FONCTIONS DE DEUX VARIABLES

Continuité

Solution 1

- 1. On a $|f(x,y)| \le |x| + |y| = ||(x,y)||_1$. On en déduit que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.
- 2. On a f(x,x) = 0 et f(x,0) = 1. Donc f n'admet pas de limite en (0,0).
- 3. On a f(x, -x) = 0 et $\lim_{x \to 0} f(x, x) = +\infty$ donc f n'admet pas de limite en (0, 0).
- **4.** Remarquons que pour $(x, y) \in \mathbb{R}^2$:

$$|x^3 + y^3| \le |x|^3 + |y|^3 \le (|x| + |y|)(x^2 + y^2) \le 2\|(x, y)\|_1(x^2 + y^2)$$

On en déduit que pour $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$:

$$|f(x,y)| \le 2||(x,y)||_1$$

Ainsi $\lim_{(x,y)\to(0,0)} f(x,y) = 0.$

5. On a d'une part :

$$\lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\sin x}{x} = 1$$

et, d'autre part:

$$\lim_{(x,y)\to(0,0)} x^2 + y^2 - 1 = -1$$

On en déduit que $\lim_{(x,y)\to(0,0)} f(x,y) = -1$.

- 6. On a $\lim_{x\to 0^+} f(x,x) = 1$ et $\lim_{x\to 0^+} f\left(e^{-\frac{1}{x}},x\right) = \frac{1}{e}$ (on vérifie que $\lim_{x\to 0^+} \left(e^{-\frac{1}{x}},x\right) = (0,0)$). On en déduit que f n'admet pas de limite en (0,0).
- 7. On a:

$$f(x,y) = \frac{\sin x^2}{x^2} \frac{x^2}{\sqrt{x^2 + y^2}} + \frac{\sin y^2}{y^2} \frac{y^2}{\sqrt{x^2 + y^2}}$$

D'une part :

$$\lim_{x \to 0} \frac{\sin x^2}{x^2} = \lim_{y \to 0} \frac{\sin y^2}{y^2} = 1$$

D'autre part :

$$0 \le \frac{x^2}{\sqrt{x^2 + y^2}} \le \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2}$$

et de même

$$0 \le \frac{y^2}{\sqrt{x^2 + y^2}} \le \sqrt{x^2 + y^2}$$

On en déduit que :

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)} \frac{y^2}{\sqrt{x^2+y^2}} = 0$$

1

puis que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Dérivées partielles

Solution 2

1. Comme les applications $(x, y) \mapsto x^3 - y^3$ et $(x, y) \mapsto x^2 + y^2$ sont polynomiales, elles sont continue sur \mathbb{R}^2 . De plus, $(x, y) \mapsto x^2 + y^2$ ne s'annule qu'en (0, 0) donc f est continue sur $\mathbb{R}^2 \setminus \{(0, 0)\}$. De plus,

$$\forall (x, y) \in \mathbb{R}^2, |x^3 - y^3| \le |x^3| + |y^3| \le (|x| + |y|)(x^2 + y^2)$$

donc

$$\forall (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}, |f(x, y)| \le ||(x, y)||_1$$

Ainsi f est bien continue en (0,0). Finalement, f est bien continue sur \mathbb{R}^2 .

2. De la même manière, les applications polynomiales $(x, y) \mapsto x^3 - y^3$ et $(x, y) \mapsto x^2 + y^2$ sont de classe \mathcal{C}^1 donc f est de classe \mathcal{C}^1 sur $\mathbb{R}^2 \setminus \{(0, 0)\}$ et pour tout $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$,

$$\frac{\partial f}{\partial x}(x,y) = \frac{x^4 + 3x^2y^2 + 2xy^3}{(x^2 + y^2)^2} \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = -\frac{y^4 + 3x^2y^2 + 2x^3y}{(x^2 + y^2)^2}$$

Par ailleurs,

$$\forall x \in \mathbb{R}^*, \ \frac{f(x,0) - f(0,0)}{x - 0} = 1$$

donc $\frac{\partial f}{\partial x}(0,0) = 1$,

$$\forall y \in \mathbb{R}^*, \ \frac{f(0,y) - f(0,0)}{y - 0} = -1$$

donc $\frac{\partial f}{\partial y}(0,0) = -1$.

Enfin,

$$\forall y \in \mathbb{R}^*, \ \frac{\partial f}{\partial x}(0, y) = 0 \neq 1 = \frac{\partial f}{\partial x}(0, 0)$$

donc $\frac{\partial f}{\partial x}$ n'est pas continue en (0,0). De même,

$$\forall x \in \mathbb{R}^*, \ \frac{\partial f}{\partial y}(x,0) = 0 \neq -1 = \frac{\partial f}{\partial y}(0,0)$$

donc $\frac{\partial f}{\partial y}$ n'est pas non plus continue en (0,0).

