

Previous Week:

- Completed the bandgap layout. The extracted results were very similar to the schematic results.
- Designed the project poster.

Next:

- Focus on optimizing the LDO performance.
- Begin layout design for the LDO.

BGR Layout

BGR Results Post Layout

 V_{ref} slightly decreased from 721mV to 719mV.

TC of 6. $7 \frac{ppm}{{}^{\circ}C}$ pre-layout, TC of 7.3 $\frac{ppm}{{}^{\circ}C}$ post-layout.

LDO for a Digital High Frequency Clock Source Chip

Project Number: 24-1-1-3097

Names: Arsen Arutyunov, Or Fahima

Advisor: Tal Elazar

DPLL 2024/25

Motivation & Objective

To ensure low phase noise and precise timing, the DPLL needs a stable, low-noise supply. Our LDO is designed to Provide a consistent output voltage across supply and Temperature variations, tailored specifically for DPLL requirements.

Operating Principle

Internal architecture of the LDO:

The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R_1}{R_2} \right)$$

Miller OTA as an Error Amplifier: In BGR, forces $V_A = V_B$ to generate

a temperature-independent current.

In LDO, used as a current regulator that stabilizes V_{out} . High gain ($\sim 80dB$) improves accuracy and regulation.

The Bandgap Reference

The bandgap reference generates a precise, temperature-independent voltage. $V_{BE1} = V_{CTAT}$

Implementation

The LDO, designed in TSMC 28nm with a two-stage OTA and modified bandgap (0.72V), reliably regulates 0.9V across varying

Compensation net

<u>Current</u>

Mirror

Results

The following table summarizes three critical performance metrics of the LDO:

Metric	Definition	Requirement	Achieved
Temperature Coefficient	$\frac{dV_{\rm out}}{dT}~({\rm ppm/^{\circ}C})$ Stability against temperature variation	< 60	5.8 (†10.3×)
Line Regulation	$rac{\Delta V_{ m out}}{\Delta V_{ m DD}}$ (V/V) Stability against supply variation	< 0.01	0.001 (†10×)
Load Regulation	$\frac{\Delta V_{\rm out}}{\Delta I_{\rm load}} ({\rm mV/mA})$ Stability against load current variation	< 0.1	0.0044 (†22.7×)

Table 1: Summary of the three critical performance metrics of the LDO.

Our LDO maintains excellent output stability across a wide operating range:

