Содержание

1	Введение				
2	Пос	становка задачи	7		
3	Техники и алгоритмы				
	3.1	Robust distance estimation	9		
	3.2	Проксимальный метод	11		
4	Осн	овной алгоритм	13		
5	Обсуждение результатов				
	5.1	Стохастический градиентный оракул	17		
	5.2	Сильно выпуклый гладкий случай	17		
	5.3	Сильно выпуклый негладкий случай	19		
	5.4	Выпуклый гладкий случай	20		
	5.5	Выпуклый негладкий случай	21		
	5.6	Замечания	21		
6	Обзор применения техник в случае седловых задач				
	6.1	Постановка задачи	22		
	6.2	Основные предположения	22		
	6.3	Алгоритм PB-SSP для неограниченных задач	23		
	6.4	Связь с proxBoost	24		
7	Вычислительный эксперимент				
	7.1	Постановка задачи	25		
	7.2	Сравнение алгоритмов	25		
	7.3	Результаты	26		
	7.4	Выводы	26		
8	Зак	Заключение 2			

Аннотация

Классические результаты стохастической оптимизации, как правило, формулируются в терминах числа итераций, необходимых для достижения ε -точности по математическому ожиданию функции. В данной работе разрабатывается обёртка над алгоритмами сходимости по математическому ожиданию, обеспечивающая гарантию сходимости с высокой вероятностью для задач выпуклой оптимизации и седловых задач, причем за эффективную сложность и для функций различной степени гладкости и выпуклости. Полученные гарантии сходимости подтверждаются на вычислительных экспериментах.

Ключевые слова: стохастическая выпуклая оптимизация, стохастические седловые задачи, сходимость с высокой вероятностью, оценка вероятности больших отклонений, проксимальный метод, неравенства концентрации.

1 Введение

В данной работе рассматривается задача стохастической оптимизации

$$\min_{x \in \mathbb{R}^d} f(x) := \mathbb{E}_{\xi} f(x, \xi), \tag{1}$$

где случайная величина ξ из фиксированного, но неизвестного распределения \mathcal{P} : $\xi \sim \mathcal{P}$.

Как правило, результатом стохастических градиентных методов является точка x_{ε} такая, что

$$\mathbb{E}f(x_{\varepsilon}) - \min f \le \varepsilon. \tag{2}$$

Такую сходимость в дальнейшем будем называть сходимостью «по математическому ожиданию». Стоимость таких алгоритмов, например, стохастического градиентного спуска (Stochastic Gradient Descent, SGD) в терминах количества вызовов стохастического градиентного оракула $\mathcal{O}(\frac{1}{\varepsilon^2})$ в выпуклом случае и $\mathcal{O}(\frac{1}{\varepsilon})$ в сильно выпуклом случае (см. [1], [2], [3], [4]).

В данной работе мы рассматриваем алгоритмы, результатом которых являются точки $x_{\varepsilon,p},$ удовлетворяющие условию

$$\mathbb{P}(f(x_{\varepsilon,p}) - \min f \le \varepsilon) \ge 1 - p,\tag{3}$$

где число p > 0 может быть достаточно маленьким. Проще говоря, мы ищем такие решения, для которых вероятность того, что невязка меньше желаемой точности ε достаточно большая. Здесь под невязкой будет пониматься разность значений функции в точке и минимума этой функции. Формулу (3) можно переписать в другом виде:

$$\mathbb{P}(f(x_{\varepsilon,p}) - \min f \ge \varepsilon) \le p,\tag{4}$$

Формулу (3) можно интерпретировать как сходимость «с высокой вероятностью», а формулу (4) как оценку вероятности больших отклонений, что отражено в названии дипломной работы. Из неравенства Маркова ясно, что (3) или (4) можно гарантировать, если найти точку $x_{\varepsilon,p}$ такую, что $\mathbb{E}f(x_{\varepsilon,p}) - \min f \leq p\varepsilon$. Однако для этого необходимо $\mathcal{O}(\frac{1}{p^2\varepsilon^2})$ или $\mathcal{O}(\frac{1}{p\varepsilon})$ вызовов стохастического оракула, то есть сложность существенно возрастает при малых p. Существует несколько статей, в которых сложность относительно p снижается до логарифмической $\log(\frac{1}{p})$, однако либо в то же время ухудшается сложность относительно ε ([5], [6], [7]), либо делаются более жесткие ограничения на

шум стохастического градиента ([8], [9], [10], [3], [11], [12]): он предполагается субгауссовским, то есть имеющим «легкие хвосты». Техника клиппирования (см.[13], [14]) хоть и позволяет работать с «тяжелыми хвостами» шума стохастического градиента, но требует исследования теоретических гарантий для каждого нового алгоритма, то есть не является общей оболочкой над алгоритмами.

В работе [15] был разработан общий алгоритм, работающий и в случае «тяжелых хвостов» распределения шума стохастического градиента, при этом требующий не очень большого числа вызовов оракула. В этой работе рассматривается оракул $\mathcal{M}(f,\varepsilon)$, возвращающий точку x_{ε} такую, что $\mathbb{P}(f(x_{\varepsilon})-\min f\leq\varepsilon)\geq\frac{2}{3}$. В частности, такой оракул может быть порожден любым алгоритмом стохастической оптимизации, возвращающим точку x_{ε} такую, что $\mathbb{E}f(x_{\varepsilon})-\min f\leq\frac{\varepsilon}{3}$ (следствие неравенства Маркова). Авторы показали, что для μ -сильно выпуклых L-гладких функций алгоритм, решающий задачу (3) требует $\log(\frac{\log \kappa}{p})\log\kappa\cdot\mathcal{C}_{\mathcal{M}}(f,\frac{\varepsilon}{\log\kappa})$ вызовов стохастического оракула, где $\mathcal{C}_{\mathcal{M}}(f,\varepsilon)$ -стоимость (сложность) вызова такого оракула. Таким образом, задача сходимости с высокой вероятностью сложнее (в смысле оракульной сложности) задачи сходимости по матожиданию лишь в логарфимическое по $\frac{1}{p}$ и полилогарифмическое по числу обусловленности $\kappa:=\frac{L}{\mu}$ раз.

В данной дипломной работе результаты работы [15] обобщаются на негладкий и не сильно выпуклый случаи. Сложность остается логарифмической по $\frac{1}{p}$, однако ухудшается сложность относительно ε , но лишь логарифмически. Таким образом, здесь существующая обертка над алгоритмами адаптирована для более широких классов минимизируемых функций.

В последней части работы мы также решаем выпукло-вогнутые седловые задачи

$$\min_{x \in X} \max_{y \in Y} \Phi(x, y) := \mathbb{E}\Phi_{\xi}(x, y) \tag{5}$$

являющиеся актуальными, в частности, в связи с развитием обучения с подкреплением (reinforcement learning; см., например, [16], [17]). Так же, как и в задачах выпуклой оптимизации, в большинстве работ решаются задачи сходимости по математическому ожиданию функций ([8], [18], [19], [20], [21])

$$\mathbb{E}[\Delta_{\Phi}(\hat{x}, \hat{y})] \leq \varepsilon \qquad \text{или} \qquad \mathbb{E}[\Delta_{\Phi}^w(\hat{x}, \hat{y})] \leq \varepsilon.$$

. Здесь для любых $(\hat{x},\hat{y}) \in \mathcal{X} \times \mathcal{Y}$ введен зазор двойственности

$$\Delta_{\Phi}(\hat{x}, \hat{y}) := \max_{y \in \mathcal{Y}} \Phi(\hat{x}, y) - \min_{x \in \mathcal{X}} \Phi(x, \hat{y}) =: f(\hat{x}) - g(\hat{y}). \tag{6}$$

и его слабая версия

$$\Delta_{\Phi}^{w}(\hat{x}, \hat{y}) := \Phi(\hat{x}, y^{*}) - \Phi(x^{*}, \hat{y}), \tag{7}$$

где (x^*, y^*) - решение задачи (5). Целью данного исследования является поиск таких решений, что

$$\mathbb{P}\left[\Delta_{\Phi}(\bar{x},\bar{y}) \le \varepsilon\right] \ge 1 - p \tag{8}$$

На базе методов, предложенных в статье [15] для задач выпуклой оптимизации в статье [22] строятся (по аналогии) методы для выпукло-вогнутых седловых задач с обеспечением гарантий сходимости высокой вероятности за небольшую сложность. Так как решение седловых задач можно рассматривать, обобщая результаты для задач минимизации ([23]), начнем с подробного рассмотрения последних.

