Домашнее задание №4, Марченко М.

Задача 1. Пусть \mathbb{N} — стандартная структура натуральных чисел в сигнатуре $\{=,+,\cdot\}$ и $\operatorname{Th}(\mathbb{N}) \coloneqq \{\varphi : \mathbb{N} \models \varphi\}$. Нестандартной моделью арифметики называется модель теории $\operatorname{Th}(\mathbb{N})$, не изоморфная \mathbb{N} . Докажите, что существует нестандартная модель арифметики и опишите структуру порядка в счётной нестандартной модели.

Решение. TODO

Задача 2. Будут ли (конечно) аксиоматизируемыми следующие классы структур (подходящей сигнатуры):

- всех групп; всех конечных групп; всех бесконечных групп; всех абелевых групп; всех циклических групп; всех групп без кручения;
- всех полей; всех конечных полей; всех полей фиксированной характеристики; всех бесконечных полей; всех алгебраически замкнутых полей; всех алгебраически замкнутых полей фиксированной характеристики;
- всех упорядоченных полей; всех конечных упорядоченных полей; всех упорядоченных полей фиксированной характеристики; всех вещественно замкнутых упорядоченных полей?

Peweнue. • Обозначим через 9 теорию, состоящую из аксиом группы, то есть из предложений

$$\forall x \ \forall y \ \forall z \ (x \cdot y) \cdot z = x \cdot (y \cdot z); \quad \forall x \ (x + e = x) \land (e + x = x); \quad \forall x \ x \cdot x^{-1} = e.$$

Тогда класс всех групп (обозначим через \mathcal{K}) в точности равен $\operatorname{Mod}(\mathfrak{G})$, а значит, конечно аксиоматизируем.

Пользуясь теоремой компактности, можно доказать, что если теория имеет модель сколь угодно большой конечной мощности, то она имеет и бесконечную модель. Из этого утверждения следует, что класс $\mathcal{K}_{<\infty}$ конечных групп не аксиоматизируем, так как для любого натурального n существует группа из n элементов.

Рассмотрим предложения $\varphi_n = \exists x_1 \dots \exists x_n \ (x_1 \neq x_2) \wedge \dots (x_{n-1} \neq x_n)$ (здесь перебираются все пары элементов x_1, \dots, x_n). Пусть $\mathcal{G}_{\infty} = \mathcal{G} \cup \{\varphi_n : n \in \mathbb{N}\}$, тогда класс \mathcal{K}_{∞} всех бесконечных групп в точности равен $\operatorname{Mod}(\mathcal{G}_{\infty})$, а значит, аксиоматизируем. При этом он не конечно аксиоматизируем, так как тогда $\mathcal{K}_{<\infty} = (Str_{\sigma} \setminus \mathcal{K}_{\infty}) \cap \mathcal{K}$ был бы аксиоматизируем.

Пусть $\mathcal{G}_A = \mathcal{G} \cup \{ \forall x \ \forall y \ x \cdot y = y \cdot x \}$, тогда класс \mathcal{K}_A всех абелевых групп есть в точности $\operatorname{Mod}(\mathcal{G}_A)$.

Пусть \mathcal{K}_c — класс всех циклических групп. Покажем, что у $\mathrm{Th}(\mathcal{K}_c)$ есть модель, не являющаяся циклической группой (откуда \mathcal{K}_c — не аксиоматизируем). Будем использовать сокращение $x^n = x \cdot \ldots \cdot x$ n раз. Возьмём сигнатуру $\sigma' = \sigma \cup \{c\}$, где c — новый константный символ, и рассмотрим σ' -теорию

$$\mathfrak{T}=\mathrm{Th}(\mathfrak{K}_c)\cup\{\forall x\ x^n\neq c:n\in\mathbb{N}\}.$$

Покажем, что у любого конечного подмножества $T\subset \mathfrak{T}$ есть модель. Положим

$$N = \max\{n \in N : (\forall x \ x^n \neq c) \in T\} + 1,$$

тогда достаточно взять σ' -обогащение циклической группы порядка N, где c интерпретируется как e. По теореме компактности у всего $\mathfrak T$ есть некоторая модель $\mathbb A$. Тогда σ -обеднение

этой модели будет моделью для $\mathrm{Th}(\mathcal{K}_c)$, но не будет циклической группой, так как $c^{\mathbb{A}}$ не представляется в качестве степени некоторого x.

Пусть \mathcal{K}_{\neg} — класс всех групп без кручения. Рассмотрим предложения $\varphi_n = \forall x \ x \neq e \to x^n \neq e$ и теорию $T = \mathcal{G} \cup \{\varphi_n : n \in \mathbb{N}\}$. Тогда $\mathcal{K}_{\neg} = \operatorname{Mod}(T)$, то есть аксиоматизируем. Покажем, что при этом он не конечно аксиоматизируем.

• Пусть теория \mathcal{F} состоит из аксиом поля (их всего 9). Тогда класс \mathcal{K} всех полей в точности равен $Mod(\mathcal{F})$, а потому конечно аксиоматизируем.

Рассмотрим предложения $\varphi_n=(1+1+\ldots+1=0)$ (n единиц). Тогда класс полей нулевой характеристики есть в точности $\mathrm{Mod}(T_0)$, где $T_0=\{\neg\varphi_n:n\in\mathbb{N}\}$. Зафиксируем любую ненулевую характеристику m, тогда класс полей характеристики m есть в точности $\mathrm{Mod}(T_m)$, где

$$T_m = \{ \neg \varphi_n : n < m \} \cup \{ \varphi_m \}.$$

Выходит, класс полей любой ненулевой характеристики конечно аксиоматизируем. TODO (про нулевую)

TODO

Задача 3. Докажите, что:

- любой аксиоматизируемый класс структур замкнут относительно элементарной эквивалентности и ультрапроизведений;
- если предложение логически следует из данного множества предложений, то оно логически следует из некоторого конечного подмножества данного множества;
- класс структур данной сигнатуры конечно аксиоматизируем тогда и только тогда, когда он сам и его дополнение (в классе всех структур данной сигнатуры) аксиоматизируемы.

Решение. • Пусть $A \in K = \text{Mod}(T)$ (то есть $A \models T$) и $A \equiv \mathbb{B}$. Так как элементарно эквивалентные структуры удовлетворяют одни и те же предложения, то $\mathbb{B} \in K$.

Пусть $A_i \in K$, где $i \in I$, и пусть F — ультрафильтр на I. По теореме об ультрафильтре

$$\mathbb{A}_F \models \varphi \iff \{i : \mathbb{A}_i \models \varphi\} \in F.$$

Так как $\mathbb{A} \models T$ для любого i, то $\{i : \mathbb{A}_i \models T\} = I \in F$, откуда $\mathbb{A}_F \models T$.

- Если предложение φ логически следует из некоторой теории T, то $\mathrm{Mod}(T \cup \{\neg \varphi\}) = \varnothing$. Тогда по теореме компактности существует конечное $T_n \subseteq T$ такое, что $\mathrm{Mod}(T_n \cup \{\neg \varphi\}) = \varnothing$, что значит, что φ логически следует из теории T_n .
- Необходимость. Пусть $K = \operatorname{Mod}(\varphi)$, где φ предложение, тогда $\overline{K} = \operatorname{Str}_{\sigma} \setminus K = \operatorname{Mod}(\neg \varphi)$. Достаточность. Пусть $K = \operatorname{Mod}(T)$, $\overline{K} = \operatorname{Mod}(T')$ для некоторых теорий T и T'. Тогда

$$\operatorname{Mod}(T \cup T') = \operatorname{Mod}(T) \cap \operatorname{Mod}(T') = \varnothing,$$

откуда по теореме компактности существуют конечные $T_n \subseteq T$ и $T_n' \subseteq T'$ такие, что

$$\operatorname{Mod}(T_n \cup T'_n) = \operatorname{Mod}(T_n) \cap \operatorname{Mod}(T'_n) = \varnothing.$$

Тогда справедливо следующее:

$$\operatorname{Mod}(T) \subseteq \operatorname{Mod}(T_n) \subseteq \overline{\operatorname{Mod}(T'_n)} \subseteq \overline{\operatorname{Mod}(T')} \subseteq \operatorname{Mod}(T),$$

откуда $Mod(T) = Mod(T_n)$.