

Higgs to Invisible Combination - Preapproval This result: HIG-15-012

Contributing analyses: HIG-13-030, HIG-14-038, EXO-12-055

P. Dunne on behalf of the $H\rightarrow$ invisible analysis groups

Reminder

- ▶ Run 1 Prompt data searches in Z(ℓℓ)H, Z(bb)H and VBF channels published in HIG-13-030
- VBF updated with parked data in HIG-14-038
- EXO-12-055 targeting V(had)H and ggH production made public recently
- Motivation:
 - Uncertainties on Higgs measurements can still accommodate significant BSM properties
 - Many BSM theories predict $H \rightarrow \text{invisible}$

Overview

- Reminder of contributing analyses
- Details of combination:
- Overlap between HIG-14-038 and EXO-12-055
- Correlation of uncertainties
- Results

Analyses

VBF - HIG-14-038, AN-2014/243

Strategy

- Select 2 jets with large $\Delta \eta$ + MET
- Remove QCD with tight selection
- Use data driven methods to estimate major backgrounds

- Single bin counting experiment
- 95% CL observed (expected) limit on B(H→inv) 57(40)%

Monojet+V(had)H-tagged - EXO-12-055, AN-2014/206

Strategy

- Select a high energy jet+MET
- Categorise events as boosted or resolved V-tagged or no V-tag
- Use data driven methods to estimate major backgrounds

- Simultaneous fit to MET in signal and control regions
- ▶ 95% CL observed (expected) limit on B(H→inv) 54(62)%

Н

Z(II)H - HIG-13-030, AN-2013/333

Strategy

- Select two electrons or muons compatible with a Z decay + MET
- Categorise by lepton flavour and presence of a jet
- Use data driven methods to estimate remaining backgrounds

- ightharpoonup 2D (1D) fit to m_{II} and m_{T} (m_{T}) in 8 (7) TeV
- ▶ 95% CL observed (expected) limit on B(H→inv) 83(86)%

Z(bb)H - HIG-13-030, AN-2013/222

Strategy

- Based on H(bb)Z(inv) analysis:
- Require two jets consistent with $Z \rightarrow bb+MET$
- Categorise according to MET
- Backgrounds from MC normalised in simultaneous fit to signal and control regions

- Fit to BDT
- 95% CL observed (expected) limit on B(H→inv) 182(199)%

Overlaps and correlations

Overlaps

Overlaps between VBF, Z(II)H, Z(bb)H

- ► VBF, Z(II)H and Z(bb)H analyses are exclusive by design:
- VBF requires no leptons and high Mii
- Z(II)H requires two leptons
- Z(bb)H requires no leptons and low Mii

Overlaps between monojet+V(had) and other analyses

- Z(bb)H and resolved category of monojet+V(had) have potential overlap
- Not expected to impact result
- Completely removing resolved category has no effect on expected limit
- VBF and monojet+V(had)-tagged analyses do have overlap:
- Veto events from monojet+V(had) analysis with 1st (2nd) jet with $p_T > 50$ (45) GeV, $M_{ii} > 1200$ GeV, $\eta_{i1} \cdot \eta_{i2} < 0$ and $\Delta \eta_{ii} > 3.6$

Effect of VBF veto

Events rejected by VBF veto

Sample	Monojet	Boosted	Resolved
VBF	13.2%	11.0%	0.0%
ggH	1.52%	0.0%	0.0%
Data	0.4%	0.2%	0.5%
Expected signal composition	70% ggH, 20% VBF, 6% WH, 3% ZH	47% WH, 25% ggH, 23% ZH, 5% VBF	39% ggH, 32% WH, 18% ZH, 11% VBF

- Explicitly checked overlap after veto in signal and dimuon control regions
- 3 out of 89,304 events found to overlap
- All in monojet category at low MET
- All have a 2nd jet rejected by PU jet ID thought to be from small differences in input

Correlated Nuisances

Analyses which it affects	
VBF, $Z(\ell\ell)H(inv)$	
VBF, $Z(b\bar{b})$, $Z(\ell\ell)H(inv)$, monojet $+V(had)$	
VBF, $Z(b\bar{b})$, $Z(\ell\ell)H(inv)$, monojet+ $V(had)$	
VBF, $Z(b\bar{b})H(inv)$, $Z(\ell\ell)H(inv)$, monojet+V(had)	
VBF, $Z(\ell\ell)H(inv)$	
VBF, $Z(b\bar{b})H(inv)$, $Z(\ell\ell)H(inv)$	
VBF, $Z(\ell\ell)H(inv)$, monojet+ $V(had)$	
$VBF, Z(\ell\ell)H(inv)$	
VBF, monojet+V(had)	

JES/R in Z(bb)H is not correlated with others because it comes from jet energy regression method

JES/R Correlation - check jet p_T

JES/R Correlation - check jet η

JES/R Correlation

- Significantly different jet kinematics seen in VBF and monojet+V(had)H
- Jets used in Z(II)H analysis are low p_T additional jets
- These are similar to additional jets used for min $\Delta \phi$ (j,MET) in VBF
- Different from high p_T jets in monojet+V(had)H analysis
- We therefore do not correlate JES/R between monojet+V(had)H and these analyses
- We tried a number of scenarios for the correlation model and found that they all gave no change to the expected limit

Limits

Limits

▶ 95% CL upper limits set using asymptotic method in combine assuming SM Higgs boson production and acceptance

Observed (expected) upper limits on $\frac{\sigma}{\sigma_{SM}} \cdot B(H \rightarrow inv)$ (%)	
57 (40)	
54 (62)	
83 (86)	
182 (199)	
?? (30)	

Limits - by production mode tag

- VBF tagged is VBF analysis
- VH-tagged is Z(II)H + Z(bb)H + boosted and resolved from monojet+V(had)H
- ggH-tagged is monojet from monojet+V(had)H

Likelihood scans

- Likelihood plotted as a function of $B(H\rightarrow inv)$:
- for combination (left) and by analysis (right)

Summary

- All CMS Run I H-invisible analyses have been combined
- The expected 95% CL upper limit on B(H \rightarrow inv) is 30%
- A first draft of the PAS is in CADI
- We ask for permission to unblind

Backup

Why Higgs to Invisible?

Experimental motivation

- Current measurements of the 125 GeV Higgs boson are compatible with Standard Model (SM) expectations
 - large uncertainties can still accommodate significant beyond the SM (BSM) properties
- Additional Higgs bosons with exotic decays are not excluded

Theoretical motivation

- Many BSM theories predict Higgs boson decays to invisible final states:
- e.g. SUSY, extra dimensions, fourth-generation neutrinos
- ► These final state particles are often dark matter candidates

Pulls

- Usual full table of pulls and post-fit nuisances in AN/2014-206
- Generally distributed around their pre-fit values
- Apologies for x axis below

VBF Objects

PFMET

- Ignore muons
- ► Type0+1 corrections
- Smeared PEMET for MC.

AK5 PFJets

- ► L1FastJet+L2+L3(+L2L3Residual) **IFC**
- "Loose" PF Jet ID
- Cleaned with veto leptons
- ► "Loose" PU jet ID
- Smeared jet collection for MC (JER) is smeared to match data)

Veto leptons

- loose+PFiso muons $p_T > 10$ GeV, $|\eta| < 2.1$
- ▶ veto+PFiso electrons $p_T > 10$ GeV, $|\eta| < 2.4$

Tight leptons

As veto leptons but "tight" ID and $p_T > 20 \text{ GeV}$

Hadronic taus

- $p_T > 20 \text{ GeV}, |\eta| < 2.3, d_7 < 0.2 \text{ cm}$
- Tight ID, discriminant "byTightCombinedIsolationDelta-BetaCorr3Hits"
- ▶ Efficiency \sim 0.55, fake rate 0.02(barrel), 0.03(endcap)