Chap1- Limites de fonctions

Activités

EXERCICE 1 Limite de x^2 en $+\infty$

- 1. Résoudre $x^2 > 10^4$ dans \mathbb{R}
- 2. Résoudre $x^2 > 10^{2n}$ pour n entier naturel.
- 3. Conclure.

EXERCICE 2

On considère la fonction suivante :

$$\begin{array}{cccc} f & : &]0\;; +\infty[& \rightarrow &]0\;; +\infty[\\ & x & \mapsto & \frac{1}{x} \end{array}$$

- 1. Calculer f(x) pour x = 10; 100; 1000; 10^4 ; 10^5 ; etc.
- 2. Que peut-on conjecturer quant à f(x) lorsque $x \to +\infty$?
- 3. De la question précédente, déduire le complètement des notations équivalentes suivantes :

$$f(x) \to \dots$$
 lorsque $x \to \dots$ \iff $\lim_{x \to \dots} f(x) = \dots$

On vient de remarquer la propriété suivante, que l'on va par la suite chercher à démontrer :

« f(x) prend des valeurs aussi proches de 0 que l'on veut dès que x est suffisamment grand. »

- 1. Dans cette proposition, quelle est l'hypothèse? la conclusion?
- 2. On considère la locution « x est suffisamment grand ». Parmi les quatre locutions données cidessous, deux la traduisent : lesquelles?
 - x est plus grand qu'un certain réel
 - x est plus grand que tout réel
 - il existe un réel x_0 tel que $x > x_0$
 - pour tout réel $x_0, x > x_0$
- 3. Même consigne avec la locution « f(x) prend des valeurs aussi proches de 0 que l'on veut ». On notera $\varepsilon > 0$ le réel utilisé.
- 4. Détermination graphique de x_0 .
 - (a) Ci-dessous, on a représenté graphiquement la fonction inverse sur l'intervalle $]0; +\infty[$ et on fixe $\varepsilon > 0$, un réel quelconque (de préférence petit).

Sur l'axe des abscisses, représenter le plus petit réel x_0 à partir duquel on a $f(x) < \varepsilon$.

- (b) Pourquoi peut-on affirmer que, dès que $f(x) < \varepsilon$ pour un certain x, alors $f(t) < \varepsilon$ pour tout $t \ge x$?
- 5. Détermination algébrique de x_0 . Fixons $\varepsilon > 0$. En résolvant l'inéquation $f(x) < \varepsilon$, déterminer le plus petit réel x_0 (que l'on exprimera en fonction de ε) tel que, si $x > x_0$, alors $f(x) < \varepsilon$.

EXERCICE 3 Asymptote oblique

On donne la fonction f définie sur $I =]-5; +\infty[$ par $\frac{5x-x^2}{5+x}$. On note \mathcal{C}_f sa courbe représentative.

- 1. Déterminer les coordonnées des points d'intersection de la courbe \mathcal{C}_f avec l'axe des abscisses.
- 2. Montrer que pour tout $x \in I$, $f(x) = -x + 10 \frac{50}{5+x}$
- 3. Déterminer la dérivée f' de f.
- 4. Etudier le sens de variation de f. Dresser le tableau de variation de f.
- 5. On donne \mathcal{D} la droite d'équation y = -x + 10. Résoudre f(x) = -x + 10 et interpréter graphiquement le résultat.
- 6. On note M et N les points de C_f et \mathcal{D} de même abscisse x.
 - (a) Montrer que pour tout $x \in I$,

$$MN = |f(x) - (-x + 10)| = \frac{50}{5+x}$$

- (b) Déterminer le réel x_0 , tel que pour tout $x > x_0$, on a $MN < 10^{-1}$.
- (c) Déterminer le réel x_1 , tel que pour tout $x > x_1$, on a $MN < 10^{-2}$.
- (d) Déterminer le réel x_2 , tel que pour tout $x>x_2$, on a $MN<10^{-3}$.
- (e) Justifier que la distance MN peut être rendue aussi petite que l'on le souhaite dès que x est supérieure à une certaine valeur.

Conclusion : La distance MN tend vers 0 lorsque x tend vers l'infini. La droite \mathcal{D} est appelée asymptote à la courbe \mathcal{C}_f en l'infini.