Homework 3

Walker Bagley and Hayden Gilkinson

February 10, 2023

Section 4

- 1. Not a group because \mathscr{G}_3 fails. Other than 1 and -1, no other inverses are contained by \mathbb{Z}
- 2. Is a group.
- 3. Not a group because \mathscr{G}_1 fails. $\sqrt{(a)\sqrt{bc}} \neq \sqrt{\sqrt{ab}(c)}$
- 7. The group $G = \langle U_{1000}, \cdot \rangle$ is abelian and has exactly 1000 elements.
- 10. Let $n\mathbb{Z} = \{nm | m \in \mathbb{Z}\}$
 - (a) Show that $G = \langle n\mathbb{Z}, + \rangle$ is a group

 \mathcal{G}_1 : addition is associative, and all elements of G are a multiple of the same n, so addition is

 \mathscr{G}_2 : $n\mathbb{Z}$ always contains 0, the identity element

 \mathscr{G}_3 : Any $a \in G$ can be expressed as nm for $m \in \mathbb{Z}$ so $a^{-1} = n(-m)$ which we know is contained in G, so the inverse exists and is closed

(b) Proof.

Let
$$\phi: \mathbb{Z} \to n\mathbb{Z}$$
 be defined by $\phi(x) = nx$

Then
$$\phi$$
 is one to one and onto and $\phi(x+y) = n(x+y) = nx + ny = \phi(x) + \phi(y)$

Thus,
$$\langle n\mathbb{Z}, + \rangle \simeq \langle \mathbb{Z}, + \rangle$$

11. Is a group

- 12. Is a group
- 13. Is a group
- 19. $S = \mathbb{R} \setminus \{-1\}$ and a * b = a + b + ab
 - (a) Show that * is a binary operation

Proof.

Let
$$a * b = a + b + ab$$

Then for all
$$a, b \in S$$
, $(a * b) \in S$ since if $a, b \in \mathbb{R} \setminus \{-1\}$ then $(a + b + ab) \in \mathbb{R} \setminus \{-1\}$

By excluding -1, each a * b will be assigned its own unique value

(b) Show that $G = \langle S, * \rangle$ is a group

 \mathcal{G}_1 : a*(b*c) = a*(b+c+bc) = a+b+c+bc+ab+ac+abc = (a+b+ab)*c = (a*b)*c

 \mathscr{G}_2 : the identity element is 0 since a*0 = a+0+a(0) = a under \mathbb{R} \mathscr{G}_3 : $a*a^{-1} = a+a^{-1}+aa^{-1} = 0 \Rightarrow a^{-1}+aa^{-1} = -a \Rightarrow a^{-1}(1+a) = -a \Rightarrow a^{-1} = -\frac{a}{a+1}$ so any

 $a \in S$ has an inverse that is also contained in S

(c) $2 * x * 3 = 7 \Rightarrow (2 + x + 2x) * 3 = 7 \Rightarrow 2 + x + 3 + 2x + 6 + 3x + 6x = 7$	$7 \Rightarrow 12x = -4 \Rightarrow x = -\frac{1}{2}$
---	---

- 22. $\mathcal{G}_3\mathcal{G}_2\mathcal{G}_1, \mathcal{G}_3\mathcal{G}_1\mathcal{G}_2, \mathcal{G}_1\mathcal{G}_3\mathcal{G}_2$ are not acceptable since \mathcal{G}_3 relies on the veracity of \mathcal{G}_2 . One cannot define an inverse without knowing the identity element.
- 23. (a) Expand on what it means for * to be associative
 - (b) Expand on the three conditions what exactly they mean. Also a group is a binary structure not a set.
 - (c) No mention of associativity and identifies the inverse before the identity, which is required for definition of the inverse. Also a group is a binary structure not a set.
 - (d) The operation defined by * is not necessarily addition, but should be associative. Also a group is a binary structure not a set.
- 25. (a) False
 - (b) True
 - (c) True
 - (d) False
 - (e) False
 - (f) True
 - (g) True
 - (h) True
 - (i) False
 - (j) True
- 26. Given a common term on both sides a, use it's identity a' (\mathcal{G}_3) to cancel it on both sides, leaving the remaining terms.
- 27. By applying the identity on both sides of each equation, we can get that x = a' * b and y = b * a'. We then show uniqueness of x and y by assuming two solutions and showing that they are equal with Theorem 4.15.
- 28. Given an isomorphism $\phi: G \to G'$, prove that for $a, a' \in G$ that $\phi(a)$ and $\phi(a')$ are inverses

Proof.

By definition, a*a'=e in GBy definition of isomorphism, $\phi(a*a')=\phi(a)*'\phi(a')$ We have proved before that for $e\in G$, $e'=\phi(e)$ in G'Substituting the pair of inverses, $\phi(e)=e'=\phi(a)*'\phi(a')$ So, $\phi(a)$ and $\phi(a')$ generate the identity element under G'

31. Prove that a group has one idempotent element

Proof.

