CSc 134 Database Management and File Organization

3. Relational Data Model and Relational Database Constraints

Ying Jin

Computer Science Department

California state University, Sacramento

Relational Model Concepts

- Relational Model presents a database as a collection of relations.
 - Table :- Relation
 - Row :- Tuple
 - Column header :- attribute

Attribute		Si	tud	ent	ı
					ĺ

Tuelo	Name	SSN	Home Phone
Tuple	Joe Smith	307-88-2907	602-7765543
	Barbara Miller	590-38-6654	422-1076031

- Domain
 - Domain: A domain D in the relational model is a set of atomic values.
 - Atomic: Each value in the domain is indivisible as far as the relational model is concerned.
 - Domain:name, data type, format
 - e.g. USA_Phone_numbers: A character string of the form (ddd)ddd-dddd, where each d is a numeric (decimal) digit and the first three digits form a valid telephone area code.
 - e.g. employee_age: Possible ages of employee of a company; each must be an integer value between 15 and 80.

- Relation Schema

name of the relation

- A relation Schema Ř(A1,A2,...An) is made up of a relation name R and a list of attributes A1,A2,...,An
 - E.g. STUDENT(Name,ssn,phoneNumber)
- Domain of Ai is denoted by dom(Ai)
 Degree of a relation: number of attributes n of its relation schema

- relation state
 - A relation (or relation state) of the relation schema R(A1,A2,...An) is denoted by r(R)
 - The relation is a set of of n-tuples r={t1, t2,..tm}, where each n-tuple t is an ordered list of values: t=<v1,v2,...vn>
 - each value vi, 1=<i<=n, is an element of dom(Ai) or is a special null value.

unknown or may not apply to a tuple

- relation state (Cont.)
 - r(R) ⊆ (dom(A1) X dom (A2) X ... X dom (An))
 - Tuples are unordered in a relation
 - A relation cannot have duplicate tuples
 - Denote cardinality (number of values) of domain D by |D|.
 - Maximum number of tuples in r(R) is |dom(A1)| * |dom(A2)| * ... * |dom(An)|

r(R)
The little r, is the state of the Relation. r is the captured state at that instance of the relation

R(color,gender)	color gender green, F
color : {green,red,blue} gender : {F,M}	green, M
Total Tuples:	red , F red , M
color.size() * gender.size() = 6	blue , F blue , M
- 0	

- Attribute value
 - Value v in tuple t for attribute A
 - t[Ai] or t.A.
 - E.g. Given tuple t=<'Joe Smith', '307-88-2907', '602-7765543'>
 - t[Name]=<'Joe Smith'>
 - t.Name=<'Joe Smith'>
 - t[SSN,Name]=<'307-88-2907', 'Joe Smith'>
 - t.(SSn,Name)=<\307-88-2907', \Joe Smith'>
 - An attribute A of a relation R can be presented as R.A
 - STUDENT.Name

We've been working on only a single Relation, when working with more than 1, we need 'Constraints'

Constraints

- Category
 - Constraints on databases can generally be divided into three main categories:
 - Inherent model-based constraints
 - constraints that are inherent in the data model
 - e.g.
 - Ordering of tuples in a relation
 - Relational model represents facts about both entities and relationship uniformly a relation
 - A relation cannot have duplicate tuples (tuh-polls)

Not all relation/entities become tables in the DB

Constraints

- Category (Cont.)

- Schema-based constraints
 - can be directly expressed in the schemas of the data model, typically by DDL. Data Definition Language
- Application-based constraints
 - cannot be directly expressed in the schemas of the data model
 - must be expressed and enforced by application program.
- Another important category of constraints:
 Data Dependencies
 - functional dependencies and multivalued dependencies.

