Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Информационная безопасность

Работа №7 «Безопасность браузера и анализ сетевого трафика»

Барсуков Максим Андреевич

Группа: Р3415

Выполнение

Настройка браузера

Для выполнения данной работы был выбран браузер Google Chrome. Первым этапом стало изучение параметров конфиденциальности и безопасности, доступных в настройках браузера (рисунок 1).

Рисунок 1 — Настройки конфиденциальности и безопасности

Откроем раздел «Сторонние файлы cookie» (рисунок 2):

Рисунок 2 — Начальные настройки сторонних файлов cookie

Исходная конфигурация браузера предполагала разрешение на использование сторонних соокіе-файлов. Данная настройка позволяет доменам, отличным от текущего посещаемого сайта, сохранять и использовать свои файлы cookie. Такая практика широко применяется в рекламных сетях для отслеживания пользовательской активности across различных интернет-ресурсов, включая социальные сети, с целью формирования поведенческого профиля и демонстрации таргетированной рекламы. Указанная функция была отключена.

Была активирована опция "Do Not Track" (DNT). Данный HTTP-заголовок информирует веб-серверы о предпочтении пользователя не быть отслеживаемым. Важно отметить, что использование этого заголовка носит рекомендательный характер, и веб-сайты не обязаны его соблюдать.

В рамках политики блокировки был рассмотрен "белый список" исключений. Этот список позволяет предоставить доступ к сторонним cookie для конкретных доверенных доменов, даже при общем запрете. В данном случае список был оставлен пустым, без добавления каких-либо исключений.

Далее настройки были продолжены в разделе, посвященном конфиденциальности в рекламе:

Рисунок 3 — Раздел «Конфиденциальность в рекламе»

Откроем подраздел «Темы рекламы», как показано на рисунке 4:

Рисунок 4 — Подраздел «Темы рекламы»

В браузере Chrome реализована альтернативная технология, призванная заменить традиционные сторонние cookie. Её принцип действия заключается в анализе истории просмотров пользователя с целью его автоматического отнесения к определённым тематическим группам, таким как «автомобилисты» или «кулинары». Вместо передачи индивидуального идентификатора сайты получают информацию о принадлежности к такой обобщённой группе. Данная функция была отключена, поскольку, несмотря на декларируемую анонимность, её суть остаётся в отслеживании поведения пользователя для показа релевантной рекламы.

Далее настройки были продолжены в подразделе «Реклама, предлагаемая сайтами» (рисунок 5).

Рисунок 5 — Подраздел «Реклама, предлагаемая сайтами»

Отдельный веб-сайт обладает возможностью использовать информацию пользовательской активности пределах его просмотренные страницы, продолжительность сеансов взаимодействия — для демонстрации релевантной рекламы как на своей собственной платформе, так и через сеть партнерских ресурсов. Это позволяет расширить таргетирование за пределы одного домена. Выключаем эту функцию.

Перейдем в подраздел «Оценка эффективности рекламы» (рисунок 6):

Рисунок 6 — Подраздел «Оценка эффективности рекламы»

Данная функция предоставляет рекламодателям аналитику о результативности их кампаний, позволяя оценить, привели ли показы объявлений к целевым действиям, таким как совершение покупки после клика. Для формирования этих отчетов с устройства пользователя могут передаваться обезличенные сведения о конверсиях. Эта функция была отключена, поскольку, несмотря на заявления о применении анонимизации и ограниченном характере собираемых данных, её работа по своей сути предполагает передачу информации о поведении пользователя третьим сторонам — рекламодателям.

Откроем раздел «Безопасность» (рисунок 7):

Рисунок 7 — Раздел «Безопасность»

Было решено сохранить стандартный уровень защитных механизмов, поскольку он представляет собой надежное и проверенное решение, обеспечивающее базовую безопасность при работе в сети. Данная защита активно противодействует фишинговым атакам и блокирует доступ к вредоносным ресурсам, делая использование браузера существенно более безопасным.

Оставляем функцию сообщения о раскрытии паролей, тогда можно будет быстрее поменять пароль в случае утечки и снизить риски получения несанкционированного доступа к аккаунту. Google все равно не видит пароли в чистом виде, а проверка происходит на основе хешей паролей.

Также была активирована опция использования защищенного DNS-сервера, что повышает степень конфиденциальности. При использовании DNS-запросы шифруются, что ограничивает возможность интернет-провайдера отслеживать историю посещаемых пользователем сайтов. Оставляем функцию «Всегда использовать безопасные соединения», при попытке перехода на любой сайт с устаревшим протоколом НТТР браузер будет блокировать загрузку и выводить предупреждение.

Перейдем в подраздел «Оптимизация и безопасность JavaScript» (рисунок 8):

Рисунок 8 — Подраздел «Оптимизация и безопасность JavaScript»

Настройки, связанные с оптимизацией выполнения JavaScript, были оставлены в конфигурации по умолчанию, так как применяемые браузером механизмы оптимизации критически важны для обеспечения стабильной работы современных веб-приложений, что соответствует потребностям подавляющего большинства пользователей.

Перейдем в подраздел «Локальные сертификаты» (рисунок 9):

Рисунок 9 — Подраздел «Локальные сертификаты»

В интерфейсе управления сертификатами наблюдается, что браузер интегрирован с хранилищем сертификатов операционной системы, используя 34 доверенных корневых сертификата. Эта интеграция является фундаментальной для обеспечения безопасного и корректного установления соединений с веб-ресурсами, использующими протокол HTTPS, что и продемонстрировано на рисунке 10.

Рисунок 10 — Импортированные из Windows сертификаты

Перейдем в раздел «Настройки сайтов» (рисунки 11–13):

Рисунок 11 — Основные разрешения сайтов

Рисунок 12 — Дополнительные разрешения сайтов

Рисунок 13 — Контент и дополнительные настройки контента

Проведем политику максимального ограничения доступа:

Отключены опасные функции доступа к USB-устройствам, файловой системе, портам, датчикам, midi-устройствам. Запрещена фоновая синхронизация и автоматические загрузки. Активировано автоматическое удаление разрешений для неиспользуемых сайтов.

Было сохранено разрешение на выполнение JavaScript-сценариев, поскольку эта функция является фундаментальной для обеспечения полной функциональности и интерактивности подавляющего большинства современных веб-сайтов. Также было разрешено отображение графических элементов, что необходимо для корректного восприятия контента.

Для доступа к таким аппаратным средствам, как микрофон и камера, а также к данным о местоположении, был установлен режим «Спрашивать разрешение». Данная настройка гарантирует, что браузер будет каждый раз запрашивать явное согласие пользователя при попытке сайта получить доступ к этим ресурсам, предоставляя возможность предоставлять доступ только в случае действительной необходимости.

Далее очистим кэш и куки, как показано на рисунках 14 и 15:

Рисунок 14 — Основные настройки удаления данных браузера

Рисунок 15 — Дополнительные настройки удаления данных браузера

После очистки кэша и куки освободится более 400 МБ пространства.

Анализ трафика

Далее зайдем на сайт https://se.ifmo.ru/. Перейдем во вкладку «Сеть», как показано на рисунке 16:

	twork Performa		ation Privacy and security	»	(\$)
			Doc CSS JS Font Img M	ledia Manifest Socke	
200 ms 400 ms	600 ms	800 ms	1.000 ms 1.200 m		
200 115	000 115		1,000 IIIS 1,200 III	S 1,400 III S	
Name	Status	Туре	Initiator	Size Ti	me
se.ifmo.ru	200	document	Other	19.0 kB	84 n
☑ clay.css?browserId=chrome&themeId=helios_W	200	stylesheet	(index):179	86.7 kB	146 n
☑ main.css?browserId=chrome&themeId=helios_W.	. 200	stylesheet	(index):183	20.2 kB	180 n
☑ combo?browserId=chrome&minifierType=&the	200	stylesheet	(index):207	3.8 kB	180 r
☑ js_loader_config?t=1752500100185	200	script	(index):538	0.4 kB	276 r
ombo?browserld=chrome&minifierType=js&lan	. 200	script	(index):539	94.4 kB	283 ı
ombo?browserld=chrome&minifierType=js&lan	. 200	script	(index):540	34.8 kB	320
ombo?browserld=chrome&minifierType=js&lan	. 200	script	(index):541	107 kB	349
☑ js_bundle_config?t=1752500135245	200	script	(index):548	3.1 kB	354
ombo?browserId=chrome&minifierType=&the	200	script	(index):651	40.4 kB	213 :
☑ main.css?browserId=chrome&themeId=helios_W	. 200	stylesheet	(index):669	22.5 kB	176
☑ fontawesome.min.css	200	stylesheet	(index):841	15.4 kB	166
itmo-cs-logo.png	200	png	(index):1141	4.9 kB	165
pic-sign-in.png	200	png	(index):1228	4.9 kB	165
☑ aui_deprecated.css?t=1596831421011	200	stylesheet	main.css:2	7.4 kB	158
ducks-2.jpeg	200	jpeg	(index):1247	97.5 kB	242
3 20a0c4e2-c528-4154-bb41-550b85435f6d.jpg?t	200	jpeg	(index):1942	130 kB	269
2d9cbf3c-4214-4598-3b17-b59c7bb0539e?t=16	200	jpeg	(index):1973	39.5 kB	103
combo?browserld=chrome&minifierType=&the	200	script	(index):3060	0.2 kB	108
☑ main.js?browserld=chrome&minifierType=js&lan	. 200	script	(index):3394	1.6 kB	29
jquery-3.5.1.min.js	404	script	(index):3478	0.6 kB	
ad967346-0a88-1a02-1ebf-a12cbb681ad4?t=16	200	jpeg	(index):2004	27.5 kB	86
f0afb842-d5e5-d0e4-215f-772e7a4312ba?t=163	200	jpeg	(index):2035	41.6 kB	105
adaa7193a-ceb1-7378-6c5a-ca905edf72ea?t=163	200	jpeg	(index):2066	63.9 kB	220
9e46f3ad-99b0-0859-19fa-59607987d591?t=163	. 200	jpeg	(index):2097	36.4 kB	123

Рисунок 16 — Вкладка «Сеть»

Видим, что при обычной загрузке страницы было послано 64 HTTP запроса. Зайдем в заголовки самого первого GET-запроса (рисунок 17):

Рисунок 17 — Типы заголовков первого GET-запроса

Видим, что тут находится три типа заголовков — общие, заголовки ответов и запросов.

Посмотрим на общие заголовки (рисунок 18):

Рисунок 18 — Общие заголовки

Тут представлены: код статуса, удаленный адрес (IP сервера <u>se.ifmo.ru</u> + порт 443, стандартный для https протокола) и правило перехода, контролирующее, какую информацию отправлять при переходе между сайтами (strict – строгое ограничение, origin – передается только домен, но не полный URL, cross-origin – при переходе на другой сайт).

Рассмотрим заголовки ответа (рисунок 19):

Рисунок 19 — Заголовки ответа

Заголовки ответа:

- cache-control: private, no-cache, no-store, must-revalidate строгая политика кэширования: контент не сохраняется в публичном кэше, всегда требуется проверка актуальности на сервере, полный запрет на хранение в любом кэше.
- content-encoding: gzip контент передан в сжатом формате для уменьшения объема передаваемых данных.
- content-type: text/html;charset=UTF-8 тип контента HTML с кодировкой UTF-8.
- date: Tue, 14 Oct 2025 18:56:53 GMT точное время формирования ответа сервером.
- expires: Thu, 01 Jan 1970 00:00:00 GMT установка заведомо прошедшей даты истечения срока действия, чтобы контент считался устаревшим.
- liferay-portal: Liferay Community Edition Portal 7.3.4 CE GA5 информация о используемой версии портала Liferay, что может раскрывать потенциальные уязвимости.
- pragma: no-cache устаревший заголовок для обратной совместимости, запрещающий кэширование в HTTP/1.0.
- server: nginx/1.26.2 информация о веб-сервере и его версии, раскрытие которой не рекомендуется в целях безопасности.
- x-content-type-options: nosniff защита от MIME-спуфинга: браузер должен доверять указанному типу контента и не пытаться определять его самостоятельно.
- x-frame-options: SAMEORIGIN защита от кликджекинга: страница может быть встроена во фрейм только на сайтах с тем же происхождением.
- x-powered-by: JSP/2.3 информация о используемой технологии серверной части (Java Server Pages).
- x-xss-protection: 1 включение встроенного XSS-фильтра браузера для блокировки обнаруженных межсайтовых скриптов.

