

LendSense: A Smart Data-Driven Credit Risk Model

Prepared By: FEBRIYAN CHANDRA

Table of Content

Business Understanding

Company Profile

Project Overview

Problem Breakdown

Company Profile

Founded: 2005

Industry: Data & Analytics Consulting

Services: Data Science, Business Intelligence, Big Data, Al Solutions

Mission: Helping businesses optimize

data for better decision-making **Website:** <u>www.idxpartners.com</u>

Project Overview

This project involves cross-departmental collaboration to develop a technology-driven solution for the company. The goal is to build a predictive model for credit risk assessment using the given dataset, which contains data from both approved and rejected loan applications.

Problem Breakdown

Current Condition Lending companies face high default rates due to traditional risk assessment methods.

Gap / Problem Data-driven solutions are not fully utilized, leading to less accurate

credit risk evaluations.

Ideal Condition An accurate credit risk prediction model enables better loan decisions, reducing defaults and improving profitability.

Credit Risk Modelling Workflow

Data Exploration

Data Preparation & Preprocessing

Weight of Evidence

New Features

Modelling

Data Exploration

Objective: Understanding the structure and distribution of data while identifying initial trends that may affect credit risk before further analysis.

Workflow

Check number of columns and data types of features

Create a new column based on the Loan Status column that will be target variable

Check shape of data

Show columns that have more than 70% missing values

Insight

Data Structure:
Total Observations:
466,285 rows, 75 features

There are **20 columns** with more than **70% missing values.**

Dropping of irrelevant columns and rows with missing values (33 columns)

Reason for Removal	Columns			
Redundant or Identifiers	id, member_id, sub_grade			
Unstructured or Irrelevant Data	emp_title, url, desc, title			
Privacy Concerns	zip_code			
Future or Post-Ioan Data (Not Useful for Predictions)	next_pymnt_d, recoveries, collection_recovery_fee, total_rec_prncp, total_rec_late_fee			
Missing or Incomplete Data	mths_since_last_record, mths_since_last_major_derog, mths_since_rcnt_il			
Joint Loan Data (Not in Scope)	annual_inc_joint, dti_joint, verification_status_joint			
Low Impact or Less Relevant Features	open_acc_6m, open_il_6m, open_il_12m, open_il_24m, total_bal_il, il_util, open_rv_12m, open_rv_24m, max_bal_bc, all_util, inq_fi, total_cu_tl, inq_last_12m			
Constant or Low Variability Features	policy_code			

Key Findings

High Correlations:

- Funded Amount, Installment, and Total Payment (≥ 0.73) → Higher loans lead to higher installments and total payments.
- Total Accounts & Open Accounts (~0.66) → More open accounts mean a higher total number of accounts.
 - Business Impact: Key indicators for credit behavior and risk evaluation.

Weak Correlations:

Debt-to-Income Ratio (DTI) has low correlation with financial variables.

Business Impact: DTI alone isn't a strong credit risk determinant.

Target Variable (good_bad) Relationship:

 Total Payment (~0.15) with good_bad → Higher payments lower default risk.

Business Impact: Useful predictor for creditworthiness.

Dropping multicollinear features (6 columns)

Columns
Loan Amount
Revolving Balance
Funded Amount
Investor Funded Amount
Installment
Total Payment

After Dropping multicollinear features (6 columns)

Key Findings

High Correlations:

- Total Payment & Last Payment Amount (~0.64) → Higher total payments are strongly related to larger last payments.
- Term & Outstanding Principal (~0.46) → Longer loan terms tend to have higher remaining principal balances.
- Total Current Balance & Total Revolving High Limit (~0.49) → Higher credit limits are associated with higher current balances.
- Business Impact: These variables are key indicators of loan repayment behavior and credit risk assessment.

Weak Correlations:

- Public Records, Collections, and Accounts Delinquency have very low correlations with other financial variables. Business Impact:These factors alone may not significantly influence creditworthiness and require further analysis.
- Target Variable (`good_bad`) Relationship: Total Payment (~0.17) &
 Good/Bad Status → Higher payments are associated with lower credit risk.
- Revolving Utilization (~-0.26) & Good/Bad Status → Higher credit utilization correlates with a higher risk of being classified as a bad debtor.
- Months Since Last Delinquency (~-0.17) & Good/Bad Status

 Longer time since last delinquency correlates with lower credit risk. Business

 Impact:Payment behavior and credit utilization are crucial in predicting loan defaults.

Final Dataframe

Column Name	Description					
Index	Unique index number for each data entry					
Loan Term	Loan duration (in months)					
Interest Rate	Loan interest rate (%)					
Credit Grade	Borrower's credit risk classification					
Employment Length	Borrower's employment length (in years)					
Home Ownership Status	Borrower's home ownership status					
Annual Income	Borrower's annual income					
Verification Status	Income verification status by the lender					
Payment Plan	Whether the borrower has an active payment plan					
Loan Purpose	The primary reason for taking the loan					
State Address	Borrower's state or city of residence					
Debt-to-Income Ratio (DTI)	Ratio of debt to income					
Delinquencies (Last 2 Years)	Number of late payments in the last 2 years					
Inquiries (Last 6 Months)	Number of credit inquiries in the last 6 months					

Column Name	Description					
Months Since Last Delinquency	Months since the last delinquency					
Open Credit Accounts	Number of active credit accounts					
Public Records	Number of negative records in the credit report					
Revolving Credit Utilization	Percentage of revolving credit being used					
Initial Listing Status	Initial loan listing status (e.g., offered to investors)					
Outstanding Principal Balance	Remaining principal balance on the loan					
Total Payment Made	Total amount paid by the borrower					
Total Interest Received	Total interest earned by the lender					
Last Payment Amount	Last payment amount made by the borrower					
Collections (Last 12 Months)	Number of accounts sent to collections in the last year					
Application Type	Type of loan application (individual or joint)					
Accounts Currently Delinquent	Number of accounts currently overdue					
Total Collection Amount	Total amount in collections					
Total Current Balance	Total current balance across all accounts					
Total Revolving Credit Limit	Total revolving credit limit of the borrower					
Loan Status (Good/Bad)	Loan status (good or bad) - target variable					
Months Since Loan Issued	Months since the loan was issued					
Months Since Last Payment	Months since the last payment was made					
Months Since Last Credit Pull	Months since the last credit check					
Months Since Earliest Credit Line	Months since the borrower's first credit account					

What is WOE?

WOE is a technique used in credit risk modeling to **transform variables into a log-scale representation based on the likelihood of an event (e.g., default vs. non-default)**. It helps identify patterns in data, improve predictive modeling, and enhance decision-making in risk management.

Monotonic Trends (Strong Predictors):

 Variables with steadily increasing or decreasing WOE indicate a strong relationship with credit risk.

Business Insight:

- Higher income → Lower default risk, supporting income-based risk assessments.
- Higher loan amounts → Higher default risk, indicating the need for stricter approval criteria for large loans.

Non-Monotonic Patterns (Needs Refinement):

 Some variables show fluctuating
 WOE, which may indicate mixed risk behavior or poor binning.

Business Insight:

- Loan tenure shows inconsistencies, suggesting that mid-range tenures might have hidden risks.
- Adjusting loan policies for certain tenure ranges could optimize default rates.

0

Unstable WOE (Potential Data Issues):

 Sharp WOE variations between bins suggest low sample sizes or noisy data, requiring re-binning or removal.

Business Insight:

- Employment length has irregular jumps, meaning default risk isn't clearly defined for short vs. long-term employees.
- HR-based segmentation or additional financial indicators may be needed for better risk assessment.

0

New Features

Feature Name	Description				
Home Ownership	Borrower's home ownership status, such as "Rent," "Own," or "Mortgage."				
Verification Status	Status of borrower's information verification, such as "Verified" or "Not Verified."				
Purpose of Loan	The purpose of the loan, e.g., "Debt Consolidation," "Home Improvement," etc.				
State	The borrower's state of residence, represented as a two-letter code (e.g., CA, NY).				
Loan Term	The duration of the loan in months, such as "36 months" or "60 months."				
Total Interest Received	The total amount of interest paid by the borrower over the loan period.				
Total Revolving Credit Limit	The total maximum revolving credit limit of the borrower.				
Total Payment	The total amount of payments made by the borrower so far.				
Interest Rate	The loan interest rate as a percentage.				
Debt to Income Ratio	The ratio of the borrower's total debt to their annual income.				
Annual Income	The borrower's annual income.				
Credit Inquiries Last 6 Months	The number of times the borrower applied for credit in the past six months.				
Total Current Balance	The total current balance across all of the borrower's credit accounts.				
Months Since Last Credit Pull	The number of months since the borrower's last credit report was pulled.				
Months Since Loan Issued	The number of months since the loan was issued.				

Modelling

Class	Precision	Recall	F1-Score	Support
0	0.28	0.77	0.41	3,640
1	0.97	0.78	0.87	32,698
Accuracy	-	-	0.78	36,338
Macro				
Avg	0.63	0.78	0.64	36,338
Weighted				
Avg	0.9	0.78	0.82	36,338

Key Metrics:

KS Score: 0.558 → Strong Differentiation (Above industry benchmark of 0.4 - 0.5)

Precision (Bad Loans - Class 0): 0.28 → Higher false positives may lead to missed lending opportunities.

Recall (Bad Loans - Class 0): 0.77 \rightarrow Effective in detecting high-risk borrowers.

Precision (Good Loans - Class 1): 0.97 → Ensures high confidence in approving low-risk customers.

F1-Score (Macro Avg): 0.64 \rightarrow Model favors good loans, suggesting a need for rebalancing.

Business Insights:

Risk Mitigation: High KS Score indicates strong ability to differentiate credit risk, reducing default rates.

Revenue Optimization: Low precision on bad loans means potential lost opportunities—some rejected borrowers may actually be creditworthy.

Operational Efficiency: Reliable classification of good loans ensures faster approvals, improving customer experience.

Strategic Action: Adjust credit policies or refine the model to reduce false positives and improve risk-adjusted returns. 15

Key Insights & Strategic Takeaways

Business Insights

Conclusion

Business Insights

Risk-Based Pricing & Credit Policy Optimization

Improving Loan Approval Efficiency

Enhancing Default Prevention Strategies

Balancing Business Growth & Risk Control

The model's high KS Score (0.558) confirms strong risk differentiation, allowing financial institutions to implement tiered interest rates based on borrower risk levels.

Strategic Action: Lower interest rates for high-creditworthy customers to improve customer acquisition while adjusting risk premiums for potentially risky borrowers...

With high precision for good loans (0.97), institutions can confidently approve creditworthy customers, leading to faster disbursements and better customer experience.

Strategic Action:

Automate approvals for low-risk segments, reducing manual review time and operational costs. The model has 77% recall for bad loans, effectively detecting high-risk borrowers but with false positives (low precision for bad loans: 0.28).

Strategic Action: Introduce behavioral scoring and alternative data (transaction history, mobile data, etc.) to refine high-risk borrower segmentation. Expand lending with tailored loan products for different risk segments (secured vs. unsecured).

Strategic Action: Develop dynamic lending policies → Adjust risk thresholds based on macroeconomic trends and market conditions.

Conclusion

Business Understanding & Problem Framing

Data Processing & Feature Engineering Credit Risk Modelling & Evaluation Strategic Business Recommendatio ns

Future Enhancements

Challenge: Traditional credit risk assessment leads to high default rates.

Goal: Develop a predictive model to optimize loan approvals, reduce defaults, and drive profitability.

Key Insights:

- ✓ Loan amount, installments, & credit behavior → Highly correlated.
- ✓ DTI ratio → Weak predictor of credit risk.
- ✓ High total payments & low credit utilization →
 Strong indicators of lower default risk.

Action: Removed irrelevant/multicollinear features & optimized variable selection.

KS Score: 0.558 → Strong risk differentiation (above industry standard).

F1-Score (0.64) → Model slightly favors good loans, requiring better balance.

Precision (Bad Loans: 0.28)

→ High false positives, indicating missed lending opportunities.

Precision (Good Loans:

0.97) → Ensures high confidence in approving low-risk customers.

Risk-Based Pricing → Adjust loan interest rates based on borrower risk levels.

Alternative Data Integration \rightarrow

Use spending behavior, mobile data, and financial history for better borrower assessment.

Portfolio Expansion with Risk

Control → Develop tiered lending strategies for different risk segments.

AI-Powered Credit Decisioning

→ Automate loan approvals for faster processing and reduced defaults

- **Reduce false positives** to capture
 more creditworthy
 borrowers.
- Incorporate
 adaptive machine
 learning to improve
 accuracy over time.
- Implement real-time risk monitoring to dynamically adjust lending policies.

THANK YOU

Contact Person: FEBRIYAN CHANDRA chanfebriyanch@gmail.com

Appendix

Class Balance

