Zbiory cz. 1

 \vee – lub, \wedge – i/oraz, \Leftrightarrow – wtedy i tylko wtedy, gdy

zbiór – pojęcie pierwotne, nie ma definicji. Intuicyjnie to zestaw, kolekcja pewnych elementów. Zbiory oznaczamy dużymi literami: A, B, C, \ldots , a ich elementy małymi literami: a, b, c, \ldots Elementy zbioru liczbowego wypisujemy między nawiasami klamrowymi $\{\ \}$, oddzielając je przecinkami. Każdą liczbę wypisujemy tylko raz np. $A = \{1, 2, 3\}$.

Zbiór możemy opisać następująco:

- 1) podając warunek, który spełniają jego elementy np. A zbiór możliwych ocen.
- 2) wypisując wszystkie jego elementy np. $A = \{1, 2, 3, 4, 5, 6\}.$
- 3) stosując zapis symboliczny np. $A = \{x : x \text{ jest możliwą do otrzymania oceną}\}$. Czytamy: zbiór A jest zbiorem takich elementów x, że x jest możliwą do otrzymania oceną.

Jeśli np. 3 jest elementem zbioru A, to mówimy, że 3 **należy** do zbioru A, co zapisujemy $3 \in A$. Jeśli 3 nie należy do zbioru A to piszemy $3 \notin A$.

Definicja.

Zbiorem skończonym nazywamy taki zbiór, którego liczba elementów wyraża się liczbą naturalną. W przeciwnym wypadku mówimy o zbiorze nieskończonym. Liczbę elementów zbioru A nazywamy \mathbf{moca} zbioru A i oznaczamy #A (lub $|A|, \overline{\overline{A}}, \operatorname{card} A$)

Definicja.

Zbiorem **pustym** nazywamy zbiór do którego nie należy żaden element. Oznaczamy go symbolem \emptyset (czasami \emptyset).

Definicja.

Zbiory A i B są **równe** \Leftrightarrow każdy element zbioru A należy do zbioru B oraz każdy element zbioru B należy do zbioru A (zapis: A = B).

Definicja.

Zbiór A jest **podzbiorem** zbioru B (A zawiera się w B) \Leftrightarrow każdy element zbioru A jest elementem zbioru B (zapis: $A \subset B$).

Przykład.

Niech
$$P = \{2, 3, 4, 5\}$$
.
 $2 \in P$ ale $\{2\} \subset P$
 $3 \in P$ $\{3\} \subset P$

- należenie to relacja pomiędzy elementami, a zbiorem
- zawieranie to relacja między dwoma zbiorami

Działania na zbiorach

Definicja.

Sumą zbiorów A oraz B nazywamy zbiór tych elementów, które należą do przynajmniej jednego z tych zbiorów (zapis: $A \cup B$).

$$x \in A \cup B \Leftrightarrow x \in A \lor x \in B$$

Definicja.

Różnicą zbiorów A oraz B nazywamy zbiór tych elementów, które należą do zbioru A i nie należą do zbioru B (zapis: $A \setminus B$ lub A - B).

$$x \in A \setminus B \Leftrightarrow x \in A \land x \notin B$$

Definicja.

Częścią wspólną (iloczynem, przecięciem) zbiorów A oraz B nazywamy zbiór tych elementów, które należą jednocześnie do zbioru A i do zbioru B (zapis: $A \cap B$).

$$x \in A \cap B \Leftrightarrow x \in A \land x \in B$$

Definicja.

Niech A będzie zbiorem zawartym w przestrzeni U. **Dopełnie-**niem zbioru A do przestrzeni U nazywamy zbiór tych elementów przestrzeni U, które nie należą do zbioru A (zapis: A').

$$x \in A' \Leftrightarrow x \in U \land x \not\in A$$

Definicja.

Zbiory A i B nazywamy **rozłącznymi**, gdy $A \cap B = \emptyset$.

Twierdzenie (Własności zbiorów).

Niech A to dowolny zbiór. Wtedy:

- 1) $A \subset A$
- $2) \varnothing \subset A$
- 3) $A \cap A' = \emptyset$
- 4) $A \cup A' = U$

Twierdzenie (Prawa rachunku zbiorów).

Niech A, B, C to dowolne zbiory. Wtedy:

- 1) $A \cap B = B \cap A$ przemienność iloczynu
- 2) $A \cup B = B \cup A$ przemienność sumy
- 3) $(A \cap B) \cap C = A \cap (B \cap C)$ łączność iloczynu
- 4) $(A \cup B) \cup C = A \cup (B \cup C)$ łączność sumy
- 5) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ rozdzielność iloczynu względem sumy
- 6) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ rozdzielność sumy względem iloczynu
- 7) $(A \cap B)' = A' \cup B' I$ prawo de Morgana
- 8) $(A \cup B)' = A' \cap B'$ II prawo de Morgana

Twierdzenie (wzór włącz-wyłącz).

Niech A, B, C to dowolne zbiory. Wtedy:

- 1) $\#(A \cup B) = \#A + \#B \#(A \cap B)$,
- 2) $\#(A \cup B \cup C) = \#A + \#B + \#C \#(A \cap B) \#(B \cap C) \#(A \cap C) + \#(A \cap B \cap C)$.

Zbiory liczbowe

- $\mathbb{N} := \{0, 1, 2, 3, \ldots\}$ zbiór liczb naturalnych,
- $\mathbb{Q} := \{x: x = \frac{p}{q} \land p, q \in \mathbb{Z} \land q \neq 0\}$ zbiór liczb wymiernych,
- \mathbb{R} zbiór liczb rzeczywistych,
- $\mathbb{R} \setminus \mathbb{Q}$ zbiór liczb niewymiernych

Prawa działań w \mathbb{R}

- przemienność: a + b = b + a oraz $a \cdot b = b \cdot a$,
- łączność: (a+b)+c=a+(b+c) oraz $(a\cdot b)\cdot c=a\cdot (b\cdot c),$
- element neutralny: a + 0 = a oraz $a \cdot 1 = a$,
- element przeciwny: dla dowolnego a istnieje liczba przeciwna -a, taka że a+(-a)=0,
- element odwrotny: dla dowolnego $a \neq 0$ istnieje jej odwrotność $\frac{1}{a}$, taka że $a \cdot \frac{1}{a} = 1$,
- rozdzielność mnożenia względem dodawania: $a \cdot (b+c) = a \cdot b + a \cdot c$.

Definicja.

Przedziałem **otwartym** o końcach $a, b \ (a < b)$ nazywamy zbiór wszystkich liczb rzeczywistych większych od a i jednocześnie mniejszych od b (zapis: (a,b)).

Definicja.

Przedziałem **domkniętym** o końcach a,b (a < b) nazywamy zbiór wszystkich liczb rzeczywistych większych bądź równych od a i jednocześnie mniejszych bądź równych od b (zapis: [a,b] lub $\langle a,b\rangle$).

Definicja.

Przedziałem lewostronnie otwartym nieograniczonym nazywamy zbiór wszystkich liczb rzeczywistych większych od a (zapis: $(a, +\infty)$).

Uwaga.

Symbol $+\infty$ oraz $-\infty$ nie oznacza żadnej liczby rzeczywistej.

Definicja.

Liczba całkowita a jest podzielna przez liczbę całkowitą $b \neq 0 \Leftrightarrow$ istnieje liczba całkowita k, taka że a = kb. Liczbę b nazywamy dzielnikiem liczby a (zapis: $b \mid a$).

Definicja.

Liczbą **pierwszą** nazywamy każdą liczbę naturalną n większą od 1, której jedynymi dzielnikami naturalnymi są 1 oraz n. Liczbą **złożoną** nazywamy każdą liczbę naturalną większą od 1, która nie jest pierwsza.

Uwaga.

Liczby 0 oraz 1 nie są ani pierwsze, ani złożone.

Twierdzenie (O dzieleniu z resztą).

Dla liczb całkowitych a i b ($b \neq 0$) istnieje dokładnie jedna para liczb całkowitych q i r, taka że a = bq + r oraz $0 \leq r < |b|$,

Uwaga.

Reszta z dzielenia jest zawsze nieujemna.

Przykład.

- 13:5=2 r. 3, bo $13=5\cdot 2+3$ i $0 \le 3 < 5$,
- -13:5=-3 r. 2, bo $-13=5\cdot(-3)+2$ i $0 \le 2 < 5$,
- 13: (-5) = -2 r. 3, bo $13 = (-5) \cdot (-2) + 3 \text{ i } 0 \le 3 < |-5|$,
- -13: (-5) = 3 r. 2, bo $-13 = (-5) \cdot 3 + 2 \text{ i } 0 \le 2 < |-5|$.

Definicja.

Liczby $a, b \in \mathbb{Z}$ nazywamy względnie pierwszymi, gdy NWD(a, b) = 1.

Twierdzenie (Cechy podzielności).

Liczba całkowita jest podzielna

- przez 2 wtedy i tylko wtedy, gdy jej ostatnią cyfrą jest 0 lub 2 lub 4 lub 6 lub 8.
- przez 3 wtedy i tylko wtedy, gdy suma jej cyfr¹ jest podzielna przez 3.
- przez 4 wtedy i tylko wtedy, gdy liczba utworzona z ostatnich dwóch cyfr jest podzielna przez 4.
- przez 5 wtedy i tylko wtedy, gdy jej ostatnią cyfrą jest 0 lub 5.
- przez 6 wtedy i tylko wtedy, gdy jest podzielna przez 2 i przez 3.
- **przez 7** wtedy i tylko wtedy, suma cyfr mnożonych (od prawej) przez kolejne potęgi trójki (licząc z potęgą zerową)² jest podzielna przez 7.
- przez 8 wtedy i tylko wtedy, gdy liczba utworzona z ostatnich trzech cyfr jest podzielna przez 8.
- przez 9 wtedy i tylko wtedy, gdy suma jej cyfr jest podzielna przez 9.
- przez 10 wtedy i tylko wtedy, gdy jej ostatnią cyfrą jest 0.
- przez 11 wtedy i tylko wtedy, gdy różnica pomiędzy sumą cyfr stojących na miejscach nieparzystych, a sumą cyfr stojących na miejscach parzystych jest podzielna przez 11.

¹Puryści językowi uważają za niepoprawne sformułowanie "suma cyfr", gdyż cyfry to znaki graficzne, a dodawać można tylko liczby. Można je jednak uznać za swoisty matematyczny idiom (czyli zwrot o znaczeniu innym niż dosłowne), gdyż jest krótki, prosty i powszechnie zrozumiały.

²Zauważmy, że jest to to samo co powiedzenie, że w rozwinięciu dziesiętnym danej liczby zamienimy potęgi dziesiątki na potęgi trójki.