We have proven that every group has exactly one identity element eBy definition of identity $\forall a \in G, \ a*e = e*a = a$ We know $e \in G$, so this applies, leaving e*e = eThen e must be the idempotent element and unique

2

32. Show that every group with x * x = e for all $x \in G$ is abelian

Proof.

```
Taking any a, b in G, we want to show that a * b = b * a
          We know that a * b and b * a are both in G by definition
By associativity, (a * b) * (b * a) = ((a * b) * b) * a = (a * (b * b)) * a
                                           By inverse, = (a * e) * a
                                                By identity, = a * a
                                            By definition then, = e
             If (a * b) * (b * a) = e, then by definition, a * b = b * a
                     Then G is commutative and therefore abelian
```

33. Prove that for all $a, b \in G$, $(a * b)^n = a^n * b^n$ if $c^n = c * c * c * \dots c$ for all $c \in G$ and $n \in \mathbb{Z}^+$

Proof.

Base case:
$$n=1$$
. Then, $(a*b)^1=a*b=a^1*b^1$
Assume that for some $n\in\mathbb{Z}^+$, $(a*b)^n=a^n*b^n$
 $(a*b)^{n+1}=(a*b)^n*(a*b)$
By inductive hypothesis, $=a^n*b^n*(a*b)$
By association, $=a^n*a*b^n*b$
By definition of c^n , then $=a^{n+1}*b^{n+1}$

Section 5

- 1. Is a subgroup
- 2. Is not a subgroup because a^{-1} isn't in \mathbb{Q}^+
- 5. Is a subgroup
- 11. Not a subgroup since it isn't closed under matrix multiplication
- 12. Is a subgroup
- 14. (a) Not a subgroup under addition because $e \notin \tilde{F}$
 - (b) This is the improper subgroup

20. $G_2 \leq G_8$

 $G_2 \leq G_7$

 $G_2 \leq G_1$

 $G_2 \leq G_4$

 $G_8 \leq G_7$

 $G_8 \leq G_1$

 $G_8 \leq G_4$ $G_7 \leq G_1$

 $G_7 \leq G_4$

 $G_1 \leq G_4$ $G_9 \leq G_3$

 $G_3 \leq G_5$ $G_9 \leq G_5$

 $G_6 \leq G_5$

22.

$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \Rightarrow \left\{ \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

23.

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \Rightarrow H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} | n \in \mathbb{Z} \right\}$$

- 26. G_1 is cyclic with 1, -1 as generators
 - G_2 is not cyclic
 - G_3 is not cyclic
 - G_4 is cyclic with 6, -6 as generators
 - G_5 is not cyclic
 - G_6 is not cyclic

		+	0	1	2	3	4	5
		0	0	1	2	3	4	5
		1	1	2	3	4	5	0
36.	(a)	2	2	3	4	5	0	1
		3	3	4	5	0	1	2
		4	4	5	0	1	2	3
	(a)	5	5	0	1	2	3	4

- (b) $\langle 0 \rangle = \{0\}$ $\langle 1 \rangle = \{1, 2, 3, 4, 5, 0\}$ $\langle 2 \rangle = \{2, 4, 0\}$ $\langle 3 \rangle = \{3, 0\}$ $\langle 4 \rangle = \{4, 2, 0\}$ $\langle 5 \rangle = \{5, 4, 3, 2, 1, 0\}$
- (c) 1 and 5 are generators

(d) 1:
$$\mathbb{Z}_6 = \langle 1 \rangle = \langle 5 \rangle$$

2: $\langle 2 \rangle = \langle 4 \rangle$ $\langle 5 \rangle$
3: $\langle 0 \rangle$

- 39. (a) True
 - (b) False
 - (c) True
 - (d) False
 - (e) False
 - (f) False
 - (g) False
 - (h) False
 - (i) True
 - (j) False
- 42. Proof.

There exists some $a \in G$ s.t. $G = \langle a \rangle$

Let some $b \in G'$ and there is some $x \in G$ s.t. $\phi(x) = b$

Since G is cyclic, we have some $n \in \mathbb{Z}$ s.t. $x = a^n$

$$b = \phi(a^n) = (\phi(a))^n \in \langle \phi(a) \rangle$$

$$b \in \langle \phi(a) \rangle$$

 $H \subseteq \langle \phi(a) \rangle$ so H is cyclic

- 44. e is defined in condition 2, so we are unable to assert that $a \cdot a^{-1} = e$ without saying what e is

53. Proof. Reflexive: $a \sim a$ because $a \cdot a^{-1} = e$ is in any subgroup Symmetric: $a \cdot b^{-1} \in H \Rightarrow a, b^{-1} \in H \Rightarrow a^{-1}, b \in H \Rightarrow b \cdot a^{-1} \in H$ since H is closed under the induced operation

Transitive: Let $a \cdot b^{-1} \in H, b \cdot c^{-1} \in H$ so $(a \cdot b^{-1})(b \cdot c^{-1}) = a(b \cdot b^{-1})c^{-1} = a \cdot c^{-1} \in H$ since H is closed under the induced operation

54. Proof.

First, $e \in H$ and $e \in K \Rightarrow e \in H \cap K$

So, $H \cap K$ is nonempty

Suppose $a, b \in H$ and $a, b \in K$, so $a, b \in H \cap K$

Then $ab \in H$ and $ab \in K$ so $ab \in H \cap K$ making $H \cap K$ closed under the binary operation

Suppose $c \in H$ and $c \in K$, then $c^{-1} \in H$ and $c^{-1} \in K$, so $c, c^{-1} \in H \cap K$

Thus $H \cap K$ is closed under inverses

Additionally, $H \cap K \subseteq H$ and $H \cap K \subseteq K$, therefore $H \cap K \leq G$