ICS663: Pattern Recognition

Department of Information and Computer Sciences University of Hawai`l at Manoa

Kyungim Baek

ICS663 (Fall 2015)

1

Lecture 2

- Basic Concepts of Probability
- Bayesian Decision Theory
 - Introduction
 - Minimum Probability of Error Classification

ICS663 (Fall 2015)

3

Announcement

• List of previous projects has been posted

ICS663 (Fall 2015)

Probability Theory

• A simple example: Apples and Oranges

- What are the overall probability that an apple is picked?
- Given that we have chosen an orange, what is the probability that the box we choose was the blue one?

ICS663 (Fall 2015)

Figure from *PRML* by C. Bishop

Definitions (discrete probability)

- A (stochastic) experiment is any process that yields one of a given set of possible outcomes and the outcome is not necessarily known in advance
- The *sample space S* of the experiment is just the set of all possible outcomes
- The *outcome* of an experiment is the specific point in a sample space
- An event E is any subset of possible outcomes in S, i.e. E ⊆ S
- We say that event *E occurs* when the actual outcome *o* is in *E*, which may be written *o*∈*E*

ICS663 (Fall 2015)

5

Probability Theory

• Probability of an event *E* occurring is *P*(*E*):

$$-0 \le P(E) \le 1$$

$$-\sum_{o\in E}P(o)=1$$

• If x is a discrete random variable that can assume any of the values in the finite set $X = \{v_1, v_2, ..., v_n\}$, then we denote $P(x = v_k)$ by P_k , the probability of x assuming the value v_k

$$-0 \le P_k \le 1$$

$$-\sum P_k = 1 \text{ for } k = 1,..., n$$

ICS663 (Fall 2015)

Probability Theory (cont'd)

Joint Probability

$$P(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Marginal Probability

$$P(X = x_i) = \frac{c_i}{N}$$

Conditional Probability

$$P(Y = y_j | X = x_i) = \frac{P(Y = y_j, X = x_i)}{P(X = x_i)} = \frac{n_{ij}}{N} / \frac{c_i}{N} = \frac{n_{ij}}{c_i}$$

ICS663 (Fall 2015)

Figure from *PRML* by C. Bishop

Rules of Probability

• Sum Rule: $P(X) = \sum_{Y} P(X,Y)$

$$P(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_j n_{ij}$$
$$= \sum_{x_i \in Y} P(X = x_i, Y = y_j)$$

• Product Rule: $P(X,Y) = P(Y \mid X)P(X)$

$$P(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

$$= \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N} = P(Y = y_j \mid X = x_i) P(X = x_i)$$

ICS663 (Fall 2015)

Figure from $\ensuremath{\textit{PRML}}$ by C. Bishop

Bayes' Theorem

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

where

$$P(X) = \sum_{Y} P(X \mid Y)P(Y)$$

Posterior = (Likelihood × Prior) / Evidence ∞ Likelihood × Prior

ICS663 (Fall 2015)

ICS663 (Fall 2015)

9

Probability Densities

From PRML by C. Bishop

Expected Value and Variance

• **Expected value**, expectation, mean, or average of a random variable *x*:

$$E(x) = \sum_{x} x P(x)$$

- weighted average or (arithmetic) mean of the values of a random variable under the probability distribution
- Variance of a random variable x :

$$V(x) = E[\{x - E(x)\}^2] = \sum_{x} [x - E(x)]^2 p(x)$$
$$= E(x^2) - [E(x)]^2$$

ICS663 (Fall 2015)

12

Probabilistic Events

- Independent events occur independently of each other $-P(e_1, e_2, ..., e_n) = P(e_1)P(e_2) \cdots P(e_n)$
- Mutually exclusive events cannot occur at the same time
 - $-P(e_i,e_i)=0$ for $i\neq j$
 - $-P(e_1 \vee e_2 \vee \cdots \vee e_n) = P(e_1) + P(e_2) + \cdots + P(e_n)$
- Exhaustive events are a set of events from which at least one of the events will occur
 - $-P(e_1 \vee e_2 \vee \cdots \vee e_n) = 1$
- Mutually exclusive and exhaustive events
 - $-P(e_1) + P(e_2) + \cdots + P(e_n) = 1$

