{x \to \frac{\pi}{2}} \frac{1 - \tan x}{\cos x - \sin x}$$

$$\lim_{x \to 0} \frac{\tan x + \tan 2x}{\tan 3x + \tan 4x}$$

$$\lim_{x \to \frac{\pi}{4}} \frac{1 - tanx}{cosx - sinx}$$

# VI) COMPLEMENT

## **Définition:**

Soit f une fonction définie sur un intervalle ouvert de centre a, on dit que f est **continue** en a si elle admet une limite finie en a qui est égale à f(a).

f continue en a si  $\lim_{x\to a} f(x) = f(a)$ .

## **Exemples:**

1. Toute fonction polynôme est continue en a pour tout a dans  $\mathbb{R}$ , si P est une fonction polynôme alors  $\lim_{x \to a} P(x) = P(a).$ 

2. Toute fonction rationnelle est continue en a si  $a \in D_f$ . si h est une fonction rationnelle et  $a \in D_h$  alors  $\lim_{x \to a} h(x) = h(a)$ .

3. Les fonctions sin et cos sont continues en a pour tout a dans  $\mathbb{R}$ .

## **Définition:**

Soit f une fonction définie sur un intervalle de la forme  $[a,a+r[\ (r>0)\ )$  on dit que f est continue à droite de a si :  $\lim_{x\to a^+}f(x)=f(a)$