

原本covid-19的data格式不一致:

整理後: 累積分布

單位:確診人數

整理後:

每日值變化

單位:確診人數

轉換後:

[[0.00030536]

[0.00012495]

最小值

[0.00012493]

La aaassatt

預處理: (data包成一組)

• 一組含7個序列數據->搭配1個label

train model

單位: 全球確診人數(這裡以台灣為例)

模型評估指標

MSE, MAE算法:

```
if performance eval == 'MAE': # https://pytorch.org/docs/stable/gener
   evaluation func = torch.nn.L1Loss(reduction='mean') # (平均絕對誤
   best evaluation = 1.0 # 初始最高,越低越好
elif performance_eval == 'MSE': # https://pytorch.org/docs/stable/gen
   evaluation_func = torch.nn.MSELoss(reduction='mean') # (均方誤差)
   best evaluation = 1.0 # 初始最高,越低越好
```

R^2 算法:

evaluation = 1 - evaluation

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

$$R^2=1-rac{SSE}{SST}$$
 $SSE=\sum_{i=1}^n(y_i-\hat{y_i})^2$ $SST=SSR+SSE=\sum_{i=1}^n(y_i-ar{y})^2$

MAPE算法:

evaluation = np.mean(np.abs(val_label.cpu().numpy() - y_pred_val.cpu().numpy()) / np.abs(val_label.cpu().numpy()))*100

Ubiquitous Sensing and Cloud Computing Lab

(Epoch = 500回合)

歸納01

(初始化權重已固定,方便研究比較)

模型評估指標	MSE	MAE	R^2	MAPE
LSTM layers = 1	0.0105	0.0733	0.3572	18.88
LSTM layers = 2	0.0110	0.0708	0.3233	17.96
LSTM layers = 3	0.0114	0.0713	0.3005	18.24

歸納02

	模型評估指標	MSE	MAE	R ²	MAPE	
D	LSTM layers = 2 Hidden size = 256	0.0111	0.0721	0.3224	18.43	
0	LSTM layers = 2 Hidden size = 512	0.0110	0.0708	0.3233	17.96	
, (LSTM layers = 2 Hidden size = 768	0.0129	0.0744	0.2089	18.98	Engineering

Ubiquitous Sensing and Cloud Computing Lab

(Epoch = 500回合)

歸納03

(初始化權重已固定,方便研究比較)

模型評估指標	MSE	MAE	R ²	MAPE	
LSTM layers = 2 Hidden size = 512 Seq_length = 3	0.0169	0.0849	-0.0208	22.31)
LSTM layers = 2 Hidden size = 512 Seq_length = 7	0.0110	0.0708	0.3233	17.96	
 LSTM layers = 2 Hidden size = 512 Seq_length = 14	0.0146	0.0789	0.1131	20.85	1
			of Computor Scion		

Best

資料前處理(ori)

在跑其它資料集時, 發現之前寫的data前 處理code算錯天數 (已修正)


```
def create sequence(data, seq length):
    x list = []
    y_list = []
    for i in range(len(data)-seq_length-1):
        x = data[i:i+seq\_length] # 0~6
        y = data[i+seq length] # 7
        x list.append(x)
        y list.append(y)
    return np.array(x list), np.array(y list)
```

資料前處理(after)


```
def create_sequence(data, seq_length):
    x list = []
    y_list = []
    for i in range(len(data)-seq_length):
        x = data[i:i+seq\_length] # 0~6
        y = data[i+seq length] # 7
        x list.append(x)
        y list.append(y)
```

return np.array(x list), np.array(y list)