Otimização não linear

Isabel Espírito Santo

Departamento de Produção e Sistemas

Escola de Engenharia

Universidade do Minho

iapinho@dps.uminho.pt

http://www.norg.uminho.pt/iapinho/

Formulação de um problema sem restrições

$$\min_{x \in \mathbb{R}^n} f(x) \tag{1}$$

• Se
$$n = 1 \Longrightarrow \left[\begin{array}{c} \text{problema unidimensional} \\ x \text{ \'e escalar} \end{array} \right.$$

• Se
$$n > 1 \Longrightarrow \begin{bmatrix} & & & \\ & x_1 & & \\ & x_2 & & \\ & \vdots & & \\ & x_n & & \end{bmatrix}$$
 é vetor de dimensão n

f(x) - função objetivo

$$\min_{x \in \mathbb{R}^2} f(x) \equiv 3x_1^2 - x_2^2 + x_1^3$$

Ponto sela em (0,0)

$$\min_{x \in \mathbb{R}^2} f(x) \equiv 3x_1^2 - 4x_1x_2 - 4x_2^2$$

Ponto sela em (0,0)

Notação

Vetor gradiente da função f(x) - $x \in \mathbb{R}^n$ -

$$\nabla f\left(x\right) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} \text{ vector de } \mathbb{R}^n$$

Matriz Hessiana da função f(x)

$$\nabla^2 f\left(x\right) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix} \text{ matriz simétrica de } n \times n$$

Condições de otimalidade

Assume-se f(x) continuamente diferenciável até à 2^a ordem.

```
Condição necessária (e suficiente) de 1^a ordem:
Se x^* é uma solução do problema (1) então \nabla f\left(x^*\right)=0;
(Se \nabla f\left(x^*\right)=0 então x^* é candidato a minimizante);
```

Nota: A condição $\nabla f\left(x\right)=0$ define os <u>pontos estacionários</u> de f:

```
minimizante - exemplo 5
maximizante - exemplo 6
ponto sela - exemplos 7 e 8
```

Condições de otimalidade

Condição necessária de 2^a ordem:

Se x^* é uma solução do problema (1) que satisfaz a condição de 1^a ordem, então $\nabla^2 f(x^*)$ é semi-definida positiva.

Condição suficiente de 2^a ordem:

Se x^* é um ponto que verifica a condição de 1^a ordem e se $\nabla^2 f(x^*)$ é definida positiva, então x^* é um **minimizante local** forte de (1).

Condições de otimalidade

Assumindo $\nabla f(x^*) = 0$:

- as condições necessária e <u>suficiente</u> de 2^a ordem para um maximizante são respetivamente
 - $\nabla^2 f(x^*)$ é semi-definida negativa
 - $\nabla^2 f(x^*)$ é definida negativa
- se $\nabla^2 f(x^*)$ é <u>indefinida</u>, então x^* é ponto sela (ou de descanso).

Conclusão

Seja x^* um ponto para o qual $\nabla f(x^*) = 0$ e $\nabla^2 f(x^*) \neq$ matriz nula:

- Se $\nabla^2 f(x^*)$ é definida positiva então x^* é minimizante
- Se $\nabla^2 f(x^*)$ é definida negativa então x^* é maximizante
- Se $\nabla^2 f(x^*)$ é semi-definida positiva então x^* é minimizante ou ponto sela
- Se ∇²f (x*) é semi-definida negativa então x* é maximizante ou ponto sela
- Se $\nabla^2 f(x^*)$ é indefinida então x^* é ponto sela.

Métodos numéricos de resolução

problema sem restrições

$$\min_{x \in \mathbb{R}^n} f(x) \quad (n > 1)$$

- Métodos de procura direta;
- Métodos do gradiente.

Métodos de procura direta:

- só usam informação da função objetivo f;
- são apropriados para problemas não diferenciáveis (embora possam ser usados em problemas diferenciáveis);
- método de Nelder-Mead (destina-se a problemas de otimização multidimensionais).

