1. Single Step

81%

Overview

Steps/Stages Notes

1.1 R:NH₃, C:PhCO₂Na, S:H₂O, 12 h, 180°C, 1.2 MPa

high pressure reactor used, alternative preparation shown, thermal, Reactants: 1, Reagents: 1, Catalysts: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Chitosan analog produced via amination of monosulfate of cellulose or hemicellulose

By Yin, Yingwu et al

From Faming Zhuanli Shenqing, 108530546, 14 Sep 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

2. Single Step

80%

Overview

Steps/Stages

1.1 R:(Bu₄N+)₂ •SO₄ 2+, S:H₂O, S:MeCN

Notes

Reactants: 1, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Anion Exchange Renders Hydrophobic Capsules and Cargoes Water-Soluble

By Percastegui, Edmundo G. et al From Angewandte Chemie, International Edition, 56(31), 9136-9140; 2017

Procedure

- 1. Dissolve reactant in CH₃CN and add tetrabutylammonium sulfate (TBA₂SO₄) solution 50wt % in H₂O (1.5 equivalents relative to cage).
- 2. Centrifuge the mixture and wash the precipitate thoroughly with CH₃CN:H₂O (9:1).

View more...

Available Experimental Data ¹H NMR, ¹³C NMR, Mass Spec, State

View with MethodsNow

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

3. Single Step

75%

Overview

Steps/Stages

1.1 R:(Bu₄N+)₂ •SO₄ 2+, S:H₂O, S:MeCN

Notes

Reactants: 1, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Anion Exchange Renders Hydrophobic Capsules and Cargoes Water-Soluble

By Percastegui, Edmundo G. et al From Angewandte Chemie, International Edition, 56(31), 9136-9140; 2017

Reaction Protocol

Procedure

- 1. Dissolve reactant in CH_3CN and add tetrabutylammonium sulfate solution 50wt% in H_2O (1.5 equivalents relative to cage).
- 2. Centrifuge the mixture and wash the precipitate thoroughly with CH₃CN:H₂O (9:1).

View more...

Available Experimental Data

¹H NMR, Mass Spec, State

View with MethodsNow CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

4. Single Step

72%

Overview

Steps/Stages

1.1 R:FeSO₄, S:H₂O, S:MeOH, 20 h, 20°C

Notes

product depends on solvent,temperature, Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Selective Assembly and Disassembly of a Water-Soluble Fe10L15 Prism

By Zarra, Salvatore et al

From Angewandte Chemie, International Edition, 52(18), 4837-4840; 2013

Reaction Protocol

Procedure

- 1. Add 2,2'-bis(hydroxymethyl)benzidine (1.5 equivalents), 2-formylpyridine (3.0 equivalents) and iron (II) sulfate heptahydrate (1 equivalent) to a 50 mL Schlenk flask containing a degassed methanol/water mixture (90:10 ratio, 5 mL).
- 2. Stir the reaction mixture at 20 °C for twenty hours.

View more...

Available Experimental Data ¹H NMR, ¹³C NMR, Elemental Analysis, State

View with MethodsNow

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

SciFinder® Page 4

75%

Overview

Steps/Stages

1.1 C:37326-33-3, S:H₂O, 1.5 h, 30°C, pH 7.5

Notes

biotransformation, enzymic, yield depends on cat. and time,polymerization, Reactants: 1, Catalysts: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

A hyaluronidase supercatalyst for the enzymatic polymerization to synthesize glycosaminoglycans

By Kobayashi, Shiro et al From Chemistry - A European Journal, 12(23), 5962-5971; 2006

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

6. Single Step

60%

Overview

Substance

Image

Cannot Be

Displayed

568584-66-7

Reactants: 1, Reagents: 3, Solvents: 1, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Enantioselective recognition of chiral guests by the water-soluble Chiral [Mo132O372(H2O)72(x-Lactate)30]42-nanocapsules

By Watfa, Nancy et al From ChemRxiv, , 1-28; 2019

R:HCl, S:H₂O, 1 h, rt, pH 3.8

1.2 R:NH₄Cl, 10 min, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

7. Single Step

62%

Overview

Steps/Stages

1.1 R:(NH₄)₂SO₄, C:PhCO₂Na, S:H₂O, 24 h, 180°C, 1.2 MPa

Notes

high pressure reactor used, alternative preparation shown, thermal, Reactants: 1, Reagents: 1, Catalysts: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Chitosan analog produced via amination of monosulfate of cellulose or hemicellulose

By Yin, Yingwu et al

From Faming Zhuanli Shenqing, 108530546, 14 Sep 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

SciFinder® Page 6

Substance
Image
Cannot Be
Displayed
9004-34-6

Substance
Image
Image
Cannot Be
Oisplayed
9004-34-6

60%

Overview

Steps/Stages

- 1.1 R:H₂SO₄, S:H₂O, 105 min, 55°C
- 1.2 S:H₂O, 4°C

Notes

optimization study, optimized on temperature, optimized on time, optimized on stoichiometry of reagent, inverse addition (stage 2), Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: A central composite design study

