Все задачи этого листка относятся к материалу модуля 2 и будут приниматься в модуле 3 в качестве бонусных.

- **10.0-b.** Докажите, что инъективное банахово пространство (см. листок 6) дополняемо в любом содержащем его банаховом пространстве.
- **10.1-b. 1)** Докажите, что c_0 недополняемо в ℓ^{∞} .
- 2) Приведите пример неинъективного банахова пространства.

Указание. Можно действовать следующим образом:

- а) Докажите, что \mathbb{N} можно представить в виде несчетного объединения $\mathbb{N} = \bigcup_{i \in I} A_i$ счетных множеств A_i так, что $A_i \cap A_j$ конечно при $i \neq j$. (Подсказка: вместо \mathbb{N} удобнее брать \mathbb{Q}).
- b) Докажите, что для каждого $f \in (\ell^{\infty})^*$, обращающегося в нуль на c_0 , множество тех $i \in I$, для которых $f(\chi_{A_i}) \neq 0$, не более чем счетно.
- с) Докажите, что на ℓ^{∞}/c_0 не существует счетного множества непрерывных линейных функционалов, разделяющего точки.
- d) Докажите, что c_0 недополняемо в ℓ^{∞} .
- **10.2-b. 1)** Докажите, что если банахово пространство X топологически изоморфно Y^* для некоторого банахова пространства Y, то оно дополняемо в X^{**} .
- 2) Решите задачу 5.9-b с помощью п. 1 и задачи 10.1-b.
- **10.3-b.** Пусть X и Y банаховы пространства и $S \in \mathcal{B}(Y^*, X^*)$. Обязательно ли существует такой $T \in \mathcal{B}(X, Y)$, что $S = T^*$?
- **10.4-b.** Отождествим $(\ell^1)^*$ с ℓ^∞ (см. задачу 7.1) и рассмотрим пространство c_0 как подмножество в $(\ell^1)^*$. Найдите ${}^{\perp}c_0$ и $({}^{\perp}c_0)^{\perp}$.
- **10.5-b.** Пусть X нерефлексивное банахово пространство. Покажите, что в X^* существует замкнутое векторное подпространство N, для которого $N \neq ({}^{\perp}N)^{\perp}$.
- **10.6-b.** Придумайте пример инъективного оператора $T \in \mathcal{B}(X,Y)$ между банаховыми пространствами X и Y, такого, что $\operatorname{Im} T^*$ не плотен в X^* . (Указание: X обязано быть нерефлексивным см. лекцию.)
- **10.7-b.** Пусть X, Y нормированные пространства и $T \in \mathcal{B}(X, Y)$.
- 1) Докажите, что $T = \varkappa \sigma$, где \varkappa инъективный, а σ открытый оператор.
- **2)** Докажите, что $T = \mu \tau$, где μ топологически инъективный оператор с замкнутым образом, а τ оператор с плотным образом.
- 3) Сформулируйте и докажите утверждения о единственности разложений из пп. 1 и 2.

Определение 10.1. Оператор $T \in \mathcal{B}(X,Y)$ называется *строгим*, если он осуществляет открытое отображение X на $\operatorname{Im} T$ и $\operatorname{Im} T$ замкнут в Y.

10.8-b. Докажите, что если X и Y — банаховы пространства, то оператор T осуществляет открытое отображение X на ${\rm Im}\, T$ тогда и только тогда, когда ${\rm Im}\, T$ замкнут в Y.

Разложение оператора. Пусть X,Y — нормированные пространства и $T \in \mathcal{B}(X,Y)$. Положим $\operatorname{Coim} T = X/\operatorname{Ker} T$ (кообраз T). Из свойств факторпространств (см. лекцию) следует существование коммутативной диаграммы

$$\begin{array}{ccc}
X & \xrightarrow{T} & Y \\
Q & & \downarrow J \\
\operatorname{Coim} T & \xrightarrow{\widetilde{T}} & \overline{\operatorname{Im} T}
\end{array} \tag{1}$$

в которой Q — факторотображение и J — тождественное вложение.

10.9-b. Докажите, что следующие свойства оператора $T \in \mathcal{B}(X,Y)$ эквивалентны:

- (1) T строгий;
- (2) для любого разложения из п. 1 задачи 10.7-b оператор \varkappa топологически инъективен и имеет замкнутый образ;
- (3) для любого разложения из п. 2 задачи 10.7-b оператор τ открыт;
- (4) оператор \tilde{T} из разложения (1) топологический изоморфизм.

