More generative modeling

Topics we'll cover

- Beyond Gaussians
- 2 A variety of univariate distributions
- **3** Moving to higher dimension

Classification with generative models

- Fit a distribution to each class separately
- Use Bayes' rule to classify new data

What distribution to use? Are Gaussians enough?

Exponential families of distributions

Multivariate distributions

We've described a variety of distributions for **one-dimensional** data. What about higher dimensions?

1 Naive Bayes: Treat coordinates as independent.

For $x = (x_1, \dots, x_d)$, fit separate models Pr_i to each x_i , and assume

$$\Pr(x_1,\ldots,x_d) = \Pr_1(x_1) \Pr_2(x_2) \cdots \Pr_d(x_d).$$

This assumption is typically inaccurate.

2 Multivariate Gaussian.

Model correlations between features: we've seen this in detail.

3 Graphical models.

Arbitrary dependencies between coordinates.