23 秋- 测度与概率两次小测(回忆版)

何家兴

hejiaxing202411@163.com

December 7, 2024

1 第一次小测

Exercise 1.

判断, 正确的给出证明, 错误的给出反例

- 1. $\mathcal{F}, \mathcal{A} \subset \mathcal{F}(\Omega)$ (这里 $\mathcal{F}(\Omega)$ 表示 Ω 的幂集); \mathcal{F} 是 σ 代数, \mathcal{A} 是集代数, 则 $\overline{\mathcal{F}} > \overline{\mathcal{A}}$ (错误)
- 2. 映射 $f: \Omega \to E$, $A \subset \Omega$, 则 $f^{-1}(f(A)) = A$ (错误)
- 3. 设 \mathcal{E} 是 Ω 的任意子集类,则有 \mathcal{E} 的一个可列子集 \mathcal{D} 使得 $A \in \sigma(\mathcal{D})$ (正确)

Exercise 2.

设 $(\Omega, \mathcal{F}, \mathbb{P})$ 为概率空间, $\{A_n, n \in \mathbb{N}\} \subset \mathcal{F}, B := \overline{\lim}_{n \to \infty} A_n = \bigcap_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$

- 1. 若 $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$,证明 $\mathbb{P}(B) = 0$
- 2. 若对任意 $n \in \mathbb{N}$, 有 $\mathbb{P}(A_n) \geqslant \varepsilon > 0$, 证明 $\mathbb{P}(B) \geqslant \varepsilon$.
- 3. 若 $\mathbb{P}(B)>0$, 证明存在子列 A_{n_k} , 使得 $\mathbb{P}(\bigcap_{k=1}^m A_{n_k})>0$, 对任意 $m\in\mathbb{N}$ 成立

Exercise 3.

叙述测度扩张定理,证明其中"唯一性"部分。

2 第二次小测

Exercise 1.

判断, 正确的给出证明, 错误的给出反例

- 1. 给定测度空间 $(\Omega, \mathcal{F}, \mu)$, 若 $g \leq f_n \in \mathcal{F}$, $n = 1, 2, \cdots$, $\lim_{n \to \infty} f_n = f$, 则 $\int (\lim_{n \to \infty} f_n) d\mu = \lim_{n \to \infty} \int f_n d\mu$ (错误)
- 2. 给定测度空间 $(\Omega, \mathcal{F}, \mu)$,若 $0 \le f \in \mathcal{F}$, $\int f d\mu = 0$,则 f = 0 $(\mu$ -a.e.) (正确)
- 3. 给定测度空间 $(\Omega, \mathcal{F}, \mu)$, f 可积, 则 $\lim_{\mu(A)\to 0} \int_A |f| \mathrm{d}\mu = 0$ (正确)

Exercise 2.

给定单调不减的右连续实函数 $F(x) = -2 \cdot \mathbb{1}_{(-\infty,1)}(x) + x \cdot \mathbb{1}_{[1,2)}(x) + 4 \cdot \mathbb{1}_{[2,\infty)}(x)$

- 1. 写出 F(x) 对应的 L-S 测度 μ_F 。(这个记号的意思并不是 F 诱导的测度)
- 2. 计算积分 $\int_0^4 x \mu_F(\mathrm{d}x)$ 。(间断点处取 1/2(左极限-右极限), 答案是 8.5)

Exercise 3.

给定概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$. X_i , i = 1, 2, 3, 4 是随机变量

- 1. 证明 $\sigma[\sigma(X_1) \cup \sigma(X_2)] = \sigma(\Lambda_{1,2})$,其中 $\Lambda_{1,2} := \{A_1 \cap A_2 : A_i \in \sigma(X_i), i = 1, 2\}$ 。记 $\sigma(X_1, X_2) := \sigma[\sigma(X_1) \cup \sigma(X_2)]$
- 2. 若 X₁, X₂, X₃, X₄ 相互独立,证明
 - (a) $\sigma(X_1, X_2)$ 与 $\sigma(X_3, X_4)$ 相互独立
 - (b) $\sin(X_1 + (X_2)^2)$ 与 $(X_3)^8 + \sqrt{|X_4|}$ 相互独立

Exercise 4.

给定概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$, \mathcal{F} 具有如下性质: " $\forall \ A \in \mathcal{F}$, $\mathbb{P}(A) = 0$ 或1"。若 $X \in \mathcal{F}$, \mathbb{P} -a.s. 有限,证明:存在常数 C,使得 X = C, \mathbb{P} -a.s.