CSE516/ECE559: Theories of Deep Learning Problem Sheet 3

Dr. Vinayak Abrol

October 22, 2024

Questions entail computational experiments can be attempted in programming language of your choice with the link to your code and results.

1. Trainability

(a) Train a 100 layer FC network with ReLU and ELU activation on MNIST/FMNIST where network weights and bias are initialized on EOC.

ReLU: $\sigma_b^2, \sigma_w^2 = 0, 2$, normalize inputs to have $q^* = 0.5$. ELU: numerically compute σ_b^2, σ_w^2 corresponding to $q^* = 0.5$, and normalize inputs to $q^* = 0.5$ before

Now repeat and compare ELU network with initialization corresponding to $q^* = 0.2$

2. Adversarial attacks for neural networks

Adversarial examples are intentionally designed illusions, where such inputs to learned models cause the model to make a mistake. Mathematically, given a point $\mathbf{x} \in \Omega$ drawn from class y, a scalar $\epsilon > 0$, and a metric d, we say that **x** admits an adversarial example in the metric d if there exists a point $\mathbf{x}^* \in \Omega$ with $Class(\mathbf{x}^*) \neq y$, and $d(\mathbf{x}, \mathbf{x}^*) \leq \epsilon$. In practice d is chosen as ℓ^p -norms with ℓ^∞ being the most popular choice, which limits the absolute change that can be made to any one dimension of \mathbf{x} .

- (a) Task1: One Layer Net: Consider the neural net defined as $\hat{y} = SM(\mathbf{W}\mathbf{x})$ trained with the cross-entropy loss $L(\mathbf{x}, y)$, where SM denotes softmax activation. Let \mathbf{x}^* be the adversarial image of x resulting from fast gradient sign method (FGSM) attacks¹ with constant ϵ . Prove that $\forall \epsilon > 0$ we have $L(\mathbf{x}^*, y) \geq L(\mathbf{x}, y)$
- (b) Task2: Two Layer Net: Consider the neural net defined as $\hat{y} = SM(\mathbf{V}\sigma\mathbf{W}\mathbf{x})$ trained with the crossentropy loss $L(\mathbf{x}, y)$, where \mathbf{V}, \mathbf{W} are weights, SM denotes softmax activation and σ is ReLU activation. Suppose every element of $\mathbf{W}\mathbf{x}$ is non-zero, if $\epsilon < \frac{|\mathbf{W}\mathbf{x}|_{min}}{\|\mathbf{W}\|_{\infty}}$, then prove that $L(\mathbf{x}^*, y) \geq L(\mathbf{x}, y)$, given the fact that for $j = 1, 2, ...; sign(\mathbf{W}\mathbf{x})_j = sign(\mathbf{W}\mathbf{x}^*)_j$

¹https://arxiv.org/pdf/1412.6572.pdf