Machine Learning Methods for Causal Effects

Susan Athey, Stanford University Guido Imbens, Stanford University

Supervised Machine Learning v. Econometrics/Statistics Lit. on Causality

Supervised ML

- Well-developed and widely used nonparametric prediction methods that work well with big data
 - Used in technology companies, computer science, statistics, genomics, neuroscience, etc.
 - Rapidly growing in influence
- Cross-validation for model selection
- Focus on prediction and applications of prediction
- Weaknesses
 - Causality (with notable exceptions, including those attending this conference)

Econometrics/Soc Sci/Statistics

- Formal theory of causality
 - Potential outcomes method (Rubin) maps onto economic approaches
- "Structural models" that predict what happens when world changes
 - Used for auctions, anti-trust (e.g. mergers) and business decision-making (e.g. pricing)
- Well-developed and widely used tools for estimation and inference of causal effects in exp. and observational studies
 - Used by social science, policy-makers, development organizations, medicine, business, experimentation
- Weaknesses
 - Non-parametric approaches fail with many covariates
 - Model selection unprincipled

A Research Agenda

Problems

- Many problems in social sciences entail a combination of prediction and causal inference
- Existing ML approaches to estimation, model selection and robustness do not directly apply to the problem of estimating causal parameters
- Inference more challenging for some ML methods

Proposals

- Formally model the distinction between causal and predictive parts of the model and treat them differently for both estimation and inference
 - Abadie, Athey, Imbens and Wooldridge (2014, under review)
- Develop new estimation methods that combine ML approaches for prediction component of models with causal approaches
 - Today's paper, Athey-Imbens (WIP)
- Develop new approaches to crossvalidation optimized for causal inference
 - Today's paper, Athey-Imbens (WIP)
- Develop robustness measures for causal parameters inspired by ML
 - Athey-Imbens (AER 2015)

Model for Causal Inference

- For causal questions, we wish to know what would happen if a policy-maker changes a policy
 - Potential outcomes notation:
 - $Y_i(w)$ is the outcome unit i would have if assigned treatment w
 - For binary treatment, treatment effect is $\tau_i = Y_i(1) Y_i(0)$
 - Administer a drug, change minimum wage law, raise a price
 - Function of interest: mapping from alt. CF policies to outcomes
 - Holland: Fundamental Problem of Causal Inference
 - We do not see the same units at the same time with alt. CF policies
- \blacktriangleright Units of study typically have fixed attributes x_i
 - These would not change with alternative policies
 - E.g. we don't contemplate moving coastal states inland when we change minimum wage policy

Inference for Causal Effects v. Attributes: Abadie, Athey, Imbens & Wooldridge (2014)

Approach

- Formally define a population of interest and how sampling occurs
- Define an estimand that answers the economic question using these objects (effects versus attributes)
- Specify: "What data are missing, and how is the difference between your estimator and the estimand uncertain?"
 - Given data on 50 states from 2003, we know with certainty the difference in average income between coast and interior
 - Although we could contemplate using data from 2003 to estimate the 2004, difference this depends on serial correlation within states, no direct info in cross-section

Application to Effects v. Attributes in Regression Models

- Sampling: Sample/population does not go to zero, finite sample
- Causal effects have missing data: don't observe both treatments for any unit
- Huber-White robust standard errors are conservative but best feasible estimate for causal effects
- Standard errors on fixed attributes may be much smaller if sample is large relative to population
 - Conventional approaches take into account sampling variance that should not be there

Robustness of Causal Estimates Athey and Imbens (AER, 2015)

- General nonlinear models/estimation methods
- Causal effect is defined as a function of model parameters
 - Simple case with binary treatment, effect is $\tau_i = Y_i(1) Y_i(0)$
- Consider other variables/features as "attributes"
- Proposed metric for robustness:
 - Use a series of "tree" models to partition the sample by attributes
 - Simple case: take each attribute one by one
 - Re-estimate model within each partition
 - For each tree, calculate overall sample average effect as a weighted average of effects within each partition
 - This yields a set of sample average effects
 - Propose the standard deviation of effects as robustness measure

▶ 4 Applications:

Robustness measure better for randomized experiments, worse in observational studies Machine Learning Methods for Estimating Heterogeneous Causal Effects

