Final_Project_CS156

December 18, 2020

0.0.1 Import Necessary Packages and download the csv files

Importing packages

```
In [2]: # import packages
    import pandas as pd
    import pandas_profiling as pd_prof
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline

# for downloading file
    from google.colab import files

## Use random forest to create and evaluate new model
    from sklearn.ensemble import RandomForestClassifier
```

In [3]: !pip install astroquery

```
Requirement already satisfied: astroquery in /usr/local/lib/python3.6/dist-packages (0.4.1)
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from astroquery)
Requirement already satisfied: astropy>=3.1 in /usr/local/lib/python3.6/dist-packages (from as
Requirement already satisfied: requests>=2.4.3 in /usr/local/lib/python3.6/dist-packages (from
Requirement already satisfied: html5lib>=0.999 in /usr/local/lib/python3.6/dist-packages (from
Requirement already satisfied: beautifulsoup4>=4.3.2 in /usr/local/lib/python3.6/dist-packages
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from astroquer
Requirement already satisfied: keyring>=4.0 in /usr/local/lib/python3.6/dist-packages (from as
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from the control of the control of
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/pythos
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from re-
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (fi
Requirement already satisfied: webencodings in /usr/local/lib/python3.6/dist-packages (from htm
Requirement already satisfied: SecretStorage>=3.2; sys_platform == "linux" in /usr/local/lib/p
Requirement already satisfied: importlib-metadata>=1; python_version < "3.8" in /usr/local/lib
Requirement already satisfied: jeepney>=0.4.2; sys_platform == "linux" in /usr/local/lib/python
Requirement already satisfied: cryptography>=2.0 in /usr/local/lib/python3.6/dist-packages (from the control of the control of
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from import
```

```
from astroquery.gaia import Gaia
        from astroquery.vizier import Vizier
Created TAP+ (v1.2.1) - Connection:
       Host: gea.esac.esa.int
       Use HTTPS: True
       Port: 443
        SSL Port: 443
Created TAP+ (v1.2.1) - Connection:
       Host: geadata.esac.esa.int
        Use HTTPS: True
        Port: 443
        SSL Port: 443
Finding GAIA Data
In [5]: ## making a GAIA cone search of 30m radius around NGC3766 center
        coordinate = coord.SkyCoord.from_name('NGC3766')
        print(coordinate)
       radius = u.Quantity(0.8, u.deg)
       Gaia.ROW_LIMIT = -1
        j = Gaia.cone_search_async(coordinate, radius)
        r = j.get_results()
       print(type(r))
<SkyCoord (ICRS): (ra, dec) in deg
    (174.075, -61.615)>
INFO: Query finished. [astroquery.utils.tap.core]
<class 'astropy.table.table.Table'>
In [6]: ## save the ASCII table as a panadas dataframe
       all_stars = r.to_pandas()
        all_stars
Out[6]:
                       solution_id ...
                                              dist
               1635721458409799680 ... 0.000741
        1
               1635721458409799680 ... 0.001082
               1635721458409799680 ... 0.001105
               1635721458409799680 ... 0.001147
```

In [4]: # import astroquery

import astropy.units as u

import astropy.coordinates as coord

```
4 1635721458409799680 ... 0.001680 ... 641173 1635721458409799680 ... 0.799999 641174 1635721458409799680 ... 0.799999 641175 1635721458409799680 ... 0.799999 641176 1635721458409799680 ... 0.799999 641177 1635721458409799680 ... 0.799999 641177 1635721458409799680 ... 0.799999
```

Applying Filter:

plt.show()

```
In [160]: all_stars_filtered = all_stars[all_stars['parallax_over_error'] > 3]
In [161]: all_stars_filtered = all_stars_filtered[(all_stars_filtered['pmdec_over_error'] > 3)
In [162]: all_stars_filtered.shape
Out[162]: (88492, 99)

    Visualizing GAIA data
In [377]: ## plotting the skyplot
```


