Purdue CS555: Cryptography Lecture 7 Scribe Notes

Instructor: Hanshen Xiao Teaching Assistant: Justin He

Fall 2025

Recap from Previous Lecture

- Completion of Goldreich-Levin Theorem
- Stateless Encryption
- Introduction to Pseudorandom Functions (PRFs)

Topics Covered in This Lecture

- 1. Construction of PRFs from PRGs: The Goldreich-Goldwasser-Micali (GGM) Construction
- 2. Security proof for PRF-based encryption (many messages)
- 3. Applications of PRFs:
 - Friend-or-Foe Identification
 - Message Authentication Codes (MACs)
 - Encryption secure against active attacks
 - Negative results in learning theory

1 Review: Pseudorandom Functions

Definition 1 (Pseudorandom Function Family). A collection of functions

$$\mathcal{F}_{\ell} = \{f_k : \{0,1\}^{\ell} \to \{0,1\}^m\}_{k \in \{0,1\}^n}$$

 $consists\ of:$

- n: key length (security parameter)
- ℓ : input length
- m: output length
- All parameters are polynomial in n
- $|\mathcal{F}_{\ell}| \leq 2^n$ (singly exponential)

Compare with all functions: $ALL_{\ell} = \{f : \{0,1\}^{\ell} \to \{0,1\}^m\}$ with $|ALL_{\ell}| = 2^{m \cdot 2^{\ell}}$ (doubly exponential).

Definition 2 (PRF Security). \mathcal{F}_{ℓ} is pseudorandom if for all p.p.t. distinguishers D with oracle access, there exists negligible μ such that:

$$\left|\Pr[f \leftarrow \mathcal{F}_{\ell} : D^f(1^n) = 1] - \Pr[f \leftarrow ALL_{\ell} : D^f(1^n) = 1]\right| \le \mu(n)$$

1.1 PRF-Based Stateless Encryption

Let $f_k: \{0,1\}^{\ell} \to \{0,1\}^m$ be a PRF where 2^{ℓ} is super-polynomial.

- Gen (1^n) : Generate random *n*-bit key k
- Enc(k, m): Pick random $x \leftarrow \{0, 1\}^{\ell}$, output $c = (x, y = f_k(x) \oplus m)$
- Dec(k, c = (x, y)): Output $f_k(x) \oplus y$

Correctness: $Dec(k, Enc(k, m)) = f_k(x) \oplus (f_k(x) \oplus m) = m$.

2 Security of Secret-Key Encryption

2.1 Single Message Security

For all messages m_0, m_1 and all p.p.t. distinguishers D:

$$|\Pr[k \leftarrow \mathcal{K} : D(\operatorname{Enc}(k, m_0)) = 1] - \Pr[k \leftarrow \mathcal{K} : D(\operatorname{Enc}(k, m_1)) = 1]| \le \mu(n)$$

2.2 Many Message Security (IND-CPA)

Definition 3 (Multi-Message Security). For all p.p.t. distinguishers D with oracle access:

$$\left|\Pr[k \leftarrow \mathcal{K}: D^{Left(\cdot, \cdot)}(1^n) = 1] - \Pr[k \leftarrow \mathcal{K}: D^{Right(\cdot, \cdot)}(1^n) = 1]\right| \le \mu(n)$$

where:

- Left (m_L, m_R) : returns $Enc(k, m_L)$
- $Right(m_L, m_R)$: $returns\ Enc(k, m_R)$

2.3 Security Proof via Hybrid Argument

Theorem: The PRF-based encryption scheme is IND-CPA secure.

Proof Sketch. We use a hybrid argument with 5 hybrids:

Hybrid 0: D gets access to Left oracle. $c = (x, y = f_k(x) \oplus m_L)$

Hybrid 1: Replace f_k by random function. $c = (x, y = r_x \oplus m_L)$ where r_x is uniformly random for each distinct x.

Indistinguishability: By PRF security, Hybrid $0 \approx$ Hybrid 1.

Hybrid 2: Replace by truly random output. $c = (x, y = r_x)$ (ignore left messages entirely)

Indistinguishability: By birthday paradox, with high probability all x values are distinct. Since r_x is uniformly random and m_L is XORed with it, $r_x \oplus m_L$ has the same distribution as r_x (one-time pad).

