2. a) Obtener el valor de las resistencias R_1 , R_2 y R_{eq} con su error (R = V/I).

$$R_1 = \frac{V_1}{I} = \frac{4,03}{0,625} = 6,448 \Omega$$

$$R_2 = \frac{V_2}{I} = \frac{5,94}{0,625} = 9,504 \Omega$$

$$R_{eq} = \frac{V_3}{I} = \frac{4,03}{0,625} = 15,968 \Omega$$

$$\frac{\Delta R}{R} = \frac{\Delta V}{V} + \frac{\Delta I}{I}$$

$$\Delta R_1 = R_1 \cdot \left[\frac{\Delta V_1}{V_1} + \frac{\Delta I}{I} \right] = 6,448 \cdot \left[\frac{0,01}{4,03} + \frac{0,001}{0,625} \right] = 0,0263168 \ \Omega \approx 0,03 \ \Omega$$

$$\Delta R_2 = R_2 \cdot \left[\frac{\Delta V_2}{V_2} + \frac{\Delta I}{I} \right] = 9,504 \cdot \left[\frac{0,01}{5,94} + \frac{0,001}{0,625} \right] = 0,0312064 \ \Omega \approx 0,03 \ \Omega$$

$$\Delta \mathsf{R}_{\mathsf{eq}} = R_{eq} \cdot \left[\frac{\Delta V_{eq}}{V_{eq}} + \frac{\Delta I}{I} \right] = 15,968 \cdot \left[\frac{0,01}{9,98} + \frac{0,001}{0,625} \right] = 0,0415488 \ \Omega \approx 0,04 \ \Omega$$

 $R_1 = 6,45 \pm 0,03 \Omega$

 $R_2 = 9,50 \pm 0,03 \Omega$

 R_{eq} = 15,97 ± 0,04 Ω

b) Con los datos obtenidos en el apartado anterior calcular $R_1 + R_2$ con su error.

$$R_1 + R_2 = 6.45 + 9.50 = 15.95 \Omega$$

 $\Delta(R_1 + R_2) = \Delta R_1 + \Delta R_2 = 0.03 + 0.03 = 0.06 \Omega$

$$R_1 + R_2 = 15,95 \pm 0,06 \Omega$$

c) Indicar si se cumple la relación R_{eq} = R_1 + R_2 .

Como podemos apreciar en los apartados anteriores, no se cumple la relación $\mathbf{R}_{eq} = \mathbf{R}_1 + \mathbf{R}_2$ ya que se obtienen valores muy similares al realizarlo mediante la fórmula $\mathbf{R} = \frac{V}{I}$, pero no iguales.

3. a) Añadir una columna con el valor 1/r y su error.

r ± 1 (mm)	1/r ± 1 (mm)	B ± 0,01 (mT)
5	0,20	1,43
10	0,10	0,72
15	0,07	0,46
20	0,05	0,34
25	0,04	0,27
30	0,03	0,23
35	0,03	0,19
40	0,03	0,16
45	0,02	0,14
50	0,02	0,12

b) Representar los datos experimentales de B frente a 1/r.

c) Ajustar una recta a los datos experimentales. Mediante el ajuste por mínimos cuadrados obtener la pendiente y la ordenada en el origen con sus correspondientes errores.

El ajuste de la recta por minimos cuadrados nos deja la siguiente ecuacion de la recta: y = 7,2611x - 0,0224

Ajuste de puntos a una recta por mínimos cuadrados. Los puntos se ajustan a la recta Y=aX+b.

N = 10

Número de puntos:

a = 7,261105E+00

SE(a) = 1,296E-01

b = -2,240520E-02

SE(b) = 1,025E-02

R² = 0.9975

Número de puntos:

Pendiente de la recta.

Error típico de la pendiente

Término independiente.

Error típico del término independiente.

Coeficiente de determinación

Por tanto, los valores de la pendiente y de la ordenada en el origen son los siguientes:

pendiente =
$$7.3 \pm 0.1$$
 mT/mm
ordenada en el origen = -0.02 ± 0.01 mT

d) A partir del valor de la pendiente, $\frac{\mu_0 \cdot I}{2\pi}$, calcular la permeabilidad magnética del vacío μ_0 con su error. Compararlo con el valor real.

Pendiente =
$$\frac{\mu_0 \cdot I}{2\pi}$$
 = 7,3

$$\mu_0 = \frac{2\pi \cdot pendiente}{I} = \frac{2\pi \cdot 7,3}{40} = 1,14668 \text{ T/m·A}$$

$$\frac{\Delta \mu_0}{\mu_0} = \frac{\Delta pendiente}{pendiente} + \frac{\Delta I}{I}$$

$$\Delta \mu_0 = 1,14668 \cdot \left[\frac{0,1}{7,3} + \frac{0,1}{40} \right] = 0,01857 \approx 0,02 \text{ T/m·A}$$

$$\mu_0 = 1,15 \pm 0,02 \text{ T/m} \cdot \text{A}$$

El valor real de la permeabilidad magnética es:

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}$$