Finding Cantat Data

```
In [35]: #### Finding Cantat catalogue
         catalog_list = Vizier.find_catalogs('Cantat')
         {k:v.description for k,v in catalog_list.items()}
Out[35]: {'I/349': 'StarHorse, Gaia DR2 photo-astrometric distances (Anders+, 2019)',
          'J/A+A/561/A94': 'Velocities and photometry in Trumpler 20 (Donati+, 2014)',
          'J/A+A/564/A133': 'Gaia FGK benchmark stars: metallicity (Jofre+, 2014)',
          'J/A+A/569/A17': 'Gaia-ESO Survey: NGC6705 (Cantat-Gaudin+, 2014)',
          'J/A+A/582/A81': 'Gaia FGK benchmark stars: abundances (Jofre+, 2015)',
          'J/A+A/588/A120': 'Equivalent widths in 10 open clusters (Cantat-Gaudin+, 2016)',
          'J/A+A/591/A37': 'Gaia-ESO Survey. Parameters for cluster members (Jacobson+, 2016)'
          'J/A+A/597/A10': 'South Ecliptic Pole stars radial velocities (Fremat+, 2017)',
          'J/A+A/598/A68': 'Gaia-ESO Survey. Trumpler 23 (Overbeek+, 2017)',
          'J/A+A/601/A19': 'Gaia DR1 open cluster members (Gaia Collaboration+, 2017)',
          'J/A+A/603/A2': 'Gaia-ESO Survey abundances radial distribution (Magrini+, 2017)',
          'J/A+A/605/A79': 'TGAS Cepheids and RR Lyrae stars (Gaia Collaboration+, 2017)',
          'J/A+A/615/A49': 'TGAS stars membership in 128 open clusters (Cantat-Gaudin+, 2018)'
          'J/A+A/616/A10': '46 open clusters GaiaDR2 HR diagrams (Gaia Collaboration, 2018)',
          'J/A+A/616/A12': 'Gaia DR2 sources in GC and dSph (Gaia Collaboration+, 2018)',
```

```
'J/A+A/618/A59': 'Gaia DR2 confirmed new nearby open clusters (Castro-Ginard+, 2018)
          'J/A+A/618/A93': 'Gaia DR2 open clusters in the Milky Way (Cantat-Gaudin+, 2018)',
          'J/A+A/619/A155': 'Open cluster kinematics with Gaia DR2 (Soubiran+, 2018)',
          'J/A+A/621/A115': 'Vela OB2 members (Cantat-Gaudin+, 2019)',
          'J/A+A/623/A108': 'Age of 269 GDR2 open clusters (Bossini+, 2019)',
          'J/A+A/623/A110': 'Gaia DR2. Variable stars in CMD (Gaia Collaboration+, 2019)',
          'J/A+A/623/A80': 'Open clusters in APOGEE and GALAH surveys (Carrera+, 2019)',
          'J/A+A/624/A126': 'New open clusters in Perseus direction (Cantat-Gaudin+, 2019)',
          'J/A+A/626/A17': 'Young population in Vela-Puppis region (Cantat-Gaudin+, 2019)',
          'J/A+A/627/A119': 'Extended halo of NGC 2682 (M 67) (Carrera+ 2019)',
          'J/A+A/627/A35': 'New open clusters in Galactic anti-centre (Castro-Ginard+, 2019)',
          'J/A+A/633/A99': 'Gaia DR2 open clusters in the Milky Way. II (Cantat-Gaudin+, 2020)
          'J/A+A/635/A45': '570 new open clusters in the Galactic disc (Castro-Ginard+, 2020)'
          'J/A+A/640/A1': 'Portrait Galactic disc (Cantat-Gaudin+, 2020)',
          'J/MNRAS/446/1411': 'Trumpler 5 photometric BV catalog (Donati+, 2015)'}
In [36]: ## cheking the tables in the GAIA DR2 paper
         Vizier.ROW_LIMIT = -1
         #catalogs = Vizier.get_catalogs(catalog_list['J/A+A/633/A99'])
         #catalogs
In [163]: ## saving only NGC 3766 data from Cantat GAIA DR2 paper
         cantat_3766 = Vizier(catalog = 'J/A+A/633/A99/members', row_limit = -1).query_constr
         cantat_3766 = cantat_3766[0].to_pandas()
         cantat_3766
Out[163]:
                  RA_ICRS
                             DE_ICRS ...
                                            _RA.icrs _DE.icrs
               174.195211 -61.479252 ... 174.195274 -61.479256
               174.521895 -61.604049 ... 174.521956 -61.604052
               174.447990 -61.635711 ... 174.448046 -61.635713
               174.516866 -61.556410 ... 174.516927 -61.556414
               174.439503 -61.377736 ... 174.439560 -61.377738
          1390 173.832089 -61.545743 ... 173.832147 -61.545747
          1391 173.740258 -61.484316 ... 173.740318 -61.484319
         1392 173.628115 -61.453283 ... 173.628173 -61.453290
         1393 173.808609 -61.487716 ... 173.808671 -61.487721
          1394 173.536850 -61.654957 ... 173.536916 -61.654964
          [1395 rows x 13 columns]
In [164]: # renaming the cantat table to match it with gaia_data
         cantat_3766 = cantat_3766.rename(columns={'Source':'source_id',
                                                   'Proba': 'PMemb'})
In [165]: # taking the subset of only source_id and PMemb
         cantat_3766 = cantat_3766.loc[:,['source_id', 'PMemb']]
```

```
In [167]: # join the two table on source_id
         cantat_3766 = all_stars_filtered.join(cantat_3766.set_index('source_id'), on='source_
In [172]: # dropping the rows, where we don't have PMemb
          # (i.e. the source id was not in the cantat table)
         cantat_3766 = cantat_3766.dropna(subset=['PMemb'])
         cantat_3766
                         solution_id ... PMemb
Out [172]:
         7
                 1635721458409799680
                                            1.0
          10
                 1635721458409799680
                                            1.0
          16
                 1635721458409799680
                                            0.6
         22
                 1635721458409799680
                                            0.5
         26
                 1635721458409799680
                                            0.4
                                            . . .
          104667 1635721458409799680
                                            0.2
                                            0.7
          104808 1635721458409799680
         104811 1635721458409799680
                                            0.4
         104889 1635721458409799680
                                            0.1
          105689 1635721458409799680
                                            0.5
          [1345 rows x 100 columns]
In [49]: # saving both cantat and Gaia files as csv
         # if you want to save, comment out the next two lines
         cantat_3766.to_csv('NGC_3766_cantat.csv')
         # all_stars.to_csv('NGC_3766_Gaia_30m.csv')
In [50]: cantat_3766.describe()
Out [50]:
                solution_id
                                 source_id ... pmdec_over_error
                                                                        PMemb
         count 1.358000e+03 1.358000e+03 ...
                                                     1358.000000 1358.000000
                                                                     0.509423
        mean
               1.635721e+18 5.334617e+18 ...
                                                      16.334399
        std
               0.000000e+00 6.714607e+14 ...
                                                        8.465254
                                                                     0.296726
        min
               1.635721e+18 5.334149e+18 ...
                                                        1.530515
                                                                     0.100000
        25%
               1.635721e+18 5.334201e+18 ...
                                                        9.621796
                                                                     0.200000
        50%
               1.635721e+18 5.334209e+18 ...
                                                       14.757517
                                                                     0.500000
        75%
               1.635721e+18 5.335661e+18 ...
                                                       21.780832
                                                                     0.800000
               1.635721e+18 5.335720e+18 ...
                                                       50.842703
                                                                     1.000000
         [8 rows x 94 columns]
In [379]: ## plotting the skyplot
         skyplot = sns.scatterplot(x = cantat_3766['ra'], y = cantat_3766['dec'],
                                   hue = cantat_3766['PMemb'])
         skyplot.invert_xaxis()
         plt.title('Sky Plot of the Cantat data')
         plt.show()
```


