Lógica y Computabilidad

2do cuatrimestre 2020 - A DISTANCIA

Departamento de Computación - FCEyN - UBA

Lógica de Primer Orden - clase 4

Aplicaciones de compacidad, indecidibilidad de la lógica de primer orden

Aplicaciones de Compacidad - no expresividad

Teorema

Si Γ tiene modelos arbitrariamente grandes, tiene modelo infinito.

Demostración.

Definimos (en el lenguaje con solo la igualdad)

$$\varphi_2 = (\exists x)(\exists y)x \neq y$$

$$\varphi_3 = (\exists x)(\exists y)(\exists z)(x \neq y \land x \neq z \land y \neq z)$$

$$\vdots$$

$$\varphi_n = \text{"hay al menos } n \text{ elementos"}$$

- ▶ por hipótesis, todo subconjunto finito de $\Gamma \cup \{\varphi_i \mid i \geq 2\}$ tiene modelo
- ▶ por Compacidad, $\Gamma \cup \{\varphi_i \mid i \geq 2\}$ tiene algún modelo \mathcal{M}
- ► M tiene que ser infinito

Conclusión:

- \mathcal{A} es infinito sii $\mathcal{A} \models \{\varphi_i \mid i \geq 2\}$
- ▶ no existe Γ tal que A es finito sii $A \models \Gamma$

Aplicaciones de Compacidad - modelos no estándar

Consideremos un lenguaje $\mathcal{L}=\{0,\mathcal{S},<,+,\cdot\}$ con igualdad. Consideremos la estructura $\mathcal{N}=\langle\mathbb{N};0,\mathcal{S},<,+,\cdot\rangle$ con la interpretación usual. Sea

$$\mathsf{Teo}(\mathcal{N}) = \{ \varphi \in \mathsf{FORM}(\mathcal{L}) : \varphi \text{ es sentencia y } \mathcal{N} \models \varphi \}$$

Expandimos el lenguaje con una nueva constante c y definimos

$$\Gamma = \{0 < c, S(0) < c, S(S(0)) < c, S(S(S(0))) < c, \ldots\}$$

- ▶ cada subconjunto finito de $\Gamma \cup \text{Teo}(\mathcal{N})$ tiene modelo
- ▶ por Compacidad, $\Gamma \cup \text{Teo}(\mathcal{N})$ tiene modelo
- ▶ por Löwenheim-Skolem $\Gamma \cup \text{Teo}(\mathcal{N})$ un modelo numerable

$$\mathcal{M} = \langle M; 0^{\mathcal{M}}, S^{\mathcal{M}}, <^{\mathcal{M}}, +^{\mathcal{M}}, \cdot^{\mathcal{M}}, c^{\mathcal{M}} \rangle$$

- ightharpoonup sea \mathcal{M}' la restricción de \mathcal{M} al lenguaje original \mathcal{L}
- $\triangleright \mathcal{N} \models \varphi \text{ sii } \mathcal{M}' \models \varphi \text{ para toda sentencia } \varphi \in \mathsf{FORM}(\mathcal{L})$
 - $\nearrow \mathcal{N} \models \varphi \quad \Rightarrow \quad \varphi \in \mathsf{Teo}(\mathcal{N}) \quad \Rightarrow \quad \mathcal{M} \models \varphi \quad \Rightarrow \quad \mathcal{M}' \models \varphi$
- $\triangleright \mathcal{N}$ y \mathcal{M}' no son isomorfos: $c^{\mathcal{M}}$ es inalcanzable en \mathcal{M}'

Repaso de Máquina Turing

Fijamos $\Sigma = \{1, *\}.$

Recordar que una máquina de Turing es una tupla

$$M = (\Sigma, Q, T, q_0, q_f)$$

donde

- Σ (finito) es el conjunto símbolos que puede escribir en la cinta
- Q (finito) es el conjunto de estados
 - tiene dos estados distinguidos:
 - ▶ $q_0 \in Q$ es el estado inicial
 - ▶ $q_f \in Q$ es el estado final
- ▶ $T \subseteq Q \times \Sigma \times \Sigma \cup \{L, R\} \times Q$ es la tabla finita de instrucciones

