orders — 1st derivatives let order (colonlate JR) and deructives and order (calculate tession) $f(x_1, x_2, x_3, x_4) \rightarrow S$ Numerical derivatives

f(x)= f(x+h)-f(x) $f'(x) \approx \frac{f(x+h) - f(x-h)}{5h}$ $f''(x) \approx \frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h}$ $f'''(x) \approx \frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h}$ $f'''(x) \approx \frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h}$ $\frac{f(x+h)-2f(x)+f(x+h)}{h^2}$

Zeroth ader

Nulder-mead - D Simples is not vertice in a dimension

* Hewistic but wals well in pradice ? robust

reflect? expmd

) Multiple antachion

2 Approgades to continuous optimization

O Find a trust
region
(typically this i
a region where It is positive de ite
Go to best tocasion on bandary of trust region

Conjugate vectors = conjugate duestion

Conjugate vectors = steepost descent

Newton duestion $f(x) = f(1) + x^{2} \sqrt{f_{p}} + \frac{1}{2} x^{2} + \frac{1}{2} x^{2}$ b=-7fp A= H1p $f(x) = \frac{c}{x^7b} + \frac{1}{2}x^2Ax$ $\nabla f = -b + \frac{1}{2} (f x + f x)$ = Ax-b (A is smudial) Hessim 7fp = Just a fixed vector

/ If 2 Axy archient draft f(df) = H(foc) We want the direction V to Le I to the gradient after moving along M 3 wart charge 1 gridient I to n $V \not= V = (\downarrow V) \xi^{T} V = 0$ Nfu $V = V \int_{V}^{T} V$ u, v al conjugate vectors

Conjugacy	Abstratly, it is a generally inver product	A
	$\langle u, v \rangle = v^{7} A V$ c.f. standad in a p $\langle h, v \rangle = v^{7} I V$	diut
		(O K) V
$\mathcal{N}_{\mathcal{I}}$	fv 20	VI1 = 0
Ja 1	rpnal andido	In standard courdinalep
a c at	sb+c=180°	ie- A= I
b c c c c	a+b+c>180	cc <160'

Provoll's out had

Povellis method had conjugate vectors.

Newton Conjupate Credient Alposition

Explicit construction wing Comm-Schwidt for

conjupate vector i.e. given {4,42,43,...}

Find {4,42,43,...} and that

V, TAV220

V, TAV220

V, TAV220

V, TAV220

Steepest descent $\Rightarrow \text{ gradient descent:}$ $x_{K+1} = x_K - 2Jf_K$ learning on step size rate

Newton direction

Recall Newth-Ropkin

$$x_{(ct)} = x_k - \frac{f_1(x_k)}{f_1(x_k)}$$

In higher dientistas

$$x_{ke_1} = x_k - H_k^{-1} \nabla f_k$$

Newton dicession

A Geometry of Solution

Warnig: For Rom a minimum the may not be prétible definite, and the North direction may 9-UPHILL.