2 Постановка задачи

Пусть \mathbb{R}^d - евклидово пространство со скалярным произведением $\langle \cdot, \cdot \rangle$ и индуцированным им нормой $\|x\|_2 = \langle x, x \rangle, x \in \mathbb{R}^d$. Всюду далее под $\| \cdot \|$ подразумевается евклидова норма. Замкнутый шар с центром в точке x и радиусом ε будем обозначать $B_{\varepsilon}(x)$.

Будем решать задачу стохастической оптимизации

$$\min_{x \in \mathbb{R}^d} f(x) := \mathbb{E}f(x, \xi). \tag{9}$$

при следующих предположениях на функцию f(x):

Предположение 1. Исследуемая функция $f: \mathbb{R}^d \to \mathbb{R}$ μ -сильно выпуклая, то есть $\forall x,y$ выполнено:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2$$
(10)

Предположение 2. Функция $f:\mathbb{R}^d \to \mathbb{R}$ - (L,γ) -гладкая, то есть $\forall x,y \in B_R(x^*), \ R=$

 $||x_0 - x^*||$ выполнено:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2 + \gamma$$
(11)

где $\nabla f(x) \in \partial f(x)$ - произвольный субградиент функции f в точке x.

Предположение 3. Градиент функции f(x) удовлетворяет условию Гёльдера, то есть $\exists \nu \in [0,1]$ такое, что $\forall x,y \in B_R(x^*)$ имеет место неравенство

$$\|\nabla f(y) - \nabla f(x)\| \le L_{\nu} \|y - x\|_{2}^{\nu}, \ L_{0} < \infty \tag{12}$$

Заметим, что при $\nu=1$ предположение 3 является просто условием L_1 -гладкости. При $\nu=0$ же предположение 3 является условием L_0 -липшицевости. Далее будем обозначать $L_1=L$ и $L_0=M$.

Предположение (2) введено для того, чтобы смотреть на гладкий и негладкий случаи единообразно. Действительно, при $\gamma=0$ это и есть условие гладкости. Если же функция негладкая, но M-липшицева ($\|\nabla f(y)-\nabla f(x)\|\leq M$), то неравенство (11) всё равно будет выполняться при $L=\frac{M^2}{2\gamma}$. Доказательство этого утверждения можно найти в [24].

Пемма 1. Если для градиента функции f(x) выполнено условие Гёльдера (12), то такая функция (L, γ) -гладкая (cм. (11)) при

$$L = L_{\nu} \left(\frac{L_{\nu}}{2\gamma} \frac{1-\nu}{1+\nu} \right)^{\frac{1-\nu}{1+\nu}}.$$

B частности, при $\nu=0$ $L=\frac{M^2}{2\gamma}$.

Напомню, что эта работа сосредоточена на эффективном решении задачи оптимизации со следующей мерой качества (3):

$$\mathbb{P}(f(x_{\varepsilon,p}) - \min f \le \varepsilon) \ge 1 - p,$$

При дальнейшем изложении нам будет важно, сохраняется ли «слабая гладкость» (предположение 2) при добавлении регуляризационного слагаемого $\frac{\lambda}{2}\|x-z\|^2$, где z - некоторая фиксированная точка. На этот вопрос отвечает следующая лемма.

Лемма 2. Пусть функция f(x) - (L,γ) -гладкая. Тогда функция $h(x)=f(x)+\frac{\lambda}{2}\|x-z\|^2$ является $(L+\lambda,\gamma)$ -гладкой.

Доказательство. Действительно, так как функция f(x) - (L,γ) -гладкая, то

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2 + \gamma.$$

Это эквивалентно

$$h(y) - \frac{\lambda}{2} \|y - z\|^2 \le h(x) - \frac{\lambda}{2} \|x - z\|^2 + \langle \nabla h(x) - \lambda(x - z), y - x \rangle + \frac{L}{2} \|y - x\|^2 + \gamma \|y -$$

или

$$h(y) \leq h(x) + \langle \nabla h(x), y - x \rangle + \frac{L}{2} \|y - x\|^2 + \frac{\lambda}{2} \|y - z\|^2 - \frac{\lambda}{2} \|x - z\|^2 - \lambda \langle x - z, y - x \rangle + \gamma \langle x - z, y - x \rangle + \frac{L}{2} \|y - x\|^2 + \frac{\lambda}{2} \|y - z\|^2 - \frac{\lambda}{2} \|x - z\|^2 - \lambda \langle x - z, y - x \rangle + \frac{L}{2} \|y - x\|^2 + \frac{\lambda}{2} \|y - z\|^2 - \frac{\lambda}{2} \|x - z\|^2 - \frac{\lambda}{2} \|x - z\|^2 - \frac{\lambda}{2} \|x - z\|^2 + \frac{\lambda}{2} \|y - z\|^2 + \frac{\lambda}{2}$$

В силу того, что $\frac{\lambda}{2}\|y-z\|^2 - \frac{\lambda}{2}\|x-z\|^2 - \lambda\langle x-z,y-x\rangle = \frac{\lambda}{2}\|y-x\|^2$ получаем $(L+\lambda,\gamma)$ -гладкость функции $h(x)=f(x)+\frac{\lambda}{2}\|x-z\|^2$ по определению:

$$h(y) \le h(x) + \langle \nabla h(x), y - x \rangle + \frac{L + \lambda}{2} ||y - x||^2 + \gamma$$

3 Техники и алгоритмы

Далее описываемая оболочка над алгоритмами сходимости по математическому ожиданию для обеспечения сходимости с высокой вероятностью зиждется на двух методах: RDE (Robust Distance Estimation, робастная оценка расстояний) и проксимальный метод.

3.1 Robust distance estimation

Пусть исследуемая функция $f: \mathbb{R}^d \to \mathbb{R}$ μ -сильно выпуклая (т.е. $f(x) - \frac{\mu}{2} ||x||^2$ - выпуклая) и L-гладкая (т.е. дифференцируемая с L-липшицевым градиентом). Для такой функции для всех точек $x,y \in \mathbb{R}^d$ справедливо:

$$\langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2 \leq f(y) - f(x) \leq \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$

Для точки x^* , в которой достигается минимум функции f тогда справедливо (с учетом необходимого условия $\nabla f(x^*) = 0$):

$$\frac{\mu}{2}||x - x^*||^2 \le f(x) - f(x^*) \le \frac{L}{2}||x - x^*||^2$$

Отмечу, что в дальнейшем будет полезно более общее неравенство для (L,γ) -гладких функций:

$$f(x) - f(x^*) \le \frac{L}{2}||x - x^*||^2 + \gamma \tag{13}$$

Далее $\min f = f(x^*) =: f^*$.

Обозначим за $\mathcal{D}(\varepsilon)$ - оракул, возвращающий точку $\mathbb{P}[||x-x^*|| \leq \varepsilon] \geq \frac{2}{3}$. Можно сделать m вызовов этого оракула $x_1,...,x_m$ и выбрать среди полученных точек такую x_{i^*} , вокруг которой класстеризуются остальные точки.

Algorithm 1 Robust Distance Estimation (RDE) $\mathcal{D}(\varepsilon,m)$

Вход: доступ к оракулу $\mathcal{D}(\varepsilon)$ и число его вызовов m.

Вызываем оракул $\mathcal{D}(\varepsilon)$ m раз. Обозначим множество его ответов за $X=\{x_1,\ldots,x_m\}$.

В цикле i = 1, ..., m:

Вычисляем $r_i = \min\{r \geq 0 : |B_r(x_i) \cap X| > \frac{m}{2}\}.$

Устанавливаем $i^* = \arg\min_{i \in [1,m]} r_i$

Возвращаем x_{i^*}

Теорема 1. Точка x_{i^*} , возвращаемая алгоритмом RDE, удовлетворяет условию

$$\mathbb{P}(||x_{i^*} - x^*|| \le 3\varepsilon) \ge 1 - e^{-\frac{m}{18}}$$

Доказательство теоремы основано на неравенствах концентрации, его можно найти в [1] или в [25].

Опишем, как алгоритм RDE 1 может обеспечивать сходимость с высокой вероятностью. Пусть точки x_i (i=1,...,m) таковы, что $\mathbb{E} f(x_\varepsilon) - \min f \leq \frac{\varepsilon}{3}$, то есть могут быть сгенерированы алгоритмом сходимости по мат. ожиданию. По неравенству Маркова тогда автоматически следует, что $\mathbb{P}(f(x_i) - f^* \leq \varepsilon) \geq \frac{2}{3}$. Из μ -сильной выпуклости получаем $\mathbb{P}(||x_i - x^*|| < \sqrt{\frac{2\varepsilon}{\mu}} =: \delta) \geq \frac{2}{3}$. Применив к этим точкам алгоритм RDE (1), получим точку x_{i^*} , удовлетворяющую неравенству $\mathbb{P}(||x_{i^*} - x^*|| < 3\delta) \geq 1 - e^{-\frac{m}{18}}$. Из L-гладкости функции f тогда следует, что $\mathbb{P}(f(x_{i^*}) - f^* \leq \frac{L}{2}(3\delta)^2 = 9\frac{L}{\mu}\varepsilon) \geq 1 - e^{-\frac{m}{18}}$. Таким

образом, генерируя точки алгоритмом, дающим гарантии сходимости с точностью ε по матожиданию, но не с высокой вероятностью, RDE обеспечивает гарантию сходимости с высокой вероятностью, но лишь с $\kappa\varepsilon$ -точностью, где число обусловленности $\kappa=\frac{L}{\mu}\gg 1$ может быть достаточно большим. Для нивелирования этой проблемы в статье [15] был предложена процедура proxBoost, которая будет описана далее. На процедуру RDE можно посмотреть и под другим углом. Желаемое качество сходимости (3) обеспечивается, если $m\sim \ln\frac{1}{p}$ раз вызвать оракул $\mathcal{M}(f,\frac{\varepsilon}{\kappa})$, что требует итоговой оракульной сложности $\mathcal{O}\left(\log\frac{1}{p}\cdot\mathcal{C}_{\mathcal{M}}(f,\frac{\varepsilon}{\kappa})\right)$, в которой содержится нежелаемый множитель κ . Предлагаемый в [15] подход уменьшает сложность по числу обусловленности κ до логарифмического.

3.2 Проксимальный метод

Зафиксируем возрастающую последовательность $\lambda_0,...,\lambda_T$ и последовательность точек $x_0,...,x_T$. Для каждого i=0,...,T введем функцию

$$f^{i}(x) := f(x) + \frac{\lambda_{i}}{2}||x - x_{i}||^{2}$$

$$\bar{x}_{i+1} := \operatorname*{arg\,min}_{r} f^{i}(x)$$

В качестве x_i можно брать $x_i=\bar{x}_i$ для $i\geq 1$. Так как точное вычисление точки минимума чаще всего невозможно, будем следить лишь за $||\bar{x}_i-x_i||$. Для простоты, $\bar{x}_0:=\arg\min f,\,\lambda_{-1}:=0.$

Теорема 2. (Неточный проксимальный метод) Для всех $j \ge 0$ выполняется следующее неравенство:

$$f^{j}(\bar{x}_{j+1}) - f^{*} \leq \sum_{i=0}^{j} \frac{\lambda_{j}}{2} ||\bar{x}_{i} - x_{i}||^{2}.$$

Слндовательно, имеем декомпозицию функциональной ошибки:

$$f(x_{j+1}) - f^* \le (f^j(x_{j+1}) - f^j(\bar{x}_{j+1})) + \sum_{i=0}^j \frac{\lambda_j}{2} ||\bar{x}_i - x_i||^2.$$

Если функция f еще $u(L,\gamma)$ -гладкая, то для всех $j \ge 0$ выполнена оценка:

$$f(x_j) - f^* \le \frac{L + \lambda_{j-1}}{2} ||\bar{x}_j - x_j||^2 + \gamma + \sum_{i=0}^{j-1} \frac{\lambda_j}{2} ||\bar{x}_i - x_i||^2.$$
(14)

Основным результатом Теоремы (2) является декомпозиция функциональной

ошибки на ошибку на последнем шаге $(f^T(x_{j+1}) - f^T(\bar{x}_{j+1}))$ и накопленную ошибку $\sum_{i=0}^T \frac{\lambda_j}{2} ||\bar{x}_i - x_i||^2$. Доказательство можно найти в [15]. Последний пункт теоремы следует непосредственно из леммы 2. Для достаточно больших T можно гарантировать то, что функция f^T хорошо обусловлена. Использование преимуществ результатов теорем (1) и (2) навело авторов [15] разработку алгоритм proxBoost, который здесь представлен в обобщенном виде для (L, γ) -гладких функций.

Algorithm 2 proxBoost(δ, p, T)

Вход: $\delta \geq 0, p \in (0,1), T \in \mathbb{N}$

Установить
$$\lambda_{-1} = 0$$
, $\varepsilon_{-1} = \sqrt{\frac{2\delta}{\mu}}$

Получить точку x_0 , удовлетворяющую $||x_0 - \bar{x}_0|| \le \varepsilon_{-1}$ с вероятностью 1 - p.

В цикле j = 0, ..., T-1

Установить
$$\varepsilon_j = \sqrt{\frac{2\delta}{\mu + \lambda_j}}$$

Получить точку x_{j+1} , удовлетворяющую

$$\mathbb{P}[\|x_{j+1} - \bar{x}_{j+1}\| \le \varepsilon_j \mid E_j] \ge 1 - p, \tag{15}$$

где E_j обозначает событие $E_j:=\left\{x_i\in B_{\varepsilon_{i-1}}(\bar{x}_i) \text{ for all } i\in[0,j]\right\}.$

Получить точку x_{T+1} , удовлетворяющую

$$\mathbb{P}\left[f^T(x_{T+1}) - \min f^T \le \delta \mid E_T\right] \ge 1 - p. \tag{16}$$

Выход: x_{T+1}

Теорема 3 (O proxBoost). Зафиксируем константу $\delta > 0$, вероятность отказа $p \in (0,1)$ и натуральное число $T \in \mathbb{N}$. Тогда с вероятностью не менее 1 - (T+2)p, точка $x_{T+1} = \mathsf{proxBoost}(\delta, p, T)$ удовлетворяет

$$f(x_{T+1}) - \min f \le \delta \left(1 + \sum_{i=0}^{T} \frac{\lambda_i}{\mu + \lambda_{i-1}} \right). \tag{17}$$

Доказательство. Сначала докажем по индукции оценку

$$\mathbb{P}[E_t] \ge 1 - (t+1)p$$
 для всех $t = 0, \dots, T$. (18)

База индукции t = 0 следует непосредственно из определения x_0 . Теперь предположим, что (18) выполняется для некоторого индекса t - 1. Тогда из предположения индукции

и определения x_t следует

$$\mathbb{P}[E_t] = \mathbb{P}[E_t | E_{t-1}] \mathbb{P}[E_{t-1}] \ge (1-p) (1-tp) \ge 1 - (t+1)p,$$

что завершает шаг индукции. Таким образом, неравенства (18) выполняются. Определим событие

$$F = \{ f^T(x_{T+1}) - \min f^T \le \delta \}.$$

Тогда

$$\mathbb{P}[F \cap E_T] = \mathbb{P}[F \mid E_T] \cdot \mathbb{P}[E_T] \ge (1 - (T+1)p)(1-p) \ge 1 - (T+2)p.$$

Теперь предположим, что выполнено событие $F \cap E_T$. Тогда

$$f(x_{T+1}) - \min f \le (f^T(x_{T+1}) - f^T(\bar{x}_{T+1})) + \sum_{i=0}^T \frac{\lambda_i}{2} ||\bar{x}_i - x_i||^2 \le \delta + \sum_{i=0}^T \frac{\delta \lambda_i}{\mu + \lambda_{i-1}},$$

где последнее неравенство использует определения x_{T+1} и ε_j . Это завершает доказательство.

Отметим, что данная теорема не использует свойства гладкости или негладкости функции. Глядя на оценку (17), мы видим, что итоговая ошибка $f(x_{T+1})$ — min f контролируется суммой $\sum_{i=0}^T \frac{\lambda_i}{\mu + \lambda_{i-1}}$. Если выбрать проксимальные параметры геометрически возрастающими $\lambda_i = \mu 2^i$, то в этом случае каждый член суммы $\frac{\lambda_i}{\mu + \lambda_{i-1}}$ ограничен сверху двойкой. Более того, если f является L-гладкой, то число обусловленности $\frac{L + \lambda_T}{\mu + \lambda_T}$ для функции f^T оказывается ограничено двойкой уже после $T = \lceil \log(L/\mu) \rceil$ итераций.

4 Основной алгоритм

Часто сложность стохастических градиентных методов, то есть количество оракульных вызовов, необходимых для достижения желаемой точности $\mathbb{E}[f(x_i)] - f^* \leq \delta$ зависит от начальной невязки $f(x_0) - f^*$. Так что мы должны иметь доступ к верхней оценке этой невязки $\Delta : \Delta \geq f(x_0) - f^*$. В предложенном далее алгоритме мы будем динамически обновлять соответствующие верхние оценки.

