The group G is isomorphic to the group PSL(2,11): C2. Ordinary character table of $G \cong PSL(2,11)$: C2:

	1a	2a	3a	5a	5b	6a	11a	2b	4a	10a	10b	12a	12b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_3	10	2	-2	0	0	2	-1	0	0	0	0	0	0
χ_4	10	-2	1	0	0	1	-1	0	2	0	0	-1	-1
χ_5	10	-2	1	0	0	1	-1	0	-2	0	0	1	1
χ_6	10	2	1	0	0	-1	-1	0	0	0	0	$-E(12)^7 + E(12)^{11}$	$E(12)^7 - E(12)^{11}$
χ_7	10	2	1	0	0	-1	-1	0	0	0	0	$E(12)^7 - E(12)^{11}$	$-E(12)^7 + E(12)^{11}$
χ_8	11	-1	-1	1	1	-1	0	1	-1	1	1	-1	-1
χ_9	11	-1	-1	1	1	-1	0	-1	1	-1	-1	1	1
χ_{10}	12	0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	2	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0
χ_{11}	12	0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	-2	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	0	0
χ_{12}	12	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	2	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	0
X ₁₃	12	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	-2	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	0	0

Trivial source character table of $G \cong PSL(2,11)$: C2 at p = 2:

Normalisers N_i	N_1					N_2			N_3	N_3			N_5	N	6	N_7
p-subgroups of G up to conjugacy in G		P_1				1	\overline{P}_2		P_3	P_3		P_4	P_5	P	6	P_7
Representatives $n_j \in N_i$	1a	5b	5a	3a	11a	1a	3a	1a	5b	5a	1a	3a	1 <i>a</i>	1a	3a	$\overline{1a}$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	24	4	4	0	2	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$		2	2	-4	-1	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	40	0	0	4	-4	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13}$	24	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	0	2	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	24	$2*E(5)^2 + 2*E(5)^3$	$2*E(5) + 2*E(5)^4$	0	2	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 2 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	44	4	4	-4	0	4	4	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	20	0	0	2	-2	4	-2	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	12	2	2	0	1	0	0	2	2	2	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	12	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	0	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13}$	12	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	0	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	22	2	2	-2	0	2	2	0	0	0	2	2	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	30	0	0	3	-3	2	-1	0	0	0	2	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	22	2	2	-2	0	2	2	2	2	2	0	0	2	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	2	2	2	2	2	2	2	0	0	0	0	0	0	2	2	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	10	0	0	-2	-1	2	2	0	0	0	0	0	0	2	-1	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(1,5)(2,6)(3,4)(7,11)(8,10)(9,12)]) \cong C2$

 $P_3 = Group([(2,3)(4,6)(7,12)(8,10)(9,11)]) \cong C2$

 $P_4 = Group([(1,5)(2,6)(3,4)(7,11)(8,10)(9,12),(1,10,5,8)(2,7,6,11)(3,9,4,12)]) \cong C4$

 $P_5 = Group([(1,5)(2,6)(3,4)(7,11)(8,10)(9,12),(2,3)(4,6)(7,12)(8,10)(9,11)]) \cong C2 \times C2$

 $P_6 = Group([(1,5)(2,6)(3,4)(7,11)(8,10)(9,12),(1,8)(2,12)(3,11)(4,7)(5,10)(6,9)]) \cong C2 \times C2$

 $P_7 = Group([(1,5)(2,6)(3,4)(7,11)(8,10)(9,12),(1,10,5,8)(2,7,6,11)(3,9,4,12),(2,3)(4,6)(7,12)(8,10)(9,11)]) \cong D8$

 $N_1 = Group([(3,4)(5,7)(6,8)(9,10)(11,12),(1,2,3)(4,5,6)(7,9,10)(8,11,12)]) \cong PSL(2,11) : C2$

 $N_2 = Group([(1,5)(2,6)(3,4)(7,11)(8,10)(9,12),(1,2,3)(4,5,6)(7,9,10)(8,11,12),(1,6)(2,5)(3,4)(7,10)(8,11),(1,11,4,10,2,12,5,7,3,8,6,9)]) \cong D24$

 $N_3 = Group([(2,3)(4,6)(7,12)(8,10)(9,11),(1,5)(2,4)(3,6)(7,9)(11,12),(2,12,11,4,8)(3,7,9,6,10)]) \cong D20$

 $N_4 = Group([(1, 10, 5, 8)(2, 7, 6, 11)(3, 9, 4, 12), (1, 5)(2, 6)(3, 4)(7, 11)(8, 10)(9, 12), (2, 3)(4, 6)(7, 12)(8, 10)(9, 11), (1, 2)(5, 6)(7, 8)(9, 12)(10, 11)]) \cong D24$

 $N_5 = Group([(2,3)(4,6)(7,12)(8,10)(9,11),(1,5)(2,6)(3,4)(7,11)(8,10)(9,12),(1,10,5,8)(2,7,6,11)(3,9,4,12)]) \cong D8$

 $N_6 = Group([(1,8)(2,12)(3,11)(4,7)(5,10)(6,9),(1,5)(2,6)(3,4)(7,11)(8,10)(9,12),(2,3)(4,6)(7,12)(8,10)(9,11),(1,2,7)(3,8,6)(4,5,9)(10,12,11)]) \cong S4$

 $N_7 = Group([(2,3)(4,6)(7,12)(8,10)(9,11),(1,10,5,8)(2,7,6,11)(3,9,4,12),(1,5)(2,6)(3,4)(7,11)(8,10)(9,12)]) \cong D8$