Redes de Computadores

Redes Locais Virtuais - VLANs

Paulo Coelho 2005

Versão 1.0

1

Segmentação de LANs

- As redes são normalmente segmentadas de modo a reflectir a estrutura administrativa da empresa
 - aumentar a segurança
 - permitir um controlo mais eficiente do tráfego
 - limitar os broadcasts
- Ferramentas standard para facilitar este processo
 - Routers restrigem o tamanho dos domínios de difusão (Broadcast)
 - Bridges/Switches restringem o tamanho dos domínios de colisão.
 - VLANs

Introdução às VLANs

- Rede lógica independente da localização física dos utilizadores
- Com um único domínio de difusão (broadcast)
- E destinada a um grupo de interesse.

3

LAN tradicional vs VLANs

Tipos de VLANs

Como configurar VLANs?

Baseadas em:

- Agrupamento de portas dos comutadores
- Grupos de endereços MAC
- Tipo de protocolo utilizado (IPX, IP, NetBEUI,...)
- Endereços de rede (ex. Subredes IP)
- Grupos de Multicast IP
- Combinação das anteriores

5

VLANs baseadas em agrupamento de portas

- Alterações e movimentações obrigam a reconfiguração
- Fácil de implementar e administrar
- É o tipo de VLAN mais usado
 - Suportado por todos os fabricantes
- O switch faz o forward das tramas apenas para as portas na mesma VLAN

Porta	VLAN
1	2
2	2
3	2
4	2
5	3.

VLAN 2 (Portas 1–4,9–12)

VLAN 4 (Portas 7,8,15,16)

VLANs baseadas em endereços MAC

 Quando a estação muda de sitio, os comutadores

Aprendem a nova localização

 Automaticamente actualizam as tabelas

Vantagen	ገ
----------------------------	---

 Segue os utilizadores automaticamente

Desvantagem

- Difícil de administrar
- É necessário especificar para cada end. MAC qual a VLAN

Porta	End. MAC	VLAN
1	aa	2
1	dd	2
2	mm	3
2	ppp	3
3	ff	2

7

VLANs de nível 3

- Baseadas em informação de nível 3
- Podem ser agrupadas pelo identificador da rede
 - Subrede IP
- Ou por protocolo
 - IP, IPX, AppleTalk, ...
- Principal vantagem
 - independência da localização enquanto mantêm a estrutura organizacional
- Desvantagens
 - Administração complexa
 - Comutação dependente da camada 3

VLANs – Protocolos IEEE de relevo

- 802.1D Spanning Tree
- 802.1w Fast Spanning Tree
- 802.1Q VLAN Trunking
- 802.1p QoS nível 2
- 802.3ad Link Aggregation

9

VLANs com Spanning Tree

- 802.1D Bridging e STP
- Este standard define a operação da bridge:
 - source learning
 - forwarding
 - aging
 - stp
- O STP garante:
 - a existência de um caminho único entre duas estações
 - uma elevada tolerância a falhas
 - reconfiguração automatica da rede na situação de falha

Spanning Tree

- STP Spanning Tree Protocol
 - Entre 2 redes logicas, existe apenas 1 caminho activo (Forwarding) e o resto dos caminhos então no modo de bloqueio (Blocking).
 - Existem 3 estados para o protocolo convergir:
 - listening (15 seg)
 - learning (15 seg)
 - forwarding/blocking
 - Assim, o standard 802.1d STP demora cerca de 30 seg. para reconstruir a árvore.

11

Spanning Tree

Fast Spanning Tree

- FSTP (802.1w) Fast Spanning Tree Protocol
 - O STP demora cerca de 30 segundos a convergir.
 - Este tempo de failover já não é aceitável na maioria das redes actuais.
 - Assim, surgiu o FSTP ou 802.1w.
 - Com o 802.1w, em vez dos 30 segundos, a rede converge em cerca de 5 segundos.
 - Assim o failover é quase imediato.

13

IEEE 802.1Q - VLAN Trunking

- Um formato normalizado para etiquetação de tramas.
- Facilita a implementação de VLANs entre múltiplos comutadores de diversos fabricantes.
 - Inclusão de um identificador de VLAN (VID) nas tramas em transito entre comutadores.

Etiquetação de tramas

TPID	Tag Protocol Identifier: 0x8100 Trama etiquetada 802.10	
PRI	IEEE 802.1p prioridade (0=elevada, 7=baixa)	
CFI	Canonical Format Identifier: 0 = trama CSMA/CD	
VLAN ID	VLAN identifier 12-bits valores poss. 2 – 4094 0, 1 e 4095 são reservados	

15

802.1p

802.1p

- Campo de 3 bits na etiqueta 802.1Q
- Permite até 8 prioridades diferentes
- Implementado por hardware

IEEE 802.3ad - Link Aggregation

Link Aggregation

- É um método para agregar (combinar) duas ou mais portas/links de forma a que o switch as considera como um único link lógico.
- Vantages do Link Aggregation?
 - Permite balanceamento de carga (load-balancing)
 - Permite redundância
 - Permite criar links agregados (multiplas ligações físicas combinadas num única ligação lógica)

17

Link Aggregation

Nota:

- Para combinar 802.3ad e 802.1Q nas mesmas portas, primeiro deve-se definir o link agg e depois o 802.1Q.
- Ex. de configuração no OmniSwitch
 - -> lacp linkagg 1 size 2 admin state enable
 - -> lacp agg 1/1 actor admin key 1
 - -> lacp agg 1/2 actor admin key 1
 - -> vlan 2 802.1q 1 "TAG AGGREGATE 1 VLAN 2"

Implementação de VLANs

VLANs estáticas Baseadas em agrupamentos de portas

- •Os utilizadores são assignados por portas.
- •As VLANs são facilmente administradas.
- Aumenta a segurança entre VLANs.
- •Os Pacotes não se "espalham" pelos outros domínios.

19

Implementação de VLANs

VLANs Dinâmicas

- VLANs atribuídas de forma dinâmica, de acordo com as politicas definidas.
- Baseadas nos endereços MAC, endereços IP, tipo de protocolo ou combinação de várias regras:
 - MAC + Porta + IP; MAC + Porta; Porta + Protocolo, etc.
- Menos administração no bastidor. Permite mobilidade

Interligação de VLANs

- As VLANs não comunicam entre si
 - O tráfego entre VLANs não é encaminhado por um comutador de nível 2
- É necessário usar um router para comunicação inter-VLANs
 - Router externo com múltiplos interfaces
 - Router externo com um único interface
 - Router integrado no comutador (switch/router)

21

O papel dos routers nas VLANs

- Permitem conectividade entre diferentes VLANs.
- Permitem interligação com outras partes da rede que também se encontrem logicamente segmentadas através de subredes e interligação com outras redes exteriores.

Vantagens das VLANs

- Separam a estrutura organizacional da topologia física da rede
 - Uma VLAN pode ser parte de um segmento físico
 - Pode ser parte de vários segmentos físicos
- Permitem segmentação lógica
 - O administrador define grupos de utilizadores e recursos
 - Facilidade de adição, alteração e mudança das estações de trabalho

23

Vantagens das VLANs

As VLANs definem domínios de difusão

Vantagens das VLANs

Incrementam a segurança

25

Desvantagens das VLANs

- Complexidade elevada pode levar o administrador a desistir das VLANs
- Sem software de gestão as VLANs tornam-se difíceis de gerir

Questões de verificação

- Explique o objectivo das VLANs.
- Indique algumas formas de criar VLANs de forma dinâmica?
- 3. Explique o propósito do protocolo 802.1D.
- 4. Os protocolos 802.3ad e 802.1q podem ser usados em conjunto? V/F

27

Bibliografia de suporte

- Andrew S. Tanenbaum, Computer Networks, Fourth Edition
 - Secção 4.7 Págs. 318 337
- Alcatel Fundamentals of Comunications
 - CDROM CBT 2001