Algorytm wyodrębnienia nerki i ich zmian nowotworowych na zdjęciach uzyskanych techniką tomografii komputerowej.

Ze względu na nieprawidłowe pierwsze podejście do planowanego algorytmu procedury zostały zmienione.

1. Segmentacja

Do segmentacji obrazów wykorzystano konwolucyjne sieci neuronowe.

W pierwszym kroku przygotowano dane do trenowania poprzez zapisanie do odpowiednich folderów obrazów CT i ich masek. Zastosowano kod do generowania masek zaproponowany w bibliotece starter_code stworzonej dla bazy danych Kits2019. Następnie stworzono architekturę sieci. Zamiarem było stworzenie sieci AlexNet. Początkowo jednak przygotowano przykładową architekturę, również umożliwiającą klasyfikowanie obrazów. Wystąpiły jednak tutaj komplikacje i prawdopodobnie, źle przygotowana biblioteka nie jest w stanie dobrze zostać podana na wejście sieci neuronowej. Kolejnym krokiem byłoby trenowanie danych, dzięki czemu zostaną wyciągnięte cechy przestrzenne opisujące analizowane obrazy, w czym konwolucyjne sieci neuronowe bardzo dobrze sobie radzą. Następnie za pomocą klasyfikatora perceptronu wielowarstwowego, który posiada wiele warstw klasyfikujących obraz zostaną wydzielone tylko elementy nerki dzięki wcześniej zastosowanym maskom.

2. Ewaluacja

Do oceny segmentacji wykorzystano wskaźnik *Jaccard index*. Wskaźnik ten opiera się na nakładaniu masek powstałych w wyniku zaprezentowanego algorytmu oraz poprawnej segmentacji. Zdefiniowany jest w następujący sposób:

$$JAC = \frac{|S \cap T|}{|S \cup T|}$$

Gdzie S oznacza segmentację wyznaczoną przez przedstawiony algorytm, a T to segmentacja poprawna.

Wartość wskaźnika mieści się w przedziale 0-1, gdzie wartość 0 oznacza brak nakładania się masek co równoznaczne jest z słabą jakością algorytmu, a wartość 1 oznacza idealnie nakładającą się segmentację.

Współczynnik przeliczono dla każdej warstwy obrazu i wyznaczono średnią dla całego przypadku.[1]

3. Bibliografia.

- [1] "Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool" Abdel Aziz Taha and Allan Hanbury
- [2] "Automated 3-D lung tumor detection and classification by an active contour model and CNN classifier" Gopi Selvakumar, Jayakumar Amir, H.Gandomi, Manikandan Ramachandran, Simon Jame Fong, Rizwan Patan.
- [3] "MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multiscale supervised U-Net" Wenshuai Zhao, Dihong Jiang, Jorge Peña Queralta, Tomi Westerlund
- [4] "Segmentation of deformed kidneys and nephroblastoma using Case-Based Reasoning and Convolutional Neural Network" Florent Mariea, Lisa Corbat, Yann Chaussy, Thibault Delavellea, Julien Henriet, Jean-Christophe Lapayrea
- [5] "Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis"- Ivan Lorencina, Nikola Anđelića, Josip Španjolb, Zlatan Cara