Word Size & Endianness

Word size

- Any given computer architecture has a "word size".
- Word size determines the number of bits used to store a memory address (a pointer in C).
- Therefore you can 2^{wordsize} number of memory addresses.
- Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB of total RAM
- These days, machines have 64-bit word size, actually only uses 48 bits of it for addresses
 - Potentially, could have 2⁴⁸ addresses, thats a lot of memory.
 - Theoretically up to 65,000 times amount of RAM of 32-bit systems. (~260TB)

Word-oriented memory organization

- Address of a word in memory is the address of the first byte in that word.
- Consecutive word addresses differ by 4 (32-bit) or 8 (64-bit).

Byte ordering in a word

Big Endian

- Examples: Sun, PowerPC Mac, Internet
- Most significant byte has lowest address

Little Endian

- Examples: x86, ARM processors running Android, iOS, Windows
- Most significant byte has highest address
- In other words, if you have a multi-byte word, what order to the bytes appear? What "end" of the word does the MSB live at?

Byte ordering in a word *con't*

- Variable x has 4-byte value of 0x01234567
- Address given by dereferencing x is 0x100

Big Endian		0x100	0x101	0 x 102	0 x 103	
		01	23	45	67	
Little Endia	ın	0x100	0x101	0x102	0x103	
	_	67	45	23	01	

• We can test this programmatically. See *memory/endian.c*

Byte ordering representation in C

- Casting any pointer to unsigned char* allows is to treat the memory as a byte array.
- Using printf format specifiers
 - %p print pointer
 - %x print value in hexadecimal
- See *memory/byte_ordering.c*

Floating Point

+ Fractional binary numbers

- How can we represent fractional binary numbers?
- One idea: use same approach as with decimal numbers, except use powers of 2 (as opposed to 10).
- So what is **1011.101**₂?

Fractional binary numbers

- How can we represent fractional binary numbers?
- One idea: use same approach as with decimal numbers, except use powers of 2 (as opposed to 10).
- So what is **1011.101**₂?

$$(1 * 2^{3}) + (0 * 2^{2}) + (1 * 2^{1}) + (1 * 2^{0}) + (1 * 2^{-1}) + (0 * 2^{-2}) + (1 * 2^{-3})$$

 $8 + 2 + 1 + \frac{1}{2} + \frac{1}{8}$
 11.625_{10}

Fractional binary numbers

- How can we represent fractional binary numbers?
- One idea: use same approach as with decimal numbers, except use powers of 2 (as opposed to 10).
- So what is **1011.101**₂?

$$(1 * 2^{3}) + (0 * 2^{2}) + (1 * 2^{1}) + (1 * 2^{0}) + (1 * 2^{-1}) + (0 * 2^{-2}) + (1 * 2^{-3})$$

 $8 + 2 + 1 + \frac{1}{2} + \frac{1}{8}$
 11.625_{10}

Going the other direction

Insufficient representation

- That way of representing floating point numbers is simple, but has two significant limitations.
 - Only numbers that can be written as the sum of powers of 2 can be represented exactly.
 - Example
 - **1/3** 0.0101010101[01]...₂
 - **1/5** 0.001100110011[0011]...₂
 - **1/10** 0.0001100110011[0011]...₂
 - Just one possible location for the binary point.
 - This limits how many bits can be used for the fractional part and the whole number part.
 - Range of representation much too small.

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Numerical analysts and computer scientists collaborated to yield a performant and elegant solution.

TIEEE precision options

Single precision: 32 bits

s	ехр	frac
1	8-bits	23 -bits

Double precision: 64 bits

s	ехр	frac
1	11-b its	52 -b its

Floating Point Representation

Numerical form

$$(-1)^s * M_2 * 2^E$$

- Sign bit s determines whether number is negative or positive
- **Significand M** normally a fractional value, range [1.0, 2.0)
- Exponent E weights value by (possibly negative!) power of two
- **Encoding** (3 bit vectors that encode a floating point number)
 - Most significant bit is the sign bit s
 - **exp** field *encodes* **E** (but is not equal to **E**)
 - frac field encodes M (but is not equal to M)

frac

Interpreting IEEE Values

- Three possible methods by which we evaluate a given bit vector representing a floating point type.
 - 'Normalized' values
 - 'Denormalized' values (more properly referred to as "Subnormal")
 - 'Special' values
- Normalized is the most common case.
- Denormalized is for representing 0 and provide a property known as "gradual underflow" where values are spaced evenly near 0.
- Special, is well, special.
- Contents of **exp** determine 'type' i.e. how to encode & interpret.

S	exp	frac
---	-----	------

Floating point encoding number line

Normalized values

- Precondition: $exp \neq 000...0$ and $exp \neq 111...1$
- For some bit pattern: $value_{10} = (-1)^s * M_2 * 2^E$
- $\mathbf{s} = \text{sign bit } \mathbf{s}$
- $\mathbf{E} = [exp]$ bias
 - **bias** = 2^{k-1} 1
 - \mathbf{k} = number of bits in exp
- $\mathbf{M} = 1.[frac]$
 - By assuming the leading bit is 1, we get an extra bit for "free"
 - Smallest value when all bits are zero: 000...0, M = 1.0
 - Largest value when all bits are one: 111...1, $M = 2.0 \varepsilon$

S	exp	frac
---	-----	------

Normalized encoding example

• float
$$f = 15213.0$$
;
 $15213_{10} = 11101101101101_2$
 $= 1.1101101101101_2 \times 2^{13}$

$$value_{10} = (-1)^s * M_2 * 2^E$$

Normalized encoding example, con't

• float
$$f = 15213.0$$
;
 $15213_{10} = 11101101101101_2$
 $= 1.1101101101101_2 \times 2^{13}$

 $value_{10} = (-1)^s * M_2 * 2^E$

Significand (aka Mantissa)

$$\mathbf{M} = 1.1101101101101_2 \times 2^{13}$$

Normalized encoding example, con't

• float
$$f = 15213.0$$
;
 $15213_{10} = 11101101101101_2$
 $= 1.1101101101101_2 \times 2^{13}$

 $value_{10} = (-1)^s * M_2 * 2^E$

Significand (aka Mantissa)

$$\mathbf{M} = 1.1101101101101_2 \times 2^{13}$$

$$\mathbf{frac} = 11011011011010000000000002$$

Exponent

E = 13
bias =
$$(2^{8-1} - 1) = 127_{10}$$

 exp = E + bias = $140_{10} = 10001100_2$

s exp frac

0 | 10001100

1101101101101000000000

Range of Expression

- For normalized 32-bit single precision...
 - The value of **exp** 1...254
 - The value of **E** -126...127
 - Fairly large numbers; <= 2¹²⁷
 - Fairly small numbers; >=2⁻¹²⁶
- For normalized 64-bit double precision, obviously this range is greater.
- Note that there is always a leading 1 in the value of mantissa **M** for 'normalized values', so we cannot represent numbers that are *very* small.
- Next, we will observe what happens when *exp* is either 00...0 or 11...1

Denormalized values

- Precondition: exp = 000...0
- For some bit pattern: $value_{10} = (-1)^s * M_2 * 2^E$
- $\mathbf{M} = 0.[frac]$
 - No implicit 1 prefix.
 - Allows for representation of numbers closer to 0
- E = 1 bias
 - **bias** = 2^{k-1} 1
 - $\mathbf{k} = \text{number of bits in } exp$
 - Differs from 'normalized', as exp is 0, so use 1
- If exp = 000...0, frac = 000...0 represents 0.0
- If exp = 000...0, $frac \neq 000...0$ represent numbers evenly spaced near 0

Special values

- Precondition: exp = 111...1
- If exp = 111...1, frac = 000...0
 - Represents positive or negative infinity, a result of overflow
 - Examples:
 - $-1.0/-0.0 = +\infty$
 - $1.0/-0.0 = -\infty$
- If exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - A case when no numeric value can be determined
 - Examples:
 - sqrt(-1)
 - **■** ∞-∞
 - ∞*0

Tiny Floating Point

Tiny Floating Point

- 6-bit Floating Point Representation
 - The sign bit *s* is in the most significant bit
 - The next three bits are the *exp*, with a **bias** of 3
 - Note that the bias is the same for all 6-bit precision numbers!
 - The last two bits are the *frac*
- IEEE Format
 - normalized, denormalized and special values

Tiny Normalized Example 1

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = exp - bias

- 000100₂ (smallest positive value)
 - $\mathbf{s} = (-1)^0 = \mathbf{1}$
 - $M = 1.00_2$
 - **bias** = $2^{3-1} 1 = 3_{10}$
 - E = 0.012 310 = 110 310 = -210
 - $1*1.002*2^{-2} = .012 = 0.2510$

All possible 6-bit sequences

000000 000001 000010 000011 000100 000101 000110 000111 001000 001001	010000 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011	100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 1011100	110000 110001 110010 110011 110100 110101 110110
001100	011100	101100	111100
001101	011101	101101	111101
001110	011110	101110	111110
001111	011111	101111	111111

Normalized

Denormalized

Special

Tiny Normalized Example 2

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = exp - bias

- 011011₂ (largest positive value)
 - $\mathbf{s} = (-1)^0 = \mathbf{1}$
 - $M = 1.11_2$
 - **bias** = 2^{3-1} $1 = 3_{10}$
 - $\mathbf{E} = 110_2 3_{10} = 6_{10} 3_{10} = 3_{10}$
 - 1 * 1.11₂ * 2³ = 1110₂ = 14.0₁₀

All possible 6-bit sequences

Normalized

Denormalized

Special

Tiny Denormalized Example 1

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = 1 - bias

- 100011₂ (smallest negative value)
 - $\mathbf{S} = (-1)^1 = -1$
 - $M = 0.11_2$
 - **bias** = 2^{3-1} 1 = 3_{10}
 - $E = 1_{10} 3_{10} = -2_{10}$
 - $-1 * 0.11_2 * 2^{-2} = -0.0011_2 = -0.1875_{10}$

S	exp	frac	
1	3-bits	2-bits	

All possible 6-bit sequences

000000	010000	100000	110000
000001	010001	100001	110001
000010	010010	100010	110010
000011	010011	100011	110011
000100	010100	100100	110100
000101	010101	100101	110101
000110	010110	100110	110110
000111	010111	100111	110111
001000	011000	101000	111000
001001	011001	101001	111001
001010	011010	101010	111010
001011	011011	101011	111011
001100	011100	101100	111100
001101	011101	101101	111101
001110	011110	101110	111110
001111	011111	101111	111111

- Normalized

 Denormalized
- Special

Tiny Denormalized Example 2

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = 1 - bias

- 000001_2 (smallest positive less than 1)
 - $\mathbf{s} = (-1)^0 = \mathbf{1}$
 - $M = 0.01_2$
 - **bias** = 2^{3-1} $1 = 3_{10}$
 - $E = 1_{10} 3_{10} = -2_{10}$
 - 1 * 0.01₂ * 2⁻² = 0.0001₂ = 0.0625₁₀

All possible 6-bit sequences

000000 000001 000010 000011 000100 000101 000110 000111 001000 001001	010000 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011	100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 1011100	110000 110001 110010 110011 110100 110101 110110
001100	011100	101100	111100
001101	011101	101101	111101
001110	011110	101110	111110
001111	011111	101111	111111

Normalized

Denormalized

Special

Tiny special values

Result of overflow or infeasibility

- exp = 111, frac = 00
 - **•** 011100, 111100
 - Positive or negative infinity
- exp = 111, $frac \neq 00$
 - 011101, 011110, 0111111,111101, 1111110, 111111
 - Not-a-Number (NaN)

All possible 6-bit sequences

	İ		
000000	010000	100000	110000
000001	010001	100001	110001
000010	010010	100010	110010
000011	010011	100011	110011
000100	010100	100100	110100
000101	010101	100101	110101
000110	010110	100110	110110
000111	010111	100111	110111
001000	011000	101000	111000
001001	011001	101001	111001
001010	011010	101010	111010
001011	011011	101011	111011
001100	011100	101100	111100
001101	011101	101101	111101
001110	011110	101110	111110
001111	011111	101111	111111

Normalized

Denormalized

Special

Exercises

Exercise 1

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = ? - bias

• 100111₂

•
$$s = (-1)^s = ?$$

•
$$M = ?_2$$

• bias =
$$?_{10}$$

•
$$E = ?_{10}$$

• value₁₀ = ? =
$$-0.4375_{10}$$

All possible 6-bit sequences

000000 010000 100000 110000
000001 010001 100001 110001 000010 010010 100010 110001 000011 010011 100011 110011 000100 010100 100100 110100 000101 010101 100101 110100 000110 010110 100110 110110 000111 010111 100111 110111 001000 011000 101000 111000 001010 011010 101011 111010 001101 01101 101101 11110 001101 011101 101101 11110 001111 011110 101111 111111

Normalized
 Denormalized
 Special

Exercise 2

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = ? - bias

100001₂

•
$$s = (-1)^s = ?$$

•
$$M = ?_2$$

• bias =
$$?_{10}$$

•
$$E = ?_{10}$$

• value₁₀ = ? =
$$-0.0625_{10}$$

All possible 6-bit sequences

NormalizedDenormalizedSpecial