Basic of ML Supervised Pridictions

Importing the libraries

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
```

Loading the datasets

```
In [ ]: df = pd.read_csv("Salary_Data.csv")
In [ ]: df
```

Out[]:		YearsExperience	Salary
		0	1.1	39343.0
		1	1.3	46205.0
		2	1.5	37731.0
		3	2.0	43525.0
		4	2.2	39891.0
		5	2.9	56642.0
		6	3.0	60150.0
		7	3.2	54445.0
		8	3.2	64445.0
		9	3.7	57189.0
		10	3.9	63218.0
		11	4.0	55794.0
		12	4.0	56957.0
		13	4.1	57081.0
		14	4.5	61111.0
		15	4.9	67938.0
		16	5.1	66029.0
		17	5.3	83088.0
		18	5.9	81363.0
		19	6.0	93940.0
		20	6.8	91738.0
		21	7.1	98273.0
		22	7.9	101302.0
		23	8.2	113812.0
		24	8.7	109431.0
		25	9.0	105582.0
		26	9.5	116969.0
		27	9.6	112635.0
		28	10.3	122391.0
		29	10.5	121872.0

In []: df.shape

Out[]: (30, 2)

```
In [ ]: df.columns
Out[ ]: Index(['YearsExperience', 'Salary'], dtype='object')
```

Check null values in datasets

Checking the datatypes of datasets

Checking the datasets is it predictable datasets or not

```
In [ ]: sns.scatterplot(data=df, x="YearsExperience",y="Salary")
Out[ ]: <Axes: xlabel='YearsExperience', ylabel='Salary'>
```


In []: sns.jointplot(data=df, x="YearsExperience",y="Salary")

Out[]: <seaborn.axisgrid.JointGrid at 0x1ea89703210>

• this is the pridictable datasets

Data Preparation

• Split the data into training and testing sets:

```
In [ ]: x = df["YearsExperience"].values.reshape(-1, 1)
y=df["Salary"]
In [ ]: x
```

```
Out[ ]: array([[ 1.1],
                [ 1.3],
                [ 1.5],
                [ 2. ],
                [ 2.2],
                [ 2.9],
                [ 3. ],
                [ 3.2],
                [ 3.2],
                [ 3.7],
                [ 3.9],
                [ 4. ],
                [ 4. ],
                [ 4.1],
                [ 4.5],
                [ 4.9],
                [ 5.1],
                [ 5.3],
                [ 5.9],
                [ 6. ],
                [ 6.8],
                [ 7.1],
                [ 7.9],
                [ 8.2],
                [ 8.7],
                [ 9. ],
                [ 9.5],
                [ 9.6],
                [10.3],
                [10.5]])
In [ ]: y
```

```
Out[ ]: 0
               39343.0
               46205.0
        1
               37731.0
        3
               43525.0
        4
               39891.0
        5
               56642.0
        6
               60150.0
        7
               54445.0
        8
               64445.0
        9
               57189.0
        10
               63218.0
        11
               55794.0
        12
               56957.0
        13
               57081.0
               61111.0
        14
        15
               67938.0
        16
               66029.0
        17
               83088.0
        18
               81363.0
        19
               93940.0
        20
               91738.0
        21
               98273.0
        22
              101302.0
        23
              113812.0
              109431.0
        24
        25
              105582.0
        26
              116969.0
              112635.0
        27
              122391.0
        28
        29
              121872.0
        Name: Salary, dtype: float64
In [ ]: x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2,random_sta
In [ ]: x_train
```

```
Out[]: array([[ 9.6],
                [ 4. ],
                [ 5.3],
                [ 7.9],
                [ 2.9],
                [ 5.1],
                [ 3.2],
                [ 4.5],
                [ 8.2],
                [ 6.8],
                [ 1.3],
                [10.5],
                [ 3. ],
                [ 2.2],
                [ 5.9],
                [ 6. ],
                [ 3.7],
                [ 3.2],
                [ 9. ],
                [ 2. ],
                [ 1.1],
                [ 7.1],
                [ 4.9],
                [ 4. ]])
In [ ]: x_test
Out[]: array([[ 1.5],
                [10.3],
                [ 4.1],
                [ 3.9],
                [ 9.5],
                [ 8.7]])
In [ ]: y_train
```

```
Out[]: 27 112635.0
       11
            55794.0
            83088.0
       17
       22 101302.0
       5
            56642.0
       16
            66029.0
            64445.0
       14
            61111.0
       23 113812.0
       20
            91738.0
       1
             46205.0
       29
          121872.0
            60150.0
       6
       4
             39891.0
       18
            81363.0
       19
            93940.0
       9
            57189.0
            54445.0
       25 105582.0
       3
            43525.0
            39343.0
       0
       21
            98273.0
       15
            67938.0
       12
            56957.0
       Name: Salary, dtype: float64
In [ ]: y_test
Out[ ]: 2
             37731.0
       28
          122391.0
       13 57081.0
       10
            63218.0
          116969.0
       26
          109431.0
       Name: Salary, dtype: float64
```

Train the Linear Regression Model

• Create and train a simple linear regression model:

Make Predictions

 Use the trained model to make predictions on the test data and also predict the Salary for a Employees who have 8 Years of work experience:

```
In [ ]: # Predict scores on the test data
        y_predict = model.predict(x_test)
        y_predict
Out[]: array([40748.96184072, 122699.62295594, 64961.65717022, 63099.14214487,
               115249.56285456, 107799.50275317])
In [ ]: import numpy as np
        # Predict the salary for a employee who work for 8 Years
        #inputs = int(input("Please input the work experience:: "))
        salary_to_predict = np.array([[8]])
        predicted_salary = model.predict(salary_to_predict)
        predicted_salary
Out[]: array([101280.70016446])
In [ ]: # Calculate evaluation metrics
        mae = mean_absolute_error(y_test, y_predict)
        mse = mean_squared_error(y_test, y_predict)
        r2 = r2_score(y_test, y_predict)
In [ ]: mae
Out[]: 2446.1723690465055
In [ ]: mse
Out[]: 12823412.298126549
In [ ]: r2
```

Out[]: 0.988169515729126