Schema-based constraints

- Constraints are conditions that must hold on all valid relation states.
- Domain constraints
- Key constraints
- Constraints on nulls
- Entity integrity constraints
- Referential integrity constraints

Domain constraints

- Within each tuple, the value of each attribute A must be an atomic value from the domain dom(A).
- Data type of domain
 - Integer
 - boolean
 - •

Key constraints

- SK is a superkey of R, if for any two distinct tuples t1 and t2 in a relation state r of R, we have the constraint that t1[SK] ‡ t2[SK]
- Key constraint, Unique constraint
 - No two distinct tuples in any state r or R can have the same value for SK.
- e.g. {SSN, Name, Age}

Key

- A key is a minimal superkey a superkey such that removal of any attribute from K results in a set of attributes that is not a superkey.
- e.g. {ssn}
- A relation schema may have more than one key, each of the keys is called a candidate key.
- e.g. fig

In general, a relation schema may have more than one key. In this case, each of the keys is called a candidate key. For example, the CAR relation in Figure 3.4 has two candidate keys: License_number and Engine_serial_number. It is common to designate one of the candidate keys as the **primary key** of the relation. This is the candidate key whose values are used to identify tuples in the relation. We use the convention that the attributes that form the primary key of a relation schema are underlined, as shown in Figure 3.4. Notice that when a relation schema has several candidate keys, the choice of one to become the primary key is somewhat arbitrary; however, it is usually better to choose a primary key with a single attribute or a small number of attributes. The other candidate keys are designated as unique keys, and are not underlined.

Another constraint on attributes specifies whether NULL values are or are not permitted. For example, if every STUDENT tuple must have a valid, non-NULL value for the Name attribute, then Name of STUDENT is constrained to be NOT NULL.

Figure 3.4

The CAR relation, with two candidate keys:
License_number and
Engine_serial_number.

CAR	LicenseNumber	EngineSerialNumber	Make	Model	Year
	Texas ABC-739	A69352	Ford	Mustang	96
	Florida TVP-347	B43696	Oldsmobile	Cutlass	99
	New York MPO-22	X83554	Oldsmobile	Delta	95
	California 432-TFY	C43742	Mercedes	190-D	93
	California RSK-629	Y82935	Toyota	Camry	98
	Texas RSK-629	U028365	Jaguar	XJS	98

In Short both of these canditate keys can be Primary Keys as they are unique

Primary Key

- Designate one of the candidate keys as the primary key of the relation.
- The choice of primary key from candidate keys is arbitrary
- It is better to choose a primary key with a single attribute or a small number of attributes.
- The primary key attributes are underlined.

Constraints on NULL values

- A constraint specifies that null values are or are not permitted
- e.g. employee Name is constrained to be NOT NULL.

The little button in PHPMYADMIN that says null and is a checkbox. Determines whether or not the value can be null, if it is. Throw error.

Relational Database Schemas

 A relational database schema S is a set of relation schemas

A relational database state DB of S is a set of relation states
 DB = {r1,r2,..., rm}

such that each ri is a state of Ri and ri satisfy the IC.

Example of relational database schema

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO

DEPARTMENT

DNAME <u>DNUMBER</u> MGRSSN MGRSTARTDATE

DEPT_LOCATIONS

DNUMBER DLOCATION

PROJECT

PNAME PNUMBER PLOCATION DNUM

WORKS_ON

ESSN PNO HOURS

DEPENDENT

ESSN DEPENDENT_NAME SEX BDATE RELATIONSHIP

One possible database state for the company schema

EMPLOYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DND
	John		Snith	123456789	1965-01-09	791 Fundran, Houston, TX	M	30000	333446565	- 6
	Franklin		Wiche	333445555	1955-12-08	638 Viss, Hauston, TX	M	40000	8899/6555	-5
	Aldu		Ziásyu	9000877777	1905-01-19	3021 Casto, Spring, TX	E	25000	987054321	4
	Jornifor		Wisiso	997954321	1941-09/20	291 Bory, Bolsins, TX	F	42000	B19065555	4
	Ramosh		Narayon	800001444	1962-09-15	975/Fits Clak, Humble, TX	M	38000	333446565	5
	Joyee		English	453453453	1972-07-31	5631 Rico, Houston, TX	F	25000	335445565	5
	Ahmad		Jottor	987987987	1980-03-29	980/Dallas, Houston, TX	M	25000	087954321	4
	Jornes		Borg	889905555	1937-11-10	450 Stone, Houston, TX	M	55000	nut	1

DEPT_LOCATIONS	DNUMBER	DECCATION
		Houston
CRSTARTDATE	_	Sinflut
1988-05-22		Successed
1005-01-01		-

CERARTMENT	DIMME	DALMBER	MCRSSN	MCRSTARTDATE
	Rescorth	5	223445555	1988-05-22
	Administration	£	887654321	1995-01-01
	Headquarters	1	888008555	1981-05-19

