Data Communication

Bandwidth Utilization: Multiplexing

Total Math - 9

Bandwidth utilization is the wise use of available bandwidth to achieve specific goals.

Efficiency can be achieved by multiplexing; i.e., sharing of the bandwidth between multiple users.

MULTIPLEXING

- Whenever the bandwidth of a medium linking two devices is greater than the bandwidth needs of the devices, the link can be shared.
- Multiplexing is the set of techniques that allows the (simultaneous) transmission of multiple signals across a single data link. As data and telecommunications use increases, so does traffic.

Figure 6.1 Dividing a link into channels

Figure 6.2 Categories of multiplexing

Figure 6.3 Frequency-division multiplexing (FDM)

FDM is an analog multiplexing technique that combines analog signals.

It uses the concept of modulation.

Figure 6.4 FDM process

Figure 6.5 FDM demultiplexing example

Assume that a voice channel occupies a bandwidth of 4 kHz. We need to combine three voice channels into a link with a bandwidth of 12 kHz, from 20 to 32 kHz. Show the configuration, using the frequency domain. Assume there are no guard bands.

Solution

We shift (modulate) each of the three voice channels to a different bandwidth, as shown in Figure 6.6. We use the 20- to 24-kHz bandwidth for the first channel, the 24- to 28-kHz bandwidth for the second channel, and the 28- to 32-kHz bandwidth for the third one. Then we combine them as shown in Figure 6.6.

Figure 6.6 Example 6.1

Five channels, each with a 100-kHz bandwidth, are to be multiplexed together.

What is the minimum bandwidth of the link if there is a need for a guard band of 10 kHz between the channels to prevent interference?

Solution

For five channels, we need at least four guard bands. This means that the required bandwidth is at least

$$5 \times 100 + 4 \times 10 = 540 \text{ kHz},$$

as shown in Figure 6.7.

Figure 6.7 Example 6.2

Four data channels (digital), each transmitting at 1 Mbps, use a satellite channel of 1 MHz. Design an appropriate configuration, using FDM.

Solution

The satellite channel is analog. We divide it into four channels, each channel having 1M/4=250-kHz bandwidth.

Each digital channel of 1 Mbps must be transmitted over a 250 kHz channel.

Assuming no noise we can use Nyquist criteria to get:

$$C = 1$$
Mbps $= 2 \times 250$ K $\times \log_2 L$
-> $L = 4$ or $n = 2$ bits/signal element.

One solution is QPSK modulation.

```
4 Data channels = 1 MHz
1 Data channels = 1/4
= 250 kHz
1 use transmitted = 1 Mbps
so,
C = 1 Mbps
B = 250 kHz
```

Figure 6.9 Analog hierarchy

The Advanced Mobile Phone System (AMPS) uses two bands. The first band of 824 to 849 MHz is used for sending) and 869 to 894 MHz is used for receiving. Each user has a bandwidth of 30 kHz in each direction. How many people can use their cellular phones simultaneously?

* 832 Channels means per user.

Solution:

Each band is 25 MHz. If we divide 25 MHz by 30 kHz, we get 833.33.

In reality, the band is divided into \$32 channels. Of these, 42 channels are used for control, which means only 790 channels are available for cellular phone users.

WDM is an analog multiplexing technique to combine optical signals.

Figure 6.11 Prisms in wavelength-division multiplexing and demultiplexing

Figure 6.12 Time Division Multiplexing (TDM)

TDM is a digital multiplexing technique for combining several low-rate digital channels into bne high-rate one.

Figure 6.13 Synchronous time-division multiplexing

In synchronous TDM, the data rate of the link is *n* times faster, and the unit duration is *n* times shorter.

0=173

In Figure 6.13, the data rate for each one of the 3 input connection is 1 kbps. If 1 bit at a time is multiplexed (a unit is 1 bit), what is the duration of (a) each input slot, (b) each output slot, and (c) each frame?

Solution

We can answer the questions as follows:

a. The data rate of each input connection is 1 kbps. This means that the bit duration is 1/1000 s or 1 ms. The duration of the input time slot is 1 ms (same as bit duration).

