(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 May 2001 (25.05.2001)

(10) International Publication Number WO 01/35726 A1

(51) International Patent Classification7: 5/00, C12N 5/14, 15/82

A01H 1/00,

(21) International Application Number: PCT/US00/31418

(22) International Filing Date:

14 November 2000 (14.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/166,228 17 November 1999 (17.11.1999) US 60/197,899 17 April 2000 (17.04.2000) US 60/227,439 22 August 2000 (22.08.2000) US

- (71) Applicant (for all designated States except US): MENDEL BIOTECHNOLOGY, INC. [US/US]; 21375 Cabot Boulevard, Hayward, CA 94541 (US).
- (71) Applicants and
- (72) Inventors: HEARD, Jacqueline [US/US]; 810 Guildford Avenue, San Mateo, CA 94402 (US). RATCLIFFE, Oliver [GB/US]; 814 East 21st Street, Oakland, CA 94606 (US). CREELMAN, Robert [US/US]; 2801 Jennifer Drive, Castro Valley, CA 94546 (US). JIANG, Cai-Zhong [CN/US]; 34495 Heathrow Terrace, Fremont, CA 94555 (US). PINEDA, Omaira [CO/US]; 19563

Helen Place, Castro Valley, CA 94546 (US). REUBER, Lynne [US/US]; 2000 Walnut Avenue, Fremont, CA 94538 (US). ADAM, Luc [CA/US]; 25800 Industrial Boulevard, L403, Hayward, CA 94545 (US).

- (74) Agent: GUERRERO, Karen; Mendel Biotechnology, Inc., 21375 Cabot Boulevard, Hayward, CA 94545 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PATHOGEN TOLERANCE GENES

(57) Abstract: The present invention relates to transgenic plants and methods of making transgenic plant using punitive transcription factors that modulate the transgenic plant's susceptibility to disease.

PATHOGEN TOLERANCE GENES

RELATED APPLICATION INFORMATION

The present invention claims the benefit from US Provisional Patent Application Serial Nos. 60/166,228 filed November 17, 1999 and 60/197,899 filed April 17, 2000 and "Plant Trait Modification III" filed August 22, 2000.

5

10

15

20

25

30

35

FIELD OF THE INVENTION

This invention relates to the field of plant biology. More particularly, the present invention pertains to compositions and methods for phenotypically modifying a plant.

BACKGROUND OF THE INVENTION

Transcription factors can modulate gene expression, either increasing or decreasing (inducing or repressing) the rate of transcription. This modulation results in differential levels of gene expression at various developmental stages, in different tissues and cell types, and in response to different exogenous (e.g., environmental) and endogenous stimuli throughout the life cycle of the organism.

Because transcription factors are key controlling elements of biological pathways, altering the expression levels of one or more transcription factors can change entire biological pathways in an organism. For example, manipulation of the levels of selected transcription factors may result in increased expression of economically useful proteins or metabolic chemicals in plants or to improve other agriculturally relevant characteristics. Conversely, blocked or reduced expression of a transcription factor may reduce biosynthesis of unwanted compounds or remove an undesirable trait. Therefore, manipulating transcription factor levels in a plant offers tremendous potential in agricultural biotechnology for modifying a plant's traits.

The present invention provides novel transcription factors useful for modifying a plant's phenotype in desirable ways, such as modifying a plant's pathogen tolerance.

SUMMARY OF THE INVENTION

In a first aspect, the invention relates to a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-29, or a complementary nucleotide sequence thereof; (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a); (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-29, or a complementary nucleotide sequence thereof; (d) a nucleotide sequence

comprising silent substitutions in a nucleotide sequence of (c); (e) a nucleotide sequence which hybridizes under stringent conditions over substantially the entire length of a nucleotide sequence of one or more of: (a), (b), (c), or (d); (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e); (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide having a biological activity that modifies a plant's pathogen tolerance; (h) a nucleotide sequence having at least 31% sequence identity to a nucleotide sequence of any of (a)-(g); (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g); (j) a nucleotide sequence which encodes a polypeptide having at least 31% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29; (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29; and (1) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-29. The recombinant polynucleotide may further comprise a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence. The invention also relates to compositions comprising at least two of the above described polynucleotides.

10

15

20

25

30

35

In a second aspect, the invention is an isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide described above.

In another aspect, the invention is a transgenic plant comprising one or more of the above described recombinant polynucleotides. In yet another aspect, the invention is a plant with altered expression levels of a polynucleotide described above or a plant with altered expression or activity levels of an above described polypeptide. Further, the invention may be a plant lacking a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-29.

The plant may be a soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, or vegetable brassicas plant.

In a further aspect, the invention relates to a cloning or expression vector comprising the isolated or recombinant polynucleotide described above or cells comprising the cloning or expression vector.

In yet a further aspect, the invention relates to a composition produced by incubating a polynucleotide of the invention with a nuclease, a restriction enzyme, a polymerase; a polymerase and a primer; a cloning vector, or with a cell.

2

Furthermore, the invention relates to a method for producing a plant having improved pathogen tolerance. The method comprises altering the expression of an isolated or recombinant polynucleotide of the invention or altering the expression or activity of a polypeptide of the invention in a plant to produce a modified plant, and selecting the modified plant for modified pathogen tolerance.

5

10

15

20

25

30

35

In another aspect, the invention relates to a method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of the invention. The method comprises expressing a polypeptide encoded by the polynucleotide in a plant; and identifying at least one factor that is modulated by or interacts with the polypeptide. In one embodiment the method for identifying modulating or interacting factors is by detecting binding by the polypeptide to a promoter sequence, or by detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system, or by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.

In yet another aspect, the invention is a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest. The method comprises placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of the invention and monitoring one or more of the expression level of the polynucleotide in the plant, the expression level of the polypeptide in the plant, and modulation of an activity of the polypeptide in the plant.

In yet another aspect, the invention relates to an integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of the invention, or to a polypeptide encoded by the polynucleotide. The integrated system, computer or computer readable medium may comprise a link between one or more sequence strings to a modified plant pathogen tolerance phenotype.

In yet another aspect, the invention is a method for identifying a sequence similar or homologous to one or more polynucleotides of the invention, or one or more polypeptides encoded by the polynucleotides. The method comprises providing a sequence database; and, querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

The method may further comprise of linking the one or more of the polynucleotides of the invention, or encoded polypeptides, to a modified plant pathogen tolerance phenotype.

3

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides a table of exemplary polynucleotide and polypeptide sequences of the invention. The table includes from left to right for each sequence: the SEQ ID No., the internal code reference number (GID), whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

5

10

15

20

25

30

35

Figure 2 provides a table of exemplary sequences that are homologous to other sequences provided in the Sequence Listing and that are derived from *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), identification of the homologous sequence, whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 3 provides a table of exemplary sequences that are homologous to the sequences provided in Figures 1 and 2 and that are derived from plants other than *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), the unique GenBank sequence ID No. (NID), the probability that the comparison was generated by chance (P-value), and the species from which the homologous gene was identified.

DETAILED DESCRIPTION

The present invention relates to polynucleotides and polypeptides, e.g. for modifying phenotypes of plants.

In particular, the polynucleotides or polypeptides are useful for modifying traits associated with a plant's pathogen tolerance when the expression levels of the polynucleotides or expression levels or activity levels of the polypeptides are altered. Specifically, the polynucleotides and polypeptides are useful for modifying traits associated with a plant's pathogen tolerance, such as alterations in cell wall composition, trichome number or structure, callose induction, phytoalexin induction, alterations in the cell death response, or the like. Transgenic plants employing the polynucleotides or polypeptides of the invention are more tolerant to biotrophic or necrotrophic pathogens such as fungi, bacteria, mollicutes, viruses, nematodes, parasitic higher plants or the like.

The polynucleotides of the invention encode plant transcription factors. The plant transcription factors are derived, e.g., from *Arabidopsis thaliana* and can belong, e.g., to one or more of the following transcription factor families: the AP2 (APETALA2) domain transcription factor family (Riechmann and Meyerowitz (1998) <u>J. Biol. Chem.</u> 379:633-646); the MYB transcription factor family (Martin and Paz-Ares (1997) <u>Trends Genet.</u> 13:67-73); the MADS domain transcription factor family (Riechmann and Meyerowitz (1997) <u>J. Biol.</u>

Chem. 378:1079-1101); the WRKY protein family (Ishiguro and Nakamura (1994) Mol. Gen. Genet. 244:563-571); the ankyrin-repeat protein family (Zhang et al. (1992) Plant Cell 4:1575-1588); the miscellaneous protein (MISC) family (Kim et al. (1997) Plant J. 11:1237-1251); the zinc finger protein (Z) family (Klug and Schwabe (1995) FASEB J. 9: 597-604); the homeobox (HB) protein family (Duboule (1994) Guidebook to the Homeobox Genes. Oxford University Press); the CAAT-element binding proteins (Forsburg and Guarente (1989) Genes Dev. 3:1166-1178); the squamosa promoter binding proteins (SPB) (Klein et al. (1996) Mol. Gen. Genet. 1996 250:7-16); the NAM protein family; the IAA/AUX proteins (Rouse et al. (1998) Science 279:1371-1373); the HLH/MYC protein family (Littlewood et al. (1994) Prot. Profile 1:639-709); the DNA-binding protein (DBP) family (Tucker et al. (1994) EMBO J. 13:2994-3002); the bZIP family of transcription factors (Foster et al. (1994) FASEB J. 8:192-200); the BPF-1 protein (Box P-binding factor) family (da Costa e Silva et al. (1993) Plant J. 4:125-135); and the golden protein (GLD) family (Hall et al. (1998) Plant Cell 10:925-936).

In addition to methods for modifying a plant phenotype by employing one or more polynucleotides and polypeptides of the invention described herein, the polynucleotides and polypeptides of the invention have a variety of additional uses. These uses include their use in the recombinant production (i.e, expression) of proteins; as regulators of plant gene expression, as diagnostic probes for the presence of complementary or partially complementary nucleic acids (including for detection of natural coding nucleic acids); as substrates for further reactions, e.g., mutation reactions, PCR reactions, or the like, of as substrates for cloning e.g., including digestion or ligation reactions, and for identifying exogenous or endogenous modulators of the transcription factors.

DEFINITIONS

A "polynucleotide" is a nucleic acid sequence comprising a plurality of polymerized nucleotide residues, e.g., at least about 15 consecutive polymerized nucleotide residues, optionally at least about 30 consecutive nucleotides, at least about 50 consecutive nucleotides. In many instances, a polynucleotide comprises a nucleotide sequence encoding a polypeptide (or protein) or a domain or fragment thereof. Additionally, the polynucleotide may comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation site, 5' or 3' untranslated regions, a reporter gene, a selectable marker, or the like. The polynucleotide can be single stranded or double stranded DNA or RNA. The polynucleotide optionally comprises modified bases or a modified backbone. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can comprise a sequence in either sense or antisense orientations.

A "recombinant polynucleotide" is a polynucleotide that is not in its native state, e.g., the polynucleotide comprises a nucleotide sequence not found in nature, or the polynucleotide is in a context other than that in which it is naturally found, e.g., separated from nucleotide sequences with which it typically is in proximity in nature, or adjacent (or contiguous with) nucleotide sequences with which it typically is not in proximity. For example, the sequence at issue can be cloned into a vector, or otherwise recombined with one or more additional nucleic acid.

5

10

15

20

25

30

35

An "isolated polynucleotide" is a polynucleotide whether naturally occurring or recombinant, that is present outside the cell in which it is typically found in nature, whether purified or not. Optionally, an isolated polynucleotide is subject to one or more enrichment or purification procedures, e.g., cell lysis, extraction, centrifugation, precipitation, or the like.

A "recombinant polypeptide" is a polypeptide produced by translation of a recombinant polypucleotide. An "isolated polypeptide," whether a naturally occurring or a recombinant polypeptide, is more enriched in (or out of) a cell than the polypeptide in its natural state in a wild type cell, e.g., more than about 5% enriched, more than about 10% enriched, or more than about 20%, or more than about 50%, or more, enriched, i.e., alternatively denoted: 105%, 110%, 120%, 150% or more, enriched relative to wild type standardized at 100%. Such an enrichment is not the result of a natural response of a wild type plant. Alternatively, or additionally, the isolated polypeptide is separated from other cellular components with which it is typically associated, e.g., by any of the various protein purification methods herein.

The term "transgenic plant" refers to a plant that contains genetic material, not found in a wild type plant of the same species, variety or cultivar. The genetic material may include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeraplasty. Typically, the foreign genetic material has been introduced into the plant by human manipulation.

A transgenic plant may contain an expression vector or cassette. The expression cassette typically comprises a polypeptide-encoding sequence operably linked (i.e., under regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the expression of polypeptide. The expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant. A plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to progeny thereof, and to *in vitro* systems that mimic biochemical or cellular components or processes in a cell.

The phrase "ectopically expression or altered expression" in reference to a polynucleotide indicates that the pattern of expression in, e.g., a transgenic plant or plant

tissue, is different from the expression pattern in a wild type plant or a reference plant of the same species. For example, the polynucleotide or polypeptide is expressed in a cell or tissue type other than a cell or tissue type in which the sequence is expressed in the wild type plant, or by expression at a time other than at the time the sequence is expressed in the wild type plant, or by a response to different inducible agents, such as hormones or environmental signals, or at different expression levels (either higher or lower) compared with those found in a wild type plant. The term also refers to altered expression patterns that are produced by lowering the levels of expression to below the detection level or completely abolishing expression. The resulting expression pattern can be transient or stable, constitutive or inducible. In reference to a polypeptide, the term "ectopic expression or altered expression" further may relate to altered activity levels resulting from the interactions of the polypeptides with exogenous or endogenous modulators or from interactions with factors or as a result of the chemical modification of the polypeptides.

The term "fragment" or "domain," with respect to a polypeptide, refers to a subsequence of the polypeptide. In some cases, the fragment or domain, is a subsequence of the polypeptide which performs at least one biological function of the intact polypeptide in substantially the same manner, or to a similar extent, as does the intact polypeptide. For example, a polypeptide fragment can comprise a recognizable structural motif or functional domain such as a DNA binding domain that binds to a DNA promoter region, an activation domain or a domain for protein-protein interactions. Fragments can vary in size from as few as 6 amino acids to the full length of the intact polypeptide, but are preferably at least about 30 amino acids in length and more preferably at least about 60 amino acids in length. In reference to a nucleotide sequence, "a fragment" refers to any subsequence of a polynucleotide, typically, of at least consecutive about 15 nucleotides, preferably at least about 30 nucleotides, more preferably at least about 50, of any of the sequences provided herein.

The term "trait" refers to a physiological, morphological, biochemical or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye, such as seed or plant size, or can be measured by available biochemical techniques, such as the protein, starch or oil content of seed or leaves or by the observation of the expression level of genes, e.g., by employing Northern analysis, RT-PCR, microarray gene expression assays or reporter gene expression systems, or by agricultural observations such as stress tolerance, yield or pathogen tolerance.

"Trait modification" refers to a detectable difference in a characteristic in a plant ectopically expressing a polynucleotide or polypeptide of the present invention relative to a plant not doing so, such as a wild type plant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail at least about a 2%

increase or decrease in an observed trait (difference), at least a 5% difference, at least about a 10% difference, at least about a 20% difference, at least about a 30%, at least about a 50%, at least about a 70%, or at least about a 100%, or an even greater difference. It is known that there can be a natural variation in the modified trait. Therefore, the trait modification observed entails a change of the normal distribution of the trait in the plants compared with the distribution observed in wild type plant.

5

10

15

20

25

30

35

Trait modifications of particular interest include those to seed (such as embryo or endosperm), fruit, root, flower, leaf, stem, shoot, seedling or the like, including: enhanced tolerance to environmental conditions including freezing, chilling, heat, drought, water saturation, radiation and ozone; improved tolerance to microbial, fungal or viral diseases; improved tolerance to pest infestations, including nematodes, mollicutes, parasitic higher plants or the like; decreased herbicide sensitivity; improved tolerance of heavy metals or enhanced ability to take up heavy metals; improved growth under poor photoconditions (e.g., low light and/or short day length), or changes in expression levels of genes of interest. Other phenotype that can be modified relate to the production of plant metabolites, such as variations in the production of taxol, tocopherol, tocotrienol, sterols, phytosterols, vitamins, wax monomers, anti-oxidants, amino acids, lignins, cellulose, tannins, prenyllipids (such as chlorophylls and carotenoids), glucosinolates, and terpenoids, enhanced or compositionally altered protein or oil production (especially in seeds), or modified sugar (insoluble or soluble) and/or starch composition. Physical plant characteristics that can be modified include cell development (such as the number of trichomes), fruit and seed size and number, yields of plant parts such as stems, leaves and roots, the stability of the seeds during storage, characteristics of the seed pod (e.g., susceptibility to shattering), root hair length and quantity, internode distances, or the quality of seed coat. Plant growth characteristics that can be modified include growth rate, germination rate of seeds, vigor of plants and seedlings, leaf and flower senescence, male sterility, apomixis, flowering time, flower abscission, rate of nitrogen uptake, biomass or transpiration characteristics, as well as plant architecture characteristics such as apical dominance, branching patterns, number of organs, organ identity, organ shape or size.

POLYPEPTIDES AND POLYNUCLEOTIDES OF THE INVENTION

The present invention provides, among other things, transcription factors (TFs), and transcription factor homologue polypeptides, and isolated or recombinant polynucleotides encoding the polypeptides. These polypeptides and polynucleotides may be employed to modify a plant's pathogen tolerance.

Exemplary polynucleotides encoding the polypeptides of the invention were identified in the *Arabidopsis thaliana* GenBank database using publicly available sequence

8

analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known transcription factors. Polynucleotide sequences meeting such criteria were confirmed as transcription factors.

Additional polynucleotides of the invention were identified by screening Arabidopsis thaliana and/or other plant cDNA libraries with probes corresponding to known transcription factors under low stringency hybridization conditions. Additional sequences, including full length coding sequences were subsequently recovered by the rapid amplification of cDNA ends (RACE) procedure, using a commercially available kit according to the manufacturer's instructions. Where necessary, multiple rounds of RACE are performed to isolate 5' and 3' ends. The full length cDNA was then recovered by a routine end-to-end polymerase chain reaction (PCR) using primers specific to the isolated 5' and 3' ends. Exemplary sequences are provided in the Sequence Listing.

The polynucleotides of the invention were ectopically expressed in overexpressor or knockout plants and changes in the pathogen tolerance of the plants was observed. Therefore, the polynucleotides and polypeptides can be employed to improve the pathogen resistance of plants.

Making polynucleotides

5

10

15

20

25

30

35

The polynucleotides of the invention include sequences that encode transcription factors and transcription factor homologue polypeptides and sequences complementary thereto, as well as unique fragments of coding sequence, or sequence complementary thereto. Such polynucleotides can be, e.g., DNA or RNA, e.g., mRNA, cRNA, synthetic RNA, genomic DNA, cDNA synthetic DNA, oligonucleotides, etc. The polynucleotides are either double-stranded or single-stranded, and include either, or both sense (i.e., coding) sequences and antisense (i.e., non-coding, complementary) sequences. The polynucleotides include the coding sequence of a transcription factor, or transcription factor homologue polypeptide, in isolation, in combination with additional coding sequences (e.g., a purification tag, a localization signal, as a fusion-protein, as a pre-protein, or the like), in combination with non-coding sequences (e.g., introns or inteins, regulatory elements such as promoters, enhancers, terminators, and the like), and/or in a vector or host environment in which the polynucleotide encoding a transcription factor or transcription factor homologue polypeptide is an endogenous or exogenous gene.

A variety of methods exist for producing the polynucleotides of the invention. Procedures for identifying and isolating DNA clones are well known to those of skill in the art, and are described in, e.g., Berger and Kimmel, <u>Guide to Molecular Cloning Techniques</u>, Methods in Enzymology volume 152 Academic Press, Inc., San Diego, CA ("Berger");

Sambrook et al., Molecular Cloning - A Laboratory Manual (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ("Sambrook") and Current Protocols in Molecular Biology, F.M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2000) ("Ausubel").

Alternatively, polynucleotides of the invention, can be produced by a variety of in vitro amplification methods adapted to the present invention by appropriate selection of specific or degenerate primers. Examples of protocols sufficient to direct persons of skill through in vitro amplification methods, including the polymerase chain reaction (PCR) the ligase chain reaction (LCR), Qbeta-replicase amplification and other RNA polymerase mediated techniques (e.g., NASBA), e.g., for the production of the homologous nucleic acids of the invention are found in Berger, Sambrook, and Ausubel, as well as Mullis et al., (1987) PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, CA (1990) (Innis). Improved methods for cloning in vitro amplified nucleic acids are described in Wallace et al., U.S. Pat. No. 5,426,039. Improved methods for amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature 369: 684-685 and the references cited therein, in which PCR amplicons of up to 40kb are generated. One of skill will appreciate that essentially any RNA can be converted into a double stranded DNA suitable for restriction digestion, PCR expansion and sequencing using reverse transcriptase and a polymerase. See, e.g., Ausubel, Sambrook and Berger, all supra.

Alternatively, polynucleotides and oligonucleotides of the invention can be assembled from fragments produced by solid-phase synthesis methods. Typically, fragments of up to approximately 100 bases are individually synthesized and then enzymatically or chemically ligated to produce a desired sequence, e.g., a polynucleotide encoding all or part of a transcription factor. For example, chemical synthesis using the phosphoramidite method is described, e.g., by Beaucage et al. (1981) Tetrahedron Letters 22:1859-69; and Matthes et al. (1984) EMBO J. 3:801-5. According to such methods, oligonucleotides are synthesized, purified, annealed to their complementary strand, ligated and then optionally cloned into suitable vectors. And if so desired, the polynucleotides and polypeptides of the invention can be custom ordered from any of a number of commercial suppliers.

HOMOLOGOUS SEQUENCES

5

10

15

20

25

30

35

Sequences homologous, i.e., that share significant sequence identity or similarity, to those provided in the Sequence Listing, derived from Arabidopsis thaliana or from other plants of choice are also an aspect of the invention. Homologous sequences can be derived from any plant including monocots and dicots and in particular agriculturally important plant species, including but not limited to, crops such as soybean, wheat, corn,

potato, cotton, rice, oilseed rape (including canola), sunflower, alfalfa, sugarcane and turf; or fruits and vegetables, such as banana, blackberry, blueberry, strawberry, and raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits (such as apple, peach, pear, cherry and plum) and vegetable brassicas (such as broccoli, cabbage, cauliflower, brussel sprouts and kohlrabi). Other crops, fruits and vegetables whose phenotype can be changed include barley, rye, millet, sorghum, currant, avocado, citrus fruits such as oranges, lemons, grapefruit and tangerines, artichoke, cherries, nuts such as the walnut and peanut, endive, leek, roots, such as arrowroot, beet, cassava, turnip, radish, yam, and sweet potato, and beans. The homologous sequences may also be derived from woody species, such pine, poplar and eucalyptus.

Transcription factors that are homologous to the listed sequences will typically share at least about 31% amino acid sequence identity. More closely related transcription factors can share at least about 50%, about 60%, about 65%, about 70%, about 75% or about 80% or about 90% or about 95% or about 98% or more sequence identity with the listed sequences. Factors that are most closely related to the listed sequences share, e.g., at least about 85%, about 90% or about 95% or more % sequence identity to the listed sequences. At the nucleotide level, the sequences will typically share at least about 40% nucleotide sequence identity, preferably at least about 50%, about 60%, about 70% or about 80% sequence identity, and more preferably about 85%, about 90%, about 95% or about 97% or more sequence identity to one or more of the listed sequences. The degeneracy of the genetic code enables major variations in the nucleotide sequence of a polynucleotide while maintaining the amino acid sequence of the encoded protein. Conserved domains within a transcription factor family may exhibit a higher degree of sequence homology, such as at least 65% sequence identity including conservative substitutions, and preferably at least 80% sequence identity.

Identifying Nucleic Acids by Hybridization

Polynucleotides homologous to the sequences illustrated in the Sequence Listing can be identified, e.g., by hybridization to each other under stringent or under highly stringent conditions. Single stranded polynucleotides hybridize when they associate based on a variety of well characterized physico-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. The stringency of a hybridization reflects the degree of sequence identity of the nucleic acids involved, such that the higher the stringency, the more similar are the two polynucleotide strands. Stringency is influenced by a variety of factors, including temperature, salt concentration and composition, organic and non-organic additives, solvents, etc. present in both the hybridization and wash solutions and incubations (and number), as described in more detail in the references cited above.

An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is about 5°C to 20°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Nucleic acid molecules that hybridize under stringent conditions will typically hybridize to a probe based on either the entire cDNA or selected portions, e.g., to a unique subsequence, of the cDNA under wash conditions of 0.2x SSC to 2.0 x SSC, 0.1% SDS at 50-65° C, for example 0.2 x SSC, 0.1% SDS at 65° C. For identification of less closely related homologues washes can be performed at a lower temperature, e.g., 50° C. In general, stringency is increased by raising the wash temperature and/or decreasing the concentration of SSC.

As another example, stringent conditions can be selected such that an oligonucleotide that is perfectly complementary to the coding oligonucleotide hybridizes to the coding oligonucleotide with at least about a 5-10x higher signal to noise ratio than the ratio for hybridization of the perfectly complementary oligonucleotide to a nucleic acid encoding a transcription factor known as of the filing date of the application. Conditions can be selected such that a higher signal to noise ratio is observed in the particular assay which is used, e.g., about 15x, 25x, 35x, 50x or more. Accordingly, the subject nucleic acid hybridizes to the unique coding oligonucleotide with at least a 2x higher signal to noise ratio as compared to hybridization of the coding oligonucleotide to a nucleic acid encoding known polypeptide. Again, higher signal to noise ratios can be selected, e.g., about 5x, 10x, 25x, 35x, 50x or more. The particular signal will depend on the label used in the relevant assay, e.g., a fluorescent label, a colorimetric label, a radio active label, or the like.

Alternatively, transcription factor homologue polypeptides can be obtained by screening an expression library using antibodies specific for one or more transcription factors. With the provision herein of the disclosed transcription factor, and transcription factor homologue nucleic acid sequences, the encoded polypeptide(s) can be expressed and purified in a heterologous expression system (e.g., *E. coli*) and used to raise antibodies (monoclonal or polyclonal) specific for the polypeptide(s) in question. Antibodies can also be raised against synthetic peptides derived from transcription factor, or transcription factor homologue, amino acid sequences. Methods of raising antibodies are well known in the art and are described in Harlow and Lane (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York. Such antibodies can then be used to screen an expression library produced from the plant from which it is desired to clone additional transcription

factor homologues, using the methods described above. The selected cDNAs can be confirmed by sequencing and enzymatic activity.

SEQUENCE VARIATIONS

5

10

It will readily be appreciated by those of skill in the art, that any of a variety of polynucleotide sequences are capable of encoding the transcription factors and transcription factor homologue polypeptides of the invention. Due to the degeneracy of the genetic code, many different polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing.

For example, Table 1 illustrates, e.g., that the codons AGC, AGT, TCA, TCC, TCG, and TCT all encode the same amino acid: serine. Accordingly, at each position in the sequence where there is a codon encoding serine, any of the above trinucleotide sequences can be used without altering the encoded polypeptide.

Table 1

Amino acids			Codon			•		
Alanine	Ala		GCA	GCC	GCG	GCU		
Cysteine	Cys	C	TGC	TGT				
Aspartic acid	Asp	D	GAC	GAT				
Glutamic acid	Glu	E	GAA	GAG			:	
Phenylalanine	Phe	F	TTC	TTT		:		
Glycine	Gly	G	GGA	GGC	GGG	GGT		
Histidine	His	H	CAC	CAT	•			
Isoleucine	Ile	I	ATA	ATC	ATT			
Lysine	Lys	K	AAA -	AAG				
Leucine	Leu	L	TTA	TTG	CTA	CTC	CTG	CTT
Methionine	Met	M	ATG					
Asparagine	Asn	N	AAC	AAT				
Proline	Pro	P	CCA	CCC	CCG	CCT		
Glutamine	Gln	Q	CAA	CAG				
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGT
Serine	Ser	S	AGC	AGT	TCA	TCC	TCG	TCT
Threonine	Thr	T.	ACA	ACC	ACG.	ACT		
Valine	Val	V	GTA	GTC	GTG	GTT		
Tryptophan	Trp	W	TGG					
Tyrosine	Tyr	Y	TAC	TAT				

15

20

Sequence alterations that do not change the amino acid sequence encoded by the polynucleotide are termed "silent" variations. With the exception of the codons ATG and TGG, encoding methionine and tryptophan, respectively, any of the possible codons for the same amino acid can be substituted by a variety of techniques, e.g., site-directed mutagenesis, available in the art. Accordingly, any and all such variations of a sequence selected from the above table are a feature of the invention.

In addition to silent variations, other conservative variations that alter one, or a few amino acids in the encoded polypeptide, can be made without altering the function of the polypeptide, these conservative variants are, likewise, a feature of the invention.

For example, substitutions, deletions and insertions introduced into the sequences provided in the Sequence Listing are also envisioned by the invention. Such sequence modifications can be engineered into a sequence by site-directed mutagenesis (Wu (ed.) Meth. Enzymol. (1993) vol. 217, Academic Press) or the other methods noted below. Amino acid substitutions are typically of single residues; insertions usually will be on the order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. In preferred embodiments, deletions or insertions are made in adjacent pairs, e.g., a deletion of two residues or insertion of two residues. Substitutions, deletions, insertions or any combination thereof can be combined to arrive at a sequence. The mutations that are made in the polynucleotide encoding the transcription factor should not place the sequence out of reading frame and should not create complementary regions that could produce secondary mRNA structure. Preferably, the polypeptide encoded by the DNA performs the desired function.

Conservative substitutions are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the Table 2 when it is desired to maintain the activity of the protein. Table 2 shows amino acids which can be substituted for an amino acid in a protein and which are typically regarded as conservative substitutions.

25

5

10

15

20

30

35

Table 2

Residue	Conservative Substitutions
Ala	Ser
Arg	Lys
Asn	Gln; His
Asp	Glu
Gln	Asn
Cys	Ser
Glu	Asp
Gly	Pro
His	Asn; Gln
Ile	Leu, Val
Leu	Ile; Val
Lys	Arg; Gln
Met	Leu; Ile
Phe	Met; Leu; Tyr
Ser	Thr; Gly
Thr	Ser;Val
Trp	Тут
Тут	Trp; Phe
Val	Ile; Leu

Substitutions that are less conservative than those in Table 2 can be selected by picking residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

5

10

100

FURTHER MODIFYING SEQUENCES OF THE INVENTION—MUTATION/ FORCED EVOLUTION

In addition to generating silent or conservative substitutions as noted, above, the present invention optionally includes methods of modifying the sequences of the Sequence Listing. In the methods, nucleic acid or protein modification methods are used to alter the given sequences to produce new sequences and/or to chemically or enzymatically modify given sequences to change the properties of the nucleic acids or proteins.

5

10

15

20

25

30

35

Thus, in one embodiment, given nucleic acid sequences are modified, e.g., according to standard mutagenesis or artificial evolution methods to produce modified sequences. For example, Ausubel, *supra*, provides additional details on mutagenesis methods. Artificial forced evolution methods are described, e.g., by Stemmer (1994) Nature 370:389-391, and Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751. Many other mutation and evolution methods are also available and expected to be within the skill of the practitioner.

Similarly, chemical or enzymatic alteration of expressed nucleic acids and polypeptides can be performed by standard methods. For example, sequence can be modified by addition of lipids, sugars, peptides, organic or inorganic compounds, by the inclusion of modified nucleotides or amino acids, or the like. For example, protein modification techniques are illustrated in Ausubel, *supra*. Further details on chemical and enzymatic modifications can be found herein. These modification methods can be used to modify any given sequence, or to modify any sequence produced by the various mutation and artificial evolution modification methods noted herein.

Accordingly, the invention provides for modification of any given nucleic acid by mutation, evolution, chemical or enzymatic modification, or other available methods, as well as for the products produced by practicing such methods, e.g., using the sequences herein as a starting substrate for the various modification approaches.

For example, optimized coding sequence containing codons preferred by a particular prokaryotic or eukaryotic host can be used e.g., to increase the rate of translation or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, as compared with transcripts produced using a non-optimized sequence. Translation stop codons can also be modified to reflect host preference. For example, preferred stop codons for *S. cerevisiae* and mammals are TAA and TGA, respectively. The preferred stop codon for monocotyledonous plants is TGA, whereas insects and *E. coli* prefer to use TAA as the stop codon.

The polynucleotide sequences of the present invention can also be engineered in order to alter a coding sequence for a variety of reasons, including but not limited to, alterations which modify the sequence to facilitate cloning, processing and/or expression of

the gene product. For example, alterations are optionally introduced using techniques which are well known in the art, e.g., site-directed mutagenesis, to insert new restriction sites, to alter glycosylation patterns, to change codon preference, to introduce splice sites, etc.

Furthermore, a fragment or domain derived from any of the polypeptides of the invention can be combined with domains derived from other transcription factors or synthetic domains to modify the biological activity of a transcription factor. For instance, a DNA binding domain derived from a transcription factor of the invention can be combined with the activation domain of another transcription factor or with a synthetic activation domain. A transcription activation domain assists in initiating transcription from a DNA binding site. Examples include the transcription activation region of VP16 or GAL4 (Moore et al. (1998) Proc. Natl. Acad. Sci. USA 95: 376-381; and Aoyama et al. (1995) Plant Cell 7:1773-1785), peptides derived from bacterial sequences (Ma and Ptashne (1987) Cell 51; 113-119) and synthetic peptides (Giniger and Ptashne, (1987) Nature 330:670-672).

EXPRESSION AND MODIFICATION OF POLYPEPTIDES

5

10

15

20

25

30

35

Typically, polynucleotide sequences of the invention are incorporated into recombinant DNA (or RNA) molecules that direct expression of polypeptides of the invention in appropriate host cells, transgenic plants, in vitro translation systems, or the like. Due to the inherent degeneracy of the genetic code, nucleic acid sequences which encode substantially the same or a functionally equivalent amino acid sequence can be substituted for any listed sequence to provide for cloning and expressing the relevant homologue.

Vectors, Promoters and Expression Systems

The present invention includes recombinant constructs comprising one or more of the nucleic acid sequences herein. The constructs typically comprise a vector, such as a plasmid, a cosmid, a phage, a virus (e.g., a plant virus), a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), or the like, into which a nucleic acid sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available.

General texts which describe molecular biological techniques useful herein, including the use and production of vectors, promoters and many other relevant topics, include Berger, Sambrook and Ausubel, *supra*. Any of the identified sequences can be incorporated into a cassette or vector, e.g., for expression in plants. A number of expression vectors suitable for stable transformation of plant cells or for the establishment of transgenic plants have been described including those described in Weissbach and Weissbach, (1989) Methods for Plant Molecular Biology, Academic Press, and Gelvin et al., (1990) Plant

Molecular Biology Manual, Kluwer Academic Publishers. Specific examples include those derived from a Ti plasmid of Agrobacterium tumefaciens, as well as those disclosed by Herrera-Estrella et al. (1983) Nature 303: 209, Bevan (1984) Nucl Acid Res. 12: 8711-8721, Klee (1985) Bio/Technology 3: 637-642, for dicotyledonous plants.

5

10

15

20

25

30

35

Alternatively, non-Ti vectors can be used to transfer the DNA into monocotyledonous plants and cells by using free DNA delivery techniques. Such methods can involve, for example, the use of liposomes, electroporation, microprojectile bombardment, silicon carbide whiskers, and viruses. By using these methods transgenic plants such as wheat, rice (Christou (1991) <u>Bio/Technology</u> 9: 957-962) and corn (Gordon-Kamm (1990) <u>Plant Cell</u> 2: 603-618) can be produced. An immature embryo can also be a good target tissue for monocots for direct DNA delivery techniques by using the particle gun (Weeks et al. (1993) <u>Plant Physiol</u> 102: 1077-1084; Vasil (1993) <u>Bio/Technology</u> 10: 667-674; Wan and Lemeaux (1994) <u>Plant Physiol</u> 104: 37-48, and for Agrobacterium-mediated DNA transfer (Ishida et al. (1996) <u>Nature Biotech</u> 14: 745-750).

Typically, plant transformation vectors include one or more cloned plant coding sequence (genomic or cDNA) under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant transformation vectors typically also contain a promoter (e.g., a regulatory region controlling inducible or constitutive, environmentally-or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, an RNA processing signal (such as intron splice sites), a transcription termination site, and/or a polyadenylation signal.

Examples of constitutive plant promoters which can be useful for expressing the TF sequence include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues (see, e.g., Odel et al. (1985) Nature 313:810); the nopaline synthase promoter (An et al. (1988) Plant Physiol 88:547); and the octopine synthase promoter (Fromm et al. (1989) Plant Cell 1: 977).

A variety of plant gene promoters that regulate gene expression in response to environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of a TF sequence in plants. Choice of a promoter is based largely on the phenotype of interest and is determined by such factors as tissue (e.g., seed, fruit, root, pollen, vascular tissue, flower, carpel, etc.), inducibility (e.g., in response to wounding, heat, cold, drought, light, pathogens, etc.), timing, developmental stage, and the like. Numerous known promoters have been characterized and can favorable be employed to promote expression of a polynucleotide of the invention in a transgenic plant or cell of interest. For example, tissue specific promoters include: seed-specific promoters (such as the napin, phaseolin or DC3 promoter described in US Pat. No. 5,773,697), fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (US Pat. No. 5,783,393), or the

2A11 promoter (US Pat. No. 4,943,674) and the tomato polygalacturonase promoter (Bird et al. (1988) Plant Mol Biol 11:651), root-specific promoters, such as those disclosed in US Patent Nos. 5,618,988, 5,837,848 and 5,905,186, pollen-active promoters such as PTA29, PTA26 and PTA13 (US Pat. No. 5,792,929), promoters active in vascular tissue (Ringli and Keller (1998) Plant Mol Biol 37:977-988), flower-specific (Kaiser et al, (1995) Plant Mol Biol 28:231-243), pollen (Baerson et al. (1994) Plant Mol Biol 26:1947-1959), carpels (Ohl et al. (1990) Plant Cell 2:837-848), pollen and ovules (Baerson et al. (1993) Plant Mol Biol 22:255-267), auxin-inducible promoters (such as that described in van der Kop et al. (1999) Plant Mol Biol 39:979-990 or Baumann et al. (1999) Plant Cell 11:323-334), cytokinininducible promoter (Guevara-Garcia (1998) Plant Mol Biol 38:743-753), promoters responsive to gibberellin (Shi et al. (1998) Plant Mol Biol 38:1053-1060, Willmott et al. (1998) 38:817-825) and the like. Additional promoters are those that elicit expression in response to heat (Ainley et al. (1993) Plant Mol Biol 22: 13-23), light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al. (1989) Plant Cell 1:471, and the maize rbcS promoter, Schaffner and Sheen (1991) Plant Cell 3: 997); wounding (e.g., wunI, Siebertz et al. (1989) Plant Cell 1: 961); pathogens (such as the PR-1 promoter described in Buchel et al. (1999) Plant Mol. Biol. 40:387-396, and the PDF1.2 promoter described in Manners et al. (1998) Plant Mol. Biol. 38:1071-80), and chemicals such as methyl jasmonate or salicylic acid (Gatz et al. (1997) Plant Mol Biol 48: 89-108). In addition, the timing of the expression can be controlled by using promoters such as those acting at senescence (An and Amazon (1995) Science 270: 1986-1988); or late seed development (Odell et al. (1994) Plant Physiol 106:447-458).

Plant expression vectors can also include RNA processing signals that can be positioned within, upstream or downstream of the coding sequence. In addition, the expression vectors can include additional regulatory sequences from the 3'-untranslated region of plant genes, e.g., a 3' terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3' terminator regions.

Additional Expression Elements

5

10

15

20

25

30

35

Specific initiation signals can aid in efficient translation of coding sequences. These signals can include, e.g., the ATG initiation codon and adjacent sequences. In cases where a coding sequence, its initiation codon and upstream sequences are inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only coding sequence (e.g., a mature protein coding sequence), or a portion thereof, is inserted, exogenous transcriptional control signals including the ATG initiation codon can be separately provided. The initiation codon is provided in the correct reading frame to facilitate transcription. Exogenous transcriptional elements and initiation

codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers appropriate to the cell system in use.

Expression Hosts

5

10

15

20

25

30

35

The present invention also relates to host cells which are transduced with vectors of the invention, and the production of polypeptides of the invention (including fragments thereof) by recombinant techniques. Host cells are genetically engineered (i.e, nucleic acids are introduced, e.g., transduced, transformed or transfected) with the vectors of this invention, which may be, for example, a cloning vector or an expression vector comprising the relevant nucleic acids herein. The vector is optionally a plasmid, a viral particle, a phage, a naked nucleic acids, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the relevant gene. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art and in the references cited herein, including, Sambrook and Ausubel.

