Table 1: Report on the L_1 errors of the S¹HOE(stabilized) and the FLHOE(flux limited) schemes for a smooth hump, $\tau = h$.

	S^1IIOE	S^1IIOE	FLIIOE	FLIIOE
n	L_1 error	EOC	L_1 error	EOC
40	$9.82 \ 10^{-2}$		$7.51 \ 10^{-2}$	
80	$3.38 \ 10^{-2}$	1.54	$2.66 \ 10^{-2}$	1.50
160	$1.01 \ 10^{-2}$	1.74	$7.55 \ 10^{-3}$	1.82
320	$2.73 \ 10^{-3}$	1.89	$1.96 \ 10^{-3}$	1.95
640	$7.11 \ 10^{-4}$	1.94	$5.22 \ 10^{-4}$	1.91
1280	$1.83 \ 10^{-4}$	1.96	$1.41 \ 10^{-4}$	1.89

Table 2: Report on the L_1 errors of the S¹HOE(stabilized) and the FLHOE(flux limited) schemes for a discontinuous piecewise profile, $\tau = h$.

	S^1IIOE	S^1IIOE	FLIIOE	FLIIOE
n	L_1 error	EOC	L_1 error	EOC
40	$2.03 \ 10^{-1}$		$1.49 \ 10^{-1}$	
80	$1.31 \ 10^{-1}$	0.63	$9.4 \ 10^{-2}$	0.66
160	$8.38 \ 10^{-2}$	0.64	$5.91 \ 10^{-2}$	0.67
320	$5.35 \ 10^{-2}$	0.65	$3.72 \ 10^{-2}$	0.67
640	$3.41 \ 10^{-2}$	0.65	$2.35 \ 10^{-2}$	0.66
1280	$2.16 \ 10^{-2}$	0.66	$1.48 \ 10^{-2}$	0.67

Figure 1: Comparing the IIOE scheme with the exact traveling-wave solution (??) in time t=0.24 (left) and t=0.48 (right), with $\sigma=0.01,\,n=100,\,\tau=4h$