Electric Circuits

Eleventh Edition

Chapter 3

Simple Resistive Circuits

Learning Objectives

- Resistors in Series
- Resistors in Parallel
- The Voltage/Current--Divider Circuit
- Voltage/Current Division
- Measuring Voltage and Current
- Measuring Resistance—The Wheatstone Bridge
- Delta-to-Wye (Pi-to-Tee) Equivalent Circuit

Practical Perspective - Resistive Touch Screens

A Rear Window Defroster

A Rear Window Defroster

A resisEve circuit

3.1 Resistors in Series

Figure 3.1: Resistors connected in series.

$$i_s = i_1 = -i_2 = i_3 = i_4 = -i_5 = -i_6 = i_7$$

Figure 3.2: Series resistors with a single unknown current i_s .

$$v_s = i_s(R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7)$$

Figure 3.3: A simplified version of the circuit shown in Fig. 3.2.

$$R_{eq} = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7$$

$$v_s = i_s R_{eq}$$

$$\vdots$$

$$a R_1 R_2 R_3$$

$$\vdots$$

$$a R_1 R_2 R_3$$

$$\vdots$$

$$\vdots$$

$$a R_4$$

$$\vdots$$

$$h R_7 R_6 R_5$$

$$R_4$$

$$\vdots$$

$$h$$

$$\vdots$$

$$R_{eq}$$

$$\vdots$$

$$h$$

Figure 3.4: The black box equivalent of the circuit shown in Fig. 3.2.

In general, if k resistors are connected in series, the equivalent single resistor has a resistance equal to the sum of the k resistances:

$$R_{\text{eq}} = \sum_{i=1}^{k} R_i = R_1 + R_2 + \cdots + R_k$$

3.2 Resistors in Parallel

Figure 3.5: Resistors in parallel.

$$i_s = i_1 + i_2 + i_3 + i_4$$

$$i_1R_1 = i_2R_2 = i_3R_3 = i_4R_4 = v_s$$

$$i_1 = \frac{v_s}{R_1}$$
 $i_2 = \frac{v_s}{R_2}$ $i_3 = \frac{v_s}{R_3}$ $i_4 = \frac{v_s}{R_4}$

$$i_s = v_s \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} \right)$$

$$\frac{i_s}{v_s} = \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$$

$$\frac{1}{R_{\text{eq}}} = \sum_{i=1}^{k} \frac{1}{R_i} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_k}$$

$$G_{\text{eq}} = \sum_{i=1}^{k} G_i = G_1 + G_2 + \cdots + G_k$$

Figure 3.7: Replacing the four parallel resistors shown in Fig. 3.5

Conductance

Typical Cases

• If k = 2, we have

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_2 + R_1}{R_1 R_2} \qquad R_{\text{eq}} = \frac{R_1 R_2}{R_1 + R_2}$$

• If
$$R_1 = R_2 = ... = R_k = R$$
, we have

$$1/R_{eq} = k/R \qquad \qquad R_{eq} = R/k$$

3.3 Voltage--Divider & Current-Divider Circuits

The Voltage-Divider Circuit

Figure 3.14: (b) the voltage-divider circuit with current *i* indicated.

The Current-Divider Circuit

Figure 3.19: The current-divider circuit.

$$v = i_1 R_1 = i_2 R_2 = \frac{R_1 R_2}{R_1 + R_2} i_s$$

$$i_1 = \frac{R_2}{R_1 + R_2} i_s$$

$$i_2 = \frac{R_1}{R_1 + R_2} i_s$$

3.4 Voltage/Current Division

Figure 3.20: Circuit used to illustrate voltage division.

Figure 3.21: Circuit used to illustrate current division.

3.5 Measuring Voltage and Current

An **ammeter** is an instrument designed to measure current. A **voltmeter** is an instrument designed to measure voltage.

- An **ideal ammeter** has an equivalent resistance of $0~\Omega$ and functions as a short circuit in series with the element whose current is being measured.
- An **ideal voltmeter** has an infinite equivalent resistance and thus functions as an open circuit in parallel with the element whose voltage is being measured.

Digital and Analog Meters

d'Arsonval Meter Movement

d'Arsonval meter movement consists of a movable coil placed in the field of a permanent magnet. When current flows in the coil, it creates a torque on the coil, causing it to rotate and move a pointer across a calibrated scale. By design, the deflection of the pointer is directly proportional to the current in the movable coil. The coil is characterized by both a voltage rating and a current rating.

Figure 3.25: A schematic diagram of a d'Arsonval meter movement.

For example, one commercially available meter movement is rated at 50 mV and 1 mA. This means that when the coil is carrying 1 mA, the voltage drop across the coil is 50 mV and the pointer is deflected to its full-scale position.

DC Ammeter/Voltage Circuit

Figure 3.26: An analog ammeter circuit.

Figure 3.27: An analog voltmeter circuit.

Measuring Resistance: The Wheatstone Bridge

Figure 3.29: A balanced Wheatstone bridge ($i_q = 0$).

$$R_{1}/R_{2} = i_{2}/i_{1}$$

$$R_{3}/R_{x} = i_{x}/i_{3} = i_{2}/i$$

In a commercial Wheatstone bridge, R_1 and R_2 consist of decimal values of resistances that can be switched into the bridge circuit.

Delta-to-Wye (Pi-to-Tee) Equivalent Circuits

Figure 3.31: A resistive network generated by a Wheatstone bridge circuit.

Figure 3.32: A Δ configuration viewed as a π configuration.

Figure 3.33: A Y structure viewed as a T structure.

The Δ-to-Y Transformation

Figure 3.34: The Δ -to-Y transformation.

$$R_{ab} = \frac{R_c(R_a + R_b)}{R_a + R_b + R_c} = R_1 + R_2$$

$$R_{bc} = \frac{R_a(R_b + R_c)}{R_a + R_b + R_c} = R_2 + R_3$$

$$R_{ca} = \frac{R_b(R_c + R_a)}{R_a + R_b + R_c} = R_1 + R_3$$

$$R_1 = (R_{ab} + R_{ca} - R_{bc}) / 2 = R_b R_c / (R_a + R_b + R_c)$$

 $R_2 = (R_{ab} + R_{bc} - R_{ca}) / 2 = R_c R_a / (R_a + R_b + R_c)$
 $R_3 = (R_{bc} + R_{ca} - R_{ab}) / 2 = R_a R_b / (R_a + R_b + R_c)$

How about Y-to- Δ ?

The Y-to-∆Transformation

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1},$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2},$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}.$$

Practical Perspective - Resistive Touch Screens (0,0)

Figure 3.39: The resistive touch screen grid in the *x*-direction.

Figure 3.40: The pixel coordinates of a screen with p_x pixels in the x-direction and p_v pixels in the y-direction.

Figure 3.41: The resistive touch screen grid in the *y*-direction.