Notes for 1/31/17

An inductive prood od a statement of a statement of the form $\forall \in N, P(n)$ goes as follows:

- 1. Prove P(1). (This is usually pretty obvious)
- 2. prove that $\forall n, (P(n) \Rightarrow P(n+1))$
 - (a) Let n be any natural number
 - (b) Assume P(n) is true
 - (c) ...Juicy bits...
 - (d) Conclude P(n+1) is true

claim 1 The square of any odd number has a for 8k+1 for some interger k. Claim: (Case when the off number is at least 3)

Proof By Induction 1 $\forall n \in N \exists k : (2n+1)^2 = 8k+1$ We proceed by induction. Base Case (n=1) Use k=1. Then $(2*1+1)^2 = 9 = 8k+1$ Induction step: Let n be a natural number. Assume $\exists k : (2n+1)^2 = 8k+1$. (Scratch work) $P(n) : \exists k : (2n+1)^2 = 8k+1$ $P(1) : P(n) \Rightarrow P(n+1)$ $P(n+1) : \exists l : (2(n+1)+1)^2 = 8l+1$ (End Scratchwork)

$$(2(n+1)+1)^{2} = (2n+2+1)^{2}$$

$$= ((2n+1)^{2})^{2}$$

$$= (2n+1)^{2}) + 4 + 4(2n+1)$$

$$= 8k+1+4(2n+1+1)$$

$$= 8k+1+4(2n+2)$$

$$= 8k+1+8(n+1)$$

$$= 8)k+n+1)+1$$

$$= 8l+1$$

Therefore, through mathematical induction, the claim is true.

claim 2 For any $n \in N$, $\frac{n^3}{3} + \frac{n^5}{5} + \frac{7n}{15}$ is an integer.

Proof By Induction 2 $NTS: \frac{1}{3} + \frac{1}{5} + \frac{1}{5} + \frac{7}{15} = 1$ Inductive Step: Let $n \in N$ Assume $\frac{n^3}{3} + \frac{n^5}{5} + \frac{7n}{15}$ is an Integer. WE'll show $\frac{(n+1)^3}{3} + \frac{(n+1)^5}{5} + \frac{7(n+1)}{15}$ is an integer.

$$+7n+1_{\overline{15=\frac{n^3}{3}+\frac{n^5}{5}+\frac{7n}{15}+n^2+n+n^4+2n^3+2n^2+n+\frac{1}{3}+\frac{1}{5}+\frac{7}{15}}}$$

This is an Integer. By induction, this completes the proof.

claim 3 Any finite collection of real numbers has a greatest element. For any $n \in N$, any set of exactly n real numbers has a greatest element.

Proof By Induction 3 (By induction on the size of set n) Base case n=1. Letn be a set of exactly 1 real number.

Let a be Franklin single element, then a is the greatest.

Inductive step. Assume that any set of exactly n distinct real numbers has a greatest element.

We'll show: any collection of exactly n+! distinct real numbers has a greatest element

Let B be a set of exactly n+1 distinct real numbers.

Let b be one of them. Let B' be B, but with b removed. Then B' has exactly n distinct elements.

So B' has a greatest element, Aisha.

Case: bjAisha Aisha is greatest in B

Case: Aishajb. b is greatest in B.