

BLUETOOTH LOW ENERGY

THE DEVELOPER'S HANDBOOK

ROBIN HEYDON

Bluetooth Low Energy

Bluetooth Low Energy

The Developer's Handbook

Robin Heydon

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales (800) 382-3419 corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales international@pearson.com

Visit us on the Web: informit.com

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-288836-3 ISBN-10: 0-13-288836-X

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

First printing, October 2012

Executive Editor Bernard Goodwin

Managing Editor John Fuller

Project Editor Elizabeth Ryan

Copy Editor Bob Russell

Indexer Jack Lewis

Proofreader Christine Clark

Cover Designer Gary Adair

Compositor LaurelTech This book is dedicated to Katherine.

—Robin xxx

Contents

Prefa	Preface		
Acknowledgments			
Abou	at the Author	xxi	
Part	I Overview	1	
Chap	eter 1 What Is Bluetooth Low Energy?	3	
1.1	Device Types	6	
1.2	Design Goals	7	
1.3	Terminology	9	
Chap	eter 2 Basic Concepts	11	
2.1	Button-Cell Batteries	11	
2.2	Time Is Energy	12	
2.3	Memory Is Expensive	13	
2.4	Asymmetric Design	14	
2.5	Design For Success	15	
2.6	Everything Has State	16	
2.7	Client-Server Architecture	17	
2.8	Modular Architecture	18	
2.9	One Billion Is a Small Number	19	
2.10	Connectionless Model	19	
2.11	Paradigms	20	
	2.11.1 Client-Server Architecture	20	
	2 11 2 Sarvice Oriented Architecture	21	

viii Contents

Cha	pter 3 Architecture	27
3.1	Controller	27
	3.1.1 Physical Layer	28
	3.1.2 Direct Test Mode	29
	3.1.3 Link Layer	30
	3.1.4 The Host/Controller Interface	31
3.2	The Host	32
	3.2.1 Logical Link Control and Adapt	ation Protocol 32
	3.2.2 The Security Manager Protocol	33
	3.2.3 The Attribute Protocol	33
	3.2.4 The Generic Attribute Profile	34
	3.2.5 The Generic Access Profile	36
3.3	The Application Layer	36
	3.3.1 Characteristics	36
	3.3.2 Services	37
	3.3.3 Profiles	37
3.4	Stack Splits	38
	3.4.1 Single-Chip Solutions	38
	3.4.2 Two-Chip Solutions	39
	3.4.3 Three-Chip Solutions	40
Cha	pter 4 New Usage Models	41
4.1	Presence Detection	41
4.2	Broadcasting Data	42
4.3	Connectionless Model	43
4.4	Gateways	44
Par	rt II Controller	47
Cha	opter 5 The Physical Layer	49
5.1	Background	49
5.2	Analog Modulation	49
5.3	Digital Modulation	51
5.4	Frequency Band	54
5.5	Modulation	54
5.6	Radio Channels	55
5.7	Transmit Power	56
5.8	Tolerance	57

Contents

5.9	Receive	er Sensitivity	57
5.10	Range		58
Chap	ter 6	Direct Test Mode	61
6.1	Backgr		61
6.2	Transc	eiver Testing	62
	6.2.1	Test Packet Format	63
	6.2.2	Transmitter Tests	63
	6.2.3	Receiver Tests	64
6.3	Hardwa	are Interface	65
	6.3.1	UART	65
	6.3.2	Commands and Events	65
6.4	Direct	Testing by Using HCI	67
Chap	ter 7	The Link Layer	69
7.1	The Li	ink Layer State Machine	69
	7.1.1	The Standby State	70
	7.1.2	The Advertising State	71
	7.1.3	The Scanning State	72
	7.1.4	The Initiating State	73
	7.1.5	The Connection State	73
	7.1.6	Multiple State Machines	74
7.2	Packets		76
	7.2.1	Advertising and Data Packets	76
	7.2.2	Whitening	77
7.3	Packet	: Structure	79
	7.3.1	Bit Order and Bytes	79
	7.3.2	The Preamble	79
	7.3.3	Access Address	80
	7.3.4	Header	81
	7.3.5	Length	82
	7.3.6	Payload	83
	7.3.7	Cyclic Redundancy Check	84
7.4	Channe		84
	7.4.1	Frequency Hopping	87
	7.4.2	Adaptive Frequency Hopping	88
7.5	Finding	g Devices	90
	7.5.1	General Advertising	91
	7.5.2	Direct Advertising	91

X Contents

	7.5.3	Nonconnectable Advertising	92
	7.5.4	Discoverable Advertising	92
7.6	Broadca	asting	92
7.7	Creatin	g Connections	93
	7.7.1	Access Address	95
	7.7.2	CRC Initialization	95
	7.7.3	Transmit Window	95
	7.7.4	Connection Events	96
	7.7.5	Channel Map	97
	7.7.6	Sleep Clock Accuracy	98
7.8	Sending	g Data	98
	7.8.1	Data Header	99
	7.8.2	Logical Link Identifier	100
	7.8.3	Sequence Numbers	101
	7.8.4	Acknowledgement	101
	7.8.5	More Data	101
	7.8.6	Examples of the Use of Sequence Numbers	
		and More Data	101
7.9	Encrypt	tion	104
	7.9.1	AES	105
	7.9.2	Encrypting Payload Data	106
	7.9.3	Message Integrity Check	107
7.10	Managi	ing Connections	109
	7.10.1	Connection Parameter Update	109
	7.10.2	Adaptive Frequency Hopping	111
	7.10.3	Starting Encryption	112
	7.10.4	Restarting Encryption	115
	7.10.5	Version Exchange	117
	7.10.6	Feature Exchange	118
	7.10.7	Terminating Connections	118
7.11	Robusti		120
	7.11.1	Adaptive Frequency Hopping	120
	7.11.2	Strong CRCs	122
7.12		zations for Low Power	123
	7.12.1	Short Packets	124
	7.12.2	High Bit Rate	125
	7.12.3	Low Overhead	126
	7.12.4	Acknowledgement Scheme	127
	7.12.5	Single-Channel Connection Events	127

Contents

	7.12.6	Subrating Connection Events	128
	7.12.7	Offline Encryption	130
Chap	oter 8	The Host/Controller Interface	131
8.1	Introdu		131
8.2	Physica	l Interfaces	131
	8.2.1	UART	132
	8.2.2	3-Wire UART	132
	8.2.3	USB	134
	8.2.4	SDIO	134
8.3	Logical	Interface	135
	8.3.1	HCI Channels	135
	8.3.2	Command Packets	135
	8.3.3	Event Packets	137
	8.3.4	Data Packets	138
	8.3.5	Command Flow Control	139
	8.3.6	Data Flow Control	140
8.4	Controller Setup		140
	8.4.1	Reset the Controller to a Known State	141
	8.4.2	Reading the Device Address	141
	8.4.3	Set Event Masks	142
	8.4.4	Read Buffer Sizes	142
	8.4.5	Read Supported Features	143
	8.4.6	Read Supported States	144
	8.4.7	Random Numbers	145
	8.4.8	Encrypting Data	145
	8.4.9	Set Random Address	146
	8.4.10	White Lists	147
8.5	Broadca	asting and Observing	148
	8.5.1	Advertising	148
	8.5.2	Passive Scanning	150
	8.5.3	Active Scanning	152
8.6	Initiatin	ng Connections	153
	8.6.1	Initiating Connection to White List	154
	8.6.2	Initiating a Connection to a Device	156
	8.6.3	Canceling Initiating a Connection	156
8.7	Connec	tion Management	158
	8.7.1	Connection Update	158
	8.7.2	Channel Map Update	159

xii Contents

	8.7.3	Feature Exchange	160
	8.7.4	Version Exchange	160
	8.7.5	Starting Encryption	161
	8.7.6	Restarting Encryption	163
	8.7.7	Terminating a Connection	164
Part	ш н	ost	167
Chapt	ter 9 l	Logical Link Control and Adaptation Protocol	169
9.1	Backgr		169
9.2	L2CAP	Channels	171
9.3	The L2	CAP Packet Structure	172
9.4	The LE	Signaling Channel	173
	9.4.1	Command Reject	174
	9.4.2	Connection Parameter Update Request and Response	175
Chapt		Attributes	179
10.1	Backgr		179
	10.1.1	Protocol Proliferation Is Wrong	180
	10.1.2	Data, Data, Everywhere	180
		Data and State	181
		Kinds of State	182
	10.1.5	State Machines	183
	10.1.6	Services and Profiles	185
10.2	Attribu ⁻		189
	10.2.1	Attribute	189
	10.2.2	The Attribute Handle	189
	10.2.3	Attribute Type	190
	10.2.4	Attribute Value	191
	10.2.5	Databases, Servers, and Clients	192
	10.2.6	Attribute Permissions	194
	10.2.7	Accessing Attributes	196
	10.2.8	Atomic Operations and Transactions	197
10.3	Groupir	ng	199
10.4	Services	s	199
	10.4.1	Extending Services	201
	10.4.2	Reusing Another Service	203
	10.4.3	Combining Services	204
	10.4.4	Primary or Secondary	205

Contents

	10.4.5	Plug-and-Play Client Applications	207
	10.4.6	Service Declaration	208
	10.4.7	Including Services	209
10.5	Characte	eristics	210
	10.5.1	Characteristic Declaration	211
	10.5.2	Characteristic Value	213
	10.5.3	Descriptors	214
10.6	The Att	ribute Protocol	217
	10.6.1	Protocol Messages	219
	10.6.2	The Exchange MTU Request	221
	10.6.3	The Find Information Request	221
	10.6.4	The Find By Type Value Request	222
	10.6.5	The Read By Type Request	223
	10.6.6	The Read Request	224
	10.6.7	The Read Blob Request	224
	10.6.8	The Read Multiple Request	224
	10.6.9	The Read By Group Type Request	225
	10.6.10	The Write Request	225
	10.6.11	The Write Command	225
	10.6.12	The Signed Write Command	225
	10.6.13	The Prepare Write Request and Execute Write Request	226
		The Handle Value Notification	227
	10.6.15	The Handle Value Indication	228
	10.6.16	Error Response	228
10.7	The Ger	neric Attribute Profile	231
	10.7.1	The Discovery Procedures	232
	10.7.2	The Discovering Services	232
	10.7.3	Characteristic Discovery	234
	10.7.4	Client-Initiated Procedures	235
	10.7.5	Server-Initiated Procedures	238
	10.7.6	Mapping ATT PDUs to GATT Procedures	239
Chapt	ter 11 S	ecurity	241
11.1	Security	Concepts	241
	11.1.1	Authentication	241
	11.1.2	Authorization	242
	11.1.3	Integrity	243
	11.1.4	Confidentiality	243
	11.1.5	Privacy	243

xiv

	11.1.6	Encryption Engine	244
	11.1.7	Shared Secrets	244
11.2	Pairing	and Bonding	248
	11.2.1	Pairing	248
	11.2.2	Exchange of Pairing Information	248
	11.2.3	Authentication	250
	11.2.4	Key Distribution	251
	11.2.5	Bonding	252
11.3	Signing	of Data	252
Chap	ter 12	The Generic Access Profile	255
12.1	Backgro	ound	255
	12.1.1	Initial Discovery	256
		Establishing the Initial Connection	258
	12.1.3	Service Characterization	258
	12.1.4	Long-Term Relationships	259
	12.1.5	Reconnections	260
	_	Private Addresses	260
12.2	GAP R	oles	261
12.3		and Procedures	262
	12.3.1	Broadcast Mode and Observation Procedure	263
	12.3.2	Discoverability	263
	12.3.3	Connectability	266
	12.3.4	Bonding	270
12.4	Security	y Modes	270
	12.4.1	Security Modes	271
12.5		sing Data	273
		Flags	273
		Service	274
		Local Name	275
		TX Power Level	275
		Slave Connection Interval Range	275
		Service Solicitation	275
		Service Data	276
		Manufacturer-Specific Data	276
12.6	GAP Se		276
	12.6.1	The Device Name Characteristic	276
	12.6.2	The Appearance Characteristic	276

