Solutions to Steven Kay's Statistical Estimation book

Satish Bysany Aalto University School of Electrical Engineering

March 1, 2011

[section]

1 Introduction

This is as set of notes describing solutions to Steven Kay's book Fundamentals of Statistical Signal Processing: Estimation Theory. A brief review of notation is in order.

1.1 Notation

- I is identity matrix.
- 0 represents a matrix or vector of all zeros.
- e is a column vector of all ones.
- J is exchange matrix, with 1s on the anti-diagonal and 0s elsewhere.
- $\mathbf{e_i}$ is a column vector whose j^{th} element is 1, rest all 0.
- $\mathbf{a} \cdot \mathbf{b} \doteq \mathbf{a}^H \mathbf{b}$ is the dot product of \mathbf{a} and \mathbf{b}
- $\frac{\partial}{\partial \mathbf{t}} f(\mathbf{t})$ is the derivative of a scalar function $f(\mathbf{t})$ depending on $M \times 1$ real vector parameter \mathbf{t} , is defined by

$$\frac{\partial}{\partial \mathbf{t}} f(\mathbf{t}) = \begin{bmatrix} \frac{\partial}{\partial t_1} f(\mathbf{t}) \\ \frac{\partial}{\partial t_2} f(\mathbf{t}) \\ \vdots \\ \frac{\partial}{\partial t_M} f(\mathbf{t}) \end{bmatrix}$$

• $\frac{\partial}{\partial t}\mathbf{h}(t)$ is the derivative of a $M \times 1$ real vector function $\mathbf{h}(t)$ depending upon a scalar value t.

$$\frac{\partial}{\partial t}\mathbf{f}(t) = \begin{bmatrix} \frac{\partial}{\partial t}f_1(t) \\ \frac{\partial}{\partial t}f_2(t) \\ \vdots \\ \frac{\partial}{\partial t}f_M(t) \end{bmatrix}$$

2 Chapter 2

Solutions to Problems in Chapter 2

2.1 Problem 2.1

The data $\mathbf{x} = \{x[0], x[1], \dots, x[N-1]\}$ are observed where the x[n]'s are i.i.d. as $\mathcal{N}(0, \sigma^2)$. We wish to estimate the variance σ^2 as

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=0}^{N-1} x^2[n] \tag{1}$$

Solution From the problem definition, it follows that, $\forall n$,

$$\mu = E(x[n]) = 0$$

$$\sigma^2 = E((x[n] - \mu)^2) = E(x^2[n])$$

Now take the $E(\cdot)$ operator on both sides of Eq(1) and using the fact that, for any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y)$$

$$E(\hat{\sigma}^2) = \frac{1}{N} \sum_{n=0}^{N-1} E(x^2[n]) = \frac{1}{N} \sum_{n=0}^{N-1} \sigma^2 = \frac{N\sigma^2}{N} = \sigma^2$$
 (2)

Hence the estimator 1 is unbiased. Note that, this result holds even if the x[n]'s are *not* independent!

Next, applying the variance operator $var(\cdot)$ on both sides of Eq(1) and using the fact that, for *independent* random variables X and Y,

$$\operatorname{var}(aX + bY) = a^2 \operatorname{var}(X) + b^2 \operatorname{var}(Y)$$

$$\operatorname{var}\left(\hat{\sigma}^{2}\right) = \frac{1}{N^{2}} \sum_{n=0}^{N-1} \operatorname{var}\left(x^{2}[n]\right) \tag{3}$$

Let $X \sim \mathcal{N}(0,1)$ be normal distribution with zero-mean and unit variance. Then, by definition, $Y = X^2 \sim \chi_1^2$ is chi-square distributed with 1 degree of freedom. We know that mean $(\chi_n^2) = n$, var $(\chi_n^2) = 2n$, so, var $(Y) = \text{var}(X^2) = 2 \cdot 1 = 2$.

Introducing $Z = \sigma X$, implies that $var(Z) = \sigma^2 var(X) = \sigma^2$. Since $E(Z) = \sigma E(X) = 0$, we conclude $Z \sim \mathcal{N}(0, \sigma^2)$.

