

Top Hospitality Firm (XYZ) Optimizing Offers

Midterm Presentation

February 27th, 2023

Meet Our Team

Yicheng SongFaculty advisor

Yash Bhirud

Yuxuan Yang

Melodie Bard Staff advisor

Agenda

- 1. Business Problem
- 2. Solution Map
- 3. Model Evaluation
- 4. Sample Results
- 5. Timeline & Next Steps
- 6. Questions & Feedback

Business Problem

What's the problem?

Situation

- → XYZ sends out free play offers to different player segments every month
- → This is XYZ's most popular form of promotion

What's the problem?

Situation

- → XYZ sends out free play offers to different player segments every month
- → This is XYZ's most popular form of promotion

But,

- → Free play might go unredeemed
- → Free play is used but doesn't generate enough incremental revenue

Giving too little or too much free play negatively impacts XYZ

We want to send out optimal free play amount to players

Situation

- → XYZ sends out free play offers to different player segments every month
- → This is XYZ's most popular form of promotion

But,

- → Lot of free play goes unredeemed
- → Free play is used but doesn't generate enough revenue

Our Goal

→ Identify personalized free play amount for each user so that the revenue can be improved

Stakeholder Mapping

Solution Approach

Our Model

Get best free play values to offer individuals

Players' gambling and promotions data

Players' assigned to profiles based on features Our Model

Players' gambling and promotions data Players' assigned to profiles based on features

Using Bayesian Linear Regression for distribution of revenue Our Model

Players' gambling and promotions data Players' assigned to profiles based on features

Using Bayesian Linear Regression for distribution of revenue Multi Arm Bandit selects free play that gives the optimum revenue

Solution Map - Player Profile

Players' gambling and promotions data

Players' assigned to profiles based on features Our Model

Current Scenario

They're put in the same profile

Our Approach - Player Profile

Now they're in different profiles

Current Scenario

2

W = \$200		
h Segment = 'I' ency Segment = MF	Free Play	Revenue
Kylie	\$40	-\$20
John	\$40	\$50
	\$40	\$ 0

They're put in the same profile

Andrea

1

Our Approach

Wort	W = \$200 h Segment = 'I' tency Segment = MF	Optimal Free Play	Maximum Revenue
Age= 32 Gender =Female Weeks since last visit = 4 Total visits = 23	Kylie	\$30	\$50
Age= 59 Gender =Male Weeks since last visit = 9 Total visits = 52	John	\$40	\$50
Age= 45 Gender =Female Weeks since last visit = 2 Total visits = 63	Andrea	\$50	\$35

Now they're in different profiles

Solution Map - Bayesian Regression

Players gambling and promotions data Players assigned to profiles based on features

Using Bayesian Linear Regression for distribution of revenue Our Model

Get best free play values

Defining the revenue as a function of player profile and free play

Player Profile A	Free Play	Revenue
Kylie	\$40	-\$20
John	\$40	\$50
Andrea	\$40	\$ 0

For a player profile and free play value, there can be multiple revenue values, this can be captured using **Bayesian Linear Regression**

Players gambling and promotions data Players assigned to profiles based on features

Using Bayesian Linear Regression for distribution of revenue Multi Arm Bandit selects free play that gives the optimum revenue

Get best free play values

Multi-Armed Bandit Problem

What's the MAB problem?

XYZ wants to increase revenue from its players

But it isn't sure which free play offer is optimal ..

Player Profile 1

Free play Amount	# of times free play has been sent out	Average Revenue
\$10	10	\$100 🚣
\$15	5	\$50

The casino can send out \$10 free play to this player since it makes a higher revenue, this is called exploitation

Player Profile 1

Free play Amount	# of times free play has been sent out	Average Revenue
\$10	10	\$100
\$15	<u>5</u>	\$50

The casino can send out \$10 free play to this player since it makes a higher revenue, this is called exploitation

But we see that \$15 free play has only been sent 5 times.

We might not have enough data to understand how much revenue it generates

Player Profile 1

Free play Amount	times free play been sent out	Average Revenue	
\$10	10	\$100 🗲	. –
\$15	5 K	\$50	

The casino can send out \$10 free play to this player since it makes a higher revenue, this is called exploitation

But we see that \$15 free play has only been sent 5 times. We might not have enough data to understand how much revenue it generates

We need more data on this freeplay amount to understand it's true effectiveness, this is called **exploration**

Player Profile 1

Free play Amount	# of times free play has been sent out	Average Revenue	
\$10	10	\$100	
\$15	<u>↑</u> 5 ×	\$50	1 1 1

The casino can send out \$10 free play to this player since it makes a higher revenue, this is called exploitation

But we see that \$15 free play has only been sent 5 times.

---We might not have enough data to understand how much revenue it generates

We need more data on this freeplay amount to understand it's true effectiveness, this is called **exploration**

This is an just an example, but in real world there are far more combinations of players, profiles and free play.

MAB enforces this process on existing data and finds this balance between exploration and exploitation.

Players gambling and promotions data Players assigned to profiles based on features

Using Bayesian Linear Regression for distribution of revenue Multi Arm Bandit selects free play that gives the optimum revenue

Get best free play values

Solution Map Model Evaluation \$10

Players gambling and promotions data Players assigned to profiles based on features

Using Bayesian Linear Regression for distribution of revenue Multi Arm Bandit selects free play that gives the optimum revenue

Get best free play values

\$100

We used sample data for our analysis

We filtered data based on the following conditions

1. Age =
$$55 \text{ to } 75$$

- 2. Frequency Segment = High Frequency
- 3. Worth Segments = I, K, L, M
- 4. Total Visits = 100+
- 5. Weeks since last visit = 0 to 4

Live Evaluation - Long term strategy

Perform A/B test by sending different free play amounts do all player profiles and measure revenue to evaluate our model

Live Evaluation - Long term strategy

Perform A/B test by sending different free play amounts do all player profiles and measure revenue to evaluate our model

Compare revenue from both the approaches and evaluate the effectiveness of the model

Live Evaluation - Long term strategy

Perform A/B test by sending different free play amounts do all player profiles and measure revenue to evaluate our model

Compare revenue from both the approaches and evaluate the effectiveness of the model

Limitations

- 1. Too expensive
- 2. Time-consuming

Offline Evaluation - Short term strategy

Yahoo's Case Study

- Yahoo used similar Multi Arm Bandit to find the optimal news article that will give maximum clicks from a user
- Results from the Long term strategy and Short term strategy were comparable

Case Study Research Paper

https://arxiv.org/pdf/1003.5956.pdf

Offline Evaluation - Short term in our case

For a sample of customers compare free play suggested by model and free play actually in the data, calculate average revenue for matched records

		Free play in data	Free play from model	Matched?	
 ∴ Age = 55-60 ∴ Gender = Female ∴ Weeks since last visit = 0 	Kylie	\$35	\$35	Yes	
 … Total visits = 0-10 … Worth = L … SegB = MF 	Andrea	\$50	\$35	No	2 out of 4 records matched
 ∴ Age= 65-70 ∴ Gender = Male ∴ Weeks since last visit = 0 	John	\$60	\$60	Yes	
 → Total visits = 10-20 → Worth = H → SegB= MF 	Frank	\$70	\$60	No	

Offline Evaluation - Short term in our case

For a sample of customers compare free play suggested by model and free play actually in the data, calculate average revenue for matched records

		Free play in data	Free play from model	Matched?	Revenue	
 ∴→ Age = 55-60 ∴→ Gender = Female ∴→ Weeks since last visit = 0 	Kylie	\$35	\$35	Yes	\$513	We calculated average revenue of all matched records in our sample
 → Total visits = 0-10 → Worth = L → SegB = MF 	Andrea	\$50	\$35	No	\$470	= \$834
 → Age= 65-70 → Gender = Male → Weeks since last visit = 0 	John	\$60	\$60	Yes	\$1,777	We calculated average revenue of all unmatched records in our sample
 …→ Total visits = 10-20 …→ Worth = H …→ SegB= MF 	Frank	\$70	\$60	No	\$570	= \$725

Result & Explanation

	Input		Model	Output	
Player Profile	Player ID	Free play	Revenue	_	
Age= 55-60 Gender =F	710504938	\$30	\$5		\$35
Weeks since last visit = 0 Total visits = 0-10	710598420	\$35	\$513	Bayesian Regression +	
Worth = L SegB= MF	1000353202	\$50	\$470	MAB Model	
Player Profile	Player ID	Free play	Revenue		
Age= 65-70 Gender =M	710594407	\$45	\$570		\$60
Weeks since last visit = 0 Total visits = 10-20	127279	\$60	\$1777	Bayesian Regression +	
Worth = H SegB= MF	710394671	\$70	\$8	MAB Model	

Timeline & Next Steps

Timeline

What we've done

- 1. Understanding the problem
- 2. Exploratory Data Analysis
- 3. Created features for a player profile
- 4. Understanding Bayesian and MAB approaches
- 5. Implementing the algorithms in python for a sample of the entire data

Timeline

What we've done

- 1. Understanding the problem
- 2. Exploratory Data Analysis
- 3. Created features for a player profile
- 4. Understanding Bayesian and MAB approaches
- 5. Implementing the algorithms in python for a sample of the entire data

What we are doing-Midterm

- 1. Verify approach and results
- 2. Running the model for complete data
- 3. Improving performance of our model

20th Jan, 2023 27th Feb, 2023 27th April, 2023

5 weeks

8 weeks

Timeline

What we've done

- 1. Understanding the problem
- 2. Exploratory Data Analysis
- 3. Created features for a player profile
- 4. Understanding Bayesian and MAB approaches
- 5. Implementing the algorithms in python for a sample of the entire data

What we are doing-Midterm

- 1. Verify approach and results
- 2. Running the model for complete data
- 3. Improving performance of our model

What we are going to do-Next Steps

Short Term(next 2-3 weeks):

- 1. Debrief Midterm presentation feedback
- 2. Get the model results and share them with the XYZ team

Long Term:

- 1. Trying alternative model approaches
- 2. Streamline code and make it scalable
- Coordinate with XYZ team for the format and contents of Knowledge Transfer document

20th Jan, 2023 27th Feb, 2023 27th April, 2023

5 weeks

8 weeks

XYZ Hospitality Company Optimizing Offers

Questions?

XYZ Hospitality Company Optimizing Offers

Thank you