Homework 4 Oracle

MATH 220 Spring 2021

Sandy Urazayev*

70; 12021 H.E.

[View the PDF version]

Section 2.4

Problem 2

tan is discontinuous at odd multiples of $\frac{\pi}{2}$, since $\frac{\pi}{2} < \pi < \frac{3\pi}{2}$, the interval is $(\frac{\pi}{2}, \frac{3\pi}{2})$.

Problem 4

Dividing both sides by ln(t) yields

$$y' + \frac{y}{\ln(t)} = \frac{\cot(t)}{\ln(t)}$$

for $\ln(t) \neq 0 \iff t \neq 1$. $\cot(t)$ forces out t to be in the range $(0, \pi)$. By finding the intersection of those constraints, we get an interval $(1, \pi)$.

^{*}University of Kansas (ctu@ku.edu)

Based on the direction field and on the differential equation, for $y_0 < 0$, the slopes eventually become negative, therefore tend to $-\infty$. If $y_0 = 0$, then we get an equilibrium solution. Note that slopes are zero along the curves y = 0 and t y = 3.

Solutions with $t_0 < 0$ all tend to $-\infty$. Solutions with initial conditions $\left(t_0, y_0\right)$ to the right of the parabola $t = 1 + y^2$ asymptotically approach the parabola as $t \to \infty$. Integral curves with initial conditions above the parabola (and $y_0 > 0$) also approach the curve. The slopes for solutions with initial conditions below the parabola (and $y_0 < 0$) are all negative. These solutions tend to $-\infty$.

Problem 27 [FOR GRADE]

The solution of the initial value problem

$$y_1' + 2y_1 = 0$$
, $y_1(0) = 1$

is $y_1(t) = e^{-2t}$. Therefore by approaching to 1 from the left side (1⁻ notation), we get $y(1^-) = y_1(1) = e^{-2}$. On the interval $(1, \infty)$, the differential equation is $y_2' + y_2 = 0$ with $y_2(t) = c e^{-t}$. Therefore by approaching 1 from the right side (notationally 1⁺), we see $y(1^+) = y_2(1) = c e^{-1}$. Equating both the limits of the function

$$y(1^{-}) = y(1^{+}) \iff c = e^{-1}$$

Therefore the global solution is

$$y(t) = \begin{cases} e^{-2t}, & 0 \le t \le 1 \\ e^{-1-t}, & t > 1 \end{cases}$$

Problem 28

The Eleventh Edition (latest) of the book doesn't have this problem.

Section 2.6

Problem 3 [FOR GRADE]

They have the form $M(x,y)+N(x,y)\frac{dy}{dx}=0$. So

$$M(x,y)=3x^2-2xy+2$$
 and $N(x,y)=6y^2-x^2+3$

Then we see $\frac{\partial M}{\partial y} = -2x$ and $\frac{\partial N}{\partial x} = -2x$. Therefore, our equation is of exact form. So our solution $F_x = M \Longrightarrow F = \int M \, dx = x^3 - x^2 \, y + 2x + g(y)$. Then

$$F_y = -x^2 + g'(y) = N \implies g'(y) = 6y^2 + 3 \implies g(y) = 2y^3 + 3y$$

Finally,

$$F = x^3 - x^2y + 2x + 2y^3 + 3y = C$$

$$\frac{dy}{dx} = -\frac{ax - by}{bx - cy}$$

$$\iff (ax - by)dx + (bx - cy)dy = 0$$

Now, M = ax - by and N = bx - cy. See that

$$M_v = -b \neq N_x = b$$

The differential equation is not exact.

Problem 13

Integrating $\psi_y=N$, while holding x constant, yields $\psi(x,y)=\int N(x,y)d\,y+h(x)$ Taking the partial derivative with respect to $x,\psi_x=\int \frac{\partial}{\partial x}N(x,y)d\,y+h'(x)$. Now set $\psi_x=M(x,y)$ and therefore $h'(x)=M(x,y)-\int \frac{\partial}{\partial x}N(x,y)d\,y$. Based on the fact that $M_y=N_x$, it follows that $\frac{\partial}{\partial y}\big[h'(x)\big]=0$. Hence the expression for h'(x) can be integrated to obtain

$$h(x) = \int M(x, y) dx - \int \left[\int \frac{\partial}{\partial x} N(x, y) dy \right] dx$$

Problem 15 [FOR GRADE]

$$M = x^2 y^3$$
, $N = x(1+y^2)$
 $\implies M_y = 3x^2 y^2$, $N_x = 1 + y^2$

Trivially, not exact. Let $\mu(x,y) = \frac{1}{xy^3}$, then

$$M \times \mu = x$$
, $N \times \mu = \frac{1 + y^2}{y^3} \Longrightarrow (M \times \mu)_y = 0$, $(N \times \mu)_x = 0$

Now they're exact!

So then just find that $F = \frac{x^2}{2} - \frac{1}{2y^2} + \ln(y)$

$$M = 3x^{2}y + 2xy + y^{3}, N = x^{2} + y^{2}$$

 $\implies M_{y} = 3x^{2} + 2x + 3y^{2}, N_{x} = 2x$

Let us find the integrating factor

$$\mu(y) = \exp\left(\int \frac{M_y - N_x}{N} dx\right)$$

$$= \exp\left(\int \frac{3x^2 + 2x + 3y^2 - 2x}{x^2 + y^2} dx\right)$$

$$= \exp\left(\int 3dx\right)$$

$$= e^{3x}$$

Simply confirm that $M\mu$ and $N\mu$ are now exact. Find $F(x,y)=e^{3x}y(3x^2+y^2)=C$