

추천 시스템 CF, CB, hybrid model

대회팀 김희숙 이수연 이지호

목치

#01 Introduction

: CF(Collaborative Filtering), CB(Content-Based filtering) introduction with *Netflix Recommendation Engine*

#02 contents

: Vectorizer

: Similarity Measurement

#03 models

: cf+cb colabo Hybrid model with *Anime-Recommender*

: cf Generalized Matrix Factorization (Keras) model with *Recommendation System (CF) | Anime*

#04 Conclusion

Collaborative Filtering and Content based Filtering

Collaborative Filtering (user based)

Which movie will you recommend for user 3?

Collaborative Filtering (user based)

Let's represent like as 1 and now it is vector representation

	Antman	Avengers	Spiderman	Titanic	Gatsby
user1	1	1	1	0	0
user2	0	0	0	1	1
user3	1	1	0	0	0
user4	0	0	0	0	1

Collaborative Filtering (user based)

Let's get similarity between user1 and user3

Cosine similarity will be 0.81

user1		Antman	Avengers	Spiderman	Titanic	Gatsby	user1	
		X	X	X	X	X		
user3	0	1	1	0	0	0	user3	3

$$1 + 1 + 0 + 0 + 0 = 2$$
 Cosine similarity = $\frac{2}{\text{sqrt(3) * sqrt(2)}} = 0.81$

$$cosine \ similarity = cos\theta = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

Collaborative Filtering(user based)

Collaborative Filtering (item based)

Which movie will you recommend for user 4?

This is item based collaborative filtering

Collaborative Filtering (item based)

Here is the movie to user matrix

	user1	user2	user3	user4	Cosine Similarity with Gatsby
ANTEHAN	1	0	1	0	0
Avenuens	1	0	1	0	0
	1	0	0	0	0
THANK	0	1	0	0	0.71
	0	1	0	1	1.00

Content-Based Filtering

We call it **cold start** problem

New release!

user4

user3

Content-Based Filtering

Content based filtering uses meta info as features, so it can avoid cold start problem!

	Iron_Man	Captain_America	Spider_Man	Leonardo_Dicaprio	based_on_tr	rue_story	
Ayalligus	1	1	1	0	0		
AVENDERS	1	1	0	0	0		0
SEPREMENTAL N	1	0	1	0	0		0
FHANIC	0	0	0	1	1		0
	0	0	0	1	0		0

Content-Based Filtering

Content based filtering uses meta info as features, so it can avoid cold start problem!

Content-Based Filtering – "CB Netflix Recommendation Engine" notebook

[Dataset]

2019년 넷플릭스에서 서비스한 TV쇼와 영화 정보로 구성된 데이터 셋. 넷플릭스는 최근 몇 년간 영화보다는 TV에 점점 더 집중하고 있다.

Α	В	С	D	E	F	G	Н	I	J	K	L	М
show_id	type	title	director	cast	country	date_adde	release_ye	rating	duration	listed_in	description	ı
s1	TV Show	3%		Jo찾o Mig	Brazil	#######	2020	TV-MA	4 Seasons	Internation	In a future	where the
s2	Movie	7:19	Jorge Micl	Demi찼n E	Mexico	#######	2016	TV-MA	93 min	Dramas, In	After a dev	vastating e
s3	Movie	23:59	Gilbert Ch	Tedd Char	Singapore	#######	2011	R	78 min	Horror Mo	When an a	rmy recruit
s4	Movie	9	Shane Ack	Elijah Woo	United Sta	#######	2009	PG-13	80 min	Action & A	In a posta	oocalyptic
s5	Movie	21	Robert Lul	Jim Sturge	United Sta	01-Jan-20	2008	PG-13	123 min	Dramas	A brilliant	group of st

> Interesting tasks which can be performed on this dataset

- 1) 다양한 국가에서 이용 가능한 콘텐츠 이해
- 2) 텍스트 기반 기능을 일치시켜 유사한 내용 식별
- 3) 배우/감독 네트워크 분석 및 흥미로운 통찰력 발견

Dataset Feature

제목 및 컨텐츠 타입과 더불어 감독, 출연진, 국가, 방영일, 평점, 컨텐츠 길이, 컨텐츠 소개 글까지 총 11개의 피처를 column으로 총 7781개의 컨텐츠에 대한 정보를 제공하고 있다.

Content-Based Filtering – "Netflix Recommendation Engine" notebook

```
# 넷플릭스에 있는 영화와 TV 프로그램의 컨텐츠 기반 추천 시스템을 만드는 프로젝트
2 # 2가지 방법 사용
  |# 1) 캐스트/감독/국가/별점/장르 등의 특징 기반으로 사용한 경우
  #2) 해당 영화 혹은 티비 쇼를 묘사하는 단어를 특징 기반으로 사용한 경우
5
  import numpy as np
  import pandas as pd
  import re
9
  |import nltk # 방법2의 description feature를 전처리 하기위해|
  from nitk.corpus import stopwords:
12 | nltk.download('stopwords')
13 from nltk.tokenize import word_tokenize
```


Content-Based Filtering – "Netflix Recommendation Engine" notebook

```
print(len(data))
data.groupby('type').count()
executed in 60ms, finished 10:40:37 2022-03-15
```

7787

```
show_id title director cast country date_added release_year rating duration listed_in description
   type
  Movie
            5377 5377
                                         5147
                                                                  5377
                                                                                           5377
                                                                                                       5377
                          5214 4951
                                                     5377
                                                                         5372
                                                                                  5377
TV Show
            2410 2410
                                         2133
                                                                                  2410
                                                                                           2410
                            184 2118
                                                     2400
                                                                  2410
                                                                         2408
                                                                                                       2410
```

```
1 data = data.dropna(subset=['cast', 'country', 'rating'])
2 print(len(data)) # NaN 값이 포함된 행을 버림(default axis = 0)
executed in 30ms, finished 10:40:37 2022-03-15
```

6652

Content-Based Filtering – "Netflix Recommendation Engine" notebook

#방법1) Movie :캐스트/감독/국가/별점/장르 등의 특징 기반 추천 엔진 개발

-> cast, director, country, genre, rating 을 binary vetor로 표현

	title	director	cast	country	rating	listed_in
0	7:19	Jorge Michel Grau	Demián Bichir, Héctor Bonilla, Oscar Serrano,	Mexico	TV-MA	Dramas, International Movies
1	23:59	Gilbert Chan	Tedd Chan, Stella Chung, Henley Hii, Lawrence	Singapore	R	Horror Movies, International Movies
2	9	Shane Acker	Elijah Wood, John C. Reilly, Jennifer Connelly	United States	PG-13	Action & Adventure, Independent Movies, Sci-Fi
3	21	Robert Luketic	Jim Sturgess, Kevin Spacey, Kate Bosworth, Aar	United States	PG-13	Dramas
4	122	Yasir Al Yasiri	Amina Khalil, Ahmed Dawood, Tarek Lotfy, Ahmed	Egypt	TV-MA	Horror Movies, International Movies

Content-Based Filtering – "Netflix Recommendation Engine" notebook

```
1 # Feature
 2 # Cast
 4 # actors 리스트에 각 영화에 출연진 목록을 리스트로 담음.
5 actors = []
6 for i in movies['cast']:
      actor = re.split(r', \#s*', i)
      actors.append(actor)
10 # 모든 배우 출연진을 flat_list 리스트에 담음
11 | flat_list = []
12 for sublist in actors:
       for item in sublist:
14
       flat_list.append(item)
16 # 중복 제거 및 정렬해서 actors_list 생성
17 actors_list = sorted(set(flat_list))
18 binary_actors = [[0]*0 for i in range(len(set(flat_list)))]
20 for i in movies['cast']:
      k = 0
      for j in actors_list:
          if j in i:
              binary_actors[k].append(1.0)
24
          else:
              binary_actors[k].append(0.0)
          k+=1
29 | binary_actors = pd.DataFrame(binary_actors).transpose()
```

```
1 # Director
 2 directors = []
 4 for i in movies['director']:
       if pd.notna(i):
           director = re.split(r', \s*', i)
           directors.append(director)
9 | flat_list2 = []
10 for sublist in directors:
       for item in sublist:
           flat_list2.append(item)
14 | directors_list = sorted(set(flat_list2))
15 | binary_directors = [[0]*0 for i in range(len(set(flat_list2)))]
16
17 for i in movies['director']:
       k=0
       for j in directors_list:
            if pd.isna(i):
               binary_directors[k].append(0.0)
           elif i in i:
               binary_directors[k].append(1.0)
            else:
               binary_directors[k].append(0.0)
            k+=1
28 binary_directors = pd.DataFrame(binary_directors).transpose()
```


