Versuchsdurchführung zu Dopplerfreie Sättigungsspektroskopie von Rubidium

Anna-Maria Pleyer

September 26, 2021

1 Versuchsaufbau realisieren

1.1 Bereits aufgebaut

- \Rightarrow keine Veränderung notwendig
 - Laser
 - ullet lineare Polarisator
 - $\bullet\,$ Spiegel S1 und S2
 - $\frac{\lambda}{2}$ Plättchen

1.2 Justage

Nach Abbildung:

Figure 1: Versuchsaufbau

a) S3 und S4 justieren

- Höhe: $12\,\mathrm{cm}$
- auf Lochreihe stellen
- ca. 45° zum einfallenden Strahl
- siehe Abbildung 2

Figure 2: Justierung von S3 und S4

b) Strahl mit Justierspitze ausrichten

- Auswahl von zwei Positionen auf Lochreihe
- P1: Stelle wo zweiter Strahlenteile St2 stehen soll
- P2: so weit wie möglich entfernt
- c) Justage von S3 auf P1 und S4 auf P2 abwechselnd
 - \Rightarrow Justierspitze muss genau gestroffen werden
- d) Falls schwacher Laser: Intensität mithilfe des $\frac{\lambda}{2}$ Plättchen erhöhen
- e) Strahlenteiler St2 einbauen
 - nach Abbildung 1 einbauen
 - optische Elemente müssen vom Strahl mittig getroffen werden
 - Strahlenteiler justieren \Rightarrow Strahlenteiler soll nicht verkippen
 - * Pumpstrahl blocken
 - * Pumpstrahl per Rückflexion auf S4 justieren

f) Pump- und Probestrahl überlagern

- zwei Irisblenden[I1 und I2] (Höhe Mittelpunkt 12 cm) zwischen St1 und St2 einbauen
- S3 auf I1 justieren
- S4 auf I2
- Vergleiche Abbildung 3

Figure 3: Überlagerung von Pump- und Probestrahl

- g) S5, S6 und Detektor D2 wie in Abbildung 1 aufbauen ⇒ Strahlen müssen Detektor mittig treffen
- h) Gaszelle einsetzen \Rightarrow beide Strahlen zwischen St1 und St2 müssen gerade und parallel durch Gaszelle verlaufen

1.3 Hinweis zur Justage

Laserstrahl läuft über einen Spiegel hinaus:

- Spiegel wshl. zu weit neben der gewünschten Lochreihe
- Spiegeloberfläche (und nicht Halterung) müssen auf der richtigen Lochreihe stehen
- Spiegeloberfläche in 45° zum einfallenden Strahl
- Spiegel soltte mit Laserstrahl mittig getroffen werden

2 Abstimmung der Strahlintensitäten

- mithilfe des $\frac{\lambda}{2}$ Plättchen und Filterrad
- Intensität Referenzstrahl = Intensität des parallelen Probestrahl (ohne Pumpstrahl)
- Pumpstrahl stärker als Probestrahl 100:1
- Intensitäten mit Messprogram ablesebar
- Veränderung der Intensitäten mithilfe des Filterrades

3 Überprüfung der Detektoren und Gaszelle

- Gaszelle muss am Heizer (richtig) angeschlossen sein
- Detektor mit Strom versorgen
- Detektor an aio-ai4 des NI-USB 6002 AD-Interface anschließen

4 Messprogramm

- Zeeman-op
- \bullet Funktioniert nur wenn ... eingeschaltet:
 - Laser
 - Heizelement der Gaszelle
 - \Rightarrow Temperature Controller
 - programmable DC power Supply
 - Function Arbitrary Waveform Generator

4.1 Hinweise zum Messprogramm

- Linke Seite: Auswahl der Kanäle
- Registerkarten
 - Laserpower
 - * rechtes Feld: Speicherung der Messung
 - * Einstellung der Scan-range
 - \Rightarrow Bereich welchen der Laserstrahl durchlaufen soll
 - * Einstellung der Scan-steps
 - ⇒ Wie viele Punkte sollen in dem Bereich aufgenommen werden?
 - ⇒ Maximum 2000 bei einer Messreihe
 - * Einstellung der dt/pixel
 - \Rightarrow Zeit pro Messpunkt während der Messung
 - \Rightarrow Wert zwichen 100 und 200 bei einer Aufnahme einer Messreihe
 - Adjust
 - \Rightarrow Eingangsignal in Echtzeit
 - \Rightarrow wichtig für Intensitätsanpassung

4.2 Hinweise zur Signalverbesserung

- Modensprung = Schlagartiger Sprung der Wellenlänge
- Aufnahme des doppelverbreiterten Spektrum innerhalb von 2 Modensprüngen
 - \Rightarrow 4 Linien innerhalb 2 Modensprünge müssen klar voneinander unterscheidbar sein
 - \Rightarrow Verschiebung der Modensprünge: Lasertemperatur [Veränderung zwischen 21° und 23° in 0,2° Schritten]
- EXAKTE Überlagerung von Pump- und Probestrahl
- Sättigung des Detektors:
 - ⇒ Verringerung der Intensität (vor dem Detektor abschwächen, damit keine Veränderung im Versuchsaufbau)
- Falls keine Hyperfeindips: Anpassung der Intensitäten

5 Aufgaben

Allgemein

- FPI Signal BEI JEDER MESSUNG mitaufnehemen
- Kanäle notieren
- \bullet Jeweils für Gaszellentemperatur von 23° bis 60° messen

Messungen

- 1. Ausschnitt zwischen 2 Modensprüngen (alle 4 Linien müssen erkennbar sein)
- 2. Die einzelnen Linien messen (Linien BENENNEN)
- 3. Ausschnitt zwichen zwei Modensprüngen bei Lasertemperatur 40°