Now consider $var(Z^2) = var(\sigma^2 X^2) = \sigma^4 var(X^2) = 2\sigma^4$. Since each of $x[n] \sim \mathcal{N}(0, \sigma^2)$, we have,

$$var(x^2[0]) = var(x^2[1]) = \cdots = var(x^2[N-1]) = 2\sigma^4$$

Hence, Eq(3) simplifies to

$$\operatorname{var}(\hat{\sigma}^2) = \frac{1}{N^2} \sum_{n=0}^{N-1} (2\sigma^4) = \frac{2\sigma^4 N}{N^2} = \frac{2\sigma^4}{N}$$
 (4)

As $N \to \infty$, var $(\hat{\sigma}^2) \to 0$.

2.2 Problem 2.5

Two samples $\{x[0], x[1]\}$ are independently observed from $\mathcal{N}\left(0, \sigma^2\right)$ distribution. The estimator

$$\hat{\sigma}^2 = \frac{1}{2} \left(x^2[0] + x^2[1] \right) \tag{5}$$

is unbiased. Find the PDF of $\hat{\sigma}^2$ to determine if it is symmetric about σ^2

Solution Consider two standard normal random variables X_0 and X_1 , that is, $X_i \sim \mathcal{N}(0,1)$, i = 0,1. Then, by definition, $X = X_0^2 + X_1^2$ is $\chi^2(n)$ -distributed with n = 2 degrees of freedom. It's PDF is

$$f_X(x) = \frac{1}{2}e^{-x/2}$$
 $x > 0$

Let $x[0] = \sigma X_0$ and $x[1] = \sigma X_1$. Then

$$x^{2}[0] + x^{2}[1] = \sigma^{2}(X_{0}^{2} + X_{1}^{2}) = \sigma^{2}X$$

$$\implies \hat{\sigma}^{2} = \frac{\sigma^{2}}{2}X \qquad \text{from Eq(5)}$$

We know that, for two *continuous* random variables X and Y related as Y = aX + b,

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

Taking $a = \frac{\sigma^2}{2}, b = 0, \theta = \sigma^2$, the PDF of $\hat{\sigma}^2$ is

$$f_{\hat{\sigma}^2}(y;\theta) = \frac{1}{a} f_X\left(\frac{y}{a}\right) = \frac{2}{\sigma^2} \left(\frac{1}{2} e^{\frac{-y}{2a}}\right) = \frac{1}{\sigma^2} e^{-y/\sigma^2} = \frac{1}{\theta} e^{-y/\theta} \qquad y > 0$$

It's obvious that $f_{\hat{\sigma}^2}(y;\theta) \neq f_{\hat{\sigma}^2}(y;-\theta)$, so the PDF is not symmetric about $\theta = \sigma^2$. Note carefully that the PDF is symmetric about σ , not σ^2 .

3 Chapter 3: CRLB

3.1 Formulas

Let a random variable X depend on some parameter t. We write the PDF of X as $f_X(x;t)$ – it represents a family of PDFs, each one with a different value of t. When the PDF is viewed as a function of t for a given, fixed value of x, it is termed as likelihood function. We define, the log-likelihood function as

$$L(t) \doteq L_X(t|x) \doteq \ln f_X(x;t) \tag{6}$$

Note that t is a deterministic, but unknown parameter. We simply write it as L(t) when the random variable X is known from context. For the sake of notation, we define

$$\dot{L} = \frac{\partial}{\partial t} L(t) = \frac{\partial}{\partial t} \ln f_X(x;t) = \frac{1}{f_X(x;t)} \frac{\partial}{\partial t} f_X(x;t)$$
 (7)

$$\ddot{L} = \frac{\partial^2}{\partial t^2} L(t) = \frac{\partial^2}{\partial t^2} \ln f_X(x;t)$$
 (8)