0.0.2 Creating, Examining and Processing the Training Data

Training Data

member.head()

```
In [199]: # import member dataset
    member = cantat_3766.copy()
In [381]: ### adding their distance from the center of the clusters

    ## NGC 3766
    center = coord.SkyCoord.from_name('NGC3766')
    center_ra, center_dec = center.ra.degree, center.dec.degree
    distance = np.sqrt( ((member['ra'] - center_ra)*np.cos(np.radians(member['dec'])))**
    member['dist_3766_center'] = distance
In [383]: # maximum distance of stars in Cantat Data
    max(member.dist_3766_center)
Out[383]: 0.31621627751902387
In [380]: member['member'] = np.full(len(member), 1)
```

```
designation ... dist_3766_center member
                      solution_id
          7
              1635721458409799680 Gaia DR2 5334208304878429184
                                                                               0.003027
                                                                                              1
          10 1635721458409799680 Gaia DR2 5334208201799207680
                                                                               0.003206
                                                                                              1
          16 1635721458409799680 Gaia DR2 5334208197475777152
                                                                               0.004120
          22 1635721458409799680 Gaia DR2 5334208201799203072
                                                                               0.004735
          26 1635721458409799680 Gaia DR2 5334208407957797120
                                                                               0.005049
          [5 rows x 102 columns]
In [384]: ### adding their distance from the center of the clusters
          ## NGC 3766
          center = coord.SkyCoord.from_name('NGC3766')
          center_ra, center_dec = center.ra.degree, center.dec.degree
          distance = np.sqrt( ((all_stars_filtered['ra'] - center_ra)*np.cos(np.radians(all_stars_filtered['ra'])
          all_stars_filtered['dist_3766_center'] = distance
In [385]: non_member = all_stars_filtered[all_stars_filtered['dist_3766_center'] >= 0.7].sample
In [386]: non_member['member'] = np.full(len(non_member), 0)
          non_member.head()
Out [386]:
                          solution_id
                                       ... member
          617823 1635721458409799680
          530949 1635721458409799680
                                                 0
          624419 1635721458409799680
                                                 0
          547882 1635721458409799680
                                                0
          594412 1635721458409799680
                                                 0
          [5 rows x 101 columns]
In [388]: sns.distplot(member['dist_3766_center'])
          sns.distplot(non_member['dist_3766_center'])
          plt.show()
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot
  warnings.warn(msg, FutureWarning)
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot
  warnings.warn(msg, FutureWarning)
```

Out [380]:


```
In [389]: training_data = pd.concat([member, non_member])
```

```
Out [390]:
                  solution_id
                                   source_id
                                                    dist_3766_center
                                                                            member
                 2.690000e+03
                                2.690000e+03
                                                         2690.000000
                                                                       2690.000000
          count
          mean
                 1.635721e+18
                                5.334780e+18
                                                            0.445167
                                                                          0.500000
          std
                 0.000000e+00
                                7.120528e+14
                                                            0.312285
                                                                          0.500093
          min
                 1.635721e+18
                                5.333378e+18
                                                            0.003027
                                                                          0.000000
          25%
                 1.635721e+18
                               5.334205e+18
                                                            0.123652
                                                                          0.000000
          50%
                 1.635721e+18
                                5.334381e+18
                                                            0.508114
                                                                          0.500000
          75%
                 1.635721e+18
                                5.335672e+18
                                                            0.750425
                                                                          1.000000
                 1.635721e+18 5.335930e+18
                                                            0.803653
                                                                          1.000000
          max
```

