PATENT SPECIFICATION

(11)1 504 577

(21) Application No. 37633/75

(22) Filed 12 Sept. 1975

(31) Convention Application No. 2444727

(32) Filed 19 Sept. 1974 in

(33) Federal Republic of Germany (DE)

(44) Complete Specification published 22 March 1978

(51) INT CL2 B22F 1/00 C22C 35/00

(52) Index at acceptance

C7D 8A2 8A3 8M 8Q 8U 8Z2 8Z5 A1

71X A249 A250 A253 A25Y A279 A28X A28Y A300 A30Y A329 A330 A337 A339 A33Y A340 A341 A343 A345 A347 A349 A369 A389 A390 A394 A396 A398 A39Y A400 A402 A404 A406 A409 A40Y A439 A459 A509 A529 A533 A535 A537 A539 A53X A53Y A541 A543 A545 A547 A549 A54X A579 A58X A58Y A609 A629 A671 A673 A675 A677 A679 A67X A681 A683 A685 A687 A689 A68X A693 A695 A697 A699 A69X A70X

(72) Inventors RUDOLF FICHTE
HANS-JOACHIM RETELSDORF RICHARD JERVIS and GÜNTER RADEL

> (54) A PRE-ALLOY POWDER FOR THE MANUFACTURE OF ALLOYED SINTERED STEEL WORKPIECES

(71) We, GFE GESELLSCHAFT FÜR ELECTROMETALLURGIE MBH a German Company of 4000 Düsseldorf 1, Grafenberger Allee 159, Federal Republic of Germany do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

The invention generally relates to a prealloy powder for the manufacture of alloyed sintered steel workpieces, in which manufacture a ferro-alloy is first produced from the alloy elements required in the sintered steel workpieces together with iron and carbon, this is pulverised and milled to a pre-alloy powder, the pre-alloy powder is mixed with duetile iron powder, and the mixture is pressed and sintered.

The manufacture of tool steels and high speed steels from ferro-alloys is relatively new. So far as other steels have been manufactured by powder metallurgy, one has worked with fully alloyed materials manufactured by the melting method and subsequently converted by spraying into the necessary powder form. These alloy powders possess the complete composition of the steel that is to be sintered, but have the disadvantage of a considerable oxygen content. The oxygen content affects the mechanical properties of the finished workpieces. Moreover very high pressures are necessary for pressing, greater by a factor of 2 than the pressure normal in iron powder metallurgy. If one works with lower pressures, the tensile strength values achieved are insufficient. Steels which contain manganese and chromium and/or vanadium are not at all practicable to make in the manner described. In fact it is very difficult to avoid oxidation of the alloyed chromium or manganese with the sintering atmosphere used in practive. A reduction of oxides introduced by these alloying elements cannot be accomplished in furnaces used for the sintering technique. At least if one attempts to work with manganese and chromium and/or vanadium-additions, the tensile strengths achieved by the known process are for this reason inadequate.

According to the present invention a pre-alloy powder for the manufacture of alloyed sintered steel workpieces comprises a pulverized ferro-alloy comprising manganese and chromium or manganese and vanadium in the form of complex metallic carbides, with a grain size less than $10~\mu m$, having an oxygen content of less than 0.2% and resistant to oxidation at temperatures in the region of 1200°C.

Pressing forces normal in iron powder metallurgy, are about 500 MN/m². Preferably the sintering temperature is up to 1280°C.

Within the scope of the invention complex metallic carbides signify carbides

40

45

50

1,504,577 -25% -25% of at least two of the given elements and Molybdenum iron, mostly in the form of solid solutions. Vanadium with or The invention depends upon the without Niobium 60 surprising fact that a ferro-alloy consisting 20—25% Manganese Up to 7% Carbon Balance iron of the given complex metallic carbides. when pulverised, does not absorb oxygen, or at least does not do so to a troublesome with impurities due to melting. extent. Therefore the pre-alloy powder, In the following is illustrated the use of when a protective fluid is used in grinding to a grain-size below $10~\mu$ m, preferably below $5~\mu$ m, can without the pre-alloy powder of the invention in terms of examples of its performance. difficulty be limited to an oxygen content below 0.2%, preferably less than 0.15% EXAMPLE 1 In manufacturing a sintered steel workpiece which contains as alloy elements even if it is milled extremely finely. The 70 pre-alloy powder which is to be used for the manganese plus chromium and also manufacture of a sintered workpiece molybdenum, normal commercial iron possesses a quite surprising resistance to powder is thoroughly mixed with a complex oxidation, even at temperatures up to 1200°C and more. Difficulties caused by metallic carbide powder according to the invention in proportions of 96% to 4% and high oxide content of the powder which is pressed as a workpiece e.g. a gearwheel, with a pressure of 500 MN/m². The complex to be pressed and sintered to form steel workpieces, and the influence on the tensile strength of the manufactured sintered steel metallic carbide powder contains 21% Cr, 20.8% Mn, 23.1% Mn and 7.8% C, balance workpieces are eliminated no longer occur. Fe.
The milling of the complex metallic 80 It can be accepted that the complex metallic carbides of manganese plus carbides took place in an attritor to an FSSS chromium, or of manganese plus vanadium, effect an additional protection against (Fischer Sub-sieve sizes) grain size of 3 μ m. the oxygen content of the powder amounted to 0.16%. (Fe, Mn, Cr)₇(C_3 and β -Mo₂C were identified in the carbide phases. Sintering took place at 1250°C in a normal oxidation. This is also valid with extremely 85 fine milling. It has been found that the alloy elements diffuse very readily during sintering, so that a very homogeneous distribution of the elements is achieved in sintering furnace, e.g., in a rocker bar heating furnace with a cracked ammonia the finished sintered steel workpiece which atmosphere. A test during the sintering has a beneficial effect on the mechanical process proved that up to 1200°C there was no oxidation of the metallic carbide powder, which, beginning at 1100°C, properties e.g. on tensile strength and hardenability. Examples of ferro-alloy powder and analyses of ferro-alloy powders dissolved easily and completely by 1250°C. which are particularly suitable for in the iron powder. 95 manufacturing sintered steel workpieces are in % by weight:-Example 2 In manufacturing a sintered steel 20—25% Manganese 20—25% Chromium 4— 8% Carbon Balance iron workpiece which contains the alloy elements manganese plus vanadium plus molybdenum, normal commercial iron powder is thoroughly mixed with a complex 100 45 metallic carbide powder according to the invention in proportions of 97% to 3% and pressed to the desired workpiece with a pressure of 500 MN/m². The complex metal carbide powder contained 21% Mn, 22% Mo and 21.4% V, also 7.9% C balance Fe. The manufacture of the powder again took place by fine milling in an attritor. The ESSS grain size amounted to 5 um, with an with impurities due to melting 105 -35% Manganese -45% Chromium - 7% Carbon 50 Balance iron FSSS grain size amounted to 5 μ m, with an oxygen content of 0.19%. As carbide phases were found: VC—Mo₂C solid solutions, and the M₇C₃ type in which M is chiefly iron with impurities due to melting.

and manganese.

to 1200°C.

Sintering took place at 1280°C in a

cracked ammonia atmosphere. Again with

the complex iron alloy carbide powder used here no oxidation could be conformed up

20—25% Manganese 20—25% Chromium 20—25% Molybdenum 6— 8% Carbon

with impurities due to melting.

Balance iron

55

_3	1,504,577		3
	WHAT WE CLAIM IS:— 1. A pre-alloy powder for the	5— 7° Carbon Balance iron	30
5	manufacture of alloyed sintered steel workpieces comprising a pulverized ferroalloy comprising manganese and chromium or manganese and vanadium in the form of complex metallic carbides, with a grain size	with impurities due to melting. 6. A pre-alloy powder as claimed in any one of Claims 1 to 3, consisting of by weight:—	
10	of less than 10 μ m, having an oxygem content of less than 0.2% and resistant to oxidation at temperatures in the region of 1200°C. 2. A pre-alloy powder as claimed in	20—25% Manganese 20—25% Chromium 20—25% Molybdenum 6— 8% Carbon Balance iron	35
15	Claim 1, wherein the grain size is less than 5 µm. 3. A pre-alloy powder as claimed in Claim 1 or Claim 2, wherein the oxygen content is less than 0.15%.	with impurities due to melting. 7. A pre-alloy powder as claimed in any one of Claims 1 to 3, consisting of by weight:—	40
	4. A pre-alloy powder as claimed in any preceding Claim, consisting of by weight:—	20—25% Molybdenum 20—25% Vanadium with or without Niobium	45
20	20—25% Manganese 20—25% Chromium 4— 8% Carbon Balance iron	20—25% Manganese Up to 7% Carbon Balance iron	
		with impurities due to melting.	50
25	with impurities due to melting. 5. A pre-alloy powder as claimed in any one of Claims 1 to 3 consisting by weight:—	HULSE & CO., Chartered Patent Agents, Cavendish Buildings,	* 7
	30—35% Manganese 35—45% Chromium	West Street, Sheffield S1 1ZZ.	
	Printed for Her Majesty's Stationery Office	by the Courier Press, Learnington Spa, 1978	

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa, 1978
Published by The Patent Office, 25 Southampton Buildings, London, WC2A IAY, from
which copies may be obtained.