Rendering

Modelos de Iluminación Rendering de Modelos Poligonales Métodos de Tonalización

Rendering

 Generación de la imagen (matriz de pixels) a partir de una descripción de la escena Dados gráficos ⇒ Imagem

Escena:

- Modelo geométrico (geometria de los objetos)
- Propiedades visuales de las superfícies
- Condiciones de iluminación ambiente
- Punto de observación

- Intenta "simular" (muchas veces, de forma bastante grosera) el proceso físico.
- Modelo de iluminación (illumination model, lighting model, shading model)
 - usado para "calcular" la intensidad (y el color) de la luz que el observador debe "ver" en un cierto punto de la superfície del objeto.
 - Modelos básicos x physically-based models.

Fotorealismo en CG

- Representaciones geométricas precisas de los diferentes tipos de objetos
- buena simulación de los efectos de la iluminación presentes en la escena

- Surface Rendering: escena es renderizada considerando la interación de la luz con las superfícies de los objetos de la escena
 - para la mayoria de los objetos manufacturados y para muchos objetos "naturales".
- Volume Rendering: el rendering considera la interacción de los rayos de luz con las superfícies y con los interiores de los objetos
 - agua, nieve, nuves, fuego, ...

Wireframe x shaded

- Visiones hilos de alambre: dibuja las fronteras de las superfícies de los objetos
 - (no precisa de un modelo de iluminación! ⇒ rápidas, mas ambíguas y no "realistícas".
 - pueden exigir un proceso de remoción de lineas "ocultas".
- Visiones tonalizadas ("shaded"): superfícies rellenas con color, apariencia (pulida, rugosa, áspera, lisa, ...) ⇒ + realismo.

- vemos un objeto opaco no-luminoso debido a la luz reflejada por su superfície.
- El total de luz reflejada es resultado de las contribuiciones de la luz que llega al objeto
 - Provenientes por las fontes de luz presentes en la escena
 - reflejada por otros objetos en la escena
- fuente de luz: termino usado para denotar un emisor de energia radiante (lampara, sol)

- Intentan simular como la luz es reflejada por los objetos, produzindo lo que percibimos como color
 - La luz que sale de un emisor es reflejada por las múltiples superfícies de los objetos, eventualmente llegando al ojo del observador
 - modelos locales (1a. orden): operan como si la iluminación de una superfície fuese independiente de las otras superfícies en la escena
 - modelos globales: incluyen la contribución de la luz reflejada por otras superfícies de la escena

Modelos de Iluminación

- clásico: Phong (patrón, simple, rápido, totalmente empírico)
- modelos físicos: para producir resultados mas realistas usan la teoría que describe el fenómeno físico de la propagación de energía luminosa y su interacción con la superfície de los objetos.
 - teoría clásica de las ondas eletromagnéticas (para superfícies lisas)
 - modelos de reflexión por superficies rugosas.

Modelo de lluminación: Ejemplo

- Un modelo de iluminación es integrado a un método de rendering: diferentes métodos pueden ser usados para implementar el proceso.
- Envuelve diversos factores:
 - como la escena está modelada (modelo geométrico), el grado de foto-realismo deseado, el hardware disponible.
 - abordage clásico: scanline, ray tracing, radiosidad.

Métodos de *Rendering*: Classificación

- operan en el orden de la imagen (genera la imagen pixel a pixel), o en el orden de los objetos (renderiza cada objeto en la escena)
- usan modelos de iluminación locales (consideran apenas la contribución directa de la fuente de luz), o modelos globales (que incorporan la contribución debida a la interacción entre los objetos: reflexiones múltiples, transparencia, sombras, ...)

- scanline: "patrón" en sistemas gráficos
 - opera sobre objetos poligonales
 - usa modelos de iluminación locales simples, efectos adicionales pueden ser incorporados por várias técnicas ad hoc, como sombreamento y textura.
 - opera en el orden de la imagen: rasteriza la escena projectada siguiendo el orden de las líneas de barredura.
 - asociado a un proceso de remoción de superfícies ocultas

Algoritmos Clássicos

- Ray tracing: "clásico" para generar imagenes de escenas con objetos especulares
 - opera sobre diferentes geometrias
 - orden de la imagen
 - usa un modelo de iluminación global, integrando efectos de sombra, reflexiones especulares entre objetos, transparencia
 - integra naturalmente el proceso de remoción de superfícies ocultas
 - alto costo computacional

- Radiosidad:
 - modelo global
 - adecuado para modelar la reflexión de luz difusa resultando de la interacción de la luz entre los diferentes objetos en una escena
 - intenta simular el proceso de transferencia de energia radiante entre las superfícies de los objetos
 - alto costo computacional
 - fotorealismo

Radiosidad: Ejemplo

Radiosidad: Ejemplo

Radiosidad: Ejemplo

Fuentes de Luz

- Un objeto luminoso puede ser un emisor y también un reflector de luz.
- En general, consideramos las fuentes apenas como emisoras.
- Fuentes de luz son, en general, especificadas en terminos de su geometria (formato físico de la fuente), intensidad de la luz emitida, y distribición espectral.

