# **Understanding DNNs**

Presented by Adel bibi & Modar Alfadly

Prepared by Modar

#### **Outline**

- Introduction
- Geometrical Study [with Modar]
- Probabilistic Study [with Adel]
- References

#### Introduction

- Standard Workflow Pipeline in Deep Learning
- Training DNNs Using Gradient Descent
- Universal Approximation Theorem
- Deeper vs. Wider Argument

## Standard Workflow Pipeline in Deep Learning

Given a problem E.g. classification Formulate it as a function E.g.  $F(\mathbf{x}): \mathbb{R}^d o \mathbb{R}^c$ Hypothesize a parameterized approximation (structured network)  $f(\mathbf{x}; \mathbf{\Theta}) \approx F(\mathbf{x})$ E.g. Find (i.e., train) the best • according to a loss function of your choice

- The input has some distribution i.e.,  $\mathbf{x} \sim \mu$  (e.g., natural images)
- A good enough parameterized model should approximate the original function for most samples in the domain
- Most DNNs are constructed as a hierarchy of layers
- Each layer is a small parameterized function that might be followed by an activation function (e.g., ReLU or Sigmoid)

# **Training DNNs Using Gradient Descent**

- 1. Start with initial parameters  $\Theta_0$  and learning rate  $\alpha$
- 2. Let  $k \leftarrow 0$
- 3. Compute the loss of all the training data  $\delta(\mathbf{X},\mathbf{y};\mathbf{\Theta}_k)$
- 4. Compute the partial subgradients of all the parameters  $\frac{\partial}{\partial \mathbf{\Theta}_k} \delta(\mathbf{x}, \mathbf{y}; \mathbf{\Theta}_k)$
- 5. Backpropagate to all the parameters  $\mathbf{\Theta}_{k+1} \leftarrow \mathbf{\Theta}_k \alpha \frac{\partial}{\partial \mathbf{\Theta}_k} \delta(\mathbf{X}, \mathbf{y}; \mathbf{\Theta}_k)$
- 6. Let  $k \leftarrow k+1$
- 7. Change the learning rate if desired
- 8. Repeat steps 3-7 until some stopping criteria

**Linearization:**  $f(\mathbf{x}) \approx f(\mathbf{a}) + \nabla f(\mathbf{a})^T(\mathbf{x} - \mathbf{a})$ Linearize the loss around the parameters  $\delta(\mathbf{X}, \mathbf{y}; \Omega_k) \approx \delta(\mathbf{X}, \mathbf{y}; \Theta_k) + \frac{\partial}{\partial \Theta_k} \delta(\mathbf{X}, \mathbf{y}; \Theta_k)^T (\Omega_k - \Theta_k)$ Then, move opposite to the gradient to decrease the loss

#### **Universal Approximation Theorem**

- Any arbitrary continuous function can be **approximated** effectively using a feed-forward neural network (i.e., a multilayer perceptron) with a single hidden layer, under mild assumptions on the activation function [1].
- A visual and interactive proof to this theorem is presented in [2,3].



# Deeper vs. Wider Argument

- Is it better to go deeper or wider? [4]
  - Training difficulty (e.g., vanishing gradients)
  - Deployment restrictions (e.g. high input dimensionality)
- Try different structures with Tensorflow Playground [here]





# Deeper vs. Wider Argument

Example of high dimensional input and proposed solution (CNNs)



# Geometrical Study [with Modar]

- Continuous Piecewise Linear DNNs
- Gradient Images for PL-DNNs
- Sensitivity Analysis of PL-DNNs
- Adversarial Examples for PL-DNNs

Any Continuous PL function can be written as a difference of only two convex PL functions





$$f(x) = egin{cases} 1 & ext{if } x < -3 \ rac{1}{2} ext{sin} (rac{n}{2\pi}) + rac{1}{2} & ext{if } -3 \leq x < 3 \ 0 & ext{if } 3 \leq x \end{cases}$$

$$g(x) = egin{cases} 1 & ext{if } x < -3 \ rac{2-x-3}{2} + 1 & ext{if } -3 \leq x < -1 \ rac{x+1}{2} & ext{if } -1 \leq x < 1 \ 1 & ext{if } 1 \leq x \end{cases}$$

$$h(x) = egin{cases} 0 & ext{if } x < -1 \ rac{x+1}{2} & ext{if } -1 \leq x < 1 \ 1 & ext{if } 1 \leq x \end{cases}$$



