

Vertiefung der Grundlagen der Computerlinguistik

Vorträge

Wintersemester 2019/2020

Centrum für Informations- und Sprachverarbeitung

Luisa März

Presentation

• Who is presenting when?

Datum	Thema	Personen
07.01.20	Phonetik/ Phonologie	Amelung/Möller
09.01.20	Vektoren und Matrizen	Worm/ Yuan
	Lineare Systeme	Jungmaier/ Soares de Souza
14.01.20	Orthogonalität/Orthonormalität	Kacicnik/ Pigasova
	Chain Rule	Sherstneva/ Siegel
16.01.20	Singular Value Decomposition	Hu/ Kocal
	Tensor decomposition	Schmidhuber/ Spiel
21.01.20	K-Means	Bai/ Ledda
	Regularisierung/ Normen	Melnikova/ Nguyen
23.01.20	Latent Semantic Indexing	Drach/ Min
	Page Rank	Babl/ Bachmaier
28.01.20	Hidden Markov Modelle	Caldwell/ Daltchev/ Walner
	Semantik	Bodendörfer/ Reed
20.01.20	Pragmatik	Cui/ Hua
	Morphologie/ Syntax	Wang/ Wassermayr

How to present you topic?

Group presentations

- 30 Minute presentation
- 15 Minutes for questions

Presentation - Before you start

- Ask yourself questions, such as
 - What is the message of the topic/ presentation?
 - What is the mathematical/linguistical background
 - What should people take home?
- Summarize some initial ideas into concrete bullet points
- Start organizing these points into a logical structure

Presentation - Possible structure

- Overview
- Data resources
- Implementation/ Methods
- Experiments/ Analyses and results
- Conclusion
- References

Overview

The purpose of the overview

- To interest the students
- To clearly identify what your presentation will address and to quickly bring the students to the edge of knowledge in the field the presentation adresses

Implementation/ Methods

- Clearly describe the framework/ methods wich you have used
- An overview figure is helpful to show the structure of the methods
- Describe each component of the framework
- Use standard mathematical terms
- Work with examples

Conclusion

- Conclusion DOES NOT introduce any new information or insights
- This should contain two important parts
 - Summary of the presentation
 - Drawing the most important conlcusions

Presentation

- You might make a plan who is presenting what
 - Make sure that everyone has a chance to present what she/ he examined
 - Make a dry run of the presentation and take the time