

Digital Certificates – Introduction

- In a **PKI** (Public Key Infrastructure), verifiable bindings between the PKI users and their public keys are established with the help of **digital certificates**
- To be able to work with digital certificates on the various systems, they must be standardized
- Standards for certificates are therefore an essential part of PKI standards
 - The X.509 certificate format has become widely used because of its application in various PKI standards (X.509, PKIX, ISIS-MTT)
 - Other certificate formats are also in use, e.g.
 with OpenPGP

X.509 Certificates X.509v1 Certificates

1988: First version of the X.509 certificates

- X.509v1 certificate has seven fields:
 - Version number
 - Certificate serial number unique among all certificates of a CA
 - OID (e.g. RSA, DSA, ...) of the signature procedure with which the certificate is signed
 - Name of the CA that signed the certificate
 - Name of the certificate holder following the X.500 naming convention
 - Public key of the certificate holder
 - Validity period of the certificate (start and end date)

X.509 Certificates X.509v2 Certificates

1993: Second version of the X.509 certificates

- **Innovation** in this version:
 - Additional fields:
 - unique identification of the certificate holder (important when names coincite)
 - unique identification of the CA
 - In practice without meaning:
 - Most X.509 implementations do not use these fields
 - PKIX and ISIS-MTT recommend to leave fields empty – coincidence of name is otherwise avoided

X.509 Certificates X.509v3 Certificates (1/3)

Shortcomings with X.509v1 and X.509v2:

- X.500 naming convention is to restrictive, e.g. email addresses cannot be used as names
- No conclusions can be drawn to the intended use of a public key, e.g. no possibility of distinguishing between keys used for encryption and used for verification of signatures
- No statement about the Certificate Policy of the CA possible
- **...**

X.509 Certificates X.509v3 Certificates (2/3)

1996: X.509v3

X509.v3 specifies a syntax for defining new fields, so-called "**Extensions**":

- An Extension contains a text field indicating whether the extension is critical or non-critical
 - software that cannot deal with a critical extension of a certificate considers it invalid
 - unknown non-critical extensions are simply skipped
- Extension mechanism is very flexible and future-proof,
 but makes it difficult to read
- **...**

X.509 Certificates X.509v3 Certificates (3/3)

To support compatible implementations in 1997 a **standard extension** was defined with additional fields:

- Identification of the key of the CA
 - CA may use multiple keys
- Identification of the certificate holder key
 - possibly it is certified several times
- Intended use of the key, e.g. encryption or signature
- **...**

X.509 Certificates X.509 Certificate Standard

- X.509 is one of the most important crypto standards ever
- X.509 certificates have found widespread use
- Development of the standard at a very early stage explains the immature nature and the initial problems
- The loosely defined standard leaves scope for interpretation, which is the reason that X.509 implementations are often incompatible

Certificate Management

To manage the use of certificates at **Certificate Management Protocols** – **CMP** – are available in PKIX standard, using the usual Internet protocols: HTTP, FTP, TCP, or email

Certificate Management Tasks:

- CA initialization
 - generation and protection of the private key of the trust centers
- Generation of certificates, e.g.
 - for new PKI users
- Publication of certificates and revocation lists:
 - regulates information exchange between CA and certificate server

Certificate Management **Key Recovery**

For several reason there it would be **desired to recovery encryption keys**

- Recovery of private keys, e.g. to decrypt messages
- Key recovery is useful/necessary, e.g. for the authorized subsequent decryption of company data

But key recovery is **very problematic** as misuse is possible

Requirement

- Storage of keys in a highly secure environment
- Precise definition necessary, who/when/how/under which circumstances a key may be restored

But: German signature law prohibits trust centers to store keys used for signing...

Certificate Management **Key Revocation**

Revocation of keys is urgently necessary if keys are compromised. In hierarchical PKIs this can be easily implemented

Reasons for key revocation according to **X.509 standard**:

- Key Compromise
- CA Compromise
- Modification of the content of the certificate
- Exchange against new certificate
- Retirement of the PKI user
- Suspension (or: temporary suspension)