Válasz. Az $A \in \mathbb{R}$ valós szám r > 0 sugarú környezetén a

$$K_r(A) := (A - r, A + r)$$

intervallumot értjük. Az $A=+\infty$ elem r>0 sugarú környezete a

intervallum.

• Definiálja az $A \in \overline{\mathbb{R}}$ elem r > 0 sugarú környezetét.

$$K_r(+\infty):=\left(rac{1}{r},+\infty
ight),$$
az $A=-\infty$ elemé pedig a $K_r(-\infty):=\left(-\infty,-rac{1}{r}
ight)$

• Mikor mondja azt, hogy egy $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely $a \in \overline{\mathbb{R}}$

definícióját. **Válasz.** Legyen $f \in \mathbb{R} \to \mathbb{R}, \ a \in \mathcal{D}_f' \cap \mathbb{R}, \ A \in \mathbb{R}$. Ekkor: $\lim_{a} f = A \in \mathbb{R} \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in \mathcal{D}_f, \ 0 < |x - a| < \delta : \quad |f(x) - A| < \varepsilon.$

$$\lim_a f = A \in \mathbb{R} \iff \forall \varepsilon > 0 \quad \exists \, \delta > 0 \quad \forall \, x \in \mathcal{D}_f, \, 0 < |x-a| < \delta : \quad |f(x)-A| < \varepsilon.$$
• Adja meg egyenlőtlenségek segítségével a plusz végtelenben vett plusz végtelen határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, +\infty \in \mathcal{D}_f'$. Ekkor:

 $\lim_{t \to \infty} f = +\infty \iff \forall P > 0 \quad \exists x_0 > 0 \quad \forall x \in \mathcal{D}_f, x > x_0 : \quad f(x) > P.$

• Irja le a hatványsor definícióját.

Válasz. Az
$$(\alpha_n): \mathbb{N} \to \mathbb{R}$$
 sorozattal és az $a \in \mathbb{R}$ számmal képzett
$$\sum \alpha_n (x-a)^n \qquad (x \in \mathbb{R})$$

 $\sum_{n=0} \alpha_n (x-a)^n \qquad (x \in \mathbb{R})$

végtelen sort a középpontú,
$$(\alpha_n)$$
együtthatós $hatványsornak$ nevezzük.

• Definiálja az exp függvényt.

Válasz.
$$\exp(x) := \sum_{n=0}^{+\infty} \frac{x^n}{n!} \quad (x \in \mathbb{R}).$$

Válasz. Tegyük fel, hogy a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor R konvergenciasugara pozitív. Legyen

Mit tud mondani a hatványsor összegfüggvényének a határértékéről?

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x - a)^n \quad (x \in K_R(a))$$

az összegfüggvény. Ekkor bármely $b \in K_R(a)$ esetén létezik a limfhatárérték és

összegfüggvény. Ekkor bármely
$$b \in K_R(a)$$
 esetén létezik a $\lim_b f$ határérték és
$$\sum_{b=0}^{+\infty} f(b) = \sum_{b=0}^{+\infty} f(b) = \sum_$$

 $\lim_{b} f = f(b) = \sum_{n=0}^{+\infty} \alpha_n (b-a)^n.$