Painel / Meus cursos / SC26EL / 13-Projeto de Controladores em Espaço de Estados - Parte 2

/ Questionário sobre projeto de controladores em espaço de estados - parte 2

Iniciado em segunda, 26 abr 2021, 18:00

Estado Finalizada

Concluída em segunda, 26 abr 2021, 18:03

Tempo 3 minutos 24 segundos
empregado

Notas 3,0/3,0

Avaliar 10,0 de um máximo de 10,0(100%)

Questão **1**Correto

Atingiu 1,0 de 1,0

Considerando a estrutura de controle abaixo, é correto afirmar que:

- a. Se o sistema tiver polos na origem, variações paramétricas na matriz A não impactarão na resposta transitória.
- □ b. Se o sistema tiver polos na origem, variações paramétricas na matriz B alterarão a resposta transitória e o erro em regime permanente.
- c. Se o sistema não tiver polos na origem, variações paramétricas na matriz A impactam no erro em regime permanente mas não na resposta transitória.
- d. Se o sistema não tiver polos na origem, variações paramétricas na matriz B impactarão na resposta transitória e no erro em regime permanente.
- e. Independente de o sistema ter ou não polos na origem, perturbações nos estados implicarão em erro em regime permanente.

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -200 & -30 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Deseja-se que o sistema siga uma referência do tipo degrau com erro nulo. Adicionalmente, os polos de malha fechada devem ser $s_{1,2}=-5\pm j3\sqrt{3}$ e $s_3=-50$. Para isso, utiliza-se a estrutura de controle abaixo com os seguintes ganhos $K=\begin{bmatrix}2600&352&30\end{bmatrix}$ e $k_r=2600$.

Considerando o sistema nominal, a representação do sistema em malha fechada é:

$$\dot{x} = A_{MF}x + B_{MF}r$$
$$y = C_{MF}x$$

A matriz A_{MF} tem a forma $A_{MF} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$. Assim, os elementos da matriz A_{MF} são:

$$a_{11} = 0$$
 , $a_{12} = 1$, $a_{13} = 0$, $a_{21} = 0$, $a_{22} = 0$, $a_{23} = 1$, $a_{31} = -2600$, $a_{32} = -552$, $a_{33} = -60$

A matriz B_{MF} tem a forma $B_{MF} = \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix}$. Assim, os elementos da matriz B_{MF} são:

$$b_{11} = \boxed{0}$$
 , $b_{21} = \boxed{0}$, $b_{31} = \boxed{2600}$.

A matriz C_{MF} tem a forma $C_{MF} = [c_{11} \quad c_{12} \quad c_{13}]$. Assim, os elementos da matriz C_{MF} são:

$$c_{11} = \boxed{egin{array}{cccc} 1 & & & \checkmark \end{array}, c_{12} = \boxed{egin{array}{cccc} 0 & & \checkmark \end{array}, c_{13} = \boxed{egin{array}{cccc} 0 & & \checkmark \end{array}}$$

O ganho CC do sistema compensado vale 1

O erro em regime permanente para o sistema compensado para uma referência do tipo degrau unitário vale 0 . Logo, a
saída em regime permanente do sistema compensado para uma referência do tipo degrau unitário vale 1
Supondo uma variação paramétrica na matriz C do sistema, isto é, $C = \begin{bmatrix} 0,5 & 0 & 0 \end{bmatrix}$ o erro em regime permanente para o sistema compensado para uma referência do tipo degrau unitário vale $\begin{bmatrix} 0,5 & & & & & & & & & & & & & & & & & & &$
permanente vale 0,5 ✓ .

Questão **3**Correto

Atingiu 1,0 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -8 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Deseja-se que o sistema siga uma referência do tipo degrau com erro nulo. Adicionalmente, os polos de malha fechada devem ser $s_{1,2}=-2$. Para isso, utiliza-se a estrutura de controle abaixo com os seguintes ganhos $K=\begin{bmatrix} -4 & 0 \end{bmatrix}$ e $k_r=4$.

Considerando o sistema nominal, a representação do sistema em malha fechada é:

$$\dot{x} = A_{MF}x + B_{MF}r$$

$$y = C_{MF}x$$

A matriz A_{MF} tem a forma $A_{MF} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$. Assim, os elementos da matriz A_{MF} são:

$$a_{11} = \boxed{0}$$
 \checkmark , $a_{12} = \boxed{1}$ \checkmark $a_{21} = \boxed{-4}$ \checkmark , $a_{22} = \boxed{-4}$ \checkmark .

A matriz B_{MF} tem a forma $B_{MF}=\begin{bmatrix}b_{11}\\b_{21}\end{bmatrix}$. Assim, os elementos da matriz B_{MF} são:

$$b_{11} = \boxed{0}$$
 ,

$$b_{21}=\boxed{4}$$
 .

A matriz C_{MF} tem a forma $C_{MF} = [c_{11} \quad c_{12}]$. Assim, os elementos da matriz C_{MF} são:

$$c_{11} = \boxed{1}$$
 , $c_{12} = \boxed{0}$.

O ganho CC do sistema compensado vale 1

O erro em regime permanente para o sistema compensado para uma referência do tipo degrau unitário vale 0 . Logo, a saída em regime permanente do sistema compensado para uma referência do tipo degrau unitário vale 1 .

Supondo uma variação paramétrica na matriz B do sistema, isto é, $B = \begin{bmatrix} 0 \\ 1.5 \end{bmatrix}$ o erro em regime permanente para o sistema compensado para uma referência do tipo degrau unitário vale $\begin{bmatrix} -2 \\ \end{bmatrix}$. Consequentemente, a saída do sistema em regime permanente vale $\begin{bmatrix} 3 \\ \end{bmatrix}$.

◄ Diagrama de blocos - SciLab/Xcos - Planta sem integrador

Seguir para...

Aula 14 - Projeto de Controladores em Espaço de Estados - Parte 3 ►