Lab Practical One

Week 1: Lab Methods and Organelles

Background	. 2
Microscopic Techniques	. 3
Organelles and Cytoplasmic Inclusions	. 6
Mitotic Phases	. 7
Apoptosis Events	. 7
Features and Functions	. 8

Week 1: Lab Methods and Organelles

Background

- Describe the steps in tissue preparation for microscopy:
 - **Fixation**: typically the first step in the preparation of histological sections in where tissues samples are treated with fixatives as a means to preserve and protect from biological decay.
 - **Fixatives**: solutions, compounds, or others means meant to either disable degradative enzymes, induce cross-linking (stabilizing proteins), or protect from extrinsic damage.
 - **Embedding**: the process of placing tissues in a harder medium (e.g., paraffin and plastic resins) as a means to allow for thin slicing of tissue.
 - Embedding occurs later in the process of preparation; once a tissue is fixed it must first undergo a series of steps:
 - · **Dehydration**: the removal of water using ethanol.
 - **Clearing**: replacement of an organic solvent miscible with both alcohol and the embedding medium, giving a translucent appearance.
 - **Infiltration**: evaporation of the clearing solvent via exposure to heat (50–60 °C) promoting the final embedding of tissue into the medium.
 - **Staining**: used as a means to increase contrast in tissue or specific features of tissue that are of interest as most biology tissue has very little inherent contrast.
 - · Basophilic: dyes that have an affinity for anionic (net negative charge) cells parts.
 - · E.g., hematoxylin, toluidine blue, alcian blue, and methylene blue.
 - Acidophilic: dyes that have an affinity for cationic (net positive charge) cell parts.
 - E.g., eosin, orange G, and acid fuchsin

• What does H & E Stain?

- Hematoxylin (H) and eonsin (E) stains are among the most commonly used stains.
 - As mentioned above, hematoxylin acts as a basophilic dye, turning negatively charge organelles like the cell nucleus, RNA-rich regions of cytoplasm, cartilage, anywhere from blue → purple.
 - Eosin acts as an Acidophilic dye, typically turning cationic structures pink; sometimes it is considered to be a **counterstain**, i.e., typically a secondary dye that is meant to distinguish features.

• What does PAS Stain?

 Periodic acid-Schiff (PAS) utilizes hexose rings of polysaccharides and other carbohydrate rich structures to stain macromolecules purple → magenta.

Describe Enzyme Histochemistry.

- Enzyme histochemistry is a method for localizing cellular structures using specific enzymatic activity in such structures.
- Preservation of enzymes often requires non-fixed or mildly fixed tissue and generally adhere to the following steps:
 - 1. Tissues sections are immersed in solution containing the substrate of the enzyme to be localized.
 - 2. The enzyme is exposed to and allowed to act on the substrate.
 - 3. A marker compound is introduced and reacted with the product from step 2.
 - 4. Location is determined via precipitation of the insoluble product, which must be visible a light or electron microscopy, over the site of the enzyme.
- Phosphatase, dehydrogenase, and peroxidase are common examples of enzymes detected with histochemistry.

• How does Immunohistochemistry work?

- Immunohistochemistry (IHC): the use of labeled antibodies and antigens to identify and localize many proteins and macromolecules that lack specific enzymatic activity.
- Visualization of such interactions are commonly accomplished with either:
 - Chromogenic immunohistochemistry (CIH): use of antibodies conjugated to an enzyme that catalyzes a color-producing reaction.
 - Immunofluorescence: tagging of a fluorophore (fluorescein, rhodamine) to an antibody.
- Common used in diagnosis of abnormal cells such as those in cancerous tumors.

Microscopic Techniques

• **Bright field**: a very common method that uses ordinary light and stained structures to discern differences and cell structures.

• **Phase contrast**: uses differences in refractive index of natural cell and tissue components; allows for observation of living cells.

• **Confocal**: use of scans at successive focal planes with a more focused light beam, usually from a laser, to construct a 3D image.

• **Fluorescent**: use of longer wavelengths emitted via specific perturbations of cellar substances using a specific wavelength (usually UV). Useful for identification of cells and components that have affinity for specific fluorescent compounds.

• Transmission Electron Microscopy (TEM): a high resolution (3 nm) that allows for particles to be magnified many times via transmission of electrons though a specimen; very thin tissue sections are used and a flat image is made from the intersection of the electron beam and the sample.

• **Scanning Electron Microscopy (SEM)**: used to provide a high resolution view of the surface of cells, tissues, and organs. Unlike TEM, SEM does not intersect with the specimen, instead the electrons are reflected by a coating and then collected, analyzed, and used to generate a 3D view.

Organelles and Cytoplasmic Inclusions

Organelles and Cytoplasmic Inclusions

Structure	Size	Light Microscopic Features	Function
Nucleus	5–20 µm; largest organelle		
Nucleolus			
P. Membrane			
Rough ER			
Smooth ER			
Golgi Body			
Vesicles			
Mitochondria			
Endosomes			
Lysosomes			
Peroxisomes			
Cytoskeleton			
Ribosomes			
Glycogen			
L. Droplets			

Mitotic Phases

•

•

•

•

•

Apoptosis Events

- DNA fragmentation:
- Decrease of cell volume:
- Membrane Blebbing:
- Formation of apoptotic bodies:

Features and Functions

- Stratified squamous epithelium:
 - Features:
 - Functions:
- Simple cuboidal epithelium:
 - Features:
 - Functions:
- Skeletal muscle:
 - <u>o</u> Features:
 - Functions:
- Cardiac muscle:
 - Features:
 - Functions:
- Smooth muscle:
 - Features:
 - Functions: