

Architecture des ordinateurs : Fiche de TD 2

Logique séquentielle & bascules novembre 2009

1 Bascules RS et D

Figure 1: Bascule RS=0

Considérons la bascule RS=0 illustrée Figure 1.

Question 1.1: Remplissez le tableau ci-dessous :

R	0	0	1	1	1	1	1	0	0	0	0	0	0
S	1	0	0	0	0	0	0	1	1	1	1	1	1
q1	1												
q1 $q2$	0												
Q1	1												
Q2	0												

Solution 1.1:

R	0	0	1	1	1	1	1	0	0	0	0	0	0
S	1	0	0	0	0	0	0	1	1	1	1	1	1
q1	1	1	1	1	0	0	0	0	0	0	0	0	1
q2	0	0	0	0	0	0	1	1	1	1	0	0	0
Q1	1	1	1	0	0	0	0	0	0	0	0	1	1
Q2	0	0	0	0	0	1	1	1	1	0	0	0	0

Question 1.2: Que se passe-t-il lorsque l'on met R = S = 1 ?

Solution 1.2 : Ça met la bascule dans un état instable lorsque l'on passe de cet état à R=S=0. Le montrer à la suite du tableau ?

Question 1.3: Donner l'équation logique d'une bascule R.S=0 — i.e. donner l'expression de Q_{n+1} en fonction de R,S et Q_n . Même question avec une bascule $\overline{R}.\overline{S}=0$ (obtenue en niant les entrées).

Solution 1.3:

- $RS = 0 : Q_{n+1} = S + Q_n.\overline{R} ;$
- $\overline{R}.\overline{S} = 0$: $Q_{n+1} = \overline{R} + S.Q_n$.

Figure 2: Bascule D

Question 1.4 : Donnez l'expression logique de la bascule D donnée Figure 2.

Solution 1.4: Deux cas possibles:

- $W = 0 \Rightarrow R = S = 1 \Rightarrow Q_{n+1} = Q_n$ rien ne change ;
- $W=1\Rightarrow R=\overline{D}$ S=D: - $D=1\Rightarrow R=0$ $S=1\Rightarrow Q_{n+1}=1,$ - $D=0\Rightarrow R=1$ $S=0\Rightarrow Q_{n+1}=0.$

D'où:

$$Q_{n+1} = \overline{W}.Q_n + W.D$$

2 Bascules JKME

On considère les bascules dites JKME illustrées Figure 3.

Figure 3: Bascule JKME

Question 2.1 : Donnez la table de vérité d'une bascule JKME (en commençant par étudier le $cas\ H=0$).

Solution 2.1:

Question 2.2 : À partir de deux bascules JKME, réalisez un compteur modulo 3.

Solution 2.2:

- 1. Il faut avant tout expliquer le fonctionnement en maître-esclave. Suivant la valeur de H, c'est le maître ou l'esclave qui est actif :
 - si H=0, on a forcément R=S=1 pour le maître. Pour l'esclave : R=1 S=0 si le maître vaut 0 et R=0 S=1 si le maître vaut 1. On dit que l'esclave copie le maître.
 - si H=1, on a forcément R=S=1 pour l'esclave. Pour le maître, on note Q_e l'état mémorisé par l'esclave, et on calcule R_m et S_m les entrées de la bascule maître :

J	K	Q_e	R_m	S_m	commentaire
0	0	0	1	1	rien ne change et le maître vaut déjà 0
0	0	1	1	1	rien ne change et le maître vaut déjà 1
0	1	0	1	1	rien ne change et le maître vaut déjà 0
0	1	1	1	0	le maître mémorise 0
1	0	0	0	1	le maître mémorise 1
1	0	1	1	1	rien ne change et le maître vaut déjà 1
1	1	0	0	1	le maître mémorise 1
1	1	1	1	0	le maître mémorise 0

Vu de l'extérieur, la bascule JKME mémorise une information sur un front descendant (quand l'esclave copie) et on a le fonctionnement suivant :

J	$\mid K \mid$	Q_{n+1}	commentaire
0	0	Q_n	état stable
0	1	0	K pour kill : mise à zéro
1	0	1	mise à un
1	1	$\overline{Q_n}$	inversion du bit mémorisé

Notons que l'on utilise des maître-esclave pour éviter que la bascule ne s'inverse deux fois de suite : ici les valeurs en entrée du maître ne dépendent pas de la valeur du maître mais uniquement de l'esclave (de plus, l'esclave est inactif quand le maître est actif \Rightarrow pas de changement de l'esclave quand on calcule les entrées du maître).

 $00 \rightarrow 01 \rightarrow 10 \rightarrow 00 \rightarrow 01 \dots$

2. On veut faire un compteur modulo 3 avec deux bascules. On doit donc avoir la séquence :

Figure 4: Bascules JKME A et B pour faire le compteur.

Considérons deux bascules JKME nommées A et B illustrées Figure 4. La bascule A mémorisera le bit de poids fort et B le bit de poids faible.

Regardons ce que doit valoir JA, KA, JB, KB en fonction de QA et QB:

QA_n	QB_n	QA_{n+1}	QB_{n+1}	JA	KA	JB	KB
0	0	0	1	?	?	?	?
0	1	1	0	?	?	?	?
1	0	0	0	?	?	?	?
1	1	?	?	?	?	?	?

Le cas 11 n'est pas sensé arriver \Rightarrow on l'ignore.

Pour savoir que mettre dans JA, KA, JB, KB, regardons ce qu'il faut mettre à l'entrée d'une bascule JKME pour les différentes transitions possibles :

- état 0 vers état 0 : soit J=K=0 (rien ne change) ou J=0, K=1 (on force à 0). On est obligé de mettre J=0, par contre la valeur de K est indifférente. On note $JK=0\phi$.
- état 0 vers état 1 : soit J=1, K=0 (on force à 1) ou J=K=1 (on inverse). On a donc $JK=1\phi$.
- état 1 vers état 0 : soit J=0, K=1 (on force à 0) ou J=K=1 (on inverse). On a donc $JK=\phi 1$.
- état 1 vers état 1 : soit J=K=0 (rien ne change) ou J=1, K=0 (on force à 1). On a donc $JK=\phi 0$.

On peut donc remplir le tableau :

QA_n	QB_n	QA_{n+1}	$Q_{n+1}B$	JA	KA	JB	KB
0	0	0	1	0	ϕ	1	ϕ
0	1	1	0	1	ϕ	ϕ	1
1	0	0	0	ϕ	1	0	ϕ
1	1 1	?	?	ϕ	ϕ	ϕ	ϕ

Les fonctions logiques les plus pour calculer JA,KA,JB,KB en fonction de QA et QB sont donc :

$$JA = QA \downarrow \overline{QB}$$
 $KA = 1$ $JB = QA \downarrow QB$ $KB = 1$

D'où le schéma final donné Figure 5.

Figure 5: Compteur modulo 3