

COMMUNICATIONS SYSTEM AND METHOD FOR SYNCHRONISING A COMMUNICATIONS CYCLE

Patent Number: WO03028259
Publication date: 2003-04-03
Inventor(s): BERNECKER HERBERT (DE); GOETZ FRANZ-JOSEF (DE); KRAUSE KARL-HEINZ (DE); SCHEITHAUER GERHARD (DE); ARNOLD JOHANN (DE); KLOTZ DIETER (DE); BRUECKNER DIETER (DE); MUELLER CHRISTIANE (DE); SCHIMMERM JUERGEN (DE)
Applicant(s): BERNECKER HERBERT (DE); GOETZ FRANZ-JOSEF (DE); KRAUSE KARL-HEINZ (DE); SCHEITHAUER GERHARD (DE); ARNOLD JOHANN (DE); KLOTZ DIETER (DE); SIEMENS AG (DE); BRUECKNER DIETER (DE); MUELLER CHRISTIANE (DE); SCHIMMERM JUERGEN (DE)
Requested Patent: WO03028259
Application Number: WO2002DE03437 20020913
Priority Number(s): DE20011047422 20010926
IPC Classification: H04J3/06; G06F1/14
EC Classification: H04J3/06C1
Equivalents: DE10147422
Cited Documents: EP0991216; US6042477

Abstract

The invention relates to a method for synchronising a communications cycle and a communications node in a network (1). Said node comprises: means (port A) for receiving a desired value (7) for a time base of a communications cycle of the communications node in a communications link to an additional communications node (3, 4, 5) of the network; means (19, 21) for determining a system deviation between the desired value (7) and an actual value of the time base; and means (22, 23) for generating a manipulated variable for correcting the time base in accordance with the system deviation.

Data supplied from the esp@cenet database - I2

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro(43) Internationales Veröffentlichungsdatum
3. April 2003 (03.04.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/028259 A1

- (51) Internationale Patentklassifikation⁷: H04J 3/06, (71) Anmelder (für alle Bestimmungstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).
- (21) Internationales Aktenzeichen: PCT/DE02/03437
- (22) Internationales Anmeldedatum: 13. September 2002 (13.09.2002)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität: 101 47 422.9 26. September 2001 (26.09.2001) DE
- (22) Erfinder; und
(75) Erfinder/Anmelder (nur für US): ARNOLD, Johann [DE/DE]; Zeidlerstrasse 13, 90530 Wendelstein (DE); BERNECKER, Herbert [DE/DE]; Baumgartenweg 32, 91560 Heilbronn (D), BRÜCKNER, Dieter [DE/DE]; Obern Dorfstrasse 10, 96199 Zapfendorf (DB), GOTZ, Franz-Josef [DE/DE]; Laibstadt 48, 91180 Heideck (DE), KLOTZ, Dieter [DE/DE]; Kannenbergstrasse 15, 90768 Fürth (DE), KRAUSE, Karl-Heinz [DE/DE]; Augraben 41, 90475 Nürnberg (DE), MÜLLER, Christian [DE/DE]; Schillerstrasse 1, 91083 Bairsdorf (DE), SCHEITHAUER, Gerhard [DD/DD]; Tetzeweg 16,

[Fortsetzung auf der nächsten Seite]

(54) Title: COMMUNICATIONS SYSTEM AND METHOD FOR SYNCHRONISING A COMMUNICATIONS CYCLE

(54) Bezeichnung: KOMMUNIKATIONSSYSTEM UND VERFAHREN ZUR SYNCHRONISATION EINES KOMMUNIKATIONSZYKLUS

- 30 ...RECEIPT OF DESIRED VALUE FROM CLOCK PULSE GENERATOR
- 32... DETERMINATION OF SYSTEM DEVIATION FROM DESIRED VALUE AND ACTUAL VALUE
- 34... DETERMINATION OF MANIPULATED VARIABLE FROM ADJUSTMENT RULE FOR CORRECTING THE DURATION OF THE CYCLE FOR A SUBSEQUENT CYCLE WITH UNIFORM DISTRIBUTION OF CORRECTION DURING THE CYCLE
- 36... ACTIVATE MANIPULATED VARIABLE AFTER OUTPUT OF CYCLE SIGNAL

(57) Abstract: The invention relates to a method for synchronising a communications cycle and a communications node in a network (1). Said node comprises: means (port A) for receiving a desired value (7) for a time base of a communications cycle of the communications node in a communications link to an additional communications node (3, 4, 5) of the network; means (19, 21) for determining a system deviation between the desired value (7) and an actual value of the time base; and means (22, 23) for generating a manipulated variable for correcting the time base in accordance with the system deviation.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Synchronisation eines Kommunikationszyklus und einen Kommunikationsknoten in einem Netzwerk (1) mit: Mitteln (Port A) zum Empfang eines Soll-Wert (7) für eine Zeitbasis eines Kommunikationszyklus des Kommunikationsknoten einer Kommunikationsverbindung mit einem weiteren Kommunikationsknoten (3, 4, 5) des Netzwerks; Mitteln (19, 21) zur Ermittlung einer Regelausweichung aus dem Soll-Wert (7) und einem Ist-Wert der Zeitbasis; Mitteln (22, 23) zur Erzeugung einer Stellgröße zur Nachregelung der Zeitbasis entsprechend der Regelausweichung.

WO 03/028259 A1

91058 Frlangen (DE); **SCHIMMER, Jürgen** (DE/DH);
Franz-Reichel-Ring 97, 90473 Nürnberg (DE).

— *Erfindererklärung (Regel 4.17 Ziffer iv) nur für US*

(74) **Gemeinsamer Vertreter:** **SIEMENS AKTIENGESELLSCHAFT**; Postfach 22 16 34, 80506 München (DE).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

(81) **Bestimmungsstaaten (national):** CA, CN, US.

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Erklärungen gemäß Regel 4.17:

- *hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten CA, CN, europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR)*

Beschreibung

Kommunikationssystem und Verfahren zur Synchronisation eines Kommunikationszyklus

5

Die Erfindung betrifft ein Kommunikationssystem und Verfahren zur Synchronisation eines Kommunikationszyklus, insbesondere zur Anwendung in Automatisierungssystemen.

- 10 Aus dem Stand der Technik sind verschiedene Verfahren und Systeme zur Herstellung von Kommunikationsverbindungen zwischen den Teilnehmern eines Datennetzes bekannt. Weit verbreitet sind Bussysteme, bei denen jeder Teilnehmer jeden anderen Teilnehmer des Datennetzes direkt über das Bussystem
15 adressieren kann. Ferner sind schaltbare Datennetze bekannt, bei denen so genannte Punkt-zu-Punkt Verbindungen hergestellt werden, d. h., ein Teilnehmer kann alle anderen Teilnehmer des schaltbaren Datennetzes nur indirekt, durch entsprechende Weiterleitung der zu übertragenden Daten mittels einer oder
20 mehrerer Koppeleinheiten erreichen.

- Datennetze ermöglichen die Kommunikation zwischen mehreren Teilnehmern durch die Vernetzung, also Verbindung der einzelnen Teilnehmer untereinander. Kommunikation bedeutet dabei
25 die Übertragung von Daten zwischen den Teilnehmern. Die zu übertragenden Daten werden dabei als Datentelegramme verschickt, d.h. die Daten werden zu mehreren Paketen zusammengepackt und in dieser Form über das Datennetz an den entsprechenden Empfänger gesendet. Man spricht deshalb auch von Datenpaketen. Der Begriff Übertragung von Daten wird dabei im weiteren synonym zur oben erwähnten Übertragung von Datentelegrammen oder Datenpaketen verwendet.

- Die Vernetzung selbst wird beispielsweise bei schaltbaren
35 Hochleistungsdatennetzen, insbesondere Ethernet, dadurch gelöst, dass zwischen zwei Teilnehmern jeweils mindestens eine Koppeleinheit geschaltet ist, die mit beiden Teilnehmern ver-

bunden ist. Jede Koppeleinheit kann mit mehr als zwei Teilnehmern verbunden sein. Jeder Teilnehmer ist mit mindestens einer Koppeleinheit, aber nicht direkt mit einem anderen Teilnehmer verbunden. Teilnehmer sind beispielsweise Computer, speicherprogrammierbare Steuerungen (SPS) oder andere Maschinen, die elektronische Daten mit anderen Maschinen austauschen, insbesondere verarbeiten.

In verteilten Automatisierungssystemen, beispielsweise im Bereich Antriebstechnik, müssen bestimmte Daten zu bestimmten Zeiten bei den dafür bestimmten Teilnehmern eintreffen und von den Empfängern verarbeitet werden. Man spricht dabei von echtzeitkritischen Daten bzw. Datenverkehr, da ein nicht rechtzeitiges Eintreffen der Daten am Bestimmungsort zu unerwünschten Resultaten beim Teilnehmer führt. Gemäss IEC 61491, EN61491 SERCOS interface - Technische Kurzbeschreibung (http://www.sercos.de/deutsch/index_deutsch.htm) kann ein erfolgreicher echtzeitkritischer Datenverkehr der genannten Art in verteilten Automatisierungssystemen gewährleistet werden.

Ebenso ist an sich aus dem Stand der Technik bekannt in einem solchen Automatisierungssystem ein synchrones, getaktetes Kommunikationssystem mit Äquidistanz-Eigenschaften zu verwenden. Hierunter versteht man ein System aus wenigstens zwei Teilnehmern, die über ein Datennetz zum Zweck des gegenseitigen Austausches von Daten bzw. der gegenseitigen Übertragung von Daten miteinander verbunden sind.

Dabei erfolgt der Datenaustausch zyklisch in äquidistanten Kommunikationszyklen, die durch den vom System verwendeten Kommunikationstakt vorgegeben werden. Teilnehmer sind beispielsweise zentrale Automatisierungsgeräte, Programmier-, Projektierungs- oder Bediengeräte, Peripheriegeräte wie z.B. Ein-/ Ausgabe-Baugruppen, Antriebe, Aktoren, Sensoren, speicherprogrammierbare Steuerungen (SPS) oder andere Kontrolleinheiten, Computer, oder Maschinen, die elektronische Daten mit anderen Maschinen austauschen, insbesondere Daten von an-

- deren Maschinen verarbeiten. Unter Kontrolleinheiten werden im folgenden Regler- oder Steuerungseinheiten jeglicher Art verstanden. Als Datennetze werden beispielsweise Bussysteme wie z.B. Feldbus, Profibus, Ethernet, Industrial Ethernet, 5 FireWire oder auch PC-interne Bussysteme (PCI), etc. verwendet.

Automatisierungskomponenten (z.B. Steuerungen, Antriebe,...) verfügen heute im Allgemeinen über eine Schnittstelle zu einem 10 zyklisch getakteten Kommunikationssystem. Eine Ablaufebene der Automatisierungskomponente (Fast-cycle) (z.B. Lageregelung in einer Steuerung, Drehmomentregelung eines Antriebs) ist auf den Kommunikationszyklus synchronisiert. Dadurch wird der Kommunikationstakt festgelegt. Andere, niederperformante 15 Algorithmen (Slow-cycle) (z.B. Temperaturregelungen) der Automatisierungskomponenten können ebenfalls nur über diesen Kommunikationstakt mit anderen Komponenten (z.B. Binärschalter für Lüfter, Pumpen,...) kommunizieren, obwohl ein langsamerer Zyklus ausreichend wäre. Durch Verwendung nur eines 20 Kommunikationstaktes zur Übertragung von allen Informationen im System entstehen hohe Anforderungen an die Bandbreite der Übertragungsstrecke.

Zur Anwendung in Automatisierungssystemen ist insbesondere 25 aus dem Stand der Technik der PROFIBUS sowie PROFINet bekannt. Technische Informationen finden sich hierzu unter www.profibus.com. In Profibusnetzen wird die Synchronisation der Kommunikationszyklen, d. h. der so genannten Isochronzyklen, über eine Phase Locked Loop (PLL) vollständig in Hardware realisiert. Dies ist möglich, da den Profibus-Topologien 30 Bus-Strukturen zugrunde liegen. Ein Aufbau von Punkt-zu-Punkt Verbindungen ist hiermit jedoch nicht möglich, insbesondere nicht in einem auf Ethernet basierenden Netzwerk. Die in Hardware realisierte PLL eines Profibus-Systems führt zu 35 Schwingungseffekten in einem Ethernet-Netzwerk.

Der Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes Verfahren zur Synchronisation eines Kommunikationszyklus, einen verbesserten Kommunikations-Knoten sowie ein verbessertes Kommunikations-System und Automatisierungssystem
5 und ein entsprechendes Computerprogrammprodukt zu schaffen.

Die Erfindung erlaubt es Punkt-zu-Punkt Verbindungen zwischen den Knoten eines Ethernet-Netzwerkes aufzubauen. Die einzelnen Kommunikationsverbindungen zwischen den Knoten laufen dabei vorzugsweise in zueinander synchronen Kommunikationszyklen ab. Zur Synchronisation der Kommunikationszyklen ist in jedem der Knoten ein Regler vorgesehen.
10

Nach einer bevorzugten Ausführungsform der Erfindung erfolgt die Nachregelung eines Kommunikationszyklus gleichmäßig über einen Kommunikationszyklus verteilt, d. h. ver teilt über den aktuellen Kommunikationszyklus oder den nachfolgenden Kommunikationszyklus. Damit ist erreichbar, dass der unterlagerte höherfrequente Zyklus innerhalb des Isochronzyklus lediglich 15 einen so genannten Jitter von einem Timer-Takt aufweist.
20

Nach einer weiteren bevorzugten Ausführungsform der Erfindung wird der Soll-Wert der Zeitbasis in jedem der Knoten von einem Taktgeber zur Verfügung gestellt. Der Taktgeber generiert ein Datentelegramm an einen bestimmten Knoten mit dem Soll-Wert der Zeitbasis des Knotens zum Empfangszeitpunkt des Datentelegramms an dem Knoten, indem der Taktgeber den Soll-Wert aus der Zeitbasis des Taktschägers unter Berücksichtigung der Laufzeit des Datentelegramms zu dem Knoten ermittelt.
25
30

Im Weiteren werden bevorzugte Ausführungsbeispiele der Erfindung mit Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen:
35

Fig. 1 ein Blockdiagramm einer Ausführungsform eines erfindungsgemäßen Kommunikationssystems,

Fig. 2 ein Blockdiagramm einer Ausführungsform eines erfindungsgemäßen Kommunikationsknotens,

5 Fig. 3 ein Flussdiagramm einer bevorzugten Ausführungsform eines erfindungsgemäßen Verfahrens zur Synchronisation von Kommunikationszyklen,

10 Fig. 4 ein Signaldiagramm zur Veranschaulichung der Nachregelung der Zeitbasis in einem Kommunikationsknoten.

Die Fig. 1 zeigt ein Netzwerk 1 mit den Kommunikationsknoten 2, 3, 4 und 5. Bei dem Kommunikationsknoten 5 handelt es sich um einen Takschläger-Knoten, der die Referenzzeitbasis für 15 die Synchronisation der Zeitbasen in den anderen Knoten des Netzwerks 1 zur Verfügung stellt. Die Referenztaktschlägerzeitbasis des Kommunikationsknotens 5 wird durch einen Timer 6 generiert, welcher durch Taktung mit einer lokalen Clock des Kommunikationsknotens 5 ständig von 0 bis n-1 zählt.

20 Der Kommunikationsknoten 5 dient zur Erzeugung eines Datentelegramms 7 für den Knoten 2. Das Datentelegramm 7 beinhaltet den Soll-Wert der Zeitbasis des Knotens 2 zum Empfangszeitpunkt des Datentelegramms.

25 Die Zeitbasis des Knotens 2 ist durch einen Timer 8 realisiert, der prinzipiell gleich aufgebaut ist wie der Timer 6 des Kommunikationsknotens 5. Der Timer 8 hat eine eigene lokale Clock zur Taktung des Zählwerks des Timers, die unabhängig von der Clock des Kommunikationsknotens 5 ist. Beim Einschalten des Knotens 2 ist der Timer 8 daher zu dem Timer 6 asynchron. Nach einer anfänglichen Synchronisation ist ständig eine Nachregelung erforderlich, da die Taktfrequenzen der verschiedenen Clocks der Zeitbasen nie genau identisch sind.

35 Zur Synchronisation der Zeitbasis des Knotens 2, d. h. von dessen Timer 8, erzeugt der Kommunikationsknoten 5 das Daten-

telegramm 7. Das Datentelegramm 7 wird von dem Port H des Kommunikationsknotens 5 an den Port A des Kommunikationsknotens 2 über die entsprechende Netzwerkverbindung in dem Netzwerk 1 gesendet. Auf diese Art und Weise erhält der Kommunikationsknoten 2 den notwendigen Soll-Wert für die Nachrege-
5 lung von dessen Zeitbasis.

Entsprechend erhalten auch die Kommunikationsknoten 3 und 4 von den Kommunikationsknoten 5 Datentelegramme 7 zur Regelung
10 der entsprechenden Timer 9 und 10.

Nach der Synchronisation der Zeitbasen in den einzelnen Knoten 2, 3 und 4 des Netzwerks 1 sind die Kommunikationszyklen von Punkt-zu-Punkt Verbindungen des Netzwerks 1 zueinander
15 synchron. Beispielsweise kann der Kommunikationsknoten 2 an den Kommunikationsknoten 3 ein oder mehrere Datentelegramme während eines Kommunikationszyklus mittels einer Punkt-zu-Punkt Verbindung zwischen dem Port B des Kommunikationsknotens 2 und dem Port C des Kommunikationsknotens 3 senden.

Entsprechend können auch Datentelegramme während des synchronisierten Kommunikationszyklus von dem Port 4 des Kommunikationsknotens 3 an dem Port B des Kommunikationsknotens 2 empfangen werden. Das gleiche trifft entsprechend zu für die
25 Kommunikation von zwei verschiedenen Kommunikationsknoten, die durch eine Netzwerkverbindung des Netzwerks 1 miteinander verknüpft sind.

Wenn eine solche unmittelbare Netzwerkverbindung nicht besteht, wird eine Kommunikationsverbindung über ein Koppelfeld in den Kommunikationsknoten hergestellt. Wenn beispielsweise der Kommunikationsknoten 4 ein Datentelegramm an den Kommunikationsknoten 2 senden möchte, wird dies so erfolgen, dass der Kommunikationsknoten 4 zunächst von dessen Port E an den
35 Port D des Kommunikationsknotens 3 das Datentelegramm sendet, von wo aus es über das Koppelfeld des Kommunikationsknotens 3 an den Port C weitergeleitet wird, um von dort über die di-

rekte Netzwerkverbindung Punkt-zu-Punkt zu dem Port B des Kommunikationsknotens 2 übertragen zu werden.

Dieser Vorgang setzt insbesondere für echtzeitfähige Daten-
5 Übertragung in einem deterministischen Kommunikationssystem,
wie sie insbesondere für die Zwecke der Automatisierungstechnik benötigt wird, eine Synchronisation der Kommunikationszyklen der einzelnen Punkt-zu-Punkt Verbindungen in dem Netzwerk 1 voraus.

10 Die Fig. 2 zeigt ein Blockdiagramm des Kommunikationsknotens 2 der Fig. 1. Der Timer 8 des Kommunikationsknotens 2 hat einen Zähler 11, der ständig von 0 bis zu dem Schwellwert n-1 in dem Schwellwertregister 12 zählt. Der Zähler 11 wird durch 15 einen lokalen Oszillatator 13, d. h. eine so genannte Clock, getaktet.

Der Inhalt des Schwellwertregisters 12, d. h. der Parameter n, ist durch einen Benutzer wählbar. Durch die Wahl des Parameters n wird die Länge eines Kommunikationszyklus definiert.
20

Der Zähler 11 hat ein Register 14 mit dem Ist-Wert des Zählers. Ferner hat der Zähler 11 ein Register 15 und ein Register 16, jeweils für die Speicherung eines Parameters S_1 und 25 S_2 , der Stellgrößen für die Regelung des Zählers 11 zur Synchronisation der Zeitbasis des Kommunikationszyklus.

Bei Erreichung des durch den Inhalt des Schwellwertregisters 12 gegebenen Schwellwerts gibt der Zähler 11 ein Zyklussignal 30 ab, welches einen Übertragungszyklus startet. Dieses Zyklussignal wird beispielsweise an den Port B des Kommunikationsknotens 2 ausgegeben. Der Port B beinhaltet eine Sendeliste 17 und eine Empfangsliste 18. Während eines Kommunikationszyklus werden sowohl die Sendeliste 17 als auch die Empfangsliste 35 18 abgearbeitet.

- Der Kommunikationsknoten 2 hat ferner ein Programm 19. Das Programm 19 hat ein Programm-Modul 20 für die Eingabe des Zähler-Ist-Werts des Zählers 11 und des Zähler-Soll-Werts. Ferner hat das Programm 19 ein Programm-Modul 21 zur Bestim-
5 mung einer Regelabweichung aus dem Vergleich von Zähler-Ist- Wert und Zähler-Soll-Wert. Ferner hat das Programm 19 Pro- gramm-Module 22 und 23 mit jeweils einer Regelvorschrift zur Erzeugung einer Stellgröße zur Regelung bzw. Nachregelung der Zeitbasis entsprechend der Regelabweichung. Das Programm-
10 Modul 22 dient dabei zur Regelung in einer Initialisierungs- phase und das Programm-Modul 23 zur Nachregelung während des Betriebs. Beide Programm-Module 22 und 23 erzeugen die Parame- ter S_1 und S_2 , der Stellgröße für die Nachregelung der Zeit- basis, d. h. des Zählers 11 des Timers 8.
- 15 Das Programm 19 empfängt an dessen Eingang den Inhalt des Registers 14, d. h. den Zähler-Ist-Wert und erhält außerdem über eine Kommunikationsverbindung des Kommunikationsknotens 2 mit dem Kommunikationsknoten 5 (vgl. Fig. 1) das Datentele-
20 gramm 7 (vgl. ebenfalls Fig. 1) über den Port A des Kommuni- kationsknotens 2.
- Während der Initialisierungsphase des Knotens 2, d. h. wäh-
25 rend der anfänglichen Synchronisation des asynchron laufenden Zählers 11, empfängt der Kommunikationsknoten 2 das Datentelegramm 7 mit dem aktuellen Zähler-Soll-Wert. Dieses Datentelegramm 7 wird von dem Kommunikationsknoten 5, d. h. dessen Port H am Port A des Kommunikationsknotens 2 empfangen und von dort zum Programm 19 weitergeleitet.
- 30 Ebenfalls wird in das Programm 19 der Zähler-Ist-Wert aus dem Register 14 eingegeben. Aus dem Programm-Modul 20 werden die entsprechenden Zähler-Ist- und Soll-Werte dann an das Pro- gramm-Modul 21 weitergeleitet, um die Regelabweichung zu er-
35 mitteln.

Hierzu greift das Programm-Modul 21 während der Initialisierungsphase auf das Programm-Modul 22 zu. Dieses erzeugt dann die Stellgröße, d. h. die Parameter S_1 und S_2 der Stellgröße. Diese Parameter werden von dem Programm 19 in die Register 15 bzw. 16 geschrieben. Diese Nachregelung wird vorzugsweise erst, nachdem das Zyklussignal abgegeben worden ist, wirksam, d. h. für den nachfolgenden Kommunikationszyklus.

- Der Parameter S_1 gibt für einen solchen nachfolgenden Kommunikationszyklus an, welche der Takte in dem Kommunikationszyklus durch die Regelung beeinflusst werden sollen. Hierbei kann es sich z. B. um jeden zweiten, dritten oder m-ten Takt handeln. Der Parameter S_2 in dem Register 16 gibt hingegen an, wie mit den zu beeinflussenden Takten zu verfahren ist.
- Vorzugsweise ist der Inhalt des Registers 16 entweder 0 oder 2, d. h. es wird eine Zyklusverlängerung dadurch erreicht, dass der Zähler 11 bei dem betreffenden Takt nicht inkrementiert wird oder es wird eine Zyklusverkürzung dadurch erreicht, indem der Zähler 11 an dem betreffenden Takt um 2 inkrementiert wird. Die Nachregelung mittels der Parameter S_1 und S_2 muss jedoch nicht zwingend im unmittelbar nachfolgenden Kommunikationszyklus erfolgen, sondern kann auch in einem späteren Kommunikationszyklus vorgenommen werden.
- Nach der Initialisierungsphase, d. h. nach der anfänglichen Synchronisation des zunächst völlig asynchron laufenden Zählers 11 wählt das Programm-Modul 21 das Programm-Modul 23 für die Nachregelung, welches dann die Parameter S_1 und S_2 nach der für die Betriebsphase zur Anwendung kommenden Regelvorschrift erzeugt. Durch diese Art und Weise der Nachregelung wird die Verlängerung bzw. Verkürzung des Kommunikationszyklus gleichmäßig über die Takte während eines Kommunikationszyklus verteilt.
- Nach einer alternativen bevorzugten Ausführungsform wird die Synchronisierung während der Initialisierungsphase des Knotens nicht durch eine Regelung vorgenommen, bei der (wie im

Betrieb) die Anzahl der auszuregelnden Takte innerhalb des Zyklus gleichverteilt werden. Mit Hilfe des ersten Synchronisations-Telegramms in der Initialisierungsphase wird dagegen der Synchronisations-Slave erstmals "hart" auf den Wert des 5 Synchronisations-Masters gesetzt.

Dies ist vorteilhaft, um bei einer max. Regeldifferenz von einem halben Isochronzyklus keine unnötig langen Einschwingzeiten zu erhalten. Dies ist insbesondere bei Netzen mit mehreren 10 Knoten erforderlich, da ansonsten u.U. Schwingungseffekte im Netz auftreten können, die eventuell überhaupt kein Einschwingen und damit keine Synchronisation zulassen.

Die Fig. 3 zeigt ein Flussdiagramm einer Ausführungsform des 15 erfindungsgemäßen Verfahrens. In dem Schritt 30 erfolgt ein Empfang des Soll-Werts der Zeitbasis des betreffenden Kommunikationsknotens von einem Takschläger des Kommunikationssystems. In dem Schritt 32 wird aus dem Unterschied zwischen Soll-Wert und dem Zähler-Ist-Wert der Zeitbasis des betreffenden 20 Kommunikationsknotens eine Regelabweichung ermittelt.

In dem Schritt 34 wird aus dieser Regelabweichung mittels einer Regelungsvorschrift eine Stellgröße zur Nachregelung der Zeitbasis, d. h. der Zeitdauer eines Kommunikationszyklus, 25 ermittelt. Die Ermittlung der Stellgröße erfolgt dabei so, dass die Nachregelung der Zeitdauer des nachfolgenden Kommunikationszyklus möglichst gleichmäßig über die Takte des Kommunikationszyklus verteilt erfolgt.

30 Die tatsächliche Nachregelung des Kommunikationszyklus erfolgt in dem Schritt 36 durch Aktivierung der entsprechenden Stellgrößen in dem Timer des betreffenden Kommunikationsknotens nach Abgabe des Zyklussignals, d. h. bei Beginn des nachfolgenden Kommunikationszyklus.

35 Die Fig. 4 zeigt ein Beispiel für die Anwendung des erfindungsgemäßen Regelungsverfahrens. Ein Signal 24 des Synchro-

nisationsmasters, d. h. der Takt des Taktschläger-Knotens, ist in Zyklen 25 unterteilt. In jedem Zyklus 25 zählt der Timer des Taktschläger-Knotens von 0 bis 9, d. h. es werden 10 Takte 26 pro Zyklus 25 erzeugt. Dadurch ist die Taktschläger-zeitbasis für die Synchronisation der Kommunikationszyklen in dem Kommunikationssystem gegeben.

- Das Signal 27 gehört zu einem Synchronisationsslave, d. h. einen der Kommunikationsknoten des Kommunikationssystems,
- 10 dessen Zeitbasis für die Synchronisation von dessen Kommunikationszyklen nachzuregeln ist. Der Synchronisationsslave hat anfänglich eine Regelabweichung von dem Zyklus des Synchronisationsmasters von zwei Takten. Aus dieser Regelabweichung wird eine entsprechende Stellgröße ermittelt. Die Stellgröße
- 15 gibt an, ob innerhalb des nächsten Kommunikationszyklus dieser Kommunikationszyklus verlängert oder verkürzt werden muss, und um wieviel gegebenenfalls der nächste Kommunikationszyklus verändert werden muss.
- 20 In dem hier betrachteten Beispiel soll der nachfolgende Kommunikationszyklus um vier Takte verlängert werden. Dazu soll jeder zweite Takt wiederholt werden. Die entsprechenden Parameter S_1 und S_2 (vgl. Fig. 2) sind dann $S_1 = 2$ und $S_2 = 0$. Dabei ist von besonderem Vorteil, dass die zusätzlichen vier
- 25 Takte nicht einfach an den Zyklus zu dessen Verlängerung angehängt werden, sondern innerhalb des Zyklus gleichverteilt werden, so dass der unterlagerte Zyklus-Takt 28 aufgrund dieser Gleichverteilung höchstens um +/- einen Takt variiert. Dadurch ist vermieden, dass der Zyklus-Takt 28 innerhalb des
- 30 Kommunikationszyklus gegenüber anderen Kommunikationszyklen unverhältnismäßig am Ende des Kommunikationszyklus verlängert wird. Damit wird erreicht, dass der unterlagerte höherfrequente Zyklus-Takt 28 innerhalb des Kommunikationszyklus lediglich einen Jitter von einem Timer-Takt aufweist.
- 35 Die vorliegende Erfindung ist besonders vorteilhaft, indem sich eine verteilte Software-/ Hardwareregelung des Kommuni-

- kationszyklus, d. h. des so genannten Isochronzyklus, in echtzeitfähigen Netzwerkkomponenten, insbesondere so genannten Ethernet-Switches, realisieren lässt. Dies ermöglicht eine dynamische Anpassung der Regelalgorithmen je nach Netzausprägung bzw. Einsatzgebiet im Feld. Dabei kann sich die Regelung in der Initialisierungs- oder Hochlaufphase des Kommunikationssystems von der Regelung im Betrieb unterscheiden. Ferner können aufgrund der Gleichverteilung der Stellgröße und der damit einhergehenden Nachregelung der Zeitbasis während eines Kommunikationszyklus auch unterlagerte Zyklen geregelt werden.

Patentansprüche

1. Verfahren zur Synchronisation eines Kommunikationszyklus in einem Netzwerk (1) mit folgenden Schritten:

5

- Empfang eines Soll-Werts (7) für eine Zeitbasis des Kommunikationszyklus in einem ersten Knoten (2) des Netzwerks (1),

10 - Ermittlung einer Regelabweichung aus dem Soll-Wert (7) und einem Ist-Wert der Zeitbasis,

- Erzeugung einer Stellgröße zur Nachregelung der Zeitbasis entsprechend der Regelabweichung.

15

2. Verfahren nach Anspruch 1, bei dem eine Punkt-zu-Punkt Verbindung zwischen dem ersten Knoten (2) und einem zweiten Knoten (3) des Netzwerks (1) während des Kommunikationszyklus besteht.

20

3. Verfahren nach Anspruch 1 oder 2, bei dem es sich bei dem Netzwerk (1) um ein geschaltetes Datennetz, vorzugsweise um ein echtzeitfähiges Ethernet Netzwerk, handelt.

25

4. Verfahren nach einem der vorhergehenden Ansprüche 1, 2 oder 3, bei dem der erste (2) und/oder der zweite (3) Knoten ein Koppelfeld für die Herstellung einer geschalteten Punkt-zu-Punkt Verbindung aufweisen.

30

5. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 4, wobei der Soll-Wert (7) von dem ersten Knoten (2) über das Netzwerk (1) empfangen wird.

35

6. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 5, wobei der Soll-Wert (7) von einem Taktenschlager-Knoten (5) des Netzwerks mittels eines Datentelegramms (7) an den ersten Knoten (2) gesendet wird.

7. Verfahren nach Anspruch 6, wobei der Soll-Wert (7) von dem Takschläger-Knoten (5) aus einer Referenzzeitbasis des Takschläger-Knotens (5) unter Berücksichtigung der Laufzeit des Datentelegramms (7) zu dem ersten Knoten (2) bestimmt wird.

5

8. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 7, wobei es sich bei der Stellgröße um eine Anzahl von Takten der Zeitbasis pro Kommunikationszyklus handelt.

10 9. Verfahren nach Anspruch 8, wobei die Anzahl der Takte für die Nachregelung der Länge des Kommunikationszyklus gleichmäßig über den aktuellen oder einen nachfolgenden Kommunikationszyklus verteilt werden.

15 10. Verfahren nach Anspruch 8 oder 9, wobei die Stellgröße einen ersten Parameter (S_1) und einen zweiten Parameter (S_2) aufweist, und der erste Parameter (S_1) eine Anzahl von über einen Kommunikationszyklus gleichmäßig verteilten Takten definiert und der zweite Parameter (S_2) definiert, ob die durch 20 den ersten Parameter (S_1) definierten Takte wiederholt oder nicht auszuführen sind.

25 11. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 10 mit einer ersten Regelungsvorschrift und mit einer zweiten Regelungsvorschrift, wobei die erste Regelungsvorschrift zur Erzeugung der Stellgröße während einer Initialisierungsphase und die zweite Regelungsvorschrift zur Erzeugung der Stellgröße während des Betriebs verwendet wird.

30 12. Computerprogrammprodukt zur Durchführung eines Verfahrens nach einem der vorhergehenden Ansprüche 1 bis 11.

13. Kommunikationsknoten in einem Netzwerk (1) mit

35 - Mitteln (Port A) zum Empfang eines Soll-Werts (7) für eine Zeitbasis eines Kommunikationszyklus des Kommunikationskno-

tens einer Kommunikationsverbindung mit einem weiteren Kommunikationsknoten (3, 4, 5) des Netzwerks,

5 - Mitteln (19, 21) zur Ermittlung einer Regelabweichung aus dem Soll-Wert (7) und einem Ist-Wert der Zeitbasis,

- Mitteln (22, 23) zur Erzeugung einer Stellgröße zur Nachregelung der Zeitbasis entsprechend der Regelabweichung.

10 14. Kommunikationsverbindung nach Anspruch 13, bei der die Kommunikationsverbindung als Punkt-zu-Punkt Verbindung, vorzugsweise in einem geschalteten Datennetz, ausgebildet ist.

15 15. Kommunikationsverbindung nach Anspruch 13 oder 14, die für den Empfang und/oder die Sendung von Echtzeitdaten über die Kommunikationsverbindung ausgebildet ist.

20 16. Kommunikationsknoten nach Anspruch 13, 14 oder 15, bei dem die Mittel zur Erzeugung einer Stellgröße so ausgebildet sind, dass die Nachregelung der Zeitbasis gleichmäßig über einen Kommunikationszyklus verteilt erfolgt.

25 17. Kommunikationsknoten nach einem der vorhergehenden Ansprüche 13 bis 16, wobei die Mittel zur Erzeugung einer Stellgröße zur Erzeugung eines ersten Parameters (S_1) und eines zweiten Parameters (S_2) der Stellgröße ausgebildet sind, wobei der erste Parameter (S_1) eine Anzahl von Taktten der Zeitbasis definiert und der zweite Parameter (S_2) definiert, ob die von dem ersten Parameter (S_1) definierten Takte wiederholt oder nicht auszuführen sind.

30 18. Kommunikationssystem mit Kommunikationsknoten nach einem der vorhergehenden Ansprüche 13 bis 17 und mit einem Takt-schläger-Knoten (5), in dem die Kommunikationsknoten (2, 3, 4) und der Takt-schläger-Knoten (5) durch ein Netzwerk (1) miteinander verbunden sind und das Netzwerk (1) zum Aufbau

von Punkt-zu-Punkt Verbindungen in synchronisierten Kommunikationszyklen ausgebildet ist.

19. Kommunikationssystem nach Anspruch 18, bei dem der Takt-schläger-Knoten (5) Mittel zur Versendung eines Datentelegramms (7) mit dem Soll-Wert (7) an einen betreffenden Kommunikationsknoten (2) aufweist und der Soll-Wert aus einem Ist-Wert einer Takschlägerzeitbasis (6) und einer Laufzeit des Datentelegramms (7) von dem Takschläger-Knoten (5) zu den betreffenden Kommunikationsknoten (2, 3, 4) bestimmt wird.
20. Automatisierungssystem mit einem Kommunikationssystem nach einem der Ansprüche 18 oder 19.

1 / 4

FIG 1

2 / 4

FIG 2

3 / 4

FIG 3

4 / 4

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/UL 02/03437A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H04J3/06 G06F1/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H04J G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

INSPEC, EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 991 216 A (HEWLETT PACKARD CO) 5 April 2000 (2000-04-05) abstract paragraphs '0009!-'0011! paragraph '0013! paragraphs '0035!-'0041!	1-8, 11-15, 18-20
X	US 6 042 477 A (ADDINK DALE H) 28 March 2000 (2000-03-28) abstract column 5, line 41 -column 6, line 45	1-3, 5, 6, 8-13, 15-17, 20

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but which understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Z document member of the same patent family

Date of the actual completion of the international search

23 January 2003

Date of mailing of the international search report

26/02/2003

Name and mailing address of the ISA
European Patent Office, P.B. 5616 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Chauvet, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal Application No
PCT/DE 02/03437

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0991216 A	05-04-2000	EP 0991216 A2 JP 2000115210 A	05-04-2000 21-04-2000
US 6042477 A	28-03-2000	NONE	

INTERNATIONALER RECHERCHENBERICHT

Internes Aktenzeichen
PCT/DE 02/03437

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 HO4J3/06 G06F1/14

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBiete

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 HO4J3 G06F

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

INSPEC, EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 991 216 A (HEWLETT PACKARD CO) 5. April 2000 (2000-04-05) Zusammenfassung Absätze '0009!-'0011! Absatz '0013! Absätze '0035!-'0041!	1-8, 11-15, 18-20
X	US 6 042 477 A (ADDINK DALE H) 28. März 2000 (2000-03-28) Zusammenfassung Spalte 5, Zeile 41 -Spalte 6, Zeile 45	1-3, 5, 6, 8-13, 15-17, 20

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen:

"A" Veröffentlichung, die den Anwendungsbereich der Technik definiert, oder eine solche, die einen besonderen Anwendungsbereich anzugeben ist

"E" älteres Dokument, das jedoch erst an oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die gezeigt hat, einen Prioritätsanspruch zweizeitig erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder aus einem anderen besonderen Grund angegeben ist (wie z.B. eine Veröffentlichung, die auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis der Erfindung zum angewandten Prinzip oder der ihr zugrundeliegenden Tatsachenangaben dienen soll

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend bezeichnet werden, weil sie auf einer anderen Veröffentlichung oder auf einer anderen Veröffentlichung dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"A" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

23. Januar 2003

Absendatum des Internationalen Recherchenberichts

26/02/2003

Name und Postanschrift der internationalen Recherchebehörde

Europäisches Patentamt, P.O. 5816 Patenttaunus 2
NL - 22800 Lissewijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3016

Bevollmächtigter Bediensteter

Chauvet, C

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichung:

zur selben Patentfamilie gehören

Internatik : Aktenzeichen

PCT/UR 02/03437

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0991216	A 05-04-2000	EP 0991216 A2 JP 2000115210 A	05-04-2000 21-04-2000
US 6042477	A 28-03-2000	KEINE	