

Beschreibung

Verfahren zum Ersatzschalten von räumlich getrennten Vermittlungssystemen

5 Zeitgemäße Vermittlungssysteme (Switch) verfügen durch redundantes Bereitstellung wichtiger interner Komponenten über ein hohes Maß an interner Betriebssicherheit. Damit wird im Normalbetrieb eine sehr hohe Verfügbarkeit der vermittelungs-
10 technischen Funktionen erreicht. Treten jedoch massive äußere Einwirkungen auf (z.B. Feuer, Naturkatastrophen, Terroranschläge, kriegerische Einwirkungen etc.), so nutzen die getroffenen Vorkehrungen zur Erhöhung der Betriebssicherheit in der Regel wenig, weil Original- und Ersatzkomponenten des
15 Vermittlungssystems sich am gleichen Ort befinden und damit in einem solchen Katastrophenfall mit hoher Wahrscheinlichkeit beide Komponenten zerstört bzw. funktionsunfähig gewor- den sind.

20 Als Lösung ist eine geographisch separierte 1:1 Redundanz vorgeschlagen worden. Demgemäß ist vorgesehen, jedem zu schützenden Vermittlungssystem einen identischen Klon als Redundanzpartner mit identischer Hardware, Software und Datenbasis zuzuordnen. Der Klon befindet sich im hochgefährten
25 Zustand, ist aber trotzdem vermittlungstechnisch nicht aktiv. Beide Vermittlungssysteme werden von einem im Netz übergeordneten, realzeitfähigen Monitor gesteuert, der die Umschalte- vorgänge steuert.

30 Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Ersatzschalten von Vermittlungssystemen anzugeben, das im Fehlerfall ein effizientes Umschalten eines ausgefallenen Vermittlungssystems auf einen Redundanzpartner sicherstellt.

35 Diese Aufgabe wird ausgehend von den im Oberbegriff von Patentanspruch 1 angegebenen Merkmalen durch die im kennzeichnenden Teil beanspruchten Merkmale gelöst.

Erfindungsgemäß wird im Zuge einer 1:1 Redundanz von einem übergeordneten Monitor - der in Hardware und/ oder Software realisiert werden kann - eine Kommunikation zu den paarweise angeordneten Vermittlungssystemen (1:1 Redundanz) aufgebaut.

5 Bei Kommunikationsverlust zum aktiven Vermittlungssystem schaltet der Monitor mit Unterstützung der zentralen Steuerungen der beiden Vermittlungssysteme in Realzeit auf das redundante Vermittlungssystem um.

10 Ein wesentlicher Vorteil der Erfindung ist darin zu sehen, dass beim Umschaltevorgang von einem aktiven Vermittlungssystem auf ein hot-standby Vermittlungssystem keinerlei Netzwerkmanagement benötigt wird, das die Umschaltevorgänge unterstützt. Insofern ist es irrelevant, ob das Netz ein derar-

15 tiges Netzwerkmanagement aufweist oder nicht. Ferner ist der Monitor über eine fest vorgegebene Anzahl von Interfaces (z. B. jeweils 2) mit den Vermittlungssystemen verbunden. Aus Sicht des Monitors stellt diese fest vorgegebene Anzahl von Interfaces Schnittstellen zu den betreffenden zentralen Steu-

20 erungen der Vermittlungssysteme dar. Damit ist der Monitor unabhängig vom Ausbauzustand der beiden Vermittlungssysteme.

Damit ist diese Lösung in jedem Vermittlungssystem mit IP basierten Schnittstellen mit minimalem Implementierungsaufwand realisierbar. Die Lösung ist umfassend einsetzbar und wirtschaftlich, weil im wesentlichen nur der Aufwand für den Monitor anfällt. Ferner ist sie durch Nutzung einfacher, standardisierter IP Protokolle extrem robust. Fehlsteuerung aufgrund von SW Fehlern können damit annähernd ausgeschlossen werden. Fehlsteuerungen aufgrund von temporären Ausfällen im IP core Netz beheben sich automatisch, nachdem der Ausfall beendet ist. Ein Doppelausfall des Monitors stellt ebenso kein Problem dar.

