班级数学与应用数学

学号 20/01/4036 姓名 **郭 图 瑞**

第一次 质点的运动

得分011.63,15 Grand!

基本要求

agas.

- 1. 深刻理解位置矢量、位移、速度、加速度等描写质点运动和运动变化的物理量。
- 2. 理解角速度、角加速度、切向加速度和法向加速度的概念以及运动叠加原理的意义, 掌握物体作圆周运动的角量和线量的关系。
- 3. 熟练掌握用二维直角坐标系表示的运动方程,求其位移、速度和加速度;会从已知速度(或加速度)积分求出运动方程。
- 4. 理解力的概念及力学中常见力的特性。
- 5. 深刻理解牛顿三大定律及其适用条件,并能熟练地应用牛顿运动定律来分析、计算质点在平面内运动的力学问题。
- 6. 理解惯性系与非惯性系的概念,了解惯性力及力学单位制和量纲。

基本内容和主要公式

1. 质点一忽略体积和形状,只考虑质量的理想物体。

参考系一研究物体运动时被选作参考物的物体或物体群。

描述质点运动的物理量

位置矢量: 由坐标原点指向质点 P的向量 F。

位移:
$$\Delta \vec{r} = \vec{r_2} - \vec{r_1}$$
 速度: $\vec{v} = \frac{d\vec{r}}{dt}$, 平均速度: $\vec{v} = \frac{\vec{r_2} - \vec{r_1}}{t_2 - t_1} = \frac{\Delta \vec{r}}{\Delta t}$

加速度:
$$\bar{a} = \frac{d\bar{v}}{dt} = \frac{d^2\bar{r}}{dt^2}$$
, 平均加速度: $\bar{d} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1} = \frac{\Delta \bar{v}}{\Delta t}$

- 2. 描述质点运动的坐标系
 - (1) 直角坐标系: 位置矢量: $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

速度:
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

加速度:
$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2} = \frac{d^2x}{dt^2}\vec{i} + \frac{d^2y}{dt^2}\vec{j} + \frac{d^2z}{dt^2}\vec{k}$$

(2) 平面极坐标系: 位置矢量: $\vec{r}(t) = \rho(t)\vec{e}_o(t)$

协向加速度
$$O_t = \frac{dv}{dt}$$
 速度: $\bar{v} = \frac{d\rho}{dt} \bar{e}_{\rho} + \rho \frac{d\theta}{dt} \bar{e}_{\theta}$ 法向为速度 $O_n = \frac{V^2}{2}$

(3) 自然坐标系: 速度:
$$\vec{v}(t) = v(t)\vec{e}_i(t)$$

加速度:
$$\bar{a} = \frac{dv}{dt}\bar{e}_i + \frac{v^2}{\rho}\bar{e}_n$$

3. 位置矢量
$$\vec{r} = \vec{r_0} + \int_0^{\cdot} \vec{v}(t)dt$$
, 速度: $\vec{v} = \vec{v_0} + \int_0^{\cdot} \vec{a}(t)dt$

- 4. 牛顿运动定律
 - (1) 牛顿第一定律(惯性定律): 自由质点总是保持静止或匀速直线运动,直到其他物体对它作用迫使它改变这种状态为止。
 - (2) 牛顿第二定律: $\vec{F} = m\bar{a}$

(3) 牛顿第三定律:
$$\vec{F}_{AB} = -\vec{F}_{BA}$$

5. 常见的力 (1) 万有引力
$$\vec{F}_{12} = -G \frac{m_1 m_2}{r_{12}^2} \vec{r}_{12}$$

(2) 弹性力
$$F = -kx$$

(3) 摩擦力
$$F = \mu F_N$$

- 6. 伽利略相对性原理
 - (1) 伽利略相对性原理:对于描述力学规律而言,所有惯性系都是等价的。
 - (2) 伽利略变换

$$\begin{cases} x' = x - vt \\ y' = y \\ z' = z \\ t' = t \end{cases} \qquad \vec{u}' = \vec{u} - \vec{v} \qquad \vec{a}' = \vec{a}$$

(3) 惯性力 直线加速参考系中的惯性力 $\vec{F} = -m\vec{a}$

7. 绝对量、相对量、牵连量的关系

绝对位移 $\Delta \vec{r}$, 绝对速度 \vec{v} , 绝对加速度 \vec{a}

相对位移 $\Delta \vec{r}'$,相对速度 \vec{v}' ,相对加速度 \vec{a}'

牵连位移 $\Delta \vec{r_0}$,牵连速度 $\vec{v_0}$,牵连加速度 $\vec{a_0}$

$$\Delta \vec{r} = \Delta \vec{r}' + \Delta \vec{r}_0 \qquad \vec{v} = \vec{v}' + \vec{v}_0 \qquad \vec{a} = \vec{a}' + \vec{a}_0$$

练习题

1. 瞬时速度 v 的大小 |v | 可以用下列哪个式子来表示:

[C]

A.
$$\frac{dr}{dt}$$
 B. $\frac{d|\vec{r}|}{dt}$ C. $\left|\frac{d\vec{r}}{dt}\right|$ D. $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2$

2. 一小球沿斜面向上运动,其运动方程为: $s=5+8t-t^2$ (SI) ,则小球运动到最高点 =-(t-4)2+2) 的时刻是:

A.
$$t = 4s$$
 B. $t = 2s$

B.
$$t=2.5$$

c.
$$t = 8 s$$

$$D. t = 5 s$$

3. 在平面上运动的质点,如果其运动方程为 $\vec{r} = at^2\vec{i} + bt^2\vec{j}$ (其中a,b为常数),则该质点

在中间上运动的质点,如果具运动方程为
$$r=at^{-1}+bt^{-1}$$
(其中 a , b 为常数),则该质点 A. 匀速直线运动 B. 变速直线运动 C. 抛物线 D. 一般曲线运动 $\overrightarrow{V}=\frac{d\overrightarrow{r}}{dt}=\frac{d(\alpha t^{-1}+bt^{-1})}{dt}=2\alpha t^{-1}+2\alpha t^{-1}$ 下列说法哪一条正确?
$$\overrightarrow{O}=\frac{d\overrightarrow{V}}{dt}=\frac{d(\alpha t i+bt^{-1})}{dt}=2\alpha t^{-1}+2b t^{-1}$$
 A. 加速度恒定不变时,物体的运动方向也不变,作为他) B. 平均速率等于平均速度的大小,

$$0 = \frac{dt}{dt} = \frac{u \cdot u \cdot dt}{dt} = 2014$$
物体的运动方向也不要比例的

[B]

B. 平均速率等于平均速度的大小.

$$\overline{V} = \frac{\Delta S}{\Delta \overline{v}}$$
 $\overline{V} = \frac{\Delta \overline{V}}{\Delta \overline{v}}$ C. 不管加速度如何,平均速率表达式总可以写成: $\overline{v} = \frac{v_1 + v_2}{2}$.

D. 在运动物体的速率恒定时,它的速度却可能是变化的. 匀凉

5. 如图所示,已知 A,B 间用不伸长的细绳连接,当 A 以恒定的速度 v_0 向左运动时,则 B 的 速度大小为:

A.
$$v = v_0$$

B.
$$v = v_0 \cos \theta$$

$$\overline{v}_0$$
 A B

C.
$$v = \frac{v_0}{\cos \theta}$$
 D. $v = v_0 \sin \theta$

6. 一质点从静止出发,绕半径为 R 的圆周做勾变速圆周运动,角加速度为 eta ,当该质点走

7. 质量分别为m和 M的滑块 A和 B 叠放在光滑的水平面上,如图所示。A , B 间的静麾

擦系数为 μ_s ,滑动摩擦系数为 μ_k ,系统原先处于静止状态。今将水平力F作用于B上, 要使A,B间不发生相对滑动,应有:

C= F mt/M

A.
$$F \leq \mu_s mg$$

$$\begin{array}{lll} & \underset{M}{\text{mF}} & \text{M.} & F \leqslant \mu_s mg & \text{B.} & F \leqslant \mu_s \left(1 + \frac{m}{M}\right) mg \\ & \text{F} \leqslant \mathcal{M}s(\text{mtM}) g & \text{C.} & F \leqslant \mu_s(m+M)g & \text{D.} & F \leqslant \mu_k \left(1 + \frac{m}{M}\right) mg \end{array}$$

C.
$$F \leq \mu_s(m+M)g$$

D.
$$F \leq \mu_k \left(1 + \frac{m}{M}\right) mg$$

8. 如右图所示, 在绳子刚被剪断时, A、B 两物体的加速度分别为:

A.
$$a_{\lambda} = g$$
, $a_{\nu} = g$

A.
$$a_A = g$$
, $a_B = g$ B. $a_A = g$, $a_B = 2g$

c.
$$a_A = 2g$$
, $a_B = 0$ D. $a_A = g$, $a_B = 0$

$$D. a_A = g, a_B = 0$$

9. 如图所示,滑轮、绳子的质量均忽略不计。忽略一切摩擦阻力, 物体A的质量 m_A 大于物体B的质量 m_B 。在A、B运动过程中弹簧 秤的读数是: [D]

My -T= MA-a

$$(m_A + m_B)g$$

B.
$$\frac{4m_A m_B}{m_A - m_B} g$$
C.
$$(m_A - m_B) g$$
D.
$$\frac{4m_A m_B}{m_A + m_B} g$$

C.
$$(m_A - m_B)g$$

$$D. \frac{4m_A m_B}{m_A + m_B} g$$

- 10. 一辆汽车从静止出发,在平直公路上加速前进的过程中,如果发动 P=FV F-+=ma
 - A. 汽车的加速度是不变的
- B. 汽车的加速度不断减小
- C. 汽车的加速度与它的速度成正比
- D. 汽车的加速度与它的速度成反比

二、填空题
$$a = \frac{dv}{dt}$$
 $\int_{v_0}^{v} dv = \int_{0}^{t} ct dt = \frac{C}{3}t^3$

1. 在x轴上作变加速直线运动的质点,已知其初速度为 v_0 ,初始位置为 x_0 ,加速度 $a=ct^2$, 则其速度与时间的关系为_V=Vo+ \(\frac{C}{2} \) , 运动方程为_Vo+ \(\frac{C}{12} \) + \(\lambda \)

2. 在半径为r的圆周上运动的质点,其速度与时间的关系 $v=ct^2$ (式中c为常数),则其通 过的路程与时间的关系为 $s(t) = 3ct^3$,t时刻的切向加速度 $a_t = 2ct$,法向加速

度
$$a_n = \frac{c^2 t^4}{R^2}$$
 ,总加速度的大小 $a = \sqrt{Q_1^2 t Q_1^2} = \sqrt{4C_1^2 t^2 + \frac{C_1 t^2}{R^2}}$ 。

0 一 2 3. 在 xoy 平面内有一运动的质点,其运动方程为 $\overline{r} = 2\cos 3t\overline{t} + 2\sin 3t\overline{t}$,则在 t 时刻其速度 $\bar{v} = -b\sin 3t\vec{i} + b\cos 3t\vec{i}$, 加速度 $\bar{a} = -18\cos 3t\vec{i} - 18\sin 3t\vec{j}$

4. 质点沿半径为 R 的圆周运动,在 $t=0$ 时经过 P 点,此后它的速率按
v = A + Bt (A、B 为常数)变化。 则质点沿圆周运动一周再经过 P 点时的切向加速度
(Atot) and - to (A which)
$a_t = B$,法向加速度 $a_n = R$ $a_t = Bt_t^2 + At_t$
-200 $+7$ 10 5. 质点山静止开始 以匀角加速度 β 沿半径为 R 的圆周运动。如果在某一时刻,此质点
Bts+ 2Ato = 471R
的总加速度 \bar{a} 与切向加速度 \bar{a}_z 成 45° 夹角,则此时刻压点已转过的角度 θ =
Un= R = R (A+B+0+2ABt,)
的总解变度 \overline{a} 与切向加速度 \overline{a}_{7} 成 45° 夹角,则此时刻压点已转过的角度 $\theta = \frac{V^{2}}{R} = \frac{dv}{dt} = \beta R^{2} = R^{2}\beta^{2}t^{2}$ $t = \frac{1}{N_{E}}$ $t = $
6. 已知质量为 m 的质点沿着 xoy 平面内的一条轨迹运动,运动方程为 $x = A(ct - \sin ct)$,
$=$ $\overline{\chi}(A^2+4\pi RB)$ $y=A(1-\cos ct)$, c 、 A 均为常数,求质点在 xy 方向上分别受到的分力
on the Park Barang
$F_x = Ac^2 m sinct$, $F_y = Ac^2 m c s c t$ 质点所受到合力的大小
$F = \sqrt{F_{X}^{2}+F_{Y}^{2}} = Ac^{2}m$
7. 已知质量为 m 的质点沿 x 轴受力为 $F=k(x+2)$,其中 k 为常数, 在 $x=0$ 时, $v_0=0$ 则
k(X+2)
当质点处于 x 点时,质点的加速度 $a(x) = $
$dv = adt$ $\int_{v_0}^{v} dv = \int_{0}^{x} \frac{k(x+z)}{m} dt \Rightarrow V(x) = \frac{k}{m} (\frac{1}{2}x^2 + 2x)$
8. 在一只半径为 R 的半圆球形碗内,有一质量为 m 、可看作质点的小钢球。当小球以角
速度 ω 、在水平面内沿流的内壁作匀速率圆周运动时,它距碗底的高度
$h = \frac{R - \overline{W^2}}{}$ $R = \text{F=mrw}^2$
$h = \frac{R - \frac{1}{W^2}}{10 \text{ ps}}$ $F = \text{mrw}^2$ $t \text{can} \theta = \frac{F}{\text{mg}} = \frac{\text{rw}^2}{9}$
三、证明题 $tan\theta = \frac{rw^2}{q} = \frac{r}{R-h}$
h m_0
证,在任意时刻这几个物体总是散落在同一圆周上.
•
能: Xo=VosinOto-=9t2
$\chi_0^2 + (40 + 19 + 29 + 2)^2 = (40 + 1)^2$
所外在任意的刻这几个物体总是散落在圆心为(0,-至9+2), R=Vot的圆周上

2. 质量为m 的汽车,沿x 轴正方向运动,初始位置 $x_0=0$,从静止开始加速。在其发动机的功率P 维持不变、且不计阻力的条件下

(1) 证明其速度表达式为
$$v = \sqrt{\frac{2pt}{m}}$$
; (2) 证明其位置表达式为 $x = \sqrt{\frac{8p}{9m}}t^{\frac{2}{3}}$.

1) Pt= $\frac{1}{2}$ mV² \Rightarrow V= $\frac{2pt}{m}$

$$\begin{array}{lll}
\text{(2)} & v = \frac{dx}{dt} \Rightarrow dx = vdt \\
& \int dx = \int vdt \Rightarrow x = \int_0^t \sqrt{\frac{2\pi}{m}} dt = \int_0^t \sqrt{\frac{2\pi}{m}} \cdot t^{\frac{3}{2}} dt = \sqrt{\frac{3\pi}{m}} \cdot \frac{3}{2} \cdot t^{\frac{3}{2}} = \sqrt{\frac{3\pi}{m}} \cdot t^{\frac{3}{2}} = \sqrt{\frac{3\pi}{m}} \cdot t^{\frac{3}{2}} = \sqrt{\frac{3\pi}{m}} \cdot t^{\frac{3}{2}}
\end{array}$$

四、计算题

1.一质点沿y轴作直线运动,其运动学方程为 $y=3t-2t^2+1$,求:

(1) 前两秒内质点的位移和平均速度;

(2) 第一秒内质点通过的路程。

解:(1) 质点、运动等方程 y=3t-2t+10速度; 当t=2s时, y=-1; 前两秒内质点的位移为-2m 平均速度 7:= <u>\rightarrow T</u>: = \frac{-2m}{2s} =- Im/s 则在第一种内质点所通过的路程 S=S1+S2=至m.

(3)
$$\vec{V} = \frac{d\vec{r}}{dt} = 3-4t$$

 $\vec{V}_1 = -1 \text{ m/s}$
 $\vec{V}_2 = -5 \text{ m/s}$

- (2) 前年5内,质点通过的路程 SI= 3m 4S-1S内,质点通过的路程 SI= 3m
 - 2. 由楼房窗口以水平初速度 ν_0 射出一发予弹,取枪口为原点,沿 ν_0 方向为x轴,竖直向下为y轴,并取发射时t为0,试求
 - (1) 子弹在任一时刻的位置坐标与轨迹方程;
 - (2) 子弹在 t 时刻的速度, 切向加速度与法向加速度。

3. 一质点沿 X 轴运动,其加速度 a 与位置坐标 x 的关系为: $a=2+6x^2$,如果质点在原点处的速度为零,求: 质点在任意位置的速度。

解:
$$\vec{\alpha} = \frac{\vec{\alpha}\vec{\nabla}}{\vec{\alpha}\vec{\nabla}} \quad \vec{V} = \frac{\vec{\alpha}\vec{\nabla}}{\vec{\alpha}\vec{\nabla}} = 2 + bx^2$$

$$\Rightarrow \vec{V} = \frac{\vec{\alpha}\vec{\nabla}}{\vec{\alpha}\vec{\nabla}} = 2 + bx^2$$

$$\Rightarrow \vec{V} \cdot d\vec{V} = (2 + bx^2) d\vec{X}$$

$$\vec{V} \cdot d\vec{V} = \int_0^X (2 + bx^2) d\vec{X}$$

$$\vec{V} = \int_0^X (2 + bx^2) d\vec{X}$$

$$\vec{V} = \int_0^X (2 + bx^2) d\vec{X}$$

$$\vec{V} = \sqrt{4x^2 + 4x^3} = 2\sqrt{x^2 + x^3}$$

$$\vec{V} = \sqrt{4x^2 + 4x^3} = 2\sqrt{x^2 + x^3}$$

4. 质量为m的子弹以速度 ν_0 水平射入沙土中,设子弹所受的阻力与速度方向相反,大小与

速度成正比,比例系数为 K,忽略子弹的重力,求:

(1) 射入沙土后,速度随时间变化的函数式; (2) 了弹进入沙土的最大深度

(1) f = -kv = ma

$$a = \frac{dv}{dt} \Rightarrow dv = adt = -\frac{kv}{m}dt$$

$$|v| = -\frac{k}{m}dt$$

$$|v| = -\frac{k}{m}\int_{0}^{t} dt$$

$$|v| = -\frac{k}{m}t$$

$$|v| = -\frac{k}{m}t$$

$$|v| = -\frac{k}{m}t$$

 $V = V_0 \cdot e^{-\frac{kt}{mt}} \qquad \text{of } dt = \frac{dr}{dv}$ $V = V_0 \cdot e^{-\frac{kt}{mt}} \qquad \text{of } dt = \frac{dr}{dv}$ $\int dr = \int v \frac{dv}{\alpha} = \int v \frac{dv}{-\frac{kv}{2}} = \int -\frac{m}{k} dv$ =- # Jodv

$$\Rightarrow \Upsilon = \frac{mV_0}{K}$$

一质量为M,角度为 θ 的劈形斜面A,放在粗糙的水平面上,斜面上有一质量为m的物 体 B,沿斜面下滑,如图。若 A、B之间的滑动摩擦系数为 μ ,且 B下滑时 A 保持不动,求 斜面 A 对地面的压力和摩擦力各大多?

解:对物体B:N=mgcosθ

JI=MNI= MMqc030

对中的本A: N2=Mg+UmgasosinO+mgasocosO J_= MMy 0000000 - mg 00000 sin 0

所以斜面A对地面的压力Ni= Mg+Lungcososino+ngcosocogo x扩地面的摩擦力 与= Ming case ase - mg cosesine 老九>0,则五的名向水平向左,老五<0,则五的名向水平向右.

6. 如图所示,质量分别为 m_1 和 m_2 的两物体用细绳连接后,悬挂在一个固定在电梯内的定 滑轮的两边。滑轮和绳子的质量以及所有的摩擦均不计。当电梯以 $a_0 = \frac{8}{2}$ 的加速度下降时, $\int_{a_0} \int_{a_0} \int_{a_0$ 试求 m_1 和 m_2 相对于地面的加速度和绳中的张力。

解: 在直线加速参考系外的人员性力

$$F_1 = -ma_1 = -\frac{m_1}{2}g$$

 $F_2 = -ma_2 = -\frac{m_2}{2}g$

.. atm.: mig-T+F=mia

 $0.4 \, \text{m}_2 = \text{m}_2 \, \text{q} - \text{T} + \text{F}_2 = -\text{m}_2 \, \text{Q}^2$

- 7. 将质量为 10kg 的小球挂在倾角 $\theta=30^\circ$ 的光滑斜面上,如图所示,(1) 当斜面以加速 度 $a=\frac{1}{2}g$ 沿如图所示的方向运动时,求绳中的张力及小球对斜面的正压力;
- (2) 当斜面的加速度至少为多大时,小球对斜面的正压力为零? (用非惯性系求解)

T=ma cuso +mgsin0 mgcuzo = N+ masin p

(2) 当小球对斜面的正压力度的
$$\frac{mg}{\tan \theta} = ma$$
 $\alpha = \frac{g}{\tan \theta} = \sqrt{3}g$

8. 如图所示,质量为m的小球置于无摩擦的水平面上,受圆柱面约束作圆周运动。设轨道 t=0时,质点沿内壁以速率 v_0 运动,质点与柱面的摩擦系数为 μ ,求质点在 时刻t的速率

时刻z的速率
解:
$$N=m\tilde{R}$$
 $f=W=um\tilde{R}$
 $Q=U\tilde{R}=\frac{dV}{dt}$
 $d=U\tilde{R}=\frac{dV}{dt}$
 $d=U\tilde{R}=\frac{dV}$

班级数学与应用数学

 学号_20|0|14036
 第二次 机械能守恒定律

 姓名_<u>郭奇·</u>

基本要求

- 1. 深刻理解功、功率、动能和势能的概念,理解保守力作功的特点,会计算一般的变力作功问题。
- 2. 熟练掌握动能定理,功能原理和机械能守恒定律,并能用来分析、解决质点和质点 系运动时的一般力学问题。

