INVESTIGACIÓN OPERATIVA SUPERIOR

nuevo módulo y introducción a metaheurísticas

Virtual

bienvenidos al último módulo

logística en investigación operativa

integración de mapas a python

metaheurísticas

problema del viajante

optimización de las actividades logísticas

> sistema de información geográfica (GIS)

variaciones del problema del viajante

espacio <u>discreto</u> de soluciones

soluciones factibles

¿para qué otro método más de optimización?

fuerza bruta

vm = volumen de la mochila

vi = volumen del articulo i ui = utilidad del articulo i

max = ∑b_{i-Ui}

 $\sum b_{i}.V_{i} \leq vm$

con 4 elementos...

volumen=2 volumen=20 volumen=10 volumen=7 utilidad =7 utilidad =5 utilidad =10 utilidad =15 Utilidad Volumen total total

volumen máximo de la mochila 25

> en este tipo de problemas hay 2ª soluciones posibles

si podemos generar y evaluar un millón de posibilidades por segundo . . .

el algoritmo funciona perfecto, pero ...

jel tiempo!

problema del viajante de comercio

traveling salesman problem - otro clásico de investigación operativa

lo podemos resolver con ...

¿qué probabilidad?

resumiendo...

se enfría el máximo número no se producen se alcanza un sistema de iteraciones mejoras tiempo máximo

... jy qué tan bueno es todo esto?

intercambio 2-opt

una práctica optativa ...

bibliografía y otros ...

[Python] Bibliotecas:

https://docs.python.org/3/library/itertools.html https://pypi.org/project/PuLP/

[Videos]:

https://www.youtube.com/watch?v=SC5CX8drAtUhttps://www.youtube.com/watch?v=3TrnjUKeFg8

Ant Colony Optimization

Autor: Dorigo - Stützle

Editorial: MIT Press

próxima clase:

clase presencial

más sobre metaheurísticas, uso de mapas, gis y presentación del problema integrador

INVESTIGACIÓN OPERATIVA SUPERIOR

jmuchas gracias!