Taking the expectation w.r.t X, if the **regularity condition**

$$E(\dot{L}) = 0 \tag{9}$$

is satisfied, then there exists a lower bound on the variance of an *unbiased* estimator \hat{t} ,

$$\operatorname{var}(\hat{t}) \ge \frac{1}{-E(\ddot{L})} \tag{10}$$

Furthermore, for the equality sign, and for all t,

$$\operatorname{var}(\hat{t}) = \frac{1}{-E(\ddot{L})} \iff \dot{L} = g(t)(h(x) - t) \iff \hat{t} = h(x) \tag{11}$$

where $g(\cdot)$ and $h(\cdot)$ are some functions. Note that the above applies only for unbiased estimates, so $E(\hat{t}) = t = E[h(x)]$. The minimum variance is also given by,

$$\operatorname{var}(\hat{t}) = \frac{1}{-E(\ddot{L})} = \frac{1}{g(t)} \implies g(t) = -E(\ddot{L})$$
 (12)

Note: \hat{t} is an estimate of t. Hence, \hat{t} cannot depend on t itself (if it does, such an estimate is useless!). So the result $\hat{t} = h(x)$ intuitively makes sense, because \hat{t} depends only on the observed, given data x and not at all on t. **But** the mean and variance of \hat{t} generally do depend on t and that is ok! For the MVUE case, mean $E(\hat{t}) = t$ and variance $var(\hat{t}) = g(t)$ – both are purely functions of t alone.

Replacing the scalar random variable X by a vector of random variables \mathbf{x} , the results still hold.

Facts

• Identity, if the regularity condition is satisfied, then

$$E\left(\dot{L}^2\right) = -E\left(\ddot{L}\right)$$

• Fisher information I(t) for data **x** is defined by

$$I(t) = -E(\ddot{L})$$

So, the minimum variance is the reciprocal of Fisher information. The "more the information", the lower is the CRLB.

• For a deterministic signal s[n;t] with an unknown parameter t in zero-mean AWGN $w[n] \sim \mathcal{N}(0, \sigma^2)$,

$$x[n] = s[n;t] + w[n]$$
 $n = 1, 2, ..., N$

the minimum variance (the CRLB, if it exists) is given by

$$\operatorname{var}\left(\hat{t}\right) \ge \frac{\sigma^2}{\sum_{n=0}^{N-1} \left(\frac{\partial}{\partial t} s[n;t]\right)^2} = \frac{\sigma^2}{\|\frac{\partial}{\partial t} \mathbf{s}\|^2}$$

• For an estimate \hat{t} of t, if the CRLB is known, then for any transformation $\tau = g(t)$ for some function $g(\cdot)$ has the new CRLB

$$CRLB_{\tau} = CRLB_{t} \left(\frac{\partial}{\partial t} g(t) \right)^{2}$$

• The CRLB always increases as we estimate more parameters for same given data.

Let $\boldsymbol{\theta} = [\theta_1, \theta_2, \dots, \theta_M]^T$ be a vector parameter. Assume that an estimator $\hat{\boldsymbol{\theta}} = \begin{bmatrix} \hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_M \end{bmatrix}^T$ is unbiased, that is,

$$E(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta} \iff E(\hat{\theta}_i) = \theta_i$$

The $M \times M$ Fisher information matrix $\mathbf{I}(\boldsymbol{\theta})$ is a matrix, whose $(i, j)^{th}$ element is given by

$$[\mathbf{I}(\boldsymbol{\theta})]_{i,j} = -E\left[\frac{\partial^2 \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right]$$

Note that $p(\mathbf{x}; \boldsymbol{\theta})$ is a scalar function, depending on vector parameters \mathbf{x} and $\boldsymbol{\theta}$. For example, if w[n] is i.i.d $\mathcal{N}\left(0, \sigma^2\right)$ and $x[n] = \theta_1 + n\theta_2 + w[n]$, then

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x[n] - \theta_1 - n\theta_2)^2\right\}$$

Say $\mathbf{x} = [1, 2, 5, 3], \boldsymbol{\theta} = [1, 2], \sigma = 2 \text{ implies } p(\mathbf{x}; \boldsymbol{\theta}) = 1.89 \times 10^{-3}.$

Note: The Fisher matrix is symmetric, because the partial derivatives do not depend on order of evaluation. If the *regularity condition*

$$E\left[\frac{\partial}{\partial \boldsymbol{\theta}} \ln p(\mathbf{x}; \boldsymbol{\theta})\right] = \mathbf{0} \qquad \forall \; \boldsymbol{\theta}$$

is satisfied (where the expectation is taken w.r.t $p(\mathbf{x}; \boldsymbol{\theta})$) then the covariance matrix of any unbiased estimator $\hat{\boldsymbol{\theta}}$ satisfies

$$\mathbf{C}_{\hat{\boldsymbol{\theta}}} - \mathbf{I}^{-1}(\boldsymbol{\theta}) \geq \mathbf{0} \iff \operatorname{var}(\theta_i) \geq [\mathbf{I}^{-1}(\boldsymbol{\theta})]_{i,i}$$

