Lecture 12

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

Reading: Cryer and Chen (2008): Chapter 5.1-5.3

MATH 4070: Regression and Time-Series Analysis

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMA Case Study ARMIA

Whitney Huang Clemson University

Agenda

ARMA Case Study &
Autoregressive
Integrated Moving
Average (ARIMA)
Models

ARMIA Case Study

ARMA Case Study

2 ARMIA

ARMA Case Study &
Autoregressive
Integrated Moving
Average (ARIMA)
Models

ARMIA

A Modeling Case Study of Ireland Wind Data

(Courtesy of Peter Craigmile's time series lecture notes)

Data Description [Haslett & Raftery, 1989 1]

Twelve wind stations collected daily readings over 18 years (from 1961 to 1978). Wind speeds were measured in knots (1 knot = 0.5148 $\frac{m}{s}$)

MATHEMATICAL AND STATISTICAL SCIENCES Clemson' University

ARMA Case Study &

Integrated Moving Average (ARIMA)

ARMIA Case Study

We will focus on the wind data from Modeling procedure: 1965-1969 at the Rosslare station Exploratory analysis

- Model and remove the trend and seasonal components
- ARMA model identification, fitting, and selection
- Perform forecast

Haslett, J., & Raftery, A. E. (1989). Space-time modelling with long-memory dependence: Assessing Ireland's wind power resource. Journal of the Royal Statistical Society: Series C, 38(1), 1-21.

Wind Speed Time Series at Rosslare Station

- No clear trend
- Seasonal Pattern

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMA Case Study

Estimating the Season Pattern

Here we use harmonic regression with 4 harmonics per year to model the seasonal components

$$s_t = \beta_0 + \sum_{j=1}^{4} (\beta_{1j} \cos(2\pi jt) + \beta_{2j} \sin(2\pi jt)))$$

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ACF Plots: Original and Deseasonalized Series

Seasonal modeling (via harmonic regression) effectively removes the oscillatory pattern in the ACF of the original series

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

Transform Data to Approximate Gaussian Distribution

Square root transformation works! Now take the square root of the original data and deseasonalize again!

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

Estimating Transformed Series Seasonality

Next, we need to check if the deseasonalized series Gaussian like

Marginal and ACF/PACF of the Deseasonalized Series

Based on ACF/PACF, which ARMA model would you choose?

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMA Case Study

Call:

arima(x = sqrt.rosslare.ds, order = c(1, 0, 0))

> ar1.model <- arima(sqrt.rosslare.ds, order = c(1, 0, 0))

Coefficients:

> ar1.model

ar1 intercept 0.4060 3.3257 s.e. 0.0214 0.0254

Lag

sigma^2 estimated as 0.4148: log likelihood = -1787.72, aic = 3581.43 0.4 0.4 0.3 0.3 O.2 Partial ACF 1.0 0.1 0.0 0.0 -0.1 10 15 9 11 13 15

Residual Plots for the AR(1) Model

ARMA Case Study &
Autoregressive
Integrated Moving
Average (ARIMA)
Models

ARMA Case Study
ARMIA

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the AR(1) fit adequately account for temporal dependence strucuture

Diagnostic for the AR(1) Model

> Box.test(ar1.resids, lag = 32, fitdf = 1, type = "Ljung-Box")

Box-Ljung test

data: ar1.resids X-squared = 53.142, df = 31, p-value = 0.00794

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMA Case Study

Call:

ARMA Case Study &

Autorearessive Integrated Moving

Average (ARIMA)

Coefficients:

arima(x = sqrt.rosslare.ds, order = c(2, 0, 0))

ar1 ar2 intercept 0.4425 3.3254 -0.0905

0.0233 0.0233 0.0232 s.e.

 $sigma^2$ estimated as 0.4114: log likelihood = -1780.23, aic = 3568.46

Residual Plots for the AR(2) Model

ARMA Case Study &
Autoregressive
Integrated Moving
Average (ARIMA)
Models

ARMA Case Study
ARMIA

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the AR(2) fit adequately account for temporal dependence strucuture

Diagnostic for the AR(2) Model

> Box.test(ar2.resids, lag = 32, fitdf = 2, type = "Ljung-Box")

Box-Ljung test

data: ar2.resids

X-squared = 36.548, df = 30, p-value = 0.1907

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMA Case Study &

Autorearessive **Integrated Moving**

Average (ARIMA) Models

Call:

arima(x = sqrt.rosslare.ds, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept 0.1978 0.2502 3.3254

0.0556 0.0553 0.0234 s.e.

 $sigma^2$ estimated as 0.4108: log likelihood = -1778.82, aic = 3565.64

Residual Plots for the ARMA(1, 1) Model

ARMA Case Study &
Autoregressive
Integrated Moving
Average (ARIMA)
Models

ARMA Case Study
ARMIA

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the ARMA(1, 1) fit adequately account for temporal dependence strucuture

Diagnostic for the ARMA(1, 1) Model

> Box.test(arma11.resids, lag = 32, fitdf = 2, type = "Ljung-Box")

Box-Ljung test

data: armal1.resids

X-squared = 32.757, df = 30, p-value = 0.3332

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models


```
> (arma21.model <- arima(sqrt.rosslare.ds, order = c(2, 0, 1)))
```

Call:

arima(x = sqrt.rosslare.ds, order = c(2, 0, 1))

Coefficients:

ar1 ar2 ma1 intercept 0.0703 0.0587 0.3768 3.3253 s.e. 0.1691 0.0772 0.1663 0.0237

sigma^2 estimated as 0.4107: log likelihood = -1778.56, aic = 3567.11

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMA Case Study

Residual Plots for the ARMA(2, 1) Model

ARMA Case Study &
Autoregressive
Integrated Moving
Average (ARIMA)
Models

ARMA Case Study
ARMIA

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the ARMA(2, 1) fit adequately account for temporal dependence strucuture

Diagnostic for the ARMA(2, 1) Model

> Box.test(arma21.resids, lag = 32, fitdf = 3, type = "Ljung-Box")

Box-Ljung test

data: arma21.resids

X-squared = 32.171, df = 29, p-value = 0.3124

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

Comparing Models via Information Criteria

Model	AIC	AICc
AR(1)	3583.817	3583.824
AR(2)	3570.650	3570.663
ARMA(1, 1)	3567.833	3567.847
ARMA(2, 1)	3569.319	3569.341

Which model would you pick?

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMA Case Study

Question: How do we predict wind speeds on the original scale, including the seasonality that was previously estimated?

- Suppose we want to predict the next 7 days of wind speed values. We base our forecasts on the chosen ARMA(1,1) model.
- We need to reverse the order of our modeling process: ⇒
 forecast under the transformed scale → add the estimated
 seasonal component → back-transform to the original
 scale.

```
> round(sqrt.rosslare.forecast$pred, 3)
Time Series:
Start = c(1970, 1)
End = c(1970, 7)
Frequency = 365
[1] 3.997 3.458 3.352 3.331 3.326 3.326 3.325
```

• The standard error for the forecasts are:

```
> round(sqrt.rosslare.forecast$se, 3)
Time Series:
Start = c(1970, 1)
End = c(1970, 7)
Frequency = 365
[1] 0.641 0.702 0.705 0.705 0.705 0.705 0.705
```

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMIA Case Study

Next, we add back in the seasonality to get:

Finally, we transform back to the original scale

 To get the prediction limits, we need to transform the lower and upper prediction limits on the sqrt scale ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

Visualizing the Forecasts

ARMA Case Study &
Autoregressive
Integrated Moving
Average (ARIMA)
Models

Further Questions

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMA Case Study

ARMIA

What is the full model for our time series data?

- Is there a better description for the trend than just a constant term? What about alternative seasonal modeling?
- How well do we forecast? What about forecast uncertainty?

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMIA Case Sit

Autoregressive Integrated Moving Average (ARIMA) Models

Monthly Price of Oil: January 1986-January 2006

A stationary model does not seem to be reasonable. However, it is also not clear which (deterministic) trend model is appropriate ©

Random Walks Revisited

Recall the random walk process

$$X_t = Z_1 + Z_2 + \dots + Z_t = \sum_{j=1}^t Z_j,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$

 $\{X_t\}$ is a nonstationary process

We can obtain a stationary process by differencing

$$\nabla X_t = X_t - X_{t-1} = (1-B)X_t = Z_t$$

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

$$X_t = Z_1 + Z_2 + \dots + Z_t = \sum_{j=1}^t Z_j,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$

 $\{X_t\}$ is a nonstationary process

We can obtain a stationary process by differencing

$$\nabla X_t = X_t - X_{t-1} = (1 - B)X_t = Z_t$$

• $\{X_t\}$ is an example of an autoregressive integrated moving average (ARIMA) process— ARIMA(0, 1, 0) process

ARIMA Models

An ARIMA model is an ARMA process after differencing

• Let d be a non-negative integer. Then X_t is an ARIMA(p, d, q) process if

$$Y_t = \nabla^d X_t = (1 - B)^d X_t$$

is a causal ARMA process

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMA Case Study

ARMIA

• Let d be a non-negative integer. Then X_t is an ARIMA(p, d, q) process if

$$Y_t = \nabla^d X_t = (1 - B)^d X_t$$

is a causal ARMA process

• Let $\phi(B)$ be the AR polynomial and $\theta(B)$ be the MA polynomial. Then for $\{Z_t\} \sim \mathrm{WN}(0,\sigma^2)$

$$\phi(B)Y_t = \theta(B)Z_t,$$

and since $Y_t = (1 - B)^d X_t$, we have

$$\phi(B)(1-B)^d X_t = \theta(B) Z_t$$

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

Let $\phi(z)=1-\phi_1z,\, \theta(z)=1$ and d=1. For a causal stationary solution (after differencing) we need to assume $|\phi_1|<1.$ Then $\{X_t\}$ is an ARIMA (1, 1, 0) process,

$$(1-\phi_1 B)(1-B)X_t = Z_t,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$

Now let $Y_t = (1 - B)X_t = X_t - X_{t-1}$, after some rearrangements we have

$$X_{t} = X_{t-1} + Y_{t}$$

$$= (X_{t-2} + Y_{t-1}) + Y_{t}$$

$$\vdots$$

$$= X_{0} + \sum_{j=1}^{t} Y_{j}$$

Thus $\{X_t\}$ is a "sort of random walk"—we cumulatively sum an AR(1) process, $\{Y_t\}$

Simulated ARIMA and Differenced ARMA Process

We simulate an ARIMA(1,1,0):

10

Lag

15

20

10

Lag

15

20

$$(1-0.5B)(1-B)X_t = Z_t, \quad \{Z_t\} \sim N(0,1)$$

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

Adding a Polynomial Trend

For $d \ge 1$, let $\{X_t\}$ be an ARIMA(p,d,q) process. Then $\{X_t\}$ satisfies the equation

$$\phi(B)(1-B)^d X_t = \theta(B) Z_t$$

• Let μ_t be a polynomial of degree (d-1), i.e., $\mu_t = \sum_{j=0}^{d-1} a_j t^j$ for constants $\{a_j\}$

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

For $d \ge 1$, let $\{X_t\}$ be an ARIMA(p, d, q) process. Then $\{X_t\}$ satisfies the equation

$$\phi(B)(1-B)^dX_t = \theta(B)Z_t$$

- Let μ_t be a polynomial of degree (d-1), i.e., $\mu_t = \sum_{i=0}^{d-1} a_i t^j$ for constants $\{a_i\}$
- Now let $V_t = \mu_t + X_t$, then

$$\phi(B)(1-B)^{d}V_{t} = \phi(B)(1-B)^{d}(\mu_{t} + X_{t})$$

$$= \phi(B)(1-B)^{d}\mu_{t} + \phi(B)(1-B)^{d}X_{t}$$

$$= 0 + \phi(B)(1-B)^{d}X_{t}$$

$$= \theta(B)Z_{t}$$

ARMA Case Study & **Autoregressive** Integrated Moving Average (ARIMA) Models

$$\phi(B)(1-B)^d X_t = \theta(B) Z_t$$

- Let μ_t be a polynomial of degree (d-1), i.e., $\mu_t = \sum_{j=0}^{d-1} a_j t^j$ for constants $\{a_j\}$
- Now let $V_t = \mu_t + X_t$, then

$$\phi(B)(1-B)^{d}V_{t} = \phi(B)(1-B)^{d}(\mu_{t} + X_{t})$$

$$= \phi(B)(1-B)^{d}\mu_{t} + \phi(B)(1-B)^{d}X_{t}$$

$$= 0 + \phi(B)(1-B)^{d}X_{t}$$

$$= \theta(B)Z_{t}$$

• Takeaway: ARIMA(p,d,q) are useful for modeling data with polynomial trends, due to the inherent differencing that can be used to remove trends

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

Steps for Modeling ARIMA Processes: Exploratory Analysis

- Plot the data, ACF, PACF and Q-Q plots
 - Check for unusual features of the data
 - Check for stationarity
 - Do we need to transform the data?
- Eliminate trend
 - Estimating the trend and removing it from the series
 - Or, differencing the series (i.e., select d in the ARIMA model)
- Plot the sample ACF/PACF for the stationary component
 - Identify candidate values of p and q

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models

ARMIA

Steps for Modeling ARIMA Processes: Estimation and Model Checking

- Estimate the ARMA process parameters for the candidate models
- Check the goodness of fit: Are the time series residuals, $\{r_t\}$ a sample of *i.i.d.* noise?
- Model selection:

- Using information criteria such as AIC and AICC
- Test model parameters to compare between the "full" model and the "subset" model