1 Prime Ideals and Maximal Ideals

Definition 1.1: Prime Ideals

A prime ideal A of a commutative ring R is a proper ideal of R such that $a, b \in R$ and $ab \in A$ imply $a \in A$ or $b \in A$.

Consider the following examples:

• Consider $R = \mathbb{Z}$. The ideals of \mathbb{Z} are $\{0\}$ and $n\mathbb{Z}$ for $n = 1, 2, \ldots$ We know that $2\mathbb{Z}$ is prime. So, if $nm \in 2\mathbb{Z}$, then nm = 2k, which is even. This implies that one of n or m is even, so $n \in 2\mathbb{Z}$ or $m \in 2\mathbb{Z}$.

This is true in general. If p is prime, then $p\mathbb{Z}$ is a prime ideal. Recall that if p|ab, then p|a or p|b by Euclid's Lemma.

• Consider $6\mathbb{Z}$, which is not prime. We want to show that this is not a prime ideal. To do this, we want to find an $n, m \in \mathbb{Z}$ such that $nm \in 6\mathbb{Z}$ but $n, m \notin 6\mathbb{Z}$. An obvious example is n = 2 and m = 3.

In general, if n = st is composite, then $st \in n\mathbb{Z}$ but $s, t \notin n\mathbb{Z}$.

• Consider $R = \{0\}$. This is a prime ideal. Suppose $n, m \in \mathbb{Z}$ with $nm \in R$. Then, nm = 0 means that one of n or m is 0, which implies that $n \in R$ or $m \in R$.

Fact: $\{0\} \subseteq R$ is a prime ideal if and only if R is an integral domain.

Definition 1.2: Maximal Ideals

A **maximal ideal** of a commutative ring R is a proper ideal of R such that, when B is an ideal of R and $A \subseteq B \subseteq R$, then B = A or B = R.

Put it another way, a maximal ideal I of a commutative ring R is a proper ideal which is not contained in any other proper ideals, i.e. if $I \subseteq A \subseteq R$ for some ideal A, then A = I or A = R.

Theorem 1.1

Let R be a commutative ring with unity and $I \subseteq R$ an ideal. Then, R/I is an integral domain if and only if I is prime.

Proof. Supose R/I is an integral domain. Suppose then that $a, b \in R$ with $ab \in I$. Then, ab+I=0+I. This further implies that (a+I)(b+I)=0+I. This implies that a+I=0+I or b+I=0+I by integral domain definition. By the definition of a coset, $a \in I$ or $b \in I$. Thus, I is prime.

Suppose now that I is prime. Suppose $a, b \in R$ with (a + I)(b + I) = 0 + I with ab + I = 0 + I. This implies that $ab \in I$, which further means that $a \in I$ or $b \in I$ by prime. Thus, a + I = 0 + I or b + I = 0 + I. Thus, R/I is an integral domain.

Theorem 1.2

Let R be a commutative ring with unity and $I \subseteq R$ an ideal. Then, R/I is a field if and only if I is maximal.

Proof. Suppose R/I is a field. We want to show that if $I \subseteq A \subseteq R$, then A = I or A = R. Suppose $A \subseteq R$ is an ideal satisfying $I \subseteq A$ and $A \ne I$. The fact that $A \ne I$ implies that we can choose some $b \in A \setminus I$. This implies that $b + I \ne 0 + I$ and so $b + I \in R/I$ is a unit. This implies that there exists some $c + I \in R/I$ with (b + I)(c + I) = 1 + I, which further implies that bc + I = 1 + I. Thus, We

know that $1 - bc \in A$, but $b \in A \setminus I \subseteq A$ so $bc \in A$ and thus $1 = (1 - bc) + bc \in A$. So, $R = R \cdot 1 \subseteq A$ so that A = R. Thus, I is maximal.

Suppose that I is maximal. We want to show that any $b+I\neq 0+I$ is a unit in R/I. Choose some $b+I\in R/I$ with $b+I\neq 0+I$, i.e. choose some $b\in R\setminus I$. Consider $B=\{rb+a\mid r\in R, a\in I\}$. Thus, B=R by $I\subseteq B\subseteq R$ and $b\neq I$ ($b\in B, b\in I$). From there, $1\in B$ which means that 1=rb+a for some $r\in R$ and $a\in I$, which finally implies that 1+I=(r+I)(b+I).

Corollary 1.1

All maximal ideals are prime ideals.

Proof. Suppose $I \subseteq R$ is maximal.

R/I is a field.

 $\implies R/I$ is an integral domain.

 $\implies R/I$ is prime.

So, we are done.

Remark: The converse is not true. Consider $\langle x \rangle \subseteq \mathbb{Z}[x]$. This is not maximal by $\langle x \rangle \subset \langle 2, x \rangle \subset \mathbb{Z}[x]$.

$$\mathbb{Z}[x]/\langle x\rangle \longleftrightarrow \mathbb{Z}$$

$$f(x) + \langle x \rangle \longleftrightarrow f(0)$$

$$f(x) + \langle x \rangle = h(x) + \langle x \rangle \iff f(x) - h(x) = g(x)x \text{ for some } g(x) \iff f(0) - h(0) = 0$$

Thus, this ideal $\langle x \rangle$ is prime.

^aWe can prove the fact that $I \subseteq A \subseteq R$ and $A \neq I$ implies that A = R.

 $[^]b$ Exercise: Show that B is an ideal with contains I