Generalized Linear Mixed-Effect Models (GLMMs) Tutorial

author: Matt Barbour date: Oct. 18, 2017 width: 960 height: 700

Why Statistical Models?

- Want to measure or test the effect of factors on responses you are interested in
- Analyzing experimental or observational data

Arxhina's Question

When two species co-occur, what determines their probability of interacting? - Type of Ecological Interaction - Normalized Degree of each Species - Statistical interactions between Normalized Degree and Type of Ecological Interaction

Arxhina's Data

• 4075 unique pairs of interactions

#	A tibble:	10 × 3			
	id_pair prop_interactions type				
	<fctr></fctr>	<dbl></dbl>	<fctr></fctr>		
1	3614	0.50	Α		
2	1970	1.00	M		
3	3930	0.25	Α		
4	90	1.00	M		
5	2100	0.50	М		
6	2752	0.60	Α		
7	2098	1.00	М		
8	450	0.50	M		
9	1956	0.50	М		
10	717	0.50	M		

Arxhina's Data

 \bullet 4075 unique pairs of interactions

A tibble: 10×3

	subtype	Norm.Deg.Sp.1	Norm.Deg.Sp.2
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	HostParasite	0.32	0.19
2	${\tt PlantPollinator}$	0.11	0.07
3	HostParasite	0.32	0.39
4	${\tt PlantPollinator}$	0.04	0.76
5	${\tt PlantPollinator}$	0.03	0.02
6	HostParasite	0.32	0.42
7	${\tt PlantPollinator}$	0.51	0.49
8	${\tt PlantPollinator}$	0.22	0.31
9	${\tt PlantPollinator}$	0.07	0.03
10	PlantPollinator	0.03	0.04

Possible Analysis

Analysis of Variance (ANOVA) - Data points are independent (true for ${\bf ANY}$ statistical analysis) - Residuals (error) are normally distributed - Equality of variances

Explore the Data

• Is ANOVA okay?

Are unique pairwise interactions independent of each other?

• Many species occur in multiple interactions

Are unique pairwise interactions independent of each other?

• Bias toward Host-Parasite and Plant-Pollinator interactions

Figure 1: plot of chunk unnamed-chunk-3

Figure 2: plot of chunk unnamed-chunk-4 $\,$

Figure 3: plot of chunk unnamed-chunk-5 $\,$

GLMMs to the Rescue

Generalized Linear Models - Non-normal data okay (pick another error dis-

GLMMs to the Rescue

Mixed-Effect Models - Account for non-independence in the data - Fixed-effects: factors whose effects are experimentally determined, or whose interest lies in the specific effects of each level. - Random Effects: factors whose levels are sampled from a larger population, or whose interest lies in the variation among them rather than the specific effects of each level. - Status of particular levels depends on experimental design and context. - No need to aggregate data

Mixed-Model Example

• Fixed-effect: Type of Ecological Interaction

• Random-effect: Subtype

Another Example

• Is using the mean for normalized degree informative?

Generalized Linear Mixed-Effect Model

Probability of Interaction ~

 ${\bf Type}~x~{\bf Norm_Deg_Sp_1}~x~{\bf Norm_Deg_Sp_2}~+$

 $(1 \mid \mathbf{Subtype}) + (1 \mid \mathbf{Sp_1} \ \mathbf{ID}) + (1 \mid \mathbf{Sp_2} \ \mathbf{ID}) +$

 $(1 \mid \mathbf{Network} \ \mathbf{ID}) + (1 \mid \mathbf{Interaxn} \ \mathbf{ID})$

Figure 4: plot of chunk unnamed-chunk-8 $\,$

• Model complexity requires a Bayesian approach

How does a Bayesian approach help us fit a more complex model?

- Incorporate prior information
- But how do we choose a "good" prior?

Choosing Priors

Have to think like the model

 How does a 1 unit change in the predictor affect the log(odds) of an interaction?

Example: - Do mutualistic interactions *increase* or *decrease* the probability of an interaction? - How big are these potential effects?

Example

- pM = 0.75; pA = 0.25
- Model Coefficient = $\log(pM / (1-pM)) \log(pA / (1-pA))$

Run the Model

• Summary Plots

Figure 5: plot of chunk unnamed-chunk-10