第6章 控制系统的综合与校正

书后习题解析

5=34 已知单位反馈系统的开环传递函数为 $G(s) = \frac{200}{s(0.1s+1)}$, 试设计串联校正环节,使系统的相角裕度不小于 45° , 剪切频率不低于 50 rad/s。

解 校正前系统的剪切频率为 44.2 rad/s, 相角裕度为 12.7°。为了满足要求, 相角裕度及剪切频率均应提高,则采用串联超前校正,校正环节的传递函数为

$$G_{c}(s) = \frac{\tau s + 1}{T_{s} + 1} \quad (\tau > T)$$

(1)选取剪切频率 $\omega_{\rm o}=60~{
m rad/s}$, $\tau=10T$,则校正后系统的开环传递函数、幅频特性及相频

特性分别为

$$G(s) = \frac{200(\tau s + 1)}{s(0.1s + 1)(Ts + 1)}$$

$$|G(j\omega)| = \frac{200\sqrt{1+(\tau\omega)^2}}{\omega\sqrt{1+(0.1\omega)^2}\sqrt{1+(T\omega)^2}}$$

$$\angle G(j\omega) = -90^{\circ} - \arctan(0.1\omega) - \arctan(T\omega) + \arctan(\tau\omega)$$

其中取 $T=0.1\tau$ 。

(2)由
$$|G(j\omega_c)|_{\omega_c=\omega}=1$$
,求校正参数 T 和 τ 。即

$$200\sqrt{1+(60\tau)^2}=60\sqrt{1+6^2}\sqrt{1+(6\tau)^2}$$

解得 $\tau = 0.026s$, T = 0.0026 s。

(3)验算

$$\angle G(j\omega_c)|_{\omega_c=60} = -90^{\circ} - \arctan6 - \arctan0.002 \ 6 \times 60 + \arctan0.026 \times 60 = -122^{\circ}$$

$$\gamma = 180^{\circ} + \angle G(j\omega_c)|_{\omega_c=60} = -58^{\circ}$$

校正后系统在相角裕度及剪切频率两方面均满足设计指标要求。所以串联超前校正环节的传

递函数为

$$G_{\rm e}(s) = \frac{1+0.026s}{1+0.0026s}$$

5-55 在题 6-2 图所示控制系统中,要求采用串联校正以消除该系统跟踪勾速输入时的稳态误差。试设计串联校正环节。

解 为了消除该系统跟踪匀速输入时的稳态误差,校正后的系统必须是 \mathbb{I} 型系统,并且还要保证系统的稳定性要求,所以选择 \mathbb{P} 控制,校正环节的传递函数 $G_{c}(s)$ 为

题 6-2图

$$G_{c}(s) = \frac{K_{1}(\tau s + 1)}{s}$$

从而校正后系统的开环传递函数为 $G(s) = \frac{K_1 K(\tau s + 1)}{s^2 (Ts + 1)}$

校正后系统的特征方程式为

$$Ts^3 + s^2 + K_1 K \tau s + K_1 K = 0$$

保证系统稳定,由 $K_1K_7 - K_1KT > 0$,求得 $\tau > T$,则可根据校正后系统对相角裕度的要求确定参数 τ 的取值;根据系统响应匀加速信号的稳态误差允许值来确定参数 K_1 的取值,从而确定串联校正环节。

6-3 设某控制系统的开环传递函数为 $G(s) = \frac{10}{s(0.05s+1)(0.25s+1)}$,要求校正后系统的相对谐振峰值 $M_s = 1.4$,谐振频率 $\omega_s > 10$ rad/s。试设计串联校正环节。

解 由近似公式有
$$\gamma = \arcsin \frac{1}{M_{\star}} = \arcsin \frac{1}{1.4} = 45.6^{\circ}$$

将该系统近似视为二阶系统。则由

$$M_{\rm r} = \frac{1}{2\zeta\sqrt{1-\zeta^2}}, \quad \omega_{\rm c} = \omega_{\rm r} \frac{\sqrt{\sqrt{1+\zeta^4-2\zeta^2}}}{\sqrt{1-2\zeta^2}}$$

求得

$$\zeta = 0.39$$
, $\omega_c = 1.008 \ 4\omega_r = 1.008 \ 4 \times 10 \approx 10.084 \ rad/s$

为满足 $\omega_c > 10$ rad/s 的要求,并留有余地,取 $\omega_c = 15$ rad/s。则有 $\angle G(j\omega_c)|_{\omega_c = 15} = -202^\circ, \gamma = -22^\circ$,此时闭环系统不稳定。为了满足相角裕度要求,系统需采用串联超前校正,其传递函数为

$$G_{c}(s) = \frac{aTs + 1}{Ts + 1} \quad (a > 1)$$

- (1) 串联超前校正环节应提供的最大超前相角 ϕ_m 为 $\phi_m = 45.6^\circ + 22^\circ \approx 68^\circ$ 。由 $\phi_m = \arcsin\frac{a-1}{a+1}$,解得 a = 26.4,取 a = 27。
 - (2)为使校正效果最好,令 $\omega_c = \omega_m = \frac{1}{\sqrt{aT}}$,解得 T = 0.013,则满足设计指标的串联超前校

正环节的传递函数为

$$G_{\rm c}(s) = \frac{0.342s + 1}{0.013s + 1}$$

校正后系统的开环传递函数为

$$G(s) = \frac{73(0.342s+1)}{s(0.05s+1)(0.25s+1)(0.013s+1)}$$

- (3)验算。当 $\omega_c = 15 \text{ rad/s}$ 时,校正后系统的相角裕度为 $\gamma = 46^\circ$,则校正后系统的相角裕度满足与 $M_c = 1.4$ 对应的相角裕度要求值。这说明,选取的校正环节是合适的。
- 6-4 设有题 6-4 图所示控制系统。要求系统的相对谐据峰值 $M_r = 1.3$,试确定前置放大器的增益 $K_r \ge 4$ s⁻¹,试确定串联迟后校正参数。
 - 解 (1)图中所示系统的开环传递函数为

$$G(s) = 2K \times \frac{\frac{20}{10s+1}}{1 + \frac{20}{10s+1} \times 0.2} \times \frac{1}{50s} = \frac{K_{v}}{s(2s+1)}$$

其中 $K_v = 4K/25$ 。给定系统的闭环传递函数为

题6-4图

$$\Phi(s) = \frac{G(s)}{1 + G(s)} = \frac{\frac{K_v}{2}}{s^2 + 0.5s + K_c/2}$$

与二阶系统传递函数的标准形式相对应,有

$$2\zeta\omega_n=0.5, \quad \omega_n^2=\frac{2K}{25}$$

由 $M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$,求得当 $M_r = 1.3$ 时,阻尼比 $\zeta = 0.45$ 。前置放大器的增益 K = 4.33,

$$K_{\star} = \frac{4K}{25} = 0.693 \text{ s}^{-1}$$

(2) 串联迟后校正环节的传递函数为

$$G_c(s) = \frac{1 + aTs}{1 + Ts}$$
 (a < 1)

未校正系统的幅频特性为

$$|G(j\omega)| = \frac{0.693}{\omega_c \sqrt{1 + (2\omega_c)^2}}$$

求得

$$\omega_{\rm c} = 0.493$$

为了保证 $\angle G_{c}(j\omega_{c}) \ge -3^{\circ}$,令 $1/aT = \frac{1}{25}\omega_{c} = 0.2 \text{ rad/s}$ 。根据开环增益 $K_{v} \ge 4 \text{ s}^{-1}$ 的要求,即将 K_{v} 从原值 0.693 提高到要求值 4,需提高 5.77 倍以上,则令 $\frac{1}{a} = 7$,因此求得 T = 350 s。求得申

联迟后校正环节的传递函数为

$$G_c(s) = \frac{1+50s}{1+350s}$$

该迟后校正环节在 $\omega_c = 0.493$ rad/s 处的迟后相角为

$$\angle G_{\rm e}(j\omega_{\rm e}) = -\arctan350\omega_{\rm e} + \arctan50\omega_{\rm e}|_{\omega_{\rm e}=0.493} = -2^{\circ}$$

这说明,选取的校正环节是合适的。

6-5 设单位反馈系统的开环传递函数为 $G(s)=\frac{K}{s(0.04s+1)}$,要求系统响应匀速信号的稳态误差 $e_{\infty} \leq 1\%$ 及相角裕度 $\gamma \geq 45^\circ$,试确定串联迟后校正环节的传递函数。

解 (1)未校正系统的幅频特性和相频特性分别为

$$|G(j\omega)| = \frac{K}{\omega \sqrt{1 + (0.04\omega)^2}}$$

$$/G(j\omega) = -90^\circ - \arctan(0.04\omega)$$

当 γ = 50°(> 45°)时,即

$$\angle G(j\omega) = 180^{\circ} - 90^{\circ} - \arctan(0.04\omega) = 50^{\circ}$$

解得

$$\omega_a = 21 \text{ rad/s}$$

则给定系统的开环增益为

$$K = \omega_c \sqrt{1 + (0.04\omega_c)^2} = 27.4 \text{ s}^{-1}$$

(2)根据系统响应匀速信号的稳态误差 $e_{ss} \leq 1\%$,有 $e_{ss} = \frac{1}{K} \leq 1\%$,即 $K \geq 100$ 。因此通过 串联迟后校正需将开环增益 K 提高的倍数 $\frac{1}{a}$ 为

$$\frac{1}{a} = \frac{100}{27.4} = 3.65$$

串联迟后校正环节的传递函数为

$$G_a(s) = \frac{1 + aT_3}{1 + T_3} \quad (a < 1)$$

并选取

$$\frac{1}{T} = 2 \text{ rad/s} \approx \frac{1}{10} \omega_e$$

则 T=0.5 s。 串联迟后校正环节的传递函数为

$$G_{\rm c}(s) = \frac{0.5s + 1}{1.83 + 1}$$

(3)验算。校正后系统的开环传递函数为

$$G(s) = \frac{100}{s(0.04s+1)} \cdot \frac{0.5s+1}{1.83s+1}$$

则当剪切频率 ω。= 21 rad/s 时,校正后系统的相角裕度为

 $\gamma = 180^{\circ} - 90^{\circ} - \arctan(0.04 \times 21) - \arctan(1.83 \times 21) + \arctan(0.5 \times 21) = 60^{\circ}$ 满足系统应具有相角裕度 $\gamma(\omega_c \ge 45^{\circ})$ 的要求。

6-6 已知某单位反馈系统的开环传递函数为 $G(s) = \frac{Ke^{-0.008t}}{s(0.01s+1)(0.1s+1)}$, 要求系统的相角裕度 $\gamma = 45^{\circ}$ 及响应匀速信号 r(t) = t 时的稳态误差 $e_{st} = 0.01$ 。试确定串联校正环节的传通函数。

解 (1)根据未校正系统的幅频特性和相频特性分别为

$$|G(j\omega)| = \frac{K}{\omega \sqrt{1 + (0.01\omega)^2} \sqrt{1 + (0.1\omega)^2}}$$

$$\angle G(j\omega) = -90^{\circ} - \arctan(0.01\omega) - \arctan(0.1\omega) - 57.3 \times 0.005\omega$$

确定满足相角裕度 $\gamma(\omega_c)$ = 45°时的剪切频率 ω_c 之值。

 $\gamma = 180^{\circ} + \angle G_{c}(j\omega_{c}) = 180^{\circ} - 90^{\circ} - \arctan(0.01\omega_{c}) - \arctan(0.1\omega_{c}) - 57.3 \times 0.005\omega_{c} = 45^{\circ}$ 求得 $\omega_{c} = 8 \text{ rad/s}$

$$|G(j\omega_c)| = \frac{K}{\omega_c \sqrt{1 + (0.01\omega_c)^2} \sqrt{1 + (0.1\omega_c)^2}} \Big|_{\omega_c = 8} = 1$$

解得使给定系统在 $\omega_c = 8$ rad/s 处具有相角裕度 $\gamma(\omega_c) = 45^\circ$ 的开环增益为 K = 10.2 s⁻¹。

(2)根据系统响应匀速信号的稳态误差 $e_{ss}=1\%$,校正后系统应具有的开环增益为 $K_1=100$ 。因此通过串联迟后校正需将开环增益 K 提高的倍数 $\frac{1}{a}$ 为

$$\frac{1}{a} = \frac{100}{10.2} \approx 10$$

(3) 串联迟后校正环节的传递函数为

$$G_{\rm el}(s) = \frac{aT_1 s + 1}{T_1 s + 1} \quad (a < 1)$$

选取 $aT_1 = 1/6$ s,即 $1/aT_1 = 6$ rad/s,则串联迟后校正环节的传递函数为

$$G_{cl}(s) = \frac{\frac{1}{6}s + 1}{\frac{1}{0.6}s + 1}$$

并且

$$\angle G_c(j8) = \arctan\left(\frac{1}{6} \times 8\right) \sim \arctan\left(\frac{1}{0.6} \times 8\right) = -33^\circ$$

(4)可见迟后校正环节在剪切频率 $\omega_o = 8 \text{ rad/s 处引人} - 33°迟后相角,为确保校正后系统在剪切频率 <math>\omega_o = 8 \text{ rad/s 处具有相角裕度 } \gamma(\omega_o) = 45°, 必须进一步采用串联超前校正,使其在 <math>\omega_o$ 处提供一个超前相角,以补偿由串联迟后校正在该处所造成 - 33°的相角迟后。

选取串联超前校正环节,其传递函数为

$$G_{a}(s) = \frac{1 + a_1 T_2 s}{1 + T_2 s} \quad (a_1 > 1)$$

选取 $a_1 T_2 = 1/10$ s, $a_1 = 10$,则串联超前校正环节的传递函数为

$$G_{cl}(s) = \frac{\frac{1}{10}s + 1}{\frac{1}{100}s + 1}$$

则串联超前校正环节在 ω_c = 8 rad/s 处所能提供的超前相角为

$$\angle G_{c2}(j8) = \arctan\left(\frac{1}{10} \times 8\right) - \arctan\left(\frac{1}{100} \times 8\right) = 34^{\circ}$$

从计算结果看出,选用的串联超前校正环节是合适的。

(5)验算。

校正后系统的开环传递函数为

$$G(s) = \frac{100e^{-0.005s} \left(\frac{1}{6}s + 1\right)}{s(0.01s + 1)^2 \left(\frac{1}{0.6}s + 1\right)}$$

相角裕度

$$\gamma = 180^{\circ} - 90^{\circ} - 2\arctan(0.01 \times 8) - \arctan(\frac{1}{0.6} \times 8) - 57.3 \times 0.005 \times 8 = 46^{\circ} \quad (>45^{\circ})$$

可见选取的串联迟后一超前校正环节的传递函数是正确的,满足 $\gamma(\omega_c)=45^\circ$ 及 $e_{\infty}=0.01$ 的要求。

6-7 设某控制系统的方框图如题 6-7图所示。欲通过反馈校正使系统相角 裕度 $\gamma=50^{\circ}$,试确定反馈校正参数 K,。

解 由图得该系统的开环传递函数 G(s)为

题 6-7图

$$G(s) = \frac{\frac{440}{s(0.025s+1)}}{1 + \frac{440}{s(0.025s+1)} \times K_t s} = \frac{440}{0.025s^2 + (1+440K_t)s}$$

则闭环传递函数 $\Phi(s)$ 为

$$\Phi(s) = \frac{G(s)}{1 + G(s)} = \frac{\frac{440}{0.025}}{s^2 + \left(\frac{1 + 440K_t}{0.025}\right)s + \frac{440}{0.025}}$$

同二阶系统传递函数的标准形式比较,则有

$$2\zeta\omega_n = \frac{1 + 440K_t}{0.025}$$
, $\omega_n = \sqrt{\frac{440}{0.025}} = 132.7$ rad/s

对于二阶系统,系统的相角裕度 γ 与阻尼比 ζ 间的关系为

$$\gamma = \arctan \frac{2\zeta}{\sqrt{\sqrt{1+4\zeta^4}-2\zeta^2}}$$

当 $\gamma = 50$ °时,求得 $\zeta = 0.48$,最后计算得

$$K_{t} = \frac{2 \times 0.48 \times 132.7 \times 0.025 - 1}{440}$$

6-8 设某控制系统的方框图如题 6-8图所示。要求采用速度反馈校正,使 系统具有临界阻尼,即阻尼比 $\zeta = 1$ 。试确 定反馈校正参数 K.。

题 6-8图

解 由题 6-8 图得该系统的开环传递函数为

$$G(s) = \frac{\frac{14.4}{s(0.1s+1)}}{1 + \frac{14.4}{s(0.1s+1)}K_t s} = \frac{14.4}{0.1s^2 + (1+14.4K_t)s}$$

