DBT ASSIGNMENT-1

ASHWIN KRISHNA P

PES1201801465

SEM:5, SECTION: F

Review, Introduction and Details Of the Database

The database I had opted for my project in 4th semester was AIRLINES DATABASE. I am using the same for further improvements, implementing and experimenting the advanced concepts that we learn in this course.

I have revisited it and I have named CITY table as CITY_PARTITION because I am going to partition this table and I have added a new attribute CITY_CODE into it to perform more operations and for convenience.

Entities used:

CITY_PARTITION

AIRPORT

AP_NAME STATE COUNTRY		AP_NAME	STATE	COUNTRY
-----------------------	--	---------	-------	---------

AIRLINE

AIRLINEID	AL NAME	THREE DIGIT CODE
	_	

FLIGHT

FLIGHT_CODE	SOURCE	DESTINATION	ARRIVAL	DEPARTURE	STATUS	DURATION	FLIGHT_TYPE	LAYOVER_TIME	NO_OF_STOPS	ĺ
										l

PASSENGER

PID PASSPC	RTNO FNAME	М	LNAME	ADDRESS	PHONE	AGE	SEX
------------	------------	---	-------	---------	-------	-----	-----

TICKET

TICKET_NUMBER SOURCE	DESTINATION	DATE_OF_TRAVEL	SEAT_NO	CLASS	PRICE
----------------------	-------------	----------------	---------	-------	-------

EMPLOYEE

SSN	FNAME	М	LNAME	ADDRESS	PHONE	AGE	SEX	JOBTYPE	SALARY

After constructing **ER Diagram** and **Relational Model**, we can make decisions about the Entities and their Relations:

Entity 1	Name of the	Entity 2	Cardinality
	Relationship		
City	Has	Airport	1:1
Airport	Contains	Airline	m:n
Airport	Has	Employee	1:n
Airline	Has	Flight	1:n
Flight	Carries	Passengers	1:n
Employee	Serves	Passengers	m:n
Passenger	Books	Ticket	1:n
Passenger	Cancels	Ticket	1:n

Functional Dependencies:

```
AP_NAME →{STATE,COUNTRY,CNAME}

AIRLINEID → {AL_NAME, THREE_DIGIT_CODE}

PASSPORTNO → { FNAME, M, LNAME, ADDRESS, PHONE, AGE, SEX }

PID → FLIGHT_CODE

{ DATE_OF_BOOKING, SOURCE, DESTINATION, CLASS } → PRICE

DATE_OF_CANCELLATION → SURCHARGE

JOBTYPE → SALARY

SSN → { FNAME, M, LNAME, ADDRESS, PHONE, AGE, SEX, PHONE, ADDRESS }
```

Normalization:

Looking at the Above functional dependencies, we see that, there are some violations of 2NF,3NF.

So after Normalizing into 3NF, the schema or the tables looks like:

CITY_PARTITION (<u>CITY_CODE</u>, CNAME, STATE, COUNTRY)

AIRPORT (<u>AP_NAME</u>, STATE, COUNTRY, CITY_CODE)

AIRLINE (AIRLINEID, AL_NAME, THREE_DIGIT_CODE)

CONTAINS (AIRLINEID, AP_NAME)

FLIGHT (<u>FLIGHT_CODE</u>, SOURCE, DESTINATION, ARRIVAL, DEPARTURE, STATUS, DURATION, FLIGHTTYPE, LAYOVER_TIME, NO_OF_STOPS, AIRLINEID)

PASSENGER1 (PID, PASSPORTNO)

PASSENGER2(PASSPORTNO, FNAME, M, LNAME, ADDRESS, PHONE, AGE, SEX)

PASSENGER3 (PID, FLIGHT_CODE)

TICKET1 (<u>TICKET_NUMBER</u>, SOURCE, DESTINATION, DATE_OF_BOOKING, DATE_OF_TRAVEL, SEATNO, CLASS, DATE_OF_CANCELLATION, PID, PASSPORTNO)

TICKET2 (DATE_OF_BOOKING, SOURCE, DESTINATION, CLASS, PRICE)

TICKET3 (DATE_OF_CANCELLATION, SURCHARGE)

EMPLOYEE1 (<u>SSN</u>, FNAME, M, LNAME, ADDRESS, PHONE, AGE, SEX, JOBTYPE, ASTYPE, ETYPE, SHIFT, POSITION, AP_NAME)

EMPLOYEE2(JOBTYPE, SALARY)

SERVES (SSN, PID, PASSPORTNO)

So there are total 14 tables in the database.

After Normalization we check for LOSSLESS JOIN PROPERTY.

I have performed the test using Chase's Algorithm. And the steps and proofs are included in the file **LOSSLESS JOIN**