Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики **Кафедра «Прикладная математика»**

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «ВЫЧИСЛИТЕЛЬНЫЕ КОМПЛЕКСЫ»

Выполнил студент группы 3630102/70201

Крупкина Дарья

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1	Постановка задачи		2
	1.1	Задача 1	2
	1.2	Задача 2	2
2	Теория		
	2.1	Субдифференциальный метод Ньютона	2
3	Pea	лизация	2
4	Рез	ультаты	3
	4.1	Задача 1	3
	4.2	Задача 2	5
5	Прі	иложения	8
C	пис	сок иллюстраций	
	1	Решение исходной задачи	3
	2	Решение задачи с неправильной правой частью	4
	3	Зависимость количества итераций от точности значений	
	4	Область решений для матрицы 1	6
	5	Область решений для матрицы 2	
	6	Сравнение полученного и модельного решений	7

1 Постановка задачи

1.1 Задача 1

Решить задачу с треугольной матрицей из лекции:

$$\mathbf{C} = \begin{pmatrix} [2,4] & [-2,1] \\ [-2,1] & [2,4] \end{pmatrix} \tag{1}$$

с неправильными (отличными от исходных) интервалами в правой части.

1.2 Задача 2

Решить задачу, относящуюся к малоракурсной томографии. Для данной матрицы размерностью 256х36 необходимо убрать избыточное число уравнений, сгенерировать пробное начальное значение. Затем найти правую часть, объинтервалить ее и затем решить в полной арифметике.

2 Теория

2.1 Субдифференциальный метод Ньютона

Выберем некоторое начальное приближение $x^{(0)} \in \mathbb{R}^{2n}$.

Если (k-1)-е приближение $x^{(k-1)} \in R^{2n}, k = 1, 2..$ уже найдено, то вычисляем субградиент $D^{(k-1)}$ отображение Γ в точке $x^{(k-1)}$ и полагаем:

$$x^{(k)} \longleftarrow x^{(k-1)} - \tau(D^{(k-1)})^{-1} \Gamma(x^{(k-1)}),$$
 (2)

где $\tau \in]0,1]$ - некоторая константа.

При этом:

$$\Gamma(y) = sti(\mathbf{C}sti^{-1}(y)) - sti(d) \tag{3}$$

Функция погружения дейсвует по правилу:

$$sti(x): (x_1, ..., x_n) \longrightarrow (-x_1, ..., -x_n, \bar{x_1}, ..., \bar{x_n})$$
 (4)

3 Реализация

Лабораторная выполнена с помощью средств языка Python, использованы библиотеки numpy, nunmpy.linalg для алгебраических вычислений, а также matplotlib для визуализации.

4 Результаты

4.1 Задача 1

Для начала решим задачу с правой частью, идентичной лекционной, чтобы убедиться в правильности работы методов:

$$\mathbf{d} = \begin{pmatrix} [-2, 2] \\ [-2, 2] \end{pmatrix} \tag{5}$$

Получены следующие результаты для различных точностей:

Accuracy: 0.001

Quantity of iterations: 3

Accuracy: 1e-05

Quantity of iterations: 3

Accuracy: 1e-10

[0.55555555555557, 0.5555555

Quantity of iterations: 3

Рис. 1: Решение исходной задачи

Результат получился достоверный, при этом число итераций осталось малым и не зависит от точности.

Теперь рассмотрим задачу с неправильной правой частью:

$$\mathbf{d} = \begin{pmatrix} [-1.5, 3] \\ [-2, 2] \end{pmatrix} \tag{6}$$

Результаты для такой системы:

Accuracy: 0.001

Quantity of iterations: 5

Accuracy: 1e-05

Quantity of iterations: 5

Accuracy: 1e-10

Quantity of iterations: 5

Рис. 2: Решение задачи с неправильной правой частью

Проверим влияние точности на число итераций:

Рис. 3: Зависимость количества итераций от точности значений

Как видно из графика, точность в пределах выбранных значений не оказывает никакого влияния на количество итераций, которое остается одинаковым для точности от 0.01 до 10^{-20} .

4.2 Задача 2

Для задачи 2 имеем следующий алгоритм действий:

- 1. Берем матрицу 128х18, в которой нет нулевых столбцов.
- 2. Нам необходимо обрезать матрицу, сделав ее квадратной, поэтому среди 128 строк находим те наиболее заполненные 18, при которых в каждом стоблце будет хотя бы одно достаточно большое значение.
 - При этом можно переставлять строки и столбцы местами.
- 3. Проверяем невырожденность такой матрицы (с компьютерной точки зрения).
- 4. Находим решения для данной части матрицы.

Для первой матрицы(matrix - n - phi - 1) в результате первых 2-х шагов получаем матрицу, определитель которой равен

3.4195006383438334e-18, что можно рассмотреть как отличный от 0.

Для такой матрицы можно построить обратную с помощью встроенных методов.

Затем генерируем по закону равномерного распределения вектор значений x, который далее будет являться решением. Получаем $b=A\cdot x$, далее опять с помощью равномерного распределения получаем значения радиусов, с помощью которых объчитерваливаем правую часть.

Получаем для этой матрицы:

Рис. 4: Область решений для матрицы 1

Количество итераций: 68.

Аналогично поступим с матрицей matrix - n - phi - 6, ее определитель равен 6.381233859251037e - 18 для нее результат:

Рис. 5: Область решений для матрицы 2

Количество итераций: 24.

Заметим, что для обеих задач b содержится в между $A \cdot x_{inf}$ и $A \cdot x_{sup}$: $b \in [A \cdot x_{inf}; A \cdot x_{sup}]$, что позволяет дать внешнюю оценку решений.

Для анализа системы(второй матрицы) были взяты модельные правая часть и решение. Правая часть была объинтервалена, как и прежде, а затем получено решение с помощью субдифференциального метода Ньютона.

Рис. 6: Сравнение полученного и модельного решений

Как видно из (6), модельное решение находится в области между верхней и нижней границами полученного интервального решения, в некоторых местах совпадая или пересекаясь. Однако здесь достаточно сильные разбросы, которые встречаются в силу того, что в систему внесены произвольные величины.

5 Приложения

Kод программы на GitHub, URL: https://github.com/DariaKrup/Computational_complexes