Part III. Autoware Programming (2 hours)

숭실대학교 ICHTHUS 팀 김강희 교수(khkim@ssu.ac.kr) 이효은, 최규진, 백한나 연구원

- pcap play
- Lidar sensors
- nodelet lidar driver

pcap Play

Step 1: Setup, Build, Install nodelet_lidar_driver

- # change to home directory \$ cd
- \$ cp -r ~/shared_dir/pcap_demo/nodelet_lidar_driver Autoware/src/autoware/core_perception
- \$ cd Autoware
- \$ colcon build --packages-select nodelet_lidar_driver
- # setup, build and install nodelet_lidar_driver
- # to register nodelet_lidar_driver package into ROS pkg path
- \$ gnome-terminal # prepare another terminal to run rviz
- \$ vi install/nodelet_lidar_driver/share/nodelet_lidar_driver/cfg/ nodelet_frontend_default.yaml
 - # lidar num 값 설정: 3

\$ source install/setup.bash

- # pcap file 경로 설정: "/home/autoware/shared_dir/pcap_demo/20190821_kcity_ouster_degree0.pcap" # pcap wait factor 값 설정: 0.6
- \$ roslaunch nodelet_lidar_driver nodelet_lidar_driver.launch
- [terminal] \$ rviz

Note: Ouster OS-1-64 라이더를 구동하고 socket를 통해 lidar msg를 수신하는 경우에는 nodelet_lidar_driver 실행 전에 다음 명령어를 먼저 입력해야 함 \$ nc 192.168.1.2 7501 set_udp_ip 192.168.1.77

자율주행 플랫폼 # 192.168.1.2 ouster ip, 192.168.1.77 host ip

Step 2: Run 'rviz'

Step 2: Run 'rviz': /points_raw (lidar_num == 1)

Step 2: Run 'rviz': /points_raw (lidar_num == 3)

Step 2: Run 'rviz': /vlp1/points_raw

Step 2: Run 'rviz': /vlp2/points_raw

Step 2: Run 'rviz': /vlp3/points_raw

LiDAR Sensors

Lidar : Geometry

Velodyne VLP16

Ouster OS-1-64

수식 $x = r \cos \theta \cos \varphi$ $y = -r \sin \theta \cos \varphi$ $z = r \sin \varphi$

Lidar: Message Structure (VLP16)

Velodyne VLP16 (Single Return Mode)

Azimuth N+23 (Firing sequence 23) ←

size	Data Block 0	Data Block 1		Data Block 11
2 bytes	Flag x FFEE	Flag x FFEE		Flag x FFEE
2 bytes	Azimuth N	Azimuth N+2		Azimuth N+22
3 bytes	Channel 0 Data	Channel 0 Data		Channel 0 Data
		Channel 1~14 Data		Channel 1~14 Data
3 bytes	Channel 15 Data	Channel 15 Data		Channel 15 Data
3 bytes	Channel 0 Data	Channel 0 Data		Channel 0 Data
		Channel 1~14 Data		Channel 1~14 Data
3 bytes	Channel 15 Data	Channel 15 Data		Channel 15 Data
ruth N 을 의미	TimeStamp (4 bytes)`			
ng sequence 0)	→ Azimuth N+1 필드가 없지만,			Factory (2 bytes)
	Azimuth N+1 을 의미 (Firing sequence 1)		총 1206 bytes	

Lidar: Message Structure (VLP16)

- Firing sequence
 - 하나의 azimuth 에 대해서 모든 채널들의 레이저가 발사됨을 의미
 - 레이저 재충전 시간이 포함되어 있음
- Laser channel
 - 하나의 channel 은 단일 903 nm 레이저 emitter 및 detector 쌍임
 - 각 channel 은 센서의 수평면을 기준으로 특정 높이 각으로 고정됨
 - 각 channel 은 고유한 laser ID 번호가 부여됨
- Data point
 - data point 는 하나의 channel 로부터 발사된 laser 파동의 반사 신호 에 대한 측정값
 - data point 는 3 byte (distance 2 bytes, calibrated reflectivity 1 byte) 로 구성됨
 - ❖distance 는 부호 없는 정수
 - ❖calibrated reflectivity 는 NIST 기준으로 하고, 0~255의 크기

Lidar: Message Structure (VLP16)

- Azimuth
 - laser firing 들의 사이 각으로서 2 bytes 크기임
 - azimuth 값은 부호 없는 정수로 1/100 의 각도를 표현함 ❖예: 27742 → 277.42°
- Data block
 - 16개 laser channel 로 구성된 2개의 firing sequence 를 표현함
 - 각 패킷에는 12개의 data block , 24개의 firing sequence 가 포함됨
- Time stamp
 - 4 bytes 크기의 부호 없는 정수로서 단위는 µs 임
 - 첫번째 data block 의 첫번째 firing sequence 에서 첫번째 data point 의 측정 순간을 의미함
- Factory bytes
 - 2 bytes 크기로서 모든 data 패킷에 포함됨
 - 패킷에서 azimuths 와 data point 가 구성되는 방식을 표현함

Lidar: Message Structure (OS-1-64)

Ouster OS-1-64

word	Azimuth Block 0	Azimuth Block 1		Azimuth Block 15	
word 0,1	Timestamp	Timestamp		Timestamp	
word 2[0:15]	Measurement ID	Measurement ID	Measurement ID		
word 2[16:31]	Frame ID	Frame ID		Frame ID	
word 3	Encoder Count	Encoder Count		Encoder Count	
word 4,5,6	Channel 0 Data Block	Channel 0 Data Block		Channel 0 Data Block	
word 7,8,9	Channel 1 Data Block	Channel 1 Data Block		Channel 1 Data Block	
word 193,194,195	Channel 63 Data Block	Channel 63 Data Block		Channel 63 Data Block	
word 196	Packet Status	Packet Status		Packet Status	

*word = 32 bits

Lidar: Message Structure (OS-1-64)

- Time stamp
 - ns 단위의 측정 time stamp
- Measurement ID
 - 0부터 시작하여 순차적으로 증가하는 azimuth ID
 - 512 mode 에서는 0 부터 511 까지, 1024 mode 에서는 0 부터 1023 까지, 2048 mode 에서는 0 부터 2047 까지 값을 가짐
- Frame ID
 - Lidar 의 rotation count 를 의미함
- Encoder count
 - azimuth angle 를 의미하는 encoder tick 개수
 - 0 부터 최대 90111 의 값을 가짐
 - azimuth angle 마다 2048 mode 에서는 44 ticks 가 증가하고, 1024 mode 에서는 88 ticks 가 증가하고, 512 mode 에서는 176 ticks 가 증가함

Lidar: Message Structure (OS-1-64)

- ❖ Data block (사실상 data point를 의미함)
 - 64 pixel 각각에 대한 3개의 data words 로 구성됨
 - ❖20 bits 의 range : 12 mm 단위의 거리 측정값
 - ❖16 bits 의 reflectivity: laser 반사 신호의 세기
 - ❖16 bits 의 signal photons : laser 반사 신호의 photons
 - ❖16 bits 의 ambient noise photons : 주변 noise 의 photons
- Packet status
 - Good = 0xFFFFFFFF or Bad = 0x0

멀티포즈 라이다 거치 프레임

Lidar: Timing

Velodyne VLP16

- Firing sequence timing = 55.296 µs (cannot be changed)
- Assuming lidar rotation rate = 10 hz
 - Azimuth = 0.2°
 - 18084 firings / sec
 - \bullet 753.5 messages / sec = 18084 firings / sec \times 1 message / 24 firings
 - 75.35 messages / rotation
 - 1206 bytes / message → 1 packet

Ouster OS-1-64

- ❖ Assuming 1024 mode × lidar rotation rate = 10 hz
- * Firing sequence timing = 97.656 µs (programmable by selecting mode)
 - Azimuth = 0.35°
 - 10240 firings / sec
 - 640 messages / sec = 10240 firings / sec \times 1 message / 16 firings
 - 64 messages / rotation
 - 12608 bytes / message \rightarrow 9 packets { 1472, 1480, ..., 1480, 776 }

nodelet_lidar_driver

nodelet_lidar_driver : Node Graph

*VLP16.msg *OSI64.msg time ts time ts unit8[1206] buf unit8[12608] buf unit32 size unit32 size