10.10-b (*«усиленная лемма Серра»*). Пусть X,Y,Z — банаховы пространства, $S \in \mathcal{B}(X,Y)$, $T \in \mathcal{B}(Y,Z)$ и TS = 0. Докажите, что следующие утверждения эквивалентны:

- (1) последовательность $X \xrightarrow{S} Y \xrightarrow{T} Z$ точна и ${\rm Im}\, T$ замкнут;
- (2) последовательность $X^* \stackrel{S^*}{\longleftarrow} Y^* \stackrel{T^*}{\longleftarrow} Z^*$ точна и $\operatorname{Im} S^*$ замкнут.

Как следствие, цепной комплекс банаховых пространств точен тогда и только тогда, когда точен его сопряженный комплекс.

10.11-b (*«лемма Серра»*). Пусть X,Y,Z — банаховы пространства, $S \in \mathcal{B}(X,Y), T \in \mathcal{B}(Y,Z)$ и TS = 0. Предположим, что операторы S и T имеют замкнутые образы. Постройте изометрический изоморфизм ($\ker T / \operatorname{Im} S$)* $\cong \ker S^* / \operatorname{Im} T^*$.

Как следствие, если C — цепной комплекс банаховых пространств со строгими дифференциалами, то $H^n(C^*) \cong H_n(C)^*$.

- **11.1.** Для каждой из следующих алгебр A дайте критерий обратимости ее элемента и найдите спектр каждого ее элемента: **1)** $A = \mathbb{C}[t]$; **2)** $A = \mathbb{C}[[t]]$; **3)** $A = \mathbb{C}(t)$.
- 11.2. 1) Придумайте пример линейного оператора в каком-нибудь векторном пространстве, спектр которого строго больше, чем множество его собственных значений.
- 2) Докажите, что такой оператор есть в любом бесконечномерном векторном пространстве.
- **11.3.** Пусть X нормированное пространство, L(X) алгебра всех линейных операторов в X. Обязательно ли подалгебра ограниченных операторов $\mathscr{B}(X) \subset L(X)$ спектрально инвариантна в L(X)?
- **11.4.** Пусть (X, μ) пространство с мерой, $f: X \to \mathbb{C}$ измеримая функция.
- 1) Приведите пример, показывающий, что значение f не обязано быть ее существенным значением.
- **2)** Приведите пример, показывающий, что существенное значение f не обязано быть ее значением.
- 3) Докажите, что если X = [a, b] отрезок с мерой Лебега, а f непрерывна, то множество ее значений совпадает с множеством ее существенных значений.
- **11.5.** Пусть A унитальная алгебра, $a \in A$ ее элемент и $L_a \colon A \to A, \ b \mapsto ab$ оператор умножения. Докажите, что $\sigma(a) = \sigma(L_a)$.
- **11.6. 1)** Пусть A унитальная алгебра и элемент $a \in A$ обратим слева и справа (т.е. существуют такие $a_{\ell}, a_{r} \in A$, что $a_{\ell}a = aa_{r} = 1$). Докажите, что a обратим.
- **2)** Приведите пример алгебры и ее элемента, который обратим слева (или справа), но не обратим. (См., однако, задачу 11.9-b.)
- **11.7.** Пусть A унитальная алгебра.
- 1) Пусть $a_1, \ldots, a_n \in A$ коммутирующие элементы. Докажите, что элемент $a_1 \cdots a_n$ обратим тогда и только тогда, когда все элементы a_1, \ldots, a_n обратимы.
- **2)** Покажите, что для некоммутирующих a_1, \ldots, a_n утверждение из п.1 перестает быть верным. (См., однако, задачу 11.9-b.)
- **11.8.** 1) Пусть $a, b \in \mathbb{C}$, |a| < 1 и |b| < 1. Положим $c = (1 ab)^{-1} = \sum_{n} (ab)^{n}$. Выразите элемент $(1 ba)^{-1}$ через a, b и c, не пользуясь коммутативностью умножения в \mathbb{C} .
- **2)** Пусть A унитальная алгебра, $a,b \in A$. Докажите, что элемент 1-ab обратим тогда и только тогда, когда элемент 1-ba обратим.
- **11.9.** Пусть A унитальная алгебра, $a, b \in A$.
- 1) Докажите, что $\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}.$
- **2)** Докажите, что если a или b обратим, то $\sigma(ab) = \sigma(ba)$.
- **3)** Приведите пример, показывающий, что в общем случае $\sigma(ab) \neq \sigma(ba)$. (См., однако, задачу 11.9-b.)
- **11.9-b.** Пусть A конечномерная алгебра.
- 1) Докажите, что всякий элемент A, обратимый слева (или справа), обратим.
- **2)** Пусть $a_1, \ldots, a_n \in A$. Докажите, что элемент $a_1 \cdots a_n$ обратим тогда и только тогда, когда все элементы a_1, \ldots, a_n обратимы.
- **3)** Докажите, что $\sigma(ab) = \sigma(ba)$ для любых $a,b \in A$.
- **11.10-b.** Докажите, что утверждения предыдущей задачи сохраняют силу для нётеровых алгебр.
- **11.11.** Пусть A ненулевая унитальная алгебра, $a \in A$ нильпотентный элемент. Докажите, что $\sigma(a) = \{0\}$.

