Лекц 2. Матриц, шугаман үйлдлүүд, элементар хувиргалтууд. Тодорхойлогч, түүний чанарууд. Урвуу матриц, түүний оршин байх теорем. Матрицын минор, алгебрийн гүйцээлт. Ранг, түүний инвариант чанар.

Багш С. Уранчимэг

2021 он

- 🐧 Матриц, шугаман үйлдлүүд, элементар хувиргалтууд.
- Тодорхойлогч, түүний чанарууд
- Матрицын минор, алгебрийн гүйцээлт.
- Урвуу матриц, түүний оршин байх теорем.
- Ранг, түүний инвариант чанар.

Тодорхойлолт

n мөр m баганатай тэгш өнцөгт хэлбэрээр байрлуулагдсан $m \cdot n$ тоог $m \times n$ хэмжээст матриц гэнэ.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Матрицын мөр, баганы тоог матрицын хэмжээс гээд $A_{m \times n}$ гэж тэмдэглэнэ. i-р мөр, j-р баганад бичигдсэн тоог матрицын элемент гээд a_{ij} гэж тэмдэглэнэ.

$$m \neq n$$
 тэгш өнцөгт $m = n$ квадрат $m \times 1$ баганан $1 \times n$ мөрөн Багш С. Уранчилэг

Хэрэв ижил хэмжээст A, B матрицын бүх элемент тэнцүү бол ө.х $a_{ij} = b_{ij}$ бол тэнцүү матрицууд гэнэ.

Бүх элемент нь тэг матрицыг тэг матриц гээд 0-ээр тэмдэглэнэ.

$$A = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

гэсэн $A_{n \times n}$ квадрат матрицын хувьд

$$egin{align*} a_{11}, a_{22}, \cdots a_{nn} & \text{гол} \ a_{1n}, a_{2n-1}, \cdots a_{n1} & ext{хажуугийн} \ \end{pmatrix}$$
 диагоналийн элементүүд.

$$D = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix} \iff D = diag(d_1, d_2, ..., d_n)$$

хэлбэртэй матрицыг диагональ матриц гэнэ.

 $d_1 = d_2 = ... = d_n = d$ диагональ матрицыг скаляр матриц гэнэ. d = 1 скаляр матрицыг нэгж (identity) матриц гэнэ.

$${
m I}=egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Квадрат матрицын гол диагоналиас дээш (доош) байрлах бүх элемент тэг бол доод (дээд) гурвалжин матриц гэнэ. Гол диагоналийн хувьд тэгшхэмтэй байрлах бүх элементүүд хоорондоо тэнцүү ө.х $a_{ij}=a_{ji}$ байх квадрат матрицыг тэгшхэмтэй матриц гэнэ. Дараах матрицыг трапец хэлбэртэй матриц гэнэ.

$$\mathrm{T} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1r} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2r} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{rr} & \cdots & a_{rn} \\ 0 & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$$

Матрицыг тоогоор үржүүлэх, хөрвүүлэх, матрицуудыг нэмэх, үржүүлэх нь матриц дээрх шугаман үйлдлүүд болно.

- ullet Нэмэх. Ижил хэмжээст $A=[a_{ij}], B=[b_{ij}]$ матрицуудыг нэмэхэд $c_{ij}=a_{ij}+b_{ij}$ элементтэй C матриц гарна.
 - Чанар.
 - 1. A + B = B + A
 - 2. (A+B)+C=A+(B+C)
 - 3. A+0=A
- **②** Тоогоор үржүүлэх. Хэрэв λ бодит тоо бол **A** матрицыг λ -аар үржүүлсэн үржвэр $\lambda \cdot A$ нь **A** матрицын элемент бүрийг λ тоогоор үржүүлнэ.
 - Чанар.
 - 1. $I \cdot A = A \cdot I = A$
 - 2. $(\lambda \cdot \mu) \cdot A = \lambda \cdot (\mu \cdot A) = (\lambda \cdot A) \cdot \mu$
 - 3. $(\lambda + \mu) \cdot A = \lambda \cdot A + \mu \cdot A$
 - 4. $\lambda \cdot (A + B) = \lambda \cdot A + \lambda \cdot B$

(1) еешиЖ

$$\bullet \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 0 & 1 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} =$$

Жишээ (1)

$$\bullet = \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 3 & 6 \\ 9 & 12 \\ 15 & 18 \end{pmatrix} = \begin{pmatrix} 4 & 5 \\ 12 & 16 \\ 15 & 19 \end{pmatrix}$$

3. Үржүүлэх. Хэрэв A матрицын баганы тоо B матрицын мөрийн тоотой тэнцүү бол A матрицыг B матрицаар зөвхөн баруун талаас нь үржүүлнэ.

$$\begin{bmatrix} a_{1} \\ [a_{2}] \\ \vdots \\ [a_{m}] \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \vdots & a_{1k} \\ a_{21} & a_{22} & \vdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \vdots & a_{mk} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \vdots & b_{1n} \\ b_{21} & b_{22} & \vdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \vdots & b_{kn} \end{bmatrix} =$$

$$= \begin{pmatrix} [a_1]\{b_1\} & [a_1]\{b_2\} & \vdots & [a_1]\{b_n\} \\ [a_2]\{b_1\} & [a_2]\{b_2\} & \vdots & [a_2]\{b_n\} \\ \vdots & \vdots & \ddots & \vdots \\ [a_m]\{b_1\} & [a_m]\{b_2\} & \vdots & [a_m]\{b_n\} \end{pmatrix}$$

- Чанар.
- 1. $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- 2. $A \cdot (B + C) = A \cdot B + A \cdot C$
- 3. $\alpha \cdot (A \cdot B) = (\alpha \cdot A) \cdot B$

$$= 3-4+5+12=16$$

$$\bullet = \begin{pmatrix} 2 \cdot (-1) + 3 \cdot 4 + 0 & 2 \cdot 1 + 3 \cdot 6 + 0 \\ 1 \cdot (-1) + 2 \cdot 4 + 0 & 1 \cdot 1 + 2 \cdot 6 + 5 \cdot 7 \end{pmatrix} =$$

$$\bullet = \begin{pmatrix} 10 & 20 \\ 7 & 48 \end{pmatrix}$$

 $A \cdot B \neq B \cdot A$ байна $A \cdot B = B \cdot A$ бол сэлгэх матриц гэнэ.

4. Хөрвүүлэх. $A_{m \times n}$ матрицыг хөрвүүлэхэд (transpose) $A_{n \times m}^{\mathrm{T}}$ матриц гарна.

$$A^{\mathrm{T}} = egin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \ a_{12} & a_{22} & \cdots & a_{m2} \ dots & dots & \ddots & dots \ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

- Чанар
- 1. $(A^{T})^{T} = A$
- 2. $(A + B)^{T} = A^{T} + B^{T}$
- 3. $(A \cdot B)^{\mathrm{T}} = B^{\mathrm{T}} \cdot A^{\mathrm{T}}$
- 4. $(\lambda \cdot A)^{\mathrm{T}} = \lambda \cdot A^{\mathrm{T}}$

Хэрэв $A = A^{\rm T}$ бол тэгихэмтэй матриц гэнэ.

(3) еешиЖ

•
$$A_{23} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 бол A^{T} -г ол.

(8) еешиЖ

$$\bullet \ A_{32}^{\mathrm{T}} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Матрицын элементар хувиргалтууд.

Дараах хувиргалтуудыг матриц дээрх элементар (энгийн) мөрөн хувиргалтууд гэнэ.

- дурын хоёр мөрийн байрыг солих
- дурын мөрийг тэгээс ялгаатай тоогоор үржүүлэх
- дурын мөрийн элемент бүр дээр өөр мөрийн харгалзах элементийг тэгээс ялгаатай тоогоор үржүүлж нэмэх

Элементар хувиргалтууд матрицын баганы хувьд мөн хүчинтэй.

Тодорхойлолт

Элементар хувиргалтаар гарах матрицуудыг эквивалент матрицууд гэнэ.

Тодорхойлогч, түүний чанарууд

Тодорхойлолт

Матрицын мөр болон багана бүрээс нэг элемент орсон бүх боломжит үржвэрүүдийн нийлбэрийг тодорхойлогч гэнэ. det(A) эсвэл |A| гэж тэмдэглэнэ.

 $A_{n\times n}$ квадрат матрицын тодорхойлогчийг n эрэмбийн тодорхойлогч гэнэ.

Тодорхойлогч, түүний чанарууд

- Тодорхойлогчийн чанарууд.
 - 🚺 Матрицыг хөрвүүлэхэд тодорхойлогч нь өөрчлөгдөхгүй.
 - 2 Матриц тэг мөртэй бол тодорхойлогч нь тэг байна.
 - Матрицын хоёр мөр пропорционал бол тодорхойлогч нь тэг байна.
 - Матрицын хоёр мөрийн байрыг солиход тодорхойлогч эсрэг тэмдэгтэй болно.
 - Матрицын нэг мөрийн элемент бүр дээр өөр мөрийн харгалзах элементийг тэгээс ялгаатай тоогоор үржүүлж нэмэхэд тодорхойлогч нь өөрчлөгдөхгүй.
 - Матрицын мөрийн ерөнхий үржигдэхүүнийг тодорхойлогчийн тэмдгийн өмнө гаргаж болно.
 - Матрицын нэг мөрийн элемент бүрийг өөр мөрийн харгалзах элементийн алгебрийн гүйцээлтээр үржүүлж нэмэхэд тэг байна.

Дээрх чанарууд баганы хувьд хүчинтэй.

Тодорхойлогч, түүний чанарууд

Жишээ (4)

$$\begin{vmatrix} 2+a & 1 & a & a \\ 2+b & 2 & b & a \\ 2+c & 3 & c & a \\ 2+d & 4 & d & a \end{vmatrix} = \begin{vmatrix} 2 & 1 & a & a \\ 2 & 2 & b & a \\ 2 & 3 & c & a \\ 2 & 4 & d & a \end{vmatrix} + \begin{vmatrix} a & 1 & a & a \\ b & 2 & b & a \\ c & 3 & c & a \\ d & 4 & d & a \end{vmatrix} = 0$$

• Хоёрдугаар эрэмбийн тодорхойлогч бодох.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

• Гуравдугаар эрэмбийн тодорхойлогч бодох.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} = a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{31} \cdot a_{32} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} - a_{13} \cdot a_{22} \cdot a_{31} - a_{12} \cdot a_{21} \cdot a_{33} - a_{11} \cdot a_{23} \cdot a_{32} + a_{13} \cdot a_{23} \cdot a_{32} + a_{13} \cdot a_{23} \cdot a_{32} + a_{13} \cdot a_{23} \cdot a_{33} - a_{14} \cdot a_{23} \cdot a_{32} + a_{15} \cdot a_{25} \cdot a_{35} - a_{15} \cdot a_{25} \cdot a_{25} - a_{25}$$

Үүнийг тодорхойлогч бодох гурвалжны эсвэл Саррюссын дүрэм гэнэ.

Жишээ (5)

Жишээ (5)

$$det(AB) = det(A) \cdot det(B)$$
 $det(A^{T}) = det(A)$

Гурвалжин матрицын тодорхойлогч гол диагоналийн элементүүдийн үржвэртэй тэнцүү.

Хажуугийн диагоналийн доод (дээд) талын элемент бүр тэг бол тодорхойлогч нь $(-1)^{\frac{n(n-1)}{2}}$ ба хажуугийн диагоналийн элементүүдийн үржвэртэй тэнцэнэ.

Тодорхойлолт

n -р эрэмбийн тодорхойлогчийн i -р мөр j-р баганыг хасахад гарах (n-1)-р эрэмбийн тодорхойлогчийг a_{ij} элементийн минор гээд M_{ij} гэж тэмдэглэнэ.

 $A_{m \times n}$ матриц $C_m^k \cdot C_n^k$ тооны k-р эрэмбийн минортой байна.

Жишээ (6)

$$\begin{bmatrix} a & b & c & d \\ 1 & 2 & 3 & 4 \\ -1 & 0 & 5 & 6 \end{bmatrix}$$
 матрицын 2-р эрэмбийн минорыг ол.
$$\begin{vmatrix} a & b \\ 1 & 2 \end{vmatrix} \begin{vmatrix} 2 & 3 \\ 0 & 5 \end{vmatrix} \begin{vmatrix} 1 & 4 \\ -1 & 6 \end{vmatrix} \begin{vmatrix} a & d \\ -1 & 6 \end{vmatrix} \dots C_3^2 \cdot C_4^2 = 18$$

Тодорхойлолт

$$A_{ij}=(-1)^{i+j}M_{ij}$$

 a_{ij} элементийн алгебрийн гүйцээлт гэнэ.

Теорем

Тодорхойлогч нь түүний аль нэг мөрийн (баганы) элемент бүрийг харгалзах алгебрийн гүйцээлтээр үржүүлж нэмсэн нийлбэртэй тэнцүү.

Энэ аргыг эрэмбэ бууруулах арга гэнэ.

Жишээ (7)

 1
 0
 -1

 2
 1
 3

 1
 4
 0

матрицын минор, алгебрийн гүйцээлтийг ол.

$$\begin{pmatrix}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{pmatrix} = \begin{pmatrix}
-12 & -3 & 7 \\
4 & 1 & 4 \\
1 & 5 & 1
\end{pmatrix}$$

Жишээ (7)

 1
 0
 -1

 2
 1
 3

 1
 4
 0

$$\begin{pmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{pmatrix} = \begin{pmatrix}
M_{11} & -M_{12} & M_{13} \\
-M_{21} & M_{22} & -M_{23} \\
M_{31} & -M_{32} & M_{33}
\end{pmatrix}$$

$$= \begin{pmatrix}
-12 & 3 & 7 \\
-4 & 1 & -4 \\
1 & -5 & 1
\end{pmatrix}$$

Урвуу матриц, түүний оршин байх теорем.

Тодорхойлолт

 $A_{n\times n}$ хувьд $A\cdot B=B\cdot A=I$ байх $B_{n\times n}$ матриц оршин байвал A матрицыг бөхөөгүй буюу урвуутай матриц гэнэ. B матрицыг A матрицын урвуу гээд A^{-1} -ээр тэмдэглэнэ.

- Чанар
- 1. $(A^{-1})^{-1} = A$
- 2. $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$
- 3. $(A^{\mathrm{T}})^{-1} = (A^{-1})^{\mathrm{T}}$

Урвуу матриц, түүний оршин байх теорем.

Тодорхойлолт

 $A_{n \times n}$ матрицын элементүүдэд харгалзах алгебрийн гүйцээлтүүдээр зохиосон матрицыг хөрвүүлэхэд гарах матрицыг A матрицын уялдсан матриц гээд adj(A) гэж тэмдэглэнэ.

$$\mathrm{adj}(\mathbf{A}) = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}^{\mathrm{T}}$$

Урвуу матриц, түүний оршин байх теорем.

Теорем

 $A_{n \times n}$ матрицын хувьд $det(A) \neq 0$ бол

$$A^{-1} = \frac{1}{det(A)} \cdot adj(A)$$

гэж урвуу матриц олдоно.

Теорем

 $A_{n \times n}$ матриц урвуутай байх зайлшгүй бөгөөд хүрэлцээтэй нөхцөл нь

$$det(A) \neq 0$$

байх юм.

 $det(A) \neq 0$ бол A матрицыг бөхөөгүй матриц гэнэ.

Жишээ (8)

$$A = egin{pmatrix} 1 & 3 & 3 \ 3 & 8 & 7 \ 2 & 7 & 10 \end{pmatrix}$$
 матрицын урвууг ол. $A^{-1} = egin{pmatrix} A_{11}/\Delta & A_{21}/\Delta & A_{31}/\Delta \ A_{12}/\Delta & A_{22}/\Delta & A_{32}/\Delta \ A_{13}/\Delta & A_{23}/\Delta & A_{33}/\Delta \end{pmatrix}$

$$A^{-1} = \left(egin{array}{ccc} A_{11}/\Delta & A_{21}/\Delta & A_{31}/\Delta \ A_{12}/\Delta & A_{22}/\Delta & A_{32}/\Delta \ A_{13}/\Delta & A_{23}/\Delta & A_{33}/\Delta \ \end{array}
ight)$$

Жишээ (8)
$$\Delta = \begin{vmatrix} 1 & 3 & 3 \\ 3 & 8 & 7 \\ 2 & 7 & 10 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 3 \\ 0 & -1 & -2 \\ 0 & 1 & 4 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 3 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & 2 \end{vmatrix} = -2$$

(8) еешиЖ

$$A_{11} = \begin{vmatrix} 8 & 7 \\ 7 & 10 \end{vmatrix} = 80 - 49 = 31$$

$$A_{12} = -\begin{vmatrix} 3 & 7 \\ 2 & 10 \end{vmatrix} = -(30 - 14) = -16$$

$$A_{13} = \begin{vmatrix} 3 & 8 \\ 2 & 7 \end{vmatrix} = 21 - 16 = 5$$

$$A_{21} = -\begin{vmatrix} 3 & 3 \\ 7 & 10 \end{vmatrix} = -(30 - 21) = -9$$

$$A_{22} = \begin{vmatrix} 1 & 3 \\ 2 & 10 \end{vmatrix} = 10 - 6 = 4$$

$$A_{23} = -\begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} = -(7 - 6) = -1$$

Багш С. Уранчимэг

(8) еешиЖ

$$A_{31} = \begin{vmatrix} 3 & 3 \\ 8 & 7 \end{vmatrix} = 21 - 24 = -3$$

$$A_{32} = -\begin{vmatrix} 1 & 3 \\ 3 & 7 \end{vmatrix} = -(7 - 9) = 2$$

$$A_{33} = \begin{vmatrix} 1 & 3 \\ 3 & 8 \end{vmatrix} = 8 - 9 = -1$$

$$A^{-1} = \frac{1}{\det(A)} \cdot adj(A) = -\frac{1}{2} \cdot \begin{bmatrix} 31 & -16 & 5 \\ -9 & 4 & -1 \\ -3 & 2 & -1 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} -31/2 & 9/2 & 3/2 \\ 8 & -2 & -1 \\ -5/2 & 1/2 & 1/2 \end{bmatrix} \qquad A \cdot A^{-1} = A^{-1} \cdot A = I \text{ шалга.}$$

Багш С. Уранчимэг

Матрицын урвууг элементар хувиргалтаар олох.

Теорем

Хэрэв $A_{n\times n}$ матриц элементар мөрөн хувиргалтаар I матрицруу шилжвэл бөхөөгүй байна. A-г I матрицад шилжүүлсэн элементар мөрөн хувиргалтаар нэгж матриц A^{-1} -д шилжинэ.

Жишээ (9)

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 3 & 8 & 7 \\ 2 & 7 & 9 \end{pmatrix}$$
 матрицын урвууг ол.
$$(A|I) = \begin{pmatrix} 1 & 3 & 3 & 1 & 0 & 0 \\ 3 & 8 & 7 & 0 & 1 & 0 \\ 2 & 7 & 9 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{M_2 + (-3)M_1} \rightarrow M_3 + (-2)M_1$$

$$\begin{pmatrix} 1 & 3 & 3 & 1 & 0 & 0 \\ 0 & -1 & -2 & -3 & 1 & 0 \\ 0 & 1 & 3 & -2 & 0 & 1 \end{pmatrix} \rightarrow M_3 + M_2$$

$$\begin{pmatrix} 1 & 3 & 3 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{M_1 + 3 \cdot M_2} \rightarrow M_2 + 2 \cdot M_3$$

Жишээ (9)
$$\begin{pmatrix}
1 & 0 & -3 & -8 & 3 & 0 \\
0 & -1 & 0 & -13 & 3 & 2 \\
0 & 0 & 1 & -5 & 1 & 1
\end{pmatrix}
\xrightarrow{M_1 + 3 \cdot M_3} \rightarrow -M_2$$

$$\begin{pmatrix}
1 & 0 & 0 & -23 & 6 & 3 \\
0 & 1 & 0 & 13 & -3 & -2 \\
0 & 0 & 1 & -5 & 1 & 1
\end{pmatrix}
\Longrightarrow A^{-1} = \begin{pmatrix}
-23 & 6 & 3 \\
13 & -3 & -2 \\
-5 & 1 & 1
\end{pmatrix}$$

Жишээ (9)

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 3 & 3 \\ 3 & 8 & 7 \\ 2 & 7 & 9 \end{pmatrix} \begin{pmatrix} -23 & 6 & 3 \\ 13 & -3 & -2 \\ -5 & 1 & 1 \end{pmatrix} = I$$

$$A^{-1} \cdot A = \begin{pmatrix} -23 & 6 & 3 \\ 13 & -3 & -2 \\ -5 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 3 \\ 3 & 8 & 7 \\ 2 & 7 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Матрицын зэрэг.

 $A_{n\times n}, I_{n\times n}$ матрицуудын хувьд

$$A^0 = I$$
 $A^1 = A$ $A^2 = A \cdot A$ $A^3 = A \cdot A \cdot A$... $A^m = \underbrace{A \cdot A}_{m} \underbrace{\dots}_{y \neq aa} A$ $\forall m \in \mathbb{Z}^+$

Бөхөөгүй матрицын хувьд бүхэл, сөрөг матрицыг тодорхойлж болно.

$$A^{-2} = A^{-1} \cdot A^{-1}$$

- Чанар
- 1. $\mathbf{A}^k \cdot \mathbf{A}^l = \mathbf{A}^{k+l} \quad \forall k, l \in \mathbb{Z}^+$
- 2. $(\mathbf{A}^k)^l = \mathbf{A}^{k \cdot l} \quad \forall k, l \in \mathbb{Z}^+$

Матрицын ранг, түүний инвариант (хадгалагдах) чанар.

Тодорхойлолт

 \pmb{A} (квадрат байх албагүй) матрицын \pmb{k} дурын мөр, \pmb{k} дурын баганы огтлолцолд байрлах элементүүдтэй \pmb{k} эрэмбийн тодорхойлогчийг матрицын \pmb{k} -р эрэмбийн минор гэнэ.

Тодорхойлолт

 $A_{m \times n}$ матрицын тэгээс ялгаатай миноруудын хамгийн их эрэмбийг матрицын ранг гээд rang(A)-аар тэмдэглэнэ.

$$rang(A) \leq min(m, n)$$

- Матрицын ранг элемент хувиргалтаар өөрчлөгдөхгүй.
- Тэг матрицын ранг тэг.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

матрицын мөрүүдийг

$$A_1 = [a_{11} \ a_{12} \ \dots \ a_{1n}]$$
 $A_2 = [a_{21} \ a_{22} \ \dots \ a_{2n}]$
 \vdots
 $A_m = [a_{m1} \ a_{m2} \ \dots \ a_{mn}]$

гэж тэмдэглэе.

Тодорхойлолт

Хэрэв

$$c_1 \cdot A_1 + c_2 \cdot A_2 + \dots + c_m \cdot A_m = 0$$
 (1)

биелэх $c_1^2 + c_2^2 + ... + c_m^2 = 0$ байх $c_1, c_2, ..., c_m$ тоонууд олдож байвал $A_1, A_2, ..., A_m$ мөрүүдийг шугаман хамааралтай гэнэ. Зөвхөн $c_1 = c_2 = ... = c_m = 0$ үед (1) биелвэл $A_1, A_2, ..., A_m$ мөрүүдийг шугаман хамааралгүй гэнэ.

Тодорхойлолт

Хэрэв $B = [b_1 \ b_2 \ ...b_m]$ хувьд

$$B = c_1 \cdot A_1 + c_2 \cdot A_2 + \dots + c_m \cdot A_m$$

байвал B мөрөн матрицыг $A_1, A_2, ..., A_m$ мөрүүдийн шугаман эвлүүлэг гэнэ.

Төсөөтэйгээр матрицын багануудын шугаман хамаарал, шугаман эвлүүлэгийг тодорхойлно.

Теорем

Матрицын $A_1, A_2, ..., A_m$ мөрүүд шугаман хамааралтай байх зайлшгүй бөгөөд хүрэлцээтэй нөхцөл нь ядаж нэг мөр нь бусад мөрүүдийнхээ шугаман эвлүүлэг байх юм.

Матрицын ранг нь шугаман хамааралтай мөрийн (баганы) тоотой тэнцүү.

(10) еешиЖ

$$A = \left(\begin{array}{ccc} 1 & 2 & -1 \\ 2 & 3 & 0 \\ 0 & 1 & -2 \\ 3 & 5 & 1 \end{array}\right)$$

матрицын мөрүүд шугаман хамааралтай юу? Бодолт.

$$A_2 = [2 \ 3 \ 0]$$

 $A_3 = [0 \ 1 \ -2]$

 $A_1 = [1 \ 2 \ -1]$

$$A_4 = [3 \ 5 \ 1]$$

мөрүүдийн хувьд

$$c_1 \cdot A_1 + c_2 \cdot A_2 + c_3 \cdot A_3 + c_4 \cdot A_4 = 0$$

байх тогтмолуудыг олъё.

Жишээ (10)

$$\begin{cases} c_1 + 2c_2 + 3c_4 = 0 \\ 2c_1 + 3c_2 + c_3 + 5c_4 = 0 \\ -c_1 - 2c_3 + c_4 = 0 \end{cases} \xrightarrow{c_4 = 0} \begin{cases} c_1 + 2c_2 = 0 \\ 2c_1 + 3c_2 + c_3 = 0 \\ -c_1 - 2c_3 = 0 \end{cases}$$

$$\begin{cases} c_1 = -2c_2 \\ 2c_1 + 3c_2 + c_3 = 0 \\ c_1 = 2c_3 \end{cases} \implies c_2 = -c_3 = -1 \text{ rse.} \begin{cases} c_1 = 2 \\ c_2 = -1 \\ c_3 = 1 \\ c_4 = 0 \end{cases}$$

 $2A_1 - A_2 + A_3 + 0 \cdot A_4 = 0$ $c_1^2 + c_2^2 + c_3^2 + c_4^2 = 6 \neq 0$ тул A_1, A_2, A_3, A_4 мөрүүд шугаман хамааралтай. Иймд аль нэг нь бусад мөрийнхөө шугаман эвлүүлэг болно. Тухайлбал:

$$A_2=2A_1+A_3$$

Матрицын ранг олох Гауссын алгоритмууд.

- Матрицын ранг элементар хувиргалтаар өөрчлөгдөхгүй.
- Дурын матрицыг элементар хувиргалтаар трапец хэлбэрт шилжүүлнэ.
- Трапец хэлбэртэй матрицын ранг тэг биш мөрийн тоотой тэнцүү.
- Бүх элемент нь тэг байх мөрийг тэг мөр гэнэ.

Матрицын ранг олох Гауссын алгоритмууд.

