Data release

The ROOT file JointNuMuAntiNuMuCCOpiXsecDataRelease.root contains the data-release for the paper First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K. It contains the one-dimensional histograms (all TH1D) and the covariance matrices (TMatrixTSym<double>) in which are stored the results reported in the associated paper. The histograms are the following:

- hNuMuCC0piXsecLinar is a one-dimensional histogram where every bin is filled with the double differential ν_{μ} CC-0 π cross section for a muon momentum and cosine of the scattering angle reported in Table 1.
- hAntiNuMuCC0piXsecLinar same as before but for the double differential $\bar{\nu}_{\mu}$ CC-0 π cross section.
- hXsecSumLinearResult is the histograms of the sum of the two cross sections.
- hXsecDifLinearResult contains the difference.
- hXsecAsyLinearResult contains the asymmetry.

The covariance matrices of the statistical and systematics uncertainty for the two cross sections and their combinations are the following:

- JointNuMuAntiNuMuCC0piXsecCovMatrixStat is the covariance matrix of the statistical uncertainty associated with the two cross sections. It is a matrix 116×116. The sub-matrix with elements from 0 to 57 refers to the ν_{μ} CC-0 π cross section, while from 58 to 116 to the $\bar{\nu}_{\mu}$ CC-0 π cross section.
- JointNuMuAntiNuMuCCOpiXsecCovMatrixSyst is the covariance matrix of the systematics uncertainty associated with the two cross sections. As before, it is a matrix 116×116 which contains the correlations between the two cross sections.
- covXsecSumStat and covXsecSumSyst are the matrices associated to the sum.
- ullet covXsecDifStat and covXsecDifSyst are the matrices associated to the difference.
- covXsecAsyStat and covXsecAsySyst are the matrices associated to the asymmetry.

The flux used in this analysis can be find here.

Bin index	$\cos \theta_{\mu}$	$p_{\mu} [\mathrm{GeV/c}]$	Bin index	$\cos \theta_{\mu}$	$p_{\mu} [\mathrm{GeV/c}]$
0	-1, 0.2	0, 30	29	0.85, 0.9	0.6, 0.8
1	0.2, 0.6	0, 0.3	30	0.85, 0.9	0.8, 1.0
2	0.2, 0.6	0.3, 0.4	31	0.85, 0.9	1.0, 1.5
3	0.2, 0.6	0.4, 0.5	32	0.85, 0.9	1.5, 30
4	0.2, 0.6	0.5, 0.6	33	0.9, 0.94	0, 0.4
5	0.2, 0.6	0.6, 30	34	0.9, 0.94	0.4, 0.5
6	0.6, 0.7	0, 0.3	35	0.9, 0.94	0.5, 0.6
7	0.6, 0.7	0.3, 0.4	36	0.9, 0.94	0.6, 0.8
8	0.6, 0.7	0.4, 0.5	37	0.9, 0.94	0.8, 1.25
9	0.6, 0.7	0.5, 0.6	38	0.9, 0.94	1.25, 2.0
10	0.6, 0.7	0.6, 0.8	39	0.9, 0.94	2.0, 30
11	0.6, 0.7	0.8, 30	40	0.94, 0.98	0, 0.4
12	0.7, 0.8	0, 0.3	41	0.94, 0.98	0.4, 0.5
13	0.7, 0.8	0.3, 0.4	42	0.94, 0.98	0.5, 0.6
14	0.7, 0.8	0.4, 0.5	43	0.94, 0.98	0.6, 0.8
15	0.7, 0.8	0.5, 0.6	44	0.94, 0.98	0.8, 1.0
16	0.7, 0.8	0.6, 0.8	45	0.94, 0.98	1.0, 1.25
17	0.7, 0.8	0.8, 30	46	0.94, 0.98	1.25, 1.5
18	0.8, 0.85	0, 0.3	47	0.94, 0.98	1.5, 2.0
19	0.8, 0.85	0.3, 0.4	48	0.94, 0.98	2.0, 3.0
20	0.8, 0.85	0.4, 0.5	49	0.94, 0.98	3.0, 30
21	0.8, 0.85	0.5, 0.6	50	0.98, 1.0	0, 0.5
22	0.8, 0.85	0.6, 0.8	51	0.98, 1.0	0.5, 0.7
23	0.8, 0.85	0.8, 1.0	52	0.98, 1.0	0.7, 0.9
24	0.8, 0.85	1.0, 30	53	0.98, 1.0	0.9, 1.25
25	0.85, 0.9	0, 0.3	54	0.98, 1.0	1.25, 2.0
26	0.85, 0.9	0.3, 0.4	55	0.98, 1.0	2.0, 3.0
27	0.85, 0.9	0.4, 0.5	56	0.98, 1.0	3.0, 5.0
28	0.85, 0.9	0.5, 0.6	57	0.98, 1.0	5.0, 30

Table 1: Binning used for the fit to the p_{μ} , $\cos \theta_{\mu}$ distribution and for the definition of the data/MC corrections c_i .