

Programming Language Semantics and Compiler Design / Sémantique des Languages de Programmation et Compilation Natural Operational Semantics of Language While

Yliès Falcone

ylies.falcone@univ-grenoble-alpes.fr — www.ylies.fr Univ. Grenoble Alpes, and LIG-Inria team CORSE

Master of Sciences in Informatics at Grenoble (MoSIG)

Master 1 info

 $\label{eq:Univ.Grenoble} Univ.\ Grenoble\ Alpes\ -\ UFR\ IM^2AG \\ www.univ-grenoble-alpes.fr\ -\ im^2ag.univ-grenoble-alpes.fr \\$

Academic Year 2017 - 2018

About Operational Semantics

Semantics is

- concerned with the *meaning* of grammatically correct programs;
- defined on abstract syntax trees, obtained after type analysis.

With Operational Semantics the meaning of a construct tells how to execute it.

Semantics is described in terms of *sequences of configurations*, which give the state-history of the machine.

Outline

Syntax of Language \mathbf{While}

Semantics of Expressions in Language $\mbox{\sc While}$

(Natural) Operational Semantics of Language $\mbox{\bf While}$

Outline

Syntax of Language While

Semantics of Expressions in Language While

(Natural) Operational Semantics of Language While

Meta-Variables

Meta-variables:

- x: variable
- ▶ *S*: statement
- ► a: arithmetic expression
- ▶ b: Boolean expression

Meta-variables can be primed or sub-scripted

Example (Meta-Variables)

- \blacktriangleright variables: x, x', x_1, x_2, \dots
- ▶ statements: $S, S_1, S', ...$
- ▶ arithmetic expressions: $a_1, a_2, ...$
- ▶ Boolean expressions: $b_1, b', b_2, ...$

Abstract Grammar of language While

Definition (Abstract Grammar of language While)

$$S ::= x := a \mid \text{skip}$$

 $\mid S; S$
 $\mid \text{if } b \text{ then } S \text{ else } S \text{ fi}$
 $\mid \text{while } b \text{ do } S \text{ od}$

Remark This is an inductive definition:

- x := a and skip are basis elements;
- S; S, if b then S else S fi, while b do S od are composition rules to define composite elements.

Syntactic Categories

Numbers

$$n \in \mathbf{Num} = \{0, \dots, 9\}^+$$

Variables

$$x \in \mathbf{Var}$$

Arithmetic expressions

$$a \in \mathbf{Aexp}$$

 $a ::= n \mid x \mid a+a \mid a*a \mid a-a$

Num, Var, and Aexp are syntactic categories.

Remark Other operators for artihmetical expressions can be defined from the proposed ones.

► Boolean expressions

$$b \in \mathbf{Bexp}$$

 $b ::= \text{true} \mid \text{false} \mid a = a \mid a \le a \mid \neg b \mid b \land b$

Statements

Bexp and Stm are syntactic categories.

We focus on abstract syntax and abstract away concrete syntax.

- ▶ Term S_1 ; S_2 represents the tree, s.t.
 - the root is ;
 - ▶ left child is S₁ tree
 - ▶ right child is S₂ tree
- ▶ Parenthesis shall be used to avoid ambiguities.

Example (Abstract Syntax Tree)

 $\triangleright S_1; (S_2; S_3)$

; 5

 \triangleright $(S_1; S_2); S_3$

We will only use the linear notation.

Outline - Natural Operational Semantics of Language While

Syntax of Language winic

Semantics of Expressions in Language While

(Natural) Operational Semantics of Language While

Semantic domains

- ▶ Integers: ℤ
- ▶ Booleans: $\mathbb{B} = \{\mathbf{tt}, \mathbf{ff}\}$
- States:

$$\mathsf{State} = \mathsf{Var} \to \mathbb{Z}$$

Intuition: a state is a "memory"

Definition (Substituing a value to a variable)

Let $v \in \mathbb{Z}$. Then, $\sigma[y \mapsto v]$ denotes the state σ' such that:

for all
$$x \in \mathbf{Var}, \sigma'(x) = \begin{cases} \sigma(x) & \text{if } x \neq y, \\ v & \text{otherwise.} \end{cases}$$

Example (Substitution)

For $\sigma = [x \mapsto 0, y \mapsto 1]$:

Semantic functions

Numerals: integers

$$\begin{array}{ccc} \mathcal{N} & : & \text{Num} \to \mathbb{N} \\ \mathcal{N}(n_1 \cdots n_k) & = & \Sigma_{i=1}^k n_i \times 10^{k-i} \end{array}$$

