HEURISTIC SEARCH¹

LECTURE 4

¹The slides have been prepared using the textbook material available on the web, and the slides of the previous editions of the course by Prof. Luigia Carlucci Aiello

Summary

Russell & Norvig Chapter 3, Sec. 5–6

- Best-first search
- A*
- Heuristics
- IDA*
- SMA*

Best-first search

Idea: use an *evaluation function* for each node

– estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

"best-first" search
A* search

best? "Best-first" vs greedy

Romania with step costs in km

Straight–line distance	
o Bucharest	
Arad	366
Bucharest	0
Craiova	160
Oobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
asi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Fimisoara	329
J rziceni	80
Vaslui	199
Zerind	374

Greedy "Best-first" search

Evaluation function h(n) (heuristic)

= estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n) = {\rm straight}$ -line distance from n to Bucharest

"Best-first" search expands the node that *appears* to be closest to goal

A remark about heuristics: Usually a good h greatly improves the search (by expanding less nodes), but knowing ideal h amounts to knowing the solution ...

Greedy search example

Properties of "best-first" search

Complete No-can get stuck in loops, e.g.,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

 ${f Time}\ O(b^m)$, but a good heuristic can give dramatic improvement

Space $O(b^m)$ —keeps all nodes in memory

Optimal No

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

f(n) =estimated total cost of path through n to goal

A* search uses an *admissible* heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Key property: A* search is optimal

\mathbf{A}^* search example

\mathbf{A}^* search example

A^* search example

A^* search example

A^* search example

A* search example

Optimality of A* (standard proof)

Let G_2 be some suboptimal goal in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G.

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

Consistent Heuristics

For some admissible heuristics, f can decrease in a path. This is a problem when the search space is a graph.

A heuristics is consistent if

$$h(n) \le c(n, a, n') + h(n')$$

This guarantees that f is not decreasing (monotonic)

$$f(n') = g(n') + h(n') = g(n) + c(n, a, n') + h(n') \ge g(n) + h(n)$$

Pathmax

Usually, admissible heuristics are consistent.

In alternative, pathmax can be build for a heuristics: Instead of f(n') = g(n') + h(n'), take

$$f(n') = max(g(n') + h(n'), f(n))$$

Using pathmax, f is always non decreasing

Optimality of A* (more useful)

Lemma: A^* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. uniform search) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Properties of A*

Complete Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time Exponential in [relative error in $h \times length$ of soln.]

Space Keeps all nodes in memory

Optimal Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Admissible heuristics

E.g., for the 8-puzzle:

$$h_1(n) = \text{number of misplaced tiles}$$

$$h_2(n) = \text{total Manhattan distance}$$
 (i.e., no. of squares from desired location of each tile)

$$h_1(S) = 7$$

 $h_2(S) = 4+0+3+3+1+0+2+1 = 14$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes $A^*(h_1)=539$ nodes $A^*(h_2)=113$ nodes $d=24$ IDS $\approx 54,000,000,000$ nodes $A^*(h_1)=39,135$ nodes $A^*(h_2)=1,641$ nodes

The nodes expanded by A^* with a dominant h is always less.

Effective branching factor

N= total number of nodes expanded by A* d= the depth of the solution b^* is the branching factor of a uniform tree of depth d with N+1 nodes.

$$N + 1 = 1 + b^* + (b^*)^2 + \dots + (b^*)^d.$$

Example: if A* finds a solution at depth 5 with 52 nodes, then the effective branching factor is 1,92.

Effective branching factor: 8-puzzle

$$d=14 \; {
m IDS}=2,83 \; {
m ebf}$$
 ${
m A}^*(h_1)=1,44 \; {
m ebf}$ ${
m A}^*(h_2)=1,23 \; {
m ebf}$ $d=24 \; {
m IDS}={
m too \; many \; nodes}$ ${
m A}^*(h_1)=1,48 \; {
m ebf}$ ${
m A}^*(h_2)=1,26 \; {
m ebf}$

Relaxed problems

Admissible heuristics can be derived from the *exact* solution cost of a *relaxed* version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to *any adjacent* square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Combination of heuristics

What if we have several heuristics not dominating each other? let $h_1 \dots h_m$ a collection of such heuristics, define

$$h(n) = max(h_1(n), \dots, h_m(n)).$$

h is admissible and dominates $h_1 \dots h_m$

Looking for heuristics

- Learning by looking at the "meta-level computation tree.
- Finding relaxed problems (via a formal problem specification)
- Pattern DataBases (use solutions to subproblems)
- Learning the heuristics by successfully solving several instances of the problem

Limitations of: A^*

- \diamondsuit the memory to store the fringe may be exponential.
- \diamondsuit this does not come up with good h

Countermeasures:

- Use good, but not admissible heuristics
- Live with sub-optimal solutions
- ♦ space problem remains (as in breadth first).

Limiting the memory requirement: IDA^*

- \diamondsuit Iterative Deepening search where f(g+h) is fixed
- $\Diamond IDA^*$ is complete and optimal as A^* using linear memory
- \diamondsuit the next limit can be chosen by increasing f of a fixed amount or looking at the values of the successors

Weakness: same sources of inefficiencies as uniform-cost search

Recursive Best First Search: RBFS

- \diamondsuit Stores the f of the unexpanded nodes and goes deep till f of the current node becomes worse of one of the previous alternatives
- \diamondsuit Backs up recording the best f of the nodes discarded by backtracking
- \diamondsuit more efficient than IDA^* but sometimes it wastes time in re-generating discarded nodes.
- \diamondsuit space complexity is linear O(bd)

SMA*

The problem with IDA* and RBFS is that they use $too\ little$ memory.

- ullet in IDA* at each iteration only the current cost limit for f is kept,
- in RBFS the cost of the nodes in the depth first search are recorded

SMA* (Simplified Memory-Bounded A*) can use all the available memory for the search.

Idea: better remember a node that re-generate it when needed

Basic intuition of SMA*

Like A* till there is memory available.

When a new node must be generated the node with the highest f is discarded (forgotten node), while keeping its cost f in the parent node.

A discarded node will be re-generated only when $all\ other\ paths$ are worse than the forgotten node.

Properties of SMA*

- It uses all the available memory.
- It avoids to repeat states until the available memory is exhausted.
- It is complete if the available memory allows the *shallowest* solution path to be recorded.
- It is optimal if the available memory allows the *shallowest* optimal solution path to be recorded. Otherwise it returns the best solution attainable with the available memory.
- The search is optimally efficient, when the available memory can store the whole search

Usage of SMA*

SMA* is typically the best heuristic search method

In difficult problems, SMA* **flounders** when it keeps re-generating states that have already been discarded.

Memory limitations lead to unacceptable computing time (as for **trashing** as in pagination).

Summary

- ♦ Heuristics make the difference
- ♦ Finding good heuristics is key to success, but ideal heuristics means no search!
- ♦ A* is optimal but uses too much memory
- ♦ SMA* Best HS (compromise between memory and time)