

HACK 20 ATHON

Reparto de tareas

Ejemplo proceso iterativo:

- Obtención de un primer modelo de regresión que sólo usa la longitud y la latitud
- Discusión: ¿Cómo lo mejoramos?
- Soluciones:
 - añadir variables de gfs y estudiar cómo afectan al rendimiento
 - utilizar otros modelos, incluso ensembles

Creación del

Datos y exploración de los mismos

- Ningún miembro del equipo experto en el dominio / predicción de series temporales → Enfoque data driven.
- Unas 1000 observaciones (una por día, ~3 años).
- Todos los datasets (3) parecen tener poder predictivo, pero es necesario preparar o seleccionar variables relevantes.
- Los modelos necesariamente tienen que ser sencillos para poder generalizar (modelos simples / pocas variables).

Descripción de los modelos

Modelo 1 (minimización de error)

Modelo 2 (minimización de error + consumo)

Variables

- **165** variables
- GFS **agregado** (media ponderada con 1/distancia) con target, radio 20km.
- Caudal en **emplazamiento** (actual + 24h previas) + caudal en **aforo** (actual + 24h previas), crecimientos (absoluto y relativo).

Modele

- PCA + regresor lineal regularizado estocástico.
- **Optimizado para MAE** con grid, particiones temporales coherentes (no cross val.). Selección modelo mejor.
- **Parámetros de grid**: coeficiente de regularización + nº de componentes.

Modelo

Evaluación

- Error: **14.125.**
- Consumo: **0.012** kWh.

- **7** variables
- Longitud, latitud, año, mes y día + 2 GFS: cantidad agua en la nieve acumulada, capacidad de campo (radio 5 km).
- Variables seleccionadas tras experimentos anteriores.

- **Regresión no lineal** (ExtraTrees), 100 árboles, sin optimización (debido a consumo).

- Error: **15.119** (7.1% sobre modelo 1).
- Consumo: **0.001784** kWh (15% modelo 1).

Estudio de los consumos por etapas

Precisión y eficiencia de los modelos

Evolución del consumo energético del modelo 2

Resultados y conclusiones finales

1. Hemos obtenido dos modelos principales:

MODELO 1:

- Objetivo: mejorar el MAE
- 165 variables
- MAE de 14.12
- Consumo: 0,012 kWh

MODELO 2:

- Objetivo: mejorar el consumo energético
- 7 variables
- MAE de 15.12
- Consumo: 0,0018 kWh

1. Conclusiones:

- a. Es posible desarrollar modelos que sean capaces de predecir el caudal de los emplazamientos con buena precisión y bajo consumo energético.
- b. Gracias a los dos estudios realizados, hemos observado que es posible obtener una gran mejora en el consumo energético sacrificando una pequeña parte en la performance

1. ¿Cómo mejoraríamos nuestro trabajo con más tiempo y recursos?

- a. Uso de APIs externas para aumentar el conjunto de datos
- b. Técnicas más complejas para la selección de variables (p.e: análisis de explicabilidad)

iGracias por vuestra atención!