Contents

	12.6.3	The Peripheral Privacy Flag	277
	12.6.4	Reconnection Address	278
	12.6.5	Peripheral Preferred Connection Parameters	278
Part	IV A	pplication	281
Chap	ter 13 (Central	283
13.1	Backgro	ound	283
13.2	Discove	ering Devices	283
13.3	Connec	ting to Devices	285
13.4		Does This Device Do?	286
13.5		: Clients	287
13.6		ting with Services	288
		Readable Characteristics	288
	13.6.2	Control Points	289
	13.6.3		290
	13.6.4	Notifications and Indications	291
13.7	Bonding	•	292
13.8	_	ed Services	293
13.9	-	enting Profiles	294
		Defining a Profile	294
		Finding Services	295
		Finding Characteristics	296
		Using Characteristics	296
	13.9.5	Profile Security	296
-		Peripherals	299
14.1	Backgro		299
14.2		ast Only	299
14.3	_	Discoverable	300
14.4	_	Connectable	301
14.5	-	ng Services	301
14.6	Charact		302
14.7	-	y Matters	303
14.8		zing for Low Power	303
	14.8.1	Discoverable Advertising	305
	14.8.2	Bonding	306
	14.8.3	Connectable Advertising	306

xvi	Contents

	14.8.4	Directed Advertising	307
	14.8.5	Connected	307
	14.8.6	Stay Connected or Disconnect	309
14.9	Optimiz	zing Attributes	311
Chapt	er 15 1	Testing and Qualification	313
15.1	Starting	g a Project	313
15.2	Selectin	ng Features	316
15.3	Consistency Check		
15.4	Generat	317	
15.5	Creating a Compliance Folder		
15.6	Qualific	cation Testing	318
15.7	Qualify	Your Design	319
15.8	Declarin	ng Compliance	320
15.9	Listing		321
15.10	Combin	ning Components	321
Index			323

Preface

Sometimes, once in a lifetime, a new technology comes along that changes the world; for example, AM radio, television, and wireless Internet. Bluetooth low energy is at the cusp of the next revolution in wireless technology: a technology that can be embedded in products because it uses so little power that it can be designed around a small battery that lasts for years.

This book explains how this technology came about, why it was designed the way it has been designed, and how it works. It is written by one of the leading experts on Bluetooth low energy, Robin Heydon, who has been involved in creating the specifications, interoperability testing, and training.

This book is for anyone who is thinking about developing a product that incorporates Bluetooth low energy, whether you are an engineer, an application developer, a designer, or you're in marketing.

For engineers, the book covers the details of how the complete system works, from the physical radio waves up to the discovery of, connection with, and interface provided by that device.

For application developers, this book provides an understanding of the constraints imposed by Bluetooth low energy on applications. It also presents a thorough description of the design goals and implementation of these requirements.

For designers, the information contained herein will allow you to appreciate the particular problems with designing Bluetooth low energy wireless products, from how the product might need to work and how big a battery might be required to implement your ideas.

For everyone else, the book provides the background of why Bluetooth low energy was designed, the design goals it tried to achieve, and how you can take something that radically changes the way you can think of wireless technology and implement it in everything else.

The book is split into four parts:

Part I provides an overview of the technology, the basic concepts that guided the development of Bluetooth low energy, the architecture of the system from the radio through the various protocol layers up to the application layers, and finally, the new usage models that this new technology enables.

The second part goes into detail on how the radio chip—called a controller—functions. This is the silicon chip that product designers need to incorporate into

xviii Preface

their end products. This part also covers the radio, Direct Test Mode, and the Link Layer. In addition, it shows how to interact with the controller from the upper-layer stack, called a host.

Part III goes into detail of how the host (the software stack) works. It covers the concepts and details behind the main protocol used to expose attributes of a device. It also covers the security models and how to make connections and bonds, or associate, two devices with one another.

In Part IV, you wrap up all the details by looking at the design considerations that a product or application developer needs to consider. It starts by looking at the issues involving central devices. Next, it looks at issues related to peripheral devices. Finally, it considers the entire problem surrounding testing and qualification, typically the final part of any product that will be taken to market.

If after reading the book you would like to learn more about Bluetooth low energy, there are a number of resources available. The specifications themselves are available on the Bluetooth SIG website at www.bluetooth.org. If you would like to find developer information about Bluetooth low energy, there is also a developer site available at developer.bluetooth.org that has detailed information about characteristics. The author also has a website at www.37channels.com, where you can view frequently asked questions raised by this book and Bluetooth low energy.

Acknowledgments

I would like to thank the following people for their invaluable help in making this book possible. Katherine Heydon, for reading the whole book cover to cover many times and providing constructive criticism on the contents. Jennifer Bray for her encouragement to write the book in the first place and allowing me the time and space to undertake such a task. All the production team at Addison-Wesley, especially Bernard Goodwin, Elizabeth Ryan, Michelle Housley and Gary Adair; my copy editor, Bob Russell; and all the others in the background who made this book happen. Nick Hunn for the many times spent discussing the best way to communicate the ideas behind the low energy technology. Zoë Hunn for the fantastic artwork on the front cover. Andy Glass for constantly asking (nagging?) about when the book would be done and providing excellent review comments. Steve Wenham, who suffered my constant ideas about how low energy could be made better. British Airways, for almost always giving me a front row bulkhead seat and allowing me to use my Bluetooth keyboard and mouse on the many long-haul flights. This book was probably written at an average height of 30,000 feet. For the Bluetooth SIG community in general, for the many questions that they asked at All Hands Meetings, UnPlugFests, and all the various working group meetings: these questions helped determine what were the hardest concepts to explain, and therefore the basic structure and contents of this book.

About the Author

Robin Heydon was educated as a software engineer, graduating with a degree in Computer Science from the University of Manchester, UK. He was employed in the computer entertainment industry for a decade working on networked flight simulators. He then moved into wireless communications in 2000, working for what was then a small company called CSR. There he moved from being a firmware engineer to working as a full-time standards architect. In this work, Robin has worked on fixing and improving all versions of the Bluetooth specification. In

early 2007, Robin started working on a project called Wibree, which later became the Bluetooth low energy specification. He cochaired the group, and drove through the specification to publication, and was recognized by the Bluetooth SIG as an inductee to the Bluetooth SIG Hall of Fame in 2010.

Chapter 1

What Is Bluetooth Low Energy?

If I have seen a little further, it is by standing on the shoulders of Giants.

—Isaac Newton

Bluetooth low energy is a brand new technology that has been designed as both a complementary technology to classic Bluetooth as well as the lowest possible power wireless technology that can be designed and built. Although it uses the Bluetooth brand and borrows a lot of technology from its parent, Bluetooth low energy should be considered a different technology, addressing different design goals and different market segments.

Classic Bluetooth was designed to unite the separate worlds of computing and communications, linking cell phones to laptops. However its killer application has proved to be as an audio link from the cell phone to a headset placed on or around the ear. As the technology matured, more and more use cases were added, including stereo music streaming, phone book downloads from the phone to your car, wireless printing, and file transfer. Each of these new use cases required more bandwidth, and therefore, faster and faster radios have been constantly added to the Bluetooth ecosystem over time. Bluetooth started with Basic Rate (BR) with a maximum Physical Layer data rate of 1 megabit per second (Mbps). Enhanced Data Rate (EDR) was added in version 2.0 of Bluetooth to increase the Physical Layer data rates to 3Mbps; an Alternate MAC¹ PHY² (AMP) was added in version 3.0 of Bluetooth that used IEEE³ 802.11 to deliver Physical Layer data rates of up to hundreds of megabits per second.

Bluetooth low energy takes a completely different direction. Instead of just increasing the data rates available, it has been optimized for ultra-low power consumption. This means that you probably won't get high data rates, or even want to keep a connection up for many hours or days. This is an interesting move,

^{1.} MAC stands for Medium Access Control. How a transceiver uses a Physical Layer to communicate with other transceivers.

^{2.} PHY stands for Physical Layer.

^{3.} IEEE stands for the Institute of Electrical and Electronics Engineers.

<u> </u>	,
Modems	Ethernet
V.21: 0.3 kbps	802.3i: 10Mbps
V.22: 1.2kbps	802.3u: 100 Mbps
V.32:9.6kbps	802.3ab: 1000Mbps
V.34: 28.8kbps	802.3an: 10000Mbps
Wi-Fi	Bluetooth
802.11: 2Mbps	v1.1: 1Mbps
802.11b: 11Mbps	v2.0: 3Mbps
802.11g: 54Mbps	v3.0:54Mbps
802.11n: 135Mbps	v4.0: 0.3 Mbps

Table 1–1 Speeds Almost Always Increase

as most wired and wireless communications technologies constantly increase speeds, as illustrated in Table 1–1.

This different direction has been achieved through the understanding that classic Bluetooth technology cannot achieve the low power requirements required for devices powered by button-cell batteries. However, to fully understand the requirements around low power, another consideration must be taken. Bluetooth low energy is also designed to be deployed in extremely high volumes, in devices that today do not have any wireless technology. One method to achieve very high volumes is to be extremely low cost. For example, Radio frequency identification (RFID) tags can be deployed in very high volumes because they are very low cost, ultimately because they work by scavenging power delivered by a more expensive scanner.

Therefore, it is crucial to also look at the Bluetooth low energy system design from the requirements of low cost. Three key elements within this design point to very low cost:

1. ISM Band

The 2.4GHz ISM band is a terrible place to design and use a wireless technology. It has poor propagation characteristics, with the radio energy readily being absorbed by everything, but especially by water; consider that the human body is made up primarily of water. These rather significant downsides are made up by the fact that the radio spectrum is available worldwide and there are no license requirements. Of course, this Free Rent sign means that other technologies are also going to use this space, including most Wi-Fi radios. But the lack of licensing doesn't mean that anything goes. There are still plenty of rules, mainly related to limiting the power output of devices that use the spectrum,

limiting the range. However, these limitations are still more attractive than paying heavily for licensed spectrum. Therefore, choosing to use the ISM band lowers the cost.

2. IP License

When the Wibree technology was mature enough to be merged into an established wireless standards group, Nokia could have taken the technology to any such group. For example, it could have taken it to the Wi-Fi Alliance, which also standardizes technology in the same 2.4GHz ISM band. But they chose the Bluetooth Special Interest Group (SIG) because of the excellent reputation and licensing policy that this organization has. These policies basically mean that the patent licensing costs are significantly reduced for a Bluetooth device when compared with a technology developed in another SIG or association that has a FRAND⁴ policy. Because Bluetooth has a very low license costs, the cost per device is also significantly reduced.

3. Low Power

The best way to design a low-cost device is to reduce the materials required to make such a device—materials such as batteries. The larger the battery, the larger the battery casing needs to be, again increasing the costs. Replacing a battery costs money, not just for a consumer who needs to purchase another battery, but replacement also includes the opportunity costs of not having that device available. If this device is maintained by a third party, perhaps because it is part of a managed home alarm system, there are additional labor costs to change this battery. Therefore, designing the technology around low power consumption also reduces the costs. As a thought experiment, how would things be different if a megawatt battery were available for a single penny?