$$n_1(x) = Relu(-5x - 7.7)$$

$$n_2(x) = Relu(-1.2x - 1.3)$$

$$n_3(x) = Relu(1.2x + 1)$$

$$n_4(x) = Relu(1.2x - .2)$$

$$n_5(x) = Relu(2x - 1.1)$$

$$n_6(x) = Relu(5x - 5)$$

$$Z(x) = -n_1(x) - n_2(x) - n_3(x) + n_4(x) + n_5(x) + n_6(x)$$

- Convex piecewise linear functions are defined as  $f(\mathbf{x}) = \max_{i \in [1,m]} \{\mathbf{a}_i^T \mathbf{x}\}$
- Most **DNN layers** are piecewise linear [5]
   E.g., ReLU, MaxPool, Conv, FC
- The **composition** of two PL functions is PL
- Thus, Most DNNs are piecewise linear
- Note that, Softmax is not PL

Example of a single hidden layer network

• For a classifier PL-DNN, let us recursively define  $\forall i \in (0, L]$ 

| The network as a function               | $f: \mathbb{R}^{m^0} 	o \mathbb{R}^{m^L} \Rightarrow f(\mathbf{x}; \mathbf{\Theta}) = l^L(\mathbf{x})$                                            |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Layer output: activation(linear(input)) | $\Lambda^i(\mathbf{x}) = A^i(l^i(\mathbf{x}))$                                                                                                    |
| Linear layer                            | $l^i(\mathbf{x}) = \mathbf{W}^i \Lambda^{i-1}(\mathbf{x}) + \mathbf{b}^i$                                                                         |
| Base cases                              | $\mathbf{W}^0 = \mathbf{I}_{m_0}, \mathbf{b}^0 = 1_{m_0} \Rightarrow \Lambda^0(\mathbf{x}) = \mathbf{x}$                                          |
| Such that                               | $\Lambda^i: \mathbb{R}^{m^{i-1}}  ightarrow \mathbb{R}^{m^i}, \mathbf{W^i} \in \mathbb{R}^{m^i 	imes m^{i-1}}, \mathbf{b}^i \in \mathbb{R}^{m^i}$ |

• The parameters  $m{\Theta}$  is the set  $\{ \mathbf{W}^i, \mathbf{b}^i | \forall i \in (0, L] \}$ 

• Example of three hidden-layers network on 2D input



- PL-DNNs divides the input space into convex polyhedrons.
- There is a strong influence of the number of nonlinear layers and the number of wide layers on the complexity and expressivity of the network.
- A tight upper bound exists for number of knots neural networks that has input dimension of one and ReLU activations [15].

$$N \leq \sum_{i=1}^L m^i \prod_{j=i+1}^L (m^j+1)$$

• The number of piecewise linear regions grows exponentially with the number of layers [16].

- It is possible to generate unnatural looking images that are classified with high confidence to be belonging to a certain class
- Using genetic algorithm with direct and indirect encoding [14]



### **Gradient Images for PL-DNNs**

- Gradients are the directions of the steepest change
- Let us define the gradient with respect to the input recursively

| Gradient of images of subnetwork | $\frac{\partial \Lambda^i}{\partial \mathbf{x}} = \frac{\partial A^i}{\partial l^i} \frac{\partial l^i}{\partial \mathbf{x}}$ (Chain Rule)                                                                                                          |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gradient images of subnetwork    | $\frac{\partial l^i}{\partial \mathbf{x}} = \frac{\partial l^i}{\partial \Lambda^{i-1}} \frac{\partial \Lambda^{i-1}}{\partial \mathbf{x}}$ (Chain Rule)                                                                                            |
| Gradient of linear layer         | $rac{\overline{\partial l^i}}{\partial \Lambda^{i-1}} = \mathbf{W}^i$                                                                                                                                                                              |
| Base cases                       | $rac{\partial \Lambda^0}{\partial \mathbf{x}} = \mathbf{I}_{m^0}$                                                                                                                                                                                  |
| Such that                        | $egin{aligned} rac{\partial \Lambda^i}{\partial \mathbf{x}} \in \mathbb{R}^{m^i 	imes m^0}, rac{\partial A^i}{\partial l^i} \in \mathbb{R}^{m^i 	imes m^i}, rac{\partial l^i}{\partial \mathbf{x}} \in \mathbb{R}^{m^i 	imes m^0} \end{aligned}$ |