Susan Athey and Guido Imbens

Motivation I: Experiments and Data-Mining

- Concerns about ex-post "data-mining"
 - In medicine, scholars required to pre-specify analysis plan
 - In economic field experiments, calls for similar protocols
- But how is researcher to predict all forms of heterogeneity in an environment with many covariates?
- ▶ Goal:
 - Allow researcher to specify set of potential covariates
 - Data-driven search for heterogeneity in causal effects with valid standard errors

Motivation II: Treatment Effect Heterogeneity for Policy

- Estimate of treatment effect heterogeneity needed for optimal decision-making
- This paper focuses on estimating treatment effect as function of attributes directly, not optimized for choosing optimal policy in a given setting
- This "structural" function can be used in future decisionmaking by policy-makers without the need for customized analysis

Preview

- Distinguish between causal effects and attributes
- ▶ Estimate treatment effect heterogeneity:
 - Introduce estimation approaches that combine ML prediction
 & causal inference tools
- Introduce and analyze new cross-validation approaches for causal inference
- Inference on estimated treatment effects in subpopulations
 - Enabling post-experiment data-mining

Regression Trees for Prediction

Data

- Outcomes Y_{i} , attributes X_{i} .
- Support of X_i is \mathcal{X} .
- Have training sample with independent obs.
- Want to predict on new sample
- Ex: Predict how many clicks a link will receive if placed in the first position on a particular search query

Build a "tree":

- Partition of ${\mathcal X}$ into "leaves" ${\mathcal X}_j$
- Predict Y conditional on realization of X in each region \mathcal{X}_j using the sample mean in that region
- Go through variables and leaves and decide whether and where to split leaves (creating a finer partition) using in-sample goodness of fit criterion
- Select tree complexity using crossvalidation based on prediction quality

Regression Tree Illustration

Outcome: CTR for position 1 in subsample of Bing search queries from 2012 (sample is non-representative)

Regression Trees for Prediction: Components

Model and Estimation

- A. Model type: Tree structure
- B. Estimator \hat{Y}_i : sample mean of Y_i within leaf
- C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. Criterion function (for fixed tuning parameter λ)

A. In-sample Goodness-of-fit function:

Qis = -MSE (Mean Squared Error)=
$$-\frac{1}{N}\sum_{i=1}^{N}(\hat{Y}_i - Y_i)^2$$

- A. Structure and use of criterion
 - i. Criterion: $Q^{crit} = Q^{is} \lambda \times \#$ leaves
 - Select member of set of candidate estimators that maximizes Q^{crit} , given λ

3. Cross-validation approach

- A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Qos.
- B. Out-of-sample Goodness-of-fit function: $Q^{os} = -MSE$

Using Trees to Estimate Causal Effects

Model:

$$Y_i = Y_i(W_i) = \begin{cases} Y_i(1) & if W_i = 1, \\ Y_i(0) & otherwise. \end{cases}$$

- \triangleright Suppose random assignment of W_i
- Want to predict individual i's treatment effect
 - $\tau_i = Y_i(1) Y_i(0)$
 - This is not observed for any individual
 - Not clear how to apply standard machine learning tools
- Let

$$\mu(w, x) = \mathbb{E}[Y_i | W_i = w, X_i = x]$$

$$\tau(x) = \mu(1, x) - \mu(0, x)$$

Using Trees to Estimate Causal Effects

$$\mu(w,x) = \mathbb{E}[Y_i|W_i = w, X_i = x]$$

$$\tau(x) = \mu(1,x) - \mu(0,x)$$

- Approach I:Analyze two groups separately
 - Estimate $\hat{\mu}(1, x)$ using dataset where $W_i = 1$
 - Estimate $\hat{\mu}(0, x)$ using dataset where $W_i = 0$
 - Use propensity score weighting (PSW) if needed
 - Do within-group cross-validation to choose tuning parameters
 - Construct prediction using

$$\hat{\mu}(1,x) - \hat{\mu}(0,x)$$

- Approach 2: Estimate $\mu(w, x)$ using tree including both covariates
 - Include PS as attribute if needed
 - Choose tuning parameters as usual
 - Construct prediction using

$$\hat{\mu}(1,x) - \hat{\mu}(0,x)$$

Estimate is zero for x where tree does not split on w

Observations

- Estimation and cross-validation not optimized for goal
- Lots of segments in Approach 1: combining two distinct ways to partition the data

