Table of Contents PART A

Stationarity Test
ADF Test
PP Test4
Model Selection
Linearity Test
Pre-Crisis Model Selection
During Crisis Model Selection
Post-Crisis Model Selection
Model Interpretation
PART B
Findings Summarization104
Results and Explanation104

PART A

1. Stationary Check

H0: MSCI USA RETURN has a unit root

H1: MSCI USA RETURN does not have a unit root

a. ADF Test

i) Period 1 (Pre-Crisis) 1st June 2007 – 14th September 2008

Augmented Dickey-Fuller Unit Root Test on MSCI_USA_RETURN

Null Hypothesis: MSCI_USA_RETURN has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=16)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-21.81519 -3.985690 -3.423296 -3.134591	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(MSCI_USA_RETURN)

Method: Least Squares Date: 20/11/24 Time: 19:51

Sample (adjusted): 4/06/2007 12/09/2008 Included observations: 335 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MSCI_USA_RETURN(-1) C @TREND("1/06/2007")	-1.178226 -0.000344 -1.59E-06	0.054009 0.001354 6.99E-06	-21.81519 -0.253855 -0.228099	0.0000 0.7998 0.8197
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.589060 0.586585 0.012364 0.050750 997.8130 237.9524 0.000000	Mean depend S.D. depende Akaike info co Schwarz crite Hannan-Quint Durbin-Watso	dent var ent var riterion rion n criter.	3.82E-06 0.019229 -5.939182 -5.905026 -5.925565 2.016856

The ADF test has probability of 0.0000 (less than 0.01), we reject the null hypothesis. Therefore, MSCI USA RETURN does not have a unit root and is stationary.

ii) Period 2 (During Crisis) 15th September 2008 – 30th April 2009 Augmented Dickey-Fuller Unit Root Test on MSCI_USA_RETURN

Null Hypothesis: MSCI_USA_RETURN has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=13)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-11.75125	0.0000
Test critical values:	1% level	-4.014986	
	5% level	-3.437458	
	10% level	-3.142936	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(MSCI_USA_RETURN)

Method: Least Squares
Date: 21/11/24 Time: 10:21
Sample: 15/09/2008 30/04/2009
Included observations: 164

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MSCI_USA_RETURN(-1) D(MSCI_USA_RETURN(-1)) C @TREND("15/09/2008")	-1.383542 0.196357 -0.010223 9.80E-05	0.117736 0.077455 0.005155 5.45E-05	-11.75125 2.535107 -1.983176 1.795808	0.0000 0.0122 0.0491 0.0744
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.594774 0.587176 0.032723 0.171323 330.1481 78.28054 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion n criter.	-2.47E-05 0.050929 -3.977416 -3.901810 -3.946723 1.962395

The ADF test has probability of 0.0000 (less than 0.01), we reject the null hypothesis. Therefore, MSCI USA RETURN does not have a unit root and is stationary.

iii) Period 3 (Post-Crisis) 1st May 2009 – 31st December 2009 Augmented Dickey-Fuller Unit Root Test on MSCI_USA_RETURN

Null Hypothesis: MSCI_USA_RETURN has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=13)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-14.30306 -4.011352 -3.435708 -3.141907	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(MSCI_USA_RETURN)

Method: Least Squares Date: 21/11/24 Time: 10:22 Sample: 1/05/2009 31/12/2009 Included observations: 175

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MSCI_USA_RETURN(-1) C	-1.088842 0.002370	0.076126 0.001778	-14.30306 1.332990	0.0000 0.1843
@TREND("1/05/2009")	-8.82E-06	1.76E-05	-0.500689	0.6172
R-squared	0.543283	Mean depend	dent var	-5.33E-05
Adjusted R-squared	0.537973	S.D. depende	ent var	0.017312
S.E. of regression	0.011767	Akaike info c	riterion	-6.030007
Sum squared resid	0.023816	Schwarz crite	rion	-5.975754
Log likelihood	530.6256	Hannan-Quin	n criter.	-6.008000
F-statistic	102.3005	Durbin-Watso	on stat	1.974148
Prob(F-statistic)	0.000000			

The ADF test has probability of 0.0000 (less than 0.01), we reject the null hypothesis. Therefore, MSCI USA RETURN does not have a unit root and is stationary.

b. PP Test

i) Period 1 (Pre-Crisis) 1st June 2007 – 14th September 2008

Phillips-Perron Unit Root Test on MSCI_USA_RETURN

Null Hypothesis: MSCI_USA_RETURN has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test stat	tistic	-22.23855	0.0000
Test critical values:	1% level	-3.985690	
	5% level	-3.423296	
	10% level	-3.134591	
*MacKinnon (1996) one	e-sided p-values.		
Residual variance (no o			0.000151 0.000127

Phillips-Perron Test Equation

Dependent Variable: D(MSCI_USA_RETURN)

Method: Least Squares Date: 20/11/24 Time: 19:53

Sample (adjusted): 4/06/2007 12/09/2008 Included observations: 335 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MSCI_USA_RETURN(-1) C @TREND("1/06/2007")	-1.178226 -0.000344 -1.59E-06	0.054009 0.001354 6.99E-06	-21.81519 -0.253855 -0.228099	0.0000 0.7998 0.8197
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.589060 0.586585 0.012364 0.050750 997.8130 237.9524 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion n criter.	3.82E-06 0.019229 -5.939182 -5.905026 -5.925565 2.016856

The PP test has a probability of 0.0000 (less than 0.01), we reject the null hypothesis. Therefore, MSCI USA RETURN does not have a unit root and is stationary.

ii) Period 2 (During Crisis) 15th September 2008 – 30th April 2009

Phillips-Perron Unit Root Test on MSCI_USA_RETURN

Null Hypothesis: MSCI_USA_RETURN has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	tistic	-15.31072	0.0000
Test critical values:	1% level	-4.014986	
	5% level	-3.437458	
	10% level	-3.142936	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no HAC corrected variance	•		0.001087 0.000826

Phillips-Perron Test Equation

Dependent Variable: D(MSCI_USA_RETURN)

Method: Least Squares Date: 21/11/24 Time: 10:24 Sample: 15/09/2008 30/04/2009 Included observations: 164

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MSCI_USA_RETURN(-1) C	-1.156743 -0.008675	0.077817 0.005204	-14.86493 -1.667007	0.0000 0.0975
@TREND("15/09/2008")	8.35E-05	5.52E-05	1.514389	0.1319
R-squared	0.578497	Mean depend	dent var	-2.47E-05
Adjusted R-squared	0.573261	S.D. depende	ent var	0.050929
S.E. of regression	0.033269	Akaike info c	riterion	-3.950230
Sum squared resid	0.178204	Schwarz crite	erion	-3.893525
Log likelihood	326.9189	Hannan-Quin	n criter.	-3.927210
F-statistic	110.4834	Durbin-Watso	on stat	2.047657
Prob(F-statistic)	0.000000			

The PP test has a probability of 0.0000 (less than 0.01), we reject the null hypothesis. Therefore, MSCI USA RETURN does not have a unit root and is stationary.

iii) Period 3 (Post-Crisis) 1st May 2009 – 31st December 2009

Phillips-Perron Unit Root Test on MSCI_USA_RETURN

Null Hypothesis: MSCI_USA_RETURN has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 0 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	tistic	-14.30306	0.0000
Test critical values:	1% level	-4.011352	
	5% level	-3.435708	
	10% level	-3.141907	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no	correction)		0.000136
HAC corrected variance			0.000136

Phillips-Perron Test Equation

Dependent Variable: D(MSCI_USA_RETURN)

Method: Least Squares Date: 21/11/24 Time: 10:23 Sample: 1/05/2009 31/12/2009 Included observations: 175

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MSCI_USA_RETURN(-1) C @TREND("1/05/2009")	-1.088842 0.002370 -8.82E-06	0.076126 0.001778 1.76E-05	-14.30306 1.332990 -0.500689	0.0000 0.1843 0.6172
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.543283 0.537973 0.011767 0.023816 530.6256 102.3005 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-5.33E-05 0.017312 -6.030007 -5.975754 -6.008000 1.974148

The PP test has a probability of 0.0000 (less than 0.01), we reject the null hypothesis. Therefore, MSCI USA RETURN does not have a unit root and is stationary.

Overall, data is stationary across all periods. Stationarity is essential for mode estimation because it ensures the model parameters are stable and predictable. Furthermore, multiple hypothesis (diagnostic) tests rely on the assumption of data stationarity. If data is nonstationary, parameters and hypothesis tests may not be reliable. Besides, non-stationary data can lead to spurious correlations.

2. Model Selection

a. Linearity Test

In this section, we try to test if the data is linear or not. If the data is linear, we can proceed with ARMA models, however, if the data is non-linear ARCH or GARCH model will be more suitable for the data. This is because non-linear data often suffers from heteroscedasticity problem and AR model is not adequate to capture this complexity fully.

i) Period 1 (Pre-Crisis) 1st June 2007 – 14th September 2008 Scatter Plot

MSCI USA Return

The points show a straight line pointing downward, it is highly likely to be linear. To be sure, we run the BDS test to see if it is significantly linear/non-linear.

BDS Test

H0: The data is linear H1: The data is non-linear

BDS Test for MSCI_USA_RETURN

Date: 21/11/24 Time: 06:35 Sample: 1/06/2007 12/09/2008 Included observations: 336

Dimension 2 3 4 5 6	BDS Statistic -0.003465 -0.002266 -6.72E-05 0.002291 0.002932	Std. Error 0.004180 0.005117 0.004698 0.003777 0.002810	z-Statistic -0.829100 -0.442901 -0.014313 0.606706 1.043582	Prob. 0.4070 0.6578 0.9886 0.5440 0.2967	
Raw epsilor Pairs within Triples withi	epsilon	0.012491 60928.00 12499196	V-Statistic V-Statistic	0.539683 0.329507	
Dimension 2 3 4 5 6	<u>C(m,n)</u> 15961.00 8534.000 4604.000 2654.000 1546.000	c(m,n) 0.285298 0.153459 0.083288 0.048302 0.028307	C(1,n-(m-1)) 30063.00 29919.00 29702.00 29683.00 29606.00	c(1,n-(m-1)) 0.537367 0.538005 0.537320 0.540221 0.542086	c(1,n-(m-1))^k 0.288763 0.155725 0.083355 0.046011 0.025375

Since the probability of all the dimensions in BDS Test is greater than 0.05, we fail to reject the null hypothesis. Therefore, it is concluded that the data is linear. Thus, AR/MA/ARMA models should be tested first for this data before deciding to use ARCH/GARCH models.

ii) Period 2 (During Crisis) 15th September 2008 – 30th April 2009 Scatter Plot

The points show a straight line pointing downward, it is highly likely to be linear. To be sure, we run the BDS test to see if it is significantly linear/non-linear.

BDS Test

BDS Test for MSCI_USA_RETURN Date: 21/11/24 Time: 10:54 Sample: 15/09/2008 30/04/2009 Included observations: 164

Dimension 2 3 4 5 6	BDS Statistic 0.009347 0.017048 0.017603 0.014270 0.014105	Std. Error 0.006150 0.007665 0.007163 0.005862 0.004439	z-Statistic 1.519847 2.224322 2.457387 2.434488 3.177112	Prob. 0.1285 0.0261 0.0140 0.0149 0.0015	
Raw epsilon Pairs within e Triples within	epsilon	0.033552 14754.00 1500480.	V-Statistic V-Statistic	0.548557 0.340172	
Dimension 2 3 4 5 6	<u>C(m,n)</u> 4028.000 2310.000 1330.000 761.0000 481.0000	c(m,n) 0.305082 0.177134 0.103261 0.059827 0.038293	C(1,n-(m-1)) 7180.000 7081.000 6968.000 6858.000 6755.000	c(1,n-(m-1)) 0.543816 0.542980 0.540994 0.539151 0.537776	c(1,n-(m-1))^k 0.295736 0.160085 0.085658 0.045557 0.024188

Since the probability of dimension 2 in BDS Test is greater than 0.05, we fail to reject the null hypothesis in this dimension. However, for other dimensions, the probability is less than 0.05, we reject the null hypothesis. Therefore, it is concluded that the data is nonlinear in higher dimensions. Thus, ARCH/GARCH models should be used instead of AR/MA/ARMA models.

iii) Period 3 (Post-Crisis) 1st May 2009 – 31st December 2009 Scatter Plot

The points show a straight line pointing downward, it is highly likely to be linear. To be sure, we run the BDS test to see if it is significantly linear/non-linear.

BDS Test

BDS Test for MSCI_USA_RETURN Date: 21/11/24 Time: 11:00 Sample: 1/05/2009 31/12/2009

Included observations: 175

Dimension 2 3 4 5 6	BDS Statistic -0.007561 -0.003384 0.002743 0.006679 0.005460	Std. Error 0.006707 0.008432 0.007952 0.006567 0.005019	z-Statistic -1.127339 -0.401366 0.344909 1.017029 1.087667	Prob. 0.2596 0.6882 0.7302 0.3091 0.2767	
Raw epsilon Pairs within Triples withir	epsilon	0.011720 16927.00 1874341.	V-Statistic V-Statistic	0.552718 0.349731	
Dimension 2 3 4 5 6	<u>C(m,n)</u> 4460.000 2416.000 1364.000 801.0000 450.0000	c(m,n) 0.296326 0.162387 0.092751 0.055108 0.031326	C(1,n-(m-1)) 8297.000 8173.000 8055.000 7933.000 7812.000	c(1,n-(m-1)) 0.551259 0.549335 0.547736 0.545786 0.543822	c(1,n-(m-1))^k 0.303887 0.165772 0.090009 0.048430 0.025867

Since the probability of all the dimensions in BDS Test is greater than 0.05, we fail to reject the null hypothesis. Therefore, it is concluded that the data is linear. Thus, AR/MA/ARMA models should be tested first for this data before deciding to use ARCH/GARCH models.