则系统的闭环传递函数 $\Phi(s)$ 为

$$\Phi(s) = \frac{144}{s^2 + 10(1 + 14.4 K_1)s + 144}$$

同二阶系统传递函数的标准形式比较,则有

$$\omega_n = 12 \text{ rad/s}, \quad 2\zeta\omega_n = 10(1 + 14.4K_1)$$

根据系统应具有临界阻尼的要求,即 $\zeta=1$,求得速度反馈校正参数 K,为

$$K_{t} = \frac{\frac{2 \times 1 \times 12}{10} - 1}{14.4} = 0.097$$

- 6-9 已知最小相位系统的开环渐近幅频特性如题 6-9 图(a)所示,题 6-9 图(b)为该系统的方框图。欲通过反馈校正消除开环幅频特性在转折频率 20 rad/s 处的谐振峰,试确定反馈校正的传递函数形式及参数值。
 - 解 (1)由题 6-8 图(a)得该最小相位系统的开环传递函数为

$$G(s) = \frac{10}{s\left[\left(\frac{1}{20}\right)^2 s^2 + 2\zeta\left(\frac{1}{20}\right)s + 1\right]}$$

题 6-9图

并由 $20\lg \frac{1}{2\zeta} = 4.5 \text{ dB}$,解得 $\zeta = 0.3$ 。则系统的开环传递函数为

$$G(s) = \frac{10}{s \left[\left(\frac{1}{20} \right)^2 s^2 + 2 \times 0.3 \times \frac{1}{20} s + 1 \right]}$$

(2)通过反馈校正消除图(a)所示开环幅频特性在转折频率 20 rad/s 处的谐振峰,意味着通过反馈校正应使振荡环节的阻尼比 $\zeta=0.5$,即将开环传递函数分母中的 s^2 项系数由 2×0.3 $\times\frac{1}{20}$ 提高到 $2\times0.5\times\frac{1}{20}$ 。因此取反馈通道的传递函数

$$H(s) = as^2$$

式中 a 为反馈系数。

(3)从图(b)求得反馈校正系统的开环传递函数为

$$G(s) = \frac{10}{s \left[\left(\frac{1}{20} \right)^2 s^2 + \left(2 \times 0.3 \times \frac{1}{20} + 10a \right) s + 1 \right]}$$
$$2 \times 0.3 \times \frac{1}{20} + 10a = 2 \times 0.5 \times \frac{1}{20}$$

则

解得反馈系数为 a=0.002。

6-10 已知某控制系统的方框图如题 6-10 图所示。欲使系统在测速反馈校正后满足如下要求:(1) 开环增益 $K_{v} \ge 5$ s⁻¹;(2) 闭环系统阻尼比 $\zeta = 0.5$;(3) 调整时间 $t_{v} \le 2$ s ($\Delta = 0.05$)。试确定前置放大器增益 K_{v} 及测速反馈系数 K_{v} K_{v

题 6-10图

解 (1)由题 6-10 图得该系统的开环传递函数为

$$G(s) = \frac{10K_1}{s(0.5s+1) + 10K_1s} = \frac{20K_1}{s(s+2+20K_1)}$$
$$K_v = \lim_{s \to 0} sG(s) = \frac{10K_1}{1+10K_1}$$

且

根据题意,要求开环增益 $K_v \ge 5 \text{ s}^{-1}$,即 $\frac{10K_1}{1+10K_t} \ge 5 \text{ s}^{-1}$,若取 $\frac{10K_1}{1+10K_t} = 5 \text{ s}^{-1}$,则 $2K_1 = 1+10K_t$

(2)该系统的闭环传递函数为

$$\Phi(s) = \frac{20K_1}{s^2 + 2(1 + 10K_1)s + 20K_1}$$

同二阶系统传递函数的标准形式比较,则有

$$2\zeta\omega_{p} = 2(1+10K_{1}), \quad \omega_{p}^{2} = 20K_{1}$$

当 ζ = 0.5, 得

$$\sqrt{5K_1} = 1 + 10K_t$$

最后解得

$$K_1 = 1.25, K_1 = 0.15$$

可见测速反馈系数 K₁ 满足在 0~1 间取值的要求。

(3)验算

$$K_{\rm v} = \frac{10 \times 1.25}{1 + 10 \times 0.15} = 5 \text{ s}^{-1}, \quad t_{\rm s}(\Delta = 0.05) = \frac{4}{\xi \omega_{\rm n}} = \frac{4}{0.5 \sqrt{20 \times 1.25}} = 1.6 \text{ s}$$

从以上验算结果看出,参数 $K_1 = 1.25$ 及 $K_1 = 0.15$ 满足题意要求,因此选值是正确的。

6-11 设某单位反馈系统的开环传递函数为 $G(s) = \frac{K_v}{s(s+1)}$,要求开环增益 $K_v = 12 \text{ s}^{-1}$ 及相角裕度 $\gamma = 40^\circ$ 。试确定串联校正环节的传递函数。

解 满足开环增益 $K_v = 12 \text{ s}^{-1}$,则该系统的开环传递函数为

$$G(s) = \frac{12}{s(s+1)}$$

计算得原系统的剪切频率和相角裕度分别为 $\omega_c = 3.4, \gamma = 16^\circ$,则应采取串联超前校正,校正 环节的传递函数为 $G_c(s) = \frac{aTs+1}{Tc+1}$ (a>1)

- (1) 串联超前校正环节应提供的最大超前相角 $\phi_m = 40^\circ 16^\circ + 6^\circ = 30^\circ$, 由 $\phi_m = \arcsin \frac{a-1}{a+1}$, 解得 a=3。
 - (2)由 $20 \lg |G(j\omega_m)| = -10 \lg a$,解得 $\omega_m = 4.5 \text{ rad/s}$,令 $\omega_c = \omega_m = \frac{1}{\sqrt{a}T}$,解得 T = 0.128。

则超前校正环节的传递函数为

$$G_{\rm c}(s) = \frac{0.384s + 1}{0.128s + 1}$$

校正后系统的开环传递函数为 $G(s) = \frac{12(0.384s+1)}{s(s+1)(0.128s+1)}$

(3)验算

应用 MATLAB 中的 MARGIN 函数画出校正后系统的 Bode 图 , 得 ω_o = 4.5, γ = 43°。表明选取的校正环节合适。

6-12 设某单位反馈系统的开环传递函数为 $G(s) = \frac{K_s}{s(0.5s+1)}$,要求系统响应匀速信

号 r(t) = t 时的稳态误差 $e_* = 0.1$ 及闭环幅频特性的相对谐振峰值 $M_* \le 1.5$,试确定串联校正环节的传递函数。

解 根据系统响应匀速信号 r(t)=t 时的稳态误差的要求 $e_{ss}=0.1$, $K_v=10$, 计算得原系统的剪切频率和相角裕度分别为 $\omega_e=4.26$, $\gamma=25^\circ$ 。当 $M_r \leqslant 1.5$, $\gamma \approx \arcsin \frac{1}{M_r}$, 则 $\gamma \geqslant 41.8^\circ$ 。则应采取串联超前校正,校正环节的传递函数为 $G_e(s)=\frac{aTs+1}{Ts+1}(a>1)$ 。思路同上题,大致步骤如下。

(1) $\phi_m = 41.8^\circ - 25^\circ + 5^\circ = 21.8^\circ$,解得 a = 2.17,取 a = 3,解得 $\omega_m = 5.7$ rad/s,令 $\omega_e = \omega_m = \frac{1}{\sqrt{aT}}$,解得 T = 0.1,则超前校正环节的传递函数为 $G_c(s) = \frac{0.3s + 1}{0.1s + 1}$,校正后系统的开环传递

函数为

$$G(s) = \frac{10(0.3s+1)}{s(0.5s+1)(0.1s+1)}$$

(2)验算

应用 MATLAB 中的 MARGIN 函数画出校正后系统的 Bode 图, ω_c = 5.7, γ = 49°。满足性能指标要求。

6-13 设某单位反馈系统的开环传递函 致为 $G(s) = \frac{10}{s(0.1s+1)(0.5s+1)}$,试绘出系统开环频率响应的 Bode 图,并求出其相角裕度及幅值裕度。当采用传递函数为 $G_{c}(s) = \frac{0.23s+1}{0.023s+1}$ 的串联校正环节时,试计算校正系统的相角裕度及幅值裕度,并讨论校正系统的性能有何改进。

解 原系统 Bode 图如题6 – 13解图所示,原系统相角裕度 $\gamma = 3.9^{\circ}$ 及幅值裕度 $20 \log K_g$ = 1.58 dB;校正系统的相角裕度 $\gamma = 37.6^{\circ}$ 及幅值裕度 $20 \log K_g = 18$ dB。应用串联超前校正,系统的相角裕度变大,系统的动态性能得到改善。

