HW #6, Due: 2015, April 08

1. If Z is a standard normal variable, find

(a)
$$P(Z^2 < 1)$$
 (b) $P(Z^2 > 3.84146)$.

Solution.

(a) We have that

$$P(Z^2 < 1) = P(-1 < Z < 1) = 1 - 2 \cdot P(Z > 1) \approx 0.6826,$$

and

(b)
$$P(Z^2 > 3.84146) = 2 \cdot P(Z > \sqrt{3.84146}) \approx 2 \cdot P(Z > 1.96) \approx 0.05.$$

2. If Y is a normal random variable with $\mu = 20$ and variance $\sigma^2 = 4$, i.e., $Y \sim N(20, 4)$,

(a)
$$P(16 \le Y \le 22)$$
 (b) $P(100 < 9Y - 80 < 145)$.

Solution.

(a) We have that

$$\begin{split} P(16 \leq Y \leq 22) &= P\left(\frac{16-20}{2} \leq Z \leq \frac{22-20}{2}\right) \\ &= P(-2 \leq Z \leq 1) \\ &= 1 - [P(Z < -2) + P(Z > 1)] \\ &= 1 - [P(Z > 2) + P(Z > 1)] \\ &\approx 0.8185, \end{split}$$

and

(b)

$$\begin{split} P(100 < 9Y - 80 < 145) &= P(20 < Y < 25) \\ &= P\left(\frac{20 - 20}{2} < Z < \frac{25 - 20}{2}\right) \\ &= P(0 < Z < 2.5) \\ &= P(Z > 0) - P(Z > 2.5) \\ &\approx 0.4938. \end{split}$$

3. The scores of a pre-employment test are normally distributed with mean $\mu = 70$ and standard deviation $\sigma = 5$. If only the top 1.5% of the applicants (based on their score on the pre-employment test) are to be considered, find the cut-off score (i.e., the value such that only 1.5% of the applicants score this value or higher).

Solution. Let y be the cut-off score. Then we have that

$$0.0015 = P(Y \ge y) = P\left(Z \ge \frac{y - 70}{5}\right),\,$$

so that $(y - 70)/5 \approx 2.97$; i.e., $y \approx 84.85$.

4. Using the fact that $\int_0^\infty e^{-y^2/2} dy = \sqrt{\frac{\pi}{2}}$, show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ by making the transformation $y = \frac{1}{2}x^2$.

Proof. Using the substitution $y = \frac{1}{2}x^2$ we have that

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty y^{-\frac{1}{2}} e^{-y} dy$$
$$= \int_0^\infty \frac{\sqrt{2}}{x} e^{-\frac{1}{2}x^2} x dx$$
$$= \sqrt{2} \int_0^\infty e^{-\frac{1}{2}x^2} dx$$
$$= \sqrt{2} \sqrt{\frac{\pi}{2}} = \sqrt{\pi}.$$

- 5. If Y has an exponential distribution with P(Y < 3) = 0.4512, find
 - (a) E[Y] (b) $P(Y \ge 2)$.

Solution.

(a) We have that

$$\begin{aligned} 0.4512 &= P(Y < 3) \\ &= P(Y \le 3) \\ &= F(3) \\ &= \int_{-\infty}^{3} \frac{1}{\beta} e^{-\frac{y}{\beta}} dy \\ &= \int_{0}^{3} \frac{1}{\beta} e^{-\frac{y}{\beta}} dy \\ &= -e^{-\frac{3}{\beta}} + 1, \end{aligned}$$

so that $e^{-\frac{3}{\beta}} = 0.5488$; i.e., $\beta \approx 5$. Thus $E[Y] \approx 5$.

(b)

$$\begin{split} P(Y \ge 2) &= 1 - P(Y < 2) \\ &= 1 - \int_0^2 \frac{1}{\beta} e^{-\frac{y}{\beta}} dy \\ &= e^{-\frac{2}{\beta}} \\ &\approx 0.6703. \end{split}$$

6. The length of time Y necessary to complete a key operation in the construction of houses has an exponential distribution with mean 10 hrs. The formula $C = 100 + 40Y + 3Y^2$ gives the cost C of completing the operation. Find the mean and variance of C.

Solution. First we want to find $E[Y^2]$. So

$$\begin{split} E[Y^2] &= \frac{1}{10} \lim_{t \to \infty} \int_0^t y^2 e^{-\frac{y}{10}} \; dy \\ &= \lim_{t \to \infty} \left[-y^2 e^{-\frac{y}{10}} \Big|_0^t + 2 \int_0^t y e^{-\frac{y}{10}} \; dy \right] \qquad \text{[Integration by parts]} \\ &= 2 \lim_{t \to \infty} \left[\int_0^t y e^{-\frac{y}{10}} \; dy \right] \\ &= 2 \lim_{t \to \infty} \left[-10 y e^{-\frac{y}{10}} \Big|_0^t + 10 \int_0^t e^{-\frac{y}{10}} \; dy \right] \qquad \text{[Integration by parts]} \\ &= 200 \lim_{t \to \infty} \left[\frac{1}{10} \int_0^t e^{-\frac{y}{10}} \; dy \right] \\ &= 200 \cdot E[Y] = 2000. \end{split}$$

Now the mean of C is given by E[C] so that

$$E[C] = E[100 + 40Y + 3Y^{2}]$$

$$= E[100] + 40E[Y] + 3E[Y^{2}]$$

$$= 100 + 40 \cdot 10 + 3 \cdot 2000$$

$$= 6500.$$

and the variance of C, V[Y], is $E[Y^2] - E[Y]^2 = 2000 - 100 = 1900$.

- 7. Suppose Y has density function $f(y) = ky^9 e^{-y/2}, y \ge 0$. Find
 - (a) k.
 - (b) E[Y] and V(Y).
 - (c) P(Y > 34.1696).
 - (d) A value b such that P(Y < b) = 0.10.

Solution. By inspection we can see that f is the gamma distribution with $\alpha = 10$, $\beta = 2$.

(a)
$$k = \frac{1}{2^{10} \cdot \Gamma(10)} = \frac{1}{2^{10} \cdot 9!}$$
.

(b)
$$E[Y] = \alpha \beta = 20$$
 and $V(Y) = \alpha \beta^2 = 40$.

MATH 380, Spring 2015 Section 4 (10519) HW #6, Due: 2015, April 08

(c)

$$\begin{split} P(Y > 34.1696) &= \frac{1}{2^{10} \cdot 9!} \int_{34.1696}^{\infty} y^9 e^{-y/2} dy \\ &= \frac{1}{2^{10} \cdot 9!} \int_{17.0848}^{\infty} 2^{10} z^9 e^{-z} dz \qquad \left[z = \frac{y}{2} \text{ substitution}\right] \\ &= \frac{1}{9!} \int_{17.0848}^{\infty} z^9 e^{-z} dz \\ &= \sum_{x=0}^{9} \frac{17.0848^x e^{-17.0848}}{x!} \\ &\approx 0.025. \end{split}$$

(d) Suppose there exists b with P(Y < b) = 0.10, then we must have that

$$0.90 = P(Y \ge b) = P(Z \ge b/2),$$

and from Appendix 3, Table 3, we get $b/2 \approx 14$, so that $b \approx 28$.