Рационализируя иррациональное

Дарья Никанорова Евгения Стребулаева Анна Рыбина Екатерина Чернявская Максим Сердаков

Methods

Feature extraction librosa

Clusterization PCA

K-means

Classification Random Forest

KNN: k-nearest neighbours

Keras sequential model

Multilabel classification

Keras

Feature extraction

Непрерывный сигнал - в спектр дискретных значений

Spectral centroid

Спектральный центроид указывает, где находится центр масс спектра. В восприятии он имеет прочную связь с впечатлением от яркости звука.

Спектральный центроид для каждого фрейма сигнала в Light_Of_The_Seven-Ramin_Djawadi.mp3

Spectral rolloff

Это мера формы сигнала, представляющая собой частоту, в которой высокие частоты снижаются до 0. Или относительная частота, в пределах которой которой сосредоточена определенная часть всей энергии спектра (85% по умолчанию).

Частота спада для каждого фрейма в сигнале для Light_Of_The_Seven-Ramin_Djawadi.mp3

Zero Crossing Rate

Вычисление гладкости сигнала - сигнал голоса колеблется довольно медленно, в роке и металле - высокие значения из-за высоких ударных звуков

Визуализация процессов пересечения нуля в Light_Of_The_Seven-Ramin_Djawadi.mp3

MFCC — Mel-Frequency Cepstral Coefficients

Мел - единица высоты звука, основанная на восприятии звука человеком. Высота воспринимаемого звука не совсем линейно зависит от частоты:

$$m = 2595 \log_{10} \left(1 + rac{f}{700}
ight) = 1127 \ln \left(1 + rac{f}{700}
ight)$$

MFCC — Mel-Frequency Cepstral Coefficients

Кепстр - это результат дискретного косинусного преобразования от логарифма амплитудного спектра сигнала. Звучит страшно, но, как итог, можно сказать, что мел-кепстральные коэффициенты - это спектральная огибающая с коэффициентами, расположенными друг от друга на расстоянии по шкале Мела, которые сосредоточены на важных для слуха частотах.

Tempogram

Оценка локальной информации о ритме и темпе

5 genres, partial feature list

5 genres, full feature list

all genres united in 5, partial feature list

-0.1

0.1

0.5

all genres united in 5, full feature list

jazz/alternative metal/blues/dance/disco/electropop/progressive rock

0.2

-0.2

K-means: clusters & metrics

Instance	adjusted rand	adjusted mutual info	v measure	silhouette
5 genres, partial	0.0923	0.1209	0.1312	0.2982
5 genres, full	0.0753	0.0856	0.0955	0.4485
all genres, partial	0.0691	0.12658	0.1347	0.3096
all genres, full	0.0607	0.0829	0.0906	0.4190

- Adjusted Rand Score: Bounded [-1,1] where 1 represents perfect label, and a score near or below 0 have independent, or "bad" labelings.
- Adjusted Mutual Info Score: Bounded [0,1] where 1 represents perfect label, and a score near 0 have independent, or "bad" labelings
- V Measure Score: Bounded [0,1] scores: 0.0 is as bad as it can be,
 1.0 is a perfect score.
- Silhouette Score: The score is bounded between -1 for incorrect clustering and +1 for highly dense clustering. Scores around zero indicate overlapping clusters.

Random Forest classifier

Parameters

max depth: 7,
min_samples_leaf: 2,
min samples split: 5,
n_estimators: 25

Metrics

	precis	sion	recall	f1-score	support
	0 1 2 3 4	0.65 0.94 0.77 0.74	0.61 0.88 0.71 0.79 0.52	0.62 0.91 0.74 0.76 0.48	33 33 34 33 33
accura macro a weighted a	ıvg	0.71	0.70	0.70 0.70 0.70	166 166 166

Parameters

loss='categorical_crossentropy'

Metrics (classification report for 1 run)

	precision	recall	f1-score
0 1 2 3 4	0.71 0.93 0.87 0.66 0.55	0.67 0.87 0.82 0.85 0.48	0.69 0.90 0.84 0.74 0.52
acy avg	0.74 0.74	0.74 0.73	0.73 0.74 0.73

epochs=100, cv=5, repeats=30

Parameters

```
optimizer='rmsprop'
loss='categorical_crossentropy'
```

Mean test accuracy: 0.769

The 0.95% conf. interval: [0.745, 0.793]