35 Vorteilhafte Weiterbildungen der Erfindungen sind in den Unteransprüchen angegeben.

Es zeigen:

Figur 1 die Netzkonfiguration gemäss der Erfindung im Falle
eines lokal redundanten Monitors

5

Figur 2 die Netzkonfiguration gemäss der Erfindung im Falle
eines geographisch redundanten Monitors

In Fig. 1 ist vorgesehen, jedem zu schützenden Vermittlungs-
10 system (z. B. S₁) einen identischen Klon als Redundanzpartner
(z. B. S_{1b}) mit identischer Hardware, Software und Datenbasis
zuzuordnen. Der Klon befindet sich im hochgefährten Zustand,
ist aber trotzdem vermittlungstechnisch nicht aktiv (Be-
triebszustand "hot standby"). Damit ist eine hochverfügbare,
15 über mehrere Lokationen verteilte 1:1 Redundanz von Vermitt-
lungssystemen definiert.

Die beiden Vermittlungssysteme (Vermittlungssystem S₁ und der
Klon oder Redundanzpartner S_{1b}) werden von einem Netzwerkma-
20 nagementsystem NM gesteuert. Die Steuerung erfolgt derart,
dass der aktuelle Stand von Datenbasis und Software beider
Vermittlungssysteme S₁, S_{1b} identisch gehalten wird. Dies wird
erreicht, indem jedes betriebstechnische Kommando, jedes Kon-
25 figurationskommando und jedes Software-Update inklusive Pat-
ches identisch an beide Partner ausgebracht wird. Damit wird
ein räumlich abgesetzter, identischen Klon zu einem in Be-
trieb befindlichen Switch mit identischer Datenbasis und i-
dentischem Softwarestand definiert.

30 Die Datenbasis beinhaltet grundsätzlich alle semipermanenten
und permanenten Daten. Hierbei werden unter permanenten Daten
die Daten verstanden, die als Code in Tabellen abgelegt sind
und die sich nur per Patch oder Software-Update ändern las-
sen. Unter semipermanenten Daten werden die Daten verstanden,
35 die z. B. über die Bedienerschnittstelle in das System gelan-
gen und die für längere Zeit dort in der Form der Eingabe ge-
speichert sind. Mit Ausnahme der Konfigurationszustände des

Systems werden diese Daten i.a. vom System nicht selbst verändert. Nicht in der Datenbasis enthalten sind die einen Ruf begleitenden transienten Daten, die das Vermittlungssystem nur kurzzeitig speichert und die über die Dauer eines Calls 5 hinaus i.a. keine Bedeutung haben oder Zustandsinformationen, die transiente Überlagerungen/ Ergänzungen von konfigurativ vorgegebenen Grundzuständen sind. (So könnte ein Port zwar im Grundzustand aktiv sein, aber wegen einer transienten (vorübergehenden) Störung momentan nicht zugreifbar sein.)

10

Im weiteren verfügen die Vermittlungssysteme S_1 , S_{1b} beide über (in Fig. 1 nicht näher aufgezeigte) aktive, paketorientierte Interfaces zum gemeinsamen Netzwerkmanagementsystem NM. Während aber beim Vermittlungssystem S_1 alle paketorientierten Interfaces $IF_1 \dots IF_n$ aktiv sind, sind beim Vermittlungssystem S_{1b} hingegen die paketorientierten Interfaces im Betriebzustand "idle". Der Zustand "idle" bedeutet, dass die Interfaces keinen vermittlungstechnischen Nachrichtenaustausch erlauben, aber von außen, d.h. durch eine außerhalb 15 von Vermittlungssystem S_1 und Vermittlungssystem S_{1b} gelegenen, übergeordneten realzeitfähigen Monitor aktiviert werden können. Der Monitor kann in Hardware und/oder Software realisiert sein, und schaltet im Fehlerfall in Realzeit auf den Klon um. Realzeit bedeutet hier eine Zeitspanne von wenigen 20 Sekunden. Abhängig von der Qualität des Netzes kann auch eine höhere Zeitspanne zur Erkennung der Notwendigkeit zur Ersatzschaltung definiert werden. Gemäss vorliegendem Ausführungsbeispiel ist der Monitor als Steuereinrichtung SC und aus Sicherheitsgründen gedoppelt (lokale Redundanz) ausgebildet.

