Đồ thị: Đường đi ngắn nhất

Bellman-Ford algorithm

Sử dụng một phần tài liệu bài giảng CS161 Stanford University

Recall

A weighted directed graph:

- Weights on edges represent costs.
- The cost of a path is the sum of the weights along that path.
- A shortest path from s
 to t is a directed path
 from s to t with the
 smallest cost.
- The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

This is a path from s to t of cost 10. It is the shortest path from s to t.

Đã học

- Thuật toán Dijkstra
 - Tìm đường đi ngắn nhất từ một nguồn cho đồ thị có trọng số.

Hạn chế của tt Dijkstra

- Needs non-negative edge weights.
- If the weights change, we need to re-run the whole thing.

Khái niệm chu trình âm

- A **negative cycle** is a cycle whose edge weights sum to a negative number.
- Shortest paths aren't defined when there are negative cycles!

Bellman-Ford algorithm

- (-) Slower than Dijkstra's algorithm
- (+) Can handle negative edge weights
 - Can detect negative cycles!

○ = ○

- **For** i=0,...,n-2:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$ where we are also taking the min over all u in v.inNeighbors

- **For** i=0,...,n-2:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$ where we are also taking the min over all u in v.inNeighbors

- **For** i=0,...,n-2:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$ where we are also taking the min over all u in v.inNeighbors

- **For** i=0,...,n-2:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$ where we are also taking the min over all u in v.inNeighbors

How far is a node from Gates?

These are the final distances!

- **For** i=0,...,n-2:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$ where we are also taking the min over all u in v.inNeighbors

Interpretation of d⁽ⁱ⁾

d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.

Why does Bellman-Ford work?

- Inductive hypothesis:
 - d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.
- Conclusion:
 - d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest path between s and v with at most n-1 edges.

Do the base case and inductive step!

Aside: simple paths

Assume there is no negative cycle.

 Then there is a shortest path from s to t, and moreover there is a simple shortest path.

This cycle isn't helping. Just get rid of it.

 A simple path in a graph with n vertices has at most n-1 edges in it.

Can't add another edge without making a cycle!

"Simple" means that the path has no cycles in it.

• So there is a shortest path with at most n-1 edges

Why does it work?

- Inductive hypothesis:
 - d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.
- Conclusion:
 - d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest path between s and v with at most n-1 edges.
 - If there are no negative cycles, d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest path.

Notice that negative edge weights are fine. Just not negative cycles.

G = (V,E) is a graph with n vertices and m edges.

Bellman-Ford algorithm

Bellman-Ford (G,s):

- Initialize arrays d⁽⁰⁾,...,d⁽ⁿ⁻¹⁾ of length n
- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- **For** i=0,...,n-2:
 - **For** v in V:

Here, Dijkstra picked a special vertex u and updated u's neighbors – Bellman-Ford will update all the vertices.

- $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \text{ in } v, \text{in Nbrs}} \{d^{(i)}[u] + w(u,v)\})$
- Now, dist(s,v) = $d^{(n-1)}[v]$ for all v in V.
 - (Assuming no negative cycles)

Note on implementation

- Don't actually keep all n arrays around.
- Just keep two at a time: "last round" and "this round"

Một số đặc trưng của Bellman-Ford

- Running time is O(mn)
 - For each of n rounds, update m edges.
- Works fine with negative edges.
- Does not work with negative cycles.
 - No algorithm can shortest paths aren't defined if there are negative cycles.
- B-F can detect negative cycles!

BF with negative cycles

- **For** i=0,...,n-2:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \text{ in } v, nbrs} \{d^{(i)}[u] + w(u,v)\})$

BF with negative cycles

But we can tell that it's not looking good:

Some stuff changed!

- **For** i=0,...,n-2:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \text{ in } v, nbrs} \{d^{(i)}[u] + w(u,v)\})$

Negative cycles in Bellman-Ford

- If there are no negative cycles:
 - Everything works as it should, and stabilizes in n-1 rounds.
- If there are negative cycles:
 - Not everything works as it should...
 - The d[v] values will keep changing.
- Solution:
 - Go one round more and see if things change.

Bellman-Ford algorithm

Bellman-Ford*(G,s):

- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- For i=0,...,n-1:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \text{ in } v. \text{inNeighbors}} \{d^{(i)}[u] + w(u,v)\})$
- If $d^{(n-1)} != d^{(n)}$:
 - Return NEGATIVE CYCLE (2)
- Otherwise, dist(s,v) = d⁽ⁿ⁻¹⁾[v]

Running time: O(mn)

Bellman-Ford algorithm

• (-) Slower than Dijkstra's algorithm

- (+) Can handle negative edge weights.
 - Can detect negative cycles!
- (+) Allows for some flexibility if the weights change!?

Important thing about B-F for the rest of this lecture

d(i)[v] is equal to the cost of the

Gates