Some things about double categories

Robert Paré

Virtual Double Category Workshop

November 28, 2022

Double categories

(Ehresmann) A double category is a category object in Cat

$$\mathbb{A}: \quad \mathbf{A}_1 \times_{\mathbf{A}_0} \mathbf{A}_1 \xrightarrow{\begin{array}{c} p_1 \\ & \bullet \end{array}} \mathbf{A}_1 \xrightarrow{\begin{array}{c} d_0 \\ & \bullet \end{array}} \mathbf{A}_0$$

Double functor

Think inside the box

$$\mathbb{A} \quad : \mathbf{A}_1 \times_{\mathbf{A}_0} \mathbf{A}_1 \xrightarrow{\qquad \bullet \qquad} \mathbf{A}_1 \xrightarrow{\longleftarrow} \mathbf{A}_0$$

- Objects of A₀ are *objects* of A
- Morphisms of A_0 are horizontal arrows of A
- Objects of \mathbf{A}_1 are vertical arrows of $\mathbb A$
- Morphisms of \mathbf{A}_1 are double cells of $\mathbb A$

Surf and turf

A double category is a category with two kinds of morphisms, suitably related

Opposite

A an arbitrary category $(\square \mathbf{A})^{co}$ $A \xrightarrow{f} B \qquad A \xrightarrow{f} B$ $[v] \downarrow \alpha \qquad \downarrow [w] \iff v \qquad = \qquad \downarrow w$ $C \xrightarrow{g} D \qquad C \xrightarrow{g} D$

Student duality

A a regular category

 $\mathbb{R}\mathrm{el}(\mathbf{A})$

Proposition

There is a double functor $\square A^{co} \longrightarrow \mathbb{R}el(A)$ which is the identity on objects and horizontal arrows, faithful on vertical arrows and full and faithful on cells

Companions

v companion to f

$$A = A \xrightarrow{f} B$$

$$\| \psi \downarrow^{V} \chi \chi \| = \| \operatorname{id}_{f} \|$$

$$A \xrightarrow{f} B = B$$

$$\chi \psi = \operatorname{id}_{f}$$

$$A = A$$

$$\| \psi \downarrow^{V} \chi \qquad A = A$$

$$\| \psi \downarrow^{V} \qquad A = A$$

$$A \xrightarrow{f} B = V \downarrow^{1} \downarrow^{V} \downarrow^{V}$$

$$A = B$$

$$B = B$$

$$A \xrightarrow{f} B = V \downarrow^{1} \downarrow^{V} \downarrow^{V}$$

$$A \xrightarrow{f} B = W \downarrow^{V} \downarrow^{V} \downarrow^{V}$$

$$A \xrightarrow{f} B = W \downarrow^{V} \downarrow^{V} \downarrow^{V} \downarrow^{V}$$

$$A \xrightarrow{f} B = W \downarrow^{V} \downarrow^{V} \downarrow^{V} \downarrow^{V}$$

$$A \xrightarrow{f} B = W \downarrow^{V} \downarrow^{V} \downarrow^{V} \downarrow^{V}$$

$$A \xrightarrow{f} B = W \downarrow^{V} \downarrow^{V} \downarrow^{V} \downarrow^{V} \downarrow^{V}$$

$$A \xrightarrow{f} B = W \downarrow^{V} \downarrow^{V}$$

Proposition

- (1) If f has a companion it's unique up to isomorphism: write $v = f_*$
- (2) $(1_A)_* \cong id_A$
- (3) $(gf)_* \cong g_* f_*$

Conjoints

w is conjoint to f

$$A \xrightarrow{f} B = B \qquad A \xrightarrow{f} B$$

$$\parallel \alpha \downarrow w \beta \parallel = \parallel id_f \parallel$$

$$A = A \xrightarrow{f} B \qquad A \xrightarrow{f} B$$

$$\beta \alpha = id_f$$

$$B = B$$

$$w \downarrow \beta \parallel \qquad B = B$$

$$A \xrightarrow{f} B = w \downarrow 1_v \downarrow w$$

$$\parallel \alpha \downarrow w \qquad A = A$$

$$A = A$$

$$\alpha \circ \beta = 1_w$$

- Unique up to iso: write $w = f^*$
- $1_A^* \cong id_A$
- $(gf)^* \cong f^*g^*$

Adjoints

Companions, conjoints, adjoints

Theorem

Any two of the following conditions imply the third:

- (1) $v = f_*$
- (2) $w = f^*$
- (3) $v \dashv w$

Theorem

In Rel(A)

- (1) Every f has a companion: $f_* = (A \rightarrow A \times B)$
- (2) Every f has a conjoint: $f^* = (A \rightarrow (f, 1_A) B \times A)$
- (3) Every adjoint pair $R \dashv S$ is of the form $f_* \dashv f^*$

Say Rel(**A**) is Cauchy

Tabulators

The *tabulator* of v is a universal cell τ

T(v) is effective if t_1 has a companion, t_0 has a conjoint and $v \cong t_{1*} \bullet t_0^*$

Tabulating relations

Proposition

 \mathbb{R} el(A) has effective tabulators

Double functors on relations

Theorem

Double functors $\mathbb{R}el(A) \longrightarrow \mathbb{R}el(B)$ "are" functors $A \longrightarrow B$ which preserve quasi-pullbacks

Quasi-pullback Q

Transformations

Doub = Cat(Cat) is cartesian closed, so Doub(A,B) is a double category

A horizontal transformation $t: F \longrightarrow G$

- $\forall A$ a horizontal arrow $tA: FA \longrightarrow GA$
- $\forall v: A \longrightarrow A'$ a cell

$$FA \xrightarrow{tA} GA$$

$$Fv \downarrow tv \downarrow Gv$$

$$FA' \xrightarrow{tA'} GA'$$

· Horizontally natural

$$FA \xrightarrow{tA} GA \xrightarrow{Gf} GC \qquad FA \xrightarrow{Ff} FC \xrightarrow{tC} GC$$

$$Fv \downarrow \qquad tv \qquad \downarrow Gv \quad G\alpha \quad \downarrow Gw \qquad = \qquad Fv \downarrow \qquad F\alpha \quad \downarrow Fw \quad tw \quad \downarrow Gw$$

$$FA' \xrightarrow{tA'} GA' \xrightarrow{Gg} GC' \qquad FA' \xrightarrow{Fg} FC' \xrightarrow{tC} GC'$$

Transformations (continued)

· Vertically functorial

$$FA \xrightarrow{tA} GA \qquad FA \xrightarrow{tA} GA$$

$$F \operatorname{id}_{A} \downarrow t(\operatorname{id}_{A}) \downarrow G \operatorname{id}_{A} = \operatorname{id}_{FA} \downarrow \operatorname{id}_{tA} \downarrow \operatorname{id}_{GA}$$

$$FA \xrightarrow{tA} GA \qquad GA \xrightarrow{tA} GA$$

$$FA \xrightarrow{tA} GA \qquad FA \xrightarrow{tA} GA$$

$$FV \downarrow tv \downarrow Gv \qquad FA \xrightarrow{tA} GA$$

$$FV \downarrow tv \downarrow Gv \qquad FA \xrightarrow{tA} GA$$

$$FA' \xrightarrow{tA'} GA' \qquad FA'' \xrightarrow{tA''} GA''$$

$$FA'' \xrightarrow{tA''} GA''$$

Vertical transformations and cells

A *vertical transformation* $u: F \longrightarrow H$ is the transpose notion (switch horizontal and vertical)

- $\forall A$ a vertical arrow $uA: FA \longrightarrow HA$
- $\forall f: A \longrightarrow A'$ a cell

$$\begin{array}{ccc} FA \stackrel{Ff}{\longrightarrow} FA' \\ uA \downarrow & uf & \downarrow uA' \\ HA \xrightarrow{Hf} HA' \end{array}$$

