Linear temporal logic(LTL)

Syntax

- 1. alphabet: a finite set of propositional variables (atoms) denoted as AP, logical operators $\{\neg, \land\}$ (actually $\{\neg, \land, \lor, \rightarrow\}$) and the temporal modal operator $\{G, F, X, U\}$, with binding priority $\neg, X, F, G > U > \land, \lor > \rightarrow$.
- 2. grammar (including the grammar of propositional logic): structural induction if $p \in AP$, then p is a formula; if ϕ and ψ are formulas, then $\neg \phi$, $\phi \land \psi$, $X\psi$, $\phi U\psi$, $F\phi$, $G\phi$ are formulas.

Semantics

the model of LTL is defined as $\mathcal{M} = (S, \to, L)$, where S is the domain, representing a set of states; and instead of a function signature σ , there is only a transitive relation \to on S^2 such that $\forall s \in S, \ \exists s' \in S, (s, s') \in \to$, and a function $L: S \mapsto AP$. Note: Since \top and \bot are logical constants(null-ary logical connectives but not logical variables), $\forall s \in S, \bot, \top \not\in L(s)$.

Definition. (path and trace/word) A path in a model $\mathcal{M}(S, \to, L)$ is an infinite sequence of states s_1, s_2, \ldots in S such that, for each $i \ge 1$, $s_i \to s_{i+1}$. A word/trace is an **infinite** sequence of subsets of AP. A word/trace on the path $\pi: s_1 \to s_2 \to \ldots$ is $w = L(s_1), L(s_2), \ldots$ π^i means the path that starts from s_i (so $\pi^1 = \pi$), and w^i means the suffix $L(s_i), L(s_{i+1}), \ldots$; and p is used to mean an atom.

Definition. (Truth-assignment of LTL)

Let $\mathcal{M}=(S,\to,L)$ be a model and $\pi=s_1\to s_2\to\ldots$ be a path in \mathcal{M} . Let ϕ be an LTL formula. The notion $\pi\models\phi$ (π satisfies ϕ) is defined by structural induction on ϕ as follows:

- $\pi \models p \text{ iff } p \in L(s_1);$
- $\pi \models \neg \phi$ iff $\pi \not\models \phi$
- $\pi \models \phi \land \psi$ iff $\pi \models \phi$ and $\pi \models \psi$
- $\pi \models X\phi$ iff $\pi^2 \models \phi$
- $\pi \models F\phi$ iff $\pi^i \models \phi$ for some $i \ge 1$
- $\pi \models G\phi$ iff $\pi^i \models \phi$ for all $i \geq 1$
- $\pi \models \phi U \psi$ iff $\pi^i \models \psi$ for some $i \geq 1$ and $\pi^j \models \phi$ for all $j = 1, \ldots, i-1$

 $\pi \vDash p \lor q \Leftrightarrow \pi \vDash p \text{ or } \pi \vDash q, \pi \vDash p \to q \Leftrightarrow \pi \vDash \neg p \text{ or } \pi \vDash q.$ $\pi \vDash \top \text{ and } \pi \nvDash \bot \text{ for all path.}$

Suppose s is a state and ϕ is a LTL formula. We denote $s \models \phi$ iff for any path which starts from s, we have $\pi \models \phi$.

e.g.

- $\mathcal{M}, s_0 \models p \land q$
- $\mathcal{M}, s_0 \models Xr$
- $\mathcal{M}, s_0 \models G \neg (p \wedge r)$
- $\mathcal{M}, s_0 \models F(\neg q \land r) \to FGr$
- $\mathcal{M}, s_0 \models GFp \rightarrow GFr$

Definition. We say that two LTL formulas ϕ and ψ are equivalent, written $\phi \equiv \psi$, if for all models \mathcal{M} and all paths π in \mathcal{M} , $\pi \models \phi$ iff $\pi \models \psi$. e.g.,

