Vectors and matrices -- review of terminology

Matrix: a rectangular array of (possibly complex) numbers arranged in rows and columns

Order or **size**: a matrix *A* with *m* rows and *n* columns is said to be of **order** or **size** $m \times n$ $(A \in \mathbb{C}^{m \times n})$.

$$A = (a_{ij}) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Square matrix of order or size n (or $n \times n$): n = m

Row vector: $1 \times n$ matrix, $x = (x_1, x_2, \dots, x_n)$

Column vector $m \times 1$ matrix, $y = (y_1, y_2, \dots, y_m)^T$.

A vector is a column vector, unless otherwise stated.

Equal matrices/vectors: of same order and the corresponding elements are equal.

CSC336 II–45 © C. Christara, 2012-16

Vectors and matrices -- review of terminology

Sum of two matrices $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times n}$: a matrix $C \in \mathbb{C}^{m \times n}$ with elements $c_{ii} = a_{ii} + b_{ii}$.

Product of a matrix $A \in \mathbb{C}^{m \times n}$ by a scalar $\alpha \in \mathbb{C}$: a matrix $C \in \mathbb{C}^{m \times n}$ with elements $c_{ij} = \alpha a_{ij}$.

Product of two matrices $A \in \mathbb{C}^{m \times l}$, $B \in \mathbb{C}^{l \times n}$: a matrix $C \in \mathbb{C}^{m \times n}$ with elements $c_{ij} = \sum_{k=1}^{l} a_{ik} b_{kj}$.

Vectors and matrices -- review of terminology -- properties

Properties of addition and multiplication of matrices:

Let A, B and C be matrices of appropriate order and α and β be scalars.

A + B = B + A and in general $A \cdot B \neq B \cdot A$

$$(A+B)+C=A+(B+C)$$

$$\alpha(A + B) = \alpha A + \alpha B$$
, $(\alpha + \beta)A = \alpha A + \beta A$

$$(A+B)C = AC + BC$$
, $A(B+C) = AB + AC$

$$\alpha(AB) = (\alpha A)B = A(\alpha B)$$

Zero (null) matrix (0): a matrix with all elements equal to zero. A + 0 = 0 + A = A.

Identity matrix **I** of order n: a square matrix of order n, with 1's on the diagonal and 0's anywhere else.

Inverse A^{-1} of a square matrix A of order n: a square matrix $B = A^{-1}$ of order n with the property $AB = BA = \mathbf{I}$.

Invertible or **non-singular** matrix: A^{-1} exists. singular -> not invertible, so it is "single" **Singular** or **non-invertible** matrix: A^{-1} does not exist.

Properties of inversion of matrices:

Let A and B be invertible matrices and α be non-zero scalar.

$$(A^{-1})^{-1} = A$$
, $(AB)^{-1} = B^{-1}A^{-1}$, $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$.

Vectors and matrices -- review of terminology

Transpose $B = A^T$ of $A \in \mathbb{R}^{m \times n}$: the $n \times m$ matrix for which $b_{ij} = a_{ij}, i = 1, \dots, n, j = 1, \dots, m$.

Properties of transposition of matrices: $(A^T)^T = A$, $(AB)^T = B^T A^T$

Symmetric matrix $A: A^T = A$.

Orthogonal matrix: a real matrix A for which $A^T A = \mathbf{I}$; if the matrix is square orthogonal, its transpose and its inverse are equal.

Conjugate transpose $B = A^H = \overline{A}^T$ of $A \in \mathbb{C}^{m \times n}$: the $n \times m$ matrix for which $b_{ij} = \overline{a}_{ji}$, $i = 1, \dots, n$, $j = 1, \dots, m$. overbar denotes a scalr complex conjugate: the complex conjugate of a + bi is a - bi. Properties of conjugate transposition of matrices:

$$(A^{H})^{H} = A, (AB)^{H} = B^{H}A^{H}$$

Hermitian matrix $A: A^H = A$.

For all real matrices we have $A^H = A^T$.

Unitary matrix: a complex matrix A for which $A^H A = \mathbf{I}$; if the matrix is square unitary, its conjugate transpose and its inverse are equal.

Normal matrix $A: A^H A = AA^H$.

CSC336 II-46 © C. Christara, 2012-16 CSC336 II-48 © C. Christara, 2012-16

Vectors and matrices -- review of terminology

Permutation matrix P: a square matrix, whose elements are all "0" or "1" and there is exactly one "1" in every row and column, i.e. P is \mathbf{I} with its rows and columns rearranged.

Elementary permutation matrix P: a permutation matrix, arising from interchanging only two rows (or only two columns) of I.

- The product of permutation matrices is a permutation matrix.
- Permutation matrices are orthogonal.

Linearly independent vectors $v_1, v_2, \dots, v_n \in \mathbb{C}^m$:

for any linear combination of them for which $c_1v_1+c_2v_2+\cdots+c_nv_n=0$, $c_i\in\mathbb{C}$, $i=1,\cdots,n$, this implies $c_1=0,\ c_2=0,\cdots,\ c_n=0$.

Inner product (x, y) of vectors x and y: $(x, y) \equiv x^T \cdot y$. $(x^H \cdot y)$ for complex vectors). Orthogonal vectors $v_1, v_2, \dots, v_n \in \mathbb{R}^m$: $i \neq j \Rightarrow v_i^T \cdot v_j = 0$. $(v_i^H \cdot v_j = 0 \text{ for } v_i \in \mathbb{C}^m)$. Orthonormal vectors $v_1, v_2, \dots, v_n \in \mathbb{R}^m$: orthogonal and $v_i^T \cdot v_i = 1$. $(v_i^H \cdot v_i = 1 \text{ for } v_i \in \mathbb{C}^m)$.

• Orthogonal vectors are linearly independent.

CSC336 II–49 © C. Christara, 2012-16

Vectors and matrices -- review of terminology

Diagonal of a square matrix of order n: the set of elements $\{a_{ii}, i = 1, \dots, n\}$.

Diagonal matrix: a square matrix with zero off-diagonal elements, i.e., $a_{ij} = 0$ for $i \neq j$.

Lower triangular matrix: a square matrix with zero super-diagonal elements, i.e., $a_{ii} = 0$ for i < j. (Strictly lower triangular: $a_{ii} = 0$ for $i \le j$.)

Upper triangular matrix: a square matrix with zero sub-diagonal elements, i.e., $a_{ii} = 0$ for i > j. (Strictly upper triangular: $a_{ii} = 0$ for $i \ge j$.)

Unit lower triangular matrix: a lower triangular matrix with 1's on the diagonal, i.e., $a_{ii} = 0$ for i < j, $a_{ii} = 1$, $i = 1, \dots, n$.

Unit upper triangular matrix: an upper triangular matrix with 1's on the diagonal, i.e., $a_{ii} = 0$ for i > j, $a_{ii} = 1$, $i = 1, \dots, n$.

Dense matrix: most of its elements are non-zero.

Density of a matrix: the ratio of the number of non-zero elements over the total.

Sparse matrix: most of its elements are zero.

Sparsity of a matrix: the ratio of the number of zero elements over the total.

Vectors and matrices -- review of terminology

Banded matrix: a sparse matrix A that has all its non-zero elements near the diagonal. Its **lower bandwidth** is l and its **upper** bandwidth u, if all elements below the l-th subdiagonal and above the u-th superdiagonal are zero. In other words, $a_{ij} = 0$, if i - j > l or j - i > u.

(Full or total) Bandwidth: l + u + 1.

Symmetrically banded matrix: a banded matrix with l = u.

Semi-bandwidth of a symmetrically banded matrix: l or u.

Tridiagonal matrix: a symmetrically banded matrix with semi-bandwidth 1.

Pentadiagonal matrix: a symmetrically banded matrix with semi-bandwidth 2.

(Row) **Diagonally dominant** matrix: a square matrix A for which $|a_{ii}| \ge \sum_{j=1}^{n} |a_{ij}|$ for all $i = 1, \dots, n$.

Strictly (row) **diagonally dominant** matrix: a square matrix A for which $|a_{ii}| > \sum_{j=1}^{n} |a_{ij}|$ for all $i = 1, \dots, n$.

• Strictly diagonally dominant matrices are nonsingular.

CSC336 II-51 © C. Christara, 2012-16

Vectors and matrices -- review of terminology

Positive definite matrix: a square matrix A for which, for any vector $x \neq 0$, $x^T Ax > 0$.

• A symmetric matrix is positive definite (SPD), iff the diagonal elements of the *U* factor in the LU factorisation are positive.

Non-negative (positive, non-positive, negative) matrix: $a_{ij} \ge 0$ ($a_{ij} > 0$, $a_{ij} \le 0$, $a_{ij} < 0$, respectively), for all i, j. *Notation*: $A \ge 0$ (A > 0, $A \le 0$, A < 0)

Monotone matrix: a real square non-singular matrix A for which $A^{-1} \ge 0$.

M-matrix: a real square non-singular matrix A for which $a_{ij} \le 0$, for $i \ne j$, and $A^{-1} \ge 0$.

Determinant det(A) of a $n \times n$ matrix A: a scalar defined as follows:

If
$$A$$
 is 1×1 then $\det(A) = a_{11}$. Else $\det(A) = a_{11} \det(A'_{11}) - a_{12} \det(A'_{12}) + \dots + (-1)^{n+1} a_{1n} \det(A'_{1n})$
= $a_{11} \det(A'_{11}) - a_{21} \det(A'_{21}) + \dots + (-1)^{n+1} a_{n1} \det(A'_{n1})$,

where A'_{ij} is the $(n-1) \times (n-1)$ submatrix formed by deleting the *i*-th row and the *j*-th column of A.

Properties of determinants: det(AB) = det(A) det(B) = det(BA).

CSC336 II–50 © C. Christara, 2012-16 CSC336 II–52 © C. Christara, 2012-16

Linear systems -- review of some properties

System of m linear equations with n unknowns:

where the coefficients a_{ij} , $i=1,\dots,m$, $j=1,\dots,n$, and the right side b_i , $i=1,\dots,m$, are given and x_i , $j=1,\dots,n$, are the unknowns.

A linear system can be written in a matrix form as Ax = b, where A is an $m \times n$ matrix, x is a $n \times 1$ vector and b is a $m \times 1$ vector.

- Ax = b has at most one solution, iff Ax = 0 has only the trivial solution.
- If A is $m \times n$ and m < n, then Ax = 0 has non-trivial solutions.
- If A is $m \times n$ and Ax = b has a solution for every b, then $m \le n$.

CSC336 II-53 © C. Christara, 2012-16

Linear systems -- review of some properties

II-54

© C. Christara, 2012-16

- If *A* is square, the following are equivalent:
- -A is singular
- -Ax = 0 has a non-trivial solution
- $-\det(A) = 0$
- The columns of A are linearly dependent
- If Ax = b has a solution, then it has infinitely many solutions.
- \bullet If A is square, the following are equivalent:
- A is invertible
- -Ax = 0 has only the trivial solution
- $-\det(A) \neq 0$

CSC336

- The columns of A are linearly independent
- -Ax = b has a (unique) solution for every right side b.

Null space, range space and rank of a matrix

Column (row) rank of an $m \times n$ matrix A: the number of linearly indepedent columns (rows) of A, i.e., the dimension of the subspace spanned by the columns (rows) of A, (the dimension of R(A)).

Rank: the column and row ranks of a matrix A are equal and their common value is the rank of A.

- An invertible matrix of order n has rank n.
- If *P* is a nonsingular square matrix, then *PA* has the same rank as *A*.
- Ax = b has a solution, iff the rank of the augmented matrix $(A \ b)$ is the same as the rank of A.

Null space or kernel, N(A) or ker(A), of an $m \times n$ matrix A: the set of all vectors x such that Ax = 0.

Nullity: the dimension of the null space.

• An invertible matrix has nullity 0.

Range space R(A) of an $m \times n$ matrix A: the set of all vectors x such that for some vector y we have Ay = x.

• Ax = b has a solution, iff $b \in R(A)$. • If A is $n \times n$, then rank + nullity = order (n).

CSC336 II–57 © C. Christara, 2012-16