Metric Thickenings of Euclidean Submanifolds

Henry Adams and Joshua Mirth, Colorado State University SIAM Central States – September 30, 2017

Background

The Vietoris–Rips Complex

Definition

Let X be a metric space and r > 0 a scale parameter. The Vietoris–Rips complex, $\operatorname{VR}_{\leq}(X;r)$, of X, has vertex set X and a simplex for every finite subset $\sigma \subseteq X$ such that $\operatorname{diam}(\sigma) \leq r$.

Theorem

Theorem

Let M be a compact Riemannian manifold and r > 0 be sufficiently small. Then $VR(M; r) \simeq M$.

• The bound on r depends upon the curvature of M.

Theorem

- The bound on r depends upon the curvature of M.
- VR(M;r) does not inherit the metric of M.

Theorem

- The bound on r depends upon the curvature of M.
- VR(M;r) does not inherit the metric of M. Thus:
 - \diamond Hausmann's proof only gives a map $T\colon \mathrm{VR}(M;r)\to M,$ and proves the equivalence using algebraic techniques.

Theorem

- The bound on r depends upon the curvature of M.
- VR(M;r) does not inherit the metric of M. Thus:
 - \diamond Hausmann's proof only gives a map $T\colon \mathrm{VR}(M;r)\to M,$ and proves the equivalence using algebraic techniques.
 - \diamond T depends upon a total order of the points in M.

Theorem

- The bound on r depends upon the curvature of M.
- VR(M;r) does not inherit the metric of M. Thus:
 - \diamond Hausmann's proof only gives a map $T\colon \mathrm{VR}(M;r)\to M,$ and proves the equivalence using algebraic techniques.
 - \diamond T depends upon a total order of the points in M.
 - \diamond In particular, the inclusion $\iota \colon M \hookrightarrow \mathrm{VR}(M;r)$ does not provide the inverse (in fact, ι is not even continuous.)

Metric Thickenings

Metric Vietoris-Rips Thickenings

Definition (Adamaszek, Adams, Frick)

For a metric space X and $r \ge 0$, the Vietoris–Rips thickening $\operatorname{VR}^m(X;r)$ is the set

$$VR^{m}(X;r) = \left\{ \sum_{i=0}^{k} \lambda_{i} x_{i} \mid k \in \mathbb{N}, \ x_{i} \in X, \text{ and } \operatorname{diam}(\{x_{0}, \dots, x_{k}\}) \leq r \right\}$$

equipped with the 1-Wasserstein metric.[1]

Metric Vietoris–Rips Thickenings

Definition (Adamaszek, Adams, Frick)

For a metric space X and $r \ge 0$, the Vietoris–Rips thickening $\operatorname{VR}^m(X;r)$ is the set

$$VR^{m}(X;r) = \left\{ \sum_{i=0}^{k} \lambda_{i} x_{i} \mid k \in \mathbb{N}, \ x_{i} \in X, \text{ and } \operatorname{diam}(\{x_{0}, \dots, x_{k}\}) \leq r \right\}$$

equipped with the 1-Wasserstein metric.[1]

• As a set this is identical to the geometric realization of VR(X;r), but the topology is different.

4

Metric Vietoris–Rips Thickenings

Definition (Adamaszek, Adams, Frick)

For a metric space X and $r \ge 0$, the Vietoris–Rips thickening $\operatorname{VR}^m(X;r)$ is the set

$$VR^{m}(X;r) = \left\{ \sum_{i=0}^{k} \lambda_{i} x_{i} \mid k \in \mathbb{N}, \ x_{i} \in X, \text{ and } \operatorname{diam}(\{x_{0}, \dots, x_{k}\}) \leq r \right\}$$

equipped with the 1-Wasserstein metric.[1]

- As a set this is identical to the geometric realization of VR(X;r), but the topology is different.
- By identifying $x \in X$ with $\delta_x \in \mathcal{P}(X)$, we can view $VR^m(X;r)$ as a subset of $\mathcal{P}(X)$, the set of all Radon probability measures on X.

Metric Vietoris–Rips Thickenings

Definition (Adamaszek, Adams, Frick)

For a metric space X and $r \ge 0$, the Vietoris–Rips thickening $\operatorname{VR}^m(X;r)$ is the set

$$VR^{m}(X;r) = \left\{ \sum_{i=0}^{k} \lambda_{i} x_{i} \mid k \in \mathbb{N}, \ x_{i} \in X, \text{ and } \operatorname{diam}(\{x_{0}, \dots, x_{k}\}) \leq r \right\}$$

equipped with the 1-Wasserstein metric.[1]

- As a set this is identical to the geometric realization of VR(X;r), but the topology is different.
- By identifying $x \in X$ with $\delta_x \in \mathcal{P}(X)$, we can view $VR^m(X;r)$ as a subset of $\mathcal{P}(X)$, the set of all Radon probability measures on X.
- This makes $VR^m(X;r)$ a (metric) thickening of X.

Wasserstein Metric

Let $x, x' \in VR^m(X; r)$ with $x = \sum_{i=0}^k \lambda_i x_i$ and $x' = \sum_{i=0}^{k'} \lambda'_i x'_i$. Define a matching p between x and x' to be any collection of non-negative real numbers $\{p_{i,j}\}$ such that $\sum_{j=0}^{k'} p_{i,j} = \lambda_i$ and $\sum_{i=0}^k p_{i,j} = \lambda'_j$. Define the cost of the matching p to be $cost(p) = \sum_{i,j} p_{i,j} d(x_i, x'_j)$.

Definition

The 1-Wasserstein metric on $VR^m(X;r)$ is the distance d_W defined by

 $d_W(x, x') = \inf \{ \cos(p) \mid p \text{ is a matching between } x \text{ and } x' \}.$

Euclidean Submanifolds

Positive Reach

The medial axis of $X \subseteq \mathbb{R}^n$ is the closure, \overline{Y} , of

$$Y = \{ y \in \mathbb{R}^n \mid \exists x_1 \neq x_2 \in M \text{ with } d(y, x_1) = d(y, x_2) = d(y, X) \}.$$

The reach, τ , of X is the minimal distance $\tau = d(X, \overline{Y})$ between X and its medial axis.

Smooth manifolds embedded in \mathbb{R}^n have positive reach.

Nearest Point Projection

Define the α -offset of $X \subseteq \mathbb{R}^n$:

$$Tub_{\alpha} = \{x \in \mathbb{R}^n \mid d(x, X) < \alpha\} = \bigcup_{x \in X} B(x, \alpha).$$

If X has reach τ , then $\pi \colon \mathrm{Tub}_{\tau} \to X$ where x maps to its nearest point in X is well-defined and continuous [3].

Results

Main Theorem

Theorem (Adams and M.)

Let $X \subseteq \mathbb{R}^n$ and suppose the reach τ of X is positive. Then for all $r < \tau$, the metric Vietoris-Rips thickening $VR^m(X;r)$ is homotopy equivalent to X.

Main Theorem

Theorem (Adams and M.)

Let $X \subseteq \mathbb{R}^n$ and suppose the reach τ of X is positive. Then for all $r < \tau$, the metric Vietoris–Rips thickening $VR^m(X;r)$ is homotopy equivalent to X.

Lemmas

Lemma

For $X \subseteq \mathbb{R}^n$ and r > 0, the linear projection map $f \colon \mathrm{VR}^m(X;r) \to \mathbb{R}^n$ has its image contained in $\overline{\mathrm{Tub}_r}$.

Lemmas

Lemma

For $X \subseteq \mathbb{R}^n$ and r > 0, the linear projection map $f: \operatorname{VR}^m(X; r) \to \mathbb{R}^n$ has its image contained in $\overline{\operatorname{Tub}_r}$.

Proof.

Let
$$x = \sum_{i=0}^k \lambda_i x_i \in VR^m(X; r)$$
; we have
$$\operatorname{diam}(\operatorname{conv}\{x_0, \dots, x_k\}) = \operatorname{diam}([x_0, \dots, x_k]) \le r.$$

Since
$$f(x) \in \text{conv}\{x_0, \dots, x_k\}$$
, it follows that $d(f(x), X) \leq d(f(x), x_0) \leq r$, and so $f(x) \in \overline{\text{Tub}_r}$.

Lemmas

Lemma

For $X \subseteq \mathbb{R}^n$ and r > 0, the linear projection map $f: \operatorname{VR}^m(X; r) \to \mathbb{R}^n$ has its image contained in $\overline{\operatorname{Tub}_r}$.

Proof.

Let
$$x = \sum_{i=0}^{k} \lambda_i x_i \in VR^m(X; r)$$
; we have

$$\operatorname{diam}(\operatorname{conv}\{x_0,\ldots,x_k\}) = \operatorname{diam}([x_0,\ldots,x_k]) \le r.$$

Since
$$f(x) \in \text{conv}\{x_0, \dots, x_k\}$$
, it follows that $d(f(x), X) \leq d(f(x), x_0) \leq r$, and so $f(x) \in \overline{\text{Tub}_r}$.

