

Sample Question Format (For all courses having end semester Full Mark=50)

KIIT Deemed to be University Online End Semester Examination(Spring Semester-2021)

<u>Subject Name & Code:</u> Computer Architecture (CS- 2006) <u>Applicable to Courses: B.Tech 4th Semester (CSE, IT, CSSE, CSCE)</u>

Full Marks=50 Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks)

<u>Time:30 Minutes</u> (7×2=14 Marks)

Question No	Qu est io n Ty pe (M	Question	CO M ap pi pi ng	Answer Key (For MCQ Questions only)
	CQ /S AT			
Q.No:1	<u>m</u>	Question -1	CO	(b)
	<u>cq</u>	Consider a register R1 contains a value 10101010 and R2 contains 11110000. What will be the value of carry, zero	1	
		and overflow flags after the execution of the instruction		
		ADD R1,R2// R2 is the destination		
		a) CF=1, ZF=1, OF=1		
		b) CF=1, ZF=0, OF=0		
		c) CF=0, ZF=0, OF=1 d) CF=1, ZF=0, OF=1		
	m	Question -2	CO	(A)
	cq	The number of instructions needed to add 15 numbers	1	(2-2)
		using 1-operand addressing mode (including load and		
		store instructions)		
		A) 16 B) 31		
		C) 15		
		D) 17		
	<u>m</u>	Question-3	CO	(D)
	<u>cq</u>	Consider the definition of a structure defined below:	2	
		struct student{ int rollno;		
		char name[20];		
		float cgpa;		

		1		
		} struct student s1;		
		Given, the base address of s1 is available in register R5. The data member s1.cgpa can be efficiently accessed using: A) Pre-decrement addressing mode, -(R5) B) Register indirect mode, (R5) C) Relative addressing mode, X(PC), where X represents an offset D) Index addressing mode, X(R5), where X represents an offset		
	m	Question -4	CO	(B)
O Nove	cq	What will be the value in R2 after executing the following sub-program? Clear R2 Label1: ADD #3,R2 // R2 is the destination CMP #20, R2 // Compare value in R2	2	
Q.No:2	<u>m</u> <u>cq</u>	Question -1 In an 21 bit computer instruction format , the size of the address field is 8 bits. The computer have 9 two address instructions and 32 one address instructions. What will be the number of zero-address instructions supported? A) $((2^5 \times 2^8) -32) \times 2^8$ B) $(((2^5 -9) \times 2^8) -32) \times 2^8$ C) $(((2^5 -9) + 2^8) -32) + 2^8$ D) $(2^5 + 2^8) -32) + 2^8$	CO ₂	(B)
	<u>m</u> <u>cq</u>	Question -2 A subroutine "ADD" is located at an address 9000 in memory. After the execution of the following instruction, what will be the value of PC? Call ADD // The instruction is located at address 2000 and the length of the instruction is 4 bytes. A) 9000 B) 2004 C) 11004 D) 9004	CO ₂	(A)
	<u>m</u>	Question -3 The content of register R1 is 10001011. What will be the	CO	(A)
	<u>cq</u>	decimal value of the content of R1 after execution of the	2	

		following instructions in sequence? Assume the number is represented in 2's complement format and carry bit is zero. RotateRC #2, R1 //RotateRight through carry. A) -94 B) -30 C) +69 D) +94		
	<u>m</u> <u>cq</u>	Question -4 Write the assembly code to evaluate the following arithmetic expression: X = A / (B - C) Using a stack organized computer with zero-address operation instructions. A. PUSH A; PUSH B; PUSH C; SUB; DIV; POP X B. PUSH B; PUSH C; SUB; PUSH A; DIV; POP X C. PUSH A; PUSH C; PUSH B; SUB; DIV; POP X D. PUSH C; PUSH B; SUB; PUSH A; DIV; POP X	CO 2	(A)
Q.No:3	m cq	Question -1 Which of the following control steps are required to execute the instruction "mov R1, NUM"? [Where R1 is the source operand]. A) 1. Address_field_of_IRout, MARin 2. Rlout, MDRin, Write, 3. WMFC 4. End B) 1. Rlout, Addrress_field_of_IRin, end C) 1. WMFC 2. Addrress_field_of_IRout, MARin 3. MDRin, Rlout, end D) 1. Address_field_of_IRout, MARin 2. Rlout, MDRin, Read 3. WMFC 4. end	CO 3	(A)
	m cq	Question -2 Which of the following control steps are required to execute the instruction "mov #100, R1"? [Where R1 is the destination operand] A) 1. Address_field_of_IRout, MARin, Read 2. WMFC 3. MDRout, R1in, end B) 1. Addrress_field_of_IRout, R1in end C) 1. Addrress_field_of_IRout, MARin 2. MDRin, R1out, Write 3. WMFC 4. end D) 1. Address_field_of_IRout, MARin	CO 3	(B)

			2. R1out, M	DRin, Read				
			3. WMFC	DRIII, Read				
			4. end					
					.•		00	(D)
	<u>m</u>		1 : 10011	-	tion -3	C40 :	CO	(D)
	<u>cq</u>				rol signals S1 t	:0 S10, In	3	
			-	s T1 to T4, to	I4 as shown be	alow.		
		''''		i decions i i to	14 d3 3110W11 D	EIOW.		
			T1	T2	T3	T4		
			S1, S3, S5	S2, S4, S6	S1, S7	S10		
		12	S1, S3, S5	S8,S9, S10	S5, S6, S7	S6		
		13	S1, S3, S5	S7, S8,S10	S2, S6, S9	S10		
		14	S1, S3, S5	S2, S6, S7	S5, S10	S6, S9		
		gene A) S B) S C) S:	rating contro 1=T1, S9=I2. 1=T1+T3 S9= 1=T1+T3, S9=		T4 I4.T4			
	m			Questic	on -4		СО	(A)
	<u>cq</u>	1		program cou	nter used in		3	
		1			t depends on			
				ntrol Memor	y modes suppor	ted		
			he size of ma	_	modes suppor			
		D) .	The length o	f an instruction				
Q.No:4	<u>m</u>	\ \A/b =		Questio		مطفريط لممست	CO	(B)
	<u>cq</u>	1		IEEE represei	nted in decintation?	illial by the	5	
		S=1						
			000 0110					
		M=1 A) +		00 0000 0000	000			
		B) -2						
		C) -7						
		D) +	72					
	m			Questio	on -2		СО	(A)
	<u>cq</u>			alue represe	nted in deci	imal by the	5	
		1	wing 32-bits	IEEE represei	ntation?			
		S=0 F'=10	0000101					
				00000000000	00			
		E) 1	12					
		F) -1 G) -4						
		H) 4						
		, , <u>, , , , , , , , , , , , , , , , , </u>					1 1	

