List of Schemes

Contents

I	List of Algebraic Varieties	2
1	A Quartic Curve	2
2	The Lemniscate of Bernoulli	4
3	A Blowup Algebra	5
4	A Surface	8
5	An Elliptic Curve	9
6	Degeneration to a Monomial Ideal	9
7	Cuspidal Cubic	9
8	Parametrizing Field Extensions	10
9	Gluing	12
10	The Line With Two Origins	13

Part I

List of Algebraic Varieties

1 A Quartic Curve

Let $A = \mathbb{Z}[x, y]/f$ where

$$f = (y - x^2 + 5x - 5)(y + x^2 - 5x + 5) - 1 = uv - 1$$
(1)

where we set $u = y - x^2 + 5x - 5$ and $v = y + x^2 - 5x + 5$. Note that from the expression of f in (1) we see that u and v are units in A. Here we are describing A as a quotient of a polynomial ring, but we can also describe it as a finite module extension over a polynomial ring. Namely, we can write it as $A = \mathbb{Z}[y][\sqrt{g}]$ where

$$f = y^2 - (x-1)(x-2)(x-3)(x-4) = y^2 - g,$$
(2)

where g = (x-1)(x-2)(x-3)(x-4). The expression of f in (2) is nice because we can read off information like the discriminant of A over $\mathbb{Z}[y]$. Basically from (2) we can read off useful information of A viewed as a finite module extension, whereas from (1) we can read off useful information of A viewed as a quotient. Both expressions give rise to the same ring A at the end of the day. Next we set $X = \operatorname{Spec} A$. To get an idea of what X looks like, we consider the canonical morphism $X \to \operatorname{Spec} \mathbb{Z}$. For each positive prime p, we obtain the fiber $X_p = X_{\mathbb{F}_p}$ of this canonical morphism at the prime ideal $\langle p \rangle$:

$$X_p = \operatorname{Spec}(\mathbb{F}_p \otimes_{\mathbb{Z}} A) = \operatorname{Spec}(\mathbb{F}_p[x,y]/f).$$

We also obtain the fiber $X_0 = X_\mathbb{Q}$ of this canonical morphism at the generic point $\langle 0 \rangle$:

$$X_{\mathbb{Q}} = \operatorname{Spec}(\mathbb{Q} \otimes_{\mathbb{Z}} A) = \operatorname{Spec}(\mathbb{Q}[x, y]/f).$$

Note $X_{\mathbb{Q}}$ is just the pullback of the morphism $\operatorname{Spec} \mathbb{Q} \to \operatorname{Spec} \mathbb{Z}$ with respect to the canonical map $X \to \operatorname{Spec} \mathbb{Z}$. We can specialize even further by setting X_K to be the pullback of the composite $\operatorname{Spec} K \to \operatorname{Spec} \mathbb{Q} \to \operatorname{Spec} \mathbb{Z}$ with respect to the canonical map $X \to \operatorname{Spec} \mathbb{Z}$, where K/\mathbb{Q} is some field extension:

$$X_K = \operatorname{Spec}(K \otimes_{\mathbb{Z}} A) = \operatorname{Spec}(K[x,y]/f).$$

The closed points of X_K correspond to the maximal ideals of K[x,y]/f, and when K is algebraically closed, these correspond to the points of the variety $V_K(f)$.

We now consider $X_{\mathbb{R}} = \operatorname{Spec}(\mathbb{R}[x,y]/f)$, viewed as an \mathbb{R} -scheme (thus the canonical morphism is $X_{\mathbb{R}} \to \operatorname{Spec} \mathbb{R}$). To get an idea of what $X_{\mathbb{R}}$ looks like, we shall look at its \mathbb{R} -valued points $X_{\mathbb{R}}(\mathbb{R}) = V_{\mathbb{R}}(f) = C$ pictured below:

If we equip $X(\mathbb{R})$ with the Euclidean topology. Then we see that it is disconnected since

$$X(\mathbb{R}) = (\{u > 0\} \cap X(\mathbb{R})) \cup (\{u < 0\} \cap X(\mathbb{R})),$$

however in the Zariski topology, $X(\mathbb{R})$ is irreducible since f is irreducible over \mathbb{R} , so certainly $X(\mathbb{R})$ is connected in the Zariski topology. The Jacobian matrix of f is given by

$$J_f = \begin{pmatrix} \partial_x f \\ \partial_y f \end{pmatrix} = \begin{pmatrix} 4x^3 + 30x^2 - 70x + 50 \\ 2y \end{pmatrix}.$$

In particular, it's easy to see that $J_f(a,b) := J_f \mod \mathfrak{m}_{a,b} \neq 0$ for all closed points $\mathfrak{m}_{a,b} \in X(\mathbb{R})$. It follows that $X(\mathbb{R})$ is smooth. Alternatively, we have

$$df = \partial_x f dx + \partial_y f dy = (4x^3 + 30x^2 - 70x + 50)dx + 2ydy.$$

Thus when we set df = 0, then for $y \neq 0$, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{4x^3 + 30x^2 - 70x + 50}{2y}. (3)$$

