10/558279 IAP15 Rec'd PCT/PTO 28 NOV 2005

SEQUENCE LISTING

<110>		rli, Roger hmann, Mart												
<120>		ified Polyp type B	eptides For	Targeting	Cell-Entry	of the Adend	oviruses of							
<130>	170													
<150> <151>	EP0													
<150> <151>		PCT/EP2004/005762 2004-05-27												
<160>	21													
<170>	Pate	entIn versi	on 3.1											
<210><211><211><212><213>	1 113 DNA home	4 o sapiens												
<400>	1													
					ggcgctttcc		60							
					cctgtgagga		120							
					atgagattgg		180							
				n ging b	ttgccaccca		240							
gatcgga	atc	atacatggct	acctgtctca	gatgacgcct	gttatagaga	aacatgtcca	300							
tatatac	999	atcctttaaa	tggccaagca	gtccctgcaa	atgggactta	cgagtttggt	360							
tatcaga	tgc	actttatttg	taatgagggt	tattacttaa	ttggtgaaga	aattctatat	420							
tgtgaac	tta	aaggatcagt	agcaatttgg	agcggtaagc	ccccaatatg	tgaaaaggtt	480							
ttgtgta	cac	cacctccaaa	aataaaaaat	ggaaaacaca	cctttagtga	agtagaagta	540							
tttgagt	atc	ttgatgcagt	aacttatagt	tgtgatcctg	cacctggacc	agatccattt	600							
tcactta	ttg	gagagagcac	gatttattgt	ggtgacaatt	cagtgtggag	tcgtgctgct	660							
ccagagt	gta	aagtggtcaa	atgtcgattt	ccagtagtcg	aaaatggaaa	acagatatca	720							
ggatttg	gaa	aaaaatttta	ctacaaagca	acagttatgt	ttgaatgcga	taagggtttt	780							
tacctcg	atg	gcagcgacac	aattgtctgt	gacagtaaca	gtacttggga	tcccccagtt	840							
ccaaagt	gtc	ttaaagtgtc	gacttcttcc	actacaaaat	ctccagcgtc	cagtgcctca	900							
ggtccta	ggc	ctacttacaa	gcctccagtc	tcaaattatc	caggatatcc	taaacctgag	960							
gaaggaa	tac	ttgacagttt	ggatgtttgg	gtcattgctg	tgattgttat	tgccatagtt	1020							
gttggag	ttg	cagtaatttg	tgttgtcccg	tacagatatc	ttcaaaggag	gaagaagaaa	1080							

```
<210> 2
<211> 377
<212> PRT
<213> homo sapiens
<220>
<221>
      SIGNAL
<222>
       (1)..(34)
<223>
<220>
<221> MISC_FEATURE
<222> (35)..(328)
<223> Extracellular domain
<220>
<221> TRANSMEM
<222>
      (329)..(351)
<223>
<220>
<221> MISC_FEATURE
<222> (35)..(95)
<223> SCR-1 domain
<220>
<221> MISC FEATURE
<222> (98)..(158)
<223> SCR-2 domain
<220>
<221> MISC_FEATURE
<222> (161)..(224)
<223> SCR-3 domain
<220>
<221> MISC_FEATURE
<222> (227)..(284)
<223> SCR-4 domain
<220>
<221> MISC_FEATURE
<222> (286)..(300)
<223> STP-B region
<220>
<221> MISC_FEATURE
<222> (301)..(314)
<223> STP-C region
<400> 2
Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe
1
                5
                                    10
```

Pro Gly Leu Leu Ala Ala Met Val Leu Leu Tyr Ser Phe Ser

25

Asp	Ala	Cys 35	Glu	Glu	Pro	Pro	Thr 40	Phe	Glu	Ala	Met	Glu 45	Leu	Ile	Gly
Lys	Pro 50	Lys	Pro	Tyr	Tyr	Glu 55	Ile	Gly	Glu	Arg	Val 60	Asp	Tyr	Lys	Суз
Lys 65	Lys	Gly	Tyr	Phe	Tyr 70	Ile	Pro	Pro	Leu	Ala 75	Thr	His	Thr	Ile	Cys 80
Asp	Arg	Asn	His	Thr 85	Trp	Leu	Pro	Val	Ser 90	Asp	Asp	Ala	Cys	Tyr 95	Arg
Glu	Thr	Cys	Pro 100	Tyr	Ile	Arg	Asp	Pro 105	Leu	Asn	Gly	Gln	Ala 110	Val	Pro
Ala	Asn	Gly 115	Thr	Tyr	Glu	Phe	Gly 120	Tyr	Gln	Met	His	Phe 125	Ile	Cys	Asn
Glu	Gly 130	Tyr	Tyr	Leu	Ile	Gly 135	Glu	Glu	Ile	Leu	Tyr 140	Cys	Glu	Leu	Lys
Gly 145	Ser	Val	Ala	Ile	Trp 150	Ser	Gly	Lys	Pro	Pro 155	Ile	Cys	Glu	Lys	Val 160
Leu	Cys	Thr	Pro	Pro 165	Pro	Lys	Ile	Lys	Asn 170	Gly	Lys	His	Thr	Phe 175	Ser
Glu	Val	Glu	Val 180	Phe	Glu	Tyr	Leu	Asp 185	Ala	Val	Thr	Tyr	Ser 190	Cys	Asp
Pro	Ala	Pro 195	Gly	Pro	Asp	Pro	Phe 200	Ser	Leu	Ile	Gly	Glu 205	Ser	Thr	Ile
Tyr	Cys 210	Gly	Asp	Asn	Ser	Val 215	Trp	Ser	Arg	Ala	Ala 220	Pro	Glu	Cys	Lys
Val 225	Val	Lys	Cys	Arg	Phe 230	Pro	Val	Val	Glu	Asn 235	Gly	Lys	Gln	Ile	Ser 240
Gly	Phe	Gly	Lys	Lys 245	Phe	Tyr	Tyr	Lys	Ala 250	Thr	Val	Met	Phe	Glu 255	Cys
Asp	Lys	Gly	Phe 260	Tyr	Leu	Asp	Gly	Ser 265	Asp	Thr	Ile	Val	Cys 270	Asp	Ser
Asn	Ser	Thr 275	Trp	Asp	Pro	Pro	Val 280	Pro	Lys	Cys	Leu	Lys 285	Val	Ser	Thr

