# પ્રશ્ન 1(અ) [3 ગુણ]

વર્ડ એમ્બેડિંગ ટેકનિક શું છે? વિવિદ્ય વર્ડ એમ્બેડિંગ તકનીકોની સૂચિ બનાવો.

#### જવાબ:

**વર્ડ એમ્બેડિંગ** એ એવી તકનીક છે જે શબ્દોને આંકડાકીય vectors માં રૂપાંતરિત કરે છે અને શબ્દો વચ્ચેના semantic સંબંધોને જાળવી રાખે છે. આ શબ્દોને high-dimensional space માં dense vectors તરીકે દર્શાવે છે.

ટેબલ: વિવિધ વર્ડ એમ્બેડિંગ તકનીકો

| สราใร                 | นถุน                                      | મુખ્ય લક્ષણ                      |
|-----------------------|-------------------------------------------|----------------------------------|
| TF-IDF                | Term Frequency-Inverse Document Frequency | આંકડાકીય માપદંડ                  |
| Bag of Words<br>(BoW) | આવર્તન-આધારિત રજૂઆત                       | સરળ ગણતરી પદ્ધતિ                 |
| Word2Vec              | Neural network-આધારિત embedding           | Semantic સંબંધો કેપ્યર કરે       |
| GloVe                 | Global Vectors for word representation    | Global અને local આંકડા<br>સંયોજન |

# મુખ્ય પોઈન્ટ્સ:

• **TF-IDF**: દસ્તાવેજોમાં શબ્દની મહત્ત્વતા માપે છે

• **BoW**: Vocabulary-આધારિત vectors બનાવે છે

• **Word2Vec**: CBOW અને Skip-gram models વાપરે છે

• GloVe: Global context સાથે pre-trained embeddings

મેમરી ટ્રીક: "TB-WG" (TF-IDF, BoW, Word2Vec, GloVe)

# પ્રશ્ન 1(બ) [4 ગુણ]

આર્ટિફિશિયલ ઇન્ટેલિજન્સના વિવિધ પ્રકારોનું વર્ગીકરણ કરો અને તેને ડાયાગ્રામ વડે દર્શાવો.

### જવાબ:

Al ને **ક્ષમતાઓ** અને **કાર્યક્ષમતા** આધારે વર્ગીકૃત કરી શકાય છે.

### ડાયાગ્રામ:



ટેબલ: Al પ્રકારોની તુલના

| qวi         | уѕіг           | વર્ણન                 | ઉદાહરણ               |
|-------------|----------------|-----------------------|----------------------|
| ક્ષમતાઓ     | Narrow Al      | કાર્ય-વિશિષ્ટ બુદ્ધિ  | Siri, Chess programs |
|             | General Al     | માનવ-સ્તરની બુદ્ધિ    | હજુ પ્રાપ્ત નથી      |
|             | Super Al       | માનવ બુદ્ધિથી વધુ     | સૈદ્ધાંતિક ખ્યાલ     |
| કાર્યક્ષમતા | Reactive       | કોઈ યાદદાશ્ત નથી      | Deep Blue            |
|             | Limited Memory | ભૂતકાળના ડેટાનો ઉપયોગ | Self-driving cars    |

ਮੇਮਣੀ ਟ੍ਰੀਡ: "NGS-RLT" (Narrow-General-Super, Reactive-Limited-Theory)

# પ્રશ્ન 1(ક) [7 ગુણ]

તફાવત આપીને NLU અને NLG સમજાવો.

જવાબ:

Natural Language Understanding (NLU) અને Natural Language Generation (NLG) Natural Language Processing ના બે મુખ્ય ઘટકો છે.

ટેબલ: NLU vs NLG તુલના

| પાસું     | NLU                                    | NLG                                  |
|-----------|----------------------------------------|--------------------------------------|
| હેતુ      | માનવી ભાષાને સમજવું                    | માનવી ભાષા જનરેટ કરવું               |
| દિશા      | Input processing                       | Output generation                    |
| รเช่      | અર્થનું અર્થઘટન                        | ટેક્સ્ટ રથના                         |
| પ્રક્રિયા | વિશ્લેષણ અને સમજ                       | સંશ્લેષણ અને સર્જન                   |
| ઉદાહરણો   | Intent recognition, sentiment analysis | Chatbot responses, report generation |
| પડકારો    | અસ્પષ્ટતા નિવારણ                       | Natural text generation              |

#### વિગતવાર સમજાવટ:

# **NLU (Natural Language Understanding):**

- Unstructured text ને structured data માં કન્વર્ટ કરે છે
- Semantic analysis અને intent extraction કરે છે
- અસ્પષ્ટતા અને context ની સમજ હેન્ડલ કરે છે

# **NLG (Natural Language Generation):**

• Structured data ને natural language માં કન્વર્ટ કરે છે

- સુસંગત અને contextually યોગ્ય ટેક્સ્ટ બનાવે છે
- વ્યાકરણની ચુસ્તતા અને પ્રવાહિતા સુનિશ્ચિત કરે છે

મેમરી ટ્રીક: "UI-OG" (Understanding Input, Output Generation)

# પ્રશ્ન 1(ક) OR [7 ગુણ]

આર્ટિફિશિયલ ઈન્ટેલિજન્સનો ઉપયોગ થાય છે તેવા વિવિધ ઉદ્યોગોની યાદી બનાવો અને કોઈપણ બેને સમજાવો.

જવાબ:

ટેબલ: ઉદ્યોગોમાં AI એપ્લિકેશન

| ઉદ્યોગ   | AI એપ્લિકેશન            | લાલો              |
|----------|-------------------------|-------------------|
| આરોગ્ય   | નિદાન, દવા શોધ          | ચુસ્તતામાં સુધારો |
| ફાઇનાન્સ | છેતરપિંડી શોધ, ટ્રેડિંગ | જોખમ વ્યવસ્થાપન   |
| ઉત્પાદન  | ગુણવત્તા નિયંત્રણ       | કાર્યક્ષમતા       |
| પરિવહન   | સ્વાયત્ત વાહનો          | સુરક્ષા           |
| રિટેલ    | સુલેખન સિસ્ટમ           | વ્યક્તિગતકરણ      |
| શિક્ષણ   | વ્યક્તિગત શિક્ષણ        | અનુકૂલન શિક્ષણ    |

### બે ઉદ્યોગોની વિગતવાર સમજાવટ:

### 1. આરોગ્ય ઉદ્યોગ:

- **તબીબી નિદાન**: Al તબીબી છબીઓ અને દર્દીના ડેટાનું વિશ્લેષણ કરે છે
- દવા શોધ: સંભવિત દવાઓની ઝડપી ઓળખ
- વ્યક્તિગત સારવાર: દર્દીના genetics આધારે ઉપચાર
- લાલો: ઝડપી નિદાન, ભૂલો ઘટાડવી, પરિણામોમાં સુધારો

## 2. કાઇનાન્સ ઉદ્યોગ:

- છેતરપિંડી શોધ: Real-time માં શંકાસ્પદ વ્યવહારો ઓળખવા
- Algorithmic Trading: બજારના patterns આધારે automated trading
- Credit Scoring: લોન ડિફોલ્ટ જોખમનું ચોક્કસ મૂલ્યાંકન
- લાલો: વર્ધેલી સુરક્ષા, ઝડપી પ્રક્રિયા, વધુ સારું જોખમ વ્યવસ્થાપન

મેમરી ટ્રીક: "HF-MR-TE" (Healthcare-Finance, Manufacturing-Retail-Transportation-Education)

# પ્રશ્ન 2(અ) [3 ગુણ]

મશીન લર્નિંગ શબ્દને વ્યાખ્યાયિત કરો. મશીન લર્નિંગનું વર્ગીકરણ રેખાકૃતિ દોરો.

