

Escuela Profesional de Ciencia de la Computación

Algoritmos y Estructuras de Datos

2020-B

Árboles Binarios

M.Sc. Franci Suni Lopez

Universidad Nacional de San Agustín de Arequipa

M.S. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

1

- Las estructuras dinámicas son las en la ejecución varia el número de elementos y uso de memoria a lo largo del programa.
- Entre estas tenemos:
 - Lineales (listas enlazadas, pilas y colas).
 - No lineales (arboles binarios y grafos o redes).

M.Sc. Franci Suni Lopez - UNSA

¿Qué es un Árbol?

- Es una estructura de datos jerárquica.
- La relación entre los elementos es de uno a muchos.

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

3

Terminología

- Nodo: Cada elemento en un árbol.
- Nodo Raíz: Primer elemento agregado al árbol.

M.Sc. Franci Suni Lopez - UNSA

Más terminología

- Nodo Padre: Se le llama así al nodo predecesor de un elemento.
- Nodo Hijo: Es el nodo sucesor de un elemento.
- Hermanos: Nodos que tienen el mismo nodo padre.

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

5

Más terminología

• Nodo Hoja: Aquel nodo que no tiene hijos.

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

Más terminología

• <u>Subárbol:</u> Todos los nodos descendientes por la izquierda o derecha de un nodo.

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

7

Altura y Niveles

La Altura es la cantidad de niveles.

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

Árbol Binario de Búsqueda (ABB)

- Este tipo de árbol permite almacenar información ordenada.
- Reglas a cumplir:
 - Cada nodo del árbol puede tener 0, 1 ó 2 hijos.
 - Los descendientes izquierdos deben tener un valor menor al padre.
 - Los descendientes derechos deben tener un valor mayor al padre.

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

9

Ejemplos de ABB...

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

¿Por qué no son ABB?

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

11

Implementación de un ABB...

```
class NodoArbol
{
    public:
        T info;
        NodoArbol *izq, *der;
        NodoArbol();
    NodoArbol(T dato);
};
NodoArbol(void) { izq = der = NULL; }
NodoArbol(T dato) { info = dato; izq = der = NULL; }
```

M.Sc. Franci Suni Lopez - UNSA

Continuación...

```
class ABB
{
    private:
        NodoArbol *raiz;
    public:
        ABB(); // constructor
        ~ABB(); // destructor
        //otros métodos
};
```

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

13

Proceso para buscar un nodo...

Implementación de la búsqueda

```
p=raiz;
           while (p != NULL)
           { if (p-\dot{>}info == valor)
                    return p;
              else
                                                                                    P contiene la dirección del nodo que tiene el valor buscado
                   p=(p->info > valor? p->izq: p->der);
           return NULL:
                                                                                             Equivalente a:
                                                       No se encontró el valor por lo que
                                                                                             if (p -> info > valor)
                                                       se regresa un NULL
                                                                                               p = p \rightarrow izq;
                                                                                             else p = p-> der;
M.Sc. Franci Suni Lopez - UNSA
                                                       fsunilo@unsa.edu.pe
```

15

Proceso para agregar nodos...

- Reglas:
 - El valor a insertar no existe en el árbol.
 - El nuevo nodo será un Nodo Hoja del árbol.
- Procedimiento
 - 1. Buscar el Nodo Padre del nodo a agregar.
 - 2. Agregar el nodo hoja.

M.Sc. Franci Suni Lopez - UNSA

Ejemplo

Agregar el valor 26

Agregar el nodo

17

Comentarios importantes....

- El orden de inserción de los datos, determina la forma del ABB.
- ¿Qué pasará si se insertan los datos en forma ordenada?
- La forma del ABB determina la eficiencia del proceso de búsqueda.
- Entre menos altura tenga el ABB, más balanceado estará, y más eficiente será.

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

Proceso para eliminar un nodo

- Si el nodo a eliminar es un:
 - Nodo hoja
 - Buscar el Nodo Padre del nodo a borrar.
 - Desconectarlo.
 - · Liberar el nodo.
 - Nodo con un hijo
 - Buscar el Nodo Padre del nodo a borrar.
 - Conectar el hijo con el padre del nodo a borrar.
 - · Liberar el nodo.
 - Nodo con dos hijos
 - Localizar el nodo predecesor o sucesor del nodo a borrar.
 - Copiar la información.
 - Eliminar el predecesor o sucesor según sea el caso.

M.Sc. Franci Suni Lopez - UNSA

fsunilo@unsa.edu.pe

20

Caso: Eliminar Nodo hoja

Eliminar el valor 25

Caso: Eliminar Nodo con un hijo

Eliminar el valor 25

22

Caso: Eliminar nodo con dos hijos

- 1. Localizar el nodo predecesor o sucesor del nodo a borrar.
 - El PREDECESOR es "el Mayor de los Menores".
 - El SUCESOR es "el Menor de los Mayores".
 - Para la implementación es igual de eficiente programar la búsqueda del predecesor que del sucesor.
- 2. El valor del Predecedor (o sucesor) se copia al nodo a borrar.
- 3. Eliminar el nodo del predecesor (o sucesor según sea el caso).

M.Sc. Franci Suni Lopez - UNSA

Predecesor

Uno a la IZQUIERDA y todo a la DERECHA

El predecesor de:	Es:
33	30
21	13
29	27

24

Sucesor

Uno a la DERECHA y todo a la IZQUIERDA

El sucesor de:	Es:
21	
33	
29	

Implementación del....

PREDECESOR

P = actual -> izq; while(p -> der != NULL) p=p->der; return p; actual apunta al nodo a borrar

SUCESOR

P = actual -> der; While (p -> izq != NULL) p=p->izq; return p;

26

Caso: Eliminar Nodo con dos hijos

Caso: Eliminar Nodo con dos hijos

28

