TO TOLL OR NOT TO TOLL?

Aupal Mondal | Suyash Vishnoi

CE392C Course Project, Fall 2018

WHAT WE WILL BE TALKING ABOUT...

- Background on Tolling
- Tolling strategies
- Formulating the problems
- Small network implementation
- Large network implementation
- Effect of demand variation on tolling
- Inferences

BACKGROUND

Recap from the course:

- The motivation behind tolling.
- MSCP (Marginal Social Cost Pricing) tolls: $\beta_{MSCP} = t'(x)x$
- Mathematical Equivalence of UE and SO optimization problems
- Disadvantage of MSCP tolling:

Tolls on almost every link in the network! \Rightarrow (1) large infrastructure cost involved in setting up of tollbooths, and (2) large revenue in tolls collected from travelers on network

TOLLING STRATEGIES

Different types of tolls based on priorities

- MINSYS Minimizing the total tolls collected
- **MINTB** Minimizing the number of toll booths
- **MINMAX** Minimizing the maximum toll on any link
- ROBINHOOD Constraining net tolls collected to be zero (by subsidizing other users)

Ref: "Solving Congestion Toll Pricing Models" – Hearn and Ramana (1998)

4

FEASIBLE TOLL SET

By writing the LP duality of the UE optimization problem and the KKT conditions for the SO optimization problem, the following feasibility conditions can be obtained:

$$Z^{T}(t(x^{*}) + \beta) \geq A^{T}\rho_{rs}$$

$$(x^*)^T (t(x^*) + \beta) = d_{rs}^T \rho_{rs}$$

Z - arc-path incidence matrix

A - OD-path incidence matrix

 ho_{rs} - unknown constant specific to each OD pair

Ref: "Congestion Toll Pricing of Traffic Networks" – Bergendorff et al. (1997)

OPTIMIZATION FORMULATION

MINSYS

$$min_{(\beta,\rho)}$$
 $\beta^T x^*$

s.t.
$$Z^{T}(t(x^{*}) + \beta) \ge A^{T}\rho$$
$$(x^{*})^{T}(t(x^{*}) + \beta) = d^{T}\rho$$
$$\beta \ge 0$$

MINTB

$$min_{(y,\beta,\rho)} \qquad \sum y_{ij}$$

$$s.t. \qquad Z^{T}(t(x^{*}) + \beta) \ge A^{T}\rho$$

$$(x^{*})^{T}(t(x^{*}) + \beta) = d^{T}\rho$$

$$\beta \le My_{a}$$

$$\beta \ge 0$$

$$y_{ij} \in \{0,1\}$$

METHODOLOGY ADOPTED

Solve for SO flows using MSCP Enumerate all paths for each OD pair Find arc-path incidence matrix and OD pair-path incidence matrix Set up equality and inequality constraints and variable bounds for the linear/integer program Run the solver

METHODOLOGY ADOPTED

Solve for SO flows using MSCP

Enumerate all paths for each OD pair

Find arc-path incidence matrix and OD pair-path incidence matrix

Set up equality and inequality constraints and variable bounds for the linear/integer program

Run the solver

TOLLS FOUND!!!

User Equilibrium

Path cost = 92

User Equilibrium

Path cost = 92

System Optimal

Flow=3, Path cost =83

 $Path_{134} = 83$ $Path_{124} = 82$ $Path_{1234} = 70!$

Flow=3, Path cost =83

User Equilibrium

System Optimal

Flow=3, Path cost =83

 $Path_{134} = 83$ $Path_{124} = 82$ $Path_{1234} = 70!$

Path cost = 92

Flow=3, Path cost =83

	MSCP	
Total revenue $(\beta^T x^*)$ in minutes	198	
Average toll per user in minutes	33	
Number of toll booths	4	

MINSYS

	MSCP	MINSYS	
Total revenue $(\beta^T x^*)$ in minutes	198	0	
Average toll per user in minutes	33	0	
Number of toll booths	4	1	

MINTB

	MSCP	MINSYS	MINTB
Total revenue ($\beta^T x^*$) in minutes	198	0	0
Average toll per user in minutes	33	0	0
Number of toll booths	4	1	1

OD pair	Demand
1-3	10
1-4	20
2-3	30
2-4	40

Link performance functions ~
$$t_{ij} = t_{ij}^0 \left[1 + 0.15 \left(\frac{x}{c} \right)^4 \right]$$

	MSCP	
Total revenue $(\beta^T x^*)$ in minutes	1493.478	
Average toll per user in minutes	14.93	
Number of toll booths	14	

MINSYS TOLLING

	MSCP	MINSYS	
Total revenue $(\beta^T x^*)$ in minutes	1493.478	887.56	
Average toll per user in minutes	14.93	8.88	
Number of toll booths	14	6	

MINTB TOLLING

	MSCP	MINSYS	MINTB
Total revenue $(\beta^T x^*)$ in minutes	1493.478	887.56	887.57
Average toll per user in minutes	14.93	8.88	8.88
Number of toll booths	14	6	5

BEWARE OF CONVERGENCE!

RELATIVE GAP	E -3	E-4	E -6
TSTT	2254.033	2253.918	2253.916
Total revenue ($\beta^T x^*$) in minutes	1281.92	887.57	887.56
Average toll per user in minutes	128.19	8.88	8.88
Number of toll booths	8	5	6

BEWARE OF CONVERGENCE!

RELATIVE GAP	E-3	E-4	E -6
TSTT	2254.033	2253.918	2253.916
Total revenue $(\beta^T x^*)$ in minutes	1281.92	887.57	887.56
Average toll per user in minutes	128.19	8.88	8.88
Number of toll booths	8	5	6

Obtain the SO flows using the general MSCP formulation

Enumerate all possible paths using a recursive function (1.71 million paths for SF!)

Use k-shortest paths to form a reasonable set of paths (here, k=100)

Tweak the optimization problem for implementing in large networks

Implement the MINSYS and MINTB strategies on the Sioux Falls network

Obtain the SO flows using the general MSCP formulation

Enumerate all possible paths using a recursive function (1.71 million paths for SF!)

Use k-shortest paths to form a reasonable set of paths (here, k=100)

Tweak the optimization problem for implementing in large networks

Implement the MINSYS and MINTB strategies on the Sioux Falls network

Obtain the SO flows using the general MSCP formulation

Enumerate all possible paths using a recursive function (1.71 million paths for SF!)

Use k-shortest paths to form a reasonable set of paths (here, k=100)

Tweak the optimization problem for implementing in large networks

Implement the MINSYS and MINTB strategies on the Sioux Falls network

TWEAKING THE OPTIMIZATION PROBLEM FOR LARGE NETWORKS

MINSYS

$$min_{(\beta,\rho)}$$
 $\beta^T x^*$

s.t.
$$Z^T(t(x^*) + \beta) \ge A^T \rho$$

$$(x^*)^T(t(x^*) + \beta) = d^T \rho$$

$$\beta \geq 0$$

TWEAKING THE OPTIMIZATION PROBLEM FOR LARGE NETWORKS

MINSYS

$$min_{(\beta,\rho)}$$
 $\beta^T x^*$

s.t.
$$Z^T(t(x^*) + \beta) \ge A^T \rho$$

$$(x^*)^T(t(x^*) + \beta) = d^T \rho$$

$$\beta \geq 0$$

MINSYS (for larger networks)

$$min_{(\beta,\rho)} \qquad \beta^T x^* + \mu[(x^*)^T (t(x^*) + \beta) - d^T \rho]$$

s.t.
$$Z^T(t(x^*) + \beta) \ge A^T \rho$$

$$\beta \geq 0$$

Obtain the SO flows using the general MSCP formulation

Enumerate all possible paths using a recursive function (1.71 million paths for SF!)

Use k-shortest paths to form a reasonable set of paths (here, k=100)

Tweak the optimization problem for implementing in large networks

Implement the MINSYS and MINTB strategies on the Sioux Falls network

Obtain the SO flows using the general MSCP formulation

Enumerate all possible paths using a recursive function (1.71 million paths for SF!)

Use k-shortest paths to form a reasonable set of paths (here, k=100)

Tweak the optimization problem for implementing in large networks

Implement the MINSYS and MINTB strategies on the Sioux Falls network

TOLLING THE SIOUX FALLS NETWORK

	MSCP	MINSYS	MINTB
Total revenue $(\beta^T x^*)$ in minutes	14.93 E6	2.08 E6	2.23 E6
Toll revenue (\$)	\$2488K	\$346K	\$368K
Average toll per user	\$6.9	\$0.95	\$1.0
Number of toll booths	76	39	38

Assumed VOTT = \$10/hr

DEMAND VARIATION ON NINE NODE NETWORK

	Base demand	50% increases	100% increased
Demand	100	150	200
Total revenue ($\beta^T x^*$) in minutes	887.56	1591.5	2060.9
Average toll per user in minutes	8.88	10.61	10.30
Number of toll booths	6	8	8

INFERENCES SO FAR...

- MINSYS and MINTB optimization problems provide much more realistic tolls than MSCP.
- MINSYS and MINTB strategies gave almost the same results for the studied networks. (Coincidence?!)
- Relative gap convergence to a "sufficient" level is crucial.
- Increase in the overall demand causes an increase in the total revenue collected in tolls but the average toll per user remains somewhat similar.

FUTURE WORK

• Analyse the impact of partial changes in the demands (some OD pairs at a time) on the tolls obtained for Sioux Falls network.

Thank you! Questions?