Average Velocity and Displacement

PROBLEM

During a race on level ground, Andra runs with an average velocity of 6.02 m/s to the east. What is Andra's displacement after 137 s?

SOLUTION

Given:
$$v_{avg} = 6.02 \text{ m/s}$$

$$\Delta t = 137 \text{ s}$$

Unknown:
$$\Delta x = ?$$

Rearrange the average velocity equation to solve for displacement.

$$v_{avg} = \frac{\Delta x}{\Delta t}$$

$$\Delta x = \nu_{a\nu g} \Delta t$$

$$\Delta x = v_{avg} \Delta t = (6.02 \text{ m/s})(137 \text{ s}) = 825 \text{ m}$$
 to the east

CALCULATOR SOLUTION

The calculator answer is 824.74 m, but both the values for velocity and time have three significant figures, so the displacement must be reported as 825 m.

PRACTICE A

Average Velocity and Displacement

- **1.** Heather and Matthew walk with an average velocity of 0.98 m/s eastward. If it takes them 34 min to walk to the store, what is their displacement?
- 2. If Joe rides his bicycle in a straight line for 15 min with an average velocity of 12.5 km/h south, how far has he ridden?
- **3.** It takes you 9.5 min to walk with an average velocity of 1.2 m/s to the north from the bus stop to the museum entrance. What is your displacement?
- **4.** Simpson drives his car with an average velocity of 48.0 km/h to the east. How long will it take him to drive 144 km on a straight highway?
- **5.** Look back at item 4. How much time would Simpson save by increasing his average velocity to 56.0 km/h to the east?
- **6.** A bus travels 280 km south along a straight path with an average velocity of 88 km/h to the south. The bus stops for 24 min. Then, it travels 210 km south with an average velocity of 75 km/h to the south.
 - **a.** How long does the total trip last?
 - **b.** What is the average velocity for the total trip?