基本内容和主要公式

- 1. 深刻理解功、功率、动能和势能的概念,理解保守力作功的特点,会计算一般的变力作功问题。
 - (1) 功:作用于质点的力与质点沿力的方向所作位移的乘积。

$$A = \int_{P}^{Q} \vec{F} \cdot d\vec{r} = \int_{P}^{Q} \left(F_{x} dx + F_{y} dy + F_{z} dz \right)$$

(2) 功率:单位时间内所完成的功。 $P = \frac{dA}{dt} = \vec{F} \cdot \frac{d\vec{r}}{dt} = \vec{F} \cdot \vec{v}$

(3) 动能:物体由于运动所具有的能量。 $E_k = \frac{1}{2}mv^2$

(4) 势能:由物体之间的相互作用和相对位置决定的能量。

引力势能: $E_p = -G \frac{mM}{r}$ (无穷远处为势能零点 $E_{\infty} = 0$)

重力势能: $E_P = mgh$ (h = 0处为势能零点)

弹性势能。 $E_P = \frac{1}{2}kx^2$ (x = 0处为势能零点)

(5) 保守力: (沿任意闭合路径绕行一周所作功恒为零) $\int \vec{F} \cdot d\vec{l} \equiv 0$

2. 熟练掌握动能定理,功能原理和机械能守恒定律,并能用来分析、解决质点和质点系运动时的一般力学问题。

(1) 质点的动能定理: $A = \int_P^Q \vec{F} \cdot d\vec{r} = E_{kQ} - E_{kP}$

(2) 质点系动能定理:外力和内力对系统所作功的代数和等于系统内所有质点的总动能的增量。

$$A_{\beta \uparrow} + A_{\uparrow \downarrow} = E_{kQ} - E_{kP}$$

功能原理:机械能的增量等于外力所作功和系统的非保守内力所作功的代数和

$$A_{\rm sh} + A_{\rm sh(Rh)} = E_Q - E_P$$

- (4) 机械能守恒定律: 在外力和非保守内力都不作功或所作功的代数和为零的_ 情况下,系统内质点的动能和势能可以互相转换,但它们的总和,即 系统的机械能保持恒定。机械能守恒定律与参考系的选择有关。
- (5)能量守恒定律:能量不会消失,也不会产生,只能从一种形态转换为另一种形态。

练习题

选择题

1. 如图所示, 木块 m 沿固定的光滑斜面下滑, 当下降 h 高度时, 重力的瞬时功率是:

A. $mg(2gh)^{\frac{1}{2}}$

B. $mg\cos\theta(2gh)^{\frac{1}{2}}$

c. $mg \sin \theta (2gh)^{\frac{1}{2}}$ D. $mg \sin \theta (\frac{1}{2}gh)^{\frac{1}{2}}$ mgh = $\frac{1}{2}mV^{\frac{1}{2}}$

- 2. 对功的概念有以下几种说法:
- (1) 保守力作正功时,系统内相应的势能增加
- (2) 质点运动经一闭合路径,保守力对质点作的功为零
- (3) 作用力与反作用力大小相等、方向相反,所以两者作功的代数和必定为零。

在上述说法中正确的是:

C [B]

- A. (1) (2)
- B. (2) (3)
- C. 只有(2)
- D. 只有(3)
- 3. 如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,下列说法中正确的是:

A. 重力和绳子的张力对小球都不作功。

C. 重力对小球作功,绳子张力对小球不作功。

D. 重力对小球不作功,绳子张力对小球作功。

4. 一个质点同时在几个力作用下的位移为 $\Delta \vec{r} = 4\vec{l} - 5\vec{j} + 6\vec{k}$ (SI), 其中一个恒力为

 $\vec{F} = -3\vec{i} - 5\vec{j} + 9\vec{k}$ (SI),则此力在该位移过程中所作的功为:

(A)

A. 67J

B. 91J

C. 17J

D. -67J

W=
$$\int \vec{F} d\vec{r} = \int \vec{F} i d\vec{r} i + \int \vec{F} j d\vec{r} j + \int \vec{F}_{k} d\vec{r}_{k}$$
 $\triangle A = \vec{F} \cdot \Delta \vec{r} = (4, -5, b) \cdot (-3, -5, 9) = 6$

- 5. 如图所示, $m_A=m_B$, $F_A=F_B$,两物体与地面的摩擦系数相同,均由静止开始运动,且运动位移相等,则: [eta]
 - A. 物体克服摩擦力所作的功相同。
 - B. F_A 对A的功与 F_B 对B的功相同。
 - C. 到终点时物体 A 的动能小于物体 B 的动能。
 - D. 到终点时物体 A 的动能等于物体 B 的动能。

- 6. 关于质点系内质点间内力作功的问题,下列说法中正确的是:
 - A. 一对内力所作的功之和一定为零;
 - B. 一对内力所作的功之和一定不为零;
 - C. 一对内力所作的功之和一般不为零, 但不排斥为零的情况;
 - D. 一对内力所作的功之和是否为零,取决于参考系的选择。
- 7. 一个质点同时在几个力作用下的位移为 $\Delta \vec{r} = 4\vec{i} 5\vec{j} + 6\vec{k}$ (SI), 其中一个恒力为 $\vec{F} = -3\vec{i} 5\vec{j} + 9\vec{k}$ (SI), 则此力在该位移过程中所作的功为: [人]
 - A. 67*J*
 - B. 91 *J*
- C. 17J
- D. -67 J
- 8. $A \times B$ 两弹簧的倔强系数分别为 K_A 和 K_B ,其质量均忽略不计,今将两弹簧连接起来并竖直悬挂,如图所示、 当系统静止时,两弹簧的弹性势能 E_{PB} 和 E_{PB} 之比为:

$$\frac{E_{pA}}{E_{pB}} = \frac{\frac{1}{2}k_{A}X_{A}^{2}}{\frac{1}{2}k_{B}X_{B}^{2}} = \frac{k_{A} \cdot \left(\frac{m_{B}}{k_{A}}\right)^{2} - \frac{k_{B}}{k_{A}}}{E_{pB}} = \frac{k_{B}}{K_{B}}$$

$$A. \frac{E_{pA}}{E_{pB}} = \frac{K_{B}}{K_{B}}$$

$$B. \frac{E_{pA}}{E_{pB}} = \frac{K_{A}^{2}}{K_{B}^{2}}$$

$$C. \frac{E_{pA}}{E_{pB}} = \frac{K_{B}}{K_{A}}$$

$$D. \frac{E_{pA}}{E_{pB}} = \frac{K_{B}^{2}}{K_{A}^{2}}$$

$$m$$

- 9. 如图所示,劲度系数为k的轻质弹簧水平放置,一端固定,另一端接一质量为m的物体,物体与水平桌面间的摩擦系数为 μ ,现以恒力F将物体自平衡位置开始向右拉动,则系统的最大势能为:
 - A. $\frac{2}{k}(F \mu mg)^2$ B. $\frac{1}{2k}(F \mu mg)^2$ C. $\frac{2}{k}F^2$ D. $\frac{1}{2k}F^2$ $(F - \mu mg)x = \frac{1}{2}kx^2 \implies x = \frac{2}{k}(F - \mu mg)^2$ $Epm = \frac{1}{2}kx^2 = \frac{1}{k}(F - \mu mg)^2$

二、填空题

1. 一质量为 2g 的子弹从枪筒射出时的速率为 300m/s, 设子弹在枪筒内前进时所受合力
可表示为 $F = 400 - \frac{8000}{9}x$, 式中 F 的单位为 N , x 为子弹在枪筒内移动的距离, 单位为
米,则枪简的长度为 <u>0.45m</u> ;合力对子弹作的总功为 <u>90</u>
(パー0.2) 9 (15 - 0.2) 9 (15 -
1=]。([5-024)
$I=\int_0^{10} (S-02Y) g dV$ = $(SY-0.1Y^2) g f f f f f f f f f $
$= b ^2$ $\vec{F} = 2y\vec{i} + 3x\vec{j}$,当质点运动到点 $P(2,6)$ 时,力 \vec{F} 所作的功为: $\frac{30}{2}$
M.m $= m$ N $M.m$ M $M.m$ M
M·m
$\frac{GM}{3R}$
$=2mV^2=\frac{GM\cdot m}{6R}$; 卫星的初始速度为: $V_0=\sqrt{\frac{GM\cdot m}{3R}}$ 。 $-\frac{GM\cdot m}{R}+\frac{1}{2}mV_0^2=-\frac{GM\cdot m}{6R}$
5. 灰重为 m 的物体,轻轻地挂在竖直悬挂、处于目然长度的轻弹簧(弹性系数为 k)末
端,在物体重力作用下,弹簧被拉长。当物体由 $y=0$ 达到 y_0 时,物体所受的合力为零,
此时,系统重力势能的减小量为: mg/o ; 弹性势能增量为: $\frac{1}{2}k(\gamma_0)^2$;
总势能的变化量为: 元k(y ₀)²- mg y ₀ ,该部分能量变为系统的 元为A6
\triangle mg h = $\frac{mg}{L}$ · $\frac{1}{3}$ · $\frac{1}{6}$ = $\frac{mg}{J8}$ 6. 一根长为 $\frac{1}{4}$ 、 质量为 $\frac{1}{6}$ 的链条 放在在光滑的桌面上,其长度的 $\frac{1}{3}$ 悬挂在桌边,若 $\frac{mg}{3}$ — $\frac{mg}{4}$ 》 $\frac{1}{3}$ — $\frac{mg}{4}$ 》 $\frac{mg}{4}$ — $\frac{mg}{3}$ — $\frac{mg}{4}$ 》 $\frac{mg}{4}$ — $$
$F = \frac{mg}{3} - \frac{mg}{12} = \frac{mg}{3} - \frac{mg}{3} \times \frac{mg}{3} = mg$
$W = \int \vec{F} dX = \int (\frac{1}{2} - x) P_3 dx = (\frac{1}{2} \times -\frac{1}{2} x^2) P_3 = \frac{L^2}{9} = \frac{L^2}{18} P_3 = \frac{m_9 L}{18}$
7. 质量为 $m=1$ kg 的质点,在 XOY 平面内运动,其运动方程为 $x=5t$, $y=0$. $5t^2$ (国际单位
SI制),在 (=3s 到 t=4s 这段时间内外力对质点所作的功为
$V_{x} = \frac{\alpha x}{\alpha t} = 5$ $V_{y} = \frac{\alpha x}{\alpha t} = t$ $V_{y} = \sqrt{x^{2} + v_{y}^{2}} = \sqrt{x^{2} + t^{2}}$ $W_{y} = \frac{1}{2} m (v_{y}^{2} - v_{y}^{2}) = \frac{1}{2} x (41 - 34) = 3.5$
8. 质量为100kg 的人造地球卫星,按椭圆轨道绕地球运行,轨道的近地点距地面 439km,
远地点距地面 $2384km$,在近地点卫星的速度 $v_1 = 8.1km \cdot s^{-1}$,则在远地点卫星的速度
ν ₂ =,卫星由远地点到近地点的过程中,地球引力对它作的功
$A = \frac{1}{2} m V_1^2 + \left(-\frac{GMm}{R_0 + 439}\right) = \frac{1}{2} m V_0^2 + \left(-\frac{GMm}{R_0 + 2384}\right)$

$$\frac{GMm}{(R+H)^2} = m\frac{V^2}{R+H} \frac{GMm}{(R+h)^2} = m\frac{V^2}{R+h}$$

$$V^2 = \frac{GM}{R+H} = \frac{R+h}{R+H} \cdot V^2$$

三、计算题

- 1. 如图所示,一链条总长度为L,质量为m,放在桌面上,并使其一端下垂。设链条与桌面之间的滑动摩擦系数为 μ ,开始时链条处于静止状态,其下垂部分的长度为a,求:
- (1) 从开始运动到链条离开桌面的过程中,摩擦力对链条所作的功
- (2) 链条离开桌面时的速度 解: (1) 从开始运动和链条筒开桌面过程中 $Wf = \int_{\alpha}^{L} \mathcal{M}(L-\alpha) Pg d\alpha$ (1) $f = \tilde{L} mg \cdot \mathcal{M}$. $= \mathcal{M}Pg(L\alpha - \frac{\alpha^{2}}{2}) \Big|_{\alpha}^{L}$ $A = -\int_{L-\alpha}^{0} F dx = \int_{0}^{L-\alpha} \mathcal{M}mg \tilde{L} dx$ $= \mathcal{M}Pg(L^{2} - \frac{L^{2}}{2}) - \mathcal{M}Pg(L\alpha - \frac{\alpha^{2}}{2}) = \frac{1}{2L} \mathcal{M}mg(L-\alpha)^{2}$ $= \mathcal{M}mg(\frac{L}{2} - \frac{\alpha}{2})$ $= \frac{1}{2L} \mathcal{M}mg(L-\alpha)$ (2) $(-\frac{m_{3}}{L}\alpha \cdot \frac{\alpha}{2}) = \frac{1}{2} mV^{2} + (-mg\frac{L}{2}) + \frac{\mathcal{M}mg}{2L}(L-\alpha)^{2}$ (2) $\frac{\alpha}{L} mg \cdot (L-\alpha) + \frac{L-\alpha}{L} mg(L-\alpha) = \frac{1}{2} mV^{2} + \mathcal{M}f$ $V = \sqrt{g(2-\mathcal{M}(L-\alpha))}$
 - 2. 如图所示,悬挂的轻弹簧下端挂着质量为 m_1 、 m_2 的两个物体,开始时处于静止状态现在突然把 m_1 与 m_2 间的连线剪断,求 m_1 的最大速度为多少?设弹簧的倔强系数 $k=8.9\times10$

N/m, m₁=0.5kg, m₂=0.3kg. 辯: 当 m₁与m₁间氏连线未被剪断时,轻弹簧的伸长量 △X₁= (m₁+m₁)g⁻ 连线剪断后,轻弹簧的伸长量 △X₂= m₁g 由机械能导恒: (选取悬硅点所在的平面为零势面). ±k(ΔX₁)²+(-m₁g_ΔX₁)= ±m₁Vmax+±k(ΔX₁)²+(-m₁g₂ΔX₁) 解得 Vmax= 0.014m/s

解得 Vmax= 0.014m/s (M1+m2) g=KX 主 kx2= 立 M1Vm > Vm = 0.014m/s.

3. 如图所示,质量为 m_2 的木块平放在地面上,通过劲度系数为k的竖直弹簧与质量为 m_1 的的木块相连接,今有一竖直向下的恒力F作用在 m_1 上使系统达到平衡。试求,当撤去外力

F时,为使 m_1 向上反弹时能带动 m_2 刚好离开地面,力F至少应为多大? p_1 : 当/巨力作用在 m_1 上使系统达到平衡时:

F+mg=kaXi 当miN网离开地面时 mig=kaXi 若要miN网离开地面,则由机械能等恒: 立k(aXi)²= mig (aXitaXi)+立kaXi)² 联文解得: Fmin=(mi+mi) g.

 倔强系数为 k 的轻弹簧,一端固定,另一端与桌面上的质量为 m 的小球 B 相连接,推动 小球,将弹簧压缩一段距离 L 后放开,假定小球所受的滑动摩擦力大小为 F 且恒定不变, 滑动摩擦系数与静摩擦系数可视为相等,试求 L 必须满足什么条件时,才能使小球在放开 后就开始运动,而且一旦停止下来就应一直保持静止状态.

解:压缩-段距离L后,沿在距平便3位置Xo处 若要小球在为开后就开始运动。且一旦停止后就 一直保持静业状态.则 10=長 士K(L-16)=F(し+Lo)

k(L-Lo)=2F ⇒L=苌+Lo=张 所以 E<L≤基

5. 小球在外力作用下,由静止开始从 A 点出发作匀加速运动,到达 B 点时撤消外力, 小球无摩擦地冲上竖直的半径为 R 的半圆环,达到最高点 C 时,恰能维持在圆环上作圆 周运动,并以此速度抛出而刚好落回原来的出发点 A 处,如图所示。 求:小球在 AB 段 运动的加速度

翰:小球达到最高点C时,恰能维持在圆形上作圆周运动 此时小球。恰好对半圆环无正压力,由重力提供向心力

mg=m-VE

由B到C,小碱机械能守恒.

mg.2R+=mVc===mVe 2

小球南开C处后,从水平初速度16个平地运动,恰对各回A处

IAB|= Vc.t 2R==9+

又 VB-VB=2.0 IABI

班级数学与应用数学

学号 20/0114036. 第三次 动量、冲量、角动量 姓名郭奇瑞

基本要求和主要公式

- 1. 深刻理解动量、冲量的概念。
 - (1)、质点的动量:

$$\vec{p} = m\vec{v}$$

动量是状态量,因为速度是坐标系相关的,所以动量也是坐标系相关的,动量是矢量。

$$\vec{p} = \sum_i m_i \vec{v}_i = m \vec{v}_c$$

(2)、系统的动量: $\vec{p} = \sum m_i \vec{v}_i = m \vec{v}_c$ 质心系中系统的动量为零。

- (3)、冲量: $d\vec{l} = \vec{F} dt$, $\vec{l} = \int_0^2 \vec{F} dt$ 冲量是过程量,是矢量。冲量是力对时间的积累
- 2. 熟练掌握动量定理

(1)、质点的动量定理:
$$\vec{F} = \frac{d\vec{p}}{dt}$$
, $\vec{I} = m\vec{v}_2 - m\vec{v}_i = \vec{p}_2 - \vec{p}_i$

可以通过冲量大小(或动量变化大小)计算或估算力的大小 $\vec{F} = \frac{d\vec{I}}{dt}$ 或 $\vec{F} = \frac{\Delta I}{\Delta t}$.

(2)、 质点系的动量定理:
$$\sum_{i=1}^{n} \overline{F}_{i} = \frac{d}{dt} \left(\sum_{i=1}^{n} m_{i} \overline{v}_{i} \right) = \frac{d}{dt} \left(\sum_{i=1}^{n} \overline{p}_{i} \right)$$

$$\int_{t_{0}} \sum_{i=1}^{n} \overline{F}_{i} dt = \sum_{i=1}^{n} m_{i} \overline{v}_{i} - \sum_{i=1}^{n} m_{i} \overline{v}_{i0} = \overline{p} - \overline{p}_{0}$$
分量式:
$$\int_{t_{0}} \sum_{i=1}^{n} F_{ix} dt = \sum_{i=1}^{n} m_{i} v_{ix} - \sum_{i=1}^{n} m_{i} v_{i0x} = p_{x} - p_{0x}$$

$$\int_{t_{0}} \sum_{i=1}^{n} F_{iy} dt = \sum_{i=1}^{n} m_{i} v_{iy} - \sum_{i=1}^{n} m_{i} v_{i0y} = p_{y} - p_{0y}$$

$$\int_{t_{0}} \sum_{i=1}^{n} F_{iz} dt = \sum_{i=1}^{n} m_{i} v_{iz} - \sum_{i=1}^{n} m_{i} v_{i0z} = p_{z} - p_{0z}$$

式中 \vec{F} ,是质点系所受的外力

3、熟练掌握动量守恒定律: 动量的改变 $\Delta \vec{p} = \vec{l}$, 动量的改变需要外力的作用,且外力持续 一定时间。合外力为零时系统动量守恒,内力不改变系统的动量。动量是矢量,动量守恒也 具有矢量性。

(1)、动量守恒定律: 当
$$\sum_{i=1}^{n} \vec{F}_{i} = 0$$
 时, $\sum_{i=1}^{n} \vec{F}_{i} = \frac{d}{dt} (\sum_{i=1}^{n} m_{i} \vec{v}_{i}) = \frac{d}{dt} (\sum_{i=1}^{n} \vec{p}_{i}) = 0$

可得
$$\sum_{i=1}^{n} m_i \vec{v}_i =$$
恒矢量, 即合外力为零时系统动量守恒

分量式:
$$\sum_{i=1}^{n} m_{i} v_{ix} =$$
恒量, $\sum_{i=1}^{n} m_{i} v_{iy} =$ 恒量, $\sum_{i=1}^{n} m_{i} v_{iz} =$ 恒量

- 4、理解完全弹性碰撞、完全非弹性碰撞的特点,了解一般碰撞及恢复系数的概念
- 5、角动量: 一般定义是相对于一个点而言,表达式为: $\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}$.

定轴转动中可简化为: L=rp=rmv

系统的角动量:
$$\vec{L} = \sum_i \vec{r}_i = \sum_i \vec{r}_i \times \vec{p}_i = \sum_i \vec{r}_i \times m_i \vec{v}_i$$

6、力矩 一般定义是相对于一个点而言,表达式为: $\vec{M} = \vec{r} \times \vec{F}$ 。 定轴转动中,对轴的力矩可简化为: M=rF多个力对同一点形成的力矩 $\bar{M} = \sum \bar{n}_i \times \bar{F}_i$ $L_2 = Jw$. $\frac{dL}{dt} = J\frac{dw}{ct}$

$$M=J\alpha$$
 $L_2=J\omega$. $\frac{dL}{dt}=J\frac{d\omega}{dt}$
 $=J\alpha=Mz^2$

7、角动量定理: $\frac{d\bar{L}}{dt} = \bar{M}$ 惯性系中成立,质点和质点系数学表达是相同,但注意物理量 的不同。

质心系的角动量定理 : $\frac{dar{L}_c}{dt}=ar{M}_c$ 和一般质点系数学表达是相同,但此式非惯性系中也 成立,所以用之和质心运动定理一体处理刚体的一半运动。

- 8、角动量守恒定理: 由 $\frac{dL}{dt}=\vec{M}$,则 $\vec{M}=0$ 时角动量守恒。导致 $\vec{M}=0$ 的情况同时受理 的大小、方向、作用点影响。 [二] 矢量.
- 9、质心: 质心的位置矢量 $\vec{r}_c = \frac{\sum\limits_{i=1}^{n} m_i \vec{r}_i}{\sum\limits_{i=1}^{n} m_i}$, 质心运动定量 $\sum\limits_{i=1}^{n} \vec{F}_i = m \vec{a}_c$

练习题

一、选择题

3. A、B两木块质量分别为 m_A 和 m_B ,且 m_A =2 m_B ,两者用一轻弹簧连接后静止于光滑的水平面上,如图 3-11 所示,今用外力将两木块靠近使弹簧被压缩,然后将外力撤去,则此后两木块运动的动能之比为:

$$\frac{\text{EkA}}{\text{EkB}} = \frac{\text{MAVA}^2}{\text{MBVB}} = \frac{\text{MB}}{\text{MA}} = \frac{1}{2}$$

$$A. \quad \frac{1}{2} \quad B. \quad 2 \quad C. \quad \sqrt{2} \quad D. \quad \frac{\sqrt{2}}{2}$$

$$MA = 2MB$$

$$m_A \quad m_B$$

- 4. 河中有一只静止的小船,船头与船尾各站有一个质量不相同的人。若两人以不同的速率相向而行,不计水的阻力,则小船的运动方向为: [D]
 - A. 与质量大的人运动方向一致
- B. 与动量值小的人运动方向一致
- C. 与速率大的人运动方向一致
- D. 与动能大的人运动方向一致
- 5. 对质点系有以下几种说法,正确的是

[AC]

- A. 质点系总动量的改变与内力无关
- B. 质点系总动能的改变与内力无关
- C. 质点系机械能的改变与保守内力无关
- D. 质点系动量守恒, 意味着一部分质点速率变大的同时, 另一部质点速率必然变小
- 6. 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是:

[(]]

- A. 不受外力作用的系统, 其动量和机械能必然同时守恒;
- B. 所受合外力为零,内力都是保守力的系统,其机械能必然守恒

- C. 不受外力, 而内力都是保守力的系统, 其动量和机械能必然同时守恒
- D. 外力对一个系统所作的功为零,则该系统的动量和机械能必然同时守恒

7. 汽球下部连结一条绳梯, 总质量为 M, 梯上站着一个质量为 m 物人, 气球悬停在空中, 现 在人从静止开始沿绳梯向上爬,当他沿梯上爬距离1时,气球在高度上发生的变化是

A.
$$-\frac{m}{m+M}l$$

$$B. -\frac{M}{m+M}$$

$$C. -\frac{m+M}{m}l$$

D.
$$-\frac{m+M}{M}$$

质量皆为 M 的小船,第一只船在左边,其上站一质量为 m 的人,该人 --只船上跳到其右边的第二只船上,然后又以同样的速度 v 水平向左跳回到第

一只船上. 此后(水的阻力不计,所有速度都相对地面而言) (1)第一只船运动的速度为 vi

mV+MV'= (M+m)Vi

- (2) 第二只船运动的速度为 ν2 =
- 2. 一质量为m的物体,以初速v,从地面抛出,抛射角 θ =30°,如忽略空气阻力,则从抛 出到刚要接触地面的过程中
 - (1)物体动量增量的大小为
- 3. 质量m为 10kg 的木箱放在地面上,在水平拉力F的作用下由静止 开始沿直线运动,其拉力随时间的变化关系如图所示,若已知木箱与 地面间的摩擦系数 μ 为 0.2, 那么在 t=4s 时, 木箱的速度大小 4m/s _; 在 t=7s 时, 木箱的速度大小 [4-lot+10 dt - umg: at= mut-muo . (g 取 10m/s2)

4. 设作用在质量为 $1 \log$ 的物体上的力 F = 6t + 3 (SI). 如果物体在这一力的作用下, 由静止开始 沿直线运动,在 0 到 2,0s 的时间间隔内,这个力作用在物体上的冲量大小 I= 18 N·S = 12 6 t+3 = 15 t+3 t = 18 N·S = 18 N·S = 18 M·S = 19 M·S = 19 M·S = 18 M·S = 18 M·S = 19 M·

过程中地面对小球的垂直冲量的大小为_(1十人下)、m人(3h),水平冲量 现好平向古为正分向.

- 6. 一质量为 30 kg 的物体以 10 m/s 的速率水平向东运动,另一质量为 20 kg 的物体以

30 kg 10 m/S SOVsin 0 = 400 20 m/S 的速率水平向北运 20kg 20m/S 大 10 m/S

 $\Delta P = \int_{7.}^{2} -2 \sin \omega t \, \vec{j} \, m/s,$ 其中 $\omega = \frac{\pi}{2} rad/s$,

(2): 在(1)中所指的过程中,质点的动量 是 守恒(是或否); (3): 从时刻 $t_1=1s$ 到时刻 $t_2=2s$ 的过程中,质点受到合力的冲量为 $4N\cdot S$. $(2\vec{1}-2\vec{1})$ $N\cdot S$

8. 质量为M的木块静止在光滑的水平面上,一质量为m的子弹以速度 ν_0 水平射入木块内,并与木块一起运动,在这一过程中,木块对子弹所作的功为 $\frac{1}{2}M\cdot \frac{M^2}{M^2}$,子弹对木块所作的功为 $\frac{1}{2}M\cdot \frac{M^2}{M^2}$ 。

三、证明题

1. 下图是商店称米的示意图,米从一定高度被垂直初速为零倒下,且保持单位时间到下的米不变。如果当电子称读数刚好显示所要称取的质量时,立刻停止倒米。顾客和商店往往有争议,顾客认为倒米的勺子与称有一段距离,导致米对程有冲力,所以米可能不够,商店认为,在读数达到所要称取得米时,空中还有一部分米没落到盘中,所以米可能多了。你觉

得这样做到底是否合理,并证明之。
「正明: F·Δt=Δm·Nzgh → F=Δmvpgh = Δmvpgh = Δmvpgh = Δmypgh = Δmg

(mo-Δm)g+F=mog 读数正确

所以当称则对显示所要称取求的质量时停止例来是合理的。

Δt P=Δm

Mog = Pto = Pvpgh

h=1 sto to $\sqrt{3}$ $F=\frac{\Delta m V}{\Delta t}=\frac{1}{2}$

2. 一个质量为 m 的质点在 O-xy 平面上运动,其位置矢量随时间的关系为 $\vec{r} = a\cos\omega t \vec{i} + b\sin\omega t \vec{j}$,其中 a,b 和 ω 都是常量. 从质点运动和角动量定理两个方面证明此质点对坐标原点 O 的角动量是守恒的.

1: M

四、计算题

1. 一人质量为 M , 手中拿着质量为 m 的物体,自地面以倾角 θ ,初速度为 v₀ 斜向前跳起,跳到最高点时,以相对于 Δ 的速率 u 将物体水平向后抛出,这样人向前的速度和距离将均比原来增加,求:(1)使人增加的速度;(2)由于抛物使人回到地面时向前增加的距离 Δ x

2. 一线密度为 ρ 的均匀柔软链子,上端悬挂,下端刚好触及平台,静止不动。突然放开上端,链子自由下落,求链子落下 S 距离时(即有长为 s 的链于坍塌在平台上),平台对链子的瞬时向上作用力。

解: 链子落S距离时,具有的速度为V
$$V^2=2gs$$
.

又 $V = \frac{dV}{dt}$ $\overline{Q} = \frac{dV}{dt} = \frac{d^2V}{dt^2}$
 $V_c = \frac{dV_c}{dt} = \frac{P}{m} V \frac{dV}{dt}$
 $V_c = \frac{dV_c}{dt} = \frac{P}{m} V \frac{dV}{dt} = \frac{P}{m} [2gs + (I-s)(-g)]$

又 $N-mg = mQc$
 $N-mg = mQc + mg$
 $V = \frac{\Delta V}{\Delta t} = \frac{P}{\Delta t} = \frac{P$

- 3. 三个质量均为M的物体A、B、C,其中B、C 紧靠在一起,放在光滑的水平桌面上,两者之间连有一段长为0.4m的细绳,原先放松着。B的另一端用一跨过桌边的定滑轮与细绳A相连,如图所示。滑轮和绳子的质量及轮轴上的摩擦均不计,绳子不可伸长。问:
- (1) A、B起动后,经过多长时间C也开始运动?

(2) C 开始运动时速度的大小是多少? (取 $g=10 \ m/s^2$)

4. 质量为 m, 速度为 v 的钢球, 射向质量为 M 的靶, 靶中有一小孔, 内藏劲度系数为 k 的弹簧, 此靶最初处于静止状态, 但可在水平面作无摩擦滑动, 求子弹射入靶内弹簧后, 弹簧的最大压缩距离.

5. 质量为 7.2×10^{-22} kg,速度为 6.0×10^7 m·s⁻¹的粒子 A,与另一个质量为其一半而静 1上的粒子 B 发生完全弹性的二维碰撞,碰撞后粒子 A 的速率为 5.0×10^7 m·s⁻¹. 求

6. 如图所示,传送带以 3m/s 的速度水平向右运动,沙子从高度 h=0.8m 处以每秒 40 kg 的流量落到传送带上,求在沙子落入传送带的过程中,传送带给沙子的作用力。

班级数学与应用数学

学号 20/01/4036 第四次 刚体和流体

姓名事奇瑞

基本要求

- 1. 理解刚体、角位置、角位移、角速度、角加速度的概念;
- 2. 深刻理解转动惯量的概念,熟练掌握转动定律;
- 3. 理解角动量、冲量矩的概念,掌握动量矩定律、角动量守恒定律及其适用条件;
- 4. 理解力矩的功、转动动能的概念,掌握刚体定轴转动中的动能定律和机械能守恒定律。

基本内容和主要公式

- 1、 刚体指形状和大小都不发生变化的物体。 刚体的运动可分解为质心的平动和绕质心的转 动。处理转动问题常选择角位移、角速度、角加速度来表征。自由度是确定一个物体的位置 所需要的独立坐标数。
- 2、 角速度 $\omega = \frac{d\theta}{dt}$, 角加速度 $\beta = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$,
- 3、 定轴转动中线速度和角速度之间关系为; $s=r\theta$, $v=r\omega$, $\alpha=r\beta$
- 4、 转动惯量 $I=\sum m_i r_i^2$ 或若刚体的质量连续分布 , 转动惯量中的求和号用积分号代

替 $I = \int r^2 \rho dV$ 。 转动惯量与刚体、轴的位置、质量相对轴的远近分布有关。

角动量: $J=I\omega$ 转动动能: $E_k=\frac{1}{2}I\omega^2$ 或 $E_k=\sum_i\frac{1}{2}I_i\omega_i^2=\frac{1}{2}I_c\omega^2+\frac{1}{2}mv_c^2$ $L=\int \mathcal{W} \qquad \mathcal{M}=\int \mathcal{Q} \qquad \mathcal{M}=\mathcal{M}.$ 5、刚体绕轴作定轴转动的转动定理的数学表达式: $M_z=J\alpha=J\frac{d\omega}{dt}=\frac{d(J\omega)}{dt}=\frac{dL_z}{dt}$

在定轴转动中,刚体相对于某转轴的转动惯量与角加速度的乘积,等于作用于刚体的外力相

对同一转轴的合力矩。转动定理和牛顿第二定律在数学形式上是相似的, 合外力矩与合外力 转动惯量与质量相对应,角加速度与加速度相对应。 // 反映质点的平动惯性,

- 7、理解固体的形变规律、应力、应变
- 8、理解流体的运动表征方法、定常流动,理解并会应用伯努里方程。 $p+\frac{1}{2}\rho v^2+\rho gh=c$
- $P = \frac{dF}{dS}$ 理想 临 体连续3程 $SV_1 = S_1V_2$ 平 $P + \frac{1}{2}PV' = C$ 9、理解黏性流体的运动规律 P.S. V. = P. S.V2

练习题

Y= A (as (w++qo) e,+ sin(w++qo)ej)

A. $\vec{v} = 94.27\vec{i} + 125.6\vec{j} + 157.0\vec{k}$

B.
$$\vec{v} = -25.1\vec{i} + 18.8\vec{j}$$

C. $\vec{v} = -25.1\vec{i} - 18.8\vec{j}$

D.
$$\vec{v} = 31.4\vec{k}$$

2. 关于刚体对轴的转动惯量,下列说法中正确的是

- A. 只取决于刚体的质量,与质量的空间分布和轴的位置无关.
- B. 取决于刚体的质量和质量的空间分布,与轴的位置无关,
- C. 取决于刚体的质量、质量的空间分布和轴的位置 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dm$
- D. 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.
- 3. 如图所示,一质量为 m 的匀质细杆 AB,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止. 杆身与竖直方向成 θ 角,则 A 端对墙壁的压

力大小为

$$mq \frac{1}{2} | \sin \theta = fh$$
A. $\frac{1}{4} mg \cos \theta = \frac{h}{1} = 0.00$ B. $\frac{1}{2} mg \sin \theta$

[B]

mg JB

EIPTU

角动量引度. NALCOSO—NBLSING=0

- 4. 有两个力作用在一个有固定转轴的刚体上:下述说法正确的是
 - A. 这两个力都平行于轴作用时,它们对轴的合力矩一定是零.
 - B. 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零.
 - C. 当这两个力的合力为零时,它们对轴的合力矩也一定是零.
 - D. 当这两个力对轴的合力矩为零时,它们的合力也一定是零.

5. 对一个系统来说,下列各种说法正确的是:

山台外矩=0

c.Da

- A. 动量守恒,角动量必守恒;
- B. 角动量守恒, 动量必守恒:
- C. 角动量守恒, 机械能必守恒:
- D. 前三种说法都不正确.
- 6. 如图所示,A、B为两个相同的绕着轻绳的定滑轮,A滑轮挂一质量为M 的物体,B滑轮受拉力F,而且F=Mg。设A、B两滑轮的角加速度分别为 β_A 、 β_B ,不计滑轮与轴

合为矩为零

10. 如图 4-21 所示,一静止的均匀细棒,长为L,质量为M,可绕过棒的端点且垂直于棒长的光滑轴o 在水平面内转动,转动惯量为 $\frac{1}{3}ML^2$ 。一质量均为m 速率为v的子弹在水平面内沿与棒垂直的方向射入棒的自由端,设击穿棒后子弹的速率减小为 $\frac{1}{2}v$,则这时棒的角速度应为: $MU = \frac{1}{2}MU + \frac{1}{3}ML^2W$ [D]

- A. $\frac{mv}{ML}$;
- B. $\frac{3mv}{2ML}$
- $\begin{array}{ccc}
 M & L & \stackrel{\uparrow}{\downarrow} \frac{1}{2} \overline{v} \\
 m & & \\
 \hline
 o & & \\
 \hline
 v & & \\
 \end{array}$

- C. $\frac{5mv}{3ML}$;
- D. $\frac{7mv}{4ML}$

	$Md\theta = dA = JwdW$ $Q M \ge J A \Rightarrow Q = -4 rad/s^2$
	$Md\theta = dA = JwdW$ $Q M \ge Jd \Rightarrow Q = -4 rad/s^2$ 二、填空題 $\int_0^t M_t dt = Jw - Jw \Rightarrow -12t = 3.0 \times (2.0 - b.0) t = 15$
	1. 一作定轴转动的物体,对转轴的转动惯量 $J=3.0kg \cdot m^2$,角速度 $\omega_o=6.0^{rad}/s$,现对
	$M_0 = \frac{1}{2} \left(W_0^{1-} W^{1-} \right)$ 物体加一恒定的制动力矩 $M = -12N \cdot m$,当物体的角速度减慢到 $\omega = 2.0 \frac{rad}{s}$ 时,物体
	又转过了角度 $\Delta\theta = 4 \text{ rad}$ 。
	2. 一根质量为 m、长为 l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动,
	已知细杆与桌面的滑动摩擦系数为 μ ,则杆转动时受的摩擦力矩的大小 $M=\int_0^L dM = \int_0^L x df = \int_0^L dM = \int_0^L x df = \int_0^L x df$
	直平面内可绕过中点 o 且与杆垂直的水平光滑固定轴 (o 轴)转动, 开始时杆与水平成 60°,
	处于静止状态。无初转速地释放以后,杆、球这一刚体系统绕 o 轴转 $\int = \int r^2 dm = 2m$
10	动,系统绕 o ,轴的转动惯量 $J = \frac{2}{4}$ 。杆刚被释放时刚体 O 60° 是到的音外力矩 $M = 4$,角加速度 $\beta = \frac{3}{4}$,杆转
11=2mg-4	受到的各外方矩 M = 工
	到水平位置时,刚体受到的合外力矩 M =
	受到的各外力矩 $M = \frac{1}{2}$,用加速度 $p = \frac{1}{2}$,用加速度 m 到水平位置时,刚体受到的合外力矩 $M = \frac{1}{2}$,用加速度 $2mg_{\overline{\Delta}} - mg_{\overline{\Delta}} = mg_{\overline{\Delta}}$ 。 $\beta = \frac{1}{2}$
	4. 质量分别为 m 和 2m 的两物体(都可视为质点),用一长为 l 的轻质刚性细杆相连,系统
教 :* - -	经通过杆且与杆垂直的竖直固定轴 O 转动,已知 O 轴离质量为 $2m$ 的。 m O
ar A	量为 m 的质点的线速度为 v 且与杆垂直,则该系统对转轴的角动量大
<u>}</u>	小为 MVL $l=\frac{2}{3}l\cdot m\cdot V+\frac{1}{3}l\cdot 2m\cdot \frac{1}{2}=mV$
	5. 由 2N 根质量均为 m 的等长的均质辐条和质量为 M 的均质轮圈构成的转轮,可绕垂直于
	转轮平面并过其中心的转轴转动,若将辐条的数目减少为 N 根,又要保持转轮的转动惯量
	不变,则轮圈的质量应为: $Mf \stackrel{\cdot}{>} N \cdot M$ $MR^2 + N \stackrel{\cdot}{>} MR^2$
	6. 均质圆盘水平放置,可绕通过盘心的铅直轴自由转动,圆盘对该轴的转动惯量为 30, 当
	其转动角速度为 ω 时,有一质量为 m 的质点沿铅直线落到圆盘,并粘在距转轴 $\frac{1}{2}R$ 处,它 $\frac{1}{2}$ 00000000000000000000000000000000000
	1143/HXIX/9 10+ KHYY
	7. 质量为 m 的均质杆,长为 l ,以角速度 ω 绕过杆的中心且垂直于杆的固定轴转动,此时 $\frac{1}{2}$
	杆的动量为 <u>0</u> ,动能为 <u>¬中Ml²W²</u> ,角动量为 <u>¬¬中Ml²W</u> .
	$E_{k}=\frac{1}{5}JW^{2}$ $(=JW=\frac{1}{15}ml^{2}W$

8. 如图所示,A、B两飞轮的轴杆在一条直线上,并可用摩擦啮合器C使它们连结。开始时B轮静止,A轮以角速度 ω_A 转动,设啮合过程中两飞轮不再受 A

其它力矩的作用,当两轮连结在一起后,其相同的角速度为 ω 。若A轮的转动惯量为 J_A ,则B轮的转动惯量 $J_B = (WA-W)J_A/W$ 。

9. 一个转动惯量为I的圆盘绕一固定轴转动,起初角速度为 $\omega_{\rm o}$ 。设它所受阻力矩与转动角

速度成正比 $M=-k\omega$ (k 为正常数),则它的角速度从 ω 。变为 ω_0 /2 所需时间 $\frac{L[n]}{K}$:在上述过程中阻力矩所作的功为 $\frac{2}{8}$ $\frac{1000}{8}$ 。

三、证明题 $-kwdt = Jdw_{w}$, $udw -kt = Jlnw|_{w} t = Jln^2$

1.-M的恒力矩作用在有固定轴的转轮上,在 t_1 秒内该转轮的转速由零增加到 ω 时移去该

力矩,转轮因摩擦力矩 M_f 的作用经 t_2 秒而停止。试证明此转轮对其固定轴的转动惯量为J

$$=\frac{Mt_1t_2}{\omega(t_1+t_2)}$$
 证明: $-$ 本 t 时间内: $M-Mf=J\alpha_1$ $\alpha_1=\frac{U}{t_1}$ 在 t z 时间内: $-Mf=J\alpha_2$ $\alpha_2=\frac{U}{t_2}$ $\alpha_3=\frac{U}{t_3}$ $\alpha_4=\frac{U}{t_3}$ $\alpha_5=\frac{U}{t_3}$ $\alpha_5=\frac{U}{t_3}$ $\alpha_5=\frac{U}{t_3}$ $\alpha_5=\frac{U}{t_3}$ $\alpha_5=\frac{U}{t_3}$ $\alpha_5=\frac{U}{t_3}$ $\alpha_5=\frac{U}{t_3}$ $\alpha_5=\frac{U}{t_3}$ $\alpha_5=\frac{U}{t_3}$

2. 一刚体绕固定轴从静止开始转动,角加速度为一常数、试证明该刚体中任一点的法向加速度和刚体的角位移成正比。

证明 刚体绕圆定轴卷动,角种连贯 $\alpha = \frac{dw}{dt} \Rightarrow \int_0^{\infty} dw = \int_0^{\infty} dt \Rightarrow w = \alpha t$ 取刚体中任一点,其法同加速度 $O_0 = \gamma w = \alpha t^2 \gamma$. 又 $w = \frac{d\theta}{dt} \Rightarrow \int_0^{\theta} d\theta = \int_0^t w dt \Rightarrow \theta = \frac{1}{2} \alpha t^2$

$$\frac{Q_0}{Q_0} = \frac{Q_0^2 + r}{\frac{1}{2}Q_0^2} = 2Q_0^2 + \frac{Q_0}{2}Q_0^2 + \frac{Q$$

又角加速度以为一常数,所以2017为一常数,即则体的个任一点的法向加速度和则体的和创始成正的.

四、计算题

1. 长为 L 的梯子靠在光滑的墙上高为 h 的地方,梯子和地面间的摩擦系数为 μ ,若梯子的重量忽略,试问人爬到距地面多高的地方,梯子就会滑到下来?