25

Die Interfaces I_n sind paketbasiert und stellen somit Kommunikationsschnittstellen zu paketbasierten Peripherieeinrichtungen (wie z. B. IAD, SIP Proxy-Einrichtungen), fernen paketbasierte Switches (S_x), paketbasierten Media Gateways und 30 Servern (MG/ AGW) dar. Sie werden sie mittelbar von der Steuereinrichtung SC (Switch Controller, SC) gesteuert. Dies bedeutet, dass die Steuereinrichtung SC die Interfaces IF_n über

die zentralen Steuerungen CP aktivieren und deaktivieren, und somit beliebig zwischen den Betriebszuständen "act" und "idle" hin- und herschalten kann.

5 Die Konfiguration gemäss der Fig. 1 soll als Default Konfiguration gelten. Dies bedeutet, dass Vermittlungssystem S_1 vermittlungstechnisch aktiv ist, während sich Vermittlungssystem S_{1b} in einem Betriebszustand "hot standby" befindet. Dieser Zustand ist durch eine aktuelle Datenbasis und volle Aktivität aller Komponenten bis auf die paketbasierten Interfaces (und eventuell die Bearbeitung vermittlungstechnischer Anreize) geprägt. Das (geographisch redundante) Vermittlungssystem S_{1b} kann somit von der Steuereinrichtung SC durch Aktivierung der Interfaces $IF_{2..n}$ schnell (Realzeit) in den vermittlungs-
10 technisch aktiven Zustand überführt werden. Als wesentlicher Aspekt ist anzusehen, dass die beiden geographisch redundanten Vermittlungssysteme S_1 , S_{1b} sowie das Netzwerkmanagement NM und die gedoppelte Steuereinrichtung SC jeweils räumlich
15 deutlich getrennt sein müssen.

20 Die Steuereinrichtung SC übermittelt dem Netzwerkmanagement NM regelmässig oder bedarfsweise auf Anforderung den aktuellen Betriebszustand der Vermittlungssysteme S_1 und S_{1b} (act/standby, Zustand der Interfaces) sowie den eigenen Betriebs-
25 zustand. Aus Sicherheitsgründen sollte das Netzwerkmanagement NM die Funktion haben, die oben beschriebenen Umschaltungen auch manuell herbeiführen zu können. Optional kann die automatische Umschaltung blockiert werden, so dass die Umschaltung nur manuell durchgeführt werden kann.

30 Die Paket-Adressen (IP Adressen) der Interfaces $IF_1 \dots IF_n$ des Vermittlungssystems S_1 und ihrer jeweiligen Partner Interfaces von Vermittlungssystem S_{1b} können identisch sein, müssen es aber nicht. Wenn sie identisch sind, wird das Umschalten nur von vorgeschalteten Routern bemerkt. Für die Partner-Applikation im Netz ist es dagegen völlig transparent. Man spricht in diesem Zusammenhang auch von der IP Failover Funk-
35

tion. Falls das Protokoll, das ein Interface bedient, ein Um-
schalten des Kommunikationspartners auf eine andere Paket-
Adresse erlaubt, wie dies z.B. beim H.248 Protokoll der Fall
ist (ein Media Gateway kann selbständig eine neue Verbindung
5 zu einem anderen Media Gateway Controller mit anderer IP Ad-
resse herstellen), können die IP Adressen auch unterschied-
lich sein.

In einer Ausgestaltung der Erfindung wird vorgesehen, als
10 Steuereinrichtung SC den Zentralrechner eines weiteren Ver-
mittlungssystems zu verwenden. Damit existiert dann eine
Steuereinrichtung mit höchster Verfügbarkeit.

In einer Weiterbildung der Erfindung kommt die Etablierung
15 einer unmittelbaren Kommunikationsschnittstelle zwischen Ver-
mittlungssystem S_1 und Vermittlungssystem S_{1b} in Betracht.
Diese kann zum Update der Datenbasis z. B. im Hinblick auf
SCI - (Subscriber Controlled Input) und Gebühren-Daten genutzt
werden sowie auch zum Austausch transienter Daten von einzel-
20 nen Verbindungen oder wesentlichen weiteren transienten Daten
(z. B. H.248 Association Handle). Damit sind die Störungen
des Betriebs aus Teilnehmer- und Betreibersicht minimierbar.
Die semipermanenten und transienten Daten können dann von dem
jeweiligen aktiven Vermittlungssystem in das redundante
25 standby Vermittlungssystem in einem zyklischen Zeitraster
(Update) übertragen werden. Das Update der SCI-Daten hat den
Vorteil, dass das zyklische Restore auf dem standby-System
vermieden wird und jederzeit Aktualität bzgl. SCI Daten im
standby System herrscht. Durch das Update Stack-relevanter
30 Daten, wie dem H.248 association handle, kann der Peripherie
die Übernahme der Peripherie durch ein Ersatzsystem verborgen
werden, und es können die Ausfallzeiten noch stärker redu-
ziert werden.

