chemical potential calculation

Jacob Jeffries

April 10, 2024

1 Insertions

We first perform insertions onto a lattice starting for an initial configuration. This initial configuration has type $t(\sigma)$ at each site σ . The solution has atom types $\alpha \in \mathcal{A}$ and the atomic fraction of α in the solution is x_{α} .

Then, to calculate chemical potentials, we first note that, given a system with free energy G° , we can add an extra atom of type α , yielding a free energy:

$$G_{\beta} = G^{\circ} + \mu_{\beta} \tag{1}$$

So:

$$G_{\beta} - G_{\alpha} = \mu_{\beta} - \mu_{\alpha} \tag{2}$$

which then measures the free energy difference from swapping an α atom to an β atom. Then, approximating (at 0 K and 0 bar) the free energy as internal energy yields:

$$\left\langle E_{\sigma}^{(\beta)} - E_{\sigma}^{(\alpha)} \right\rangle = \mu_{\beta} - \mu_{\alpha}$$
 (3)

where $E_{\sigma}^{(\alpha)}$ is the energy of the lattice with an atom of type α at site σ . Additionally, we can form an Euler equation for the reference configuration:

$$\frac{1}{N}E_{\sigma}^{(t(\sigma))} = \sum_{\alpha} \mu_{\alpha} x_{\alpha} \tag{4}$$

where N is the number of sites in the lattice. For an alloy with k elements, we can form $\frac{1}{2}k(k-1)$ equations for each α - β pair. So, including the Euler equation below, we can form a system of $\frac{1}{2}k(k-1)+1$ equations, which forms either a fully determined system for k=2, or an overdetermined system for k>2. Both cases can be solved using least squares.

2 Fitting

We have multiple data points, i.e. a set of chemical potentials for each composition, by creating multiple solutions with specified compositions. Then, the free energy density is (assuming a regular solution model):

$$f = f^{\circ} + \sum_{\alpha} \mu_{\alpha}^{\circ} c_{\alpha} + \sum_{\alpha \neq \beta} \Omega_{\alpha\beta} c_{\alpha} c_{\beta}$$
 (5)

where f° is a reference free energy, μ_{α}° is a reference chemical potential of species α , c_{α} is the number density of species α , and $\Omega_{\alpha\beta}$ is the heat of mixing between α and β . The chemical potential of α is then:

$$\mu_{\alpha} = \frac{\partial f}{\partial c_{\alpha}} = \mu_{\alpha}^{\circ} + \sum_{\beta \neq \alpha} \Omega_{\alpha\beta} c_{\beta} \tag{6}$$

Or, in terms of atomic fractions x_{β} :

$$\mu_{\alpha} = \mu_{\alpha}^{\circ} + \sum_{\beta \neq \alpha} A_{\alpha\beta} x_{\beta} \tag{7}$$

where v is the atomic volume and $A_{\alpha\beta} = v\Omega_{\alpha\beta}$.