SUBSURFACE PROJECTIONS

Projections in hyp space

Fact 1. 3 M s.t. V horocycles B, good J with BnJ= Ø we have TTB(J) < M

we have TTp(7) < M

exercise: M=2 for IH,

Fact 2. ∃ B s.t. Y * geod f, compact A with An7 = Ø

diam TT1(A) ≤ B ball

"contraction property"

exercise: find B for IH2, trees.

Masur-Minsky: If a metric space X has a coarsely transitive path family Γ with the contraction property then X is δ -hyp and elts of Γ are quasi-geodesics.

Fact 3. I C s.t. Y good of, p, of disjoint, at most one of $TL_{\alpha}(\beta \cup \beta)$, $TL_{\beta}(\alpha \cup \beta)$, $TL_{\beta}(\alpha \cup \beta)$

Tig(KUB) large

Facts 3,4

work for

horocycles as well.

has diam > C.

exercise: prove C=O for trees (see Bestvina-Bromberg-Fujiwara)

* For this fact, need to assume a discrete family of geodesics, e.g. lifts of geodesics in a hup. Surf.

Fact 4. Same discreteness assumption as Fact 3, same C.

For fixed &, the set of goods B with diam Tla(B)>C

is sinite.

BOUNDED GEODESIC MAGE THM

Want analogues of all of these facts. Need analogues of horocycles and projections.

Subsurface projections

S = surface

Y = subsurface

~ coarsely defined map

TTY C(S) - C(Y)

e.g.

When Y is an annulus, need special definition. There is a cover $S_Y \rightarrow \mathscr{F}$ corresponding to Y (induces $TI_1(S_Y) \stackrel{=}{\longrightarrow} TI_1(Y)$).

Can compactify to closed annulus 5r C(Y) has vertices for proper acs in 5r, edges for disjointness. not discrete!

Given $v \in C(S)$ can look at preimage in Sv hence are in Sv.

(all such are disjoint, so lie in one simplex).

This is TTY(V).

BOUNDED GEODESIC MAGE THM

this part relies on uniform hyp'ity.

Thm (Masur-Minsky) $\exists M$ (indep. of S) s.t. if $Y \nsubseteq S$ and g is a geodesic in C(S) all of whose vertices intersect Y then diam $T(Y(g) \leq M$.

Webb: M = 100.

Applications (1) Consider

Let $f \in MGG(Y) \subseteq MCG(S)$ pA Can choose n s.t. $d_{C(Y)}(w, f'(w)) > M$.

 $BGI \Rightarrow every geodesic in C(S) from w to <math>f^n(w)$ must pass through V. (similar for V a nonsep curve in Sg).

3 A construction of Aougab-Taylor.

Say $d(v_0, v_1) = 3$. Let $v_2 = T_{v_1}^{M+1}(v_0)$.

Claim: d(Vo, V2) = 4.

Pf: To see > 4 use BGI: any good V2 → Vo must pass through 1 nbd of V1. Vo To see ≤ 4 Find a path: Vo, U, W, Tv, (u), V2

Can keep going: $V_3 = T_{v_2}^{M+1}(v_0)$. Get distances (6, 10, 18, 34, ... u w

LEASURE'S QUASIGEODESICS

Problem: compute distance in C(S).

If C(S) were locally finite could do a brute force search for geodesics.

Assume d(V, W) 33. Will find a nice (2,2) quasignodesic V~W.

Note VVW cuts Sq into a union of disks.

A vw-cycle is a loop that intersects each disk in at most one are

Take a geodesic V = Vo, ..., Vn = W

Truncote each v; to a vw-cycle v; : tollow vi (starting anywhere) and when you return to the same disk twice, do a surgery.

Observation: i(Vi, Vi+1) = 2

Pf: only intersections are in disks where we did surgery and only one are of each curve in such a disk.

→ d(vi, vii) = 2|i-j|

If $d(V_i, V_i') < |i-j|$, choose a geodesic $V_i' \longrightarrow V_j'$ and convert to Vw-cycles again.

At end: (2,2)-quasignodusic.

Can get scrunching of more than 1/2 if you don't do this.

Moral: can approximate distance with uncomplicated curves. Will do this with BGI.

PROOF OF BOUNDED GEODESIC MAGE THEOREM (WEBB)

AC(Y) = arc and curve complex of Y qi to C(Y). $TC_Y : C^{\circ}(S) \longrightarrow P(AC^{\circ}(Y))$ Subsurface proj.

Thus $\exists M \text{ s.t. if } Y \subseteq S$ $g = (u_i) = \text{geod in } C(S)$ with $Tty(u_i) \neq \emptyset \quad \forall i$ then diam $Tty(g) \leq M$

Proof idea: Simplify g wrt Y à la Leasure.

VW-loops

U, V, WE C(S).

Say u is a vw-loop if for each arc $\alpha \leq WV$ either have $0 | |u n \alpha| \leq 1$ $|u n \alpha| = 2$ and signs of intersection are opposite.

Will apply to v= dY, w= u:

To show: Given any $g=(u_i)$, v, w can replace u_i with u'_i to get quasigeod $g'=(u'_i)$. (like Leasure).

Recipe for VW-loop conversion U~u'

If u already a vw-loop, u'= u. Otherwise, let B = a minimal arc of u failing the defin note dB = x where x < w/v is the arc where the failure happens.

Case 1) | Bnx | = 2, signs of int are same.

Case \bigcirc $|B \cap x| = 3$, nonalternating signs.

Similar to Case 1

Case 3 | Bn x != 3 alternating signs

(an show u' is O essential

- 1 in min pos with V, W
- 3) a W-100p.

Claim: If we apply this recipe to a good g = (ui) we get a path $g' = (u'_i)$ that is a (4,0)-quasi-geod.

Pf: Same as Leasure. Use i(Wi, Ui+1) ≤ 4.

Now for the magic:

Lemma. $Y \subseteq S$. Say $v \in \partial Y$, w fill S i.e. $d(v,w) \geqslant 3$. u = vw - loop, $i(u,v) \neq 0$ i.e. $d(u,v) \geqslant 2$ Then: ① $dv(u,w) \leq 2$ Y nonannular
② $dv(u,v) \leq 5$ Y annular.

TF of O. DY

u

one arc of Tty(w)

at most two
intersections

Arcs/curves with at most two intersections cannot fill i.e. cannot have distance 3.

* Webb requires d>3 in the claim and the Lemma.

Lemma. 3D s.t. Y YES Y VE DY

 \forall geod $v = u_0, ..., u_n = w \quad n \ge 3$ have: $d_Y(u_i, u_n) \le D$ $i \ge 2$. Uo=VedY 100

Pf. Replace $g = (u_i)$ with $g' = (u_i')$ a (4,0) - quasigned. Each u_i is D'-close to g' $D' = \text{fn of } 4, \delta$. So: u_i' close to u_n' in Y by prev. Lemma u_i' close to some u_i' (quasigneds are unif close to goods) M

Proof of Thm. Let $B = (\delta+1)$ - ball around ∂Y :

a, b = other two sides of ui, uj, dy triangle X/y = Vertices right before/ after g passes thru B. (otherwise x=ui, y=ui)

Key: X, y have distance δ+2 from dY so any path of length of hos all vertices intersecting dY.

Now, the points of $(u_i,...,u_j)$ are within δ of a u b. At some point they switch from close-to-a to close-to-b. That can happen in B or out of B.

Case 1) x within & of a y within & of b.

Get a path of length $\leq 2D+4\delta+4$ in Y.

Case 2) I UK, UKHI outside B with UK &- close to a UKHI &- close to b

Get path of length ≤ 2D+25+1.

BEHRSTOCK LEMMA

}(S) = complexity = 3g-3+n = man dim C(S) +1.

Lemma. Y, Z \subseteq S overlapping $\S(Y)$, $\S(Z) > 4$. X = curve with T(X), $T(Z(X) \neq \emptyset$. Then $d_Y(X, \partial Z) > 10 \implies d_Z(X, \partial Y) \leq 4$

i.e. can't both be large. This is analogous to Fact 3 above. (think of x as ∂X).

Facts. Let $U \subseteq S$ $\S(u), \S(s) 7.4$. $u, v \in C(S)$ au, av projection arcs in UT(u(u), T(u(v)) projection curves.

- ① $i(au,av) = 0 \Rightarrow du(*u,v) \leq 4$ ② $i(u,v) *>0 \Rightarrow i(u,v) \geq 2^{(du(u,v)-2)/2}$ ③ $i(u,v) \leq 2 + 4 \cdot i(au,av)$.
- Pf of Lemma (Leininger). $d_r(x,\partial Z) = 10.72 \implies \text{distance realized}$ by curves $u \in Tt_r(x)$, $v \in Tt_r(\partial Z)$ s.t. $i(u,v) \ge 2^4 = 16$ (Fact \emptyset). Now, u & v come from arcs au, av with $i(au,av) \ge (6-2)/4 > 3$ (Fact \emptyset). Note $au \le x$, $av \le \partial Z$. One arc of au b/w pts of intersection with av lies in Z. This arc is disjoint from x-arcs in Z, $v \in \partial Z$.