Matrix free linear algebra in OOPS

Roel Stappers

¹Norwegian Meteorological Institute roels@met.no

> ECMWF 23 November 2016

- Formulations of DA and flexibility in OOPS
- A brief "introduction" to C++ (templates)
- 3 Current OOPS implementation
- Matrix free linear algebra in OOPS
- **5** GOM+ control variable (flexibility of the OOPS code)
- Varbc

Primal formulation
$$(\mathbf{d} = \mathbf{y} - \mathcal{H}(x_0^g), \ b = x_0^b - x_0^g)$$

$$(\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}) \delta x_0 = \mathbf{B}^{-1} b + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{d}$$

Primal formulation (
$$\mathbf{d} = \mathbf{y} - \mathcal{H}(x_0^g)$$
, $b = x_0^b - x_0^g$)

$$(\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}) \delta x_0 = \mathbf{B}^{-1} b + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{d}$$

Saddle point formulation

$$\begin{bmatrix} \mathbf{B}^{-1} & \mathbf{H}^{\mathsf{T}} \\ \mathbf{H} & -\mathbf{R} \end{bmatrix} \begin{bmatrix} \delta \mathbf{x} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{B}^{-1} b \\ \mathbf{d} \end{bmatrix}$$

Dual formulation (3D/4D-PSAS)

$$(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})\lambda = -\mathbf{d} + \mathbf{H}b$$
$$\delta x = -\mathbf{B}\mathbf{H}^T\lambda + b$$

Primal formulation (
$$\mathbf{d} = \mathbf{y} - \mathcal{H}(x_0^g)$$
, $b = x_0^b - x_0^g$)

$$(\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}) \delta x_0 = \mathbf{B}^{-1} b + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{d}$$

Saddle point formulation

$$\begin{bmatrix} \mathbf{B}^{-1} & \mathbf{H}^{\mathsf{T}} \\ \mathbf{H} & -\mathbf{R} \end{bmatrix} \begin{bmatrix} \delta \mathbf{x} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{B}^{-1} b \\ \mathbf{d} \end{bmatrix}$$

Dual formulation (3D/4D-PSAS)

$$(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})\lambda = -\mathbf{d} + \mathbf{H}b$$
$$\delta x = -\mathbf{B}\mathbf{H}^T\lambda + b$$

Weak constraint 4D-VAR

$$(\mathbf{L}^T\mathbf{D}^{-1}\mathbf{L} + \mathbf{H}^T\mathbf{R}^{-1}\mathbf{H})\delta\mathbf{x} = \mathbf{L}^T\mathbf{D}^{-1}\mathbf{b} + \mathbf{H}^T\mathbf{R}^{-1}\mathbf{d}$$

- Saddle point weak constraint 4D-VAR etc. EDA, EnKF, ETKF
- Flexibility to change linear equation solvers (PCG, MINRES, RPCG, GMRES)

Saddle point formulations in OOPS

Currently the saddle point formulation introduces new classes for

- SaddlePointMatrix.
- SaddlePointVector,
- SaddlePointMinimizer,
- SaddlePointPreconditionerMatrix,
- SaddlePointLMPMatrix

One of the aims of the mfla-lib is to simplify the construction of these block Matrices, e.g. to construct the operator

$$S = \begin{bmatrix} B^{-1} & H^T \\ H & -R \end{bmatrix}$$

we write

auto
$$S = Binv \& ~H \mid H \& -R;$$

Here ${\tt Binv}$ acts on ${\tt ModelIncrements}$ and -H acts on ${\tt Departures}.$ S will act on objects of the form

Where ${\tt x}$ is an ModelIncrement and ${\tt y}$ is a Departure.

No need to introduce new classes for new saddle point formulation.

DualVectors (container classes) and matrix multiplication

 The classes HessianMatrix, HtRinvHMatrix and HBHtMatrix in OOPS can be generated automatically at compile time, e.g.

```
auto HBHt = H*B*~H;
```

- The class DualVector that contains Departures for J_o , Increments for J_c , ControlIncrements for J_b and J_q should be generate automatically at compile time.
- Note
 - class HMatrix in OOPS maps ControlIncrement to DualVector¹

Roel Stappers (Met Norway) mfla 23 November 2016

6 / 51

¹The adjoint maps from const DualVector. See later slides on signatures for TL and AD operators

A brief "introduction" to C++ (templates)

C++ introduction: Classes

C++ introduction: Non-type template parameters

```
template <int N>
struct Factorial {
  static const int result = N * Factorial < N-1 > :: result;
};
```

C++ introduction: Non-type template parameters

```
template <int N>
struct Factorial {
    static const int result = N * Factorial < N-1>::result;
};

template <>
struct Factorial < 0> {
    static const int result = 1;
};

int main() {
    std::cout << Factorial < 5>::result << "\n";
    return 0;
}</pre>
```

- The value of Factorial<5>::result is determined at compile time.
- Recursion instead of for-loops
- Template specialization (Factorial<0>) instead of if-then-else constructions

C++ introduction: Type template parameters

```
template <typename T>
inline T const Max (T const& a, T const& b)
{
    return a < b ? b:a;
}
int main () {
    int i = 39;
    int j = 20;
    cout << "Max(i, j):" << Max(i, j) << endl;

    double f1 = 13.5;
    double f2 = 20.7;
    cout << "Max(f1, uf2):" << Max(f1, f2) << endl;
}</pre>
```

- const& similar to intent(in)
- Function template with automatic type deduction
- If Max was a class template we would write Max<int>
- Compile-time polymorphism instead of run-time polymorphism.

C++ introduction: Partial template specialization

Current OOPS implementation

```
template < typename MODEL >
DualVector < MODEL > & DualVector < MODEL >:: operator += (const DualVector & rhs) {
  ASSERT(this->compatible(rhs));
  if (dxjb_ != 0) {
    *dxjb_ += *rhs.dxjb_;
  for (unsigned jj = 0; jj < dxjo_.size(); ++jj) {
    *dxjo_[jj] += *rhs.dxjo_[jj];
  }
  for (unsigned jj = 0; jj < dxjc_.size(); ++jj) {
    *dxic_[ii] += *rhs.dxic_[ii];
  return *this:
template < typename MODEL >
DualVector < MODEL > & DualVector < MODEL >:: operator -= (const DualVector & rhs) {
  ASSERT(this->compatible(rhs)):
  if (dxib != 0) {
   *dxib -= *rhs.dxib :
  for (unsigned jj = 0; jj < dxjo_.size(); ++jj) {
    *dxio_[jj] -= *rhs.dxjo_[jj];
  for (unsigned jj = 0; jj < dxjc_.size(); ++jj) {
    *dxic [ii] -= *rhs.dxic [ii]:
  return *this:
template < typename MODEL >
DualVector < MODEL > & DualVector < MODEL >:: operator *= (const double zz) {
  if (dxjb_ != 0) {
    *dxjb_ *= zz;
  for (unsigned jj = 0; jj < dxjo_.size(); ++jj) {
    *dxjo_[ji] *= zz;
 for (unsigned jj = 0; jj < dxjc_.size(); ++jj) {
```

SaddlePointVector (lambda is a DualVector, dx is a ControlIncrement)

```
template < typename MODEL > SaddlePointVector < MODEL > &
        SaddlePointVector < MODEL > :: operator = (const SaddlePointVector & rhs) {
  *lambda = *rhs.lambda :
  *dx_
        = *rhs.dx_;
  return *this;
template < typename MODEL > SaddlePointVector < MODEL > &
        SaddlePointVector < MODEL >:: operator += (const SaddlePointVector & rhs) {
  *lambda_ += *rhs.lambda_;
  *dx_ += *rhs.dx_;
  return *this:
template < typename MODEL > SaddlePointVector < MODEL > &
        SaddlePointVector < MODEL >:: operator -= (const SaddlePointVector & rhs) {
  *lambda_ -= *rhs.lambda_;
  *dx_ -= *rhs.dx_;
  return *this;
}
template < typename MODEL > SaddlePointVector < MODEL > &
        SaddlePointVector < MODEL >:: operator *= (const double rhs) {
  *lambda_ *= rhs;
  *dx_
         *= rhs:
  return *this:
template < typename MODEL > void SaddlePointVector < MODEL > :: zero() {
  lambda ->zero():
  dx ->zero():
template < typename MODEL > void SaddlePointVector < MODEL > :: axpv(const double zz.
                                                  const SaddlePointVector & rhs) {
  lambda ->axpv(zz. *rhs.lambda );
  dx ->axpv(zz, *rhs.dx ):
template < typename MODEL > double SaddlePointVector < MODEL > :: dot product with (
                                      const SaddlePointVector & x2) const {
return dot product(*lambda , *x2.lambda )
      +dot_product(*dx_, *x2.dx_);
```

mfla

```
template < typename MODEL > class HMatrix : private boost::noncopyable {
  typedef typename MODEL::Increment
                                                  Increment_;
  typedef ControlIncrement < MODEL >
                                      CtrlInc_;
  typedef CostFunction < MODEL >
                                      CostFct_;
 public:
  explicit HMatrix(const CostFct_ & j): j_(j) {}
  void multiply(const CtrlInc_ & dx, DualVector < MODEL > & dy) const {
    PostProcessorTL < Increment_ > cost;
    for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
      cost.enrollProcessor(j_.jterm(jj).setupTL(dx));
    CtrlInc ww(dx):
    i .runTLM(ww. cost):
    dv.clear():
    for (unsigned ii = 0; ii < i .nterms(); ++ii) {
      dv.append(cost.releaseOutputFromTL(ji));
  }
 private:
  CostFct const & i:
}:
template < typename MODEL > class HtMatrix : private boost::noncopyable {
  typedef typename MODEL::Increment
                                                  Increment_;
  typedef CostFunction < MODEL >
                                      CostFct :
 public:
  explicit HtMatrix(const CostFct_ & j): j_(j) {}
  void multiply(const DualVector<MODEL> & dy, ControlIncrement<MODEL> & dx) const {
    j_.zeroAD(dx);
    PostProcessorAD < Increment_ > cost;
    for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
      cost.enrollProcessor(j_.jterm(jj).setupAD(dy.getv(jj), dx));
    j_.runADJ(dx, cost);
  7
 private:
  CostFct_ const & j_;
```

HBHtMatrix

```
template < typename MODEL > class HBHtMatrix : private boost::noncopyable {
  typedef typename MODEL::Increment
                                                 Increment_;
  typedef ControlIncrement < MODEL >
                                      CtrlInc_;
  typedef CostFunction < MODEL >
                                      CostFct_;
  typedef DualVector < MODEL >
                                      Dual_;
 public:
  explicit HBHtMatrix(const CostFct_ & j): j_(j) {}
  void multiply(const Dual_ & dy, Dual_ & dz) const {
// Run AD.I
    CtrlInc_ ww(j_.jb());
    i .zeroAD(ww):
    PostProcessorAD < Increment > costad:
    for (unsigned ii = 0; ii < i .nterms(); ++ii) {
      costad.enrollProcessor(j_.jterm(jj).setupAD(dy.getv(jj), ww));
    i .runADJ(ww. costad):
// Multiply by B
    CtrlInc_ zz(j_.jb());
    i .ib().multiplvB(ww. zz):
// Run TLM
    PostProcessorTL < Increment > costtl:
    for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
      costtl.enrollProcessor(j_.jterm(jj).setupTL(zz));
    i .runTLM(zz. costtl):
// Get TLM outputs
    dz.clear();
    for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
      dz.append(costtl.releaseOutputFromTL(jj));
    7
  7
 private:
 CostFct_ const & j_;
```

} :

SaddlePointMatrix

```
template < typename MODEL >
void SaddlePointMatrix < MODEL > :: multiply (const SPVector_ & x, SPVector_ & z) const {
  CtrlInc_ ww(j_.jb());
// The three blocks below could be done in parallel
// ADJ block
  PostProcessorAD < Increment_ > costad;
  j_.zeroAD(ww);
  z.dx(new CtrlInc_(j_.jb()));
  JqTermAD_ * jqad = j_.jb().initializeAD(z.dx(), x.lambda().dx());
  costad.enrollProcessor(jqad);
  for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
    costad.enrollProcessor(j_.jterm(jj).setupAD(x.lambda().getv(jj), ww));
  i .runADJ(ww. costad):
  z.dx() += ww:
// TLM block
  PostProcessorTL < Increment > costtl:
  JqTermTL_ * jqtl = j_.jb().initializeTL();
  costtl.enrollProcessor(jqtl);
  for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
    costtl.enrollProcessor(j_.jterm(jj).setupTL(x.dx()));
  }
  i .runTLM(x.dx(), costtl):
  z.lambda().clear():
  z.lambda().dx(new CtrlInc (i .ib()));
  i .ib().finalizeTL(igtl, x.dx(), z.lambda().dx());
  for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
    z.lambda().append(costtl.releaseOutputFromTL(jj+1));
  3
// Diagonal block
  DualVector < MODEL > diag:
  diag.dx(new CtrlInc_(j_.jb()));
  j_.jb().multiplyB(x.lambda().dx(), diag.dx());
  for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
    diag.append(j_.jterm(jj).multiplyCovar(*x.lambda().getv(jj)));
// The three blocks above could be done in parallel
  z.lambda() += diag;
```

7

HessianMatrix

```
void multiply(const CtrlInc_ & dx, CtrlInc_ & dz) const {
// Setup TL terms of cost function
    PostProcessorTL < Increment_ > costtl;
    JqTermTL * jqtl = j_.jb().initializeTL();
    costtl.enrollProcessor(jqtl);
    unsigned ig = 0:
    if (jqtl) iq = 1;
    for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
      costtl.enrollProcessor(i .iterm(ii).setupTL(dx)):
// Run TLM
    i .runTLM(dx. costtl):
// Finalize Jb+Jq
// Get TLM outputs, multiply by covariance inverses and setup ADJ forcing terms
    PostProcessorAD < Increment > costad:
    dz.zero():
    CtrlInc dw(i .ib()):
// Jb
    CtrlInc_ tmp(j_.jb());
    i .ib().finalizeTL(igtl. dx. dw):
    j_.jb().multiplyBinv(dw, tmp);
    JqTermAD_ * jqad = j_.jb().initializeAD(dz, tmp);
    costad.enrollProcessor(igad):
    i .zeroAD(dw):
// Jo + Jc
    for (unsigned jj = 0; jj < j_.nterms(); ++jj) {
      boost::scoped_ptr<GeneralizedDepartures> ww(costtl.releaseOutputFromTL(iq+jj));
      boost::shared_ptr<GeneralizedDepartures> zz(j_.jterm(jj).multiplyCoInv(*ww));
      costad.enrollProcessor(j_.jterm(jj).setupAD(zz, dw));
    }
// Run AD.I
    j_.runADJ(dw, costad);
    dz += dw;
    j_.jb().finalizeAD(jqad);
```

Matrix free linear algebra in OOPS

Linear operators in mfla

Every linear operator in mfla has the form

```
class Myop {
public:
   typedef xxx domain_type; // e.g. xxx = ModelIncrement
   typedef yyy codomain_type; // e.g. yyy = Departure
   Myop(...) {...}
   codomain_type operator*(const domain_type & v ) const {...}
   domain_type leval(const codomain_type & v ) const {...}
};
```

The leval method implements the action of the adjoint (Alternative design shown later).

Linear operators in mfla

Every linear operator in mfla has the form

```
class Myop {
 public:
  typedef xxx domain_type; // e.g. xxx = ModelIncrement
  typedef yvy codomain type; // e.g. yvy = Departure
  Myop(...) {...}
  codomain type operator*(const domain type & v ) const {...}
  domain type leval(const codomain type & v ) const { ... }
}:
```

The leval method implements the action of the adjoint (Alternative design shown later). Vectors are linear operators. The domain is double the codomain is the vector class itself

```
class ModelIncrement {
 public:
  typedef double domain type;
  typedef ModelIncrement codomain type;
  ModelIncrement(...) {...}
  codomain type operator*(const domain type & v ) const {...}
  domain type leval(const codomain type & v ) const { ... }
}:
```

Here leval implements the inner product of the vector space.

20 / 51

Composition (Matrix multiplication)

```
template < class ExprT1, class ExprT2>
class Prod {
 private:
  typedef typename ExprT1::domain type dom1;
  typedef typename ExprT2::codomain_type cod2;
  static assert(std::is same < dom1, cod2 >:: value, "domain1 | != | codomain2");
 public:
  typedef typename ExprT2::domain_type domain_type;
  typedef typename ExprT1::codomain_type codomain_type;
  Prod(const ExprT1 & e1,const ExprT2 & e2) : _expr1(e1), _expr2(e2) { }
  const codomain_type operator*(const domain_type & v ) const {
    return expr1*( expr2*v);}
  const domain_type leval(const codomain_type & v ) const {
     return expr2.leval(expr1.leval(v));}
 private:
  const ExprT1 & _expr1;
  const ExprT2 & _expr2;
};
// Creator functions
template < class ExprT1, class ExprT2>
Prod < ExprT1. ExprT2 > operator * (const ExprT1& e1. const ExprT2& e2) {
  return Prod < ExprT1, ExprT2 > (e1, e2);}
```

Composition (Matrix Multiplication)

To allow e.g. 2.*B and B*2. we use type traits

```
// General case
template <class ExprT1, class ExprT2>
struct exprTraits {
 typedef ExprT1
                                                  expr type1;
 typedef ExprT2
                                                  expr_type2;
};
// Template specialization for the case Prod double, ExprT2>
template <class ExprT2>
struct exprTraits <double. ExprT2> {
 typedef Scalar < typename ExprT2::codomain type > expr type1:
 typedef ExprT2
                                                  expr_type2;
}:
// Template specialization for the case Prod ExprT1, double>
template <class ExprT1>
struct exprTraits < ExprT1, double > {
  typedef ExprT1
                                                   expr type1;
 typedef Scalar < typename ExprT1::domain_type> expr_type2;
};
```

Class Prod is changed accordingly.

Composition (Matrix Multiplication)

To allow e.g. 2.*B and B*2. we use type traits

```
// General case
template <class ExprT1, class ExprT2>
struct exprTraits {
 typedef ExprT1
                                                  expr type1;
 typedef ExprT2
                                                  expr_type2;
};
// Template specialization for the case Prod double, ExprT2>
template <class ExprT2>
struct exprTraits <double. ExprT2> {
 typedef Scalar < typename ExprT2::codomain type > expr type1:
 typedef ExprT2
                                                  expr_type2;
}:
// Template specialization for the case Prod ExprT1, double>
template <class ExprT1>
struct exprTraits < ExprT1, double > {
  typedef ExprT1
                                                   expr type1;
 typedef Scalar < typename ExprT1::domain_type> expr_type2;
};
```

Class Prod is changed accordingly.

```
template < class ExprT1. class ExprT2>
class Sum {
   private:
      typedef typename ExprT2::domain type
                                                                                                                                       dom2;
      typedef typename ExprT2::codomain type cod2;
   public:
      typedef typename ExprT1::domain type domain type;
      typedef typename ExprT1::codomain_type codomain_type;
       static assert(std::is_same < domain_type, dom2>::value, "domain1u!=udomain2");
       static assert(std::is same < codomain type, cod2 >:: value, "codomain1 !! = | codomain type | cod2 >:: value, "codomain type | codomain type | code | codomain type | code | code | code | codomain type | code | co
       Sum(const ExprT1 & e1,const ExprT2 & e2) : _expr1(e1), _expr2(e2) {}
       codomain type operator*(const domain type & v ) const {
             return expr1*v + expr2*v;
       domain type leval(const codomain type & v ) const {
             return expr1.leval(v)+ expr2.leval(v);
       }
   private:
       const ExprT1 & _expr1;
       const ExprT2 & _expr2;
};
// Creator functions
template < class ExprT1, class ExprT2>
   Sum < ExprT1, ExprT2 > operator + (const ExprT1& e1, const ExprT2& e2) {
   return Sum < ExprT1, ExprT2 > (e1, e2);}
```

23 / 51

Vertcat.h

```
template < class ExprT1, class ExprT2>
class Vertcat {
 private:
 typedef typename ExprT2::domain_type
                                           dom2:
 typedef typename ExprT1::codomain type
                                          codomain type1:
 typedef typename ExprT2::codomain type
                                           codomain type2;
 public:
  typedef typename ExprT1::domain type domain type;
  typedef Vertcat < codomain type1, codomain type2 > codomain type;
  static_assert(std::is_same<domain_type, dom2>::value, "domain1u!=udomain2");
  Vertcat(const ExprT1 & e1,const ExprT2 & e2) : expr1(e1), expr2(e2) {}
  codomain_type operator*(const domain_type &v) const {
    return ( expr1*v | expr2*v):
  domain_type leval(const codomain_type &v ) const {
  return expr1.leval(v.getexpr1()) + expr2.leval(v.getexpr2());
  const ExprT1& getexpr1() const {return _expr1;}
  const ExprT2& getexpr2() const {return expr2;}
 private:
  const ExprT1 & _expr1;
  const ExprT2 & expr2;
}:
template < class ExprT1, class ExprT2>
Vertcat < ExprT1, ExprT2 > operator | (const ExprT1& e1, const ExprT2& e2) {
 return Vertcat < ExprT1, ExprT2 > (e1, e2);
}
```

Horzcat.h

```
template < class ExprT1, class ExprT2>
class Horzcat {
 private:
 typedef typename ExprT1::domain type
                                        domain type1:
 typedef typename ExprT2::domain type
                                        domain type2:
 typedef typename ExprT2::codomain type cod2;
 public:
  typedef Vertcat < domain type1, domain type2 > domain type;
  typedef typename ExprT1::codomain type codomain type;
  static_assert(std::is_same < codomain_type, cod2 >::value, "codomain1u!=ucodoma
  Horzcat(const ExprT1 & e1,const ExprT2 & e2) : expr1(e1), expr2(e2) {}
  codomain_type operator*(const domain_type &v ) const {
  return expr1*v.getexpr1()+ expr2*v.getexpr2():
  domain_type leval(const codomain_type &v ) const {
  return ( expr1.leval(v) | expr2.leval(v));
  const ExprT1& getexpr1() const {return _expr1;}
  const ExprT2& getexpr2() const {return expr2;}
private:
  const ExprT1 & _expr1;
  const ExprT2 & expr2;
}:
template < class ExprT1, class ExprT2>
Horzcat < ExprT1, ExprT2 > operator&(const ExprT1& e1, const ExprT2& e2) {
 return Horzcat < ExprT1, ExprT2 > (e1, e2);
}
```

Transpose.h

```
template < class ExprT >
class Transpose {
 public:
  typedef typename ExprT::codomain type domain type;
  typedef typename ExprT::domain type codomain type;
  Transpose(const ExprT & e) : _expr(e) {}
  codomain type operator*(const domain type &w) const {
    return _expr.leval(w);
  domain type leval(const codomain type &w) const {
    return _expr*w;
 private:
  const ExprT & _expr;
};
// Creator functions
template < class ExprT >
Transpose < ExprT > operator ~ (const ExprT& e) { return Transpose < ExprT > (e);}
template < class ExprT >
Transpose < ExprT > transpose (const ExprT& e) {return Transpose < ExprT > (e);}
```

Inner products and rank one matrices

Taking the transpose of a vector gives a new linear operator with domain the vector class and codomain the scalar field. In particular inner products can be written as

```
auto a = \sim v * v:
```

Given two vectors v, w a rank-one matrix can be constructed as

```
auto P = v * \sim w:
```

This operator acts on elements in the space of w and maps to the space of v.

Inner products and rank one matrices

Taking the transpose of a vector gives a new linear operator with domain the vector class and codomain the scalar field. In particular inner products can be written as

```
auto a = \sim v * v:
```

Given two vectors v, w a rank-one matrix can be constructed as

```
auto P = v * \sim w:
```

This operator acts on elements in the space of w and maps to the space of v. E.g. A Householder reflection is written in mfla as

Similar for projection operators in Gram-Schmidt and also BFGS updates of the estimate of the Hessian in quasi-Newton methods.

27 / 51

Block matrices and composition

$$\mathbf{S} = \begin{bmatrix} \mathbf{D} & \mathbf{0} & \mathbf{L} \\ \mathbf{0} & \mathbf{R} & \mathbf{H} \\ \mathbf{L}^T & \mathbf{H}^T & \mathbf{0} \end{bmatrix}$$

```
auto S = D & O & L | O & R & H | ~L & ~H & O;
auto v = lambda | mu | dx;
auto w = S*v;
```

And

```
auto Hessian = Binv + ~H*Rinv*H;
```

- ullet The code for s, v, Hessian is generated automatically at compile time.
- Straightforward to introduce new Saddle Point formulations.

Ensembles

```
Given vectors x_1,\ldots,x_n\in W we can construct an ensemble as auto X=x1 & x2 & \ldots & xn; X=X*1/sqrt(N-1); Here X:\mathbb{R}^n\to W. We can then construct new operators auto P=X*-X; and auto T=-X*X; Here P\colon W\to W and T\colon\mathbb{R}^n\to\mathbb{R}^n.
```

Ensembles

```
Given vectors x_1, \ldots, x_n \in W we can construct an ensemble as auto X = x1 & x2 & \ldots & xn; X = X*1/sqrt(N-1);

Here X: \mathbb{R}^n \to W. We can then construct new operators auto P = X*-X;

and

auto T = -X*X;
```

Here $P \colon W \to W$ and $T \colon \mathbb{R}^n \to \mathbb{R}^n$.

Open issue

- Given an operator $A:V\to W$ should we consider a horizontal concatenation of elements V to be part of the domain.
- e.g. for operator -x should we consider x to be in the domain and compute the inner products during the construction of T. How to detect that we only need to compute the upper/lower triangular part in this case.
- Similarly for e.g.

```
auto X = x1 & x2 & ... & xn;
auto Y = H*X:
```

Further development for mfla

- Make all binary operators associative? (see next slide)
- Define an interface for the NL, TL and AD for each operator to simplify unit-tests.
- Automatically generate the TL and AD code?
- Ensemble of ModelStates. Is this ever needed? Interpretation as a (nonlinear) operator?
- Replace the observer design pattern (PostProcessors) in HMatrix etc. by composition of operators?
- (Implement Krylov and Lanczos methods, and extract duplicate code in the CG, MINRES, GMRES etc. algorithms.)

Note currently

```
auto V = (v1 | v2) | v3;
auto W = v1 | (v2 | v3);
```

type of V is Vertcat<T,T>, T> while type of W is Vertcat<T,Vertcat<T,T>> We can't do addition because of the type mismatch

Note currently

type of V is Vertcat<T,T>, T> while type of W is Vertcat<T,Vertcat<T,T>> We can't do addition because of the type mismatch

• Also for matrices A & ~H | H & C has a different type than (A | H) & (~H | C)

$$\begin{bmatrix} \begin{bmatrix} A & H^T \\ H & C \end{bmatrix} \end{bmatrix} \qquad \begin{bmatrix} \begin{bmatrix} A \\ H \end{bmatrix} & \begin{bmatrix} H^T \\ C \end{bmatrix} \end{bmatrix}$$

Note currently

type of V is Vertcat< Vertcat< T, T>, T> while type of W is Vertcat< T, Vertcat< T, T>> We can't do addition because of the type mismatch

• Also for matrices A & ~H | H & C has a different type than (A | H) & (~H | C)

$$\begin{bmatrix} \begin{bmatrix} A & H^T \\ H & C \end{bmatrix} & \begin{bmatrix} \begin{bmatrix} A \\ H \end{bmatrix} & \begin{bmatrix} H^T \\ C \end{bmatrix} \end{bmatrix}$$

Both representations act on vectors auto xvy = x | y but they differ internally

$$\begin{bmatrix} \begin{bmatrix} A & H^T \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\ \begin{bmatrix} H & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{bmatrix} = \begin{bmatrix} Ax + H^T y \\ Hx + Cy \end{bmatrix} \qquad \begin{bmatrix} A \\ H \end{bmatrix} x + \begin{bmatrix} H^T \\ C \end{bmatrix} y = \begin{bmatrix} Ax \\ Hx \end{bmatrix} + \begin{bmatrix} H^T y \\ Cy \end{bmatrix}$$

Note currently

type of V is Vertcat< Vertcat< T, T>, T> while type of W is Vertcat< T, Vertcat< T, T>> We can't do addition because of the type mismatch

• Also for matrices A & ~H | H & C has a different type than (A | H) & (~H | C)

$$\begin{bmatrix} \begin{bmatrix} A & H^T \\ [H & C \end{bmatrix} \end{bmatrix} \qquad \begin{bmatrix} \begin{bmatrix} A \\ H \end{bmatrix} & \begin{bmatrix} H^T \\ C \end{bmatrix} \end{bmatrix}$$

Both representations act on vectors auto xvy = x | y but they differ internally

$$\begin{bmatrix} \begin{bmatrix} A & H^T \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\ \begin{bmatrix} H & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{bmatrix} = \begin{bmatrix} Ax + H^T y \\ Hx + Cy \end{bmatrix} \qquad \begin{bmatrix} A \\ H \end{bmatrix} x + \begin{bmatrix} H^T \\ C \end{bmatrix} y = \begin{bmatrix} Ax \\ Hx \end{bmatrix} + \begin{bmatrix} H^T y \\ Cy \end{bmatrix}$$

• Should we choose a single representation for block matrices in mfla or is the possibility to have some control over the internal expansion useful feature?

Note currently

type of V is Vertcat< Vertcat< T, T>, T> while type of W is Vertcat< T, Vertcat< T, T>> We can't do addition because of the type mismatch

• Also for matrices A & ~H | H & C has a different type than (A | H) & (~H | C)

$$\begin{bmatrix} \begin{bmatrix} A & H^T \\ H & C \end{bmatrix} \end{bmatrix} \qquad \begin{bmatrix} \begin{bmatrix} A \\ H \end{bmatrix} & \begin{bmatrix} H^T \\ C \end{bmatrix} \end{bmatrix}$$

• Both representations act on vectors auto xvy = x | y but they differ internally

$$\begin{bmatrix} A & H^T \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} Ax + H^T y \\ Hx + Cy \end{bmatrix} \qquad \begin{bmatrix} A \\ H \end{bmatrix} x + \begin{bmatrix} H^T \\ C \end{bmatrix} y = \begin{bmatrix} Ax \\ Hx \end{bmatrix} + \begin{bmatrix} H^T y \\ Cy \end{bmatrix}$$

- Should we choose a single representation for block matrices in mfla or is the possibility to have some control over the internal expansion useful feature?
- The second representation can currently not act on xvy because we deduce that
 the codomain_type of the Block matrix is Vertcat<X,Y> but the operator+ returns a
 type Sum<Vertcat<X,Y>,<Vertcat<X,Y>> which is not convertible to Vertcat<X,Y>

31 / 51

S1 S2

$$\begin{bmatrix} \begin{bmatrix} A & B \end{bmatrix} & \begin{bmatrix} x \\ y \end{bmatrix} \\ \begin{bmatrix} C & D \end{bmatrix} & \begin{bmatrix} x \\ y \end{bmatrix} \end{bmatrix} = \begin{bmatrix} Ax + By \\ Cx + Dy \end{bmatrix} \qquad \begin{bmatrix} A \\ C \end{bmatrix} x + \begin{bmatrix} B \\ D \end{bmatrix} y = \begin{bmatrix} Ax \\ Cx \end{bmatrix} + \begin{bmatrix} By \\ Dy \end{bmatrix}$$

Parallelism in mfla

S1 S2

$$\begin{bmatrix} \begin{bmatrix} A & B \end{bmatrix} & \begin{bmatrix} x \\ y \\ \end{bmatrix} \\ \begin{bmatrix} C & D \end{bmatrix} & \begin{bmatrix} x \\ y \end{bmatrix} \end{bmatrix} = \begin{bmatrix} Ax + By \\ Cx + Dy \end{bmatrix} \qquad \begin{bmatrix} A \\ C \end{bmatrix} x + \begin{bmatrix} B \\ D \end{bmatrix} y = \begin{bmatrix} Ax \\ Cx \end{bmatrix} + \begin{bmatrix} By \\ Dy \end{bmatrix}$$

Let $t_A \oplus t_B = \max(t_A, t_B)$ and $t_A \otimes t_B = t_A + t_B$. t_W cost of vector addition in codomain of A and B and t_V cost of vector addition in codomain of C and D

$$t_{S1} = t_W \otimes (t_A \oplus t_B) \oplus t_V \otimes (t_C \oplus t_D) \leq (t_W \oplus t_V) \otimes ((t_A \oplus t_C) \oplus (t_B \oplus t_D)) = t_{S2}$$

with equality iff $t_A = t_B = t_C = t_D$. Showing that S1 is never less efficient than S2.

Parallelism in mfla

S1 S2

$$\begin{bmatrix} \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\ \begin{bmatrix} C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{bmatrix} = \begin{bmatrix} Ax + By \\ Cx + Dy \end{bmatrix} \qquad \begin{bmatrix} A \\ C \end{bmatrix} x + \begin{bmatrix} B \\ D \end{bmatrix} y = \begin{bmatrix} Ax \\ Cx \end{bmatrix} + \begin{bmatrix} By \\ Dy \end{bmatrix}$$

Let $t_A \oplus t_B = \max(t_A, t_B)$ and $t_A \otimes t_B = t_A + t_B$. t_W cost of vector addition in codomain of A and B and t_V cost of vector addition in codomain of C and D

D

$$t_{S1} = t_W \otimes (t_A \oplus t_B) \oplus t_V \otimes (t_C \oplus t_D) \leq (t_W \oplus t_V) \otimes ((t_A \oplus t_C) \oplus (t_B \oplus t_D)) = t_{S2}$$

with equality iff $t_A = t_B = t_C = t_D$. Showing that S1 is never less efficient than S2.

• Replacing | by & for the adjoint will not be optimal.

В

В

Signature of the TL and AD operators

	void Htl(const X& x, Y& y)	Y Htl(const X& x);	// Y Htl(X&& x)
	Htl(x,y)	<pre>auto y = Htl(x);</pre>	auto y = Htl(x); // auto y = Htl(f())
TL	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} I & 0 \\ H & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} I \\ H \end{bmatrix} [x]$	[y] = [H] [x]
AD	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} I & Ht \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$	$\begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} I & Ht \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ void Had(X& x, Y&& y);	[x] = [Ht][y]
	void Had(X& x, Y& y)	//X Had(Y&& y); //x += Had(move(y));	X Had(Y&& y);

- Stroustrup: return a result as a return value rather than modifying an object through an argument.
- Option 1) In the adjoint we set y to zero but memory can not be deallocated. An "unnecessary" addition in adjoint code for every function call²
- Option 2) still requires pass-by-reference in the adjoint
- Option 2+3) Copy assignment needs to be =delete for all objects (to avoid y=Htl(x))
- Option 3) X&& is not allowed to be a deduced type³. Introduce unit-tests for this.

²How does this overhead affect the speed of the adjoint?

 $^{^3}$ See https://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers

Open issues: Ivalues, prvalues, xvalues, copy/move-assignment, copy/move-constructor, copy/move elision

$$\bullet \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}. \text{ b=a+b; or b+=a;. Note we have } \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

• void swap(T& a, T& b);
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

• Destructor -b;
$$\begin{bmatrix} a \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
 adjoint b=0;

34 / 51

Roel Stappers (Met Norway) mfla 23 November 2016

⁴With automatic storage duration

 $^{^{5}}$ Note that simply b = a + b would not release the resources held by a at the correct time. Although the destructor would get called when a goes out of scope

Reshaping

There is an invertible linear transformation G that maps horizontal concatenations of vectors $v_i \in V$ to vertical concatenations.

$$G: V^n o V^n, \quad \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \mapsto \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

For clarity distinguish the domain and codomain

$$G: \operatorname{Lin}(\mathbb{R}^n, V) o \operatorname{Lin}(\mathbb{R}, V^n), \quad egin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \mapsto egin{bmatrix} v_1 \ v_2 \ \vdots \ v_n \end{bmatrix}$$

Reshaping

There is an invertible linear transformation G that maps horizontal concatenations of vectors $v_i \in V$ to vertical concatenations.

$$G:V^n o V^n, \quad \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \mapsto egin{bmatrix} v_1 \ v_2 \ \vdots \ v_n \end{bmatrix}$$

For clarity distinguish the domain and codomain

$$G: \operatorname{Lin}(\mathbb{R}^n, V) o \operatorname{Lin}(\mathbb{R}, V^n), \quad \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \mapsto egin{bmatrix} v_1 \ v_2 \ \vdots \ v_n \end{bmatrix}$$

For operators $A_i:W\to V$

$$G: \operatorname{Lin}(W^n, V) o \operatorname{Lin}(W, V^n), \quad \begin{bmatrix} A_1 & A_2 & \dots & A_n \end{bmatrix} \mapsto egin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_n \end{bmatrix}$$

Iterating

Given a linear operator $A: V \to V$. We define the nonlinear operator

$$iterate(n) : Lin(V, V) \rightarrow Lin(V, V^n)$$

$$A \mapsto \begin{bmatrix} I \\ A \\ \vdots \\ A^{n-1} \end{bmatrix}$$

Iterating

Given a linear operator $A: V \rightarrow V$. We define the nonlinear operator

$$iterate(n): \operatorname{Lin}(V,V)
ightarrow \operatorname{Lin}(V,V^n) \ A \mapsto \left[egin{array}{c} I \ A \ dots \ dots \ 1 \$$

Also the nonlinear operator

normalize :
$$V o V$$

$$v \mapsto \frac{1}{\sqrt{v^T v}} v$$

Naive Krylov methods

Given a linear operator A:V o V we can construct a new linear operator

$$F: V \to \operatorname{Lin}(\mathbb{R}^n, V),$$

 $v \mapsto \begin{bmatrix} v & Av & A^2v & \dots & A^nv \end{bmatrix}$

then we can generate

```
auto r = b + B*~H*Rinv*d; // b = xb-xg , d = y - H(xg)
auto A = I + B*~H*Rinv*H;
auto F = Ginv*iterate(A,n); // or Ginv*iterate(normalize*A,n);
auto K = F*r;
```

Naive Krylov methods

Given a linear operator A:V o V we can construct a new linear operator

$$F: V \to \operatorname{Lin}(\mathbb{R}^n, V),$$

 $v \mapsto \begin{bmatrix} v & Av & A^2v & \dots & A^nv \end{bmatrix}$

then we can generate

```
auto r = b + B*~H*Rinv*d; // b = xb-xg , d = y - H(xg)
auto A = I + B*~H*Rinv*H;
auto F = Ginv*iterate(A,n); // or Ginv*iterate(normalize*A,n);
auto K = F*r;
```

Note that the Krylov subspace is itself a linear operator $K:\mathbb{R}^n\to V$ If we have a function object for the cost function $J:V\to\mathbb{R}$ we should be able to do composition

```
auto JK = J * K; // J o K: R^n \longrightarrow R, v \longrightarrow J(K*v)
```

Here $JK : \mathbb{R}^n \to \mathbb{R}$.

Given an ensemble x we should be able to do

```
auto JKX = J * (K & X);
```

To search for the minimum of J restricted to the combined Krylov and ensemble space.

Summary

- mfla allows composition, addition, horizontal and vertical concatenation and keeps track of the adjoint for each TL.
- Code for e.g. block matrices (saddle point formulations), DualVectors, Hessian and ensembles can be generated automatically at compile time
- Ease of composition is essential to get flexible code.

Summary

- mfla allows composition, addition, horizontal and vertical concatenation and keeps track of the adjoint for each TL.
- Code for e.g. block matrices (saddle point formulations), DualVectors, Hessian and ensembles can be generated automatically at compile time
- Ease of composition is essential to get flexible code.
- Open issues
 - Can we impose the single input, single output everywhere?
 - Can we exclude copy assignment (and copy construction) for all objects?
 - how to model the relation between NL and TL/AD
 - ▶ How to handle linearization state of operators
 - Automatically generate TL/AD code at compile time?
 - ► C++11 in OOPS (use of auto, move constructors, rvalue references)
 - Which decisions can be made at compile time to simplify the code (avoid unnecessary creation of templated code), e.g. the DA-formulation, the minimization algorithm, model resolution?

Side effects (IO, diagnostics). Note NL/TL/AD in a single object here

```
template < class dom >
struct Statewriter {
  typedef dom domain type;
  typedef dom codomain_type;
  Statewriter(std::ostream & osnl,std::ostream & ostl, std::ostream & osad) :
                  osnl(osnl), ostl(ostl), osad(osad) { }
  codomain type operator()(domain type x) const {
    osnl << x << "\n"; return x; }
  codomain type tl(domain type, domain type dx) const { // was operator*
    _ostl << dx << "\n"; return dx; }
  domain type ad(domain type, codomain type dy) const { // was leval
    _osad << dy << "\n"; return dy; }
 private:
  std::ostream & osnl,
  std::ostream & _ostl.
  std::ostream & osad;
};
```

39 / 51

Side effects (IO, diagnostics). Note NL/TL/AD in a single object here

```
template < class dom >
struct Statewriter {
  typedef dom domain type;
  typedef dom codomain_type;
  Statewriter(std::ostream & osnl,std::ostream & ostl, std::ostream & osad) :
                  osnl(osnl), ostl(ostl), osad(osad) { }
  codomain type operator()(domain type x) const {
    osnl << x << "\n"; return x; }
  codomain type tl(domain type, domain type dx) const { // was operator*
    _ostl << dx << "\n"; return dx; }
  domain type ad(domain type, codomain type dy) const { // was leval
    _osad << dy << "\n"; return dy; }
 private:
  std::ostream & osnl,
  std::ostream & ostl.
  std::ostream & osad;
};
int main() {
// ...
  Propagator M(...);
  std::ofstream osnl("nltraj.txt");
  std::stringstream osad; // Or /dev/null implementation
  Statewriter < State > W(osnl, std::cout, osad);
  auto WM = W*M:
  auto WM4 = WM*WM*WM*WM:
};
```

• Other side effects (e.g. canonical injections into Fortran arrays, or diagnostics)

39 / 51

Design of objects in OOPS: Interpolate

Current

```
class QgFields {
// Interpolate to given location
  void interpolate (const LocQG &, GomQG &) const;
  void interpolateTL(const LocQG &, GomQG &) const;
  void interpolateAD(const LocQG &, const GomQG &);
// etc
};
```

This signature suggests that $interpolate : LocQG \rightarrow GomQG$. Note AD is a non-const.

Design of objects in OOPS: Interpolate

Current

```
class QgFields {
// Interpolate to given location
  void interpolate (const LocQG &, GomQG &) const;
  void interpolateTL(const LocQG &, GomQG &) const;
  void interpolateAD(const LocQG &, const GomQG &);
// etc
};
```

This signature suggests that $interpolate: LocQG \rightarrow GomQG$. Note AD is a non-const. Instead move interpolation to LocQG $LocQg: QgField \rightarrow GomQg$

```
class LocQG {
  void interpolate (const Qgfields &, GomQG &) const;
  void interpolateTL(const Qgfields &, GomQG &) const;
  void interpolateAD(QgFields &, const GomQG &) const;
};
```

All operators are now const member function. Const GomQG?

Design of objects in OOPS: Interpolate

Current

```
class QgFields {
// Interpolate to given location
  void interpolate (const LocQG &, GomQG &) const;
  void interpolateTL(const LocQG &, GomQG &) const;
  void interpolateAD(const LocQG &, const GomQG &);
// etc
};
```

This signature suggests that interpolate : $LocQG \rightarrow GomQG$. Note AD is a non-const. Instead move interpolation to $LocQG \ LocQg : QgField \rightarrow GomQg$

```
class LocQG {
  void interpolate (const Qgfields &, GomQG &) const;
  void interpolateTL(const Qgfields &, GomQG &) const;
  void interpolateAD(QgFields &, const GomQG &) const;
};
```

All operators are now const member function. Const GomQG? Perhaps treat interpolation as a "first class citizen".

```
class Interpolate {
  Interpolate(LocQG locQG) : _locQG(locQG) { }
  GomQG    NL(const Qgfields &) const;
  GomQG    TL(const Qgfields &) const;
  QgFields AD(const GomQG &) const;
};
```

Design of objects in OOPS: Derivatives and interpolation

$LocQg: QgField \rightarrow GomQg$

$QgField: LocQg \rightarrow GomQg$

```
class QgField {
  GomQG   NL(const LocQG &) const; // Function evaluation
  GomQG   TL(const LocQG &) const; // The spatial derivative at a point
  LocQg   AD(const GomQG &) const; // We need linearization points here
};
```

Design of objects in OOPS: Derivatives and interpolation

$LocQg: QgField \rightarrow GomQg$

$QgField: LocQg \rightarrow GomQg$

```
class QgField {
  GomQG   NL(const LocQG &) const; // Function evaluation
  GomQG   TL(const LocQG &) const; // The spatial derivative at a point
  LocQg   AD(const GomQG &) const; // We need linearization points here
};
```

• Is this "Duality" between Functions and Domains something general?

Design of objects in OOPS: Derivatives and interpolation

$LocQg: QgField \rightarrow GomQg$

$QgField: LocQg \rightarrow GomQg$

```
class QgField {
  GomQG   NL(const LocQG &) const; // Function evaluation
  GomQG   TL(const LocQG &) const; // The spatial derivative at a point
  LocQg   AD(const GomQG &) const; // We need linearization points here
};
```

- Is this "Duality" between Functions and Domains something general?
- ullet To handle both "views" should we implement $QgField \times LocQg o GomQg$ and use currying
- ullet E.g. if QgField qgfield; and LocQg logqg; (qgfield \in QgField and logqg \in LocQg)
- ullet Then qgfield: LocQg
 ightarrow GomQg and locqg: QgField
 ightarrow GomQg

```
SUBROUTINE f(x,y)
 ! f: x -> y
 CALL h(x,z)
 CALL g(z,y)
END
```

```
SUBROUTINE ftl(x,dx,dy)
 CALL h(x,z)
 CALL htl(x,dx,dz)
 CALL gtl(z,dz,dy)
END
```

```
SUBROUTINE fad(x,dy,dx)
 CALL h(x,z)
 CALL gad(z,dy,dz)
 CALL had(x,dz,dx)
END
```

42 / 51

```
SUBROUTINE f(x,v)
                          SUBROUTINE ftl(x,dx,dv)
                                                    SUBROUTINE fad(x,dv,dx)
 ! f: x -> v
                           CALL h(x.z)
                                                      CALL h(x,z)
 CALL h(x,z)
                                                      CALL gad(z,dy,dz)
                          CALL htl(x,dx,dz)
 CALL g(z,y)
                           CALL gtl(z,dz,dy)
                                                      CALL had(x.dz.dx)
END
                          END
                                                    END
template < class G, class H>
class Prod {
 public:
  typedef typename H::domain_type domain_type;
  typedef typename G::codomain_type codomain_type;
  Prod(const G & g, const H & h) : g(g), h(h) { }
  codomain_type operator()(domain_type x) const {
    return g(h(x));
  codomain_type tl(const domain_type & x,domain_type dx) const {
    return g.tl(h(x), h.tl(x,dx));
  domain_type ad(const domain_type & x,codomain_type dy) const {
    return h.ad(x, g.ad(h(x),dy));
 private:
  const G g;
  const H h:
};
```

```
SUBROUTINE f(x,y)
                          SUBROUTINE ftl(x,dx,dy)
                                                    SUBROUTINE fad(x,dy,dx)
 ! f: x -> v
                          CALL h(x.z)
                                                      CALL h(x,z)
 CALL h(x,z)
                          CALL htl(x,dx,dz)
                                                    CALL gad(z,dv,dz)
 CALL g(z,v)
                          CALL gtl(z,dz,dy)
                                                     CALL had(x.dz.dx)
END
                          END
                                                    END
template < class G, class H>
class Prod {
 public:
  typedef typename H::domain_type domain_type;
  typedef typename G::codomain_type codomain_type;
  Prod(const G & g, const H & h) : g(g), h(h) { }
  codomain_type operator()(domain_type x) const {
    return g(h(x));
  codomain_type tl(const domain_type & x,domain_type dx) const {
    return g.tl(h(x), h.tl(x,dx));
  domain_type ad(const domain_type & x,codomain_type dy) const {
    return h.ad(x, g.ad(h(x),dy));
 private:
  const G g;
  const H h:
};
```

- Not optimal for $k \circ f = k \circ (g \circ h)$ but $(k \circ g) \circ h$ is fine if h is "elementary".
- With addition: $k \circ (g + h)$ is fine but $k \circ (g + h \circ p)$ is not optimal

```
template < class G. class H>
class Prod {
 public:
  typedef typename H::domain_type domain_type;
  typedef typename G::domain type Gdomain type;
  typedef typename G::codomain_type codomain_type;
  Prod(const G & g,const H & h) : _g(g), _h(h), _x(0), _y(0) { }
  codomain_type operator()(domain_type x) const {
    _x = x;
    v = h(x);
    return _g(_y);
  codomain type tl(domain type dx) const {
    return _g.tl(_y,_h.tl(_x,dx));
  domain type ad(codomain type dy) const {
    return _h.ad(_x,_g.ad(_y,dy));
  }
 private:
  domain_type _x;
  Gdomain type v;
  const G _g;
  const H h;
};
```

Here _x and _y only get initialized after the call to operator()

43 / 51

Restructuring the Hessian

$$\begin{bmatrix}
I \\
-M_{1} & I \\
\vdots \\
-M_{N-1} & I
\end{bmatrix}$$

$$\begin{bmatrix}
\delta x_{0} \\
\delta x_{1} \\
\vdots \\
\delta x_{N-1}
\end{bmatrix}$$

$$\begin{bmatrix}
b_{0} \\
b_{1} \\
\vdots \\
b_{N-1} \\
\vdots \\
d_{N-1}
\end{bmatrix}$$

$$\begin{bmatrix}
b_{0} \\
b_{1} \\
\vdots \\
b_{N-1} \\
\vdots \\
d_{N-1}
\end{bmatrix}$$

$$\begin{bmatrix}
d_{0} \\
d_{1} \\
\vdots \\
d_{N-1}
\end{bmatrix}$$

$$\begin{bmatrix}
d_{0} \\
d_{1} \\
\vdots \\
d_{N-1}
\end{bmatrix}$$

$$\begin{bmatrix}
d_{0} \\
d_{1} \\
\vdots \\
d_{N-1}
\end{bmatrix}$$

$$\begin{bmatrix}
d_{0} \\
d_{1} \\
\vdots \\
d_{N-1}
\end{bmatrix}$$

Reordering the rows gives

$$\begin{bmatrix}
I \\
H_{0} \\
-M_{1} & I \\
H_{1} \\
-M_{2} & I \\
& H_{2} \\
& & \ddots & \ddots \\
& & -M_{N-1} & I
\end{bmatrix}
\begin{bmatrix}
\delta x_{0} \\
\delta x_{1} \\
\vdots \\
\delta x_{N-1}
\end{bmatrix} - \begin{bmatrix}
b_{0} \\
d_{0} \\
b_{1} \\
d_{1} \\
\vdots \\
b_{N-1} \\
d_{N-1}
\end{bmatrix}$$
(2)

45 / 51

GOM+ control variable (flexibility of the OOPS code)

GOM+-arrays as control variable. Interpolation as a strong constraint

The weak constraint 4D-VAR cost function can be written as (4D-vector notation)

$$J(\textbf{x}) = \frac{1}{2}\|\mathcal{H}(\mathcal{V}(\textbf{x})) - \textbf{y}\|_{\textbf{R}^{-1}}^2 + \frac{1}{2}\|\mathcal{L}(\textbf{x}) - \textbf{p}^b\|_{\textbf{D}^{-1}}^2 = \tilde{J}_o(\textbf{x}) + J_q(\textbf{x})$$

Here V(x) is the mapping from 4D model states to 4D-GOM+-arrays.

GOM+-arrays as control variable. Interpolation as a strong constraint

The weak constraint 4D-VAR cost function can be written as (4D-vector notation)

$$J(\textbf{x}) = \frac{1}{2}\|\mathcal{H}(\mathcal{V}(\textbf{x})) - \textbf{y}\|_{\textbf{R}^{-1}}^2 + \frac{1}{2}\|\mathcal{L}(\textbf{x}) - \textbf{p}^b\|_{\textbf{D}^{-1}}^2 = \tilde{J}_o(\textbf{x}) + J_q(\textbf{x})$$

Here V(x) is the mapping from 4D model states to 4D-GOM+-arrays.

$$J(\mathbf{x}, \mathbf{z}) = \frac{1}{2} \|\mathcal{H}(\mathbf{z}) - \mathbf{y}\|_{\mathbf{R}^{-1}}^2 + \frac{1}{2} \|\mathcal{L}(\mathbf{x}) - \mathbf{p}^b\|_{\mathbf{D}^{-1}}^2 = J_o(z) + J_q(x)$$

subject to V(x) - z = 0.

GOM+-arrays as control variable. Interpolation as a strong constraint

The weak constraint 4D-VAR cost function can be written as (4D-vector notation)

$$J(\textbf{x}) = \frac{1}{2}\|\mathcal{H}(\mathcal{V}(\textbf{x})) - \textbf{y}\|_{\textbf{R}^{-1}}^2 + \frac{1}{2}\|\mathcal{L}(\textbf{x}) - \textbf{p}^b\|_{\textbf{D}^{-1}}^2 = \tilde{J}_o(\textbf{x}) + J_q(\textbf{x})$$

Here V(x) is the mapping from 4D model states to 4D-GOM+-arrays.

$$J(\mathbf{x}, \mathbf{z}) = \frac{1}{2} \|\mathcal{H}(\mathbf{z}) - \mathbf{y}\|_{\mathbf{R}^{-1}}^2 + \frac{1}{2} \|\mathcal{L}(\mathbf{x}) - \mathbf{p}^b\|_{\mathbf{D}^{-1}}^2 = J_o(z) + J_q(x)$$

subject to V(x) - z = 0.

Incremental formulation with GOM+-arrays as control variable

$$\left(\mathbf{I} + \mathbf{V} \mathbf{L}^{-1} \mathbf{D} \mathbf{L}^{-T} \mathbf{V}^{T} \mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right) \delta \mathbf{z} = \mathbf{V} \mathbf{L}^{-1} \mathbf{D} \mathbf{L}^{-T} \mathbf{V}^{T} \mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{d} + \mathbf{V} \mathbf{L}^{-1} \mathbf{b}$$
(3)

• This a similar to a 1D-VAR retrieval but with $\mathbf{V}\mathbf{L}^{-1}\mathbf{D}\mathbf{L}^{-T}\mathbf{V}^{T}$ as the background error covariance in GOM+-space. Note

$$\delta \mathbf{x} = \mathbf{L}^{-1} \mathbf{b} - \mathbf{L}^{-1} \mathbf{D} \mathbf{L}^{-T} \mathbf{V}^{T} \mathbf{H}^{T} \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{z} - \mathbf{d})$$

No need for a seperate 4D-VAR to assimilate the retrievals.

• Note that \mathbf{H} and \mathbf{H}^T are linearized around a guess \mathbf{z}^g and we could update the linearization trajectories for the obs op without running the nonlinear model. E.g. we could update the linearization trajectory for J_o more often if it is expected that nonlinearities in \mathcal{H} are more important than those in \mathcal{L} . This looks similar to the double inner loop implementation at the UK Met Office.

47 / 51

GOM+-arrays as control variable. Interpolation as a weak constraint

Incremental weak constraint 4D-VAR cost function with weak constraint interpolation

$$J(\delta \mathbf{x}, \delta \mathbf{z}) = \frac{1}{2} \| \mathbf{H} \delta \mathbf{z} - \mathbf{d} \|_{\mathbf{R}^{-1}}^{2} + \frac{1}{2} \| \mathbf{L} \delta \mathbf{x} - \mathbf{b} \|_{\mathbf{D}^{-1}}^{2} + \frac{1}{2} \| \mathbf{V} \delta \mathbf{x} - \delta \mathbf{z} \|_{\mathbf{T}^{-1}}^{2}$$
(4)

$$(\mathbf{I} + (\mathbf{T} + \mathbf{V}\mathbf{L}^{-1}\mathbf{D}\mathbf{L}^{-T}\mathbf{V}^{T})\mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{H})\delta\mathbf{z} = \mathbf{V}\mathbf{L}^{-1}\mathbf{b} + (\mathbf{T} + \mathbf{V}\mathbf{L}^{-1}\mathbf{D}\mathbf{L}^{-T}\mathbf{V}^{T})\mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{d} \quad (5)$$

Showing that the weak constraint formulation is obtained from the strong constraint formulation (eq (3)) by replacing the background error covariance in GOM-space $VL^{-1}DL^{-T}V^{T}$ by $T + VL^{-1}DL^{-T}V^{T}$

Alternatively we can formulate the problem in block matrix form

$$\begin{bmatrix} \mathbf{T}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} & -\mathbf{T}^{-1} \mathbf{V} \\ -\mathbf{V}^T \mathbf{T}^{-1} & \mathbf{L}^T \mathbf{D}^{-1} \mathbf{L} + \mathbf{V}^T \mathbf{T}^{-1} \mathbf{V} \end{bmatrix} \begin{bmatrix} \delta \mathbf{z} \\ \delta \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{d} \\ \mathbf{L}^T \mathbf{D}^{-1} \mathbf{b} \end{bmatrix}$$

For fixed δx the top block row is a 1D-VAR retrieval (parallel). But we avoid here using the background twice

High resolution adjoint in gradient

4D-VAR
$$(\mathbf{x}^b=\mathbf{x}^g)$$

$$(\mathbf{I}+\mathbf{BM}^T\mathbf{H}^T\mathbf{R}^{-1}\mathbf{HM})\delta\mathbf{x}_0=\mathbf{BM}^T\mathbf{H}^T\mathbf{R}^{-1}\mathbf{d}$$
 3D-FGAT

3D-FGA

$$(I + BI^T H^T R^{-1} HI) \delta x_{T/2} = BI^T H^T R^{-1} d$$

3D-FGAT (with 4D-VAR gradient)

$$(\mathbf{I} + \mathbf{B} \mathbf{I}^T \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} \mathbf{I}) \delta \mathbf{x}_0 = \mathbf{B} \mathbf{M}^T \mathbf{H}^T \mathbf{R}^{-1} \mathbf{d}$$

 For this we need flexibility (ease of composition, addition etc) on the low-level objects instead of "high level" objects like a CostFunction Varbc

Varbc

$$J(\delta x,\delta \beta) = \frac{1}{2} \left\| \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} - \begin{bmatrix} \mathbf{L} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \\ \mathbf{H} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \delta \mathbf{x} \\ \delta \beta \end{bmatrix} \right\|_{\tilde{\mathbf{B}}^{-1}}^2$$
 with $\tilde{\mathbf{B}}^{-1} = \operatorname{diag}(\mathbf{D}^{-1},\mathbf{B}_{\beta}^{-1},\mathbf{R}^{-1})$

Roel Stappers (Met Norway)

Varbc

$$J(\delta x, \delta \beta) = \frac{1}{2} \left\| \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} - \begin{bmatrix} \mathbf{L} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \\ \mathbf{H} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \delta \mathbf{x} \\ \delta \beta \end{bmatrix} \right\|_{\tilde{\mathbf{B}}^{-1}}^{2}$$

with $\tilde{\mathbf{B}}^{-1}=\mathrm{diag}(\mathbf{D}^{-1},\mathbf{B}_{\beta}^{-1},\mathbf{R}^{-1})$

$$J(\delta \mathbf{x}, \delta \beta) = \frac{1}{2} \|\mathbf{b} - \mathbf{L} \delta \mathbf{x}\|_{\mathbf{D}^{-1}}^2 + \frac{1}{2} \|\mathbf{c} - \delta \beta\|_{\mathbf{B}_{\beta}^{-1}}^2 + \frac{1}{2} \|\mathbf{d} - \mathbf{H} \delta \mathbf{x} - \mathbf{P} \delta \beta\|_{\mathbf{R}^{-1}}^2$$

We need to interface Fortran subroutines for **P** and \mathbf{B}_{β} and introduce a new type for β and $\delta\beta$. Can we separate the varbc code from hop?