Distributed RL

Joash Lee
Pan Liangming
Vicky Feliren

Lesson Objectives

- 1. Why parallelise?
- Understand how the computation of standard RL algorithms can be distributed to decrease wall-clock training time.
- 3. How these distributed RL algorithms can be modularised.
- How modularised distributed RL algorithms can be implemented on real systems - case study: RLlib
- 5. Examples on using RLlib

Common Computational Patterns for RL

How can we better utilize our computational resources to accelerate RL progress?

AlphaZero

Lesson Objectives

- 1. Why parallelise?
- 2. Understand how the computation of standard RL algorithms can be distributed to decrease wall-clock training time.
- 3. How these distributed RL algorithms can be modularised.
- How modularised distributed RL algorithms can be implemented on real systems - case study: RLlib
- 5. Examples on using RLlib

History of large scale distributed RL

History of large scale distributed RL

2013/2015: DQN

1. $(s_i, a_i, s'_i, r_i) = \text{env.step}(a_i)$ Store (s_i, a_i, s'_i, r_i) in **B**

2. Sample batch (s_j, a_j, s'_j, r_j) from \boldsymbol{B} Update Q network

3. Update target network parameters: $\phi' \leftarrow \phi$

History of large scale distributed RL

2015: General Reinforcement Learning Architecture (GORILA)

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A., . . . Petersen, S. (2015). Massively parallel methods for deep reinforcement learning. *arXiv preprint arXiv:1507.04296*.

2015: General Reinforcement Learning Architecture (GORILA)

Standard DQN

- 1. $(s_i, a_i, s'_i, r_i) = \text{env.step}(a_i)$ Store (s_i, a_i, s'_i, r_i) in **B**
- 2. Sample batch (s_j, a_j, s'_j, r_j) from \boldsymbol{B} Update Q network

Distributed DQN

- **Actor** 1. $(s_i, a_i, s'_i, r_i) = \text{env.step}(a_i)$ Store (s_i, a_i, s'_i, r_i) in **B**
- **Learner** 2. Sample batch (s_i, a_i, s'_i, r_i) from **B** Update θ with θ^+ from parameter server Calculate gradients w.r.t. θ Send gradients to parameter server
- 3. Update target network parameters: $\phi' \leftarrow \phi$ **Parameter** 3. Update Q network
 - Server
 - **Learner** 4. Update target network parameters $\theta^$ with θ^+ from the parameter server every N steps

GORILA Performance

History of large scale distributed RL

Prioritised Experience Replay

Standard DQN

- (s_i , a_i , s'_i , r_i) = env.step(a_i) Store (s_i , a_i , s'_i , r_i) in **B**
- 2. Sample K transitions (s_j, a_j, s'_j, r_j) uniformly from \boldsymbol{B} Update Q network
- 3. Update target network parameters: $\phi' \leftarrow \phi$

Prioritised Experience Replay

- \$\ \((s_t, a_t, s_t', r_t) = \text{env.step}(a_t) \\
 \text{Store}(s_t, a_t, s_t', r_t) \text{ in } \mathbb{B} \text{ with max priority } p_t = \max_{i < t} p_i \)
- 2. Sample transition $j \sim P(j) = p_j^{\alpha} / \sum_i p_i^{\alpha}$ from \boldsymbol{B} Compute TD error δ_j Update transition probability $p_j \leftarrow |\delta_j|$
- 3. Update Q network
- 4. Update target network parameters: $\phi' \leftarrow \phi$

Distributed Prioritized Experience Replay (Ape-X)

Prioritised Experience Replay

- 3. Update *Q* network
- 4. Update target network parameters: $\phi' \leftarrow \phi$

Ape-X

Actors

- $(s_i, a_i, s_i', r_i) = \text{env.step}(a_i)$
- Compute TD error δ_j Update transition probability $p_i \leftarrow |\delta_i|$
- Store (s_i, a_i, s_i', r_i) in **B**

Learners

- Update θ with θ + from parameter server
- Sample transition (s_j, a_j, s'_i, r_j) from **B**
- Calculate gradients w.r.t. heta
- Update parameters θ of Q-network
- Compute TD error δ_j Update transition probability $p_j \leftarrow \left| \delta_j \right|$
- Update target network parameters θ^- with θ^+ from the parameter server every N steps

Distributed Prioritized Experience Replay (Ape-X)

Gorila

Actors

• $(s_i, a_i, s'_i, r_i) = \text{env.step}(a_i)$ Store (s_i, a_i, s'_i, r_i) in \boldsymbol{B}

Learners

- Update θ with θ + from parameter server
- Sample batch (s_i, a_i, s'_i, r_i) from **B**
- Calculate gradients w.r.t. θ
- Send gradients to parameter server
- Update target network parameters θ^- with θ^+ from the parameter server every N steps

Parameter Server

• Update parameters θ of Q network

Ape-X

Actors

- $(s_i, a_i, s'_i, r_i) = \text{env.step}(a_i)$
- Compute TD error δ_j Update transition probability $p_i \leftarrow |\delta_i|$
- Store (s_i, a_i, s'_i, r_i) in **B**

Learners

- Update θ with θ + from parameter server
- Sample transition (s_i, a_i, s'_i, r_i) from **B**
- Calculate gradients w.r.t. $\hat{\theta}$
- Update parameters θ of Q-network
- Compute TD error δ_j Update transition probability $p_j \leftarrow \left| \delta_j \right|$
- Update target network parameters θ^- with θ^+ from the parameter server every N steps

Ape-X Performance

Figure 2: Left: Atari results aggregated across 57 games, evaluated from random no-op starts. Right: Atari training curves for selected games, against baselines. Blue: Ape-X DQN with 360 actors; Orange: A3C; Purple: Rainbow; Green: DQN. See appendix for longer runs over all games.

History of large scale distributed RL

Recap: Online actor-critic

•

- 1. Take action $a \sim \pi_{\theta}(a|s)$, get (s, a, s', r)
- 2. Update \hat{V}_{ϕ}^{π} using target $r + \hat{V}_{\phi}^{\pi}(s')$
- 3. Evaluate $\hat{A}^{\pi}(s,a) = r(s,a) + \gamma \hat{V}_{\phi}^{\pi}(s') \hat{V}_{\phi}^{\pi}(s)$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(a|s) \hat{A}^{\pi}(s,a)$
- 5. Update policy $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Asynchronous advantage actor-critic (A3C)

- **1.** Sync weights θ and ϕ from master
- 2. Take action $a \sim \pi_{\theta}(a|s)$, get (s, a, s', r)
- 3. Compute gradient of \hat{V}_{ϕ}^{π} using target $r + \hat{V}_{\phi}^{\pi}(s')$
- 4. Evaluate $\hat{A}^{\pi}(s,a) = r(s,a) + \gamma \hat{V}_{\phi}^{\pi}(s') \hat{V}_{\phi}^{\pi}(s)$
- 5. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(a|s) \hat{A}^{\pi}(s,a)$
- 1. Update policy: $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$
- 2. Update \hat{V}_{ϕ}^{π}

Each has different exploration -> more diverse samples!

Asynchronous advantage actor-critic (A3C)

A₂C

 can lead to low GPU utilisation due to rendering time variance within a batch

get
$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$$

update $\theta \leftarrow$

get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$

update $\theta \leftarrow$

A3C

decouples acting from learning

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., . . . Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning. Paper presented at the Proceedings of The 33rd International Conference on Machine Learning

Asynchronous advantage actor-critic (A3C)

Some extra features:

- n-step estimation: $\hat{A}^{\pi}(s, a) = \sum_{i=0}^{k-1} \gamma^{i} r(s_{t}, a_{t}) + \gamma^{k} \hat{V}_{\phi}^{\pi}(s_{t+k}) \hat{V}_{\phi}^{\pi}(s_{t})$
- Entropy of the policy π_{θ} was added to the objective function to improve exploration:

$$\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(a|s) \hat{A}^{\pi}(s,a) + \beta \nabla_{\theta} H(\pi_{\theta}(s))$$

A3C Performance

Changes to GORILA:

- 1. Faster updates
- 2. No replay buffer
- 3. Actor-critic

Method	Training Time	Mean	Median	
DQN	8 days on GPU	121.9%	47.5%	
Gorila	4 days, 100 machines	215.2%	71.3%	
D-DQN	8 days on GPU	332.9%	110.9%	
Dueling D-DQN	8 days on GPU	343.8%	117.1%	
Prioritized DQN	8 days on GPU	463.6%	127.6%	
A3C, FF	1 day on CPU	344.1%	68.2%	
A3C, FF	4 days on CPU	496.8%	116.6%	
A3C, LSTM	4 days on CPU	623.0%	112.6%	

Table 1. Mean and median human-normalized scores on 57 Atari games using the human starts evaluation metric. Supplementary

History of large scale distributed RL

Importance Weighted Actor-Learner Architectures (IMPALA)

Figure 1. Left: Single Learner. Each actor generates trajectories and sends them via a queue to the *learner*. Before starting the next trajectory, actor retrieves the latest policy parameters from *learner*. Right: Multiple Synchronous Learners. Policy parameters are distributed across multiple *learners* that work synchronously.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., . . . Kavukcuoglu, K. (2018). *IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures*. Paper presented at the Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research. http://proceedings.mlr.press

How to correct for Policy Lag? Importance Sampling!

Shortcoming of A3C:

Policy-lag

Apply importance sampling:

1. to policy gradient

$$\mathbb{E}_{a_s \sim \mu(\cdot|x_s)} \left[\frac{\pi_{\bar{\rho}}(a_s|x_s)}{\mu(a_s|x_s)} \nabla \log \pi_{\bar{\rho}}(a_s|x_s) q_s |x_s \right]$$

2. to critic update 4.1. V-trace target

Consider a trajectory $(x_t, a_t, r_t)_{t=s}^{t=s+n}$ generated by the actor following some policy μ . We define the n-steps V-trace target for $V(x_s)$, our value approximation at state x_s , as:

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i \right) \delta_t V, \quad (1)$$

IMPALA - Performance

A comparison between IMPALA, A3C and batched A2C

IMPALA - Performance

IMPALA Performance

Evolution Strategies

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAI

```
Algorithm 2 Parallelized Evolution Strategies
 1: Input: Learning rate \alpha, noise standard deviation \sigma, initial policy parameters \theta_0
 2: Initialize: n workers with known random seeds, and initial parameters \theta_0
 3: for t = 0, 1, 2, \dots do
       for each worker i = 1, \ldots, n do
 5:
          Sample \epsilon_i \sim \mathcal{N}(0, I)
          Compute returns F_i = F(\theta_t + \sigma \epsilon_i)
6:
       end for
       Send all scalar returns F_i from each worker to every other worker
       for each worker i = 1, \ldots, n do
          Reconstruct all perturbations \epsilon_j for j=1,\ldots,n using known random seeds
10:
          Set \theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{j=1}^n F_j \epsilon_j
11:
       end for
12:
13: end for
```


Summary

Algorithm	Policy Evaluation	Gradient- based optimizer	CPU	GPU	Replay Buffer	Prioritised Replay	Parameter Server	Importance Sampling
DQN	X	Х	1	1	Х			
Gorila	X	X			X		X	
Ape-X	X	X			X	X		
A3C	X	X	many	0				
Impala	X	X	many					Х

Lesson Objectives

- 1. Why parallelise?
- Understand how the computation of standard RL algorithms can be distributed to decrease wall-clock training time.
- 3. How these distributed RL algorithms can be modularised.
- 4. How modularised distributed RL algorithms can be implemented on real systems case study: RLlib
- 5. Examples on using RLlib

RLlib: Abstractions for Distributed Reinforcement Learning

(ICML'18)
Eric Liang*, Richard Liaw*, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, Ion Stoica

RL research scales with compute

Fig. courtesy NVidia Inc.

Fig. courtesy OpenAl

How do we leverage this hardware?

Systems for RL today

- Many implementations (7000+ repos on GitHub!)
 - how general are they (and do they scale)?

PPO: multiprocessing, MPI AlphaZero: custom systems

Evolution Strategies: Redis IMPALA: Distributed TensorFlow

A3C: shared memory, multiprocessing, TF

 Huge variety of algorithms and distributed systems used to implement, but little reuse of components

Challenges to

reuse1. Wide range of physical execution strategies for one "algorithm"

Challenges to

reuse 2. Tight coupling with deep learning frameworks

Different parallelism paradigms:

– Distributed TensorFlow vs TensorFlow + MPI?

Challenges to

reuse 3. Large variety of algorithms with different structures

Algorithm Family	Policy Evaluation	Replay Buffer	Gradient-Based Optimizer	Other Distributed Components
DQNs	X	X	X	
Policy Gradient	X		X	
Off-policy PG	X	X	X	
Model-Based/Hybrid	X		X	Model-Based Planning
Multi-Agent	X	X	X	
Evolutionary Methods	X			Derivative-Free Optimization
AlphaGo	X	X	X	MCTS, Derivative-Free Optimizatio

We need abstractions for RL

Good abstractions decompose RL algorithms into reusable components.

Goals:

- Code reuse across deep learning frameworks
- Scalable execution of algorithms
- Easily compare and reproduce algorithms

Structure of RL computations

Structure of RL computations

Many RL loop decompositions

Async DQN (Mnih et al; 2016) Ape-X DQN (Horgan et al; 2018)

Common components

Async DQN (Mnih et al; 2016) Ape-X DQN (Horgan et al; 2018)

Policy $\pi_{\theta}(o_t)$ Trajectory postprocessor ρ_{θ} (X)

Loce I (A V)

44

Common components

Async DQN (Mnih et al; 2016) Ape-X DQN (Horgan et al; 2018)

Structural differences

Async DQN (Mnih et al; 2016)

- Asynchronous optimization
- Replicated workers
- Single machine

...and this is just one family!

→ No existing system can effectively meet all the varied demands of RL workloads. Ape-X DQN (Horgan et al; 2018)

- Central learner
- Data queues between components
- Large replay buffers
- Scales to clusters

- + Population-Based Training (Jaderberg et al; 2017)
- Nested parallel computations
- Control decisions based on intermediate results

Requirements for a new system

Goal: Capture a broad range of RL workloads with <u>high</u> <u>performance</u> and <u>substantial code reuse</u>

- 1. Support stateful computations
 - e.g., simulators, neural nets, replay buffers
 - big data frameworks, e.g., Spark, are typically stateless
- 2. Support asynchrony
 - difficult to express in MPI, esp. nested parallelism
- 3. Allow easy composition of (distributed) components

Ray System Substrate

- RLlib builds on Ray to provide higher-level RL abstractions
- Hierarchical parallel task model with stateful workers
 - flexible enough to capture a broad range of RL workloads (vs specialized sys.)

Hierarchical Task Model

Hierarchical Parallel Task

- 1. Viewython class instances in the cluster (stateful workers)
- 2. Schedule short-running tasks onto workers
 - Challenge: High performance: 1e6+ tasks/s, ~200us task

Unifying system enables RL Abstractions

Policy Optimizer Abstraction

RLlib Abstractions in Action

RLlib Reference Algorithms

High-throughput architectures

- Distributed Prioritized Experience Replay (Ape-X)
- Importance Weighted Actor-Learner Architecture (IMPALA)

Gradient-based

- Advantage Actor-Critic (A2C, A3C)
- Deep Deterministic Policy Gradients (DDPG)
- Deep Q Networks (DQN, Rainbow)
- Policy Gradients
- Proximal Policy Optimization (PPO)

Derivative-free

- Augmented Random Search (ARS)
- Evolution Strategies

RLlib Reference Algorithms

Atari env	RLlib IMPALA 32-workers @1 hour	Mnih et al A3C 16-workers @1 hour	
BeamRider	3181	~1000	
Breakout	538	~10	
Qbert	10850	~500	
SpaceInvaders 843		~300	

1 GPU + 64 vCPUs (large single machine)

Scale your algorithms with RLlib

- Beyond a "collection of algorithms",
- RLlib's abstractions let you easily implement and scale new algorithms (multi-agent, novel losses, architectures, etc)

Code example: training PPO

Tutorial on google Colab:

```
https://drive.google.com/open?id=1pvE7KvnhY
import ray
import ray.rllib.agents.ppo as ppo
                                                          R0Yngt0J0fzYSmkjlLg64Qg
from ray.tune.logger import pretty_print
ray.init()
config = ppo.DEFAULT_CONFIG.copy()
config["num_qpus"] = 0
config["num workers"] = 1
agent = ppo.PPOAgent(config=config, env="CartPole-v0")
# Can optionally call agent.restore(path) to load a checkpoint.
for i in range(1000):
  # Perform one iteration of training the policy with PPO
  result = agent.train()
  print(pretty_print(result))
  if i % 100 == 0:
      checkpoint = agent.save()
      print("checkpoint saved at", checkpoint)
```

Code example: multi-agent RL

```
trainer = pg.PGAgent(env="my_multiagent_env", config={
    "multiagent": {
        "policy_graphs": {
            "car1": (PGPolicyGraph, car_obs_space, car_act_space, {"gamma": 0.85}),
            "car2": (PGPolicyGraph, car_obs_space, car_act_space, {"gamma": 0.99}),
            "traffic_light": (PGPolicyGraph, tl_obs_space, tl_act_space, {}),
        },
        "policy mapping fn":
            lambda agent_id:
                "traffic_light" # Traffic lights are always controlled by this policy
                if agent_id.startswith("traffic_light_")
                else random.choice(["car1", "car2"]) # Randomly choose from car policies
        },
   },
while True:
    print(trainer.train())
```

Code example: hyperparam tuning

```
import ray
import ray.tune as tune
ray.init()
tune.run_experiments({
    "my_experiment": {
        "run": "PPO",
        "env": "CartPole-v0",
        "stop": {"episode_reward_mean": 200},
        "config": {
            "num_qpus": 0,
            "num workers": 1,
            "sgd_stepsize": tune.grid_search([0.01, 0.001, 0.0001]),
       },
```

Code example: hyperparam tuning

```
== Status ==
Using FIFO scheduling algorithm.
Resources requested: 4/4 CPUs, 0/0 GPUs
Result logdir: ~/ray_results/my_experiment
PENDING trials:
- PPO_CartPole-v0_2_sgd_stepsize=0.0001: PENDING
RUNNING trials:
- PPO_CartPole-v0_0_sgd_stepsize=0.01: RUNNING [pid=21940], 16 s, 4013 ts, 22 rew
- PPO_CartPole-v0_1_sgd_stepsize=0.001: RUNNING [pid=21942], 27 s, 8111 ts, 54.7 rew
```


Summary: Ray and RLlib addresses challenges in providing scalable abstractions for reinforcement learning.

RLlib is open source and available at http://rllib.io Thanks!