1.3.5 Regeln für das Rechnen mit Mengen

Seien $A,B,C\subset M$ beliebige Mengen, M ... Grundmenge und \emptyset ... leere Menge. Dann gilt:

- (1) a) $A \cap \emptyset = \emptyset$
 - b) $A \cup M = M$
 - c) $A \cup \emptyset = A$ (Neutralität von \emptyset bezüglich \cup)
 - d) $A \cap M = A$ (Neutralität von M bezüglich \cap)
- (2) Idempotenz:

$$A \cap A = A$$
 und $A \cup A = A$

(3) Komplementarität:

$$A \cap A^c = \emptyset$$
 und $A \cup A^c = M$

(4) doppelte Negation:

$$(A^c)^c = A$$

(5) Gesetze von de Morgan:

$$(A \cap B)^c = A^c \cup B^c \text{ und } (A \cup B)^c = A^c \cap B^c$$

(6) Kommutativ-Gesetze:

$$A \cap B = B \cap A \text{ und } A \cup B = B \cup A$$

(7) Assoziativ-Gesetze:

$$(A \cap B) \cap C = A \cap (B \cap C)$$
 und
 $(A \cup B) \cup C = A \cup (B \cup C)$

(8) Distributiv-Gesetze:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 und
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Bemerkung:

Die Gesetzmäßigkeiten (6)-(8) lassen sich einfach merken, wenn man \cap mit \cdot und \cup mit + assoziiert.