IAP11 Rec'd PCY/PTO 10 AUG 2006

PROCESS FOR THE FABRICATING AN ELECTRONIC INTEGRATED CIRCUIT AND ELECTRONIC INTEGRATED CIRCUIT THUS OBTAINED

The present invention relates to a process for fabricating an electronic integrated circuit that incorporates a volume substantially empty of material. It also relates to an electronic integrated circuit thus fabricated.

The US Patent N° 5 296 408 describes a process for forming an empty cavity within an integrated circuit, in order to build various electronic components such as a light source, a detector, a transistor or a vacuum tube. According to this process, an absorption of aluminium into silicon is caused by heating, so as to create the cavity empty of material, whose form can be predetermined.

One drawback of the process described in the Patent N° 5 296 408 results from the chemical reactivity and the relatively low melting point of aluminium. Indeed, if the circuit temperature exceeds around $400-450^{\circ}\text{C}$ before the aluminium is absorbed into the silicon, chemical reactions take place between the aluminium and materials deposited close to the aluminium in the circuit. This is especially the case for silicon into which the aluminium is to be absorbed. This then interferes with the definitive absorption of the aluminium into the silicon, and the formation of the cavity is not well controlled.

20

25

30

An object of the present invention is to propose a process for fabricating a cavity within an electronic integrated circuit which does not have the abovementioned drawbacks.

The invention proposes a process for fabricating an electronic integrated circuit, wherein the process comprises the steps consisting in:

5

10

20

35

- a) forming, on a substrate of the circuit, of which a part is composed of absorbing material, a portion made of a sacrificial material coming into contact with one face of the part of the substrate composed of absorbing material;
- b) forming a rigid portion in fixed contact with the substrate, on one side of the portion of sacrificial material opposite to said face of the part of the substrate composed of absorbing material; and
- c) heating the circuit in order to create a volume substantially empty of material by absorption of the sacrificial material into the part of the substrate composed of absorbing material,

the process being characterized in that the sacrificial material has a melting point in excess of 900°C and in that the sacrificial material is chosen so as not to cause any material alteration of parts of the circuit in contact with the portion of sacrificial material prior to the step c).

Thanks to the choice of sacrificial materials,

which is part of the present invention, the step c) is
well controlled. A volume substantially empty of
material is obtained whose form and dimensions can be
precisely controlled. A process according to the
invention is, consequently, compatible with integrated

circuit fabrication technologies corresponding to
transistor gate widths equal to or less than 0.18
microns, and notably equal to 90 or 65 nm.

In step c), all the sacrificial material of the corresponding portion is preferably absorbed into the part of the substrate composed of absorbing material.

An improved reproducibility of the form and dimensions of the volume substantially empty of material is thus obtained. Nevertheless, only a part of the sacrificial material can be absorbed, such that, after the step c) is complete, a part of the portion of sacrificial material subsists in the circuit.

5

10

20

25

30

One advantage of the process of the invention resides in the fact that no extraction of the sacrificial material from the circuit is necessary. The circuit heating step c) for creating the empty volume is especially easy to implement. It does not require any access to the portion of sacrificial material, nor any use of wet or plasma etching processes.

In particular, the absorption of the sacrificial material into the part of the substrate composed of absorbing material, in the step c), can result from a chemical reaction between the sacrificial material and the absorbing material.

Another advantage of the process of the invention resides in the fact that, once the steps a) and b) have been carried out, the step c) can be carried out at any later point during the circuit fabrication process. For example, fabrication steps for parts of the circuit other than the electronic component which involves the volume substantially empty of material can be carried out between the steps a) and b), on the one hand, and other. This is especially step c) on the advantageous when some of these fabrication steps of other parts of the circuit involve mechanical forces on the circuit. The step c) is then carried out after these steps, such that the circuit does not yet have any empty volume when it is subject to the mechanical forces. The risk of damaging or breaking the circuit during its fabrication is thus reduced, this risk being due to the presence of empty volumes within the circuit.

Advantageously, the process further comprises, between the steps a) and b), the formation of an intermediate layer, said intermediate layer being located, when the step b) is complete, between the portion of sacrificial material and the rigid portion. Such an intermediate layer can have several functions. One of these functions may be the improvement of the formation of the rigid portion. A smoother surface of the rigid portion can thus be obtained, which leads to a more uniform, and more complete, absorption of the sacrificial material in the step c). Another function of the intermediate layer is to contribute to a chemical isolation of the portion of sacrificial material, in order to avoid the sacrificial material being altered by atoms originating from other parts of the circuit.

10

15

The sacrificial material may include cobalt, 20 nickel, titanium, tantalum, tungsten, molybdenum, silver, gold, iron and/or chromium.

The absorbing material may include silicon, germanium, phosphorus, arsenic and/or antimony. It may also potentially comprise selenium and/or tellurium.

In one particular embodiment of the invention, the portion of sacrificial material is formed in a cavity below the level of a surface of the substrate. The rigid portion can then cover, in a continuous fashion, the portion of sacrificial material in the cavity and the substrate outside the cavity.

The volume substantially empty of material can have different forms and can be oriented in various

ways with respect to the substrate. In particular, it can have a large cross section substantially parallel to a substrate surface.

According to the preferred embodiment of the invention, the volume substantially empty of material is situated between two electrodes of a capacitor forming part of the circuit.

At least a part of the material situated between the electrodes of the capacitor is thus replaced by the empty volume formed in place of the portion of sacrificial material. This empty volume provides the capacitor with certain particular electrical characteristics, notably a high breakdown voltage and a high leakage resistance.

10

25

30

For a given breakdown voltage, a capacitor having an empty cavity thus obtained can have a reduced gap between its two electrodes. For a given constant capacitance, the capacitor dimensions can then be reduced, which allows a greater integration level of the circuit to be achieved.

Advantageously, the rigid portion comprises a first of the capacitor electrodes. The part of the substrate composed of absorbing material, following the absorption of the sacrificial material in the step c), can comprise a second of the capacitor electrodes. The material of this second electrode is therefore directly formed during the step c), without an additional step for deposition of a new material onto the circuit. Therefore, the fabrication process of the capacitor is simplified, which contributes to a reduction in the price of the electronic circuit.

Depending on the configuration of the capacitor, at least one of the two electrodes of the capacitor can have a main surface substantially parallel to the substrate surface.

- The invention also relates to an electronic integrated circuit fabricated using a process such as that described above. In particular, the volume substantially empty of material can be located within a layer of metallization level of the circuit.
- Other features and advantages of the present invention will become apparent in the description presented hereafter of two exemplary non-limiting embodiments, with reference to the appended drawings, in which:
- 15 Figures 1 to 5 illustrate various steps of a first embodiment of a process for fabricating an electronic integrated circuit according to the invention;
- Figures 6 to 8 illustrate various steps of a second embodiment of a process for fabricating an electronic integrated circuit according to the invention.

25

30

The invention is now described in detail in the the fabrication of an electronic of framework integrated circuit comprising a capacitor of the Metal-Insulator-Metal type (or MIM capacitor). capacitor usually comprises two metallic electrodes and a portion of a dielectric material deposited between the two electrodes. By using a process according to the least a part of this portion invention, at dielectric material can be replaced by a volume substantially empty of material.

In the figures, for reasons of clarity, the parts of the various electronic of dimensions components shown are not shown to scale. These figures are cross-sectional views of a substantially plane substrate on which is built an MIM-type capacitor. The cross-sectional views are considered to be in a plane perpendicular to the substrate surface. The substrate is placed in the lower part of the drawing in each figure, and N denotes a direction perpendicular to the surface of the substrate oriented towards the top of the figures. In the following description, terms such as "above", "below", "top" and "bottom" are used with reference to this orientation. In addition, identical references correspond to identical elements over all the figures.

10

15

20

25

In the following, the elementary process steps in the fabrication of an electronic integrated circuit that are familiar to a person skilled in the art are not described in detail. Only a succession of elementary steps involved in the fabrication of a circuit according to the process of the invention will be described.

First of all, a first embodiment is described according to which the capacitor is fabricated below the level of the top surface of the semiconductor substrate of an electronic integrated circuit. In this first embodiment, the semiconductor material of the substrate constitutes the absorbing material.

