SpringOSの設計理念

知念

北陸先端科学技術大学院大学 高信頼ネットワークイノベーションセンター Dependable Network Innovation Center, Japan Advanced Institute of Science and Technology

アウトライン

- StarBED Project 背景
- SpringOS 設計理念
- SpringOS 設計
- 10年の知見、当初想定との比較

話者紹介

知念 賢一 Ken-ichi Chinen JAIST DNIC、NICT STC の両方に所属

- 1990年代: WWW の研究
 - ◆大規模 WWW サーバ
 - ●先読み代理サーバ
- 2000年代: ネットワーク実験の研究 (今日の話題)
 - ネットワーク実験記述言語
 - 各種制御サーバ

< StarBED Project > 背景、当時の状況

- ●各種ネットワーク技術の検証が困難
 - ◇スケーラビリティ(特にインターネット)
- 機材の制限が大きかった
 - ⋄「NS2 で動かして安心する」
 - ◇「手近な数台で動かして安心する」
- インターネットシュミレーション設備として StarBED は始まった

StarBED設置前夜詳細は提案者の篠田先生へ

< StarBED Project > 歴史

- ●2001年まで、篠田研究室でアイディアを練る
- 2002年4月、通信・放送機構「北陸IT研究開発支援センター」開所
- ●2003年8月、知念着任、9月より本格始動
 - ◊2003年10月、資源管理サーバ等を作り始める
 - ◇ (2004年頃か) SpringOSと名付けられる
- 2006年6月、NICTの「北陸リサーチセンター」と して再スタート
- 2011年4月、「北陸StarBED技術センター」改称

<SpringOS>おおまかな経緯

- はじめにいくつかアイディアがあった 知念参加は 2003年夏から
- 欠けている/薄いアイディアを補強
- 知念の趣味も加えた
- おおむね実装した
 - ◇未実現: 技術不足、想像不足
 - ◇廃れた: 実状乖離
- ●想定外をいくつか追加

理念

- 多数ユーザが同時に実験可能
- ●現実的な構成
 - (極力)実際に使われているハードやソフト
- ホスト設定から実験実施まで一括処理・自動実行
 - ⋄機材選別、OSやアプリのインストール
 - ⋄機材電源投入、OS実行
 - ◇ネットワーク設定
 - ◇(実験者持ち込み)アプリ実行

設計

- アプリ実行担当: 駆動機構
 - ◇ミドルウェア、分散実行型スクリプト言語
- ●電源、ネットワーク等各種設定担当: 管理サーバ

ミドルウェアとしての実現

基盤ソフト(OS等)やアプリを極力邪魔しない

- ソフトの起動・停止
- 他ホストとのメッセージ交換

スクリプト言語 — システム名 Kuroyuri

- ネットワーク実験をスクリプト言語で実現
- 実験実体「ノード」のクラス化 同じ仕様や役割をもつノードをまとめる
- 全体と各ノードの挙動(処理)を分けて記述 処理の流れを「シナリオ」と呼ぶ
 - ◇記述ファイルは一つ、ノードに自動配布・実行
- 外部プログラム起動で実験対象アプリ実行
- メッセージでデータやタイミングを交換

スクリプト言語 — システム名 Kuroyuri (cont.)

スクリプト言語化の意義

- 実験者の実験プログラムを有機的に結合
- 実験手順をファイルとして固定化、再現性が高い
- タイミング等、パラメータを調整容易
- 変数や関数用いて、即値を極力排除可能
- ノード数も任意に変更可能
- 実験手順を一つのファイルに凝縮
 - ◇細切れファイル散逸防止、バージョン管理容易

*

TIPS

- 評価器の引数で変数値を代入可能
 - ◇スクリプトを書き換えずにパラメータ変更可能
 - ◇デフォルト値を代入可能
- ノードへ変数を転送(export)可能
- ネットワーク参加ノードにIPアドレス自動付加
- IPアドレス操作
 - ◇ネットアドレス抽出、アドレス加算
- 明示すれば、ホストとノードの束縛指定可能

K言語記述例

機材選出 シナリオ 外部プログラム起動 送受信、バリア同期

管理サーバ

- 資源管理(erm)
 - ⋄資源の属性を保持、公開、検索
 - ⊳物理的な資源: PC
 - ⊳論理的な資源: VLAN
 - ⋄資源の排他利用を制御
- 実験ホスト電源管理(pwmg)
 - ◇ 古くは SNMP、最近は IPMI
- 実験ホスト起動管理(dman, kiyomitsu)
 - ◇TFTP ディレクトリ操作で PXE 挙動制御

管理サーバ (cont.)

- 実験ネットワーク管理(swmg)
 - ◇マルチベンダー
 - ⊳ Brocade, Juniper, Cisco, Dlink, その他
 - ⋄CLI でスイッチ制御
 - ▷ zeroconf, NETCONF は期待しない
 - ◊操作を抽象化 //最大公約数的アプローチ
 - ▷ VLAN 参加 / 脱退、ポート活性 / 不活性

	当初想定内	想定外
廃れた	機材選択	KVM操作
済	一括実行、シェル ソフトインストール	スイッチ制御サーバ化
着手	静的VM対応	動的VM対応 リンクエミュレーション
未着手	L3操作	クラウドソフト連携 ネットワーク視覚化
=常用機能		

変化・対応

StarBED 運用

- SpringOS を中心に StarBED 運用
 - ◇ 当初は JAIST は 1ヘビーユーザ
- StarBED 技術員充実につき独立運用
 - ◇技術員が開発したツールも登場
- 予約によって機材が決まる 機材選定は実質なくなった
- ●管理領域から利用者の排除 スイッチ制御を管理サーバに移行

変化・対応 (cont.)

利用方法、その他

- 一括実施は少数派
 - ◇細かな繰り返しが多い
 - ◇準備と実行のフェイズがはっきり分かれる

- ●もう一つのツールキットも登場; blanket
 - ◇準備フェイズが充実

変化・対応 (cont.)

- GPT や大サイズブートローダの普及 MBR 以降の領域も保存・復元
- 関連施設に各種スイッチ導入順次対応

blanket: 新クライアント群

- 新たなユーザ側ツール
- サーバは SpringOS そのまま

構想内で未着手

L3 レベルの自動化ルーティング等の詳細未定知念の想像力の外

お蔵入り: KVM制御ソフト paragond

- 多数の PC を巡回監視
- ●画面出力を解釈したフィードバックも可能
- BIOS 設定も画策していた

KVM network

KVM 装置使用機会激減で開発停止

将来への展望

『技術が代っても自動実行・全体制御は必要』

近い将来 — ひきつづき開発

テストベッド連携にも対応

遠い将来 — 応用分野拡大

- クラウドの時代でも
- IOT テストベッド

SpringOS貢献者(敬称略)

命名: 篠田

基本設計: 篠田、宮地、三角、知念 もしかしたら、篠田研究室先達のアイディアも含 まれている可能性あり

詳細設計:知念

実装:知念、磯崎

デバッグ、テスト: 宮地、中川、中井

コメント、その他: 三輪、利用者のみなさま