Intégrable

On étudie comment déterminer si une fonction est intégrable sur R.

1 Définitions et énoncés basiques

Définition 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction mesurable. On dit que f est localement intégrable au point $a \in \mathbb{R} \cup \{\pm \infty\}$ s'il existe un voisinage $V \ni a$ t.q. f est intégrable sur V.

Lemme 2. Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ deux fonctions mesurables et $a \in \mathbb{R} \cup \{\pm \infty\}$. Alors

- 1. S'il existe un voisinage $V \ni a$ t.q. $|f(x)| \le M |g(x)|$ presque partout sur V, et g est localement intégrable au point a, alors f l'est aussi.
- 2. Si la limite $\lim_{x\to a} |f(x)|/|g(x)|$ existe dans \mathbb{R} , et g est localement intégrable au point a, alors f l'est aussi.
- 3. Si la limite $\lim_{x\to a} |f(x)|/|g(x)|$ existe dans \mathbb{R} et $\lim_{x\to a} |f(x)|/|g(x)| \neq 0$, alors f est localement intégrable au point a **si et seulement si** g l'est aussi.

Démonstration.

- 1. Supposons que g est intégrable sur un voisinage $W \ni a$. Alors $\int_{V \cap W} |f| \le M \int_{V \cap W} |g| < +\infty$.
- 2. On note $\ell = \lim_{x \to a} |f(x)|/|g(x)|$, alors il existe une voisinage $V \ni a$ t.q. $|f(x)|/|g(x)| \le \ell + 1$ pour tout $x \in V \setminus \{a\}$, donc $|f| \le (\ell + 1)|g|$ p.p. sur V.
- 3. Si $\lim_{x\to a} |f(x)|/|g(x)| \neq 0$, alors $\lim_{x\to a} |g(x)|/|f(x)| \neq 0$. On utilise le résultat précédent.

Lemme 3. Une fonction mesurable $f: \mathbb{R} \to \mathbb{R}$ est intégrable **si et seulement si** pour tout $a \in \mathbb{R} \cup \{\pm \infty\}$, f est localement intégrable au point a.

Remarque 4. C'est important que $\pm \infty$ y sont inclus.

Démonstration. Pour tout $a \in \mathbb{R} \cup \{\pm \infty\}$, on définit \mathcal{U}_a l'ensemble de voisinages **ouverts** $V \ni a$ t.q. f est intégrable sur V, i.e., $\int_V |f| < +\infty$. Par définition, pour tout $a \in \mathbb{R} \cup \{\pm \infty\}$, $\mathcal{U}_a \neq \varnothing$, donc $\mathcal{U} := \bigcup_{a \in \mathbb{R} \cup \{\pm \infty\}} \mathcal{U}_a$ est un recouvrement de $\mathbb{R} \cup \{\pm \infty\}$. Comme $\mathbb{R} \cup \{\pm \infty\}$ est compact, il existe $(a_1, V_1), \ldots, (a_n, V_n)$ t.q. $a_i \in V_i$ et $\mathbb{R} \cup \{\pm \infty\} \subseteq V_1 \cup V_2 \cup \cdots \cup V_n$. Comme f est intégrable sur V_1 , V_2, \ldots, V_n , on en déduit le résultat.

Les singularités sont les points auxquels la fonction est possiblement non-intégrable

Définition 5. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction mesurable. On dit que $a \in \mathbb{R}$ est une singularité si pour tout voisinage $V \ni a$ et tout $M \in \mathbb{R}$, la mesure $\lambda(V \cap \{|f| > M\})$ est non-zéro. Pour $a = \pm \infty$, a est une singularité si pour tout voisinage $V \ni a$, la mesure $\lambda(V \cap \{f \neq 0\})$ est non-zéro.

Remarque 6. En pratique, on considère les fonctions f dont l'ensemble des discontinuités est fini. Dans ce cas, on peut remplacer $\lambda(V \cap \{|f| > M\}) \neq 0$ (resp. $\lambda(V \cap \{f \neq 0\}) \neq 0$) par $V \cap \{|f| > M\} \neq \emptyset$ (resp. $V \cap \{|f| > M\} \neq \emptyset$).

Lemme 7. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction mesurable. Si $a \in \mathbb{R} \cup \{\pm \infty\}$ n'est pas une singularité, alors f est localement intégrable au point a.

Démonstration. Supposons que $a \in \mathbb{R} \cup \{\pm \infty\}$ n'est pas une singularité. Si $a = \pm \infty$, alors il existe une voisinage $V \ni a$ t.q. f = 0 p.p. sur V, donc $\int_V |f| = 0 < +\infty$. Si $a \in \mathbb{R}$, alors il existe une voisinage $V \ni a$ et $M \in \mathbb{R}$ t.q. $|f| \le M$ p.p. sur V. Sans perte de généralité, alors $\int_{V \cap [a-1,a+1]} |f| \le M \lambda(V \cap [a-1,a+1]) < +\infty$.

2 Section 2

Corollaire 8. Une fonction mesurable $f: \mathbb{R} \to \mathbb{R}$ est intégrable si et seulement si f est localement intégrable à toute singularité $a \in \mathbb{R} \cup \{\pm \infty\}$.

2 La méthode générale

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction mesurable. On détermine si f est intégrable sur \mathbb{R} par la procédure suivante:

- 1. Déterminer toutes les singularités (potentielles) de f. En pratique, c'est un ensemble fini.
- 2. Pour toute singularité $a \in \mathbb{R} \cup \{\pm \infty\}$, étudier si f est localement intégrable au point a:
 - a. (Analyse asymptotique) Trouver une fonction « plus simple » g équivalente à f quand $x \to a$. Par exemple, $1/(x^2+1) \sim 1/x^2$ quand $x \to \infty$. Par Lemme 2, f est localement intégrable au point a ssi g l'est aussi.
 - b. Majorer |g| par une fonction « typique » H (critère de Riemann ou Bertrand, par exemple). Par Lemme 2, si H est localement intégrable au point a, alors f l'est aussi.
 - c. Minorer |g| par une fonction « typique » h. Par Lemme 2, si h n'est pas localement intégrable au point a, alors f n'est pas localement intégrable au point a non plus.
 - d. Essayer de calculer une primitive de |g| directement et déterminer si g est localement intégrable au point a.