

Name:	Laboratory Section:
Date:	Score/Grade:

LAB EXERCISE

Earth-Sun Relationships and Daylength

Lab Exercise and Activities

SECTION 1

Earth-Sun Relations—Seasonality

2.	On the equ	inoxes, th	e subsola	ar point is at the equator, and the circle of illumination	ı runs thro	ugh
	90	_°N and _	90	°S. Therefore, the far north and south latitudes of the circ	cle of illum	ina-
	tion are	90 °	away fron	n the subsolar point. On the June solstice, the subsolar point	is at the Tro	opic
	of Cancer at	23.5	°	N, and the circle of illumination passes through	66.5 ∘N	and
	66.5	_ °S. Whic	h latitud	es does the circle of illumination pass through on the Jun	ne solstice?	On
	February 26	the subsc	olar point	is at 9°S, and the circle of illumination passes through $_$	81	_ °N
	and 81	°S.				

Copyright © 2018 Pearson Education, Inc.

Applied Physical Geography: Geosystems in the Laboratory

▲ Figure 5.1 Earth—Sun relationships

Copyright © 2018 Pearson Education, Inc.

SECTION 2

Daylength

 $\textbf{1.} \ \ \text{Complete Table 5.1 (below), filling in the daylength at selected latitudes.}$

TABLE 5.1 Daylength—the time between sunrise and sunset—at selected latitudes for the Northern Hemisphere												
Winter Solstice (December Solstice) December 21–22		r Solstice)	Vernal Equinox (March Equinox) March 20–21		Summer Solstice (June Solstice) June 20–21		Autumnal Equinox (September Equinox) September 22–23					
	A.M.	P.M.	Daylength	A.M.	P.M.	Daylength	A.M.	P.M.	Daylength	A.M.	P.M.	Daylength
0°	6:00	6:00	12:00	6:00	6:00	12:00	6:00	6:00	12:00	6:00	6:00	12:00
30°	6:58	5:02	10:04	6:00	6:00	12:00	5:02	6:58	13:56	6:00	6:00	12:00
40°	7:26	4:34	9:00	6:00	6:00	12:00	4:34	7:26	15:00	6:00	6:00	12:00
50°	8:05	3:55	7:50	6:00	6:00	12:00	3:55	8:05	16:10	6:00	6:00	12:00
60°	9:15	2:45	5:30	6:00	6:00	12:00	2:45	9:15	18:30	6:00	6:00	12:00
90° No sunlight			Rising Sun		Continuous sunlight		Setting Sun					

2. Estimate the approximate length of daylight for the following locations:

Applied Physical Geography: Geosystems in the Laboratory

3. Complete the following graph, using the values for daylength calculated in Question 1 for the following latitudes: 0° , 30° , 40° , 50° , 60° , and 90° . Use a different color for each latitude. The line for 30° has already been done for you.

▲ Figure 5.2 Daylength and latitude

4. Explain how changes in the Sun's angle above the horizon and daylength vary with the seasons at the equator, 30° , 60° , and 90° . What is the general relationship between latitude and the amount of seasonal change?

Seasonal changes in daylength increases with increasing latitude. The equator has 12 hour days throughout the year, and the poles have 24 hours variation in day length from summer to winter.

Copyright © 2018 Pearson Education, Inc.