Московский государственный университет имени М.В.Ломоносова
Задание №1
Параллельная программа на ОрепМР, которая реализует однокубитное квантовое преобразование
Факультет: Вычислительной математики и кибернетики
Кафедра: Суперкомпьютеров и квантовой информатики
Группа: 323
Студент: Ни Юлия Авроровна

1. Формулировка задания

- 1. Реализовать параллельную программу на C++ с использованием OpenMP, которая выполняет однокубитное квантовое преобразование над вектором состояний длины 2ⁿ, где n количество кубитов, по указанному номеру кубита k. Описание однокубитного преобразования дано ниже в разделе методические рекомендации[1]. Для работы с комплексными числами возможно использование стандартной библиотеки шаблонов[2].
- 2. Определить максимальное количество кубитов, для которых возможна работа программы на системе Polus.
- 3. Протестировать программу на системе Polus. В качестве теста использовать преобразование Адамара по номеру кубита:
 - а) который соответствует Вашему номеру в списке группы плюс 1 (5)
 - b) 1
 - c) n

Начальное состояние вектора должно генерироваться случайным образом. Заполнить таблицу и построить график зависимости ускорения параллельной программы от числа процессоров для каждого из случаев a)-c).

4. Написать отчет, который будет содержать листинг программы, а так же результаты выполнения пунктов 2-3.

2. Таблицы

Полученные значения усреднены по результатам 5 испытаний для каждого числа кубитов и процессоров.

1. Для 1-го кубита:

Количество кубитов	Количество процессоров	Время работы программы (сек)	Ускорение
20	1	0.095761	1
	2	0.052114	1.837529
	4	0.031932	2.998903
	8	0.017458	5.485222
	16	0.015625	6,128739
	32	0,012538	7,637661
	64	0,011801	8,114651
	128	0,009034	10,61007
24	1	1.528499	1
	2	0.808264	1.891089
	4	0.473672	3.226914

	8	0.289078	5.287497
	16	0,237959	6,423382
	32	0,206196	7,412855
	64	0,185563	8,237107
	128	0,139751	10,93729
28	1	24.27171	1
	2	13.96564	1.737959
	4	7.417835	3.272075
	8	4.563172	5.319043
	16	3,892413	6,252797
	32	3,271309	7,439978
	64	2,865651	8,493172
	128	2,217713	10,97458
Максимально возможное число кубитов (30)	1	99,8135	1
	2	54,45406	1,832986
	4	29,48777	3,384912
	8	18,52198	5,388921
	16	16,16206	6,17579
	32	13,48781	7,400274
	64	11,71531	8,51992
	128	9,44478	10,56812

2. Для 5-го кубита:

Количество кубитов	Количество процессоров	Время работы программы (сек)	Ускорение
20	1	0,099127	1
	2	0,053953	1,837293
	4	0,029977	3,306833
	8	0,018157	5,459379
	16	0,015976	6,204457
	32	0,013115	7,558503
	64	0,012873	8,749055
	128	0,009107	10,88436
24	1	1,530773	1
	2	0,811649	1,886004
	4	0,463428	3,303151

	8	0,279194	5,482833
	16	0,246579	6,208032
	32	0,203114	7,536512
	64	0,183106	8,360051
	128	0,141547	10,81461
28	1	25,10055	1
	2	13,85059	1,812235
	4	7,405184	3,389591
	8	4,405786	5,697177
	16	3,986255	6,296774
	32	3,398324	7,386155
	64	2,99175	8,389919
	128	2,288146	10,96981
Максимально возможное число кубитов (30)	1	98,32792	1
	2	51,05436	1,925945
	4	29,41207	3,343114
	8	17,26591	5,694916
	16	15,65760	6,279883
	32	13,11716	7,49613
	64	11,81423	8,608774
	128	8,947036	10,98999

3. Для п-го кубита:

Количество кубитов	Количество процессоров	Время работы программы (сек)	Ускорение
20	1	0,096328	1
	2	0,051486	1,870959
	4	0,032178	2,99355
	8	0,018246	5,279326
	16	0,015299	6,296282
	32	0,012817	7,515312
	64	0,011484	8,387582
	128	0,008824	10,91556
24	1	1,492371	1
	2	0,841912	1,752969
	4	0,451056	3,308616

	8	0,263046	5,609971
	16	0,237541	6,247882
	32	0,199016	7,498731
	64	0,172358	8,658507
	128	0,142476	10,47447
28	1	25,09182	1
	2	17,2567	1,454033
	4	7,578907	3,310744
	8	4,595298	5,460325
	16	4,038625	6,212961
	32	3,463132	7,245413
	64	2,905280	8,636627
	128	2,315144	10,83812
Максимально возможное число кубитов (30)	1	101,2394	1
	2	71,99657	1,406169
	4	29,86801	3,389559
	8	18,68966	5,217155
	16	16,30809	6,207924
	32	13,96213	7,268344
	64	11,8656	8,532178
	128	9,457389	10,70479
		-	

3. Графики

Ниже приведены графики ускорения для максимально возможного числа кубитов.

5-ый кубит

n-ый кубит