The DeRham complex of *A* is given by

$$\Omega_A := 0 \to A \to$$

Now, we want to see what the curve looks like at in affine neighborhood of the point at infinity [0:1:0]. To do this let $\widetilde{A} = \mathbb{Z}[x,z]/\widetilde{f}$ where

$$\widetilde{f} = \widetilde{y}^2 - (\widetilde{x} - \widetilde{y})(\widetilde{x} - 2\widetilde{y})(x - 3\widetilde{y})(x - 4\widetilde{y}),\tag{4}$$

and set $\widetilde{X} = \operatorname{Spec} \widetilde{A}$. To get an idea of what $\widetilde{X}_{\mathbb{R}}$ looks like, we shall look at its \mathbb{R} -valued points $\widetilde{X}_{\mathbb{R}}(\mathbb{R}) = V_{\mathbb{R}}(\widetilde{f}) = \widetilde{C}$ pictured below

The closed points of $\widetilde{X}_{\mathbb{R}}$ have the form $\widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}} = \langle \widetilde{x} - \widetilde{a}, \widetilde{y} - \widetilde{b} \rangle$ where $(\widetilde{a},\widetilde{b}) \in \mathbb{R}^2$ such that $\widetilde{f}(\widetilde{a},\widetilde{b}) = 0$. We have a ring isomorphism $\widetilde{\varphi} \colon \widetilde{A}_{\widetilde{y}} \to A_y$ given by $\widetilde{\varphi}(\widetilde{x}) = x/y$ and $\widetilde{\varphi}(\widetilde{y}) = 1/y$, with inverse $\varphi \colon A_y \to \widetilde{A}_{\widetilde{y}}$ given by $\varphi(x) = \widetilde{x}/\widetilde{y}$ and $\varphi(y) = 1/\widetilde{y}$. Notice that

$$\widetilde{\varphi}(\widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}}) = \varphi(\langle \widetilde{x} - \widetilde{a}, \widetilde{y} - \widetilde{b} \rangle)$$

$$= \langle x/y - \widetilde{a}, 1/y - \widetilde{b} \rangle$$

$$= \langle x - \widetilde{a}y, 1 - \widetilde{b}y \rangle$$

$$= \langle x - \widetilde{a}y, y - 1/\widetilde{b} \rangle$$

$$= \langle x - \widetilde{a}/\widetilde{b}, y - 1/\widetilde{b} \rangle$$

$$= \langle x - a, y - b \rangle$$

$$= \mathfrak{m}_{a,b},$$

where we set $a = \widetilde{a}/\widetilde{b}$ and $b = 1/\widetilde{b}$. It follows that ${}^{a}\widetilde{\varphi}(\mathfrak{m}_{a,b}) = \widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}}$. Now observe that

$$d\widetilde{x} = \frac{ydx - xdy}{y^2}$$
 and $d\widetilde{y} = -\frac{dy}{y^2}$.

2 The Lemniscate of Bernoulli

Let
$$A = \mathbb{Z}[x,y]/f$$
 where

$$f = (x^2 + y^2)^2 + y^2 - x^2$$

and we set $X = \operatorname{Spec} A$. One can show that the set of integer solutions to the equation f = 0 is given by $\{(\pm 1, 0), (0, 0)\}$. On the other hand, the \mathbb{R} -valued points $X(\mathbb{R})$ can be visualized below

$$f = (y - x^2 + 5x - 5)(y + x^2 - 5x + 5) - 1 = uv - 1$$
(5)

where we set $u = y - x^2 + 5x - 5$ and $v = y + x^2 - 5x + 5$. Note that from the expression of f in (1) we see that u and v are units in A. Here we are describing A as a quotient of a polynomial ring, but we can also describe it as a finite module extension over a polynomial ring. Namely, we can write it as $A = \mathbb{Z}[y][\sqrt{g}]$ where

$$f = y^2 - (x - 1)(x - 2)(x - 3)(x - 4) = y^2 - g, (6)$$

where g = (x-1)(x-2)(x-3)(x-4). The expression of f in (2) is nice because we can read off information like the discriminant of A over $\mathbb{Z}[y]$. Basically from (2) we can read off useful information of A viewed as a finite module extension, whereas from (1) we can read off useful information of A viewed as a quotient. Both expressions give rise to the same ring A at the end of the day.

Next we set $X = \operatorname{Spec} A$. To get an idea of what X looks like, we first look at its \mathbb{R} -valued points: $X(\mathbb{R}) = \operatorname{Spec} \mathbb{R} \otimes_{\mathbb{Z}} A = \operatorname{Spec} \mathbb{R}[x,y]/f$. We can visualize the \mathbb{R} -valued points of X in the picture below:

The thick black curve is $X(\mathbb{R}) = V_{\mathbb{R}}(f)$ whereas the thick red curve is $V_{\mathbb{R}}(u)$. Notice that $V_{\mathbb{R}}(u)$ and $X(\mathbb{R})$ do not intersect: this is because u is a unit in A (and hence a unit in $\mathbb{R} \otimes_{\mathbb{Z}} A$). The point is that $u(\mathfrak{p}) := u \mod \mathfrak{p} \neq 0$ for all $\mathfrak{p} \in X$. The closed points of $X(\mathbb{R})$ have the form $\mathfrak{m}_{a,b} = \langle x - a, y - b \rangle$ where $(a,b) \in \mathbb{R}^2$ such that f(a,b) = 0. There's also the generic point $\eta \in X(\mathbb{R})$ corresponding to the 0 ideal.

If we equip $X(\mathbb{R})$ with the Euclidean topology. Then we see that it is disconnected since

$$X(\mathbb{R}) = (\{u > 0\} \cap X(\mathbb{R})) \cup (\{u < 0\} \cap X(\mathbb{R})),$$

however in the Zariski topology, $X(\mathbb{R})$ is irreducible since f is irreducible over \mathbb{R} , so certainly $X(\mathbb{R})$ is connected in the Zariski topology. The Jacobian matrix of f is given by

$$J_f = \begin{pmatrix} \partial_x f \\ \partial_y f \end{pmatrix} = \begin{pmatrix} 4x^3 + 30x^2 - 70x + 50 \\ 2y \end{pmatrix}.$$

In particular, it's easy to see that $J_f(a,b) := J_f \mod \mathfrak{m}_{a,b} \neq 0$ for all closed points $\mathfrak{m}_{a,b} \in X(\mathbb{R})$. It follows that $X(\mathbb{R})$ is smooth. Alternatively, we have

$$df = \partial_x f dx + \partial_y f dy = (4x^3 + 30x^2 - 70x + 50)dx + 2ydy.$$

Thus when we set df = 0, then for $y \neq 0$, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{4x^3 + 30x^2 - 70x + 50}{2y}. (7)$$

The DeRham complex of *A* is given by

$$\Omega_A := 0 \to A \to$$

Now, we want to see what the curve looks like at in affine neighborhood of the point at infinity [0:1:0]. To do this let $\widetilde{A} = \mathbb{Z}[x,z]/\widetilde{f}$ where

$$\widetilde{f} = \widetilde{y}^2 - (\widetilde{x} - \widetilde{y})(\widetilde{x} - 2\widetilde{y})(x - 3\widetilde{y})(x - 4\widetilde{y}),\tag{8}$$

and set $\widetilde{X} = \operatorname{Spec} \widetilde{A}$. We can visualize the \mathbb{R} -valued points of \widetilde{X} in the picture below

The closed points of $\widetilde{X}(\mathbb{R})$ have the form $\widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}} = \langle \widetilde{x} - \widetilde{a}, \widetilde{y} - \widetilde{b} \rangle$ where $(\widetilde{a},\widetilde{b}) \in \mathbb{R}^2$ such that $\widetilde{f}(\widetilde{a},\widetilde{b}) = 0$. We have a ring isomorphism $\widetilde{\varphi} \colon \widetilde{A}_{\widetilde{y}} \to A_y$ given by $\widetilde{\varphi}(\widetilde{x}) = x/y$ and $\widetilde{\varphi}(\widetilde{y}) = 1/y$, with inverse $\varphi \colon A_y \to \widetilde{A}_{\widetilde{y}}$ given by $\varphi(x) = \widetilde{x}/\widetilde{y}$ and $\varphi(y) = 1/\widetilde{y}$. Notice that

$$\begin{split} \widetilde{\varphi}(\widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}}) &= \varphi(\langle \widetilde{x} - \widetilde{a}, \widetilde{y} - \widetilde{b} \rangle) \\ &= \langle x/y - \widetilde{a}, 1/y - \widetilde{b} \rangle \\ &= \langle x - \widetilde{a}y, 1 - \widetilde{b}y \rangle \\ &= \langle x - \widetilde{a}y, y - 1/\widetilde{b} \rangle \\ &= \langle x - \widetilde{a}/\widetilde{b}, y - 1/\widetilde{b} \rangle \\ &= \langle x - a, y - b \rangle \\ &= \mathfrak{m}_{a,b}, \end{split}$$

where we set $a = \widetilde{a}/\widetilde{b}$ and $b = 1/\widetilde{b}$. It follows that ${}^{a}\widetilde{\varphi}(\mathfrak{m}_{a,b}) = \widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}}$. Now observe that

$$d\widetilde{x} = \frac{ydx - xdy}{y^2}$$
 and $d\widetilde{y} = -\frac{dy}{y^2}$.

3 A Blowup Algebra

Let $R = \mathbb{k}[x,y]/\langle y^2 - x^3 - x^2 \rangle$, let $Q = \langle \overline{x}, \overline{y} \rangle$ (we drop the overlines from \overline{x} and \overline{y} in just write x and y in onder to simplify notation in what follows), and equip R with the Q-filtration making $R = (Q^n)$ into a filtered ring.

Let $\varphi: R[u,v] \to bl(R)$ be the unique surjective R-algebra homomorphism such that $\varphi(u) = xt$ and $\varphi(v) = yt$. The kernel of φ is an ideal of R[u,v] which is homogeneous in the variables u,v:

$$\ker \varphi = \langle v^2 - (x+1)u^2, xv - yu \rangle.$$

Thus we see that $bl(R) \cong \mathbb{k}[x, y, u, v]/\mathfrak{a}$ where

$$\mathfrak{a} = \langle v^2 - (x+1)u^2, xv - yu, y^2 - x^3 - x^2 \rangle.$$

In particular, $\mathrm{bl}(R)$ corresponds to an algebraic subset $Z\subseteq \mathbb{A}^2_{x,y}\times \mathbb{P}^1_{u,v}$. Let $A=R[v]/\langle v^2-(x+1),xv-y\rangle$, so A corresponds to the affine open $U=Z\cap (\mathbb{A}^2\times \mathrm{D}(u))$. We can localize further by setting $B=A_x=R[v]/\langle v-y/x\rangle$, so B corresponds to the affine open $V=Z\cap (\mathrm{D}(x)\times \mathrm{D}(u))$. We have a canonical ring homomorphism $\iota\colon R\to A$ where ι is the inclusion map. Let us try to understand this homomorphism from a geometric point of view. Let $X=\mathrm{V}_{\Bbbk}(y^2-x^3-x^2)$ be affine algebraic subset of \mathbb{A}^2_{\Bbbk} defined by the equation $y^2=x^3+x^2$. The closed points of Spec R are in one-to-one correspondence with the points of V: they are all of the form

$$\mathfrak{p}_{(a,b)} = \langle x - a, y - b \rangle$$

where $(a, b) \in X$, that is, where $a, b \in \mathbb{k}$ such that $b^2 = a^3 + a^2$. If $\mathbb{k} = \mathbb{R}$, we can visualize the closed points of Spec R as below:

Note that Spec R also has a generic point η corresponding to the zero ideal of R. The closed points of Spec A correspond to the points of the affine open set U: they have the form

$$\mathfrak{p}_{(a,b),[1:t]} = \langle x - a, y - b, v - t \rangle$$

where $a, b, t \in \mathbb{k}$ such that $b^2 = a^3 + a^2$, at = b, and $t^2 = a + 1$. Note that if $a \neq 0$, then we automatically get $t^2 = a + 1$. If $\mathbb{k} = \mathbb{R}$. we can visualize the points of Spec A as below:

In particular, for $a \neq 0$, the prime $\mathfrak{p}_{(a,b),[1:t]}$ corresponds to the point $(a,b) \in X$ together with the unique line y = tx that passes through that point and the origin, where t represents the slope of that line. There are two points lying over the origin: namely $\mathfrak{p}_{(0,0),[1:1]}$ and $\mathfrak{p}_{(0,0),[1:-1]}$, corresponding to the origin $(0,0) \in V$ together with the lines y = x and y = -x respectively. The map $\iota \colon R \to A$ induces a continuous map ${}^a\iota \colon \operatorname{Spec} A \to \operatorname{Spec} R$ given by

$$a_{\iota}(\mathfrak{p}_{(a,b),[1,t]})=\mathfrak{p}_{(a,b)}.$$

This corresponds to the projection map $\pi: U \to X$ given by

$$\pi(a,b,t)=(a,b).$$

Notice that in the image above there are "missing" points. For instance, we drew a vertical dashed line in the image above; it should correspond to the line x = 0, but it has nowhere to go under this projection. In fact, this missing line corresponds to the extra point in Proj(bl(R)) which doesn't belong to A.

Definition 3.1. A hyperellitpic curve is an algebraic curve of genus g > 1, given by an equation of the form

$$y^2 + h(x)y = f(x),$$

where f is a polynomial of degree n = 2g + 1 > 4 or n = 2g + 2 > 4 with n distinct roots and h(x) is a polynomial of degree < g + 2 (if the characteristic of the ground field is not 2, one can take h(x) = 0).

4 A Surface

Let $a \in \mathbb{k}$ and let $S_t = V_{\mathbb{k}}(f_t) \subseteq \mathbb{A}^3_{\mathbb{k}}$ where

$$f_t = (x_1^2 + x_2^2 - 1)^2 + (x_2^2 + x_3^2 - 1)^2 - t = g_1^2 + g_2^2 - t = ||g||^2 - t$$

where $g = (g_1, g_2)$, where $g_1 = x_1^2 + x_2^2 - 1$ and $g_2 = x_2^2 + x_3^2 - 1$. When $k = \mathbb{R}$ and t = 0.1, we can picture $S_{0.1}$ as below:

The Jacobian matrix of f_t is given by

$$J_{f_t} = egin{pmatrix} \partial_x f_t \ \partial_y f_t \ \partial_z f_t \end{pmatrix} = 4 egin{pmatrix} x_1 g_1 \ x_2 (g_1 + g_2) \ x_3 g_2 \end{pmatrix}.$$

We write $\Delta_t = V(J_{f_t}) = \{a \in \mathbb{A}^3_{\mathbb{k}} \mid J_{f_t}(a) = 0\}$. Given $a \in \mathbb{A}^3_{\mathbb{k}}$, we have $a \in \Delta_t$ if and only if $a = \mathbf{0}$ or $a \in V_{\mathbb{k}}(g_1, g_2)$ (meaning $g_1(a) = g_2(a) = 0$). In particular, if $t \neq 0, 2$, then S_t has no singular points since $S_t \cap \Delta_t = \emptyset$ in this case. If t = 2, then $\mathbf{0}$ is a singular point since $\mathbf{0} \in S_2 \cap \Delta_2$. If t = 0, then S_0 has lots of singular points. For instance, $\{(\pm 1, 0, \pm 1), (\pm 1, 0, \mp 1)\}$ are all singular points.

We can desribe S_t as being the fibre at $t \in \mathbb{k}$ with respect to the morphism of affine \mathbb{k} -schemes $\pi \colon S \to \mathbb{A}^1_{\mathbb{k},\tau}$ (here we are indicating that the coordinate ring of $\mathbb{A}^1_{\mathbb{k},\tau}$ is given by $\mathbb{k}[\tau]$) where $S = \operatorname{Spec}(\mathbb{k}[x_1, x_2, x_3, \tau]/f_{\tau})$ and where π corresponds to the morphism of \mathbb{k} -algebras $\iota \colon \mathbb{k}[\tau] \to \mathbb{k}[x_1, x_2, x_3, \tau]/f_{\tau}$ (which is just inclusion map). In particular, let $\varepsilon_t \colon \operatorname{Spec} \mathbb{k} \to \mathbb{A}^1_{\mathbb{k},\tau}$ be the morphism of affine \mathbb{k} -schemes which corresponds to the \mathbb{k} -algebra homomorphism $\mathbb{k}[\tau] \to \mathbb{k}[\tau]/\langle \tau - t \rangle \simeq \mathbb{k}$ which sends τ to $t \in \mathbb{k}$. Then S_t is the pullback of $\pi \colon S \to \mathbb{A}^1_{\mathbb{k},\tau}$ with respect to $\varepsilon_t \colon \operatorname{Spec} \mathbb{k} \to \mathbb{A}^1_{\mathbb{k},\tau}$. In particular, the corresponding \mathbb{k} -algebra of S_t is given by

$$\mathbb{k}[x_1,x_2,x_3]/f_t \simeq (\mathbb{k}[x_1,x_2,x_3,\tau]/f_\tau) \otimes_{\mathbb{k}} \mathbb{k}[\tau]/\langle \tau-t \rangle.$$

Note that the morphism of affine \mathbb{k} -schemes $\pi \colon S \to \mathbb{A}^1_{\mathbb{k},\tau}$ is flat since the inclusion map of \mathbb{k} -algebras $\iota \colon \mathbb{k}[\tau] \to \mathbb{k}[x_1, x_2, x_3, \tau]/f_{\tau}$ is flat.

5 An Elliptic Curve

We study the elliptic curve *E* defind by the equation $y^2 = x^3 - 51$. One calculates its discriminant to be $\Delta = 2^4 \cdot 3^3 \cdot 51^2$.

6 Degeneration to a Monomial Ideal

Let \mathbb{k} be a field, let $R = \mathbb{k}[x, y]$, let $R' = \mathbb{k}[x', y']$, and let $S = \mathbb{k}[x, y, x', y']/J$ where

$$J = \langle x \rangle \langle x - x', y - y' \rangle = \langle x^2 - xx', xy - xy' \rangle.$$

We also set $X = \operatorname{Spec} R$, $X' = \operatorname{Spec} R'$, and $Y = \operatorname{Spec} S$. Thus we have two morphisms of $\mathbb R$ -schemes $Y \to X$ and $Y \to X'$ which correspond to the $\mathbb R$ -algebra homomorphisms $R \to S$ and $R' \to S$ respectively. For each $p = (a,b) \in \mathbb R^2$, we set $\mathfrak m_p = \langle x-a,y-b\rangle$, and similarly for each $p' = (a',b') \in \mathbb R^2$, we set $\mathfrak m'_{p'} = \langle x'-a',y'-b'\rangle$. Let Y_p denote the fiber of Y over p and let $Y'_{p'}$ denote the fiber of Y over p'. Then $Y_p \simeq \mathbb A^0_{\mathbb R}$ whereas

$$Y'_{p'} \simeq \begin{cases} \mathbb{A}^1_{\mathbb{k}} \sqcup \mathbb{A}^0_{\mathbb{k}} & \text{if } p' \neq 0 \\ \operatorname{Spec}(\mathbb{k}[x,y]/\langle x^2, xy \rangle) & \text{if } p = 0. \end{cases}$$

7 Cuspidal Cubic

Example 7.1. Let \mathbb{k} be a field and let $S = \mathbb{k}[x,y]/f$ where $f = y^2 - x^3$. Then we have

$$\Omega_{S/\Bbbk} = \frac{S dx \oplus S dy}{-3x^2 dx + 2y dy}.$$

In order to better understand what kind of object $\Omega_{S/\Bbbk}$ is, we digress a bit and explain how one should think S in terms of geometry. Let $X = \operatorname{Spec} S$. For each p = (a,b) in \Bbbk^2 such that $b^2 = a^3$, we have a maximal ideal $\mathfrak{m}_p = \langle x - a, y - b \rangle$ of S (or alternatively we can consider \mathfrak{m}_p as a closed point of X) and we set $\Bbbk_p := S/\mathfrak{m}_p \simeq \Bbbk$ to be the corresponding residue field (which is just \Bbbk but equipped with an S-module action coming from p). If \Bbbk is algebraically closed, then these are all of the maximal ideals of S, however if \Bbbk is not algebraically closed, then there will be more maximal ideals than just this. For instance, suppose $\Bbbk = \mathbb{R}$. Then the set of all such closed points forms the curve below:

However X contains more closed points than just this (alternatively S contains more maximal ideals than just this). Indeed, for each p=(a,b) in \mathbb{C}^2 such that $b^2=a^3$, one gets an \mathbb{R} -algebra homomorphism $e_p\colon S\to\mathbb{C}$ given by $x\mapsto a$ and $y\mapsto b$. We call e_p a \mathbb{C} -valued point of S (or a \mathbb{C} -valued point of X). For any such \mathbb{C} -valued point, we set $\mathfrak{m}_p:=\ker e_p$. Then all maximal ideals of S are obtained this way (i.e. as the kernel of a \mathbb{C} -valued point). Furthermore, for two such points p,p', we have $\mathfrak{m}_p=\mathfrak{m}_{p'}$ if and only if $e_{\sigma p}=e_{p'}$ for some $\sigma\in \mathrm{Gal}(\mathbb{C}/\mathbb{R})$, where $\sigma p=\sigma(a,b)=(\sigma a,\sigma b)$. This holds more generally in the case where $\mathbb{k}\neq\mathbb{R}$. Indeed, choose an algebraic closure $\overline{\mathbb{k}}$ of \mathbb{k} . Then we have natural bijections:

{maximal ideals of S} \simeq {closed points of X} \simeq { $\overline{\mathbb{k}}$ -valued points of X}/ \sim ,

where $p \sim p'$ if $p = \sigma p'$ for some $\sigma \in \text{Gal}(\overline{\mathbb{k}}/\mathbb{k})$. With this in mind, recall that for each closed point p of X, we have

$$\operatorname{Hom}_S(\Omega_{S/\mathbb{k}_{\ell}}\mathbb{k}_{p}) = \{ \text{point derivations } \partial \colon S \to \mathbb{k}_{p} \}.$$

Thus we can think of $\operatorname{Hom}_S(\Omega_{S/\Bbbk}, \Bbbk_p)$ as the set of all tangent vectors at p. For instance, the point derivations at the origin $\mathbf{0}=(0,0)$ correspond to all vectors $\mathbf{v}=(v_x,v_y)\in \Bbbk^2$ since $v_x\widetilde{\partial}_x|_{\mathbf{0}}+v_y\widetilde{\partial}_y|_{\mathbf{0}}$ vanishes on $2y\mathrm{d}y-3x^2\mathrm{d}x$. On the other hand, the point derivations at the point p=(1,1) correspond to all vector $\mathbf{v}\in \Bbbk^2$ such that $-3v_x+2v_y=0$ since

$$(v_x \widetilde{\partial}_x|_{\mathbf{p}} + v_y \widetilde{\partial}_y|_{\mathbf{p}})(2y dy - 3x^2 dx) = -3v_x + 2v_y = 0.$$

For instance, the point derivation $(1/3)\tilde{\partial}_x|_p + (1/2)\tilde{\partial}_y|_p$ can be visualized on the curve as the tangent vector centered at (1,1) as below:

8 Parametrizing Field Extensions

Let k be a field and fix an algebraic closure \overline{k} of k. Let

$$A = \mathbb{k}[x_1,\ldots,x_n,y_1,\ldots,y_n]/\langle y_1-e_1,\ldots,y_n-e_n\rangle = \mathbb{k}[x,y]/\langle y-e\rangle,$$

where e_i is the *i*th elementary symmetric polynomial:

$$e_i = \begin{cases} 1 & \text{if } k = 0\\ \sum_{1 \le j_1 < \dots < j_i \le n} x_{j_1} \cdots x_{j_i} & \text{if } k \le n\\ 0 & \text{if } k > n \end{cases}$$

We view A as a $\mathbb{k}[y]$ -algebra via the \mathbb{k} -algebra homomorphism $\mathbb{k}[y] \to A$ which sends y_i of \overline{y}_i . Similarly, we view $\mathbb{k}[x]$ as an A-algebra via the \mathbb{k} -algebra homomorphism $A \to \mathbb{k}[x]$ which sends \overline{y}_i to e_i . Thus we have \mathbb{k} -algebra homomorphism $\varphi \colon \mathbb{k}[y] \to \mathbb{k}[x]$ which sends y_i to e_i . Geometrically speaking, the \mathbb{k} -algebra homorphism φ corresponds to the morphism of affine schemes $e \colon \mathbb{A}^n_{\mathbb{k}} \to \mathbb{A}^n_{\mathbb{k}}$ which sends a $\overline{\mathbb{k}}$ -valued point $\mathbf{r} = (r_1, \dots, r_n) \in \overline{\mathbb{k}}^n$ to the $\overline{\mathbb{k}}$ -valued point $e(\mathbf{r}) = (e_1(\mathbf{r}), \dots, e_n(\mathbf{r})) \in \overline{\mathbb{k}}^n$. Then the \mathbb{k} -algebra homomorphism $\mathbb{k}[x,y] \twoheadrightarrow A \to \mathbb{k}[x]$ corresponds to the morphism graph of e:

$$\Gamma_e \colon \mathbb{A}^n_{\Bbbk} \xrightarrow{\simeq} \operatorname{Spec} A \subset \operatorname{Spec} (\Bbbk[x,y]) \simeq \mathbb{A}^n_{\Bbbk} \times_{\operatorname{Spec} \Bbbk} \mathbb{A}^n_{\Bbbk},$$

which is given on $\overline{\Bbbk}$ -valued points $r \in \overline{\Bbbk}^n$ by $r \mapsto (r, e(r))$. Finally the \Bbbk -algebra homomorphism $\Bbbk[y] \to A$ corresponds to a projection map Spec $A \to \mathbb{A}^n_{\Bbbk}$ which is given on $\overline{\Bbbk}$ -valued points $(r, c) \in \overline{\Bbbk}^n \times \overline{\Bbbk}^n$ by $(r, c) \mapsto c$. Note that since the e_i are algebraically independent, φ induces an isomorphism of \Bbbk -algebras of $\Bbbk[y]$ onto its image $\Bbbk[e] = \Bbbk[e_1, \ldots, e_n]$. Thus we may identify $\varphi \colon \Bbbk[y] \to \Bbbk[x]$ with $\Bbbk[e] \subseteq \Bbbk[x]$.

