Análise de dados medidos em um filamento de tungstênio

Aluno: Átila Leites Romero Matrícula: 144679 IF-UFRGS

22 de abril de 2012

Resumo

Este trabalho apresenta uma verificação experimental da teoria de radiação de corpo negro, utilizando uma montagem onde foi medida a radiação emitida por uma lâmpada de tungstênio em função da potência elétrica fornecida.

1 Introdução

Segundo a lei de Stefan-Boltzmann,

$$R_{(T)} = \sigma T^4$$

onde R é a potência total irradiada, σ é uma constante e T é a temperatura do corpo negro.

Mas a emissividade de corpos reais é menor que a emissividade de um corpo negro ideal. Por isso, para corpos reais, a equação é reescrita como

$$R_{(T)} = \epsilon(T)\sigma T^4$$

onde ϵ é um número menor que 1 e representa a emissividade do corpo.

Em outra experiência, foi verificado que as expressões

$$r = r_0 + r_1(T - T_0) + r_2(T - T_0)^2$$

е

$$r = r_0 (\frac{T}{T_0})^{\gamma}$$

fornecem uma boa aproximação para a relação entre resistência e temperatura do filamento de tungstênio.

A potência total dissipada por efeito Joule pode ser descrita por

$$P = VI$$

Assumindo que a energia dissipada por condução e convecção varie lineramente com a temperatura, pode-se afirmar que

$$P_D = D(T - T_0)$$

Já a potência dissipada por radiação pode ser descrita pela lei de Stefan-Boltzmann, logo

$$P = D(T - T_0) + S(T - T_0)^4$$

onde

 $S = \sigma A 4\pi\epsilon$

Como σ é muito pequeno, para baixas temperaturas a dissipação por condução e convecção prevalece e, por isso,

$$P \simeq D(T - T_0)$$

e

$$(T-T_0)\simeq \frac{P}{D}$$

o que leva a

$$r = r_0 + r_1 \frac{P}{D} + r_2 (\frac{P}{D})^2$$

Para altas temperaturas, a potência irradiada passa a prevalecer, já que cresce muito mais rápido que a potência dissipada por difusão térmica. Neste caso,

$$P \simeq S(T - T_0)$$

e, como

$$T >> T_0$$

,

$$T^4 \simeq \frac{P}{S}$$

o que leva a

$$r = r_0 \frac{1}{T_0^{\gamma}} \left(\frac{P}{S}\right)^{\frac{\gamma}{4}}$$

2 Procedimento experimental

Uma lâmpada de tungstênio com 20W de potência nominal foi ligada a uma fonte regulável. Um sensor fotoelétrico foi instalado em frente à lâmpada e ligado a um amplificador de tensão.

Foram aplicadas diferentes tensões à lâmpada. Em cada etapa, eram medidas a corrente na lâmpada e a tensão de saída no sensor fotoelétrico, já amplificada. Assumiu-se que a luminância detectada seria proprocional a esta tensão de saída, mesmo sendo desconhecido o valor exato desta proporção.

3 Análise dos dados

Para cada medida, a resistência da lâmpada pode ser calculada através da lei de Ohm:

$$r = V/I$$

onde r é a resistência, V a voltagem e I a corrente aplicada à lâmpada.

Para voltagens baixas, como não há emissão luminosa detectável, a potência dissipada é constituída predominantemente pela difusão térmica. É esperado um comportamento linear entre a resistência elétrica do tungstênio e a potência dissipada, descrito por

$$r = r_0 + r_1 \frac{P}{D} + r_2 (\frac{P}{D})^2$$

A potência dissipada por difusão térmica pela lâmpada é calculada através da lei de Joule P=VI.

Os valores para $r_0,\ r_1$ e r_2 podem ser calculados utilizando regressão polinomial.

Para voltagens mais elevadas, a potência irradiada deve prevalecer, e é esperado um crescimento geométrico da potência irradiada em relação à resistência, descrito por

$$r = r_0 \frac{1}{T_0^{\gamma}} \left(\frac{P}{S}\right)^{\frac{\gamma}{4}}$$

Neste caso a potência dissipada é obtida a partir dos dados da luminosidade captada pelo sensor fotoelétrico.

Rearranjando os termos para isolar as constantes, temos:

$$r = r_0 (\frac{1}{T_0 S^{\frac{1}{4}}} P^{\frac{1}{4}})^{\gamma}$$

E usando logaritmos:

$$ln(r) = ln(r_0)\gamma \left[ln(\frac{1}{T_0 S^{\frac{1}{4}}}) + ln(P^{\frac{1}{4}})\right]$$
$$ln(r) = ln(r_0)\gamma ln(\frac{1}{T_0 S^{\frac{1}{4}}}) + \frac{ln(r_0)\gamma}{4}ln(P)$$
$$ln(r) = A + Bln(P)$$

onde

$$A = ln(r_0)\gamma ln(\frac{1}{T_0S^{\frac{1}{4}}}); B = \frac{ln(r_0)\gamma}{4}$$

Os valores para $ln(r_0)\gamma ln(\frac{1}{T_0S^{\frac{1}{4}}})$ e $\frac{ln(r_0)\gamma}{4}$ podem ser calculados utilizando regressão linear.

4 Resultados

No primeiro conjunto de dados, listado na tabela 1, não houve detecção de radiação luminosa até a voltagem de 1,1 volts. Ou seja, até 1,1 volts, prevaleceu a difusão térmica. Os valores calculados por regressão polinomial foram:

$$r_0 = 0,814842606; \frac{r_1}{D} = 3,820952313; \frac{r_2}{D^2} = -1,882676093$$

Na faixa de voltagens acima de 2 volts, foi notado um grande aumento da potência dissipada, correspondente à dissipação por irradiação.

Os valores calculados por regressão linear foram:

$$ln(r_0)\gamma ln(\frac{1}{T_0S^{\frac{1}{4}}}) = 0,296281006$$
$$\frac{ln(r_0)\gamma}{4} = 1,0814939775$$

5 Discussão

Na figura 1, a regressão poninomial obtida utilizando valores de até 1,1volts é exibida. Também é mostrado como seria o resultado nesta faixa caso todo o conjunto de dados fosse utilizado.

Na figura 2, a regressão polinomial calculada usando o conjunto de dados completo é mostrada para toda a faixa de valores medidos, para mostrar que não é uma boa aproximação.

Na figura 3, a regressão linear obtida utilizando os valores medidos a partir de 2 volts é exibida.

Para mostrar que a utilização de toda a faixa de valores não fornece uma boa aproximação, na figura 4 é mostrado como ficaria a interpolação de dados se calculada desta forma.

Conclusões 6

Referências

V(V)	I(A)	L	R(Ohm)	P(W)
0,11	0,12	5,7	0,92	0,01
0,21	0,22	5,8	0,95	0,05
0,30	0,27	5,9	1,11	0,08
0,41	0,33	5,6	1,24	$0,\!14$
0,50	0,35	6,0	1,43	0,18
0,61	0,38	5,5	1,61	$0,\!23$
0,70	0,40	6,0	1,75	0,28
0,80	0,42	6,1	1,90	0,34
0,90	0,44	5,1	2,05	0,40
1,00	0,46	6,0	2,17	0,46
1,10	0,48	6,0	2,29	0,53
1,20	0,50	6,6	2,40	0,60
1,29	0,52	6,9	2,48	$0,\!67$
1,41	0,54	7,6	2,61	0,76
1,50	0,55	8,7	2,73	0,83
1,60	0,57	9,9	2,81	0,91
1,68	0,59	11,4	2,85	0,99
1,79	0,60	13,5	2,98	1,07
1,88	0,62	15,7	3,03	1,17
2,01	0,64	19,4	3,14	1,29
2,53	0,72	44,7	3,51	1,82
2,99	0,79	84,8	3,78	2,36
3,46	0,85	146,2	4,07	2,94
4,01	0,92	246,5	4,36	3,69
4,55	0,98	370,8	4,64	4,46
5,00	1,04	504	4,81	5,20
5,53	1,09	689	5,07	6,03
6,05	1,15	895	5,26	6,96
7,02	1,25	1373	5,62	8,78
8,01	1,34	1956	5,98	10,73
9,00	1,43	2613	6,29	12,87
10,05	1,52	3428	6,61	15,28
11,02	1,60	4230	6,89	17,63
12,08	1,69	5200	7,15	20,42
13,04	1,76	6120	7,41	22,95

Tabela 1: Primeiro conjunto de medidas.

Figura 3: Regressão linar para os logaritmos dos valores medidos a partir de

2 volts.

Figura 4: Regressão linar para os logaritmos dos valores medidos, usando

to<u>da a faixa de valores.</u>