- **12.1.** Пусть X, Y, Z нормированные пространства. Докажите, что билинейный оператор $\varphi \colon X \times Y \to Z$ непрерывен тогда и только тогда, когда он ограничен в следующем смысле: существует такое $C \geqslant 0$, что $\|\varphi(x,y)\| \leqslant C\|x\|\|y\|$ для всех $x \in X, y \in Y$.
- **12.2.** Пусть A алгебра, снабженная нормой. Предположим, что умножение $A \times A \to A$ непрерывно. Докажите, что
- 1) на A существует субмультипликативная норма, эквивалентная исходной;
- **2)** если A унитальна, то на A существует субмультипликативная норма, эквивалентная исходной и удовлетворяющая условию ||1|| = 1.

Подсказка. В случае (2) рассмотрите операторы умножения $L_a: A \to A, b \mapsto ab$.

- 12.3. 1) Докажите, что пополнение нормированной алгебры банахова алгебра.
- **2)** Докажите, что факторалгебра нормированной алгебры по замкнутому двустороннему идеалу нормированная алгебра.
- 12.4. Докажите, что норма

$$||f|| = \sum_{k=0}^{n} \frac{||f^{(k)}||_{\infty}}{k!}$$

на алгебре $C^n[a,b]$ субмультипликативна и эквивалентна норме $\|f\|=\max_{0\leqslant k\leqslant n}\|f^{(k)}\|_\infty$. (Здесь, как обычно, $\|f\|_\infty=\sup_{t\in[a,b]}|f(t)|$ — равномерная норма.) Отсюда и из задачи 3.11 следует, что $C^n[a,b]$ — банахова алгебра.

12.5. Пусть G — группа, снабженная топологией. Предположим, что умножение $G \times G \to G$ непрерывно по каждому аргументу, и что операция $g \mapsto g^{-1}$ непрерывна в единице. Докажите, что она непрерывна всюду на G.

Из предыдущей задачи с учетом доказанного на лекции следует, что операция $a\mapsto a^{-1}$ на группе обратимых элементов любой банаховой алгебры непрерывна.

- **12.6. 1)** Докажите, что в унитальной банаховой алгебре $A \neq 0$ не может существовать таких элементов a, b, что [a, b] = ab ba = 1.
- **2)** Докажите, что на алгебре дифференциальных операторов вида $\sum_{k=0}^{n} a_k(x) \frac{d^k}{dx^k}$, где $a_k \in \mathbb{C}[x]$ (она называется *алгеброй Вейля*), не существует субмультипликативных полунорм, кроме тождественно нулевой.
- **12.7.** Пусть A унитальная нормированная (но не обязательно банахова) алгебра, $A^{\times} \subset A$ группа обратимых элементов. Верно ли, что
- **1)** если $a \in A$ и ||a|| < 1, то $1 a \in A^{\times}$;
- 2) A^{\times} открыто в A;
- 3) отображение $A^{\times} \to A^{\times}, \ a \mapsto a^{-1}$ непрерывно?
- 12.8. Верна ли теорема Гельфанда-Мазура для неполных нормированных алгебр?
- **12.9-b** (банахова лемма Шура). Пусть дано неприводимое представление группы G в банаховом пространстве X ограниченными операторами. Докажите, что любой морфизм G-модулей $\varphi \colon X \to X$ имеет вид $\varphi = \lambda \mathbf{1}_X$ для некоторого $\lambda \in \mathbb{C}$.

Пусть $K \subset \mathbb{C}$ — компактное подмножество. Рассмотрим следующие подалгебры в C(K):

$$\mathscr{P}(K)=\overline{\left\{p|_K:p-\text{многочлен}
ight\}};$$
 $\mathscr{R}(K)=\overline{\left\{r|_K:r-\text{рациональная функция с полюсами вне }K
ight\}};$ $\mathscr{A}(K)=\left\{f\in C(K):f\text{ голоморфна на }\mathrm{Int}\,K\right\}$

(черта наверху означает замыкание в C(K)). Из теоремы Вейерштрасса (см. курс комплексного анализа) следует, что $\mathscr{A}(K)$ — замкнутая подалгебра в C(K). Очевидно, $\mathscr{P}(K)\subseteq \mathscr{R}(K)\subseteq \mathscr{A}(K)\subseteq C(K)$.

