

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Sieci komputerowe

WAN - sieci rozległe

dr inż. Andrzej Opaliński andrzej.opalinski@agh.edu.pl

Plan wykładu

- Standardy
- Urządzenia
- Łącza
- Enkapsulacja
- Komutacja
- Technologie sieci WAN

Wprowadzenie

- WAN Wide Area Network Sieć rozległa o zasięgu globalnym
- Działa na dużym obszarze łączy miasta, kraje, kontynenty.
- Wykorzystuje łącza zewnętrznych operatorów (w Polsce: TP S.A., Netia, NASK, Exatel)
- Najpopularniejsze usługi
 - Telefonia
 - Przesył danych
- Właściwości sieci WAN
 - Działanie na dużych obszarach geograficznych
 - Umożliwienie dostępu poprzez interfejsy szeregowe
 - Zapewnienie łączności w pełnym lub ograniczonym wymiarze czasowym
- Działa w ramach dwóch najniższych warstw modeli ISO/OSI
 - Warstwy fizycznej
 - Warstwy łącza danych

Urządzenia sieci WAN

- Urządzenia sieci WAN
 - Modem
 - Router
 - Przełącznik
 - Serwer komunikacyjny
- CPE (Customer Premises Equipment)
 Urządzenia dostępowe w placówkach abonenta

Router

Przełącznik

Modem (CSU/DSU)

Serwer

Klasyczny schemat połączenia

- DCE (Data Communications Equipment)
 - Urządzenia przesyłające dane przez pętle lokalną
 - Koniec instalacji komunikacyjnej, po stronie dostawcy sieci WAN
- DTE (Data Terminal Equipmet)
 - Urządzenie klienta, które przekazuje dane do urządzeń DCE
 - Urządzenia z interfejsem podłączonym do sieci WAN

Standardy sieci WAN

- Warstwa fizyczna
 - Parametry nawiązywania połączeń
 - Specyfikacja złącz
 - Elektryczne,
 - Mechaniczne,
 - Funkcjonalne

- Warstwa łącza danych
 - Mechanizm transferu ramek
 - Sposoby enkapsulacji danych

Enkapsulacja w sieciach WAN

- Przekazanie danych
 - z warstwy sieciowej
 - do warstwy łącza danych
 - w celu przesłania przez łącze fizyczne
- Do enkapsulacji ruchu przesyłanego przez łącze stosowany jest protokół HDLC (High-Level Data Link Control)

- Dwie wersje implementacji
 - Wersja ISO
 - Wersja CISCO (obsługa wielu protokołów jednym połączeniem)

Enkapsulacja HDLC

- HDLC protokół warstwy łącza danych stosowany w sieciach WAN
 - Gwarantuje niezawodną transmisję danych przez zawodne łącza
 - Posiadaj wbudowane mechanizmy kontroli przepływu i naprawy błędów
- Tryby pracy
 - NRM (normal response mode) urządzenie działające jako slave nie może inicjować transmisji
 - ARM (asynchronous response mode) slave może inicjować transmisję
- Ramka HDLC
 - Kończy się 8 bitowym polem flagi: 01111110
 - Flaga kończąca jedną ramkę jest flagą początkową następnej ramki
 - Pole sterujące określa typ ramki:
 - Informacyjna zawiera dane warstwy sieciowej
 - Administracyjna steruje przepływem ramek informacyjnych, obsługuje mechanizmów korekcji błędów
 - Nienumerowane zawiera komunikaty konfiguracyjne łącza
- Zaadaptowany do różnych standardów WAN
 - X.25 jako LAPB
 - V.24 jako LAPM
 - FrameRelay jako LAPF
 - ISDN LAPD

Techniki komutacji w sieciach WAN

- Komutacja: sposób transferu informacji od węzła źródłowego do węzła końcowego poprzez węzły tranzytowe
- Techniki komutacji:
 - Komutacja kanałów
 - Komutacja pakietów
 - Komutacja komórek
 - Komutacja ramek

Komutacja kanałów

- Nazywana także:
 - Komutacja łączy
 - Komutacja obwodów
- Przydzielenie dla danego łącza dedykowanej sekwencji połączonych kanałów od terminala źródłowego do docelowego
- Łącze zarezerwowane na cały czas połączenia
- Przesył danych po zestawieniu połączenia
 - Faza ustanawiania połączenia
 - Transfer danych
 - Rozłączanie połączenia
- Cechy
 - Stosunkowo niska efektywność
 - Zajęcie kanałów na wyłączność
 - Fazy ustanawiania i rozłączania
 - Wysoka jakość transmisji
 - Trwały kanał
 - Stałe parametry
 - Stosunkowo wysokie koszty eksploatacji

Komutacja pakietów

- Umożliwia nawiązywanie połączenia z wieloma użytkownikami jednocześnie
- Pakiety wielu nadawców w ramach jednego łącza
- Dane przesyłane w postaci pakietów
 - Podział informacji użytkownika na części o stałej długości
 - Dodatkowy nagłówek
 - Transfer od adresata do odbiorcy
 - Sprawdzenie poprawności danych w węzłach pośrednich
 - Zestawienie i odtworzenie danych u odbiorcy
- Podział łącza dla wielu użytkowników : mechanizm TDM – Time division multiplexing

Komutacja pakietów – metody transmisji

- Połączeniowa (virtual circuit packet switching)
 - Pakiety kierowane zawsze tą samą trasą
 - Przesyłanie pakietów poprzedzone zestawieniem połączenia wirtualnego
 - Wiele połączeń wirtualnych w ramach jednego fizycznego kanału
 - Zastąpienie adresów źródł/doc identyfikatorem połączenia wirtualnego
 - Informacja o kolejności węzłów w kanale wirtualnym w węzłach sieci
- Bezpołączeniowa (datagram packet switching)
 - Pakiety transmitowane różnymi trasami
 - Trasa dobierana przez węzły w oparciu o adres docelowy
 - Różna kolejność dotarcia pakietów do odbiorcy
 - Zadania odbiorcy: synchronizacja, wykrycie błędów i pakietów utraconych

