

Universidade Federal do Rio Grande do Norte

EGM0001 - SISTEMAS DINÂMICOS E SERVOMECANISMOS

Atividade Computacional 01

Controle de Sistema de 1^a Ordem

Discente: Camila Barbosa Gomes de Araújo Docente: Wallace Moreira Bessa

1 Modelo proposto

O sistema a ser controlado trata-se do subsistema Motor-Roda do Rover Perseverance. O modelo dinâmico proposta para esse subsistema está descrito pela Equação 1.

$$J\dot{\omega} = -\mu_v \omega - \mu_d sgn(\omega) + Ki \tag{1}$$

Onde:

- J: Inércia
- ω : Velocidade angular
- μ_v : Coeficiente de Atrito Dinâmico
- μ_d: Coeficiente de Atrito Estático
- K: Constante do Motor
- i: Corrente

Para fins de implementação, serão considerados:

- $J = 2 \times 10^{-4}$
- $K = 4 \times 10^{-2}$

Nesse trabalho, será avaliado o desempenho do controlador para diferentes valores de ω_d (Velocidade angular desejada), μ_v , μ_d e λ , considerando a lei de controle descrita na Equação 2.

$$i = \frac{J(\dot{\omega} - \lambda e)}{K} \tag{2}$$

Sendo:

- $e = \omega \omega_d \longrightarrow \text{Erro}$
- $\lambda \longrightarrow \text{Lambda}$ (Coeficiente de aprendizado)

Nas seções seguintes, serão tratadas a implementação do subsistema em Python, os resultados com gráficos do comportamento do sistema e as devidas conclusões sobre o experimento.

2 Implementação do Sistema

A implementação do sistema proposto pode ser dividida em x partes, sendo elas:

- 1. Declaração de Variáveis iniciais
- 2. Iterar no período de tempo
 - (a) Calcula-se o erro entre a velocidade angular desejada e a atual
 - (b) Calcula-se a corrente com a lei de controle descrita na Equação 2
 - (c) Utiliza-se do Runge-Kutta para calcular a velocidade angular no instante seguinte

3. Salvo os vetores com os valores das velocidades, plota-se a velocidade angular do conjunto Motor-Roda no decorrer do tempo

No trecho de código abaixo, a função principal do código é exposta, nela, o loop principal que calcula os valores a serem plotados para análise é calculado.

```
def generate_values(tf, W, Wd, _lambda, J, K, Ud, Uv):
_w = [W]
_e = []
_i = []
for t in range(tf*1000-1):
    e = W - Wd
    _e.append(e) ### adiciona o erro ao vetor de erros
    W = rungeKutta(W, 0.001, Uv, Ud, K, i, J)
    _w.append(W) ### salva na lista o prox valor de w
_e.append(W - Wd)
_i.append(J * (-1 * _lambda * e) / K)
return _w, _e, _i
```

O código pode ser encontrado em https://github.com/camilabga/rover-control. Para análise, foram analisados sistemas com variações de ω_d , μ_v , μ_d e λ .

3 Resultados e Conclusões

Com o objetivo de analisar o comportamento do sistema com a alteração das variáveis ω_d , μ_v , μ_d e λ , foram realizadas diversas simulações. As Figuras 1, 2 e 3 demonstram como a velocidade angular controlada se comporta com a variação de λ , μ_d e μ_v , respectivamente.

Sobre a influência do λ no controle do sistema, como coeficiente de aprendizado, é possível perceber que ele influencia diretamente no tempo de convergência do sistema e no esforço de controle. Quanto maior o λ , mais rapidamente o sistema alcança a velocidade angular desejada. Nas figuras 1a e 1b, é possível perceber esse comportamento, com os valores iniciais de corrente maiores com o aumento do λ e com a diminuição do raio no aumento da velocidade, também com o aumento de λ .

Ao analisar a influência do coeficiente de atrito estático (μ_d), a primeira observação clara é que o sistema não alcança a velocidade angular desejada quando μ_d é diferente de zero, ao invés disso, ele estabiliza em valores inferiores. E quanto maior o μ_d , menor o valor da velocidade que o sistema converge. Isso acontece pois a lei de controle implementada no controlador proposto é simplificada e não leva em consideração o atrito. Esse comportamento é exemplificado nas figuras 2a e 2b.

Pelos mesmos motivos de μ_d , o coeficiente de atrito dinâmico (μ_v) não alcança a velocidade angular desejada quando não nulo. Todavia, além do fato de que a lei de controle implementada não leva em consideração o atrito, o μ_v tem um impacto consideravelmente maior que o μ_d no comportamento do motor. Isso é explicado pela própria equação que descreve o sistema (Equação 1), já que o μ_v está sendo multiplicado pela velocidade angular (ω) e o μ_d pela função sinal de ω , valores apenas entre -1 e 1. Esse comportamento é exemplificado na figura 3, na qual, podemos comparar para o mesmo valor de $\mu_v = 0.0001$ com o de μ_d na figura 2. No caso, na Figura 2 convergindo com um erro de aproximadamente 23 e o do μ_v em 8.

Para a variação de ω_d , a velocidade angular desejada, os comportamentos destacados das variáveis acima continuam válidos, a principal diferença se dará em função do target e da corrente necessária para convergência, que será diretamente proporcional a variação do ω_d .

(a) Gráfico da velocidade angular no decorrer do tempo com a variação de λ

(b) Gráfico da corrente no decorrer do tempo com a variação de λ

Figura 1: Plot com os valores fixos de: $\omega_d=25,\,\mu_d$ e $\mu_v=0$

(a) Gráfico da velocidade angular no decorrer do tempo com a variação de μ_d

(b) Gráfico da corrente no decorrer do tempo com a variação de μ_d

Figura 2: Plot com os valores fixos de: $\omega_d=25,\,\lambda=0.3$ e $\mu_v=0$

(a) Gráfico da velocidade angular no decorrer do tempo com a variação de μ_v

(b) Gráfico da corrente no decorrer do tempo com a variação de μ_v

Figura 3: Plot com os valores fixos de: $\omega_d=25,\,\lambda=0.3$ e $\mu_d=0$