Step 1: Fetching raw data from DB

SELECT * FROM nba_games INTO g;

Home	Away	Score	
Celtics	Warriors	92-88	
Bucks	Lakers	98-100	

(a)

Step 3: Applying the placement function

ALTER TABLE g ADD COLUMN bbox geometry;

Home	Away	Score	Х	у	bbox
Celtics	Warriors	92-88	400	300	RECT1
Bucks	Lakers	98-100	200	50	RECT2

(c)

Step 2: Applying the transform function

Adding canvas coordinates

Home	Away	Score	Х	у
Celtics	Warriors	92-88	400	300
Bucks	Lakers	98-100	200	50

(b)

Step 4: Creating R-tree spatial index on bbox column

CREATE INDEX on g USING gist (bbox);

Offline Indexing

Fetching Scheme

<u>Caching</u>. The frontend maintains a box (dashed blue) slightly larger than the viewport (solid red).

<u>Incremental View Maintenance</u>. As the viewport changes, the frontend fetches new data (polygon ABCDEF), and removes stale data

Spatial Query

(polygon BGHIDJ).

SELECT * from g where ST_Intersects(bbox, Polygon(A, B, C, D, E, F));

Online Data Fetching