Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding

B. O'Donoghue E. Chu N. Parikh S. Boyd

Convex Optimization and Beyond, Edinburgh, 11/6/2104

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Cone programming

minimize
$$c^T x$$

subject to $Ax + s = b$, $s \in \mathcal{K}$

- ▶ variables $x \in \mathbb{R}^n$ and (slack) $s \in \mathbb{R}^m$
- $\mathcal K$ is a proper convex cone $\mathcal K$ nonnegative orthant \longrightarrow LP $\mathcal K$ Lorentz cone \longrightarrow SOCP $\mathcal K$ positive semidefinite matrices \longrightarrow SDP
- the 'modern' canonical form for convex optimization
- popularized by Nesterov, Nemirovsky, others, in 1990s

Cone programming

- parser/solvers like CVX, CVXPY, YALMIP translate or canonicalize to cone problems
 - focus has been on symmetric self-dual cones
 - for medium scale problems with enough sparsity, interior-point methods reliably attain high accuracy
 - but they scale superlinearly in problem size

open source software (SDPT3, SeDuMi, ...) widely used

inferior - point method based

(ADMM, SCS)

This talk

a new first order method that

- solves general cone programs
- infeasibility

 C1 (3Cificate of primal/dual infeasibility)
- obtains modest accuracy quickly
- scales to large problems and is easy parallelized
 - ▶ is matrix-free: only requires $z \to Az$, $w \to A^T w$

Some previous work

- projected subgradient type methods (Polyak 1980s)
- primal-dual subgradient methods (Chambelle-Pock 2011)
- matrix-free interior-point methods (Gondzio 2012)
- can use iterative linear solver (CG) in any interior-point method

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Primal-dual cone problem pair

primal and dual cone problems:

minimize
$$c^T x$$

subject to $Ax + s = b$
 $(x,s) \in \mathbb{R}^n \times \mathcal{K}$ maximize $-b^T y$
subject to $-A^T y + r = c$
 $(r,y) \in \{0\}^n \times \mathcal{K}^*$

- ▶ primal variables $x \in \mathbb{R}^n$, $s \in \mathbb{R}^m$; dual variables $r \in \mathbb{R}^n$, $y \in \mathbb{R}^m$
- \mathcal{K}^{\star} is dual of closed convex proper cone \mathcal{K}
 - ▶ note that $\mathbb{R}^n \times \mathcal{K}$ and $\{0\}^n \times \mathcal{K}^*$ are dual cones

Example cones

K is typically a Cartesian product of smaller cones, e.g.,

- ► R, {0}, R₊
- second-order cone $Q = \{(x, t) \in \mathbb{R}^{k+1} \mid ||x||_2 \le t\}$
- positive semidefinite cone $\{X \in \mathbf{S}^k \mid X \succeq 0\}$
- exponential cone $cl\{(x,y,z) \in \mathbb{R}^3 \mid y > 0, \ e^{x/y} \le z/y\}$

these cones would handle almost all convex problems that arise in applications

Optimality conditions

KKT conditions (necessary and sufficient, assuming strong duality):

Strong duality

- ▶ primal feasibility: Ax + s = b, $s \in \mathcal{K}$
- ▶ dual feasibility: $A^T y + c = r$, r = 0, $y \in \mathcal{K}^*$
- complementary slackness: $y^T s = 0$ equivalent to zero duality gap: $c^T x + b^T y = 0$

Primal-dual embedding

KKT conditions as feasibility problem: find

$$(x, s, r, y) \in \mathbb{R}^n \times \mathcal{K} \times \{0\}^n \times \mathcal{K}^*$$

that satisfy

$$\begin{bmatrix} r \\ s \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & A' \\ -A & 0 \\ c^T & b^T \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c \\ b \\ 0 \end{bmatrix} \text{ affine } \text{ST}$$

- reduces solving cone program to finding point in intersection of cone and affine set
- no solution if primal or dual problem infeasible/unbounded

