1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	ОИТРИТ	UNITS	Continuous Mode Boost Converter Design Spreadsheet
2 🕶	Enter Application Variables					Design Title
						Input voltage
3	Input Voltage Range	Hig ∨		High Line		range
						Minimum AC
						input voltage.
						Spreadsheet simulation is
						performed at
						this voltage. To
4	VACMIN			185	VAC	examine
						operation at
						other votlages,
						enter here, but
						enter fixed
						value for
						LPFC_ACTUAL.
5	VACMAX			265	VAC	Maximum AC
						input voltage
						Expected
						Typical Brown- in Voltage per
6	VBROWNIN			167	VAC	IC IC
						specifications;
						Line impedance
						not accounted.
						Expected
						Typical Brown-
						out voltage per
7	VBROWNOUT			156	VAC	IC
						specifications;
						Line impedance not accounted.
						Nominal load
8	vo			385	VDC	voltage
						Nominal
9	PO	900		900	w	Output power
10	fL			50	Hz	Line frequency
						Maximum
11	TA Max			40	°C	ambient
						temperature
12	n			0.96		Enter the
						efficiency
						estimate for the
						boost converter
						at VACMIN.
						Should approximately
						Spp. smilately

1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	ОИТРИТ	UNITS	Design Spreadshee
						match calculated efficiency in Loss Budget section
13	VO_MIN			366	VDC	Minimum Output volta Maximum
14	VO_RIPPLE_MAX			20	VDC	Output volta
15	tHOLDUP			20	ms	Holdup time
16	VHOLDUP_MIN			310	VDC	Minimum Voltage Outp can drop to during holds
17	I_INRUSH			40	A	Maximum allowable inrush curre
18	Forced Air Cooling	Yes ✓		Yes		Enter "Yes" Forced air cooling. Otherwise enter "No". Forced air reduces acceptable choke curre density and core autopic core size
20	KP and INDUCTANCE					
21	KP_TARGET	0.300		0.300		Target rippl peak induct current ratio the peak of VACMIN. Aff inductance value
22	LPFC_TARGET (0 bias)			324	uH	PFC inductarequired to KP_TARGET peak of VAC
23	LPFC_DESIRED (0 bias)			324	uН	LPFC value used for calculations Leave blank

1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	ОИТРИТ	UNITS	Continuous Mode Boost Converter Design
						Spreadsheet
						use
						LPFC_TARGET.
						Enter value to
						hold constant
						(also enter core
						selection) while
						changing
						VACMIN to
						examine
						brownout
						operation. Calculated
						inductance with
						rounded
						(integral) turns
						for powder core.
	VD ACTUAL			0.202		Actual KP
24	KP_ACTUAL			0.282		calculated from
						LPFC_ACTUAL
						Inductance at
						VACMIN, 90°.
25	LPFC_PEAK			324	uH	For Ferrite,
						same as
						LPFC_DESIRED
						(0 bias)
26						
27	Basic current parameters					
•		I	I			
						AC input RMS
28	IAC_RMS			5.07	A	current at
						VACMIN and
						Full Power load
						Output average
29	IO_DC			2.34	A	current/Average
						diode current
30						
31						
32		1		1		
-	PFS Parameters					
						If examining
						brownout
						operation, over-
33	PFS Part Number	PFS ▽		PFS7539H		ride autopick
						with desired
						device size
34	Operating Mode	Full 🗸		Full Power		Mode of
.						operation of
						PFS. For Full

						Continuous Mode Boost
1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	OUTPUT	UNITS	Converter
						Design
						Spreadsheet
						Power mode
	Į					enter "Full
						Power"
						otherwise enter
	Į					"EFFICIENCY" to indicate
						efficiency mode
		<u> </u>	\vdash	 		Minimum
35	IOCP min			10.0	А	Current limit
36	IOCP typ			10.5	А	Typical current limit
37	IOCP max			11.0	A	Maximum
						current limit
38	IP			8.07	А	MOSFET peak current
39	IRMS			3.20	А	PFS MOSFET RMS current
40	RDSON			0.40	Ohms	Typical RDSon at 100 'C
	1					Estimated
	l i					frequency of
	FE DIV			102	laus	operation at
41	FS_PK			102	kHz	crest of input
						voltage (at
						VACMIN)
		-				Estimated
	l i					average
42	FS_AVG			96	kHz	frequency of
						operation over line cycle (at
						VACMIN)
	1					Estimated PFS
43	PCOND_LOSS_PFS			4.1	w	conduction
						losses
						Estimated PFS
44	PSW_LOSS_PFS			7.9	w	switching
		<u> </u>		<u> </u>		losses
45	PFS_TOTAL			12.0	w	Total Estimated
	ļ	<u> </u>				PFS losses
	l i					Maximum
46	TJ Max			100	deg C	steady-state junction
	l i					temperature
_			\vdash			Maximum
	l i					thermal
47	Rth-JS			2.80	°C/W	resistance
						(Junction to
						heatsink)

						_
1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	оитрит	UNITS	Continuous Mode Boost Converter Design Spreadsheet
48	HEATSINK Theta-CA		Info	0.87	°C/W	Big heatsink; Consider changing Rth or
49						
50						
51 ▼	INDUCTOR DESIGN					
52	Basic Inductor Parameters					
53	LPFC (0 Bias)			324	uH	Value of PFC inductor at zero current. This is the value measured with LCR meter. For powder, it will be different than LPFC.
54	LP_TOL			10.0	%	Tolerance of PFC Inductor Value (ferrite only)
55	IL_RMS			4.89	А	Inductor RMS current (calculated at VACMIN and Full Power Load)
56	Material and Dimensions					
57	Core Type	Feri∨		Ferrite		Enter "Sendust", "Pow Iron" or "Ferrite"
58	Core Material	Autı∨		PC44/PC95		Select from 60u, 75u, 90u or 125 u for Sendust cores. Fixed at PC44/PC95 for Ferrite cores. Fixed at -52 material for Pow Iron cores.
59	Core Geometry	Aut∙∨		PQ		Toroid only for Sendust and Powdered Iron; EE or PQ for Ferrite cores.

			I			
1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	ОUТРUТ	UNITS	Continuous Mode Boost Converter Design Spreadsheet
60	Core	Aut∙✓		PQ35/35		Core part
61	Ae			196.00	mm^2	Core cross sectional area
62	Le			87.90	mm	Core mean path
63	AL			4750.00	nH/t^2	Core AL value
64	Ve			16.30	cm^3	Core volume
65	HT (EE/PQ) / ID (toroid)			7.00	mm	Core height/Height of window; ID if toroid
66	MLT			75.2	mm	Mean length per turn
67	BW			22.50	mm	Bobbin width
68	LG			1.65	mm	Gap length (Ferrite cores only)
69	Flux and MMF calculations					
70	BP_TARGET (ferrite only)			3900	Gauss	Target flux density at worst case: IOCP and maximum tolerance inductance (ferrite only) - drives turns and gap
71	B_OCP (or BP)			3845	Gauss	Target flux density at worst case: IOCP and maximum tolerance inductance (ferrite only) - drives turns and gap
72	B_MAX			2679	Gauss	peak flux density at AC peak, VACMIN and Full Power Load, nominal inductance
74	μ_TARGET (powder only)			N/A	%	%μ at peak current vs. zero current, at VACMIN, Full

1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	ОИТРИТ	UNITS	Continuous Mode Boost Converter Design Spreadsheet
						Power Load, divided by permeability at 0 current (powder only)
75	μ_MAX (powder only)			N/A	%	%μ vs. zero current, at VACMIN Full Power LOAD (powder only)
76	μ_OCP (powder only)			N/A	%	%μ vs. zero current, at IOCP_typ (powder only)
77	I_TEST			10.5	A	Current at which B_TEST and H_TEST are calculated, for checking flux at a current other than IOCP or IP; if blank IOCP_typ is used.
78	B_TEST			3671	Gauss	Flux density at I_TEST and maximum tolerance inductance
79	μ_TEST (powder only)			N/A	%	relative permeability at I_TEST and typical inductance (powder only)
80	Wire					
81	TURNS			52		Inductor turns. To adjust turns, change BP_TARGET (ferrite) or µ_TARGET (powder)
82	ILRMS			4.89	А	Inductor RMS current
93	Loss calculations					
94	ВАС-р-р			804	Gauss	Core AC peak- peak flux excursion at

Note							
PRI_CORE_LOSS	1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	ОИТРИТ	UNITS	Continuous Mode Boost Converter Design Spreadshee
							VACMIN, peak
15 LPCC_CORE_LOSS LPCC_CORE_RELOSS LPCC_CORE_RELOSS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>of sine wave</td></th<>							of sine wave
							Estimated
PFC_COPPER_LOSS PFC_TOTAL_LOSS PFC	95	LPFC_CORE_LOSS			0.33	W	Inductor core
Deficition Def						l	Estimated
	96	LPFC_COPPER_LOSS			2.51	W	
PEC, TOTAL_CIOSS							
1	97	LPFC_TOTAL_LOSS			2.84	w	Total estimated
	000						muuctoi Losses
Main							
Part							
PC Diode Part Number NTERNAZ Sept. NTERNAZ Type Namber NTERNAZ Sept. NTERNAZ Type Namber NTERNAZ Sept. NTERNAZ NTERN		Built-in PFC Diode					
Minimary							PFC Diode Part
1500 Type SPECIAL SPECIAL PO Dod Manufacturer 1500 Manufacturer Image: Politic politi	101	PFC Diode Part Number			INTERNAL2		
Manufacturer Ma	102	Туре			SPECIAL		PFD Diode Type
Manufacturer		21					
Verify V	103	Manufacturer			PI		Manufacturer
Maximum Maxi							Diode rated
F F F F F F F F F F	104	VRRM			530	V	reverse voltage
105 IF							Diode rated
107 VF 1.44 V 107 1.47	105	IF			6	A	forward curren
107 VF 1.44 V 107 1.47							high
107 VF 1.44 V forward of operating drop of the property of the prop	106	Qrr					temperature
PCOND_DIODE 108 PCOND_DIODE 109 PSW_DIODE 109 PSW_DIODE 109 P_DIODE 100 description of the standard resistance (Junction heatsink) 110 Rth-JS 111 Rth-JS 112 Rth-JS 113 HEATSINK Theta-CA 114 description of the standard resistance (Junction heatsink)							Diode rated
PCOND_DIODE Solution 109 PSW_DIODE 109 PSW_DIODE 100 P_DIODE 100	107	VF			1.44	V	forward voltage
PCOND_DIODE 3.37 W Diode conduction is seed to be provided in the provided provided							drop
PSW_DIODE 109 PSW_DIODE 110 P_DIODE 111 TJ Max 112 Rth-JS 113 HEATSINK Theta-CA 114 Say a degC/M 115 conduction losses 115 conduction losses 116 conduction losses 117 Last est losses 118 losses 119 losses 119 losses 110 degC/M 111 conduction losses 110 losses 111 losses 111 losses 112 losses 113 losses 114 losses 115 losses 116 losses 117 losses 118 losses 119 losses 110 degC/M 110 losses 110 losses 110 losses 111 losses 111 losses 112 losses 113 losses 114 losses 115 losses 116 losses 117 losses 118 losses 119 losses 110 l							Estimated
Conduction Con	108	PCOND_DIODE			3.37	w	
PSW_DIODE 109 PSW_DIODE 110 P_DIODE 111 TJ Max 112 Rth-JS 113 HEATSINK Theta-CA 114 Set on the set of th							conduction
109 PSW_DIODE 110 P_DIODE 111 TJ Max 112 Rth-JS 113 HEATSINK Theta-CA 114 1.00 W Diode sw losses 115 P_DIODE 116 Standy St operating temperature thermal steady st operating temperature the standard standa							
In P_DIODE And	100	DCW DIODE			1.00	\ \ \	
P_DIODE 110 P_DIODE 111 Ty Max 112 Rth-JS	109	r3vv_DIODE			1.00	VV	
110 P_DIODE 111 TJ Max 112 Rth-JS 113 HEATSINK Theta-CA 124 Recompleted the standard of th							Total estimated
TJ Max TJ Max TJ Max Rth-JS Rth-JS HEATSINK Theta-CA Maximum steady-st operating temperate them all the male resistance (Junction heatsink) and the	110	P_DIODE			4.37	w	Diode losses
TJ Max 110 deg C operating temperate steady-stronger and the male steady-stronger at the steady-stronger at the steady-stronger at the stronger at the strong							
TJ Max 100 deg C operating temperat Rth-JS 3.00 degC/W resistance (Junction heatsink) HEATSINK Theta-CA 0.87 degC/W Maximum							steady-state
temperate temper	111	TJ Max			100	deg C	operating
Rth-JS Rth-JS 3.00 degC/W resistance (Junction heatsink) HEATSINK Theta-CA 0.87 degC/W Maximum							temperature
112 Rth-JS 3.00 degC/W resistance (Junction heatsink) 113 HEATSINK Theta-CA 0.87 degC/W Maximum							Maximum
(Junction heatsink) 113 HEATSINK Theta-CA 0.87 degC/W Maximum							thermal
heatsink) HEATSINK Theta-CA 0.87 degC/W Maximum	112	Rth-JS			3.00	degC/W	resistance
113 HEATSINK Theta-CA 0.87 degC/W Maximun							(Junction to
							heatsink)
thermal thermal	113	HEATSINK Theta-CA			0.87	degC/W	Maximum
							thermal

				I		I
1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	оитрит	UNITS	Continuous Mode Boost Converter Design Spreadsheet
				Ì	1	resistance of
						heatsink
114						
115						
116						
•	Output Capacitor					
						Minimum value
117	Output Capacitor	Aut∈∨		820	uF	of Output
						capacitance
						Expected ripple
						voltage on
118	VO_RIPPLE_EXPECTED			9.5	V	Output with
						selected Output
						capacitor
						Expected
						holdup time
119	T_HOLDUP_EXPECTED			23.7	ms	with selected
						Output
						capacitor
120	ESR_LF			0.20	ohms	Low Frequency
Ĺ						Capacitor ESR
121	ESR_HF			0.07	ohms	High Frequency
						Capacitor ESR
						Low Frequency
122	IC_RMS_LF			1.58	A	Capacitor RMS
						current
						High Frequency
123	IC_RMS_HF			1.58	A	Capacitor RMS
						current
						Estimated Low
124	CO_LF_LOSS			0.50	w	Frequency ESR loss in Output
						capacitor
						Estimated High frequency ESR
125	CO_HF_LOSS			0.18	w	loss in Output
						capacitor
						Total estimated
						losses in
126	Total CO LOSS			0.68	W	Output
						Capacitor
127						
128				1		
129		<u> </u>	<u> </u>	l	<u> </u>	
-	Input Bridge (BR1) and Fuse (F1)					
						Minimum I^2t
130	I^2t Rating			57.58	A^2*s	rating for fuse
				<u> </u>		

1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	ОИТРИТ	UNITS	Design Spreadshee
131	Fuse Current rating			7.37	A	Minimum Current rating of fuse
132	VF			0.90	V	Input bridge Diode forward Diode drop
133	IAVG			4.58	A	Input average current at 70 VAC.
134	PIV_INPUT BRIDGE			375	V	Peak inverse voltage of inpu bridge
135	PCOND_LOSS_BRIDGE			8.21	w	Estimated Bridge Diode conduction los
136	CIN			1.0	uF	Input capacito Use metallized polypropylene or film foil type with high rippl current rating
137	RT			9.37	ohms	Input Thermistor value
138	D_Precharge			1N5407		Recommende precharge Diode
139						
140						
141	PFS3 small signal components					
142	C_REF			1.0	uF	REF pin capacitor valu
143	RV1			4.0	MOhms	Line sense resistor 1
144	RV2			6.0	MOhms	Line sense resistor 2
145	RV3			6.0	MOhms	the lower resistor connected to the V-PIN. Use 1% resistor only!
146	RV4			161.6	kOhms	Description pending, could be modified based on

			ı			
1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	ОИТРИТ	UNITS	Continuous Mode Boost Converter Design Spreadsheet
						feedback chain
						R1-R4
147	c_v			0.495	nF	V pin decoupling capacitor (RV4 and C_V should have a time constant of 80us) Pick the closest available
						capacitance.
148	c_vcc			1.0	uF	Supply decoupling capacitor
149	C_C			100	nF	Feedback C pin decoupling capacitor
150	Power good Vo lower threshold VPG(L)			333	V	Vo lower threshold voltage at which power good signal will trigger
151	PGT set resistor			333.0	kohm	Power good threshold setting resistor
152						
153						
154 ▼	Feedback Components					
155	R1			4.0	Mohms	Feedback network, first high voltage divider resistor
156	R2			6.0	Mohms	Feedback network, second high voltage divider resistor
157	R3			6.0	Mohms	Feedback network, third high voltage divider resistor
158	R4			161.6	kohms	Feedback network, lower divider resistor
159	C1			0.495	nF	Feedback network, loop

		I				
						Continuous
						Mode Boost
1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	OUTPUT	UNITS	Converter
						Design
						Spreadsheet
						speedup
						capacitor. (R4
						and C1 should
						have a time
						constant of
						80us) Pick the
						closest
						available
						capacitance.
						Feedback
160	R5			35.7	kohms	network: zero
						setting resistor
						Feedback
						component-
161	C2			1000	nF	noise
						suppression
						capacitor
162						
163						
164						
164	Loss Budget (Estimated at VACMIN)					
						Total estimated
165	PFS Losses			11.98	w	losses in PFS
100	Roort diada Laccas			4.27	w	Total estimated
166	Boost diode Losses			4.37	VV	losses in Output Diode
	January Drieder January			0.21		Total estimated
167	Input Bridge losses			8.21	W	losses in input
						bridge module
						Total estimated
168	Inductor losses			2.84	W	losses in PFC
						choke
						Total estimated
169	Output Capacitor Loss			0.68	w	losses in
						Output
						capacitor
						Total estimated
170	EMI choke copper loss			0.50	w	losses in EMI
						choke copper
171	Total losses			28.09	w	Overall loss
						estimate
						Estimated
172	Efficiency			0.97		efficiency at
172	Efficiency			0.97		VACMIN, full
						load.
173						
174						

175	Hiper_PFS-3_Boost_050625; Rev.1.1 CAPZero component selection recommendation	INPUT	INFO	ОИТРИТ	UNITS	Continuous Mode Boost Converter Design Spreadshee
176	CAPZero Device			CAP005DG		(Optional) Recommende CAPZero devic to discharge X Capacitor with time constant of 1 second
177	Total Series Resistance (R1+R2)			0.48	k-ohms	Maximum Tota Series resistor value to discharge X- Capacitors
178						
179 180 ▼	EMI filter components recommendation					
181	CIN_RECOMMENDED			1000	nF	Metallized polyester film capacitor afte bridge, ratio with Po
182	CX2			680	nF	X capacitor after differencial mode choke and before bridge, ratio with Po
183	LDM_calc			151	uH	estimated minimum differencial inductance to avoid <10kHz resonance in input current
184	CX1			680	nF	X capacitor before comm mode choke, ratio with Po
185	LCM			10	mH	typical common mo choke value
186	LCM_leakage			30	uH	estimated leakage inductance o CM choke,

1	Hiper_PFS-3_Boost_050625; Rev.1.1	INPUT	INFO	ОИТРИТ	UNITS	Continuous
						Mode Boost
						Converter
						Design
						Spreadsheet
						typical from
						30~60uH
187	CY1 (and CY2)			220	pF	typical Y
						capacitance for
						common mode
						noise
						suppression
	LDM_Actual			121	uH	cal_LDM minus
188						LCM_leakage,
						utilizing CM
						leakage
						inductance as
						DM choke.
189	DCR_LCM	0.10		0.10	Ohms	total DCR of CM
						choke for
						estimating
						copper loss
190	DCR_LDM	0.10		0.10	Ohms	total DCR of DM
						choke(or CM
						#2) for
						estimating
						copper loss
191						
192	Note: CX2 can be placed between CM chock and DM choke depending on EMI design requirement.					
193						