According to Figure 1, a substrate 100 made of semiconductor material has a substantially plane top surface S. A cavity C is formed in the substrate 100, below the level of the surface S. The depth of the cavity C in the N direction can be, for example, equal to around 0.5 microns.

A first layer 1 of a sacrificial material, a second layer 2, called intermediate layer, then a third layer 3 of an electrically conducting material are deposited successively on the substrate 100, into the cavity C and onto the surface S outside of the cavity C. The respective thicknesses of the layers 1 and 2 are chosen such that the layers 1 and 2 each form a conformal coating of the side walls of the cavity C. The thickness of the layer 3 is chosen so as to fill the cavity C. The configuration of the circuit shown in Figure 2 is thus obtained. The layer 1 is in contact with the substrate 100 at the bottom F of the cavity C, as well as on the side walls of the cavity C. layers 1, 2 and 3 can be, Thicknesses of the respectively, around 20 nm, 5 nm and 1 micron.

10

15

The upper surface of the circuit is then polished down to just below the level of the surface S outside of the cavity C. The only remaining portions of the layers 1 - 3 are then within the cavity C (Figure 3).

The material of the layer 1 is chosen for its 20 property allowing it to be later absorbed into the substrate 100 through the bottom F of the cavity C. For this reason, the material of the layer 1 is known as sacrificial material. The material of the layer 1 may for example, cobalt (Co), nickel 25 comprise, titanium (Ti), tantalum (Ta), tungsten (W), molybdenum (Mo), gallium (Ga), indium (In), silver (Ag), gold (Au), iron (Fe) and/or chromium (Cr). The semiconductor material of the substrate 100, into which the material of the layer 1 will be later absorbed, may comprise 30 silicon (Si), germanium (Ge), phosphorus (P), arsenic (As), antimony (Sb), selenium (Se) and/or tellurium (Te).

Preferably, the substrate 100 material is silicon-based and the sacrificial material of the layer 1 is cobalt-based. Thus, the depositions of the layers 1 to 3 can easily be carried out in the front-end part of a production line for the integrated circuit, using one of the known processes for the deposition of cobalt.

The remaining portion of the layer 3 is designed to form a first electrode, or top electrode, of the capacitor. For this purpose, the material of the layer 3 can be a metal that exhibits a high electrical conductivity, such as, for example, tungsten (W). Alternatively, the material of layer 3 could also be silicon-based, suitably doped in order to have an adequate electrical conductivity.

10

15

20

25

30

The function of the layer 2 is to provide a good adhesion for the layer 3 onto the circuit surface. The material of the layer 2 is advantageously chosen so as to promote a progressive growth of the layer 3, with a uniform thickness. To this end, the material of the layer 2 may, notably, be titanium nitride (TiN) or tantalum nitride (TaN).

The circuit is then coated with a layer 4 of a rigid material coming into contact with the substrate 100 and with the first electrode 3 (Figure 4). The rigid material of the layer 4 can be silica (SiO₂) or silicon nitride (Si₃N₄), for example. The layer 4 extends in a continuous fashion over the cavity C and over the substrate 100 outside of the cavity C. The layer 4 can be deposited by one of the methods known to those skilled in the art, such as, notably, CVD (Chemical Vapour Deposition).

During the deposition of the layer 4, certain reactive agents used, such as oxidizing molecules, may reach the portion 1 and alter the sacrificial material of the latter. In its altered state, it is possible that the material of the portion 1 may no longer be able to be absorbed in the material of the substrate In order to avoid such an alteration of the sacrificial material of the portion 1, the intermediate layer 2 has a further function of chemically isolating the portion 1 from any reactive agents used in the formation of the layer 4. This isolation is also against chemical compounds used in effective formation of other parts of the circuit.

10

25

30

35

Various conventional circuit fabrication steps can then be carried out. These steps may relate to, 15 notably, the fabrication of circuit components separate from the capacitor which comprises the electrode 3, or the formation of metallization levels above the level the surface S. In a known manner, interconnects may be arranged within layers of these 20 damascene levels according to the metallization process, or its variant dual-damascene process. It is possible for the layer 4 to be part of a metallization level of the circuit.

