Coarse-Grained Molecular Dynamics Case Study: CG non-Bonded Interactions in Water

Student: Vourvachakis Georgios Date: 27/05/2025

Image description: Illustration of a coarse grained model for calcium minerals [University of Konstanz, VDM package]

Optimal Coarse-Graining Strategy

Degree of Coarse-graining

Protein crystal structure

Amino acids as spheres (color code: charge state)

Directed interactions: Shape, number, size etc. of patches; nature & range of patch interactions

Particle shape/ anisotropy

Spherical; Isotropic interaction potential

CG approaches must be developed to simultaneously **reduce computational complexity** and **retain necessary chemical details** for <u>large-scale systems</u>, encompassing more than ~10⁷ atoms and larger than ~100 nm in space

Optimal Coarse-Graining Strategy

CG approaches must be developed to simultaneously reduce computational

The dynamics of the system is *artificially accelerated* since the PES is smoothed

Paradigm of Coarse-Graining

 $\mathbf{Q}_i = \frac{\sum_{j \in \mathrm{CG}_i} m_j \mathbf{q}_j}{\sum_{j \in \mathrm{CG}_i} m_j (\equiv M_i)}$

 $\dot{\mathbf{Q}}_i = \mathbf{V}_i + \mathbf{C}$ $M_i \dot{\mathbf{V}}_i = -\nabla_{\mathbf{Q}_i} U_{\mathrm{CG}}(\mathbf{Q}) + \mathbf{D}$

Unique static structure of the

system

conservative

CG force

field

Henderson's

theorem

☐ Under CG, auxiliary terms **C** and **D** become *stochastic* due to the absence of high-frequency dof (e.g., solvents << CG sites in dilute polymer solutions).

The purpose of coarse-graining is to find an **appropriate set of parameters** that describe $U (\cong U_{PMF})$, **C**, and **D** from atomistic (AA) models, <u>reproducing</u> the same structures and dynamics generated from the fine-grained (DEM in our case study) EoM.

PMF Estimator(s) (discussed here): <u>Force Matching (or MSCG)</u>

EoM (C and D):

Mori- Zwanzig projection
operator formalism

General objective of PMF approximators (FM, RE, structural-based): Propose a <u>family of interaction</u> potential functions $\bar{U}_{eff}(Q; \theta \in \Theta)$, and seek for the <u>optimal</u> $\bar{U}_{eff}(Q; \theta^*)$ that "best approximates" the PMF (canonical ensemble),

$$\bar{U}^{\mathrm{PMF}}(\mathbf{Q}) = -\frac{1}{\beta} \log \int_{\Omega(\mathbf{Q})} e^{-\beta U(\mathbf{q})} d\mathbf{q}.$$
 Equilibrium marginal of the full atomistic distribution

 $Q \in \mathbb{R}^{3M}$ denotes the configuration of generalized coordinates in CG space with M(<N) particles and $\Omega(\mathbf{Q}) := \{\mathbf{q} \in \mathbb{R}^{3N} : \Pi(\mathbf{q}) = \mathbf{Q}\}$ ntities on the CG space are annotated with the "-" symbol).

$$ar{Z}=\int e^{-eta ar{U}_{
m eff}({f Q})}d{f Q}$$
 is the corresponding partition function.

The many body PMF can be described as being composed by two-body, three-body e.t.c., interactions (pairwise distance $R_{ij} = \|Q_i - Q_j\|$, $i, j = 1, \ldots, M$): (a two-body effective pair potential usually suffices, $\bar{U}_{\text{eff}}(\mathbf{Q}) = \sum_{i,j} u(R_{ij}) \approx \bar{U}^{\text{PMF}}(\mathbf{Q})$.)

$$ar{U}^{ ext{PMF}}(\mathbf{Q}) = \sum_{i,j} u_2(R_{ij}) + \sum_{i,j,k} u_3(R_{ij},R_{ik},R_{jk}) + \dots$$
[E. Kalligiannaki et al., Eur. Phys. J. Special Topics **225**, 1347–1372 (2016)]

General objective of PMF approximators (FM, RE, structural-based): Propose a <u>family of interaction potential functions</u> $\bar{\mathbb{U}}_{\text{eff}}(Q;\theta\in\Theta)$, and seek for the <u>optimal</u> $\bar{\mathbb{U}}_{\text{eff}}(Q;\theta^*)$ that "best approximates" the PMF (canonical ensemble), $\bar{\mathbb{U}}^{\text{PMF}}(\mathbf{Q}) = -\frac{1}{\beta}\log\int_{\Omega(\mathbf{Q})}e^{-\beta U(\mathbf{q})}d\mathbf{q}$. $Q\in\mathbb{R}^{3M}$ denotes the configuration of generalized coordinates in CG space with M(<N)

We denote the *mean force* $\bar{F}^{\mathrm{PMF}}: \mathbb{R}^{3M} \to \mathbb{R}^{3M}$ corresponding to the PMF assuming it exists, by $[\bar{F}_i^{\mathrm{PMF}}(\mathbf{Q}) = -\nabla_{O_i} \bar{U}^{\mathrm{PMF}}(\mathbf{Q}), \ i=1,\ldots,M.]$

particles (quantities on the CG space are annotated with the "-" symbol).

We denote by
$$\bar{\mu}(d\mathbf{Q}) = Z^{-1} \exp\{-\beta U_{\text{eff}}(\mathbf{Q})\}d\mathbf{Q}$$
 the equilibrium probability measure at the CG configurational space for the given CG potential function $\bar{\mathbf{U}}_{\text{eff}}(\mathbf{Q}; \boldsymbol{\theta})$, where $\bar{Z} = \int e^{-\beta \bar{U}_{\text{eff}}(\mathbf{Q})}d\mathbf{Q}$ is the corresponding partition function.

The many body PMF can be described as being composed by two-body, three-body, e.t.c., interactions (pairwise distance
$$R_{ij} = \|Q_i - Q_j\|$$
, $i, j = 1, ..., M$):

(a two-body effective pair potential usually suffices, $\bar{U}_{\text{eff}}(\mathbf{Q}) = \sum_{i,j} u(R_{ij}) \approx \bar{U}^{\text{PMF}}(\mathbf{Q})$.)

 $ar{U}^{ ext{PMF}}(\mathbf{Q}) = \sum_{i,j} u_2(R_{ij}) + \sum_{i,j,k} u_3(R_{ij}, R_{ik}, R_{jk}) + \dots$ [E. Kalligiannaki et al., EPJST. **225**, 1347–1372 (2016)]

General objective of PMF approximators (FM, RE, structural-based): Propose a <u>family of</u> interaction potential functions $\bar{U}_{eff}(Q; \theta \in \Theta)$, and seek for the <u>optimal</u> $\bar{U}_{eff}(Q; \theta^*)$ that "best approximates" the PMF (canonical ensemble), $\bar{U}^{\mathrm{PMF}}(\mathbf{Q}) = -\frac{1}{\beta} \log \int_{\Omega(\mathbf{Q})} e^{-\beta U(\mathbf{q})} d\mathbf{q}$. $Q \in \mathbb{R}^{3M}$ denotes the configuration of generalized coordinates in CG space with M(<N) particles (quantities on the CG space are annotated with the "-" symbol).

- We denote the *mean force* $ar{F}^{\mathrm{PMF}}: \mathbb{R}^{3M} o \mathbb{R}^{3M}$ corresponding to the PMF assuming it exists, by $\bar{F}_i^{\mathrm{PMF}}(\mathbf{Q}) = -\nabla_{O_i} \bar{U}^{\mathrm{PMF}}(\mathbf{Q}), \ i=1,\ldots,M.$
- We denote by $\bar{\mu}(d\mathbf{Q}) = \bar{Z}^{-1} \exp\{-\beta \bar{U}_{\text{eff}}(\mathbf{Q})\}d\mathbf{Q}$ the equilibrium probability measure at the CG configurational space for the given CG potential function $\bar{U}_{eff}(Q;\theta)$, where $\bar{Z} = \int e^{-\beta \bar{U}_{\rm eff}(\mathbf{Q})} d\mathbf{Q}$ is the corresponding partition function.
- (a two-body effective pair potential usually suffices, $\bar{U}_{\mathrm{eff}}(\mathbf{Q}) = \sum u(R_{ij}) \approx \bar{U}^{\mathrm{PMF}}(\mathbf{Q})$.)

$$\bar{U}^{\mathrm{PMF}}(\mathbf{Q}) = \sum_{i,j} u_2(R_{ij}) + \sum_{i,j,k} u_3(R_{ij}, R_{ik}, R_{jk}) + \dots$$
[E. Kalligiannaki et al., EPJST. **225**, 1347–1372 (2016)]

General objective of PMF approximators (FM, RE, structural-based): Propose a <u>family of interaction potential functions</u> $\bar{U}_{eff}(Q;\theta\in\Theta)$, and seek for the <u>optimal</u> $\bar{U}_{eff}(Q;\theta^*)$ that "best approximates" the PMF (canonical ensemble), $\bar{U}^{PMF}(\mathbf{Q}) = -\frac{1}{\beta} \log \int_{\mathbf{Q}(\mathbf{Q})} e^{-\beta U(\mathbf{q})} d\mathbf{q}$.

