

华东师范大学 软硬件协同设计技术与应用教育部工程研究中心 URL—http://faculty.ecnu.edu.cn/chenyixiang

yxchen@sei.ecnu.edu.cn

命题逻辑系统

陈仪香

MoE Engineering Center for Software/Hardware Co-Design Technology and Application Software Engineering Institute East China Normal University(ECNU) Shanghai, China

→ Hack

秦季

命题逻辑系统的语法结构

• 如何构造命题逻辑公式?

定义 命题是陈述句

陈述句可以分为

- 简单句
- 复合句: 简单句+连接词

陈述句有真假之分: 陈述句表达的含义是真或假。

- 命题: 简单命题,
- 复合命题
- 真命题和假命题
- 命题变元:表示命题的变元,用字母 $p,q,\cdots,p_1,p_2,\cdots$ 表示。
- 复合命题: 命题变元+连接符组合

Back

命题逻辑公式

- 字母表
 - 1. 命题变元: $p_1, p_2, \dots, 用 p$ 表示
 - 2. 连接符: ∧, ∨, →, ¬
 - 3. 辅助符:),(,
- 命题逻辑公式用符号A表示:

$$A ::= p \mid (A \land A) \mid (A \lor A) \mid \neg A \mid (A \to A)$$

定义 设 $S = \{p_1, p_2, \dots, p_n, \dots, \}$ 是命题变元集, F(S)表示S上的命题公式集, 其元素用A表示, 其归纳定义如下:

- 1. $S \subseteq F(S)$, 即,每个命题变元都是命题逻辑公式,称为原子命题公式
- 2. 若 $A, B \in F(S), 则 ¬A, (A \land B), (A \lor B), (A \to B) \in F(S)$ 。
- 注 F(S)是S生成的 $(\neg, \land, \lor, \rightarrow)$ 型的自由代数。

例子:下列都是命题公式:

 $p_1 \rightarrow p_2, (p_1 \rightarrow p_2) \lor (p_2 \land \neg p_3), \neg p_1 \rightarrow p_2.$

但这些都不是命题逻辑公式: $p_1 \rightarrow , (p_2 \land) \lor p_3)$

Back Close

命题逻辑系统的语义结构

命题有真假含义之分,即有真命题和假命题之分。用1(T)表示真值真,而0(F)表示真值假。

3/30

真值

• 原子命题公式的真值可以指定为真或假

定义 真值指派是指对命题变元指定真值,即S到 $\{0,1\}$ 的一个映射. 例子: 考虑命题变元 p_1, p_2, p_3, p_4 . 真值组(0,1,1,0)是 p_1, p_2, p_3, p_4 的一个真值指派。

- 命题逻辑的连接符构成了一个真值{0,1}上的一元或二元运算:
- 1. 一元运算¬:

2. 二元运算∧:

6/36

4. 二元运算→:

$$\rightarrow: \{0,1\}^2 \longrightarrow \{0,1\}$$

$$(0,0) \mapsto 1$$

$$(0,1) \mapsto 1$$

$$(1,0) \mapsto 0$$

$$(1,1) \mapsto 1$$

由命题变元的真值指派以及连接符所确定的真值运算可得到命题 逻辑公式的真值.

如: 给定命题变元 p_1, p_2, p_3, p_4 .

Back

公式	(0,1,1,0)	(1,1,0,1)	(1,1,1,1)
$(p_1 \to p_2) \vee p_3$	1	1	1
	0	1	1
$p_1 \rightarrow p_1$			
$(p_5 \wedge p_2) \to p_1$	×	×	×

Back

定义 F(S)的一个赋值v是一个映射 $F(S) \longrightarrow \{0,1\}$,并满足下面条件:

- 1. $v(\neg A) = \neg v(A)$
- $2. \ v(A \lor B) = v(A) \lor v(B)$
- $3. \ v(A \wedge B) = v(A) \wedge v(B)$
- $4. \ v(A \to B) = v(A) \to v(B).$

用符号Ω表示所有赋值集.