Content-Based Filtering – "Netflix Recommendation Engine" notebook

```
1 # 모든 피처들 movies axis로 합치기
 # (binary_actors, binary_directors, binary_countries, binary_genres, binary_ratings)
 binary = pd.concat([binary_actors, binary_directors, binary_countries, binary_genres],
             axis=1.
             ignore_index=True) # ratings는 사용 안하네??
 binary
                 6 7 8 9 ... 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579
   0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...
                          0.0
                            1.0
                                0.0
                                   1.0 0.0
                                         0.0
                                               0.0
                                                  0.0
   0.0
                                0.0
                                               0.0
   1.0
                            0.0
                                0.0
                                      0.0
                                               0.0
                                                     0.0
   0.0
                                               0.0
                                                  0.0
                                                     0.0
   0.0
  1.0
                            1.0
                                0.0
                                   1.0
                                      0.0
                                         0.0
                                               0.0
                                                  0.0
                                                     0.0
  0.0
                                      0.0
  0.0
  1.0
                                0.0
                                      1.0
                                               0.0
                                                  0.0
                                                     0.0
```

4761 rows × 26580 columns

Row = # of movies Col = collection of binary vector features.

Content-Based Filtering – "Netflix Recommendation Engine" notebook

```
1 # search: 찾고자 하는 영화 인포값.
   def recommender(search):
       cs_list = []
       binary_list = []
       # movies 에서 찾는다
       if search in movies['title'].values:
           idx = movies[movies['title'] == search].index.item() # 인풋 search와 타이들이 일치하는 데이터 인덱스 찾음
           for i in binary.iloc[idx]:
              binary_list.append(i) # search 영화 정보(행)를 binary_list 리스트에 추가한다.
          point1 = np.array(binary_list).reshape(1,-1)
          point1 = [val for sublist in point1 for val in sublist]
           for sublist in point1:
              for val in sublist:
16
                  val
           for j in range(len(movies)): # movies의 모든 행
18
19
              binary list2 = []
              for k in binary.iloc[j]: # binary(movie)벡터를 모두 펼쳐서 binary_list2에 달음
20
21
                  binary_list2.append(k)
              point2 = np.array(binary_list2).reshape(1,-1)
22
23
              point2 = [val for sublist in point2 for val in sublist]
              dot_product = np.dot(point1, point2)
24
25
              norm_1 = np.linalg.norm(point1)
              norm_2 = np.linalg.norm(point2)
26
27
              cos_sim = dot_product / (norm_1 * norm_2)
              cs_list.append(cos_sim) # j행 영화(point2)와 search(point1)과의 코사인 유사도를 cs_list 리스트에 담는다.
```


Content-Based Filtering – "Netflix Recommendation Engine" notebook

```
movies copy = movies.copy()
31
           movies_copy['cos_sim'] = cs_list
           results = movies_copy.sort_values('cos_sim', ascending=False) # 카피한 movie 데이터를 cos_sim 기준 내림차순 정렬
           results = results[results['title'] != search]
           top_results = results.head(5)
           return(top_results)
36
       # 없으면, tv에서 찾는다. 위의 방식과 동일
37
       elif search in tv['title'].values:
38
           idx = tv[tv['title'] == search].index.item()
           for i in binary2.iloc[idx]:
39
               binary_list.append(i)
40
           point1 = np.array(binary_list).reshape(1, -1)
41
           point1 = [val for sublist in point1 for val in sublist]
43
           for j in range(len(tv)):
44
               binary list2 = []
               for k in binary2.iloc[j]:
46
                  binary_list2.append(k)
47
               point2 = np.array(binary_list2).reshape(1, -1)
               point2 = [val for sublist in point2 for val in sublist]
49
               dot_product = np.dot(point1, point2)
50
               norm_1 = np.linalg.norm(point1)
51
               norm_2 = np.linalg.norm(point2)
52
               cos_sim = dot_product / (norm_1 * norm_2)
53
               cs list.append(cos sim)
           tv\_copy = tv.copy()
54
55
           tv_copy['cos_sim'] = cs_list
56
           results = tv copy.sort values('cos sim', ascending=False)
57
           results = results[results['title'] != search]
           top_results = results.head(5)
59
           return(top_results)
60
       else:
           return("Title not in dataset, Please check spelling.")
61
```


