

Компютърни архитектури CSCB008

Въведение в изчислителната техника. Сигнали. Бройни системи

Физичните променливи (сигнали) са непрекъснати

явяват се носители на информация:

- напрежение
- честота на трептене
- позиция
- температура
- осветеност
- налягане
- скорост и ускорение

идеален сигнал

Физичните променливи (сигнали) са непрекъснати

явяват се носители на информация:

- напрежение
- честота на трептене
- позиция
- температура
- осветеност
- налягане
- скорост и ускорение

-120 --120 Volts (v) Идеален сигнал

при тях съществуват проблеми:

- влияещи величини смущения
- зашуменост
- нелинейност

Физичните променливи (сигнали) са непрекъснати

явяват се носители на информация:

- напрежение
- честота на трептене
- позиция
- температура
- осветеност
- налягане
- скорост и ускорение

-120 Volts (v) Тime (t) идеален сигнал

при тях съществуват проблеми:

- влияещи величини смущения
- зашуменост
- нелинейност

за тях има решения:

УНИВЕРСИТЕТ

- филтрация
- преобразуване в цифров вид
- Look-up таблици...

Видове сигнали

- аналогови периодични и непериодични
- дискретни аналогова стойност в определен момент
 - с определено ниво
- цифрови дискретизирани във вид на двоично число

Как се представят цифровите сигнали?

1и0

X – забранена зона(зона на неопределеност)

tr = t2 - t1 - време на нарастване

tf = t4 - t3 - време на спадане

$$S'' = \begin{cases} 1, npu S' \in \left(U_{Hmin}, U_{Hmax}\right) \\ 0, npu S' \in \left(U_{Lmin}, U_{Lmax}\right) \\ X, npu S' \in \left(U_{Lmax}, U_{Hmin}\right) \end{cases}$$

Как се представят цифровите сигнали?

	5V TTL	3.3V TTL & CMOS	2.5V TTL & CMOS	1.8V CMOS
лог. 1	2.0 – 4.44V	2.0 – 2.4V	1.7 – 2.3V	1.17 – 1.35V
лог. 0	0.5 – 0.8V	0.4 - 0.8V	0.4 - 0.7V	0.45 - 0.63V

Булева алгебра Две дискретни стойности: 1 и 0

- 1, TRUE, HIGH
- 0, FALSE, LOW

bit = binary digit

- ниво на напрежение
- ниво на флуид (флуидна логика)
- дискретна позиция и др.

George Boole, 1815-1864

- роден в работническо семейство
- професор в Queen's College, Ирландия
- написал "Математически анализ на логиката", 1847 и "Изследване на законите на мисленето", 1854
- въвел двоичните променливи
- въвел трите фундаментални логически операции: AND, OR и NOT

Scanned at the American Institute of Physics

Получаване на цифрови стойности - АЦП

Филтър

Ограничава спектъра на аналоговия сигнал до честота f_m , така че да се удовлетворява **теоремата на Котелников-Шенон**:

За да бъде възстановен напълно един дискретизиран аналогов сигнал, честотата на дискретизация трябва да бъде най-малко два пъти по-висока от най-високата честота в спектъра на сигнала, т.е. f_s > 2.f_m.

Получаване на цифрови стойности - АЦП

Запомняне в схема Sample-And-Hold

Дискретизиран по време и ниво сигнал

Получаване на цифрови стойности - АЦП

Какво има в едно съвременно АЦП?

Бройни системи

- представяне на числата посредством ограничен и краен брой символи
- основа брой на възможните цифри за представне на съответните числа

непозиционни

цифри с постоянна стойност

римска

```
I (1), V (5), X (10), L (50), C (100), D (500), M (1000)
```

пример

- VI = 5 + 1 = 6;
- IV = 5 1 = 4;
- VII = 5 + 1 + 1 = 7;
- IX = 10 1 = 9
- I има винаги значение 1
- Х има винаги значение 10

Бройни системи

- представяне на числата посредством ограничен и краен брой символи
- основа брой на възможните цифри за представне на съответните числа

непозиционни

цифри с постоянна стойност

римска

I (1), V (5), X (10), L (50), C (100), D (500), M (1000)

пример

- VI = 5 + 1 = 6;
- IV = 5 1 = 4;
- VII = 5 + 1 + 1 = 7;
- IX = 10 1 = 9
- I има винаги значение 1
- Х има винаги значение 10

позиционни

стойност, зависеща от позицията

двоична (0, 1)

пример

- $01 = 1 \cdot 2^0 + 0 \cdot 2^1 = 1$;
- $10 = 0 \cdot 2^0 + 1 \cdot 2^1 = 2$;

десетична (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

пример

- $02 = 2 \cdot 10^0 + 0 \cdot 10^1 = 2$;
- $20 = 0 \cdot 10^{0} + 2 \cdot 10^{1} = 20;$

десетици единици

Бройни системи

	A STATE OF THE PARTY OF THE PAR		
двоична BIN - binary		десетична DEC - decimal	шестнайсетична HEX - hexadecimal
0 0 0 0		0	0
0 0 0 1		1	1
0 0 1 0		2	2
0 0 1 1		3	3
0 1 0 0		4	4
0 1 0 1		5	5
0 1 1 0		6	6
0 1 1 1		7	7
1 0 0 0		8	8
1 0 0 1		9	9
1 0 1 0		1 0	A
1 0 1 1		1 1	В
1 1 0 0		1 2	С
1 1 0 1		1 3	D
1 1 1 0		1 4	E
1 1 1 1		1 5	F

Бройни системи

двоична BIN - binary	третична trinary, ternary	четвъртична quaternary	осмична OCT - octal	десетична DEC - decimal	шестнайсетична HEX - hexadecimal
0 0 0 0	0	0	0	0	0
0 0 0 1	1	1	1	1	1
0 0 1 0	2	2	2	2	2
0 0 1 1	1 0	3	3	3	3
0 1 0 0	1 1	1 0	4	4	4
0 1 0 1	1 2	1 1	5	5	5
0 1 1 0	2 0	1 2	6	6	6
0 1 1 1	2 1	1 3	7	7	7
1 0 0 0	2 2	2 0	1 0	8	8
1 0 0 1	1 0 0	2 1	1 1	9	9
1 0 1 0	1 0 1	2 2	1 2	1 0	Α
1 0 1 1	1 0 2	2 3	1 3	1 1	В
1 1 0 0	1 1 0	3 0	1 4	1 2	С
1 1 0 1	1 1 1	3 1	1 5	1 3	D
1 1 1 0	1 1 2	3 2	1 6	1 4	E
1 1 1 1	1 2 0	3 3	1 7	1 5	F

Бройни системи – преминаване в десетична бройна система

В позиционните бройни системи всяко число може да бъде представено с полинома:

$$N = \sum_{i=-m}^{n} k_i . p^i$$
 основа разряден коефициент ВІN $\{0; 1\}$ DEC $\{0; 1; ...; 9\}$ HEX $\{0; ...; 9; A; ...; F\}$

$$N=k_n.p^n+k_{n-1}.p^{n-1}+\ldots+k_0.p^0+k_{-1}.p^{-1}+k_{-2}.p^{-2}+\ldots+k_{-m}.p^{-m}$$
 за цялата част

Преобразуване по стандарт от DEC в BIN без знак

делене на цялата част на N на основата на новата бройна система р

```
182:2 = 91
                частно 91; остатък 0
91:2 = 45.5
                частно 45; остатък 1
45:2 = 22.5
                частно 22; остатък 1
22:2
        = 11
                частно 11; остатък 0
        = 5.5
11:2
                частно 5; остатък 1
5:2
        = 2.5
                частно 2; остатък 1
2:2
        = 1
                частно 1; остатък 0
1:2
        = 0.5
                частно 0; остатък 1
```

$$182_{(10)} = 10110110_{(2)}$$

Преобразуване по стандарт от DEC в BIN без знак

делене на цялата част на N на основата на новата бройна система р

32.768_{DEC} → BIN с точност до 3-тия двоичен разряд

$$32:2 = 16 \rightarrow 0$$
 $16:2 = 8 \rightarrow 0$
 $8:2 = 4 \rightarrow 0$
 $4:2 = 2 \rightarrow 0$
 $2:2 = 1 \rightarrow 0$
 $1:2 = 0.5 \rightarrow 1$

за цялата част

$$32:2 = 16 \rightarrow 0$$
 $16:2 = 8 \rightarrow 0$
 $0.768 \times 2 = 1.536 \rightarrow 1$
 $0.536 \times 2 = 1.072 \rightarrow 1$
 $0.072 \times 2 = 0.144 \rightarrow 0$
 $0.072 \times 2 = 0.144 \rightarrow 0$

за дробната част

$$32.768_{(10)} = 100000.110_{(2)}$$

Преобразуване по алгоритъм от DEC в BIN без знак

нужни са 8 бита, защото: $127 (2^7-1) < 133 < 255 (2^8-1)$

- **СТЪПКА 1**. $2^7 = 128 < 133$
- **стъпка 2.** → запис на 1 в бит 7
- **СТЪПКА 3**. 133 128 = 5 > 0
- **СТЪПКА 4.** $2^2 = 4 < 5$
- стъпка **5**.
- стъпка 6. 5-4=1
- **стъпка 7.** $2^0 = 1$
- стъпка 8.
- **СТЪПКА 9** 1-1=0
- → запис на 1 в бит 0

запис на 1 в бит 2

→ край

$$133_{(10)} = 10000101_{(2)}$$

Преобразуване от DEC в ОСТ

167.0627_{DEC} → ОСТ с точност до 5-тия осмичен разряд

за цялата част

за дробната част

$$\mathbf{167.0627}_{_{(10)}} = \mathbf{247.04006}_{_{(8)}}$$

Преобразуване от DEC в HEX

316.0312_{рес} → НЕХ с точност до 3-тия шестнайсетичен разряд

→ остатък 3

$$0.0312 \times 16 = 0.4992 \rightarrow 0$$

$$0.4992 \times 16 = 7.9872 \rightarrow 7$$

 $0.9872 \times 16 = 15.7952 \rightarrow 15$

за цялата част

за дробната част

Преобразуване от BIN в DEC

$$1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 =$$

= 128 + 32 + 8 + 2 = 170

рекурсивен метод

- 1. взима се най-левия ненулев бит
 - удвоява се
 - прибавя се към бита отдясно
- 2. взима се полученият резултат
 - удвоява се
 - прибавя се към следващия бит отдясно
- 3. продължава се до прибавяне на най-малко значещия бит

$$(a_0 + 2 \cdot (a_1 + 2 \cdot (a_2 + ...)))$$

Преобразуване от BIN в ОСТ 111010111100111_{віN} → ОСТ

• разделяне на групи от по 3 бита
 (в осмична бройна система цифрите са {0-7} → log₂8 = 3)

Преобразуване от BIN в HEX 110011100_{віN} → HEX

• разделяне на **групи от по 4 бита** (в шестнайсетична бройна система цифрите са {0-9;A-F} → log₂16=4)

Преобразуване от ОСТ в DEC

стандартен метод $6437_{\text{OCT}} \rightarrow \text{DEC}$

$$6.8^3 + 4.8^2 + 3.8^1 + 7.8^0 = 3072 + 256 + 24 + 7 = 3359$$

рекурсивен метод

- взима се най-левия ненулев бит
 - умножава се по 8
 - прибавя се към бита отдясно
- 2. взима се полученият резултат
 - умножава се по 8
 - прибавя се към следващия бит отдясно
- 3. продължава се до прибавяне на най-малко значещия бит

$$(a_0 + 8 \cdot (a_1 + 8 \cdot (a_2 + ...)))$$

Системи за двоично кодиране

десетични аритметични устройства - проблеми

- по-сложни от двоичните повече цифри
- излишни кодови комбинации сложен хардуерен синтез

удобни за човека, но неудобни за компютъра

системи за двоично кодиране тегловни нетегловни правилата на позиционните правилата на непозиционните бройни системи бройни системи

- облекчен хардуерен синтез
- повишено бързодействие и намалена консумация

Терминология на двоичните числа

Предимства и недостатъци на използването на цифрова електроника (бинарна логика)

- (+) висока повторяемост при производство
- (+) температурна стабилност
- (+) бърза обработка
- (-) компромис с точността в зависимост от начина на представяне на числата

Двоично кодирани десетични числа (BCD – Binary Coded Decimal)

представяне на десетичните числа в двоичен формат

Забранени комбинации

1010 (A), 1011 (B), 1100 (C),

1101 (D), 1110 (E), 1111 (F)

непакетиран формат

старша тетрада				младша тетрада			
2 ³	2 ²	2 ¹	20	2 ³	2 ²	2 ¹	20
0	0	0	0	1	0	0	1

пакетиран формат

старша тетрада				младша тетрада			
2 ³	2 ²	2 ¹	20	2 ³	2 ²	21	20
0	0	1	1	1	0	0	1

Някои тегловни BCD кодове

всяка двоична цифра пази своето тегло

самодопълващи се – сумата от всички събирами е 9

Десетичен код	Код 8-4-2-1	Код 2-4-2-1 код на Aiken	Код 5-2-1-1	Код 3-3-2-1
0	0000	0000	0000	0000
1	0001	0001	0001	0001
2	0010	0010	0011	0010
3	0011	0011	0101	0011
4	0100	0100	0111	0101
5	0101	1011	1000	1010
6	0110	1100	1010	1100
7	0111	1101	1100	1101
8	1000	1110	1110	1110
9	1001	1111	1111	1111

Някои тегловни BCD кодове

всяка двоична цифра пази своето тегло

самодопълващи се – допълнение на равноотдалеченото

Десетичен код	Код 8-4-2-1	Код 2-4-2-1 код на Aiken	Код 5-2-1-1	Код 3-3-2-1
0	0000	0000	0000	0000
1	0001	0001	0001 🕇 \	0001 🕴
2	0010	0010	0011	4 0010
3	0011	7 0011	1 0101	f 0011
4	0100	0100	0111	0101
5	0101	1011	1000	1010
6	0110	1100	1010	1100
7	0111	1101	1100	1101
8	1000	1110	1110	1110
9	1001	1111	1111	1111

Някои тегловни BCD кодове - примери

код 8-4-2-1 2067_{DEC} → **BCD**₈₄₂₁ общо тегло 8+4+2+1=15 → 6 забранени кобинации

2	0	6	7	десетично число
001	0 000	0110	0111	BCD код 8-4-2-1

Някои тегловни BCD кодове - примери

код 8-4-2-1 2067_{DEC} \rightarrow **BCD**₈₄₂₁ общо тегло 8+4+2+1=15 \rightarrow 6 забранени кобинации

2	0	6	7	десетично число
0010	0000	0110	0111	BCD код 8-4-2-1

код 2-4-2-1 2067_{DEC} → **BCD**₂₄₂₁ общо тегло 2+4+2+1=9 → няма забранени кобинации

2	0	6	7	десетично число
0010	0000	1100	1101	BCD код 2-4-2-1

Някои тегловни BCD кодове - примери

код 8-4-2-1 **2067**_{DEC} → **BCD**₈₄₂₁

общо тегло 8+4+2+1=15 → 6 забранени кобинации

2	0	6	7	десетично число
0010	0000	0110	0111	BCD код 8-4-2-1

код 2-4-2-1 $2067_{DEC} \rightarrow BCD_{2421}$

общо тегло 2+4+2+1=9 → няма забранени кобинации

2	0	6	7	десетично число
0010	0000	1100	1101	BCD код 2-4-2-1

код 5-2-1-1 $2067_{DEC} \rightarrow BCD_{5211}$

общо тегло 5+2+1+1=9 → няма забранени кобинации

2	0	6	7	десетично число
0011	0000	1010	1100	BCD код 5-2-1-1

Някои нетегловни кодове

- двоичните цифри нямат тегло, а позиция

код с излишък 3 (Excess-3 Code, код на Стибиц) самодопълващ се код

към числото в код 8-4-2-1 се прибавя 3 (0011₍₂₎)

Десетичен код	Код 8-4-2-1	Koд XS-3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Някои нетегловни кодове

Код на Грей (1953 г.) огледален двоичен код двоично-реверсивен код последователен код цикличен код

Подреждане на двоичните числа, така че последователните стойности да се различават само в промяната на един бит.

10	1000	0000	0001	-
1011	+	1	001	1
1010	1	X		0010
	H			
110	W.		11	0110
1111		H	$\times /$	0111
	7	1		7 0111
1101	1100	0100	0101	

сектор	код	ъгъл
0	0000	$0^{\circ} - 22,5^{\circ}$
1	0001	$22,5^{\circ} - 45^{\circ}$
2	0011	45° – 67,5°
3	0010	67,5° – 90°
4	0110	90° – 112,5°
5	0111	112,5° – 135°
6	0101	135° – 157,5°
7	0100	157,5° – 180°
8	1100	180° – 202,5°
9	1101	202,5° – 225°
10	1111	225° – 247,5°
11	1110	$247,5^{\circ} - 270^{\circ}$
12	1010	270° – 292,5°
13	1011	292,5° – 315°
14	1001	315° – 337,5°
15	1000	337,5° – 360°
		THE RESIDENCE OF THE PARTY OF T

Някои нетегловни кодове – код на Грей

някои приложения:

- първоначално създаден за АЦП (по-висока скорост)
- в позиционни задвижващи системи
- корекция на кодове в телекомуникациите и шумозащита
- минимизация на логически функции
- контролни панели (автомобилна индустрия, аудио техника)

Някои нетегловни кодове – получаване на кода на Грей

Някои нетегловни кодове – получаване на кода на Грей

използване на сума по модул 2

двоично събиране без пренос

0	0	+	0	= 0	0	
ИЧН	0	+	1	= 1	1	
1801	1	+	0	\\ \ <u>+</u>	1	
4	1	+	1	=	0	пренос

Буквено-цифрови кодове – American Standard Code for Information Interchange (ASCII) управляващи символи

	$b_7b_6b_5$							
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	6	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	\mathbf{Z}	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	O	DEL

Буквено-цифрови кодове – American Standard Code for Information Interchange (ASCII)

Стандартният ASCII код използва 7 бита, но се съхранява в 1 байт.

ASCII Q
$$\longrightarrow$$
 $\begin{bmatrix} b_7 & b_6 & b_5 & b_4 & b_3 & b_2 & b_1 & b_0 \\ & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$

Откриване на грешки осмият бит може да се използва за контрол по четност (parity)

Класификация на кодовете, използвани в изчислителните машини

БЪЛГАРСКИ УНИВЕРСИТЕТ