A quick review of Transition Systems

Venkatesh Choppella, Moida Praneeth Jain, <u>Gnaneswar Kulindala</u>, Prabhav Shetty, Anushka Srikanth

International Institute of Information Technology, Hyderabad

Outline

Labelled Transition Systems

Examples

Topic

Labelled Transition Systems

Examples

What is a transition system?

A labelled transition system (LTS) is a three tuple

$$S = (X, U, \rightarrow)$$

- X is a set of states of S.
- *U* is a set of labels, also called the *actions* of *S*.
- ullet ightarrow is a partial function from states and actions to states called the *dynamics* of S.
- $x \xrightarrow{u} x'$ means x moves to x' on the action u in the system S.

Why transition systems?

1. Formality: Notional machines best formalised as labelled transition systems.

Generality and wide applicability: LTS's are extremely general in the applicability. They can be used to describe phenomena in a wide variety of domains (Computer science, hardware, engineering systems, etc.)

Runs of an LTS

Labelled Transition Systems

• Finite Run:

$$x_0 \xrightarrow{u_0} x_1 \xrightarrow{u_1} x_2 \dots x_{n-1} \xrightarrow{u_{n-1}} x_n$$

• Infinite Run:

$$x_0 \xrightarrow{u_0} x_1 \xrightarrow{u_1} x_2 \dots x_{i-1} \xrightarrow{u_{i-1}} x_i \dots$$

Terminal state

1. A state is **terminal** if no transition is possible from that state. $x \nrightarrow$.

A run is **terminating** if it reaches a terminal state.

$$2\frac{dn}{C}1\frac{dn}{C}0 \not \to C$$

Topic

Labelled Transition Systems

Examples

An up-down counter

$$C = (X, U, \rightarrow)$$

where

- $X = \mathbb{N}$
- $U = \{up, dn\}$
- Dynamics:

$$x \xrightarrow{\text{up}} x + 1 \qquad \text{if } x \neq 0$$
$$x \xrightarrow{\text{dn}} x - 1 \qquad \text{if } x \neq 0$$

Runs of the counter machine

A factorial system

$$F = (X, U, \rightarrow)$$

where

- $X = \mathbb{N} \times \mathbb{N}$
- *U* = next
- $\bullet \xrightarrow{F}$:

$$(i, a) \xrightarrow{\text{next}} (i - 1, a * i)$$
 if $i > 0$

• To compute n!, consider the finite run starting from (n, 1) at terminating at (0, n!).

Topic

Labelled Transition Systems

Examples

The notional machine as an LTS

1. In the rest of the workshop, we will describe a family of notional machines as LTS's.

The program to be executed is a parameter to the notional machine (the machine refers to the program but does not change it.)

3. The run of the notional machine corresponds to the execution of the program.