Problems with these approaches

- Approaches not tailored to the goal of estimating treatment effects
- 2. How do you evaluate goodness of fit for tree splitting and cross-validation?
 - $\tau_i = Y_i(1) Y_i(0)$ is not observed and thus you don't have ground truth for any unit

Literature

Approaches in the spirit of single tree and two trees

- Beygelzimer and Langford (2009)
 - Analogous to "two trees" approach with multiple treatments; construct optimal policy
- Dudick, Langford, and Li (2011)
 - Combine inverse propensity score method with "direct methods" (analogous to single tree approach) to estimate optimal policy
- Foster, Tailor, Ruberg, Statistics and Medicine (2011)
 - Estimate $\mu(w, x)$ using random forests, define $\hat{\tau}_i = \hat{\mu}(1, X_i) \hat{\mu}(0, X_i)$, and do trees on $\hat{\tau}_i$.
- Imai and Ratkovic (2013)
 - In context of randomized experiment, estimate $\mu(w, x)$ using lasso type methods, and then $\hat{\tau}(x) = \hat{\mu}(1, x) \hat{\mu}(0, x)$.

Estimating treatment effects directly at leaves of trees

- Su, Tsai, Wang, Nickerson, Li (2009)
 - Do regular tree, but split if the t-stat for the treatment effect difference is large, rather than when the change in prediction error is large.
- Zeileis, Hothorn, and Hornick (2005)
 - "Model-based recursive partitioning": estimate a model at the leaves of a tree. In-sample splits based on prediction error, do not focus on out of sample cross-validation for tuning.
- None of these explore crossvalidation based on treatment effect.

Proposed Approach 3: Transform the Outcome

- Suppose we have 50-50 randomization of treatment/control

 - ▶ Then $E[Y_i^*] = 2 \cdot (\frac{1}{2}E[Y_i(1)] \frac{1}{2}E[Y_i(0)]) = E[\tau_i]$
- Suppose treatment with probability p_i
 - Let $Y_i^* = \frac{W_i p}{p(1 p)} Y_i = \begin{cases} \frac{1}{p} Y_i & \text{if } W_i = 1 \\ -\frac{1}{1 p} Y_i & \text{if } W_i = 0 \end{cases}$
 - Then $E[Y_i^*] = \left(p_{\overline{p}}^1 E[Y_i(1)] (1-p)_{\overline{1-p}}^1 E[Y_i(0)]\right) = E[\tau_i]$
- Selection on observables or stratified experiment
 - ▶ Let $Y_i^* = \frac{W_i p(X_i)}{p(X_i)(1 p(X_i))} Y_i$
 - Estimate $\hat{p}(x)$ using traditional methods

Causal Trees:

Approach 3 (Conventional Tree, Transformed Outcome)

Model and Estimation

- A. Model type: Tree structure
- B. Estimator $\hat{\tau}_i^*$: sample mean of Y_i^* within leaf
- C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. Criterion function (for fixed tuning parameter λ)

A. In-sample Goodness-of-fit function:

Qis = -MSE (Mean Squared Error) =
$$-\frac{1}{N}\sum_{i=1}^{N}(\hat{\tau}_i^* - Y_i^*)^2$$

- A. Structure and use of criterion
 - i. Criterion: $Q^{crit} = Q^{is} \lambda \times \#$ leaves
 - Select member of set of candidate estimators that maximizes Q^{crit} , given λ

3. Cross-validation approach

- A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Qos.
- B. Out-of-sample Goodness-of-fit function: $Q^{os} = -MSE$

Critique of Proposed Approach 3: Transform the Outcome

$$Y_i^* = \frac{W_i - p}{p(1 - p)} Y_i = \begin{cases} \frac{1}{p} Y_i & \text{if } W_i = 1\\ -\frac{1}{1 - p} Y_i & \text{if } W_i = 0 \end{cases}$$