જવાબ:

**મશીન લર્નિંગ** AI નો ઉપવિભાગ છે જે કોમ્પ્યુટરોને સ્પષ્ટ રીતે પ્રોગ્રામ કર્યા વિના અનુભવથી શીખવા અને સુધારવા સક્ષમ બનાવે છે. આ ડેટાનું વિશ્લેષણ કરવા, patterns ઓળખવા અને predictions કરવા algorithms નો ઉપયોગ કરે છે.

#### ડાયાગ્રામ:



# મુખ્ય પોઈન્ટ્સ:

• Supervised: Labeled training data વાપરે છે

• **Unsupervised**: Unlabeled data માં patterns શોધે છે

• Reinforcement: Rewards અને penalties દ્વારા શીખે છે

મેમરી ટ્રીક: "SUR" (Supervised-Unsupervised-Reinforcement)

# પ્રશ્ન 2(બ) [4 ગુણ]

Positive reinforcement અને Negative reinforcement નો તફાવત દર્શાવો.

જવાબ:

રેબલ: Positive vs Negative Reinforcement

| પાસું          | Positive Reinforcement          | Negative Reinforcement     |
|----------------|---------------------------------|----------------------------|
| વ્યાખ્યા       | સારા વર્તન માટે રિવોર્ડ ઉમેરવું | અપ્રિય stimulus દૂર કરવું  |
| ક્રિયા         | કંઈક આનંદદાયક આપવું             | કંઈક અપ્રિય દૂર કરવું      |
| હેતુ           | ઇચ્છિત વર્તન વધારવું            | ઇચ્છિત વર્તન વધારવું       |
| ઉદાહરણ         | સારા પ્રદર્શન માટે બોનસ         | જાગ્યા પછી alarm બંધ કરવું |
| અસર            | Rewards દ્વારા પ્રેરણા          | રાહત દ્વારા પ્રેરણા        |
| Agent પ્રતિસાદ | ક્રિયા પુનરાવર્તન કરવી          | નકારાત્મક પરિણામો ટાળવા    |

# મુખ્ય પોઈન્ટ્સ:

• **Positive Reinforcement**: Positive stimulus ઉમેરીને વર્તન મજબૂત બનાવે છે

• **Negative Reinforcement**: Negative stimulus દૂર કરીને વર્તન મજબૂત બનાવે છે

• લંને પ્રકાર: ઇચ્છિત વર્તનની સંભાવના વધારવાનું લક્ષ્ય છે

• **તફાવત**: પ્રોત્સાહનની પદ્ધતિ (ઉમેરવું vs દૂર કરવું)

મેમરી ટ્રીક: "AR-RN" (Add Reward, Remove Negative)

# પ્રશ્ન 2(ક) [7 ગુણ]

Supervised અને Unsupervised learning ની તુલના કરો.

જવાબ:

રેબલ: Supervised vs Unsupervised Learning

| પેરામીટર           | Supervised Learning                     | Unsupervised Learning                         |
|--------------------|-----------------------------------------|-----------------------------------------------|
| ડેટા પ્રકાર        | Labeled data (input-output pairs)       | Unlabeled data (માત્ર inputs)                 |
| શીખવાનું<br>લક્ષ્ય | પરિણામોની આગાહ                          | છુપા patterns શોધવા                           |
| Feedback           | સાચા જવાબો છે                           | સાચા જવાબો નથી                                |
| Algorithms         | SVM, Decision Trees, Neural<br>Networks | K-means, Hierarchical clustering              |
| એપ્લિકેશન          | Classification, Regression              | Clustering, Association rules                 |
| ચોકસાઈ             | માપી શકાય છે                            | માપવી મુશ્કેલ                                 |
| જટિલતા             | ઓછી જટિલ                                | વધુ જટિલ                                      |
| ઉદાહરણો            | Email spam detection, કિંમત આગાહ        | Customer segmentation, Market basket analysis |

# વિગતવાર તુલના:

# **Supervised Learning:**

- જાણીતા પરિણામો સાથે training data ની જરૂર
- પ્રદર્શનનું મૂલ્યાંકન સરળતાથી કરી શકાય છે
- આગાહીના કાર્યો માટે વપરાય છે

# **Unsupervised Learning:**

- પૂર્વ-નિર્ધારિત labels વિના ડેટા સાથે કામ કરે છે
- ડેટામાં છુપાયેલા structures શોધે છે
- અન્વેષણાત્મક ડેટા વિશ્લેષણ માટે વપરાય છે

મેમરી ટ્રીક: "LP-PF" (Labeled Prediction, Pattern Finding)

# પ્રશ્ન 2(અ) OR [3 ગુણ]

વ્યાખ્યાયિત કરો: Classification, Regression અને clustering.

જવાબ:

## ટેબલ: ML કાર્યોની વ્યાખ્યાઓ

| ธเข้           | વ્યાખ્યા                            | આઉટપુટ પ્રકાર | ઉદાહરણ                |
|----------------|-------------------------------------|---------------|-----------------------|
| Classification | Discrete categories/classes ની આગાહ | Categorical   | Email: Spam/Not Spam  |
| Regression     | સતત આંકડાકીય મૂલ્યોની આગાહ          | આંકડાકીય      | ઘરની કિંમત આગાહ       |
| Clustering     | સમાન ડેટા points ને જૂથ બનાવવા      | જૂથો/Clusters | Customer segmentation |

## વિગતવાર વ્યાખ્યાઓ:

• Classification: શીખેલા patterns આધારે input data ને પૂર્વ-નિર્ધારિત વર્ગોમાં સોંપે છે

• Regression: સતત મૂલ્યોની આગાહ કરવા variables વચ્ચેના સંબંધોનો અંદાજ કાઢે છે

• Clustering: જૂથોની પૂર્વ જાણકારી વિના ડેટામાં કુદરતી જૂથો શોધે છે

મેમરી ટ્રીક: "CRC" (Categories, Real numbers, Clusters)

# પ્રશ્ન 2(બ) OR [4 ગુણ]

Artificial Neural Network અને Biological Neural Network ની તુલના કરો.

