Deteriminar	nts	
$ \begin{array}{cccc} \bullet & \text{Amm} & = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}. \end{array} $	The cloterninant of A is	
[any ann]	$= \sum_{j=1}^{n} a_{ij} \cdot C_{ij} = \sum_{j=1}^{n} a_{ij} \cdot C_{ij}$	
o cofator $Cij = (-1)^{i+1}d$ o Minor of $Aij : det($	WEI CONTRACTOR OF THE PROPERTY	
V		
	i cij i ani (remore the coloumna rom)	
20 A - [2 -1 3]	Post del 100	
e.g. $A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 4 & 0 \\ 3 & 1 & 2 \end{bmatrix}$, printing	
dof(A) = -1 3	2 -1	
def(A) = -1 3		
= 16-0+0-0		
= -15	-2) 7 5 - 50	
4.8(1) - 2.14 0	$(-1)^3 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	
= 2.8 - (-2-3)		
= -15	7 - 36	
-0		
• Duam Has		
• Proparties, Anxi • det is linear. ()		
	$A^{n} = \pi det(A^{1} - A^{n}) + \pi det(B^{-} - A^{n})$	
	olek(A) = D (Alternating)	
o n >1, det(In)=1.		
	$L_1=1$, $L_2=1$ $T_{n-1}=1$, $L_1=1$	
	tk, interchange column j, k, det change by sign.	
	tiple of one column to another, det doesn't change.	
o $det(A^T) = det(A)$		

o det(AT) = det(A)
• As invortible if detian = 0
• A is triangular nxn, del(A) is the proclact of the terms along the diagonal.
• det(Ab) = det(A)det(B), A, B are nxn matrices
• Let A be a square motivi
o If A has a row or column of zeros, then det(A) = 0.
O If A has two identical rows or columns, then det (A)=0.

Thursd	y, February 28, 2019 6:04 PM
 Theorem 	en 5,13. Anxn
Skote	change two rows of A: det (A) = det(A)
	ply one row of A by c , $det(A) \Rightarrow cdet(A)$
	0- multiple of one row of A to another \Rightarrow det (A) does it change.
	L 5.12 Anon, Brixn, dot (AB) = dat (A) olat (B)
	B) = det(A) · dat(B) = det(B) · dat(A) = det(BA)
0	heorem. Enrn. Brun, E is elementary. det (EB)=olet (E) det (B).
	Proof. 1° E is for interchange rows: olet (E) =det (In) =-1
	: del(EB) = del(E) del(B)
	2° Exto multiphy one now, clette = clet (cIn) = c
	det(E)-det(B)-clet(B)
	3° E is to add scalar militale, del (E) - det (Zn)
	: det (E) = det (E) · detB)
o A	P. 10 A & non investible.
	-', deliab) = 0 = delia) · delib)
2°	is involible
	:. A=(G_ ··· E -1) Because can be I after * inverse)
J.	det (AB) = det (BE'-GB)
	= det(EE). det (E'a E B)
	= ··· = dut (Fé É) det (B)
	= dat (B) · dat (B)
• A	
- Hnxn, M	patible. Then $det(A^{-1}) = \frac{1}{det(A)}$
	det(AA1) = 1 = olef(A) · det(A1) e a partitioned non matrix of form

	Ver I	venp	W 0110 W	יאיו עא	nwuz,	7 7 ""	<u> </u>							
		$P = \begin{bmatrix} A \\ 0 \end{bmatrix}$	B (or P=[a of c D									
	where	A, D or	e squar	e block	matrice	s. det	(P) = do	t(A)·de	f(D)					
			'											