解: 做人爬到距地高附处,梯子会滑下来.

$$N_{2} = mg : f = \mu N_{2} = \mu mg = N_{1}$$

$$fh = mgH \cdot tan\theta$$

$$tan\theta = \frac{h^{2}}{h}$$

$$tan\theta = \frac{h}{h^{2}}$$

$$h' = \frac{h}{mg}$$

$$hums \frac{h}{h^{2}h^{2}}$$

$$h' = \frac{h^{2}}{mg}$$

$$hums \frac{h}{h^{2}h^{2}}$$

$$h' = \frac{h^{2}}{h^{2}}$$

2. 文丘里流量计是由一根粗细不均匀的管子做成的,粗部和细部分别接有一根竖直的细管,如图所示。在测量时,将它水平地接在管道上。当管中有液体流动时,两竖直管中的液体会出现高度差 h. 如果粗部和细部的横截面积分别为 S_A和 S_B,

试计算流量和粗、细两处的流速.

解. 设立丘里液体流量为Q. 粗处与细处的流速分别为Va和Ve-

压强分别为PA.PB.

由理想流体的连续性为程 Q=SaVa=SaVa

又由伯努力多程,当理想流体沿水平流管作定常流动时:

$$PA+ \frac{1}{2}PVA = PB+ \frac{1}{2}PVB$$
 且 $PA-B=P9h$.
解得 $Q=NSA-SB$ $SASB$ $\sqrt{SA-SB}$ $VB=\frac{Q}{SB}=\frac{1}{29h}$ $VB=\frac{Q}{SB}=\frac{1}{29h}$ $VB=\frac{Q}{SB}=\frac{1}{29h}$

- 3. 如图所示,有一阶梯状的圆柱形滑轮,内、外半径分别为r和 R,整个滑轮对轴的转动 惯量为 J,滑轮两边分别用细绳拴有质量为 m_1 和 m_2 的重物($m_1 > m_2$)。如果轴与轴承间 的摩擦忽略不计,求
 - (1) 滑轮的角加速度 β =?
 - (2) 绳子中的张力 $T_1 = ? T_2 = ?$

4. 一长l=0.4m 的均匀木棒,质量M=1.00kg,可绕水平轴 0 在竖直平面内转动,开始时棒自然地竖直悬垂。现有m=8g 的子弹以 $v=200\frac{m}{s}$ 的速率从A 点射入棒中,假定A 点

与o点的距离为 $\frac{3}{4}$ l,如图所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。

5、用一种水坝是靠自身重量进行蓄水,其可以简化右图长方体形状的刚体模型。坝身质量为 M,且均匀分布。现蓄水高度为 h。求; (1) 坝体重量对 x 轴的力矩; (2) 水对坝的力矩;

6. 如图所示,一质量为m的的小球由一绳索系着,以角速度 ω_0 在无摩擦的水平面上,绕以半径为 r_0 的圆周运动。如果在绳的另一端作用一竖直向下的拉力,小球则以半径为 $\frac{r_0}{2}$ 的圆周运动。过来。(1)小球等的免费度。(2) 大大大军

周运动。试求:(1)小球新的角速度;(2)拉力所作的功解: (1)小球下下受合外力矩为零 和动量守恒:

mword=mw(5)²

W=4Wo

1 + 98 hm - 1 Mgc =0 > hm= 3 3MC

五、附加题

marsing = = imrac

1、如图半径为 R, 质量为 M 的实心球, 无滑动地从斜面上滚下,

MgsinOR= JB

$$Qc = RB$$
 $J = \frac{1}{3}MR^2$

MgRsinO = $\frac{1}{3}MR^2B = \frac{1}{3}MR^2$. $\frac{Qc}{R}$
 $Qc = \frac{1}{3}gsinO$

2、如图,质量 M 均匀分布的日光灯水平挂在两垂直的细绳上,将其中一根剪断,在剪断瞬 间另一根系绳的张力多大?

解: 料-根绳剪断瞬间,日光灯的转动惯量

基本内容和知识要点

1. 简谐振动的基本特征

(1) 简谐振动的运动学方程: $x = A\cos(\varpi t + \varphi)$

(2) 简谐振动的动力学特征: $\vec{F}=-k\vec{x}$ 或 $\frac{d^2x}{d^2t}+\varpi^2x=0$

(3) 能量特征: $E = E_k + E_p = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}KA^2$, $\overline{E}_k = \overline{E}_p$

- (4) 旋转矢量表示:做逆时针匀速转动的旋转矢量 \overline{A} 在x轴上的投影点的运动可用来表示简谐振动。旋转矢量的长度 $|\overline{A}|$ 等于振动的振幅,旋转矢量的角速度等于谐振动的角频率,旋转矢量在t=0时刻与坐标轴x的夹角为谐振动的初相。
 - 2. 描述简谐振动的三个基本量
 - (1) 简谐振动的相位: $\omega t + \varphi$,它决定了 t 时刻简谐振动的状态; 其中: $\varphi = \arctan(-v_0/\omega x_0)$
 - (2) 简谐振动的振幅: A, 它取决于振动的能量。其中: $A = \sqrt{x_0^2 + v_0^2/\omega^2}$
 - (3) 简谐振动的角频率: ω,它取决于振动系统本身的性质。
 - 3. 简谐振动的合成
 - (1)两个同方向同频率简谐振动的合成:

合振动的振幅: $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$

合振幅最大: $\varphi_2 - \varphi_1 = 2k\pi, k = 0,1,2...$; 合振幅最小: $\varphi_2 - \varphi_1 = (2k+1)\pi, k = 0,1,2...$

(2) 不同频率同方向简谐振动的合成: 当两个分振动的频率都很大, 而两个频率差很小时,

产生拍现象,拍频为 $\Delta \nu = |\nu_2 - \nu_1|$; 合振动不再是谐振动,其振动方程为

$$x = (2A_0 \cos 2\pi \frac{\nu_2 - \nu_1}{2}t)\cos 2\pi \frac{\nu_2 + \nu_1}{2}t$$

- (3) 相互垂直的两个简谐振动的合成:若两个分振动的频率相同,则合成运动的轨迹一般为椭圆;若两个分振动的频率为简单的整数比,则合成运动的轨迹为李萨如图形。
 - (4) 与振动的合成相对应,有振动的分解。

4. 阻尼振动与受迫振动、共振:

阻尼振动:
$$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + \varpi_0^2 x = 0; \ \ \text{受迫振动} \qquad \frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + \varpi_0^2 x = f_0 \cos \varpi t$$

共振: 当驱动力的频率为某一特定值时, 受迫振动的振幅将达到极大值.

- 5. 波的描述
 - (1) 机械波产生条件:波源和弹性介质
- (2) 描述机械波的物理量:波长 λ 、周期T(或频率u)和波速u,三者之间关系为:

$$\lambda = uT$$
 $u = \lambda v$

(3) 平面简谐波的数学描述: $y(x,t) = A\cos[\omega(t\pm\frac{x}{u})+\varphi]$:

$$y(x,t) = A\cos(\omega t \pm \frac{2\pi x}{\lambda} + \varphi); \quad y(x,t) = A\cos 2\pi (\frac{t}{T} \pm \frac{x}{\lambda} + \varphi)$$

其中, x前面的土号由波的传播方向决定, 波沿 x 轴的正(负)向传播, 取负(正)号。

- 6. 惠更斯原理: 波面上的任意一点都可看作是新的次波源,它们发出的次波的包络面就是以后某一时刻新的波面.
 - 7. 波的能量

波的平均能量密度:
$$\overline{w} = \frac{1}{2} \rho A^2 \omega^2$$
; 能量密度 (波的强度): $I = \frac{\overline{P}}{S} = \overline{w}u = \frac{1}{2} \rho A^2 \omega^2 u$

- 8. 波的叠加原理
- (1) 波的相干条件: 频率相同、振动方向相同、相位差恒定
- (2) 波的叠加: $y = y_1 + y_2 = A\cos(\omega t + \varphi)$

相干波加强:
$$\Delta \varphi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1) = \pm 2k\pi, k = 0,1,2...$$

相干波减弱:
$$\Delta \varphi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1) = \pm (2k+1)\pi, k = 0,1,2...$$

(3) 驻波方程: $y = (2A\cos 2\pi \frac{x}{\lambda})\cos 2\pi vt$

波腹位置:
$$x = k\frac{\lambda}{2}, k = 0, \pm 1, \pm 2, ...$$
; 波节位置: $x = (2k+1)\frac{\lambda}{4}, k = 0, \pm 1, \pm 2, ...$

- 9. 半波损失: 当波从波疏介质传入波密介质时,反射波在反射点的发生了 π 的相位突变.
- 10. 多普勒效应 $v' = \frac{u \pm v_0}{u \mp v_s} v$, 其中, 为波速, 分别为观察者、波源相对于介质的运动速度,

均为代数量,相向运动取正,远离运动取负。

练习题

选择题

轻弹簧上端固定,下系一质量为 m_1 的物体,稳定后在 m_1 下边又系一质量为 m_2 的物体,于 是弹簧又伸长了 Ax. 若将系 m2 的绳剪断,则其振动周期为

A.
$$T=2\pi\sqrt{\frac{m_2\Delta x}{m_1g}}$$

$$B.T = 2\pi \sqrt{\frac{m_1 \Delta x}{m_2 g}}$$

E振动周期为
$$m_1g = kXo$$
 [月] $m_1g = kXo$ $m_1g = kXo$ $m_1g = kXo$ $m_1g = k(Xo+oX)$ $m_2g = kAX$ $m_2g = kAX$

$$C. T = \frac{1}{2\pi} \sqrt{\frac{m_1 \Delta x}{m_2 g}}$$

D.
$$T=2\pi\sqrt{\frac{m_2\Delta x}{(m_1+m_2)g}}$$
 $T=2\pi/\omega=2\pi\sqrt{\frac{m_1}{\kappa}}=2\pi\sqrt{\frac{m_1\Delta x}{m_2g}}$

2. 如图所示,将单摆从平衡位置b拉开,使摆线与竖直方向成一微小角度heta。至a点,然后由静 止释放(不计各种阻力)任其振动,从放手开始计时,若用余弦函数表示其运动方程,则单摆的初相位

A.
$$\theta_0$$

D. -θ₀

0=0003 (wt+φ)

X=1/0 ω3 (wt+φ) = 2/003 φ²²/₂

D. -θ₀

D. -θ₀

C:
$$\frac{\pi}{2}$$

3. 下列几个方程中,表示质点振动为"拍"现象的是

[B]

A.
$$y = A\cos(\omega t + \varphi_1) + B\cos(\omega t + \varphi_2)$$
 B. $y = A\cos 200t + B\cos(201t + \varphi)$

B.
$$y = A\cos 200t + B\cos(201t + \varphi)$$

C.
$$x = A_1 \cos \omega t, y = A_2 \sin(\omega t + \varphi)$$
 D. $x = A_1 \cos \omega t, y = A_2 \cos 2\omega t$

D.
$$x = A_1 \cos \omega t, y = A_2 \cos 2\omega t$$

4. 已知一平面简谐波在 X 轴上传播, 波速为 8m/s. 波源位于坐标原点 0 处, 且已知波源的振动方 程为 $y_0 = 2\cos 4\pi t(SI)$. 那么, 在坐标 $x_p = -1m$ 处 P点的振动方程为 Y = (O(UI) - Y) []

