Computing activations

- In all examples, x = [x0 x1 x2], where $x_0=1$, $z_0=1$
- Assume sigmoid activation in the hidden and output layers
- Initialize all weights to 0.1
- First example: x = [1 1 0]
- Second example: $x = [1 \ 0 \ 1]$
- Third example: $x = [1 \ 1 \ 1]$

Compute the output value

First example:

- At hidden: $z_1 = 1 / [1 + exp(-(x_0^*w^{(1)}_{10} + x_1^*w^{(1)}_{11} + x_2^*w^{(1)}_{12}))]$
- = $1/[1 + \exp(-(1*0.1+1*0.1+0*0.1))] = 0.5498$
- At output: $y_1 = 1 / [1 + exp(-(z_0^*w^{(2)}_{10} + z_1^*w^{(2)}_{11}))]$
- = 1 / $[1 + \exp(-(1*0.1+0.5498*0.1))] = 0.5387 \rightarrow y_{pred} = 1$

Second example:

- At hidden: $z_1 = 1 / [1 + exp(-(x_0^*w^{(1)}_{10} + x_1^*w^{(1)}_{11} + x_2^*w^{(1)}_{12}))]$
- = $1/[1 + \exp(-(1*0.1+0*0.1+1*0.1))] = 0.5498$
- At output: $y_1 = 1 / [1 + exp(-(z_0^*w^{(2)}_{10} + z_1^*w^{(2)}_{11}))]$
- = 1 / [1 + exp(-(1*0.1+0.5498*0.1))] = 0.5387 \rightarrow y_{pred} = 1

Third example:

- At hidden: $z_1 = 1 / [1 + exp(-(x_0^*w^{(1)}_{10} + x_1^*w^{(1)}_{11} + x_2^*w^{(1)}_{12}))]$
- = $1/[1 + \exp(-(1*0.1+1*0.1+1*0.1))] = 0.5744$
- At output: $y_1 = 1 / [1 + exp(-(z_0^*w^{(2)}_{10} + z_1^*w^{(2)}_{11}))]$
- = 1 / [1 + exp(-(1*0.1+0.5744*0.1))] = 0.5393 \rightarrow y_{pred} = 1

Computing activations

- In all examples, x = [x0 x1 x2], where $x_0=1$, $z_0=1$
- Assume sigmoid activation in the hidden and output layers
- Initialize all weights to 0.05
- First example: x = [1 1 0]
- Second example: $x = [1 \ 0 \ 1]$
- Third example: x = [1 1 1]

First example:

- At hidden:
 - $z_1 = 1 / [1 + \exp(-(x_0^* w^{(1)}_{10} + x_1^* w^{(1)}_{11} + x_2^* w^{(1)}_{12}))] = 1 / [1 + \exp(-(1^*0.05 + 1^*0.05 + 0^*0.05))] = 0.5249$
 - $z_2 = 1 / [1 + exp(-(x_0^*w^{(1)}_{20} + x_1^*w^{(1)}_{21} + x_2^*w^{(1)}_{22}))] = 1 / [1 + exp(-(1^*0.05 + 1^*0.05 + 0^*0.05))] = 0.5249$
- At output:
 - $y_1 = 1 / [1 + exp(-(z_0^*w^{(2)}_{10} + z_1^*w^{(2)}_{11} + z_2^*w^{(2)}_{12}))]$ = $1 / [1 + exp(-(1^*0.05 + 0.5249^*0.05 + 0.5249^*0.05))] = 0.5256$
 - $y_2 = 1 / [1 + \exp(-(z_0^* w^{(2)}_{20} + z_1^* w^{(2)}_{21} + z_2^* w^{(2)}_{22}))]$ = $1 / [1 + \exp(-(1^*0.05 + 0.5249^* 0.05 + 0.5249^* 0.05))] = 0.5256 \rightarrow y_{pred} = [1 1]$

Second example:

- At hidden:
 - $z_1 = 1 / [1 + \exp(-(x_0^* w^{(1)}_{10} + x_1^* w^{(1)}_{11} + x_2^* w^{(1)}_{12}))] = 1 / [1 + \exp(-(1^*0.05 + 0^*0.05 + 1^*0.05))] = 0.5249$
 - $z_2 = 1 / [1 + exp(-(x_0^*w^{(1)}_{20} + x_1^*w^{(1)}_{21} + x_2^*w^{(1)}_{22}))] = 1 / [1 + exp(-(1^*0.05 + 0^*0.05 + 1^*0.05))] = 0.5249$
- At output:
 - $y_1 = 1 / [1 + exp(-(z_0^*w^{(2)}_{10} + z_1^*w^{(2)}_{11} + z_2^*w^{(2)}_{12}))]$ = $1 / [1 + exp(-(1^*0.05 + 0.5249^*0.05 + 0.5249^*0.05))] = 0.5256$
 - $y_2 = 1 / [1 + \exp(-(z_0^* w^{(2)}_{20} + z_1^* w^{(2)}_{21} + z_2^* w^{(2)}_{22}))]$ = $1 / [1 + \exp(-(1^*0.05 + 0.5249^* 0.05 + 0.5249^* 0.05))] = 0.5256 \rightarrow y_{pred} = [1 1]$

Third example:

- At hidden:
 - $z_1 = 1 / [1 + \exp(-(x_0^* w^{(1)}_{10} + x_1^* w^{(1)}_{11} + x_2^* w^{(1)}_{12}))] = 1 / [1 + \exp(-(1^*0.05 + 1^*0.05 + 1^*0.05))] = 0.5374$
 - $z_2 = 1 / [1 + \exp(-(x_0^* w^{(1)}_{20} + x_1^* w^{(1)}_{21} + x_2^* w^{(1)}_{22}))] = 1 / [1 + \exp(-(1^*0.05 + 1^*0.05 + 1^*0.05))] = 0.5374$
- At output:
 - $y_1 = 1 / [1 + \exp(-(z_0^* w^{(2)}_{10} + z_1^* w^{(2)}_{11} + z_2^* w^{(2)}_{12}))]$ = $1 / [1 + \exp(-(1^*0.05 + 0.5374^* 0.05 + 0.5374^* 0.05))] = 0.5259$
 - $y_2 = 1 / [1 + \exp(-(z_0^* w^{(2)}_{20} + z_1^* w^{(2)}_{21} + z_2^* w^{(2)}_{22}))]$ = $1 / [1 + \exp(-(1^*0.05 + 0.5374^* 0.05 + 0.5374^* 0.05))] = 0.5259 \rightarrow y_{pred} = [1 1]$