EE6104/EE5104 ADVANCED/ADAPTIVE CONTROL SYSTEMS

Briefing Notes for CA3 Mini Project/ Sep 2009

Adaptive Control of Angular Position with Full State Measurable (EE6104 & EE5104)

and

Adaptive Control of Angular Velocity (EE6104 only) being explored on the D.C. Motor

© Dr. K.Z.Tang, Mr. Lin Feng, Mr. Yang Chenguang & Prof. T.H.Lee

- The methods of adaptive control are used and explored on a pilot-scale hardware platform.
- A computer-aided design procedure is used to achieve the specifications, as part of the overall adaptive systems design.

- PCs in the Control and Simulation
 Laboratory, E4A level 3, ECE Department
- L. J. Electronics D.C. motor apparatus
- PC-based data-acquisition system with a graphical icon-driven software
- National Instrument (NI) LabVIEW
- MATLAB software package

D.C. Motor Apparatus

Screenshot of LabVIEW

Nominal Dynamic Model of Motor

Note that there is a 9:1 gear-down ratio from motor shaft to output shaft!! Units with digital tacho on daughter board gives output shaft angular vel directly!!

- Calibration of the D.C. motor sensors (20 marks)
- 2. Adaptive control of angular position with full state measurable; and additional original explorations (EE6104: 60 marks; EE5104: 80 marks)
- 3. Adaptive control of angular velocity; and additional original explorations (for EE6104 students only! 20 marks)

1. Calibration of the D.C. Motor Sensors

- D.C. motor has 2 types of sensors:
 - Potentiometer (angular position)
 - Tachometer (angular velocity)
- Voltage outputs of the sensors need to be calibrated to the actual angular position and angular velocity measurements.

1. Calibration of the D.C. Motor Sensors

- Calibrate
 - voltage outputs of the sensors,
 - their relation to the actual angular position and angular velocity measurements.
- Show all your calibration data.
- Write down all pertinent notes and observations.

Screen Capture for Part 1

Potientiometer Output (in volts)	Angular Position (in degrees)		
-5	-180		
-4	-144		
-3	-108		
-2	-72		
-1	-36		
0	0		
1	36		
2	72		
3	108		
4	144		
5	180		

Table 1 shows the results for the calibration of the potientiometer_

Calibration Results for Part 1

Input Voltage (volts)	Tachogenerator Output (volts)	Angular Velocity (rpm)	Angular Velocity (rad/sec)
-5	-4.03	-301	-31.52
-4	-3.17	-237	-24.82
-3	-2.3	-172	-18.01
-2	-1.45	-108	-11.31
-1	-0.6	-45	-4.71
0	0	0	0
1	0.62	48	5.03
2	1.48	111	11.62
3	2.33	175	18.33
4	3.2	239	25.03
5	4.06	303	31.73

Table 2 shows the results for the calibration of the tachogenerator

Calibration Results for Part 1

Screen Capture for Part 1

Calibration of the D.C. Motor Sensors

- $\dot{\theta}$ = Angular velocity of motor shaft, read from digital tachometer
- $\dot{\theta}_{motor}$ = Angular velocity of motor, obtained from voltage output of tachogenerator

$$\dot{\theta}_{motor} = 9\dot{\theta}$$

- θ = Angular position of motor shaft, read from motor shaft dial
- θ_{motor} = Angular position of motor, obtained from voltage output of potentiometer

$$\theta_{motor} = 9\theta$$

- Design and implement an adaptive controller with full state measurable for angular position control.
- For the controller, select suitable design choice(s) based on your results in the previous subsection.
- Using the NI LabVIEW system, investigate & explore various design choices of your adaptive controller for a suitably chosen position reference signal.
- Further investigate all signals/variables of suitable interest, and discuss!!! (Sep 2009; to note further.)

Plant

$$\dot{x}_p = A_p x_p + gbu$$

where $x_p \in \Re^2$ is measurable and b is known

Control Law

$$u(t) = \theta_x^T(t)x_p(t) + \theta_r(t)r(t)$$

Adaptive Law

$$e = x_p - x_m$$

$$A_m^T P + P A_m = -Q$$

Choose Q and calculate P

$$\begin{bmatrix} \dot{\vartheta}_{x} \\ \dot{\vartheta}_{r} \end{bmatrix} = -\operatorname{sgn}(g)\Gamma\begin{bmatrix} x_{p} \\ r \end{bmatrix} e^{T}Pb$$

Note that proper design ensures that

$$\{\mathcal{G}_x, x_p, \mathcal{G}_r\}$$
 are bounded, and

$$\lim_{t\to\infty} \left\| x_p - x_m \right\| = 0$$

Important = in your Reports, describe & discuss
all your "experimenting" !!!

2. Adaptive Control of Angular

Position with Full State Measurable

Waveform Chart

DAQ Assistant

Split Signals

Convert from dynamic data

Tick Count (ms)

Time Delay

Index array

Mapping and scaling

While Loop

NI_PtbyPt.lvlib:Square Wave PtByPt.vi

Waveform Chart

Split Signals

Convert from dynamic data

Tick Count (ms)

Compound arithmetic

Time Delay

Index array

Mapping and scaling

While Loop

NI_PtbyPt.lvlib:Square Wave PtByPt.vi

Flat sequence structure

Numeric Control

Waveform Chart

DAQ Assistant

Stop Button

Split Signals

Convert from dynamic data

Tick Count (ms)

Compound arithmetic

Time Delay

Index array

Mapping and scaling

Flat sequence structure

i

While Loop

Case Structure

NI_PtbyPt.lvlib:Square Wave PtByPt.vi

Plant Model Speed (subsystem)

Equals to 0?

CD Construct Transfer Function Model.vi

CD Convert Continuous to Discrete.vi

Initialize Array

Reshape Array

CD Step Response.vi

CD Get IO Time Data.vi

CD Linear Simulation.vi

CD Construct Transfer Function Model.vi

CD Convert Continuous to Discrete.vi

Initialize Array

Reshape Array

CD Step Response.vi

CD Get IO Time Data.vi

CD Linear Simulation.vi

3. Adaptive Control of Angular Velocity (for EE6104 students only!)

- Design and implement an adaptive controller for angular velocity control.
- For the controller, select suitable design choice(s) based on your calibration results in the previous subsection.
- Using the NI LabVIEW system, investigate and explore various design choice(s) for a suitably chosen velocity reference signal. Also show carefully your NI LabVIEW visual programming connections/program.
- Further investigate all signals/variables of suitable interest, and discuss!!! (Sep 2009) to note further.)

Concluding Notes

 CA3 mini-project report (and also CA1 report) are due on:

Date: 19 Nov 2009

Day: Thursday

Time: 12.00 neon

21 Nov 2018 Wednesday 10-30 am

 Venue to submit report: Control and Simulation Lab, into the "Locked Submission Cabinets", CA1 slot and CA3 slot respectively

Submit to IVLE folders.