- Within a leaf, sample average of Y_i^* is not most efficient estimator of treatment effect
 - The proportion of treated units within the leaf is not the same as the overall sample proportion
- ▶ This motivates Approach 4: use sample average treatment effect in the leaf

Causal Trees:

Approach 4 (Causal Tree, Version 1)

Model and Estimation

- A. Model type: Tree structure
- B. Estimator $\hat{\tau}_i^{CT}$: sample average treatment effect within leaf (w/ PSW)
- C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. Criterion function (for fixed tuning parameter λ)

A. In-sample Goodness-of-fit function:

Qis = -MSE (Mean Squared Error) =
$$-\frac{1}{N}\sum_{i=1}^{N}(\hat{\tau}_{i}^{CT}-Y_{i}^{*})^{2}$$

- A. Structure and use of criterion
 - i. Criterion: $Q^{crit} = Q^{is} \lambda \times \#$ leaves
 - Select member of set of candidate estimators that maximizes Q^{crit} , given λ

3. Cross-validation approach

- A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Qos.
- B. Out-of-sample Goodness-of-fit function: $Q^{os} = -MSE$

Designing a Goodness of Fit Measure: What are other alternatives?

Goodness of fit (infeasible):

$$Q^{\text{infeas}}(\hat{\tau}) = -\mathbb{E}[(\tau_i - \hat{\tau}(X_i))^2]$$

Expanding, we have:

$$Q^{\text{infeas}}(\hat{\tau}) = -\mathbb{E}[\tau_i^2] - \mathbb{E}[\hat{\tau}^2(X_i)] + 2 \,\mathbb{E}[\hat{\tau}(X_i) \cdot \tau_i]$$

- First term doesn't depend on $\hat{\tau}$, thus irrelevant for comparing candidate estimators
- **Second term is straightforward to calculate given** $\hat{\tau}$.
- ▶ Third expectation:

$$\mathbb{E}[\hat{\tau}(X_i) \cdot \tau_i] = \mathbb{E}[\hat{\tau}(X_i) \cdot Y_i(1) - \hat{\tau}(X_i) \cdot Y_i(0)],$$

- Effect of treatment on (alt) transformed outcome: $\tilde{Y}_i = Y_i \cdot \hat{\tau}(X_i)$.
- Can be estimated. (Unusual to estimate fit measure.)
 - One alternative: matching. For computational reasons, we currently only use this to compare different overall approaches.

Estimating the In Sample Goodness of Fit Measure

For tree splitting/comparing nested trees:

$$\mathbb{E}[\hat{\tau}(X_i) \cdot \tau_i] = \sum_{j} \mathbb{E}[\hat{\tau}(X_i) \cdot \tau_i | X_i \in S_j] \Pr(X_i \in S_j)$$

To estimate this, use fact that $\hat{\tau}(x_i)$ is constant within a segment, and is an estimate of $\mathbb{E}[\tau_i|X_i\in s_j(x_i)]$:

$$= \frac{1}{N} \sum_{i} \hat{\tau}^2(x_i)$$

- ▶ This motivates $Q^{is,sq}(\hat{\tau}) = \frac{1}{N} \sum_{i} \hat{\tau}^{2}(x_{i})$
- Rewards variance of estimator (all candidates constrained to have same mean, and accurate mean on every segment)
- In expectation, but not in finite samples, compares alternative estimators the same as using $-\frac{1}{N}\sum_{i=1}^{N}(\hat{\tau}_{i}^{CT}-Y_{i}^{*})^{2}$

Causal Trees:

Approach 5 (Modified Causal Tree)

Model and Estimation

- A. Model type:Tree structure
- B. Estimator $\hat{ au}_i^{MCT}$: sample average treatment effect within leaf
- C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. Criterion function (for fixed tuning parameter λ)

A. In-sample Goodness-of-fit function:

$$Q^{is} = -\frac{1}{N} \sum_{i=1}^{N} (\hat{\tau}_i^{MCT})^2$$

- A. Structure and use of criterion
 - i. Criterion: $Q^{crit} = Q^{is} \lambda x \# leaves$
 - ii. Select member of set of candidate estimators that maximizes Q $^{
 m crit}$, given λ

