PROJET 8 – « DÉPLOYEZ UN MODÈLE DANS LE CLOUD »

Soutenance de projet – parcours Data Scientist 25 Avril 2020

Sommaire

Problématique et présentation du jeu de données

II. Rappels sur la notion de Big Data

III. Architecture retenue et chaîne de traitement

IV. Conclusion

I - PROBLÉMATIQUE

Rappel de la problématique Présentation du jeu de données

Problématique

Fruits!

Fruits! : Startup AgriTech

Produits:

- Application smartphone grand public de reconnaissance de fruit et affichage d'informations
- Développement de robots cueilleurs intelligents

- Objectif: Mettre en place l'architecture Big Data
 - Preprocessing et réduction de dimension
 - Anticipation du passage à l'échelle dans un contexte d'adoption massive
- Moyens : Scripts pyspark + solution évolutive

Jeu de données

Origine:

- Images de fruits et labels associés (<u>Fruits 360</u>, *Mihai Oltean*)
- 120 variétés de fruits différents (un dossier par variété)
- Plusieurs variétés du même fruit (exemple : pomme « red » et « golden »)

Caractéristiques :

- Images 100x100 JPEG RGB
- Photos studio sur fond blanc de fruits centrée sur le fruit
- Photos sous tous les angles (timelapse + rotation 3 axes)

Jeu d'entraînement : 53 000 images

Jeu de Test : 18 000 images

Jeu multi fruits non labellisé: 103 images

Apple Red 1

« Ratés »

II – LE BIG DATA

Qu'est-ce que le big data Comment répondre à ses enjeux?

Qu'est-ce que le Big Data?

En Français : les données massives

- Les enjeux en « V » :
 - Volume : trop important pour être stocké et/ou traité sur une seule machine avec des performances acceptables.
 - Dépassement de la capacité de RAM
 - Dépassement des capacités de stockage
 - Etc.
 - Vitesse à laquelle les données sont produites
 - Large Variété de types de données
 - Etc.

Comment répondre à ces enjeux?

- Capacités de calcul : Traitement par calculs distribués (MapReduce)
 - Diviser les opérations en micro opérations distribuables entre différentes machines, réalisables en parallèle
 - Aggréger les résultats sur une même machine

Comment répondre à ces enjeux?

- Stockage : système de fichier distribué (ex : HDFS)
- Tolérance aux pannes
 - Utilisation de Resilient Distributed Datasets (RDD)
 - Division des données en partitions
 - Duplication des données (3 machines par défaut)
 - Graphe Acyclique Orienté (DAG) :
 - Panne : Régénération à partir des noeuds parents
 - Noeuds (RDD ou Résultats) : liés par des actions et transformations

Comment répondre à ces enjeux?

III – ARCHITECTURE RETENUE ET CHAÎNE DE TRAITEMENT

Quel prétraitement?

Objectif : préparer les images pour le learning

Réduction de dimensions

Extraction d'information des images

Solutions envisageables

Egalisation histogramme et redimensionnement Traitement d'image + extraction de features ORB, SURF, SIFT, etc.

Algorithme préentraînés (Transfer Learning)

Décomposition de la problématique

Stockage des données sur un système pouvant être mis à l'échelle

Instance Spark

Les calculs ne sont réellement exécutés que lorsqu'une action est réalisée : affichage des données, enregistrement, requête, etc.

Le prétraitement en détail

- Réseau RESNET50 :
 - Approche Transfer Learning
 - 23 M paramètres pré entraînés
 - 50 couches de neurones

Combine prétraitement et la réduction de dimension

Zoom sur l'infrastructure AWS

- Stockage fichiers sur S3 :
 - upload via AWS CLI ou Interface Web
 - Lecture des fichiers depuis Spark
 - Enregistrement de fichier depuis spark vers S3
- Instance EC2 (T2.xlarge) / OS Ubuntu Server 18.04
- Configuration: Python 3 / Java 8 / Spark / Hadoop-AWS/ Spark MLLib / Pillow
- Configuration sur machine distante : accès via SSH
 - Chargement clés IAM / AWS
 - Installation des logiciels et packages
 - Mise en place Jupyter Notebook accessible à distance pour exécution du code / analyse des résultats

Comment passer à l'échelle?

- Aucune modification de code Spark/Python à apporter : évolution sans coupure de charge
- Stockage des fichiers :
 - S3: OK
 - Alternative : HDFS sur n serveurs
- Évolution de l'infrastructure de calcul:
 - Instance EC2 de plus grande capacité RAM/Processeur
 - Remplacement par un cluster Elastic Map Reduce avec plusieurs instances EC2 (1 Maître + n esclaves):
 - Configuration automatique
 - Alternative hors AWS : Créer un cluster avec plusieurs noeuds
- Dans un second temps : augmentation du nombre d'instances esclaves / noeuds

CONCLUSION

Conclusion et perspectives

Enseignements

- Prise en main Pyspark
- Découverte du format distribué parquet
- Découverte de l'écosystème AWS
- Administration d'un serveur Linux par SSH

Difficultés rencontrées

- Nombreuses possibilités techniques : choix complexes
- Débug complexe dû à des erreurs peu explicites (superposition Spark/Java/S3)

Perspectives

- Aller plus loin :
 - Prétraitement pour cas réels (recadrage, plusieurs fruits, arrière plan, etc.)
 - Entraîner le modèle (approche transfer learning)
 - Déployer le modèle en production sur un cluster
 - Monitoring...
- Tester les solutions existantes sur le marché : API PI@ntnet
- Pousser le cas d'usage :
 - Identifier la maturité des fruits pour les cueillir au bon moment
 - Identifier les pathologies ou les fruits abîmés

MERCI DE VOTRE ATTENTION

AVEZ VOUS DES QUESTIONS?