

이동민

삼성전자 서울대 공동연구소 Jul 17, 2019

Outline

- Environment: Pendulum
- Deep Deterministic Policy Gradient (DDPG)
 - Learning process
 - Hyperparameter
 - Main loop
 - Train model
 - Train & TensorboardX
 - Learning curve & Test

Pendulum

- Env name: Pendulum-v0
- States: Continuous observation spaces

Num	Observation	Min	Max
0	cos(theta)	-1.0	1.0
1	sin(theta)	-1.0	1.0
2	theta dot	-8.0	8.0

Num	Action	Min	Max
0	Joint effort	-2.0	2.0


```
state: [0.88760426 0.46060687 0.60495138] | action: [1.5591747] |
next_state: [0.8587901  0.5123276  1.18428273] | reward: -0.268161
02634748273 | done: False
state: [0.8587901  0.5123276  1.18428273] | action: [1.0582479] |
next_state: [0.81139809  0.58449392  1.72726561] | reward: -0.430701
2460303101 | done: False
state: [0.81139809  0.58449392  1.72726561] | action: [0.7929939] |
next_state: [0.73948894  0.6731687   2.28458514] | reward: -0.688669
3000621688 | done: False
state: [0.73948894  0.6731687  2.28458514] | action: [-0.6580073] |
next_state: [0.64251266  0.76627507  2.69076057] | reward: -1.06772
66789916096 | done: False
state: [0.64251266  0.76627507  2.69076057] | action: [-1.4092577] |
next_state: [0.51847703  0.85509156  3.05407822] | reward: -1.48817
52666467798 | done: False
```


Pendulum

Reward

The precise equation for reward:

```
-(theta^2 + 0.1*theta_dt^2 + 0.001*action^2)
```

Theta is normalized between -pi and pi. Therefore, the lowest cost is $-(pi^2 + 0.1*8^2 + 0.001*2^2) = -16.2736044$, and the highest cost is 0. In essence, the goal is to remain at zero angle (vertical), with the least rotational velocity, and the least effort.

Episode Termination

There is no specified termination. Adding a maximum number of steps might be a good idea.

NOTE: Your environment object could be wrapped by the TimeLimit wrapper, if created using the "gym.make" method. In that case it will terminate after 200 steps.

DDPG Algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

for t = 1. T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for

Actor network

Critic network

Actor network

```
class Actor(nn.Module):
    def __init__(self, state_size, action_size, args):
        super(Actor, self).__init__()
        self.fc1 = nn.Linear(state_size, args.hidden_size)
        self.fc2 = nn.Linear(args.hidden_size, args.hidden_size)
        self.fc3 = nn.Linear(args.hidden_size, action_size)

def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        policy = self.fc3(x)
```


Critic network

```
class Critic(nn.Module):
    def __init__(self, state_size, action_size, args):
        super(Critic, self).__init__()
        self.fc1 = nn.Linear(state_size + action_size, args.hidden_size)
        self.fc2 = nn.Linear(args.hidden_size, args.hidden_size)
        self.fc3 = nn.Linear(args.hidden_size, 1)

    def forward(self, states, actions):
        x = torch.cat([states, actions], dim=1)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        q_value = self.fc3(x)

        return q_value
```


- Learning process
 - 1. 상태에 따른 행동 선택
 - 2. 환경에서 선택한 행동으로 한 time step을 진행한 후, 다음 상태와 보상을 받음
 - 3. Sample (s, a, r, s')을 replay buffer에 저장
 - 4. Replay buffer에서 랜덤으로 sample을 추출
 - 5. 추출한 sample로 Actor & Critic network 업데이트
 - 6. Actor & Critic에 대해 Soft target 업데이트

1. 상태에 따른 행동 선택

```
policy = actor(torch.Tensor(state))
action = get_action(policy, ou_noise)

def get_action(policy, ou_noise):
    action = policy.detach().numpy() + ou_noise.sample()
    return action
```

- Ornstein-Uhlenbeck noise (OU noise) theta: 0.15, mu: 0.0, sigma: 0.2
 - $\circ \quad dx_t = \theta(\mu x_t)dt + \sigma dW_t$

```
class OUNoise:
                                                                    dx [-0.25447483]
                                                                   X [-0.25447483]
    def __init__(self, action_size, theta, mu, sigma):
        self.action size = action size
                                                                    dx [-0.20936269]
        self.theta = theta
                                                                    X [-0.46383752]
        self.mu = mu
                                                                    dx [0.1268112]
        self.sigma = sigma
                                                                    X [-0.33702632]
        self.X = np.zeros(self.action_size)
                                                                    dx [0.18123875]
    def sample(self):
                                                                   X [-0.15578757]
        dx = self.theta * (self.mu - self.X)
                                                                    dx [-0.0240699]
        dx = dx + self.sigma * np.random.randn(len(self.X))
                                                                    X [-0.17985747]
        self.X = self.X + dx
         return self.X
```


2. 환경에서 선택한 행동으로 한 time step을 진행한 후, 다음 상태와 보상을 받음

```
next_state, reward, done, _ = env.step(action)
```

3. Sample (s, a, r, s')을 replay buffer에 저장

```
replay_buffer = deque(maxlen=10000)
```

```
mask = 0 if done else 1
replay_buffer.append((state, action, reward, next_state, mask))
```

4. Replay buffer에서 랜덤으로 sample을 추출 (Batch size : 64)

```
mini_batch = random.sample(replay_buffer, args.batch_size)
```


- 5. 추출한 sample로 Actor & Critic network 업데이트
 - Critic Loss

$$J_Q(\theta) = (\underline{r + \gamma Q_{\theta^-}(s', \pi_{\phi^-}(s'))} - \underline{Q_{\theta}(s, a)})^2$$
Target Prediction

```
# update critic
criterion = torch.nn.MSELoss()

# get Q-value
q_value = critic(torch.Tensor(states), actions).squeeze(1)

# get target
target_next_policy = target_actor(torch.Tensor(next_states))
target_next_q_value = target_critic(torch.Tensor(next_states), target_next_policy).squeeze(1)
target = rewards + masks * args.gamma * target_next_q_value

critic_loss = criterion(q_value, target.detach())
critic_optimizer.zero_grad()
critic_loss.backward()
critic_optimizer.step()
```


- 5. 추출한 sample로 Actor & Critic network 업데이트
 - Actor Loss

$$J_{\pi}(\phi) = -\frac{1}{N} \sum Q_{\theta} \left(s, \pi_{\phi}(s) \right)$$

```
# update actor
policy = actor(torch.Tensor(states))

actor_loss = -critic(torch.Tensor(states), policy).mean()
actor_optimizer.zero_grad()
actor_loss.backward()
actor_optimizer.step()
```


- 6. Actor & Critic에 대해 Soft target 업데이트
 - Initialize target model

```
hard_target_update(actor, critic, target_actor, target_critic)

def hard_target_update(actor, critic, target_actor, target_critic):
    target_critic.load_state_dict(critic.state_dict())
    target_actor.load_state_dict(actor.state_dict())
```

• Soft target update (τ : 0.001)

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\phi^{\pi'} \leftarrow \tau \phi^{\pi} + (1 - \tau)\phi^{\pi'}$$

soft_target_update(actor, critic, target_actor, target_critic, args.tau)

```
def soft_target_update(actor, critic, target_actor, target_critic, tau):
    soft_update(critic, target_critic, tau)
    soft_update(actor, target_actor, tau)

def soft_update(net, target_net, tau):
    for param, target_param in zip(net.parameters(), target_net.parameters()):
        target_param.data.copy_(tau * param.data + (1.0 - tau) * target_param.data)
```


Hyperparameter

```
parser = argparse.ArgumentParser()
parser.add_argument('--env_name', type=str, default="Pendulum-v0")
parser.add_argument('--load_model', type=str, default=None)
parser.add_argument('--save_path', default='./save_model/', help='')
parser.add_argument('--render', action="store_true", default=False)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--hidden_size', type=int, default=64)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--actor_lr', type=float, default=1e-3)
parser.add_argument('--critic_lr', type=float, default=1e-3)
parser.add_argument('--theta', type=float, default=0.15)
parser.add_argument('--mu', type=float, default=0.0)
parser.add_argument('--sigma', type=float, default=0.2)
parser.add_argument('--tau', type=float, default=0.001)
parser.add argument('--max iter num', type=int, default=1000)
parser.add argument('--log interval', type=int, default=10)
parser.add argument('--goal score', type=int, default=-300)
parser.add_argument('--logdir', type=str, default='./logs',
                    help='tensorboardx logs directory')
args = parser.parse args()
```


- Initialization
 - o Seed random number 고정
 - Actor & Critic network
 - Target actor & critic network
 - Actor & Critic optimizer
 - Hard target update
 - OU noise
 - TensorboardX
 - Replay buffer
 - Recent rewards

```
def main():
   env = gym.make(args.env_name)
   env.seed(500)
   torch.manual_seed(500)
   state_size = env.observation_space.shape[0]
   action_size = env.action_space.shape[0]
   print('state size:', state_size)
   print('action size:', action_size)
   actor = Actor(state size, action size, args)
   target_actor = Actor(state_size, action_size, args)
   critic = Critic(state_size, action_size, args)
   target critic = Critic(state size, action size, args)
   actor_optimizer = optim.Adam(actor.parameters(), lr=args.actor_lr)
   critic_optimizer = optim.Adam(critic.parameters(), lr=args.critic_lr)
   hard_target_update(actor, critic, target_actor, target_critic)
   ou_noise = OUNoise(action_size, args.theta, args.mu, args.sigma)
   writer = SummaryWriter(args.logdir)
   replay_buffer = deque(maxlen=10000)
   recent_rewards = deque(maxlen=100)
   steps = 0
```


- Episode 진행
 - 상태에 따른 행동 선택
 - 다음 상태와 보상을 받음
 - o Replay buffer에 저장

```
for episode in range(args.max_iter_num):
   done = False
   score = 0
   state = env.reset()
   state = np.reshape(state, [1, state_size])
   while not done:
       if args.render:
           env.render()
       steps += 1
       policy = actor(torch.Tensor(state))
       action = get_action(policy, ou_noise)
       next_state, reward, done, _ = env.step(action)
       next_state = np.reshape(next_state, [1, state_size])
       mask = 0 if done else 1
       replay_buffer.append((state, action, reward, next_state, mask))
       state = next_state
       score += reward
```


- Episode 진행
 - Replay buffer에서 랜덤으로 64개의 sample을 추출 → Mini batch
 - Train model
 - Soft target update

- Print & Visualize log
- Termination : 최근 100개의 episode의 평균 score가 -300보다 크다면
 - Save model
 - 학습 종료

```
if episode % args.log_interval == 0:
    print('{} episode | score_avg: {:.2f}'.format(episode, np.mean(recent_rewards)))
    writer.add_scalar('log/score', float(score), episode)

if np.mean(recent_rewards) > args.goal_score:
    if not os.path.isdir(args.save_path):
        os.makedirs(args.save_path)

ckpt_path = args.save_path + 'model.pth'
    torch.save(actor.state_dict(), ckpt_path)
    print('Recent rewards exceed -300. So end')
    break
```


- Mini batch → Numpy array
- Mini batch에 있는 64개의 sample들을 각각 나눔
 - o state (64, 3)
 - o action (64, 1)
 - o reward (64)
 - next_state (64, 3)
 - o mask (64)

- Prediction
 - o **q_value** (64)

- Target
 - target_next_policy (64, 1)
 - target_next_q_value (64)
 - o target (64)

```
# update critic
criterion = torch.nn.MSELoss()

# get Q-value
q_value = critic(torch.Tensor(states), actions).squeeze(1)

# get target
target_next_policy = target_actor(torch.Tensor(next_states))
target_next_q_value = target_critic(torch.Tensor(next_states), target_next_policy).squeeze(1)
target = rewards + masks * args.gamma * target_next_q_value

critic_loss = criterion(q_value, target.detach())
critic_optimizer.zero_grad()
critic_loss.backward()
critic_optimizer.step()
```


Update critic - MSE Loss

$$O \quad J_Q(\theta) = \underbrace{(r + \gamma Q_{\theta^-} \left(s', \pi_{\phi^-}(s')\right) - Q_{\theta}(s, a))^2 }_{\text{Target}} \quad \text{Prediction}$$

```
# update critic
criterion = torch.nn.MSELoss()

# get Q-value
q_value = critic(torch.Tensor(states), actions).squeeze(1)

# get target
target_next_policy = target_actor(torch.Tensor(next_states))
target_next_q_value = target_critic(torch.Tensor(next_states), target_next_policy).squeeze(1)
target = rewards + masks * args.gamma * target_next_q_value

critic_loss = criterion(q_value, target.detach())
critic_optimizer.zero_grad()
critic_loss.backward()
critic_optimizer.step()
```


- Update actor
 - o **policy** (64, 1)
 - o critic(torch.Tensor(state), policy) (64, 1)
 - $\circ \quad J_{\pi}(\phi) = -\frac{1}{N} \sum Q_{\theta}(s, \pi_{\phi}(s))$

```
# update actor
policy = actor(torch.Tensor(states))

actor_loss = -critic(torch.Tensor(states), policy).mean()
actor_optimizer.zero_grad()
actor_loss.backward()
actor_optimizer.step()
```


Train & TensorboardX

- Terminal A train 실행
 - conda activate env_name
 - python train.py
- Terminal B tensorboardX 실행
 - conda activate env_name
 - tensorboard --logdir logs
 - ➤ (웹에서) localhost:6006

Learning curve & Test

Learning curve

- Test
 - python test.py

Thank you