(형식) *PCD = point cloud

*토픽명

nodelet_frontend_default.yaml

```
###
     ### number of lidars used
     ###
     lidar num : 1
     ###
     ### pcap file used to replay
     ###
     pcap_file : "/home/autoware/shared dir/pcap demo/20190821 kcity ouster degree0.pcap"
     pcap_wait_factor: 0.6
10
11
12
     ### lidar model selection:
13
     ### 0 means VLP16 (Velodyne Puck 16 model)
     ### 1 means OSI64 (Ouster-1-64 model)
14
15
     ###
16
     mode front : 1
     mode left : 0
17
18
     mode right: 0
19
20
     ###
     ### ip address of each lidar
22
     ###
23
     ip add front : "192.168.1.2"
     ip add left : "192.168.1.202"
24
     ip add right : "192.168.1.203"
```



```
CloudIn1: # Front
  topic name: /vlp1/points raw
 pose yaw: 0
 pose pitch: 0
 pose roll: 0
 pose x: 0
 pose y: 0
 pose z: 0.0045
CloudIn2: # Left
 topic name: /vlp2/points raw
 pose yaw: 90
 pose pitch: 10
 pose roll: 0
 pose x: 0
 pose y: 0.60930
 pose z: -0.19902
CloudIn3: # Right
  topic name: /vlp3/points raw
 pose yaw: -90
 pose pitch: 10
 pose roll: 0
 pose x: 0
  pose y: -0.60930
  pose z: -0.19902
```

- ❖ lidar 기울어진 각도에 따른 yaml 파일
 - pose_yaw, pitch, roll 정보와 x, y, z 좌표 정보를 가지고 있음)
 - Autoware/src/core_perception/nodelet_lidar_driver/cfg_backend

Front lidar 각도	Left, Right 각도	.yaml 파일
	0°	Clouds_0_0_height_45.yaml
	5°	Clouds_0_5_height_45.yaml
0 °	10°	Clouds_0_10_height_45.yaml
	15°	Clouds_0_15_height_45.yaml
	20°	Clouds_0_20_height_45.yaml
5 °	0°	Clouds_5_0_height_45.yaml
	5°	Clouds_5_5_height_45.yaml
	10°	Clouds_5_10_height_45.yaml
	15°	Clouds_5_15_height_45.yaml
	20°	Clouds_5_20_height_45.yaml
10°	0°	Clouds_10_0_height_45.yaml
	5°	Clouds_10_5_height_45.yaml
	10°	Clouds_10_10_height_45.yaml
	15°	Clouds_10_15_height_45.yaml
	20°	Clouds_10_20_height_45.yaml

nodelet_lidar_driver : Source Tree

- nodelet_lidar_driver/
 - ocfg/ : .yaml files
 - cfg_backend/ : .yaml files for tf transform
 - include/ : header files
 - launch/ : launch file
 - msg/ : .msg files
 - src/ : source files

nodelet_lidar_driver : package.xml

```
<?xml version="1.0"?>
    ⊟<package format="2">
       <name>nodelet lidar driver</name>
       <version>0.9.0
       <description>The nodelet lidar driver package</description>
       <maintainer email="kim.kanghee@gmail.com">Kanghee Kim</maintainer>
       <license>Apache 2</license>
 8
       <buildtool depend>autoware build flags</buildtool depend>
 9
                                                                  build tool dependency
       <buildtool depend>catkin</buildtool depend>
10
11
                                                                   build dependency
12
       <build depend>message generation</build depend>
13
14
       <depend>roscpp</depend>
15
       <depend>sensor msgs</depend>
16
       <depend>std msgs</depend>
                                                                   build & execution
17
       <depend>pcl ros</depend>
                                                                   dependency
       <depend>pcl conversions</depend>
18
       <depend>nodelet</depend>
19
20
                                                                   execution dependency
21
       <exec depend>message runtime</exec depend>
22
23
       <export>
                                                                   nodelet plugin xml
24
         <nodelet plugin="${prefix}/nodelet lidar driver.xml"/>
25
       </export>
26
      /package>
```

```
⊟library path="lib/libnodelet lidar driver">
       <class name="nodelet lidar driver/LidarNodeletFront" type="LidarNodeletFront::LidarNodeletFront"</pre>
       base class type="nodelet::Nodelet">
         <description>
           LidarNodeletFront.
         </description>
       </class>
       <class name="nodelet lidar driver/LidarNodeletMid" type="LidarNodeletMid::LidarNodeletMid"</pre>
       base class type="nodelet::Nodelet">
         <description>
           LidarNodeletMid.
         </description>
10
       </class>
       <class name="nodelet lidar driver/LidarNodeletBack" type="LidarNodeletBack::LidarNodeletBack"</pre>
       base class type="nodelet::Nodelet">
         <description>
14
           LidarNodeletBack.
         </description>
15
       </class>
16
     </library>
```

