Honors Algebra 2: Practice, Practice, Practice! = $(Practice)^3$!

1. List the key features for the graph below

Domain: $(-\infty, -6] \cup (-3, 6] \cup [8, \infty)$

Range: $\left(-5, \infty\right)$

Is the function continuous? YES or NO

Constant: (-10, -6)

Increasing: $(-3,2) \cup (2,3) \cup (8,4)$

Decreasing: (3,6)

Turning point(s): (3, 4)

Intercept(s): (-7,0) (5,0) (9,0) (0,2)

Zero(s): X=-2 X=5 X=9

End Behavior: $As x \rightarrow -\infty$, $f(x) \rightarrow \underline{\hspace{1cm}}$

As $x \to \infty$, $f(x) \to \underline{\hspace{1cm}}$

Name:	F	PD:		Date:	
-------	---	-----	--	-------	--

-10-

Honors Algebra 2: Practice, Practice, Practice! = $(Practice)^3$!

Given the key features below, graph the function on the xy-coordinate plane. Make sure you 2. label your function.

Domain: [-9, 6]

Range: [-7, 8]

-10

Increasing interval from (-3, 3)

Roots: x = -2, x = 5

Name:	PD:	Date:

Honors Algebra 2: Practice, Practice, Practice! = $(Practice)^3$!

Solve each equation for the indicated variable. 3.

a.
$$-2(x + 4) = 30 - (8 - 2x)$$
 for x.
 $-2x - 8 = 30 - 8 + 2x$
 $+8 + 8$
 $-2x = 30 + 2x$
 $-2x = 30 + 2x$

b.
$$g = 4ca - 3ba$$
 for a

$$\frac{g=a(4c-3b)}{4c-3b}$$

$$\frac{9}{4c-3b}=0$$

4. Solve for x algebraically and solve the equation graphically

$$\frac{-2|x+4| = -6}{-2}$$

$$|x+4| = 3$$

$$-4 - 4$$

$$|x+4| = 3$$

$$-(x+4) = 3$$

$$|x+4| = 3$$

$$|x+4| = 3$$

$$|x+4| = -3$$

$$|x+4| = -3$$

$$|x+4| = -3$$

$$|x+4| = -3$$

Method 2 -2/x+4]=-6+6 -21 x+4/+6=0 vertex (-4,6) Stope 2

X = -7.5 or $-\frac{15}{2}$

Date:

Honors Algebra 2: Practice, Practice, Practice! = (Practice)³!

vertex (3, 9)

5. Graph the following function and write all transformations in order.

$$f(x) = -\frac{2}{3}|x - 3| + 9$$

Transformations:

- 1. Horizondal Shift right 3
- 2. Reflected over X-axis
- 3. Vertical compression of 2/3
- 4. Vertical Shift up 9

6. Solve for x, write your answer on the number line and in interval notation.

$$4 - 2|x - 4| \le 8$$

$$-4 \qquad -4$$

$$-2|x - 4| \le 4$$

$$-2|x - 4| \le 7$$

$$-2 \qquad -2$$

$$|x - 4| \ge -2$$

7. Solve for x, write your answer on the number line and in interval notation.

Solve for x, write your answer on the number line and in interval notation
$$2x+6$$
 $2x+6$ $2x$

Honors Algebra 2: Practice, Practice, Practice! = (Practice)³!

8. Solve for x, write your answer on the number line and in interval notation.

(-∞, -b]∪[20, ∞)

9. Let f(x) = |x|. Graph -2f(-x-7) + 5 and write the transformations in order.

Transformations:

- 1. Horizontal Shift right 7
- 2. reflect over y-axis
- 3 reflect over x-axis
- 14) vertical stretch of 2
- 5 vertical shift up 5

- 10. For the functions g(x) = x + 3 and $h(x) = \frac{1}{x^2}$,
 - a. Find $\frac{h(x)}{g(x)} = \frac{\frac{1}{x^2}}{x+3} = \frac{1}{x^2} \div \frac{x+3}{x^2} = \frac{1}{x^2} \cdot \frac{1}{x+3} = \frac{1}{x^2(x+3)} = \frac{1}{x^3+3x^2}$

b. Find
$$h \circ h(3) \ge h(h(3)) = h(\frac{1}{3^2}) = h(\frac{1}{4})$$

$$h(\frac{1}{4}) = \frac{1}{(\frac{1}{4})^2} = \frac{1}{\frac{1}{81}} = 1 \cdot \frac{1}{81} = 1 \cdot \frac{1}{81} = 1$$

c.
$$h(g(x))$$

 $h(x+3) = \frac{1}{(x+3)^2} = \frac{1}{x^2+6x+9}$

Name: _____ PD: ____ Date: _____ Date: _____ Honors Algebra 2: Practice, Practice, Practice! = (*Practice*)³!

11. Given $f(x) = \frac{1}{x-2}$

a. Compute f(2) and f(0).

Compute
$$f(2)$$
 and $f(0)$.

$$f(2) = \frac{DNF}{2-2}$$

$$f(0) = \frac{1}{2-2}$$

$$f(0) = \frac{1}{2}$$

$$f(0) = \frac{1}{0-2} = -\frac{1}{2}$$

$$f(2) = DNF$$

$$f(0) = \frac{1}{2}$$

b. Solve f(x) = 0.

c. What do the answers to parts a. and b. tell you about the key features of the function f(x)?

y-intercept @ $(0, -\frac{1}{2})$, domain cannot

Include 2 $f(x) = \frac{1}{x-2}$ d. Find $f^{-1}(x)$ f(y-2) = 1 f(y-2) = 1

$$(y^{-2}) \cdot x = \frac{1}{y^{-2}} \cdot (y^{-2})$$

$$x(y^{-2}) = 1$$

$$xy^{-2}x = 1$$

$$+2x + 2x$$

$$x = 1 + 2x$$

$$f^{-1}(x) = X$$

$$xy = \frac{1+2x}{x}$$

$$y = \frac{1+2x}{x}$$

$$0.1(x) = \frac{1+2x}{x}$$

$$f'(x) = 1 + 2x$$

12. The graph of f(x) is shown below along with the y=x line. Draw and label the graph of $f^{-1}(x)$.

Name: ______ PD: _____ Date: _____

Honors Algebra 2: Practice, Practice, Practice! = $(Practice)^3$!

13. Using the table, find the following values:

•••	and the remember of talage.									
	Х	2	-5	-9	10	0	-1	9	7	4
		1	,	11		1 1		(1		1
	f(x)	0	4 🗸	9	-1	-91/	2	-5	-5	10
	g(x)	-9	10	9₩	4	-5 🗸	2	0	-5	-1

a.
$$f(-5)$$

b.
$$g(f(2))$$

$$g(6) = -5$$
 $g(f(2)) = -5$

c.
$$f^{-1}(10)$$

d.
$$f^{-1}(f^{-1}(9))$$

e.
$$g^{-1}(-9)$$

f.
$$f(g^{-1}(\mathbf{0}))$$

g.
$$g \circ f(0)$$

h.
$$(f^{-1} \circ g^{-1})(2)$$

$$g^{-1}(2) = -1$$

$$f_{-1}(-1) = 10$$

$$(f_{-1} \circ g_{-1})(x) = (0)$$