4.4 Coordinate Systems

In general, people are more comfortable working with the vector space \mathbf{R}^n and its subspaces than with other types of vectors spaces and subspaces. The goal here is to *impose* coordinate systems on vector spaces, even if they are not in \mathbf{R}^n .

THEOREM 7 The Unique Representation Theorem

Let $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

DEFINITION

Suppose $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for a vector space V and \mathbf{x} is in V. The **coordinates of** \mathbf{x} relative to the basis β (or the β – coordinates of \mathbf{x}) are the weights c_1, \dots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$.

In this case, the vector in \mathbf{R}^n

$$[\mathbf{X}]_{\beta} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is called the coordinate vector of x (relative to β), or the β – coordinate vector of x.

EXAMPLE: Let
$$\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 where $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and let $E = \{\mathbf{e}_1, \mathbf{e}_2\}$ where $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

1

Solution:

If
$$[\mathbf{x}]_{\beta} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, then $\mathbf{x} = \underline{\qquad} \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

If
$$[\mathbf{x}]_E = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$$
, then $\mathbf{x} = \underline{\qquad} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

From the last example,

$$\begin{bmatrix} 6 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

For a basis $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, let

$$P_{\beta} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix}$$
 and $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\beta} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

Then

$$\mathbf{x} = P_{\beta}[\mathbf{x}]_{\beta}.$$

We call P_{β} the **change-of-coordinates matrix** from β to the standard basis in \mathbb{R}^n . Then

$$[\mathbf{X}]_{eta} = P_{eta}^{-1} \mathbf{X}$$

and therefore P_{β}^{-1} is a **change-of-coordinates matrix** from the standard basis in \mathbb{R}^n to the basis β .

EXAMPLE: Let
$$\mathbf{b}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathbf{x} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$. Find the

change-of-coordinates matrix P_{β} from β to the standard basis in \mathbb{R}^2 and change-of-coordinates matrix P_{β}^{-1} from the standard basis in \mathbb{R}^2 to β .

Solution
$$P_{\beta} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$
 and so $P_{\beta}^{-1} = \begin{bmatrix} & 3 & 0 \\ & 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} & \frac{1}{3} & 0 \\ & -\frac{1}{3} & 1 \end{bmatrix}$

(b) If
$$\mathbf{x} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$
, then use P_{β}^{-1} to find $[\mathbf{x}]_{\beta} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$.

Solution:
$$[\mathbf{x}]_{\beta} = P_{\beta}^{-1}\mathbf{x} = \begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 8 \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$$

Change between two bases, matrix for a linear transformation relative to a basis: see 4.7, 5.4 in textbook.

Coordinate mappings allow us to introduce coordinate systems for unfamiliar vector spaces.

Standard basis for \mathbf{P}_2 : $\{\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3\} = \{1,t,t^2\}$

Polynomials in \mathbf{P}_2 behave like vectors in \mathbf{R}^3 . Since $a + bt + ct^2 = \mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3$,

$$\left[a+bt+ct^{2}\right]_{\beta} = \left[\begin{array}{c} a \\ b \\ c \end{array}\right]$$

We say that the vector space \mathbf{R}^3 is isomorphic to \mathbf{P}_2 .

EXAMPLE: Parallel Worlds of \mathbb{R}^3 and \mathbb{P}_2 .

Informally, we say that vector space V is **isomorphic** to W if every vector space calculation in V is accurately reproduced in W, and vice versa.

Assume β is a basis set for vector space V. Exercise 25 (page 254) shows that a set $\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_p\}$ in V is linearly independent if and only if $\{[\mathbf{u}_1]_\beta,[\mathbf{u}_2]_\beta,\ldots,[\mathbf{u}_p]_\beta\}$ is linearly independent in \mathbf{R}^n .

EXAMPLE: Use coordinate vectors to determine if $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a linearly independent set, where $\mathbf{p}_1 = 1 - t$, $\mathbf{p}_2 = 2 - t + t^2$, and $\mathbf{p}_3 = 2t + 3t^2$.

Solution: The standard basis set for P_2 is $\beta = \{1, t, t^2\}$. So

$$[\mathbf{p}_1]_{\beta} = \left[\begin{array}{c} \\ \\ \end{array} \right], \ [\mathbf{p}_2]_{\beta} = \left[\begin{array}{c} \\ \\ \end{array} \right], \ [\mathbf{p}_3]_{\beta} = \left[\begin{array}{c} \\ \\ \end{array} \right]$$

Then

$$\begin{bmatrix} 1 & 2 & 0 \\ -1 & -1 & 2 \\ 0 & 1 & 3 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

By the IMT, $\left\{ [\mathbf{p}_1]_{\beta}, [\mathbf{p}_2]_{\beta}, [\mathbf{p}_3]_{\beta} \right\}$ is linearly _____ and therefore

 $\{\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3\}$ is linearly ______.

Coordinate vectors also allow us to associate vector spaces with subspaces of other vectors spaces.

EXAMPLE Let
$$\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 where $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$ and let $H = \text{span}\{\mathbf{b}_1, \mathbf{b}_2\}$.

Find
$$[\mathbf{x}]_{\beta}$$
, if $\mathbf{x} = \begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix}$.

Solution: (a) Find c_1 and c_2 such that

$$c_1 \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix}$$

Corresponding augmented matrix:

$$\left[\begin{array}{ccc} 3 & 0 & 9 \\ 3 & 1 & 13 \\ 1 & 3 & 15 \end{array}\right] \sim \left[\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{array}\right]$$

Therefore
$$c_1 = \underline{\hspace{1cm}}$$
 and $c_2 = \underline{\hspace{1cm}}$ and so $[\mathbf{x}]_{\beta} = \overline{\hspace{1cm}}$.

$$\begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix} \text{ in } \mathbf{R}^3 \text{ is associated with the vector } \begin{bmatrix} 3 \\ 4 \end{bmatrix} \text{ in } \mathbf{R}^2$$

H is isomorphic to \mathbf{R}^2

4.5 The Dimension of a Vector Space

THEOREM 9

If a vector space V has a basis $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, then any set in V containing more than n vectors must be linearly dependent.

Proof: Suppose $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is a set of vectors in V where p > n. Then the coordinate vectors $\{[\mathbf{u}_1]_{\beta}, \dots, [\mathbf{u}_p]_{\beta}\}$ are in \mathbf{R}^n . Since p > n, $\{[\mathbf{u}_1]_{\beta}, \dots, [\mathbf{u}_p]_{\beta}\}$ are linearly dependent and therefore $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ are linearly dependent. \blacksquare

THEOREM 10

If a vector space V has a basis of n vectors, then every basis of V must consist of n vectors.

Proof: Suppose β_1 is a basis for V consisting of exactly n vectors. Now suppose β_2 is any other basis for V. By the definition of a basis, we know that β_1 and β_2 are both linearly independent sets.

By Theorem 9, if β_1 has more vectors than β_2 , then ____ is a linearly dependent set (which cannot be the case).

Again by Theorem 9, if β_2 has more vectors than β_1 , then _____ is a linearly dependent set (which cannot be the case).

Therefore β_2 has exactly n vectors also.

DEFINITION

If V is spanned by a finite set, then V is said to be **finite-dimensional**, and the **dimension** of V, written as dim V, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be 0. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.

EXAMPLE: The standard basis for P_3 is $\{$

In general, dim $\mathbf{P}_n = n + 1$.

EXAMPLE: The standard basis for \mathbb{R}^n is $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ where $\mathbf{e}_1, \dots, \mathbf{e}_n$ are the columns of I_n . So, for example, dim $\mathbb{R}^3 = 3$.

EXAMPLE: Find a basis and the dimension of the subspace

$$W = \left\{ \begin{bmatrix} a+b+2c \\ 2a+2b+4c+d \\ b+c+d \\ 3a+3c+d \end{bmatrix} : a,b,c,d \text{ are real } \right\}.$$

Solution: Since
$$\begin{bmatrix} a+b+2c \\ 2a+2b+4c+d \\ b+c+d \\ 3a+3c+d \end{bmatrix} = a \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix} + b \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 2 \\ 4 \\ 1 \\ 3 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix},$$

 $W = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ where

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 4 \\ 1 \\ 3 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

- Note that v₃ is a linear combination of v₁ and v₂, so by the Spanning Set Theorem, we may discard v₃.
- \mathbf{v}_4 is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . So $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_4\}$ is a basis for W.
- Also, dim *W* =____.

EXAMPLE: Dimensions of subspaces of R³

0-dimensional subspace contains only the zero vector $\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$.

1-dimensional subspaces. Span $\{v\}$ where $v \neq 0$ is in \mathbb{R}^3 .

These subspaces are ______ through the origin.

2-dimensional subspaces. Span $\{u,v\}$ where u and v are in R^3 and are not multiples of each other.

These subspaces are ______ through the origin.

3-dimensional subspaces. Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ where $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbf{R}^3 . This subspace is \mathbf{R}^3 itself because the columns of $A = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix}$ span \mathbf{R}^3 according to the IMT.

THEOREM 11

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and $\dim H \leq \dim V$.

EXAMPLE: Let $H = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$. Then H is a subspace of \mathbb{R}^3 and $\dim H < \dim \mathbb{R}^3$.

We could expand the spanning set $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$ to $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ to form a basis for \mathbf{R}^3 .

THEOREM 12 THE BASIS THEOREM

Let V be a p – dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p vectors in V is automatically a basis for V. Any set of exactly p vectors that spans V is automatically a basis for V.

EXAMPLE: Show that $\{t, 1-t, 1+t-t^2\}$ is a basis for \mathbf{P}_2 .

Solution: Let $\mathbf{v}_1 = t$, $\mathbf{v}_2 = 1 - t$, $\mathbf{v}_3 = 1 + t - t^2$ and $\beta = \{1, t, t^2\}$.

Corresponding coordinate vectors

$$[\mathbf{v}_1]_{\beta} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, [\mathbf{v}_2]_{\beta} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, [\mathbf{v}_3]_{\beta} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

 $[\mathbf{v}_2]_{\beta}$ is not a multiple of $[\mathbf{v}_1]_{\beta}$

 $[\mathbf{v}_3]_{\beta}$ is not a linear combination of $[\mathbf{v}_1]_{\beta}$ and $[\mathbf{v}_2]_{\beta}$

 \Rightarrow $\{[\mathbf{v}_1]_{\beta}, [\mathbf{v}_2]_{\beta}, [\mathbf{v}_3]_{\beta}\}$ is linearly independent and therefore $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is also linearly independent.

Since dim $P_2 = 3$, $\{v_1, v_2, v_3\}$ is a basis for P_2 according to The Basis Theorem.

Dimensions of Col A and Nul A

Recall our techniques to find basis sets for column spaces and null spaces.

EXAMPLE: Suppose $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8 \end{bmatrix}$. Find dim Col A and dim Nul A.

Solution

$$\left[\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8 \end{array}\right] \sim \left[\begin{array}{cccccc} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 \end{array}\right]$$

So
$$\left\{ \left[\right] \right\}$$
 is a basis for Col A and dim Col $A=2$.

Now solve $A\mathbf{x} = \mathbf{0}$ by row-reducing the corresponding augmented matrix. Then we arrive at

$$x_1 = -2x_2 - 4x_4$$

$$x_3 = 0$$

and

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

So
$$\left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -4\\0\\0\\1 \end{bmatrix} \right\}$$
 is a basis for Nul A and

 $\dim \operatorname{Nul} A = 2.$

Note

 $dim\ Col\ A = number\ of\ pivot\ columns\ of\ A$

 $dim \, Nul \, A = number \, of \, free \, variables \, of \, A$

Section 4.6 Rank

The set of all linear combinations of the row vectors of a matrix A is called the **row space** of A and is denoted by Row A.

EXAMPLE: Let

$$A = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 2 & -5 & -6 & -12 \\ 1 & -3 & -3 & -6 \end{bmatrix} \quad \text{and} \quad \begin{aligned} \mathbf{r}_1 &= (-1, 2, 3, 6) \\ \mathbf{r}_2 &= (2, -5, -6, -12) \\ \mathbf{r}_3 &= (1, -3, -3, -6) \end{aligned}$$

Row $A = \operatorname{Span}\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\}$ (a subspace of \mathbb{R}^4)

While it is natural to express row vectors horizontally, they can also be written as column vectors if it is more convenient. Therefore

$$\boxed{\mathsf{Col}\,A^T=\mathsf{Row}\,A}.$$

When we use row operations to reduce matrix A to matrix B, we are taking linear combinations of the rows of A to come up with B. We could reverse this process and use row operations on B to get back to A. Because of this, the row space of A equals the row space of B.

THEOREM 13

If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as B.

EXAMPLE: The matrices

$$A = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 2 & -5 & -6 & -12 \\ 1 & -3 & -3 & -6 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

are row equivalent. Find a basis for row space, column space and null space of A. Also state the dimension of each.

Basis for Row $A:\{$

dim Row A:_____

Basis for Col A: $\left\{ \begin{bmatrix} & & \\ & & \end{bmatrix}, \begin{bmatrix} & & \\ & & \end{bmatrix} \right\}$

 $\dim \operatorname{\mathsf{Col}} A:$

To find Nul A, solve $A\mathbf{x} = \mathbf{0}$ first:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3x_3 + 6x_4 \\ 0 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 6 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Basis for Nul A: $\left\{ \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ and dim Nul } A = \underline{\qquad}$

Note the following:

 $\dim \operatorname{Col} A = \# \operatorname{of} \operatorname{pivots} \operatorname{of} A = \# \operatorname{of} \operatorname{nonzero} \operatorname{rows} \operatorname{in} B = \dim \operatorname{Row} A.$

dim Nul A = # of free variables = # of nonpivot columns of A.

DEFINITION

The **rank** of A is the dimension of the column space of A.

 $\operatorname{rank} A = \operatorname{dim} \operatorname{Col} A = \# \operatorname{of} \operatorname{pivot} \operatorname{columns} \operatorname{of} A = \operatorname{dim} \operatorname{Row} A$

THEOREM 14 THE RANK THEOREM

The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation

$$\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n$$
.

Since Row $A = \text{Col } A^T$,

$$|\operatorname{rank} A = \operatorname{rank} A^T|$$

EXAMPLE: Suppose that a 5×8 matrix A has rank A. Find dim Nul A, dim Row A and rank A^T . Is Col $A = \mathbb{R}^5$?

Solution:

$$5 + \dim \text{Nul } A = 8 \implies \dim \text{Nul } A = \underline{\hspace{1cm}}$$

$$\dim \operatorname{\mathsf{Row}} A = \operatorname{\mathsf{rank}} A = \underline{\hspace{1cm}} \Rightarrow \operatorname{\mathsf{rank}} A^T = \operatorname{\mathsf{rank}} \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Since rank A = # of pivots in A = 5, there is a pivot in every row. So the columns of A span \mathbb{R}^5 (by Theorem 4, page 43). Hence $\operatorname{Col} A = \mathbb{R}^5$.

EXAMPLE: For a 9×12 matrix A, find the smallest possible value of dim Nul A.

Solution:

$$rank A + dim Nul A = 12$$

$$\dim \operatorname{Nul} A = 12 - \operatorname{\underline{rank}} A$$

$$\operatorname{largest possible value=} \underline{\hspace{1cm}}$$

smallest possible value of dim Nul A =_____

Visualizing Row A and Nul A

EXAMPLE: Let $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 2 \end{bmatrix}$. One can easily verify the following:

Basis for Nul $A = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$ and therefore Nul A is a plane in \mathbf{R}^3 .

Basis for Row $A = \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}$ and therefore Row A is a line in \mathbf{R}^3 .

Basis for Col $A = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ and therefore Col A is a line in \mathbb{R}^2 .

Basis for Nul $A^T = \left\{ \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$ and therefore Nul A^T is a line in \mathbf{R}^2 .

Subspaces $\operatorname{Nul} A$ and $\operatorname{Row} A$

Subspaces $Nul A^T$ and Col A

The Rank Theorem provides us with a powerful tool for determining information about a system of equations.

EXAMPLE: A scientist solves a homogeneous system of 50 equations in 54 variables and finds that exactly 4 of the unknowns are free variables. Can the scientist be *certain* that any associated nonhomogeneous system (with the same coefficients) has a solution?

Solution: Recall that

$$\operatorname{rank} A = \operatorname{dim} \operatorname{Col} A = \# \operatorname{of} \operatorname{pivot} \operatorname{columns} \operatorname{of} A$$

 $\dim \text{Nul } A = \# \text{ of free variables}$

In this case $A\mathbf{x} = \mathbf{0}$ of where A is 50×54 .

By the rank theorem,

or

$$\operatorname{rank} A = \underline{\hspace{1cm}}$$
.

So any nonhomogeneous system $A\mathbf{x} = \mathbf{b}$ has a solution because there is a pivot in every row.

THE INVERTIBLE MATRIX THEOREM (continued)

Let A be a square $n \times n$ matrix. The the following statements are equivalent:

- m. The columns of A form a basis for \mathbb{R}^n
- n. $Col A = \mathbf{R}^n$
- o. dim Col A = n
- p. rank A = n
- q. Nul $A = \{ 0 \}$
- r. $\dim \text{Nul } A = 0$