Thr Tyr Lys Pro Pro Val Ser Asn Tyr Pro Gly Tyr Pro Lys Pro Glu Glu Gly Ile Leu Asp Ser Leu Asp Val Trp Val Ile Ala Val Ile Val 325 330 Ile Ala Ile Val Val Gly Val Ala Val Ile Cys Val Val Pro Tyr Arg 340 345 Tyr Leu Gln Arg Arg Lys Lys Gly Thr Tyr Leu Thr Asp Glu Thr 355 360 His Arg Glu Val Lys Phe Thr Ser Leu 370 375 <210> 3 <211> 15 <212> PRT <213> artificial sequence <220> polypeptide sequence of the STP-A region, which is inserted befor e the STP-B region of CD46 in certain splice variants of CD46 <400> 3 Val Leu Pro Pro Ser Ser Thr Lys Pro Pro Ala Leu Ser His Ser 5 10 <210> 4 <211> 1110 <212> DNA <213> homo sapiens <400> 4 atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttqqt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480

Ser Ser Thr Thr Lys Ser Pro Ala Ser Ser Ala Ser Gly Pro Arg Pro

295

ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgtc ttaaaggtcc taggcctact tacaagcctc cagtctcaaa ttatccagga 900 tatcctaaac ctgaggaagg aatacttgac agtttggatg tttgggtcat tgctgtgatt 960 gttattgcca tagttgttgg agttgcagta atttgtgttg tcccgtacag atatcttcaa 1020 aggaggaaga agaaagggaa agcagatggt ggagctgaat atgccactta ccagactaaa 1080 tcaaccactc cagcagagca gagaggctga 1110

<210> 5

<211> 1089

<212> DNA

<213> homo sapiens

<400> atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 tacctegatg geagegacae aattgtetgt gacagtaaca gtacttggga teccecagtt 840 ccaaagtgtc ttaaaggtcc taggcctact tacaagcctc cagtctcaaa ttatccagga 900 tatectaaac etgaggaagg aataettgae agtttggatg tttgggteat tgetgtgatt 960 gttattgcca tagttgttgg agttgcagta atttgtgttg tcccgtacag atatcttcaa 1020

aggaggaaga agaaaggcac atacctaact gatgagaccc acagagaag	t aaaatttact	1080
tctctctga		1089
<210> 6 <211> 1110 <212> DNA <213> homo sapiens		
<400> 6 atggagcete ceggeegeeg egagtgteee ttteetteet ggegettte	c tgggttgctt	60
ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagg	a gccaccaaca	120
tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattg	g tgaacgagta	180
gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccc	a tactatttgt	240
gatcggaatc atacatggct acctgtctca gatgacgcct gttatagag	a aacatgtcca	300
tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactt	a cgagtttggt	360
tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaag	a aattctatat	420
tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatat	g tgaaaaggtt	480
ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtg	a agtagaagta	540
tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggac	c agatccattt	600
tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtgga	g tegtgetget	660
ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaa	a acagatatca	720
ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcg	a taagggtttt	780
tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggg	a tcccccagtt	840
ccaaagtgtc ttaaaggtcc taggcctact tacaagcctc cagtctcaa	a ttatccagga	900
tatcctaaac ctgaggaagg aatacttgac agtttggatg tttgggtca	tgctgtgatt	960
gttattgcca tagttgttgg agttgcagta atttgtgttg tcccgtaca	g atatcttcaa	1020
aggaggaaga agaaagggaa agcagatggt ggagctgaat atgccactt	a ccagactaaa	1080
tcaaccactc cagcagagca gagaggctga		1110
<210> 7 <211> 1110 <212> DNA <213> homo sapiens		
<pre><400> 7 atggagcctc ccggccgccg cgagtgtccc tttccttcct ggcgctttc</pre>	tgggttgctt	60
ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagg	a gccaccaaca	120
tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattg	g tgaacgagta	180

gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gateggaate atacatgget acetgtetea gatgaegeet gttatagaga aacatgteea 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgtc ttaaaggtcc taggcctact tacaagcctc cagtctcaaa ttatccagga 900 tatcctaaac ctgaggaagg aatacttgac agtttggatg tttgggtcat tgctgtgatt 960 gttattgcca tagttgttgg agttgcagta atttgtgttg tcccgtacag atatcttcaa 1020 aggaggaaga agaaagggaa agcagatggt ggagctgaat atgccactta ccagactaaa 1080 tcaaccactc cagcagagca gagaggctga 1110

<210> 8

<211> 1134

<212> DNA

<213> homo sapiens

<400> 8

atggagcete ceggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720

ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780
tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840
ccaaagtgtc ttaaagtgtc gacttcttcc actacaaaat ctccagcgtc cagtgcctca 900
ggtcctaggc ctacttacaa gcctccagtc tcaaattatc caggatatcc taaacctgag 960
gaaggaatac ttgacagttt ggatgtttgg gtcattgctg tgattgttat tgccatagtt 1020
gttggagttg cagtaatttg tgttgtcccg tacagatatc ttcaaaggag gaagaagaaa 1080
ggcacatacc taactgatga gacccacaga gaagtaaaat ttacttctct ctga 1134

<400> 9

atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggagaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgtc ttaaagtgtc gacttcttcc actacaaaat ctccagcgtc cagtgcctca 900 ggatatccta aacctgagga aggaatactt gacagtttgg atgtttgggt cattgctgtg 960 attgttattg ccatagttgt tggagttgca gtaatttgtg ttgtcccgta cagatatctt 1020 caaaggagga agaagaaagg cacataccta actgatgaga cccacagaga agtaaaattt 1080 acttctctct ga 1092

<210> 9

<211> 1092

<212> DNA

<213> homo sapiens

<210> 10

<211> 1095

<212> DNA

<213> homo sapiens

<400> 10 atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaqgtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtaqaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taaggqtttt 780 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgtc ttaaaggtcc taggcctact tacaagcctc cagtctcaaa ttatccagga 900 tatcctaaac ctgaggaagg aatacttgac agtttggatg tttgggtcat tgctgtgatt 960 gttattgcca tagttgttgg agttgcagta atttgtgttg tcccgtacag atatcttcaa 1020 aggaaagcag atggtggagc tgaatatgcc acttaccaga ctaaatcaac cactccagca 1080 1095 gagcagagag gctga

```
<210>
      1.1
<211> 1134
<212> DNA
<213> homo sapiens
<220>
      misc feature
<221>
<222> (35)..(35)
<223> n can be A, C, G or T
<220>
<221>
       misc feature
<222>
      (1109)..(1109)
<223>
      n can be A, C, G or T
<400> 11
atggageete eeggeegeeg egagtgteee tttentteet ggegetttee tgggttgett
ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca
                                                                     120
```

tttgaagcta tggagctcat tggtaaacca aaaccctact atgggattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtate ttgatgeagt aacttatagt tgtgateetg cacetggace agatecattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgtc ttaaagtgtc gacttcttcc actacaaaat ctccagcgtc cagtgcctca 900 ggtcctaggt ctacttacaa gcctccagtc tcaaattatc caggatatcc taaacctgag 960 gaaggaatac ttgacagttt ggatgtttgg gtcattgctg tgattgttat tgccatagtt 1020 gttggagttg cagtaatttg tgttgtcccg tacagatatc ttcaaaggag gaagaagaaa 1080 ggcacatacc taactgatga gacccacana gaagtaaaat ttacttctct ctga 1134

<210> 12

<211> 942

<212> DNA

<213> homo sapiens

<400> 12

atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgct 660

С	cagagtgta	aagtggtcaa	atgtcgattt	ccagtagtcg	aaaatggaaa	acagatatca	720
g	gatttggaa	aaaaatttta	ctacaaagca	acagttatgt	ttgaatgcga	taagggtttt	780
t	acctcgatg	gcagcgacac	aattgtctgt	gacagtaaca	gtacttggga	tcccccagtt	840
С	caaagtgtc	ttaaaggtcc	taggcctact	tacaagcctc	cagtctcaaa	ttatccagga	900
t	atcctaaac	ctgaggaagg	aatacttgac	agtttggatg	tt		942

