Index

A	
Abelian groups	vol.1:p.24
Adjoint operators	vol.1: pp.43 - 44, 87, 103
	vol.3: pp.134 - 135
Adjugate matrix	vol.2: pp.120 - 121
Affine spaces	vol.1:p.93
Asymptotically stable	vol.2:p.76
	vol.3: pp.82 - 84
Attracting fixed point	vol.2:p.76
	vol.3: pp.83 - 84
Attractiveness	vol.3:p.83
Autonomous systems	vol.1:p.7
B	
Basin boundary	vol.2:p.89
Basin of attraction	vol.2:p.89
Basis	vol.2: pp.125 - 127
Bifurcation	vol.1: pp.11 - 12,63 - 64
Body velocity	vol.1:p.38
C	
Causal systems	vol.2:p.152
	vol.3:pp.3-4
Cayley-hamilton theorem	vol.2: pp.139 - 140
	vol.3: pp.121 - 122
Centroid of area	vol.1: pp.4-6
Characteristic equation	vol.2: pp.77, 138 - 139
	vol.3:p.37
Column space	vol.2: pp.133 - 134
Complex conjugate transpose	vol.3:pp.40-44
Condition number (of a matrix)	vol.3: pp.61 - 62
Connection vector field	vol.1: pp.118 - 119
Conservative system	vol.2: pp.89 - 91, 103
Conservative vector fields	vol.1: pp.145 - 146
Conserved quantity	vol.2:p.90
Constraint, holonomic	vol.1:pp.76-77
Constraint, nonholonomic	vol.1: pp.110 - 117, 135 - 1
Contour	vol.2: pp.91 - 92
Controllability	vol.3:p.132
Controllability gramian	vol.3:p.135
Convolution	vol.3:pp.2-4
Convolution (discrete)	vol.3:pp.14,17
Coordinate transformation matrix	vol.2: pp.128 - 129
Coordinate vector	vol.2: pp.126 - 127
Corange	vol.2: pp.51 - 54
Corank	vol.2: pp.51 - 54
Cotangent bundle	vol.1: p.126

Cotangent space	vol.1:p.126
Cotangent vector	vol.1: pp.127 - 130
Cramer's rule	vol.2:p.121
Cross product	vol.1:pp.1-2
Curl (vector)	vol.1:p.145
Curvature (constraint)	vol.1: pp.144 - 145
D	
Dead zone nonlinearity	vol.2:p.151
Deficient matrix	vol.2: pp.140 - 141
Degenerate matrix	vol.2: p.139
Degrees of freedom	vol.1:p.17
Detectable	vol.3: pp.145 - 146, 149
Determinant	vol.2: pp.78 - 81, 115 - 119
Diagonal coordinate form	vol.3: pp.38 - 46
Diagonalization	vol.2: pp.142 - 144
Diagonalization	vol.3: p.46
Diffeomorphic	vol.1: p.20
Differential-algebraic equations	vol.2: pp.41 - 44,47 - 48
Differential-algebraic equations, differentiation index	vol.2: pp.47 - 48
Differential-algebraic equations, model consistency	vol.2: p.44
Differential-algebraic equations, regularity	vol.2: p.11 vol.2: p.45
Differential-algebraic equations, solution	vol.2: p.44
Dimension (of a vector space)	vol.2: pp.125 - 126
Direct product of two sets	vol.1: p.20
Direct sum	vol.1: p.20 vol.1: p.20
Direct sum Direct sum of two sets	vol.1: p.125
Directional linearity	vol.1: p.106
Distribution (allowable velocities)	vol.1: pp.110 vol.1: pp.112, 148 - 150
Dot product	vol.1: pp.112, 148 - 130 vol.2: pp.134 - 135
Dot product	• •
E	vol.3:p.41
Eigenspace	vol.2: p.140
Eigenvalue	vol.2: pp.77, 138 - 145
Tr.	vol.3: pp.36 - 45, 56 - 59
Eigenvector	vol.2: pp.76 - 77, 138 - 145
71 (1.6)	vol.3: pp.36 - 45
Eigenvector (left)	vol.3: pp.50 - 51
Elementary row operators	vol.2: p.107
Embedding	vol.1: p.96
Equilibrium point	vol.3: pp.1, 5-10, 79-84
Equivalent vectors w.r.t. functions	vol.1: pp.100 - 101
Euler-lagrange equation	vol.1: p.136
Existence and uniqueness theorem	vol.1: pp.11, 13
	vol.2: p.82
Exponential map	vol.1: pp.48 - 51, 103 - 104
External forces	vol.1:p.1
F	

