

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Expressiveness
Compactness Theorem
Reachability is NOT EXPRESSIBLE

Predicate Logic – Results

- Soundness and Completeness
- Validity is Undecidable
 - Satisfiability?
 - Provability?

Predicate Logic - Expressiveness

- Propositional formulas vs. Predicate formulas
 - What can not be expressed in Predicate Logic?

Reachability in Graphs

- Consider a directed graph: G = (V,E)
- Define Reachability as follows:
 - a vertex u is reachable from a vertex v, if there is a finite path (of edges) from v to u.
- Question:
 - Is <u>Reachability</u> expressible in Predicate Logic?

Expressing Reachability in Graphs using Predicate Logic

- An attempt:
 - In English:

```
(u and v are the same vertices) |
(there is an edge from v to u) |
(there is an edge from v to a vertex X and an edge from X to u) |
...
```

In predicate logic: (assume E denotes the edge relation)

```
(u=v) \lor E(v,u) \lor (\exists X E(v,X) \land E(X,u)) \lor (\exists X_1 \exists X_2 E(v,X_1) \land E(X_1,X_2) \land E(X_2,u)) \lor ...
```

- This approach does not work! Why?
- Note:
 - It turns out that Reachability is not expressible in First Order Predicate Logic. (see Proof in following slides)

Definitions

- Sentence:
 - A sentence is a formula without any free variable.
- Let Γ be a set of formulas:
 - Γ is said to be satisfiable if the conjunction of formulas in Γ is said to be satisfiable.

Compactness Theorem

- Theorem:
 - Let Γ be a set of sentences in predicate logic. If all finite subsets of Γ are satisfiable then so is Γ .
- Proof (by contradiction):
 - Assume that Γ is not satisfiable (but *all its finite subsets are*):
 - Then the semantic entailment $\Gamma \mid = \bot$ holds. (Why?)
 - ullet By completeness of Predicate Logic, Γ |- \bot
 - i.e. there is a proof in Natural Deduction for this.
 - But this proof is finite and can use only finitely many premises Δ from Γ :
 - i.e. ∆ |-⊥
 - And from soundness, $\Delta \mid = \bot$ which is a contradiction.

Reachability is not expressible in Predicate Logic

Theorem:

- There is no formula ψ in predicate logic with u and v as its only free variables and E as its only predicate symbol (of arity 2) such that
 - ψ holds in a directed graph (model) G = (U,V) iff
 - there is a path in that graph from node u to node v.

Proof: ??

Reachability is not expressible in Predicate Logic

- Proof (**by contradiction**):
- Suppose there is such a formula ψ expressing <u>existence of a path from node u to node v.</u> Let c and c' be constants.
- Define ϕ_n to be the formula expressing existence of a path of length n from c to c':

```
\begin{split} & \varphi_0 =^{\text{def}} c = c' \\ & \varphi_1 =^{\text{def}} E(c, c') \\ & \varphi_n =^{\text{def}} \exists X_1 \dots \exists X_{n-1} \ (E(c, X_1) \land E(X_1, X_2) \dots \land E(X_{n-1}, c')) \quad \text{for } n > 1 \end{split}
```

- Let $\Delta = \{ \neg \phi_i \mid i \in \mathbb{N} \} \cup \{ \psi[c/u][c'/v] \}$
 - Δ is unsatisfiable. (Why?)
 - However every finite subset of Δ is satisfiable. (Why?)
 - This is a contradiction by Compactness Theorem.