Parameterized Functions

Instead of storing values in a table for each state, we can use parameterized functions to approximate value functions. This is especially useful for large or continuous state spaces.

1. Parameterized Functions in RL

Key Formula:

ν̂(s,

$$\mathbf{w}) = \mathbf{w_1} \mathbf{x} + \mathbf{w_2} \mathbf{y}$$

Where:

- v is the approximate value function
- w represents weights
- x,y are state features

2. Linear Value Function Approximation

A fundamental approach to value function approximation using linear combinations of features:

$$egin{aligned} \hat{v}(s,\mathbf{w}) &= \sum_i w_i x_i(s) \ &= \langle \mathbf{w}, \mathbf{x}(s)
angle \end{aligned}$$

- Where:
 - x(s) is the feature vector
 - w is the weight vector
 - x_i(s) represents individual features
 - $\hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$ is the inner product of \mathbf{w} and $\mathbf{x}(\mathbf{s})$

Limitations:

- Assumes linear relationships between features and values
- May not capture non-linear complex state-value relationships
- Heavily dependent on feature selection
- Can struggle with high-dimensional state spaces
- May be sensitive to noisy or irrelevant features

3. Generalization vs Discrimination

Generalization

- Ability to perform well on new, unseen data
- Essential for practical RL applications
- Measured through accuracy on test data
- Desirable property

Discrimination

- Ability to distinguish between different states
- Important for precise value estimation
- Balance needed with generalization
- Harmful and should be avoided?

4. Supervised Learning in RL

Supervised learning methods can be integrated into RL in several ways:

Parameterized Functions

Applications in RL:

- 1. Value function approximation
- 2. Environment modeling
- 3. Policy learning from demonstrations
- 4. Function approximation for Q-learning
- 5. Transfer learning
- 6. Data Augmentation

Key Differences from Pure RL:

Aspect	Supervised Learning	Reinforcement Learning
Data Source	Labeled training data	Environment interaction
Feedback	Immediate and direct	Delayed and sparse
Learning Target	Known correct outputs	Estimated values/rewards

5. Practical Implementation Tips

- Start with simple linear approximators before moving to complex ones
- · Carefully select and engineer features
- Monitor for overfitting using validation data
- Consider computational efficiency in large state spaces
- Use appropriate learning rates for stability

Common Pitfalls to Avoid:

- Over-complicated feature representations
- Ignoring the curse of dimensionality
- Poor feature scaling
- Inadequate exploration during learning

Parameterized Functions 3