

Theoretische Grundlagen der Informatik

Tutorium 4

Institut für Kryntographie und Sicherheit

Pumping Lemma Formalia

Behauptung: L ist nicht regulär.

Beweis:

Sei $p \in \mathbb{N}$ wie im Pumping-Lemma

Wähle $w = ____, w \in L, |w| > n$

Beh: $\forall u, v, x : w = uvx, |uv| \le p, v \ne \varepsilon$ gilt: $\exists i \in \mathbb{N}_0 : uv^i x \notin L$

Bew: (∀v gilt:)_____

Widerspruch zum Pumping Lemma \Rightarrow L ist nicht regulär.

Chomsky-Normalform

1. Schritt: neues Startsymbol

$$S' o S|\varepsilon$$

- 2. Schritt: Entfernen der ε -Produktionen
- 3. Schritt: Entfernen von Kettenregeln

$$z.B. A \rightarrow B, B \rightarrow c \implies A \rightarrow c$$

Х

- 4. Schritt: Überführen in Chomsky-Normalform
 - 4.1 Terminale ersetzen
 - 4.2 Regeln auf 2 Variablen 'kürzen'

CYK Beispiel

Gegeben sei die Grammatik $G = (\mathcal{T}, \mathcal{V}, \mathcal{S}, \mathcal{P})$ mit den folgenden Produktionen aus \mathcal{P} :

$$S \rightarrow AX \mid AB$$

 $X \rightarrow SB \mid AB$
 $A \rightarrow a$
 $B \rightarrow b$

- 1. Lässt sich der CYK-Algorithmus auf *G* anwenden?
- 2. Ist das Wort *aaabbb* in der Sprache $\mathcal{L}(G)$?

Tutoriumsmaterial von Michael Fuerst

Aufgabe 1

Gegeben sei die folgende Grammatik: $\mathcal{G} = (\mathcal{T}, \mathcal{V}, S, \mathcal{P})$ mit $\mathcal{T} := \{a, b, c, d\}, \ \mathcal{V} := \{S, A, D, M, X, Y, B, C\},$ $\mathcal{P} := \{S \rightarrow AX \mid AD \mid BY \mid BY \mid \varepsilon, A \rightarrow AA \mid a, D \rightarrow DD \mid d, M \rightarrow BY \mid BC, X \rightarrow MD, Y \rightarrow MC, B \rightarrow b, C \rightarrow c\}$

- 1. Zeigen oder widerlegen Sie mit Hilfe des CYK-Algorithmus, ob die folgenden Wörter in der Sprache $\mathcal L$ liegen, die durch die Grammatik $\mathcal G$ erzeugt wird!
 - 1.1 aabbccdd

Tutoriumsmaterial von Michael Fuerst

- 1.2 abbcc
- 1.3 abcdd

Definition Kellerautomaten

Ein (nichtdeterministischer) **Kellerautomat** (NPDA bzw PDA, Pushdown Automaton) besteht aus $(Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$, wobei

- Q endliche Zustandsmenge
- lacksquare Σ endliches Eingabealphabet
- Γ endliches Stack-Alphabet
- q₀ ∈ Q Anfangszustand
- $Z_0 \in \Gamma$ Initialisierung des Stacks
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$
 - $\delta(q, a, Z) \subseteq \{(q, \gamma) : q \in Q, \gamma \in \Gamma^*\}$
 - $\delta(q, \varepsilon, Z) \subseteq \{(q, \gamma) : q \in Q, \gamma \in \Gamma^*\}$

Zu Kellerautomaten

- Akzeptieren nach Eingabeende, wenn
 - der Stack leer ist oder
 - der Automat in einen akzeptierenden Zustand kommt.
- Sind im Allgemeinen nichtdeterministisch
- Man kann Endzustände auch aus der Definition weglassen und alternativ verlangen, dass der Automat genau bei leerem Keller akzeptiert.
- Man kann sogar alle Zustände bis auf einen weglassen und alles in die Kellerbelegung kodieren

Kellerautomaten

Beispiel

$$M = (Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$$

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$
- $\Gamma = \{\#, X\}$
- $Z_0 = \#$
- $F = \{q_2\}$

Welche Sprache akzeptiert dieser Automat?

Tutoriumsmaterial von Michael Fuerst

Aufgabe 2

Gegeben sei folgende Sprache für das Alphabet $\Sigma = \{a, b, c\}$:

$$\mathcal{L} = \{ w_1 w_2 \in \Sigma^* \mid w_1 \in \{a, b\}^*, w_2 \in \{b, c\}^*, \\ \#_a w_1 + \#_b w_1 = \#_b w_2 + \#_c w_2 \}$$

Hier gibt $\#_X w$ die Häufigkeit des Vorkommens eines Zeichens $x \in \Sigma$ in einem Wort $w \in \Sigma^*$ an.

- 1. Zeigen Sie, dass \mathcal{L} nicht regulär ist!
- 2. Geben Sie eine Chomsky-2-Grammatik an, die genau die Sprache $\mathcal L$ erzeugt!
- 3. Geben Sie einen Kellerautomaten \mathcal{M} an, der genau die Sprache \mathcal{L} erkennt! Zeichnen Sie den Zustandsübergangsgraphen für \mathcal{M} !

Kellerautomaten

Pumping-Lemma für kontextfreie Sprachen

Lemma

Für jede kontextfreie Sprache L gibt es eine Konstante $n \in \mathbb{N}$, so dass sich jedes Wort $z \in L$ mit $|z| \geq n$ so als

$$z = uvwxy$$

schreiben lässt, dass

- $|vx| \ge 1$,
- $|vwx| \le n$ und
- für alle $i \ge 0$ das Wort $uv^i wx^i y \in L$ ist.

Pumping Lemma Formalia (kontextfrei)

Behauptung: L ist nicht kontextfrei.

Beweis:

Nehme an L sei kontextfrei.

Sei n beliebig aber fest.

Wähle z= $_$ $\in L$ mit $|z| \ge n$

Beh.: $\forall u, v, w, x, y : uvwxy = z \text{ mit } |vx| \ge 1 \text{ und } |vwx| \le n, \exists i \in N,$ so dass $uv^iwx^iy \notin L$.

Bew.:

Widerspruch zum Pumping Lemma \Rightarrow L ist nicht kontextfrei.

Beispiel

Zeige, dass die Sprache

$$L = \{\omega\omega | \omega \in \{0, 1\}^*\}$$

nicht kontextfrei ist.

Aufgabe 3

- 1. Geben Sie für die Sprache $\mathcal{L} = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ eine Grammatik des höchstmöglichen Chomsky-Typs an!
- 2. Zeigen Sie, dass die Sprache $\mathcal{L}' = \{a^{2^n} \mid n \in \mathbb{N}\}$ nicht kontextfrei ist!

Abschlusseigenschaften

Seien L_1 , L_2 kontextfrei so sind auch diese L kontextfrei:

- $L = L_1 \cup L_2$
- $L = L_1 \cdot L_2$
- $L = L_1^*$

Bis zum nächsten Mal!

DIFFICULTY TO GUESS: HARD

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu http://creativecommons.org/licenses/by-sa/3.0/de/ oder schreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme. Hierfür gelten die Bestimmungen der jeweiligen Urheber.

