Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di TE1

A.A. 2009-2010 - Docente: Prof. F. Pappalardi Tutori: Annamaria Iezzi e Dario Spirito

Tutorato 6 22 APRILE 2010

1. Calcolare il discriminante dei seguenti polinomi:

a) $X^2 + aX + b$

- b) $X^4 + aX^2 + c$
- 2. Dimostrare che se $f(X) = (X \alpha)g(X) \in \mathbb{Q}[X]$, con $\alpha \in \mathbb{Q}$, allora $D(f) = c^2 D(g)$ per un $c \in \mathbb{Q}$.
- 3. Classificare i gruppi di Galois dei polinomi razionali irriducibili di terzo grado in base al discriminante e trovare esempi in cui il gruppo di Galois è A_3 , in cui è S_3 e il campo di spezzamento non è reale e in cui è S_3 e il campo di spezzamento è reale. È possibile trovare esempi il cui il gruppo è A_3 e il campo di spezzamento non è reale?
- 4. Un ampliamento si dice biquadratico se è il composto di due ampliamenti quadratici, ovvero se $K = F(\sqrt{a}, \sqrt{b})$, dove a e b sono elementi di F. Sia f(X) = $X^4 + aX^2 + c$ un polinomio biquadratico irriducibile di quarto grado tale che il suo campo di spezzamento K ha grado 4 su \mathbb{Q} .
 - a) Identificare tutti i sottogruppi di S_4 di ordine 4 e determinare quali di essi sono transitivi e quali sono contenuti in A_4 .
 - b) Dimostrare che $\operatorname{Gal}_{\mathbb{Q}} K$ è contenuto in A_4 se e solo se $\sqrt{c} \in \mathbb{Q}$. (Suggerimento: usare l'esercizio 1, punto b.)
 - c) Dimostrare che $\mathbb{Q} \subset K$ è biquadratico se e solo se $\operatorname{Gal}_{\mathbb{Q}} K \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 5. Esplicitare la corrispondenza di Galois per i seguenti polinomi:

a) $X^4 + 4X^2 + 2$

b) $X^4 - 10X^2 + 1$ c) $X^4 - 19$

- 6. Dimostrare che se $E \subset F$ è un'estensione normale di campi senza campi intermedi allora [F:E] è un numero primo.
- 7. Sia E un'estensione non reale di \mathbb{Q} .
 - a) Dimostrare che se $\mathbb{Q} \subset E$ è normale allora $[E : \mathbb{Q}]$ è pari. (Suggerimento: cercare un automorfismo involutorio, cioè che coincide con il proprio inverso.)
 - b) Provare questo non è vero in generale se si elimina l'ipotesi di normalità.

- 8. a) Dimostrare che i gruppi \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, D_4 , \mathbb{H} sono a due a due non isomorfi.
 - b) (difficile) Dimostrare che tutti i gruppi di ordine 8 sono isomorfi ad uno di essi.
 - c) Dimostrare che i gruppi \mathbb{Z}_{12} , $\mathbb{Z}_6 \times \mathbb{Z}_2$, D_6 , A_4 sono a due a due non isomorfi.
- 9. Supponiamo che p e 2p+1 siano primi dispari. Esplicitare la corrispondenza di Galois per $\mathbb{Q}(\xi_{4(2p+1)})$.

Sia $n=2^kp_1^{e_1}p_2^{e_2}\cdots p_s^{e_s}$ la fattorizzazzione in primi di n. Allora

$$U(\mathbb{Z}_n) \simeq G \times \prod_{i=1}^s \mathbb{Z}_{\phi(p_i^{e_i})}$$

dove

$$G = \begin{cases} \{e\} & \text{se } k = 0, 1 \\ \mathbb{Z}_2 & \text{se } k = 2 \\ \mathbb{Z}_2 \times \mathbb{Z}_{2^{k-2}} & \text{se } k > 2 \end{cases}$$

10. Trovare tutti i sottocampi intermedi tra \mathbb{Q} e $\mathbb{Q}(\xi_n)$ per $n \leq 25$.