Komutacja ramek i komórek

- Szybka odmiana techniki komutacji pakietów
- Przystosowana do sieci opartej o łącza wysokiej jakości (zwykle światłowody)
- Komutacja ramek:
 - Porcje danych: ramka
 - Redukcja mechanizmów pozwalających na korekcję błędów i kontrolę przepływu
 - Kontrola poprawności danych wykonywana na urządzeniu końcowym (mała szansa na wystąpienie błędów)
 - Błędne ramki usuwane w węzłach (bez powiadomienia nadawcy/odbiorcy)
- Komutacja komórek
 - Porcja danych komórka stałej długości + nagłówek
 - Węzły w sieci nie odpowiadają za sprawdzenie poprawności transmisji
 - Zadania odbiorcy
 - Ustalanie kolejności
 - Wykrywanie ramek uszkodzonych
 - Wykrywanie ramek zagubionych

Media transmisyjne w sieciach WAN

- Okablowanie elektryczne (kable koncentryczne, skrętka)
 - Możliwość transmisji wielu poziomów napięć
 - Częstotliwości rzędu GHz
 - Zakłócenia elektryczne, tłumienie
 - Przepustowości zależne od jakości okablowania
- Światłowody
 - Częstotliwość modulacji sygnału (binarnego) THz
 - przepustowość teoretyczna do 3Tb/s
 - Realna przepustowość do 100 Gb/s
- Rekordy przepustowości transmisji światłowodowej (zmultipleksowanej WDM)
 - 2006r 14 Tb/s (160km) Nippon Telegraph
 - 2009r 15,5 Tb/s (7000km) Bell Labs
 - 2010r 69 Tb/s (240km) Nippon Telegraph
- Światło w atmosferze 74 Tb/s (eksperymentalne, niestosowane)
- Komunikacja bezprzewodowa
 - GSM/UMTS/LTE 28/300 Mb/s
 - WiMAX do 40Mb/s
- Odległość a rodzaj mediów (najpopularniejsze, stosunek ceny do jakości)
 - do 200 m skrętka
 - 200m do 2 km światłowód wielomodowy
 - Powyżej 2 km światłowód jednomodowy

Multipleksowanie

- Multipleksacja (pol. zwielokrotnianie, ang. multiplexing) metoda realizacji dwóch lub większej liczby kanałów komunikacyjnych w jednym medium transmisyjnym (np. para przewodów światłowód, powietrze itp.).
- Użytkownicy kanałów nie powinni odczuwać, że współdzielą medium transmisyjne.
- Pozwala ograniczyć liczbę stosowanych mediów transmisyjnych, zwłaszcza kabli.

- Multipleksacja przestrzenna SDM (Space Division Multiplexing)
 istnieje wiele fizycznych linii w medium (rdzeni światłowodu, przewodów elektrycznych) przeznaczonych do transmisji poszczególnych sygnałów. Alternatywa: podział obszarami (BSS w sieciach komórkowych).
- Multipleksacja z podziałem czasu TDM (Time Division Multiplexing)
 podział sygnałów na części i przypisanie im szczelin czasowych
- Multipleksacja z podziałem częstotliwości FDM (Frequency Division Multiplexing)
 Sygnały przetwarzane są na zmiany częstotliwości wokół środkowej częstotliwości nośnej kanałów.
 Kanały sąsiadują ze sobą a każdy ma inną częstotliwość środkową.
- Multipleksacja z podziałem długości fali WDM (Wavelength Division Multiplexing)
 Przesyłany sygnał pochodzi z oddzielnych źródeł. Każdemu sygnałowi przypisana jest jego własna długość fali.
 Realizowane tylko w systemach optycznych.
- Multipleksowanie kodowe CDM (Code Division Multiplexing)
 niezależne kodowanie każdego z sygnałów kodem (sekwencją) rozpraszającym.
 Wszystkie sygnały są przesyłane w tym samym paśmie transmisyjnym.
 Ze względu na ortogonalność stosowanych kodów rozpraszających odbiornik jest w stanie zdekodować wysłany do niego sygnał.

Metody zwiększenia przepustowości łączy

- Zmiana tradycyjnego nośnika sygnału na światłowód
- zwiększenie przepustowości przy zmianie światłowodu z pracującego w zakresie 1300 nm na pracujący przy 1550 nm (wzrost do 10 Gb/s)
- instalacja dodatkowych włókien (nowych kabli)
- zastosowanie szybszej elektroniki
- zastosowanie technik multipleksacji (zwielokrotnienia) np. WDM

WDM

- WDM (ang. Wavelength Division Multiplexing) zwielokrotnianie w dziedzinie długości fali realizowane za pomocą światła laserowego.
- **Fizyczna technologia** współpracująca z różnymi technologiami inżynierii ruchu (MPLS, IPoDWDM, Carrier Ethernet)
- transmisja sygnału cyfrowego w formie analogowej
- podział światła laserowego na wiele fal o różnych długościach
- Zwykle na kablach jednomodowych
- Fale przesyłane
 - w tym samym czasie,
 - w tym samym medium transmisyjnym (włóknie optycznym)
- Każda długość fali tworzy osobny "kanał", który może przenosić informację.

wavelength-division multiplexing (WDM)

~ WDM multiplexer

- Zwielokrotnienie pojedynczego sygnału o przepustowości 100Gbit/s na parze (przy 160 kanałach = 16Tbit/s)
- Podział w zależności od liczby kanałów
 - CWDM Coarse Wave Division Multiplexing (16 lub 18 kanałów) 20nm między kanałami
 - DWDM Dense Wavelength Division Multiplexing. (40, 80, 160, 320) 0,4nm między kanałami (przepustowość nawet do 400Gb/s)
- Problemy techniczne
 - Mechanizmy degradujące jakość sygnału optycznego
 - Liniowe szum optyczny, szum termiczny, zniekształcenia (dyspersje)
 - Nieliniowe mieszanie czterofalowe FWM, automodulacja fazy SPM, skrośna modulacja fazy XPM oraz wymuszone rozpraszanie Ramana SRS
 - Rozwiązania
 - nadmiarowe kodowanie korekcyjne FEC
 - Stosowanie wzmacniaczy/repeaterów (~100km)
- Wprowadzanie WDM na aktualnej infrastrukturze
 - Wymiana wzmacniaczy optycznych i (de)multiplekserów
 - W oparciu o "stare" kable światłowodowe

