Module 2.5: Perceptron Learning Algorithm

• We will now see a more principled approach for learning these weights and threshold but before that let us answer this question...

- We will now see a more principled approach for learning these weights and threshold but before that let us answer this question...
- Apart from implementing boolean functions (which does not look very interesting) what can a perceptron be used for ?

- We will now see a more principled approach for learning these weights and threshold but before that let us answer this question...
- Apart from implementing boolean functions (which does not look very interesting) what can a perceptron be used for ?
- Our interest lies in the use of perceptron as a binary classifier. Let us see what this means...

• Let us reconsider our problem of deciding whether to watch a movie or not

- Let us reconsider our problem of deciding whether to watch a movie or not
- Suppose we are given a list of m movies and a label (class) associated with each movie indicating whether the user liked this movie or not: binary decision

- Let us reconsider our problem of deciding whether to watch a movie or not
- Suppose we are given a list of m movies and a label (class) associated with each movie indicating whether the user liked this movie or not: binary decision
- Further, suppose we represent each movie with n features (some boolean, some real valued)

```
x_1 = isActorDamon

x_2 = isGenreThriller

x_3 = isDirectorNolan

x_4 = imdbRating(scaled to 0 to 1)

. ...

x_n = criticsRating(scaled to 0 to 1)
```

- Let us reconsider our problem of deciding whether to watch a movie or not
- Suppose we are given a list of m movies and a label (class) associated with each movie indicating whether the user liked this movie or not: binary decision
- Further, suppose we represent each movie with *n* features (some boolean, some real valued)

 $x_1 = isActorDamon$

 $x_2 = isGenreThriller$

 $x_3 = isDirectorNolan$

 $x_4 = imdbRating(scaled to 0 to 1)$

... ..

 $x_n = criticsRating(scaled to 0 to 1)$

- Let us reconsider our problem of deciding whether to watch a movie or not
- Suppose we are given a list of m movies and a label (class) associated with each movie indicating whether the user liked this movie or not: binary decision
- Further, suppose we represent each movie with n features (some boolean, some real valued)
- We will assume that the data is linearly separable and we want a perceptron to learn how to make this decision

$$x_1 = isActorDamon$$

$$x_2 = isGenreThriller$$

$$x_3 = isDirectorNolan$$

$$x_4 = imdbRating(scaled to 0 to 1)$$

... ..

 $x_n = criticsRating(scaled to 0 to 1)$

- Let us reconsider our problem of deciding whether to watch a movie or not
- Suppose we are given a list of m movies and a label (class) associated with each movie indicating whether the user liked this movie or not: binary decision
- Further, suppose we represent each movie with n features (some boolean, some real valued)
- We will assume that the data is linearly separable and we want a perceptron to learn how to make this decision
- In other words, we want the perceptron to find the equation of this separating plane (or find the values of $w_0, w_1, w_2, ..., w_m$)

 $P \leftarrow inputs \quad with \quad label \quad 1;$

 $P \leftarrow inputs \quad with \quad label \quad 1;$

 $N \leftarrow inputs \quad with \quad label \quad 0;$

```
P \leftarrow inputs \quad with \quad label \quad 1;

N \leftarrow inputs \quad with \quad label \quad 0;

Initialize w randomly;
```

```
Algorithm: Perceptron Learning Algorithm
P \leftarrow inputs \quad with \quad label \quad 1;
N \leftarrow inputs \quad with \quad label \quad 0;
Initialize w randomly;
while !convergence do
end
```

```
Algorithm: Perceptron Learning Algorithm
P \leftarrow inputs \quad with \quad label \quad 1;
N \leftarrow inputs \quad with \quad label \quad 0:
Initialize w randomly;
while !convergence do
end
//the algorithm converges when all the
 inputs are classified correctly
```