Im folgenden sei nun von einem schwerwiegenden Ausfall des
35 Vermittlungssystems S_1 ausgegangen. Aufgrund der geographi-
schen Redundanz ist mit hoher Wahrscheinlichkeit der Klon
(Vermittlungssystem S_{1b}) ebenso nicht betroffen wie die Steu-

ereinrichtung SC. Die Steuereinrichtung SC stellt den Ausfall von Vermittlungssystem S_1 fest, da deren Zentralsteuerung CP über eine feste vordefinierte Mehrzahl von Interfaces des Vermittlungssystems S_1 nicht mehr erreicht werden kann und 5 damit Kommunikationsverlust zur Zentralsteuerung CP des Vermittlungssystems S_1 eintritt.

Die Steuereinrichtung SC schaltet nun auf das Bemerken des Ausfalls von Vermittlungssystem S_1 hin das geographisch redundante Vermittlungssystem S_{1b} in einen aktiven Betriebszustand. Das ausgefallenen Vermittlungssystem geht nach Reparatur/ recovery in den "Betriebszustand "hot standby". Gegebenenfalls sind manuelle Eingriffe nötig, um beim Hochfahren von Vermittlungssystem S_1 die aktuelle Datenbasis von Vermittlungssystem S_{1b} zu laden. Das Umschalten kann jederzeit 15 auch vom Network Management System NM aus manuell durchgeführt werden.

Bei vorliegendem Ausführungsbeispiel gemäss der in Fig. 1 20 aufgezeigten Struktur wird davon ausgegangen, dass die Vermittlungssysteme S_1 und S_{1b} ausschliesslich IP Interfaces aufweisen, Terminierung von TDM-Strecken am Vermittlungssystem sind nicht vorgesehen. Vermittlungssystem S_1 und S_{1b} sind bei- 25 spielhaft über jeweils genau 2 IP Interfaces IF_1 , IF_2 mit der Steuereinrichtung SC verbunden. Damit dürfte eine hinreichen- de Redundanz gegeben sein, obwohl diese Verbindung bis auf alls n Interfaces ausdehnbar ist. Die Steuereinrichtung SC selbst ist aufgrund ihrer Doppelung ausfallsicher.

30 Beim Hochlauf wird von der Steuereinrichtung SC (Default Konfiguration)) das Vermittlungssystem S_1 als vermittlungstechnisch "aktiv" und das Vermittlungssystem S_{1b} als vermittlungstechnisch "standby" definiert, die Vermittlungssysteme S_1 und S_{1b} werden hiervon explizit informiert. Als Folge hier- 35 von wird von der zentralen Steuereinrichtung CP des Vermittlungssystems S_1 alle $n > 2$ Interfaces IF_n in den vermittlungstechnisch aktiven Zustand versetzt, wohingegen alle n

> 2 Interfaces IF_n des Vermittlungssystems S_{1b} von dessen zentraler Steuereinrichtung CP im Zustand "IDLE" belassen werden. Vermittlungssystem S_{1b} meldet sich unter den ihm zugedachten externen vermittlungstechnisch nutzbaren IP-Adressen erst gar nicht beim Edge-Router (für IP fail-over Adressen und/oder non-fail-over Adressen) oder reagiert nicht auf Eingaben aus der Peripherie, also Gateways, IADs, usw. (für non-fail-over Adressen).

