VVstęp Koncepcja Dane surowe -> technicznie poprawne Dane technicznie poprawne -> spójne

Czyszczenie Danych

Piotr Guzik, Lucjan Janowski, Krzysztof Rusek

October 17, 2017

Outline

- Wstęp
- 2 Koncepcja
- 3 Dane surowe -> technicznie poprawne
- 4 Dane technicznie poprawne -> spójne

Wstęp Koncepcja Dane surowe -> technicznie poprawne Dane technicznie poprawne -> spójne

Wartości odstająca

Kod w R.

Dziwne wartości

- Analiza, czy wartość jest możliwa?
- Usunięcie
- Usunięcie, jeżeli nie chcemy analizować takich wartości
- Zwielokrotnienie, jeżeli jesteśmy zainteresowani takimi przypadkami
- Korekta analizy

Outline

- 1 Wstęp
- 2 Koncepcja
- 3 Dane surowe -> technicznie poprawne
- 4 Dane technicznie poprawne -> spójne

Dane surowe

Dane surowe Technicznie poprawne

Dane surowe -> technicznie poprawne Dane technicznie poprawne -> spójne

Użyteczność i wiarygodność

Trzeba rozróżnić:

- Trafność: siła predykcji danej zmiennej
- Wiarygodność: jaka jest szansa, że nasza zmienna posiada właściwą wartość, taką jak w rzeczywistości

Wynikowa użyteczność zmiennej to połączenie trafności i wiarygodności.

Outline

- 1 Wstęp
- 2 Koncepcja
- 3 Dane surowe -> technicznie poprawne
- 4 Dane technicznie poprawne -> spójne

Cel: osiągnąć technicznie poprawne dane. Co to znaczy:

 Każda wartość jaką mamy w systemie może zostać przypisana do konkretnej zmiennej

Cel: osiągnąć technicznie poprawne dane. Co to znaczy:

- Każda wartość jaką mamy w systemie może zostać przypisana do konkretnej zmiennej
- Każda zmienna posiada odniesienie do rzeczywistości

Cel: osiągnąć technicznie poprawne dane. Co to znaczy:

- Każda wartość jaką mamy w systemie może zostać przypisana do konkretnej zmiennej
- Każda zmienna posiada odniesienie do rzeczywistości
- Typ zmiennej jest dobrany tak, aby reprezentować rzeczywistość

Cel: osiągnąć technicznie poprawne dane. Co to znaczy:

- Każda wartość jaką mamy w systemie może zostać przypisana do konkretnej zmiennej
- Każda zmienna posiada odniesienie do rzeczywistości
- Typ zmiennej jest dobrany tak, aby reprezentować rzeczywistość
- Każda wartość dla danej zmiennej ma odpowiedni typ

Cel: osiągnąć technicznie poprawne dane. Co to znaczy:

- Każda wartość jaką mamy w systemie może zostać przypisana do konkretnej zmiennej
- Każda zmienna posiada odniesienie do rzeczywistości
- Typ zmiennej jest dobrany tak, aby reprezentować rzeczywistość
- Każda wartość dla danej zmiennej ma odpowiedni typ

Dla R oznacza to, że dane są przechowywane w ramce w której każda kolumna jest poprawnie nazwana i ma odpowiedni typ.

Specjalne wartości

Not available

NA

is.na

NULL

NULL

is.null

Infinity

Inf

Not a number

NaN

is.nan

Czytanie z pliku

Jeżeli mamy szczęście wystarczy:

```
read.cvs
```

wraz z konwersją typów, o której później. Jak plik nie jest tak regularny to musimy użyć:

```
readLines()
grepl()
strsplit()
```

Do tego może się przydać równoległość obliczeń z pakietu:

```
parallel
```

Typy zmiennych

Jeżeli dane są już przygotowane i wydają się poprawne zawsze należy je przetestować z wykorzystaniem funkcji:

```
head
str
summary
```

Typy danych

Gotowa ramka danych powinna mieć przypisane typy, można to zrobić z wykorzystaniem funkcji:

```
as.numeric as.logical
as.integer as.factor
as.character as.ordered
```

Osobnym typem jest data, tu trzeba indywidualnie analizować dane, pmocna może być biblioteka:

```
lubridate
dmy myd ydm mdy
                  dym
                       ymd
```

Przetestowanie posiadanych typów można zrobić z wykorzystaniem funkcji:

```
sapply(ramkaDanych, class)
```

Outline

- 1 Wstęp
- 2 Koncepcja
- 3 Dane surowe -> technicznie poprawne
- 4 Dane technicznie poprawne -> spójne

Cel: otrzymać dane nadające się do analizy. Co to znaczy, że wszystkie:

- wartości specjalne (NA, NULL, Inf, NaN)
- "oczywiste" błędy
- wartości odstające

są usunięte, wyjaśnione lub zamienione (kolejność alfabetyczna, zawsze trzeba wyjaśnić!).

Cel: otrzymać dane nadające się do analizy. Co to znaczy, że wszystkie:

- wartości specjalne (NA, NULL, Inf, NaN)
- "oczywiste" błędy
- wartości odstające

są usunięte, wyjaśnione lub zamienione (kolejność alfabetyczna, zawsze trzeba wyjaśnić!).

To jest najbardziej ludzka część analizy ...

Cel: otrzymać dane nadające się do analizy. Co to znaczy, że wszystkie:

- wartości specjalne (NA, NULL, Inf, NaN)
- "oczywiste" błędy
- wartości odstające

są usunięte, wyjaśnione lub zamienione (kolejność alfabetyczna, zawsze trzeba wyjaśnić!).

To jest najbardziej ludzka część analizy ...

Spójność może być testowana wewnątrz zmiennej (10⁹km), pomiędzy zmiennymi (wiek 3 lata i status małżeński: tak), pomiędzy bazami danych (liczba użytkowników korzystających z onetu jest znacząco różna dla pomiaru z Gdańska i Przemyśla).

Wykrycie niespójności

Musimy ustalić co rozumiemy przez niespójność, np. ujemna długość pakietu

Wartości specjalne

Wykrywanie w R jest proste. Famy funkcje:

```
is.finite is.na
```

Wiele funkcji statystycznych posiada opcję usunięcia braku danych:

Pamiętajmy, że wartości tych nie należy kodować. Brak typu aplikacji czy NA dla typu aplikacji to dwie różne wartości! Pamiętajmy, że NA może być zakodowane w danych. Dla przykładu, jeżeli aplikacja jest nie rozpoznana wpisujemy 0. W takiej sytuacji powinniśmy zamienić 0 na NA.

Wartości odstające

Temat rzeka. Trzeba być bardzo uważnym żeby nie usunąć wartości istotnych.

Wartości odstające

Temat rzeka. Trzeba być bardzo uważnym żeby nie usunąć wartości istotnych.

Podstawowy sposób to wykres pudełkowy.

$$x_{0.25} - r(x_{0.75} - x_{0.25}) \leftrightarrow x_{0.75} + r(x_{0.75} - x_{0.25})$$
 (1)

gdzie r=1.5, choć dokładna implementacja w R jest nieco inna.

Wartości odstające

Temat rzeka. Trzeba być bardzo uważnym żeby nie usunąć wartości istotnych.

Podstawowy sposób to wykres pudełkowy.

$$x_{0.25} - r(x_{0.75} - x_{0.25}) \leftrightarrow x_{0.75} + r(x_{0.75} - x_{0.25})$$
 (1)

gdzie r=1.5, choć dokładna implementacja w R jest nieco inna.

Zauważmy, że powyższy sposób nie zadziała dla rozkładów typu Gamma i wartości bliskich 0. Jeżeli x ma tylko wartości dodatnie i spodziewamy się wartości odstających bliskich zeru to może wykorzystać metodę Hiridoglou i Berthelot daną równaniem:

$$h(x) = \max(\frac{x}{X_m}, \frac{X_m}{x}) \ge r \tag{2}$$

gdzie x_m to mediana. Implementacja w pliku R.

Błędy oczywiste

Błędy oczywiste to takie które przeczą logice.

- Ujemna długość pakietu
- Pakiet IP o długości miliona bajtów
- Pakiet UDP posiadający w nagłówku wartość ACK
- Pakiet z polem ACK, który został rozpoznany jako pakiet UDP

Takie błędy powinny być sprawdzone. Dobrym sposobem jest pakiet

editrules

Korekcja błę<u>dów</u>

Ponownie można znaleźć wiele sposobów na korektę błędów. Pomocny może być pakiet:

deducorrect

- Najlepiej znaleźć poprawną wartość w oparciu o inne wartości
- Wstawianie średniej. Dla telekomunikacji bardzo niebezpieczne
- Pewien model typu y = ax gdzie x jest wartością znaną
- Wartość losowa wylosowana spośród innych wartości x
- Wykorzystanie sąsiadów KNN
- Co wymyślicie

Na koniec trzeba wrócić do testowania oczywistych błędów bo dodane zmienne mogą przeczyć pewnym regułą. Możemy np. wylosować rozmiar pakietu inny niż spotykany w tej sieci.

Czytanie danych z WWW

R