Algorithm: Perceptron Learning Algorithm $P \leftarrow inputs \quad with \quad label \quad 1;$ $N \leftarrow inputs$ with label 0: Initialize w randomly; while !convergence do Pick random $\mathbf{x} \in P \cup N$;

end

//the algorithm converges when all the inputs are classified correctly

```
Algorithm: Perceptron Learning Algorithm
P \leftarrow inputs \quad with \quad label \quad 1;
N \leftarrow inputs with label 0:
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N:
   if \mathbf{x} \in P and \sum_{i=0}^{n} w_i * x_i < 0 then
    end
end
//the algorithm converges when all the
```

inputs are classified correctly

```
P \leftarrow inputs \quad with \quad label \quad 1;
N \leftarrow inputs with label 0;
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N:
    if \mathbf{x} \in P and \sum_{i=0}^{n} w_i * x_i < 0 then
         \mathbf{w} = \mathbf{w} + \mathbf{x};
    end
```

end

//the algorithm converges when all the inputs are classified correctly

```
Algorithm: Perceptron Learning Algorithm
P \leftarrow inputs \quad with \quad label \quad 1:
N \leftarrow inputs with label 0:
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N:
    if \mathbf{x} \in P and \sum_{i=0}^{n} w_i * x_i < 0 then
        \mathbf{w} = \mathbf{w} + \mathbf{x}:
    end
    if \mathbf{x} \in N and \sum_{i=0}^{n} w_i * x_i \geq 0 then
    end
```

end

//the algorithm converges when all the inputs are classified correctly

```
P \leftarrow inputs \quad with \quad label \quad 1:
N \leftarrow inputs with label 0:
Initialize w randomly:
while !convergence do
     Pick random \mathbf{x} \in P \cup N:
    if \mathbf{x} \in P and \sum_{i=0}^{n} w_i * x_i < 0 then
         \mathbf{w} = \mathbf{w} + \mathbf{x}:
     end
    if \mathbf{x} \in N and \sum_{i=0}^{n} w_i * x_i \geq 0 then
        \mathbf{w} = \mathbf{w} - \mathbf{x}:
     end
```

end

//the algorithm converges when all the inputs are classified correctly

```
P \leftarrow inputs \quad with \quad label \quad 1; \\ N \leftarrow inputs \quad with \quad label \quad 0; \\ \text{Initialize } \mathbf{w} \text{ randomly;} \\ \mathbf{while} \; !convergence \; \mathbf{do}
```

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \sum_{i=0}^{n} w_i * x_i < 0 then \mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \sum_{i=0}^{n} w_i * x_i \ge 0 then \mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

end

//the algorithm converges when all the inputs are classified correctly

• Why would this work?

```
P \leftarrow inputs \quad with \quad label \quad 1;

N \leftarrow inputs \quad with \quad label \quad 0;

Initialize w randomly;

while !convergence do
```

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \sum_{i=0}^{n} w_i * x_i < 0 then \mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \sum_{i=0}^{n} w_i * x_i \ge 0 then \mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

end

//the algorithm converges when all the inputs are classified correctly

- Why would this work?
- To understand why this works we will have to get into a bit of Linear Algebra and a bit of geometry...

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$
$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$
$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$
$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathbf{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

• Consider two vectors **w** and **x**

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$

$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$

$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathbf{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$
$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$
$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathbf{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

$$y = 1 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} \ge 0$$
$$= 0 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} < 0$$

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$
$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$
$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathbf{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

• We can thus rewrite the perceptron rule as

$$y = 1 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} \ge 0$$
$$= 0 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} < 0$$

• We are interested in finding the line $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$ which divides the input space into two halves

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$
$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$
$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathbf{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

$$y = 1 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} \ge 0$$
$$= 0 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} < 0$$

- We are interested in finding the line $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$ which divides the input space into two halves
- Every point (\mathbf{x}) on this line satisfies the equation $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$
$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$
$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathbf{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

$$y = 1 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} \ge 0$$
$$= 0 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} < 0$$

- We are interested in finding the line $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$ which divides the input space into two halves
- Every point (\mathbf{x}) on this line satisfies the equation $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$
- What can you tell about the angle (α) between **w** and any point (\mathbf{x}) which lies on this line?

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$
$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$
$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathbf{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

$$y = 1 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} \ge 0$$
$$= 0 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} < 0$$

- We are interested in finding the line $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$ which divides the input space into two halves
- Every point (\mathbf{x}) on this line satisfies the equation $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$
- What can you tell about the angle (α) between **w** and any point (\mathbf{x}) which lies on this line?
- The angle is 90° (: $\cos \alpha = \frac{w^T x}{||w||||x||} = 0$)

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$

$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$

$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathbf{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

$$y = 1 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} \ge 0$$
$$= 0 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} < 0$$

- We are interested in finding the line $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$ which divides the input space into two halves
- Every point (\mathbf{x}) on this line satisfies the equation $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$
- What can you tell about the angle (α) between **w** and any point (\mathbf{x}) which lies on this line?
- The angle is 90° (:: $cos\alpha = \frac{w^T x}{||w||||x||} = 0$)
- Since the vector **w** is perpendicular to every point on the line it is actually perpendicular to the line itself

• Consider some points (vectors) which lie in the positive half space of this line (i.e., $\mathbf{w}^{\mathbf{T}}\mathbf{x} \geq 0$)

- Consider some points (vectors) which lie in the positive half space of this line (i.e., $\mathbf{w}^{\mathbf{T}}\mathbf{x} \geq 0$)
- What will be the angle between any such vector and \mathbf{w} ?

- Consider some points (vectors) which lie in the positive half space of this line (*i.e.*, $\mathbf{w}^{\mathbf{T}}\mathbf{x} \geq 0$)
- What will be the angle between any such vector and \mathbf{w} ? Obviously, less than 90°

- Consider some points (vectors) which lie in the positive half space of this line (*i.e.*, $\mathbf{w}^{\mathbf{T}}\mathbf{x} \geq 0$)
- What will be the angle between any such vector and **w**? Obviously, less than 90°
- What about points (vectors) which lie in the negative half space of this line (i.e., $\mathbf{w}^{\mathbf{T}}\mathbf{x} < 0$)

- Consider some points (vectors) which lie in the positive half space of this line (*i.e.*, $\mathbf{w}^{\mathbf{T}}\mathbf{x} \geq 0$)
- What will be the angle between any such vector and \mathbf{w} ? Obviously, less than 90°
- What about points (vectors) which lie in the negative half space of this line (i.e., $\mathbf{w}^{\mathbf{T}}\mathbf{x} < 0$)
- What will be the angle between any such vector and \mathbf{w} ?

- Consider some points (vectors) which lie in the positive half space of this line (*i.e.*, $\mathbf{w}^{\mathbf{T}}\mathbf{x} \geq 0$)
- What will be the angle between any such vector and w? Obviously, less than 90°
- What about points (vectors) which lie in the negative half space of this line (i.e., $\mathbf{w}^{\mathbf{T}}\mathbf{x} < 0$)
- What will be the angle between any such vector and w? Obviously, greater than 90°

- Consider some points (vectors) which lie in the positive half space of this line (*i.e.*, $\mathbf{w}^{\mathbf{T}}\mathbf{x} \geq 0$)
- What will be the angle between any such vector and **w**? Obviously, less than 90°
- What about points (vectors) which lie in the negative half space of this line (i.e., $\mathbf{w}^{\mathbf{T}}\mathbf{x} < 0$)
- What will be the angle between any such vector and w? Obviously, greater than 90°
- Of course, this also follows from the formula $(\cos \alpha = \frac{w^T x}{||w||||x||})$

- Consider some points (vectors) which lie in the positive half space of this line (*i.e.*, $\mathbf{w}^{\mathbf{T}}\mathbf{x} \geq 0$)
- What will be the angle between any such vector and w? Obviously, less than 90°
- What about points (vectors) which lie in the negative half space of this line (i.e., $\mathbf{w}^{\mathbf{T}}\mathbf{x} < 0$)
- What will be the angle between any such vector and w? Obviously, greater than 90°
- Of course, this also follows from the formula $(\cos \alpha = \frac{w^T x}{||w||||x||})$
- Keeping this picture in mind let us revisit the algorithm


```
P \leftarrow inputs \quad with \quad label \quad 1;
N \leftarrow inputs with label 0;
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N:
    if x \in P and w.x < 0 then
         \mathbf{w} = \mathbf{w} + \mathbf{x}:
    end
    if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then
         \mathbf{w} = \mathbf{w} - \mathbf{x};
    end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

