Celem ćwiczenia jest "budowa" uproszczonego detektora (tak jak omówiono na wykładzie) oraz rekonstrukcja zarejestrowanych w nim cząstek.

Schemat detektora przedstawiono poniżej:

Rys. 1. Schemat uproszczonego detektora, składającego się z 6 sensorów. Ślady generowane są w "celu", który umieszczony jest w punkcie $p_{target} = (z, x) = (0, 0)$.

Etapy wykonania ćwiczenia:

- Implementacja klas opisujących sensory i cały układ detekcji (nazywamy to często **DetectorElement** objects). Informacje jakie powinniśmy uzyskać używając tych obiektów to np. położenia sensorów w funkcji zmiennej z, rozmiary sensorów, liczba kanałów, lokalne położenie dowolnego kanału j (współrzędna x), globalne położenie kanału (układ laboratoryjny) itp.
- ☐ Moduł do generacji śladów przyjmujemy model trajektorii jako liniowy więc potrzebujemy dwóch parametrów w ogólności, żeby uzyskać ślad.
- Lokalna rekonstrukcja "hitów" na podstawie wygenerowanych śladów punkt przecięcia śladu z danym sensorem rozmywamy używając rozkładu płaskiego o szerokości równej podwójnej szerokości "paska". Dodatkowo, można dodać rozmycie związane z rozdzielczością przestrzenną naszych sensorów: $\sigma = \frac{p}{\sqrt{12}}$, gdzie p (pitch) oznacza szerokość paska. Niepewność pomiaru przyjmujemy jako równą σ (wszędzie taka sama).
- Do takiej kolekcji zrekonstruowanych "hitów" dopasowujemy następnie ślad, używając środowiska ROOT. Dla dopasowanego śladu wyznaczamy $var(\alpha(z))$, zgodnie z formułą podaną na wykładzie.
- Badanie jakości dopasowania rozkłady $pull_{x_0}$ oraz $pull_{t_0}$, rozkład residuów pomiarowych, rozkład statystyki χ^2 wyznaczonej dla zrekonstruowanych śladów.

Przyjąć: wymiary na rysunku Rys. 1 w mm, liczba sensorów N=6, liczba parametrów modelu śladu M=2, szerokość "paska" $p=250~\mu m$, rozmiary celu $4\times 4~mm$. Nie mamy pola magnetycznego, nie bierzemy pod uwagę wielokrotnego rozpraszania oraz strat jonizacyjnych.