```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.ticker as tic
```

In [2]: df=pd.read_csv("cleaned_rainfall")
 df

Out[2]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
0	0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6
1	1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2
2	2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0
3	3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4
4	4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0
4111	4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2
4112	4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8
4113	4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0
4114	4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2
4115	4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4

4116 rows × 20 columns

localhost:8888/notebooks/FR-(3-4).ipynb

In [3]: df["SUBDIVISION"].value_counts() Out[3]: HIMACHAL PRADESH 115 MATATHWADA 115 SUB HIMALAYAN WEST BENGAL & SIKKIM 115 SOUTH INTERIOR KARNATAKA 115 UTTARAKHAND 115 WEST MADHYA PRADESH 115 **GUJARAT REGION** 115 **TELANGANA** 115 JAMMU & KASHMIR 115 HARYANA DELHI & CHANDIGARH 115 EAST MADHYA PRADESH 115 ASSAM & MEGHALAYA 115 COASTAL KARNATAKA 115 ORISSA 115 **PUNJAB** 115 **KERALA** 115 GANGETIC WEST BENGAL 115 MADHYA MAHARASHTRA 115 TAMIL NADU 115 115 **JHARKHAND RAYALSEEMA** 115 NAGA MANI MIZO TRIPURA 115 SAURASHTRA & KUTCH 115 **BIHAR** 115 **VIDARBHA** 115 WEST RAJASTHAN 115 EAST UTTAR PRADESH 115 KONKAN & GOA 115 EAST RAJASTHAN 115 NORTH INTERIOR KARNATAKA 115 COASTAL ANDHRA PRADESH 115 WEST UTTAR PRADESH 115 **CHHATTISGARH** 115 LAKSHADWEEP 114 ANDAMAN & NICOBAR ISLANDS 110 ARUNACHAL PRADESH 97 Name: SUBDIVISION, dtype: int64

TAMIL NADU

In [4]: dat1=df[df["SUBDIVISION"]=="TAMIL NADU"]
 dat1

Out[4]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
3427	3427	TAMIL NADU	1901	24.5	39.1	21.7	36.0	74.0	41.8	49.3	67.9	191.1	122.3
3428	3428	TAMIL NADU	1902	67.2	9.8	25.1	21.9	84.7	39.3	55.1	113.8	98.6	282.2
3429	3429	TAMIL NADU	1903	19.3	7.8	1.7	18.2	128.5	58.5	72.6	115.0	210.4	128.1
3430	3430	TAMIL NADU	1904	35.2	0.1	0.7	19.5	121.9	34.9	89.0	40.4	85.7	163.2
3431	3431	TAMIL NADU	1905	6.5	7.5	17.2	64.8	83.7	49.8	39.0	101.8	73.5	250.4
									•••				
3537	3537	TAMIL NADU	2011	4.3	11.2	8.0	91.5	33.4	56.0	45.5	128.9	76.0	200.4
3538	3538	TAMIL NADU	2012	3.0	0.1	2.5	35.5	41.9	30.1	46.5	98.0	84.9	235.2
3539	3539	TAMIL NADU	2013	3.9	30.9	30.0	20.3	42.0	54.6	42.7	110.7	113.5	127.9
3540	3540	TAMIL NADU	2014	7.4	6.1	8.1	8.3	139.1	47.8	50.6	117.7	98.9	252.2
3541	3541	TAMIL NADU	2015	8.3	2.3	21.7	108.8	112.4	62.4	43.5	81.6	98.4	132.6

115 rows × 20 columns

```
In [5]: dat1.plot.bar("YEAR","MAR")
     plt.xlim(0,20)
     plt.figure(figsize=(60,30))
     plt.show()
     dat1.plot.box()
     plt.xlim(2,14)
     plt.ylim(0,2000)
     plt.show()
     dat1.plot.area()
     dat1.plot.scatter("YEAR","MAR")
     sns.stripplot(x=dat1["MAR"],y=dat1["YEAR"],jitter=True)
     plt.ylim(1900,2010)
     plt.xlim(0,145)
     plt.xticks(dat1["MAR"],rotation="vertical")
     plt.gca().xaxis.set_major_locator(tic.MultipleLocator(base=10))
     plt.show()
     dat1.plot.hist()
```


<Figure size 4320x2160 with 0 Axes>

Out[5]: <AxesSubplot:ylabel='Frequency'>


```
In [6]: sns.lineplot(x=dat1["MAR"],y=dat1["YEAR"])
 plt.show()
```


ORISSA

In [7]: dat2=df[df["SUBDIVISION"]=="ORISSA"]
 dat2

Out[7]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ос
667	667	ORISSA	1901	39.5	65.1	16.1	51.6	79.0	78.2	288.4	307.7	185.3	76.
668	668	ORISSA	1902	3.4	0.2	14.2	101.1	56.7	108.3	437.4	349.1	202.7	33.
669	669	ORISSA	1903	19.7	18.9	10.5	34.6	73.3	154.3	410.4	295.2	265.6	228.
670	670	ORISSA	1904	0.2	12.2	20.6	10.1	100.2	342.9	336.7	350.4	227.8	111.
671	671	ORISSA	1905	24.3	17.2	66.3	56.9	107.5	92.0	330.1	281.4	344.1	36.
777	777	ORISSA	2011	3.7	16.2	4.9	58.2	75.6	210.1	199.6	358.6	398.7	20.
778	778	ORISSA	2012	50.8	3.6	0.9	34.8	21.3	169.6	324.3	417.0	242.4	66.
779	779	ORISSA	2013	3.3	7.8	2.1	53.6	57.7	272.6	380.0	254.9	208.1	391.
780	780	ORISSA	2014	0.0	17.6	25.1	11.7	111.9	92.2	496.2	386.3	281.1	111.
781	781	ORISSA	2015	15.1	3.3	10.5	67.6	32.6	238.6	294.8	264.0	237.0	24.

115 rows × 20 columns

```
In [8]:
     dat2.plot.bar("YEAR","MAR")
     plt.xlim(0,20)
     plt.figure(figsize=(60,30))
     plt.show()
     dat2.plot.box()
     plt.xlim(2,14)
     plt.ylim(0,2000)
     plt.show()
     dat2.plot.area()
     dat2.plot.scatter("YEAR","MAR")
     sns.stripplot(x=dat2["MAR"],y=dat2["YEAR"],jitter=True)
     plt.ylim(1900,2010)
     plt.xlim(0,145)
     plt.xticks(dat2["MAR"],rotation="vertical")
     plt.gca().xaxis.set_major_locator(tic.MultipleLocator(base=20))
     plt.show()
     dat2.plot.hist()
     plt.show()
```


<Figure size 4320x2160 with 0 Axes>

ó

In [9]: sns.lineplot(x=dat2["MAR"],y=dat2["YEAR"])
 plt.show()

