CS 70 Discrete Mathematics and Probability Theory Summer 2019 James Hulett and Elizabeth Yang

DIS 1A

1 Propositional Practice

Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification.

- (a) There is a real number which is not rational.
- (b) All integers are natural numbers or are negative, but not both.
- (c) If a natural number is divisible by 6, it is divisible by 2 or it is divisible by 3.
- (d) $(\forall x \in \mathbb{R}) (x \in \mathbb{C})$
- (e) $(\forall x \in \mathbb{Z}) (((2 \mid x) \lor (3 \mid x)) \implies (6 \mid x))$
- (f) $(\forall x \in \mathbb{N}) ((x > 7) \implies ((\exists a, b \in \mathbb{N}) (a + b = x)))$

Solution:

- (a) $(\exists x \in \mathbb{R}) \ (x \notin \mathbb{Q})$, or equivalently $(\exists x \in \mathbb{R}) \ \neg (x \in \mathbb{Q})$. This is true, and we can use π as an example to prove it.
- (b) $(\forall x \in \mathbb{Z}) (((x \in \mathbb{N}) \lor (x < 0)) \land \neg ((x \in \mathbb{N}) \land (x < 0)))$. This is true, since we define the naturals to contain all integers which are not negative.
- (c) $(\forall x \in \mathbb{N})$ $((6 \mid x) \implies ((2 \mid x) \lor (3 \mid x)))$. This is true, since any number divisible by 6 can be written as $6k = (2 \cdot 3)k = 2(3k)$, meaning it must also be divisible by 2.
- (d) All real numbers are complex numbers. This is true, since any real number x can equivalently be written as x + 0i.
- (e) Any integer that is divisible by 2 or 3 is also divisible by 6. This is false–2 provides the easiest counterexample. Note that this statement is false even though its converse (part c) is true.
- (f) If a natural number is larger than 7, it can be written as the sum of two other natural numbers. This is trivially true, since we can take a = x and b = 0.
 - (Aside: this is a reference to the very weak Goldback Conjecture (https://xkcd.com/1310/).)

2 DeMorgan's Law

Use truth tables to show that $\neg(A \lor B) \equiv \neg A \land \neg B$ and $\neg(A \land B) \equiv \neg A \lor \neg B$. These two equivalences are known as DeMorgan's Law.

Solution:

A	В	$A \vee B$	$\neg (A \lor B)$	$\neg A \land \neg B$
T	T	T	F	F
T	F	T	F	F
F	T	T	F	F
F	F	F	T	T
\overline{A}	В	$A \wedge B$	$\neg (A \land B)$	$\neg A \lor \neg B$
Т	Т	Т	F	F
т	17	T7	T	T

T

T

T

T

3 XOR

F

 $\mathbf{F} \mid \mathbf{T}$

The truth table of XOR is as follows.

Α	В	A XOR B
F	F	F
F	T	T
Т	F	T
T	Т	F

- 1. Express XOR using only (\land, \lor, \neg) and parentheses.
- 2. Does (A XOR B) imply $(A \vee B)$? Explain briefly.
- 3. Does $(A \lor B)$ imply (A XOR B)? Explain briefly.

Solution:

- 1. These are all correct:
 - $A ext{ XOR } B = (A \wedge \neg B) \vee (\neg A \wedge B)$ Notice that there are only two instances when $A ext{ XOR } B$ is true: (1) when A is true and B is false, or (2) when B is true and A is false. The clause $(A \wedge \neg B)$ is only true when (1) is, and the clause $(\neg A \wedge B)$ is only true when (2) is.
 - $A ext{ XOR } B = (A \lor B) \land (\neg A \lor \neg B)$ Another way to think about XOR is that exactly one of A and B needs to be true. This also means exactly one of $\neg A$ and $\neg B$ needs to be true. The clause $(A \lor B)$ tells us at

least one of *A* and *B* needs to be true. In order to ensure that one of *A* or *B* is also false, we need the clause $(\neg A \lor \neg B)$ to be satisfied as well.

- A XOR $B = (A \lor B) \land \neg (A \land B)$ This is the same as the previous, with De Morgan's law applied to equate $(\neg A \lor \neg B)$ to $\neg (A \land B)$.
- 2. Yes. $(A \times A \times B) = T \implies ((A = T) \wedge (B = F)) \vee ((A = F) \wedge (B = T)) \implies (A \vee B = T)$.
- 3. No. When $(A = T) \land (B = T)$, then $(A \lor B) = T$ but (A XOR B) = F.

4 Implication

Which of the following implications are always true, regardless of P? Give a counterexample for each false assertion (i.e. come up with a statement P(x, y) that would make the implication false).

- (a) $\forall x \forall y P(x,y) \implies \forall y \forall x P(x,y)$.
- (b) $\exists x \exists y P(x,y) \implies \exists y \exists x P(x,y)$.
- (c) $\forall x \exists y P(x, y) \implies \exists y \forall x P(x, y)$.
- (d) $\exists x \forall y P(x,y) \implies \forall y \exists x P(x,y)$.

Solution:

- (a) True. For all can be switched if they are adjacent; since $\forall x, \forall y$ and $\forall y, \forall x$ means for all x and y in our universe.
- (b) True. There exists can be switched if they are adjacent; $\exists x, \exists y$ and $\exists y, \exists x$ means there exists x and y in our universe.
- (c) False. Let P(x, y) be x < y, and the universe for x and y be the integers. Or let P(x, y) be x = y and the universe be any set with at least two elements. In both cases, the antecedent is true and the consequence is false, thus the entire implication statement is false.
- (d) True. The first statement says that there is an x, say x' where for every y, P(x,y) is true. Thus, one can choose x = x' for the second statement and that statement will be true again for every y. Note: 4c and 4d are not logically equivalent. In fact, the converse of 4d is 4c, which we saw is false.