注1: 同态映射—

注2: 定义中等式中左边符号 \land , \lor , \neg , \rightarrow 是命题逻辑连接符,而右边符号 \land , \lor , \neg , \rightarrow 是真值集 $\{0,1\}$ 上的一元或二元运算。

注3: 这是归纳定义: 定义复杂公式的赋值是通过复杂公式中的简单公式的赋值经过运算得到。因此, 复杂公式的赋值完全命题变元的赋值确定。

如: 计算公式 $(p_1 \to p_2) \to p_3$ 的赋值: $v((p_1 \to p_2) \to p_3) = (v(p_1) \to v(p_2)) \to v(p_3).$

Back

定理 赋值可以诱导一个真值指派,而真值指派也可以诱导一个赋值。

证明:设v是F(S)上的一个赋值,即v是F(S)到 $\{0,1\}$ 的一个函数。由于命题变元集S是F(S)的一个子集,因此,v在S上的限制 $v|_S$ 是命题变元的真值指派。反之,设V是S的一个真值指派,则V可以诱导一个F(S)的赋值 v_V :

设 $A \in F(S)$, 若A是命题变元p,则定义 $v_V(p) = V(p)$. 若A是一个复合公式 $A_1 \vee A_2$,则定义 $v_V(A) = v_V(A_1) \vee v_V(A_2)$. 类似地,定义其他的三种复合公式A是 $A_1 \wedge A_2$, $A_1 \to A_2$ 以及 A_1 情形。这样定义的映射 v_V 是E(S)的一个赋值。

Back

真度

定义 设逻辑公式A含有n个命题变元,设 $T(A) = \{v \in \Omega \mid v(A) = 1\}$. 公式A的真度 $\tau(A)$ 定义为:

$$\tau(A) = \frac{|T(A)|}{2^n}.$$

例子: 计算 $\tau(p_1 \to p_2), \tau(p_1 \lor p_2), \tau(p_1 \land p_2), \tau(\neg p).$ $\tau((p_1 \to p_2) \to p_1).$

定理 设 $H = \{\tau(A) \mid A \in F(S)\}$,则

$$H = \{ \frac{k}{2^n} \mid k = 0, 1, \dots, 2^n; n = 1, 2, \dots \}.$$

重言式与矛盾式

定义 设 $A \in F(S)$,若 $\tau(A) = 1$,则称A为重言式(永真式),若 $\tau(A) = 0$ 则称A为矛盾式(永假式).用符号 $\models A$ 表示A是重言式. 例子:永真式 $p \to p$,矛盾式 $p \land \neg p$ 。

√

Back

13/36

逻辑等价、真值等价

定义 设 $A, B \in F(S)$, 若对于 $v \in \Omega$ 都有v(A) = v(B), 则 称A = B是逻辑等价的,记作A = B.

例子: $A \lor B = \neg A \to B, A \to B = \neg (A \land B).$

定理 $\{\neg, \rightarrow\}, \{\neg, \lor\}, \{\neg, \land\}$ 是连接符集 $\{\neg, \lor, \land, \rightarrow\}$ 的充足集。

定理 性质:

交換律 $A \lor B = B \lor A$ $A \lor (B \lor C) = (A \lor B) \lor C$ 分配律 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ de Morgan律 $\neg (A \lor B) = \neg A \land \neg B$ $A \lor (A \land B) = A$ $A \lor A = A$ $\neg \neg A = A$

 $A \wedge B = B \wedge A$ $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$ $\neg (A \wedge B) = \neg A \vee \neg B$ $A \wedge (A \vee B) = A$ $A \wedge A = A$

Back

14/36

定义

- (标准) 析取范式: $(Q_{11} \wedge Q_{12} \wedge \cdots Q_{1n}) \vee \cdots \vee (Q_{m1} \wedge Q_{m2} \wedge \cdots \wedge Q_{mn})$,
- (标准) 合取范式: $(Q_{11} \vee Q_{12} \vee \cdots Q_{1n}) \wedge \cdots \wedge (Q_{m1} \vee Q_{m2} \vee \cdots \vee Q_{mn})$,

其中 Q_{ij} 或是命题变元,或是命题变元的非。 定理 任何非矛盾式的公式都逻辑等价于一个析取范式, 任何非重言式的公式都逻辑等价于一个合取范式.

- 1. 证明下列公式是重言式:
 - (a) $A \rightarrow (\neg A \rightarrow B)$
 - (b) $(A \to (B \to C) \to ((A \to B) \to (A \to C))$
 - (c) $(\neg A \to \neg B) \to (A \to B)$
- 2. 证明下列各条成立
 - (a) $(A \lor B) \to C = (A \to B) \land (B \to C)$
 - (b) $(A \land B) \rightarrow C = (A \rightarrow C) \lor (B \rightarrow C)$
 - (c) $A \rightarrow (B \rightarrow C) = B \rightarrow (A \rightarrow C)$
- 3. 求公式($\neg P_1 \rightarrow p_2$) $\rightarrow p_3$ 的析取范式和合取范式。
- 4. 计算下列逻辑公式的真度
- (a) $(p_1 \vee p_2) \rightarrow p_3$
 - (b) $(p_1 \to p_2) \lor (p_3 \to p_4)$
 - $(c) \neg P_1 \rightarrow p_2) \rightarrow p_3$

Class

- 5. 设 $A \downarrow B$ 表示¬ $(A \lor B)$, 证明连接符 $\{\downarrow\}$ 是命题逻辑连接符集的充足集.
- 6. 研究题: 任给分数 $\frac{n}{m}(0 \le n \le m)$,是否存在一个命题公式 A使 得A的真度 $\tau(A) = \frac{n}{m}$?

命题逻辑系统的推理机制

建立命题逻辑系统的推理机制,由公理和推理规则组成,回答一个公式是否可以其它公式推出,即是否其它公式的结论?

形式系统L

18/36

定义 命题逻辑形式系统L: 命题逻辑公式集F(S)+三条公理L1,L2,L3+条推理规则MP:

• 三条公理:

L1: $A \rightarrow (B \rightarrow A)$

L2: $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$

L3: $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

• 一条推理规则: Modus Ponens 规则 (MP规则), 分离规则 MP: 从 $A \to B = A$ 可以得到B.

$$\frac{A, A \to B}{B}$$

注1: 为何选择这三条公理? 它们都是重言式, 简单? 注2: L1, L2, L3是公理模式, 由此可以得到无穷多了公理, 如: $(p \to (q \to p))$, $(p \to (p \to p), (p \to (q \lor r) \to p)$ 都是公理。

L中的证明与定理

定义 L 中的一个证明是一有限公式序列 A_1, A_2, \cdots, A_n ,其中每个 A_i 或是公理,或存在j, k < i使得 A_i 是 A_j 和 A_k 使用MP规则推导的结果。其中最后一项公式 A_n 称为L中的一个定理,记作L A_n 或L0 人L1 和 的长度。

注: 定理可当公理使用与证明中:

若有限公式序列 A_1, A_2, \cdots, A_n 中每个 A_i 或是公理,或是定理,或存在j, k < i使得 A_i 是 A_j 和 A_k 使用MP规则推导的结果,则 A_1, A_2, \cdots, A_n 是一证明.

例子:证明:

$$1. \vdash (p_1 \to p_2) \to (p_1 \to p_1)$$

$$2. \vdash (A \rightarrow A)$$

Back

例子: 证明: $\{A, B \rightarrow (A \rightarrow C)\} \vdash B \rightarrow C$

定理 (演绎定理)

设 $\Gamma \subset F(S)$, $A, B \in F(S)$.则 $\Gamma \cup \{A\} \vdash B$ 当且仅当 $\Gamma \vdash A \to B$. 证明: " \Rightarrow "设 $\Gamma \cup \{A\} \vdash B$,则有一个从 $\Gamma \cup \{A\}$ 得到B的推演。

- $(1) A_1$
- (2) A_2
- : :
- (n) A_n

其中 A_n 就是B.

对推演长度n使用数学归纳法,构造 $\Gamma \vdash A \rightarrow B$ 的推演.

1. 奠基步: n=1 此时,B或是公理,或是 Γ 中成员,或是A。

Back

(a) B是公理,

(1)
$$B$$
 公理

 (2) $B \rightarrow (A \rightarrow B)$ $L1$

 (3) $A \rightarrow B$ $MP(1, 2)$

所以 $\vdash A \rightarrow B$, 进而 $\Gamma \vdash A \rightarrow B$.

(b) $B \in \Gamma$

$$\begin{array}{ccc} (1) & B & & \Gamma \\ (2) & B \rightarrow (A \rightarrow B) & L1 \\ (3) & A \rightarrow B & & MP(1,2) \end{array}$$

所以 $\Gamma \vdash A \rightarrow B$.

- (c) B就是A. 因为 $\vdash A \rightarrow A$. 所以 $\vdash A \rightarrow B$.
- 2. 归纳步: 假定当推演长度小于n是结论成立,即当 $\Gamma \cup \{A\} \vdash B$ 的 推演长度小于n时,都有 $\Gamma \vdash A \to B$ 成立。现假定 $\Gamma \cup \{A\} \vdash B$ 的 推演长度等于n.从而有 $\Gamma \cup \{A\} \vdash B$ 的推演:

- (n) $A_n(就是B)$

当B是公理,或是 Γ 中成员,或是A时,从前面的证明可以得到 Γ \vdash $A \to B$. 因此, 我们直接假定B 是两项 $C \to C \to B$ 使用MP规则 得到,即存在i,j < n使得 A_i 是C, 而 A_i 是 $C \to B$, 如下所示:

- (j) $A_j(C \to B)$
- (n) $A_n(B)$

由此有 $\Gamma \cup \{A\} \vdash C$ 以及 $\Gamma \cup \{A\} \vdash C \rightarrow B$, 它们的推演长 度分别是i和j,都小于n。故而,由归纳假设得到 $\Gamma \vdash A \rightarrow C$

Back

与 Γ ⊢ A → (C → B)都成立。因而, 可得到推演:

$$\begin{array}{c} (1) \\ \vdots \\ (k) \quad A \to C \\ (k+1) \\ \vdots \\ (l) \quad A \to (C \to B) \\ (l+1) \quad (A \to (C \to B)) \to ((A \to C) \to (A \to B)) \quad L2 \\ (l+2) \quad (A \to C) \to (A \to B) \quad MP(l, l+1) \\ (l+3) \quad A \to B & MP(k, l+2) \\ \end{array}$$

所以, 我们得到了 $\Gamma \vdash A \rightarrow B$.

"
$$\Leftarrow$$
 "设Γ \vdash $A \rightarrow B$,则存在一推演:

$$(1) \qquad A_1$$

$$(2) \qquad A_2$$

$$\vdots \qquad \vdots$$

$$(n) \quad A_n(A \to B)$$

其中,每个 A_i 或是公理,或是 Γ 中成员,或存在k,j < i使得 A_i 是 A_i 和 A_k

用MP规则得到。

在这个推演基础上构造一个序列如下:

(1)
$$A_1$$

(2) A_2
: : : (n) $A_n(A \to B)$
 $(n+1)$ A (假设)
 $(n+2)$ B $MP(n, n+1)$

这个序列是 $\Gamma \cup \{A\}$ 到B的一个推演,故有, $\Gamma \cup \{A\} \vdash B$.

注: 使用演绎定理可以简化证明。

例子:证明: $\vdash A \rightarrow A$.

例子:证明: $\vdash \neg A \rightarrow (A \rightarrow B)$.

定理 (三段论规则-HS规则)

 ${A \rightarrow B, B \rightarrow C} \vdash A \rightarrow C.$

证明: 构造推演序列如下:

- $(1) A \rightarrow B \Gamma$
- (2) $B \rightarrow C \Gamma$
- (3) A 假设
- (4) B MP(1,3)
- $(5) C \qquad MP(2,4)$

所以有, $\{A, A \to B, B \to C\} \vdash C$.这样,由演绎定理得到, $\{A \to B, B \to C\} \vdash A \to C$.

推论 设 $\vdash A \to B$ 且 $B \to C$, 则 $\vdash A \to C$.

可证等价关系

26/36

定义 设 $A, B \in F(S)$, 若 $\vdash A \to B$ 且 $\vdash B \to A$ 成立,则称A = B日证等价,记作 $A \approx B$.

例子: 设 $A \in F(S)$, 则 $\neg \neg A \approx A$.

例子: 设 $A, B \in F(S)$, 则 $(A \to B) \approx (\neg B \to \neg A)$.

证明: 有L3得到 \vdash ($\neg B \rightarrow \neg A$) \rightarrow ($A \rightarrow B$). 现在需要证明 \vdash ($A \rightarrow B$) \rightarrow ($\neg B \rightarrow \neg A$). 由演绎定理只须证明 $\{A \rightarrow B\} \vdash (\neg B \rightarrow \neg A)$.

定理 可证等价关系 \approx 是F(S)上的同余关系.

证明:

- $1. \approx \mathcal{E}F(S)$ 上的等价关系.
- $2. \approx \forall F(S)$ 的逻辑运算非¬是同余的,即若 $A \approx B$ 则¬ $A \approx \neg B$.
- $3. \approx \forall F(S)$ 的逻辑运算—是同余的,即若 $A \approx B$ 且 $C \approx D$,则 $(A \rightarrow C) \approx (B \approx D.$

Back

子式替换定理

定理 设A中含有子式 A_1 ,且 $A_1 \approx B_1$,若A中的一处或多处出现的 A_1 换成 B_1 所得的公式记为B,则有 $A \approx B$.

Back

28/36

$$1. \vdash A \rightarrow (B \rightarrow (A \rightarrow B)).$$

$$2. \vdash (B \to C) \to ((A \to B) \to (A \to C))$$

$$3. \vdash (A \to (A \to B)) \to (A \to B).$$

1.
$$(A \to (B \to C)) \approx (B \to (A \to C))$$

$$2. (A \to (A \to B)) \approx (A \to B).$$

29/36

命题逻辑系统的可靠性与完备性

给定命题变元集S,使用逻辑连接词 \neg , \lor , \land , \rightarrow 构造S上的命题逻辑公式集F(S),它是S上的(\neg , \lor , \land , \rightarrow }型的自由代数,在赋值语义考虑下有逻辑公式真度以及重言式概念,符号 \models A表明命题逻辑公式A是重言式,而从逻辑推理考虑下有证明和定理概念,符号 \vdash A表明A是一个定理。本段解决 \vdash A与 \models A的关系:

 $\forall A \in F(S), \models A$ 当且仅当 $\vdash A$.

命题逻辑L的可靠性

定理 (可靠性定理) 命题逻辑系统L中的定理都是重言式,即 $\ddot{A} \vdash A$ 则 $\models A$.

证明:设A是L中的定理,则存在一个长度为n的证明:

 $(1) A_1$

: :

(n) A_n

其中证明序列中的 A_n 就是A。

对证明长度n使用数学归纳法进行证明.

Back

命题逻辑L的完备性

命题逻辑系统L的完备性证明需要一些准备工作.

引理 $\vdash (\neg A \rightarrow A) \rightarrow A$.

定义 (扩张)

设 L^* 是系统L的基础上改变L的公理或给L添加新的公理而得到的系统,若L中的定理都是 L^* 的定理,则称 L^* 是L的扩张.

例子: 在L中增加新公理 $A \rightarrow A$ 得到L的一个扩张 L^* . 但L的定理与 L^* 的定理相同.

例子: 在L中增加新公理 $A \to \neg A$ 得到L的一个扩张 L^* , L^* 是L的真扩张, 因为 $A \to \neg A$ 不是L的定理, 但是 L^* 的定理.

例子: 设 $A \in F(S)$, 若A不是L中的定理, 增加公理 $\neg A$ 则得到L的扩张 L^* 。

Back

定义 L的扩张 L^* 称为相容的,若F(S)中不存在公式A使得A与 $\neg A$ 都是 L^* 的定理。

例子: L是相容的。

引理 L的扩张 L^* 是相容的当且仅当F(S)中有一公式不是 L^* 中的定理.

证明: \Rightarrow 设 L^* 是相容的,若再设F(S)中的任何公式都是 L^* 的定理,则对于任何的公式A都有A与 $\neg A$ 均是 L^* 的定理,与 L^* 的相容性矛盾。

 \leftarrow 设 L^* 是不相容的,则存在公式 $A \in F(S)$ 使得A和 $\neg A$ 均是 L^* 中的定理。下面证明F(S)中的任何公式B都是 L^* 的定理。

Back Close

完全性

定义 系统L的扩张S称为完全的,若对F(S)中的每个公式A都有 $\vdash_S A$ 或 $\vdash_S \neg A$ 成立.

注:系统L是不完全的,因为 $\vdash_L p$ 与 $\vdash_L \neg p$ 均不成立.

引理 相容系统 L^* 都有一个相容的完全扩张S.

证明:设相容系统 L^* 是不完全的,则有 $A \in F(S)$ 使得 \vdash_{L^*} A不成立。以 $\lnot A$ 作为新公理加到 L^* 中得到 L^* 的一个扩张 L^{**} ,则 L^{**} 是相容的。若 L^{**} 是不完全的,则存在公式 $B \in F(S)$ 使得 $\vdash_{L^{**}}$ B不成立。以 $\lnot B$ 作为新公理加到 L^{**} 中得到 L^{**} 的一个扩张 L^{***} .这个过程可以一直下去。一般地叙述如下.

由于F(S)是可数集,可设为 $A_0, A_1, \ldots, A_n, \ldots$

现在构造 L^* 的扩张序列 $J_0, J_1, \ldots, J_n, \ldots$

 $\diamondsuit J_0 = L^*$

 $若\vdash_{J_0} A_0$,则令 $J_1 = J_0$,

若 $\vdash_{J_0} A_0$ 不成立,则增加 $\lnot A_0$ 为新公理从 J_0 得到 J_1 ,则 J_1 是 J_0 的相容扩张。一般地,对于 $n \ge 1$,由 J_{n-1} 构造 J_n :

Back

其中 J_{n-1} + $\{\neg A_{n-1}\}$ 表示 J_{n-1} 增加新公理 $\neg A_{n-1}$ 所得到的 J_{n-1} 的公理. 定义 L^* 的扩张S: S 的公理集是 $J_n(n=0,1,2,\ldots)$ 的公理集之并,则S是 L^* 的相容完全扩张.

Back

L的完备性定理

定理 命题逻辑系统L中的重言式都是定理,即若= A则- A.

证明:假设A不是L中的定理,则把 $\neg A$ 添加为新公理得到相容系统 L^* 。取 L^* 的相容完全扩张S,定义映射 $v:F(S)\longrightarrow \{0,1\}$ 为v(B)=1当且仅当 $\vdash_S B(B\in F(S))$.则v是F(S)上的一个赋值.由v的定义可以得到 $v(\neg A)=1$ 与A是重言式矛盾.所以A是L的定理.

注: 重言式是从形式系统的外部来描述公式的特点。而定理是从形式系统的内部来描述公式的特点。因而,可靠性定理说明了形式系统内部描述,从外部来看是合理的,是可靠的。完备性定理反映了外部的描述是恰当的,没有多余的信息。

作业

- 1. 利用L的完备性定理证明以下各式成立:
 - $(a) \vdash (\neg A \rightarrow A) \rightarrow A$
 - $(b) \vdash \neg (A \to B) \to (B \to A)$
 - (c) $((A \lor B) \to C) \approx (A \to C) \land (B \to C)$
 - (d) $((A \land B) \to C) \approx (A \to C) \lor (B \to C)$
- 2. 设 $\Gamma \subseteq F(S)$, Γ 是有限集, $A \in F(S)$. 证明:

 $\Gamma A \vdash A$ 当且仅当 $\Gamma \models A$.

其中 $\Gamma \models A$ 定义为对于任何赋值v若对于 Γ 中的每个成员B只要v(B) = 1就有v(A) = 1.

Back