Hybrid 3: Encrypt right messages with random function. $c = (x, y = r_x \oplus m_R)$

Indistinguishability: Same argument in reverse: r_x and $r_x \oplus m_R$ have the same distribution (by one-time pad).

Hybrid 4: Replace random function by f_k (Right oracle). $c = (x, y = f_k(x) \oplus m_R)$

Indistinguishability: By PRF security (symmetric to Hybrid $0 \rightarrow$ Hybrid 1).

Since Hybrid $0 \approx$ Hybrid 4, the scheme is secure.

3 The GGM Construction: $PRG \Rightarrow PRF$

3.1 Motivation: Length Extension Revisited

Recall: Given PRG $G: \{0,1\}^n \to \{0,1\}^{n+1}$, we can extend to $G': \{0,1\}^n \to \{0,1\}^{m(n)}$ for any polynomial m.

Construction: Write $G(s) = G_0(s) \| G_1(s)$ where $G_0(s)$ is 1 bit and $G_1(s)$ is n bits. Build a tree by repeatedly applying G.

Problem: Accessing the *i*-th output bit takes time $\approx i$, which is exponential when $i \approx 2^{\ell}$.

3.2 GGM Construction

Theorem 1 (Goldreich-Goldwasser-Micali). Let G be a PRG. Then for every polynomials $\ell = \ell(n)$ and m = m(n), there exists a PRF family

$$\mathcal{F}_{\ell} = \{ f_s : \{0, 1\}^{\ell} \to \{0, 1\}^m \}_{s \in \{0, 1\}^n}$$

Construction: Write $G(s) = G_0(s) \| G_1(s)$ where both $G_0(s)$ and $G_1(s)$ are n bits each. Build a complete binary tree of depth ℓ :

- Root is labeled with seed s
- Each node with label v has left child $G_0(v)$ and right child $G_1(v)$
- Each leaf corresponds to a string $x \in \{0, 1\}^{\ell}$

Function Definition:

$$f_s(x_1x_2\cdots x_\ell) = G_{x_\ell}(G_{x_{\ell-1}}(\cdots G_{x_1}(s)\cdots))$$

Properties:

- f_s defines 2^{ℓ} pseudorandom values (one per leaf)
- The x-th value can be computed using ℓ evaluations of PRG G (following path from root to leaf x)
- Time complexity: $poly(n) \cdot \ell = poly(n)$ since $\ell = poly(n)$

Output length: We focus on m = n. Can be adjusted by:

- Smaller output: truncation
- Larger output: PRG expansion from the leaf value

3.3 Security Proof for GGM

Lemma 1 (PRG Repetition Lemma). Let G be a PRG. For every polynomial L = L(n):

$$(G(s_1), G(s_2), \dots, G(s_L)) \approx (u_1, u_2, \dots, u_L)$$

where s_i are independent random seeds and u_i are independent random strings.

Proof. By hybrid argument. If there exists a distinguisher with advantage ϵ , then there exists a distinguisher for G with advantage $\geq \epsilon/L$.

Theorem 2. The GGM construction yields a secure PRF.

Proof. Assume for contradiction there exists p.p.t. distinguisher D and polynomial p such that:

$$\left| \Pr[f \leftarrow \mathcal{F}_{\ell} : D^f(1^n) = 1] - \Pr[f \leftarrow \text{ALL}_{\ell} : D^f(1^n) = 1] \right| \ge \frac{1}{p(n)}$$

Hybrid Argument by Tree Levels:

Hybrid 0 (Pseudorandom World): D queries f_s for the GGM PRF built from seed s.

- \bullet Tree has root s and internal nodes computed via G
- Leaves are values $b_1, b_2, \ldots, b_{2\ell}$

Hybrid 1: Replace level 1 nodes with random values.

- Root's children $s_0 = G_0(s)$ and $s_1 = G_1(s)$ are replaced by independent random values
- Rest of tree built from these random values using G

Indistinguishability: By PRG security (using lazy evaluation to answer queries efficiently). **Hybrid 2:** Replace level 2 nodes with random values.