6-14 设某单位反馈系统的开环传递函

题 6-13 解图

致为 $G(s) = \frac{4}{s(2s+1)}$,设计一串联迟后校正环节,使校正系统的相角裕度 $\gamma \ge 40^\circ$,并保持原有的开环增益值。

解 (1)未校正系统的幅频特性和相频特性分别为

$$|G(j\omega)| = \frac{4}{\omega \sqrt{1+4\omega^2}}, \quad \angle G(j\omega) = -90^{\circ} - \arctan(2\omega)$$

当 γ = 45°(> 40°)时,即

$$\gamma = 180^{\circ} - 90^{\circ} - \arctan(2\omega_{\circ}) = 45^{\circ}$$

解得

$$\omega_c = 0.5 \text{ rad/s}$$

则保证系统的相角裕度 $\gamma = 45^{\circ}(>40^{\circ})$ 的开环增益为 $K = 0.707 \text{ s}^{-1}$ 。

(2)保持开环增益 K=4 s⁻¹不变,因此通过串联迟后校正,需将开环增益 K 提高的倍数 $\frac{1}{a}$ 为

$$\frac{1}{a} = \frac{4}{0.707} = 5.656$$

串联迟后校正环节的传递函数为

$$G_{c}(s) = \frac{1 + aTs}{1 + Ts} \quad (a < 1)$$

并选取

$$\frac{1}{aT} = 0.05 \text{ rad/s} = \frac{1}{10}\omega_c$$

则 T=113 s。串联迟后校正环节的传递函数为

$$G_c(s) = \frac{20s+1}{113s+1}$$

(3)验算。校正后系统的开环传递函数为

$$G(s) = \frac{4}{s(2s+1)} \cdot \frac{20s+1}{113s+1}$$

应用 MATLAB 中的 MARGIN 函数画出校正后系统的 Bode 图, $\omega_c = 0.5$, $\gamma = 40.2^\circ > 40^\circ$, 满足性能指标要求。

6-15 设某单位反馈系统的开环传递函数为
$$G(s) = \frac{K_v}{s(\frac{1}{4}s+1)(s+1)}$$
。

要求:(1)系统开环增益 $K_v \ge 5$ s⁻¹;(2)系统阻尼比 $\zeta = 0.5$;(3)单位阶跃响应调整时间 $t_v = 2.5$ s。试确定串联校正环节的传递函数。

解 (1)根据给定时域倍标确定闭环主导极点位置。

由 $t_* \approx \frac{4}{t\omega_a} (\Delta = 0.02)$,求得 $\omega_a = 3.2$ 。则闭环主导极点

$$s_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2} = -1.6 \pm j2.77$$

 $|s_1| = |s_2| = \omega_n = 3.2$

(2)确定串联超前校正参数 T 和 a。

将开环传递函数变换为 $G(s) = \frac{4K}{s(s+4)(s+1)} = \frac{k}{s(s+4)(s+1)}$ (令 k = 4K)

根据系统开环增益 $K=5 \text{ s}^{-1}$ 的要求,得

$$M = \frac{|s_1| \cdot |s_1 - p_2| \cdot |s_1 - p_3|}{1} = 33.24$$

且

 $\phi = 180^{\circ} + \angle s_1 + \angle (s_1 - p_2) + \angle (s_1 - p_3) = 180^{\circ} + 120^{\circ} + 102.22^{\circ} + 41.63^{\circ} = 83.85^{\circ}$ 由于要求的超前补偿相角 $\phi < 90^{\circ}$,所以采用带惯性的 *PD* 控制器实现串联超前校正是可行的,由 k,M 及 ϕ 求得

$$\cot \alpha = \frac{33.24}{20} \csc 83.85^{\circ} - \cot 83.85^{\circ}$$

得

$$\alpha = 32.62^{\circ}$$

由 ζ=0.5,求得

$$\delta = 60^{\circ}$$
, $\theta = 180^{\circ} - \alpha - \delta = 87.38^{\circ}$

则

$$|z_{\rm e}| = \omega_{\rm n} \frac{\sin \alpha}{\sin \theta} = 1.73$$
, $|p_{\rm e}| = \omega_{\rm n} \frac{\sin (\phi + \alpha)}{\sin (\theta - \phi)} = 46.52$

