Chapter 2: Linear system

Given n linear equations with n variables:

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2$$

$$\vdots$$

$$a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nn} x_n = b_n$$

Matrix-form: solve $\mathbf{A} \mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Agenda

If A is invertible, then it is easy to solve Ax = b in Python with

but we would like to:

- explain what is really happening,
- investigate computational complexity, and
- study the sensitivity of the solution to errors in the data.

Concerning efficiency (not in the book)

Based on "Cramer's rule", the *i*th element in *x*:

$$x_i = \frac{\det(\mathbf{A}^{[i]})}{\det(\mathbf{A})}, \qquad i = 1, 2, \dots, n$$

where

$$\mathbf{A}^{[i]} \equiv \left[A(:, 1:i-1), b, A(:, i+1:n) \right].$$

The computational complexity of calculating a determinant

 $\approx n!$ multiplications

Gaussian elimination requires

 $\approx n^3$ multiplications

Example: $n = 10 \Rightarrow (n+1)n! = 39916800$ and $n^3 = 1000$.

Back substitution (page 91-92)

The matrix **A** is upper triangular if

$$a_{ij}=0, \qquad i>j.$$

Example: The following upper triangular system

$$\begin{bmatrix} 5 & -5 & 10 \\ 0 & 2 & 4 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -25 \\ 16 \\ -2 \end{bmatrix}.$$

can be simply solved by:

$$x_3 = (-2)/(-1) = 2$$

 $x_2 = (16 - 4x_3)/2 = (16 - 4 \cdot 2)/2 = 8/2 = 4$
 $x_1 = (-25 - (-5)x_2 - 10x_3)/5 = (-25 + 5 \cdot 4 - 10 \cdot 2)/5 = -5.$

Back substitution (page 92)

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Algorithm:
$$x_n = b_n/a_{nn}$$
 for $i = n - 1: -1: 1$ sum $= b_i$ for $j = i + 1: n$ sum $= \operatorname{sum} - a_{ij} \cdot x_j$ end $x_i = \operatorname{sum}/a_{ij}$ end

Computational complexity of back substitution (page 93)

A "LOp" = "Long Operation" = a multiplication or a division.

The number of LOps in back substitution is:

LOps =
$$1 + 2 + \dots + (n-1) + n$$

= $1/2 n (n+1)$
= $1/2 n^2 + 1/2 n \approx 1/2 n^2$.

The computational complexity is dominated by the term of n with the highest power. So the dominant computational complexity is total $1/2n^2$ LOps.

n	$1/2 n^2$	$1/2 n^2 + 1/2 n$
10	50	55
100	5 000	5 050
1000	500 000	500 500

General systems: Gaussian elimination (page 72–77)

Example:

$$\begin{bmatrix} 5 & -5 & 10 \\ 2 & 0 & 8 \\ 1 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -25 \\ 6 \\ 9 \end{bmatrix}$$
(1)
$$\begin{bmatrix} 5 & -5 & 10 \\ 0 & 2 & 4 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -25 \\ 16 \\ 14 \end{bmatrix}$$
(2') = (2) - $\frac{2}{5}$ · (1)
$$\begin{bmatrix} 5 & -5 & 10 \\ 0 & 2 & 4 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -25 \\ 16 \\ -2 \end{bmatrix}$$
(2')
$$\begin{bmatrix} (1) \\ (3') = (3) - \frac{1}{5}$$
 · (1)
$$\begin{bmatrix} (1) \\ (2') \\ (3'') = (3') - 1$$
 · (2')

Back substitution gives:

$$\mathbf{x} = \begin{bmatrix} -5 \\ 4 \\ 2 \end{bmatrix}$$
.

Gaussian elim. creates 0's below the main diagonal (page 72–77)

Pivoting - mathematical reason

Example:

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

multiplier:

xmult =
$$a_{21}/a_{11} = 1/0 = \infty$$
,

Gaussian elimination is broken down

But **A** is nonsingular – interchange row 1 and 2:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$x_2 = 1/1 = 1$$
, $x_1 = (2 - 1 \cdot 1)/1 = 1$.

Pivoting – numerical reason

Solve by Gaussian elimination, but with different number of significant digits:

$$\begin{bmatrix} 0.0003 & 3.0000 \\ 1.0000 & 1.0000 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2.0001 \\ 1.0000 \end{bmatrix}$$

digits	x_1	<i>x</i> ₂	rel. error in x_1
3	-3.00	0.667	-11
4	0.0000	0.6667	1
5	0.30000	0.66667	0.1
6	0.330000	0.666667	0.01
7	0.3330000	0.6666667	0.001
∞	0.333333	0.6666666	

Quite large error, although we have many significant digits.

Now with pivoting!

$$\begin{bmatrix} 1.0000 & 1.0000 \\ 0.0003 & 3.0000 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1.0000 \\ 2.0001 \end{bmatrix}$$

digits	x_1	<i>x</i> ₂	rel. error in x_1
3	0.333	0.667	0.001
4	0.3333	0.6667	0.0001
5	0.33333	0.66667	0.00001
6	0.333333	0.666667	0.000001
7	0.3333333	0.6666667	0.0000001
∞	0.333333	0.6666666	

Much smaller error – even with few significant digits!

$\mathbf{A} \mathbf{x} = \mathbf{b}$: risk for loss of significance without pivoting

Let $\epsilon \ll 1$ be a small number (e.g. $\epsilon = 0.0003$):

$$\begin{bmatrix} \epsilon & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2.0001 \\ 1 \end{bmatrix}, \qquad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix}.$$

Gaussian elimination without pivoting:

$$\begin{array}{lll} \mathsf{xmult} & = & \frac{a_{21}}{a_{11}} = \frac{1}{\epsilon} \gg 1 \\ \\ a'_{22} & = & a_{22} - \mathsf{xmult} \cdot a_{12} = 1 - \frac{1}{\epsilon} \cdot 3 \approx -\frac{3}{\epsilon} \\ \\ b'_{2} & = & b_{2} - \mathsf{xmult} \cdot b_{1} = 1 - \frac{1}{\epsilon} \cdot 2.0001 \approx -\frac{2}{\epsilon} \; . \end{array}$$

Without pivoting: error

Applying Gaussian elimination without pivoting, we get

$$\mathbf{A}' = \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22}' \end{bmatrix} = \begin{bmatrix} \epsilon & 3 \\ 0 & 1 - 3/\epsilon \end{bmatrix}, \qquad \mathbf{b}' = \begin{bmatrix} 2.0001 \\ 1 - 2.0001/\epsilon \end{bmatrix}.$$

With very small ϵ , the computer actually calculates:

$$\widehat{\boldsymbol{A}}' = \begin{bmatrix} a_{11} & a_{12} \\ 0 & \widehat{a}'_{22} \end{bmatrix} = \begin{bmatrix} \epsilon & 3 \\ 0 & -3/\epsilon \end{bmatrix}, \qquad \widehat{\boldsymbol{b}}' = \begin{bmatrix} 2.0001 \\ -2.0001/\epsilon \end{bmatrix}.$$

Then, the absolute error in calculation is:

$$m{A}' - \widehat{m{A}}' = egin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \qquad m{b}' - \widehat{m{b}}' = egin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

NB: Errors appearing in \boldsymbol{A} and \boldsymbol{b} are in the same order!

Without pivoting: What went wrong?

Calculate the solution:

$$\widehat{x}_2 = \widehat{b}'_2/\widehat{a}'_{22}$$

= $(-2.0001/\epsilon)/(-3/\epsilon) = 2.0001/3 \approx 2/3$

$$\hat{x}_1 = (b_1 - a_{12} \hat{x}_2)/a_{11}$$

= $(2.0001 - 3 \cdot 2.0001/3)/\epsilon = 0$

The result of \hat{x}_2 is OK, but \hat{x}_1 is *completely wrong!*

The problem is due to loss of significance in subtraction in the computation. For example: with $\epsilon = 0.0003$:

$$a'_{22} = a_{22} - f \cdot a_{12} = 1 - \frac{1}{\epsilon} \cdot 3 = 1 - 10^4 \rightarrow -10^4.$$

Note: Avoid elements in the matrix increasing in the Gaussian elimination.

Keep the multiplier |xmult| small!

Now – with pivoting:

The pivot system:

$$\begin{bmatrix} 1 & 1 \\ \epsilon & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2.0001 \end{bmatrix}, \qquad \mathsf{xmult} = \frac{a_{21}}{a_{11}} = \epsilon \quad \mathsf{(It is small!)}$$

Apply Gaussian elimination:

$$a'_{22} = 3 - \epsilon \cdot 1 \to \widehat{a}'_{22} = 3, \qquad b'_2 = 2.0001 - \epsilon \cdot 1 \to \widehat{b}'_2 = 2.0001.$$

The errors
$$\mathbf{A}' - \widehat{\mathbf{A}}' = \begin{bmatrix} 0 & 0 \\ 0 & \epsilon \end{bmatrix}$$
 and $\mathbf{b}' - \widehat{\mathbf{b}}' = \begin{bmatrix} 0 \\ \epsilon \end{bmatrix}$ are small now!

$$\widehat{x}_2 = \widehat{b}_2'/\widehat{a}_{22}' = 2.0001/3 = 0.6667 \approx 2/3$$

$$\widehat{x}_1 = (b_1 - a_{12}\,\widehat{x}_2)/a_{11} = (1 - 1 \cdot 2.0001/3)/1 = 0.3333 \approx 1/3 \ .$$

It is much better now:
$$\mathbf{x} - \hat{\mathbf{x}} \approx \begin{bmatrix} 3.33 \cdot 10^{-5} \\ -3.33 \cdot 10^{-5} \end{bmatrix}$$

Gaussian elimination with partial pivoting

```
for k = 1 : n - 1
Algorithm:
                       find index \ell such that |a_{\ell k}| \geq |a_{ik}|, i = k, \ldots, n
                       interchange row k and \ell in A as well as b_k and b_{\ell}
                       for i = k + 1 : n
                            xmult = a_{ik}/a_{kk}
                            for i = k + 1 : n
                                  a_{ij} = a_{ij} - \text{xmult} \cdot a_{kj}
                             end
                            b_i = b_i - \mathsf{xmult} \cdot b_k
                       end
                 end
```

Gaussian elimination with *scaled* partial pivoting (page 85–89)

There are many strategies for pivoting. Here we introduce another one:

At the beginning of Gaussian eliminationen, we compute a scale factor ${m s}$ for each equation in the system as

$$s_i = \max_{1 \leq j \leq n} |a_{ij}| = \operatorname{np.max(np.abs(A[i-1,:]))}, \qquad i = 1, 2, \dots, n.$$

In Step k, we use the equation whose ratio $|a_{lk}/s_l|$ is the largest as the pivot equation, i.e,

$$\frac{|a_{\ell k}|}{s_{\ell}} \geq \frac{|a_{ik}|}{s_i}, \qquad i = k, \ldots, n.$$

See next slide \rightarrow

Gaussian elimination with scaled partial pivoting - code

Algorithm:

```
Compute scale factor s
 for k = 1 : n - 1
      find index \ell such that |a_{\ell k}|/s_{\ell} \geq |a_{jk}|/s_i, i = k, \ldots, n
      swap row k and \ell in A same as b_k and b_{\ell}
      for i = k + 1 : n
            xmult = a_{ik}/a_{kk}
            for i = k + 1 : n
                 a_{ii} = a_{ii} - \text{xmult} \cdot a_{ki}
            end
            b_i = b_i - \mathsf{xmult} \cdot b_k
      end
 end
```

Computational complexity of Gaussian elimination (page 92–93)

The *dominant* number of long operations in Gaussian elimination with scaled partial pivoting is:

LOps =
$$n^2 + (n-1)^2 + (n-2)^2 + \dots + 4^2 + 3^2 + 2^2$$

= $n/6 (n+1) (2n+1) - 1$
 $\approx 1/3 n^3$.

The corresponding number of long operation in "forward processing" of the right-hand side is:

LOps =
$$1 + 2 + 3 + \cdots + (n-1) = \frac{1}{2} n (n-1) \approx \frac{1}{2} n^2$$
.

The total number for solving $\mathbf{A} \mathbf{x} = \mathbf{b}$ is:

LOps
$$\approx 1/3 n^3 + 1/2 n^2 + 1/2 n^2 \approx 1/3 n^3$$
.

Simple ("naive") Gaussian elimination (page 358–359)

The algorithm overwrites the current elements in \boldsymbol{A} and \boldsymbol{b} :

```
\begin{array}{l} \text{for } k=1:n-1 \\ \text{for } i=k+1:n \\ f_{ik}=a_{ik}/a_{kk} & \leftarrow \text{ the multiplier} \\ \text{for } j=k+1:n \\ a_{ij}=a_{ij}-f_{ik}\cdot a_{kj} \\ \text{end} \\ b_i=b_i-f_{ik}\cdot b_k \\ \text{end} \\ \end{array}
```

Simple ("naive") LU-factorization

Another formulation of Gaussian elimination: we can alway have

$$\boldsymbol{A} = \boldsymbol{L} \boldsymbol{U},$$

where

- *U* is an upper triangular after Gaussian elimination, and
- L is a unit lower triangular including elimination coefficients:

$$\ell_{ik} = f_{ik}, \quad k < i \quad \text{and} \quad \ell_{kk} = 1.$$

Unit triangular means that the diagonal elements of L are all 1's.

These are very useful **notations**.

Numerical example (page 359–362)

$$\mathbf{M}_1 \, \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -1/2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{bmatrix} = \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 3 & -14 \end{bmatrix}$$

NB: we have $f_{21} = 2$, $f_{31} = 1/2$ and $f_{41} = -1$.

$$\mathbf{M}_{2} \, \mathbf{M}_{1} \, \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & 0 \\ 0 & \frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 3 & -14 \end{bmatrix} = \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 4 & -13 \end{bmatrix}$$

$$\mathbf{M}_{3} \, \mathbf{M}_{2} \, \mathbf{M}_{1} \, \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 4 & -13 \end{bmatrix} = \underbrace{\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix}}_{\mathbf{M}_{2}}$$

Numerical example

$$M_3 M_2 M_1 A = U$$
 $M_2 M_1 A = M_3^{-1} U$
 $M_1 A = M_2^{-1} M_3^{-1} U$
 $A = M_1^{-1} M_2^{-1} M_3^{-1} U = U U$

$$\mathbf{L} = \mathbf{M}_{1}^{-1} \mathbf{M}_{2}^{-1} \mathbf{M}_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 \\ 0 & -1/2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix} \\
= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 1/2 & 3 & 1 & 0 & 0 \\ -1 & -1/2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ f_{21} & 1 & 0 & 0 & 0 \\ f_{31} & f_{32} & 1 & 0 & 0 \\ f_{41} & f_{42} & f_{43} & 1 \end{bmatrix}$$

The proof in page 363-364 is skipped.

Gaussian elimination with pivoting

Here: We only consider partial pivoting (same principle for scaled partial pivoting):

```
for k = 1 : n - 1
     interchange the rows such that |a_{kk}| = \max_{k < i < n} |a_{ik}| \leftarrow \text{pivoting}
     make the same interchange in b
     for i = k + 1 : n
           f_{ik} = a_{ik}/a_{kk} \leftarrow \text{the multiplier}
           for i = k + 1 : n
                a_{ii} = a_{ii} - f_{ik} \cdot a_{ki}
           end
           b_i = b_i - f_{ik} \cdot b_k
     end
end
```

LU factorization with pivoting

Same idea as before: we can always have

$$PA = LU$$

where

- P is a permutation matrix,
- *U* is an upper triangular after Gaussian eliminationen, and
- L is a unit lower triangular including elimination coefficients:

$$\ell_{ik} = f_{ik}, \quad k < i \quad \text{and} \quad \ell_{kk} = 1.$$

The only difference is the matrix P.

Permutation matrix

A permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere.

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

It is used to interchange elements:

$$\mathbf{P} \, \mathbf{b} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix} = \begin{bmatrix} b_3 \\ b_4 \\ b_1 \\ b_5 \\ b_2 \end{bmatrix}$$

Solving linear system using LU factorization (\approx page 365)

First, we compute the factorization of ${\bf A}$ in the linear system ${\bf A}{\bf x}={\bf b}$, and get

$$P A x = P b \Leftrightarrow L U x = P b$$
.

Then we can solve the system by the following three steps:

- **1** Permute the right-hand side: $\hat{\boldsymbol{b}} = \boldsymbol{P} \boldsymbol{b}$.
- 2 Solve $\mathbf{L} \mathbf{y} = \hat{\mathbf{b}} \Leftrightarrow \mathbf{y} = \mathbf{L}^{-1} \hat{\mathbf{b}}$ (forward substitution).
- **3** Solve $U x = y \Leftrightarrow x = U^{-1}y$ (back substitution).

The result: $\mathbf{x} = \mathbf{U}^{-1} \mathbf{L}^{-1} \mathbf{P} \mathbf{b}$.

$$PA = LU \Leftrightarrow A = P^{-1}LU \Leftrightarrow A^{-1} = U^{-1}L^{-1}P$$

When we have \boldsymbol{L} and \boldsymbol{U} , it only costs n^2 LOps to solve $\boldsymbol{A} \boldsymbol{x}_{nv} = \boldsymbol{b}_{nv}$.

It is cheap to solve the new right-hand side.

Example with multiple right-hand sides (page 371)

An example to show the advantage of using LU-factorization for multiple right-hand sides:

$$A x^{(1)} = b^{(1)}, \quad A x^{(2)} = b^{(2)}, \quad \dots, \quad A x^{(p)} = b^{(p)}.$$

- "Naive" implementation: p Gaussian elimination and p back substitutions. It costs totally $p(n^3/3 + n^2)$ LOps.
- Efficient implementation: One LU-factorization with p forward and back substitutions, costs $n^3/3 + p n^2$ LOps.

LU factorization in Python with scipy.linalg.lu

In Python we can calculate LU factorization by using the function 1u from scipy.linalg:

LU factorization in Python with scipy.linalg.lu

```
>>> print(f'P =\n \{P\}\n L =\n \{L\}\n U =\n \{U\}\n')
P =
0
0
1.0000
0.0333
          1.0000
0.1000
         -0.0271
                    1.0000
U =
3.0000 -0.1000 -0.2000
0
          7.0033
                   -0.2933
0
                    10.0120
```

```
>>> tmp = scipy.linalg.solve_triangular(L, P@b, lower=True)
>>> x = scipy.linalg.solve_triangular(U, tmp, lower=False)
```

Summary

Newton's method.

It can be generalized to solve m equations with m variables. In every iteration, it requires to solve a linear system.

Computational complexity.

Computational complexity of solving $\mathbf{A} \mathbf{x} = \mathbf{b}$ is $1/3n^3$ LOps (multiplications and divisions). That is, if n is multiplied by 10, then it costs 1000 times more LOps and 1000 times longer computing time.

Reason for pivoting.

Mathematically: avoid dividing by 0.

Numerically: avoid large multipliers in row eliminations, which can lead to loss of significance.

Partial pivoting.

Find the numerical largest element in the current column, and interchange the rows such that this element stays in the diagonal.