Worksheet #2; date: 01/23/2018 MATH 53 Multivariable Calculus

- 1. (Stewart 10.1.33) Find parametric equations for the path of a particle that moves along the circle $x^2 + (y-1)^2 = 4$ in the manner described.
 - (a) Once around clockwise, starting at (2,1)
 - (b) Three times around counterclockwise, start at (2,1)
 - (c) Halfway around counterclockwise, starting at (0,3)
- 2. (Stewart 10.3.5) Consider the points (-4,4) and $(3,3\sqrt{3})$, given in Cartesian coordinates.
 - (a) Find the polar coordinate (r, θ) of the point, where r > 0 and $0 \le \theta < 2\pi$.
 - (b) Find the polar coordinate (r,θ) of the point, where r<0 and $0\leq \theta<2\pi$
- 3. (Stewart 10.3.12) Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.

$$r \ge 1$$
, $\pi \le \theta \le 2\pi$

4. (Stewart 10.3.23) Find a polar equation for the curve represented by the given Cartesian equation.

$$y = 1 + 3x$$
.

- 5. (Stewart 10.3.27; modified) Find both the Cartesian equation and the polar equation for each of the following described curves. Decide for yourself which one would you rather do / use.
 - (a) A line through the origin that makes an angle of $\pi/6$ with the positive axis.
 - (b) A vertical line through the point (3, 3).
- 6. (Challenging; Stewart 10.3.52; modified) Rewrite the curve $(x^2 + y^2)^2 = 4x^2y^2$ in polar coordinates. Sketch the curve afterwards.
- 7. (Stewart 10.2.3) Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter.

$$x = t^3 + 1$$
, $y = t^4 + t$; $t = -1$.

8. (Stewart 10.2.7) Find an equation of the tangent to the curve at the given point by two methods: (a) without eliminating the parameter and (b) by first eliminating the parameter.

$$x = 1 + \ln t$$
, $y = t^2 + 2$; $(1,3)$.

9. (Stewart 10.2.16) Find dy/dx and d^2y/dx^2 . For which values of t is the curve concave upward?

$$x = \cos t, \quad y = \sin 2t, \quad 0 < t < \pi.$$

10. (Stewart 10.2.25) Show that the curve $x = \cos t$, $y = \sin t \cos t$ has two tangents at (0,0) and find their equations. Sketch the curve.