	m cq	Question -3 The representation of -(18) ₁₀ into IEEE-754 single precision floating point representation is A) S=1 E'=1000 0011 M= 0000 0000 0000 0000 0000 0010 B) S=1 E'=1000 0011 M=0010 0000 0000 0000 0000 0000 C) S=1 E'=0111 1011 M=0010 0000 0000 0000 0000 0000 D) S=1 E'=0111 1011 M=0000 0000 0000 0000 0000 0010	CO 5	(B)
	m cq	Question -4 The representation of -(12.75) ₁₀ into IEEE-754 single precision floating point representation is A) S=1 E'=1000 0010 M= 0000 0000 0000 0000 0010 011 B) S=1 E'=1000 0010 M=1001 1000 0000 0000 0000 0000 C) S=1 E'=0111 1100 M=0000 0000 0000 0000 0010 011 D) S=1 E'=0111 1100 M=1001 1000 0000 0000 0000 0000	CO 5	(B)
Q.No:5	m cq	Question -1 A CPU has 32 bit memory address and 128KB of cache memory. The cache is organized as a 4-way set associative cache with a block size of 32bytes. How many number of sets are there in the cache memory? A) 10 B) 1024 C) 8 D) 256	CO 4	(B)
	<u>т</u> <u>сq</u>	Question -2 Consider a direct mapped cache of size 16MB. In the CPU generated memory address, the higher order 20 bits indicates the tag bits. What will be the number of bits in the memory address? A) 44 bits B) Insufficient data C) 24 bits D) 29 bits	CO 4	(A)
	<u>m</u> <u>cq</u>	Question -3 A computer has a 512KB, 4-way set associative data	Co 4	(A)

		cache with block size of 64B. The processor sends 22-bit addresses to the cache controller. Each cache tag entry contains,in addition to the address tag, 1 valid bit, 1 modified bit and 1 replacement bit. What will be the number of bits stored for each tag entry? A) 8 bits B) 10 bits C) 9 bits D) 11 bits		
	m	Question -4	Co	(A)
	<u>cq</u>	If there are m input lines n output lines for a decoder that is used to uniquely address a byte addressable 4KB RAM, then the minimum value of m+n is a) 4108 b) 4096 c) 12 d) 20	4	
<u>Q.No:6</u>	<u>m</u>	Question -1	Co	(A)
	<u>cq</u>	In which of the following mapping function, there is no need of replacement algorithm A) Direct Mapping B) Set-associative Mapping C) Full associative Mapping D) Both (A) and (B)	4	
	<u>m</u>	Question -2	Co	(D)
	<u>cq</u>	A certain processor supports only the immediate and direct addressing modes . Which of the following programming language features cannot be implemented on this processor: A) Pointers B) Arrays C) Structures D) All of these	2	
	<u>m</u>	Question -3	Co	(A)
	<u>cq</u>	Which of the following property allows the processor to execute a number of clustered locations? A) Spatial Locality B) Temporal Locality C) Cache Coherence D) None of the above	4	
	<u>m</u> <u>cq</u>	Question -4 Which of the following is true for a write operation in a write back cache. A) The data is always written simultaneously in the cache and in the main memory. B) The data is modified in the cache memory only. C) The data is written to the main memory only when a dirty cache block is evicted. D) The data is written to the main memory only when an unused cache block is evicted.	Co 4	(C)
Q.No:7	<u>m</u>	Question -1	Co	(B)
	<u>cq</u>	Which of the following data transfer schemes requires constant monitoring by the CPU of the peripheral devices? A) Both Interrupt -driven IO and DMA	6	

	8) 8		
	B) Programmed IO		
	C) Direct Memory Access		
	D) Interrupt Driven IO		
<u>m</u>	Question -2	Co	(A)
<u>cq</u>	Which of the following statement is wrong with respect	6	
	to I/O Mapped IO?		
	A) Separate Address and Data Bus.		
	B) Common Address and Data Bus		
	C) Separate Address Space for IO devices.		
	D) IN and OUT instructions are used for communicating		
	with IO devices.		
<u>m</u>	Question -3	Co	(B)
<u>cq</u>	The DMA controller indicates the completion of DMA	6	
_	operation to the CPU by generating:		
	A) HLDA signal		
	B) Interrupt Signal		
	C) Read Signal		
	D) Write Signal		
m	Question -4	Co	(A)
cq	Which of the following statement is wrong , with respect	6	, ,
	to vectored Interrupt technique,		
	A) The interrupting device places the vector code on the		
	data bus along with the INTR request.		
	B) The interrupting device places the vector code along		
	after receiving the INTA signal from the processor		
	C) It eliminates the need of polling the devices.		
	D) It is faster compared to program-controlled IO.		
	2) it is its to the confidence to program controlled to.		

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

Time: 1 Hour and 30 Minutes (3×12=36 Marks)

Quest	<u>Question</u>	<u>CO</u>
<u>ion</u>		<u>Mapp</u>
<u>No</u>		<u>ing</u>
		(Each
		<u>questi</u>
		<u>on</u>
		<u>shoul</u>
		<u>d be</u>
		<u>from</u>
		<u>the</u>
		<u>same</u>
		<u>CO(s)</u>
)
Q.No:	Q.No:8-1st question	CO2,CO
<u>8</u>	${ m A.}$ Before the following program is executed, assume that the content of	3

memory location 6000 is 10 and the content of register R5 is 2000. The content of each of the memory locations from 2000 to 2010 is 40. [Here, the 2^{nd} operand is the destination]

INSTRUCTION	Semantics
MOV 6000, R1	R1←Mem[6000]
L1: MOV (R5), R2	R2←Mem[R5]
ADD R1, R2	R2←[R1]+[R2]
MOV R2, (R5)+	Mem[R5]←[R2], R5←[R5]+1
Decrement R1	R1←[R1]-1
Branch≠0 L1	Branch if not zero to L1
HALT	Stop

What will be the content memory locations from 2000 to 2010 **after the program is executed**? Find out the number of memory references required for **each of the instructions** in the above program. Also find the total number of memory references required in the execution of the complete program.

B. Write a program to evaluate an expression X=((A-B)/C)/(D+E*F-G) using **RISC** instructions and also write another program to evaluate the same expression using **0-Addess** instructions . In the expression X,A,B,C,D,E,F, and G are memory addresses.

Answer 8.1

Part A

> [R1] = 10 [R2] = 40, R2 = 50

Total Memory references= 2 + (2+1+2+1+1)x10 + 1 = 73

2000	2001	2002	2003	2004	2005	2006	2
50	49	48	47	46	45	44	4

2010 40

Part B:

Using RISC

X = ((A-B)/C)/(D+E*F-G)

Format: (src1/dst, src2)

Load R1, A Load R2, B SUB R1, R2 Load R2, C DIV R1, R2 Load R2, E Load R3, F MUL R2, R3 Load R3, D ADD R2, R3 Load R3, G SUB R2, R3 DIV R1, R2 Store X, R1

Using 0 Address

X = ((A-B)/C)/(D+E*F-G)

PUSH B SUB **PUSH C** DIV PUSH D **PUSH E PUSH F** MUL ADD PUSH G SUB DIV POP X

PUSH A

Q.No:8-2nd question [6]+[6]

A. Write the micro routine for the following instruction:

ADD 1000 , R2 // R2← [R2]+ mem[1000]

1. P Cout, MARin, Read, Selecty, Add, Zin 2. Zout, PCin, Yin, MORINE, WMFG 3- MDRowl, IRin 4. offset-field-of-IRoud, MARin, Read 5. MDRINE, WMFC, Report, Yin 6. MDRod, Selled Y, Add, Zin J. Zout, Rain, End.

B. What is the need of Y and Z register in Single bus CPU organization? Explain the need of sending the contents of Control word back to the Starting and branch address generator in the Microprogrammed Control Unit design. State the difference between Program Counter and Micro-Program Counter.

[6]

[6]

Y and Z register are needed in Single bus CPU organization for temporary storage during the execution of some instructions. These registers are never used for storing data generated by one instruction for later use by another instruction. The programmer cannot access these registers.

To support microprogram branching, starting and branch address generator takes input from control word.

Program Counter: It is a special register which contains the memory address of next instruction.

Micro-Program Counter: To read the control words sequentially from the control store, a micro program counter is used. Micro-program counter is automatically incremented by clock, causing successive microinstructions to be read from the control store. Hence, the control signals are delivered to various parts of the processor in the correct sequence.

Q.No:8-3rd question

[9+3]

A. Write the sequence of control steps for the following instructions for single bus CPU organization:

[Here, the 2nd operand is the destination]

١.

11: MOV R1, (R2)

II.

I2: Branch=0 L1

III.

13: ADD (R5)+, R2

Design the logic function for WMFC and PC_{in} control signal with reference to the above instructions i.e. I1 to I3.

B. "Hardwired control unit is faster compared to microprogrammed control unit" - Justify the statement.

ANSWRES:

Steps	I1: MOV R1, (R2)	Steps	I2: Branch=0 L1	Steps	I3: ADD (R5)+, R2
1	PC _{out} , MAR _{in} , Read, Select 4, Add, Z _{in}	1	PC _{out,} MAR _{in,} Read, Select 4, Add,, Z _{in}	1	PC _{out,} MAR _{in,} Read, Select 4, Add,, Z _{in}
2	Z _{out} , PC in, y in, WMFC	2	Z _{out} , PC _{in} , y _{in} , WMFC	2	Z out, PC in, y in, WMFC
3	MDR _{out} , IR _{in}	3	MDR _{out} , IR in	3	MDR _{out} , IR _{in}

[9]

	4	R2 out,	4	Offset_field_of_IR	4	R5 _{out,}	
		MAR _{in}		out, Select Y,Add,Z		MAR in,	
				_{in} if Z==0 then		Read	
				End.			
	5	R1 out,	5	Z _{out,} PC _{in} ,End	5	R2 out, Y	
		MDR in,				in, WMFC	
		Write					
	6	WMFC			6	MDR out,	
	•					Select	
						Y,Add,Z _{in}	
	-	T.a.d			7	 	
	7	End			7	Z _{out} , R2 _{in}	
					8	R5 _{out,}	
						Select	
						4,Add,Z _{in}	
					9	Z out, R5 in,	
						End	
		•	•				
	I1 tak	ces 7 co	ntrol st	eps which are ca	rried out in	time slots	
	1	T2,T3,T4,T5		=	inca out in	time siots	
	1			hich are carried out	in time clots	T0 T1 T2 T2 and	
	T4.	יטוונוטו	i steps w	mich are carried out	iii tiiile siots	10,11,12,13 allu	
	1					45	
	1			eps which are ca	rried out in	time slots	
		Γ2,T3,T4,T5		and T8.			
	PC _{in} =	T1 + I2.T4		_		$\overline{}$	
		T1			OR Gate		
		12		P	Ci	 	
		T4					
				_	/		
	WMFC	= T1+I1.T5	+13.T4				
	WMFC	= T1+l1.T5	+I3.T4 				
	WMFC	T1	+I3.T4 —				
	WMFC	T1 I1	+I3.T4 			OR Gate	
	WMFC	T1 I1 T5	+13.T4 —— ——			OR Gate	•
	WMFC	T1 I1 T5 I3	+I3.T4 			1110 055	:
	WMFC	T1 I1 T5	+13.T4 			1110 055	2
	WMFC	T1 I1 T5 I3	+I3.T4 ————————————————————————————————————			1110 055	
	WMFC	T1 I1 T5 I3	+I3.T4 ————————————————————————————————————			1110 055	
	WMFC	T1 I1 T5 I3	+I3.T4 			1110 055	
	WMFC	T1 I1 T5 I3	+I3.T4 			1110 055	
	В.	T1 I1 T5 I3 T4		ontrol unit, to gener		WMFC }	
	B. In m	T1 I1 T5 I3 T4	mmed c	_	ate the contro	ol signals needed	[3]
	B. In m	T1 I1 T5 I3 T4 icroprogra	mmed c	ep, the microinstruct	ate the contro	ol signals needed	
	B. In m for a p contro	T1 I1 T5 I3 T4 icroprogra articular co	mmed control st	ep, the microinstruct time. And secondly,	ate the contro ion is to be re if the microin	ol signals needed etrieved from the struction follows	
	B. In m for a p contro vertica	T1 I1 T5 I3 T4 icroprogra articular coll store, the	mmed control stat takes	ep, the microinstruct time. And secondly , then some time	ate the contro ion is to be re if the microin is needed t	ol signals needed strieved from the struction follows to decode the	
	B. In m for a p contro vertica microi	T1 I1 T5 I3 T4 icroprogra articular coll store, the organizenstruction.	mmed control stat takes ation,	ep, the microinstruct time. And secondly , then some time hardwired control ur	ate the contro ion is to be re if the microin is needed t nit , all the co	ol signals needed etrieved from the struction follows to decode the entrol signals are	
	B. In m for a p contro vertica microi genera	T1 I1 T5 I3 T4 icroprogra articular coll store, the organizenstruction.	mmed control stat takes ation, But in the help of	ep, the microinstruct time. And secondly , then some time hardwired control ur of digital logic and the	ate the contro ion is to be re if the microin is needed t nit , all the co e time is relate	ol signals needed etrieved from the struction follows to decode the entrol signals are ed to gate delays	
	B. In m for a p contro vertica microi	T1 I1 T5 I3 T4 icroprogra articular coll store, the organizenstruction.	mmed control stat takes ation, But in the help of	ep, the microinstruct time. And secondly , then some time hardwired control ur	ate the contro ion is to be re if the microin is needed t nit , all the co e time is relate	ol signals needed etrieved from the struction follows to decode the entrol signals are ed to gate delays	
	B. In m for a p contro vertica microi genera only. S	T1 I1 T5 I3 T4 icroprogra articular coll store, the organizenstruction.	mmed control stat takes ation, But in he help one take	ep, the microinstruct time. And secondly , then some time hardwired control ur of digital logic and the	ate the contro ion is to be re if the microin is needed t nit , all the co e time is relate rol unit is less	ol signals needed strieved from the struction follows to decode the entrol signals are ed to gate delays as compared to	
	B. In m for a p contro vertica microi genera only. S microp	T1 I1 T5 I3 T4 icroprogra articular collistore, the construction. attention the tile congramme.	mmed control stat takes ation, But in the help one take at unit,	ep, the microinstruct time. And secondly , then some time hardwired control ur of digital logic and th n by hardwired conti Due to these reas	ate the contro ion is to be re if the microin is needed t nit , all the co e time is relate rol unit is less ons, Hardwire	ol signals needed etrieved from the estruction follows to decode the entrol signals are ed to gate delays as compared to ed control unit is	
	B. In m for a p contro vertica microi genera only. S microp	T1 I1 T5 I3 T4 icroprogra articular collistore, the construction. attention the tile congramme.	mmed control stat takes ation, But in the help one take at unit,	ep, the microinstruct time. And secondly , then some time hardwired control ur of digital logic and the n by hardwired contr	ate the contro ion is to be re if the microin is needed t nit , all the co e time is relate rol unit is less ons, Hardwire	ol signals needed etrieved from the estruction follows to decode the entrol signals are ed to gate delays as compared to ed control unit is	
	B. In m for a p contro vertica microi genera only. S microp	T1 I1 T5 I3 T4 icroprogra articular collistore, the construction. attention the tile congramme.	mmed control stat takes ation, But in the help one take at unit,	ep, the microinstruct time. And secondly , then some time hardwired control ur of digital logic and th n by hardwired conti Due to these reas	ate the contro ion is to be re if the microin is needed t nit , all the co e time is relate rol unit is less ons, Hardwire	ol signals needed etrieved from the estruction follows to decode the entrol signals are ed to gate delays as compared to ed control unit is	
No	B. In m for a p contro vertica microi genera only. S microp	T1 I1 T5 I3 T4 icroprogra articular collistore, the construction. attention the tile congramme.	mmed control stat takes ation, But in he help one take at unit, to micro	ep, the microinstruct time. And secondly, then some time hardwired control ur of digital logic and the n by hardwired control Due to these reas programmed control	ate the contro ion is to be re if the microin is needed t nit , all the co e time is relate ol unit is less ons, Hardwire unit. [3 marks	ol signals needed etrieved from the estruction follows to decode the entrol signals are ed to gate delays as compared to ed control unit is	[3]
).No:	B. In m for a p contro vertica microi genera only. S microp faster	T1 I1 T5 I3 T4 icroprogra articular collistore, the construction. attention to the tiperogramme compared to the tiperogramme compar	mmed control stat takes ation, But in the help one take at unit, to micro	ep, the microinstruct time. And secondly, then some time hardwired control urof digital logic and then by hardwired control Due to these reasprogrammed control Q.No:9-1st ques	ate the contro ion is to be re if the microin is needed t nit , all the co e time is relate ol unit is less ons, Hardwire unit. [3 marks	ol signals needed etrieved from the struction follows to decode the entrol signals are ed to gate delays as compared to ed control unit is	
<u> 2.No:</u> 9	B. In m for a p contro vertica microingenera only. S microp faster	T1 I1 T5 I3 T4 icroprogra articular collistore, the distriction. ited with the compared of the time compared of time compared of the time compared of	mmed control stat takes ation, But in the help of take at unit, to micro	ep, the microinstruct time. And secondly, then some time hardwired control urof digital logic and then by hardwired control Due to these reasprogrammed control Q.No:9-1st quests an L1 cache, an L2 cache.	ate the controlion is to be reif the microin is needed to the time is related to the columit is lessions, Hardwire unit. [3 marks]	ol signals needed etrieved from the estruction follows to decode the entrol signals are ed to gate delays as compared to ed control unit is]	[3]
	B. In m for a p contro vertica microingenera only. S microp faster of the block of	T1 I1 T5 I3 T4 icroprogra articular collistore, the interest with	mmed control stat takes ation, But in the help of take at unit, to micro	ep, the microinstruct time. And secondly, then some time hardwired control urof digital logic and then by hardwired control Due to these reasprogrammed control Q.No:9-1st ques	ate the controlion is to be reif the microin is needed to the time is related in the columnit is less tons, Hardwire unit. [3 marks]	ol signals needed etrieved from the struction follows to decode the entrol signals are ed to gate delays as compared to ed control unit is]	[3]

nanoseconds for L1 cache, L2 cache and main memory unit respectively. From the main memory 4 words can be transferred L2 cache in a single transfer and 2 words can be transferred from L2 to L1 in a single transfer. When there is a miss in both L1 cache and L2 cache, first a block is transferred from main memory to L2 cache, and then a block is transferred from L2 cache to L1 cache. What is the total time taken for these transfers?

B. Consider a fully associative cache with 4 cache blocks (0-3). The memory **block requests** are in the order-

3, 4, 15, 18, 19, 6, 5, 8, 6, 5, 15, 2, 4, 3, 16, 5

Calculate the hit ratio and miss ratio using **LRU** replacement policy and **optimal** replacement policy.

[5]

C. What is the need of periodic refresh operation in DRAM cells?

C → Informationis Stoned in DRAM cell in the form +t a charge on a capacitor.

→ This charge can be maintained for only to tens of milliseconds.

→ Since the cell is required to stone information for a much longer dime, its contents must be periodically oreforeshed by orestoring the capacitor charge to its full value. [2]

[2]

Q. No:9-2nd question

- A. A cache consists of a total of 256 blocks. The main memory contains 128K blocks, each consisting of 32 words. How many bits are there in each of the TAG, BLOCK and WORD field in case of direct mapping? How many bits are there in each of the TAG, SET, and WORD field in case of 8-way set-associative mapping?
- B. Calculate the number of hits and misses in a 4-blocked cache for the LRU and optimal policy if the sequence of block reference by CPU is given like; 2,1,3, 2,6,5, 4, 1,5,2,3.
- C. How many external connections are required to design 128M X 32 memory chip?

Q.No:9-3rd question

- A. A cache consists of a total of 256 blocks. The main memory contains 2048 blocks, each consisting of 32 words.
 - (i) What is the size of the main memory?
 - (ii) What is the size of the cache memory?
- (iii)How many bits are there in each of the TAG, BLOCK, and WORD field in case of direct mapping?
- (iv) How many bits are there in each of the TAG, and WORD field in case of associative mapping?
- (ν)How many bits are there in each of the TAG, SET, and WORD field in case of 4-way set-associative mapping?

B.A computer uses RAM chips of 128 X 4 capacity. Design a memory capacity of 1K X 16 by using available chips.

C. A computer has a single cache(L1) (on-chip) with a 2 ns hit time and a 90% hit rate. Main memory has a 100 ns access time. What is the computer's effective access time? If we add an off-chip cache(L2) with a 8ns hit time and a 98% hit rate, what is the computer's effective access time? How much of a speedup does the off-chip cache give the computer?

A:

Ans: i) size of main memory = No. of blocks in main memory X Size of each block

= 2048 x 32 =2^11 x 2^5 =2^16

64K words

<u>ii) size of cache memory</u> = No. of blocks in cache memory X Size of each block

= 256 x 32 =2^8 x 2^5 =2^13

8K words

iii) Direct Mapping: Total number of bits in the address: 16

Word field: 32 words in each block;

2⁵ words in each block Therefore 5 bits in word field

Tag field: 2048/256=8=2^3, therefore 3 bits

Block field: 256 blocks in cache: 2^8, therefore 8 bits

iv) Associative mapping:

Word field: 5 bits, same in all mapping

Tag bits: 11 bits

v) Set Associative mapping:

Word field: 5 bits, same in all mapping

Set field: No of sets =256/4=64, therefore 6 bits

Tag bits: No. of blocks in main memory/ No of sets in cache

=2048/64=32, therefore 5 bits

Alternate calculation:16-(5+6)= 5 bits

[5]

C:A computer has a single cache(L1) (on-chip) with a 2 ns hit time and a 90% hit rate. Main memory has a 100 ns access time. What is the computer's effective access time? If we add an off-chip cache(L2) with a 8ns hit time and a 98% hit rate, what is the computer's effective access time? How much of a speedup does the off-chip cache give the computer?

[2]

```
Ans:
```

```
Tavg= hC + (1-h1)M
= 0.9x2 + 0.1x100
=1.8+10=11.8ns
```

```
Tavg= h1C1 + (1-h1)h2C2 + (1-h1)(1-h2)M
=0.9x2+0.1x0.98x8 + 0.1x0.02x100
=1.8 + 0.784 + 0.2
=2.784
```

Speed up=11.8/2.784=4.238

Q.No: 10	Q.No:10-1st question A. Subtract Number 2 from Number 1. (Numbers are represented in IEEE format and give the result in IEEE format. Number 1: S=0 E'= 1000 0101 M=01010000000000000000000000000000	CO ₅
	M=0011000000000000000000000000000000000	
	 C. What is the limitation of ripple carry adder. Evaluation Scheme Correct answer with proper steps for subtracting a number from another number represented in IEEE format question: 5 Marks (Each) Correct answer with proper steps for BOOTH ALGORITHM question: 5 marks Correct answer with proper steps for ripple carry adder question: 2 marks Step Marks as deemed fit to correct & valid steps only. 	
	Solution A. Subtracting a number from another number represented in IEEE format Given, First Number Biased Exponent=E1'=1000 0101 ₂ =133 => Real Exponent=E1=133-127=6 Second Number Biased Exponent=E2'=1000 0010 ₂ =130 => Real Exponent=E2=130-127=3	[5]
	First Number=1.0101 x 2 ⁶ Second Number=1.0011 x 2 ³ =0.0010011 x 2 ⁶ Subtract 2nd mantissa from first 1.0101000	
	0.0010011 1.0010101 So the number after subtraction is $= 1.0010101 \times 2^{6}$ $= 1.0010101 \times 2^{(6+127)}$ in biased exponent $= 1.0010101 \times 2^{133}$ in biased exponent (decimal) $= 1.0010101 \times 2^{10000101}$ in biased exponent (binary)	

The result in IEEE format is

S=0, E'=1000 0101, M=0010101 rest 16 zeros.

.....

В.

Given,

My Roll number is = 1905025

Multiplier=Q=Last three digits of roll%5+6=025%5+6=6 (What is given M in the question)

Multiplicand=M=-11=10101, 2's of M=M^{2s}=01011

To multiply (-11 x 6)

		y - y (
Multiplier Register		Multiplicand Register	Operation
Q	Q ₋₁	M	
0011 <mark>0</mark>	0	10101	Initial configuration
00110	0		No Add/Sub
00011	0		Shift
00011	0		$A=A-M=A+M^{2S}$
1000 <mark>1</mark>	1		Shift
10001	1		No Add/Sub
1100 <mark>0</mark>	1		Shift
11000	1		A=A+M
1110 <mark>0</mark>	0		Shift
_			
11100	0		No Add/Sub
11110	0		Shift
	Multiplier Register Q 00110 00110 00011 00011 10001 11000 11100 11100	Multiplier Register Q Q-1 00110 0 00110 0 00011 0 00011 0 00011 1 10001 1 11000 1 11100 0 11100 0	Register Register Q Q-1 M 00110 0 10101 00110 0 00011 00011 0 0 10001 1 1 11000 1 1 11100 0 1 11100 0 0

Result = Contains of AQ register = $\frac{11101 \ 11110 = -66}{11 \ x \ 6}$ (Answer of

As multiplier will vary from (0+6) to (4+6) => from 6 to 10 So the last step (contains of AQ register) will be

```
-11 \times 7 = -77 = 11101 \ 10011
```

 $-11 \times 8 = -88 = 11101 \ 01000$

 $-11 \times 9 = -99 = 11100 \ 11101$

 $-11 \times 10 = -110 = 11100 \ 10010$

<u>Limitation of Ripple Carry Adder:</u> The disadvantage of the ripple-carry adder is that it can get very slow when one needs to add many bits. In Ripple Carry Adder, Each full adder has to wait for its carry-in from its previous stage full adder. Thus, nth full adder has to wait until all (n-1) full adders have completed their

[2]

[5]

operations. This causes a delay and makes ripple carry adder extremely slow.

Q. No:10-2nd question

A. Perform the following division operation using restoring and non-restoring method. 14 \div d

Where d= (your roll number last 3 digits)% 5 +3.

If your roll no is 1905111, then d= (111%5)+3=1+4=4

B. Perform the addition of the following two numbers represented in IEEE format and give the result in IEEE format.

Number 1:

S=0

E'= 1000 0101

Number 2:

S=0

E'= 1000 0010

Evaluation Scheme

- Correct answer with proper steps for Restoring & Non-restoring Question: 3.5 Marks (Each)
- Correct answer with proper steps for Addition of two IEEE Floating point numbers Question: 5 marks
- Step Marks as deemed fit to correct & valid steps only.

Solution

A. Division operation using restoring and non-restoring method. 14 ÷ d

Where d= (your roll number last 3 digits)% 5 +3

=025%5+3=0+3=3 as my roll number is 1905025

Division operation using restoring Method (14 \div 3 = ?)

Dividend=Q=14=1110, Divisor=M=3=11

As length of dividend is 4 bit, So length of A and M should be (4+1)=5 bits.

So, A=00000 and M=00011 M^{2s}=11101

Steps	Sub	Step/Action	Accumulat	Dividen	Divisior/Remar
	-		or	d	ks
	step		(A)	(Q)	(M)
0	0	Initial	00000	1110	00011
		values			
	a)	Shift left	00001	110_	
		A,Q			
	b)	Perform A	11110	110_	A=A-M=A+
		=A-M			M^{2s}
First		(A-Colum			A = 00001
Cycle		n)			$M^{2s} = 11101$
					A = 11110
	c)	Now A is	00001	110 <u>0</u>	
		-ve,			
		$set q_0 = 0$			

[8]

					1	
		(Q-column				
)				
		and				
		perform				
		A=A+M				
		(A-Colum				
		n)				
	a)	Shift left	00011	10 <u>0</u>		
	a)	A,Q	00011	100		
	b)	Perform A	00000	100	A=A-M=A+	
	U)		00000	100	M^{2s}	
		=A-M				
Secon		(A-Colum			A = 00011	
d		n)			$M^{2s} = 11101$	
Cycle					A = 00000	
	c)	Now A is	00000	10 <u>01</u>		
		+ve,				
		set $q_0 = 1$				
		(Q-column				
)				
	a)	Shift left	00001	0 <u>01</u>		
	,	A,Q				
	b)	Perform A	11110	001	A=A-M=A+	
	0)	= A - M	11110	001	M^{2s}	
		(A-Colum			A = 00001	
		,			$M^{2s} = 11101$	
		n)				
		NT A	00001	0010	A = 11110	
Third	c)	Now A is	00001	0 <u>010</u>		
Cycle		-ve,				
		$set q_0 = 0$				
		(Q-column				
)				
		and				
		perform				
		A=A+M				
		(A-Colum				
		n)				
	a)	Shift left	00010	010		
	<i>u_j</i>	A,Q	00010	<u>010</u>		
	b)	Perform A	11111	010	A=A-M=A+	
	נט		11111	<u>010</u>	$A=A-M=A+$ M^{2s}	
		= A - M				
		(A-Colum			A = 00010	
Fourth		n)			$M^{2s} = 11101$	
Cycle					A = 11111	
	c)	Now A is	00010	<u>0100</u>		
		-ve,				
		set $q_0 = 0$				
		(Q-column				
		and				
	1			I .	i	1

perform		
A=A+M		
(A-Colum		
n)		

So Quotient is the contains of register Q=0100=4

And remainder is the contains of register A=00010=2

Similarly,

Other varieties $14 \div 4$, $14 \div 5$, $14 \div 6$, $14 \div 7$ can be calculated accordingly bu using restoring method.

.....

.....

Division operation using Non-Restoring Method $(14 \div 3 = ?)$ Dividend=Q=14=1110, Divisor=M=3=11

As length of dividend is 4 bit, So length of A and M should be (4+1)=5 bits.

So, A=00000 and M=00011 M^{2s}=11101

Steps	Sub	Step/Actio	Accumulato	Dividen	Divisior/Remark
	-	n	r	d	S
	step		(A)	(Q)	(M)
0	0	Initial	00000	1110	00011
		values			
	a)	As sign	00001	110	
		of A is 0,		_	
		so Shift			
		left A, Q			
		and do			
		Subtract	11110	110	A=A-M=A+M
First			11110	110_	A=A-IVI=A+IVI
Cycle		(A=A-M)			
					A = 00001
					$M^{2s} = 11101$
					A = 11110
	b)	Set $q_0=0$	11110	110 <u>0</u>	
		as sign of		_	
		A is 1			
	a)	As sign	11101	10 <u>0</u>	
		of A is 1,			
		so Shift			
		left A, Q			
		and do			
Secon			00000	100	A — A + N f
d		Add	00000	10 <u>0</u>	A=A+M
Cycle		(A=A+M)			A = 11101
-)			$\underline{\mathbf{M}} = 00011$
					A = 00000
	b)	Set $q_0=1$	00000	10 <u>01</u>	
		as sign of			
		A is 0			
Third	a)	As sign	00001	0 <u>01</u>	
Cycle	'	of A is 0,			

		so Shift left A, Q and do			
		Subtract (A=A-M)	11110	0 <u>01</u>	$\begin{vmatrix} A=A-M=A+M \\ 2s \\ A = 00001 \end{vmatrix}$
					$\frac{M^{2s} = 11101}{A = 11110}$
	b)	Set q ₀ =0 as sign of A is 1	11110	0 <u>010</u>	
	a)	As sign of A is 1, so Shift left A, Q and do	11100	010	
Fourth Cycle		Add (A=A+M	11111	<u>010_</u>	$ \begin{array}{rcl} A = A + M \\ A & = & 11100 \\ M & = & 00011 \\ A & = & 11111 \end{array} $
	b)	Set q ₀ =0 as sign of A is 1	11111	0100	

As the sign of A is 1, so do A=A+M=11111+00011=00010=2=Remainder

So Quotient is the contains of register Q=0100=4

Similarly,

Other varieties $14 \div 4$, $14 \div 5$, $14 \div 6$, $14 \div 7$ can be calculated accordingly bu using non-restoring method.

B. Addition of two numbers represented in IEEE format

Given,

First Number Biased Exponent=E1'=1000 0101₂=133 => Real Exponent=E1=133-127=6

Second Number Biased Exponent=E2'=1000 0010₂=130 => Real Exponent=E2=130-127=3

First Number=1.0101 x 2⁶

Second Number=1.0011 x 2³ =0.0010011 x 2⁶

Add both mantissa

1.0101000

0.0010011

1.0111011

So the number after addition is

 $= 1.0111011 \times 2^6$

 $= 1.0111011 \times 2^{(6+127)}$ in biased exponent

= 1.0111011×2^{133} in biased exponent (decimal)

[4]

= 1.0111011 x 2¹⁰⁰⁰⁰¹⁰¹ in biased exponent (binary) The result in IEEE format is S=0, E'=1000 0101, M=0111011 rest 16 zeros.

Q. No:10- 3rd question [6+6]

A. Multiply (-11 X M) using Bit pair recoding technique. Where M= (your roll number last 3 digits)% 5 +5. If your roll no is 1905111, then M= (111%5)+5=1+5=6

B. Represent the decimal number -55.375 using IEEE 754 single precision floating point format and double precision format. What is the value of E' and mantissa M to represent the special values 0 and ∞ (infinity) in single precision representation?

[6]

Arg55.375 Component is 5 & the best of the control of the co
= (1011) 2 f (0.011) 2 = (110111 011) 2 x 2 ³ Representing in 754 standard Exponent is 5 & 5h biased 24 will be 132 (10000101) 25
= (1011) 2 f (0.011) 2 = (110111 011) 2 x 2 ³ Representing in 754 standard Exponent is 5 & 5h biased 24 will be 132 (10000101) 25
CO6 Company Company
CO6 Company Condition
CO6 Company Company
Representing to 754 standard Exponent is 5 & th bitsel it will be 132 (10000101) Sim Expont Martice 1 1000101 10111 0110000 Cood of the 132 (10000101) Sim Expont Martice 1 1000101 10111 0110000 Cood of the 132 (10000101) Sim Expont Martice (112001) A. Explain the disadvantage associated with program-controlled CO6 B. Explain the sequence of events that takes place when an INTR interrupt request (INTR) is received by the processor. C. Explain the disadvantage associated with program-controlled A. Explain the disadvantage associated with program-controlled
Representing to 754 standard Exportent is 5 & th bitable it will be 132 (10000101) Sim Export Martice 1 1000101 10111 0110000 Cood of the 132 (1000101) Sim Export Martice (11200) 2.No: 11-1st question [4+4+4] A. Explain the disadvantage associated with program-controlled I/O. B. Explain the sequence of events that takes place when an INTR interrupt request (INTR) is received by the processor. C. Explain the disadvantage associated with program-controlled A. Explain the disadvantage associated with program-controlled
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 10 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: Q.No: Q.No: 1 ONO: 10 10 10 10 10 00 00 0
Q.No: 11 Q.No:11-1st question [4+4+4] A. Explain the disadvantage associated with program-controlled I/O. B. Explain the sequence of events that takes place when an INTR interrupt request (INTR) is received by the processor. C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
Q.No: 11 Q.No:11-1st question [4+4+4] A. Explain the disadvantage associated with program-controlled I/O. B. Explain the sequence of events that takes place when an INTR interrupt request (INTR) is received by the processor. C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
Q.No: 11 Q.No:11-1st question [4+4+4] A. Explain the disadvantage associated with program-controlled I/O. B. Explain the sequence of events that takes place when an INTR interrupt request (INTR) is received by the processor. C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
Q.No: 11 Q.No:11-1st question [4+4+4] A. Explain the disadvantage associated with program-controlled I/O. B. Explain the sequence of events that takes place when an INTR interrupt request (INTR) is received by the processor. C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
Q.No: 11-1st question [4+4+4] A. Explain the disadvantage associated with program-controlled I/O. B. Explain the sequence of events that takes place when an INTR interrupt request (INTR) is received by the processor. C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
A. Explain the disadvantage associated with program-controlled I/O. B. Explain the sequence of events that takes place when an INTR interrupt request (INTR) is received by the processor. C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
A. Explain the disadvantage associated with program-controlled I/O. B. Explain the sequence of events that takes place when an INTR interrupt request (INTR) is received by the processor. C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
B. Explain the sequence of events that takes place when an INTR interrupt request (INTR) is received by the processor. C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
request (INTR) is received by the processor. C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
request (INTR) is received by the processor. C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
C. Explain the registers used in a DMA operation. A. Explain the disadvantage associated with program-controlled
A. Explain the disadvantage associated with program-controlled
A. Explain the disadvantage associated with program-controlled
1 1//)
[4]
Ans:
✓ ties up CPU for long period with no useful work
✓ Unsuitable for high speed data transfer
✓ CPU spends most of its time in a tight loop waiting for the
device to become ready(Busy waiting)
de vice to decome ready (Basy watering)
B. Explain the sequence of events that takes place when an INTR
(DIMP):
interrupt request (INTR) is received by the processor.
Ans: The sequence of events involved in handling an IRQ:
1 / Desire a main and IDO
✓ Devices raise an IRQ.
✓ Devices raise an IRQ. ✓ The processor interrupts the program currently being
✓ The processor interrupts the program currently being executed.
 ✓ The processor interrupts the program currently being executed. ✓ The device is informed that its request has been recognized
 ✓ The processor interrupts the program currently being executed. ✓ The device is informed that its request has been recognized and the device deactivates the request signal.
 ✓ The processor interrupts the program currently being executed. ✓ The device is informed that its request has been recognized and the device deactivates the request signal.

resumed.

C. Explain the registers used in a DMA operation.

Ans: The internal registers of a Direct Memory Access

(DMA) Controller are:-

- 1. Base Address Register (16 bit)
- 2. Base Word Count Register (16 bit)
- 3. Current Address Register (16 bit)
- 4. Current Word Count Register (16 bit)
- 5. Temporary Address Register (16 bit)
- 6. Temporary Word Count Register (16 bit)
- 7. Status Register (8 bit)
- 8. Command Register (8 bit
- 9. Temporary Register (8 bit)
- 10. Mode Register (8 bit)
- 11. Mask Register (4 bit)
- 12. Request Register (4 bit)

1. Base Address Register:

It is a 16 bit register that stores the initial address from where the data transfer will take place in a DMA Controller. It is used to reload the Current Address Register after every operation.

2. **Base Word Count Register:**

It is a 16 bit register that stores the number of transfers to be performed during an operation. It is used to reload the Current Word Count Register after every operation.

3. Current Address Register:

It is a 16 bit register that stores the memory address for DMA data transfer. The value automatically increases or decreases after every operation based on how it is programmed. Each channel has its own Current Address Register.

4. Current Word Count Register:

It is a 16 bit register that stores the number of transfers remaining to be performed during an operation. The value automatically decreases after every operation.

5. Temporary Address Register:

It is a 16 bit register that stores the address of data during memory to memory transfer in a DMA Controller.

5. Temporary Word Count Register:

It is a 16 bit register that stores the number of transfers to be performed during a memory to memory transfer in a DMA Controller.

7. Status Register:

It is a 8 bit register that indicates which channel is currently under DMA services or which channels has reached its terminal count. It basically gives the status of the channels. The terminal counts(TC) bits indicates if the channel has reached its terminal count. If terminal count is reached, the transfers are terminated.

[4]

8. Command Register:

It is a 8 bit register that programs the DMA operation and initializes the channel to be used for data transfer.

9. **Temporary Register:**

It is a 8 bit register that holds data during memory to memory data transfer. It always contain the last byte transferred in previous memory to memory transfer operation

10. **Mode Register:**

It is a 8 bit register that determines the operating mode, i.e., the transfer mode and other transfer parameters, for a channel. Each channel has its own mode register which is selected by bit positions 0 and 1.

11. Mask Register:

It is a 4 bit register that is used to mask a channel from requesting the DMA Services. When the mask on a channel is SET, the channel is disabled. It sets or clears all the mask on all the channels with just one command.

12. **Request Register:**

It is a 4 bit register that is used to request DMA data transfer by the software. It determines which channel is requesting for the data transfer.

No:11-2nd question [3+3+6]

- A. State how isolated I/O is different from memory mapped I/O.
- B. What is the vectored interrupt technique of performing I/O operation?
- C. Explain the working principle of Direct Memory Access.
- A. State how isolated I/O is different from memory mapped I/O.

In isolated I/O memory and I/O have different address space, but in memory mapped I/O memory and I/O have same address space.

In Isolated I/O Separate instruction control read and write operation in I/O and Memory, but in memory mapped I/O Same instructions can control both I/O and Memory.

Isolated IO is complex due to separate separate logic is used to control both, whereas Memory mapped I/O is simpler logic is used as I/O is also treated as memory only.

Evaluation Scheme- (Three difference contains three marks)

B. What is the vectored interrupt technique of performing I/O operation?

An I/O device requesting an interrupt can identifies itself to the processor by sending a special code to the processor. The special code contains the identification of the device, starting address for the ISR, address of the branch to the ISR. The processor executes the corresponding ISR after receiving the special code. This mechanism is called vectored interrupt.

Evaluation Scheme- (Full marks for correct answer)

[3]

[3]

C. Explain the working principle of Direct Memory Access.

In DMA approach the I/O module and main memory exchange data directly without the processor involvement. DMA involves an additional module on the system bus i.e. DMA controller, to control the data transfer between i/O module and main memory. The block diagram of DMA controller is shown in fig 7.11.

[6]

Figure 7.11 Typical DMA Block Diagram

When the processor wishes to read or write a block of data, it issues a command to the DMA controller. The processor sends the read or write request, address of the IO device, the starting memory location and number of words to be read or write. The processor then continue with other work. The MDA controller transfers the entire block of data with out going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor.

Evaluation Scheme- (Marks awarded according to the description)

Q.No:11- 3rd question [4+4+4]

A. What is the need of I/O interface.

B. How does the processor resolve among simultaneous interrupt requests?

C. Distinguish between cycle stealing and burst mode data transfer in DMA.

A. What is the need of I/O interface.

I/O interface co-ordinate the data transfer between the IO devices and system bus. Interface Circuit consists of Address Decoder, Control Circuits, Data registers, Status registers.

Address decoder enables the device to recognize its address when it is available in data line.

The data register holds the data being transfer to or from the processor. The status register contains the information relevant to the operation of I/O devices.

[4]

B. How does the processor resolve among simultaneous interrupt requests?

[4]

If simultaneous interrupt request arrives to the processor from two or more devices, the processor follows different mechanism to decide which device will service first.

Priority Scheme:

Organizing I/O devices in a prioritized structure. Each of the interrupt-request lines is assigned a

different priority level. The processor is interrupted only by a high priority device.

Daisy-chain:

A widely used scheme is to connect the devices to form a daisy chain, as shown in figure 3a. The interrupt-request line INTR is common to all devices. The interrupt-acknowledge line, INTA, is connected in a daisy-chain fashion, such that the INTA signal propagates serially through the devices. Device that is electrically closest to the processor gets

high priority.

Daisy chain with priority:

The priority and daisy chain schemes may be combined to produce the more general structure in figure 3b. Devices are organized in groups, and each group is connected at a different priority level. Within a group, devices are connected in a daisy chain.

C. Distinguish between cycle stealing and burst mode data transfer in DMA.

[4]

Cycle Stealing mode- The DMA module return the system bus to the processor after every data transfer and acquired after every instruction

cycle.
Data transfer rate is slow.
CPU utilization is high.

Burst mode- The DMA module return the system bus after completion of entire data transfer.
Data transfer rate is fast.
CPU utilization is low.