Оглавление

70) Гиратор и конвертор полного отрицательного сопротивления	2
71) Функциональные узлы для каскадного проектирования активных фильтров	
97) Ключи на полевых транзисторах. Схемы	
102) Логический элемент со сложным инвертором. (И-НЕ)	
106) Базовые элемнты КМОП - логики. Инвертор с 3-мя выходнымисостояниями	

КМОП - комплементарная структура металл-оксид-полупроводник

70) Гиратор и конвертор полного отрицательного сопротивления

конвертер полного отрицательного сопротивления

На входах идеального операционного усилителя напряжения равны, т.е. U1=U2, поэтому I2=-I1. Отсюда следует, что U1/I1=-R2

$$U_{\text{BbIX}} = U_2 + I_2 R.$$

$$I_1 = (U_1 - U_{\text{BbIX}})/R.$$

/силителя напряжения равны, т.е. $U_1 = U_2$, поэтому $I_2 = -I_1$. Отсюда сл

олагалось, что схема находится в устойчивом состоянии. Однако, тельной обратными связями, следует принять меры, чтобы выпо. ПОС с идеальным ОУ при резистивных обратных связях заключаетс этельной. Для схемы на рис. 12 это означает, что сопротивление

71) Функциональные узлы для каскадного проектирования активных фильтров

8.5. Всепропускающие фильтры

Как было показано на рис. 8.2, одной из особенностей идеальной частотной характеристики является наличие линейноизменяющейся фазы и постоянство группового времени замедления в пределах полосы пропускания. Когда мы проектируем фильтр по амплитудно-частотной характеристике, то мы вводим искажения функции группового времени у краев полосы. Чтобы устранить эти искажения, необходимы фазовые корректоры. Наиболее распространенными фазовыми корректорами являются всепропускающие (фазовые) фильтры.

97) Ключи на полевых транзисторах. Схемы.

Ключевые цепи на полевых транзисторах с управляющим p-n-переходом и МОП-транзисторах с индуцированным каналом (а, б, в, г)

ТТЛ «И-НЕ» со сложным инвертором

106) Базовые элемнты КМОП - логики. Инвертор с 3-мя выходнымисостояниями

а	EO	F
0	0	Z
1	0	Z
0	1	1
1	1	0

Такие инверторы имеют дополнительные ключевые транзисторы, управление которыми осуществляется по независимой цепи ЕО. Если оба этих ключа открыты, инвертор

действует подобно обычному. Когда ключи закрыты, питание прекращается и выходной вывод приобретает очень большое сопротивление по отношению к обеим шинам питания (пример К561 ЛН1). Если к выходу подсоединить конденсатор, то при третьем состоянии разряд конденсатора будет продолжительным вследствие высоких сопротивлений входа и выхода транзисторов. Это свойство используется для построения ОЗУ, ждущих мультивибраторов, реле времени с большой выдержкой.