

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

doi: 10.18637/jss.v000.i00

ggESDA: An R Package for exploratory symbolic data analysis using ggplot2

Bo-Syue Jiang

National Taipei University

Abstract

This paper presents the **ggESDA** package,which we developed for exploratory symbolic data analysis in R.Based on **ggplot2** Wickham (2009),the **ggESDA** package which is familiar

Keywords: SDA, EDA, symbolic data analysis, exploratory data analysis, ggplot2 extensions, interval-valued data, R.

1. Introduction: xxx(wait for edit)

```
1..... (wait for edit)
2..... (wait for edit)
3..... (wait for edit)
4..... (wait for edit)
```

2. sec title (wait for edit)

```
(wait for edit)

R (wait for edit) glm() (Chambers and Hastie 1992) in the stats package.
glm(formula, data, subset, na.action, weights, offset,
  family = gaussian, start = NULL, control = glm.control(...),
  model = TRUE, y = TRUE, x = FALSE, ...)
```

Type	Distribution	Method	Description			
GLM	Poisson	ML	Poisson regression: classical GLM, estimated by maximum likelihood (ML)			
		Quasi	"Quasi-Poisson regression": same mean			
			function, estimated by quasi-ML (QML)			
			or equivalently generalized estimating equa-			
			tions (GEE), inference adjustment via esti-			
			mated dispersion parameter			
		Adjusted	"Adjusted Poisson regression": same mean function, estimated by QML/GEE, inference adjustment via sandwich covariances			
	NB	ML	NB regression: extended GLM, estimated by			
			ML including additional shape parameter			
Zero-augmented	Poisson	ML	Zero-inflated Poisson (ZIP), hurdle Poisson			
	NB	ML	Zero-inflated NB (ZINB), hurdle NB			

Table 1: Overview of various count regression models. The table is usually placed at the top of the page ([t!]), centered (centering), has a caption below the table, column headers and captions are in sentence style, and if possible vertical lines should be avoided.

(wait for edit)

(wait for edit)

3. third title (wait for edit)

(wait for edit)

R> data("quine", package = "MASS")

and a basic frequency distribution of the response variable is displayed in Figure 1.

(wait for edit)

(wait for edit)

To account for potential overdispersion we also consider a negative binomial GLM.

```
R> library("MASS")
R> m_nbin <- glm.nb(Days ~ (Eth + Sex + Age + Lrn)^2, data = quine)</pre>
```

In a comparison with the BIC the latter model is clearly preferred.

```
R> BIC(m_pois, m_nbin)
```


Figure 1: Frequency distribution for number of days absent from school.

```
df BIC
m_pois 18 2046.851
m_nbin 19 1157.235
```

Hence, the full summary of that model is shown below.

```
R> summary(m_nbin)
```

Call:

```
glm.nb(formula = Days ~ (Eth + Sex + Age + Lrn)^2, data = quine,
   init.theta = 1.60364105, link = log)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -3.0857 -0.8306 -0.2620 0.4282 2.0898
```

 ${\tt Coefficients:}\ ({\tt 1}\ {\tt not}\ {\tt defined}\ {\tt because}\ {\tt of}\ {\tt singularities})$

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	3.00155	0.33709	8.904	< 2e-16	***
EthN	-0.24591	0.39135	-0.628	0.52977	
SexM	-0.77181	0.38021	-2.030	0.04236	*
AgeF1	-0.02546	0.41615	-0.061	0.95121	
AgeF2	-0.54884	0.54393	-1.009	0.31296	
AgeF3	-0.25735	0.40558	-0.635	0.52574	

```
LrnSL
            0.38919
                      0.48421
                                0.804 0.42153
EthN:SexM
            0.36240
                      0.29430
                                1.231 0.21818
EthN:AgeF1 -0.70000
                      0.43646 -1.604 0.10876
EthN:AgeF2 -1.23283
                      0.42962 -2.870 0.00411 **
EthN:AgeF3 0.04721
                      0.44883
                              0.105 0.91622
EthN:LrnSL
                               0.201 0.84059
            0.06847
                      0.34040
SexM:AgeF1
            0.02257
                      0.47360 0.048 0.96198
SexM:AgeF2 1.55330
                      0.51325
                              3.026 0.00247 **
SexM:AgeF3
          1.25227
                      0.45539
                              2.750 0.00596 **
SexM:LrnSL
            0.07187
                      0.40805
                              0.176 0.86019
AgeF1:LrnSL -0.43101
                      0.47948 -0.899 0.36870
AgeF2:LrnSL 0.52074
                      0.48567
                               1.072 0.28363
AgeF3:LrnSL
                                  NA
                           NA
                                           NA
                NA
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(1.6036) family taken to be 1)

Null deviance: 235.23 on 145 degrees of freedom Residual deviance: 167.53 on 128 degrees of freedom

AIC: 1100.5

Number of Fisher Scoring iterations: 1

Theta: 1.604 Std. Err.: 0.214

2 x log-likelihood: -1062.546

4. Summary and discussion

(wait for edit)

Computational details

(wait for edit)

(wait for edit)

Acknowledgments

(wait for edit)

References

Chambers JM, Hastie TJ (eds.) (1992). Statistical Models in S. Chapman & Hall, London.

Wickham H (2009). "ggplot2: Elegant Graphics for Data Analysis." *Media*, **35**(211), 10–1007. doi:10.1007/978-0-387-98141-3.

(wait for edit)

Affiliation:

myaddress

http://www.jstatsoft.org/ http://www.foastat.org/

Submitted: yyyy-mm-dd

 $Accepted: \ {\tt yyyy-mm-dd}$