b)
$$Me = 175 + 5 + \frac{75 - 54}{60} = 176'75$$
 $\frac{1}{9}$ $M_0 = 175 + 5 + \frac{0'08 - 0'04}{(6'08 - 0'04) + 0'08 - 0'016}$

 $D_8 = 180 + 10 \frac{120 - 114}{24} = 1825$

a)
$$\ddot{n} = \frac{18}{5} = \frac{3}{6}$$
; $G_n^2 = \frac{88}{5} - \frac{3}{6^2} = \frac{4}{6}4$
 $\ddot{t} = \frac{21}{5} = \frac{4}{2}$; $G_1^2 = \frac{88}{5} - \frac{3}{6^2} = \frac{4}{6}4$

Cov $(n, t) = \frac{103}{5} - \frac{3}{6} \cdot 4^2 = \frac{5}{48}$

Recta t/u : $t - \frac{4}{2} = \frac{5}{464}(u - \frac{3}{6}) = 5$ $t'' = \frac{1}{48}u - \frac{6}{49}$

c) $v = \frac{548}{464} = \frac{9}{4643} = \frac{9}{42} = \frac{9}{42}$

c)
$$V = \frac{548}{\sqrt{464\sqrt{696}}} = 09643 \implies V^2 = 0929895$$

$$\int_{e}^{2} = \int_{e}^{2} (1-v^2) = 696(1-09298) = 0988 \text{ Pava la vecta.}$$

$$\int_{e}^{2} = \frac{29096}{5} - (\frac{05956}{5})^2 = 057 \text{ Pava la función}$$

Ligeramente mas tiable, la recta.

3M) a)			9	b)			
Año	Precio	I1980	$\overline{\times}_3$	Año	IPC 77	IPC 75	(base 1975)
1975	10	35'71	-	1975	96	100	10
6	14	50	13'3	6	98	102'8	13'62
7	16	57'14	16	7	100	104'16	15'36
8	18	64'28	19'3	8	108	11215	16
G	24	85'71	23 3	9	110	114'58	20'94
0	28	100	27'3	0	115	119179	23'37
1	30	10714	-	1	120	125	24

$$\frac{d}{t'=t-1978} \begin{vmatrix} -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline Y & 10 & 14 & 16 & 18 & 24 & 28 & 30 & 140 \\ \hline t'_{i}^{2} & 9 & 4 & 1 & 0 & 1 & 4 & 9 & 28 \\ \hline t'_{i}^{3} & -27 & -8 & -1 & 0 & 1 & 8 & 27 & 0 \\ \hline Y_{i}^{2}t'_{i} & -30 & -28 & -16 & 0 & 24 & 56 & 90 & 96 \\ \hline \end{cases}$$