Appendix0_10

```
# NDNS analysis, data management -----
# Change the data path accordingly ------
setwd(".../UKDA-6533-stata11_se/stata11_se/")
setwd("~/Downloads/UKDA-6533-stata11_se/stata11_se/")
library(epiDisplay)
library(plyr)
library(tidyverse)
# Read the data into memory ------
library(haven)
data <- read_dta("ndns_rp_yr1-4a_foodleveldietarydata_uk.dta")</pre>
data56 <- read_dta("ndns_rp_yr5-6a_foodleveldietarydata.dta")</pre>
data78 <- read_dta("ndns_rp_yr7-8a_foodleveldietarydata.dta")</pre>
names (data)
names (data56)
names (data78)
names(data)[names(data)=="seriali"] <- "id"</pre>
names(data56)[names(data56)=="seriali"] <- "id"</pre>
names(data78)[names(data78)=="seriali"] <- "id"</pre>
# Extract the variables needed ------
df14d <- data[,c(113,1,2,3,5,6,7,8,9,21, 22, 23, 24, 53, 55,
                57,58,59,60,61,62,63,64,65)]
var <- names(df14d)</pre>
df56d <- data56 %>%
 select(var)
df78d <- data78 %>%
 select(var)
dfs1 <- rbind(df14d, df56d, df78d)
dfs2 <- dfs1[dfs1$Age>=19,] # keep participants who aged 19 or older
rm(data, data56, data78) # remove the unneeded big dataset
dfs2
# Calculate the time (minute and hour) when they eat ------
dfs2$MealTime_chr <- as.character(dfs2$MealTime)</pre>
dfs2$MealTime_hm <- unlist(strsplit(dfs2$MealTime_chr," "))[c(FALSE,
                                                          TRUE)]
```

```
dfs2$MealHourN <- as.numeric(unlist(strsplit(dfs2$MealTime_hm,</pre>
                                           ":"))[c(TRUE, FALSE, FALSE)])
dfs2$MealMinN <- as.numeric(unlist(strsplit(dfs2$MealTime_hm,</pre>
                                          ":"))[c(FALSE, TRUE, FALSE)])
dfs2$MealMinNO <- (60*dfs2$MealHourN)+dfs2$MealMinN
dfs3 <- dfs2[order(dfs2$id,dfs2$DayNo,dfs2$MealMinNO),]</pre>
length(unique(dfs3$id)) ## number of participants = 6155
# Create a subset data with only the first observation of each participant -----
NDNS <- dfs3[!duplicated(dfs3$id), ]</pre>
with(NDNS, tab1(SurveyYear, graph = FALSE, decimal = 2))
# #SurveyYear :
             Frequency Percent Cum. percent
                  801
                       13.01
# NDNS Year 1
# NDNS Year 2
                  812 13.19
                                     26.21
# NDNS Year 3
                  782 12.71
                                     38.91
# NDNS Year 4
                1055 17.14
                                     56.05
# NDNS Year 5
                 625 10.15
                                     66.21
# NDNS Year 6
                 663 10.77
                                     76.98
# NDNS Year 7
                 703 11.42
                                     88.40
# NDNS Year 8
                 714 11.60
                                    100.00
  Total
                  6155 100.00
                                    100.00
# how many men and women ------
with(NDNS, tab1(Sex, graph = FALSE, decimal = 2))
# Sex :
#
          Frequency Percent Cum. percent
# 1
              2537
                     41.22
                                41.22 Men
              3618
                     58.78
                                100.00 Women
                               100.00
# Total
              6155 100.00
# create a variable combine id and day No ------
dfs3 <- dfs3 %>%
 mutate(id_dy = paste(id, DayNo, sep = "D"))
# For each subject, the total energy/carbohydrate intake for each
# eating time can be calculated -----
old<-Sys.time()</pre>
Energy <- ddply(dfs3, .(id_dy, id, SurveyYear, DayNo, Age, Sex,</pre>
                       DiaryDaysCompleted, MealHourN, DayofWeek),
               summarise, Tot_Energ = sum(EnergykJ),
               Tot_Carb = sum(Carbohydrateg),
               Tot_Sugar = sum(Totalsugarsg),
               Tot_Starch = sum(Starchg),
```

```
Tot_Fibre = sum(Englystfibreg),
                Tot_Fat = sum(Fatg),
                Tot_Prot = sum(Proteing),
                Tot_Alc = sum(Alcoholg),
                Tot_NMES = sum(Nonmilkextrinsicsugarsg))
new<-Sys.time()-old
print(new)
# Time difference of 6.429822 min
# reset the time intervals into time slots ------
                    6am to 9am
### Breakfast:
### morning snack: 9am to 12noon
### lunch:
                    12noon to 2pm
### afternoon snack: 2pm to 5pm
### dinner: 5pm to 8pm
### night snack: 8pm to 10pm
### midnight: 10pm to 6am
Energy <- Energy %>%
  mutate(TimeSlot = cut(MealHourN, breaks = c(6, 9, 12, 14, 17, 20, 22),
                        right = FALSE))
levels(Energy$TimeSlot) <- c(levels(Energy$TimeSlot), "[22, 6)")</pre>
Energy$TimeSlot[is.na(Energy$TimeSlot)] <- "[22, 6)"</pre>
tab1(Energy$TimeSlot)
# For each subject, the total energy/carbohydrate intake for each
# time slot can be calculated -----
old<-Sys.time()
Energy <- ddply(Energy, .(id_dy, id, SurveyYear, DayNo, Age, Sex,</pre>
                          DiaryDaysCompleted, TimeSlot, DayofWeek),
                summarise,
                Tot_Energ = sum(Tot_Energ),
                Tot_Carb = sum(Tot_Carb),
                Tot_Sugar = sum(Tot_Sugar),
               Tot_Starch = sum(Tot_Starch),
                Tot_Fibre = sum(Tot_Fibre),
                Tot_Fat = sum(Tot_Fat),
                Tot_Prot = sum(Tot_Prot),
                Tot_Alc = sum(Tot_Alc),
                Tot_NMES = sum(Tot_NMES))
new<-Sys.time()-old
print(new)
# Time difference of 3.74195 mins
```

```
# Calculate the energy from total carbohydrates ------
Energy <- Energy %>%
 mutate(KJcarbo = Tot_Carb*16) %>%
 mutate(CarKJpercentage = KJcarbo/Tot Energ) %>%
 mutate(Carbo = cut(CarkJpercentage, breaks = c(0, 0.50, 2), right = FALSE))
Energy0 <- Energy[!(Energy$Tot_Energ == 0), ] # discard those eating occassion</pre>
# with 0 energy intake
write.csv(Energy0, file = "Energy_slots.csv") # for later analysis
Energy0$Carbo <- factor(Energy0$Carbo, labels = c("< 50\%", ">= 50\%"))
vecid<-unique(Energy0$id)</pre>
# Filter the data by observation day-----
dta_day1 <- Energy0 %>%
 filter(DayNo == 1) %>%
 select(c("id", "id_dy", "Age", "Sex",
          "DayofWeek", "TimeSlot", "Carbo")) %>%
 mutate(DayofWeek = factor(DayofWeek,
                          levels = c("Monday", "Tuesday",
                                     "Wednesday", "Thursday",
                                     "Friday", "Saturday", "Sunday")))
dta_day2 <- Energy0 %>%
 filter(DayNo == 2) %>%
 select(c("id", "id_dy", "Age", "Sex",
          "DayofWeek", "TimeSlot", "Carbo")) %>%
 mutate(DayofWeek = factor(DayofWeek,
                          levels = c("Monday", "Tuesday",
                                     "Wednesday", "Thursday",
                                     "Friday", "Saturday", "Sunday")))
dta_day3 <- Energy0 %>%
 filter(DayNo == 3) %>%
 select(c("id", "id_dy", "Age", "Sex",
          "DayofWeek", "TimeSlot", "Carbo")) %>%
 mutate(DayofWeek = factor(DayofWeek,
                          levels = c("Monday", "Tuesday",
                                     "Wednesday", "Thursday",
                                     "Friday", "Saturday", "Sunday")))
dta_day4 <- Energy0 %>%
 filter(DayNo == 4) %>%
 mutate(DayofWeek = factor(DayofWeek,
                          levels = c("Monday", "Tuesday",
                                     "Wednesday", "Thursday",
                                     "Friday", "Saturday", "Sunday")))
```

```
vecid1 < -unique(dta_day1$id) # n = 6153
vecid2<-unique(dta_day2$id) # n = 6153</pre>
vecid3 < -unique(dta_day3$id) # n = 6151
vecid4 < -unique(dta day4$id) # n = 6026
Noday1 <- setdiff(vecid, vecid1) # two subjects did not have day 1 data
Noday2 <- setdiff(vecid, vecid2) # two subjects did not have day 2 data
Noday3 <- setdiff(vecid, vecid3) # four subjects did not have day 3 data
Noday4 <- setdiff(vecid, vecid4) # 129 subjects did not have day 4 data
# Long to wide data ------
dta_d1_wide <- dta_day1 %>%
 spread(key = TimeSlot,
        value = Carbo)
head(dta d1 wide)
names(dta_d1_wide)[6:12] <- c("H6_9", "H9_12", "H12_14", "H14_17",
                             "H17 20", "H20 22", "H22 6")
names(dta_d1_wide)
dta_d2_wide <- dta_day2 %>%
 spread(key = TimeSlot,
        value = Carbo)
head(dta_d2_wide)
names(dta_d2_wide)[6:12] <- c("H6_9", "H9_12", "H12_14", "H14_17",
                             "H17_20", "H20_22", "H22_6")
names(dta_d2_wide)
dta_d3_wide <- dta_day3 %>%
 spread(key = TimeSlot,
        value = Carbo)
head(dta_d3_wide)
names(dta_d3_wide)[6:12] <- c("H6_9", "H9_12", "H12_14", "H14_17",
                             "H17_20", "H20_22", "H22_6")
names(dta_d3_wide)
dta_d4_wide <- dta_day4 %>%
 spread(key = TimeSlot,
        value = Carbo)
head(dta_d4_wide)
names(dta_d4_wide)[6:12] <- c("H6_9", "H9_12", "H12_14", "H14_17",
                             "H17_20", "H20_22", "H22_6")
```

```
# recode NA to not eating -----
for (i in 6:ncol(dta_d1_wide))
 if(is.factor(dta_d1_wide[,i]))
   levels(dta_d1_wide[,i]) <- c("1", "2", "0")
dta_d1_wide[is.na(dta_d1_wide)] <- "0"
for (i in 6:ncol(dta_d2_wide))
 if(is.factor(dta_d2_wide[,i]))
   levels(dta_d2_wide[,i]) <- c("1", "2", "0")
dta_d2_wide[is.na(dta_d2_wide)] <- "0"</pre>
for (i in 6:ncol(dta_d3_wide))
 if(is.factor(dta_d3_wide[,i]))
   levels(dta_d3_wide[,i]) <- c("1", "2", "0")
dta_d3_wide[is.na(dta_d3_wide)] <- "0"
for (i in 6:ncol(dta_d4_wide))
 if(is.factor(dta_d4_wide[,i]))
   levels(dta_d4_wide[,i]) <- c("1", "2", "0")</pre>
dta_d4_wide[is.na(dta_d4_wide)] <- "0"
dta_all <- rbind(dta_d1_wide, dta_d2_wide, dta_d3_wide, dta_d4_wide)
dta_all <- dta_all[order(dta_all$id,dta_all$id_dy),]</pre>
# Export the data for Mplus ------
write_csv(dta_all, path = "dta_NDNS_Tslots.csv")
write_delim(dta_all, "dta_NDNS_Tslots.dat", na = ".", delim = " ")
Mplus VERSION 7.4
MUTHEN & MUTHEN
07/28/2018 9:55 AM
INPUT INSTRUCTIONS
 TITLE:
           3-class at level 1 (CW), 3-classes at level 2 (CB) random effects model - non-pa
           ordered polytomous variables for carb intake at each time slot over four
           days of NDNS survey 2008/09 - 2015/16
           variable 0 = not eating
```

names(dta_d4_wide)

```
1 = eating & carb provided < 50% calorie
                   2 = eating & carb provided >= 50% calorie
DATA:
          File is H:\summer_project\Mplus\TimeSlots\NDNS_Tslots.dat;
VARIABLE: NAMES = id id_dy Age Sex H6_9 H9_12 H12_14 H14_17 H17_20
                  H20_22 H22_6;
          USEVAR = H6_9 H9_12 H12_14 H14_17 H17_20
                  H20_22 H22_6;
          auxiliary = Age Sex;
          CATEGORICAL = H6_9 H9_12 H12_14 H14_17 H17_20
                  H20_22 H22_6;
          CLUSTER = id;
          IDVARIABLE = id_dy;
          BETWEEN = CB;
          WITHIN = H6_9 H9_12 H12_14 H14_17 H17_20
                  H20_22 H22_6;
          CLASSES = CB(3) CW(3);
          MISSING are .;
ANALYSIS:
type = mixture twolevel;
starts = 50 25;
process = 8(starts);
MODEL:
%within%
%overall%
%between%
%overall%
CW ON CB;
Savedata:
  file is H:\summer_project\Mplus\TimeSlots\Multilevel\NDNSslot_CW3CB3.txt;
  save is cprob;
  format is free;
```

3-class at level 1 (CW), 3-classes at level 2 (CB) random effects model - non-par ordered polytomous variables for carb intake at each time slot over four days of NDNS survey 2008/09 - 2015/16 variable 0 = not eating 1 = eating & carb provided < 50% calorie 2 = eating & carb provided >= 50% calorie SUMMARY OF ANALYSIS Number of groups 1 Number of observations 24483 Number of dependent variables 7 Number of independent variables 0 Number of continuous latent variables 0 2 Number of categorical latent variables Observed dependent variables Binary and ordered categorical (ordinal) H6_9 H9_12 H12_14 H14_17 H17_20 H20_22 H22_6 Observed auxiliary variables AGE SEX Categorical latent variables CB CW Variables with special functions Cluster variable ID ID variable ID_DY Within variables H6 9 H9 12 H12_14 H14_17 H17 20 H20 22 H22 6 Estimator MT.R Information matrix OBSERVED Optimization Specifications for the Quasi-Newton Algorithm for Continuous Outcomes Maximum number of iterations 100 Convergence criterion 0.100D-05 Optimization Specifications for the EM Algorithm Maximum number of iterations 500 Convergence criteria Loglikelihood change 0.100D-02 Relative loglikelihood change 0.100D-05 Derivative 0.100D-02 Optimization Specifications for the M step of the EM Algorithm for Categorical Latent variables

1

Number of M step iterations

0.100D-02 M step convergence criterion Basis for M step termination ITERATION Optimization Specifications for the M step of the EM Algorithm for Censored, Binary or Ordered Categorical (Ordinal), Unordered Categorical (Nominal) and Count Outcomes Number of M step iterations 1 M step convergence criterion 0.100D-02 Basis for M step termination ITERATION Maximum value for logit thresholds 15 Minimum value for logit thresholds -15 Minimum expected cell size for chi-square 0.100D-01 Maximum number of iterations for H1 2000 Convergence criterion for H1 0.100D-03 Optimization algorithm EMAIntegration Specifications Туре STANDARD Number of integration points 15 Dimensions of numerical integration 0 Adaptive quadrature ON Random Starts Specifications Number of initial stage random starts 50 Number of final stage optimizations 25 Number of initial stage iterations 10 0.100D+01 Initial stage convergence criterion Random starts scale 0.500D+01 Random seed for generating random starts Parameterization LOGIT

Input data file(s)

Link

Cholesky

H:\summer_project\Mplus\TimeSlots\NDNS_Tslots.dat
Input data format FREE

SUMMARY OF DATA

Number of missing data patterns 1
Number of y missing data patterns 0
Number of u missing data patterns 1
Number of clusters 6155

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value 0.100

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

H6 9

Category 1 0.313 7655.000 Category 2 0.184 4500.000 LOGIT

OFF

Category	3	0.504	12328.000
H9_12			
Category	1	0.222	5447.000
Category	2	0.295	7227.000
Category	3	0.482	11809.000
H12_14			
Category	1	0.195	4783.000
Category	2	0.454	11112.000
Category	3	0.351	8588.000
H14_17			
Category	1	0.283	6926.000
Category	2	0.338	8277.000
Category	3	0.379	9280.000
H17_20			
Category	1	0.124	3043.000
Category	2	0.582	14240.000
Category	3	0.294	7200.000
H20_22			
Category	1	0.356	8722.000
Category	2	0.363	8898.000
Category	3	0.280	6863.000
H22_6			
Category	1	0.666	16295.000
Category	2	0.169	4144.000
Category	3	0.165	4044.000

RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:

-166348.815	153942	31
-166348.815	573096	20
-166348.815	253358	2
-166348.816	318230	46
-166348.816	246261	38
-166348.873	285380	1
-166348.908	903420	5
-166349.394	120506	45
-166349.394	966014	37
-166349.394	207896	25
-166349.395	195873	6
-166349.513	68985	17
-166349.514	366706	29
-166352.737	76974	16
-166357.057	127215	9
-166482.723	533738	11
-166495.844	645664	39
-166668.918	372176	23

THE BEST LOGLIKELIHOOD VALUE HAS BEEN REPLICATED. RERUN WITH AT LEAST TWICE THE RANDOM STARTS TO CHECK THAT THE BEST LOGLIKELIHOOD IS STILL OBTAINED AND REPLICATED.

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 134

Loglikelihood

HO Value -166348.815
HO Scaling Correction Factor 1.8182
for MLR

Information Criteria

Akaike (AIC) 332965.630
Bayesian (BIC) 334051.799
Sample-Size Adjusted BIC 333625.950
(n* = (n + 2) / 24)

MODEL RESULTS USE THE LATENT CLASS VARIABLE ORDER

CB CW

Latent Class Variable Patterns

CB	CM
Class	Class
1	1
1	2
1	3
2	1
2	2
2	3
3	1
3	2
3	3

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent Class

Pattern

1	1	4050.97975	0.16546
1	2	1561.55249	0.06378
1	3	1286.46696	0.05255
2	1	2746.94031	0.11220

2	2	3011.00217	0.12298
2	3	1341.59686	0.05480
3	1	2748.25320	0.11225
3	2	4770.55950	0.19485
3	3	2965.64876	0.12113

FINAL CLASS COUNTS AND PROPORTIONS FOR EACH LATENT CLASS VARIABLE BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent Class			
Variable	Class		
СВ	1	6898.99902	0.28179
	2	7099.53906	0.28998
	3	10484.46094	0.42823
CW	1	9546.17285	0.38991
	2	9343.11426	0.38162
	3	5593.71240	0.22847

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON THEIR MOST LIKELY LATENT CLASS PATTERN

Class Counts and Proportions

	nt Class ttern		
1	1	4262	0.17408
1	2	1406	0.05743
1	3	1178	0.04812
2	1	2807	0.11465
2	2	2946	0.12033
2	3	1260	0.05146
3	1	2745	0.11212
3	2	5315	0.21709
3	3	2564	0.10473

FINAL CLASS COUNTS AND PROPORTIONS FOR EACH LATENT CLASS VARIABLE BASED ON THEIR MOST LIKELY LATENT CLASS PATTERN

Latent Class			
Variable	Class		
CB	1	6846	0.27962
	2	7013	0.28644
	3	10624	0.43393
CW	1	9814	0.40085
	2	9667	0.39485
	3	5002	0.20431

CLASSIFICATION QUALITY

Entropy 0.630

Average Latent Class Probabilities for Most Likely Latent Class Pattern (Row) by Latent Class Pattern (Column)

Latent Class Variable Patterns

Laten	t Class	C	В	CW					
Patt	ern No.	Clas	s Cla	ISS					
	1	1		1					
	2	1		2					
	3	1		3					
	4	2		1					
	5	2		2					
	6	2		3					
	7	3		1					
	8	3		2					
	9	3		3					
	1	2	3	4	5	6	7	8	9
1	0.720	0.091	0.073	0.016	0.032	0.004	0.005	0.033	0.025
2	0.183	0.609	0.098	0.005	0.002	0.030	0.040	0.005	0.027
3	0.211	0.084	0.629	0.008	0.005	0.007	0.011	0.036	0.009
4	0.019	0.004	0.002	0.692	0.184	0.051	0.011	0.034	0.003
5	0.042	0.001	0.001	0.158	0.709	0.045	0.001	0.035	0.009
6	0.012	0.037	0.013	0.065	0.084	0.702	0.042	0.003	0.042
7	0.011	0.029	0.004	0.012	0.002	0.022	0.641	0.126	0.153
8	0.026	0.003	0.009	0.025	0.024	0.001	0.115	0.675	0.123
9	0.046	0.024	0.004	0.003	0.010	0.018	0.079	0.174	0.642

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Within Level				
Latent Class Pat	tern 1 1			
Thresholds				
H6_9\$1	-0.718	0.218	-3.294	0.001
H6_9\$2	0.973	0.299	3.258	0.001
H9_12\$1	-2.516	0.463	-5.433	0.000
H9_12\$2	0.675	0.132	5.118	0.000
H12_14\$1	-1.025	0.145	-7.057	0.000
H12_14\$2	1.240	0.116	10.725	0.000
H14_17\$1	-1.566	0.149	-10.520	0.000

H14_17\$2	1.090	0.100	10.909	0.000
H17_20\$1	-1.998	0.125	-16.000	0.000
H17_20\$2	1.549	0.100	15.556	0.000
H20_22\$1	-0.933	0.085	-10.914	0.000
H20_22\$2	1.829	0.103	17.770	0.000
H22_6\$1	0.253	0.083	3.046	0.002
H22_6\$2	2.308	0.003	19.691	0.002
ΠZZ_0ΦZ	2.300	0.117	19.091	0.000
T - + + - 01	D-++ 1 0			
Latent Class	Pattern 1 2			
m, , , , ,				
Thresholds	4 004			
H6_9\$1	-4.021	1.788	-2.249	0.025
H6_9\$2	-0.115	0.259	-0.445	0.656
H9_12\$1	0.167	0.373	0.448	0.654
H9_12\$2	2.142	0.586	3.657	0.000
H12_14\$1	-3.210	1.518	-2.115	0.034
H12_14\$2	0.858	0.167	5.124	0.000
H14_17\$1	0.044	0.384	0.114	0.909
H14_17\$2	1.617	0.293	5.509	0.000
H17_20\$1	-2.109	0.390	-5.409	0.000
H17_20\$2	1.399	0.196	7.126	0.000
H20_22\$1	-0.367	0.174	-2.109	0.035
H20_22\$2	2.347	0.382	6.151	0.000
H22_6\$1	0.754	0.259	2.912	0.004
_				
H22_6\$2	2.542	0.264	9.646	0.000
Latent Class	Pattern 1 3			
Thresholds				
H6_9\$1	-15.000	0.000	999.000	999.000
H6_9\$2	2.357	0.783	3.011	0.003
H9_12\$1	-1.433	0.372	-3.850	0.000
H9_12\$2	-0.604	0.279	-2.166	0.030
H12_14\$1	-1.988	0.257	-7.749	0.000
H12_14\$2	0.524	0.125	4.209	0.000
H14_17\$1	-1.027	0.232	-4.436	0.000
H14 17\$2	0.274	0.131	2.087	0.037
H17_20\$1	-2.665	0.310	-8.605	0.000
H17_20\$2	0.707	0.112	6.322	0.000
H20_22\$1	-0.527	0.152	-3.462	0.001
H20_22\$1			5.102	
	0.702	0.138		0.000
H22_6\$1	1.119	0.185	6.062	0.000
H22_6\$2	1.748	0.183	9.544	0.000
	D			
Latent Class	Pattern 2 1			
Th				
Thresholds	4 000	0.400	0.070	0 000
H6_9\$1	1.663	0.199	8.370	0.000
H6_9\$2	1.839	0.198	9.274	0.000
H9_12\$1	-2.150	0.281	-7.643	0.000
H9_12\$2	-0.869	0.140	-6.190	0.000
H12_14\$1	-1.978	0.191	-10.349	0.000
H12_14\$2	0.323	0.078	4.139	0.000
H14_17\$1	0.237	0.183	1.293	0.196

H14_17\$2	0.782	0.123	6.352	0.000
H17_20\$1	-2.936	0.428	-6.853	0.000
H17_20\$2	0.632	0.081	7.807	0.000
H20_22\$1	0.028	0.142	0.194	0.846
H20_22\$2	0.868	0.086	10.145	0.000
H22_6\$1	0.658	0.109	6.010	0.000
H22_6\$2	1.326	0.109	13.215	0.000
HZZ_6\$Z	1.320	0.100	13.215	0.000
	D			
Latent Class	Pattern 2 2			
Thresholds				
H6_9\$1	1.640	0.171	9.619	0.000
H6_9\$2	1.906	0.179	10.678	0.000
H9_12\$1	-1.954	0.347	-5.636	0.000
H9_12\$2	-0.360	0.127	-2.842	0.004
H12_14\$1	-0.016	0.189	-0.084	0.933
H12_14\$2	0.948	0.135	7.029	0.000
H14_17\$1	-1.906	0.301	-6.327	0.000
H14_17\$2	0.371	0.080	4.614	0.000
H17_20\$1	-0.812	0.116	-7.030	0.000
H17_20\$1	0.910	0.110	10.259	0.000
_				
H20_22\$1	-0.742	0.089	-8.318	0.000
H20_22\$2	0.998	0.085	11.705	0.000
H22_6\$1	0.298	0.083	3.608	0.000
H22_6\$2	1.337	0.099	13.475	0.000
Latent Class	Pattern 2 3			
Thresholds				
H6_9\$1	-1.072	0.500	-2.144	0.032
H6_9\$2	-0.309	0.346	-0.892	0.372
H9_12\$1	2.441	1.044	2.339	0.019
H9_12\$2	3.599	1.983	1.815	0.069
H12_14\$1	-1.029	0.211	-4.880	0.000
H12_14\$2	0.603	0.123	4.913	0.000
H14_17\$1	-0.010	0.123	-0.041	0.967
H14_17\$2	0.784	0.157		
_			4.977	0.000
H17_20\$1	-0.953	0.203	-4.684	0.000
H17_20\$2	0.779	0.135	5.784	0.000
H20_22\$1	-0.105	0.210	-0.500	0.617
H20_22\$2	1.203	0.135	8.914	0.000
H22_6\$1	0.582	0.299	1.950	0.051
H22_6\$2	1.370	0.206	6.653	0.000
Latent Class	Pattern 3 1			
Thresholds				
H6_9\$1	-4.593	1.699	-2.703	0.007
H6_9\$2	-2.975	0.428	-6.957	0.000
H9_12\$1	-0.322	0.207	-1.553	0.120
H9_12\$2	0.398	0.363	1.095	0.274
H12_14\$1	-5.060	3.668	-1.380	0.168
H12_14\$2	0.307	0.100	3.080	0.002
H14_17\$1	0.186	0.100	0.351	0.726
UT4-T19T	0.186	0.530	0.351	0.720

H14_17\$2	0.317	0.245	1.295	0.195
H17_20\$1	-4.019	0.957	-4.199	0.000
H17_20\$2	0.747	0.093	7.987	0.000
H20_22\$1	-0.233	0.132	-1.767	0.077
H20_22\$2	0.607	0.109	5.571	0.000
H22_6\$1	1.304	0.146	8.918	0.000
H22_6\$2	1.850	0.160	11.579	0.000
1122_042	1.000	0.100	11.070	0.000
Latent Class Pat	tern 3 2			
Latent Class I at	ocin o z			
Thresholds				
H6_9\$1	-1.232	0.195	-6.305	0.000
H6_9\$2	-0.858	0.169	-5.068	0.000
H9_12\$1	-4.377	1.937	-2.260	0.024
H9_12\$2	-1.488	0.316	-4.717	0.000
H12_14\$1	-1.727	0.227	-7.611	0.000
H12_14\$1 H12_14\$2	0.302	0.082	3.666	0.000
-				
H14_17\$1	-1.834	0.237	-7.730	0.000
H14_17\$2	-0.294	0.186	-1.582	0.114
H17_20\$1	-2.588	0.487	-5.313	0.000
H17_20\$2	0.631	0.062	10.187	0.000
H20_22\$1	-0.920	0.078	-11.852	0.000
H20_22\$2	0.462	0.073	6.308	0.000
H22_6\$1	0.640	0.119	5.361	0.000
H22_6\$2	1.162	0.129	9.039	0.000
Latent Class Pat	tern 3 3			
Thresholds				
H6_9\$1	-4.941	5.813	-0.850	0.395
H6_9\$2	-2.680	0.887	-3.024	0.002
H9_12\$1	-0.765	0.640	-1.195	0.232
H9_12\$2	1.164	0.920	1.265	0.206
H12_14\$1	-1.415	0.439	-3.226	0.001
H12_14\$1	0.566	0.485	6.626	0.000
H14_17\$1	-2.052	0.650	-3.158	0.002
_				
H14_17\$2	0.612	0.210	2.909	0.004
H17_20\$1	-1.627	0.427	-3.810	0.000
H17_20\$2	0.713	0.103	6.935	0.000
H20_22\$1	-0.850	0.329	-2.585	0.010
H20_22\$2	0.685	0.134	5.104	0.000
H22_6\$1	1.237	0.195	6.349	0.000
H22_6\$2	1.893	0.179	10.582	0.000
Between Level				
a				
Categorical Late	nt variables			
Within Level				
MICHITH PEAGL				
Intercepts				
CW#1	-0.076	0.366	-0.208	0.835
CW#2	0.475	0.309	1.539	0.124
∪w#∠	0.415	0.308	1.005	0.124

Between Level

CW#1	ON				
CB#1		1.223	0.473	2.585	0.010
CB#2		0.793	0.441	1.796	0.073
CW#2	ON				
CB#1		-0.282	0.535	-0.526	0.599
CB#2		0.333	0.455	0.733	0.464
Means					
CB#1		-0.417	0.100	-4.178	0.000
CB#2		-0.386	0.067	-5.770	0.000

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix (ratio of smallest to largest eigenvalue)

0.428E-04

SAVEDATA INFORMATION

Save file

 $\verb|H:\summer_project\Mplus\TimeSlots\Multilevel\NDNSslot_CW3CB3.txt|\\$

Order of variables

H6_9

H9_12

H12_14

H14_17

H17_20

H20_22

H22_6

ID_DY

AGE SEX

CPROB1

CPROB2

CPROB3

CPROB4

CPROB5

CPROB6

CPROB7

CPROB8 CPROB9

CB

CW

MLCJOINT

ID

Save file format

Free

DIAGRAM INFORMATION

Mplus diagrams are currently not available for Mixture analysis. No diagram output was produced.

Beginning Time: 09:55:10 Ending Time: 10:02:01 Elapsed Time: 00:06:51

MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA 90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com

Copyright (c) 1998-2015 Muthen & Muthen

Support: Support@StatModel.com

library(plyr)
library(epiDisplay)
library(tidyverse)
library(dplyr)
library(readr)
library(haven)
library(naniar)

read the individual level data sets ------

```
blood78 <- read_dta("ndns_rp_yr7-8a_indiv.dta")
blood56 <- read_dta("ndns_rp_yr5-6a_indiv.dta")
blood14 <- read_dta("ndns_rp_yr1-4a_indiv_uk.dta")

food14 <- read_dta("ndns_rp_yr1-4a_personleveldietarydata_uk.dta")

food56 <- read_dta("ndns_rp_yr5-6a_personleveldietarydata.dta")

food78 <- read_dta("ndns_rp_yr7-8a_personleveldietarydata.dta")

names(blood78)[names(blood78)=="seriali"] <- "ID"
names(blood56)[names(blood56)=="seriali"] <- "ID"
names(blood14)[names(blood14)=="seriali"] <- "ID"
names(food78)[names(food78)=="seriali"] <- "ID"
names(food56)[names(food56)=="seriali"] <- "ID"
names(food56)[names(food56)=="seriali"] <- "ID"
```

```
names(food14)[names(food14)=="seriali"] <- "ID"</pre>
# Loading the data from Mplus output
CW3CB3 <- read_table2("../NDNSslot_CW3CB3.txt", # change the path accordingly
                      col names = FALSE)
names(CW3CB3) <- c("Breakfast", "Morning.snack", "Lunch",</pre>
                   "Afternoon.snack", "Dinner", "Before.bedtime.snack",
                   "Midnight.food", "ID_DAY", "AGE", "SEX", "CPROB1",
                   "CPROB2", "CPROB3", "CPROB4", "CPROB5", "CPROB6",
                   "CPROB7", "CPROB8", "CPROB9",
                   "CB", "CW", "MLCJOINT", "ID")
CW3idday <- CW3CB3 %>%
  select(ID, ID_DAY, CW, CB, MLCJOINT, AGE, SEX)
Energy_slots <- read_csv("../Energy_slots.csv") # change the path accordingly</pre>
Energy_slots <- Energy_slots %>%
 rename(ID = id)
# Recode day level classification to keep consistency
CW3idday$CW new <- 0
CW3idday$CW_new[CW3idday$CW == 1] <- 3</pre>
CW3idday$CW new[CW3idday$CW == 2] <- 1
CW3idday$CW new[CW3idday$CW == 3] <- 2
Energy_slots <- Energy_slots %>%
 left_join(CW3idday, by = c("ID", "DayofWeek"))
Energy_slots$TimeSlot <- factor(Energy_slots$TimeSlot,</pre>
                                 levels = c("[6,9)", "[9,12)",
                                            "[12,14)", "[14,17)",
                                            "[17,20)", "[20,22)", "[22, 6)"))
FoodbyCB_7slots <- Energy_slots %>%
  group_by(ID, TimeSlot) %>%
  summarise(sumEnergy = sum(Tot_Energ),
            sumCarb = sum(Tot_Carb),
            sumSugar = sum(Tot_Sugar),
            sumStarch = sum(Tot_Starch),
            sumFibre = sum(Tot Fibre),
            sumNMES = sum(Tot_NMES),
            sumFat = sum(Tot_Fat),
            sumProt = sum(Tot Prot),
            sumAlc = sum(Tot_Alc))
# Calculate the sum of each nutrients for each time slots
Carbsum <- FoodbyCB_7slots %>%
  select(ID, TimeSlot, sumCarb) %>%
  spread(key = TimeSlot,
         value = sumCarb)
```

```
Carbsum[is.na(Carbsum)] <- 0</pre>
names(Carbsum) <- c("ID", "Carb6_9", "Carb9_12", "Carb12_14", "Carb14_17",
                      "Carb17 20", "Carb20 22", "Carb22 6")
Energysum <- FoodbyCB_7slots %>%
  select(ID, TimeSlot, sumEnergy) %>%
  spread(key = TimeSlot,
         value = sumEnergy)
Energysum[is.na(Energysum)] <- 0</pre>
names(Energysum) <- c("ID", "Energy6_9", "Energy9_12", "Energy12_14", "Energy14_17",
                      "Energy17_20", "Energy20_22", "Energy22_6")
Starchsum <- FoodbyCB_7slots %>%
  select(ID, TimeSlot, sumStarch) %>%
  spread(key = TimeSlot,
         value = sumStarch)
Starchsum[is.na(Starchsum)] <- 0</pre>
names(Starchsum) <- c("ID", "Starch6_9", "Starch9_12", "Starch12_14", "Starch14_17",</pre>
                        "Starch17_20", "Starch20_22", "Starch22_6")
Sugarsum <- FoodbyCB_7slots %>%
  select(ID, TimeSlot, sumSugar) %>%
  spread(key = TimeSlot,
         value = sumSugar)
Sugarsum[is.na(Sugarsum)] <- 0</pre>
names(Sugarsum) <- c("ID", "Sugar6_9", "Sugar9_12", "Sugar12_14", "Sugar14_17",
                       "Sugar17_20", "Sugar20_22", "Sugar22_6")
Fibresum <- FoodbyCB_7slots %>%
  select(ID, TimeSlot, sumFibre) %>%
  spread(key = TimeSlot,
         value = sumFibre)
Fibresum[is.na(Fibresum)] <- 0</pre>
names(Fibresum) <- c("ID", "Fibre6_9", "Fibre9_12", "Fibre12_14", "Fibre14_17",</pre>
                       "Fibre17_20", "Fibre20_22", "Fibre22_6")
NMESsum <- FoodbyCB_7slots %>%
  select(ID, TimeSlot, sumNMES) %>%
  spread(key = TimeSlot,
         value = sumNMES)
```

```
NMESsum[is.na(NMESsum)] <- 0</pre>
names(NMESsum) <- c("ID", "NMES6_9", "NMES9_12", "NMES12_14", "NMES14_17",
                       "NMES17_20", "NMES20_22", "NMES22_6")
Fatsum <- FoodbyCB_7slots %>%
  select(ID, TimeSlot, sumFat) %>%
  spread(key = TimeSlot,
         value = sumFat)
Fatsum[is.na(Fatsum)] <- 0</pre>
names(Fatsum) <- c("ID", "Fat6_9", "Fat9_12", "Fat12_14", "Fat14_17",</pre>
                      "Fat17_20", "Fat20_22", "Fat22_6")
Protsum <- FoodbyCB_7slots %>%
  select(ID, TimeSlot, sumProt) %>%
  spread(key = TimeSlot,
         value = sumProt)
Protsum[is.na(Protsum)] <- 0</pre>
names(Protsum) <- c("ID", "Prot6_9", "Prot9_12", "Prot12_14", "Prot14_17",
                     "Prot17_20", "Prot20_22", "Prot22_6")
Alcsum <- FoodbyCB_7slots %>%
  select(ID, TimeSlot, sumAlc) %>%
  spread(key = TimeSlot,
         value = sumAlc)
Alcsum[is.na(Alcsum)] <- 0</pre>
names(Alcsum) <- c("ID", "Alc6_9", "Alc9_12", "Alc12_14", "Alc14_17",
                      "Alc17_20", "Alc20_22", "Alc22_6")
# Extract number of days of diary completed
blood14 <- blood14 %>%
  select(ID, Ndays)
blood56 <- blood56 %>%
  select(ID, Ndays)
blood78 <- blood78 %>%
  select(ID, NDays) %>%
  rename(Ndays = NDays)
NDAYS <- rbind(blood14, blood56, blood78)
NDAYS$ID <- as.numeric(NDAYS$ID)</pre>
```

```
IntakeSlots <- Energysum %>%
  left_join(Carbsum, by = "ID") %>%
  left_join(Sugarsum, by = "ID") %>%
  left join(Starchsum, by = "ID") %>%
  left_join(Fibresum, by = "ID") %>%
  left_join(Fatsum, by = "ID") %>%
  left_join(Protsum, by = "ID") %>%
  left join(NMESsum, by = "ID") %>%
  left join(Alcsum, by = "ID") %>%
  left_join(NDAYS, by = "ID")
IntakeSlots$ID <- as.numeric(IntakeSlots$ID)</pre>
IntakeSlots$Energy6_9 <- IntakeSlots$Energy6_9/(IntakeSlots$Ndays)</pre>
for (i in 3:57){
  IntakeSlots[, i] <- IntakeSlots[, i]/(IntakeSlots$Ndays)</pre>
# select the variables needed, recoding
# NAs, renaming to the same -----
BMI78 <- blood78 %>%
  select(ID, Sex, age, bmival, wstval, Diabetes, bpmedc2, bpmedd2,
         hyper140_2, hibp140_2, Glucose, A1C, cigsta3, dnoft3,
         dnnow, wti_Y78, wtn_Y78, wtb_Y78, ethgrp5, ethgrp2,
         cluster1, cluster2, cluster3, nssec8, paidemployment,
         qual7, eqvinc, MarSt2, cluster4, cluster5, area, gor,
        LDL, HDL, Chol, Trig) %>%
  rename(wti = wti_Y78, wtn = wtn_Y78, wtb = wtb_Y78,
         drink = dnoft3) %>%
  mutate(Years = "7-8", MVPAtime = NA, MarStat = NA) %>%
  replace_with_na(replace = list(bmival = -1, qual7 = -8,
                                wstval = -1, eqvinc = -1,
                                bpmedd2 = -1, MarSt2 = -1,
                                bpmedc2 = -1, hyper140_2 = -7,
                                hibp140_2 = -7, Glucose = -1,
                                A1C = -1, LDL = -1, HDL = -1,
                                Chol = -1, Trig = -1, dnnow = -1,
                                 drink = -1, ethgrp5 = -4,
                                 ethgrp2 = -4, cigsta3 = -1,
                                nssec8 = -9, paidemployment = -1)) %>%
  replace_with_na(replace = list(hyper140_2 = -1, hibp140_2 = -1,
                                 nssec8 = 99, qual7 = -1, drink = -8,
                                 ethgrp2 = -9, ethgrp5 = -9)) %>%
  replace_with_na(replace = list(drink = -9, ethgrp2 = -8, ethgrp5 = -8,
                                 cigsta3 = -8)) %>%
  replace_with_na(replace = list(ethgrp2 = -1, ethgrp5 = -1))
```

```
BMI56 <- blood56 %>%
  select(ID, Sex, age, area, bmival, wstval, Diabetes, bpmedc2, bpmedd2,
         hyper140 2, hibp140 2, MVPAtime, Glucose, A1C, cigsta3, dnoft3,
         dnnow, wti_Y56, wtn_Y56, wtb_Y56, ethgrp5, ethgrp2, qual7,
         cluster1, cluster2, cluster3, nssec8, paidemployment, eqvinc,
         MarSt2, cluster4, cluster5, area, gor, LDL, HDL, Chol, Trig) %>%
  mutate(Years = "5-6", MarStat = NA) %>%
  rename(wti = wti Y56, wtn = wtn Y56, wtb = wtb Y56, drink = dnoft3) %%
  replace_with_na(replace = list(bmival = -1, paidemployment = -9,
                                 wstval = -1, qual7 = -8,
                                 bpmedd2 = -1, eqvinc = -1,
                                 bpmedc2 = -1, MarSt2 = -1,
                                 hyper140_2 = -7, hibp140_2 = -7,
                                 Glucose = -1, A1C = -1,
                                 dnnow = -1, drink = -1, ethgrp5 = -4,
                                 ethgrp2 = -4, LDL = -1, HDL = -1,
                                 Chol = -1, Trig = -1, cigsta3 = -1,
                                 MVPAtime = -1, nssec8 = -9)) %>%
  replace_with_na(replace = list(hyper140_2 = -1, hibp140_2 = -1,
                                 paidemployment = -8,
                                 drink = -8, nssec8 = 99)) %>%
   replace_with_na(replace = list(drink = -9, paidemployment = -1,
                                   qual7 = -1, cigsta3 = -8))
BMI14 <- blood14 %>%
  select(ID, Sex, age, bmival, wstval, Diabetes, bpmedc, bpmedd, hyper140,
         hibp140, MVPAtime, Glucose, A1C, cigsta3, dnoft3, dnnow,
         wti_CY1234, wtn_CY1234, wtb_CY1234, ethgr5, ethgr2, cluster,
         area, gor, nssec8, paidemployment, qual7, eqvinc, MarSt2,
         MarStat, LDL, HDL, Chol, Trig) %>%
  rename(hyper140_2 = hyper140, hibp140_2 = hibp140, bpmedd2 = bpmedd,
         bpmedc2 = bpmedc, cluster1 = cluster, ethgrp5 = ethgr5,
         ethgrp2 = ethgr2, wti = wti_CY1234, wtn = wtn_CY1234,
         wtb = wtb_CY1234, drink = dnoft3) %>%
  mutate(cluster2 = NA, cluster3 = NA, cluster4 = NA, cluster5 = NA,
         Years = "1-4") %>%
  replace with na(replace = list(bmival = -1, paidemployment = -9,
                                 wstval = -1, qual7 = -8,
                                 bpmedd2 = -1, eqvinc = -1,
                                 bpmedc2 = -1, MarSt2 = -4,
                                 hyper140_2 = -7, MarStat = -4,
                                 hibp140_2 = -7, Glucose = -1,
                                 A1C = -1, dnnow = -1, LDL = -1,
                                 HDL = -1, Chol = -1, Trig = -1,
                                 drink = -1, ethgrp5 = -4, ethgrp2 = -4,
                                 cigsta3 = -1, MVPAtime = -4,
                                 nssec8 = -8)) \%
  replace_with_na(replace = list(hyper140_2 = -1, hibp140_2 = -1,
                                 MVPAtime = -1, paidemployment = -8,
                                 drink = -8, nssec8 = -1, qual7 = -1,
                                 MarSt2 = -1)) \% > \%
  replace_with_na(replace = list(drink = -9, paidemployment = -4,
```

```
cigsta3 = -8, nssec8 = 99)) %>%
  replace_with_na(replace = list(paidemployment = -1))
BMI <- bind_rows(BMI14, BMI56, BMI78)
Energy14 <- food14 %>%
  select(ID, Country, SurveyYear, EnergykJ, Carbohydrateg,
         CHOpctotE, Proteing, ProteinpctotE, Alcoholg, AlcoholpctotE,
         Fatg, FatpctotE)
Energy14$Country[Energy14$Country == "Northern Ireland"] <- "NI"</pre>
Energy56 <- food56 %>%
  select(ID, Country, Surveyyear, EnergykJ, Carbohydrateg,
         CHOpctotE, Proteing, ProteinpctotE, Alcoholg, AlcoholpctotE,
         Fatg, FatpctotE) %>%
  rename(SurveyYear = Surveyyear)
Energy78 <- food78 %>%
  select(ID, Country, SurveyYear, EnergykJ, Carbohydrateg,
         CHOpctotE, Proteing, ProteinpctotE, Alcoholg, AlcoholpctotE,
         Fatg, FatpctotE)
Energy <- bind rows(Energy14, Energy56, Energy78)</pre>
dta_NDNS <- read_csv("dta_NDNS_Tslots.csv") # extract the day of week data
CW3idday$DayNo <- ave(CW3idday$ID_DAY, CW3idday$ID,
                      FUN = seq_along) # adding the day no
dta_DayofWeek <- dta_NDNS %>%
  select(id, id_dy, DayofWeek)
dta_DayofWeek$DayNo <- unlist(strsplit(dta_DayofWeek$id_dy,</pre>
                                        "D"))[c(FALSE, TRUE)] # creating a day No
names(dta_DayofWeek)[1] <- "ID"</pre>
dta_DayofWeek$DayNo <- as.numeric(dta_DayofWeek$DayNo)
CW3idday <-
              CW3idday %>%
  left_join(dta_DayofWeek, by= c("ID", "DayNo"))
## Manually check the day of week
CW3idday$DayofWeek[CW3idday$ID_DAY == 40714261000] <- "Saturday"
CW3idday$DayofWeek[CW3idday$ID_DAY == 112050710000] <- "Tuesday"
CW3idday$DayofWeek[CW3idday$ID_DAY == 310122510000] <- "Wednesday"
CW3idday$DayofWeek[CW3idday$ID_DAY == 5050616100] <- "Monday"
CW3idday$DayofWeek[CW3idday$ID_DAY == 50506161000] <- "Tuesday"
```

```
CW3idday$DayofWeek[CW3idday$ID_DAY == 505061610000] <- "Wednesday"
CW3idday$DayofWeek[CW3idday$ID_DAY == 7090824100] <- "Monday"
CW3idday$DayofWeek[CW3idday$ID_DAY == 70908241000] <- "Tuesday"
CW3idday$DayofWeek[CW3idday$ID_DAY == 709082410000] <- "Wednesday"
CW3idday$DayofWeek[CW3idday$ID_DAY == 807021910000] <- "Monday"
CW3idday$DayofWeek[CW3idday$ID_DAY == 812101310000] <- "Sunday"
CW3CB3 reg <- CW3CB3[!duplicated(CW3CB3$ID), ]</pre>
# extract only the CB variable (Between individual classes == 1 or 2)
CW3CB3_reg <- CW3CB3_reg %>%
 select(ID, AGE, SEX, CB)
tab1(CW3CB3_reg$CB, graph = FALSE)
## dataset for 3by3 multilevel latent classes
CW3CB3_regss <- CW3CB3_reg %>%
 left_join(BMI, by = "ID") %>%
 left_join(Energy, by = "ID")
# Rescale the weighting values
# individual weighting
a <- sum(CW3CB3 regss[CW3CB3 regss$Years == "1-4",]$wti)
b <- sum(CW3CB3 regss[CW3CB3 regss$Years == "5-6",]$wti)
c <- sum(CW3CB3_regss[CW3CB3_regss$Years == "7-8",]$wti)</pre>
CW3CB3_regss$wti1to8 <- CW3CB3_regss$wti
CW3CB3_regss[CW3CB3_regss$Years == "1-4",]$wti1to8 <-
 CW3CB3_regss[CW3CB3_regss$Years == "5-6",]$wti1to8 <-
 CW3CB3_regss[CW3CB3_regss$Years == "7-8",]$wti1to8 <-
 CW3CB3_regss[CW3CB3_regss$Years == "7-8",]$wti*(a+b+c)*(1/4)/c
mean(CW3CB3_regss$wti1to8)
CW3CB3_regss$wti1to8 <- CW3CB3_regss$wti1to8/1.209816814
summ(CW3CB3_regss$wti1to8, graph = FALSE)
#Check if the weighting sum up to the sample size we have
sum(CW3CB3 regss$wti1to8, graph = FALSE)
# Nurse weights
a <- sum(CW3CB3_regss[CW3CB3_regss$Years == "1-4",]$wtn)
b <- sum(CW3CB3_regss[CW3CB3_regss$Years == "5-6",]$wtn)
c <- sum(CW3CB3_regss[CW3CB3_regss$Years == "7-8",]$wtn)</pre>
CW3CB3_regss$wtn1to8 <- CW3CB3_regss$wtn
CW3CB3_regss[CW3CB3_regss$Years == "1-4",]$wtn1to8 <-
```

```
CW3CB3_regss[CW3CB3_regss$Years == "5-6",]$wtn1to8 <-
 CW3CB3_regss[CW3CB3_regss$Years == "5-6",]$wtn*(a+b+c)*(1/4)/b
CW3CB3 regss[CW3CB3 regss$Years == "7-8",]$wtn1to8 <-
 CW3CB3_regss[CW3CB3_regss$Years == "7-8",]$wtn*(a+b+c)*(1/4)/c
mean(CW3CB3_regss$wtn1to8)
CW3CB3 regss$wtn1to8 <- CW3CB3 regss$wtn1to8/0.907003577
summ(CW3CB3_regss$wtn1to8, graph = FALSE)
#Check if the weighting sum up to the sample size we have
sum(CW3CB3_regss$wtn1to8, graph = FALSE)
# Blood weights
a <- sum(CW3CB3_regss[CW3CB3_regss$Years == "1-4",]$wtb)
b <- sum(CW3CB3_regss[CW3CB3_regss$Years == "5-6",]$wtb)
c <- sum(CW3CB3_regss[CW3CB3_regss$Years == "7-8",]$wtb)
CW3CB3_regss$wtb1to8 <- CW3CB3_regss$wtb
CW3CB3_regss[CW3CB3_regss$Years == "1-4",]$wtb1to8 <-
 CW3CB3_{regss}[CW3CB3_{regss}Years == "1-4",] *wtb*(a+b+c)*(1/2)/a
CW3CB3_regss[CW3CB3_regss$Years == "5-6",]$wtb1to8 <-
 CW3CB3 regss[CW3CB3 regss$Years == "5-6",]$wtb*(a+b+c)*(1/4)/b
CW3CB3_regss[CW3CB3_regss$Years == "7-8",]$wtb1to8 <-
 CW3CB3 regss[CW3CB3 regss$Years == "7-8",]$wtb*(a+b+c)*(1/4)/c
mean(CW3CB3 regss$wtb1to8)
CW3CB3_regss$wtb1to8 <- CW3CB3_regss$wtb1to8/0.4817444505
summ(CW3CB3_regss$wtb1to8, graph = FALSE)
#Check if the weighting sum up to the sample size we have
sum(CW3CB3_regss$wtb1to8, graph = FALSE)
weightings <- CW3CB3_regss %>% select(ID, wti1to8, wtn1to8, wtb1to8)
# Combine the data from nutrient intake at each time slot
CW3CB3_7regss <- CW3CB3_7regss %>%
 left_join(IntakeSlots, by = "ID")
## dta ready to be analysed in STATA
# change the path accordingly
write dta(CW3CB3 regss, "../CW3CB3 7regss.dta")
*************
// Analysing NDNS survey data in stata
// for CW3CB3 survey data analysis
// date created: 2018-08-01
// manipulation of the data was done in R
// import data from CW3CB3 7sregss.dta
// change the path accordingly
*************
```

```
use "../CW3CB3_7regss.dta", clear
label define smoking 1 "current" 2 "ex-smoker" 3 "Never"
label values cigsta3 smoking
label define gender 1 "Men" 2 "Women"
label values Sex gender
label define paid 1 "No" 2 "Yes"
label values paidemployment paid
label define ethnicity5 1 "White" 2 "Mixed" 3 "Black" 4 "Asian" 5 "Other"
label values ethgrp5 ethnicity5
label define ethnicity2 1 "White" 2 "non-White"
label values ethgrp2 ethnicity2
gen Married = 1 if MarStat == 2 | MarSt2 == 2
replace Married = 1 if MarSt2 == 3
replace Married = 0 if Married !=1
tab Married
tab MarSt2
tab MarStat
label define Partner 0 "No" 1 "Yes"
label values Married Partner
gen Education = qual7 == 1
label define Ed 0 "lower than Degree" 1 "Degree or higher"
label values Education Ed
replace Education = . if qual7 >100
tab Educ
egen BMIcat = cut(bmival), at(10, 25, 30, 40, 60)
tab BMIcat
****************
// variables need to be log transfomred
*********************
gen logalc = ln(Alcoholg+1)
summ logalc, detail
gen logMVP = ln(MVPAtime+1)
summ logMVP, detail
gen logGlu = ln(Glucose)
summ logGlu, detail
gen logA1C = ln(A1C)
summ logA1C, detail
gen logChol = ln(Chol)
summ logChol, detail
gen logLDL = ln(LDL)
gen logHDL = ln(HDL)
gen logTG = ln(Trig)
```

```
*********************
// weighting use wti to see the individual results //
********************
// weighting with individual weights, area is primary sampling unit,
// gor is the cluster variable
svyset area [pweight = wti1to8], strata(gor)
svydescribe wti // describe the weighted data set
svy: tabulate Sex CB, row se ci format(%7.3f)
svy: tabulate Sex CB, col se ci format(%7.3f)
svy: tabulate Country CB, col se ci format(%7.3f)
svy: tabulate Country CB, row se ci format(%7.3f)
svy: tabulate SurveyYear CB, col se ci format(%7.3f)
svy: tabulate SurveyYear CB, row se ci format(%7.3f)
svy: tabulate paid CB, col se ci format(%7.3f)
svy: tabulate MarSt2 CB
svy: tabulate MarStat CB
svy: tabulate Married CB, row se ci format(%7.3f)
svy: tabulate Married CB, col se ci format(%7.3f)
svy: mean eqvinc, over(CB)
test [eqvinc]1 = [eqvinc]2 = [eqvinc]3, mtest(b)
// bonferroni-adjusted p-values for multiple groups using the mtest(b) option
svy: tabulate ethgrp2 CB, row se ci format(%7.3f)
svy: tabulate ethgrp2 CB, col se ci format(%7.3f)
svy: tabulate Education CB, row se ci format(%7.3f)
svy: tabulate Education CB, col se ci format(%7.3f)
*******************
// nutritional distribution
                                                  //
//
**********************
svy: mean EnergykJ, over(CB)
test [EnergykJ]1 = [EnergykJ]2 = [EnergykJ]3, mtest(b)
svy: mean Energy6, over(CB)
test [Energy6_9]1 = [Energy6_9]2 = [Energy6_9]3, mtest(b)
svy: mean Energy9, over(CB)
test [Energy9_12]1 = [Energy9_12]2 = [Energy9_12]3, mtest(b)
svy: mean Energy12, over(CB)
test [Energy12_14]1 = [Energy12_14]2 = [Energy12_14]3, mtest(b)
```

```
svy: mean Energy14, over(CB)
test [Energy14_17]1 = [Energy14_17]2 = [Energy14_17]3, mtest(b)
svy: mean Energy17, over(CB)
test [Energy17_20]1 = [Energy17_20]2 = [Energy17_20]3, mtest(b)
svy: mean Energy20, over(CB)
test [Energy20_22]1 = [Energy20_22]2 = [Energy20_22]3, mtest(b)
svy: mean Energy22, over(CB)
test [Energy22_6]1 = [Energy22_6]2 = [Energy22_6]3, mtest(b)
svy: mean Carbohydrateg, over(CB)
test [Carbohydrateg]1 = [Carbohydrateg]2 = [Carbohydrateg]3, mtest(b)
svy: mean Carb6, over(CB)
test [Carb6_9]1 = [Carb6_9]2 = [Carb6_9]3, mtest(b)
svy: mean Carb9, over(CB)
test [Carb9_12]1 = [Carb9_12]2 = [Carb9_12]3, mtest(b)
svy: mean Carb12, over(CB)
test [Carb12_14]1 = [Carb12_14]2 = [Carb12_14]3, mtest(b)
svy: mean Carb14, over(CB)
test [Carb14_17]1 = [Carb14_17]2 = [Carb14_17]3, mtest(b)
svy: mean Carb17, over(CB)
test [Carb17_20]1 = [Carb17_20]2 = [Carb17_20]3, mtest(b)
svy: mean Carb20, over(CB)
test [Carb20_22]1 = [Carb20_22]2 = [Carb20_22]3, mtest(b)
svy: mean Carb22, over(CB)
test [Carb22_6]1 = [Carb22_6]2 = [Carb22_6]3, mtest(b)
svy: mean Sugar6, over(CB)
test [Sugar6_9]1 = [Sugar6_9]2 = [Sugar6_9]3, mtest(b)
svy: mean Sugar9, over(CB)
test [Sugar9_12]1 = [Sugar9_12]2 = [Sugar9_12]3, mtest(b)
svy: mean Sugar12, over(CB)
test [Sugar9_12]1 = [Sugar9_12]2 = [Sugar9_12]3, mtest(b)
svy: mean Sugar14, over(CB)
test [Sugar14_17]1 = [Sugar14_17]2 = [Sugar14_17]3, mtest(b)
svy: mean Sugar17, over(CB)
test [Sugar17_20]1 = [Sugar17_20]2 = [Sugar17_20]3, mtest(b)
```

```
svy: mean Sugar20, over(CB)
test [Sugar20_22]1 = [Sugar20_22]2 = [Sugar20_22]3, mtest(b)
svy: mean Sugar22, over(CB)
test [Sugar22_6]1 = [Sugar22_6]2 = [Sugar22_6]3, mtest(b)
svy: mean Starch6, over(CB)
test [Starch6_9]1 = [Starch6_9]2 = [Starch6_9]3, mtest(b)
svy: mean Starch9, over(CB)
test [Sugar12_14]1 = [Sugar12_14]2 = [Sugar12_14]3, mtest(b)
svy: mean Starch12, over(CB)
test [Starch12_14]1 = [Starch12_14]2 = [Starch12_14]3, mtest(b)
svy: mean Starch14, over(CB)
test [Starch14_17]1 = [Starch14_17]2 = [Starch14_17]3, mtest(b)
svy: mean Starch17, over(CB)
test [Starch17_20]1 = [Starch17_20]2 = [Starch17_20]3, mtest(b)
svy: mean Starch20, over(CB)
test [Starch20_22]1 = [Starch20_22]2 = [Starch20_22]3, mtest(b)
svy: mean Starch22, over(CB)
test [Starch20_22]1 = [Starch20_22]2 = [Starch20_22]3, mtest(b)
svy: mean Fibre6, over(CB)
test [Starch22_6]1 = [Starch22_6]2 = [Starch22_6]3, mtest(b)
gen Fibreg = Fibre6 + Fibre9 + Fibre12 + Fibre14 + Fibre17 + Fibre20 + Fibre22
svy: mean Fibreg, over(CB)
test [Fibreg]1 = [Fibreg]2 = [Fibreg]3, mtest(b)
svy: mean Fibre9, over(CB)
test [Fibre9_12]1 = [Fibre9_12]2 = [Fibre9_12]3, mtest(b)
svy: mean Fibre12, over(CB)
test [Fibre12_14]1 = [Fibre12_14]2 = [Fibre12_14]3, mtest(b)
svy: mean Fibre14, over(CB)
test [Fibre14_17]1 = [Fibre14_17]2 = [Fibre14_17]3, mtest(b)
svy: mean Fibre17, over(CB)
test [Fibre17_20]1 = [Fibre17_20]2 = [Fibre17_20]3, mtest(b)
svy: mean Fibre20, over(CB)
test [Fibre20_22]1 = [Fibre20_22]2 = [Fibre20_22]3, mtest(b)
svy: mean Fibre22, over(CB)
```

```
test [Fibre22_6]1 = [Fibre22_6]2 = [Fibre22_6]3, mtest(b)
svy: mean NMES6, over(CB)
test [NMES6_9]1 = [NMES6_9]2 = [NMES6_9]3, mtest(b)
svy: mean NMES9, over(CB)
test [NMES9_12]1 = [NMES9_12]2 = [NMES9_12]3, mtest(b)
svy: mean NMES12, over(CB)
test [NMES12_14]1 = [NMES12_14]2 = [NMES12_14]3, mtest(b)
svy: mean NMES14, over(CB)
test [NMES14_17]1 = [NMES14_17]2 = [NMES14_17]3, mtest(b)
svy: mean NMES17, over(CB)
test [NMES17_20]1 = [NMES17_20]2 = [NMES17_20]3, mtest(b)
svy: mean NMES20, over(CB)
test [NMES20_22]1 = [NMES20_22]2 = [NMES20_22]3, mtest(b)
svy: mean NMES22, over(CB)
svy: mean CHO, over(CB)
test [CHOpctotE]1 = [CHOpctotE]2 = [CHOpctotE]3, mtest(b)
svy: mean Proteing, over(CB)
test [Proteing]1 = [Proteing]2 = [Proteing]3, mtest(b)
svy: mean Prot6, over(CB)
test [Prot6_9]1 = [Prot6_9]2 = [Prot6_9]3, mtest(b)
svy: mean Prot9, over(CB)
test [Prot9_12]1 = [Prot9_12]2 = [Prot9_12]3, mtest(b)
svy: mean Prot12, over(CB)
test [Prot12_14]1 = [Prot12_14]2 = [Prot12_14]3, mtest(b)
svy: mean Prot14, over(CB)
test [Prot14_17]1 = [Prot14_17]2 = [Prot14_17]3, mtest(b)
svy: mean Prot17, over(CB)
test [Prot17_20]1 = [Prot17_20]2 = [Prot17_20]3, mtest(b)
svy: mean Prot20, over(CB)
test [Prot20_22]1 = [Prot20_22]2 = [Prot20_22]3, mtest(b)
svy: mean Prot22, over(CB)
test [Prot22_6]1 = [Prot22_6]2 = [Prot22_6]3, mtest(b)
```

```
svy: mean Proteinp, over(CB)
test [ProteinpctotE]1 = [ProteinpctotE]2 = [ProteinpctotE]3, mtest(b)
svy: mean Fatg, over(CB)
test [Fatg]1 = [Fatg]2 = [Fatg]3, mtest(b)
svy: mean Fat6, over(CB)
test [Fat6_9]1 = [Fat6_9]2 = [Fat6_9]3, mtest(b)
svy: mean Fat9, over(CB)
test [Fat9_12]1 = [Fat9_12]2 = [Fat9_12]3, mtest(b)
svy: mean Fat12, over(CB)
test [Fat12_14]1 = [Fat12_14]2 = [Fat12_14]3, mtest(b)
svy: mean Fat14, over(CB)
test [Fat14_17]1 = [Fat14_17]2 = [Fat14_17]3, mtest(b)
svy: mean Fat17, over(CB)
test [Fat17_20]1 = [Fat17_20]2 = [Fat17_20]3, mtest(b)
svy: mean Fat20, over(CB)
test [Fat20_22]1 = [Fat20_22]2 = [Fat20_22]3, mtest(b)
svy: mean Fat22, over(CB)
test [Fat22_6]1 = [Fat22_6]2 = [Fat22_6]3, mtest(b)
svy: mean Fatp, over(CB)
test [FatpctotE]1 = [FatpctotE]2 = [FatpctotE]3, mtest(b)
svy: mean Alcoholg, over(CB)
test [Alcoholg]1 = [Alcoholg]2 = [Alcoholg]3, mtest(b)
svy: mean Alc6, over(CB)
test [Alc6_9]1 = [Alc6_9]2 = [Alc6_9]3, mtest(b)
svy: mean Alc9, over(CB)
test [Alc9_12]1 = [Alc9_12]2 = [Alc9_12]3, mtest(b)
svy: mean Alc12, over(CB)
test [Alc12_14]1 = [Alc12_14]2 = [Alc12_14]3, mtest(b)
svy: mean Alc14, over(CB)
test [Alc14_17]1 = [Alc14_17]2 = [Alc14_17]3, mtest(b)
svy: mean Alc17, over(CB)
test [Alc14_17]1 = [Alc14_17]2 = [Alc14_17]3, mtest(b)
```

```
svy: mean Alc20, over(CB)
test [Alc14_17]1 = [Alc14_17]2 = [Alc14_17]3, mtest(b)
svy: mean Alcoholp, over(CB)
test [AlcoholpctotE]1 = [AlcoholpctotE]2 = [AlcoholpctotE]3, mtest(b)
svy: tabulate cigsta3 CB, col se ci format(%7.3f)
svy: tabulate dnnow CB, col se ci format(%7.3f)
svy: tabulate hibp CB, col se ci format(%7.3f)
sum MVP [weight=wti1to8] if CB ==1 , det
sum MVP [weight=wti1to8] if CB ==2 , det
sum MVP [weight=wti1to8] if CB ==3 , det
svy: mean MVP, over(CB)
svy: mean logMVP, over(CB) eform
test [logMVP]1 = [logMVP]2 = [logMVP]3, mtest(b)
disp exp(.731059) - 1
dis exp(.6768489) -1
dis exp(.7852691) -1
disp exp(.6239265) - 1
dis exp(.571165) -1
dis exp(.6766879) -1
disp exp(.7273621) - 1
dis exp(.684545) -1
dis exp(.7701791) -1
svy: mean logalc, over(CB)
disp exp(2.035795) - 1
dis exp(1.933326) -1
dis exp(2.138264) -1
****************
// re-weighting use wtn to see the BMI,wc measurements //
//
****************
svyset area [pweight = wtn1to8], strata(gor)
svy: mean wst, over(CB)
test [wstval]1 = [wstval]2 = [wstval]3, mtest(b)
gen Men = Sex == 1
svy, subpop(Men): mean wst, over(CB)
```

```
test [wstval]1 = [wstval]2 = [wstval]3, mtest(b)
gen Women = Sex == 2
svy, subpop(Women): mean wst, over(CB)
test [wstval]1 = [wstval]2 = [wstval]3, mtest(b)
svy: mean bmi, over(CB)
test [bmival]1 = [bmival]2 = [bmival]3, mtest(b)
****************
// re-weighting use wtb to see the blood test results //
//
****************
svyset area [pweight = wtb1to8], strata(gor)
svy: mean HDL, over(CB)
test [HDL]1 = [HDL]2 = [HDL]3, mtest(b)
svy: mean Chol, over(CB)
test [Chol]1 = [Chol]2 = [Chol]3, mtest(b)
svy: mean LDL, over(CB)
test [LDL]1 = [LDL]2 = [LDL]3, mtest(b)
svy: mean Trig, over(CB)
test [Trig]1 = [Trig]2 = [Trig]3, mtest(b)
gen DM = A1C <= 6.5 if !missing(A1C)
svy, subpop(DM): mean Glucose, over(CB)
test [Glucose]1 = [Glucose]2
test [Glucose]1 = [Glucose]2 = [Glucose]3, mtest(b)
svy, subpop(DM): mean A1C, over(CB)
test [A1C]1 = [A1C]2
test [A1C]1 = [A1C]2 = [A1C]3, mtest(b)
svy: tabulate DM CB, col se ci format(%7.3f)
svy, subpop(DM): mean Glucose, over(CB)
test [Glucose]1 = [Glucose]2
test [Glucose]1 = [Glucose]2 = [Glucose]3, mtest(b)
svy, subpop(DM): mean A1C, over(C)
```

```
test [A1C]1 = [A1C]2
test [A1C]1 = [A1C]2 = [A1C]3, mtest(b)
svy: tabulate DM C, col se ci format(%7.3f)
svy, subpop(DM): mean logGlu, over(CB)
test [logGlu]1 = [logGlu]2 = [logGlu]3, mtest(b)
dis exp(1.642848)
dis exp(1.632226)
dis exp(1.653471)
dis exp(1.620347)
dis exp(1.606447)
dis exp(1.634246)
dis exp(1.629356)
dis exp(1.620271)
dis exp(1.63844)
svy, subpop(DM): mean logA1C, over(CB)
test [logA1C]1 = [logA1C]2 = [logA1C]3, mtest(b)
dis exp(1.699581)
dis exp(1.69296)
dis exp(1.706203)
dis exp(1.691608)
dis exp(1.683897)
dis exp(1.699318)
dis exp(1.705623)
dis exp(1.700665)
dis exp(1.710581)
svy: mean logChol, over(CB)
dis exp(1.598818)
dis exp(1.577698)
dis exp(1.619939)
dis exp(1.55251)
dis exp(1.530408)
dis exp(1.574613)
dis exp(1.599389)
```

```
dis exp(1.583391)
dis exp(1.615388)
test [logChol]1 = [logChol]2 = [logChol]3, mtest(b)
svy: mean logHDL, over(CB)
dis exp(.3293169)
dis exp(.3026793)
dis exp(.3559545)
dis exp(.2749379)
dis exp(.2476816)
dis exp(.3021941)
dis exp(.3269002)
dis exp(.3062623)
dis exp(.3475381)
test [logHDL]1 = [logHDL]2 = [logHDL]3, mtest(b)
svy: mean logLDL, over(CB)
dis exp(1.058635)
dis exp(1.028391)
dis exp(1.08888)
dis exp(1.018181)
dis exp(.984431)
dis exp(1.051931)
dis exp(1.075229)
dis exp(1.051369)
dis exp(1.09909)
test [logLDL]1 = [logLDL]2 = [logLDL]3, mtest(b)
svy: mean logTG, over(CB)
dis exp(.1273876)
dis exp(.0777152)
dis exp(.17706)
dis exp(.1012169)
dis exp(.0460972)
```

```
dis exp(.1563366)
dis exp(.0983298)
dis exp(.0607423)
dis exp(.1359172)
test [logTG]1 = [logTG]2 = [logTG]3, mtest(b)
**************
// Analysing NDNS survey data in stata
// for CW3CB3 survey data analysis on hypertension
// date created: 2018-08-06
// manipulation of the data was done in R
// import data from CW3CB3_7sregss.dta
// change the path accordingly
**************
use "../CW3CB3_7regss.dta", clear
label define smoking 1 "current" 2 "ex-smoker" 3 "Never"
label values cigsta3 smoking
label define gender 1 "Men" 2 "Women"
label values Sex gender
label define paid 1 "No" 2 "Yes"
label values paidemployment paid
label define ethnicity5 1 "White" 2 "Mixed" 3 "Black" 4 "Asian" 5 "Other"
label values ethgrp5 ethnicity5
label define ethnicity2 1 "White" 2 "non-White"
label values ethgrp2 ethnicity2
gen Married = 1 if MarStat == 2 | MarSt2 == 2
replace Married = 1 if MarSt2 == 3
replace Married = 0 if Married !=1
tab Married
tab MarSt2
tab MarStat
label define Partner 0 "No" 1 "Yes"
label values Married Partner
gen Education = qual7 == 1
label define Ed 0 "lower than Degree" 1 "Degree or higher"
label values Education Ed
replace Education = . if qual7 >100
tab Educ
egen BMIcat = cut(bmival), at(10, 25, 30, 40, 60)
tab BMIcat
```

```
********************
// variables need to be log transformed
*****************
gen logalc = ln(Alcoholg+1)
summ logalc, detail
gen logMVP = ln(MVPAtime+1)
summ logMVP, detail
gen logGlu = ln(Glucose)
summ logGlu, detail
gen logA1C = ln(A1C)
summ logA1C, detail
gen logChol = ln(Chol)
summ logChol, detail
gen logLDL = ln(LDL)
gen logHDL = ln(HDL)
gen logTG = ln(Trig)
*******************
// weighting use wti to see the individual results //
//
*****************
// weighting with individual weights, area is primary sampling unit,
// gor is the cluster variable
svyset area [pweight = wti1to8], strata(gor)
svydescribe wti // describe the weighted data set
***************
// re-weighting use wtn to see the BMI,wc measurements //
****************
svyset area [pweight = wtn1to8], strata(gor)
gen Men = Sex == 1 // n of men = 2537
gen Women = Sex == 2 // n of women = 3618
svy, subpop(Men): tab hibp, se ci format(%7.3f)
svy, subpop(Women): tab hibp, se ci format(%7.3f)
svy, subpop(Men): mean age, over(hibp)
test [age]1 = [age]0
svy, subpop(Women): mean age, over(hibp)
test [age]1 = [age]0
```

```
svy, subpop(Men): mean wst, over(hibp)
test [wstval]1 = [wstval]0
svy, subpop(Women): mean wst, over(hibp)
test [wstval]1 = [wstval]0
svy, subpop(Men): tabulate CB hibp, col se ci format(%7.3f)
svy, subpop(Women): tabulate CB hibp, col se ci format(%7.3f)
svy, subpop(Men): tabulate Country hibp, col se ci format(%7.3f)
svy, subpop(Women): tabulate Country hibp, col se ci format(%7.3f)
svy, subpop(Men): tabulate SurveyYear hibp, col se ci format(%7.3f)
svy, subpop(Women): tabulate SurveyYear hibp, col se ci format(%7.3f)
svy, subpop(Men): tabulate ethgrp2 hibp, col se ci format(%7.3f)
svy, subpop(Women): tabulate ethgrp2 hibp, col se ci format(%7.3f)
svy, subpop(Men): tabulate Edu hibp, col se ci format(%7.3f)
svy, subpop(Women): tabulate Edu hibp, col se ci format(%7.3f)
svy, subpop(Men): tabulate cigsta3 hibp, col se ci format(%7.3f)
svy, subpop(Women): tabulate cigsta3 hibp, col se ci format(%7.3f)
svy, subpop(Men): tabulate Married hibp, col se ci format(%7.3f)
svy, subpop(Men): mean logMVP, over(hibp)
test [logMVP]1 = [logMVP]0
disp exp(.9234363) - 1
dis exp(.8457101) -1
dis exp(1.001163) -1
disp exp(.828635) - 1
dis exp(.730244) -1
dis exp(.9270261) -1
svy, subpop(Women): mean logMVP, over(hibp)
test [logMVP]1 = [logMVP]0
disp exp(.5916676) - 1
dis exp(.5473043) -1
dis exp(.6360309) -1
```

```
disp exp(.4231103) - 1
dis exp(.3536885) -1
dis exp(.4925322) -1
svy: mean logalc, over(CB)
disp exp(2.035795) - 1
dis exp(1.933326) -1
dis exp(2.138264) -1
svy, subpop(Men): mean bmi, over(hibp)
test [bmival]1 = [bmival]0
svy, subpop(Women): mean bmi, over(hibp)
test [bmival]1 = [bmival]0
svy, subpop(Men): mean EnergykJ, over(hibp)
test [EnergykJkJ]1 = [EnergykJkJ]0
svy, subpop(Women): mean EnergykJ, over(hibp)
test [EnergykJkJ]1 = [EnergykJkJ]0
svy, subpop(Men): mean Carbo, over(hibp)
test [Carbohydrateg]1 = [Carbohydrateg]0
svy, subpop(Women): mean Carbohydrateg, over(hibp)
test [Carbohydrateg]1 = [Carbohydrateg]0
svy, subpop(Men): mean Proteing, over(hibp)
test [Proteing]1 = [Proteing]0
svy, subpop(Women): mean Carbohydrateg, over(hibp)
test [Carbohydrateg]1 = [Carbohydrateg]0
svy: tabulate Sex hibp, col se ci format(%7.3f)
svy: logistic hibp i.CB
svy: logistic hibp i.CB#i.Sex
test 2.CB#2.Sex
svy: tabulate paid hibp, col se ci format(%7.3f)
```

```
gen DM = A1C > 6.5 if !missing(A1C)
svyset area [pweight = wtb1to8], strata(gor)
svy, subpop(Men): tabulate DM hibp, col se ci format(%7.3f)
svy, subpop(Women): tabulate DM hibp, col se ci format(%7.3f)
svy, subpop(Men): tabulate Married hibp, col se ci format(%7.3f)
svy, subpop(Women): tabulate Married hibp, col se ci format(%7.3f)
svy, subpop(Men): mean eqvinc, over(hibp)
test [eqvinc]1 = [eqvinc]0
svy, subpop(Women): mean eqvinc, over(hibp)
test [eqvinc]1 = [eqvinc]0
**********************
    Building the GLM model
    date: 07/08/2018
**
***********************************
svyset area [pweight = wtn1to8], strata(gor)
// crude association between CB and hypertension
svy, subpop(Men): logistic hibp i.CB
svy, subpop(Women): logistic hibp i.CB
// in non DM
svy, subpop(Men if DM != 1): logistic hibp i.CB
svy, subpop(Women if DM != 1): logistic hibp i.CB
// looking for confounders one by one
// Age: -> confounder
svy, subpop(Men): logistic hibp i.CB age
test age
svy, subpop(Women): logistic hibp i.CB age
test age
svy, subpop(Men): logistic hibp i.CB##c.age
svy, subpop(Women): logistic hibp i.CB##c.age
test 2.CB#c.age 3.CB#c.age // no interaction
// Partner -> confounder
svy, subpop(Men): logistic hibp i.CB i.Married
test 1.Married
```

```
svy, subpop(Women): logistic hibp i.CB i.Married
test 1.Married
svy, subpop(Men): logistic hibp i.CB##i.Married
svy, subpop(Women): logistic hibp i.CB##i.Married
test 2.CB#1.Married 3.CB#1.Married // -> no interaction
// Income -> not confounder for men but confounder for women
svy, subpop(Men): logistic hibp i.CB eqvinc
test eqvinc
svy, subpop(Women): logistic hibp i.CB eqvinc
test eqvinc
svy, subpop(Men): logistic hibp i.CB##c.eqvinc
svy, subpop(Women): logistic hibp i.CB##c.eqvinc
test 2.CB#c.eqvinc 3.CB#c.eqvinc // -> (probably) no interaction
// Education -> confounder
svy, subpop(Men): logistic hibp i.CB i.Edu
test 1.Edu
svy, subpop(Women): logistic hibp i.CB i.Edu
test 1.Edu
svy, subpop(Men): logistic hibp i.CB##i.Edu
svy, subpop(Women): logistic hibp i.CB##i.Edu
test 2.CB#1.Edu 3.CB#1.Edu // no interaction
// BMI -> confounder
svy, subpop(Men): logistic hibp i.CB bmi
test bmi
svy, subpop(Women): logistic hibp i.CB bmi
test bmi
svy, subpop(Men): logistic hibp i.CB##c.bmi
svy, subpop(Women): logistic hibp i.CB##c.bmi
test 2.CB#c.bmival 3.CB#c.bmival // no ineraction
// paid employment -> not confounder
svy, subpop(Men): logistic hibp i.CB i.paid
test 2.paid
svy, subpop(Women): logistic hibp i.CB i.paid
test 2.paid
svy, subpop(Men): logistic hibp i.CB##i.paid
svy, subpop(Women): logistic hibp i.CB##i.paid
test 2.CB#2.paid 3.CB#2.paid
```

```
// Smoking -> confounder
svy, subpop(Men): logistic hibp i.CB i.cigsta3
test 2.cigsta3 3.cigsta3
svy, subpop(Women): logistic hibp i.CB i.cigsta3
test 2.cigsta3 3.cigsta3
svy, subpop(Men): logistic hibp i.CB##i.cigsta3
svy, subpop(Women): logistic hibp i.CB##i.cigsta3
test 2.CB#2.cigsta3 2.CB#3.cigsta3 3.CB#2.cigsta3 3.CB#3.cigsta3 // no interaction
// Total energy intake -> confounder
svy, subpop(Men): logistic hibp i.CB EnergykJ
test EnergykJ
svy, subpop(Women): logistic hibp i.CB EnergykJ
test EnergykJ
svy, subpop(Men): logistic hibp i.CB##c.EnergykJ
svy, subpop(Women): logistic hibp i.CB##c.EnergykJ
test 2.CB#c.EnergykJkJ 3.CB#c.EnergykJkJ // no interaction
// ethnicity -> not confounder
svy, subpop(Men): logistic hibp i.CB i.ethgrp2
test 2.eth
svy, subpop(Women): logistic hibp i.CB i.ethgrp2
test 2.eth
svy, subpop(Men): logistic hibp i.CB##i.ethgrp2
svy, subpop(Women): logistic hibp i.CB##i.ethgrp2
test 2.CB#2.ethgrp2 // no interaction
// Alcohol -> not confounder for men but confounder for women
svy, subpop(Men): logistic hibp i.CB Alcoholg
test Alcoholg
svy, subpop(Women): logistic hibp i.CB Alcoholg
test Alcoholg
svy, subpop(Men): logistic hibp i.CB##c.Alcoholg
svy, subpop(Women): logistic hibp i.CB##c.Alcoholg
test 2.CB#c.Alcoholg 3.CB#c.Alcoholg // no interaction
// logMVP -> not confounder
svy, subpop(Men): logistic hibp i.CB logMVP
test logMVP
svy, subpop(Women): logistic hibp i.CB logMVP
test logMVP
svy, subpop(Men): logistic hibp i.CB##c.logMVP
svy, subpop(Women): logistic hibp i.CB##c.logMVP
test 2.CB#c.logMVP 3.CB#c.logMVP // no interaction
```

```
// Preliminary model includes all possible confounders in Men

gen age2 = age^2

svy, subpop(Men): logistic hibp i.CB age i.Married i.Edu bmi i.cig EnergykJ

linktest

svy, subpop(Men): logistic hibp i.CB age i.Married i.Edu wst i.cig EnergykJ

linktest

svy, subpop(if Men & DM != 1): logistic hibp i.CB age i.Married i.Edu bmi i.cig EnergykJ

linktest

svy, subpop(if Men & DM != 1): logistic hibp i.CB age i.Married i.Edu bmi i.cig EnergykJ

linktest

// Preliminary model includes all possible confounders in Women
```

svy, subpop(Women): logistic hibp i.CB age i.Married eqvinc i.Edu bmi i.cig EnergykJ Alcoholg
linktest
svy, subpop(Women): logistic hibp i.CB age i.Married eqvinc i.Edu wst i.cig EnergykJ Alcoholg

svy, subpop(Women): logistic hibp i.CB age i.Married eqvinc i.Edu wst i.cig EnergykJ Alcoholg linktest

svy, subpop(if Women & DM != 1): logistic hibp i.CB age i.Married eqvinc i.Edu bmi i.cig EnergykJ Alcoh linktest

svy, subpop(if Women & DM != 1): logistic hibp i.CB age i.Married eqvinc i.Edu wst i.cig EnergykJ Alcoh linktest