Merkblatt zur 4. Übung am 26. September 2023 Thema: Reelle Funktionen

Definition

Eine (reelle) Funktion $f: D_f \to \mathbb{R}$ ist eine Abbildung, die jeder Zahl x aus einer Menge $D_f \subseteq \mathbb{R}$ genau eine Zahl $y \in \mathbb{R}$ zuordnet. Der zugeordnete Wert wird üblicherweise mit f(x) bezeichnet und heißt Funktionswert von f an der Stelle x.

- Die Menge D_f heißt **Definitionsbereich** von f.
- Die Menge $B_f = \{y \in \mathbb{R} \mid \text{ es existiert ein } x \in D_f, \text{ sodass } y = f(x)\}$ (manchmal auch mit $f(D_f)$ bezeichnet) heißt **Bildbereich** von f.
- Die Gleichung y = f(x) nennt man Funktionsgleichung oder Funktionsvorschrift der Funktion f.

Bemerkung: D_f muss nicht unbedingt dem sich aus der Funktionsgleichung ergebenden größtmöglichen Definitionsbereich entsprechen. Zu einer vollständigen Charakterisierung einer Funktion gehört somit neben der Funktionsgleichung auch die Angabe des Definitionsbereichs.

Verschiebung einer Funktion

Es seien g eine reelle Funktion und $a,b \in \mathbb{R}$ Konstanten. Dann geht der Graph der Funktion f mit

- y = f(x) = g(x) + a aus dem Graphen von g durch Verschiebung in y-Richtung um den Wert a hervor (Verschiebung nach oben, falls a > 0; Verschiebung nach unten, falls a < 0),
- y = f(x) = g(x + b) aus dem Graphen von g durch Verschiebung in x-Richtung um den Wert b hervor (Verschiebung nach links, falls b > 0; Verschiebung nach rechts, falls b < 0).

Streckung/Stauchung einer Funktion

Es seien g eine reelle Funktion und a, b > 0 Konstanten. Dann geht der Graph der Funktion f mit

- $y = f(x) = a \cdot g(x)$ aus dem Graphen von g durch Streckung in y-Richtung um den Faktor a hervor,
- y = f(x) = g(bx) aus dem Graphen von g durch Streckung in x-Richtung um den Wert $\frac{1}{b}$ hervor.

Graphen von quadratischen Funktionen

Der Graph einer quadratischen Funkion, das heißt einer Funktion mit einer Vorschrift der Gestalt $f(x) = a(x-b)^2 + c$, ist eine Parabel mit dem Scheitelpunkt (b,c).

Im Falle a>0 ist die Parabel nach oben geöffnet, im Falle a<0 ist sie nach unten geöffnet. Je größer a vom Betrage her ist, desto schmaler ist die Öffnung der Parabel.

Graphen von Betragsfunktionen

Der Graph einer Funktion mit einer Vorschrift der Gestalt f(x) = a|x - b| + c setzt sich aus zwei Strahlen zusammen, deren gemeinsamer Anfangspunkt der Punkt (b, c) ist.

Der linke der beiden Strahlen hat den Anstieg -a, der rechte Strahl hat den Anstieg a. Im Falle

a>0 ist die Funktion bis zur Stelle x=b monoton fallend, danach monoton wachsend. Im Falle a<0 ist es genau umgekehrt.

Ausgewählte Eigenschaften von Funktionen

Sei $f: D_f \to \mathbb{R}$ eine reelle Funktion.

- Nullstellen. Eine Stelle $x_0 \in D_f$ heißt Nullstelle von f, wenn $f(x_0) = 0$ gilt.
- Symmetrie. Angenommen, für jedes $x \in D_f$ ist auch $-x \in D_f$.
 - Falls außerdem f(-x) = f(x) für alle $x \in D_f$ gilt, dann wird f als gerade Funktion bezeichnet. Der Graph einer geraden Funktion ist symmetrisch bzgl. der y-Achse.
 - Falls außerdem f(-x) = -f(x) für alle $x \in D_f$ gilt, dann wird f als ungerade Funktion bezeichnet. Der Graph einer ungeraden Funktion ist symmetrisch bzgl. dem Koordinatenursprung.

• Monotonie.

- Die Funktion f heißt monoton wachsend auf einem Intervall $I \subseteq D_f$, falls für alle $x_1, x_2 \in I$ mit $x_1 < x_2$ gilt: $f(x_1) \le f(x_2)$. Gilt sogar $f(x_1) < f(x_2)$ für alle $x_1, x_2 \in I$ mit $x_1 < x_2$, dann heißt die Funktion streng monoton wachsend.
- Die Funktion f heißt monoton fallend auf einem Intervall $I \subseteq D_f$, falls für alle $x_1, x_2 \in I$ mit $x_1 < x_2$ gilt: $f(x_1) \ge f(x_2)$. Gilt sogar $f(x_1) > f(x_2)$ für alle $x_1, x_2 \in I$ mit $x_1 < x_2$, dann heißt die Funktion streng monoton fallend.

• Eineindeutigkeit, Umkehrfunktion.

- Die Funktion f heißt eineindeutig oder umkehrbar, wenn aus $x_1, x_2 \in D_f$ mit $x_1 \neq x_2$ stets auch $f(x_1) \neq f(x_2)$ folgt (wenn also kein Element aus dem Bildbereich B_f Funktionswert zweier unterschiedlicher Elemente aus D_f ist).
- Ist f eineindeutig, besitzt sie eine Umkehrfunktion. Die Umkehrfunktion von f wird üblicherweise mit f^{-1} bezeichnet. Aber Achtung: Es handelt sich nur um eine Bezeichnung, f^{-1} ist nicht etwa als Potenz zu verstehen!
- Falls f eine Umkehrfunktion f^{-1} besitzt, dann gilt für deren Definitions- und Bildbereich: $D_{f^{-1}} = B_f$ und $B_{f^{-1}} = D_f$.
- Grenzwert an einer Stelle x^* , Stetigkeit. Gegeben sei eine Stelle $x^* \in D_f$.
 - Eine Zahl $a \in \mathbb{R}$ heißt *Grenzwert* von f an der Stelle x^* , wenn es zu jeder Zahl $\varepsilon > 0$ eine Zahl $\delta > 0$ gibt, sodass für alle $x \in D_f \setminus \{x^*\}$ mit $|x x_0| \le \delta$ gilt: $|f(x) a| \le \varepsilon$. Falls a Grenzwert von f an der Stelle x^* ist, schreibt man $\lim_{x \to x^*} f(x) = a$.
 - Um zu untersuchen, ob der Grenzwert von f an der Stelle x^* existiert, ist es oft hilfreich, zunächst zu prüfen, ob linksseitiger Grenzwert $\lim_{x \to x^*-} f(x)$ und rechtsseitiger Grenzwert $\lim_{x \to x^*+} f(x)$ existieren, und diese ggf. zu berechnen (vor allem, wenn f abschnittsweise definiert ist, ist dieses Vorgehen empfehlenswert). Der Grenzwert von f an der Stelle x^* existiert genau dann, wenn links- und rechtsseitiger Grenzwert existieren und übereinstimmen.
 - Die Funktion f heißt stetig an der Stelle x^* , wenn der Grenzwert $\lim_{x \to x^*} f(x)$ existiert und mit dem Funktionswert $f(x^*)$ übereinstimmt.

Die Funktion f heißt stetig (auf ihrem gesamten Definitionsbereich), wenn sie stetig an jeder Stelle $x \in D_f$ ist.

- Arten von Unstetigkeit. Angenommen, f ist an einer Stelle $x^* \in D_f$ nicht stetig.
 - Falls zumindest der Grenzwert $\lim_{x\to x^*} f(x)$ existiert, aber nicht mit dem Funktionswert $f(x^*)$ übereinstimmt, dann liegt an der Stelle x^* eine hebbare Unstetigkeit vor.
 - Falls der linksseitige Grenzwert $\lim_{x \to x^*-} f(x)$ und der rechtsseitige Grenzwert $\lim_{x \to x^*+} f(x)$ beide existieren, aber nicht übereinstimmen, dann ist x^* eine Sprungstelle von f.
 - Falls mindestens einer der beiden einseitigen Grenzwerte $\lim_{x \to x^*-} f(x)$ bzw. $\lim_{x \to x^*+} f(x)$ gleich $+\infty$ oder $-\infty$ ist, dann heißt x^* Polstelle von f.