Differential Equations

Arnav Patri

October 18, 2022

Contents

1	Intr	coduction to Differential Equations
	1.1	Definitions and Terminology
		A Definition
		Classification by Type
		Notation
		Classification by Order
		Classification by Linearity
		Solutions
		Interval of Definition
		Solution Curve
		Explicit and Implicit Solutions
		Families of Solutions
		Systems of Differential Equations
	1.2	Initial-Value Problems
		Geometric Interpretation
		Existence and Uniqueness
		Interval of Existence/Uniqueness
	1.3	Differential Equations as Mathematical Models
		Mathematical Models
		Population Dynamics
		Radioactive Decay
		Newton's Law of Warming/Cooling
		Spread of a Disease
		Chemical Reactions
		Mixtures
		Draining a Tank
		Series Circuits
		Falling Bodies
		Falling Bodies and Air Resistance
		Suspended Cables
2	Firs	st-Order Differential Equations 11
	2.1	Solution Curves without a Solution
		2.1.1 Direction Fields
		2.1.2 Autonomous First-Order DEs
	2.2	Separable Equations
		Solution by Integration

		A Definition		 				 13
		Method of Solution		 				 14
		Losing a Solution		 				 14
		Use of Computers		 				 14
		An Integral-Defined Function						
	2.3	Linear Equations						
		A Definition						
		Standard Form						
		Method of Solution						
		General Solutions						
		Piecewise-Linear Differential Equation						
		Error Function						
	0.4							
	2.4	Exact Equations						
		Differential of a Function of Two Variables						
		A Definition						
	2 -	Method of Solution						
	2.5	Solutions by Substitutions						
		Substitutions						
		Homogenous Equations						
		Bernoulli's Equation						
		Reduction to Separation of Variables		 	•			 18
3	Ma	deling with First-Order Differential Equations						19
J	3.1	Linear Models						_
	5.1	Growth and Decay						
		· ·						
		Half-Life						
		Newton's Law of Cooling/Warming						
	2.0	Series Circuits						
	3.2	Nonlinear Models						
								20
		Population Dynamics						
		Logistic Equation		 				 21
		Logistic Equation		 				 21 21
		Logistic Equation		 		 	· · · · · · · · · · · · · · · · · · ·	 21 21 22
	3.3	Logistic Equation		 		 	 	 21 21 22 22
	3.3	Logistic Equation		 		· · · · · ·		 21 21 22 22 22
	3.3	Logistic Equation		 		· · · · · ·		 21 21 22 22 22 22
	3.3	Logistic Equation		 				 21 21 22 22 22 22
	3.3	Logistic Equation	 			· · · · · · · · · · · · · · · · · · ·	 21 21 22 22 22 22 23
	3.3	Logistic Equation					· · · · · · · · · · · · · · · · · · ·	21 21 22 22 22 22 22 23 24
		Logistic Equation					· · · · · · · · · · · · · · · · · · ·	21 21 22 22 22 22 23 24 24
4	${ m Hig}$	Logistic Equation						21 21 22 22 22 22 23 24 24 26
4		Logistic Equation						21 21 22 22 22 22 23 24 24 26
4	${ m Hig}$	Logistic Equation						21 21 22 22 22 23 24 24 26 26
4	${ m Hig}$	Logistic Equation						21 21 22 22 22 23 24 24 26 26 26
4	Hig 4.1	Logistic Equation						21 21 22 22 22 22 23 24 24 26 26 26 28
4	${ m Hig}$	Logistic Equation						21 21 22 22 22 22 23 24 24 26 26 26 28

	General Case	9
4.3	Homogenous Linear Equations with Constant Coefficients	0
	Auxiliary Equation	0
	Case I: Distinct Real Roots	1
	Case II: Repeated Real Roots	1
	Case III: Complex Conjugate Roots	1
	Two Equations Worth Knowing	2
	Higher-Order Equations	2
4.4	Undetermined Coefficients—Superposition Approach	3
	Method of Undetermined Coefficients	3
	Case I	
	Case II	
4.5	Undetermined Coefficients—Annihilator Approach	
	Factoring Operators	
	Annihilator Operator	
	Undetermined Coefficients	4
	Summary of the Method	
4.6	Variation of Parameters	
	Linear First-Order DEs Revisited	
	Linear Second-Order DEs	
	Summary of the Method	7
	Higher-Order Equations	8
4.7	Cauchy-Euler Equations	8
	Cauchy-Euler Equation	8
	Method of Solution	9
	Case I: Distinct Real Roots	9
	Case II: Repeated Real Roots	9
	Case III: Conjugate Complex Roots	0
4.8	Green's Function	0
	4.8.1 Initial-Value Problems	0
	4.8.2 Boundary Value Problems	1
4.9	Solving Systems of DEs by Elimination	2
	Systematic Elimination	2
	Solution of a System	3
	Method of Solution	3
4.10	Nonlinear Differential Equations	
	Some Differences	3
	Reduction of Order	3
	Dependent Variable Missing	3
	Independent Variable Missing	
	Use of a Numerical Solver	
Mod	leling with Higher-Order Differential Equations 4	5
5.1	Linear Models: Initial-Value Problems	5
	5.1.1 Spring/Mass Systems: Free Undampened Motion 4	5
	5.1.2 Spring/Mass Systems: Free Dampened Motion	7

Chapter 1

Introduction to Differential Equations

1.1 Definitions and Terminology

A Definition

Differential Equation An equation containing the derivatives of one or more unknown functions (or dependent variables) with respect to one or more independent variables is a differential equation (DE).

Classification by Type

A differential containing only ordinary derivatives with respect to a *single* independent variables is an **ordinary differential equation (ODE)**. One involving partial derivatives is a **partial differential equation (PDE)**.

Notation

Leibniz notation denotes derivatives as ratios of differentials with the operators and variables raised to the n for the nth derivative. **Prime notation** denotes the nth derivative with either n primes or (n) in superscript of the dependent variable or the function. The nth derivative of y = f(x) can thusly be denoted as

$$\frac{\mathrm{d}^n y}{\mathrm{d}x^n} = y^{(n)} = f^{(n)}(x)$$

Newton's **dot notation** is sometimes used to denote derivatives with respect to time, placing n dots above the dependent variable to denote its n^{th} derivative with respect to t. The second derivative of x with respect to t can be denoted as

$$\ddot{x} = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$$

Subscript Notation is often used for partial derivatives, indicating the independent variable in the subscript. The second partial x derivative with respect to z can be denoted as

$$z_{xx} = \frac{\partial^2 z}{\partial x^2}$$

Classification by Order

The **order of a differential equation** is the order of the highest derivartive in the equation. A first-order ODE is sometimes written in the **differential form**

$$M(x,y) dx + N(x,y) dy = 0$$

Symbolically, an $n^{\rm th}$ -order ODE in one dependent variable can be expressed generally as

$$F(x, y, y', \dots, y^{(n)}) = 0$$

where F is a real-valued function of n+2 variables.

It is assumed that it is possible to solve an ODE in the form above uniquely for the highest derivative $y^{(n)}$ in terms of the remaining n+1 variables.

The **normal form** of the above expression is

$$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = f(x, y, y', \dots, y^{(n-1)})$$

where f is a real-values continuous function.

The following normal forms can be used to represent general first- and second-order ODEs:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \qquad \qquad \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = f(x,y,y')$$

Classification by Linearity

An general n^{th} order ODE is **linear** if F is linear in $y, y', y^{(n)}$. This means that it is linear when

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Two important special cases of the above are linear first-1 and second-order DEs:

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
 $a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$

The characteristic properties of linear ODEs are that the dependent variable and all of its derivatives are of first degree and that the coefficients of those terms are dependent at most on the independent variable.

A **nonlinear** ODE is one that is not linear.

Nonlinear functions of the dependent variable cannot appear in linear ODEs.

A DE can not be classified as linear or nonlinear if both differentials are in the numerator.

Solutions

Solution of an ODE Any function φ defined on an interval I with at least n derivatives that are continuous on I which when substituted into an n^{th} -order ODE reduce the equation to an identity is a **solution** of the equation on the interval.

A first order ODE written in differential form as M(x,y) dx + N(x,y) dy = 0 may be linear or nonlinear, as there is no indication of which symbol is the dependent variable.

A DE need not have a solutions. A solution of a DE may involve integral-defined function². A solution of a general n^{th} -order ODE is a function φ with at least n derivatives for which

$$F(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)) = 0 \quad \forall x \in I$$

 φ is said to *satisfy* the differential equation on I. It is assumed that a solution φ is a real-valued function.

A solution is occasionally denoted alternatively by y(x).

Interval of Definition

The interval I over which φ satisfies the ODE is referred to as the **interval of definition/existence/validity** or the **domain of the solution**.

A solution of a DE that is identically 0 on an interval I is said to be a **trivial solution**.

Solution Curve

The graph of φ is called a **solution curve**.

The domain of φ need not be the same as I.

Explicit and Implicit Solutions

A function that expresses the dependent variable solely in terms of the independent variable and constants is said to be *explicit*. An **explicit solution** is a solution with an explicit function. It can be thought of as an explicit formula $y = \varphi(x)$ that can be manipulated.

An explicit solution is generally not needed over an implicit one.

An implicit solution G(x, y) = 0 may define a differentiable function that is a solution of a DE despite G(x, y) = 0 potentially not being solvable analytically. The solution curve may be a segment of the graph of G(x, y) = 0.

Families of Solutions

When solving a first-order DE, the solution usually contains a single constant or parameter C, similar to the constant of integration obtained from the indefinite integral. A solution of F(x, y, y') = 0 containing constant C is a set of solutions G(x, y, C) = 0 called a **one-parameter family of solutions**.

$$F(x) = \int_{a}^{x} g(t) \, \mathrm{d}t$$

If the integrand g is continuous over [a, b] and x falls within the interval, then F is differentiable on the open interval and

$$F'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} g(t) \, \mathrm{d}t = g(x)$$

The integral is often **nonelementary**, meaning that it is not composed of elementary functions.

Elementary functions include constant, polynomial, rational, exponential, logarithmic, trigonometric, and inverse trigonometric functions, as well as rational powers and finite combinations using the four basic arithmetic operations and compositions of these functions.

 $[\]overline{^2}$ A function F of a single variable x can be defined as

An n^{th} -order DE³ often yields an **n-parameter family of solutions**⁴ $G(x, y, C_1, C_2, \dots, C_n) = 0$. The parameters in a family of solutions are *arbitrary* up to a point, but they should always take on values that make sense in the real-number system.

A **singular solution** is one that cannot be obtained by specializing *any* of the parameters in the family of solutions.

Systems of Differential Equations

A system of ODEs is comprised of multiple unknown functions of a single independent variable. A solution of a system is a pair of differentiable functions defined on common interval I that satisfy each equation of the system on the interval.

1.2 Initial-Value Problems

Often, a solution to a DE must meet other conditions imposed on it and its derivatives.

$$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = f(x, y, y', \dots, y^{(n-1)}) \qquad \text{subject to} \qquad y(x_0) = y_0, y'(x) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$

If these desired values are constants, this is an n^{th} -order initial-value problem (IVP). The desired values are called initial conditions (IC).⁵

Solving an n^{th} -order IVP often requires that an n-parameter family of solutions be found that can then be used in tandem with the constraints to find the constants. The resulting particular solution is defined on some interval that contains x_0 .

Geometric Interpretation

A first-order IVP

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \mid y(x_0) = y_0$$

can be interpreted as finding a solution y(x) with a graph that passes through the point (x_0, y_0) . A second-order IVP

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = f(x, y, y') \mid y(x_0) = y_0, y'(x_0) = y_1$$

can be interpreted as finding a solution y(x) with a graph that passes through (x_0, y_0) with slope y_1 .

 $[\]overline{{}^{3} F(x, y, y', \dots, y^{(n)})} = 0$ may not always be solvable for $y^{(n)}$.

⁴ If every solution of an nth-order ODE on an interval can be found by manipulating the parameters of an n-parameter family of solutions, then the family is said to be the **general solution** of the DE.

Nonlinear ODEs are often difficult of impossible to solve in terms of elementary functions, so if a family of solutions is found for one, it is unclear whether it is a general solution. Practically, the designation of "general solution" is only given for solutions to linear ODEs.

⁵ If conditions are prescribed at multiple points, called **boundary conditions**, the problem is called a **boundary-value problem (BVP)**.

Existence and Uniqueness

It can be assumed that *most* DEs will hav solutions and that the solutions of IVPs will *generally* be unique.

Theorem 1.2.1 Let R be a rectangular region in the xy-plane defined by

$$R = \{(x, y) \mid a \le x \le b, c \le y \le d\}$$

that contains point (x_0, y_0) . If f(x, y) and $\partial f/\partial y$ are continuous over R^a , then there exists some interval $I_0: (x_0 - h, x_0 + h)$ (where h > 0) contained in [a, b] and a unique function y(x) defined on this interval that is a solution of the IVP.

Interval of Existence/Uniqueness

The domain of the function that represents a solution to an IVP, the interval I over which the solution is defined or exists, and the interval I_0 of existence and uniqueness.

Suppose (x_0, y_0) is a point in the interior of rectangle R. The continuity of function f(x, y) on R is sufficient to guarantee the existence of at least on solution of dy/dx = f(x, y), $y(x_0) = y_0$, defined on some interval I. The interval of definition I for this IVP is generally taken to be the largest interval containing x_0 over which the solution y(x) is both defined and differentiable. The interval depends both on the DE and the initial condition.

The condition of continuity of $\partial f/\partial y$ on R means that the solution on I_0 containing x_0 is the *only* solution satisfying the initial condition.

It should be noted that the interval of definition I may not be as wide as R and the interval of existence I_0 and uniqueness may not be as large as I. The number h > 0 that defines I_0 may be very small, so the solution y(x) should bed thought of as unique locally: a solution defined near (x_0, y_0) .

1.3 Differential Equations as Mathematical Models

Mathematical Models

A mathematical model is a mathematical description of some system or phenomenon.

To construct a mathematical model, one must first identify the independent variables of the system. The model's **level of resolution** is determined by which variables are chosen to be included From there, a set of hypotheses about the system can be made. These will include any empirical laws that may apply.

Assumptions made regarding a system often involve *rates of change*, so their models often include *derivatives*; that is to say, mathematical models often take the form of DEs or system of them.

If the DE or system is solvable, then the model can be considered reasonable if the solution is in line with data or known facts. Otherwise, the level of resolution can be increased or alternative assumptions can be made.

^a These conditions are sufficient but not necessary. When f(x,y) and $\partial f/\partial y$ are continuous on R, a solution of the IVP exists and is unique so long as (x_0, y_0) is contained within R. If these conditions are not met, though, the IVP may still have a solution that may be unique, or it may have multiple or no solutions.

Increasing the resolution also increases the complexity of the model, meaning that an explicit solution becomes less likely.

Mathematical models of physical systems often involve time as a variable t. A solution gives the state of the system.

Population Dynamics

The Malthusian model for population growth assumes that the growth rate over a certain time is proportional to the total population at that time.

$$\frac{\mathrm{d}P}{\mathrm{d}t} \propto P$$
 or $\frac{\mathrm{d}P}{\mathrm{d}t} = kP$

Due to its simplicity, it is only used to model the growth of small populations over short intervals. This model is also used for the model of continuous compound interest dS/dt = rS (where S is capital and r is the annual interest rate).

Radioactive Decay

Radioactive decay can be modeled under the assumption that the rate dA/dt at which a substance's nuclei decay is proportional to the number of nuclei A(t) of the substance remaining at time t.

$$\frac{\mathrm{d}A}{\mathrm{d}t} \propto A$$
 or $\frac{\mathrm{d}A}{\mathrm{d}t} = kA$

This model is also used to determine a drug's half-life and in the model of a first-order chemical reaction.

 $A \ single \ differential \ equation \ may \ serve \ as \ a \ mathematical \ model \ for \ many \ phenomena.$

Mathematical models often have side conditions, meaning that they may either be IVPs or BVPs.

Newton's Law of Warming/Cooling

Newton's law of cooling/warming can be expressed as

$$\frac{\mathrm{d}T}{\mathrm{d}t} \propto T - T_m$$
 or $\frac{\mathrm{d}T}{\mathrm{d}t} = k(T - T_m)$

where T is temperature of the body, T_m is the temperature of the surrounding medium, and t is time.

Spread of a Disease

The spread of a disease can be modeled as

$$\frac{\mathrm{d}x}{\mathrm{d}t} = kxy$$

where x(t) is the number of people that have contracted the disease and y(t) is the number of people that have not been exposed. The product of these two can be used to approximate the number of interactions between the two groups.

Chemical Reactions

Radioactive decay is a first-order reaction. Such a reaction can be modeled as

$$\frac{\mathrm{d}X}{\mathrm{d}t} = kX$$

where X(t) is the amount of substance A remaining.

Suppose one molecule each of substances A and B is used to form a single molecule of substance C. If X is the amount of C formed and α and β are the initial amounts of A and B, then the instantaneous amounts of A and B that have not yet been converted are $\alpha - X$ and $\beta - X$ respectively. The rate of formation of C is therefore given by

$$\frac{\mathrm{d}X}{\mathrm{d}t} = k(\alpha - X)(\beta - X)$$

A reaction modeled by this is said to be a **second-order reaction**

Mixtures

If A(t) denotes the amount of salt at time t, then the rate at which this changes is

$$\frac{\mathrm{d}A}{\mathrm{d}t} = R_{\mathrm{in}} - R_{\mathrm{out}}$$

Draining a Tank

Torricelli's law states that the speed v of efflux of water through a sharp-edged hole at the bottom of a container filled to depth h is equal to the speed that a body would acquire in free fall from the same height $(v = \sqrt{2gh})$ where g is acceleration due to gravity). If the are of the hole is A_h and the speed of water leaving is $v = \sqrt{2gh}$, then the volume of water leaving per second is $A_h\sqrt{2gh}$. If V(t) denotes the volume of water remaining at time t, then

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -A_h \sqrt{2gh}$$

Series Circuits

Consider the single-loop LRC-series circuit

containing an inductor, a resistor, and a capacitor. The current remaining in a circuit after a switch is closed is denoted by i(t) while the charge on a capacitor is denoted by q(t). L, R, and C denote inductance, resistance, and capacitance respectively and are generally constants.

According to **Kirchhoff's second law**, the impressed voltage E(t) on a closed loop must be equal to the sum of the voltage drops in the loop. As current i(t) is related to charge q(t) by i = dq/dt, equating the sum of the 3 voltages

$$L\frac{\mathrm{d}i}{\mathrm{d}t} = L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} \qquad iR = R\frac{\mathrm{d}q}{\mathrm{d}t} \qquad \frac{1}{C}q$$

to the impressed voltage yields a second-order DE

$$L\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{1}{C}q = E(t)$$

Falling Bodies

Newton's first law of motion states that a body in motion will stay in motion and one at rest will stay at rest unless acted upon by an external force. Both statements are equivalent to stating that the sum of the forces (the net/resultant force) acting on the body is 0, then so is its acceleration. **Newton's second law of motion** states that F = ma, where F is force, m is mass, and a is acceleration.

Falling Bodies and Air Resistance

A falling body of mass m may encounter air resistance proportion to its velocity v. The net force acting on such a mass is given by F = mg - kv, (k being a positive constant of proportionality) the former term being the force of gravity and the latter being that of air resistance, called **viscous damping**. As a = dv/dt, Newton's second law can be rewritten a

$$F = ma = m\frac{\mathrm{d}v}{\mathrm{d}t}$$

Equating the net force to this form of Newton's second law yields a first-order DE for the velocity v(t):

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = mg - kv$$

In terms of position s,

$$m\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = mg - k\frac{\mathrm{d}s}{\mathrm{d}t}$$

Suspended Cables

Suppose a flexible cable is suspended between two vertical supports. Let P_1 denote its lowers hanging point and P_2 some arbitrary point. The portion of the cable connecting these two points is a curve in the xy-plane, the y-axis passing through P_1 and the x-axis being a units below P_1 . There are 3 forces acting on the cable: the tensions \vec{T}_1 and \vec{T}_2 tangent to the cable at P_1 and P_2 respectively and the weight of the cable \vec{W} . Let $T_1 = |\vec{T}_1|$, $T_2 = |\vec{T}_2|$, and $W = |\vec{W}|$. The tension \vec{T}_2 is the only force with both vertical and horizontal components. As the system, is in static equilibrium,

$$T_1 = T_2 \cos \theta \qquad W = T_2 \sin \theta$$

Dividing the former equation by the latter, T_2 ,

$$\tan \theta = \frac{W}{T_1}$$

As $dy/dx = \tan \theta$,

$$\mathrm{d}y/\mathrm{d}x = \frac{W}{T_1}$$

Chapter 2

First-Order Differential Equations

2.1 Solution Curves without a Solution

If a DE is not explicitly or analytically solvable, it still provides information regarding its solution curve.

2.1.1 Direction Fields

Slope

As the solution y = y(x) of the first order DE

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y)$$

must be differentiable on its interval of definition I, it must also be continuous on said interval. The function f in normal form, as presented above, is called the **slope/rate function**. The slope of the tangent line at point (x, y(x)) is equal to f(x, y(x)).

Let (x, y) represent any point in the xy-plane for which f is defined. The value of the function at that point represents the slope of a line segment called a **lineal element**, which is some segment of the tangent line at that point.

Direction Field

A direction/slope field is a plot of small lineal elements over some region in the xy-plane. Visually, it provides information regarding the shape of a family of solution curves, allowing qualitative aspects of said family to be discerned. A solution curve passing through the field must follow the flow of the grid, being tangent to the lineal element at any point it intersects one.

Increasing/Decreasing

The sign of the first derivative provides information regarding whether the function is increasing or decreasing.

$\mathrm{d}y/\mathrm{d}x$	< 0	> 0		
function behavior	decreasing	increasing		

2.1.2 Autonomous First-Order DEs

Autonomous First-Order DEs

An ODE that does not explicitly contain the independent variable is said to be **autonomous**. If x is independent and y is dependent, an autonomous DE would take the form

$$f(y, y') = 0$$
 or $\frac{\mathrm{d}y}{\mathrm{d}x} = f(y)$

It is assumed that f is a continuous and differentiable function of y on some interval I.

Critical Points

A real number c is a **critical/equilibrium/stationary point** of an autonomous DE if f(c) = 0. If the constant function y(x) = c is substituted into the normal form of an autonomous de, both sides equate to 0.

If c is a critical point of an autonomous DE, then
$$y(x) = c$$
 is a constant solution.

A constant solution y(x) = c is also referred to as an **equilibrium solution**, equilibria being the *only* constant solutions. A **(one dimensional) phase portrait** consists of a vertical **phase** line (the P-axis) displaying the intervals on which a function is increasing or decreasing between equilibria.

Solution Curves

As f is independent of x, it may be considered defined for $-\infty < x < \infty$ or $0 \le x < \infty$. As f is continuous and differentiable for y on some interval I of the y-axis, some horizontal region R can be formed in the xy-plane using I. Through any point x_0, y_0 in R passes only a single solution curve. Suppose R is split into subregions R_i by equilibria $y(x) = c_i$.

- If a solution curve passes through point x_i, y_i in R_i , it must stay within R_i for all x, as the curve is continuous and cannot cross equilibria.
- As f is continuous over R, f(y) must be either entirely positive or entirely negative for all x in R_i .
- As dy/dx = f(y(x)), all solution curves must be monotonic.
- If y(x) is bounded by 1 or 2 critical points, then the graph must asymptotically approach them.

Attractors and Repellers

A critical point c may be an **attractor** of y(x), an initial point sufficiently close resulting in $\lim_{x\to\infty} y(x) = c$, a **repeller**, an initial point sufficiently close resulting in movement away from c, or neither, attracting on one side and repelling on the other. Respectively, these are referred to as

asymptotically stable, unstable, and semi-stable.

Autonomous DEs and Direction Fields

As dy/dx is solely dependent on y, the slopes of the lineal elements displayed in a direction field will depend solely on the points' y-coordinates.

Lineal elements that pass through the same *horizontal* line have the same slopes while those that pass through the same *vertical* line may vary.

Translation Property

If y(x) is a solution to an autonomous DE, then $y_1(x) = y(x-k)$ where k is a constant is as well.

This is due to the fact that an autonomous DE is not dependent on x while the solution curve is.

2.2 Separable Equations

The simplest of all DEs fall under the category of first-order separable ODEs.

Solution by Integration

When dy/dx is solely dependent on x (f(x,y) = g(x), integration can be used to solve the DE. If both sides are continuous,

$$y = \int g(x) \, \mathrm{d}x = G(x) + C$$

A Definition

Separable Equation A first-order DE of the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x)h(y)$$

is said to be separable, having separable variables.

From this form, it can be seen that

$$p(y)\frac{\mathrm{d}y}{\mathrm{d}x} = g(x)$$

where p(y) = 1/h(y). The derivative can then be split so that both differentials are in the numerator.

$$\int p(y) \, \mathrm{d}y = \int g(x) \, \mathrm{d}x$$

Integrating,

$$P(y) = G(x) + C$$

Method of Solution

A on-parameter family of solutions can be obtained by integrating.¹

Losing a Solution

It should be noted that variable divisors may be zero at a point. Constant solutions are often lost through division.

Use of Computers

A computer algebra system (CAS) can be used to produce level curves defined by equating the implicit solution G(x, y) to various values of c.

It should be noted that an IVP may have nontrivial solutions that are part of the same family. In fact, all member of a family may be solutions.

An Integral-Defined Function

The solution of an IVP dy/dx = g(x), $y(x_0) = y_0$ defined on interval I containing x_0 and x over which g is continuous is given by

$$y(x) = y_0 + \int_{x_0}^x g(t) dt$$

When the integral is nonelementary, this is acceptable as a final solution.

2.3 Linear Equations

A Definition

Definition 2.3.1. Linear Equation A first-order DE of the form

$$a_1(x)\frac{\mathrm{d}y}{\mathrm{d}x} + a_0(x)y = g(x)$$

is a **linear equation** in y.

^aA first-order DE may occasionally be linear in one variable but not the other.

¹It should be noted that there is no need for multiple constants of integration for a separable equation, as their difference can simply be replaced by a single constant.

Standard Form

By dividing by $a_1(x)$, the **standard form** of a first-order linear equation is obtained:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = f(x)$$

A solution of this should be on an interval I over which both P and f are continuous.

Method of Solution

The left hand side of the standard form of a first-order linear DE can be rewritten as the derivative of a product by multiplying by $\mu(x)$.

$$\frac{\mathrm{d}}{\mathrm{d}x}[\mu(x)] = \mu \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}\mu}{\mathrm{d}x}y = \mu \frac{\mathrm{d}y}{\mathrm{d}x} + \mu Py$$

Evidently,

$$\frac{\mathrm{d}\mu}{\mathrm{d}x} = \mu P \implies \frac{\mathrm{d}\mu}{\mu} = P \,\mathrm{d}x \implies \ln|\mu| = \int P(x) \,\mathrm{d}x \implies \mu = \mathrm{e}^{\int P(x) \,\mathrm{d}x}$$

The constant of integration is chosen to be 1 for simplicity. This result is called the **integrating** factor. Substituting in,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[y \mathrm{e}^{\int P(x) \mathrm{d}x} \right] = \int P(x) \, \mathrm{d}x \frac{\mathrm{d}y}{\mathrm{d}x} + P(x) \mathrm{e}^{\int P(x) \mathrm{d}x} y = \mathrm{e}^{\int P(x) \mathrm{d}x} f(x)$$

Integrating both sides,

$$y e^{\int P(x) dx} = \int e^{\int P(x) dx} f(x) dx$$

Solving for y produces a one-parameter family of solutions

$$y = e^{-\int P(x)dx} \left(\int e^{\int P(x)dx} f(x) dx + C \right)$$

Solving a First-Order Linear DE

- 1. Put the equation into standard form.
- 2. Identify P(x) to find the integrating factor $e^{\int P(x)dx}$. Evaluate the integral, forgoing the integration constant.
- 3. Multiply both sides by the integrating factor:

$$\frac{\mathrm{d}y}{\mathrm{d}x} \left[y \mathrm{e}^{\int P(x) \mathrm{d}x} \right] = \mathrm{e}^{\int P(x) \mathrm{d}x} f(x)$$

4. Integrate both sides and solve for y.

General Solutions

Suppose P and f, found in the standard form of a first-order linear DE, are continuous on I. If a solution of the DE exists on I, it must be of the form found via the integrating factor. Conversely, any function in this form is a solution on I. In other words, the family of solutions found via the integrating factor contains *every* solution defined on I. This family is therefore referred to as the **general solution** on I.

A **transient term** in a solution os one that becomes negligible for increasing values of the dependent variable.

Piecewise-Linear Differential Equation

When P(x) or f(x) are piecewise functions, the equation is referred to as a **piecewise-linear** differential equation.

Error Function

Many important functions are defined in terms of nonelementary integrals. Two such functions are the **error** and **complementary error functions**, denoted erf and erfc respectively and defined as

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \qquad \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt$$

It is known that the definite integral from 0 to ∞ of e^{-t^2} is equal to $\sqrt{2\pi}/2$, so

$$\frac{2}{\sqrt{\pi}} \int_0^\infty e^{-t^2} dt = 1$$

Using the additive property of definite integrals, this can be rewritten as

$$\frac{2}{\sqrt{2\pi}} \int_0^\infty e^{-t^2} dt = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt + \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt = 1$$

It is then apparent why that

$$\operatorname{erf}(x) + \operatorname{erfc}(x) = 1$$

When the solution of an IVP involves a nonelementary integral, it is often beneficial to use a definite integral from x_0 to x.

2.4 Exact Equations

Differential of a Function of Two Variables

Recall that for a function z = f(x, y) with continuous partial derivatives in region R, its **differential** is defined as

$$dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

If z is constant,

$$\frac{\partial f}{\partial x} \, \mathrm{d}x + \frac{\partial f}{\partial y} \, \mathrm{d}y = 0$$

So given a one parameter family of solutions f(x,y) = c, f first-order DE can be generated by computing the differential of both sides of the equality.

A Definition

Exact Equation A differential expression M(x,y) dx + N(x,y) dy is an **exact differential** in region R of the xy-plane if it corresponds to the differential of some function f(x,y) on R. A first-order DE of the form

$$M(x, y) dx + N(x, y) dy = 0$$

is said to be an **exact equation** if the expression on the left is an exact differential.

Theorem 2.4.1 Criterion for an Exact Differential If M(x, y) and N(x, y) are continuous and first-differentiable in a rectangular region R, then M(x, y) dx + N(x, y) dy is said to be an exact differential if and only if

 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

Method of Solution

If the differential is exact, there exists a function f for which

$$\frac{\partial f}{\partial x} = M(x, y)$$
 and $\frac{\partial f}{\partial y} = N(x, y)$

Integration and partial differentiation can be used to find this function.

$$f(x,y) = \int M(x,y) dx + g(y)$$
$$\frac{\partial f}{\partial y} = N(x,y) = \frac{\partial}{\partial y} \int M(x,y) dx + g'(y)$$

2.5 Solutions by Substitutions

Substitutions

Solving a DE often involves first transforming it into another DE via **substitution**.

To transform the first-order DE dy/dx = f(x, y) using the substitution y = g(x, u), where u is regarded as a function of x, the chain rule can be used (so long as g has first-partial derivatives)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\partial g}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}y} + \frac{\partial g}{\partial u} \frac{\mathrm{d}u}{\mathrm{d}x}$$

gives

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g_x(x, u) + g_u(x, u) \frac{\mathrm{d}u}{\mathrm{d}x}$$

The DE then becomes

$$g_x(x, u) + g_u(x, u) \frac{\mathrm{d}u}{\mathrm{d}x} = f(x, g(x, u))$$

Solving for du/dx yields the form

$$\frac{\mathrm{d}u}{\mathrm{d}x} = F(x, u)$$

If a solution $u = \varphi(x)$ can be found, then a solution of the original DE is

$$y = g(x, \varphi(x))$$

Homogenous Equations

A function f is said to be a **homogenous function** of degree α if $f(tx, ty) = t^{\alpha} f(x, y)$ for some real number α .

A first-order DE in differential form

$$M(x, y) dx + N(x, y) dy = 0$$

is **homogenous** if both M and N are homogenous functions of the *same* degree; that is, if

$$M(tx, ty) = t^{\alpha}M(x, y)$$
 and $N(tx, ty) = t^{\alpha}N(x, y)$

If this is true, it can also be written that

$$M(x,y) = x^{\alpha}M(1,u)$$
 and $N(x,y) = x^{\alpha}N(1,u)$ where $u = \frac{y}{x}$

and

$$M(x,y) = y^{\alpha}M(v,1)$$
 and $N(x,y) = y^{\alpha}N(v,1)$ where $v = \frac{x}{y}$

Either y = ux or x = vy can be used to reduce a homogenous DE to a separable first-order De.

Bernoulli's Equation

The DE

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = f(x)y^n$$

where n is any real number is called **Bernoulli's equation**. For $n \neq 0, 1$, the substitution $u = y^{1-n}$ can be used.

Reduction to Separation of Variables

A DE of the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(Ax + By + C)$$

can always be reduced to a separable equation by the substitution Ax + By + C so long as $B \neq 0$.

Chapter 3

Modeling with First-Order Differential Equations

3.1 Linear Models

Growth and Decay

The IVP

$$\frac{\mathrm{d}x}{\mathrm{d}t} \propto x, \quad x(t_0) = x_0$$

can model growth or decay.

Half-Life

A substance's half-life is the amount of time that it takes for half of the atoms in the initial amount A_0 to disintegrate or transmute into those of another element. The longer a substance's half-life, the more stable it is.

Newton's Law of Cooling/Warming

Newton's law of cooling/warming is given by

$$\frac{\mathrm{d}T}{\mathrm{d}t} = k(T - T_m)$$

where T(t) is the temperature of the object, T_m is the ambient temperature, and k is a proportionality constant.

Series Circuits

For an LR-series circuit

containing only a resistor and an inductor, Kirchhoff's second law states that the sum of the voltage drop across the inductor (L(di/dt)) and that across the resistor (iR) is equal to the impressed voltage (E(t)) on the circuit. This provides the first-order linear DE

$$L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri = E(t)$$

for the current i(t), where L and R are the inductance and resistance respectively. The current is also called the **response** os the system.

The voltage drop across a capacitor with capacitance C is given by q(t)/C, q being the charge on the capacitor. For an RC-series circuit

Kirchhoff's second law then gives

$$Ri + \frac{1}{C}q = E(t)$$

As i and q are related by i = dq/dt, though, this can be rewritten as the linear DE

$$R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{1}{C}q = E(t)$$

3.2 Nonlinear Models

Population Dynamics

If P(t) denotes a population's size at time t, the model for exponential growth begins by assuming that dP/dt + kP for some k > 0. In this model, the **relative/specific growth rate**, as defined

by

$$\frac{\mathrm{d}P/\mathrm{d}t}{P}$$

is a constant k.

As resources are finite, true exponential growth over long periods of time is essentially unheard of. The assumption that a population's growth is dependent only on the size of the population can be states as

$$\frac{\mathrm{d}P/\mathrm{d}t}{P} = f(P)$$
 or $\frac{\mathrm{d}P}{\mathrm{d}t} = Pf(P)$

This DE is called the density-dependent hypothesis.

Logistic Equation

Suppose that the maximum number of individuals sustainable in a population is K. This quantity K is called the environment's **carrying capacity**. For the DE, then,

$$f(K) = 0 \qquad \text{and} \qquad f(0) = r$$

The simplest assumption to satisfy these conditions is that f(P) is linear:

$$f(P) = C_1 P + C_2$$

Using the conditions, we find that $c_2 = r$ and $c_1 = -r/K$, so

$$f(P) = r - \frac{r}{K}P$$

The DE then becomes

$$\frac{\mathrm{d}P}{\mathrm{d}t} = P\Big(r - \frac{r}{K}P\Big)$$

Relabeling the constants,

$$\frac{\mathrm{d}P}{\mathrm{d}t} = P(a - bP)$$

Solution of the Logistic Equation

The logistic model can be solved via separation of variables:

$$a$$

$$\left(\frac{1/a}{P} + \frac{b/a}{a - bP}\right) dP = dt$$

$$\frac{1}{a} \ln|P| - \frac{1}{a} \ln|a - bP| = t + C$$

$$\ln\left|\frac{P}{a - bP}\right| = at + aC$$

$$\frac{P}{a - bP} = C_1 e^{at}$$

It then follows that

$$P(t) = \frac{aC_1e^{at}}{1 + bC_1e^{at}} = \frac{aC_1}{bC_1 + e^{-at}}$$

If $P(0) = P_0 \neq a/b$, then $C_1 = P_0/(a - bP_0)$, so

$$P(t) = \frac{aP_0}{bP_0 + (a - bP_0)e^{-at}}$$

Chemical Reactions

Suppose a grams of chemical A and b grams of chemical B are combined. If there are M parts of A and N parts of B formed in the compound, then the number of grams of chemicals A and B remaining at time t are respectively

$$a - \frac{M}{M+N}X$$
 and $b - \frac{N}{M+N}X$

where X(t) is the number of grams of chemical C formed.

The law of mass action states that when temperature is constant, the rate at which two substances react is proportional to the amounts of each that are untransformed at time t:

$$\frac{\mathrm{d}X}{\mathrm{d}t} \propto \left(a - \frac{M}{M+N}X\right) \left(b - \frac{N}{M+N}X\right)$$

Factoring out M/(M+N) from the first factor and N/(M+N) from the second and introducing constant of proportionality k>0, this can be rewritten as

$$\frac{\mathrm{d}X}{\mathrm{d}t} = k(\alpha - X)(\beta - X)$$

where

$$\alpha = a \frac{M+N}{M}$$
 and $\beta = b \frac{M+N}{N}$

A chemical reaction governed by this nonlinear De is said to be a **second-order reaction**.

3.3 Modeling with Systems of First-Order Differential Equations

Linear/Nonlinear Systems

A system of two related first-order DEs may be

$$\frac{\mathrm{d}x}{\mathrm{d}t} = g_1(t, x, y) \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = g_2(t, x, y)$$

When g_1 and g_2 are linear in x and y, being of the forms

$$g_1(t, x, y) = c_1 x + c_2 y + f_1(t)$$
 $g_2(t, x, y) = c_3 x + c_4 y + f_2(t)$

where the coefficients c_i may depend on t, the system is said to be **linear**. It is otherwise **nonlinear**.

Radioactive Series

When a substance decays via radioactivity, it generally doesn't simply transmute in a single step into a stable substance; a **radioactive decay series** is the process of continuous decaying into gradually more stable elements.

Schematically, a radioactive series may be described as

$$X \xrightarrow{-\lambda_1} Y \xrightarrow{-\lambda_2} Z$$

where

$$k_1 = -\lambda_1 < 0$$
 and $k_2 = -\lambda_2 < 0$

are the decay constants of substances X and Y respectively and Z is a stable element. Suppose as well that x(t), y(t), and z(t) denote the amounts os substances X, Y, and Z remaining at time t. The decay of X is described by

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\lambda_1 x$$

while that of Y is the net rate

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \lambda_1 x - \lambda_2 y$$

as Y is gaining atoms from the decay of X while losing them due to its own decay. As Z is a stable element, its aggregation is simply from the decay of Y:

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \lambda_2 y$$

These three first-order DEs compose a linear system that models the radioactive decay series of 3 elements.

A Predator-Prey Model

Suppose that two species interact within the same ecosystem and that one eats only vegetation while the other preys only on the former; the latter is the predator, the former the prey. Let x(t) denote the predator population and y(t) denote the prey population. When there are no prey, the decline in predators would decline corresponding to

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -ax, \quad a > 0$$

When there are prey in the environment it seems reasonable that the number of interactions between the species would be jointly proportional to their populations. So when prey are present, the predator population would increase at rate bxy, b > 0. Adding this to the last equation,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -ax + bxy$$

If there are no predators, the prey thrive, growing proportionally to the population:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = dy, \quad d > 0$$

When predators are present, though, the prey population would decline at a rate modeled by cxy, decreasing by the rate at which they are eaten in their encounters:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = dy - cxy$$

These formula constitute the Lotka-Volterra predator-prey model:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -ax + bxy = x(-a + by)$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = dy - cxy = y(d - cx)$$

where a, b, c, and d are positive constant.

Apart from two constant solutions, x(t) = 0, y(t) = 0 and x(t) = d/c, y(t) = a/b, this system cannot be solved in terms of elementary functions.

Competition Models

Suppose two different species occupy the same ecosystem, competing for resources. In isolation, assume that the rate at which each population grows is respectively

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax$$
 and $\frac{\mathrm{d}y}{\mathrm{d}t} = cy$

As they are in direct competition, it may be assumed that each rate is diminished by the mere existence of the other population, providing the system

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax - by \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = cy - dx$$

where a, b, c, and d are positive constants.

If the growth rate is instead affected proportionally to the number of interactions, the resulting system would be

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax - bxy \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = cy - dxy$$

which is quite similar to the Lotka-Volterra predator-prey model.

It may be more realistic to replace the isolated rates with logistic models rather than exponential ones, making them

$$\frac{\mathrm{d}x}{\mathrm{d}t} = a_1 x - b_1 x^2$$
 and $\frac{\mathrm{d}y}{\mathrm{d}t} = a_2 y - b_2 y^2$

which results in another nonlinear model

$$\frac{\mathrm{d}x}{\mathrm{d}t} = a_1 x - b_1 x^2 - c_1 xy = x(a_1 - b_1 x - c_1 y)$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = a_2 y - b_2 y^2 - c_2 xy = y(a_2 - b_2 - c_2 x)$$

in which all coefficients are positive.

All of these models are called **competition models**.

Networks

An electrical network with more than one loop such as

results in simultaneous DEs. In this case, the current $i_1(t)$ splits in two at one of the network's branch point B_1 . Kirchhoff's first law shows that

$$i_1(t) = i_2(t) + i_3(t)$$

Kirchhoff's second law can also be applied to each loop. Summing the voltage drops across each part of loop $A_1B_1B_2A_2A_1$ gives

$$E(t) = i_1 R_1 + L_1 \frac{\mathrm{d}i_2}{\mathrm{d}t} + i_2 R_2$$

Doing the same for loop $A_1B_1C_1C_2B_2A_2A_1$ results in

$$E(t) = i_1 R_1 + L_2 \frac{\mathrm{d}i_3}{\mathrm{d}t}$$

Using the first derived equation to eliminate i_1 in the sums yields a linear system of two first order equations:

$$L_1 \frac{di_2}{dt} + (R_1 + R_2)i_2 + R_1 i_3 = E(t)$$
$$L_3 \frac{di_3}{dt} + R_1 i_2 + R_1 I_3 = E(T)$$

Similarly,

results in the system

$$L\frac{\mathrm{d}i_1}{\mathrm{d}t} + Ri_2 = E(t)$$

$$RC\frac{\mathrm{d}i_2}{\mathrm{d}t} + i_2 - i_1 = 0$$

Chapter 4

Higher-Order Linear Equations

4.1 Preliminary Theory—Linear Equations

4.1.1 Initial-Value and Boundary-Value Problems

Initial-Value Problem

For a linear DE, an n^{th} -order initial-value problem (IVP) is

$$a_n(x)\frac{\mathrm{d}^n y}{\mathrm{d}x^n} + a_{n-1}\frac{\mathrm{d}^{n-1} y}{\mathrm{d}x^{n-1}} + \dots + a_1(x)\frac{\mathrm{d}y}{\mathrm{d}x} + a_0 y = g(x)$$
subject to $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$

Existence and Uniqueness

Theorem 4.1.1 Existence of a Unique Solution Let $a_n(x)$, $a_{n-1}(x)$, ..., $a_1(x)$, $a_0(x)$, and g(x) be continuous on an interval I and let $a_n(x) \neq 0$ for every x in the interval. If $x = x_0$ at any point within I, then a solution y(x) of the IVP both exists on the interval and is unique.

Boundary-Value Problem

A linear DE of order two or greater in which the dependent variable or its derivatives are specified at different points, such as

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(q)$$
 subject to $y(a) = y_0, y(b) = y_1$

is called a **boundary-value problem (BVP)**. The specified values are called **boundary conditions (BC)**. A solution of the above problem is a function that satisfies the DE on some interval I containing both a and b that pases through the points a, y_0 and b, y_2 .

4.1.2 Homogenous Equations

A linear n^{th} -order DE of the form

$$a_n(x)\frac{\mathrm{d}^n y}{\mathrm{d}x^n} + a_{n-1}(x)\frac{\mathrm{d}^{n-1} y}{\mathrm{d}x^{n-1}} + \dots + a_1(x)\frac{\mathrm{d}y}{\mathrm{d}x} + a_0(x)y = 0$$

is said to be **homogenous** while one of the form

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

where g(x) is not identically 0 is said to be **nonhomogenous**.

It should be noted that word *homogenous* as used here does not refer to coefficients that are homogenous functions.

When stating definitions or theorems regarding linear equations, it shall always be assumed that on some common interval I, the coefficient functions $a_i(x)$ and g(x) are continuous and that $a_n(x) \neq 0$ for every x in the interval.

Differential Operators

The symbol D is called a **differential operator**, as it transforms a differentiable function into another function. In general,

$$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = D^n y$$

where y is a sufficiently differentiable function. Polynomial expressions that involve D are also differential operators. In general, an nth-order differential/polynomial operator to be

$$L = a_n(x)D^n + a_{n-1}(x)D^{n-1} + \dots + a_1(x)D + a_0(x)$$

As D(c(f(x)) = cDf(x)) (where c is a constant) and $D\{f(x) + g(x)\} = Df(x) + Dg(x)$, the differential operator L also posses the property that acting on a linear combination of differentiable functions is the same as the linear combination of L operating on the individual functions. Symbolically,

$$L\{\alpha f(x) + \beta g(x)\} = \alpha Lf(x) + \beta Lg(x)$$

where α and β are constant. Because of this property, L can be said to be a linear operator.

Differential Equations

Any linear DE can be expressed in terms of D notation.

Superposition Principle

Theorem 4.1.2 Superposition Principle—Homogenous Equations Let $y_1, y_2, ..., y_k$ be solutions of the homogenous n^{th} -order DE L(y)=0 on an interval I. The linear combination

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_k y_k(x)$$

where the c_i are arbitrary constants, is also a solution of the DE on I.

Linear Dependence and Linear Independence

Linear Dependence/Independence A set of functions $f_1(x), f_x(x), \ldots, f_n(x)$ is said to be **linearly dependent** on an interval I if there exist constants c_i (that are not all 0) such that

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$

for every x in the interval. If a set of functions are not linearly dependent on an interval, they are **linearly independent**.

If a set of two functions are linearly dependent, then they are constant multiples of each other. A set of functions is linearly dependent on a interval if at least one of the functions can be expressed as a linear combination of the others.

Solutions of Differential Equations

Wronskian Let each of the functions $f_1(x), f_2(x), \ldots, f_n(x)$ possess at least n-1 derivatives. The determinant

$$W(f_1, f_2, \dots, f_n) = \begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f'_1 & f'_2 & \dots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$

is the Wronskian of the functions.

Theorem 4.1.3 Criterion for Linearly Independent Solutions Let y_1, y_2, \ldots, y_n be n solutions of the homogenous linear n^{th} -order DE L(y) = 0 on interval I. The set of solutions is **linearly independent** on I if an only if $W(y_1, y_2, \ldots, y_n) \not\equiv 0$ for every x in the interval.

Fundamental Set of Solutions Any set of n linearly independent solutions of the homogenous linear nth-order linear DE L(y) = 0 on an interval I is said to be a fundamental set of solutions on the interval.

Theorem 4.1.4 Existence of a Fundamental Set A fundamental set of solutions for the homogenous linear n^{th} -order DE L(y) = 0 exists on any interval I.

General Solution—Homogenous Equations Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions of the homogenous linear nth-order DE L(y) = 0 on an interval I. The **general solution** of the equation on the interval is given by

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

where c_i are arbitrary constants.

4.1.3 Nonhomogenous Equations

Any function y_p with no parameters that satisfies a nonhomogenous equation is said to be a **particular solution**. If $y_{1\cdots k}$ corresponds to solutions of a homogenous equation on interval I and y_p is a particular solution of a nonhomogenous equation on the same interval, the linear combination

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_k y(k) + y_p(x)$$

Theorem 4.1.6 General Solution—Nonhomogenous Equation Let y_p be any particular solution of the nonhomogenous linear n^{th} -order DE L(y) = g(x) on interval I and let y_1 ... be a fundamental set of solutions of the corresponding homogenous DE L(y) = 0 on the same interval. The **general solution** of the equation on the interval is

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$

where $c_{i\cdots n}$ are arbitrary constants.

Complementary Functions

The general solution of a nonhomogenous DE can be rewritten as the sum of two functions

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x) = y_c(x) + y_p(x)$$

 $y_c(x)$, which is a general solution of the corresponding homogenous DE, is called the **complementary function** of the nonhomogenous DE. The general solution of a nonhomogenous DE can then be rewritten as

 $y = \text{complementary function} + \text{any particular solution} = y_c + y_p$

Another Superposition Principle

Superposition Principle – Nonhomogenous Equations Let $y_{p,i\cdots k}$ be k particular solutions to a nonhomogenous linear n^{th} -order DE of the form L(y) - g(x) on an interval I that correspond to k distinct functions $g_{1\cdots k}$; that is, suppose y_p , i denotes a particular solution to the DE

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g_i(x)$$

Then

$$y_p(x) = y_{p,1}(x) + y_{p,2}(x) + \dots + y_{i,k}(x)$$

is a particular solution of

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g_1(x) + g_2(x) + \dots + g_k(x)$$

4.2 Reduction of Order

Reduction of Order

Suppose that y_1 denotes a nontrivial solution of the second-order homogenous linear DE

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$$

that is defined on I. If a second solution y_2 is linearly independent on I, then their quotient y_2/y_1 is nonconstant on I. Knowing this, a function u(x) can be found by substituting $y_2(x) = u(x)y_1(x)$ into the DE. This method is called **reduction of order**, as a linear first-order DE must be solved to find u.

General Case

Putting the second-order homogenous linear DE into standard form,

$$y'' + P(x)y' + Q(x)y = 0$$

where P(x) and Q(x) are continuous on I. Let y_1 be a known solution to this DE on I that is never equal to 0 on the interval. Defining $y = u(x)y_1(x)$,

$$y' = u'y_1 + y_1'u$$

$$y'' = u''y_1 + y_1'u' + y_1''u + u'y_1' = uy_1'' + 2u'y_1' + u''y_1$$

$$y'' + Py' + Qy = u(y_1'' + Py_1' + Qy_1) + y_1u'' + (2y' + Py_1)u'$$

$$0 = y_1u'' + (2y_1' + Py_1)u'$$

Letting w = u',

$$0 = y_1 w' + (2y' + Py_1)w$$

This equation is both linear and separable.

$$\frac{\mathrm{d}w}{w} + 2\frac{y_1'}{y_1} \,\mathrm{d}x + P \,\mathrm{d}x = 0$$

$$\ln|wy_1^2| = -\int P \,\mathrm{d}x$$

$$wy_1^2 = C\mathrm{e}^{-\int P \,\mathrm{d}x}$$

Substituting u back in,

$$u = C \int \frac{e^{-\int P dx}}{y_1^2} dx$$

Letting C = 1 and knowing that $y(x) = u(x)y_1(x)$,

$$y_2(x) = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1^2(x)} dx$$

In the case that this integral is nonelementary, $y_2(x)$ can be defined as an integral function:

$$y_2(x) = y_1(x) \int_{x_0}^x \frac{e^{-\int P(t)dt}}{y_1^2(t)} dt$$

4.3 Homogenous Linear Equations with Constant Coefficients

Substituting $y = e^{mx}$ into the first-order homogenous DE

$$ay' + by = 0$$

yields

$$ame^{mx} + be^{mx} = e^{mx}(am + b) = 0$$

As $e^x = 0$ has no real solutions, this is only satisfied when am + b = 0. For this value of m, $y = e^{mx}$ is a solution of the DE.

Auxiliary Equation

Consider the second-order equation

$$ay'' + by' + cy = 0$$

where a, b, and c are constants. Substituting $y = e^{mx}$, this becomes

$$am^{2}e^{mx} + bme^{mx} + ce^{mx} = e^{mx}(am^{2} + bm + c) = 0$$

 $e^x = 0$ has no real solutions,

$$am^2 + bm + c = 0$$

This is called the **auxiliary equation** of the DE. Using the quadratic formula to solve for m,

$$m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The discriminant $b^2 - 4ac$ can be used to determine the number of real solutions:

$b^2 - 4ac$	> 0	0	< 0
real solutions	2	1	1

Case I: Distinct Real Roots

If the auxiliary equation has two distinct real roots m_1 and m_2 , two solutions $y_1 = e^{m_1 x}$ and $y_2 = e^{m_2 x}$ are found. These two functions are linearly independent on \mathbb{R} , making the general solution on the interval

$$y = C_1 e^{m_1 x} + C_2 e^{m_2 x}$$

Case II: Repeated Real Roots

When only a single real root m_1 of the auxiliary equation exists, only a single exponential solution $y_1 = e^{m_1x}$ is found. As $m_1 = m_2$ only if $b^2 - 4ac = 0$, $m_1 = -b/2a$. It then follows from reduction of order that a second solution is

$$y_2 = e^{m_1 x} \int \frac{e^{-\int -\frac{b}{a} dx}}{e^{2mx}} dx = e^{mx} \int \frac{e^{\int 2m dx}}{e^{2mx}} dx = e^{mx} \int \frac{e^{2mx}}{e^{2mx}} dx = e^{mx} \int dx = xe^{mx}$$

The general solution is then

$$y = C_1 e^{mx} + C_2 x e^{mx}$$

Case III: Complex Conjugate Roots

If m_1 and m_2 are both complex, it can be written that

$$m_1 = \alpha + i\beta$$
 and $m_2 = \alpha - i\beta$

where $\alpha, \beta \in \mathbb{R}^+$ (\mathbb{R}^+ being the set of positive real numbers).

This is formally identical to having two distinct real roots, so the general solution can therefore be written as

$$y = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x}$$

In practice, though, real functions are preferred to complex exponentials. As such, Euler's formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

(where θ is any real number) is used. It then follows that

$$e^{i\beta x} = \cos \beta x + i \sin \beta x$$
 and $e^{-i\beta x} = \cos \beta x - i \sin \beta x$

The addition and subtraction of these two formulas results in

$$e^{i\beta x} + e^{-i\beta x} = 2\cos\beta x$$
 and $e^{i\beta x} - e^{-i\beta x} = 2i\sin\beta x$

Letting $C_1 = C_2 = 1$ results in

$$y_1 = e^{(\alpha+i\beta)x} + e^{(\alpha-i\beta)x}$$

while letting $C_1 = 1$ and $C_2 = -1$ gives

$$y_2 = e^{(\alpha + i\beta)x} - e^{(\alpha - i\beta)x}$$

Refactoring,

$$y_1 = e^{\alpha x} \left(e^{i\beta x} + e^{-i\beta x} \right) = 2e^{\alpha x} \cos \beta x$$
 and $y_2 = e^{\alpha x} \left(e^{i\beta x} - e^{-\beta x} \right) = 2ie^{\alpha x} \sin \beta x$

As 2 and i are constants, $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$ are real solutions. These two solutions form a fundamental set on \mathbb{R} . The general solution is consequently

$$y = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

Two Equations Worth Knowing

The DEs

$$y'' \pm k^2 y = 0$$

where $k \in \mathbb{R}^+$ are quite useful in applied mathematics.

The auxiliary equation of $y'' + k^2y = 0$ is

$$m^2 + k^2 = 0$$

which has imaginary roots $m_1 = ki$ and $m_2 = -ki$. With $\alpha = 0$ and $\beta = k$, the general solution can be seen to be

$$y = C_1 \cos kx + C_2 \sin kx$$

The auxiliary equation of $y'' - k^2y = 0$ is

$$m^2 - k^2 = 0$$

which has real roots $m_1 = k$ and $m_2 = -k$, making the general solution of the DE

$$y = C_1 e^{kx} + C_2 e^{kx}$$

Letting $C_1 = C_2 = 1/2$, and $C_1 = 1/2$ and $C_2 = -1/2$ yields the particular solutions

$$y_1 = \frac{1}{2} (e^{kx} + e^{-kx}) = \cosh kx$$
 and $y_2 = \frac{1}{2} (e^{kx} - e^{-kx}) = \sinh kx$

meaning that another form of the general solution is

$$y = C_1 \cosh(kx) + C_2 \sinh(kx)$$

Higher-Order Equations

In general, in order to solve an n^{th} -order homogenous DE L(y) = 0, the n^{th} degree polynomial

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_2 m^2 + a_1 m + a_0 = 0$$

must be solved. If all roots of this equation are distinct, the general solution is

$$y = C_1 e^{m_1 x} + C_2 e^{m_2} + \dots + C_n e^{m_n x}$$

4.4 Undetermined Coefficients—Superposition Approach

To solve a nonhomogenous DE L(y) = g(x), the complementary function y_c and any particular solution must be found. The general solution is then $y = y_c + y_p$.

The complementary function y_c is the general solution of the associated homogenous DE L(y) = 0.

Method of Undetermined Coefficients

The **method of undetermined coefficients** is a technique of obtaining a particular solution y_p of a nonhomogenous DE. This method is limited to linear DEs with constant coefficients and g(x) comprised of finite products and sums of constants, polynomials, exponentials, or sines or cosines. The reason for this limitation is that these types of functions have the property that the derivatives of their sums or products are comprised of sums or products of themselves. Because the linear combination of derivatives y_p must be identical to g(x) it is reasonable to assume that y_p must also have the same form as g(x).

Trial Particular Solutions

g(x)	Form of y_p
k	A
$ax^n + bx^{n-1} + \cdots$	$Ax^n + Bx^{n-1} + \cdots$
$\sin(\alpha x)$	$A\cos(\alpha x) + B\sin(\alpha x)$
$\cos(\alpha x)$	$A\cos(\alpha x) + D\sin(\alpha x)$
e^{kx}	$A e^{kx}$

The form of y_p when g(x) is the product of two functions is that of one function with the second function's substituted in for the constants. If $g(x) = (ax + b) \sin x$, for example, then $y_p = (Ax + B) \cos x + (Cx + E) \sin x$. When g(x) is a sum, the form is simply the sum of the forms of the individual terms of g(x).

Case I

Form Rule for Case I The form of y_p is a linear combination of all linearly independent functions generated by repeated differentiations of g(x).

Case II

Multiplication Rule for Case II If any $y_{p,i}$ contains duplicate terms from y_c , then that $y_{p,i}$ must be multiplied by x^n where n is the smallest positive integer that eliminates the duplication.

4.5 Undetermined Coefficients—Annihilator Approach

An n^{th} -order DE can be written

$$a_n D^n y + a_{n-1} D^{n-1} y + \dots + a_1 D y + a_0 y = g(x)$$

where $D^k = d^k y/dx^k$ for k = 0, ... n. This can also be written L(y) = g(x), where L denotes the n^{th} -order differential operator

$$L(y) = a_n D^n + a_{n-1} D^{n-1} + \dots + a_1 D + a_0$$

This operator notation is not only useful as shorthand, but also serves to justify the rules for determining the form of y_p .

Factoring Operators

When the coefficients a_i are real constants, a linear differential operator L can be factored if the characteristic polynomial

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_1 m + a_0$$

can be factored; that is to say, if r_1 is a root of the auxiliary equation

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_1 m + a_0 = 0$$

then $L = (D - r_1)P(D)$, the polynomial expression P(D) being a linear differential operator of order n - 1.

Factors of a linear differential operator with constant coefficients commute.

Annihilator Operator

If L is a linear differential operator with constant coefficients and f is a sufficiently differential function such that L(f(x)) = 0, then L is said to be an **annihilator** of f.

The functions annihilated by L are simply those that can be obtained from the general solution of the homogenous DE L(y) = 0.

A polynomial can be annihilated by an operator that annihilates the highest power x.

The differential operator $(D-\alpha)^n$ annihilates any $x^k e^{\alpha x}$ for k in $0, \ldots, n-1$.

The differential operator $(D^2 - 2\alpha D + \alpha^2 + \beta^2)^n$ annihilates $x^k e^{\alpha x} \cos \beta x$ and $x^k e^{\alpha x} \sin \beta x$ for k in $0, \ldots, n-1$.

It should be noted that multiple differential operators may be able to annihilate a function, so when finding one, that of the *lowest possible order* should be sought.

Undetermined Coefficients

Let L(y) = g(x) be a linear DE with constant coefficients such that g(x) meets the condition for undetermined coefficients to be used, being that it is a linear combination of functions of the forms

$$k$$
, x^m , $x^m e^{\alpha x}$, $x^m e^{\alpha x} \cos \beta x$, and $x^m e^{\alpha x} \sin \beta x$

where $m \in \mathbb{N}$ and $\alpha, \beta \in \mathbb{R}$. Such a function can be annihilated by a differential operator L_1 of lowest order, which consists of a product of

$$D^n$$
, $(D-\alpha)^n$ and $(D-2\alpha D+\alpha^2+\beta^2)^n$

Applying L_1 to both sides of the DE yields

$$L_1L(y) = L_1(g(x)) = 0$$

By solving the homogenous higher-order equation $L_1L(y) = 0$, the form of y_p can be found. Substituting this into L(y) = g(x), an explicit particular solution can be found. This procedure is called the **method of undetermined coefficients**.

Summary of the Method

Undetermined Coefficients—Annihilator Approach The DE L(y) = g(x) has constant coefficients and g(x) is comprised of the finite sums and products of constants, polynomials, exponentials, sines, and cosines.

- 1. Find the complementary solution y_c to the homogenous equation L(y) = 0.
- 2. Operate on both sides of the nonhomogenous equation L(y) = g(x) using differential operator L_1 that annihilates g(x).
- 3. Find the general solution of the higher-order homogenous DE $L_1L(y) = 0$.
- 4. Delete all terms that are duplicated in y_c . Form a linear combination of those that remain. This is the form of a particular solution of L(y) = g(x).
- 5. Substitute y_p into L(y) = g(x). Match coefficients of the various functions on each side of the equality and solve the resulting system of equations for the unknown coefficients of y_p .
- 6. Form the general solution $y = y_c + y_p$.

4.6 Variation of Parameters

Linear First-Order DEs Revisited

The general solution of the linear first-order DE

$$a_1(x)y' + a_0(x)y = g(x)$$

is found by first writing it in standard form as

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = f(x)$$

If P(x) and f(x) are continuous on common interval I, the integrating factor can be used to identify the solution as

$$y = Ce^{-\int P(x)dx} + e^{-\int P(x)dx} \int e^{-\int P(x)dx} f(x) dx$$

This is of the form $y_c + y_p$, where

$$y_p = C e^{-\int P(x) dx}$$
 and $y_c = e^{-\int P(x) dx} \int e^{-\int P(x) dx} f(x) dx$

This particular solution can be derived via variation of parameters. Suppose that y_1 is a particular solution of a homogenous first-order linear DE; that is,

$$\frac{\mathrm{d}y_1}{\mathrm{d}x} + P(x)y_1 = 0$$

The solution

$$y = e^{-\int P(x) dx}$$

is also known, and as the equation is linear, $C_1y_1(x)$ is its general solution. Variation of parameters consists of finding a particular solution of

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = 0$$

that is of the form

$$y_p = u_1(x)g_1(x)$$

The parameter C_1 has been replaced by the function u_1 . Substituting $y_p = u_1 g_1$ into the equation,

$$f(x) = \frac{\mathrm{d}y}{\mathrm{d}x} [u_1 y_1] + P(x) u_1 y_1$$

$$= u_1 \frac{\mathrm{d}y_1}{\mathrm{d}x} + y_1 \frac{\mathrm{d}u_1}{\mathrm{d}x} + P(x) u_1 y_1$$

$$= u_1 \underbrace{\left(\frac{\mathrm{d}y_1}{\mathrm{d}x} + P(x) y_1\right)}_{0} + y_1 \frac{\mathrm{d}u_1}{\mathrm{d}x}$$

$$= y_1 \frac{\mathrm{d}u_1}{\mathrm{d}x}$$

Separating variables and integrating,

$$du_1 = \frac{f(x)}{y_1(x)} dx$$
$$u_1 = \int \frac{f(x)}{y_1(x)} dx$$

The particular solution is therefore

$$y = u_1 y_1 = y_1 \int \frac{f(x)}{y_1(x)} dx$$

Linear Second-Order DEs

Consider the linear second-order DE

$$a_2(x)y'' + a_1(x)y' + a_0y = g(x)$$

In standard form,

$$y'' + P(x)y' + Q(x)y = f(x)$$

Suppose that P(x), Q(x), and f(x) are continuous on common interval I. The complementary solution

$$y_c = C_1 y(x) + C_2 y(x)$$

Replacing the parameters with functions,

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$$

Using product rule,

$$y'_p = u'_1 y_1 + y'_1 u_1 + u'_2 y_2 + y'_2 u_2$$

$$y''_p = u''_1 y_1 + y'_1 u'_1 + y''_1 u_1 + u'_1 y'_1 + u''_2 y_2 + y'_2 u_2 + y''_2 u_2 + u'_2 y'_2$$

Substituting,

$$y_p'' + P(x)y_p' + Q(x)y_p = u_1(y_1'' + Py_1' + Qy_1) + u_2(y) + u_2(y_2'' + Py_2' + Qy_2)$$

$$+ y_1u_1'' + u_1'y_1' + y_2u_2'' + u_2'y_2' + P(y_1u_1' + y_2u_2') + y_1'u_1' + y_2'u_2'$$

$$= \frac{d}{dx}[y_1u_1'] + \frac{d}{dx}[y_2u_2'] + P(y_1u_1' + y_2u_2') + y_1'u_1' + y_2'u_2'$$

$$= \frac{d}{dx}[y_1u_1' + y_2u_2'] + P(y_1u_1' + y_2u_2') + y_1u_1' + y_2u_2' = f(x)$$

As there are two unknowns, two equations are needed. These are obtained by further assuming that

$$y_1 u_1' + y_2 u_2' = 0$$

as this results in DE reducing to

$$y_1 u_1 + y_2 u_2 = f(x)$$

This provides the desired two equations. By Cramer's Rule, the solution of this system can be expressed in terms of determinants:

$$u_1' = \frac{W_1}{W} = -\frac{y_2 f(x)}{W}$$
 and $u_2' = \frac{W_2}{W} = \frac{y_1 f(x)}{W}$

where

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}, \quad W_1 = \begin{vmatrix} 0 & y_2 \\ f(x) & y_2' \end{vmatrix}, \quad \text{and} \quad W_2 = \begin{vmatrix} y_1 & 0 \\ y_1' & f(x) \end{vmatrix}$$

The functions u_1 and u_2 can then be found simply by integrating the results.

The determinant W is the Wronskian of y_1 and y_2 . As they are linearly independent, $W(y_1(x), y_2(x))$ is never 0 for any x in I.

Summary of the Method

Due to the long-winded nature of the procedure, it is more efficient here to simply memorize the formulas for first- and second-order equations. Solving

$$a_2y'' + a_1y' + a_0y = g(x)$$

the complementary function can be found as

$$y_c = C_1 y_1 + C_2 y_2$$

The Wronskian $(W(y_1(x), y_2(x)))$ can then be computed. Dividing by a_1 , the DE can be put into standard form

$$y'' + P(x)y' + Q(x)y = f(x)$$

to determine f(x). u_1 and u_2 can be as

$$u_1 = -\int \frac{y_1 f(x)}{W} dx$$
 and $u_2 = \int \frac{y_1 f(x)}{W} dx$

A particular solution is then

$$y_p = u_1 y_1 + u_2 y_2$$

The general solution is then

$$y = y_c + y_p = C_1 y_2 + C_2 y_2 + u_1 y_2 + u_2 y_2$$

Higher-Order Equations

The method used for second-order DEs can be generalized to those of order n in standard form

$$y^{(n)} + P_{n-1}(x)y^{(n-1)} + \dots + P_1(x)y' + P_0(x)y = f(x)$$

If

$$y_c = C_1 y_1 + C_2 y_2 + \dots + C_n y_n$$

then a particular solution is

$$y_p = u_1 y_1 + u_2 y_2 + \dots + u_n y_n$$

where u'_k is determined by the equations

$$y_{1}u'_{1} + y_{2}u'_{2} + \cdots + y_{n}u'_{n} = 0$$

$$y'_{1}u'_{1} + y'_{2}u'_{2} + \cdots + y'_{n}u'_{n} = 0$$

$$\vdots$$

$$y_{1}^{(n-1)}u_{1} + y_{2}^{(n-1)}u'_{2} + \cdots + y_{n}^{(n-1)}u'_{n} = 0$$

The first n-1 equations in this system are assumptions made to simplify the resultant equation of substituting y_p into the DE. Cramer's Rule gives

$$u_k' = \frac{W_k}{W}$$

where W is the Wronskian of $y_{1\cdots n}$ and W_k is the determinant obtained by replacing the k^{th} column of the Wronskian with a column comprised of $(0, 0, \dots, f(x))$.

4.7 Cauchy-Euler Equations

Cauchy-Euler Equation

A linear DE of the form

$$a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 x \frac{dy}{dx} + a_0 y = g(x)$$

(where the coefficients $a_{0\cdots n}$ are constants) is a **Cauchy-Euler equation**. The defining characteristic of this type of equation is the fact that the degree of the monomial coefficients x^k match the orders k of differentiation.

It should be noted that the lead coefficient $a_n x^n$ of any Cauchy-Euler equatino is zero at x = 0, so to ensure the existence of a unique solution, the interval $(0, \infty)$ is generally considered.

Method of Solution

Substituting x^m into a Cauchy-Euler equation yields a polynomial in m times x^m , as

$$a_k x^k \frac{\mathrm{d}^k y}{\mathrm{d}x^k} = a_k x^k m(m-1)(m-2) \cdots (m-k+1) x^{m-k} = a_k m(m-1)(m-2) \cdots (m-k+1) x^m$$

Substituting into a second-order equation,

$$ax^{2}\frac{d^{2}y}{dx^{2}} + bx\frac{dy}{dx} + cy = am(m-1)x^{m} + bmx^{m} + cx^{m} = (am(m-1) + bm + c)x^{m}$$

Thus $y = x^m$ is a solution of the DE if m is a solution of the auxiliary equation

$$am(m-1) + bm + c = 0$$
 or $am^2 + (b-a)m + c = 0$

Case I: Distinct Real Roots

Let m_1 and m_2 denote distinct real roots of the auxiliary equation. This implies that $y_1 = x^{m_1}$ and $y_2 = x^{m_2}$ form a fundamental set of solutions, making the general solution

$$y = C_1 x^{m_1} + C_2 x^{m_2}$$

Case II: Repeated Real Roots

If the roots of the auxiliary equation are repeated, then only a single solution $y = x^m$ is obtained. The roots of a quadratic being zero necessitates that the discriminant be 0, meaning that

$$m = -\frac{b-a}{2a}$$

Rewriting the Cauchy-Euler Equation in standard form yields

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{b}{ax} \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{c}{ax^2} y = 0$$

meaning that

$$P(x) = \frac{b}{ax}$$
 and $\int P(x) dx = \frac{b}{a} \ln x$

Thus

$$y_2 = x^m \int \frac{e^{-\frac{b}{a}\ln x}}{x^{2m}} dx = x^m \int \left[x^{-b/a} \times x^{-2m} \right] dx = x^m \int \left[x^{-b/a} \times x^{\frac{b-a}{a}} \right] dx$$
$$= x^m \int \frac{dx}{x} = x^m \ln x$$

The general solution is therefore

$$y = C_1 x^m + C_2 x^m \ln x$$

Case III: Conjugate Complex Roots

If the roots of the auxiliary equation are the conjugate pair $m = \alpha \pm i\beta$ (where α and $\beta > 0$ are real, then a solution is

$$y = C_1 x^{\alpha + i\beta} + C_2 x^{\alpha + i\beta}$$

The positive complex term can be rewritten as

$$x^{i\beta} = e^{i\beta \ln x} = \cos(\beta \ln x) + i\sin(\beta \ln x)$$

The negative complex term can similarly be rewritten as

$$x^{-i\beta} = \cos(\beta \ln x) - i\sin(\beta \ln x)$$

Adding and subtracting these results yield

$$x^{i\beta} + x^{-i\beta} = 2\cos(\beta \ln x)$$
 and $x^{i\beta} - x^{-i\beta} = 2i\sin(\beta \ln x)$

Letting $C_1 = C_2 = 1$ gives

$$y_1 = x^{\alpha} (x^{i\beta} + x^{-i\beta}) = 2x^{\alpha} \cos(\beta \ln x)$$

while letting $C_1 = 1$ and $C_1 = -1$ yields

$$y_2 = x^{\alpha} (x^{i\beta} - x^{-i\beta}) = 2ix^{\alpha} \sin(\beta \ln x)$$

As

$$W(x^{\alpha}\cos(\beta \ln x), x^{\alpha}\sin(\beta \ln x)) = \beta x^{2n-1} \not\equiv 0$$

for $\beta, x \in \mathbb{R}^+$, it can be concluded that

$$y_1 = x^{\alpha} \cos(\beta \ln x)$$
 and $y_2 = x^{\alpha} \sin(\beta \ln x)$

constitute a fundamental set of real solutions. The general solution is therefore

$$y = C_1 x^{\alpha} \cos(\beta \ln x) + C_2 x^{\alpha} \sin(\beta \ln x)$$

4.8 Green's Function

4.8.1 Initial-Value Problems

Three Initial-Value Problems

Consider the second-order IVP

$$y'' + P(x)y' + Q(x)y = f(x), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

The solution y can be expressed as the superposition of two solutions

$$y(x) = y_h(x) + y_p(x)$$

where $y_h(x)$ is the solution of the associated homogenous DE with nonhomogenous initial conditions

$$y'' + P(x)y' + Q(x)y = 0$$
, $y(x_0) = y_0$, $y'(x_0) = y_1$

and y_p is the solution of the nonhomogenous DE with homogenous (0) initial conditions

$$y'' + P(x)y' + Q(x)y = f(x), \quad y(x_0) = 0, \quad y'(x_0) = 0$$

It is assumed that at least one of the numbers y_0 or y_1 is not 0. Otherwise, the $y_h = 0$.

If the coefficients P and Q are constants, y_h can be found without issue using its auxiliary equation. Due the initial conditions being 0, y_p can describe a physical system that is initially at rest, giving it the moniker **rest solution**.

Green's Function

If $y_1(x)$ and $y_2(x)$ form a fundamental set of solutions on I of the associated homogenous form of the IVP, then a particular solution of the nonhomogenous equation on the interval of the form

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$$

can be found on by variation of parameters.

The variable coefficients are defined by

$$u'_1(x) = -\frac{y_1(x)f(x)}{W}, \quad u'_2(x) = \frac{y_1(x)f(x)}{W}$$

The linear independence of y_1 and y_2 on I guarantees that $W(y_1(x), y_2(x)) \neq 0$ for all x in I. If x and x_0 are both in I, the integrating the derivatives on the interval $[x_0, x]$ and substituting the results into y_p yields

$$y_p(x) = -y_1(x) \int_{x_0}^x \frac{y_2(t)f(t)}{W(t)} dt + y_2(x) \int_{x_0}^x \frac{y_1(t)f(t)}{W(t)} dt$$

As $y_1(x)$ and $y_2(x)$ are constant with respect to t,

$$y_p(x) = -\int_{x_0}^x \frac{y_1(x)y_2(t)}{W(t)} f(t) dt + \int_{x_0}^x \frac{y_1(t)y_2(x)}{W(t)} f(t) dt$$

These two integrals can be rewritten as the single integral

$$y_p(x) = \int_{x_0}^x G(x, t) f(t) dt$$

where

$$G(x,t) = \frac{y_1(t)y_2(x) - y_1(x)y_2(t)}{W(t)}$$

is the **Green's function** for the DE.

Note that a Green's function is dependent only on the fundamental solutions y_1 and y_2 of the associated homogenous DE of the IVP and *not* on the forcing function f. Therefore all linear second-order DEs with the same left-hand side but with different forcing functions will have the same Green's function. An alternative title for the Green's function is the **Green's function for** the second-order differential operator $D^2 + P(x)D + Q(x)$.

4.8.2 Boundary Value Problems

A BVP for a second-order DE specifies y and y' at two different points. Conditions for BVPs are special cases of the more general homogenous boundary conditions

$$A_1y(a) + B_1y'(a) = 0$$
 $A_2y(b) + B_2(b) = 0$

where A_1 , A_2 , B_1 , and B_2 are constants. The goal is to find the integral solution $y_p(x)$ for the nonhomogenous BVP of the form

$$y'' + P(x)y' + Q(x)y = f(x)$$

$$A_1y(a) + B_1y'(a) = 0$$

$$A_2y(b) + B_2y'(b) = 0$$

It is assumed that P(x), Q(x), and f(x) are all continuous on [a, b] as well as that the corresponding homogenous BVP has only the trivial solution y = 0. This latter assumption is sufficient to guarantee that a unique solution of the nonhomogenous BVP exists and is given by

$$y_p(x) = \int_a^b G(x, t) \, \mathrm{d}t$$

Another Green's Function

Let $y_1(x)$ and $y_2(x)$ be linearly independent solutions on [a, b] of the associated of the associated homogenous BVP at x be within the interval. These can be integrated over two different intervals:

$$u_1(x) = -\int_b^x \frac{y_2(t)f(t)}{W(t)} dt$$
 $u_2(x) = \int_a^x \frac{y_1(t)f(t)}{W(t)} dt$

A particular solution is then

$$y_p(x) = \int_a^x \frac{y_1(x)y_2(t)}{W(t)} f(t) dt + \int_x^b \frac{y_1(t)y_2(x)}{W(t)} f(t) dt$$

This can be compactly written as

$$y_p(x) = \int_a^b G(x, t) f(t) dt$$

where

$$G(x,t) = \begin{cases} \frac{y_1(t)y_2(x)}{W(t)} & a \le t \le x\\ \frac{y_1(x)y_2(t)}{W(t)} & x \le t \le b \end{cases}$$

This piecewise-defined function is called a **Green's function** for the BVP. It can be proven that this function is continuous on [a, b].

If the solutions y_1 and y_2 are chosen such that at, x = a

$$A_1y_1(a) + B_1y_1'(a) = 0$$
 and $A_2y_2(b) + B_2y_2'(b) = 0$

then y_p satisfies both homogenous boundary conditions.

4.9 Solving Systems of DEs by Elimination

Systematic Elimination

A linear equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = g(t)$$

where a_i are constants can be written as

$$(a_n D^n + a_{n-1} D^{n-1} + \dots + a_1 D + a_0) y = g(t)$$

If the n^{th} -order differential operator factors into several of lower order, the factors commute

Solution of a System

A **solution** of a system of DEs is a set of sufficiently differentiable functions $x = \varphi_1(t)$, $y = \varphi_2(t)$, $z = \varphi_3(t)$, and so on, that satisfies each equation in the system on some interval I.

Method of Solution

Linear DEs can be rewritten using differential operators. Differential operators can then be used on each equation to get them to eliminate each other through addition or subtraction.

4.10 Nonlinear Differential Equations

Some Differences

Nonlinear DEs do not possess the property of superposability. Nonlinear DEs may possess singular solutions, unlike linear DEs.

Reduction of Order

The nonlinear second-order DEs F(x, y', y'') = 0, where the dependent variable y is absent, and F(y, y', y'') = 0, where the independent variable x is missing, can be reduced to first-order equations by the substitution u = y'.

Dependent Variable Missing

If u = y', then

$$F(x, y', y'') = 0 \implies F(x, u, u') = 0$$

If this equation is solved for u, then y can be found by means of integration. As a second-order equation is being solved, the solution will contain two constants.

Independent Variable Missing

If x is missing, then the DE must be transformed so that x becomes the dependent variable and y the independent. Letting u = y',

$$y'' = \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}u}{\mathrm{d}y}$$

SO

$$F(y, y', y'') = 0 \implies F\left(y, u, u \frac{\mathrm{d}u}{\mathrm{d}y}\right) = 0$$

Use of a Numerical Solver

To analyze an n^{th} -order IVP numerically, the n^{th} -order DE if first expressed as a system of n first-order equations. A second-order IVP must first be put into normal form y'' = f(x, y, y'). Letting u = y',

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = u_0$$

then y'' = u' and $y'(x_0) = u(x_0)$, so the IVP becomes

$$\begin{cases} y' = u \\ u' = f(x, y, u) \end{cases}$$
 subject to $y(x_0) = y_0, \quad u(x_0) = y'_0$

Chapter 5

Modeling with Higher-Order Differential Equations

5.1 Linear Models: Initial-Value Problems

5.1.1 Spring/Mass Systems: Free Undampened Motion

Hooke's Law

Suppose a rigid body of is attached to a flexible spring. The spring force F_s is proportional to the displacement s of the body from its equilibrium position and is in the direction of equilibrium; that is

$$F_s = -ks$$

Newton's Second Law

Newton's second law of motion states that

$$F_{\text{net}} = ma$$

where m is mass and a is acceleration or d^2x/dt^2 .

If the mass on a spring vibrates without regard to any external forces, having **free motion**, and the mass is hanging vertically from the spring, then Newton's second law gives

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \overbrace{-(x+s) + mg}^{F_{\mathrm{net}}} = -kx + \overbrace{mg - ks}^{0} = -kx$$

where s is the equilibrium position (where ks = mg) and x is the displacement from equilibrium.

DE of Free Undampened Motion

Dividing by m yields the second-order DE

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega^2 x = 0$$

where $\omega^2 = k/m$. This equation is said to describe **simple harmonic motion (SHM)** or **free undampened motion**.

Equation of Motion

The auxiliary equation of the SHM DE is

$$m^2 + \omega^2 = 0$$

so the solutions are

$$m = \pm i\omega$$

making the general solution

$$x(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t)$$

The **period** of motion T (in s), the amount of time it takes for a full oscillation to occur, is

$$T = \frac{2\pi}{\omega}$$

The **frequency** of motion f (in s⁻¹ or hz) is

$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$

The number

$$\omega = \sqrt{\frac{k}{x}}$$

(in rad/s) and f are both sometimes referred to as the **natural frequency** of the system. The equation derived by solving for the constants of the general solution is the **equation of motion** of the system.

Alternative Forms of x(t)

When $C_1, C_2 \neq 0$, the **actual amplitude** A of free vibrations is not immediately obvious, so it is often convenient to convert the equation of SHM to the simpler form

$$x(t) = A\sin(\omega t + \varphi)$$

where

$$A = \sqrt{C_1^2 + C_2^2}$$

and φ is a **phase angle** defined by

$$\sin \varphi = \frac{C_1}{A} \\
\cos \varphi = \frac{C_2}{A} \\$$

$$\tan \varphi = \frac{C_1}{C_2} \\$$

A cosine function is sometimes preferred, making the solution

$$x(t) = A\cos(\omega t + \varphi)$$

where φ is defined by

$$\sin \varphi = \frac{C_2}{A} \\
\cos \varphi = \frac{C_1}{A} \\
\tan \varphi = \frac{C_2}{C_1}$$

Double Spring Systems

The effective spring constant k_{eff} of a system with two parallel springs with spring constants k_1 and k_2 is

$$k_{\text{eff}} = k_1 + k_2$$

That of a system with two series springs is

$$k_{\text{eff}} = \frac{k_1 k_2}{k_1 + k_2}$$

Systems with Variable Spring Constants

In reality, it is reasonable to expect the spring constant to decay over time. One model for the **aging spring** replaces the spring constant k with the decreasing function

$$K(t) = ke^{-\alpha t}$$

where k and α are positive constants. The linear DE

$$mx'' + ke^{-\alpha t}x = 0$$

cannot be solved with the methods discussed thus far.

When a spring/mass system is subject to a rapidly decreasing temperature, k may be replaced with K(t) = kt where k is a positive constant, a function that increases with time. The resulting model

$$mx'' + ktx = 0$$

is a form of Airy's differential equation.

5.1.2 Spring/Mass Systems: Free Dampened Motion

DE of Free Dampened Motion

Damping forces