Math778P Homework 2 Solution

Choose any 5 problems to solve.

1. Let $S_n = \sum_{i=1}^n X_i$ where X_1, \dots, X_n are n independent uniform $\{-1, 1\}$ random variables. Prove that

$$E(|S_n|) = n2^{1-n} \binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}.$$

Proof: Let $S_n = \sum_{i=1}^n X_i$ where X_1, \ldots, X_n are n independent uniform $\{-1,1\}$ random variables. Prove that $\mathrm{E}(|S_n|) = n2^{1-n} \binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}$.

$$\begin{split} & \mathrm{E}(|S_n|) &= \sum_{k=-n}^n |k| \mathrm{Pr}(S_n = k) \\ &= 2 \sum_{k=0}^n k \frac{(\# \text{ of ways } S_n = k)}{2^n} \\ &= 2^{1-n} \sum_{k=0}^n k \left(\# \text{ of ways to have } \frac{n-k}{2} \text{ -1's and } \frac{n+k}{2} \text{ 1's.} \right) \\ &= 2^{1-n} \sum_{n-k \text{ even}} k \binom{n}{\frac{n-k}{2}} \\ &= 2^{1-n} \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} k \binom{n}{\frac{n-k}{2}} \\ &= 2^{1-n} \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (n-2i) \binom{n}{i} \\ &= 2^{1-n} \left[n \binom{n}{0} + \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} ((n-i)-i) \frac{n!}{(n-i)!i!} \right] \\ &= 2^{1-n} \left[n \cdot 1 + \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \left(\frac{n!}{(n-i-1)!i!} - \frac{n!}{(n-i)!(i-1)!} \right) \right] \\ &= 2^{1-n} n \left[\binom{n-1}{0} + \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \left(\binom{n-1}{i} - \binom{n-1}{i-1} \right) \right] \end{split}$$

$$= n2^{1-n} \left[\binom{n-1}{\lfloor \frac{n}{2} \rfloor} \right]$$

$$= n2^{1-n} \binom{n-1}{(n-1) - \lfloor \frac{n}{2} \rfloor}$$

$$= n2^{1-n} \binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}.$$

2. Suppose that $p > n > 10m^2$, with p prime, and let $0 < a_1 < a_2 < \cdots < a_m < p$ be integers. Prove that there is an integer x, 0 < x < p for which the m numbers

$$(xa_i \mod p) \mod n, \quad 1 \le i \le m$$

are pairwise distinct.

Proof: Let x be chosen uniformly at random from [p-1]. First, note that for each a_i, xa_i is never $0 \mod p$ since x is never $0 \mod p$; thus $xa_i \mod p$ is one of p-1 integers. Consider a number j with $0 \le j < n$. Let us count the maximum number of values $0 \le i < p$ such that $i \equiv j \mod n$. Note that $i \equiv j \mod n$ if i = j, or i = j + n, or $i = j + 2n, \ldots$, or i = j + kn where j + kn < p and $j + (k+1)n \ge p$. Further, one can see that $k = \lfloor \frac{p}{n} \rfloor$; hence there are at most $\lfloor \frac{p}{n} \rfloor + 1$ integers i with $0 \le i < p$ such that $i \equiv j \mod n$. It follows that

$$\mathbb{P}((xa_i \mod p) \mod n = (xa_j \mod p) \mod n) \le \frac{\lfloor \frac{p}{n} \rfloor + 1}{p-1}.$$

Let X_{ij} be the random variable taking on the value 1 if $(xa_i \mod p)$ mod $n = (xa_i \mod p) \mod n$ and 0 otherwise. We then have that

the expected number of non-distinct pairs xa_i , xa_j is:

$$\mathbb{E}(\sum_{i < j} X_{ij}) = \sum_{i < j} \mathbb{E}(X_{ij})$$

$$= \sum_{i < j} \mathbb{P}((xa_i \mod p) \mod n = (xa_j \mod p) \mod n)$$

$$\leq \sum_{i < j} \frac{\lfloor \frac{p}{n} \rfloor + 1}{p - 1}$$

$$= \binom{m}{2} \frac{\lfloor \frac{p}{n} \rfloor + 1}{p - 1}$$

$$< \left(\frac{n}{10}\right) \frac{\frac{p}{n} + 1}{p - 1}$$

$$= \frac{\frac{p}{10} + \frac{n}{10}}{p - 1}$$

$$< \frac{\frac{p}{5}}{p - 1}$$

$$= \frac{p}{5p - 5}$$

$$< 1$$

Thus, there exists some x such that the number of non-distinct pairs is smaller than 1, i.e. all the pairs are distinct.