```
P \leftarrow inputs \quad with \quad label \quad 1;

N \leftarrow inputs \quad with \quad label \quad 0;

Initialize w randomly;
```

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

end

//the algorithm converges when all the inputs are classified correctly

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

• For $\mathbf{x} \in P$ if $\mathbf{w}.\mathbf{x} < 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is greater than 90°

 $P \leftarrow inputs \quad with \quad label \quad 1;$ $N \leftarrow inputs \quad with \quad label \quad 0;$ Initialize \mathbf{w} randomly;

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

end

//the algorithm converges when all the inputs are classified correctly

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

• For $\mathbf{x} \in P$ if $\mathbf{w}.\mathbf{x} < 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is greater than 90° (but we want α to be less than 90°)

```
P \leftarrow inputs \quad with \quad label \quad 1;

N \leftarrow inputs \quad with \quad label \quad 0;

Initialize w randomly;
```

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in P$ if $\mathbf{w}.\mathbf{x} < 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is greater than 90° (but we want α to be less than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} + \mathbf{x}$

 $P \leftarrow inputs \quad with \quad label \quad 1;$ $N \leftarrow inputs \quad with \quad label \quad 0;$ Initialize **w** randomly;

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

end

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in P$ if $\mathbf{w}.\mathbf{x} < 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is greater than 90° (but we want α to be less than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} + \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$

 $P \leftarrow inputs \quad with \quad label \quad 1;$ $N \leftarrow inputs \quad with \quad label \quad 0;$ Initialize **w** randomly;

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in P$ if $\mathbf{w}.\mathbf{x} < 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is greater than 90° (but we want α to be less than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} + \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$

 $\propto (\mathbf{w} + \mathbf{x})^T \mathbf{x}$

 $P \leftarrow inputs \quad with \quad label \quad 1;$ $N \leftarrow inputs \quad with \quad label \quad 0;$ Initialize **w** randomly;

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in P$ if $\mathbf{w}.\mathbf{x} < 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is greater than 90° (but we want α to be less than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} + \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$
$$\propto (\mathbf{w} + \mathbf{x})^T \mathbf{x}$$
$$\propto \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \mathbf{x}$$

 $P \leftarrow inputs \quad with \quad label \quad 1;$ $N \leftarrow inputs \quad with \quad label \quad 0;$ Initialize **w** randomly;

while !convergence do

Pick random $\mathbf{x} \in P \cup N$; **if** $\mathbf{x} \in P$ and $\mathbf{w}.\mathbf{x} < 0$ **then** $\mid \mathbf{w} = \mathbf{w} + \mathbf{x}$; **end if** $\mathbf{x} \in N$ and $\mathbf{w}.\mathbf{x} \ge 0$ **then** $\mid \mathbf{w} = \mathbf{w} - \mathbf{x}$; **end**

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in P$ if $\mathbf{w}.\mathbf{x} < 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is greater than 90° (but we want α to be less than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} + \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$
$$\propto (\mathbf{w} + \mathbf{x})^T \mathbf{x}$$
$$\propto \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \mathbf{x}$$
$$\propto cos\alpha + \mathbf{x}^T \mathbf{x}$$

 $P \leftarrow inputs \quad with \quad label \quad 1;$ $N \leftarrow inputs \quad with \quad label \quad 0;$ Initialize **w** randomly;

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}||}$$

- For $\mathbf{x} \in P$ if $\mathbf{w}.\mathbf{x} < 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is greater than 90° (but we want α to be less than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} + \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$
$$\propto (\mathbf{w} + \mathbf{x})^T \mathbf{x}$$
$$\propto \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \mathbf{x}$$
$$\propto cos\alpha + \mathbf{x}^T \mathbf{x}$$
$$cos(\alpha_{new}) > cos\alpha$$

 $P \leftarrow inputs$ with label 1; $N \leftarrow inputs$ with label 0; Initialize **w** randomly:

while !convergence do

Pick random $\mathbf{x} \in P \cup N$; **if** $\mathbf{x} \in P$ and $\mathbf{w}.\mathbf{x} < 0$ **then** $\mid \mathbf{w} = \mathbf{w} + \mathbf{x}$; **end if** $\mathbf{x} \in N$ and $\mathbf{w}.\mathbf{x} \ge 0$ **then** $\mid \mathbf{w} = \mathbf{w} - \mathbf{x}$; **end**

end

//the algorithm converges when all the inputs are classified correctly

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}||}$$

- For $\mathbf{x} \in P$ if $\mathbf{w}.\mathbf{x} < 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is greater than 90° (but we want α to be less than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} + \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$
$$\propto (\mathbf{w} + \mathbf{x})^T \mathbf{x}$$
$$\propto \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \mathbf{x}$$
$$\propto cos\alpha + \mathbf{x}^T \mathbf{x}$$

$$cos(\alpha_{new}) > cos\alpha$$

• Thus α_{new} will be less than α and this is exactly what we want