- **12.10** (дисковая алгебра). Пусть $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}.$
- 1) Докажите, что $\mathscr{P}(\overline{\mathbb{D}}) = \mathscr{R}(\overline{\mathbb{D}}) = \mathscr{A}(\overline{\mathbb{D}}).$
- **2)** Постройте изометрический изоморфизм $\mathscr{P}(\mathbb{T}) \cong \mathscr{A}(\overline{\mathbb{D}}).$
- **12.11. 1)** Докажите, что $\mathscr{P}(\mathbb{T}) \neq \mathscr{R}(\mathbb{T})$.
- **2)** Пользуясь теоремой Вейерштрасса (любая непрерывная 2π -периодическая функция на прямой приближается по равномерной норме тригонометрическими многочленами), докажите, что $\mathscr{R}(\mathbb{T}) = C(\mathbb{T})$.
- **12.12.** 1) Докажите, что $\mathcal{R}(K)$ спектрально инвариантна в C(K).
- **2)** Всегда ли $\mathscr{P}(K)$ спектрально инвариантна в C(K)?
- **12.13-b. 1)** Докажите, что если $\mathscr{P}(K) = \mathscr{R}(K)$, то $\mathbb{C} \setminus K$ связно.
- **2)** Докажите, что если $\mathbb{C} \setminus K$ связно, то $\mathscr{P}(K) = \mathscr{R}(K)$. (На самом деле верно большее: $\mathscr{P}(K) = \mathscr{A}(K)$, но это уже нетривиальная теорема Мергеляна.)
- **12.14-b** (*швейцарский сыр*). Пусть $K = \overline{\mathbb{D}} \setminus \bigcup_{i=1}^{\infty} D_i$, где D_i открытые круги с попарно не пересекающимися замыканиями, выбранные таким образом, что $\sum_i r_i < \infty$ (где r_i радиус D_i) и Int $K = \emptyset$. Докажите, что $\mathcal{R}(K) \neq C(K)$ (несмотря на то, что Int $K = \emptyset$).

 $\Pi o \partial c \kappa a \beta \kappa a$. Постройте ненулевую меру μ на K, сосредоточенную на объединении границ кругов D_i и такую, что $\int_K f \, d\mu = 0$ для любой $f \in \mathcal{R}(K)$.

- **13.1.** Верно ли, что r(a) = ||a|| для любого $a \in A$, если **1)** $A = L^{\infty}(X, \mu)$? **2)** $A = C^{n}[a, b]$?
- **13.2** (оператор взвешенного сдвига). Пусть $H = \ell^2$ и $\alpha = (\alpha_n)_{n \in \mathbb{N}} \in \ell^{\infty}$. Оператор

$$T_{\alpha} \colon H \to H, \quad T_{\alpha}(x) = (0, \alpha_1 x_1, \alpha_2 x_2, \ldots)$$

называется *оператором взвешенного сдвига*. (*Реклама*: такие операторы изучаются давно, но особую популярность приобрели в 90-х гг. прошлого века ввиду их важности для теории представлений компактных квантовых групп.)

- **1)** Вычислите $||T_{\alpha}||$.
- **2)** Вычислите $r(T_{\alpha})$. Для каких последовательностей $\alpha \in \ell^{\infty}$ оператор T_{α} квазинильпотентен? Приведите конкретный пример такой последовательности.
- **13.3** (оператор Вольтерра). Пусть $I = [a, b], H = L^2(I)$ и $K \in L^2(I \times I)$. Оператор Вольтерра $V_K \colon L^2(I) \to L^2(I)$ задается формулой

$$(V_K f)(x) = \int_a^x K(x, y) f(y) \, dy$$

Обратите внимание, что это частный случай интегрального оператора Гильберта—Шмидта из задачи 2.12. (*Реклама*: операторы Вольтерра образуют один из наиболее классических и давно изучаемых классов линейных операторов; они играют важную роль в теории интегральных уравнений, описывающих различные физические процессы.)

- 1) Докажите, что если функция K ограничена, то V_K квазинильпотентен.
- **2-b)** Докажите, что V_K квазинильпотентен для любой $K \in L^2(I \times I)$.

Таким образом, интегральное уравнение Вольтерра второго рода $f = \lambda V_K f + g$ относительно неизвестной функции $f \in L^2(I)$ имеет единственное решение для любого $\lambda \in \mathbb{C}$ и любой $g \in L^2(I)$.

