CE102: Environmental Studies

Problem Set II: Water Quality Parameters

- **Q.1 pH of Soft Drink:** The pH of a popular soft drink is about 3.8, and the sucrose $(C_{12}H_{22}O_{11})$ concentration, C_{SU} , of this same drink is about 40000 mg/L. Calculate: (i) the hydronium ion $[H_3O^+]$ concentration in mol/L, and (ii) $p[C_{SU}]$.
- **Q.2 Solids in Wastewater:** A laboratory runs a solid test on a wastewater. The weight of the empty crucible = 48.6212 g. A 100 ml wastewater sample is placed in the crucible and the water is evaporated. The weight of the crucible and dry solids = 48.6432 g. The crucible is placed into a 550°C muffle furnace for 30 minutes and subsequently cooled in a desiccator. The weight of the cooled crucible and residue i.e. unburned solids = 48.6300 g. Calculate the total (TS), volatile (VS), and fixed (FS) solids present in the wastewater sample. Report the solids concentrations in mg/L.
- **Q.3 Alkalinity and Hardness of Wastewater:** (a) A wastewater sample contains 118 mg/L of bicarbonate ion, 19 mg/L of carbonate ion and has a pH of 9.5. What is the alkalinity of this wastewater expressed as mg/L of CaCO₃?
- (b) A wastewater sample has the following chemical composition: $[Ca^{2+}] = 15 \text{ mg/L}$; $[Mg^{2+}] = 10 \text{ mg/L}$; $[SO_4^{2-}] = 30 \text{ mg/L}$. What is the total, calcium and magnesium hardness of the wastewater sample in units of mg/L as $CaCO_3$?

Q.4 Theoretical Oxygen Demand (ThOD) and Chemical Oxygen Demand (COD) of Wastewater:

- (a) Assuming complete oxidation to CO_2 and H_2O , compute the theoretical oxygen demand (ThOD) for: (i) 1000 mg/L of Glucose ($C_6H_{12}O_6$) solution, (ii) 500 mg/L of Phenol (C_6H_5OH) solution, and (iii) 250 mg/L of Ethanol (C_2H_5OH).
- (b) Determine the theoretical oxygen demand (ThOD) for 1000 mg/L of glycine [$CH_2(NH_2)COOH$] solution using the following assumptions: (i) In the first step, the organic carbon and nitrogen are converted to CO_2 and NH_3 , respectively, (ii) In the second and third steps, the ammonia (NH_3) is oxidized sequentially to nitrite and nitrate, and (iii) The ThOD is the sum of the oxygen required for all three steps.
- (c) Compute (i) chemical oxygen demand (COD) and (ii) the total organic carbon (TOC) concentration of a synthetic wastewater that contains the following chemical compounds: Glucose ($C_6H_{12}O_6$) = 200 mg/L and Benzene (C_6H_6) = 25 mg/L. Assume ThOD is equivalent to the COD of the wastewater.
- **Q.5 Biochemical Oxygen Demand (BOD) of Wastewater:** (a) Change in concentration of organic matter, L, with time, t , is given by -

$$\frac{dL}{dt} = -kL$$

Calculate the organic matter remaining after 3 days if the initial concentration was 200 mg/L. Assume $k = 0.4 \ day^{-1}$

- (b) A 2% solution of a wastewater sample is incubated for 5 days at 20° C. The dissolved oxygen (DO) concentrations of the diluted sample before and after the incubation were 8 and 4 mg/L, respectively. Calculate the BOD₅ of the wastewater sample.
- (c) The following observations were made on a 3% dilution of wastewater sample at 20° C: (i) Initial and final DO of blank = 8.5 and 8.2 mg/L, respectively, and (ii) Initial and final DO of diluted sample = 8.0 and 2.1

mg/L, respectively. Calculate the 5-days (BOD₅) and ultimate BOD (BOD_u) of the wastewater sample assuming that the BOD reaction constant (k) at test temperature is 0.1 d⁻¹.

- **Q.6 BOD Conversions of Wastewater:** (a) The 5-days 30° C BOD of a wastewater sample is 110 mg/L. Calculate its 5-days 20° C BOD. Assume the BOD reaction constant (*k*) at 20° C is 0.1 d^{-1} .
- (b) Calculate 1-day 37° C BOD of a wastewater sample whose 5-days 20° C BOD is 100 mg/L. Assume the BOD reaction constant (k) at 20° C is 0.1 d⁻¹.
- (c) The BOD_5 of a wastewater has been measured as 600 mg/L. If the BOD reaction constant (*k*) at test temperature is 0.1 d⁻¹, what is the ultimate BOD (i.e. BOD_u) of the wastewater? What proportion of the BOD_u would remain unoxidized after 20 days?
- **Q.7 Nitrogen in Wastewater:** A wastewater sample contains following nitrogen species: 60 mg/L of NH₃, 1.2 mg/L of NO₂⁻, 5 mg/L of NO₃⁻ and 25 mg/L of organic nitrogen. What is the total nitrogen (TN), total Kjeldahl nitrogen (TKN) and total inorganic nitrogen (TIN) concentration of the wastewater sample in mg of N/L?
- **Q.8 Ion Balance and Bar Diagram in Water/Wastewater Quality Analysis:** Results are shown below from a routine water quality analysis being run on a water sample:

Constituents	Concentration (mg/L)	Constituents	Concentration (mg/L)
Ca ²⁺	60.0	HCO ₃	65.0
Mg ²⁺	20.0	SO ₄ ²⁻	200.0
Na ⁺	68.0	Cl	39.0
pH: 7.5			

Perform the ion balance based on the analysis results and estimate and check the permissibility of the percent error induced in the analysis. Also, construct a representative bar diagram of the ion balance.

- **Q.9** *Mixed Bag*: A synthetic wastewater sample of water is prepared by adding 500 mg coarse sand, 200 mg glucose ($C_6H_{12}O_6$), 300 mg glycine ($C_2H_5NO_2$), 168 mg sodium bicarbonate (NaHCO₃), 120 mg magnesium sulphate (MgSO₄) and 111 mg calcium chloride (CaCl₂) in one liter distilled deionized water. The pH of the sample is 7.0. Assuming that the complete dissociation of the salts occur leading to presence of Na⁺, Mg²⁺, Ca^{2+} , Cl^- , SO_4^{2-} and HCO_3^{--} species in addition to H^+ and OH^- ions, compute:
- (a) total solids, total suspended solids, volatile suspended solids, fixed suspended solids, total dissolved solids, volatile dissolved solids and fixed dissolved solids in mg/L;
- (b) total alkalinity, hydroxyl alkalinity, carbonate alkalinity, and bicarbonate alkalinity in mg/L as CaCO₃;
- (c) total hardness, calcium hardness, magnesium hardness in mg/L as CaCO₃; and
- (d) COD, BOD, ammonical nitrogen (NH₄⁺-N), total Kjeldahl nitrogen (TKN), NO₃⁻-N.

Assume ThOD, COD and BOD terms are equivalent to each other for the synthetic wastewater sample. Ignore nitrogenous oxygen demand for glycine.