Many devices could accommodate a larger battery. A keyboard or mouse can easily take AA batteries, yet the manufacturers want to use AAA batteries not because they are smaller, but because their use reduces the bill of materials and therefore the cost of the device.

Therefore, the fundamental design for low energy is to work with button-cell batteries—the smallest, cheapest, and most readily available type of battery available. This means that you cannot achieve high data rates or make low energy work for use cases that require large data transfers or the streaming of data. This single point

^{4.} FRAND stands for Fair, Reasonable, and Non-Discriminatory. This means that if you license your technology, you must do it at a fair price, on the same terms for everybody, regardless of who the licensee is.

is probably the most important difference between classic and low-energy variants of Bluetooth. This is discussed further in the next section.

1.1 Device Types

Bluetooth low energy makes it possible to build two types of devices: dual-mode and single-mode devices. A dual-mode device is a Bluetooth device that has support for both Bluetooth classic as well as Bluetooth low energy. A single-mode device is a Bluetooth device that only supports Bluetooth low energy. There is a third type of device, which is a Bluetooth classic-only device.

Because it supports Bluetooth classic, a dual-mode device can talk with the billions of existing Bluetooth devices. Dual-mode devices are new. They require new hardware and firmware in the controller and software in the host. It is therefore not possible to take an existing Bluetooth classic controller or host and upgrade it to support low energy. However, most dual-mode controllers are simple replacement parts for existing Bluetooth classic controllers. This allows designers of cell phones, computers, and other device to replace their existing Bluetooth classic controllers with dual-mode controllers very quickly.

Because it does not support Bluetooth classic, a Bluetooth low energy single-mode device cannot talk with the existing Bluetooth devices, but it can still talk with other single-mode devices as well as dual-mode devices. These new single-mode devices are highly optimized for ultra-low power consumption, being designed to go into components that are powered by button-cell batteries. Single-mode devices will also not be able to be used in most of the use cases for which Bluetooth classic is used today because single-mode Bluetooth low energy does not support audio for headsets and stereo music or high data rates for file transfers.

Table 1–2 shows what device types can talk with other devices types and what Bluetooth radio technology would be used when they connect. Single-mode devices will talk with other single-mode devices using low energy. Single-mode devices will also talk with dual-mode devices using low energy. Dual-mode devices will talk with other dual-mode devices or classic devices using BR/EDR. A single-mode device cannot talk with a classic device.

	Single-Mode	Dual-Mode	Classic
Single-Mode	LE	LE	none
Dual-Mode	LE	Classic	Classic
Classic	none	Classic	Classic

Table 1–2 Single-Mode, Dual-Mode, and Classic Compatibility

1.2 Design Goals 7

1.2 Design Goals

When reviewing any technology, the first question to be asked is how did the designers optimize this technology? Most technologies have one or two things that they are very good at, and many things that they are not. By determining what these one or two things are, a greater understanding of that technology can be achieved.

With Bluetooth low energy, this is very simple. It was designed for ultra-low power consumption. The unique structure of the Bluetooth SIG is that the organization creates and controls everything from the Physical Layer up to the application. The SIG does this in a cooperative and open but commercially driven standards model, and over more than ten years, it has optimized the process of creating wireless specifications that not only work at the point of release but are also interoperable, robust, and of extremely high quality.

When the low energy work started, the goal was to create the lowest-power short-range wireless technology possible. To do this, each layer of the architecture has been optimized to reduce the power consumption required to perform a given task. For example, the Physical Layer's relaxation of the radio parameters, when compared with a Bluetooth classic radio, means that the radio can use less power when transmitting or receiving data. The link layer is optimized for very rapid reconnections and the efficient broadcast of data so that connections may not even be needed. The protocols in the host are optimized to reduce the time required once a link layer connection has been made until the application data can be sent. All of this is possible only when all parts of the system are designed at the same time by the same group of people.

The design goals for the original Bluetooth radio have not been forgotten. These include the following:

- Worldwide operation
- Low cost
- Robust
- Short range
- Low power

For global operation, a wireless band that is available worldwide is required. There is only one available band that can be implemented using low-cost and high-volume manufacturing technology today: the 2.45GHz band. This is available because it is of no interest to astronomers, cell phone operators, or other commercial interests. Unfortunately, just like everything that is free, everybody wants to be part of it,

causing congestion. Other wireless bands are available, for example, the $60 \mathrm{GHz}$ ISM band, but this is not practical from a low-cost point of view, or the $800/900 \mathrm{MHz}$ bands that have different frequencies and rules depending on where you are on the planet.

The design goal of low cost is interesting because it implies that the system should be kept as small and efficient as possible. Although it could be possible, for example, to add scatter net support or full-mesh networking into Bluetooth low energy, this would increase the cost because more memory and processing power would be required to maintain this network. The system has therefore been optimized for low cost above interesting research-based networking topologies.

The 2.45GHz band that Bluetooth low energy uses is already very crowded. Just taking into account standards-based technologies, it includes Bluetooth classic, Bluetooth low energy, IEEE 802.11, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and IEEE 802.15.4. In addition, a number of proprietary radios are also using the band, including X10 video repeaters, wireless alarms, keyboards, and mice. A number of devices also emit noise in the band, such as street lights and microwave ovens.

It is therefore almost impossible to design a radio that will work at all times with all possible interferers, unless it uses *adaptive frequency hopping*, as pioneered by Bluetooth classic. Adaptive frequency hopping helps by not only detecting sources of interference quickly but also by adaptively avoiding them in the future. It also quickly recovers from the inevitable dropped packets caused by interference from other radios. It is this robustness that is absolutely key to the success of any wireless technology in the most congested radio spectrum available.

Robustness also covers the ability to detect and recover from bit errors caused by background noise. Most short-range wireless standards compromise by using a short cyclic redundancy check (CRC), although there are some that use very long checks. A good design will see compromise between the strength of the checks and the time taken to send this information.

Short range is actually a slight problem. If you want a low-power system, you must keep the transmitted power as low as possible to reduce the energy used to transmit the signal. Similarly, you must keep the receiver sensitivity fairly high to reduce the power required to pick up the radio signals of other devices from amongst the noise. What short range means in this context is really that it is not centered around a cellular base station system. Short range means that Bluetooth low energy should be a personal area network.

The original Bluetooth design goal of low power hasn't changed that much, except that the design goals for power consumption have been reduced by one or two orders of magnitude. Bluetooth classic had a design goal of a few days standby and a few hours talk time for a headset, whereas Bluetooth low energy has a design goal of a few years for a sensor measuring the temperature or measuring how far you've walked.

1.3 Terminology 9

1.3 Terminology

Just like many high technology areas, the people working in Bluetooth low energy use their own language to describe the features and technology with the specification. This section enumerates each of the words that have special meaning and what they mean.

Adaptive Frequency Hopping (AFH) A technology whereby only a subset of frequencies is used. This allows devices to avoid the frequencies that other non-adaptive technologies are using (e.g., a Wi-Fi access point).

Architecture The design of the Bluetooth low energy is sometimes known as the Architecture.

Band See Radio Band.

Frequency Hopping The use of multiple frequencies to communicate between two devices. One frequency is used at a time, and each frequency is used in a defined sequence.

Layer A part of the system that fulfills a specific function. For example, the Physical Layer covers the operation of the radio. Each layer in a system is abstracted away from the layers above and below it. The Link Layer doesn't need to know all the details of how the radio functions; the Logical Link Control Layer and Adaptation Layer don't need to know all the details of how the Link Layer works. This abstraction is important to keep the complexity of the system at manageable levels.

Master A complex device that coordinates the activity of other devices within a piconet.

Piconet This is a contraction of the words pico and network. Pico is the SI^5 prefix for 10^{-12} . This is derived from the Italian *piccolo*, meaning small.⁶ Therefore, a piconet is a very small network. A piconet has a single master device that coordinates the activity of all the other devices (slaves) in the piconet and one or more slaves.

Radio Band Radio waves are defined by their frequency or wavelength. Different radio waves are then allocated different rules and uses. When a range of radio

^{5.} SI stands for Système International (or International System in English), which is a system of standardized unit designations, typically in relation to scientific, engineering, and technical measurements such as seconds, meters, kilograms, and so on.

^{6.} http://www.industrie.gouv.fr/metro/aquoisert/etymol.htm

- frequencies are grouped together using the same rules, this group of frequencies is called a Radio Band.
- **Slave** A simple device that works with a master. These devices are typically single-purpose devices.
- Wi-Fi A complementary wireless technology that is designed for high data rates to connect computers and other very complex devices with the Internet.

Numbers	data channels used with, 30
2.4GHz ISM band	defined, 9
Bluetooth low energy using, 4–5	Link Layer connection process, 93–94,
overview of, 54	97-98, 111-112
at Physical Layer, 29	Link Layer robustness, 120–122
transmit power, 56–57	managed by master, 14
3-Wire UART, HCI physical interface,	optimizations for low power, 127
132–134	overview of, 88–89
24-bit CRC, Bluetooth low energy. see CRC (cyclic redundancy check)	ADV_DIRECT_IND advertising packets, 81–82, 266–267
32-bit MIC, Bluetooth low energy. see MIC	ADV_IND advertising packets, 81–82, 267
(message integrity check)	ADV_NONCONN_IND advertising packets
128-bit UUIDs (Bluetooth Base UUIDs),	82, 266
190–191	ADV_SCAN_IND advertising packets, 82,
10101010 packet sequence, transmitter tests,	266
63–64	Advanced Encryption System. see AES
11110000 packet sequence, transmitter tests,	(Advanced Encryption System)
63–64	Advertisers, defined, 14–15
	Advertising
Λ.	access address, packet structure, 80–81
A	broadcasting data with, 42–43
Abstract state, 182–183	data, 273
Abstraction, service-oriented architecture, 23	events, 90–92
Access address	formatting data when broadcasting, 263
Link Layer connections, 95	Host/Controller Interface, 148–150
packet structure, 30–31, 80–81	initial discovery using devices for, 256–257
test packet format, 63	interval, 90
Access permissions, attribute database, 194	presence detection using, 41–42
Acknowledgement	Advertising channels
of data packet, 101	access addresses for, 80–81
optimizing for low power, 127	advertising packets as transmitted on, 76
Action, requesting for command packets, 136	in connection state, 74
Active scanning	finding devices with, 90
in device discovery procedure, 257, 283–285	in Link Layer, 30–31
HCI, 152–153	overview of, 84–87
Link Layer state machine, 72	reducing number to reduce power
overview of, 72	consumption, 70
receiving broadcast data, 93	in scanning state, 72
Active state mode, 3-Wire UART, 63–64, 133	used by devices in broadcast mode, 263
Adaptive frequency hopping	Advertising packets
Bluetooth low energy design, 8	broadcasting data with, 93, 148–150
channel map 97–98	finding devices 90-92

