Introduction to design optimization

Goal of Week 1: To become familiar with the concept of mathematical optimization, see some applications, & begin forming teams and topics

Optimization is trendy

Source: Google ngrams

What is design optimization?

Strictly speaking, design optimization is about mathematically finding the best possible design solution for given models and an objective

Design an optimal automobile for you

- Speed
- Efficiency
- Safety Assignment Project Exam Help
- Capacity (people)
- Capacity (cargo)
- Sales

How to optimize

1. Formulate the problem

- a) Define system boundaries
- b) Develop analytical models
- c) Explore resident Problem Space Hebbect to $\mathbf{g}(\mathbf{x}, \mathbf{p}) \leq 0$
- d) Formalize optimization problem https://powcoder.com

2. Solve the problem

a) Choose the right approach algorithm

- b) Solve (by hand, code, or software)
- c) Interpret the results
- d) Iterate if needed

(Weeks 1-2, 4, 9-12)

 $\mathbf{h}(\mathbf{x}, \mathbf{p}) = 0$

(Weeks 3, 5-8, 12)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\mathbf{H}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_0)$$

1. Formulate the problem

a) Define system boundaries

What are we including? What are we assuming fixed? What are our objectives, constraints, variables, and parameters?

- b) Develop analytical madeloject Exam Help
 Are they theoretical (equation-based) or empirical (data-based)? Do they take a long time to eyabate? Galeye uses surrogate models?
- c) Explore/reduce the problem space
 Is there a feasible sold of the reduce the fumber of variables or constraints? Is the space convex? Are there local optima?
- d) Formalize optimization problem

Write it out mathematically. Then, ask and adjust based on: Is it multi-disciplinary? Is it multi-objective? Is there uncertainty?

a) Define system boundaries

Where you draw your box defines the problem space and ultimately the design solution

Objectives, constraints, variables, parameters

Managers might say	Designers might say	What it means	Car examples
Key performance indicators (KPIs/KPPs)	Objectives Assignme	What we want to	Seek best possible cost or performance (e.g.,
Requirements	Hard constraints:	Must-haves, with specifican	Must pass FMVSS government crash test
Desirements, Targets	Soft Add V constraints	Wenthatitherecitide thresholds	At least 36 miles per gallon (35 wouldn't invalidate the project)
Decisions	Variables	Things we can change and want the optimizer to change	Sizes, material choices, layout, capacity
Environment	Parameters	Quantities that we can't or won't change	Material properties, e.g., strength of steel

Example: Stigler diet

What is the lowest possible cost of a diet for a moderately-active, 154-pound male, that meets the National Research Council's 1943 Recommended Dietary Allowances (RDA) of 9 nutrients?

Assignment Project Exam Help Objective: Minimize cost

• Constraints: Melttps://pewsoderscom

· Variables: Amounts of wach food powcode

- Parameters: 77 foods included; nutrient content and cost of each food; moderately active 154-lb man
- Models: Linear equations of nutrients and costs per unit of food

Example: Crash safety

What is the lowest probability of serious injury that we can achieve through structural and restraint system design for a mid-sized male crash test dummy in a 35-mph crash with a rigid barrier? Assignment Project Exam Help

- Objective: Minimize injury probability om
- Constraints: Pass FMVSS tests
- Variables: Thicknesses of Sthat pawer hat; stiffness of seat belt; airbag inflation rate
- Parameters: Vehicle shape; material properties; size of mid-size male dummy; definition of "serious injury" on Abbreviated Injury Scale (AIS); crash test specs
- Models: Physics-based simulations

Example: Topology of a chair

How can we design the shape of a fixed-mass chair to hold the maximum weight possible?

- **Objective:** Maximize stiffness
- Constraints: Massignment Project Exam Help
- Variables: Matehithin: # po woordinate position (yes/no)
- Parameters: Material properties; loading direction of weight Add WeChat powcoder

 Model: Finite element simulation

Exercise

In groups, come up with an objective, constraints, variables, and parameters for designing a battery pack for an electric car

Quantity	What it means	Battery examples	
Objectives	What we want to Projec maximize/minimize	trainechalp in kWh	
Hard constraints	Must-haves, with specific thresholds // POWCOO	Must meet safety standards	
Soft constraints	Wants, with specific thresholds	Weigh no more than 200 lb; Capacity of at least 30 kWh; Volume no more than 15 ft ³ ; Cost no more than \$3,000	
Variables	Things we can change	Dimensions, material choice, layout	
Parameters	Quantities that we can't or won't change	Material properties, e.g., density of a particular lithium-ion battery; thresholds of soft constraints	

Note: This is what you need to do for the "optimization in the real world" assignment!

1. Formulate the problem

a) Define system boundaries

What are we including? What are we assuming fixed? What are our objectives, constraints, variables, and parameters?

b) Develop Analytical empths ject Exam Help

Are they theoretical (equation-based) or empirical (data-based)? Do they take a long the total (data-based)? Do they take a long the total (data-based)?

