${\bf Coursework}~(2)~{\bf for}~{\it Introductory}~{\it Lectures}~{\it on}~{\it Optimization}$

Your name Your ID

Oct. 10, 2024

Excercise 1. For the function $f(x): \mathbb{R}^n \to \mathbb{R}^m$, please write down the zeroth-order Taylor expans with an integral remainder term.	ion
Solution of Excercise 1: bla.bla bla bla bla.	
Excercise 2. Please write down the definition of the p -norm for a n -dimensional real vector.	
Solution of Excercise 2: bla.bla bla bla bla.	
Excercise 3. Please write down the definition of the matrix norms induced by vector p -norms.	
Solution of Excercise 3: bla.bla bla bla bla.	
Excercise 4. Let A be an $n \times n$ symmetric matrix. Proof that A is positive semidefinite if and of if all eigenvalues of A are nonnegative. Moreover, A is positive definite if and only if all eigenvalues A are positive.	
Proof of Excercise 4: bla.bla bla bla. bla.	
Excercise 5. Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is convex and upper bounded. Show that f must be a constant function.	ant
Proof of Excercise 5: bla.bla bla bla bla.	