CONTACT MODEL: POPOVJKR

Velocities:

$$\begin{split} & \bar{v}_{rel} = \bar{v}_2 - \bar{v}_1 + \overline{\omega}_1 \times \overline{r_c} - \overline{\omega}_2 \times \overline{r_c}_2 \\ & \bar{v}_{rel,n} = \bar{r}_n \cdot (\bar{r}_n \cdot \bar{v}_{rel}) \\ & \bar{v}_{rel,t} = \bar{v}_{rel} - \bar{v}_{rel,n} \end{split}$$

Additional parameters:

$$\gamma_{12} = \sqrt{\gamma_1 \gamma_2}$$

$$R^* = \frac{r_1 \cdot r_2}{r_1 + r_2}$$

$$M^* = \frac{m_1 \cdot m_2}{m_1 + m_2}$$

Normal force:

$$\begin{split} s_{crit}^{adh} &= \left[\frac{3(\pi \gamma_{12})^2 R^*}{64(E^*)^2} \right]^{\frac{1}{3}} \\ F_{crit}^{adh} &= \frac{3}{2} \gamma_{12} \pi R^* \\ F_{n}^{JKR-Popov} &= F_{crit}^{adh} \cdot \left[-1 + 0.12 \left(\frac{\xi_n}{s_{crit}^{adh}} + 1 \right)^{\frac{5}{3}} \right] \end{split}$$

 $-\bar{r}_n \cdot sgn(\bar{v}_{rel,n} \cdot \bar{r}_n) \cdot 1.8257 \cdot \alpha \cdot |\bar{v}_{rel,n}| \cdot \sqrt{k_n \cdot M^*}$

Tangential force:

$$\begin{split} & \Delta \bar{\xi}_t = \bar{v}_{rel,t} \cdot \Delta t \\ & k_t = 8 \cdot G^* \cdot \sqrt{R^* \cdot \xi_n} \\ & \Delta \bar{F}_t = \left[k_t \cdot \Delta \bar{\xi}_t - 1.8257 \cdot \alpha \cdot \bar{v}_{rel,t} \cdot \sqrt{k_t \cdot M^*} \right] \\ & \bar{F}_{t,pr}^{cor} = \bar{F}_{t,pr} - \bar{r}_n \cdot \left(\bar{r}_n \cdot \bar{F}_{t,pr} \right) \\ & \bar{F}_{t,pr}^{cor} = \bar{F}_{t,pr}^{cor} \cdot |\bar{F}_{t,pr}| / |\bar{F}_{t,pr}^{cor}| \\ & \bar{F}_t = \bar{F}_{t,pr}^{cor} + \Delta \bar{F}_t \end{split}$$

if

$$|\overline{F}_t| > \mu_{sl} \cdot |\overline{F}_n|$$

then

$$\overline{F}_t = \mu_{sl} \cdot |\overline{F}_n| \cdot \frac{\overline{F}_t}{|\overline{F}_t|}$$

Rolling friction:

$$\overline{M}_{ro,1} = -\mu_{ro} \cdot |\overline{F}_n| \cdot r_1 \cdot \frac{\overline{\omega}_1}{|\overline{\omega}_1|}$$

$$\overline{M}_{ro,2} = -\mu_{ro} \cdot |\overline{F}_n| \cdot r_2 \cdot \frac{\overline{\omega}_2}{|\overline{\omega}_2|}$$

Summarized forces and moments acting on particle:

$$\bar{F}_{tot} = \bar{F}_n + \bar{F}_t$$

$$\bar{F}_1 = \bar{F}_n + \bar{F}_t$$

$$\bar{F}_2 = -\bar{F}_n - \bar{F}_t$$

$$\overline{M}_{tot,1} = \overline{r_n} \times \overline{F}_t \cdot r_1 + \overline{M}_{ro,1}$$

$$\overline{M}_{tot,2} = -\overline{r_n} \times \overline{F}_t \cdot r_2 + \overline{M}_{ro,2}$$

Literature

This model is a part of current research work – results will be published.

Symbol	Description
$\Delta ar{ar{\xi}}_t$	Tangential displacement in the current step [m]
CP	Contact point [m]
γ	Surface tension [-]
\overline{F}_n , \overline{F}_t	Force in normal and tangential directions [N]
$\overline{F}_{t,pr}$	Tangential force on previous iteration [N]
G *	Equivalent shear modulus [Pa]
$ar{\textit{M}}_{ro}$	Moment due to the rolling friction [N]
m_1, m_2	Particle masses [kg]
M *	Equivalent mass [kg]
0 ₁ , 0 ₂	Centers of contact partners [m]
μ_{ro}, μ_{sl}	Coefficient of rolling friction and sliding friction [-]
\overline{v}_{rel}	Relative velocity [m/s]
$\overline{v}_1,\overline{v}_2$	Velocities of contact partners [m/s]
r_1, r_2	Particle radii [m]
R *	Equivalent radius [m]
$ar{r_c}$	Contact vector [m]
\bar{r}_n	Normalized contact vector [-]
$\overline{\omega}_1,\overline{\omega}_2$	Rotation velocities of particles [rad/s]
ξ_n	Normal overlap [m]