Advertising packets (continued)	host, 32-36
GAP connection modes, 266–267	stack splits, 38–40
GAP connection procedures, 268–269	ASK (amplitude-shift keying), digital
HCI connections to white lists, 155	modulation, 52
header contents, 81–82	Assembly, by multiplexing layers, 170
length field, 83	Asymmetric design concept, 14–15
overview of, 76	ATM networks, as multiplexing layers, 170
peripheral connectability, 300–301	Atomic operations and transactions, 197–198
Advertising state	Atomic services, 34
entering connection state from, 73	Attribute database
entering slave substate from, 74	accessing attributes, 196–197
nonconnectable advertising device in, 92	exposing services to peripherals, 301–302
optimizing peripherals for low power,	overview of, 192–193
304–306	permissions, 194–195
overview of, 71	Attribute handles
AES (Advanced Encryption System)	Find By Type Value Request/response,
calculating MIC, 107–109	222-223
HCI controller setup, 145–146	Find Information Request/response,
overview of, 105–106	221-222
security features, 244	Invalid Handle error, 228–229
starting encryption for connections, 114	overview of, 189–190
AFH. see adaptive frequency hopping	Read By Type Request/response, 223
Alert Level characteristic, 288–290	Read Request including, 224
Algorithms, scheduling, 75	Attribute Not Found error, 230
Alternate MAC PHY (AMP), Bluetooth	Attribute Not Long error, 230
version 3.0, 3	Attribute Profile, 199
AM (amplitude modulation) radio, 50–51	Attribute Protocol
AMP (Alternate MAC PHY), Bluetooth	attribute client using, 192
version 3.0, 3	Bluetooth low memory using only, 14
Amplitude modulation (AM) radio, 50–51	channel identifier for, 172
Amplitude-shift keying (ASK), digital	control points, 183
modulation, 52	creation of, 179
Analog modulation, 49–51	error responses, 228–231
Appearance characteristic, GAP Service,	Exchange MTU Request, 221
276–277, 284	exposing state with, 16–17
Application data rate, radio systems, 51	Find By Type Value Request, 222–223
Application Errors response, 231	Find Information Request, 221–222
Application layer architecture	Generic Attribute Profile vs., 231
characteristics, 36–37	Handle Value Indication, 228
defined, 36	Handle Value Notification, 227–228
profiles, 37–38	host architecture, 33–34
· · · · · · · · · · · · · · · · · · ·	overview of, 217–219
services, 37 three-chip solution, 39–40	Prepare Write Request and Execute Write
	Request, 226–227
two-chip solution, 39–40 Architectural paradigms, concepts, 20–25	protocol messages, 219–220
Architectural paradigms, concepts, 20–23 Architecture	Read Blob Request, 224
	Read By Group Type Request, 225
application layer, 36–38	Read By Type Request, 223
Bluetooth, 27–28 Bluetooth low energy design as 0	Read Multiple Request, 224
Bluetooth low energy design as, 9 controller 27–31	Read Request, 224
COURTOHEL AT=AT	

Signed Write Command, 225–226	services and profiles, 185–189
state machines, 183–185	state machines, 183–185
Write Command, 225	Attributes, services
Write Request, 225	combining services, 204–205
Attribute Protocol Layer	extending services, 201–203
asymmetric design at, 14–15	including services, 209–210
security protection at, 16	overview of, 199–201
Attribute types	plug-and-play client applications, 207–208
Find By Type Value Request/response,	primary or secondary, 205–207
222 – 223	reusing another service, 203–204
Find Information Request/response,	service declaration, 208–209
221-222	Authentication
fundamental, 192	attribute database permissions as, 194–195
overview of, 190–191	authorization vs., 195
Unsupported Group Type error, 231	Bluetooth low energy and, 115
Attribute value(s)	in bonding process, 259
attribute permissions applying to, 194	central devices initiating bonding via,
Characteristic Descriptor, 192	292–293
Characteristic Type UUID, 192	concept of, 241–242
Find By Type Value Request/response,	data channel, 30
222-223	encrypted packet, 104
Handle Value Indication, 228	Insufficient Authentication error, 229
Handle Value Notification, 227–228	integrity via, 243
Invalid Attribute Value Length error, 230	pairing procedure, 250–251 resolving signatures for, 225–226, 247
overview of, 191	Authorization
Prepare Write Request and Execute Write	Insufficient Authorization error, 229
Request, 226–227	security and, 242–243
Read Blob Request, 224	Authorization permissions, attribute
Read By Type Request/response, 223	database, 195
Read Multiple Request, 224	Auto-connection establishment procedure,
service UUIDs, 191	GAP, 267–268
units, 191	Autonomy, service-oriented architecture, 24
Attributes	Ax encryption blocks, encrypting payload
accessing, 196–197	data, 106
atomic operations and transactions, 197–198	data, 100
attribute handle, 189–190	В
Attribute Protocol. see Attribute Protocol	D
attribute type, 190–191	Bandwidth, classic Bluetooth and, 3
attribute type, 190–191 attribute value, 191–193	Basic Rate (BR), original Bluetooth, 3
	Batteries
characteristics, 210–217	lowering cost with button-cell, 5–6
grouping, 199	monitoring in connectionless model, 44
overview of, 179	Behavior
peripheral design optimizing, 311–312	application layer services and, 37
permissions, 194–195	combining services, 204–205
structure of, 189	extending services, 201–203
Attributes, background to	primary vs. secondary services and, 205–207
data, data, everywhere. and, 180–181	profiles and, 37–38, 185
data and state, 181–182	reusing another service and, 203–204
kinds of state, 182–183	service characteristics and, 200–201
protocol proliferation is wrong, 180	services and, 34–36

BER (bit error rate), receiver sensitivity, 58 B-frame format, 32	Broadcast Flag, HCI data packets, 138–139 Broadcaster role, GAP, 261
Binary FSK (frequency-shift keying), digital modulation, 52	Broadcasting data advertising state for, 71
Bit error rate (BER), receiver sensitivity, 58	HCI, 148–153
Bit errors	new wireless model for, 42–43
CRC detecting odd numbers of, 84	overview of, 92–93
protection against, 16	Server Characteristic Configuration
Bit order	Descriptor for, 214–215
access address and, 80–81	Broadcasting model
packet structure and, 79	active scanning, 152–153
preamble and, 79–80	advertising, 148–150
Bit rate, optimizing for low power, 125–126	defined, 148
Bits, defined, 51	passive scanning, 150–152
	peripherals that only broadcast, 299–300
Block counter, encrypting payload data,	Brute-force checking, private addresses, 261
106–107	Buffer sizes, HCI controller setup, 142–143
Bluetooth classic, fixed and	Bulk data USB packets, HCI, 134
connection-oriented channels, 170–171	Button-cell batteries
Bluetooth classic vs. low energy	concept of, 11–12
compatibility with device types, 6	lowering cost of Bluetooth low energy, 5–6
connectionless model, 43–44	short duration bursts of, 13
overview of, 3–4	single-mode devices designed for, 6
power consumption, 8	Bytes, packet structure, 79
services and profiles, 185–189	
Bluetooth low energy, overview	С
concepts. see concepts	Calibration of controller in Direct Test Made
design goals, 4, 7–8	Calibration, of controller in Direct Test Mode 62
device types, 6	
low cost of, 4–5	Categories, of qualification tests, 318–319 CCM (Counter with Cipher Block
single-mode devices, 3–4	
terminology, 9–10	Chaining-Message Authentication
Bluetooth Qualification Administrator	Code Mode), 106 Cell phones
(BQA), 317	dual-mode controllers for, 6
Bondable mode, GAP, 270	marketing concept for, 19
Bondable procedure, GAP, 270	two-chip solutions on, 39–40
Bonding	Central devices
central devices using, 292–293	background of, 283
controlling connectability of peripherals,	bonding, 292–293
301	building generic clients, 287–288
GAP defining device, 36	changing services, 293–294
long-term relationships and, 259	connecting to devices, 285–286
modes and procedures for, 270	controlling connectability of peripherals,
optimizing peripherals for low power,	301
304–306	discoverability of peripherals, 283–285, 301
profile security, 296–297	implementing profiles, 294–297
BQA (Bluetooth Qualification	interacting with services, 288–292
Administrator), 317	understanding, 286
BR (Basic Rate), original Bluetooth, 3	Central role, GAP, 262
BR/EDR Not Supported flag, advertising	Changed services, central devices, 293–294
data, 274	Channel identifiers, L2CAP, 172–173

CI .	CATTO II
Channel map	GATT discovery procedures for, 234–235
HCI advertising, 150	grouping, 199
HCI connection management, 159–160	optimizing peripheral attributes, 310–311
Link Layer, 85	overview of, 210–211
Link Layer connection process, 97–98	peripheral devices, 302–303
Channel map, adaptive frequency hopping	primary vs. secondary services, 205–207
Link Layer connections, 94, 97–98, 111–112	profiles discovering and using, 296
Link Layer robustness, 120–122	reusing another service, 203–204
overview of, 88–89	services as grouping of, 37, 199–200
Channels	value of, 213
Bluetooth classic using narrow, 55	Chips, defined, 51
Bluetooth low energy using radio, 56	Ciphertext, encryption text, 105
HCI interface, 135	Classes, object-oriented programming,
L2CAP. see L2CAP (Logical Link Control	199–200
and Adaptation Protocol)	Clear to send (CTS), 5-wire UART transport,
UART transport, 132–133	132
Channels, Link Layer	Client Characteristic Configuration
adaptive frequency hopping, 88–89	Descriptor
determining advertising vs. data packets, 76	notifications and indications, 292
frequency hopping, 87	overview of, 214
overview of, 30–31, 84–85	profiles, 296
understanding, 84–87	Client Preferred Connection Parameters
Characteristic Aggregation Format	characteristic, 285–286
Descriptor, 217	Client-initiated procedures, GATT
Characteristic Descriptors, attribute value,	overview of, 235
192	reading characteristic values, 235–236
Characteristic Extended Properties	reading/writing characteristic descriptors,
Descriptor, 214	238
Characteristic Presentation Format	writing characteristic values, 236–238
Descriptor, 215–217, 287	Clients, building generic, 287–288
Characteristic Type UUID, 192	Client-server architecture
Characteristic Type COID, 192 Characteristic User Description descriptor, 214	asymmetric design of, 14–15
Characteristic Value Reliable Writes	attribute database and, 192–193
	attribute permissions, 194–195
procedure, 237	Attribute Protocol messages, 33
Characteristic(s)	concept of, 17–18
application layer, 36–37	data concept, 181–182
central device discovery, 286	as paradigm for Bluetooth low energy,
central device interaction with services,	20–21
288-289	profiles and services in, 186–189
combining services, 204–205	state-based model for, 17
declaration of, 211–213	Clock accuracy, Link Layer connection
descriptors on, 214–217	process, 98
discovering with Read By Type Request, 223	CMAC algorithm, signing of data, 252
discovery and configuration of services,	CMOS (Complimentary Metal on Silicon),
258–259	124-125
discovery on initial connection, 258	Command Complete event, HCI
exposing services to peripherals, 302–303	channel map update, 159
extending services, 201–203	command flow control, 139–140
GATT client-initiated procedures for,	encryption, 145–146
235-238	event packets, 137–138

