Calcul parallèle Topologie des architectures parallèles

Florian Barbarin Abdelkader Beldjilali Nicolas Holvoet

25 décembre 2016

Table des matières

1	Algorithme de Dijkstra	3
2	Algorithme A*	3
3	Utilisation	4
4	Les grilles	5
5	Les arbres et grilles d'arbres	7
6	Les hypercubes	8

1 Algorithme de Dijkstra

Edgser Wybe Dijkstra (EWD), Physicien Néerlandais reconverti à l'informatique en 1955, a proposé en 1959 un algorithme de recherche de chemin minimum dans un graphe dont la complexité est en O(n).

FIGURE 1 - Edgser Wybe Dijkstra (1930-2002)

On doit à Dijkstra, qui avait la réputation d'avoir mauvais caractère et de présenter une allergie au "GOTO", quelques citations ¹ telles que :

- « Il est pratiquement impossible d'enseigner la bonne programmation aux étudiants qui ont eu une exposition antérieure au BASIC : comme programmeurs potentiels, ils sont mentalement mutilés, au-delà de tout espoir de régénération. »
- « Le plus court chemin d'un graphe n'est jamais celui que l'on croit, il peut surgir de nulle part, et la plupart du temps, il n'existe pas. »
- « La programmation par objets est une idée exceptionnellement mauvaise qui ne pouvait naître qu'en Californie. »

L'algorithme donne le plus court chemin de la source à tous les sommets d'un graphe connexe pondéré (orienté ou non) dont le poids lié aux arêtes est positif ou nul.

Vertex	Shortest distance from A	Previous vertex
Α	0	
В	3	D
С	7	E
D	1	Α
E	2	D

Visited = [A, D, E, B, C] Unvisited = []

FIGURE 2 – Exemple de calcul des plus courts chemins à partir du noeud A.

L'algorithme de Disjkstra est un algorithme glouton qui utilise l'hypothèse qu'une décision prise sur la base d'un critère d'optimalité locale conduira à un optimum global. Ainsi, à chaque itération, l'algorithme choisit le noeud du réseau dont la distance au noeud de départ est la plus faible.

2 Algorithme A*

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse I

^{1.} source: https://fr.wikipedia.org/wiki/Edsger_Dijkstra

3 Utilisation

Dijkstra est utilisé dans le routaghe dynamique OSPF Comment les utiliser pour transférer de façon optimale une donnée d'un noeud à un autre.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed,

 ${\rm Figure}~3$ – Exemple d'image au format JPG.

4 Les grilles

Définition (Grille). Une grille de dimension d possédant N nœuds suivant chaque coordonnée est le produit cartésien de d chaines (d > 1) de N sommets. On note cette grille $M(N)^d$ que l'on dira de coté <math>N.

Remarque. Si l'on considère le produit cartésien de deux graphes, le graphe résultant est tel que :

- l'ensemble de ses nœuds est le produit cartésien des nœuds des deux premiers graphes ;
- deux de ses nœuds sont voisins s'ils sont composés de nœuds qui étaient voisins dans l'un des deux premiers graphes.

Exemple. Soient deux chaines composées des nœuds appartenant à l'ensemble $E = \{A, B, C, D\}$. Le produit cartésien de ces deux chaines (d = 2) de taille N = Card(E) = 4:

A pour résultat la grille $M(4)^2$:

Nombre total de nœuds : Il résulte de la définition ci-dessus que le nombre total de nœuds est égal au cardinal du produit cartésien de l'ensemble des nœuds de départ :

$$Card(S) = Card(\underbrace{E \times E \times \ldots \times E}_{\text{p fois}}) = \prod_{1}^{p} Card(E) = N^{p}$$

où S est l'ensemble des noeuds de la grille

Nombre total d'arêtes : Soit A l'ensemble des arêtes de la grille. Voici pour N=2 et N=4 le passage de la dimension 1 aux dimensions supérieures (2 et 3).

On remarque à présent que, pour N fixé, le passage d'une dimension d à une dimension d+1 se fait en deux étapes :

- on "copie" N fois la grille de dimension d;
- on relie, par une arête, les nœuds de la grille 1 avec les nœuds correspondants de la grille 2 puis les nœuds de la grille 2 avec les nœuds correspondants de la grille 3, et ainsi de suite jusqu'à la grille N. Cette méthode de construction nous donne une relation de récurrence pour le nombre d'arêtes :

$$Card(A)_{d+1} = \underbrace{N \times Card(A)_d}_{\text{On copie } N \text{ fois la grille de dimension } d} + \underbrace{(N-1) \times Card(S)_d}_{\text{On relie les arêtes de chaque grille}}$$

On ne peut aisément déterminer une expression générale de la suite ci-dessus. Or, les exemples précédents nous permettent de déduire une expression du nombre d'arêtes en fonction de d et de N:

$$Card(A)_d = d \times (N-1) \times N^{d-1}$$

Nous pouvons démontrer par récurrence cette expression.

Preuve de la relation.

Initialisation : Pour d=1, on a $Card(A)_1=1\times (N-1)\times N^{1-1}=N-1$ ce qui correspond bien au nombre d'arêtes dans une chaine.

Hypothèse de récurrence : On fait l'hypothèse qu'il existe un rang d tel que $Card(A)_d = d \times (N-1) \times N^{d-1}$. Montrons que cette relation est vraie au rang d+1.

Hérédité: Nous avons :

$$Card(A)_{d+1} = N \times Card(A)_d + (N-1) \times N^d$$

$$= N \times d \times (N-1) \times N^{d-1} + N^d \times (N-1)$$

$$= N^d \times d \times (N-1) + N^d \times (N-1)$$

$$= (d+1) \times (N-1) \times N^d$$

Nous retrouvons bien l'hypothèse de récurrence au rang d+1. On en déduit que $\forall d \in \mathbb{N}^*$, on a $Card(A)_d = d \times (N-1) \times N^{d-1}$.

D'après l'ensemble des éléments qui précèdent, le nombre d'arêtes d'une grille est telle que :

$$\forall d \in \mathbb{N}^*, Card(A)_d = d \times (N-1) \times N^{d-1}$$

5 Les arbres et grilles d'arbres

6 Les hypercubes