CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 13: Binary Search Trees

Vasileios Koutavas

3.2 BINARY SEARCH TREES

- **▶** BSTs
- ordered operations
- deletion

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

▶ BSTs

- ordered operations
- deletion

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- · Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node's key is:

- · Larger than all keys in its left subtree.
- · Smaller than all keys in its right subtree.

BINARY TREES: MORE DEFINITIONS

- → leaves of tree: the nodes with no child nodes
- → height of tree: the maximum number of links from the root to a leaf
- → levels of tree: the maximum number of nodes from the root to a leaf (inl. root and leaf)
- → size of tree: the number of nodes in the tree
- → depth of a node: the number of links from the root to this node.

BINARY TREES: MORE DEFINITIONS

- → leaves of tree: the nodes with no child nodes
- → height of tree: the maximum number of links from the root to a leaf
- → levels of tree: the maximum number of nodes from the root to a leaf (inl. root and leaf)
- → size of tree: the number of nodes in the tree
- → **depth** of a node: the number of **links** from the root to this node.

- Q: how many leafs in this tree?
- Q: what is the height of this tree?
- **Q**: how many levels in this tree?
- Q: what is the size of this tree?
- Q: what is the depth of 'H'?

BINARY TREES: MORE DEFINITIONS

- → leaves of tree: the nodes with no child nodes
- → height of tree: the maximum number of links from the root to a leaf
- → levels of tree: the maximum number of nodes from the root to a leaf (inl. root and leaf)
- → size of tree: the number of nodes in the tree
- → **depth** of a node: the number of **links** from the root to this node.

- Q: how many leafs in this tree? 4
- Q: what is the height of this tree? 4
- Q: how many levels in this tree? 5
- Q: what is the size of this tree? 9
- Q: what is the depth of 'H'? 3

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

insert G

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

- A Key and a Value.
- · A reference to the left and right subtree.


```
private class Node
{
  private Key key;
  private Value val;
  private Node left, right;
  public Node(Key key, Value val)
  {
    this.key = key;
    this.val = val;
  }
}
```


Binary search tree

BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value>
                                                            root of BST
   private Node root;
   private class Node
   { /* see previous slide */ }
   public void put(Key key, Value val)
   { /* see next slides */ }
   public Value get(Key key)
   { /* see next slides */ }
   public void delete(Key key)
   { /* see next slides */ }
   public Iterable<Key> iterator()
   { /* see next slides */ }
```

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
   Node x = root;
   while (x != null)
   {
      int cmp = key.compareTo(x.key);
      if (cmp < 0) x = x.left;
      else if (cmp > 0) x = x.right;
      else if (cmp == 0) return x.val;
   }
   return null;
}
```

Cost. Number of compares is equal to 1 + depth of node.

BST insert

Put. Associate value with key.

Search for key, then two cases:

- Key in tree ⇒ reset value.
- Key not in tree ⇒ add new node.

Insertion into a BST

BST insert: Java implementation

Put. Associate value with key.

```
concise, but tricky.
                                           recursive code:
public void put(Key key, Value val)
                                            read carefully!
{ root = put(root, kev, val): }
private Node put(Node x, Key key, Value val)
{
   if (x == null) return new Node(key, val);
   int cmp = key.compareTo(x.key);
   if (cmp < 0)
      x.left = put(x.left, key, val);
   else if (cmp > 0)
      x.right = put(x.right, key, val);
   else if (cmp == 0)
      x.val = val;
   return x;
```

Cost. Number of compares is equal to 1 + depth of node.

Tree shape

- · Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to 1 + depth of node.

Bottom line. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.

BSTs: mathematical analysis

Proposition. If N distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is $\sim 2 \ln N$. Pf. 1–1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If N distinct keys are inserted in random order, expected height of tree is $\sim 4.311 \ln N$.

How Tall is a Tree?

Bruce Reed CNRS, Paris, France reed@moka.ccr.jussieu.fr

ABSTRACT

Let H_n be the height of a random binary search tree on n nodes. We show that there exists constants $\alpha=4.31107\ldots$ and $\beta=1.95\ldots$ such that $\mathrm{E}(H_n)=\alpha\log n-\beta\log\log n+O(1)$, We also show that $\mathrm{Var}(H_n)=O(1)$.

But... Worst-case height is *N*.

[exponentially small chance when keys are inserted in random order]

ST implementations: summary

implementation	guarantee		average case		operations
	search	insert	search hit	insert	on keys
sequential search (unordered list)	N	N	½ N	N	equals()
binary search (ordered array)	lg N	N	lg N	½ N	compareTo()
BST	N	N 1	1.39 lg <i>N</i>	1.39 lg <i>N</i>	compareTo()

Why not shuffle to ensure a (probabilistic) guarantee of 4.311 ln N?

Q: Which of the following are Binary Search Trees? Why?