3. Attention, $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ peuvent ne pas être continues en (0,0) mais pourtant y admettre des dérivées partielles.

$$\forall x \in \mathbb{R}^*, \ \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x - 0} = \frac{1}{x}$$

donc $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ n'est pas définie.

De même,

$$\forall y \in \mathbb{R}^*, \ \frac{\frac{\partial f}{\partial x}(0, y) - \frac{\partial f}{\partial x}(0, 0)}{v - 0} = -\frac{1}{v}$$

donc $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ n'est pas non plus définie.

Par contre,

$$\forall x \in \mathbb{R}^*, \ \frac{\frac{\partial f}{\partial x}(x,0) - \frac{\partial f}{\partial x}(0,0)}{x - 0} = 0$$

donc
$$\frac{\partial^2 f}{\partial x^2}(0,0) = 0$$
 et

$$\forall y \in \mathbb{R}^*, \ \frac{\frac{\partial f}{\partial y}(0, y) - \frac{\partial f}{\partial y}(0, 0)}{v - 0} = 0$$

$$\operatorname{donc} \frac{\partial^2 f}{\partial y^2}(0,0) = 0.$$

Solution 3

1. En utilisant éventuellement une composition par l'application $(x, y) \mapsto (y, x)$, on trouve :

$$\frac{\partial g}{\partial x}(x,y) = \frac{\partial f}{\partial y}(y,x) \qquad \qquad \frac{\partial g}{\partial y} = \frac{\partial f}{\partial x}(y,x)$$

2. En utilisant une composition par l'application $x \mapsto (x, x)$, on trouve :

$$g'(x) = \frac{\partial f}{\partial x}(x, x) + \frac{\partial f}{\partial y}(x, x)$$

3. En utilisant une composition par $(x, y) \mapsto (y, f(x, x))$, on trouve :

$$\frac{\partial g}{\partial x}(x,y) = \frac{\partial f}{\partial y}(y,f(x,x)) \left(\frac{\partial f}{\partial x}(x,x) + \frac{\partial f}{\partial y}(x,x) \right) \qquad \qquad \frac{\partial g}{\partial y}(x,y) = \frac{\partial f}{\partial x}(y,f(x,x))$$

4. En utilisant une composition par $x \mapsto (x, f(x, x))$, on trouve :

$$g'(x) = \frac{\partial f}{\partial x}(x, f(x, x)) + \frac{\partial f}{\partial y}(x, f(x, x)) \left(\frac{\partial f}{\partial x}(x, x) + \frac{\partial f}{\partial y}(x, x)\right)$$

Solution 4

1. A y_0 fixé, $f(x, y_0) = \begin{cases} |x| & \text{si } |x| \ge |y_0| \\ |y_0| & \text{si } |x| \le |y_0| \end{cases}$. Ainsi $f(., y_0)$ est dérivable sur $\mathbb{R} \setminus \{pmy_0\}$ et n'est pas dérivable en $\pm y_0$.

De même, à x_0 fixé, $f(x_0, y) = \begin{cases} |y| & \text{si } |y| \ge |x_0| \\ |x_0| & \text{si } |y| \le |x_0| \end{cases}$. Ainsi $f(x_0, .)$ est dérivable sur $\mathbb{R} \setminus \{\pm x_0\}$ et n'est pas dérivable en $\pm x_0$.

On en déduit que f n'admet des dérivées partielles en (x_0, y_0) si et seulement si $|x_0| \neq |y_0|$.

- 2. La valeur absolue étant dérivable en tout point différent de 0, f admet une dérivée partielle en x en tout point (x_0, y_0) tel que $x_0 \neq 0$ et f n'admet pas de dérivée partielle en x en un point $(0, y_0)$. De même f admet une dérivée partielle en y en tout point (x_0, y_0) tel que $y_0 \neq 0$ et f n'admet pas de dérivée partielle en y en un point $(x_0, 0)$.
- 3. f est évidemment dérivable en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$. De plus, $x \mapsto f(x,0) = \frac{\sin x^2}{|x|}$ et $y \mapsto f(0,y) = \frac{\sin y^2}{|y|}$ ne sont pas dérivables en 0 (considérer le taux d'acroissement à gauche et à droite) donc f n'admet pas de dérivée partielle en (0,0).

