

Areas of Parallelograms and Triangles Ex 15.3 Q9 **Answer:**

Given:

- (1) ABCD is a quadrilateral,
- (2) Diagonals AC and BD of quadrilateral ABCD intersect at P.

To prove: Area of \triangle APB \times Area of \triangle CPD = Area of \triangle APD \times Area of \triangle BPC

Construction: Draw AL perpendicular to BD and CM perpendicular to BD

Proof:

We know that

Area of triangle =
$$\frac{1}{2} \times \text{base} \times \text{height}$$

Area of
$$\triangle APD = \frac{1}{2} \cdot DP \cdot AL \dots (1)$$

Area of
$$\triangle BPC = \frac{1}{2} \cdot CM \cdot BP \dots (2)$$

Area of
$$\triangle APB = \frac{1}{2} \cdot BP \cdot AL \dots (3)$$

Area of
$$\triangle CPD = \frac{1}{2} \cdot CM \cdot DP \dots (4)$$

Therefore

Area of
$$\triangle APD \times Area$$
 of $\triangle BPC = \left(\frac{1}{2} \times DP \times AL\right) \times \left(\frac{1}{2} \times CM \times BP\right)$

$$= \left(\frac{1}{2} \times BP \times AL\right) \times \left(\frac{1}{2} \times CM \times DP\right)$$

= Area of $\triangle APB \times Area$ of $\triangle CPD$

Hence it is proved that $Area of \triangle APD \times Area of \triangle BPC = Area of \triangle APB \times Area of \triangle CPD$

Areas of Parallelograms and Triangles Ex 15.3 Q10

Answer:

Given:

(1) ABC and ABD are two triangles on the same base AB,

(2) CD bisect AB at O which means AO = OB

To Prove: Area of $\triangle ABC = Area$ of $\triangle ABD$

Proof:

Here it is given that CD bisected by AB at O which means O is the midpoint of CD. Therefore AO is the median of triangle ACD.

Since the median divides a triangle in two triangles of equal area Therefore Area of $\triangle CAO = Area$ of $\triangle AOD$ (1)

Similarly for Δ CBD, O is the midpoint of CD

Therefore BO is the median of triangle BCD.

Therefore Area of $\triangle COB = Area of \triangle BOD \dots (2)$

Adding equation (1) and (2) we get

Area of $\triangle CAO + Area$ of $\triangle COB = Area$ of $\triangle AOD + Area$ of $\triangle BOD$

 \Rightarrow Area of \triangle ABC = Area of \triangle ABD

Hence it is proved that $Area of \triangle ABC = Area of \triangle ABD$

********* END *******