The host cell can be a eukaryotic cell, such as a yeast cell, or a plant cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Plant protoplasts are also suitable for some applications. For example, the DNA fragments are introduced into plant tissues, cultured plant cells or plant protoplasts by standard methods including electroporation (Fromm et al., (1985) Proc. Natl. Acad. Sci. USA 82, 5824, infection by viral vectors such as cauliflower mosaic virus (CaMV) (Hohn et al., (1982) Molecular Biology of Plant Tumors, (Academic Press, New York) pp. 549-560; US 4,407,956), high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface (Klein et al., (1987) Nature 327, 70-73), use of pollen as vector (WO 85/01856), or use of Agrobacterium tumefaciens or A. rhizogenes carrying a T-DNA plasmid in which DNA fragments are cloned. The T-DNA plasmid is transmitted to plant cells upon infection by Agrobacterium tumefaciens, and a portion is stably integrated into the plant genome (Horsch et al. (1984) Science 233:496-498; Fraley et al. (1983) Proc. Natl. Acad. Sci. USA 80, 4803).

The cell can include a nucleic acid of the invention which encodes a polypeptide, wherein the cells expresses a polypeptide of the invention. The cell can also include vector sequences, or the like. Furthermore, cells and transgenic plants which include any polypeptide or nucleic acid above or throughout this specification, e.g., produced by transduction of a vector of the invention, are an additional feature of the invention.

For long-term, high-yield production of recombinant proteins, stable expression can be used. Host cells transformed with a nucleotide sequence encoding a polypeptide of the invention are optionally cultured under conditions suitable for the

expression and recovery of the encoded protein from cell culture. The protein or fragment thereof produced by a recombinant cell may be secreted, membrane-bound, or contained intracellularly, depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides encoding mature proteins of the invention can be designed with signal sequences which direct secretion of the mature polypeptides through a prokaryotic or eukaryotic cell membrane.

Modified Amino Acids

5

10

15

20

25

30

35

Polypeptides of the invention may contain one or more modified amino acids. The presence of modified amino acids may be advantageous in, for example, increasing polypeptide half-life, reducing polypeptide antigenicity or toxicity, increasing polypeptide storage stability, or the like. Amino acid(s) are modified, for example, co-translationally or post-translationally during recombinant production or modified by synthetic or chemical means.

Non-limiting examples of a modified amino acid include incorporation or other use of acetylated amino acids, glycosylated amino acids, sulfated amino acids, prenylated (e.g., farnesylated, geranylgeranylated) amino acids, PEG modified (e.g., "PEGylated") amino acids, biotinylated amino acids, carboxylated amino acids, phosphorylated amino acids, etc. References adequate to guide one of skill in the modification of amino acids are replete throughout the literature.

IDENTIFICATION OF ADDITIONAL FACTORS

A transcription factor provided by the present invention can also be used to identify additional endogenous or exogenous molecules that can affect a phentoype or trait of interest. On the one hand, such molecules include organic (small or large molecules) and/or inorganic compounds that affect expression of (i.e., regulate) a particular transcription factor. Alternatively, such molecules include endogenous molecules that are acted upon either at a transcriptional level by a transcription factor of the invention to modify a phenotype as desired. For example, the transcription factors can be employed to identify one or more downstream gene with which is subject to a regulatory effect of the transcription factor. In one approach, a transcription factor or transcription factor homologue of the invention is expressed in a host cell, e.g, a transgenic plant cell, tissue or explant, and expression products, either RNA or protein, of likely or random targets are monitored, e.g., by hybridization to a microarray of nucleic acid probes corresponding to genes expressed in a tissue or cell type of interest, by two-dimensional gel electrophoresis of protein products, or by any other method known in the art for assessing expression of gene products at the level of RNA or protein. Alternatively, a transcription factor of the invention can be used to identify promoter sequences (i.e., binding sites) involved in the regulation of a downstream target. After

identifying a promoter sequence, interactions between the transcription factor and the promoter sequence can be modified by changing specific nucleotides in the promoter sequence or specific amino acids in the transcription factor that interact with the promoter sequence to alter a plant trait. Typically, transcription factor DNA binding sites are identified by gel shift assays. After identifying the promoter regions, the promoter region sequences can be employed in double-stranded DNA arrays to identify molecules that affect the interactions of the transcription factors with their promoters (Bulyk et al. (1999) Nature Biotechnology 17:573-577).

The identified transcription factors are also useful to identify proteins that modify the activity of the transcription factor. Such modification can occur by covalent modification, such as by phosphorylation, or by protein-protein (homo or-heteropolymer) interactions. Any method suitable for detecting protein-protein interactions can be employed. Among the methods that can be employed are co-immunoprecipitation, cross-linking and co-purification through gradients or chromatographic columns, and the two-hybrid yeast system.

The two-hybrid system detects protein interactions in vivo and is described in Chien, et al., (1991), Proc. Natl. Acad. Sci. USA 88, 9578-9582 and is commercially available from Clontech (Palo Alto, Calif.). In such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to the TF polypeptide and the other consists of the transcription activator protein's activation domain fused to an unknown protein that is encoded by a cDNA that has been recombined into the plasmid as part of a cDNA library. The DNA-binding domain fusion plasmid and the cDNA library are transformed into a strain of the yeast Saccharomyces cerevisiae that contains a reporter gene (e.g., lacZ) whose regulatory region contains the transcription activator's binding site. Either hybrid protein alone cannot activate transcription of the reporter gene. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product. Then, the library plasmids responsible for reporter gene expression are isolated and sequenced to identify the proteins encoded by the library plasmids. After identifying proteins that interact with the transcription factors, assays for compounds that interfere with the TF protein-protein interactions can be preformed.

IDENTIFICATION OF MODULATORS

5

10

15

20

25

30

35

In addition to the intracellular molecules described above, extracellular molecules that alter activity or expression of a transcription factor, either directly or indirectly, can be identified. For example, the methods can entail first placing a candidate molecule in contact with a plant or plant cell. The molecule can be introduced by topical administration, such as spraying or soaking of a plant, and then the molecule's effect on the

expression or activity of the TF polypeptide or the expression of the polynucleotide monitored. Changes in the expression of the TF polypeptide can be monitored by use of polyclonal or monoclonal antibodies, gel electrophoresis or the like. Changes in the expression of the corresponding polynucleotide sequence can be detected by use of microarrays, Northerns, quantitative PCR, or any other technique for monitoring changes in mRNA expression. These techniques are exemplified in Ausubel et al. (eds) <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons (1998). Such changes in the expression levels can be correlated with modified plant traits and thus identified molecules can be useful for soaking or spraying on fruit, vegetable and grain crops to modify traits in plants.

Essentially any available composition can be tested for modulatory activity of expression or activity of any nucleic acid or polypeptide herein. Thus, available libraries of compounds such as chemicals, polypeptides, nucleic acids and the like can be tested for modulatory activity. Often, potential modulator compounds can be dissolved in aqueous or organic (e.g., DMSO-based) solutions for easy delivery to the cell or plant of interest in which the activity of the modulator is to be tested. Optionally, the assays are designed to screen large modulator composition libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays).

In one embodiment, high throughput screening methods involve providing a combinatorial library containing a large number of potential compounds (potential modulator compounds). Such "combinatorial chemical libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as target compounds.

A combinatorial chemical library can be, e.g., a collection of diverse chemical compounds generated by chemical synthesis or biological synthesis. For example, a combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (e.g., in one example, amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound of a set length). Exemplary libraries include peptide libraries, nucleic acid libraries, antibody libraries (see, e.g., Vaughn et al. (1996) Nature Biotechnology, 14(3):309-314 and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al. Science (1996) 274:1520-1522 and U.S. Patent 5,593,853), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), and small organic molecule libraries (see, e.g., benzodiazepines, Baum C&EN Jan 18, page 33 (1993); isoprenoids, U.S. Patent 5,569,588; thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pyrrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337) and the like.

Preparation and screening of combinatorial or other libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent 5,010,175, Furka, <u>Int. J. Pept. Prot. Res.</u> 37:487-493 (1991) and Houghton et al. <u>Nature 354:84-88 (1991)</u>). Other chemistries for generating chemical diversity libraries can also be used.

5

10

15

20

25

30

35

In addition, as noted, compound screening equipment for high-throughput screening is generally available, e.g., using any of a number of well known robotic systems that have also been developed for solution phase chemistries useful in assay systems. These systems include automated workstations including an automated synthesis apparatus and robotic systems utilizing robotic arms. Any of the above devices are suitable for use with the present invention, e.g., for high-throughput screening of potential modulators. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.

Indeed, entire high throughput screening systems are commercially available. These systems typically automate entire procedures including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. Similarly, microfluidic implementations of screening are also commercially available.

The manufacturers of such systems provide detailed protocols the various high throughput. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like. The integrated systems herein, in addition to providing for sequence alignment and, optionally, synthesis of relevant nucleic acids, can include such screening apparatus to identify modulators that have an effect on one or more polynucleotides or polypeptides according to the present invention.

In some assays it is desirable to have positive controls to ensure that the components of the assays are working properly. At least two types of positive controls are appropriate. That is, known transcriptional activators or inhibitors can be incubated with cells/plants/ etc. in one sample of the assay, and the resulting increase/decrease in transcription can be detected by measuring the resulting increase in RNA/ protein expression, etc., according to the methods herein. It will be appreciated that modulators can also be combined with transcriptional activators or inhibitors to find modulators which inhibit transcriptional activation or transcriptional repression. Either expression of the nucleic acids and proteins herein or any additional nucleic acids or proteins activated by the nucleic acids or proteins herein, or both, can be monitored.

In an embodiment, the invention provides a method for identifying compositions that modulate the activity or expression of a polynucleotide or polypeptide of the invention. For example, a test compound, whether a small or large molecule, is placed in contact with a cell, plant (or plant tissue or explant), or composition comprising the polynucleotide or polypeptide of interest and a resulting effect on the cell, plant, (or tissue or explant) or composition is evaluated by monitoring, either directly or indirectly, one or more of: expression level of the polynucleotide or polypeptide, activity (or modulation of the activity) of the polynucleotide or polypeptide. In some cases, an alteration in a plant phenotype can be detected following contact of a plant (or plant cell, or tissue or explant) with the putative modulator, e.g., by modulation of expression or activity of a polynucleotide or polypeptide of the invention.

SUBSEQUENCES

5

10

15

20

25

30

35

Also contemplated are uses of polynucleotides, also referred to herein as oligonucleotides, typically having at least 12 bases, preferably at least 15, more preferably at least 20, 30, or 50 bases, which hybridize under at least highly stringent (or ultra-high stringent or ultra-ultra- high stringent conditions) conditions to a polynucleotide sequence described above. The polynucleotides may be used as probes, primers, sense and antisense agents, and the like, according to methods as noted *supra*.

Subsequences of the polynucleotides of the invention, including polynucleotide fragments and oligonucleotides are useful as nucleic acid probes and primers. An oligonucleotide suitable for use as a probe or primer is at least about 15 nucleotides in length, more often at least about 18 nucleotides, often at least about 21 nucleotides, frequently at least about 30 nucleotides, or about 40 nucleotides, or more in length. A nucleic acid probe is useful in hybridization protocols, e.g., to identify additional polypeptide homologues of the invention, including protocols for microarray experiments. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods. See Sambrook and Ausubel, *supra*.

In addition, the invention includes an isolated or recombinant polypeptide including a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotides of the invention. For example, such polypeptides, or domains or fragments thereof, can be used as immunogens, e.g., to produce antibodies specific for the polypeptide sequence, or as probes for detecting a sequence of interest. A

subsequence can range in size from about 15 amino acids in length up to and including the full length of the polypeptide.

PRODUCTION OF TRANSGENIC PLANTS

5

10

15

20

25

30

35

Modification of Traits

The polynucleotides of the invention are favorably employed to produce transgenic plants with various traits, or characteristics, that have been modified in a desirable manner, e.g., to improve the pathogen resistance of a plant. For example, alteration of expression levels or patterns (e.g., spatial or temporal expression patterns) of one or more of the transcription factors (or transcription factor homologues) of the invention, as compared with the levels of the same protein found in a wild type plant, can be used to modify a plant's traits. An illustrative example of trait modification, improved pathogen tolerance, by altering expression levels of a particular transcription factor is described further in the Examples and the Sequence Listing.

Antisense and Cosuppression Approaches

In addition to expression of the nucleic acids of the invention as gene replacement or plant phenotype modification nucleic acids, the nucleic acids are also useful for sense and anti-sense suppression of expression, e.g., to down-regulate expression of a nucleic acid of the invention, e.g., as a further mechanism for modulating plant phenotype. That is, the nucleic acids of the invention, or subsequences or anti-sense sequences thereof, can be used to block expression of naturally occurring homologous nucleic acids. A variety of sense and anti-sense technologies are known in the art, e.g., as set forth in Lichtenstein and Nellen (1997) Antisense Technology: A Practical Approach IRL Press at Oxford University, Oxford, England. In general, sense or anti-sense sequences are introduced into a cell, where they are optionally amplified, e.g., by transcription. Such sequences include both simple oligonucleotide sequences and catalytic sequences such as ribozymes.

For example, a reduction or elimination of expression (i.e., a "knock-out") of a transcription factor or transcription factor homologue polypeptide in a transgenic plant, e.g., to modify a plant trait, can be obtained by introducing an antisense construct corresponding to the polypeptide of interest as a cDNA. For antisense suppression, the transcription factor or homologue cDNA is arranged in reverse orientation (with respect to the coding sequence) relative to the promoter sequence in the expression vector. The introduced sequence need not be the full length cDNA or gene, and need not be identical to the cDNA or gene found in the plant type to be transformed. Typically, the antisense sequence need only be capable of hybridizing to the target gene or RNA of interest. Thus, where the introduced sequence is of shorter length, a higher degree of homology to the endogenous transcription factor sequence will be needed for effective antisense suppression. While antisense sequences of various

least 30 nucleotides in length, and improved antisense sequence in the vector will be at least 30 nucleotides in length, and improved antisense suppression will typically be observed as the length of the antisense sequence increases. Preferably, the length of the antisense sequence in the vector will be greater than 100 nucleotides. Transcription of an antisense construct as described results in the production of RNA molecules that are the reverse complement of mRNA molecules transcribed from the endogenous transcription factor gene in the plant cell.

Suppression of endogenous transcription factor gene expression can also be achieved using a ribozyme. Ribozymes are RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Patent No. 4,987,071 and U.S. Patent No. 5,543,508. Synthetic ribozyme sequences including antisense RNAs can be used to confer RNA cleaving activity on the antisense RNA, such that endogenous mRNA molecules that hybridize to the antisense RNA are cleaved, which in turn leads to an enhanced antisense inhibition of endogenous gene expression.

10

15

20

25

30

35

Vectors in which RNA encoded by a transcription factor or transcription factor homologue cDNA is over-expressed can also be used to obtain co-suppression of a corresponding endogenous gene, e.g., in the manner described in U.S. Patent No. 5,231,020 to Jorgensen. Such co-suppression (also termed sense suppression) does not require that the entire transcription factor cDNA be introduced into the plant cells, nor does it require that the introduced sequence be exactly identical to the endogenous transcription factor gene of interest. However, as with antisense suppression, the suppressive efficiency will be enhanced as specificity of hybridization is increased, e.g., as the introduced sequence is lengthened, and/or as the sequence similarity between the introduced sequence and the endogenous transcription factor gene is increased.

Vectors expressing an untranslatable form of the transcription factor mRNA, e.g., sequences comprising one or more stop codon, or nonsense mutation) can also be used to suppress expression of an endogenous transcription factor, thereby reducing or eliminating it's activity and modifying one or more traits. Methods for producing such constructs are described in U.S. Patent No. 5,583,021. Preferably, such constructs are made by introducing a premature stop codon into the transcription factor gene. Alternatively, a plant trait can be modified by gene silencing using double-strand RNA (Sharp (1999) Genes and Development 13: 139-141).

Another method for abolishing the expression of a gene is by insertion mutagenesis using the T-DNA of Agrobacterium tumefaciens. After generating the insertion mutants, the mutants can be screened to identify those containing the insertion in a transcription factor or transcription factor homologue gene. Plants containing a single

27

transgene insertion event at the desired gene can be crossed to generate homozygous plants for the mutation (Koncz et al. (1992) Methods in Arabidopsis Research, World Scientific).

Alternatively, a plant phenotype can be altered by eliminating an endogenous gene, such as a transcription factor or transcription factor homologue, e.g., by homologous recombination (Kempin et al. (1997) Nature 389:802).

5

10

15

20

25

30

35

A plant trait can also be modified by using the cre-lox system (for example, as described in US Paent No. 5,658,772). A plant genome can be modified to include first and second lox sites that are then contacted with a Cre recombinase. If the lox sites are in the same orientation, the intervening DNA sequence between the two sites is excised. If the lox sites are in the opposite orientation, the intervening sequence is inverted.

The polynucleotides and polypeptides of this invention can also be expressed in a plant in the absence of an expression cassette by manipulating the activity or expression level of the endogenous gene by other means. For example, by ectopically expressing a gene by T-DNA activation tagging (Ichikawa et al. (1997) Nature 390 698-701; Kakimoto et al. (1996) Science 274: 982-985). This method entails transforming a plant with a gene tag containing multiple transcriptional enhancers and once the tag has inserted into the genome, expression of a flanking gene coding sequence becomes deregulated. In another example, the transcriptional machinery in a plant can be modified so as to increase transcription levels of a polynucleotide of the invention (See, e.g., PCT Publications WO 96/06166 and WO 98/53057 which describe the modification of the DNA binding specificity of zinc finger proteins by changing particular amino acids in the DNA binding motif).

The transgenic plant can also include the machinery necessary for expressing or altering the activity of a polypeptide encoded by an endogenous gene, for example by altering the phosphorylation state of the polypeptide to maintain it in an activated state.

Transgenic plants (or plant cells, or plant explants, or plant tissues) incorporating the polynucleotides of the invention and/or expressing the polypeptides of the invention can be produced by a variety of well established techniques as described above. Following construction of a vector, most typically an expression cassette, including a polynucleotide, e.g., encoding a transcription factor or transcription factor homologue, of the invention, standard techniques can be used to introduce the polynucleotide into a plant, a plant cell, a plant explant or a plant tissue of interest. Optionally, the plant cell, explant or tissue can be regenerated to produce a transgenic plant.

The plant can be any higher plant, including gymnosperms, monocotyledonous and dicotyledenous plants. Suitable protocols are available for *Leguminosae* (alfalfa, soybean, clover, etc.), *Umbelliferae* (carrot, celery, parsnip), *Cruciferae* (cabbage, radish, rapeseed, broccoli, etc.), *Curcurbitaceae* (melons and cucumber), *Gramineae* (wheat, corn, rice, barley, millet, etc.), *Solanaceae* (potato, tomato, tobacco,

peppers, etc.), and various other crops. See protocols described in Ammirato et al. (1984) Handbook of Plant Cell Culture —Crop Species. Macmillan Publ. Co. Shimamoto et al. (1989) Nature 338:274-276; Fromm et al. (1990) Bio/Technology 8:833-839; and Vasil et al. (1990) Bio/Technology 8:429-434.

5

10

15

20

25

30

35

Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods can include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; microinjection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and Agrobacterium tumeficiens mediated transformation. Transformation means introducing a nucleotide sequence in a plant in a manner to cause stable or transient expression of the sequence.

Successful examples of the modification of plant characteristics by transformation with cloned sequences which serve to illustrate the current knowledge in this field of technology, and which are herein incorporated by reference, include: U.S. Patent Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589,615; 5,750,871; 5,268,526; 5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,610,042.

Following transformation, plants are preferably selected using a dominant selectable marker incorporated into the transformation vector. Typically, such a marker will confer antibiotic or herbicide resistance on the transformed plants, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic or herbicide.

After transformed plants are selected and grown to maturity, those plants showing a modified trait are identified. The modified trait can be any of those traits described above. Additionally, to confirm that the modified trait is due to changes in expression levels or activity of the polypeptide or polynucleotide of the invention can be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.

INTEGRATED SYSTEMS—SEQUENCE IDENTITY

Additionally, the present invention may be an integrated system, computer or computer readable medium that comprises an instruction set for determining the identity of one or more sequences in a database. In addition, the instruction set can be used to generate or identify sequences that meet any specified criteria. Furthermore, the instruction set may

be used to associate or link certain functional benefits, such improved pathogen tolerance, with one or more identified sequence.

For example, the instruction set can include, e.g., a sequence comparison or other alignment program, e.g., an available program such as, for example, the Wisconsin Package Version 10.0, such as BLAST, FASTA, PILEUP, FINDPATTERNS or the like (GCG, Madision, WI). Public sequence databases such as GenBank, EMBL, Swiss-Prot and PIR or private sequence databases such as PhytoSeq (Incyte Pharmaceuticals, Palo Alto, CA) can be searched.

Alignment of sequences for comparison can be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. U.S.A. 85: 2444, by computerized implementations of these algorithms. After alignment, sequence comparisons between two (or more) polynucleotides or polypeptides are typically performed by comparing sequences of the two sequences over a comparison window to identify and compare local regions of sequence similarity. The comparison window can be a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 contiguous positions. A description of the method is provided in Ausubel et al., supra.

10

15

20

25

30

35

A variety of methods of determining sequence relationships can be used, including manual alignment and computer assisted sequence alignment and analysis. This later approach is a preferred approach in the present invention, due to the increased throughput afforded by computer assisted methods. As noted above, a variety of computer programs for performing sequence alignment are available, or can be produced by one of skill.

One example algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al. J. Mol. Biol 215:403-410 (1990). Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters

M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence (and, therefore, in this context, homologous) if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, or less than about 0.01, and or even less than about 0.001. An additional example of a useful sequence alignment algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. The program can align, e.g., up to 300 sequences of a maximum length of 5,000 letters.

The integrated system, or computer typically includes a user input interface allowing a user to selectively view one or more sequence records corresponding to the one or more character strings, as well as an instruction set which aligns the one or more character strings with each other or with an additional character string to identify one or more region of sequence similarity. The system may include a link of one or more character strings with a particular phenotype or gene function. Typically, the system includes a user readable output element which displays an alignment produced by the alignment instruction set.

The methods of this invention can be implemented in a localized or distributed computing environment. In a distributed environment, the methods may implemented on a single computer comprising multiple processors or on a multiplicity of computers. The computers can be linked, e.g. through a common bus, but more preferably the computer(s) are nodes on a network. The network can be a generalized or a dedicated local or

wide-area network and, in certain preferred embodiments, the computers may be components of an intra-net or an internet.

Thus, the invention provides methods for identifying a sequence similar or homologous to one or more polynucleotides as noted herein, or one or more target polypeptides encoded by the polynucleotides, or otherwise noted herein and may include linking or associating a given plant phenotype or gene function with a sequence. In the methods, a sequence database is provided (locally or across an inter or intra net) and a query is made against the sequence database using the relevant sequences herein and associated plant phenotypes or gene functions.

5

10

15

25

30

35

Any sequence herein can be entered into the database, before or after querying the database. This provides for both expansion of the database and, if done before the querying step, for insertion of control sequences into the database. The control sequences can be detected by the query to ensure the general integrity of both the database and the query. As noted, the query can be performed using a web browser based interface. For example, the database can be a centralized public database such as those noted herein, and the querying can be done from a remote terminal or computer across an internet or intranet.

EXAMPLES

The following examples are intended to illustrate but not limit the present invention.

20 EXAMPLE I. FULL LENGTH GENE IDENTIFICATION AND CLONING

Putative transcription factor sequences (genomic or ESTs) related to known transcription factors were identified in the *Arabidopsis thaliana* GenBank database using the tblastn sequence analysis program using default parameters and a P-value cutoff threshold of -4 or -5 or lower, depending on the length of the query sequence. Putative transcription factor sequence hits were then screened to identify those containing particular sequence strings. If the sequence hits contained such sequence strings, the sequences were confirmed as transcription factors.

Alternatively, Arabidopsis *thaliana* cDNA libraries derived from different tissues or treatments, or genomic libraries were screened to identify novel members of a transcription family using a low stringency hybridization approach. Probes were synthesized using gene specific primers in a standard PCR reaction (annealing temperature 60° C) and labeled with ³²P dCTP using the High Prime DNA Labeling Kit (Boehringer Mannheim). Purified radiolabelled probes were added to filters immersed in Church hybridization medium (0.5 M NaPO₄ pH 7.0, 7% SDS, 1 % w/v bovine serum albumin) and hybridized overnight at 60 °C with shaking. Filters were washed two times for 45 to 60 minutes with 1xSCC, 1% SDS at 60° C.

To identify additional sequence 5' or 3' of a partial cDNA sequence in a cDNA library, 5' and 3' rapid amplification of cDNA ends (RACE) was performed using the MarathonTM cDNA amplification kit (Clontech, Palo Alto, CA). Generally, the method entailed first isolating poly(A) mRNA, performing first and second strand cDNA synthesis to generate double stranded cDNA, blunting cDNA ends, followed by ligation of the MarathonTM Adaptor to the cDNA to form a library of adaptor-ligated ds cDNA.

Gene-specific primers were designed to be used along with adaptor specific primers for both 5' and 3' RACE reactions. Nested primers, rather than single primers, were used to increase PCR specificity. Using 5' and 3' RACE reactions, 5' and 3' RACE fragments were obtained, sequenced and cloned. The process can be repeated until 5' and 3' ends of the full-length gene were identified. Then the full-length cDNA was generated by PCR using primers specific to 5' and 3' ends of the gene by end-to-end PCR.

EXAMPLE II. CONSTRUCTION OF EXPRESSION VECTORS

5

10

30

35

The sequence was amplified from a genomic or cDNA library using primers specific to sequences upstream and downstream of the coding region. The expression vector 15 was pMEN20 or pMEN65, which are both derived from pMON316 (Sanders et al, (1987) Nucleic Acids Research 15:1543-58) and contain the CaMV 35S promoter to express transgenes. To clone the sequence into the vector, both pMEN20 and the amplified DNA fragment were digested separately with SalI and NotI restriction enzymes at 37° C for 2 hours. The digestion products were subject to electrophoresis in a 0.8% agarose gel and visualized 20 by ethidium bromide staining. The DNA fragments containing the sequence and the linearized plasmid were excised and purified by using a Qiaquick gel extraction kit (Qiagen, CA). The fragments of interest were ligated at a ratio of 3:1 (vector to insert). Ligation reactions using T4 DNA ligase (New England Biolabs, MA) were carried out at 16° C for 16 hours. The ligated DNAs were transformed into competent cells of the E. coli strain 25 DH5alpha by using the heat shock method. The transformations were plated on LB plates containing 50 mg/l kanamycin (Sigma).

Individual colonies were grown overnight in five milliliters of LB broth containing 50 mg/l kanamycin at 37° C. Plasmid DNA was purified by using Qiaquick Mini Prep kits (Qiagen, CA).

EXAMPLE III. TRANSFORMATION OF AGROBACTERIUM WITH THE EXPRESSION VECTOR

After the plasmid vector containing the gene was constructed, the vector was used to transform Agrobacterium tumefaciens cells expressing the gene products. The stock of Agrobacterium tumefaciens cells for transformation were made as described by Nagel et al. (1990) FEMS Microbiol Letts. 67: 325-328. Agrobacterium strain ABI was grown in 250 ml

LB medium (Sigma) overnight at 28°C with shaking until an absorbance (A_{600}) of 0.5 – 1.0 was reached. Cells were harvested by centrifugation at 4,000 x g for 15 min at 4° C. Cells were then resuspended in 250 µl chilled buffer (1 mM HEPES, pH adjusted to 7.0 with KOH). Cells were centrifuged again as described above and resuspended in 125 µl chilled buffer. Cells were then centrifuged and resuspended two more times in the same HEPES buffer as described above at a volume of 100 µl and 750 µl, respectively. Resuspended cells were then distributed into 40 µl aliquots, quickly frozen in liquid nitrogen, and stored at -80° C.

5

10

15

20

25

30

35

Agrobacterium cells were transformed with plasmids prepared as described above following the protocol described by Nagel et al. For each DNA construct to be transformed, 50-100 ng DNA (generally resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0) was mixed with 40 μ l of Agrobacterium cells. The DNA/cell mixture was then transferred to a chilled cuvette with a 2mm electrode gap and subject to a 2.5 kV charge dissipated at 25 μ F and 200 μ F using a Gene Pulser II apparatus (Bio-Rad). After electroporation, cells were immediately resuspended in 1.0 ml LB and allowed to recover without antibiotic selection for 2-4 hours at 28° C in a shaking incubator. After recovery, cells were plated onto selective medium of LB broth containing 100μ g/ml spectinomycin (Sigma) and incubated for 24-48 hours at 28° C. Single colonies were then picked and inoculated in fresh medium. The presence of the plasmid construct was verified by PCR amplification and sequence analysis.

EXAMPLE IV. TRANSFORMATION OF ARABIDOPSIS PLANTS WITH AGROBACTERIUM TUMEFACIENS WITH EXPRESSION VECTOR

After transformation of Agrobacterium tumefaciens with plasmid vectors containing the gene, single Agrobacterium colonies were identified, propagated, and used to transform Arabidopsis plants. Briefly, 500 ml cultures of LB medium containing 50 mg/l kanamycin were inoculated with the colonies and grown at 28° C with shaking for 2 days until an absorbance (A_{600}) of > 2.0 is reached. Cells were then harvested by centrifugation at 4,000 x g for 10 min, and resuspended in infiltration medium (1/2 X Murashige and Skoog salts (Sigma), 1 X Gamborg's B-5 vitamins (Sigma), 5.0% (w/v) sucrose (Sigma), 0.044 μ M benzylamino purine (Sigma), 200 μ l/L Silwet L-77 (Lehle Seeds) until an absorbance (A_{600}) of 0.8 was reached.

Prior to transformation, Arabidopsis thaliana seeds (ecotype Columbia) were sown at a density of ~10 plants per 4" pot onto Pro-Mix BX potting medium (Hummert International) covered with fiberglass mesh (18 mm X 16 mm). Plants were grown under continuous illumination (50-75 µE/m²/sec) at 22-23° C with 65-70% relative humidity. After about 4 weeks, primary inflorescence stems (bolts) are cut off to encourage growth of

multiple secondary bolts. After flowering of the mature secondary bolts, plants were prepared for transformation by removal of all siliques and opened flowers.

The pots were then immersed upside down in the mixture of Agrobacterium infiltration medium as described above for 30 sec, and placed on their sides to allow draining into a 1' x 2' flat surface covered with plastic wrap. After 24 h, the plastic wrap was removed and pots are turned upright. The immersion procedure was repeated one week later, for a total of two immersions per pot. Seeds were then collected from each transformation pot and analyzed following the protocol described below.

EXAMPLE V. IDENTIFICATION OF ARABIDOPSIS PRIMARY TRANSFORMANTS

Seeds collected from the transformation pots were sterilized essentially as follows. Seeds were dispersed into in a solution containing 0.1% (v/v) Triton X-100 (Sigma) and sterile H₂O and washed by shaking the suspension for 20 min. The wash solution was then drained and replaced with fresh wash solution to wash the seeds for 20 min with shaking. After removal of the second wash solution, a solution containing 0.1% (v/v) Triton X-100 and 70% ethanol (Equistar) was added to the seeds and the suspension was shaken for 5 min. After removal of the ethanol/detergent solution, a solution containing 0.1% (v/v) Triton X-100 and 30% (v/v) bleach (Clorox) was added to the seeds, and the suspension was shaken for 10 min. After removal of the bleach/detergent solution, seeds were then washed five times in sterile distilled H2O. The seeds were stored in the last wash water at 4°C for 2 days in the dark before being plated onto antibiotic selection medium (1 X Murashige and Skoog salts (pH adjusted to 5.7 with 1M KOH), 1 X Gamborg's B-5 vitamins, 0.9% phytagar (Life Technologies), and 50 mg/l kanamycin). Seeds were germinated under continuous illumination (50-75 µE/m²/sec) at 22-23° C. After 7-10 days of growth under these conditions, kanamycin resistant primary transformants (T1 generation) were visible and obtained. These seedlings were transferred first to fresh selection plates where the seedlings continued to grow for 3-5 more days, and then to soil (Pro-Mix BX potting medium).

Primary transformants were crossed and progeny seeds (T₂) collected; kanamycin resistant seedlings were selected and analyzed. The expression levels of the recombinant polynucleotides in the transformants varies from about a 5% expression level increase to a least a 100% expression level increase. Similar observations are made with respect to polypeptide level expression.

EXAMPLE VI. IDENTIFICATION OF ARABIDOPSIS PLANTS WITH TRANSCRIPTION FACTOR GENE KNOCKOUTS

5

10

15

20

25

30

The screening of insertion mutagenized *Arabidopsis* collections for null mutants in a known target gene was essentially as described in Krysan et al (1999) <u>Plant Cell</u> 11:2283-2290. Briefly, gene-specific primers, nested by 5-250 bases to each other, were designed from the 5' and 3' regions of a known target gene. Similarly, nested sets of primers were also created specific to each of the T-DNA or transposon ends (the "right" and "left" borders). All possible combinations of gene specific and T-DNA/transposon primers were used to detect by PCR an insertion event within or close to the target gene. The amplified DNA fragments were then sequenced which allows the precise determination of the T-DNA/transposon insertion point relative to the target gene. Insertion events within the coding or intervening sequence of the genes were deconvoluted from a pool comprising a plurality of insertion events to a single unique mutant plant for functional characterization. The method is described in more detail in Yu and Adam, US Application Serial No. 09/177,733 filed October 23, 1998.

15 EXAMPLE VII. IDENTIFICATION OF PATHOGEN INDUCED GENES

5

10

20

25

30

In some instances, expression patterns of the pathogen induced genes (such as defense genes) was monitored by microarray experiments. cDNAs were generated by PCR and resuspended at a final concentration of ~ 100 ng/ul in 3X SSC or 150mM Na-phosphate (Eisen and Brown (1999) *Meth. in Enzymol.* 303:179-205). The cDNAs were spotted on microscope glass slides coated with polylysine. The prepared cDNAs were aliquoted into 384 well plates and spotted on the slides using an x-y-z gantry (OmniGrid) purchased from GeneMachines (Menlo Park, CA) outfitted with quill type pins purchased from Telechem International (Sunnyvale, CA). After spotting, the arrays were cured for a minimum of one week at room temperature, rehydrated and blocked following the protocol recommended by Eisen and Brown (1999).

Sample total RNA (10 ug) samples were labeled using fluorescent Cy3 and Cy5 dyes. Labeled samples were resuspended in 4X SSC/0.03% SDS/4 ug salmon sperm DNA/2 ug tRNA/ 50mM Na-pyrophosphate, heated for 95°C for 2.5 minutes, spun down and placed on the array. The array was then covered with a glass coverslip and placed in a sealed chamber. The chamber was then kept in a water bath at 62°C overnight. The arrays were washed as described in Eisen and Brown (1999) and scanned on a General Scanning 3000 laser scanner. The resulting files are subsequently quantified using Imagene a software purchased from BioDiscovery (Los Angeles, CA).

EXAMPLE VIII. IDENTIFICATION OF PATHOGEN TOLERANCE PHENOTYPE IN OVEREXPRESSOR OR GENE KNOCKOUT PLANTS

5

10

15

20

25

30

35

Experiments were performed to identify those transformants or knockouts that exhibited an improved pathogen tolerance. For such studies, the transformants were exposed to biotropic fungal pathogens, such as Erisyphe orontii, and necrotropic fungal pathogens, such as Fusarium oxysporum. Fusarium oxysporum isolates cause vascular wilts and damping off of various annual vegetables, perennials and weeds (Mauch-Mani and Slusarenko (1994) Molecular Plant-Microbe Interactions 7: 378-383). For Fusarium oxysporum experiments, plants grown on petri dishes were sprayed with a fresh spore suspension of F. oxysporum. The spore suspension was prepared as follows: A plug of fungal hyphae from a plate culture was placed on a fresh potato dextrose agar plate and allowed to spread for one week. 5 ml sterile water was then added to the plate, swirled, and pipetted into 50 ml Armstrong Fusarium medium. Spores were grown overnight in Fusarium medium and then sprayed onto plants using a Preval paint sprayer. Plant tissue was harvested and frozen in liquid nitrogen 48 hours post infection.

Erysiphe orontii is a causal agent of powdery mildew. For Erysiphe orontii experiments, plants were grown approximately 4 weeks in a greenhouse under 12 hour light (20 C, ~30% relative humidity (rh)). Individual leaves were infected with E. orontii spores from infected plants using a camel's hair brush, and the plants were transferred to a Percival growth chamber (20 C, 80% rh.). Plant tissue was harvested and frozen in liquid nitrogen 7 days post infection.

Botrytis cinerea is a necrotrophic pathogen. Botrytis cinerea was grown on potato dextrose agar in the light. A spore culture was made by spreading 10 ml of sterile water on the fungus plate, swirling and transferring spores to 10 ml of sterile water. The spore inoculum (approx. 105 spores/ml) was used to spray 10 day-old seedlings grown under sterile conditions on MS (-sucrose) media. Symptoms were evaluated every day up to approximately 1 week.

Infection with bacterial pathogens Pseudomonas syringae pv maculicola strain 4326 and pv maculicola strain 4326 was performed by hand inoculation at two doses. Two inoculation doses allows the differentiation between plants with enhanced susceptibility and plants with enhanced resistance to the pathogen. Plants were grown for 3 weeks in the greenhouse, then transferred to the growth chamber for the remainder of their growth. Psm ES4326 was hand inoculated with 1 ml syringe on 3 fully-expanded leaves per plant (4 1/2 wk old), using at least 9 plants per overexpressing line at two inoculation doses, OD=0.005 and OD=0.0005. Disease scoring occured at day 3 post-inoculation with pictures of the plants and leaves taken in parallel.

Table 3 shows the phenotypes observed for particular overexpressor or knockout plants and provides the SEQ ID No., the internal reference code (GID), whether a knockout or overexpressor plant was analyzed and the observed phenotype.

Table 3

SEQ ID No.	GID	Knockout (KO) or overexpressor (OE)	Phenotype
1	G188	KO	Increased susceptibility to Fusarium
3	G616	OE	Increased tolerance to Erysiphe
5	Gi9	OE	Increased tolerance to Erysiphe
7.	G261	OE	Increased susceptibility to Botrytis
9	G28	OE	Increased resistance to Erysiphe
11	G869	OE	Increased susceptibility to Fusarium
13	G237	OE	Increased tolerance to Erysiphe
15	G409	OE	Increased tolerance to Erysiphe
17	G418	OE	Increased tolerance to Pseudomonas
19	G591	OE	Increased tolerance to Erysiphe
21	G525	OE	Increased tolerance to Pseudomonas
23	G545	OE .	Increased susceptibility to Pseudomonas, Erysiphe and Fusarium
25	G865	OE	Increased susceptibility to Erysiphe and Botrytis
27	G881	OE	Increased susceptibility to Erysiphe and Botrytis
29	G896	KO	Increased susceptibility to Fusarium
31	G378	OE	Increased resistance to Erysiphe
33	G569	OE	Decreased expression of defense genes
35	G558	OE	Increased expression of defense genes

For a particular overexpressor that shows an increased susceptibility to a pathogen, it may be more useful to select a plant with a decreased expression of the particular transcription factor. For a particular knockout that shows an increased susceptibility to a pathogen, it may be more useful to select a plant with an increased expression of the particular transcription factor.

Other than Fusarium oxysporum, Erysyphe orontii, the transgenic plants are more tolerant to Sclerotinia spp., soil-borne oomycetes, foliar oomycetes, Botrytis spp., Rhizoctonia spp, Verticillium dahliae/albo-atrum, Alternaria spp., rusts, Mycosphaerella spp, Fusarium solani, or the like. The transgenic plants are more resistant to fungal diseases such as rusts, smuts, wilts, yellows, root rot, leaf drop, ergot, leaf blight of potato, brown spot of rice, leaf blight, late blight, powdery mildew, downy mildew, and the like; viral diseases such as sugarcane mosaic, cassava mosaic, sugar beet yellows, plum pox, barley yellow dwarf, tomato yellow leaf curl, tomato spotted wilt virus, and the like; bacterial diseases such as citrus canker, bacterial leaf blight, bacterial will, soft rot of vegetables, and the like; nematode diseases such as root knot, sugar beet cyst nematode or the like.

5

10

EXAMPLE IX. IDENTIFICATION OF HOMOLOGOUS SEQUENCES

5

10

15

20

25

30

35

Homologous sequences from *Arabidopsis* and plant species other than *Arabidopsis* were identified using database sequence search tools, such as the Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990) <u>J. Mol. Biol.</u> 215:403-410; and Altschul et al. (1997) <u>Nucl. Acid Res.</u> 25: 3389-3402). The tblastx sequence analysis programs were employed using the BLOSUM-62 scoring matrix (Henikoff, S. and Henikoff, J. G. (1992) <u>Proc. Natl. Acad. Sci. USA</u> 89: 10915-10919).