Such circuit fabrication steps may involve heating of the circuit. As an example, the temperature to which the circuit is heated for densification of a portion of material is around $400-500^{\circ}$ C. For this reason, the sacrificial material of the portion 1 may be chosen as a function of its melting point. In particular, it is chosen such that its melting point is higher than the maximum temperature that the circuit reaches during these process steps. Accordingly, metals such as cobalt ($T_{fusion} = 1495^{\circ}$ C), titanium ($T_{fusion} = 1640^{\circ}$ C) or nickel ($T_{fusion} = 1453^{\circ}$ C) are preferred.

Indeed, they allow known processes to be used for the fabrication of circuit components, without altering the portion 1 during the circuit heating phases involved in these steps. In this way, the formation of the empty volume according to the invention can only take place after these steps.

The circuit is then heated to a temperature high enough to cause the absorption of the sacrificial material of the portion 1 into the substrate 100 material present close to the bottom F and to the side walls of the cavity C. This absorption may result from a chemical reaction between the sacrificial material and the substrate 100 material, or may result from a dissolution of the material of the portion 1 in the substrate 100 material. The respective materials of the portion 1 and of the substrate 100 are chosen such that the absorption of the sacrificial material does not cause an expansion of the material of the substrate 100 around the cavity C. In this way, the circuit will not be deformed and will retain a sufficient robustness.

10

20

25

30

Another option consists in locally heating the circuit, in other words solely within a limited portion of the circuit, in order to cause the absorption of the sacrificial material of the portion 1 into the substrate 100 material. This limited portion of the circuit that is heated includes the portion 1 and the part of the substrate 100 composed of absorbing material and situated close to the bottom F and the side walls of the cavity C. Such a local heating can be carried out, in a known manner, by means of a laser beam focussed on said limited portion of the circuit.

The part of the cavity C initially occupied by the portion 1 is thus emptied: a volume V empty of material is created between the face formed by the

bottom F of the cavity C and the intermediate layer 2. The layer 4 and the top electrode 3, covered with the intermediate layer 2, form a rigid portion held in position and in fixed contact with respect to the substrate 100. This rigid portion is suspended above the face F and parallel to it. For this purpose, the material of the layer 4 is chosen so as to possess a sufficient rigidity and solidity to resist any possible stress caused by the creation of the empty volume V. It has been verified by repeated testing that silica (SiO_2) or silicon nitride (Si_3N_4) are suitable to be used as materials for the layer 4.

10

15

20

25

30

35

As an example, when the substrate 100 is siliconbased and the sacrificial material of the portion 1 is absorption results from cobalt-based, the silicidation reaction of cobalt, which is well known and perfectly controlled during the fabrication of an integrated circuit. Since the temperature to which the circuit must be heated to promote the silicidation reaction is around 800°C, existing integrated circuit production line modules can be used for the step creating the empty volume V. In addition, the heating of the circuit in order to create the empty volume V can be used to simultaneously drive silicidation reactions in other parts of the circuit, notably for electrical contacts in order to reduce, in a known manner, electrical contact resistances.

Preferably, the substrate 100 material and the sacrificial material of the portion 1 are chosen such that, following the absorption of the sacrificial material into the substrate material, the resulting material near the bottom F and the side walls of the cavity C is an electrically conducting compound. This is notably the case if cobalt silicide (CoSi₂) is formed. This conducting part of the substrate 100, with

reference 5 in Figure 5, forms the second electrode, or bottom electrode, of the capacitor. The two electrodes 3 and 5 are separated one from the other by the empty volume V. The volume V plays the role of the dielectric material situated between the electrodes of the capacitor obtained. It may possibly contain a certain quantity of gaseous compounds, especially vapour-state compounds originating from the substrate 100, from the layers 2 or 4, or originating by diffusion from other parts of the circuit. It is in this sense that the volume V is said to be "substantially empty".

10

15

20

25

In the first embodiment of the invention that has described, the capacitor configuration just been obtained is as follows: the volume V substantially empty of material has a large cross section substantially parallel to the surface S of the substrate 100, and the electrodes 3 and 5 each have a main surface substantially parallel to the surface S. The thickness of the volume V in the N direction is then substantially equal to the initial thickness of the layer 1, namely around 20 nm.

In addition, an electrically insulating belt may be provided around the part 5 of the substrate 100 the bottom electrode of the constitutes an insulating belt capacitor. Preferably, such formed in the substrate 100 at the beginning of the capacitor fabrication process. It can be of the STI (Shallow Trench Insulation) type, or of the LOCOS (LOCal Oxidation of Silicon) type, for example.

According to a second embodiment of the process of the invention, the capacitor can be disposed within a layer of a metallization level above the top surface of the semiconductor substrate of an electronic

integrated circuit. This second embodiment will now be described with reference to Figures 6 to 8.

According to Figure 6, a substrate 101, made from semiconductor material, is coated with a layer 102 of an electrically insulating material. The layer 102 can, for example, be made of silica (SiO₂). An insert 103, for example made of silicon, is formed within the layer 102, in a limited portion of the latter. The thickness of the insert 103, in the N direction, can be equal to 0.6 microns, for example. The assembly formed by the substrate 101, the layer 102 and the insert 103 plays an identical role to that of the substrate 100 used in the first embodiment of the invention above. S corresponds to the top surface of the layer 102, continuing in an uninterrupted fashion over the insert 103.

10

15

20

25

30

Steps identical to those corresponding to Figures 1 - 4 are executed, so as to build the capacitor within the insert 103. Thus, a cavity C is formed in a central part of the insert 103. The cavity C has a depth, measured in the N direction, that is less than the thickness of the insert 103, for example 0.5 microns. Thus, a residual thickness of around 0.1 microns is present between the bottom of the cavity C and the layer 102.

Portions 1, 2 and 3, for example respectively made of nickel (Ni), titanium nitride (TiN) and tungsten (W), as well as a layer 4 of silica (SiO_2) are formed in the same way as described above. The circuit configuration shown in Figure 7 is then obtained. In this configuration, the material of the insert 103 forms the absorbing material. The face F corresponds to the bottom of the cavity C, which forms the interface between the insert 103 and the portion 1.

The layer 4 forms, together with the layer 102, a first level of metallization, denoted M1, above the substrate 101. As an option, a stopping layer, not shown here but which can be of silicon nitride (Si3N4), can be arranged between the layers 102 and 4, in order to be formed in the allow interconnects using the dual-damascene metallization level М1 process.

The circuit is then heated to around 500°C so as to cause the absorption of the nickel material of the portion 1 into the silicon material of the insert 103. In this second embodiment, the insert 103 material is the absorbing material. The empty volume V is thus created between the layer 2 and the insert 103. The material of the insert 103 near the volume V is transformed into nickel silicide (NiSi). This forms the bottom electrode 5 of the capacitor, situated opposite the top electrode of the capacitor formed by the portion 3. The electrodes 3 and 5 are separated by the empty volume V.

The process of the invention can be implemented many ways during the fabrication of capacitor, by maintaining an empty volume that replaces a dielectric material disposed between the electrodes capacitor. particular, in certain of the In embodiments, the intermediate layer can be eliminated. The capacitor may also have a different configuration from those of the embodiments described. configurations can particular, be according to which the empty volume V has a large cross section substantially perpendicular to the surface S of the substrate. In this case, the capacitor electrodes can have main surfaces also oriented in a direction perpendicular to the surface S.

25

30

Generally speaking, a capacitor built using the process of the invention exhibits an especially high breakdown voltage. Indeed, the value of the breakdown voltage of a capacitor depends on the quality of the portion of dielectric material. When it is formed by the usual deposition techniques for materials used in the fabrication of integrated circuits, this portion has intrinsic defects which are the cause of breakdown in such capacitors. The replacement of at least a part of the portion of dielectric material of an MIM capacitor by a substantially empty volume, obtained by using a process according to the invention, leads to a high value for the breakdown voltage of the capacitor. The MIM capacitor can then be used for particular functions that require a high value of breakdown voltage, such as, for example, a decoupling function between several electrical power supplies connected to a circuit.

10

15

Lastly, although the invention has been described in detail in the framework of the fabrication of an MIM capacitor, it will be understood that it can be implemented for the fabrication of other components within an electronic integrated circuit.