```
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm  #support vector machine
from sklearn.metrics import accuracy_score
```

→ Data collection

diabetes_dataset=pd.read_csv('/content/diabetes.csv')

diabetes_dataset.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeF
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
4							•

diabetes_dataset.shape

(768, 9)

#getting the statistical measure of the data
diabetes_dataset.describe()

	Pregnancies		Glucose BloodPressur		SkinThickness	Insulin	BMI	Di			
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000				
		2 045052	100 001501	CO 40E4CO	20 526450	70 700470	24 002570				
<pre>diabetes_dataset['Outcome'].value_counts()</pre>											
	0 50	90									
	1 26	58									
	Name: Outcome, dtype: int64										
_	ы в	1									

0 --> Non-Diabetic

1 -->Diabetic

diabetes_dataset.groupby('Outcome').mean()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	D
Outcome							
0	3.298000	109.980000	68.184000	19.664000	68.792000	30.304200	
1	4.865672	141.257463	70.824627	22.164179	100.335821	35.142537	

seperating the data and label
x=diabetes_dataset.drop(columns='Outcome',axis=1) #axis =1 show-- you are using the drop fu
y=diabetes_dataset['Outcome']

Χ

		Pregnanci	ies Glu	cose	BloodPr	essure	SkinThickness	Insulin	BMI	DiabetesPedigre
	0		6	148		72	35	0	33.6	
	1		1	85		66	29	0	26.6	
у										
	0	1								
	1	0								
	2	1								
	3	0								
	4	1								
		• •								
	763	0								
	764	0								
	765	0								
	766	1								
	767	0								
	Name:	Outcome,	Length	768,	dtype:	int64				
	767		1	93		70	31	0	30.4	

Data standardization

```
scaler=StandardScaler()
standardized_data=scaler.fit_transform(x)
scaler.fit(x)
     StandardScaler()
standardized data=scaler.transform(x)
standardized data
     array([[ 0.63994726, 0.84832379, 0.14964075, ..., 0.20401277,
              0.46849198, 1.4259954],
            [-0.84488505, -1.12339636, -0.16054575, ..., -0.68442195,
             -0.36506078, -0.19067191],
            [1.23388019, 1.94372388, -0.26394125, ..., -1.10325546,
              0.60439732, -0.10558415],
            [0.3429808, 0.00330087, 0.14964075, ..., -0.73518964,
             -0.68519336, -0.27575966],
            [-0.84488505, 0.1597866, -0.47073225, ..., -0.24020459,
             -0.37110101, 1.17073215],
            [-0.84488505, -0.8730192, 0.04624525, ..., -0.20212881,
             -0.47378505, -0.87137393]])
```

```
x=standardized_data
```

```
Х
     array([[ 0.63994726, 0.84832379, 0.14964075, ..., 0.20401277,
              0.46849198, 1.4259954],
            [-0.84488505, -1.12339636, -0.16054575, ..., -0.68442195,
             -0.36506078, -0.19067191],
            [1.23388019, 1.94372388, -0.26394125, ..., -1.10325546,
              0.60439732, -0.10558415],
            [0.3429808, 0.00330087, 0.14964075, ..., -0.73518964,
             -0.68519336, -0.27575966],
            [-0.84488505, 0.1597866, -0.47073225, ..., -0.24020459,
             -0.37110101, 1.17073215],
            [-0.84488505, -0.8730192, 0.04624525, ..., -0.20212881,
             -0.47378505, -0.87137393]])
У
            1
     1
            0
     2
     3
            1
     763
     764
     765
            0
     766
            1
     767
     Name: Outcome, Length: 768, dtype: int64
```

▼ Train Test Split

we split x data into two part x_train n x_test. and same for y.

we feed machine with x_train Y_train and after machine make some algorithm, we will check with x_test and y_test data.

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,stratify=y,random_state=2)
```

provide the old data set so (x,y)

test_size=0.2 mean you are assigning 20% data of x as test data.

Training the model

by above line of code the machine is trained.

Model Evaluation

Accuracy Score on the basis of training data.

```
x_train_prediction=classifier.predict(x_train)
training_data_accuracy=accuracy_score(x_train_prediction,y_train)
training_data_accuracy
    0.7866449511400652
```

our model is 78% accurate. on the basis of training data...

Accuracy Score on the basis of test data

```
x_test_prediction=classifier.predict(x_test)
test_data_accuracy=accuracy_score(x_test_prediction,y_test)
```

test data accuracy

0.7727272727272727

Making a predictive system

```
#provide a input from diabites data set. and outcome must be 0.
input data=(4,110,90,0,0,37.6,0.191,30)
#changing the input_data to numpy array
input data as numpy array=np.asarray(input data)
#our model is trained on 768 point and 8 column, not for 1 intance, so reshape the input so t
#can understand
input data reshaped=input data as numpy array.reshape(1,-1) #pass perameter as (1,-1) as one
#we have trained our machine on standarized data(on some range).so convert user input as star
#standarize the input data
std data=scaler.transform(input data reshaped)
print(std_data)
prediction=classifier.predict(std data)
print(prediction)
#This all the extra stuff.
if prediction[0]==0:print("Person is non-diabetes")
else:print("Person is Diabetes")
     [ 0.04601433 -0.34096773 1.08020025 -1.28821221 -0.69289057 0.71168975
       -0.84827977 -0.27575966]]
     [0]
     Person is non-diabetes
     /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not hav
       "X does not have valid feature names, but"
```

✓ 0s completed at 11:23 AM

×