Identified *Arabidopsis* homologous sequences are provided in Figure 2 and included in the Sequence Listing. The percent sequence identity among these sequences is as low as 47% sequence identity. Additionally, the entire NCBI GenBank database was filtered for sequences from all plants except *Arabidopsis thaliana* by selecting all entries in the NCBI GenBank database associated with NCBI taxonomic ID 33090 (Viridiplantae; all plants) and excluding entries associated with taxonomic ID 3701 (*Arabidopsis thaliana*). These sequences were compared to sequences representing genes of SEQ IDs Nos. 1-58 on 9/26/2000 using the Washington University TBLASTX algorithm (version 2.0a19MP). For each gene of SEQ IDs Nos. 1-58, individual comparisons were ordered by probability score (P-value), where the score reflects the probability that a particular alignment occurred by chance. For example, a score of 3.6e-40 is 3.6 x 10⁻⁴⁰. For up to ten species, the gene with the lowest P-value (and therefore the most likely homolog) is listed in Figure 3.

In addition to P-values, comparisons were also scored by percentage identity. Percentage identity reflects the degree to which two segments of DNA or protein are identical over a particular length. The ranges of percent identity between the non-Arabidopsis genes shown in Figure 3 and the Arabidopsis genes in the sequence listing are: SEQ ID No. 1: 38%-76%; SEQ ID No. 3: 36%-72%; SEQ ID No. 5: 51%-75%; SEQ ID No. 7: 37%-76%; SEQ ID No. 9: 48%-75%; SEQ ID No. 11: 31%-68%; SEQ ID No. 13: 59%-81%; SEQ ID No. 15: 49%-81%; SEQ ID No. 17: 53%-87%; SEQ ID No. 19: 48%-84%; SEQ ID No. 21: 73%-89%; SEQ ID No. 23: 52%-64%; SEQ ID No. 25: 48%-83%; SEQ ID No. 27: 35%-92%; SEQ ID No. 29: 56%-89%; SEQ ID No. 31: 50%-90%; SEQ ID No. 33: 50%-93%; SEQ ID No. 35: 52%-81%; SEQ ID No. 37: 75%-81%; SEQ ID No. 39: 35%-72%; SEQ ID No. 41: 55%-89%; SEQ ID No. 43: 56%-77%; SEQ ID No. 45: 34%-72%; SEQ ID No. 47: 51%-86%; SEQ ID No. 49: 46%-86%; SEQ ID No. 51: 58%-80%; SEQ ID No. 53: 46%-55%; SEQ ID No. 55: 84%-89%; and SEQ ID No. 57: 43%-71%.

The polynucleotides and polypeptides in the Sequence Listing and the identified homologous sequences may be stored in a computer system and have associated or linked with the sequences a function, such as that the polynucleotides and polypeptides are useful for modifying the pathogen tolerance of a plant.

All references, publications, patents and other documents herein are incorporated by reference in their entirety for all purposes. Although the invention has been described with reference to the embodiments and examples above, it should be understood that various modifications can be made without departing from the spirit of the invention.

What is claimed is:

15

20

30

1. A transgenic plant with modified pathogen tolerance, which plant comprises a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:

- 5 (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-29, or a complementary nucleotide sequence thereof;
 - (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);
- 10 (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-29, or a complementary nucleotide sequence thereof;
 - (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
 - (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
 - (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);
 - (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide that modifies a plant's pathogen tolerance;
 - (h) a nucleotide sequence having at least 31% sequence identity to a nucleotide sequence of any of (a)-(g);
 - (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
- 25 (j) a nucleotide sequence which encodes a polypeptide having at least 31% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29;
 - (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29; and
 - (1) a nucleotide sequence which encodes a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-29.
 - 2. The transgenic plant of claim 1, further comprising a constitutive, inducible, or tissue-active promoter operably linked to said nucleotide sequence.
- 35 3. The transgenic plant of claim 1, wherein the plant is selected from the group consisting of: soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot,

cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, and vegetable brassicas.

- 5 4. An isolated or recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-29, or a complementary nucleotide sequence thereof;
- 10 (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);

15

- (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-29, or a complementary nucleotide sequence thereof;
- (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
- (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
- (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);
- 20 (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide having a biological activity that modifies a plant's pathogen tolerance;
 - (h) a nucleotide sequence having at least 31% sequence identity to a nucleotide sequence of any of (a)-(g);
- 25 (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
 - (j) a nucleotide sequence which encodes a polypeptide having at least 31% identity sequence identity to a polypeptide of SEO ID Nos. 2N, where N=1-29;
 - (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29; and
 - (1) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-29.
- 35 5. The isolated or recombinant polynucleotide of claim 4, further comprising a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence.

6. A cloning or expression vector comprising the isolated or recombinant polynucleotide of claim 4.

- 7. A cell comprising the cloning or expression vector of claim 6.
- 8. A transgenic plant comprising the isolated or recombinant polynucleotide of claim 4.
- 9. A composition produced by one or more of:

5

15

20

25

- (a) incubating one or more polynucleotide of claim 4 with a nuclease;
- 10 (b) incubating one or more polynucleotide of claim 4 with a restriction enzyme;
 - (c) incubating one or more polynucleotide of claim 4 with a polymerase;
 - (d) incubating one or more polynucleotide of claim 4 with a polymerase and a primer;
 - (e) incubating one or more polynucleotide of claim 4 with a cloning vector, or
 - (f) incubating one or more polynucleotide of claim 4 with a cell.
 - 10. A composition comprising two or more different polynucleotides of claim 4.
 - 11. An isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide of claim 4.
 - 12. A plant comprising an isolated polypeptide of claim 11.
 - 13. A method for producing a plant having a modified pathogen tolerance, the method comprising altering the expression of the isolated or recombinant polynucleotide of claim 4 or the expression levels or activity of a polypeptide of claim 11 in a plant, thereby producing a modified plant, and selecting the modified plant for improved pathogen tolerance thereby providing the modified plant with a modified pathogen tolerance.
 - 14. The method of claim 13, wherein the polynucleotide is a polynucleotide of claim 4.
 - 15. A method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of claim 4, the method comprising:
 - (a) expressing a polypeptide encoded by the polynucleotide in a plant; and
- (b) identifying at least one factor that is modulated by or interacts with the polypeptide.

16. The method of claim 15, wherein the identifying is performed by detecting binding by the polypeptide to a promoter sequence, or detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system.

- 5 17. The method of claim 15, wherein the identifying is performed by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.
 - 18. A method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest, the method comprising:
 - (a) placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of claim 4; and,
 - (b) monitoring one or more of:
 - (i) expression level of the polynucleotide in the plant;
 - (ii) expression level of the polypeptide in the plant;
 - (iii) modulation of an activity of the polypeptide in the plant; or
 - (iv) modulation of an activity of the polynucleotide in the plant.
 - 19. An integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of claim 4, or to a polypeptide encoded by the polynucleotide.
 - 20. The integrated system, computer or computer readable medium of claim 19, further comprising a link between said one or more sequence strings to a modified plant pathogen tolerance phenotype.

25

30

10

15

- 21. A method of identifying a sequence similar or homologous to one or more polynucleotides of claim 4, or one or more polypeptides encoded by the polynucleotides, the method comprising:
 - (a) providing a sequence database; and,
- (b) querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.
- 35 22. The method of claim 21, wherein the querying comprises aligning one or more of the target sequences with one or more of the one or more sequence members in the sequence database.

23. The method of claim 21, wherein the querying comprises identifying one or more of the one or more sequence members of the database that meet a user-selected identity criteria with one or more of the target sequences.

5

- 24. The method of claim 21, further comprising linking the one or more of the polynucleotides of claim 4, or encoded polypeptides, to a modified plant pathogen tolerance phenotype.
- 10 25. A plant comprising altered expression levels of an isolated or recombinant polynucleotide of claim 4.
 - 26. A plant comprising altered expression levels or the activity of an isolated or recombinant polypeptide of claim 11.

15

27. A plant lacking a nucleotide sequence encoding a polypeptide of claim 11.

Figure 1

SEQ ID No.	GID	cDNA or protein	conserved domain
1	G188	cDNA	
2	G188	protein	175-222
3	G616	cDNA	
4	G616	protein	39-95
5	G19	cDNA	
6	G19	protein	76-145
7	G261	cDNA	
8	G261	protein	16-104
9	G28	cDŇA	
10	G28	protein	145-213
11	G869	cDNA	
12	G869	protein	109-177
13	G237	cDNA	
14	G237	protein	11-113
15	G409	cDNA	
16	G409	protein	64-124
17	G418	cDNA	
18	G418	protein	500-560
19	G591	cDNA _	
20	G591	protein	143-240
21	G525	cDNA	
22	G525	protein	23-167
23	G545	cDNA	
24	G545	protein	82-102, 136-154
25	G865	cDNA	·
26	G865	protein	36-103
27	G881	cDNA	
28	G881	protein	176-233
29	G896	cDNA	
30	G896	protein	18-39
31	G378	cDNA	,
32	G378	protein	196-237
33	G569	cDNA	
34	G569	protein	90-153
35	G558	cDNA	
36	G558	protein	45-105

Figure 2

SEQ ID No.	GID	homolog	cDNA or protein	conserved domain
37	G1396	homolog of G1394	cDNA	
38	G1396	homolog of G1394	protein	entire protein
39	G265	homolog of G261	cDNA	
40	G265	homolog of G261	protein	14-105
41	G1006	homolog of G28	cDNA	•
42	G1006	homolog of G28	protein	114-182
43	G1309	homolog of G237	cDNÀ	
44	G1309	homolog of G237	protein	9-114
45	G2550	homolog of G418	cDNA .	
46	G2550	homolog of G418	protein	348-408
47	G965	homolog of G418	cDNA	
48	G965	homolog of G418	protein	423-486
49	G793	homolog of G591	cDNA	
50	G793	homolog of G591	protein	151-206
51	G764	homolog of G525	cDNA	
52	G764	homolog of G525	protein	27-171
53	G350	homolog of G545	cDNA	
54	G350	homolog of G545	protein	91-113,150-170
55	G986	homolog of G881	cDNA	
56	G986	homolog of G881	protein	146-203
57	G1349	homolog of G896	cDNA	
58	G1349	homolog of G896	protein	13-63

Figure 3A

SEQ ID No.	GID	Genbank NID	P-value	Species
1	G188	7779802	5.20E-36	Lotus japonicus
1	G188	7284340	2.10E-34	Glycine max
1	G188	9361307	1.20E-27	Triticum aestivum
1	G188	7340336	1.10E-22	Oryza sativa
1	G188	6529152	3.60E-22	Lycopersicon esculentum
1	G188	8748477	7.70E-21	Medicago truncatula
1	G188	5456433	7.10E-14	Zea mays
1	G188	9302479	1.60E-12	Sorghum bicolor
1	G188	6696287	4.10E-12	Pinus taeda
1	G188	562242	9.00E-12	Brassica rapa
3	G616	7719440	8.30E-37	Lotus japonicus
3	G616	7692230	5.90E-33	Glycine max
3	G616	7501307	1.10E-21	Gossypium arboreum
3	G616	8071090	1.50E-21	Solanum tuberosum
3	G616	8858771	1.50E-21	Oryza sativa
3	G616	5047315	1.50E-21	Gossypium hirsutum
3	G616	6358532	5.80E-20	Antirrhinum graniticum
3	G616	2826867	7.00E-20	Antirrhinum majus
3	G616	6358535	7.40E-20	Antirrhinum majus subsp. linkianum
3	G616	6358538	7.50E-20	Antirrhinum braun-blanquetii
5	G19	8789223	2.80E-34	Citrus x paradisi
5	G19	9434234	4.50E-34	Lycopersicon esculentum
5	G19	7478682	1.30E-30	Glycine max
5	G19	6654934	1.20E-28	Medicago truncatula
5	G19	3264766	5.50E-26	Prunus armeniaca
. 5	G19	7624302	8.30E-26	Gossypium arboreum
5	G19	9425363	2.90E-25	Triticum aestivum
5	G19	688579	3.60E-25	Ricinus communis
5	G19	9419304	6.00E-25	Hordeum vulgare
5	G19	7720316	8.80E-25	Lotus japonicus
7	G261	5821137	5.10E-93	Nicotiana tabacum
7	G261	7158881	8.80E-86	Medicago sativa
7	G261	886741	1.00E-73	Zea mays
7	G261	5900449	5.20E-47	Lycopersicon esculentum
7	G261	7561318	1.20E-46	Medicago truncatula
7	G261	19491	1.70E-42	Lycopersicon peruvianum
7	G261	7233914	3.50E-41	Glycine max
7	G261	4528238	9.00E-41	Citrus unshiù
7	G261	8903922	4.00E-39	Hordeum vulgare
7	G261	9251913	1.90E-36	Solanum tuberosum
9	G28	7528275	4.20E-62	Mesembryanthemum crystallinum
9	G28	6654776	1.20E-57	Medicago truncatula
9	G28	790362	2.30E-54	Nicotiana tabacum
9	G28	8809570	8.00E-54	Nicotiana sylvestris
9	G28	3342210	8.40E-54	Lycopersicon esculentum
9	G28	6566281	8.40E-47	Glycine max
9	G28	7627061	8.40E-47	Gossypium arboreum
9	G28	7324479	2.00E-44	Lycopersicon pennellii
9	G28	6478844	1.80E-35	Matricaria chamomilla
9	G28	7273972	7.80E-29	Oryza sativa
11	G869	2213784	1.30E-19	Lycopersicon esculentum
11	G869	3065894	7.30E-19	Nicotiana tabacum

Figure 3B

SEQ ID No.	GID	Genbank NID	P-value	Species
11	G869	8570080	4.20E-18	Oryza sativa
11	G869	7560260	1.50E-17	Medicago truncatula
11	G869	7534890	5.20E-14	Sorghum bicolor
11	G869	6455322	1.10E-13	Glycine max
11	G869	9362061	2.70E-13	Triticum aestivum
11	G869	7788764	5.70E-13	Lotus japonicus
11	G869	7624302	2.50E-12	Gossypium arboreum
11	G869	3858036	2.80E-12	Populus balsamifera subsp. trichocarpa
13	G237	8283916	4.70E-42	Glycine max
13	G237	9361969	8.30E-41	Triticum aestivum
13	G237	4753385	4.10E-39	Zea mays
13	G237	7535969	4.10E-33	Sorghum bicolor
13	G237	7566043	9.30E-33	Medicago truncatula
13	G237	7339127	2.00E-32	Lycopersicon esculentum
13	G237	5860031	1.10E-28	Pinus taeda
13	G237	7776223	2.20E-28	Lotus japonicus
13	G237	6850206	5.10E-28	Oryza sativa
13	G237	5048991	8.50E-28	Gossypium hirsutum
15	G409	6654773	6.10E-57	Medicago truncatula
15	G409	6531235	2.00E-56	Lycopersicon esculentum
15	G409	7924152	1.10E-47	Glycine max
15	G409	5006854	6.50E-43.	Oryza sativa
15	G409	8098529	2.10E-41	Hordeum vulgare
15	G409	767697	1.40E-37	Daucus carota
15	G409	8328991	3.30E-37	Mesembryanthemum crystallinum
15	G409	7415613	1.40E-32	Physcomitrella patens
15	G409	7785121	2.80E-32	Lotus japonicus
15	G409	6916941	4.80E-32	Lycopersicon pennellii
17	G418	7239156	1.90E-123	Malus x domestica
17	G418	5892190	2.00E-62	Lycopersicon esculentum
17	G418	7628137	8.70E-58	Gossypium arboreum
17	G418	9205496	3.90E-51	Glycine max
17	G418	6069643	1.50E-45	Oryza sativa
17	G418	7562931	6.90E-45	Medicago truncatula
17	G418	7781695	5.50E-40	Lotus japonicus
17	G418	9298824	7.80E-34	Sorghum bicolor
17	G418	9428023	3.90E-32	Triticum aestivum
17	G418	7244366	1.30E-31	Mentha x piperita
19	G591	7646333	1.90E-55	Lycopersicon esculentum
19	G591	7924288	4.10E-53	Glycine max
19	G591	7722838	1.10E-41	Lotus japonicus
19	G591	5804781	1.40E-24	Nicotiana tabacum
19	G591	9198126	2.50E-23	Medicago truncatula
19	G591	427677	9.50E-15	Oryza sativa
19	G591	7624745	1.80E-14	Gossypium arboreum
19	G591	7535578	8.70E-14	Sorghum bicolor
19	G591	5915205	1.30E-11	Zea mays
19	G591	9249806	2.60E-11	Solanum tuberosum
21	G525	4384535	5.60E-61	Lycopersicon esculentum
21	G525	6454868	2.00E-58	Glycine max
21	G525	6066594	9.30E-54	Petunia x hybrida
21	G525	4977542	8.60E-51	Oryza sativa

Figure 3C

SEQ ID No.	GID	Genbank NID	P-value	Species
21	G525	9361647	2.50E-50	Triticum aestivum
21	G525	4218536	5.20E-50	Triticum sp.
21	G525	6732159	5.20E-50	Triticum monococcum
21	G525	5343151	2.70E-49	Zea mays
21	G525	5049217	4.20E-48	Gossypium hirsutum
21	G525	8708684	8.90E-48	Hordeum vulgare
23	G545	4666359	8.30E-55	Datisca glomerata
23	G545	7228328	3.70E-52	Medicago sativa
23	G545	1763062	1.30E-51	Glycine max
23	G545	7206360	3.10E-44	Medicago truncatula
23	G545	7626808	9.60E-40	Gossypium arboreum
23	G545	439492	3.90E-39	Petunia x hybrida
23	G545	4382658	1.70E-38	Lycopersicon esculentum
23	G545	8486215	8.70E-38	Euphorbia esula
23	G545	7322653	6.80E-37	Lycopersicon hirsutum
23	G545	7785845	1.10E-33	Lotus japonicus
25	G865	9417297	1.70E-32	Triticum aestivum
25	G865	7206394	4.90E-29	Medicago truncatula
25	G865	7796858	5.70E-27	Glycine max
25	G865	4387560	9.20E-25	Lycopersicon esculentum
25	G865	569065	1.50E-23	Oryza sativa
25	G865	7788764	4.10E-23	Lotus japonicus
25	G865	790362	8.40E-22	Nicotiana tabacum
25	G865	7528275	5.90E-21	Mesembryanthemum crystallinum
25	G865	3264766	8.80E-20	Prunus armeniaca
25	G865	8098026	2.00E-19	Hordeum vulgare
27	G881	5820418	9.80E-29	Glycine max
27	G881	8440065	1.00E-27	Gossypium hirsutum
27	G881	4380578	1.50E-27	Lycopersicon esculentum
27	G881	9199620	2.70E-27	Medicago truncatula
27	G881	6472584	2.20E-24	Nicotiána tabacum
27	G881	9250698	3.20E-24	Solanum tuberosum
27	G881	8205146	5.20E-21	Oryza sativa
27	G881	1159878	8.20E-17	Avena fatua
27	G881	9299778	2.70E-16	Sorghum bicolor
27	G881	9444636	1.10E-14	Triticum aestivum
29	G896	9410462	1.90E-101	Hordeum vulgare
29	G896	7628908	3.60E-82	Gossypium arboreum
29	G896	7244408	1.80E-79	Mentha x piperita
29	G896	5046180	2.10E-73	Gossypium hirsutum
29	G896	7678652	1.10E-63	Lotus japonicus
29	G896	8286031	1.40E-60	Glycine max
29	G896	5888938	4.50E-58	Lycopersicon esculentum
29	G896	9298238	9.20E-54	Sorghum bicolor
29	G896	7566414	8.00E-52	Medicago truncatula
29	G896	8845076	1.00E-46	Triticum aestivum
31	G378	5270028	5.10E-73	Lycopersicon esculentum
31	G378	5048335	4.10E-58	Gossypium hirsutum
31	G378	7239521	5.90E-42	Oryza sativa
31	G378	5606120	6.80E-36	Glycine max
31	G378	3853800	3.20E-30	Populus tremula x Populus tremuloides
31	G378	7659983	1.70E-23	Sorghum bicolor
<u> </u>	00/0	, , , , , , , , , , , , , , , , , , , ,	1 35-20	Tan Bushin propriet

Figure 3D

SEQ ID No.	GID	Genbank NID	P-value	Species
31	G378	6626305	1.10E-21	Zea mays
31	G378	9412941	9.40E-19	Triticum aestivum
31	G378	3242033	4.30E-17	Mesembryanthemum crystallinum
31	G378	7626259	7.70E-13	Gossypium arboreum
33	G229	7337390	6.60E-51	Lycopersicon esculentum
33	G229	9823237	3.60E-50	Hordeum vulgare
33	G229	7244424	4.90E-50	Mentha x piperita
33	G229	7776053	1.70E-49	Lotus japonicus
33	G229	2921335	5.80E-48	Gossypium hirsutum
33	G229	1491932	4.50E-47	Zea mays
33	G229	6455590	2.80E-44	Glycine max
33	G229	6020191	2.00E-41	Pinus taeda
33	G229	10697236	4.20E-41	Oryza sativa
33	G229	7765706	5.10E-41	Medicago truncatula
35	G663	7673087	5.10E-43	Petunia integrifolia
35	G663	9508051	3.00E-41	Lycopersicon esculentum
35	G663	7673091	3.30E-41	Petunia x hybrida
			2.40E-36	Petunia axillaris
35	G663	7673097		
35	G663	5048991	1.20E-33 2.50E-31	Gossypium hirsutum
35	G663	6455590		Glycine max
35	G663	7560175	1.90E-27	Medicago truncatula
35	G663	7244424	4.10E-26	Mentha x piperita
35	G663	9954117	3.40E-25	Solanum tuberosum
35	G663_	6020191	3.60E-25	Pinus taeda
37	G1396	498704	5.20E-22	Spinacia oleracea
37	G1396	7502400	1.20E-21	Gossypium arboreum
37	G1396	3857536	3.40E-21	Populus balsamifera subsp. trichocarpa
37	G1396	4385300	1.20E-20	Lycopersicon esculentum
37	G1396	6917249	1.50E-20	Lycopersicon pennellii
37	G1396	6915979	1.70E-20	Glycine max
37	G1396	7674530	2.70E-20	Medicago truncatula
37	G1396	8090319	3.40E-20	Sorghum bicolor
37	G1396	3592182	9.10E-20	Oryza sativa
37	G1396	6654124	1.10E-19	Zea mays
39	G265	5821137	6.50E-83	Nicotiana tabacum
39	G265	7158881	3.80E-79	Medicago sativa
39	G265	886741	1.60E-70	Zea mays
39	G265	5900449	5.60E-43	Lycopersicon esculentum
39	G265	8903922	8.20E-43	Hordeum vulgare
39	G265	7561318	2.10E-41	Medicago truncatula
39	G265	9204445	5.30E-36	Glycine max
. 39	G265	4528238	5.40E-36	Citrus unshiu
39	G265	19489	2.10E-35	Lycopersicon peruvianum
39	G265	9251913	2.00E-32	Solanum tuberosum
41	G1006	7528275	2.70E-51	Mesembryanthemum crystallinum
41	G1006	3342210	4.90E-49	Lycopersicon esculentum
41	G1006	6654776	1.90E-48	Medicago truncatula
41	G1006	790362	2.30E-47	Nicotiana tabacum
41	G1006	8809570	2.00E-46	Nicotiana sylvestris
41	G1006	7627061	6.40E-41	Gossypium arboreum
41	G1006	7324479	1.20E-35	Lycopersicon pennellii
41	G1006	6478844	1.80E-35	Matricaria chamomilla

Figure 3E

SEQ ID No.	GID	Genbank NID	P-value	Species
41	G1006	6566281	1.30E-34	Glycine max
41	G1006	4716624	3.80E-28	Oryza sativa
43	G1309	9361969	2.40E-45	Triticum aestivum
43	G1309	7566043	9.60E-35	Medicago truncatula
43	G1309	5891104	2.20E-31	Lycopersicon esculentum
43	G1309	5860031	2.10E-30	Pinus taeda
43	G1309	5049507	6.20E-30	Gossypium hirsutum
43	G1309	5139805	1.30E-29	Glycine max
43	G1309	6850206	2.50E-29	Oryza sativa
43	G1309	7721017	3.40E-29	Lotus japonicus
43	G1309	8368245	5.20E-28	Zea mays
43	G1309	20560	9.50E-27	Petunia x hybrida
45	G2550	4380729	2.80E-51	Lycopersicon esculentum
45	G2550	5667196	2.20E-49	Oryza sativa
45	G2550	8669454	1.40E-48	Glycine max
45	G2550	9298824	1.50E-48	Sorghum bicolor
45	G2550	7239156	9.90E-46	Malus x domestica
45	G2550	7570704	5.70E-45	Medicago truncatula
45	G2550	7628137	3.30E-42	Gossypium arboreum
45	G2550	7244366	6.00E-41	Mentha x piperita
45	G2550	9428023	4.70E-40	Triticum aestivum
45	G2550	9250642	3.50E-39	Solanum tuberosum
47	G965	7239156	3.10E-126	Malus x domestica
47	G965	5892190	2.00E-62	Lycopersicon esculentum
47	G965	7628137	1.60E-56	Gossypium arboreum
47	G965	9205496	2.60E-49	Glycine max
47	G965	6069643	1.70E-45	Oryza sativa
47	G965	7562931	2.50E-44	Medicago truncatula
47	G965	7781695	1.60E-41	Lotus japonicus
47	G965	9298824	6.30E-33	Sorghum bicolor
47	G965	9428023	1.50E-31	Triticum aestivum
47	G965	7244366	1.20E-29	Mentha x piperita
49	G793	6976712	3.60E-43	Lycopersicon esculentum
49	G793	7924288	2.00E-41	Glycine max
49	G793	7614163	3.90E-34	Lotus japonicus
49	G793	9198126	5.70E-23	Medicago truncatula
49	G793	5804781	1.10E-22	Nicotiana tabacum
49	G793	7535578	1.60E-14	Sorghum bicolor
49	G793	427677	6.10E-14	Oryza sativa
49	G793	5915205	2.90E-10	Zea mays
49	G793	9249806	4.20E-10	Solanum tuberosum
49	G793	7624745	1.30E-09	Gossypium arboreum
51	G764	4384535	7.00E-70	Lycopersicon esculentum
51	G764	5049217	1.80E-65	Gossypium hirsutum
51	G764	6454868	1.90E-64	Glycine max Petunia x hybrida
51	G764	6066594	5.20E-59	
51	G764	4218536	2.30E-52	Triticum sp. Triticum monococcum
51	G764	6732159	2.30E-52	Triticum monococcum Triticum aestivum
51	G764	9361647	7.50E-52	Oryza sativa
51	G764	4977542	4.10E-49	Medicago truncatula
51	G764	6799764	4.40E-49	Sorghum bicolor
51	G764	9296257	1.00E-48	Landin nicoloi

Figure 3F

SEQ ID No.	GID	Genbank NID	P-value	Species
53	G350	439492	5.20E-53	Petunia x hybrida
53	G350	7228328	8.90E-51	Medicago sativa
53	G350	4666359	3.10E-48	Datisca glomerata
53	G350	1763062	8.30E-48	Glycine max
53	G350	7626808	9.10E-44	Gossypium arboreum
53	G350	7206360	2.20E-43	Medicago truncatula
53	G350	2981168	2.10E-38	Nicotiana tabacum
53	G350	7322653	2.00E-37	Lycopersicon hirsutum
53	G350	5276755	2.40E-37	Lycopersicon esculentum
53	G350	2058503	1.10E-31	Brassica rapa
55	G986	6472584	1.00E-34	Nicotiana tabacum
55	G986	8440065	8.80E-33	Gossypium hirsutum
55	G986	4385167	1.50E-32	Lycopersicon esculentum
55	G986	8205146	5.50E-30	Oryza sativa
55	G986	5820418	8.80E-26	Glycine max
55	G986	1159878	2.30E-23	Avena fatua
55	G986	9250698	4.60E-22	Solanum tuberosum
55	G986	9413507	7.90E-21	Triticum aestivum
55	G986	7748539	2.30E-20	Lotus japonicus
55	G986	9199620	1.30E-16	Medicago truncatula
57	G1349	8904043	1.50E-47	Hordeum vulgare
57	G1349	7244408	2.40E-47	Mentha x piperita
57	G1349	8286031	3.60E-46	Glycine max
57	G1349	9298238	9.10E-36	Sorghum bicolor
57	G1349	7628908	4.70E-34	Gossypium arboreum
57	G1349	5046180	1.50E-33	Gossypium hirsutum
57	G1349	5888938	1.30E-30	Lycopersicon esculentum
57	G1349	5043924	6.20E-30	Pinus taeda
57	G1349	8845076	4.40E-29	Triticum aestivum
57	G1349	7678652	4.20E-27	Lotus japonicus

MBI15 Sequence Listing.ST25 SEQUENCE LISTING

<110> Heard, Jacqueline Keddie, James Yu, Guo-Liang Ratcliffe, Oliver Creelman, Robert Jiang, Cai-zhong Pineda, Omaira Reuber, Lynne Adam, Luc
<120> Pathogen Resistance Genes
<130> MBI-0015
<150> 60/166,228 <151> 1999-11-17
<150> Plant Trait Modification III <151> 2000-08-22
<150> 60/197,899 <151> 2000-04-17
<160> 58
<170> PatentIn version 3.0
<210> 1 <211> 1187
<pre><212> DNA <213> Arabidopsis thaliana</pre>
<220>
<221> CDS
<222> (50)(1096) <223> G188
400
<400> 1 ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc 58
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser 1 qaq qat tqq qat ctc ttc qcc qtc qtc aqa agc tgc agc tct tct gtt 106
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc 58 Met Ser Ser 1
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser 1 gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Val 5 tcc acc acc act tct tgt gct ggt cat qaa gac gac ata gga aac tgt 154
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagategcc atg tcc tcc Met Ser Ser 1 gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 5 10 15
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 5 tcc acc acc act tct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Gly Asn Cys 20 25 aaa caa caa caa gat cct cct cct cct ctg ttt caa gct tct tct 202
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser 1 gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 5 tcc acc acc act tct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Gly Asn Cys 25 30 10 154
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 5
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 5 tcc acc acc act attct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Gly Asn Cys 20 aaa caa caa caa gat cct cct cct cct cct ctg ttt caa gct tct tct Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln Ala Ser Ser 40 58 106 107 108 109 109 109 109 100 100 100
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser 1 gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 5 tcc acc acc aat tct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Gly Asn Cys 20 aaa caa caa caa gat cct cct cct cct cct ctg ttt caa gct tct tct Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln Ala Ser Ser 40 tct tgc aac gag tta caa gat tct tgc aaa cca ttt tta ccc gtt act Ser Cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu Pro Val Thr 55 act act act act act act act tgg tct cct cct cct cta ctt cct cct cct cct
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser 1 gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 15 tcc acc acc act aat tct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Tle Gly Asn Cys 30 aaa caa caa caa gat cct cct cct cct cct ctg ttt caa gct tct tct Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln Ala Ser Ser Ser Ser Ser Val tct tgc aac gag tta caa gat tct tgc aaa cca ttt tta ccc gtt act Ser Cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu Pro Val Thr 55
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 5 tcc acc acc act at tct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Gly Asn Cys 20 aaa caa caa caa gat cct cct cct cct cct ctg ttt caa gct tct tct Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln Ala Ser Ser 40 tct tgc aac gag tta caa gat tct tgc aaa cca ttt tta ccc gtt act Ser Cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu Pro Val Thr 55 act act act act act act tgg tct cct cct cct cta ctt cct cct cct Thr
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser 1 gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 15 tcc acc acc act tct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Gly Asn Cys 30 aaa caa caa caa gat cct cct cct cct cct ctg ttt caa gct tct tct Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln Ala Ser Ser Ser Cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu Pro Val Thr 65 act act act act act act act tgg tct cct cct cct ctc cta ctt cct cct cct
ctctcaccaa cataatcaaa gaagctttcc tcacgaattc aagatcgcc atg tcc tcc Met Ser Ser 1 gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 5 tcc acc acc aat tct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Gly Asn Cys 25 aaa caa caa caa gat cct cct cct cct cct ctg ttt caa gct tct tct Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln Ala Ser Ser Ser Cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu Pro Val Thr 55 act act act act act act act tgg tct cct cct cct cct cct cct cct c
gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt look asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val 15 tcc acc acc act at tct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Gly Asn Cys 25 aaa caa caa caa gat cct cct cct cct cct ctg ttt caa gct tct tct Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln Ala Ser Ser Ser Ser Ser Ser Val 15 tct tgc aac gag tta caa gat tct tgc aaa cca ttt tta ccc gtt act Ser Cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu Pro Val Thr 65 act act act act act act act tgg tct cct cct cct cct cta ctt cct cct cct
gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agc tct tct gtt Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val tcc acc acc aat tct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Gly Asn Cys 25 30 35 aaa caa caa caa gat cct cct cct cct cct ctg ttt caa gct tct tct Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln Ala Ser Ser 45 cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu Pro Val Thr 55 60 65 act act act act act act act tgg tct cct cct cct cct cct cct cct c
gag gat tgg gat ctc ttc gcc gtc gtc aga agc tgc agg tct tct gtt glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser Ser Ser Val tcc acc acc aca tct tgt gct ggt cat gaa gac gac ata gga aac tgt Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Gly Asn Cys 35 aaa caa caa caa gat cct cct cct cct cct ctg ttt caa gct tct tct Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln Ala Ser Ser Ser Val tct tgc aac gag tta caa gat tct tgc aaa cca ttt tta ccc gtt act Ser Cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu Pro Val Thr 60 act act act act act act act tgg tct cct cct cct cct cct cct cct c

				120			MBI:	15 Se	equer 125	ice I	Listi	ing.	ST25	130		
											cga Arg					490
aag Lys	aat Asn	cag Gln 150	caa Gln	aaa Lys	aga Arg	acc Thr	ata Ile 155	tgt Cys	cat His	gta Val	acg Thr	caa Gln 160	gag Glu	aat Asn	ctt Leu	538
tct Ser	tct Ser 165	gat Asp	ttg Leu	tgg Trp	gct Ala	tgg Trp 170	cgt Arg	aaa Lys	tac Tyr	ggt Gly	caa Gln 175	aaa Lys	ccc Pro	atc Ile	aaa Lys	586
ggc Gly 180	tct Ser	cct Pro	tat Tyr	cca Pro	agg Arg 185	aat Asn	tat Tyr	tac Tyr	aga Arg	tgt Cys 190	agt Ser	agc Ser	tca Ser	aaa Lys	gga Gly 195	634
tgt Cys	tta Leu	gca Ala	cga Arg	aaa Lys 200	caa Gln	gtt Val	gaa Glu	aga Arg	agt Ser 205	aat Asn	tta Leu	gat Asp	cct Pro	aat Asn 210	atc Ile	682
ttc Phe	atc Ile	gtt Val	act Thr 215	tac Tyr	acc Thr	gga Gly	gaa Glu	cac His 220	act Thr	cat His	cca Pro	cgt Arg	cct Pro 225	act Thr	cac His	730
cgg Arg	aac Asn	tct Ser 230	ctc Leu	gcc Ala	gga Gly	agt Ser	act Thr 235	cgt Arg	aac Asn	aaa Lys	tct Ser	cag Gln 240	ccc Pro	gtt Val	aac Asn	778
ccg Pro	gtt Val 245	cct Pro	aaa Lys	ccg Pro	gac Asp	aca Thr 250	tct Ser	cct Pro	tta Leu	tcg Ser	gat Asp 255	aca Thr	gta Val	aaa Lys	gaa Glu	826
gag Glu 260	att Ile	cat His	ctt Leu	tct Ser	ccg Pro 265	acg Thr	aca Thr	ccg Pro	ttg Leu	aaa Lys 270	gga Gly	aac Asn	gat Asp	gac Asp	gtt Val 275	874
caa Gln	gaa Glu	acg Thr	aat Asn	gga Gly 280	gat Asp	gaa Glu	gat Asp	atg Met	gtt Val 285	ggt Gly	caa Gln	gaa Glu	gtc Val	aac Asn 290	atg Met	922
gaa Glu	gag Glu	gaa Glu	gag Glu 295	gag Glu	gaa Glu	gaa Glu	gaa Glu	gtg Val 300	gaa Glu	gaa Glu	gat Asp	gat Asp	gaa Glu 305	GIU	gaa Glu	970
gaa Glu	gat Asp	gat Asp 310	Авр	gac Asp	gtg Val	gat Asp	gat Asp 315	Leu	ttg Leu	ata Ile	cca Pro	aat Asn 320	Leu	gcg Ala	gtg Val	1018
aga Arg	gat Asp 325	Arg	gat Asp	gat Asp	ttg Leu	ttc Phe 330	Phe	gct Ala	gga Gly	agt Ser	ttt Phe 335	PIC	tct Ser	tgg Trp	tcc Ser	1066
gcc Ala 340	Gly	tcc Ser	gcc	ggt Gly	gac Asp 345	GIA	ggt Gly	gga Gly	tga	tga	aaac	gaa	taaa	atct.	ca	1116
att	taca	att	taca	aaaa	ga a	aaaa	gtca	g tt	ttta	atta	tta	tttt	tgt	ttgt	taaaac	1176
ttg	acat	tta	t													1187
<21 <21 <21 <21	.1> .2>	2 348 PRT Arab	oidop	sis	thal	iana	ı									
<40	00>	2														
Met 1	Ser	Ser	Glu	Asp 5	Trp) Asp	Let	ı Phe	Ala 10	val	. Val	. Arg	g Sei	Cys 15	Ser	

Ser Ser Val Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Page 2 20

MBI15 Sequence Listing.ST25 25 30

Gly Asn Cys Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln 35 40 45

Ala Ser Ser Ser Cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu 50 55 60

Pro Val Thr Thr Thr Thr Thr Thr Thr Trp Ser Pro Pro Pro Leu Leu 65 70 75 80

Pro Pro Pro Lys Ala Ser Ser Pro Ser Pro Asn Ile Leu Leu Lys Gln 85 90 95

Glu Gln Val Leu Leu Glu Ser Gln Asp Gln Lys Pro Pro Leu Ser Val

Arg Val Phe Pro Pro Ser Thr Ser Ser Ser Val Phe Val Phe Arg Gly

Gln Arg Asp Gln Leu Leu Gln Gln Gln Ser Gln Pro Pro Leu Arg Ser 130 135 140

Arg Lys Arg Lys Asn Gln Gln Lys Arg Thr Ile Cys His Val Thr Gln 145 150 160

Glu Asn Leu Ser Ser Asp Leu Trp Ala Trp Arg Lys Tyr Gly Gln Lys 165 170 175

Pro Ile Lys Gly Ser Pro Tyr Pro Arg Asn Tyr Tyr Arg Cys Ser Ser 180 185 190

Ser Lys Gly Cys Leu Ala Arg Lys Gln Val Glu Arg Ser Asn Leu Asp 195 200 205

Pro Asn Ile Phe Ile Val Thr Tyr Thr Gly Glu His Thr His Pro Arg 210 215 220

Pro Thr His Arg Asn Ser Leu Ala Gly Ser Thr Arg Asn Lys Ser Gln 225 230 240

Pro Val Asn Pro Val Pro Lys Pro Asp Thr Ser Pro Leu Ser Asp Thr 245 250 255

Val Lys Glu Glu Ile His Leu Ser Pro Thr Thr Pro Leu Lys Gly Asn 260 265 270

Asp Asp Val Glu Glu Thr Asn Gly Asp Glu Asp Met Val Gly Glu Glu 275 280 285

Glu Glu Glu Glu Asp Asp Asp Asp Val Asp Asp Leu Leu Ile Pro Asn 305 310 315 320

MBI15 Sequence Listing.ST25
Leu Ala Val Arg Asp Arg Asp Asp Leu Phe Phe Ala Gly Ser Phe Pro
325 330 335

Ser Trp Ser Ala Gly Ser Ala Gly Asp Gly Gly Gly 340

<210> 3 <211> 1431

<212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (129)..(1211) <223> G616 <400> 3 ctttaaatcc caaaccaacc ctaaagtttt gatttttaat tttgggggta accaaaaaaa aaacaaaacc ctaatttttt ttctttagtg atgagattat tggtgatgat gaaatgattg 120 gagatcta atg aag aat aac aac aat ggc gac gtt gtg gat aac gaa gtg Met Lys Asn Asn Asn Gly Asp Val Val Asp Asn Glu Val 170 aac aac cgg tta agc cgg tgg cat cac aat tct tcc cgg ata att agg Asn Asn Arg Leu Ser Arg Trp His His Asn Ser Ser Arg Ile Ile Arg 218 gtt tca cga gct tcc ggt ggt aaa gat cga cac agc aaa gtc ttg act Val Ser Arg Ala Ser Gly Gly Lys Asp Arg His Ser Lys Val Leu Thr 266 tct aaa gga cca cgt gac cgt cgt gtc cgg tta tca gtc tcc acc gct Ser Lys Gly Pro Arg Asp Arg Arg Val Arg Leu Ser Val Ser Thr Ala 50 55 60 314 ctt caa ttc tat gat ctt caa gat cgg tta ggt tat gat caa cct agc Leu Gln Phe Tyr Asp Leu Gln Asp Arg Leu Gly Tyr Asp Gln Pro Ser 362 aaa gct gtt gaa tgg tta atc aaa gct gct gaa gat tca atc tct.gag Lys Ala Val Glu Trp Leu Ile Lys Ala Ala Glu Asp Ser Ile Ser Glu 410 ctt cct tca ctc aac aac act cat ttt ccg acc gat gac gag aat cac Leu Pro Ser Leu Asn Asn Thr His Phe Pro Thr Asp Asp Glu Asn His 458 cag aat cag aca tta aca aca gtt gct gct aat tcc ttg tct aaa tct Gln Asn Gln Thr Leu Thr Thr Val Ala Ala Asn Ser Leu Ser Lys Ser 506 115 gct tgt agt agc aat tca gac acg agc aag aac tct tct ggt ttg tct Ala Cys Ser Ser Asn Ser Asp Thr Ser Lys Asn Ser Ser Gly Leu Ser 554 tta tca aga tcg gag ctt aga gat aaa gct aga gag agg gct aga gag Leu Ser Arg Ser Glu Leu Arg Asp Lys Ala Arg Glu Arg Ala Arg Glu 145 150 155 602 aga aca gct aaa gag acc aag gaa aga gat cat aac cac act tcg ttt Arg Thr Ala Lys Glu Thr Lys Glu Arg Asp His Asn His Thr Ser Phe 650 acg gat ttg tta aat tcc ggt tca gat ccg gtt aac tca aac cgg caa Thr Asp Leu Leu Asn Ser Gly Ser Asp Pro Val Asn Ser Asn Arg Gln 698 180 tgg atg gct tca gct cct tct tca tct cca atg gag tat ttc agt tcg Trp Met Ala Ser Ala Pro Ser Ser Pro Met Glu Tyr Phe Ser Ser 746 200