Métodos do gradiente

Métodos do gradiente:

- usam informação da função e das derivadas (gradiente ou/e Hessiana);
- só podem ser usados na resolução de problemas diferenciáveis;
- convergem mais rapidamente do que os métodos de procura direta;
- geram uma sucessão de aproximações $\{x^{(k)}\}$ à solução:

$$x^{(k+1)} = x^{(k)} + \alpha^k d^{(k)}$$

em que $d^{(k)}$ (vector) é a **direção de procura** (ou passo) e α^k (escalar) é o **comprimento do passo**. A equação iterativa para o cálculo da direção de procura é diferente para cada método.

Método de Newton

Derivando em ordem a d e igualando a zero (define a condição de 1 a ordem para o mínimo da quadrática, $\nabla q\left(d\right)=0$), obtém-se

$$\nabla f(x^{(k)}) + \nabla^2 f(x^{(k)}) d = 0$$

$$\updownarrow$$

$$\nabla^2 f(x^{(k)}) d = -\nabla f(x^{(k)})$$
(2)

A solução do **sistema linear** (2), *d*, é a direção de procura:

- se a dimensão do problema (n) for pequena ou média, usa-se o método directo e estável - EGPP;
- se n for grande, usa-se um método iterativo gradientes conjugados.

Método de Newton

A nova aproximação $x^{(k)}+d$ não é necessariamente o minimizante de $f\left(x\right)$ e o processo deve ser repetido.

As equações iterativas do **Método de Newton** (na forma básica) são

$$\left\{ \begin{array}{ll} \nabla^2 f(x^{(k)})\,d_N^{(k)} = -\nabla f(x^{(k)}), & \text{(sistema Newton)} \\ \\ x^{(k+1)} = x^{(k)} + d_N^{(k)} & \text{para } k=1,2,\ldots \end{array} \right.$$

em que $d_N^{(k)}$ é a direção Newton.

Propriedades do método de Newton

- o método de Newton tem convergência
 - local (a convergência para a solução só é garantida se a aproximação inicial x⁽¹⁾ estiver na vizinhança da solução);
 - quadrática

$$||x^{(k+1)} - x^*|| \le \gamma ||x^{(k)} - x^*||^2, \ \gamma > 0;$$

• o método de Newton possui a propriedade da **terminação quadrática**, i.e., se f(x) $(x \in \mathbb{R}^n)$ for uma função quadrática e convexa o método de Newton necessita no máximo de n iterações para encontrar a solução.

Limitações do método de Newton

• a direção $d_N^{(k)}$ (solução do sistema Newton) pode **não** ser **descendente** para f em $x^{(k)}$, ou seja,

$$\nabla f(x^{(k)})^T d_N^{(k)} > 0$$
 ou $\nabla f(x^{(k)})^T d_N^{(k)} = 0$

Limitações do método de Newton

• A direção $d_N^{(k)}$, ainda que seja **descendente** $(\nabla f(x^{(k)})^T d_N^{(k)} < 0)$, pode ser muito grande e se $x^{(k+1)} = x^{(k)} + d_N^{(k)}$ não se verifica

$$f(x^{(k)} + d_N^{(k)}) < f(x^{(k)})$$

Limitações do método de Newton

• Além disso, a matriz $\nabla^2 f(x^{(k)})$ (matriz dos coeficientes do sistema Newton) pode ser singular, o que significa que o sistema Newton não tem solução ou tem uma infinidade de soluções

$$\nexists d_N^{(k)}$$
 (única)

Desvantagens do método de Newton

- Cálculo das segundas derivadas:
 - se a expressão de f é complicada, estas tornam-se difíceis de calcular;
 - exigem um grande esforço de cálculo quando n é grande.
- A convergência é local.

Para ultrapassar a convergência local

deve implementar-se uma técnica de globalização para garantir que o método converge para a solução, a partir de qualquer aproximação inicial.

Técnicas de globalização

Os métodos do gradiente (quando convergem) convergem para um ponto estacionário ($\nabla f(x) = 0$).

Porquê implementar uma técnica de globalização?

