

Photo by © National Eye Institute

DEEP LEARNING PROJECT

DETECTING DIABETIC RETINOPATHY

Sandra Paredes

INTRODUCTION

Motivation: Clinical trials generate thousands of images that need to be classified with the correct diagnosis. [1]

Research Question: How well can a neural network diagnose diabetic retinopathy from a retinal image?

National Eye Institute's research evaluation of retinal clinical trial data, and streamline publishing results.

A simulated view of a person with advanced diabetic retinopathy.

Photo by © National Eye Institute

METHODOLOGY

Dataset

- Diabetic Retinopathy 2015 Data [2]
 - Images = 35,000
- Classes (diagnoses):
 - Normal
 - Mild, Moderate, Severe, Proliferative

Preprocessing

- Resize
- Address class imbalance
- ImageDataGenerator
- Data Augmentation

Normal Healthy Retina

METHODOLOGY

- Model Approach
 - Do we need a deep learning model?
 - Can logistic regression accomplish this task?
 - Deep learning may classify images better.

Figure 1.

RESULTS

Deep Learning Models

- Neural Network
 - accuracy = 0.34
 - val_accuracy = 0.36
- Convolutional Neural Network
 - accuracy = 0.35
 - val_accuracy = 0.53
- VGG16
 - accuracy = 0.33
 - val_accuracy = 0.51

Figures 2-4.

RESULTS

Predictions

- How well did the VGG16 model predict?
- Predicted all images to be one class (class varied).
- Full data set: 🛑
 - ~70% correct
- Culled data set:
 - ~30% accuracy

Figures 5-6.

CONCLUSIONS

Insights

- The large class imbalance masked the model's performance at first.
- Data augmentation did not improve predictions.
- The variability of the images is too large for the model to learn.

Photo by © National Eye Institute

FUTURE WORK

- Preprocess image data with OpenCV to standardize image features [3]
- Test various pre-trained models
- Random oversampling and undersampling

Neural circuits in the retina.

Photo by Wei Li, © <u>National Eye Institute</u>

APPENDIX

Summary, data, and slides are available at github.com/slp22/deep-learning-project

Photo by © National Eye Institute

APPENDIX: SOURCES

- 1. NIH adds first images to major research database: https://www.nei.nih.gov/about/news-and-events/news/nih-adds-first-images-major-research-database
- 2. Diabetic Retinopathy 2015 Data Colored Resized: https://www.kaggle.com/datasets/sovitrath/diabetic-retinopathy-2015-data-colored-resized
- 3. Competition report (min-pooling): https://www.kaggle.com/c/diabetic-retinopathy-detection/discussion/15801#latest-370950

APPENDIX

VGG16 Model