- b. The duration of each output time slot is one-third of the input time slot. This means that the duration of the output time slot is 1/3 ms.
- c. (Each frame carries three output time slots. So the duration of a frame is $3 \times 1/3$ ms, or 1 ms.

Note: The duration of a frame is the same as the duration of an input unit.

Figure 6.14 Example 6.6

Mrth - d

Figure 6.14 shows synchronous TDM with 4 1Mbps data stream inputs and one data stream for the output. The unit of data is 1 bit.

Find (a) the input bit duration, (b) the output bit duration, (c) the output bit rate, and (d) the output frame rate.

Solution:

We can answer the questions as follows:

- a. The input bit duration is the inverse of the bit rate: $1/1 \text{ Mbps} = 1 \mu \text{s}$.
- b. The output bit duration is one-fourth of the input bit duration, or $\frac{1}{4}$ µs.
- c. The output bit rate is the inverse of the output bit duration or $1/(4\mu s)$ or 4 Mbps. This can also be deduced from the fact that the output rate is 4 times as fast as any input rate; so the output rate = 4×1 Mbps = 4 Mbps.

Example 6.6 (continued)

d. The frame rate is always the same as any input rate. So the frame rate is 1,000,000 frames per second.

Because we are sending 4 bits in each frame, we can verify the result of the previous question by multiplying the frame rate by the number of bits per frame.

Figure 6.14 Example 6.6

Four 1-kbps connections are multiplexed together.

A unit is 1 bit. Find (a) the duration of 1 bit before multiplexing, (b) the transmission rate of the link, (c) the duration of a time slot, and (d) the duration of a frame.

Solution

We can answer the questions as follows:

a. The duration of 1 bit before multiplexing is 1 / 1 kbps, or 0.001 s (1 ms).

- b. The rate of the link is 4 times the rate of a connection, or 4 kbps.
- c. The duration of each time slot is one-fourth of the duration of each bit before multiplexing, or 1/4 ms or 250 µs. Note that we can also calculate this from the data rate of the link, 4 kbps. The bit duration is the inverse of the data rate, or 1/4 kbps or 250 µs.

d. The duration of a frame is always the same as the duration of a unit before multiplexing, or 1 ms. We can also calculate this in another way. Each frame in this case has four time slots. So the duration of a frame is 4 times 250 µs, or 1 ms.

Four channels are multiplexed using TDM. If each channel sends 100 bytes/s and we multiplex 1 byte per channel, show the frame traveling on the link, the size of the frame, the duration of a frame, the frame rate, and the bit rate for the link.

Solution

The multiplexer is shown in Figure 6.16. Each frame carries 1 byte from each channel; the size of each frame, therefore, is 4 bytes, or 32 bits. Because each channel is sending 100 bytes/s and a frame carries 1 byte from each channel, the frame rate must be 100 frames per second. The bit rate is 100 × 32, or 3200 bps.

Figure 6.16 Example 6.8

A multiplexer combines four 100-kbps channels using a time slot of 2 bits. Show the output with four arbitrary inputs. What is the frame rate? What is the frame duration? What is the bit rate?

Solution

Figure 6.17 shows the output (4x100kbps) for four arbitrary inputs. The link carries 400K/(2x4)=50,000 2x4=8bit frames per second. The frame duration is therefore 1/50,000 s or $20 \mu s$. The bit duration on the output link is 1/400,000 s, or $2.5 \mu s$.

Figure 6.17 Example 6.9

Data Rate Management

- Not all input links maybe have the same data rate.
- Some links may be slower. There maybe several different input link speeds
- There are three strategies that can be used to overcome the data rate mismatch: multilevel, multislot and pulse stuffing

Data rate matching

- Multilevel: used when the data rate of the input links are multiples of each other.
- Multislot: used when there is a GCD between the data rates. The higher bit rate channels are allocated more slots per frame, and the output frame rate is a multiple of each input link.
- Pulse Stuffing: used when there is no GCD between the links. The slowest speed link will be brought up to the speed of the other links by bit insertion, this is called pulse stuffing.

Figure 6.19 Multilevel multiplexing

Figure 6.20 Multiple-slot multiplexing

Figure 6.21 Pulse stuffing