Technologie transmisji sygnału - PDH

- PDH Plesiochronous Digital Hierarchy plezjochroniczna hierarchia cyfrowa
 - Elementy sieci zsynchronizowane w oparciu o własne wewnętrzne zegary
 - Zastosowanie modulacji impulsowo kodowej (PCM)
 - Przepływność pojedynczego kanału 64 kb/s
 - Multipleksacja z podziałem czasu TDM
 - Zwielokrotnienie na kolejnych poziomach
 - T*(USA), E*(Europa), J*(Japonia)

Stopień zwielokrotnienia	Ameryka		Europa		Japonia	
Stopieri zwieloki oti lierila	Mbit/s	Oznaczenie	Mbit/s	Oznaczenie	Mbit/s	Oznaczenie
1	1,544	(T1)	2,048	(E1)	1,544	(J1)
2	6,312	(T2)	8,448	(E2)	6,312	(J2)
3	44,736	(T3)	34,368	(E3)	32,064	(J3)
4	274,176	(T4)	139,264	(E4)	97,728	(J4)
5			564,992	(E5)	397,200	(J5)

- Wady
 - Brak standaryzacji powyżej przepływności 140Mbit/s
 - Energochłonność
 - Hierarchia demultiplekserów do wydzieleniaE1 z E4
 - Różne standardy na świecie
- Aktualnie wypierane przez systemy SDH

Technologie transmisji sygnału – SDH/Sonet

- SONET Synchronous Optical Network (Synchroniczna Sieć Optyczna)
 - Standard transmisji sygnału w oparciu o kable światłowodowe
 - Nadajniki: lasery lub diody LED
 - Opracowany w laboratoriach Bell w latach 80tych
 - Dwie wersje
 - Stany Zjedoczone klasyczny SONET w oparciu o 193 bitową ramkę T-Carrier
 - Europa SDH (Synchronous Digital Hierarchy)
 w oparciu o 256 bitową ramkę E-Carrier
 - Przepływowość podstawowa Sonet (OC-1) 54 Mbit/s
 - Rozmiar ramki OC-1 to 9 rzędów po 90 bajtów = 810 bajtów
 - Czas transmisji pojedynczej ramki to zawsze 125 ms (8000 ramek na sekundę)
 - Gdy łącze obsługuje szybszą transmisję zwiększa się rozmiar ramki

System Sygnałów		Symbol OC	Szybkość transmisji (Mbit/s)		
SONET	SDH	Syllibol OC	SZYDKOSC (FAITSITISJI (MDIUS)		
STS-1		OC-1	51,84		
STS-3	STM-1	OC-3	155,52		
STS-9	STM-3	OC-9	466,56		
STS-12	STM-4	OC-12	622,08		
STS-18	STM-6	OC-18	933,12		
STS-24	STM-8	OC-24	1244,16		
STS-36	STM-12	OC-36	1866,24		
STS-48	STM-16	OC-48	2488,32		
STS-96	STM-32	OC-96	4976,64		
STS-192	STM-64	OC-192	9953,28		

					_						 	
A1	A1	A1	A2	A2	A2	J0	ZO	Z0				
B1	Х	Х	E1	Х	Х	F1	Х	Х				
D1	Х	Х	D2	Х	Х	D3	Х	Х				
H1	H1	H1	H2	H2	H2	НЗ	НЗ	НЗ				
B2	B2	B2	K1	Х	Х	K2	Х	Х				
D4	Х	Х	D5	Х	Х	D6	Х	Х				
D7	Х	Х	D8	X	Х	D9	Х	Х		0		
D10	Х	Х	D11	Х	Х	D12	Х	Х				
S1	Z1	Z1	Z2	Z2	M1	E2	Х	Х				

Sonet/SDH

- SDH Synchronous Digital Hierarchy Synchroniczna Hierarchia Systemów Cyfrowych
 - Podstawowa przepływowość 155 Mb/s –STM-1 (ramka OC-3)
 - Kolejne poziomy zwielokrotnienia STM-n zwiększa się "długość rzędu"
 - Aktualnie STM-768 (120 Gbit/s).
 - Wykorzystywane przez: GSM, Internet, FDDI)
 - Budowa ramki
 - 9 kolumln nagłówek
 - 261 kolumn dane
 - Niektóre elementy nagłówka
 - A1, A2 framing bytes znacznik początku ramki
 - B1 bit interleaved parity bit parzystości
 - E1 orderwire voicechannel
 - D1-3,4-12 section data communication channel (zarządzanie, monitorowanie, alarmy)
 - S1 synchronization status

The STM-1	base frame	is structured	with the	following	characteristics:
-----------	------------	---------------	----------	-----------	------------------

- Length: 270 column × 9 row = 2430 bytes
- Byte: 1-byte = 8 bit
- Duration (Frame repetition time): 125 µs i.e. 8000 frame/s
- Rate (Frame capacity): 2430 × 8 × 8000 = 155.5200 Mbit/s
- Pavload = 2349bvtes × 8bits × 8000frames/sec = 150.336 Mbit/s

System Sygnałów		Symbol OC	Szybkość trans	mieii /Mhit/e\	
SONET	SDH	Symbol OC	SZYDKOŚĆ ITALIŚ	iriisji (wibius)	
STS-1		OC-1	51,84	07144	(455.50 \ 45.17.)
STS-3	STM-1	OC-3	155,52	STM-1	(155,52 Mbit/s),
STS-9	STM-3	OC-9	466,56	STM-4	(622,08 Mbit/s),
STS-12	STM-4	OC-12	622,08	STM-16	(2488,32 Mbit/s),
STS-18	STM-6	OC-18	933,12	STM-64	(9953,28 Mbit/s),
STS-24	STM-8	OC-24	1244,16		
STS-36	STM-12	OC-36	1866,24	STM-256	(39813,12 Mbit/s).
STS-48	STM-16	OC-48	2488,32	STM-512	(80 Gbit/s).
STS-96	STM-32	OC-96	4976,64	STM-768	(120 Gbit/s).
STS-192	STM-64	OC-192	9953,28		. ,

