Determining the Thevenin Equivalent Circuit

Tuesday, 28 July, 2020 11:02 Al

1. Open-Circuit Voltage (Voc) = Vt

KVL:

$$I1(100+50) = 15$$

$$I1 = 15/150 = 0.1 A$$

$$Voc = i1 * R2 = 0.1*50 = 5 V$$

2. Short-circuit Current:

KCL:

$$Isc = Vs/R1 = 15/100 = 0.15 A$$

According to the Theorem,

$$Vt = Voc = 5V$$

$$Rt = Vt/Isc = 5/0.15 = 33.3333 \text{ Ohm}$$

Finding Thevenin's Equivalent Resistance Directly

Tuesday, 28 July, 2020 11:37 AM

We replace voltage sources with short circuits and replace current sources with open circuits

 $R_{1} = R_{1} + R_{2} = R_{1} + R_{2} = R_{2} + R_{3}$

Finding Thevenin's Equivalent Resistance Directly & Finding the Thevenin's Equivalent

Tuesday, 28 July, 2020 11:37 AM

We replace voltage sources with short circuits and replace current sources with open circuits

1. Rt

Rt = 4 Ohm

2. Vt

Vt = 24 V

 $R_t = 4 \Omega$

KCL:

I1 + 2 = i2 + isc

Vs/r1 + 2 = 0 + isc

20/5 + 2 = isc

Isc = 6 A

Finding the Thevenin Resistance

(a)

Tuesday, 28 July, 2020 11:47 AM

Voltage Sources - Short-Circuit Circuit

Current Sources - Open Circuit

(b) 270

Rt = 14 Ohm

Rt = 30 Ohm

Determining Maximum Power Transfer

Tuesday, 28 July, 2020 12:12 PM

