

(2) EE WOOL AST '03 (b) Utilization = Time transmitting useful data
Total time required $U^{\circ} = \frac{H}{H + Ha + \partial \tau \rho}$ for error free case In the case & errors the probability that a feame with N bits will be error free is $(1-p)^N$. If N frames are sent M' will be error free $M' = M(1-p)^N$ frame will need to be sent $\frac{1}{(1-p)^N}$ i.e. a given grandree will need to be sent $\frac{1}{(1-p)^N}$ times to In this case $U = U (1-p)^N (H + Ha + 2Tp) = 200 (1-p)^N$ (ii) H = 150 x10 = 13.33 aus 14a = 150 kw = 0.33 ms 2) Tp = 5NS × 100 flem = 500 MS , 2Tp= 1000 MS P = 0.01, (1-p)N= (1-0.01) = (0.99)2000 = 1.8xi09 Erroe Free: U= H + Ha + 27 = 13-33 + 1000 = 0.013 With errors u = u° x 1.8 x 5 9 20.

(4) EE 4004 Ashum 2003
3(b) (i) The CSMA KO algorithm
This algorithms govers occers to a shared
This algorithms govers occers to a shared medium such as ETHERNET LAWS and operates
as follows: If the a computer wants to transmit
it does the following:
1. Listen to the signal on the wedium (carrier sense) 2. If there is another computer transmitting wait until thin stops
3. When the medium is feel begin transmitting
4. Continue to monitor while transmitting to determine
3. When the medium is feel begin transmitting 4. Continue to monitor while transmitting to determine if another node has also stracked transmitting thus
causing a cellision.
5. If no collision occues continue to transmit and
manifor the medium
b. If a colline occues, shop transmitting and we the wait before attempting to transmit again. The time to wait is usually determined by an exponential back-off algorithm.
we the want before attempting to transmit again.
The time to want is usually determined by an
exponential bock-off algorithm.
(ii) Truncated bivary exponential back off algorithm People of another After 1st collision L 1 1/2 < cellision After 2nd collision L 1 1/4
After ist collision 1 1 /2 < collision
(G)
After 2nd collisin L 1 1 4
After 10th collisin [1024 time periods - 1024
Abter 15th collision 1 = 1024 times - y 1/1024

L = FV $2 bps$ where $f = Frame levyth$, $v = velocity & properties bps = data rate on line$	
where f = Frame length, n = velocity of prop 3 bps = data rate on line	
	ragahis
10 this case L < 1000. 2 × 108 2. 10 × 106	
ie L< 10 hm = 10 km	