Note: $[\mathbf{I}^{-1}(\boldsymbol{\theta})]_{i,i}$ means first you calculate the whole matrix inverse and then take the $(i,i)^{th}$ element. The covariance matrix of any vector \mathbf{y} is given by

$$\begin{aligned} \boldsymbol{\mu}_{\mathbf{y}} &= E(\mathbf{y}) \\ \mathbf{C}_{\mathbf{y}} &= E\left[(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}})(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}})^T \right] \end{aligned}$$

Furthermore, an estimator that attains the lower bound,

$$C_{\hat{\boldsymbol{\theta}}} = I^{-1}(\boldsymbol{\theta}) \iff \frac{\partial}{\partial \boldsymbol{\theta}} \ln p(\mathbf{x}; \boldsymbol{\theta}) = I(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta})$$

for some M-dimensional function \mathbf{g} and some $M \times M$ matrix I. That estimator, which is the MVUE, is $\hat{\boldsymbol{\theta}} = \mathbf{g}(\mathbf{x})$, and its covariance matrix is $\mathbf{I}^{-1}(\boldsymbol{\theta})$.

3.2 Problem 3.1

If x[n] for n = 0, 1, ..., N - 1 are i.i.d. according to $\mathcal{U}(0, \theta)$, show that the regularity condition does not hold. That is,

$$E\left[\frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta)\right] \neq 0 \quad \forall \ \theta > 0$$

Solution By definition of the expectation operator,

$$E\left[\frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta)\right] = \int \left(\frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta)\right) p(\mathbf{x}; \theta) d\mathbf{x} = \int \frac{\partial}{\partial \theta} p(\mathbf{x}; \theta) d\mathbf{x} \quad (13)$$

follows from Eq(7). Denote the N random variables as $x_i = x[i-1]$ for i = 1, 2, ..., N. It is given in the problem that their PDFs are identical:

$$p(x_i; \theta) = \begin{cases} 1/\theta & 0 < x_i \le \theta \\ 0 & \text{otherwise} \end{cases}$$

and

$$\int_0^\theta p(x_i;\theta) \ dx_i = 1$$

The multiple integral in Eq(13) simplifies to product of integrals

$$\int \frac{\partial}{\partial \theta} p(\mathbf{x}; \theta) \ d\mathbf{x} = \left(\int_0^\theta \frac{\partial}{\partial \theta} p(x_1; \theta) \ dx_1 \right) \cdots \left(\int_0^\theta \frac{\partial}{\partial \theta} p(x_N; \theta) \ dx_N \right)$$

because the x_i 's are independent. Note that the limits of the integral depend on θ , so we cannot interchange the order of differentiation and integration,

$$\int_{0}^{\theta} \frac{\partial}{\partial \theta} p(x_i; \theta) \ dx_i \neq \frac{\partial}{\partial \theta} \int_{0}^{\theta} p(x_i; \theta) \ dx_i$$

Hence, the regularity condition fails to hold. In fact, LHS= $1/\theta$, but RHS=0!

3.3 Problem 3.3

The data $x[n] = Ar^n + w[n]$ for $n = 0, 1, \dots, N-1$ are observed, where w[n] is WGN with variance σ^2 and r > 0 is known. Find the CRLB of A. Show that an efficient estimator exists and find its variance.

