```
In [ ]: #importing the basic libraries
  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
```

In [38]: #importing the dataset using read_csv
iris = pd.read_csv(r'C:\Users\vinee\OneDrive\Desktop\FProjects\IRIS.csv')

In [39]: #quick view of top 5 rows
 iris.head()

Out[39]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

In [40]: #checking the data types of the columns iris.dtypes

Out[40]: sepal_length float64
sepal_width float64
petal_length float64
petal_width float64
species object
dtype: object

In [41]: #How many unique species are there in the flower
 iris['species'].unique()

Out[41]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

In [42]: iris.groupby(['species']).count()

Out[42]:

	sepal_length	sepal_width	petal_length	petal_width
species				
Iris-setosa	50	50	50	50
Iris-versicolor	50	50	50	50
Iris-virginica	50	50	50	50

In [43]: iris.describe()

Out[43]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [44]: #plotting boxplots for each species to see the outliers
 iris.boxplot(column='sepal_length', by='species')
 #There are no outliers in setosa and versicolor, but there is one outlier in v
 irginica when we plot against sepal_length

Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x1ba9649a400>

In [45]: iris.boxplot(column='sepal_width', by='species')
#there are two outliers in virginica when we plot against sepal_width

Out[45]: <matplotlib.axes._subplots.AxesSubplot at 0x1ba9650ce10>

In [46]: iris.boxplot(column='petal_length', by='species')
#There are two outliers in setosa and one in versicolor when we plot against p
etal_length

Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x1ba95b2fc50>

In [47]: iris.boxplot(column='petal_width', by='species')
#when the plot is against the petalk_width the outliers are just observed in s
etosa

Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x1ba965de828>

In [48]: #plotting histogram to see the frequency of the 'petal_length','petal_widt
h','sepal_length' and 'sepal_width'.
iris.hist()

In [49]: #scatter plot to see the correlation between Length and width
 fig = iris[iris['species'] == 'Iris-setosa'].plot(kind='Scatter', x='sepal_len
 gth', y='sepal_width', color='orange', label='Setosa')
 iris[iris['species'] == 'Iris-versicolor'].plot(kind='Scatter', x='sepal_lengt
 h', y='sepal_width', color='yellow', label='Versicolor', ax=fig)
 iris[iris['species'] == 'Iris-virginica'].plot(kind='Scatter', x='sepal_lengt
 h', y='sepal_width', color='blue', label='Verginica', ax=fig)
 fig.set_ylabel('Sepal Width')
 fig.set_xlabel('Sepal Length')
 fig.set_title('Sepal Length vs Width')

fig = plt.gcf()
 fig.set_size_inches(18, 9)
 plt.show()


```
In [50]: fig = iris[iris['species'] == 'Iris-setosa'].plot(kind='Scatter', x='petal_len
    gth', y='petal_width', color='orange', label='Setosa')
    iris[iris['species'] == 'Iris-versicolor'].plot(kind='Scatter', x='petal_lengt
    h', y='petal_width', color='yellow', label='Versicolor', ax=fig)
    iris[iris['species'] == 'Iris-virginica'].plot(kind='Scatter', x='petal_lengt
    h', y='petal_width', color='blue', label='Verginica', ax=fig)
    fig.set_ylabel('petal_width')
    fig.set_xlabel('petal_length')
    fig.set_title('petal_length vs Width')

fig = plt.gcf()
    fig.set_size_inches(18, 9)
    plt.show()
```


In [52]: iris.head()

Out[52]:

	sepal_length	sepal_width	petal_length	petal_width	species	petal_area
0	5.1	3.5	1.4	0.2	Iris-setosa	0.28
1	4.9	3.0	1.4	0.2	Iris-setosa	0.28
2	4.7	3.2	1.3	0.2	Iris-setosa	0.26
3	4.6	3.1	1.5	0.2	Iris-setosa	0.30
4	5.0	3.6	1.4	0.2	Iris-setosa	0.28

```
In [53]: | iris['sepal_area'] = iris.apply(lambda row: (row['sepal_length'] * row['sepal_width']), axis=1)
```

