MA385 Part 1: Solving nonlinear equations

1.6: Fixed Point Iteration

Dr Niall Madden

25+29 September, 2025

Newton's method can be considered to be a special case of a very general approach called *Fixed Point Iteration* (**FPI**) or *Simple Iteration*.

The basic idea is:

```
If we want to solve f(x) = 0 in [a, b], find a function g(x) such that, if \tau is such that f(\tau) = 0, then g(\tau) = \tau. Choose x_0 and set x_{k+1} = g(x_k) for k = 0, 1, 2, \ldots
```

0. News!

- 1. Week 4: Tutorials start next week (week beginning Monday, 29 Sep).
- A tutorial sheet is available at https://www.niallmadden. ie/2526-MA385/MA385-Tutorial-1.pdf. The tutor will work with you on that. Questions will be similar in style to the final exam.
- 3. Tutorials are Mondays at 10 in AC-201 and Thursday at 2 in ENG-3036. Go to either. If available, please go to the Monday class (larger room).
- 4. Week 5: we'll have a lab, using Python/Jupyter.

0. Outline

- 1 Introduction
- 2 How not to choose g
- 3 Fixed points and contractions

- Fixed Point
- 4 How many iterations?
- 5 Newton's method as a FPI
- 6 Exercises

For more details, see Section 1.4 (Relaxation and Newton's method) of Süli and Mayers, *An Introduction to Numerical Analysis*

Also, Chapter 3 of Epperson:

https://search.library.nuigalway.ie/permalink/f/3b1kce/TN_cdi_askewsholts_vlebooks_9781118730966

1. Introduction

Yet again, we want to solve

Given a function f(x), find $\tau \in [a, b]$ such that

$$f(\tau)=0.$$

Again, we'll try to find a sequence $\{x_0, x_1, \dots, x_k, \dots\}$, such that $x_k \to \tau$ as $k \to \infty$.

In this section, we'll consider one step methods, which, like Newton's method, compute x_{k+1} just from x_k .

The Method is called Fixed Point Iteration (FPI):

- ▶ Choose a function g such that, if $f(\tau) = 0$, then τ is a fixed point of g.
- ▶ Choose x_0 , and then iterate with $x_{k+1} = g(x_k)$.

1. Introduction

Example 1.6.1

Suppose $f(x) = e^x - 2x - 1$ and we are trying to find a solution to f(x) = 0 in [1,2]. Then we can take $g(x) = \ln(2x + 1)$.

If we take $x_0 = 1$, then we get the following sequence:

k	x_k	$ f(x_k) $	$ \tau-x_k $
0	1.0000	0.2817	2.5643e-01
1	1.0986	0.1972	1.5782e-01
2	1.1623	0.1273	9.4148e-02
3	1.2013	0.0781	5.5092e-02
4	1.2246	0.0464	3.1868e-02
5	1.2381	0.0271	1.8310e-02
6	1.2460	0.0157	1.0479e-02
:	:	:	
10	1.2553	0.0017	1.1079e-03

2. How not to choose g

We have to be quite careful with this method: **not every choice** is g is suitable.

For example, suppose we want the solution to $f(x) = x^2 - 2 = 0$ in [1,2]. We could choose $g(x) = x^2 + x - 2$. Then, if take $x_0 = 1$ we get the sequence:

2. How not to choose g

Before we do that in a formal way, consider the following...

Example 1.6.2

Use the Mean Value Theorem to show that the fixed point method $x_{k+1} = g(x_k)$ converges if |g'(x)| < 1 for all x near the fixed point.

2. How not to choose g

This previous example is useful in two ways:

- 1. It introduces the tricks of using that $g(\tau) = \tau \& g(x_k) = x_{k+1}$.
- 2. It leads us towards the contraction mapping theorem.

Definition: fixed point

A function $g:\mathbb{R}\to\mathbb{R}$ is said to have a **fixed** point at x= au if g(au)= au

Theorem 1.6.1 (Fixed Point Theorem)

Suppose the function g is cont's on [a, b], and $a \le g(x) \le b$ for all $x \in [a, b]$. Then g(x) has a fixed point in [a, b].

