Why Teleports Solve the Problem?

$$r^{(t+1)} = Mr^{(t)}$$

Markov chains

- Set of states X
- Transition matrix P where $P_{ij} = P(X_t = i \mid X_{t-1} = j)$
- π specifying the stationary probability of being at each state $x \in X$
- Goal is to find π such that $\pi = P \pi$

Why is This Analogy Useful?

- Theory of Markov chains
- Fact: For any start vector, the power method applied to a Markov transition matrix P will converge to a unique positive stationary vector as long as P is stochastic, irreducible and aperiodic.

Make M Stochastic

- Stochastic: Every column sums to 1
- Solution: Add green links

$$A = M + a^{T} \left(\frac{1}{n}e\right)$$

- a_i =1 if node *i* has out deg 0, =0 else
- **e** vector of all 1s 全都是1

	y	a	m
y	1/2	1/2	1/3
a	1/2	0	1/3
m	0	1/2	1/3

$$r_y = r_y/2 + r_a/2 + r_m/3$$
 $r_a = r_y/2 + r_m/3$
 $r_m = r_a/2 + r_m/3$

Make M Aperiodic

- A chain is periodic if there exists k > 1 such that the interval between two visits to some state s is always a multiple of k
- Solution: Add green links

Make M Irreducible

 From any state, there is a non-zero probability of going from any one state to any another

不会stuck在某一个点

Solution: Add green links

Solution: Random Jumps

- Google's solution that does it all:
 - Makes M stochastic, aperiodic, irreducible
- At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

The above formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* (bad!) or explicitly follow random teleport links with probability 1.0 from dead-ends.

d_i ... out-degree

of node i

The Google Matrix

PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

The Google Matrix A:

$$A = \beta M + (1 - \beta) \frac{1}{n} \boldsymbol{e} \cdot \boldsymbol{e}^T$$
 e vector of all 1s

A is stochastic, aperiodic and irreducible, so

$$r^{(t+1)} = A \cdot r^{(t)}$$

- What is β ?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps and jump)

Random Teleports ($\beta = 0.8$)