- Vertically natural
- Horizontally functorial

A double cell assigns to each object A a cell vA

$$F \xrightarrow{t} G \qquad FA \xrightarrow{tA} GA$$

$$\downarrow \downarrow \qquad \downarrow \qquad \qquad \downarrow u' \qquad \qquad \downarrow u'A$$

$$H \xrightarrow{t'} K \qquad HA \xrightarrow{t'A} KA$$

satisfying two conditions - horizontal and vertical naturality

Transformations for Rel

 $F, G: A \longrightarrow B$ quasi-pullback preserving functors

 $\Phi, \Psi \colon \mathbb{R}el(A) \longrightarrow \mathbb{R}el(B)$ their extensions to $\mathbb{R}el$

Theorem

- (1) Horizontal transformations $\Phi \longrightarrow \Psi$ are in natural bijection with natural transformations $F \longrightarrow G$
- (2) Vertical transformations $\Phi \xrightarrow{\quad \bullet \rightarrow} \Psi$ are in natural bijection with relations

$$V \longrightarrow F \times G$$

in the category QPB(A,B) of quasi-pullback preserving functors and quasi-cartesian natural transformations

Question: Is QPB(A,B) a regular category?

Kleisli

 $\mathbb{T} = (T, \eta, \mu)$ is a monad on \mathbf{A} We get a double category $\mathbb{K}l(\mathbb{T})$

$$\begin{array}{cccc}
A & \xrightarrow{f} & B & & A & \xrightarrow{f} & B \\
[v] \downarrow & \alpha & \downarrow [w] & \longleftrightarrow & v \downarrow & = & \downarrow w \\
C & \xrightarrow{g} & D & & TC & \xrightarrow{Tg} & TD
\end{array}$$

• Every horizontal arrow $f: A \longrightarrow B$ has a companion

$$\begin{array}{ccc}
A & & & A \\
f_* \downarrow & & & \downarrow f \\
B & & & B \\
B & & & \downarrow \eta B \\
TB
\end{array}$$

$$(f_* = [\eta B \cdot f])$$

• $f: A \longrightarrow B$ has a conjoint iff T(f) iso

$$\begin{array}{ccc}
B & B \\
f^* \downarrow & \longleftrightarrow & \sqrt{\eta B} \\
A & & \sqrt{(Tf)^{-1}} \\
TA & & TA
\end{array}$$

$$(f^* = [(Tf)^{-1} \cdot \eta B])$$

Tabulating Kleisli

Proposition

 $\mathbb{K}I(T)$ has tabulators iff **A** has pullbacks along ηA 's

Proof.

• The tabulators are not effective

19 / 37

Double functors on K1

Theorem

Double functors $\mathbb{K}l(\mathbb{T}) \longrightarrow \mathbb{K}l(\mathbb{S})$ correspond to monad morphisms $\mathbb{T} \longrightarrow \mathbb{S}$

Morphism of monads:

$$(\Psi, \psi): \mathbb{T} \longrightarrow \mathbb{S}$$
 $(\mathbb{T} = (\mathbf{A}, T, \eta, \mu), \mathbb{S} = (\mathbf{B}, S, \kappa, \nu))$

Transformations of monad morphisms

$$(\Phi,\phi),(\Psi,\psi)\colon \mathbb{T} \longrightarrow \mathbb{S}$$

A *Street 2-cell*
$$t: (\Phi, \phi) \longrightarrow (\Psi, \psi)$$
 is

- a natural transformation $t: \Phi \longrightarrow \Psi$
- · satisfying

Other transformations

A Lack-Street 2-cell $u: (\Phi, \phi) \longrightarrow (\Psi, \psi)$ is

- a natural transformation $u: \Phi \longrightarrow S\Psi$
- satisfying

Double category version

Theorem

Let (Φ, ϕ) and (Ψ, ψ) be monad morphisms $\mathbb{T} \longrightarrow \mathbb{S}$ giving rise to double functors $\overline{\Phi}, \overline{\Psi} \colon \mathbb{K}l(\mathbb{T}) \longrightarrow \mathbb{K}l(\mathbb{S})$. Then

- (1) horizontal transformations $\overline{\Phi} \longrightarrow \overline{\Psi}$ correspond to Street 2-cells $(\Phi,\phi) \longrightarrow (\Psi,\psi)$
- (2) vertical transformations $\overline{\Phi} \longrightarrow \overline{\Psi}$ correspond to Lack-Street 2-cells $(\Phi,\phi) \longrightarrow (\Psi,\psi)$