Page 4

		MBI15 Sequer	nce Listing.ST25	
	t ctc ggg tcg ggt e Leu Gly Ser Gly 210			
	t cct ttc tca tca s Pro Phe Ser Ser 5			
cat cat cae His His Gla 240	g cat caa gag ttt n His Gln Glu Phe 245	Ser Phe Val	ccc gac cat ttg Pro Asp His Leu 250	ata tca 890 Ile Ser
ccg gca gas Pro Ala Gla 255	a tcc aac ggc gga u Ser Asn Gly Gly 260	gca ttc aat Ala Phe Asn	ctt gat ttt aat Leu Asp Phe Asn 265	atg tca 938 Met Ser 270
aca ccc tc Thr Pro Se	c ggc gcc gga gct r Gly Ala Gly Ala 275	gcc gtc tcc Ala Val Ser 280	gcc gca tca ggt Ala Ala Ser Gly	ggt ggc 986 Gly Gly 285
ttc agt gg Phe Ser Gl	t ttc aac agg ggg y Phe Asn Arg Gly 290	Thr Leu Gln 295	tcc aat tca aca Ser Asn Ser Thr 300	aat cag 1034 Asn Gln
cat cag to His Gln Se 30	a ttc ctc gct aat r Phe Leu Ala Ası 5	cta cag agg Leu Gln Arg 310	ttt cca aca tca Phe Pro Thr Ser 315	gaa agt 1082 Glu Ser
gga gga gg Gly Gly Gl 320	t cca cag ttc tta y Pro Gln Phe Let 32	Phe Gly Ala	ctg cct gca gag Leu Pro Ala Glu 330	aat cac 1130 Asn His
cac cac aa His His As 335	t cac cag ttt ca n His Gln Phe Gli 340	ctt tac tat Leu Tyr Tyr	gaa aat gga tgc Glu Asn Gly Cys 345	aga aac 1178 Arg Asn 350
	a cat aag ggt aaa u His Lys Gly Lys 355		tga tgatattaat t	attgcatct 1231
ttggttttgt	tcaaatgctc attt	gtatg tttatc	ttg gtttatttca a	aacaaatgt 1291
taatctcttt	cgttgtctga tgtg	gttag ggtttt	gttt tatgtattga g	ggtctttgg 1351
aaatctttt	gcattgtgct tgta	tgttg tatttg	gat aatagcattt t	gtttgtgag 1411
ttaaaaaaaa	aaaaaaaaa			1431
<210> 4 <211> 360 <212> PRT <213> Ara		a		
<400> 4				
Met Lys As 1	n Asn Asn Asn Gl	y Asp Val Val 10	Asp Asn Glu Val	Asn Asn 15
Arg Leu Se	er Arg Trp His Hi 20	s Asn Ser Ser 25	Arg Ile Ile Arg 30	Val Ser
Arg Ala Se	er Gly Gly Lys As	o Arg His Ser 40	Lys Val Leu Thr 45	Ser Lys
Gly Pro Ar 50	rg Asp Arg Arg Va 55	l Arg Leu Ser	Val Ser Thr Ala	Leu Gln
Phe Tyr As	sp Leu Gln Asp Ar 70	g Leu Gly Tyr	Asp Gln Pro Ser	Lys Ala 80

MBI15 Sequence Listing.ST25

Val Glu Trp Leu Ile Lys Ala Ala Glu Asp Ser Ile Ser Glu Leu Pro 85 90 95

Ser Leu Asn Asn Thr His Phe Pro Thr Asp Asp Glu Asn His Gln Asn 100 105 110

Gln Thr Leu Thr Thr Val Ala Ala Asn Ser Leu Ser Lys Ser Ala Cys 115 120 125

Ser Ser Asn Ser Asp Thr Ser Lys Asn Ser Ser Gly Leu Ser Leu Ser 130 135 140

Arg Ser Glu Leu Arg Asp Lys Ala Arg Glu Arg Ala Arg Glu Arg Thr 145 150 160

Ala Lys Glu Thr Lys Glu Arg Asp His Asn His Thr Ser Phe Thr Asp 165 170 175

Leu Leu Asn Ser Gly Ser Asp Pro Val Asn Ser Asn Arg Gln Trp Met 180 185 190

Ala Ser Ala Pro Ser Ser Ser Pro Met Glu Tyr Phe Ser Ser Gly Leu 195 200 205

Ile Leu Gly Ser Gly Gln Gln Thr His Phe Pro Ile Ser Thr Asn Ser 210 215 220

His Pro Phe Ser Ser Ile Ser Asp His His His His Bro His His 225 230 235 240

Gln His Gln Glu Phe Ser Phe Val Pro Asp His Leu Ile Ser Pro Ala 245 250 255

Glu Ser Asn Gly Gly Ala Phe Asn Leu Asp Phe Asn Met Ser Thr Pro 260 265 270

Ser Gly Ala Gly Ala Ala Val Ser Ala Ala Ser Gly Gly Phe Ser 275 280 285

Gly Phe Asn Arg Gly Thr Leu Gln Ser Asn Ser Thr Asn Gln His Gln 290 295 300

Ser Phe Leu Ala Asn Leu Gln Arg Phe Pro Thr Ser Glu Ser Gly Gly 305 310 315 320

Gly Pro Gln Phe Leu Phe Gly Ala Leu Pro Ala Glu Asn His His His 325 330 335

Asn His Gln Phe Gln Leu Tyr Tyr Glu Asn Gly Cys Arg Asn Ser Ser 340 345 350

Glu His Lys Gly Lys Gly Lys Asn 355 360

<210> 5

MBI15 Sequence Listing.ST25

<211 <212 <213	> D	055 NA rabi	dops	is t	hali	ana	-		4.00.			<u>.</u>				
<220 <221 <222 <223	> (> (DS 70).	. (81	6)												
<400 ataa	> 5 aggo		tcag	ctcc	a cc	gtag	gaaa	ctt	tctc	ttg	aaag	aaac	сс а	cago	aacaa	60
acag	agaa	a at Me 1	g tg t Cy	t gg s Gl	c gg y Gl	t gc y Al 5	t at a Il	t at e Il	t to e Se	c ga r As	t ta p Ty 10	r Al	c cc a Pr	t ct o Le	c gtc u Val	. 111
acc Thr 15	aag Lys	gcc Ala	aag Lys	ggc Gly	cgt Arg 20	aaa Lys	ctc Leu	acg Thr	gct Ala	gag Glu 25	gaa Glu	ctc Leu	tgg Trp	tca Ser	gag Glu 30	159
ctc Leu	gat Asp	gct Ala	tcc Ser	gcc Ala 35	gcc Ala	gac Asp	gac Asp	ttc Phe	tgg Trp 40	ggt Gly	ttc Phe	tat Tyr	tcc Ser	acc Thr 45	tcc Ser	207
aaa Lys	ctc Leu	cat His	ccc Pro 50	acc Thr	aac Asn	caa Gln	gtt Val	aac Asn 55	gtg Val	aaa Lys	gag Glu	gag Glu	gca Ala 60	gtg Val	aag Lys	255
aag Lys	gag Glu	cag Gln 65	gca Ala	aca Thr	gag Glu	ccg Pro	999 Gly 70	aaa Lys	cgg Arg	agg Arg	aag Lys	agg Arg 75	aag Lys	aat Asn	gtt Val	303
tat Tyr	aga Arg 80	ggg Gly	ata Ile	cgt Arg	aag Lys	cgt Arg 85	cca Pro	tgg Trp	gga Gly	aaa Lys	tgg Trp 90	gcg Ala	gct Ala	gag Glu	att Ile	351
cga Arg 95	gat Asp	cca Pro	cga Arg	aaa Lys	ggt Gly 100	gtt Val	aga Arg	gtt Val	tgg Trp	ctt Leu 105	ggt Gly	acg Thr	ttc Phe	aac Asn	acg Thr 110	399
gcg Ala	gag Glu	gaa Glu	gct Ala	gcc Ala 115	atg Met	gct Ala	tat Tyr	gat Asp	gtt Val 120	gcg Ala	gcc Ala	aag Lys	cag Gln	atc Ile 125	cgt Arg	447
ggt Gly	gat Asp	aaa Lys	gcc Ala 130	aag Lys	ctc Leu	aac Asn	ttc Phe	cca Pro 135	gat Asp	ctg Leu	cac His	cat His	cct Pro 140	cct Pro	cct Pro	495
cct Pro	aat Asn	tat Tyr 145	act Thr	cct Pro	ccg Pro	ccg Pro	tca Ser 150	tcg Ser	cca Pro	cga Arg	tca Ser	acc Thr 155	gat Asp	cag Gln	cct Pro	543
ccg Pro	gcg Ala 160	aag Lys	aag Lys	gtc Val	tgc Cys	gtt Val 165	gtc Val	tct Ser	cag Gln	agt Ser	gag Glu 170	agc Ser	gag Glu	tta Leu	agt Ser	591
cag Gln 175	ccg Pro	agt Ser	ttc Phe	ccg Pro	gtg Val 180	gag Glu	tgt Cys	ata Ile	gga Gly	ttt Phe 185	gga Gly	aat Asn	999 Gly	gac Asp	gag Glu 190	639
ttt Phe	cag Gln	aac Asn	ctg Leu	agt Ser 195	tac Tyr	gga Gly	ttt Phe	gag Glu	ccg Pro 200	gat Asp	tat Tyr	gat Asp	ctg Leu	aaa Lys 205	cag Gln	687
cag Gln	ata Ile	tcg Ser	agc Ser 210	ttg Leu	gaa Glu	tcg Ser	ttc Phe	ctt Leu 215	gag Glu	ctg Leu	gac Asp	ggt Gly	aac Asn 220	acg Thr	gcg Ala	735
gag Glu	caa Gln	ccg Pro 225	agt Ser	cag Gln	ctt Leu	gat Asp	gag Glu 230	tcc Ser	gtt Val	tcc Ser	gag Glu	gtg Val 235	Asp	atg Met	tgg Trp	783
atg Met	ctt Leu	gat Asp	gat Asp	gtc Val	att Ile	gcg Ala	tcg Ser	tat Tyr	Glu	taa		aaaa	aaa	ataa	gtttaa	836

Page 7

	MBI15	Sequence	Listing.ST25
245		-	=

aaaaagttaa ataaagtctg taatatatat gtaaccgccg ttacttttaa aaggttttta 896
ccgtcgcatt ggactgctga tgatgtctgt tgtgtaatgt gtagaatgtg accaaatgga 956
cgttatatta cggtttgtgg tattattagt ttcttagatg gaaaaactta catgtgtaaa 1016
taagatttgt aatgtaagac gaagtactta taacttctt 1055

<210> 6

<211> 248

240

<212> PRT

<213> Arabidopsis thaliana

<400> 6

Met Cys Gly Gly Ala Ile Ile Ser Asp Tyr Ala Pro Leu Val Thr Lys 1 10 15

Ala Lys Gly Arg Lys Leu Thr Ala Glu Glu Leu Trp Ser Glu Leu Asp 20 25 30

Ala Ser Ala Ala Asp Asp Phe Trp Gly Phe Tyr Ser Thr Ser Lys Leu 35 40 45

His Pro Thr Asn Gln Val Asn Val Lys Glu Glu Ala Val Lys Glu 50 55 60

Gln Ala Thr Glu Pro Gly Lys Arg Arg Lys Arg Lys Asn Val Tyr Arg 65 70 75 80

Gly Ile Arg Lys Arg Pro Trp Gly Lys Trp Ala Ala Glu Ile Arg Asp 85 90 95

Pro Arg Lys Gly Val Arg Val Trp Leu Gly Thr Phe Asn Thr Ala Glu 100 105 110

Glu Ala Ala Met Ala Tyr Asp Val Ala Ala Lys Gln Ile Arg Gly Asp 115 120 125

Lys Ala Lys Leu Asn Phe Pro Asp Leu His His Pro Pro Pro Pro Asn 130 135 140

Tyr Thr Pro Pro Pro Ser Ser Pro Arg Ser Thr Asp Gln Pro Pro Ala
145 150 155 160

Lys Lys Val Cys Val Val Ser Gln Ser Glu Ser Glu Leu Ser Gln Pro

Ser Phe Pro Val Glu Cys Ile Gly Phe Gly Asn Gly Asp Glu Phe Gln $_{\rm 180}$ $_{\rm 185}$ $_{\rm 190}$

Asn Leu Ser Tyr Gly Phe Glu Pro Asp Tyr Asp Leu Lys Gln Gln Ile 195 200 205

Ser Ser Leu Glu Ser Phe Leu Glu Leu Asp Gly Asn Thr Ala Glu Gln 210 215 220

Pro Ser Gln Leu Asp Glu Ser Val Ser Glu Val Asp Met Trp Met Leu Page 8

240

MBI15 Sequence Listing.ST25

Asp Asp Val Ile Ala Ser Tyr Glu 245

<210>

<211> 1857 <212> DNA Arabidopsis thaliana <220> <221> CDS <222> (458) . . (1663) <223> G261 <400> 7 60 gtttaggttc gagaagcaga gagggttcga gaagctaata agggtttctt ctttttgatt ttaatgctaa aagggttcta gattcgttga attttacaag ggttttaggg gttcttagaa 120 gettttgett gattgtettt tatttagaaa cagtggtgag tttttagtet tteaetttgt 180 tcaagttcga agctttttt ggagggaatt ttgggcttct gattttgatc gaaacttact 240 300 gatagtaagt tetttgagte eteettaaet gtagtttetg tgtaetgaag ttattgaatt 360 gaaagttttt atcttttttg gttattgaaa ctttcatagt ttgatcaaaa gagtctcttg ctctgttttt ggctctgttt ttgtgagtgt gattgtaagc tttgttgtga gtagattgaa 420 tcaaggagtg tgagagttgt taaaagtgtt ttcagag atg gat gag aat aat cat Met Asp Glu Asn Asn His 475 gga gtt tca tca agc tca ctt cca cct ttc ctc acc aaa aca tat gag Gly Val Ser Ser Ser Ser Leu Pro Pro Phe Leu Thr Lys Thr Tyr Glu 523 10 15 atg gtt gat gat tct tca tcc gat tct atc gtc tct tgg agt cag agc Met Val Asp Asp Ser Ser Ser Asp Ser Ile Val Ser Trp Ser Gln Ser 571 aat aag agt ttc atc gtt tgg aat ccg ccg gag ttt tct aga gat ctt Asn Lys Ser Phe Ile Val Trp Asn Pro Pro Glu Phe Ser Arg Asp Leu 619 ctt ccg aga ttc ttc aag cac aat aac ttc tct agc ttt atc cgc cag Leu Pro Arg Phe Phe Lys His Asn Asn Phe Ser Ser Phe Ile Arg Gln 667 ctt aac aca tat ggt ttt aga aaa gct gat cct gag caa tgg gaa ttt Leu Asn Thr Tyr Gly Phe Arg Lys Ala Asp Pro Glu Gln Trp Glu Phe 715 gcg aat gat gat ttt gtg aga ggt caa cct cat ctt atg aag aac att Ala Asn Asp Asp Phe Val Arg Gly Gln Pro His Leu Met Lys Asn Ile 763 cat aga cgc aaa cca gtt cat agc cac tct tta ccg aat ctt caa gct His Arg Arg Lys Pro Val His Ser His Ser Leu Pro Asn Leu Gln Ala 811 cag tta aac ccg ttg acg gat tca gaa cga gtg aga atg aat aat cag Gln Leu Asn Pro Leu Thr Asp Ser Glu Arg Val Arg Met Asn Asn Gln 859 att gag aga ttg aca aaa gag aaa gag ttg ctt gaa gag tta cat lle Glu Arg Leu Thr Lys Glu Lys Glu Gly Leu Leu Glu Glu Leu His 907 aaa caa gac gag gaa cga gag gtg ttt gag atg caa gtg aaa gaa ctt Lys Gln Asp Glu Glu Arg Glu Val Phe Glu Met Gln Val Lys Glu Leu 955

Page 9

				155			MBI	15 S	eque 160	nce	List	ing.	ST25	165		
					cac His											1003
					ttg Leu											1051
					aca Thr											1099
					gaa Glu 220											1147
gtt Val	gtg Val	aga Arg	gag Glu	gaa Glu 235	ggt Gly	tct Ser	aca Thr	agc Ser	cct Pro 240	tct Ser	tca Ser	cac His	aca Thr	aga Arg 245	gag Glu	1195
cat His	caa Gln	gtg Val	gaa Glu 250	cag Gln	tta Leu	gag Glu	tca Ser	tcg Ser 255	ata Ile	gcg Ala	att Ile	tgg Trp	gag Glu 260	aat Asn	ctt Leu	1243
					gag Glu											1291
					tca Ser											1339
					gtc Val 300											1387
agg Arg	atc Ile	atc Ile	gat Asp	atg Met 315	aac Asn	tgt Cys	gag Glu	ccc Pro	gat Asp 320	ggt Gly	tcg Ser	aaa Lys	gaa Glu	cag Gln 325	aac Asn	1435
act Thr	gtt Val	gct Ala	gct Ala 330	cct Pro	cct Pro	cct Pro	cct Pro	cca Pro 335	gta Val	gca Ala	gga Gly	gcg Ala	aat Asn 340	gat Asp	ggc Gly	1483
					ttc Phe											1531
					agg Arg											1579
act Thr 375	gag Glu	aaa Lys	tgt Cys	tgg Trp	tgg Trp 380	aat Asn	tcg Ser	aga Arg	aat Asn	gtt Val 385	aat Asn	gca Ala	att Ile	aca Thr	gaa Glu 390	1627
cag Gln	ctt Leu	gga Gly	cat His	ctg Leu 395	act Thr	tct Ser	tca Ser	gag Glu	aga Arg 400	agt Ser	tga	tat	gtca	aag		1673
att	aaat	ttc	tagt	ctgt	tt ta	agtt	actt	g ta	aaat	aggg	ttt	ctca	gtt 1	ttat	tgtttt	1733
cga	ttcc	agt a	actt	aggt	at g	gttc	agct	g tt	tatt	tatc	acti	tgta	tga 1	tctt	tcccag	1793
ttc	attg	tag (caga	cttc	aa t	ggta	atga	t.aa	gcta	gagc	tta	tgga	tag 1	tatt	cataaa	1853

aaaa

<210> 8 <211> 401 <212> PRT <213> Arabidopsis thaliana

MBI15 Sequence Listing.ST25

<400> 8

Met Asp Glu Asn Asn His Gly Val Ser Ser Ser Leu Pro Pro Phe

Leu Thr Lys Thr Tyr Glu Met Val Asp Asp Ser Ser Ser Asp Ser Ile 20 30

Val Ser Trp Ser Gln Ser Asn Lys Ser Phe Ile Val Trp Asn Pro Pro 35 40 45

Glu Phe Ser Arg Asp Leu Leu Pro Arg Phe Phe Lys His Asn Asn Phe 50 55 60

Ser Ser Phe Ile Arg Gln Leu Asn Thr Tyr Gly Phe Arg Lys Ala Asp 65 70 75 80

Pro Glu Gln Trp Glu Phe Ala Asn Asp Asp Phe Val Arg Gly Gln Pro 85 90 95

His Leu Met Lys Asn Ile His Arg Arg Lys Pro Val His Ser His Ser 100 105 110

Leu Pro Asn Leu Gln Ala Gln Leu Asn Pro Leu Thr Asp Ser Glu Arg

Val Arg Met Asn Asn Gln Ile Glu Arg Leu Thr Lys Glu Lys Glu Gly 130 135 140

Leu Leu Glu Glu Leu His Lys Gln Asp Glu Glu Arg Glu Val Phe Glu 145 150 150 160

Met Gln Val Lys Glu Leu Lys Glu Arg Leu Gln His Met Glu Lys Arg 165 170 175

Gln Lys Thr Met Val Ser Phe Val Ser Gln Val Leu Glu Lys Pro Gly 180 185 190

Leu Ala Leu Asn Leu Ser Pro Cys Val Pro Glu Thr Asn Glu Arg Lys 195 200 205

Arg Arg Phe Pro Arg Ile Glu Phe Phe Pro Asp Glu Pro Met Leu Glu 210 215 220

Glu Asn Lys Thr Cys Val Val Val Arg Glu Glu Gly Ser Thr Ser Pro 225 230 235 240

Ser Ser His Thr Arg Glu His Gln Val Glu Gln Leu Glu Ser Ser Ile $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Ala Ile Trp Glu Asn Leu Val Ser Asp Ser Cys Glu Ser Met Leu Gln 260 265 270

Ser Arg Ser Met Met Thr Leu Asp Val Asp Glu Ser Ser Thr Phe Pro 275 280 285

	Ser 290	Pro	Pro	Leu	Ser	Cys 295		l5 Se Gln						Arg	Leu	
Lys 305	Ser	Pro	Pro	Ser	Pro 310	Arg	Ile	Ile	Asp	Met 315	Asn	Cys	Glu	Pro	Asp . 320	
Gly	Ser	Lys	Glu	Gln 325	Asn	Thr	Val	Ala	Ala 330	Pro	Pro	Pro	Pro	Pro 335	Val	
Ala	Gly	Ala	Asn 340	Asp	Gly	Phe	Trp	Gln 345	Gln	Phe	Phe	Ser	Glu 350	Asn	Pro	
Gly	Ser	Thr 355	Glu	Gl'n	Arg	Glu	Val 360	Gln	Leu	Glu	Arg	Lys 365	Asp	Asp	Lys	
Asp	Lys 370	Ala	Gly	Val	Arg	Thr 375	Glu	Lys	Cys	Trp	Trp 380	Asn	Ser	Arg	Asn	
Val 385	Asn	Ala	Ile	Thr	Glu 390	Gln	Leu	Gly	His	Leu 395	Thr	Ser	Ser	Glu	Arg 400	
Ser																
<210 <210 <210 <210	1 > 9 2 > 1	9 964 ONA Arabi	idops	sis t	hali	iana										
<22 <22	1> (CDS														
<22:		(63) 328	(86	59)												
<22	3> (0> :	328 9			aa a	ccaaa	acaa	c aaa	aaaa	acat	tct	taat	aat 1	tatc	tttetg	60
<22:	3> (0> : atct	328 9	caaga	acca acg q Thr I	aca o	at t	ct (caa I	ct o	at 1	tat o	act 1	ttt (ctt (Leu	gag	60 107
<22.	3> () atcto atg () Met ()	9 caa (caaga atg a Met :	aacca acg q Thr !	gcg g Ala A 5	gat (Asp (er (caa Gln !	ect of ser in the ser	gat (Asp '	tat g	gct Ala	ttt (Phe I	ctt (Leu (gag Glu 15 gag	
<22: <400 gaas tt	0> Satcto	9 caa (tcg a Ser 1	caaga atg a Met : cga Arg	cac His	gcg g Ala 1 5 tta Leu	gat t Asp s cta Leu	gga Gly	gaa Glu	tcg Ser 25	gat (Asp 100 gag Glu	ccg Pro	gct Ala ata Ile	ctc Leu	agt Ser 30	gag Glu 15 gag Glu att	107
<22: <40 gaa tt tcc ser tcg ser	0> 9 atcte atg 9 Met 9 1 ata Ile aca Thr	g28 gaa (tcg a Ser I cga Arg	caaga atg a Met ' cga Arg agt ser 35	cac His 20 tcg Ser	gcg G Ala A tta Leu gtt Val	gat (Asp S	gga Gly caa Gln	gaa Glu tct Ser 40	tcg Ser 25 tgt Cys	gat (Asp / 10 gag Glu gta Val	ccg Pro acc Thr	ata Ile ggt Gly	ctc Leu cag Gln 45	agt Ser 30 agc Ser	gag Glu 15 gag Glu att Ile	107 155 203
<222 <400 gaa tt cc Ser tcg Ser aaaa Lys	33> () 100 state of the state	general second s	caaga atg a Met cga Arg agt Ser 35 tac Tyr	aacca acg G Fhr J Scac His 20 tcg Ser gga Gly	tta Leu gtt Val cga Arg	cta Leu act Thr	gga Gly caa Gln cct Pro	gaa Glu tct Ser 40 agc	tcg Ser 25 tgt Cys ttt	gat Asp 10 gag Glu gta Val agc ser	ccg Pro acc Thr aaa Lys	ata Ile ggt Gly ctg Leu 60	ctc Leu cag Gln 45 tat Tyr	agt Ser 30 agc Ser cct Pro	gag Glu 15 gag Glu att Ile tgc Cys	107 155 203
<222 <40 gaa. tt. tcc Ser tcg Ser aaa Lys ttcc Phe	acc Thr	ecaa oo caa oo c	caaga atg a Met : cga Arg agt Ser 35 tac Tyr agc	aacca acg c Fhr 1 cac His 20 tcg Ser gga Gly	gcg gala for the second	cta Leu act Thr aac Asn gat Asp	gga gGly caa gGln cct Pro 55	gaa Glu tct Ser 40 agc Ser ccg Pro	tcg Ser 25 tgt Cys tttt Phe	gat Asp Asp	ccg Pro acc Thr aaa Lys gaa Glu 75	ata Ile ggt Gly ctg Leu 60 aac Asn	ctc Leu cag Gln 45 tat Tyr	agt Ser 30 agc Ser cct Pro	gag Glu 15 gag Glu att Ile tgc Cys gag Glu	107 155 203
<222 <40 gaa. tt cc Ser tcg Ser tcg Ser ttcPhe gathasp	33> (0) 10 atct. atag 11 ata 11e aca Thr ccg Pro acc Thr 65 atg Met	gcg according to the control of the	caaga atg a det : cga Arg agt Ser 35 tac Tyr agc Ser gtt Val	aacca acg cac Fhr 1 cac His 20 tcg Ser gga Gly tgg Trp	gcg 9 1 tta 1 tta 2 tta	gat (cta Leu act Thr aacc Asn gat Asp 70 atc Ile	gga Gly caa Gln cct Pro 55 ttg Leu	gaaa Glu tctt Ser 40 agc Ser ccg Pro aac Asn	tcg Ser : tcg Ser 25 tgt Cys tttt Phe ttg Leu gac Asp	gat Ser Ser	ccg Pro acc Thr aaaa Lys gaa Glu 75 ttt Phe	gct ata lie ggt Gly ctg Leu 60 aacc Asn cac His	ctc Leu cag Gln 45 tat Tyr gat Asp ggc Gly	agt ser 30 agc Ser cctt Pro tct Ser ggt ccg	gag Glu 15 gag Glu att Ile tgc Cys gag Glu tgg Trp 95 agt Ser	107 155 203 251 299

Val	Lys	Ile	Glu 115	Thr	Pro	Glu	MBI Ser	15 S Phe 120	eque Ala	nce Ala	List Val	ing. Asp	ST25 Ser 125	Val	Pro	
gtc Val	aag Lys	aag Lys 130	gag Glu	aag Lys	acg Thr	agt Ser	cct Pro 135	gtt Val	tcg Ser	gcg Ala	gcg Ala	gtg Val 140	acg Thr	gcg Ala	gcg Ala	49
aag Lys	gga Gly 145	aag Lys	cat His	tat Tyr	aga Arg	gga Gly 150	gtg Val	aga Arg	caa Gln	agg Arg	ccg Pro 155	tgg Trp	999 Gly	aaa Lys	ttt Phe	539
gcg Ala 160	gcg Ala	gag Glu	att Ile	aga Arg	gat Asp 165	ccg Pro	gcg Ala	aag Lys	aac Asn	gga Gly 170	gct Ala	agg Arg	gtt Val	tgg Trp	tta Leu 175	58′
											gct Ala					635
											aat Asn					683
											aag Lys					731
											aag Lys 235					779
gtg Val 240	gcc Ala	gcc Ala	ggt Gly	ggt Gly	gga Gly 245	atg Met	gat Asp	aag Lys	gga Gly	ttg Leu 250	acg Thr	gtg Val	aag Lys	tgc Cys	gag Glu 255	827
gtt Val	gtt Val	gaa Glu	gtg Val	gca Ala 260	cgt Arg	ggc Gly	gat Asp	cgt Arg	tta Leu 265	ttg Leu	gtt Val	tta Leu	taa			869
tttt	gati	tt t	ctt	tgttg	gg at	gatt	atat	gat	tctt	caa	aaaa	ıgaaç	gaa d	cgtta	aataaa	929
<210 <211 <211 <213	0> 1 l> 2 2> 1	0 268 PRT		attaa			aaaa	a aaa	aaa							964
			Thr	Ala 5	Asp	Ser	Gln	Ser	Asp 10	Tyr	Ala	Phe	Leu	Glu 15	Ser	
Ile	Arg	Arg	His 20	Leu	Leu	Gly	Glu	Ser 25	Glu	Pro	Ile	Leu	Ser 30	Glu	Ser	
Thr	Ala	Ser 35	Ser	Val	Thr	Gln	Ser 40	Cys	Val	Thr	Gly	Gln 45	Ser	Ile	Lys	
Pro	Val 50	Tyr	Gly	Arg	Asn	Pro 55	Ser	Phe	Ser	Lys	Leu 60	Tyr	Pro	Сув	Phe	
Thr 65	Glu	Ser	Trp	Gly	Asp 70	Leu	Pro	Leu	Lys	Glu 75	Asn	Asp	Ser	Glu	Asp 80	

MBI15 Sequence Listing.ST25 Pro Ser Ser Ser Ser Asp Glu Asp Arg Ser Ser Phe Pro Ser Val Lys Ile Glu Thr Pro Glu Ser Phe Ala Ala Val Asp Ser Val Pro Val Lys Lys Glu Lys Thr Ser Pro Val Ser Ala Ala Val Thr Ala Ala Lys 130 $$^{\rm 135}$$ Gly Lys His Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly Lys Phe Ala 145 150 155 160 Ala Glu Ile Arg Asp Pro Ala Lys Asn Gly Ala Arg Val Trp Leu Gly 165 170 175 Thr Phe Glu Thr Ala Glu Asp Ala Ala Leu Ala Tyr Asp Arg Ala Ala Phe Arg Met Arg Gly Ser Arg Ala Leu Leu Asn Phe Pro Leu Arg Val Asn Ser Gly Glu Pro Asp Pro Val Arg Ile Lys Ser Lys Arg Ser Ser Phe Ser Ser Asn Glu Asn Gly Ala Pro Lys Lys Arg Arg Thr Val Ala Ala Gly Gly Met Asp Lys Gly Leu Thr Val Lys Cys Glu Val 245 250 255 Val Glu Val Ala Arg Gly Asp Arg Leu Leu Val Leu <210> 11 <211> 1571 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (428)..(1402) <223> G869 <400> 11 aggaacagtg aaaggttcgg tttttttgggt ttcgatctga taatcaacaa gaaaaaaggg 60 tttgatttat gtcggctggg tttgaatcga ctgtgatttt gtctttgatt catatctctt 120 ctccgatttc atcatcatct tccccatcat cgtcgtcttt gaaatcttgt cttctcaacg 180 ctcttcactt ctgctgtaat aagcagaggc ttgttctgga gactccttct ctttccatgc 240 300 gcttaagacc caaaaggact tgttctagtg ttgaagtctt tggggggtttt cacataaagc agcaaaagtt ttctttttc atagttcgct gagagttttg agttttgata ccaaaaaagt 360 tttgaccttt tagagtgatt ttttgttctt tctgttttct gggtattttt gaggagtggg 420 tttaaca atg gtt gcg att aga aag gaa cag tct ttg agt ggt gtt agt
Met Val Ala Ile Arg Lys Glu Gln Ser Leu Ser Gly Val Ser
1 5 10 469 517 age gag att aag aag aga get aag aga aac act eta teg tee ett eet Page 14

Ser 15	Glu	Ile	Lys	Lys	Arg 20	Ala					List: Leu			Leu	Pro 30	
					ttg Leu											565
					tcc Ser											613
aag Lys	cca Pro	agg Arg 65	aaa Lys	atg Met	aaa Lys	cgt Arg	atc Ile 70	gtt Val	cgt Arg	gag Glu	att Ile	aac Asn 75	ttt Phe	cct Pro	tct Ser	661
					cag Gln											709
aaa Lys 95	act Thr	gat Asp	ggc Gly	aag Lys	ata Ile 100	gct Ala	gtg Val	tca Ser	gct Ala	tct Ser 105	cct Pro	gct Ala	gtt Val	cct Pro	agg Arg 110	757
aag Lys	aag Lys	cct Pro	gtt Val	ggt Gly 115	gtt Val	agg Arg	caa Gln	agg Arg	aaa Lys 120	tgg Trp	ggg Gly	aaa Lys	tgg Trp	gct Ala 125	gct Ala	805
					att Ile											853
gat Asp	act Thr	ctt Leu 145	gaa Glu	gaa Glu	gct Ala	gct Ala	aaa Lys 150	gct Ala	tat Tyr	gat Asp	gct Ala	aag Lys 155	aag Lys	ctt Leu	gag Glu	901
ttt Phe	gat Asp 160	gct Ala	att Ile	gtt Val	gct Ala	gga Gly 165	aat Asn	gtg Val	tcc Ser	act Thr	act Thr 170	aaa Lys	cgt Arg	gat Asp	gtt Val	949
tct Ser 175	tca Ser	tct Ser	gag Glu	act Thr	agc Ser 180	caa Gln	tgc Cys	tct Ser	cgt Arg	tct Ser 185	tca Ser	cct Pro	gtt Val	gtt Val	cct Pro 190	997
gtt Val	gag Glu	caa Gln	gat Asp	gac Asp 195	act Thr	tct Ser	gca Ala	tca Ser	gct Ala 200	ctc Leu	act Thr	tgt Cys	gtc Val	aac Asn 205	aac Asn	1045
cct Pro	gat Asp	gac Asp	gtc Val 210	tcg Ser	acc Thr	gtt Val	gct Ala	cca Pro 215	act Thr	gct Ala	cca Pro	act Thr	cca Pro 220	aat Asn	gtt Val	1093
cct Pro	Ala	ggt Gly 225	gga Gly	aac Asn	aag Lys	gaa Glu	acg Thr 230	ttg Leu	ttc Phe	gat Asp	ttc Phe	gac Asp 235	ttt Phe	act Thr	aat Asn	1141
Leu	Gln 240	Ile	Pro	Asp	ttt Phe	Gly 245	Phe	Leu	Ala	Glu	Glu 250	Gln	Gln	Asp	Leu	1189
gac Asp 255	ttc Phe	gat Asp	tgt Cys	ttc Phe	ctc Leu 260	gcg Ala	gat Asp	gat Asp	cag Gln	ttt Phe 265	gat Asp	gat Asp	ttc Phe	ggc Gly	ttg Leu 270	1237
ctt Leu	gat Asp	gac Asp	att Ile	caa Gln 275	gga Gly	ttc Phe	gaa Glu	gat Asp	aac Asn 280	ggt Gly	cca Pro	agt Ser	gcg Ala	tta Leu 285	cca Pro	1285
Asp	Phe	Asp	Phe 290	Ala	gat Asp	Val	Glu	Asp 295	Leu	Gln	Leu	Ala	300	ser	Ser	1333
ttc Phe	ggt Gly	ttc Phe 305	Leu	gat Asp	caa Gln	ctt Leu	gct Ala 310	cct Pro	atc Ile	aac Asn	atc Ile	tct Ser 315	tgc Cys	cca Pro	tta Leu	1381

aaa Lys	agt Ser 320	ttt Phe	gca Ala	gct Ala	tca Ser	tag					List: itgtt			jaaga	1	1432
gtgt	tttg	jtt t	tttc	gttt	a tg	cttt	agta	att	taag	aca	taca	aaag	ıtg t	gtgt	tccgg	1492
attg	tagt	aa g	jatct	taag	a ca	taaa	gccg	ggt	tttg	caa	ttag	gaat	cg a	gttt	taatg	1552
aagt	ttta	igt t	tate	jtttg	ī											1571
<210 <211 <212 <213	> 3 > I	12 324 PRT Arabi	dops	sis t	hali	.ana										
<400)>]	L 2														
Met 1	Val	Ala	Ile	Arg 5	Lys	Glu	Gln	Ser	Leu 10	Ser	Gly	Val	Ser	Ser 15	Glu	
Ile	Lys	Lys	Arg 20	Ala	Lys	Arg	Asn	Thr 25	Leu	Ser	Ser	Leu	Pro 30	Gln	Glu	
Thr	Gln	Pro 35	Leu	Arg	Lys	Val	Arg 40	Ile	Ile	Val	Asn	Asp 45	Pro	Tyr	Ala	
Thr	Авр 50	Asp	Ser	Ser	Ser	Asp 55	Glu	Glu	Glu	Leu	Lys	Val	Pro	Lys	Pro	
Arg 65	Lys	Met	Lys	Arg	Ile 70	Val	Arg	Glu	Ile	Asn 75	Phe	Pro	Ser	Met	Glu 80	
Val	Ser	Glu	Gln	Pro 85	Ser	Glu	Ser	Ser	Ser 90	Gln	Asp	Ser	Thr	Lys 95	Thr	
Asp	Gly	Lув	Ile 100	Ala	Val	Ser	Ala	Ser 105	Pro	Ala	Val	Pro	Arg 110	Lys	Lys	
Pro	Val	Gly 115	Val	Arg	Gln	Arg	Lys 120	Trp	Gly	Lys	Trp	Ala 125	Ala	Glu	Ile	
Arg	Asp 130	Pro	Ile	Lys	Lys	Thr 135	Arg	Thr	Trp	Leu	Gly 140	Thr	Phe	Asp	Thr	
Leu 145	Glu	Glu	Ala	Ala	Lys 150	Ala	Tyr	Asp	Ala	Lys 155	Lys	Leu	Glu	Phe	Asp 160	
Ala	Ile	Val	Ala	Gly 165	Asn	Val	Ser	Thr	Thr 170	Lys	Arg	Asp	Val	Ser 175	Ser	
Ser	Glu	Thr	Ser 180	Gln	Cys	Ser	Arg	Ser 185	Ser	Pro	Val	Val	Pro 190	Val	Glu	
Gln	Asp	Авр 195	Thr	Ser	Ala	Ser	Ala 200	Leu	Thr	Cys	Val	Asn 205	Asn	Pro	Asp	
Asp	Val 210	Ser	Thr	Val	Ala	Pro 215	Thr	Ala	Pro	Thr	Pro 220	Asn	Val	Pro	Ala	
Gly	Gly	Asn	Lys	Glu	Thr	Leu	Phe	Asp	Phe	Asp	Phe	Thr	Asn	Leu	Gln	

Page 16

240

MBI15 Sequence Listing.ST25 225 230 235

Ile Pro Asp Phe Gly Phe Leu Ala Glu Glu Gln Gln Asp Leu Asp Phe

Asp Cys Phe Leu Ala Asp Asp Gln Phe Asp Asp Phe Gly Leu Leu Asp 265

Asp Ile Gln Gly Phe Glu Asp Asn Gly Pro Ser Ala Leu Pro Asp Phe

Asp Phe Ala Asp Val Glu Asp Leu Gln Leu Ala Asp Ser Ser Phe Gly

Phe Leu Asp Gln Leu Ala Pro Ile Asn Ile Ser Cys Pro Leu Lys Ser

Phe Ala Ala Ser

<210> 13 <211> 920 <212> DNA <213> Arabidopsis thaliana

<221> CDS <222> (1)..(852)

<223> G237

atg gcg aag acg aaa tat gga gag aga cat agg aaa ggg tta tgg tca Met Ala Lys Thr Lys Tyr Gly Glu Arg His Arg Lys Gly Leu Trp Ser 48

cct gaa gaa gac gag aag cta agg agc ttc atc ctc tct tat ggc cat Pro Glu Glu Asp Glu Lys Leu Arg Ser Phe Ile Leu Ser Tyr Gly His 96

tct tgc tgg acc act gtt ccc atc aaa gct ggg tta caa agg aat ggg Ser Cys Trp Thr Thr Val Pro Ile Lys Ala Gly Leu Gln Arg Asn Gly 144 40

aag agc tgc aga tta aga tgg att aat tac cta aga cca ggg tta aag Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Gly Leu Lys 50 55 60 192

agg gat atg att agt gca gaa gaa gaa gag act atc ttg acg ttt cat Arg Asp Met Ile Ser Ala Glu Glu Glu Glu Thr Ile Leu Thr Phe His 240 70

288 tct ccc ttg ggt aac aag tgg tcg caa ata gct aaa ttc tta ccg gga Ser Pro Leu Gly Asn Lys Trp Ser Gln Ile Ala Lys Phe Leu Pro Gly

aga aca gac aat gag ata aag aac tat tgg cac tot cat ttg aaa aag 336 Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp His Ser His Leu Lys Lys

aaa tgg ctc aag tct cag agc tta caa gat gca aaa tct att tcc cct Lys Trp Leu Lys Ser Gln Ser Leu Gln Asp Ala Lys Ser Ile Ser Pro 384

cct tcg tct tca tca tca tca ctt gtt gct tgt gga gaa aga aat ccg Pro Ser Ser Ser Ser Ser Leu Val Ala Cys Gly Glu Arg Asn Pro 432 135

MBI15 Sequence Listing.ST25 gaa acc ttg atc tcg aat cac gtg ttc tcc ctc cag aga ctt cta gag Glu Thr Leu Ile Ser Asn His Val Phe Ser Leu Gln Arg Leu Leu Glu 145 150 155 160	480
aac aaa tot toa tot occ toa caa gaa ago aac gga aat aac ago cat Asn Lys Ser Ser Ser Pro Ser Gln Glu Ser Asn Gly Asn Asn Ser His 165 170 175	528
Caa tgt tct tct gct cct gag att cca agg ctt ttc ttc tct gaa tgg Gln Cys Ser Ser Ala Pro Glu Ile Pro Arg Leu Phe Phe Ser Glu Trp 180 185 190	576
Ctt tct tct tca tat ccc cac acc gat tat tcc tct gag ttt acc gac Leu Ser Ser Ser Tyr Pro His Thr Asp Tyr Ser Ser Glu Phe Thr Asp 195 200 205	624
tct aag cac agt caa gct cca aat gtc gaa gag act ctc tca gct tat Ser Lys His Ser Gln Ala Pro Asn Val Glu Glu Thr Leu Ser Ala Tyr 210 215 220	672
gaa gaa atg ggt gat gtt gat cag ttc cat tac aac gaa atg atg atc Glu Glu Met Gly Asp Val Asp Gln Phe His Tyr Asn Glu Met Met Ile 225 230 240	720
aac aac agc aac tgg act ctt aac gac att gtg ttt ggt tcc aaa tgt Asn Asn Ser Asn Trp Thr Leu Asn Asp Ile Val Phe Gly Ser Lys Cys 245 250 255	768
aag aag cag gag cat cat att tat aga gag gct tca gat tgt aat tct Lys Lys Gln Glu His His Ile Tyr Arg Glu Ala Ser Asp Cys Asn Ser 260 265 270	816
tct gct gaa ttc ttt tct cca cca aca acg acg taa attgcgttta Ser Ala Glu Phe Phe Ser Pro Pro Thr Thr 275 280	862
ttgtaatgta aatcaaattt ctaaggcaaa accggaaaaa aaaaaaaaaa	920
<210> 14 <211> 283 <212> PRT <213> Arabidopsis thaliana	
<211> 283 <212> PRT	
<211> 283 <212> PRT <213> Arabidopsis thaliana	
<211> 283 <212> PRT <213> Arabidopsis thaliana <400> 14 Met Ala Lys Thr Lys Tyr Gly Glu Arg His Arg Lys Gly Leu Trp Ser	
<pre><211> 283 <212> PRT <213> Arabidopsis thaliana <400> 14 Met Ala Lys Thr Lys Tyr Gly Glu Arg His Arg Lys Gly Leu Trp Ser 1</pre>	
<pre> <211> 283 <212> PRT <213> Arabidopsis thaliana <400> 14 Met Ala Lys Thr Lys Tyr Gly Glu Arg His Arg Lys Gly Leu Trp Ser 1</pre>	
<pre> <211> 283 <212> PRT <213> Arabidopsis thaliana <400> 14 Met Ala Lys Thr Lys Tyr Gly Glu Arg His Arg Lys Gly Leu Trp Ser 1</pre>	
<pre> <211> 283 <212> PRT <213> Arabidopsis thaliana <400> 14 Met Ala Lys Thr Lys Tyr Gly Glu Arg His Arg Lys Gly Leu Trp Ser 1</pre>	
<pre> <211> 283 <212> PRT <213> Arabidopsis thaliana <400> 14 Met Ala Lys Thr Lys Tyr Gly Glu Arg His Arg Lys Gly Leu Trp Ser 1</pre>	

Page 18

MBI15 Sequence Listing.ST25

Pro Ser Ser Ser Ser Ser Leu Val Ala Cys Gly Glu Arg Asn Pro 135

Glu Thr Leu Ile Ser Asn His Val Phe Ser Leu Gln Arg Leu Leu Glu

Asn Lys Ser Ser Ser Pro Ser Gln Glu Ser Asn Gly Asn Asn Ser His

Gln Cys Ser Ser Ala Pro Glu Ile Pro Arg Leu Phe Phe Ser Glu Trp

Leu Ser Ser Ser Tyr Pro His Thr Asp Tyr Ser Ser Glu Phe Thr Asp 200

Ser Lys His Ser Gln Ala Pro Asn Val Glu Glu Thr Leu Ser Ala Tyr

Glu Glu Met Gly Asp Val Asp Gln Phe His Tyr Asn Glu Met Met Ile 225 230 235 240

Asn Asn Ser Asn Trp Thr Leu Asn Asp Ile Val Phe Gly Ser Lys Cys

Lys Lys Gln Glu His His Ile Tyr Arg Glu Ala Ser Asp Cys Asn Ser 260 270

Ser Ala Glu Phe Phe Ser Pro Pro Thr Thr Thr

<210> 15

<211> 1302 <212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (331) . . (1149)

115

<223>

<400> 15 tgtctctctc tctggctctc tttctcttaa cgtgatcata acgtgattcg aaaattggat 60 120 atagataggt ttcttgttgg atcttgatcc ctctggaaaa ggaggggaga atagcagttc 180 atgatgggat tttgtatctg cccgttggag tcacctgcga gattactatg gagtacaagc 240 ttcttccgcc ataagatcat gatcttctaa tccttcctac ttcttcccat ctttttaatc 300 atcttctcgc tatctctgct tectctttct ctctgtttcc tctttctcag aactcagaag tagttgttgt tttatttctg ttgatcaaaa atg gaa tcc aat tcg ttt ttc ttc Met Glu Ser Asn Ser Phe Phe 354 gat cca tct gct tca cac ggc aac agc atg ttc ttc ctt ggg aat ctc Asp Pro Ser Ala Ser His Gly Asn Ser Met Phe Phe Leu Gly Asn Leu 402 aat ccc gtc gtc caa gga gga gga gca aga tcg atg atg aac atg gag Asn Pro Val Val Gln Gly Gly Gly Ala Arg Ser Met Met Asn Met Glu 450

MBI15 Sequence Listing.ST25																
25					30					35					40	
					agg Arg											498
					gac Asp											546
act Thr	acc Thr	gaa Glu 75	caa Gln	gtg Val	cat His	ctg Leu	ctg Leu 80	gag Glu	aaa Lys	agc Ser	ttc Phe	gag Glu 85	aca Thr	gag Glu	aac Asn	594
aag Lys	cta Leu 90	gag Glu `	cct Pro	gaa Glu	cgc Arg	aag Lys 95	act Thr	cag Gln	ctt Leu	gcc Ala	aag Lys 100	aag Lys	ctt Leu	ggt Gly	cta Leu	642
					gct Ala 110											690
aaa Lys	aca Thr	aaa Lys	cag Gln	ctt Leu 125	gag Glu	aga Arg	gac Asp	tac Tyr	gat Asp 130	ctt Leu	ctc Leu	aag Lys	tcc Ser	act Thr 135	tac Tyr	738
gac Asp	caa Gln	ctt Leu	ctt Leu 140	tct Ser	aac Asn	tac Tyr	gac Asp	tcc Ser 145	atc Ile	gtc Val	atg Met	gac Asp	aac Asn 150	gat Asp	aag Lys	786
ctc Leu	aga Arg	tcc Ser 155	gag Glu	gtt Val	act Thr	tcc Ser	ctg Leu 160	acc Thr	gaa Glu	aag Lys	ctt Leu	cag Gln 165	ggc Gly	aaa Lys	caa Gln	834
gag Glu	aca Thr 170	gct Ala	aat Asn	gaa Glu	cca Pro	cct Pro 175	ggt Gly	caa Gln	gtg Val	ccc Pro	gaa Glu 180	cca Pro	aac Asn	caa Gln	ctt Leu	882
gat Asp 185	ccg Pro	gtt Val	tac Tyr	att Ile	aat Asn 190	gcg Ala	gca Ala	gca Ala	atc Ile	aaa Lys 195	acc Thr	gag Glu	gac Asp	cgg Arg	tta Leu 200	930
agt Ser	tca Ser	G1 y 999	agc Ser	gtt Val 205	Gly 999	agc Ser	gcg Ala	gta Val	cta Leu 210	gac Asp	gac Asp	gac Asp	gca Ala	cct Pro 215	caa Gln	978
cta Leu	cta Leu	gac Asp	agc Ser 220	Cys	gac Asp	tct Ser	tac Tyr	ttc Phe 225	cca Pro	agc Ser	atc Ile	gta Val	ccc Pro 230	atc Ile	caa Gln	1026
gac Asp	aac Asn	agc Ser 235	Asn	gcc Ala	agt Ser	Asp	His	Asp	aat Asn	gac Asp	cgg Arg	agc Ser 245	Cys	ttc Phe	gcc Ala	1074
gac Asp	gtc Val 250	Phe	gtg Val	ccc Pro	acc Thr	act Thr 255	Ser	ccg Pro	tcg Ser	cac His	gat Asp 260	cat His	cac His	ggt Gly	gaa Glu	1122
tca Ser 265	Leu	gct Ala	ttc Phe	tgg Trp	gga Gly 270	Trp	cct Pro	tag	aaa	acca	ctc	tgat	aata	aa		1169
tgt	gtgt	tta	ttta	agtt	ca a	gagt	catc	t tc	ttgt	tgtt	tcc	atgt	tga	cgat	aattgt	1229
tga	ctcg	tgg	aata	attc	cg c	tgtt	caac	g gt	attt	ttat	cag	ttgc	att	atat	gctttt	1289
atg	aaaa	aaa	aaa													1302
<21	0>	16														

<210> 16 <211> 272 <212> PRT <213> Arabidopsis thaliana

<400> 16

MBI15 Sequence Listing.ST25

Met Glu Ser Asn Ser Phe Phe Phe Asp Pro Ser Ala Ser His Gly Asn 1 5 10 15

Ser Met Phe Phe Leu Gly Asn Leu Asn Pro Val Val Gln Gly Gly 25 30

Ala Arg Ser Met Met Asn Met Glu Glu Thr Ser Lys Arg Arg Pro Phe 35 40 45

Phe Ser Ser Pro Glu Asp Leu Tyr Asp Asp Asp Phe Tyr Asp Asp Gln 50 60

Leu Pro Glu Lys Lys Arg Arg Leu Thr Thr Glu Gln Val His Leu Leu 65 70 75 80

Glu Lys Ser Phe Glu Thr Glu Asn Lys Leu Glu Pro Glu Arg Lys Thr 85 90 95

Gln Leu Ala Lys Lys Leu Gly Leu Gln Pro Arg Gln Val Ala Val Trp

Phe Gln Asn Arg Arg Ala Arg Trp Lys Thr Lys Gln Leu Glu Arg Asp 115 120 125

Tyr Asp Leu Leu Lys Ser Thr Tyr Asp Gln Leu Leu Ser Asn Tyr Asp 130 135 140

Ser Ile Val Met Asp Asn Asp Lys Leu Arg Ser Glu Val Thr Ser Leu 145 150 160

Thr Glu Lys Leu Gln Gly Lys Gln Glu Thr Ala Asn Glu Pro Pro Gly
165 170 175

Gln Val Pro Glu Pro Asn Gln Leu Asp Pro Val Tyr Ile Asn Ala Ala 180 185 190

Ala Ile Lys Thr Glu Asp Arg Leu Ser Ser Gly Ser Val Gly Ser Ala 195 200 205

Val Leu Asp Asp Asp Ala Pro Gln Leu Leu Asp Ser Cys Asp Ser Tyr 210 215 220

Phe Pro Ser Ile Val Pro Ile Gln Asp Asn Ser Asn Ala Ser Asp His 225 230 235 240

Asp Asn Asp Arg Ser Cys Phe Ala Asp Val Phe Val Pro Thr Thr Ser 245 250 255

Pro Ser His Asp His His Gly Glu Ser Leu Ala Phe Trp Gly Trp Pro 260 265 270

<220>

<210> 17

<211> 2545

<212> DNA

<213> Arabidopsis thaliana

MBI15 Sequence Listing.ST25

<221> CDS <222> (103)..(2322) <223> G418

<400> 17 acatatgttt taaattettt gtetgaatet tacaggatee gagagagaga getetggaae 60 gatattaaca tatatcatga agaaaaagat tgaagtattg at atg gga ata act Met Gly Ile Thr 114 162 aaa act tot oot aat act aca att oto ttg aag act ttt cac aat aat Lys Thr Ser Pro Asn Thr Thr Ile Leu Leu Lys Thr Phe His Asn Asn tct atg tcc caa gat tat cat cat cat cat cat cat cat caa cac caa Ser Met Ser Gln Asp Tyr His His His His His His Asn Gln His Gln 210 30 gga ggt atc ttc aac ttc tct aat gga ttc gac cga tca gat tct ccc Gly Gly Ile Phe Asn Phe Ser Asn Gly Phe Asp Arg Ser Asp Ser Pro 258 aat tta aca act cag cag aag caa gag cat caa agg gta gag atg gac Asn Leu Thr Thr Gln Gln Lys Gln Glu His Gln Arg Val Glu Met Asp 306 60 gag gaa tct tca gtc gcc gga ggt agg att ccg gtc tac gaa tca gcc Glu Glu Ser Ser Val Ala Gly Gly Arg Ile Pro Val Tyr Glu Ser Ala 70 75 80354 ggt atg tta tcc gaa atg ttt aat ttc ccc gga agc agc ggt gga gga Gly Met Leu Ser Glu Met Phe Asn Phe Pro Gly Ser Ser Gly Gly Gly 402 aga gat ctc gac ctc ggc caa tct ttc cgg tca aat agg cag ttg ctt Arg Asp Leu Asp Leu Gly Gln Ser Phe Arg Ser Asn Arg Gln Leu Leu 450 gag gag caa cat cag aat att ccg gct atg aat gct acg gat tca gcc Glu Glu Gln His Gln Asn Ile Pro Ala Met Asn Ala Thr Asp Ser Ala 498 acc gcc acc gca gcc gcc atg cag tta ttc ttg atg aat cca ccg cca Thr Ala Thr Ala Ala Ala Met Gln Leu Phe Leu Met Asn Pro Pro Pro 546 ccg caa caa cca ccg tct ccg tca tcc aca act tcc cca agg agc cac Pro Gln Gln Pro Pro Ser Pro Ser Ser Thr Thr Ser Pro Arg Ser His 594 cac aat tot toa act ott cac atg tta ott coa agt coa too acc aac His Asn Ser Ser Thr Leu His Met Leu Leu Pro Ser Pro Ser Thr Asn 642 170 aca act cac cat cag aac tac act aat cat atg tct atg cat cag ctt Thr Thr His His Gln Asn Tyr Thr Asn His Met Ser Met His Gln Leu 690 190 cca cat cag cat cac caa cag ata tcg acg tgg cag tct tct ccc gat Pro His Gln His His Gln Gln Ile Ser Thr Trp Gln Ser Ser Pro Asp 738 205 cat cat cat cat cat cac aac agc caa acg gag att ggg acc gtc cac His His His His His Asn Ser Gln Thr Glu Ile Gly Thr Val His 215 220 225 786 gtg gaa aac agc gga gga cac gga gga caa ggc ttg tcc tta tct ctc Val Glu Asn Ser Gly Gly His Gly Gly Gln Gly Leu Ser Leu Ser Leu 834 235 882 tca tcg tct tta gag gct gca gca aaa gcg gaa gag tat aga aac att Ser Ser Ser Leu Glu Ala Ala Ala Lys Ala Glu Glu Tyr Arg Asn Ile

MBI15 Sequence Listing.ST25

							I-IDI.	13 3	eque	nce .	шъс	ing .	3123			
														tac Tyr 275		930
														caa Gln		978
														atg Met		1026
														caa Gln		1074
														aag Lys		1122
														ggt Gly 355		1170
														cct Pro		1218
														cta Leu		1266
														gag Glu		1314
														ggt Gly		1362
														cat His 435		1410
														tgc Cys		1458
ctt Leu	ctt Leu	999 Gly 455	gac Asp	aaa Lys	gat Asp	gca Ala	gcg Ala 460	gga Gly	atc Ile	tct Ser	tct Ser	tcc Ser 465	ggg Gly	tta Leu	aca Thr	1506
-	==	Ξ.					4			· · ·	~ ~ ~	A =		cgt Arg	~1 -	1554
caa Gln 485	cgt Arg	gcg Ala	ttt Phe	cat His	caa Gln 490	atg Met	ggt Gly	atg Met	atg Met	gaa Glu 495	caa Gln	gaa Glu	gct Ala	tgg Trp	cgg Arg 500	1602
														gct Ala 515		1650
														aaa Lys		1698
cta Leu	t tg Leu	gct Ala 535	cga Arg	cag Gln	act Thr	ggt Gly	tta Leu 540	tcc Ser	aga Arg	aat Asn	cag Gln	gta Val 545	tca Ser	aat Asn	tgg Trp	1746
ttc Phe	ata Ile	aat Asn	gct Ala	agg Arg	gtt Val	cgt Arg	tta Leu	tgg Trp	Lys	cca Pro age	Met	gtg Val	gaa Glu	gaa Glu	atg Met	1794

	MBI15	Sequence	Listing.ST25
C C C			5.60

550	555	560	
tac caa caa gaa tca aa Tyr Gln Gln Glu Ser Ly 565 57	s Glu Arg Glu Arg Glu	gag gaa tta gaa gag Glu Glu Leu Glu Glu 580	1842
aac gaa gaa gat caa ga Asn Glu Glu Asp Gln Gl 585			1890
aaa tcc aac aac aat ga Lys Ser Asn Asn Asn Gl 600			1938
caa act cca acg aca ac Gln Thr Pro Thr Thr Th 615			1986
gta gcg aca ggc cac cg Val Ala Thr Gly His Ar 630			2034
gac gct tca tca ctt ct Asp Ala Ser Ser Leu Le 645	u Leu Pro Ser Ser Tyr		2082
cct gcc gct gtt tct ga Pro Ala Ala Val Ser As 665			2130
gcg ttt tcc gcc gtt gc Ala Phe Ser Ala Val Al 680			2178
gat gct gac atg gat gg Asp Ala Asp Met Asp Gl 695	t gtt aac gtt ata agg y Val Asn Val Ile Arg 700	ttt ggg aca aac cct Phe Gly Thr Asn Pro 705	2226
act ggt gac gtg tct ct Thr Gly Asp Val Ser Le 710	c acg ctt ggt tta cgc eu Thr Leu Gly Leu Arg 715	cac gct gga aac atg His Ala Gly Asn Met 720	2274
cct gac aaa gac gct to Pro Asp Lys Asp Ala Se 725 73	er Phe Cys Val Arg Glu	ttt ggg ggt ttt tag Phe Gly Gly Phe	2322
tttgcttttg tcactccatt	taattaatta attatagttt	tccattctta cttattttaa	2382
ttgaaaatct atttttgtct	cttaaaagtc caaacaatac	attagtctag ccctcctctg	2442
ctttttttt tctatctcgt	gaagagaaga aaacgatacg	taaatccctt cgaaaactaa	2502
tgtacgttgt acgacttatt	gttttcataa aaaaaaaaaa	aaa	2545
<210> 18 <211> 739 <212> PRT <213> Arabidopsis tha	liana	·	
<400> 18			

<400> 18

Met Gly Ile Thr Lys Thr Ser Pro Asn Thr Thr Ile Leu Leu Lys Thr 1 10

Phe His Asn Asn Ser Met Ser Gln Asp Tyr His His His His His 20 25 30

Asn Gln His Gln Gly Gly Ile Phe Asn Phe Ser Asn Gly Phe Asp Arg 35

Ser Asp Ser Pro Asn Leu Thr Thr Gln Gln Lys Gln Glu His Gln Arg Page 24 MBI15 Sequence Listing.ST25 50 55 60

Val Glu Met Asp Glu Glu Ser Ser Val Ala Gly Gly Arg Ile Pro Val 65 70 75 80

Tyr Glu Ser Ala Gly Met Leu Ser Glu Met Phe Asn Phe Pro Gly Ser 85 90 95

Ser Gly Gly Gry Arg Asp Leu Asp Leu Gly Gln Ser Phe Arg Ser Asn 100 105 110

Arg Gln Leu Leu Glu Glu Gln His Gln Asn Ile Pro Ala Met Asn Ala 115 120 125

Thr Asp Ser Ala Thr Ala Thr Ala Ala Ala Met Gln Leu Phe Leu Met 130 135 140

Asn Pro Pro Pro Pro Gln Gln Pro Pro Ser Pro Ser Ser Thr Thr Ser 145 150 155 160

Pro Arg Ser His His Asn Ser Ser Thr Leu His Met Leu Leu Pro Ser 165 170 175

Pro Ser Thr Asn Thr Thr His His Gln Asn Tyr Thr Asn His Met Ser

Met His Gln Leu Pro His Gln His His Gln Gln Ile Ser Thr Trp Gln 195 200 205

Ser Ser Pro Asp His His His His His His Asn Ser Gln Thr Glu Ile 210 215 220

Gly Thr Val His Val Glu Asn Ser Gly Gly His Gly Gly Gln Gly Leu 225 230 235 240

Ser Leu Ser Leu Ser Ser Ser Leu Glu Ala Ala Ala Lys Ala Glu Glu 245 250 255

Tyr Arg Asn Ile Tyr Tyr Gly Ala Asn Ser Ser Asn Ala Ser Pro His 260 265 270

His Gln Tyr Asn Gln Phe Lys Thr Leu Leu Ala Asn Ser Ser Gln His 275 280 285

His His Gln Val Leu Asn Gln Phe Arg Ser Ser Pro Ala Ala Ser Ser 290 295 300

Ser Ser Met Ala Ala Val Asn Ile Leu Arg Asn Ser Arg Tyr Thr Thr 305 310 315 320

Ala Ala Gln Glu Leu Leu Glu Glu Phe Cys Ser Val Gly Arg Gly Phe 325 330 335

Leu Lys Lys Asn Lys Leu Gly Asn Ser Ser Asn Pro Asn Thr Cys Gly 340 345 350

MBI15 Sequence Listing.ST25
Gly Asp Gly Gly Ser Ser Pro Ser Ser Ala Gly Ala Asn Lys Glu
355 360 365

- His Pro Pro Leu Ser Ala Ser Asp Arg Ile Glu His Gln Arg Arg Lys 370 380
- Val Lys Leu Leu Thr Met Leu Glu Glu Val Asp Arg Arg Tyr Asn His 385 390 395 400
- Tyr Cys Glu Gln Met Gln Met Val Val Asn Ser Phe Asp Ile Val Met 405 410 415
- Gly His Gly Ala Ala Leu Pro Tyr Thr Ala Leu Ala Gln Lys Ala Met 420 425 430
- Ser Arg His Phe Arg Cys Leu Lys Asp Ala Val Ala Ala Gln Leu Lys 435 440 445
- Gln Ser Cys Glu Leu Leu Gly Asp Lys Asp Ala Ala Gly Ile Ser Ser 450 455 460
- Ser Gly Leu Thr Lys Gly Glu Thr Pro Arg Leu Arg Leu Leu Glu Gln 465 470 480
- Ser Leu Arg Gln Gln Arg Ala Phe His Gln Met Gly Met Met Glu Gln 485 490 495
- Glu Ala Trp Arg Pro Gln Arg Gly Leu Pro Glu Arg Ser Val Asn Ile 500 505 510
- Leu Arg Ala Trp Leu Phe Glu His Phe Leu His Pro Tyr Pro Ser Asp 515 520 525
- Ala Asp Lys His Leu Leu Ala Arg Gln Thr Gly Leu Ser Arg Asn Gln 530 540
- Val Ser Asn Trp Phe Ile Asn Ala Arg Val Arg Leu Trp Lys Pro Met 545 550 560
- Val Glu Glu Met Tyr Gln Gln Glu Ser Lys Glu Arg Glu Arg Glu Glu 565 570 575
- Glu Leu Glu Glu Asn Glu Glu Asp Gln Glu Thr Lys Asn Ser Asn Asp 580 585 590
- Asp Lys Ser Thr Lys Ser Asn Asn Asn Glu Ser Asn Phe Thr Ala Val 595 600 605
- Arg Thr Thr Ser Gln Thr Pro Thr Thr Thr Ala Pro Asp Ala Ser Asp 610 620
- Ala Asp Ala Ala Val Ala Thr Gly His Arg Leu Arg Ser Asn Ile Asn 625 630 630
- Ala Tyr Glu Asn Asp Ala Ser Ser Leu Leu Leu Pro Ser Ser Tyr Ser 645 650 655

MBI15 Sequence Listing.ST25

Asn Ala Ala Pro Ala Ala Val Ser Asp Asp Leu Asn Ser Arg Tyr
660 670

Gly Gly Ser Asp Ala Phe Ser Ala Val Ala Thr Cys Gln Gln Ser Val 675 680 685

Gly Gly Phe Asp Asp Ala Asp Met Asp Gly Val Asn Val Ile Arg Phe 690 695 700

Gly Thr Asn Pro Thr Gly Asp Val Ser Leu Thr Leu Gly Leu Arg His 705 710 715 720

Ala Gly Asn Met Pro Asp Lys Asp Ala Ser Phe Cys Val Arg Glu Phe 725 730 735

Gly Gly Phe

<210> 19 <211> 1240 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (88)..(1020) <223> G591

<400> 19 60 gtaaatctct ctttgaaggt tcctaactcg ttaatcgtaa ctcacagtga ctcgttcgag tcaaagtctc tgtctttagc tcaaacc atg gct agt aac aac cct cac gac aac Met Ala Ser Asn Asn Pro His Asp Asn 114 ctt tct gac caa act cct tct gat gat ttc ttc gag caa atc ctc ggc Leu Ser Asp Gln Thr Pro Ser Asp Asp Phe Phe Glu Gln Ile Leu Gly 162 210 ctt cct aac ttc tca gcc tct tct gcc gcc ggt tta tct gga gtt gac Leu Pro Asn Phe Ser Ala Ser Ser Ala Ala Gly Leu Ser Gly Val Asp 30 35 gga gga tta ggt ggt gga gca ccg cct atg atg ctg cag ttg ggt tcc Gly Gly Leu Gly Gly Gly Ala Pro Pro Met Met Leu Gln Leu Gly Ser 45 50 55 258 gga gaa gaa gga agt cac atg ggt ggc tta gga gga agt gga cca act Gly Glu Glu Gly Ser His Met Gly Gly Leu Gly Gly Ser Gly Pro Thr 60 65 70306 ggg ttt cac aat cag atg ttt cct ttg ggg tta agt ctt gat caa ggg Gly Phe His Asn Gln Met Phe Pro Leu Gly Leu Ser Leu Asp Gln Gly 354 80 aaa gga cct ggg ttt ctt aga cct gaa gga gga cat gga agt ggg aaa Lys Gly Pro Gly Phe Leu Arg Pro Glu Gly Gly His Gly Ser Gly Lys 90 100 105 402

aga ttc tca gat gat gtt gtt gat aat cga tgt tct tct atg aaa cct
Arg Phe Ser Asp Asp Val Val Asp Asn Arg Cys Ser Ser Met Lys Pro
110 115 120

gtt ttc cac ggg cag cct atg caa cag cca cct cca tcg gcc cca cat
Val Phe His Gly Gln Pro Met Gln Gln Pro Pro Pro Ser Ala Pro His
125 130 450

MDT15 Garages Tighting CMC5	
MBI15 Sequence Listing.ST25 cag cct act tca atc cgt ccc agg gtt cga gct agg cgt ggt cag gct Gln Pro Thr Ser Ile Arg Pro Arg Val Arg Ala Arg Arg Gly Gln Ala 140 145 150	546
act gat cca cat agc atc gct gag cgg cta cgt aga gaa aga ata gca Thr Asp Pro His Ser Ile Ala Glu Arg Leu Arg Arg Glu Arg Ile Ala 155 160 165	594
gaa cgg atc agg gcg ctg cag gaa ctt gta cct act gtg aac aag acc Glu Arg Ile Arg Ala Leu Gln Glu Leu Val Pro Thr Val Asn Lys Thr 170 175 180 185	642
gat aga gct gct atg atc gat gag att gtc gat tat gta aag ttt ctc Asp Arg Ala Ala Met Ile Asp Glu Ile Val Asp Tyr Val Lys Phe Leu 190 195 200	690
agg ctc caa gtc aag gtt ttg agc atg aac cga ctt ggt gga gcc ggt Arg Leu Gln Val Lys Val Leu Ser Met Asn Arg Leu Gly Gly Ala Gly 205 210 215	738
gcg gtt gct cca ctt gtt act gat atg cct ctt tca tca tca gtt gag Ala Val Ala Pro Leu Val Thr Asp Met Pro Leu Ser Ser Ser Val Glu 220 225 230	786
gat gaa acg ggt gag ggt gga agg act ccg caa cca gcg tgg gag aaa Asp Glu Thr Gly Glu Gly Gly Arg Thr Pro Gln Pro Ala Trp Glu Lys 235 240 245	834
tgg tct aac gat ggg act gaa cgt caa gtg gct aaa ctg atg gaa gag Trp Ser Asn Asp Gly Thr Glu Arg Gln Val Ala Lys Leu Met Glu Glu 250 265	882
Asn Val Gly Ala Ala Met Gln Leu Leu Gln Ser Lys Ala Leu Cys Met 270 275 280	930
atg cca atc tca ttg gca atg gca att tac cat tct caa cct ccg gat Met Pro Ile Ser Leu Ala Met Ala Ile Tyr His Ser Gln Pro Pro Asp 285 290 295	978
aca tct tca gtg gtc aag cct gag aac aat cct cca cag tag Thr Ser Ser Val Val Lys Pro Glu Asn Asn Pro Pro Gln 300 305 310	1020
gatttctgca ataaagagtt tgtacagcta atccaactgt ccaacatggg tttttcttct	1080
gctctaatga ctctggtttc ttctctcctc tctcaccgac ttgaaaggta aaaaagtgaa	1140
aaaggctttg tagatggaat caatgtagga tttgcagtag agggcaaaaa aatgtcatat	1200
agctcaattg atcaagtctt aaaaaaaaaa aaaaaaaaaa	1240
<210> 20 <211> 310 <212> PRT <213> Arabidopsis thaliana	
<400> 20	
Met Ala Ser Asn Asn Pro His Asp Asn Leu Ser Asp Gln'Thr Pro Ser 1 10 15	

Asp Asp Phe Phe Glu Gln Ile Leu Gly Leu Pro Asn Phe Ser Ala Ser 20 25 30

Ser Ala Ala Gly Leu Ser Gly Val Asp Gly Gly Leu Gly Gly Gly Ala 35

Pro Pro Met Met Leu Gln Leu Gly Ser Gly Glu Glu Gly Ser His Met 50 60

MBI15 Sequence Listing.ST25

Gly Gly Leu Gly Gly Ser Gly Pro Thr Gly Phe His Asn Gln Met Phe 65 70 75 80

Pro Leu Gly Leu Ser Leu Asp Gln Gly Lys Gly Pro Gly Phe Leu Arg

Pro Glu Gly Gly His Gly Ser Gly Lys Arg Phe Ser Asp Asp Val Val

Asp Asn Arg Cys Ser Ser Met Lys Pro Val Phe His Gly Gln Pro Met

Gln Gln Pro Pro Pro Ser Ala Pro His Gln Pro Thr Ser Ile Arg Pro

Arg Val Arg Ala Arg Arg Gly Gln Ala Thr Asp Pro His Ser Ile Ala 145 150 150 155

Glu Arg Leu Arg Glu Arg Ile Ala Glu Arg Ile Arg Ala Leu Gln 165 170 175

Glu Leu Val Pro Thr Val Asn Lys Thr Asp Arg Ala Ala Met Ile Asp 180 185 190

Glu Ile Val Asp Tyr Val Lys Phe Leu Arg Leu Gln Val Lys Val Leu

Ser Met Asn Arg Leu Gly Gly Ala Gly Ala Val Ala Pro Leu Val Thr 210 215 220

Asp Met Pro Leu Ser Ser Ser Val Glu Asp Glu Thr Gly Glu Gly Gly 225 230 230 235

Arg Thr Pro Gln Pro Ala Trp Glu Lys Trp Ser Asn Asp Gly Thr Glu 245 250 255

Arg Gln Val Ala Lys Leu Met Glu Glu Asn Val Gly Ala Ala Met Gln 265 270

Leu Leu Gln Ser Lys Ala Leu Cys Met Met Pro Ile Ser Leu Ala Met 275 280 285

Ala Ile Tyr His Ser Gln Pro Pro Asp Thr Ser Ser Val Val Lys Pro

Glu Asn Asn Pro Pro Gln

<210> 21 <211> 1179 <212> DNA <213> Arabidopsis thaliana

<220>

<221> CDS

<222> (109)..(966) <223> G525

MBI15 Sequence Listing.ST25

		•		
<400> 21 cttctctctt ctcaa	aaaacc cttccctct	t cgtctccaaa	caacaacaaa cacaacaaca	60
acaaaaatct tacaa	agaaga tcatttttaq	g aaaccctatt	aggataaa atg gat tac Met Asp Tyr 1	117
gag gca tca aga Glu Ala Ser Arg 5	atc gtc gaa atg Ile Val Glu Met 10	gta gaa gat Val Glu Asp	gaa gaa cat ata gat Glu Glu His Ile Asp 15	165
			gaa gaa ctc ata act Glu Glu Leu Ile Thr 35	213
			ttc tct gct act gcc Phe Ser Ala Thr Ala 50	261
			tgg gac tta cca tgg Trp Asp Leu Pro Trp 65	309
			ttc tgt gtg aga gac Phe Cys Val Arg Asp 80	357
			gcg aca gaa gcc ggt Ala Thr Glu Ala Gly 95	405
			ttc aag gga aaa tca Phe Lys Gly Lys Ser 115	453
			aaa gga aga gct cct Lys Gly Arg Ala Pro 130	501
			tat cgt tta gaa ggc Tyr Arg Leu Glu Gly 145	549
			aag aac gaa tgg gtt Lys Asn Glu Trp Val . 160	597
ata tgt cgt gtt Ile Cys Arg Val 165	ttc caa aaa cgt Phe Gln Lys Arg 170	gcc gat ggt Ala Asp Gly	aca aag gtt cca atg Thr Lys Val Pro Met 175	645
Ser Met Leu Asp	Pro His Ile Asn		cca gcc ggt tta cct Pro Ala Gly Leu Pro 195	693
tcg tta atg gat Ser Leu Met Asp	tgt tct caa cga Cys Ser Gln Arg 200	gac tcc ttc Asp Ser Phe 205	acc ggt tcg tcg tct Thr Gly Ser Ser Ser 210	741
cac gtg acc tgc His Val Thr Cys 215	ttc tcc gac caa Phe Ser Asp Gln	gaa acc gaa Glu Thr Glu 220	gac aaa aga ctt gtc Asp Lys Arg Leu Val 225	789
			tac tcg gat cct ctg Tyr Ser Asp Pro Leu 240	837
ttt tta caa gac Phe Leu Gln Asp 245	aat tat tcg cta Asn Tyr Ser Leu 250	atg aag ctg Met Lys Leu	ttg ctt gac ggt caa Leu Leu Asp Gly Gln 255	885
			cgt gat tcg tcc ggt Arg Asp Ser Ser Gly 275	933

MBI15 Sequence Listing.ST25

aca gaa gaa ttg gat tgc gtt tgg aat ttc tga Thr Glu Glu Leu Asp Cys Val Trp Asn Phe 280 285	gttgtataag ttatgttgta	986
gacttgtagt agtcatgtgt tcgtgtgtgt gaatgaatat	tcttgttaca tttttttgta 1	046
aaaaaggaga aaaaaatatg ctagaaagtc aattgctttt	gttatgtagc attagtgttt 1	106
tttatgtact caatagactt cctaattaaa taaaaatctt	aatttatttg ccaaaaaaaa 1	166
aaaaaaaaa aaa	1	179

<210> 22 <211> 285 <212> PRT <213> Arabidopsis thaliana

<400> 22

Met Asp Tyr Glu Ala Ser Arg Ile Val Glu Met Val Glu Asp Glu Glu 1 5 15

His Ile Asp Leu Pro Pro Gly Phe Arg Phe His Pro Thr Asp Glu Glu 20 25 30

Leu Ile Thr His Tyr Leu Lys Pro Lys Val Phe Asn Thr Phe Phe Ser 35 40 45

Ala Thr Ala Ile Gly Glu Val Asp Leu Asn Lys Ile Glu Pro Trp Asp 50 55 60

Leu Pro Trp Lys Ala Lys Met Gly Glu Lys Glu Trp Tyr Phe Phe Cys 65 75 80

Val Arg Asp Arg Lys Tyr Pro Thr Gly Leu Arg Thr Asn Arg Ala Thr 85 90 95

Glu Ala Gly Tyr Trp Lys Ala Thr Gly Lys Asp Lys Glu Ile Phe Lys

Gly Lys Ser Leu Val Gly Met Lys Lys Thr Leu Val Phe Tyr Lys Gly

Arg Ala Pro Lys Gly Val Lys Thr Asn Trp Val Met His Glu Tyr Arg 130 135 140

Leu Glu Gly Lys Tyr Cys Ile Glu Asn Leu Pro Gln Thr Ala Lys Asn 145 150 160

Glu Trp Val Ile Cys Arg Val Phe Gln Lys Arg Ala Asp Gly Thr Lys 165 170 175

Val Pro Met Ser Met Leu Asp Pro His Ile Asn Arg Met Glu Pro Ala 180 185 190

Gly Leu Pro Ser Leu Met Asp Cys Ser Gln Arg Asp Ser Phe Thr Gly 195 200 205

Ser Ser Ser His Val Thr Cys Phe Ser Asp Gln Glu Thr Glu Asp Lys 210 215 220

MBI15 Sequence Listing.ST25

Arg 225	Leu	Val	His	Glu	Ser 230	Lys	Asp	Gly	Phe	Gly 235	Ser	Leu	Phe	Tyr	Ser 240	
Asp	Pro	Leu	Phe	Leu 245	Gln	Asp	Asn	Tyr	Ser 250	Leu	Met	Lys	Leu	Leu 255	Leu	
Asp	Gly	Gln	Glu 260	Thr	Gln	Phe	Ser	Gly 265	Lys	Pro	Phe	Asp	Gly 270	Arg	Asp	
Ser	Ser	Gly 275	Thr	Glu	Glu	Leu	Asp 280	Сув	Val	Trp	Asn	Phe 285				
<21 <21 <21 <21	1> 1 2> 1	23 890 DNA Arab:	idop	sis (thali	iana										
<22 <22 <22 <22	1> (2>	CDS (55) 3545	(7:	38)												
<40		23														
gca	acct	cca a	acta	aaaa	ct c	gagag	gacaa	a gaa	aatco	cca	gaai	CEE	aa (etta	Met 1	57
					aca Thr											105
					tca Ser											153
ggt Gly	aag Lys 35	cga Arg	tct Ser	aag Lys	aga Arg	tca Ser 40	aga Arg	tcc Ser	gat Asp	ttc Phe	cac His 45	cac His	caa Gln	aac Asn	ctc Leu	201
					cta Leu 55											249
aac Asn	cgt Arg	cag Gln	cct Pro	cct Pro 70	cct Pro	cct Pro	ccg Pro	gcg Ala	gtg Val 75	gag Glu	aag Lys	ttg Leu	agc Ser	tac Tyr 80	aag Lys	297
					aag Lys											345
					cgt Arg											393
gga Gly	gat Asp 115	gat Asp	cat His	tca Ser	acc Thr	tcg Ser 120	tcg Ser	gcg Ala	aca Thr	acc Thr	aca Thr 125	tcc Ser	gcc Ala	gtg Val	act Thr	441
act Thr 130	gga Gly	agt Ser	999 Gly	aaa Lys	tca Ser 135	cac His	gtt Val	tgc Cys	acc Thr	atc Ile 140	tgt Cys	aac Asn	aag Lys	tct Ser	ttt Phe 145	489
					ctc Leu											537
aac	aac	aac	atc	aac	act	agt	agc	gtg	_	aac age		gaa	ggt	gcg	999	585

