Thompson's Type Theory & Functional Programming

Publisher: Addison-Wesley
Author: Simon Thompson
Presenter: Wen-Bin Luo

• Link: https://www.cs.kent.ac.uk/people/staff/sjt/TTFP/ (https://www.cs.kent.ac.uk/people/staff/sjt/TTFP/)

Contents

- Introduction
- Introduction to Logic
- Functional Programming and λ-Calculi
- Constructive Mathematics
- Introduction to Type Theory
- Exploring Type Theory
- Applying Type Theory
- Augmenting Type Theory
- Foundations
- Conclusions

Introduction

- Constructive type theory: A system which is simultaneously a logic and a programming language, and in which propositions and types are *identical*.
- Functional programming language: A program is simply a value of a particular explicit type, rather than a state transformer.
- If the language allows general recursion, then every type contains at least one value, defined by the equation x = x.
- Curry Howard isomorphism: the propositions-as-types notion.
- p:P:p is of type P, or p is a proof of proposition P.
- Functions defined by recursion have their properties proved by induction.
- $(a,b): (\exists x:A). B(x): a$ of type A meets the specification B(x), as proved by b:B(a).
- The logic is an extension of many-sorted, first-order predicate logic.
- The system here integrates the process of program development and proof: to show that a program meets a specification we provide the program/proof pair.

Introduction to Logic

- Propositional Logic
- Predicate Logic

Propositional Logic

- Propositional formula (φ) are made up of propositional atoms (P) and connectives $(\land |\lor| \implies$).
- Backus-Naur form: $\varphi ::= P|(\neg \varphi)|(\varphi \land \varphi)|(\varphi \lor \varphi)|(\varphi \Longrightarrow \varphi)$.
- Natural deduction rules: $(\land |\lor| \implies |\neg|\bot)$ (introduction|elimination)
- Propositional logic is a subset of the predicate logic.

Predicate Logic

- Predicate formula (φ) are made up of terms, predicates (P), quantifiers (∀|∃), and connectives (∧| ∨ | ⇒).
 - Terms (t): variables (x), constants (c), functions (f).
- Backus-Naur form: $\varphi ::= P(t...) | \forall x. \varphi | \exists x. \varphi | (\neg \varphi) | (\varphi \wedge \varphi) | (\varphi \vee \varphi) | (\varphi \implies \varphi).$
- Natural deduction rules: $(\forall |\exists| \land |\lor| \implies |\neg|\bot)$ (introduction|elimination)
- In a sense, \forall is a combination of infinite \land , while \exists is a combination of infinite \lor .

Functional Programming and λ-Calculi

- Functional Programming
- The Untyped λ-Calculus
- Evaluation
- Convertibility
- Expressiveness
- Typed λ-Calculus
- <u>Strong Normalization</u>
- Further Type Constructors: The Product
- Base Types: Natural Numbers
- General Recursion
- Evaluation Revisited

Functional Programming

- FP is characterized by first-class functions, strong type systems, polymorphic types, algebraic types, and modularity.
 - **First-class functions**: Functions may be passed as arguments to and returned as results of other functions.
 - Algebraic types: Algebraic types generalizes enumerated types, (variant) records, certain sorts of pointer type definitions, and also permits type definitions to be parametrized over types.

The Untyped λ-Calculus

- λ -expression (e) is made up of variables, applications, and abstractions.
 - \circ Variables (x)
 - Applications (e_1e_2) : The application of expression e_1 to e_2 .
 - Abstractions ($\lambda x.e$): The function which returns the value e when given formal parameter x
- Backus-Naur form: $e := x|ee|\lambda x.e$.
- An expression is **closed** if it contains no free variables, otherwise it is **open**.
- The substitution of x' for the free occurrences of x in e is written e[x'/x].
- **\beta-reduction**: For all x, e and e', we can reduce the application $(\lambda x. e)e' \to_{\beta} e[e'/x]$.
- β -redex: A sub-expression of a lambda expression of the form $(\lambda x. e)e'$.