- c) Explore/reduce the problem space
 Is there a feasible sold of the reduce the fumber of variables or constraints? Is the space convex? Are there local optima?
- d) Formalize optimization problem

Write it out mathematically. Then, ask and adjust based on: Is it multi-disciplinary? Is it multi-objective? Is there uncertainty?

b) Develop analytical models

- How do we represent our system mathematically?
 - Inputs: Variables & parameters
 - Outputs: Objectives & constraints
- Three ways to do this Project Exam Help
 - 1. Chemical/physical/poathendeticed aquations

 - Simulation models (FEA, CFD, etc.) Experimental data Chat powcoder
 - Design of experiments
 - Metamodeling

Design of Experiments (DOE)

When we have experimental or computationally expensive simulation data, we need to sample the space efficiently

Assignment Project Exam Help

RunOrder	Pressure	Speed	Temp	Output
1	https://	poweode	er.c 6 5n	
2	20	50	45	
3	Atold W	eClaat p	ow <mark>c⁄oder</mark> 45	
4	20	100	45	
5	10	50	65	
6	20	50	65	
7	10	100	65	
8	20	100	65	

Metamodeling

Fit an analytical model to data

1. Formulate the problem

Define system boundaries a)

What are we including? What are we assuming fixed? What are our objectives, constraints, variables, and parameters?

Develop Analytical endelsoject Exam Help b)

Are they theoretical (equation-based) or empirical (data-based)? Do they take a long three sylvates of the websers surrogate models?

c)

Is there a feasible solution? Can't Rowe the fumber of variables or constraints? Is the space convex? Are there local optima?

d) Formalize optimization problem

Write it out mathematically. Then, ask and adjust based on: Is it multidisciplinary? Is it multi-objective? Is there uncertainty?

c) Explore/reduce the problem space

Once we've framed the problem and defined the models, we can ask:

- Does an optimal solution exist? Exam Help Week 2

- Is the problem well-bounded?
- Are the constraints a constraints a constraint of the constraints and the constraints are the constraint
- Are the functions monotonic? powcoder
- Are the functions differentiable?
- Are the functions convex?
- Can the formulation be simplified?

Answering these questions can help detect formulation errors, save time, and potentially find the solution!

1. Formulate the problem

a) Define system boundaries

What are we including? What are we assuming fixed? What are our objectives, constraints, variables, and parameters?

b) Develop analytical equation-based or empirical (data-based)

Are they theoretical (equation-based) or empirical (data-based)? Do they take a long the total (equation-based) or empirical (data-based)? Do they take a long the total (equation-based) or empirical (data-based)? Do

c) Explore/reduce the problem space Is there a feasible sold of the reduce the fumber of variables or constraints? Is the space convex? Are there local optima?

d) Formalize optimization problem

Write it out mathematically. Then, ask and adjust based on: Is it multi-disciplinary? Is it multi-objective? Is there uncertainty?

d) Formulate optimization problem

"negative null" form

2. Solve the problem

- a) Choose the right approach/algorithm
 What are the different types of algorithms (pattern search, gradient-based, population-based)? How do they work? Where dempty Exam Help
- b) Solve (by hand, code, or software)
 https://powcoder.com
 Apply the chosen algorithm to the formulated problem
- c) Interpret the results Chat powcoder

 Do the outputs make sense? How do we choose among multi-objective results?
- d) Iterate if needed
 Use findings to update the formulation or algorithm

Why do we need algorithms?

We don't always know the shape of a function

Too many dimensions to visualize

Not enough data points

• Most algorithms take us from a starting point or points, and then movement of improvement

Two-variable contour map

Variable 2

Gradient-based algorithms

Use derivatives to find the optimal solution

Optimality conditions (min)

First-order:
$$\frac{\partial f}{\partial x}(x^*) = 0$$

First-order:
$$\frac{\partial f}{\partial x}(x^*) = 0$$

Second-order: $\frac{\partial^2 f}{\partial x^2}(x^*) > 0$

Extension to multi-variable problems:

 $\nabla f(x^*) = \mathbf{0}$ First-order:

 $\mathbf{H}(x^*)$ is positive **Second-order:**

definite

Gradient-free algorithms

Pattern search

Population-based

e.g., Hooke-Jeeves direct search, DIRECT, Nelder-Meade e.g., genetic/evolutionary algorithms, particle swarm, ant colony

Week 3

Week 8

Business-oriented optimization

What is the most common objective in design?

Multi-objective optimization

System design

If the system-level problem is difficult to solve all at once, you may need to decompose the problem into subsystems

Handling uncertainty

Ensure the solution isn't too close to a constraint

Software support

MATLAB Excel

Specialty optimization packages

Add WeChat powcoder Commercial CAD software integration

Important takeaways

What is design optimization?

 What are the major steps of formulating and solving an optimization problem? Assignment Project Exam Help

How do we set system boundaries?

• What are oblethies and conserance.

What are variables and parameters?
 Add WeChat powcod

 How do we write a formal optimization problem?

minimize
$$f(\mathbf{x}, \mathbf{p})$$
 subject to $\mathbf{g}(\mathbf{x}, \mathbf{p}) \leq 0$ $\mathbf{h}(\mathbf{x}, \mathbf{p}) = 0$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder