Элементы Линейной Алгебры

Факультатив «Введение в анализ данных и машинное обучение на Python» 25 октября 2019 г.

1 Алгебра матриц

1.1

Определите размер следующих векторов и матриц:

a)
$$H_{n \times k}$$

e)
$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

d)
$$\begin{pmatrix} a & b \\ c & d \\ k & m \end{pmatrix}$$

f)
$$I_{n\times n}$$

1.2

Вычислите:

a)
$$\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} + \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$$

c)
$$0_{4\times 1} + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ 1 \\ 8 \end{pmatrix}$$

d)
$$3 \begin{pmatrix} 7 \\ -1 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

1.3

Вычислите:

a)
$$\begin{pmatrix} 1 & 1 \\ 2 & 7 \end{pmatrix} + \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$

c)
$$I + \begin{pmatrix} 1 & 4 \\ 2 & 2 \end{pmatrix}$$

b)
$$\begin{pmatrix} 4 & 4 & 1 \\ 2 & 0 & 9 \\ 1 & 1 & 0 \end{pmatrix} - 3 \begin{pmatrix} 0 & 0 & 1 \\ 9 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}$$

d)
$$a \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 4 \end{pmatrix} + kI$$
.

1.4

Вычислите матричное произведение, если это возможно:

a)
$$I \times H$$

b)
$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

c)
$$\begin{pmatrix} 7 & 4 & 1 \\ 1 & 2 & 2 \end{pmatrix} \times \begin{pmatrix} 3 & 2 \\ 1 & 1 \\ 0 & 4 \end{pmatrix}$$

d)
$$\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 3 \end{pmatrix}$$

e)
$$7\begin{pmatrix}3&3\\1&2\end{pmatrix} \times I \times \begin{pmatrix}7&1\\0&2\end{pmatrix}$$

f)
$$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 4 \\ 2 & 1 \end{pmatrix}$$

2 Определитель

2.1

Найдите определитель следующих матриц, если это возможно:

- a) $\begin{pmatrix} 2 & 4 \\ 6 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- e) *I*

g) $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

- b) $\begin{pmatrix} 9 & 2 \\ 0 & 1 \end{pmatrix}$
- d) (1)

- f) $\begin{pmatrix} 7 & 0 \\ 1 & 2 \end{pmatrix}$
- h) $\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$

2.2

Найдите матрицу, обратную данной, если это возможно:

a) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

c) (4)

e) $\begin{pmatrix} 7 & 1 \\ 0 & 2 \end{pmatrix}$

b) $\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$

d) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$

 $f) \begin{pmatrix} 6 & 1 & 2 \\ 3 & 1 & 0 \end{pmatrix}$

2.3

Определите, являются ли векторы линейно зависимыми. Если дана матрица, определите, есть ли в ней линейно зависимые векторы.

а) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

d) $\begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$ и $\begin{pmatrix} 9 \\ 6 \\ 9 \end{pmatrix}$

f) $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ и $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$

g) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 1 & 12 & 0 \end{pmatrix}$

- c) $\begin{pmatrix} 3\\2\\3 \end{pmatrix}$ и $\begin{pmatrix} 27\\14\\27 \end{pmatrix}$
- e) $\begin{pmatrix} 3 & 1 & 2 \\ 3 & 4 & 5 \\ 18 & 6 & 12 \end{pmatrix}$
- h) $\begin{pmatrix} 1 & 1 & 3 \\ 4 & 2 & 6 \end{pmatrix}$

3 Векторы в пространстве

3.1

Вычислите скалярное произведение векторов:

a)
$$< \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 , $\begin{pmatrix} 2 \\ 4 \end{pmatrix} >$

b)
$$< \begin{pmatrix} a \\ m \\ d \end{pmatrix}, \begin{pmatrix} c \\ k \\ l \end{pmatrix} >$$

c)
$$< a, b >$$

3.2

Вычислите:

a)
$$a = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $||a|| = ?$

c)
$$c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
, $||c|| = ?$

b)
$$b = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}$$
, $||b||^2 = ?$

d)
$$d = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $||d||^2 = ?$

3.3

Найдите косинус угла между векторами. Определите, являются ли векторы ортогональными.

$$\cos(\angle x, y) = \frac{\langle x, y \rangle}{||x|| \times ||y||}$$

a)
$$\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$

c)
$$\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

e)
$$\begin{pmatrix} -1 \\ -2 \\ 6 \end{pmatrix}$$
, $\begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$

b)
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$

d)
$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$

f)
$$\begin{pmatrix} 0 \\ -2 \\ 4 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 12 \\ -1 \\ -1 \\ 2 \end{pmatrix}$

3.4

Изобразите следующие векторы и системы векторов. Определите, содержит ли система векторов линейно зависимые векторы.

a)
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

e)
$$\begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

f)
$$y_n, x_n, < y, x >= 0$$

c)
$$\begin{pmatrix} 5 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}$$

g)
$$y_k$$
, x_k , z_k , $||x||^2 + ||y||^2 = ||z||^2$

$$d) \begin{pmatrix} 4 & 2 \\ 1 & 0.5 \\ 2 & 0 \end{pmatrix}$$

h)
$$y_{100}$$
, p_{100} , m_{100} , $m_{100} = y_{100} + 2p_{100}$

3.5

Изобразите проекцию вектора Y на указанное пространство. В пункте а) рассчитайте координаты проекции.

a)
$$Y=\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$
 на $a=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

b)
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 на $X = \begin{pmatrix} x_{11} & x_{12} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{pmatrix}$

c)
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 на $X_{n \times k}$