Рассмотрим заголовки запросов (рисунок 20):

Рисунок 20 — Заголовки запроса

Заголовки идентификации браузера и системы:

- User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
 AppleWebKit/537.36 браузер представляется как Chrome 141 на Windows 10, что помогает серверу оптимизировать контент для конкретной платформы.
- Sec-Ch-Ua: "Google Chrome";v="141", "Not?A_Brand";v="8", "Chromium";v="141" обновленная версия User-Agent для уменьшения цифрового отпечатка, сообщает только ключевую информацию о версии браузера.
- Sec-Ch-Ua-Mobile: ?0 указание, что устройство не является мобильным.
- Sec-Ch-Ua-Platform: "Windows" информация об операционной системе пользователя.
- Accept-Language: ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7 предпочтение интерфейса на русском языке с поддержкой английского как запасного варианта.

Заголовки управления запросом и кэшированием:

- Cache-Control: no-cache требование не использовать кэшированную версию без предварительной проверки на сервере.
- Pragma: no-cache устаревший аналог Cache-Control для обратной совместимости.
- Accept: text/html,application/xhtml+xml,application/xml;q=0.9 предпочтительные форматы контента с указанием коэффициентов качества.
- Accept-Encoding: gzip, deflate, br, zstd поддержка сжатия контента для уменьшения объема передаваемых данных.
- Priority: u=0, i указание приоритета запроса как низкого.

Заголовки безопасности и приватности:

- Dnt: 1 включенный заголовок "Do Not Track", выражающий предпочтение пользователя не отслеживаться.
- Sec-Fetch-Dest: document указание, что запрашивается основной документ (HTML-страница).
- Sec-Fetch-Mode: navigate запрос является навигационным (переход по ссылке или ввод URL).
- Sec-Fetch-Site: none запрос инициирован напрямую, а не с другого сайта.
- Sec-Fetch-User: ?1 указание, что запрос инициирован действием пользователя.
- Upgrade-Insecure-Requests: 1 предпочтение использования HTTPS для всех ресурсов.

Работа с сессиями и аутентификацией:

- Cookie: COOKIE_SUPPORT=true; GUEST_LANGUAGE_ID=ru_RU; JSESSIONID=... передача сессионных данных, включая идентификатор сессии JSESSIONID, язык интерфейса и аналитические cookies Google Analytics (_ga, _gid, _gat).
- :authority: se.ifmo.ru целевой домен в формате HTTP/2.
- :method: GET метод HTTP-запроса.
- :path: / запрашиваемый путь на сервере.
- :scheme: https использование защищенного протокола HTTPS.

Теперь рассмотрим POST-запрос (рисунок 21):

Рисунок 21 — Вкладка «Сеть» при POST-запросе

Видим те же общие заголовки с тем же назначением.

Рассмотрим заголовки ответа при POST-запросе (рисунок 22):

Рисунок 22 — Заголовки ответа при POST-запросе

Заголовки кросс-доменной политики (CORS):

- Access-Control-Allow-Origin: https://se.ifmo.ru сервер явно разрешает кросс-доменные запросы только с конкретного домена se.ifmo.ru, что обеспечивает контролируемый доступ.
- Access-Control-Allow-Credentials: true разрешает передачу cookies и аутентификационных данных при кросс-доменных запросах, что необходимо для работы сессий между разными доменами.
- Cross-Origin-Resource-Policy: cross-origin политика разрешающая доступ к ресурсу с любого домена, что в сочетании с CORS настройками создает гибкую систему контроля доступа.