Different activation functions have different gradients

# **Gradient Images for PL-CNNs**

- Conv layers can be converted to FC layers (i.e., matrix-vector product)
- MaxPooling for a certain input can be converted as matrix-vector product
- We will consider the default activation for FC and Conv layers to be ReLU
- The default activation function for MaxPooling is the identity function
- For ReLU:  $\frac{\partial A^i}{\partial l^i} = \mathbf{V}^i = diag(\mathbf{v}^i) \text{ s.t. } v^i_j = \begin{cases} 1 & \text{if } l^i_j(\mathbf{x}) > 0 \\ 0 & \text{otherwise} \end{cases}$ Therefore, the gradient images are given by  $\frac{\partial f}{\partial \mathbf{x}} = \mathbf{W}^L \mathbf{V}^{L-1} \mathbf{W}^{L-1} \dots \mathbf{V}^1 \mathbf{W}^1$
- The Vs job is to select specific rows of the Ws and make them zeros
- The Vs are functions of the input image while the Ws are constants
- This product contains the gradients of the linearization around the input

#### **Gradient Images for PL-CNNs**

- Example of gradient images with Not-MNIST [6] and a Single layer ANN
- The output is 10 classes





### **Sensitivity Analysis of PL-DNNs**

- How much can we change the input without changing the class label?
  - Move in a direction **orthogonal to all gradients** (i.e.,vector in the null space of  $\frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{\Theta})$ )
    - Any right singular vector that correspond to a zero singular value in the SVD
    - Minimum-energy solution  $\mathbf{G} = \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{\Theta}) \to \mathbf{G}^T (\mathbf{G} \mathbf{G}^T)^{-1} \mathbf{G} \mathbf{x}_0 \mathbf{x}_0$  for any random  $\mathbf{x}_0$
  - Move while keeping the **ordering** of final layer functions the same
    - Form this **convex polyhedral cone**  $\begin{bmatrix} (\nabla f_{j_1}(\mathbf{x}) \nabla f_i(\mathbf{x}))^T \\ \text{Where } j_k = \begin{cases} k & \text{if } k < i \\ k+1 & \text{if } k > i \end{cases} \\ \text{Find a point in this polyhedron} \end{bmatrix} \mathbf{v} \leq \begin{bmatrix} f_i(\mathbf{x}) f_{j_1}(\mathbf{x}) \\ \vdots \\ f_i(\mathbf{x}) f_{j_{m^0-1}}(\mathbf{x}) \end{bmatrix} \Rightarrow \mathbf{A}\mathbf{v} \leq \mathbf{b}$ 
      - Using Linear Programming (very expensive)
      - Start from the **intersection** then move inside  $\mathbf{A}^T(\mathbf{A}\mathbf{A}^T)^{-1}(\mathbf{b}-\mathbf{c})$  s.t.  $\mathbf{c} \geq \mathbf{0}$
    - With these techniques you have multiple points in a convex polyhedron Taking any convex combination of those points that is close enough to the original point will yield a point that has the same label as the original image

# **Sensitivity Analysis of PL-DNNs**

• Example of moving inside the convex polyhedral cone





### **Sensitivity Analysis of PL-DNNs**

- **Lipschitz constant** tells us what is the effect of a small change in the input of a function to the output  $[7] \forall \mathbf{x}, \mathbf{r} || f(\mathbf{x}) f(\mathbf{x} \mathbf{r}) ||_2 \le L ||\mathbf{r}||_2$
- The smaller the constant the more smaller the change is going to be
- The Lipschitz constant of an FC layer bounded from above by the maximum singular value of the weights matrix
- The Lipschitz constant of a network is the product of its layers
- For a trained AlexNet [8] on imagenet dataset [9], Lipschitz constants are

| Conv1 | Conv2 | Conv3 | Conv4 | Conv5 | FC6  | FC7 | FC8 |  |
|-------|-------|-------|-------|-------|------|-----|-----|--|
| 2.75  | 10    | 7     | 7.5   | 11    | 3.12 | 4   | 4   |  |

• There is a way to train a network such that the Lipschitz constant is less than or equal to one for each layer to increase its robustness [10].

#### **Adversarial Examples for PL-DNNs**

- Given an input image, add small perturbation to it to change its label.
  - Minimize the loss to a different label [7] (the minimization is done in very few steps)
  - Move along the sign of the gradient of the loss [11]
  - DeepFool: go outside the convex polyhedral cone [12]
  - Add an adversarial universal perturbation [13]



### **Adversarial Examples for PL-DNNs**

More about universal adversarial perturbation [13]





### **Adversarial Examples for PL-DNNs**

- These perturbation happen to be network-agnostic and there is even a high chance for an image to fool different networks by the same label
- Retraining with perturbed images doesn't help like filtering, JPEG compression and adversarial examples detector DNNs
- By studying the geometrical curvature of DNNs we can detect its adversarial examples [16].

|            | VGG-F | CaffeNet | GoogLeNet | VGG-16 | VGG-19 | ResNet-152 |
|------------|-------|----------|-----------|--------|--------|------------|
| VGG-F      | 93.7% | 71.8%    | 48.4%     | 42.1%  | 42.1%  | 47.4 %     |
| CaffeNet   | 74.0% | 93.3%    | 47.7%     | 39.9%  | 39.9%  | 48.0%      |
| GoogLeNet  | 46.2% | 43.8%    | 78.9%     | 39.2%  | 39.8%  | 45.5%      |
| VGG-16     | 63.4% | 55.8%    | 56.5%     | 78.3%  | 73.1%  | 63.4%      |
| VGG-19     | 64.0% | 57.2%    | 53.6%     | 73.5%  | 77.8%  | 58.0%      |
| ResNet-152 | 46.3% | 46.3%    | 50.5%     | 47.0%  | 45.5%  | 84.0%      |



# **Suggested Reading**

- Can neural networks solve any problem [2]?
- Universal adversarial perturbations [13].
- Classification regions of deep neural networks [16].



### **Geometric Study ~ Conclusions**

- DNNs are parametrized models that have high capacity to approximate continuous functions using different architectural choices (deep vs. wide).
- These models need to be trained with enough data from a certain distribution to be able to generalize well to new unseen examples.
- With the current training techniques there still appear blindspots to the model were adversarial examples live even after fine tuning on them.
- These adversarial samples appear to be universal with different DNNs.
- By studying the geometry of these constructions (i.e., PL-DNNs) we get insights on why these phenomenon occur and how to avoid them.
- We hope that we can use this knowledge to understand the capabilities and shortcoming of DNNs and how best to construct and train them.

# Probabilistic Study [with Adel]

• Statistical Analysis of Fully Connected Networks

#### **Statistical Analysis of Fully Connected Networks**



# Thank You for Listening!

References list is on the next slide

#### References

- 1. Hornik, Kurt. "Approximation capabilities of multilayer feedforward networks." Neural networks 4.2 (1991): 251-257.
- 2. Fortuner, Brendan. "Can neural networks solve any problem?" Medium. Towards Data Science, 07 Mar. 2017. Web. 21 June 2017.
- 3. Nielsen, M. A. (1970, January 01). Neural Networks and Deep Learning. Retrieved June 20, 2017, from http://neuralnetworksanddeeplearning.com/chap4.html
- 4. Pandey, Gaurav, and Ambedkar Dukkipati. "To go deep or wide in learning?." AISTATS. 2014.
- 5. Berrada, Leonard, Andrew Zisserman, and M. Pawan Kumar. "Trusting SVM for Piecewise Linear CNNs." arXiv preprint arXiv:1611.02185 (2016).
- 6. Bulatov, Yaroslav. "NotMNIST dataset." Machine Learning, etc. N.p., 01 Sept. 2011. Web. 21 June 2017.
- 7. Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).
- 8. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.
- 9. Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009.
- 10. Cisse, Moustapha, et al. "Parseval networks: Improving robustness to adversarial examples." arXiv preprint arXiv:1704.08847 (2017).
- 11. Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).
- 12. Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard. "Deepfool: a simple and accurate method to fool deep neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
- 13. Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial perturbations." arXiv preprint arXiv:1610.08401 (2016).
- 14. Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
- 15. Chen, Kevin K. "The upper bound on knots in neural networks." arXiv preprint arXiv:1611.09448 (2016).
- 16. Fawzi, Alhussein, et al. "Classification regions of deep neural networks." arXiv preprint arXiv:1705.09552 (2017).