 $Q \in \mathbb{R}^{3M}$ denotes the configuration of generalized coordinates in CG space with M(<N) particles (quantities on the CG space are annotated with the "-" symbol).

We denote the mean force $\bar{F}^{\mathrm{PMF}}: \mathbb{R}^{3M} \to \mathbb{R}^{3M}$ corresponding to the PMF assuming it exists, by $\bar{F}_i^{\mathrm{PMF}}(\mathbf{Q}) = -\nabla_{Q_i} \bar{U}^{\mathrm{PMF}}(\mathbf{Q}), \ i=1,\ldots,M.$

- We denote by $\bar{\mu}(d\mathbf{Q}) = \bar{Z}^{-1} \exp\{-\beta \bar{U}_{\mathrm{eff}}(\mathbf{Q})\} d\mathbf{Q}$ the equilibrium probability measure at the CG configurational space for the given CG potential function $\bar{\mathbf{U}}_{\mathrm{eff}}(\mathbf{Q}; \boldsymbol{\theta})$, where $\bar{Z} = \int e^{-\beta \bar{U}_{\mathrm{eff}}(\mathbf{Q})} d\mathbf{Q}$ is the corresponding partition function.
- The many body PMF can be described as being composed by two-body, three-body, e.t.c., interactions (pairwise distance $R_{ij} = \|\mathbf{Q}_i \mathbf{Q}_j\|$, i, j = 1, . . . , M): (a two-body effective pair potential usually suffices, $\bar{U}_{\text{eff}}(\mathbf{Q}) = \sum u(R_{ij}) \approx \bar{U}^{\text{PMF}}(\mathbf{Q})$.)

$$ar{U}^{ ext{PMF}}(\mathbf{Q}) = \sum_{i,j} u_2(R_{ij}) + \sum_{i,j,k} u_3(R_{ij},R_{ik},R_{jk}) + \dots$$
 [E. Kalligiannaki et al., EPJST. **225**, 1347–1372 (2016)]

Force Matching: A Least Squares Problem

Since the PMF bridges the gap between chemical-specific CG and AA models, evaluating the mean force directly provides a natural CG parametrization approach (Ercolessi and Adams (1994)). We construct the following mean *least-square minimization*:

$$\boxed{\min_{\theta \in \Theta} \mathbb{E}_{\mu} \left[\|h(\mathbf{q}) - \bar{F}(\mathbf{\Pi}(\mathbf{q}); \theta)\|^2 \right]}$$

where $\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^{3M} and $\mathbf{E}_{\mu}[\cdot]$ averages with respect to the *Gibbs canonical* (probability) measure (ensemble average) $\mu(d\mathbf{q}) = Z^{-1} \exp\{-\beta U(\mathbf{q})\}d\mathbf{q}$, given a CG (contraction) mapping $\mathbf{\Pi}: \mathbb{R}^{3N} \mapsto \mathbb{R}^{3M}$ s.t. $\mathbf{q} \mapsto \mathbf{\Pi}(\mathbf{q}) \in \mathbb{R}^{3M}$ on the microscopic state space.