Lemma

Let $x_0, ..., x_k \in \mathbb{R}^n$, let $y \in \text{conv}\{x_0, ..., x_k\}$, and let C be a convex set with $y \notin C$. Then there is at least one x_i with $x_i \notin C$.

Lemma

Let $X \subseteq \mathbb{R}^n$ have positive reach τ , let $[x_0, \dots x_k]$ be a simplex in VR(X;r) with $r < \tau$, let $x = \sum \lambda_i x_i \in VR^m(X;r)$, and let $p = \pi(f(x))$. Then the simplex $[x_0, \dots, x_k, p]$ is in VR(X;r).

Proof.

Main Result

We are now prepared to prove our main result.

Theorem

Let X be a subset of Euclidean space \mathbb{R}^n , equipped with the Euclidean metric, and suppose the reach τ of X is positive. Then for all $r < \tau$, the metric Vietoris–Rips thickening $\mathrm{VR}^m(X;r)$ is homotopy equivalent to X.

Proof.

By [1, Lemma 5.2], map $f: \operatorname{VR}^m(X;r) \to \mathbb{R}^n$ is 1-Lipschitz and hence continuous. It follows from Lemma 6 that the image of f is a subset of $\operatorname{Tub}_{\tau}$. Let $i: X \to \operatorname{VR}^m(X;r)$ be the inclusion map. Note that $\pi \circ f \circ i = \operatorname{id}_X$.

Proof.

Consider $H: \operatorname{VR}^m(X;r) \times I \to \operatorname{VR}^m(X;r)$ defined by $H(x,t) = t \cdot \operatorname{id}_{\operatorname{VR}^m(X;r)} + (1-t)i \circ \pi \circ f$. H is well-defined by Lemma 8, and continuous by [1, Lemma 3.8].It follows that H is a homotopy equivalence from $i \circ \pi \circ f$ to $id_{\operatorname{VR}^m(X;r)}$.

• Analogue of Hausmann in Euclidean space.

- Analogue of Hausmann in Euclidean space.
- For a Riemannian version see [1]. Or:

Corollary

If N is a smooth, compact, Riemannian manifold, there exists a $\tau > 0$ such that $VR^m(N; r) \simeq N$ for all $0 < r < \tau$.

Proof.

This follows from the Nash Embedding theorem [7].

- Analogue of Hausmann in Euclidean space.
- For a Riemannian version see [1]. Or:

Corollary

If N is a smooth, compact, Riemannian manifold, there exists a $\tau > 0$ such that $VR^m(N; r) \simeq N$ for all $0 < r < \tau$.

Proof.

This follows from the Nash Embedding theorem [7].

• The same techniques hold for metric Čech thickenings.

- Analogue of Hausmann in Euclidean space.
- For a Riemannian version see [1]. Or:

Corollary

If N is a smooth, compact, Riemannian manifold, there exists a $\tau > 0$ such that $VR^m(N; r) \simeq N$ for all $0 < r < \tau$.

Proof.

This follows from the Nash Embedding theorem [7].

- The same techniques hold for metric Čech thickenings.
- Worth considering version for dense-samplings [6][2].

References

- M. ADAMASZEK, H. ADAMS, AND F. FRICK, Metric reconstruction via optimal transport. Preprint, arxiv/1706.04876.
- [2] F. CHAZAL AND S. OUDOT, Towards persistence-based reconstruction in Euclidean spaces, in Proceedings of the 24th Annual Symposium on Computational Geometry, ACM, 2008, pp. 232–241.
- [3] H. Federer, Curvature measures, Transactions of the American Mathematical Society, 93 (1959), pp. 418-491.
- [4] J.-C. HAUSMANN, On the Vietoris-Rips complexes and a cohomology theory for metric spaces, in Prospects In Topology, F. Quinn, ed., vol. 138 of Annals of Mathematics Studies, Princeton University Press, 1995, pp. 175-188.
- [5] H. KARCHER, Riemannian center of mass and mollifier smoothing, Communications on pure and applied mathematics, 30 (1977), pp. 509-541.
- [6] J. LATSCHEV, Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold, Archiv der Mathematik, 77 (2001), pp. 522-528.
- [7] J. NASH, The imbedding problem for Riemannian manifolds, Annals of Mathematics, 63 (1956), pp. 20-63.
- [8] P. NIYOGI, S. SMALE, AND S. WEINBERGER, Finding the homology of submanifolds with high confidence from random samples, Discrete Computational Geometry, 39 (2008), pp. 419–441.