Force couple	vol.1:p.2
Force couple system	vol.1:p.3
Forward euler integration	vol.2: p.148
Forward kinematics	vol.1: pp.78, 83 - 84
Frequency response	vol.3:pp.98,105
Frobenius norm	vol.3: pp.62, 102 - 117
Fundamental vector field (infinitesimal generators)	vol.1: pp.99 - 100
G	
Gait generation	vol.1:p.124
Gaussian elimination	vol.2:p.104
Generalized coordinates	vol.1:p.78
Geodesics	vol.1: pp.44 - 46, 51, 96 - 99
Globally asymptotically stable	vol.3:p.93
Gradient vector field	vol.1: pp.129 - 130
Gram schmidt orthogonality procedure	vol.2:p.137
Group	vol.1: pp.21, 94 - 95
Group invariant vectors	vol.1: p.100
Group, left/right action	vol.1: pp.24 - 29, 33, 80, 96, 137
Group, symmetry	vol.1: pp.108 - 109, 137
H	,
H_{∞} norm	vol.3: pp.108 - 119
Hartman-grobman theorem	vol.2:p.88
Hermitian matrix	vol.3: p.107
Heteroclinic trajectory	vol.2:p.94
Holonomic constraint	vol.1: pp.76 - 77
Homeomorphic	vol.1: p.19
	vol.2: p.88
Homogeneity	vol.3:p.1
Homogeneous equations	vol.2: p.105
Hurwitz matrix	vol.3: pp.94 - 96
Hyperbolic fixed point	vol.2: pp.87 - 88
Hysteresis	vol.1: pp.66, 70 - 71
v	vol.2:p.42
I	•
Idempotent	vol.2:p.37
Image (algebra)	vol.1:p.124
Impulse response	vol.3: pp.19 - 20, 29 - 30, 36
Index theory	vol.2: pp.98 - 101
Induced norm	vol.3: pp.103 - 104
Infinity norm	vol.3: pp.100 - 101
Inner product	vol.2: pp.134 - 135
F	vol.3: p.41
Internal forces	-
Internal forces Intersection (spaces)	vol.1:p.1
Intersection (spaces)	vol.1: p.1 vol.2: pp.130 - 131
	vol.1:p.1

J		
J	Jacobi-liouville formula	vol.3:p.27
	Jacobian	vol.1: pp.84 - 86
		vol.2:p.85
	Jordan blocks	vol.3: pp.46 - 50, 56 - 59, 77 - 78
K		
	K-step observability matrix	vol.3: pp.138 - 139
	Kalman rank test	vol.3:p.136
	Kernel	vol.1: pp.124 - 125
	Kinematic locomotion	vol.1: pp.105 - 107
L		
	L1 norm	vol.3: pp.100 - 101
	L2 induced gain of a system	vol.3 : p.108
	L2 norm	vol.3: pp.100 - 101
	Lagrangian multiplions	$vol.2: p.45 \ vol.2: pp.45 - 46$
	Lagrangian multipliers	vol.2: pp.45 - 40 vol.3: p.126
	Laplace transform	vol.2 : p.147
	Daplace transform	vol.3: pp.29 - 33
	Liapunov fixed point	vol.2: p.76
	Lie algebra	vol.1: pp.41, 98 - 100, 103, 151 - 152
	Lie bracket	vol.1: pp.148 - 150
		vol.2:p.1
	Lie groups	vol.1: pp.21, 96-99
	Lifted actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
	Limit cycle	vol.3:p.82
	Linear combination	vol.2:p.124
	Linear equations	vol.2:p.104
	Linear independence	vol.2: pp.124 - 125
	Linear time invariance	vol.2:p.152
	T	vol.3: pp.8-9, 17
	Linear transformation	vol.2: pp.131 - 133
	Linearity	vol.3 : p.15
	Linearity (mapping) Linearity (systems)	$vol.1: pp.106 - 107 \ vol.2: p.152$
	Linearity (systems)	vol.3 : p.1
	Linearization at a fixed point	vol.1: pp.10 - 11
	Elifedization at a fixed point	vol.2: pp.84 - 85
		vol.3: pp.1, 7-10
	Local connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
	Locomotion	vol.1:p.104
	Lotka-volterra model of competition	vol.2:p.88
	Lyapunov functions	vol.3: pp.85 - 96, 117 - 119, 124 - 126
M		
	Manifolds	vol.1: pp.17 - 19,93
	Manifolds, accessible	vol.1:pp.76-78
	Manifolds, c^k -differentiable	vol.1:p.20

