C12 - B - Continuité

I. Définitions

Propriété

Pour tout $\eta>0$, f est continue en a ssi $f|_{[a-\eta,a+\eta]}$

Exemple 18

Montrer que

$$orall x \in \mathbb{R}, \left(1+rac{x}{n}
ight)^n o e^x$$

III. Opération sur les fonctions continues

Théorème 20:

Démonstration:

On peut redémontrer dans le cadre de la continuité que si $g(a) \neq 0$ la fonction g est non nulle en tout point d'un voisinage de a (Intersecté avec I)

Exalibur 2

Supposons que $g(a) \neq 0$

Alors $\frac{|g(a)|}{2} > 0$

Par définition de la continuité en a, il existe $\alpha>0$ tel que

$$orall x \in I \cap [a-lpha,a+lpha], g(x) \in \left[g(a)-rac{|g(a)|}{2},g(a)+rac{|g(a)|}{2}
ight] \subset \mathbb{R}^*$$

En effet

$$|0-g(a)| = |g(a)| > rac{|g(a)|}{2}$$

Donc

$$0\in\left[g(a)-rac{|g(a)|}{2},g(a)+rac{|g(a)|}{2}
ight]$$

C'est la boule de centre g(a) et de rayon $\frac{|g(a)|}{2}$

Le reste est conséquence immédiate des opérations sur les limites.

IV. Continuité sur intervalle

Proposition 28 : \sin et \cos sont continues sur $\mathbb R$

Démonstration

Soit $a \in \mathbb{R}$,

Pour $h \in \mathbb{R}$,

$$\sin(a+h) = \sin(a)\cos(h) + \sin(h)\cos(a)$$

Comme \sin et \cos sont continues en 0 $h\mapsto \sin(a+h)$ est continue en 0 par combinaison linéaire

Donc:

$$\sin(a+h) \mathop{\longrightarrow}\limits_{h o 0} \sin(a+0) = \sin(a) \ \sin(x) \mathop{\longrightarrow}\limits_{x o a} \sin(a)$$

Donc \sin est continue en a

De même \cos est continue en a(en utilisant $\cos(a+h)=\cos(a)\cos(h)-\sin(a)\sin(h)$)

Définition 29

Interprétation géométrique

Pour $x \neq y$,

$$\left| rac{f(x) - f(y)}{x - y}
ight| \leq k$$

Excalibur 3

i.e.

les pentes des sécantes sont comprises entre -k et k

Proposition 34

Démonstration

Soit f k-lip. sur I (pour un $k \in \mathbb{R}_+$)

Soit $a \in I$:

Pour tout $x \in I$,

$$0 \le |f(x) - f(a)| \le k|x - a|$$

lorsque x o a,

$$|x-a| o 0$$

Donc

$$k|x-a| o 0$$

Par le théorème des gendarmes

$$|f(x)-f(a)| o 0$$

i.e.

Ainsi f est continue en a

V. TVI

Théorème 36

Excalibur 4

VI. Fonctions réciproques VII. Stricte monotonie et injectivité

Théorème 50

Démonstration (avec le lemme) :

Soit *I* un intervalle,

Soit $f \in \mathbb{R}^I$ continue

Sens direct:

Montrons que SP est constante sur I

Pour $x, y \in I$ tel que $x \neq y$

On a:

$$(Txf)(y) = (Tyf)(x)$$
 donc $SP(x) = SP(y)$

Lemme 51

Excalidraw 5

Idée de la preuve : Excalidraw 6

Soit $x \in \mathbb{R}$,

Si $J = I \cap]x, +\infty[$ est non vide

On applique le TVI à $(Txf)|_J$

Qui ne s'annule pas par injectivité de f, et est de signe constant Ainsi Txf est de signe constant à droite de x.

De même Txf est de signe constant à gauche de x (Si la gauche existe)

S'il y a a la fois une droite et une gauche (x n'est pas une borne) Mq le signe de Txf à gauche est celui de Txf à droite, par l'absurde.

Si ce n'était pas le cas, on aurait une situation, quitte a changer f en -f, du type :

Excalibur 7.

VII. Segments

Théorème 53

Démonstration:

On note [a,b] (a < b) un segment et f une fonction continue sur [a,b]

On pose $eta = sup(f([a,b])) \in \overline{\mathbb{R}}$

qui est $+\infty$ si f n'est pas majorée

qui appartient à \mathbb{R} sinon (car f([a,b]) est alors une partie non vide et majorée de \mathbb{R} (en utilisant la propriété de la borne supérieure))

Par la caractérisation séquentielle de la borne supérieure, il existe

$$(y_n)\in (f([a,b])^{\mathbb{N}},\,y_n \mathop{\longrightarrow}\limits_{n o +\infty}eta$$

Pour chaque $n \in \mathbb{N}$,

 y_n admet au moins un antécédent $x_n \in [a,b]$ par f. La suite (x_n) donc par la théorème de Bolzano-Weierstrass, il existe une suite bornée extraite $(x_{\phi(n)})$ convergente vers $l \in \mathbb{R}$

Comme $\forall n \in \mathbb{N}, a \leq x_{\phi(n)} \leq b$

Par stabilité des inégalités larges par passage à la limite $l \in [a,b]$

Comme $x_{\phi(n)} \overset{\longrightarrow}{\underset{n o +\infty}{\longrightarrow}} l$

et f est continue en l (car $l \in [a,b]$)

Alors
$$y_{\phi(n)} = f(x_{\phi(n)}) \underset{n \to +\infty}{\longrightarrow} f(l)$$

Or une suite extraite d'une suite qui admet une limite admet une même limite

et
$$y_n \underset{n o +\infty}{\longrightarrow} eta$$

Donc
$$y_{\phi(n)} \overset{\longrightarrow}{\underset{n \to +\infty}{\longrightarrow}} \beta$$

Par unicité de la limite $\beta = f(l)$

Donc d'une part $\beta < +\infty$

Donc f est majoré

D'autre part puisque β majore f([a, b]),

f admet un maximum en l

En appliquant ce résultat à -f, f est minorée et admet un minimum.

IX. Fonctions à valeurs complexes

Soit $f:I\to\mathbb{C}$ (où I est un intervalle non trivial et a une borne de I) Soit $l\in\mathbb{C}$,

Définition

Pour $a \in \mathbb{R}$.

$$\lim_{x o a}f(x)=l\Leftrightarrow orall \epsilon>0, orall lpha>0, orall x\in I, (|x-a|\leq lpha\Rightarrow |f(x)-l|\leq \epsilon)$$

Pour $a = +\infty$,

$$\lim_{x o +\infty} f(x) = l \Leftrightarrow orall \epsilon > 0, \exists A \in \mathbb{R}, orall x \in I, (x \geq A \Rightarrow |f(x) - l| \leq \epsilon)$$

Pour $a=-\infty$,

$$\lim_{x o -\infty} f(x) = l \Leftrightarrow orall \epsilon > 0, \exists B \in \mathbb{R}, orall x \in I, (x \leq B \Rightarrow |f(x) - l| \leq \epsilon)$$

Proposition

$$\lim_a f = l \Leftrightarrow (\lim_a \mathrm{Re}(f) = \mathrm{Re}(l) \text{ et } \lim_a \mathrm{Im}(f) = \mathrm{Im}(l))$$

Définition de la continuité complexe

f est continue en a ssi $\lim_a f$ existe

Propriétés : Opérations sur les limites et fonctions continues

La même que dans ${\mathbb R}$

Propriété composition a la source

On a aussi de même le fait qu'en composant f continue en a à la source par une fonction continue en b

 $h:J o\mathbb{R}$ tel que $h(J)\subset I$ et h(b)=a

On a alors : $f \circ h$ est continue en b

Propriété: Composition au but

Si f est continue en a (resp sur I)

Alors |f| et $\exp \circ f$ le sont aussi

(et aussi Re(f) et Im(f), ce qu'on a vu plus haut)

Démonstration:

$$|f|=\sqrt{(\mathrm{Re}(f))^2+(\mathrm{Im}(f))^2}$$

est la composé de $\sqrt{\cdot}$ avec la somme de 2 produits de fonctions continues en a (resp. sur I) et

$$\exp\circ f = (\exp\circ(\mathrm{Re}(f))) imes(\cos\circ(\mathrm{Im}(f)) + i\sin\circ(\mathrm{Im}(f)))$$

est un produit de composé de \exp avec $\mathrm{Re}(f)$ puis d'une CL de composés de \cos et \sin avec $\mathrm{Im}(f)$ avec Re(f) et Im(f) continue en a

Théorème

L'image d'un segment par une fonction continue à valeurs complexes et une partie bornée de \mathbb{C} .

i.e.:

$$\exists M \in \mathbb{R}_+, orall x \in [a,b], |f(x)| \leq M$$

Excalibur 7.