Heat Transfer: Radiation

Black Body Radiation

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

Radiation Properties:

- Understanding of the Wave-Quantum Duality
- Black Body:
 Description of the spectral radiation intensity according to Planck

Stefan-Boltzmann Law:

- Solution approach for integration of the Planck's Distribution Law
- Use of Stefan-Boltzmann Law

Wien's Law of Displacement:

 Relationship from temperature and position of maximum spectral radiation intensity

[1] Max Planck

Description of Radiation (Wave-Quantum Dualty)

- [1] An illustration of the 'Double-slit experiment' in physics. Johannes Kalliauer
- [2] http://mondbrand.de/Doppelspaltexperiment.htm
- [3] wwwex.physik.uni-ulm.de / Interferenz- und Beugungsmuster

Double-slit Experiment

Quantum mechanical observation returns same result like wave observation ► Solution approach for integration of the Planck's Distribution Law Use of Stefan-Boltzmann Law © Prof. Antoine Weis Univ. Fribourg, Switzerland antoine.weis@unifr.ch

Quantum mechanics description of Radiation

[1] Energy Wavelength

Our perception of Objects

[1] tec-science.com

Special Object: "Black Body"

[1] tec-science.com

Planck's Distribution Law

Explanation:

- Radiation depends on the temperature of the body
- Model representation "Black Body" (ideally thermal radiation source):
 - All incident radiation is absorbed
 - Radiation is emitted in whole wavelength range
 - A black body emits a maximum at a given temperature

Max Planck (from quantum theory) → Distribution of the radiation intensity of a black body as function of wavelength

Planck's distribution law:

$$\dot{q}^{"}_{s\lambda} = \frac{c_1 \lambda^{-5}}{exp[c_2/(\lambda T)] - 1} \left[\frac{W}{m^2 m} \right]$$

Constants:

$$c_1 = 3,741 \ 10^{-16} \ [Wm^2]$$

 $c_2 = 1,439 \ 10^{-2} \ [mK]$

Planck's Spectral Intensity Distribution

Temperature colors: Metal processing

[1] http://www.steadfastfze.com

Radiation: Black Body

[2] http://www.blksmth.com

Wien's Law of Displacement

Planck's distribution law:

$$\dot{q''}_{s\lambda} = \frac{c_1 \lambda^{-5}}{exp[c_2/(\lambda T)] - 1} \left[\frac{W}{m^2 m} \right]$$

Wien's Law of Displacement

Wien's law of displacement:

$$\lambda_{\text{max}} T = 2898 \ [\mu m \ K]$$

Describes the position of the maximum of the spectral emissions

Sun temperature:

$$T = \frac{2898}{0.5} [K] \approx 5800 [K]$$

$$\lambda \approx 0.4 - 0.7 \ [\mu m]$$

Integration of Planck distribution:

$$\dot{q}''_{s} = \int_{0}^{\infty} \frac{c_{1}\lambda^{-5}}{exp[c_{2}/(\lambda T)] - 1} \, \mathrm{d}\lambda$$

integration

Integration of Planck distribution:

$$\dot{q}''_{s} = \int_{0}^{\infty} \frac{c_{1} \lambda^{-5}}{exp[c_{2}/(\lambda T)] - 1} \, \mathrm{d}\lambda$$

Stefan-Boltzmann law:

$$\dot{q}''_{s} = \sigma T^{4}$$
 $\sigma = 5.67 \times 10^{-8} \left[\frac{W}{m^{2} K^{4}} \right]$

Total radiation heat flux (of a black body, at a given temperature)

Integration of Planck distribution:

$$\dot{q''}_S = \int_0^\infty \frac{c_1 \lambda^{-5}}{exp[c_2/(\lambda T)] - 1} d\lambda$$

Stefan-Boltzmann law:

$$\dot{q''}_{s} = \sigma T^{4}$$
 $\sigma = 5.67 \times 10^{-8} \left[\frac{W}{m^{2} K^{4}} \right]$

Stefan-Boltzmann constant: σ

Wavelength dependence of radiation properties

Radiation: Black Body

Black body radiation in a specific wavelength range:

$$\dot{\mathbf{q}}_{s,0-\lambda_{-1}}^{\prime\prime} = \int_{0}^{\lambda_{1}} \dot{\mathbf{q}}_{s\lambda}^{\prime\prime} \cdot d\lambda$$

$$\dot{q}''_{s,0-\lambda_{-}1} = \int_{0}^{\lambda_{1}} \frac{c_{1}\lambda^{-5}}{exp[c_{2}/(\lambda T)] - 1} d\lambda$$

$$F(\lambda) = \frac{1}{\sigma T^4} \int_0^{\lambda_1} \dot{q''}_{s\lambda} \cdot d\lambda$$

HMT formulary

$\int \frac{\lambda T \text{ in } \mu \text{m K}}{F(\lambda)}$	1000,0 0,00031	,	,	1750,0 0,03363	,	/
λT in μm K $F(λ)$,	,	,	5000,0 0,63315	,	/

Distribution of black body radiation: $F(\lambda) = \int_0^{\lambda} \dot{q}''_{\lambda b} d\lambda / \sigma T^4$

Upper integration limit (multiplication of wavelength and temperature)

$$F(\lambda) = \frac{1}{\sigma T^4} \int_0^{\lambda_1} \dot{q}^{"}_{s\lambda} \cdot d\lambda$$

Stefan-Boltzmann Law

$$F(\lambda_1 \to \lambda_2) = \frac{1}{\sigma T^4} \int_{\lambda_1}^{\lambda_2} \dot{q''}_{s\lambda} \cdot d\lambda$$

Relative fraction of radiation in relation to the total radiation:

$$F(\lambda_1 \to \lambda_2) = \frac{1}{\sigma T^4} \int_{\lambda_1}^{\lambda_2} \dot{q}^{"}_{s\lambda} \cdot d\lambda$$

$$F(0 \to \lambda_2) = \frac{1}{\sigma T^4} \int_0^{\lambda_2} \dot{q}^{"}_{s\lambda} \cdot d\lambda$$

$$F(0 \to \lambda_1) = \frac{1}{\sigma T^4} \int_0^{\lambda_1} \dot{q}^{"}_{s\lambda} \cdot d\lambda$$

$$F(\lambda_1 \to \lambda_2) = F(0 \to \lambda_2) - F(0 \to \lambda_1)$$

Principle of superposition

$$F(\lambda) = \frac{1}{\sigma T^4} \int_{\lambda_1}^{\infty} \dot{q}^{"}_{s\lambda} \cdot d\lambda$$

$$F(\lambda) = \frac{1}{\sigma T^4} \int_{\lambda_1}^{\infty} \dot{q}^{"}_{s\lambda} \cdot d\lambda$$

$$F(0 \to \infty) = \frac{1}{\sigma T^4} \int_0^\infty \dot{q}''_{s\lambda} \cdot d\lambda$$

$$F(0 \to \lambda_1) = \frac{1}{\sigma T^4} \int_0^{\lambda_1} \dot{q}^{"}_{s\lambda} \cdot d\lambda$$

$$F(\lambda_1 \to \infty) = F(0 \to \infty) - F(0 \to \lambda_1)$$

Comprehension questions

What is a "Black Body"?

Which assumptions are valid for the calculation of "Black Bodies"?

Which law can be used to determine the wavelength at the intensity maximum of a "Black Body"?

Which approach was used to determine the Stefan-Boltzmann constant?

How can the radiation intensity in a certain wavelength range $\lambda_1 - \lambda_2$ be calculated?

Integration of Planck Distribution:

$$\dot{q}''_{s} = \int_{0}^{\infty} \frac{c_{1}\lambda^{-5}}{exp[c_{2}/(\lambda T)] - 1} \, \mathrm{d}\lambda$$

Substitution:
$$x = \frac{\lambda T}{c_2} \rightarrow d\lambda = \frac{c_2}{T} dx$$

insert:
$$\dot{q}''_{s} = c_{2} \int_{0}^{\infty} \frac{c_{1}T^{4}}{c_{2}^{5} x^{5} (exp\left[\frac{1}{x}\right] - 1)} dx$$

$$\dot{q}''_{s} = \frac{c_{1}}{c_{2}^{4}} T^{4} \int_{0}^{\infty} \frac{dx}{x^{5} (exp \left[\frac{1}{x}\right] - 1)}$$

$$\dot{q}^{"}_{S} = \sigma T^{4} \quad \rightarrow \quad \sigma = \frac{c_{1} \pi^{4}}{c_{2}^{4} 15}$$