Solution Assuming that x[i]'s are statistically independent, the joint PDF is

$$p(\mathbf{x}; A) = \prod_{i=0}^{N-1} \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2} (x[n] - Ar^n)^2\right)$$

$$= \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - Ar^n)^2\right)$$

$$\implies \ln p(\mathbf{x}; A) = -\ln \left(2\pi\sigma^2\right)^{N/2} - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - Ar^n)^2$$

$$\implies \frac{\partial}{\partial A} \ln p(\mathbf{x}; A) = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} r^n (x[n] - Ar^n)$$

Since the sum

$$S = \sum_{n=0}^{N-1} r^{2n} = \begin{cases} \frac{r^{2N} - 1}{r^2 - 1} & r \neq 1\\ N & r = 1 \end{cases}$$

is deterministic and known (because both r and N are known), the above equation simplifies to

$$\frac{\partial}{\partial A} \ln p(\mathbf{x}; A) = \frac{1}{\sigma^2} \left(\sum_{n=0}^{N-1} r^n x[n] - AS \right)$$
 (14)

$$\dot{L} = \frac{S}{\sigma^2} \left(\sum_{n=0}^{N-1} \frac{r^n}{S} x[n] - A \right) \tag{15}$$

$$= g(A)(h(\mathbf{x}) - A) \tag{16}$$

where $g(A) = S/\sigma^2$ is a constant (doesn't even depend on A!) and

$$h(\mathbf{x}) = \sum_{n=0}^{N-1} \frac{r^n}{S} x[n]$$

is depends on **x** but not on A. Hence, from Theorem 3.1, the MVUE estimate \hat{A} is

$$\hat{A} = h(\mathbf{x}) = \frac{1}{S} \sum_{n=0}^{N-1} r^n x[n]$$

and the variance of \hat{A} satisfies

$$\operatorname{var}(\hat{A}) \geq \frac{\sigma^2}{S}$$
 and $\operatorname{CRLB} = \frac{1}{g(A)} = \frac{\sigma^2}{S}$

We can also find the second derivative, from Eq(14),

$$\ddot{L} = \frac{\partial^2}{\partial A^2} \ln p(\mathbf{x}; A) = \frac{S}{\sigma^2} (0 - 1)$$

and, as required, CRLB = $-1/E[\ddot{L}]$ and, in our case, $E[\ddot{L}] = \ddot{L}$ because it is constant (does not depend on \mathbf{x} or A).

3.4 Problem 3.5

If x[n] = A + w[n] for n = 1, 2, ..., N are observed, where $\mathbf{w} = [w[1], w[2], ..., w[N]]T \sim \mathcal{N}(0, \mathbf{C})$, find the CRLB for A. Does an efficient estimator exist and if so, what is its variance?

Solution The joint p.d.f. of \mathbf{x} is given by

$$p(\mathbf{x}; A) = \frac{1}{\sqrt{\det(2\pi\mathbf{C})}} \exp\left\{-\frac{1}{2}(\mathbf{x} - A\mathbf{e})^T \mathbf{C}^{-1}(\mathbf{x} - A\mathbf{e})\right\}$$

$$\implies \ln p(\mathbf{x}; A) = \ln \frac{1}{\sqrt{\det(2\pi\mathbf{C})}} - \frac{1}{2}(\mathbf{x} - A\mathbf{e})^T \mathbf{C}^{-1}(\mathbf{x} - A\mathbf{e})$$

$$\implies \frac{\partial}{\partial A} \ln p(\mathbf{x}; A) = -\frac{1}{2} \frac{\partial}{\partial A} \left[(\mathbf{x} - A\mathbf{e})^T \mathbf{C}^{-1}(\mathbf{x} - A\mathbf{e}) \right]$$

Using the result that

$$\frac{\partial}{\partial \boldsymbol{\theta}} \mathbf{m}^T \mathbf{Q} \mathbf{m} = 2 \left(\frac{\partial}{\partial \boldsymbol{\theta}} \mathbf{m}^T \right) \mathbf{Q} \mathbf{m}$$

Setting $\mathbf{Q} = \mathbf{C}^{-1}$ and $\mathbf{m} = (\mathbf{x} - A\mathbf{e})$,

$$\frac{\partial}{\partial A}\mathbf{m}^T = \frac{\partial}{\partial A}(\mathbf{x} - A\mathbf{e})^T = (0 - \frac{\partial}{\partial A}A\mathbf{e}^T) = -\mathbf{e}^T$$

