

Circles Ex 16.4 Q7

Answer:

It is given that, O is the center of circle and A, B and C are points on circumference on triangle

We have to prove that $\angle x = \angle y + \angle z$

So, ∠4 and ∠3 are on same segment

So, $\angle 4 = \angle 3$

 $\angle x = 2\angle 3$ (Angle x° is on center)

 $\angle x = \angle 4 + \angle 3 \dots (1)$

 $\angle y = \angle 3 + \angle 1$ (Exterior angle = sum of two interior angle) (2)

 $\angle z = \angle 4 - \angle 1$ (Exterior angle = sum of two interior angle) (3)

Hence

Adding (2) and (3)

$$\angle y + \angle z = \angle 3 + \angle 4$$
(4)

From equation (1) and (4) we have

$$\angle x = \angle y + \angle z$$

Circles Ex 16.4 Q8

Answer:

It is given that

Two circles having center O and O' and $\angle AOB = 130^{\circ}$ And AC is diameter of circle having center O

We have

$$\angle ACB = \frac{1}{2} \angle AOB = 65^{\circ}$$

So

$$\angle DCB = 180^{\circ} - \angle ACB$$

= $180^{\circ} - 65^{\circ}$
= 115°

Now reflex $\angle BO'D = 2\angle BCD$ So

$$360^{0} - x^{o} = 2 \times 115$$
$$= 230^{0}$$

$$x = 360 - 230 = 130$$

Hence
$$x = 130^{\circ}$$

******* END *******