Solution 5

f est clairement continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$. De plus,

$$|f(x,y) \le |xy| \le \frac{1}{2}(x^2 + y^2) = \frac{1}{2}||(x,y)||^2$$

On a donc $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, ce qui prouve que f est continue en (0,0).

Si $(x, y) \neq (0, 0)$, on a clairement :

$$\frac{\partial f}{\partial x} = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$

$$\frac{\partial f}{\partial y} = \frac{-x(y^4 + 4x^2y^2 - x^4)}{(x^2 + y^2)^2}$$

© Laurent Garcin

De plus, f(x,0) pour $x \neq 0$ et f(0,y) = 0 pour $y \neq 0$. Donc $\frac{\partial f}{\partial x}(0,0) = 0$ et $\frac{\partial f}{\partial y}(0,0) = 0$. Les dérivées partielles de f sont clairement continues en tout point distinct de (0,0). De plus,

$$\begin{split} \left| \frac{\partial f}{\partial x}(x,y) \right| & \leq \frac{|y|(x^4 + 4x^2y^2 + y^4)}{(x^2 + y^2)^2} \leq \frac{|y|(2x^4 + 4x^2y^2 + 2y^4)}{(x^2 + y^2)^2} = 2|y| \\ \left| \frac{\partial f}{\partial y}(x,y) \right| & \leq \frac{|x|(x^4 + 4x^2y^2 + y^4)}{(x^2 + y^2)^2} \leq \frac{|x|(2x^4 + 4x^2y^2 + 2y^4)}{(x^2 + y^2)^2} = 2|x| \end{split}$$

On a donc

$$\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y) = \lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial y}(x,y) = 0$$

ce qui prouve que les dérivées partielles de f sont continues en (0,0). Ainsi f est de classe \mathcal{C}^1 . On a :

$$\frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x - 0} = 1$$

$$\frac{\frac{\partial f}{\partial x}(0,y) - \frac{\partial f}{\partial x}(0,0)}{y - 0} = -1$$

On a donc $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1$. Donc f n'est pas de classe \mathcal{C}^2 .

Solution 6

On a classiquement:

$$\frac{\partial f}{\partial x} = \cos \theta \frac{\partial g}{\partial r} - \frac{\sin \theta}{r} \frac{\partial g}{\partial \theta}$$
$$\frac{\partial f}{\partial y} = \sin \theta \frac{\partial g}{\partial r} + \frac{\cos \theta}{r} \frac{\partial g}{\partial \theta}$$

On en déduit donc que :

$$\frac{\partial^2 f}{\partial x^2} = \cos \theta \frac{\partial}{\partial r} \left(\cos \theta \frac{\partial g}{\partial r} - \frac{\sin \theta}{r} \frac{\partial g}{\partial \theta} \right)$$
$$- \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left(\cos \theta \frac{\partial g}{\partial r} - \frac{\sin \theta}{r} \frac{\partial g}{\partial \theta} \right)$$
$$\frac{\partial^2 f}{\partial y^2} = \sin \theta \frac{\partial}{\partial r} \left(\sin \theta \frac{\partial g}{\partial r} + \frac{\cos \theta}{r} \frac{\partial g}{\partial \theta} \right)$$
$$+ \frac{\cos \theta}{r} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial g}{\partial r} + \frac{\cos \theta}{r} \frac{\partial g}{\partial \theta} \right)$$

Après simplification, on trouve :

$$\Delta f = \frac{\partial^2 g}{\partial r^2} + \frac{1}{r} \frac{\partial g}{\partial r} + \frac{1}{r^2} \frac{\partial^2 g}{\partial \theta^2}$$

Solution 7

Les applications $t \mapsto e^t \cos t$ et $t \mapsto \ln(1+t^2)$ étant de classe \mathcal{C}^1 sur \mathbb{R} , l'application $t \mapsto (e^t \cos t, \ln(1+t^2))$ l'est également. Par composition, g est de classe \mathcal{C}^1 . De plus,

$$g'(t) = e^t(\cos t - \sin t)\frac{\partial f}{\partial x}(e^t\cos t, \ln(1+t^2)) + \frac{2t}{1+t^2}\frac{\partial f}{\partial y}(e^t\cos t, \ln(1+t^2))$$

Solution 8

1. Une fonction constante égale à c vérifie (*) si et seulement si $2c = 2c^2$. Les fonctions constantes vérifiant (*) sont donc la fonction nulle et la fonction constante égale à 1.

