

Analyzing NYC Citi Bike System

Will It Be A Busy Day For Citi Bikes Today?

Miners "R" Us

AGENDA

- The Data
- Data Preprocessing
- Exploratory Data Analysis
 - Descriptive Analysis & Summary
 - Data Visualization
- Predictive Analysis
 - Decision Tree
 - Logistics Regression Model

INTRODUCTION

- Citi Bike is the most widely used bike sharing program in New York City and Jersey City.
- Citi Bike was proposed in an effort to
 - reduce emissions
 - reduce collisions and road transit congestion
 - improve public health

Scope

- New York City Boroughs
- Citi Bike Stations and Routes

Goal

 To predict the usage of Citi Bikes based on demographic variables available in the CitiBike dataset.

The Data

- 2016 Citi Bike Dataset https://www.citibikenyc.com/system-data
 - Observation Sequential order of each trip taken
 - Variables Trip Duration, Start Time and Date, Stop Time and Date, Start Station Name, End Station Name, Station ID, Bike ID, User Type, Gender, Year of Birth
- 2016 Weather Dataset Kaggle
 - Observation Sequential order of weather parameters for each day
 - Variables maximum temperature, minimum temperature, average temperature, precipitation, snow fall, snow depth

Data Pre Processing

Replaced Null Values with Mean

Aggregation Function – Gender, User Type, Age

Aggregation of Weather Dataset

Indicators – Weekend & TripsMorethan 38K

Aggregated Dataset

Numerical	Categorical
Date	WeekendIndicator
Male	Days
Female	Morethan38K
Subscriber	
Customer	
Maximum temperature	
Minimum temperature	
Average temperature	
Snow fall	
Age Groups	
Trips	
Miles Travelled	

Exploratory Analysis

Exploratory Analysis

Predictive Analysis – Logistic Regression Model

Predict whether usage of Citi Bikes will me more than 38K

```
call:
glm(formula = Morethan38K ~ WeekendIndicator + average.temperature +
    Subscriber + Customer, family = binomial(link = "logit"),
    data = trainingData)
Deviance Residuals:
    Min
                    Median
-2.86730 -0.55718 0.06765 0.57432 1.94940
coefficients:
                     Estimate Std. Error z value Pr(>|z|)
(Intercept)
                   -7.583e+00 1.027e+00 -7.385 1.52e-13
WeekendIndicator1
                   -8.260e-01 4.189e-01 -1.972
average.temperature 1.474e-01 2.105e-02 7.001 2.54e-12 ***
Subscriber
                   -5.409e-06 1.432e-05 -0.378 0.7057
Customer
                   -1.048e-04 6.752e-05 -1.553 0.1205
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 354.89 on 255 degrees of freedom
Residual deviance: 205.78 on 251 degrees of freedom
AIC: 215.78
Number of Fisher Scoring iterations: 5
```

AIC Value (Akaike Information Criteria)

- WeekendIndicator and AverageTemperature the AIC value was 220.39
- WeekendIndicator,
 AverageTemperature,
 Subscriber and Customer the
 AIC value lowered to 215.78

Residual Deviance Value

- WeekendIndicator and AverageTemperature the Residual value was 209.26.
- WeekendIndicator, AverageTemperature, Subscriber and Customer the Residual value lowered to 205.78.

Confusion Matrix

		Prediction		
		0	1	
Actual	0	TN	FP	
Ac	1	FN	TP	

Accuracy of Model = (TN + TP) / (TN+TP+FN+FP)

Accuracy = 0.8207547

ROC (Receiver Operating Characteristic) Curve

Area under ROC curve is 86.93% which is pretty good

```
accuracy(testData$Morethan38K,predicted,threshold= optCutOff)
threshold AUC omission.rate sensitivity specificity prop.correct Kappa
0.3833166 0.8153571 0.08928571 0.9107143 0.72 0.8207547 0.6368554
```

Truth detection rate of 91% on test data is good

Predictive Analysis – Decision Tree

 Using 2 Decision Tree models, we were able to select which variables best predict usage (MoreThan38K).

Model 1:

- Input Variables: Customer + Subscriber + WeekendIndicator (no Average Temperature)
- Label: MoreThan38K

```
test data.test labels
my.predictions 0 1
             0 26 9
            1 0 32
Confusion Matrix and Statistics
             test_data.test_labels
my.predictions 0 1
             0 26 9
            1 0 32
              Accuracy : 0.8657
                95% CI: (0.7603, 0.9367)
   No Information Rate: 0.6119
   P-Value [Acc > NIR] : 4.729e-06
                 Kappa: 0.734
 Mcnemar's Test P-Value: 0.007661
           Sensitivity: 1.0000
           Specificity: 0.7805
        Pos Pred Value: 0.7429
        Neg Pred Value: 1.0000
             Prevalence: 0.3881
        Detection Rate: 0.3881
  Detection Prevalence: 0.5224
      Balanced Accuracy: 0.8902
       'Positive' Class: 0
```


Predictive Analysis – Decision Tree

Model 2: How will accuracy change with the following variables?

Input variables: Customer + Subscriber + Average Temperature +

WeekendIndicator

Label: Still MoreThan38K

```
my.predictions 0
             0 24 6
            1 2 35
Confusion Matrix and Statistics
             test_data.test_labels
my.predictions 0 1
              Accuracy: 0.8806
                95% CI: (0.7782, 0.947)
    No Information Rate: 0.6119
    P-Value [Acc > NIR] : 1.097e-06
                 Kappa : 0.7555
Mcnemar's Test P-Value : 0.2888
            Sensitivity: 0.9231
           Specificity: 0.8537
         Pos Pred Value: 0.8000
         Neg Pred Value: 0.9459
            Prevalence: 0.3881
        Detection Rate: 0.3582
   Detection Prevalence: 0.4478
     Balanced Accuracy: 0.8884
       'Positive' Class: 0
```

```
Classification tree:
tree(formula = train_labels ~ Customer + Subscriber + average.temperature +
WeekendIndicator, data = train_data)
Variables actually used in tree construction:
[1] "Subscriber" "average.temperature" "Customer"
Number of terminal nodes: 11
Residual mean deviance: 0.145 = 41.17 / 284
Misclassification error rate: 0.04068 = 12 / 295

PRStudio: Notebook Output

Subscriber < 35638

average.temperature < 44.25
Subscriber < 44.25
Subscriber < 4689
Customer < 312.5
Subscriber < 27085
Customer < 3727
Customer < 9302.5
```

Conclusion

- The prediction of Usage is based on Customer, Subscriber, WeekendIndicator and AverageTempearture.
- Using Logistic Regression, the accuracy rate is 82%
- Using the decision tree confusion matrix, the accuracy of our model is 88%.
- Using EDA and Predictive Models, we find that user type (Subscriber & Customer), Day of Week(Weekend Indicator), are the best indicators of usage for a given day.
- Citi Bike can optimize their maintenance resources to improve stations and bikes during anticipated higher-usage days.

Thank You!