Modelo de cómputo de máquina de Turing

Recordar que la máquina

$$M = (\Sigma, Q, T, q_0, q_f)$$

con entrada $w \in \{1\}^+$ termina (notado $M(w) \downarrow$) sii partiendo de w en la cinta de entrada y la cabeza leyendo el primer caracter después de w,

$$\dots * * 1 1 \dots 1 * * \dots$$
 q_0

llega al estado q_f después de una cantidad finita de pasos.

No es computable determinar si una máquina de Turing termina o no.

5

Idea de la demostración de que Primer Orden es indecidible

- lacktriangle fijar un lenguaje adecuado ${\cal L}$
- ▶ dada una máquina M y $w \in \{1\}^+$, construir (uniformemente) una sentencia $\varphi_{M,w} \in \mathsf{FORM}(\mathcal{L})$ tal que

$$M(w) \downarrow \text{ sii } \vdash \varphi_{M,w}$$

- ▶ si el problema de determinar si vale $\vdash \psi$ o $\not\vdash \psi$ para $\psi \in \mathsf{FORM}(\mathcal{L})$ fuese computable, en particular sería computable determinar si $\vdash \varphi_{M,w}$ o $\not\vdash \varphi_{M,w}$ para cualquier máquina M y entrada w.
- ▶ como esto último es no-computable, tampoco es computable determinar si vale $\vdash \psi$ o $\not\vdash \psi$ para cualquier $\psi \in \mathsf{FORM}(\mathcal{L})$

Dados M y w, ¿quién es $\varphi_{M,w}$?

- una fórmula de L que se construye computablemente a partir de M y w
- $ightharpoonup \varphi_{M,w}$ describe el comportamiento de M con entrada w en una cierta interpretación \mathcal{A}
- $ightharpoonup \varphi_{M,w}$ es una fórmula-programa

El lenguaje \mathcal{L}

- símbolos de constante:
 - uno solo: ϵ
- símbolos de función:
 - la función 1 unaria
 - ▶ la función * unaria
- símbolos de relación:
 - infinitos (tantas como necesitemos) símbolos de relaciones binarias
 - ▶ sea $E = \{q_0, q_f, p, q, r, ...\}$ un conjunto infinito de estados que podemos llegar a usar en máquinas de Turing
 - cada máquina particular usará solo una cantidad finita de estados de E
 - los símbolos des relación son:

$$R_{q_0}, R_{q_f}, R_p, R_q, R_r, \dots$$

7

Notación de los términos de \mathcal{L}

- ▶ si t es un término de \mathcal{L} , 1(t) lo notamos 1t
- ▶ si t es un término de \mathcal{L} , *(t) lo notamos *t

Por ejemplo

- ▶ 1(x) lo notamos 1x
- $1(1(\epsilon))$ lo notamos 11ϵ
- ▶ 1(1(*(1(y)))) lo notamos 11*1y

La interpretación ${\cal A}$

Dada una máquina

$$M = (\Sigma, Q, T, q_0, q_f)$$

y una entrada $w \in \{1\}^+$, fijamos una interpretación $\mathcal{A} = \mathcal{A}_{M,w}$

- el universo: $A = \{1, *\}^* = \text{cadenas finitas sobre } \{1, *\}$
 - va a representar datos en la cinta de M
- $ightharpoonup \epsilon_{\mathcal{A}} = \text{cadena vacía}$
 - lacktriangle la cinta es infinita, pero infinitos st se representan como ϵ
- las funciones

$$1_{\mathcal{A}}: A \to A$$
 y $*_{\mathcal{A}}: A \to A$

se interpretan así:

- ▶ $1_A(x) = 1x$, o sea la cadena que empieza por 1 y sigue con x
- $*_{\mathcal{A}}(x) = *x$, o sea la cadena que empieza por * y sigue con x
- ▶ para $q \in Q$, $(R_q)_A(x, y)$ es verdadero sii la máquina M con entrada w llega a una configuración en la que:
 - ▶ el estado es q
 - en la cinta está escrito x en orden inverso y a continuación y
 - ▶ la cabeza de M apunta al primer caracter de y

Dada una máquina

$$M = (\Sigma, Q, T, q_0, q_f)$$

y una entrada

$$w = \overbrace{1 \dots 1}^{k}$$

fijamos la interpretación $\mathcal{A}=\mathcal{A}_{M,w}$ que acabamos de ver.

- - ▶ dice: "el estado inicial es alcanzable"
 - $ightharpoonup \mathcal{A} \models \varphi_0$
- - ▶ dice: "el estado final es alzanzable "
 - $A \models \varphi_f \text{ sii } M(w) \downarrow$

Para cada instrucción $I \in T$:

▶ si *I* dice *si M está en el estado q y lee un* 1, *escribir b y pasar al estado r*, definir

$$\psi_I := (\forall x)(\forall y) (R_q(x,1y) \rightarrow R_r(x,by))$$

▶ si *I* dice *si M está en el estado q y lee un* *, *escribir b y pasar al estado r*, definir

$$\psi_I := (\forall x)(\forall y) (R_q(x, *y) \to R_r(x, by)) \land (\forall x) (R_q(x, \epsilon) \to R_r(x, b\epsilon))$$

▶ si *I* dice *si M está en el estado q y lee un 1, moverse a la izquierda y pasar al estado r,* definir

$$\psi_{I} := (\forall x)(\forall y) (R_{q}(1x, 1y) \to R_{r}(x, 11y)) \land (\forall x)(\forall y) (R_{q}(*x, 1y) \to R_{r}(x, *1y)) \land (\forall y) (R_{q}(\epsilon, 1y) \to R_{r}(\epsilon, *1y))$$

▶ si I dice si M está en el estado q y lee un * moverse a la izquierda y pasar al estado r, definir

$$\psi_{I} := (\forall x)(\forall y) (R_{q}(1x, *y) \to R_{r}(x, 1 * y)) \land \\ (\forall x)(\forall y) (R_{q}(*x, *y) \to R_{r}(x, * * y)) \land \\ (\forall y) (R_{q}(\epsilon, *y) \to R_{r}(\epsilon, * * y)) \land \\ (\forall x) (R_{q}(*x, \epsilon) \to R_{r}(x, \epsilon)) \land \\ (\forall x) (R_{q}(1x, \epsilon) \to R_{r}(x, 1\epsilon)) \land \\ (R_{q}(\epsilon, \epsilon) \to R_{r}(\epsilon, \epsilon))$$

(Misma idea con moverse a la derecha...)

Recordar que la máquina

$$M = (\Sigma, Q, T, q_0, q_f)$$

tiene siempre un conjunto finito de instrucciones T

Definimos

$$\varphi_{M,w} := (\varphi_0 \wedge \bigwedge_{I \in T} \psi_I) \to \varphi_f$$

Proposición

$$Si A \models \varphi_{M,w} sii M(w) \downarrow.$$

Demostración.

Sabemos que $A \models \varphi_0$. Sabemos que $A \models \varphi_f$ sii $M(w) \downarrow$. Es fácil ver que $A \models \psi_I$ para cada $I \in T$.

Luego $A \models \varphi_{M,w}$ sii $A \models \varphi_f$ sii $M(w) \downarrow$.

Entscheidungsproblem

Teorema

$$\vdash \varphi_{M,w} \ sii \ M(w) \downarrow$$
.

Demostración.

(⇒) Si $\vdash \varphi_{M,w}$ entonces $\models \varphi_{M,w}$, es decir, $\varphi_{M,w}$ es verdadera en toda interpretación. En particular, $\mathcal{A} \models \varphi_{M,w}$. Luego $M(w) \downarrow$.