Homogeneous self-dual (HSD) embedding

(Ye, Todd, Mizuno, 1994)

find nonzero

$$(x, s, r, y) \in \mathbb{R}^n \times \mathcal{K} \times \{0\}^n \times \mathcal{K}^*, \quad \tau \geq 0, \quad \kappa \geq 0$$

that satisfy

$$\begin{bmatrix} r \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}$$

- this feasibility problem is homogeneous and self-dual
- $au=1, \kappa=0$ reduces to primal-dual embedding
 - due to skew symmetry, any solution satisfies

$$(x, y, \tau) \perp (r, s, \kappa), \qquad \tau \kappa = 0$$

Recovering solution or certificates

any HSD solution $(x, s, r, y, \tau, \kappa)$ falls into one of three cases:

- 1. $\tau > 0$, $\kappa = 0$: $(\hat{x}, \hat{y}, \hat{s}) = (x/\tau, y/\tau, s/\tau)$ is a solution
- 2. $\tau = 0$, $\kappa > 0$: in this case $c^Tx + b^Ty < 0$ if $b^Ty < 0$, then $\hat{y} = y/(-b^Ty)$ certifies primal infeasibility

 if $c^Tx < 0$, then $\hat{x} = x/(-c^Tx)$ certifies dual infeasibility
 - 3. $\tau = \kappa = 0$: nothing can be said about original problem (a pathology)

Homogeneous primal-dual embedding

check inteasibility

Solving

HSD embedding

- obviates need for phase I / phase II solves to handle infeasibility/unboundedness
- is used in all interior-point cone solvers
- is a particularly nice form to solve (for reasons not completely understood)

Notation

define

$$u = \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}, \quad v = \begin{bmatrix} r \\ s \\ \kappa \end{bmatrix}, \quad Q = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix}$$

ightharpoonup HSD embedding is: find (u, v) that satisfy

$$v=Qu, \qquad (u,v)\in\mathcal{C}\times\mathcal{C}^*$$
 with $\mathcal{C}=\mathbf{R}^n\times\mathcal{K}^*\times\mathbf{R}_+$
$$f:=Q$$

$$\mathcal{J}:=Q$$

$$\mathcal{J}:=Q$$

$$\mathcal{J}:=Q$$

$$\mathcal{J}:=Q$$

$$\mathcal{J}:=Q$$

$$\mathcal{J}:=Q$$

$$\mathcal{J}:=Q$$

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Consensus problem

consensus problem:

minimize
$$f(x) + g(z)$$

subject to $x = z$

- ightharpoonup f, g convex, not necessarily smooth, can take infinite values
- \triangleright p^* is optimal objective value

Alternating direction method of multipliers

▶ ADMM is: for k = 0, ...,

$$\begin{cases} x^{k+1} = \underset{x}{\operatorname{argmin}} \left(f(x) + (\rho/2) \| x - z^k - \lambda^k \|_2^2 \right) \\ z^{k+1} = \underset{z}{\operatorname{argmin}} \left(g(z) + (\rho/2) \| x^{k+1} - z - \lambda^k \|_2^2 \right) \\ \lambda^{k+1} = \lambda^k - x^{k+1} + z^{k+1} \end{cases}$$

- ho > 0 step-size
- \triangleright λ (scaled) dual variable for x=z constraint
- same as many other operator splitting methods for consensus problem, e.g., Douglas-Rachford method

Convergence of ADMM

under benign conditions ADMM guarantees:

- $f(x^k) + g(z^k) \to p^*$
- lacksquare $\lambda^k o \lambda^\star$, an optimal dual variable
- $x^k z^k \to 0$

ADMM applied to HSD embedding

minimize austant
subject to V=Qu
[U, V) \in CXC*

► HSD in consensus form

minimize
$$l_{\mathcal{C} \times \mathcal{C}^*}(u, v) + l_{Q\tilde{u} = \tilde{v}}(\tilde{u}, \tilde{v})$$
 subject to $(u, v) = (\tilde{u}, \tilde{v})$

 $I_{\mathcal{S}}$ is indicator function of set \mathcal{S}

► ADMM is:

 $\Pi_{\mathcal{S}}(x)$ is Euclidean projection of x onto \mathcal{S}

Simplifications

(straightforward, but not immediate)

- If $\lambda^0 = v^0$ and $\mu^0 = u^0$, then $\lambda^k = v^k$ and $\mu^k = u^k$ for all k
- ▶ simplify projection onto Qu = v using $Q^T = -Q$
- nothing depends on \tilde{v}^k , so can be eliminated

Final algorithm

• for $k = 0, \ldots$,

$$\tilde{u}^{k+1} = (I+Q)^{-1}(u^k+v^k)$$
 subspace projection $u^{k+1} = \prod_{\mathcal{C}} (\tilde{u}^{k+1}-v^k)$ parallel come projection $v^{k+1} = v^k - \tilde{u}^{k+1} + u^{k+1}$ ($C = C_1 \times C_1 \times \cdots \times C_n$)

- parameter free
- homogeneous
- same complexity as ADMM applied to primal or dual alone

Variation: Approximate projection

replace exact projection with any \tilde{u}^{k+1} that satisfies

$$\|\tilde{u}^{k+1} - (I+Q)^{-1}(u^k + v^k)\|_2 \le \mu^k,$$

where $\mu^k > 0$ satisfy $\sum_k \mu_k < \infty$

- useful when an iterative method is used to compute \tilde{u}^{k+1}
- implied by the (more easily verified) inequality

$$\|(Q+I)\tilde{u}^{k+1}-(u^k+v^k)\|_2 \leq \mu^k$$

by skew-symmetry of Q

Convergence

can show the following (even with approximate projection):

ightharpoonup for all iterations k > 0 we have

$$u^k \in \mathcal{C}, \quad v^k \in \mathcal{C}^*, \quad (u^k)^T v^k = 0$$

ightharpoonup as $k \to \infty$,

$$Qu^k - v^k \to 0$$

• with $\tau^0 = 1$, $\kappa^0 = 1$, (u^k, v^k) bounded away from zero

Solving the linear system

in first step need to solve equations

$$egin{bmatrix} I & A^T & c \ -A & I & b \ -c^T & -b^T & 1 \end{bmatrix} egin{bmatrix} \widetilde{u}_x \ \widetilde{u}_y \ \widetilde{u}_ au \end{bmatrix} = egin{bmatrix} w_x \ w_y \ w_ au \end{bmatrix}$$

let

$$M = \begin{bmatrix} I & A^T \\ -A & I \end{bmatrix}, \quad h = \begin{bmatrix} c \\ b \end{bmatrix}$$

SO

$$I+Q=egin{bmatrix} M & h \ -h^T & 1 \end{bmatrix}$$

it follows that

$$\begin{bmatrix} \tilde{u}_{x} \\ \tilde{u}_{y} \end{bmatrix} = (M + hh^{T})^{-1} \left(\begin{bmatrix} w_{x} \\ w_{y} \end{bmatrix} - w_{\tau}h \right),$$

Solving the linear system, contd.

▶ applying matrix inversion lemma to $(M + hh^T)^{-1}$ yields

$$\begin{bmatrix} \tilde{u}_{\mathsf{x}} \\ \tilde{u}_{\mathsf{y}} \end{bmatrix} = \left(M^{-1} - \frac{M^{-1}hh^{\mathsf{T}}M^{-1}}{(1 + h^{\mathsf{T}}M^{-1}h)} \right) \left(\begin{bmatrix} w_{\mathsf{x}} \\ w_{\mathsf{y}} \end{bmatrix} - w_{\mathsf{\tau}}h \right)$$

and

$$\tilde{u}_{\tau} = w_{\tau} + c^{T} \tilde{u}_{x} + b^{T} \tilde{u}_{y}$$

- first compute and cache $M^{-1}h$
- so each iteration requires that we compute

$$M^{-1} \begin{bmatrix} w_x \\ w_y \end{bmatrix}$$

and perform vector operations with cached quantities

Direct method

to solve

$$\begin{bmatrix} I & -A^T \\ -A & -I \end{bmatrix} \begin{bmatrix} z_x \\ -z_y \end{bmatrix} = \begin{bmatrix} w_x \\ w_y \end{bmatrix}$$

- compute sparse permuted LDL factorization of matrix
- re-use cached factorization for subsequent solves
- factorization guaranteed to exist for all permutations, since matrix is symmetric quasi-definite

Indirect method

by elimination

$$z_{x} = (I + A^{T}A)^{-1}(w_{x} - A^{T}w_{y})$$

 $z_{y} = w_{y} + Az_{x}$

- can apply *conjugate gradient (CG)* to first equation
- ightharpoonup CG requires only multiplies by A and A^T
- terminate CG iterations when residual smaller than μ^k
- easily parallelized; can exploit warm-starting