3. Let H be a graph, and let n > |V(H)| be an integer. Suppose there is a graph on n vertices and t edges containing no copy of H, and suppose that $tk > n^2 \log_e n$. Show that there is a coloring of edges of the complete graph on n vertices by k colors with no monochromatic copy of H.

Proof: Let G be the graph on n vertices and t edges containing no copy of H. Create k copies of G, labeled G_1, \ldots, G_k . Color each with a different color, c_i for $1 \leq i \leq k$. Now successively and randomly lay G_i on top of K_n . i.e. color a random copy of G_1 in K_n with c_1 . Then independently repeat the process for c_2 . If an edge is randomly chosen to be colored by c_2 that has already been colored by c_1 , then recolor it with c_2 . Repeat this process k times. If at the end of the process we have managed to color each edge, then we have colored K_n with k colors. Also any monochromatic subgraph of K_n will be a subgraph of some G_i , none of which contain a copy of H. Thus there can be no

monochromatic copy of H in our coloring. So it suffices to show that with positive probability we have completely colored K_n , i.e. every edge has been colored. Let e be an edge of K_n . The event $X_{e,i}$ that e has NOT been colored with c_i has probability $(1 - \frac{t}{\binom{n}{2}})$, since t out of the $\binom{n}{2}$ edges get colored. Thus the event that e does not get colored at all is the intersection $\bigcap_{i=1}^k X_{e_i}$, which has probability $(1 - \frac{t}{\binom{n}{2}})^k$. Now to get the probability that at least one edge has not been colored, we take the union of this probability over all edges: Let X be the event that some edge is not colored at the end of the process. Then $X = \bigcup_{e \in E(K_n)} (\bigcap_{i=1}^k X_{e,i})$, which has probability $Pr(X) \leq \binom{n}{2} (1 - \frac{t}{\binom{n}{2}})^k \approx \frac{n^2}{2} (e^{-\frac{tk}{n^2}})^2 \leq \frac{n^2}{2} (\frac{1}{e^{\frac{n^2 \ln(n)}{n^2}}})^2 = 1/2 < 1$. Thus with positive probability, all edges get colored. So there does exist a coloring of the edges of K_n with k colors that contains no monochromatic copy of H.

4. Prove that there is a constant c > 0 such that for every even $n \ge 4$ the following holds: For every undirected complete graph K on n vertices whose edges are colored red and blue, the number of alternating Hamiltonian cycles in K is at most $n^c \frac{n!}{2^n}$.

Proof: If n is odd, then there is no alternating Hamiltonian cycle. We can assume n is even. Write n=2k. Randomly partition the vertex set into two parts of size k: $V=V_1 \cup V_2$. Define a directed graph D on V as follows: a directed edge $uv \in E(D)$ if " $u \in V_1$, $v \in V_2$, and uv is red in G" or " $u \in V_2$, $v \in V_1$, and uv is blue in G".

On one hand, a directed Hamiltonian cycle of D is always an alternating Hamiltonian cycle in G. Each alternating Hamiltonian cycle in G has probability $\frac{2}{\binom{n}{k}}$ being a directed Hamiltonian cycle of D. Let AH(G) be the number of alternating Hamiltonian cycles in G. There is an partition of V so that the number of directed Hamiltonian cycle is at least $\frac{2}{\binom{n}{k}}AH(G)$.

On the other hand, the number of directed Hamiltonian cycles can be bounded by the $per(A_D)$, where A_D is the adjacency matrix of D. We have

$$\frac{2}{\binom{n}{k}} AH(G_D) \le \operatorname{per}(A_D) \le \prod_{i=1}^n (r_i!)^{1/r_i}.$$

Here r_i is the out degree of i in D. The above upper bound reaches the maximum when all r_i 's are about equal. Since $\sum_{i=1}^{n} r_i = k^2$, the

average of r_i is $\frac{k}{2}$.

When k is even, write k = 2r. Then

$$\prod_{i=1}^{n} (r_i!)^{1/r_i} \le (r!)^{\frac{n}{r}} = (r!)^4.$$

We have

$$AH(G) \le \frac{1}{2} \binom{n}{k} (r!)^4 = \frac{1}{2} \frac{n!}{\binom{k}{r}^2} = (1 + o(1)) \pi n \frac{n!}{2^n}.$$

When k is odd, write k = 2r + 1. Then

$$\prod_{i=1}^{n} (r_i!)^{1/r_i} \le (r!)^{\frac{n}{2r}} ((r+1)!)^{\frac{n}{2(r+1)}} = (1+o(1))(r!(r+1)!)^2.$$

We have

$$AH(G) \leq (1+o(1))\frac{1}{2}\binom{n}{k}(r!(r+1)!)^2 = (1+o(1))\frac{1}{2}\frac{n!}{\binom{k}{r}^2} = (1+o(1))\pi n\frac{n!}{2^n}.$$

5. Let X be a collection of pairwise orthogonal unit vectors in \mathbb{R}^n and suppose the projection of each of these vectors on the first k coordinates is of Euclidean norm at least ϵ . Show that $|X| \leq \frac{k}{\epsilon^2}$, and this is tight for all $\epsilon^2 = k/2^r < 1$.