Technologie sieci WAN

- Łącze dzierżawione
- Analogowe łącze dodzwaniane
- ISDN
- DSL
- Modemy kablowe
- Frame Relay
- ATM
- MPLS

Technologia	Opłaty	Maksymalna szybkość bitowa	Inne
Łącze dzierżawione	Odległość, przepustowość	Nieograniczona	Stała przepustowość
Telefonia tradycyjna	Odległość, czas	33-56 kbps	Dodzwaniane, wolne połączenie
ISDN	Odległość, przepustowość	64 or 128 kbps <2 Mbps, PRI	Dodzwaniane, szybkie połączenie
X.25	llość danych	<48 kbps	Stała przepustowość łącza komutowanego
Frame Relay	Przepustowość	<4 Mbps	Zmienna przepustowość łącza stałego
ATM	Przepustowość	>155 Mbps	Zmienna przepustowość łącza stałego

Łącza dzierżawione

- Stosowane przy połączeniach "punkt-punkt"
- Dzierżawione zwykle od operatorów telekomunikacyjnych
- Droższe od usług współużytkowanych (FrameRelay)
- Cena zależna od odległości i przepustowości łącza
- Gwarancja braku opóźnień i wahań przepustowości
- Wymagają
 - Portów szeregowych routera
 - Odpowiedniego urządzenia CSU / DSU
- Zestawiane w oparciu o protokół PPP (Point to Point Protocol)
 (PPPoE over Ethernet, lub PPPoA over ATM)

Analogowe łącze dodzwaniane - PSTN

- Public Switched Telephone Network Publiczna komutowana sieć telefoniczna
- Oparte o modemy i analogowe linie telefoniczne
- Połączenia komutowane o niskiej przepustowości do 33Kb/s
- Modem zamienia dane cyfrowe na analogowy sygnał łącza (i odwrotnie)
- Sporadyczne transfery danych o niewielkiej objętości
- Połączenia taryfowe zależne od pory dnia
- Zalety:
 - prostota,
 - niskie koszty wdrożenia
- Wady:
 - długi czas łączenia,
 - niska przepustowość (audio/video)
- Obecnie rzadko spotykane

ISDN

- Integrated Services Digital Network
- Świadczenie usług cyfrowych z wykorzystaniem okablowania telefonicznego
- Kompatybilność na poziomie międzynarodowym
- Szybszy transfer i zestawienie połączenia w porównaniu z modemami analogowymi

SYGNAŁ

CYFROWY

SYGNAŁ

CYFROWY

- Integracja przesyłu jednoczesny przesył głosu oraz danych cyfrowych (kanały)
- BRI 2x8b kanały B (dane)+ 1x2b kanał D (syn)
- Gwarantowana przepływność transmisji (bez względu na odległość)

TE1	się z terminatorem NT 1 lub 2.
TE2	Oznacza urządzenie, które nie jest kompatybilne z siecią ISDN. Wymaga TA.
TA	Zmienia sygnały elektryczne na postać stosowną w ISDN, tak aby urządzenia TE2 mogły funkcjonować w sieci ISDN.
NT1	Łączy czterożyłowe okablowanie abonenckie ISDN z konwencjonalną, dwużyłową lokalną pętlą .
NT2	Kieruje ruch do i z urządzeń abonenckich i NT1. Jest urządzeniem wykonującym zadania przełącznika i koncentratora z regeneracją.

ISDN

SYGNAŁ

SYGNAŁ

CYFROWY

Usługi ISDN

- system wielu kanałów cyfrowych w ramach pojedynczego łącza
- wyróżniony kanał sygnalizacyjny stosowany do zestawiania połączeń w pozostałych kanałach
- BRI Basic Rate Interface
 - Dwa 8 bitowe kanały B (dane) i jeden 2 bitowy kanał D (synchronizacja)
- PRI Primary Rate Interface
 - 30 kanałów 8 bitowych (B) i jeden 8 bitowy kanał D (2 Mb/s)
 - W USA i Japoni (23 kanały B)

BRI - Basic Rate Interface

Zastosowania ISDN

- Zdalny dostęp
- Zdalne węzły
- Zapewnienie łączności małym sieciom
- Zapasowe łącze

Zapewnienie łączności małym sieciom

Zapasowe łącze.

DSL

- Cyfrowe łącze abonenckie DSL (Digital Subscriber Line)
- Technologia szerokopasmowa umożliwiająca przesyłanie danych do abonentów po cyfrowych liniach telefonicznych
- Technologia szerokopasmowa wiele częstotliwości w jednym fizycznym nośniku
- Od 300Hz 1,1MHz
 - do 20kHz głos
 - 20kHz 1,1MHz upstream (wysyłanie) + downstream (pobieranie) danych
- xDSL różne warianty technologii DSL
 - ADSL (Asymmetric DSL) asymetryczne łącza DSL
 - SDSL (Symmetric DSL) symetryczne łącza DSL
 - HDSL (High Bit Rate DSL) DSL o dużej szybkości bitowej
 - IDSL DSL typu ISDN
 - CDSL (Consummer DSL) konsumenckie łącza DSL

Usługa	Pobieranie	Wysyłanie
ADSL	64 kbps - 8.192 Mbps	16 kbps - 640 kbps
SDSL	1.544 Mbps - 2.048 Mbps	1.544 Mbps - 2.048 Mbps
HDSL	1.544 Mbps - 2.048 Mbps	1.544 Mbps - 2.048 Mbps
IDSL	144 kbps	144 kbps
CDSL	1 Mbps	16 kbps - 160 kbps

DSL

- Jednoczesna transmisja głosu i danych
 - Kanał głosowy standardowego telefonu częstotliwości 330Hz 3,3kHz
 - Transmisja danych w DSL częstotliwości powyżej 4 kHz
- Przepustowości do 8 Mb/s (zaawansowane techniki kodowania i modulacji)
- Wiele linii abonenckich DSL może być multipleksowanych w łącze o dużej przepustowości
- Podstawowe wersje DSL (asymetryczna ADSL i symetryczna DSL)
- Przepustowość zależy od długości pętli lokalnej (od 3 do 6km), typu i stanu okablowania

