

Introduction

Loans are a major part of the banking system. However, many applicants default on their loans, causing financial losses for banks. Predicting loan default in advance can help financial institutions minimize risk and improve decision-making. With the help of data analytics, we can analyze borrower characteristics to predict the probability of loan default.

Aim

The aim of this project is to analyze loan applicant data and develop a predictive model that can determine the likelihood of a borrower defaulting on a loan.

- II Understand borrower characteristics such as income, age, credit score, loan amount, and employment details.
- Q Identify patterns and key factors that influence repayment or default.
- Build a predictive model for loan default.
- Support banks in better lending decisions and risk reduction.

Dataset Description

- Source -> Kaagle
- Rows Count -> 322375
- Column Count -> 18

Column-wise Description

1. LoanID

- **Type:** Identifier(String)
- Meaning: A unique ID assigned to each loan record
- Use in Analysis:
 - Not used in prediction(it's just an identifier).

2. Age

- **Type:** Integer
- Meaning: Age of the Borrower.

• Importance:

- Younger borrowers may have lower credit history and higher default risk.
- Middle-aged borrowers may be more stable financially.
- Very old borrowers may have limited income sources.

3. Income

- Type: Integer
- Meaning: Annual Income of the Borrower.
- Importance:
 - Higher Income usually means lower default risk(borrower can repay).
 - Very low income as a higher chance of dafault, if loan amount is high.

4. LoanAmount

- Type: Integer
- Meaning: Amount of money borrowed.
- Importance:
 - High loan amount compared to income may increase risk.
 - Used along with income to calculate affordability ratios.

5. CreditScore

- Type: Integer
- Meaning: Credit score of the borrower (measure of credit worthiness).
- Importance:
 - Higher score,borrower is financially reliable.
 - Low score, higher chance of default.

6. Months Employed

- Type: Integer
- Meaning: Number of months borrower has been employed.
- Importance:

- If the borrower has a long term employment then job is stable and has less risks.
- Unstable jobs or short term employment then default risk is higher.

7. NumCreditLines

- Type: Integer
- **Meaning:**Number of credit lines borrower has opened(credit cards,loans).
- Importance:
 - If someone has too many credit lines, it means they are borrowing too much, higher chance of default.
 - If someone has very few or none, the bank cannot judge their repayment history well and it's harder to trust.

8. InterestRate

- Type: Float
- Meaning: Interest rate charged on loan.
- Importance:
 - Higher interest rates, high repayment burden.
 - Loans with high rates are riskier and often given to high-risk borrowers.

9. LoanTerm

- Type: Integer
- Meaning: Duration of the loan in months.
- Importance:
 - Short term loans, higher monthly payments but less overall risks.
 - Long term loans, lesser monthly payments but higher long term risks.

10. DTIRatio(Debt-to-Income Ratio)

- Type: Float
- Meaning: Ratio of borrower's debt to income.
- Importance:
 - Low DTI,Person has enough free income left and it's safer for banks.
 - High DTI,most income goes to paying existing debts and riskier to give loans.

Moreover, DTI tells if the borrower can handle another loan or not.

11. Education

- **Type:** String(phD,Master's,Bachelor's,High School)
- Meaning: Highest level education of borrower.
- Importance:
 - Higher education often correlates with higher income potential.
 - Low education may limit future earning capacity.

12. EmploymentType

- **Type:** String ((Full-time,Part-time,Self-Employed,Unemployed)
- **Meaning:** The borrower's current employment status.
- Importance:
 - Borrower's with stable jobs(full time),usually have lower default risk.
 - While part-time, self-employed, unemployed applicants are riskier.

13. MaritalStatus

- **Type:** String(Single,Married,Divorced)
- Meaning: Borrower's marital status.
- Importance:
 - Married borrowers may have shared finacial responsibilities(sometimes more stable).
 - Single borrowers may have fewer dependents.
 - Divorced borrowers may face financial stress.

14. HasMortgage

- **Type:** String(Yes/No)
- Meaning: Whether borrower already has a mortgage.
- Importance:
 - If there is any existing mortgage, then it will be a larger debt and risk increases.
 - If nothing is there then lower debt burden.

15. HasDependents

- **Type:** String(Yes/No)
- **Meaning:** Whether borrower already has dependents(children/others to support).
- Importance:
 - Dependents increase expenses,repayment becomes harder.
 - If no dependents, borrower has more disposable income.

16. HasCoSigner

- **Type:** String(Yes/No)
- Meaning: Whether loan has a co-signer(another person guaranteeing repayment).
- Importance:
 - Co-signer reduces risk,it's their legal responsibility.
 - If no Co-signer,lender takes more risk.

17. LoanPurpose

- Type: String
- **Meaning:** The reason why the borrower has taken the loan.
- Importance:
 - Business loans can be riskier than home, education and other loan types.

18. Default

- **Type:** Integer(0/1)
- Meaning:
 - 0=Loan was repaid successfully(No Default)
 - 1= Borrower failed to repay(Default)
- Importance:
 - It is the target variable that indicates whether the borrower repaid(0) or defaulted(1)

Project Scope

1. Data Loading and Intial Overview

■ Import the dataset using Pandas and provide an Overview

```
In [5]: # Importing Libraries
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv("C:\python1\Loan_default_uncleaned_2.csv")

-> Number of rows and columns

In [6]: df.shape

Out[6]: (322375, 18)

In [7]: # To get only Rows
df.shape[0]
```

Out[7]: 322375

In [8]: # To get only Columns
df.shape[1]

Out[8]: **18**

In [9]: # To get Column Names
 df.columns

```
Out[9]: Index(['LoanID', 'Age', 'Income', 'LoanAmount', 'CreditScore',
                 'MonthsEmployed', 'NumCreditLines', 'InterestRate', 'LoanTerm',
                 'DTIRatio', 'Education', 'EmploymentType', 'MaritalStatus',
                 'HasMortgage', 'HasDependents', 'LoanPurpose', 'HasCoSigner',
                 'Default'],
                dtype='object')
         -> Data types of each column
In [10]: df.dtypes
Out[10]: LoanID
                             object
                            float64
          Age
          Income
                            float64
                            float64
          LoanAmount
                            float64
          CreditScore
          MonthsEmployed
                              int64
          NumCreditLines
                              int64
          InterestRate
                            float64
          LoanTerm
                              int64
          DTIRatio
                            float64
                             object
          Education
          EmploymentType
                             object
                             object
          MaritalStatus
                             object
          HasMortgage
          HasDependents
                             object
          LoanPurpose
                             object
                             object
          HasCoSigner
          Default
                              int64
          dtype: object
In [11]: # To get datatype of single column
         df["LoanAmount"].dtype
Out[11]: dtype('float64')
         -> Initial Observations
In [12]: # HEAD()
```

<pre>df.head()</pre>	#Shows	the	first	few	rows	of	the	dataset	(default	5	rows)	
----------------------	--------	-----	-------	-----	------	----	-----	---------	----------	---	-------	--

Out[12]:		LoanID	Age	Income	LoanAmount	CreditScore	MonthsEmployed	NumCreditLines	InterestRate	LoanTerm	DTIRatio	Education
	0	I38PQUQS96	56.0	85994.0	50587.0	520.0	80	4	15.23	36	0.44	Bachelor'
	1	HPSK72WA7R	69.0	50432.0	124440.0	458.0	15	1	4.81	60	0.68	Master'
	2	C1OZ6DPJ8Y	46.0	84208.0	129188.0	451.0	26	3	21.17	24	0.31	Master'
	3	V2KKSFM3UN	32.0	31713.0	44799.0	743.0	0	3	7.07	24	0.23	Higl Schoc
	4	EY08JDHTZP	60.0	20437.0	9139.0	633.0	8	4	6.51	48	0.73	Bachelor'
	4											•
In [13]:	df	.head(10) #	Shows	s first 1	0 rows of the	dataset						

Out[13]:		LoanID	Age	Income	LoanAmount	CreditScore	MonthsEmployed	NumCreditLines	InterestRate	LoanTerm	DTIRatio	Education
	0	I38PQUQS96	56.0	85994.0	50587.0	520.0	80	4	15.23	36	0.44	Bachelo
	1	HPSK72WA7R	69.0	50432.0	124440.0	458.0	15	1	4.81	60	0.68	Maste
	2	C1OZ6DPJ8Y	46.0	84208.0	129188.0	451.0	26	3	21.17	24	0.31	Maste
	3	V2KKSFM3UN	32.0	31713.0	44799.0	743.0	0	3	7.07	24	0.23	Hiç Scho
	4	EY08JDHTZP	60.0	20437.0	9139.0	633.0	8	4	6.51	48	0.73	Bachelo
	5	A9S62RQ7US	25.0	90298.0	90448.0	720.0	18	2	22.72	24	0.10	Hiợ Scho
	6	H8GXPAOS71	38.0	111188.0	177025.0	429.0	80	1	19.11	12	0.16	Bachelo
	7	0HGZQKJ36W	56.0	126802.0	155511.0	531.0	67	4	8.15	60	0.43	Pł
	8	1R0N3LGNRJ	36.0	42053.0	92357.0	827.0	83	1	23.94	48	0.20	Bachelo
	9	CM9L1GTT2P	40.0	132784.0	228510.0	480.0	114	4	9.09	48	0.33	Hic Scho
	4			_								•
In [14]:		TAIL() .tail() #Sho	ws Las	st 5 defau	ılt rows of th	ne dataset						

file:///C:/Users/User/Downloads/Loan Default Prediction Dataset.html

Out[14]:		LoanID	Age	Income	LoanAmount	CreditScore	Months Employed	NumCreditLines	InterestRate	LoanTerm	DTIRatio	Ec
	322370	PYQE3BDKX3	NaN	NaN	NaN	NaN	94	3	2.88	24	0.82	N
	322371	0MF69ZQSJB	NaN	NaN	NaN	NaN	4	2	19.60	12	0.63	
	322372	7ISLSUD0G2	NaN	NaN	NaN	NaN	85	1	15.03	60	0.47	Ν
	322373	FJ6QE5V305	NaN	NaN	NaN	NaN	43	4	17.56	12	0.54	
	322374	NWANQE3AER	NaN	NaN	NaN	NaN	69	2	5.74	36	0.13	b
	1											
In [15]:	df.tail	(10) #Shows L	ast 10	rows of	the dataset							

Out[15]:		LoanID	Age	Income	LoanAmount	CreditScore	MonthsEmployed	NumCreditLines	InterestRate	LoanTerm	DTIRatio	Ec	
	322365	YDZLFA17NO	NaN	NaN	NaN	NaN	108	3	5.74	60	0.19	N	
	322366	TQY19MUA96	NaN	NaN	NaN	NaN	82	4	6.99	12	0.73		
	322367	CQ35I264AJ	NaN	NaN	NaN	NaN	66	1	16.19	24	0.43	b	
	322368	WNB79DK668	NaN	NaN	NaN	NaN	57	2	23.01	60	0.10	Ν	
	322369	CFJ1ZTVHVV	NaN	NaN	NaN	NaN	7	3	20.63	12	0.69	b	
	322370	PYQE3BDKX3	NaN	NaN	NaN	NaN	94	3	2.88	24	0.82	Ν	
	322371	0MF69ZQSJB	NaN	NaN	NaN	NaN	4	2	19.60	12	0.63		
	322372	7ISLSUD0G2	NaN	NaN	NaN	NaN	85	1	15.03	60	0.47	Ν	
	322373	FJ6QE5V305	NaN	NaN	NaN	NaN	43	4	17.56	12	0.54		
	322374	NWANQE3AER	NaN	NaN	NaN	NaN	69	2	5.74	36	0.13	b	
	4												
In [16]:		**	row l	labels(in	dex) of the o	lataframe							
Out[16]:	RangeIn	dex(start=0, s	top=3	22375, st	cep=1)								
In [17]:	[16]: # INDEX() df.index # Shows the row labels(index) of the dataframe [16]: RangeIndex(start=0, stop=322375, step=1)												

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 322375 entries, 0 to 322374
Data columns (total 18 columns):

Data	COTAMINS (COCAT	10 CO14mm13).	
#	Column	Non-Null Count	Dtype
0	LoanID	322375 non-null	object
1	Age	312799 non-null	float64
2	Income	312799 non-null	float64
3	LoanAmount	312799 non-null	float64
4	CreditScore	312799 non-null	float64
5	${\tt MonthsEmployed}$	322375 non-null	int64
6	NumCreditLines	322375 non-null	int64
7	InterestRate	322375 non-null	float64
8	LoanTerm	322375 non-null	int64
9	DTIRatio	322375 non-null	float64
10	Education	322375 non-null	object
11	EmploymentType	322375 non-null	object
12	MaritalStatus	322375 non-null	object
13	HasMortgage	322375 non-null	object
14	HasDependents	322375 non-null	object
15	LoanPurpose	322375 non-null	object
16	HasCoSigner	322375 non-null	object
17	Default	322375 non-null	int64
dtype	es: float64(6),	<pre>int64(4), object(</pre>	8)
memor	ry usage: 44.3+	MB	

In [18]: df.describe() # Numerical Columns

Out[18]:		Age	Income	LoanAmount	CreditScore	Months Employed	NumCreditLines	InterestRate	LoanTerm	
	count	312799.000000	312799.000000	312799.000000	312799.000000	322375.000000	322375.000000	322375.000000	322375.000000	322
	mean	43.500011	82492.467060	127598.987104	574.378064	59.567432	2.500278	13.497270	36.036144	
	std	14.994360	38961.793881	70837.575367	158.864188	34.640502	1.116941	6.635982	16.987138	
	min	18.000000	15000.000000	5000.000000	300.000000	0.000000	1.000000	2.000000	12.000000	
	25%	31.000000	48811.000000	66190.500000	437.000000	30.000000	2.000000	7.780000	24.000000	
	50%	43.000000	82484.000000	127506.000000	574.000000	60.000000	2.000000	13.460000	36.000000	
	75%	56.000000	116191.500000	189062.500000	712.000000	90.000000	3.000000	19.260000	48.000000	
	max	69.000000	149999.000000	249999.000000	849.000000	119.000000	4.000000	25.000000	60.000000	
	4									
In [19]:	df.des	cribe(include=	'all') # <i>Al</i>	l Columns						

-		-		
() :	100	17	()	
			7 1	
-	~ ~	_	- 1	

•		LoanID	Age	Income	LoanAmount	CreditScore	Months Employed	NumCreditLines	InterestRate	
со	unt	322375	312799.000000	312799.000000	312799.000000	312799.000000	322375.000000	322375.000000	322375.000000	322
unio	lue	255347	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	t op 26	6XYW14YHT	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
f	req	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
m	ean	NaN	43.500011	82492.467060	127598.987104	574.378064	59.567432	2.500278	13.497270	
	std	NaN	14.994360	38961.793881	70837.575367	158.864188	34.640502	1.116941	6.635982	
r	nin	NaN	18.000000	15000.000000	5000.000000	300.000000	0.000000	1.000000	2.000000	
2	5%	NaN	31.000000	48811.000000	66190.500000	437.000000	30.000000	2.000000	7.780000	
5	0%	NaN	43.000000	82484.000000	127506.000000	574.000000	60.000000	2.000000	13.460000	
7	5%	NaN	56.000000	116191.500000	189062.500000	712.000000	90.000000	3.000000	19.260000	
n	ах	NaN	69.000000	149999.000000	249999.000000	849.000000	119.000000	4.000000	25.000000	
4	_	_								

2. Data Pre-Processing

Perform all neccessary cleaning steps such as :

➡ Handling Missing Values

In [20]: #Count missing values of each columns
df.isnull().sum()

```
Out[20]: LoanID
                               0
         Age
                            9576
          Income
                            9576
                            9576
          LoanAmount
          CreditScore
                            9576
         MonthsEmployed
                               0
         NumCreditLines
                               0
          InterestRate
                               0
                               0
          LoanTerm
          DTIRatio
                               0
          Education
         EmploymentType
         MaritalStatus
         HasMortgage
                               0
         HasDependents
         LoanPurpose
         HasCoSigner
         Default
         dtype: int64
In [21]: #Filling missing values
         df["Age"].fillna(df["Age"].median(), inplace=True)
         df["Income"].fillna(df["Income"].mean(), inplace=True)
         df["LoanAmount"].fillna(df["LoanAmount"].mean(), inplace=True)
         df["CreditScore"].fillna(df["CreditScore"].mean(), inplace=True)
         df.tail(55)
```

٦.,	+	Г	21	7	
Ju	L	L	21	1	۰

	LoanID	Age	Income	LoanAmount	CreditScore	Months Employed	NumCreditLines	InterestRate	LoanTerm	DTIRa
322320	QQVV5KC2G5	43.0	82492.46706	127598.987104	574.378064	65	3	4.44	12	0
322321	A59MTVVARI	43.0	82492.46706	127598.987104	574.378064	52	2	21.67	24	0
322322	BB67I4RKLN	43.0	82492.46706	127598.987104	574.378064	2	1	8.29	60	0
322323	E9O7GNC8TE	43.0	82492.46706	127598.987104	574.378064	112	3	6.90	12	0
322324	BW8206KOSJ	43.0	82492.46706	127598.987104	574.378064	76	4	3.52	24	0
322325	ZE2YUDK21G	43.0	82492.46706	127598.987104	574.378064	8	3	24.50	12	0
322326	OHZAKSMZBW	43.0	82492.46706	127598.987104	574.378064	59	3	12.13	12	0
322327	LDDMTHQW7M	43.0	82492.46706	127598.987104	574.378064	107	1	24.85	60	0
322328	NUG31RTOU0	43.0	82492.46706	127598.987104	574.378064	74	2	24.58	12	0
322329	IMQO8C8K57	43.0	82492.46706	127598.987104	574.378064	1	4	11.36	24	0
322330	PVJEONSUIH	43.0	82492.46706	127598.987104	574.378064	106	2	11.65	36	0
322331	903OT2UQPI	43.0	82492.46706	127598.987104	574.378064	117	4	12.92	48	0
322332	8926FZRIQ8	43.0	82492.46706	127598.987104	574.378064	101	3	19.67	60	0
322333	WLOMJZMA5P	43.0	82492.46706	127598.987104	574.378064	13	3	20.83	24	0
322334	7MLU510SSQ	43.0	82492.46706	127598.987104	574.378064	106	3	2.51	48	0
322335	QLA01DFD76	43.0	82492.46706	127598.987104	574.378064	96	4	12.83	36	0
322336	UL8Z7TQOJV	43.0	82492.46706	127598.987104	574.378064	100	1	3.06	24	0
322337	843Z1BY8NI	43.0	82492.46706	127598.987104	574.378064	97	2	10.53	48	0
322338	XYMXOWZBNM	43.0	82492.46706	127598.987104	574.378064	75	1	6.31	36	0

	LoanID	Age	Income	LoanAmount	CreditScore	MonthsEmployed	NumCreditLines	InterestRate	LoanTerm	DTIRa
322339	W1BPGEIRAZ	43.0	82492.46706	127598.987104	574.378064	118	2	4.66	24	0
322340	L1LHJ4XIGW	43.0	82492.46706	127598.987104	574.378064	32	3	16.87	12	0
322341	SJZ1CQORGD	43.0	82492.46706	127598.987104	574.378064	90	3	13.43	24	0
322342	P6GGW4XVDU	43.0	82492.46706	127598.987104	574.378064	33	3	19.98	48	0
322343	XL2GH7B5T1	43.0	82492.46706	127598.987104	574.378064	28	3	14.57	24	0
322344	8MMH2KDN6J	43.0	82492.46706	127598.987104	574.378064	65	3	15.43	24	0
322345	GFS3R8GENH	43.0	82492.46706	127598.987104	574.378064	111	3	18.88	24	0
322346	II35MQ6ZYA	43.0	82492.46706	127598.987104	574.378064	75	1	7.34	36	0
322347	11IBUB4UYI	43.0	82492.46706	127598.987104	574.378064	6	3	2.94	60	0
322348	9FWEI1DYWZ	43.0	82492.46706	127598.987104	574.378064	77	3	8.79	24	0
322349	GQ5UJRZZ9H	43.0	82492.46706	127598.987104	574.378064	60	2	10.48	24	0
322350	IY9MMAP1E4	43.0	82492.46706	127598.987104	574.378064	42	3	24.99	60	0
322351	3GATXJRKU9	43.0	82492.46706	127598.987104	574.378064	113	4	10.44	24	0
322352	5ORYQ2EG5Y	43.0	82492.46706	127598.987104	574.378064	106	4	5.05	36	0
322353	USD54KQRQ7	43.0	82492.46706	127598.987104	574.378064	63	1	14.78	48	0
322354	JV3M5ES6WY	43.0	82492.46706	127598.987104	574.378064	70	1	4.72	12	0
322355	8YNLV79BC4	43.0	82492.46706	127598.987104	574.378064	14	4	8.53	60	0
322356	3CWMCCZZIK	43.0	82492.46706	127598.987104	574.378064	84	1	10.37	48	0
322357	7PI6DB1N4M	43.0	82492.46706	127598.987104	574.378064	119	4	9.20	36	0

	LoanID	Age	Income	LoanAmount	CreditScore	MonthsEmployed	NumCreditLines	InterestRate	LoanTerm	DTIRa
322358	T21EXWIKTY	43.0	82492.46706	127598.987104	574.378064	115	2	22.11	24	0
322359	EAFUROBVPQ	43.0	82492.46706	127598.987104	574.378064	38	3	3.24	60	0
322360	X4TUGNIET0	43.0	82492.46706	127598.987104	574.378064	39	2	13.30	36	0
322361	94UEE939YF	43.0	82492.46706	127598.987104	574.378064	76	4	10.97	12	0
322362	W61H219UDU	43.0	82492.46706	127598.987104	574.378064	8	2	2.07	60	0
322363	J7CBWFLXFN	43.0	82492.46706	127598.987104	574.378064	73	2	21.08	24	0
322364	1IVWOLUAU4	43.0	82492.46706	127598.987104	574.378064	24	1	12.38	36	0
322365	YDZLFA17NO	43.0	82492.46706	127598.987104	574.378064	108	3	5.74	60	0
322366	TQY19MUA96	43.0	82492.46706	127598.987104	574.378064	82	4	6.99	12	0
322367	CQ35I264AJ	43.0	82492.46706	127598.987104	574.378064	66	1	16.19	24	0
322368	WNB79DK668	43.0	82492.46706	127598.987104	574.378064	57	2	23.01	60	0
322369	CFJ1ZTVHVV	43.0	82492.46706	127598.987104	574.378064	7	3	20.63	12	0
322370	PYQE3BDKX3	43.0	82492.46706	127598.987104	574.378064	94	3	2.88	24	0
322371	0MF69ZQSJB	43.0	82492.46706	127598.987104	574.378064	4	2	19.60	12	0
322372	7ISLSUD0G2	43.0	82492.46706	127598.987104	574.378064	85	1	15.03	60	0
322373	FJ6QE5V305	43.0	82492.46706	127598.987104	574.378064	43	4	17.56	12	0
322374	NWANQE3AER	43.0	82492.46706	127598.987104	574.378064	69	2	5.74	36	0

In [22]: # Verifying if missing values are filled
print(df.isnull().sum())

LoanID	0
Age	0
Income	0
LoanAmount	0
CreditScore	0
MonthsEmployed	0
NumCreditLines	0
InterestRate	0
LoanTerm	0
DTIRatio	0
Education	0
EmploymentType	0
MaritalStatus	0
HasMortgage	0
HasDependents	0
LoanPurpose	0
HasCoSigner	0
Default	0
dtype: int64	

In [23]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 322375 entries, 0 to 322374
Data columns (total 18 columns):
    Column
                   Non-Null Count
                                   Dtype
                    -----
                   322375 non-null object
    LoanID
1
    Age
                   322375 non-null float64
2
                   322375 non-null float64
    Income
3
    LoanAmount
                   322375 non-null float64
                    322375 non-null float64
    CreditScore
    MonthsEmployed 322375 non-null int64
    NumCreditLines 322375 non-null int64
    InterestRate
                    322375 non-null float64
    LoanTerm
                   322375 non-null int64
9
    DTIRatio
                    322375 non-null float64
10 Education
                    322375 non-null object
11 EmploymentType 322375 non-null object
12 MaritalStatus 322375 non-null object
13 HasMortgage
                    322375 non-null object
14 HasDependents 322375 non-null object
15 LoanPurpose
                   322375 non-null object
16 HasCoSigner
                   322375 non-null object
                   322375 non-null int64
17 Default
dtypes: float64(6), int64(4), object(8)
memory usage: 44.3+ MB
```

Removing Multiple Spaces, Leading /Trailing Spaces(Stripping), Changing to Proper Cases

```
Education EmploymentType MaritalStatus LoanPurpose
        322360
                        Phd
                                  Parttime
                                                 Married
                                                                 Auto
        322361
                   Master'S
                                  Parttime
                                                Divorced
                                                                Home
        322362
                 Bachelor'S
                                Unemployed
                                                  Single
                                                                Home
        322363 High School
                              Selfemployed
                                                 Married
                                                                Home
        322364 High School
                              Selfemployed
                                                Divorced
                                                               0ther
        322365
                   Master'S
                                Unemployed
                                                 Married
                                                           Education
        322366
                        Phd
                              Selfemployed
                                                  Single
                                                                Home
        322367
                 Bachelor'S
                                  Parttime
                                                Divorced
                                                               0ther
                   Master'S
                                  Fulltime
                                                 Married
                                                               0ther
        322368
        322369
                 Bachelor'S
                                  Parttime
                                                 Married
                                                               Home
        322370
                   Master'S
                                  Fulltime
                                                 Married
                                                               0ther
                                  Fulltime
                                                Divorced Education
        322371 High School
        322372
                   Master'S
                                Unemployed
                                                Divorced
                                                                Auto
        322373
                        Phd
                                  Parttime
                                                  Single Education
        322374
                 Bachelor'S
                              Selfemployed
                                                 Married
                                                                Home
In [25]: # Remove hash symbols from LoanPurpose column
         df['LoanPurpose'] = df['LoanPurpose'].astype(str).str.replace('#', '', regex=False)
         # Check again if hash symbol exists in LoanPurpose column
         hash exists = df['LoanPurpose'].str.contains('#').any()
         print("Does '#' still exist in LoanPurpose?:", hash exists)
        Does '#' still exist in LoanPurpose?: False
In [26]: # Clean 'LoanPurpose' column
         df['LoanPurpose'] = df['LoanPurpose'].str.strip()
                                                                  # remove spaces
         df['LoanPurpose'] = df['LoanPurpose'].str.lower()
                                                                  # make Lowercase
        df['LoanPurpose'].unique()
In [27]:
Out[27]: array(['other', 'auto', 'business', 'home', 'education'], dtype=object)
In [28]: # Convert all values in Education column to proper case (first letter capitalized)
         df["Education"] = df["Education"].str.strip().str.title()
In [29]: print(df["Education"].unique())
```

```
["Bachelor'S" "Master'S" 'High School' 'Phd']
In [30]: # Convert all values in EmploymentType column to proper case (first letter capitalized)
         df["EmploymentType"] = df["EmploymentType"].str.strip().str.title()
In [31]: print(df["EmploymentType"].unique())
        ['Fulltime' 'Unemployed' 'Selfemployed' 'Parttime']
In [32]: # Convert all values in MaritalStatus column to proper case (first letter capitalized)
         df["MaritalStatus"] = df["MaritalStatus"].str.strip().str.title()
In [33]: print(df["MaritalStatus"].unique())
        ['Divorced' 'Married' 'Single']
In [34]: #Checking if any row as null values
         print(df[df.isnull().any(axis=1)])
        Empty DataFrame
        Columns: [LoanID, Age, Income, LoanAmount, CreditScore, MonthsEmployed, NumCreditLines, InterestRate, LoanTerm, DTIRatio, Educa
        tion, EmploymentType, MaritalStatus, HasMortgage, HasDependents, LoanPurpose, HasCoSigner, Default]
        Index: []
In [35]: #Checking if all values are null or not
         print(df.isnull().sum())
         print(df.isnull().any().any())
```

```
LoanID
                  0
                  0
Age
                  0
Income
LoanAmount
                  0
CreditScore
                  0
MonthsEmployed
                  0
NumCreditLines
                  0
                  0
InterestRate
                  0
LoanTerm
DTIRatio
                  0
Education
                  0
EmploymentType
                  0
MaritalStatus
                  0
HasMortgage
                  0
HasDependents
                  0
LoanPurpose
HasCoSigner
                  0
Default
                  0
dtype: int64
False
```

■ Removing Duplicates

Correcting Data Types

```
In [39]: #Correcting datatypes makes the dataset clean, efficient, and ready for analysis.
         # Making a copy of the original dataframe df.
         df cleaned = df.copy()
         # 1. Converting Yes/No columns to boolean of HasDependents, HasCosigner
         bool columns = ["HasDependents", "HasCoSigner"]
         for col in bool columns:
             df cleaned[col] = df cleaned[col].map({"Yes": True, "No": False})
         # 2. Converting Yes/No columns to boolean of HasMortgage
             df cleaned["HasMortgage"] = df cleaned["HasMortgage"].astype(bool)
         # 3. Converting categorical text columns to category dtype
         categorical columns = ["Education", "EmploymentType", "MaritalStatus", "LoanPurpose"]
         for col in categorical columns:
             df cleaned[col] = df cleaned[col].astype("category")
         # 4. Converting Default column to boolean (if needed otherwise keep it as integer)
         df cleaned["Default"] = df cleaned["Default"].astype(bool)
         # 5. Converting Age to nullable integer (inplace of float)
         df["Age"] = df["Age"].astype("Int64")
         # Now checking the updated datatypes
         print(df cleaned.dtypes)
```

LoanID object float64 Age float64 Income float64 LoanAmount CreditScore float64 MonthsEmployed int64 NumCreditLines int64 InterestRate float64 LoanTerm int64 DTIRatio float64 Education category EmploymentType category MaritalStatus category bool HasMortgage HasDependents bool LoanPurpose category HasCoSigner bool Default bool dtype: object

Creating derived columns

```
In [40]: # Derived columns created from existing columns in your dataset.
# Their main purpose is to extract more meaningful information or make patterns easier to detect for analysis.
```

Loan_to_Income

```
In [41]: # how much of loan amount compared to annual income
df['Loan_to_Income'] = df['LoanAmount'] / df['Income']
```

Credit Utilization Score

```
In [42]: #Loan utilization based on credit lines.
#Measures how much loan per credit line the borrower is using.
df['Credit_Utilization'] = df['LoanAmount']/(df['NumCreditLines']+1)
```

Years_Employed

```
In [43]: #Converted months of employment into years.
         df['Years Employed'] = df['MonthsEmployed']/12
         Age_Group
In [44]: #Categorized customers(young,mid-age,Mature,Senior)
         df['Age Group'] = pd.cut(df['Age'], bins=[18, 30, 45, 60, 100],
                                   labels=['Young', 'Mid-age', 'Mature', 'Senior'])
         Risk_Score
In [45]: #Based on Risk Score, categorizing
         df['Risk Score'] = (df['CreditScore']/850) - df['DTIRatio'] - df['Loan to Income']
In [46]: # To see the whole (maximum number of columns) for displaying the output
         pd.set option('display.max columns', None)
         df.head() # now all columns will be displayed
                  LoanID Age Income LoanAmount CreditScore MonthsEmployed NumCreditLines InterestRate LoanTerm DTIRatio Education
Out[46]:
             138PQUQS96
                           56 85994.0
                                            50587.0
                                                          520.0
                                                                              80
                                                                                               4
                                                                                                        15.23
                                                                                                                     36
                                                                                                                             0.44 Bachelor':
          1 HPSK72WA7R
                           69 50432.0
                                            124440.0
                                                          458.0
                                                                              15
                                                                                               1
                                                                                                         4.81
                                                                                                                    60
                                                                                                                            0.68
                                                                                                                                   Master':
             C1OZ6DPJ8Y
                           46 84208.0
                                           129188.0
                                                          451.0
                                                                              26
                                                                                               3
                                                                                                        21.17
                                                                                                                    24
                                                                                                                            0.31
                                                                                                                                   Master':
                                                                                                                                      Higl
                                                                               0
                                                                                               3
                                                                                                                            0.23
          3 V2KKSFM3UN
                           32 31713.0
                                            44799.0
                                                          743.0
                                                                                                         7.07
                                                                                                                    24
                                                                                                                                     Schoc
             EY08JDHTZP
                           60 20437.0
                                             9139.0
                                                          633.0
                                                                               8
                                                                                               4
                                                                                                         6.51
                                                                                                                    48
                                                                                                                            0.73
                                                                                                                                 Bachelor':
          Filtering Data
```

In [47]: #Filtering means selecting only the rows that meet certain conditions from your dataset

High Income Borrowers