- The reference field $h(\mathbf{q}) \in \mathbb{R}^{3M}$ is the local mean force where each component, $h_i(\mathbf{q})$, is the force exerted at the ith CG site that is a function of the microscopic forces.
- One can interpret FM as a geometrical projection of the atomic forces (Voth et al. (2008)). Namely, the $\bar{F}^{\mathrm{PMF}}(\mathbf{Q})$ is a projection of a local mean force h(\mathbf{q}) onto the space of square integrable functions w.r.t $\mu(d\mathbf{q})$: $L^2(\mu;\mathbf{\Pi}) = \{F \in L^2(\mu) \mid \exists \ \bar{F} : \mathbb{R}^{3M} \mapsto \mathbb{R}^{3M} \ s.t. \ F(\mathbf{q}) = \bar{F}(\mathbf{\Pi}(\mathbf{q}))\}$

Force Matching: A Least Squares Problem

Since the PMF bridges the gap between chemical-specific CG and AA models, evaluating the mean force directly provides a natural CG parametrization approach (Ercolessi and Adams (1994)). We construct the following mean *least-square minimization*:

$$\min_{\theta \in \Theta} \mathbb{E}_{\mu} \left[\| h(\mathbf{q}) - \bar{F}(\mathbf{\Pi}(\mathbf{q}); \theta) \|^{2} \right]$$

[V. Harmandaris et al., *J. Chem. Phys.* **143**(8), 084105 (2015)]

 $\mathcal{L}(G; h)$

 $\mathcal{L}(F; h)$

 $L^2(\mu)$

For a given $h \in L^2(\mu)$ the minimization problem

$$\inf_{G} \mathcal{L}(G; h) = \inf_{G} \mathbb{E}_{\mu} \left[\|h - G \circ \Pi\|^{2} \right] ,$$

where inf is taken over all $G \in L^2(\mu; \Pi)$ has the unique solution

$$F^*(\mathbf{Q}) = \mathbb{E}_{\mu}[\mathbf{h}|\mathbf{Q}], \ \mathbf{Q} \in \mathbb{R}^{3M}$$
 .

$$F^{PMF}(\mathbf{Q}) = \mathbb{E}_{\mu}[\mathbf{h}|\mathbf{Q}]$$
, for the chosen h

Case Study on Water Molecules: CG procedure

After identifying each molecule's atom indices {j∈I} (CG_i=I), the CG position **Q**_i is computed as the mass-weighted CoM:

$$\mathbf{Q}_{I} = \frac{\sum_{j \in I} m_{j} \mathbf{q}_{j}}{M_{I}}$$
 where $m_{O} = 15.9994, m_{H} = 1.008$ u

This mapping eliminates *internal vibrational dof*.

To ensure consistent dynamics, atomic forces \mathbf{f}_i are projected to CG sites

by the same mass weights:
$$\mathbf{F}_I = \frac{\sum_{j \in I} m_j \mathbf{f}_j}{M_I}$$

- $g(r) = (4\pi r^2 \Delta r \rho M)^{-1} \sum_{I < J} \delta^{(3)}(r r_{IJ})$
 - Complexity and KD-Tree Acceleration:

(Friedman et al. (1977)).

- Brute-Force Cost: Naive pairwise check costs $O(N_H N_O)$.
- **KD-Tree:** Tiling positions to handle PBC and indexing with a cKDTree reduces the neighbor-search cost to O(NologNu)

[E. Kalligiannaki et al., EPJST. **225**, 1347–1372 (2016)]

Case Study on Water Molecules: CG procedure

10

After i

positi

1.4

Q_I = 1.0

To en:
by the

ne CG

Pair correlation or Radial Distribution Function (RDF) (CG_i=I):

$$g(r) = (4\pi r^2 \Delta r \rho M)^{-1} \sum_{I < J} \delta^{(3)} (r - r_{IJ})$$

- Complexity and KD-Tree Acceleration
 - **Brute-Force Cost:** Naive pairwise checks costs O(N_HN_O).

r [Å]

• **KD-Tree:** Tiling positions to handle PBC and indexing with a cKDTree reduces the neighbor-search cost to O(N_OlogN_H)

(Friedman et al. (1977)).

[E. Kalligiannaki et al., EPJST. **225**, 1347–1372, (2016)]

Case Study on Water Molecules: Cubic Spline Representation

Each CG pair interaction $U_{ij}(R)$ is modeled as a cubic spline through K knot points $\{(R_k, \theta_k)\}$, such that

$$U_{IJ}(R) := \sum_{k=1}^{K} \theta_k B_k(R)$$

where $B_k(R)$ are the **cubic B-spline basis functions** with

The force between sites I and J follows from the negative derivative:

$$\bar{F}_{IJ}(R) = -U'_{IJ}(R) = -\sum_{k=1}^{K} \theta_k B'_k(R)$$

and the vector force on site I is

local support between adjacent knots.

