

Convolutional Neural Networks and Visual Computing 17.10.2019

Alexander Pacha

### Recap

- 3 Parts required for Machine Learning?
- What is a Gradient?
- What is Gradient Descent and what does Backpropagation have to do with it?



# Recap - Biological Neuron



Source: <a href="http://cs231n.github.io/neural-networks-1/">http://cs231n.github.io/neural-networks-1/</a>

### Recap - Artificial Neuron



# Recap - Neural Network



#### How to wire the Neural Network?

#### Multilayer Perceptrons

- One input layer, one output layer, a number of hidden layers
- Neurons in layer L are connected to all neurons in layer L-1
- Such layers are called fully-connected or dense layers



### Can MLPs be used for images?

#### Starting with simple two-layer MLP:

- One stage learns to extract features
- Final stage trains a linear classifier on these features
- → Way too hard!

#### How about adding more layers?

- Number of parameters increase quickly with number of layers and image size:
  - o 128x128 RGB image, 500 hidden neurons = 25 million parameters
  - o 224x224 RGB image, 500 hidden neurons = 75 million parameters
- Usually no improvements as depth exceeds 3
- No understanding of images





We need an understanding of images (a proper representation)

# How to get a good representation?



# Meaningful Representation



Source: <a href="http://www.deeplearningbook.org/">http://www.deeplearningbook.org/</a>

# Convolutional Layer

- Using fully connected layers for images not efficient
- Spatially close pixels are highly correlated, others are not

#### Solution:

Arrange hidden layer neurons in a grid with only sparse connectivity



Source: <a href="https://github.com/cpra/dlvc2016">https://github.com/cpra/dlvc2016</a>

### Convolutional Layer

- Weights are now matrices
- Every neuron learns to extract features in local neighborhood
- Every neuron learns different features
  - Usually a feature is useful anywhere in an image
  - o Enforced by parameter sharing between neurons: Same parameters for all neurons in layer
- With parameter sharing, every layer can learn only single feature
  - So we replicate neurons D times (new hyperparameter)
  - Each depth slice is called feature map
  - Only neurons in the same feature map share weights



#### Convolutions in Code

https://colab.research.google.com/drive/1tPUopI0KUsd12ikGKzIOeAgd46r-uTkD



#### **Convolutional Parameters**

#### https://github.com/vdumoulin/conv\_arithmetic



### Receptive field

- Although neurons are only connected to a local neighborhood, higher layers can "see" the entire image.
- Early layers learn more local features, later layers learn more global features



Source: <a href="http://www.deeplearningbook.org/">http://www.deeplearningbook.org/</a>

# Pooling

- Reduction of spatial resolution (but not depth) of input
- Goal: Reduce number of parameters and computations



Source: <a href="https://github.com/cpra/dlvc2016">https://github.com/cpra/dlvc2016</a>

# Max-Pooling, Avg-Pooling



Sidenote: Convolutions with strides can be an alternative to Pooling Layers

Source: <a href="http://cs231n.github.io">http://cs231n.github.io</a>

# Activation Functions for Output Units

Identity for regression



Softmax for classification



#### Softmax

Cross-entropy is dissimilarity between two probability distributions p and q

$$H(p,q) = -\Sigma_x (p(x) \log q(x))$$
 with  $p \sim w_s$ , encoding the true class distribution  $q \sim w$ , encoding the predicted class distribution

Using one-hot encoding to obtain  $\mathbf{w}_{_{\mathrm{S}}}$  from single label  $\mathbf{w}_{_{\mathrm{S}}}$ 

Number of classes T = 4

$$W_{s} = 3 \longrightarrow W_{s} = \boxed{\begin{array}{c} 0 \\ 1 \\ 0 \end{array}}$$

0

$$W_{s}=1 \longrightarrow W_{s}= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

#### Softmax

Predictions w are not valid probability distributions

- Values are unbounded
- Sum of all outputs generally does not sum to 1

#### Solution:

- Have T output neurons
- Regard their output w as unnormalized log probabilities
- Use softmax function for normalization

$$softmax_{k}(\mathbf{w}) = \frac{exp(\mathbf{w}_{k})}{\Sigma_{t=1}^{T} exp(\mathbf{w}_{t})} \qquad softmax(\begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}) \approx (\begin{pmatrix} 0.016 \\ 0.867 \\ 0.117 \end{pmatrix})$$

# Network Architectures

#### **Network Architectures**

#### Main layer types:

- Convolutional (conv)
- Pooling (pool)
- Fully-Connected (fc)

Body / Frontend: conv + pool for feature extraction

Head / Backend: fc for classification/regression

### Simple Architecture

Simple MNIST Handwritten Digits Classification:

https://colab.research.google.com/drive/1tPUopI0KUsd12ikGKzIOeAgd46r-uTkD





#### **VGGNet**

#### Homogeneous architecture

- 3x3 convolutions
- 2x2 max-pooling between blocks
- Depth usually doubled after pooling



### Alternative Building Blocks

#### Inception Module

Learns feature at multiple scales



Source [2]

#### Residual Module

 Shortcut (skip) connection ease learning by providing guidance



Source [4]

# Flattening and Global Average Pooling

How to get from 2D features to 1D output, e.g., for classification?

#### Flatten

- Simple and effective way
- Drops spatial relationship

#### Global Average Pooling

- Reducing h\*w\*d vector to 1\*1\*d
  by taking average of all h\*w
- Preserves spatial relationship
- Last layer before pooling with
  T feature maps



### Inception

- Aggressive size reduction in the first few layers
- Global Average Pooling instead of flattening



#### ResNet

- Aggressive size reduction in the first few layers
- Size reduction with strided convolutions instead of pooling



# Special forms of convolutions

- Dilated Convolutions
- Deformable Convolutions
- Many more...





Source [3]







#### Considerations

- How many layers should I use?
  - It depends
  - Adding more layers might not bring any benefit
- What hyperparameters should I use?
  - Grid search / Random Search / Evolutionary Search
- What image resolution?
  - Start small and see if increasing size helps
- Which architecture is the best?
  - Playground of current research → Read papers
  - Neural Architecture Search → Automatic selection of architecture [6, 7]
    - Try it: <a href="https://colab.research.google.com/drive/1MWUnkklG4QYpzQLFf8vjBizt0mR-YBJE">https://colab.research.google.com/drive/1MWUnkklG4QYpzQLFf8vjBizt0mR-YBJE</a>

# **Applications**

# Real-Time Object Detection with YOLO



# Typical Computer Vision Tasks



Source: <a href="http://cs231n.github.io">http://cs231n.github.io</a>

### CNNs for Image Classification

- Backend: Conv + Pool
- Frontend: FC or Global Avg Pool + Softmax



### **CNNs** for Image Localization

- Backend: Conv + Pool
- Frontend:
  - One head for classification
  - One head for bounding box regression



# **CNNs** for Object Detection

Naive: Sliding Window



Source: <a href="https://github.com/cpra/dlvc2016">https://github.com/cpra/dlvc2016</a>

# CNNs for Object Detection: Faster R-CNN

#### Two stages:

- Region proposal
- Proposal classification + refinement

#### R-CNN

External mechanism for proposal generation

#### Fast R-CNN

Learnt proposals, two networks

#### Faster R-CNN

Shared backbone for both stages



# CNNs for Semantic Segmentation

- Fully convolutional network
- Classify each pixel into T classes
  - Downsample part
  - Upsample part





# Unpooling and Deconvolution



### CNNs for Instance Segmentation: Mask R-CNN

Faster R-CNN + Additional head for instance segmentation



# Many recent advances

#### https://github.com/open-mmlab/mmdetection

|                     | ResNet   | ResNeXt  | SENet | VGG      | HRNet    |
|---------------------|----------|----------|-------|----------|----------|
| RPN                 | ✓        | ✓        |       | X        | ✓        |
| Fast R-CNN          | ✓        | ✓        |       | X        | 1        |
| Faster R-CNN        | ✓        | ✓        |       | X        | 1        |
| Mask R-CNN          | ✓        | ✓        |       | X        | ✓        |
| Cascade R-CNN       | ✓        | ✓        |       | X        | ✓        |
| Cascade Mask R-CNN  | ✓        | ✓        |       | X        | ✓        |
| SSD                 | X        | ×        | X     | <b>✓</b> | X        |
| RetinaNet           | ✓        | ✓        |       | X        | ✓        |
| GHM                 | ✓        | ✓        |       | X        | 1        |
| Mask Scoring R-CNN  | <b>√</b> | ✓        |       | X        | 1        |
| FCOS                | ✓        | ✓        |       | X        | 1        |
| Double-Head R-CNN   | ✓        | ✓        |       | X        | <b>√</b> |
| Grid R-CNN (Plus)   | <b>√</b> | <b>√</b> |       | X        | 1        |
| Hybrid Task Cascade | ✓        | ✓        |       | X        | <b>√</b> |
| Libra R-CNN         | ✓        | ✓        |       | X        | ✓        |
| Guided Anchoring    | ✓        | ✓        |       | Х        | <b>√</b> |

### Summary

- We need good representations and abstractions
  - Ideally learnt from the data
- CNNs connect local neighborhood
  - Nearby pixels are highly correlated
- Pooling can reduce spatial resolution
- Many ideas how to construct better networks
- Different applications achieved by constructing alternative head and clever wiring of the individual layers
- Field moves very quickly
  - Hard to assess the quality of new proposals
  - Time will probably tell

#### Literature

- 1. A guide to convolutional arithmetic for deep learning: <a href="https://arxiv.org/abs/1603.07285">https://arxiv.org/abs/1603.07285</a>
- 2. Going deeper with convolutions: <a href="https://arxiv.org/abs/1409.4842">https://arxiv.org/abs/1409.4842</a>
- 3. Deformable Convolutions: <a href="https://arxiv.org/abs/1703.06211">https://arxiv.org/abs/1703.06211</a>
- 4. Deep Residual Networks: <a href="https://arxiv.org/abs/1512.03385">https://arxiv.org/abs/1512.03385</a>
- 5. Global Average Pooling: <a href="https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/">https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/</a>
- 6. Neural Architecture Search: <a href="https://arxiv.org/abs/1707.07012">https://arxiv.org/abs/1707.07012</a>
- 7. AutoKeras: <a href="https://github.com/keras-team/autokeras">https://github.com/keras-team/autokeras</a>
- 8. Faster R-CNN: <a href="https://arxiv.org/abs/1506.01497">https://arxiv.org/abs/1506.01497</a>
- 9. Semantic Segmentation using Fully Convolutional Neural Networks: <a href="https://arxiv.org/abs/1505.04366">https://arxiv.org/abs/1505.04366</a>
- 10. Mask R-CNN: <a href="https://arxiv.org/abs/1703.06870">https://arxiv.org/abs/1703.06870</a>

#### Icon credits

#### Free icons from Flaticon:

- https://www.flaticon.com/free-icon/asking\_900415
- https://www.flaticon.com/free-icon/big-data\_1554222
- https://www.flaticon.com/free-icon/dimmer\_1833516
- https://www.flaticon.com/free-icon/energy-class\_1833531
- https://www.flaticon.com/free-icon/crane\_222566
- https://www.flaticon.com/free-icon/new\_179452
- https://www.flaticon.com/free-icon/code\_1383431