Exam Math_132

Rappel de cours

Méthode de Newton

- Identification des racines d'une fonction. (ie. une racine est une valeur r tel que f(r) = 0.
- La méthode se fait par approximation à partir d'une valeur supposée proche de la racine
- Developper la suite $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$. Le plus loin on va dans la suite, le plus proche on est de la racine.

Exercice 1

La suite $(x_n)_n$ est

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} avec x_0 = 2$$

On a $f(x) = xe^{-x}$, donc $f'(x) = (1 - x)e^{-x}$

$$x_{n+1} = x_n - \frac{x_n e^{-x_n}}{(1 - x_n)e^{-x_n}} = x_n - \frac{x_n}{1 - x_n} = x_n + \frac{x_n}{x_n - 1}$$

On a x-1 < x, donc $\frac{x}{x-1} > 1$ lorsque x > 1. On a $x_0 \ge 2 > 1$, à chaque pas on ajoute une valeur positive donc $x_n > 2$.

$$x_{n+1} - x_n = x_n + \frac{x_n}{x_n - 1} - x_n = \frac{x_n}{x_n - 1}$$

On a x-1 < x, donc $\frac{x}{x-1} > 1$ lorsque x > 1. On a $x_0 \ge 2 > 1$, donc $x_{n+1} - x_n > 1$. La suite est strictement croissante donc elle divergence quand $x \to \infty$.

Exam Math_132

Séance 2 - Densité dans $\mathbb R$

Exercice 1 - Une définition équivalente

1 - Si $\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists d \in D \cap]x - \epsilon, x + \epsilon[$ alors $x - \epsilon < d < x + \epsilon,$ prenons $a = x - \epsilon$ et $b = x + \epsilon$ alors a < d < b

2 - $\forall a,b \in \mathbb{R}, \exists d \in D, a < d < b \text{ alors prenons } x = \frac{a+b}{2} \text{ et } \epsilon = b-x \text{ alors } x+\epsilon = x+b-x = b \text{ et } x-\epsilon = x-(b-x) = 2x-b = 2\frac{a+b}{2}-b = a+b-b = a \text{ donc } x-\epsilon < d < x+\epsilon.$

Exercice 2 - Les rationnels sont denses dans $\mathbb R$

2.1

Si $\beta > 0$, prenons l'entier $i = E(\beta)$ alors $\beta - 1 < i < \beta$ et $\beta - \alpha > 1$, donc $\alpha < \beta - 1$ donc $\alpha < i < \beta$.

Si $\alpha < 0$, prenons l'entier $i = E(\alpha)$ alors $\alpha < i < \alpha + 1$ et $\beta - \alpha > 1$, donc $\beta > \alpha + 1$ donc $\alpha < i < \beta$.

2.2

On a $x - 1 < E(x) \le x$.

On a b-a > 0. Si q(b-a) > 1 alors $q > \frac{1}{b-a}$. Prenons $q = E(\frac{1}{b-a}) + 1$.

$$x - 1 < E(x) \le x$$

$$x - 1 + 1 < E(x) + 1 \le x + 1$$

$$\frac{1}{b - a} < E(\frac{1}{b - a}) + 1 < \frac{1}{b - a} + 1$$

$$\frac{1}{b - a} < q < \frac{1}{b - a} + 1$$

$$(b - a)\frac{1}{b - a} < q(b - a) < (\frac{1}{b - a} + 1)(b - a)$$

$$1 < q(b - a) < (\frac{1}{b - a} + 1)(b - a)$$

L'entier $q = E(\frac{1}{b-a}) + 1$.

2.3

De la question 2, on a montré que $\exists q, q(b-a) > 1$ et b-a > 0 donc

$$b - a > \frac{1}{q}$$

$$b > a + \frac{1}{q}$$

$$b > \frac{aq + 1}{q}$$

Prenons p = E(aq), donc $p \le aq .$

$$b > \frac{aq+1}{q} > \frac{p+1}{q}$$

et

$$\frac{p}{q} \le a < \frac{p+1}{q}$$

Exam Math_132

donc

$$a < \frac{p+1}{q} < \frac{aq+1}{q} < b$$

Prenons $d = \frac{p+1}{q}$ alors $\forall a,b \in \mathbb{R}, \exists d \in \mathbb{Q}, a < d < b$. Donc \mathbb{Q} est dense dans \mathbb{R} .

Exercice 3 - Densité et ensembles finis

3.1

Tout ensemble fini admet un majorant M. Prenons $a, b \in \mathbb{R}, a > M$ et b > M, $\nexists d \in X, a < d < b$. Donc X n'est pas dense dans \mathbb{R} .

3.2

Comme D est dense dans \mathbb{R} alors $\forall a,b \in \mathbb{R}, \exists d \in D, a < d < b$. Si on consedère n+1 sous-intervalles de]a;b[alors la propriété et également vérifiée sur chaque sous-intervalle (car vrai pour tout réel a et b). Donc, l'ensemble $D \setminus \{d_1, ..., d_n\}$ contient au moins une valeur tel que $\forall a,b \in \mathbb{R}, \exists d \in D, a < d < b$ (choisir une valeur dans l'intervalle qui ne contient aucun $\{d_1, ..., d_n\}$). Donc $D \setminus \{d_1, ..., d_n\}$ est dense.

Exercice 4 - Une dichotomie modifiée

4.1

4.2

Preuve par contradiction

Si I est vide alors $\alpha = \beta$, donc Inf X = Sup X. L'ensemble X contient 2 éléments distincts x_1 et x_2 . On a $x_1 < x_2$ (car ils sont distincts)

et $Inf X \leq x_1$ car Inf X est une borne inférieure.

et $Sup X \ge x_2$ car Sup X est une borne inférieure.

Donc $Inf X \leq x_1 < x_2 \leq Sup X$

Ceci contredit l'hypothèse Inf X = Sup X donc I n'est pas vide.

Exercice 5 - Rationnel ou irrationnel?

5.1

Preuve par contradiction.

Si $\sqrt{2}$ est rationnel alors $\exists p,q \in \mathbb{N}^*, \frac{p}{q} = \sqrt{2}$ avec p,q premiers entre eux.

$$\frac{p}{q} = \sqrt{2}$$

$$\frac{p^2}{q^2} = 2$$

$$p^2 = 2q^2$$

Comme $2q^2$ est pair, alors p^2 est doit être pair, donc p est pair également. Soit p=2r (comme b est pair), donc $(2r)^2=4r^2=2q^2$, alors q^2 est pair, donc q est pair. p et q sont tous les deux pairs, ils ne peuvent pas être premier entre eux - ξ contradiction. Donc $\sqrt(2)$ est irrationnel. Exam $Math_132$

5.2

Preuve par contradiction.

Si $p^{\frac{1}{n}}$ est rationnel alors $\exists a, b \in \mathbb{N}^*, \frac{a}{b} = p^{\frac{1}{n}}$ avec a, b premiers entre eux.

$$p = \left(\frac{a}{b}\right)^n$$
$$p.b^n = a^n$$
$$p.b^n = a.a^{n-1}$$

p est premier donc a ne divise pas p. a,b sont premiers entre eux donc a ne divise pas b^n . Donc la proposition est fausse et $p^{\frac{1}{n}}$ est irrationnel.

5.3

Preuve par contradiction.

Si $r^{\frac{1}{n}}$ est rationnel alors $\exists a, b \in \mathbb{N}^*, \frac{a}{b} = r^{\frac{1}{n}}$ avec a, b premiers entre eux.

$$r = \left(\frac{a}{b}\right)^n$$

r est un nombre rationnel donc $r = \frac{c}{d}$.

$$\frac{c}{d} = \left(\frac{a}{b}\right)^n$$
$$\log\left(\frac{c}{d}\right) = n \cdot \log\left(\frac{a}{b}\right)$$

c et d sont fixés par r, donc pour une certaine valeur N trés grande cette relation n'est pas vérifiée car $\log\left(\frac{c}{d}\right) < N.\log\left(\frac{a}{b}\right).$ Donc $r^{\frac{1}{n}}$ est irrationnel pour n > N.