Contents

1	Equation of continuity	1
2	Navier-Stokes one-dimensional	1
3	Mathematical meanings of X and p	1
	3.1 Relaxation process meaning	1
	3.2 Consider the time independent homogeneous condition	2
	3.3 X and acceleration; considerations of instant velocity	2
1	Equation of continuity	
	$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial r} = 0$	(1)

2 Navier-Stokes one-dimensional

Cited [?] abud [?]

$$\rho \left[\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} \right] = \frac{\partial \left(\mu \frac{\partial v}{x} \right)}{\partial x} - \frac{\partial p}{\partial x} + X$$
 (2)

 $\begin{cases} \rho: \text{Car density} \\ p: \text{Local car pressure} v: \text{Car instant velocity} \\ \mu: \text{Viscosity} \\ X: \text{Sum of all inner particle interaction forces} \end{cases} \tag{3}$

3 Mathematical meanings of X and p

3.1 Relaxation process meaning

- If the perception is that current velocity v is too slow compared to what can be safely achieved, then X is positive.
 - If the perception is that current velocity v is too fast and dangerous compared to the traffic condition, then X is negative.
- Oscillatory behavior can appear.

3.2 Consider the time independent homogeneous condition

$$\begin{cases} \langle \frac{\partial v}{\partial x} \rangle = 0 & \text{(Time independent)} \\ \langle \frac{\partial \left(\mu \frac{\partial v}{\partial x}\right)}{\partial x} \rangle = 0 & \text{(Time independent and Homogeneous)} \end{cases} \\ \vdots \langle \frac{\partial \left(\mu \frac{\partial v}{\partial x}\right)}{\partial x} \rangle &= \langle \frac{\partial \mu}{\partial x} \left(\frac{\partial v}{\partial x}\right) \rangle + \langle \mu \left(\frac{\partial^2 v}{\partial^2 x}\right) \rangle \\ & \left((\langle \frac{\partial \mu}{\partial x} \rangle = 0 \quad \text{Homogeneous}) \wedge (\langle \frac{\partial^2 v}{\partial^2 x} \rangle = 0 \quad \text{Time independent and Homogeneous)} \right) \\ &= 0 \\ & \langle \frac{\partial v}{\partial x} \rangle = 0 \quad \text{(Time independent)} \end{cases}$$

3.3 X and acceleration; considerations of instant velocity

According to 5 and X definition, under 4, we will have:

$$(\rho \left[\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} \right] = \frac{\partial \left(\mu \frac{\partial v}{\partial x} \right)}{\partial x} - \frac{\partial p}{\partial x} + X) \wedge (X = \rho \cdot \frac{(V(\rho) - v)}{\tau})$$

$$\implies \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{V(\rho) - v}{\tau}$$
(5)