Arithmetic and Optimization @ MCSat

Leonardo de Moura

Joint work with

Dejan Jovanović and Grant Passmore

Arithmetic and Optimization @ MCSat (random remarks)

Leonardo de Moura

Joint work with

Dejan Jovanović and Grant Passmore

Polynomial Constraints

AKA
Existential Theory of the Reals

3R

$$x^{2} - 4x + y^{2} - y + 8 < 1$$
$$xy - 2x - 2y + 4 > 1$$

- 1. Project/Saturate set of polynomials
- 2. Lift/Search: Incrementally build assignment $v: x_k \to \alpha_k$ Isolate roots of polynomials $f_i(\alpha, x)$ Select a feasible cell C, and assign x_k some $\alpha_k \in C$ If there is no feasible cell, then backtrack

$$x^{2} + y^{2} - 1 < 0$$
 $x^{4} - x^{2} + 1$
 $xy - 1 > 0$ 1. Saturate $x^{2} - 1$

2. Search

	$(-\infty, -1)$	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
x	-	-	-	0	+	+	+

$$x^{2} + y^{2} - 1 < 0$$
 $x + y^{2} - 1 > 0$
1. Saturate
$$x^{2} - 1$$

$$x + y^{2} - 1$$

$$x + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} - 1 + y^{2} - 1$$

$$x + y^{2} -$$

	$(-\infty, -1)$	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
\boldsymbol{x}	-	-	-	0	+	+	+

$$x^{2} + y^{2} - 1 < 0$$
 $x^{4} - x^{2} + 1$
 $xy - 1 > 0$
1. Saturate
 $x^{2} - 1$
 $x^{2} - 1$

	$\left(-\infty,-\frac{1}{2}\right)$	$-\frac{1}{2}$	$(-\frac{1}{2},\infty)$
$4 + y^2 - 1$	+	+	+
-2y - 1	+	0	-

CONFLICT

$$x \rightarrow -2$$
 2. Search

	(-∞, -1)	-1	(-1, 0)	0	(0, 1)	1	(1,∞)
$x^4 - x^2 + 1$	+	+	+	+	+	+	+
$x^2 - 1$	+	0	-	-	-	0	+
X	-	-	-	0	+	+	+

NLSAT: MCSAT for Nonlinear Arithmetic

Static x Dynamic

Optimistic approach

Key ideas

Start the Search before Saturate/Project

We saturate on demand

Model guides the saturation

Key ideas: Use partial solution to guide the search

Key ideas: Use partial solution to guide the search

Key ideas: Solution based Project/Saturate

$$\bigcup_{f \in A} \operatorname{coeff}(f,x) \cup \bigcup_{\substack{f \in A \\ g \in \mathsf{R}(f,x)}} \operatorname{psc}(g,g_x',x) \cup \bigcup_{\substack{i < j \\ g_i \in \mathsf{R}(f_i,x) \\ g_j \in \mathsf{R}(f_j,x)}} \operatorname{psc}(g_i,g_j,x)$$

Standard project operators are pessimistic.

Coefficients can vanish!

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

Propagations

Propagations

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Propagations

Boolean Decisions

Semantic Decisions

Conflict

We can't find a value for y s.t. $4 + y^2 \le 1$

Conflict

We can't find a value for
$$y$$
 s.t. $4 + y^2 \le 1$

Learning that
$$\neg(x^2 + y^2 \le 1) \lor \neg(x=2)$$
 is not productive

We can't find a value for y s.t. $9 + y^2 \le 1$

Learning that $\neg(x^2 + y^2 \le 1) \lor \neg(x=2)$ is not productive

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

$$\neg(x^2 + y^2 \le 1) \lor x \le 1$$

Learned by resolution

$$\neg(x \ge 2) \lor \neg(x^2 + y^2 \le 1)$$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \to x \ge 1 \to y \ge 1$ $\neg (x^2 + y^2 \le 1)$
 $\neg (x \ge 2) \lor \neg (x^2 + y^2 \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

Every theory that admits quantifier elimination has a finite basis (given a fixed assignment order)

$$F[x, y_1, ..., y_m]$$

$$\exists x: F[x, y_1, ..., y_m]$$

$$C_1[y_1, ..., y_m] \land \cdots \land C_k[y_1, ..., y_m]$$

$$\neg F[x, y_1, ..., y_m] \lor C_k[y_1, ..., y_m]$$

Experimental Results (1)

OUR NEW ENGINE

/												
	meti-tarski	(1006)	keymaera	(421)	zankl	(166)	hong	(20)	kissin	g (45)	all (1	1658)
solver	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
nlsat	1002	343	420	5	89	234	10	170	13	95	1534	849
Mathematica	1006	7 96	420	171	50	366	9	208	6	29	1491	1572
QEPCAD	991	2616	368	1331	21	38	6	43	4	5	1390	4036
Redlog-VTS	847	28640	419	78	42	490	6	3	10	275	1324	29488
Redlog-CAD	848	21706	363	730	21	173	6	2	4	0	1242	22613
z3	266	83	379	1216	21	0	1	0	0	0	667	1299
iSAT	203	122	291	16	21	24	20	822	0	0	535	986
cvc3	150	13	361	5	12	3	0	0	0	0	523	22
MiniSmt	40	697	35	0	46	1370	0	0	18	44	139	2112

Experimental Results (2)

NLSAT Bootlenecks

Real Algebraic Computations

$$x^5 - x - 1 = 0$$

$$y^3 - x^2 - 1 = 0$$

NLSAT Bootlenecks

Real Algebraic Computations

$$x^5 - x - 1 = 0$$

$$y^3 - x^2 - 1 = 0$$

Partially solved with new data-structure for representing algebraic numbers (CADE-24)

NLSAT Bootlenecks

PSCs (aka Subresultants) used in the projection operation

NLSAT Bootlenecks

 $14473361351917674942786915532863722010517729893029084002260132795724226061515042219666395922056072037155588196471401681986578474461376811173412864 \\ \times ^528 + 52$ $4410563168927154959307787280809148373010154156649833978256064036376437001542687429034576933638931815534105275826969416747569750785179602103271342211072 \\ \times n^{5}16 + n^{5}16$ 59251181672059584077424535291209687078232953829881306760118723543670560648034779432845164225459730400245051751104340753741284859922353854611675214692701175808 x^488 + $109201751920878554152069678524782287046297971035994332930305162162683589782245643126391186807395573850358394453020368632207346082500403862320477315199250989056 \\ x^484 - x^2 + x^$ $543635472379893925360505124247110498770961588622964318091251368183582212798004391152930087582383621190153681363319204281535655046706194540731277164848615522304 \\ x^480 - x^$ $4389542999616648631176896862140482496025180570204160606868604052851952038383252327224402153694876499471391261384385978794867468485931764498796997297217185251328 \\ x^472 + x^2 + x$ $15524463640477929342623012689068443238906921917318414901015667570651210157882543051008270507122059363243821913470981377270906967132756811349600993710391290757120 \times ^{468} + (468) \times ^{100} \times$ $80230430018834186054096672189233096308237228378515144056129280360834909794336559434803359466411692112541882365896166210172878178922236773486199994866195813629952 \\ x^464 + x^2 +$ 60351536353188030534762927297367399984025488595096075263659285538732087664513596914391741526578214246339915348904989182771248594080446910993435975372364947914752 x^456 -498147540139927868371121123193544793997390792351584158209270507443166229317102963234758051076664986272012629263789383825333809441919597343891557884342482707152896 x^440- $9240121069267051295045417000851608693216707145106865888222118073936078384812617095103340753185561818646400333469464298879016638319832506639469499496502215581892608 \\ \times ^428 + 528$ $+3667090053094090945313756073105630333582362976190542753984041052543074833064572525231477454196982964134256021905924763753701259287857721495779112184940262523404288 x^412$ -478182019810480876776906563099285241550749306282930585205816495097862179710089377342887742428258115095797444186389272755327507836131206425026140456005328418373632 x 408 - $49783192919360672941965836922796102255831339676036749735719193270699604144117615499151399963603838515014307866633369426721337772113987367017962230781939280563404800 \\ \times ^400$

• • • •

 $1389385726272139827600391787516457146404057581084159628129387959867904441533378882732656681024381855322448 \times ^24 + 6206288177615149058112826996188212177598396346403337279651424778662193245748575347946115209485426265049 \times ^20 + 367427074610454070056469795165580196050000194113672530558928364635826909406030636905429257496922636544 \times ^16 + 703328874179918846589526631439210541602625801684456856171748313001635386337165809959342810385612800 \times ^12 - 68999097046917627889169552420353798555453476109616123008816364722270432052018874285536216875008 \times ^8 - 140432623903101758790898107887718053467061472637614549187228994429864721538224739784429911670784 \times ^4 + 272654874565539049477735920513220412248759995742372057602216372063084536679766701870415872000$

PREAMBLE FOR GRANT'S TALK

Given a CNF formula F and a set of literals S

Given a CNF formula F and a set of literals S

Output:

SAT, assignment $M \supseteq S$ satisfying F

UNSAT,
$$\{l_1, ..., l_k\} \subseteq S$$
 s.t. $F \Rightarrow \neg l_1 \lor \cdots \lor \neg l_k$

Given a CNF formula F and a set of literals S

Output:

SAT, assignment $M \supseteq S$ satisfying F

UNSAT,
$$\{l_1, ..., l_k\} \subseteq S$$
 s.t. $F \Rightarrow \neg l_1 \lor \cdots \lor \neg l_k$

$$F \equiv p \lor q \lor r, \neg p \lor q, p \lor q$$
$$check(F, \{\neg q, r\})$$

$$F \equiv p \lor q \lor r, \neg p \lor q, p \lor q$$
$$check(F, \{\neg q, r\})$$

UNSAT,
$$\{\neg q\}$$

Many Applications:

UNSAT Core generation

MaxSAT

Interpolant generation

Introduced in MiniSAT
Implemented in many SMT solvers

Extending Check Modulo Assignment for MCSAT

$$F[\bar{x}, \bar{y}] \qquad \bar{y} \rightarrow \bar{v}$$

Extending Check Modulo Assignment for MCSAT

$$F[\bar{x}, \bar{y}] \qquad \bar{y} \rightarrow \bar{v}$$

SAT, $\bar{x} \to \bar{w}$, $F[\bar{w}, \bar{v}]$ is true

Extending Check Modulo Assignment for MCSAT

$$F[\bar{x}, \bar{y}] \qquad \bar{y} \rightarrow \bar{v}$$

SAT, $\bar{x} \to \bar{w}$, $F[\bar{w}, \bar{v}]$ is true UNSAT, $S[\bar{y}]$ s.t. $F[\bar{x}, \bar{y}] \to S[\bar{y}]$, $S[\bar{v}]$ is false

NLSAT/MCSAT

$$F[\bar{x},\bar{y}]$$

$$y_1 \rightarrow w_1$$
 ... $y_k \rightarrow w_k$

NLSAT/MCSAT

$$Check(x^2 + y^2 < 1, \{y \rightarrow -2\})$$

NLSAT/MCSAT

$$Check(x^2 + y^2 < 1, \{y \rightarrow -2\})$$

UNSAT,
$$y > 1$$

No-good sampling

$$Check(F[\bar{x}, \bar{y}], \{y \to \alpha_1\}) = \operatorname{unsat}(S_1[\bar{y}]), \quad G_1 = S_1[\bar{y}],$$

$$\alpha_2 \in G_1, \quad Check(F[\bar{x}, \bar{y}], \{y \to \alpha_2\}) = \operatorname{unsat}(S_2[\bar{y}]), \quad G_2 = G_1 \land S_2[\bar{y}],$$

$$\alpha_3 \in G_2, \quad Check(F[\bar{x}, \bar{y}], \{y \to \alpha_3\}) = \operatorname{unsat}(S_3[\bar{y}]), \quad G_3 = G_2 \land S_3[\bar{y}],$$
...
$$\alpha_1 \in G_1, \quad Check(F[\bar{x}, \bar{y}], \{y \to \alpha_3\}) = \operatorname{unsat}(S_1[\bar{y}]), \quad G_2 = G_2 \land S_3[\bar{y}],$$
...

 $\alpha_n \in G_{n-1}$, $Check(F[\bar{x}, \bar{y}], \{y \to \alpha_n\}) = unsat(S_n[\bar{y}])$, $G_n = G_{n-1} \land S_n[\bar{y}]$,

• • •

Finite decomposition property:

The sequence is finite

 G_i approximates $\exists \bar{x}, F[\bar{x}, \bar{y}]$

Computing Interpolants using Extended Check Modulo Assignment

Given: $A[\bar{x}, \bar{y}] \wedge B[\bar{y}, \bar{z}]$

Ouput: $I[\bar{y}]$ s.t.

 $B[\bar{y}, \bar{z}] \Rightarrow I[\bar{y}],$

 $A[\bar{x}, \bar{y}] \wedge I[\bar{y}]$ is unsat

Computing Interpolants using Extended Check Modulo Assignment

$$\begin{split} I[\bar{y}] &:= true \\ \mathsf{Loop} \\ &\quad \mathsf{Solve} \ A[\bar{x}, \bar{y}] \land I[\bar{y}] \\ &\quad \mathsf{If} \ \mathsf{UNSAT} \ \mathsf{return} \ I[\bar{y}] \\ &\quad \mathsf{Let} \ \mathsf{solution} \ \mathsf{be} \ \{\bar{x} \to \bar{w}, \bar{y} \to \bar{v}\} \\ &\quad \mathsf{Check}(B[\bar{y}, \bar{z}], \{\bar{y} \to \bar{v}\}) \\ &\quad \mathsf{If} \ \mathsf{SAT} \ \mathsf{return} \ \mathsf{SAT} \\ &\quad I[\bar{y}] := I[\bar{y}] \land S[\bar{y}] \end{split}$$

Conclusion

Model-Based techniques are very promising

NLSAT source code is available in Z3

http://z3.codeplex.com

Extended Check Modulo Assignment

Grant's talk: nonlinear optimization

New version coming soon