$$\mathbf{\bar{F}}_{I} \approx -\nabla_{I} U_{eff}(\mathbf{Q}; \boldsymbol{\theta}) = \sum_{J \neq I} \bar{F}_{IJ}(R_{IJ}) \mathbf{\hat{R}}_{IJ} , \ \mathbf{\hat{R}}_{IJ} = \frac{\mathbf{Q}_{I} - \mathbf{Q}_{J}}{\|\mathbf{Q}_{I} - \mathbf{Q}_{J}\| (\equiv R_{IJ})}$$

[C. Shuai et al., IEEE ICIA, 634-639 (2014)]

Case Study on Water Molecules: FM Optimization

Minimizing the discrepancy between CG forces $\bar{\mathbf{F}}_I$ derived from a parametric potential and reference atomistic forces \mathbf{h}_I mapped onto the same CG sites. The mean-squared error objective

$$\mathcal{L}(\boldsymbol{\theta}; \mathbf{h}) = \frac{1}{n_{\text{conf}}} \sum_{k=1}^{n_{\text{conf}}} \sum_{I=1}^{M} \|h(\mathbf{q}_k \in I) - \bar{\mathbf{F}}_I(\mathbf{Q}_k; \boldsymbol{\theta})\|^2$$

- Optimization employs deterministic (L-BFGS-B) or stochastic (Adam) minimizers, using either full batches or random subsets of configurations to compute gradients via finite differences.
- \Box For large datasets (n_{conf} \gg 1000), the algorithm performs **mini-batch** updates:
 - 1. Randomly sample subset of configurations,
 - 2. Compute batch MSE and approximate gradient $\nabla_{\theta} \mathcal{L}$ via central differences (δ =1e-6),
 - 3. Update parameters **0** by Adam's updating rule:

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) \nabla_{\theta} \mathcal{L}, \ v_{t} = \beta_{2} v_{t-1} + (1 - \beta_{2}) (\nabla_{\theta} \mathcal{L})^{2},$$
$$\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}, \ \hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}, \ \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t} - \alpha \frac{\hat{m}_{t}}{\sqrt{v_{t}} + \epsilon}$$

Tested Hyperparameters: $\alpha = 1e-2$, 1e-3, decay=0.98, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 1e-8$, K=20, frames-per-step = 100

Case Study on Water Molecules: Initial Guess Scheme

1. **Lennard-Jones–Like Potential:** Naive LJ–like formula with a *constant repulsive core* for R<σ:

$$U(R_i) = \begin{cases} \epsilon & R_i < \sigma \\ \epsilon \left[\left(\frac{\sigma}{R_i} \right)^{12} - 2 \left(\frac{\sigma}{R_i} \right)^6 \right] & R_i \ge \sigma \end{cases}$$

where ε =0.1 kcal/mol is the energy scale, σ =3.0 Å is the location of the potential minimum, $R_i \in \{R_1, R_2, ..., R_n\}$ are the ordinal ways and in a line to a sition. This gives the initial value $\rho(0) = R(R_1, R_2, ..., R_n)$

 R_{K} are the spline knot positions. This gives the initial value $\theta_i^{(0)} = U(R_i) \;, \forall i \in [K]$

2. **SPC/E-Inspired Initialization:** The potential is defined piecewise as

$$U(R_i) = \begin{cases} 100 \left(\frac{\sigma}{R_i}\right)^{12} & R_i < R_{\text{cut,hard}} \\ 4\epsilon \left[\left(\frac{\sigma}{R_i}\right)^{12} - \left(\frac{\sigma}{R_i}\right)^{6}\right] & R_{\text{cut,hard}} \le R_i \le R_{\text{cut}} \end{cases}$$

where (parameters from the SPC/E water model) ϵ = 0.65 kcal/mol, σ = 3.166 Å, $R_{\text{cut,hard}}$ = 2.5 Å (transition from hard core to LJ form), Rcut = 10 Å. Then *Savitzky-Golay smoothed* to remove oscillations and shifted s.t. $\theta_K^{(0)} = 0$.

Initializing spline parameters: a good "starting potential" can accelerate convergence and avoid unphysical wells or barriers during optimization.

Results on Naive Initialization with α =1e-3

A single-site CG bead per water molecule cannot capture directional hydrogen-bond forces or intramolecular stiffness, hence the low variance in CG forces.

