Kalaiselvan Panneerselvam

Exercise sheet-3

278920

1.1 Data preprocessing (5 Points)

1. Convert any non-numeric values to numeric values

```
def handle_non_numerical_data(df):
    columns = df.columns.values
    for column in columns:
        text_digit_vals = {}
        def convert_to_int(val):
            return text_digit_vals[val]
        if df[column].dtype != np.int64 and df[column].dtype != np.float64:
            column_contents = df[column].values.tolist()
            unique_elements = set(column_contents)
            x = 0
            for unique in unique_elements:
                if unique not in text_digit_vals:
                    text_digit_vals[unique] = x
                    x+=1
            df[column] = list(map(convert_to_int, df[column]))
    return df
```

air=handle_non_numerical_data(Air_data)
air.head(5)

	City1	City2	Average Fare	Distance	Average weekly passengers	market leading airline	market share	Average fare	Low price airline	market share.1	price
0	63	33	114.47	528	424.56	8	70.19	111.03	10	70.19	111.03
1	63	72	122.47	860	276.84	8	75.10	123.09	10	17.23	118.94
2	26	33	214.42	852	215.76	8	78.89	223.98	5	2.77	167.12
3	26	27	69.40	288	606.84	2	96.97	68.86	3	96.97	68.86
4	26	23	158.13	723	313.04	3	39.79	161.36	3	15.34	145.42

2. Drop out the rows with missing values or NA

winewhite_data.dropna().head(2)												
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	qualit
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.001	3.0	0.45	8.8	
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.994	3.3	0.49	9.5	
winered_data.dropna().head(2)												
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.0	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.0	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5

3. Split the data into a train(80%) and test(20%).

```
def split_DataSet(Dataset, size):
    msk = np.random.rand(len(Dataset))<size
    Data_train = Dataset[msk]
    Data_test = Dataset[~msk]
    return Data_train,Data_test</pre>
```

```
trainSet, testSet = split_DataSet(air, 0.8)
print(trainSet.shape)
print(testSet.shape)

(800, 7)
(200, 7)
```

1.2 Linear Regression with Gradient Descent

Part A: Implement Linear Regression with Gradient Descent

1. Selecting features

The strength of association is given by

Strength of Association	Positive	Negative
Small	.1 to .3	-0.1 to -0.3
Medium	.3 to .5	-0.3 to -0.5
Large	.5 to 1.0	-0.5 to -1.0

```
The corelation between City1 vs price is 0.04216725451379426
The corelation between City2 vs price is -0.02359031295640774
The corelation between Average Fare vs price is 0.8664103374911549
The corelation between Distance vs price is 0.0936867813163194
The corelation between Average weekly passengers vs price is -0.14231354800543958
The corelation between market leading airline vs price is 0.0923315750323416
The corelation between market share vs price is -0.3076716283706642
The corelation between Average fare vs price is 0.8265105975217341
The corelation between Low price airline vs price is 0.10368176136490836
The corelation between market share.1 vs price is -0.24018595717542673
```

By looking at correlation's coefficient and the plots we can drop city1, city2, market Leading Airline, Low Price Airline as they do not have any correlation with price in the Air fare dataset.


```
For winered dataset, The corelation between fixed acidity vs quality is 0.12405164911322432
For winered dataset, The corelation between volatile acidity vs quality is -0.39055778026400717
For winered dataset, The corelation between citric acid vs quality is 0.2263725143180414
For winered dataset, The corelation between residual sugar vs quality is 0.013731637340066275
For winered dataset, The corelation between chlorides vs quality is -0.1289065599300527
For winered dataset, The corelation between free sulfur dioxide vs quality is -0.05065605724427635
For winered dataset, The corelation between total sulfur dioxide vs quality is -0.18510028892653782
For winered dataset, The corelation between density vs quality is -0.17491922778335012
For winered dataset, The corelation between pH vs quality is -0.05773139120538214
For winered dataset, The corelation between sulphates vs quality is 0.2513970790692614
For winered dataset, The corelation between alcohol vs quality is 0.47616632400113607
```

```
For winewhite dataset, The corelation between fixed acidity vs quality is 0.12405164911322432
For winewhite dataset, The corelation between volatile acidity vs quality is -0.39055778026400717
For winewhite dataset, The corelation between citric acid vs quality is 0.2263725143180414
For winewhite dataset, The corelation between residual sugar vs quality is 0.013731637340066275
For winewhite dataset, The corelation between chlorides vs quality is -0.1289065599300527
For winewhite dataset, The corelation between free sulfur dioxide vs quality is -0.05065605724427635
For winewhite dataset, The corelation between total sulfur dioxide vs quality is -0.18510028892653782
For winewhite dataset, The corelation between density vs quality is -0.17491922778335012
For winewhite dataset, The corelation between pH vs quality is -0.05773139120538214
For winewhite dataset, The corelation between sulphates vs quality is 0.2513970790692614
For winewhite dataset, The corelation between alcohol vs quality is 0.47616632400113607
```

By looking at correlation's coefficient and the plots, I selected volatile acidity, chlorides, density and alcohol in both datasets(Red and white wine datasets) as they do not have any correlation with quality in the wine dataset.

Wine Red & Wine White Datasets:

Linear Regression model is given as $\hat{y}^n = \sum_{m=1}^M \beta_m \mathbf{z}_m^n$

```
def Regression_Line(x, betas):
    x = np.insert(x, 0, 1, axis=1)
    yPrediction = np.dot(betas, x.T)
    return yPrediction
```

Least square loss function is given as $l(x,y) = \sum_{n=1}^{N} (y^n - \hat{y}^n)^2$

```
def learnlinregGD(x, y, xTest, yTest, alpha, beta , max_itr=1000, epsilon=1.1e-20,
                     stepLengthController = None, stepLengthControllerParameters = None):
    x = np.insert(x, 0, 1, axis=1)
    x = x * 1.0
y = y * 1.0
    plotX = []
    plotY_diff = []
plotY_RMSE = []
    y_pred = np.dot(beta,x.T)
    residual = y_pred - y
lossfunction = np.dot(residual.T, residual)
    rmse = RMSE(yTest, Regression_Line(xTest, beta))
    plotY_RMSE.append(rmse)
    plotY_diff.append(lossfunction)
    plotX.append(0)
    for i in range(1, max_itr):
         gradient = np.dot(x.T, residual) * 2
         if stepLengthController != None:
             alpha = stepLengthController(lossfunction = lossfunction, alpha = alpha, x = x, y = y,
beta = beta, gradient = gradient, **stepLengthControllerParameters)
        beta = beta - (alpha * gradient)
        y_pred = np.dot(beta,x.T)
         residual = y_pred - y
        lossfunction_updated = np.dot(residual.T, residual)
         rmse = RMSE(yTest, Regression_Line(xTest, beta))
        plotY_RMSE.append(rmse)
        plotY_diff.append(abs(lossfunction - lossfunction_updated))
         plotX.append(i)
         if abs(lossfunction - lossfunction_updated) < epsilon:
            print("Converged in " + str(1) + " iterations")
return beta, plotX, plotY_diff, plotY_RMSE, lossfunction, rmse
    lossfunction = lossfunction_updated
print("Algorithm does not converge in " + str(max_itr) + " interations")
    return beta, plotX, plotY_diff, plotY_RMSE, lossfunction, rmse
```

Minimize the loss function I(x, y) using Gradient Descent algorithm

For Air Fare Dataset:

```
When alpha =0.1

C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:
C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:
C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:
C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:
Algorithm does not converge in 1000 interations
RMSE nan
When alpha =1.3e-09
Algorithm does not converge in 1000 interations
RMSE inf
When alpha =1.37e-11
Algorithm does not converge in 1000 interations
RMSE 25.7828447131188
```

For White wine Dataset:

```
When alpha =0.1

C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:69: Ru
C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:71: Ru
C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:63: Ru

Algorithm does not converge in 1000 interations

RMSE nan
When alpha =1.7e-05

C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:59: Ru

Algorithm does not converge in 1000 interations

RMSE nan
When alpha =1.7e-11
Algorithm does not converge in 1000 interations

RMSE 1.4667118421940806
```

For White wine Dataset:

```
When alpha =0.1

C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:6

C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:7

C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:6

Algorithm does not converge in 1000 interations

RMSE nan
When alpha =0.007

C:\Users\HP\Anaconda\lib\site-packages\ipykernel_launcher.py:5

Algorithm does not converge in 1000 interations

RMSE nan
When alpha =1.17e-11

Algorithm does not converge in 1000 interations

RMSE 1.9016040003593744
```

Plots for Air Fare, White wine and Red wine Dataset:

Air Fare:

White wine:

Red Wine:

Part B: (7 Points): Step Length for Gradient Descent

```
def steplength_armijo(lossfunction, alpha, x, y, beta, gradient, delta, max_itr = 1000):
    alpha = 1.0
    gradSquare = np.dot(gradient, gradient)
    for i in range(0, max_itr):
        alpha = alpha/2
        residual = y - np.dot((beta - (alpha * gradient)), x .T)
        lossfunction_gradient = np.dot(residual.T, residual)
        if lossfunction_gradient < lossfunction - (alpha * delta * gradSquare):
            break;
    return alpha

def steplength_bolddriver(lossfunction, alpha, x, y, beta, gradient, max_itr = 1000,alphaMinus = 0.5, alphaPlus = 1.1):
    alpha = alpha * alphaPlus
    for i in range(0, max_itr):
        alpha = alpha * alphaMinus
        residual = y - np.dot((beta - (alpha * gradient)), x .T)
        lossfunction_gradient = np.dot(residual.T, residual)
        if lossfunction - lossfunction_gradient > 0:
            break;
    return alpha
```

Air Fare:

Wine Red:

Wine White:

Comparision of different step length algorithms:

Comparasion of constant steplength and variable steplength with controller for air dataset

Comparasion of constant steplength and variable steplength with controller for winewhite dataset

Prediction samples for all three dataset:

```
yPrediction = Regression_Line(X_test,betas)
yPrediction1 = Regression_Line(X_test1,betas2)
yPrediction2 = Regression_Line(X_test2,betas2)
```

Air_Dataset_Actual Air_Dataset_Prediction Winered_Dataset_Actual Winered_Dataset_Prediction Winewhite_Dataset_Actual Winewhite_Dataset_Prediction

597	231.52	177.225430	6.0	4.371153	6.0	4.242872
695	140.69	112.779825	6.0	4.885669	5.0	4.000467