Content-Based Filtering – "Netflix Recommendation Engine" notebook

방법1) Recommender 1 Result.

1 recommender('The Conjuring')
executed in 4m 57s, finished 11:06:03 2022-03-15

	title	director	cast	country	rating	listed_in	cos_sim
1868	Insidious	James Wan	Patrick Wilson, Rose Byrne, Lin Shaye, Ty Simp	United States, Canada, United Kingdom	PG-13	Horror Movies, Thrillers	0.388922
968	Creep	Patrick Brice	Mark Duplass, Patrick Brice	United States	R	Horror Movies, Independent Movies, Thrillers	0.377964
1844	In the Tall Grass	Vincenzo Natali	Patrick Wilson, Laysla De Oliveira, Avery Whit	Canada, United States	TV- MA	Horror Movies, Thrillers	0.370625
969	Creep 2	Patrick Brice	Mark Duplass, Desiree Akhavan, Karan Soni	United States	TV- MA	Horror Movies, Independent Movies, Thrillers	0.356348
1077	Desolation	Sam Patton	Jaimi Paige, Alyshia Ochse, Toby Nichols, Clau	United States	TV- MA	Horror Movies, Thrillers	0.356348

Content-Based Filtering – "Netflix Recommendation Engine" notebook

```
1 # description 전처리: 토큰화 / 불용어 제거 후 각 단어 토큰들을 binary화 해서 리소트로
2 filtered_movies = []
3 movies_words = []
                                                                                                                     1 movie_word_binary = [[0]*0 for i in range(len(set(movies_words)))]
5 for text in movies_des['description']:
                                                                                                                    3 for des in movies_des['description_filtered']:
      text_tokens = word_tokenize(text) # description 문장 -> 토큰화한 단어 리스트로 반환
      # text_tokens 소문자로 변환하고 stopwords 제거
                                                                                                                          for word in movies_words:
      tokens_without_sw = [word.lower() for word in text_tokens if not word in stopwords.words()]
                                                                                                                             if word in des:
      movies_words.append(tokens_without_sw) # 각 영화에 사용된 단어 토큰 저장
                                                                                                                                 movie word binary[k].append(1.0)
      filtered = (" ").join(tokens_without_sw)
                                                                                                                             else:
      filtered_movies.append(filtered) # 각 영화에 사됻된 단어토큰 합쳐서 다시 문장으로 저장(대소문자/불용어 제거 전처리 적용
                                                                                                                                 movie_word_binary[k].append(0.0)
                                                                                                                    10
                                                                                                                             k+=1
13 movies_words = [val for sublist in movies_words for val in sublist]
14 movies words = sorted(set(movies words))
                                                                                                                   12 movie_word_binary = pd.DataFrame(movie_word_binary).transpose()
                                                                                                                   13 print(movie word binary.shape)
16 # 필터링한 문장을 description_filtered'로 movies의 열에 새로 추가
17 movies_des['description_filtered'] = filtered_movies
                                                                                                                   (4761, 14577)
18 movies des.head()
19
```

	title	description	description_filtered
0	7:19	After a devastating earthquake hits Mexico Cit	after devastating earthquake hits mexico city
1	23:59	When an army recruit is found dead, his fellow	when army recruit found dead , fellow soldiers
2	9	In a postapocalyptic world, rag-doll robots hi	in postapocalyptic world , rag-doll robots hid
3	21	A brilliant group of students become card-coun	a brilliant group students become card-countin

contents

#2

1. Vectorizer

- CountVecorizer
- TdifVectorizer

2. Similarity Measurement

- Cosine similarity
- Pearson correlation
- Jaccard Similarity
- Adjusted cosine similarity

CountVectorizer

- Document-Term Matrix

```
doc1 = "She likes python"
doc2 = "She hates python"
```

doc1	=	"She	likes	python"
doc2	=	"She	hates	python"

	She	likes	hate	pytho n
doc1	1	1	0	1
doc2	1	0	1	1

	Potte r	likes	Sing er
doc1	1	1	1
doc2	1	1	1

CountVectorizer

```
from sklearn feature_extraction text import CountVectorizer
vectorizer = CountVectorizer()
doc1 = "I like python"
doc2 = "I hate python"
doc_term_matrix = count_vec.fit_transform([doc1, doc2]).toarray()
print(doc_term_matrix)
```

```
[[0 1 1 1]
[1 0 1 1]]
```


TfidVectorizer

- TF (Term Frequency)
 - 특정 단어가 한 문서 내에서 출현한 빈도
- IDF (Inverse Document Frequency)
 - 특정한 단어가 출현한 전체 문서의 개수

$$idf(t) = \log \frac{n}{1 + df(t)}$$

	She	like s	hate	pyth on
doc 1	1	1	0	1
doc 2	1	0	1	1

- TF-IDF
 - TF * IDF

$$tfidf(t,d) = tf(t,d) \times \log \frac{n}{1 + df(t)} \qquad idf(t) = \log \frac{1 + n}{1 + df(t)} + 1$$

TfidVectorizer

	She	like s	hate	pyth on
doc 1	1	1	0	1
doc 2	1	0	1	1

- Cosine similarity
- Adjusted cosine similarity
- Pearson correlation
- Jaccard Similarity

Cosine Similarity

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}} \quad \text{collaborative filtering 에서 가 사용되는 유사도 측정 방법.}$$

$$\bullet \quad \text{두 벡터 사이의 코사인 각을}$$

- collaborative filtering 에서 가장 흔히
- 측정하여 유사성 파악.
- null preferences를 음의 값으로 간주.

$$Cos_Sim(u,v) = \frac{\vec{R}_u \bullet \vec{R}_v}{|\vec{R}_u| \cdot |\vec{R}_v|}$$

Where "•" represents dot product of two vectors. \vec{R}_u and \vec{R}_v are rating vectors of user u and v respectively.

Cosine Similarity

```
from sklearn.metrics.pairwise import cosine_similarity,cosine_distances
A=np.array([10,3])
B=np_array([8,7])
result=cosine_similarity(A.reshape(1,-1),B.reshape(1,-1))
print(result)
# [[0.91005765]]
```


- Adjusted cosine similarity
- 코사인 유사도는 서로 다른 사용자가 서로 다른 등급 척도를 사용하는 경우를 고려하지 않음.
- ASS는 유저로부터 계산된 평균 rating을 빼주어 각 사용자가 사용하는 등급 척도의 차이를 고려

$$Adjusted _COS _Sim = \frac{\sum_{i \in I} (r_{u,i} - \overline{r_u})(r_{v,i} - \overline{r_v})}{\sqrt{\sum_{i \in I} (r_{u,i} - \overline{r_u})^2 + \sum_{i \in I} (r_{v,i} - \overline{r_v})^2}}$$

where r_i Average rating of user i for all items rated by user i itself.

Pearson Similarity

```
import numpy as np
x_simple = np_array([-2, -1, 0, 1, 2])
y_simple = np_array([4, 1, 3, 2, 0])
my_rho = np.corrcoef(x_simple, y_simple)
print(my_rho)
#[[ 1. -0.7]
#[-0.7 1.]]
```

$$rac{ar{S}\left(Y_i-\overline{Y}
ight)}{\sqrt{\sum_i^n\left(Y_i-\overline{Y}
ight)^2}}$$

$$\frac{1}{r_{u,i}-\overline{r}_{u,I})(r_{v,i}-\overline{r}_{v,I})}{r_{u,i}-\overline{r}_{u,I})^2+\sum_{i\in I}(r_{v,i}-\overline{r}_{v,I})^2}$$

its Average rating of user u and user v, is represented by set I

Pearson Similarity

```
import numpy as np
x_simple = np_array([-2, -1, 0, 1, 2])
y_simple = np_array([4, 1, 3, 2, 0])
my_rho = np.corrcoef(x_simple, y_simple)
print(my_rho)
#[[ 1. -0.7]
#[-0.7 1.]]
```

$$rac{ar{S}\left(Y_i-\overline{Y}
ight)}{\sqrt{\sum_i^n\left(Y_i-\overline{Y}
ight)^2}}$$

$$\frac{1}{r_{u,i}-\overline{r}_{u,I})(r_{v,i}-\overline{r}_{v,I})}{r_{u,i}-\overline{r}_{u,I})^2+\sum_{i\in I}(r_{v,i}-\overline{r}_{v,I})^2}$$

its Average rating of user u and user v, is represented by set I

Jaccard Similarity

- 두 유저간의 공통되는 선호도 고려.
- 공통 등급 항목을 더 많이 가지고 있는 경우 사용자의 유사성이 높음.
- 제한된 수의 값을 생성하므로 사용자 식별 작업이 어려움.
- [0, 1] 사이의 값을 가짐

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}$$

$$Jaccard_sim(u,v) = \frac{|I_u \cap I_v|}{|I_u \cup I_v|}$$

Where I_u is a set of items rated by user u and I_v is a set of items rated by user v.

Jaccard Similarity

```
def jaccard_similarity(list1, list2):
  s1 = set(list1)
  s2 = set(list2)
  return float(len(s1.intersection(s2)) / len(s1.union(s2)))
list1 = ["삼성전자", "테슬라", "LG전자", "카카오", "펄어비스"]
list2 = ["삼성전자", "카카오", "넷마블", "현대자동차", "셀트리온"]
print('jaccard_similarity : ', jaccard_similarity(list1, list2))
# jaccard_similarity : 0.25
```


models

하이브리드 추천 시스템 (CB+CF)

#Anime-Recommender(CF, CB, hybrid)

```
from scipy.sparse import csr_matrix
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
from surprise import Reader, Dataset, SVD
from surprise.model_selection import cross_validate
```

· 텍스트 특징 추출 · 코사인 유사도 계산 · 협업 필터링

- 잠재 요인 필터링
- 행렬 분해 기법(SVD)

• Surprise 추천알고리즘 클래스

클래스명	설명		
SVD	행렬 분해를 통한 잠재 요인 협업 필터링을 위한 SVD 알고리즘		
KNNBasic	최근접 이웃 협업 필터링을 위한 KNN 알고리즘		
BaselineOnly	사용자 Bias와 아이템 Bias를 고려한 SGD 베이스라인 알고리즘		

#Anime-Recommender(CF, CB, hybrid)

```
tfidf = TfidfVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, stop_words=<mark>'english')</mark>
tfidf_matrix = tfidf.fit_transform(anime_df['sypnopsis'])
```

analyzer: 학습 단위 Min-df: 최소 빈도값 ngram_range: 단어 묶음 stop_words: 불용어 목록

```
cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)
```

lear_kernel을 통해 앞에서 만들어 놓은 tfidf_matrix를 넣어 코사인 유사도 계산

```
reader = Reader()
rating_data = Dataset.load_from_df(rating_df, reader)
trainset = rating_data.build_full_trainset()

svd = SVD()
svd.fit(trainset)
svd.predict(1, 356, 5)
```

predict(): 개별 사용자와 애니에 대한 추천 평점 반환

- 예측 평점(est)
- 실제 평점(r_ui)