- $\neg F\phi \equiv G\neg \phi$, $\neg G\phi \equiv F\neg \phi$, $\neg X\phi \equiv X\neg \phi$
- $F(\phi \vee \psi) \equiv F\phi \vee F\psi$, $G(\phi \wedge \psi) \equiv G\phi \wedge G\psi$
- $F\phi \equiv \top U\phi$

recursion law:

$$\psi_1 \mathrm{U} \psi_2 \equiv \psi_2 \vee (\psi_1 \wedge \mathrm{X} (\psi_1 \mathrm{U} \psi_2))$$

As we can see, $\{X,U\}$ is an adequate to express $\{G,F,X,U\}$; $\{\neg,\lor,X,U\}$ is an adequate set.

infinite, infinitely means GF; eventually permanently means FG.

Limits of LTL: can not express AGEF ϕ and its negation EFAG $\neg \phi$ as in CTL. But LTL can express single E : $\mathcal{M}, s \vDash \neg X \neg \phi$ is equal to $\mathcal{M}, s \vDash EX\phi$ in CTL.

Computation tree logic (CTL)

Syntax

- 1. alphabet: a finite set of propositional variables (atoms) denoted as AP, logical operators $\{\neg, \land\}$ (actually $\{\neg, \land, \lor, \rightarrow\}$) and the temporal modal operator $\{G, F, X, U, E, A\}$.
- 2. grammar (well-formed formulas): structural induction if $p \in AP$, then p is a formula;

if ϕ and ψ are formulas, then

 $\neg \phi, \phi \lor \psi$, AX ψ , EX ϕ , AF ϕ , EF ϕ , EG ϕ , A[ϕ U ψ], E[ϕ U ψ]AG ϕ , EG ϕ are formulas. (Note: the formulas of LTL is not a subset of formulas of CTL)

Binding priorities: \neg , AG, EG, AF, EF, AX, EX $> \land$, $\lor > \rightarrow$, AU, EU

Semantics:

The definition of model of CTL is the same as LTL.

In the following, $i \ge 1$.

Let $\mathcal{M}=(S,\to,L)$ be a model, $s\in S$, and ϕ a CTL formula. The notion $\mathcal{M},s\models\phi$ is defined by structural induction on ϕ as follows:

- $\mathcal{M}, s \models p \text{ iff } p \in L(s);$
- $\mathcal{M}, s \models \neg \phi \text{ iff } \mathcal{M}, s \not\models \phi$
- $\mathcal{M}, s \models \phi \land \psi$ iff $\mathcal{M}, s \models \phi$ and $\mathcal{M}, s \models \psi$
- $\mathcal{M}, s \models AX\phi$ iff for all s_1 such that $s \to s_1$, $\mathcal{M}, s_1 \models \phi$
- $\mathcal{M}, s \models EX\phi$ iff for some s_1 such that $s \to s_1$, $\mathcal{M}, s_1 \models \phi$
- $\mathcal{M}, s \models AF\phi$ iff for all paths $s_1 \to s_2 \to \ldots$, where $s_1 = s$, there is some s_i such that $\mathcal{M}, s_i \models \phi$
- $\mathcal{M}, s \models EF\phi$ iff there is a path $s_1 \to s_2 \to \ldots$, where $s_1 = s$, and there is some s_i such that $\mathcal{M}, s_i \models \phi$

- $\mathcal{M}, s \models AG\phi$ iff for all paths $s_1 \to s_2 \to \ldots$, where $s_1 = s$, and all s_i , $\mathcal{M}, s_i \models \phi$
- $\mathcal{M}, s \models EG\phi$ iff there is a path $s_1 \to s_2 \to \ldots$, where $s_1 = s$, and for all s_i , $\mathcal{M}, s_i \models \phi$
- $\mathcal{M}, s \models A[\phi U \psi]$ iff for all paths $s_1 \to s_2 \to \ldots$, where $s_1 = s$, that path satisfies $\phi U \psi$, *i.e.*, there is some s_i such that $\mathcal{M}, s_i \models \psi$, and for all j < i, $\mathcal{M}, s_j \models \phi$
- $\mathcal{M}, s \models E[\phi U \psi]$ iff there is a path $s_1 \to s_2 \to \ldots$, where $s_1 = s$, and that path satisfies $\phi U \psi$

Definition. We say that two CTL formulas ϕ and ψ are equivalent, written $\phi \equiv \psi$, if for all models \mathcal{M} and all states s in \mathcal{M} , $\mathcal{M}, s \models \phi$ iff $\mathcal{M}, s \models \psi$. e.g.,

- $\neg AF\phi \equiv EG\neg \phi$, $\neg EF\phi \equiv AG\neg \phi$, $\neg AX\phi \equiv EX\neg \phi$
- $AF\phi \equiv A[\top U\phi]$, $EF\phi \equiv E[\top U\phi]$

注: CTL 和 LTL equivalent expressions的不同定义导致了有互相不能表示的公式。

 $A[\phi U\psi] \equiv \neg (E[\neg \psi U(\neg \psi \land \neg \phi)] \lor \neg AF\psi)$

EX 相当于表明存在某个 next state AX 相当于对于任意的 next state

limit of CTL: we can not focus on an arbitrary path and state its properties in CTL. e.g. CTL can not express $FG\phi$ and $Fp \rightarrow Fq$ as in LTL.

Computation tree logic* (CTL*)

superset of CTL and LTL; so include all the symbols of them. there are two kinds of formulas in CTL*:

structural induction (p is any atom, ϕ , ψ are state formulas, α , β are path formulas):

state formulas: $p \mid \neg \phi \mid \phi \land \psi \mid A[\alpha] \mid E[\alpha]$ (based on CTL) path formulas: $\phi \mid \neg \alpha \mid \alpha \land \beta \mid X\alpha \mid F\alpha \mid G\alpha \mid \alpha \cup \beta$ (based on LTL)

semantics see:

https://en.wikipedia.org/wiki/CTL*#Semantics

Figure 3.23. The expressive powers of CTL, LTL and CTL*.

- $\psi_1 = AGEFp$, $\psi_2 = G(p \to Fq)$
- $\psi_3 = Fp \rightarrow Fq$, $\psi_4 = E[GFp]$
- The proof that ψ_4 is not expressible in CTL is quite complex

即LTL不能表示存在,任意或者任意,存在; CTL不能聚焦于某一条特定的路上 ψ_2 在 CTL 中 相当于 $AG(p \to AFq)$.

 $s \vDash Fp \rightarrow Fq \Leftrightarrow s \vDash \neg Fp \text{ or } s \vDash Fq \Leftrightarrow s \vDash G \neg p \text{ or } s \vDash Fq$ 考虑所有可能的情形,可以发现CTL无法表达。

 ψ_4 相当于 $\exists \pi, \forall i, \exists j > i, \pi^j \vDash p$.

translation of properties:

LTL:

```
after any state satisfying p (after p): p \to X or p \to XF for all paths, p precedes q (if q occurs, then p must also occur and precede q): G(Fq \to (Fp \land G(q \to G \neg p))) p doesn't occur after q: q \to XG \neg p p occurs at least twice: F(p \to XFp)
```

CTL:

```
after any state satisfying p (after p): p \to AX or p \to AF for all paths, p precedes q: \neg E[\neg pUq] p doesn't occur after q: q \to AXAG\neg p p occurs at least twice: EF(p \land EXEFp)
```

reference:

http://www.cs.toronto.edu/~chechik/courses07/csc2108/Assignments/assign1Sol.pdf

follow/after 意味着此状态之后的状态(要用X) between 意味着包含两个端点

some comments.

LTL is a kind of temporal logic: https://en.wikipedia.org/wiki/Temporal_logic and it's also a kind of modal logic.

CTL is a kind of branching-time logic.