In [54]: iris.head()

Out[54]:

	sepal_length	sepal_width	petal_length	petal_width	species	petal_area	sepal_area
0	5.1	3.5	1.4	0.2	Iris- setosa	0.28	17.85
1	4.9	3.0	1.4	0.2	Iris- setosa	0.28	14.70
2	4.7	3.2	1.3	0.2	Iris- setosa	0.26	15.04
3	4.6	3.1	1.5	0.2	Iris- setosa	0.30	14.26
4	5.0	3.6	1.4	0.2	Iris- setosa	0.28	18.00

In [56]: iris['species'].groupby(pd.qcut(iris['petal_area'], 3)).value_counts()

Name: species, dtype: int64

In [57]: iris['species'].groupby(pd.qcut(iris['sepal_area'], 3)).value_counts()
 #the sepal area is more varied than the petal_area, so it is better to take th
 e differnece in areas for future purpose.

Out[57]: sepal area species (9.999, 16.2] Iris-versicolor 24 19 Iris-setosa Iris-virginica 8 (16.2, 19.38] Iris-setosa 22 Iris-versicolor 17 Iris-virginica 12 Iris-virginica (19.38, 30.02] 30 Iris-setosa 9 9 Iris-versicolor Name: species, dtype: int64

In [59]: iris.head()
 #including all these variables can give a better accuracy by applying Random f
 orest algorithm

Out[59]:

	sepal_length	sepal_width	petal_length	petal_width	species	petal_area	sepal_area
0	5.1	3.5	1.4	0.2	Iris- setosa	0.28	17.85
1	4.9	3.0	1.4	0.2	Iris- setosa	0.28	14.70
2	4.7	3.2	1.3	0.2	Iris- setosa	0.26	15.04
3	4.6	3.1	1.5	0.2	Iris- setosa	0.30	14.26
4	5.0	3.6	1.4	0.2	Iris- setosa	0.28	18.00

- In [65]: #importing labelencoder to label the species column from sklearn.preprocessing import LabelEncoder
- In [66]: label_encoder = LabelEncoder()
- In [67]: iris['species'] = label_encoder.fit_transform(iris['species'])

In [68]: iris.head()
#clearly we can see below the labelencoder has done a good job for the species
column

Out[68]:

	sepal_length	sepal_width	petal_length	petal_width	species	petal_area	sepal_area
0	5.1	3.5	1.4	0.2	0	0.28	17.85
1	4.9	3.0	1.4	0.2	0	0.28	14.70
2	4.7	3.2	1.3	0.2	0	0.26	15.04
3	4.6	3.1	1.5	0.2	0	0.30	14.26
4	5.0	3.6	1.4	0.2	0	0.28	18.00

- In [69]: from sklearn.model_selection import train_test_split
 #import train_test_split to split the data into training and testing
- In [70]: x = iris.drop('species',axis=1)
 # x includes all the columns except species column
- In [71]: y = iris['species']
 # y includes only species column
- In [72]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3)
 # now the data is split into x_train, y_train, x_test, y_test
- In [73]: from sklearn.ensemble import RandomForestClassifier
 #import randomforest classifier from sklearn
- In [74]: rfc = RandomForestClassifier(n_estimators=200)
- In [75]: rfc.fit(x_train,y_train)
 #fit the imported randomforest classifier for x_train and y_tarin

- In [78]: from sklearn.metrics import confusion_matrix

In [79]: print(confusion_matrix(y_test,rfc_pred))

[[13 0 0] [0 16 0] [0 0 16]]

In [81]: from sklearn.metrics import classification_report

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	13
	1 2	1.00 1.00	1.00 1.00	1.00 1.00	16 16
micro a	avg	1.00	1.00	1.00	45
macro a	avg	1.00	1.00	1.00	45
weighted a	avg	1.00	1.00	1.00	45

In [85]: from sklearn import metrics

pscore = metrics.accuracy_score(y_test, rfc_pred)

pscore

#accuracy score of 1.0 indicates that the algorithm we applied is perfect in predicting the flowers species on the given data

Out[85]: 1.0