(\Leftarrow) Idea. Si M(w) ↓ entonces existe un cómputo de M(w):

$$(x_1, r_1, y_1) \rightsquigarrow (x_2, r_2, y_2) \rightsquigarrow \cdots \rightsquigarrow (x_n, r_n, y_n)$$

con $x_i, y_i \in \{1, *\}^*, r_i \in Q$, $x_1 = w$, $r_1 = q_0$, $y_1 = \epsilon$, $r_n = q_f$. Cada (x_i, r_i, y_i) representa una configuración del cómputo M(w):

- ▶ el estado es r;
- ▶ la cinta contiene $\cdots * * * [x_i][y_i] * * * \cdots$
- la cabeza está apuntando al primer caracter de yi

Cada paso de la ejecución coincide con una sustitución de una de las fórmulas ψ_I .

- cómputo de M(w) = demostración de $\varphi_{M,w}$
- fórmula $\varphi_{M,w} = \text{programa de } M$

Programa = Demostración

Recordemos que

$$\varphi_{M,w} := (\varphi_0 \wedge \bigwedge_{I \in T} \psi_I) \to \varphi_f$$

Supongamos que *M* con entrada 111 da el siguiente cómputo:

$$(111, q_0, *) \stackrel{(q_0, *, L, q_1) \in \mathcal{T}}{\leadsto} (11, q_1, 1) \stackrel{(q_1, 1, L, q_f) \in \mathcal{T}}{\leadsto} (1, q_f, 11)$$

Veamos que $\{\varphi_0\} \cup \{\psi_I \mid I \in T\} \vdash \varphi_f$. Esto prueba que $\vdash \varphi_{M,w}$.

- ▶ Recordemos que $\psi_{(q_0,*,L,q_1)} := \ldots \wedge (\forall x) \ (R_{q_0}(1x,\epsilon) \to R_{q_1}(x,1\epsilon)) \wedge \ldots$ Por SQ4, $\{\varphi_0\} \cup \{\psi_I \mid I \in T\} \vdash (R_{q_0}(111\epsilon,\epsilon) \to R_{q_1}(11\epsilon,1\epsilon))$
- Recordemos que $\psi_{(q_1,1,L,q_f)} := (\forall x)(\forall y) \ (R_{q_1}(1x,1y) \to R_{q_f}(x,11y)) \land \dots$ Por SQ4, $\{\varphi_0\} \cup \{\psi_I \mid I \in T\} \vdash (R_{q_1}(11\epsilon,1\epsilon) \to R_{q_f}(1\epsilon,11\epsilon))$
- Recordemos que $\varphi_0 := R_{q_0}(111\epsilon, \epsilon)$
- ▶ Por MP, concluimos $\{\varphi_0\} \cup \{\psi_I \mid I \in T\} \vdash R_{q_f}(1\epsilon, 11\epsilon)$
- ▶ De esto, se puede concluir $\{\varphi_0\} \cup \{\psi_I \mid I \in T\} \vdash \underbrace{(\exists x)(\exists y) \ R_{q_f}(x,y)}$

Entscheidungsproblem

Teorema (Turing, 1936)

Sea \mathcal{L} el lenguaje descripto y sea $\psi \in \mathsf{FORM}(\mathcal{L})$. El problema de decidir si $\vdash \psi$ o $\not\vdash \psi$ no es computable.

Demostración.

Supongamos que hay un programa que dada $\psi \in \mathsf{FORM}(\mathcal{L})$ devuelve *verdadero* sii $\vdash \psi$.

Dada M y w, habría un procedimiento para decidir si $M(w) \downarrow o$ $M(w) \uparrow$:

- 1. construir $\varphi_{M,w}$ (esto se hace computablemente)
- 2. si $\vdash \varphi_{M,w}$ entonces $M(w) \downarrow$; si no $M(w) \uparrow$