ICS663 (Fall 2015)

Bayesian Decision Theory

- Based on quantifying the tradeoff between various classification decisions using probability and the costs that accompany such decisions
- The sea bass/salmon example
 - Category (fish type) ω
 - ω is a random variable
 - The catch of salmon and sea bass is equi-probable
 - $-P(\omega_1) = P(\omega_2)$ (uniform priors)
 - $-P(\omega_1) + P(\omega_2) = 1$ (mutually exclusive and exhaustive)
- Decision rule with only the prior information
 - Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2

uninformed decision

ICS663 (Fall 2015)

15

Decision Theory

- Decision theory + probability theory
 - Optimal decision making in situations involving uncertainty
- Given (x,t): input vector & vector of target variables
 - Goal: predict t given new value for x
 - $-p(\mathbf{x},\mathbf{t})$: complete description of the uncertainty
 - Determine $p(\mathbf{x},\mathbf{t})$ from training data set (inference)
- Make a specific prediction for t, or take a specific action based on the prediction

ICS663 (Fall 2015)

Informed Decision

- Use of the class-conditional information
 - $-p(x|\omega)$: probability that the feature value is x while the category is ω (x is a continuous random variable associated with a pattern feature); usually easier to measure than $P(\omega|x)$
 - $-p(x|\omega_1)$ and $p(x|\omega_2)$ describe the difference in lightness between populations of sea bass and salmon

Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i

ICS663 (Fall 2015)

Recall: Bayes Theorem

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)}$$

In case of two categories: $p(x) = \sum_{j=1}^{2} p(x \mid \omega_j) P(\omega_j)$

- $P(\omega_j|x)$: posterior probability that the category being ω_j given that the feature value x has been measured (i.e. ω_i conditioned by x)
- $p(x | \omega_i)$: likelihood of ω_i with respect to x (i.e. x conditioned by ω_i)
- $P(\omega_i)$: prior probability of ω_i occurrence (in the general population)
- p(x): probability of the evidence x
- Bayes theorem interpretation:

posterior = (likelihood × prior) / evidence

ICS663 (Fall 2015)

17

Bayesian Classifier

- Decision given the posterior probabilities
 - x is an observation for which:

if
$$P(\omega_1|x) > P(\omega_2|x)$$
 True class = ω_1

Therefore, whenever we observe a particular x, the probability of error is :

 $P(error|x) = P(\omega_1|x)$ if we decide ω_2

 $P(error|x) = P(\omega_2|x)$ if we decide ω_1

• Minimize the average probability of error

$$P(error) = \int_{-\infty}^{\infty} P(error, x) dx = \int_{-\infty}^{\infty} P(error \mid x) p(x) dx$$

ICS663 (Fall 2015)

19

Bayes Theorem (cont'd)

Right: Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities on the *left*

ICS663 (Fall 2015)

18

Bayesian Classifier (cont'd)

• Bayes decision rule for minimizing the probability of error

Decide ω_1 if $P(\omega_1|x) > P(\omega_2|x)$; otherwise decide ω_2

- $-P(error|x) = min[P(\omega_1|x), P(\omega_2|x)]$
- Likelihood $p(x \mid \omega_j)$: measured during the training
- Prior probabilities $P(\omega_j)$: assumed to be known within the population of sample patterns
- Equivalent rule:

Decide ω_1 if $p(x \mid \omega_1) \cdot P(\omega_1) > p(x \mid \omega_2) \cdot P(\omega_2)$; otherwise decide ω_2

— The probability of evidence, p(x), is a normalization factor that can be ignored (since it is the same for all class alternatives)

ICS663 (Fall 2015)

20

Bayesian Classifier (cont'd)

- Optimal in terms of probability of error
 - Prior probability and the likelihood are assumed to be known
 - → Provide a theoretically optimal classifier

