CSE-315 Microprocessor

Waqar Hassan Khan

Student ID: 1505107

1 Chapter-9: 8086/8088 specification

- virtually no differences between these two microprocessors. Both are packaged in 40-pin dual in-line package.
- 8086:16 bit microprocessor with a 16bit data bus(A0-A15)
 8088:16 bit microprocessor with a 8bit data bus(A0-A7)
 major difference between 8086 and 8088.
- Minor differences

8086: $\mathrm{M}/\overline{IO};$ 8088: IO/\overline{M}

PIN34:-**8086**:*BHE*/S7;**8088**:SS0

• power supply requirements:

 $+5\mathrm{v}$ with a supply voltage tolerance of +-10%

both 32F to 180F

8086 and 8088 have 340 and 360 mA.

figures in the book

1.1 Pin Connection

- AD7-AD0:

- -8088 address/data bus lines
- -multiplexed address data bus
- -rightmost 8 bits of the memory address or I/O port whenever

-high impedance state during hold acknowledge.

- A15-A8:

- -8088 address bus
- -high impedance state during hold acknowledge.

- AD15-AD8:

- -8086 address/data bus lines.
- -contains address bits when ALE=1
- -high impedance state during hold acknowledge.

- A19/S6-A16/S3:

- -multiplexed address/data bus lines
- -high impedance state during hold acknowledge.

- **S6:** always 0

- S5: indicated the condition of IF flag

S4	S3	indicate segment accessed during current bus cycle
0	0	extra segment
0	1	stack segment
1	0	code or no segment
1	1	data segment

- - \overline{RD} : if it is 0 then the data bus becomes receptive to data from memory or i/o devices connected to the system.
 - -high impedance state during hold acknowledge.

- READY:

- -enters into wait state and remains idle if 0
- -no effect on operations of microprocessor if this pin is in logic state 1.

- INTR:

- -used to request a h/w interrupt.
- -if INTR=1 when IF=1 then microprocessor enters an interrupt acknowledge cycle after completion of current instruction

− NMI:

- -non maskable interrupt pin.
- -similar to INTR except do not check IF flag.

$-\overline{\mathbf{TEST}}:$

- -an input that is tested by **wait** instruction. -if it is 0, the **WAIT** functions as **NOP**.
- -if 1 then **WAIT** waits for $\overline{\mathbf{TEST}}$ to become logic 0.