Radar Cross Section (RCS)

Václav Kabourek

Úvod

- Historie
- Radarová rovnice, definice efektivní odrazné plochy (RCS)
- Geometrická vs. efektivní radarová odrazná plocha
- Faktory ovlivňující RCS
- Rozptylové mechanismy
- RCS základních objektů
- Určování RCS měření, predikce pomocí simulace

Historie

- Rozptylové vlastnosti elektromagnetického pole různých objektů důležité po vynalezení radaru v po r. 1940
- 1900 N. Tesla navrhl, že pomocí odrazu elmag. vln by bylo možné detekovat metalické objekty
- 1908 G. Mie publikoval výpočet rozptylu světla na malých kulových částicích pomocí teorie elektromag. pole
- 1922 Náhodná detekce prvního "cíle" A. H. Taylor a L. C. Young (Naval Research Lab. – USA) – interference CW spoje dřevěnou lodí
- 1950' členové britské Britain's Royal Aircraft Establishment experimentují s tzv. "radar echoing area"

• Vysílací výkon P_t

Radar s anténou se ziskem G

• Cíl ve vzdálenosti **R**

- Na cíl dopadá výkonová hustota S_i ve vzdálenosti R
- Cíl je charakterizován odraznými vlastnostmi σ

Dopadající vlna vybudí na cíli proudy a na základě jeho vlastností dochází ke zpětnému vyzáření výkonu Ps zpět k radaru.

 $P_{s} = \sigma S_{i}$

Na aperturu antény s efektivní aperturou
 A_e pak dopadá výk. hustota S_s

• Přijímačem je detekován výkon P_r

 $P_{s} = \sigma S_{i}$

RCS je tedy dáno poměrem

 S_s a S_i nebo

 P_s a P_i , popř.

 $\boldsymbol{E_s}$ a $\boldsymbol{E_i}$

$$\sigma = 4\pi R^2 \frac{S_s}{S_i} = 4\pi R^2 \left\| \frac{S_s}{S_i} \right\| = 4\pi R^2 \frac{P_s}{P_i}$$

 $P_{s} = \sigma S_{i}$

Co ovlivňuje RCS objektu?

RCS objektu není funkcí vlastností přenosového řetězce od radaru k cíli a zpět

$$P_{t} \cdot G \cdot \frac{1}{4\pi R^{2}} \cdot \sigma \cdot \frac{1}{4\pi R^{2}} \cdot A_{e} = P_{r}$$

- Velikost RCS je dána vlastnostmi cíle materiálovými a tvarovými a mění se s frekvencí (λ vs. velikost cíle).
- RCS cíle se tedy liší v závislosti na jeho natočení (azimut, elevace) směrem k anténě radaru a je možné ho tedy napsat jako

$$\sigma_{ extit{scat}}ig(f,artheta,oldsymbol{arphi}ig)$$

Efektivní odrazná plocha - definice

• RCS je formálně definováno jako poměr intenzity el. pole E_s odraženého od cíle na aperture antény a el. pole E_i dopadajícího na cíl.

Kritérium rovinné vlny *

$$\sigma_{scat}(f, \theta, \varphi) = \lim_{R \to \infty} 4\pi R^2 \frac{|E_s(f, \theta, \varphi)|^2}{|E_i(f, \theta, \varphi)|^2}$$

 E_{i}

*D = největší rozměr cíle! (pokud není větší než rozměr apertury radarové antény, řady)

Efektivní odrazná plocha - definice

 RCS lze též interpretovat jako plochu tak velké kovové koule, která bude mít stejný odraz jako cíl v daném směru

*D = největší rozměr cíle! (pokud není větší než rozměr apertury radarové antény, řady)

Efektivní odrazná plocha - definice

 Totální efektivní odrazná plocha je pak dána jako integrál dílčích RCS přes celkovou plochu cíle.

$$E_{s}$$

$$\sigma_{tot}(f, \theta, \varphi) = \frac{1}{4\pi} \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \sigma(f, \theta, \varphi) \sin(\theta) d\theta d\varphi$$

Geometrická vs. efektivní radarová odrazná plocha

<u>GCS</u> <u>RCS</u> <u>GCS</u> <u>RCS</u> R = 11.3 mR = 0.56 mR = 0.56 m $\sigma = 1 \text{ m}^2$ 25 m^2 σ = 400 m² $a = 0.1 \, \text{m}$ R = 0.56 mR = 1.7 m $\sigma = 1 \text{ m}^2$ 80 m² $\sigma = 9 \text{ m}^2$

RCS vybraných objektů

Objekt	RCS [m^2]	RCS [dBsm]
Auto	100	20
B-52	100	20
B-1	10	10
Malé letadlo	10	10
F-16	5	7
Mig-21	3	4.8
Člověk	1	0
F-18	1	0
Typhoon	0.5	-3
Tomahawk SLCM	0.05	-13
Pták	0.01	-20
F-117 Nighthawk	0.003	-25
Hmyz	0.001	-30
B-2	0.0001	-40

Faktory ovlivňující RCS

- Frekvence vlnová délka vs. velikost objektu, jednotlivých částí
- Polarizace vlny
- Vlastnosti cíle tvar a materiál
- Způsob detekce: monostatický vs. bistatický

Rozptylové mechanismy

Odražená vlna je superpozice dílčích vln odražených od cíle různými mechanismy.

Rozptylové mechanismy – přímý odraz

Maximum (Plane) 0.00710435 dB(V/m)

Přímý odraz od ploché desky

Rozptylové mechanismy – přímý odraz vs. obtékající vlna

Přímý odraz od válce $E_{y'} H_{x}$ Přímý odraz od válce + obtékající vlna $E_{x'} H_{y}$ $E_{x'} H_{y}$ $E_{x'} H_{y}$

e-field (t=0.2..1.2(0.005)) [pw]

Sample 1/201
Time 0.2 ns
Cross section C
Cutplane at Y 0.000 mm
Maximum (Plane) 0.00413145 dB(V/m)
Maximum 15 0038 dB(V/m)

elmag.org

Rozptylové mechanismy – koutový odraz, difrakce

Odraz od koutového odražece, difrakce na hranách

e-field (t=0.2..1.2(0.005)) [pw] 🗠

Maximum (Plane) -0.0288169 dB(V/m)

1/200

0.2 ns

0.000 mm

17.0584 dB(V/m)

 E_y , H_x

Odraz od hrany, difrakce na hranách

1/200

0.2 ns

Maximum (Plane) -0.011093 dB(V/m)

0.000 mm

Rozptylové mechanismy – odraz od koule

Odraz od koule

$$E_{y}$$
 H_x

 Component
 Abs

 Sample
 1/200

 Time
 0.2 ns

 Cross section
 C

 Cutplane at Y
 0.000 mm

 Maximum
 16 5462 dRW/

 Maximum
 16 5462 dRW/

RCS základních objektů

- Základní geometrické útvary plochá deska, kvádr, válec, kužel, koule, koutový odražeč
- Jejich RCS lze vypočítat analyticky (aproximativně, PO)

Objekt	Max. RCS	Pozn.
Plochá deska	$\sigma_{\max} = \frac{4\pi (ab)^2}{\lambda^2}$	a, b – rozměry desky
Koule	$\sigma_{ ext{max}} = \pi r^2$	r – poloměr
Válec	$\sigma_{\rm max} = \frac{2\pi {\rm rh}^2}{\lambda}$	r – poloměr h – výška válce
Koutový odražeč	$\sigma_{ ext{max}} = rac{4\pi A_{eff}^2}{\lambda^2}$	A _{eff} – efektivní plocha (ozářená)

RCS základních objektů – zobrazení

- Mono-statické RCS
 - RCS vs. úhel natočení objektu
 - o RCS vs. frekvence
- Bi-statické RCS
 - RCS vs. úhel natočení objektu
 - RCS vs. bi-statický úhel
 - o RCS vs. frekvence

RCS základních objektů – koule

- Zobrazení RCS vs. frekvence 3 základní region
 - Rayleighův region
 - Mie (rezonanční) region
 - Optický region

Mie or Resonance

Region **Oscillations**

Backscattered wave interferes with creeping wave

Optical Region

 $\sigma = \pi a^2$

Surface and edge scattering occur

RCS základních objektů – koule

Bi-statické vs. monostatické zobrazení

Mono-statické zobrazení vs. monostat. úhel

Bi-statické zobrazení vs. bistat. úhel

RCS základních objektů – deska

$$a = b = 0.3 \text{ m}$$

 $f = 10 \text{ GHz}$

RCS základních objektů – válec

r = 0.25 m

h = 0.5 m

f = 10 GHz

RCS základních objektů – koutový odražeč

$$a = b = 0.2 \text{ m}$$

$$h = 0.5 m$$

$$f = 10 GHz$$

Určování RCS

Měření

- reálné objekty (full-scale měření) ve vzdálené zóně (FF)
- reálné objekty v blízké zóně (NF) s přepočtem do FF
- zmenšené modely

Simulace

- predikce RCS různých objektů
- aproximativní přístup vs. exaktní výpočetní metody

Full-scale měření

- Měření skutečných objektů od 1' MHz do 100'
 GHz
- Měření jak ve FF tak i v NF s přepočtem do FF
- Indoor i outdoor testovací polygony
- Možnost bi-statického i mono-statického uspořádání

Komora pro měření v NF (0.2 – 18 GHz), The Howland Company

FF testovací komora (100 MHz – 100 GHz), NAVAIR, Point Mugu, California

- compact range
- bistatické měření

Full-scale měření

Pro

- reálné měření
- Není nutné vyrábět modely objektů

Proti

- nutnost velice rozlehlého testovacího prostoru
- mechanicky velký otočný pylon
- množství parazitních odrazů, signálů

FF testovací komora (100 MHz – 100 GHz), NAVAIR, Point Mugu, California

- compact range
- bistatické měření

Měření zmenšených objektů

- Měření modelů reálných objektů v různých měřítcích
- Měření jak ve FF tak i v NF s přepočtem do FF
- Indoor i outdoor testovací polygony
- Možnost bi-statického i mono-statického uspořádání
- Nutnost měření na ekvivalentních vlnových délkách

Veličina	1:1	1:x
Velikost	L	L' = L/S
Čas	t	t' = t/S
Frekvence	f	f' = f*S
Vlnová délka	λ	$\lambda' = \lambda/S$
RCS	σ	σ''= σ/S^2

Měření zmenšených objektů

Pro

- není potřeba velkých testovacích polygonů
- snadná manipulace s objekty, menší požadavky na otočný systém

Proti

- se zmenšujícím se měřítkem modelu se musí zmenšovat i vlnová délka měř. signálu – u malých modelů je nutné měřit na vysokých f
- zjednodušení modelu nelze podchytit všechny odražeče a mechanismy zpětného rozptylu

- Simulace libovolných objektů pomocí aproximativních i exaktních přístupů
- Mono/bi-statické RCS
- Částečně odpadá nutnost měření na velkých měřících polygonech, drahých měřících systémech.

- Exaktní přístupy simulace rozptylových vlastností modelů na základě full-wave simulátorů – metoda momentů (MoM), multilevel fast multipole method (MLFMM), metoda konečných prvků (FEM), metoda konenčých diferencí (FDTD – Finitedifference time-domain)
 - o exaktní formulace řešeného problému
 - o lze simulovat velké množství rozptylových mechanismů
 - o modelování detailů
 - o velká numerická náročnost
 - o vhodné pro menší objekty

- Aproximativní přístupy aproximace modelů, aprox. výpočetní metody, např. na základě Ray-Tracingu – metoda fyzikální optiky (PO – Physical Optics), geometrická optika (GO), geometrická/fyzikální teorie difrakce (GTD)
 - aproximativní řešení
 - o modelování velkých objektů
 - o značné zjednodušení modelovaných struktur
 - o snížení výpočetní náročnosti
 - zanedbání některých rozptylových mechanismů (difrakce na hranách, tekoucí vnly apod.)

- Ansys HFSS
- CST Microwave Studio
- FEKO

Děkuji za pozornost!

