Abstract Harmonic Analysis

Ikhan Choi

February 4, 2024

Contents

I		2
1	Hopf *-algebras	3
	1.1	3
2	Locally compact groups	4
	2.1	4
	2.2	5
	2.3 Pontryagin duality	6
	2.4 Structure theorems	6
	2.5 Spectral synthesis	6
II	Topological quantum groups	7
3	Kac algebras	8
4	Compact quantum groups	9
5	Locally compact quantum groups	10
	5.1 Multiplicative unitaries	10
II	I Representation categories	11
6	Representations of compact groups	12
	6.1 Peter-Weyl theorem	12
	6.2 Tannaka-Krein duality	12
	6.3 Mackey machine	12

Part I

Hopf *-algebras

1.1

Multiplier Hopf *-algebras
Algebraic quantum groups
Hopf C*-algebras
idempotent ring assumption

Locally compact groups

2.1

- **2.1** (Non- σ -finite measures). Following technical issues are important
 - (a) The Fubini theorem
 - (b) The Radon-Nikodym theorem
 - (c) The dual space of L^1 space
- 2.2 (Existence of the Haar measure).
- 2.3 (Left and right uniformities).
- 2.4 (Modular functions).
- **2.5** (Uniformly continuous functions). G acts on $C_{lu}(G)$ and $L^1(G)$ continuously with respect to the point-norm topology. A function on G is left uniformly continuous if and only if it is written as f * x for some $f \in L^1(G)$ and $x \in L^\infty(G)$. $g \in C_c(G)$ is two-sided uniformly continuous.
- **2.6** (Structures on a locally compact group). For a locally compact group G, consider $A := C_c(G)$. It is a left Hilbert algebra by the existence of the left Haar measure

$$(f*g)(s) := \int f(t)g(t^{-1}s)dt, \qquad \langle f,g \rangle := \int \overline{g(s)}f(s)ds, \qquad f^{\sharp}(s) := \delta(s^{-1})\overline{f(s^{-1})}.$$

and is a commutative counital multiplier Hopf *-algebra by the group structure.

$$(fg)(s) := f(s)g(s), \qquad \Delta f(s,t) = f(st), \qquad f^*(s) := \overline{f(s)}, \qquad Sf(s) = f(s^{-1}).$$

Since the image of the comultiplication does not belong to $C_c(G) \otimes C_c(G)$, we need to do something unless G is finite. They satisfy a compatibility condition $\langle f g, h \rangle = \langle f, g^*h \rangle$.

With the integral notation $f = \int f(s)\lambda_s ds$, we can write

For multipliers, intuitively

We start from this structures.

From now on, we are going to exclude any measure theory and the theory of non-commutative L^p spaces. First, we have the completion $H =: L^2(G)$. Consider two representations

$$\lambda: (C_c(G), *, ^{\sharp}) \rightarrow B(L^2(G)), \qquad m: (C_c(G), \cdot, ^{\ast}) \rightarrow B(L^2(G)).$$

- (a) λ is well-defined.
- (b) *m* is well-defined.

Proof. The multiplication representation m is well-defined because for $f \in C_c(G)$ we have $f^*f \in C_c(G) \subset L^2(G)$ so

$$||m(f)g||^2 = \langle fg, fg \rangle = \langle f^*fg, g \rangle, \qquad g \in C_c(G).$$

2.2

2.7 (Left convolution algebra $L^1(G)$). Let G be a locally compact group. The representation m defines the von Neumann algebra $m(C_c(G))'' =: L^{\infty}(G)$ and its predual $L^1(G)$.

- (a) There is a natural injection $C_c(G) \to L^1(G)$.
- (b) There is a natural Banach *-algebra structure on $L^1(G)$ extended from the Hilbert algebra structure of $C_c(G)$.
- (c) The Banach algebra $L^1(G)$ has a two-sided approximate unit.
- (d) $\alpha: G \to \operatorname{Aut}(L^1(G))$ is point-norm continuous.
- (e) $\lambda: G \to U(L^2(G))$ and $\lambda: L^1(G) \to B(L^2(G))$ are strongly continuous.
- (f) Convolution inequalities.
- (g) Representation theory equivalence.

Proof. Let (U_{α}) be a directed set of open neighborhoods of the identity e of G. By Urysohn lemma, there is $e_{\alpha} \in C_c(U)^+$ such that $||e_{\alpha}||_1 = 1$ for each α . We claim that e_{α} is a two-sided approximate unit for $L^1(G)$. Suppose $g \in C_c(G)$, which is two-sided uniformly continuous. For any $\varepsilon > 0$, take α_0 such that $||g - \lambda_s g|| < \varepsilon$ and $||g - \rho_s g|| < \varepsilon$ for all $s \in U_{\alpha}$ for $\alpha > \alpha_0$. Then, we have

$$||e_{\alpha} * g - g||_{1} = \int |e_{\alpha} * g(t) - g(t)| dt \le \iint e_{\alpha}(s) |g(s^{-1}t) - g(t)| ds dt$$

$$= \int_{U_{\alpha}} e_{\alpha}(s) ||\lambda_{s}g - g||_{1} ds < \varepsilon \int e_{\alpha}(s) ds \le \varepsilon,$$

and

$$\begin{split} \|g*e_{\alpha}-g\|_{1} &= \int |g*e_{\alpha}(s)-g(s)| \, ds \leq \iint |g(t)-g(s)| e_{\alpha}(t^{-1}s) \, dt \, ds \\ &= \iint |g(t)-g(ts)| e_{\alpha}(s) \, dt \, ds = \int \|g-\rho_{s}g\|_{1} e_{\alpha}(s) \, ds < \varepsilon \int e_{\alpha}(s) \, ds \leq \varepsilon, \end{split}$$

and they imply $\lim_{\alpha} \|e_{\alpha} * g - g\|_1 = \lim_{\alpha} \|g * e_{\alpha} - g\|_1 = 0$. We can approximate $f \in L^1(G)$ with compactly supported continuous functions by the $\varepsilon/3$ argument.

Note that we have

$$\begin{split} |\langle \lambda(\xi)\eta, \zeta \rangle|^2 &= |\int \int \xi(t)\eta(t^{-1}s)\overline{\zeta(s)} \, ds \, dt|^2 \\ &\leq \int \int |\xi(t)||\eta(t^{-1}s)|^2 \, ds \, dt \cdot \int \int |\xi(t)||\zeta(s)|^2 \, ds \, dt \\ &= ||\xi||_1^2 ||\eta||_2^2 ||\zeta||_2^2 \end{split}$$

and

$$\begin{aligned} |\langle \rho(\xi)\eta, \zeta \rangle|^2 &= | \iint \eta(t)\xi(t^{-1}s)\overline{\zeta(s)} \, ds \, dt |^2 \\ &\leq \iint |\xi(t^{-1}s)||\eta(t)|^2 \, ds \, dt \cdot \iint |\xi(t^{-1}s)||\zeta(s)|^2 \, ds \, dt \\ &= \|\xi\|_1 \|F\xi\|_1 \|\eta\|_2^2 \|\zeta\|_2^2 \end{aligned}$$

imply

$$\|\lambda(\xi)\|_{2\to 2} \le \|\xi\|_1, \qquad \|\rho(\xi)\|_{2\to 2} \le \sqrt{\|\xi\|_1 \|F\xi\|_1}.$$

The equalities do not hold, consider $\|\lambda(\xi)\| = \|\hat{\xi}\|_{\infty}$ if $G = \mathbb{R}$.

2.8 (Group
$$C^*$$
-algebras). $\overline{\lambda(C_c(G))} =: C_r^*(G), \overline{m(C_c(G))} =: C_0(G).$

- 2.9 (Fell absorption principle). Structure operator
- **2.10** (Fourier algebra). The Fourier algebra is H * SH =: A(G).
- 2.11 (Fourier-Stieltjes algebra). positive definite functions, Bochner theorem
- **2.12** (GNS construction for locally compact groups). Let G be a locally compact group. By a state of $C^*(G)$, we could construct the GNS representation of G. An analog of GNS construction for $L^1(G)$ without completion is doable, when given a function of positive type on G, instead of a state.

2.3 Pontryagin duality

- **2.13** (Locally compact abelian groups). Let G be a locally compacy abelian group. Then, we can consider the intersection of L^2 and L^∞ via $A' =: \mathcal{F}^{-1}(L^2(G) \cap L^\infty(G))$.
- 2.14 (Dual group).
- 2.15 (Fourier inversion theorem).
- 2.16 (Plancherel's theorem).

2.4 Structure theorems

2.5 Spectral synthesis

- **2.17** (Compact groups). Let *G* be a compact group. Then, $C_c(G) = C(G)$ is a Hopf C^* -algebra.
- **2.18** (Discrete groups). Let G be a discrete group. Then, $C_c(G)$ is a unital left Hilbert algebra.

Part II Topological quantum groups

Kac algebras

Compact quantum groups

Locally compact quantum groups

5.1 Multiplicative unitaries

Part III Representation categories

Representations of compact groups

- 6.1 Peter-Weyl theorem
- 6.2 Tannaka-Krein duality
- 6.3 Mackey machine

Example of non-compact Lie groups, Wigner classification