```
In [48]: # Borrowers with Income > 50000
high_income = df[df['Income'] > 50000]
print(high_income.head(10))
```

	LoanID	Age	Income	Lo	anAmount	CreditScor	e Mon	thsEmpl	oyed	\	
0	I38PQUQS96	56	85994.0)	50587.0	520.	0		80		
1	HPSK72WA7R	69	50432.0		124440.0	458.	0		15		
2	C10Z6DPJ8Y	46	84208.0		129188.0	451.	0		26		
5	A9S62RQ7US	25	90298.0)	90448.0	720.	0		18		
6	H8GXPAOS71	38	111188.0		177025.0	429.	0		80		
7	0HGZQKJ36W	56	126802.0		155511.0	531.	0		67		
9	CM9L1GTT2P	40	132784.0)	228510.0	480.	0		114		
16	0 IA35XVH6ZO	28	140466.0		163781.0	652.	0		94		
1:	1 Y8UETC3LSG	28	149227.0		139759.0	375.	0		56		
13	3 GX5YQOGROM	53	117550.0)	95744.0	395.	0		112		
	NumCreditLi	nes	InterestR	ate	LoanTerm	DTIRatio	Edu	cation	\		
0	ramer career	4		.23	36	0.44		elor'S	`		
1		1		.81	60	0.68		ster'S			
2		3		.17	24	0.31		ster'S			
5		2		.72	24	0.10		School			
6		1		.11	12	0.16	_	elor'S			
7		4		.15	60	0.43	Dacii	Phd			
9		4		.09	48	0.33	High	School			
10	a	2		.08	48	0.23	_	School			
1:		3		.84	36	0.80	11-811	Phd			
13		4		.58	24	0.73	High	School			
	EmploymentTy				asMortgage	HasDepend	ents L	oanPurp	ose	\	
0	Fullti		Divord	ed	Yes		Yes	ot	her		
1	Fullti		Marri		No		No		her		
2	Unemploy		Divord		Yes		Yes		uto		
5	Unemploy		Sing	le.	Yes		No	busin	ess		
6	Unemploy	ed .	Sing	le	Yes		No	h	ome		
7	Fullti	.me	Marri	ed	No		No	h	ome		
9	Selfemploy	ed .	Marri	ed	Yes		No	ot	her		
16	∂ Unemploy	ed .	Marri	ed	No		No	educat			
13	1 Fullti	.me	Divord	ed	No		No	educat	ion		
13	3 Unemploy	'ed	Sing	le	No		No	a	uto		
	HasCoSigner	Defa	ault Loan	_to_	Income Cr	edit_Utili	zation	Years	_Empl	oyed	\
0	Yes		0		588262	_ 10117.	400000		_ 6.66	-	
1	Yes		0		467481	62220.				0000	
2	No		1	1.	534154	32297.				6667	
5	Yes		1		001661	30149.				0000	

6	Yes	0	1.592123	88512.500000	6.666667
7	Yes	0	1.226408	31102.200000	5.583333
9	Yes	0	1.720915	45702.000000	9.500000
10	No	0	1.165983	54593.666667	7.833333
11	Yes	1	0.936553	34939.750000	4.666667
13	Yes	0	0.814496	19148.800000	9.333333

```
Age_Group Risk_Score
     Mature
              -0.416497
              -2.608657
1
     Senior
2
     Mature
              -1.313565
5
              -0.254602
      Young
6
    Mid-age
              -1.247417
7
     Mature
              -1.031702
9
              -1.486209
    Mid-age
10
      Young
              -0.628924
11
      Young
              -1.295377
13
     Mature
              -1.079790
```

Risky Customers

```
In [49]: risky_customers = df[df['CreditScore'] < 600]
    print(risky_customers.head(15))</pre>
```

	LoanID	Age	Income L	oanAmount.	CreditScore	MonthsEmplo	oyed	\
0	I38PQUQS96	56	85994.0	50587.0	520.0		80	
1	HPSK72WA7R	69	50432.0	124440.0	458.0		15	
2	C10Z6DPJ8Y	46	84208.0	129188.0	451.0		26	
6	H8GXPAOS71	38	111188.0	177025.0	429.0		80	
7	0HGZQKJ36W	56	126802.0	155511.0	531.0		67	
9	CM9L1GTT2P	40	132784.0	228510.0	480.0		114	
11	Y8UETC3LSG	28	149227.0	139759.0	375.0		56	
13	GX5YQOGROM	53	117550.0	95744.0	395.0		112	
15	O5DM5MPPNA	41	74064.0	230883.0	432.0		31	
16	ZDDRGVTEXS	20	119704.0	25697.0	313.0		49	
18	O1IKKLC69B	19	40718.0	78515.0	319.0		119	
19	F7487UU2BF	41	123419.0	161146.0	376.0		65	
20	7ASF0IHRIT	61	30142.0	133714.0	429.0		96	
21	A22KI1B6SE	47	146113.0	100621.0	419.0		55	
22	1MUSHWD9TW	55	132058.0	130912.0	583.0		48	
	NumCreditLi	nes	InterestRate	LoanTerm	DTIRatio	Education	\	
0		4	15.23	36	0.44	Bachelor'S		
1		1	4.81	. 60	0.68	Master'S		
2		3	21.17	24	0.31	Master'S		
6		1	19.11	. 12	0.16	Bachelor'S		
7		4	8.15	60	0.43	Phd		
9		4	9.09	48	0.33	High School		
11		3	5.84	36	0.80	Phd		
13		4	3.58	3 24	0.73	High School		
15		2	5.00	60	0.89	Master'S		
16		1	9.63	24	0.28	Phd		
18		2	14.00	24	0.17	Bachelor'S		
19		4	16.96	60	0.39	High School		
20		1	15.58	12	0.65	Phd		
21		1	9.32	. 12	0.38	Bachelor'S		
22		4	5.82	60	0.47	High School		
	EmploymentTy	ре Ма	aritalStatus	HasMortgage	HasDepende	nts LoanPurpo	ose	\
0	Fullti		Divorced	Yes	,		ner	
1	Fullti	me	Married	No		No oth	ıer	
2	Unemploy	ed	Divorced	Yes	,	Yes au	uto	
6	Unemploy		Single	Yes		No ho	ome	
7	Fullti		Married	No			ome	
9	Selfemploy	ed	Married	Yes		No oth	ıer	

11	Fullt	ime D	ivorced	No	No	education	
13	Unemplo	yed	Single	No	No	auto	
15	Unemplo	yed	Married	Yes	No	auto	
16	Unemplo	yed	Single	Yes	No	home	
18	Selfemplo	yed D	ivorced	Yes	No	education	
19	Selfemplo	yed	Single	Yes	No	other	
20	Partt	ime D	ivorced	No	Yes	business	
21	Unemplo	yed	Married	Yes	Yes	business	
22	Unemplo	yed	Married	No	Yes	business	
	HasCoSigner		Loan_to_Income	Cre	dit_Utilization	Years_Employed	\
0	Yes		0.588262		10117.400000	6.666667	
1	Yes		2.467481		62220.000000	1.250000	
2	No		1.534154		32297.000000	2.166667	
6	Yes		1.592123		88512.500000	6.666667	
7	Yes		1.226408		31102.200000	5.583333	
9	Yes		1.720915		45702.000000	9.500000	
11	Yes		0.936553		34939.750000	4.666667	
13	Yes		0.814496		19148.800000	9.333333	
15	No		3.117344		76961.000000	2.583333	
16	No		0.214671		12848.500000	4.083333	
18	No		1.928263		26171.666667	9.916667	
19	Yes		1.305682		32229.200000	5.416667	
20	No		4.436136		66857.000000	8.000000	
21	No		0.688652		50310.500000	4.583333	
22	Yes	0	0.991322		26182.400000	4.000000	
		D: 1 6					
0		Risk_Score					
0	Mature	-0.416497					
1	Senior	-2.608657					
2	Mature	-1.313565					
6	Mid-age	-1.247417					
7	Mature	-1.031702					
9	Mid-age	-1.486209					
11	Young	-1.295377					
13	Mature	-1.079790					
15	Mid-age	-3.499109					
16	Young	-0.126436					
18	Young	-1.722969					
19	Mid-age	-1.253329					
20	Senior	-4.581430					

```
21 Mature -0.575711
22 Mature -0.775440
```

Married Borrowers with Dependents

	LoanID	Age	Income I	LoanAmount	CreditScore	MonthsEmp]	oyed	\
21	A22KI1B6SE	47	146113.0	100621.0	419.0		55	
22	1MUSHWD9TW	55	132058.0	130912.0	583.0		48	
41	RT511ZZNF2	54	21487.0	84115.0	386.0		32	
43	XG5WPXX0TY	24	105732.0	33013.0	400.0		58	
44	2XUD7N40J1	38	73117.0	221628.0	639.0		84	
46	Z7UFZIW3MK	56	24796.0	37657.0	498.0		88	
49	LMQOF5PTTT	42	143244.0	240591.0	393.0		96	
52	130U8TZ0HW	26	92153.0	214064.0	634.0		33	
55	QHPWTGMTU8	37	37173.0	234059.0	455.0		20	
61	Z3WJUIM1DZ	64	110606.0	137139.0	669.0		11	
66	ZOPZLF57NR	67	77135.0	159839.0	529.0		59	
68	ZY51VR44DK	21	142860.0	238718.0	318.0		35	
70	MZRL2WMB52	23	17142.0	110469.0	802.0		56	
75	5KCTUT40SE	43	130625.0	17462.0	303.0		22	
76	94DS7MC3PV	61	49191.0	93324.0	487.0		51	
	NumCreditLi	nes	InterestRate	e LoanTerm	DTIRatio	Education	\	
21		1	9.32	2 12	0.38	Bachelor'S		
22		4	5.82	2 60	0.47 H	High School		
41		2	20.89	9 60	0.78	Phd		
43		3	15.64	4 36	0.48 H	High School		
44		4	13.0	36	0.56	Bachelor'S		
46		1	8.20	9 48	0.73 H	High School		
49		3	23.1	36	0.16 H	High School		
52		3	2.34	4 24	0.32	Phd		
55		3	15.12	2 48	0.74	Phd		
61		3	18.0	1 60	0.66	Master'S		
66		4	4.14	4 36	0.41 H	High School		
68		3	13.00	5 48	0.36 H	High School		
70		3	12.23	3 12	0.71 H	High School		
75		3	17.93	1 60	0.65	Master'S		
76		2	2.6	5 12	0.25 H	High School		
	EmploymentTy	ре Ма	aritalStatus	HasMortgage	HasDepender	nts LoanPurp	ose	\
21			Married	Yes		Yes busir		
22	Unemploy	ed	Married	No		Yes busir	iess	
41			Married	Yes		Yes busir	iess	
43	Fullti	.me	Married	Yes		Yes a	uto	
44	Partti	.me	Married	No	,	Yes h	nome	
46	Partti	.me	Married	Yes		Yes a	uto	

49	Selfemployed		Married	No	Yes	business	
52	Fullt	ime	Married	No	Yes	education	
55	Fullt	ime	Married	No	Yes	other	
61	Partt	ime	Married	No	Yes	home	
66	Fullt	ime	Married	Yes	Yes	other	
68	Partt	ime	Married	No	Yes	business	
70	Fullt	ime	Married	Yes	Yes	auto	
75	Selfemplo	yed	Married	No	Yes	business	
76	Unemplo	yed	Married	No	Yes	home	
	HasCoSigner	Default	Loan_to_Income	Cre	dit_Utilization	Years_Employed	\
21	No	0	0.688652		50310.500000	4.583333	
22	Yes	. 0	0.991322		26182.400000	4.000000	
41	Yes	. 0	3.914693		28038.333333	2.666667	
43	Yes	. 0	0.312233		8253.250000	4.833333	
44	Yes	. 0	3.031142		44325.600000	7.000000	
46	No	0	1.518672		18828.500000	7.333333	
49	No	0	1.679589		60147.750000	8.000000	
52	No	0	2.322919		53516.000000	2.750000	
55	No	0	6.296479		58514.750000	1.666667	
61	No	0	1.239888		34284.750000	0.916667	
66	No	0	2.072198		31967.800000	4.916667	
68	Yes	. 0	1.670993		59679.500000	2.916667	
70	Yes	. 0	6.444347		27617.250000	4.666667	
75	No	0	0.133680		4365.500000	1.833333	
76	Yes	. 0	1.897176		31108.000000	4.250000	
	Age_Group	Risk_Score	j				
21	Mature	-0.575711	L				
22	Mature	-0.775440)				
41	Mature	-4.240575	5				
43	Young	-0.321645	5				
44	Mid-age	-2.839377	7				
46	Mature	-1.662790	9				
49	Mid-age	-1.377236	5				
52	Young	-1.897037	7				
55	Mid-age	-6.501185	5				
61	Senior	-1.112829)				
66	Senior	-1.859845					
68	Young	-1.656875					
70	Young	-6.210818	3				

```
75 Mid-age -0.427210
76 Senior -1.574235
```

High Interest Rate Loans

```
In [51]: High_Interest_Rate_Loans = df[df['InterestRate'] > 15]
    print(High_Interest_Rate_Loans.tail(15))
```

10/3/25, 5:53 PM Loan Default Prediction Dataset

	LoanID	Age	Income	j	LoanAmount	CreditSc	ore \	
318835	I9X9Q5416F	43	82492.46706	127	598.987104	574.378	264	
318845	22IGDI7J5V	43	82492.46706	127	598.987104	574.378	264	
318859	J7CBWFLXFN	43	82492.46706	127	598.987104	574.378	ð64	
318890	PGVWWAD1VU	43	82492.46706	127	598.987104	574.378	ð64	
318928	BPJ2A0NEVA	43	82492.46706	127	598.987104	574.378	264	
318931	OK6MMILY5J	43	82492.46706	127	598.987104	574.378	ð64	
318986	TT14R1P1M7	43	82492.46706	127	598.987104	574.378	264	
319010	LBY7AT792Z	43	82492.46706	127	598.987104	574.378	ð64	
319017	SS4ACX50Q8	43	82492.46706	127	598.987104	574.378	ð64	
319025	FØNIB82WJL	43	82492.46706	127	598.987104	574.378	ð64	
319067	VJ7YALTZZN	43	82492.46706	127	598.987104	574.378	ð64	
319076	CPSCTZ5QGZ	43	82492.46706	127	598.987104	574.378	ð64	
319078	NVR7SNNIHQ	43	82492.46706	127	598.987104	574.378	ð64	
319086	4VPU0QDT79	43	82492.46706	127	598.987104	574.378	ð64	
319103	21Q7Q1LBT1	43	82492.46706	127	598.987104	574.378	ð64	
	MonthsEmplo	yed	NumCreditLir	nes I	nterestRat	e LoanTer	n DTIRatio	\
318835		85		3	19.7	7 1	2 0.57	
318845		46		4	19.7	9 1	2 0.48	
318859		73		2	21.0	18 24	4 0.37	
318890		100		3	15.6	1.	2 0.49	
318928		43		4	17.2	1 4	8 0.18	
318931		73		3	16.9	8 4	8 0.33	
318986		5		2	20.7	77 4	8 0.30	
319010		57		4	23.1	.3 1	2 0.34	
319017		13		4	18.0		4 0.63	
319025		36		3	17.9	1 1	2 0.78	
319067		46		4	19.9	1.	2 0.89	
319076		58		1	23.9	0 3	6 0.11	
319078		80		4	21.1	.8 4	8 0.38	
319086		22		3	24.9	2 6	0.50	
319103		27		1	23.1	.6 1	2 0.78	
		Empl					HasDependent	
318835	High School		Parttime		Married	No	Ye	
318845	Phd		Parttime		ivorced	No	N	
318859	High School		lfemployed		Married	No	N	
318890	Bachelor'S	Se	lfemployed		Married	No	N	
318928	High School		Fulltime		Married	No	N	
318931	Master'S		Fulltime		Married	No	Ye	S

318986	Master'S	Parttir	ne	Married	No	No	
319010	High School	Unemploye	ed	Married	Yes	Yes	
319017	Bachelor'S	Fulltir	ne	Single	Yes	Yes	
319025	Bachelor'S S	Selfemploye	ed	Married	No	Yes	
319067	Bachelor'S	Fulltir	ne	Divorced	Yes	Yes	
319076	Phd	Unemploye	ed	Single	Yes	No	
319078	Bachelor'S	Selfemploye	ed	Divorced	Yes	Yes	
319086	Phd	Parttir	ne	Divorced	Yes	No	
319103	Master'S S	Selfemploye	ed	Divorced	No	No	
	LoanPurpose Has	CoSigner [Default	Loan_to_Income	Credit	_Utilization	,
318835	education	Yes	0	1.546796		31899.746776	
318845	other	No	0	1.546796		25519.797421	
318859	home	No	0	1.546796		42532.995701	
318890	auto	Yes	0	1.546796		31899.746776	
318928	auto	No	0	1.546796		25519.797421	
318931	education	No	0	1.546796		31899.746776	
318986	education	Yes	0	1.546796		42532.995701	
319010	home	No	0	1.546796		25519.797421	
319017	business	No	0	1.546796		25519.797421	
319025	home	Yes	0	1.546796		31899.746776	
319067	home	No	0	1.546796		25519.797421	
319076	other	Yes	0	1.546796		63799.493552	
319078	auto	Yes	0	1.546796		25519.797421	
319086	business	Yes	0	1.546796		31899.746776	
319103	home	Yes	0	1.546796		63799.493552	
	Years_Employed		Risk_S				
318835	7.083333	Mid-age	-1.44				
318845	3.833333	Mid-age	-1.35				
318859	6.083333	Mid-age	-1.24				
318890	8.333333	Mid-age	-1.36				
318928	3.583333	Mid-age	-1.05				
318931	6.083333	Mid-age	-1.20				
318986	0.416667	Mid-age	-1.17				
319010	4.750000	Mid-age	-1.21				
319017	1.083333	Mid-age	-1.50				
319025	3.000000	Mid-age	-1.65				
319067	3.833333	Mid-age	-1.76				
319076	4.833333	Mid-age	-0.98				
319078	6.666667	Mid-age	-1.25	1057			

Senior Citizens

```
In [52]: Senior_Citizens = df[df['Age'] > 60]
    print(Senior_Citizens.head(20))
```

10/3/25, 5:53 PM Loan Default Prediction Dataset

	LoanID	Age	Income	LoanAmount	CreditScor	e MonthsEmpl	loyed	١
1	HPSK72WA7R	69	50432.0	124440.0	458.	0	15	
20	7ASF0IHRIT	61	30142.0	133714.0	429.	0	96	
28	BJNLQ0H95H	61	62519.0	29676.0	462.	0	16	
30	GAA80QN796	66	39568.0	58945.0	604.	0	37	
36	8NTWNU4HTY	64	102463.0	218433.0	506.	0	24	
37	ASYFXCP452	68	85409.0	44772.0	540.	0	105	
38	4857M8R0YI	61	26470.0	19818.0	695.	0	47	
39	5FENBP2UV8	69	87295.0	16281.0	707.	0	94	
42	KAC7P2RE1X	68	111716.0	215851.0	747.	0	99	
51	N3KDA4UM9K	67	100949.0	145906.0	439.	0	36	
57	DSOB0M5AQ4	64	49565.0	245711.0	655.	0	76	
59	0VEK3DDM69	61	49113.0	222046.0	771.	0	47	
61	Z3WJUIM1DZ	64	110606.0	137139.0	669.	0	11	
66	ZOPZLF57NR	67	77135.0	159839.0	529.	0	59	
76	94DS7MC3PV	61	49191.0	93324.0	487.	0	51	
82	SQ3MA71EVN	65	80770.0	217916.0	574.	0	9	
90	I7Z903RG38	62	138569.0	248333.0	453.	0	101	
92	CL2BS2EEJE	64	93741.0	232727.0	747.	0	44	
96	D51F6APQ5Y	62	25274.0	134289.0	701.	0	91	
100	XL0LI07XMD	62	47383.0	13109.0	553.	0	73	
	NumCreditLi	nes	InterestRat			Education	\	
1		1	4.8		0.68	Master'S		
20		1	15.5		0.65	Phd		
28		1	23.9		0.12	Bachelor'S		
30		4	6.6			High School		
36		2	9.2		0.86	Master'S		
37		1	2.9		0.17	Master'S		
38		2	20.0		0.69	Phd		
39		1	13.8			Bachelor'S		
42		3	18.8		0.40	High School		
51		2	3.7	4 48		Bachelor'S		
57		4	23.4		0.37	High School		
59		3	22.8		0.24	High School		
61		3	18.0		0.66	Master'S		
66		4	4.1		0.41	High School		
76		2	2.6		0.25	High School		
82		3	20.9		0.49	High School		
90		2	14.1		0.44	High School		
92		1	24.2	9 24	0.62	Master'S		

96		1	13.01	L	24	0.57	Ма	ster'S		
100		3	19.57	7	12	0.42	Bach	elor'S		
	EmploymentTyp	oe Marita	lStatus	HasMortg	age I	HasDepende	nts L	oanPurpose	\	
1	Fulltin	ne	Married		No		No	other		
20	Parttin	ne D	ivorced		No		Yes	business		
28	Unemploye	ed D	ivorced	,	Yes		No	home		
30	Unemploye	ed D	ivorced	,	Yes		Yes	auto		
36	Unemploye	ed	Married		No		No	auto		
37	Unemploye	ed D	ivorced		No		No	auto		
38	Unemploye	ed D	ivorced	,	Yes		Yes	auto		
39	Parttin	ne	Single		No		No	other		
42	Unemploye	ed D	ivorced		No		Yes	home		
51	Unemploye	ed	Married		No		No	auto		
57	Unemploye	ed	Single		No		Yes	auto		
59	Unemploye	ed D	ivorced		No		Yes	other		
61	Parttin	ne	Married		No		Yes	home		
66	Fulltin	ne	Married	,	Yes		Yes	other		
76	Unemploye	ed	Married		No		Yes	home		
82	Parttin	ne	Single	,	Yes		No	home		
90	Parttin	ne	Married	,	Yes		Yes	other		
92	Fulltin	ne D	ivorced	,	Yes		Yes	other		
96	Unemploye	ed	Married		No		No	business		
100	Unemploye	ed	Married	,	Yes		No	business		
	HasCoSigner	Default		_Income	Cre	dit_Utiliz			-	\
1	Yes	0		2.467481		62220.0			250000	
20	No	0		.436136		66857.0			00000	
28	Yes	0		.474672		14838.0			333333	
30	Yes	0		.489714		11789.0			983333	
36	Yes	0		2.131823		72811.0			000000	
37	No	0		.524207		22386.0			750000	
38	Yes	0		.748697		6606.0			916667	
39	No	0		.186506		8140.5			833333	
42	No	0		932140		53962.7			250000	
51	Yes	0		.445344		48635.3			000000	
57	Yes	0		.957349		49142.2			333333	
59	No	0		.521125		55511.5			916667	
61	No	0		.239888		34284.7			916667	
66	No	0		2.072198		31967.8			916667	
76	Yes	0	1	897176		31108.0	100000	4.	250000	

```
82
             No
                        0
                                 2.697982
                                                  54479.000000
                                                                       0.750000
90
            Yes
                        0
                                 1.792125
                                                  82777.666667
                                                                       8.416667
92
                        0
                                                                       3.666667
             No
                                 2.482660
                                                 116363.500000
96
                        0
            Yes
                                 5.313326
                                                  67144.500000
                                                                       7.583333
                                                  3277.250000
100
             No
                        0
                                 0.276660
                                                                      6.083333
```

```
Age Group
               Risk Score
       Senior
                -2.608657
1
20
       Senior
                -4.581430
28
       Senior
                -0.051142
30
                -0.879126
       Senior
       Senior
                -2.396529
36
37
       Senior
                -0.058913
38
       Senior
                -0.621050
39
       Senior
                -0.104741
42
       Senior
                -1.453317
51
       Senior
                -1.508873
       Senior
57
                -4.556761
59
       Senior
                -3.854066
61
       Senior
                -1.112829
66
       Senior
                -1.859845
       Senior
76
                -1.574235
82
       Senior
                -2.512688
90
       Senior
                -1.699184
92
       Senior
                -2.223836
       Senior
                -5.058620
96
100
       Senior
                -0.046072
```

Months Employed less than 1 year

```
In [53]: Less_Than_Year=df[df['MonthsEmployed'] < 12]
print(Less Than Year.head(5))</pre>
```

10/3/25, 5:53 PM Loan Default Prediction Dataset

```
LoanID Age
                               LoanAmount CreditScore MonthsEmployed \
                       Income
3
    V2KKSFM3UN
                 32
                      31713.0
                                   44799.0
                                                  743.0
                                                                       0
    EY08JDHTZP
                                                                       8
                      20437.0
                                    9139.0
                                                  633.0
32 KD970JJFD8
                     102292.0
                                   55337.0
                                                  840.0
                                                                       6
   RSP1YD80Z7
                 35
                      95963.0
                                   77552.0
                                                  560.0
                                                                       8
53 E9NX4IRVSU
                 43
                      70113.0
                                  215064.0
                                                  657.0
                                                                       0
    NumCreditLines
                    InterestRate LoanTerm
                                             DTIRatio
                                                          Education \
3
                 3
                             7.07
                                         24
                                                 0.23 High School
4
                 4
                             6.51
                                         48
                                                 0.73
                                                         Bachelor'S
                 1
                                                          Master'S
32
                            16.11
                                                 0.44
                                         60
47
                 2
                             6.63
                                         24
                                                 0.86
                                                          Master'S
                 2
                                                         Bachelor'S
53
                             6.00
                                                 0.76
                                         24
   EmploymentType MaritalStatus HasMortgage HasDependents LoanPurpose \
3
         Fulltime
                        Married
                                          No
                                                        No
                                                               business
4
       Unemployed
                        Divorced
                                          No
                                                        Yes
                                                                   auto
       Unemployed
32
                        Married
                                                                   auto
                                         Yes
                                                        No
     Selfemployed
47
                        Divorced
                                         Yes
                                                                   home
                                                        Yes
53
     Selfemployed
                         Single
                                          No
                                                        Yes
                                                                   home
   HasCoSigner Default
                         Loan to Income
                                         Credit Utilization Years Employed \
3
            No
                      0
                                1.412638
                                                11199.750000
                                                                     0.000000
4
            No
                      0
                                0.447179
                                                 1827.800000
                                                                     0.666667
32
            No
                      0
                                0.540971
                                                27668.500000
                                                                     0.500000
47
                      1
                                0.808145
            No
                                                25850.666667
                                                                     0.666667
53
           Yes
                      0
                                3.067391
                                                71688.000000
                                                                     0.000000
   Age Group Risk Score
3
     Mid-age
               -0.768521
4
      Mature
               -0.432473
32
      Mature
                0.007264
47
     Mid-age
               -1.009321
53
     Mid-age
               -3.054450
 High DTI Ratio
```

```
High DTI Ratio = df[df['DTIRatio'] > 0.5] # (>0.5-> risky)
print(High DTI Ratio.tail(10))
```

10/3/25, 5:53 PM Loan Default Prediction Dataset

	LoanID	Age	I	ncome		LoanAmount	CreditScor	re \		
319024	6BEKC0R79X	43	82492.	46706	12	27598.987104	574.37806	54		
319025	F0NIB82WJL	43	82492.	46706	12	27598.987104	574.37806	54		
319054	12IT24XQX5	43	82492.	46706	12	27598.987104	574.37806	54		
319066	0ZYOV6QRT8	43	82492.	46706	12	27598.987104	574.37806	54		
319067	VJ7YALTZZN	43	82492.	46706	12	27598.987104	574.37806	54		
319088	SFU0VSRSIU	43	82492.	46706	12	27598.987104	574.37806	54		
319094	Q5QSJCH8P0	43	82492.	46706	12	27598.987104	574.37806	54		
319103	21Q7Q1LBT1	43	82492.	46706	12	27598.987104	574.37806	54		
319130	LQT2S0YRTT	43	82492.	46706	12	27598.987104	574.37806	54		
319174	X8W1CFI5N4	43	82492.	46706	12	27598.987104	574.37806	54		
	MonthsEmplo	yed	NumCred	itLine	S	InterestRate	LoanTerm	DTIRatio	•	
319024		13			4	10.74	1 60	0.51	L	
319025		36			3	17.91	12	0.78	3	
319054		111			2	10.32	2 48	0.68	3	
319066		45			2	11.99	12	0.72	<u> </u>	
319067		46			4	19.93	3 12	0.89)	
319088		57			4	10.34	1 60	0.82	<u>)</u>	
319094		28			4	7.08	3 12	0.59)	
319103		27			1	23.16	5 12	0.78	3	
319130		82			2	6.22	2 36	0.75	5	
319174		48			4	14.35	48	0.71	L	
										,
			-		rit	talStatus Has				\
319024	High School		Partt			Divorced	No		'es	
319025	Bachelor'S		elfemplo	-		Married	No		'es	
319054	High School		elfemplo	-		Married	Yes		'es	
319066	High School		elfemplo	-		Divorced	Yes		'es	
319067	Bachelor'S		Fullt			Divorced	Yes	١	'es	
319088	High School		Fullt			Single	Yes		No	
319094	Phd		Unemplo	-		Single	No	١	'es	
319103	Master'S		elfemplo	-		Divorced	No		No	
319130	Master'S		Unemplo	-		Divorced	No		No	
319174	Master'S	S	elfemplo	yed		Single	No		No	
	LoanPurpose	HacC	oSianon	Defau	1+	Loan to Inc	come Credit	: Utilizat	ion	\
319024	education	11030	No	Derau	0	1.546		001112a0 25519.797		\
319024	home		Yes		0	1.546		31899.746		
319023	education		No		0	1.546		42532.995		
319066	business		No		0	1.546		42532.995		
212000	DUSTILESS		NO		U	1.540	,, , ,	72332.33.	,, от	

```
319067
              home
                            No
                                       0
                                                1.546796
                                                                 25519.797421
319088
         education
                           Yes
                                                1.546796
                                                                 25519.797421
319094
              home
                            No
                                       0
                                                1.546796
                                                                 25519.797421
319103
              home
                           Yes
                                                1.546796
                                                                 63799.493552
319130
              auto
                           Yes
                                       0
                                                1.546796
                                                                42532.995701
319174
          business
                            No
                                       0
                                                1,546796
                                                                 25519.797421
        Years Employed Age Group
                                  Risk Score
319024
              1.083333
                         Mid-age
                                    -1.381057
319025
              3.000000
                         Mid-age
                                   -1.651057
319054
              9.250000
                         Mid-age
                                   -1.551057
319066
              3.750000
                         Mid-age
                                   -1.591057
319067
              3.833333
                                   -1.761057
                         Mid-age
319088
              4.750000
                                    -1.691057
                         Mid-age
319094
              2.333333
                         Mid-age
                                   -1.461057
                         Mid-age
319103
              2,250000
                                    -1.651057
319130
              6.833333
                         Mid-age
                                   -1.621057
319174
              4.000000
                         Mid-age
                                   -1.581057
```

Aggregating Data

Loan Purposes By Count

```
loan purposes = df['LoanPurpose'].value counts().head()
In [55]:
         print("loan Purposes by count:")
         print(loan purposes)
        loan Purposes by count:
        LoanPurpose
        home
                     52612
        business
                     52543
        education
                     52233
        other
                     52211
                     52132
        auto
        Name: count, dtype: int64
         Average Loan Amount by Education
         avg loan by edu = df.groupby("Education")["LoanAmount"].mean().sort values(ascending=False).head()
In [56]:
         print("\nAverage Loan Amount by Education:")
```

```
print(avg loan by edu)
        Average Loan Amount by Education:
        Education
        Phd
                       127818,417905
        Master'S
                       127708,290883
                       127398.648988
        High School
        Bachelor'S
                       127396.014892
        Name: LoanAmount, dtype: float64
         Default Rate by Marital Status
         default by marital = df.groupby("MaritalStatus")["Default"].mean().sort values(ascending=False)
In [57]:
         print("\nDefault Rate by Marital Status:")
         print(default by marital)
        Default Rate by Marital Status:
        MaritalStatus
        Divorced
                    0.125220
        Single
                    0.119128
        Married
                    0.103956
        Name: Default, dtype: float64
         Average Credit Score by Loan Purpose
        avg credit by purpose = df.groupby("LoanPurpose")["CreditScore"].mean().sort values(ascending=False).head(10)
In [58]:
         print("\nAverage Credit Score by Loan Purpose:")
         print(avg credit by purpose)
        Average Credit Score by Loan Purpose:
        LoanPurpose
        home
                     575.043798
                     574.571030
        auto
        other
                     574.407124
        business
                     574.069594
        education
                     573,240236
        Name: CreditScore, dtype: float64
         Employment Types by Count
         employment types = df['EmploymentType'].value counts().head()
In [59]:
         print("\nEmployment Types by count:")
```

```
print(employment_types)

Employment Types by count:
EmploymentType
Parttime 65733
Selfemployed 65381
Unemployed 65378
Fulltime 65239
Name: count, dtype: int64
```

3. Exploratory Data Analysis (EDA)

- Conduct descriptive and exploratory analysis to uncover pattern and trends :
- Univariate, Bivariate and Multivariate Analysis
- Univariate Analysis(Single Variable Analysis)

Age

```
In [101... # Distribution of Borrower age-> Are most borrowers middle aged or not?

# Create Age Groups
df['AgeGroup'] = pd.cut(
    df['Age'],
    bins=[20,30,40,50,60,70],
    labels=["20-30","30-40","40-50","50-60","60-70"]
)

plt.figure(figsize=(8,5), facecolor="lightblue")

# Bar plot for age groups
sns.countplot(x='AgeGroup', data=df, color="blue", edgecolor="darkgreen",width=0.5)

# Title
plt.title("DISTRIBUTION OF AGE GROUPS", fontsize=16, weight="bold", color="darkblue")
```

```
# X and Y axis Labels
plt.xlabel("Age Groups of Borrowers", fontsize=10, weight="bold", color="black")
plt.ylabel("Number of Borrowers", fontsize=10, weight="bold", color="black")

# Change background inside plot
plt.gca().set_facecolor("lavender")

# Change tick Labels size and color
plt.xticks(color="brown", fontsize=8)
plt.yticks(color="brown", fontsize=8)

plt.tight_layout()
plt.show()
```


- The number of borrowers in 20-30,30-40,50-60 age groups are very close to each other, evenly distributed.
- The number of borrowers in 40-50 age group has a spike, as most stable point in their career.
- Drop in borrowers 60-70 age group possibly due to reduced income ,near to retirement.

CreditScore

```
In [100... #Check if scores are normally distributed or skewed.

#Histogram
plt.figure(figsize=(8,5), facecolor="lightyellow")

# Histogram for Credit Score
sns.histplot(df['CreditScore'], kde=True, bins=30, color="darkgreen")

plt.title("DISTRIBUTION OF CREDIT SCORE", fontsize=16,weight="bold", color="darkblue")

plt.xlabel("Credit Score", fontsize=10,weight="bold", color="black")
plt.ylabel("Number of Borrowers", fontsize=10,weight="bold", color="black")

# Change background inside plot
plt.gca().set_facecolor("lavender")

# Change tick labels size and color
plt.xticks(color="brown", fontsize=8)
plt.yticks(color="brown", fontsize=8)
plt.show()
```


- The distribution appears fairly uniform across most of the range.
- A noticeable sharp spike occurs near 600 credit score.
- But at the 600 mark, the count jumps to above 14,000, making it an outlier cluster.

Loan Purpose

```
In [99]: # Frequency of different Loan purposes.
plt.figure(figsize=(6,5), facecolor="lightblue")
```

```
# Bar chart for Loan Purpose
sns.countplot(
   y='LoanPurpose',
    data=df,
   order=df['LoanPurpose'].value counts().index[::-1],
   palette="viridis"
# Title
plt.title("Loan Purpose: Frequency of Different Loan Purposes", fontsize=16, weight="bold", color="darkblue")
# X and Y axis Labels
plt.xlabel("Number of Borrowers", fontsize=10,weight="bold", color="black")
plt.ylabel("Loan Purpose", fontsize=10,weight="bold", color="black")
# Change background inside plot
plt.gca().set facecolor("lavender")
# Change tick labels size and color
plt.xticks(color="brown", fontsize=8)
plt.yticks(color="brown", fontsize=8)
plt.show()
```


- Auto have the highest number of borrowers.
- Other category loans are also very frequent, slightly lower than auto loans.
- Business and Education loans are in middle range.
- Home loans have the lowest frequency among all categories.
- Bivariate Analysis(Two Variable Analysis)

Education vs Default

```
In [98]: #it's comparing how many borrowers in each education group defaulted.
          plt.figure(figsize=(10,5), facecolor="lightyellow")
          sns.countplot(
             x="Education",
             hue="Default",
             data=df,
             width =0.4,
              palette="Set2"
          plt.title("Education Level vs Default",
                    fontsize=16, weight="bold", color="darkblue")
          plt.xlabel("Education Level", fontsize=10, weight="bold", color="black")
          plt.ylabel("Number of Borrowers", fontsize=10, weight="bold", color="black")
          plt.gca().set facecolor("lavender")
          plt.xticks(color="brown", fontsize=8)
          plt.yticks(color="brown", fontsize=8)
          plt.tight layout()
          plt.show()
```


- Majority of borrowers did not default (Default = 0) across all education levels.
- Higher education levels(Bachelor's,Master's,phD) have more borrowers,they tend to take more loans.
- High school-educated borrowers may have a higher default rate than those with higher education, because of less stable jobs and low incomes.

EmploymentType vs LoanAmount

```
In [97]: # It checks about borrower's employment type affect the loan amount they take
   plt.figure(figsize=(7,5), facecolor="lightblue")
```

```
# Create boxplot (EmpLoymentType vs LoanAmount)
sns.boxplot(
    x="EmploymentType",
    y="LoanAmount",
    data=df,
    palette="dark" )

plt.title("Employment Type vs Loan Amount", fontsize=16, weight="bold", color="darkblue")

# X and Y axis LabeLs
plt.xlabel("Employment Type", fontsize=10, weight="bold")
plt.ylabel("Loan Amount", fontsize=10, weight="bold")
plt.ylabel("Loan Amount", fontsize=10, weight="bold")
plt.sticks(rotation=30,color="brown",fontsize=8)
plt.yticks(color="brown",fontsize=8)
```


- The middle lines in the boxes are very close across all employment types.
- The boxes (interquartile range or IQR, from 25th to 75th percentile) are almost equal in size.
- The whiskers (lines extending from boxes) show that, The maximum loan amounts are nearly the same across all employment types.

CreditScore vs Default

- Credit Scores are Higher for Non-Defaulters (0):The median credit score for people who did not default is higher than for those who did.
- Lower Credit Scores for Defaulters (1):The boxplot for defaulted loans (1) shows a lower median and lower quartiles, indicating: Individuals with lower credit scores are more likely to default.
- Multivariate Analysis(Three or more Variable Analysis)

LoanPurpose vs LoanAmount vs Default

```
In [95]: # For each type of loan, what is the average loan amount, and how is it distributed between defaulters and non-default
          grouped = df.groupby(["LoanPurpose", "Default"])["LoanAmount"].mean().unstack()
          plt.figure(figsize=(10,5), facecolor="lightblue")
          # Stacked bar chart
          grouped.plot(
              kind="bar",
              stacked=True,
              color=["lightyellow", "lightgreen"],
              edgecolor="black",
              ax=plt.gca()
          plt.title("Average Loan Amount by Loan Purpose and Default Status", fontsize=16, weight="bold", color="darkblue")
          plt.xlabel("Loan Purpose", fontsize=10, weight="bold")
          plt.ylabel("Average Loan Amount", fontsize=10, weight="bold")
          plt.legend(
              title="Default (0 = No, 1 = Yes)",
              loc="upper center",
              bbox to anchor=(0.5, -0.25),
              ncol=2)
          plt.gca().set facecolor("lavender")
          plt.xticks(color="brown",fontsize=8,rotation=45, ha="right")
          plt.yticks(color="brown",fontsize=8)
          plt.show()
```


- All Loan Purposes Show Defaults.
- Business Loans Have the Highest Average Loan Amount.

- Education Loans Show Significant Defaults.
- Auto Loans Have Lower Average Loan Amounts.
- Home Loans Appear More Stable.
- Other Category is Mid-Range.

LoanPurpose vs MaritalStatus vs Default

```
In [94]: # Helps to see which loan purposes and marital statuses have higher default rates.
          grouped = df.groupby(["LoanPurpose", "MaritalStatus", "Default"]).size().unstack()
          plt.figure(figsize=(14,8), facecolor="whitesmoke")
          # stacked bar chart
          grouped.plot(
              kind="bar",
              stacked=True,
              color=["lightcoral", "lightseagreen"],
              edgecolor="black",
              ax=plt.gca()
          plt.title("Loan Purpose vs Marital Status by Default Status",
                    fontsize=16, weight="bold", color="darkblue")
          plt.xlabel("Loan Purpose and Marital Status", fontsize=10, weight="bold")
          plt.ylabel("Number of Borrowers", fontsize=10, weight="bold")
          plt.legend(title="Default (0 = No, 1 = Yes)", fontsize=8)
          plt.gca().set facecolor("lavender")
          plt.xticks(color="brown", fontsize=8, rotation=45, ha="right")
          plt.yticks(color="brown", fontsize=8)
          plt.legend(
              title="Default (0 = No, 1 = Yes)",
```

```
loc="upper center",
bbox_to_anchor=(0.9, -0.60),
ncol=2)

plt.tight_layout()
plt.show()
```


- Most borrowers do not default.
- Defaults are relatively small, The green portion (Default = 1 → Yes) is much smaller, but still present across all loan purposes and marital statuses.
- Loan purpose does not affect default rate.
- There is no major difference between married vs single borrowers within each loan purpose, Both groups show similar proportions.

• Total borrowers per category are similar, That indicates a balanced dataset where loan purpose + marital status combinations have similar sample sizes.

LoanAmount vs Education vs Default

```
In [93]: # Shows whether education level impacts loan amounts and default.
          plt.figure(figsize=(14,8), facecolor="lightblue")
          sns.boxplot(
              data=df,
              x="Education",
              y="LoanAmount",
              hue="Default",
              palette={0: "lightgreen", 1: "salmon"}
          plt.title("Loan Amount Distribution by Education and Default Status",
                    fontsize=16, weight="bold", color="darkblue")
          plt.xlabel("Education Level", fontsize=10, weight="bold")
          plt.ylabel("Loan Amount", fontsize=10, weight="bold")
          plt.xticks(color="brown", fontsize=8, rotation=30, ha="right")
          plt.yticks(color="brown", fontsize=8)
          plt.gca().set facecolor("lavender")
          plt.legend(
              title="Default (0 = No, 1 = Yes)",
              loc="upper center",
              bbox_to_anchor=(1.05, -0.60),
              ncol=2)
          plt.tight layout()
          plt.show()
```


- Loan amount distribution is similar across education levels.
- Defaults (red) vs. Non-defaults (green) overlap a lot, The distributions for defaulted and non-defaulted loans are very similar within each education group.
- Median loan amounts are slightly higher for defaults in some groups, In a few education categories, the red box (defaults) seems shifted slightly upward compared to green (non-defaults).
- people who default may have slightly higher loan amounts on average.
- Use Groupby, pivot tables and correlation analysis
- GroupBy

Average loan amount and default rate per loan purpose

```
In [70]: #groupby() is used to split data into groups based on categories, and then apply functions (like mean, median, sur
         #summarizing average loan amount and default rate per loan purpose.
In [71]:
          grouped = df.groupby(["LoanPurpose", "Default"])["LoanAmount"].mean().reset index()
          print(grouped.head(10))
           LoanPurpose Default
                                    LoanAmount
         0
                              0 125503.266310
                  auto
                  auto
                              1 145251.407479
         1
             business
                              0 124901.361781
             business
                              1 143218.011808
            education
                              0 125562.188847
             education
                              1 143192,162933
                              0 125675.133056
         6
                 home
         7
                              1 144665.988530
                 home
         8
                 other
                              0 125394.468985
         9
                 other
                              1 144320,680388
          Median Income by Education & Default
         #checks if more educated borrowers have high income, and fewer defaults.
In [72]:
          grouped income = df.groupby(["Education", "Default"])["Income"].median().reset index()
          print(grouped income.head(10))
              Education Default
                                       Income
            Bachelor'S
                              0 82492.46706
            Bachelor'S
                              1 68664.00000
           High School
                              0 82583.00000
         3 High School
                              1 68308.50000
              Master'S
                              0 83230.50000
              Master'S
                              1 69044.00000
         6
                    Phd
                               0 82492.46706
         7
                   Phd
                               1 68438.00000
          Average Debt-to-Income ratio(DTI) by MaritalStatus
         #Shows whether single/married/divorced borrowers have higher debt burdens.
          grouped dti = df.groupby("MaritalStatus")["DTIRatio"].mean().sort values(ascending=False)
          print(grouped dti)
```

```
MaritalStatus
Single 0.501448
Married 0.499850
Divorced 0.498966
Name: DTIRatio, dtype: float64
```

Pivot Tables

In [74]: #A pivot table is like a more flexible version of groupby().It summarizes data in a matrix format-> rows × columns

LoanAmount by Education & Marital Status

```
MarritalStatus Divorced Married Single Education
Bachelor'S 128349.391174 126585.252670 127282.931928
High School 126809.346542 127010.633461 128379.654490
Master'S 127627.914873 127637.427950 127860.419582
Phd 128445.844559 127824.132804 127179.511309
```

Default Rate by Education & LoanPurpose

```
LoanPurpose auto business education home other Education

Bachelor'S 0.120239 0.129342 0.124036 0.106007 0.124595  
High School 0.131442 0.137676 0.128670 0.119591 0.128583  
Master'S 0.111120 0.114835 0.113083 0.093888 0.111034  
Phd 0.112872 0.109529 0.106504 0.090361 0.107741
```

Income vs LoanPurpose

```
In [77]: #for each loan purpose, what will be typical borrower income.
pivot5 = pd.pivot_table(
          df,
          values="Income",
          index="LoanPurpose",
          aggfunc="mean"
)
print(pivot5)
```

LoanPurpose
auto 82507.908340
business 82887.874284
education 82224.204766
home 82404.468720
other 82469.617299

Income

Correlation Analysis

In [78]: # Correlation analysis measures the strength and direction of the linear relationship between two numerical varial

DTI Ratio vs Default

```
In [92]: #This analysis is done to check if DTI ratio is an important risk indicator for loan default.
dti_default_corr = df["DTIRatio"].corr(df["Default"])

plt.figure(figsize=(14,8), facecolor="lightblue")

sns.violinplot(x="Default", y="DTIRatio", data=df,hue="Default", palette={0:"lightgreen",1:"salmon"})

plt.title("DTIRatio vs Default ",fontsize=16, weight="bold", color="darkblue")
```


- DTI ratio distribution is very similar for both groups, Both defaulted and non-defaulted borrowers have almost identical shaped violin plots.
- Most borrowers have moderate DTI ratios, The widest portion of both violins is around the middle, most borrowers fall within this range.
- Green violin plot is wider, more non-defaulters at those DTI values, Red violin plot is narrower with fewer defaulters, more evenly spread DTI values.

Heatmap with colour intensity

```
In [91]: #This analysis is used to understand what increases or decreases the chance of loan default and to decide which

numeric_df = df.select_dtypes(include=["int64","float64"])

# Create heatmap
plt.figure(figsize=(12,10), facecolor="lightblue")
sns.heatmap(numeric_df.corr(), cmap="YlGnBu", cbar=True, annot=True,annot_kws={"size":8}, linewidths=0.5, lineco

plt.title("Correlation Heatmap (Color Intensity Only)", fontsize=16, weight="bold", color="darkblue")

plt.gca().set_facecolor("lavender")

plt.tight_layout()
plt.show()
```


Š Ž Ž

Insights

- Strong positive correlations-LoanAmount vs Loan_to_Income,Income vs Risk_Score.
- Strong negative correlation- Default vs Risk_Score,risk,Risk_Score vs Credit_Utilization.
- **■** Include Statistical summaries to support findings

	Age	Income	LoanAmount	CreditScore	MonthsEmployed	NumCreditLines	InterestRate	Lo
count	261731.0	261731.000000	261731.000000	261731.000000	261731.000000	261731.000000	261731.000000	26173
mean	43.486152	82499.137820	127579.356307	574.267120	59.547948	2.500835	13.495161	3
std	14.806512	38484.896118	69971.415387	156.953948	34.640943	1.117029	6.636820	1
min	18.0	15000.000000	5000.000000	300.000000	0.000000	1.000000	2.000000	1
25%	31.0	49638.000000	67645.000000	440.000000	30.000000	2.000000	7.770000	2
50%	43.0	82492.467060	127598.987104	574.378064	60.000000	2.000000	13.460000	3
75%	56.0	115394.500000	187464.000000	708.000000	90.000000	3.000000	19.250000	4
max	69.0	149999.000000	249999.000000	849.000000	119.000000	4.000000	25.000000	6

4. Visualisations

■ Use Matplotlib/Seaborn/Plotly to generate meaningful visualisations:

Average LoanAmount by Age

```
In [90]: #Taking average, how much loan do people of each age take.
          avg loan by age = df.groupby("Age")["LoanAmount"].mean()
          avg loan by age = avg loan by age.head(50)
           #Create the line chart
          plt.figure(figsize=(10,5),facecolor="plum")
          avg_loan_by_age.plot(
              kind="line",
              marker="o",
              linewidth=2,
              color="darkblue"
          plt.title("Average Loan Amount by Age", fontsize=16, weight="bold")
          plt.gca().set facecolor("lavender")
          plt.xlabel("Age", fontsize=10, color="black", weight="bold")
          plt.ylabel("Average Loan Amount",fontsize=10,color="black",weight="bold")
          plt.xticks(color="brown", fontsize=8)
          plt.yticks(color="brown", fontsize=8)
          plt.grid(True)
          plt.show()
```


- The line goes up and down, average loan amount does not increase or decrease consistently.
- A spike around age ~22, and a drop around age ~60.

Income Distribution

```
In [89]: #how incomes are spread out (who earns less, who earns more, and where most people lie).

plt.figure(figsize=(8,5),facecolor="lightgreen")
plt.hist(
    df["Income"],
```

```
bins=30,
    color="orange",
    edgecolor="black",
    alpha=0.7
)

plt.title("Income Distribution",color="darkblue", fontsize=16, weight="bold")
plt.gca().set_facecolor("lavender")
plt.xlabel("Income",color="black",weight="bold",fontsize="10")
plt.ylabel("Frequency",color="black",weight="bold",fontsize="10")
plt.xticks(color="brown",fontsize=8)
plt.yticks(color="brown",fontsize=8)
```


• Mostly uniform distribution, and an unusual spike at 80,000.

Default rate by Loan term

```
In [88]: #checks if the Loanterm is Longer or shorter, does people default more or less.

default_rate_term = df.groupby("LoanTerm")["Default"].mean()

# Create the Line chart
```

```
plt.figure(figsize=(8,5),facecolor="lightyellow")
default_rate_term.plot(
    kind="line",
    marker="s",
    linewidth=2,
    color="crimson"
)

plt.title("Default Rate across Loan Term", fontsize=16,color="darkblue", weight="bold")
plt.gca().set_facecolor("lightblue")
plt.xlabel("Loan Term (in months)",fontsize=10,weight="bold")
plt.ylabel("Default Rate",fontsize=10,weight="bold")
plt.yticks(color="brown",fontsize=8)
plt.yticks(color="brown",fontsize=8)
plt.grid(True)
```


- Short loans(10-20 months):slightly higher chance of default.
- Medium loans(30-40 months):safest,lowest default rate.
- Long loans(60 months):Borrowers are much more likely to default, longer repayment increases financial stress or uncertainty.

Loan Purpose

- All four categories are almost equally distributed.
- Home and Business have the highest share of 20.1%.

• Auto, Education and Other are slightly lower.

Insights

- People with low credit scores are more likely to default.
- Borrowers who take a big loan compared to their income default more often.
- Borrowers with stable jobs (longer employment) are less likely to default.
- Having too many credit lines increases the chance of default.
- Younger borrowers (20–30 age group) tend to default more often than older borrowers.
- Defaults cluster in lower income groups → borrowers with small salaries but high loan requests struggle to repay.
- High risk borrowers → young, new to jobs, low income, low credit score, many loans, risky loan purpose
- Low risk borrowers → older, stable jobs, good income, high credit score, fewer loans, productive loan purpose.

Recommendations

- Provide loans mainly to people with good credit scores (above 650).
- Avoid approving loans that are too large compared to income.
- Mostly Prefer borrowers with stable jobs or ask new employees to get a co-signer.
- Make sure to check how many loans/credit lines a borrower already has before giving a new one.
- Apply stricter rules for younger borrowers like smaller loans, co-signer.

- Encourage borrowers with short employment history to build stability before taking big loans.
- Create income-based loan limit, by not allowing to take loans more than a certain percentage of income.
- Use Credit Score & Loan-to-Income ratio as the main approval criteria.
- Build a risk score system by combining credit score, income, loan purpose, employment length and then approve loans only if the risk score is acceptable.

The End

In []: