Neyman Pearson Detector for Variance Detection

Sai Krishna Charan Dara (20171140)

April 2020

Outline

- Errors in Detection
- Trade Off between Errors
- Neyman Pearson Theorem
- Proof
- Real Case Scenario : Example 1
- Real Case Scenario : Example 2
- Applications
- References

False Alarm and Missed detection?

False Alarm

- Also called Type-I Error. H_0 is true but we decide H_1 .
- Raising an alarm that signal is present even it is not there, hence
 False Alarm.

Missed Detection

- Also called Type-II Error. H_1 is true but we decide H_0 .
- Missed signal detection even if signal is present, hence Missed Detection.

Trade Off between False Alarm and Missed Detection

Left One

• Large threshold; small probability of false match (red), but a lot of misses (blue).Less P_{FA} and less $P_D(1-P_{MD})$.

Right One

• Small threshold; only a few missed detections (blue), but a huge number of false matches. (red). More P_{FA} and more $P_D(1-P_{MD})$.

Ideally: Less P_{FA} and more $P_D!!$

Neyman-Pearson Theorem

- Since P_{FA} and P_D depend on each other, we would like to maximize P_D subject to given maximum allowed P_{FA} .
- ullet Neyman Pearson theorem provides a region with **maximum** P_D for a given P_{FA}

Theorem

$$L(\underline{x}) = \frac{p(\underline{x}; H_1)}{p(\underline{x}; H_0)} > \gamma,$$

where the threshold γ is found by

$$extbf{\textit{P}_{FA}} = \int\limits_{R_1:L(\underline{\mathbf{X}})>\gamma} p(\underline{\mathbf{x}};H_0)d\underline{\mathbf{x}} = \alpha \text{ then } extbf{\textit{P}_{D}} = \int\limits_{R_1:L(\underline{\mathbf{X}})>\gamma} p(\underline{\mathbf{x}};H_1)d\underline{\mathbf{x}}$$

Proof..

We can use Lagrangian multipliers to maximize P_D for a given P_{FA} . Forming the Lagrangain

Optimization Problem

$$F = P_D + \lambda (P_{FA} - \alpha)$$

$$= \int_{R_1} p(\underline{x}; H_1) d\underline{x} + \lambda (\int_{R_1} p(\underline{x}; H_0) d\underline{x} - \alpha)$$

$$= \int_{R_1} (p(\underline{x}; H_1) + \lambda p(\underline{x}; H_0)) d\underline{x} - \lambda \alpha$$
(1)

To maximize equation we should include x in R_1 if that integrand is positive for that value of x or if $p(\underline{x}; H_1) + \lambda p(\underline{x}; H_0) > 0$.

$$L(\underline{\mathbf{x}}) = \frac{\rho(\underline{\mathbf{x}}; H_1)}{\rho(\underline{\mathbf{x}}; H_0)} > -\lambda => L(\underline{\mathbf{x}}) = \frac{\rho(\underline{\mathbf{x}}; H_1)}{\rho(\underline{\mathbf{x}}; H_0)} > \gamma \text{ with } \gamma > 0$$

Neyman Pearson Detector for detection of variance

Real Case Scenario: Problem Statement

There are two air crafts present in space and there is a base station present on earth. There is a condition that only one of the two air crafts will be in the region specified by the base station. If $\operatorname{aircraft}\ (1)$ is present, it sends a sample from normally distributed distribution with mean 0 and variance $\sigma_0^2=1$ and when $\operatorname{aircraft}\ (2)$ is present, it sends a sample from same distribution but with variance $\sigma_1^2=4$. It is observed that near base station at t=0s, t=2s and t=4s, we received three samples 0.5 1 and -3. Test which air crafts are possibly present at t=0s, t=2s and t=4s. Assume Probability of False Alarm =0.4.

Problem solving approach

- $H_0: \mathsf{x}[0] \sim \mathcal{N}(0, \sigma_0^2)$. Null Hypothesis
- $H_1: \mathsf{x}[0] \sim \mathcal{N}(0,\,\sigma_1^2)$. Alternative Hypothesis

By using Neyman Pearson approach,

$$L(\underline{x}) = \frac{p(\underline{x}; H_1)}{p(\underline{x}; H_0)} > \gamma,$$

$$p(x[0]; H_0) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp(\frac{-x[0]^2}{2\sigma_0^2}) \ p(x[0]; H_1) = \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp(\frac{-x[0]^2}{2\sigma_1^2})$$

Solving, we finally get
$$x[0]^2 > (2 \log_e \gamma + \log \frac{\sigma_1^2}{\sigma_0^2})/(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}) = \gamma^1$$

So we decide R_1 when $|x[0]| > \sqrt{\gamma^1}$ where γ^1 can be calculated from given $P_{FA} = 0.4$. $P_{FA} = \int_{0.1}^{\infty} p(x[0]; H_0) dx[0] = \alpha = 0.4$.

$$2Q(\frac{\sqrt{\gamma^1}}{\sigma_0}) = \alpha = \gamma^1 = \sigma_0^2 (Q^{-1}(\alpha/2))^2$$

Probability of detection

P_D

• Probability of detection $P_D = \int\limits_{R_1:|x[0]|>\sqrt{\gamma^1}} p(x[0];H_1)dx[0] = 2Q(\frac{\sqrt{\gamma^1}}{\sigma_1})$

Given Parameter substitution

- Calculated $\gamma^1 = 0.7083263008007937$
- Calculated $P_D = 0.8333513498891151$

Testing given Sample Points

- We accept Hypothesis H_1 when $|x[0]| > \sqrt{\gamma^1}$ else accept Hypothesis H_0
- So sample 0.5 belongs to H_0 . (Accepting Null Hypothesis).
- So sample 1 belongs to H_1 . (Rejecting Null Hypothesis).
- So sample -3 belongs to H_1 . (Rejecting Null Hypothesis).

Looking Graphically

Receiver Operating Characteristiccs (ROC)

Neyman Pearson Detector for detection of variance

Real Case Scenario 2: Problem Statement

There are two air crafts present in space and there is a base station present on earth. There is a condition that only one of the two air crafts will be in the region specified by the base station. If $\operatorname{aircraft}\ (1)$ is present, it sends N= 1000 samples from normally distributed distribution with mean 0 and variance $\sigma_0^2=1$ and when $\operatorname{aircraft}\ (2)$ is present, it sends 1000 samples from same distribution but with variance $\sigma_1^2=4$. It is observed that at time tsec, 1000 samples are detected by base station. Test which air craft is present at given time. Assume Probability of False Alarm is 0.3.

Problem solving approach

- $H_0: \mathsf{x}[\mathsf{n}] \sim \mathcal{N}(0, \sigma_0^2)$. Null Hypothesis
- $H_1: \mathsf{x}[\mathsf{n}] \sim \mathcal{N}(\mathsf{0},\,\sigma_1^2)$. Alternative Hypothesis

By using Neyman Pearson approach,

$$L(\underline{x}) = \frac{p(\underline{x}; H_1)}{p(\underline{x}; H_0)} > \gamma,$$

$$p(\underline{x}; H_0) = \prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp(\frac{-x[n]^2}{2\sigma_0^2}) \ p(\underline{x}; H_1) = \prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp(\frac{-x[n]^2}{2\sigma_1^2})$$

Solving, we finally get
$$T(\underline{x}) = \sum_{n=0}^{N-1} \frac{x[n]^2}{\sigma_0^2} > \gamma^1 = > \text{We decide } H_1$$

Contd...

- $H_0: T(\underline{x}) \sim \chi^2(N)$.
- $H_1: T(\underline{x}) \sim \Gamma(k = N/2, \theta = 2 * \frac{\sigma_1^2}{\sigma_0^2})$ where k is the shape parameter and θ is the scale parameter.
- $P_{FA} = \int\limits_{R_1:T(\underline{\mathbf{X}})>\gamma^1} p(T(\underline{\mathbf{X}});H_0)d\underline{\mathbf{X}} = \alpha = 0.3.$ So γ^1 is $\chi^2_{N,\alpha}$
- $P_D = \int\limits_{R_1:T(X)>\gamma^1} p(T(\underline{x}); H_1) d\underline{x}$

Testing Hypothesis

- Reject H_0 when $:T(\underline{x}) > \chi^2_{N,\alpha}$
- So we compute $T(\underline{x})$ from the samples from aircraft and compare with $\chi^2_{N,\alpha}$ to test hypothesis.

Numerical Calculations

Solved Numericals

- Calculated $\chi^2_{N,\alpha}$ is 1022.9598734718893
- Calculated P_D is 1.0 for a given P_{FA} =0.3

Testing Given Samples

- For testing purpose I generated 1000 random samples from normal distribution of mean 0 and standard Deviation 2.
- Calculated test statistic value is 3814.087438239313.
- ullet So we reject Null Hypothesis and Accept Alternative hypothesis H_1 .

Looking Graphically

Figure: Regions H1 and H0; H0 is chi2 H1 is gamma

Receiver Operating Characteristics

Figure: ROC curve

Other applications of Neyman Pearson Detector

Applications

- Useful in electronics engineering, namely in the design and use of radar systems, digital communication systems, and in signal processing systems
- Economics of land value (the land parcel with the largest utility, whose price is at most his budget).
- Applied to the construction of analysis-specific likelihood-ratios.

References

Thank you