ADSL – podział pasma

upstream

Modem kablowy

- Transmisja danych w infrastrukturze telewizyjnych sieci kablowych (CATV Cable Television) koncentryki miedziane z wykorzystaniem wysokich częstotliwości
- Stadardy DOCSIS/EuroDOCSIS
- System transmisji danych
 - Centralny system nadawczo-odbiorczy (CMTS Cable Modem Termination System)
 - Modemy kablowe w mieszkaniach abonentów (multipleksacha TDM – obsługa dużej liczby modemów)

downstream

	DOCSIS	DownStream	Upstream
	1.0	25 Mb/s	2 Mb/s
	2.0	25 Mb/s	15 Mb/s
/)	3.0	512 Mb/s	45 Mb/s

TV + FM

Frame Relay

- Zorientowana połączeniowo usługa sieci WAN z komutacją pakietów
- Następca standardu X.25, poprzednik ATM
- Działa w warstwie łącza danych (adresacja)
- W warstwie fizycznej oparta na SDH (Synchronous Digital Hierarchy)
- Protokół LAPF (Link Access Procedure for Frame Relay)
 - Przesył ramek danych pomiędzy:
 - Urządzeniami dostępowymi użytkowników DTE (Data Terminal Equipment)
 na obrzeżach sieci WAN (terminale, komputery, routery, mosty, multipleksery)
 - Urządzeniami komunikacyjnymi DCE (Data Circut terminating Equipment)

Frame Relay

- Składa się z wielu znajdujących się w różnych miejscach przełączników FR połączonych przy użyciu łączy rozległych
- Obwód wirtualny VC (virtual curcuit) połączenie pomiędzy dwoma urządzeniami DTE
- Frame Relay nie posiada mechanizmu obsługi błędów
 - Błąd w ramce (wykryty na węźle)
 - Odrzucenie ramki bez wysyłania powiadomienia
- Łącze dostępowe w sieci Frame Relay
 - Standardowa przepustowość do 4Mb/s
 - linia dzierżawiona (do 45 Mb/s)

Format pakietu Frame Relay

- Wielkość ramki
 - Domyślnie 4096 bajtów
 - Maksymalnie 8188 bajtów
- Pola ramki
 - Flaga ciąg 01111110
 służy do synchronizacji
 - Nagłówek
 - DLCI identyfikator kanału połączeń wirtualnych
 - C/R bit odróżniający polecenie od odpowiedzi
 - EA bit umożliwiający poszerzenie nagłówka
 - DE bit priorytetu ramki
 - DLCIDC- bit rodzaju adresu
 - FBCN wskaźnik przeciążenia (dla odbiorcy)
 - BECN wskaźnik przeciążenia (dla nadawcy)
 - Dane przekazywane z wyższych warstw
 - FCS (Frame Check Sequence) suma kontrolna

- ATM (Asynchronous Transfer Mode)
 - Szerokopasmowy standard komunikacji realizujący przesył pakietów przez łącza wirtualne
 - Technologia powstała w 1988 roku
 - Założenie: integracja sieci LAN, WAN i PTSN (Public Switched Telephone Network)
 - Standard ATM został opracowany przez CCITT jako element specyfikacji szerokopasmowych sieci cyfrowych z integracją usług (BISDN)
 - Jest wykorzystywany do przesyłania danych przez sieć z dużą przepustowością
- Definiuje zasady komunikacji w sieci
- Nie definiuje medium transmisyjnego (pomiędzy węzłami)
 - Światłowody
 - Kable koncentryczne
 - Transmisja bezprzewodowa

- Dwa typy interfejsów
 - UNI User to Network Interface interfejs pomiędzy sprzętem użytkownika a zakończeniem sieci szerokopasmowej
 - NNI Network to Network Interface interfejs w węzłach sieci, do komunikacji z innymi węzłami

Połączenia wirtualne w sieciach ATM

- ATM technologia połączeniowa
 - Zanim zostanie rozpoczęte przesyłanie danych wymagana jest faza nawiązywania i zestawiania połączenia
 - W oparciu o deklarowane parametry QoS sieć ustala
 - Czy może zapewnić połączenie danej jakości
 - Trasę połączenia o takich parametrach
- Połączenia w sieciach ATM są wirtualne
 - Pomiędzy dwoma węzłami chcącymi przesłać dane tworzone jest logiczne połączenie
 - Niezależne od rodzajów fizycznego medium i urządzeń na trasie, widoczne jako połączenie bezpośrednie
- Kanał wirtualny (Virtual Channel VC)
 - W fizycznym łączu przesyłane są komórki należące do różnych połączeń
 - Każdemu połączeniu odpowiada jeden kanał wirtualny (logiczne połączenie dwóch węzłów sieci)
 - Przynależność komórki do kanału identyfikuje pole VCI
 - Parametry przesyłu ustalane są na etapie zestawiania połączenia
- Ścieżka wirtualna (Virtual Path VP)
 - Kanały wirtualne o wspólnym węźle docelowym tworzą grupy zwane ścieżkami wirtualnymi
 - Każda ścieżka wirtualna ma przydzielone pasmo, którym może rozporządzać. Pozwala to na:
 - Uproszczenie doboru trasy połączenia
 - Brak konieczności analizowania identyfikatora VCI w każdym węźle pośrednim
- Węzłem źródłowym/docelowym może być przełącznik ATM lub router brzegowy ATM

ATM

- ATM technika pakietowa
 - Dane organizowane w jednakowej długości bloki (komórki, cells)
 - Komórka o stałej długości 53 bajtów
 - 5 bajtów nagłówka
 - 48 bajtów informacji
 - Zalety
 - uproszczenie sterowania ruchem i zarządzaniem zasobami sieci
 - Szybkość działania i elastyczność sieci
 - Wady
 - segmentacja i składowanie dłuższych wiadomości,
 - spory udział nagłówka w długości komórki
- Multipleksacja etykietowana
 - Zasada dostępu, komutacji i transmisji informacji
 - Przydzielanie szczelin czasowych na żądanie (w zależności od potrzeb)