Scaling / preconditioning

convergence greatly improved by scaling / preconditioning:

- replace original data A, b, c with $\hat{A} = DAE$, $\hat{b} = Db$, $\hat{c} = Ec$
- ▶ D and E are diagonal positive; D respects cone boundaries
- \triangleright D and E chosen by equilibrating A (details in paper)
- stopping condition retains unscaled (original) data

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

SCS software package

► available from:

```
https://github.com/cvxgrp/scs
```

- written in C with matlab and python hooks
- can be called from CVX and CVXPY
- selves LPs, SOCPs ECPs, and SDPs
- includes sparse direct and indirect linear system solvers
- can use single or double precision, ints or longs for indices

Portfolio optimization

- $z \in \mathbb{R}^p$ gives weights of (long-only) portfolio with p assets
- maximize risk-adjusted portfolio return:

maximize
$$\mu^T z - \gamma(z^T \Sigma z)$$
 vise subject to $\mathbf{1}^T z = 1, \quad z \geq 0$

- $ightharpoonup \mu$, Σ are return mean, covariance
- $ightharpoonup \gamma > 0$ is risk aversion parameter
- Σ given as factor model $\Sigma = FF^T + D$
- $ightharpoonup F \in \mathbf{R}^{q imes p}$ is factor loading matrix
- can be transformed to SOCP

Portfolio optimization results

assets p	5000	50000	100000		
factors <i>q</i>	50	500	1000		
SOCP variables <i>n</i>	5002	50002	100002		
SOCP constraints m	10055	100505	201005		
nonzeros in A	3.8×10^{4}	2.5×10^{6}	$1.0 imes 10^7$		
SDPT3: (interior	SDPT3: (interior)				
solve time	1.14 sec	17836.7 sec	ООМ		
SCS direct: (AVMM)					
SCS direct: (AVMM	1)				
SCS direct: (A)////	0.17 sec	4.7 sec	37.1 sec		
		4.7 sec 340	37.1 sec 760		
solve time	0.17 sec				
solve time iterations	0.17 sec				
solve time iterations SCS indirect:	0.17 sec 420	340	760		
solve time iterations SCS indirect: solve time	0.17 sec 420 0.23 sec	340 12.2 sec	760 101 sec		

Numerical results

ℓ_1 -regularized logistic regression

- fit logistic model, with ℓ_1 regularization
- ▶ data $z_i \in \mathbb{R}^p$, i = 1, ..., q with labels $y_i \in \{-1, 1\}$
- solve

minimize
$$\sum_{i=1}^{q} \log(1 + \exp(y_i w^T z_i)) + \mu ||w||_1$$
 over variable $w \in \mathbb{R}^p$; $\mu > 0$ regularization parameter

can be transformed to exponential cone program (ECP)

ℓ_1 -regularized logistic regression results

	small	medium	large
features <i>p</i>	600	2000	6000
samples <i>q</i>	3000	10000	30000
ECP variables <i>n</i>	10200	34000	102000
ECP constraints m	22200	74000	222000
nonzeros in A	$1.9 imes 10^5$	$1.9 imes 10^6$	1.7×10^7
SCS direct:			
solve time	22.1 sec	165 sec	1020 sec
iterations	280	660	1240
SCS indirect:			
solve time	24.0 sec	199 sec	1290 sec
average CG iterations	2.00	2.49	2.82
iterations	300	760	1320

Numerical results

Large random SOCP

- randomly generated SOCP with known optimal value
- ▶ $n = 1.6 \times 10^6$ variables, $m = 4.8 \times 10^6$ constraints
- \triangleright 2 × 10⁹ nonzeros in A, 22.5Gb memory to store
- ightharpoonup indirect solver, tolerance 10^{-3} , parallelized over 32 threads
- results:
 - ▶ 740 SCS iterations, about 5000 matrix multiplies
 - ▶ 10 hours wall-clock time
 - $|c^T x c^T x^*|/|c^T x^*| = 7 \times 10^{-4}$
 - $|b^T y b^T y^*|/|b^T y^*| = 1 \times 10^{-3}$

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Conclusions

- ► HSD embedding is great for first-order methods
- diagonal preconditioning critical
- ▶ matrix-free algorithm: only $z \to Az$, $w \to A^T w$
- SCS is now standard large scale solver in CVXPY