4	ESSN	ENO.	HOURS
	123456789	- 1	325
	123656789	2	7.6
	600004444	3.	40.0
	453653453	1	20.0
	453453453	2	20.0
	333445556	2	10.0
	333445555	3.	10.0
	303446555	10	10.0
	333649555	20	10.0
	900687777	30	30.0
	9006877777	10	10.0
	987987967	10	35.0
	367967667	30	5.0
	967654321	30	20.0
	987654321	20	15.0
	860005555	20	nuli

ROJECT	PNAME	PNLMBER	PLOCATION	DNU
	ProductX	1	Balaira	5
[ProductY	2	Sugariand	6
[ProductZ	3	Houston	- 5
[Computerization	10	Staffort	4
[Reorganization	20	Houston	1
[Newbeneffs	30	Stafford	4

DEPENDENT	EBSN	DEPENDENT_NAME	SEX	BOATE	RELATIONSHIP
	333445555	Alm	F	1986-04-05	DAUGHTER
	203445555	Theodore	M	1983-10-25	SON
	222445555	Joy	F	1958-05-03	SPOUSE
	987654321	Atmor	M	1942-02-28	SPOUSE
	123456789	Mithael	M	1988-01-04	SON
	123456789	Altre	F	1988-12-30	DAUGHTER
	123456769	Elizabeth	F	1967-05-05	SFOLISE

Valid /invalid state

- When we refer to a relational database, we implicitly include its schema and its current state.
- A database state satisfies all the constraints in IC is called a valid state.
- A database state does not obey all the integrity constraints is called an invalid state.

Entity integrity constraint

- Entity integrity constraint: No primary
 - key value can be null

Duh. If it was null how would we pull it back from the DB

- Because the primary key value is used to identify individual tuples in a relation.
- Involve a single relation

Referential integrity constraints

- Specify a relationship among tuples in two relations: the referencing relation and the referenced relation.
- Informally:
 - refer to an existing tuple

Foreign Key

- A set of attributes FK in relation schema R1
 is a foreign key of R1 that references
 relation R2 if it satisfies two rules:
 - 1. The attributes in FK have the same domain(s) as the primary key attributes PK of R2
 - 2. A value of FK in a tuple t1 of the current state r1 (R1) either occurs as a value of PK for some tuple t2 in the current state r2(R2), or is NULL.

t1[FK] = t2[PK]. t1 references or refers to t2.

Referential integrity constraint definition

- If the two conditions hold, the referencing integrity constraint from R1 to R2 is said to hold.
- A referential integrity constraint can be displayed in a relational database schema as a directed arc from R₁.FK to R₂.

Referential integrity constraint example

Refer to its own relation

- A foreign key can refer to its own relation.
- e.g. superssn

Application-based constraints

- Semantic integrity constraints
- e.g. "The salary of an employee should not exceed the salary of the employee's supervisor"
- Constraint specification language
 - e.g. trigger, assertions
- Check within application programs

Update Operations on Relations

- INSERT a tuple.
- DELETE a tuple.
- MODIFY a tuple.
- Integrity constraints should not be violated by the update operations.
- Updates may propagate to cause other updates automatically. This may be necessary to maintain integrity constraints.

Update Operations on Relations (Cont.)

- In case of integrity violation, several actions can be taken:
 - Cancel the operation that causes the violation (REJECT option)
 - Perform the operation but inform the user of the violation
 - Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option)
 - Execute a user-specified error-correction routine

Constraint violation

- Insert

- Insert can violate
 - Domain constraints
 - Key constraints
 - Entity integrity constraints
 - Referential integrity constraints
- Reject the insertion in case of constraint violation

Constraint violation

- Delete
 - Can violate referential integrity
 - In case of violation
 - Reject the deletion
 - Attempt to cascade the deletion
 - Modify the referencing attribute values the cause the violation
 - Set to null
 - foreign key is part of the primary key.
 - Change to reference another valid tuple
 - Specify it in DDL

Constraint violation

- Update
 - Modify neither a primary key nor a foreign key
 - Check new value in the correct domain
 - Update a primary key or a foreign key
 - Delete + Insert
 - Can use DDL to specify how to handle update