- para garantir que o método converge, qualquer que seja a aproximação inicial x⁽¹⁾ (i.e., x⁽¹⁾ pode estar fora da região de convergência do método);
- para garantir que o método converge para um ponto estacionário que é minimizante.
- Procura unidimensional (line search)
 aproximada
- Região de confiança (trust region)
- 3. Filtro

Procura unidimensional exata

Dados $x^{(k)}$ e $d^{(k)}$, calcular $\alpha^{(k)}$: $\int \text{comprimento do passo \'otimo: } \alpha^{(k)} = \arg\min_{\alpha} f\left(x^{(k)} + \alpha d^{(k)}\right)$

nova aproxinação à solução: $x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)}$

Procura unidimensional aproximada

Dados $x^{(k)}$ e $d^{(k)}$, calcular $\alpha^{(k)}$ (comprimento do passo) que origina uma redução significativa no valor de f na nova aproximação (isto é, satisfaz a **condição de Armijo**):

$$f(x^{(k)} + \alpha^{(k)}d^{(k)}) \le f(x^{(k)}) + \mu\alpha^{(k)}\nabla f(x^{(k)})^Td^{(k)}$$

Critério de Armijo

O objetivo é exigir uma redução significativa (usando a condição de Armijo) no valor da função objetivo, i.e.,

$$f(x^{(k)} + \alpha^{(k)}d^{(k)}) \le f(x^{(k)}) + \mu \alpha^{(k)} \nabla f(x^{(k)})^T d^{(k)}$$

 $\text{com } 0<\mu<\tfrac{1}{2}.$

Nota: se a direção $d^{(k)}$ usada for **descendente para** f, ou seja, $\nabla f(x^{(k)})^T d^{(k)} < 0$, existe um valor de $\alpha^{(k)} \in (0,1]$ que verifica esta condição.

Algoritmo do critério de Armijo para calcular $\alpha^{(k)}$

Dados
$$x^{(k)}, d^{(k)}, \nabla f\left(x^{(k)}\right), f\left(x^{(k)}\right)$$
 e μ

1. $\alpha \leftarrow 1$

2. $\bar{x} \leftarrow x^{(k)} + \alpha d^{(k)}$

3. $\underline{\operatorname{se}}\left(f\left(\bar{x}\right) \leq f\left(x^{(k)}\right) + \mu \, \alpha \, \nabla f\left(x^{(k)}\right)^T d^{(k)}\right)$ então fazer $\alpha^{(k)} = \alpha$

$$\underline{\operatorname{senão}}$$

$$\alpha \leftarrow \alpha/2 \text{ e voltar a 2.}$$

Algoritmo genérico de um método do gradiente

```
ler aproximação inicial x^{(1)} \in \mathbb{R}^n
k \leftarrow 0
repetir
(por exemplo, a direção do método de segurança de Newton
ou a direção do método quasi-Newton)
  calcular \alpha^{(k)} (comprimento do passo)
    (usando, por exemplo, o critério de Armijo) definir x^{(k+1)} \leftarrow x^{(k)} + \alpha^{(k)} d^{(k)}
até (CP = verdadeiro)
Solução: \begin{cases} x^* \approx x^{(k+1)} \\ f^* \approx f(x^{(k+1)}) \end{cases}
```

Critério de paragem (CP)

Parar o processo iterativo se

$$\underbrace{\|\nabla f(x^{(k+1)})\|_2}_{\text{medida de estacionaridade}} \leq \varepsilon$$

 ε constante positiva próxima de zero.

Método de segurança de Newton

É possível ultrapassar as limitações do método de Newton, implementando, em cada iteração, as seguintes **sugestões** - garantem que a direção calculada é **descendente** para a função $f \Rightarrow$ algoritmo de segurança de Newton.

Em qualquer iteração k:

• Quando $\nabla^2 f(x^{(k)})$ é singular \Rightarrow usar $d_{SN}^{(k)} = -\nabla f\left(x^{(k)}\right)$ (em que $-\nabla f\left(x^{(k)}\right)$ é a direção de descida máxima e é descendente para f)

Método de segurança de Newton

• Quando $d_N^{(k)}$ é ortogonal ao gradiente

• Quando $d_N^{(k)}$ é ascendente

$$\Leftrightarrow \nabla f(x^{(k)})^T d_N^{(k)} > \eta$$

$$\Rightarrow \operatorname{usar} d_{SN}^{(k)} = -d_N^{(k)}$$

• Quando $d_N^{(k)}$ é descendente

$$\Rightarrow$$
 usar $d_{SN}^{(k)} = d_N^{(k)}$

NOTA: $d_{SN}^{(k)}$ é descendente, para todo o k.