2.1 Period 1 (Pre-Crisis) 1st June 2007 – 14th September 2008

a. ARMA Model Selection

Correlogram of MSCI_USA_RETURN

Date: 21/11/24 Time: 06:46 Sample: 1/06/2007 12/09/2008 Included observations: 336

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.178	3 -0.178	10.744	0.001
1 1		2 -0.016	-0.049	10.827	0.004
1 1	[3 -0.007	-0.019	10.842	0.013
1 [1	[[4 -0.031	-0.038	11.176	0.025
1 1		5 0.019	0.006	11.301	0.046
Щı	 	6 -0.098	-0.099	14.574	0.024
1 1	[[7 0.008	-0.030	14.594	0.042
1 1	[[8 -0.016	6 -0.029	14.682	0.066
1 1		9 -0.008	3 -0.021	14.704	0.099
ı j i		10 0.057	0.045	15.849	0.104
ı j i		11 0.033	0.053	16.237	0.133
1 1		12 0.013		16.294	0.178
ı j i		13 0.068	0.081	17.909	0.161
1 [1		14 -0.051	-0.021	18.819	0.172
1 [1	[[15 -0.022	2 -0.031	18.995	0.214
1 [1		16 -0.023	3 -0.024	19.179	0.259
۱ ا ل		17 0.082	0.089	21.559	0.202
I [] I	[[18 -0.057	-0.025	22.726	0.201
1 [] 1	I[[1	19 -0.053	3 -0.051	23.742	0.206
1 1		20 0.012	2 -0.018	23.794	0.251
111	[[21 -0.024	-0.036	24.003	0.293
1 1		22 0.004	-0.024	24.010	0.347
1 1	1 1	23 0.003	3 -0.002	24.015	0.403
1 1		24 -0.005	-0.018	24.025	0.460
ı∐ ı	III	25 -0.046	-0.061	24.800	0.474
1] 1		26 0.032	0.011	25.187	0.508
1 [] 1	[27 -0.028	-0.035	25.478	0.548
1 🕴 1	[28 -0.003	-0.019	25.481	0.602
1 🕴 1		29 -0.006	-0.009	25.496	0.652
1)1		30 0.020	0.011	25.647	0.693

Based on the correlogram, there is a cut off on lag 1 in the AC and PAC column. Additionally, there is another cut off on lag 3. We will run ARMA (1,1), ARMA (1,2), ARMA (2,1), ARMA (2,2), ARMA (3,1), ARMA (3,2), ARMA (1,3), ARMA (2,3) and ARMA (3,3). After running the models, we will compare every model and ensure all variables are significant. Then, we select based on the lowest AIC and SIC values. If there is not much difference in the values, we will select based on model which is the most parsimonious (the lower the AR and MA order, the better).

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 06:58 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 29 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) MA(1) SIGMASQ	-0.000518 0.204134 -0.389980 0.000151	0.000534 0.262330 0.246980 1.16E-05	-0.970637 0.778157 -1.578994 13.02739	0.3324 0.4370 0.1153 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.034942 0.026221 0.012345 0.050595 1001.787 4.006875 0.008004	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.000511 0.012510 -5.939209 -5.893767 -5.921095 2.006073
Inverted AR Roots Inverted MA Roots	.20 .39			

ARMA (1,1)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 06:59 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 27 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	-0.000513	0.000485	-1.057134	0.2912		
AR(1)	0.575051	0.318163	1.807408	0.0716		
AR(2)	0.085747	0.097561	0.878902	0.3801		
MA(1)	-0.766007	0.307256	-2.493062	0.0132		
SIGMASQ	0.000150	1.14E-05	13.13118	0.0000		
R-squared	0.037489	Mean dependent var		-0.000511		
Adjusted R-squared	0.025857	S.D. depende	ent var	0.012510		
S.E. of regression	0.012347	Akaike info c	riterion	-5.935868		
Sum squared resid	0.050461	Schwarz crite	rion	-5.879066		
Log likelihood	1002.226	Hannan-Quin	n criter.	-5.913225		
F-statistic	3.223028	Durbin-Watso	on stat	2.000275		
Prob(F-statistic)	0.012920					
Inverted AR Roots	.70	12				
Inverted MA Roots	.77					
ARMA (2,1)						

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 07:00 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 29 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.000513	0.000484	-1.060386	0.2897
AR(1)	0.728643	0.440854	1.652801	0.0993
MA(1)	-0.917639	0.445741	-2.058682	0.0403
MA(2)	0.104884	0.124490	0.842509	0.4001
SIGMASQ	0.000150	1.15E-05	13.10971	0.0000
R-squared	0.037284	Mean dependent var		-0.000511
Adjusted R-squared	0.025650	S.D. depende	ent var	0.012510
S.E. of regression	0.012348	Akaike info c	riterion	-5.935658
Sum squared resid	0.050472	Schwarz crite	erion	-5.878856
Log likelihood	1002.191	Hannan-Quin	n criter.	-5.913015
F-statistic	3.204728	Durbin-Watso	on stat	2.003670
Prob(F-statistic)	0.013320			
Inverted AR Roots	.73			
Inverted MA Roots	.78	.13		

ARMA (1,2)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 07:01 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 27 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) MA(1) MA(2) SIGMASQ	-0.000513 0.567338 0.089518 -0.758259 -0.005019 0.000150	0.000488 1.043462 0.448699 1.042073 0.603485 1.15E-05	-1.052123 0.543708 0.199506 -0.727645 -0.008317 13.10116	0.2935 0.5870 0.8420 0.4673 0.9934 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.037489 0.022906 0.012366 0.050461 1002.226 2.570670 0.026714	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.000511 0.012510 -5.929916 -5.861753 -5.902744 2.000376
Inverted AR Roots Inverted MA Roots	.70 .76	13 01		

ARMA (2,2)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 07:03 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 31 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.000513	0.000488	-1.052096	0.2935
AR(1)	0.572967	0.378723	1.512894	0.1313
AR(2)	0.085750	0.098636	0.869365	0.3853
AR(3)	-0.001009	0.067692	-0.014902	0.9881
MA(1)	-0.763858	0.370670	-2.060752	0.0401
SIGMASQ	0.000150	1.15E-05	13.09929	0.0000
R-squared	0.037490	Mean dependent var		-0.000511
Adjusted R-squared	0.022906	S.D. depende	ent var	0.012510
S.E. of regression	0.012366	Akaike info c	riterion	-5.929916
Sum squared resid	0.050461	Schwarz crite	rion	-5.861754
Log likelihood	1002.226	Hannan-Quin	n criter.	-5.902745
F-statistic	2.570700	Durbin-Watso	on stat	2.000460
Prob(F-statistic)	0.026712			
Inverted AR Roots	.69	.01	13	
Inverted MA Roots	.76			

ARMA (3,1)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 07:04 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 24 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.000499	0.000119	-4.196166	0.0000
AR(1)	-0.106347	0.180698	-0.588533	0.5566
AR(2)	0.838925	0.158049	5.307997	0.0000
AR(3)	0.160513	0.057940	2.770324	0.0059
MA(1)	-0.101380	9.964987	-0.010174	0.9919
MA(2)	-0.898620	111.2192	-0.008080	0.9936
SIGMASQ	0.000147	0.000572	0.256296	0.7979
R-squared	0.059775	Mean depend	dent var	-0.000511
Adjusted R-squared	0.042628	S.D. depende	ent var	0.012510
S.E. of regression	0.012240	Akaike info c	riterion	-5.940736
Sum squared resid	0.049293	Schwarz crite	rion	-5.861213
Log likelihood	1005.044	Hannan-Quin	n criter.	-5.909036
F-statistic	3.486033	Durbin-Watso	on stat	2.000324
Prob(F-statistic)	0.002349			
Inverted AR Roots	.95	20	86	
Inverted MA Roots	1.00	90		

ARMA (3,2)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 07:05 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 20 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.000513	0.000487	-1.052222	0.2935
AR(1)	0.666723	0.547087	1.218679	0.2238
MA(1)	-0.858259	0.545493	-1.573364	0.1166
MA(2)	0.108129	0.124082	0.871431	0.3842
MA(3)	-0.020121	0.070086	-0.287091	0.7742
SIGMASQ	0.000150	1.15E-05	13.07100	0.0000
R-squared	0.037607	Mean dependent var		-0.000511
Adjusted R-squared	0.023025	S.D. depend		0.012510
S.E. of regression	0.012365	Akaike info c	riterion	-5.930036
Sum squared resid	0.050455	Schwarz crite	erion	-5.861873
Log likelihood	1002.246	Hannan-Quin	n criter.	-5.902864
F-statistic	2.579061	Durbin-Watso	on stat	1.999514
Prob(F-statistic)	0.026285			
Inverted AR Roots	.67			
Inverted MA Roots	.75	.0515i	.05+.15i	

ARMA (1,3)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 07:07 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 43 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.000500	0.000122	-4.111259	0.0000
AR(1)	0.061027	0.215221	0.283553	0.7769
AR(2)	0.853369	0.194533	4.386764	0.0000
MA(1)	-0.266172	6.699719	-0.039729	0.9683
MA(2)	-0.901557	15.40305	-0.058531	0.9534
MA(3)	0.167732	4.133433	0.040579	0.9677
SIGMASQ	0.000147	0.000721	0.203636	0.8388
R-squared	0.059046	Mean dependent var		-0.000511
Adjusted R-squared	0.041886	S.D. depende	ent var	0.012510
S.E. of regression	0.012245	Akaike info c	riterion	-5.940127
Sum squared resid	0.049331	Schwarz crite	rion	-5.860604
Log likelihood	1004.941	Hannan-Quin	n criter.	-5.908427
F-statistic	3.440885	Durbin-Watso	on stat	2.006772
Prob(F-statistic)	0.002610			
Inverted AR Roots	.95	89		
Inverted MA Roots	1.00	.18	92	

ARMA (2,3)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 07:05 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 38 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.000513	0.000491	-1.043396	0.2975
AR(1)	-0.649602	0.767221	-0.846695	0.3978
AR(2)	0.458207	0.612659	0.747898	0.4551
AR(3)	0.268740	0.287655	0.934244	0.3509
MA(1)	0.462239	0.775894	0.595750	0.5518
MA(2)	-0.606049	0.470371	-1.288448	0.1985
MA(3)	-0.218571	0.396105	-0.551801	0.5815
SIGMASQ	0.000150	1.14E-05	13.12299	0.0000
R-squared	0.041141	Mean depend	dent var	-0.000511
Adjusted R-squared	0.020677	S.D. depende	ent var	0.012510
S.E. of regression	0.012380	Akaike info criterion		-5.921733
Sum squared resid	0.050270	Schwarz crite	rion	-5.830849
Log likelihood	1002.851	Hannan-Quin	n criter.	-5.885504
F-statistic	2.010441	Durbin-Watson stat		2.000482
Prob(F-statistic)	0.053284			
Inverted AR Roots	.66	51	80	
Inverted MA Roots	.75	34	87	

ARMA (3,3)

After estimating all the ARMA models, we can see that even though data is linear, the ARMA models fail to provide significant coefficient. It is probable that the underlying process is linear, but the data may exhibit volatility clustering. Furthermore, running white tests on all models show similar results of heteroscedasticity as followed.

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	4.26E+23	Prob. F(44,291)	0.0000
Obs*R-squared	336.0000	Prob. Chi-Square(44)	0.0000
Scaled explained SS	360.0287	Prob. Chi-Square(44)	0.0000

Since all the ARMA models suffer from heteroscedasticity, it is more appropriate to use ARCH or GARCH models instead.

b. ARCH Model Selection

Dependent Variable: MSCI_USA_RETURN

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 11:06 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 6 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.000492	0.000690	-0.712581	0.4761
	Variance	Equation		
C RESID(-1)^2	0.000159 -0.017134	1.30E-05 0.036999	12.23458 -0.463093	0.0000 0.6433
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000002 -0.000002 0.012510 0.052427 995.9147 2.355632	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin	ent var riterion erion	-0.000511 0.012510 -5.910206 -5.876125 -5.896621
S.E. of regression Sum squared resid Log likelihood	0.052427 995.9147	Akaike info c Schwarz crite Hannan-Quin	riterion erion	-5.87

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 11:10 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 10 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2$

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	-0.000465	0.000697	-0.667785	0.5043	
	Variance	Equation			
C RESID(-1)^2 RESID(-2)^2	0.000156 -0.017734 0.017909	1.52E-05 0.036194 0.053199	10.28303 -0.489962 0.336634	0.0000 0.6242 0.7364	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000013 -0.000013 0.012510 0.052427 995.9886 2.355607	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000511 0.012510 -5.904694 -5.859252 -5.886580	
A DOLL (O)					

ARCH (2)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 11:11 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 16 iterations Presample variance: backcast (parameter = 0.7)

GARCH = $C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID(-1)^2 + C(5)^2 + C$

-3)^2

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.000356	0.000691	-0.515770	0.6060
Variance Equation				
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2	0.000143 -0.041777 0.028881 0.102422	1.59E-05 0.031125 0.053330 0.066017	8.995597 -1.342226 0.541550 1.551447	0.0000 0.1795 0.5881 0.1208
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000153 -0.000153 0.012511 0.052435 997.1151 2.355277	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000511 0.012510 -5.905447 -5.848645 -5.882804

ARCH (3)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 11:11 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 18 iterations Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID(-1)^2 + C(5)^2 + C$

-3)^2 + C(6)*RESID(-4)^2

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-3.62E-05	0.000675	-0.053613	0.9572
	Variance	Equation		
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2 RESID(-4)^2	0.000121 -0.046154 0.039948 0.139267 0.115492	1.78E-05 0.027864 0.055491 0.069294 0.080271	6.767337 -1.656384 0.719904 2.009789 1.438785	0.0000 0.0976 0.4716 0.0445 0.1502
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.001443 -0.001443 0.012519 0.052502 998.4940 2.352242	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000511 0.012510 -5.907702 -5.839540 -5.880531

ARCH (4)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 11:11 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 15 iterations Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID(-1)^2 + C(5)^2 + C$

-3)^2 + C(6)*RESID(-4)^2 + C(7)*RESID(-5)^2

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	-0.000218	0.000679	-0.321169	0.7481	
Variance Equation					
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2 RESID(-4)^2 RESID(-5)^2	0.000114 -0.042008 0.020765 0.144267 0.123577 0.044868	1.81E-05 0.028603 0.058357 0.070332 0.082274 0.036321	6.305212 -1.468638 0.355827 2.051242 1.502010 1.235331	0.0000 0.1419 0.7220 0.0402 0.1331 0.2167	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000549 -0.000549 0.012513 0.052455 999.0013 2.354345 ARCH	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000511 0.012510 -5.904770 -5.825246 -5.873069	

Even after estimating ARCH (5), the ARCH models' parameters are still not significant. The lack of significance suggests the ARCH model may not be capturing the underlying volatility structure effectively. As a result, we switch to GARCH model. GARCH model not only account for past squared residuals but also include past conditional variances.

c. GARCH Model Selction

Dependent Variable: MSCI_USA_RETURN

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 11:08 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 23 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	-0.000508	0.000696	-0.729639	0.4656	
	Variance	Equation			
C RESID(-1)^2 GARCH(-1)	9.65E-06 0.032482 0.908302	9.12E-06 0.027346 0.074259	1.057807 1.187816 12.23155	0.2901 0.2349 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000000 -0.000000 0.012510 0.052427 998.8594 2.355638	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000511 0.012510 -5.921782 -5.876340 -5.903668	
OADOU (4.4)					

GARCH (1,1)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 11:09 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 47 iterations Presample variance: backcast (parameter = 0.7)

GARCH = $C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	-0.000178	0.000709	-0.250383	0.8023	
	Variance	Equation			
C RESID(-1)^2 RESID(-2)^2 GARCH(-1)	1.52E-05 -0.053069 0.120481 0.839340	1.12E-05 0.033421 0.050328 0.095659	1.358374 -1.587888 2.393942 8.774270	0.1743 0.1123 0.0167 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000711 -0.000711 0.012514 0.052464 1000.436 2.353963	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000511 0.012510 -5.925215 -5.868413 -5.902572	
GARCH (2,1)					

GARCH (2,1)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 11:09 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 26 iterations Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) + C(5)*GARCH(-2)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.000477	0.000674	-0.707611	0.4792
	Variance	Equation		
C RESID(-1)^2 GARCH(-1) GARCH(-2)	6.10E-06 0.017764 1.813186 -0.869547	1.68E-06 0.010363 0.082318 0.076294	3.628191 1.714167 22.02658 -11.39734	0.0003 0.0865 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000007 -0.000007 0.012510 0.052427 1001.063 2.355621	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000511 0.012510 -5.928949 -5.872147 -5.906306

GARCH (1,2)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 11:14 Sample: 1/06/2007 12/09/2008 Included observations: 336

Convergence achieved after 12 iterations
Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)$

+ C(6)*GARCH(-2)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.000177	0.000611	-0.289972	0.7718
	Variance	Equation		
C RESID(-1)^2 RESID(-2)^2 GARCH(-1) GARCH(-2)	9.37E-06 -0.106123 0.137326 1.761305 -0.852847	2.18E-06 0.015615 0.018928 0.053185 0.051956	4.291956 -6.796288 7.255079 33.11670 -16.41482	0.0000 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000713 -0.000713 0.012514 0.052464 1006.621 2.353958	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000511 0.012510 -5.956075 -5.887912 -5.928903

GARCH (2,2)

Based on the GARCH model estimates, only GARCH (1,2) [10% level] and GARCH (2,2) [1% level] has all variables which are significant. Therefore, we decide on the model based on model with lowest AIC and SIC values.

Models	AIC	SIC
GARCH (1,2)	-5.9289	-5.8721
GARCH (2,2)	<mark>-5.9561</mark>	<mark>-5.8879</mark>

Thus, model GARCH (2,2) is selected.

d. Diagnostic Tests

To ensure our model is robust, we run diagnostic tests on the model. This includes Ljung-Box Q Test and ARCH-LM Test

Ljung-Box Q Test

H0: No autocorrelation in squared residualsH1: There is autocorrelation in squared residuals

Correlogram of Standardized Residuals

Date: 21/11/24 Time: 12:10 Sample: 1/06/2007 12/09/2008 Included observations: 336

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
Autocorrelation	Partial Correlation	1 -0.19 2 0.00 3 -0.00 4 -0.01 5 -0.00 6 -0.08 7 0.00 8 -0.01 9 -0.00	1 -0.191 4 -0.034 9 -0.015 6 -0.022 0 -0.008 2 -0.087 2 -0.032 6 -0.027 7 -0.020 9 0.030	12.321 12.326 12.355 12.447 12.447 14.746 14.748 14.837 14.855 15.376	0.000 0.002 0.006 0.014 0.029 0.022 0.039 0.062 0.095 0.119
		11 0.03 12 0.03	6 0.047	15.801 16.246	0.149 0.180
]] []			6 -0.042	17.259 18.795	0.188
' ' 	'u' 	1	9 -0.039 8 -0.023 8 0.073	18.921 19.034 20.697	0.217 0.267 0.240
[. [.	 	18 -0.02 19 -0.06	4 0.014 9 -0.062	20.901 22.597	0.284 0.256
		21 -0.02	4 -0.011 1 -0.028 5 -0.005	22.798 22.958 23.037	0.299 0.346 0.400
1 1		l	8 -0.009	23.058	0.457

At lag 10, the probability is 0.119 which is more than 0.05, therefore, we fail to reject null hypothesis. Thus, the is no significant autocorrelation in squared residuals.

ARCH-LM Test

H0: No ARCH effect left

H1: Have residual ARCH effect

Heteroskedasticity Test: ARCH

F-statistic	Prob. F(1,333)	0.5239
Obs*R-squared	Prob. Chi-Square(1)	0.5224

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:15

Sample (adjusted): 4/06/2007 12/09/2008 Included observations: 335 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1)	1.012075 0.034945	0.105502 0.054768	9.592956 0.638055	0.0000 0.5239
R-squared	0.001221	Mean dependent var		1.048726
Adjusted R-squared	-0.001778	S.D. dependent var		1.618261
S.E. of regression	1.619699	Akaike info criterion		3.808310
Sum squared resid	873.6007	Schwarz criterion		3.831081
Log likelihood	-635.8920	Hannan-Quinn criter.		3.817388
F-statistic	0.407114	Durbin-Watson stat		1.998670
Prob(F-statistic)	0.523876			

Heteroskedasticity Test: ARCH

F-statistic	Prob. F(2,331)	0.7838
Obs*R-squared	Prob. Chi-Square(2)	0.7822
	1 (7	

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares
Date: 21/11/24 Time: 12:15

Sample (adjusted): 5/06/2007 12/09/2008 Included observations: 334 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2)	1.034178 0.034522 -0.017944	0.119651 0.054959 0.054930	8.643275 0.628146 -0.326664	0.0000 0.5303 0.7441
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001471 -0.004563 1.623482 872.4145 -634.2661 0.243745 0.783828	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion n criter.	1.051670 1.619791 3.815965 3.850197 3.829613 1.999218

Heteroskedasticity Test: ARCH

F-statistic	Prob. F(3,329)	0.9031
Obs*R-squared	Prob. Chi-Square(3)	0.9018
•		

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:15

Sample (adjusted): 6/06/2007 12/09/2008 Included observations: 333 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3)	1.020612 0.034023 -0.019340 0.016938	0.133010 0.055139 0.055134 0.055084	7.673196 0.617048 -0.350774 0.307497	0.0000 0.5376 0.7260 0.7587
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001731 -0.007372 1.627663 871.6156 -632.7138 0.190173 0.903063	Mean depende S.D. depende Akaike info ci Schwarz crite Hannan-Quini Durbin-Watso	ent var riterion rion n criter.	1.053938 1.621697 3.824107 3.869851 3.842348 1.999670

F-statistic		Prob. F(4,327)	0.9458
Obs*R-squared	0.752278	Prob. Chi-Square(4)	0.9447

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:16

Sample (adjusted): 7/06/2007 12/09/2008 Included observations: 332 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.998526	0.144968	6.887925	0.0000
WGT_RESID^2(-1)	0.033184	0.055326	0.599790	0.5491
WGT_RESID^2(-2)	-0.019139	0.055324	-0.345940	0.7296
WGT_RESID^2(-3)	0.015708	0.055308	0.284009	0.7766
WGT_RESID^2(-4)	0.024175	0.056993	0.424181	0.6717
R-squared	0.002266	Mean depend	dent var	1.054800
Adjusted R-squared	-0.009939	S.D. dependent var		1.624068
S.E. of regression	1.632119	Akaike info criterion		3.832581
Sum squared resid	871.0666	Schwarz criterion		3.889887
Log likelihood	-631.2085	Hannan-Quinn criter.		3.855435
F-statistic	0.185658	Durbin-Watso	on stat	1.991868
Prob(F-statistic)	0.945787			

F-statistic	0.240333	Prob. F(5,325)	0.9444
Obs*R-squared	1.219341	Prob. Chi-Square(5)	0.9430

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:16

Sample (adjusted): 8/06/2007 12/09/2008 Included observations: 331 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5)	1.021904 0.034627 -0.016708 0.016982 0.027204 -0.036601	0.155484 0.055374 0.055387 0.055374 0.057072 0.057103	6.572421 0.625317 -0.301666 0.306686 0.476649 -0.640967	0.0000 0.5322 0.7631 0.7593 0.6339 0.5220
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.003684 -0.011644 1.632958 866.6295 -628.9613 0.240333 0.944399	Mean depende S.D. depende Akaike info co Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion n criter.	1.049395 1.623533 3.836624 3.905545 3.864112 2.002774

F-statistic	Prob. F(6,323)	0.9374
Obs*R-squared	Prob. Chi-Square(6)	0.9355
•		

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:16

Sample (adjusted): 11/06/2007 12/09/2008 Included observations: 330 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6)	1.064812 0.032289 -0.015416 0.018299 0.027102 -0.034881 -0.044793	0.166024 0.055634 0.055525 0.055520 0.057227 0.057279 0.057277	6.413615 0.580379 -0.277641 0.329589 0.473580 -0.608965 -0.782048	0.0000 0.5621 0.7815 0.7419 0.6361 0.5430 0.4348
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005514 -0.012959 1.636340 864.8673 -627.2245 0.298482 0.937392	Mean depend S.D. depende Akaike info co Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion n criter.	1.048143 1.625839 3.843785 3.924372 3.875930 1.994889

F-statistic	Prob. F(7,321)	0.9626
Obs*R-squared	Prob. Chi-Square(7)	0.9611

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:16

Sample (adjusted): 12/06/2007 12/09/2008 Included observations: 329 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6)	1.047362 0.033483 -0.012424 0.017331 0.026437 -0.035809 -0.046697	0.177468 0.055803 0.055793 0.055671 0.057376 0.057449 0.057466	5.901697 0.600021 -0.222675 0.311315 0.460772 -0.623306 -0.812613	0.0000 0.5489 0.8239 0.7558 0.6453 0.5335 0.4170
WGT_RESID^2(-7)	0.020669	0.058080	0.355867	0.7222
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.006010 -0.015666 1.640004 863.3655 -625.5371 0.277270 0.962552	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion n criter.	1.051293 1.627307 3.851290 3.943595 3.888113 1.999962

F-statistic	Prob. F(8,319)	0.9814
Obs*R-squared	Prob. Chi-Square(8)	0.9805

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:17

Sample (adjusted): 13/06/2007 12/09/2008 Included observations: 328 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6) WGT_RESID^2(-7) WGT_RESID^2(-8)	1.037696 0.032906 -0.011882 0.018376 0.025889 -0.035951 -0.046877 0.019851 0.011099	0.187938 0.056017 0.056006 0.055984 0.057597 0.057641 0.057685 0.058336 0.058332	5.521496 0.587419 -0.212157 0.328237 0.449477 -0.623704 -0.812642 0.340282 0.190277	0.0000 0.5573 0.8321 0.7429 0.6534 0.5333 0.4170 0.7339 0.8492
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.006148 -0.018776 1.644953 863.1722 -624.0983 0.246678 0.981444	Mean depend S.D. depende Akaike info co Schwarz crite Hannan-Quint Durbin-Watso	ent var riterion rion n criter.	1.052119 1.629724 3.860356 3.964432 3.901879 1.998694

F-statistic	Prob. F(9,317)	0.9910
Obs*R-squared	Prob. Chi-Square(9)	0.9904

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:17

Sample (adjusted): 14/06/2007 12/09/2008 Included observations: 327 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6) WGT_RESID^2(-7) WGT_RESID^2(-8) WGT_RESID^2(-9)	1.018759 0.032910 -0.011638 0.018787 0.025454 -0.036452 -0.046348 0.020605 0.011023 0.016366	0.197708 0.056187 0.056215 0.056193 0.057911 0.057859 0.057873 0.058545 0.058581	5.152859 0.585726 -0.207020 0.334333 0.439528 -0.630027 -0.800860 0.351944 0.188165 0.279692	0.0000 0.5585 0.8361 0.7383 0.6606 0.5291 0.4238 0.7251 0.8509 0.7799
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.006319 -0.021892 1.649752 862.7732 -622.6192 0.223997 0.990956	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion n criter.	1.050586 1.631985 3.869231 3.985132 3.915477 1.996719

F-statistic	Prob. F(10,315)	0.9953
Obs*R-squared	Prob. Chi-Square(10)	0.9949

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:17

Sample (adjusted): 15/06/2007 12/09/2008 Included observations: 326 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	1.045389	0.206672 5.058193		0.0000
WGT RESID^2(-1)	0.033625	0.056343	0.596785	0.5511
WGT_RESID^2(-2)	-0.011730	0.056366	-0.208105	0.8353
WGT_RESID^2(-3)	0.018207	0.056382	0.322920	0.7470
WGT_RESID^2(-4)	0.025128	0.058095	0.432531	0.6657
WGT_RESID^2(-5)	-0.035411	0.058152	-0.608945	0.5430
WGT_RESID^2(-6)	-0.045706	0.058070 -0.787089		0.4318
WGT_RESID^2(-7)	0.019852	0.058710 0.338135		0.7355
WGT_RESID^2(-8)	0.009699	0.058773	0.165026	0.8690
WGT_RESID^2(-9)	0.016216	0.058744	0.276041	0.7827
WGT_RESID^2(-10)	-0.022906	0.058686	-0.390305	0.6966
R-squared	0.006652	Mean depend	dent var	1.053250
Adjusted R-squared	-0.024883	S.D. depende	ent var	1.633782
S.E. of regression	1.653983	Akaike info c	riterion	3.877410
Sum squared resid	861.7331	Schwarz crite	rion	4.005189
Log likelihood	-621.0178	Hannan-Quin	3.928401	
F-statistic	0.210947	Durbin-Watso	on stat	2.001174
Prob(F-statistic)	0.995252			

Since the probability value for ARCH-LM Test for lag 1 through lag 10 is greater than 0.05, we fail to reject null hypothesis. Thus, there are no ARCH effect.

Therefore, the model GARCH (2,2) is robust for the Pre-Crisis period and is selected for forecasting.

2.2 Period 2 (During Crisis) 15th September 2008 – 30th April 2009

a. ARCH Model Selection

Dependent Variable: MSCI_USA_RETURN

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 12:22 Sample: 15/09/2008 30/04/2009 Included observations: 164

Convergence achieved after 13 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2$

Variable	Coefficient	Std. Error z-Statistic		Prob.	
С	-0.001594	0.002681 -0.594475		0.5522	
Variance Equation					
C RESID(-1)^2	0.001119 0.006133	0.000114 9.843824 0.076129 0.080558		0.0000 0.9358	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000001 -0.000001 0.033655 0.184621 324.0211 2.276361 ARCH	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.001618 0.033655 -3.914892 -3.858187 -3.891872	

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 12:23 Sample: 15/09/2008 30/04/2009 Included observations: 164

Convergence achieved after 16 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2$

Variable	Coefficient	Std. Error z-Statisti		Prob.	
С	-0.000881	0.002427	-0.362813	0.7167	
Variance Equation					
C RESID(-1)^2 RESID(-2)^2	0.000852 0.033801 0.199567	0.000125 6.809363 0.081209 0.416216 0.099574 2.004216		0.0000 0.6773 0.0450	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000483 -0.000483 0.033663 0.184710 327.9647 2.275263	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quini	-0.001618 0.033655 -3.950789 -3.875182 -3.920096		

ARCH (2)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 12:23 Sample: 15/09/2008 30/04/2009 Included observations: 164

Convergence achieved after 22 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = $C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID(-1)^2 + C(5)*RESID(-1)^$

-3)^2

Variable	Coefficient	Std. Error	Prob.			
С	-0.000831	0.002433	0.7328			
Variance Equation						
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2	0.000866 0.041949 0.201160 -0.020908	0.000140 0.083909 0.101492 0.082351	6.177829 0.499936 1.982017 -0.253889	0.0000 0.6171 0.0475 0.7996		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000551 -0.000551 0.033664 0.184722 328.0252 2.275109	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin	-0.001618 0.033655 -3.939332 -3.844824 -3.900966			
ARCH (3)						

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 12:23 Sample: 15/09/2008 30/04/2009 Included observations: 164

Convergence achieved after 28 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = $C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID(-1)^2 + C(5)*RESID(-1)^$

-3)^2 + C(6)*RESID(-4)^2

Variable	Coefficient	Std. Error z-Statist		Prob.	
С	-0.000876	0.002551 -0.343395		0.7313	
Variance Equation					
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2 RESID(-4)^2	0.000822 0.037212 0.179697 -0.012511 0.052768	0.000155 0.081742 0.106792 0.086729 0.086655	5.320289 0.455240 1.682672 -0.144257 0.608947	0.0000 0.6489 0.0924 0.8853 0.5426	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000489 -0.000489 0.033663 0.184711 328.1295 2.275249	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.001618 0.033655 -3.928408 -3.814998 -3.882368	

ARCH (4)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 12:24 Sample: 15/09/2008 30/04/2009 Included observations: 164

Convergence achieved after 25 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID(-1)^2 + C(4)^2 + C(5)^2 + C$

-3)^2 + C(6)*RESID(-4)^2 + C(7)*RESID(-5)^2

Variable	Coefficient	Std. Error z-Statistic		Prob.		
С	0.000921	0.002122 0.433802		0.6644		
Variance Equation						
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2 RESID(-4)^2 RESID(-5)^2	0.000485 0.023706 0.111876 -0.019587 0.067970 0.380699	0.000133 3.646850 0.062668 0.378287 0.084870 1.318214 0.067249 -0.291265 0.092755 0.732797 0.147564 2.579893		0.0003 0.7052 0.1874 0.7708 0.4637 0.0099		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.005726 -0.005726 0.033751 0.185678 335.5254 2.263403	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.001618 0.033655 -4.006408 -3.874096 -3.952694		
ARCH (5)						

Even after estimating ARCH (5), the ARCH models' parameters are still not significant. The lack of significance suggests the ARCH model may not be capturing the underlying volatility structure effectively. As a result, we switch to GARCH model. GARCH model not only account for past squared residuals but also include past conditional variances.

b. GARCH Model Selection

Dependent Variable: MSCI_USA_RETURN

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 12:26 Sample: 15/09/2008 30/04/2009 Included observations: 164

Convergence achieved after 17 iterations

Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
С	-8.55E-05	0.002337 -0.036597		0.9708		
Variance Equation						
C RESID(-1)^2 GARCH(-1)	1.81E-05 0.067861 0.907239	2.34E-05 0.041926 0.054830	0.771648 1.618578 16.54635	0.4403 0.1055 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.002086 -0.002086 0.033690 0.185006 335.4093 2.271623	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.001618 0.033655 -4.041577 -3.965970 -4.010883		

GARCH (1,1)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 12:27 Sample: 15/09/2008 30/04/2009 Included observations: 164

Convergence achieved after 25 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)$

-0.000156	0.002423	-0.064437				
		-0.004437	0.9486			
Variance Equation						
2.01E-05 -0.036552 0.109168 0.898750	2.53E-05 0.058769 0.053194 0.058851	0.793100 -0.621962 2.052254 15.27162	0.4277 0.5340 0.0401 0.0000			
-0.001899 -0.001899 0.033687 0.184971 336.8103 2.272048	S.D. depende Akaike info cr Schwarz criter Hannan-Quinn	-0.001618 0.033655 -4.046467 -3.951958 -4.008100				
	2.01E-05 -0.036552 0.109168 0.898750 -0.001899 -0.001899 0.033687 0.184971 336.8103 2.272048	2.01E-05	2.01E-05			

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 12:27 Sample: 15/09/2008 30/04/2009 Included observations: 164

Convergence achieved after 132 iterations Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) + C(5)*GARCH(-2)$

Variable	Coefficient	Std. Error	Prob.			
С	-0.000101	0.001954	0.9588			
Variance Equation						
C RESID(-1)^2 GARCH(-1) GARCH(-2)	1.60E-05 0.043969 1.815922 -0.870176	5.28E-06 0.013172 0.027538 0.023012	0.0024 0.0008 0.0000 0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.002045 -0.002045 0.033689 0.184998 340.0389 2.271717 GARCH	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin	-0.001618 0.033655 -4.085840 -3.991332 -4.047474			

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 12:27 Sample: 15/09/2008 30/04/2009 Included observations: 164

Convergence achieved after 25 iterations Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)$

+ C(6)*GARCH(-2)

Variable	Coefficient	Std. Error z-Statistic		Prob.	
С	-0.000201	0.002415 -0.083142		0.9337	
Variance Equation					
C RESID(-1)^2 RESID(-2)^2 GARCH(-1) GARCH(-2)	2.36E-05 -0.040644 0.119866 0.635187 0.250858	3.33E-05 0.709875 0.058909 -0.689942 0.053895 2.224083 0.729314 0.870939 0.672268 0.373152		0.4778 0.4902 0.0261 0.3838 0.7090	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.001784 -0.001784 0.033685 0.184950 336.7737 2.272308 GARCH	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin	-0.001618 0.033655 -4.033825 -3.920415 -3.987785		

We choose GARCH (1,2) because all the parameters are significant (probability <0.05).

c. Diagnostic Tests Ljung-Box Q Test

H0: No autocorrelation in squared residuals

H1: There is autocorrelation in squared residuals

Correlogram of Standardized Residuals

Date: 21/11/24 Time: 12:32 Sample: 15/09/2008 30/04/2009 Included observations: 164

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
d -	-	1	-0.145	-0.145	3.5071	0.061
' □ '	I	2	-0.090	-0.113	4.8671	0.088
ı 🔟	<u> </u>	3	0.109	0.080	6.8599	0.077
1 1		4	0.005	0.025	6.8635	0.143
1 [] 1		5	-0.030	-0.008	7.0155	0.219
1 1	[6	-0.012	-0.026	7.0417	0.317
1 1	[7	-0.012	-0.025	7.0648	0.422
1 1	[8	-0.011	-0.017	7.0860	0.527
1 1		9	-0.012	-0.015	7.1097	0.626
1 1	1 1	10	0.017	0.015	7.1599	0.710
1 [] 1	I [[11	-0.051	-0.048	7.6165	0.747
1 [] 1	[12	-0.030	-0.042	7.7729	0.803
ı j i	1 1	13	0.045	0.022	8.1335	0.835
1 [] 1	[14	-0.061	-0.052	8.8145	0.843
1 [1	[15	-0.020	-0.025	8.8881	0.883
ı j i	<u> </u>	16	0.069	0.048	9.7703	0.878
ı) ı	<u> </u>	17	0.026	0.049	9.8975	0.908
1 	I I	18	-0.106	-0.086	11.990	0.848
1 1	[19	0.008	-0.030	12.002	0.886
ı j i ı		20	0.031	-0.001	12.180	0.910
I 🚺 I		21	-0.025	-0.005	12.300	0.931
I 🚺 I	[22	-0.029	-0.027	12.460	0.947
 		23	0.073	0.057	13.478	0.941

At lag 10, the probability is 0.710 which is more than 0.05, therefore, we fail to reject null hypothesis. Thus, the is no significant autocorrelation in squared residuals.

ARCH-LM Test

H0: No ARCH effect left

H1: Have residual ARCH effect Heteroskedasticity Test: ARCH

F-statistic	0.623818	Prob. F(1,161)	0.4308
Obs*R-squared	0.629129	Prob. Chi-Square(1)	0.4277

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:37

Sample (adjusted): 16/09/2008 30/04/2009 Included observations: 163 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1)	1.040299 -0.062201	0.135411 0.078753	7.682528 -0.789821	0.0000 0.4308
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.003860 -0.002328 1.415222 322.4592 -286.8884 0.623818 0.430794	Mean dependence S.D. dependence Akaike info conscious Schwarz crite Hannan-Quint Durbin-Watso	ent var riterion rion n criter.	0.978872 1.413577 3.544643 3.582603 3.560055 1.998265

F-statistic	0.434190	Prob. F(2,159)	0.6486
Obs*R-squared	0.879958	Prob. Chi-Square(2)	0.6440

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:58

Sample (adjusted): 17/09/2008 30/04/2009 Included observations: 162 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2)	1.087273 -0.063778 -0.041222	0.159635 0.079288 0.079269	6.810999 -0.804383 -0.520028	0.0000 0.4224 0.6038
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005432 -0.007078 1.421615 321.3372 -285.3445 0.434190 0.648555	Mean dependence S.D. dependence Akaike info crite Schwarz crite Hannan-Quint Durbin-Watso	ent var riterion rion n criter.	0.983704 1.416610 3.559809 3.616987 3.583024 2.005748

F-statistic	Prob. F(3,157)	0.2701
Obs*R-squared	Prob. Chi-Square(3)	0.2659

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:59

Sample (adjusted): 18/09/2008 30/04/2009 Included observations: 161 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3)	1.238129 -0.069017 -0.050894 -0.139333	0.181777 0.079147 0.079168 0.079177	6.811245 -0.872008 -0.642859 -1.759773	0.0000 0.3845 0.5213 0.0804
R-squared Adjusted R-squared S.E. of regression	0.024592 0.005953 1.416387	Mean dependent var S.D. dependent var Akaike info criterion		0.981039 1.420623 3.558627
Sum squared resid Log likelihood F-statistic Prob(F-statistic)	314.9661 -282.4695 1.319421 0.270058	Akaike into criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		3.635184 3.589712 2.018683

F-statistic		Prob. F(4,155)	0.2951
Obs*R-squared		Prob. Chi-Square(4)	0.2901
Obs R-squared	4.312414	Flob. Cili-Square(4)	0.2301

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:59

Sample (adjusted): 19/09/2008 30/04/2009 Included observations: 160 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4)	1.339728 -0.080914 -0.054687 -0.145777 -0.081356	0.209055 0.080222 0.079593 0.079663 0.080338	6.408489 -1.008625 -0.687085 -1.829910 -1.012677	0.0000 0.3147 0.4931 0.0692 0.3128
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.031078 0.006074 1.420646 312.8263 -280.6681 1.242898 0.295089	Mean depend S.D. depende Akaike info co Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion n criter.	0.979690 1.424980 3.570851 3.666951 3.609874 1.981747

F-statistic		Prob. F(5,153)	0.3079
Obs*R-squared		Prob. Chi-Square(5)	0.3023
ODS IN-Squared	0.040141	1 10b. Oni-oquarc(0)	0.0020

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:59

Sample (adjusted): 22/09/2008 30/04/2009 Included observations: 159 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5)	1.221928 -0.073887 -0.042158 -0.140434 -0.073903 0.084971	0.237704 0.080745 0.080745 0.080111 0.080913 0.080905	5.140540 -0.915056 -0.522114 -1.752987 -0.913366 1.050252	0.0000 0.3616 0.6023 0.0816 0.3625 0.2953
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.037988 0.006550 1.424759 310.5807 -278.8396 1.208346 0.307859	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion n criter.	0.978920 1.429449 3.582888 3.698696 3.629917 1.999501

F-statistic	1.005494	Prob. F(6,151)	0.4239
Obs*R-squared	6.070116	Prob. Chi-Square(6)	0.4154

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 12:59

Sample (adjusted): 23/09/2008 30/04/2009 Included observations: 158 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.195049	0.261577	4.568632	0.0000
WGT_RESID^2(-1)	-0.075565	0.081526	-0.926881	0.3555
WGT_RESID^2(-2)	-0.040454	0.081519	-0.496247	0.6204
WGT_RESID^2(-3)	-0.137232	0.081543	-1.682937	0.0945
WGT_RESID^2(-4)	-0.072958	0.081605	-0.894039	0.3727
WGT_RESID^2(-5)	0.086842	0.081735	1.062473	0.2897
WGT_RESID^2(-6)	0.021097	0.081849	0.257755	0.7969
R-squared	0.038418	Mean depend	dent var	0.979228
Adjusted R-squared	0.000210	S.D. dependent var		1.433988
S.E. of regression	1.433838	Akaike info criterion		3.601879
Sum squared resid	310.4396	Schwarz criterion		3.737563
Log likelihood	-277.5484	Hannan-Quinn criter.		3.656982
F-statistic	1.005494	Durbin-Watso	on stat	1.995353
Prob(F-statistic)	0.423939			

F-statistic	Prob. F(7,149)	0.5541
Obs*R-squared	Prob. Chi-Square(7)	0.5426
<u> </u>	1 (7	

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:00

Sample (adjusted): 24/09/2008 30/04/2009 Included observations: 157 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.183777	0.284044	4.167583	0.0001
WGT_RESID^2(-1)	-0.075925	0.082011	-0.925797	0.3560
WGT_RESID^2(-2)	-0.041233	0.082257	-0.501271	0.6169
WGT_RESID^2(-3)	-0.135706	0.082303	-1.648859	0.1013
WGT_RESID^2(-4)	-0.070351	0.083014	-0.847452	0.3981
WGT_RESID^2(-5)	0.085828	0.082395	1.041672	0.2993
WGT_RESID^2(-6)	0.023090	0.082680	0.279268	0.7804
WGT_RESID^2(-7)	0.011642	0.082526	0.141074	0.8880
R-squared	0.038060	Mean dependent var		0.984507
Adjusted R-squared	-0.007132	S.D. depende	ent var	1.437036
S.E. of regression	1.442151	Akaike info criterion		3.619760
Sum squared resid	309.8901	Schwarz crite	3.775492	
Log likelihood	-276.1512	Hannan-Quin	3.683008	
F-statistic	0.842194	Durbin-Watso	on stat	1.996885
Prob(F-statistic)	0.554073			

F-statistic	Prob. F(8,147)	0.6476
Obs*R-squared	Prob. Chi-Square(8)	0.6344
333 11 34 331	 	0.00

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares
Date: 21/11/24 Time: 13:00

Sample (adjusted): 25/09/2008 30/04/2009 Included observations: 156 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6) WGT_RESID^2(-7) WGT_RESID^2(-8)	1.225752 -0.078083 -0.041228 -0.133567 -0.071983 0.083057 0.019432 0.010692 -0.025860	0.304893 0.082468 0.082655 0.082949 0.083677 0.083708 0.083250 0.083277 0.082922	4.020268 -0.946828 -0.498790 -1.610227 -0.860249 0.992218 0.233422 0.128390 -0.311863	0.0001 0.3453 0.6187 0.1095 0.3911 0.3227 0.8158 0.8980 0.7556
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.039195 -0.013094 1.448883 308.5914 -274.5630 0.749587 0.647624	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.990805 1.439489 3.635424 3.811377 3.706888 1.999615

F-statistic		Prob. F(9,145)	0.7343
Obs*R-squared		Prob. Chi-Square(9)	0.7202
ODS IN-Squared	0.130410	1 Tob. Oni-oquate(5)	0.1202

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:00

Sample (adjusted): 26/09/2008 30/04/2009 Included observations: 155 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.223556	0.323951	3.776974	0.0002
WGT_RESID^2(-1)	-0.080874	0.083088	-0.973352	0.3320
WGT_RESID^2(-2)	-0.043608	0.083214	-0.524043	0.6010
WGT_RESID^2(-3)	-0.134426	0.083462	-1.610636	0.1094
WGT_RESID^2(-4)	-0.073333	0.084503	-0.867811	0.3869
WGT_RESID^2(-5)	0.084003	0.084409	0.995185	0.3213
WGT_RESID^2(-6)	0.021981	0.084513	0.260096	0.7952
WGT_RESID^2(-7)	0.009340	0.083875	0.111354	0.9115
WGT_RESID^2(-8)	-0.023722	0.083751	-0.283246	0.7774
WGT_RESID^2(-9)	0.010817	0.085059	0.127173	0.8990
R-squared	0.039971	Mean depend	dent var	0.995537
Adjusted R-squared	-0.019617	S.D. depende		1.442937
S.E. of regression	1.457022	Akaike info c	riterion	3.653007
Sum squared resid	307.8224	Schwarz crite	3.849357	
Log likelihood	-273.1080	Hannan-Quin	3.732760	
F-statistic	0.670786	Durbin-Watso	on stat	1.999296
Prob(F-statistic)	0.734282			

F-statistic	Prob. F(10,143)	0.7740
Obs*R-squared	Prob. Chi-Square(10)	0.7593

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:01

Sample (adjusted): 29/09/2008 30/04/2009 Included observations: 154 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6) WGT_RESID^2(-7) WGT_RESID^2(-7) WGT_RESID^2(-8) WGT_RESID^2(-9) WGT_RESID^2(-10)	1.202434 -0.084733 -0.047779 -0.138337 -0.075677 0.080044 0.025071 0.015692 -0.024905 0.015485 0.034615	0.342064 0.083508 0.083709 0.083882 0.084872 0.085083 0.085079 0.085021 0.084196 0.085681 0.085463	3.515234 -1.014663 -0.570768 -1.649188 -0.891664 0.940779 0.294681 0.184563 -0.295798 0.180725 0.405033	0.0006 0.3120 0.5691 0.1013 0.3741 0.3484 0.7687 0.8538 0.7678 0.8568 0.6861
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.043094 -0.023822 1.462526 305.8746 -271.3557 0.644000 0.774033	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.001973 1.445411 3.666957 3.883882 3.755071 1.851911

Since the probability value for ARCH-LM Test for lag 1 through lag 10 is greater than 0.05, we fail to reject null hypothesis. Thus, there are no ARCH effect.

Therefore, the model GARCH (1,2) is robust for the During Crisis period and is selected for forecasting.

2.3 Period 3 (Post-Crisis) 1st May 2009 – 31st December 2009

a. ARMA Model Selection

Correlogram of MSCI_USA_RETURN

Date: 21/11/24 Time: 13:06 Sample: 1/05/2009 31/12/2009 Included observations: 175

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı <u> </u> ı		1	-0.087	-0.087	1.3502	0.245
1	1 📶	2	0.122	0.115	4.0196	0.134
		3	-0.180	-0.164	9.8657	0.020
ı b ı		4	0.085	0.050	11.172	0.025
1 1		5	-0.009	0.038	11.189	0.048
ı j ı		6	0.025	-0.018	11.300	0.080
<u> </u>		7	-0.175	-0.163	16.922	0.018
ı j ı		8	0.054	0.040	17.461	0.026
<u> </u>		9	-0.215	-0.191	26.102	0.002
ı j i	[[10	0.053	-0.034	26.629	0.003
□ □	[11	-0.099	-0.031	28.494	0.003
1 [1	III	12	-0.021	-0.103	28.575	0.005
1 1		13	-0.002	0.021	28.576	0.008
ı) ı		14	0.040	0.021	28.890	0.011
-		15	-0.115	-0.147	31.462	0.008
1 1	III	16	0.019	-0.049	31.535	0.011
1 1		17	-0.011	0.037	31.560	0.017
· 🗀		18	0.117	0.006	34.272	0.012
ı j i		19	0.031	0.034	34.468	0.016
1 [] 1	[20	-0.025	-0.037	34.590	0.022
1 🚺 1	[21	-0.002	-0.025	34.591	0.031
1 1		22	0.022	0.003	34.688	0.042
1 [] 1	'[['	23	-0.031	-0.053	34.881	0.053
۱ 🏿 ۱		24	0.050	-0.003	35.388	0.063
1 [] 1	[25	-0.060	-0.023	36.131	0.070
1 [1	'[['	26	-0.022	-0.056	36.228	0.088
1 [1		27	-0.018	-0.012	36.295	0.109
1 1		28	0.001	0.012	36.295	0.135
ı]] ı		29	0.031	0.018	36.497	0.160

Based on the correlogram, there is a cut off on lag 1 in the AC and PAC column. Additionally, there is another cut off on lag 2. We will run ARMA (1,1), ARMA (1,2), ARMA (2,1) and ARMA (2,2) After running the models, we will compare every model and ensure all variables are significant. Then, we select based on the lowest AIC and SIC values. If there is not much difference in the values, we will select based on model which is the most parsimonious (the lower the AR and MA order, the better).

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 13:40 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 51 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.001497	0.000847	1.768013	0.0788
AR(1)	-0.985253	0.013803	-71.38072	0.0000
MA(1)	0.922496	0.039874	23.13530	0.0000
SIGMASQ	0.000129	1.32E-05	9.758208	0.0000
R-squared	0.064415	Mean depend	0.001468	
Adjusted R-squared	0.048001	S.D. depende	0.011753	
S.E. of regression	0.011468	Akaike info ci	riterion	-6.072311
Sum squared resid	0.022488	Schwarz crite	rion	-5.999973
Log likelihood	535.3272	Hannan-Quin	n criter.	-6.042969
F-statistic	3.924423	Durbin-Watso	1.919472	
Prob(F-statistic)	0.009664			
Inverted AR Roots	99			
Inverted MA Roots	92	A (4.4)		

ARMA (1,1)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 13:40 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 56 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.001500	0.000891	1.683844	0.0940
AR(1)	-0.929772	0.105592	-8.805350	0.0000
AR(2)	0.052357	0.094973	0.551285	0.5822
MA(1)	0.909715	0.048531	18.74502	0.0000
SIGMASQ	0.000128	1.31E-05	9.788491	0.0000
R-squared	0.066541	Mean depend	0.001468	
Adjusted R-squared	0.044577	S.D. depende	ent var	0.011753
S.E. of regression	0.011488	Akaike info ci	riterion	-6.063113
Sum squared resid	0.022436	Schwarz crite	rion	-5.972691
Log likelihood	535.5224	Hannan-Quini	-6.026435	
F-statistic	3.029586	Durbin-Watso	on stat	2.003528
Prob(F-statistic)	0.019112			
Inverted AR Roots	.05	98		
Inverted MA Roots	91			

ARMA (2,1)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 13:41 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 53 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	0.001500	0.000888 1.688786		0.0931		
AR(1)	-0.982928	0.016878	-58.23735	0.0000		
MA(1)	0.961986	0.083547	11.51428	0.0000		
MA(2)	0.048026	0.088060	0.545384	0.5862		
SIGMASQ	0.000128	1.31E-05	9.770492	0.0000		
R-squared	0.066505	Mean depend	0.001468			
Adjusted R-squared	0.044540	S.D. depende	ent var	0.011753		
S.E. of regression	0.011488	Akaike info cr	riterion	-6.063078		
Sum squared resid	0.022437	Schwarz crite	rion	-5.972656		
Log likelihood	535.5194	Hannan-Quint	n criter.	-6.026400		
F-statistic	3.027809	Durbin-Watso	n stat	2.002236		
Prob(F-statistic)	0.019167					
Inverted AR Roots	98					
Inverted MA Roots	05	91				
ARMA (1,2)						

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 21/11/24 Time: 13:41 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 96 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	0.001533	0.000293 5.238684		0.0000	
AR(1)	-0.074053	0.054804	-1.351243	0.1784	
AR(2)	0.898800	0.048014	18.71969	0.0000	
MA(1)	-0.073081	18.94217	-0.003858	0.9969	
MA(2)	-0.926919	297.2954	-0.003118	0.9975	
SIGMÀSQ	0.000123	0.000924	0.132915	0.8944	
R-squared	0.106234	Mean dependent var		0.001468	
Adjusted R-squared	0.079792	S.D. dependent var		0.011753	
S.E. of regression	0.011275	Akaike info criterion		-6.082653	
Sum squared resid	0.021482	Schwarz criterion		-5.974146	
Log likelihood	538.2321	Hannan-Quinn criter.		-6.038639	
F-statistic	4.017523	Durbin-Watson stat		1.850379	
Prob(F-statistic)	0.001805				
Inverted AR Roots	.91	99			
Inverted MA Roots	1.00	93			
ARMA (2,2)					

Since only ARMA (1,1) with all variables significant at 10% level, we choose this model. However, to ensure this model is robust, we run it through some diagnostic tests.

b. Diagnostic Test (for ARMA)Ljung-Box Q test

H0: No autocorrelation in squared residuals

H1: There is autocorrelation in squared residuals

Correlogram of Residuals

Date: 21/11/24 Time: 13:46 Sample: 1/05/2009 31/12/2009

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
- 1 1		1	0.037	0.037	0.2496	
1 1	1 1	2	0.006	0.005	0.2569	
1 [] 1	' <u>[</u> '	3	-0.078	-0.078	1.3449	0.246
[4	-0.025	-0.020	1.4598	0.482
ı 🛅		5	0.105	0.109	3.4753	0.324
ı <u>□</u> ı	' <u> </u> '	6	-0.083	-0.098	4.7306	0.316
ı <u> </u>	' <u> </u> '	7	-0.093	-0.094	6.3183	0.276
⊥[1 1	8	-0.039	-0.012	6.6018	0.359
<u> </u>		9	-0.149	-0.158	10.732	0.151
⊥ [⊥	[[]	10	-0.030	-0.053	10.898	0.208
⊢[[1 1	11	-0.030	-0.014	11.067	0.271
ı <u>□</u> ı	□	12	-0.103	-0.127	13.098	0.218
ı j i		13	0.072	0.056	14.092	0.228
[14	-0.024	-0.015	14.203	0.288
1 [] 1	[]	15	-0.064	-0.124	14.992	0.308

At lag 10, the probability is 0.208 which is greater than 0.05, we fail to reject null hypothesis. Therefore, there is no significant autocorrelations. Thus, residuals resemble white noise.

Durbin-Watson

Durbin-Watson stat 1.919472

Durbin-Watson Stat is 1.919472 which is close to 2, which suggests no significant autocorrelation in the residuals.

White Test

H0: Homoscedasticity of residuals H1: Heteroscedasticity of residuals Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	2.71E+23	Prob. F(14,160)	0.0000
Obs*R-squared	175.0000	Prob. Chi-Square(14)	0.0000
Scaled explained SS	189.3395	Prob. Chi-Square(14)	0.0000

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 21/11/24 Time: 13:47 Sample: 1/05/2009 31/12/2009

Included observations: 175

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GRADF_01^2 GRADF_01*GRADF_02 GRADF_01*GRADF_03 GRADF_01*GRADF_04 GRADF_01 GRADF_02^2 GRADF_02*GRADF_03 GRADF_02*GRADF_04 GRADF_02 GRADF_03^2 GRADF_03*GRADF_04 GRADF_03 GRADF_03 GRADF_03 GRADF_04	0.000129 1.08E-18 1.34E-19 6.46E-19 -1.44E-22 -3.87E-18 8.04E-18 -2.68E-17 -3.40E-22 8.08E-18 1.42E-17 5.68E-22 -2.84E-16 -5.03E-24	2.72E-15 3.34E-19 1.69E-19 5.27E-19 2.21E-22 1.69E-18 2.16E-18 8.95E-18 3.22E-21 3.25E-17 1.36E-17 8.54E-21 9.21E-17 4.02E-24	4.72E+10 3.224806 0.794135 1.225899 -0.652794 -2.292571 3.723849 -2.994173 -0.105799 0.248501 1.046006 0.066440 -3.080372 -1.249529	0.0000 0.0015 0.4283 0.2220 0.5148 0.0232 0.0003 0.0032 0.9159 0.8041 0.2971 0.9471 0.0024 0.2133
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	3.30E-08 1.000000 1.000000 1.31E-15 2.71E+23 0.000000	7.02E-19 4.70E+10 Mean dependent var S.D. dependent var Sum squared resid Durbin-Watson stat		0.0000 0.000129 0.000194 2.76E-28 2.055356

The probability (F-stat) is 0.0000 which is less than 0.05, thus, we reject null hypothesis. Therefore, heteroscedasticity of residuals is exhibited in the model indicating variance of residuals changes across observations. Thus, we will estimate the data using ARCH/GARCH models instead to account for this problem.

c. ARCH Model Selection

Dependent Variable: MSCI_USA_RETURN

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 13:50 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 25 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.001528	0.000914	1.671112	0.0947
	Variance	Equation		
C RESID(-1)^2	0.000157 -0.128268	1.71E-05 0.038568	9.173342 -3.325783	0.0000 0.0009
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000026 -0.000026 0.011753 0.024036 531.5879 2.167975	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001468 0.011753 -6.041005 -5.986751 -6.018998
0			ir circor.	0.010000

Since ARCH (1) has all variables as statistically significant (probability < 0.01), we will choose this model first. However, diagnostic tests are needed to ensure there is no ARCH effect left that is not captured by the model and no autocorrelation of squared residuals. If there is ARCH effect left, we will increase the lag for ARCH.

d. Diagnostic Test (for ARCH) ARCH LM Test

H0: No ARCH effect left

H1: Have residual ARCH effect

Heteroskedasticity Test: ARCH

Obs R-squared 0.00000 Prob. Cili-oquare(1) 0.000	F-statistic Obs*R-squared		Prob. F(1,172) Prob. Chi-Square(1)	0.3586 0.3557
--	------------------------------	--	---------------------------------------	------------------

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:55

Sample (adjusted): 4/05/2009 31/12/2009 Included observations: 174 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.934993	0.143266 6.526291		0.0000
WGT_RESID^2(-1)	0.069960	0.075998 0.920546		0.3586
R-squared	0.004903	Mean dependent var		1.005010
Adjusted R-squared	-0.000883	S.D. dependent var		1.600766
S.E. of regression	1.601472	Akaike info criterion		3.791151
Sum squared resid	441.1306	Schwarz criterion		3.827462
Log likelihood	-327.8302	Hannan-Quinn criter.		3.805881
F-statistic Prob(F-statistic)	0.847405 0.358577	Durbin-Watson stat		1.910129

F-statistic	Prob. F(2,170)	0.3911
Obs*R-squared	Prob. Chi-Square(2)	0.3867

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:55

Sample (adjusted): 5/05/2009 31/12/2009 Included observations: 173 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2)	0.834240 0.077224 0.059726	0.154949 0.073585 0.073603	5.383970 1.049450 0.811462	0.0000 0.2955 0.4182
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.010983 -0.000653 1.545512 406.0632 -319.2797 0.943910	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.972035 1.545008 3.725776 3.780458 3.747960 2.021856

F-statistic	Prob. F(3,168)	0.0638
Obs*R-squared	Prob. Chi-Square(3)	0.0640

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:55

Sample (adjusted): 6/05/2009 31/12/2009 Included observations: 172 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3)	0.681824 0.066289 0.048942 0.171953	0.166613 0.075910 0.073138 0.073054	4.092259 0.873261 0.669176 2.353764	0.0001 0.3838 0.5043 0.0197
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.042224 0.025121 1.529666 393.0996 -315.1423 2.468799 0.063794	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.969845 1.549249 3.710957 3.784155 3.740655 2.013009

ODS"R-squared 7.406944 Prop. Cni-Square(4) 0.1159	F-statistic Obs*R-squared		Prob. F(4,166) Prob. Chi-Square(4)	0.1164 0.1159
---	------------------------------	--	---------------------------------------	------------------

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares
Date: 21/11/24 Time: 13:56

Sample (adjusted): 7/05/2009 31/12/2009 Included observations: 171 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.656709	0.176508	3.720564	0.0003
WGT_RESID^2(-1)	0.059601	0.077552	0.768524	0.4433
WGT_RESID^2(-2)	0.042574	0.076541	0.556224	0.5788
WGT_RESID^2(-3)	0.171184	0.073670	2.323646	0.0214
WGT_RESID^2(-4)	0.036072	0.074703	0.482881	0.6298
R-squared	0.043315	Mean dependent var		0.967060
Adjusted R-squared	0.020263	S.D. dependent var		1.553367
S.É. of regression	1.537549	Akaike info criterion		3.727060
Sum squared resid	392.4335	Schwarz criterion		3.818922
Log likelihood	-313.6636	Hannan-Quinn criter.		3.764334
F-statistic	1.878981	Durbin-Watso	n stat	2.007037
Prob(F-statistic)	0.116442			

F-statistic	Prob. F(5,164)	0.1209
Obs*R-squared	Prob. Chi-Square(5)	0.1207

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:56

Sample (adjusted): 8/05/2009 31/12/2009 Included observations: 170 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.586373	0.184955	3.170349	0.0018
WGT_RESID^2(-1)	0.055968	0.077698	0.720324	0.4724
WGT_RESID^2(-2)	0.025089	0.077816	0.322419	0.7475
WGT_RESID^2(-3)	0.169054	0.076744	2.202846	0.0290
WGT_RESID^2(-4)	0.031583	0.075000	0.421105	0.6742
WGT_RESID^2(-5)	0.096222	0.074880	1.285015	0.2006
R-squared	0.051307	Mean dependent var		0.962169
Adjusted R-squared	0.022383	S.D. dependent var		1.556635
S.E. of regression	1.539115	Akaike info criterion		3.734949
Sum squared resid	388.4957	Schwarz criterion		3.845624
Log likelihood	-311.4707	Hannan-Quinn criter.		3.779860
F-statistic	1.773872	Durbin-Watso	n stat	1.983870
Prob(F-statistic)	0.120933			

F-statistic 1.487837 Prob. Foods*R-squared 8.826382 Prob. C	
---	--

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:56

Sample (adjusted): 11/05/2009 31/12/2009 Included observations: 169 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6)	0.579098 0.053692 0.021380 0.163282 -0.009687 0.104219 0.033662	0.190621 0.077642 0.077415 0.077428 0.077485 0.074651 0.074861	3.037949 0.691534 0.276175 2.108816 -0.125016 1.396088 0.449658	0.0028 0.4902 0.7828 0.0365 0.9007 0.1646 0.6536
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.052227 0.017124 1.530219 379.3346 -308.1205 1.487837 0.185374	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.944208 1.543492 3.729237 3.858878 3.781848 2.028716

F-statistic	1.127172	Prob. F(7,160)	0.3486
Obs*R-squared	7.895367	Prob. Chi-Square(7)	0.3419

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:57

Sample (adjusted): 12/05/2009 31/12/2009 Included observations: 168 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.570772	0.193667	2.947185	0.0037
WGT_RESID^2(-1)	0.020127	0.077126	0.260963	0.7945
WGT_RESID^2(-2)	0.017441	0.076358	0.228403	0.8196
WGT_RESID^2(-3)	0.158217	0.076040	2.080698	0.0391
WGT_RESID^2(-4)	-0.016547	0.077084	-0.214667	0.8303
WGT_RESID^2(-5)	0.047630	0.076102	0.625874	0.5323
WGT_RESID^2(-6)	0.047040	0.073751	0.637822	0.5245
WGT_RESID^2(-7)	0.072829	0.073567	0.989968	0.3237
R-squared	0.046996	Mean dependent var		0.916707
Adjusted R-squared	0.005302	S.D. dependent var		1.506006
S.E. of regression	1.502008	Akaike info criterion		3.697931
Sum squared resid	360.9645	Schwarz criterion		3.846691
Log likelihood	-302.6262	Hannan-Quinn criter.		3.758305
F-statistic	1.127172	Durbin-Watso	on stat	1.967489
Prob(F-statistic)	0.348631			

F-statistic 1.064724 Pro	b. F(8,158) 0.3906
Obs*R-squared 8.542454 Pro	b. Chi-Square(8) 0.3823

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:57

Sample (adjusted): 13/05/2009 31/12/2009 Included observations: 167 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.534192	0.200933	2.658557	0.0087
WGT_RESID^2(-1)	0.033816	0.079316	0.426352	0.6704
WGT_RESID^2(-2)	0.027107	0.077421	0.350122	0.7267
WGT_RESID^2(-3)	0.154536	0.076640	2.016376	0.0455
WGT_RESID^2(-4)	-0.018351	0.077351	-0.237236	0.8128
WGT_RESID^2(-5)	0.042179	0.077368	0.545171	0.5864
WGT_RESID^2(-6)	0.064973	0.076473	0.849609	0.3968
WGT_RESID^2(-7)	0.066034	0.074115	0.890962	0.3743
WGT_RESID^2(-8)	0.021788	0.074064	0.294179	0.7690
R-squared	0.051152	Mean depend	dent var	0.921751
Adjusted R-squared	0.003110	S.D. depende		1.509111
S.E. of regression	1.506763	Akaike info c	3.710190	
Sum squared resid	358.7130	Schwarz crite	3.878226	
Log likelihood	-300.8009	Hannan-Quin	3.778392	
F-statistic	1.064724	Durbin-Watso	on stat	1.936272
Prob(F-statistic)	0.390594			

F-statistic	Prob. F(9,156)	0.6861
Obs*R-squared	Prob. Chi-Square(9)	0.6726

Test Equation:

Dependent Variable: WGT_RESID^2
Method: Least Squares
Date: 21/11/24 Time: 13:57

Sample (adjusted): 14/05/2009 31/12/2009 Included observations: 166 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.607897	0.204053	2.979113	0.0034
WGT_RESID^2(-1)	0.049440	0.078484	0.629934	0.5297
WGT_RESID^2(-2)	-0.010437	0.078322	-0.133256	0.8942
WGT_RESID^2(-3)	0.128483	0.076430	1.681068	0.0948
WGT_RESID^2(-4)	-0.013506	0.076607	-0.176299	0.8603
WGT_RESID^2(-5)	0.046669	0.076341	0.611321	0.5419
WGT_RESID^2(-6)	0.074633	0.076420	0.976611	0.3303
WGT_RESID^2(-7)	0.018484	0.075651	0.244330	0.8073
WGT_RESID^2(-8)	0.037528	0.073325	0.511807	0.6095
WGT_RESID^2(-9)	-0.034978	0.073079	-0.478632	0.6329
R-squared	0.040113	Mean depend	dent var	0.895539
Adjusted R-squared	-0.015265	S.D. depende	ent var	1.475055
S.E. of regression	1.486271	Akaike info c	3.688767	
Sum squared resid	344.6041	Schwarz crite	3.876237	
Log likelihood	-296.1677	Hannan-Quin	3.764862	
F-statistic	0.724347	Durbin-Watso	on stat	1.981193
Prob(F-statistic)	0.686071			

F-statistic	Prob. F(10,154)	0.6743
Obs*R-squared	Prob. Chi-Square(10)	0.6596

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 13:58

Sample (adjusted): 15/05/2009 31/12/2009 Included observations: 165 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.549110	0.211911	2.591236	0.0105
WGT_RESID^2(-1)	0.058375	0.080277	0.727167	0.4682
WGT_RESID^2(-2)	-0.014879	0.078823	-0.188760	0.8505
WGT_RESID^2(-3)	0.128365	0.078562	1.633928	0.1043
WGT_RESID^2(-4)	-0.013103	0.077361	-0.169368	0.8657
WGT_RESID^2(-5)	0.039592	0.076836	0.515281	0.6071
WGT_RESID^2(-6)	0.072523	0.076661	0.946022	0.3456
WGT_RESID^2(-7)	0.004829	0.076886	0.062802	0.9500
WGT_RESID^2(-8)	0.043187	0.075901	0.568988	0.5702
WGT_RESID^2(-9)	-0.039331	0.073577	-0.534565	0.5937
WGT_RESID^2(-10)	0.075506	0.073340	1.029528	0.3048
R-squared	0.046572	Mean depend	lent var	0.891926
Adjusted R-squared	-0.015339	S.D. depende	ent var	1.478808
S.E. of regression	1.490107	Akaike info criterion		3.699913
Sum squared resid	341.9445	Schwarz criterion		3.906976
Log likelihood	-294.2428	Hannan-Quinr	3.783967	
F-statistic	0.752238	Durbin-Watso	n stat	1.996367
Prob(F-statistic)	0.674326			

Since the probability value for ARCH-LM Test for lag 1 through lag 10 is greater than 0.05, we fail to reject null hypothesis. Thus, there are no ARCH effect.

Ljung-Box Q Test

H0: No autocorrelation in squared residuals

H1: There is autocorrelation in squared residuals

Correlogram of Standardized Residuals

Date: 21/11/24 Time: 14:01 Sample: 1/05/2009 31/12/2009 Included observations: 175

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
<u> </u>	<u> </u>	1	-0.134	-0.134	3.2053	0.073
ı 		2	0.146	0.131	7.0446	0.030
I I		3	-0.191	-0.162	13.597	0.004
ı þ i]	4	0.107	0.054	15.679	0.003
I (I]	5	-0.020	0.042	15.754	0.008
1 1	[6	0.024	-0.025	15.859	0.015
I		7	-0.175	-0.161	21.512	0.003
ı j ı		8	0.065	0.038	22.300	0.004
l l		9	-0.218	-0.191	31.172	0.000
ı j ı	[10	0.063	-0.040	31.919	0.000
ı <u> </u>	[11	-0.105	-0.024	33.987	0.000
1 1	' <u> </u> '	12	0.007	-0.083	33.995	0.001
1 1		13	-0.005	0.023	34.001	0.001
ı j i		14	0.042	0.024	34.346	0.002
□		15	-0.115	-0.140	36.922	0.001
I] I	[[]	16	0.029	-0.048	37.089	0.002
1 1		17	-0.013	0.036	37.123	0.003
ı <u> </u>		18	0.109	0.001	39.479	0.002
1 1		19	0.018	0.038	39.547	0.004
1 (1		20	-0.011	-0.019	39.573	0.006
111	l inti	21	0.014	ሀ ሀሪይ	20.615	ሀ ሀሀሪ

At lag 10, the probability is 0.000 which is less than 0.05, we reject null hypothesis. Therefore, there is significant autocorrelations. Thus, residuals do not resemble white noise, and we must re-specify the model.

e. Re-Selection of ARCH Model

Dependent Variable: MSCI_USA_RETURN

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 14:06 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 87 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.001340	0.000925	1.447769	0.1477
	Variance	Equation		
C RESID(-1)^2 RESID(-2)^2	0.000141 -0.114170 0.104786	1.92E-05 0.037252 0.083100	7.309011 -3.064831 1.260962	0.0000 0.0022 0.2073
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000119 -0.000119 0.011754 0.024039 532.2723 2.167774	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001468 0.011753 -6.037398 -5.965060 -6.008056

ARCH (2)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 14:06 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 10 iterations Presample variance: backcast (parameter = 0.7)

GARCH = $C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID(-1)^2 + C(5)^2 + C$

-3)^2

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.001482	0.000635	2.335387	0.0195
	Variance	Equation		
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2	0.000121 -0.122167 0.107216 0.108818	1.63E-05 0.023159 0.070144 0.085253	7.410613 -5.275032 1.528516 1.276422	0.0000 0.0000 0.1264 0.2018
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000002 -0.000002 0.011753 0.024036 535.6983 2.168029	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001468 0.011753 -6.065124 -5.974702 -6.028446

ARCH (3)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 14:07 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 96 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = $C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID(-1)^2 + C(5)*RESID(-1)^$

-3)^2 + C(6)*RESID(-4)^2

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.001409	0.000744	1.893396	0.0583
	Variance	Equation		
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2 RESID(-4)^2	9.93E-05 -0.105182 0.104333 0.185654 0.078896	1.83E-05 0.028426 0.070204 0.109651 0.067503	5.425876 -3.700271 1.486151 1.693134 1.168777	0.0000 0.0002 0.1372 0.0904 0.2425
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000025 -0.000025 0.011753 0.024036 536.3938 2.167978	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001468 0.011753 -6.061644 -5.953137 -6.017630

ARCH (4)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 14:07 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 20 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID($

-3)^2 + C(6)*RESID(-4)^2 + C(7)*RESID(-5)^2

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.001506	0.000803	1.875878	0.0607	
Variance Equation					
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2 RESID(-4)^2 RESID(-5)^2	9.78E-05 -0.112145 0.086079 0.153495 0.068923 0.051345	1.76E-05 0.023702 0.066329 0.104248 0.059468 0.053325	5.570467 -4.731419 1.297748 1.472405 1.158994 0.962877	0.0000 0.0000 0.1944 0.1409 0.2465 0.3356	
RESID(-5)*2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000011 -0.000011 0.011753 0.024036 536.5911 2.168010	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001468 0.011753 -6.052470 -5.925878 -6.001121	

ARCH (5)

Even after estimating ARCH (5), the ARCH models' parameters are still not significant. The lack of significance suggests the ARCH model may not be capturing the underlying volatility structure effectively. As a result, we switch to GARCH model. GARCH model not only account for past squared residuals but also include past conditional variances.

f. GARCH Model Selection

Dependent Variable: MSCI_USA_RETURN

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 14:08 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 21 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.001582	0.000767	2.063842	0.0390	
Variance Equation					
C RESID(-1)^2 GARCH(-1)	1.18E-06 -0.054941 1.035080	1.06E-06 0.023416 0.022452	1.116226 -2.346328 46.10191	0.2643 0.0190 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000095 -0.000095 0.011754 0.024038 544.4551 2.167826	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001468 0.011753 -6.176629 -6.104291 -6.147287	

GARCH (1,1)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 14:09 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 19 iterations Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) + C(5)*GARCH(-2)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.001701	0.000800	2.127375	0.0334
	Variance	Equation		
C RESID(-1)^2 GARCH(-1) GARCH(-2)	1.21E-06 -0.069310 0.755843 0.289628	1.79E-06 0.067991 1.133253 1.172049	0.678236 -1.019396 0.666968 0.247113	0.4976 0.3080 0.5048 0.8048
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000396 -0.000396 0.011755 0.024045 545.0713 2.167173	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001468 0.011753 -6.172243 -6.081821 -6.135565
GARCH (1,2)				

GARCH (1,2)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 14:09 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 15 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = $C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)$

Coefficient	Std. Error	z-Statistic	Prob.
0.001127	0.000842 1.339249		0.1805
Variance	Equation		
1.19E-05 -0.134114 0.173931 0.859924	6.64E-06 0.025512 0.045802 0.062209	1.793128 -5.256847 3.797446 13.82317	0.0730 0.0000 0.0001 0.0000
-0.000845 -0.000845 0.011758 0.024056 538.3761 2.166203	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001468 0.011753 -6.095726 -6.005304 -6.059049
	0.001127 Variance 1.19E-05 -0.134114 0.173931 0.859924 -0.000845 -0.000845 0.011758 0.024056 538.3761 2.166203	0.001127 0.000842 Variance Equation 1.19E-05 6.64E-06 -0.134114 0.025512 0.173931 0.045802 0.859924 0.062209 -0.000845 Mean dependence of the column of t	0.001127 0.000842 1.339249 Variance Equation 1.19E-05 6.64E-06 1.793128 -0.134114 0.025512 -5.256847 0.173931 0.045802 3.797446 0.859924 0.062209 13.82317 -0.000845 Mean dependent var -0.011758 Akaike info criterion 0.024056 Schwarz criterion 538.3761 Hannan-Quinn criter. 2.166203

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 14:10 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 10 iterations Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)$

+ C(6)*GARCH(-2)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.001301	0.000850	1.530352	0.1259
	Variance	Equation		
C RESID(-1)^2 RESID(-2)^2 GARCH(-1) GARCH(-2)	9.79E-06 -0.137246 0.173471 0.726039 0.152128	3.99E-06 0.023072 0.048362 0.338721 0.351523	2.453210 -5.948602 3.586911 2.143470 0.432770	0.0142 0.0000 0.0003 0.0321 0.6652
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000203 -0.000203 0.011754 0.024041 538.5126 2.167593	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001468 0.011753 -6.085858 -5.977351 -6.041845
GARCH (2,2)				

We select GARCH (2,1) for our model as all its variables are significant at 10% level (probability < 0.1). Other models' parameters are not statistically significant at any level.

g. Diagnostic Test Ljung-Box Q Test

H0: No autocorrelation in squared residuals

H1: There is autocorrelation in squared residuals

Correlogram of Standardized Residuals

Date: 21/11/24 Time: 21:10 Sample: 1/05/2009 31/12/2009 Included observations: 175

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
	'['	1	-0.081	-0.081	1.1675	0.280
ı j i		2	0.080	0.074	2.3136	0.314
I <u> </u>	I <u>I</u>	3	-0.120	-0.109	4.9116	0.178
ı j i		4	0.059	0.037	5.5334	0.237
ı j i ı]	5	0.030	0.054	5.7001	0.336
I (I	[6	-0.022	-0.037	5.7865	0.448
	[]	7	-0.132	-0.135	8.9944	0.253
1 1		8	0.008	0.003	9.0065	0.342
I I		9	-0.203	-0.203	16.709	0.053
1 1	'[['	10	0.007	-0.055	16.717	0.081
1 [] 1	'[['	11	-0.093	-0.060	18.359	0.074
1 1	'[['	12	-0.003	-0.054	18.360	0.105
ı]] ı]	13	0.042	0.051	18.693	0.133
ı]] ı	וןו	14	0.042	0.044	19.028	0.164
ı <u> </u>	[]	15	-0.099	-0.125	20.911	0.140
ı j i ı	[16	0.025	-0.029	21.032	0.177
ı) ı		17	0.025	0.032	21.153	0.220
ı þ i		18	0.119	0.026	23.941	0.157
1 (1		19	-0.005	-0.004	23.945	0.198
1 📗		20	-0.008	-0.013	23.957	0.244

At lag 10, the probability is 0.081 which is more than 0.05, therefore, we fail to reject null hypothesis. Thus, the is no significant autocorrelation in squared residuals.

ARCH-LM Test

H0: No ARCH effect left

H1: Have residual ARCH effect

Heteroskedasticity Test: ARCH

	Prob. F(1,172) Prob. Chi-Square(1)	0.1259 0.1244
--	---------------------------------------	------------------

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 21:12

Sample (adjusted): 4/05/2009 31/12/2009 Included observations: 174 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.895488	0.141117	6.345708	0.0000
WGT_RESID^2(-1)	0.116361	0.075658	1.537992	0.1259
R-squared	0.013566	Mean dependent var		1.012466
Adjusted R-squared	0.007831	S.D. dependent var		1.574125
S.E. of regression	1.567950	Akaike info criterion		3.748843
Sum squared resid Log likelihood F-statistic Prob(F-statistic)	422.8564 -324.1493 2.365419 0.125888	Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		3.785154 3.763573 1.968087

F-statistic	Prob. F(2,170)	0.2387
Obs*R-squared	Prob. Chi-Square(2)	0.2356

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 21:13

Sample (adjusted): 5/05/2009 31/12/2009 Included observations: 173 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2)	0.916114 0.126349 -0.043054	0.157026 0.076190 0.076198	5.834144 1.658339 -0.565024	0.0000 0.0991 0.5728
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.016712 0.005144 1.566420 417.1240 -321.6043 1.444638 0.238712	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.000296 1.570464 3.752651 3.807333 3.774835 1.980346

F-statistic	Prob. F(3,168)	0.3273
Obs*R-squared	Prob. Chi-Square(3)	0.3226
3.50	 	0.0220

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 21:13

Sample (adjusted): 6/05/2009 31/12/2009 Included observations: 172 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3)	0.877592 0.134405 -0.051833 0.045300	0.173183 0.076962 0.077136 0.076579	5.067430 1.746376 -0.671970 0.591544	0.0000 0.0826 0.5025 0.5550
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.020268 0.002773 1.571561 414.9268 -319.7897 1.158508 0.327271	0.076579 0.591544 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.005155 1.573744 3.764996 3.838194 3.794694 1.999246

F-statistic	Prob. F(4,166)	0.4950
Obs*R-squared	Prob. Chi-Square(4)	0.4879

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 21:13

Sample (adjusted): 7/05/2009 31/12/2009 Included observations: 171 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.883565	0.187891	4.702539	0.0000
WGT_RESID^2(-1)	0.134565	0.077631	1.733407	0.0849
WGT_RESID^2(-2)	-0.051880	0.078210	-0.663342	0.5080
WGT_RESID^2(-3)	0.045915	0.077745	0.590587	0.5556
WGT_RESID^2(-4)	-0.006295	0.077204	-0.081531	0.9351
R-squared	0.020086	Mean dependent var		1.006982
Adjusted R-squared	-0.003526	S.D. dependent var		1.578183
S.E. of regression	1.580963	Akaike info criterion		3.782749
Sum squared resid	414.9079	Schwarz criterion		3.874611
Log likelihood	-318.4251	Hannan-Quinn criter.		3.820023
F-statistic	0.850655	Durbin-Watso	on stat	1.999255
Prob(F-statistic)	0.495047			

0.0291 0.0291	F-statistic Obs*R-squared		Prob. F(5,164) Prob. Chi-Square(5)	0.6378 0.6291
---------------	------------------------------	--	---------------------------------------	------------------

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 21:13

Sample (adjusted): 8/05/2009 31/12/2009 Included observations: 170 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5)	0.874361 0.134597 -0.053309 0.048341 -0.008692 0.012128	0.202274 0.078089 0.078873 0.078822 0.078354 0.077733	4.322651 1.723638 -0.675892 0.613295 -0.110933 0.156021	0.0000 0.0867 0.5001 0.5405 0.9118 0.8762
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.020367 -0.009500 1.590264 414.7460 -317.0283 0.681914 0.637761	Mean depende S.D. depende Akaike info co Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion n criter.	1.008212 1.582763 3.800333 3.911008 3.845244 1.994652

Obs R-squared 5.540210 Flob. CIII-3quare(0) 0.7576	F-statistic Obs*R-squared		Prob. F(6,162) Prob. Chi-Square(6)	0.7469 0.7378
--	------------------------------	--	---------------------------------------	------------------

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 21:14

Sample (adjusted): 11/05/2009 31/12/2009 Included observations: 169 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6)	0.875881 0.135575 -0.053376 0.051945 -0.015580 0.016695 -0.010030	0.215778 0.078462 0.079237 0.079388 0.079347 0.078776 0.078151	4.059186 1.727899 -0.673618 0.654318 -0.196358 0.211929 -0.128338	0.0001 0.0859 0.5015 0.5138 0.8446 0.8324 0.8980
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.020983 -0.015276 1.597552 413.4517 -315.3979 0.578697 0.746939	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.002151 1.585487 3.815359 3.945000 3.867970 2.002563

F-statistic		Prob. F(7,160)	0.8585
Obs*R-squared		Prob. Chi-Square(7)	0.8507
obo it oqualou	0.001111	r rob. om oquaro(r)	0.0001

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 21:14

Sample (adjusted): 12/05/2009 31/12/2009 Included observations: 168 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.866912	0.229083	3.784266	0.0002
WGT RESID^2(-1)	0.132203	0.078923	1.675084	0.0959
WGT RESID^2(-2)	-0.051985	0.079605	-0.653042	0.5147
WGT RESID^2(-3)	0.051842	0.079735	0.650180	0.5165
WGT RESID^2(-4)	-0.011997	0.079904	-0.150138	0.8808
WGT_RESID^2(-5)	0.009752	0.079763	0.122267	0.9028
WGT_RESID^2(-6)	-0.006552	0.079169	-0.082755	0.9341
WGT_RESID^2(-7)	0.003352	0.078571	0.042660	0.9660
R-squared	0.019949	Mean depend	dent var	0.993636
Adjusted R-squared	-0.022928	S.D. dependent var		1.586346
S.E. of regression	1.604429	Akaike info criterion		3.829861
Sum squared resid	411.8709	Schwarz criterion		3.978621
Log likelihood	-313.7083	Hannan-Quinn criter.		3.890235
F-statistic	0.465256	Durbin-Watso	on stat	1.990025
Prob(F-statistic)	0.858536			

F-statistic	Prob. F(8,158)	0.9094
Obs*R-squared	Prob. Chi-Square(8)	0.9026
•		

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares
Date: 21/11/24 Time: 21:14

Sample (adjusted): 13/05/2009 31/12/2009 Included observations: 167 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6) WGT_RESID^2(-7) WGT_RESID^2(-8)	0.879640 0.135576 -0.049617 0.050882 -0.012204 0.007000 -0.001049 0.001253 -0.010965	0.242202 0.079455 0.080077 0.080138 0.080293 0.080353 0.080196 0.079614 0.079022	3.631838 1.706336 -0.619621 0.634926 -0.151992 0.087115 -0.013077 0.015740 -0.138765	0.0004 0.0899 0.5364 0.5264 0.8794 0.9307 0.9896 0.9875 0.8898
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.020690 -0.028895 1.612121 410.6315 -312.0879 0.417258 0.909368	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.999448 1.589322 3.845364 4.013400 3.913566 1.981234

F-statistic	Prob. F(9,156)	0.7980
Obs*R-squared	Prob. Chi-Square(9)	0.7860

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 21:15

Sample (adjusted): 14/05/2009 31/12/2009 Included observations: 166 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.971435	0.252944	3.840519	0.0002
WGT_RESID^2(-1)	0.139846	0.079230	1.765057	0.0795
WGT_RESID^2(-2)	-0.055994	0.079919	-0.700636	0.4846
WGT_RESID^2(-3)	0.045193	0.079872	0.565820	0.5723
WGT_RESID^2(-4)	-0.009289	0.079963	-0.116168	0.9077
WGT_RESID^2(-5)	0.005795	0.080013	0.072430	0.9424
WGT_RESID^2(-6)	0.009233	0.080054	0.115332	0.9083
WGT_RESID^2(-7)	-0.016323	0.079914	-0.204258	0.8384
WGT_RESID^2(-8)	0.007146	0.079339	0.090069	0.9283
WGT_RESID^2(-9)	-0.104360	0.078688	-1.326246	0.1867
R-squared	0.033306	Mean dependent var		0.988176
Adjusted R-squared	-0.022465	S.D. dependent var		1.587422
S.E. of regression	1.605153	Akaike info criterion		3.842665
Sum squared resid	401.9366	Schwarz criterion		4.030135
Log likelihood	-308.9412	Hannan-Quin	n criter.	3.918760
F-statistic	0.597199	Durbin-Watso	on stat	1.988583
Prob(F-statistic)	0.797970			

F-statistic	0.558433	Prob. F(10,154)	0.8456
Obs*R-squared	5.773842	Prob. Chi-Square(10)	0.8339

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 21/11/24 Time: 21:15

Sample (adjusted): 15/05/2009 31/12/2009 Included observations: 165 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.972809	0.268260	3.626365	0.0004
WGT RESID^2(-1)	0.144369	0.080509	1.793215	0.0749
WGT_RESID^2(-2)	-0.059108	0.080532	-0.733970	0.4641
WGT_RESID^2(-3)	0.048594	0.080520	0.603509	0.5471
WGT_RESID^2(-4)	-0.007534	0.080456	-0.093638	0.9255
WGT_RESID^2(-5)	0.005053	0.080458	0.062808	0.9500
WGT_RESID^2(-6)	0.009089	0.080493	0.112920	0.9102
WGT_RESID^2(-7)	-0.019010	0.080549	-0.236002	0.8137
WGT_RESID^2(-8)	0.012312	0.080430	0.153071	0.8785
WGT_RESID^2(-9)	-0.107045	0.079770	-1.341918	0.1816
WGT_RESID^2(-10)	-0.001173	0.079607	-0.014734	0.9883
R-squared	0.034993	Mean depend	dent var	0.990664
Adjusted R-squared	-0.027670	S.D. dependent var		1.591929
S.E. of regression	1.613803	Akaike info criterion		3.859405
Sum squared resid	401.0716	Schwarz criterion		4.066468
Log likelihood	-307.4009	Hannan-Quinn criter.		3.943459
F-statistic	0.558433	Durbin-Watso	on stat	1.999420
Prob(F-statistic)	0.845597			

Since the probability value for ARCH-LM Test for lag 1 through lag 10 is greater than 0.05, we fail to reject null hypothesis. Thus, there are no ARCH effect.

3. Model Interpretation

Pre-Crisis: GARCH (2,2)

Dependent Variable: MSCI USA RETURN

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 21:17 Sample: 2/07/2007 12/09/2008 Included observations: 315

Convergence achieved after 11 iterations
Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)$

+ C(6)*GARCH(-2)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.000198	0.000646	-0.306699	0.7591
Variance Equation				
C RESID(-1)^2 RESID(-2)^2 GARCH(-1) GARCH(-2)	9.60E-06 -0.111946 0.145294 1.753671 -0.844167	2.46E-06 0.014013 0.018098 0.060010 0.058374	3.904371 -7.988639 8.028196 29.22309 -14.46138	0.0001 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000506 -0.000506 0.012745 0.051004 936.9531 2.352580	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000484 0.012742 -5.910813 -5.839336 -5.882255

The mean equation shows no strong evidence of significant mean return in MSCI USA Return during this period.

The small positive constant (c) shows a low baseline level of market volatility during the period (pre-crisis).

The value for the previous squared residuals is negative (which should is not supposed to be as theoretically not valid in standard GARCH model, violating assumption of positive conditional variance). This may be caused by model misspecification (ARCH/GARCH models could not capture the pattern in data), data irregularities (outliers) or instability.

The second lag of squared residuals indicate that past shock from two period ago contribute to the current volatility. The coefficient of 0.145 suggest that if there was a shock in two period ago, its squared value is scaled by 0.145 to affect the current variance.

The GARCH coefficient of 1.753 suggest strong persistence in volatility, where high past volatility leads to high future volatility.

The GARCH (-2) is negative and significant which either suggest overfitting or unusual volatility dynamics. It suggests shocks from two period ago affects current volatility negatively.

During Crisis: GARCH (1,2)

Dependent Variable: MSCI_USA_RETURN

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 21:18 Sample: 15/09/2008 30/04/2009 Included observations: 164

Convergence achieved after 132 iterations Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) + C(5)*GARCH(-2)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.000101	0.001954	-0.051646	0.9588
Variance Equation				
C RESID(-1)^2 GARCH(-1) GARCH(-2)	1.60E-05 0.043969 1.815922 -0.870176	5.28E-06 0.013172 0.027538 0.023012	3.032963 3.338061 65.94166 -37.81451	0.0024 0.0008 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.002045 -0.002045 0.033689 0.184998 340.0389 2.271717	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.001618 0.033655 -4.085840 -3.991332 -4.047474

The mean equation shows no strong evidence of significant mean return in MSCI USA Return during this period.

The small positive constant (c) shows a low baseline level of market volatility during the period (pre-crisis).

The value for the previous squared residuals is 0.044 indicates that past shock still affects current volatility but to a smaller degree than pure ARCH model. If there was a shock in past period, its squared value is scaled by 0.044 to affect the current variance.

The GARCH coefficient of 1.816 suggest strong persistence in volatility, where high past volatility leads to high future volatility.

The GARCH (-2) is negative and significant which either suggest overfitting or unusual volatility dynamics. It suggests shocks from two period ago affects current volatility negatively.

Post-Crisis: GARCH (2,1)

Dependent Variable: MSCI_USA_RETURN

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)

Date: 21/11/24 Time: 21:15 Sample: 1/05/2009 31/12/2009 Included observations: 175

Convergence achieved after 15 iterations Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.001127	0.000842	1.339249	0.1805
Variance Equation				
C RESID(-1)^2 RESID(-2)^2 GARCH(-1)	1.19E-05 -0.134114 0.173931 0.859924	6.64E-06 0.025512 0.045802 0.062209	1.793128 -5.256847 3.797446 13.82317	0.0730 0.0000 0.0001 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000845 -0.000845 0.011758 0.024056 538.3761 2.166203	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001468 0.011753 -6.095726 -6.005304 -6.059049

The small positive constant (c) shows a low baseline level of market volatility during the period (pre-crisis).

The value for the previous squared residuals is negative (which should is not supposed to be as theoretically not valid in standard GARCH model, violating assumption of positive conditional variance). This may be caused by model misspecification (ARCH/GARCH models could not capture the pattern in data), data irregularities (outliers) or instability.

The second lag of squared residuals indicate that past shock from two period ago contribute to the current volatility. The coefficient of 0.174 suggest that if there was a shock in two period ago, its squared value is scaled by 0.174 to affect the current variance.

The GARCH coefficient of 0.860 suggest strong persistence in volatility, where high past volatility leads to high future volatility.

PART B

1. Summary of Findings

Period	1	2	3
Return	Relatively stable returns	Significant fluctuations in returns	Low but more stable returns
Volatility	Low	High	Reduced however still fluctuate
Economy	Generally stable	Instability (Crisis leads to uncertainty)	Improved stability (In economic recovery)

2. Market Behaviour and Volatility Dynamics

The volatility was low pre-crisis as there is little to NO shocks that could affects the return and causing it to be unstable. Therefore, the volatility is stable (little to no fluctuation) with stable return. However, the worldwide financial crisis has crashed the market. People are out of jobs and do not have money to buy necessities, therefore, the production of goods and services has lowered during this period. Furthermore, the collapse of major financial institutions has created uncertainty about the stability of the financial system. Investors' confidence in the market is all time low as companies slowly started to go out of business. They were also unsure about the solvency of banks and other financial institutions. This leads to panic and massive sell-offs in the stock market. Panic selling with no buyers resulted in lack of liquidity, which in turn exacerbated market volatility. Furthermore, many financial institutions and investors were highly leveraged (borrow money to mostly invest in assets). When the price began to fall due to the crisis, they were forced to sell their assets as soon as possible to ensure they can meet margin calls and reduce their losses. This also led to the reduced asset price or return and increased volatility. Crisis also can be translated to period of high price levels (inflation), therefore, investors are more likely to be risk averse during this period. This made the investors to focus more on safer assets such as government bond and not the MSCI Index (which covers the market). Post-crisis which means the economy is recovering. Investors' trusts and confidence slowly returns as the market price returns and volatility is greatly reduced. This can mainly be attributed to the policy interventions that helped stabilized the economy. However, the crisis has left a significant and lasting impact on the market. Investors are still cautious, thus, there were great emphasis on diversification and risk management.