

1.) Define lower and upper cut off frequencies:

$$f_1 \coloneqq 14000000$$
 $f_2 \coloneqq 14400000$

2.) Define inductor core, turns and value ($L = L_1 = L_2$):

$$L \coloneqq 2.12 \cdot 10^{-6}$$
 H = 2.12uH --> 23T @ T50-6 Core --> "toroids.info/T50-6.php"

$$Q_U \coloneqq 240$$
 ... unloaded Q of the resonators

3.) Calculate ω_0 :

 $\omega_0 \ldots$ center angular frequency

$$\omega_0 \coloneqq 2 \cdot \pi \cdot \sqrt{f_1 \cdot f_2} = 89212381.366 \,\text{rad/sec}$$

4.) Calculate C_0 :

 $C_0\dots$ nodal capacitance

$$C_0 \coloneqq \frac{1}{{\omega_0}^2 \cdot L} = 0.0000000000593$$
 F = 59.3pF

5.) Calculate Q_L :

 $Q_L\dots$ loaded filter Q

$$Q_L \coloneqq \frac{\omega_0}{2 \cdot \boldsymbol{\pi} \cdot (f_2 - f_1)} = 35.496$$

6.) Calculate C_{12} :

 C_{12} ... coupling capacitance between resonators

$$C_{12} := \frac{C_0}{Q_I \cdot \sqrt{2}} = 1.18 \cdot 10^{-12} \text{ F} = 1.18 \text{pF}$$

$$C_{12}\!\coloneqq\!1\cdot 10^{-12}\;{\rm pF}$$

7.) Calculate ${\cal Q}_1$ and ${\cal Q}_2$:

 $Q_1 = Q_2 \dots$ gives the net Q that each end section must be loaded to

$$Q_1\!\coloneqq\!\sqrt{2}\boldsymbol{\cdot} Q_L\!=\!50.2$$

$$Q_2\!\coloneqq\!\sqrt{2}\boldsymbol{\cdot} Q_L\!=\!50.2$$

8.) Calculate the Q_0 :

 Q_0 ... normalized Q

$$Q_0 \coloneqq rac{Q_U}{Q_L} = 6.761$$

9.) Calculate Q_{e1} and Q_{e2} :

 Q_{e1} = Q_{e2} ... external Q

$$Q_{e1} := \frac{1}{\left(\frac{1}{Q_1} - \frac{1}{Q_U}\right)} = 63.47'$$

$$Q_{e1} \coloneqq \frac{1}{\left(\frac{1}{Q_{1}} - \frac{1}{Q_{U}}\right)} = 63.477 \qquad \qquad Q_{e2} \coloneqq \frac{1}{\left(\frac{1}{Q_{1}} - \frac{1}{Q_{U}}\right)} = 63.477$$

10.) Calculate R_{e1} and R_{e2} :

 R_{e1} and R_{e2} ... loading resistance to establish the external Q

$$R_{e1}\!:=\!Q_{e1}\!\cdot\!\omega_0\!\cdot\!L\!=\!12005.37\ \ \, \text{Ohm}$$

$$R_{e2}\!:=\!Q_{e2}\!\cdot\!\omega_0\!\cdot\!L\!=\!12005.37\ \ \, \text{Ohm}$$

11.) Calculate C_{1L} and C_{2L} :

 C_{1L} and $C_{2L}\dots$ couple capacitor --> couple input load to R_{e1} and output load to R_{e2}

 $R_{IN} = 1500 \, \text{Ohm}$... input load

 $R_{OUT} = 180 \text{Ohm}$... output load

$$C_{1L} \coloneqq \frac{1}{\omega_0 \cdot \sqrt{R_{c1} \cdot R_{IN} - R_{IN}^{-2}}} = 2.82 \cdot 10^{-12} \;\; \mathsf{F} = 2.8 \mathsf{pF} \qquad C_{1L} \coloneqq 3 \cdot 10^{-12} \;\; \mathsf{pF}$$

$$C_{1L} \coloneqq \frac{1}{\omega_0 \cdot \sqrt{R_{e1} \cdot R_{IN} - R_{IN}^{\ 2}}} = 2.82 \cdot 10^{-12} \;\; \text{F} = 2.8 \text{pF} \qquad C_{1L} \coloneqq 3 \cdot 10^{-12} \;\; \text{pF}$$

$$C_{2L} \coloneqq \frac{1}{\omega_0 \cdot \sqrt{R_{e2} \cdot R_{OUT} - R_{OUT}^{\ 2}}} = 7.68 \cdot 10^{-12} \;\; \text{F} = 7.7 \text{pF} \qquad C_{2L} \coloneqq 8.2 \cdot 10^{-12} \;\; \text{pF}$$

12.) Calculate C_1 and C_2 :

 C_1 and C_2 ... resonator tune capacitors

$$C_1 \coloneqq C_0 - C_{1L} - C_{12} = 0.0000000000553$$
 F = 55.3pF

$$C_2\!\coloneqq\! C_0\!-\!C_{2L}\!-\!C_{12}\!=\!0.000000000501 \text{ F = 50.1pF}$$

Formulas: https://archive.org/details/SolidStateDesignForTheRadioAmateur1986/page/ n239

$$\omega_o = 2\pi \sqrt{f_1 f_2} \qquad (Eq. A)$$

$$C_o = (L\omega_o^2)^{-1}$$
 (Eq. B)

$$Q_L = \omega_o / [2\pi (f_2 - f_1)]$$
 (Eq. C)

$$C_{12} = C_o / (Q_L \sqrt{2})$$
 (Eq. D)

$$Q_j = \sqrt{2} Q_L$$
 (Eq. E)
for $j = 1, 2$

$$Q_{ej} = \left(\frac{1}{Q_j} - \frac{1}{Q_u}\right)^{-1}$$
for $j = 1, 2$

for
$$j = 1, 2$$
 (Eq. F)

$$R_{ej} = Q_{ej} \omega_o L$$

for $j = 1, 2$ (Eq. G)

$$C_{jL} = \frac{1}{\omega_o \sqrt{R_{ej}R_L - R_L^2}}$$
for $j = 1, 2$ (Eq. H.)

for
$$j = 1, 2$$
 (Eq. H)

$$C_i = C_o - C_{iL} - C_{12}$$

for
$$j = 1, 2$$
 (Eq. I)