Weight trimming and weight smoothing methods in surveys

David Haziza

Département de mathématiques et de statistique Université de Montréal

SAMSI Transition Workshop

May 6, 2014

Basic concepts

- Let U be a finite population of size N.
- Goal: estimate the population total, $t_y = \sum_{i \in U} y_i$.

Basic concepts

- Let U be a finite population of size N.
- Goal: estimate the population total, $t_y = \sum_{i \in U} y_i$.
- A sample s is selected according to a sampling design p(s) with inclusion probabilities π_1, \ldots, π_N .

Basic concepts

- Let U be a finite population of size N.
- Goal: estimate the population total, $t_y = \sum_{i \in U} y_i$.
- A sample s is selected according to a sampling design p(s) with inclusion probabilities π_1, \ldots, π_N .
- ullet We consider linear estimators of t_y of the form

$$\widehat{t}_y = \sum_{i \in s} w_i y_i,$$

where w_i is the survey weight attached to unit i.

Weighting in surveys

• Each unit i is assigned a basic (or design) weight. Basic weighting system: $\{d_i = \pi_i^{-1}; i \in s\}$.

Weighting in surveys

- Each unit i is assigned a basic (or design) weight. Basic weighting system: $\{d_i = \pi_i^{-1}; i \in s\}$.
- Nonresponse adjustment: The basic weights of responding units are adjusted to compensate for the non-responding units.

Weighting system adjusted for nonresponse: $\{w_i^* = d_i/\hat{p}_i; i \in s_r\}$, where s_r is the set of sample respondents.

Weighting in surveys

- Each unit i is assigned a basic (or design) weight. Basic weighting system: $\{d_i = \pi_i^{-1}; i \in s\}$.
- Nonresponse adjustment: The basic weights of responding units are adjusted to compensate for the non-responding units.
 - Weighting system adjusted for nonresponse: $\{w_i^* = d_i/\hat{p}_i; i \in s_r\}$, where s_r is the set of sample respondents.
- Calibration adjustment: The weights w_i* are further adjusted to match known population counts.
 Final (or calibrated) weighting system: {w_i = w_i*g_i; i ∈ s_r}.

Steps:
$$d_i \xrightarrow{\text{nra}} w_i^* \xrightarrow{\text{calibration}} w_i$$

• In the absence of nonsampling errors, the basic weighting system $\{d_i = \pi_i^{-1}; i \in s\}$ leads to the Horvitz-Thompson estimator:

$$\widehat{t}_{HT} = \sum_{i \in s} d_i y_i.$$

• In the absence of nonsampling errors, the basic weighting system $\{d_i = \pi_i^{-1}; i \in s\}$ leads to the Horvitz-Thompson estimator:

$$\widehat{t}_{HT} = \sum_{i \in s} d_i y_i.$$

- Properties of the Horvitz-Thompson estimator:
 - design-unbiased for t_y : $E_p(\hat{t}_{HT}) = t_y$.
 - Fixed size sampling designs: if $y_i \propto \pi_i$ then $\hat{t}_{HT} = t_y$ for any sample s; i.e..

$$V_p(\widehat{t}_{HT})=0.$$

• In the absence of nonsampling errors, the basic weighting system $\{d_i = \pi_i^{-1}; i \in s\}$ leads to the Horvitz-Thompson estimator:

$$\widehat{t}_{HT} = \sum_{i \in s} d_i y_i.$$

- Properties of the Horvitz-Thompson estimator:
 - design-unbiased for t_y : $E_p(\hat{t}_{HT}) = t_y$.
 - Fixed size sampling designs: if $y_i \propto \pi_i$ then $\hat{t}_{HT} = t_y$ for any sample s; i.e.,

$$V_p(\widehat{t}_{HT})=0.$$

• We expect \hat{t}_{HT} to be very efficient if y is approximately proportional to π .

• Suppose that a Q-vector of auxiliary variables $\mathbf{x} = (x_1, \dots, x_Q)^\top$ is available for $i \in s$ and that the vector of population totals (benchmarks)

$$\mathbf{t}_{\mathbf{x}} = (t_{x_1}, \dots, t_{x_Q})^{\top}$$

is known, where $t_{\mathsf{x}_q} = \sum_{i \in U} x_{qi}, \quad q = 1, \dots, Q.$

• Suppose that a Q-vector of auxiliary variables $\mathbf{x} = (x_1, \dots, x_Q)^\top$ is available for $i \in s$ and that the vector of population totals (benchmarks)

$$\mathbf{t}_{\mathbf{x}}=(t_{x_1},\ldots,t_{x_Q})^{\top}$$

is known, where $t_{x_q} = \sum_{i \in U} x_{qi}, \quad q = 1, \dots, Q.$

• In the absence of nonsampling errors, the calibrated weighting system $\{w_i = d_i g_i; i \in s\}$ leads to the calibration estimator:

$$\widehat{t}_C = \sum_{i \in s} w_i y_i,$$

where the calibrated weights are such that

$$\sum_{i\in s}w_i\mathbf{x}_i=\mathbf{t}_{\mathbf{x}}.$$

• Suppose that a Q-vector of auxiliary variables $\mathbf{x} = (x_1, \dots, x_Q)^\top$ is available for $i \in s$ and that the vector of population totals (benchmarks)

$$\mathbf{t_x} = (t_{x_1}, \dots, t_{x_Q})^{\top}$$

is known, where $t_{x_q} = \sum_{i \in U} x_{qi}, \quad q = 1, \dots, Q.$

• In the absence of nonsampling errors, the calibrated weighting system $\{w_i = d_i g_i; i \in s\}$ leads to the calibration estimator:

$$\widehat{t}_C = \sum_{i \in s} w_i y_i,$$

where the calibrated weights are such that

$$\sum_{i\in s}w_i\mathbf{x}_i=\mathbf{t}_{\mathbf{x}}.$$

• That is, the calibrated weighting system $\{w_i; i \in s\}$ ensures consistency with known population totals.

- Properties of calibration estimators:
 - asymptotically design-unbiased for t_y : $E_p(\hat{t}_C) \approx t_y$ provided that the sample size n is large enough.
 - If $y_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}$ for a vector of constants $\boldsymbol{\beta}$ (i.e., there exists a perfect relationship between y and \mathbf{x}), then

$$\hat{t}_C = t_y$$

for any sample s; i.e.,

$$MSE_p(\widehat{t}_C) = 0.$$

- Properties of calibration estimators:
 - asymptotically design-unbiased for t_y : $E_p(\hat{t}_C) \approx t_y$ provided that the sample size n is large enough.
 - If $y_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}$ for a vector of constants $\boldsymbol{\beta}$ (i.e., there exists a perfect relationship between y and \mathbf{x}), then

$$\hat{t}_C = t_y$$

for any sample s; i.e.,

$$MSE_p(\widehat{t}_C) = 0.$$

• We expect \hat{t}_C to be very efficient if there is a linear relationship between y and x and the vector x explains the y-variable well.

- Properties of calibration estimators:
 - asymptotically design-unbiased for t_y : $E_p(\hat{t}_C) \approx t_y$ provided that the sample size n is large enough.
 - If $y_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}$ for a vector of constants $\boldsymbol{\beta}$ (i.e., there exists a perfect relationship between y and \mathbf{x}), then

$$\hat{t}_C = t_y$$

for any sample s; i.e.,

$$MSE_p(\widehat{t}_C) = 0.$$

- We expect \hat{t}_C to be very efficient if there is a linear relationship between y and x and the vector x explains the y-variable well.
- The class of calibration estimators includes the Generalized REGression (GREG) estimator as a special case.

• Simplest special case: $x_i = 1$ for all i and $t_x = N$. In this case, \hat{t}_C reduces to the Hàjek estimator

$$\widehat{t}_{HA} = \frac{N}{\widehat{N}_{HT}} \widehat{t}_{HT}$$

with
$$\widehat{N}_{HT} = \sum_{i \in s} d_i$$
.

• Simplest special case: $x_i = 1$ for all i and $t_x = N$. In this case, \hat{t}_C reduces to the Hàjek estimator

$$\widehat{t}_{HA} = \frac{N}{\widehat{N}_{HT}} \widehat{t}_{HT}$$

with $\widehat{N}_{HT} = \sum_{i \in s} d_i$.

- Properties of the Hajek estimator:
 - asymptotically design-unbiased for t_y : $E_p(\hat{t}_{HA}) \approx t_y$ provided that the sample size n is large enough.
 - If $y_i = \beta$ for some constant β then $\hat{t}_{HA} = t_y$ for any sample s; i.e.,

$$MSE_p(\widehat{t}_{HA}) = 0.$$

• Simplest special case: $x_i = 1$ for all i and $t_x = N$. In this case, \hat{t}_C reduces to the Hàjek estimator

$$\widehat{t}_{HA} = \frac{N}{\widehat{N}_{HT}} \widehat{t}_{HT}$$

with $\widehat{N}_{HT} = \sum_{i \in s} d_i$.

- Properties of the Hajek estimator:
 - asymptotically design-unbiased for t_y : $E_p(\hat{t}_{HA}) \approx t_y$ provided that the sample size n is large enough.
 - If $y_i = \beta$ for some constant β then $\hat{t}_{HA} = t_y$ for any sample s; i.e.,

$$MSE_p(\widehat{t}_{HA}) = 0.$$

• We expect the Hàjek estimator to perform well if y_i and π_i are unrelated.

 Large variability in the survey weights is often associated with unstable estimators

- Large variability in the survey weights is often associated with unstable estimators
- Often true but not necessarily true

- Large variability in the survey weights is often associated with unstable estimators
- Often true but not necessarily true
- Counterexamples:
 - Use of \hat{t}_{HT} if $y_i \propto \pi_i$.
 - Use of \hat{t}_{HA} if $y_i = c$.

- Large variability in the survey weights is often associated with unstable estimators
- Often true but not necessarily true
- Counterexamples:
 - Use of \hat{t}_{HT} if $y_i \propto \pi_i$.
 - Use of \hat{t}_{HA} if $y_i = c$.
- Combination of two factors can lead to inefficient estimators:
 - High variation in the weights
 - Poor correlation between the weights and the study variables.
- Early references: Rao (1966) and Basu (1971).

- Large variability in the survey weights is often associated with unstable estimators
- Often true but not necessarily true
- Counterexamples:
 - Use of \hat{t}_{HT} if $y_i \propto \pi_i$.
 - Use of \hat{t}_{HA} if $y_i = c$.
- Combination of two factors can lead to inefficient estimators:
 - High variation in the weights
 - Poor correlation between the weights and the study variables.
- Early references: Rao (1966) and Basu (1971).
- In surveys with multiple characteristics, it is not rare to end up with highly dispersed weights that are poorly related (or even unrelated) to some study variables.

- Large variation in the weights may result from
 - Unequal probability sampling
 - Nonresponse adjustments
 - Calibration adjustments

- Large variation in the weights may result from
 - Unequal probability sampling
 - Nonresponse adjustments
 - Calibration adjustments
- At the nonresponse treatment stage, forming weighting classes may help preventing an extreme variation in the weights.

- Large variation in the weights may result from
 - Unequal probability sampling
 - Nonresponse adjustments
 - Calibration adjustments
- At the nonresponse treatment stage, forming weighting classes may help preventing an extreme variation in the weights.
- At the calibration stage, it's possible to ensure that the calibration adjustment factors lie between pre-specified lower and upper bounds through an appropriate distance function → may also help preventing an extreme variation in the weights.

What can we do to limit the impact of dispersed weights?

- A number of techniques has been proposed in the literature:
 - weight trimming methods;
 - weight smoothing methods;

What can we do to limit the impact of dispersed weights?

- A number of techniques has been proposed in the literature:
 - weight trimming methods;
 - weight smoothing methods;
- Different in nature but share a same objective:
 - modify the survey weights so that the resulting estimators have a lower mean square error than that of the usual estimators (e.g., the Horvitz-Thompson estimator)
 - Reduction of the mean square error is generally achieved at the expense of introducing a bias.
 - Treatment of survey weights: can be viewed as a compromise between bias and variance.

 Weight trimming consists of reducing the weight of units that are identified as influential.

- Weight trimming consists of reducing the weight of units that are identified as influential.
- Influential units are those responsible for the high variance of classical estimators; i.e., the units that contribute significantly to the instability of the estimator.

- Weight trimming consists of reducing the weight of units that are identified as influential.
- Influential units are those responsible for the high variance of classical estimators; i.e., the units that contribute significantly to the instability of the estimator.
- The concept of influential units is not always clearly defined in practice:
 - Units with a large weight w_i?
 - Units with large weighted value w_iy_i?
 - Later, we define an appropriate influence measure called the conditional bias of a unit.

- Weight trimming consists of reducing the weight of units that are identified as influential.
- Influential units are those responsible for the high variance of classical estimators; i.e., the units that contribute significantly to the instability of the estimator.
- The concept of influential units is not always clearly defined in practice:
 - Units with a large weight w_i?
 - Units with large weighted value w_iy_i?
 - Later, we define an appropriate influence measure called the conditional bias of a unit.
- We distinguish between two types of weight trimming methods:
 - the methods based only on the distribution of the survey weights
 - the methods based on the distribution of the weights but that also account for the study variables.

Methods based only on the distribution of the weights

 Idea: units with an extreme weight w_i are influential and are "harmful".

Methods based only on the distribution of the weights

- Idea: units with an extreme weight w_i are influential and are "harmful".
- Let w_0 be a cutpoint.

Methods based only on the distribution of the weights

- Idea: units with an extreme weight w; are influential and are "harmful".
- Let w₀ be a cutpoint.
- The weights after trimming are defined as

$$\widetilde{w}_i = \begin{cases} w_0 & \text{if } w_i \ge w_0 \\ \gamma w_i & \text{if } w_i < w_0 \end{cases}$$

where γ is a rescaling factor that ensures that

$$\sum_{i\in s}\widetilde{w}_i=\sum_{i\in s}w_i.$$

- Idea: units with an extreme weight w; are influential and are "harmful".
- Let w₀ be a cutpoint.
- The weights after trimming are defined as

$$\widetilde{w}_i = \begin{cases} w_0 & \text{if } w_i \ge w_0 \\ \gamma w_i & \text{if } w_i < w_0 \end{cases}$$

where γ is a rescaling factor that ensures that

$$\sum_{i\in s}\widetilde{w}_i=\sum_{i\in s}w_i.$$

ullet The estimator of t_v after trimming is given by

$$\widehat{t}_{trim}(w_0) = \sum_{i \in s} \widetilde{w}_i y_i.$$

• How determine the cutpoint value w_0 ?

- How determine the cutpoint value w_0 ?
- Adhoc method: $w_0 = c\overline{w}$ for some constant c.

- How determine the cutpoint value w_0 ?
- Adhoc method: $w_0 = c\overline{w}$ for some constant c.
- Potter (1988, 1990) provides one of the first formal treatment of weight trimming.

- How determine the cutpoint value w_0 ?
- Adhoc method: $w_0 = c\overline{w}$ for some constant c.
- Potter (1988, 1990) provides one of the first formal treatment of weight trimming.
- Modeling the distribution of the weights: it assumes that the reciprocal of the the scaled sampling weights follows a beta distribution:

$$f(w_i) = \frac{n\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} (1/(nw_i))^{\alpha-1} (1-1/(nw_i))^{\beta-1}$$

• The weights from the upper tail of the distribution, say where $1 - F(w_i) < .01$, are trimmed to w_0 such that $1 - F(w_0) = .01$.

• The NAEP procedure (Potter, 1990): termed NAEP because of its use in the National Assessment of Educational Progress.

- The NAEP procedure (Potter, 1990): termed NAEP because of its use in the National Assessment of Educational Progress.
- It consists of trimming the weights w_i which are larger than

$$w_0 = \sqrt{c \frac{\sum_{i \in s} w_i^2}{n}}$$

for a fixed c.

- The NAEP procedure (Potter, 1990): termed NAEP because of its use in the National Assessment of Educational Progress.
- It consists of trimming the weights w_i which are larger than

$$w_0 = \sqrt{c \frac{\sum_{i \in s} w_i^2}{n}}$$

for a fixed c.

• The procedure is iterated until all the weights are less or equal to the threshold.

- The NAEP procedure (Potter, 1990): termed NAEP because of its use in the National Assessment of Educational Progress.
- It consists of trimming the weights w_i which are larger than

$$w_0 = \sqrt{c \frac{\sum_{i \in s} w_i^2}{n}}$$

for a fixed c.

- The procedure is iterated until all the weights are less or equal to the threshold.
- The excess weight is redistributed among the non-trimmed units.

- The NAEP procedure (Potter, 1990): termed NAEP because of its use in the National Assessment of Educational Progress.
- It consists of trimming the weights w_i which are larger than

$$w_0 = \sqrt{c \frac{\sum_{i \in s} w_i^2}{n}}$$

for a fixed c.

- The procedure is iterated until all the weights are less or equal to the threshold.
- The excess weight is redistributed among the non-trimmed units.
- Value of c: to be chosen empirically by examining the distribution of $nw_i^2/\sum_{i\in S}w_i^2$.

$$\widehat{\textit{MSE}}(\widehat{t}_{\textit{trim}}) = \widehat{V}(\widehat{t}_{\textit{trim}}) + \big(\widehat{t}_{\textit{trim}} - \widehat{t}_{\textit{HT}}\big)^2 - \widehat{V}(\widehat{t}_{\textit{trim}} - \widehat{t}_{\textit{HT}}).$$

• Potter (1990) suggested to find the cutpoint w_0 that minimizes the estimated mean square error of the trimmed estimator $\hat{t}_{trim}(w_0)$:

$$\widehat{\textit{MSE}}(\widehat{t}_{\textit{trim}}) = \widehat{V}(\widehat{t}_{\textit{trim}}) + \big(\widehat{t}_{\textit{trim}} - \widehat{t}_{\textit{HT}}\big)^2 - \widehat{V}(\widehat{t}_{\textit{trim}} - \widehat{t}_{\textit{HT}}).$$

• Optimal trimmed estimator: $\hat{t}_{trim}(w_0^{opt})$.

$$\widehat{\textit{MSE}}(\widehat{t}_{\textit{trim}}) = \widehat{V}(\widehat{t}_{\textit{trim}}) + \big(\widehat{t}_{\textit{trim}} - \widehat{t}_{\textit{HT}}\big)^2 - \widehat{V}(\widehat{t}_{\textit{trim}} - \widehat{t}_{\textit{HT}}).$$

- Optimal trimmed estimator: $\hat{t}_{trim}(w_0^{opt})$.
- Unlike the previous ones, this method accounts for the *y*-variable being estimated.

$$\widehat{\textit{MSE}}(\widehat{t}_{\textit{trim}}) = \widehat{V}(\widehat{t}_{\textit{trim}}) + \big(\widehat{t}_{\textit{trim}} - \widehat{t}_{\textit{HT}}\big)^2 - \widehat{V}(\widehat{t}_{\textit{trim}} - \widehat{t}_{\textit{HT}}).$$

- Optimal trimmed estimator: $\hat{t}_{trim}(w_0^{opt})$.
- Unlike the previous ones, this method accounts for the *y*-variable being estimated.
- An optimal cutpoint w_0^{opt} for a given study variable may be far from optimal for another study variable.

$$\widehat{\mathit{MSE}}(\widehat{t}_{\mathit{trim}}) = \widehat{V}(\widehat{t}_{\mathit{trim}}) + \big(\widehat{t}_{\mathit{trim}} - \widehat{t}_{\mathit{HT}}\big)^2 - \widehat{V}(\widehat{t}_{\mathit{trim}} - \widehat{t}_{\mathit{HT}}).$$

- Optimal trimmed estimator: $\hat{t}_{trim}(w_0^{opt})$.
- Unlike the previous ones, this method accounts for the *y*-variable being estimated.
- An optimal cutpoint w_0^{opt} for a given study variable may be far from optimal for another study variable.
- Minimizing the estimated mean square error is not an easy task, in general.

 Dalén-Tambay winsorization: Dalén (1987) and Tambay (1988) considered the winsorization

$$\widetilde{y}_i = \begin{cases} y_i & \text{if } w_i y_i \leq K \\ \frac{K}{w_i} + \frac{1}{w_i} (y_i - \frac{K}{w_i}) & \text{if } w_i y_i > K \end{cases}$$

 Dalén-Tambay winsorization: Dalén (1987) and Tambay (1988) considered the winsorization

$$\widetilde{y}_i = \begin{cases} y_i \text{ if } w_i y_i \leq K \\ \frac{K}{w_i} + \frac{1}{w_i} (y_i - \frac{K}{w_i}) \text{ if } w_i y_i > K \end{cases}$$

The Dalén-Tambay winsorized estimator is given by

$$\widehat{t}_{DT}(K) = \sum_{i \in s} w_i \widetilde{y}_i = \sum_{i \in s} \widetilde{w}_i y_i,$$

where

$$\widetilde{w}_i = 1 + (w_i - 1) \frac{\min\left(y_i, \frac{K}{w_i}\right)}{y_i} \ge 1$$

 Dalén-Tambay winsorization: Dalén (1987) and Tambay (1988) considered the winsorization

$$\widetilde{y}_i = \begin{cases} y_i \text{ if } w_i y_i \leq K \\ \frac{K}{w_i} + \frac{1}{w_i} (y_i - \frac{K}{w_i}) \text{ if } w_i y_i > K \end{cases}$$

The Dalén-Tambay winsorized estimator is given by

$$\widehat{t}_{DT}(K) = \sum_{i \in s} w_i \widetilde{y}_i = \sum_{i \in s} \widetilde{w}_i y_i,$$

where

$$\widetilde{w}_i = 1 + (w_i - 1) \frac{\min\left(y_i, \frac{K}{w_i}\right)}{y_i} \ge 1$$

• If $min\left(y_i, \frac{K}{w_i}\right) = y_i$, then $\widetilde{w}_i = w_i$.

 Dalén-Tambay winsorization: Dalén (1987) and Tambay (1988) considered the winsorization

$$\widetilde{y}_i = \begin{cases} y_i \text{ if } w_i y_i \leq K \\ \frac{K}{w_i} + \frac{1}{w_i} (y_i - \frac{K}{w_i}) \text{ if } w_i y_i > K \end{cases}$$

The Dalén-Tambay winsorized estimator is given by

$$\widehat{t}_{DT}(K) = \sum_{i \in s} w_i \widetilde{y}_i = \sum_{i \in s} \widetilde{w}_i y_i,$$

where

$$\widetilde{w}_i = 1 + (w_i - 1) \frac{\min\left(y_i, \frac{K}{w_i}\right)}{y_i} \ge 1$$

- If $min\left(y_i, \frac{K}{w_i}\right) = y_i$, then $\widetilde{w}_i = w_i$.
- For an influential unit: $\widetilde{w}_i < w_i$.

 Dalén-Tambay winsorization: Dalén (1987) and Tambay (1988) considered the winsorization

$$\widetilde{y}_i = \begin{cases} y_i \text{ if } w_i y_i \leq K \\ \frac{K}{w_i} + \frac{1}{w_i} (y_i - \frac{K}{w_i}) \text{ if } w_i y_i > K \end{cases}$$

The Dalén-Tambay winsorized estimator is given by

$$\widehat{t}_{DT}(K) = \sum_{i \in s} w_i \widetilde{y}_i = \sum_{i \in s} \widetilde{w}_i y_i,$$

where

$$\widetilde{w}_i = 1 + (w_i - 1) \frac{\min\left(y_i, \frac{K}{w_i}\right)}{y_i} \ge 1$$

- If $min\left(y_i, \frac{K}{w_i}\right) = y_i$, then $\widetilde{w}_i = w_i$.
- For an influential unit: $\widetilde{w}_i < w_i$.
- Nice property: \widetilde{w}_i cannot be smaller than $1.40 \times 10^{-4} \times 10^{-4}$

ullet How to determine the cutpoint K for either the winsorized estimator?

- How to determine the cutpoint K for either the winsorized estimator?
- A bad choice of K may affect the properties of the winsorized estimators considerably ⇒ may even exhibit a mean square error larger than that of classical estimator (e.g., Horvitz-Thompson)!

- How to determine the cutpoint K for either the winsorized estimator?
- A bad choice of K may affect the properties of the winsorized estimators considerably ⇒ may even exhibit a mean square error larger than that of classical estimator (e.g., Horvitz-Thompson)!
- First criterion: the value of *K* is set a priori
 - Generally, not a good idea;
 - Should be determined using a more formal criterion.
- Second criterion: Determine *K* that minimizes the estimated mean square error of the winsorized estimator:

- How to determine the cutpoint K for either the winsorized estimator?
- A bad choice of K may affect the properties of the winsorized estimators considerably ⇒ may even exhibit a mean square error larger than that of classical estimator (e.g., Horvitz-Thompson)!
- First criterion: the value of *K* is set a priori
 - Generally, not a good idea;
 - Should be determined using a more formal criterion.
- Second criterion: Determine *K* that minimizes the estimated mean square error of the winsorized estimator:

- ullet How to determine the cutpoint K for either the winsorized estimator?
- A bad choice of K may affect the properties of the winsorized estimators considerably ⇒ may even exhibit a mean square error larger than that of classical estimator (e.g., Horvitz-Thompson)!
- First criterion: the value of K is set a priori
 - Generally, not a good idea;
 - Should be determined using a more formal criterion.
- Second criterion: Determine *K* that minimizes the estimated mean square error of the winsorized estimator:
 - Requires historical information and/or a model for the study variable;
 - Often requires simplifying assumptions;
 - Complex to implement, in general;
 - Kokic and Bell (1994), Hulliger (1995) and Rivest and Hurtubise (1995).

- Third criterion: find the value of K that minimizes the maximum estimated influence:
 - Does not require historical information or a model;
 - Does not require simplifying assumptions;
 - Easy to implement in practice;
 - see Beaumont, Haziza and Ruiz-Gazen (2013) and Favre-Martinoz, Haziza and Beaumont (2014).

• So far, units exhibiting a large weight w_i (methods of Potter) or a large weighted value $w_i y_i$ (winsorized estimator) were considered as influential.

- So far, units exhibiting a large weight w_i (methods of Potter) or a large weighted value $w_i y_i$ (winsorized estimator) were considered as influential.
- However, these influence measures do not seem to account for
 - the sampling design;
 - the estimator used to estimate t_v ;
 - the parameter to be estimated (total, ratio, etc);
- Alternative influence measure?

 Before defining the concept of influential unit, we define that of configuration.

- Before defining the concept of influential unit, we define that of configuration.
- A configuration is a quadruplet, which consists of
 - (1) a variable of interest;
 - (2) a parameter of interest (to be estimated);
 - (3) a sampling design;
 - (4) a point estimator.

- Before defining the concept of influential unit, we define that of configuration.
- A configuration is a quadruplet, which consists of
 - (1) a variable of interest;
 - (2) a parameter of interest (to be estimated);
 - (3) a sampling design;
 - (4) a point estimator.
- Examples of configurations:
 - (Revenue, total revenue, stratified simple random sampling, HT estimator);

- Before defining the concept of influential unit, we define that of configuration.
- A configuration is a quadruplet, which consists of
 - (1) a variable of interest;
 - (2) a parameter of interest (to be estimated);
 - (3) a sampling design;
 - (4) a point estimator.
- Examples of configurations:
 - (Revenue, total revenue, stratified simple random sampling, HT estimator);
 - (Revenue, total revenue, stratified simple random sampling, calibration estimator);

- Before defining the concept of influential unit, we define that of configuration.
- A configuration is a quadruplet, which consists of
 - (1) a variable of interest;
 - (2) a parameter of interest (to be estimated);
 - (3) a sampling design;
 - (4) a point estimator.
- Examples of configurations:
 - (Revenue, total revenue, stratified simple random sampling, HT estimator);
 - (Revenue, total revenue, stratified simple random sampling, calibration estimator);
 - (Revenue, total revenue, stratified Bernoulli, HT estimator);

- Before defining the concept of influential unit, we define that of configuration.
- A configuration is a quadruplet, which consists of
 - (1) a variable of interest;
 - (2) a parameter of interest (to be estimated);
 - (3) a sampling design;
 - (4) a point estimator.
- Examples of configurations:
 - (Revenue, total revenue, stratified simple random sampling, HT estimator);
 - (Revenue, total revenue, stratified simple random sampling, calibration estimator);
 - (Revenue, total revenue, stratified Bernoulli, HT estimator);
 - (Revenue, Portion of the annual revenue for the first quarter, stratified simple random sampling, HT estimator).

Influential unit

 \bullet Let θ be a parameter to be estimated.

Influential unit

- Let θ be a parameter to be estimated.
- Let $\widehat{\theta}$ be an estimator of θ .

Definition

A unit is influential if, given a configuration, it has a significant impact on the sampling error, $\widehat{\theta}-\theta$.

Influential unit

- Let θ be a parameter to be estimated.
- Let $\widehat{\theta}$ be an estimator of θ .

Definition

A unit is influential if, given a configuration, it has a significant impact on the sampling error, $\hat{\theta} - \theta$.

- An unit may be influential with respect to a configuration and have no influence with respect to another configuration.
- Modifying a single element of the configuration may have a drastic impact on the influence of an unit
- How measure the influence of an unit?

• Let I_i be a sample selection indicator such that $I_i = 1$ if $i \in s$ and $I_i = 0$, otherwise.

- Let I_i be a sample selection indicator such that $I_i = 1$ if $i \in s$ and $I_i = 0$, otherwise.
- Let i be a sample unit (i.e., $I_i = 1$).

- Let I_i be a sample selection indicator such that $I_i = 1$ if $i \in s$ and $I_i = 0$, otherwise.
- Let i be a sample unit (i.e., $I_i = 1$).
- ullet The conditional bias attached to unit i with respect to $\widehat{ heta}$ is defined as

$$B_{1i} = E_p(\widehat{\theta} - \theta | I_i = 1).$$

- Let I_i be a sample selection indicator such that $I_i = 1$ if $i \in s$ and $I_i = 0$, otherwise.
- Let i be a sample unit (i.e., $I_i = 1$).
- ullet The conditional bias attached to unit i with respect to $\widehat{ heta}$ is defined as

$$B_{1i} = E_p(\widehat{\theta} - \theta | I_i = 1).$$

 Interpretation of B_{1i}: average of the sampling error taken among all samples that contain unit i.

- Let I_i be a sample selection indicator such that $I_i = 1$ if $i \in s$ and $I_i = 0$, otherwise.
- Let i be a sample unit (i.e., $I_i = 1$).
- ullet The conditional bias attached to unit i with respect to $\widehat{ heta}$ is defined as

$$B_{1i} = E_p(\widehat{\theta} - \theta | I_i = 1).$$

- Interpretation of B_{1i}: average of the sampling error taken among all samples that contain unit i.
- Conditional bias B_{1i} : measure of influence of a sample unit.
- see Moreno-Rebollo, Munoz-Reyes and Munoz-Pichardo (1999) and Beaumont, Haziza and Ruiz Gazen (2014).

• Let *i* be a nonsampled unit (i.e., $l_i = 0$). The conditional bias of unit *i* with respect to $\widehat{\theta}$ is defined as

$$B_{0i} = E_p(\widehat{\theta} - \theta | I_i = 0).$$

• Let *i* be a nonsampled unit (i.e., $l_i = 0$). The conditional bias of unit *i* with respect to $\widehat{\theta}$ is defined as

$$B_{0i} = E_p(\widehat{\theta} - \theta | I_i = 0).$$

• Interpretation of B_{0i} : average of the sampling error taken among all samples that do not contain unit i.

• Let *i* be a nonsampled unit (i.e., $l_i = 0$). The conditional bias of unit *i* with respect to $\widehat{\theta}$ is defined as

$$B_{0i} = E_p(\widehat{\theta} - \theta | I_i = 0).$$

- Interpretation of B_{0i} : average of the sampling error taken among all samples that do not contain unit i.
- Conditional bias B_{0i} : measure of influence of a nonsampled unit.

• Let *i* be a nonsampled unit (i.e., $l_i = 0$). The conditional bias of unit *i* with respect to $\widehat{\theta}$ is defined as

$$B_{0i} = E_p(\widehat{\theta} - \theta | I_i = 0).$$

- Interpretation of B_{0i} : average of the sampling error taken among all samples that do not contain unit i.
- Conditional bias B_{0i} : measure of influence of a nonsampled unit.
- Although, a nonsample unit can have a large influence, nothing can be done at the estimation stage because its y-value is not observed. At the estimation stage, only the influence of sample units can be curbed down.

Conditional bias: Horvitz-Thompson estimator

- Goal: estimate $t_y = \sum_{i \in U} y_i$
- Horvitz-Thompson estimator of t_y :

$$\widehat{t}_{HT} = \sum_{i \in s} d_i y_i.$$

Conditional bias: Horvitz-Thompson estimator

- Goal: estimate $t_v = \sum_{i \in U} y_i$
- Horvitz-Thompson estimator of t_v:

$$\widehat{t}_{HT} = \sum_{i \in s} d_i y_i.$$

• Conditional bias of sample unit i with respect to \hat{t}_{HT} :

$$B_{1i}^{HT} = E_p(\hat{t}_{HT} - t_y | I_i = 1)$$
$$= \sum_{i \in U} \left(\frac{\pi_{ij} - \pi_i \pi_j}{\pi_i \pi_j} \right) y_j,$$

where $\pi_{ii} = P(i \in s \& j \in s)$ denotes the joint inclusion probability of units i and i in the sample.

• The conditional bias generally depends on the second-order inclusion probabilities, $\pi_{ij} \mapsto$ take the sampling design into account.

- The conditional bias generally depends on the second-order inclusion probabilities, $\pi_{ii} \mapsto$ take the sampling design into account.
- ullet The conditional bias is, in general, unknown o it must be estimated

- The conditional bias generally depends on the second-order inclusion probabilities, $\pi_{ii} \mapsto$ take the sampling design into account.
- ullet The conditional bias is, in general, unknown o it must be estimated
- The influence of unit depends on the *y*-variable being estimated as well as the sampling design.
- If $\pi_i = 1$ then

$$B_{1i}^{HT} = 0.$$

- The conditional bias generally depends on the second-order inclusion probabilities, $\pi_{ij} \mapsto$ take the sampling design into account.
- ullet The conditional bias is, in general, unknown o it must be estimated
- The influence of unit depends on the *y*-variable being estimated as well as the sampling design.
- If $\pi_i = 1$ then

$$B_{1i}^{HT} = 0.$$

• Simple random sampling without replacement: $\pi_i = n/N$ for all i and $\pi_{ij} = n(n-1)/N(N-1)$ for all $i \neq j$.

$$B_{1i}^{HT} = \frac{N}{(N-1)} \left(\frac{N}{n} - 1 \right) (y_i - \overline{Y}),$$

where $\overline{Y} = Y/N$ is the population mean.

• Simple random sampling without replacement: $\pi_i = n/N$ for all i and $\pi_{ii} = n(n-1)/N(N-1)$ for all $i \neq j$.

$$B_{1i}^{HT} = \frac{N}{(N-1)} \left(\frac{N}{n} - 1 \right) (y_i - \overline{Y}),$$

where $\overline{Y} = Y/N$ is the population mean.

• Poisson sampling: $\pi_{ii} = \pi_i \pi_i$, $i \neq j$

$$B_{1i}^{HT} = (d_i - 1)y_i = (d_i - 1)(y_i - 0)$$

• Simple random sampling without replacement: $\pi_i = n/N$ for all i and $\pi_{ii} = n(n-1)/N(N-1)$ for all $i \neq j$.

$$B_{1i}^{HT} = \frac{N}{(N-1)} \left(\frac{N}{n} - 1 \right) (y_i - \overline{Y}),$$

where $\overline{Y} = Y/N$ is the population mean.

• Poisson sampling: $\pi_{ii} = \pi_i \pi_i$, $i \neq j$

$$B_{1i}^{HT} = (d_i - 1)y_i = (d_i - 1)(y_i - 0)$$

Example

Consider a population of size N = 100 such that

$$y_1 = 0, \ y_2 = \cdots = y_{99} = 500 \text{ and } y_{100} = 1000 \Rightarrow \overline{Y} = 500.$$

Example

Consider a population of size N = 100 such that

$$y_1 = 0, \ y_2 = \cdots = y_{99} = 500 \text{ and } y_{100} = 1000 \Rightarrow \overline{Y} = 500.$$

Simple random sampling without replacement: both units 1 and 100 have a large influence because they are both far from the population mean $\overline{Y} = 500$.

$$B_{1i}^{HT} = \frac{N}{(N-1)} \left(\frac{N}{n} - 1 \right) (y_i - \overline{Y})$$

Example

Consider a population of size N = 100 such that

$$y_1 = 0, \ y_2 = \cdots = y_{99} = 500 \text{ and } y_{100} = 1000 \Rightarrow \overline{Y} = 500.$$

Simple random sampling without replacement: both units 1 and 100 have a large influence because they are both far from the population mean $\overline{Y} = 500$.

$$B_{1i}^{HT} = \frac{N}{(N-1)} \left(\frac{N}{n} - 1 \right) (y_i - \overline{Y})$$

Poisson sampling: unit 1 has no influence, whereas unit 100 has a large influence.

$$B_{1i}^{HT} = (d_i - 1)(y_i - 0)$$

4□ > 4□ > 4 = > 4 = > = 900

Poisson sampling vs. simple random sampling without replacement

Link between the conditional bias and the sampling error

• For Poisson sampling, the sampling error can be written as:

$$\hat{t}_{HT} - t_y = \sum_{i \in s} B_{1i}^{HT} + \sum_{i \in U-s} B_{0i}^{HT}.$$

Link between the conditional bias and the sampling error

• For Poisson sampling, the sampling error can be written as:

$$\hat{t}_{HT} - t_y = \sum_{i \in s} B_{1i}^{HT} + \sum_{i \in U-s} B_{0i}^{HT}.$$

 Interpretation: the conditional bias attached to unit i (sampled or not) is a measure of its contribution to the sampling error.

Link between the conditional bias and the sampling error

• For Poisson sampling, the sampling error can be written as:

$$\hat{t}_{HT} - t_y = \sum_{i \in s} B_{1i}^{HT} + \sum_{i \in U-s} B_{0i}^{HT}.$$

- Interpretation: the conditional bias attached to unit i (sampled or not) is a measure of its contribution to the sampling error.
- For simple random sampling without replacement and high entropy sampling designs:

$$\hat{t}_{HT} - t_y \approx \sum_{i \in s} B_{1i}^{HT} + \sum_{i \in U-s} B_{0i}^{HT}.$$

provided that the population size N is large.

Link between the conditional bias and the variance of \hat{t}_{HT}

• For an arbitrary sampling design, the sampling variance of \hat{t}_{HT} is given by:

$$V_{p}(\widehat{t}_{HT}) = \sum_{i \in U} \sum_{j \in U} \left(\frac{\pi_{ij} - \pi_{i}\pi_{j}}{\pi_{i}\pi_{j}} \right) y_{i}y_{j}$$
$$= \sum_{i \in U} B_{1i}^{HT} y_{i}$$

• Conditional bias of \hat{t}_C attached to sample unit i:

$$\begin{array}{rcl} B_{1i}^{C} & = & E_{p}(\widehat{t}_{C} - t_{y} | I_{i} = 1) \\ & \approx & \sum_{j \in U} \left(\frac{\pi_{ij} - \pi_{i} \pi_{j}}{\pi_{i} \pi_{j}} \right) E_{j}, \end{array}$$

where $E_i = y_i - \mathbf{x}_i' \mathbf{B}$ denotes the census residual attached to unit *i*.

• Conditional bias of \hat{t}_C attached to sample unit i:

$$\begin{array}{rcl} B_{1i}^{C} & = & E_{p}(\widehat{t}_{C} - t_{y} | I_{i} = 1) \\ & \approx & \sum_{j \in U} \left(\frac{\pi_{ij} - \pi_{i} \pi_{j}}{\pi_{i} \pi_{j}} \right) E_{j}, \end{array}$$

where $E_i = y_i - \mathbf{x}_i' \mathbf{B}$ denotes the census residual attached to unit *i*.

• Recall: For \hat{t}_C , the conditional bias of unit i was given by the previous expression with y_i instead of E_i .

• Poisson sampling:

$$B_{1i}^C\approx (d_i-1)E_i.$$

• Poisson sampling:

$$B_{1i}^{C} \approx (d_i - 1)E_i$$
.

Simple random sampling without replacement:

$$B_i^C(I_i=1) \approx \frac{N}{(N-1)} \left(\frac{N}{n}-1\right) (E_i-\bar{E})$$

Poisson sampling:

$$B_{1i}^{C} \approx (d_i - 1)E_i$$
.

• Simple random sampling without replacement:

$$B_i^C(I_i=1) \approx \frac{N}{(N-1)} \left(\frac{N}{n}-1\right) (E_i-\bar{E})$$

- Often, we have $\bar{E} = 0$.
- Conclusion: The conditional bias takes the type of estimator into account.

Method based on the conditional bias

- Proposed by Beaumont, Haziza and Ruiz-Gazen (2013).
- Consider a robust estimator of \hat{t}_{HT} :

$$\widehat{t}_{BHR}(K) = \widehat{t}_{HT} - \sum_{i \in s} \widehat{B}_{1i}^{HT} + \sum_{i \in s} \psi_K \left(\widehat{B}_{1i}^{HT}\right)$$

where $\psi_K(\cdot)$ is the Huber function given by

$$\psi_{K}(x) = \begin{cases} K & \text{if } x > K \\ x & \text{if} |x| \le K \\ -K & \text{if } x < -K \end{cases}$$

• Role of the ψ -function: reduce the influence of units that have a large influence.

Method based on the conditional bias

- The tuning constant K may be determined so that it minimizes the estimated mean square error of $\widehat{t}_{BHR}(K) \mapsto$ usually complex without simplifying assumptions.
- Alternative choice of K: determine K which minimizes $\max_{i \in s} \left\{ |\hat{B}^R_{1i}| \right\}$:

$$\hat{t}_{BHR}(K_{opt}) = \hat{t}_{HT} - \frac{1}{2}(\hat{B}_{min}^{HT} + \hat{B}_{max}^{HT}).$$

- Easy to implement.
- $\hat{t}_{BHR}(K_{opt})$ is design-consistent for t_y .

Huber function $\psi_3(x)$ (with K=3)

• Remark: $0 \le \frac{\psi_K(x)}{x} \le 1$.

Method based on the conditional bias

The BHR estimator can be written as

$$\widehat{t}_{BHR}(K_{opt}) = \sum_{i \in s} \widetilde{d}_i y_i,$$

where

$$\widetilde{d}_i = d_i - \frac{\alpha_i}{y_i} \widehat{B}_{1i}^{HT},$$

where

$$\alpha_i = 1 - \psi_K(\widehat{B}_{1i}^{HT}) / \widehat{B}_{1i}^{HT}.$$

• Poisson sampling: $B_{1i}^{HT} = (d_i - 1)y_i$.

• Poisson sampling: $B_{1i}^{HT} = (d_i - 1)y_i$.

$$\widetilde{d}_i = \alpha_i + (1 - \alpha_i)d_i \Rightarrow 1 \leq \widetilde{d}_i \leq d_i$$

• Poisson sampling: $B_{1i}^{HT} = (d_i - 1)y_i$.

$$\widetilde{d}_i = \alpha_i + (1 - \alpha_i)d_i \Rightarrow 1 \leq \widetilde{d}_i \leq d_i$$

• Simple random sampling without replacement (assuming N/(N-1)=1):

• Poisson sampling: $B_{1i}^{HT} = (d_i - 1)y_i$.

$$\widetilde{d}_i = \alpha_i + (1 - \alpha_i)d_i \Rightarrow 1 \leq \widetilde{d}_i \leq d_i$$

• Simple random sampling without replacement (assuming N/(N-1)=1):

$$\widetilde{d}_i = \phi_i + \{1 - \phi_i\} \frac{N}{n},$$

where
$$\phi_{\it i}=lpha_{\it i}\left(rac{y_{\it i}-ar{Y}}{y_{\it i}}
ight)$$

- If $\alpha_i = 0 \Rightarrow \phi_i = 0 \Rightarrow \widetilde{d}_i = N/n$
- If $\alpha_i = 1$

$$\Rightarrow \widetilde{d}_i = 1 + \left(\frac{N}{n} - 1\right) \frac{\overline{Y}}{y_i}.$$

• Weight smoothing: introduced by Beaumont (2008).

- Weight smoothing: introduced by Beaumont (2008).
- Idea: model the weights as a function of the study variables y_1, \ldots, y_p . That is,

$$w_i = f(y_1, \ldots, y_p; \boldsymbol{\beta}) + \epsilon_i.$$

- Weight smoothing: introduced by Beaumont (2008).
- Idea: model the weights as a function of the study variables y_1, \ldots, y_p . That is,

$$w_i = f(y_1, \ldots, y_p; \boldsymbol{\beta}) + \epsilon_i.$$

Obtain the fitted weights:

$$\widehat{w}_i = f(y_1, \ldots, y_p; \widehat{\beta}).$$

- Weight smoothing: introduced by Beaumont (2008).
- Idea: model the weights as a function of the study variables y_1, \ldots, y_p . That is,

$$w_i = f(y_1, \ldots, y_p; \boldsymbol{\beta}) + \epsilon_i.$$

Obtain the fitted weights:

$$\widehat{w}_i = f(y_1, \ldots, y_p; \widehat{\beta}).$$

Smoothed estimator:

$$\widehat{t}_{smooth} = \sum_{i \in s} \widehat{w}_i y_i.$$

- Weight smoothing: introduced by Beaumont (2008).
- Idea: model the weights as a function of the study variables y_1, \ldots, y_p . That is,

$$w_i = f(y_1, \ldots, y_p; \boldsymbol{\beta}) + \epsilon_i.$$

Obtain the fitted weights:

$$\widehat{w}_i = f(y_1, \ldots, y_p; \widehat{\beta}).$$

Smoothed estimator:

$$\widehat{t}_{smooth} = \sum_{i \in s} \widehat{w}_i y_i.$$

Weight trimming vs.weight smoothing

 Weight trimming:trims only the weights of units that are identified as influential, whereas weight smoothing potentially modifies all the weights.

Weight trimming vs.weight smoothing

- Weight trimming:trims only the weights of units that are identified as influential, whereas weight smoothing potentially modifies all the weights.
- Weight trimming does not have to rely on the validity of a model to find the optimal cutpoint, whereas weight smoothing requires a model expressing the relationship between the weights and the study variables. If the model is wrong, the smoothed estimator may be biased.

Weight trimming vs.weight smoothing

- Weight trimming:trims only the weights of units that are identified as influential, whereas weight smoothing potentially modifies all the weights.
- Weight trimming does not have to rely on the validity of a model to find the optimal cutpoint, whereas weight smoothing requires a model expressing the relationship between the weights and the study variables. If the model is wrong, the smoothed estimator may be biased.
- Weight smoothing does require an optimal cutpoint, whereas weight trimming requires an optimal cutpoint for study variable.