Command Complete event, HCI (continued) reading device address, 141–142 reading supported features, 143–144	CONNECT_REQ, advertising packet, 82 Connectable advertising state, peripherals, 304–307
9 11	Connectable directed advertising, 149
reading supported states, 144–145 resetting controller to known state, 141	Connectable modes, GAP
	direct-connectable, 266–267
setting random address, 147	nonconnectable, 266
white lists, 147	overview of, 266
Command flow control, HCI, 139–140	undirected-connectable, 267
Command not understood reason code,	Connectable undirected advertising, 148
command reject command, 174–175	Connection events
Command packets, HCI, 135–137	determining instant by counting, 112
Command reject command, LE signaling	Link Layer connection process, 96–97
channel, 174–175	optimizing for low power by subrating,
Command Status event	128–130
enabling command flow control, 139–140	optimizing for low power with
encrypting data packets while connected,	single-channel, 127–128
161-162	sleep clock accuracy in connection process,
HCI event packets, 138	98
HCI feature exchange, 160	Connection handle
Commands	controlling connections with, 137
Attribute Protocol, 218–219	HCI interface, 135
connection, 137	labeling HCI data packets with, 138–139
controller state, 136	LE Connection Complete event, 155
Direct Test Mode, 65–68	Connection interval, optimizing peripherals,
as exceptions to transaction rules, 197	308–309
requesting specific action, 136	Connection management. see HCI connection
Company identifier, version information, 118	management
Compliance folder, testing and qualification,	Connection parameter update request
317–318	command, LE signaling channel,
Complimentary Metal on Silicon (CMOS),	175–177
124–125	Connection parameter updates, Link Layer,
Component subsystem product type, 315–316	109–111
Composability, service-oriented architecture,	Connection Signature Resolving Key.
24	see CSRK (Connection Signature
Concepts	Resolving Key)
architectural paradigms, 20–25	Connection state, Link Layer state machine,
asymmetric design, 14–15	73–74
button-cell batteries, 11–12	Connectionless model
client-server architecture, 17–18	achieving with L2CAP layer for.
connectionless model, 19–20	see L2CAP (Logical Link Control and
design for success, 15–16	Adaptation Protocol)
everything has state, 16–17	new wireless model enabling, 43–44
memory is expensive, 13–14	overview of, 19–20
modular architecture, 18–19	Connection-oriented model
one billion is a small number, 19	channel identifiers for, 172
targeting new market segments, 11	connectionless model vs., 43–44
time is energy, 12–13	Internet built around, 45
Confidentiality	Connections
ensuring with encryption, 104	controlling, 137
security concept of, 243	establishing initial device, 258
· / -	<u> </u>

initiating from central devices, 285–286	Direct Test Mode, 29–30
peripheral devices, 301	dual-mode, 6
reconnected, 260	HCI. see HCI (Host/Controller Interface)
Connections, creating at Link Layer	Link Layer. see Link Layer
access address, 95	overview of, 27–28
channel map, 97–98	Physical Layer. see Physical Layer
connection events, 96–97	three-chip solution, 39–40
CRC initialization, 95	two-chip solution, 39–40
initiating state for, 72	Controller subsystem product type, 315–316
overview of, 30–31	Correlation of access address, 80–81
sleep clock accuracy, 98	Cost
transmit window, 95–96	design goal of low, 7–8
understanding, 93–94	designing Bluetooth low energy for low, 4–6
=:	memory is expensive concept, 13–14
Connections, initiating in HCI	one billion is a small number concept, 19
canceling, 156–157	Counter with Cipher Block Chaining-Message
HCI initiating connections to devices, 156	Authentication Code Mode (CCM),
overview of, 153–154	106
to white list, 154–155	CR2032 button-cell batteries, 11–12
Connections, managing Link Layer	CRC (cyclic redundancy check)
adaptive frequency hopping, 111–112	3-Wire UARTs in HCI, 133
connection parameter update, 109–111	bit errors and, 16
feature exchange, 118	calculating MIC, 107–109
offline encryption, 130	Link Layer connection process, 95
overview of, 109	Link Layer robustness with strong, 122–123
restarting encryption, 115–116	overview of, 84
starting encryption, 112–115	packet structure, 30–31, 84
terminate procedure, 118–119	Prepare/Execute Writes and, 198
version exchange, 117–118	Prepare Write Request and, 227
Connections, optimizing peripherals for low	short range wireless standards, 8
power	too weak to be security measure, 243
bonding, 306	Create New Project page, bluetooth.org, 315
connectable advertising, 306–307	CSRK (Connection Signature Resolving Key)
connected, 307–309	key distribution during pairing, 251
directed advertising, 307	long-term relationships, 259
discoverable advertising, 305	message authentication code, 226
overview of, 303–305	overview of, 247
stay connected or disconnect, 309–310	private addresses, 261
Consistency check, starting new project,	signing of data, 252
	CTS (clear to send), 5-wire UART transport,
316–317	132
Continuation messages, LLID, 100–101	Current time, peripherals that only
Control endpoint, USB interface in HCI, 134	broadcast, 300
Control points, Attribute Protocol	STOCKED CO.
central devices interacting with services,	D
289–290	_
characteristics, 303	Data
defined, 183	packet structure, 30–31
state machine, 183–185, 290–291	state vs., 181–182
Controller	text packets transmitting, 63–64
configuring state of, 136	types in Bluetooth low energy devices,
device density design, 16	180–181

Data access address, packet structure, 80–81 Data channels	service-oriented architecture goals, 21–25 for success, 15–16
adaptive frequency hopping, 88–89	Development tool product type, 315–316
frequency hopping over time, 87	Device address
	HCI advertising parameters, 149–150
Link Layer and, 30–31	HCI controller setup, 141–142
placing, 84–87	Device density, designing controller, 15–16
Data flow control, HCI interface, 140	Device Name characteristic, GAP Service,
Data packets	276, 284
HCI interface, 138–139	Device Under Test. see DUT (Device Under
header contents, 82–83	Test)
length field, 83	Devices
overview of, 76	
starting encryption when connected,	asymmetric design concept, 14–15
161-162	Direct Test Mode requirements, 61–62
Data packets, sending	finding, 90–92
acknowledgement, 101	Generic Access Profile for, 36
example of, $101-104$	given tolerance of, 57
header, 99	initial connection to, 156, 258
logical link identifier, 100–101	initial discovery procedure, 256–257
more data, 101	new usage models for. see new usage models
overview of, 98–99	profiles describing two or more, 37–38
sequence numbers, 101	time is energy concept, 12–13
Data rates	types of, 6
in classic Bluetooth vs. low energy, 3–4	types of data in Bluetooth low energy,
optimizing for low power, 125–126	180–181 Digital madulation 51 54
radio systems vs. application, 51	Digital modulation, 51–54
Data types, advertising, 273–276	Digital radio, phase modulation in, 51
DBm	Digital television, 51
calculating range, 58–60	Direct advertising, 91–92 Direct Test Mode
measuring receiver sensitivity, 57–58	
Debugging	background of, 61–62 controller architecture, 29–30
HCI version exchange, 160–161	
version information for, 117	hardware interface, 65–67
Declaration, characteristic, 211–213	transceiver testing, 62–65
Declaration of Compliance (DoC), 313,	using HCI, 67–68 Direct-connectable mode, GAP, 266–267
320–321	
Description field, Characteristic Presentation	Direct-connection establishment procedure,
Format Descriptor, 216–217	GAP, 269 Directed advertising entimizing posiphorals
Descriptors, characteristic	Directed advertising, optimizing peripherals, 307
discovering all, 234–235	
discovery, central device, 286	Discoverability advertising state used for, 71
overview of, 214–217	central device, 283–285
reading/writing, 238	Generic Access Profile defining device, 36
Design	initial discovery, 256–257
asymmetric, 14–15	modes, 264–265
compliance folder containing information	overview of, 263–264
on, 318	peripheral devices, 300–301
goals, 7–8	procedures, 265–266
lowering cost 4-6	in service-oriented architecture 24–25

Discoverable advertising events, 82, 93	memory is expensive concept, 13–14
Discoverable advertising state, peripherals,	time is, 12–13
304–306	Enhanced Data Rate (EDR), Bluetooth
Discovery procedures, GATT, 232–235 DoC (Declaration of Compliance), 313,	version 2.0, 3 Error Response, Attribute Protocol, 228–231
320–321	Errors
Documentation, authorization via, 242–243	bit, 16, 58, 84
Dual-mode devices, 6	SDIO interface with low rates of, 135
DUT (Device Under Test)	types of responses, 228–231
Direct Test Mode, 61–62	Ethernet, technologies increasing speeds of, 4
hardware interface, 65–67	Event masks, HCI controller setup, 142
receiver tests, 64–65	Event packets, HCI interface, 137–138
transceiver tests, 62	Events, Direct Test Mode, 65–68
transmitter tests for, 63–64	Everything has state concept, 16–17
Duty cycle, short packets optimizing, 125	Exchange MTU procedure, GATT, 232 Exchange MTU Request and Response
Dynamic refreshing, memory, 13–14	Exchange MTU Request and Response, Attribute Protocol, 221
	Execute Write Request, Attribute Protocol
E	characteristic descriptors procedure, 238
EDR (Enhanced Data Rate), Bluetooth	characteristic values procedure, 236
version 2.0, 3	as exception to transaction rules, 198
Encapsulation of services, 34	overview of, 226
Encryption	reliable writes procedure, 237
AES, 105–106	Extending services, 201–203
authentication via, 242	External state, 182
central device bonding using, 292–293	
data channel, 30	F
ensuring confidentiality, 243	Features
HCI controller setup, 145–146	consistency check for new product,
HCI restarting, 163–164	316–317
HCI starting, 161–162	HCI connection management, 160
Insufficient Encryption error, 230	HCI controller setup, 143–144
Insufficient Encryption Key Size error, 230	Link Layer control, 118
Link Layer restarting, 115–116	selecting for new product, 316
Link Layer starting, 112–115 Long-Term Key, 246	Filter policy, HCI, 150, 152
lowering overhead with, 126	Filters
message integrity check, 107–109	Bluetooth low energy vs. classic, 29
offline, 130	determining device discoverability, 257
overview of, 104–105	Find By Type Value Request, Attribute Protocol, 222–223, 230, 233
payload data, 106–107	Find Information Request, Attribute
security design and, 16	Protocol, 221–222, 230, 234–235
Short-Term Key, 246	Find Requests, accessing attributes, 196
Encryption Change event, HCI, 161, 163	Finite state machines, Attribute Protocol,
Encryption engine, security, 244	184–185
Encryption Key Refresh Complete, HCI,	Fixed channels, Bluetooth low energy
163–164	supporting only, 171
End product type, 315–316	Flags
Energy	advertising data, 273–274
life of button-cell batteries, 12	HCI data packets, 138–139

Flags AD information	attribute database including, 193
advertising data, 273–274	background, 255–256
discoverable modes and, 264–265	bonding and pairing process, 252
discoverable procedures and, 265–266	defined, 255
Flow control wires, 5-wire UART transport, 132	establishing initial connection, 258
FM (frequency modulation) radio, analog,	exposing services to peripherals, 301–302
51–52	generating private addresses, 106
Formal contracts, service-oriented	host architecture, 36
architecture, 22	initial discovery procedure, 256–257
Format	long-term relationships, 259
Bluetooth low energy requiring one frame,	private addresses, 260–261
32–33	reconnections, 260
characteristic specification, 37–38	roles, 261–262
test packet, 63	security modes, 270–273
Format field	service characterization, 258–259
Characteristic Aggregation Format	GAP (Generic Access Profile), modes and
Descriptor, 217	procedures
Characteristic Presentation Format	bonding, 270
Descriptor, 215–216	broadcast mode and observation, 263
Frame rate, 51	connectability, 266–269
Frequency	discoverability, 263–266
device tolerance and accuracy of, 57	overview of, 262–263
optimizing drift with short packets, 124–125	GAP Service, 276–279, 284
peripherals that only broadcast, 300	Gateways
radio signal at Physical Layer, 28–29	•
Frequency bands	client-server architecture, 17–18
agreements on allocation of, 51	device interaction with Internet, 44–46
Bluetooth low energy using radio channels,	modular service architecture and, 19
55–56	GATT (Generic Attribute Profile)
overview of, 54	characteristic discovery, 234–235
Frequency hopping	client-initiated procedures, 235–239
adaptive. see adaptive frequency hopping	creation of, 179
Bluetooth classic using, 55	defining flat structure of attributes, 199
data channels at Link Layer, 30	discovering services, 232–233
defined, 9	discovery procedures, 232
Link Layer connection process, 97–98	ensuring future-proof design, 18
overview of, 87	forms of grouping, 200
spread spectrum radio regulations vs., 29	as GAP Service, 276–279
Frequency modulation (FM) radio, analog,	host architecture, 34–36
51–52	mapping ATT PDUs to, 239
FSK (frequency-shift keying)	overview of, 231–232
Bluetooth low energy using GFSK, 54–55	Gaussian Frequency Shift Keying (GFSK),
in digital modulation, 52	28-29, 54-55
MSK variant of, 53	General advertising, 91, 93
using whitener with, 77–79	General-connection establishment procedure,
	GAP, $268-269$
Future-proof design, 18–19	General-discoverable mode, 256–257, 265–266
	Generic Access Profile. see GAP (Generic
G	Access Profile)
GAP (Generic Access Profile)	Generic Attribute Profile. see GATT (Generic
advertising data, 273–276	Attribute Profile)

