Continuous Functions

An Example

Let's take a function $f:[0,1] \to \mathbb{R}$ with $f(x) = \sin 1/x$ if $x \neq 0$ and f(0) = 0. Intuitively we know that f has a limit at all points in (0,1] but not at 0.

The function f:[a,b] o R has a limit $l\in R$ at $x_0\in [a,b]$ if $orall \epsilon>0\ \exists \delta>0\ (x\in [a,b]\wedge |x-x_0|<\delta \implies |f(x)-l|<\epsilon)$

We write this as $\lim_{x \to x_0} f(x) = l$

The function f in the previous example has a limit for each $x_0\in(0,1]$ with $\lim_{x\to x_0}f(x)=\sin 1/x_0$ but f has no limit at $x_0=0$

The limit of a function at a point, if it exists, is unique

Suppose the two functions f,g:[a,b] o R have limits $k\in R$ and $l\in R$ respectively at $x_0\in [a,b]$

 $f \pm g$ has limit $k \pm l$ at x_0 .

The product $f \cdot g$ has limit kl at x_0 .

If $l \neq 0$, then f/g has limit k/l at x_0 .

Continuity

Let $f:[a,b] \to R$ be a function and x in R

- ullet We say f is continuous at $x_0 \in [a,b]$ if $\lim_{x o x_0} f(x) = f(x_0)$
- We say that f is continuous in [a,b] iff f is continuous at all $x_0 \in [a,b]$

Proposition 19

If the two functions $f,g:[a,b] \to \mathbb{R}$ *are continuous at* $x_0 \in [a,b]$ *, then we have:*

- $f \pm g$ is continuous at x_0 .
- The product $f \cdot g$ is continuous at x_0 .
- If $g(x_0) \neq 0$, then f/g is continuous at x_0 .

Suppose $f, g: (a, b) \to R$ are continuous functions. Then, we have:

- For any real number λ , the function $\lambda f:(a,b)\to R$ with $(\lambda f)(x)=\lambda f(x)$ is continuous
- f+g:(a,b) o R with (f+g)(x)=f(x)+g(x) and fg:(a,b) o R with (fg)(x)=f(x)g(x) are continuous
- If $f(x_0)
 eq 0$ for some $x_0 \in (a,b)$ then g/f with (g/f)(x) = g(x)/f(x) is continuous at x_0

Suppose $f:(a,b)\to R$ is a function with $x_0\in(a,b)$ and $g:(c,d)\to R$ is a function with $Im(f)\subset(c,d)$. If f is continuous at x_0 and g is continuous at $f(x_0)$, then the composition $g\circ f:(a,b)\to R$ with $(g\circ f)(x_0)=g(f(x_0))$ is continuous at x_0

Maxima and Minima

If f:[a,b] o R is a continuous function, f has a maximum and a minimum in [a,b]

In particular a continuous function on a closed interval [a,b] is bounded, i.e., there exists K>0 such that |f(x)|< K for all $x\in [a,b]$

If however f is only continuous in (a,b] then it may not attain its supremum or infimum. For example the function $f:(0,1]\to R$ with f(x)=1/x does not have a maximum and, in fact, no supremum over real numbers. On the other hand the identity function $g:[0,1)\to R$ with g(x)=x has a supremum 1 in [0,1) but the supremum is not attained in [0,1)

In addition, the theorem is in general false if the interval is unbounded such as $[0,\infty)$

For example the identity map has clearly no maximum or supremum in $[0,\infty)$

Intermediate Value theorem

A continuous function takes all values between any pair of its values

If $f:[a,b] \to R$ is continuous and $s \in R$ is such that f(a) < s < f(b), then there exists $c \in (a,b)$ such that f(c) = s

Uniform Continuity

Another key property of a continuous function on a closed bounded interval [a,b] is that it is uniformly continuous. We say that $f:A\to R$ is uniformly continuous on A if $\forall \epsilon>0 \ \exists \delta>0 \ \forall x,x_0\in A \ (|x-x_0|<\delta\to|f(x)-f(x_0)|<\epsilon)$ In other words $\delta>0$ is independent of $x_0\in A$

Example 28

The function $f:[a,b] \to \mathbb{R}$ with $f(x)=x^2$ is uniformly continuous. In fact, let $\epsilon > 0$ be given. Then $|f(x)-f(x_0)| = |x^2-x_0^2| = |x-x_0||x+x_0| \le 2M|x-x_0|$ where $M=\max(|a|,|b|)$. Thus, for $\delta = \epsilon/(2M)$ we get $|x-x_0| < \delta$ implies $|x^2-x_0^2| < \epsilon$.

Theorem 23

If $f:[a,b] \to \mathbb{R}$, for $a,b \in \mathbb{R}$, is continuous, then it is uniformly continuous on [a,b], i.e., for each $\epsilon > 0$ there exists $\delta > 0$ such that for all $x, x_0 \in [a,b]$ we have $|f(x) - f(x_0)| < \epsilon$ if $|x - x_0| < \delta$.

If a function is continuous on a closed interval, then it is uniformly continuous

Intuitively, you can see, by considering the function $f:(0,1]\to\infty$ with f(x)=1/x, why uniform continuity can fail if the function is continuous on an interval such as (0,1] that is not closed: As x_0 gets close to 0, the difference $|f(x)-f(x_0)|$ can become arbitrary large no matter how close x is to x_0 , i.e., no matter how small a value for $\delta>0$ you choose in $|x-x_0|<\delta$