<210> 13

<211> 314

<212> PRT

<213> homo sapiens

<400> 13

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe 1 5 10 15

Pro Gly Leu Leu Ala Ala Met Val Leu Leu Leu Tyr Ser Phe Ser 20 25 30

Asp Ala Cys Glu Glu Pro Pro Thr Phe Glu Ala Met Glu Leu Ile Gly 35 40 45

Lys Pro Lys Pro Tyr Tyr Glu Ile Gly Glu Arg Val Asp Tyr Lys Cys 50 60

Lys Lys Gly Tyr Phe Tyr Ile Pro Pro Leu Ala Thr His Thr Ile Cys 70 75 80

Asp Arg Asn His Thr Trp Leu Pro Val Ser Asp Asp Ala Cys Tyr Arg 85 90 95

Glu Thr Cys Pro Tyr Ile Arg Asp Pro Leu Asn Gly Gln Ala Val Pro 100 105 110

Ala Asn Gly Thr Tyr Glu Phe Gly Tyr Gln Met His Phe Ile Cys Asn 115 120 125

Glu Gly Tyr Tyr Leu Ile Gly Glu Glu Ile Leu Tyr Cys Glu Leu Lys 130 135 140

Gly Ser Val Ala Ile Trp Ser Gly Lys Pro Pro Ile Cys Glu Lys Val 145 150 155 160

Leu Cys Thr Pro Pro Pro Lys Ile Lys Asn Gly Lys His Thr Phe Ser 165 170 175

Glu Val Glu Val Phe Glu Tyr Leu Asp Ala Val Thr Tyr Ser Cys Asp

180 185 190

Pro Ala Pro Gly Pro Asp Pro Phe Ser Leu Ile Gly Glu Ser Thr Ile
195 200 205

Tyr Cys Gly Asp Asn Ser Val Trp Ser Arg Ala Ala Pro Glu Cys Lys 210 225 220

Val Val Lys Cys Arg Phe Pro Val Val Glu Asn Gly Lys Gln Ile Ser 225 230 235 240

Gly Phe Gly Lys Lys Phe Tyr Tyr Lys Ala Thr Val Met Phe Glu Cys 245 250 255

Asp Lys Gly Phe Tyr Leu Asp Gly Ser Asp Thr Ile Val Cys Asp Ser 260 265 270

Asn Ser Thr Trp Asp Pro Pro Val Pro Lys Cys Leu Lys Gly Pro Arg 275 280 285

Pro Thr Tyr Lys Pro Pro Val Ser Asn Tyr Pro Gly Tyr Pro Lys Pro 290 295 300

Glu Glu Gly Ile Leu Asp Ser Leu Asp Val 305

<210> 14

<211> 945

<212> DNA

<213> homo sapiens

<400> 14

atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggagaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgct 660

ccagagtgta	aagtggtcaa	atgtcgattt	ccagtagtcg	aaaatggaaa	acagatatca	720
ggatttggaa	aaaaatttta	ctacaaagca	acagttatgt	ttgaatgcga	taagggtttt	780
tacctcgatg	gcagcgacac	aattgtctgt.	gacagtaaca	gtacttggga	tcccccagtt	840
ccaaagtgtc	ttaaagtgtc	gacttcttcc	actacaaaat	ctccagcgtc	cagtgcctca	900
ggatatccta	aacctgagga	aggaatactt	gacagtttgg	atgtt		945

<210> 15

<211> 315

<212> PRT

<213> homo sapiens

<400>. 15

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe 1 5 10 15

Pro Gly Leu Leu Ala Ala Met Val Leu Leu Leu Tyr Ser Phe Ser 20 25 30

Asp Ala Cys Glu Glu Pro Pro Thr Phe Glu Ala Met Glu Leu Ile Gly
35 40 45

Lys Pro Lys Pro Tyr Tyr Glu Ile Gly Glu Arg Val Asp Tyr Lys Cys 50 60

Lys Lys Gly Tyr Phe Tyr Ile Pro Pro Leu Ala Thr His Thr Ile Cys 65 70 75 80

Asp Arg Asn His Thr Trp Leu Pro Val Ser Asp Asp Ala Cys Tyr Arg 85 90 95

Glu Thr Cys Pro Tyr Ile Arg Asp Pro Leu Asn Gly Gln Ala Val Pro 100 105 110

Ala Asn Gly Thr Tyr Glu Phe Gly Tyr Gln Met His Phe Ile Cys Asn 115 120 125

Glu Gly Tyr Tyr Leu Ile Gly Glu Glu Ile Leu Tyr Cys Glu Leu Lys 130 135 140

Gly Ser Val Ala Ile Trp Ser Gly Lys Pro Pro Ile Cys Glu Lys Val 145 150 155 160

Leu Cys Thr Pro Pro Pro Lys Ile Lys Asn Gly Glu His Thr Phe Ser 165 170 175

Glu Val Glu Val Phe Glu Tyr Leu Asp Ala Val Thr Tyr Ser Cys Asp

180 185 190

Pro Ala Pro Gly Pro Asp Pro Phe Ser Leu Ile Gly Glu Ser Thr Ile 195 200 205

Tyr Cys Gly Asp Asn Ser Val Trp Ser Arg Ala Ala Pro Glu Cys Lys 210 215 220

Val Val Lys Cys Arg Phe Pro Val Val Glu Asn Gly Lys Gln Ile Ser 225 230 235 240

Gly Phe Gly Lys Lys Phe Tyr Tyr Lys Ala Thr Val Met Phe Glu Cys 245 250 255

Asp Lys Gly Phe Tyr Leu Asp Gly Ser Asp Thr Ile Val Cys Asp Ser 260 265 270

Asn Ser Thr Trp Asp Pro Pro Val Pro Lys Cys Leu Lys Val Ser Thr 275 280 285

Ser Ser Thr Thr Lys Ser Pro Ala Ser Ser Ala Ser Gly Tyr Pro Lys 290 295 300

Pro Glu Glu Gly Ile Leu Asp Ser Leu Asp Val 305 310 315

<210> 16

<211> 987

<212> DNA

<213> homo sapiens

<400> 16

atggagcete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660

ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720
ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780
tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840
ccaaagtgtc ttaaagtgtc gacttcttcc actacaaaat ctccagcgtc cagtgcctca 900
ggtcctaggc ctacttacaa gcctccagtc tcaaattatc caggatatcc taaacctgag 960
gaaggaatac ttgacagttt ggatgtt 987

<210> 17

<211> 329

<212> PRT

<213> homo sapiens

<400> 17

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe 1 5 10 15

Pro Gly Leu Leu Ala Ala Met Val Leu Leu Tyr Ser Phe Ser 20 25 30

Asp Ala Cys Glu Glu Pro Pro Thr Phe Glu Ala Met Glu Leu Ile Gly
35 40 45

Lys Pro Lys Pro Tyr Tyr Glu Ile Gly Glu Arg Val Asp Tyr Lys Cys 50 55 60

Lys Lys Gly Tyr Phe Tyr Ile Pro Pro Leu Ala Thr His Thr Ile Cys 70 75 80

Asp Arg Asn His Thr Trp Leu Pro Val Ser Asp Asp Ala Cys Tyr Arg 85 90 95

Glu Thr Cys Pro Tyr Ile Arg Asp Pro Leu Asn Gly Gln Ala Val Pro 100 105 110

Ala Asn Gly Thr Tyr Glu Phe Gly Tyr Gln Met His Phe Ile Cys Asn 115 120 125

Glu Gly Tyr Tyr Leu Ile Gly Glu Glu Ile Leu Tyr Cys Glu Leu Lys 130 135 140

Gly Ser Val Ala Ile Trp Ser Gly Lys Pro Pro Ile Cys Glu Lys Val 145 150 155 160

Leu Cys Thr Pro Pro Pro Lys Ile Lys Asn Gly Lys His Thr Phe Ser 165 170 175

Pro Ala Pro Gly Pro Asp Pro Phe Ser Leu Ile Gly Glu Ser Thr Ile Tyr Cys Gly Asp Asn Ser Val Trp Ser Arg Ala Ala Pro Glu Cys Lys 215 Val Val Lys Cys Arg Phe Pro Val Val Glu Asn Gly Lys Gln Ile Ser 230 235 Gly Phe Gly Lys Lys Phe Tyr Tyr Lys Ala Thr Val Met Phe Glu Cys 245 250 Asp Lys Gly Phe Tyr Leu Asp Gly Ser Asp Thr Ile Val Cys Asp Ser 265 Asn Ser Thr Trp Asp Pro Pro Val Pro Lys Cys Leu Lys Val Ser Thr 280 Ser Ser Thr Thr Lys Ser Pro Ala Ser Ser Ala Ser Gly Pro Arg Pro 290 295 Thr Tyr Lys Pro Pro Val Ser Asn Tyr Pro Gly Tyr Pro Lys Pro Glu 310 315 Glu Gly Ile Leu Asp Ser Leu Asp Val 325 <210> 18 <211> 1671 <212> DNA <213> artificial sequence <220> <223> Construct encoding a fusion polypeptide between the extracellular domain of CD46 at the N-terminus and a human Fc-gamma3 domain at the C-terminus atggageete eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gatcggaatc atacatggct acctgtctca gatgacgcct gttatagaga aacatgtcca 300

Glu Val Glu Val Phe Glu Tyr Leu Asp Ala Val Thr Tyr Ser Cys Asp

tatatacggg atcctttaaa tggccaaqca gtccctqcaa atgqqactta cqaqtttqqt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgctgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgtc ttaaagtgtc gacttcttcc actacaaaat ctccagcgtc cagtgcctca 900 ggtcctaggc ctacttacaa gcctccagtc tcaaattatc caggatatcc taaacctgag 960 gaaggaatac ttgacagttt ggatgttaag cttactcaca catgcccacc gtgcccagca 1020 cctgaagccg agggggcacc gtcagtcttc ctcttccccc caaaacccaa ggacaccctc 1080 atgatetece ggacecetga ggteacatge gtggtggtgg aegtgageca egaagaeeet 1140 gaggtcaagt tcaactggta cgtggacggc gtggaggtgc ataatgccaa gacaaagccg 1200 cgggaggagc agtacaacag cacgtaccgt gtggtcagcg tcctcaccgt cctgcaccag 1260 gactggctga atggcaagga gtacaagtgc aaggtctcca acaaagccct cccagcctcc 1320 atogagaaaa ccatotocaa agocaaaggg cagooogag aaccacaggt gtacacootg 1380 cccccatccc gggatgagct gaccaagaac caggtcagcc tgacctgcct ggtcaaaggc 1440 ttctatccca gcgacatcgc cgtggagtgg gagagcaatg ggcaqccgga gaacaactac 1500 aagaccacgc ctcccgtgtt ggactccgac ggctccttct tcctctacag caagctcacc 1560 gtggacaaga gcaggtggca gcaggggaac gtcttctcat gctccgtgat gcatqaggct 1620 ctgcacaacc actacacgca gaagagecte teeetgtete eggqtaaatq a 1671

<210> 19

<211> 556

<212> PRT

<213> artificial sequence

<220>

<223> fusion polypeptide between the extracellular domain of CD46 at th
 e N-terminus and a human Fc-gamma3 domain at the C-terminus

<400> 19

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe
1 5 10 15

Pro	Gly	Leu	Leu 20	Leu	Ala	Ala	Met	Val 25	Leu	Leu	Leu	Tyr	Ser 30	Phe	Ser
Asp	Ala	Сув 35	Glu	Glu	Pro	Pro	Thr 40	Phe	Glu	Ala	Met	Glu 45	Leu	Ile	Gly
Lys	Pro 50	Lys	Pro	Tyr	Tyr	Glu 55	Ile	Gly	Glu	Arg	Val 60	Asp	Tyr	Lys	Cys
Lys 65	Lys	Gly	Tyr	Phe	Tyr 70	Ile	Pro	Pro	Leu	Ala 75	Thr	His	Thr	Ile	Cys
Asp	Arg	Asn	His	Thr 85	Trp	Leu	Pro	Val	Ser 90	Asp	Asp	Ala	Cys	Tyr 95	Arg
Glu	Thr	Cys	Pro 100	Tyr	Ile	Arg	Asp	Pro 105	Leu	Asn	Gly	Gln	Ala 110	Val	Pro
Ala	Asn	Gly 115	Thr	Tyr	Glu	Phe	Gly 120	Tyr	Gln	Met	His	Phe 125	Ile	Cys	Asn
Glu	Gly 130	Tyr	Tyr	Leu	Ile	Gly 135	Glu	Glu	Ile	Leu	Tyr 140	Cys	Glu	Leu	Lys
Gly 145	Ser	Val	Ala	Ile	Trp 150	Ser	Gly	Lys	Pro	Pro 155	Ile	Cys	Glu	Lys	Val 160
Leu	Cys	Thr	Pro	Pro 165	Pro	Lys	Ile	Lys	Asn 170	Gly	Lys	His	Thr	Phe 175	Ser
Glu	Val	Glu	Val 180	Phe	Glu	Tyr	Leu	Asp 185	Ala	Val	Thr	Tyr	Ser 190	Cys	Asp
Pro	Ala	Pro 195	Gly	Pro	Asp	Pro	Phe 200	Ser	Leu	Ile	Gly	Glu 205	Ser	Thr	Ile
Tyr	Cys 210	Gly	Asp	Asn	Ser	Val 215	Trp	Ser	Arg	Ala	Ala 220	Pro	Glu	Cys	Lys
Val 225	Val	Lys	Cys	Arg	Phe 230	Pro	Val	Val	Glu	Asn 235	Gly	Lys	Gln	Ile	Ser 240
Gly	Phe	Gly	Lys	Lys 245	Phe	Tyr	Tyr	Lys	Ala 250	Thr	Val	Met	Phe	Glu 255	Cys
Asp	Lys	Gly	Phe 260	Tyr	Leu	Asp	Gly	Ser 265	Asp	Thr	Ile	Val	Cys 270	Asp	Ser

Asn	Ser	Thr 275	Trp	Asp	Pro	Pro	Val 280	Pro	Lys	Cys	Leu	Lys 285	Val	Ser	Thr
Ser	Ser 290	Thr	Thr	Lys	Ser	Pro 295	Ala	Ser	Ser	Ala	Ser 300	Gly	Pro	Arg	Pro
Thr 305	Tyr	Lys	Pro	Pro	Val 310	Ser	Asn	Tyr	Pro	Gly 315	Tyr	Pro	Lys	Pro	Glu 320
Glu	Gly	Ile	Leu	Asp 325	Ser	Leu	Asp	Val	Lys 330	Leu	Thr	His	Thr	Cys 335	Pro
Pro	Cys	Pro	Ala 340	Pro	Glu	Ala	Glu	Gly 345	Ala	Pro	Ser	Val	Phe 350	Leu	Phe
Pro	Pro	Lys 355	Pro	Lys	Asp	Thr	Leu 360	Met	Ile	Ser	Arg	Thr 365	Pro	Glu	Val
Thr	Cys 370	Val	Val	Val	Asp	Val 375	Ser	His	Glu	Asp	Pro 380	Glu	Val	Lys	Phe
Asn 385	Trp	Tyr	Val	Asp	Gly 390	Val	Glu	Val	His	Asn 395	Ala	Lys	Thr	Lys	Pro 400
Arg	Glu	Glu	Gln	Tyr 405	Asn	Ser	Thr	Tyr	Arg 410	Val	Val	Ser	Val	Leu 415	Thr
Val	Leu	His	Gln 420	Asp	Trp	Leu	Asn	Gly 425	Lys	Glu	Tyr	Lys	Cys 430	Lys	Val
Ser	Asn	Lys 435	Ala	Leu	Pro	Ala	Ser 440	Ile	Glu	Lys	Thr	Ile 445	Ser	Lys	Ala
Lys	Gly 450	Gln	Pro	Arg	Glu	Pro 455	Gln	Val	Tyr	Thr	Leu 460	Pro	Pro	Ser	Arg
Asp 465	Glu	Leu	Thr	Lys	Asn 470	Gln	Val	Ser	Leu	Thr 475	Cys	Leu	Val	Lys	Gly 480
Phe	Tyr	Pro	Ser	Asp 485	Ile	Ala	Val	Glu	Trp 490	Glu	Ser	Asn	Gly	Gln 495	Pro
Glu	Asn	Asn	Tyr 500	Lys	Thr	Thr	Pro	Pro 505	Val	Leu	Asp	Ser	Asp 510	Gly	Ser
Phe	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln

515 520 525

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 530 535 540

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 545 550 555

<210> 20

<211> 1746

<212> DNA

<213> artificial sequence

<220>

<223> Construct encoding a fusion polypeptide between the extracellular domain of CD46 at the N-terminus and the scFv FRP5 against ErbB-2 at the C-terminus

<400> 2.0 atggagecte eeggeegeeg egagtgteee ttteetteet ggegetttee tgggttgett 60 ctggcggcca tggtgttgct gctgtactcc ttctccgatg cctgtgagga gccaccaaca 120 tttgaagcta tggagctcat tggtaaacca aaaccctact atgagattgg tgaacgagta 180 gattataagt gtaaaaaagg atacttctat atacctcctc ttgccaccca tactatttgt 240 gateggaate atacatgget acctgtetea gatgaegeet gttatagaga aacatgteea 300 tatatacggg atcctttaaa tggccaagca gtccctgcaa atgggactta cgagtttggt 360 tatcagatgc actttatttg taatgagggt tattacttaa ttggtgaaga aattctatat 420 tgtgaactta aaggatcagt agcaatttgg agcggtaagc ccccaatatg tgaaaaggtt 480 ttgtgtacac cacctccaaa aataaaaaat ggaaaacaca cctttagtga agtagaagta 540 tttgagtatc ttgatgcagt aacttatagt tgtgatcctg cacctggacc agatccattt 600 tcacttattg gagagagcac gatttattgt ggtgacaatt cagtgtggag tcgtgct 660 ccagagtgta aagtggtcaa atgtcgattt ccagtagtcg aaaatggaaa acagatatca 720 ggatttggaa aaaaatttta ctacaaagca acagttatgt ttgaatgcga taagggtttt 780 tacctcgatg gcagcgacac aattgtctgt gacagtaaca gtacttggga tcccccagtt 840 ccaaagtgtc ttaaagtgtc gacttettec actacaaaat ctccagegtc cagtgeetca 900 ggtcctaggc ctacttacaa gcctccagtc tcaaattatc caggatatcc taaacctgag 960 gaaggaatac ttgacagttt ggatgttggc ggccgctctc aggtacaact gcagcagtct 1020 ggacctgaac tgaagaagcc tggagagaca gtcaagatct cctgcaaggc ctctgggtat 1080 cctttcacaa actatggaat gaactgggtg aagcaggctc caggacaggg tttaaagtgg 1140 atgggctgga ttaacacttc cactggagag tcaacatttg ctgatgactt caagggacgg 1200

tttgacttct ctttggaaac ctctgccaac actgcctatt tgcagatcaa caacctcaaa 1260 agtgaagaca tggctacata tttctgtgca agatgggagg tttaccacgg ctacqttcct 1320 tactggggcc aagggaccac ggtcaccgtt tcctctggcg gtggcggttc tggtggcggt 1380 ggctccggcg gtggcggttc tgacatccag ctgacccagt ctcacaaatt cctgtccact 1440 tcagtaggag acagggtcag catcacctgc aaggccagtc aggatgtgta taatgctgtt 1500 gcctggtatc aacagaaacc aggacaatct cctaaacttc tgatttactc ggcatcctcc 1560 eggtacactg gagtecette tegetteact ggeagtgget etgggeegga ttteacttte 1620 accatcagca gtgtgcaggc tgaagacctg gcagtttatt tctgtcagca acattttcqt 1680 actccattca cgttcggctc ggggacaaaa ttggagatcg actacaagga tgacgacgac 1740 aagtag 1746

<220>

<223> fusion polypeptide between the extracellular domain of CD46 at th
 e N-terminus and the scFv FRP5 against ErbB-2 at the C-terminus

<400> 21

Met Glu Pro Pro Gly Arg Arg Glu Cys Pro Phe Pro Ser Trp Arg Phe 1 5 10 15

Pro Gly Leu Leu Ala Ala Met Val Leu Leu Leu Tyr Ser Phe Ser 20 25 30

Asp Ala Cys Glu Glu Pro Pro Thr Phe Glu Ala Met Glu Leu Ile Gly 35 40 45

Lys Pro Lys Pro Tyr Tyr Glu Ile Gly Glu Arg Val Asp Tyr Lys Cys 50 55 60

Lys Lys Gly Tyr Phe Tyr Ile Pro Pro Leu Ala Thr His Thr Ile Cys 70 75 80

Asp Arg Asn His Thr Trp Leu Pro Val Ser Asp Asp Ala Cys Tyr Arg 85 90 95

Glu Thr Cys Pro Tyr Ile Arg Asp Pro Leu Asn Gly Gln Ala Val Pro 100 105 110

Ala Asn Gly Thr Tyr Glu Phe Gly Tyr Gln Met His Phe Ile Cys Asn 115 120 125

<210> 21

<211> 581

<212> PRT

<213> artificial sequence

Glu	Gly 130		Tyr	Leu	Ile	Gly 135	Glu	Glu	Ile	Leu	Tyr 140	Cys	Glu	Leu	Lys
Gly 145	Ser	Val	Ala	Ile	Trp 150	Ser	Gly	Lys	Pro	Pro 155	Ile	Cys	Glu	Lys	Val 160
Leu	Cys	Thr	Pro	Pro 165	Pro	Lys	Ile	Lys	Asn 170	Gly	Lys	His	Thr	Phe 175	Ser
Glu	Val	Glu	Val 180	Phe	Glu	Tyr	Leu	Asp 185	Ala	Val	Thr	Tyr	Ser 190	Сув	Asp
Pro	Ala	Pro 195	Gly	Pro	Asp	Pro	Phe 200	Ser	Leu	Ile	Gly	Glu 205	Ser	Thr	Ile
Tyr	Cys 210	Gly	Asp	Asn	Ser	Val 215	Trp	Ser	Arg	Ala	Ala 220	Pro	Glu	Сув	Lys
Val 225	Val	Lys	Cys	Arg	Phe 230	Pro	Val	Val	Glu	Asn 235	Gly	Lys	Gln	Ile	Ser 240
Gly	Phe	Gly	Lys	Lys 245	Phe	Tyr	Tyr	Lys	Ala 250	Thr	Val	Met	Phe	Glu 255	Cys
Asp	Lys	Gly	Phe 260	Tyr	Leu	Asp	Gly	Ser 265	Asp	Thr	Ile	Val	Cys 270	Asp	Ser
Asn	Ser	Thr 275	Trp	Ąsp	Pro	Pro	Val 280	Pro	Lys	Сув	Leu	Lys 285	Val	Ser	Thr
Ser	Ser 290	Thr	Thr	Lys	Ser	Pro 295	Ala	Ser	Ser	Ala	Ser 300	Gly	Pro	Arg	Pro
Thr 305	Tyr	Lys	Pro	Pro	Val 310	Ser	Asn	Tyr	Pro	Gly 315	Tyr	Pro	Lys	Pro	Glu 320
Glu	Gly	Ile	Leu	Asp 325	Ser	Leu	Asp	Val	Gly 330	Gly	Arg	Ser	Gln	Val 335	Gln
Leu	Gln	Gln	Ser 340	Gly	Pro	Glu	Leu	Lys 345	Lys	Pro	Gly	Glu	Thr 350	Val	Lys
Ile	Ser	Cys 355	Lys	Ala	Ser	Gly	Туг 360	Pro	Phe	Thr	Asn	Tyr 365	Gly	Met	Asn

Trp Val Lys Gln Ala Pro Gly Gln Gly Leu Lys Trp Met Gly Trp Ile

Asn Thr Ser Thr Gly Glu Ser Thr Phe Ala Asp Asp Phe Lys Gly Arg 385 390 395 400

Phe Asp Phe Ser Leu Glu Thr Ser Ala Asn Thr Ala Tyr Leu Gln Ile 405 410 415

Asn Asn Leu Lys Ser Glu Asp Met Ala Thr Tyr Phe Cys Ala Arg Trp
420
430

Glu Val Tyr His Gly Tyr Val Pro Tyr Trp Gly Gln Gly Thr Thr Val
435 440 445

Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 450 455 460

Gly Gly Ser Asp Ile Gln Leu Thr Gln Ser His Lys Phe Leu Ser Thr 465 470 475 480

Ser Val Gly Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val 485 490 495

Tyr. Asn Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys
500 505 510

Leu Leu Ile Tyr Ser Ala Ser Ser Arg Tyr Thr Gly Val Pro Ser Arg 515 520 525

Phe Thr Gly Ser Gly Ser Gly Pro Asp Phe Thr Phe Thr Ile Ser Ser 530 535 540

Val Gln Ala Glu Asp Leu Ala Val Tyr Phe Cys Gln Gln His Phe Arg 545 550 555 560

Thr Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Asp Tyr Lys
565 570 575

Asp Asp Asp Lys 580