- All 4 nodes at depth 2 are independent random values
- Rest of tree built from these using G

Indistinguishability: By PRG repetition lemma and PRG security.

Hybrid i: Replace all nodes at depth i with independent random values.

Hybrid ℓ (Random World): All leaves are independent random values.

• This is exactly a random function from ALL_{ℓ}

Analysis:

Let $p_i = \Pr[D^{H_i}(1^n) = 1]$ where H_i denotes Hybrid i.

We know: $|p_0 - p_\ell| \ge \epsilon = \frac{1}{p(n)}$

By averaging, for some $i: |p_i - p_{i+1}| \ge \frac{\epsilon}{\ell}$

Key Observation - Lazy Evaluation:

To simulate Hybrid i, we don't need to generate the entire tree. When D queries x:

- 1. Follow path from root to leaf x
- 2. For nodes at depth $\leq i$: use stored random values
- 3. For nodes at depth > i: compute via G

This allows efficient simulation in polynomial time.

Reduction to PRG:

If $|p_i - p_{i+1}| \ge \frac{\epsilon}{\ell}$, then there is a distinguisher for PRG with advantage $\ge \frac{\epsilon}{q\ell}$ where q is the number of queries D makes.

The reduction works by using the distinguisher between Hybrid i and Hybrid i+1 to distinguish:

• $(G(s_0^i), G(s_1^i), \ldots)$ from (random strings)

By PRG repetition lemma, this contradicts PRG security.

4 Applications of PRFs

4.1 Friend-or-Foe Identification

Setting: Pete needs to identify himself to a base station in the presence of an adversary who can listen to and modify communications.

Challenge-Response Protocol:

- \bullet Pete has ID number and PRF key s
- \bullet Base station sends random challenge r
- Pete responds with $(ID, f_s(r))$
- Base station verifies using its copy of f_s

Security Intuition:

Adversary can collect polynomially many pairs $(r_i, f_s(r_i))$ (potentially of her choosing).

To impersonate Pete, adversary must produce $f_s(r^*)$ for a fresh random challenge r^* .

This is hard by the unpredictability property of PRFs.

Lemma 2 (Unpredictability of PRFs). Let $f_s: \{0,1\}^\ell \to \{0,1\}^m$ be a PRF. Consider an adversary who obtains $f_s(x_1), \ldots, f_s(x_q)$ for polynomial q = q(n).

If she can predict $f_s(x^*)$ for $x^* \notin \{x_1, \ldots, x_q\}$ with probability $\frac{1}{2^m} + \frac{1}{poly(n)}$, then she breaks PRF security.

Proof Sketch. Build a distinguisher for the PRF:

- Query oracle on x_1, \ldots, x_q and x^*
- If predictor's output matches $f(x^*)$, output "pseudorandom"

• Otherwise output "random"

For truly random function, prediction succeeds with probability $\frac{1}{2^m}$. For PRF, prediction succeeds with probability $\frac{1}{2^m} + \frac{1}{\text{poly}(n)}$ by assumption.

This distinguishes with non-negligible advantage.

Requirements: Input and output lengths must be $\omega(\log n)$ to ensure security against guessing attacks.

5 Message Authentication Codes (MACs)

The Authentication Problem 5.1

Setting: Alice wants to send message m to Bob, but adversary can intercept, modify, or inject messages (man-in-the-middle attack).

Goal: Bob should be able to verify that message came from Alice and was not modified.

Naive Approach: Use encryption?

Problem: Encryption schemes are typically *malleable*.

- One-time pad: Given $c = m \oplus k$, adversary can create $c' = m' \oplus k$ by computing $c \oplus m \oplus m'$
- PRF-based encryption: Given $c = (r, f_k(r) \oplus m)$, adversary can create $(r, f_k(r) \oplus m')$

Key Insight: Privacy and integrity are different goals.

