Matemática atuarial

Seguros Aula 9

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

https://atuaria.github.io/portalhalley/

SEGUROS DIFERIDOS

- > Produtos atuariais.
 - Seguros de vida vitalício, seguro de vida temporário, seguro dotal puro e seguro dotal.
- Em alguns casos o segurado pode querer que a vigência se inicie alguns anos após a assinatura do contrato de seguro.
- \succ O valor que a seguradora deverá gastar, em média, com o segurado cujo produto começará a vigorar daqui a "m" anos.

Pensemos, inicialmente, no seguro de vida vitalício que paga $1\,u.m.$ Ao final do momento de morte do segurado.

Porém, esse seguro de vida começará a vigorar após "m" anos.

$$b = \begin{cases} 0, & t = 0, 1, 2, ..., m \\ 1, t = m, m + 1, m + 2, ... \end{cases}$$

$$Z_T = \begin{cases} v^{T+1}, T = m, m+1, m+2, \dots \\ 0, & \text{caso contrário} \end{cases}$$

Caso em que T_x é discreto:

$$b = \begin{cases} 0 , t < m \\ 1, t \ge m \end{cases}$$

$$Z_{T_x} = \begin{cases} v^{T+1}, T \ge m \\ 0, \text{ caso contrário} \end{cases}$$

$$a_{m|A_{x}} = E(Z_{T}) = \sum_{j=m}^{\omega-x-m} v^{j+1} {}_{j} p_{x} q_{x+j}$$

Fazendo j = m + t, tem-se:

$$a_{m|A_x} = \sum_{j=m}^{\omega - x - m} v^{j+1} {}_{j} p_x q_{x+j} = \sum_{t=0}^{\omega - x - m} v^{m+t+1} {}_{m+t} p_x q_{x+m+t}$$

Lembrando que $_{m+t}p_{x}=_{m}p_{x}\times _{t}p_{x+m}$, então:

$$_{m|A_x} = \sum_{t=0}^{\omega - x - m} v^{m+t+1} \,_{m} p_{x} \,_{t} p_{x+m} \, q_{x+m+t}$$

$$a_{m|A_{x}} = v^{m} {}_{m} p_{x} \sum_{t=0}^{\omega-x-m} v^{t+1} {}_{t} p_{(x+m)} q_{(x+m)+t}$$

$$_{m|}A_{x}=A_{x:\overline{m|}^{1}}A_{x+m}$$

Seguro de vida **vitalício** para uma pessoa de idade x + m

É, na verdade, o seguro de vida vitalício trazido a valor presente atuarial a data de hoje.

$$_{m|}A_{x} = {}_{m}E_{x}A_{x+m}$$

Outra forma de cálculo do mesmo seguro seria:

Seguro temporário por m anos, para uma pessoa de idade x.

Demonstração:

$$A_{x} = \sum_{t=0}^{\omega - x} v^{t+1} \,_{t} p_{x} q_{x+t}$$

$$A_{x} = \sum_{t=0}^{m-1} v^{t+1} {}_{t} p_{x} q_{x+t} + \sum_{t=m}^{\omega-x-m} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x} = A_{x^{1}:\overline{m|}} + {}_{m|}A_{x}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

EXEMPLO 1: Pensemos no caso de uma pessoa (mulher) de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere a taxa de juros de 4% ao ano, o benefício unitário e as seguintes probabilidade de morte e então calcule o prêmio puro único:

X	q_X	p_x	l_x	
25	0,00037	0,99963	100000	
26	0,00039	0,99961	99963	
27	0,00040	0,99960	99924,01	
28	0,00042	0,99958	99884,04	
29	0,00044	0,99956	99842,09	
30	0,00045	0,99955	99798,16	
31	0,00046	0,99954	99753,25	
32	0,00048	0,99952	99707,37	
33	0,00049	0,99951	99659,51	
34	0,00050	0,99950	99610,67	
35	0,00052	0,99948	99560,87	

EXEMPLO 1: Pensemos no caso de uma pessoa (mulher) de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere a taxa de juros de 4% ao ano, o benefício unitário e as seguintes probabilidade de morte e então calcule o prêmio puro único:

X	q_X	p_x	l_x
25	0,00037	0,99963	100000
26	0,00039	0,99961	99963
27	0,00040	0,99960	99924,01
28	0,00042	0,99958	99884,04
29	0,00044	0,99956	99842,09
30	0,00045	0,99955	99798,16
31	0,00046	0,99954	99753,25
32	0,00048	0,99952	99707,37
33	0,00049	0,99951	99659,51
34	0,00050	0,99950	99610,67
35	0,00052	0,99948	99560,87

Para o caso em que T_x é discreto:

$$b = \begin{cases} 0, \ t < m \\ 1, t \ge m \end{cases}$$

$$Z_{T_x} = \begin{cases} v^{T+1}, T \ge m \\ 0, \text{ caso contrário} \end{cases}$$

$$_{m|A_{x}} = \sum_{t=m}^{\omega-x-m} v^{t+1} \,_{t} p_{x} q_{x+t}$$

$$_{m|}A_{x}=v^{m}_{m}p_{x}A_{x+m}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

- a) Temporário por "n" anos.
- b) Seguro dotal puro.

Dado que b = 1 e T_x discreto.

Unifal Y Universidade Federal de Alfonso Universidade Federal de Alfonso

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

a) Temporário por "n" anos.

Resp.:

O seguro temporário por n para uma pessoa de x anos (caso discreto)

$$A_{x^1:\overline{n}|} = \sum_{t=0}^{n-1} v^{t+1} {}_t p_x q_{x+t}$$

> Temporário

$$a_{m|A_{x^{1}:\overline{n|}}} = \sum_{t=m}^{(m+n)-1} v^{t+1} {}_{t}p_{x}q_{x+t}$$

Fazendo t = m + l, então:

$$_{m|A_{x^{1}:\overline{n|}}} = \sum_{l=0}^{n-1} v^{m+l+1} \,_{(m+l)} p_{x} q_{x+(m+l)} = v^{m} \sum_{l=0}^{n-1} v^{l+1} \,_{(m+l)} p_{x} q_{x+(m+l)}$$

$$m|A_{x^1:\overline{n|}} = v^m \sum_{l=0}^{n-1} v^{l+1} m p_x l p_{x+m} q_{x+m+l}$$

$$m_l A_{x^1:\overline{n_l}} = v^m \, {}_m p_x \sum_{l=0}^{n-1} v^{l+1} \, {}_l p_{(x+m)} \, q_{(x+m)+l}$$

$$_{m|}A_{x^{1}:\overline{n|}}=v^{m}_{m}p_{x}A_{(x+m)^{1}:\overline{n|}}$$

$$_{m|A_{\mathcal{X}^1:\overline{n}|}} = A_{\mathcal{X}^1:\overline{m+n}|} - A_{\mathcal{X}^1:\overline{m}|}$$

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

b) Seguro dotal puro.

Resp.:

O dotal puro por n para uma pessoa de x anos (caso discreto) .

$$A_{x:\overline{n}|^1} = v^n {}_n p_x$$

Dotal Puro

$$m_{\parallel}A_{x:\overline{n}|^{1}} = v^{m} {}_{m}p_{x}A_{x+m:\overline{n}|^{1}} = v^{m} {}_{m}p_{x}(v^{n} {}_{n}p_{x+m})$$
 $m_{\parallel}A_{x:\overline{n}|^{1}} = v^{m+n} {}_{m}p_{x} {}_{n}p_{x+m} = v^{m+n} {}_{m+n}p_{x}$
 $A_{x:\overline{n+m}|^{1}}$

SEGURO de Vida temporário DIFERIDO

$$Z_T = \begin{cases} v^{T+1}, T \ge m \\ 0, \text{ caso contrário} \end{cases}$$

$$Z_T = \begin{cases} v^{T+1}, & m \le T < (m+n) \\ 0, \text{caso contrário} \end{cases}$$

$$_{m|}A_{x} = \sum_{t=m}^{\omega-x-m} v^{t+1} {}_{t}p_{x}q_{x+t}$$

$$_{m|}A_{x} = v^{m} _{m}p_{x}A_{x+m}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

$$_{m|A_{x^{1}:\overline{n}|}} = \sum_{t=m}^{m+n-1} v^{t+1} _{t} p_{x} q_{x+t}$$

$$m|A_{x^1:\overline{n}|} = v^m m p_x A_{(x+m)^1:\overline{n}|}$$

$$_{m|A_{x^1:\overline{n|}}} = A_{x^1:\overline{m+n|}} - A_{x^1:\overline{m|}}$$

EXEMPLO 2: Uma pessoa de 25 anos deseja fazer um seguro com benefício unitário que tenha cobertura de 5 anos, com 3 anos de carência. Considere a taxa de juros de 4% ao ano e a tábua AT-49 e então calcule o prêmio puro único.

Idade	q_X
25	0,00077
26	0,00081
27	0,00085
28	0,00090
29	0,00095
30	0,00100
31	0,00107
32	0,00114
33	0,00121
34	0,00130
35	0,00139

Logo queremos calcular $_{3|}A_{25^{1}:\overline{5}|}$

$$Z_{T_{25}} = \begin{cases} \left(\frac{1}{1+0.04}\right)^{T+1}, 3 \le T < 8\\ 0, \text{ caso contrário} \end{cases}$$

Idade	$q_X =_1 q_X$	$_{1}p_{x}=1{1}q_{x}$	$_{1}l_{x}=\frac{l_{x+1}}{p_{x}}$
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002

SEGUROS VIDA DIFERIDOS – pago no momento da morte

O valor presente atuarial vitalício diferido é:

$$b = \begin{cases} 0 , t < m \\ 1, t \ge m \end{cases} \qquad Z_{T_X} = e^{-\delta T}, T \ge m$$

$$m|\bar{A}_X = \int_m^\infty e^{-\delta t} f_{T_X}(t) dt$$

O valor presente atuarial temporário diferido é

$$b = \begin{cases} 0, & t < m \\ 1, & m \le t \le m+n \end{cases} \quad Z_{T_x} = e^{-\delta T}, m \le T \le m+n$$

$$m|\bar{A}_{x^1:\bar{n}|} = \int_{m}^{m+n} e^{-\delta t} f_{T_x}(t) dt$$

EXEMPLO 3: Determine o valor do prêmio puro único a ser cobrado por um segurado que deseja contratar um seguro que pague 1 u.m. no momento da morte, após 10 anos de carência. Considere que o tempo de vida adicional desse segurado tenha a seguinte função de densidade.

$$f_T(t) = 0.04e^{-0.04t}, t > 0$$

Considere também $\delta = 0.06$.

EXEMPLO 3

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

$$_{10|}\bar{A}_{\chi} = \int_{10}^{\infty} e^{-0.06t} 0.04e^{-0.04t} dt = \int_{10}^{\infty} 0.04e^{-0.1t} dt$$

$$_{10|}\bar{A}_{\chi} = \lim_{t \to \infty} \left(-\frac{0,04}{0,1} e^{-0,1t} \right) + \frac{0,04}{0,1} e^{-0,1(10)}$$

$$_{10}|\bar{A}_{\chi}\approx0.147$$

EXEMPLO 4: Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro único:

		(5+3)-1
de	q_X	$_{3 }A_{25^{1}:\overline{5 }} = \sum_{j} v^{j+1}{}_{j}p_{25}q_{25+j}$
5	0,00077	
5	0,00081	j=3
	0,00085	$_{3 }A_{25^{1}:\overline{5} } = v^{3} _{3}p_{25}A_{28^{1}:\overline{5} }$
3	0,00090	3 -25 :5 31 23-20 :5
)	0,00095	$_{3 }A_{25^{1}:\overline{5} } = A_{25^{1}:\overline{5+3} } - A_{25^{1}:\overline{3} }$
	0,00100	20 .5 20 .5
	0,00107	
	0,00114	
	0,00121	
	0,00130	
	0,00139	

		Ax<- function(i, idade, n,b) {
		pxx <- c(1, cumprod(px[(idade+1):(idade+n-1)
		qxx <- c(qx[(idade+1):(idade+n)])
		v <- (1/(i+1)) ^(1:n)
-		_ Ax <- b* sum(v*pxx*qxx)
Idade	q_X	return (Ax)
25	0,00077	
26	0,00081	Dt< function/i idado n h)(
27	0,00085	Dt<-function(i,idade,n,b){
		v <- 1/(i+1)^n
28	0,00090	npx <- prod(px[(idade+1):(idade+n)])
29	0,00095	Dt <- v*npx*b
30	0,00100	return(Dt) }
31	0,00107	
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	

EXEMPLO 4: Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro único:

		$_{3 }A_{25^{1}:\overline{5} } = v^{3} _{3}p_{25}A_{28^{1}:\overline{5} }$
Idade	q_X	3 23 .5 31 25 26 .5
25	0,00077	$Dt(0.04,25,3,1) \times Ax(0.04,28,5,1)$
26	0,00081	
27	0,00085	
28	0,00090	$_{3 }A_{25^{1}:\overline{5 }} = A_{25^{1}:\overline{5+3 }} - A_{25^{1}:\overline{3 }}$
29	0,00095	nijaiž Unijaiž Unijaiž Ur
30	0,00100	Ax(0.04,25,8,1) - Ax(0.04,25,3,1)
31	0,00107	
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	

EXEMPLO 5: Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro único:

$$_{3|}A_{25} = v^3 \,_{3}p_{25}A_{28}$$

 $Dt(0.04,25,3,1) \times Ax(0.04,28,max(Idade)-28,1)$

$$_{3|}A_{25} = A_{25} - A_{25^1:\overline{3|}}$$

Ax(0.04,25,max(Idade)-25,1)-Ax(0.04,25,3,1)

$$Z_{T} = v^{T+1}, T \ge 0$$

$$A_{x} = \sum_{t=0}^{\infty} Z_{T} t^{p_{x}} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0, 1, 2, \dots, n-1 \\ 0, T = n, n+1, \dots \\ 0, T = 0, 1, 2, \dots, n-1 \end{cases}$$

$$A_{x^{1}:n} = \sum_{t=0}^{n-1} Z_{T} t^{p_{x}} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0, 1, 2, \dots, n-1 \\ 0, T = 0, 1, 2, \dots, n-1 \end{cases}$$

$$A_{x^{n}:n} = \sum_{t=0}^{n-1} Z_{T} t^{p_{x}} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0, 1, \dots, n-1 \\ v^{n}, T = n, n+1, \dots \end{cases}$$

$$Z_{T} = v^{T+1}, T \ge m$$

$$M|A_{x} = \sum_{t=m}^{\infty} Z_{T} t^{p_{x}} q_{x+t}$$

$$M|A_{x} = v^{m} m^{p_{x}} A_{x+m}$$

$$M|A_{x} = v^{m} m^{p_{x}} A_{x+m}$$

$$M|A_{x} = A_{x} - A_{x^{1}:n}| = \sum_{t=m}^{\infty} Z_{T} t^{p_{x}} q_{x+t}$$

$$Z_{T} = v^{T+1}, T \ge m$$

$$Z_{T}$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- BOWERS et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.
- GARCIA, J. A.; SIMÕES, O. A. **Matemática actuarial – Vida e pensões**. 2. ed. Coimbra: Almedina, 2010.

