Map (Room/Terrain) Synthesis for Low-Poly 3D Scenes

Tobias Christoph

Supervisor:

Stephanie Autherith

Research Group:

Interactive Graphic and Simulation Group

Procedural Content Generation (PCG)

- Procedural Content Generation (PCG)
 - Manual creation can be tedious

- Procedural Content Generation (PCG)
 - Manual creation can be tedious
 - Algorithmic process

- Procedural Content Generation (PCG)
 - Manual creation can be tedious
 - Algorithmic process
- Video Games

- Procedural Content Generation (PCG)
 - Manual creation can be tedious
 - Algorithmic process
- Video Games
 - Textures, models, sounds

- Procedural Content Generation (PCG)
 - Manual creation can be tedious
 - Algorithmic process
- Video Games
 - Textures, models, sounds
 - Maps

- Procedural Content Generation (PCG)
 - Manual creation can be tedious
 - Algorithmic process
- Video Games
 - Textures, models, sounds
 - Maps
- Machine Learning

- Procedural Content Generation (PCG)
 - Manual creation can be tedious
 - Algorithmic process
- Video Games
 - Textures, models, sounds
 - Maps
- Machine Learning
 - Generative Adversarial Networks (GAN)

Goal

Input: 'Traversability'-Sketch

Goal

Input: 'Traversability'-Sketch

Height-Map

Biome-Map

Goal

Dataset Creation

- Dataset Creation
 - Height map with a corresponding biome map

- Dataset Creation
 - Height map with a corresponding biome map
 - Create 'traversability-map' representing training data

- Dataset Creation
 - Height map with a corresponding biome map
 - Create 'traversability-map' representing training data
- Generative Adversarial Networks (GAN)

- Dataset Creation
 - Height map with a corresponding biome map
 - Create 'traversability-map' representing training data
- Generative Adversarial Networks (GAN)
 - Conditional GAN (cGAN)

- Dataset Creation
 - Height map with a corresponding biome map
 - Create 'traversability-map' representing training data
- Generative Adversarial Networks (GAN)
 - Conditional GAN (cGAN)
 - Pix2Pix

- Dataset Creation
 - Height map with a corresponding biome map
 - Create 'traversability-map' representing training data
- Generative Adversarial Networks (GAN)
 - Conditional GAN (cGAN)
 - Pix2Pix
- 3D Rendering of the Map

• Invented by Ian Goodfellow in 2014

- Invented by Ian Goodfellow in 2014
- Idea: create similar but novel data

Discriminator

Conditional Generative Adversarial Networks

Example – Nvidia GauGAN Beta

Technologies

- Programming Language
 - Python
- Frameworks
 - PyTorch
 - Tensorflow
- Rendering Software
 - Unity Engine

Timeline

References

- [Liapis A., Yannakakis G.N., Togelius J. 2013] Sentient World: Human-Based Procedural Cartography. In: Machado P., McDermott J., Carballal A. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2013.
- [Ping K., Dingli L. 2020] Conditional Convolutional Generative Adversarial Networks Based Interactive Procedural Game Map Generation. In: Arai K., Kapoor S., Bhatia R. (eds) Advances in Information and Communication. FICC 2020. Advances in Intelligent Systems and Computing, vol 1129
- [NoisePosti.ng] A Procedural Generation and Game Development blog, link: https://noiseposti.ng/posts/2021-03-13-Fast-Biome-Blending-Without-Squareness.html
- [Nvidia GauGAN] *link*: http://nvidia-research-mingyuliu.com/gaugan/
- [Tensorflow] link: https://www.tensorflow.org
- [Python] *link*: https://www.python.org
- [PyTorch] link: https://pytorch.org
- [Unity] link: https://unity.com

Misc – 1 Height + Biome Map

https://github.com/pecarprimoz/procedural-gen-dipl

https://tenjix.de/projects/climate-based-biomes/

Misc – 2 Traversability Map

Rough Terrain Exploration With a Legged Humanoid Robot
https://github.com/misha-savchenko/Footstep_planner

 Calculating slope and aspect from a digital elevation model in Python – Matt Oakley, Max Joseph -https://www.earthdatascience.org/tutorials/get-slope-aspect-from-digital-elevation-model/

Elevation (brighter = higher)

Slopes (brighter = steeper)

