IN THE CLAIMS:

Please amend claims 1 - 12 as follows.

AZ

1. (Amended) A method of manufacturing a code address memory cell, the method comprising the steps of:

forming a gate insulating film in which a plurality of oxide films and nitride films are stacked on a semiconductor substrate;

forming a polysilicon film on said gate insulating film;

etching given regions of said polysilicon film and said gate insulating film to form a gate; and

performing an impurity ion implantation process to form a source region and a drain region.

- 2. (Amended) The method of manufacturing a code address memory cell according to claim 1, wherein said gate insulating film is formed by stacking at least two or more layers of at least one of said oxide film and said nitride film.
- 3. (Amended) The method of manufacturing a code address memory cell according to claim 1, wherein said gate insulating film has a thickness of about $30 \sim 300$ Å.
- 4. (Amended) The method of manufacturing a code address memory cell according to claim 1, wherein said gate insulating film is formed by stacking a first oxide film, a nitride film and a second oxide film.

ATTORNEY DOCKET NO.: 054216-5016

Application No.: 10/029,394

Page 3

5. (Amended) The method of manufacturing a code address memory cell according to

claim 1, wherein said gate insulating film is formed by stacking a first oxide film, a first

nitride film, a second oxide film and a second nitride film.

6. (Amended) The method of manufacturing a code address memory cell according to

claim 1, wherein said gate insulating film is formed by stacking a first oxide film, a first

nitride film, a second oxide film, a second nitride film and a third oxide film.

7. (Amended) A method of manufacturing a code address memory cell, the method

comprising the steps of:

forming a device isolation film in a given region on a semiconductor substrate to

define an active region and a device isolation region;

defining said active region into a cell region and a peripheral circuit region by a

given process;

forming a tunnel oxide film and a first polysilicon film on the entire structure and

then patterning said tunnel oxide film and said first polysilicon film so that said tunnel oxide

film and said first polysilicon film can only remain in a given region of said cell region, thus

defining a floating gate;

forming an insulating film in which an oxide film and a nitride film are stacked on

the entire structure to form a second polysilicon film;

patterning said second polysilicon film and said insulating film so that they can

remain only in a given region of said cell region and said peripheral circuit region, thus

forming a control gate in said cell region and a gate in said peripheral circuit region; and

Coroll.

ATTORNEY DOCKET NO.: 054216-5016

Application No.: 10/029,394

Page 4

performing an impurity ion implantation process for a given region of said

semiconductor substrate to form a source region and a drain region, so that a flash memory

cell is formed in said cell region, and a code address memory cell is formed is said peripheral

circuit region.

8. (Amended) The method of manufacturing a code address memory cell according to

claim 7, wherein said insulating film is formed by stacking at least two or more layers of at

least one of said oxide film and said nitride film.

9. (Amended) The method of manufacturing a code address memory cell according to

claim 7, wherein said insulating film has a thickness of about $30 \sim 300$ Å.

10. (Amended) The method of manufacturing a code address memory cell according to

claim 7, wherein said insulating film is formed by stacking a first oxide film, a nitride film

and a second oxide film.

11. (Amended) The method of manufacturing a code address memory cell according to

claim 7, wherein said insulating film is formed by stacking a first oxide film, a first nitride

film, a second oxide film and a second nitride film.

12. (Amended) The method of manufacturing a code address memory cell according to

claim 7, wherein said insulating film is formed by stacking a first oxide film, a first nitride

film, a second oxide film, a second nitride film and a third oxide film.