- **13.4.** Найдите точечный, непрерывный и остаточный спектр диагонального оператора в ℓ^{∞} .
- **13.5.** Пусть (X,μ) пространство с мерой, f существенно ограниченная измеримая функция на X и M_f оператор умножения на f, действующий в $L^p(X,\mu)$ (где $1\leqslant p\leqslant \infty$). Найдите точечный, непрерывный и остаточный спектр оператора M_f .
- **13.6.** Найдите спектр оператора $T\colon L^2[-\pi,\pi]\to L^2[-\pi,\pi]$, действующего по формуле

$$(Tf)(t) = \int_{-\pi}^{\pi} \sin^2(t-s)f(s) ds.$$

- **13.7.** Найдите спектр, точечный спектр, непрерывный спектр и остаточный спектр операторов правого и левого сдвига, действующих в пространстве c_0 .
- **13.8.** Сделайте то же самое, что в предыдущей задаче, для пространства ℓ^1 .
- **13.9.** Сделайте то же самое, что в предыдущей задаче, для пространства ℓ^{∞} .
- **13.10.** Найдите точечный, непрерывный и остаточный спектр оператора двустороннего сдвига в пространстве $\ell^2(\mathbb{Z})$.
- **13.11-b.** Сделайте то же самое, что в предыдущей задаче, для пространств $\ell^p(\mathbb{Z})$ и $c_0(\mathbb{Z})$.
- **13.12.** Для фиксированного $\zeta \in \mathbb{T}$ определим оператор сдвига $T_{\zeta} \colon L^2(\mathbb{T}) \to L^2(\mathbb{T})$ формулой $(T_{\zeta}f)(z) = f(\zeta^{-1}z)$. Найдите его спектр, точечный спектр, непрерывный спектр и остаточный спектр.

- **13.13-b.** Сделайте то же самое, что в предыдущей задаче, для пространств $L^p(\mathbb{T})$ и $C(\mathbb{T})$.
- **13.14-b.** Пусть A ненулевая унитальная алгебра и $u, v \in A$ обратимые элементы, удовлетворяющие соотношению uv = qvu, где $q \in \mathbb{C} \setminus \{0\}$. (*Терминология*: если A порождена элементами u, v и между ними нет других соотношений, то A называется κ вантовым тором. Это одна из простейших некоммутативных нётеровых алгебр, играющая важную роль в некоммутативной геометрии.)
- 1) Докажите, что если $|q| \neq 1$, то A не может быть банаховой алгеброй.
- **2)** Пусть |q| = 1, A банахова алгебра и q не является корнем из единицы. Что можно сказать про спектры элементов u и v?
- 3) Пусть $A = \mathcal{B}(X)$ алгебра ограниченных линейных операторов в банаховом пространстве X, и пусть выполнены условия п. 2. Предположим, что операторы u и v изометричны. Найдите их спектры.
- 4) Приведите пример операторов в гильбертовом пространстве, удовлетворяющих условиям п. 3. (Подсказка: см. задачи 13.5 и 13.12. Реклама: такие операторы тесно связаны с каноническими коммутационными соотношениями Г. Вейля в квантовой механике.)

Определение 13.1. Пространство $Xap\partial u$ — это замкнутое подпространство в $L^2(\mathbb{T})$, определяемое следующим образом:

$$H^2 = \{ f \in L^2(\mathbb{T}) : \langle f, z^n \rangle = 0 \quad \forall n < 0 \}.$$

13.15-b. Для каждой непрерывной функции f на открытом единичном круге $\mathbb{D} \subset \mathbb{C}$ и каждого $0 < \rho < 1$ положим

$$||f||_{\rho} = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\rho e^{it})|^2 dt\right)^{1/2}.$$

Докажите, что определение пространства H^2 , данное выше, эквивалентно следующему:

$$H^2=\{f\colon \mathbb{D} o \mathbb{C}\,:\, f$$
 голоморфна и $\|f\|=\lim_{
ho o 1}\|f\|_
ho <\infty\}.$

- **13.16-b.** Докажите, что оператор правого сдвига в ℓ^2 унитарно эквивалентен оператору умножения M_z в H^2 . Интерпретируйте результаты о точечном, непрерывном и остаточном спектре этого оператора (см. лекцию) с точки зрения теории аналитических функций.
- **13.17-b.** Пусть A унитальная банахова алгебра и $B\subseteq A$ подалгебра, содержащая 1_A . Докажите, что
- 1) B^{\times} открыто-замкнутое подмножество в $B \cap A^{\times}$;
- **2)** для каждого $b \in B$ резольвентное множество $\rho_B(b) = \mathbb{C} \setminus \sigma_B(b)$ открыто-замкнуто в $\rho_A(b)$;
- **3)** для каждого $b \in B$ спектр $\sigma_B(b)$ является объединением спектра $\sigma_A(b)$ и некоторого семейства ограниченных компонент связности множества $\rho_A(b)$;
- **4)** для каждого $b \in B$ справедливо включение $\partial \sigma_B(b) \subseteq \partial \sigma_A(b)$.