Lax morphisms of monads

• A lax morphism of monads (Φ, ϕ)

satisfying

Lax vs oplax

• (Ψ, ψ) was oplax

Lax and oplax together at last

The double category Monad

Fear of hexagons

Properties of Monad

Theorem

- (1) (Φ,ϕ) has a companion iff ϕ is iso
- (2) (Φ,ϕ) has a conjoint iff Φ has a left adjoint
- (3) Mnd has tabulators and they are effective

The tabulator

The tabulator of (Ψ, ψ) : $(\mathbf{A}, \mathcal{T}, \eta, \mu) \xrightarrow{\quad \bullet \ } (\mathbf{B}, \mathcal{S}, \kappa, \nu)$ is given by the comma category $\Psi \downarrow \mathbf{B}$ with monad

Eilenberg-Moore for a change

A lax morphism $(\Phi, \phi) \colon \mathbb{T} \longrightarrow \mathbb{T}'$ gives an algebraic functor over Φ

$$(TA \xrightarrow{\alpha} A) \longmapsto (T' \Phi A \xrightarrow{\phi A} \Phi TA \xrightarrow{\Phi a} \Phi A)$$

$$EM(\mathbb{T}) \xrightarrow{EM(\Phi, \phi)} EM(\mathbb{T}')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A \xrightarrow{\Phi} A'$$

But what about oplax morphisms (Ψ, ψ) : $\mathbb{T} \longrightarrow \mathbb{S}$?

Profunctors make a cameo appearance

$$\mathsf{EM}(\Psi,\psi)\colon \mathsf{EM}(\mathbb{T}) \longrightarrow \mathsf{EM}(\mathbb{S})$$

$$\mathsf{EM}(\Psi,\psi)\colon \mathsf{EM}(\mathbb{T})^{op}\times \mathsf{EM}(\mathbb{S}) {\longrightarrow} \mathsf{Set}$$

An element of $EM(\Psi, \psi)((A, a), (B, b))$ is $x: \Psi A \longrightarrow B$

EM extends to cells in Monad

- A, B, C, D categories
- F, G functors
- P, Q profunctors

$$P: A^{op} \times C \longrightarrow Set, Q: B^{op} \times D \longrightarrow Set$$

t natural transformation

$$t: P(-,=) \longrightarrow Q(F-,G=)$$

• Composition of profunctors uses coends, and is not associative on the nose

Cat is a weak double category

EM: $Mnd \longrightarrow Cat$ is a lax double functor

Double categories

(Ehresmann) A double category is a category object in Cat

$$\mathbb{A} \colon \mathbf{A}_1 \times_{\mathbf{A}_0} \mathbf{A}_1 \xrightarrow{\begin{array}{c} \rho_1 \\ \hline \\ \rho_1 \end{array}} \mathbf{A}_1 \xrightarrow{\begin{array}{c} d_0 \\ \hline \\ d_1 \end{array}} \mathbf{A}_0$$

Double functor

Weak double categories

A (weak) double category is a weak category object in $\mathscr{C}at$

$$\mathbb{A} \colon \mathbf{A}_1 \times_{\mathbf{A}_0} \mathbf{A}_1 \xrightarrow{\begin{array}{c} \rho_1 \\ \hline & \bullet \end{array}} \mathbf{A}_1 \xrightarrow{\begin{array}{c} d_0 \\ \hline & \bullet \end{array}} \mathbf{A}_0$$

Double functor

Lax double functors of weak double categories

A (weak) double category is a weak category object in &at

$$\mathbb{A} \colon \mathbf{A}_1 \times_{\mathbf{A}_0} \mathbf{A}_1 \xrightarrow{\begin{array}{c} \rho_1 \\ \hline \\ \rho_1 \end{array}} \mathbf{A}_1 \xrightarrow{\begin{array}{c} d_0 \\ \hline \\ \hline \\ d_1 \end{array}} \mathbf{A}_0$$

Lax double functor

Full circle

And, this is where the story begins...

Thank you!