Formal Languages Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$${a,bc}^* = {\lambda,a,bc,aa,abc,bca,...}$$

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 r_1^*
 (r_1)

Are regular expressions

Examples

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression: (a+b+)

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

Example

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Definitions?

$$L(r_1) \cup L(r_2)$$

$$L(r_1) L(r_2)$$

$$(L(r_1)) *$$

Regular expression: $(a+b)\cdot a*$

Example

Regular expression: $(a+b)\cdot a*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression
$$r = (a+b)*(a+bb)$$

Example

Regular expression
$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression r = (aa)*(bb)*b

Example

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

$$(a+b\cdot c)*\cdot (c+\varnothing)$$

Regular expression?

$$L(r)$$
 = { all strings without two consecutive 0 }

Example

Regular expression
$$r = (0+1)*00(0+1)*$$

$$L(r)$$
 = { all strings with at least two consecutive 0 }

Regular expression?

$$L(r)$$
 = { all strings without two consecutive 0 }

Example

Regular expression
$$r = (1+01)*(0+\lambda)$$

$$L(r)$$
 = { all strings without two consecutive 0 }

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if
$$L(r_1) = L(r_2)$$

Example

$$L = \{ all strings without two consecutive 0 \}$$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expr.

Regular Expressions and Regular Languages

Theorem

```
Languages
Generated by
Regular Expressions

Regular
Languages
```

We will show:

Languages
Generated by
Regular Expressions

Regular Languages

Languages
Generated by
Regular Expressions

Regular
Languages

Proof - Part 1

For any regular expression r the language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions: \varnothing , λ , α

NFAS

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{\lambda\} = L(\lambda)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

```
Assume for regular expressions r_1 and r_2 that L(r_1) and L(r_2) are regular languages
```

Inductive Step

We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$

Are regular Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

$$L(r_1)$$
 and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union
$$L(r_1) \cup L(r_2)$$

Concatenation $L(r_1) L(r_2)$
Star $(L(r_1))^*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

Are regular languages

And trivially:

 $L((r_1))$ is a regular language

Proof - Part 2

For any regular language L there is a regular expression r with L(r) = L

Proof by construction of regular expression

Since L is regular take the NFA M that accepts it

$$L(M) = L$$

Single final state

From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions

Example:

Procedure nfa-rex

1. Start with an nfa with states q0,q1, ...qn and a single final state, distinct from its initial state

Procedure nfa-rex

- 1. Start with an nfa with states q0,q1, ...qn and a single final state, distinct from its initial state
- 2. Convert the nfa into a complete generalized transition graph.

Let r_{ij} stand for the label of the edge from qi to qj

Procedure nfa-rex

1.

2.

3.If the generalized transition graph(GTG) has only 2 states with qi as initial and qj as final, as its associated regular expression is

$$r_{ii}^* r_{ij} (r_{jj} + r_{ji} r_{ii} r_{ij})^*$$

4. If GTG has 3 states with the initial state qi and final state qj and the third state qk, introduce new edge labelled

 $r_{pq} + r_{pk} r_{kk}^* r_{kq}$ for p =i, j and q=i, j. When this is done the remove the vertex q_k and its associated edges.

5. If GTG has 4 or more edges , pick a state q_k to be removed. Apply rule 4 for all pairs of states (q_i, q_j) $i \neq k$, $j \neq k$. At each step apply the simplifying rules

Wherever possible. When this is done , remove q_k

6. Repeat step 3 to 5 until the correct regular expression is obtained.

Another Example: \boldsymbol{a} a Reducing the states: \boldsymbol{a} bb*abb*(a+b)

Resulting Regular Expression:

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

In General

Removing states: q_j q_i qaae*dce*bce*d q_i q_j ae*b

The final transition graph:

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$

Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

Elementary Questions

about

Regular Languages

Membership Question

Question: Given regular language L and string w how can we check if $w \in L$?

Membership Question

Question:

Given regular language L and string w how can we check if $w \in L$?

Answer: Take the DFA that accepts L

and check if w is accepted

DFA

$$w \in L$$

DFA

$$w \notin L$$

Question: Given regular language Lhow can we check if L is empty: $(L=\emptyset)$? Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

DFA

$$L \neq \emptyset$$

DFA

$$L = \emptyset$$

Question: Given regular language L how can we check if L is finite?

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

L is infinite

L is finite

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

$$(L_{1} \cap \overline{L_{2}}) \cup (\overline{L_{1}} \cap L_{2}) \neq \emptyset$$

$$\downarrow L_{1} \cap \overline{L_{2}} \neq \emptyset \quad \text{or} \quad \overline{L_{1}} \cap L_{2} \neq \emptyset$$

$$\downarrow L_{1} \quad L_{2} \qquad \qquad L_{2} \subset L_{1}$$

$$\downarrow L_{1} \neq L_{2} \qquad \qquad \downarrow L_{2} \subset L_{1}$$

$$\downarrow L_{1} \neq L_{2}$$