Numeri Reali - Sommario

Tutto sui numeri reali R

Richiami sui Numeri Razionali

Richiami sui Numeri Razionali (propedeutica per studiare i numeri reali): la costruzione dei numeri interi \mathbb{Z} ; la costruzione dei numeri razionali \mathbb{Q} ; l'insufficienza di \mathbb{Q} per rappresentare tutti i numeri. Dimostrazione dell'incommensurabilità di $\sqrt{2}$

1. La costruzione dei numeri interi

OSS 1.1. Osserviamo che a partire dai numeri naturali \mathbb{R} è possibile costruire un altro insieme numerico più *completo* che ci permette di fare altre operazioni (oltre alla somma e moltiplicazione), ovvero i numeri *interi relativi* \mathbb{Z} (*Zahl*), che viene definita come

$$\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

in cui ad ogni numero positivo z corrisponde ad un numero negativo per cui ci permette di fare una nuova operazione: ovvero la sottrazione —. Tuttavia questa non è sufficiente in quanto questa costruzione non ci permette di fare un'altra operazione molto importante, ovvero la $divisione \div$.

2. La costruzione dei numeri razionali

OSS 2.1. Quindi a partire da \mathbb{Z} è possibile costruire i numeri razionali \mathbb{Q} (*Quoziente*), dove un numero $q \in \mathbb{Q}$ è un quoziente di un numero intero \mathbb{Z} e di un numero razionale \mathbb{N} :

$$\mathbb{Z}:=\{rac{p}{q} ext{ con } p \in \mathbb{Z}, q \in \mathbb{N} \diagdown \{0\} \}$$

I numeri razionali quindi ci permettono *non solo* di *contare*, ma anche di *misurare*, dato che possiamo precisamente misurare delle grandezze tramite questi numeri. Tuttavia non posso misurare tutto; infatti se voglio descrivere un oggetto geometrico con i numeri, ovvero un quadrato con il lato l=1, non posso misurare la lunghezza della diagonale del quadrato.

Infatti questo segmento si dice una grandezza incommensurabile.

$$(\frac{n}{k})^2 = 2$$

DIMOSTRAZIONE. Qui ragioniamo *per assurdo*; ipotizziamo che la tesi sia vera invece che falsa, poi per trovare un assurdo, una contraddizione.

1. Supponiamo che esistano $n,k\in\mathbb{N}$ tali che

$$(\frac{n}{k})^2 = 2$$

inoltre non è restrittivo supporre che questi n, k non abbiano fattori in comune (quindi che siano ridotti ai minimi termini).

2. Ora,

$$rac{n^2}{k^2}=2$$
 allora $n^2=2k^2$ allora $2\mid n^2$ è vera;

3. Considerando la scomposizione di n in numeri primi, ovvero

$$n=p_1^{k_1}p_2^{k_2}\dots p_n^{k_n}$$

allora se n^2 è divisibile per un numero primo p_n , allora per forza anche n è divisibile per lo stesso numero primo, in quanto entrambi vengono moltiplicate per lo stesso p_n .

allora
$$2 \mid n$$
 è vera; allora $n=2m$ allora $\frac{4n^2}{k^2}=2$ allora $4n^2=2k^2$ allora $k^2=2n^2$ allora $2 \mid k$ è vera ma allora anche $2 \mid n$ è vera

4.

5. Quindi sia n che k che sono pari, ciò vuol dire che hanno un fattore in comune (ovvero 2); ciò contraddice quello che abbiamo detto all'inizio, ovvero che n e k sono ridotti ai minimi termini. Di conseguenza non è possibile che esistano n e k.

CONCLUSIONE. Quindi i numeri razionali $\mathbb Q$ non sono sufficienti per misurare la diagonale di un quadrato; infatti è impossibile definire un $x \in \mathbb Q$ tale che $x^2 = 2$.

Assiomi dei Numeri Reali

Assiomi dei numeri reali \mathbb{R} ; Il gruppo abeliano $(\mathbb{R}, +)$, il campo $(\mathbb{R}, +, \cdot)$; assiomi fondamentali di \mathbb{R} ; l'assioma caratterizzante di \mathbb{R} (di Dedekind)

Intervalli

Definizione di intervalli. Alcuni esempi

Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore

Definizione di insiemi limitati superiormente e inferiormente. Alcuni esempi; definizione di maggiorante, minorante, massimo e minimo. Teorema di esistenza dell'estremo superiore.

Conseguenze dell'esistenza dell'estremo superiore

Alcuni importanti dei numeri reali $\mathbb R$ come conseguenza del teorema dell'esistenza dell'estremo superiore, numeri naturali $\mathbb N$ come sottoinsieme di $\mathbb R$, proprietà di Archimede, " $\frac{1}{n}$ diventa piccolo quanto si vuole", densità di $\mathbb Q$ in $\mathbb R$. Intervalli chiusi, limitati, inscatolati e dimezzati; teorema di Cantor, forma forte del teorema di Cantor