- Nome:
- Allan César Inácio C. Branco
- Matrícula :
- 18/0112635

Mapa Conceitual

Módulo 2

Lineares

Não Lineares

Exatas e não Exatas

Forma Padrão

$$M(x,y) + N(x,y)y' = 0$$

É exata

$$\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$$

Não é exata

$$\frac{\partial N}{\partial x} \neq \frac{\partial M}{\partial y}$$

Separáveis

Forma Padrão

$$\mathsf{Y'} = \frac{M(x)}{N(y)}$$

Método da Equação Separável

$$\int N(y) dy = \int M(x) dx$$

Homogênea

É homogênea se

$$F(tx, ty) = t^{\alpha}f(x,y)$$

Transformar:

$$Y' = f \frac{y}{x}$$

Resolver equação Separável:

$$\int \frac{1}{f(v) - v} \, dv = \int \frac{1}{x} \, dx$$

Substituir:

$$v = \frac{y}{x}$$

EXATA

PASSO 1:

Conferir se $\frac{\partial N}{\partial x} \neq \frac{\partial M}{\partial y}$

PASSO 2:

Escolher uma das Funções para Integrar,

Colocar em evidência a função

PASSO 3:

Derivar a função encontrada e igualar a função que sobrou

PASSO 4:

Integrar o que sobrou assim obtendo h'(y) ou h'(x)

PASSO 5:

Substituir na função reservada e encontrar a constante

NÃO EXATA

PASSO 1:

Achar fator integrante:

$$G(x) = \frac{1}{N} \left(\frac{dm}{dy} - \frac{dn}{dx} \right), I = e^{\int g(x)dx}$$

$$H(y) = \frac{1}{M} \left(\frac{dm}{dy} - \frac{dn}{dx} \right), I = e^{-\int h(y)dy}$$

PASSO 2:

Multiplicar o fator integrante por Mdx e Ndy

PASSO 3:

Conferir sua exatidão

PASSO4:

Seguir os passos das Exatas

EDO 2ª Ordem

$$Y'' + p(x)y' + q(x)y = g(x)$$

Homogêneas

- $\Delta > 0$
- ∆ < 0
- $\Delta = 0$

Equação característica $a\lambda^2 + b\lambda + c = 0$

Não Homogêneas

- Método do coéficiente indeterminado
- Método da variação dos parâmetros

$$\Delta > 0$$

Solução Geral

$$y = c_1 e^{r_{1x}} + c_2 e^{r_{2x}}$$

PASSO 1:

Encontrar a equação característica

PASSO 2:

Achar as raízes

PASSO 3:

Substituir na solução geral

Solução Geral

$$Y = e^{\alpha x} (C_1 \cos \beta_x + C_2 \sin \beta_x)$$

PASSO 1:

Encontrar a equação característica

PASSO 2:

Achar as raízes

$$r1 = \propto + \beta i$$

$$r2 = \propto + \beta i$$

Solução Geral

$$y = c_1 e^{r_{1x}} + c_2 x e^{r_{2x}}$$

PASSO 1:

Encontrar a equação característica

PASSO 2:

Achar as raízes

PASSO 3:

Substituir na solução geral

Método do coeficiente indeterminado (M.C.I)

Seno: Csen(Kx)

Solução geral

Euler:
$$Ce^{Kx}$$
 yp = Ae^{Kx}

Como achar a Solução ?

PASSO 1:

Achar a equação Homogênea

PASSO 2:

Identificar a g(x)

Derivar

Substituir na EDO

Igualar a g(x)

Encontrar os valores das letras

Substituir os valores na EDO

PASSO 3:

Somar a equação homogênea com a equação particular.

Método da variação dos parâmetros

Vale para todos os g(x)

Como achar a solução?

$$y_p = v_1(x)y_1(x) + v_2(x)y_2(x)$$

$$v_1'y_1 + v_2'y_2 = 0$$

 $v_1'y_1' + v_2'y_2' = g(x)$

$$\int v_1' = \int v_2'$$
Substituir no y_p

Atividade 2: Oscilações livres amortecidas. Considere um sistema massa-mola em um meio viscoso. Seja k a constante elástica da mola, seja m a massa do corpo que oscila e seja y o coeficiente de viscosidade (amortecimento) do meio. A EDO que descreve a amplitude das oscilações da massa é dada por m x'' + y x' + k x = 0. Descreva o efeito da viscosidade do meio no movimento da massa. Movimentos oscilatório: subamortecimento, superamortecido e amortecimento crítico.

Atividade 3: Um cursor com 5 kg repousa sobre uma mola, não estando ligado a ela. Observa-se que, se o cursor for empurrado para baixo 0,18m ou mais, perde o contato com a mola depois de libertado. Determine:

- (a) a constante de rigidez da mola.
- (b) a posição, a velocidade e a aceleração do cursor, 0.16 s após ter sido empurrado para baixo 0,18m e, depois, libertado.

 Considere g=9,81m/s².

Aplicação de EDO: Decaimento Radioativo

Fatos experimentais mostram que materiais radioativos desintegram a uma taxa proporcional à quantidade presente do material. Se Q=Q(t) é a quantidade presente de um certo material radioativo no instante t, então a taxa de variação de Q(t) com respeito ao tempo t, aqui denotada por dQ/dt, é dada por:

$$dQ/dt = k Q(t)$$

,onde k é uma constante negativa bem definida do ponto de vista físico. Por exemplo, para o Carbono 14 o valor aproximado é k=- $1,244\times10^{-4}$, para o Rádio o valor aproximado é k=- $1,4\times10^{-11}$

Normalmente consideramos Q(0)=Q_o a quantidade inicial do material radioativo considerado. Quando não conhecemos o material radioativo, devemos determinar o valor da constante k, o que pode ser feito através da característica de "meia-vida" do material. A "meia-vida" é o tempo necessário para desintegrar a metade do material. Portanto, se nós conhecemos a meia-vida do material, podemos obter a constante k e vice-versa. Em livro de de Química podemos obter as "meias-vidas" de vários materiais radioativos. Por exemplo, a meia-vida do Carbono-14 está entre 5538-5598 anos, numa média de 5568 anos com um erro para mais ou para menos de 30 anos. O Carbono-14 é uma importante ferramenta em Pesquisa Arqueológica conhecida como teste do radiocarbono.

Plano de aula semanal: Semana 1

Matrícula	Aluno	Turma	professora
18/0112635	Allan César Inácio C. Branco	CC	Tatiane da Silva

	Segunda-feira	Terça-feira	Quinta-feira
Data	15/04	16/04	18/04
Objetivos	Introdução a equações diferencias; EDO e EDP; Classificação e desenho de campos de direção	Soluções EDO de 1° ordem: -Linear homogênea -Linear não homogênea	Soluções EDO de 1° de ordem: -Separáveis -Forma Homogênea
Informação	Equações diferenciais ordinárias: Qual ordem? Lineares? Homogêneas?	Equações diferenciais ordinárias: Soluções para diversos tipos e modelos	Equações diferenciais ordinárias: Soluções para outros tipos de equações

Resumo	Na aula aprendemos diferenciação das equações diferencias ordinárias das parciais; classificação das ordinárias	Na aula aprendemos como achar a solução de equações diferenciais ordinárias de vários modelos, usando algumas técnicas	Na aula aprendemos como achar a solução de equações diferenciais ordinárias desmembrando-as e usando outras técnicas
Observação	Aula bem estruturada e de fácil entendimento, tornando assim mais uma vez, a professora Tatiane um diferencial pois esse conteúdo é de difícil entendimento	Aula excelente, com boa didática e bom andamento, pois deu para fazer muita coisa em pouco tempo e ainda ser esclarecedor	Aula um pouco mais difícil, mas ainda bem explicada. Usando vários exemplos foi possível tirar as dúvidas que ocorriam
Dúvidas			
Monitoria			

1 1 Exercicio 1º semana - portfolio 145 exemples volistantes de classificações de ED Dy", f2 y = et & EDO; 2" ordern; suntar; nos demo (2) y" + t.y2 = 0 ro EDO; 3° orders; non lines; home 3 g 14) + 2 uny = extens 800, 4= orden; Junea; no he (4) y1 + sent. y = 0 re EDO; 1= ording linea; horros (3) y2. y1+6y1+2y=0 1 EDO; 25 grden var en N 3 elemples de desenhan campos de alirecas D'Supenha que um circuito semples a crustinica seja de 16 a, a indictància 4H e a pilha fornego uma

o de direjo dado colinetas da

6 The Simpsons TM & © 2016 Fox

1 1 los de volução Es MAH GROENING

de Johnson EDO The Simpsons TM & © 2016 Fox

dolucio & DO 1= ordin 3 Palle 4 The Simpsons TM & © 2016 Fox

MATT GROENING

The Simpsons TM & © 2016 Fox tilibra

2º Semana - Prortfolio forma exata la volução $2x + y^2 + 2xy \cdot y' = 0$ (2x+y) dx = 2N=4xy+2 tilibra

MAH GROENING

dx + (6 y2- x2+3 The Simpsons TM & © 2016 Fox (g) = tilibra

Exemplos de volução Etyo 1º ordem na forma não dy =0 1. 11. # MATT GROENING

41= de M & @ 2016 Fox tilibra

du DN = 24 · laso z M- 2.02 otars

The Simpsons TM & @ 2016 Fox

102 exemplos ou Equação Bernoulli 1 dy + 4 = 43 (1x2. w) of (2x - Cx2)-1/2 x · Oby + y + x²y²= x y) + y = -x2, y2, y) + 1y = -xy w=-9-9 -w= -2-9 y', y' 4 1 . y' = --w + 1 w = -x 1x1.wldx = 11 dx MATT GROENING

to 5 exemples de aplicação de Eto 1º ordem ENTO acordo com la segunda lu de thurchoho eletromotres de 30 mills à aplicado no qual la industria le anomak Daden: E = 30 wolts = 50 Jams 0,1000,60 100 6 100 w/oot 60 e100 t -1000 400.0 tilibra

A população ou hacterias cem uma cultura etruce a uma taxa proporcional vao número vole electrias presentes em qualques tempo. Apos 3 boras, colserva-ce que era 400 houterias presentes spor 10 horas, laistern 2000 exectivas presentes. Qual rera co número unicial de lipiturios: Dades! p(10) = 2000 hacteries p(0) = 10 (população unicial p população de hoctirias 6 = Jumpo p(t) = população um um instant t p(3) = 900 Northis dp = Kp(t) Po = 400. 0,50 740 in 6 A=0,23 MATT GROENING

(3) Papitalização de Junos Superha que BARTO mente. Qual cura o saldo após 12 meses se a torse de juris des 1% amo. E co coliposito uni S(0)=18 100,00 X Taxa 1 % a m (Decamento Radioatira) O isotopo Pb-209 dicai a uma taxa proporcional a A(x) a etem meia vida de 3,3 h. Se houser inicialmente 19 de Chumbo, quanto Tempo Chuqua pora que 90% elucia? , mia vida Dado: Alo)=cek A(0) = 19 meia vida = 3,3h A(0) = C, Kzen(0,5) 2,0,23

Raci do Aquicimento / Respuemento metro é removido de uma dala ande a tempero MATT GROENING

Plano de aula semanal: Semana 2

Matrícula	Aluno	Turma	professora
18/0112635	Allan César Inácio C. Branco	CC	Tatiane da Silva

	Segunda-feira	Terça-feira	Quinta-feira
Data	22/04	23/04	25/04
Objetivos	Introdução e execução à soluções de EDO's de 1ª ordem na forma exata, introdução à forma não exata	Solução de EDO's de 1ª ordem na forma não exata e revisão das notas	Introdução e desenvolvimento de Equações Bernoulli, aplicação de EDO's de 1ª ordem e EDO's lineares; homogêneas e não homogêneas
Informação	EDO's de 1ª ordem na forma exata: -Como saber se é exata? -Como achar a solução?	EDO's de 1ª ordem na forma não exata: -Se não é exata, como manipular ela para se tornar? -Como achar a solução?	-Qual a diferença entre as EDO's anteriores e a equação de Bernoulli? -Como aplicar as EDO's de 1ª ordem ?

Resumo	Na aula aprendemos a diferenciar as EDO's de 1ª ordem exata das não exatas e ainda conseguir achar a solução delas	Na aula aprendemos a manipular a EDO de 1ª ordem não exta para se tornar uma exata, e assim achar a sua solução	Na aula aprendemos a diferença entre as EDO's de 1ª ordem das equações de Bernoulli e aprendemos a aplicar as EDO's de 1ª ordem
Observação	Aula incrível, com uma didática bem elaborada, pois em uma matéria que é de difícil aprendizado acabou sendo bem divertido e interessante	Aula, mais uma vez, muito boa, com uma dinâmica interessante e direta. Fazendo exemplos entre mudança de assunto facilita muito a matéria	Aula um pouco mais difícil, mas ainda sim, foi de fácil entendimento pela competência da professora Tatiane da Silva
Dúvidas			
Monitoria			

com volprientes constantes um que s>0, cuja solução leja geral Solucis geral DUI EDO 2º vordem clinear com coefi-Im que 170

1 exemple de volução EDO 2º ordem dinear com conficuentes constantes em que 5=0, cuja solução seja senal 1 celimple vole PVI EDO 2ª ordern linear aerota constante em que 1=0 O WHE CIEVEL COTEVE yn-41+0,25 y=0 y(0) = 2 y1(0)= 1/3 MATT GROENING

1 exemplo de Rolução EDO 2ª oradim linea EL Com conficientes constantes com que D < O BAR veryo rolição seja giral 1 exemplo de PVI EDO 2º proten linear com colficiente constanti um que DCO. 16 y"-8y"+145y=0

Plano de aula semanal: Semana 3

Matrícula	Aluno	Turma	professora
18/0112635	Allan César Inácio C. Branco	CC	Tatiane da Silva

	Segunda-feira	Terça-feira	Quinta-feira
Data	29/04	30/04	02/05
Objetivos	EDO 2ª ordem, com raízes X¹ e X² diferentes	EDO 2ª ordem com raízes complexas	Não houve aula
Informação	Solução de EDO 2ª ordem analisando caso a caso	Solução de EDO, achando suas respectivas soluções , equações específicas e características	Não houve aula

Resumo	Encontrar a equação característica, o conj. fundamental da solução e confirmar com o wronskiano	Achar o conj. fundamental depois substituir na solução geral de uma EDO de raízes complexas	Não houve aula
Observação			
Dúvidas			
Monitoria			

4ª Sumano uso do Método dos Coficientes (M.C.I) 241+9 MATT GROENING

2 Exemplos do uso do Método ida rariação dos parâmetros. The Simpsons TM & @ 2016 Fox

e9x MATT GROENING

Plano de aula semanal: Semana 4

Matrícula	Aluno	Turma	professora
18/0112635	Allan César Inácio C. Branco	CC	Tatiane da Silva

	Segunda-feira	Terça-feira	Quinta-feira
Data	6/05	7/05	9/05
Objetivos	Aula de exercícios via aplicativo	Aula de exercícios via aplicativo	Aula de exercícios via aplicativo
Informação	Aula de exercícios via aplicativo	Aula de exercícios via aplicativo	Aula de exercícios via aplicativo

Resumo	Aula de exercícios via aplicativo	Aula de exercícios via aplicativo	Aula de exercícios via aplicativo
Observação	Aula de exercícios via aplicativo	Aula de exercícios via aplicativo	Aula de exercícios via aplicativo
Dúvidas			
Monitoria			