BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 32 930.3

Anmeldetag:

19. Juli 2002

Anmelder/Inhaber:

Consortium für elektrochemische

Industrie GmbH, München/DE

Bezeichnung:

Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten

der Phosphoglycerat-Familie

IPC:

C 12 N, C 12 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 08.Mai 2003 **Deutsches Patent- und Markenamt** Der Präsident Im Auftrag

Dzierzon

20

30

35

Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie

Die Erfindung betrifft ein Verfahren zur Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie wie beispielsweise O-Acetyl-L-Serin, N-Acetyl-L-Serin, L-Cystein, LL-Cystin und L-Cystein-Derivaten mittels Fermentation.

Die Herstellung der zwanzig natürlichen, proteinogenen Aminosäuren wird heutzutage vorwiegend durch Fermentation von Mikroorganismen bewerkstelligt. Dabei wird ausgenützt, dass Mikroorganismen über entsprechende Biosynthesewege zur Synthese der natürlichen Aminosäuren verfügen.

Solche Biosynthesewege unterliegen jedoch in Wildtyp-Stämmen einer strengen Kontrolle, die gewährleistet, dass die Aminosäuren nur zum Eigenbedarf der Zelle hergestellt werden. Eine wichtige Voraussetzung für effiziente Produktionsprozesse ist es deshalb, dass geeignete Mikroorganismen verfügbar sind, die im Gegensatz zu Wildtyp-Organismen eine drastisch gesteigerte Produktionsleistung für die Herstellung der gewünschten Aminosäure aufweisen.

Solche Aminosäure-überproduzierende Mikroorganismen können durch klassische Mutations-/Selektionsverfahren und/oder durch moderne, gezielte, rekombinante Techniken ("metabolic engineering") erzeugt werden. Bei letzterem werden zunächst Gene oder Allele identifiziert, die durch ihre Veränderung, Aktivierung oder Inaktivierung eine Überproduktion bewirken. Diese Gene/Allele werden dann durch molekularbiologische Techniken in einen Mikroorganismenstamm eingebracht oder inaktiviert, so dass eine optimale Überproduktion erzielt wird. Häufig führt jedoch erst die Kombination mehrerer, verschiedener Maßnahmen zu einer wirklich effizienten Produktion.

Die Phosphoglycerat-Familie von Aminosäuren ist dadurch definiert, dass es sich um Aminosäuren handelt, die in ihrer Bio-

Beglaubigte Kopie

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

DUPLIKAT

INTERNATIONAL FORM

Consortium für elektrochem. Industrie GmbH Zielstattstr. 20 81379 München DSMZ-Devische Sammlung von Mikroorganismer

176 Zerkulturen GmbH

CY-OI

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSITOR	II. IDENTIFICATION OF THE MICROORGANISM
Name: Consortium für elektrochem. Industrie GmbH Address: Zielstättstr. 20 81379 München	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 10172 Date of the deposit or the transfer!: 1995-08-18
III. VIABILITY STATEMENT	
The viability of the microorganism identified under II above was tested On that date, the said microorganism was (X)3 viable	
() viable () no longer viable	
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BE	EEN PERFORMED'
V. INTERNATIONAL DEPOSITARY AUTHORITY	
Name: DSM-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):
Address: Mascheroder Weg 1b D-38124 Braunschweig	U. Weils

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit of date of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test

Mark with a cross the applicable box.

Fill in if the information has been requested and if the results of the test were negative,

synthese von der 3-Phosphoglycerinsäure abgeleitet werden. Der natürliche Pfad des Stoffwechsels führt dabei zunächst über die Zwischenstufen 3-Phospohydroxypyruvat und 3-Phospho-Lserin zu L-Serin kann weiterhin zu Glycin bzw. über O-Acetyl-L-Serin zu L-Cystein umgesetzt werden.

Für die fermentative Herstellung von Aminosäuren der Phosphoglycerat-Familie, insbesondere von L-Serin und L-Cystein, sind bereits einige Gene/Allele im Stand der Technik bekannt, deren Einsatz zu einer Aminosäure-Überproduktion führen:

10

5

- serA-Allele wie beschrieben in EP0620853B1 oder EP0931833A2.

Diese serA-Allele kodieren für 3-Phosphoglycerat-Dehydrogenasen, die einer verminderten Feedback-Hemmung durch L-Serin unterliegen. Dadurch wird die Bildung von 3-Hydroxypyruvat weitgehend vom Serin-Spiegel der Zelle entkoppelt.

20

30

35

- cysE-Allele wie beschrieben in
 - -WO 97/15673 (hereby incorporated by reference) oder
 - Nakamori S. et al., 1998, Appl. Env. Microbiol. 64: 1607-1611 (hereby incorporated by reference) oder
 - -Takagi H. et al., 1999, FEBS Lett. 452: 323-327 beschrieben, in einen Mikroorganismenstamm eingebracht werden. Diese cysE-Allele kodieren für Serin-O-Acetyl-Transferasen, die einer verminderten Feedback-Hemmung durch L-Cystein unterliegen. Dadurch wird die Bildung von O-Acetyl-L-Serin bzw. L-Cystein weitgehend vom Cystein-Spiegel der Zelle entkoppelt.
- Efflux-Gene wie beschrieben in EP0885962A1

 Das beschriebene orf-Gen kodiert wahrscheinlich für ein Efflux-System, das zur Ausschleusung von Anitbiotika und anderern toxischen Stoffen geeignet ist und die Überproduktion von L-Cystein, L-Cystin, N-Acetyl-Serin und/oder Thiazolidinderivaten bewirkt.

10

15

20

- cysB-Gen wie beschrieben in DE19949579C1 Das cysB-Gen kodiert für einen zentralen Genregulator des Schwefelstoffwechsel und spielt somit eine entscheidende Rolle bei der Bereitstellung von Sulfid für die Cystein-Biosynthese.

Aus dem Stand der Technik ist ebenfalls bekannt, dass die angegebenen Verfahren auch zu Cystein-Derivaten führen können. So kann LL-Cystin als Oxidationsprodukt von L-Cystein oder 2-Methyl-thiazolidin-2,4-dicarbonsäure als Kondensationsprodukt von L-Cystein und Pyruvat während der Fermentation entstehen. Da L-Cystein der zentrale Schwefel-Donor der Zelle ist, können die beschriebenen Verfahren auch als Ausgangspunkt zur Herstellung verschiedenster schwefelhaltiger Metaboliten (z.B. L-Methionin, (+)-Biotin, Thiamin etc.) benützt werden, die im Sinne der vorliegenden Erfindung als L-Cystein-Derivate aufzufassen sind.

Außerdem wurde beschrieben, dass bei geeigneter Vorgehensweise auch die Aminosäuren N-Acetyl-L-Serin (EP-A1-0885962) bzw. O-Acetyl-L-Serin (DE-A-10107002) als Hauptfermentationsprodukte gebildet werden können. L-Serin kann wiederum gemäß DE-A-10219851 relativ einfach aus N-Acetyl-L-Serin-haltigen Fermentationsbrühen gewonnen werden.

Aufgabe der vorliegenden Erfindung ist es, einen rekombinanten Mikroorganismenstamm zur Verfügung zu stellen, der eine Überproduktion von Aminosäuren oder Aminosäure-Derivaten der Phosphoglycerat-Familie ermöglicht. Eine weitere Aufgabe ist es, ein fermentatives Verfahren für die Herstellung von Aminosäuren oder Aminosäure-Derivaten der Phosphoglycerat-Familie mittels des rekombinanten Mikroorganismenstammes zur Verfügung zu stellen.

Die erstgenannte Aufgabe wird gelöst durch einen Mikroorganismenstamm, der zur fermentativen Herstellung von Aminosäuren der Phosphoglycerat-Familie oder deren Derivaten geeignet ist,

35

30

herstellbar aus einem Ausgangsstamm, dadurch gekennzeichnet, daß er eine gegenüber dem Ausgangsstamm erhöhte Aktivität des yfiK-Genprodukts oder eines Genprodukts eines yfiK-Homologs aufweist.

5

Eine Erhöhung der Aktivität des yfik-Genprodukts ist im Sinne der vorliegenden Erfindung auch dann gegeben, wenn durch eine Erhöhung der Genproduktmenge in der Zelle eine erhöhte Gesamtaktivität in der Zelle erreicht wird und somit die spezifische Aktivität des Genprodukts zwar unverändert bleibt, aber die Aktivität des yfik-Genprodukts pro Zelle erhöht ist.

15

20

30

35

10

Das yfik-Gen von Escherichia coli wurde im Rahmen der Genomsequenzierung (Blattner et al. 1997, Science 277:1453-1462) als offener Leserahmen identifiziert und kodiert für ein Protein mit 195 Aminosäuren. Bisher konnte dem yfiK-Gen keine physiologische Funktion zugeordnet werden. Auch eine Datenbankrecherche nach Proteinen mit Sequenzhomologie (FASTA-Algorithmus von GCG Wisconsin Package, Genetics Computer Group (GLG) Madison, Wisconsin) liefert wenig Aufschluß, da lediglich Ähnlichkeiten zu Proteinen angezeigt werden, deren Funktion ebenfalls unbekannt ist. Der einzige Anhaltspunkt für eine mögliche Aktivität des yfiK-Genproduktes ist bei Aleshin et al. (Trends in Biol. Sci., 1999, 24: 133-135) zu finden. Darin wird ein Strukturmotiv postuliert, das eine Proteinfamilie von Aminosäure-Efflux-Proteinen charakterisieren soll. Da dieses schwache Consensus-Motiv auch im YfiK-Protein vorkommt, könnte das YfiK-Protein ein Efflux-System für Aminosäuren darstellen. Es ist jedoch für den Fachmann absolut unmöglich, daraus Schlüsse auf konkrete Aminosäuresubstrate des YfiK-Protein zu ziehen. Der Befund, dass das Yfik-Genprodukt bei der Produktion von Aminosäuren der Phosphoglycerat-Familie einen positiven Beitrag leistet, ist insbesondere deshalb überraschend, da mit dem YdeD-Genprodukt bereits ein Efflux-Protein für Aminosäuren der Phosphoglyceratfamilie in Escherichia coli charakterisiert wurde (Daßler et al. Mol. Microbiol., 2000, 36: 1101-1112) und die Existenz eines zweiten Systems völlig unerwartet ist. In-

10

15

20

30

35

teressanterweise bestehen keine Strukturähnlichkeiten zwischen den yfiK- und ydeD-Genprodukten.

Das yfik-Gen und das Yfik-Genprodukt (Yfik-Protein) sind durch die Sequenzen SEQ ID No. 1 beziehungsweise SEQ ID No. 2 charakterisiert. Im Rahmen der vorliegenden Erfindung sind als yfik-Homologe solche Gene aufzufassen, die bei einer Analyse mit dem Algorithmus BESTFIT (GCG Wisconsin Package, Genetics Computer Group (GLG) Madison, Wisconsin) eine Sequenzidentität von größer 30 % aufweisen. Besonders bevorzugt ist eine Sequenzidentität von größer 70 %.

Ebenso sind Proteine mit einer Sequenzidentität von größer 30 % (Algorithmus BESTFIT (GCG Wisconsin Package, Genetics Computer Group (GLG) Madison, Wisconsin) als Yfik-homologe Proteine aufzufassen. Besonders bevorzugt ist eine Sequenzidentität von größer 70 %.

Somit sind als yfik-Homologe auch Allelvarianten des yfik-Gens zu verstehen, insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus der in SEQ ID No. 1 dargestellten Sequenz ableiten, wobei die enzymatische Aktivität des jeweiligen Genprodukts jedoch erhalten bleibt.

Erfindungsgemäße Mikroorganismen, die eine gegenüber dem Ausgangsstamm erhöhte Aktivität des yfik-Genprodukts aufweisen, können mit Standardtechniken der Molekularbiologie erzeugt werden.

Als Ausgangsstämme sind prinzipiell alle Organismen geeignet, die den Biosyntheseweg für Aminosäuren der Phosphoglycerat-Familie aufweisen, rekombinanten Verfahren zugänglich sind und durch Fermentation kultivierbar sind. Solche Mikroorganismen können Pilze, Hefen oder Bakterien sein. Bevorzugt handelt es sich um Bakterien der phylogenetischen Gruppe der Eubacteria. Besonders bevorzugt um Mikroorganismen der Familie Enterobacteriaceae und insbesondere der Art Escherichia coli.

Die Erhöhung der Aktivität des yfik-Genprodukts im erfindungsgemäßen Mikroorganismus wird beispielsweise durch eine verstärkte Expression des yfik-Gens erreicht. Dabei kann die Kopienzahl das yfik-Gens in einem Mikroorganismus erhöht sein
und/oder es kann durch geeignete Promotoren die Expression des
yfik-Gens gesteigerte sein. Unter verstärkter Expression ist
dabei vorzugsweise zu verstehen, daß das yfik-Gen mindestens
doppelt so stark exprimiert wird, wie im Ausgangsstamm.

10

15

5

Die Erhöhung der Kopienzahl des yfik-Gens in einem Mikroorganismus kann mit dem Fachmann bekannten Methoden vorgenommen werden. So kann zum Beispiel das yfik-Gen in Plasmid-Vektoren mit mehrfacher Kopienzahl pro Zelle (z.B. pUC19, pBR322, pA-CYC184 für Escherichia coli) kloniert und in den Mikroorganismus eingebracht werden. Alternativ kann das yfik-Gen mehrfach ins Chromosom eines Mikroorganismus integriert werden. Als Integrationsverfahren können die bekannten Systeme mit temperenten Bakteriophagen, integrative Plasmide oder die Integration über homologe Rekombination genutzt werden (z.B. Hamilton et al., 1989, J. Bacteriol. 171: 4617-4622).

20

Bevorzugt ist die Erhöhung der Kopienzahl durch Klonierung eines yfik-Gens in Plasmid-Vektoren unter der Kontrolle eines Promotors. Besonders bevorzugt ist die Erhöhung der Kopienzahl in Escherichia coli durch Klonierung eines yfik-Gens in einem pACYC-Derivat wie z. B. pACYC184-LH (hinterlegt gemäß Budapester Vertrag bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen, Braunschweig am 18.8.95 unter der Nummer DSM 10172).

30

Als Kontrollregion für die Expression eines plasmid-kodierten yfik-Gens kann die natürliche Promotor- und Operatorregion des Gens dienen.

35

Die verstärkte Expression eines yfik-Gens kann jedoch insbesondere auch mittels anderer Promotoren erfolgen. Entsprechende Promotorsysteme wie beispielsweise in Escherichia coli der

10

15

20

30

35

konstitutive GAPDH-Promotor des gapA-Gens oder die induzierbaren lac-, tac-, trc-, lambda-, ara oder tet-Promotoren sind
dem Fachmann bekannt (Makrides S. C., 1996, Microbiol. Rev.
60: 512-538). Solche Konstrukte können in an sich bekannter
Weise auf Plasmiden oder chromosomal verwendet werden.

Des weiteren kann eine verstärkte Expression dadurch erreicht werden, daß Translationsstartsignale, wie z. B. die Ribosomenbindestelle oder das Startcodon des Gens, in optimierter Sequenz auf dem jeweiligen Konstrukt vorhanden sind oder daß gemäß der "codon usage" seltene Kodons gegen häufiger vorkommende Kodons ausgetauscht werden.

Mikroorganismenstämme mit den genannten Modifikationen sind bevorzugte Ausführungen der Erfindung.

Die Klonierung eines yfik-Gens in Plasmid-Vektoren erfolgt beispielsweise durch spezifische Amplifikation mittels der Polymerase-Ketten-Reaktion unter Einsatz von spezifischen Primern, die das komplette yfik-Gen erfassen, und anschließende Ligation mit Vektor-DNS-Fragmenten.

Als bevorzugte Vektoren für die Klonierung eines yfik-Gens werden Plasmide verwendet, die bereits Promotoren zur verstärkten Expression enthalten, beispielsweise den konstitutiven GAPDH-Promotor des gapA-Gens von Escherichia coli.

Die Erfindung betrifft somit auch ein Plasmid, das dadurch gekennzeichnet ist, dass es ein yfik-Gen mit einem Promotor enthält.

Des weiteren sind Vektoren besonders bevorzugt die bereits ein Gen/Allel enthalten, dessen Einsatz zu einer Überproduktion von Aminosäuren der Phosphoglycerat-Familie führt, wie beispielsweise das cysEX-Gen (WO97/15673). Solche Vektoren ermöglichen die direkte Herstellung von erfindungsgemäßen Mikroorganismenstämmen mit hoher Aminosäure-Überproduktion aus einem beliebigen Mikroorganismenstamm, da ein solches Plasmid auch

15

20

eine Verminderung der Feedback-Hemmung des Cysteinstoffwechsels in einem Mikroorganismus bewirkt.

Die Erfindung betrifft somit auch ein Plasmid, das dadurch gekennzeichnet ist, daß es ein genetisches Element zur Deregulierung des Cysteinstoffwechsels sowie ein yfik-Gen mit einem Promotor enthält.

Durch eine gängige Transformationsmethode (z.B. Elektroporation) werden die yfik-haltigen Plasmide in Mikroorganismen eingebracht und beispielsweise mittels Antibiotika-Resistenz auf
plasmid-tragende Klone selektiert.

Die Erfindung betrifft somit auch Verfahren zur Herstellung eines erfindungsgemäßen Mikroorganismenstammes, dadurch gekennzeichnet, daß in einen Ausgangsstamm ein erfindungsgemäßes Plasmid eingebracht wird.

Die Produktion von Aminosäuren der Phosphoglycerat-Familie mit Hilfe eines erfindungsgemäßen Mikroorganismenstammes erfolgt in einem Fermenter nach an und für sich bekannten Verfahren.

Die Erfindung betrifft somit auch ein Verfahren zur Herstellung von Aminosäuren der Phosphoglycerat-Familie, welches dadurch gekennzeichnet ist, dass ein erfindungsgemäßer Mikroorganismenstamm in einer Fermentation eingesetzt wird und die produzierte Aminosäure aus dem Fermentationsansatz abgetrennt wird.

Die Anzucht des Mikroorganismenstammes im Fermenter erfolgt als kontinuierliche Kultur, als batch-Kultur oder vorzugsweise als fed-batch-Kultur. Besonders bevorzugt wird eine C-Quelle während der Fermentation kontinuierlich zudosiert.

Als C-Quelle dienen vorzugsweise Zucker, Zuckeralkohole oder organische Säuren. Besonders bevorzugt werden im erfindungsgemäßen Verfahren als C-Quellen Glukose, Laktose oder Glycerin eingesetzt.

10

15

Bevorzugt ist die Dosierung der C-Quelle in einer Form, die gewährleistet, dass der Gehalt an C-Quelle im Fermenter während der Fermentation in einem Bereich von 0,1-50 g/l gehalten wird. Besonders bevorzugt ist ein Bereich von 0,5-10 g/l.

Als N-Quelle werden im erfindungsgemäßen Verfahren vorzugsweise Ammoniak, Ammoniumsalze oder Proteinhydrolysate verwendet. Bei Verwendung von Ammoniak als Korrekturmittel zur pH-Statisierung wird während der Fermentation regelmäßig diese N-Quelle nachdosiert.

Als weitere Medienzusätze können Salze der Elemente Phosphor, Chlor, Natrium, Magnesium, Stickstoff, Kalium, Calcium, Eisen und in Spuren (d.h. in µM Konzentrationen) Salze der Elemente Molybdän, Bor, Kobalt, Mangan, Zink und Nickel zugesetzt werden.

Des weiteren können organische Säuren (z.B. Acetat, Citrat), Aminosäuren (z.B. Isoleucin) und Vitamine (z.B. B1, B6) dem Medium zugesetzt werden.

Als komplexe Nährstoffquellen können z.B. Hefeextrakt, Maisquellwasser, Sojamehl oder Malzextrakt zum Einsatz kommen.

Die Inkubationstemperatur für mesophile Mikroorganismen beträgt vorzugsweise 15 - 45 °C, besonders bevorzugt 30 - 37 °C.

Die Fermentation wird vorzugsweise unter aeroben Wachstumsbedingungen durchgeführt. Der Sauerstoffeintrag in den Fermenter erfolgt mit Pressluft oder mit reinem Sauerstoff.

Der pH-Wert des Fermentationsmediums liegt während der Fermentation bevorzugt im pH-Bereich von 5,0 bis 8,5, besonders bevorzugt ist ein pH-Wert von 7,0. Ist die erfindungsgemäße Herstellung von O-Acetyl-L-Serin gewünscht, liegt der besonders bevorzugte pH-Bereich zwischen 5,5 und 6,5.

10

15

20

30

35

Für die Herstellung von L-Cystein und L-Cystein-Derivaten muß während der Fermentation eine Schwefelquelle zugefüttert werden. Bevorzugt kommen dabei Sulfate oder Thiosulfate zum Einsatz.

Mikroorganismen, die nach dem beschriebenen Verfahren fermentiert werden, sezernieren in einem Batch- oder Fedbatch-Prozess nach einer Anwachsphase in einem Zeitraum von 10 bis 150 Stunden Aminosäuren der Phospoglyerat-Familie in hoher Effizienz in das Kulturmedium.

Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung.

Beispiel 1: Klonierung des yfik-Gens

Das yfik-Gen aus Escherichia coli Stamm W3110 wurde mit Hilfe der Polymerase-Ketten-Reaktion amplifiziert. Als spezifische Primer dienten die Oligonukleotide yfik-fw: (SEQ. ID. NO: 3)
5'-GGA ATT CAT TAA TGA TCC ATA ACC CCA AAC CTA TC-3' und

yfik-rev: (SEQ. ID. NO: 4)
5'-GCC TTA ATT AAG TAG CAA GTT ACT AAG CGG AAG-3'
Das resultierende DNS-Fragment wurde mit den Restriktionsenzymen AsnI und PacI verdaut, mit Hilfe einer AgaroseGelelektrophorese gereinigt und isoliert (Qiaquick Gel Extraction Kit, Qiagen, Hilden, D). Die Klonierung erfolgte durch
Ligation mit einem NdeI/PacI-geschnittenen Vektor pACYC184cysEX-GAPDH, der in EP0885962A1 eingehend beschrieben wurde.
Dieser Vektor enthält ein cysEX-Gen, das für eine Serinacetyltransferase mit verminderter Feedback-Hemmung durch L-Cystein kodiert, und 3'-seitig davon den konstitutiven GAPDH-Promoter des gapA-Gens. Durch das angegebene Vorgehen wird das yfiK-Gen so hinter dem GAPDH-Promotor plaziert, dass die Transkription von dort aus initiert werden kann. Der resultierende Vektor trägt die Bezeichnung pG13 und ist in Abbildung 1 als Über-

10

15

20

30

35

sichtszeichnung gezeigt. Nach der Verifizierung des Konstrukts wurde der Escherichia coli Stamm W3110 transformiert und entsprechende Transformanten mit Tetracyclin selektiert. Der Bakterienstamm Escherichia coli W3110 / pG13 wurde bei der DSMZ (Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, D-38142 Braunschweig) unter der Nummer DSM 15095 gemäß Budapester Vertrag hinterlegt und in folgenden Beispielen als Produktionstamm zur Herstellung von Aminosäuren der Phosphoglycerat-Familie genützt. Als Vergleichsstamm zur Demonstration des Effektes der erhöhten Expression des yfiK-Gens wurde W3110 / pACYC184-cysEX gewählt, der ebenfalls in EP0885962A1 eingehend beschrieben ist, aber im Unterschied zu pG13 keine GAPDH-Promotor-yfiK-Sequenz enthält.

Beispiel 2: Vorkultur des Produktionsstammes

Als Vorkultur für die Fermentation wurden 20 ml LB-Medium (10 g/l Trypton, 5 g/l Hefeextrakt, 10 g/l NaCl), das zusätzlich 15 mg/l Tetracyclin enthielt, mit dem Stamm W3110 / pG13 bzw. W3110 / pACYC184-cysEX beimpft und bei 30°C und 150 rpm in einem Schüttler inkubiert. Nach sieben Stunden wurde der gesamte Ansatz in 100 ml SM1-Medium (12 g/l K₂HPO₄; 3 g/l KH₂PO₄; 5 g/l (NH₄)₂SO₄; 0,3 g/l MgSO₄ x 7 H₂O; 0,015 g/l CaCl₂ x 2 H₂O; 0,002 g/l FeSO₄ x 7 H₂O; 1 g/l Na₃Citrat x 2 H₂O; 0,1 g/l NaCl; 1 ml/l Spurenelementlösung bestehend aus 0,15 g/l Na₂MoO₄ x 2 H₂O; 2,5 g/l Na₃BO₃; 0,7 g/l CoCl₂ x 6 H₂O; 0,25 g/l CuSO₄ x 5 H₂O; 1,6 g/l MnCl₂ x 4 H₂O; 0,3 g/l ZnSO₄ x 7 H₂O), das mit 5 g/l Glukose; 0,5 mg/l Vitamin B₁ und 15 mg/l Tetracyclin supplementiert wurde, überführt. Die weitere Inkubation erfolgte bei 30 °C für 17 Stunden bei 150 rpm.

Beispiel 3: Fermentative Herstellung von O-Acetyl-L-Serin

Als Fermenter diente ein Biostat M-Gerät der Firma Braun Biotech (Melsungen, D) mit einem maximalen Kulturvolumen von 2 l. Mit der in Beispiel 2 beschriebenen Vorkultur (optische Dichte bei 600 nm von ca. 3) wurde der Fermenter mit 900 ml SM1-Medium, das mit 15 g/l Glukose, O,1 g/l Trypton, O,05 g/l He-

10

15

20

30

feextrakt, 0.5 mg/l Vitamin B_1 und 15 mg/l Tetracyclin supplementiert wurde, beimpft. Während der Fermentation wurde eine Temperatur von 32 °C eingestellt und der pH-Wert durch Zudosierung von 25 % Ammoniak bei einem Wert von 6,0 konstant gehalten. Die Kultur wurde mit entkeimter Druckluft bei 1,5 vol/vol/min begast und mit einer Rührerdrehzahl von 200 rpm gerührt. Nach Absinken der Sauerstoffsättigung auf einen Wert von 50 % wurde die Drehzahl über ein Kontrollgerät bis zu einem Wert von 1200 rpm erhöht, um 50 % Sauerstoffsättigung zu erhalten (Bestimmt mit einer pO2-Sonde, kalibriert auf 100% Sättigung bei 900 rpm). Sobald der Glukose-Gehalt im Fermenter von anfänglich 15 g/l auf ca. 5-10 g/l abgesunken war, erfolgte eine Zudosierung einer 56 % Glukose-Lösung. Die Fütterung erfolgte mit einer Flußrate von 6-12 ml/h, wobei die Glukosekonzentration im Fermenter zwischen 0,5 - 10 g/l konstant gehalten wurde. Die Glukose-Bestimmung wurde mit dem Glukoseanalysator der Firma YSI (Yellow Springs, Ohio, USA) durchgeführt. Die Fermentationsdauer betrug 28 Stunden. Nach dieser Zeit wurden Proben entnommen und die Zellen durch Zentrifugation vom Kulturmedium abgetrennt. Die resultierenden Kulturüberstände wurden durch reversed phase HPLC an einer LUNA 5 µ C18(2)-Säule (Phenomenex, Aschaffenburg, Deutschland) bei einer Flußrate von 0,5 ml/min analysiert. Als Eluent diente verdünnte Phosphorsäure (0,1 ml konz. Phosphorsäure / 1). Die Tabelle 1 zeigt die erzielten Gehalte der Hauptstoffwechselprodukte im Kulturüberstand. Diese sind O-Acetyl-L-Serin und N-Acetyl-L-Serin, das bei neutralen bis alkalischen Bedingungen zunehmend durch Isomerisierung aus O-Acetyl-L-Serin entsteht.

Tabelle 1:

Stamm	Aminosäure-	Gehalt [g/l]
	O-Acetyl-L-Serin	N-Acetyl-L-Serin
W3110/pACYC184-cysEX	1,8	1,5
W3110/pG13 (cysEX-yfiK)	7,4	3,0

Beispiel 4: Fermentative Herstellung von N-Acetyl-L-Serin

Für die Herstellung von N-Acetyl-L-Serin wurde genauso wie in Beispiel 2 und 3 verfahren. Lediglich der pH-Wert in der Fermentation wurde auf den Wert 7,0 eingestellt. Dadurch wird die Isomerisierung von O-Acetyl-L-Serin zu N-Acetyl-L-Serin begünstigt und als Hauptprodukt N-Acetyl-L-Serin erhalten. Die Fermentationszeit betrug 48 Stunden.

Tabelle 2:

15

25

30

Stamm	Aminosäure-Gehalt [g/l]
	N-Acetyl-L-Serin
W3110/pACYC184-cysEX	5,8
W3110/pG13 (cysEX-yfiK)	9,2

Beispiel 5: Fermentative Herstellung von L-Cystein und L-Cystein-Derivaten

Für die Herstellung von L-Cystein wurde genauso wie in Beispiel 2 und 3 verfahren. Lediglich der pH-Wert in der Fermentation wurde auf den Wert 7,0 eingestellt und eine Zufütterung von Thiosulfat vorgenommen. Dabei wurde nach zwei Stunden eine Zudosierung einer 30 % Na-Thiosulfat-Lösung mit einer Rate von 3 ml/h vorgenommen. Die Fermentationszeit betrug 48 Stunden. Die Produktion von L-Cystein wurde colorimetrisch mit dem Test von Gaitonde (Gaitonde, M. K. (1967), Biochem. J. 104, 627-633) verfolgt. Dabei ist zu berücksichtigen, daß der Test nicht zwischen L-Cystein und dem in EP 0885962 Al beschriebenen Kondensationsprodukt von L-Cystein und Pyruvat (2-Methylthiazolidin-2,4-dicarbonsäure) diskriminiert. LL-Cystin, das durch Oxidation aus L-Cystein entsteht, wird im Test durch Re-

duktion mit Dithiothreitol (DTT) in verdünnter Lösung bei pH 8,0 ebenfalls als L-Cystein nachgewiesen.

5 Tabelle 3:

Stamm	Aminosäure-Gehalt [g/l]
	L-Cystein + Derivate
W3110/pACYC184-cysEX	4,6
W3110/pG13 (cysEX-yfiK)	7,5

SEQUENZ PROTOKOLL

<110> Consortium fuer elektrochemische Industrie GmbH

5 <120> Verfahren zur fermentativen Herstellung von
Aminosaeuren und Aminosaeure-Derivaten der
Phosphoglycerat-Familie

<130> yfiK

10

<140>

<141>

<160> 4

15

<170> PatentIn Ver. 2.0

<210> 1

<211> 750

20 <212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (110)..(694)

<400> 1

gatccataac cccaaaccta tcgaaaatat cgaatctaga atataaaaac attcattttt 60

30 ttaaatgttc cgtgtcgggt actgtctacc aaaacagagg agataacaa gtg aca ccg 118 $\,$ Val Thr Pro

1

acc ctt tta agt gct ttt tgg act tac acc ctg att acc gct atg acg 166

Thr Leu Leu Ser Ala Phe Trp Thr Tyr Thr Leu Ile Thr Ala Met Thr

5 10 15

cca gga ccg aac aat att ctc gcc ctt agc tct gct acg tcg cat gga 214

	Pro	Gly	Pro	Asn	Asn	Ile	Leu	Ala	Leu	Ser	Ser	Ala	Thr	Ser	His	Gly	
	20					25					30		•			35	
	ttt	cgt	caa	agt	acc	cgc	gtg	ctg	gca	ggg	atg	agt	ctg	gga	ttt	ttg	262
5	Phe	Arg	Gln	Ser	Thr	Arg	Val	Leu	Ala	Gly	Met	Ser	Leu	Gly	Phe	Leu	
					40			•		45					50		
	att	gtg	atg	tta	ctg	tgt	gcg	ggc	att	tca	ttt	tca	ctg	gca	gtg	att	310
	Ile	Val	Met	Leu	Leu	Cys	Ala	Gly	Ile	Ser	Phe	Ser	Leu	Ala	Val	Ile	
10				55					60					65			
				1.	•						•						
	gac	ccg	gca	gcg	gta	cac	ctt	ttg	agt	tgg	gcg	ggg	gcg	gca	tat	att	358
	Asp	Pro	Ala	Ala	Val	His	Leu	Leu	Ser	Trp	Ala	Gly	Ala	Ala	Tyr	Ile	
			70					75					80				
15																	
	gtc	tgg	ctg	gcg	tgg	aaa	atc	gcc	acc	agc	cca	aca	aag	gaa	gac	gga	406
	Val	Trp	Leu	Ala	Trp	Lys	Ile	Ala	Thr	Ser	Pro	Thr	Lys	Glu	Asp	Gly	
		85					90					95					
20	ctt	cag	gca	aaa	cca	atc	agc	ttt	tgg	gcc	agc	ttt	gct	ttg	cag	ttt	454
	Leu	Gln	Ala	Lys	Pro	Ile	Ser	Phe	Trp	Ala	Ser	Phe	Ala	Leu	Gln	Phe	
	100				٠	105					110	,				115	
	gtg	aac	gtc	aaa	atc	att	ttg	tac	ggt	gtt	acg	gca	ctg	tcg	acg	ttt	502
	Val	Asn	Val	Lys	Ile	Ile	Leu	Tyr	Gly	Val	Thr	Ala	Leu	Ser	Thr	Phe	
•					120					125					130		

	gtt	ctg	ccg	caa	aca	cag	gcg	tta	agc	tgg	gta	gtt	ggc	gtc	agc	gtt	550
	Val	Leu	Pro	Gln	Thr	Gln	Ala	Leu	Ser	Trp	Val	Val	Gly	Val	Ser	Val	
30				135					140					145			
	ttg	ctg	gcg	atg	att	ggg	acg	ttt	ggc	aat	gtg	tgc	tgg	gcg	ctg	gcg	598
	Leu	Leu	Ala	Met	Ile	Gly	Thr	Phe	Gly	Asn	Val	Cys	Trp	Ala	Leu	Ala	
			150					155					160				
35																	
			-		cag	_	_		_				_	_			646
	Gly		Leu	Phe	Gln	Arg		Phe	Arg	Gln	Tyr	-	Arg	Gln	Leu	Asn	
		165					170					175					

	atc	gtg	ctt	gcc	ctg	ttg	ctg	gtc	tat	tgc	gcg	gta	cgc	att	ttc	tat	694
	Ile	Val	Leu	Ala	Leu	Leu	Leu	Val	Tyr	Cys	Ala	Val	Arg	Ile	Phe	Tyr	
	180					185					190					195	
5																	
	taad	cgaaa	aaa a	aagco	ggaag	ga go	gtcg	cct	tto	ccgct	ttag	taad	cttg	cta d	cttaa	ag	750
	<210	0> 2															
10	<213	1> 19	95														
	<212	2> PI	RT	=.	•						-					٠.	
	<213	3> Es	schei	richi	ia co	oli											
-																	
	<400	0> 2															
15		Thr	Pro	Thr		Leu	Ser	Ala	Phe	_	Thr	Tyr	Thr	Leu		Thr	
	1				5					10					15		
				_		_	_	_				_	_	_			
	Ala	Met	Thr		Gly	Pro	Asn	Asn		Leu	Ala	Leu	Ser		Ala	Thr	
20				20					25					30			
20	0 -	,,	G 3	D1 .		01	2	ml	7	** - 1	7	2.7	63		2	.	
	ser	HIS	Gly 35	Pne	Arg	GIU	Ser	40	Arg	vaı	Leu	Ата	45	Met	Ser	Leu	
			33					40					45				
	Glv	Phe	Leu	Tle	Val	Met	I.e.ii	T.e.u	Cvs	Δla	G1 v	Tla	Sar	Pho	Sar	T.Au	
s in the second	Gry	50	Deu	116		Mec	55	пец	Cys.	ALG	G± y	60	Der	FILE		пец	
V		•					٥٥,					40				•	
	Ala	Val	Ile	Asp	Pro	Ala	Ala	Val	His	Leu	Leu	Ser	Trp	Ala	Glv	Ala	
	65			•		70					75		-		•	80	
30	Ala	Tyr	Ile	Val	Trp	Leu	Ala	Trp	Lys	Ile	Ala	Thr	Ser	Pro	Thr	Lys	
					85					90					95		
	Glu	Asp	Gly	Leu	Gln	Ala	Lys	Pro	Ile	Ser	Phe	Trp	Ala	Ser	Phe	Ala	
				100					105					110			
35																	
	Leu	Gln	Phe	Val	Asn	Val	Lys	Ile	Ile	Leu	Tyr	Gly	Val	Thr	Ala	Leu	
			115					120					125				

<400> 4

gccttaatta agtagcaagt tactaagcgg aag

Ser Thr Phe Val Leu Pro Gln Thr Gln Ala Leu Ser Trp Val Val Gly 130 135 140 Val Ser Val Leu Leu Ala Met Ile Gly Thr Phe Gly Asn Val Cys Trp 150 155 5 145 Ala Leu Ala Gly His Leu Phe Gln Arg Leu Phe Arg Gln Tyr Gly Arg 170 165 175 10 Gln Leu Asn Ile Val Leu Ala Leu Leu Leu Val Tyr Cys Ala Val Arg 180 185 190 ... Ile Phe Tyr 195 15 <210> 3 <211> 35 <212> DNA 20 <213> Artificial Sequence <220> <223> Primer for PCR <400> 3 ggaattcatt aatgatccat aaccccaaac ctatc 35 <210> 4 30 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer for PCR 35

20

30

Patentansprüche

- 1. Mikroorganismenstamm, der zur fermentativen Herstellung von Aminosäuren der Phosphoglycerat-Familie oder deren Derivaten geeignet ist, herstellbar aus einem Ausgangsstamm, dadurch gekennzeichnet, dass er eine gegenüber dem Ausgangsstamm erhöhte Aktivität eines yfiK-Genprodukts oder eines Genprodukts eines yfiK-Homologs aufweist.
- 2. Mikroorganismenstamm gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich um einen Pilz, eine Hefe oder ein Bakterium, vorzugsweise aus der Familie Enterobacteriaceae, insbesondere bevorzugt der Art Escherichia coli, handelt.
- 3. Mikroorganismenstamm gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kopienzahl das yfik-Gens in dem Mikroorganismus erhöht ist oder die Expression des yfik-Gens durch Einsatz geeigneter Promotoren oder Translationssignale gesteigert wurde.
 - 4. Mikroorganismenstamm gemäß Anspruch 3, dadurch gekennzeichnet, dass der Promotor ausgewählt ist aus der Gruppe konstitutiver GAPDH-Promotor des gapA-Gens, induzierbarer lac-, tac-, trc-, lambda-, ara und tet-Promotor.
 - 5. Mikroorganismenstamm gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich um einen Escherichia coli Stamm handelt, bei dem die erhöhte Aktivität eines yfik-Genprodukts auf der Erhöhung der Kopienzahl des yfik-Gens in einem pACYC-Derivat beruht.
 - 6. Plasmid, dadurch gekennzeichnet, dass es ein yfik-Gen mit einem Promotor enthält.
- 7. Plasmid gemäß Anspruch 6, dadurch gekennzeichnet, dass zusätzlich ein genetisches Element zur Deregulierung des Cysteinstoffwechsels enthält.

8. Verfahren zur Herstellung eines Mikroorganismenstammes gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in einen Ausgangsstamm ein Plasmid gemäß Anspruch 6 oder 7 eingebracht wird.

5

9. Verfahren zur Herstellung einer Aminosäure der Phosphoglycerat-Familie, dadurch gekennzeichnet, dass ein Mikroorganismenstamm gemäß einem der Ansprüche 1 bis 5 in einer Fermentation eingesetzt und die produzierte Aminosäure aus dem
Fermentationsansatz abgetrennt wird.

4

15

10

- 10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass der Mikroorganismenstamm in einem Fermenter als kontinuierliche Kultur, als batch-Kultur oder vorzugsweise als fedbatch-Kultur angezogen wird.
- 11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass eine C-Quelle während der Fermentation kontinuierlich zudosiert wird.

20

12. Verfahren einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass als C-Quelle Zucker, Zuckeralkohole oder organische Säuren dienen.

13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Dosierung der C-Quelle in einer Form erfolgt, die gewährleistet, dass der Gehalt an C-Quelle im Fermenter während der Fermentation in einem Bereich von 0,1 - 50 g/l, besonders bevorzugt ist ein Bereich von 0,5 - 10 g/l gehalten wird.

30

14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass als N-Quelle Ammoniak, Ammoniumsalze oder Proteinhydrolysate verwendet werden.

35

15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass die Fermentation unter aeroben Wachstumsbedingungen erfolgt.

10

Zusammenfassung

Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie

Mikroorganismenstamm, der zur fermentativen Herstellung von Aminosäuren der Phosphoglycerat-Familie oder deren Derivaten geeignet ist, herstellbar aus einem Ausgangsstamm, dadurch gekennzeichnet, dass er eine gegenüber dem Ausgangsstamm erhöhte Aktivität eines yfik-Genprodukts oder eines Genprodukts eines yfik-Homologs aufweist.

Fig. 1: Plasmidkarte von pG13