Заголовки безопасности контента:

- Content-Security-Policy-Report-Only: script-src 'none'; form-action 'none'; frame-src 'none' политика безопасности контента в режиме отчетности: полный запрет на выполнение скриптов, отправку форм и встраивание фреймов, с отправкой отчетов о нарушениях.
- Cross-Origin-Opener-Policy-Report-Only: same-origin; report-to=ascnsrsggc:158:0 политика изоляции окон в режиме отчетности: запрет на совместное использование контекста с окнами из другого источника.
- Report-to: {"group":"ascnsrsggc:158:0","max_age":2592000... настройка эндпоинта для отправки отчетов о нарушениях политик безопасности с периодом действия 30 дней.

Заголовки управления кэшированием:

- Cache-Control: no-cache, no-store, must-revalidate строгая политика: запрет на кэширование, обязательная проверка актуальности данных на сервере.
- Expires: Fri, 01 Jan 1990 00:00:00 GMT установка заведомо прошедшей даты истечения срока действия для гарантии отсутствия кэширования.
- Pragma: no-cache устаревший заголовок запрета кэширования для обратной совместимости.

Технические заголовки:

- Content-Length: 0 указание нулевого размера тела ответа, что характерно для ответов на POST-запросы без возвращаемых данных.
- Server: Golfe2 информация о серверном программном обеспечении.
- Alt-Svc: h3=":443"; ma=2592000 поддержка HTTP/3 на порту 443 с периодом доступности 30 дней.
- Date: Tue, 14 Oct 2025 18:56:59 GMT точное время формирования ответа сервером.

Рассмотрим заголовки запроса при POST-запросе (рисунок 23):

Рисунок 23 — Заголовки запроса при POST-запросе

Заголовки аналитического запроса:

- :authority: analytics.google.com целевой домен Google Analytics для сбора статистики.
- :method: POST метод отправки данных аналитики.
- :path: /g/collect?v=2&tid=G-5R1ZXK9D1L... путь с параметрами аналитики: идентификатор отслеживания G-5R1ZXK9D1L, данные о странице (dl=https://se.ifmo.ru/), заголовок страницы (dt=Главная Программная инженерия), идентификатор сессии (sid=1760468068) и событие раде view.
- :scheme: https использование защищенного соединения для передачи данных.

Заголовки источника запроса:

- Origin: https://se.ifmo.ru явное указание домена-источника запроса, необходим для CORS политики.
- Referer: https://se.ifmo.ru/ полный URL страницы, с которой был инициирован запрос аналитики.

Заголовки браузера и системы:

- User-Agent: Mozilla/5.0 (Windows NT 10.0... Chrome/141.0.0.0 идентификация браузера Chrome 141 на Windows 10.
- Sec-Ch-Ua: "Google Chrome";v="141", "Not?A_Brand";v="8" обновленная версия User-Agent с информацией о версии браузера.
- Sec-Ch-Ua-Mobile: ?0 указание, что устройство не мобильное.
- Sec-Ch-Ua-Platform: "Windows" информация об операционной системе.
- Accept-Language: ru-RU,ru;q=0.9 предпочтение русского языка интерфейса.

Заголовки безопасности браузера:

- Sec-Fetch-Dest: empty указание, что запрос не предназначен для конкретного типа ресурса.
- Sec-Fetch-Mode: no-cors режим запроса без поддержки CORS, ограничивающий доступ к ответу.
- Sec-Fetch-Site: cross-site указание, что запрос идет на другой домен (с se.ifmo.ru на analytics.google.com).
- Sec-Fetch-Storage-Access: none отсутствие доступа к хранилищу при кросс-доменном запросе.
- Dnt: 1 включенный заголовок "Do Not Track", выражающий предпочтение пользователя не отслеживаться.

Технические параметры:

- Content-Length: 0 нулевой размер тела запроса, данные передаются в URL параметрах.
- Accept: */* готовность принять любой тип контента в ответе.
- Accept-Encoding: gzip, deflate, br, zstd поддержка всех современных методов сжатия.
- Priority: u=1, i высокий приоритет запроса.

