2016级《高等数学》(下) 联考试卷

试卷 A (A/B) 考核方式 闭卷 (闭卷/开卷) 考试时间 (120 分钟)

题号	_	=	=	四	五	六	七	八	九	总分
分数										
评卷人										

得分 评卷人

一、单项选择题(本大题共5个小题,每小题3分,总计 15分)

密

- 1、二元函数 $z = 2017 x^2 y^2$ 的图像为(
 - (B) 双曲面

(C) 球 面

(A) 圆锥面

- (D) 抛物面
- 2、考虑二元函数 f(x,y) 的下面四条性质:

- (1) f(x,y) 在点 (x_0,y_0) 连续; (2) $f_x(x,y)$ 、 $f_y(x,y)$ 在点 (x_0,y_0) 连续;
- (3) f(x,y) 在点 (x_0,y_0) 可微分; (4) $f_x(x,y)$ 、 $f_y(x,y)$ 存在.

若用" $P \Rightarrow Q$ "表示可由性质P推出性质Q,则下列四个选项中正确的是

- (A) $(2) \Rightarrow (3) \Rightarrow (1)$ (B) $(3) \Rightarrow (2) \Rightarrow (1)$
- (C) $(3) \Rightarrow (4) \Rightarrow (1)$ (D) $(3) \Rightarrow (1) \Rightarrow (4)$

3、设区域 $D = \{(x,y) | -1 \le x \le 1, x \le y \le 1\}$, $D_1 = \{(x,y) | 0 \le x \le 1, x \le y \le 1\}$, 则 $\iint\limits_D (xy + x^2 \sin y) dx dy = ($).

- (A) $4\iint_{D_1} (xy + x^2 \sin y) dx dy$ (B) 0
- (C) $2\iint_{D} x^2 \sin y dx dy$ (D) $2\iint_{D} xy dx dy$

订

4、设函数 z=z(x,y) 由方程 $x^3+y^3+z^3+3xyz=2017$ 确定,且 $z^2+xy\neq 0$,则

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = ($$
).

$$(A) \frac{y^3 + x^3}{z^2 + xy}$$

(B)
$$\frac{-x^3 - y^3}{z^2 + xy}$$

$$(C) \frac{x^3 - y^3}{z^2 + xy}$$

(D)
$$\frac{y^3 - x^3}{z^2 + xy}$$

5、常数项级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充分必要条件为(). (其中 S_n 为其部分和)

(A) 数列{S_n}有界

(B) 数列 $\{S_n\}$ 收敛

(C) $\lim_{n\to\infty} S_n = 0$

(D) $\lim_{n\to\infty} S_n \neq 0$

得分 评卷人 二、填空题(本大题共5个小题,每小题3分,总计15分)

- 6、已知向量 \vec{a} = (2,-1,-2), \vec{b} = (1,1,-4),则 \vec{a} 与 \vec{b} 的夹角 θ = ______
- 7、函数 f(x,y,z) = xy + yz + zx 在 (1,1,2) 的梯度为_____
- 8、设空间区域 Ω 由 $z=1-\sqrt{x^2+y^2}$ 与z=0围成,在柱坐标下化三重积分为三次
- 9、已知曲面 Σ 为 $x^2 + y^2 + z^2 = 9$,则曲面积分 $\iint_{\Sigma} \frac{1}{\sqrt{x^2 + y^2 + z^2}} dS = _____.$
- 10、(**交大的同学做**) 函数 $\frac{1}{(1-x)^2}$ 关于 x 的幂级数为_____.(-1<x<1).
- 10、(**重邮的同学做**) 设 <math>f(x) 是以 2π 为周期的周期函数,在 $[-\pi,\pi)$ 上的表达式为

三、计算题(本大题共2个小题,每小题5分,总计10分)

11、设二元函数 $z = ye^{xy}$, 试求: (1) $dz\Big|_{\substack{x=1\\y=2}}$; (2) $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=1\\y=2}}$.

得分	评卷人

四、计算题(本大题共2个小题,每小题5分,总计10分)

12、设函数z = f(x+y,xy)在点(1,1)处一阶偏导数连续,且f(2,1) = 3,试求:

(1) $dz|_{(1,1)}$; (2) 曲面 z = f(x+y,xy) 在点 (1,1,3) 处的切平面方程.

得分 评卷人

五、计算题(本大题共2个小题,每小题5分,总计10分)

- 13、设 $I = \iint_D f(x,y)d\sigma$, 其中积分区域 $D: x^2 + y^2 \le 2x \ (y \ge 0)$, 试求: (1) 把积分 $\iint_D f(x,y)dxdy$ 表为极坐标形式的二次积分;

 - (2) 若 f(x,y)=1+y, 计算 I 值.

六、计算题 (本大题总计 10 分):

14、计算曲面积分 $I = \iint_{\Sigma} z \, dx dy + x \, dy dz + y \, dz dx$,其中 Σ 是柱面 $x^2 + y^2 = 1$ 被平

面 z=0 及 z=3 所截得的在第一卦限内的部分的前侧.

七、应用题(本大题共2个小题,每小题5分,总计10分)

- 15、设曲线积分 $\int_L (2xy-y^4+3)dx+(x^2-4xy^3)dy$,其中 L 为 xOy 平面上一条有向曲线,试求:
 - (1) 证明:该曲线积分在整个平面 xOy 上与路径无关;
 - (2) 计算: $\int_{(1,0)}^{(2,1)} (2xy y^4 + 3) dx + (x^2 4xy^3) dy.$

八、综合题(本大题共2个小题,每小题5分,总计10分)

- 16、设幂级数 $\sum_{n=1}^{\infty} \frac{nx^n}{2018^n}$ 的,试求:
 - (1) 收敛半径及其收敛域; (2) 在收敛域内的和函数.

得 分	评卷人

九、综合题(本大题共10分)

17、求二元函数 $f(x,y) = e^{2x}(x+y^2+2y)$ 的极值.