	Manifolds, curvature	vol.1:p.93
	Manifolds, stable	vol.2:p.89
	Manifolds, topology	vol.1:p.93
	Marginally stable	vol.3: pp.53, 56
	Markov parameters	vol.3:p.20
	Matrix cofactor	vol.2: pp.111, 118 - 120
	Matrix determinant	vol.2: pp.115, 110 $vol.2: pp.115 - 119$
	Matrix exponentiation	vol.3: pp.26 - 27, 36
	Matrix exponentiation Matrix inverse	vol.2: pp.110 - 115
	Matrix minor	
		vol.2: p.111
	Matrix operations	vol.2: p.106
	Matthew equation	vol.3: p.27
	Memoryless systems	vol.2: p.152
		vol.3:p.4
	Minimum energy input	vol.3: pp.127 - 129, 133 - 136
	Modal contributions of initial conditions	vol.3: pp.41 - 45, 51
	Modal decomposition	vol.3: pp.35 - 45, 51
	Model consistency	vol.2:p.44
	Model uncertainty	vol.3: pp.109 - 115
	Modular addition	vol.1:p.21
	Momentum	vol.1: pp.138 - 140
	Monotonic function	vol.1:p.13
	Multiplicative calculus	vol.1: pp.34 - 38,46 - 47
Λ		00011 Pp.01 00, 10 1.
- '	Negative semidefinite matrix	vol.3:p.93
	Neumann series	vol.3: p.30 vol.3: p.22
	Neutrally stable	-
	v	vol.2: p.76
	Nilpotent matrix	vol.3:p.35
	Noether's theorem	vol.1: pp.131 - 134
	Noncommutativity	vol.1:p.147
	Nonconservativity	vol.1: pp.145 - 147
	Nonholonomic constraint	vol.1: pp.110 - 117, 135 - 136
	Normal matrix	vol.3: pp.36 - 46
	Nullcline	vol.2:p.84
	Nullity	vol.2:p.134
	Nullspace	vol.2: pp.132 - 134
\mathcal{C})	
	Observability	vol.3: pp.136 - 139
	Observer based controller	vol.3: pp.148 - 149
	One-form	vol.1: pp.125, 127 - 129
	Optimal frame	vol.1: p.83
	Orthogonal compliment	vol.2: pp.137 - 138
	Orthogonal set	vol.2: pp.137 - 138 vol.2: p.135
	_	-
	Orthonormal	vol.2: pp.135 - 136
	Orthonormal basis	vol.2: p.136
	Outer product	vol.2: p.136
	Output feedback design	vol.3:p.147

Overdetermined system	vol.2: pp.19, 41
P	voi.2 : pp.19, 41
P norm	vol.3: pp.100 - 102
Parallel linkage mechanisms	vol.3: pp.59 - 60
Pbh test	vol.3: p.136
Pfaffian constraint	vol.1: pp.111 - 117
Phase (angle)	vol.2: p.61
Phase coordinate form	vol.3:p.6
Phase drift	vol.2:p.68
Phase lock	vol.2: p.67
Phase portrait	vol.1: pp.7 - 9
	vol.2: pp.74, 83
	vol.3:p.35
Poles (transfer function)	vol.2:p.147
	vol.3: pp.58 - 59
Position trajectory	vol.1:p.105
Positive definite matrix	vol.3:p.87
Positive semidefinite matrix	vol.3:p.125
Potentials	vol.1:p.17
Power spectral density	vol.3: pp.116 - 119
Preimage (algebra)	vol.1:p.124
Principally kinematic system	vol.1:p.139
Principle minors	vol.3:p.88
Principle of least action	vol.1: pp.131 - 133
Projection operator	vol.2:p.37
Q	
Quadratic programming	vol.3: pp.125 - 126
R	
Radially unbounded	vol.3: p.89
Range (matrix)	vol.2: pp.132 - 133
Range of entrainment	vol.2: pp.68 - 69
Rank	vol.2: pp.51, 53 - 54, 132 - 134
Reachability	vol.3: pp.120 - 126, 130, 132
Reachability gramian	vol.3: pp.124 - 129, 133 - 135
Reaction force	vol.1: p.4
Realization theory	vol.2: p.149
Reconstruction equation	vol.1: pp.114 - 123, 138
Regular control problem Resolvent	vol.2: p.45
Resonance	vol.3: pp.17 - 18, 30, 36
	vol.3: p.50
Reversible system	vol.2: pp.92 - 95 vol.1: p.23
Rigid body	-
Rigid body, left lifted action Rigid body, right lifted action	vol.1: pp.38 - 41 vol.1: pp.41 - 43
Routh-hurwitz criterion	vol.1: pp.41 - 43 vol.3: pp.77 - 80
Row echelon form	vol.3 : pp.11 - 80 vol.2 : p.107
Row space	vol.2 : p.107 vol.2 : p.134
tion space	ου.2 · ρ.19 1