5.2 Definition of MACs

Definition 4 (Message Authentication Code). A MAC consists of three algorithms:

- $Gen(1^n)$: Produces key $k \leftarrow \mathcal{K}$
- MAC(k, m): Outputs tag t (may be deterministic)
- Ver(k, m, t): Outputs Accept or Reject

Correctness: Pr[Ver(k, m, MAC(k, m)) = Accept] = 1

Security Definitions 5.3

Power of Adversary:

- Can see many pairs $(m_i, MAC(k, m_i))$
- Has oracle access to $MAC(k,\cdot)$
- Can obtain tags for messages of choice

This is called a Chosen Message Attack (CMA). Security Levels:

- \bullet Total break: Adversary recovers key k
- Universal break: Adversary can generate valid tag for every message
- Existential break: Adversary can generate valid tag for *some* new message

Standard: We require security against existential forgery.

Definition 5 (EUF-CMA Security). A MAC is Existentially Unforgeable under Chosen Message Attack if for all p.p.t. adversaries A:

$$\Pr[k \leftarrow \mathcal{K}; (m,t) \leftarrow A^{MAC(k,\cdot)}(1^n) : Ver(k,m,t) = 1 \land (m,t) \notin Q] = negl(n)$$

where Q is the set of query-response pairs (m_i, t_i) that A obtained.

5.4 PRF-Based MAC Construction

Construction:

- Gen (1^n) : Generate PRF key k
- MAC(k, m): Output $f_k(m)$
- Ver(k, m, t): Accept if $f_k(m) = t$, reject otherwise

Theorem 3. If f_k is a secure PRF, then the above construction is EUF-CMA secure.

Proof Sketch. By the unpredictability lemma for PRFs.

Adversary makes queries m_1, \ldots, m_q and obtains $f_k(m_1), \ldots, f_k(m_q)$.

To forge, adversary must output (m^*, t^*) where $m^* \notin \{m_1, \dots, m_q\}$ and $t^* = f_k(m^*)$.

This requires predicting $f_k(m^*)$ on a new input, which succeeds with probability at most $\frac{1}{2^m} + \text{negl}(n)$ by PRF security.

5.5 Replay Attacks

Issue: Adversary can send an old valid (m, tag) at a later time.

Note: Our definition does not rule this out.

Solutions in Practice:

- 1. **Timestamps:** Include timestamp in message. Send (m, T, MAC(k, m || T)) where T is current time.
- 2. Sequence numbers: Append counter to messages (requires stateful MAC). Send (m, seq, MAC(k, m || seq)).

6 Encryption Secure Against Active Attacks

Problem: MACs provide integrity but not privacy. Encryption provides privacy but not integrity.

Solution: Combine both.

6.1 Encrypt-then-MAC

Construction: Use two independent keys k, k'.

Encryption:

- 1. Encrypt: $c = (x, f_k(x) \oplus m)$
- 2. Tag: $tag = f_{k'}(c)$
- 3. Send: (c, tag)

Decryption:

- 1. Verify: Check if $f_{k'}(c) = \tan c$
- 2. If invalid, output \perp
- 3. If valid, decrypt: $m = f_k(x) \oplus y$

Security: This provides both:

- Privacy: From PRF-based encryption (IND-CPA)
- Integrity: From MAC (EUF-CMA)

Together, these provide security against active adversaries who can both:

- Eavesdrop on ciphertexts (passive attack)
- Inject or modify ciphertexts (active attack)

7 Applications to Learning Theory

7.1 Negative Results

Theorem 4 (Kearns and Valiant 1994). Assuming PRFs exist, there are hypothesis classes that cannot be learned by polynomial-time algorithms.

Intuition:

Learning Theory/ML: Given labeled examples $(x_i, f(x_i))$ for unknown f, learn hypothesis $h \approx f$ that generalizes.

Cryptography (PRFs): Construct function families $\{f_k\}$ for which it is hard to predict f_k on new input even given query access.

Connection: If you can learn a PRF family in polynomial time, you can break its security (predict on new inputs). Therefore, PRFs give hard-to-learn function classes.

7.2 More Negative Results

PRFs have been used to show computational hardness of learning:

- Intersections of halfspaces
- Agnostic learning of halfspaces
- Various concept classes in computational learning theory

These results establish fundamental limits on what can be efficiently learned, assuming standard cryptographic assumptions.