Generic clients	reading supported states, 144–145
building for central devices, 287–288	resetting to known state, 141
Characteristic Presentation Format	setting event masks, 142–143
Descriptor and, 215–217	setting random address, 146–147
defined, 215	white lists, 147–148
enabling with GATT, 215	HCI Encrypt command, private addresses,
GFSK (Gaussian Frequency Shift Keying),	261
28-29, 54-55	HCI logical interface
Global operations, 7–8, 54	command flow control, 139–140
Ground, 3-Wire UART transport, 132	command packets, 135–136
Grouping	data flow control, 140
Read By Group Type Request, 225	*
services and characteristics, 199	data packets, 138–139
services using service declaration, 208–209	defined, 135
Unsupported Group Type error, 231	event packets, 137
	HCI channels, 135
Н	HCI physical interfaces
	3-Wire UART, 132–134
Handle Value Indication, Attribute Protocol,	overview of, 131
228, 239	SDIO, 134–135
Handle Value Notification, Attribute	UART, 132
Protocol, 227–228, 238	USB, 134
Hardware interface, Direct Test Mode, 65–67	Header
Hash values, Identity Resolving Key, 246–247	data packet, 99
HCI (Host/Controller Interface)	framed packet, 133
active scanning, 152–153	L2CAP packet, 173
advertising, 148–150	packet structure, 30–31, 81–83
defined, 131	Hop value, frequency hopping, 87
Device Under Test requirements, 61	Host, enabling presence detection,
Direct Test Mode using, 67–68	41-42
initiating connections, 153–157	Host architecture
overview of, 31 passive scanning, 150–152	Attribute Protocol, 33–34
segmentation and reassembly, 170	attributes. see attributes
HCI connection management	Generic Access Profile. see GAP (Generic
channel map update, 159–160	Access Profile)
connection update, 158	Generic Attribute Profile. see GATT
feature exchange, 160	(Generic Attribute Profile)
initiating connections, 153–157	L2CAP. see L2CAP (Logical Link Control
restarting encryption, 163–164	and Adaptation Protocol)
starting encryption, 161–163	Logical Link Control and Adaptation
termination, 164–165	Protocol, 32–33
version exchange, 160–161	overview of, 32
HCI controller setup	security. see security
encrypting data, 145–146	Security Manager, 33
overview of, 140–141	three-chip solution, 39–40
random numbers, 145	two-chip solution, 39–40
reading buffer sizes, 142–143	Host subsystem product type, 315–316
reading device address, 141–142	Host/Controller Interface. see HCI
reading supported features, 143–144	(Host/Controller Interface)

I	Insufficient Authorization error, 229
ICS (Implementation Conformance	Insufficient Encryption error, 230
Statements), 316–317	Insufficient Encryption Key Size error, 230
Identifiers, L2CAP channel, 171–172	Insufficient Resources error, 231
Identity	Integrity, security concept of, 243
central devices discovering other device, 284	Interfaces, object-oriented programming, 199
Identity Resolving Key and, 246–247	Internal state, 182–185
Identity Resolving Key. see IRK (Identity	International System of Units (SI), 191
Resolving Key)	Internet
IEEE 802.11, Bluetooth version 3.0, 3	client-server architecture, 17–18 gateways. see gateways
IETF RFC 3610, encrypting payload data,	Interoperability
106	Bluetooth classic/Bluetooth low energy, 6
Immediate Alert Service, central devices, 290	connection-oriented problems, 43–44
Immutability, 200	profile/service architecture and, 185–189
Immutable encapsulation of services, 34	Interpacket gap, optimizing for low power, 125
Imperial units, SI, 191	Invalid Attribute Value Length error, 230
Implementation Conformance Statements	Invalid CID in request reason code, 175
(ICS), 316–317	Invalid Handle error, attributes, 228–229
Include attributes, services, 209–210	Invalid Offset error, 229
Include declaration, 233	Invalid PDU error, 229
Included services	IP (Internet Protocol) license, 4–5
discovering, 233	IPv6 (Internet Protocol), 46
overview of, 209–210	IRK (Identity Resolving Key)
Read By Type Request searching for, 223	key distribution during pairing, 251
Indications	long-term relationships, 259
accessing attributes, 196–197	overview of, 246–247
Attribute Protocol, 218–219	saving during bonding for private
central devices interacting with services,	addresses, 260–261
291-292	ISM (Industrial, Scientific, and Medical) band. see 2.4GHz ISM band
Client Characteristic Configuration	IV (initialization vector), encryption, 114
Descriptor for, 214	iv (mittalization vector), eneryption, 114
Handle Value Indication, 228	
optimizing peripheral attributes, 310–311	J
server-initiated GATT procedure for, 239	Just Works mode, TK value in, 245
in service characterization, 259	Just Works mode, 11t value in, 240
Industrial, Scientific, and Medical (ISM)	
band. see 2.4GHz ISM band	K
Inheritance, enabling changes to interfaces,	Key distribution
200	pairing procedure, 251
Initial connection procedure, 258	security architecture, 15
Initial discovery procedure, GAP, 256–257	Security Manager protocol for, 33
Initialization vector (IV), encryption, 114	Keys
Initiating connections	Connection Signature Resolving Key, 247
from central devices, 285–286	encrypting text with, 105
HCI, 153–157	Identity Resolving Key, 246–247
Initiating state, Link Layer state machine, 73	Long-Term Key, 246
Instant parameter, connection updates,	as shared secrets, 245
110–111	Short-Term Key, 246
Insufficient Authentication error, 229	Temporary Key, 245–246

L	LE Remove Device From White List
L2CAP (Logical Link Control and	command, HCI, 147–148
Adaptation Protocol)	LE Set Advertising Data command, HCI, 150
background to, 169–171	LE Set Advertising Enable command, HCI,
Bluetooth low energy using, 179–180	150
channels, 171–172	LE Set Advertising Parameters command,
defined, 169	HCI, 148–150
host architecture and, 32–33	LE Set Host Channel Classification
LE signaling channel, 173–177	command, HCI, 159
optimizing peripherals for low power,	LE Set Random Address command, HCI, 147
307–309	LE Set Scan Enable command, HCI, 152
packet structure, 172–173	LE Set Scan Parameters command, HCI, 150
solving connection-oriented problems, 43–44	LE Set Scan Response Data command, HCI,
LANs (local area networks), 2.4GHz ISM	150
	LE signaling channel, L2CAP
band rules, 54	command reject command, 174–175
Latency, resolving low, 129–130	connection parameter update request
Layers	command, 175–177
defined, 9	overview of, 173–174
low power as design goal for, 7–8	LE Start Encryption command, 161–162
LE Add Device To White List command,	Leakage current, button-cell batteries, 12
HCI, 147–148, 154–156	Length field
LE Advertising Report event, HCI, 152	advertising data, 273
LE Clear White List Size command, HCI,	packet structure, 30–31, 82–83
147–148	Licensing
LE Connection Complete event, HCI, 155–157	2.4GHz ISM band free of, 54
LE Connection Update command, HCI, 158	Bluetooth low energy IP, 5
LE Connection Update Complete event, HCI,	Bluetooth low energy ISM band, 4–5
158	Limited-discoverable mode, devices
LE Create Connection Cancel command,	discoverable procedures, 265–266
HCI, 157	initial discovery, 256
LE Create Connection command, HCI,	overview of, $264-265$
154–157	peripherals, 300–301
LE Long Term Key Request event, 162–163	Link budget, calculating range, 58–60
LE Rand command, HCI, 147	Link establishment mode, 3-Wire UART, 133
LE Read Advertising Channel Tx Power	Link Layer
command, HCI, 150	advertising mode in, 41
LE Read Buffer Size command, HCI, 142–143	asymmetric design at, 14
LE Read Channel Map command, HCI, 159	broadcasting, 92–93
LE Read Remote Used Features command,	channels, 84–89
HCI, 160	controller architecture, 30–31
LE Read Remote Used Features Complete	creating connections, 93–98
event, HCI, 160	encryption, 104–109
LE Read Remote Version Information	finding devices, 90–92
command, HCI, 160–161	function of, 69
LE Read Supported Features command, HCI, 143–144	HCI. see HCI (Host/Controller Interface)
	low power as design goal for, 7
LE Read Supported States command, HCI,	managing connections, 109–119
144–145	optimizing for low power. see optimization
LE Read White List Size command, HCI,	for low power
147–148	packet structure, 79–84

Link Layer (continued)	LT (Lower Tester)
packets, 76–79	Direct Test Mode, 61–62
robustness, $120-123$	receiver tests, 64–65
sending data, 98–104	transceiver tests, 62
Link Layer state machine	transmitter tests, 64
advertising, 71	LTK (Long-Term Key)
connection, 73–74	key distribution during pairing, 251
multiple state machines, 74–75	long-term relationships, 259
overview of, 69–70	overview of, 246
scanning, 72	private addresses, 261
standby, 70–71	starting encryption for connections,
Link Loss Service, 288–289	112–114
Link Power Management, 134	
LL CHANNEL MAP REQ, 111–112	M
LL CONNECTION UPDATE REQ,	
109-111	Man-in-the-middle attacks, 245–246, 249–250 Manufacturer-specific advertising data type,
LL_ENC_REQ, 112–113, 116	
LL_ENC_RSP, 112–113	276
LL FEATURE REQ, 118	Mapping ATT PDUs to GATT procedures, 239
LL FEATURE RSP, 118	data broadcasting helping with, 42–43
LL PAUSE ENC REQ, 115	profiles to services, 37–38
LL PAUSE ENC RSP, 115–116	Market segments
LL START ENC REQ, 114	one billion is a small number concept, 19
LL_START_RSP, 114-115	targeted by Bluetooth low energy, 11
LL TERMINATE IND, 119	Master connection substate, 73–74
LLID (logical link identifier), data packet	Masters Masters
header, 100–101	asymmetric design concept of, 15
Load balancing, client-server architecture, 21	defined, 9
Local area networks (LANs), 2.4GHz ISM	Link Layer connection process, 95–98
band rules, 54	multiple state machine restrictions, 74–75
Local name advertising data type, 275	Maximum transmission unit (MTU),
Logical interface. see HCI logical interface	Attribute Protocol, 221
Logical Link Control and Adaptation	Mbps (million bits per second), Bluetooth low
Protocol. see L2CAP (Logical Link	energy transmission, 54–55
Control and Adaptation Protocol)	MD (more data) bit, 101–104
Logical Link Control protocol, 180	Memory
Logical link identifier (LLID), data packet	Attribute Protocol requiring very little, 34
header, 100–101	cost of, 13–14
Long-term relationships, bonding, 259	Prepare Queue Full error and, 229–230
Loose coupling, service-oriented architecture,	single-chip solutions and, 39
22–23	Message authentication code, authentication
Low power	signature, 226
button-cell batteries for, 11–12	Message integrity check. see MIC (message
as design goal, 7–8	integrity check)
lowering cost of Bluetooth low energy with,	Metric units, SI, 191
5–6	MIC (message integrity check)
optimizing for. see optimization for low	AES calculating, 105
power	encrypted packets including, 107–109
Low power state mode, 3-Wire UART, 133	encrypting payload data, 106–107
Lower-host controller interface 31	Prepare/Execute Writes and 198 227

