Nicolás Del Piano

Bases de Datos Avanzadas

Recorrido

- ▶ Bases de Datos Espacio-Temporales
 - 1. Definición
 - 2. Importancia
 - 3. Apliaciones
 - 4. Requerimientos
 - 5. Modelo Espacio-Temporal
- Lenguajes de Consulta
 - 1. Lenguaje de Güting
 - 2. Lenguaje SQLST
- Estado del Arte

El objetivo es extender los modelos de información espacial para incluír tiempo y describir de forma más dinámica la realidad que se quiere representar.

Se han convertido en un tópico muy imporante en estos últimos años, ya que muchas de las aplicaciones como los Sistemas de Información Geográfica y los sistemas de localización necesitan almacenar datos espaciales con características temporales.

STDB

Un STDBMS es un DBMS cuyo aporte esencial es el manejo de datos espaciales a través del tiempo.

Figura: Una idea de la relación entre la información espacial, temporal y espacio-temporal.

Importancia

Muchas de las aplicaciones de bases de datos tratan el fenómeno espacio-temporal, y durante esta última década muchos grupos de investigación han investigado sobre la predicción del clima, prevención del atascamiento del tráfico, servicios de localización, movimiento de objetos, etcétera.

Importancia

Proveer un modelo DBMS para dar soporte al fenómeno espacio-temporal se convirtió en un aspecto importante.

Sólo muy pocos STDBMS existen para satistfacer los tipos de datos y operaciones espacio-temporales.

Aplicaciones

El modelo espacio-temporal abarca aplicaciones:

- Demográficas
- Ecológicas
- Marketing
- Fenómenos naturales
- Militares
- Urbanísticas

Requerimientos

- Representación eficiente del espacio y el tiempo.
 - Heredado de los modelos espaciales y temporales.
- Modelos de datos
 - Representa la evolución temporal de los objetos espaciales, a través de nuevos tipos de datos, las operaciones y relaciones entre ellos.
- ► Lenguajes de consulta

STDB

Una base de datos espacio-temporal necesita proveer un soporte DBMS para mover objetos que cambian contínuamente de forma y posición.

Figura: Los GPS han introducido una fuerte demanda para implementar STDBMS eficientes.

Modelo Espacio-Temporal

Los tipos de datos espacio-temporales permiten al usuario describir un comportamiento dinámico de objetos espaciales a través del tiempo.

El objeto espacial se mueve \Rightarrow los llamamos moving objects.

De la misma forma que los objetos espaciales, los espacio-temporales son añadidos como atributos de tipo en un modelo de datos de un DBMS.

Tipos de Datos Espacio-Temporales

MPOINT (moving point), MLINE (moving line) y MREGION (moving region).

Conceptualmente:

MPOINT es una función $f: time \rightarrow point$ MLINE es una función $f: time \rightarrow line$ MREGION es una función $f: time \rightarrow region$

Figura: Ejemplos de un objeto moving point (a) y un objeto moving region (b).

Operaciones y Predicados

Algunas de las operaciones que un modelo espacio-temporal debe ofrecer (además de las espaciales y temporales):

```
\textit{deftime}: \textit{mpoint} \rightarrow \textit{periods}
```

Disjoint : $mpoint \times mregion \rightarrow bool$ distance : $mpoint \times mpoint \rightarrow mreal$ $Inside : mpoint \times mregion \rightarrow bool$

 $\textit{intersection}: \textit{mpoint} \times \textit{mregion} \rightarrow \textit{mpoint}$

 $meet: point \times region \rightarrow bool$

 $min: mreal \rightarrow real$

 $trajectory: mpoint \rightarrow line$

LENGUAJES DE CONSULTA ESPACIO-TEMPORALES

Lenguajes de Consulta Espacio-Temporales

Se han propuesto diversos lenguajes de consulta para este tipo de base de datos, como por ejemplo, SQLST (Chen y Zaniolo, 2000), Güting (Güting y Schneider, 2005), el de Chomicki (Chomicki y Revesz, 1999) y STQL (Erwig y Schneider, 2002) entre otros.

En esta clase veremos y compararemos los dos primeros.

Caso de estudio

Escenario: incendio forestal (Güting et ál., 2000; Chen y Zaniolo, 2000).

Se maneja información sobre bosques, incendios y bomberos.

Lenguajes de Consulta: Güting

En Güting y Schneider (2005) se propone un lenguaje de consulta para el manejo de objetos móviles (se soportan cambios contínuos de las geometrías, ya sea en forma y posición).

Se proponen tipos de datos móviles como MBOOL, MINTEGER, MPOINT, MLINE y MREGION, que combinan los tipos de datos primitivos y los espaciales con información temporal.

Lenguaje de tipo SQL.

Lenguajes de Consulta: Güting

Creación de las tablas

```
Bosque (nombre: STRING, territorio: REGION)
Incendio (nombre: STRING, extensión: MREGION)
Bombero (nombre: STRING, ubicación: MPOINT)
```

Bosque		
Nombre Territorio		
Verde	T	
Santa Elena	2	

Figura: Tabla bosque para el lenguaje de Güting.

Lenguajes de Consulta: Güting

Bombero	
Nombre	Ubicación
T. Montoya	{(4/7/06, A), (6/7/06 , B), (7/7/06 , C)}
J. Vélez	{(6/8/07, D), (7/8/07, E), (9/8/07, F)}

Figura: Tabla bombero para el lenguaje de Güting.

Incendio			
Nombre		Extensión	
	{(5/7/06,), (6/7/06,	₹,,
Gran L	(7/7/06,), (7/7/06,	\leq
Azul	{(24/3/07,),(25/3/07,	D »

Figura: Tabla incendio para el lenguaje de Güting.

SQLST (Chen y Zaniolo, 2000) es una extensión minimalista del SQL estándar, ya que preserva su estructura y sólo añade tipos de datos temporales (DAY), espaciales (POINT, LINE y REGION) y operadores (ÁREA, OVERLAP, MOVING_DISTANCE).

El tiempo se representa en forma discreta, así los cambios en las geometrías son discretos.

Creación de las tablas

```
CREATE TABLE bosque (nombre CHAR(30), territorio REGION)
CREATE TABLE incendio (nombre CHAR(30), extensión REGION, día DAY)
CREATE TABLE bombero (nombre CHAR(30), ubicación POINT, día DAY)
```

Bosque		
Nombre	Territorio	
Verde	5	
Santa Elena	0	

Figura: Tabla bosque para el lenguaje SQLST.

Incendio		
Nombre	Extensión	Día
Gran L	(Área: 315)	5/7/06
Gran L	(Área: 503)	6/7/06
Gran L	(Área: 503)	7/7/06
Gran L	(Área: 114)	7/7/06
Azul	(Área: 710)	24/3/07
Azul	(Área: 480)	25/3/07

Figura: Tabla incendio para el lenguaje SQLST.

Bombero		
Nombre	Ubicación	Día
T. Montoya	A (31,52)	4/7/06
T. Montoya	B (40,47)	6/7/06
T. Montoya	C (34, 24)	7/7/06
J. Vélez	D (21,75)	6/8/07
J. Vélez	E (30, 66)	7/8/07
J. Vélez	F (34, 41)	9/8/07

Figura: Tabla bombero para el lenguaje SQLST.

¿Cúando y dónde alcanzó el incendio "Gran L" su máxima extensión?

Consulta: Güting

```
LET GranL = ELEMENT(SELECT extensión
    FROM incendio
    WHERE nombre = "Gran L");
LET max_area = INITIAL(ATMAX(AREA(GranL)));
ATINSTANT(GranL, INST(max_area));
VAL(max_area);
```


ATINSTANT	VAL
6/7/06	503

¿Cúando y dónde alcanzó el incendio "Gran L" su máxima extensión?

```
Consulta: SQL<sup>ST</sup>

SELECT día, extensión, AREA(extensión)

FROM incendio

WHERE nombre = "Gran L.AND AREA(extensión) = SELECT MAX(AREA(extensión))

FROM incendio

WHERE nombre = "Gran L");
```

F1.dia	F2.extension	AREA
6/7/06	\bigvee	503
7/7/06	0	503

¿Cúando y dónde se expandieron los incendios más de 500 km²?

Consulta: Güting

```
LET reg_grande = SELECT a_grande AS extensión
WHEN[FUN(r:region) AREA(r) > 500]
    FROM incendio;
SELECT * FROM reg_grande
WHERE NOT(ISEMPTY(DEFTIME(a_grande)));
```


LET square = FUN (m:integer) m * m;

¿Cúando y dónde se expandieron los incendios más de 500 km²?

```
Consulta: SQL<sup>ST</sup>
```

```
SELECT día, extensión
```

FROM incendio

WHERE AREA(extensión) > 500;

F1.día	F2.extensión
6/7/06	(Área: 503)
7/7/06	(Área: 503)
24/3/07	(Área: 710)

Figura: El resultado de la consulta en SQLST.

Figura: Ubicación del bombero *T. Montoya* dentro de *Gran L*: a) punto A y región 315 km² el 5/7/06, b) punto B y región de 503 km² el 6/7/06, c) punto C y región de 503 km² el 7/7/06 y d) punto D y región de 114 km² el 7/7/06.

Consulta: SQLST

```
SELECT DURATION(bombero.día),
   MOVING_DISTANCE(bombero.ubicación,
   bombero.día)

FROM incendio, bombero

WHERE incendio.día = bombero.día AND
   incendio.nombre = "Gran L.AND
   bombero.nombre = "T. Montoya.AND
   INSIDE (bombero.ubicacion, incendio.extensión)
```


Figura: Ejemplo de la función MOVING_DISTANCE.

Incendio		Bombero			
Nombre	Extensión	Día	Nombre	Ubicación	Día
Gran L	8	5/7/06	T. Montoya	A	5/7/06
Gran L	\square	6/7/06	T. Montoya	В	6/7/06
Gran L	0	7/7/06	T. Montoya	С	7/7/06
Gran L	8	7/7/06	T. Montoya	С	7/7/06

Figura: Resultado parcial de la consulta en SQLST.

DURATION	MOVING_DISTANCE
3	34.1

Figura: Resultado de la consulta en SQLST.

¿Cuánto tiempo estuvo el bombero *T. Montoya* dentro de *Gran L* y cuánta distancia recorrió dentro?

```
Consulta: Güting

SELECT tiempo AS

DURATION (DEFTIME (INTERSECTION (ubicación,
GranL))),
    distancia AS

LENGTH(TRAJECTORY(INTERSECTION(ubicación,GranL)))

FROM bombero

WHERE nombre = "T. Montoya";
```

{(5/7/06, A), (6/7/06, B), (7/7/06, C)}

Figura: MPOINT resultante de INTERSECTION(ubicación, GranL).

ESTADO DEL ARTE

Actualidad de las STDB

Las STDB tratan con aplicaciones donde los tipos de datos son caracterizados por información espacial y temporal.

La implementación e investigación en este área ha empezado décadas atrá, cuando el manejo y manipulación de datos relacionada a los aspectos temporales y espaciales se hizo indispensable.

Sin embargo, no es una tarea sencilla dado la complejidad de las estructuras de datos junto con la representación y manipulación de esa información involucrada.

Actualidad Espacio-Temporal

Una alternativa para lidiar con la información espacio-temporal, es construír un DBMS especializado para dar un soporte eficiente a los tipos de datos y consultas (CONCERT (Relly et al. 1997) y SECONDO (Dieker y Güting 2000)).

Cuando no sea posible usar un DBMS especializado, otra alternativa sería extender un DBMS (orientado a objetos o relacional), ya sea open source o comercial, para la manipulación y almacenamiento de objetos espacio-temporales.

Actualidad Espacio-Temporal

Aunque los DBMS tienen capacidad de extenderse y mecanismos para soportar estas necesidades espacio-temporales, no existe un DBMS open source con una extensión espacio-temporal.

Otra alternativa es crear una arquitectura por capas sobre una DBMS ya existente.

Oracle brinda soporte espacio-temporal con las versioned tables de su Workspace Manager, pero es comercial.

TerraLib

Es una librería GIS open source que extiende el modelo relacional de un DBMS para el manejo del modelo de datos espacio temporal.

Figura: www.terralib.org

Soporta diferentes DBMS, incluyendo Oracle, PostgreSQL y MySQL. Se programa en C++.

Tiene su centro de desarrollo en Brasil y se distribuye bajo la licencia LGPL.

TerraLib

Existen varias aplicaciones asociadas para facilitar la visualización de consultas y el manejo del usuario.

Figura: TerraView, un entorno gráfico para utilizar TerraLib.

Problema

Existen numerosas bases de datos relacionales con extensiones espaciales y temporales, pero las bases de datos espacio-temporales no están basadas en el modelo relacional por razones prácticas.

Hasta ahora no hay RDBMS con extensiones espacio-temporales incorporadas.

TerraLib es como un medio externo que las utiliza para brindar estas herramientas.

The Google Approach

Ya conocemos el inmenso trabajo de esta companía en los aspectos espacio-temporales.

Entonces, ¿ cómo lidia Google este tipo de problemas?

KML

Keyhole Markup Language es una notación XML para representar datos geográficos en 3 dimensiones.

Permite describir y almacenar información geográfica así como también incorporar temporal.

KML es un estándar abierto y de su mantenimiento se encarga el Open Geospatial Consortium. Fue desarrollado para Google Earth y Google Maps.

Google Earth

En Google Earth 5 se implementó la visualización de imágenes históricas. Es decir, podemos ver cómo se ha ido construyendo el edificio al lado de casa, o cómo era el entorno de nuestro pueblo años atrás.

Figura: Google Earth 5 y su herramienta histórica.

KML: Ejemplo

El tiempo con vistas abstractas (fragmento).

KML: Ejemplo

Y también describir objetos espaciales:

```
Descripción en el mapa de New York City
<Placemark>
 <name>New York City</name>
 </Point>
</Placemark>
```

Otros formatos de datos espacio-temporales

- XML en sí
- ► GML
- NetCDF
 - Es un formato de archivo, diseñado para leer y escribir eficientemente matrices de datos.

Bibliografía

- R. H. Güting and M. Schneider. Moving Objects Databases.
- Spatial and Spatio-Temporal Data Models and Languages, Markus Schneider.
- Claudia Deco y Cristina Bender. Tópicos Avanzados de Bases de Datos.
- Cyndy Xinmin Chen and Carlo Zaniolo. SQLST: A Spatio-Temporal Data Model and Query Language.