ASSIGNMENT 3 (AIML)

DIVYANSH JAIN 21BCE2072

(I HAVE USED SCREENSHOT BECAUSE I WAS HAVING ISSUES WITH LINK PUSHING INTO REPO)

♠ DivyanshJainAct3.ipynb ☆

Biscoe

+ Code + Text

≔

Q

 $\{x\}$

[] 'distplot' is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.culmen_length_mm)
<Axes: xlabel='culmen_length_mm', ylabel='Density'>

Bivariate Analysis

<>> == >= sns.lineplot(x=df.culmen_length_mm,y=df.culmen_depth_mm)

<Axes: xlabel='culmen_length_mm', ylabel='culmen_depth_mm'>

20 -

Multivariate Analysis

Descriptive Statistics of the dataset

[] df.describe()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754388
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
75%	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000

```
Checking for missing values and dealing with them

of df.isnull().sum()

species
island
culmen_length_mm
culmen_depth_mm
flipper_length_mm
body_mass_g
sex
flipper_length_mm
body_mass_g
sex
flipper_length_mm
body_mass_g
sex
flipper_length_mm
body_mass_g
sex
flipper_length_mm'].fillna(df['culmen_length_mm'].median(),inplace=True)
df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median(),inplace=True)
df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplace=True)
df['body_mass_g'].fillna(df['body_mass_g'].median(),inplace=True)

[] df['sex']=df['sex'].replace('.','MALE')

[] df.sex.value_counts()

MALE
165
Name: sex, dtype: int64
```

```
📤 DivyanshJainAct3.ipynb 🛚 😭
 File Edit View Insert Runtime Tools Help All changes saved
+ Code + Text
 [ ] df['sex'].fillna('MALE',inplace=True)
 [ ] df.isnull().sum()
     species
                         0
     island
     culmen_length_mm 0
culmen_depth_mm 0
     flipper_length_mm 0
     body_mass_g
                         0
                         0
     sex
     dtype: int64
 df.island.value_counts()
                168
     Biscoe
                124
     Dream
                 52
     Torgersen
     Name: island, dtype: int64
 [ ] df.species.value_counts()
     Adelie
               152
                124
     Gentoo
     Chinstrap 68
```

Name: species, dtype: int64

```
△ DivyanshJainAct3.ipynb ☆
File Edit View Insert Runtime Tools Help <u>All changes saved</u>

+ Code + Text
```

Finding the outliners and replacing them

[] sns.boxplot(df.culmen_length_mm)

□ DivyanshJainAct3.ipynb ☆
File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

[] sns.boxplot(df.culmen_depth_mm)

[] sns.boxplot(df.flipper_length_mm)

DivyanshJainAct3.ipynb ☆

File Edit View Insert Runtime Tools Help All changes saved

[] sns.boxplot(df.body_mass_g)

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

Checking the correlation of independent variables with the target

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
culmen_length_mm	1.000000	-0.235000	0.655858	0.594925
culmen_depth_mm	-0.235000	1.000000	-0.583832	-0.471942
flipper_length_mm	0.655858	-0.583832	1.000000	0.871221
body_mass_g	0.594925	-0.471942	0.871221	1.000000

sns.heatmap(df.corr(),annot=True)

♣ DivyanshJainAct3.ipynb ☆

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

Checking for categorical columns and performing encoding

[] from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

[] df.species=le.fit_transform(df.species)
 df.sex=le.fit_transform(df.sex)
 df.island=le.fit_transform(df.island)

[] df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	0	2	39.10	18.7	181.0	3750.0	1
1	0	2	39.50	17.4	186.0	3800.0	0
2	0	2	40.30	18.0	195.0	3250.0	0
3	0	2	44.45	17.3	197.0	4050.0	1
4	0	2	36.70	19.3	193.0	3450.0	0

△ DivyanshJainAct3.ipynb ☆

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

Splitting the data into dependent and independent variables

[] X = df.drop(columns =['species'],axis=1)
 X.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	2	39.10	18.7	181.0	3750.0	1
1	2	39.50	17.4	186.0	3800.0	0
2	2	40.30	18.0	195.0	3250.0	0
3	2	44.45	17.3	197.0	4050.0	1
4	2	36.70	19.3	193.0	3450.0	0

y = df.species
df.head()

9	specie	s island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
	0	0 2	39.10	18.7	181.0	3750.0	1
	1	0 2	39.50	17.4	186.0	3800.0	0
	2	0 2	40.30	18.0	195.0	3250.0	0
	3	0 2	44.45	17.3	197.0	4050.0	1
	4	0 2	36.70	19.3	193.0	3450.0	0

Scaling the data

[]

```
[ ] from sklearn.preprocessing import StandardScaler scale = StandardScaler()
```

[] X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)
 X_scaled.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	1.844076	-0.887622	0.787289	-1.420541	-0.564625	0.960098
1	1.844076	-0.814037	0.126114	-1.063485	-0.502010	-1.041561
2	1.844076	-0.666866	0.431272	-0.420786	-1.190773	-1.041561
3	1.844076	0.096581	0.075255	-0.277964	-0.188936	0.960098
4	1.844076	-1.329133	1.092447	-0.563608	-0.940314	-1.041561

Splitting the data into testing and training data

```
[ ] from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(X_scaled,y,test_size=0.2,random_state=0)
```

Checking the training and testing data shape

```
[ ] x_train.shape
      (275, 6)

[ ] x_test.shape
      (69, 6)

[ ] y_train.shape
      (275,)

[ ] y_test.shape
      (69,)
```

♣ DivyanshJainAct3.ipynb ☆

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

Splitting the data into dependent and independent variables

[] X = df.drop(columns =['species'],axis=1)
 X.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	2	39.10	18.7	181.0	3750.0	1
1	2	39.50	17.4	186.0	3800.0	0
2	2	40.30	18.0	195.0	3250.0	0
3	2	44.45	17.3	197.0	4050.0	1
4	2	36.70	19.3	193.0	3450.0	0

y = df.species
df.head()

0		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
	0	0	2	39.10	18.7	181.0	3750.0	1
	1	0	2	39.50	17.4	186.0	3800.0	0
	2	0	2	40.30	18.0	195.0	3250.0	0
	3	0	2	44.45	17.3	197.0	4050.0	1
	4	0	2	36.70	19.3	193.0	3450.0	0

Scaling the data

- [] from sklearn.preprocessing import StandardScaler scale = StandardScaler()
- [] X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)
 X_scaled.head()

i	sland	${\tt culmen_length_mm}$	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0 1.8	344076	-0.887622	0.787289	-1.420541	-0.564625	0.960098