Practice for Quiz 17 Math 2580 Spring 2016

Sean Fitzpatrick

March 22nd, 2016

Problems from Quiz 17 will be a review of material from Math 2570, and some basic problems from 18.1.

If you can answer the following problems, you should be well-prepared for Quiz 17:

- 1. Calculate the derivative of the following vector-valued functions:
 - (a) $\mathbf{r}(t) = \langle t^2, t^3, t^4 \rangle$
 - (b) $\mathbf{r}(t) = \langle \sin(t), e^{3t}, \cos(2t) \rangle$.
 - (c) $\mathbf{r}(t) = \langle \sin(t^2), \ln(t^2 + 1) \rangle$.
- 2. Calculate $\|\mathbf{r}'(t)\|$ for the vector-valued functions in problem 1. (Note that if $\mathbf{r}(t)$ is interpreted as position with respect to time, then $\mathbf{r}'(t)$ is velocity, and $\|\mathbf{r}'(t)\|$ is speed.
- 3. Show that $\frac{d}{dt} \|\mathbf{r}(t)\|^2 = 2\mathbf{r}(t) \cdot r'(t)$.
- 4. Determine a vector-valued function $\mathbf{r}(t)$ and an interval [a, b] that parameterize the line segment from (1, 2, 0) to (4, -3, 2).
- 5. Evaluate $\int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot r'(t) dt$ for the vector field \mathbf{F} and curve \mathbf{r} given by
 - (a) $\mathbf{F}(x,y) = x^2 \mathbf{i} xy \mathbf{j}$, and $\mathbf{r}(t) = \sin(t)\mathbf{i} + \cos(t)\mathbf{j}$, a = 0, $b = \pi$.
 - (b) $\mathbf{F}(x, y, z) = \langle xy^2, xyz, yz^2 \rangle, \mathbf{r}(t) = \langle t, t^2, 4t \rangle, a = 0, b = 1.$