For each $c = (c_1, \ldots, c_n) \in \overline{\mathbb{k}}$, let $e_c : \mathbb{k}[y] \to \mathbb{k}(c) \subseteq \overline{\mathbb{k}}$ be the \mathbb{k} -algebra homomorphism given by $e_c(y_i) = c_i$, let $\mathfrak{m}_c = \ker e_c$, and let π_c be the monic polynomial in $\mathbb{k}(c)[t]$ given by

$$\pi_c := t^n + \sum_{i=1}^n (-1)^i c_i t^{n-i} = t^n + \sum_{i=1}^n (-1)^i e_i(\mathbf{r}) t^{n-i} = \prod_{i=1}^n (t - r_i),$$

where $r_i = r_{c,i}$ is the ith root of π_c in $\overline{\mathbb{k}}$ (for each c we arbitrarily fix an ordering $r_c = r = r_1, \ldots, r_n$ of the roots of π_c , for instance, if $\overline{\mathbb{k}} = \mathbb{C}$, then we can order them likeso: given $z = re^{i\theta}$ and $z' = r'e^{i\theta'}$ are two nonzero complex numbers expressed in polarized form with r, r' > 0 and $\theta, \theta' \in [0, 2\pi)$, then we say $z \geq z'$ if either r > r' or |r| = |r'| and $\theta > \theta'$, and we extend this by setting $z \geq 0$). Let $G_c = \operatorname{Gal}(\mathbb{k}(r_c, c)/\mathbb{k}(c))$ and finally let

$$A_c = A \otimes_{\Bbbk[y]} \Bbbk(c) \simeq \Bbbk[x]/\langle c - e \rangle$$

be the fiber of A over \mathfrak{m}_c .

Proposition 8.1. With the notation as above, we have a bijection

$$G_c \setminus S_n \cong |\operatorname{Spec} A_c|$$
.

Proof. Then B_c is finite as a \mathbb{k} -vector space. Indeed, let $\varphi \colon B_c \to \overline{\mathbb{k}}$ be a \mathbb{k} -algebra homomorphism. Then φ is completely determined by what it does to \overline{y} , say $\overline{y} \mapsto \gamma$ where $\gamma = (\gamma_1, \dots, \gamma_n) \in \overline{\mathbb{k}}$. Note that in $\mathbb{k}[y, t]$ we have the polynomial identity:

$$\prod_{i=1}^{n} (t - y_i) = t^n + \sum_{i=1}^{n} (-1)^i e_i t^{n-i}.$$

In particular, since $\overline{e} = c$ in B_c , this implies

$$\prod_{i=1}^{n} (t - \gamma_i) = t^n + \sum_{i=1}^{n} (-1)^i c_i t^{n-i} = \pi_c,$$

which implies $\gamma = \rho r = (r_{\rho(1)}, \dots, r_{\rho(n)})$ for some permutation $\rho \in S_n$. Without loss of generality, assume $\varphi(\overline{y}) = r$. Then every \mathbbm{k} -algebra homomorphism $B_c \to \overline{\mathbb{k}}$ must have the form $\varphi \rho$ where ρ is a permutation of $\overline{y}_1, \dots, \overline{y}_n$. In particular, there are only finitely many \mathbbm{k} -algebras $B_c \to \overline{\mathbb{k}}$, and each of them surjects onto L_c . The maximal ideals of B_c are precisely of the form $\ker(\varphi \rho)$. Furthermore, we have $\ker(\varphi \rho) = \ker(\varphi \rho')$ if and only if $\rho' = \sigma \rho$ where $\sigma \in \operatorname{Gal}(L_c/\mathbb{k})$ is viewed as the permutation of $\overline{y}_1, \dots, \overline{y}_n$ which corresponds to how σ permutes the roots r_1, \dots, r_n . Thus the fiber over \mathfrak{m}_c is bijection with the quotient

$$Gal(L(c)/\mathbb{k})\backslash S_n$$
.

Now we projectivize everything. Let $\widetilde{A} = A[z]$ and let

$$\widetilde{B} = A[\mathbf{y}, z]/\langle x_1 - e_1, zx_2 - e_2, \dots, z^{n-1}x_n - e_n \rangle.$$

Let $f = (f_1, \ldots, f_n) \colon \mathbb{A}^n_{\overline{\mathbb{k}}} \to \mathbb{A}^n_{\overline{\mathbb{k}}}$ be the morphism given by $f_i(r) = e_i(r)$ for all $r = (r_1, \ldots, r_n) \in \overline{\mathbb{k}}^n$. For each $c = (c_1, \ldots, c_n) \in \overline{\mathbb{k}}$, let π_c be the monic polynomial in $\overline{\mathbb{k}}[t]$ given by

$$\pi_c = t^n + \sum_{i=1}^n (-1)^i c_i t^{n-i} = \prod_{i=1}^n (t - r_i)$$

where $r_i = r_{i,c}$ is the *i*th root of π_c in $\overline{\mathbb{k}}$ (for each *c* we arbitrarily fix an ordering $r_c = r = (r_1, \dots, r_n)$ of the roots of π_c). In particular f is an isomorphism.

Also let $L(c) = \mathbb{k}(r)$ be the splitting field of π_c over \mathbb{k} contained in $\overline{\mathbb{k}}$. Note that if $c' = (c'_1, \ldots, c'_n) \in \mathbb{k}^n$ with $c \neq c'$, then we may have L(c) = L(c') even though $\pi_c \neq \pi_{c'}$ and $r_c \neq r_{c'}$. there exists a unique $r \in \text{map}$ is onto. Indeed, note that in $\mathbb{k}[x, t]$ we have the polynomial identity:

$$\prod_{i=1}^{n} (t - x_i) = t^n + \sum_{i=1}^{n} (-1)^i e_i t^{n-i}.$$

Now given any closed point $c = (c_1, ..., c_n) \in \overline{\mathbb{k}}$, form the monic polynomial in $\overline{\mathbb{k}}[t]$:

$$\pi_c = t^n + \sum_{i=1}^n (-1)^i c_i t^{n-i}.$$

Then Then in $\overline{\mathbb{k}}[\ \pi_c = t^n + \sum_{i=1}^n (-1)^i c_i t^{n-i} = \prod_{i=1}^n (t-r_i)$

$$\prod_{i=1}^{n} (t - y_i) = t^n + \sum_{i=1}^{n} (-1)^i e_i t^{n-i}.$$

Algebraically speaking, the morphism f corresponds to the \mathbb{k} -algebra homomorphism $\varphi \colon \overline{\mathbb{k}}[x] \to \overline{\mathbb{k}}[y]$ given by $\varphi(x_i) = e_i$. Note that $\ker \varphi = 0$ since the e_i are algebraically independent, thus $f(\mathbb{A}^n_{\overline{\mathbb{k}}})$

$$\overline{f(\mathbb{A}^n_{\overline{\Bbbk}})} = \mathbb{A}^n_{\overline{\Bbbk}}$$

. is a we may also identify φ with the inclusion map Alternatively, We factor f as

$$\mathbb{A}^{\underline{n}}_{\mathbb{k}} \xrightarrow{\Gamma_f} \mathbb{A}^{\underline{n}}_{\mathbb{k}} \times \mathbb{A}^{\underline{n}}_{\mathbb{k}} \xrightarrow{\pi_2} \mathbb{A}^{\underline{n}}_{\mathbb{k}'}$$

where the first morphism Γ_f , called the graph of f, takes r to (r, f(r)) and where the second morphism π_2 is the projection map onto the second coordinate, that is, it takes (r, c) to c. Algebraically speaking, the morphism Γ_f corresponds to the k-algebra homomorphism

$$\mathbb{k}[x] \otimes_{\mathbb{k}} \mathbb{k}[y] = \mathbb{k}[x,y] \to \mathbb{k}[x]$$

9 Gluing

Consider the affine scheme

$$Z := \operatorname{Spec} \mathbb{k}[s, t, u] / \langle u^3 - st \rangle \cong \operatorname{Spec} \mathbb{k}[x^3, y^3, xy].$$

We can think of Z as the quotient of $\mathbb{A}^2_{\mathbb{k}}$ by the group of third roots of unity with an isolated singularity at the origin. We resolve this singularity as follows: for $i \in \{1,2,3\}$ let $U_i = \operatorname{Spec} \mathbb{k}[u_i,v_i] \simeq \mathbb{A}^2_{\mathbb{k}}$. We glue the U_i together via

$$u_2 = u_1^{-1}$$
 $u_3 = v_1^2 u_1$ $u_3 = u_2^3 v_2^2$ $v_2 = u_1^2 v_1$ $v_3 = v_1^{-1}$ $v_3 = u_2^{-2} v_2^{-1}$.

More precisely, we have the following gluing datum:

$$U_2 \supset D(u_2) := U_{2,1} \xrightarrow{\varphi_{1,2}} U_{1,2} := D(u_1) \subset U_1$$
 $U_3 \supset D(v_3) := U_{3,1} \xrightarrow{\varphi_{1,3}} U_{1,3} := D(v_1) \subset U_1$
 $U_2 \supset D(u_2v_2) := U_{3,2} \xrightarrow{\varphi_{2,3}} U_{2,3} := D(u_3v_3) \subset U_3$

where

$$\begin{array}{lll} \varphi_{1,2}(u_2) = u_1^{-1} & \varphi_{1,3}(u_3) = v_1^2 u_1 & \varphi_{2,3}(u_3) = u_2^3 v_2^2 \\ \varphi_{1,2}(v_2) = u_1^2 v_1 & \varphi_{1,3}(v_3) = v_1^{-1} & \varphi_{2,3}(v_3) = u_2^{-2} v_2^{-1}. \end{array}$$

One checks that the $\varphi_{i,j}$ satisfy the cocycle equation. For instance,

$$\varphi_{1,2}\varphi_{2,3}(u_3) = \varphi_{1,2}(u_2^3v_2^2)
= u_1^{-3}(u_1^2v_1)^2
= u_1v_1^2
= \varphi_{1,3}(u_3).$$

Let \widetilde{Z} denote the scheme obtained by this gluing datum. Next, let

$$Z := \operatorname{Spec} \mathbb{k}[s, t, u] / \langle u^3 - st \rangle \cong \operatorname{Spec} \mathbb{k}[x^3, y^3, xy].$$

We can think of Z as the quotient of $\mathbb{A}^2_{\mathbb{k}}$ by the group of third roots of unity. We have maps

$$U_1 \to Z$$
, $(u_1, v_1) \mapsto (u_1 v_1^2, u_1^2 v_1, u_1 v_1)$
 $U_2 \to Z$, $(u_2, v_2) \mapsto (u_2^3 v_2^2, v_2, u_2 v_2)$
 $U_3 \to Z$, $(u_3, v_3) \mapsto (u_3, u_3^2 v_2^3, u_3 v_3)$,

which glue to a morphism $\pi \colon \widetilde{Z} \to Z$. One checks that the restriction $\pi^{-1}(Z \setminus \{\mathbf{0}\}) \to Z \setminus \{\mathbf{0}\}$ is an isomorphism. The closed subscheme $\pi^{-1}(\{\mathbf{0}\})$ (with the reduced scheme structure) can be identified with the union (inside a $\mathbb{P}^2_{\mathbb{R}}$) of two projective lines intersecting in a single point.

10 The Line With Two Origins