Runge-kutta method	vol.2:p.83
S	
Saddle connection	vol.2:p.94
Semidirect product of two sets	vol.1:p.24
Separatrix	vol.2:p.89
Shape trajectory	vol.1:p.105
Shift operator	vol.3:pp.1-2
Signal norms	vol.3: pp.96 - 104
Similar matrices	vol.2:p.142
Singular matrix	vol.2: pp.41 - 42, 51, 110, 122
Singular value decomposition	vol.3: pp.104 - 110, 128 - 129
Singular vectors	vol.3:p.106
Small-gain theorem	vol.3: pp.109 - 114
Solution, differential-algebraic equations	vol.2:p.44
Span	vol.2: pp.124 - 125
Spatial velocity	vol.1:pp.43,85
Special euclidean group	vol.1:p.23
	vol.2:pp.1-2
Special orthogonal group, $so(n)$	vol.1:p.22
	vol.2:pp.1-2
Stability	vol.3: pp.80 - 84
Stabilizable	vol.3: pp.141 - 143, 149
Stable	vol.2:p.76
	vol.3: pp.53 - 59, 91 - 94
State estimator controller	vol.3: pp.144 - 147
State feedback controller	vol.3: pp.140 - 144
State space model	vol.2: pp.147 - 150
•	vol.3:p.5
State transition matrix	vol.3: pp.11 - 13
State vector	vol.2: pp.147 - 149
	vol.3:p.5
Strain energy	vol.2:pp.5-7
Structural stability	vol.2:p.88
Subspace	vol.2: pp.129 - 130
Sum (spaces)	vol.2: pp.130 - 131
Superposition	vol.3: pp.1, 13
Supremum	vol.3:p.98
Symmetric matrix	vol.2:p.144
v	vol.3: pp.86 - 96
Symmetry	vol.1: pp.108 - 109, 131
System norms	vol.3: pp.99 - 120
T	
Tangent spaces	vol.1: pp.29 - 30
Taylor series expansion	vol.3: pp.7 - 8
Tensor product	vol.1:p.20
Time invariance	vol.2:p.152
	vol.3:pp.1-4
	- *

Time-reversal symmetry	vol.2: pp.92 - 93
Toeplitx matrix	vol.3:p.3
Trace	vol.2:pp.78-80
Traction	vol.3: pp.60-61
Transfer function	vol.2: pp.146 - 147, 150
	vol.3: pp.18 - 20, 36, 52
Transmission	vol.3:p.61
U	
Underactuated robotic mechanisms	vol.3: pp.59 - 77
Underactuated system	vol.1:p.104
Underdetermined system	vol.2:pp.19,41
Unitary diagonal coordinate transformation	vol.3: pp.38 - 43,50
Unstable	vol.2:p.76
V	
Variance amplication	vol.3:p.117
Variations of constants formula	vol.3:pp.24,54
Varignon's theorem	vol.1:p.1
Vector field	vol.1: pp.30 - 31
	vol.2:p.74
Vector mapping	vol.2:p.127
Vector space	vol.2: pp.122 - 123
Vertical space	vol.1:p.125
Virtual work	vol.3: pp.63 - 64
W	
White-in-time gaussian processes	vol.3:pp.115-119
Work (mechanical)	vol.1:p.145
Z	
Z-transform	vol.3:pp.14-22
Zero set	vol.1: pp.76, 110-111
Zeros (transfer function)	vol.2:p.147