[8 rows x 96 columns]

```
In [392]: # Choosing the features
```

```
# adding features and targets in a training set
         training_set = pd.concat((features, targets), axis=1)
          # dropping NA
         training_set = training_set.dropna()
          # finding where dtype is float64
         float64_data = np.where(training_set.dtypes == 'float64')[0]
          # change the data type to float32 from float64
         training_set.iloc[:, float64_data] = training_set.iloc[:, float64_data].astype('float
          # set features, targets again
         features, targets = training_set.iloc[:,:-1], training_set.iloc[:,-1]
         features.describe()
Out [393]:
                   parallax
                                    pmra
                                                pmdec
         count 2690.000000 2690.000000 2690.000000
                   0.558447
                              -7.096939
                                             1.300540
         mean
         std
                   0.499491
                               4.232746
                                             2.496381
         min
                   0.096016 -113.169159 -69.735741
         25%
                   0.379664 -7.120129
                                             0.846504
         50%
                   0.456162 -6.734682
                                             1.068744
                   0.535136 -6.378384
         75%
                                            1.648697
         max
                   9.502661 19.480213
                                            31.991152
In [398]: targets.value_counts()
Out[398]: 1
              1345
              1345
         Name: member, dtype: int64
Visualizing Training Data
In [396]: # histogram of PMemb in the training data
         sns.distplot(training_set['member'])
         plt.show()
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot
  warnings.warn(msg, FutureWarning)
```

features = training_data.loc[:,feature_columns]

In [393]: # Dropping the NULL values from the using training set

targets = training_data['member']


```
In [371]: # CMD marked with the membership probabilities of the stars
          # (PMemb >= 0.5 stars are the probable stars)
          \#cmd = sns.scatterplot(x = 'bp\_rp', y = 'phot\_g\_mean\_mag', palette = 'YlOrRd', hue = 'PM'
          #cmd.invert_yaxis()
          #plt.title('')
          #plt.show()
          # proper motion plot marked with the membership probabilities of the stars
          fig, axes = plt.subplots(1, 2, figsize=(18,7))
          fig.suptitle('CMD of Training data for NGC 3766 ')
          sns.scatterplot(x = 'bp_rp', y='phot_g_mean_mag', palette='Y10rRd', color = 'red',
                          data = member, ax = axes[0])
          axes[0].set_title('Member Stars')
          axes[0].invert_yaxis()
          #plt.show()
          sns.scatterplot(x = 'bp_rp', y='phot_g_mean_mag', palette='Y10rRd', color = 'orange'
                          data = non_member, ax = axes[1])
          axes[1].set_title('Non_member Stars')
```

```
axes[1].invert_yaxis()
plt.show()
```


/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot warnings.warn(msg, FutureWarning)


```
In [401]: from mpl_toolkits.mplot3d import Axes3D

ax = plt.figure().gca(projection='3d')

ax.scatter(member.pmra, member.pmdec, member.parallax)
ax.set_xlabel('pmra')
ax.set_ylabel('pmdec')
ax.set_zlabel('parallax')
plt.title('member stars in the 3D space')
plt.show()
```


Check Feature Importance using Random Forest

In [403]: # Use Random Forest on whole dataset using 100 different trees

```
In [405]: # plotting as a barplot

# Creating a bar plot
sns.barplot(x=feature_imp, y=feature_imp.index)
# Add labels to the graph
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
plt.title("Visualizing Important Features")
plt.show()
```


0.0.3 Model Selection and Accuracy Estimate using Test Data

test rand

18

```
In [443]: def evaluate_model(model):
              test_predict = model.predict(test_features)
              train_predict = model.predict(train_features)
              print('Model Accuracy:')
              print("Precision on training data: %.3f" % precision_score(train_targets, train_
              print("Precision on testing data: %.3f" % precision_score(test_targets, test_precision_score)
              print('Accuracy on test data: %.3f' % accuracy_score(test_targets, test_predict)
              sns.heatmap(confusion_matrix(test_targets, test_predict), cmap= 'Greens', annot
              plt.ylabel('Actual')
              plt.xlabel('Predicted')
              plt.title('Confusion Matrix')
              plt.show()
              print("Classification Report: \n", classification_report(test_targets, test_pred
SVC
In [549]: from sklearn.svm import SVC
          # SVC model
          svc_clf = SVC(kernel='rbf', gamma = 'scale', random_state=42)
          svc_clf.fit(train_features, train_targets)
Out[549]: SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
              decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
              max_iter=-1, probability=False, random_state=42, shrinking=True, tol=0.001,
              verbose=False)
In [550]: evaluate_model(svc_clf)
Model Accuracy:
Precision on training data: 0.751
Precision on testing data: 0.762
Accuracy on test data: 0.838
```


~-			_
(' 200	rific	ation.	Report:

	precision	recall	f1-score	support
0	1.00	0.66	0.80	387
1	0.76	1.00	0.87	420
accuracy			0.84	807
macro avg	0.88	0.83	0.83	807
weighted avg	0.88	0.84	0.83	807

Naive Bayes

Model Accuracy:

Precision on training data: 0.879 Precision on testing data: 0.896 Accuracy on test data: 0.942

Classification Report:

	precision	recall	f1-score	support
0	1.00	0.88	0.94	403
1	0.90	1.00	0.95	404
accuracy			0.94	807
macro avg	0.95	0.94	0.94	807
weighted avg	0.95	0.94	0.94	807

KNN

```
In [446]: from sklearn import neighbors
          from sklearn.model_selection import cross_val_score, GridSearchCV
          knn_cv = neighbors.KNeighborsClassifier()
          parameter_grid = {'n_neighbors': [1,2,3,4,5,6,7,8]}
          #use gridsearch to test all values for n neighbors
          knn_gscv = GridSearchCV(knn_cv, parameter_grid, cv=5, scoring='precision')
          #fit model to data
          knn_gscv.fit(train_features, train_targets)
Out[446]: GridSearchCV(cv=5, error_score=nan,
                       estimator=KNeighborsClassifier(algorithm='auto', leaf_size=30,
                                                      metric='minkowski',
                                                      metric_params=None, n_jobs=None,
                                                      n_neighbors=5, p=2,
                                                      weights='uniform'),
                       iid='deprecated', n_jobs=None,
                       param_grid={'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8]},
                       pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                       scoring='precision', verbose=0)
In [447]: # top performance
          print("Top Performance: ", knn_gscv.best_params_)
          # score for top_performance
          print("Top CV score: ", knn_gscv.best_score_)
Top Performance: {'n_neighbors': 2}
Top CV score: 0.9211235624022134
In [448]: n neighbors = 2
          knn = neighbors.KNeighborsClassifier(n_neighbors,)
          knn.fit(train_features, train_targets)
Out[448]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                               metric_params=None, n_jobs=None, n_neighbors=2, p=2,
                               weights='uniform')
In [449]: evaluate_model(knn)
Model Accuracy:
Precision on training data: 1.000
Precision on testing data: 0.930
Accuracy on test data: 0.913
```


Classification	Report:
----------------	---------

	precision	recall	f1-score	support
0	0.90	0.93	0.91	403
1	0.93	0.89	0.91	404
accuracy			0.91	807
macro avg	0.91	0.91	0.91	807
weighted avg	0.91	0.91	0.91	807

Decision Tree

In [451]: dtc.get_params()

```
Out[451]: {'ccp_alpha': 0.0,
           'class_weight': None,
           'criterion': 'gini',
           'max_depth': None,
           'max features': None,
           'max_leaf_nodes': None,
           'min impurity decrease': 0.0,
           'min_impurity_split': None,
           'min_samples_leaf': 1,
           'min_samples_split': 2,
           'min_weight_fraction_leaf': 0.0,
           'presort': 'deprecated',
           'random_state': None,
           'splitter': 'best'}
In [452]: from sklearn.model_selection import RandomizedSearchCV
          max_features = ['auto', 'sqrt']
          # Maximum number of levels
          max_depth = [int(x) for x in np.linspace(10, 100, num = 10)]
          max depth.append(None)
          min_samples_split = [2, 5, 10]
          min_samples_leaf = [1, 2, 4]
          np.random.seed(25)
          random states = np.random.choice(range(1,50), size = 10, replace=False)
          ccp_alpha = [2**i for i in range(-10,0)]
          random_grid = {'max_features': max_features,
                         'max_depth': max_depth,
                         'min_samples_split': min_samples_split,
                          'min_samples_leaf': min_samples_leaf,
                          'random_state' : random_states,
                          'ccp_alpha': ccp_alpha}
          random_grid
Out [452]: {'ccp_alpha': [0.0009765625,
            0.001953125,
            0.00390625,
            0.0078125,
            0.015625,
            0.03125,
            0.0625,
            0.125,
            0.25,
            0.5],
           'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None],
           'max_features': ['auto', 'sqrt'],
```

```
'min_samples_leaf': [1, 2, 4],
           'min_samples_split': [2, 5, 10],
           'random_state': array([44, 15, 41, 34, 48, 8, 33, 20, 39, 36])}
In [453]: # base model
          dtc = tree.DecisionTreeClassifier()
          dtc_random = RandomizedSearchCV(estimator = dtc, param_distributions = random_grid,
                                         n_iter = 100, cv = 5, verbose=2, random_state=42, n_je
                                         scoring = 'precision')
In [454]: dtc_random.fit(train_features, train_targets)
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 186 tasks
                                       | elapsed:
                                                         4.5s finished
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed:
Out[454]: RandomizedSearchCV(cv=5, error_score=nan,
                             estimator=DecisionTreeClassifier(ccp_alpha=0.0,
                                                              class_weight=None,
                                                              criterion='gini',
                                                              max_depth=None,
                                                              max_features=None,
                                                              max_leaf_nodes=None,
                                                              min_impurity_decrease=0.0,
                                                              min_impurity_split=None,
                                                              min_samples_leaf=1,
                                                              min_samples_split=2,
                                                              min_weight_fraction_leaf=0.0,
                                                              presort='deprecated',
                                                              random_state=None,
                                                              splitter='best'),
                             i...
                                                                 0.00390625, 0.0078125,
                                                                 0.015625, 0.03125, 0.0625,
                                                                 0.125, 0.25, 0.5],
                                                   'max_depth': [10, 20, 30, 40, 50, 60,
                                                                70, 80, 90, 100, None],
                                                   'max_features': ['auto', 'sqrt'],
                                                   'min_samples_leaf': [1, 2, 4],
                                                   'min_samples_split': [2, 5, 10],
                                                   'random_state': array([44, 15, 41, 34, 48,
                             pre_dispatch='2*n_jobs', random_state=42, refit=True,
                             return_train_score=False, scoring='precision', verbose=2)
```

Model Accuracy:

Precision on training data: 1.000 Precision on testing data: 0.938 Accuracy on test data: 0.936

${\tt Classification}\ {\tt Report:}$

	precision	recall	f1-score	support
0	0.93	0.94	0.94	403
1	0.94	0.93	0.94	404
accuracy			0.94	807
macro avg	0.94	0.94	0.94	807
weighted avg	0.94	0.94	0.94	807

Model Accuracy:

Precision on training data: 0.937 Precision on testing data: 0.942 Accuracy on test data: 0.949

Classification Report: precision recall f1-score support 0.96 0 0.94 0.95 403 1 0.94 0.96 0.95 404 0.95 807 accuracy macro avg 0.95 0.95 0.95 807 weighted avg 0.95 0.95 0.95 807

Random Forest

0.125,

```
In [465]: from sklearn.model_selection import RandomizedSearchCV
          n_estimators = [int(x) for x in np.linspace(start = 100, stop = 1000, num = 10)]
          max_features = ['auto', 'sqrt']
          # Maximum number of levels
          max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
          max_depth.append(None)
          min_samples_split = [2, 5, 10]
          min_samples_leaf = [1, 2, 4]
          bootstrap = [True, False]
          ccp_alpha = [2**i for i in range(-10,0)]
          random_grid = {'n_estimators': n_estimators,
                         'max_features': max_features,
                         'max_depth': max_depth,
                         'min_samples_split': min_samples_split,
                         'min_samples_leaf': min_samples_leaf,
                         'bootstrap': bootstrap,
                         'ccp alpha': ccp alpha}
          random_grid
Out[465]: {'bootstrap': [True, False],
           'ccp_alpha': [0.0009765625,
            0.001953125,
            0.00390625,
            0.0078125,
            0.015625,
            0.03125,
            0.0625,
```

```
0.25,
            0.5],
           'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None],
           'max_features': ['auto', 'sqrt'],
           'min_samples_leaf': [1, 2, 4],
           'min_samples_split': [2, 5, 10],
           'n estimators': [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]}
In [466]: rfc = RandomForestClassifier()
          rfc_random = RandomizedSearchCV(estimator = rfc, param_distributions = random_grid,
                                         n_iter = 100, cv = 5, verbose=2, random_state=42, n_je
                                         scoring = 'precision')
In [467]: rfc_random.fit(train_features, train_targets)
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 37 tasks
                                                         37.9s
                                           | elapsed:
[Parallel(n_jobs=-1)]: Done 158 tasks
                                           | elapsed: 3.3min
[Parallel(n_jobs=-1)]: Done 361 tasks
                                          | elapsed: 6.9min
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 9.8min finished
Out [467]: RandomizedSearchCV(cv=5, error_score=nan,
                             estimator=RandomForestClassifier(bootstrap=True,
                                                               ccp_alpha=0.0,
                                                               class_weight=None,
                                                               criterion='gini',
                                                               max_depth=None,
                                                               max_features='auto',
                                                               max_leaf_nodes=None,
                                                               max_samples=None,
                                                               min impurity decrease=0.0,
                                                               min_impurity_split=None,
                                                               min_samples_leaf=1,
                                                               min_samples_split=2,
                                                               min_weight_fraction_leaf=0.0,
                                                               n_estimators=100,
                                                               n_jobs...
                                                                 0.00390625, 0.0078125,
                                                                 0.015625, 0.03125, 0.0625,
                                                                 0.125, 0.25, 0.5],
                                                   'max_depth': [10, 20, 30, 40, 50, 60,
                                                                 70, 80, 90, 100, 110,
                                                                 None],
                                                   'max_features': ['auto', 'sqrt'],
```

```
'min_samples_leaf': [1, 2, 4],
                                                   'min_samples_split': [2, 5, 10],
                                                   'n_estimators': [100, 200, 300, 400,
                                                                    500, 600, 700, 800,
                                                                    900, 1000]},
                             pre_dispatch='2*n_jobs', random_state=42, refit=True,
                             return_train_score=False, scoring='precision', verbose=2)
In [468]: rfc_random.best_params_
Out[468]: {'bootstrap': True,
           'ccp_alpha': 0.0078125,
           'max_depth': None,
           'max_features': 'sqrt',
           'min_samples_leaf': 1,
           'min_samples_split': 10,
           'n_estimators': 200}
In [470]: base_model = RandomForestClassifier(n_estimators = 100, random_state = 42,
                                               oob_score = True)
          base_model.fit(train_features, train_targets)
          evaluate_model(base_model)
Model Accuracy:
Precision on training data: 1.000
Precision on testing data: 0.961
Accuracy on test data: 0.952
```