So

$$\frac{\partial}{\partial A} \ln p(\mathbf{x}; A) = \mathbf{e}^T \mathbf{C}^{-1} (\mathbf{x} - A\mathbf{e}) = (\mathbf{e}^T \mathbf{C}^{-1} \mathbf{x} - A\mathbf{e}^T \mathbf{C}^{-1} \mathbf{e})$$

The scalar $\mathbf{e}^T \mathbf{Q} \mathbf{e}$ is nothing but sum of all the elements of \mathbf{Q} for any \mathbf{Q} . Consider, for example,

$$\begin{bmatrix}
1,1,1
\end{bmatrix}
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}$$
(17)

$$= [a+d+g, b+e+h, c+f+i] \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 (18)

$$= a + d + g + b + e + h + c + f + i \tag{19}$$

So, denoting $\alpha = \mathbf{e}^T \mathbf{C}^{-1} \mathbf{e}$,

$$\frac{\partial}{\partial A} \ln p(\mathbf{x}; A) = (\mathbf{e}^T \mathbf{C}^{-1} \mathbf{x} - A \mathbf{e}^T \mathbf{C}^{-1} \mathbf{e}) = \alpha \left(\frac{\mathbf{e}^T \mathbf{C}^{-1} \mathbf{x}}{\alpha} - A \right)$$

The above expression is clearly of the form

$$\frac{\partial}{\partial A} \ln p(\mathbf{x}; A) = g(A)(h(\mathbf{x}) - A)$$

Hence, there exists a MVUE (the efficient estimator) given by

MVUE =
$$\hat{A} = h(\mathbf{x}) = \frac{\mathbf{e}^T \mathbf{C}^{-1} \mathbf{x}}{\alpha} = \frac{\mathbf{e}^T \mathbf{C}^{-1} \mathbf{x}}{\mathbf{e}^T \mathbf{C}^{-1} \mathbf{e}}$$

and its variance is

$$\operatorname{var}(\hat{A}) = \frac{1}{\alpha} = \frac{1}{\sum_{i=1}^{N} \sum_{j=1}^{N} (\mathbf{C}^{-1})_{i,j}}$$

3.5 Problem 3.9

We observe two samples of a DC level in *correlated* Gaussian noise

$$x[0] = A + w[0]$$

 $x[1] = A + w[1]$

where $\mathbf{w} = [w[0], w[1]]^T$ is zero mean with covariance matrix

$$\mathbf{C} = \sigma^2 \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array} \right]$$

The parameter ρ is the cross-correlation coefficient between w[0] and w[1]. Compute the CRLB of A and compare it to the case when $\rho = 0$ (WGN). Also explain what happens when $\rho = \pm 1$.

Solution: This is a special case of Problem 3.5 (see above) for N=2. Since

$$\mathbf{C}^{-1} = \frac{1}{\sigma^2(\rho^2 - 1)} \begin{bmatrix} -1 & \rho \\ \rho & -1 \end{bmatrix}$$

the CRLB is

$$\operatorname{var} \hat{A} = \frac{1}{\mathbf{e}^T \mathbf{C}^{-1} \mathbf{e}} = \frac{\sigma^2 (\rho^2 - 1)}{2(\rho - 1)}$$

When $\rho = 0$, var $\hat{A} = \sigma^2/2$, as expected. But when $\rho \to \pm 1$, the matrix **C** becomes singular, hence its inverse does not exist; it means that the samples w[0] and w[1] are almost perfectly correlated and hence do not carried any additional information.

3.6 Problem 3.13

Consider polynomial curve fitting

$$x[n] = \sum_{k=0}^{p-1} A_k n^k + w[n]$$

for $n=0,1,\ldots,N-1$. w[n] is i.i.d. WGN with variance σ^2 . It is desired to estimate $\{A_0,A_1,\ldots,A_{p-1}\}$. Find the Fisher information matrix for this problem.