```
P \leftarrow inputs \quad with \quad label \quad 1;
N \leftarrow inputs with label 0;
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N:
    if x \in P and w.x < 0 then
         \mathbf{w} = \mathbf{w} + \mathbf{x}:
    end
    if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then
         \mathbf{w} = \mathbf{w} - \mathbf{x};
    end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$


```
\begin{split} P \leftarrow inputs & with \quad label \quad 1; \\ N \leftarrow inputs & with \quad label \quad 0; \\ \text{Initialize } \mathbf{w} \text{ randomly;} \end{split}
```

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

end

//the algorithm converges when all the inputs are classified correctly

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

• For $\mathbf{x} \in N$ if $\mathbf{w}.\mathbf{x} \geq 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is less than 90°

 $\begin{array}{lll} P \leftarrow inputs & with & label & 1; \\ N \leftarrow inputs & with & label & 0; \\ \text{Initialize } \mathbf{w} \text{ randomly;} \end{array}$

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

//the algorithm converges when all the inputs are classified correctly

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

• For $\mathbf{x} \in N$ if $\mathbf{w}.\mathbf{x} \geq 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is less than 90° (but we want α to be greater than 90°)

```
P \leftarrow inputs \quad with \quad label \quad 1;

N \leftarrow inputs \quad with \quad label \quad 0;

Initialize w randomly;
```

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in N$ if $\mathbf{w}.\mathbf{x} \geq 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is less than 90° (but we want α to be greater than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} \mathbf{x}$

```
P \leftarrow inputs \quad with \quad label \quad 1;

N \leftarrow inputs \quad with \quad label \quad 0;

Initialize w randomly;
```

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in N$ if $\mathbf{w}.\mathbf{x} \geq 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is less than 90° (but we want α to be greater than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$

```
\begin{array}{lll} P \leftarrow inputs & with & label & 1; \\ N \leftarrow inputs & with & label & 0; \\ \text{Initialize $\mathbf{w}$ randomly;} \end{array}
```

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in N$ if $\mathbf{w}.\mathbf{x} \geq 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is less than 90° (but we want α to be greater than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$

 $\propto (\mathbf{w} - \mathbf{x})^T \mathbf{x}$

 $P \leftarrow inputs \quad with \quad label \quad 1;$ $N \leftarrow inputs \quad with \quad label \quad 0;$ Initialize **w** randomly;

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in N$ if $\mathbf{w}.\mathbf{x} \geq 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is less than 90° (but we want α to be greater than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$
$$\propto (\mathbf{w} - \mathbf{x})^T \mathbf{x}$$
$$\propto \mathbf{w}^T \mathbf{x} - \mathbf{x}^T \mathbf{x}$$

 $\begin{array}{lll} P \leftarrow inputs & with & label & 1; \\ N \leftarrow inputs & with & label & 0; \\ \text{Initialize \mathbf{w} randomly;} \end{array}$

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in N$ if $\mathbf{w}.\mathbf{x} \geq 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is less than 90° (but we want α to be greater than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$
$$\propto (\mathbf{w} - \mathbf{x})^T \mathbf{x}$$
$$\propto \mathbf{w}^T \mathbf{x} - \mathbf{x}^T \mathbf{x}$$
$$\propto cos\alpha - \mathbf{x}^T \mathbf{x}$$

```
\begin{array}{lll} P \leftarrow inputs & with & label & 1; \\ N \leftarrow inputs & with & label & 0; \\ \text{Initialize $\mathbf{w}$ randomly;} \end{array}
```

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}|}$$

- For $\mathbf{x} \in N$ if $\mathbf{w}.\mathbf{x} \geq 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is less than 90° (but we want α to be greater than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$
$$\propto (\mathbf{w} - \mathbf{x})^T \mathbf{x}$$
$$\propto \mathbf{w}^T \mathbf{x} - \mathbf{x}^T \mathbf{x}$$
$$\propto cos\alpha - \mathbf{x}^T \mathbf{x}$$
$$cos(\alpha_{new}) < cos\alpha$$

```
P \leftarrow inputs with label 1; N \leftarrow inputs with label 0; Initialize w randomly:
```

while !convergence do

```
Pick random \mathbf{x} \in P \cup N;

if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then

\mid \mathbf{w} = \mathbf{w} + \mathbf{x};

end

if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then

\mid \mathbf{w} = \mathbf{w} - \mathbf{x};

end
```

\mathbf{end}

//the algorithm converges when all the inputs are classified correctly

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}||}$$

- For $\mathbf{x} \in N$ if $\mathbf{w}.\mathbf{x} \geq 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is less than 90° (but we want α to be greater than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$
$$\propto (\mathbf{w} - \mathbf{x})^T \mathbf{x}$$
$$\propto \mathbf{w}^T \mathbf{x} - \mathbf{x}^T \mathbf{x}$$
$$\propto cos\alpha - \mathbf{x}^T \mathbf{x}$$

 $cos(\alpha_{new}) < cos\alpha$

• Thus α_{new} will be greater than α and this is exactly what we want

 \bullet We will now see this algorithm in action for a toy dataset

ullet We initialized ${f w}$ to a random value

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0
 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_1), apply correction $\mathbf{w} = \mathbf{w} + \mathbf{x} : \mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_1), apply correction $\mathbf{w} = \mathbf{w} + \mathbf{x} : \mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_2), apply correction $\mathbf{w} = \mathbf{w} + \mathbf{x} : \mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized **w** to a random value
- We observe that currently, w ⋅ x < 0 (: angle > 90°) for all the positive points and w ⋅ x ≥ 0
 (: angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_2), apply correction $\mathbf{w} = \mathbf{w} + \mathbf{x} : \mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_1), apply correction $\mathbf{w} = \mathbf{w} \mathbf{x} : \mathbf{w} \cdot \mathbf{x} \ge \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_1), apply correction $\mathbf{w} = \mathbf{w} \mathbf{x} : \mathbf{w} \cdot \mathbf{x} \ge \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_3), no correction needed : $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_3), no correction needed : $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_2), no correction needed : $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized **w** to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_2), no correction needed : $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_3), apply correction $\mathbf{w} = \mathbf{w} + \mathbf{x} : \mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized **w** to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_3), apply correction $\mathbf{w} = \mathbf{w} + \mathbf{x} : \mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_1), no correction needed : $\mathbf{w} \cdot \mathbf{x} \geq \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_1), no correction needed : $\mathbf{w} \cdot \mathbf{x} \geq \mathbf{0}$ (you can check the angle visually)

- ullet We initialized ${f w}$ to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_2), no correction needed : $\mathbf{w} \cdot \mathbf{x} \geq \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_2), no correction needed : $\mathbf{w} \cdot \mathbf{x} \geq \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_1), no correction needed : $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_1), no correction needed : $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_3), no correction needed : $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_3), no correction needed : $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_2), no correction needed : $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, n_2), no correction needed : $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$ (you can check the angle visually)

- ullet We initialized ${f w}$ to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- Randomly pick a point (say, p_3), no correction needed : $\mathbf{w} \cdot \mathbf{x} \geq \mathbf{0}$ (you can check the angle visually)

- We initialized w to a random value
- We observe that currently, w ⋅ x < 0 (∵ angle > 90°) for all the positive points and w ⋅ x ≥ 0 (∵ angle < 90°) for all the negative points (the situation is exactly oppsite of what we actually want it to be)
- We now run the algorithm by randomly going over the points
- The algorithm has converged