- **14.1.** Постройте последовательность в единичной сфере пространства C[a,b], у которой нет сходящейся подпоследовательности.
- **14.2. 1)** Пусть X нормированное пространство, $f \in X^* \setminus \{0\}$ и $X_0 = \text{Ker } f$. Докажите, что в X существует 0-перпендикуляр к X_0 тогда и только тогда, когда f достигает нормы.
- **2)** Приведите пример банахова пространства X и собственного замкнутого векторного подпространства $X_0 \subset X$, к которому не существует 0-перпендикуляра.
- **14.3.** Пусть X нормированное пространство и множества $M,N\subset X$ вполне ограничены. Докажите, что множества λM (где $\lambda\in\mathbb{K}$) и M+N вполне ограничены.
- 14.4. Докажите, что равномерно непрерывный образ вполне ограниченного метрического пространства вполне ограничен.
- **14.5.** Докажите, что метрическое пространство вполне ограничено тогда и только тогда, когда для каждого $\varepsilon > 0$ в нем есть вполне ограниченная ε -сеть.
- **14.6.** Пусть X, Y метрические пространства, причем X компактно. Сформулируйте и докажите критерий полной ограниченности подмножества в пространстве C(X,Y), обобщающий теорему Арцела—Асколи.
- **14.7. 1)** Докажите, что подмножество $S \subset \ell^p$ (где $1 \leqslant p < \infty$) вполне ограничено тогда и только тогда, когда оно ограничено и

$$\sup_{x \in S} \sum_{k=n+1}^{\infty} |x_k|^p \to 0 \quad \text{при } n \to \infty$$

(т.е. нормы «хвостов» последовательностей из S равномерно стремятся к нулю).

- **2)** Сформулируйте и докажите аналогичный критерий для пространства c_0 .
- **14.8-b.** Докажите, что подмножество $S \subset L^p[a,b]$ (где $1 \leq p < \infty$) вполне ограничено тогда и только тогда, когда оно ограничено и для каждого $\varepsilon > 0$ найдется такое $\delta > 0$, что для всех $|h| < \delta$ и всех $f \in S$ выполнено

$$\int_{a}^{b} |f(x+h) - f(x)|^{p} dx < \varepsilon.$$

Указание (достаточность). Для $f \in L^p[a,b]$ функции $f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt$ непрерывны и сходятся к f в $L^p[a,b]$. Примените к ним теорему Арцела–Асколи.

Определение 14.1. Пусть X — метрическое пространство. $Paccmoshuem\ Xayc дор фа$ между ограниченными подмножествами $A,B\subset X$ называется величина

$$\rho_H(A,B) = \max \Big\{ \sup_{a \in A} \rho(a,B), \sup_{b \in B} \rho(b,A) \Big\}.$$

14.9-b. Пусть X — метрическое пространство, $A \subset X$ и r > 0. Положим $U_r(A) = \{x \in X : \rho(x,A) < r\}$. Докажите, что для любых ограниченных множеств $A, B \subset X$

$$\rho_H(A,B) = \inf\{r > 0 : A \subset U_r(B), \ B \subset U_r(A)\}.$$

- **14.10-b. 1)** Докажите, что расстояние Хаусдорфа является метрикой на множестве $\mathfrak{F}(X)$ всех замкнутых ограниченных подмножеств метрического пространства X.
- 2) Верно ли предыдущее утверждение, если убрать условие замкнутости?
- **14.11-b.** Докажите, что если X полно, то и $\mathfrak{F}(X)$ полно.
- **14.12-b.** Докажите, что если X вполне ограничено, то и $\mathfrak{F}(X)$ вполне ограничено.