Next suppose that g is a contraction. That is, g(x) is continuous and defined on [a,b] and there is a number $L \in (0,1)$ such that

$$|g(\alpha) - g(\beta)| \le L|\alpha - \beta|$$
 for all $\alpha, \beta \in [a, b]$. (1)

Theorem 1.6.2 (Contraction Mapping Theorem)

Suppose that the function g is a real-valued, defined, continuous, and

- (a) maps every point in [a, b] to some point in [a, b], and
- (b) is a contraction on [a, b],

then

- (i) g(x) has a fixed point $\tau \in [a, b]$,
- (ii) the fixed point is unique,
- (iii) the sequence $\{x_k\}_{k=0}^{\infty}$ defined by $x_0 \in [a, b]$ and $x_k = g(x_{k-1})$ for $k = 1, 2, \ldots$ converges (at least linearly) to τ .

3. Fixed points and contractions

Fixed Point

4. How many iterations?

The algorithm generates as sequence $\{x_0, x_1, \dots, x_k\}$. Eventually we must stop. Suppose we want the solution to be accurate to say 10^{-6} , how many steps are needed? That is, how big do we need to take k so that

$$|x_k - \tau| \le 10^{-6}$$
?

The answer is obtained by first showing that

$$|\tau - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0|.$$
 (2)

4. How many iterations?

Example 1.6.3

Suppose we are using FPI to find the fixed point $\tau \in [1,2]$ of $g(x) = \ln(2x+1)$ with $x_0 = 1$, and we want $|x_k - \tau| \le 10^{-6}$, then we can use (2) to determine the number of iterations required.

Newton's method can be thought of as an example of a fixed point method, where we take

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

However, we know that, when Newton's Method converges it does so quadratically, whereas FPI converges (at least linearly).

Let's remind ourselves of the definition:

- We have a sequence of numbers ε_0 , ε_1 , ..., such that $\lim_{k\to\infty}\varepsilon_k=0$.
- ▶ These bound the errors: $|\tau x_k| \le \varepsilon_k$ Let $\tau = \lim_{k \to \infty} x_k$.
- We know that $\lim_{k\to\infty} x_k = \tau$
- ► Then we say that the sequence $\{x_k\}_{k=0}^{\infty}$ converges with at least order q if

$$\lim_{k\to\infty}\frac{\varepsilon_{k+1}}{(\varepsilon_k)^q}=\mu,$$

for some constant μ .

For q=1 we get linear convergence. If q=2, we say it is *quadratic*.

Suppose that we have a convergent Fixed Point Method, $x_{k+1} = g(x_k)$, but with the additional property that $g'(\tau) = 0$. Then, in fact, FPI converges (at least) quadratically):

Finally, we show that, in the FPI setting, Newton converges quadratically:

6. Exercises

Exercise 1.6.1

Is it possible for g to be a contraction on [a, b] but not have a fixed point in [a, b]? Give an example to support your answer.

Exercise 1.6.2

Show that $g(x) = \ln(2x + 1)$ is a contraction on [1,2]. Give an estimate for L. (Hint: Use the Mean Value Theorem).

6. Exercises

Exercise 1.6.3

Suppose we wish to numerically estimate the famous golden ratio, $\tau = (1+\sqrt{5})/2$, which is the positive solution to x^2-x-1 . We could attempt to do this by applying fixed point iteration to the functions $g_1(x) = x^2-1$ or $g_2(x) = 1+1/x$ on the region [3/2, 2].

- (i) Show that g_1 is not a contraction on [3/2, 2].
- (ii) Show that g_2 is a contraction on [3/2, 2], and give an upper bound for L.

6. Exercises

Exercise 1.6.4

In class we saw that if $g(\tau) = \tau$, and the fixed point method given by

$$x_{k+1}=g(x_k),$$

converges to the point τ (where $g(\tau) = \tau$), and if $g'(\tau) = 0$, then the method converges quadraticially.

Show that, in fact if

$$g'(\tau) = g''(\tau) = \cdots = g^{(p-1)}(\tau) = 0,$$

then it converges with order p.