3. Cross-validation approach

- A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Qos.
- B. Out-of-sample Goodness-of-fit function: Qos = -MSE= $-\frac{1}{N}\sum_{i=1}^{N}(\hat{\tau}_{i}^{MCT}-Y_{i}^{*})^{2}$

Comparing "Standard" and Causal Approaches

- ▶ They will be more similar
 - If treatment effects and levels are highly correlated
- Two-tree approach
 - Will do poorly if there is a lot of heterogeneity in levels that is unrelated to treatment effects
 - Will do well in certain specific circumstances, e.g.
 - Control outcomes constant in covariates
 - ▶ Treatment outcomes vary with covariates
- How to compare approaches?
- Oracle (simulations)
- 2. Transformed outcome goodness of fit
- 3. Use matching to estimate infeasible goodness of fit

Inference

Attractive feature of trees:

- Can easily separate tree construction from treatment effect estimation
- Tree constructed on training sample is independent of sampling variation in the test sample
- Holding tree from training sample fixed, can use standard methods to conduct inference within each leaf of the tree on test sample
 - Can use any valid method for treatment effect estimation, not just the methods used in training
- For observational studies, literature (e.g. Hirano, Imbens and Ridder (2003)) requires additional conditions for inference
 - ▶ E.g. leaf size must grow with population

Problem: Treatment Effect Heterogeneity in Estimating Position Effects in Search

Queries highly heterogeneous

- Tens of millions of unique search phrases each month
- Query mix changes month to month for a variety of reasons
- Behavior conditional on query is fairly stable

Desire for segments.

- Want to understand heterogeneity and make decisions based on it
- "Tune" algorithms separately by segment
- Want to predict outcomes if query mix changes
 - For example, bring on new syndication partner with more queries of a certain type

Search Experiment Tree: Effect of Demoting Top Link (Test Sample Effects)

Some data

	Test Sample			Training Sample		
	Treatment	Standard		Treatment	Standard	
Use Test	Effect	Error	Proportion	Effect	Error	Proportion
	-0.124	0.004	0.202	-0.124	0.004	0.202
Sample for	-0.134	0.010	0.025	-0.135	0.010	0.024
Segment	-0.010	0.004	0.013	-0.007	0.004	0.013
	-0.215	0.013	0.021	-0.247	0.013	0.022
Means & Std	-0.145	0.003	0.305	-0.148	0.003	0.304
Errors to	-0.111 -0.230	0.006 0.028	0.063 0.004	-0.110 -0.268	0.006 0.028	0.064 0.004
Avoid Bias	-0.230	0.028	0.004	-0.268	0.028	0.004
Tivota Dias	-0.087	0.010	0.017	-0.056	0.010	0.003
	-0.151	0.005	0.119	-0.169	0.005	0.119
Variance of	-0.174	0.024	0.005	-0.168	0.024	0.005
estimated	0.026	0.127	0.000	0.286	0.124	0.000
	-0.030	0.026	0.002	-0.009	0.025	0.002
treatment	-0.135	0.014	0.011	-0.114	0.015	0.010
effects in	-0.159	0.055	0.001	-0.143	0.053	0.001
training	-0.014	0.026	0.001	0.008	0.050	0.000
0	-0.081	0.012	0.013	-0.050	0.012	0.013
sample 2.5	-0.045	0.023	0.001	-0.045	0.021	0.001
times that in	-0.169 -0.207	0.016 0.030	0.011 0.003	-0.200 -0.279	0.016 0.031	0.011 0.003
	-0.207	0.030	0.003	-0.279	0.031	0.003
test sample	-0.096	0.011	0.023	-0.096	0.011	0.070
	-0.139	0.013	0.003	-0.159	0.013	0.013
	-0.131	0.006	0.078	-0.128	0.006	0.078

Conclusions

- Key to approach
 - Distinguish between causal and predictive parts of model
- "Best of Both Worlds"
 - Combining very well established tools from different literatures
 - Systematic model selection with many covariates
 - Optimized for problem of causal effects
 - In terms of tradeoff between granular prediction and overfitting
 - With valid inference
 - ▶ Easy to communicate method and interpret results
 - Dutput is a partition of sample, treatment effects and standard errors
- Important application
 - Data-mining for heterogeneous effects in randomized experiments