

Matemáticas III

Grau em Robótica (curso 2020–2021)

Compêndio de fórmulas

I. Equações diferenciais

Primeira ordem

Equações separáveis

$$\frac{dy}{dx} = g(x)h(y)$$

(i) Integrar $h(y)^{-1}dy = g(x)dx$

Equações lineares

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

- (i) Dividir por $a_1(x)$ \longrightarrow forma padrão: $\frac{dy}{dx} + P(x)y = f(x)$
- (ii) Fator integrante: $\mu(x) = e^{\int P(x)dx}$
- (iii) Integrar $d \frac{d}{dx} [\mu(x)y] = \mu(x)f(x)$

Equações exatas

$$M(x,y)dx+N(x,y)dy=0$$

equação exata $\Leftrightarrow M_y = N_x$

(i)
$$f_x = M \Rightarrow f(x, y) = \int M(x, y) dx + g(y)$$

(ii)
$$f_y = \frac{\partial}{\partial y} \int M(x, y) dx + g'(y) = N(x, y)$$

 $\Rightarrow g'(y) = N(x, y) - \frac{\partial}{\partial y} \int M(x, y) dx \longrightarrow g(y)$

(iii) Substituir
$$g(y)$$
 em (i) $\longrightarrow f(x,y) = c$

Nota: alternativamente pode começar-se com $f_y=N$ e integrar com respeito a y.

Equações redutíveis a exatas: fatores integrantes

$$M(x,y)dx + N(x,y)dy = 0 \qquad \text{(não exata)}$$

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0 \qquad \text{(exata)}$$

(i) Fatores integrantes:

Se
$$\frac{M_y-N_x}{N}$$
 não depende de $y\Rightarrow \mu(x)=e^{\int \frac{M_y-N_x}{N}dx}$
Se $\frac{N_x-M_y}{M}$ não depende de $x\Rightarrow \mu(y)=e^{\int \frac{N_x-M_y}{M}dy}$

(ii) Resolver como uma equação exata

Equações homogéneas

$$M(x,y)dx + N(x,y)dy = 0$$

equação homogénea $\Leftrightarrow f(tx,ty) = t^{\alpha}f(x,y), \ \alpha \in \mathbb{R}$

- (i) Substituir $u = \frac{y}{x}$ ou $v = \frac{x}{y}$
- (ii) Resolver como uma equação separável

SEGUNDA ORDEM (OU SUPERIOR)

Equações lineares homogéneas com coeficientes constantes

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0,$$

 $a_i \in \mathbb{R}, a_n \neq 0, i = 0, 1, \dots, n$

Caso particular $(n = 2 \longrightarrow ay'' + by' + cy = 0)$

- (i) Equação auxiliar: $am^2 + bm + c = 0 \longrightarrow m_1, m_2$
- (ii) Casos:
 - $m_1 \neq m_2 \in \mathbb{R} \longrightarrow \boxed{y = c_1 e^{m_1 x} + c_2 e^{m_2 x}}$
 - $m_1 = m_2 \in \mathbb{R} \longrightarrow \boxed{y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}}$
 - $m_1 = \alpha + \beta i, m_2 = \overline{m}_1 \in \mathbb{C} \longrightarrow y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$

Equações lineares não homogéneas: método de coeficientes indeterminados

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = g(x),$$

 $a_i \in \mathbb{R}, a_n \neq 0, i = 0, 1, \ldots, n$

 $g(x) \sim$ polinómios, exponenciais, senos e cossenos

Caso particular $(n = 2 \longrightarrow ay'' + by' + cy = g(x))$

- (i) Resolver a equação homogénea $ay'' + by' + cy = 0 \longrightarrow y_c = c_1y_1 + c_2y_2$
- (ii) Obter, supondo que y_p tem a forma de g(x), uma solução particular (mediante coeficientes indeterminados) da equação não homogénea $ay'' + by' + cy = g(x) \longrightarrow \boxed{y_p}$
- (iii) $y = y_c + y_p$

Equações lineares não homogéneas: método de variação de parâmetros

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = g(x),$$

 $a_n(x) \neq 0, i = 0, 1, \ldots, n$

Caso particular $(n = 2 \longrightarrow a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x))$

- (i) Dividir por $a_2(x) \longrightarrow$ forma padrão: y'' + P(x)y' + Q(x)y = f(x)
- (ii) Resolver a equação homogénea $y'' + P(x)y' + Q(x)y = 0 \longrightarrow \boxed{y_c = c_1y_1 + c_2y_2}$
- (iii) Obter, supondo que $y_p=u_1y_1+u_2y_2$, uma solução particular da equação não homogénea $y''+P(x)y'+Q(x)y=f(x)\longrightarrow \boxed{y_p}$
 - (a) Calcular $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \neq 0$
 - (b) Calcular $W_1 = \begin{vmatrix} 0 & y_2 \\ f(x) & y_2' \end{vmatrix}$ e $W_2 = \begin{vmatrix} y_1 & 0 \\ y_1' & f(x) \end{vmatrix}$
 - (c) Integrar

$$u_1' = \frac{W_1}{W} \longrightarrow u_1$$

$$u_2' = \frac{W_1}{W} \longrightarrow u_2$$

$$\Rightarrow y_p = u_1 y_1 + u_2 y_2$$

(iv)
$$y = y_c + y_p$$

Equações não lineares

$$F(x, y, y', y'') = 0 \longrightarrow F(x, y', y'') = 0$$

$$F(x, y, y', y'') = 0 \longrightarrow F(y, y', y'') = 0$$

- (i) Substituir u = y'
- (ii) Resolver a equação de primeira ordem

- Redução de ordem -

$$a_2(x)y''+a_1(x)y'+a_0(x)y=0$$
dada a solução $y_1(x)\longrightarrow y_2(x)=u(x)y_1(x)$ também é solução

(i) $y_2(x)$ obtém-se por substituição na equação diferencial ou, diretamente, como

$$y_2(x) = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1^2(x)} dx$$

MÉTODOS NUMÉRICOS

Método de Euler

$$\begin{cases} y' = f(x, y), \\ y(x_0) = y_0 \end{cases}$$

$$\boxed{y_{n+1} = y_n + hf(x_n, y_n)},$$

$$x_n = x_0 + nh, \text{ com } n = 0, 1, 2, \dots$$

$$\begin{vmatrix} \log a \end{vmatrix} : |s| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n''(s)| \le M \frac{h^2}{n}, \text{ com } M = \max_{n \in \mathbb{N}} |y_n'$$

Erro de discretização local: $|\varepsilon_n| \leq M \frac{h^2}{2}$, com $M = \max_{x_n < \xi < x_{n+1}} |y''(\xi)|$ Erro de discretização global: $|E_n| \leq n M \frac{h^2}{2}$, com $M = \max_{x_n < \xi < x_{n+1}} |y''(\xi)|$

Método RK4

$$\begin{cases} y' = f(x, y), \\ y(x_0) = y_0 \end{cases}$$

$$y_{n+1} = y_n + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4),$$

$$x_n = x_0 + nh, \text{ com } n = 0, 1, 2, \dots$$

$$\begin{cases} k_1 = f(x_n, y_n), \\ k_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1), \\ k_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_2), \\ k_4 = f(x_n + h, y_n + hk_3). \end{cases}$$

Método das diferenças finitas

$$\begin{cases} y'' + P(x)y' + Q(x)y = f(x), \\ y(a) = \alpha, \\ y(b) = \beta \end{cases}$$

$$h = \frac{b-a}{n}, \text{ com } n \in \mathbb{Z}$$

$$\left(1 + \frac{h}{2}P_i\right)y_{i+1} + \left(-2 + h^2Q_i\right)y_i + \left(1 - \frac{h}{2}P_i\right)y_{i-1} = h^2f_i$$