#Anime-Recommender(CF, CB, hybrid)

```
def hybrid_recommendations(user_id,title):
   idx = indices[title]
   | sim_scores = list(enumerate(cosine_sim[idx]))
   |sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
   sim_scores = sim_scores[1:31]
   anime_indices = [i[0] for i in sim_scores]
   anime_lst = anime_df.iloc[anime_indices][['MAL_ID','Name', 'Members', 'Score','Genres']]
   favorite_count = anime_lst[anime_lst['Members'].notnull()]['Members'].astype('int')
   |score_avg = anime_lst[anime_lst['Score'].notnull()]['Score'].astype('float')
   C = score_avg.mean()
   m = favorite_count.guantile(0.60)
   qualified = anime_lst[(anime_lst['Members'] >= m) & (anime_lst['Members'].notnull()) & (anime_lst['Score'].notnull())]
   qualified['Members'] = qualified['Members'].astype('int')
   qualified['Score'] = qualified['Score'].astype('float')
   def weighted_rating(x):
       v = x['Members']
       R = x['Score']
       return (v/(v+m) * R) + (m/(m+v) * C)
   qualified['wr'] = qualified.apply(weighted_rating, axis=1)
   qualified = qualified.sort_values('wr', ascending=False).head(30)
   qualified[['id']] = list(range(1,qualified.shape[0]+1,1))
   qualified['est'] = qualified['id'].apply(lambda x: svd.predict(user_id, indices_map.loc[x]['MAL_ID']).est)
   qualified = qualified.sort_values('est', ascending=False)
   result = qualified[['MAL_ID','Name','Genres','Score']]
   return result.head(10)
```

CB를 통해 사용자가 높게 평가한 애니의 members, genres 등을 감안하여 가중치를 계산하고 가중치가 큰 순으로 30개를 뽑는다.

CF에서는 CB의 결과로 추출된 30개 중 사용자의 예상 점수가 높은 상위 10개의 애니 리스트를 최종적으로 출력한다.

#3. Deep learning MF based Keras

Collaborative filtering model_based

- Matrix Factorization (MF) based
 - 1. TruncatedSVD (Sklearn)
 - 2. Funk MF (Surprise) ex. SVD
 - 3. Non negative MF (Surprise)
- Deep learning MF based
 - 1. Generalizaed MF (Keras)
 - 2. Neural Collaborative filtering (Recommender)

Generalized Matrix Factorization (Keras)

#3. Deep learning MF based Keras

#Anime-Recommendation System(CF)

```
# Embedding layers
from keras layers import Add, Activation, Lambda, BatchNormalization, Concatenate, Dropout, Input, Embedding, Dot, Reshape, Dense, Flatten
def RecommenderNet():
    embedding_size = 128
                                                                                                    협업 필터링
   user = Input(name = 'user', shape = [1])
    user_embedding = Embedding(name = 'user_embedding',
                                                                                                     - 최근접 이웃
                      input_dim = n_users,
                      output_dim = embedding_size)(user)
                                                                                                    - 사용자 기반 / 아이템 기반 둘 다 구현
    anime = Input(name = 'anime', shape = [1])
    anime_embedding = Embedding(name = 'anime_embedding',
                      input dim = n animes.
                      output_dim = embedding_size)(anime)
    #x = Concatenate()([user embedding, anime embedding])
    x = Dot(name = 'dot_product', normalize = True, axes = 2)([user_embedding, anime_embedding])
    x = Flatten()(x)
    x = Dense(1, kernel_initializer='he_normal')(x)
   x = BatchNormalization()(x)
   x = Activation("sigmoid")(x)
    model = Model(inputs=[user, anime], outputs=x)
    model.compile(loss='binary_crossentropy', metrics=["mae", "mse"], optimizer=|'Adam')
    return model
```


Conclusion

#차별점

#1 Anime CF

• 모델 기반 추천 알고리즘으로 콜백 함수(I model_checkpoints, Ir_callback, early_stopping)를 통해 파라미터를 튜닝해 성능을 높이고자 함

#2 Anime CF, CB, hybrid

• CB, CF 추천 시스템을 정의 후 이 둘을 결합한 hybrid 추천 시스템 구현(surprise 라이브러리 사용)

#3 Netflix CB

• 콘텐츠의 feature를 binary vector로 표현. 서술 식 description의 단어 벡터를 이용한 엔진.

THANK YOU