2. a. En choisissant x = 0 et y = 0 dans (*), on obtient $2f(0) = 2f(0)^2$ donc f(0) = 0 ou f(0) = 1. Puisque pour tout $x \in \mathbb{R}$,

$$2f(x) = f(x+0) + f(x-0) = 2f(x)f(0)$$

on ne peut avoir f(0) = 0 sinon f serait constante égale à 0. Ainsi f(0) = 1. En dérivant (*) par rapport à y, on obtient

$$\forall x, y \in \mathbb{R}, \ f'(x+y) - f'(x-y) = 2f(x)f'(y)$$

En choisissant x = 0 et y = 0 dans cette nouvelle équation, on en déduit f(0)f'(0) = 0 et donc f'(0) = 0 puisque $f(0) = 1 \neq 0$.

- **b.** En choisissant x = 0 dans (*), on obtient f(y) + f(-y) = 2f(0)f(y) pour tout $y \in \mathbb{R}$. Puisque f(0) = 1, f(-y) = f(y) pour tout $y \in \mathbb{R}$ i.e. f est paire.
- **3. a.** Les applications $(x,y) \mapsto x + y$ et $(x,y) \mapsto x y$ sont de classe \mathcal{C}^2 sur \mathbb{R}^2 à valeurs dans \mathbb{R} . Comme f est de classe \mathcal{C}^2 , $(x,y) \mapsto f(x+y)$ et $(x,y) \mapsto f(x-y)$ sont de classe \mathcal{C}^2 sur \mathbb{R}^2 en tant que composée de fonctions de classe \mathcal{C}^2 . Par suite, F est de classe \mathcal{C}^2 sur \mathbb{R}^2 en tant que somme de telles fonctions.
 - **b.** On calcule les dérivées partielles premières :

$$\frac{\partial F}{\partial x}(x,y) = f'(x+y) + f'(x-y) \qquad \qquad \frac{\partial F}{\partial y} = f'(x+y) - f'(x-y)$$

puis les dérivées partielles secondes :

$$\frac{\partial^2 \mathbf{F}}{\partial x^2}(x,y) = f''(x+y) + f''(x-y)$$

$$\frac{\partial^2 \mathbf{F}}{\partial y^2}(x,y) = f''(x+y) + f''(x-y)$$

$$\frac{\partial^2 \mathbf{F}}{\partial y^2}(x,y) = \frac{\partial^2 \mathbf{F}}{\partial y \partial x}(x,y) = f''(x+y) - f''(x-y)$$

- c. On voit que $\frac{\partial^2 F}{\partial x^2} = \frac{\partial^2 F}{\partial y^2}$. Or f étant solution de(*), on sait également que F(x,y) = 2f(x)f(y) pour tout $(x,y) \in \mathbb{R}^2$. On en déduit que $\frac{\partial^2 F}{\partial x^2}(x,y) = 2f''(x)f(y)$ et $\frac{\partial^2 F}{\partial y^2}(x,y) = 2f(x)f''(y)$ pour tout $(x,y) \in \mathbb{R}^2$. On a donc f''(x)f(y) = f(x)f''(y) pour tout $(x,y) \in \mathbb{R}^2$. En choisissant y = 0, on en déduit que f''(x) f''(0)f(x) = 0 pour tout $x \in \mathbb{R}$ puisque f(0) = 1. Quitte à poser $\alpha = f''(0)$, f est solution de l'équation différentielle $z'' \alpha z = 0$.
- d. C'est du cours.
 - (I) Si $\alpha = 0$, les solutions de cette équation différentielle sont $x \mapsto Ax + B$ avec $(A, B) \in \mathbb{R}^2$.
 - (II) Si $\alpha > 0$, les solutions de cette équation différentielle sont $x \mapsto A \operatorname{ch}(\omega x) + B \operatorname{sh}(\omega x)$ avec $(A, B) \in \mathbb{R}^2$ et $\omega = \sqrt{\alpha}$.
 - (III) Si $\alpha < 0$, les solutions de cette équation différentielle sont $x \mapsto A\cos(\omega x) + B\sin(\omega x)$ avec $(A, B) \in \mathbb{R}^2$ et $\omega = \sqrt{-\alpha}$.
- **4.** Soit *f* une solution non constamment nulle
 - Si f est du type (I), alors les conditions de la question 2 entraîne A = 0 et B = 1, ce qui est exclu car on a supposé f non constante.
 - Si f est du type (II), alors les conditions de la question $\mathbf{2}$ entraı̂ne A = 1 et B = 0. Réciproquement toute fonction g_{ω} : $x \mapsto \operatorname{ch}(\omega x)$ avec $\omega \in \mathbb{R}$ est bien solution de (*).
 - Si f est du type (III), alors les conditions de la question $\mathbf{2}$ entraı̂ne A=1 et B=0. Réciproquement toute fonction $h_{\omega}: x \mapsto \cos(\omega x)$ avec $\omega \in \mathbb{R}$ est bien solution de (*).

Les solutions de (*) sont donc la fonction nulle, les fonctions g_{ω} et h_{ω} pour $\omega \in \mathbb{R}$.

Solution 9

1. $(x,y) \mapsto x^2 + y^2$ est continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et ne s'y annule pas donc $(x,y) \mapsto \frac{1}{\sqrt{x^2 + y^2}}$ y est également continue. Comme sin est continue sur \mathbb{R} , $(x,y) \mapsto \sin \frac{1}{\sqrt{x^2 + y^2}}$ est continue $\mathbb{R}^2 \setminus \{(0,0)\}$. Finalement, f est continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$ comme produit de fonctions continues

De plus, pour $(x, y) \neq (0, 0)$, $|f(x, y)| \leq |x^2 + y^2| = ||(x, y)||^2$. Ainsi $\lim_{(x, y) \to (0, 0)} f(x, y) = 0 = f(0, 0)$, ce qui prouve que f est aussi continue en (0, 0).

Finalement, f est continue sur \mathbb{R}^2 .

2. a. Les théorèmes classiques de dérivabilité d'une fonction d'une variable réelle nous donne la dérivabilité des applications partielles et donc l'existence de dérivées partielles en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$. De plus, pour $x \neq 0$:

$$\frac{f(x,0) - f(0,0)}{x - 0} = x \sin \frac{1}{|x|} \xrightarrow[x \to 0]{} 0$$

donc f admet une dérivée partielle par rapport à x en (0,0).

De même, pour $y \neq 0$:

$$\frac{f(0,y) - f(0,0)}{y - 0} = y \sin \frac{1}{|y|} \xrightarrow[y \to 0]{} 0$$

donc f admet une dérivée partielle par rapport à y en (0,0).

Finalement, f admet des dérivées partielles premières en tout point de \mathbb{R}^2 .

b. Les théorèmes de dérivation nous donnent pour $(x, y) \neq (0, 0)$:

$$\frac{\partial f}{\partial x}(x, y) = 2x \sin \frac{1}{\sqrt{x^2 + y^2}} - \frac{x}{\sqrt{x^2 + y^2}} \cos \frac{1}{\sqrt{x^2 + y^2}}$$

$$\frac{\partial f}{\partial y}(x, y) = 2y \sin \frac{1}{\sqrt{x^2 + y^2}} - \frac{y}{\sqrt{x^2 + y^2}} \cos \frac{1}{\sqrt{x^2 + y^2}}$$

On montre comme à la première question que les dérivées partielles sont continues sur $\mathbb{R}^2\setminus\{(0,0)\}$.

Mais $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ n'admettent pas de limite en (0,0). En effet, pour $n \in \mathbb{N}^*$,

$$\frac{\partial f}{\partial x} \left(\frac{1}{\sqrt{2n\pi}}, 0 \right) = -1 \qquad \qquad \frac{\partial f}{\partial x} \left(\frac{1}{\sqrt{2n\pi + \frac{\pi}{2}}}, 0 \right) = \frac{2}{\sqrt{2n\pi + \frac{\pi}{2}}} \xrightarrow[n \to +\infty]{} 0$$

et pourtant $\left(\frac{1}{\sqrt{2n\pi}},0\right)$ et $\left(\frac{1}{\sqrt{2n\pi+\frac{\pi}{2}}},0\right)$ tendent vers (0,0) lorsque n tend vers $+\infty$. Ceci prouve que $\frac{\partial f}{\partial x}$ n'admet pas de limite

en (0,0). De même, $\frac{\partial f}{\partial y}$ n'est pas continue en (0,0). A fortiori, $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ ne sont pas continues en (0,0).

c. f n'est donc pas de classe \mathcal{C}^1 sur \mathbb{R}^2 . Elle l'est néanmoins sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

Solution 10

- 1. Les applications π_1 : $(x,y) \mapsto x$ et π_2 : $(x,y) \mapsto x$ sont \mathcal{C}^{∞} sur \mathbb{R}^2 et sin est \mathcal{C}^{∞} sur \mathbb{R} donc $\sin \circ \pi_1 \sin \circ \pi_2$ et $\pi_1 \pi_2$ sont \mathcal{C}^{∞} sur \mathbb{R}^2 . De plus, $\pi_1 \pi_2$ ne s'annule pas sur $\mathbb{R}^2 \setminus \Delta$ donc f est \mathcal{C}^{∞} sur $\mathbb{R}^2 \setminus \Delta$.
- **2.** Remarquons que pour $(x, y) \in \mathbb{R}^2 \setminus \Delta$,

$$f(x,y) = \frac{2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)}{x-y}$$

Donc en posant φ : $t \in \mathbb{R}^* \mapsto \frac{\sin t}{t}$,

$$f(x,y) = \varphi\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)$$

Soit $(a, a) \in \Delta$. Alors $\lim_{(x,y)\to(a,a)} \frac{x-y}{2} = 0$ et $\lim_{0} \varphi = 1$ donc $\lim_{(x,y)\to(a,a)} \varphi\left(\frac{x-y}{2}\right) = 1$. De plus, on a clairement $\lim_{(x,y)\to(a,a)} \cos\left(\frac{x+y}{2}\right) = \cos a$ donc $\lim_{(a,a)} f = \cos(a)$. L'application f est donc prolongeable en une application \tilde{f} . De plus, pour $(a,a) \in \Delta$, $\tilde{f}(a,a) = \cos a$.

3. Comme f est de classe \mathcal{C}^{∞} sur $\mathbb{R}^2 \setminus \Delta$, \tilde{f} admet des dérivées partielles sur $\mathbb{R}^2 \setminus \Delta$. On peut également préciser que

$$\frac{\partial \tilde{f}}{\partial x}(x,y) = \frac{\cos(x)(x-y) - (\sin(x) - \sin(y))}{(x-y)^2} \qquad \qquad \frac{\partial \tilde{f}}{\partial y}(x,y) = \frac{\cos(y)(y-x) - (\sin(y) - \sin(x))}{(y-x)^2}$$

Soit alors $(a, a) \in \Delta$. Pour $h \in \mathbb{R}^*$,

$$\frac{\tilde{f}(a+h,a)-\tilde{f}(a,a)}{h}=\frac{\sin(a+h)-\sin(a)-h\cos(a)}{h^2}$$

Or d'après la formule de Taylor,

$$\sin(a+h) = \sin(a) + h\cos(a) - \frac{\sin(a)}{2}h^2 + o(h^2)$$

donc

$$\lim_{h \to 0} \frac{\tilde{f}(a+h,a) - \tilde{f}(a,a)}{h} = -\frac{1}{2}\sin(a)$$

Ainsi \tilde{f} admet une dérivée partielle selon sa première variable en (a, a) et

$$\frac{\partial \tilde{f}}{\partial x}(a,a) = -\frac{1}{2}\sin a$$

On prouve de la même manière \tilde{f} admet une dérivée partielle selon sa seconde variable en (a, a) et

$$\frac{\partial \tilde{f}}{\partial y}(a, a) = -\frac{1}{2}\sin a$$

Remarque. Pour simplifier, on aurait pu remarquer que $\tilde{f}(x,y) = \tilde{f}(y,x)$ donc si \tilde{f} admet une dérivée partielle suivant sa seconde variable en (x,y) elle en admet une selon sa seconde variable en (y,x) et

$$\frac{\partial \tilde{f}}{\partial x}(x,y) = \frac{\partial \tilde{f}}{\partial y}(y,x)$$

4. La fonction $\varphi : t \mapsto \frac{\sin t}{t}$ est prolongeable en une fonction continue sur \mathbb{R} puisqu'elle est continue sur \mathbb{R}^* et $\lim_0 \varphi = 1$. Notons encore φ ce prolongement. On a alors

$$\forall (x,y) \in \mathbb{R}^2, \ \tilde{f}(x,y) = \varphi\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)$$

 ϕ est clairement de classe \mathcal{C}^1 sur \mathbb{R}^* et

$$\forall t \in \mathbb{R}^*, \ \varphi'(t) = \frac{t \cos t - \sin t}{t}$$

Or $\cos t = 1 + o(1)$ et $\sin t = t + o(t)$ donc $\varphi'(t) = o(1)$ i.e. $\lim_{t \to 0} \varphi' = 0$. On en déduit que φ est de classe \mathcal{C}^1 sur \mathbb{R} (et que $\varphi'(0) = 0$). Puisque $(x,y) \mapsto \frac{x-y}{2}$ est clairement de classe \mathcal{C}^1 sur \mathbb{R}^2 , $(x,y) \mapsto \varphi\left(\frac{x-y}{2}\right)$ est de classe \mathcal{C}^1 sur \mathbb{R}^2 par composition. De la même manière, $(x,y) \mapsto \cos\left(\frac{x+y}{2}\right)$ est de classe \mathcal{C}^1 sur \mathbb{R}^2 donc \tilde{f} l'est également en tant que produit de fonctions de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Remarque. La question précédente était donc inutile. Remarquons qu'on peut également calculer les dérivées partielles de \tilde{f} en (a,a) à l'aide de son expression en fonction de ϕ :

$$\frac{\partial \tilde{f}}{\partial x}(a,a) = \frac{1}{2}\varphi'(0)\cos(a) - \frac{1}{2}\varphi(0)\sin(a) = -\frac{1}{2}\sin a$$

$$\frac{\partial \tilde{f}}{\partial y}(a,a) = -\frac{1}{2}\varphi'(0)\cos(a) - \frac{1}{2}\varphi(0)\sin(a) = -\frac{1}{2}\sin a$$

5. En utilisant le développement en série entière de sin,

$$\forall t \in \mathbb{R}, \ \varphi(t) = \sum_{n=0}^{+\infty} \frac{(-1)^n t^n}{(2n+1)!}$$

Ainsi ϕ est développable en une série entière de rayon de convergence infini. Par conséquent, ϕ est de classe \mathcal{C}^{∞} sur \mathbb{R} . L'expression

$$\forall (x,y) \in \mathbb{R}^2, \ \tilde{f}(x,y) = \varphi\left(\frac{x-y}{2}\right) \cos\left(\frac{x+y}{2}\right)$$

permet alors de montrer que \tilde{f} est de classe \mathcal{C}^{∞} sur \mathbb{R}^2 . En effet, les applications $(x,y)\mapsto \frac{x+y}{2}$ et $(x,y)\mapsto \frac{x-y}{2}$ sont clairement de classe \mathcal{C}^{∞} sur \mathbb{R}^2 tandis que φ et cos sont de classe \mathcal{C}^{∞} sur \mathbb{R} .

Remarque. On pouvait également utiliser l'indication de l'énoncé. Remarquons que pour $(x, y) \in \mathbb{R}^2$ (y compris lorsque x = y)

$$\tilde{f}(x,y) = \int_0^1 \cos(tx + (1-t)y) dt$$

Pour tout $t \in [0,1]$, $(x,y) \mapsto \cos(tx + (1-t)y)$ admet des dérivées partielles à tout ordre. Ces dérivées partielles sont de la forme $(x,y) \mapsto (-1)^{\alpha} t^{\beta} (1-t)^{\gamma} \cos(tx + (1-t)y)$ ou $(x,y) \mapsto (-1)^{\alpha} t^{\beta} (1-t)^{\gamma} \sin(tx + (1-t)y)$. De plus,

$$\forall (x, y, t) \in \mathbb{R}^2 \times [0, 1], \ |(-1)^{\alpha} t^{\beta} (1 - t)^{\gamma} \cos(tx + (1 - t)y)| \le 1$$

et

$$\forall (x, y, t) \in \mathbb{R}^2 \times [0, 1], \ |(-1)^{\alpha} t^{\beta} (1 - t)^{\gamma} \sin(tx + (1 - t)y)| \le 1$$

et $t \mapsto 1$ est intégrable sur le segment [0,1]. Donc, en appliquant le théorème de dérivation des intégrales à paramètres successivement par rapport aux variables x et y, on en déduit que \tilde{f} admet des dérivées partielles à tout ordre.

6. Puisque $|\sin'| = |\cos| \le 1$, sin est 1-lipschitzienne sur \mathbb{R} donc

$$\forall (x, y) \in \mathbb{R}^2, |\sin(x) - \sin(y)| \le |x - y|$$

donc

$$\forall (x, y) \in \mathbb{R}^2 \setminus \Delta, |\tilde{f}(x, y)| \leq 1$$

De plus, pour $(a, a) \in \Delta$, $|\tilde{f}(a, a)| = |\cos(a)| \le 1$ donc

$$\forall (x, y) \in \mathbb{R}^2, |\tilde{f}(x, y)| \le 1$$

Par ailleurs, $\tilde{f}(0,0) = \cos(0) = 1$ et $\tilde{f}(\pi,\pi) = \cos(\pi) = -1$. Ainsi \tilde{f} admet 1 pour maximum et -1 pour minimum sur \mathbb{R}^2 .

Optimisation

Solution 11

- 1. f est polynomiale en x et y: elle admet donc des dérivées partielles premières polynomiales en tout point de \mathbb{R}^2 . Ces dérivées partielles sont a fortiori continues sur \mathbb{R}^2 .
- 2. Le calcul des dérivées partielles donnent :

$$\frac{\partial f}{\partial x}(x,y) = 2x(1+y)^3 \qquad \qquad \frac{\partial f}{\partial y} = 3x^2(1+y)^2 + 4y^3$$

Les points critiques sont les points (x, y) tels que $\frac{\partial f}{\partial x}(x, y) = 0$ et $\frac{\partial f}{\partial y}(x, y) = 0$. La première condition équivaut à x = 0 ou y = -1. La deuxième condition montre que y ne peut être égal à -1. On a donc x = 0 puis y = 0. Le seul point critique est (0, 0).

3. On a f(0,0)=0 et pour $y\geq -1$, $f(x,y)\geq 0$. Ceci montre que f admet bien un minimum local en (0,0). Mais $f(y,y) \underset{y\to -\infty}{\sim} y^5$ donc $\lim_{y\to -\infty} f(y,y)=-\infty$. f prend donc des valeurs strictement négatives et f n'admet pas de minimum global en (0,0) (f n'admet pas de minimum global du tout).

Solution 12

1. Les points critiques de
$$f$$
 sont les solutions du système
$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases}$$

$$\begin{cases} \frac{\partial f}{\partial x}(x, y) = 0 \\ \frac{\partial f}{\partial y}(x, y) = 0 \end{cases}$$

$$\iff \begin{cases} 3x^2 - 3y = 0 \\ 3y^2 - 3x = 0 \end{cases}$$

$$\iff \begin{cases} y = x^2 \\ x = y^2 \end{cases}$$

$$\iff \begin{cases} y = x^2 \\ x = x^4 \end{cases}$$

$$\iff \begin{cases} y = 0 \\ x = 0 \end{cases} \text{ ou } \begin{cases} y = 1 \\ x = 1 \end{cases}$$

Les points critiques de f sont donc (0,0) et (1,1).

- 2. Soit $\varepsilon > 0$. Alors $f(\varepsilon, 0) = \varepsilon^3 > 0$ et $f(-\varepsilon, 0) = -\varepsilon^3 < 0$. Comme $(\varepsilon, 0)$ et $(-\varepsilon, 0)$ sont arbitrairement proches de (0, 0), f prend des valeus strictement positives et strictement négatives dans tout voisinage de (0, 0). Ainsi f n'admet pas d'extremum local en (0, 0).
- 3. Dans un premier temps,

$$\forall (u, v) \in \mathbb{R}^2, \ g(u, v) = 3u^2 + 3v^2 - 3uv + u^3 + v^3$$

puis

$$\forall (r,\theta) \in \mathbb{R}_+ \times \mathbb{R}, \ g(r\cos\theta, r\sin\theta) = 3r^2 - 3r^2\cos\theta\sin\theta + r^3(\cos^3\theta + \sin^3\theta) = 3r^2\left(1 - \frac{1}{2}\sin(2\theta) + \frac{r}{3}(\cos^3\theta + \sin^3\theta)\right)$$

4. Soit $(r, \theta) \in \mathbb{R}_+ \times \mathbb{R}$. Comme sin et cos sont à valeurs dans [-1, 1], on a d'une part

$$1 - \frac{1}{2}\sin(2\theta) \ge \frac{1}{2}$$

et d'autre part

$$\frac{1}{3}(\cos^3\theta + \sin^3\theta) \ge -\frac{2}{3} \ge -2$$

Comme $r \ge 0$, on obtient

$$1 - \frac{1}{2}\sin(2\theta) + \frac{r}{3}(\cos^3\theta + \sin^3\theta) \ge \frac{1}{2} - 2r$$

puis

$$g(r\cos\theta, r\sin\theta) \ge 3r^2\left(\frac{1}{2} - 2r\right)$$

Notamment pour $r \le \frac{1}{4}$, $g(r\cos\theta, r\sin\theta) \ge 0$. On en déduit que pour tout (x, y) dans le disque de centre (1, 1) et de rayon $\frac{1}{4}$ (pour la norme euclidienne), $f(x, y) \ge f(1, 1)$. Autrement dit, f admet un minimum local en (1, 1).

5. Remarquons que $f(x,x) = 2x^3 - 3x^2$. Notamment, $\lim_{\substack{x \to -\infty }} f(x,x) = -\infty$ et $\lim_{\substack{x \to +\infty }} f(x,x) = +\infty$. La fonction f ne possède pas de minimum global puisqu'elle n'est même pas minorée et elle ne possède pas non plus de maximum global puisqu'elle n'est pas majorée.