Lecture 1: Introduction: Good vs Bad Algorithms; Cryptography

1 The Central Paradigm of Computer Science

- ullet The central paradigm in computer science is that an algorithm A is good if:
 - \circ **A** runs in **polynomial** time in the input size n.
 - That is, **A** runs in time $T(n) = O(n^k)$ for some constant number k.

$$T(n) = 100n + 55$$

$$T(n) = \frac{1}{2}n^2 + 999 \log n$$

$$T(n) = 6n^7 + 900000n^2 - \sqrt{n}$$

• An algorithm is **bad** if it runs in exponential time.

$$T(n) = 2^n + 100n^5$$

$$T(n) = 1.000000001^n - n^3 - n$$

 \circ An algorithm is **good** if it runs in **polynomial** time in the input size n.

e.g.		Input Size n				
		10	100	1000		
	n	10	100	1000		
Runtime of Algorithm	n^2	100	10000	1000000		
	2^n	10^{3}	10^{30}	10^{300}		

2 Good versus Bad (Algorithms)

- For example, consider the problem of sorting n numbers.
 - \circ A Good Algorithm: **MergeSort** runs in time $O(n \cdot logn)$
 - A Bad Algorithm: **BruteForce Search** runs in time $O(n \cdot n!) \gg 2^n$

3 An Equivalent Characterization

- This central *paradigm* has an equivalent formulation
 - \circ **A** runs in **polynomial** time in the input size n.
 - \circ The input sizes that \boldsymbol{A} can solve, in a fixed amount T of time, \boldsymbol{scales} $\boldsymbol{multiplicatively}$ with increasing computational power.

	Input Sizes solved in Time T			
		Power = 1	Power = 2	
	n	T	2T	
Runtime of Algorithm	n^2	\sqrt{T}	$\sqrt{2} \cdot \sqrt{T}$	
	2^n	$\log T$	$1 + \log T$	

- Moore's Law: Computational power doubles roughly every two years.
 - \rightarrow Functional time algorithms will never be able to solve large problems.

- The practical implications are perhaps simpler to understand with this <u>latter</u> formulation.
- Thus, improvements in hardware will never overcome bad algorithm design.
- Indeed, the current dramatic breakthroughs in computer science are based upon batter (faster and higher performance) algorithmic techniques.

4 Robustness

• This measure of quality or "goodness" is *robust*

- All reasonable models of algorithms are polynomial time equivalent.
 - Otherwise one model could perform, say, an exponential number of operations in the time another model took to perform just one.
- The standard formal model is the **Turing Machine**.

5 Cryptography (Just an example of the course)

• Alice wants to send Bob a message. But she is worried that Eve might intercept the message. She decides to encrypt the message M as $\hat{M} = f(M)$. Bob can then decrypt the message via $f^{-1}(\hat{M}) = f^{-1}(f(M)) = M$ Eve cannot understand the message. Alice encrypts the message M with the (encryption) lock f. Bob decrypts the message \hat{M} with the (decryption) key f^{-1} . Because Eve does not have the key she cannot decipher the message. Two major problems occur.

• Problem one:

- Eve might be able to break the code.
 - \rightarrow That is, given \hat{M} she may be able to reconstruct f and then f^{-1} .
- Standard techniques for code-breaking include:
 - \rightarrow Frequency Analysis
 - · e.g. "e" is the most common letter and "the" is the most common word in English.
 - \rightarrow Cribs.
 - · e.g. German weather reports were exploited to help decode messages from the "unbreakable" **Enigma Machine**.

• Problem Two:

- \circ Alice and Bob need to agree on what the encryption code (lock) f is.
- But to do this they need to exchange a message discussing the code.

• Public-Key Cryptography

- o In face, Bob gives absolutely everyone a copy of the (encryption) lock.
- Everyone can send the message and Bob has the key.
- The lock is made public. This is called public-key cryptography.
- But this idea sounds completely crazy.
 - → Doesn't this solution to Problem Two make Problem One inevitable?
 - \rightarrow That is, if Eve has the lock f then won't she use it to decode f(M)?
- No, not if f is hard to invert for anybody except Bob himself.
- \circ But do such functions f that are hard to invert **exist**?
- Yes!

• RSA Encryption

- 1. Bob chooses two large prime numbers q_1 , q_2 and a large number p that is co-prime to $(q_1 1) \cdot (q_2 1)$
- 2. Bob's public key is (p, n) where $n = q_1 \cdot q_2$ Encryption: $\hat{M} = M^p \mod n$
- 3. Bob's prime key is (q_1, q_2, \mathbf{x}) where \mathbf{x} is the inverse of p modular $(q_1$ 1) \cdot $(q_2$ 1)

Decryption:
$$M = \hat{M}^x \mod n$$

$$p = 2^{16} + 1$$

$$q_1, q_2 = 2048 \text{ bits}$$

- 4. An Example
 - (a) Prime numbers q_1 , q_2 and number p co-prime to $(q_1$ 1) \cdot $(q_2$ 1) $p=7, q_1=3, q_2=11$ valid as $\gcd(7,20)=1$
 - (b) Public key (p,n) where n = $q_1 \cdot q_2$ n = 33
 - (c) Private Key (q_1, q_2, x) where x is the inverse of p mod $(q_1 1) \cdot (q_2 1)$

$$x = 33 \text{ as } 3 \cdot 7 = 1 \text{ mod } 20$$

Public:
$$n = 33$$
, $p = 7$

Private
$$q_1 = 3, q_2 = 11, x = 3$$

- Is RSA Encryption Safe?
 - Public-key cryptography lies at the heart of the modern economy.
 - \rightarrow Financial Services
 - \rightarrow Online Shopping
 - \rightarrow Secure Messaging
 - So it is extremely important that the method is safe.
 - We claim it is because:
 - \rightarrow Bob has a good algorithm for decryption.
 - $\rightarrow\,$ Eve only has a bad algorithm for decryption.
- Bob has a Good Decryption Algorithm
 - Initially, Bob can do the following in polynomial time.
 - \rightarrow Choose the primes q_1, q_2
 - \rightarrow Choose a number p that is co-prime with $(q_1 1) \cdot (q_2 1)$

- \rightarrow Find x the inverse (Using Euclid's Algorithm) of p and $(q_1$ 1) \cdot $(q_2$ 1)
- Using fast exponentiation, encoding and decoding is polynomial time.

Encryption:
$$\hat{M} = M^p \mod n$$

• Eve has a Bad Decryption Algorithm

Decryption:
$$M = \hat{M}^x \mod n$$

- $\circ\,$ To decrypt Eve needs to find x the inverse of p and $(q_1$ 1) $\cdot\,(q_2$ 1)
 - \rightarrow She knows p, but does not know q_1, q_2
 - \rightarrow Instead, she only knows n = $q_1 \cdot q_2$
- \circ So to find q_1, q_2 , she needs to find the prime factorization of n.
- But it is believed that finding the prime factors of a b-bit number is hard.
 - \rightarrow Instead, the obvious algorithm attempts to divide n by each integer in the range $\{2,3,\ldots,2^b\}\leftarrow 4096$ bits
- In fact, if Eve could find x without q_1 , q_2 , then she could use x to find q_1 , q_2 . That is, she could factor n.
 - \Rightarrow Eve only has exponential time algorithm to decrypt.