Stochastic Calculus for Finance I, Solution for Exercises

by Sun Yufei

Last updated: August 27, 2024

This is the solution for the textbook *Stochastic calculus for finance I*, by *Steven E. Shreve*. If you have any comments or suggestions, please email me at sunyufei814@gmail.com.

Chapter 2 Probability Theory on Coin Toss Space

Exercise 2.5

Proof

$$2I_n$$

$$=2\sum_{j=0}^{n-1}M_{j}(M_{j+1}-M_{j})$$

$$=2\sum_{i=0}^{n-1}M_{i}M_{j+1}-2\sum_{i=0}^{n-1}M_{i}M_{j}$$

$$=2\sum_{i=0}^{n-1}M_{i}M_{j+1}-\sum_{i=0}^{n-1}M_{i}M_{j}-\sum_{i=0}^{n-1}M_{i}M_{j}$$

$$=2\sum_{j=0}^{n-1}M_{j}M_{j+1}+M_{n}^{2}-\sum_{j=0}^{n-1}M_{j+1}M_{j+1}-\sum_{j=0}^{n-1}M_{j}M_{j}$$

$$=M_n^2 - \sum_{j=0}^{n-1} (M_{j+1} - M_j)^2$$

$$=M_n^2 - \sum_{j=0}^{n-1} X_{j+1}^2$$

$$=M_n^2-n$$

(ii)

We start by calculating the conditional expectation of $f(I_{n+1})$ given I_n :

$$E_n[f(I_{n+1})] = E_n[f(I_n + M_n(M_{n+1} - M_n))]$$

Since $M_{n+1} - M_n = X_{n+1}$ (where X_{n+1} is the increment in the random walk), we can rewrite the equation as:

$$E_n[f(I_{n+1})] = E_n[f(I_n + M_n X_{n+1})]$$

The increment X_{n+1} takes values ± 1 with equal probability $\frac{1}{2}$, so we can split the expectation into two cases based on the possible values of X_{n+1} :

$$E_n[f(I_{n+1})] = \frac{1}{2}[f(I_n + M_n) + f(I_n - M_n)]$$

The expectation simplifies to a function $g(I_n)$, which is a symmetric average of the two possibilities:

$$g(I_n) = \frac{1}{2} [f(I_n + M_n) + f(I_n - M_n)]$$

This shows that the conditional expectation of $f(I_{n+1})$ given I_n is a function of I_n , making the process $\{I_n\}$ a Markov process.

From the earlier part of the problem, we have the relationship:

$$M_n^2 = 2I_n + n$$

so:

$$M_n = \pm \sqrt{2I_n + n}$$

Thus, the function g(x) becomes:

$$g(x) = \frac{1}{2} [f(x + \sqrt{2I_n + n}) + f(x - \sqrt{2I_n + n})]$$

This formula encapsulates the dependence of $g(l_n)$ on l_n and demonstrates that $E_n[f(l_{n+1})]$ can be written purely in terms of l_n .