Solution: The joint p.d.f. is

$$p(\mathbf{x}; \mathbf{A}) = \prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} \left[x[n] - \sum_{k=0}^{p-1} A_k n^k \right]^2 \right\}$$

$$= \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \left[x[n] - \sum_{k=0}^{p-1} A_k n^k \right]^2 \right\}$$

$$\implies \ln p(\mathbf{x}; \mathbf{A}) = \ln \frac{1}{(2\pi\sigma^2)^{N/2}} - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \left[x[n] - \sum_{k=0}^{p-1} A_k n^k \right]^2$$

$$\implies \frac{\partial}{\partial A_i} \ln p(\mathbf{x}; \mathbf{A}) = 0 - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \left[2 \left\{ x[n] - \sum_{k=0}^{p-1} A_k n^k \right\} (0 - n^i) \right]$$

Because

$$\frac{\partial}{\partial A_i} \sum_{k=0}^{p-1} A_k n^k = \frac{\partial}{\partial A_i} \left(A_1 n^1 + A_2 n^2 + \dots + A_i n^i + \dots + A_N n^N \right)$$
$$= \left(0 + 0 + \dots + \frac{\partial}{\partial A_i} A_i n^i + 0 \right)$$
$$= n^i$$

Hence, the simplification:

$$\frac{\partial}{\partial A_i} \ln p(\mathbf{x}; \mathbf{A}) = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} n^i \left\{ x[n] - \sum_{k=0}^{p-1} A_k n^k \right\}$$

$$\implies \frac{\partial^2}{\partial A_j \partial A_i} \ln p(\mathbf{x}; \mathbf{A}) = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} n^i \left(0 - n^j \right)$$

$$= -\frac{1}{\sigma^2} \sum_{n=0}^{N-1} n^{i+j}$$

Hence, by definition, $(i, j)^{\text{th}}$ entry of the the $p \times p$ Fisher information matrix $\mathbf{I}(\mathbf{A})$ is given by

$$[\mathbf{I}(\mathbf{A})]_{i,j} = -E\left[\frac{\partial^2}{\partial A_i \partial A_j} \ln p(\mathbf{x}; \mathbf{A})\right] = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} n^{i+j}$$

for $i, j = 0, 1, \dots, p-1$. Note that the Fisher information matrix is symmetric, so the order of evaluation of partial derivatives can be interchanged. See

pg. 42, Eq (3.22) in the textbook for a special case of the above for p = 2. Note that for the $(0,0)^{th}$ entry of the matrix, the above expression gives

$$\sum_{n=0}^{N-1} n^{i+j} = \sum_{n=0}^{N-1} n^{0+0} = (0^0 + 1^0 + \dots + (N-1)^0)$$

where 0^0 must be taken as 1 (even though some authors disagree).

4 Chapter 5

Neyman-Fisher Factorization Theorem If we can factor the p.d.f $p(\mathbf{x}; th)$ as

$$p(\mathbf{x}; th) = g(T(\mathbf{x}), \theta)h(\mathbf{x})$$

where $g(\cdot)$ is a function depending on \mathbf{x} only through $T(\mathbf{x})$ and $h(\cdot)$ is a function depending only on x, then $T(\mathbf{x})$ is a sufficient statistic for θ . The converse is also true.

4.1 Problem 5.2

The IID observations x_n for n = 1, 2, ..., N have exponential p.d.f

$$p(x_n; \sigma^2) = \begin{cases} \frac{x_n}{\sigma^2} \exp(-x_n^2/2\sigma^2) & x_n > 0\\ 0 & \text{otherwise} \end{cases}$$

Find a sufficient statistic for σ^2 .

Solution Let u(t) be the unit step function. The joint PDF of x_1, x_2, \ldots, x_n is given by (because they are independent),

$$p(\mathbf{x}; \sigma^2) = \prod_{n=1}^{N} p(x_n; \sigma^2)$$

$$= \prod_{n=1}^{N} \frac{x_n}{\sigma^2} \exp(-x_n^2/2\sigma^2) u(x_n)$$

$$= \left(\prod_{n=1}^{N} x_n u(x_n)\right) \left(\frac{1}{\sigma^2} \exp\left(-\frac{1}{2\sigma^2} \sum_{n=1}^{N} x_n^2\right)\right)$$

$$= h(\mathbf{x}) g(T(\mathbf{x}), \sigma^2)$$

whence, the sufficient statistic for σ^2 is $T(\mathbf{x})$

$$T(\mathbf{x}) = \sum_{n=1}^{N} x_n^2$$

4.2 Problem 5.5

The IID observations x_n for n = 1, 2, ..., N are distributed according to $\mathcal{U}[-\theta, \theta]$, where $\theta > 0$. Find a sufficient statistic for θ .

