Groups

Propositions, Lemmas, Theorems and Corollaries

Lectured by Dr Rachel Camina

Michaelmas 2013

Lemma. The identity and inverses are unique.
<i>Proof.</i> Suppose that two distinct identities / inverses exist, and show directly that they are equal. $\hfill\Box$
Lemma. If $g:A\to B$ and $f:B\to C$ are both injective / surjective / bijective, then so is $f\circ g$.
Lemma. The image $\theta(G)$ of a homomorphism $\theta: G \to H$ is a subgroup of H .
<i>Proof.</i> Show that it satisfies the four group axioms, with obvious choices for the identity and inverses. $\hfill\Box$
Lemma. The composition of two homomorphisms is a homomorphism and similarly for isomorphisms.
<i>Proof.</i> Show that the map respects the group operation. For the isomorphism case, composition of bijections is a bijection. $\hfill\Box$
Lemma. The inverse of an isomorphism is an isomorphism.
<i>Proof.</i> Show that the inverse map (which exists since it's a bijection) respects the group operation. $\hfill\Box$
Proposition. $Sym(X)$ is a group under composition of functions.
<i>Proof.</i> Show that is satisfies the group axioms. (Note: a permutation f of a set X is just a bijection $f:X\to X$.)
Lemma. If two cycles in S_n are disjoint they commute.
<i>Proof.</i> Consider separately the effect on an element which is permuted by one, the other, or neither cycle. $\hfill\Box$
Theorem. Every permutation of S_n can be written as a product of disjoint cycles (in an essentially unique way).
<i>Proof.</i> Let $X = \{1, 2, n\}$ and $\sigma \in S_n$. Choose an element a , and consider $a, \sigma(a), \sigma^2(a),$ - then there exists a minimal j such that $\sigma^j(a) = a$ since X is finite. So $(a, \sigma(a),, \sigma^{j-1}(a))$ is a cycle in σ . Repeat with $b \in X \setminus \{a, \sigma(a),, \sigma^{j-1}(a)\}$ etc. until all elements of X are

in a cycle.

Lemma. $g^n = e$ if and only if o(g) divides n. *Proof.* Left to right: use division algorithm to write n = qm + r where o(q) = m, then $e = g^{qm+r} = g^r$, implying r = 0 by the minimality of m. Right to left is trivial. **Lemma.** For disjoint cycles $\sigma, \tau \in S_n$, $o(\sigma\tau) = \text{lcm}(o(\sigma), o(\tau))$. *Proof.* Let $k = \text{lcm}(o(\sigma), o(\tau))$. Then $(\sigma \tau)^k = \sigma^k \tau^k = e$ since σ, τ are disjoint so they commute. Also, if $(\sigma \tau)^n = \sigma^n \tau^n = e$ then $\sigma^n = e$ and $\tau^n = e$ since they permute different elements. So $o(\sigma) \mid n$ and $o(\tau) \mid n$, so $k \mid n$ hence $o(\sigma\tau) = k$. **Proposition.** Any $\sigma \in S_n (n \geq 2)$ can be written as a product of transpositions. *Proof.* Can just consider k-cycles: $(a_1 \ a_2 \ \dots \ a_k) = (a_1 \ a_2)(a_2 \ a_3) \dots (a_{k-1} \ a_k)$. **Lemma.** The function $sgn(\sigma): S_n \to \{\pm 1\}$ is well-defined. *Proof.* Show that multiplication by a transposition $\tau = (k \ l)$ changes the parity of $sgn(\sigma)$, by considering the cases when k and l lie in the same cycle, and in different cycles of **Theorem.** The map $\operatorname{sgn}:(S_n,\circ)\to(\{\pm 1\},\times):\sigma\mapsto\operatorname{sgn}(\sigma)$ is a well-defined, non-trivial homomorphism. *Proof.* Well-defined: see above. Non-trivial: $sgn((1\ 2)) = -1$. Homomorphism: let $\alpha = \tau_1 \dots \tau_a$ and $\beta = \tau'_1 \dots \tau'_b$ where $\alpha, \beta \in S_n$ and τ_i, τ'_i are transpositions, then $\operatorname{sgn}(\alpha\beta) = \operatorname{sgn}(\tau_1 \dots \tau_a \tau'_1 \dots \tau'_b) = (-1)^{a+b} = (-1)^a (-1)^b = \operatorname{sgn}(\alpha)\operatorname{sgn}(\beta)$. Corollary. The even permutations of S_n form a subgroup of S_n , denoted A_n , the alternating group. *Proof.* Show that it satisfies the four group axioms. **Proposition.** For $n \geq 3$, D_{2n} is a non-abelian group of order 2n which naturally embeds into S_n . It is generated by elements σ and τ of orders n and 2 representing a rotation and reflection and hence given by $\{id, \sigma, \dots, \sigma^{n-1}, \tau, \sigma\tau, \dots, \sigma^{n-1}\tau\}$. *Proof.* The group axioms are clearly true since the elements are symmetries. Labelling the vertices of the *n*-gon gives a natural embedding into S_n . **Lemma.** Let $H \leq G$ and $g \in G$. Then there is a bijection between H and gH. In particular, if H is finite, then |H| = |gH|. *Proof.* Define $\theta g: H \to gH: h \mapsto gh$, and check that θg is injective and surjective. **Lemma.** The left cosets of H in G form a partition of G. *Proof.* Any element g is in gH since $e \in H$. Suppose $c \in aH \cap bH$, and show that aH = bH = cH. Now, $c \in aH$, so $\exists k \in H$ such that c = ak. So $cH = \{ch : h \in H\} = aH$ $\{akh: h \in H\} \subseteq aH \text{ (since } kh \in H \text{ by closure)}.$ Similarly, $a = ck^{-1} \text{ so } aH \subseteq cH.$ Thus aH = cH, and similarly bH = cH. **Lemma.** Let $H \subseteq G$ and $a, b \in G$. Then aH = bH if and only if $a^{-1}b \in H$. *Proof.* Left to right: $b \in aH$ so b = ak, some $k \in H$, so $a^{-1}b = k \in H$.

Right to left: $a^{-1}b = k$, some $k \in H$, so $b = ak \in aH$ and $b \in bH$. Since $aH \cap bH \neq \emptyset$,

aH = bH (see above).

Theorem (Lagrange's Theorem). Let H be a subgroup of a finite group G. The order of H divides the order of G.

Proof. G is partitioned into distinct cosets of H, say $G = g_1 H \dot{\cup} g_2 H \dot{\cup} \dots \dot{\cup} g_k H$. Since $|g_i H| = |H|$, it is clear that |G| = k|H|.

Corollary (Lagrange's Corollary). Let G be a finite group and $g \in G$. Then $o(g) \mid |G|$. In particular, $g^{|G|} = e$.

Proof. Consider the subgroup generated by g, which has order o(g), and by Lagrange's Theorem this divides the order of G.

Corollary. If |G| = p for some prime p then G is cyclic.

Proof. Let
$$e \neq g \in G$$
. Then $o(g) \mid |G| = p$ by Lagrange. Since $o(g) \neq 1$, $o(g) = p$, so $|\langle g \rangle| = p = |G|$, so $\langle g \rangle = G$.

Theorem (Fermat-Euler Theorem). Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with hcf(a, n) = 1. Then $a^{\phi(n)} \equiv 1 \mod n$.

Proof. For $n \in \mathbb{N}$ define $R_n = \{a : 1 \le a \le n, \operatorname{hcf}(a, n) = 1\}$ and show that it is a group under \times_n : $\operatorname{hcf}(a, n) = \operatorname{hcf}(b, n) = 1 \Longrightarrow \operatorname{hcf}(ab, n) = 1$ and find inverses by Bezout's Theorem. Then by Lagrange, $\bar{a}^{|R_n|} = 1$, where $\bar{a} = a \mod n$. But $|R_n| = \phi(n)$, so $a^{\phi(n)} \equiv 1 \mod n$.

Proposition. Let $K \leq G$. The following are equivalent definitions of normal subgroup:

- i) $gK = Kg \quad \forall g \in G$
- ii) $gKg^{-1} = K \quad \forall g \in G$
- iii) $gkg^{-1} \in K \quad \forall k \in K, g \in G$

Proof. (i) \Rightarrow (ii) $gKg^{-1} = (gK)g^{-1} = (Kg)g^{-1} = K$

- (ii) \Rightarrow (iii) Trivial.
- (iii) \Rightarrow (i) $gkg^{-1} = k'$, some $k' \in K$, so gk = k'g i.e. $gK \subseteq Kg$. Similarly, $g^{-1}kg = k''$, so $Kg \subseteq gK$. Thus gK = Kg.

Lemma. If K is a subgroup of G of index 2 then K is normal in G.

Proof. Let $g \in G \setminus K$. Then $G = K \cup gK$ and $G = K \cup Kg$ by Lagrange. Hence $gK = Kg \quad \forall g \in G$.

Theorem. If $K \leq G$, the set (G : K) of left cosets of K in G is a group (the quotient group) under coset multiplication.

