Birth & Death Process

At state
$$n$$
. $T_n^{\dagger} \sim \operatorname{Exp}(\lambda n)$ $\supset \operatorname{Independent}$.

The Λ $\supset \operatorname{Exp}(\lambda n)$ $\supset \operatorname{Independent}$.

Wat min Γ $\subset \operatorname{In}$ $\supset \operatorname{Independent}$.

 Λ $\supset \operatorname{Exp}(\lambda n + M_n)$ $\supset \operatorname{Independent}$.

 Λ $\supset \operatorname{Exp}(\lambda n + M_n)$ $\supset \operatorname{Continuous}$ $\supset \operatorname{P}(T_n^{\dagger} = T_n^{\dagger}) \supset \operatorname{P}(X = Y) = \iint_{X \in Y} \operatorname{fix.y} dx dy = 0$.

$$P \cdot Tn^{\dagger} < Tn^{-}) = \frac{\lambda n}{\lambda n + n \ln n}$$

$$P \cdot Tn^{\dagger} < Tn^{\dagger} > \frac{n \ln n}{\lambda n + n \ln n}$$

$$A = \begin{cases} -\lambda_0, & \lambda_0 \\ \lambda_1, & (\lambda_1 + \lambda_1) \\ \lambda_1 & \lambda_1 \end{cases}$$

Consider a population with no with $(\lambda_1=0)$. Obeath rates U_1 .

Xt. - population. $\{Xt\}$ et me.

eq. Compute clisticities of birth rate $\lambda i = \lambda$ (i >0) wit per capita death rate $\mathcal{U}i = i$ (i >0)

the statitionary distribution I

https://www.coursehero.com/file/10275429/Birth-Death-Process/OU/)

just P ((N11.25-M11.25)-W11-M11)=0 (M11.25-M11)=2)

Quelle

customers arriving according to a Poisson process Nt customers get on queue/service $\tilde{X}_{t} = \#$ of customers in queue at time t.

Well poisson process - SXISIId - & independent of INVS.

for to Y:= \(\Sigma \times \) coulled compound Poisson process

Xi. u.6'. $E[Yt] = E[\underbrace{Xi}] = E[E[\underbrace{Xi}]] = Mt$ E[Yt] = E[Xi] = u(Xt) Var(Yt) = E[Var[Yt]Nt)] + Var(E(Yt|Nt))

Moment generating Function of H $E[e^{\theta Yt}] = E[E[e^{\theta Yt}]N_t] = E[M_{\overline{\chi}}(\theta)^{M_{\overline{\chi}}}]$ $= M_{N_t}(\log_1 M_{\overline{\chi}}(\theta)).$ $M_{N_t(s)} = e^{N_t}(e^{S-1}) = e^{N_t}(M_{\overline{\chi}}(s) - 1)$ $X_i = 1 \text{ wp.i.} \quad Y_t = N_t. \quad M_{X_i(\theta)} = e^{\theta}$