CH21-HW05-FALL2010 11/8/12 8:48 PM

WebAssign CH21-HW05-FALL2010 (Homework)

Current Score: 19 / 19

Due: Friday, November 9 2012 11:59 PM EST

Yinglai Wang PHYS 272-FALL 2012, Fall 2012 Instructor: Virendra Saxena

MI3 21.5.X.076 1. 1/1 points | Previous Answers

A neutral copper bar oriented horizontally moves upward through a region where there is a magnetic field out of the page. Which diagram correctly shows the distribution of charge on the bar?

- Read the eBook
- Section 21.5

CH21-HW05-FALL2010 11/8/12 8:48 PM

2. 10/10 points | Previous Answers

MI3 21.9.X.091

A neutral metal rod of length 0.25 m slides horizontally at a constant speed of 7 m/s on frictionless insulating rails through a region of uniform magnetic field of magnitude 0.5 tesla, directed out of the page as shown in the diagram. Before answering the following questions, draw a diagram showing the polarization of the rod, and the direction of the Coulomb electric field inside the rod.

Which of the following statements is true?

The	top	of	the	moving	rod	is	positive
1110	COP	01	CITC	1110 11119	. ou		Positive

- The top of the moving rod is negative.
- The right side of the moving rod is positive.
- The right side of the moving rod is negative.
- The moving rod is not polarized.

4

After the initial transient, what is the magnitude of the net force on a mobile electron inside the rod?

 $|\vec{F}_{net}| = 0$ \checkmark N

What is the magnitude of the electric force on a mobile electron inside the rod?

$$|\vec{F}_{el}| = 5.6e-19$$
 • N

What is the magnitude of the magnetic force on a mobile electron inside the rod?

$$|\vec{F}_{\text{mag}}| = 5.6e-19$$
 \checkmark N

What is the magnitude of the potential difference across the rod?

 $|\Delta V| = 0.875$ volts

In what direction must you exert a force to keep the rod moving at constant speed?

- To the right
- To the left
- No force is needed

Section 21.9

CH21-HW05-FALL2010 11/8/12 8:48 PM

3. 2/2 points | Previous Answers

(a) In which direction will conventional current flow through the resistor in the figure?

(b) What will be the direction of the magnetic force on the moving bar?

4. 6/6 points | <u>Previous Answers</u> MI3 21.5.P.082

Pull a rectangular loop through a magnetic field

In the figure a rectangular loop of wire L = 14 cm long by h = 7 cm high, with a resistance of R = 0.6 ohms, moves with constant speed v = 4 m/s as shown. The moving loop is partially inside a rectangular region where there is a uniform magnetic field (gray area) and partially in a region where the magnetic field is negligibly small.

In the gray region, the magnetic field points into the page, and its magnitude is B = 1.5 tesla.

(a) Which of the following diagrams correctly shows the charge distribution on the moving loop?

CH21-HW05-FALL2010 11/8/12 8:48 PM

(b) What is the direction of the conventional current?

(c) What is the conventional current in the loop?

(d) Which of the following are true? Check all that apply.

- $\hfill \square$ The magnetic force on the loop is in the same direction as the velocity of the loop.
- ☐ The magnetic force only stretches the loop; the net magnetic force on the loop is zero.
- $\ensuremath{ \ensuremath{ arproject} }$ Because a current flows in the loop, there is a magnetic force on the loop.

 \checkmark

(e) What is the magnitude of the magnetic force on the loop?

- Read the eBook
- <u>Section 21.5</u>