- Puntuales
 - emite luz uniformemente en todas las direcciones. Aproximación por fuentes de dimensiones pequeñas en relación a los objetos en la escena (sol, lampara incandescente); modelo (idealizado) simple.
- Direcionales: fuente puntual, pero que emite rayos en una única dirección. Aproximación para un spot.
- Distribuídas: la fuente tiene área y una geometria própia (lamparas fluorescentes)

Fuentes de Luz: Intensidad y Distribución Espectral

- intensidad: función que describe la intensidad luminosa de la luz emitida, a cada punto de la superfície emisor (en el caso de fuentes distribuídas)
- distribución espectral: energia luminosa emitida descrita en terminos de la contribución en cada longitud de onda del espectro visible (define el "color" de la luz)

- Energia luminosa, u onda electromagnetica
 - banda visible del espectro eletromagnético: cada frecuencia (o cada longitud de onda) del espectro visible corresponde a un color
 - Rojo: 4.3 x 1014 Hz
 - Violeta: 7.5 x 1014 Hz
 - Longitudes de onda entre 700nm (Rojo) y 400nm (violeta) corresponden a la luz visible

Modelo de lluminación de Phong

- Interación luz incidente/superficie:
- Reflexión, absorción (calor), refración.
- El proceso real es extremamente complejo: el modelo de Phong es una aproximación extremamente simplificada del fenomeno real (modelo empírico).
- Considera, inicialmente, apenas la reflexión.
- Reflexión
 - Cantidad de luz reflejada depende del material
 - materiales lustrosos/brillantes/lisos reflejen mas luz, superficies opacas/rugosas absorven mas luz; materiales transparentes refractan (transmiten) parte de la luz.

Modelo de lluminación de Phong

- Reflexión difusa: luz incidente reflejada igualmente en todas las direciones.
 - determina el color del objeto, predominante en las superficies opacas
- Reflexión especular: la reflexión es mas intensa en una dirección (dada por el angulo de reflexión especular)
 - highlights: regiones de brillo intenso, predominante superfícies muy lisas/lustrosas ("espejos")
- la mayoria de las superfícies exhibe los dos tipos de reflexión

- El modelo considera el comportamiento de una superficie idealmente difusa
- despues incluye el de una superfície idealmente especular
- e incluye el componente de iluminación ambiente
 - para "aproximar" la contribuición de los objetos no emisores para la iluminación de la escena
 - usa un termino de iluminación constante, que conigue de la misma forma (o casi) todos los objetos

Modelo de Iluminação de Phong

Modelo de Iluminación

Modelo Local Iluminación Ambiente

Modelo de lluminación y Métodos de *Rendering*

- Ocurre cuando la superfície refleje la luz incidente igualmente en todas las direciones
 - reflexión independente de la dirección de observación
 - Cantidad de luz reflejada es controlada por un parametro Kd ∈ [0,1] (coeficiente de reflexión difusa)
 - superfície reflectora idealmente difusa: reflexión en cualquier punto de la superficie es gobernada por la Lei de los Cosenos de Lambert

- Ley de los Cosenos de Lambert:
 - la energia radiante de retorno de una pequena área de la superficie dA, debida a la luz incidente en cualquier dirección θ (relativa a la normal a la superfície) es proporcional al cos θ .
 - la intensidad de la luz reflejada, entretanto, depende de la energia radiante por área projectada en la dirección perpendicular a θ , dada por dA.cos θ .
 - Apesar del esparcimiento de la luz ser igual en todas las direcciones (superfície reflectora idealmente difusa), a la intensidad del color con que la superficie es vista, depende de la orientación en relación a la fuente.

Modelo Local

Iluminación Difusa (Ley de los Cosenos de Lambert)

$$I_D = K_D * I_L * \cos \theta$$

- θ: angulo entre el vector dirección de la luz incidente y a la normal a la superficie.
- La área projectada de una region de la superficie, perpendicular a la dirección de la luz es proporcional al $\cos \alpha$ ⇒ la cantidad (intensidad) de iluminación depende de $\cos \theta$.
- Ecuación de la reflexión difusa debida a la luz de regreso de una fuente puntual: $I_{ld} = K_d I_l \cos \theta$.
- La superficie es iluminada por la fuente si θ ∈ [0, 90∘]. Para N, L vectores unitarios:

$$I_{ld} = K_d I_l (\mathbf{N} \cdot \mathbf{L})$$

- Se Puede combinar las contribuciones (difusas) debidas a la luz ambiente y la fuente de luz puntual
 - caso contrário el objeto solo será visible caso reciba iluminación directa de la fuente, lo que esta lejos de la realidad!
- Algunos paquetes introducen una constante Ka para controlar la intensidad de la iluminación ambiente para cada superfície:

$$I_{difusa} = IaKa + K_dI_I(N . L)$$

Modelo Local

Iluminación Difusa

Modelo de Phong: Reflexión Especular

Modelo Local

Iluminación Especular (por Phong Bui Tuong)

- Direción de reflexión especular (R)
- Superficie idealmente especular: toda la luz incidente es reflejada en la dirección R (la luz refletida solo será vista si la dirección de observación y la dirección de reflexión coinciden).
- Reflectores especulares no ideales: reflexión especular sobre un intervalo finito de posiciones de observación, en torno de R. Ese intervalo es mas estrecho para superfícies mas pulidas, y mas abierto para superficies mas opacas.
- Phong propuso un modelo empirico para calcular ese intervalo, al cual atribuye intensidad proporcional a cosⁿ α , α ∈ [0, 90°].

Modelo de Phong: Reflexión Especular

Modelo de Phong: Reflexión Especular

- El valor de n es determinado por el tipo de superficie: n es mayor (> 100) para superficies mas pulidas, y pequeño (hasta 1) para superficies mas opacas.
- La intensidad de la reflexión especular depende de factores:
 - propiedades del material, angulo de incidencia, distribuición espectral de la luz incidente
 - Variaciones de la intensidad especular (para luz monocromática) puedem ser aproximadas por una función coeficiente de reflexión especular, definida para diferentes superficies (materiales) $W(\alpha,\lambda)$.
 - en general, $W(\alpha,\lambda)$ aumenta a medida que aumenta θ . La variación de la intensidad de la reflexión especular en función del angulo de incidencia es gobernada por la Ley de Fresnel.

- El término especular de Phong es descrito por $Is = W(\alpha, \lambda)I_1cos^n\phi$
- Para materiales opacos, la reflexión especular es aproximadamente constante para todos los angulos de incidencia ⇒ Phong aproximo la función por una constante: ls = K_sI_I(V.R)ⁿ
- el vector R puede ser calculado a partir de L y N
- múltiples fuentes de luz: suma las contribuciones de cada una

Modelo de Phong: Reflexión Especular

Modelo Local

Iluminación Especular

Modelo de Phong completo

Modelo Local Completo

$$\mathbf{I} = \mathbf{I}_{\mathbf{A}} + \mathbf{I}_{\mathbf{D}} + \mathbf{I}_{\mathbf{S}}$$

- Atenuación debido a la distancia
 - energia radiante de uma fuente puntual es atenuada por un factor cuadrático (1/d²) ⇒ superficie mas distante de la fuente recibe menos luz.
 - En la prática, es usado un factor de atenuación lineal en relación a ladistancia (1/d, o una función mas compleja) para garantizar una variación mas suave.

Incorporación del Color

- Colores: el color de la luz reflejada es una función de la longitud de onda de la luz incidente
- la ecuación de iluminación debe ser expresada como una función de las propriedades del color de las fuentes de luz y de las superficies de los objetos.
- En general, las superfícies son iluminadas por fuentes de luz blanca
- En el modelo RGB: se especifica los componentes RGB que describen la luz de las fuentes y los colores de las superficies

- Incorporación del Color
 - Se calcula una aproximación para el color muestreando la función de iluminación en las 3 longitudes de onda correspondientes a los tres colores primarios R, G, B.
 - Una forma de definir los colores de las superficies es especificar los coeficientes de reflexión en terminos de sus componentes RGB (Kdr, Kdg, Kdb, idem para Ks y Ka)
 - expresados como triplas RGB (en el intervalo [0,1]) ⇒ intensidades calculadas para cada color primario

- Incorporación del Color
 - Muestro limitada del espectro de la luz emitida.
 - La intensidad calculada (3 valores en el intervalo [0,1] será cuantizada para valores enteros en el intervalo [0,255]).
 - originalmente, Phong dijo Ks como una constante independente del color ⇒ reflexiones especulares del mismo color de la luz incidente (en general, blanca) (aparencia plástica).

- Transparencia
 - superficies transparentes, en general, reflectan y transmiten luz.
 - las ecuaciones de iluminación deben ser modificadas para incluir la contribuición de la luz que pasa por la superficie (retorno de objetos reflectores posicionados atras de ella).
 - Transmisión difusa y especular: efectos realistas requieren un modelo de refración de la luz

- Transparencia
 - Ley de Snell: determina a dirección de la luz reflejada, a partir de la dirección de la luz incidente y de los coeficientes de refración de cada material (ese índice es una función de la longitud de onda, pero es aproximado por una constante)
 - a partir de la Lei de Snell se puede determinar el vector unitário que da la dirección del rayo refractado.

- Transparencia
 - un abordaje simplista ignora el desvio, y simplemente combina la intensidad calculada para la superficie transparente (superfície 1) con la intensidad calculada para otra superficie 2, visible a través de ella, segundo un factor de transparencia t:
 - $I = (1 kt)I_1 + KtI_2 0 \le t \le 1$
 - aproximación lineal no adequada para superficies curvas, u objetos que esparcen la luz, como nuves.

- Sombras
 - importante para realismo y depth cueing.
 - penumbra
 - Necesita localizar las áreas en que las fuentes de luz producen sombra
- efectos adicionales: textura

Textura: ejemplo

Textura: ejemplo

- modelo local completo +
 - sombras
 - reflexiones múltiples
 - transparencia
 - texturas

Modelo de lluminación Global

Modelo Global

Sombras

Detección de Puntos No Iluminados Directamente

Si el Punto es Iluminado ($I_L = 1$) Si no ($I_L = 0$)

Modelos de *Shading* (tonalización)

- un método para aplicar un modelo de iluminación local a un objeto (en general, modelado como una malla poligonal).
- Normalmente, el método de shading es integrado a un algoritmo scanline (scanline graphics)
 - el proceso de tonalización es hecho para cada cara visible de los modelos que componen la escena, para determinar el color (tono, intensidad) asociada a cada punto visible de la cara

Modelos de Shading

- 4 modelos:Constant, Faceted, Gouraud, e Phong
 - orden cresciente de calidad de imagen y de costo computacional
- Constant Shading
 - calcula un único color para todo el objeto
 - no hay variaciones de tonalidad a lo largo del objeto, i.e., no hay shading.

Constant Shading

- modelo mas simple: calcula un color (tonalidad) para cada polígono
- vetor L en el modelo de iluminación: va de cualquier punto en el polígono a la posición de la fuente de luz
- en general, usa apenas los terminos ambiente y de reflexión difusa del modelo de iluminación.
- Simple y rápido, mas aristas entre caras son acentuadas

Flat shading

- aplica el modelo de iluminación en los vértices de cada cara poligonal para obtener el color (intensidad) en cada vértice de la cara
- interpola los valores obtenidos en los vértices para determinar el color en los puntos interiores a los polígonos
- interpolación bilineal de las intensidades a lo largo de las lineas de barredura

Gouraud Shading: Algoritmo

- 1. determina la normal **N** en cada vértice del polígono
- 2. usa **N** y **L** para calcular la intensidad *I* en cada vértice del polígono
- 3. usa interpolación bilineal para calcular la intensidad I_i en cada pixel en el cual el polígono visíblel es proyectado
- 4. "pinta" el pixel de acuerdo con el color determinado

- Como calcular N para un vértice?
 - podemos tomar la média de las normales las caras que comparten el vértice... (precisa buscar esa información en la estructura de datos...)
- Y la interpolación bilineal?
 - interpola los valores en 2 vértices para obtener los valores en las aristas formadas por ellas
 - para cada linea de barredura interpola los valores en las aristas para obtener el valor en cada pixel en el interior

- suaviza las transicionmes entre caras: apariencia mucho mejor que el 'faceted'
- no es muy caro computacionalmente
- por otro lado, suaviza caras que deberian ser mantenidas (ex. cubo)
- no trabaja bien con los highlights especulares, porque las intensidades son calculadas apenas en los vértices...

Gouraud Shading (sin highlight especular)

Gouraud Shading (con highlight especular)

- interpola las normales calculadas en los vértices para determinar la normal en cada punto del polígono
- aplica el modelo de iluminación en cada punto visible del polígono
- mejor que Gouraud para highlights especulares
- costo computacional mucho mayor

Phong Shading

- curso de CG da ACM SIGGRAPH) (de onde foram tiradas muitas das imagens): www.education.siggraph.org/materials/Hyp erGraph/hypergraph.htm
- GLASSNER, Andrew S. (Edited) An Introduction to Ray Tracing, Academic Press, 1989.
- BAKER, M. Pauline e HEARN, Donald Computer Graphics, Prentice Hall Ed, 1997.
- FOLEY, James D., VAN DAM, Andries, FEINER,
 Steven e HUGHES, John Computer Graphics:
 Principles and Practice Addison-Wesley Ed., 1990.