KNN: k-nearest neighbours

Metrics

	precision	recall	f1-score	suppor	t	with/without prior PCA
hip-hop	0.69	0.73	0.71	30		-
jazz	0.88	0.73	0.80	30		 cv=5, GridSearchCV
metal	0.81	0.84	0.83	31		h 1 1
pop	0.61	0.73	0.67	30	no prior PCA	best parameters:
rock	0.58	0.50	0.54	30	•	·
accuracy			0.71	151		knn algorithm: auto
macro avg	0.71	0.71	0.71	151		
weighted avg	0.71	0.71	0.71	151		
						knnn_neighbors: 8
	precision	recall	f1-score	suppor	t	knn weights: distance
hip-hop	0.77	0.67	0.71	30		
jazz	0.73	0.63	0.68	30		
metal	0.76	0.84	0.80	31		
pop	0.65	0.87	0.74	30		
rock	0.60	0.50	0.55	30	after PCA	
accuracy			0.70	151	(55 -> 29 features)	
accuracy macro avg	0.70	0.70	0.70	151	,	
weighted avg	0.70	0.70	0.70	151		
weighted avg	0.70	0.70	0.70	T O T		

х	у
X ₁	t,
X ₂	t ₂
X ₃	t ₁
X ₄	t ₂
X _s	t ₁

Binary Classification

Table 2

х	у
X ₁	t ₂
X ₂	t ₃
X ₃	t ₄
X ₄	t ₁
X _s	t ₃

Multi-class Classification

Table 3

Х	у
X ₁	[t ₂ , t ₅]
X ₂	[t ₁ , t ₂ , t ₃ , t ₄]
X_3	[t ₃]
X ₃	[t ₂ , t ₄]
X ₃	[t ₁ , t ₃ , t ₄]

Multi-label Classification

	alternative	electronica	hip-hop	metal	pop	rock
0	0	0	0	0	0	1
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	1	0	0	0	0
4	0	1	0	0	0	0

Predicted sub genres:

K

Train dataframe:

song	alternative	electronica	hip-hop	metal	pop	rock
7HorseAnswer_the_Bell.mp3	0	0	0	0	0	1
A_Simple_Life-Brian_Crain.mp3	0	0	0	0	0	0
Adagio_in_G_Minor-Albinoni.mp3	0	0	0	0	0	0
Age_Atomic-Solar_Bears.mp3	0	1	0	0	0	0
Alakazam_!-Justice.mp3	0	1	0	0	0	0

Test dataframe:

Beyond_The_Black-Burning_in_Flames.mp3	0	0	0	0	0	1
Beyond_The_Black-Fairytale_of_Doom.mp3	0	0	0	0	0	1
Beyond_The_Black-Hysteria.mp3	0	0	1	0	0	0
Big_TwiceSuper_Mario_Bros.mp3	0	0	0	0	0	1
Billy_JoelHonesty_47998187.mp3	0	0	1	0	1	0

Parameters:

BinaryRelevance:

classifier=SVC()

Keras: (better)

activation='sigmoid'
loss='binary crossentropy'
optimizer=sgd

Hamming loss: 0.2778 (still not good)

Ссылки

- https://medium.com/nuances-of-programming/%D0%B0%D0%BD%D0%B0%D0%B
 B%D0%B8%D0%B7-%D0%B0%D1%83%D0%B4%D0%B8%D0%BE%D0%B4%D
 0%B0%D0%BD%D0%BD%D1%8B%D1%85-%D1%81-%D0%BF%D0%BE%D0%B
 C%D0%BE%D1%89%D1%8C%D1%8E-%D0%B3%D0%BB%D1%83%D0%B1%D
 0%BE%D0%BA%D0%BE%D0%B3%D0%BE-%D0%BE%D0%B1%D1%83%D1%8
 7%D0%B5%D0%BD%D0%B8%D1%8F-%D0%B8-python-%D1%87%D0%B0%D1
 %81%D1%82%D1%8C-1-2056fef8525e
- 2. https://habr.com/ru/post/140828/
- 3. https://fobosworld.ru/kepstralnye-koeffitsienty-kak-neobhodimaya-harakteristika-prot sessa-sozdaniya-sistemy-imitatsii-golosa-cheloveka-s-pomoshhyu-metodov-gluboko go-obucheniya-mezhdunarodnyj-studencheskij-nauchnyj-vestnik/