Evaluation

- Normal form variants:
 - Normal form: An expression is in normal form if it contains no redexes.
 - Head normal form: All expressions of the form $\lambda x_1 \dots \lambda x_n y e_1 \dots e_m$ where x and y are variables and e are expressions.
 - Weak head normal form: All expressions which are either abstractions or of the form $ye_1 \dots e_m$.
- A normal form can be thought of as the result of a computation.
- Evaluation of an expression fails to terminate if no sequence of reductions ends in a weak head normal form.
- Church-Rosser Theorem: For all expressions e, e_1 , and e_2 , if $e woheadrightarrow e_1$ and $e woheadrightarrow e_2$, then there exists an expression e' such that $e_1 woheadrightarrow e'$ and $e_2 woheadrightarrow e'$.
- The method of **structural induction**: To prove the result P(x) for all λ -expressions e, it is sufficient to prove
 - $\circ \ \forall x. P(x) \text{ holds.}$
 - \circ If $P(e_1)$ and $P(e_2)$ hold, then $P(e_1e_2)$ holds.
 - If P(e) holds, then $P(\lambda x. e)$ holds.
- **Theorem**: If a term has a normal form, then it is unique.
- If an expression contains more than one redex, then we say that the **leftmost outermost** redex is that found by searching the parse tree top-down, going down the left hand subtree of a non-redex

application before the right.

- **Normalization Theorem**: The reduction sequence formed by choosing for reduction at each stage the leftmost-outermost redex will result in a normal form, head normal form or weak head normal form if any exists.
- Lazy evaluation mechanism:
 - Corresponds to the strategy of choosing the leftmost-outermost redex at each stage.
 - Avoids duplication of evaluation caused by duplication of redexes.
- The strict or applicative order discipline will not always lead to termination, even when it is possible.
- **\eta-reduction**: For all x and e, if x is not free in e, then we can perform the reduction $\lambda x. (ex) \rightarrow_{\eta} e$.
- It is not clear that η -reduction is strictly a rule of computation.
- The η -reduction rule identifies certain (terms for) functions which have the same behavior, yet which are represented in different ways.

Convertibility

- Convertibility relations: equivalence relations which are also substitutive.
- **Definition**: $e \leftrightarrow f$ if and only if there is a sequence e_0, \ldots, e_n such that $e \equiv e_0, e_n \equiv f$ and for each $i < n, e_i \twoheadrightarrow e_{i+1}$ or $e_{i+1} \twoheadrightarrow e_i$.
- \leftrightarrow is the smallest equivalence relation extending \twoheadrightarrow .
- As a consequence of the Church-Rosser theorems, two expressions e_1 and e_2 will be $(\beta\eta$ -)convertible if and only if there exists a common $(\beta\eta$ -)reduct of e_1 and e_2 .
- Two functions with normal forms are convertible if and only if they have the *same* normal form.
- The convertibility relations are not necessary to explain the computational behavior of λ -expressions.

Expressiveness

- The untyped λ -calculus is Turing-complete.
- Objects such as the natural numbers, booleans and so forth can be represented as λ -terms.
- To derive recursive functions, we need to be able to solve equations of the form f:=Rf where R is a λ -terms.
- Fixed-point combinators (F) solve the equation f := Rf. Thus, FR woheadrightarrow R(FR).

Typed λ-Calculus

- The untyped λ -calculus is characterized by
 - Powerful representatives of all the common base types and their combinations under standard type-forming operations.
 - The presence of non-termination since not every term has even a weak head normal form.

- Given a set B of base types, we form the set S of **simple types** closing under the rule of function type formation If σ and τ are types, then so is $(\sigma \implies \tau)$.
- The expressions (e) of the typed λ -calculus have three forms:
 - \circ Variables (x)
 - **Applications**: If $e_1:(\sigma \implies \tau)$ and $e_2:\sigma$, then $(e_1e_2):\tau$.
 - $\quad \text{$\diamond$ Abstractions: If $x:\sigma$ and $e:\tau$, then $(\lambda x.\,e):(\sigma\implies\tau)$.}$
- Strong Normalization Theorem: Every reduction sequence terminates.
 - The system is less expressive than the untyped calculus.
- Type assumption (declaration): When a variable is used, it is associated with a type.
- Type context (Γ) : Types are assigned to expressions in the type context of a number of type assumption.
- All contexts Γ are *consistent* in containing at most one occurrence of each variable.

Strong Normalization

- **Reducibility** method involves an induction over the complexity of the types, rather than over syntactic complexity.
- Strong Normalization Theorem: For all expressions e of the simply typed λ -calculus, all reduction sequences beginning with e are finite.
- The method of **induction over types** states that to prove the result $P(\tau)$ for all types τ it is sufficient to prove
 - Base case: For all base types $\sigma \in B$, $P(\sigma)$ holds.
 - \circ Induction step: If $P(\sigma)$ and $P(\tau)$ hold, then $P(\sigma \implies \tau)$ holds.
- An expression e of type τ is stable (denoted by $e \in ||\tau||$) if either
 - e is of base type and e is strongly normalizing.
 - \circ e is of type $\sigma \implies \tau$ and for all $e \in ||\sigma||, (ee) \in ||\tau||.$
- Stability for a function type is defined in terms of stability for its domain and range types.
- Lemma:
 - $\circ x \in SN.$
 - \circ If $e_1, \ldots, e_n \in SN$, then $xe_1 \ldots e_n \in SN$.
 - If $ex \in SN$, then $e \in SN$.
 - If $e \in SN$, then $(\lambda x. e) \in SN$.
- Lemma:
 - If $e \in ||\tau||$, then $e \in SN$.
 - If $xe_1 \ldots e_n : \tau$ and $e_1, \ldots, e_n \in SN$, then $xe_1 \ldots e_n \in ||\tau||$.
 - \circ If $x:\tau$, then $x\in \|\tau\|$.
- s-instance: A s-instance e' of an expression e is a substitution instance $e' \equiv e[e_1/x_1, \dots, e_n/x_n]$ where e_1, \dots, e_n are stable expressions.
- Lemma:
 - \circ If e_1 and e_2 are stable, then so is (e_1e_2) .
 - For all $n \geq 0$, if $e[e'/x]e_1 \dots e_n \in ||\tau||$ and $e' \in SN$, then $(\lambda x. e)e'e_1 \dots e_n \in ||\tau||$.

• All s-instances e' of expressions e are stable.

Further Type Constructors: The Product

- Product:
 - $\sigma \times \tau$ is a type if σ and τ are.
 - \circ **Pairs**: If $x : \sigma$ and $y : \tau$, then $(x, y) : \sigma \times \tau$.
- **Projections**: If $p : \sigma \times \tau$, then
 - first $p : \sigma$ where first returns the first element of p.
 - second $p : \tau$ where second returns the second element of p.
- The rules of reduction:
 - \circ Computation (eta-reduction) rules: $\mathrm{first}(x,y) o x$ and $\mathrm{second}(x,y) o y$.
 - Equivalence (η -reduction) rules: (first p, second p) $\to p$.
- Extensionality: An element of a product type is characterized by its components.
- The operations first and second as primitives:
 - \circ first : $(\sigma \times \tau) \implies \sigma$.
 - \circ second : $(\sigma \times \tau) \implies \tau$.

Base Types: Natural Numbers

- Numbers:
 - $\circ \mathbb{N}$ is in the set of base types B.
 - \circ 0 : \mathbb{N} , and if n : \mathbb{N} , then successor n : \mathbb{N} .
- Primitive recursion: For all types τ , if $e_0: \tau$ and $f: (\mathbb{N} \implies \tau \implies \tau)$, then $Re_0f: \mathbb{N} \implies \tau$ where R is the primitive recursor.
- The rules of reduction:
 - $\circ Re_0 f0 \rightarrow e_0.$
 - $\circ Re_0 f(n+1) \rightarrow fn(Re_0 fn).$
- R that represents a natural number $n:\mathbb{N}$ is a function that maps any function f to its n-fold composition.

General Recursion

- General recursion: A general recursor R also has the property that Rf o f(Rf).
- Rf is a *fixed point* of the functional f.

Evaluation Revisited

- Final results of programs are non-functional.
- Order (∂) of a type τ (denoted as $\partial(\tau)$) is defined as:

```
\circ \ \partial(\tau) = 0 \text{ if } \tau \in B.
```

$$\circ \ \partial(\sigma \times \tau) = \max(\partial(\sigma), \partial(\tau)).$$

$$\circ \ \partial(\sigma \implies \tau) = \max(\partial(\sigma) + 1, \partial(\tau)).$$

• The terms we evaluate are not only zeroth-order (**ground types**), they also have the second property of being closed containing as they do no free variables. The results will thus be closed (β-)normal forms of zeroth-order type. It is these that we call the *printable* values.

Constructive Mathematics

- Existence and Logic
- Mathematical Objects
- Formalizing Constructive Mathematics
- Conclusion

Existence and Logic

- Systems of constructive logic do not include the *law of the excluded middle* and *double negation elimination*.
- Sanction for proof by contradiction is given by the *law of the excluded middle*.
- An idealistic view of truth: every statement is seen as true or false, independently of any evidence either way.
- Bishops states that the classical theorem that every bounded non-empty set of reals has a least upper bound not only seems to depend for its proof upon non-constructive reasoning, it implies certain cases of the law of the excluded middle which are *not* constructively valid.
- Not only will a constructive mathematics depend upon a different logic, but also it will not consist of the same results.
- The negation of a formula $\neg A$ can be defined to be an implication $A \implies \bot$.
- A proof of a negated formula has no computational content.
- To give a proof of an existential statement $\exists x. P(x)$, we have to give a witness a and the proof of P(a).
- A constructive proof of $\exists x. P(x) \lor \neg \exists x. P(x)$ constitutes a demonstration of the *limited* principle of omniscience.

Mathematical Objects

- The nature of objects in classical mathematics is simple: everything is a set.
- Every object in constructive mathematics is either finite or has a finitary description.
- Constructive mathematics is naturally typed.
- Two algorithms are deemed equal if they give the same results on every input (the *extensional* equality on the function space).

- Principle of Complete Presentation: If an object is supposed to have a certain type, then that object should contain sufficient witnessing information so that the assertion can be verified.
- Negative assertions should be replaced by positive assertions whenever possible.

Conclusion

• Objects are given by rules, and the validity of an assertion is guaranteed by a proof from which we can extract relevant computational information, rather than on idealist semantic principles.

Introduction to Type Theory

- <u>Propositional Logic: An Informal View</u>
- Judgements, Proofs and Derivations
- The Rules for Propositional Calculus
- The Curry Howard Isomorphism
- Some Examples
- Quantifiers
- Base Types
- The Natural Numbers
- Well-founded Types: Trees
- Equality
- Convertibility
- Central to type theory is the duality between propositions and types, proofs and elements: a proof of a proposition T can be seen as a member of the type T, and conversely.
- Infinite data types are characterized by principles of definition by recursion and proof by induction.
- A proof by induction is nothing other than a proof object defined using recursion.
- Our system gives an *integrated* treatment of programming and verification.

Propositional Logic: An Informal View

- $A \wedge B$: A proof of $A \wedge B$ will be a pair of proofs p and q, p : A and q : B.
- A ∨ B: A proof of A ∨ B will either be a proof of A or be a proof of B, together with an indication of which formula the proof is of.
- $A \Longrightarrow B$: A proof of $A \Longrightarrow B$ consists of a method or function which transforms any proof of A into a proof of B.

The Rules for Propositional Calculus

- Each connective has its formation, introduction, elimination, and computation rule.
- Rules for ∧:
 - \circ Formation: If A is a formula and B is a formula, then $(A \wedge B)$ is a formula.
 - \circ Introduction: If p:A and q:B, then $(p,q):(A\wedge B)$.
 - Elimination:
 - If $r:(A \wedge B)$, then first r:A.
 - If $r:(A \wedge B)$, then second r:B.
 - Computation:
 - $\quad \blacksquare \ \, \mathrm{first}(p,q) \to p.$
 - lacksquare second(p,q) o q.
- Rules for V:
 - \circ Formation: If A is a formula and B is a formula, then $(A \vee B)$ is a formula.
 - Introduction:
 - If q: A, then inl $q: (A \vee B)$.
 - If r: B, then inr $r: (A \vee B)$.
 - \circ Elimination: If $p:(A\vee B), f:(A\implies C)$, and $g:(B\implies C)$, then cases pfg:C.
 - Computation:
 - cases(inl q) $fg \rightarrow fq$.
 - cases(inr r) $fg \rightarrow gr$.
- Rules for \Longrightarrow :
 - \circ Formation: If A is a formula and B is a formula, then $(A \implies B)$ is a formula.
 - Introduction: If from the assumption x:A the conclusion e:B is derived, then $(\lambda x:A)e:(A\implies B)$.
 - \circ Elimination: If $q:(A \implies B)$ and a:A, then (qa):B.
 - \circ Computation: $((\lambda x:A)e)a \to e[a/x]$.
- Rules for ⊥:
 - \circ Formation: \perp is a formula.
 - \circ Elimination: If p:A, then abort p:A.
- Rule of Assumption: If A is a formula, then x : A.

The Curry Howard Isomorphism

- Under the isomorphism, types correspond to propositions and members of those types to proofs.
- The rules are seen to explain:
 - Formation rule: What the types of the system are.
 - Introduction and Elimination rules: Which expressions are members of which types.
 - Computation rule: How these objects can be reduced to simpler forms, i.e. how we can evaluate expressions.
- Rules for \wedge :
 - \circ Formation: If A is a type and B is a type, then $(A \wedge B)$ is a type.

- Introduction: If p:A and q:B, then $(p,q):(A \wedge B)$.
- Elimination:
 - If $r:(A \wedge B)$, then first r:A.
 - If $r: (A \wedge B)$, then second r: B.
- Computation:
 - $\quad \blacksquare \ \, \mathrm{first}(p,q) \to p.$
 - $\operatorname{second}(p,q) \to q$.
- Rules for \vee :
 - Formation: If A is a type and B is a type, then $(A \vee B)$ is a type.
 - Introduction:
 - If q: A, then inl $q: (A \vee B)$.
 - If r: B, then inr $r: (A \vee B)$.
 - \circ Elimination: If $p:(A\vee B),\,f:(A\implies C),\,$ and $g:(B\implies C),\,$ then cases pfg:C.
 - Computation:
 - cases(inl q) $fg \rightarrow fq$.
 - cases(inr r) $fg \rightarrow gr$.
- Rules for \Longrightarrow :
 - \circ Formation: If A is a type and B is a type, then $(A \implies B)$ is a type.
 - Introduction: If from the assumption x:A the conclusion e:B is derived, then $(\lambda x:A)e:(A\implies B)$.
 - \circ Elimination: If $q:(A \Longrightarrow B)$ and a:A, then (qa):B.
 - \circ Computation: $((\lambda x:A)e)a
 ightarrow e[a/x].$
- Rules for ⊥:
 - \circ Formation: \perp is a type.
 - \circ Elimination: If p:A, then abort p:A.
- Rule of Assumption: If A is a type, then x : A.

Quantifiers

- Rules for ∀:
 - Formation: If A is a formula and from the assumption x : A the conclusion P is a formula, then $(\forall x : A)$. P is a formula.
 - Introduction: If from the assumption x:A the conclusion p:P is derived, then $(\lambda x:A)e:(\forall x:A).P.$
 - \circ Elimination: If a:A and $f:(\forall x:A)$. P, then fa:P[a/x].
 - \circ Computation: $((\lambda x:A)p)a \to p[a/x]$.
- Rules for ∃:
 - \circ Formation: If A is a formula and from the assumption x:A the conclusion P is a formula, then $(\exists x:A).$ P is a formula.
 - \circ Introduction: If a:A and p:P[a/x], then $(a,p):(\exists x:A).$ P.
 - Elimination:
 - If $p:(\exists x:A).P$, then first p:A.

 $lacksquare ext{If } p: (\exists x:A). \ P ext{, then second } p: P[ext{first } p/x].$

- Computation:
 - $\quad \blacksquare \ \, \mathrm{first}(p,q) \to p.$
 - $\operatorname{second}(p,q) \to q$.