(a) DIF D DUF F O O O O O O O O O O O O O O O O O O	(a) DIF D DUF F	
Cyuyumbyens waxp worg: a cobuemus bunaumus. (C) $+BC$ $A \rightarrow (C \rightarrow B)$ $(B \lor C) \land A$ (B) $0 \lor 0 \lor 0$ (C) $0 \lor 0$ (D) $0 $	1 0 1 0 He cohvernuo bornainuu	X KVT
(C) $+BC$ $A \rightarrow (C \rightarrow B)$ $(B \lor C) \land A$ (B) $+BC$ $A \rightarrow (C \rightarrow B)$ $(B \lor C) \land A$ (C) $+BC$		X
(B) CBD C >B D \ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(c) $+ BC$ $A \rightarrow (\overline{C} \rightarrow B)$ 0000 0000 0000 0000 0000 1000 1100 1110	(BVC)1A 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	(8) CBD C = 13 DVC 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 -> B

Скрины проверки корректности пруфов в конце

1 A->C	Premise
2 4-33	Premise
3 A	
4 C	MP 1,3
5 BVC	VIY
6 A	
7 3	MP 2,6
8 BVC	VI 7
C:. BVC	LEM 3-5, 6-8
1 A->C 2 A->B 3 A 4 C 5 BVC 6 A 7 B 8 BVC BVC	MOTIO
crowdiles can co	en sume cute completes 1 = compliles consumes
cute capybaras	un sume cute capybaras!=crocadiles consume un glyx augraeb (erocodiles can consume = crocodiles consume) consume cute capybaras (+) iguanas is' + illegal (B) make mayhem (C) do disco dance (D) D) v A B : D=C
I penna zagazy q	us abox any rach
1 Racy and account	Corondilaca
Cocallan pewenting	rerowalles can consume = crocodiles consume)
crowalles can	consume cute capybaras (+)
Incurrerating	iguanas is tillegal (13)
11ad monkeys	make mayhem (C)
dino saurs	do disco dance (D)
15 CO A 73, (C	D) VA, B D=C
00011	0 1 0
001111	
0101 1	
01111	
100100	1 1 0
10110	1 1 1
21101	
=1111	1 0 1
	Valid

2 номер

Proof:

Construct a proof for the argument: $H \rightarrow (R \land C)$, $\neg R \lor \neg C :: \neg H$

$$1 \mid H \to (R \land C)$$

$$2 \mid \neg R \lor \neg C$$

$$3 \neg (R \land C)$$

4 | ¬*H*

DeM 2

MT 1, 3

TNEW LINE

I NEW SUBPROOF

© Congratulations! This proof is correct.

CHECK PROOF

START OVER

Proof:

Construct a proof for the argument: $K \wedge S$, $\neg K : \neg S$

∧E 1

TNEW LINE

IF NEW SUBPROOF

© Congratulations! This proof is correct.

CHECK PROOF

START OVER

Construct a proof for the argument: $A \rightarrow \neg A :: \neg A$

© Congratulations! This proof is correct.

Proof:

Construct a proof for the argument: $(P \land Q) \lor (P \land R) \therefore P$

1
$$(P \land Q) \lor (P \land R)$$

2 $(P \land Q)$
3 P $\land E 2$
4 $(P \land R)$
5 P $\land E 4$
6 P $\lor E 1, 2-3, 4-5$

TNEW LINE

I NEW SUBPROOF

© Congratulations! This proof is correct.

CHECK PROOF START OVER

3 номер

Proof:

Construct a proof for the argument: $A \rightarrow B$, $\neg B \lor C$, $A \therefore C$

1
$$A \rightarrow B$$

2 $\neg B \lor C$
3 A
4 B $\rightarrow E 1, 3$
5 $\boxed{\neg C}$
6 $\neg B$ DS 2, 5
7 $\boxed{\bot}$ $\neg E 4, 6$
8 C IP 5-7

⁽¹⁾ Congratulations! This proof is correct.

Proof:

Construct a proof for the argument: $A \rightarrow C$, $\neg A \rightarrow B :: B \lor C$

1
$$A \rightarrow C$$

2 $\neg A \rightarrow B$
3 A
4 C $\rightarrow E 1, 3$
5 $B \lor C$ $\lor I 4$
6 A
7 B
8 $B \lor C$ $\lor I 7$
9 $B \lor C$ $\lor I 7$
9 $B \lor C$ $\lor I 7$
LEM 3-5, 6-8

Construct a proof for the argument: $A \rightarrow B$, $(C \land D) \lor A$, $\neg B :: D \leftrightarrow C$

1
$$A \rightarrow B$$

2 $(C \land D) \lor A$
3 $\neg B$
4 $\neg A$ MT 1, 3
5 $C \land D$ DS 2, 4
6 C $\land E 5$
7 D $\land E 5$
8 D
9 C R6
10 C
11 D R7
12 $D \leftrightarrow C$ \leftrightarrow I 8–9, 10–11

(9) Congratulations! This proof is correct.

4 номер

Proof:

Construct a proof for the argument: $\neg \neg A$:. A

© Congratulations! This proof is correct.

CHECK PROOF START OVER

Construct a proof for the argument: $(A \rightarrow B) \rightarrow A \therefore A$

1
$$(A \rightarrow B) \rightarrow A$$

2 $\neg A$
3 $A \rightarrow B$
4 $A \rightarrow B$
5 \bot $\neg (A \rightarrow B)$ $\neg E 2, 4$
6 $\neg (A \rightarrow B)$ $\neg I 3-5$
7 B \bot $\neg E 2, 7$
8 $0 \rightarrow B$ $0 \rightarrow B$

© Congratulations! This proof is correct.

Proof:

Construct a proof for the argument: $\neg B \rightarrow \neg A : A \rightarrow B$

1
$$\neg B \rightarrow \neg A$$
2 A
3 A
4 A
5 A
6 B
7 $A \rightarrow B$
 $A \rightarrow B$

Construct a proof for the argument: $\neg (A \lor B) :. \neg A \land \neg B$

1
$$\neg (A \lor B)$$
2 A
3 $A \lor B$
 $\lor I 2$
4 \bot
 $\lnot E 1, 3$
5 B
 $\lnot A \lor B$
 $\lor I 5$
 $\lnot E 1, 6$
8 $\lnot A$
 $\lnot I 2-4$
9 $\lnot B$
 $\lnot I 5-7$
 $\lnot I 0$
 $\lnot A \land \lnot B$
 $\blacksquare NEW LINE$
 $\blacksquare NEW SUBPROOF$

Construct a proof for the argument: $\neg A \land \neg B : \neg (A \lor B)$

1
$$\neg A \land \neg B$$

2 $A \lor B$

3 $\neg A$
 $A \to B$

4 $\neg B$
 $A \to B$

5 $A \to B$
 $A \to B$

6 $A \to B$

7 $A \to B$
 $A \to B$

8 $A \to B$

9 $A \to B$
 A

© Congratulations! This proof is correct.

Proof:

Construct a proof for the argument: $(A \rightarrow B) \land (\neg A \rightarrow B) : B$

1
$$(A \rightarrow B) \land (\neg A \rightarrow B)$$

2 $A \rightarrow B$ $\land E 1$
3 $\neg A \rightarrow B$ $\land E 1$
4 $\boxed{ \frac{\neg B}{B}}$ $\rightarrow E 2, 5$
7 $\boxed{ \bot}$ $-E 4, 6$
8 $\boxed{ \neg A}$ $\boxed{ \neg I 5-7}$
9 $\boxed{ B}$ $\rightarrow E 3, 8$
10 $\boxed{ \bot}$ $\boxed{ \neg E 4, 9}$
11 $\boxed{ B}$ $\boxed{ IP 4-10}$

5 номер

Proof:

Construct a proof for the argument: $(A \rightarrow B) \lor (B \rightarrow A)$

1
$$A$$
2 B
3 A
 $B \rightarrow A$
 $B \rightarrow A$
 $A \rightarrow I 2-3$
5 $A \rightarrow I 2-3$
6 $A \rightarrow B \rightarrow A$
 $A \rightarrow I 2-3$
7 $A \rightarrow B \rightarrow A$
 $A \rightarrow I 2-3$
7 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
7 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
8 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
7 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
8 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
10 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
11 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
11 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
12 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
13 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
14 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
15 $A \rightarrow I 2-3$
16 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
17 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
19 $A \rightarrow I 2-3$
10 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
10 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
11 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
11 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
12 $A \rightarrow B \rightarrow A \rightarrow I 2-3$
13 $A \rightarrow I 2-3$
14 $A \rightarrow B \rightarrow I 2-3$
15 $A \rightarrow I 2-3$
16 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
19 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
12 $A \rightarrow B \rightarrow I 2-3$
11 $A \rightarrow B \rightarrow I 2-3$
12 $A \rightarrow B \rightarrow I 2-3$
13 $A \rightarrow I 2-3$
14 $A \rightarrow I 2-3$
15 $A \rightarrow I 2-3$
16 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
19 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
12 $A \rightarrow I 2-3$
13 $A \rightarrow I 2-3$
14 $A \rightarrow I 2-3$
15 $A \rightarrow I 2-3$
16 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
19 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
12 $A \rightarrow I 2-3$
13 $A \rightarrow I 2-3$
14 $A \rightarrow I 2-3$
15 $A \rightarrow I 2-3$
16 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
19 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
12 $A \rightarrow I 2-3$
13 $A \rightarrow I 2-3$
14 $A \rightarrow I 2-3$
15 $A \rightarrow I 2-3$
16 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
19 $A \rightarrow I 2-3$
19 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
12 $A \rightarrow I 2-3$
13 $A \rightarrow I 2-3$
14 $A \rightarrow I 2-3$
15 $A \rightarrow I 2-3$
16 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
19 $A \rightarrow I 2-3$
10 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
11 $A \rightarrow I 2-3$
12 $A \rightarrow I 2-3$
13 $A \rightarrow I 2-3$
14 $A \rightarrow I 2-3$
15 $A \rightarrow I 2-3$
16 $A \rightarrow I 2-3$
17 $A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
18 $A \rightarrow I 2-3$
19 $A \rightarrow I 2-3$
19 $A \rightarrow I 2-3$
10 $A \rightarrow$

TNEW LINE

I NEW SUBPROOF

⁽¹⁾ Congratulations! This proof is correct.

Construct a proof for the argument: $A \rightarrow (B \rightarrow A)$

1 | A | B | A | R 1 | A | B
$$\rightarrow$$
 A | \rightarrow I 2-3 | \rightarrow I 1-4 | \rightarrow I NEW LINE | \rightarrow NEW SUBPROOF

© Congratulations! This proof is correct.

Proof:

Construct a proof for the argument: $(\neg B \rightarrow \neg A) \rightarrow [(\neg B \rightarrow A) \rightarrow B]$

1
2
$$\neg B \rightarrow \neg A$$
3
4
 $\neg B \rightarrow A$
3
5
 $\neg A \rightarrow E 1, 3$
6
 $\neg B \rightarrow A \rightarrow E 4, 5$
7
 $\neg B \rightarrow A \rightarrow E 1, 3$
 $\neg E 4, 5$
7
 $\neg B \rightarrow A \rightarrow E 1, 3$
 $\neg E 4, 5$
 $\neg E 4, 5$
 $\neg E 4, 5$
9
 $(\neg B \rightarrow A) \rightarrow B \rightarrow I 2-7$
9
 $(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B) \rightarrow I 1-8$

© Congratulations! This proof is correct.

CHECK PROOF START OVER

Construct a proof for the argument: $(A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow C)$

1
$$A \rightarrow (B \rightarrow C)$$

2 $A \rightarrow B$
3 $A \rightarrow B$
4 $B \rightarrow C$
5 $B \rightarrow C$
6 $C \rightarrow E 1, 3$
6 $C \rightarrow E 4, 5$
7 $A \rightarrow C$
8 $(A \rightarrow B) \rightarrow (A \rightarrow C)$
9 $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \rightarrow I 1-8$

TNEW LINE

I NEW SUBPROOF

© Congratulations! This proof is correct.

CHECK PROOF

START OVER