Classification Report:

	precision	recall	f1-score	support
0	0.94	0.96	0.95	387
1	0.96	0.95	0.95	420
accuracy			0.95	807
macro avg	0.95	0.95	0.95	807
weighted avg	0.95	0.95	0.95	807

In [471]: best_random = rfc_random.best_estimator_

evaluate_model(best_random)

Model Accuracy:

Precision on training data: 0.946 Precision on testing data: 0.968 Accuracy on test data: 0.943

Classification Report:

	precision	recall	f1-score	support
0	0.92	0.97	0.94	387
1	0.97	0.92	0.94	420
accuracy			0.94	807
macro avg	0.94	0.94	0.94	807
weighted avg	0.94	0.94	0.94	807

0.0.4 Prediction for the new stars

In [472]: # descriptive stats

all_stars_filtered.describe()

```
0.000000e+00 7.299506e+14 ...
          std
                                                         41.975123
                                                                            0.192407
          min
                 1.635721e+18 5.333378e+18 ...
                                                         3.000049
                                                                            0.001113
          25%
                 1.635721e+18 5.334198e+18 ...
                                                          8.575895
                                                                            0.392651
          50%
                 1.635721e+18 5.334899e+18 ...
                                                         16.163669
                                                                            0.561294
                 1.635721e+18 5.335699e+18 ...
          75%
                                                         29.967447
                                                                            0.687794
                 1.635721e+18 5.335930e+18 ...
                                                       3562.870471
                                                                            0.803857
          [8 rows x 94 columns]
In [473]: # chosing only GAIA stars close to 0.40 degree radius of the center
          all_stars_filtered = all_stars_filtered.dropna(subset = feature_columns)
          GAIA_target_stars = all_stars_filtered[all_stars_filtered['dist_3766_center'] <= 0.4</pre>
In [475]: # removing the member stars from GAIA data
          GAIA_target_stars = pd.concat([GAIA_target_stars, training_data.drop(columns=['PMemb
                                         training_data.drop(columns=['PMemb', 'member'])]).dro
In [476]: # select the set of predictor variables from the new dataset
          new_features = GAIA_target_stars.loc[:, feature_columns]
          new_features = new_features.astype('float32')
In [477]: # train the model again using all the features and targets of the previous dataset
          # rfc.fit(features, targets)
In [478]: # estimate the membership classification of the stars
          GAIA_target_stars['member'] = best_random.predict(new_features)
          GAIA_target_stars['member'].value_counts()
Out [478]: 0
               20746
                 828
          Name: member, dtype: int64
In [479]: # estimate the membership probability of the stars
          GAIA_target_stars['PMemb'] = best_random.predict_proba(new_features)[:,1]
          sum(GAIA_target_stars['PMemb'] >= 0.5)
Out [479]: 828
In [552]: potentialMember = GAIA_target_stars[GAIA_target_stars['member'] == 1]
          len(potentialMember)
Out [552]: 828
In [485]: potentialMember.describe()
Out [485]:
                 solution_id
                                  source_id ... member
                                                               PMemb
          count 8.280000e+02 8.280000e+02 ...
                                                   828.0 828.000000
                 1.635721e+18 5.334879e+18 ...
                                                     1.0
                                                            0.777271
          mean
                 0.000000e+00 7.489140e+14 ...
                                                     0.0
          std
                                                            0.137153
```

1.0

0.502270

1.635721e+18 5.334126e+18 ...

min

```
25%
       1.635721e+18 5.334178e+18 ...
                                          1.0
                                                 0.633693
50%
       1.635721e+18 5.334225e+18 ...
                                          1.0
                                                 0.796437
75%
       1.635721e+18 5.335670e+18 ...
                                          1.0
                                                 0.907752
       1.635721e+18 5.335728e+18 ...
                                          1.0
                                                 0.941000
max
[8 rows x 96 columns]
```

In [486]: member.describe()

```
Out [486]:
                 solution_id
                                 source_id ... dist_3766_center member
         count 1.345000e+03 1.345000e+03
                                                      1345.000000 1345.0
                                            . . .
                1.635721e+18 5.334609e+18 ...
                                                         0.139332
                                                                      1.0
         mean
                                                                      0.0
         std
                0.000000e+00 6.676445e+14 ...
                                                         0.084147
                1.635721e+18 5.334149e+18 ...
                                                                      1.0
         min
                                                         0.003027
         25%
                                                                      1.0
                1.635721e+18 5.334201e+18
                                           . . .
                                                         0.068670
         50%
                1.635721e+18 5.334209e+18
                                                         0.123610
                                                                      1.0
                                            . . .
         75%
                1.635721e+18 5.335660e+18 ...
                                                         0.208140
                                                                      1.0
         max
                1.635721e+18 5.335720e+18 ...
                                                         0.316216
                                                                      1.0
```

[8 rows x 96 columns]

Visualization

```
In [480]: # CMD of predicted members
```


Out[482]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4e646c8b38>

Out[483]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4e64659b00>


```
# all_stars.to_csv('gaia_3766_membership_prob.csv')

potentialMember.to_csv('NGC_3766_membership_prob.csv')

In [490]:

0.0.5 Comparing the old and new predicted members
```

In [491]: # creating subset for the potential member in previous dataset

concatenated = pd.concat([potentialMember.assign(dataset='New_member'), member.assign

In [492]: concatenated

In [490]: # saving the files as csv

00110000						
	solution_id		designation		PMemb	dataset
338	1635721458409799680	Gaia DR2	5334208407957638272		0.563154	New_member
766	1635721458409799680	Gaia DR2	5334206689970688768		0.908125	New_member
1322	1635721458409799680	Gaia DR2	5334208133079719040		0.739011	New_member
1694	1635721458409799680	Gaia DR2	5334206930488832000		0.773206	New_member
1950	1635721458409799680	Gaia DR2	5334209198231611136		0.632840	New_member
104667	1635721458409799680	Gaia DR2	5334226240663383808		1.000000	Old_member
	766 1322 1694 1950	338 1635721458409799680 766 1635721458409799680 1322 1635721458409799680 1694 1635721458409799680 1950 1635721458409799680 	338 1635721458409799680 Gaia DR2 766 1635721458409799680 Gaia DR2 1322 1635721458409799680 Gaia DR2 1694 1635721458409799680 Gaia DR2 1950 1635721458409799680 Gaia DR2	338 1635721458409799680 Gaia DR2 5334208407957638272 766 1635721458409799680 Gaia DR2 5334206689970688768 1322 1635721458409799680 Gaia DR2 5334208133079719040 1694 1635721458409799680 Gaia DR2 5334206930488832000 1950 1635721458409799680 Gaia DR2 5334209198231611136	338 1635721458409799680 Gaia DR2 5334208407957638272 766 1635721458409799680 Gaia DR2 5334206689970688768 1322 1635721458409799680 Gaia DR2 5334208133079719040 1694 1635721458409799680 Gaia DR2 5334206930488832000 1950 1635721458409799680 Gaia DR2 5334209198231611136	338 1635721458409799680 Gaia DR2 5334208407957638272 0.563154 766 1635721458409799680 Gaia DR2 5334206689970688768 0.908125 1322 1635721458409799680 Gaia DR2 5334208133079719040 0.739011 1694 1635721458409799680 Gaia DR2 5334206930488832000 0.773206 1950 1635721458409799680 Gaia DR2 5334209198231611136 0.632840

```
104889 1635721458409799680
                                       Gaia DR2 5335716869181854336
                                                                                     Old_member
                                                                      ... 1.000000
          105689 1635721458409799680 Gaia DR2 5334223869841146496 ... 1.000000
                                                                                     Old_member
          [2173 rows x 103 columns]
In [493]: concatenated.dataset.value_counts()
Out[493]: Old_member
                        1345
          New_member
                         828
          Name: dataset, dtype: int64
In [560]: fig, axes = plt.subplots(1, 3, figsize=(20,6))
          fig.suptitle('Distribution of the Old and New Members')
          sns.distplot(member['parallax'], color = 'b', label = 'cantat',
                       kde=True, ax=axes[0])
          sns.distplot(potentialMember['parallax'], color = 'g', label = 'new_member',
                       kde=True, ax=axes[0])
          sns.distplot(concatenated['parallax'], color = 'r', ax=axes[0], kde=True,
                       label = 'new_member+cantat')
          axes[0].set_title('Parallax Distribution')
          axes[0].legend()
          sns.distplot(member['pmra'], color = 'b', label = 'cantat',
                       kde=True, ax=axes[1])
          sns.distplot(potentialMember['pmra'], color = 'g', label = 'new_member',
                       kde=True, ax=axes[1])
          sns.distplot(concatenated['pmra'], color = 'r', ax=axes[1], kde=True,
                       label = 'new_member+cantat')
          axes[1].set_title('pmra Distribution')
          axes[1].legend()
          sns.distplot(member['pmdec'], color = 'b', label = 'cantat',
                       kde=True, ax=axes[2])
          sns.distplot(potentialMember['pmdec'], color = 'g', label = 'new_member',
                       kde=True, ax=axes[2])
          sns.distplot(concatenated['pmdec'], color = 'r', ax=axes[2], kde=True,
                       label = 'new_member+cantat')
          axes[2].set_title('pmdec Distribution')
          axes[2].legend()
          plt.show()
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot
  warnings.warn(msg, FutureWarning)
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot
```

Gaia DR2 5335719411837020032 ... 1.000000

Gaia DR2 5334215623503357056

Old_member

Old_member

... 1.000000

104808 1635721458409799680

104811 1635721458409799680

```
warnings.warn(msg, FutureWarning)
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot
    warnings.warn(msg, FutureWarning)
```

warnings.warn(msg, FutureWarning)
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot
warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot

Distribution of the Old and New Members

Out[498]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4e6e63c048>

In [501]: sns.distplot(concatenated['dist_3766_center'])

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: `distplot warnings.warn(msg, FutureWarning)

In [510]: