total grade: 4.9/6 Q. 1 of Contingency Table: [0.8/1.0] Rescued Not Rescued Total First Class 135 202 337 Second Class 160 125 285 180 Third Class 541 721 211 Staff 674 885 Total 718 1510 2228 b) Conditional Relative Frequency distribution Rescued Not Rescued First (lass 135 = 0-4006 202 = 0.5994 337 337 SPEE Second Class 125 = 0.4385 160 = 0.5614 38\$5 285 Thi 541 =0.7503 Third Class 180 = 0.2496 721 721 674 = 0.7615211 = 0.2384Staff 885 885 These seems to be a higher percentage of oescues in lower-class passengers. Formula for: Eij= (Row Total x (olum Total) / Grand Total. c) Not Rescued Regued First (lass 108.6023 228.398 193.1553 91.8447 Second Class 488.649 232.35/0 Third Class 599.798 285.2020 Staff

c. 6911 Cromer's V $V = \sqrt{\chi^2}$ $\sqrt{n \times min(x-1),(c-1)}$ $\chi^2 = (135 - 228 \cdot 398)^2 + (202 - 108 \cdot 6023)^2 + ... + (718 - 285 \cdot 2020)^2$ £2 228.398 108.6023 285.2020 = 38.1929 + 80.3218+ 5.6911 + 11.9688 + 5.6086 + 11.7952 + 9.1797 + 19.3054 $\chi^2 = 201.3689 \times \text{minor computational error}$ $V = \begin{cases} 201.3689 = 201.3689 = 0.3006 \\ 2228 \times min(3,1) \end{cases} = \begin{cases} 201.3689 = 0.3006 \end{cases}$ Which means association between variables X="Travel class" of Y="Rescue status") is moderate (or not stoong.) d) According to (a) of (x) it seems that being in a certain class may have influenced the likelihood of being rescued.

۲4		റ	11	2
ш	٠.	U	/	

Q.3

a7

The population mean (first moment) is 1

first sample mean of the genometric distribution is,

Get up the equation we equate sample moment to their corresponding population moment.

-: 1 \(\frac{1}{2} \times \times \)

Pmom = 1

5] Jensen in equality: $f(E(x)) \leq E[f(x)]$

The Jensen's inequality for f(x) = 1 is ... strict convex function

 $\frac{1}{E[X]} \leq E[1]$

 $\frac{1}{y_p} \leq \frac{1}{x_p}$

P = E [1 x)

Pmom = 1 i.e pmom is an biased

X estimator for p due to strict

c)
$$P(x=k) = (1-p)^{k-1} \cdot p$$
 ... PMF of Greenetzic distribute

$$l(p) = ITi_{i=1}^{n} P(x_i = x_i) = Ti_{i=1}^{n} (1-p)^{x_i-1} \cdot p$$

$$log-liklihood function is :-$$

$$l(p) = ITi_{i=1}^{n} P(x_i = x_i) = Ti_{i=1}^{n} (1-p)^{x_i-1} \cdot p$$

let's find derivative
$$d(\log L(p)) = d(n \log(p) + \frac{2}{2}(\pi i - 1) \log(1-p))$$

$$dp$$

$$= n - \frac{2}{2} \pi i - 1$$

$$P = \frac{1}{2} + \frac{1}{2} - P$$

$$sctting derivative zero$$

$$n - \frac{2}{2} \pi i - 1 = 0$$

$$P = \frac{1}{2} \pi i - 1$$

$$P = \frac{1}{2} \pi i - 1$$

$$P = \frac{1}{2} \pi i - 1$$

$$\frac{1}{p} = \frac{1}{n} \cdot \frac{\hat{z}}{1-p}$$

$$\frac{1}{P} = \frac{12 \cdot 2i - 1}{n(1-P)}$$

$$n(1-P) = P \cdot 2(ni-1)$$

$$n - np =$$

$$n = p$$

$$n = p \in \mathcal{A}$$

$$P = p = 0$$

$$n - nP = P \stackrel{\Sigma}{=} \chi_i - p \stackrel{\Sigma}{=} 1$$

$$n = p \stackrel{\Sigma}{=} \chi_i - Pn + np$$

An=P.Exi

n = 15

Exi=2+12+ +4+1+1

= 47

biased.

```
#FOS_HW9_Q3_e
# Given dataset
data <- c(2, 12, 2, 2, 2, 1, 2, 9, 1, 2, 4, 4, 1, 1)

# Log-likelihood function for geometric distribution
log_likelihood <- function(p) {
    sum(log(p) + (data - 1) * log(1 - p))
}

# Numerical optimization to find maximum likelihood estimator
initial_guess <- 0.3191
result <- optim(initial_guess, log_likelihood, method = "Brent", lower = 0, upper = 1)

# Maximum likelihood estimator
p_ML <- result$par
print(p_ML)</pre>
```

[1] 🔀

R Notebook

```
2 - (a) [1/1]
```

```
library(ggplot2)
library(MASS)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
##
       select
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(tibble)
library(ggrepel)
## Warning: package 'ggrepel' was built under R version 4.3.2
data <- Animals
data <- data %>%
  rownames_to_column(var = "species")
#Bravais-Pearson correlation coefficient
coeff <- cor(data$body, data$brain)</pre>
cat("Bravais-Pearson Correlation Coefficient for the given data is ", coeff, "\n")
## Bravais-Pearson Correlation Coefficient for the given data is -0.005341163
#Plotting the data in normal scale
ggplot(data, aes(x = body, y = brain)) +
  geom_point() +
```

labs(title = "Brain vs. Body Mass", x = "Body Mass", y = "Brain Mass")

Brain vs. Body Mass


```
#Ploting the data in log-log scale
ggplot(data, aes(x = log(body), y = log(brain))) +
  geom_point() +
  labs(title = "Log-Log Scale: Brain vs. Body Mass", x = "log(Body Mass)", y = "log(Brain Mass)")
```

Log-Log Scale: Brain vs. Body Mass

The Bravais-Pearson Correlation Coefficient between body mass and brain size is -0.005341163. This value is close to zero, indicating a very weak and practically insignificant linear relationship between the two variables. Contrary to the hypothesis, there is no evidence of a positive correlation; instead, the weak correlation observed is negative, suggesting a slight tendency for brain size to decrease as body mass increases, although the relationship is not practically significant.

2 - (b)

Brain vs. Body Mass with Dinosaur Species Marked

Log-Log Scale: Brain vs. Body Mass

#Removing the dinosaur species from the dataset
data_no_dinosaurs <- subset(data, !(species %in% dinosaur_species))

#Bravais-Pearson correlation coefficient without dinosaur species outliers
coeff_no_dinosaurs <- cor(data_no_dinosaurs\$body, data_no_dinosaurs\$brain)
cat("Bravais-Pearson Correlation Coefficient without Dinosaur Species Outliers is", coeff_no_
dinosaurs, "\n")</pre>

Bravais-Pearson Correlation Coefficient without Dinosaur Species Outliers is 0.9318502

2 - (c)

```
library(coin)
```

```
## Warning: package 'coin' was built under R version 4.3.2
```

```
## Loading required package: survival
```

```
#Spearman's rank correlation coefficient with outliers
spearman_with_outliers <- cor(data$body, data$brain, method = "spearman")
cat("Spearman's Rank Correlation Coefficient with Outliers:", spearman_with_outliers, "\n")</pre>
```

```
## Spearman's Rank Correlation Coefficient with Outliers: 0.7162994
```

```
#Spearman's rank correlation coefficient without outliers
spearman_no_outliers <- cor(data_no_dinosaurs$body, data_no_dinosaurs$brain, method = "spearm
an")
cat("Spearman's Rank Correlation Coefficient without Outliers:", spearman_no_outliers, "\n")</pre>
```

```
## Spearman's Rank Correlation Coefficient without Outliers: 0.9328717
```

The coefficient obtained without outliers (0.9328717) is higher than the coefficient obtained with outliers (0.7162994). In general, a higher correlation coefficient indicates a stronger monotonic relationship between the variables.

Therefore, in our case Spearman's rank correlation coefficient without outliers is more robust to the presence of outliers in the dataset. The removal of outliers has resulted in a higher correlation coefficient, suggesting a stronger monotonic relationship between the variables when the influence of outliers is reduced.

4-0 here XI, ... Xn are i.j.d from V (a, b) pdf is given by; $f(x) = \begin{cases} \frac{1}{b-c} & a \leq x \leq b \\ 0 & otherwise \end{cases}$ Likelihood function; $L(a,b) = \prod_{i=1}^{n} f(x_i)$ converting into 109-likelihood for eusier couculation; $l(u, b) = \sum_{i=1}^{n} log f(x_i)$ Since logf(og) is musimized when text is musimized we focus on muximized we focus on muximizing that. a) MLE for a : $La(a) = \prod_{i=1}^{n} f(x_i) = \left(\frac{1}{h-a}\right)^n$

here to maximize la(a) we need 0_ to minimize (b-a) that happens where d is minimize among the sample points; :. le = min { X1, ... Xn} (ii) MLE FOY b; $L_{b}(b) = \frac{\eta}{1+1} f(x_{i}) = \left(\frac{1}{b-a}\right)^{\eta}$ $\therefore l_b(b) = n log \left(\frac{1}{b-a}\right)$ TO muximize l_b(b) we minimize (b-cl) and this occurs when b is largest, meaning maximum value among the sample points. :. 6 mie = mux {x1, ... xn}

0 $:= [\hat{u}_n] = (1-F(x)) dx$ It seems that here, from convergence in distribution, derived in HW 2(c), you obtain convergence of the first moment. Note that this is in general not true. But here s possible because the random variables are bounded. meeins; de n -) & E [an]

(a) The exponential distribution with rate parameter) has probability density function CPDF):

$$f(x;\lambda) = \lambda e^{-\lambda x}, x>0$$

Now, Let's find the Expected value of x:

$$E(\bar{x}) = E(\frac{1}{n} \stackrel{e}{\underset{i=1}{e}} x_i)$$

Since Xi's are independent & identically distributed, we can use the linearity of expectations:

The expected value of single Xi is given by;

There fore

$$E(\bar{x}) = \frac{1}{\lambda} \vee$$

Since the expected value of \overline{x} is equal to u, the sample mean X is an unbiased estimater for the population mean u in the case of an exponential distribution with parameter 1.

(b) The PDF of Mn can be derived as follows:

Since the xi's are independent,

For an exponential distribution with rate parameter λ , Ther CDF is given by $F(c)c) = 1 - e^{\lambda x}$.

Therefore, the mobability of PCX; >, x) = 1-FCOL)

$$p(x; \Rightarrow x) = 1 - c(1 - e^{-\lambda x})$$

$$= e^{-\lambda x}$$

Now, Therefore,

$$P(M_n > \infty) = (e^{-\lambda x})^n$$

$$= e^{-n\lambda x > c}$$

Differentrate both sides with respect to x to obtain the probability density function of Mn

$$f(M) = \frac{d}{dx} p(Mn > x)$$

 $f(M) = \frac{d}{dx} p(Mn > x)$
 $f(M) = \frac{d}{dx} p(Mn > x)$

The PDF of Mn is given by:

f Mn(n) = n > e - n > c

This is the PDF of an exponential distribution with rate parameter nd.

in Mn follows an exp. dutribution with rate parameter ht.

The expected value of Mn. E(Mn) = E(nMn) E(Mn) = n E(Mn) Since Mn follows an exp. distribution with rate parameter nx E(Mn) = 1 Therefore E(Mn) = n 1 E(Mn) = 1 E(Mn) is the same as the population mean u, which means that In- nMn is an unbrased. estomator for u as well D Variance in as as in the same of the same of the

Since X; follows an exponential distribution with. rate X, the variance of X: is 12

$$Var(\bar{x}n) = \frac{1}{n^2} \cdot n \cdot \frac{1}{\lambda^2} = \frac{1}{n\lambda^2} \checkmark$$

$$Var\left(\widehat{u}_{n}\right) = \frac{1}{n\lambda^{2}}$$

Variance of Mn:

Since Mn follows an exponential distribution

Yar (xn) > Var (Mn) for n>1.

Therefore, nMn, is a preferred estimator

for u as it has a smaller variance.

			5
Exer	4.5e (612) T) pol - X 81 - (X) pol 11-10 7 2 = (5,10) 1		5
@	For a Giamma distribution (Ca, B),		5
[0.6/1]	the population, mean and variance are		5
	given by at the year offer a to the enterist		+
	ECX) = d (from stide 24		6
	Chapter 1.6)		0
	VarCx) = d		đ
	$VarCxy = d$ $\beta^2 + x = 16$		-
	According to that,		t
	We can set sample moments equal to		t
	population moments, the book of book of		•
	$\times \frac{\mathbf{E}(\hat{\mathbf{x}})_{n=1} \cdot \hat{\mathbf{q}}_{n+1} + \mathbf{A}_{n} \cdot \mathbf{Var}(\hat{\mathbf{x}})_{n=1} \cdot \frac{\hat{\mathbf{q}}_{n+1}}{\hat{\mathbf{q}}_{n}^{2}} + \mathbf{A}_{n} \cdot \mathbf{A}_{n}}{\hat{\mathbf{g}}_{n}^{2}}$		¢
	what is \hat{x} f		-0
	0= (00) 4- (X2 pol) =		Ç
	Let's assume that sample moments equal		0
	$\times E(\hat{x}) = \bar{x}$ and $Varc\hat{x}) = s^2$		_6
			(
Ú	men da = vadando		-
	be straightforward due to the gresence of the		-
	I gurma thridgen denobed as year, 12 the		-
	from b Varcail - so		-
	$\hat{\beta} = \overline{z} - \overline{\odot}$		-
	s ²		_
	Now substitude à back note the o eq.		
	FrimO, 2 = x (x) = x2 / B = x	/ 0	1
	These are the method of solvery	4	
	These are the method of moments estimators for parameters & and B of the gamma distribution based on the	eand varon	e

Scanned with CamScanner

b	Log like whood function. I (d, p) for a gamma					
	distribution is given by,					
	$L(\alpha,\beta) = \frac{2}{2} \left[(\alpha - 1) \log (2x_i) - (3x_i - \log (7(\alpha))) \right]$ some terms mi					
	Then we need to take the partial					
	denvatures of 1 with respect to a and B.					
	CHINGING STATE OF THE STATE OF					
	31 = { [rod(x) - 1(d)]					
	34					
	$\frac{\partial A}{\partial A} = \sum_{i=1}^{n} \left[\frac{A}{A} - X_{i} \right] \times$					
	dB FI B COLAR DOCUMENTAL					
	to be seen on in the second on					
	And, we need to set the partial derivatives					
	equal to zero to find the maxmum.					
	2 [log CX) - Y (a)] =0					
	There was a signification of the same and a story					
	€ (d/ =- X·) = 0					
	1=1 / P					
	solving this system of equations explicitly may not					
	be straightforward due to the presence of the					
	diguma function, denoted as Y (6), is the					
	logarithme derivative of the gamma distribution,					
44.5						
	*2					
	a Compared in standard to the standard today					
	1 10 10 10 10 10 10 10 10 10 10 10 10 10					
	10 10 10 10 10 10 10 10 10 10 10 10 10 1					

Scanned with CamScanner

	Explicit solutions may be obtained for specific cas	29			
	In general, solving à pà may require				
	In general solving a p may require				
	numerical method.				
	For a specific dataset, we can use numerica				
	aptimization techniques like gradient descent.				
	restor's method or other optimization				
	al gorrhows.				
A CONTRACTOR OF THE PARTY OF TH					
		•			

Scanned with CamScanner