Million bits per second (Mbps), Bluetooth	Nonbondable mode, GAP, 270
low energy transmission, 54–55	Nonce, 106, 112–113
Minimum-shift keying (MSK), 53, 55	Nonconnectable advertising events, 82, 93
Modems, technologies increasing speeds of, 4	Nonconnectable mode, GAP, 266
Modes, GAP	Nonconnectable undirected advertising, 149
bonding, 270	Nondiscoverable mode, 264
broadcast, 263	Nonresolvable private addresses, 278
•	Notifications
connectable, 266–267	
discoverability, 263–265	accessing attributes, 196–197
overview of, 262	Attribute Protocol, 219
security levels and, 270–273	central devices interacting with services,
Modular architecture concept, 18–19	291–292
Modular service architecture, 18–19	Client Characteristic Configuration
Modulation	Descriptor for, 214
analog, 49–51	as exception to transaction rules, 197
digital, 51–54	Handle Value Notification, 227–228
overview of, 54–55	optimizing peripheral attributes, 310–311
Modulation index	server-initiated GATT procedure for, 238
Bluetooth low energy, 54–55	in service characterization, 259
digital modulation, 52–53	Null modem, UART configuration, 132
radio signal, 29	Num HCI Command Packets parameter,
More data (MD) bit, 101–104	command flow control, 139–140
MSK (minimum-shift keying), 53, 55	
MTU (maximum transmission unit),	0
Attribute Protocol, 221	
Multiple state machines, 74–75	Object-oriented programming, 199
Multiple state machines, 74 75 Multiplexing layer. see L2CAP (Logical Link	Objects, in object-oriented programming, 199
	Observer role, GAP, 262
Control and Adaptation Protocol)	Offline encryption, 130
	Offset, Invalid Offset error, 229
N	One billion is a small number concept, 19
Name, discovery of device, 257	Online resources, starting new project, 313
NAT (network address translation), gateways,	OOK (on-off keying), digital modulation,
45	51-52
NESN (next expected sequence number), 99,	Optimization for low power
101–104	acknowledgement scheme, 127
	high bit rate, 125–126
Network address translation (NAT),	low overhead, 126
gateways, 45	overview of, 123–124
New usage models	peripheral design for attributes, 311–312
broadcasting data, 42–43	peripheral devices, 303–310
connectionless model, 43–44	short packets, 124–125
gateways, 44–46	single-channel connection events, 127–128
presence detection, 41–42	subrating connection events, 128–130
Next expected sequence number (NESN), 99,	Out Of Band algorithm, TK value in, 245
101-104	Overhead, optimizing for low power, 126
Next expected sequence numbers, 101–104	5. criteria, optimizing for low power, 120
NIST FIPS-197. see AES (Advanced	Р
Encryption System)	Г

Packet Boundary Flag, HCI, 138-139

Packet counter, encrypting payload data, 106

NIST Special Publication 800-38B, 247

Nokia, 5

Packet overhead, application data rate and, 51	Parity bit, UART, 132 Passive scanning
Packet reporting event, Direct Test Mode,	central devices discovering devices with, 283–285
67–68 Packet structure, Link Layer access address, 80–81 bit order and bytes, 79–80 CRC, 84 header, 81–83 length, 82–83 overview of, 30–31, 76	HCI, 150–152 Link Layer state machine, 72 overview of, 72 receiving broadcast data, 93 Passkey Entry mode, TK value, 245 Pathloss calculating link budget to determine range.
payload, 83–84 preamble, 79–80	58–60 central devices discovering devices, 284
Packets advertising and data, 76 as building block of Link Layer, 76 CRC protecting against bit errors, 16 initiating, 73 optimizing with short, 124–125 reducing memory requirements with small, 14 restricting devices to short, 13 structure of L2CAP, 172–173 testing. see Direct Test Mode whitening, 77–79	Payload data 3-Wire UARTs in HCI, 133 AES encrypting, 105 encrypting, 106–107 L2CAP packet structure, 172–173 packet structure, 83–84 PDUs, Attribute Protocol Invalid PDU error, 229 mapping ATT PDUs to GATT procedures, 239 overview of, 219–220 Peak current, button-cell batteries and, 12
Pairing authentication of link, 242, 250–251 and bonding, 252 central devices initiating bonding, 292–293 exchange of information, 248–250 key distribution, 251 overview of, 248 Security Manager protocol for, 33 Short-Term Key for encrypting during, 246 Temporary Key in, 245–246 Pairing Failed message, 249, 251 Pairing Request message, 249–250, 270 Pairing Response message, 249–250 PAL (Protocol Adaptation Layer), Bluetooth low energy, 169–170 PANs (personal area networks), 2.4GHz ISM band rules, 54	Peripheral design background of, 299 being connectable, 301 being discoverable, 300–301 broadcast only, 299–300 characteristics, 302–303 exposing services, 301–302 optimizing attributes, 311–312 optimizing for low power, 303–310 security, 303 Peripheral Preferred Connection Parameters characteristic, GAP Service, 279 Peripheral Privacy Flag, GAP Service, 277–278 Peripheral role devices, GAP connectable modes, 266–269 discoverability in, 263–264
Parameters configuring advertising, 148–150 HCI connection management by updating, 158 HCI connections to white lists, 155 HCI passive scanning, 150–152 initiating connections from central devices, 285–286	discoverability modes, 264–265 Permissions attribute database, 194–195 Attribute Protocol, 34 authorization via, 242–243 profile security, 296 security for peripherals, 303 Personal area networks (PANs), 2.4GHz ISM band rules, 54

Phase modulation, 51	grouping using service declaration, 208–209
Physical bit rate, 51	overview of, 35–36
Physical interfaces. see HCI physical	plug-and-play client applications, 207–208
interfaces	profile discovering for peer device, 295
Physical Layer	secondary vs., 205–207
asymmetric design at, 14	Privacy
evolution of Bluetooth data rates, 3	creating with resolvable private addresses,
low power design goal for, 7	36
Physical Layer, controller	Identity Resolving Key and, 246–247
analog modulation, 49–51	Peripheral Privacy Flag, 277–278
architecture, 28–29	primary goal of, 16
background, 49	security concept of, 243–244
digital modulation, 51–54	Private addresses
frequency band, 54	AES generating, 105–106
modulation, 54–55	complications of advertising using, 260
radio channels, 55–56	defined, 260
range, 58–60	GAP connection procedures, 268–269
receiver sensitivity, 57–58	for privacy, 16
testing with Direct Test Mode, 29–30	reconnection addresses as nonresolvable,
tolerance, 57	278
transmit power, 56–57	Procedures, GAP
Physical measurement, external state, 182	bonding, 270
Piconet, 9	connectable, 267–269
PIN (personal identification number), 104,	defined, 263
242, 244–245	discoverable, 265–266
Plan, test, 317	observation, 263
Plug-and-play client applications, 207–208	types of, 263
Power sensitivity, USB interface, 134	Procedures, GATT
PRBS9 packet sequence, transmitter tests,	characteristic discovery, 234–235
63–64	client-initiated, 235–238
PRD (Qualification Program Reference	Exchange MTU, 232
Document), compliance, 320	mapping ATT PDUs to, 239
Preamble, packet structure, 30–31, 79–80	overview of, 231–232
Prepare Queue Full error, 229–230	server-initiated, 238–239
Prepare Write Request, Attribute Protocol	service discovery, 232–233
overview of, 198	Product information
Prepare Queue Full error, 229–230	compliance folder contents, 318
reliable writes procedure, 237	including in Declaration of Compliance, 320
working with, 226–227	Product types
writing characteristic descriptors procedure,	combining components, 321
238	selecting features for new, 316
writing characteristic values procedure, 236	selecting for Bluetooth low energy projects,
Presence detection, new wireless model	315–316
enabling, 41–42	Profile subsystem product type, 315–316
Primary services	Profile Tuning Suite (PTS) testers,
	qualification testing, 318
defined, 37	Profiles
discovering all, 232–233 discovering with service UUID, 233	application layer, 37–38
,	finding and using characteristics, 296
discovery, central device, 286	finding services, 295
Find By Type Value Request, 223	generating test plan for, 317

Profiles (continued) modular service architecture for, 18–19 security, 296–297 selecting for new product, 316 understanding, 294–295 Profile/service architecture in Bluetooth classic, 185–186 in Bluetooth low energy, 186–189 Properties, characteristic, 211–214 Protocol Adaptation Layer (PAL), Bluetooth low energy, 169–170 Protocol messages, Attribute Protocol, 219–220 Protocol testers, qualification testing, 318 Protocols Bluetooth low energy, 179–180 Bluetooth using Attribute Protocol. see Attribute Protocol memory burdened with multiple, 14 PTS (Profile Tuning Suite) testers,	Radio-Frequency Identification (RFID) tags, 4 Random addresses HCI advertising parameters, 149–150 HCI controller setup, 146–147 Identity Resolving Key and, 246–247 private addresses as, 260 Random numbers authentication during pairing, 250–251 HCI controller setup, 145 Long-Term Key using, 246 Short-Term Key generated with, 246 whiteners as, 77–79 Range, calculating, 58–60 Read BD_ADDR command, device address, 141–142 Read Blob Request, Attribute Protocol Attribute Not Long error, 230 characteristic descriptors procedure, 238
qualification testing, 318	multiple characteristic values procedure, 235–236
Q	overview of, 224
QDID (Qualified Design Identifier)	Read Buffer Size command, HCI controller, 142–143
combining components, 321	Read By Group Type Request, Attribute
declaring compliance, 320	Protocol, 225, 230, 232–233
listing product, 321 qualifying design, 319–320	Read By Type Request, Attribute Protocol
Quadrature amplitude modulation, 51	Attribute Not Found error, 230
Qualification program. see testing and qualification	discovering all characteristics of service, 234 discovering included services, 233
Qualification Program Reference Document (PRD), compliance, 320	multiple characteristic values procedure, 236
	overview of, 223
R	Read Characteristic Value by UUID
Race conditions, HCI, 157	procedure, central devices, 284 Read Multiple Request, Attribute Protocol,
Radio Band, 9–10	224, 236
Radio channels	Read Not Permitted error, 229
overview of, 55–56	Read only memory (ROM), single-chip
starting receiver tests, 64	solutions, 39
starting transmitter tests, 63–64	Read Request, Attribute Protocol
Radio signals analog modulation and, 50–51	accessing attributes, 196
controllers transmitting and receiving, 27	characteristic descriptors procedure, 238
enabling presence detection, 41–42	multiple characteristic values procedure,
high bit rate for low power, 125	235–236
measuring path loss in, 58	overview of, 224
at Physical Layer, 28–29	Read Supported Features command, HCI
short range issues, 8	controller, 143–144
widening of low energy, 29, 41	Readable, access permission, 194

Readable and Writable, access permission, 194	Restarting encryption, HCI connections, 163–164
Readable characteristics, 288	Reusability
Readable state, 16–17	behaviors limiting, 37
Reason codes, command reject command,	of characteristics, 37–38
174–175	in service-oriented architecture, 23
Receive data (RXD), UART/3-Wire UART transport, 132	RF testers, qualification testing, 318 RFID (Radio-Frequency Identification) tags, 4
Received signal strength (RSSI), central devices, 284	Robustness, Link Layer, 120–123 Roles
Receiver sensitivity, 57–58	GAP, 261–262
Receiver test command, Direct Test Mode,	profile, 294–295
66, 68	ROM (read only memory), single-chip
Receivers	solutions, 39
in advertising state, 71	RSSI (received signal strength), central
analog modulation and, 49–51	devices, 284
asymmetric design of, 14	RTS (request to send), 5-wire UART
calculating range, 58–60	transport, 132
time is energy concept of, 12–13	Rules
transceiver tests, 62–65	2.4 GHz ISM band, 54 access address, 81
using whitener with FSK, 77–79	· · · · · · · · · · · · · · · · · · ·
Reconnected connections, 260	Attribute Protocol, 33–34 RXD (receive data), UART/3-Wire UART
Reconnection Address, GAP Service, 278	transport, 132
References	transport, 152
combining services, 204–205	S
extending services, 201–203	
reusing another service, 203–204	Scale, client-server architecture, 21
services referencing other services, 200–201	Scan Parameters Service, peripheral
Relationships	optimization, 309–310
accommodating between services, 35	SCAN_REQ, advertising packet, 82
central device discovery of, 286	SCAN_REQ packets, HCI active scanning,
central devices initiating bonding, 292–293	152
creating permanently with Generic Access	SCAN_RSP, advertising packet, 82
Profile, 36	SCAN_RSP packets, HCI active scanning,
profile service, 37–38	152
Remapping process, adaptive frequency	Scannable undirected advertising, 149
hopping, 88–89	Scanners
Replay attack protection	asymmetric design of, 14–15
authentication via signatures, 242	enabling presence detection, 41–42
encrypted packets, 105	initial discovery process, 256–257
Request Not Supported error, 229	at Link Layer, 30–31 receiving advertising events via, 91
Request to send (RTS), 5-wire UART	Scanning state, Link Layer state machine, 72
transport, 132	Scatternets, 75
Requests	SDIO interface, HCI, 134–135
Attribute Protocol, 218–219	Secondary services
error responses to, 228–231	defined, 37
Reset command, Direct Test Mode, 66, 68	grouping using service declaration, 208–209
Reset command, HCI controller, 141	including services, 209–210
Resolvable private addresses, 260–261,	overview of, 35–36
268–269	primary vs., 205–207

Secure Simple Pairing feature, 248–250	loose coupling, 22–23
Security Security	as paradigm for Bluetooth low energy,
asymmetric design of, 15	21–22
authentication, 241–242	reusability, 23
	statelessness, 23–24
authorization, 242–243 bonding, 252	Services
	advertising data types for, 274
client-server gateway model of, 18	application layer, 37
confidentiality, 243	central device changing, 293–294
Connection Signature Resolving Key, 247	central device interaction with, 288–292
designing for success, 16	central device's client remembering/caching
encryption engine, 244	between connections, 293–294
Identity Resolving Key, 246–247	combining, 204–205
integrity, 243	defining with profile roles, 294–295
Long-Term Key, 246	discovery at initial connect, 258
overview of, 241	extending, 201–203
pairing, 248–251	filtering advertising data based on, 257
peripheral devices, 303	GATT characteristic discovery procedures
privacy, 243–244	for, 234–235
profile, 296–297	GATT discovery procedures for, 232–233
shared secrets, 244–245	generating test plan for, 317
Short-Term Key, 246	Generic Attribute Profile and, 34–36
signing of data, 252–253	grouping, 199, 208–209
Temporary Key, 245–246	mapping profiles to, 37–38
Security Manager	modular architecture for, 18–19
Bluetooth low energy using, 179–180	optimizing peripheral
channel identifier for, 172	attributes, 310–311
host architecture, 33	peripheral design for exposing, 301–302
signing of data, 106	plug-and-play client applications, 207–208
Segmentation, by multiplexing layers, 170	primary or secondary, 205–206
Selective-connection establishment procedure,	profiles discovering, 185–189, 295–296
GAP, 269	reusing, 203–204
Sequence numbers (SNs), 101–104	security for peripherals, 303
Server Characteristic Configuration	selecting for new product, 316
Descriptor, 214–215	Session based, connection-oriented model of
Server-initiated procedures, GATT, 238–239	Internet, 45
Service Changed characteristic, 294	Session key diversifiers (SKD), 114
Service data advertising data type, 276	Session key (SK), 112–115
Service solicitation advertising data type, 275	Shared secrets
Service UUIDs	authentication via, 241–242
discovering primary service, 233	in bonding process, 259
Include attributes, 209–210	Connection Signature Resolving Key, 247
overview of, 191	encrypting data packets while connected
service advertising data types and, 274–275	using, 161–162
service declaration, 209	Identity Resolving Key, 246–247
Service-oriented architecture	keys as, 245
abstraction, 23	Long-Term Key, 246
autonomy, 24	overview of, 244–245
composability, 24	Security Manager for key distribution, 33
discoverability, 24–25	Short-Term Key, 246
formal contract, 22	Temporary Key, 245–246
,	1 0 0/

Shift register, 77	Link Layer connection process, 95–98
Short packets, for low power, 124–125	multiple state machine restrictions, 74–75
Short range wireless standards, 8	Sleep clock accuracy, Link Layer connection
Short-Term Key (ST), 245–246	process, 98
Short-wave radio, 51	Sleep message, 3-Wire UARTs in HCI, 133–134
SI (International System of Units), 191	SLIP, framing packets in 3-Wire UART, 133
SIG (Special Interest Group), Bluetooth	SNs (sequence numbers), 101–104
testing and qualification requirements,	Spark-gap radios, 49–50, 51
313–316	Special Interest Group. see SIG (Special
UnPlugFest testing events, 15	Interest Group), Bluetooth
Signaling channel, channel identifier for, 172	Speeds, technology almost always increasing,
Signaling MTU exceeded reason code,	3–4
command reject command, 175	Spread spectrum radio regulations, 29
SignCounter	ST (Short-Term Key), 245–246
authentication signature, 226	Stack splits architecture, 38–40
Connection Signature Resolving Key, 247	Standby state, Link Layer, 70–71
signing of data, 252–253	Start messages, LLID, 100
Signed Write Command, Attribute Protocol,	Starting encryption, HCI connection
225-226, 237-238	management, 161–163
Signing of data	Starting new project, qualification program,
AES, 105	313–316
authentication via, 242	State
Connection Signature Resolving Key, 247	configuring controller, 136
security and, 252–253	in connectionless model, 44
Silicon manufacturing processes, short packets	in connection-oriented systems, 43–44
optimizing, 124–125	data vs., 181–182
Simultaneous LE And BR/EDR To Same	HCI advertising filter policy, 150
Device Capable, 274	HCI controller setup, 141, 144–145
Single-channel connection events, 127–128	kinds of, 182 Link Layer. see Link Layer state machine
Single-chip solutions, stack split, 38–39	optimizing peripherals for low power,
Single-mode devices, 6	304–305
SK (session key), 112–115	State machines
SKD (session key diversifiers), 114	Attribute Protocol, 183–185
Slave connection interval range, 275	central devices interacting with services,
Slave connection substate, 73–74	290–291
Slave latency	Link Layer. see Link Layer state machine
connecting to devices, 285	representing current internal state, 182
connection events and, 96–97, 129–130	Statelessness
connection parameter update request and, 175–176	of Attribute Protocol, 34
	in service-oriented architecture, 23–24
connection update request, 111 controlling in peripherals, 308–309	Stop bit, UART, 132
defined, 129	Subrated connection events, 128–130
optimizing peripherals for low power,	Sub-version number, version information, 118
308–309	Symbols, 51
Slaves	
in asymmetric design, 14–15	Т
connection parameter update request and,	TCP connection, as session-based, 45
109–111	Temperature, button-cell batteries, 12
defined, 10	Temporary Key (TK), 245–246, 250

Termination	asymmetric design of, 14
error response resulting in request, 231	calculating range, 58–60
HCI connections, 164–165	time is energy concept of, 12–13
Link Layer connections, 118–119	transceiver tests, 62–65
Test end command, Direct Test Mode, 66, 68	Two-chip solutions, stack split, 39–40
Test equipment product type, 315–316	TX (transmit) power level advertising data
Test Plan Generator (TPG) project, 313–315,	type, 275, 284
317	TXD (transmit data), UART/3-Wire UART
Test status event, Direct Test Mode, 67–68	transport, 132
Testing and qualification	. ,
Bluetooth process for, 314	U
combining components, 321	
consistency check, 316–317	UART (Universal Asynchronous Receiver
creating compliance folder, 317–318	Transmitter), HCI
declaring compliance, 320	3-Wire, 132–134
generating test plan, 317	Direct Test Mode, 61, 65
listing, 321	physical interface, 132
overview of, 313	Undirected-connectable mode, GAP, 267
qualification testing, 318–319	Unit UUIDs, 191
qualify your design, 319–320	Units
selecting features, 316	Characteristic Presentation Format
standardizing. see Direct Test Mode	Descriptor, 216–217
starting project, 313–316	generic client, 287
Testing information, compliance folder	Unlikely Error response, 230
contents, 318	UnPlugFest testing events, 15
Text strings, associating with characteristics,	Unsupported Group Type error, 231
214	Updates
Third-party attackers, compromising	adaptive frequency hopping, 111–112
integrity, 243	connection parameter, 109–111
Three-chip solutions, stack split, 40	Upper-host controller interface, 31
Three-way handshake, encryption for	URLs, client-server architecture, 20–21
connections, 113, 115	Usage models. see new usage models
Γime is energy concept, 12–13	USB physical interface, HCI, 134
ΓK (Temporary Key), 245–246, 250	UT (Upper Tester)
Toggle command, state machines, 184–185	Direct Test Mode, 61–62
Tolerance, 57	receiver tests, 64–65
ΓPG (Test Plan Generator) project, 313–315,	transceiver tests, 62
317	UUIDs (Universally Unique Identifiers)
Transactions, atomic operations and, 197–198	attribute types, 192
Transceiver testing, Direct Test Mode, 62–65	Bluetooth Base, 190–191
Transmit (TX) power level advertising data	characteristic, 212–213, 236
type, 275, 284	characteristics at application layer labeled
Transmit power, 56–57	with, 37–38
Transmit window, Link Layer connections,	discovering all primary services, 233
95–96, 110–111	Find Information Response and, 222
Transmitter test command, Direct Test	generic clients and, 287
Mode, 66, 68	identifying attribute type, 190
Transmitters	service declaration, 209
in advertising state, 71	service UUIDs. see service UUIDs
analog modulation and, 49–51	unit UUIDs, 191

V	Link Layer channels and, 84–85
Validated testers, qualification testing, 318	technologies increasing speeds of, 4
Value handle, characteristic, 212	Window widening, 309
Values, characteristic overview of, 213	Wired infrastructure, problem of Internet design, 45
reading, 235–236 writing, 236–238	Wireless band, global operation design goals, 78
Version exchange	Woken message, 3-Wire UARTs in HCI, 134
HCI connection management, 160–161	Writable, access permission, 194
Link Layer connections, 117–118	Writable characteristics, 288–289
,	Writable state, 17
W	Write Command, Attribute Protocol
White lists auto-connection establishment procedure, 267–268 connectability of peripherals, 301 HCI advertising filter policy, 150 HCI controller setup, 147–148 HCI initiating connection to device(s) in, 154–156 HCI passive scanning filter policy, 152 Whitening, 77–79, 81 Wibree technology, 5	accessing attributes, 196 Signed Write Command, 225–226 writing without response procedure, 237–238 Write Request, Attribute Protocol accessing attributes, 196 characteristic descriptors procedure, 238 characteristic values procedure, 236 overview of, 225
Wi-Fi	X
adaptive frequency hopping remapping, 88–89 defined, 10	XML files characteristic specifications, 302–303 generic clients and, 287–288