Proof. Show that coset multiplication is well-defined. Since K is normal in G, gK = Kg. Thus, if $gK = \hat{g}K$ and $hK = \hat{h}K$ then $ghK = g\hat{h}K = gK\hat{h} = \hat{g}K\hat{h} = \hat{g}\hat{h}K$. Then show that the group axioms hold.

Theorem (First Isomorphism Theorem). Let G, H be groups and $\theta : G \to H$ a group homomorphism. Then $\operatorname{Im}(\theta) < H, \operatorname{Ker}(\theta) \trianglelefteq G$ and $G/\operatorname{Ker}(\theta) \cong \operatorname{Im}(\theta)$.

Proof. $Im(\theta) \leq H$: obvious since θ is a homomorphism.

 $\operatorname{Ker}(\theta) \leq G$: on example sheet 1; show satisfies group axioms and that $\theta(gkg^{-1}) = e_H$ i.e. $gkg^{-1} \in \operatorname{Ker}(\theta)$.

 $G/\mathrm{Ker}(\theta) \cong \mathrm{Im}(\theta)$: construct an isomorphism $\phi: G/\mathrm{Ker}(\theta) \to \mathrm{Im}(\theta): gK \mapsto \theta(g)$ where $K = \mathrm{Ker}(\theta)$. To show that it is an isomorphism ...

Well-defined: Suppose gK = hK, then $h^{-1}g \in K$. Hence by definition, $\theta(h^{-1}g) = e_H$, so $\theta(h)^{-1}\theta(g) = e_H$ since θ is a homomorphism. Thus $\theta(g) = \theta(h)$ and so $\phi(gK) = \phi(hK)$.

Homomorphism: $\phi(gKhK) = \phi(ghK) = \theta(gh) = \theta(g)\theta(h) = \phi(gK)\phi(hK)$. Surjective: Reverse the argument for well-defined.

Lemma. A homomorphism $\theta: G \to H$ is injective if and only if $Ker(\theta) = \{e_G\}$.

Proof. Left to right: Suppose $g \in \text{Ker}(\theta)$, then $\theta(g) = e_H = \theta(e_g)$, so $g = e_G$. Right to left: Suppose $\theta(g) = \theta(h)$, then $\theta(h^{-1}g) = e_H$. Thus $h^{-1}g \in \text{Ker}(\theta) = \{e_G\}$, so h = g.

Lemma. Let $N \subseteq G$ and $H \subseteq G$ then $NH \subseteq G$.

Proof. Show that $NH = \{nh : n \in N, h \in H\}$ satisfies the group axioms. e.g. Closure: For $nh, \bar{n}\bar{h} \in NH$, $nh.\bar{n}\bar{h} = n\hat{n}h\bar{h}$ for some $\hat{n} \in N$ since N normal.

Lemma. Let $N \subseteq G$, $M \subseteq G$ then $NM \subseteq G$.

Proof. Let $nm \in NM, g \in G$. Then $gnmg^{-1} = gng^{-1}gmg^{-1} \in NM$ since $gng^{-1} \in N$ and $gmg^{-1} \in M$.

Lemma. Let $(h, k) \in H \times K$. Then o((h, k)) = lcm(o(h), o(k)).

Proof. Let m = lcm(o(h), o(k)). Then $(h, k)^m = (h^m, k^m) = (e, e)$. Suppose $(e, e) = (h, k)^n = (h^n, k^n)$, then $h^n = e$ and $k^n = e$, so $o(h) \mid n$ and $o(k) \mid n$, so $\text{lcm}(o(h), o(k)) \mid n$.

Corollary. $C_n \times C_m \cong C_{nm}$ if and only if hcf(n, m) = 1.

Proof. By above result, there exists an element in $C_n \times C_m$ of order nm if and only if hcf(n,m) = 1.

Proposition. Let G be a group with subgroups H and K. If:

- i) each element of G can be written as hk with $h \in H$ and $k \in K$
- ii) $H \cap K = \{e\}$
- iii) $hk = kh \quad \forall h \in H, \ k \in K$

then $G \cong H \times K$ and we call G the *internal* direct product of H and K.

Proof. Define $\theta: G \to H \times K: g = hk \mapsto (h, k)$.

Well-defined: Suppose $g = h_1 k_1 = h_2 k_2$, then $h_2^{-1} h_1 = k_2 k_1^{-1} \in H \cap K = \{e\}$, so $h_1 = h_2$ and $k_1 = k_2$ i.e. the expression g = hk is unique.

Homomorphism: $\theta(g_1g_1) = \theta(h_1k_1h_2k_2) = \theta(h_1h_2k_1k_2) = (h_1h_2, k_1, k_2) = (h_1, k_1)(h_2, k_2) = \theta(g_1)\theta(g_2)$

Surjective: $g = hk \mapsto (h, k)$

Injective: Suppose $\theta(g_1) = \theta(g_2)$, then $(h_1, k_1) = (h_2, k_2)$, so $h_1 = h_2$ and $k_1 = k_2$, thus $g_1 = g_2$.

Lemma. Suppose G acts on the non-empty set X via ρ . Fix $g \in G$. Then the map $\phi_g: X \to X: x \mapsto \rho(g, x)$ is a permutation.

Proof. ϕ_g is obviously a map, so need to show it is a bijection, or equivalently that it has a 2-sided inverse. For any $x \in X$, we have $\phi_{g^{-1}} \circ \phi_g(x) = \rho(g^{-1}, \rho(g, x)) = \rho(g^{-1}g, x) = \rho(e, x) = x$ and similarly $\phi_g \circ \phi_{g^{-1}}(x) = x$.

Proposition. Suppose G acts on the set X. Then the map $\Phi: G \to \operatorname{Sym}(X): g \mapsto \phi_g$ as above is a homomorphism. i.e. $\Phi(gh) = \Phi(g) \circ \Phi(h)$.

Proof. Let
$$x \in X$$
. Then $\phi_{qh}(x) = \rho(gh, x) = \rho(g, \rho(h, x)) = \phi_q \circ \phi_h(x)$.

Theorem (Cayley's Theorem). Any group G is isomorphic to a subgroup of Sym(X) for some X. e.g. take X to be the elements of G.

Proof. Consider the left regular action $G \times G \to G : (g,h) \mapsto gh$. This is a faithful action (since $gh = h \quad \forall h \in G \implies g = e$). Thus we have an injective homomorphism $\Phi: G \to \operatorname{Sym}(X)$ and $G \lesssim \operatorname{Sym}(G)$.

Lemma. The distinct orbits form a partition of X.

Proof. Note that for $x \in X$, $x \in \operatorname{Orb}_G(x)$ since e(x) = x. Then suppose that $z \in \operatorname{Orb}_G(x) \cap \operatorname{Orb}_G(y)$ and show that $\operatorname{Orb}_G(x) = \operatorname{Orb}_G(z) = \operatorname{Orb}_G(y)$.

Lemma. Stab_G(x) is a subgroup of G.

Proof. Show that it satisfies the group axioms.

Theorem (Orbit-Stabiliser Theorem). Let G be a finite group acting on a set X. Let $x \in X$, then $\operatorname{Stab}_G(x) \leq G$ and $|G| = |\operatorname{Stab}_G(x)||\operatorname{Orb}_G(x)|$.

Proof. Prove that $|(G : \operatorname{Stab}_G(x))|$, the number of left cosets of $\operatorname{Stab}_G(x)$ in G is equal to the order of $\operatorname{Orb}_G(x)$.

Let $\theta: (G: \operatorname{Stab}_G(x)) \to \operatorname{Orb}_G(x): g\operatorname{Stab}_G(x) \mapsto g(x)$.

Check that θ is well-defined: suppose $g\operatorname{Stab}_G(x) = h\operatorname{Stab}_G(x)$, then $h^{-1}g \in \operatorname{Stab}_G(x)$, so $h^{-1}g(x) = x$, so g(x) = h(x), i.e. $\theta(g\operatorname{Stab}_G(x)) = \theta(h\operatorname{Stab}_G(x))$.

Show that θ is injective: suppose $\theta(g\operatorname{Stab}_G(x)) = \theta(h\operatorname{Stab}_G(x))$, then g(x) = h(x), so $h^{-1}g(x) = x$, thus $h^{-1}g \in \operatorname{Stab}_G(x)$, so $g\operatorname{Stab}_G(x) = h\operatorname{Stab}_G(x)$.

Show that θ is onto: if $g(x) \in \operatorname{Orb}_G(x)$ then $\theta(g\operatorname{Stab}_G(x)) = g(x)$.

Thus θ is a well-defined bijection, so the two sets have equal size.

Theorem (Cauchy's Theorem). Let G be a finite group and p a prime, with p dividing |G|. Then there exists an element in G of order p.

Proposition. Let p be a prime and G a group of order p^n , some $n \ge 1$. Then Z(G) is non-trivial, i.e. $Z(G) > \{e\}$.

Lemma. Let G be a finite group and Z(G) the centre of G. If G/Z(G) is cyclic then G is abelian.

Corollary. Suppose $|G| = p^2$ for some prime p. Then G is abelian and up to isomorphism there are just two groups of order p^2 , namely C_{p^2} and $C_p \times C_p$.