Предположение 4. Введем вспомогательную проксимальную задачу

$$\min_{y} \varphi_x(y) := f(y) + \frac{\lambda}{2} ||y - x||^2,$$

Пусть $\Delta > 0$ такое, что $\varphi_x(x) - \min \varphi_x \leq \Delta$. Будем обозначать $\mathrm{Alg}(\delta, \lambda, \Delta, x)$ процедуру (оракул), которая возвращает точку y такую, что

$$\mathbb{P}(\varphi_x(y) - \min \varphi_x \le \delta) \ge \frac{2}{3}.$$

Так как функция φ_x ($\mu + \lambda$)-сильно выпукла, она имеет единственную точку минимума \bar{y}_x , и выполнено неравенство

$$\frac{\mu + \lambda}{2} \|y - \bar{y}_x\|^2 \le \varphi_x(y) - \min \varphi_x.$$

Таким образом, $\mathrm{Alg}(\delta,\lambda,\Delta,x)$ возвращает точку y в которой не просто значение функции близко к минимальному, но и сама точка близка к точке минимума функции $\mathbb{P}(\|y-\bar{y}_x\|\leq \varepsilon)\geq \frac{2}{3}$, где $\varepsilon=\sqrt{\frac{2\delta}{\mu+\lambda}}$. Если же функция f - (L,γ) -гладкая, то φ_x - $(L+\lambda,\gamma)$ (как было показано в лемме 2), следовательно выполняется двойное неравенство:

$$\frac{\mu + \lambda}{2} \|y - \bar{y}_x\|^2 \le \varphi_x(y) - \min \varphi_x \le \frac{L + \lambda}{2} \|y - \bar{y}_x\|^2 + \gamma$$

Технику Robust Distance Estimation (1) мы можем снабдить предложенным оракулом $Alg(\cdot)$. Приведем этот алгоритм отдельно.

Algorithm 3 Alg-R($\delta, \lambda, \Delta, x, m$)

Вход: функциональная точность $\delta>0$, коэффициент $\lambda>0$, верхняя оценка $\Delta>0$, центральная точка $x\in\mathbb{R}^d$,

число вызовов оракула $m \in \mathbb{N}$.

Вызываем $\mathrm{Alg}(\delta,\lambda,\Delta,x)\ m$ раз. Его ответы обозначим за $Y=\{y_1,\ldots,y_m\}.$

В цикле j = 1, ..., m:

Вычисляем $r_i = \min\{r \geq 0 : |B_r(y_i) \cap Y| > \frac{m}{2}\}.$

Возьмем $i^* = \arg\min_{i \in [1,m]} r_i$

Возвращаем уі*

Теперь объединим идеи proxBoost с только что предложенным робастным оценщиком расстояния Alg-R. Оформим это в виде отдельного алгоритма 4. Algorithm 4 BoostAlg $(\delta, \Delta_{\text{in}}, x_{\text{in}}, T, m)$

Вход: функциональная точность $\delta>0$, верхняя оценка $\Delta_{\rm in}>0$, центральная точка $x_{\rm in}\in\mathbb{R}^d$, и числа $m,T\in\mathbb{N}$

Установим $\lambda_{-1} = 0$, $\Delta_{-1} = \Delta_{\text{in}}$, $x_{-1} = x_{\text{in}}$

В цикле j = 0, ..., T:

$$\begin{split} x_j &= \mathrm{Alg-R}(\delta/9, \lambda_{j-1}, \Delta_{j-1}, x_{j-1}, m) \\ \Delta_j &= \delta\left(\frac{L + \lambda_{j-1}}{\mu + \lambda_{j-1}} + \sum_{i=0}^{j-1} \frac{\lambda_i}{\mu + \lambda_{i-1}}\right) + \gamma \end{split}$$

Возвращаем $x_{T+1} = \text{Alg-R}(\frac{\mu + \lambda_T}{L + \lambda_T} \cdot \frac{\delta}{9}, \lambda_T, \Delta_T, x_T, m)$

Докажем работоспособность и эффективность этого алгоритма.

Теорема 4 (Эффективность BoostAlg). Пусть $x_{\rm in} \in \mathbb{R}^d$ - фиксированная стартовая точка, а $\Delta_{\rm in}$ - некоторая верхняя оценка на невязку $\Delta_{\rm in} \geq f(x_{\rm in}) - \min f$. Зафиксируем числа $T,m \in \mathbb{N}$. Тогда с вероятностью не меньше $1 - (T+2) \exp\left(-\frac{m}{18}\right)$ точка $x_{T+1} = \text{BoostAlg}(\delta,\Delta_{\rm in},x_{\rm in},T,m)$ удовлетворяет

$$f(x_{T+1}) - \min f \le (\delta + \gamma) \left(1 + \sum_{i=0}^{T} \frac{\lambda_i}{\mu + \lambda_{i-1}} \right).$$

Доказательство. Обозначим $p=\exp(-\frac{m}{18})$ и $E_j:=\{x_i\in B_{\varepsilon_{i-1}}(\bar{x}_i)\ \forall i\in[0,j]\}$ Покажем, что с таким выбором p точки x_j удовлетворяют

$$\mathbb{P}[\|x_{j+1} - \bar{x}_{j+1}\| \le \varepsilon_j | E_j] \ge 1 - p \tag{19}$$

для каждого $j=0,\ldots,T$ и x_{T+1} удовлетворяет

$$\mathbb{P}[f^T(x_{j+1}) - \min f^T \le \delta + \gamma | E_T] \ge 1 - p \tag{20}$$

Для j=0 лемма RDE гарантирует, что с вероятностью не менее 1-p точка x_0 , порожденная алгоритмом Alg-R удовлетворяет

$$||x_0 - \bar{x}_0|| \le 3\sqrt{\frac{2 \cdot \delta/9}{\mu}} = \varepsilon_{-1}.$$

На шаге индукции предположим, что (19) выполняется для x_0, \ldots, x_{j-1} для некоторого $j \ge 1$. Докажем для x_j . Для этого предположим, что выполнено событие E_{j-1} . Тогда, используя (14), получаем

$$f(x_{j-1}) - f^* \le \frac{L + \lambda_{j-2}}{2} \|\bar{x}_{j-1} - x_{j-1}\|^2 + \gamma + \sum_{i=0}^{j-2} \frac{\lambda_i}{2} \|\bar{x}_i - x_i\|^2 \le \frac{\delta(L + \lambda_{j-2})}{\mu + \lambda_{j-2}} + \gamma + \sum_{i=0}^{j-2} \frac{\delta\lambda_i}{\mu + \lambda_{i-1}} = \Delta_{j-1}.$$

Второе неравенство следует из $x_i \in B_{\varepsilon_{i-1}}(\bar{x}_i)$ с $\varepsilon_{i-1} = \sqrt{\frac{2\delta}{\mu + \lambda_{i-1}}}$ для всех $i \in [0, j-1]$. По определению f^{j-1} имеем $f^{j-1}(x_{j-1}) = f(x_{j-1})$ и $\min f^{j-1} \ge \min f = f^*$. Тогда имеем следующее неравенство:

$$f^{j-1}(x_{j-1}) - \min f^{j-1} \le f(x_{j-1}) - f^* \le \Delta_{j-1}.$$
(21)

Так что Δ_{j-1} является верхней оценкой для невязки $f^{j-1}(x_{j-1}) - \min f^{j-1}$ для всех j в случае выполнения E_{j-1} . Более того, теорема (1) обеспечивает, что при выполнении события E_{j-1} , с вероятностью не менее 1-p выполняется следующее неравенство:

$$||x_j - \bar{x}_j|| \le 3\sqrt{\frac{2 \cdot \delta/9}{\mu + \lambda_{j-1}}} = \varepsilon_{j-1}.$$

Так что (19) выполнено для x_i , что и требовалось.

Теперь предположим, что выполнено событие E_T . Аналогично (21) получим $f^T(x_T) - \min f^T \leq \Delta_T$. Теперь теорема (1) гарантирует, что с вероятностью не менее 1-p при выполнении события E_T имеем

$$||x_{T+1} - \bar{x}_{T+1}|| \le 3\sqrt{\frac{2}{\mu + \lambda_T} \cdot \frac{\delta}{9} \cdot \frac{\mu + \lambda_T}{L + \lambda_T}} = \sqrt{\frac{2\delta}{L + \lambda_T}}.$$

Используя тот факт, что f^T - $(L+\lambda_T,\gamma)$ -гладкая, получим

$$\mathbb{P}[f^T(x_{T+1}) - \min f^T \le \delta + \gamma \mid E_T] \ge 1 - p,$$

тем самым установив (20). Осталось лишь применить теорему (3)

Следующая теорема собирает всё воедино.

Теорема 5 (Эффективность BoostAlg с геометрически возрастающими проксимальными параметрами). Зафиксируем стартовую точку $x_{\rm in} \in \mathbb{R}^d$. Пусть $\Delta_{\rm in}$ - некоторая верхняя оценка начальной невязки $\Delta_{\rm in} \geq f(x_{\rm in}) - \min f$. Зафиксируем желаемую функцинальную

точность $\varepsilon > 0$ и вероятность $p \in (0,1)$. При параметрах алгоритма

$$T = \lceil \log_2(\kappa) \rceil$$
, $m = \left\lceil 18 \ln \left(\frac{2+T}{p} \right) \right\rceil$, $\lambda_i = \mu 2^i$, $(\delta = \gamma = \frac{\varepsilon}{2(2+2T)} u \wedge u \delta = \frac{\varepsilon}{2+2T}, \gamma = 0)$

точка $x_{T+1} = \mathsf{BoostAlg}(\delta, \Delta_{\mathrm{in}}, x_{\mathrm{in}}, T, m)$ удовлетворяет

$$\mathbb{P}(f(x_{T+1}) - \min f \le \varepsilon) \ge 1 - p.$$

Общее число обращений κ Alg (\cdot)

$$m(T+2) = \left\lceil 18 \ln \left(\frac{\lceil 2 + \log_2(\kappa) \rceil}{p} \right) \right\rceil \lceil 2 + \log_2(\kappa) \rceil,$$

при этом максимальная начальная невязка

$$\max_{i=0,\dots,T+1} \Delta_i \le \frac{\kappa + 1 + 2\lceil \log_2(\kappa) \rceil}{2 + 2\lceil \log_2(\kappa) \rceil} \varepsilon + \gamma$$

5 Обсуждение результатов

5.1 Стохастический градиентный оракул

Предположим, что мы имеем доступ к функции f через стохастический градиентный оракул. А именно, зафиксируем вероятностное пространство $(\Omega, \mathcal{F}, \mathcal{P})$ и пусть $G \colon \mathbb{R}^d \times \Omega \to \mathbb{R}$ — измеримое отображение, удовлетворяющее

$$\mathbb{E}_z G(x,z) = \nabla f(x)$$
 и $\mathbb{E}_z \|G(x,z) - \nabla f(x)\|^2 \le \sigma^2$.

Мы предполагаем, что для любой точки x мы можем сэмплировать $z \in \Omega$ и вычислить вектор G(x,z), который служит несмещенной оценкой градиента $\nabla f(x)$. Сложность стандартных численных методов в рамках этой модели вычислений оценивается по количеству вызовов стохастического градиента G(x,z) с $z \sim \mathcal{P}$, требуемых алгоритмом для получения приближенного решения задачи.

5.2 Сильно выпуклый гладкий случай

В случае, когда f является μ -сильно выпуклой и L-гладкой (дифференцируемой с L-липшицевым градиентом) стоимость $\mathcal{C}_{\mathcal{M}}(f,\varepsilon)$ обычно зависит от числа обусловленности

 $\kappa := L/\mu \gg 1$, а также от начальной невязки, дисперсии градиентов и т.д. Процедура, представленная в этой работе, вызывает оракул минимизации многократно, чтобы обеспечить сходимость с высокой вероятностью. Общая стоимость составляет порядка

$$\log\left(\frac{\log(\kappa)}{p}\right)\log(\kappa)\cdot\mathcal{C}_{\mathcal{M}}\left(f,\frac{\varepsilon}{\log(\kappa)}\right).$$

Таким образом, гарантии высокой вероятности достигаются с небольшим увеличением стоимости, которое зависит лишь логарифмически от 1/p и «полилогарифмически» от числа обусловленности κ .

Зафиксируем начальную точку x_{in} и пусть $\Delta_{\rm in}>0$ удовлетворяет $\Delta_{\rm in}\geq f(x_0)-f^*$. Хорошо известно, что в сильно выпуклом гладком случае стохастический градиентный метод может сгенерировать точку x, удовлетворяющую $\mathbb{E} f(x)-f^*\leq \varepsilon$ за

$$\mathcal{O}\left(\kappa\log\left(\frac{\Delta_{\rm in}}{\varepsilon}\right) + \frac{\sigma^2}{\mu\varepsilon}\right). \tag{22}$$

вызовов оракула. Ускоренные стохастические градиентные методы имеют меньшую сложность ([3])

$$\mathcal{O}\left(\sqrt{\kappa}\log\left(\frac{\Delta_{\rm in}}{\varepsilon}\right) + \frac{\sigma^2}{\mu\varepsilon}\right). \tag{23}$$

Очевидно, мы можем использовать любую из этих двух процедур в качестве $\mathtt{Alg}(\cdot)$ в рамках proxBoost. Действительно, используя Теорему $\ref{eq:condition}$, мы получаем точку x, удовлетворяющую

$$\mathbb{P}[f(x) - f^* \le \varepsilon] \ge 1 - p$$

за следующую оракульную сложность:

$$\mathcal{O}\left(\ln\left(\kappa\right)\ln\left(\frac{\ln\kappa}{p}\right)\cdot\left(\kappa\ln\left(\frac{\Delta_{\rm in}\ln(\kappa)}{\varepsilon}\vee\kappa\right)+\frac{\sigma^2\ln(\kappa)}{\mu\varepsilon}\right)\right),\tag{24}$$

И

$$\mathcal{O}\left(\ln\left(\kappa\right)\ln\left(\frac{\ln\kappa}{p}\right)\cdot\left(\sqrt{\kappa}\ln\left(\frac{\Delta_{\rm in}\ln(\kappa)}{\varepsilon}\vee\kappa\right)+\frac{\sigma^2\ln(\kappa)}{\mu\varepsilon}\right)\right),\tag{25}$$

для неускоренного и ускоренного методов соответственно. Таким образом, proxBoost наделяет стохастический градиентный метод и его ускоренный вариант гарантиями высокой вероятности с дополнительными множителями, которые являются лишь полилогарифмическими по κ и логарифмическими по 1/p.

5.3 Сильно выпуклый негладкий случай

Пусть исследуемая функция f не является гладкой, но является M-липшицевой. Тогда по лемме 1 она является $(\frac{M^2}{2\gamma},\gamma)$ - гладкой для любого γ . Так как эффективность основного алгоритма 4 был доказан для случая (L,γ) - гладких функций, то достаточно взять $\gamma \sim \frac{\varepsilon}{\ln \kappa}$ из теоремы для обеспечения нужной сходимости 3. Так что $\kappa = \frac{L}{\mu} \approx \frac{M^2 \ln \kappa}{\mu \varepsilon}$ или $\frac{\kappa}{\ln \kappa} \approx \frac{M^2}{\mu \varepsilon}$. Для нахождения из этого соотношения κ понадобится следующая лемма:

Лемма 3. Пусть $\frac{x}{\ln x} = a \in \mathbb{R}_{++}$, причем x > e. Тогда $a \ln a < x < 2a \ln a$

 \mathcal{A} оказательство. Пусть $f(x) = \frac{x}{\ln(x)}$. Найдём её производную:

$$f'(x) = \frac{1 \cdot \ln(x) - x \cdot (1/x)}{(\ln(x))^2} = \frac{\ln(x) - 1}{(\ln(x))^2}$$

Производная положительна, когда $\ln(x) - 1 > 0$, то есть при x > e. Это означает, что для x > e функция f(x) строго возрастает.

Покажем, что для $y=2a\ln(a)\ f(y)>f(x),$ а значит и y>x из строгого возрастания.

$$f(y) = \frac{2a \ln a}{\ln (2a \ln a)} = \frac{2a \ln(a)}{\ln(2) + \ln(a) + \ln(\ln(a))} > a = f(x)$$

$$2\ln(a) > \ln(2) + \ln(a) + \ln(\ln(a))$$

$$\ln(a) - \ln(\ln(a)) > \ln(2)$$

Это неравенство верно для всех a>e. Действительно, функция $g(z)=z-\ln(z)$ при z>1 возрастает, и её минимальное значение равно 1 (при z=1). Поскольку $\ln(2)\approx 0.693$, неравенство выполняется. Верхняя оценка доказана.

Для доказательства нижней оценки покажем, что $f(a \ln a) < a$:

$$\frac{a \ln a}{\ln (a \ln a)} = \frac{a \ln a}{\ln a + \ln (\ln a)} < a$$

Последнее неравенство выполнено при $\ln \ln a>0 \Rightarrow \ln a>1 \Rightarrow a>e$. Нижняя оценка доказана. Таким образом, $x=\Theta(a\ln a)$

Таким образом,

$$\kappa \approx \frac{M^2}{\mu \varepsilon} \log \left(\frac{M^2}{\mu \varepsilon} \right)$$

Теорема 6 (Рубцов, 2025). Итоговая оракульная сложность задачи сходимости с высокой вероятностью (3) в случае μ -сильно выпуклых негладких, но M-липшицевых функций порядка

$$\log \left(\frac{\log \left(\frac{M^2}{\mu \varepsilon} \log \left(\frac{M^2}{\mu \varepsilon} \right) \right)}{p} \right) \log \left(\frac{M^2}{\mu \varepsilon} \log \left(\frac{M^2}{\mu \varepsilon} \right) \right) \cdot \mathcal{C}_{\mathcal{M}} \left(f, \frac{\varepsilon}{\log \left(\frac{M^2}{\mu \varepsilon} \log \left(\frac{M^2}{\mu \varepsilon} \right) \right)} \right).$$

Пренебрегая «вложенными логарифмами», выражение можно упростить до

$$\log\left(\frac{1}{p}\right)\log\left(\frac{M^2}{\mu\varepsilon}\right)\cdot\mathcal{C}_{\mathcal{M}}\left(f,\frac{\varepsilon}{\log\left(\frac{M^2}{\mu\varepsilon}\right)}\right).$$

Типичная оракульная сложность решения задачи по мат.ожиданию (см., например, [26]) $\mathcal{C}_{\mathcal{M}}(f,\varepsilon) = \mathcal{O}\left(\frac{\max\{M^2,\sigma^2\}}{\mu\varepsilon}\right)$. Тогда оракульная сложность решения задачи сходимости по математическому ожиданию

$$\mathcal{O}\left(\log\left(\frac{1}{p}\right)\log^2\left(\frac{M^2}{\mu\varepsilon}\right) \cdot \frac{\max\{M^2, \sigma^2\}}{\mu\varepsilon}\right). \tag{26}$$

5.4 Выпуклый гладкий случай

От сильно выпуклому случая к выпуклому можно перейти с помощью метода регуляризации (см. [23]).

Теорема 7 (Метод регуляризации). Пусть функция f(x) выпукла. Будем решать задачу минимизации функции

$$f^{\mu}(x) = f(x) + \frac{\mu}{2}||x - x_0||^2,$$

 $r\partial e \ \mu \sim \frac{\varepsilon}{R^2}, R = ||x^* - x_0||.$

Пусть мы нашли точку х такую, что

$$f^{\mu}(x) - \min f^{\mu} < \frac{\varepsilon}{2}$$

Tог ∂a

$$f(x) - \min f < \varepsilon$$

Теорема 8 (Рубцов, 2025). Итоговая оракульная сложность задачи сходимости с высокой вероятностью в случае выпуклых гладких функций порядка

$$\log\left(\frac{\log(\frac{LR^2}{\varepsilon})}{p}\right)\log(\frac{LR^2}{\varepsilon})\cdot \mathcal{C}_{\mathcal{M}}\left(f,\frac{\varepsilon}{\log(\frac{LR^2}{\varepsilon})}\right).$$

Пренебрегая «вложенными логарифмами», выражение можно упростить до

$$\log\left(\frac{1}{p}\right)\log(\frac{LR^2}{\varepsilon})\cdot\mathcal{C}_{\mathcal{M}}\left(f,\frac{\varepsilon}{\log(\frac{LR^2}{\varepsilon})}\right).$$

Типичная оракульная сложность решения задачи по мат.ожиданию $\mathcal{C}_{\mathcal{M}}(f,\varepsilon)=\mathcal{O}(\max\{\frac{LR_0^2}{\varepsilon};\frac{\sigma^2R_0^2}{\varepsilon^2}\})$. Тогда оракульная сложность решения задачи сходимости по математическому ожиданию

$$\mathcal{O}(\max\{\frac{LR^2}{\varepsilon}; \frac{\sigma^2 R^2 \log(\frac{LR^2}{\varepsilon})}{\varepsilon^2}\} \cdot \log^2(\frac{LR^2}{\varepsilon}) \log\{\frac{1}{p}\})$$
 (27)

5.5 Выпуклый негладкий случай

Обобщая предыдущие результаты, получим следующую теорему.

Теорема 9 (Рубцов, 2025). Итоговая оракульная сложность задачи сходимости с высокой вероятностью (3) в случае выпуклых негладких, но M-липшицевых функций порядка (пренебрегая «вложенными логарифмами»)

$$\log\left(\frac{1}{p}\right)\log\left(\frac{MR}{\varepsilon}\right)\cdot\mathcal{C}_{\mathcal{M}}\left(f,\frac{\varepsilon}{\log\left(\frac{MR}{\varepsilon}\right)}\right).$$

Типичная оракульная сложность решения задачи по мат.ожиданию $\mathcal{C}_{\mathcal{M}}(f,\varepsilon)=\mathcal{O}\left(\frac{\max\{M^2,\sigma^2\}R^2}{\varepsilon^2}\right)$. Тогда оракульная сложность решения задачи сходимости по математическому ожиданию

$$\mathcal{O}\left(\log\left(\frac{1}{p}\right)\log^3\left(\frac{MR}{\varepsilon}\right) \cdot \frac{\max\{M^2, \sigma^2\}R^2}{\varepsilon^2}\right). \tag{28}$$

5.6 Замечания

Особо стоит обратить внимание, что результами теорем 5, 6, 8, 9 являются вычисленные сложности алгоритмов сходимости с высокой вероятностью, выраженные через сложность алгоритмов сходимости по матожиданию $\mathcal{C}_{\mathcal{M}}(f,\varepsilon)$. Важно, что последние могут быть решены с помощью применения различных оракулов: стохастического гради-

ентного оракула (про него шла речь ранее), оракулов нулевого порядка и прочих, а также с помощью различных методов (SGD, SSTM и пр.). Таким образом, разработанный подход является не просто очередным алгоритмом оптимизации, но оберткой над целым семейством алгоритмов, которая позволяет от сходимости по математическому ожиданию перейти к сходимости с высокой вероятностью за довольно скромную стоимость, логарифмическую по критическим параметрам $\frac{1}{\varepsilon}$, $\frac{1}{n}$ и другим.

6 Обзор применения техник в случае седловых задач

6.1 Постановка задачи

Pассмотрим стохастическую седловую задачу (Stochastic Saddle Point Problem, SSP):

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y) := \mathbb{E}[\Phi_{\xi}(x, y)]$$
(29)

где \mathcal{X} и \mathcal{Y} — замкнутые выпуклые множества, а ξ — случайная величина из неизвестного распределения \mathcal{P} .

Для любого допустимого решения $(\hat{x}, \hat{y}) \in \mathcal{X} \times \mathcal{Y}$ определяется **зазор двойственности** (duality gap):

$$\Delta_{\Phi}(\hat{x}, \hat{y}) := \max_{y \in \mathcal{Y}} \Phi(\hat{x}, y) - \min_{x \in \mathcal{X}} \Phi(x, \hat{y})$$
(30)

Также вводится более слабый вариант разности двойственности:

$$\Delta_{\Phi}^{w}(\hat{x}, \hat{y}) := \Phi(\hat{x}, y^{*}) - \Phi(x^{*}, \hat{y})$$
(31)

где (x^*, y^*) — оптимальное решение задачи (29).

В работе [22] разработан подход, при котором имея произвольный оракул, который возвращает решение с малым ожидаемым зазором двойственности, строится решение (\bar{x}, \bar{y}) такое, что

$$\mathbb{P}[\Delta_{\Phi}(\bar{x}, \bar{y}) \le \varepsilon] \ge 1 - p \tag{32}$$

с использованием лишь небольшого числа вызовов этого оракула.

6.2 Основные предположения

Предположение 5 (Сильная выпуклость-вогнутость). Существуют $\mu_x, \mu_y > 0$ такие, что для почти всех $\xi \sim \mathcal{P}$ функция $\Phi_{\xi}(\cdot,y)$ является μ_x -сильно выпуклой по x, а $\Phi_{\xi}(x,\cdot)$

является μ_y -сильно вогнутой по y.

$$\Phi_{\xi}(x_{2},y) \geq \Phi_{\xi}(x_{1},y) + \langle \nabla_{x}\Phi_{\xi}(x_{1},y), x_{2} - x_{1} \rangle + \frac{\mu_{x}}{2} \|x_{1} - x_{2}\|^{2}, \quad \forall x_{1}, x_{2} \in \mathcal{X}, y \in \mathcal{Y},
\Phi_{\xi}(x,y_{2}) \leq \Phi_{\xi}(x,y_{1}) + \langle \nabla_{y}\Phi_{\xi}(x,y_{1}), y_{2} - y_{1} \rangle - \frac{\mu_{y}}{2} \|y_{1} - y_{2}\|^{2}, \quad \forall y_{1}, y_{2} \in \mathcal{Y}, x \in \mathcal{X}.$$

Будем говорить, что Φ - (μ_x, μ_y) -сильно выпукла-сильно вогнута.

Предположение 6 (Гладкость). Существуют $L_x, L_y, L_{xy} > 0$ такие, что градиенты $\nabla_x \Phi$ и $\nabla_y \Phi$ являются липшицевыми с соответствующими константами.

$$\|\nabla_x \Phi(x_1, y_1) - \nabla_x \Phi(x_2, y_1)\| \le L_x \|x_1 - x_2\|, \quad \|\nabla_y \Phi(x_1, y_1) - \nabla_y \Phi(x_1, y_2)\| \le L_y \|y_1 - y_2\|,$$
$$\|\nabla_x \Phi(x_1, y_1) - \nabla_x \Phi(x_1, y_2)\| \le L_{xy} \|y_1 - y_2\|, \quad \|\nabla_y \Phi(x_1, y_1) - \nabla_y \Phi(x_2, y_1)\| \le L_{xy} \|x_1 - x_2\|.$$

Предположение 7 (Липшицевость функции). Для ограниченных областей существуют $\ell_x, \ell_y > 0$ такие, что функция Φ_ξ липшицева по каждой переменной.

$$|\Phi_{\xi}(x_2, y) - \Phi_{\xi}(x_1, y)| \le \ell_x ||x_1 - x_2||$$
 and $|\Phi_{\xi}(x, y_1) - \Phi_{\xi}(x, y_2)| \le \ell_y ||y_1 - y_2||$.

Обозначения: $\mu:=\min\{\mu_x,\mu_y\},\ L:=\max\{L_x,L_y,L_{xy}\},\ \ell:=\max\{\ell_x,\ell_y\},$ число обусловленности $\kappa:=L/\mu.$

6.3 Алгоритм PB-SSP для неограниченных задач

Для неограниченных задач ($\mathcal{X} = \mathbb{R}^{d_x}$, $\mathcal{Y} = \mathbb{R}^{d_y}$) предлагается алгоритм **PB-SSP** (Proximal Boost for Stochastic Saddle Point problems).

Основная идея, как и в proxBoost, использовать неточный проксимальный метод для последовательного решения возмущенных подзадач:

$$f^{i}(x) = f(x) + \frac{\lambda_{x}^{i}}{2} \|x - x_{i}^{c}\|^{2}$$
(33)

$$g^{i}(y) = g(y) - \frac{\lambda_{y}^{i}}{2} \|y - y_{i}^{c}\|^{2}$$
(34)

где $f(x) = \max_{y \in \mathcal{Y}} \Phi(x,y)$ и $g(y) = \min_{x \in \mathcal{X}} \Phi(x,y)$.

Algorithm 5 PB-SSP (δ, p, T)

Вход: Точность $\delta > 0$, вероятность $p \in (0,1)$, число итераций T

Установить
$$\lambda_x^{-1} = \lambda_y^{-1} = 0, x_{-1}^c = y_{-1}^c = 0$$

for $i = 0, \dots, T$ do

Установить
$$\varepsilon_x^i = \sqrt{\frac{2\delta}{\mu_x + \lambda_x^{i-1}}}, \, \varepsilon_y^i = \sqrt{\frac{2\delta}{\mu_y + \lambda_y^{i-1}}}$$

Найти точку (x_i^c, y_i^c) такую, что

$$\mathbb{P}[\|x_i^c - x_i^*\| \leq \varepsilon_x^i] \geq 1 - \frac{p}{2T+4} \quad \text{if} \quad \mathbb{P}[\|y_i^c - y_i^*\| \leq \varepsilon_y^i] \geq 1 - \frac{p}{2T+4}$$

Найти точку (x_{T+1}^c, y_{T+1}^c) такую, что

$$\mathbb{P}[f^T(x_{T+1}^c) - f^T(x_{T+1}^*) \le \delta] \ge 1 - \frac{p}{2T+4} \quad \text{if} \quad \mathbb{P}[g^T(y_{T+1}^*) - g^T(y_{T+1}^c) \le \delta] \ge 1 - \frac{p}{2T+4}.$$

 $\mathbf{return}\ (x^c_{T+1}, y^c_{T+1})$

Теорема 10 (Эффективность PB-SSP). С вероятностью не менее 1-p точка $(x_{T+1}^c, y_{T+1}^c) = PB\text{-}SSP(\delta, p, T)$ удовлетворяет

$$\Delta_{\Phi}(x_{T+1}^c, y_{T+1}^c) \le \delta \left(2 + \sum_{i=0}^T \frac{\lambda_x^i}{\mu_x + \lambda_x^{i-1}} + \frac{\lambda_y^i}{\mu_y + \lambda_y^{i-1}} \right)$$
(35)

Теорема 11 (Геометрическое убывание параметров). При выборе $\lambda_x^i = \mu_x \cdot 2^i$, $\lambda_y^i = \mu_y \cdot 2^i$, $T = \lceil \log_2(\kappa) \rceil$ и $\delta = \frac{\varepsilon}{4+4T}$ получаем решение $c \ \mathbb{P}[\Delta_{\Phi}(\bar{x}, \bar{y}) \leq \varepsilon] \geq 1-p$ и сложностью

$$\mathcal{O}\left(\ln\left(\frac{\ln(\kappa)}{p}\right)\ln(\kappa)\cdot C_{\mathcal{M}}^{w}\left(\Phi,\frac{\varepsilon}{\ln(\kappa)}\right)\right) \tag{36}$$

6.4 Связь с proxBoost

Данный подход является естественным обобщением алгоритма ProxBoost из статьи [15] на случай седловых задач. Оба подхода используют неточный проксимальный метод с геометрически возрастающими параметрами регуляризации для улучшения числа обусловленности, а также метод RDE для получения высоковероятностных гарантий. В обоих случаях достигается полилогарифмическая зависимость от числа обусловленности κ и логарифмическая по $\frac{1}{p}$. Важно, что оба подхода являются мета-алгоритмическими, то есть работают с произвольными оракулами. Аналогично задачам выпуклой оптимизации,

данный подход может быть расширен на случай невыпуклых и/или не сильно выпуклых функций, что является планами на будущую работу.

7 Вычислительный эксперимент

Целью эксперимента является практическая демонстрация надежности метаалгоритма BoostAlg, описанного в работе [15], в сравнении со стандартным стохастическим градиентным спуском (SGD).

7.1 Постановка задачи

Возьмем функцию $f(x,\xi)=\frac{Lx_1^2}{2}+\frac{\mu x_2^2}{2}+\langle \xi,x\rangle$, где $x=(x_1,x_2)\in\mathbb{R}^2$ и $L\geq \mu>0$. Эта функция является стохастической версией квадратичной функции $f(x):=\mathbf{E}_{\xi}[f(x,\xi)]=\frac{Lx_1^2}{2}+\frac{\mu x_2^2}{2}$, где предполагается, что $\mathbf{E}[\xi]=0$. Стохастический градиент по x имеет вид $\nabla_x f(x,\xi)=[Lx_1,\mu x_2]^T+\xi=\nabla f(x)+\xi$.

Для создания плохо обусловленной задачи были выбраны следующие параметры:

- Параметр гладкости L = 100.
- Параметр сильной выпуклости $\mu = 0.0001$.
- Число обусловленности $\kappa = L/\mu = 10^6$.
- Шум моделируется как гауссовский: $\xi \sim \mathcal{N}(0, \sigma^2 I_2)$ со ст. отклонением $\sigma = 0.5$.
- Начальная точка $x_{init} = [1.0, 1.0]^T$.

7.2 Сравнение алгоритмов

Сравниваются два алгоритма:

- 1. BoostAlg (proxBoost): Мета-алгоритм, который итеративно «усиливает» надежность решения, последовательно решая регуляризованные подзадачи. Теоретически гарантирует достижение точности ε с вероятностью не менее 1-p.
- 2. SGD: Классический стохастический градиентный спуск с постоянным шагом $\eta = 1/L$.

Методология. Бюджет вызовов стохастического оракула был зафиксирован. Сначала мы запускаем BoostAlg для достижения целевой точности $\varepsilon = 0.001$ с вероятностью ошибки не более p = 0.05. Общее число вызовов градиента, которое потребовалось BoostAlg (около 400000), используется как бюджет для SGD. Для статистической оценки надежности оба алгоритма были запущены по 20 раз. Параметры алгоритмов брались из теорем с возможным небольшим изменением (не по порядку величины).

7.3 Результаты

Результаты 20 независимых запусков сведены в Таблицу 1. «Неудачей» считался запуск, если итоговая ошибка $f(x_{final})$ превышала целевую $\varepsilon=0.001$.

Алгоритм	Бюджет вызовов ∇f	Кол-во неудач	Эмп. вер-ть неудачи
BoostAlg	≈ 400000	0 из 20	0%
SGD		7 из 20	35%

Таблица 1: Сравнение надежности алгоритмов.

На Рис. 1 показаны траектории сходимости. Для BoostAlg (синяя линия) видна "ступенчатая" сходимость, при этом и медиана, и квантили в конце оказываются значительно ниже целевой ошибки.SGD (красная линия) сходится быстрее вначале, но его медианная траектория останавливается около целевой ошибки, а большой разброс результатов указывает на низкую надежность.

7.4 Выводы

Эксперимент подтверждает теоретические преимущества BoostAlg:

- Высокая надежность: BoostAlg достиг целевой точности во всех запусках, что соответствует теоретической гарантии (p < 0.05).
- **Ненадежность SGD**: При том же бюджете SGD потерпел неудачу почти в половине случаев (35%).
- Цена надежности: Более медленная начальная сходимость BoostAlg является платой за внутренние процедуры, которые гарантируют достижение результата.

Таким образом, BoostAlg является эффективным инструментом для задач стохастической оптимизации, где требуется высокая и предсказуемая вероятность успеха.

Рис. 1: График сходимости: ошибка $f(x) - f^*$ от количества вызовов оракула. Сплошная линия — медиана, закрашенная область — разброс между 0.25 и 0.75 квантилями.

8 Заключение

В настоящей дипломной работе были исследованы и разработаны методы для решения задач стохастической выпуклой оптимизации и седловых задач, обеспечивающие сходимость с высокой вероятностью. В отличие от классических подходов, гарантирующих сходимость лишь по математическому ожиданию, предложенные алгоритмы позволяют получить решение заданной точности ε с вероятностью не менее 1-p при малых p.

На защиту выносятся следующие основные результаты:

параметрам задачи и логарифмический по 1/p.

Разработана и теоретически обоснована модификация алгоритма proxBoost для широкого класса задач выпуклой оптимизации, включая негладкие и не сильно выпуклые случаи. Данный подход представляет собой универсальную «обертку», позволяющую преобразовать любой алгоритм со сходимостью по математическому ожиданию в алгоритм со сходимостью с высокой вероятностью. При этом оракульная сложность возрастает лишь на полилогарифмический множитель по

1. Обобщенный мета-алгоритм для сходимости с высокой вероятностью.

2. **Новые оценки оракульной сложности.** Получены детальные оценки сложности для разработанного мета-алгоритма в следующих классах задач:

- сильно выпуклые негладкие функции;
- выпуклые гладкие функции;
- выпуклые негладкие функции.

Показано, что итоговая сложность имеет слабую (логарифмическую) зависимость от вероятности отказа p и близкую к оптимальной зависимость от точности ε .

- 3. Применимость подхода к седловым задачам. Продемонстрирована универсальность лежащих в основе метода идей (неточный проксимальный метод и робастная оценка расстояний) путем их применения для решения стохастических выпукло-вогнутых седловых задач, что подтверждает общность и фундаментальность подхода.
- 4. Экспериментальное подтверждение надежности. Результаты вычислительного эксперимента наглядно демонстрируют теоретические преимущества предложенного подхода. В условиях плохо обусловленной задачи алгоритм BoostAlg обеспечивает гарантированную сходимость при том же бюджете вызовов оракула, при котором стандартный SGD показывает крайне низкую надежность.

Таким образом, в работе представлен комплексный подход к построению надежных и эффективных алгоритмов стохастической оптимизации, подкрепленный теоретическими оценками и практическими результатами.

Список литературы

- 1. Nemirovskij A. S., Yudin D. B. Problem complexity and method efficiency in optimization.— 1983.
- 2. Polyak B. T., Juditsky A. B. Acceleration of stochastic approximation by averaging // SIAM journal on control and optimization. 1992. T. 30, N_2 4. C. 838—855.
- 3. Ghadimi S., Lan G. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: shrinking procedures and optimal algorithms // SIAM Journal on Optimization. 2013. T. 23, N^0 4. C. 2061—2089.
- 4. Hazan E., Kale S. Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex optimization // The Journal of Machine Learning Research. 2014. T. 15, Nº 1. C. 2489-2512.

- 5. Bousquet O., Elisseeff A. Stability and generalization // Journal of machine learning research. -2002. T. 2, Mar. C. 499–526.
- 6. Nesterov Y., Vial J.-P. Confidence level solutions for stochastic programming // Automatica. 2008. T. 44, № 6. C. 1559—1568.
- 7. Stochastic Convex Optimization. / S. Shalev-Shwartz [и др.] // COLT. Т. 2. 2009. С. 5.
- 8. Robust stochastic approximation approach to stochastic programming / A. Nemirovski [и др.] // SIAM Journal on optimization. 2009. Т. 19, № 4. С. 1574—1609.
- 9. Juditsky A., Nesterov Y. Deterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimization // Stochastic Systems. 2014. T. 4, \mathbb{N} 1. C. 44—80.
- 10. Ghadimi S., Lan G. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization i: A generic algorithmic framework // SIAM Journal on Optimization. 2012. T. 22, \mathbb{N}^2 4. C. 1469—1492.
- 11. Harvey N. J., Liaw C., Randhawa S. Simple and optimal high-probability bounds for strongly-convex stochastic gradient descent // arXiv preprint arXiv:1909.00843. 2019.
- 12. Tight analyses for non-smooth stochastic gradient descent / N. J. Harvey [и др.] // Conference on Learning Theory. PMLR. 2019. С. 1579—1613.
- Gorbunov E., Danilova M., Gasnikov A. Stochastic optimization with heavy-tailed noise via accelerated gradient clipping // Advances in Neural Information Processing Systems. — 2020. — T. 33. — C. 15042—15053.
- 14. High-Probability Complexity Bounds for Non-smooth Stochastic Convex Optimization with Heavy-Tailed Noise / E. Gorbunov [и др.] // Journal of Optimization Theory and Applications. 2024. С. 1—60.
- 15. From low probability to high confidence in stochastic convex optimization / D. Davis [и др.] // Journal of machine learning research. 2021. Т. 22, № 49. С. 1—38.
- 16. Puterman M. L. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
- 17. Wang M. Primal-Dual π Learning: Sample Complexity and Sublinear Run Time for Ergodic Markov Decision Problems // arXiv preprint arXiv:1710.06100. 2017.

- 18. Shalev-Shwartz S., Zhang T. Stochastic dual coordinate ascent methods for regularized loss // The Journal of Machine Learning Research. 2013. T. 14, № 1. C. 567—599.
- Zhang Y., Xiao L. Stochastic primal-dual coordinate method for regularized empirical risk minimization // Journal of Machine Learning Research. — 2017. — T. 18, № 84. — C. 1—42.
- 20. Stochastic Primal-Dual Algorithms with Faster Convergence than $O(1/\sqrt{T})$ for Problems without Bilinear Structure / Y. Yan [и др.] // arXiv preprint arXiv:1904.10112.—2019.
- 21. Generalization bounds for stochastic saddle point problems / J. Zhang [и др.] // International Conference on Artificial Intelligence and Statistics. PMLR. 2021. C. 568—576.
- 22. Li D., Li H., Zhang J. General procedure to provide high-probability guarantees for stochastic saddle point problems // Journal of Scientific Computing. 2024. T. 100, N = 1. C. 13.
- 23. Выпуклая оптимизация / Е. Воронцова [и др.] // М.: М Φ ТИ. 2021.
- 24. Nesterov Y. Universal gradient methods for convex optimization problems // Mathematical Programming. 2015. T. 152, № 1. C. 381—404.
- 25. Hsu D., Sabato S. Loss minimization and parameter estimation with heavy tails //
 Journal of Machine Learning Research. 2016. T. 17, № 18. C. 1—40.
- 26. Гасников А. В. Современные численные методы оптимизации. Метод универсального градиентного спуска. 2018.