Asn	Asn	Asn	Ile 165	Asn	Thr	Ser					List Ser			Ala	Gly	
tcc Ser	act Thr	agc Ser 180	cac His	gtt Val	agc Ser	agt Ser	agc Ser 185	cac His	cgt Arg	999 999	ttt Phe	gac Asp 190	ctc Leu	aac Asn	atc Ile	633
cct Pro	ccg Pro 195	atc Ile	cct Pro	gaa Glu	ttc Phe	tcg Ser 200	atg Met	gtc Val	aac Asn	gga Gly	gac Asp 205	gac Asp	gaa Glu	gtc Val	atg Met	681
agc Ser 210	cct Pro	atg Met	ccg Pro	gcg Ala	aag Lys 215	aag Lys	cct Pro	cgg Arg	ttt Phe	gac Asp 220	ttt Phe	ccg Pro	gtc Val	aaa Lys	ctt Leu 225	729
	ctt Leu	taa	ggaa	aatti	ac t	taga	acgat	a ag	gattt	cgti	t tgt	ata	ctgt			778
tgaç	gagti	gt g	gtag	gaati	t gt	tgad	tgta	a cat	tacca	aaat	tgga	actt	tga (ctgai	ttccaa	838
ttc	tct	gt t	ctt	tcati	ct ta	aaaa	attat	taa	aaccg	gatt	cttt	cacca	aca a	aa		890
<210 <213 <213 <213	L> 2 2> 1 3> 2	24 227 PRT Arabi	idopi	sis 1	chali	lana				٠						
Met 1	Ala	Leu	Glu	Ala 5	Leu	Thr	Ser	Pro	Arg 10	Leu	Ala	Ser	Pro	Ile 15	Pro	
Pro	Leu	Phe	Glu 20	Asp	Ser	Ser	Val	Phe 25	His	Gly	Val	Glu	His 30	Trp	Thr	
Lys	Gly	Lys 35	Arg	Ser	Lys	Arg	Ser 40	Arg	Ser	Asp	Phe	His 45	His	Gln	Asn	
Leu	Thr 50	Glu	Glu	Glu	Tyr	Leu 55	Ala	Phe	Сув	Leu	Met 60	Leu	Leu	Ala	Arg	•
Asp 65	Asn	Arg	Gln	Pro	Pro 70	Pro	Pro	Pro	Ala	Val 75	Glu	Lys	Leu	Ser	Tyr 80	
Lys	Сув	Ser	Val	Cys 85	Asp	Lys	Thr	Phe	Ser 90	Ser	туг	Gln	Ala	Leu 95	Gly	
Gly	His	Lys	Ala 100	Ser	His	Arg	Lys	Asn 105	Leu	Ser	Gln	Thr	Leu 110	Ser	Gly	
Gly	Gly	Asp 115	Asp	His	Ser	Thr	Ser 120	Ser	Ala	Thr	Thr	Thr 125	Ser	Ala	Val	
Thr	Thr 130	Gly	Ser	Gly	Lys	Ser 135	His	Val	Cys	Thr	Ile 140	Сув	Asn	Lys	Ser	
Phe 145	Pro	Ser	Gly	Gln	Ala 150	Leu	Gly	Gly	His	Lys 155	Arg	Сув	His	Tyr	Glu 160	
Gly	Asn	Asn	Asn	Ile	Asn	Thr	Ser	Ser	Val	Ser	Asn	Ser	Glu	Gly 175	Ala	

PCT/US00/31418

60 120

180

728

WO 01/35726 MBI15 Sequence Listing.ST25 Gly Ser Thr Ser His Val Ser Ser Ser His Arg Gly Phe Asp Leu Asn Ile Pro Pro Ile Pro Glu Phe Ser Met Val Asn Gly Asp Asp Glu Val 200 Met Ser Pro Met Pro Ala Lys Lys Pro Arg Phe Asp Phe Pro Val Lys Leu Gln Leu <210> <211> 1126 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (282)..(920) <223> G865 <400> 25 atocccactt gttgttcatc accaagocaa gotocatgto ctagtcacto cacagattoc ctatcatcat caattegttt caaacttagt teettteaaa gtettgtaca tatatacaca cacacctatt attetettgg tgtgtttgtg tgttacatat acgtgtgagt acatactttg ttgtaaaagt ggatcggagg tatggaaagg gaccggttcc accggaaaca tcggcggcgg cggatgataa ttcgtcttgg aacgagactg atgtcaccgc c atg gtc tcc gct ctc Met Val Ser Ala Leu ago ogt gto ata gag aat oog aca gao oog oog gto aaa caa gag ott

240 296 344 Ser Arg Val Ile Glu Asn Pro Thr Asp Pro Pro Val Lys Gln Glu Leu gat aaa tcg gat caa cat caa cca gac caa gat caa cca aga aga aga Asp Lys Ser Asp Gln His Gln Pro Asp Gln Asp Gln Pro Arg Arg Arg 392 cac tat aga ggc gta agg cag aga cca tgg ggt aaa tgg gcg gca gaa His Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly Lys Trp Ala Ala Glu 440 488 atc cgc gat cca aag aaa gca gcc cgt gtc tgg ctc ggg act ttc gag Ile Arg Asp Pro Lys Lys Ala Ala Arg Val Trp Leu Gly Thr Phe Glu acg gca gag gaa gct gct tta gcc tat gac cga gct gcc ctc aaa ttc Thr Ala Glu Glu Ala Ala Leu Ala Tyr Asp Arg Ala Ala Leu Lys Phe 536 aaa ggc acc aag gct aaa ctg aac ttc cct gaa cgg gtc caa ggc cct Lys Gly Thr Lys Ala Lys Leu Asn Phe Pro Glu Arg Val Gln Gly Pro 584 act acc acc aca acc att tct cat gca cca aga gga gtt agt gaa tcc Thr Thr Thr Thr Thr Ile Ser His Ala Pro Arg Gly Val Ser Glu Ser 632 atg aac toa cot cot cot cga cot ggt coa cot toa act act act act Met Asn Ser Pro Pro Pro Arg Pro Gly Pro Pro Ser Thr Thr Thr Thr 120 125 130680

tcg tgg cca atg act tat aac cag gac ata ctt caa tac gct cag ttg Ser Trp Pro Met Thr Tyr Asn Gln Asp Ile Leu Gln Tyr Ala Gln Leu

140

MBI15 Sequence Listing.ST25

·			
ctt acg agt aac aat gag gtt g Leu Thr Ser Asn Asn Glu Val A 150			776
ttc agt caa cct ttt tca acg c Phe Ser Gln Pro Phe Ser Thr F 170			824
cag acg cag caa cag cag cta c Gln Thr Gln Gln Gln Gln Leu G 185			872
gaa gag aag aat tat ggt tac a Glu Glu Lys Asn Tyr Gly Tyr A 200 2			920
tctaattatt attgttggtc gaatcag	ttt tataaatagc	tatcatagtt tcatttttgg	980
tttccgtaac ctttgttgca tggaaaa	atat gaatgaacga	gggacatgtg taacaatttg	1040
tttgtgtttc gtaaatgtta gttgtat	ttg gatttgctga	agtttgattt tctgagcata	1100
aatcatttga cggtcaaaaa aaaaaa			1126
-210> 26			

<210> 26 <211> 212 <212> PRT <213> Arabidopsis thaliana

<400> 26

Met Val Ser Ala Leu Ser Arg Val Ile Glu Asn Pro Thr Asp Pro Pro 1 10 15

Val Lys Gln Glu Leu Asp Lys Ser Asp Gln His Gln Pro Asp Gln Asp 20 25 30

Gln Pro Arg Arg Arg His Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly 35 40

Lys Trp Ala Ala Glu Ile Arg Asp Pro Lys Lys Ala Ala Arg Val Trp 50 55 60

Leu Gly Thr Phe Glu Thr Ala Glu Glu Ala Ala Leu Ala Tyr Asp Arg 65 70 80

Ala Ala Leu Lys Phe Lys Gly Thr Lys Ala Lys Leu Asn Phe Pro Glu 85 90 95

Arg Val Gln Gly Pro Thr Thr Thr Thr Thr Ile Ser His Ala Pro Arg

Gly Val Ser Glu Ser Met Asn Ser Pro Pro Pro Arg Pro Gly Pro Pro 115 120 125

Ser Thr Thr Thr Thr Ser Trp Pro Met Thr Tyr Asn Gln Asp Ile Leu 130 135 140

Gln Tyr Ala Gln Leu Leu Thr Ser Asn Asn Glu Val Asp Leu Ser Tyr

Tyr Thr Ser Thr Leu Phe Ser Gln Pro Phe Ser Thr Pro Ser Ser Ser Ser 165 170 175

MBI15 Sequence Listing.ST25

Ser Ser Ser Ser Gln Gln Thr Gln Gln Gln Gln Leu Gln Gln Gln

Gln Gln Arg Glu Glu Glu Lys Asn Tyr Gly Tyr Asn Tyr Tyr Asn

Tyr Pro Arg Glu 210

<210> 27 <211> 1152 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (76)..(1008) <223> G881

<400> 27 gtgaccgaag aaagcaaatt gagactacgc accaactagt cctttggttt gtatcttaag 60 ataaaggttt ctttt atg gac ggt tct tcg ttt ctc gac atc tct ctc gat
Met Asp Gly Ser Ser Phe Leu Asp Ile Ser Leu Asp
1 10 111 ctc aac acc aat cct ttc tcc gca aaa ctt ccg aag aag gag gtc tca 159 Leu Asn Thr Asn Pro Phe Ser Ala Lys Leu Pro Lys Lys Glu Val Ser gtt ttg gct tct act cac tta aag agg aaa tgg ttg gag caa gac gag Val Leu Ala Ser Thr His Leu Lys Arg Lys Trp Leu Glu Gln Asp Glu 207 agc gca agt gag tta cga gag gag cta aac aga gtt aat tca gag aac Ser Ala Ser Glu Leu Arg Glu Glu Leu Asn Arg Val Asn Ser Glu Asn aag aag cta aca gag atg tta gct aga gtc tgt gag agc tac aac gaa Lys Lys Leu Thr Glu Met Leu Ala Arg Val Cys Glu Ser Tyr Asn Glu 65 70 75 303 cta cat aat cat ttg gag aag ctt cag agt cgc cag agc cct gaa atc Leu His Asn His Leu Glu Lys Leu Gln Ser Arg Gln Ser Pro Glu Ile 351 399 gag cag acc gat ata ccg ata aag aaa aga aaa caa gac ccg gat gag Glu Gln Thr Asp Ile Pro Ile Lys Lys Arg Lys Gln Asp Pro Asp Glu ttc tta ggc ttt cct att gga ctc agt agt gga aaa act gag aac agc Phe Leu Gly Phe Pro Ile Gly Leu Ser Ser Gly Lys Thr Glu Asn Ser 110 115 120 447 tcc agc aac gaa gat cat cat cat cat cat cag caa cat gag cag aaa Ser Ser Asn Glu Asp His His His His Gln Gln His Glu Gln Lys 495 130 aat cag ctt ctt tca tgt aaa aga cca gtc act gat agc ttc aac aaa Asn Gln Leu Leu Ser Cys Lys Arg Pro Val Thr Asp Ser Phe Asn Lys 543 gca aaa gtt tcg act gtc tac gtg cct act gaa aca tcg gac aca agc Ala Lys Val Ser Thr Val Tyr Val Pro Thr Glu Thr Ser Asp Thr Ser 591 165

Page 36

639

ttg aca gtt aaa gat gga ttt caa tgg agg aaa tac gga caa aag gtt Leu Thr Val Lys Asp Gly Phe Gln Trp Arg Lys Tyr Gly Gln Lys Val

180

MBI15 Sequence Listing.ST25

									-							
aca Thr	aga Arg 190	gac Asp	aac Asn	ccg Pro	tca Ser	cct Pro 195	aga Arg	gct Ala	tac Tyr	ttt Phe	aga Arg 200	tgc Cys	tcg Ser	ttt Phe	gca Ala	687
														gat Asp		735
														ggt Gly 235		783
														aca Thr		831
														aaa Lys		879
														gcg Ala		927
														gct Ala		975
					gag Glu					tga	acg	tttt	tag 1	tgaai	tgtatt	1028
gtt	tttg	ttt q	gttta	agaa	tg a	tct	tcgti	t tt	cgaat	ttgt	gtc	tttc	gat 1	tagga	agataa	1088
aag	atgta	ata 1	taaat	tatt	at aa	agta	gatga	a aga	aaat	egta	taa	gtaa	aaa a	aaaa	aaaaaa	1148
aaa	a															1152

<210> 28 <211> 310 <212> PRT <213> Arabidopsis thaliana

<400> 28

Met Asp Gly Ser Ser Phe Leu Asp Ile Ser Leu Asp Leu Asn Thr Asn 1 5 15

Pro Phe Ser Ala Lys Leu Pro Lys Lys Glu Val Ser Val Leu Ala Ser 20 30

Thr His Leu Lys Arg Lys Trp Leu Glu Gln Asp Glu Ser Ala Ser Glu 35 40 45

Leu Arg Glu Glu Leu Asn Arg Val Asn Ser Glu Asn Lys Lys Leu Thr 50 55

Glu Met Leu Ala Arg Val Cys Glu Ser Tyr Asn Glu Leu His Asn His 65 70 75 80

Leu Glu Lys Leu Gln Ser Arg Gln Ser Pro Glu Ile Glu Gln Thr Asp 90 95

Ile Pro Ile Lys Lys Arg Lys Gln Asp Pro Asp Glu Phe Leu Gly Phe 100 105 110

Pro	Ile	Gly 115	Leu	Ser	Ser	Gly	MBI Lys 120	15 S Thr	eque: Glu	nce : Asn	List Ser	ing. Ser 125	ST25 Ser	Asn	Glu	
Asp	His 130	His	His	His	His	Gln 135	Gln	His	Glu	Gln	Lys 140	Asn	Gln	Leu	Leu	
Ser 145	Сув	Lys	Arg	Pro	Val 150	Thr	Asp	Ser	Phe	Asn 155	Lys	Ala	Lys	Val	Ser 160	
Thr	Val	туг	Val	Pro 165	Thr	Glu	Thr	Ser	Asp 170	Thr	Ser	Leu	Thr	Val 175	Lys	
Asp	Gly	Phe	Gln 180	Trp	Arg	Lys	Tyr	Gly 185	Gln	Lys	Val	Thr	Arg 190	Asp	Asn	
Pro	Ser	Pro 195	Arg	Ala	Tyr	Phe	Arg 200	Сув	Ser	Phe	Ala	Pro 205	Ser	Сув	Pro	
Val	Lys 210	Lys	Lys	Val	Gln	Arg 215	Ser	Ala	Glu	Asp	Pro 220	Ser	Leu	Leu	Val	
Ala 225	Thr	Tyr	Glu	Gly	Thr 230	His	Asn	His	Leu	Gly 235	Pro	Asn	Ala	Ser	Glu 240	
Gly	Asp	Ala	Thr	Ser 245	Gln	Gly	Gly	Ser	Ser 250	Thr	Val	Thr	Leu	Asp 255	Leu	
Val	Asn	Gly	Сув 260	His	Arg	Leu	Ala	Leu 265	Glu	Lys	Asn	Glu	Arg 270	Asp	Asn	
Thr	Met	Gln 275	Glu	Val	Leu	Ile	Gln 280	Gln	Met	Ala	Ser	Ser 285	Leu	Thr	Lys	
Asp	Ser 290	Lys	Phe	Thr	Ala	Ala 295	Leu	Ala	Ala	Ala	Ile 300	Ser	Gly	Arg	Leu	
Met 305		Gln	Ser	Arg	Thr 310											
<210 <210 <210 <210	1> : 2> 1	29 1276 DNA Arab:	idops	sis (hal	iana										
	1> (2>	CDS (47) 3896	(1:	150)												
<40 taa		29 att (cgtcl	ttcai	c to	gatto	cct	c cci	ttcc	gaga	ata	I		tac (Tyr)		55
cca Pro	cct Pro 5	ccc Pro	tca Ser	agc Ser	atc Ile	tac Tyr 10	gct Ala	cct Pro	ccg Pro	atg Met	ctg Leu 15	gtg Val	aat Asn	tgc Cys	tcc Ser	103
ggt Gly 20	tgc Cys	cgg Arg	acg Thr	cct Pro	ctc Leu 25	cag Gln	ctc Leu	cca Pro	tcc Ser	ggc Gly 30	gcc Ala	cga Arg	tct Ser	att Ile	cgc Arg 35	151

MBI15 Sequence Listing.ST25

									-que	100	DIGC.	9				
					gct Ala											199
cct Pro	cct Pro	ccg Pro	caa Gln 55	cct Pro	tcc Ser	tcc Ser	gcc Ala	cct Pro 60	tct Ser	ccg Pro	cct Pro	ccc Pro	caa Gln 65	atc Ile	cac His	247
gcg Ala	cct Pro	ccc Pro 70	ggt Gly	cag Gln	ctg Leu	cct Pro	cac His 75	ccc Pro	cat His	ggc Gly	agg Arg	aag Lys 80	agg Arg	gcc Ala	gtg Val	295
					tat Tyr											343
atc Ile 100	aac Asn	gac Asp	gcc Ala	aag Lys	tgc Cys 105	atg Met	cgt Arg	cac His	ctt Leu	ctc Leu 110	atc Ile	aac Asn	aaa Lys	ttc Phe	aaa Lys 115	391
ttc Phe	tcc Ser	cca Pro	gat Asp	tca Ser 120	att Ile	ctc Leu	atg Met	ctt Leu	acc Thr 125	gag Glu	gaa Glu	gaa Glu	act Thr	gat Asp 130	cca Pro	439
tat Tyr	cgt Arg	atc Ile	ccg Pro 135	acc Thr	aag Lys	caa Gln	aac Asn	atg Met 140	agg Arg	atg Met	gca Ala	ttg Leu	tat Tyr 145	tgg Trp	ctc Leu	487
gta Val	cag Gln	gga Gly 150	tgc Cys	aca Thr	gca Ala	ggc Gly	gac Asp 155	tca Ser	ctt Leu	gtc Val	ttc Phe	cac His 160	tac Tyr	tct Ser	ggt Gly	535
cat His	ggt Gly 165	tcg Ser	cgt Arg	caa Gln	aga Arg	aac Asn 170	tac Tyr	aac Asn	ggt Gly	gat Asp	gaa Glu 175	gtt Val	gat Asp	ggc Gly	tat Tyr	583
gat Asp 180	gaa Glu	aca Thr	ctc Leu	tgt Cys	cct Pro 185	ctg Leu	gat Asp	ttt Phe	gaa Glu	act Thr 190	cag Gln	ggg Gly	atg Met	att Ile	gta Val 195	631
gac Asp	gat Asp	gag Glu	atc Ile	aac Asn 200	gca Ala	acc Thr	att Ile	gta Val	cgc Arg 205	cct Pro	ctt Leu	cca Pro	cat His	ggt Gly 210	gtc Val	679
aag Lys	ctc Leu	cat His	tca Ser 215	att Ile	atc Ile	gat Asp	gct Ala	tgc Cys 220	cat His	agt Ser	ggt Gly	acc Thr	gtt Val 225	ctg Leu	gat Asp	727
tta Leu	ccc Pro	ttc Phe 230	cta Leu	tgc Cys	aga Arg	atg Met	aac Asn 235	aga Arg	gct Ala	ggg Gly	cag Gln	tat Tyr 240	gtg Val	tgg Trp	gag Glu	775
gat Asp	cat His 245	cgg Arg	cct Pro	agg Arg	tca Ser	ggt Gly 250	ttg Leu	tgg Trp	aaa Lys	gga Gly	act Thr 255	gct Ala	ggt Gly	gga Gly	gaa Glu	823
gcc Ala 260	att Ile	tca Ser	att Ile	agt Ser	gga Gly 265	tgt Cys	gat Asp	gat Asp	gat Asp	cag Gln 270	act Thr	tcg Ser	gcc Ala	gac Asp	aca Thr 275	871
tca Ser	gcg Ala	ctg Leu	tcg Ser	aag Lys 280	atc Ile	acg Thr	tct Ser	acg Thr	ggt Gly 285	gct Ala	atg Met	act Thr	ttc Phe	tgt Cys 290	ttt Phe	919
att Ile	caa Gln	gca Ala	att Ile 295	gaa Glu	cgc Arg	agc Ser	gca Ala	caa Gln 300	ggc Gly	aca Thr	acc Thr	tat Tyr	gga Gly 305	agc Ser	ctt Leu	967
ctg Leu	aat Asn	tct Ser 310	atg Met	cgc Arg	acc Thr	aca Thr	ata Ile 315	agg Arg	aat Asn	aca Thr	ggg Gly	aat Asn 320	gat Asp	ggt Gly	ggt Gly	1015
ggt Gly	agt Ser	ggt Gly	gga Gly	gtt Val	gtg Val	acg Thr	act Thr	gtg Val	Leu	agc Ser	Met	ctt Leu	ctg Leu	aca Thr	999 Gly	1063

	MBI15	Sequence	Listing.ST25
~ ~		_	

gga agt gcg att ggg gga tta aga cag gag cct caa ctg act gct tgc 1111
Gly Ser Ala Ile Gly Gly Leu Arg Gln Glu Pro Gln Leu Thr Ala Cys
340 350 355

caa aca ttc gat gtc tat gca aag cct ttc act ctc tag taaaggacaa 1160 Gln Thr Phe Asp Val Tyr Ala Lys Pro Phe Thr Leu 360 365

gtcacttttt atgtatagcg agtgtgattt gagaatccgt ccatataacc accttttgtt 1220 tcttattttt atttttcttt caaaagaata aaggaaaaca ttgatttggt gattcg 1276

<210> 30

<211> 367 <212> PRT

<213> Arabidopsis thaliana

<400> 30

Met Tyr Pro Pro Pro Pro Ser Ser Ile Tyr Ala Pro Pro Met Leu Val

Asn Cys Ser Gly Cys Arg Thr Pro Leu Gln Leu Pro Ser Gly Ala Arg 20 25 30

Ser Ile Arg Cys Ala Leu Cys Gln Ala Val Thr His Ile Ala Asp Pro 35 40 45

Arg Thr Ala Pro Pro Pro Gln Pro Ser Ser Ala Pro Ser Pro Pro Pro 50 55 60

Gln Ile His Ala Pro Pro Gly Gln Leu Pro His Pro His Gly Arg Lys 65 70 75 80

Arg Ala Val Ile Cys Gly Ile Ser Tyr Arg Phe Ser Arg His Glu Leu 85 90 95

Lys Gly Cys Ile Asn Asp Ala Lys Cys Met Arg His Leu Leu Ile Asn 100 105 110

Lys Phe Lys Phe Ser Pro Asp Ser Ile Leu Met Leu Thr Glu Glu Glu 115 120 125

Thr Asp Pro Tyr Arg Ile Pro Thr Lys Gln Asn Met Arg Met Ala Leu 130 135 140

Tyr Trp Leu Val Gln Gly Cys Thr Ala Gly Asp Ser Leu Val Phe His 145 150 155 160

Tyr Ser Gly His Gly Ser Arg Gln Arg Asn Tyr Asn Gly Asp Glu Val 165 170 175

Asp Gly Tyr Asp Glu Thr Leu Cys Pro Leu Asp Phe Glu Thr Gln Gly 180 185 190

Met Ile Val Asp Asp Glu Ile Asn Ala Thr Ile Val Arg Pro Leu Pro 195 200 205

His Gly Val Lys Leu His Ser Ile Ile Asp Ala Cys His Ser Gly Thr Page 40

	MBI1	5 Sequence Listing.ST25
210	215	220

Val Leu Asp Leu Pro Phe Leu Cys Arg Met Asn Arg Ala Gly Gln Tyr Val Trp Glu Asp His Arg Pro Arg Ser Gly Leu Trp Lys Gly Thr Ala Gly Gly Glu Ala Ile Ser Ile Ser Gly Cys Asp Asp Asp Gln Thr Ser Ala Asp Thr Ser Ala Leu Ser Lys Ile Thr Ser Thr Gly Ala Met Thr Phe Cys Phe Ile Gln Ala Ile Glu Arg Ser Ala Gln Gly Thr Thr Tyr Gly Ser Leu Leu Asn Ser Met Arg Thr Thr Ile Arg Asn Thr Gly Asn 315 Asp Gly Gly Ser Gly Gly Val Val Thr Thr Val Leu Ser Met Leu Leu Thr Gly Gly Ser Ala Ile Gly Gly Leu Arg Gln Glu Pro Gln Leu 340 345 350 Thr Ala Cys Gln Thr Phe Asp Val Tyr Ala Lys Pro Phe Thr Leu 355 360 365 <210> <211> 726 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(726) <223> G378 <400> 31 atg gcc tcg tca tca tca tct tat aga ttc caa tct ggg tct tac Met Ala Ser Ser Ser Ser Ser Tyr Arg Phe Gln Ser Gly Ser Tyr 48 cct ctt tcg tca agt cct tct ctt ggg aat ttc gtc gaa cgc att aaa Pro Leu Ser Ser Pro Ser Leu Gly Asn Phe Val Glu Arg Ile Lys gac gct tgt cat ttc ctt gtc tct gct gtt ttg ggt acc att atc tcc Asp Ala Cys His Phe Leu Val Ser Ala Val Leu Gly Thr Ile Ile Ser 35 40 45144 gcg atc ttg acc ttc ttc ttc gca cta gtg ggc aca ttg cta ggg gca Ala Ile Leu Thr Phe Phe Phe Ala Leu Val Gly Thr Leu Leu Gly Ala 192 55 ctt aca gga gct ttg ata ggt caa gaa act gag agt ggt ttc att aga Leu Thr Gly Ala Leu Ile Gly Gln Glu Thr Glu Ser Gly Phe Ile Arg 65 70 75 80 240 gga gca gca att gga gcc att tcg gga gct gtt ttc tct atc gag gtc Gly Ala Ala Ile Gly Ala Ile Ser Gly Ala Val Phe Ser Ile Glu Val 90 95 288

							tgg	aaa	tcc	gat	List: gag Glu	tcg	ggt			336
tgt Cys	ttt Phe	ctc Leu 115	tac Tyr	ttg Leu	att Ile	gat Asp	gtc Val 120	att Ile	gtt Val	agt Ser	ctt Leu	cta Leu 125	agc Ser	999 999	aga Arg	384
											agt Ser 140					432
											cac His					480
											ctt Leu					528
cca Pro	aag Lys	atg Met	aca Thr 180	atc Ile	act Thr	ggc Gly	aac Asn	aat Asn 185	aac Asn	act Thr	gat Asp	gct Ala	tct Ser 190	gag Glu	aac Asn	576
aca Thr	gac Asp	tca Ser 195	tgt Cys	tct Ser	gtt Val	tgt Cys	ctt Leu 200	cag Gln	gat Asp	ttc Phe	cag Gln	ctc Leu 205	ggt Gly	gaa Glu	aca Thr	624
											cac His 220					672
gac Asp 225	Asn	tgg Trp	ctc Leu	ctt Leu	aga Arg 230	cac His	ggt Gly	tct Ser	tgc Cys	ccg Pro 235	atg Met	tgt Cys	aga Arg	cgt Arg	gat Asp 240	720
att Ile	taa															726
<21 <21 <21 <21	1> : 2> :	32 241 PRT Arab:	idopa	sis 1	thal:	iana										
<40	0 > 3	32										•				
Met 1	Ala	Ser	Ser	Ser 5	Ser	Ser	Ser	Tyr	Arg 10	Phe	Gln	Ser	Gly	Ser 15	Tyr	
Pro	Leu	Ser	Ser 20	Ser	Pro	Ser	Leu	Gly 25	Asn	Phe	Val	Glu	Arg 30	Ile	Lys	
Asp	Ala	Сув 35	His	Phe	Leu	Val	Ser 40	Ala	Val	Leu	Gly	Thr 45	Ile	Ile	Ser	
Ala	Ile	Leu	Thr	Phe	Phe		Ala	Leu	Val	Gly	Thr 60	Leu	Leu	Gly	Ala	
	50					55										
Leu 65		Gly	Ala	Leu	Ile 70		Gln	Glu	Thr	Glu 75	Ser	Gly	Phe	Ile	Arg 80	
65	Thr				70	Gly				75					80	

MBI15 Sequence Listing.ST25

Cys Phe Leu Tyr Leu Ile Asp Val Ile Val Ser Leu Leu Ser Gly Arg

Leu Val Arg Glu Arg Ile Gly Pro Ala Met Leu Ser Ala Val Gln Ser 130 135 140

Gln Met Gly Ala Val Asp Thr Ala Phe Asp Asp His Thr Ser Leu Phe

Asp Thr Gly Gly Ser Lys Gly Leu Thr Gly Asp Leu Val Glu Lys Ile 165 170 175

Pro Lys Met Thr Ile Thr Gly Asn Asn Asn Thr Asp Ala Ser Glu Asn

Thr Asp Ser Cys Ser Val Cys Leu Gln Asp Phe Gln Leu Gly Glu Thr

Val Arg Ser Leu Pro His Cys His His Met Phe His Leu Pro Cys Ile 210 215 220

Asp Asn Trp Leu Leu Arg His Gly Ser Cys Pro Met Cys Arg Arg Asp

Ile

<210> 33 <211> 1370

<212> DNA <213> Arabidopsis thaliana

<220>

<221> CDS <222> (184)..(969)

<223> G569

<400> 33 gtcgacccac gcgtccgggt ttttctttta tcctcttatc gctaatctgg agctctatat 60 agactataaa gggtttttga ttgattcggg agctcgagat ttgacttctt ttagctgatt 120 cggcaagttt gtatctagaa aggatcgatt ggtgaggtca atagtggttg gtgggtttta gta atg gaa gac ggt gag ctt gat ttc tcc aat cag gaa gtg ttt tcg
Met Glu Asp Gly Glu Leu Asp Phe Ser Asn Gln Glu Val Phe Ser 228 agt tcg gag atg ggt gaa tta cca cct agc aat tgt tcg atg gat agt Ser Ser Glu Met Gly Glu Leu Pro Pro Ser Asn Cys Ser Met Asp Ser 20 25 30 276 ttc ttt gat ggg ctt tta atg gat act aat gct gct tgt acc cac act Phe Phe Asp Gly Leu Leu Met Asp Thr Asn Ala Ala Cys Thr His Thr 35 40 45324 cac acc tgt aac ccc act gga cca gag aac act cat act cac acg tgc His Thr Cys Asn Pro Thr Gly Pro Glu Asn Thr His Thr His Thr Cys 50 55 60372 420 ttc cat gtc cac acc aag att ctc ccg gat gag agc gat gaa aaa gtt Phe His Val His Thr Lys Ile Leu Pro Asp Glu Ser Asp Glu Lys Val

							MBI	15 S	eque	nce	List	ing.	ST25			
tct Ser 80	act Thr	gat Asp	gat Asp	aca Thr	gct Ala 85	gag Glu	tct Ser	tgt Cys	999 Gly	aag Lys 90	aag Lys	ggt Gly	gaa Glu	aag Lys	aga Arg 95	468
cct Pro	ttg Leu	gga Gly	aac Asn	cgg Arg 100	gaa Glu	gcg Ala	gtt Val	aga Arg	aag Lys 105	tat Tyr	aga Arg	gag Glu	aag Lys	aag Lys 110	aag Lys	516
gct Ala	aaa Lys	gct Ala	gct Ala 115	tct Ser	ttg Leu	gag Glu	gat Asp	gag Glu 120	gtt Val	gca Ala	agg Arg	ctt Leu	agg Arg 125	gcg Ala	gtg Val	564
					aag Lys											612
					aag Lys											660
					tct Ser 165											708
					cac His											756
gat Asp	gaa Glu	gtt Val	tat Tyr 195	tgc Cys	cct Pro	cag Gln	aat Asn	gtg Val 200	ttt Phe	gga Gly	gtg Val	aat Asn	agc Ser 205	caa Gln	gaa Glu	804
ggt Gly	gcc Ala	tcg Ser 210	atc Ile	aat Asn	gac Asp	caa Gln	999 Gly 215	tta Leu	agt Ser	ggt Gly	tgt Cys	gat Asp 220	ttt Phe	gat Asp	cag Gln	852
					aat Asn											900
					aca Thr 245											948
			aga Arg		gtt Val	tga	agca	atcat	ca a	agcti	tgtad	ct a	tcta	tttc	2	999
acca	agcai	tag a	atati	gta	t c	caaat	aagt	tgt	agag	gttc	agct	gcag	gga 1	cago	cttcgc	1059
tcag	gctti	ga g	99991	ttggi	tg gt	gtgg	gtcti	tet	ttgt	ggc	acga	agtga	aga 1	cta	tggaca	1119
gaad	cca	gat t	tagi	tagta	ag ta	agagg	gcag	att	tcga	actt	ccad	ctaad	cca (cate	gttgct	1179
tggi	gaag	gaa d	caag	gtate	ge e	catga	agca	a cad	etgti	ttg	taca	attga	agc 1	ttgag	ggggct	1239
gtc	ctga	atc t	tage	ctta	ct gt	aaca	attgo	c aac	gtt	ctca	caat	tgt	gat d	ccca	agttgc	1299
ttt	gttga	act t	aaat	tgtga	at aa	atata	agcti	aad	ettt	act	tgaa	aaaa	aaa a	aaaa	aaaaa	1359
aaaa	aaaa	aaa a	a				•									1370

Met Glu Asp Gly Glu Leu Asp Phe Ser Asn Gln Glu Val Phe Ser Ser 1 10 15

Ser Glu Met Gly Glu Leu Pro Pro Ser Asn Cys Ser Met Asp Ser Phe Page 44

<210> 34 <211> 261 <212> PRT <213> Arabidopsis thaliana

<400> 34

MBI15 Sequence Listing.ST25 25 30

20

Phe Asp Gly Leu Leu Met Asp Thr Asn Ala Ala Cys Thr His Thr His 35 40 45

Thr Cys Asn Pro Thr Gly Pro Glu Asn Thr His Thr His Thr Cys Phe

His Val His Thr Lys Ile Leu Pro Asp Glu Ser Asp Glu Lys Val Ser 65 70 75 80

Thr Asp Asp Thr Ala Glu Ser Cys Gly Lys Lys Gly Glu Lys Arg Pro

Leu Gly Asn Arg Glu Ala Val Arg Lys Tyr Arg Glu Lys Lys Ala

Lys Ala Ala Ser Leu Glu Asp Glu Val Ala Arg Leu Arg Ala Val Asn 115 120 125

Gln Gln Leu Val Lys Arg Leu Gln Asn Gln Ala Thr Leu Glu Ala Glu

Val Ser Arg Leu Lys Cys Leu Leu Val Asp Leu Arg Gly Arg Ile Asp 145 150 160

Gly Glu Ile Gly Ser Phe Pro Tyr Gln Lys Pro Met Ala Ala Asn Ile

Pro Ser Phe Ser His Met Met Asn Pro Cys Asn Val Gln Cys Asp Asp 180 185 190

Glu Val Tyr Cys Pro Gln Asn Val Phe Gly Val Asn Ser Gln Glu Gly 195 200 205

Ala Ser Ile Asn Asp Gln Gly Leu Ser Gly Cys Asp Phe Asp Gln Leu 210 215 220

Gln Cys Met Ala Asn Gln Asn Leu Asn Gly Asn Gly Asn Gly Ser Phe

Ser Asn Val Asn Thr Ser Val Ser Asn Lys Arg Lys Gly Gly His Arg 245 250 255

Ala Ser Arg Ala Val

<210> 35 <211> 1638 <212> DNA <213> Arabidopsis thaliana

<221> CDS <222> (267)..(1259)

<223> G558

<400> 35

MBI15 Sequence Listing.ST25 ggaatttcgg atcgtgtctc tctctgtttc tttgtttcaa tccgatttcg aatcaagccc	60
tttacttgtg caccttcaag atttcgtttt ttccagegee cagaatgete egggtgacea	120
acatttgttc ctgattcatt tcctattggt tcgtattgtc tgtgcacaca agagaaattt	180
caagaagttg ttactaaaag agaggccaca agtggatatt gtctttgtta tcaagtgtta	240
gtacagaaaa gtggtgagaa agtaat atg gct gat acc agt ccg aga act gat Met Ala Asp Thr Ser Pro Arg Thr Asp 1 5	293
gtc tca aca gat gac gac aca gat cat cct gat ctt ggg tcg gag gga Val Ser Thr Asp Asp Asp Thr Asp His Pro Asp Leu Gly Ser Glu Gly 10 25	341
gca cta gtg aat act gct gct tct gat tcg agt gac cga tcg aag gga Ala Leu Val Asn Thr Ala Ala Ser Asp Ser Ser Asp Arg Ser Lys Gly 30 35 40	389
aag atg gat caa aag act ctt cgt agg ctt gct caa aac cgt gag gca Lys Met Asp Gln Lys Thr Leu Arg Arg Leu Ala Gln Asn Arg Glu Ala 45 50 55	437
gca agg aaa agc aga ttg agg aag aag gct tat gtt cag cag cta gag Ala Arg Lys Ser Arg Leu Arg Lys Lys Ala Tyr Val Gln Gln Leu Glu 60 65 70	485
aac agc cgc ttg aaa cta acc cag ctt gag cag gag ctg caa aga gca Asn Ser Arg Leu Lys Leu Thr Gln Leu Glu Gln Glu Leu Gln Arg Ala 75 80 85	533
aga cag cag ggc gtc ttc att tca ggc aca gga gac cag gcc cat tct Arg Gln Gln Gly Val Phe Ile Ser Gly Thr Gly Asp Gln Ala His Ser 90 95 100 105	581
act ggt gga aat ggt gct ttg gcg ttt gat gct gaa cat tca cgg tgg Thr Gly Gly Asn Gly Ala Leu Ala Phe Asp Ala Glu His Ser Arg Trp 110 115 120	629
ttg gaa gaa aag aac aag caa atg aac gag ctg agg tct gct ctg aat Leu Glu Glu Lys Asn Lys Gln Met Asn Glu Leu Arg Ser Ala Leu Asn 125 130 135	677
gcg cat gca ggt gat tct gag ctt cga ata ata gtc gat ggt gtg atg Ala His Ala Gly Asp Ser Glu Leu Arg Ile Ile Val Asp Gly Val Met 140 145 150	725
gct cac tat gag gag ctt ttc agg ata aag agc aat gca gct aag aat Ala His Tyr Glu Glu Leu Phe Arg Ile Lys Ser Asn Ala Ala Lys Asn 155 160 165	773
gat gtc ttt cac ttg cta tct ggc atg tgg aaa aca cca gct gag aga Asp Val Phe His Leu Leu Ser Gly Met Trp Lys Thr Pro Ala Glu Arg 170 175 180 185	821
tgt ttc ttg tgg ctc ggt gga ttt cgt tca tcc gaa ctt cta aag ctt Cys Phe Leu Trp Leu Gly Gly Phe Arg Ser Ser Glu Leu Leu Lys Leu 190 195 200	869
ctg gcg aat cag ttg gag cca atg aca gag aga cag ttg atg ggc ata Leu Ala Asn Gln Leu Glu Pro Met Thr Glu Arg Gln Leu Met Gly Ile 205 210 215	917
aat aac ctg caa cag aca tcg cag cag gct gaa gat gct ttg tct caa Asn Asn Leu Gln Gln Thr Ser Gln Gln Ala Glu Asp Ala Leu Ser Gln 220 225 230	965
ggg atg gag agc tta caa cag tca cta gct gat act tta tcg agc ggg Gly Met Glu Ser Leu Gln Gln Ser Leu Ala Asp Thr Leu Ser Ser Gly 235 240 245	1013
act ctt ggt tca agt tca tca ggg aat gtc gca agc tac atg ggt cag Thr Leu Gly Ser Ser Ser Ser Gly Asn Val Ala Ser Tyr Met Gly Gln 250 265	1061

Page 46

250 000 250 002 250 002 250 550 550 550	
atg gcc atg gca atg gga aag tta ggt aca ctc gaa gga ttt atc cgc Met Ala Met Ala Met Gly Lys Leu Gly Thr Leu Glu Gly Phe Ile Arg 270 275 280	1109
cag gct gat aat ttg aga cta caa aca ttg caa cag atg ata aga gta Gln Ala Asp Asn Leu Arg Leu Gln Thr Leu Gln Gln Met Ile Arg Val 285 290 295	1157
tta aca acg aga cag tca gca cgt gct cta ctt gca ata cac gat tac Leu Thr Thr Arg Gln Ser Ala Arg Ala Leu Leu Ala Ile His Asp Tyr 300 305 310	1205
ttc tca cgg cta cga gct cta agc tcc tta tgg ctt gct cga ccc aga Phe Ser Arg Leu Arg Ala Leu Ser Ser Leu Trp Leu Ala Arg Pro Arg 315 320 325	1253
gag tga aactgtattt tggtcacatg tcagctgtac aaaatccata tggacacaaa Glu 330	1309
accaggagag actattaatc aacacttgtc agattettet taccaaatcc atcaacaaat	1369
aagcaaattt ctgggaaaca aaagactctt tgtatgtagg tttcttctac atggttgtgg	1429
taattcatgt tgttttagtt gtagtcatca gtttttaatt tagcatttga aaagttcaat	1489
gttgtttata tagcatcttc gattatctta gaaaggttat tgaattttgt ttttttttgt	1549
tacttttgtg tgtggtaaag gtgttttaac cttgcaactt ctgtactgta	1609
aatattaaga tgttctattt gagttttgt	1638
<210> 36 <211> 330 <212> PRT <213> Arabidopsis thaliana	
<400> 36	
<pre><400> 36 Met Ala Asp Thr Ser Pro Arg Thr Asp Val Ser Thr Asp Asp Asp Thr 1</pre>	
Met Ala Asp Thr Ser Pro Arg Thr Asp Val Ser Thr Asp Asp Asp Thr	
Met Ala Asp Thr Ser Pro Arg Thr Asp Val Ser Thr Asp Asp Asp Thr 1 10 15 Asp His Pro Asp Leu Gly Ser Glu Gly Ala Leu Val Asn Thr Ala Ala	
Met Ala Asp Thr Ser Pro Arg Thr Asp Val Ser Thr Asp Asp Asp Thr 1	
Met Ala Asp Thr Ser Pro Arg Thr Asp Val Ser Thr Asp Asp Asp Thr 15 Asp His Pro Asp Leu Gly Ser Glu Gly Ala Leu Val Asn Thr Ala Ala 20 Ser Asp Ser Ser Asp Arg Ser Lys Gly Lys Met Asp Gln Lys Thr Leu 45 Arg Arg Leu Ala Gln Asn Arg Glu Ala Ala Arg Lys Ser Arg Leu Arg	
Met Ala Asp Thr Ser Pro Arg Thr Asp Val Ser Thr Asp Asp Asp Thr 15 Asp His Pro Asp Leu Gly Ser Glu Gly Ala Leu Val Asn Thr Ala Ala 20 Ser Asp Ser Ser Asp Arg Ser Lys Gly Lys Met Asp Gln Lys Thr Leu 45 Arg Arg Leu Ala Gln Asn Arg Glu Ala Ala Arg Lys Ser Arg Leu Arg 50 Lys Lys Ala Tyr Val Gln Gln Leu Glu Asn Ser Arg Leu Lys Leu Thr	
Met Ala Asp Thr Ser Pro Arg Thr Asp Val Ser Thr Asp Asp Asp Thr 15 Asp His Pro Asp Leu Gly Ser Glu Gly Ala Leu Val Asn Thr Ala Ala 25 Ser Asp Ser Ser Asp Arg Ser Lys Gly Lys Met Asp Gln Lys Thr Leu 45 Arg Arg Leu Ala Gln Asn Arg Glu Ala Ala Arg Lys Ser Arg Leu Arg 50 Lys Lys Ala Tyr Val Gln Gln Leu Glu Asn Ser Arg Leu Lys Leu Thr 65 Gln Leu Glu Gln Glu Leu Gln Arg Ala Arg Gln Gln Gly Val Phe Ile	
Met Ala Asp Thr Ser Pro Arg Thr Asp Val Ser Thr Asp Asp Asp Thr 15 Asp His Pro Asp Leu Gly Ser Glu Gly Ala Leu Val Asn Thr Ala Ala 25 Ser Asp Ser Ser Asp Arg Ser Lys Gly Lys Met Asp Gln Lys Thr Leu 45 Arg Arg Leu Ala Gln Asn Arg Glu Ala Ala Arg Lys Ser Arg Leu Arg 50 Lys Lys Ala Tyr Val Gln Gln Leu Glu Asn Ser Arg Leu Lys Leu Thr 65 Gln Leu Glu Gln Glu Leu Gln Arg Ala Arg Gln Gln Gly Val Phe Ile 95 Ser Gly Thr Gly Asp Gln Ala His Ser Thr Gly Gly Asn Gly Ala Leu	

MBI15 Sequence Listing.ST25

Leu 145	Arg	Ile	Ile	Val	Asp 150	Gly	Val	Met	Ala	His 155	Tyr	Glu	Glu	Leu	Phe 160	
Arg	Ile	Lys	Ser	Asn 165	Ala	Ala	Lys	Asn	Asp 170	Val	Phe	His	Leu	Leu 175	Ser	
Gly	Met	Trp	Lys 180	Thr	Pro	Ala	Glu	Arg 185	Cys	Phe	Leu	Trp	Leu 190	Gly	Gly	
Phe	Arg	Ser 195	Ser	Glu	Leu	Leu	Lys 200	Leu	Leu	Ala	Asn	Gln 205	Leu	Glu	Pro	
Met	Thr 210	Glu	Arg	Gln	Leu	Met 215	Gly	Ile	Asn	Asn	Leu 220	Gln	Gln	Thr	Ser	
Gln 225	Gln	Ala	Glu	Asp	Ala 230	Leu	Ser	Gln	Gly	Met 235	Glu	Ser	Leu	Gln	Gln 240	
Ser	Leu	Ala	Asp	Thr 245	Leu	Ser	Ser	Gly	Thr 250	Leu	Gly	Ser	Ser	Ser 255	Ser	
Gly	Asn	Val	Ala 260	Ser	туг	Met	Gly	Gln 265	Met	Ala	Met	Ala	Met 270	Gly	Lys	
Leu	Gly	Thr 275	Leu	Glu	Gly	Phe	Ile 280	Arg	Gln	Ala	Asp	Asn 285	Leu	Arg	Leu	
Gln	Thr 290	Leu	Gln	Gln	Met	11e 295	Arg	Val	Leu	Thr	Thr 300	Arg	Gln	Ser	Ala	
Arg 305	Ala	Leu	Leu	Ala	Ile 310	His	Asp	Туг	Phe	Ser 315	Arg	Leu	Arg	Ala	Leu 320	
Ser	Ser	Leu	Trp	Leu 325	Ala	Arg	Pro	Arg	Glu 330							
<210 <210 <210 <210	L> 4 2> 1	37 436 DNA Arab:	idop	sis	thal:	iana										
<220 <220 <220 <220	l> (2>	CDS (83) G139		13)												
<400 tcg	0> :	37 cgt 1	ttcc	tttc	ct c	ctct	cttc	c ta	ccat	tagt	acg	ttac	tgg	agct	gatctc	60
acg	tata	ttt 1	tgga	tcgt	aa t	c ate Me 1	g ga	c gg p Gl	c gaa y Gl	a ga u As 5	t tt p Ph	t gc e Al	c gg a Gl	a aa y Ly	g gcg s Ala 10	112
gct Ala	gct Ala	gaa Glu	gcc Ala	aag Lys 15	gga Gly	ttg Leu	aac Asn	ccg Pro	gga Gly 20	tta Leu	atc Ile	gtg Val	ctg Leu	ctt Leu 25	gtt Val	160
gtt Val	gga Gly	ggt Gly	ccg Pro 30	ctt Leu	ctt Leu	gtg Val	ttc Phe	cta Leu 35	atc Ile	gcc Ala	aac Asn	tac Tyr	gtg Val 40	ctt Leu	tac Tyr	208

MBI15 Sequence Listing.ST25

MBI15 Sequence Listing.ST25	
gtt tat gct cag aag aac cta cct cca agg aag aag aag ccc gtt tcc Val Tyr Ala Gln Lys Asn Leu Pro Pro Arg Lys Lys Pro Val Ser 45 50 55	256
aaa aag aag ctc aag cgg gag aag cta aag caa gga gtc cct gtc cct Lys Lys Lys Leu Lys Arg Glu Lys Leu Lys Gln Gly Val Pro Val Pro 60 65 70	304
gga gaa taa aagccagctt aagctteett caettgtgee teetteaaag Gly Glu 75	353
cggtttttgt tcggttacca aatttcaccc ttgcgggttt ttttcttcct ttacttctgt	413
catgaggatt atctttgagg cct	436
<210> 38 <211> 76 <212> PRT <213> Arabidopsis thaliana	
<400> 38	
Met Asp Gly Glu Asp Phe Ala Gly Lys Ala Ala Ala Glu Ala Lys Gly 1 5 10 15	
Leu Asn Pro Gly Leu Ile Val Leu Leu Val Val Gly Gly Pro Leu Leu 20 25 30	
Val Phe Leu Ile Ala Asn Tyr Val Leu Tyr Val Tyr Ala Gln Lys Asn 35 40 45	
Leu Pro Pro Arg Lys Lys Pro Val Ser Lys Lys Lys Leu Lys Arg	
Glu Lys Leu Lys Gln Gly Val Pro Val Pro Gly Glu 65 70 75	
<210> 39 <211> 1470 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (280)(1317) <223> G265	
<400> 39 ctttggtctt ggaagccaaa tcaaaccttt ccttcaatcc tcaaattttc gaaaattttc	60
tettttgett taegttetet caattettat ttgtaagaaa gtttgtteet ttaatcaate	120
aaatcaaaga gacttttgaa gattgtttcc caatttgcgt caatcgggat cgagtcaaat	180
ctgaaatctt ctccactcat catctgacta taagacttaa tcaagggact ttttgttcgg	240
gtttggtttt aaacgtcttg gattcgaagt ggttaaggt atg gat gaa aat aat Met Asp Glu Asn Asn 1 5	294
gga ggt tca agc tca ctt cca cct ttc ctt act aaa aca tat gaa atg Gly Gly Ser Ser Ser Leu Pro Pro Phe Leu Thr Lys Thr Tyr Glu Met 10 15 20	342
gtt gat gat tot tot tot gac tog gto gtt got tgg ago gaa aac aac Val Asp Asp Ser Ser Asp Ser Val Val Ala Trp Ser Glu Asn Asn Page 49	390

•	. • • • •	., .														101/0
			25				MBI	15 S 30	eque	nce :	List	ing.	ST25 35			
aaa Lys	agc Ser	ttc Phe 40	atc Ile	gtc Val	aag Lys	aat Asn	cca Pro 45	gca Ala	gag Glu	ttt Phe	tca Ser	aga Arg 50	gac Asp	ctt Leu	ctt Leu	438
						aag Lys 60										486
						aaa Lys										534
						ggt Gly										582
						agc Ser										630
						gaa Glu										678
						gaa Glu 140										726
						ttt Phe										774
						caa Gln										822
						cca Pro										870
						ttt Phe										918
						gaa Glu 220										966
						tca Ser					1.5				_	1014
						gct Ala										1062
						att Ile										1110
						aaa Lys										1158
						cct Pro 300										1206
						ggt Gly										1254

aat caa agg acg tat tgg tgg aat tca ggg aat gta aat aac att aca 1302

							MBI	15 S	eque	nce	List	ing.	ST25		
Asn	Gln	Arg	Thr	Tyr	Trp	Trp	Asn	Ser	Gly	Asn	Val	Asn	Asn	Ile	Thr
				330					335					340	

gag aaa gct tct tga catgaatgag gtttttgtaa aatagttttc ttttggttcc 1357 Glu Lys Ala Ser

actgagatta ttgtatgtgt tcattattta ttactctgtt tctgtaaaaa caaatctctc 1417 tattgtttga ggcaggagtg acataaatgc atatgcagaa ttggtttcaa aaa 1470

<210> 40

<211> 345 <212> PRT

<213> Arabidopsis thaliana

<400> 40

Met Asp Glu Asn Asn Gly Gly Ser Ser Ser Leu Pro Pro Phe Leu Thr 1 5 10 15

Lys Thr Tyr Glu Met Val Asp Asp Ser Ser Ser Asp Ser Val Val Ala 20 25 30

Trp Ser Glu Asn Asn Lys Ser Phe Ile Val Lys Asn Pro Ala Glu Phe 35 40 45

Ser Arg Asp Leu Leu Pro Arg Phe Phe Lys His Lys Asn Phe Ser Ser 50 60

Phe Ile Arg Gln Leu Asn Thr Tyr Gly Phe Arg Lys Val Asp Pro Glu 65 70 75 80

Lys Trp Glu Phe Leu Asn Asp Asp Phe Val Arg Gly Arg Pro Tyr Leu 85 90 95

Met Lys Asn Ile His Arg Arg Lys Pro Val His Ser His Ser Leu Val

Asn Leu Gln Ala Gln Asn Pro Leu Thr Glu Ser Glu Arg Arg Ser Met 115 120 125

Glu Asp Gln Ile Glu Arg Leu Lys Asn Glu Lys Glu Gly Leu Leu Ala 130 135 140

Glu Leu Gln Asn Gln Glu Gln Glu Arg Lys Glu Phe Glu Leu Gln Val 145 150 160

Thr Thr Leu Lys Asp Arg Leu Gln His Met Glu Gln His Gln Lys Ser 165 170 175

Ile Val Ala Tyr Val Ser Gln Val Leu Gly Lys Pro Gly Leu Ser Leu 180 185 190

Asn Leu Glu Asn His Glu Arg Arg Lys Arg Arg Phe Gln Glu Asn Ser 195 200 205

Leu Pro Pro Ser Ser Ser His Ile Glu Gln Val Glu Lys Leu Glu Ser 210 215 220

		_				15 Se								•
Ser Leu T	nr Phe		Glu / 230	Asn	Leu	Val	Ser	Glu 235	Ser	Сув	Glu	Lys	Ser 240	
Gly Leu G	ln Ser	Ser 5 245	Ser 1	Met	Asp	His	Asp 250	Ala	Ala	Glu	Ser	Ser 255	Leu	
Ser Ile G	ly Asp 260	Thr A	Arg	Pro	Lys	Ser 265	Ser	Lys	Ile	Asp	Met 270	Asn	Ser	
Glu Pro P 2	ro Val 75	Thr '	Val '	Thr	Ala 280	Pro	Ala	Pro	Lys	Thr 285	Gly	Val	Asn	
Asp Asp P 290	ne Trp	Glu (Сув 295	Leu	Thr	Glu	Asn	Pro 300	Gly	Ser	Thr	Glu	
Gln Gln G 305	lu Val		Ser (Glu	Arg	Arg	Asp	Val 315	Gly	Asn	Asp	Asn	Asn 320	•
Gly Asn L	ys Ile	Gly 2 325	Asn (Gln	Arg	Thr	Tyr 330	Trp	Trp	Asn	Ser	Gly 335	Asn	
Val Asn A	sn Ile 340	Thr	Glu :	Lys	Ala	Ser 345								
<210> 41 <211> 91 <212> DN <213> Ar	3	sis t	hali	ana										
<220> <221> CD <222> (5 <223> G1		83)												
<400> 41 gataaatca	a tcaa	caaaa	c aa	aaaa	ıaact	cta	atagt	tag	ttto	etet	gaa a	a atq Med	g tac Tyr	57
gga cag t Gly Gln C	gc aat ys Asn	ata (gaa Glu	tcc Ser	gac Asp 10	tac Tyr	gct Ala	ttg Leu	ttg Leu	gag Glu 15	tcg Ser	ata Ile	aca Thr	105
cgt cac t Arg His L 20	tg cta eu Leu	gga Gly	ĞĬy	gga Gly 25	gga Gly	gag Glu	aac Asn	gag Glu	ctg Leu 30	cga Arg	ctc Leu	aat Asn	gag Glu	153
tca aca c Ser Thr P 35	cg agt ro Ser	Ser	tgt Cys 40	ttc Phe	aca Thr	gag Glu	agt Ser	tgg Trp 45	gga Gly	ggt Gly	ttg Leu	cca Pro	ttg Leu 50	201
aaa gag a Lys Glu A	at gat sn Asp	tca Ser 55	gag Glu	gac Asp	atg Met	ttg Leu	gtg Val 60	tac Tyr	gga Gly	ctc Leu	ctc Leu	aaa Lys 65	gat Asp	249
gcc ttc c Ala Phe H	at ttt is Phe 70	gac Asp	acg Thr	tca Ser	tca Ser	tcg Ser 75	gac Asp	ttg Leu	agc Ser	tgt Cys	ctt Leu 80	ttt Phe	gat Asp	297
ttt ccg g Phe Pro A	la Val	aaa Lys	gtc Val	gag Glu	cca Pro 90	act Thr	gag Glu	aac Asn	ttt Phe	acg Thr 95	gcg Ala	atg Met	gag Glu	345
gag aaa c														393

MBI15 Sequence Listing.ST25

	MBI15 Sequence Listing.ST25															
					gtg Val 120											441
					gcg Ala											489
					gat Asp											537
					cgc Arg											585
					ccg Pro											633
					tcc Ser 200											681
ttg Leu	aaa Lys	cga Arg	agg Arg	aga Arg 215	aaa Lys	gca Ala	gag Glu	aat Asn	ctg Leu 220	acg Thr	tcg Ser	gag Glu	gtg Val	gtg Val 225	cag Gln	729
gtg Val	áag Lys	tgt Cys	gag Glu 230	gtt Val	ggt Gly	gat Asp	gag Glu	aca Thr 235	cgt Arg	gtt Val	gat Asp	gag Glu	tta Leu 240	t tg Leu	gtt Val	777
tca Ser	tca taa gtttgatctt gtgtgttttg tagttgaata gttttgctat aaatgttgag 833 Ser															
gca	ccaa	gta a	aaagt	tgtt	cc cg	gtgai	tgtaa	a att	agti	act	aaa	caga	gee a	atata	atcttc	893
aat	caaaa	aaa a	aaaaa	aaaa	aa											913
<210> 42 <211> 243 <212> PRT <213> Arabidopsis thaliana																
<40	0> 4	12														
Met 1	Tyr	Gly	Gln	Cys 5	Asn	Ile	Glu	Ser	Asp 10	Tyr	Ala	Leu	Leu	Glu 15	Ser	
Ile	Thr	Arg	His 20	Leu	Leu	Gly	Gly	Gly 25	Gly	Glu	Asn	Glu	Leu 30	Arg	Leu	
Asn	Glu	Ser 35	Thr	Pro	Ser	Ser	Cys 40	Phe	Thr	Glu	Ser	Trp 45	Gly	Gly	Leu	
Pro	Leu 50	Lys	Glu	Asn	Asp	Ser 55	Glu	Asp	Met	Leu	Val 60	Tyr	Gly	Leu	Leu	
Lys 65	Asp	Ala	Phe	His	Phe 70	Asp	Thr	Ser	Ser	Ser 75	Asp	Leu	Ser	Cys	Leu 80	
Phe	Asp	Phe	Pro	Ala 85	Val	Lys	Val	Glu	Pro 90	Thr	Glu	Asn	Phe	Thr 95	Ala	

MBI15 Sequence Listing.ST25

Lys Ala Lys His Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly Lys Phe Ala Ala Glu Ile Arg Asp Pro Ala Lys Asn Gly Ala Arg Val Trp Leu 130 135 140 Gly Thr Phe Glu Thr Ala Glu Asp Ala Ala Leu Ala Tyr Asp Ile Ala Ala Phe Arg Met Arg Gly Ser Arg Ala Leu Leu Asn Phe Pro Leu Arg Val Asn Ser Gly Glu Pro Asp Pro Val Arg Ile Thr Ser Lys Arg Ser Thr Ser Ser Ser Glu Asn Val Gln Val Lys Cys Glu Val Gly Asp Glu Thr Arg Val Asp Glu Leu Leu Val Ser <210> 43 <211> 912 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (53)..(859) <222> <223> G1309 <400> 43 cgtcgacctc ttaattaaga cgacttgaga gagaaagaaa gatacgtgga ag atg acc Met Thr 58 aaa tot gga gag aga cca aaa cag aga cag agg aaa ggg tta tgg tca Lys Ser Gly Glu Arg Pro Lys Gln Arg Gln Arg Lys Gly Leu Trp Ser 106 cct gaa gaa gac cag aag ctc aag agt ttc atc ctc tct cgt ggc cat Pro Glu Glu Asp Gln Lys Leu Lys Ser Phe Ile Leu Ser Arg Gly His gct tgc tgg acc act gtt ccc atc cta gct gga ttg caa agg aat ggg Ala Cys Trp Thr Thr Val Pro Ile Leu Ala Gly Leu Gln Arg Asn Gly 202 aaa agc tgc aga tta agg tgg att aat tac cta aga cca gga cta aag Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Gly Leu Lys 250 agg ggg tcg ttt agt gaa gaa gaa gaa gag acc atc ttg act tta cat Arg Gly Ser Phe Ser Glu Glu Glu Glu Glu Thr Ile Leu Thr Leu His 70 75 80298 346 tot too ttg ggt aac aag tgg tot cgg att gca aaa tat tta ccg gga Page 54

Ser	Ser	Leu 85	Gly	Asn	Lys	Trp		15 S Arg						Pro	Gly	
						aag Lys 105										394
						cca Pro										442
						cta Leu										490
						gtg Val										538
						aaa Lys										586
	_			_		aaa Lys 185	-	_					_	_		634
						tac Tyr										682
						caa Gln										730
						tca Ser										778
						gaa Glu									gat Asp	826
						caa Gln 265				taa	gaaq	gagt	gaa 1	tatga	atcgta	879
aga	ggaa	cat a	age	tagt	ta c	ttgt	gttad	c ago	2		•					912
<210 <210 <210 <210	1> : 2> :	44 268 PRT Arab:	idop	sis 1	thal:	iana										
<40	0>	44														
Met 1	Thr	Lys	Ser	Gly 5	Glu	Arg	Pro	Lys	Gln 10	Arg	Gln	Arg	Lys	Gly 15	Leu	
Trp	Ser	Pro	Glu 20	Glu	Asp	Gln	Lys	Leu 25	Lys	Ser	Phe	Ile	Leu 30	Ser	Arg	
Gly	His	Ala 35	Сув	Trp	Thr	Thr	Val 40	Pro	Ile	Leu	Ala	Gly 45	Leu	Gln	Arg	
Asn	Gly 50	Lys	Ser	Сув	Arg	Leu 55	Arg	Trp	Ile	Asn	Tyr 60	Leu	Arg	Pro	Gly	
Leu 65	Lys	Arg	Gly	Ser	Phe 70	Ser	Glu	Glu	Glu	Glu 75	Glu	Thr	Ile	Leu	Thr 80	

MBI15 Sequence Listing.ST25

Leu His Ser Ser Leu Gly Asn Lys Trp Ser Arg Ile Ala Lys Tyr Leu 85 90 95 Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp His Ser Tyr Leu Lys Lys Arg Trp Leu Lys Ser Gln Pro Gln Leu Lys Ser Gln Ile Ser Asp Leu Thr Glu Ser Pro Ser Ser Leu Leu Ser Cys Gly Lys Arg Asn Leu Glu Thr Glu Thr Leu Asp His Val Ile Ser Phe Gln Lys Phe Ser Glu Asn Pro Thr Ser Ser Pro Ser Lys Glu Ser Asn Asn Asn Met Ile Met Asn Asn Ser Asn Asn Leu Pro Lys Leu Phe Phe Ser Glu Trp Ile 180 185 190 Ser Ser Ser Asn Pro His Ile Asp Tyr Ser Ser Ala Phe Thr Asp Ser 200 Lys His Ile Asn Glu Thr Gln Asp Gln Ile Asn Glu Glu Glu Val Met Met Ile Asn Asn Asn Tyr Ser Ser Leu Glu Asp Val Met Leu Arg Thr Asp Phe Leu Gln Pro Asp His Glu Tyr Ala Asn Tyr Tyr Ser Ser Gly Asp Phe Phe Ile Asn Ser Asp Gln Asn Tyr Val <210> 45 <211> 1575 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1575) <223> G2550 <400> 45 atg gct gtg tat tac cct aat agt gtc ggc atg caa tct ctt tac caa Met Ala Val Tyr Tyr Pro Asn Ser Val Gly Met Gln Ser Leu Tyr Gln 1 5 10 15 gaa tcc att tac ctc aac gaa caa caa caa caa caa caa caa gct tct Glu Ser Ile Tyr Leu Asn Glu Gln Gln Gln Gln Gln Gln Gln Ala Ser tct tcc tct gct gca tct ttc tcc gag att gtt tcc ggt gat gtt cga Ser Ser Ser Ala Ala Ser Phe Ser Glu Ile Val Ser Gly Asp Val Arg

40

aac aac gag atg gta ttt atc cca cca aca agc gac gta gcc gtc aac

Page 56

48

96

144

Asn		Glu	Met	Val	Phe		MBI: Pro	15 Se Pro	eque: Thr	nce I Ser	Asp	ing.: Val	ST25 Ala	Val	Asn	
cca.	50	ata	200	gtg	tca	55 act	220	ast	cta	200	60	cac	aat.	gga	gga	240
Gly 65	Asn	Val	Thr	Val	Ser 70	Ser	Asn	Asp	Leu	Ser 75	Phe	His	Gly	ĞÎy	Gly 80	230
ctt Leu	tct Ser	tta Leu	agt Ser	ctt Leu 85	ggt Gly	aat Asn	cag Gln	atc Ile	cag Gln 90	tca Ser	gct Ala	gtc Val	tct Ser	gtt Val 95	tct Ser	288
ccg Pro	ttt Phe	cag Gln	tat Tyr 100	cat His	tac Tyr	cag Gln	aat Asn	ctt Leu 105	tcg Ser	aac Asn	caa Gln	ttg Leu	agt Ser 110	tac Tyr	aat Asn	336
				tct Ser												384
gtt Val	cat His 130	cag Gln	cat His	cac His	tct Ser	gat Asp 135	caa Gln	att Ile	tta Leu	cct Pro	tcc Ser 140	tct Ser	gtt Val	tac Tyr	aac Asn	432
aac Asn 145	aat Asn	ggt Gly	aat Asn	aat Asn	ggt Gly 150	gtt Val	gga Gly	ttc Phe	tac Tyr	aac Asn 155	aat Asn	tac Tyr	cgt Arg	tac Tyr	gag Glu 160	480
aca Thr	tca Ser	999 Gly	ttt Phe	gtg Val 165	agt Ser	agt Ser	gta Val	ctg Leu	aga Arg 170	tct Ser	cgt Arg	tac Tyr	ctt Leu	aaa Lys 175	cca Pro	528
aca Thr	caa Gln	caa Gln	ttg Leu 180	ctt Leu	gat Asp	gaa Glu	gtt Val	gtt Val 185	agt Ser	gta Val	agg Arg	aaa Lys	gat Asp 190	ttg Leu	aaa Lys	576
ttg Leu	999 Gly	aat Asn 195	aag Lys	aag Lys	atg Met	aag Lys	aat Asn 200	gat Asp	aaa Lys	ggt Gly	caa Gln	gac Asp 205	ttt Phe	cac His	aat Asn	624
999 Gly	tct Ser 210	agt Ser	gat Asp	aac Asn	att Ile	aca Thr 215	gaa Glu	gat Asp	gat Asp	aaa Lys	tct Ser 220	caa Gln	tcg Ser	cag Gln	gag Glu	. 672
ttg Leu 225	tct Ser	cct Pro	tca Ser	gaa Glu	cgt Arg 230	cag Gln	gag Glu	cta Leu	cag Gln	agc Ser 235	aag Lys	aag Lys	agc Ser	aag Lys	ctt Leu 240	720
tta Leu	aca Thr	atg Met	gtg Val	gat Asp 245	gag Glu	gta Val	gat Asp	aaa Lys	agg Arg 250	tat Tyr	aac Asn	caa Gln	tac Tyr	cat His 255	cat His	768
caa Gln	atg Met	gaa Glu	gct Ala 260	tta Leu	gca Ala	tcg Ser	tct Ser	ttc Phe 265	gag Glu	atg Met	gta Val	aca Thr	ggt Gly 270	ctt Leu	gga Gly	816
gca Ala	gct Ala	aag Lys 275	cct Pro	tac Tyr	aca Thr	tcc Ser	gta Val 280	gct Ala	ctg Leu	aat Asn	aga Arg	atc Ile 285	tct Ser	cgc Arg	cat	864
ttc Phe	cgc Arg 290	tgt Cys	tta Leu	cgc Arg	gac Asp	gcg Ala 295	ata Ile	aaa Lys	gaa Glu	cag Gln	att Ile 300	cag Gln	gtg Val	atc Ile	aga Arg	912
999 Gly 305	aag Lys	ctt Leu	ggg Gly	gag Glu	aga Arg 310	gag Glu	act Thr	tct Ser	gat Asp	gaa Glu 315	caa Gln	gga Gly	gag Glu	agg Arg	ata Ile 320	960
ccg Pro	cgt Arg	ctt Leu	agg Arg	tac Tyr 325	tta Leu	gat Asp	caa Gln	cgg Arg	ttg Leu 330	aga Arg	caa Gln	cag Gln	aga Arg	gct Ala 335	ttg Leu	1008
cat His	caa Gln	caa Gln	ctt Leu 340	gga Gly	atg Met	gtt Val	aga Arg	cca Pro 345	gct Ala	tgg Trp	aga Arg	cca Pro	caa Gln 350	Arg	ggc Gly	1056

tta Leu	cct Pro	gaa Glu 355	aac Asn	tct Ser	gtc Val	tct Ser	ata	15 S ctt Leu	cga	gct	tgg	ctc	ttt	gag Glu	cat His	1104
		cat His														1152
		gga Gly														1200
		cga Arg														1248
		gaa Glu														1296
		cag Gln 435														1344
		cag Gln														1392
		gaa Glu														1440
		gga Gly														1488
		tac Tyr														1536
		aat Asn 515										taa				1575
<210 <211 <212 <213	l> 5 ?> I	16 524 PRT Arabi	ldops	sis t	:hali	ana										
<400)> 4	16														
Met 1	Ala	Val	Tyr	Tyr 5	Pro	Asn	Ser	Val	Gly 10	Met	Gln	Ser	Leu	Tyr 15	Gln	
Glu	Ser	Ile	Tyr 20	Leu	Asn	Glu	Gln	Gln 25	Gln	Gln	Gln	Gln	Gln 30	Ala	Ser	
Ser	Ser	Ser 35	Ala	Ala	Ser	Phe	Ser 40	Glu	Ile	Val	Ser	Gly 45	Asp	Val	Arg	
Asn	Asn 50	Glu	Met	Val	Phe	Ile 55	Pro	Pro	Thr	Ser	Asp 60	Val	Ala	Val	Asn	
Gly 65	Asn	Val	Thr	Val	Ser 70	Ser	Asn	Asp	Leu	Ser 75	Phe	His	Gly	Gly	Gly 80	
Leu	Ser	Leu	Ser	Leu 85	Gly	Asn	Gln	Ile	Gln 90	Ser	Ala	Val	Ser	Val 95	Ser	

MBI15 Sequence Listing.ST25

Pro Phe Gln Tyr His Tyr Gln Asn Leu Ser Asn Gln Leu Ser Tyr Asn 100 105 110

Asn Leu Asn Pro Ser Thr Met Ser Asp Glu Asn Gly Lys Ser Leu Ser 115 120 125

Val His Gln His His Ser Asp Gln Ile Leu Pro Ser Ser Val Tyr Asn 130 135 140

Asn Asn Gly Asn Asn Gly Val Gly Phe Tyr Asn Asn Tyr Arg Tyr Glu 145 150 155 160

Thr Ser Gly Phe Val Ser Ser Val Leu Arg Ser Arg Tyr Leu Lys Pro 165 170 175

Thr Gln Gln Leu Leu Asp Glu Val Val Ser Val Arg Lys Asp Leu Lys 180 \$180\$

Leu Gly Asn Lys Lys Met Lys Asn Asp Lys Gly Gln Asp Phe His Asn 195 200 205

Gly Ser Ser Asp Asn Ile Thr Glu Asp Asp Lys Ser Gln Ser Gln Glu 210 215 220

Leu Ser Pro Ser Glu Arg Gln Glu Leu Gln Ser Lys Lys Ser Lys Leu 225 230 240

Leu Thr Met Val Asp Glu Val Asp Lys Arg Tyr Asn Gln Tyr His His 245 250 255

Gln Met Glu Ala Leu Ala Ser Ser Phe Glu Met Val Thr Gly Leu Gly 260 265 270

Ala Ala Lys Pro Tyr Thr Ser Val Ala Leu Asn Arg Ile Ser Arg His 275 280 285

Phe Arg Cys Leu Arg Asp Ala Ile Lys Glu Gln Ile Gln Val Ile Arg 290 295 300

Gly Lys Leu Gly Glu Arg Glu Thr Ser Asp Glu Gln Gly Glu Arg Ile 305 310 315 320

Pro Arg Leu Arg Tyr Leu Asp Gln Arg Leu Arg Gln Gln Arg Ala Leu 325 330 335

His Gln Gln Leu Gly Met Val Arg Pro Ala Trp Arg Pro Gln Arg Gly 340 345 350

Leu Pro Glu Asn Ser Val Ser Ile Leu Arg Ala Trp Leu Phe Glu His 355 360 365

Phe Leu His Pro Tyr Pro Lys Glu Ser Glu Lys Ile Met Leu Ser Lys 370 375 380

Gln Thr Gly Leu Ser Lys Asn Gln Val Ala Asn Trp Phe Ile Asn Ala 385 390 400

MBI15 Sequence Listing.ST25

Arg Val Arg Leu Trp Lys Pro Met Ile Glu Glu Met Tyr Lys Glu Glu

Phe Gly Glu Ser Ala Glu Leu Leu Ser Asn Ser Asn Gln Asp Thr Lys 425

Lys Met Gln Glu Thr Ser Gln Leu Lys His Glu Asp Ser Ser Ser

Gln Gln Gln Asn Gln Gly Asn Asn Asn Asn Ile Pro Tyr Thr Ser 455

Asp Ala Glu Gln Asn Leu Val Phe Ala Asp Pro Lys Pro Asp Arg Ala

Thr Thr Gly Asp Tyr Asp Ser Leu Met Asn Tyr His Gly Phe Gly Ile

Asp Asp Tyr Asn Arg Tyr Val Gly Leu Gly Asn Gln Gln Asp Gly Arg 505

Tyr Ser Asn Pro His Gln Leu His Asp Phe Val Val 520

<210> 47 <211> 1983 <212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS <222> (73)..(1956) <223> G965

<400> 47 60 gattctctgt gtatgtctga atccttacag gatccaagag ctttggaaaa aagatataat

gaataacaag at atg ggt tta gct act aca act tct tct atg tca caa gat
Met Gly Leu Ala Thr Thr Thr Ser Ser Met Ser Gln Asp 111

tat cat cat cac caa gga atc ttt tcc ttc tct aat gga ttc cac cga
Tyr His His His Gln Gly Ile Phe Ser Phe Ser Asn Gly Phe His Arg
15 20 25 159

tca tca tca acc act cat cag gag gaa gta gat gaa tcc gcc gtc gtc Ser Ser Ser Thr Thr His Gln Glu Glu Val Asp Glu Ser Ala Val Val 207

tcc ggt gct caa att ccg gtt tat gaa acc gcc gga atg ttg tct gaa Ser Gly Ala Gln Ile Pro Val Tyr Glu Thr Ala Gly Met Leu Ser Glu 255

atg ttt gct tac cct ggc gga ggt ggc ggc ggt tcc ggt gga gag att Met Phe Ala Tyr Pro Gly Gly Gly Gly Gly Gly Ser Gly Gly Glu Ile 65 70 75 303

ctt gat cag tct act aaa cag ttg cta gag caa caa aac cgt cac aac Leu Asp Gln Ser Thr Lys Gln Leu Leu Glu Gln Gln Asn Arg His Asn 351 85

aac aac aat aac tca act ctt cat atg tta tta cca aat cat cat caa Asn Asn Asn Asn Ser Thr Leu His Met Leu Leu Pro Asn His His Gln 399 100

MBI15 Sequence Listing.ST25

									-4		2150	9 .	5125			
ggt Gly 110	ttt Phe	gct Ala	ttc Phe	acc Thr	gac Asp 115	gaa Glu	aac Asn	act Thr	atg Met	cag Gln 120	ccg Pro	cag Gln	caa Gln	caa Gln	caa Gln 125	447
														cga Arg 140		495
atg Met	atc Ile	gga Gly	acc Thr 145	gtc Val	cac His	gtg Val	gaa Glu	gga Gly 150	gga Gly	aag Lys	ggt Gly	ttg Leu	tct Ser 155	tta Leu	tct Ser	543
														agc Ser		591
														tcc Ser		639
														aat Asn		687
														tca Ser 220		735
														tac Tyr		783
														gaa Glu		831
														agt Ser		879
aac Asn 270	aac Asn	tca Ser	aac Asn	cct Pro	aat Asn 275	act Thr	acc Thr	ggt Gly	gga Gly	gga Gly 280	gga Gly	ggc Gly	gga Gly	ggg Gly	tcc Ser 285	927
														ccg Pro 300		975
														atg Met		1023
														caa Gln		1071
														gtt Val		1119
														tgt Cys		1167
														cta Leu 380		1215
gat Asp	aaa Lys	gag Glu	gcg Ala 385	gca Ala	Gly ggg	gct Ala	gca Ala	tcc Ser 390	tcg Ser	999 Gly	tta Leu	acc Thr	aaa Lys 395	GJ À aaa	gaa Glu	1263
acg Thr	ccg Pro	cga Arg	ttg Leu	cgt Arg	ttg Leu	cta Leu	gag Glu	cag Gln	Ser	ttg Leu	Arg	cag Gln	caa Gln	cga Arg	gcg Ala	1311

			400					MBI 405	15 S	eque	nce	List	ing. 410	ST25				
ţ	tt Phe	cat His 415	cat His	atg Met	ggt Gly	atg Met	atg Met 420	gag Glu	caa Gln	gag Glu	gca Ala	tgg Trp 425	aga Arg	ccg Pro	caa Gln	cgt Arg	:	1359
Č												gct Ala					:	1407
											Āsp	aag Lys					:	1455
												aat Asn					:	1503
į	gct lla	agg Arg	gtt Val 480	cgc Arg	cta Leu	tgg Trp	aaa Lys	cca Pro 485	atg Met	gtg Val	gaa Glu	gag Glu	atg Met 490	tat Tyr	caa Gln	caa Gln	:	1551
Ċ	gaa Blu	gca Ala 495	aaa Lys	gaa Glu	aga Arg	gaa Glu	gaa Glu 500	gca Ala	gaa Glu	gaa Glu	gaa Glu	aat Asn 505	gaa Glu	aat Asn	caa Gln	caa Gln	;	1599
C												gac Asp					:	1647
												caa Gln					:	1695
												ttc Phe					:	1743
Ī	gcc Ala	gcc Ala	gct Ala 560	tct Ser	cac His	ggc Gly	ggt Gly	tca Ser 565	gac Asp	gcg Ala	ttc Phe	acc Thr	gtc Val 570	gcc Ala	acg Thr	tgt Cys	;	1791
Ċ	ag Sln	caa Gln 575	gac Asp	gtc Val	agt Ser	gac Asp	ttc Phe 580	cac His	gtc Val	gac Asp	gga Gly	gat Asp 585	ggt Gly	gtg Val	aac Asn	gtc Val	;	1839
1	le 90	aga Arg	ttc Phe	ggg Gly	acc Thr	aaa Lys 595	cag Gln	act Thr	ggt Gly	gac Asp	gtg Val 600	tct Ser	ctt Leu	acg Thr	ctt Leu	ggt Gly 605	;	1887
												act Thr					;	1935
				gga Gly 625			tag	tcti	tctti	gt (tct	caati	tt af	ttca	tc		:	1983

<210> 48 <211> 627 <212> PRT <213> Arabidopsis thaliana

<400> 48

Met Gly Leu Ala Thr Thr Thr Ser Ser Met Ser Gln Asp Tyr His His 1 5 10 15

His Gln Gly Ile Phe Ser Phe Ser Asn Gly Phe His Arg Ser Ser Ser 20 25 30

Thr Thr His Gln Glu Glu Val Asp Glu Ser Ala Val Val Ser Gly Ala Page 62

MBI15 Sequence Listing.ST25

35

Gln Ile Pro Val Tyr Glu Thr Ala Gly Met Leu Ser Glu Met Phe Ala 50 $\,$ 60

Tyr Pro Gly Gly Gly Gly Gly Ser Gly Gly Glu Ile Leu Asp Gln 65 70 75 80

Ser Thr Lys Gln Leu Leu Glu Gln Gln Asn Arg His Asn Asn Asn Asn 85 90 95

Asn Ser Thr Leu His Met Leu Leu Pro Asn His His Gln Gly Phe Ala

Phe Thr Asp Glu Asn Thr Met Gln Pro Gln Gln Gln His Phe Thr 115 120 125

Trp Pro Ser Ser Ser Ser Asp His His Gln Asn Arg Asp Met Ile Gly 130 135 140

Thr Val His Val Glu Gly Gly Lys Gly Leu Ser Leu Ser Leu Ser Ser 145 150 160

Ser Leu Ala Ala Ala Lys Ala Glu Glu Tyr Arg Ser Ile Tyr Cys Ala 165 170 175

Ala Val Asp Gly Thr Ser Ser Ser Ser Asn Ala Ser Ala His His His 180 185 190

Gln Phe Asn Gln Phe Lys Asn Leu Leu Leu Glu Asn Ser Ser Gln 195 200 205

His His His Gln Val Val Gly His Phe Gly Ser Ser Ser Ser Ser 210 215 220

Pro Met Ala Ala Ser Ser Ser Ile Gly Gly Ile Tyr Thr Leu Arg Asn 225 230 240

Ser Lys Tyr Thr Lys Pro Ala Gln Glu Leu Leu Glu Glu Phe Cys Ser 245 250 255

Val Gly Arg Gly His Phe Lys Lys Asn Lys Leu Ser Arg Asn Asn Ser 260 265 270

Asn Pro Asn Thr Thr Gly Gly Gly Gly Gly Gly Gly Ser Ser Ser Ser 275

Ala Gly Thr Ala Asn Asp Ser Pro Pro Leu Ser Pro Ala Asp Arg Ile 290 295 300

Glu His Gln Arg Arg Lys Val Lys Leu Leu Ser Met Leu Glu Glu Val 305 310 315 320

Asp Arg Arg Tyr Asn His Tyr Cys Glu Gln Met Gln Met Val Val Asn 325 330 335

MBI15 Sequence Listing.ST25
Ser Phe Asp Gln Val Met Gly Tyr Gly Ala Ala Val Pro Tyr Thr Thr
340 345 350