- **15.1.** Компактны ли операторы правого и левого сдвига в ℓ^p и c_0 ?
- **15.2.** Может ли образ компактного оператора между банаховыми пространствами содержать бесконечномерное замкнутое подпространство?
- **15.3.** Пусть $f \in C[a,b]$, и пусть M_f оператор умножения на f в C[a,b]. Найдите условие на f, необходимое и достаточное для компактности M_f .
- **15.4.** Пусть $I \subseteq \mathbb{R}$ промежуток, $f \colon I \to \mathbb{C}$ существенно ограниченная измеримая функция, и пусть M_f оператор умножения на f в $L^p(I)$ $(1 \leqslant p \leqslant \infty)$. Найдите условие на f, необходимое и достаточное для для компактности M_f .
- **15.5-b.** Сделайте то же, что в предыдущей задаче, для оператора умножения в пространстве $L^p(X,\mu)$ $(1\leqslant p\leqslant \infty)$, где (X,μ) пространство с мерой.
- **15.6.** Для интегрируемой функции f на [0,1] определим функцию Tf формулой

$$(Tf)(x) = \int_0^x f(t) dt.$$

Является ли T компактным оператором

- **1)** из C[0,1] в C[0,1]?
- **2)** из $L^p[0,1]$ в C[0,1] (где 1)?
- **3)** из $L^p[0,1]$ в $L^p[0,1]$ (где 1)?
- **4)** из $L^1[0,1]$ в C[0,1]?
- **5-b)** из $L^1[0,1]$ в $L^1[0,1]$?
- **15.7.** Пусть I = [a, b], и пусть $K \in C(I \times I)$. Докажите компактность *интегрального оператора* $T \colon C(I) \to C(I)$,

$$(Tf)(x) = \int_a^b K(x, y) f(y) \, dy.$$

15.8. Пусть (X, μ) — пространство с мерой, и пусть $K \in L^2(X \times X, \mu \times \mu)$. Докажите компактность интегрального оператора Гильберта-Шмидта $T \colon L^2(X, \mu) \to L^2(X, \mu)$,

$$(Tf)(x) = \int_X K(x, y) f(y) d\mu(y).$$

Указание: докажите, что линейная оболочка множества функций вида K(x,y) = f(x)g(y), где $f,g \in L^2(X,\mu)$, плотна в $L^2(X \times X, \mu \times \mu)$, и воспользуйтесь тем, что $||T|| \leq ||K||_2$ (см. задачу 2.7).

- **15.9.** Пусть X метризуемый компакт, μ регулярная борелевская мера на X и $K \in C(X \times X)$. Докажите, что образ интегрального оператора Гильберта—Шмидта $T_K \colon L^2(X,\mu) \to L^2(X,\mu)$ содержится в C(X), и что T_K является компактным оператором из $L^2(X,\mu)$ в C(X).
- **15.10.** Пусть X банахово пространство и $1\leqslant p<\infty$. Докажите, что всякий компактный оператор $T\colon X\to \ell^p$ аппроксимируется конечномерными операторами.
- **15.11.** Пусть X банахово пространство, $x \in X$ и $f \in X^*$. Определим оператор $x \otimes f \in \mathscr{B}(X)$ формулой $(x \otimes f)(y) = f(y)x$. Найдите явную формулу для операторов **1)** $T(x \otimes f)$; **2)** $(x \otimes f)T$ (где $T \in \mathscr{B}(X)$); **3)** $(x_1 \otimes f_1)(x_2 \otimes f_2)$.
- **15.12.** Пусть X банахово пространство и $0 \neq I \subseteq \mathcal{B}(X)$ двусторонний идеал. Докажите, что $I \supseteq \mathcal{F}(X)$. Как следствие, всякий ненулевой замкнутый двусторонний идеал в $\mathcal{B}(H)$ (где H гильбертово пространство) содержит $\mathcal{K}(H)$. (Анонс: через некоторое время мы сможем доказать, что $\mathcal{K}(H)$ единственный замкнутый двусторонний идеал в $\mathcal{B}(H)$, отличный от 0 и $\mathcal{B}(H)$).

- 16.1. Что можно сказать об операторе, который компактен и фредгольмов одновременно?
- **16.2.** Пусть $a_0, \ldots, a_n \in C[a, b]$. Докажите, что оператор

$$D: C^n[a, b] \to C[a, b], \quad D(y) = y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y$$

фредгольмов, и вычислите его индекс.

16.3. Докажите, что оператор

$$D: C^{1}(S^{1}) \to C(S^{1}), \quad D(f) = f'$$

фредгольмов, и вычислите его индекс.

- **16.4.** Пусть $\lambda \in \ell^{\infty}$, и пусть M_{λ} соответствующий диагональный оператор в ℓ^{p} или в c_{0} . Найдите условие на λ , необходимое и достаточное для фредгольмовости M_{λ} . Вычислите его индекс.
- **16.5.** Пусть $f \in C[a,b]$, и пусть M_f оператор умножения на f в C[a,b]. Найдите условие на f, необходимое и достаточное для фредгольмовости M_f . Вычислите его индекс.
- **16.6.** Пусть $I \subseteq \mathbb{R}$ промежуток, $f \colon I \to \mathbb{C}$ существенно ограниченная измеримая функция, и пусть M_f оператор умножения на f в $L^p(I)$ $(1 \leqslant p \leqslant \infty)$. Найдите условие на f, необходимое и достаточное для для фредгольмовости M_f . Вычислите его индекс.
- **16.7-b.** Сделайте то же, что в предыдущей задаче, для оператора умножения в пространстве $L^p(X,\mu)$ $(1\leqslant p\leqslant \infty)$, где (X,μ) пространство с мерой.
- **16.8-b** (второе доказательство аддитивности индекса). Пусть X,Y,Z векторные пространства, $T\colon X\to Y$ и $S\colon Y\to Z$ фредгольмовы операторы. Постройте разложения $X=X_0\oplus X_1$, $Y=Y_0\oplus Y_1$ и $Z=Z_0\oplus Z_1$ так, чтобы выполнялись следующие условия:
- 1) X_0, Y_0 и Z_0 конечномерны;
- 2) $T(X_i) \subset Y_i \text{ if } S(Y_i) \subset Z_i \text{ } (i = 0, 1);$
- 3) T изоморфизм X_1 на Y_1 , а S изоморфизм Y_1 на Z_1 .

Из существования таких разложений выведите, что формулу $\operatorname{ind}(ST) = \operatorname{ind} S + \operatorname{ind} T$ достаточно доказать для операторов между конечномерными пространствами. Докажите эту формулу.

- **16.9-b** (*третье доказательство аддитивности индекса*). **1)** Пусть X, Y векторные пространства, $X_1 \subset X$ и $Y_1 \subset Y$ векторные подпространства и $T: X \to Y$ линейный оператор, осуществляющий изоморфизм между X_1 и Y_1 . Определим линейный оператор $\widehat{T}: X/X_1 \to Y/Y_1$ формулой $\widehat{T}(x+X_1) = T(x) + Y_1$. Постройте изоморфизмы $\ker T \cong \ker \widehat{T}$ и $\operatorname{Coker} T \cong \operatorname{Coker} \widehat{T}$. Выведите отсюда, что T фредгольмов $\iff \widehat{T}$ фредгольмов, и $\operatorname{ind} T = \operatorname{ind} \widehat{T}$.
- **2)** Пусть X,Y,Z векторные пространства, $T:X\to Y$ и $S:Y\to Z$ фредгольмовы операторы. Постройте подпространства конечной коразмерности $X_1\subset X,Y_1\subset Y$ и $Z_1\subset Z$ так, чтобы T осуществлял изоморфизм X_1 на Y_1 , а S изоморфизм Y_1 на Z_1 . Из существования таких подпространств и из п.1 выведите, что формулу $\operatorname{ind}(ST)=\operatorname{ind} S+\operatorname{ind} T$ достаточно доказать для операторов между конечномерными пространствами. Докажите эту формулу.
- **16.10** (классические теоремы Фредгольма). Пусть $I = [a, b], K \in C(I \times I)$ и $f \in C(I)$. Рассмотрим следующие уравнения в C(I):

$$\varphi(x) - \int_{a}^{b} K(x, y)\varphi(y) \, dy = f(x), \tag{1}$$

$$\varphi(x) - \int_{a}^{b} K(x, y)\varphi(y) \, dy = 0, \tag{2}$$

$$\psi(x) - \int_{a}^{b} K(y, x)\psi(y) \, dy = 0. \tag{3}$$

Докажите следующие утверждения:

- I. Уравнение (1) разрешимо тогда и только тогда, когда для любого решения ψ уравнения (3) выполнено условие $\int_a^b f(x)\psi(x)\,dx=0$. II. Если уравнение (2) имеет лишь тривиальное решение, то уравнение (1) имеет единствен-
- II. Если уравнение (2) имеет лишь тривиальное решение, то уравнение (1) имеет единственное решение для любой $f \in C(I)$. Если же уравнение (2) имеет нетривиальное решение, то уравнение (1) разрешимо не для всех $f \in C(I)$.
 - III. Уравнения (2) и (3) имеют одно и то же конечное число линейно независимых решений.

Указание. С помощью теоремы Рисса—Шаудера докажите аналоги утверждений I–III в пространстве $L^2(I)$, а затем докажите, что если функции f и K непрерывны и $\varphi \in L^2(I)$ — решение уравнения (1), то φ непрерывна.