

Mathematical Tools of Quantum Mechanics: Introduction to Hilbert Spaces

Dr. M. Arnott

- (a) Identity $I \in \mathfrak{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathfrak{B}(\mathcal{H}; \mathcal{I})$, and any $S \in \mathfrak{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathfrak{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathfrak{B}(\mathcal{K}; \mathcal{I})$ and any $S \in \mathfrak{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}): \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations an reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \equiv \mathcal{K}$ and $\mathcal{L} \equiv \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H})$: $x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T.

 Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K})$: $x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0.

 Remark: The lack of subscript on these operators should not cause confusion but he carefull
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}): \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations an reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}): \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations an reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0.
 - Remark: The lack of subscript on these operators should not cause confusion but he carefull
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}): \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$: $\|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}): \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}): \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}): \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$: $||Tx||_{\mathcal{K}} = ||x||_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$: $||Tx||_{\mathcal{K}} = ||x||_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$: $||Tx||_{\mathcal{K}} = ||x||_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}) : \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}) : \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}) : \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \cong \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{K}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}) : \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy) : prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \cong \mathcal{K}$. (Exercise (medium) : show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{K}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}) : \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy) : prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium) : show that \cong and \cong are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}) : \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \equiv \mathcal{K}$ and $\mathcal{L} \equiv \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}) : \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

- (a) Identity $I \in \mathcal{B}(\mathcal{H}): x \mapsto x$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{H}; \mathcal{J})$, and any $S \in \mathcal{B}(\mathcal{J}; \mathcal{H})$, we have IS = S, TI = T. Zero $0 \in \mathcal{B}(\mathcal{H}; \mathcal{K}): x \mapsto 0$ for all $x \in \mathcal{H}$. For any $T \in \mathcal{B}(\mathcal{K}; \mathcal{J})$ and any $S \in \mathcal{B}(\mathcal{L}; \mathcal{H})$, we have 0S = 0, T0 = 0. Remark: The lack of subscript on these operators should not cause confusion but be careful!
- (b) Hermitian $T \in \mathcal{B}(\mathcal{H})$: $T^* = T$; These operators are also known as *self-adjoint*. Examples: we always have that I and 0 are hermitian. The spectrum of a Hermitian operator is always a subset of \mathbb{R} . Examples: The standard Pauli operations are hermitian.
- (c) Isometry $T \in \mathcal{B}(\mathcal{H};\mathcal{K}) : \|Tx\|_{\mathcal{K}} = \|x\|_{\mathcal{H}}$ for all $x \in \mathcal{H}$. Examples: rotations and reflections in \mathbb{R}^2 are always isometric. An operator $U \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is an isometry if and only if for every $x,y \in \mathcal{H}$, we have that $\langle x,y \rangle = \langle Ux,Uy \rangle$.
- (d) Isomorphism (invertible) $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ such that $\exists S \in \mathcal{B}(\mathcal{K};\mathcal{H})$ with $TS = I_{\mathcal{K}}$ and $ST = I_{\mathcal{H}}$. We write $S = T^{-1}$ in this case. If T is invertible, then T^{-1} is unique (exercise (easy): prove this!). If there exists an isomorphism from \mathcal{H} to \mathcal{K} , we write $\mathcal{H} \cong \mathcal{K}$. If also this isomorphism is an isometry, we write $\mathcal{H} \equiv \mathcal{K}$. (Exercise (medium): show that $\mathcal{L} \cong \mathcal{K}$ and $\mathcal{L} \cong \mathcal{L}$ are equivalence relations on the class of Hilbert spaces.)

(e) Unitary - $U \in \mathcal{B}(\mathcal{H})$ such that $U^{-1} = U^*$. Unitary operators are isometric isomorphisms, but there exist isometries that are not unitary (exercise (easy) prove this!).

In quantum computing, the set of unitary operators on the state space \mathbb{C}^{2^n} form the possible operations applicable to the n qubits of the system.

The set of all unitary operators on a Hilbert space forms a *group* with operator composition and identity *I* (*exercise* (*medium*) : *prove this!*).

The spectrum of a unitary operator is always a subset of the unit circle of \mathbb{C} , i.e.

$$\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\} = \{e^{i\theta} : 0 \le \theta \le 2\pi\}$$

In quantum computing, the set of unitary operators on the state space \mathbb{C}^{2^n} forn the possible operations applicable to the n qubits of the system.

The set of all unitary operators on a Hilbert space forms a *group* with operator composition and identity *I* (exercise (medium): prove this!).

The spectrum of a unitary operator is always a subset of the unit circle of \mathbb{C} , i.e.

$$\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\} = \{e^{i\theta} : 0 \le \theta \le 2\pi\}$$
.

- (e) Unitary $U \in \mathcal{B}(\mathcal{H})$ such that $U^{-1} = U^*$. Unitary operators are isometric isomorphisms, but there exist isometries that are not unitary (exercise (easy) : prove this!).
 - In quantum computing, the set of unitary operators on the state space \mathbb{C}^{2^n} form the possible operations applicable to the n qubits of the system.

The set of all unitary operators on a Hilbert space forms a *group* with operator composition and identity *I* (exercise (medium): prove this!).

The spectrum of a unitary operator is always a subset of the unit circle of \mathbb{C} , i.e.

$$\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\} = \{e^{i\theta} : 0 \le \theta \le 2\pi\}$$
.

(e) Unitary - $U \in \mathcal{B}(\mathcal{H})$ such that $U^{-1} = U^*$. Unitary operators are isometric isomorphisms, but there exist isometries that are not unitary (exercise (easy) : prove this!).

In quantum computing, the set of unitary operators on the state space \mathbb{C}^{2^n} form the possible operations applicable to the n qubits of the system.

The set of all unitary operators on a Hilbert space forms a *group* with operator composition and identity *I* (*exercise* (*medium*) : *prove this!*).

The spectrum of a unitary operator is always a subset of the unit circle of \mathbb{C} , i.e.

$$\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\} = \{e^{i\theta} : 0 \le \theta \le 2\pi\}$$
.

(e) Unitary - $U \in \mathcal{B}(\mathcal{H})$ such that $U^{-1} = U^*$. Unitary operators are isometric isomorphisms, but there exist isometries that are not unitary (exercise (easy) : prove this!).

In quantum computing, the set of unitary operators on the state space \mathbb{C}^{2^n} form the possible operations applicable to the n qubits of the system.

The set of all unitary operators on a Hilbert space forms a *group* with operator composition and identity *I* (exercise (medium) : prove this!).

The spectrum of a unitary operator is always a subset of the unit circle of \mathbb{C} , i.e.

$$\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\} = \{e^{i\theta} : 0 \le \theta \le 2\pi\}$$
.

In quantum computing, the set of unitary operators on the state space \mathbb{C}^{2^n} form the possible operations applicable to the n qubits of the system.

The set of all unitary operators on a Hilbert space forms a *group* with operator composition and identity *I* (exercise (medium) : prove this!).

The spectrum of a unitary operator is always a subset of the unit circle of \mathbb{C} , i.e.

$$\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\} = \{e^{i\theta} : 0 \le \theta \le 2\pi\}$$
.

In quantum computing, the set of unitary operators on the state space \mathbb{C}^{2^n} form the possible operations applicable to the n qubits of the system.

The set of all unitary operators on a Hilbert space forms a *group* with operator composition and identity *I* (exercise (medium) : prove this!).

The spectrum of a unitary operator is always a subset of the unit circle of \mathbb{C} , i.e.

$$\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\} = \{e^{i\theta} : 0 \le \theta \le 2\pi\}$$
.

In quantum computing, the set of unitary operators on the state space \mathbb{C}^{2^n} form the possible operations applicable to the n qubits of the system.

The set of all unitary operators on a Hilbert space forms a *group* with operator composition and identity *I* (exercise (medium) : prove this!).

The spectrum of a unitary operator is always a subset of the unit circle of \mathbb{C} , i.e.

$$\sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\} = \{e^{i\theta} : 0 \le \theta \le 2\pi\}$$
.

- (g) Rank-one $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$.
 - Finite-Rank $T \in \mathcal{B}(\mathcal{H}; \mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathcal{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathcal{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .) Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace \mathcal{L} of \mathcal{H} , there exists another subspace \mathcal{L}^{\perp} for which $\mathcal{L} \oplus \mathcal{L}^{\perp} = \mathcal{H}$. The projection $P_{\mathcal{L}} \in \mathcal{B}(\mathcal{H})$ is the function which maps a sum $I + I' \mapsto I$ for every $I \in \mathcal{L}$ and $I' \in \mathcal{L}^{\perp}$. Projections are idempotent, i.e., $P_{\mathcal{L}}P_{\mathcal{L}} = P_{\mathcal{L}}$. (Exercises (easy) : Show that $P_{\mathcal{L}}P_{\mathcal{L}^{\perp}} = 0$. Show that $\|P_{\mathcal{L}}\| = 1$ if $\{0\} \subsetneq \mathcal{L} \subset \mathcal{H}$.)
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathfrak{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathfrak{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .) Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace \$\mathcal{L}\$ of \$\mathcal{H}\$, there exists another subspace \$\mathcal{L}^\perp \text{ for which \$\mathcal{L} \oplus \mathcal{L}^\perp = \mathcal{H}\$. The projection \$P_\mathcal{L} \oplus \mathcal{B}(\mathcal{H})\$ is the function which maps a sum \$I + I' \operatorname I\$ for every \$I \operatorname \mathcal{L}\$ and \$I' \operatorname \mathcal{L}^\perp\$. Projections are idempotent, i.e., \$P_\mathcal{L}P_\mathcal{L} = P_\mathcal{L}\$.
 (Exercises (easy) : Show that \$P_\mathcal{L}P_\mathcal{L}^\perp = 0\$. Show that \$||P_\mathcal{L}|| = 1\$ if \$\{0\} \operatorname{L} \operatorname{L}\$.
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : ||h|| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathcal{B}(\mathcal{K};\mathcal{T})$ and every $R \in \mathcal{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .) Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace \(\mathcal{L}\) of \(\mathcal{H}\), there exists another subspace \(\mathcal{L}^\perp \) for which \(\mathcal{L} \oplus \mathcal{L}^\perp = \mathcal{H}\). The projection \(P_\mathcal{L} \oplus \mathcal{B}(\mathcal{H})\) is the function which maps a sum \(I + I' \oplus I' \oplus I\) for every \(I \oplus \mathcal{L}\) and \(I' \oplus \mathcal{L}^\perp.\) Projections are idempotent, i.e., \(P_\mathcal{L}P_\mathcal{L} = P_\mathcal{L}\).
 (Exercises (easy): Show that \(P_\mathcal{L}P_\mathcal{L}\perp = 0\). Show that \(\mathcal{H}P_\mathcal{L}\mathcal{H} = 1\) if \(\{0\} \oplus \mathcal{L} \oplus \mathcal{H}\).
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathcal{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathcal{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .) Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace \(\mathcal{L}\) of \(\mathcal{H}\), there exists another subspace \(\mathcal{L}^\perp \) for which \(\mathcal{L} \oplus \mathcal{L}^\perp = \mathcal{H}\). The projection \(P_\mathcal{L} \oplus \mathcal{B}(\mathcal{H})\) is the function which maps a sum \(I + I' \oplus I\) for every \(I \oplus \mathcal{L}\) and \(I' \oplus \mathcal{L}^\perp.\). Projections are idempotent, i.e., \(P_\mathcal{L}P_\mathcal{L} = P_\mathcal{L}\).
 (Exercises (easy) : Show that \(P_\mathcal{L}P_\mathcal{L}\perp = 0\). Show that \(\mathcal{H}P_\mathcal{L}\mathcal{H} = 1\) if \(\{0\} \oplus \mathcal{L} \oplus \mathcal{L}\).
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathcal{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathcal{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .) Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace \(\mathcal{L}\) of \(\mathcal{H}\), there exists another subspace \(\mathcal{L}^\perp \) for which \(\mathcal{L} \oplus \mathcal{L}^\perp = \mathcal{H}\). The projection \(P_\mathcal{L} \oplus \mathcal{B}(\mathcal{H})\) is the function which maps a sum \(I + I' \oplus I\) for every \(I \oplus \mathcal{L}\) and \(I' \oplus \mathcal{L}^\perp.\). Projections are idempotent, i.e., \(P_\mathcal{L}P_\mathcal{L} = P_\mathcal{L}\).
 (Exercises (easy) : Show that \(P_\mathcal{L}P_\mathcal{L}\perp = 0\). Show that \(\mathcal{H}P_\mathcal{L}\mathcal{H} = 1\) if \(\{0\} \oplus \mathcal{L} \oplus \mathcal{L}\).
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathfrak{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathfrak{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .) Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace $\mathcal L$ of $\mathcal H$, there exists another subspace $\mathcal L^\perp$ for which $\mathcal L\oplus\mathcal L^\perp=\mathcal H$. The projection $P_{\mathcal L}\in\mathcal B(\mathcal H)$ is the function which maps a sum $I+I'\mapsto I$ for every $I\in\mathcal L$ and $I'\in\mathcal L^\perp$. Projections are idempotent, i.e., $P_{\mathcal L}P_{\mathcal L}=P_{\mathcal L}$. (Exercises (easy): Show that $P_{\mathcal L}P_{\mathcal L^\perp}=0$. Show that $\|P_{\mathcal L}\|=1$ if $\{0\}\subseteq\mathcal L\subset\mathcal H$.)
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathfrak{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathfrak{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .)Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace \(\mathcal{L}\) of \(\mathcal{H}\), there exists another subspace \(\mathcal{L}^\perp \) for which \(\mathcal{L} \oplus \mathcal{L}^\perp = \mathcal{H}\). The projection \(P_\mathcal{L} \oplus \mathcal{B}(\mathcal{H})\) is the function which maps a sum \(I + I' \oplus I\) for every \(I \oplus \mathcal{L}\) and \(I' \oplus \mathcal{L}^\perp.\). Projections are idempotent, i.e., \(P_\mathcal{L}P_\mathcal{L} = P_\mathcal{L}\).
 (Exercises (easy) : Show that \(P_\mathcal{L}P_\mathcal{L}\perp = 0\). Show that \(\mathcal{H}P_\mathcal{L}\mathcal{H} = 1\) if \(\{0\} \oplus \mathcal{L} \oplus \mathcal{L}\).
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathfrak{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathfrak{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .)Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace \(\mathcal{L}\) of \(\mathcal{H}\), there exists another subspace \(\mathcal{L}^\perp \) for which \(\mathcal{L} \oplus \mathcal{L}^\perp = \mathcal{H}\). The projection \(P_\mathcal{L} \oplus \mathcal{B}(\mathcal{H})\) is the function which maps a sum \(I + I' \oplus I' \oplus I\) for every \(I \oplus \mathcal{L}\) and \(I' \oplus \mathcal{L}^\perp.\) Projections are idempotent, i.e., \(P_\mathcal{L}P_\mathcal{L} = P_\mathcal{L}\).
 (Exercises (easy): Show that \(P_\mathcal{L}P_\mathcal{L}\perp = 0\). Show that \(|P_\mathcal{L}| = 1\) if \(\{0\} \oplus \mathcal{L} \oplus \mathcal{L}\).
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathfrak{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathfrak{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .)Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace \mathcal{L} of \mathcal{H} , there exists another subspace \mathcal{L}^{\perp} for which $\mathcal{L} \oplus \mathcal{L}^{\perp} = \mathcal{H}$. The projection $P_{\mathcal{L}} \in \mathcal{B}(\mathcal{H})$ is the function which maps a sum $I + I' \mapsto I$ for every $I \in \mathcal{L}$ and $I' \in \mathcal{L}^{\perp}$. Projections are idempotent, i.e., $P_{\mathcal{L}}P_{\mathcal{L}} = P_{\mathcal{L}}$. (Exercises (easy): Show that $P_{\mathcal{L}}P_{\mathcal{L}^{\perp}} = 0$. Show that $\|P_{\mathcal{L}}\| = 1$ if $\{0\} \subseteq \mathcal{L} \subseteq \mathcal{H}$.)
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathfrak{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathfrak{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .)Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace $\mathcal L$ of $\mathcal H$, there exists another subspace $\mathcal L^\perp$ for which $\mathcal L\oplus\mathcal L^\perp=\mathcal H$. The projection $P_{\mathcal L}\in\mathcal B(\mathcal H)$ is the function which maps a sum $I+I'\mapsto I$ for every $I\in\mathcal L$ and $I'\in\mathcal L^\perp$. Projections are idempotent, i.e., $P_{\mathcal L}P_{\mathcal L}=P_{\mathcal L}$. (Exercises (easy): Show that $P_{\mathcal L}P_{\mathcal L^\perp}=0$. Show that $\|P_{\mathcal L}\|=1$ if
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathfrak{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathfrak{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .)Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace $\mathcal L$ of $\mathcal H$, there exists another subspace $\mathcal L^\perp$ for which $\mathcal L\oplus\mathcal L^\perp=\mathcal H$. The projection $P_{\mathcal L}\in\mathcal B(\mathcal H)$ is the function which maps a sum $I+I'\mapsto I$ for every $I\in\mathcal L$ and $I'\in\mathcal L^\perp$. Projections are idempotent, i.e., $P_{\mathcal L}P_{\mathcal L}=P_{\mathcal L}$. (Exercises (easy) : Show that $P_{\mathcal L}P_{\mathcal L^\perp}=0$. Show that $\|P_{\mathcal L}\|=1$ if $\{0\}\subsetneq\mathcal L\subset\mathcal H$.)
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathfrak{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathfrak{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .)Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace $\mathcal L$ of $\mathcal H$, there exists another subspace $\mathcal L^\perp$ for which $\mathcal L\oplus\mathcal L^\perp=\mathcal H$. The projection $P_{\mathcal L}\in\mathcal B(\mathcal H)$ is the function which maps a sum $I+I'\mapsto I$ for every $I\in\mathcal L$ and $I'\in\mathcal L^\perp$. Projections are idempotent, i.e., $P_{\mathcal L}P_{\mathcal L}=P_{\mathcal L}$. (Exercises (easy) : Show that $P_{\mathcal L}P_{\mathcal L^\perp}=0$. Show that $\|P_{\mathcal L}\|=1$ if $\{0\}\subsetneq\mathcal L\subset\mathcal H$.)
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathfrak{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathfrak{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .)Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace $\mathcal L$ of $\mathcal H$, there exists another subspace $\mathcal L^\perp$ for which $\mathcal L \oplus \mathcal L^\perp = \mathcal H$. The projection $P_{\mathcal L} \in \mathcal B(\mathcal H)$ is the function which maps a sum $I+I'\mapsto I$ for every $I\in \mathcal L$ and $I'\in \mathcal L^\perp$. Projections are idempotent, i.e., $P_{\mathcal L}P_{\mathcal L}=P_{\mathcal L}$. (Exercises (easy) : Show that $P_{\mathcal L}P_{\mathcal L^\perp}=0$. Show that $\|P_{\mathcal L}\|=1$ if $\{0\}\subsetneq \mathcal L\subset \mathcal H$.)
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people: Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

- (g) Rank-one $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with one-dimensional image. For these operators, there exist $u \in \mathcal{H}$, $v \in \mathcal{K}$ with $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Finite-Rank $T \in \mathcal{B}(\mathcal{H};\mathcal{K})$ with finite-dimensional image. Such operators are always expressible as linear combinations of rank-one operators.
- (h) Compact $T \in \mathfrak{B}(\mathcal{H};\mathcal{K})$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{H}$, there is a convergent subsequence to $(Tx_n)_{n \in \mathbb{N}}$. Equivalently, T is compact if the set $T(B_{\mathcal{H}})$ is compact, where $B_{\mathcal{H}} = \{h \in \mathcal{H} : \|h\| \leq 1\}$. (Exercises (medium) : Show that if T is compact, then so is STR for every $S \in \mathfrak{B}(\mathcal{K};\mathcal{J})$ and every $R \in \mathfrak{B}(\mathcal{L};\mathcal{H})$. Next, show that if T is compact, then so is T^* .)Every finite-rank operator is compact.
- (i) Projection Recall that for every closed subspace $\mathcal L$ of $\mathcal H$, there exists another subspace $\mathcal L^\perp$ for which $\mathcal L\oplus\mathcal L^\perp=\mathcal H$. The projection $P_{\mathcal L}\in\mathcal B(\mathcal H)$ is the function which maps a sum $I+I'\mapsto I$ for every $I\in\mathcal L$ and $I'\in\mathcal L^\perp$. Projections are idempotent, i.e., $P_{\mathcal L}P_{\mathcal L}=P_{\mathcal L}$. (Exercises (easy) : Show that $P_{\mathcal L}P_{\mathcal L^\perp}=0$. Show that $\|P_{\mathcal L}\|=1$ if $\{0\}\subseteq\mathcal L\subset\mathcal H$.)
- (j) Tensor Product -If $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, we write $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ for the operator which acts on pure tensors $h \otimes k$ for $h \in \mathcal{H}$ and $k \in \mathcal{K}$ by $h \otimes k \mapsto Th \otimes Tk$, and extend by linearity. Notice that not every bounded operator on $\mathcal{H} \otimes \mathcal{K}$ is formed in this way. (Intuition for QIS people : Not every gate on a n-qubit system can be deconstructed using only 1-qubit gates, else we would have no entangling gates.)

Thank you for listening!