Leu Ala Gln Lys Ala Met Ser Arg His Phe Arg Cys Leu Lys Asp Ala 355 360 365

Val Ala Val Gln Leu Lys Arg Ser Cys Glu Leu Leu Gly Asp Lys Glu 370 375 380

Ala Ala Gly Ala Ala Ser Ser Gly Leu Thr Lys Gly Glu Thr Pro Arg 385 390 395 400

Leu Arg Leu Leu Glu Gln Ser Leu Arg Gln Gln Arg Ala Phe His His 405 410 415

Met Gly Met Met Glu Gln Glu Ala Trp Arg Pro Gln Arg Gly Leu Pro 420 430

Glu Arg Ser Val Asn Ile Leu Arg Ala Trp Leu Phe Glu His Phe Leu 435 440 445

Asn Pro Tyr Pro Ser Asp Ala Asp Lys His Leu Leu Ala Arg Gln Thr 450 455 460

Gly Leu Ser Arg Asn Gln Val Ser Asn Trp Phe Ile Asn Ala Arg Val 465 470 475 480

Arg Leu Trp Lys Pro Met Val Glu Glu Met Tyr Gln Gln Glu Ala Lys 485 490 495

Glu Arg Glu Glu Ala Glu Glu Glu Asn Glu Asn Gln Gln Gln Arg 500 505 510

Arg Gln Gln Gln Thr Asn Asn Asn Asp Thr Lys Pro Asn Asn Asn Glu 515 520 525

Asn Asn Phe Thr Val Ile Thr Ala Gln Thr Pro Thr Thr Met Thr Ser 530 535 540

Thr His His Glu Asn Asp Ser Ser Phe Leu Ser Ser Val Ala Ala Ala 545 550 560

Ser His Gly Gly Ser Asp Ala Phe Thr Val Ala Thr Cys Gln Gln Asp 565 570 575

Val Ser Asp Phe His Val Asp Gly Asp Gly Val Asn Val Ile Arg Phe 580 585 590

Gly Thr Lys Gln Thr Gly Asp Val Ser Leu Thr Leu Gly Leu Arg His 595 600 605

Ser Gly Asn Ile Pro Asp Lys Asn Thr Ser Phe Ser Val Arg Asp Phe 610 615 620

Gly Asp Phe 625

MBI15 Sequence Listing.ST25

<210> 49 <211> 1420 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (138)(1046) <223> G793	
<400> 49 cattetetea cetaacaact ccacacaaga ttettegeat ggaaagttgt tettegaett	60
ctcttctcta actcgctatc ttttaactca cccagctcca ctgagtcgaa aatttcaaac	120
ctttactcgt ttccttc atg gct aat aac aac aac atc cca cat gat agc Met Ala Asn Asn Asn Ile Pro His Asp Ser 1 5 10	170
atc tcc gat cca tct cct acc gac gat ttc ttc gag cag atc ctc ggg Ile Ser Asp Pro Ser Pro Thr Asp Asp Phe Phe Glu Gln Ile Leu Gly 15 20 25	218
ctt tcc aac ttc tcc ggt tct tca ggt tct ggt ctc tct gga atc ggc Leu Ser Asn Phe Ser Gly Ser Ser Gly Ser Gly Leu Ser Gly Ile Gly 30 35 40	266
ggc gtg ggt cca cct ccg atg atg ctt cag ctt ggt tca ggc aac gaa Gly Val Gly Pro Pro Pro Met Met Leu Gln Leu Gly Ser Gly Asn Glu 45 50 55	314
ggg aat cat aat cat atg ggt gcc att gga gga ggt gga cct gta ggg Gly Asn His Asn His Met Gly Ala Ile Gly Gly Gly Gly Pro Val Gly 60 65 70 75	362
ttt cat aat cag atg ttt ccg ttg gga tta agt ctc gat caa ggg aaa Phe His Asn Gln Met Phe Pro Leu Gly Leu Ser Leu Asp Gln Gly Lys 80 85 90	410
gga cat ggc ttt ctt aaa cct gat gaa act ggt aaa cgt ttc caa gac Gly His Gly Phe Leu Lys Pro Asp Glu Thr Gly Lys Arg Phe Gln Asp 95 100 105	458
gat gtt ctt gat aat cga tgt tcc tct atg aaa cct att ttc cat ggg Asp Val Leu Asp Asn Arg Cys Ser Ser Met Lys Pro Ile Phe His Gly 110 115 120	506
cag cca atg tca cag cca gct cca cca atg ccg cat caa cag tct act Gln Pro Met Ser Gln Pro Ala Pro Pro Met Pro His Gln Gln Ser Thr 125 130 135	554
att cgg cct aga gtt agg gct agg cga ggt caa gct acc gat cca cat Ile Arg Pro Arg Val Arg Ala Arg Arg Gly Gln Ala Thr Asp Pro His 140 145 150 155	602
agc atc gct gag agg ctc cga agg gaa aga ata gca gaa cgg atc agg Ser Ile Ala Glu Arg Leu Arg Arg Glu Arg Ile Ala Glu Arg Ile Arg 160 165 170	650
tcg ttg cag gaa ctt gta cct acc gtt aac aag aca gat agg gct gct Ser Leu Gln Glu Leu Val Pro Thr Val Asn Lys Thr Asp Arg Ala Ala 175 180 185	698
atg atc gac gag att gtc gat tat gta aag ttt ctc agg ctc caa gtt Met Ile Asp Glu Ile Val Asp Tyr Val Lys Phe Leu Arg Leu Gln Val 190 195 200	746
aag gtc ctg agc atg agc cgt ctt ggt gga gcc ggt gct gtc gca cca Lys Val Leu Ser Met Ser Arg Leu Gly Gly Ala Gly Ala Val Ala Pro 205 210 215	794
cta gtc act gaa atg cca tta tct tca tca gtt gag gat gag acg cag Leu Val Thr Glu Met Pro Leu Ser Ser Ser Val Glu Asp Glu Thr Gln	842

MBI15 Sequence Listing.ST25 220 225 230 235	
gcc gtg tgg gag aaa tgg tca aac gat ggg aca gag agg caa gtg gct Ala Val Trp Glu Lys Trp Ser Asn Asp Gly Thr Glu Arg Gln Val Ala 240 245 250	890
aag ctg atg gaa gaa aac gtt gga gca gcg atg caa ctt ttg caa tca Lys Leu Met Glu Glu Asn Val Gly Ala Ala Met Gln Leu Leu Gln Ser 255 260 265	938
aag gct ctt tgc ata atg ccg atc tca ttg gca atg gcg att tac cat Lys Ala Leu Cys Ile Met Pro Ile Ser Leu Ala Met Ala Ile Tyr His 270 275 280	986
tct cag cca cca gac aca tct tct tca atc gtc aaa cca gag atg aat Ser Gln Pro Pro Asp Thr Ser Ser Ser Ile Val Lys Pro Glu Met Asn 285 290 295	1034
cct cca ccg tag atttttgttc atccaacggt ccccagctga tgattgacat Pro Pro Pro 300	1086
tttgctctgt ttcccactac tagacttttg tgactcatga aaggtaagta aaaaggcatt	1146
ggagatggaa tctaagtagg atttgtgcag taaagaagta aaacgggatc tgtcaaaaga	1206
aggaaaaagc tctcgcttgc ttggctagta tttatcattt tgatgaaagt aactcttttt	1266
tgttcaaaga ctttagtgtg attttcagga ccaagggctt tgagggtagt gctagctgta	1326
gtaatagtaa tgaaggtgtg ggatcgtgtt tttgaattat gtaaaaaagg aagaaaaaac	1386
aaatgttggt attatattat ggttttgcct gaaa	1420
<210> 50 <211> 302 <212> PRT	
<213> Arabidopsis thaliana	
<213> Arabidopsis thallana <400> 50	
<400> 50 Met Ala Asn Asn Asn Asn Ile Pro His Asp Ser Ile Ser Asp Pro Ser	
<pre><400> 50 Met Ala Asn Asn Asn Asn Ile Pro His Asp Ser Ile Ser Asp Pro Ser 1</pre>	
<pre> <400> 50 Met Ala Asn Asn Asn Asn Ile Pro His Asp Ser Ile Ser Asp Pro Ser 1</pre>	
<pre> <400> 50 Met Ala Asn Asn Asn Asn Asn Ile Pro His Asp Ser Ile Ser Asp Pro Ser 1</pre>	
<pre> <400> 50 Met Ala Asn Asn Asn Asn Asn Ile Pro His Asp Ser Ile Ser Asp Pro Ser 1</pre>	
<pre> <400> 50 Met Ala Asn Asn Asn Asn Asn Ile Pro His Asp Ser Ile Ser Asp Pro Ser 1</pre>	
Met Ala Asn Asn Asn Asn Asn Ile Pro His Asp Ser Ile Ser Asp Pro Ser 1	

MBI15 Sequence Listing.ST25 130 Arg Ala Arg Arg Gly Gln Ala Thr Asp Pro His Ser Ile Ala Glu Arg 150 Leu Arg Arg Glu Arg Ile Ala Glu Arg Ile Arg Ser Leu Gln Glu Leu 165 170 175 Val Pro Thr Val Asn Lys Thr Asp Arg Ala Ala Met Ile Asp Glu Ile Val Asp Tyr Val Lys Phe Leu Arg Leu Gln Val Lys Val Leu Ser Met 195 200 205 Ser Arg Leu Gly Gly Ala Gly Ala Val Ala Pro Leu Val Thr Glu Met 210 215 220 Pro Leu Ser Ser Ser Val Glu Asp Glu Thr Gln Ala Val Trp Glu Lys Trp Ser Asn Asp Gly Thr Glu Arg Gln Val Ala Lys Leu Met Glu Glu Asn Val Gly Ala Ala Met Gln Leu Leu Gln Ser Lys Ala Leu Cys Ile Met Pro Ile Ser Leu Ala Met Ala Ile Tyr His Ser Gln Pro Pro Asp 280 Thr Ser Ser Ser Ile Val Lys Pro Glu Met Asn Pro Pro Pro <210> 51 <211> 1198 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (96)..(1052) <223> G764 <400> 51 ategaatteg eggeegeteg atatetttae aaccattaaa caaaaaattt ggeeactaea 60 agttgaaaaa gttttgatta tatctaatcg ctgaa atg gat tac aag gta tca Met Asp Tyr Lys Val Ser 1 5113 161 gat tta cca cct ggt ttc aga ttt cac cca act gat gaa gaa ctt ata Asp Leu Pro Pro Gly Phe Arg Phe His Pro Thr Asp Glu Glu Leu Ile 25 30 35209

Page 67

257

305

aca cac tat cta aga cca aag gtt gta aac tct ttt ttc tct gct ata Thr His Tyr Leu Arg Pro Lys Val Val Asn Ser Phe Phe Ser Ala Ile 40 45 50

gct att ggt gaa gtt gat ctc aac aaa gtc gag cct tgg gac ttg cct Ala Ile Gly Glu Val Asp Leu Asn Lys Val Glu Pro Trp Asp Leu Pro

55	60	MBI15 Sequence 65	Listing.ST25	70
tgg aag gct aag Trp Lys Ala Lys	ctt ggg gaa Leu Gly Glu 75	aaa gag tgg tac Lys Glu Trp Tyr 80 ·	ttc ttt tgc gta Phe Phe Cys Val 85	aga 353 Arg
gac cga aaa tac Asp Arg Lys Tyr 90	ccg act ggt Pro Thr Gly	tta aga acg aat Leu Arg Thr Asn 95	cgt gct act aaa Arg Ala Thr Lys 100	gcc 401 Ala
			atc ttc aaa ggg Ile Phe Lys Gly 115	
			tac aaa gga aga Tyr Lys Gly Arg 130	
			gag tat cga tta Glu Tyr Arg Leu	
			gct aag aac gaa Ala Lys Asn Glu 165	
			ggt acg aag gag Gly Thr Lys Glu 180	
			tct cca tat cta Ser Pro Tyr Leu 195	
			ctt ggt ggg ttg Leu Gly Gly Leu 210	
			gat gac aag agt Asp Asp Lys Ser	
gtg gcc gat ttt Val Ala Asp Phe	aaa act acc Lys Thr Thr 235	atg ttt ggt tcc Met Phe Gly Ser 240	gga tcg act aac Gly Ser Thr Asn 245	ttt 833 Phe
			cct ctg ttt cta Pro Leu Phe Leu 260	
			aat gaa gaa acc Asn Glu Glu Thr 275	
			gag agt gaa cta Glu Ser Glu Leu 290	
gcg agt tct tgg Ala Ser Ser Trp 295	caa ggt cac Gln Gly His 300	aat tot tat ggt Asn Ser Tyr Gly 305	tcc act ggt cca Ser Thr Gly Pro	gtg 1025 Val 310
aat ctt gat tgc Asn Leu Asp Cys			aaa tcgaaaattt	1072
ggatgttaac taggg	ggtat atagg	gtttt taaaaacagt	gtatatatgc gtta	tgtgtt 1132
agetttagat tetag	gatat acaaa	gatga cactaataga	ttcttataac attt	tgtaaa 1192
aaaaaa				1198

<210> 52 <211> 318

MBI15 Sequence Listing.ST25

<212> PRT

<213> Arabidopsis thaliana

<400> 52

Met Asp Tyr Lys Val Ser Arg Ser Gly Glu Ile Val Glu Gly Glu Val 1 5 10

Glu Asp Ser Glu Lys Ile Asp Leu Pro Pro Gly Phe Arg Phe His Pro 20 30

Thr Asp Glu Glu Leu Ile Thr His Tyr Leu Arg Pro Lys Val Val Asn 35 40 45

Ser Phe Phe Ser Ala Ile Ala Ile Gly Glu Val Asp Leu Asn Lys Val 50 55 60

Glu Pro Trp Asp Leu Pro Trp Lys Ala Lys Leu Gly Glu Lys Glu Trp 65 70 80

Tyr Phe Phe Cys Val Arg Asp Arg Lys Tyr Pro Thr Gly Leu Arg Thr 85 90 95

Asn Arg Ala Thr Lys Ala Gly Tyr Trp Lys Ala Thr Gly Lys Asp Lys

Glu Ile Phe Lys Gly Lys Ser Leu Val Gly Met Lys Lys Thr Leu Val 115 120 125

Phe Tyr Lys Gly Arg Ala Pro Lys Gly Val Lys Thr Asn Trp Val Met 130 140

His Glu Tyr Arg Leu Glu Gly Lys Phe Ala Ile Asp Asn Leu Ser Lys 145 150 150 160

Thr Ala Lys Asn Glu Cys Val Ile Ser Arg Val Phe His Thr Arg Thr 165 170 175

Asp Gly Thr Lys Glu His Met Ser Val Gly Leu Pro Pro Leu Met Asp

Ser Ser Pro Tyr Leu Lys Ser Arg Gly Gln Asp Ser Leu Ala Gly Thr 195 200 205

Thr Leu Gly Gly Leu Leu Ser His Val Thr Tyr Phe Ser Asp Gln Thr 210 215 220

Thr Asp Asp Lys Ser Leu Val Ala Asp Phe Lys Thr Thr Met Phe Gly 225 230 235 240

Ser Gly Ser Thr Asn Phe Leu Pro Asn Ile Gly Ser Leu Leu Asp Phe 245 250 255

Asp Pro Leu Phe Leu Gln Asn Asn Ser Ser Val Leu Lys Met Leu Leu 260 265 270

Asp Asn Glu Glu Thr Gln Phe Lys Lys Asn Leu His Asn Ser Gly Ser 275 280 285

MBI15 Sequence Listing.ST25

Ser Glu Ser Glu Leu Thr Ala Ser Ser Trp Gln Gly His Asn Ser Tyr 290 295 300

Gly Ser Thr Gly Pro Val Asn Leu Asp Cys Val Trp Lys Phe 305 315

<210> 53 <211> 932 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (43)..(759)

G350

act ctt act tct cca aga tta tct tct ccg atg ccg act ctg ttt caa

Thr Leu Thr Ser Pro Arg Leu Ser Ser Pro Met Pro Thr Leu Phe Gln

102

103

104

105

gat tca gca cta ggg ttt cat gga agc aaa ggc aaa cga tct aag cga
Asp Ser Ala Leu Gly Phe His Gly Ser Lys Gly Lys Arg Ser Lys Arg
25 30 35

tca aga tct gaa ttc gac cgt cag agt ctc acg gag gat gaa tat atc

Ser Arg Ser Glu Phe Asp Arg Gln Ser Leu Thr Glu Asp Glu Tyr Ile

40

45

gct tta tgt ctc atg ctt ctt gct cgc gac gga gat aga aac cgt gac 246 Ala Leu Cys Leu Met Leu Leu Ala Arg Asp Gly Asp Arg Asn Arg Asp 55 60 65

Ctt gac ctg cct tct tct tcg tct tca cct cct ctg ctt cct cct ctt
Leu Asp Leu Pro Ser Ser Ser Ser Pro Pro Leu Leu Pro Pro Leu
70 75 80

cct act ccg atc tac aag tgt agc gtc tgt gac aag gcg ttt tcg tct
Pro Thr Pro Ile Tyr Lys Cys Ser Val Cys Asp Lys Ala Phe Ser Ser
85 90 95 100

tac cag gct ctt ggt gga cac aag gca agt cac cgg aaa agc ttt tcg
Tyr Gln Ala Leu Gly Gly His Lys Ala Ser His Arg Lys Ser Phe Ser

ctt act caa tct gcc gga gga gat gag ctg tcg aca tcg tcg gcg ata
Leu Thr Gln Ser Ala Gly Gly Asp Glu Leu Ser Thr Ser Ser Ala Ile
120 125 130

acc acg tct ggt ata tcc ggt ggc ggg gga gga agt gtg aag tcg cac
Thr Thr Ser Gly Ile Ser Gly Gly Gly Gly Ser Val Lys Ser His
135
140
486

gtt tgc tct atc tgt cat aaa tcg ttc gcc acc ggt caa gct ctc ggc
Val Cys Ser Ile Cys His Lys Ser Phe Ala Thr Gly Gln Ala Leu Gly
150
155
160

ggc cac aaa cgg tgc cac tac gaa gga aag aac gga ggc ggt gtg agt
Gly His Lys Arg Cys His Tyr Glu Gly Lys Asn Gly Gly Gly Val Ser
165 170 175 180

agt agc gtg tcg aat tct gaa gat gtg ggg tct aca agc cac gtc agc
Ser Ser Val Ser Asn Ser Glu Asp Val Gly Ser Thr Ser His Val Ser

agt ggc cac cgt ggg ttt gac ctc aac ata ccg ccg ata ccg gaa ttc 678

MBI15 Sequence Listin Ser Gly His Arg Gly Phe Asp Leu Asn Ile Pro Pro I 200 205	
tcg atg gtc aac gga gac gaa gag gtg atg agt cct a Ser Met Val Asn Gly Asp Glu Glu Val Met Ser Pro M 215 220 2	tg ccg gcg aag et Pro Ala Lys 25
aaa ctc cgg ttt gac ttc ccg gag aaa ccc taa acata Lys Leu Arg Phe Asp Phe Pro Glu Lys Pro 230 235	aacct aggaaaaact
ttacagaatt cattttatag gaaattgttt tactgtatat acaaa	tatcg attttgattg
atgttcttct tcactgaaaa attatgattc tttgttgtat aattg	atgtt tctgaaaaag
atataacttt ttattaaaaa aaaaaaaaaa aaa	
<210> 54 <211> 238 <212> PRT <213> Arabidopsis thaliana	
<400> 54	
Met Ala Leu Glu Thr Leu Thr Ser Pro Arg Leu Ser S 1 10	er Pro Met Pro 15
Thr Leu Phe Gln Asp Ser Ala Leu Gly Phe His Gly S 20 25	er Lys Gly Lys 30
Arg Ser Lys Arg Ser Arg Ser Glu Phe Asp Arg Gln S	
Asp Glu Tyr Ile Ala Leu Cys Leu Met Leu Leu Ala A 50 55 60	rg Asp Gly Asp
Arg Asn Arg Asp Leu Asp Leu Pro Ser Ser Ser Ser S 70 75	er Pro Pro Leu 80
Leu Pro Pro Leu Pro Thr Pro Ile Tyr Lys Cys Ser V 85 90	al Cys Asp Lys 95
Ala Phe Ser Ser Tyr Gln Ala Leu Gly Gly His Lys A	la Ser His Arg 110
Lys Ser Phe Ser Leu Thr Gln Ser Ala Gly Gly Asp G	lu Leu Ser Thr 25
Ser Ser Ala Ile Thr Thr Ser Gly Ile Ser Gly Gly G 130 135 140	ly Gly Gly Ser
Val Lys Ser His Val Cys Ser Ile Cys His Lys Ser P 145 150 155	he Ala Thr Gly 160
Gln Ala Leu Gly Gly His Lys Arg Cys His Tyr Glu G 165 170	ly Lys Asn Gly 175
Gly Gly Val Ser Ser Ser Val Ser Asn Ser Glu Asp V 180 185	al Gly Ser Thr 190
Ser His Val Ser Ser Gly His Arg Gly Phe Asp Leu A 195 200 2 Page 71	asn Ile Pro Pro 205

MBI15 Sequence Listing.ST25

Ile Pro Glu Phe Ser Met Val Asn Gly Asp Glu Glu Val Met Ser Pro 210 225

Met Pro Ala Lys Lys Leu Arg Phe Asp Phe Pro Glu Lys Pro 225 230 235

<210> 55 <211> 1022 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (31) .. (846) <222> <223> G986 <400> 55 cattaaattg gctcctgtga acctaaattt atg gac tat gat ccc aac acc aat Met Asp Tyr Asp Pro Asn Thr Asn 54 ccg ttc gac ctt cat ttc tcc ggt aaa ctt ccg aaa aga gaa gtc tcg Pro Phe Asp Leu His Phe Ser Gly Lys Leu Pro Lys Arg Glu Val Ser 102 gct tca gct tct aaa gtt gta gag aag aaa tgg tta gtg aaa gat gag Ala Ser Ala Ser Lys Val Val Glu Lys Lys Trp Leu Val Lys Asp Glu 150 aag aga aat atg cta caa gat gaa ata aac cgg gtt aat tcg gag aac Lys Arg Asn Met Leu Gln Asp Glu Ile Asn Arg Val Asn Ser Glu Asn 198 45 50 aag aag cta acc gaa atg tta gca aga gtc tgt gag aag tac tat gct Lys Lys Leu Thr Glu Met Leu Ala Arg Val Cys Glu Lys Tyr Tyr Ala 246 ctt aat aat ctt atg gag gag ttg cag agt cga aag agt cct gaa agt Leu Asn Asn Leu Met Glu Glu Leu Gln Ser Arg Lys Ser Pro Glu Ser 294 80 gtt aac ttt cag aac aaa cag cta acg ggg aaa cga aaa caa gaa ctt Val Asn Phe Gln Asn Lys Gln Leu Thr Gly Lys Arg Lys Gln Glu Leu 342 gat gag ttt gtt agc tcc cca att gga ctc agt ctc gga cca atc gag
Asp Glu Phe Val Ser Ser Pro Ile Gly Leu Ser Leu Gly Pro Ile Glu 390 aac atc acc aac gat aaa gcg acg gtt tca acc gct tac ttt gct gct Asn Ile Thr Asn Asp Lys Ala Thr Val Ser Thr Ala Tyr Phe Ala Ala 438 gag aag tot gac aca ago ttg act gtg aaa gat gga tat caa tgg agg Glu Lys Ser Asp Thr Ser Leu Thr Val Lys Asp Gly Tyr Gln Trp Arg 486 145 aaa tac ggg caa aag att acg aga gat aat cca tct cct aga gct tac Lys Tyr Gly Gln Lys Ile Thr Arg Asp Asn Pro Ser Pro Arg Ala Tyr 155 160 165 534 ttc aga tgc tcg ttt tca ccg tct tgt cta gtc aag aag aag gtg caa Phe Arg Cys Ser Phe Ser Pro Ser Cys Leu Val Lys Lys Lys Val Gln 582 630 cga agt gca gaa gat cca tct ttc ttg gta gcc act tac gaa ggg aca Arg Ser Ala Glu Asp Pro Ser Phe Leu Val Ala Thr Tyr Glu Gly Thr

cat aac cac acc gga cca cat gca agt gtg tcc agg aca gtg aaa ctt

Page 72

678

His A	Asn	His	Thr	Gly 205	Pro	His					List: Arg			Lys 215	Leu	
gat o Asp I																726
ggg a																774
aaa c Lys A																822
ttg a Leu 1 265							tga	aagt	tete	cta g	gaaca	atgta	at at	ttet	gttt	876
tgtto	ctat	tt t	gttg	jctca	at to	ctag	gtaaa	aag	gtaa	aga	tttg	jtttg	gat d	ttga	attagg	936
aggca	atag	at g	gtcaa	tttt	a at	gtgt	gtgt	ata	ataat	tac	atca	aato	cta a	agtat	ccaaa	996
aaggg	gtca	ice c	ccat	ttta	at ct	tate	3									1022
<210 × <211 × <212 × <213 ×	> 2 > F > F	66 271 PRT Arabi	idops	sis t	hali	iana										
<400>		66												_		
Met A	Asp	Tyr	Asp	Pro 5	Asn	Thr	Asn	Pro	Phe 10	Asp	Leu	His	Phe	Ser 15	Gly	
Lys I	Leu	Pro	Lys 20	Arg	Glu	Val	Ser	Ala 25	Ser	Ala	Ser	Lys	Val 30	Val	Glu	
Lys I	Lys	Trp 35	Leu	Val	Lys	Asp	Glu 40	Lys	Arg	Asn	Met	Leu 45	Gln	Asp	Glu	
Ile A	Asn 50	Arg	Val	Asn	Ser	Glu 55	Asn	Lys	Lys	Leu	Thr 60	Glu	Met	Leu	Ala	
Arg V	Val	Сув	Glu	Lys	Tyr 70	Tyr	Ala	Leu	Asn	Asn 75	Leu	Met	Glu	Glu	Leu 80	
Gln S	Ser	Arg	Lys	Ser 85	Pro	Glu	Ser	Val	Asn 90	Phe	Gln	Asn	Lys	Gln 95	Leu	
Thr (Gly	Lys	Arg 100	Lys	Gln	Glu	Leu	Asp 105	Glu	Phe	Val	Ser	Ser 110	Pro	Ile	
Gly I	Leu	Ser 115	Leu	Gly	Pro	Ile	Glu 120	Asn	Ile	Thr	Asn	Asp 125	Lys	Äla	Thr	
Val s	Ser 130	Thr	Ala	Tyr	Phe	Ala 135	Ala	Glu	Lys	Ser	Asp 140	Thr	Ser	Leu	Thr	
Val I 145	Lys	Asp	Gly	Tyr	Gln 150	Trp	Arg	Lys	Tyr	Gly 155	Gln	Lys	Ile	Thr	Arg 160	
Asp A	Asn	Pro	Ser	Pro 165	Arg	Ala	Tyr	Phe	170	Cys age		Phe	Ser	Pro 175	Ser	
									P	aye	13					

MBI15 Sequence Listing.ST25

Cys Leu Val Lys Lys Val Gln Arg Ser Ala Glu Asp Pro Ser Phe Leu Val Ala Thr Tyr Glu Gly Thr His Asn His Thr Gly Pro His Ala 200 Ser Val Ser Arg Thr Val Lys Leu Asp Leu Val Gln Gly Gly Leu Glu Pro Val Glu Glu Lys Lys Glu Arg Gly Thr Ile Gln Glu Val Leu Val Gln Gln Met Ala Ser Ser Leu Thr Lys Asp Pro Lys Phe Thr Ala Ala Leu Ala Thr Ala Ile Ser Gly Arg Leu Ile Glu His Ser Arg Thr 265 <210> 57 <211> 1230 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1089) <223> G1349 <400> 57 atg gct agt cgg aga gaa gta cgg tgc cgg tgc ggc aga cgg atg tgg Met Ala Ser Arg Arg Glu Val Arg Cys Arg Cys Gly Arg Arg Met Trp gtt caa cca gac gcc cgt acc gtc caa tgc tca acc tgc cac acc gtc Val Gln Pro Asp Ala Arg Thr Val Gln Cys Ser Thr Cys His Thr Val 96 acg cag ctc tac tcg cta gtg gac ata gct cgc ggt gca aac cgc ata Thr Gln Leu Tyr Ser Leu Val Asp Ile Ala Arg Gly Ala Asn Arg Ile 35 40 45144 att cat ggg ttt caa cag cta ctt aga caa cac caa ccg caa cat cat Ile His Gly Phe Gln Gln Leu Leu Arg Gln His Gln Pro Gln His His 192 55 gaa caa caa caa caa atg atg gct caa ccg cca cca cgg ctg ctt Glu Gln Gln Gln Gln Met Met Ala Gln Pro Pro Pro Arg Leu Leu 240 gag cct ctt ccc tcg ccg ttt ggg aag aag aga gca gtt tta tgc ggc Glu Pro Leu Pro Ser Pro Phe Gly Lys Lys Arg Ala Val Leu Cys Gly 288 gtg aac tat aag gga aaa agt tat agc ttg aaa ggt tgc atc agt gat Val Asn Tyr Lys Gly Lys Ser Tyr Ser Leu Lys Gly Cys Ile Ser Asp 100 105 336 100 105 gct aag tcc atg aga tct tta ttg gtt caa caa atg ggt ttc cct att Ala Lys Ser Met Arg Ser Leu Leu Val Gln Gln Met Gly Phe Pro Ile 384 gac tot att oto atg oto aca gaa gat gaa goo ago cog cag aga ata Asp Ser Ile Leu Met Leu Thr Glu Asp Glu Ala Ser Pro Gln Arg Ile 432

ccg acg aag aga aac att agg aag gcg atg aga tgg tta gtt gaa ggg

Page 74

480

												cma e			
Pro Th	r Lys	Arg	Asn	Ile 150	Arg					List Trp			Glu	Gly 160	
aac ag Asn Ar															528
cag ca Gln Gl															576
ttg tg Leu Cy															624
att aa Ile As 21	n Arg	ata Ile	ctc Leu	gtg Val	agg Arg 215	cct Pro	ctc Leu	gtc Val	cat His	gga Gly 220	gct Ala	aag Lys	ctt Leu	cac His	672
gct gt Ala Va 225	c atc l Ile	gac Asp	gcc Ala	tgt Cys 230	aac Asn	agc Ser	ggg Gly	act Thr	gtc Val 235	ctt Leu	gat Asp	tta Leu	ccc Pro	ttc Phe 240	720
att tg Ile Cy															768
tca gt Ser Va	c aga 1 Arg	gct Ala 260	tac Tyr	aaa Lys	gga Gly	aca Thr	gat Asp 265	ggt Gly	gga Gly	gca Ala	gct Ala	ttc Phe 270	tgt Cys	ttc Phe	816
agt gc Ser Al															864
ggg aa Gly Ly 29	s Asn	aca Thr	gga Gly	gcc Ala	atg Met 295	act Thr	tat Tyr	agc Ser	ttc Phe	ata Ile 300	aag Lys	gcg Ala	gtg Val	aag Lys	912
aca gc Thr Al 305															960
tct gc Ser Al															1008
aca ag Thr Se	c tct r Ser	gat Asp 340	gca Ala	tcc Ser	gcg Ala	gag Glu	cca Pro 345	ctg Leu	cta Leu	aca Thr	tca Ser	tct Ser 350	gag Glu	gaa Glu	1056
ttt ga Phe As	c gtg p Val 355	Tyr	gcg Ala	aca Thr	aag Lys	ttt Phe 360	gta Val	ctc Leu	tga	atg	ctgt	aca 1	tatg	atgctg	1109
caaata	gctc	ggaa	acgt	tt c	tatg	tgta	t gt	atca	tgta	atg	atta	tgt	tgca	tagcct	1169
ctctct	tctt	acga	gcaa	ta a	gcta	tgaa	a ta	attg	attc	gct	aaga	aat	ttaa	aatgaa	1229
a															1230
<210><211><211>	58 362 PRT														

Met Ala Ser Arg Arg Glu Val Arg Cys Arg Cys Gly Arg Arg Met Trp 1 10 15

Val Gln Pro Asp Ala Arg Thr Val Gln Cys Ser Thr Cys His Thr Val 20 25 30

<212> PRT <213> Arabidopsis thaliana

MBI15 Sequence Listing.ST25

Thr Gln Leu Tyr Ser Leu Val Asp Ile Ala Arg Gly Ala Asn Arg Ile 35 40 45

Ile His Gly Phe Gln Gln Leu Leu Arg Gln His Gln Pro Gln His His 50 60

Glu Gln Gln Gln Gln Met Met Ala Gln Pro Pro Pro Arg Leu Leu 65 70 75 80

Glu Pro Leu Pro Ser Pro Phe Gly Lys Lys Arg Ala Val Leu Cys Gly 85 90 95

Val Asn Tyr Lys Gly Lys Ser Tyr Ser Leu Lys Gly Cys Ile Ser Asp 100 105 110

Ala Lys Ser Met Arg Ser Leu Leu Val Gln Gln Met Gly Phe Pro Ile 115 120 125

Asp Ser Ile Leu Met Leu Thr Glu Asp Glu Ala Ser Pro Gln Arg Ile 130 135 140

Pro Thr Lys Arg Asn Ile Arg Lys Ala Met Arg Trp Leu Val Glu Gly 145 150 160

Asn Arg Ala Arg Asp Ser Leu Val Phe His Phe Ser Gly His Gly Ser 165 170 175

Gln Gln Asn Asp Tyr Asn Gly Asp Glu Ile Asp Gly Gln Asp Glu Ala 180 \$190\$

Leu Cys Pro Leu Asp His Glu Thr Glu Gly Lys Ile Ile Asp Asp Glu 195 200

Ile Asn Arg Ile Leu Val Arg Pro Leu Val His Gly Ala Lys Leu His 210 215 220

Ala Val Ile Asp Ala Cys Asn Ser Gly Thr Val Leu Asp Leu Pro Phe 225 230 235 240

Ile Cys Arg Met Glu Arg Asn Gly Ser Tyr Glu Trp Glu Asp His Arg 245 250 255

Ser Val Arg Ala Tyr Lys Gly Thr Asp Gly Gly Ala Ala Phe Cys Phe 260 265 270

Ser Ala Cys Asp Asp Glu Ser Ser Gly Tyr Thr Pro Val Phe Thr 275 280 285

Gly Lys Asn Thr Gly Ala Met Thr Tyr Ser Phe Ile Lys Ala Val Lys 290 295 300

Thr Ala Gly Pro Ala Pro Thr Tyr Gly His Leu Leu Asn Leu Met Cys 305 310 320

Ser Ala Ile Arg Glu Ala Gln Ser Arg Leu Ala Phe Asn Gly Asp Tyr Page 76

MBI15 Sequence Listing.ST25 330 335

Thr Ser Ser Asp Ala Ser Ala Glu Pro Leu Leu Thr Ser Ser Glu Glu 340 345 350

Phe Asp Val Tyr Ala Thr Lys Phe Val Leu 355

INTERNATIONAL SEARCH REPORT

Interna al application No.
PCT/US00/31418

			PC1/US00/31418)
A. CLAS	SSIFICATION OF SUBJECT MATTER			
IPC(7)	: A01H 1/00, 5/00; C12N 5/14, 15/82			
US CL	: 435/320.1, 419, 468; 800/278, 279, 287, 301,			
	International Patent Classification (IPC) or to both n	ational cla	assification and IPC	 · · · · · · · · · · · · · ·
B. FIEL	DS SEARCHED			
Minimum do	cumentation searched (classification system followed	by classif	ication symbols)	
	35/320.1, 419, 468; 800/278, 279, 287, 301, 305-31			
	, , , , , , , , , , , , , , , , , , , ,		•	
<u> </u>				
Documentation	on searched other than minimum documentation to the	e extent th	at such documents are include	d in the fields searched
				····
Electronia da	ata base consulted during the international search (nam	ne of data	hase and where practicable of	oarch tarms used)
	AT; STN, Agricola, CaPlus, Biosis, Embase	ne or uata	base and, where practicable, s	carcii terms useu)
Chot, Oder	11, 0111, figiteois, Carias, Biosis, Bilioase		•	
	UMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where an			Relevant to claim No.
X	WO 97/47183 A1 (PURDUE RESEARCH FOUND	ATION) 1	8 December 1997	1-9, 12, 13, 25
;	(18.12.1997), entire reference.		j	10 11 04 05
Y				10, 11, 26, 27
x	US 5,939,601 (KLESSIG et al) 17 August 1999 (17	.08.1999),	, entire reference.	1-9, 12, 13, 25
Υ				10, 11, 26, 27
A	Database Genbank on NCBI, US National Library	of Medicir	ne. (Bethesda, MD. USA)	1-13, 25-27
'	No. AB009055, SATO, S. et al 'Strucural analysis			,
	IV. Sequence features of the regions of 1,456,315 b			
	assigned P1 and TAC clones. 27 December 2000,			
	41-54, see bases 16,003-16,490, 16,571-16,683 and			
]				
]				
[l l	
1				
1				
			0	
, 	r documents are listed in the continuation of Box C.		See patent family annex.	
• s	pecial categories of cited documents:	"T"	later document published after the into	
"A" document	defining the general state of the art which is not considered to be		date and not in conflict with the applic principle or theory underlying the inve	
	ular relevance	647		
"E" earlier au	oplication or patent published on or after the international filing date	"X"	document of particular relevance; the considered novel or cannot be consider	
			when the document is taken alone	
	t which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as	-Y"	document of particular relevance; the	claimed invention cannot be
specified			considered to involve an inventive ste	p when the document is
"O" documen	referring to an oral disclosure, use, exhibition or other means		combined with one or more other such being obvious to a person skilled in the	
	t published prior to the international filing date but later than the date claimed	*&*	document member of the same patent	tamuly
Date of the	actual completion of the international search	Date of	mailing of the international sea	rch report
			19 MAR 21	nol.
	2001 (23.02.2001)	Authoria	ted officer	77
	nailing address of the ISA/US muissioner of Patents and Trademarks	, Authoriz		RY J. DEY
	mussioner of Patents and Trademarks	David K		N. SPECIALIST
Wa	shington, D.C. 20231	Talaska		
Facsimile N	o. (703)305-3230	i elepno:	ne No. 703-308- TEMMOLO	IT VENIEN 1000

INTERNATIONAL SEARCH REPORT

Inter nal application No.

PCT/US00/31418

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)		
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:		
1.		Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.		Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	6.4(a).	Claim Nos.: 14 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)		
		ional Searching Authority found multiple inventions in this international application, as follows: ontinuation Sheet
1.		As all required additional search fees were timely paid by the applicant, this international search report covers all
		searchable claims.
2.	Ш	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.		As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	\boxtimes	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-13 & 25-27 and SEQ ID NOs 1&2
Rem	nark on	Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Ittu.....nal application No.

PCT/US00/31418

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups I-XXIX, claim(s) 1-14 and 25-27, drawn to a transgenic plant having modified seed characteristics, polynucleotides and vectors for producing said transgenic plant and a method of making said transgenic plant. Applicant must elect one pair of sequences (one nucleic acid and the corresponding amino acid translation) to be examined, i.e. SEQ ID NO: 1 and 2 in Group I, SEQ ID NO: 3 and 4 in Group II, SEQ ID NO: 5 and 6 in Group III, etc.

Group XXX, claim(s) 15-17, drawn to a method of identifying a factor that is modulated.

Group XXXI, claims(s) 18, drawn to a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide.

Group XXXII, claims(s) 19 and 20, drawn to an integrated computer system.

Group XXXIII, claim(s) 21-24, drawn to a method for identifying a polynucleotide sequence comprising selecting a nucleic acid sequence from a database that meets a selected sequence criteria.

The inventions listed as Groups I-XXXIII do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The inventions listed as Groups I-XXXIII do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Groups I-XXIX are drawn to a transgenic plant and a method of producing said plant with a nucleic acid sequence. The methods of Groups I-XXIX differ from each other in that they are directed to a plant transformation method and transgenic plant with a structurally and functionally distinct nucleic acid sequence which encodes a structurally and functionally distinct amino acid sequence. In addition, Groups XXX, XXXI and XXXIII are different methods from any of Groups I-XXIX in that they have different method steps and different end products, and Group XXXII requires a computer system. Thus, there is no single special technical feature, which links the inventions of Groups I-XXXIII under PCT Rule 13.2.