Theorem. The permutations π and σ in S_n are conjugate in S_n if and only if they are of the same cycle type.

Corollary. The number of distinct conjugacy classes in S_n is given by p(n), the number of partitions of n into positive integers i.e. $n = n_1 + n_2 + \ldots + n_k$ with $n_1 \ge n_2 \ge \ldots \ge n_k \ge 1$.

Theorem. A_5 is a simple group (it has no non-trivial proper normal subgroups).

Proposition. $GL_n(\mathbb{R})$ is a group under matrix multiplication.

Proposition. Det : $GL_n(\mathbb{R}) \to (\mathbb{R}^*, \times) : A \mapsto \det(A)$ is a surjective homomorphism.

Proposition. $O_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$.

Lemma. Let $A \in O_n(\mathbb{R})$ and $x, y \in \mathbb{R}^n$. Then

i)
$$A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$$

ii)
$$|A\mathbf{x}| = |\mathbf{x}|$$

Proof. i)
$$A\mathbf{x} \cdot A\mathbf{y} = (A\mathbf{x})^T (A\mathbf{y}) = \mathbf{x}^T A^T A \mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{x} \cdot \mathbf{y}$$

ii) $|A\mathbf{x}|^2 = A\mathbf{x} \cdot A\mathbf{x} = \mathbf{x} \cdot \mathbf{x} = |\mathbf{x}|^2$

Proposition. Let $A \in SO_e(\mathbb{R})$. Then A has as eigenvector with eigenvalue 1.

Theorem. Let $A \in SO_3(\mathbb{R})$. Then A is conjugate to a matrix of the form

$$\begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}$$

for some $\theta \in [0, 2\pi)$. In particular, A is a rotation through an axis through the origin.

Theorem. Any element of $O_3(\mathbb{R})$ is a product of at most 3 reflections.

Proposition. Suppose there exists at least 3 values of $z \in \mathbb{C}$ such that $\frac{az+b}{cz+d} = \frac{\alpha z+\beta}{\gamma z+\delta}$, with $ad-bc \neq 0$ and $\alpha \delta - \beta \gamma \neq 0$. Then there exists $\lambda \neq 0$ such that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \lambda \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ i.e. the two maps agree on all of \mathbb{C}_{∞} .

Theorem. The set M of all Möbius maps on \mathbb{C}_{∞} is a group under composition. It is a subgroup of $\mathrm{Sym}(\mathbb{C}_{\infty})$.

Theorem.
$$\frac{GL_2(\mathbb{C})}{Z} \cong M$$
 where $Z = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \in GL_2(\mathbb{C}, \lambda \neq 0) \right\}$

Corollary.
$$\frac{SL_2(\mathbb{C})}{\{\pm I\}} \cong M$$

Proposition. Every Möbius map can be written as a composition of maps of the following forms:

i)
$$f(z) = az, \quad a \neq 0$$
 dilatation or rotation ii) $f(z) = z + b$

iii) $f(z) = \frac{1}{z}$ inversion

Theorem. The action of M on \mathbb{C}_{∞} is sharply triply transitive. i.e. there exists a unique $f \in M$ such that given $x_1, x_2, x_3 \in \mathbb{C}_{\infty}$ all distinct and $y_1, y_2, y_3 \in \mathbb{C}_{\infty}$ all distinct, $f(x_i) = y_i$ for i = 1, 2, 3.

Theorem. Any non-identity Möbius map is conjugate to one of:

- i) $f(z) = \nu z, \quad \nu \neq 0, 1$
- ii) f(z) = z + 1

Corollary. A non-identity Möbius map f has either 2 fixed points or 1 fixed point.

Theorem. Let $f \in M$ and C a circle or line in \mathbb{C}_{∞} , then f(C) is a circle or line in \mathbb{C}_{∞} .

Theorem. Given $z_1, z_2, z_3, z_4 \in \mathbb{C}_{\infty}$ distinct and $w_1, w_2, w_3, w_4 \in \mathbb{C}_{\infty}$ distinct, there exists $f \in M$ such that $f(z_i) = w_i$ if and only if $[z_1, z_2, z_3, z_4] = [w_1, w_2, w_3, w_4]$. In particular, Möbius maps preserve cross-ratios, i.e. $[z_1, z_2, z_3, z_4] = [f(z_1), f(z_2), f(z_3), f(z_4)]$.

Corollary. z_2, z_2, z_3, z_4 lie in some circle or line in \mathbb{C}_{∞} if and only if $[z_1, z_2, z_3, z_4] \in \mathbb{R}$.