જવાબ:

રેબલ: ANN vs Biological Neural Network

| પાસું            | Artificial Neural Network    | Biological Neural Network |
|------------------|------------------------------|---------------------------|
| પ્રોસેસિંગ       | Digital/Binary               | Analog                    |
| ઝડપ              | ઝડપી પ્રોસેસિંગ              | ધીમી પ્રોસેસિંગ           |
| શીખવું           | Backpropagation algorithm    | Synaptic plasticity       |
| મેમરી            | અલગ સ્ટોરેજ                  | કનેક્શનમાં વિતરિત         |
| સ્ટ્રક્ચર        | સ્તરવાર આર્કિટેક્ચર          | જટિલ 3D structure         |
| ખોટ સહન          | ઓછું                         | વધુ                       |
| ଉର୍ଷ             | વધુ પાવર consumption         | ઓછો ઊર્જા વપરાશ           |
| સમાંતર પ્રક્રિયા | મર્યાદિત parallel processing | વિશાળ parallel processing |

# મુખ્ય તફાવતો:

• ANN: મગજથી પ્રેરિત ગાણિતિક મોડલ

• Biological: વાસ્તવિક મગજના neural networks

• હેતુ: ANN computation માટે, Biological cognition માટે

• **अनुङ्क्षनक्षभता**: Biological networks पधु flexible

મેમરી ટ્રીક: "DSML-CFEP" (Digital-Speed-Memory-Layer vs Complex-Fault-Energy-Parallel)

# પ્રશ્ન 2(ક) OR [7 ગુણ]

Supervised, unsupervised અને reinforcement learning ની વિવિધ applications ની સૂચિ બનાવો.

જવાબ:

ટેબલ: વિવિધ Learning પ્રકારોની Applications

| Learning प्रકार | Applications                                                           | વાસ્તવિક જગતના ઉદાહરણો                                   |
|-----------------|------------------------------------------------------------------------|----------------------------------------------------------|
| Supervised      | Email classification, તબીબી નિદાન, Stock<br>prediction, Credit scoring | Gmail spam filter, X-ray analysis,<br>Trading algorithms |
| Unsupervised    | Customer segmentation, Anomaly detection, Data compression             | Market research, Fraud detection,<br>Image compression   |
| Reinforcement   | Game playing, Robotics, Autonomous vehicles, Resource allocation       | AlphaGo, Robot navigation, Self-<br>driving cars         |

## વિગતવાર Applications:

## **Supervised Learning:**

• Classification: Spam detection, sentiment analysis, image recognition

• Regression: કિંમત આગાહ, હવામાન આગાહ, વેચાણ અંદાજ

# **Unsupervised Learning:**

• **Clustering**: Market segmentation, gene sequencing, recommendation systems

• Association: Market basket analysis, web usage patterns

# **Reinforcement Learning:**

• Control Systems: Robot control, traffic management

• Optimization: Resource scheduling, portfolio management

મેમરી ટ્રીક: "SCR-CRO" (Supervised-Classification-Regression, Unsupervised-Clustering-Association, Reinforcement-Control-Optimization)

# પ્રશ્ન 3(અ) [3 ગુણ]

સિંગલ લેચર ફોરવર્ડ નેટવર્કને યોગ્ય ડાયાગ્રામ સાથે સમજાવો.

#### જવાબ:

સિંગલ લેચર ફોરવર્ડ નેટવર્ક (Perceptron) એ સૌથી સરળ neural network છે જેમાં input અને output વચ્ચે weights નો એક સ્તર હોય છે.

#### ડાયાગ્રામ:



# ઘટકો:

• Inputs: X1, X2, X3 (feature values)

• Weights: W1, W2, W3 (connection strengths)

• Bias: Threshold adjustment માટે વધારાનું parameter

• **Summation**: Inputs สโ weighted sum

• **Activation**: Output બનાવવા માટેનું function

# ગાણિતિક સૂત્ર:

 $Y = f(\Sigma(Wi \times Xi) + b)$ 

મેમરી ટ્રીક: "IWSA" (Input-Weight-Sum-Activation)

# પ્રશ્ન 3(બ) [4 ગુણ]

Backpropagation પર ટૂંકી નોંધ લખો.

### જવાબ:

**Backpropagation** એ supervised learning algorithm છે જે error calculation આધારે weights adjust કરીને neural networks ને train કરવા માટે વપરાય છે.

ટેબલ: Backpropagation પ્રક્રિયા

| તબક્કો            | વર્ણન                                | ક્રિયા              |
|-------------------|--------------------------------------|---------------------|
| Forward Pass      | Input network દ્વારા આગળ વધે છે      | Output ની ગણતરી     |
| Error Calculation | Output ને target સાથે compare કરવું  | Error/loss શોધવો    |
| Backward Pass     | Error પાછળની દિશામાં વધે છે          | Weights update કरवा |
| Weight Update     | Gradient વાપરીને weights adjust કરવા | Error ยะเรๆì        |

# મુખ્ય લક્ષણો:

• Gradient Descent: Optimal weights શોધવા માટે calculus વાપરે છે

• Chain Rule: દરેક weight ના error contribution ની ગણતરી

• Iterative Process: Convergence સુધી પુનરાવર્તન

• Learning Rate: Weight updates ની ઝડપ નિયંત્રિત કરે છે

### પગલાં:

1. Random weights initialize કરવા

2. Output भेजपवा forward propagation

3. Actual અને predicted વચ્ચે error ની ગણતરી

4. Weights update કરવા backward propagation

મેમરી ટ્રીક: "FCBU" (Forward-Calculate-Backward-Update)

# પ્રશ્ન 3(ક) [7 ગુણ]

ફીડ ફોરવર્ડ ન્યુરોન નેટવર્કના આર્કિટેક્ચરના components સમજાવો.

### જવાબ:

**ફીડ ફોરવર્ડ ન્યુરલ નેટવર્ક** અનેક સ્તરો ધરાવે છે જ્યાં માહિતી input થી output સુધી એક દિશામાં વહે છે.

### ડાયાગ્રામ:



### ઘટકો:

# 1. Input Layer:

- Raw data મેળવે છે
- કોઈ processing નથી, માત્ર વિતરણ
- Neurons ની સંખ્યા = features ની સંખ્યા

# 2. Hidden Layer(s):

- Computation અને transformation કરે છે
- Activation functions ધરાવે છે
- અનેક hidden layers હોઈ શકે છે

# 3. Output Layer:

- અંતિમ પરિણામો ઉત્પન્ન કરે છે
- Neurons ની સંખ્યા = outputs ની સંખ્યા
- Task પ્રકાર માટે યોગ્ય activation વાપરે છે

# 4. Weights અને Biases:

- **Weights**: Neurons વચ્ચેની connection strengths
- Biases: Threshold adjustment parameters

### 5. Activation Functions:

- Non-linearity દાખલ કરે છે
- સામાન્ય પ્રકારો: ReLU, Sigmoid, Tanh

મેમરી ટ્રીક: "IHO-WA" (Input-Hidden-Output, Weights-Activation)

# પ્રશ્ન 3(અ) OR [3 ગુણ]

મલ્ટિલેયર ફીડ ફોરવર્ડ ANN ને ડાયાગ્રામ સાથે સમજાવો.

#### જવાબ:

મલ્ટિલેયર ફીડ ફોરવર્ડ ANN માં input અને output layers વચ્ચે અનેક hidden layers હોય છે, જે જટિલ pattern recognition સક્ષમ બનાવે છે.

#### ડાયાગ્રામ:



## લક્ષણો:

- Deep Architecture: ਅਜੇ shidden layers
- જરિલ Patterns: Non-linear relationships શીખી શકે છે
- Universal Approximator: કોઈપણ સતત function નો અંદાજ લગાવી શકે છે

મેમરી ટ્રીક: "MDC" (Multiple layers, Deep learning, Complex patterns)

# પ્રશ્ન 3(બ) OR [4 ગુણ]

સમજાવો 'ReLU એ સૌથી વધુ ઉપયોગમાં લેવાતું Activation function છે.'

#### જવાબ:

ReLU (Rectified Linear Unit) તેની સરળતા અને deep networks માં અસરકારકતાને કારણે વ્યાપક રીતે વપરાય છે.

ટેબલ: ReLU કેમ લોકપ્રિય છે

| ફાયદો                    | વર્ણન                                       | લાલ                      |
|--------------------------|---------------------------------------------|--------------------------|
| Computational Efficiency | સરળ max(0,x) operation                      | ઝડપી processing          |
| Gradient Flow            | Positive values માટે vanishing gradient નથી | વધુ સારું learning       |
| Sparsity                 | Negative inputs भाटे zero output            | કાર્યક્ષમ representation |
| Non-linearity            | Non-linear વર્તન દાખલ કરે છે                | જટિલ pattern learning    |

### ગાણિતિક વ્યાખ્યા:

 $f(x) = \max(0, x)$ 

# અન્ય Functions સાથે તુલના:

• vs Sigmoid: Saturation સમસ્યા નથી, ઝડપી computation

• vs Tanh: સરળ ગણતરી, વધુ સારો gradient flow

• મર્યાદાઓ: Negative inputs માટે dead neurons સમસ્યા

# સૌથી સામાન્ય કેમ:

• Vanishing gradient સમસ્યા હલ કરે છે

• Computationally ទារបំនុា។

• વ્યવહારમાં સારું કામ કરે છે

• Hidden layers માટે default પસંદગી

મેમરી ટ્રીક: "CGSN" (Computational, Gradient, Sparsity, Non-linear)

# પ્રશ્ન 3(ક) OR [7 ગુણ]

Artificial Neural Network ની સ્ટેપ બાય સ્ટેપ લર્નિંગ પ્રક્રિયા સમજાવો.

## જવાબ:

ANN Learning Process માં prediction error ઘટાડવા માટે iterative weight adjustment સામેલ છે.

ટેબલ: સ્ટેપ-બાય-સ્ટેપ લર્નિંગ પ્રક્રિયા

| સ્ટેપ                   | પ્રક્રિયા               | વર્ણન                     |
|-------------------------|-------------------------|---------------------------|
| 1. Initialization       | Random weights સેટ કરવા | નાના random values        |
| 2. Forward Propagation  | Output ની ગણતરી         | Input → Hidden → Output   |
| 3. Error Calculation    | Target સાથે સરખામણી     | Loss function computation |
| 4. Backward Propagation | Gradients ની ગણતરી      | Error → Hidden ← Input    |
| 5. Weight Update        | Parameters adjust इरवा  | Gradient descent          |
| 6. Iteration            | પ્રક્રિયા પુનરાવર્તન    | Convergence સુધી          |

### વિગતવાર સ્ટેપ્સ:

## સ્ટેપ 1: Weights Initialize કરવા

- બધા weights અને biases ને નાના random values સોંપવા
- Symmetry breaking સમસ્યા અટકાવે છે

# સ્ટેપ 2: Forward Propagation

- Input data network layers દ્વારા આગળ વહે છે
- દરેક neuron weighted sum + activation ની ગણતરી કરે છે

### સ્ટેપ 3: Error ની ગણતરી

- Network output ને desired output સાથે compare કરવું
- MSE અથવા Cross-entropy જેવા loss functions વાપરવા

## સ્ટેપ 4: Backward Propagation

- દરેક weight માટે error gradient ની ગણતરી
- Error પાછળની દિશામાં propagate કરવા chain rule વાપરવું

# સ્ટેપ 5: Weights Update કરવા

- Gradient descent વાપરીને weights adjust કરવા
- New\_weight = Old\_weight (learning\_rate × gradient)

# સ્ટેપ 6: પ્રક્રિયા પુનરાવર્તન

- Error converge થાય અથવા maximum epochs સુધી ચાલુ રાખવું
- Overfitting ટાળવા validation performance monitor કરવું

મેમરી ટ્રીક: "IFEBWI" (Initialize-Forward-Error-Backward-Weight-Iterate)

# પ્રશ્ન 4(અ) [3 ગુણ]

નેચરલ લેંગ્વેજ પ્રોસેસિંગના વિવિદ્ય ફાયદા અને ગેરફાયદાની યાદી બનાવો.

જવાબ:

ટેબલ: NLP ફાયદા અને ગેરફાયદા

| इ।यह।                                      | ગેરફાયદા                                    |
|--------------------------------------------|---------------------------------------------|
| Automation of text processing              | અસ્પષ્ટતા in human language                 |
| <b>24/7 ઉપલબ્ધતા</b> customer service માટે | Context Understanding પડકારો                |
| <b>બહુલાષીય સપોર્ટ</b> ક્ષમતાઓ             | <b>સાંસ્કૃતિક સૂક્ષ્મતાઓ</b> મુશ્કેલી       |
| સ્કેલેબિલિટી મોટા datasets માટે            | <b>ઉચ્ચ Computational</b> જરૂરિયાતો         |
| સુસંગતતા responses માં                     | <b>ડેટા ગોપનીયતા</b> ચિંતાઓ                 |
| <b>લાગત ઘટાડવી</b> operations માં          | મર્યા <b>દિત સર્જનાત્મકતા</b> responses માં |

# મુખ્ય પોઈન્ટ્સ:

• ફાયદા: કાર્યક્ષમતા, સુલભતા, સુસંગતતા

• ગેરફાયદા: જટિલતા, resource જરૂરિયાતો, મર્યાદાઓ

• **સંતુલન**: ઘણી applications માં ફાયદા પડકારો કરતાં વધુ છે

મેમરી ટ્રીક: "AMS-ACC" (Automation-Multilingual-Scalability vs Ambiguity-Context-Computational)

# પ્રશ્ન 4(બ) [4 ગુણ]

NLP માં પ્રી-પ્રોસેસિંગ તકનીકોની સૂચિ બનાવો અને પાયથોન પ્રોગ્રામ વડે કોઈપણ એકને demonstrate કરો.

જવાબ:

ટેબલ: NLP પ્રીપ્રોસેસિંગ તકનીકો

| તકનીક                    | હેતુ                                 | ઉદાહરણ                                         |
|--------------------------|--------------------------------------|------------------------------------------------|
| Tokenization             | ટેક્સ્ટને words/sentences માં વિભાજન | "Hello world" $\rightarrow$ ["Hello", "world"] |
| Stop Words Removal       | સામાન્ય શબ્દો દૂર કરવા               | "the", "is", "and" દૂર કરવા                    |
| Stemming                 | શબ્દોને root form માં ઘટાડવા         | "running" → "run"                              |
| Lemmatization            | Dictionary form માં કન્વર્ટ કરવું    | "better" → "good"                              |
| POS Tagging              | Parts of speech ઓળખવા                | "run" → verb                                   |
| Named Entity Recognition | Entities ઓળખવા                       | "Apple" → Organization                         |

# Python પ્રોગ્રામ - Tokenization:

```
import nltk
from nltk.tokenize import word_tokenize, sent_tokenize

# Sample text
text = "Natural Language Processing અદ્ભુત છે. તે કોમ્પ્યુટરોને માનવી ભાષા સમજવામાં મદદ કરે છે."

# Word tokenization
words = word_tokenize(text)
print("Words:", words)

# Sentence tokenization
sentences = sent_tokenize(text)
print("Sentences:", sentences)
```

મેમરી ટ્રીક: "TSSL-PN" (Tokenization-Stop-Stemming-Lemmatization, POS-NER)

# પ્રશ્ન 4(ક) [7 ગુણ]

NLP ના phases સમજાવો.

જવાબ:

NLP Phases natural language ને process અને સમજવા માટેના વ્યવસ્થિત અભિગમને દર્શાવે છે.

ટેબલ: NLP Phases

| તબક્કો                   | વર્ણન                                   | પ્રક્રિયા                            | ઉદાહરણ                                   |
|--------------------------|-----------------------------------------|--------------------------------------|------------------------------------------|
| Lexical Analysis         | Tokenization અને word<br>identification | ટેક્સ્ટને tokens માં વિભાજન          | "હું ખુશ છું" → ["હું", "ખુશ",<br>"છું"] |
| Syntactic Analysis       | વ્યાકરણ અને વાક્ય structure             | Parse trees, POS tagging             | Noun, verb, adjective<br>ઓળખવા           |
| Semantic Analysis        | અર્થ extraction                         | Word sense disambiguation            | "બેંક" → financial vs નદીનો<br>કિનારો    |
| Discourse<br>Integration | વાક્યો પારના context                    | Pronouns, references resolve<br>sरवा | "aੇ" refers to "જોન"                     |
| Pragmatic<br>Analysis    | Intent અને context<br>understanding     | Situation/culture consider<br>કરવું  | વ્યંગ, idioms interpretation             |

## વિગતવાર સમજાવટ:

### 1. Lexical Analysis:

- NLP pipeline નો પ્રથમ તબક્કો
- Character stream ને tokens માં કન્વર્ટ કરે છે
- Punctuation અને special characters દૂર કરે છે

# 2. Syntactic Analysis:

• વ્યાકરણનું structure વિશ્લેષણ કરે છે

- Parse trees બનાવે છે
- વાક્યના ઘટકો ઓળખે છે

# 3. Semantic Analysis:

- ટેક્સ્ટમાંથી અર્થ extract કરે છે
- શબ્દની અસ્પષ્ટતા handle કરે છે
- શબ્દોને concepts સાથે map કરે છે

# 4. Discourse Integration:

- વાક્ય સ્તર પાર ટેક્સ્ટનું વિશ્લેષણ કરે છે
- વાક્યો પાર context જાળવે છે
- References અને connections resolve કરે છે

# 5. Pragmatic Analysis:

- વાસ્તવિક જગતનો context consider કરે છે
- Speaker નો intent સમજે છે
- રૂપક ભાષા handle કરે છે

# મેર્મેઈડ ડાયાગ્રામ:



મેમરી ટ્રીક: "LSSDP" (Lexical-Syntactic-Semantic-Discourse-Pragmatic)

# પ્રશ્ન 4(અ) OR [3 ગુણ]

નેચરલ લેંગ્વેજ પ્રોસેસિંગ શું છે? તેની applications ની યાદી બનાવો.

### જવાબ:

**નેચરલ લેંગ્વેજ પ્રોસેસિંગ (NLP)** Al ની એક શાખા છે જે કોમ્પ્યુટરોને માનવી ભાષાને અર્થપૂર્ણ રીતે સમજવા, અર્થઘટન કરવા અને generate કરવા સક્ષમ બનાવે છે.

રેબલ: NLP Applications

| qวi          | Applications                        | ઉદાહરણો                    |
|--------------|-------------------------------------|----------------------------|
| કોમ્યુનિકેશન | Chatbots, Virtual assistants        | Siri, Alexa, ChatGPT       |
| અનુવાદ       | ભાષા અનુવાદ                         | Google Translate           |
| વિશ્લેષણ     | Sentiment analysis, Text mining     | Social media monitoring    |
| શોધ          | માહિતી પુનઃપ્રાપ્તિ                 | Search engines             |
| લેખન         | વ્યાકરણ તપાસ, Auto-complete         | Grammarly, predictive text |
| બિઝનેસ       | દસ્તાવેજ processing, Spam detection | Email filtering            |

# મુખ્ય Applications:

• મશીન અનુવાદ: ભાષાઓ વચ્ચે ટેક્સ્ટ કન્વર્ટ કરવું

• સ્પીય રેક**િનશન**: વાણીને ટેક્સ્ટમાં કન્વર્ટ કરવું

• ટેક્સ્ટ સમરાઈઝેશન: સંક્ષિપ્ત સારાંશ બનાવવા

• પ્રશ્ન જવાબ: પ્રશ્નોના જવાબો આપવા

મેમરી ટ્રીક: "CTAS-WB" (Communication-Translation-Analysis-Search, Writing-Business)

# પ્રશ્ન 4(બ) OR [4 ગુણ]

NLTK માં WordNet સાથે કરવામાં આવતા કાર્યોની સૂચિ બનાવો અને python code વડે કોઈપણ એકને demonstrate કરો.

જવાબ:

ટેબલ: NLTK માં WordNet કાર્યો

| รเช่        | વર્ણન                 | હેતુ                    |
|-------------|-----------------------|-------------------------|
| Synsets     | સમાનાર્થી શબ્દો શોધવા | શબ્દ સમાનતા             |
| Definitions | શબ્દના અર્થો મેળવવા   | Context સમજવા           |
| Examples    | ઉપયોગના ઉદાહરણો       | વ્યવહારિક application   |
| Hyponyms    | Specific terms શોધવા  | વંશવેલો સંબંધો          |
| Hypernyms   | સામાન્ય terms શોધવા   | Category identification |
| Antonyms    | વિરોધી શબ્દો શોધવા    | Contrast analysis       |

# Python ទìs - Synsets ਅਜੇ Definitions:

```
from nltk.corpus import wordnet

# 'સાર્ટ્ર' શાલ્દ માટે synsets મેળવવા
synsets = wordnet.synsets('good')
print("Synsets:", synsets)

# כוויטו મેળવવી
definition = synsets[0].definition()
print("Definition:", definition)

# ઉદાહરણો મેળવવા
examples = synsets[0].examples()
print("Examples:", examples)
```

મેમરી ટ્રીક: "SDEHA" (Synsets-Definitions-Examples-Hyponyms-Antonyms)

# પ્રશ્ન 4(ક) OR [7 ગુણ]

NLP માં ambiguities ના પ્રકારો સમજાવો.

#### જવાબ:

NLP Ambiguities ત્યારે થાય છે જ્યારે ટેક્સ્ટનું અનેક રીતે અર્થઘટન થઈ શકે છે, જે automated understanding માટે પડકારો બનાવે છે.

ટેબલ: Ambiguities ના પ્રકારો

| уѕіг        | વર્ણન                      | ઉદાહરણ                          | નિવારણ              |
|-------------|----------------------------|---------------------------------|---------------------|
| Lexical     | એક શબ્દના અનેક અર્થ        | "બેંક" (financial/નદીનો કિનારો) | Context analysis    |
| Syntactic   | અનેક વ્યાકરણ અર્થઘટન       | "ઉડતા વિમાનો ખતરનાક હોઈ શકે છે" | Parse trees         |
| Semantic    | વાક્ય સ્તરે અનેક અર્થ      | "સમય તીરની જેમ ઉડે છે"          | Semantic analysis   |
| Pragmatic   | Context-આધારિત અર્થઘટન     | "શું તમે મીઠું આપી શકશો?"       | Situational context |
| Referential | અસ્પષ્ટ pronoun references | "જોને બોબને કહ્યું તે ખોટો હતો" | Discourse analysis  |

# વિગતવાર સમજાવટ:

# 1. Lexical Ambiguity:

- એક જ શબ્દ, વિવિધ અર્થો
- Homonyms અને polysemes
- ઉદાહરણ: "બેટ" (પ્રાણી/રમત સાધન)

# 2. Syntactic Ambiguity:

- અનેક વ્યાકરણ structures
- વિવિધ parse trees શક્ય

• ઉદાહરણ: "મેં દૂરબીન સાથે એક માણસને જોયો"

# 3. Semantic Ambiguity:

- વાક્ય-સ્તરે અર્થની ગૂંચવણ
- અનેક અર્થઘટન શક્ય
- ઉદાહરણ: "સંબંધીઓની મુલાકાત કંટાળાજનક હોઈ શકે છે"

# 4. Pragmatic Ambiguity:

- Context અને intent આધારિત
- સાંસ્કૃતિક અને પરિસ્થિતિગત પરિબળો
- ઉદાહરણ: વ્યંગ અને indirect requests

## 5. Referential Ambiguity:

- Entities ના અસ્પષ્ટ references
- Pronoun resolution นระเว่า
- ઉદાહરણ: અનેક શક્ય antecedents

# નિવારણ વ્યૂહરચનાઓ:

- Context analysis અને machine learning
- આંકડાકીય disambiguation પદ્ધતિઓ
- Knowledge bases અને ontologies

મેમરી ટ્રીક: "LSSPR" (Lexical-Syntactic-Semantic-Pragmatic-Referential)

# પ્રશ્ન 5(અ) [3 ગુણ]

બેગ ઓફ વર્ડ્સને ઉદાહરણ સાથે સમજાવો.

### જવાબ:

**બેગ ઓફ વર્ડ્સ (BoW)** એ ટેક્સ્ટ પ્રતિનિધિત્વ પદ્ધતિ છે જે શબ્દની આવર્તન આધારે ટેક્સ્ટને આંકડાકીય vectors માં કન્વર્ટ કરે છે, વ્યાકરણ અને શબ્દ ક્રમને અવગણીને.

ટેબલ: BoW પ્રક્રિયા

| સ્ટેપ                  | પ્રક્રિયા                 | นญ์า                  |
|------------------------|---------------------------|-----------------------|
| 1. Tokenization        | ટેક્સ્ટને શબ્દોમાં વિભાજન | Vocabulary બનાવવી     |
| 2. Vocabulary Creation | અનન્ય શબ્દોનો સંગ્રહ      | Terms નો શબ્દકોશ      |
| 3. Vector Creation     | શબ્દ આવર્તન ગણવી          | આંકડાકીય પ્રતિનિધિત્વ |

### ઉદાહરણ:

દસ્તાવેજો:

• Doc1: "હું મશીન લર્નિંગ પસંદ કરું છું"

• Doc2: "મશીન લર્નિંગ અદ્ભૃત છે"

Vocabulary: [હું, પસંદ, મશીન, લર્નિંગ, અદ્ભુત, છે, કરું, છું]

#### **BoW Vectors:**

• Doc1: [1, 1, 1, 1, 0, 0, 1, 1]

• Doc2: [0, 0, 1, 1, 1, 1, 0, 0]

# લક્ષણો:

• ક્રમ સ્વતંત્ર: શબ્દ ક્રમ અવગણવામાં આવે છે

• આવર્તન આદ્યારિત: શબ્દ occurrences ગણે છે

• Sparse Representation: ઘણા શૂન્ય મૂલ્યો

મેમરી ટ્રીક: "TVC" (Tokenize-Vocabulary-Count)

# પ્રશ્ન 5(બ) [4 ગુણ]

# Word2Vec શું છે? તેના steps સમજાવો.

#### જવાબ:

**Word2Vec** એ neural network-આધારિત તકનીક છે જે મોટા text corpora માં તેમના context થી શીખીને શબ્દોના dense vector representations બનાવે છે.

રેબલ: Word2Vec Models

| મોડલ      | અભિગમ                            | આગાહી                |
|-----------|----------------------------------|----------------------|
| CBOW      | Continuous Bag of Words          | સંદર્ભ → લક્ષ્ય શબ્દ |
| Skip-gram | Skip-gram with Negative Sampling | લક્ષ્ય શબ્દ → સંદર્ભ |

# Word2Vec ના સ્ટેપ્સ:

### 1. ડેટા તૈયારી:

- મોટો text corpus એકત્ર કરવો
- ટેક્સ્ટ સાફ કરવું અને preprocess કરવું
- Training pairs अनाववा

### 2. મોડલ આર્કિટેક્ચર:

- Input layer (one-hot encoded words)
- Hidden layer (embedding layer)
- Output layer (prediction หเ2 softmax)

# 3. Training પ્રક્રિયા:

• CBOW: context થી target word ની આગાહ

• **Skip-gram**: target word થી context ની આગાહ

• Weights update કરવા backpropagation વાપરવું

#### 4. Vector Extraction:

- Hidden layer થી weight matrix extract કરવું
- દરેક row word embedding દર્શાવે છે
- સામાન્યતઃ 100-300 dimensions

## લાલો:

- Semantic relationships કેપ્યર કરે છે
- સમાન શબ્દોના સમાન vectors હોય છે
- Arithmetic operations સપોર્ટ કરે છે (રાજા પુરુષ + સ્ત્રી = રાણી)

મેમરી ટ્રીક: "DMAT" (Data-Model-Architecture-Training)

# પ્રશ્ન 5(ક) [7 ગુણ]

NLP ની applications ની યાદી બનાવો અને કોઈપણ એકને વિગતવાર સમજાવો.

જવાબ:

ટેબલ: NLP Applications

| Application        | นณ์ฯ                      | ઉદ્યોગ ઉપયોગ            |
|--------------------|---------------------------|-------------------------|
| મશીન અનુવાદ        | ભાષા રૂપાંતરણ             | વૈશ્વિક કોમ્યુનિકેશન    |
| Sentiment Analysis | ਮਰ ਯੂਰਜ                   | Social media monitoring |
| Chatbots           | વાતચીત Al                 | Customer service        |
| ટેક્સ્ટ સારાંશ     | સામગ્રી સંકુથન            | સમાચાર, સંશોધન          |
| સ્પીય રેકગ્નિશન    | અવાજ થી ટેક્સ્ટ           | Virtual assistants      |
| માહિતી નિષ્કર્ષણ   | ટેક્સ્ટમાંથી ડેટા માઇનિંગ | Business intelligence   |
| પ્રશ્ન જવાબ        | સ્વયાલિત પ્રતિસાદો        | Search engines          |
| સ્પામ શોધ          | Email filtering           | Cybersecurity           |

# વિગતવાર સમજાવટ: Sentiment Analysis

Sentiment Analysis એ ટેક્સ્ટ ડેટામાં વ્યક્ત કરાયેલ ભાવનાત્મક tone અને મંતવ્યો નક્કી કરવાની પ્રક્રિયા છે.

### ઘટકો:

• ટેક્સ્ટ પ્રીપ્રોસેસિંગ: સફાઈ અને tokenization

• Feature Extraction: TF-IDF, word embeddings

- વર્ગીકરણ: સકારાત્મક, નકારાત્મક, તટસ્થ
- વિશ્વાસ સ્કોરિંગ: Sentiment ની મજબૂતાઈ

#### นเรียบ จริงจา

- 1. **ડેટા સંગ્રહ**: Reviews, social media થી ટેક્સ્ટ એકત્ર કરવું
- 2. **પ્રીપ્રોસેસિંગ**: Noise દૂર કરવો, ટેક્સ્ટ normalize કરવું
- 3. Feature Engineering: ટેક્સ્ટને આંકડાકીય features માં કન્વર્ટ કરવું
- 4. **મોડલ ટ્રેનિંગ**: વર્ગીકરણ માટે ML algorithms વાપરવા
- 5. **આગાહી**: નવા ટેક્સ્ટના sentiment ની વર્ગીકરણ
- 6. **મૂલ્યાંકન**: ચોકસાઈ અને કામગીરી માપવી

# **Applications:**

- બ્રાન્ડ મોનિટરિંગ: ગ્રાહક મંતવ્યોને ટ્રેક કરવા
- પ્રોડક્ટ રિવ્યૂ: ગ્રાહક પ્રતિસાદનું વિશ્લેષણ
- **સોશિયલ મીડિયા**: જાહેર sentiment ને monitor કરવું
- બજાર સંશોધન: ગ્રાહક પસંદગીઓ સમજવી

મેમરી ટ્રીક: "MSCTSIQ-S" (Machine-Sentiment-Chatbot-Text-Speech-Information-Question-Spam)

# પ્રશ્ન 5(અ) OR [3 ગુણ]

ઉદાહરણ સાથે TFIDF સમજાવો.

#### જવાબ:

TF-IDF (Term Frequency-Inverse Document Frequency) દસ્તાવેજોના સંગ્રહ સાપેક્ષે દસ્તાવેજમાં શબ્દની મહત્ત્વતા માપે છે.

## સૂત્ર:

 $TF-IDF = TF(t,d) \times IDF(t)$ 

જ્યાં:

- TF(t,d) = (દસ્તાવેજ d માં term t કેટલી વખત આવે છે) / (દસ્તાવેજ d માં કુલ terms)
- IDF(t) = log(કુલ દસ્તાવેજો / term t ધરાવતા દસ્તાવેજો)

### ઉદાહરણ:

### દસ્તાવેજો:

- Doc1: "મશીન લર્નિંગ સારું છે"
- Doc2: "લર્નિંગ algorithms સારા છે"
- Doc3: "મશીન algorithms સારું કામ કરે છે"

ટેબલ: "મશીન" માટે TF-IDF ગણતરી

| દસ્તાવેજ | TF         | IDF             | TF-IDF              |
|----------|------------|-----------------|---------------------|
| Doc1     | 1/4 = 0.25 | log(3/2) = 0.18 | 0.25 × 0.18 = 0.045 |
| Doc2     | 0/4 = 0    | log(3/2) = 0.18 | 0 × 0.18 = 0        |
| Doc3     | 1/4 = 0.25 | log(3/2) = 0.18 | 0.25 × 0.18 = 0.045 |

# મુખ્ય પોઈન્ટ્સ:

• ઉચ્ચ TF-IDF: વિશિષ્ટ દસ્તાવેજમાં મહત્વપૂર્ણ શબ્દ

• **નીચો TF-IDF**: દસ્તાવેજો પાર સામાન્ય શબ્દ

• **Applications**: માહિતી પુનઃપ્રાપ્તિ, text mining

ਮੇਮਣੀ ਟ੍ਰੀਡ: "TI-FD" (Term frequency, Inverse Document frequency)

# પ્રશ્ન 5(બ) OR [4 ગુણ]

TFIDF અને BOW સાથેના challenges વિશે સમજાવો.

જવાબ:

ટેબલ: TF-IDF અને BOW સાથેના પડકારો

| પડકાર                     | TF-IDF                      | BOW                             | અસર                          |
|---------------------------|-----------------------------|---------------------------------|------------------------------|
| Semantic<br>Understanding | અર્થ કેપ્યર કરી શકતું નથી   | શબ્દ સંબંધો અવગણે છે            | Context ની ખરાબ સમજ          |
| શલ્દ ક્રમ                 | સ્થિતિ અવગણે છે             | ક્રમ ખોવાઈ જાય છે               | વ્યાકરણ અર્થ ખોવાઈ જાય<br>છે |
| Sparsity                  | ઉચ્ચ-dimensional<br>vectors | ઘણા શૂન્ય મૂલ્યો                | મેમરી અકાર્યક્ષમ             |
| Vocabulary भाष            | મોટો feature space          | Corpus સાથે વધે છે              | Computational જટિલતા         |
| Out-of-Vocabulary         | અજાણ્યા શબ્દો અવગણે છે      | નવા શબ્દો handle કરતું નથી      | મર્યાદિત સામાન્ચીકરણ         |
| Polysemy                  | અનેક અર્થો                  | વિવિધ senses માટે સમાન<br>વર્તન | અસ્પષ્ટતા સમસ્યાઓ            |

## વિગતવાર પડકારો:

# 1. Semantic Understanding નો અભાવ:

- શબ્દો સ્વતંત્ર features તરીકે ગણાય છે
- Synonyms અથવા સંબંધિત concepts સમજી શકતા નથી
- "સાટું" અને "ઉત્તમ" અલગ રીતે ગણાય છે

# 2. શબ્દ ક્રમ ખોવાઈ જવો:

- "કુતરો માણસને કરડે છે" vs "માણસ કુતરાને કરડે છે" સમાન representation
- Context અને વ્યાકરણની માહિતી ખોવાઈ જાય છે
- વાક્ય structure અવગણવામાં આવે છે

# 3. ઉચ્ચ Dimensionality:

- Vector size vocabulary size ની બરાબર
- મોટાભાગે શૂન્યો સાથે sparse matrices
- Storage અને computation સમસ્યાઓ

# 4. Context Insensitivity:

- એક જ શબ્દ વિવિધ contexts માં સમાન ગણાય છે
- "Apple" કંપની vs ફળ સમાન representation
- Polysemy અને homonymy સમસ્યાઓ

### ઉકેલો:

• Word Embeddings: Word2Vec, GloVe

• Contextual Models: BERT, GPT

• N-grams: કેટલાક શબ્દ ક્રમ કેપ્યર કરવા

• Dimensionality Reduction: PCA, SVD

મેમરી ટ્રીક: "SSVO-CP" (Semantic-Sequence-Vocabulary-OOV, Context-Polysemy)

# પ્રશ્ન 5(ક) OR [7 ગુણ]

GloVe ની કામગીરી સમજાવો.

## જવાબ:

Glove (Global Vectors for Word Representation) word embeddings બનાવવા માટે global આંકડાકીય માહિતીને local context windows સાથે જોડે છે.

ટેબલ: GloVe vs અન્ય પદ્ધતિઓ

| પાસું       | GloVe                     | Word2Vec              | પરંપરાગત પદ્ધતિઓ  |
|-------------|---------------------------|-----------------------|-------------------|
| અભિગમ       | Global + Local statistics | Local context windows | આવર્તન-આધારિત     |
| Training    | Matrix factorization      | Neural networks       | ગણતરી પદ્ધતિઓ     |
| કાર્યક્ષમતા | ઝડપી training             | ધીમી training         | ખૂબ ઝડપી          |
| પ્રદર્શન    | ઉચ્ચ યોકસાઈ               | સારી ચોકસાઈ           | મર્યાદિત પ્રદર્શન |

### કામગીરી પ્રક્રિયા:

### 1. Co-occurrence Matrix Construction:

- Context windows માં શબ્દ co-occurrences ગણવા
- Global statistics matrix બનાવવો
- Xij = word j, word i ના context માં કેટલી વખત આવે છે

#### 2. Ratio ગણતરી:

- સંભાવના ratios ની ગણતરી
- P(k|i) = Xik / Xi (word i આપવામાં આવે તો word k ની સંભાવના)
- સંભાવનાઓ વચ્ચેના અર્થપૂર્ણ ratios પર ધ્યાન

# 3. Objective Function:

- Weighted least squares objective minimize કરવું
- $J = \Sigma f(Xij)(wi^T wj + bi + bj log Xij)^2$
- જ્યાં f(x) weighting function છે

# 4. Vector Learning:

- Objective optimize કરવા gradient descent વાપરવું
- Word vectors wi અને context vectors wj શીખવા
- અંતિમ representation બંને vectors combine કરે છે

# મુખ્ય લક્ષણો:

### **Global Statistics:**

- સમગ્ર corpus માહિતી વાપરે છે
- Global word relationships કેપ્યર કરે છે
- Local પદ્ધતિઓ કરતાં વધુ સ્થિર

## કાર્યક્ષમતા:

- Co-occurrence statistics પર train કરે છે
- Neural network પદ્ધતિઓ કરતાં ઝડપી
- મોટા corpora માટે scalable

# પ્રદર્શન:

- Analogy tasks પર સારું પ્રદર્શન
- Semantic અને syntactic બંને સંબંધો કેપ્યર કરે છે
- Similarity tasks પર સારી કામગીરી

# ગાણિતિક આધાર:

$$J = \Sigma(i,j=1 \text{ to } V) f(Xij)(wi^T wj + bi + bj - log Xij)^2$$

જ્યાં:

- V = vocabulary size
- Xij = co-occurrence count
- wi, wj = word vectors
- bi, bj = bias terms
- f(x) = weighting function

### ફાયદા:

- લાલો સંયોજન: Global statistics + local context
- **સમજી શકાય તેવું**: સ્પષ્ટ ગાણિતિક આધાર
- **કાર્યક્ષમ**: Word2Vec કરતાં ઝડપી training
- અસરકારક: વિવિધ tasks પર સારી કામગીરી

# **Applications:**

- શબ્દ સમાનતા: સંબંધિત શબ્દો શોધવા
- Analogy Tasks: રાજા પુરુષ + સ્ત્રી = રાણી
- देड्स्ट वर्गीडरख: Feature representation
- મશીન અનુવાદ: Cross-lingual mappings

ਮੇਮਣੀ ਟ੍ਰੀਡ: "CROF-PGAE" (Co-occurrence-Ratio-Objective-Function, Performance-Global-Advantage-Efficiency)