The inherent limitations of a purely pairwise, single-site model manifest as significant underestimation of force variability and a high MSE

MSE: 89.13 kcal/mol/Å Best Val Loss: 91.94

Results on Naive Initialization with α =1e-3

Upshot: A **pairwise spline** basis cannot represent these many-body contributions, which manifest as large local forces when bonds form or break

rgle-site CG bead per er molecule cannot ure directional ogen-bond forces or

FM fits only the Markovian projected force; it omits the fluctuating term, causing underestimation of force variance

a purely pairwise

single-site model manifest as significant underestimation of force variability and a high RMSE

MSE: 89.13 kcal/mol/A Best Val Loss: 91.94

Results on SPC/E Initialization with α =1e-2

Swings to the other extreme, overestimating the spread, and in fact pays for it in a worse cross-validated MSE

SPC/E behaves like an overly "flexible" model (high variance, possibly overfitting)

MSE: 1439.47 kcal/mol/Å Best Val Loss: 1424.55

Remarks on Initialization Strategies

Adaptive weighting during training

Regularize deviation in standard deviation from the reference force set

Central tendency ⊕ spread

$$\mathcal{L} = \mathrm{MSE}(\mathbf{F}_{\mathrm{CG}}; \mathbf{h}) + \lambda | \mathrm{std}(\mathbf{F}_{\mathrm{CG}}) - \mathrm{std}(\mathbf{h}) |$$

"Tight" LJ ⊕ "broad" SPC/E baseline

Convex combination of LJ and SPC/E coefficients (hybrid initialization)

$$\mathrm{SE}_{(\mathrm{batch})}(\mathbf{F}_{\mathrm{CG}};\mathbf{h}) = \frac{1}{N_{\mathrm{batch}}} \sum_{k=1}^{N_{\mathrm{batch}}} \sum_{I=1}^{M} \|\mathbf{h}_{I}(\mathbf{q}_{k}) - \mathbf{F}_{\mathrm{CG},I}(\mathbf{Q}_{k};\boldsymbol{\theta})\|^{2}$$

Thank you for your attention!

I am here because

lenjoy creating and presenting ideas.

Contacts:

gv@materials.uoc.gr / gv@csd.uoc.gr

Georgios Vourvachakis | LinkedIn

Dynamics of the CG Model: The Mori-Zwanzig Formalism

- The MZ formalism originates from the **microscopic Hamiltonian** and utilizes a projection operator to decompose the dynamics into slower macroscopic dynamics.
- Heisenberg time-evolution of an observable operator A(t): $\dot{A} = iLA$ with solution A(t)= $e^{iLt}A_0$ and iL=[H, .], the Liouville operator.
- Let $P=(A_0,A_0)^{-1}(..,A_0)A_0$, the projection operator onto the initial observable, and Q=1-P the one onto P's orthogonal subspace. Then, applying the operator identity (*Duhamel identity* or *Dyson expansion*): $e^{iLt}=e^{iQLt}+\int_0^t dse^{iL(t-s)}P_iLe^{iQLs}$ into the equation $\dot{A}(t)=iLe^{iLt}A_0$ and defining the *fluctuation term* $F(t)=\exp(iQLt)iQLA_0$, the *frequency term* $\Omega=(iLA_0,A_0)(A_0,A_0)^{-1}$ s.t. $\Omega A_0=iPLA_0$, and the *memory kernel* $K(t)=(iLF(t),A_0)(A_0,A_0)^{-1}=(F(t),F(0))(A_0,A_0)^{-1}$ (2^{nd} FD Theorem) we obtain the **GLE form** of the MZ formalism (after invoking the *Mori identity*):

$$\dot{A} = \Omega A + \int_0^t \mathrm{d}s K(s) A(t-s) + F(t)$$

The time evolution is decomposed into its **slow counterpart**, represented by A (i.e., ΩA), and the term F(t) corresponds to the **orthogonal residue dynamics**. These two parts are connected through the memory kernel K, which accumulates all the unresolved components from the initial stages.

