Kenetleme Devresi Örnekleri

Soru 1. Şekil 1'deki kenetleme devresinin girişine frekansı f=1kHz olan Şekil 2'deki gibi bir işaret uygulandığında, R direnci uçlarındaki v_0 çıkışının değerini bulunuz ve dalga şeklini çiziniz. (Diyod idealdir)

Soru 2. Girişine Şekil 4.'teki gibi $f=1\,kHz$ 'lik bir v_i gerilim işareti uygulandığında, çıkışında Şekil 5.'teki gibi bir v_o gerilim işareti elde edebileceğimiz bir kenetleme devresi tasarlayınız. Tasarlamış olduğunuz devredeki elemanlara değer tayin ederek devrenin çalışmasını açıklayınız. Devrede kullanılan **diyotun silisyum** olduğu kabul edilecektir.

Cevap 2.0-T/2 aralığında diyot tıkamadadır. O nedenle analize T/2-T aralığından başlayacağız.

T/2-T aralığında giriş gerilimi V_i=-6 Volt, dc gerilim kaynağı -4 Volt ve silisyum diyot üzerinde düşen gerilim 0.7 volt olduğundan diyot 1.3 Volt ile iletimde olup kapasite V_c=1.3 Volt ile dolar ve çıkış gerilimi V_o=-4.7 Volt olur.

T-3T/2 aralığında C=10 mikro Farad lık kapasite, üzerindeki yükü R=10 kohm luk direnç üzerinden boşaltmak isteyecek ama boşalmaya zaman bulamayacak. Ve bu aralıkta çıkış gerilimi, kapasite üzerindeki 1.3 Voltluk gerilim ile 7.3 Voltluk giriş geriliminin toplamı olan $V_0=1.3+6=7.3$ Volt olacaktır.