Специфичные заголовки Google Chrome:

- X-Browser-Channel: stable указание стабильной версии браузера.
- X-Browser-Copyright: Copyright 2025 Google LLC информация о правообладателе.
- X-Browser-Validation: AGaxImjg97xQkd0h3geRTArJi8Y= криптографическая проверка подлинности браузера.
- X-Browser-Year: 2025 год версии браузера.
- X-Client-Data: CJa2yQEIo7bJAQipncoBCP6PywE... закодированные данные о вариациях клиента для A/B тестирования функциональности Chrome.

Форма входа

Далее на этом же сайте (<u>https://se.ifmo.ru/</u>) введем тестовые данные в форму входа, как показано на рисунке 24:

Рисунок 24 — Ввод тестовых данных

После ввода данных в форму появился такой POST-запрос (рисунки 25 и 26):

Рисунок 25 — POST-запрос после отправки данных формы, заголовки ответа

Рисунок 26 — POST-запрос после отправки данных формы, заголовки запроса

Если открыть полезную нагрузку, то увидим следующее (рисунок 27):

Рисунок 27 — Полезная нагрузка POST-запроса

Результаты анализа POST-запроса при авторизации:

Статус ответа: 302 Found — указывает на перенаправление после попытки входа, что является стандартным поведением для веб-приложений после отправки формы авторизации.

Пароль передается в открытом виде в поле _com_liferay_login_web_portlet_LoginPortlet_password со значением 1111111111. Это представляет серьезную угрозу безопасности, даже при использовании HTTPS. Данные могут быть видны в логах промежуточных прокси-серверов. Кроме того, открытый пароль может сохраняться в истории форм. При компрометации SSL-сертификата пароль становится доступен.

Проанализируем передаваемые параметры:

Учетные данные:

- _com_liferay_login_web_portlet_LoginPortlet_login: s11111 логин пользователя
- _com_liferay_login_web_portlet_LoginPortlet_password: 1111111111 пароль в открытом виде

Технические параметры формы:

- _com_liferay_login_web_portlet_LoginPortlet_formDate: 1760470404612 временная метка для защиты от повторной отправки
- p_auth: a72MVhvx токен аутентификации, вероятно CSRF-защита
- _com_liferay_login_web_portlet_LoginPortlet_saveLastPath: false настройка сохранения пути

Нет хеширования на клиенте — пароль передается в исходном виде без предварительного хеширования. Нет дополнительного шифрования — только базовое HTTPS-соединение. Пароль виден в DevTools — легко обнаруживается при анализе сетевых запросов

Таким образом, система использует небезопасный метод передачи паролей. Несмотря на наличие HTTPS-шифрования и CSRF-токена, передача пароля в открытом виде нарушает современные стандарты безопасности. Данная реализация подвергает пользователей риску компрометации учетных записей даже при использовании защищенного соединения.

Как чаще всего передаются данные аутентификации (логин/пароль) в современных веб-приложениях?

В современных веб-приложениях данные аутентификации обычно передаются исключительно через защищенное HTTPS-соединение с использованием POST-запросов и Content-Type: application/x-www-form-urlencoded или application/json, где информация помещается в тело запроса, а не в URL.

Пароли не передаются в открытом виде — вместо этого применяется предварительное хеширование на стороне клиента с использованием алгоритмов вроде bcrypt или PBKDF2 с уникальной солью.

После успешной аутентификации дальнейшая работа происходит через одноразовые токены доступа (access tokens) и обновляемые refresh-токены, что исключает постоянную передачу пароля.

Обязательно используются CSRF-токены для защиты от межсайтовой подделки запросов, а сессионные данные хранятся в HTTP-only cookies с настройками SameSite, недоступные из JavaScript. Дополнительную безопасность обеспечивают современные заголовки HTTP Strict Transport Security, CSP и X-Content-Type-Options.

В передовых реализациях все чаще применяются протоколы OAuth 2.0, OpenID Connect, а также беспарольные методы аутентификации через email-ссылки, биометрию и многофакторную аутентификацию, что в совокупности обеспечивает надежную защиту учетных данных пользователей