By Dong, Shuping et al

From Industrial Crops and Products, 93, 76-87; 2016

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

9. Single Step

59%

Overview

Steps/Stages

1.1 R:CuSO₄ •5H₂O, S:H₂O, S:MeOH, S:CH₂Cl₂, 1 h

Notes

Reactants: 1, Reagents: 1, Solvents: 3, Steps: 1, Stages: 1, Most stages in any one step: 1

References

[CrIII8MII6]n+ (MII = Cu, Co) face-centered, metallo-supramolecular cubes

By O'Connor, H. M. et al

From CrystEngComm, 18(26), 4914-4920; 2016

Page 7

Procedure

1. Add $Cu(SO_4) \cdot SH_2O$ (50 mg, 0.2 mmol) in 3 mL of water to a solution of the metalloligand [CrL₃] (108 mg, 0.2 mmol) in 20 mL of dichloromethane/tetrahydrofuran (1 : 1 v/v). 2. Stir the solution for 1 hour.

View more...

Available Experimental Data

Crystal Structure Data, Elemental Analysis, State

View with MethodsNow

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

10. Single Step

Overview

Steps/Stages

1.1 R:

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

S:H₂O, S:EtOH, overnight, rt

CI -

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

12. Single Step

Substance
Image
Cannot Be OH OH Cannot Be
Displayed
9007-27-6

Overview

CI -

S:H₂O, S:EtOH, overnight, rt

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

13. Single Step

Substance

lmage

Cannot Be

Displayed

9007-27-6

Substance
Image

Cannot Be
Displayed

2378143-23-6

Overview

Steps/Stages

1.1 R:

• CI-

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

SciFinder® Page 10

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

15. Single Step

Overview

CI -

S:H₂O, S:EtOH, overnight, rt

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

References

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

16. Single Step

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019 CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

17. Single Step

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

18. Single Step

Overview

Steps/Stages

Notes

2019

References

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and

From PCT Int. Appl., 2019189876, 03 Oct

method for producing same By Kobayashi, Nobuo et al

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and

From PCT Int. Appl., 2019189876, 03 Oct

method for producing same By Kobayashi, Nobuo et al

References

1.1 R:

CI -

- 61

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

19. Single Step

Overview

Steps/Stages

1.1 R:

CI -

 $S:H_2O$, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:

• CI-

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

21. Single Step

Overview

Steps/Stages Notes

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019 1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct

2378143-05-4

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and

From PCT Int. Appl., 2019189876, 03 Oct

method for producing same By Kobayashi, Nobuo et al

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

22. Single Step

Substance

Image

Displayed

9007-27-6

Substance Image Displayed

Notes

2019

References

Overview

Steps/Stages

1.1 R:

S:H₂O, S:EtOH, overnight, rt

CI -

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

HC

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

24. Single Step

Overview

CI -

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

25. Single Step

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and

From PCT Int. Appl., 2019189876, 03 Oct

method for producing same By Kobayashi, Nobuo et al

Notes

2019

References

26. Single Step

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

27. Single Step

Substance Substance Image Image Displayed Displayed 2378142-93-7 9007-27-6

Overview

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and

From PCT Int. Appl., 2019189876, 03 Oct

method for producing same By Kobayashi, Nobuo et al

References

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

28. Single Step

Overview

Steps/Stages

1.1 R:

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

S:H₂O, S:EtOH, overnight, rt

CI -

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

HCI

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

30. Single Step

Overview

CI -

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

31. Single Step

Overview

Steps/Stages

1.1 R:

• CI-

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

33. Single Step

Overview

CI -

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

34. Single Step

Overview

Steps/Stages

1.1 R:

CI -

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

From PCT Int. Appl., 2019189876, 03 Oct

By Kobayashi, Nobuo et al

Notes

2019

References

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

36. Single Step

Overview

CI -

S:H₂O, S:EtOH, overnight, rt

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

37. Single Step

Overview

Steps/Stages

1.1 R:

• CI-

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

From PCT Int. Appl., 2019189876, 03 Oct

By Kobayashi, Nobuo et al

Notes

2019

References

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

39. Single Step

Overview

CI -

S:H₂O, S:EtOH, overnight, rt

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

40. Single Step

Overview

Steps/Stages

1.1 R:

CI -

 $S:H_2O$, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

42. Single Step

Overview

CI -

References (Carboxylic)

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

43. Single Step

Substance

Image

Cannot Be OH OH Displayed

Displayed

2378123-31-8

Overview

Steps/Stages

1.1 R:

• CI -

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

SciFinder® Page 30

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

45. Single Step

Substance
Image
Cannot Be OH OH Cannot Be
Displayed

2378122-12-2

Overview

CI -

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

46. Single Step

Substance

Image

Cannot Be OH OH OH

Displayed

2378121-88-9

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

From PCT Int. Appl., 2019189876, 03 Oct

By Kobayashi, Nobuo et al

Notes

2019

References

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

48. Single Step

Overview

CI -

S:H₂O, S:EtOH, overnight, rt

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

49. Single Step

Substance

Image

Cannot Be

-Displayed

9007-27-6

Substance

Image

OH

OH

OH

OH

Displayed

2378119-78-7

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

SciFinder® Page 34

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

51. Single Step

Overview

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and

From PCT Int. Appl., 2019189876, 03 Oct

method for producing same By Kobayashi, Nobuo et al

References

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

52. Single Step

Substance

Image

Cannot Be

Displayed

9007-27-6

он **+** Он он он

•2 на 2378116-04-0

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

53. Single Step

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

Substance

Displayed

Image

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct

2019

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

54. Single Step

Overview

1.1 R:

CI -

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

55. Single Step

Overview

Steps/Stages

1.1 R:

• CI-

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and

From PCT Int. Appl., 2019189876, 03 Oct

method for producing same By Kobayashi, Nobuo et al

Notes

2019

References

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

57. Single Step

Overview

1.1 R:

CI -

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

Reactants: 2, Reagents: 1, Solvents: 2, Steps:

1, Stages: 1, Most stages in any one step: 1

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

58. Single Step

Overview

Steps/Stages

1.1 R:

• CI-

S:H₂O, S:EtOH, overnight, rt

Notes

alternate stoichiometry of reactant, reagent and solvent may be used, Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al

From PCT Int. Appl., 2019189876, 03 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:

CI -

S:H₂O, S:EtOH, overnight, rt

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

60. Single Step

Overview

Steps/Stages Notes

Notes

Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

(Carboxylic acid-type compound)-polymer conjugate having biological activity, and method for producing same

By Kobayashi, Nobuo et al From PCT Int. Appl., 2019189876, 03 Oct 2019

CI -

S:H₂O, S:DMSO, 24 h, 35°C, pH 5.2

2-(N-morpholine)ethanesulfonic acid buffered solution used, Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Preparation, raw materials, product, and application of photocoupled synergistic crosslinked hydrogel material

By Zhu, Linyong et al

From Faming Zhuanli Shenqing, 109776450, 21 May 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

61. Single Step

Overview

Steps/Stages

- 1.1 R:SO₃, R:O=C(NH₂)₂, 4 h, 90°C, 0.5 MPa
- 1.2 20 min, 90°C

Notes

alternate reaction conditions may be used, fatty alcohol polyoxyethylene ether used in stage 1, low pressure in stage 1, autoclave used in stage 2, Reactants: 1, Reagents: 2, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Production of fatty alcohol polyoxyethylene ether sodium sulfate

By Huang, Yubin

From Faming Zhuanli Shenqing, 109400865, 01 Mar 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Substance
Image
Cannot Be
Displayed
9014-63-5

Substance
Image
Image
Cannot Be
Displayed
9014-63-5

Overview

Steps/Stages

- 1.1 R:SO₃, C:4-DMAP, C:EtN=C=N(CH₂)₃NMe₂ •HCl, S:AcNMe₂, rt \rightarrow 60°C; 4 h, 60°C
- 1.2 R:NaHCO₃, neutralized

Notes

optimization study, optimized on monomer ratio, time and temperature, Reactants: 1, Reagents: 2, Catalysts: 2, Solvents: 1, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Method for preparing xylan sulfate by catalytic system

By Li, Jianbin et al From Faming Zhuanli Shenqing, 110372811, 25 Oct 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

63. Single Step

Overview

Steps/Stages

- 1.1 R:SO₃, C:Py •HCl, S:AcNMe₂, 4 h, 60°C
- 1.2 R:NaHCO₃, S:H₂O, 60°C, neutralized

Notes

Reactants: 1, Reagents: 2, Catalysts: 1, Solvents: 2, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Method for preparing xylan sulfate

By Li, Jianbin et al

From Faming Zhuanli Shenqing, 110256590, 20 Sep 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

64. Single Step

Overview

Steps/Stages

- 1.1 R:CISO₃H, R:AcOH, S:DMF, 0-4°C; 60 min, rt
- 1.2 R:NaOH, S:H₂O, rt, neutralized

Notes

Reactants: 1, Reagents: 3, Solvents: 2, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Robust poly(vinyl alcohol) membranes containing chitosan/chitosan derivatives microparticles for pervaporative dehydration of ethanol

By Dudek, Gabriela et al

From Separation and Purification Technology, 234, 116094pp.; 2020

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

65. Single Step

Overview

1.1 R:

CI -

S:H₂O, S:DMSO, 24 h, 35°C, pH 5.2

2-(N-morpholine)ethanesulfonic acid buffered solution used, Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

Page 44

References

2019

Preparation, raw materials, product, and application of photocoupled synergistic crosslinked hydrogel material

By Zhu, Linyong et al From PCT Int. Appl., 2019095600, 23 May

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

66. Single Step

Substance
Image
Cannot Be
Displayed
9004-34-6

Substance
Image
Image
Cannot Be
Displayed
9004-34-6

Overview

Steps/Stages

- 1.1 R:H₂SO₄, S:H₂O, 150 min
- 1.2 R:H₂O, 4°C

Notes

Reactants: 1, Reagents: 2, Solvents: 1, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Influence of mechanical pretreatment to isolate cellulose nanocrystals by sulfuric acid hydrolysis

By Pirich, Cleverton Luiz et al From International Journal of Biological

Macromolecules, 130, 622-626; 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:H₂SO₄, S:H₂O, 2 h, 45°C

Notes

Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Vehicle paint film based on nanocomposite and preparation method

By Wei, Yiyi and Gao, Bixiang From Faming Zhuanli Shenqing, 110157279, 23 Aug 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

68. Single Step

Overview

Steps/Stages

1.1 R:H₂SO₄, S:H₂O

Notes

Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends

By Vanderfleet, Oriana M. et al From Cellulose (Dordrecht, Netherlands), 26(1), 507-528; 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

69. Single Step

Overview

Steps/Stages

1.1 R:H₂SO₄, S:H₂O, 4 h, 45°C

Notes

Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

High-performance polyurethane nanocomposites based on UPy-modified cellulose nanocrystals

By Tian, Donglin et al

From Carbohydrate Polymers, 219, 191-200; 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

70. Single Step

Overview

Page 47

1.1 R:H₂SO₄, R:H₂NCHO, S:CICH₂CH₂CI, < 45°C

1.2 R:NaHCO₃, S:H₂O, rt, pH 7

Reactants: 1, Reagents: 3, Solvents: 2, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Starch sulfate slow setting high-efficiency water reducing agent and preparation method thereof

By Yin, Ge

From Faming Zhuanli Shenqing, 109306021, 05 Feb 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

71. Single Step

Overview

Steps/Stages

- 1.1 R:H₂SO₄, R:H₂NCHO, S:CICH₂CH₂CI, < 55°C
- 1.2 R:NaOH, S:H₂O, rt, pH 7

Notes

Reactants: 1, Reagents: 3, Solvents: 2, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Starch sulfate slow setting high-efficiency water reducing agent and preparation method thereof

By Yin, Ge

From Faming Zhuanli Shenqing, 109306021, 05 Feb 2019

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:CISO₃H, S:H₂O, S:DMF, 50°C; 30 min, 50°C

1.2 C:H₂SO₄, 2 h, 50°C

1.3 R:NaOH, S:H₂O, neutralized

Notes

Reactants: 1, Reagents: 2, Catalysts: 1, Solvents: 2, Steps: 1, Stages: 3, Most stages in any one step: 3

References

Method for preparation of curdlan sulfate

By Chen, Meiling et al

From Faming Zhuanli Shenqing, 108752500, 06 Nov 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

73. Single Step

Overview

Steps/Stages

1.1 R:CISO₃H, S:Me(CH₂)₄Me, 20 min, 0°C; 2 h, rt

Notes

Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Nano crystalline cellulose sulfuric acid (s-NCC): a novel green nanocatalyst for the synthesis of polyhydroxy pyrimidine-fused heterocyclic compounds (PPFHs)

By Nikoofar, Kobra et al

From Cellulose (Dordrecht, Netherlands), 25(10), 5697-5709; 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:SO₃, S:CICH₂CH₂CI, 2 h, 25°C

Notes

Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Chitosan analog produced via amination of monosulfate of cellulose or hemicellulose By Yin, Yingwu et al

From Faming Zhuanli Shenqing, 108530546, 14 Sep 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

75. Single Step

Overview

Steps/Stages

1.1 R:CISO₃H, S:Me(CH₂)₄Me, 2 h, 0°C; 2 h, rt

Notes

Reactants: 1, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

An efficient one-pot neat synthesis of pyrazolo[1,2-b]phthalazines using cellulose sulfuric acid as a biodegradable and recoverable heterogeneous catalyst

By Elmi-Mehr, Maryam et al

From Heterocyclic Letters, 8(4), 773-781; 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

76. Single Step

Substance
Image
Cannot Be OH OH NH NH OH OH OH Cannot Be
Displayed
9007-27-6

Overview

Steps/Stages

- 1.1 R:HCl, S:H₂O, pH 6-7
- 1.2 R:EtN=C=N(CH₂)₃NMe₂, R:N-Hydroxysuccinimide, 8 h, rt
- 1.3 R:NaOH, S:H₂O, neutralized

Notes

Reactants: 2, Reagents: 4, Solvents: 1, Steps: 1, Stages: 3, Most stages in any one step: 3

References

Redox/enzyme sensitive chondroitin sulfatebased self-assembled nanoparticles loading docetaxel for the inhibition of metastasis and growth of melanoma

By Liu, Mengrui et al

From Carbohydrate Polymers, 184, 82-93; 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

77. Single Step

Overview

1.1 R:HCl, S:H₂O, pH 6-7

1.2 R:EtN=C=N(CH₂)₃NMe₂, R:N-Hydroxysuccinimide, 8 h, rt

1.3 R:NaOH, S:H₂O, neutralized

Reactants: 2, Reagents: 4, Solvents: 1, Steps: 1, Stages: 3, Most stages in any one step: 3

References

Redox/enzyme sensitive chondroitin sulfatebased self-assembled nanoparticles loading docetaxel for the inhibition of metastasis and growth of melanoma

By Liu, Mengrui et al

From Carbohydrate Polymers, 184, 82-93; 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

78. Single Step

sodium ion-exchanged, copper complexes

Overview

Steps/Stages

1.1

Notes

no experimental detail, Reactants: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials

By Kuznetsov, B. N. et al

From Wood Science and Technology, 52(5), 1377-1394; 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:H₂NSO₃H

Notes

Reactants: 1, Reagents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials

By Kuznetsov, B. N. et al

From Wood Science and Technology, 52(5), 1377-1394; 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

80. Single Step

Overview

Steps/Stages

1.1 R:H₂NSO₃H

Notes

Reactants: 1, Reagents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials

By Kuznetsov, B. N. et al

From Wood Science and Technology, 52(5), 1377-1394; 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

81. Single Step

Overview

Steps/Stages

1.1 R:CISO₃H, S:DMF, 6 h, 70°C

1.2 R:NaOH, S:H₂O, pH 7

Notes

Reactants: 1, Reagents: 2, Solvents: 2, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Method for preparing osthole chitosan derivative micelle useful for osteoporosis

By Guo, Yang et al

From Faming Zhuanli Shenqing, 108102116, 01 Jun 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

82. Single Step

Substance
Image
Cannot Be
Displayed
9012-76-4

Overview

Steps/Stages

1.1 R:C₁₆H₃₃N+Me₃ •Cl-, S:AcOH, 10 h, 40°C, pH 4.5

1.2 R:NaBH₄, 40°C; 1.5 h, 40°C

1.3 R:AcOH, pH 4.5

1.4 pH 10

1.5 R:NaOH, S:H₂O, S:Me₂CHOH, 12 h, rt

1.6 R:CISO₃H, 10°C; 10 h, 40°C

Notes

in the dark in stage 5, Reactants: 4, Reagents: 5, Solvents: 3, Steps: 1, Stages: 6, Most stages in any one step: 6

References

Chitosan amphoteric ion bactericide and preparation method and application thereof

By Qu, Huimin et al

From Faming Zhuanli Shenqing, 108651462, 16 Oct 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

83. Single Step

Substance
Image
Cannot Be
Displayed
9012-76-4

Overview

Steps/Stages

- 1.1 R:C₁₆H₃₃N+Me₃ •Cl-, S:AcOH, 10 h, 40°C, pH 4.5
- 1.2 R:NaBH₄, 40°C; 1 h, 40°C
- 1.3 R:AcOH, pH 4.5
- 1.4 pH 11
- 1.5 R:NaOH, S:H₂O, S:Me₂CHOH, 12 h, rt
- 1.6 R:CISO₃H, 4°C; 10 h, 40°C

Notes

in the dark in stage 5, Reactants: 4, Reagents: 5, Solvents: 3, Steps: 1, Stages: 6, Most stages in any one step: 6

References

Chitosan amphoteric ion bactericide and preparation method and application thereof

By Qu, Huimin et al

From Faming Zhuanli Shenqing, 108651462, 16 Oct 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

84. Single Step

Substance

Image

Cannot Be

Displayed

9012-76-4

Overview

Steps/Stages

- 1.1 R:C₁₆H₃₃N+Me₃ •Cl-, S:AcOH, 10 h, 40°C, pH 4.5
- 1.2 R:NaBH₄, 40°C; 2 h, 40°C
- 1.3 R:AcOH, pH 4.5
- 1.4 10 h, 40°C, pH 10.5
- 1.5 R:NaOH, S:H₂O, S:Me₂CHOH, 12 h, rt
- 1.6 R:CISO₃H, 4°C; 10 h, 40°C

Notes

in the dark in stage 5, Reactants: 4, Reagents: 5, Solvents: 3, Steps: 1, Stages: 6, Most stages in any one step: 6

References

Chitosan amphoteric ion bactericide and preparation method and application thereof

By Qu, Huimin et al

From Faming Zhuanli Shenqing, 108651462, 16 Oct 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

85. Single Step

Substance

Image

Cannot Be

Displayed

9012-76-4

Substance

Image

Cannot Be

Displayed

2251009-59-1

Overview

Steps/Stages

- 1.1 R:C₁₆H₃₃N+Me₃ •Cl-, S:AcOH, 10 h, 40°C, pH 4.5
- 1.2 R:NaBH₄, S:H₂O, 40°C; 1.5 h, 40°C, pH 4.5
- 1.3 R:NaOH, S:H₂O, pH 10
- 1.4 R:NaOH, S:Me₂CHOH, 8 h, rt
- 1.5 R:CISO₃H, 5°C; 10 h, 40°C

Notes

in the dark in stage 4, Reactants: 3, Reagents: 4, Solvents: 3, Steps: 1, Stages: 5, Most stages in any one step: 5

References

Chitosan amphoteric ion bactericide and preparation method and application thereof

By Qu, Huimin et al

From Faming Zhuanli Shenqing, 108651462, 16 Oct 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

86. Single Step

Substance

Image

Cannot Be

Displayed

9012-76-4

Substance

Image

Cannot Be _ он— {——о

Displayed

2251009-47-7

Overview

1.1 R:C₁₆H₃₃N+Me₃ •Cl-, S:AcOH, 10 h, 40°C, pH 4.5

1.2 R:NaBH₄, S:H₂O, 40°C; 1 h, 40°C

1.3 R:NaOH, S:H₂O, pH 10

1.4 R:NaOH, S:Me₂CHOH, 10 h, rt

1.5 R:CISO₃H, 10°C; 10 h, 40°C

in the dark in stage 4, Reactants: 3, Reagents: 4, Solvents: 3, Steps: 1, Stages: 5, Most stages in any one step: 5

References

Chitosan amphoteric ion bactericide and preparation method and application thereof

By Qu, Huimin et al

From Faming Zhuanli Shenqing, 108651462, 16 Oct 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

87. Single Step

Substance

Image

Cannot Be

Displayed

9012-76-4

Substance

Image

Cannot Be OH

Displayed

2251009-46-6

Overview

Steps/Stages

- 1.1 R:C₁₆H₃₃N+Me₃ •Cl-, S:AcOH, 10 h, 40°C, pH 4.5
- 1.2 R:NaBH₄, S:H₂O, 40°C; 2 h, 40°C
- 1.3 R:NaOH, S:H₂O, pH 11
- 1.4 R:NaOH, S:Me₂CHOH, 14 h, rt
- 1.5 R:CISO₃H, 0°C; 10 h, 40°C

Notes

in the dark in stage 4, Reactants: 3, Reagents: 4, Solvents: 3, Steps: 1, Stages: 5, Most stages in any one step: 5

References

Chitosan amphoteric ion bactericide and preparation method and application thereof

By Qu, Huimin et al

From Faming Zhuanli Shenqing, 108651462, 16 Oct 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Substance

Image

Cannot Be

Displayed

9012-76-4

Substance

Image

332077-30-2

Overview

Steps/Stages

- 1.1 R:C₁₆H₃₃N+Me₃ •Cl⁻, S:AcOH, 10 h, 40°C, pH 4.5
- 1.2 R:NaBH₄, S:H₂O, 40°C; 1 h, 40°C
- 1.3 R:NaOH, S:H₂O, pH 10
- 1.4 R:NaOH, S:Me₂CHOH, 12 h, rt
- 1.5 R:CISO₃H, 5°C; 10 h, 40°C

Notes

in the dark in stage 4, Reactants: 3, Reagents: 4, Solvents: 3, Steps: 1, Stages: 5, Most stages in any one step: 5

References

Chitosan amphoteric ion bactericide and preparation method and application thereof

By Qu, Huimin et al

From Faming Zhuanli Shenqing, 108651462, 16 Oct 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

89. Single Step

reaction products with

Overview

1.1 R:

CI -

S:H₂O, S:DMSO, 24 h, 35°C, pH 5.2

MES buffered solution used, Reactants: 2, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Preparation method of light-induced nitroso crosslinking hydrogel material, its preparation method and application

By Lin, Qiuning et al From Faming Zhuanli Shenqing, 107987287, 04 May 2018

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

90. Single Step

Overview

Steps/Stages

1.1 R:(Bu₄N+)₂ •SO₄ 2+, S:H₂O, S:MeCN, neutralized

Notes

Reactants: 1, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Anion Exchange Drives Reversible Phase Transfer of Coordination Cages and Their Cargoes

By Grommet, Angela B. et al From Journal of the American Chemical

Society, 140(44), 14770-14776; 2018

Reaction Protocol

Procedure

- 1. Dissolve the ligand in CH_3CN (1.5 mL) and add tetrabutylammonium sulfate ((nBu₄N)₂SO₄) solution 50 wt% in water (1.5 equivalents relative to cage).
- 2. Centrifuge the mixture.

View more...

Available Experimental Data

¹H NMR, ¹³C NMR, State

View with MethodsNow

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

91. Single Step

Overview

Steps/Stages

1.1 R:FeSO₄ •7H₂O, S:D₂O, 12 h, rt

Notes

Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Anion Exchange Drives Reversible Phase Transfer of Coordination Cages and Their Cargoes

By Grommet, Angela B. et al From Journal of the American Chemical Society, 140(44), 14770-14776; 2018

Reaction Protocol

Procedure

- 1. Combine the ligand (13.2 mg, 3.00 x 10-2 mmol), 2-formylpyridine (6.43 μ L, 6.00 x 10-2 mmol), and iron (II) sulfate heptahydrate (5.56 mg, 2.00 x 10-2 mmol) with D₂O (5 mL) in a glove box.
- 2. Stir the resulting purple solution for 12 hours to obtain product.

View more...

Available Experimental Data

¹H NMR, ¹³C NMR

View with MethodsNow

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Substance
Image
Cannot Be
Displayed
9004-34-6

Substance
Image
Image
Cannot Be
Displayed
9004-34-6

Overview

Steps/Stages

- 1.1 R:CISO₃H, S:Dioxane, rt; 3 h, 20°C
- 1.2 R:NaOH, S:H₂O, S:EtOH, neutralized

Notes

optimization study in stage 1, optimized on temperature in stage 1, Reactants: 1, Reagents: 2, Solvents: 3, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Optimized methods for obtaining cellulose and cellulose sulfates from birch wood

By Kuznetsov, Boris N. et al From Wood Science and Technology, 49(4), 825-843; 2015

Reaction Protocol

Procedure

- 1. Carry out the sulfation of cellulose by its treatment with chlorosulfonic acid (five equivalents) in dioxane
- 2. Suspend dried cellulose (1.0 g, 6.17 mmol) in anhydrous 1,4-dioxane (30 ml).

View more...

View with MethodsNow

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

93. Single Step

Overview

1.1 R:FeSO₄, S:D₂O, 12 h, rt

glovebox, Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Enantiopure Water-Soluble [Fe4L6] Cages: Host-Guest Chemistry and Catalytic Activity

By Bolliger, Jeanne L. et al

From Angewandte Chemie, International Edition, 52(31), 7958-7962; 2013

Reaction Protocol

Procedure

1. In a glove box, place FeSO 4*7 H₂O (10.0 mg, 0.0360 mmol, 4 equivalent) and (2R,2'R)-3,3'-((4,4"-diamino-[1,1':4',1"-terphenyl]-2',5'-diyl)bis(oxy))bis(propane-1,2-diol)(0.0540 mmol) in a 20 ml vial. 2. Add 10.0 ml degassed D₂O.

View more...

View with MethodsNow

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

94. Single Step

Overview

Steps/Stages

1.1 R:FeSO₄, S:D₂O, 12 h, rt

Notes

glovebox, Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Enantiopure Water-Soluble [Fe4L6] Cages: Host-Guest Chemistry and Catalytic Activity

By Bolliger, Jeanne L. et al

From Angewandte Chemie, International Edition, 52(31), 7958-7962; 2013

Reaction Protocol

Procedure

1. In a glove box, place FeSO 4 *7 H_2O (10.0 mg, 0.0360 mmol, 4 equivalent) and ((2R,2'R)-3,3'- ((4,4"-diamino-[1,1':4',1"-terphenyl]-2',5'-diyl)bis(oxy))bis(propane-1,2-diol) (0.0540 mmol) in a 20 ml vial. 2. Add 10.0 ml degassed D_2O . View more...

View with MethodsNow

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

95. Single Step

Overview

Steps/Stages

1.1 R:FeSO₄, S:D₂O, 12 h, rt

Notes

glovebox, Reactants: 2, Reagents: 1, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

References

Enantiopure Water-Soluble [Fe4L6] Cages: Host-Guest Chemistry and Catalytic Activity

By Bolliger, Jeanne L. et al

From Angewandte Chemie, International Edition, 52(31), 7958-7962; 2013

Reaction Protocol

Procedure

1. In a glove box, place FeSO 4 *7 H_2O (10.0 mg, 0.0360 mmol, 4 equivalent) and (2S,2'S)-3,3'-((4,4"-diamino-[1,1':4',1"-terphenyl]-2',5'-diyl)bis(oxy))bis(propane-1,2-diol) (0.0540 mmol) in a 20 ml vial. 2. Add 10.0 ml degassed D_2O .

View more...

Available Experimental Data ¹H NMR, ¹³C NMR

View with MethodsNow

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Overview

Steps/Stages

1.1 R:CuSO₄, S:H₂O, S:MeCN, 16 h, reflux

Notes

alternative reaction conditions gave lower yield, Reactants: 1, Reagents: 1, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1

References

An Isomorphous Series of Cubic, Copper-Based Triazolyl Isophthalate MOFs: Linker Substitution and Adsorption Properties

By Lincke, Joerg et al

From Inorganic Chemistry, 51(14), 7579-7586; 2012

Experimental Procedure

Method III: Reflux synthesis Respective amounts of ligand and metal salt were suspended in the given solvent and heated under reflux for 1.5 h-72 h. Afterwards, the reaction was cooled to room temperature, filtered off and washed with the same solvent as used for the synthesis. Afterwards, the obtained microcrystalline product was dried in air. Compound (9), green, microcrystalline powder, yield (3.28g).

Reaction Protocol

Procedure

- 1. Suspend ligand and metal salt in the MeCN solvent.
- 2. Heat the mixture under reflux for 1.5 h-72 hours.

View more...

Available Experimental Data State

View with MethodsNow

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Steps/Stages

Overview

1.1 R:EtN(Pr-*i*)₂, R:CuSO₄, S:DMSO, 12 h, 37°C

Notes

solid-supported reaction, Reactants: 2, Reagents: 2, Solvents: 1, Steps: 1, Stages: 1, Most stages in any one step: 1

54%

References

Efficient and widely applicable method of constructing neo-proteoglycan utilizing copper(I) catalyzed 1,3-dipolar cycloaddition

By Yamaguchi, Masanori et al From Tetrahedron Letters, 47(42), 7455-7458; 2006

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

98. Single Step

Overview

- 1.1 R:Py-SO₃ (1:1), S:C₅H₅N, 16 h, rt
- 1.2 R:Bu₃N, S:H₂O, pH 6

prophetic reaction, Reactants: 1, Reagents: 2, Solvents: 2, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Preparation of anionic conjugates of glycosylated bacterial metabolite

By Kett, Warren Charles and Chen, Yugang From PCT Int. Appl., 2010037179, 08 Apr

Experimental Procedure

Example 3.Sulfation of Fmoc-Derivatives. Glycosylated metabolite (1 mmol) is dissolved in DMF (20 mL), Py.SO₃ (3-fold molar excess over hydroxyl and amine groups) is added and the mixture stirred at 50°C. for 16 h. The reaction is quenched by addition of water (80 mL) and adjusted to pH 6 by addition of tributylamine. The sulfated product is extracted using preparative reverse-phase ion-pairing HPLC Example 3.Sulfation of Fmoc-Derivatives.

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

99. Single Step

Overview

Steps/Stages

- 1.1 R:Py-SO₃ (1:1), S:C₅H₅N, 16 h, rt
- 1.2 R:Bu₃N, S:H₂O, pH 6

Notes

prophetic reaction, Reactants: 1, Reagents: 2, Solvents: 2, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Preparation of anionic conjugates of glycosylated bacterial metabolite

By Kett, Warren Charles and Chen, Yugang From PCT Int. Appl., 2010037179, 08 Apr 2010

Experimental Procedure

Example 3.Sulfation of Fmoc-Derivatives. Glycosylated metabolite (1 mmol) is dissolved in DMF (20 mL), Py.SO₃ (3-fold molar excess over hydroxyl and amine groups) is added and the mixture stirred at 50°C. for 16 h. The reaction is quenched by addition of water (80 mL) and adjusted to pH 6 by addition of tributylamine. The sulfated product is extracted using preparative reverse-phase ion-pairing HPLC Example 3.Sulfation of Fmoc-Derivatives.

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.

Substance Substance
Image Image
Cannot Be Cannot Be Displayed Displayed
82642-66-8

Overview

Steps/Stages

- 1.1 R:Py-SO₃ (1:1), S:C₅H₅N, 16 h, rt
- 1.2 R:Bu₃N, S:H₂O, pH 6

Notes

prophetic reaction, Reactants: 1, Reagents: 2, Solvents: 2, Steps: 1, Stages: 2, Most stages in any one step: 2

References

Preparation of anionic conjugates of glycosylated bacterial metabolite

By Kett, Warren Charles and Chen, Yugang From PCT Int. Appl., 2010037179, 08 Apr 2010

Experimental Procedure

Example 3.Sulfation of Fmoc-Derivatives. Glycosylated metabolite (1 mmol) is dissolved in DMF (20 mL), Py.SO₃ (3-fold molar excess over hydroxyl and amine groups) is added and the mixture stirred at 50°C. for 16 h. The reaction is quenched by addition of water (80 mL) and adjusted to pH 6 by addition of tributylamine. The sulfated product is extracted using preparative reverse-phase ion-pairing HPLC Example 3.Sulfation of Fmoc-Derivatives.

CASREACT ®: Copyright © 2020 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.