Introduction to partial-wave analysis and amplitude analysis

Yannick Wunderlich, Annika Thiel

HISKP, University of Bonn

July 12, 2021

Basic plan for the lecture

Introduction to partial-wave analysis (PWA) / amplitude analysis (AA) divided into two parts:

I.) Generic concepts and structures of PWA/AA for the (simplest) example of scalar $2 \rightarrow 2$ -reactions,

II.) Example: truncated partial-wave analysis with *spin*, for single-meson photoproduction.

Amplitude for 2 \rightarrow 2 reaction among scalar (i.e. spinless) particles $\varphi_1\varphi_2 \rightarrow \varphi_3\varphi_4$:

*) 4-momentum conservation: $p_1 + p_2 = p_3 + p_4$ (or $p_1^{\mu} + p_2^{\mu} = p_3^{\mu} + p_4^{\mu}$). $\left\{ \text{ 4-momentum: } p_i^{\mu} = \left[\begin{array}{c} E_i \\ \vec{p_i} \end{array} \right]; \ \mu = 0, 1, 2, 3, \ i = 1, 2, 3, 4. \ \right\}$

Amplitude for 2 \rightarrow 2 reaction among scalar (i.e. spinless) particles $\varphi_1\varphi_2 \rightarrow \varphi_3\varphi_4$:

- 4-momentum conservation: $p_1 + p_2 = p_3 + p_4$ (or $p_1^{\mu} + p_2^{\mu} = p_3^{\mu} + p_4^{\mu}$).
- Amplitude $A = A_{fi}$ has to be a Lorentz-scalar,
 - No. of independent Lorentz-scalars we can construct from p_1, \ldots, p_4 ?

Y. Wunderlich Lecture on PWA/AA 1/23

- *) 4-momentum conservation: $p_1+p_2=p_3+p_4$ (or $p_1^\mu+p_2^\mu=p_3^\mu+p_4^\mu$).
- *) Amplitude $A = A_{fi}$ has to be a Lorentz-scalar,
 - No. of independent Lorentz-scalars we can construct from p_1,\ldots,p_4 ?
 - Consider scalar products $(p_i \cdot p_j) \equiv p_{i,\mu} p_j^{\mu} = p_i^0 p_j^0 \vec{p}_i \cdot \vec{p}_j$:

$$(p_{i} \cdot p_{j}) \longrightarrow \begin{bmatrix} p_{1} \cdot p_{1} & p_{1} \cdot p_{2} & p_{1} \cdot p_{3} & p_{1} \cdot p_{4} \\ p_{2} \cdot p_{1} & p_{2} \cdot p_{2} & p_{2} \cdot p_{3} & p_{2} \cdot p_{4} \\ p_{3} \cdot p_{1} & p_{3} \cdot p_{2} & p_{3} \cdot p_{3} & p_{3} \cdot p_{4} \\ p_{4} \cdot p_{1} & p_{4} \cdot p_{2} & p_{4} \cdot p_{3} & p_{4} \cdot p_{4} \end{bmatrix} \leftrightarrow 16 \text{ scalars}$$

Amplitude for 2 \rightarrow 2 reaction among scalar (i.e. spinless) particles $\varphi_1\varphi_2 \rightarrow \varphi_3\varphi_4$:

- *) 4-momentum conservation: $p_1+p_2=p_3+p_4$ (or $p_1^\mu+p_2^\mu=p_3^\mu+p_4^\mu$).
- *) Amplitude $A = A_{fi}$ has to be a Lorentz-scalar,
 - No. of independent Lorentz-scalars we can construct from p_1, \ldots, p_4 ?
 - Consider scalar products $(p_i \cdot p_j) \equiv p_{i,\mu} p_j^\mu = p_i^0 p_j^0 \vec{p}_i \cdot \vec{p}_j$:

$$(p_{i} \cdot p_{j}) \longrightarrow \begin{bmatrix} p_{1} \cdot p_{1} & p_{1} \cdot p_{2} & p_{1} \cdot p_{3} & p_{1} \cdot p_{4} \\ p_{2} \cdot p_{1} & p_{2} \cdot p_{2} & p_{2} \cdot p_{3} & p_{2} \cdot p_{4} \\ p_{3} \cdot p_{1} & p_{3} \cdot p_{2} & p_{3} \cdot p_{3} & p_{3} \cdot p_{4} \\ p_{4} \cdot p_{1} & p_{4} \cdot p_{2} & p_{4} \cdot p_{3} & p_{4} \cdot p_{4} \end{bmatrix} \leftrightarrow 16 \text{ scalars}$$

- 4 mass-shell conditions: $p_1 \cdot p_1 = m_1^2, \ldots, p_4 \cdot p_4 = m_4^2 \rightarrow 12$ scalars

- *) 4-momentum conservation: $p_1+p_2=p_3+p_4$ (or $p_1^\mu+p_2^\mu=p_3^\mu+p_4^\mu$).
- *) Amplitude $A = A_{fi}$ has to be a Lorentz-scalar,
 - No. of independent Lorentz-scalars we can construct from p_1,\ldots,p_4 ?
 - Consider scalar products $(p_i \cdot p_j) \equiv p_{i,\mu} p_j^{\mu} = p_i^0 p_j^0 \vec{p}_i \cdot \vec{p}_j$:

$$(p_i \cdot p_j) \longrightarrow \begin{bmatrix} p_1 \cdot p_1 & p_1 \cdot p_2 & p_1 \cdot p_3 & p_1 \cdot p_4 \\ p_2 \cdot p_1 & p_2 \cdot p_2 & p_2 \cdot p_3 & p_2 \cdot p_4 \\ p_3 \cdot p_1 & p_3 \cdot p_2 & p_3 \cdot p_3 & p_3 \cdot p_4 \\ p_4 \cdot p_1 & p_4 \cdot p_2 & p_4 \cdot p_3 & p_4 \cdot p_4 \end{bmatrix} \leftrightarrow 16 \text{ scalars}$$

- 4 mass-shell conditions: $p_1 \cdot p_1 = m_1^2, \, \ldots, \, p_4 \cdot p_4 = m_4^2 o 12$ scalars
- 'Symmetry' $p_i \cdot p_j = p_j \cdot p_i$
 - \rightarrow 6 scalars, e.g.: $p_1 \cdot p_2$, $p_1 \cdot p_3$, $p_1 \cdot p_4$, $p_2 \cdot p_3$, $p_2 \cdot p_4$, $p_3 \cdot p_4$.

- $| + \rangle$ 4-momentum conservation: $p_1+p_2=p_3+p_4$ (or $p_1^\mu+p_2^\mu=p_3^\mu+p_4^\mu$).
- *) Amplitude $A = A_{fi}$ has to be a Lorentz-scalar,
 - No. of independent Lorentz-scalars we can construct from p_1, \ldots, p_4 ?
 - Consider scalar products $(p_i \cdot p_j) \equiv p_{i,\mu} p_i^{\mu} \leftrightarrow 16$ scalars
 - 4 mass-shell conditions: $p_1 \cdot p_1 = m_1^2, \ldots, p_4 \cdot p_4 = m_4^2 \rightarrow 12$ scalars
 - 'Symmetry' $p_i \cdot p_j = p_j \cdot p_i$
 - → 6 scalars, e.g.: $p_1 \cdot p_2$, $p_1 \cdot p_3$, $p_1 \cdot p_4$, $p_2 \cdot p_3$, $p_2 \cdot p_4$, $p_3 \cdot p_4$.

- *) 4-momentum conservation: $p_1+p_2=p_3+p_4$ (or $p_1^\mu+p_2^\mu=p_3^\mu+p_4^\mu$).
- *) Amplitude $A = A_{fi}$ has to be a Lorentz-scalar,
 - No. of independent Lorentz-scalars we can construct from p_1, \ldots, p_4 ?
 - Consider scalar products $(p_i \cdot p_j) \equiv p_{i,\mu} p_i^{\mu} \leftrightarrow 16$ scalars
 - 4 mass-shell conditions: $p_1 \cdot p_1 = m_1^2, \ldots, p_4 \cdot p_4 = m_4^2 \rightarrow 12$ scalars
 - 'Symmetry' $p_i \cdot p_j = p_j \cdot p_i$
 - \rightarrow 6 scalars, e.g.: $p_1 \cdot p_2$, $p_1 \cdot p_3$, $p_1 \cdot p_4$, $p_2 \cdot p_3$, $p_2 \cdot p_4$, $p_3 \cdot p_4$.
 - Use 4-momentum conservation: $p_4=p_1+p_2-p_3$
 - \rightarrow 3 independent scalars, e.g.: $p_1 \cdot p_2$, $p_1 \cdot p_3$, $p_2 \cdot p_3$.

Amplitude for 2 \rightarrow 2 reaction among scalar (i.e. spinless) particles $\varphi_1\varphi_2 \rightarrow \varphi_3\varphi_4$:

- *) 4-momentum conservation: $p_1+p_2=p_3+p_4$ (or $p_1^\mu+p_2^\mu=p_3^\mu+p_4^\mu$).
- *) Amplitude $A = A_{fi}$ has to be a Lorentz-scalar,
 - No. of independent Lorentz-scalars we can construct from p_1, \ldots, p_4 ?
 - Consider scalar products $(p_i \cdot p_j) \equiv p_{i,\mu} p_i^{\mu} \leftrightarrow 16$ scalars
 - 4 mass-shell conditions: $p_1 \cdot p_1 = m_1^2, \ldots, p_4 \cdot p_4 = m_4^2 \rightarrow 12$ scalars
 - 'Symmetry' $p_i \cdot p_j = p_j \cdot p_i$
 - \rightarrow 6 scalars, e.g.: $p_1 \cdot p_2$, $p_1 \cdot p_3$, $p_1 \cdot p_4$, $p_2 \cdot p_3$, $p_2 \cdot p_4$, $p_3 \cdot p_4$.
 - Use 4-momentum conservation: $p_4 = p_1 + p_2 p_3$
 - \rightarrow 3 independent scalars, e.g.: $p_1 \cdot p_2$, $p_1 \cdot p_3$, $p_2 \cdot p_3$.
 - 'Square' the 4-momentum conservation: $p_4 \cdot p_4 = m_4^2 = (p_1 + p_2 p_3)^2 \rightarrow 2$ independent Lorentz-scalars, e.g.: $p_1 \cdot p_2$, $p_1 \cdot p_3$.

Y. Wunderlich Lecture on PWA/AA 1/23

Amplitude for 2 \rightarrow 2 reaction among scalar (i.e. spinless) particles $\varphi_1\varphi_2 \rightarrow \varphi_3\varphi_4$:

- *) 4-momentum conservation: $p_1+p_2=p_3+p_4$ (or $p_1^\mu+p_2^\mu=p_3^\mu+p_4^\mu$).
- *) Amplitude $A = A_{fi}$ has to be a Lorentz-scalar,
 - No. of independent Lorentz-scalars we can construct from p_1, \ldots, p_4 ? \rightarrow one finds 2 independent Lorentz-scalars, e.g.: $p_1 \cdot p_2$, $p_1 \cdot p_3$.
- *) Standard-convention: use the so-called Mandelstam variables:

$$s := (p_1 + p_2)^2, t := (p_1 - p_3)^2, u := (p_1 - p_4)^2.$$

In case all scalars are on-shell: only 2 independent variables

- \rightarrow Choose the pair (s, t) and write the amplitude as A = A(s, t).
- *) 'Center-of-mass' (CMS) coordinates: $s \to W$ 'energy'; $t \to \theta$ 'scatt. angle' \to Amplitude simply a function of energy and angle: $A = A(W, \theta)$.

The 'observable': differential cross section

Consider basic geometry for 2-body scattering event:

Rate \dot{N} of particles scattered into solid-angle $\Delta\Omega$ at laboratory scattering-angle θ_{LAB} , for beam-energy E_{LAB} , reads:

$$\dot{N}(E_{\mathsf{LAB}}, \theta_{\mathsf{LAB}}, \Delta\Omega) = \mathcal{L} \times \left(\frac{d\sigma}{d\Omega}\right)_0 (E_{\mathsf{LAB}}, \theta_{\mathsf{LAB}}) \times \Delta\Omega,$$

with the experiment's 'luminosity' \mathcal{L} and the <u>differential cross section</u> $\left(\frac{d\sigma}{d\Omega}\right)_0$.

Y. Wunderlich Lecture on PWA/AA 2/23

The 'observable': differential cross section

Consider basic geometry for 2-body scattering event:

Rate \dot{N} of particles scattered into solid-angle $\Delta\Omega$ at laboratory scattering-angle $\theta_{\rm LAB}$, for beam-energy $E_{\rm LAB}$, reads:

$$\dot{N}(E_{\mathsf{LAB}}, \theta_{\mathsf{LAB}}, \Delta\Omega) = \mathcal{L} \times \left(\frac{d\sigma}{d\Omega}\right)_0 \left(E_{\mathsf{LAB}}, \theta_{\mathsf{LAB}}\right) \times \Delta\Omega,$$
 with the experiment's 'luminosity' \mathcal{L} and the differential cross section $\left(\frac{d\sigma}{d\Omega}\right)_0$.

*) Transform energy and angle from LAB to CMS: $\sigma_0(W, \theta) \equiv \left(\frac{d\sigma}{d\Omega}\right)_0(W, \theta)$.

- Deletion to the cost amplitude (up to kin factors): -(14/4) = 14/44/4
- *) Relation to the scatt. amplitude (up to kin. factors): $\underline{\sigma_0(W,\theta)=\left|A(W,\theta)\right|^2}$.

Y. Wunderlich Lecture on PWA/AA 2/23

Recall from non-rel. QM [e.g. QM book by Sakurai]:

$$A\left(\vec{k}',\vec{k}\right) \propto \left\langle \vec{k}' \middle| \ \hat{T} \ \middle| \vec{k} \right\rangle \propto \sum_{\ell,m} \sum_{\ell',m'} \left\langle \vec{k}' \middle| \ell',m' \right\rangle \left\langle \ell',m' \middle| \ \hat{T} \ \middle| \ell,m \right\rangle \left\langle \ell,m \middle| \vec{k} \right\rangle.$$

where complete sets of angular momentum states has been inserted.

Recall from non-rel. QM [e.g. QM book by Sakurai]:

$$A\left(\vec{k}',\vec{k}\right) \propto \left\langle \vec{k}' \middle| \hat{T} \middle| \vec{k} \right\rangle \propto \sum_{\ell,m} \sum_{\ell',m'} \left\langle \vec{k}' \middle| \ell',m' \right\rangle \left\langle \ell',m' \middle| \hat{T} \middle| \ell,m \right\rangle \left\langle \ell,m \middle| \vec{k} \right\rangle.$$

where complete sets of angular momentum states has been inserted. Use the basis-change matrix elements $\left\langle \ell,m\middle|\vec{k}\right\rangle \propto Y_{\ell,m}^*(\hat{k})$, to get:

 $=\frac{2\ell+1}{4}P_{\ell}(\hat{k}'\cdot\hat{k})$

$$\begin{split} A\left(\vec{k}',\vec{k}\right) &\propto \sum_{\ell,m} \sum_{\ell',m'} Y_{\ell',m'}(\hat{k}') \underbrace{\langle \ell',m' | \ \hat{T} \ | \ell,m \rangle}_{=:A_{\ell}(W)\delta_{\ell\ell'}\delta_{mm'}} Y_{\ell,m}^*(\hat{k}) \\ &\propto \sum_{\ell} A_{\ell}(W) \underbrace{\sum_{m} Y_{\ell,m}(\hat{k}') Y_{\ell,m}^*(\hat{k})}_{=:A_{\ell}(W)\delta_{\ell\ell'}\delta_{mm'}} \times \underbrace{\sum_{\ell} (2\ell+1)A_{\ell}(W) P_{\ell}\left(\hat{k}' \cdot \hat{k}\right)}_{=:A_{\ell}(W)\delta_{\ell\ell'}\delta_{mm'}}. \end{split}$$

Recall from non-rel. QM [e.g. QM book by Sakurai]:

$$A\left(\vec{k}',\vec{k}\right) \propto \left\langle \vec{k}' \middle| \hat{T} \middle| \vec{k} \right\rangle \propto \sum_{\ell,m'} \sum_{\ell',m'} \left\langle \vec{k}' \middle| \ell',m' \right\rangle \left\langle \ell',m' \middle| \hat{T} \middle| \ell,m \right\rangle \left\langle \ell,m \middle| \vec{k} \right\rangle.$$

where complete sets of angular momentum states has been inserted.

Use the basis-change matrix elements $\left<\ell,m\middle|\vec{k}\right>\propto Y_{\ell,m}^*(\hat{k})$, to get:

$$A\left(ec{k}',ec{k}
ight) \propto \sum_{\ell,m} \sum_{\ell',m'} Y_{\ell',m'}(\hat{k}') \underbrace{\left\langle \ell',m' \middle| \hat{T} \middle| \ell,m
ight
angle}_{=:A_{\ell}(W)\delta_{\ell\ell'}\delta_{mm'}} Y_{\ell,m}^{'*}(\hat{k}) \propto \sum_{\ell} (2\ell+1)A_{\ell}(W)P_{\ell}\left(\hat{k}'\cdot\hat{k}
ight).$$

Amazingly, result continues to hold formally for the *relativistic* $(2 \rightarrow 2)$ case:

$$A(W, heta) = \sum_{\ell=0}^{\infty} (2\ell+1) A_{\ell}(W) P_{\ell}(\cos heta)$$
.

Recall from non-rel. QM [e.g. QM book by Sakurai]:

$$A\left(\vec{k}',\vec{k}\right) \propto \left\langle \vec{k}' \middle| \hat{T} \middle| \vec{k} \right\rangle \propto \sum_{\ell,m} \sum_{\ell',m'} \left\langle \vec{k}' \middle| \ell',m' \right\rangle \left\langle \ell',m' \middle| \hat{T} \middle| \ell,m \right\rangle \left\langle \ell,m \middle| \vec{k} \right\rangle.$$

where complete sets of angular momentum states has been inserted.

Use the basis-change matrix elements
$$\left\langle \ell, m \middle| \vec{k} \right\rangle \propto Y_{\ell,m}^*(\hat{k})$$
, to get: $A\left(\vec{k}', \vec{k}\right) \propto \sum_{\ell, m} \sum_{\ell', m'} Y_{\ell', m'}(\hat{k}') \underbrace{\left\langle \ell', m' \middle| \hat{T} \middle| \ell, m \right\rangle}_{=:A_{\ell}(W)\delta_{\ell \ell'}\delta_{mm'}} Y_{\ell,m}^*(\hat{k}) \propto \sum_{\ell} (2\ell+1)A_{\ell}(W)P_{\ell}\left(\hat{k}' \cdot \hat{k}\right).$

Amazingly, result continues to hold formally for the *relativistic* $(2 \rightarrow 2)$ case:

$$A(W, heta) = \sum_{\ell=0}^{\infty\ell_{\mathsf{max}}} (2\ell+1) A_\ell(W) P_\ell(\cos heta)$$

The (usually quickly converging) partial-wave expansion is *important* because:

- *) it factorizes the W- and θ dependences.
- fixes angular dependence of A without any additional model-dependence (often: truncation at some $\ell_{\text{max}} \to \text{polynomial amplitude}$),
- the p.w.'s $A_{\ell}(W)$ 'filter' intermediate states (resonances) according to their quantum numbers $\{J = \ell, P = (-1)^{\ell}\}.$

What is partial-wave analysis / amplitude analysis?

- *) We want to solve 'inverse scattering problems', i.e.:
- (1) Use data on the observable effects of a scattering process, e.g. for the case of scalar $2 \to 2$ scattering $(\pi \pi \to \pi \pi)$, the differential cross section $\sigma_0(W, \theta) = |A(W, \theta)|^2$, {W: energy, θ : scattering angle}

in order to ...

- (2) ... obtain maximal information on the scattering amplitude $A(W, \theta)$ or, alternatively, the partial waves $A_{\ell}(W)$.
 - \hookrightarrow Partial waves contain ' I^P -filtered' contributions of resonances

Y. Wunderlich Lecture on PWA/AA 4/23

What is partial-wave analysis / amplitude analysis?

- *) We want to solve 'inverse scattering problems', i.e.:
- (1) Use data on the observable effects of a scattering process, e.g. for the case of scalar $2 \to 2$ scattering $(\pi\pi \to \pi\pi)$, the differential cross section $\sigma_0(W,\theta) = |A(W,\theta)|^2$, $\{W: \text{energy, }\theta: \text{scattering angle}\}$

in order to ...

- (2) ... obtain maximal information on the scattering amplitude $A(W, \theta)$ or, alternatively, the partial waves $A_{\ell}(W)$.
 - \hookrightarrow Partial waves contain ' J^P -filtered' contributions of resonances
- *) Complications due to:
 - Spin, e.g. for meson photoproduction $\gamma p \to \pi^0 p$
 - \rightarrow Larger no. of amplitudes and $\it polarization~observables~[Photoprod.-TPWA]$
 - More than 2 particles in final state, e.g. $\gamma p o \pi^0 \pi^0 p$
 - ightarrow phase-space (cf. (W, θ) above) becomes higher-dimensional

What is partial-wave analysis / amplitude analysis?

- *) We want to solve 'inverse scattering problems', i.e.:
- (1) Use data for observable cross section, i.e. $\sigma_0(W, \theta) = |A(W, \theta)|^2$...
- (2) ... in order to extract maximal information on the amplitude $A(W, \theta)$ (or partial waves $A_{\ell}(W)$).
- *) Complications due to:
 - Spin, e.g. for meson photoproduction $\gamma p o \pi^0 p$
 - ightarrow Larger no. of amplitudes and polarization observables [Photoprod.-TPWA]
 - More than 2 particles in final state, e.g. $\gamma p \to \pi^0 \pi^0 p$
 - \rightarrow phase-space (cf. (W, θ) above) becomes higher-dimensional
- *) One can:

Extract the amplitude itself

- Moment analysis
- Truncated partial-wave analysis

Model the amplitude physically

- (Unitarized) Isobar models
- Coupled-channels analyses
- S-Matrix principles (Analyticity, Unitarity, Crossing)

Energy-independent vs. energy-dependent fits

- I.) Energy- (or mass-) independent fit
- *) Truncate partial-wave expansion at $\ell_{\text{max}} \ge 0$ and evaluate $\sigma_0 = |A|^2 = A^*A$

$$\Rightarrow \sigma_0(W,\theta) = \frac{q}{k} \sum_{n=0}^{2\ell_{\text{max}}} a_n^{\sigma_0}(W) P_n(\cos \theta),$$
$$a_n^{\sigma_0}(W) = \sum_{\ell=0}^{\ell_{\text{max}}} A_{\ell}^*(W) C_{\ell k}^n A_k(W).$$

- → Perform angular (moment-) analysis
- \hookrightarrow Extract Re A_ℓ and Im A_ℓ as fit-parameters (up to 1 overall phase)
- *) Minimal model-dependence
- *) 'Experimental' partial-wave analysis

Y. Wunderlich Lecture on PWA/AA 5/23

Energy-independent vs. energy-dependent fits

I.) Energy- (or mass-) independent fit

*) Truncate partial-wave expansion at $\ell_{\text{max}} \geq 0$ and evaluate $\sigma_0 = |A|^2 = A^*A$

$$\Rightarrow \sigma_0(W,\theta) = \frac{q}{k} \sum_{n=0}^{2\ell_{\text{max}}} a_n^{\sigma_0}(W) P_n(\cos \theta),$$

$$a_n^{\sigma_0}(W) = \sum_{\ell,k=0}^{\ell_{\text{max}}} A_\ell^*(W) \mathcal{C}_{\ell k}^n A_k(W).$$

- \hookrightarrow Perform angular (moment-) analysis
- \hookrightarrow Extract Re A_ℓ and Im A_ℓ as fit-parameters (up to 1 overall phase)
- *) Minimal model-dependence
- *) 'Experimental' partial-wave analysis

II.) Energy-dependent fit:

- *) Write and fit a model for the p.w.'s $A_{\ell}(W)$ as functions of energy \Rightarrow Add. dynamical assumptions
- *) Example: 'isobar-model'

$$egin{aligned} A_{\ell}(W) &= \sum_{\mathsf{res.}} a^{f \leftarrow \ell}_{\mathsf{res.}}(W) \mathcal{R}^{\ell}_{\mathsf{res.}}(W) a^{\ell \leftarrow i}_{\mathsf{res.}}(W) \\ &+ \mathcal{B}_{\ell}(W), \end{aligned}$$

with 'couplings' $a_{\rm res.}$, 'lineshape-function' \mathcal{R}^ℓ and 'background' $oldsymbol{B}_\ell$.

- *) \exists many (more complicated) models
- *) 'Resonance' \equiv pole of amplitude (e.g. A_{ℓ}) in complex energy-plane

Energy-independent vs. energy-dependent fits

I.) Energy- (or mass-) independent fit

*) Truncate partial-wave expansion at $\ell_{\text{max}} \geq 0$ and evaluate $\sigma_0 = |A|^2 = A^*A$

$$\Rightarrow \sigma_0(W,\theta) = \frac{q}{k} \sum_{n=0}^{2\ell_{\text{max}}} a_n^{\sigma_0}(W) P_n(\cos \theta),$$

$$a_n^{\sigma_0}(W) = \sum_{\ell,k=0}^{\ell_{\max}} A_\ell^*(W) \mathcal{C}_{\ell k}^n A_k(W).$$

- → Perform angular (moment-) analysis
- \hookrightarrow Extract Re A_ℓ and Im A_ℓ as fit-parameters (up to 1 overall phase)
- *) Minimal model-dependence
- *) 'Experimental' partial-wave analysis
- → Problems with ambiguities!

II.) Energy-dependent fit:

- *) Write and fit a model for the p.w.'s $A_{\ell}(W)$ as functions of energy \Rightarrow Add. dynamical assumptions
- *) Example: 'isobar-model'

$$A_{\ell}(W) = \sum_{\mathsf{res.}} a_{\mathsf{res.}}^{f \leftarrow \ell}(W) \mathcal{R}_{\mathsf{res.}}^{\ell}(W) a_{\mathsf{res.}}^{\ell \leftarrow i}(W) + \mathcal{B}_{\ell}(W),$$

with 'couplings' $a_{\rm res.}$, 'lineshape-function' \mathcal{R}^ℓ and 'background' $m{B}_\ell$.

- *) \exists many (more complicated) models
- *) 'Resonance' \equiv pole of amplitude (e.g. A_{ℓ}) in complex energy-plane
- \hookrightarrow Complications due to multi-channel

scattering!

Resonant partial-waves I

Remember basic shape of the simple isobar-Ansatz from before:

$$A_{\ell}(W) = \sum_{\mathsf{res.}} a^{f \leftarrow \ell}_{\mathsf{res.}}(W) \mathcal{R}^{\ell}_{\mathsf{res.}}(W) a^{\ell \leftarrow i}_{\mathsf{res.}}(W) + \boldsymbol{B}_{\ell}(W).$$

Resonant partial-waves I

Remember basic shape of the simple isobar-Ansatz from before:

$$A_{\ell}(W) = \sum_{\mathsf{res.}} a^{f \leftarrow \ell}_{\mathsf{res.}}(W) \mathcal{R}^{\ell}_{\mathsf{res.}}(W) a^{\ell \leftarrow i}_{\mathsf{res.}}(W) + \boldsymbol{B}_{\ell}(W).$$

) Often: lineshape-function modelled by (relativistic) Breit-Wigner function:

$$\mathcal{R}^{\ell}_{\mathrm{res.}}(W) = \frac{1}{(m^{\mathbf{0}}_{\mathrm{res.}})^2 - W^2 - i \, m^{\mathbf{0}}_{\mathrm{res.}} \Gamma(W)},$$

with 'mass-dependent width' $\Gamma(W)$, subject to modelling.

Resonant partial-waves I

Remember basic shape of the simple isobar-Ansatz from before:

$$A_{\ell}(W) = \sum_{\text{res.}} a_{\text{res.}}^{f \leftarrow \ell}(W) \mathcal{R}_{\text{res.}}^{\ell}(W) a_{\text{res.}}^{\ell \leftarrow i}(W) + \boldsymbol{B}_{\ell}(W).$$

*) Often: lineshape-function modelled by (relativistic) Breit-Wigner function:

$$\mathcal{R}^{\ell}_{\mathrm{res.}}(W) = \frac{1}{(m^{\mathbf{0}}_{\mathrm{res.}})^2 - W^2 - i \, m^{\mathbf{0}}_{\mathrm{res.}} \Gamma(W)},$$

with 'mass-dependent width' $\Gamma(W)$, subject to modelling.

*) Example: Resonance $\rho(770)1^-$ (i.e. J=1, P=(-1)), coupling to the $(\pi\pi)$ -system in a P-wave A_1 (figures are simplifications!):

⇒ We want to extract partial waves with such shapes from the data, either for discrete or continuous energies!

Resonant partial-waves II

[Figure by L. Tiator]

Resonant partial-waves II

[Figure by L. Tiator]

For *remainder of the lecture*: turn our attention to energy-<u>in</u>dependent fits for an example-reaction with spin: pseudoscalar meson photoproduction ...

Consider the reaction of pseudoscalar meson photoproduction: $\underline{\gamma + N \rightarrow \varphi + B}$, with particles:

$$\gamma$$
: photon, $J^P=1^ N$: target-nucleon, $J^P=\frac{1}{2}^+$ φ : p.s. meson, (π,K,\ldots) $J^P=0^ B$: recoil-baryon, (N,Λ,\ldots) $J^P=\frac{1}{2}^+$

Consider the reaction of pseudoscalar meson photoproduction: $\gamma + N \rightarrow \varphi + B$, with particles, leading to spin-structures in the amplitude:

$$\begin{array}{l} \gamma \colon \mathsf{photon}, \ J^P = 1^- \\ \mathcal{N} \colon \mathsf{target}\text{-nucleon}, \ J^P = \frac{1}{2}^+ \\ \varphi \colon \mathsf{p.s.} \ \mathsf{meson}, \ (\pi, \mathcal{K}, \ldots) \ J^P = 0^- \\ \mathcal{B} \colon \mathsf{recoil}\text{-baryon}, \ (\mathcal{N}, \Lambda, \ldots) \ J^P = \frac{1}{2}^+ \end{array} \\ \Rightarrow \begin{cases} \gamma \ \mathsf{pol.}\text{-vector} \colon \epsilon_\mu ; \ \mathsf{Dirac}\text{-spinors} \colon u_\mathcal{N}, \ u_\mathcal{B}; \\ \mathsf{Dirac}\text{-matrices} \colon \gamma^\mu, \ \gamma_5 \ (\mathsf{p.s.} \ \mathsf{meson}). \end{cases}$$

Y. Wunderlich Lecture on PWA/AA 8/23

Consider the reaction of pseudoscalar meson photoproduction: $\gamma + N \rightarrow \varphi + B$, with particles, leading to spin-structures in the amplitude:

$$\begin{array}{l} \gamma \colon \mathsf{photon}, \ J^P = 1^- \\ \mathcal{N} \colon \mathsf{target}\text{-nucleon}, \ J^P = \frac{1}{2}^+ \\ \varphi \colon \mathsf{p.s.} \ \mathsf{meson}, \ (\pi, \mathcal{K}, \ldots) \ J^P = 0^- \\ \mathcal{B} \colon \mathsf{recoil}\text{-baryon}, \ (\mathcal{N}, \Lambda, \ldots) \ J^P = \frac{1}{2}^+ \end{array} \\ \Rightarrow \begin{cases} \gamma \ \mathsf{pol.}\text{-vector:} \ \epsilon_\mu ; \ \mathsf{Dirac}\text{-spinors:} \ u_N, \ u_B ; \\ \mathsf{Dirac}\text{-matrices:} \ \gamma^\mu, \ \gamma_5 \ (\mathsf{p.s.} \ \mathsf{meson}). \end{cases}$$

*) From p_{γ} , p_N , p_{φ} , p_B , def. 4-momenta: $k:=p_{\gamma}$, $q:=p_{\varphi}$, $P:=\frac{1}{2}(p_N+p_B)$.

Consider the reaction of pseudoscalar meson photoproduction: $\gamma + N \rightarrow \varphi + B$, with particles, leading to spin-structures in the amplitude:

$$\begin{array}{l} \gamma \colon \mathsf{photon}, \ J^P = 1^- \\ \mathcal{N} \colon \mathsf{target}\text{-nucleon}, \ J^P = \frac{1}{2}^+ \\ \varphi \colon \mathsf{p.s.} \ \mathsf{meson}, \ (\pi, K, \ldots) \ J^P = 0^- \\ \mathcal{B} \colon \mathsf{recoil\text{-}baryon}, \ (\mathcal{N}, \Lambda, \ldots) \ J^P = \frac{1}{2}^+ \end{array} \\ \Rightarrow \begin{cases} \gamma \ \mathsf{pol.\text{-}vector} \colon \epsilon_\mu; \ \mathsf{Dirac\text{-}spinors} \colon u_\mathcal{N}, \ u_\mathcal{B}; \\ \mathsf{Dirac\text{-}matrices} \colon \gamma^\mu, \ \gamma_5 \ (\mathsf{p.s.} \ \mathsf{meson}). \end{cases}$$

- *) From p_{γ} , p_N , p_{φ} , p_B , def. 4-momenta: $k:=p_{\gamma}$, $q:=p_{\varphi}$, $P:=\frac{1}{2}\left(p_N+p_B\right)$.
- *) Write QFT-inspired Ansatz for the photoproduction amplitude:

$$\varphi = \mathcal{T}_{fi} = \bar{u}_B \epsilon_\mu J^\mu u_N \equiv \epsilon_\mu \bar{u}_B \left[\sum_{i=1}^n A_i(s,t) M_i^\mu \left(k,q,P;\gamma^\mu,\gamma_5 \right) \right] u_N.$$

- \hookrightarrow How many (Lorentz-) vectorial operators M_i^{μ} can be found that satisfy:
 - transformation-properties of a pseudoscalar (φ (!)), i.e. linearity in γ_5 ,
 - gauge-invariance, i.e. $\epsilon_{\mu} \sum_{i} A_{i} M_{i}^{\mu} \rightarrow k_{\mu} \sum_{i} A_{i} M_{i}^{\mu'} = 0$, for $\epsilon_{\mu} \rightarrow k_{\mu}$?

Y. Wunderlich Lecture on PWA/AA 8/23

Consider the reaction of pseudoscalar meson photoproduction: $\gamma + N \rightarrow \varphi + B$, with particles, leading to spin-structures in the amplitude:

photon pol.-vector: ϵ_{μ} ; Dirac-spinors: u_N , u_B ; Dirac-matrices: γ^{μ} , γ_5 (p.s. meson).

- *) From p_{γ} , p_{N} , p_{φ} , p_{B} , def. 4-momenta: $k:=p_{\gamma}$, $q:=p_{\varphi}$, $P:=\frac{1}{2}(p_{N}+p_{B})$.
- *) Write QFT-inspired Ansatz for the photoproduction amplitude:

- \hookrightarrow How many (Lorentz-) vectorial operators M_i^μ can be found that satisfy:
 - transformation-properties of a pseudoscalar (φ (!)), i.e. linearity in γ_5 ,
 - gauge-invariance, i.e. $\epsilon_{\mu} \sum_{i} A_{i} M_{i}^{\mu} \rightarrow k_{\mu} \sum_{i} A_{i} M_{i}^{\mu} = 0$, for $\epsilon_{\mu} \rightarrow k_{\mu}$?
- *) [Chew, Goldberger, Low & Nambu, (1957)] found n=4 such structures: $M_1^\mu = -\frac{i}{2}\gamma_5\left(\gamma^\mu k k\gamma^\mu\right), \ M_2^\mu = 2i\gamma_5\left(P^\mu k\cdot\left(q-\frac{k}{2}\right) \left(q-\frac{k}{2}\right)^\mu k\cdot P\right),$

$$M_3^{\mu} = -i\gamma_5 (\gamma^{\mu} k \cdot q - kq^{\mu}), M_4^{\mu} = -2i\gamma_5 (\gamma^{\mu} k \cdot P - kP^{\mu}) - 2m_N M_1^{\mu}.$$

 \Rightarrow Photoproduction described by 4 invariant amplitudes: $A_1(s,t),\ldots,A_4(s,t)$.

Y. Wunderlich Lecture on PWA/AA 8/23

Photoproduction: CGLN-amplitudes and multipoles I

*) Evaluate amplitude in CMS (i.e. $k^{\mu} = \left[k, \vec{k}\right]^{T}$, $P_{N}^{\mu} = \left[E_{N}^{\text{CMS}}, -\vec{k}\right]^{T}$, ...):

with Pauli-spinors $\chi_{N,B}$ and 4 CGLN-amplitudes: $F_1(W,\theta), \ldots, F_4(W,\theta)$.

Photoproduction: CGLN-amplitudes and multipoles I

*) Evaluate amplitude in CMS (i.e. $k^{\mu} = \left[k, \vec{k}\right]^{T}$, $P_{N}^{\mu} = \left[E_{N}^{\text{CMS}}, -\vec{k}\right]^{T}, \dots$):

with Pauli-spinors $\chi_{N,B}$ and 4 CGLN-amplitudes: $F_1(W,\theta), \ldots, F_4(W,\theta)$.

*) Expand CGLN-amplitudes into electric and magnetic multipoles $E_{\ell\pm}, M_{\ell\pm}$, the partial waves of photoproduction (with $x \equiv \cos \theta$):

$$F_{1}(W,\theta) = \sum_{\ell=0}^{\infty} \left[\ell M_{\ell+}(W) + E_{\ell+}(W) \right] P'_{\ell+1}(x) + \left[(\ell+1) M_{\ell-}(W) + E_{\ell-}(W) \right] P'_{\ell-1}(x),$$

$$F_{1}(W,\theta) = \sum_{\ell=0}^{\infty} \left[(\ell+1) M_{\ell-}(W) + \ell M_{\ell-}(W) \right] P'_{\ell}(x)$$

$$F_{2}(W,\theta) = \sum_{\ell=1}^{\infty} [(\ell+1) M_{\ell+}(W) + \ell M_{\ell-}(W)] P'_{\ell}(x),$$

$$F_{3}\left(W,\theta\right) = \sum_{\ell=1}^{\infty} \Big\{ \left[E_{\ell+}\left(W\right) - M_{\ell+}\left(W\right) \right] P_{\ell+1}^{\prime\prime}\left(x\right) + \left[E_{\ell-}\left(W\right) + M_{\ell-}\left(W\right) \right] P_{\ell-1}^{\prime\prime}\left(x\right) \Big\},\,$$

$$F_{4}(W,\theta) = \sum_{\ell=2}^{\infty} \left[M_{\ell+}(W) - E_{\ell+}(W) - M_{\ell-}(W) - E_{\ell-}(W) \right] P_{\ell}^{"}(x).$$

Y. Wunderlich Lecture on PWA/AA 9/23

Photoproduction: CGLN-amplitudes and multipoles II

Important concept: expansion of full amplitudes into partial waves:

$$F_{1}(W,\theta) = \sum_{\ell=0}^{\infty} \left\{ \left[\ell M_{\ell+} + E_{\ell+} \right] P_{\ell+1}^{'}(\cos(\theta)) + \left[(\ell+1) M_{\ell-} + E_{\ell-} \right] P_{\ell-1}^{'}(\cos(\theta)) \right\}$$

- *) $J = |\ell \pm 1/2|, P = (-)^{\ell+1}.$
- *) s-chn. resonance J^P ; (I) \updownarrow multipole $E_{\ell+}^{(I)}$, $M_{\ell+}^{(I)}$

Photoproduction: CGLN-amplitudes and multipoles II

Important concept: expansion of full amplitudes into partial waves:

$$F_{1}(W,\theta) = \sum_{\ell=0}^{\infty \ell_{\max}} \left\{ \left[\ell M_{\ell+} + E_{\ell+} \right] P_{\ell+1}^{'}(\cos(\theta)) + \left[(\ell+1) M_{\ell-} + E_{\ell-} \right] P_{\ell-1}^{'}(\cos(\theta)) \right\}$$

$$F_2(W,\theta) = \dots$$

In practice:

Truncate at some finite ℓ_{\max}

 \rightarrow Try to extract the $4\ell_{\rm max}$ complex multipoles in a fit to the data.

Photoproduction: CGLN-amplitudes and multipoles II

Important concept: expansion of full amplitudes into partial waves:

$$F_{1}(W,\theta) = \sum_{\ell=0}^{\infty} \left\{ [\ell M_{\ell+} + E_{\ell+}] P'_{\ell+1}(\cos(\theta)) + [(\ell+1) M_{\ell-} + E_{\ell-}] P'_{\ell-1}(\cos(\theta)) \right\}, \dots$$
*) $J = |\ell \pm 1/2|, P = (-)^{\ell}$
*) s -chn. resonance J^{P} ; (I)

multipole $E_{\ell\pm}^{(I)}$, $M_{\ell\pm}^{(I)}$

*)
$$J = |\ell \pm 1/2|, P = (-)^{\ell+1}.$$

*) s-chn. resonance J^P ; (1) multipole $E_{\ell+}^{(I)}$, $M_{\ell+}^{(I)}$

*) Relate multipoles \leftrightarrow quantum numbers due to well-defined selection-rules:

$J = L_{\gamma} \pm \frac{1}{2} $	γ N-system		φB -system				γ N -system			φB -system		
$\equiv \left \ell \pm \frac{1}{2}\right ;$	L_{γ}	$\mathcal{M}L$	J	ℓ	$\mathcal{M}_{\ell\pm}$	Р	L_{γ}	$\mathcal{M}L$	J	ℓ	$\mathcal{M}_{\ell\pm}$	Р
	1	<i>E</i> 1	1/2	0	E ₀₊	_	2	E2	3/2	1	E_{1+}	+
Electric (<i>EL</i>):				1/			-			2/		
$oldsymbol{P}=(-)^{L_{\gamma}}$			3/2	1/			-		5/2	2/		
$\equiv (-)^{\ell+1}$,				2	E_{2-}	_	-			3	E ₃ _	+
Magn. (<i>ML</i>):		M1	1/2	Ò,				M2	3/2	1/		
				1	M_{1-}	+	-			2	M_{2-}	
$oldsymbol{P}=(-)^{L_{\gamma}+1}$			3/2	1	M_{1+}	+	-		5/2	2	M_{2+}	_
$\equiv (-)^{\ell+1}$.				2/			-			3/		

Y. Wunderlich Lecture on PWA/AA 10/23

Photoproduction: helicity- and transversity amplitudes

*) CGLN-amplitudes $F_i \leftrightarrow \text{spin-}z$ quantization:

Photoproduction: helicity- and transversity amplitudes

*) CGLN-amplitudes $F_i \leftrightarrow \text{spin-}z$ quantization:

*) Helicity-amplitudes $H_i \leftrightarrow$ quantization along directions of momenta:

Basis-change for the amplitudes:

$$H_{1} = \frac{i}{\sqrt{2}} \sin \theta \sin \frac{\theta}{2} F_{3} - \frac{i}{\sqrt{2}} \sin \theta \sin \frac{\theta}{2} F_{4},$$

$$H_{2} = -i\sqrt{2}\sin\frac{\theta}{2}F_{1} - i\sqrt{2}\sin\frac{\theta}{2}F_{2} - i\sqrt{2}\sin\frac{\theta}{2}\cos^{2}\frac{\theta}{2}F_{3} - i\sqrt{2}\sin\frac{\theta}{2}\cos^{2}\frac{\theta}{2}F_{4},$$

$$H_3 = \frac{i}{\sqrt{2}} \sin \theta \cos \frac{\theta}{2} F_3 + \frac{i}{\sqrt{2}} \sin \theta \cos \frac{\theta}{2} F_4,$$

$$H_{4} = -i\sqrt{2}\cos\frac{\theta}{2}F_{1} + i\sqrt{2}\cos\frac{\theta}{2}F_{2} + i\sqrt{2}\cos\frac{\theta}{2}\sin^{2}\frac{\theta}{2}F_{3} - i\sqrt{2}\cos\frac{\theta}{2}\sin^{2}\frac{\theta}{2}F_{4}.$$

Photoproduction: helicity- and transversity amplitudes

*) Helicity-amplitudes $H_i \leftrightarrow$ quantization along directions of momenta:

Basis-change for the amplitudes:

$$H_1 = \frac{i}{\sqrt{2}} \sin \theta \sin \frac{\theta}{2} F_3 - \frac{i}{\sqrt{2}} \sin \theta \sin \frac{\theta}{2} F_4,$$

$$H_2 = -i\sqrt{2}\sin\frac{\theta}{2}F_1 - i\sqrt{2}\sin\frac{\theta}{2}F_2 - i\sqrt{2}\sin\frac{\theta}{2}\cos^2\frac{\theta}{2}F_3 - i\sqrt{2}\sin\frac{\theta}{2}\cos^2\frac{\theta}{2}F_4,$$

$$H_3 = \frac{i}{\sqrt{2}} \sin \theta \cos \frac{\theta}{2} F_3 + \frac{i}{\sqrt{2}} \sin \theta \cos \frac{\theta}{2} F_4$$

$$H_{\mathbf{4}}=-i\sqrt{2}\cos\frac{\theta}{2}F_{\mathbf{1}}+i\sqrt{2}\cos\frac{\theta}{2}F_{\mathbf{2}}+i\sqrt{2}\cos\frac{\theta}{2}\sin^{2}\frac{\theta}{2}F_{\mathbf{3}}-i\sqrt{2}\cos\frac{\theta}{2}\sin^{2}\frac{\theta}{2}F_{\mathbf{4}}.$$

*) Transversity-amp.'s $b_i \leftrightarrow \text{quantize} \perp \text{to the } \textit{reaction-plane} \ (\equiv \text{Span} \left(\vec{k}, \vec{q}\right))$:

Basis-change for the amplitudes:

$$b_1 = \frac{1}{2} \left[H_1 + H_4 - i \left(H_2 - H_3 \right) \right],$$

$$b_2 = \frac{1}{2} \left[H_1 + H_4 + i \left(H_2 - H_3 \right) \right],$$

$$b_3 = \frac{1}{2} \left[H_1 - H_4 + i \left(H_2 + H_3 \right) \right],$$

$$b_{4} = \frac{1}{2} \left[H_{1} - H_{4} - i \left(H_{2} + H_{3} \right) \right].$$

Y. Wunderlich Lecture on PWA/AA 11/23

Photoproduction: observables I

Generic definition of an observable

$$\check{\Omega} = \left[\left(\frac{d\sigma}{d\Omega} \right)^{(B_{1}, T_{1}, R_{1})} - \left(\frac{d\sigma}{d\Omega} \right)^{(B_{2}, T_{2}, R_{2})} \right]$$

Photoproduction: observables I

Generic definition of an observable

$$\check{\Omega} = \left[\left(\frac{d\sigma}{d\Omega} \right)^{(B_1, T_1, R_1)} - \left(\frac{d\sigma}{d\Omega} \right)^{(B_2, T_2, R_2)} \right]$$

*) In total, 16 non-redundant observables

$$\check{\Omega}^{\alpha}\left(W,\theta\right) = \frac{1}{2} \frac{q}{k} \sum_{i,j} F_{i}^{*} \hat{A}_{ij}^{\alpha} F_{j}, \quad \alpha = 1, \dots, 16$$

can be defined, involving Beam-, Target- and Recoil Polarization.

Photoproduction: observables I

Generic definition of an observable

$$\check{\Omega} = \left[\left(\frac{d\sigma}{d\Omega} \right)^{(B_{1}, T_{1}, R_{1})} - \left(\frac{d\sigma}{d\Omega} \right)^{(B_{2}, T_{2}, R_{2})} \right]$$

*) In total, 16 non-redundant observables

$$\check{\Omega}^{\alpha}\left(W,\theta\right) = \frac{1}{2} \frac{q}{k} \sum_{i,j} F_{i}^{*} \hat{A}_{ij}^{\alpha} F_{j}, \quad \alpha = 1,\ldots,16$$

can be defined, involving Beam-, Target- and Recoil Polarization.

 \hookrightarrow Example: Beam-asymmetry $\check{\Sigma}$ is <u>bilinear</u> in the F_i :

$$\check{\Sigma} = \left(\frac{d\sigma}{d\Omega}\right)^{(\perp,0,0)} - \left(\frac{d\sigma}{d\Omega}\right)^{(\parallel,0,0)}
= -\frac{q}{k}\sin^2\theta\operatorname{Re}\left[\left|F_3\right|^2 + \left|F_4\right|^2 + 2\left\{F_1^*F_4 + F_2^*F_3 + \cos\theta F_3^*F_4\right\}\right].$$

Photoproduction: observables II

Observable	Transversity representation	Туре
σ_0	$\frac{1}{2} \left(b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2 \right)$	
Σ̈́	$\frac{1}{2} \left(- b_1 ^2 - b_2 ^2 + b_3 ^2 + b_4 ^2 \right)$	${\mathcal S}$
Ť	$\frac{1}{2}(b_1 ^2- b_2 ^2- b_3 ^2+ b_4 ^2)$	
Ř	$\frac{1}{2} \left(- b_1 ^2 + b_2 ^2 - b_3 ^2 + b_4 ^2 \right)$	
Ğ	$\operatorname{Im}\left[-b_{1}b_{3}^{*}-b_{2}b_{4}^{*}\right]$	
Ě	$-\operatorname{Re}\left[b_{1}b_{3}^{*}-b_{2}b_{4}^{*}\right]$	\mathcal{BT}
Ě	$-\mathrm{Re}\left[b_1b_3^*+b_2b_4^*\right]$	
Ě	$\operatorname{Im}\left[b_1b_3^*-b_2b_4^*\right]$	
$\check{O}_{\kappa'}$	$-\mathrm{Re}\left[-b_1b_4^*+b_2b_3^* ight]$	
$\check{O}_{z'}$	$\operatorname{Im}\left[-b_{1}b_{4}^{*}-b_{2}b_{3}^{*}\right]$	\mathcal{BR}
$\check{\mathcal{C}}_{\mathbf{x'}}$	$\operatorname{Im}\left[b_1b_4^*-b_2b_3^*\right]$	
$\check{C}_{z'}$	$\operatorname{Re}\left[b_1b_4^*+b_2b_3^*\right]$	
$\check{\mathcal{T}}_{\varkappa'}$	$-\mathrm{Re}\left[-b_1b_2^*+b_3b_4^* ight]$	
$\check{T}_{z'}$	$-\mathrm{Im}\left[b_1b_2^*-b_3b_4^*\right]$	\mathcal{TR}
$L_{x'}$	$-\mathrm{Im}\left[-b_1b_2^*-b_3b_4^*\right]$	
Ľ _{z'}	$\operatorname{Re}\left[-b_1b_2^*-b_3b_4^*\right]$	

*) Transversity amplitudes: $b_i = \sum_j M_{ij} F_j$.

(Different scheme of spin-quantization)

*) Observables simplify:

$$\check{\Omega}^{\alpha} = \frac{1}{2} \sum_{i,j} b_i^* \tilde{\Gamma}_{ij}^{\alpha} b_j.$$

Photoproduction: general TPWA-formalism

Consider <u>truncation</u> of the multipole-expansion at some angular momentum ℓ_{max} :

$$F_{1}(W,\theta) = \sum_{\ell=0}^{\infty \ell_{\max}} \left\{ \left[\ell M_{\ell+} + E_{\ell+} \right] P_{\ell+1}^{'} \left(\cos(\theta) \right) + \left[(\ell+1) M_{\ell-} + E_{\ell-} \right] P_{\ell-1}^{'} \left(\cos(\theta) \right) \right\}$$

$$F_{2}(W,\theta) = \dots,$$

and insert this expansion into the (sixteen) observables $\check{\Omega}^{\alpha}=\frac{1}{2}\frac{q}{k}\sum_{i,j}F_{i}^{*}\hat{A}_{ij}^{\alpha}F_{j}$.

Photoproduction: general TPWA-formalism

Consider $\underline{\text{truncation}}$ of the multipole-expansion at some angular momentum ℓ_{max} :

$$F_{1}(W,\theta) = \sum_{\ell=0}^{\infty \ell_{\mathsf{max}}} \left\{ \left[\ell M_{\ell+} + E_{\ell+} \right] P_{\ell+1}^{'} \left(\cos(\theta) \right) + \left[(\ell+1) M_{\ell-} + E_{\ell-} \right] P_{\ell-1}^{'} \left(\cos(\theta) \right) \right\}$$

$$F_{2}(W,\theta) = \dots,$$

and insert this expansion into the (sixteen) observables $\check{\Omega}^{\alpha} = \frac{1}{2} \frac{q}{k} \sum_{i,j} F_i^* \hat{A}_{ij}^{\alpha} F_j$.

- ⇒ General form for the TPWA (energy-independent fit) in photoproduction:
 - (i) Expansion of the angular distributions into Legendre-moments:

$$\check{\Omega}^{\alpha}\left(W,\theta\right) = \rho \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} \left(a_{L}\right)_{k}^{\check{\Omega}^{\alpha}}\left(W\right) P_{k}^{\beta_{\alpha}}\left(\cos\theta\right),$$

(ii) Legendre-moments are bilinear equations in terms of multipoles:

$$\left(a_{L}\right)_{k}^{\check{\Omega}^{\alpha}}\left(W\right)=\left\langle \mathcal{M}_{\ell_{\max}}\left(W\right)\right|\left(\mathcal{C}_{L}\right)_{k}^{\check{\Omega}^{\alpha}}\left|\mathcal{M}_{\ell_{\max}}\left(W\right)\right\rangle,$$

Example:
$$\check{\Sigma} \propto (a_2)_2^{\check{\Sigma}} P_2^2(\cos\theta) + (a_2)_3^{\check{\Sigma}} P_3^2(\cos\theta) + (a_2)_4^{\check{\Sigma}} P_4^2(\cos\theta)$$
, i.e. $\ell_{\max} = 2$;

Example:
$$\check{\Sigma} \propto (a_2)^{\check{\Sigma}}_2 P_2^2(\cos\theta) + (a_2)^{\check{\Sigma}}_3 P_3^2(\cos\theta) + (a_2)^{\check{\Sigma}}_4 P_4^2(\cos\theta)$$
, $\ell_{\max} = 2$;

$$\frac{(a_{2})^{\frac{x}{2}}}{2} = \frac{1}{14} \left[E_{2-}^{*} \left(-7E_{2-} + 7E_{0+} - 2E_{2+} + 7M_{2-} - 7M_{2+} \right) + 7E_{0+}^{*} \left(E_{2-} + E_{2+} + M_{2-} - M_{2+} \right) \right]
+ E_{2+}^{*} \left(-2E_{2-} + 7E_{0+} - 18(4E_{2+} + M_{2-} - M_{2+}) \right) + M_{2-}^{*} \left(7E_{2-} + 7E_{0+} - 18E_{2+} + 21M_{2-} + 9M_{2+} \right) + M_{2+}^{*} \left(-7E_{2-} - 7E_{0+} + 9(2E_{2+} + M_{2-} + 4M_{2+}) \right)
+ 7\left(E_{1+}^{*} \left(-3E_{1+} - M_{1-} + M_{1+} \right) + M_{1-}^{*} \left(M_{1+} - E_{1+} \right) + M_{1+}^{*} \left(E_{1+} + M_{1-} + M_{1+} \right) \right) \right]$$

Y. Wunderlich Lecture on PWA/AA 15/23

$$= \langle \mathcal{M}_{\ell} | \, \mathcal{C}_{2}^{\check{\Sigma}} \, | \mathcal{M}_{\ell} \rangle \equiv \langle \mathcal{S}, \mathcal{D} \rangle + \langle \mathcal{P}, \mathcal{P} \rangle + \langle \mathcal{D}, \mathcal{D} \rangle$$

Generally: $(a_{\ell_{max}})_{\ell}^{\tilde{N}^{\alpha}}$ defined by matrices with $\langle \ell_1, \ell_2 \rangle$ -interference blocks

Lecture on PWA/AA 15/23

Photoproduction: general TPWA-formalism

Consider $\underline{\text{truncation}}$ of the multipole-expansion at some angular momentum ℓ_{max} :

$$F_{1}(W,\theta) = \sum_{\ell=0}^{\infty\ell_{\mathsf{max}}} \left\{ \left[\ell M_{\ell+} + E_{\ell+} \right] P_{\ell+1}^{'} \left(\cos(\theta) \right) + \left[(\ell+1) M_{\ell-} + E_{\ell-} \right] P_{\ell-1}^{'} \left(\cos(\theta) \right) \right\}$$

$$F_{2}(W,\theta) = \dots,$$

and insert this expansion into the (sixteen) observables $\check{\Omega}^{\alpha} = \frac{1}{2} \frac{q}{k} \sum_{i,j} F_i^* \hat{A}_{ij}^{\alpha} F_j$.

- ⇒ General form for the TPWA (energy-independent fit) in photoproduction:
 - (i) Expansion of the angular distributions into Legendre-moments:

$$\check{\Omega}^{\alpha}\left(W,\theta\right) = \rho \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} \left(a_{L}\right)_{k}^{\check{\Omega}^{\alpha}}\left(W\right) P_{k}^{\beta_{\alpha}}\left(\cos\theta\right),$$

- \rightarrow Use this for simple moment-analysis (' ℓ_{max} -fit') of angular distributions.
- (ii) Legendre-moments are bilinear equations in terms of multipoles:

$$(a_L)_k^{\check{\Omega}^{lpha}}(W) = \langle \mathcal{M}_{\ell_{\max}}(W) | (\mathcal{C}_L)_k^{\check{\Omega}^{lpha}} | \mathcal{M}_{\ell_{\max}}(W) \rangle,$$

→ Solve these equation-systems to obtain multipoles (difficult!).

Example-TPWA in photoproduction: database

Y. Wunderlich Lecture on PWA/AA 17/23

Example-TPWA in photoproduction: database

$$\{\sigma_0, \Sigma, T, P, E, G, H\}.$$

From moment analyses of the angular distributions of the data (and later confirmed by χ^2/ndf in the multipole fit):

truncation at $\ell_{\rm max}=2$ and/or $\ell_{\rm max}=3$ can already describe the data.

 \rightarrow See now in more detail how this works ...

Example-TPWA in photoproduction: moment analysis

E.g.:
$$\check{\Sigma}(W,\theta) = \sigma^{(\perp)} - \sigma^{(\parallel)} = \frac{q}{k} \sum_{n=2}^{2\ell_{\max}} (a_{\ell_{\max}})_n^{\check{\Sigma}}(W) P_n^2(\cos\theta)$$
 [GRAAL-data for beam-asymmetry $\check{\Sigma}$] 80 $\ell_{\max} = 1$ $\ell_{\max} = 2$ $\ell_{\max} = 3$ ℓ_{\max}

Y. Wunderlich Lecture on PWA/AA 18/23

Ansatz: Use the <u>total</u> cross section $\hat{\sigma}$ (W). Example: $\ell \leq \ell_{\max} = 1$, phase constraint $\operatorname{Im}\left[\tilde{\mathcal{E}}_{0+}\right] = 0$ & $\operatorname{Re}\left[\tilde{\mathcal{E}}_{0+}\right] > 0$:

$$\begin{split} \hat{\sigma}(W) &\equiv 4\pi \int_{-1}^{+1} d\cos\theta \sigma_0(W,\cos\theta) \approx 4\pi \frac{q}{k} \left(\operatorname{Re} \left[\tilde{E}_{0+} \right]^2 + 6 \operatorname{Re} \left[\tilde{E}_{1+} \right]^2 \right. \\ &\left. + 6 \operatorname{Im} \left[\tilde{E}_{1+} \right]^2 + 2 \operatorname{Re} \left[\tilde{M}_{1+} \right]^2 + 2 \operatorname{Im} \left[\tilde{M}_{1+} \right]^2 + \operatorname{Re} \left[\tilde{M}_{1-} \right]^2 + \operatorname{Im} \left[\tilde{M}_{1-} \right]^2 \right) \end{split}$$

Ansatz: Use the <u>total</u> cross section $\hat{\sigma}$ (W). Example: $\ell \leq \ell_{\max} = 1$, phase constraint $\operatorname{Im}\left[\tilde{\mathcal{E}}_{0+}\right] = 0$ & $\operatorname{Re}\left[\tilde{\mathcal{E}}_{0+}\right] > 0$:

$$\begin{split} \hat{\sigma}(W) &\equiv 4\pi \int_{-1}^{+1} d\cos\theta \sigma_0(W,\cos\theta) \approx 4\pi \frac{q}{k} \Big(\mathrm{Re} \left[\tilde{E}_{0+} \right]^2 + 6\,\mathrm{Re} \left[\tilde{E}_{1+} \right]^2 \\ &+ 6\,\mathrm{Im} \left[\tilde{E}_{1+} \right]^2 + 2\,\mathrm{Re} \left[\tilde{M}_{1+} \right]^2 + 2\,\mathrm{Im} \left[\tilde{M}_{1+} \right]^2 + \mathrm{Re} \left[\tilde{M}_{1-} \right]^2 + \mathrm{Im} \left[\tilde{M}_{1-} \right]^2 \Big) \end{split}$$

*) $\hat{\sigma}(W)$ constrains the intervals of the multipoles:

$$\operatorname{Re}\left[\tilde{E}_{0+}\right] \in \left[0, \sqrt{\tfrac{k}{q} \tfrac{\sigma(W)}{4\pi}}\right], \, \ldots, \, \operatorname{Im}\left[\tilde{M}_{1-}\right] \in \left[-\sqrt{\tfrac{k}{q} \tfrac{\sigma(W)}{4\pi}}, \sqrt{\tfrac{k}{q} \tfrac{\sigma(W)}{4\pi}}\right]$$

*) The total cross section, being quadratic form in the multipoles, also defines an ellipsoid in the multipole space.

1. The total cross section

$$\begin{split} \hat{\sigma}\left(W\right) &= \textstyle\sum_{\mathcal{M}_{\ell}}^{\ell_{\mathrm{max}}} c_{\mathcal{M}_{\ell}} \left|\mathcal{M}_{\ell}\right|^{2} \\ \text{constrains the } (8\ell_{\mathrm{max}} - 1)\text{-dimensional} \\ \text{multipole space } \mathcal{M}_{\ell}. \end{split}$$

 $\mathcal{M}_{\ell} \setminus \mathrm{Re}[\mathit{E}_{0+}]$

1. The total cross section

$$\begin{split} \hat{\sigma}\left(W\right) &= \textstyle\sum_{\mathcal{M}_{\ell}}^{\ell_{\max}} c_{\mathcal{M}_{\ell}} \left|\mathcal{M}_{\ell}\right|^2 \\ \text{constrains the } (8\ell_{\max} - 1)\text{-dimensional} \\ \text{multipole space } \mathcal{M}_{\ell}. \end{split}$$

2. $\hat{\sigma}(W)$ defines an $(8\ell_{\text{max}} - 2)$ dimensional ellipsoid in \mathcal{M}_{ℓ} .

 $\mathcal{M}_{\ell} \setminus \operatorname{Re}[E_{0+}]$

1. The total cross section

$$\hat{\sigma}\left(W\right) = \sum_{\mathcal{M}_{\ell}}^{\ell_{\max}} c_{\mathcal{M}_{\ell}} \left|\mathcal{M}_{\ell}\right|^{2}$$
 constrains the $\left(8\ell_{\max} - 1\right)$ -dimensional multipole space \mathcal{M}_{ℓ} .

- 2. $\hat{\sigma}(W)$ defines an $(8\ell_{\text{max}} 2)$ dimensional ellipsoid in \mathcal{M}_{ℓ} .
- 3. Solutions to the TPWA problem lie on the ellipsoid defined by $\hat{\sigma}(W)$.

 $\mathcal{M}_\ell \setminus \mathrm{Re}[\textit{E}_{0+}]$

1. The total cross section

$$\hat{\sigma}\left(W\right) = \sum_{\mathcal{M}_{\ell}}^{\ell_{\max}} c_{\mathcal{M}_{\ell}} \left|\mathcal{M}_{\ell}\right|^{2}$$
 constrains the (8 $\ell_{\max} - 1$)-dimensional multipole space \mathcal{M}_{ℓ} .

- 2. $\hat{\sigma}(W)$ defines an $(8\ell_{\text{max}} 2)$ dimensional ellipsoid in \mathcal{M}_{ℓ} .
- 3. Solutions to the TPWA problem lie on the ellipsoid defined by $\hat{\sigma}(W)$.
- 4. The start values for the FindMinimum-Fit are chosen randomly on the $\hat{\sigma}$ (W)-ellipsoid.
 - → Monte Carlo sampling of the multipole space.

 $\mathcal{M}_{\ell} \setminus \mathrm{Re}[E_{0+}]$

Y. Wunderlich Lecture on PWA/AA 20/23

 A FindMinimum-minimization is performed for each of the randomly generated start configurations.

 \Rightarrow $N_{MC} = \#$ of M.C. start configurations = # of (possibly redundant) solutions

 $\mathcal{M}_{\ell} \setminus \operatorname{Re}[E_{0+}]$

- Analysis described up to now is fully model-independent. <u>However:</u> if wished for or needed, individual partial-wave parameters can be fixed to model-constraints quite freely.
- 7. In this way, map out the global minimum as well as all local minima of the χ^2 -function in the TPWA step (ii). (I.e., the function to be minimized to solve for the multipoles:

$$\chi^2 = \textstyle \sum_{\mathit{i,j}} \left[\mathit{a}_{\mathit{L},\mathit{i}} - \left< \mathcal{M}_{\ell} \right| \mathcal{C}_{\mathit{L},\mathit{i}} \left| \mathcal{M}_{\ell} \right> \right] \, \textit{Cov}_{\mathit{ij}}^{-1} \left[\mathit{a}_{\mathit{L},\mathit{j}} - \left< \mathcal{M}_{\ell} \right| \mathcal{C}_{\mathit{L},\mathit{j}} \left| \mathcal{M}_{\ell} \right> \right] \, \right) \! \! \mathcal{M}_{\ell} \setminus \mathrm{Re}[\textit{E}_{0+}]$$

Y. Wunderlich Lecture on PWA/AA 20/23

TPWA in photoproduction: all multipoles unconstrained

TPWA in photoproduction: all multipoles unconstrained

TPWA in photoproduction: all multipoles unconstrained

TPWA in photoproduction: constraints on F-waves

TPWA in photoproduction: constraints on F-waves

Example-TPWA in photoproduction: resonant multipole

Consider multipole $M_{2-} \leftrightarrow$ resonance $N(1520)\frac{3}{2}^-$ (i.e. $J=\frac{3}{2},\ P=(-),\ \ell=2$):

Y. Wunderlich Lecture on PWA/AA 23/23

Thank You!

Appendices

Energy-independent fits: ambiguities

*) A general truncated (i.e. polynomial-) amplitude for arbitrary $L=\ell_{\text{max}}$ has a linear factorization. Example: L=2, $A=\sum_{\ell=0}^2(2\ell+1)A_\ell P_\ell(\cos\theta)$ leads to:

$$A = A_0 + 3A_1P_1(\cos\theta) + 5A_2P_2(\cos\theta)$$

= $\lambda (\cos\theta - \alpha_1)(\cos\theta - \alpha_2)$, with $\lambda \propto A_2$.

Energy-independent fits: ambiguities

*) A general truncated (i.e. polynomial-) amplitude for arbitrary $L=\ell_{\text{max}}$ has a linear factorization. Example: L=2, $A=\sum_{\ell=0}^2(2\ell+1)A_\ell P_\ell(\cos\theta)$ leads to:

$$A = A_0 + 3A_1P_1(\cos\theta) + 5A_2P_2(\cos\theta)$$

= $\lambda (\cos\theta - \alpha_1)(\cos\theta - \alpha_2)$, with $\lambda \propto A_2$.

- *) roots $(\lambda, \{\alpha_1, \alpha_2\}) \leftrightarrow$ partial waves $\{A_0, A_1, A_2\}$
- *) Define 'mappings' π_n , which comprise all possibilities to complex conjugate subsets of the roots: $\alpha_i \longrightarrow \pi_n(\alpha_i)$, i.e.:

$$\pi_{0} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix}, \ \pi_{1} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \alpha_{1}^{*} \\ \alpha_{2} \end{bmatrix},
\pi_{2} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \alpha_{1} \\ \alpha_{2}^{*} \end{bmatrix}, \ \pi_{3} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \alpha_{1}^{*} \\ \alpha_{2}^{*} \end{bmatrix}.$$

 \hookrightarrow There exist in total $2^2 = 4$ such maps π_n .

Energy-independent fits: ambiguities

*) A general truncated (i.e. polynomial-) amplitude for arbitrary $L=\ell_{\text{max}}$ has a linear factorization. Example: L=2, $A=\sum_{\ell=0}^2(2\ell+1)A_\ell P_\ell(\cos\theta)$ leads to:

$$A = A_0 + 3A_1P_1(\cos\theta) + 5A_2P_2(\cos\theta)$$

= $\lambda (\cos\theta - \alpha_1)(\cos\theta - \alpha_2)$, with $\lambda \propto A_2$.

- *) roots $(\lambda, \{\alpha_1, \alpha_2\}) \leftrightarrow$ partial waves $\{A_0, A_1, A_2\}$
- *) Define 'mappings' π_n , which comprise all possibilities to complex conjugate subsets of the roots: $\alpha_i \longrightarrow \pi_n(\alpha_i)$, i.e.:

$$\pi_0 \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}, \ldots, \pi_3 \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \alpha_1^* \\ \alpha_2^* \end{bmatrix}.$$

 \hookrightarrow There exist in total $2^2 = 4$ such maps π_n . *) One can transform to $2^2 = 4$ ambiguous amplitudes:

$$A^{(n)} = \lambda \prod_{i=1}^{L} (\cos \theta - \pi_n [\alpha_i]) \equiv \sum_{\ell=0}^{L} (2\ell+1) A_{\ell}^{(n)}(W) P_{\ell}(\cos \theta),$$

which <u>all</u> have the same diff. c.s. $\sigma_0 = |\lambda|^2 \prod_{i=1}^L (\cos \theta - \alpha_i^*) (\cos \theta - \alpha_i)$.

Writing and fitting an energy-dependent model for the amplitude A_{fi} describing a single transition $i \to f$ is possible but also in some sense *artificial*, because:

In Relativistic QM: conversions mass \leftrightarrow energy, i.e. creation/destruction of particles

 \Rightarrow Multiple different scattering-states, or 'channels', open with ascending energy!

Writing and fitting an energy-dependent model for the amplitude A_{fi} describing a single transition $i \to f$ is possible but also in some sense *artificial*, because:

In Relativistic QM: conversions mass \leftrightarrow energy, i.e. creation/destruction of particles

⇒ Multiple different scattering-states, or 'channels', open with ascending energy! Example: system of 3 *coupled* scalar 2-body channels

$$|I\rangle = \left|\varphi_1^I, \varphi_2^I\right\rangle, \ |II\rangle = \left|\varphi_1^{II}, \varphi_2^{II}\right\rangle, \ |III\rangle = \left|\varphi_1^{III}, \varphi_2^{III}\right\rangle \ \text{(different masses!)}.$$

Writing and fitting an energy-dependent model for the amplitude A_{fi} describing a single transition $i \to f$ is possible but also in some sense artificial, because:

In Relativistic QM: conversions mass ↔ energy, i.e. creation/destruction of particles

⇒ Multiple different scattering-states, or 'channels', open with ascending energy! Example: system of 3 coupled scalar 2-body channels

$$|I\rangle = \left|\varphi_1^I, \varphi_2^I\right\rangle, \, |II\rangle = \left|\varphi_1^{II}, \varphi_2^{II}\right\rangle, \, |III\rangle = \left|\varphi_1^{III}, \varphi_2^{III}\right\rangle \, \text{(different masses!)}.$$

Transitions $a \rightarrow b$ $(a, b \in \{I, II, III\})$ described by an abstract S-operator ('S-Matrix'):

$$\hat{S} = \mathbb{1} + 2i\hat{T}$$
 (remember: $A_{fi} \propto \langle f | \hat{T} | i \rangle$). Conservation of probabilities, i.e. $\sum_b P_{a \to b} = 1$

Conservation of probabilities, i.e. $\sum_b P_{a \to b} = 1$, is equivalent to the *unitarity of S*: $\hat{S}^{\dagger}\hat{S} = 1$.

Writing and fitting an energy-dependent model for the amplitude A_{fi} describing a single transition $i \to f$ is possible but also in some sense *artificial*, because:

In Relativistic QM: conversions mass \leftrightarrow energy, i.e. creation/destruction of particles

⇒ Multiple different scattering-states, or 'channels', open with ascending energy! Example: system of 3 *coupled* scalar 2-body channels

$$|I\rangle = \left|\varphi_1^I, \varphi_2^I\right\rangle, \, |II\rangle = \left|\varphi_1^{II}, \varphi_2^{II}\right\rangle, \, |III\rangle = \left|\varphi_1^{III}, \varphi_2^{III}\right\rangle \, \text{(different masses!)}.$$

Transitions $a \rightarrow b$ ($a, b \in \{I, II, III\}$) described by an abstract S-operator ('S-Matrix'):

$$\hat{\mathcal{S}} = \mathbb{1} + 2i\,\hat{\mathcal{T}}$$
 (remember: $A_{\mathit{fi}} \propto \langle f|\,\hat{\mathcal{T}}\,|i
angle$).

Conservation of probabilities, i.e. $\sum_b P_{a \to b} = 1$, is equivalent to the *unitarity of S*: $\hat{S}^{\dagger}\hat{S} = \underline{1}$.

$$\langle I|$$
 \downarrow $\langle II|$ \downarrow \hat{S} \downarrow $|II\rangle$ $\langle III|$

*) Derive unitarity-condition for the *T*-matrix:

$$\hat{S}^{\dagger}\hat{S} = \left(\mathbb{1} - 2i\,\hat{T}^{\dagger}\right)\left(\mathbb{1} + 2i\,\hat{T}\right) = \mathbb{1} - 2i\,\hat{T}^{\dagger} + 2i\,\hat{T} + 4\,\hat{T}^{\dagger}\,\hat{T} \stackrel{!}{=} \mathbb{1},$$

$$\Rightarrow \, \hat{T} - \hat{T}^{\dagger} = 2i\,\hat{T}^{\dagger}\,\hat{T} \text{ ('optical theorem in operator-notation')}.$$

) (2-body) unitarity takes simple form in partial-wave basis: $A_{\ell}^{b\leftarrow a} - \left(A_{\ell}^{b\leftarrow a}\right)^ = i \sum_{c} \left(A_{\ell}^{b\leftarrow c}\right)^* \rho_c A_{\ell}^{c\leftarrow a} \; (\rho_c: \text{ 'phase-space volume' of } |c\rangle).$

Any possible model-construction that fulfills this constraint is unitary!

*) (2-body) unitarity takes simple form in partial-wave basis:

$$A_\ell^{b\leftarrow a}-\left(A_\ell^{b\leftarrow a}\right)^*=i\sum_c\left(A_\ell^{b\leftarrow c}\right)^*
ho_cA_\ell^{c\leftarrow a}$$
 (ho_c : 'phase-space volume' of $|c
angle$).

Any possible model-construction that fulfills this constraint is unitary!

*) Trick: go back to abstract operators and write

$$\hat{T} - \hat{T}^{\dagger} = 2i\hat{T}^{\dagger}\hat{T} \Leftrightarrow (\hat{T}^{\dagger})^{-1} - \hat{T}^{-1} = 2i\mathbb{1} \Leftrightarrow (\hat{T}^{-1} + i\mathbb{1})^{\dagger} = (\hat{T}^{-1} + i\mathbb{1}).$$

$$\underline{\mathsf{Define:}} \ '\mathsf{K}\mathsf{-Matrix'} \ \hat{\mathsf{K}}^{-1} := \hat{T}^{-1} + i\mathbb{1} \Leftrightarrow \hat{T} = \hat{\mathsf{K}} \left(\mathbb{1} - i\hat{\mathsf{K}}\right)^{-1}.$$

 $\hat{\mathcal{T}}$ is unitary whenever $\hat{\mathcal{K}}$ is hermitean (in most cases: real symmetric).

- *) (2-body) unitarity takes simple form in partial-wave basis:
 - $A_{\ell}^{b\leftarrow a}-\left(A_{\ell}^{b\leftarrow a}\right)^{*}=i\sum_{c}\left(A_{\ell}^{b\leftarrow c}\right)^{*}\rho_{c}A_{\ell}^{c\leftarrow a}\;\left(\rho_{c}\text{: 'phase-space volume' of }|c\rangle\right).$

Any possible model-construction that fulfills this constraint is unitary!

*) Trick: go back to abstract operators and write

$$\hat{T} - \hat{T}^{\dagger} = 2i\hat{T}^{\dagger}\hat{T} \Leftrightarrow (\hat{T}^{\dagger})^{-1} - \hat{T}^{-1} = 2i\mathbb{1} \Leftrightarrow (\hat{T}^{-1} + i\mathbb{1})^{\top} = (\hat{T}^{-1} + i\mathbb{1}).$$

$$\underline{\text{Define: 'K-Matrix'}} \hat{K}^{-1} := \hat{T}^{-1} + i\mathbb{1} \Leftrightarrow \hat{T} = \hat{K} (\mathbb{1} - i\hat{K})^{-1}.$$

 \hat{T} is unitary whenever \hat{K} is hermitean (in most cases: real symmetric).

- *) N coupled 2-body channels: implement unitarity via K-Matrix models, e.g.: $K_{\ell}^{b\leftarrow a}(s):=\sum_{j}\frac{g_{j}^{b}g_{j}^{a}}{s-m_{\ell}^{2}}+B_{\ell}^{b\leftarrow a}(s)\equiv\sum_{j}{'}K\text{-Mat. pole of resonance }j'+\text{'backgr.'}.$
 - \hookrightarrow Then fit the 'observables', i.e. diff. cross-sections $\sigma_0^{b\leftarrow a}\equiv \left|A^{b\leftarrow a}\right|^2$, of all 'reactions' $a\rightarrow b$ at once!

) (2-body) unitarity takes simple form in partial-wave basis: $A_{\iota}^{b\leftarrow a}-\left(A_{\iota}^{b\leftarrow a}\right)^{}=i\sum_{c}\left(A_{\iota}^{b\leftarrow c}\right)^{*}\rho_{c}A_{\iota}^{c\leftarrow a}\left(\rho_{c}:\text{ 'phase-space volume' of }|c\rangle\right).$

Any possible model-construction that fulfills this constraint is unitary!

*) Trick: go back to abstract operators and write

$$\hat{T} - \hat{T}^{\dagger} = 2i\,\hat{T}^{\dagger}\,\hat{T} \Leftrightarrow (\hat{T}^{\dagger})^{-1} - \hat{T}^{-1} = 2i\mathbb{1} \Leftrightarrow (\hat{T}^{-1} + i\mathbb{1})^{\dagger} = (\hat{T}^{-1} + i\mathbb{1}).$$

Define: 'K-Matrix'
$$\hat{K}^{-1} := \hat{T}^{-1} + i\mathbb{1} \Leftrightarrow \hat{T} = \hat{K} \left(\mathbb{1} - i\hat{K} \right)^{-1}$$
.

' \hat{T} is unitary whenever \hat{K} is hermitean (in most cases: real symmetric).'

*) N coupled 2-body channels: implement unitarity via K-Matrix models, e.g.: $V_{b} = \{a_{i}, a_{j}, \dots, a_{i}\} = \{a_{i}, a_{j}, \dots, a_{i}\} = \{a_{i}, \dots, a_{i}\} = \{a_{i$

$$K_\ell^{b\leftarrow a}(s):=\sum_j rac{g_j^b g_j^a}{s-m_j^2}+m{B}_\ell^{b\leftarrow a}(s)\equiv\sum_j {}^{'}K ext{-Mat. pole of resonance }j'+{}^{'} ext{backgr.}'$$
 .

- (i) \exists 3-, 4-, ... body channels,
- (ii) particles generally have spin $\neq 0$.

*) However: nature is not so kind, because:

→ Dedicated groups: [Bonn-Gatchina], [Jülich-Bonn], . . .

⇒ Takes years to write and fit a coupled-channels model