Жишээ (11)

$$\mathrm{B} = egin{bmatrix} 1 & 0 & 4 & -1 \\ 2 & 1 & 11 & 2 \\ 11 & 0 & 44 & -11 \\ 2 & -1 & 5 & -6 \end{bmatrix}$$
 матрицын рангийг ол.

Бодолт.

$$\begin{bmatrix} 1 & 0 & 4 & -1 \\ 2 & 1 & 11 & 2 \\ 11 & 0 & 44 & -11 \\ 2 & -1 & 5 & -6 \end{bmatrix} \xrightarrow{M_2 - 2M_1, M_3 - 11M_1} \xrightarrow{M_4 - 2M_1}$$

$$\begin{bmatrix} 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & -3 & -4 \end{bmatrix} \xrightarrow{M_4 + M_2} \begin{bmatrix} 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies rang(B) = 2$$

Матрицын ранг олох хүрээлэх арга.

- A (квадрат байх албагүй) матрицын дурын k мөр, дурын k баганы огтлолцолд байрлах элементүүдтэй k эрэмбийн тодорхойлогчийг матрицын k-р эрэмбийн минор гээд M_k -аар тэмдэглэе.
- M_k ≠ 0 ол.
- Ядаж нэг M_{k+1} тэгээс ялгаатай эсэхийг шалга.
- Хэрэв бүх $M_{k+1} = 0$ бол rang(A) = k.

Матрицын ранг олох хүрээлэх арга.

Жишээ (12)

$$\mathrm{B}{=}egin{bmatrix} 2 & -3 & 4 & 5 & 2 \ 4 & -6 & 1 & 2 & 3 \ -2 & 5 & 3 & 1 & 0 \ 4 & -6 & 8 & 10 & 4 \end{bmatrix}$$
 матрицын рангийг ол.

Бодолт.

- Тэгээс ялгаатай 1-р эрэмбийн минор 19.
- Тэгээс ялгаатай 2-р эрэмбийн минорыг тэгээс ялгаатай 1-р эрэмбийн минорыг хүрээлж ол.

$$\begin{vmatrix} 2 & -3 \\ \bar{4} & -6 \end{vmatrix} = 0$$
$$\begin{vmatrix} -3 & 4 \\ -\bar{6} & 1 \end{vmatrix} = 21$$

Жишээ (12)

• Тэгээс ялгаатай **3**-р эрэмбийн минорыг тэгээс ялгаатай 2-р эрэмбийн минорыг хүрээлж ол.

$$\begin{vmatrix} -3 & 4 & 5 \\ -6 & 1 & 2 \\ 5 & 3 & 1 \end{vmatrix} = -36$$

• Тэгээс ялгаатай **4**-р эрэмбийн минорыг тэгээс ялгаатай 3-р эрэмбийн минорыг хүрээлж ол.

$$\begin{vmatrix} -3 & 4 & 5 & 2 \\ -6 & 1 & 2 & 3 \\ 5 & 3 & 1 & 0 \\ -6 & 8 & 10 & 4 \end{vmatrix} = 0 \begin{vmatrix} 2 & -3 & 4 & 5 \\ 4 & -6 & 1 & 2 \\ -2 & 5 & 3 & 1 \\ 4 & -6 & 8 & 10 \end{vmatrix} = 0$$

• Бүх $M_4 = 0$ тул rang(B) = 3

Матрицын ранг олох хүрээлэх арга.

Матрицын суурь минор гэдэг нь хамгийн их хэмжээтэй, тэгээс ялгаатай дэдматрицын тодорхойлогчийг хэлнэ. Өмнөх жишээний суурь минор нь

$$M_3 = \begin{vmatrix} -3 & 4 & 5 \\ -6 & 1 & 2 \\ 5 & 3 & 1 \end{vmatrix}$$

Санамж. M_k -г заавал хажуугийн багана, мөрөөр хүрээлж M_{k+1} гарахгүй .