5 Der Betriebszustand der beiden Vermittlungssysteme S₁ und S_{1b} wird über den Austausch zyklischer Testnachrichten zwischen der Steuereinrichtung SC und den zentralen Steuerungen CP der beiden paarweise angeordneten Vermittlungssysteme S₁, S_{1b} überwacht. Der Austausch der zyklischen Testnachrichten zwischen der Steuereinrichtung SC und der zentralen Steuerung CP des aktiven Vermittlungssystems S₁ erfolgt dadurch, dass sich das aktive Vermittlungssystem S₁ mit Unterstützung seiner zentralen Steuerung CP zyklisch bei der Steuereinrichtung SC meldet und daraufhin eine positive Quittung (z. B. alle 10s) erhält. Der Austausch der zyklischen Testnachrichten zwischen der Steuereinrichtung SC und der zentralen Steuerung CP des hot-standby Vermittlungssystems S_{1b} erfolgt, indem sich das hot-standby Vermittlungssystem S_{1b} mit Unterstützung seiner zentralen Steuerung CP zyklisch bei der Steuereinrichtung SC meldet und daraufhin keine oder eine negative Quittung (z. B. alle 10s) erhält.

10 15 20 25

Vermittlungssystem S₁ soll nun ausfallen. Die Steuereinrichtung SC (falls intakt) meldet jeden verifizierten, unzulässig lange währenden Kommunikationsverlust mit der Zentralsteuerung CP des Vermittlungssystems 1 an das Netzwerkmanagement NM, wozu beide Interfaces IF1, IF2 herangezogen werden. Ferner gibt sie Vermittlungssystem S_{1b} den Auftrag zur Inbetriebnahme, indem sie die zentrale Steuereinrichtung CP des Vermittlungssystems S_{1b} über mindestens eines der Interfaces IF1, IF2 veranlasst, seine vermittlungstechnischen Interfaces zu aktivieren. Da die Steuereinrichtung SC die Verfügbarkeit

30 35

von Vermittlungssystem S_{1b} in der Vergangenheit überwacht hat, und dieses nicht gestört zu sein scheint, kann dies umgehend erfolgen.

5 Das Aktivieren der Interfaces von Vermittlungssystem S_{1b} erfolgt, indem die Steuereinrichtung SC die zyklischen Requests von Vermittlungssystem S_{1b} positiv quittiert. Die zentrale Steuerung CP des Vermittlungssystems S_{1b} schaltet daraufhin die Interfaces IF_n explizit in den vermittlungstechnisch aktiven Zustand. Ferner quittiert die Steuereinrichtung SC zukünftige Requests von Vermittlungssystem S_1 negativ oder lässt sie unquittiert, womit die zentrale Steuerung CP das Vermittlungssystem S_1 explizit die Interfaces IF_n in den vermittlungstechnisch inaktiven Zustand schaltet, was auch nach 10 15 der Wiederinbetriebnahme nach Reparatur sofort erfolgt.

Die IP-fail-over Adressen von Vermittlungssystem S_1 werden nun den vorgelagerten Routern bekannt gemacht. Gleiches gilt für externe non-fail-over Adressen, sofern noch nicht geschehen. Die über die Router eintreffende externe Signalisierung wird fortan durch Vermittlungssystem S_{1b} bearbeitet.

Geht der Fehler auf eine Kommunikationsstörung zwischen Vermittlungssystem S_1 und der Steuereinrichtung SC zurück, so 25 detektiert Vermittlungssystem S_1 die Nichtverfügbarkeit der Steuereinrichtung SC und geht davon aus, dass die Steuereinrichtung SC auf Vermittlungssystem S_{1b} umschaltet. Damit deaktiviert Vermittlungssystem S_1 seine Interfaces aufgrund des Kommunikationsverlustes zur Steuereinrichtung SC automatisch. 30 Hierdurch ist gewährleistet, dass jeweils nur eines der beiden Vermittlungssysteme S_1 und S_{1b} aktiv ist.

Nach der Reparatur oder Wiederverfügbarkeit der Kommunikation zwischen der Steuereinrichtung SC und Vermittlungssystem S_1 35 kann wieder auf Vermittlungssystem S_1 zurückgeschaltet werden. Dies ist jedoch nicht zwingend erforderlich, kann aber optional unterstützt werden.

Um auszuschließen, dass ein Kommunikationsverlust zwischen der Steuereinrichtung SC zu Vermittlungssystem S_1 und Vermittlungssystem S_{1b} einen Totalausfall beider Vermittlungssysteme S_1 und S_{1b} verursacht, wird das Netzwerkmanagement NM 5 stets von der Steuereinrichtung SC und den Vermittlungssystemen über eine Ersatzschaltung und die bevorstehende Abschaltung eines Vermittlungssystems informiert und kann dies gegebenenfalls unterbinden. Auch kann ein Bestätigungsmodus für den Bediener an das Netzwerkmanagement NM optional angeboten 10 werden.

Dasselbe Ausfallszenario bezüglich der Vermittlungssysteme soll nun auf einer in Fig. 2 aufgezeigten Konfiguration zum Ablauf gelangen. Der Unterschied zu der in Fig. 1 aufgezeigten Konfiguration liegt im Vorsehen zweier Steuereinrichtungen SC_1 und SC_2 , die an verschiedenen Orten untergebracht sind. Die Steuereinrichtung SC besteht somit aus den beiden Hälften SC_1 und SC_2 . 15

20 Gemäss Fig. 2 überwachen sich die beiden (räumlich getrennten) Steuereinrichtungen SC_1 und SC_2 gegenseitig. Fällt die Kommunikation zwischen den beiden Steuereinrichtungen SC_1 und SC_2 aus, so gibt es keine von einer Steuereinrichtung ausgehenden automatischen Ersatzschalteaufträge mehr. Während der 25 Isolation der beiden Steuereinrichtungen SC_1 und SC_2 wird der zuletzt in den beiden Steuereinrichtungen SC_1 und SC_2 festgelegte Betriebszustand der Vermittlungssysteme aufrechterhalten. Dies ist möglich, da die beiden Steuereinrichtungen SC_1 und SC_2 noch getrennt aktiv sind. Das schließt aus, dass bei 30 den Steuereinrichtungen SC_1 und SC_2 unabhängig voneinander inkonsistente Einstellungen der Vermittlungssysteme S_1 und S_{1b} vornehmen. Die Zentralteile CP der Vermittlungssysteme S_1 und S_{1b} stehen mit beiden Steuereinrichtungen SC_1 und SC_2 in Kontakt und erhalten von Steuereinrichtung SC_1 und SC_2 explizit 35 Aufträge zur Aktivierung bzw. Deaktivierung ihrer Interfaces. Diese Aufträge sind konsistent, da sich die beiden Steuerein-

richtungen SC₁ und SC₂ diesbezüglich vorher synchronisiert haben.

Fällt nun Vermittlungssystem S₁ aus, so stellt dies Steuer-
5 einrichtung SC₁ und SC₂ fest. Beide synchronisieren sich und schalten Vermittlungssystem S_{1b} ein. Kommt Vermittlungssystem S₁ danach wieder in Betrieb, so wird dies wiederum von Steuereinrichtung SC₁ und SC₂ bemerkt und nach erfolgter interner
10 Synchronisation geht Vermittlungssystem S₁ in den von Steuer- einrichtung SC₁ und SC₂ veranlassten standby-Zustand.

War nur die Kommunikation zwischen Steuereinrichtung SC₁ und Vermittlungssystem S₁ gestört, wurde das ebenfalls durch die beiden Steuereinrichtungen SC₁ und SC₂ erkannt, und es wurde
15 auf eine Ersatzschaltung verzichtet.

War die Kommunikation zwischen Vermittlungssystem S₁ und bei-
den zwei Steuereinrichtungen SC₁ und SC₂ gestört, so haben beide Steuereinrichtungen Vermittlungssystem S_{1b} aktiviert.
20 Vermittlungssystem S₁ deaktivierte sich hierbei durch den Kommunikationsverlust mit beiden Steuereinrichtungen SC₁ und SC₂ selbst.

Fällt Steuereinrichtung SC₁ aus, so stellt sich das als eine
25 Kommunikationsstörung zwischen beiden Steuereinrichtungen SC₁ und SC₂ dar. Hierauf unternimmt Steuereinrichtungen SC₂ keine weiteren Ersatzschaltungen mehr, da dann die Gefahr bestünde,
dass Steuereinrichtung SC₁ ebenfalls Vermittlungssystem S₁ und Vermittlungssystem S_{1b} inkonsistent zu den Einstellungen
30 von Steuereinrichtung SC₂ einstellt. Da weiterhin Kontakt zu SC₂ besteht, schaltet sich Vermittlungssystem 1b nicht ab.

Der Vorteil dieser Konfiguration liegt in einer erhöhten Si-
cherheit, insbesondere bei automatischer Abschaltung eines
35 isolierten Vermittlungssystems.

Patentansprüche

1. Verfahren zum Ersatzschalten von räumlich getrennten Vermittlungssystemen, die in einer 1:1 Redundanz paarweise angeordnet sind, wobei das eine Vermittlungssystem (S_1) sich in einem aktiven Betriebszustand ("act") und das verbleibende redundante Vermittlungssystem (S_{1b}) sich in einem hot-standby Betriebszustand ("idle") befindet,
dadurch gekennzeichnet,
dass eine Kommunikation zwischen mindestens einem übergeordneten Monitor (SC) und mindestens einem der paarweise angeordneten Vermittlungssysteme (S_1, S_{1b}) aufgebaut wird, und dass bei Kommunikationsverlust zu dem aktiven Vermittlungssystem (S_1) mit Unterstützung der zentralen Steuerung (CP) des redundanten Vermittlungssystems (S_{1b}) auf dieses in Realzeit umgeschaltet wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass zwischen dem mindestens einem übergeordneten Monitor (SC) und den zentralen Steuerungen (CP) der beiden paarweise angeordneten Vermittlungssysteme (S_1, S_{1b}) zyklisch Testnachrichten ausgetauscht werden.
- 25 3. Verfahren nach Anspruch 1, 2,
dadurch gekennzeichnet,
dass der Austausch der zyklischen Testnachrichten zwischen dem übergeordneten Monitor (SC) und der zentralen Steuerung (CP) des aktiven Vermittlungssystems (S_1) gesteuert wird, indem sich das aktive Vermittlungssystem (S_1) mit Unterstützung seiner zentralen Steuerung (CP) zyklisch beim Monitor (SC) meldet und daraufhin eine positive Quittung (z. B. alle 10s) erhält.

4. Verfahren nach Anspruch 1 bis 3,
dadurch gekennzeichnet,
dass der Austausch der zyklischen Testnachrichten zwischen
dem übergeordneten Monitor (SC) und der zentralen Steuerung
5 (CP) des hot-standby Vermittlungssystems (S_{1b}) gesteuert
wird, indem sich das hot-standby Vermittlungssystem (S_{1b}) mit
Unterstützung seiner zentralen Steuerung (CP) zyklisch beim
Monitor (SC) meldet und daraufhin keine oder eine negative
Quittung (z. B. alle 10s) erhält.

10

5. Verfahren nach Anspruch 1 bis 4,
dadurch gekennzeichnet,
dass der verifizierte Kommunikationsverlust zur vermittlungs-
technisch aktiven Vermittlungsstelle vom Monitor (SC) an das
15 Netzwerkmanagement (NM) gemeldet wird, das daraufhin nach
Massgabe der Verfügbarkeit von Vermittlungssystem (S_{1b}) Um-
schaltebefehle an den mindestens einen Monitor (SC) sendet.

15

6. Verfahren nach Anspruch 1, 2 oder 3,
20 dadurch gekennzeichnet,
dass das Umschalten auf das redundante Vermittlungssystem
(S_{1b}) vom Monitor (SC) gesteuert wird, indem er die zykli-
schen Anforderungen ("Request") des hot-standby Vermittlungs-
systems (S_{1b}) mit einer positiver Quittung quittiert, worauf-
25 hin dieses Vermittlungssystem (S_{1b}) von seiner zentralen
Steuerung (CP) explizit in den vermittlungstechnisch aktiven
Zustand gesteuert wird.

25

7. Verfahren nach einem der vorstehenden Ansprüche,
30 dadurch gekennzeichnet,
dass nach Behebung des Kommunikationsverlustes ein automati-
sches Rückschalten auf die vor dem Kommunikationsverlust be-
stehende Konfiguration nicht vorgenommen wird.

30

35 8. Monitor zum Überwachen und Schalten von Vermittlungssyste-
men, der in mindestens zwei räumlich getrennte Teile aufge-
teilt ist, und der bei Ausfall eines Vermittlungssystems in

Realzeit auf ein redundant zugeordnetes Vermittlungssystem umschaltet.

9. Verfahren nach Anspruch 8,
5 dadurch gekennzeichnet,
dass sich die mindestens beiden Teile (SC_1 und SC_2) des Monitors (SC) gegenseitig überwachen,
dass eine Kommunikationsstörung zwischen einem der mindestens beiden Teile und dem jeweils aktiven Vermittlungssystem (S_1)
10 Anlaß dafür ist,
dass die mindestens beide Teile (SC_1 und SC_2) sich hieraufhin gegenseitig synchronisieren und das redundante Vermittlungssystem (S_{1b}) aktivieren oder nicht aktivieren.
- 15 10. Verfahren nach Anspruch 8, 9,
dadurch gekennzeichnet,
dass im Falle einer Kommunikationsstörung zwischen den mindestens beiden Teilen (SC_1 , SC_2) selbst der zuletzt in den mindestens beiden Teilen (SC_1 , SC_2) festgelegte Betriebszustand der Vermittlungssysteme (S_1 , S_{1b}) aufrechterhalten wird.
20

1/2

2/2

FIG 2

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/051937

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H04Q3/00 H04L12/26 H04B1/74 H04L1/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H04Q H04L H04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, IBM-TDB, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2002/152320 A1 (LAU P L) 17 October 2002 (2002-10-17) paragraph '0014! - paragraph '0023! ----- X DATABASE WPI Section EI, Week 200236 Derwent Publications Ltd., London, GB; Class W02, AN 2002-316315 XP002309764 & CN 1 321 004 A (HUAWEI TECH CO LTD) 7 November 2001 (2001-11-07) abstract ----- -/-	1-10
X		1-10

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

15 December 2004

Date of mailing of the International search report

28/12/2004

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Vercauteren, S

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP2004/051937

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ARDON M T ET AL: "PROVIDING ULTRA-RELIABLE SERVICES USING DISTRIBUTED SWITCH ARCHITECTURES" PROCEEDINGS OF THE XIV INTERNATIONAL SWITCHING SYMPOSIUM, YOKOHAMA, JAPAN, vol. 1, 25 October 1992 (1992-10-25), pages 169-173, XP000337637 page 170, right-hand column, paragraph 4.3.1 – page 171, left-hand column, paragraph 4.3.1.2 -----	1-7
A	-----	8-10
A	DE 32 35 661 A (SIEMENS AG) 29 March 1984 (1984-03-29) the whole document -----	1-10

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP2004/051937

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 2002152320	A1	17-10-2002		NONE
CN 1321004	A	07-11-2001		NONE
DE 3235661	A	29-03-1984	DE	3235661 A1 29-03-1984

A. Klassifizierung des Anmeldungsgegenstandes
 IPK 7 H04Q3/00 H04L12/26 H04B1/74 H04L1/22

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
 IPK 7 H04Q H04L H04B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, IBM-TDB, INSPEC

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 2002/152320 A1 (LAU P L) 17. Oktober 2002 (2002-10-17) Absatz '0014! – Absatz '0023! -----	1-10
X	DATABASE WPI Section EI, Week 200236 Derwent Publications Ltd., London, GB; Class W02, AN 2002-316315 XP002309764 & CN 1 321 004 A (HUAWEI TECH CO LTD) 7. November 2001 (2001-11-07) Zusammenfassung ----- -/-	1-10

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- ° Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldeatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem Internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "8" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
15. Dezember 2004	28/12/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Bevollmächtigter Bediensteter Vercauteren, S

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	ARDON M T ET AL: "PROVIDING ULTRA-RELIABLE SERVICES USING DISTRIBUTED SWITCH ARCHITECTURES" PROCEEDINGS OF THE XIV INTERNATIONAL SWITCHING SYMPOSIUM, YOKOHAMA, JAPAN, Bd. 1, 25. Oktober 1992 (1992-10-25), Seiten 169-173, XP000337637 Seite 170, rechte Spalte, Absatz 4.3.1 - Seite 171, linke Spalte, Absatz 4.3.1.2 -----	1-7
A	-----	8-10
A	DE 32 35 661 A (SIEMENS AG) 29. März 1984 (1984-03-29) das ganze Dokument -----	1-10

INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/051937

im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 2002152320	A1	17-10-2002	KEINE		
CN 1321004	A	07-11-2001	KEINE		
DE 3235661	A	29-03-1984	DE	3235661 A1	29-03-1984