Algoritmo para o cálculo da direção de segurança de Newton

```
Dados x^{(k)} e n.
Resolver o sistema linear Newton \nabla^2 f(x^{(k)}) d_N^{(k)} = -\nabla f(x^{(k)})
por EGPP
se (o sistema linear tem solução única - \exists d_N^{(k)}) então
        \underline{\operatorname{se}} \left| \nabla f \left( x^{(k)} \right)^T d_N^{(k)} \right| \le \eta
        então d_{SN}^{(k)} \leftarrow -\nabla f\left(x^{(k)}\right)
        senão
                se \nabla f(x^{(k)})^T d_N^{(k)} > \eta
                então d_{SN}^{(k)} \leftarrow -d_N^{(k)}
                senão d_{GN}^{(k)} \leftarrow d_{N}^{(k)}
senão
        d_{SN}^{(k)} \leftarrow -\nabla f(x^{(k)})
```

Exemplo

Dada a função $f(x_1,x_2)=x_1x_2^2+(2-x_1)^2$ calcule o seu mínimo usando o algoritmo de segurança de Newton. A partir de (1,1), considere $\varepsilon_1=\varepsilon_2=\varepsilon_3=0.1,\,\eta=0.0001$ e $\mu=0.001$.

A equação para o cálculo da direção Newton - relembrar

método de Newton

$$\nabla^2 f(x^{(k)}) \, d_N^{(k)} = -\nabla f(x^{(k)})$$

Para evitar o cálculo das 2^{as} derivadas para a Hessiana, $\nabla^2 f(x)$, pode usar-se uma aproximação:

$$B^{(k)} \approx \nabla^2 f(x^{(k)})$$

ou, como o sistema Newton pode ser escrito da seguinte forma - não aconselhável na prática,

$$d_N^{(k)} = -\left(\nabla^2 f(x^{(k)})\right)^{-1} \nabla f(x^{(k)})$$

A equação para o cálculo da direção quasi-Newton

é aconselhável usar-se, em cada iteração k, uma aproximação à **inversa da Hessiana**

$$H^{(k)} pprox \left(\nabla^2 f(x^{(k)})\right)^{-1}$$

método quasi-Newton

$$d_{QN}^{(k)} = -H^{(k)} \, \nabla f(x^{(k)})$$

 $d_{QN}^{(k)}$ - é a direção quasi-Newton

Método quasi-Newton

Evita-se desta forma:

- o cálculo das segundas derivadas (para formar a matriz Hessiana);
- a resolução de um sistema linear em cada iteração, substituindo-o pelo produto de uma matriz por um vetor.

As equações que descrevem o método quasi-Newton são:

$$\left\{ \begin{array}{l} d_{QN}^{(k)} = -H^{(k)} \nabla f(x^{(k)}), \\ \\ x^{(k+1)} = x^{(k)} + \alpha^{(k)} d_{QN}^{(k)} \quad \text{para } k = 1, 2, \dots \end{array} \right.$$

Características da matriz H:

• deve aproximar, o melhor possível, a inversa de $\nabla^2 f(x^{(k)})$, ou seja, deve verificar a **condição secante**:

$$H^{(k)}y^{(k-1)} = s^{(k-1)}$$

com

$$y^{(k-1)} = \nabla f\left(x^{(k)}\right) - \nabla f\left(x^{(k-1)}\right)$$

(variação verificada no gradiente da iteração k-1 para a iteração k)

$$s^{(k-1)} = x^{(k)} - x^{(k-1)} = \alpha^{(k-1)} d_{QN}^{(k-1)}$$

(variação verificada em x)

Características da matriz H:

deve preferencialmente ser

$$\begin{cases} \text{ simétrica} & \left(\text{pois } \nabla^2 f\left(x^{(k)}\right)^{-1} \text{ também é simétrica}\right) \\ \text{ definida positiva} & \left(\text{pois a direção } d_{QN}^{(k)} = -H^{(k)} \nabla f(x^{(k)}) \right) \end{cases}$$

é **descendente** para f em $x^{(k)}$).

As matrizes $H^{(k)}$ são geradas através de **fórmulas de atualização** do tipo

$$H^{(k)} = H^{(k-1)} + E^{(k-1)}, \ k > 1$$

e devem manter-se simétricas e definidas positivas.

Matriz H da 1^a iteração

• Para que simetria + definida positiva se conservem ao longo do processo iterativo, a matriz inicial $H^{(1)}$, para k=1, deve ser também simétrica e definida positiva. Por exemplo

$$H^{(1)} = I.$$

A I não é necessariamente uma boa aproximação a $\nabla^2 f(x^{(1)})^{-1}$, mas as fórmulas de atualização de H melhoram as aproximações.

- Existem várias fórmulas de atualização para as matrizes
 H:
 - nem todas conservam a simetria + definida positiva;
 - as 2 fórmulas seguintes conservam simetria + definida positiva.

Fórmulas de atualização

Davidon, Fletcher e Powell - DFP

$$H^{(k)} = H^{(k-1)} - \frac{H^{(k-1)}y^{(k-1)}y^{(k-1)}H^{(k-1)}}{y^{(k-1)}H^{(k-1)}y^{(k-1)}} + \frac{s^{(k-1)}s^{(k-1)^T}}{s^{(k-1)}y^{(k-1)}}$$

Broyden, Fletcher, Goldfarb e Shanno - BFGS

$$H^{(k)} = \left(I - \frac{s^{(k-1)}y^{(k-1)^T}}{s^{(k-1)^T}y^{(k-1)}}\right)H^{(k-1)}\left(I - \frac{y^{(k-1)}s^{(k-1)^T}}{s^{(k-1)^T}y^{(k-1)}}\right) + \frac{s^{(k-1)}s^{(k-1)^T}}{s^{(k-1)^T}y^{(k-1)}}$$

Nota: $y^{(k-1)^T}s^{(k-1)}>0$ é a condição necessária e suficiente para que as matrizes se conservem definidas positivas.

Propriedades do método quasi-Newton

- o método quasi-Newton tem convergência
 - **local** (a convergência para a solução só é garantida se a aproximação inicial $x^{(1)}$ estiver na vizinhança da solução);
 - superlinear verifica-se

$$\|x^{(k+1)}-x^*\| \leq \gamma_k \|x^{(k)}-x^*\|$$
 com a sucessão $\{\gamma_k\} \to 0$ quando $k \to \infty$;

• o método quasi-Newton satisfaz a propriedade da **terminação quadrática** – isto é, o mínimo de uma função quadrática q(x), $x \in \mathbb{R}^n$, obtém-se em n, ou menos, do que n iterações.

Limitação do método quasi-Newton

 \bigstar Os erros de arredondamento que se cometem nos cálculos podem fazer com que $H^{(k)}$ deixe de ser definida positiva e a direção $d_{QN}^{(k)}$ deixa de ser descendente para f em $x^{(k)}$

Solução: fazer $\lfloor H^{(k)} = I \rfloor$ (neste caso $H^{(k)}$ é simétrica e definida positiva)

$$\psi$$

$$d_{QN}^{(k)} = -\nabla f(x^{(k)})$$

Algoritmo para o cálculo da direção quasi-Newton

```
 \begin{aligned}  & \textbf{Dado} \ x^{(k)} \\ & \textbf{Calcular} \ d_{QN}^{(k)} \leftarrow -H^{(k)} \ \nabla f \left( x^{(k)} \right) \text{, sendo } H^{(k)} \ \text{dada por:} \\ & \underline{se} \ k = 1, \underbrace{\text{então}}_{s^{(k-1)}} H^{(k)} \leftarrow I \\ & \underline{s^{(k-1)}} \leftarrow x^{(k)} - x^{(k-1)} \\ & \underline{s^{(k-1)}} \leftarrow \nabla f \left( x^{(k)} \right) - \nabla f \left( x^{(k-1)} \right) \\ & \text{actualizar} \ H^{(k)} \ \text{pela fórmula DFP ou BFGS} \\ & \underline{se} \ \text{a direção não \'e descendente} \\ & \left( \nabla f \left( x^{(k)} \right)^T \ d_{QN}^{(k)} \geq 0 \right) \\ & \underline{então} \ \text{fazer} \ d_{QN}^{(k)} \leftarrow - \nabla f \left( x^{(k)} \right) \end{aligned}
```