nodelet lidar driver : CMakeLists.txt

16

17

18

19 20

23 24 25

26

27

30

32

33

34

35

36

message runtime

#DEPENDS PCL

```
cmake minimum required(VERSION 2.8.3)
project(nodelet lidar driver)
#find package(PCL REQUIRED)
find package(autoware build flags REQUIRED)
find package (catkin REQUIRED COMPONENTS
    roscpp
                                   # Resolve system dependency on yaml-cpp, which apparently does not
    sensor msgs
                                   # provide a CMake find package() module.
    std msgs
                              39
                                   find package(PkgConfig REQUIRED)
    pcl ros
                              40
                                   pkg check modules(YAML CPP REQUIRED yaml-cpp)
    pcl conversions
                                   find_path(YAML CPP INCLUDE DIR NAMES yaml cpp.h PATHS ${YAML CPP I
    nodelet
                              42
                                   find library (YAML CPP LIBRARY NAMES YAML CPP PATHS $ { YAML CPP LIBR
    message generation
                                   link directories(${YAML CPP LIBRARY DIRS})
                                  □if(NOT ${YAML CPP VERSION} VERSION LESS "0.5")
                                     add definitions (-DHAVE NEW YAMLCPP)
                              45
add message files (FILES
                                   endif(NOT ${YAML CPP VERSION} VERSION LESS "0.5")
                              46
    OSI64.msg
                              47
    VLP16.msg
generate messages(DEPENDENCIES
    std msgs
catkin package(
    CATKIN DEPENDS
    roscpp
    sensor msgs
    std msgs
    pcl ros
    pcl conversions
    nodelet
```

nodelet_lidar_driver : CMakeLists.txt (cont'd)

```
install(DIRECTORY launch/
     ### build configuration ###
49
                                        88
                                                       DESTINATION ${CATKIN PACKAGE SHARE DESTINATION}/launch
                                        89
                                        90
52
     include directories (
                                              install(DIRECTORY cfg/
         ${catkin INCLUDE DIRS}
53
                                        92
                                                       DESTINATION ${CATKIN PACKAGE SHARE DESTINATION}/cfg
54
         ${Boost INCLUDE DIR}
                                        93
         ${PCL INCLUDE DIRS}
56
         include
57
58
     add library (nodelet lidar driver
         src/nodelet midend.cpp
60
         src/calibration.cpp
61
         src/lidar.cpp
         src/packet.cpp
63
         src/nodelet frontend.cpp
         src/nodelet backend.cpp
         src/util.cpp
67
68
69
     set(libpcap LIBRARIES "-lpcap")
70
71
     target link libraries (nodelet lidar driver
72
         ${catkin LIBRARIES}
73
         ${libpcap LIBRARIES}
         ${YAML CPP LIBRARIES}
75
76
     install (TARGETS nodelet lidar driver
77
             ARCHIVE DESTINATION ${CATKIN PACKAGE LIB DESTINATION}
78
             LIBRARY DESTINATION ${CATKIN PACKAGE LIB DESTINATION}
79
             RUNTIME DESTINATION ${CATKIN PACKAGE BIN DESTINATION}
81
     install(FILES nodelet lidar driver.xml
83
84
             DESTINATION ${CATKIN PACKAGE SHARE DESTINATION}
```

86