Arithmetic expressions: for each state, a value in Z
 A : Aexp → (State → Z)

$$\mathcal{A}[x]\sigma = \sigma(x)$$

$$\mathcal{A}[a_1 + a_2]\sigma = \mathcal{A}[a_1]\sigma +_{I} \mathcal{A}[a_2]\sigma$$

$$\mathcal{A}[a_1 * a_2]\sigma = \mathcal{A}[a_1]\sigma *_{I} \mathcal{A}[a_2]\sigma$$

$$\mathcal{A}[a_1 - a_2]\sigma = \mathcal{A}[a_1]\sigma -_{I} \mathcal{A}[a_2]\sigma$$

 $\mathcal{A}[n]\sigma = \mathcal{N}(n)$

- inductive /compositional semantics: defined over the structure
- Caution: distinguish * and $*_I$, + and $+_I$, and $-_I$
- ▶ Boolean expressions: for each state, a value in B

$$\mathcal{B}:\mathsf{Bexp} o (\mathsf{State} o \mathbb{B})$$

Remark Expressions can also be defined in an operational way.

Semantic functions (ctd): some examples/exercises

Example (Semantic function for digits in base 2)

- ▶ Define numerals in base 2 (inductively)
- ▶ Give them a compositional semantics

$$n ::= 0 \mid 1 \mid n0 \mid n1$$
 $\mathcal{N}(0) = 0$
 $\mathcal{N}(1) = 1$
 $\mathcal{N}(n0) = 2 * \mathcal{N}(n)$
 $\mathcal{N}(n1) = 2 * \mathcal{N}(n) + 1$

Semantic functions (ctd): some examples/exercises

Example (Semantic function for Boolean expressions) Define an inductive semantics for Boolean expressions.

$$\mathcal{B}[\mathsf{true}]\sigma = \mathsf{tt}$$
 $\mathcal{B}[\mathsf{false}]\sigma = \mathsf{ff}$
 $\mathcal{B}[\neg b]\sigma = \neg_{\mathbb{B}}\mathcal{B}[b]\sigma$
 $\mathcal{B}[\mathsf{a}_1 = \mathsf{a}_2]\sigma = \mathcal{A}[\mathsf{a}_1]\sigma =_{\mathsf{I}} \mathcal{A}[\mathsf{a}_2]\sigma$
 $\mathcal{B}[\mathsf{a}_1 \leq \mathsf{a}_2]\sigma = \mathcal{A}[\mathsf{a}_1]\sigma \leq_{\mathsf{I}} \mathcal{A}[\mathsf{a}_2]\sigma$
 $\mathcal{B}[b_1 \land b_2]\sigma = \mathcal{B}[b_1]\sigma \land_{\mathbb{B}} \mathcal{B}[b_2]\sigma$

 $\mathcal{B}: \mathbf{Bexp} \to (\mathbf{State} \to \mathbb{B})$

Semantic functions (ctd): some examples/exercises

Example (Negative integers)

We add -a as a construct for arithmetical expressions.

► Extend the semantic function of arithmetical expressions (semantics of arithmetical expressions should remain compositional).

We have two possible solutions:

- $A[-a]\sigma = 0 A[a]\sigma$ (preserves compositionality),
- $\mathcal{A}[-a]\sigma = \mathcal{A}[0-a]\sigma$ (does not preserve compositionality).

Outline

Syntax of Language While

Semantics of Expressions in Language While

(Natural) Operational Semantics of Language While

Semantic functions

► Statements:

$$\mathcal{S}: \mathbf{Stm} \to (\mathbf{State} \xrightarrow{\mathit{part.}} \mathbf{State})$$

Function $\mathcal S$ gives the *meaning* of a statement $\mathcal S$ as a partial function from **State** to **State**.

Question: why is it a partial function?

- Axiomatic semantics allows to prove program properties (later in the course).
- Denotational semantics describes the effect of program execution (from a given state), without telling how the program is executed (later in the course).

Another important feature is *compositionality*: the semantics of a compound program is a function of the semantics of its components.

Operational Semantics

An operational semantics defines a transition system

Definition (Transition System)

A transition system is given by (Γ, T, \rightarrow) , where:

- Γ is the configuration set
- ▶ $T \subseteq \Gamma$ is the set of final configurations
- ▶ $\rightarrow \subseteq \Gamma \times \Gamma$ is the transition relation

Example (Transition System)

Execution of a DFA (defined on Σ) can be defined as a transition system:

- Q is the set of states of the DFA
- $ightharpoonup \Sigma^*$ is the set of finite-words over Σ

Configuration (q, w) means: the DFA is in state q and w is the remaining sequence to be read

- $T = \{ (q, \epsilon) \mid q \in Q \}$
- $ightharpoonup
 ightharpoonup (q,a\cdot w)=(q',w)$ s.t. q' is the state reached in the DFA by firing a in state q

Natural Operational Semantics

- ▶ Defines the relationship between initial and final steps of an execution.
- ▶ This relationship is specified for each statement, w.r.t. a current **State**.

Transition system for Natural Operational Semantics

- ▶ Configurations: $\Gamma \subseteq \mathbf{Stm} \times \mathbf{State} \cup \mathbf{State}$.
- ▶ Transition relation: $(S, \sigma) \rightarrow \sigma'$
 - ▶ "The execution of *S* from σ terminates in state σ "
 - ▶ Goal: to describe how the result of a program execution is obtained

Natural semantics: about rules

Semantics is defined by an inference system: axioms and rules.

Rules of the form:

$$\frac{(S_1,\sigma_1) \to \sigma_1' \quad (S_2,\sigma_2) \to \sigma_2' \quad \dots \quad (S_n,\sigma_n) \to \sigma_n'}{(S,\sigma) \to \sigma'} \text{ if } \cdots$$

- ▶ S_1, S_2, \ldots, S_n are immediate constituents of S, i.e., S is "built on" S_1, \ldots, S_n or statements built from immediate constituents,
- ▶ $(S_1, \sigma_1) \rightarrow \sigma'_1, (S_2, \sigma_2) \rightarrow \sigma'_2, \dots, (S_n, \sigma_n) \rightarrow \sigma'_n$ are called premises of the rule; if n = 0, the rule is called axiom (schema) and the solid line is omitted.
- $(S, \sigma) \rightarrow \sigma'$ is the conclusion of the rule
- ▶ a rule may also have a condition (if · · ·).

Natural semantics: axioms and rules

Axioms

$$(x := a, \sigma) o \sigma[x \mapsto \mathcal{A}[a]\sigma]$$

$$(\mathsf{skip}, \sigma) o \sigma$$

Rule for Sequence Composition

$$\frac{(S_1,\sigma) \to \sigma' \quad (S_2,\sigma') \to \sigma''}{(S_1;S_2,\sigma) \to \sigma''}$$

Natural semantics: axioms and rules (ctd)

Rule for Conditional statements

$$rac{(\mathcal{S}_1,\sigma) o\sigma'}{(\mathsf{if}\ b\ \mathsf{then}\ \mathcal{S}_1\ \mathsf{else}\ \mathcal{S}_2\ \mathsf{fi},\sigma) o\sigma'}\ \mathit{If}\,\mathcal{B}[b]\sigma=\mathsf{tt}$$

$$\frac{(\mathit{S}_2,\sigma) \to \sigma'}{(\mathsf{if}\ \mathit{b}\ \mathsf{then}\ \mathit{S}_1\ \mathsf{else}\ \mathit{S}_2\ \mathsf{fi},\sigma) \to \sigma'}\ \mathit{If}\, \mathcal{B}[\mathit{b}]\sigma = \mathsf{ff}$$

Rule for While statements

$$\frac{(S,\sigma) \to \sigma' \quad \text{(while } b \text{ do } S \text{ od },\sigma') \to \sigma''}{\text{(while } b \text{ do } S \text{ od },\sigma) \to \sigma''} \quad \textit{If } \mathcal{B}[b]\sigma = \mathbf{tt}$$

(while
$$b \text{ do } S \text{ od }, \sigma) \rightarrow \sigma$$
 If $\mathcal{B}[b]\sigma = \mathbf{ff}$

Derivation tree

Represents/Describes an execution from a statement S and a state σ to a state σ' .

- Leaves correspond to (instantiation of) axioms
- Internal nodes corresponds to (instantiation of) inference rules.
- the root is $(S, \sigma) \to \sigma'$ (it is common to have the root at the bottom rather than at the top when drawing a derivation tree).

Example (Derivation Tree)

Consider $\sigma \in$ **State**:

$$\frac{(x := 1, \sigma) \to \sigma[x \mapsto 1] \quad (y := 5, \sigma[x \mapsto 1]) \to \sigma[x \mapsto 1][y \mapsto 5]}{(x := 1; y := 5, \sigma) \to \sigma[x \mapsto 1, y \mapsto 5]}$$

Construction of derivation tree

Given,

- ► A statement (abstract tree) *S*,
- \triangleright a state σ ,

we want to find σ' , if it exists such that $(S,\sigma) \to \sigma'$.

The method tries to construct the tree from the root upwards $(S, \sigma) \to \sigma'$, starting from an axiom or a rule with a conclusion where the left-hand side "matches" the configuration (S, σ) .

There are two cases:

- if it is an axiom and the condition of the axiom holds, then we can compute the final state and the construction of the derivation tree is completed,
- if it is a rule, then the next step is to try to construct a derivation tree for all the premises of the rule.

Construction of derivation tree: example

Let

- S = (z := x; x := y); y := z

Applying axioms and rules we obtain:

$$\frac{(z := x, \sigma_0) \rightarrow \sigma_1 \quad (x := y, \sigma_1) \rightarrow \sigma_2}{(z := x; x := y, \sigma_0) \rightarrow \sigma_2} \quad (y := z, \sigma_2) \rightarrow \sigma_3}{((z := x; x := y); y := z, \sigma_0) \rightarrow \sigma_3}$$

with,

$$\bullet$$
 $\sigma_1 = [x \mapsto 2, y \mapsto 4, z \mapsto 2],$

Example Let

•
$$S_0$$
: while $x > 1$ do $y := y * x; x := x - 1$ od

$$\triangleright$$
 $S_1: y := y * x; x := x - 1$

▶ $\sigma_{31} = [x \mapsto 3, y \mapsto 1]$ We try to find σ ? such that $(S_0, \sigma_{31}) \rightarrow \sigma$?.

$$\frac{T_1 \quad T_2}{(S_0, \sigma_{31}) \rightarrow \sigma?}$$

Construction of T_1

$$\underbrace{(y:=y*x,\sigma_{31})\rightarrow\sigma_{33}\quad(x:=x-1,\sigma_{33})\rightarrow\sigma_{23}}_{\left(\mathcal{S}_{1},\sigma_{31}\right)\rightarrow\sigma_{23}}$$

Construction of T_2

of
$$I_2$$

$$\frac{T_3 \quad T_4}{(S_0, \sigma_{22}) \rightarrow \sigma^2}$$

Construction of T_3

$$(y:=y*x,\sigma_{23})
ightarrow\sigma_{26}$$
 $(x:=x-1,\sigma_{26})
ightarrow\sigma_{16}$

 $(\mathcal{S}_1,\sigma_{23}) o\sigma_{16}$ Construction of \mathcal{T}_4

Example cont.

The construction of derivation tree stops when we find σ_{16} because in this state, $\sigma_{16}(x)=1$ and $\mathcal{B}[x>1]_{\sigma_{16}}=\mathbf{ff}$.

Finally, we find $\sigma?=\sigma_{16}$ and the derivation tree is:

$$rac{T_{1}}{(S_{0},\sigma_{23})
ightarrow\sigma_{16}} rac{T_{3}}{(S_{0},\sigma_{23})
ightarrow\sigma_{16}}$$

Example (Derivation trees)

What is the semantics of:

- 1. x := 2; if x > 0 then x := x + 1 else x := x 1 fi
- 2. x := 2; while x > 0 do x := x 1 od
- 3. x := 2; while x > 0 do x := x + 1 od

Terminology

Consider a statement S and a state σ .

Definition (Termination/Looping)

The execution of S on σ

- ▶ terminates iff there is a state σ' s.t. $(S, \sigma) \rightarrow \sigma'$;
- ▶ loops iff there is no state σ' s.t. $(S, \sigma) \rightarrow \sigma'$.

Statement S

- \triangleright always terminates iff the execution of S terminates on any state σ ;
- \triangleright always loops iff the execution of S loops on any state σ .

Another iterative construct

Example (Adding constructs to While)

We add the two following iterative statements to language **While**. Give their corresponding semantic rules.

$$S$$
 ::= iterate n times S
| for x := a to a loop S

Theorem

For all statements $S \in \mathbf{Stm}$, for all states σ, σ' and σ'' :

- 1. If $(S, \sigma) \to \sigma'$ and $(S, \sigma) \to \sigma''$ then $\sigma' = \sigma''$.
- 2. If $(S, \sigma) \to \sigma'$, then there does not exist any infinite derivation tree.

Proof.

By induction on the structure of the derivation tree.

We will do it during the exercise session.

Definition (The semantic function S_{ns})

$$\mathcal{S}_{ns}[S]\sigma = \left\{ egin{array}{ll} \sigma' & ext{if } (S,\sigma)
ightarrow \sigma', \ ext{undef} & ext{otherwise}, \end{array}
ight.$$

(because of looping executions, it is a partial function).

Example (Applying the semantic function)

- $S_{ns}[x := 2][x \mapsto 0] = [x \mapsto 2]$ because $(x := 2, [x \mapsto 0]) \rightarrow [x \mapsto 2]$.
- ▶ S_{ns} [while true do skip od] σ = undef, for any $\sigma \in$ **State**.

Summary of NOS of language While

Definition of the While programming language:

- Syntax (inductive definitions of the syntactic categories).
- ▶ Semantics for arithmetical and Boolean expressions.
- Semantics for statements.
- Termination of programs.