

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 92

A. MECANICĂ

Se consideră accelerația gravitațională g =10 m/s²

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Un corp pornește din repaus în mișcare uniform accelerată. În intervalul de timp cuprins între momentele $t_1 = 3s$ și respectiv $t_2 = 5s$, mobilul parcurge distanța d = 40m. Ce viteză a avut corpul la momentul $t_3 = 4s$?

a. 12m/s

b. 16m/s

c. 20m/s

d. 32m/s

2. Graficul din figura alăturată arată dependența energiei potențiale şi a energiei cinetice de înălțime, în cazul unui corp aruncat vertical de jos în sus de la nivelul solului. Ce valoare are viteza inițială a corpului ?

a. 20m/s

b. 15m / s

c. 16m/s

d. 8m/s

3. O macara ridică un obiect cu viteza constantă v = 2m/s. Motorul macaralei dezvoltă în acest caz o putere P = 18kW. Masa obiectului are valoarea:

a. 1000kg

b. 900kg

c. 800kg

d. 700kg

4. Un corp având masa m = 200kg, afalt în repaus, explodează în două fragmente dintre care unul are masa $m_1 = 150kg$ şi viteza $v_1 = 8m/s$. Ce valoare are viteza celui de-al doilea fragment?

a. 18m/s

b. 8m/s

c. 16m/s

d. 24m/s

5. Unitatea de măsură în SI pentru viteză este:

a. km/h

b. m/s

c. km/s

d. mm/s

II. Rezolvați următoarele probleme:

1. La capătul unui fir inexistensibil de lungime l=20cm este fixată o bilă de masă m=50g. Se acționează asupra bilei cu o forță \vec{F} orizontală, astfel încât bila este adusă din poziția A, în poziția B conform figurii alăturate. În poziția B, bila este în repaus, iar firul face unghiul $\alpha=60^{\circ}$ cu verticala. Firul este considerat ideal. Determinați:

- a. valoarea forței \vec{F} necesară menținerii bilei în poziția B;
- b. valoarea tensiunii din firul de care este legată bila, în poziția B;
- c. viteză cu care trece bila prin poziția A, după ce este lăsată liberă în poziția B.

15 puncte

2. Două corpuri de mase $m_1 = 20kg$, respectiv $m_2 = 15kg$, având vitezele $v_1 = 4m/s$ și $v_2 = 5m/s$ se ciocnesc plastic în plan orizontal sub unghiul $\alpha = 90^0$. Calculati:

a. energiile cinetice ale corpurilor imediat înainte de ciocnire;

b. modulul vitezei \vec{v} a corpului nou format și unghiul dintre direcția vitezei \vec{v} și direcția vitezei \vec{v}_1 ;

c. valoarea căldurii degajate prin ciocnirea plastică.

15 puncte

Proba scrisă la Fizică Varianta 92 Proba E: Specializarea : matematică –informatică, ştiințe ale naturii

Proba F: Profil: tehnic - toate specializările

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

- ♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 92

B. ELECTRICITATE ŞI MAGNETISM

Permeabilitatea magnetică a vidului are valoarea $\mu_0 = 4\pi \cdot 10^{-7} \, N/A^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect

15 puncte

1. Una dintre unitățile de măsură enumerate NU corespunde puterii electrice :

 $\mathbf{a}.$ W

b. $V \cdot A$

 \mathbf{c} . J/s

d. $\Omega \cdot A$

2. Rezistivitatea unui metal variază cu temperatura astfel:

a. crește exponențial

b. nu variază

c. crește liniar

d. scade liniar

- 3. Într-o rețea electrică există n noduri. Se poate afirma că :
- a. prima lege a lui Kirchhoff se poate aplica de (n-1) ori
- b. prin aplicarea primei legi a lui Kirchhoff se obțin n ecuații independent
- c. prin aplicarea primei legi a lui Kirchhoff se obțin (n-1) ecuații independente
- d. prima lege a lui Kirchhoff reflectă legea conservării sarcinii electrice pentru (n-1)noduri
- **4.** O bobină cu miez feromagnetic de lungime ℓ , are un singur strat format din N spire așezate una lângă alta. Bobina este formată dintr-un fir de cupru cu raza r prin care trece un curent electric de intensitate I. Permeabilitatea magnetică relativă a miezului de fier este μ_r , iar permeabilitatea vidului μ_0 . Inducția câmpului magnetic din interiorul bobinei are expresia:

a.
$$B = \frac{\mu_0 \mu_r I}{2r}$$

b.
$$rac{\mu_0 \mu_r NI}{\ell}$$

$$\mathbf{c.} \ B = \frac{\mu_0 \mu_r I}{2\pi r}$$

$$\mathbf{d.} \ B = \frac{\mu_0 \, \mu_r \, NI}{2r}$$

- 5. Inducția câmpului magnetic indus este de sens opus inducției câmpului magnetic inductor atunci când :
- a. fluxul câmpului magnetic inductor scade
- b. fluxul câmpului magnetic inductor crește
- c. fluxul câmpului magnetic inductor este nul
- d. fluxul câmpului magnetic inductor variază foarte lent

II. Rezolvați următoarele probleme:

1. Pentru o sursă de tensiune cu t.e.m. E şi rezistența internă r s-a trasat graficul dependenței tensiunii U de la bornele sursei de intensitatea I a curentului electric din circuit. La bornele sursei de tensiune se conectează o grupare în paralel a doi rezistori de rezistențe electrice $R_1=10\Omega$ şi $R_2=20\Omega$. Să se calculeze:

- a. t.e.m. și rezistența internă a sursei de tensiune;
- b. intensitățile curentului electric prin sursă și prin cei doi rezistori;
- **c.** puterea electrică consumată de sursă și puterea electrică furnizată de sursă grupării în paralel a rezistorilor.

15 puncte

- **2.** Un solenoid aflat în aer are lungimea l=25cm, aria secțiunii transversale $S=25cm^2$ și N=500spire. Prin solenoid trece un curent electric cu intensitatea variabilă în timp $I=a\cdot t$, unde a=1A/s. Să se determine:
- a. t.e.m. autoindusă în solenoid;
- **b.** inducția câmpului magnetic din interiorul bobinei la momentul t = 10s;
- c. t.e.m. indusă într-o spiră cu aria $s = 5cm^2$ aflată în interiorul solenoidului și plasată coaxial într-un plan perpendicular pe axa solenoidului.

15 puncte

Ministerul Educatiei și Cercetării – Serviciul National de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 92

C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Se cunosc: $N_A = 6{,}023 \cdot 10^{23} \ mol^{-1}$, $1atm \cong 10^5 \ N/m^2$, $R \cong 8{,}31 \ J/(mol \cdot K)$ şi $C_p - C_V = R$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Un gaz ideal efectuază procesul termodinamic de ecuație $T=ap^2$, unde $a=200\frac{K}{Pa^2}$. Cunoscând $v=\frac{5}{8,31}$ moli ,indicați ecuația procesului în coordonate p-V, știind că presiunea și volumul sunt exprimate în SI.

a.
$$p = 1000 V$$

b.
$$p = 10^{-3}V$$

c.
$$p = 500 V$$

d.
$$p = \frac{1}{2}V$$

2. Un mol de gaz ideal este supus unor transformări izobare la diferite presiuni. Izobara caracterizată de presiunea minimă este reprezentată prin dreapta:

a. A;

b. B:

c. C;

d. D.

3. Care din următoarele expresii NU caracterizază transformarea adiabatică?

a. Q = 0

b.
$$pV^{\gamma} = const$$

c. $L = v C_V (T_2 - T_1)$ atunci când evoluția sistemului are loc de la T_1 la T_2

d. $\Delta U = \nu \; C_V \, (T_2 - T_1)$ atunci când evoluția sistemului are loc de la T_1 la T_2

4. O maşină termică ideală funcționează după un ciclu Carnot reversibil și are un randament de 20%. Știind temperatura sursei calde $T_1 = 500K$, calculați temperatura sursei reci, T_2 :

a. 400K

b. 300K

c. 200K

d. 100K

5. Un sistem termodinamic poate primii căldură, atunci când:

a. se destinde adiabatic

b. se destinde izoterm

c. este comprimat izobar

d. este comprimat izoterm

II. Rezolvați următoarele probleme:

1. Un gaz ideal având exponentul adiabatic $\gamma=1,4$, parcuge un ciclu termodinamic format din două trasformări izocore pentru care volumele sunt $V_1=10l$ și $V_2=2V_1$; și două transformări izobare la presiunile $p_1=1atm$ și $p_2=1,5$ p_1 . Știind că în starea 1 gazul are presiunea p_1 și volumul V_1 :

 ${\bf a.}$ reprezentați ciclul termodinamic în coordonate $\ p-V$, p-T respectiv V-T ;

b. calculați lucrul mecanic total efectuat de gaz într-un ciclu;

c. calculați randamentul unui motor termic ce ar funcționa după ciclul termodinamic dat, precum și randamentul ciclului Carnot ce ar funcționa între temperaturile extreme.

15 puncte

2. Într-un vas de volum V prevăzut cu robinet se află o cantitate v=2moli de heliu ($\mu_{He}=4\,g\,/\,mol$), la presiunea p=2atm. Energia cinetică medie a tuturor moleculeor gazului, este $\overline{E}=9,960\,kJ$.

a. Calculați energia cinetică medie a unei molecule și viteza termică a gazului.

b. Calculați temperatura gazului precum și volumul acestuia.

c. Prin deschiderea robinetului se evacuează gaz. Dacă $\Delta m = 4g$ este masa gazului evacuat, calculați variația energiei interne a gazului menținut la temperatura constantă.

15 puncte

Varianta 92

Proba F: Profil: tehnic - toate specializările

Ministerul Educatiei și Cercetării - Serviciul National de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic – toate specializările

◆ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 92

D.OPTICĂ

Viteza luminii în vid $c = 3.10^8 \, m/s$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. În fața a două oglinzi plane reciproc perpendiculare, se află un bec electric în funcțiune. În sistemul celor două oglinzi se formează un număr de imagini egal cu:

a. 2;

b. 3;

d. 1.

2. În urma trecerii luminii dintr-un mediu cu indicele de refracție n_1 , în alt mediu cu indicele de refracție $n_2 > n_1$,raza de lumină refractată:

- a. se apropie de normală;
- b. se depărtează de normală ;
- c. se întoarce în mediul 1 datorită fenomenului de reflexie totală;
- d. nu își schimbă direcția.
- 3. Mărimea fizică dată de expresia $(n-1)\left(\frac{1}{R_1} \frac{1}{R_2}\right)$ reprezintă:
- a. distanța focală a unei lentile subțiri
- b. convergența unei lentile subțiri
- c. convergența unui sistem format din două oglinzi sferice
- d. distanța focală a unui dioptru sferic
- 4. Distanța dintre două minime succesive ale unei figuri de interferență obținute cu un dispozitiv Young:
- a. crește dacă distanța dintre fante crește;
- b. scade dacă distanța dintre planul fantelor și ecran crește;
- c. rămâne constantă dacă se modifică lungimea de undă a radiației luminoase;
- d. scade dacă distanța dintre fante crește.
- 5. O rețea de difracție cu 2000 trăsături / mm este iluminată normal cu o radiație monocromatică de 450nm. Numărul total de maxime de difracție care pot fi observate pe un ecran paralel cu rețeaua este:

a. 3

c. 5

d. 6

II. Rezolvati următoarele probleme:

- 1. Imaginea reală a unui obiect cu înălțimea $y_1 = 30mm$ trebuie să se formeze pe un ecran situat la distanța de 100cm de obiect. Imaginea este formată de o lentilă subtire plan-convexă având raza de curbură a fetei convexe egală cu 10cm. Lentila formează imagini clare ale obiectului pe ecran pentru două poziții ale sale aflate la distanta d = 50cm una de alta. Să se calculeze:
- a. distanța focală a lentilei;
- b. indicele de refracție al materialului din care este realizată lentila;
- c. mărimea imaginii în cele două cazuri.

15 puncte

- 2. Un dispozitiv Young produce o imagine de interferență pe un ecran paralel cu planul fantelor. Radiația luminoasă are lungimea de undă $\lambda = 500nm$. Acoperind una dintre fantele dispozitivului cu o lamelă transparentă ce are fețele plan-paralele și indicele de refracție n = 1,5, franja centrală de interferență se deplasează cu 3 interfranje față de poziția inițială. Să se calculeze:
- a. variația drumului optic datorată prezenței lamelei;
- b. grosimea lamelei;
- c. interfranja figurii de interferență, dacă distanța dintre planul fantelor și ecran este D=4m, iar distanța dintre fante este 2l = 2mm.

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările