Assigment 3

This assignment focuses on getting comfortable with working with multidimensional data and linear regression. Key items include:

- Creating random n-dimensional data
- Creating a Model that can handle the data
- Plot a subset of the data along with the prediction
- Using a Dataset to read in and choose certain columns to produce a model
- Create several models from various combinations of columns
- Plot a few of the results

```
In [1]: import numpy as np
   import matplotlib.pylab as plt
   %matplotlib inline
```

1. Create a 4 dimensional data set with 64 elements and show all 4 scatter 2D plots of the data x_1 vs. y, x_2 vs. y, x_3 vs. y, x_4 vs. y

```
In [2]: n = 64
x = np.linspace(0, 1, n) + np.random.rand(4, n)
x = np.vstack([x, np.ones(len(x.T))]).T
y = np.linspace(0, 1, n) + np.random.rand(n) - 1
```

```
In [3]: plt.scatter(x.T[0], y)
```

Out[3]: <matplotlib.collections.PathCollection at 0x7f9a386854c0>


```
In [4]: plt.scatter(x.T[1], y)
```

Out[4]: <matplotlib.collections.PathCollection at 0x7f9a484d1af0>

<matplotlib.collections.PathCollection at 0x7f9a6ac87520> Out[6]:

Out[5]:

2. Create a Linear Regression model (like we did in class) to fit the data. Use the example from Lesson 3 and do not use a library that calculates automatically. We are expecting 5 coefficients to describe the linear model.

After creating the model (finding the coefficients), create a new column $y_p = \Sigma \beta_n \cdot x_n$

```
In [7]: left = np.linalg.inv(np.dot(x.T, x))
In [8]: right = np.dot(y.T, x)
In [9]: beta = np.dot(left, right)
beta
Out[9]: array([ 0.19910577,  0.17422601,  0.1333519 ,  0.2471695 , -0.81746548])
In [10]: pred = np.dot(x, beta)
```

3. Plot the model's prediction as a different color on top of the scatter plot from Q1 in 2D for all 4 of the dimensions (

```
(x_1 
ightarrow y_p, x_2 
ightarrow y_p, x_3 
ightarrow y_p, x_4 
ightarrow y_p)
```

```
In [11]: plt.scatter(x.T[0], pred, c='red')
plt.scatter(x.T[0], y, c='b')

Out[11]: 

onumber of the product of the plane of the p
```

```
In [12]: plt.scatter(x.T[1], pred, c='red')
plt.scatter(x.T[1], y, c='b')
```

1.50

1.75

1.25

Out[12]: <matplotlib.collections.PathCollection at 0x7f9a486eeca0>

0.75

1.00

-0.50

-0.75

0.00

0.25

0.50

4. Read in mlnn/data/Credit.csv with Pandas and build a Linear Regression model to predict Credit Rating (Rating). Use only the numeric columns in your model, but feel free to

experiment which which columns you believe are better predicters of Credit Rating (Column Rating)

```
In [15]:
          import pandas as pd
          credit = pd.read csv('../data/Credit.csv',index col=0)
          credit.head()
Out[15]:
              Income Limit
                            Rating Cards Age Education Gender Student Married
                                                                                     Ethnicity
                                                                                              Balance
              14.891 3606
                               283
                                        2
                                            34
                                                       11
                                                             Male
                                                                                                  333
                                                                        No
                                                                                Yes
                                                                                    Caucasian
           2 106.025 6645
                               483
                                        3
                                            82
                                                       15
                                                           Female
                                                                                Yes
                                                                                        Asian
                                                                                                  903
                                                                       Yes
           3 104.593
                     7075
                               514
                                            71
                                                       11
                                                             Male
                                                                                No
                                                                                         Asian
                                                                                                  580
                                                                        No
           4 148.924 9504
                               681
                                            36
                                                           Female
                                                                                No
                                                                                         Asian
                                                                                                  964
                                        3
                                                       11
                                                                        No
              55.882 4897
                               357
                                        2
                                            68
                                                       16
                                                                                Yes Caucasian
                                                                                                   331
                                                             Male
                                                                        No
```

Choose multiple columns as inputs beyond Income and Limit but clearly, don't use Rating

```
In [16]:
         columns = ['Income', 'Limit', 'Age', 'Education', 'Balance']
          X = credit[columns].values
         X = np.vstack([X.T, np.ones(len(X))]).T
         array([[1.48910e+01, 3.60600e+03, 3.40000e+01, 1.10000e+01, 3.33000e+02,
Out[16]:
                  1.00000e+001,
                 [1.06025e+02, 6.64500e+03, 8.20000e+01, 1.50000e+01, 9.03000e+02,
                 1.00000e+00],
                 [1.04593e+02, 7.07500e+03, 7.10000e+01, 1.10000e+01, 5.80000e+02,
                 1.00000e+00],
                 [5.78720e+01, 4.17100e+03, 6.70000e+01, 1.20000e+01, 1.38000e+02,
                 1.00000e+00],
                 [3.77280e+01, 2.52500e+03, 4.40000e+01, 1.30000e+01, 0.00000e+00,
                 1.00000e+00],
                 [1.87010e+01, 5.52400e+03, 6.40000e+01, 7.00000e+00, 9.66000e+02,
                  1.00000e+0011)
In [17]:
         y = credit['Rating']
         У
                 283
Out[17]:
                 483
         3
                 514
         4
                 681
         5
                 357
                . . .
         396
                307
         397
                296
         398
                321
         399
                192
         400
                415
         Name: Rating, Length: 400, dtype: int64
In [18]: left 2 = np.linalg.inv(np.dot(X.T, X))
          right 2 = np.dot(y.T, X)
```

```
beta_2 = np.dot(left_2, right_2)
pred_2 = np.dot(X, beta_2)
```

5. Plot your results using scatter plots (just like in class). Show as many of your columns vs. credit rating that you can.

```
In [19]: plt.scatter(X.T[0], y, c='b')
          plt.scatter(X.T[0], pred 2, c='orange')
          <matplotlib.collections.PathCollection at 0x7f9a6b43d6a0>
Out[19]:
          1000
           800
           600
           400
           200
                                           125
                                                 150
                                                       175
                          50
                                     100
                   25
                                75
          plt.scatter(X.T[1], y, c='b')
In [20]:
          plt.scatter(X.T[1], pred 2, c='orange')
          <matplotlib.collections.PathCollection at 0x7f9a38d091c0>
Out[20]:
          1000
           800
           600
           400
           200
                         4000
                                6000
                                      8000
                                            10000
                                                  12000
                                                         14000
                   2000
          plt.scatter(X.T[2], y, c='b')
In [21]:
          plt.scatter(X.T[2], pred_2, c='orange')
          <matplotlib.collections.PathCollection at 0x7f9a38d68b50>
Out[21]:
```

```
1000 - 800 - 400 - 400 - 200 - 30 40 50 60 70 80 90 100
```

```
In [22]: plt.scatter(X.T[3], y, c='b')
  plt.scatter(X.T[3], pred_2, c='orange')
```

Out[22]: <matplotlib.collections.PathCollection at 0x7f9a38d52940>


```
In [23]: plt.scatter(X.T[4], y, c='b')
  plt.scatter(X.T[4], pred_2, c='orange')
```

Out[23]: <matplotlib.collections.PathCollection at 0x7f9a38e9eb80>

