SRM2B256SLMX55/70/10

256K-BIT STATIC RAM

- Wide Temperature Range
- Extremely Low Standby Current
- Access Time 100ns (2.7V) 55ns (4.5V)
- 32,768 Words × 8-Bit Asynchronous

The SRM2B256SLMX is a low voltage operating 32,768 words \times 8-bit asynchronous, static, random access memory fabricated using an advanced CMOS technology. Its very low standby power consumption makes it ideal for applications requiring non-volatile storage with back-up batteries, and -25 to 85°C operating temperature range makes it ideal for industrial use. The asynchronous and static nature of the memory requires no external clock or refresh circuit. 3-state output ports allow easy expansion of memory capacity. These features make the SRM2B256SLMX usable for a wide range of applications, from microprocessor systems to terminal devices.

FFATIIDES

FEA	TURES	
•	Wide temperature range	–25 to 85°C
•	Extended supply voltage range	2.7 to 5.5V
•	Fast access time	100ns (3V ± 10%) 55ns (5V ± 10%)
•	Extremely low standby current	SL Version
•	Completely static	No clock required
•	3-state output	
•	Battery back-up operation	
•	Package	SRM2B256SLCX DIP2-28pin (plastic) SRM2B256SLMX SOP2-28pin (plastic) SRM2B256SLTMX TSOP (I)-28pin (plastic) SRM2B256SLRMX TSOP (I)-28pin-R1 (plastic)

■ BLOCK DIAGRAM

■ PIN CONFIGURATION

■ PIN DESCRIPTION

A0 to A14	Address input
WE	Write Enable
ŌĒ	Output Enable
cs	Chip Select
I/O1 to I/O8	Data I/O
V DD	Power Supply (2.7V to 5.5V)
Vss	Power Supply (0V)

■ ABSOLUTE MAXIMUM RATINGS

Vss = 0V

Parameter	Symbol	Rating	Unit
Supply voltage	V DD	-0.5 to 7.0	V
Input voltage	Vı	-0.5* to 7.0	V
Input/output voltage	V I/O	-0.5* to VDD + 0.3	V
Power dissipation	PD	1.0	w
Operating temperature	Topr	-25 to 85	°C
Storage temperature	Tstg	-65 to 150	°C
Soldering temperature and time	Tsol	260°C, 10s (Lead only)	_

^{*} V_{I} , V_{I} /O (Min.) = -3.0V when pulse width is less or equal to 50ns

■ DC RECOMMENDED OPERATING CONDITIONS

Vss = 0V, Ta = -25 to 85°C

Davamatav	Symbol	V	DD = 3V ± 10	1%	Vı	Unit		
Parameter	Syllibol	Min.	Тур.	Max.	Min.	Тур.	Max.	UIII
	V DD	2.7	_	3.3	4.5	_	5.5	٧
Supply voltage	Vss	0	_	0	0	_	0	٧
lance valence	VIH	2.2	_	VDD + 0.3	2.2	_	VDD + 0.3	٧
Input voltage	VIL	-0.3*	_	0.4	-0.3*	_	0.8	٧

^{*} VIL (Min.) = -3V when pulse width is less or equal to 50ns

■ ELECTRICAL CHARACTERISTICS

DC Electrical Characteristics

 $(VSS = 0V, Ta = -25 \text{ to } 85^{\circ}C)$

Parameter	Cumbal	Conditions	VDE) = 3V±	10%	VDE	Unit		
Parameter	Symbol	Conditions	Min	Тур*1	Max	Min	Typ*2	Max	Unit
Input leakage	ILI	VI = 0 to VDD	-1	_	1	-1		1	μА
Standby supply	IDDS	CS = ViH	_	_	2	_	_	3.0	mA
current	IDDS1	CS ≥ VDD - 0.2V		0.3	25	_	0.5	50	μА
Average operating	Idda	VI = VIL, VIH II/O = 0mA, toyo = Min	-	10	15	_	30	45	mA
current	IDDA1	VI = VIL, VIH II/O = 0mA, tCYC = 1μs	_	_	5	_	_	10	mA
Operating supply current	IDDO	VI = VIL, VIH ILO = 0mA	1	_	5	_	_	10	mA
Output leakage	llo	$\overline{CS} = VIH \text{ or } \overline{WE} = VIL$ or $\overline{OE} = VIH$, $VI/O = 0$ to VDD	-1	_	1	-1	_	1	μА
High level output voltage	V OH	IOH = -1.0mA, -0.5mA*3	2.4	_	_	2.4	_		V
Low level output voltage	V OL	IOL = 2.1mA, 1.0mA*3	_	_	0.4	_	_	0.4	V

^{*1} Typical values are measured at Ta = 25°C and VDD = 3.0V

• Terminal Capacitance

(f = 1MHz, Ta = 25°C)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Address capacitance	CADD	VADD = 0V	_	_	8	pF
Input capacitance	Cı	VI = 0V	_	_	8	pF
I/O capacitance	C 1/O	VI/O = 0V	_	_	10	pF

^{*2} Typical values are measured at $Ta = 25^{\circ}C$ and VDD = 5.0V

^{*3} $VDD = 3.0V \pm 10\%$

AC Electrical Characteristics

o Read Cycle

Vss = 0V, Ta = -25 to 85°C

			SR	M2B25	66SLM	X55	SRM2B256SLMX70				SRM2B256SLMX10				
Parameter	Symbol	Condi -tions	VDD = 3V ±10%			VDD = 5V ±10%		VDD = 3V ±10%		VDD = 5V ±10%		VDD = 3V ±10%		VDD = 5V ±10%	
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Read cycle time	tRC		100	_	55	_	120	_	70	_	180	_	100	_	nS
Address access time	tacc	**	_	100	_	55	-	120	_	70	_	180	_	100	n S
CS access time	tacs	*1	_	100	_	55	_	120	_	70	_	180	_	100	nS
OE access time	toE		_	60	_	30	_	70	_	35	_	90	_	45	nS
CS output set time	tcLZ		15	_	10	_	15	_	10	_	15	_	10	_	nS
CS output floating	tcHZ		_	35	_	20	_	40	_	25	_	50	_	35	nS
OE output set time	toLZ	*2	5	_	0	_	5	_	0	_	5	_	0	_	nS
OE output floating	tonz		_	35	_	20	_	40	_	25	_	50	_	35	nS
Output hold time	tон	*1	15	_	10	_	15	_	10	_	15	_	10	_	nS

o Write Cycle

Vss = 0V, Ta = -25 to 85°C

			SRM2B256SLMX55			SRM2B256SLMX70			SRM2B256SLMX10						
Parameter	Symbol	Condi -tions	VDD = 3V ±10%			VDD = 5V ±10%		= 3V 0%	VDD = 5V ±10%		VDD = 3V ±10%		VDD = 5V ±10%		Unit
			Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Write cycle time	twc		100	_	55	_	120	_	70	_	180	_	100	_	nS
Chip Select time	tcw		80	_	50	_	90	_	60	_	110	_	80	_	nS
Address valid to end of write	taw		80		50	_	90	_	60	ı	110	-	80	ı	nS
Address setup time	tas	*1	0		0	_	0	_	0	ı	0	_	0	I	nS
Write pulse width	twp		75		40	_	80	_	45	ı	100	_	60	l	nS
Address hold time	twR		0	_	0	_	0	_	0	ı	0	_	0	I	nS
Input data set time	tow		40		25	_	45	_	30	ı	60	_	40	1	nS
Input data hold time	tDH		0		0	_	0	_	0	ı	0	_	0	l	nS
Write to output floating	twHZ	*2	-	35	_	20	1	40	_	25	1	50	_	35	nS
Output active from end to write	tow		5	_	5		5	_	5		5	_	5	_	nS

*1. Test Conditions

- 1. Input pulse level: 0.6V to 2.4V (5V) /0.4V to 2.2V (3V)
- $\hat{2}$. tr = tr = 5ns
- 3. Input and output timing reference levels: 1.5V
 4. Output load CL = 100pF

C_L = 100pF (Includes Jig Capacitance)

*2. Test Conditions

- 1. Input pulse level: 0.6V to 2.4V (5V) /0.4V to 2.2V (3V) 2. tr = tr = 5ns

- 2. tr = tr = 5ns
 3. Input timing reference levels : 1.5V
 4. Output timing reference levels: ± 200mV (the level displaced from stable output voltage level)
 5. Output load CL = 5pF

C_L = 5pF (Includes Jig Capacitance)

■ Timing Charts

Read Cycle*1

Note: *1. During read cycle time, $\overline{\text{WE}}$ must be "H" level.

● Write Cycle (1) (CS Control)*2

Note: *2. During write cycle that is controlled by $\overline{\text{CS}}$, Output Buffer is in high impedance state, whether $\overline{\text{OE}}$ level is "H" or "L".

● Write Cycle (2) (WE Control)*3

Note: *3. During write cycle that is controlled by $\overline{\text{WE}}$, Output Buffer is in high impedance state if $\overline{\text{OE}}$ is "H" level.

■ DATA RETENTION CHARACTERISTIC WITH LOW VOLTAGE POWER SUPPLY

 $(VSS = 0V, Ta = -25 \text{ to } 85^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур∗	Max	Unit
Data retention supply voltage	V DDR		2.0	_	5.5	٧
Data retention current	IDDR	$\frac{VDD = 3V}{\overline{CS}} \ge VDD - 0.2V$	_	0.25	20 (2**)	μА
Chip select data hold time	tcdr		0	_	_	ns
Operation recovery time	tR		5	_	_	ns

^{*} Typical values are measured at 25°C

Data Retention Timing

*Note: During standby mode in which the data is retentive, the supply voltage (VDD) can be in low voltage until VDD = VDDR. At this mode, data reading and writing are impossible.

^{**} Typical values are measured at 40°C

■ FUNCTIONS

Truth Table

CS	ŌĒ	WE	A0 to A14	Data I/O	Mode	IDD	
Н	Х	Х	_	Hi-Z	Standby	IDDS, IDDS1	
L	Х	L	Stable	DIN	Write	Idda, Idda1	
L	L	Н	Stable	D оит	Read	IDDA, IDDA1	
L	Н	Н	Stable	Hi-Z	Output disable	IDDA, IDDA1	

Read Mode

The data appear when the address is set while holding $\overline{CS} = \text{`L''}$, $\overline{OE} = \text{`L''}$ and $\overline{WE} = \text{`H''}$. When $\overline{OE} = \text{`H''}$, DATA I/O terminals are in high impedance state, that makes circuit design and bus control easy.

Write Mode

There are the following 3 ways of writing data into memory:

- (1) Hold \overline{CS} = "L" and \overline{WE} = "L", set address
- (2) Hold \overline{CS} = "L" then set address and give "L" pulse to \overline{WE} .
- (3) After setting addresses, give "L" pulse to both $\overline{\text{CS}}$ and $\overline{\text{WE}}$.

In case the above data on the DATA I/O terminals is latched up into the chip when \overline{CS} or \overline{WE} is in positive-going. Since DATA I/O terminals are high impedance when \overline{CS} or \overline{OE} = "H", bus contention between data driver and memory outputs can be avoided.

Standby Mode

When \overline{CS} is "H", the chip is in the standby mode. In this mode, DATA I/O terminals are high impedance and all inputs of addresses, \overline{WE} and data can be any "H" or "L". When \overline{CS} is over VDD-0.2V, the chip is in the data retention battery backup mode. In this case, there is a small current in the chip which flows through the high resistances of the memory cells.

■ PACKAGE DIMENSIONS

■ CHARACTERISTIC CURVES

