

Explainable AI for the molecular subclassification of DLBCL

Tobias Schmidt¹, Michael Altenbuchinger² Wolfram Gronwald³, Rainer Spang¹

Department of statistical Bioinformatics, University of Regensburg, Germany
 Institute of Medical Bioinformatics, University Medical Center Göttingen, Germany
 Institute of functional Genomics, University of Regensburg, Germany

Introduction

Diffuse large B-cell lymphoma (DLBCL)

- Neoplasm of medium or large B lymphoid cells with a diffuse growth pattern and nuclei at least twice the size of normal lymphocyte nuclei
- Incidence rate: 5.4 / 100.000
- Makes up for 1.2% of all cancers
- 5-year relative survival: **63.9**% (2011-17)
- Current standard-therapy: R-CHOP
- ≈ 20% of DLBCLs classifiable based on
- morphology or biological/clinical issues
 ≈ 80% NOS → classified based on

molecular features

Source: WHO Classification of Tumours and Haematopoietic Tissues by S. Swerdlow et a

Omics data can be used to classify patients

- 4 Microarray (Rosenwald02, Ship02, Wright03, Lenz08) [12-15]
- 5 Nanostring nCounter (Masque-Soler13, Scott14, Ennishi19, Staiger20, Nordmo20) [7-11]
- 1 SWATH-MS (Renders20) [16]
- 3 WGS/WES/CNA/SNPA/CRISPR-Screening (Reddy17, Chapuy18, Schmitz18) [17-19]
- 8 IHC (Hans04, Muris06, Natkunam08, Nyman09, Choi09, Meyer11)
 [1-6]

But: only a few are used in clinical practice! [20]

No software implementations for end users

Increasing model complexity leads to loss of interpretability

Methods

Collection of model specifications and corresponding datasets

Implementation of visualizations to enhance interpretability

Implementation of R package imlui

Usage of *imlui* to host a publicly accessible webservice

Results

Web App with responsive design

Easy Installation and Configuration procedure

- 1. Install R
- 2. Install the *R* package *imlui* by entering the following commands in a *R* session:

```
install.packages("devtools")
devtools::install_github(repo = "toscm/imlui")
```

- 3. Optional: adjust database credentials in file *imlui_config.yml*
- 4. Use the following command to serve the imlui web app via port 8080:

imlui::serve_web_app()

Supports authentication through 3rd party Identity providers

Possibility to bookmark the exact state of each page

Eight Models and Seven Datasets currently included

Models

Seifert 2021 COO Signature
Seifert 2021 Survival Signature (TRIC)
Nordmo 2020 OS Signature
Nordmo 2020 PFS Signature
Reinders 2020 COO Signature
Staiger 2020 Survival Signature (LAMIS)
Age-Adjusted IPI

Datasets
Staiger 20

Staiger 2020 Test2 Dataset
Staiger 2020 Test1 Dataset
Staiger 2020 Training Dataset
Nordmo 2020 Training Dataset
Reinders 2020 Test Dataset
Reinders 2020 Training Dataset

Visualizations to enhance interpretability of predictions and/or validate new datasets

Fine grained permission system for models, datasets and methods

Fast response times due to process wide caching of models and datasets

Further Information

Gitub Repository:
https://github.co
m/spang-lab/imlu

Online Manual:
https://github.co
m/spang-

m/spanglab/imlui/wiki

Alpha Version:
https://imlui.tux1
404.tk

References

- 1) Hans et al., Blood, 103.1, Jan. 2004, 10.1182/blood-2003-05-1545
- 2) Muris et al., J Pathol, 208.5, Apr. 2006, 10.1002/path.1924
- 3) Natkunam et al., J. Clin. Oncol., 26.3, Jan. 2008,
- 10.1200/JCO.2007.13.0690
 4) Nyman et al., Mod. Pathol., 22.8, Aug. 2009, 10.1038/modpathol.2009.73
- 5) Choi et al., Clin. Cancer Res., 15.17, Sept. 200,
- 10.1158/1078- 0432.CCR-09-0113

 6) Meyer et al., J. Clin. Oncol., 29.2, Jan. 2011,
- 10.1200/JCO.2010.30.0368
- 10.1200/JCO.2010.30.0368

 7) Masqué-Soler et al., Blood, 122.11, Sept. 201,
- 10.1182/blood-2013-06-508937.
- 8) Scott et al., Blood, 123.8, Feb. 2014, 10.1182/blood-
- 9) Ennishi et al., J. Clin. Oncol., 37.3, Jan. 2019,
- 10.1200/JCO.18.01583. 10) Staiger et al., J. Clin. Oncol., 35.22, Aug. 2017,

2013-11-536433.

- 10.1200/JCO.2016.70.3660.
- 11) Nordmo et al., Leuk. Lymphoma, 62.5, Dec. 2020, 10.1080/10428194.2020.1861268.
- 10.1080/10428194.2020.1861268. 12) Rosenwald et al., NEJM, 346.25, June 2002, 10.1056/
- NEJMoa012914.
- 13) Shipp et al., Nat. Med., 8.1, Jan. 2002, 10.1038/nm0102-68.
- 14) Lenz et al., NEJM, 359.22, Nov. 2008,
- 10.1056/NEJMoa0802885.
- 15) Wright et al., PNAS, 100.17, Aug. 2003, 10.1073/pnas.1732008100
- 16) Reinders et al., Sci. Rep., 10.1, May 2020, 10.1038/s41598-020-64212-z.
- 17) Reddy et al., Cell, 171.2, Oct. 2017, 10.
- 1016/j.cell.2017.09.027.
- 18) Chapuy et al., Nat. Med., 24.5, May 2018,
- 10.1038/s41591-018-0016-8. 19) Schmitz et al., NEJM, 378.15, Apr. 2018,
- 10.1056/NEJMoa1801445.
- 20) Liu et al., Am. J. Hematol., 94.5, May 2019, 10.1002/ajh.25460