4T05

Brenton"

Exercice 3-3 : Mesure de l'indice de l'air

On réalise une expérience de trous de Young en intercalant deux tubes, T_1 et T_2 au départ remplis d'air. La source émet une lumière monochromatique de longueur d'onde $\lambda=0,577\mu\mathrm{m}$. Les tubes font 0,2 m de longueur. Lorsque les deux tubes sont pleins d'air on observe une frange brillante en F'.

- 1. On fait le vide dans T_1 . Dans quel sens se déplacent les franges?
- 2. Pendant le pompage, 101 franges brillantes défilent en F' et lorsque la pression dans T_1 est quasi nulle, on observe une frange noire en F'. En déduire l'indice de réfraction n de l'air.

1	S2/2(M) = (F,M) - (F,M)	
<u> </u>	$= n_{\text{orr}} \left(D^2 + \left(\frac{a}{2} + x^2 \right)^{1/2} \right)$	
	- [nair (02+ (2-x)2)+(1- nair) as	
		_'

$$91ain = \frac{3}{5} \lambda + 1$$
 $(AN) = 1,000292828$

Exercice 4-8: Interféromètre de Michelson utilisé avec une source ponctuelle

On considère l'interféromètre de Michelson représenté sur la figure.

(SP) est une surface semi réfléchissante qui réfléchit 50 % de l'intensité lumineuse (émise par S, source ponctuelle monochromatique) vers le miroir (M_2) , le reste étant transmis vers (M_1) . Après réflexion sur (M_1) , 50 % du faisceau 1 est réfléchi vers l'écran (E). Après réflexion sur (M_2) , 50 % du faisceau 2 est transmis vers (E). On observe sur l'écran la superposition de 1 et 2

Pour les applications numériques, on prend : $d_1 = 5$ cm, $d_1 - d_2 = 0$, 9495 mm, d = 20 cm, d' = 1 m, $\lambda = 633$ nm.

1. Montrer que ce dispositif donne de S deux images S_1 et S_2 situées sur l'axe Oy dont on précisera les positions. Décrire les interférences observées sur l'écran.

Quel nombre maximum de franges brillantes pourrait-on en principe observer dans l'espace ? Que se passe-t-il si $d_1=d_2$?

- 2. Sur (E), on observe des anneaux alternativement brillants et sombres centrés sur le point O' (intersection de Oy avec (E)). Calculer l'ordre d'interférence p_0 en O'. Comment varie l'ordre d'interférence lorsqu'on s'éloigne de O'?
- 3. On considère le point M(x, -d', z) sur (E). On pose $D = 2d_1 + d + d'$ et $S_1S_2 = a$. On suppose que $a, x, z \ll D$. Calculer la différence de marche $S_1M S_2M$ et montrer que le rayon de l'anneau brillant d'ordre p est : $r_p = D\sqrt{2\left(1 \frac{p}{p_0}\right)}$.
- 4. On suppose qu'en O' se trouve une frange brillante. Quel est alors le rayon du premier anneau brillant? Que se passe-t-il si $d_1 d_2 \to 0$?

$$\int \rho = \frac{1}{\lambda_0} = \frac{\alpha}{\lambda_0} - \frac{1}{2\lambda_0} \frac{\alpha}{D(0-\alpha)} \Gamma$$

$$\int \rho = \frac{1}{\lambda_0} \frac{\alpha r^2}{\lambda_0 D(0-\alpha)}$$

$$\int \rho - \rho = \frac{1}{\lambda_0} \frac{\alpha r^2}{\lambda_0 D(0-\alpha)}$$

$$\int \rho = \frac{1}{\lambda_0} \frac{\alpha r^2}{\lambda_0 D(0-\alpha)} \frac{2\rho^2 (p_0-p)}{\rho_0}$$

$$\int \rho = \frac{1}{\lambda_0} \frac{\alpha r^2}{\lambda_0 D(0-\alpha)} \frac{2\rho^2 (p_0-p)}{\rho_0}$$

4) En 0', F.B.

le 1° anneau boillant est tel que po-p=1.

TI = NZ D N 1/2 = 52 D N 20

AN 7, A 3,4cm

Exercice 4-6: Mesure de l'épaisseur d'une mince lame de verre

Un interféromètre de Michelson est réglé en lame d'air, éclairé par une source primaire étendue S monochromatique ($\lambda=500\,\mathrm{nm}$).

À partir de la situation où l'on est au contact optique, on déplace le miroir M_2 de 1 mm normalement à son plan.

- 1. Étudier les phénomènes d'interférences qui apparaissent au voisinage de l'incidence normale dans le plan focal d'une lentille convergente. Déterminer la phase au centre et l'ordre d'interférence du 2ème anneau sombre.
- 2. On place sur le bras du miroir M_1 une lame mince d'épaisseur $e = 7,5\mu$ m et d'indice n = 1,50. Trouver la variation de l'ordre d'interférence au centre de la figure d'interférences. Quel est le rayon du premier cercle noir (la distance focale de la lentille est f' = 1 m).

2. Par ajonte d'une lame d'epaisseur e dans le pres D de 1 2M.

aller + retout

$$\Delta p = \frac{\sum_{j=1}^{1}(0^{j}) - \sum_{j=1}^{2}(0^{j})}{\lambda_{0}} = \frac{-2(n-1)\ell}{\lambda_{0}}$$