Proof: Fix $\epsilon > 0$ and $k \in [n]$. Let X be a collection vectors in \mathbb{R}^n as described in the problem. Let $\ell = |X|$. We can extend X to a normal basis X' for \mathbb{R}^n . Let A be a square matrix with the vectors in X' making the rows. Since the rows are pairwise orthogonal unit vectors, $AA^T = I$. So $A^{-1} = A^T$ and $A^TA = I$ which implies $\sum_{i=1}^n v_i^2(s) = 1$ for any $s \in [n]$. Hence $\sum_{i=1}^\ell v_i^2(s) \leq 1$. By assumption $\sum_{s=1}^k v_i^2(s) \geq \epsilon^2$. Putting these facts together,

$$\ell \epsilon^2 \le \sum_{i=1}^{\ell} \sum_{s=1}^{k} v_i^2(s) = \sum_{s=1}^{k} \sum_{i=1}^{\ell} v_i^2(s) \le k \cdot 1 = k.$$

Therefore $|X| \leq \frac{k}{\epsilon^2}$ as desired. For the tight case, fix r and n such that $n \geq 2^r$. If we can create 2^r pairwise orthogonal unit vectors of the form

$$\left\langle \pm \frac{1}{2^{r/2}}, \dots, \pm \frac{1}{2^{r/2}}, 0 \dots, 0 \right\rangle \in \mathbb{R}^n$$

where the first 2^r coordinates are $\pm \frac{1}{2^{r/2}}$ and the remaining $n-2^r$ are 0. Then the projection onto the first k coordinates, for $k \leq 2^r$, has Euclidean norm

$$\left(\sum_{i=1}^{k} v^2(i)\right)^{1/2} = \left(\sum_{i=1}^{k} \frac{1}{2^r}\right)^{1/2} = \left(\frac{k}{2^r}\right)^{1/2} = \epsilon$$

and for $k > 2^r$, $\left(\sum_{i=1}^k v^2(i)\right)^{1/2} = 1 > \epsilon$. So it suffices to determine an assignment of ± 1 's to the vectors $\left\langle \pm \frac{1}{2^{r/2}}, \ldots, \pm \frac{1}{2^{r/2}} \right\rangle \in \mathbb{R}^{2^r}$ so that we have 2^r pairwise orthogonal vectors. This assignment comes directly from the Hadamard matrices which exist for orders 2^r . \square

6. Let G = (V, E) be a bipartite graph with n vertices and a list S(v) of more than $\log_2 n$ colors associated with each vertex $v \in V$. Prove that there is a proper coloring of G assigning to each vertex v a color from its list S(v).

Proof: Let $V = L \dot{\cup} R$ be a bipartition. Define $S = \cup_{v \in V} S(v)$. Then randomly distribute each element of S into either S_L (with probability $\frac{1}{2}$) or into S_R (with probability $\frac{1}{2}$). Now for each $v \in L$, define $S_L(v) = S_L \cap S$ and likewise for each $v \in R$, define $S_R(v) = S_R \cap S$. Then, for all $v \in L$,

$$\Pr(S_L(v) = \emptyset) = \left(\frac{1}{2}\right)^{|S(v)|} < \left(\frac{1}{2}\right)^{\log_2 n} = 2^{-\log_2 n} = \frac{1}{n}$$

Similarly, for each $v \in S_R$, $\Pr(S_R(v) = \emptyset) = \frac{1}{n}$. And so,

$$\Pr(\{\vee_{v \in L}(S_L(v) = \emptyset)\} \vee \{\vee_{v \in R}(S_R(v) = \emptyset)\})$$

$$= \sum_{v \in L} \Pr(S_L(v) = \emptyset) + \sum_{v \in R} \Pr(S_R(v) = \emptyset)$$

$$< \sum_{v \in L} \frac{1}{n} + \sum_{v \in R} \frac{1}{n}$$

$$= \sum_{v \in V} \frac{1}{n}$$

$$= 1$$

Therefore, there exists a vertex coloring where vertices from L only use colors from S_L , and vertices of R use only colors from S_r . Since $L \dot{\cup} R$ was a bipartition, such a coloring is proper.