Dynamics of the CG Model: The Mori-Zwanzig Formalism

Markovian approximation

 \rightarrow rapid decay of $\zeta(t)$

e microscopic Hamiltonian and utilizes

 $\zeta(t) \sim \delta(t) \rightarrow$ Langevin dynamics

- or an observable operator A(t): A = iLA with solution A(t)-e A_0 and C(t) (memory) D(t) (noise)
- Let $P=(A_0,A_0)^{-1}(\dot{\mathbf{P}}(t))=-\nabla_{\mathbf{Q}_i}\bar{U}^{\mathrm{PMF}}(\mathbf{Q})-\int_0^t\bar{\zeta}(t-\tau)\mathbf{P}(\tau)d\tau+\mathbf{F}_R(t),\ t>0$ Dyson expansion): $e^{iLt} = e^{iQLt} + \int^{\tau} ds e^{iL(t-s)} PiLe^{iQLs}$ into the equation $\dot{A}(t) = iLe^{iLt} A_0$ and defining the fluctuation term $F(t) = \exp(iQLt)iQLA_0$, the frequency term $\Omega = (iLA_0, A_0)(A_0, A_0)^{-1}$ s.t. $\Omega A_0 = iPLA_0$, and the

<u>memory kernel</u> K(t)[pairwise decomposition]) $A = \{P_1^{-1}, P_2^{-1}, E_2, P_M\}$ Forem the MZ formalism (after invoking the Mori identity):

nvoking the Mori identity):
$$\langle \mathbf{F}_R(t)\mathbf{F}_R(t')\rangle = 2\beta^{-1}\bar{\zeta}(t-t')\;,\;t>t'$$

 $\dot{A}(t) = \Omega A - \int_0^t \zeta(t-\tau)A(\tau)d\tau + F(t)$ Theorem

Instantaneous (Markovian) Drift **terpart**, represented by A (i.e., ΩA), and the term [Baxevani et al., SIAM 21(4) (2023)] [Sergei Izvekov, J. Chem. Phys. 138(13), 134106 (2013)]

Fun Fact: if the kernel follows $\zeta \sim t^{-s}$ with $s \in (0,1)$, the "random" force exhibits **pink noise characteristics**.

Dynamics of the CG Model: The Mori-Zwanzig Formalism

Elimination ⇒ **Memory & Noise:** By **eliminating** fast variables, one loses their explicit EOM but cannot erase their effects.

- Heisenberg time-evolution of an observable operator A(t): A = iLA with solution A(t)= $e^{iLt}A_0$ and iL=[H,.], the Liouville operator. C(t) (memory) D(t) (noise)
- Let $P=(A_0,A_0)^{-1}(\dot{\mathbf{P}}(t)) = -\nabla_{\mathbf{Q}_i}\bar{U}^{\mathrm{PMF}}(\mathbf{Q}) \int_0^t \bar{\zeta}(t-\tau)\mathbf{P}(\tau)d\tau + \mathbf{F}_R(t), \ t>0$ P=1-P the one onto P's orthogonal sub $e^{iLt} = e^{iQLt} + \int_0^t ds e^{iL(t-s)}P^{i}Le^{iQLs}$ into the equation $\dot{A}(t) = iLe^{iLt}A_0$ and defining the fluctuation term $F(t)=\exp(\mathrm{i}\mathrm{Q}\mathrm{L}t)\mathrm{i}\mathrm{Q}\mathrm{L}A_0$, the frequency term $\Omega=(\mathrm{i}\mathrm{L}A_0,A_0)(A_0,A_0)^{-1}$ s.t. $\Omega A_0=\mathrm{i}\mathrm{PL}A_0$, and the

<u>memory kernel</u> K(t)[pairwise decomposition]) (A \mathcal{P}_1 , \mathcal{P}_2 , FD \mathcal{P}_M) forem the MZ formalism (after invoking the Mori identity):

$$\langle \mathbf{F}_R(t)\mathbf{F}_R(t')\rangle = 2\beta^{-1}\bar{\zeta}(t-t') , t > t'$$

$$\dot{A}(t) = \Omega A - \int_0^t \zeta(t-\tau)A(\tau)d\tau + F(t)$$

Fluctuation-Dissipation
Theorem

Instantaneous (Markovian) Drift
[Baxevani et al., SIAM **21**(4) (2023)] [Sergei Izvekov, J. Chem. Phys. **138**(13), 134106 (2013)]

Fun Fact: if the kernel follows ζ ~t⁻⁵ with s∈(0,1), the "random" force exhibits **pink noise characteristics**.

Optimal Coarse-Graining Strategy

Visualization of an idealized schematic of a rugged all-atom landscape (top-left) and a smoothened CG landscape (top-right). The sliced potential energy surface at the bottom provides a qualitative representation of high-frequency "rough" features, which can be emulated by introducing perturbation

to the CG potential.

space