A.
$$y_p = 2\cos(4\pi t - \pi)m$$

$$y_p = 2\cos(4\pi t - \pi)m;$$
 B. $y_p = 2\cos(4\pi t + \frac{\pi}{2})m;$

C.
$$y_p = 2\cos(4\pi t - \frac{\pi}{2})m;$$
 D. $y_p = 2\cos 4\pi t \cdot m;$

D.
$$y_p = 2\cos 4\pi t \cdot m$$
;

$$\sqrt{22}$$
 $\sqrt{4\pi}(t-\frac{x}{8})$

5. 如图所示,为一向右传播的简谐波在 t 时刻的波形图,BC 为波密介质的反射面,波由 P 点 反射,则反射波在t时刻的波形图为

	c 双语统统	波在弹性媒质中位	生操 甘 <u></u> 叶玄	左供採方向	・雄馬中一馬骨を	V=(). ∂在负的最大的	
处,			非隐特能			D [A]
	A. 动能为零,	势能最大;	B. 动能最大	,势能最大;			
	C. 动能最大,	势能为零;	D. 动能为零	,势能为零。	•	The state of the s	
			P==PA'u	² US	٧÷宁		
		波由介质 1 垂直道				/ \	2 的
密度	E也是介质 1 的两	所倍,设界面处无 ₉	W 和 反射,则	比波穿过界面的 <u> </u>	前后振幅之比 A₁.	A_2 [A_2	1]
	A. 2 C. 1/2	В.	4 保持人	· 一一一	2ρ		
	C. 1/2	D.	1/4 A:=	는 <i>u</i>	2 <i>u</i>		
	8. 一观测者静	立于铁轨旁, 听到				〈车驶过他身旁	
后,	他听到汽笛声的	勺频率 392Hz. 已失	n空气声速是 33	60m/s, 则火车行	了驶的速度是	ſΑ].
	A. 19m/s	B. 40m/s	C. $38m/s$ $140 = V \frac{330}{330-V}$ $392 = V \frac{330}{330+V}$	D. 条件不,	足不能判定		
	、填空题	·	•				
	f	轴作简谐振动,力			<i>t</i>	多处所需最短距	时间
为_		最大位移到二分:	之一最大位移り	於需最短时间	为6	•	
	2. 两个完全相同	的单摆(m,l均	司)A和B,如图	图所示,开始时	,将单摆	<i>11/11</i>	
Αp]左拉开一小角6)。,将单摆 B 向右	拉开一小角 2 <i>6</i>	, 若将它们同	时从静止	$\theta \theta I$	
释力	效,它们在 最低	太长、处相碰遇,	相遇的时间为	工作	°		ī.
	3. 一个沿 x 轴	作简谐振动的弹簧	養振子,振幅为	A, 周期为 T,	其振动方程用统	余弦函数表示,	. 如
果	在 $t=0$ 时,质点	的状态分别是:	(1) $x_0 = -$	-A (2) 过平衡位置向	正向运动	E-
	(3)过 $x=A/$	2处向负向运动	(4)过 <i>x</i> =	V3Y1=U √2/2A处且向 かるっ	C75(φ ₃ =]正向运动 π π	立 0594	Λ <u>ζ</u> 7π
	亥简谐振动的初	位相分别为: $arphi_{ ext{i}}$ =	π , φ		$\varphi_3 = \boxed{9} \ \overline{3}$	$, \varphi_4 = \underline{}$	十
简		方程分别为:			$x_2 = A C S$	型t控)	 '
	$x_3 = AC3$	(一十里),	$x_4 = A \cos \left(\frac{2}{3}\right)$	学t+强)。			

X=AOS(Wt+q) t=087 X=-A cusφ=-1 ⇒φ=71 4. 有一水平放置的弹簧振子,弹簧的倔强系数 k= 24N/m,重物的质量 m=6kg,重物静止在平衡位置上。设 以一水平恒力 F=10N 向左作用于物体(不计摩擦), 使之由 平衡位置向左运动了 0.05m, 此时撤去力 F. 当重物运动到 $W = \sqrt{\frac{k}{m}} = \sqrt{\frac{24}{6}} = 2 \operatorname{rad/s}$ 左方最远位置时开始过时, 物体的运动方 $X = \frac{1}{2} \cos(2t) \frac{1}{\sqrt{2}} x = \frac{1}{2} k A^2 \Rightarrow A = \sqrt{\frac{1}{2}} = \sqrt{\frac{2 \times 10 \times 0.05}{24}} = \sqrt{\frac{1}{2}} = \frac{1}{2} \sqrt{\frac{1}{6}}$ 5. 两个同方向同频率的简谐振动, 其合振动的振幅为 20cm, 与第一个简谐振动的位相差为 (φ-φ.) $=\pi/6$. 若第一个简谐振动的振幅为 $10\sqrt{3}=17.3$ cm,则第二个简谐振动的振幅为 $10\sqrt{6}$ 第一、二两个简谐振动的位相差 $(\varphi_1-\varphi_2)$ 为_____。 $A^2=500+400-2$ $X[\omega \overline{U}]$ $\times 20$ $X_2^{\overline{U}}=100$ A= NAi+A=+2A,A2C4(10,-6) 的振动相位差为 7. 如图所示,有一平面简谐波沿 X 轴负方向传播,坐标原点 O的振动方程为 $y = A\cos(\omega t + \omega_0)$, 则 B 点的振动方程为 $Y=A\cos(\omega t+\frac{\Delta t}{\lambda}X+\varphi_0)$ $Yt+\frac{\lambda}{\lambda}Y+\pi$ 文射波方程是 $y_2=A\cos 2\pi(\omega -x/\lambda)$,设反射波无能量损失,那 么入射波的方程式是 yi= Acus [上下(Vt+X)+丁] 形成的驻波表达式是 y= ____ 2A SINITVH SIN YO Y=>1+X= A02(INVt - INX)+AC3(INV++INX+ 元 土体机至 ⇒ X=±的41分 K=0、1,12、··· =2A C3 (2型+至) C3 (元+至) 9. 两列波长为 λ 的相干波在 P 点相遇, S_1 点的初位相是 φ_1 , S_1 到 P 点的距离是 r_1 ; S_2 点的初位 相是 φ_2 , S_2 到 P 点的距离是 D_2 ; 以 R 代表零或正、负整数时,则 P 点是干涉极大的条件

 $\Delta \varphi = \varphi_2 - \varphi_1 - 2\pi \frac{\gamma_2 - \gamma_1}{\lambda} = \pm 2k\pi$

为 42-9,-211 12-11 = +21/11.

10. 已知某音叉与频率为 511Hz 的音叉产生的拍频为每秒一次, 而与另一频率为 512Hz 的音叉产生的拍频为每秒两次, 则此音叉的振动频率为 5 0 H 2 。

捕飯 ν=ν2-γ1

| V-5|||=| | V-5|||=|

三、计算题

- -个光滑的半径为R的球形碗底作微小振动,如图所示。设t=0时, 1.一个质量为 m 的小球在一 $\theta = 0$,小球的速度为 ν_0 ,向右运动。
 - (1) 试求在振幅很小情况下,分别从动力学方程法和能量法两个方面给出小球的振动方程;
 - (2) 说明小球的运动是否为简谐振动?

由于 战和10=0. 2. 一弹簧振子沿X轴作简谐振动,已知振动物体最大位移为x=0.4m,最大恢复力为F=0.8N, 最大速度为 $v_0=0.8$ m/s,已知 t=0 时的初位移为+0.2 m,且初速度与所选 X 轴方向相反.

- (1) 求振动能量;

(2) 求此振动的表达式.
解: (1)
$$k = \frac{Fm}{Xm} = \frac{0.8}{0.4} N/m = 2N/m$$

 $Em = \frac{1}{2} k \cdot Xm = \frac{1}{2} X_{2} X_{0} + \frac{1}{2} = 0.16$
(2) 又 $Em = \frac{1}{2} m Vm$ $\Rightarrow m = 0.5 kg$

 $W^2 = \frac{k}{m} = \frac{2}{0.5} = 4 \implies W = 2$

由题设 A=0.4. 则振动表达式 $X = A \cos(\omega t + \varphi) = 0.4 \cos(2t + \varphi)$ 又t=0时的初位移为+0.2m,则 04039=02 多中等 则 X=0.403(2++墨).

故小球的运动为简谐振动.

- 3. 有一在光滑水平面上作谐振动的弹簧振子, 劲度系数为k, 物体质量为m, 振幅为 A。当物体 通过平衡位置时,有一质量为的泥团竖直落在物体上,并与之粘在一起.求:
 - (1) 系统的振动周期和振幅各是多少?
 - (2) 振动总能量损失了多少?
 - (3) 如果当物体达到最大振幅 A 时,泥团竖直掉落到物体上,则系统的周期和振幅又是多少?振动 的总能量是否改变?物体系通过平衡位置时的速度又是多少?

解:(1) T= 211/1/1/10

泥团竖直落在物体上,参纯动量守恒。mV= (m+mo)V' V'= m+mo)V

则 = kA1======(m+mo)V12 A' = V' \(\lambda \text{m+mo} = A \) \(\lambda \text{m+mo} \)

(5)
$$\nabla E^{K} = \frac{7}{7} M \Lambda_{5} - \frac{1}{7} (W+W^{0}) \Lambda_{5} = \frac{1}{7} K V_{5} \frac{W+W^{0}}{W^{0}}$$

- 13) T= 217 NIEM. 非原络仍然为A. 非耐能能量液 字KA===1m+moin, A= Y m+mo
- 4. 一简谐波沿 OX 轴正方向传播波长 λ =4m,周期 T=4s, 已知 x=0 处质点的振动曲线如图所示,
- (1) 写出 x=0 处质点的振动方程:

- (2) 写出波的表达式:
- (3) 画出 t=1s 时刻的波形曲线。
- 解·11) 设振动分程为U=Acos(Wttφ),由图知A=TXIO2m 当t=0 = 是X10-2 = NIX10-2 cos4 > 4=至 所以X=0处质点的振动3程 y= /正X10-2 as (至++至)
 - (2) $y = Acos (wt + 9 \frac{2\pi x}{2}) = \frac{\sqrt{5}}{100} cos (\frac{\pi}{2}t \frac{\pi}{2}x + \frac{\pi}{3})$

当 $\chi=0$ 时, $\chi=-\frac{100}{100}$ m= $-\frac{100}{100}$ cus ($\Xi-\Xi \chi+\Xi$)= $-\frac{100}{100}$ sin ($-\Xi \chi+\Xi$)= $\frac{100}{100}$ sin ($\Xi \chi-\Xi$) 当少的 x= 章成等 录片 企物 3 時 失 章

录》=-YEXYO_3B\$ X===

2. 如图所示,(A)表示一驻波在 t 时刻振动到最大位移处的波形,图中(B)表示一右行波在 t 时刻的波形,分别在图中标出 a、b、c、d 四点此时的运动速度方向. 并简要概述驻波和行波的区别? (提示: 从振幅、相位以及能量特点三个方面考虑)

驻波每一段上各点着以相同的相位振动,而靠幅不同,波腹的振幅最大,相邻两段上各点的振动相位相反。

在驻波中,波腹附近的动能与波节附近的势能之间不断进行着互相转换和转移,却没有能量的定向传播。