Budowa komórki ATM

- GFC (Generic Flow Control)
 - występuje tylko w komórce typu UNI, 4 bity.
 - zarządzanie przepływem pakietów pomiędzy elementami sieci użytkownika.
- VPI (Virtual Path Identifier) wielkość pola zależna od styku
 - UNI 8 bitów
 - NNI 12 bitów
 - Identyfikuje nawiązane połączenie ze ścieżką wirtualną w łączu fizycznym
- VCI (Virtual Channel Identifier)
 - 16 bitów (do 65536 kanałów wirtualnych w każdej ścieżce)
 - identyfikuje kanał wirtualny w ścieżce wirtualnej.
- PT (Payload Type) 3 bity, określa typ komórki ATM
 - 0 dane użytkownika
 - 1 komórka kontrolna, dane sygnalizacyjne
- CLP (Cell Loss Priority)
 - 1 bit określa priorytet pakietu
 - 1 pakiet może być utracony w przypadku przeciążenia,
 - 0 podnosi priorytet ale nie gwarantuje dostarczenia
- HEC (Header Error Control)
 - 8 bitów
 - ochrona nagłówka przed błędami transmisji
- Pole przeznaczone na dane użytkownika 48 bajtów

Diagram of the NNI ATM Cell

Klasy usług ATM

- QoS (Quality of Service) zdolność zapewnienia jakości usług (największa zaleta sieci ATM)
- Parametry zapewniające jakość usług
 - Opóźnieniowe
 - CDV (peak-to-peak cell delay variation) zmienność opóźnienia komórki
 - MaxCTD (maximum cell transfer delay) maksymalne opóźnienie komórki
 - Mean CDV (mean cell transfer delay) średnie opóźnienie komórki
 - Niezawodnościowy CLR (cell lost ratio) wskaźnik gubienia komórek
- Zestaw klas usług, deklarowany przy nawiązywaniu połączenia
 - CBR (Continuous Bit Rate) używana do połączeń wymagających stałej przepływności bitowej (np. przesyłanie dźwięku bez kompresji)
 - VBR-RT (Variable Bit Rate Real Time) połączenia dopuszczające zmienne pasmo przy zachowaniu relacji czasowych między próbkami (np. transmisja skompresowanego materiału video)
 - VBR-NRT (Variable Bit Rate Non-Real Time) -
 - połączenia dopuszczające zmienne pasmo,
 - nie wymagające ścisłych relacji czasowych pomiędzy próbkami informacji
 - Wymagająca gwarancja przepływności lub opóźnienia
 - ABR (Available Bit Rate) zmienna przepływność bitowa bez relacji czasowych i bez gwarancji poziomu przepływności. Sieć usług "najlepszych starań" (best effort)
 - UBR (Unspecified Bit Rate) brak zapewnienia jakiejkolwiek gwarancji usług (zgubienia, opóźnienia)

Architektura protokołu ATM

- Problem z przyporządkowaniem miejsca w modelu ISO-OSI
- Oddzielny model budowy warstwowej, wzorowany na idei modelu ISO-OSI
- Warstwa fizyczna
 - Określa funkcje związane z dostępem do medium transmisyjnego
 - Podwarstwa nośnika fizycznego (transmisja bitów i fizyczny dostęp do medium, taktowanie, kodowanie, konwersja sygnałów)
 - Podwarstwa zbieżności transmisji (dopasowanie napływających danych do struktury ATM, weryfikacja nagłówka komórki, umieszczanie/wydzielanie komórki w/z ramce)

Warstwa ATM

 Określa format komórki i zapewnia ich niezawodny transfer ((de)multipleksacja komórek w komutatorach, tworzenie nagłówka komórki ATM, dobór trasy dla pakietu)

Warstwa Adaptacyjna ATM

- Konwersja z warstw wyższych do komórek ATM (sposób konwersji zależy od typu usługi)
- Podwarstwa segmentacji i składania transformacja jednostek PDU warstw wyższych na pola informacyjne komórki ATM
- Podwarstwa zbieżności realizacja usług tej warstwy

Warstwa fizyczna protokołu ATM

- Warstwa fizyczna
 - Możliwość wykorzystania różnych nośników (mediów transmisyjnych)
 - Zalecane stosowanie światłowodów
 - Najczęściej stosowane interfejsy
 - SONET (Synchronous Optical NETwork)
 - SDH (Synchronous Difital Hierarchy)
 - PDH (Plesiochronous Digital Hierarchy)

Optical Level	Electrical Level	Line Rate (Mbps)	Payload Rate (Mbps)	Overhead Rate (Mbps)	SDH Equivalent
OC-1	STS-1	51.840	50.112	1.728	_
OC-3	STS-3	155.520	150.336	5.184	STM-1
OC-9	STS-9	466.560	451.008	15.552	STM-3
OC-12	STS-12	622.080	601.344	20.736	STM-4
OC-18	STS-18	933.120	902.016	31.104	STM-6
OC-24	STS-24	1244.160	1202.688	41.472	STM-8
OC-36	STS-36	1866.240	1804.032	62.208	STM-13
OC-48	STS-48	2488.320	2405.376	82.944	STM-16
OC-96	STS-96	4976.640	4810.752	165.888	STM-32
OC-192	STS-192	9953.280	9621.504	331.776	STM-64
OC-768	STS-768	39818.120	38486.016	1327.104	STM-256

Typy połączeń w sieciach ATM

- PVC (Permanent Virtual Connections) stałe połączenie wirtualne
 - Ustanawiane przez warstwę zarządzania siecią, zbiór przełączników między źródłem a przeznaczeniem jest określony przez wartości VPI/VCI
 - Wymóg ręcznego ustalenia parametrów przez operatora sieci
 - Są ustalane na dłuższy czas (czas subskrypcji), nie są rozłączane w momencie zakończenia transmisji danych
 - W razie awarii tworzona jest droga zastępcza z ominięciem uszkodzonego fragmentu sieci
 - Odpowiednik prywatnego łącza dzierżawionego o stałym opóźnieniu
- SVC (Switched Virtual Connections) przełączane połączenie wirtualne
 - Ustawiane automatycznie przez protokół sygnalizacyjny
 - Zestawiane i komutowane na życzenie abonenta, typu punkt-punkt
 - Nie wymaga ręcznych ustawień (dużo częściej wykorzystywane)
 - Likwidacja połączenia natychmiast po zakończeniu przekazu

ATM - podsumowanie

- Zapewnia klasy usług o gwarantowanych parametrach transmisji
- Brak weryfikacji poprawności przesyłanych danych (warstwy wyższe)
- Transmisja danych:
 - Sieć ATM składa się z wielu połączonych przełączników
 - Ramka ATM kierowana jest do następnego węzła na podstawie informacji w nagłówku
 - Kanał wirtualny logiczne połączenie między nadawcą a odbiorcą
 - Ścieżka wirtualna zestaw kanałów o wspólnym węźle docelowym
 - Liczba ścieżek mniejsza od liczby kanałów ułatwia zarządzanie
- Aktualnie nie stosowany do budowy LAN (wyparty przez Ethernet)

MPLS – Multi Protocol Label Switching

- MPLS MultiProtocol Label Switching
- Technika transmisji pakietów w sieciach rozległych
- Protokół zarządzania siecią
- Działa na styku warstwy drugiej i trzeciej
 - Szybki jak warstwa łącza danych
 - Obsługuje dowolne technologie warstwy łącza danych
 - Skalowalny jak warstwa sieciowa
 - Stosowany zwykle dla protokołu IP w warstwie sieci (IP/MPLS)
 - W wersji uogólnionej (GMPLS, Generalized MPLS)
- Zastępuje proces routowania przez "przełączanie etykiet"
 - Etykiety określają najlepszą trasę dla danego pakietu

MPLS – Multi Protocol Label Switching

- Etykiety umożliwiają:
 - Rezerwację pasma dla przepływu ruchu
 - Rozróżnienie wymagań jakości usług (QoS) (jak w FR czy ATM)
 - Implementację VPN

Zasada działania

- Na brzegu sieci MPLS:
 - Dołączanie etykiety (dodatkowej informacji) klasy
 - Klasy FEC (Forwarding Equivalence Class)
 - W oparciu o proces klasyfikacji (np. na podstawie IP docelowych, QoS)
 - Inne dla tych samych IP o różnych parametrach QoS
- Wewnątrz sieci:
 - Wykorzystywanie tablic etykiet w routerach
 - Etykieta wejściowa jako indeks w tablicy
 - Podmiana etykiety na nową i przesłanie do następnego punktu (routera lub przełącznika)
- Na końcowym brzegu sieci MPLS:
 - Usuwanie etykiety
- Budowa tablic etykiet przez routery
 - Dedykowany protokół LDP
 - Rozszerzone protokoły RSVP i BGP

MPLS – budowa nagłówka

- Dodatkowy nagłówek, zależny od protokołu warstwy 2
- Dla Ethernetu 32 bity
 - ID 20 bitowa etykieta (label)
 - TC 3 bity do obsługi QoS
 - S 1 bit znacznik ostatniej etykiety w stosie (1).
 0 oznacza kolejne etykiety w dalszej części.
 Stos etykiet działa na zasadzie LIFO
 - TTL 8 bitów time to live pakiety z wartością 0 są odrzucane

00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Label									TC: Traffic	Class (QoS	S: Bottom-of-Stack	ck TTL: Time-to-Live																			

Stos etykiet

- Działa jak LIFO
- Wykorzystywany w sieciach operatorskich
- Realizuje połączenia VPN (osobne etykiety dla różnych VPNów)

Sieci WAN w Polsce - PIONIER

- Konsorcjum PIONIER organizacja której celem jest stworzenie i rozwój polskiej akademickiej sieci komputerowej w Polsce
- Założenia
 - ogólnopolska szerokopasmowa sieć optyczna
 - Sieć wysokiej przepustowości
 - Łącząca ośrodki obliczeniowe w całej Polsce
 - Umożliwiająca szybką komunikację z ośrodkami akademickimi z zagranicy
 - Stanowiąca bazę dla badań naukowych i prac rozwojowych w obszarze
 - Informatyki i telekomunikacji
 - Nauk obliczeniowych (gridy)
 - Aplikacji oraz usług dla społeczeństwa informacyjnego
 - Wybudowana w całości ze środków KBN
 - Rozpoczęcie realizacji w roku 2000
- Główny cel: "obsługa całego polskiego środowiska akademickiego i naukowego oraz wspomaganie realizowanych przez to środowisko projektów badawczych i edukacyjnych"
- Członkowie konsorcjum:
 - Akademickie Centrum Komputerowe Cyfronet Akademii Górniczo-Hutniczej im. Stanisława Staszica,
 - Poznańskie Centrum Superkomputerowo-Sieciowe
 - Instytuty: Chemii Bioorganicznej PAN, Uprawy Nawożenia i Gleboznawstwa w Puławach,
 - Naukowa i Akademicka Sieć Komputerowa NASK,
 - Politechniki: Białostocka, Częstochowska, Koszalińska, Łódzka, Rzeszowska im. Ignacego Łukasiewicza, Śląska Centrum Komputerowe, Świętokrzyska, Wrocławska,
 - Uniwersytety: Marii Curie-Skłodowskiej, Mikołaja Kopernika, Opolski, Technologiczno-Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy, Technologiczno-Humanistyczny im. Kazimierza Pułaskiego w Radomiu, Warmińsko-Mazurski w Olsztynie, Warszawski, Zielonogórski, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie.

Sieci WAN w Polsce - PIONIER, cz.2

- Infrastruktura
 - Łączy 21 ośrodków Miejskich Sieci Akademickich i 5 centrów Komputerów Dużej Mocy
 - Wykorzystuje światłowody w standardzie DWDM i 10GB Ethernet
 - Całkowita długość linii światłowodowych 8944 km (kwiecień 2015)
 - 6490 km w Polsce
 - 2454 km za granicą (do Hamburga i Cern)
- Szczegóły technologiczne
 - 5612 km własnych światłowodów
 - włókna jednomodowe (G.652)
 - włókna o niezerowej przesuniętej dyspersji (G.655)
 - transmisja w systemie DWDM.
 - 2 odrębne systemy transmisyjne DWDM pracujące na oddzielnych parach włókien.
 - 1. 2 kanały optyczne 10 Gbit/s
 - 2. 80 kanałów optycznych 10 Gbit/s
 - Systemy te realizują połączenia pomiędzy przełącznikami MPLS i routerami wielokrotnymi łączami 10 Gigabit Ethernet
- Operatorem sieci PIONIER jest
 Poznańskie Centrum Superkomputerowo-Sieciowe

PIONIER – łącza z zagranicą

Niemcy (Słubice - połączenie z siecią DFN, Gubin, Kołbaskowo)

Czechy (Cieszyn - połączenie z siecią CESNET)

Słowacja (Zwardoń - połączenie z siecią SANET)

Ukraina (Hrebenne – połączenie z siecią UARNET i URAN)

- Białoruś (Kuźnica połączenie z siecią BASNET)
- Litwa (Ogrodniki połączenie z siecią LITNET).
- Od połowy sierpnia 2010 otwarto możliwość połączenia sieci PIONIER z siecią naukową w Rosji (Obwód Kaliningradzki).
- Dodatkowy system transmisyjny z Poznania do Hamburga, (połączenie bezpośrednio z siecią naukową SURFnet i NORDunet)
- sieć PIONIER dysponuje łączami do
 - punktu wymiany ruchu w Amsterdamie (AMS-IX) (przez Hamburg)
 - punktu dostępu do zasobów GLIF (Global Lambda Integrated Facility) (przez Hamburg)
 - europejskiej sieci naukowej GEANT (10 Gbit/s w technologiach Packet over Sonet oraz Gigabit Ethernet (węzeł sieci GEANT w Poznaniu))
 - Internetu światowego aktualna przepustowość 15 Gbit/s.

Sieci WAN w Polsce - Orange

- W oparciu o infrastrukturę T.P. S.A
- Infrastruktura
 - Światłowodowa sieć o długości około 80 000 km
 - Technologie
 - DWDM
 - IP/MPLS
 - Realizator projektu Regionalne Sieci Szkieletowe
 - 1818 km sieci szkieletowej
 - 253 miejscowości
 - Realizacje, m.in.:
 - Szerokopasmowe Lubuskie
 - Szerokopasmowe Pomorskie
 - woj. Warmińsko-mazurskieWoj. Podkarpacke
 - Woj.. Łódzkie

Sieci WAN w Polsce - Exatel

- EXATEL S.A.
- Polski operator telekomunikacyjny
- Infrastruktura
 - Światłowodowa sieć transmisji danych o długości około 20 000 km
 - Przepustowość
 - Do 9 Tb/s DWDM
 - Do 40 Gb/s IP/MPLS
 - Usługi
 - Transmisja danych
 - Dzierżawa łączy
 - Hosting
 - Kolokacja
 - VPN w oparciu o technologię MPLS
 - Bezpośrednie połączenia z ponad 80 operatorami krajowymi i 70 zagranicznymi
 - 500 węzłów sieci w największych miastach w Polsce

Sieci WAN w Polsce - TkTelekom

- TkTelekom
- Infrastruktura
 - Infrastruktura światłowodowa 7 000 km
 - Infrastruktra miedziana 20 000 km
 - Główny szkielet w oparciu o IP/MPLS i 10Gb/s IPoDWDM
 - Przepływności 1, 2.5, 10 Gb/s
 - Tranzyt międzynarodowy 100 Gb/s
 - Pięć pierścieni
 - północno-zachodni,
 - północno-wschodni,
 - południowo-wschodni,
 - południowo-zachodni,
 - centralny

Sieci WAN w Polsce - Netia

- Netia S.A.
 - operator telekomunikacyjny,
 - dostawca
 - usług telewizyjnych,
 - internetu stacjonarnego oraz mobilnego,
 - telefonii stacjonarnej,
 - telefonii komórkowej
- Spółki wchodzące w skład Grupy Netia
 - Netia SA
 - InterNetia Sp. z o.o.
 - CDP Netia (dawniej Crowley Data Poland)
 - Telefonia Dialog Sp. z o.o.
 - Petrotel Sp. z o.o.

Infrastruktura

- światłowodowa sieć transmisji danych o długości ponad 5 000 km
- Zapewnia dostęp do Internetu dla około 5% użytkowników w Polsce
- Sieć szkieletowa 8 rur w kanalizacji kablowej z kablami po 48 włókien
- Technologia DWDM (32 kanały po 10Gb/s)
- Usługi SDH, Carier Ethernet, IP (IPoDWDM)

Literatura i bibliografia

A.Sierszeń, Ł.Sturgalewski, "Technologie sieci WAN", Projektowanie i Realizacja Sieci Komputerowych, Politechnika Łódzka, 2014 V.Amato, W.Lewis "Akademia sieci CISCO", Mikom, Warszawa 2001

L.L.Peterson, B.S.Davie - Sieci komputerowe - podejście systemowe", Nakom, Poznań 2000

Andrew S. Tanenbaum, Sieci komputerowe, wydanie 4, Helion 2004

W.Graniszewski, E.Grochocki, G.Świątek, WAN - Studia Informatyczne, Sieci Komputerowe,

Mark Sportack, Sieci komputerowe, Księga Eksperta, Helion, Warszawa 1999

D.E.Comer, "Sieci i intersieci", WNT, Warszawa 2001

D.Chaładyniak, J.Wacniki, "Kuźnia Talentów: Sieci komputerowe. Zarządzanie sieciami WAN" – Informatyka+

C.Bryant "Cisco CCENT/C1CNA Certification Exam Training: Troubleshooting Physical Interfaces And Line Protocol"

Y.Pointourier "Link Failure Recovery for MPLS Networks with Multicasting", University of Virginia, August 2002

Konsorcjum PIONIER, Polski Internet Optyczny,

 $B.Zbierzchowski, {\it "Systemy i sieci SDH"}, Instytut Telekomunikacji Politechniki Warszawskiej$

LearnCisco, CCNAX 200-120, WAN basics