Solution The individual sample p.d.f. is given by

$$p(x_n; \theta) = \begin{cases} 1/2\theta & -\theta < x_n < \theta \\ 0 & \text{otherwise} \end{cases}$$

The joint p.d.f is given by

$$p(\mathbf{x}; \theta) = \prod_{n=1}^{N} p(x_n; \theta)$$

$$= \begin{cases} 1/(2\theta)^N & -\theta < x_n < \theta, n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

Define a function bool(S) for any mathematical statement S such that

$$bool(S) = \begin{cases} 1 & S \text{ is true} \\ 0 & S \text{ is false} \end{cases}$$

(This is also called as Indicator function, see Wikipedia). Then

$$p(\mathbf{x}; \theta) = \frac{1}{(2\theta)^N} \operatorname{bool}(-\theta < x_n < \theta, \forall \in \mathbb{N})$$

But,

$$x_n < \theta \implies \theta > x_1 \text{ and } \theta > x_2 \cdots \text{ and } \theta > x_N$$

 $\implies (\theta > x_1) \cap (\theta > x_2) \cap \cdots \cap (\theta > x_n)$
 $\implies \theta > \max\{x_1, x_2, \dots, x_N\}$

Similarly,

$$-\theta < x_n \implies \theta > -x_n$$

$$\implies \theta > \max\{-x_1, -x_2, \dots, -x_N\}$$

Combining both of the above,

$$-\theta < x_n < \theta \implies (-\theta < x_n) \cap (\theta > x_n)$$

$$\implies (\theta > \max(-\mathbf{x})) \cap (\theta > \max(\mathbf{x}))$$

$$\implies \theta > \max\{|x_1|, |x_2|, \dots, |x_N|\}$$

So, the joind p.d.f. becomes

$$p(\mathbf{x}; \theta) = \frac{1}{(2\theta)^N} \operatorname{bool}(\max\{|x_1|, |x_2|, \dots, |x_N|\} < \theta)$$
$$= g(T(\mathbf{x}), \theta)h(\mathbf{x})$$

where $h(\mathbf{x}) = 1$ and

$$T(\mathbf{x}) = \max\{|x_1|, |x_2|, \dots, |x_N|\}$$
$$g(T(\mathbf{x}), \theta) = \frac{1}{(2\theta)^N} \operatorname{bool}(T(\mathbf{x}) < \theta)$$

Hence, by Neyman-Fisher factorization theorem, $T(\mathbf{x})$, as given above, is the sufficient statistic. **Note:** The sample mean is *not* a sufficient statistic for uniform distribution!

5 Chapter 7: MLE

The MLE for a scalar parameter is defined as the value of parameter t that maximizes $p(\mathbf{x};t)$ for a given, fixed \mathbf{x} , i.e., the value that maximizes the likelihood function. The maximization is performed over the allowable range of t.

To find the MLE, solve the equation

$$\frac{\partial}{\partial t} \ln p(\mathbf{x}; t) = 0$$

for t. This equation may have multiple solutions and you should choose the one appropriately.

Theorem. If an efficient estimator (the estimator which attains CRLB) exists, then MLE procedure will find it.

The MLE is

• asymptotically unbiased i.e., $E(\hat{t}) \to t$ as $N \to \infty$.

- asymptotically efficient i.e., $var(\hat{t}) \to CRLB$ as $N \to \infty$.
- asymptotically optimal i.e., both of the above are true

Theorem. If the pdf $p(\mathbf{x};t)$ is twice differentiable and the Fisher information I(t) is nonzero, then the MLE of the unknown parameter t is asymptotically distributed (for large N) according to

$$\hat{t} \sim \sim \mathcal{N}\left(t, I^{-1}(t)\right)$$

i.e., Gaussian distributed with mean equal to true value t and variance equal to CRLB (= inverse of Fisher information).

Theorem. Assume that the MLE \hat{t} of unknown parameter t is known. Consider a transformation function of t,

$$\tau = f(t)$$

for any function $f(\cdot)$. Then the MLE $\hat{\tau}$ of τ is nothing but

$$\hat{\tau} = f(\hat{t}\,)$$