

IME OBJETIVO 2

2023

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A}=6.02\cdot 10^{23}\,{
 m mol}^{-1}$ Constante de Faraday, $F=96\,500\,{
 m C\,mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h=6.6\cdot 10^{-34}\,\mathrm{m^2\,kg\,s^{-1}}$ Constante de Rydberg, $\mathcal{R}=1.1\cdot 10^7\,\mathrm{m^{-1}}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$ Velocidade da luz no vácuo, $c=3\cdot 10^8~{\rm m~s^{-1}}$

- Constante dos gases, $R = 8.31 \,\mathrm{J\,K^{-1}\,mol^{-1}}$

Definições

- Composição do ar atmosférico: $79\%~N_2$ e $21\%~O_2$

Aproximações Numéricas

- $\sqrt{2} = 1.4$ $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$ $\ln 10 = 2.3$

Tabela Periódica

Elemento Químico	Número Atômico	Massa Molar $(g \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(g \operatorname{mol}^{-1})$
Н	1	1,01	Mg	12	24,31
С	6	12,01	S	16	32,06
N	7	14,01	CI	17	$35,\!45$
0	8	16,00	Br	35	79,90
F	9	19,00	Os	76	190,23
Na	11	22,99			

31ª QUESTÃO Valor: 1,00

Muitos fogos de artifício utilizam a combustão do magnésio, que libera quantidade significativa de energia. O calor liberado faz o óxido incandescer, emitindo luz branca. É possível alterar a cor dessa luz incluindo nitratos e cloretos de elementos que emitem na região visível de seus espectros. Um desses compostos é o nitrato de bário, que produz uma luz amarelo-esverdeada. Os íons bário quando excitados geram luz com comprimento de onda igual a 487 nm, 524 nm, 543 nm e 578 nm.

Assinale a alternativa que mais se aproxima da variação molar de energia quando os íons bário excitados geram luz com a maior frequência possível.

- **A**() $207 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- **B**() 216 kJ mol⁻¹ **E**() 246 kJ mol⁻¹
- **C**() $220 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

- **D**() $228 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

32ª QUESTÃO Valor: 1,00

Considere os processos.

- 1. Sublimação do gelo seco.
- 2. Fusão do gelo quando sal é espalhado nas calçadas no inverno.
- 3. Formação do ácido sulfuroso na atmosfera, $SO_2(g) + H_2O(l) \longrightarrow H_2SO_3(aq)$
- 4. Preparação industrial da amônia: $N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$

Assinale a alternativa que relaciona os processos com variação de entropia padrão positiva.

- A() 1

- $B(\)\ 2 \\ C(\)\ 1\ e\ 2 \\ D(\)\ 1, 2\ e\ 3 \\ E(\)\ 1, 2\ e\ 4$

33ª QUESTÃO Valor: 1,00

Um cilindro de $100 \, \mathrm{cm}^3$ contém gás nitrogênio sob $200 \, \mathrm{Torr}$ e $27 \, ^{\circ}\mathrm{C}$.

Assinale a alternativa que mais se aproxima do número de átomos de nitrogênio no cilindro.

- $\textbf{A()} \ \ 1,2 \cdot 10^{21} \qquad \qquad \textbf{B()} \ \ 6,0 \cdot 10^{21} \qquad \qquad \textbf{C()} \ \ 1,2 \cdot 10^{22} \qquad \qquad \textbf{D()} \ \ 6,0 \cdot 10^{22} \qquad \qquad \textbf{E()} \ \ 6,0 \cdot 10^{23}$

34ª QUESTÃO Valor: 1,00

O paclitaxel é um medicamento usado no tratamento do câncer.

Assinale a alternativa com as funções orgânicas presentes nesse composto.

- A() Álcool, amida, éster, éter e cetona.
- B() Álcool, amida, éster e éter.

C() Álcool, amida, éster e cetona.

D() Álcool, amina, éster, éter e cetona.

E() Álcool, amina, éster e éter.

35ª QUESTÃO

Valor: 1,00

Assinale a alternativa com a configuração eletrônica do átomo de ósmio no estado fundamental.

- **A**() [Xe] $6s^{1}4f^{14}5d^{5}$
- **B**() [Xe] $6s^24f^{13}5d^7$
- **C**() [Xe] $6s^24f^{14}5d^5$

- **D**() [Xe] $6s^24f^{14}5d^6$
- **E**() [Xe] $6s^24f^{14}5d^7$

36ª QUESTÃO Valor: 1,00

O trinitrotolueno, TNT, é um explosivo. Em princípio ele poderia ser usado como combustível de foguetes, com os gases formados na decomposição saindo para dar o impulso necessário. Na prática, é claro, ele seria extremamente perigoso como combustível, porque é sensível ao choque.

$$O_2N$$
 NO_2
 NO_2
 NO_3

A densidade do TNT é $1,65\,\mathrm{g\,cm^{-3}}$. Considere os dados em $25\,^{\circ}\mathrm{C}$:

	$\mathrm{H}_{2}\mathrm{O}\left(l\right)$	$CO_2(g)$	TNT(s)
Entalpia padrão de formação, $\Delta H_{ m f}^{\circ}/rac{{ m kJ}}{{ m mol}}$	-286	-394	-67

Assinale a alternativa que mais se aproxima da densidade de entalpia (entalpia liberada por litro de combustível na reação de combustão) do TNT.

- **A**() $12 \,\mathrm{MJ} \,\mathrm{L}^{-1}$
- **B**() $24 \,\mathrm{MJ} \,\mathrm{L}^{-1}$

C() 36 MJ L⁻¹

- D() 48 MJ L⁻¹
- $E() 60 \,\mathrm{MJ} \,\mathrm{L}^{-1}$

37ª QUESTÃO Valor: 1,00

Considere a reação entre dióxido de cloro, ClO_2 , e trifluoreto de bromo, BrF_3 .

$$ClO_2(g) + BrF_3(l) \longrightarrow ClO_2F(s) + Br_2(l)$$

Em um experimento, $675\,\mathrm{g}$ de ClO_2 reagiram com $685\,\mathrm{g}$ de BrF_3 .

Assinale a alternativa que mais se aproxima da massa do reagente em excesso que permanece ao final da reação.

- **A**() 200 g
- **B**() 230 g **C**() 260 g
- **D**() 290 g
- **E**() 320 g

Colesterol é um lipídio encontrado nas membranas celulares e transportado no plasma sanguíneo de todos os animais. É um componente essencial das membranas celulares dos mamíferos.

Assinale a alternativa com o número de estereoisômeros do colesterol.

- **A**() 32
- **B**() 64
- **C**() 128
- **D**() 256
- **E**() 512

39^a QUESTÃO Valor: 1,00

Considere as proposições a respeito da reação de combustão do etanol, C_2H_6O , líquido.

- 1. A reação de combustão completa libera mais energia do que a reação de combustão incompleta, formando monóxido de carbono.
- 2. A reação libera mais energia quando há formação de água líquida do que quando há formação de água gasosa.
- 3. A reação libera mais energia quando ocorre sob volume constante em $25\,^{\circ}\mathrm{C}$ do que quando ocorre sob pressão constante na mesma temperatura.
- 4. A reação libera mais energia quando ocorre sob pressão constante em $10\,^{\circ}\mathrm{C}$ do que quando ocorre sob pressão constante em 60 °C.

Considere os dados.

	$O_2(g)$	$\mathrm{H_{2}O}\left(l\right)$	$CO_2(g)$	$C_2H_6O(l)$
Capacidade calorífica em pressão constante, $C_{P,\mathrm{m}}/rac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$	29	89	37	110

Assinale a alternativa que relaciona as proposições corretas

- $A(\)\ 1\ e\ 2$ $B(\)\ 1\ e\ 4$ $C(\)\ 2\ e\ 4$ $D(\)\ 1,\ 2\ e\ 4$ $E(\)\ 1,\ 2,\ 3\ e\ 4$

40 ^a QUESTÃO				Valor: 1,00
As massas de água e o	dióxido de carbono proc	duzidas foram $68,4\mathrm{g}$ e	ogênio e oxigênio, foi an $167.2\mathrm{g}$, respectivament	
Assinale a alternativa	com a formula empirica	a do composto.		
A () $C_{20}H_{36}O_2$	B () $C_{19}H_{38}O_2$	C () C ₁₆ H ₂₈ O	\mathbf{D} () $C_{19}H_{28}O_4$	$E(\)\ \mathrm{C}_{16}\mathrm{H}_{22}\mathrm{O}_{4}$