J. Scherer **Série 7**

le 6 avril 2022

Exercice 1. Identifier les pushouts de groupes suivants :

1.
$$\mathbb{Z} \leftarrow 0 \rightarrow \mathbb{Z}$$

4.
$$\mathbb{Z} \stackrel{id}{\leftarrow} \mathbb{Z} \stackrel{\cdot n}{\rightarrow} \mathbb{Z}$$

2.
$$\mathbb{Z} \stackrel{id}{\longleftarrow} \mathbb{Z} \stackrel{id}{\longrightarrow} \mathbb{Z}$$

5.
$$\mathbb{Z} \stackrel{\cdot 2}{\leftarrow} \mathbb{Z} \stackrel{\cdot 3}{\rightarrow} \mathbb{Z}$$

3.
$$0 \leftarrow \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z}$$

6.
$$F(n) \leftarrow 1 \rightarrow F(m)$$

- 7. $\mathbb{Z}/2 \xleftarrow{p} \mathbb{Z} \xrightarrow{q} \mathbb{Z}/3$ où p et q sont les réductions modulo 2 et 3
- 8. $\mathbb{Z}/2 \stackrel{p}{\leftarrow} \mathbb{Z} \stackrel{q}{\rightarrow} \mathbb{Z}/4$ où p et q sont les réductions modulo 2 et 4
- 9. $1 \leftarrow F(a) \xrightarrow{xy} F(x,y)$ où l'application xy envoie le générateur a sur xy
- 10. $1 \leftarrow F(a) \xrightarrow{x^2y} F(x,y)$ où l'application x^2y est déterminée par le fait que l'image de a est x^2y
- 11. $1 \leftarrow F(a) \xrightarrow{x^2y^2} F(x,y)$ où l'application x^2y^2 envoie $a \operatorname{sur} x^2y^2$
- 12. Montrer que ce dernier groupe n'est pas isomorphe à \mathbb{Z} en exhibant un homomorphisme surjectif sur $C_2 \times C_2$.

Remarque. Un amalgame célèbre est $C_4 *_{C_2} C_6$, un groupe isomorphe à $SL_2(\mathbb{Z})$. Un homomorphisme entre ces deux groupes est construit en considérant les matrices $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$.

Exercice 2. Propriété universelle de l'abélianisation. Montrer que l'homomorphisme quotient $\varepsilon \colon G \to G_{ab}$ a la propriété suivante. Pout tout groupe abélien A et tout homomorphisme de groupes $\varphi \colon G \to A$, il existe un unique homomorphisme de groupes abéliens $f \colon G_{ab} \to A$ tel que $f \circ \varepsilon = \varphi$.

Remarque. Ceci signifie en fait la chose suivante. Ecrivons $\mathcal{O}(A)$ pour le groupe abélien vu comme groupe (on *oublie* le fait que A est abélien). On a alors une bijection $\text{Hom}(G, \mathcal{O}(A)) \cong \text{Hom}(G_{ab}, A)$. Ainsi l'abélianisation est un adjoint à droite de l'oubli. L'application quotient ε correspond à l'identité de G_{ab} dans cette correspondance et on l'appelle *co-augmentation*.

Exercice 3. Composition de carrés commutatifs. On considère le diagramme suivant d'espaces (topologiques) et d'applications (continues) :

$$\begin{array}{ccc}
A & \xrightarrow{f} & A' & \xrightarrow{f'} & A'' \\
\downarrow^{g} & & \downarrow^{g'} & & \downarrow^{g''} \\
B & \xrightarrow{h} & B' & \xrightarrow{h'} & B''
\end{array}$$

- 1. Montrer que si les carrés de gauche et de droite sont commutatifs, i.e. $g' \circ f = h \circ g$ et $g'' \circ f' = h' \circ g'$, alors le grand rectangle est aussi commutatif.
- 2. Et si le grand rectangle et l'un des deux carrés est commutatif, est-ce que le second carré est commutatif?
- 3. Montrer que si les carrés de gauche et de droite sont commutatifs à homotopie près, i.e. $g' \circ f \simeq h \circ g$ et $g'' \circ f' \simeq h' \circ g'$, alors le grand rectangle est aussi commutatif à homotopie près.

Exercice 4. Composition de pushouts. On considère le diagramme suivant de groupes et d'homomorphismes :

$$G \xrightarrow{f} G' \xrightarrow{f'} G''$$

$$\downarrow^{g} \qquad \downarrow^{g'} \qquad \downarrow^{g''}$$

$$H \xrightarrow{h} H' \xrightarrow{h'} H''$$

- 1. Montrer que si les carrés de gauche et de droite sont des pushouts, alors le grand rectangle est aussi un pushout. On aura avantage à utiliser la propriété universelle.
- 2. Et si le grand rectangle et le carré de gauche sont des pushouts, est-ce que le carré de droite est un pushout?
- 3. Et si le grand rectangle et le carré de droite sont des pushouts, est-ce que le carré de gauche est un pushout?

Exercice 5. L'argument de Eckmann-Hilton. Soit G un groupe topologique et $m: G \times G \to G$ la multiplication. On étudie dans cet exercice le groupe fondamental de G (pour le point de base donné par l'élément neutre 1_G). On définit une loi de composition \bullet sur $\pi_1 G$. Soient $f, g: S^1 \to G$ deux lacets. Le lacet $f \bullet g$ est défini par $(f \bullet g)(t) = m[f(t), g(t)]$.

- 1. Montrer que \bullet définit bien une loi de composition sur $\pi_1 G$, c'est-à-dire que $[f \bullet g]$ ne dépend pas du choix des représentants des lacets f et g.
- 2. Montrer que les lois \star et \bullet vérifient la loi d'échange : $(a \star b) \bullet (c \star d) = (a \bullet c) \star (b \bullet d)$.
- 3. Calculer $(a \star 1) \bullet (1 \star b)$ et $(1 \star a) \bullet (b \star 1)$ pour conclure que $\bullet = \star$ et que cette multiplication est commutative.
- 4. Conclure que $\pi_1 G$ est un groupe commutatif.

On revient maintenant à une comparaison plus pédestre des deux lois \star et \bullet .

- 5. Soit (X, x_0) un espace pointé. Montrer qu'il existe une application injective (et continue) $X \vee X \hookrightarrow X \times X$ qui identifie le wedge comme un sous-espace du produit.
- 6. Montrer que la composition $S^1 \xrightarrow{pinch} S^1 \vee S^1 \hookrightarrow S^1 \times S^1$ est homotope à la diagonale. On pourra construire l'homotopie dans le modèle du tore donné par un quotient de $I \times I$.
- 7. Montrer par un argument de diagramme (commutatif à homotopie près) que la loi \bullet coïncide avec la concaténation \star dans π_1G .

Exercice 6. Soit $f: F(a,b) \to F(x,y)$ l'homomorphisme de groupes (entre deux groupes libres à deux générateurs) défini par $f(a) = xy^2x^{-1}y^{-2}$ et $f(b) = x^4y^{-3}$. On cherche à identifier le pushout G du diagramme $\{1\} \leftarrow F(a,b) \xrightarrow{f} F(x,y)$.

- (a) Donner une présentation du groupe G.
- (b) Montrer que G est abélien (on pourra montrer que la classe de x commute avec celles de y^2 et y^3 dans G).
- (c) Montrer que l'image de $x^{-1}y$ dans le pushout G est un générateur de G (exprimer dans G l'image de x en fonction de celle de $x^{-1}y$).
- (d) Identifier G avec un groupe libre F(z) à un générateur, en donnant en particulier les homomorphismes qui permettent de compléter le diagramme de pushout ci-dessus en un carré commutatif.

L'exercice 6 est à rendre le mercredi 13 avril.