Design Review

FLASH ADC

Alan Rivera 15-12-2023

Especificaciones

Referencias:

- Flash ADC Behzad Razavi
- https://www.electronics-tutorial.net/analog-integrated-circuits/dataconverters/flash-type-adc/
- https://www.semanticscholar.org/paper/Low-Power-and-High-Speed-CMOS-Comparator-for-A-D-A-Kumari-Kumar/7074d7ad974dc4933a87081948ba5e3980702a64

Flash ADC

Comparador

Codificador

Inversor.

Nand.

Sensor infrarrojo – Señal Analógica

- Sensor de Proximidad Infrarrojo IR Modelo E18-D80NK Versión S
- 5V

Sensor → Comparadores → Codificador → Bits

Especificaciones

Señal del sensor	0v – 5v
Transistores	5v
VDD	5v
Vref	5v

Comparador:

- Vref = 3V
- Vbias = 1V
- Transistores genéricos.
- Señal variable.

- Vref = 0.5
- Vref = 4.5

- Vbias.
- Tamaño de transistores.

- Encontrar un Vbias adecuado
- Variar Vbias y Vref en simulación dc.

Vbias entre 0.4 a 0.8

Comparadores en uso:

Codificador de 2 bits:

- XNOR
- AND

Chip USM

♥VDD

Compuerta NAND

Codificador de 2 bits

Diseño mejorable
Comparten Bulk.
NAND y NOT Idénticos.

Comparador

- Fingers.
- Aislación de transistores NFET.

Esquemático FLASHADC

Resistencias

Resistencias

$$W = 2.85$$

- 1000 ohm L = 1.237
- 500 ohm L = 0.524

Layout FLASHADC

Post Layout comparador

Post Layout circuito completo