进而求得串联超前校正参数为

$$T = \frac{1}{|p_c|} = 0.0215$$
, $a = \frac{|p_c|}{|z_c|} = 26.89$

带惯性的 PD 控制器的传递函数为

$$G_c(s) = 26.89 \frac{s+1.73}{s+46.52}$$

(3)验算。经初步设计得到校正系统开环传函为

$$G_s = \frac{20 \times 26.89}{s(s+4)(s+1)} \times \frac{s+1.73}{s+46.52}$$

初步选定的闭环主导极点 $s_{1,2} = -1.6 \pm j2.77$,根据单位反馈系统的闭环传递函数为

$$\frac{C(s)}{R(s)} = \frac{20 \times 26.89(s+1.73)}{(s+1.6+j2.77)(s+1.6-j2.77)(s-s_3)(s-s_4)}$$

由 C(0)/R(0) = 1,得

$$s_3 s_4 = 90.86$$

又由

$$(s+1.6+j2.77)(s+1.6-j2.77)(s-s_3)(s-s_4)$$

= $s(s+4)(s+1)(s+46.52)20 \times 26.89 \times (s+1.73)$

解得

$$s_3 + s_4 = -48.32$$

则闭环极点

$$s_3 = -1.96$$
, $s_4 = -46.36$

其中闭环极点 $s_3 = -1.96$,可近似认为被闭环零点 $z_6 = -1.73$ 完全补偿,闭环极点 $s_4 = -46.36 \approx 29 \text{Re}(s_1)$,距离轴甚远,所以选定 $s_{1,2} = -1.6 \pm j2.77$ 作为闭环主导极点是合适的,因此,以a = 26.89和T = 0.0215 s作为串联超前校正参数能满足对给定系统提出的各项性能指标。

6-16 设某单位反馈系统的开环传递函数为 $G(s) = \frac{K_v}{s(0.5s+1)(s+1)}$,要求系统的开环增益 $K_v \ge 5$ s⁻¹及相角裕度 $\gamma \ge 38^\circ$,试确定申联迟后校正环节的传递函数。

解 思路同上题,大致步骤如下。

$$(1)G(j\omega) = \frac{K_v}{\omega\sqrt{1+(0.5\omega)^2}\sqrt{1+\omega^2}}$$
, $\angle G(j\omega) = -90^\circ - \arctan 0.5\omega - \arctan \omega$, 当 $\gamma = 40^\circ$ (>38°)时,解得 $\omega_c = 0.63$ rad/s,保证系统的相角裕度 $\gamma = 40^\circ$ (>38°)的开环增益为 $K = 0.78 \text{ s}^{-1}$ 。

(2)要求系统的开环增益 $K_v \ge 5$ s⁻¹,因此通过串联迟后校正需将开环增益 K 提高的倍数 $\frac{1}{a}$ 为 $\frac{1}{a} = \frac{5}{0.78} = 6.4$,取 $\frac{1}{a} = 7$ 。串联迟后校正环节的传递函数为 $G_c(s) = \frac{1+aTs}{1+Ts}(a < 1)$ 并选取 $\frac{1}{aT} = 0.063$ rad/s = $\frac{1}{10}\omega_c$,则 T = 111.09 s。串联迟后校正环节的传递函数为

$$G_{c}(s) = \frac{15.87s + 1}{111.09 \text{ s} + 1}$$

(3)验算。校正后系统的开环传递函数为

$$G(s) = \frac{5}{s(0.5s+1)(s+1)} \cdot \frac{15.87s+1}{111.09s+1}$$

应用 MATLAB 中的 MARGIN 函数画出校正后系统的 Bode 图, $\omega_c = 0.878$, $\gamma = 46.25^\circ > 38^\circ$,满足性能指标要求。

6-17 设某单位反馈系统的开环传递函数为

$$G(s) = \frac{K_{v}}{s(0.1s+1)(0.2s+1)}$$

要求:(1)系统开环增益 $K_* = 30 \text{ s}^{-1}$;(2)系统相角裕度 $\gamma \ge 45^\circ$;(3)系统截止频率 $\omega_b = 12 \text{ rad/s}$ 。 试确定串联迟后—超前校正环节的传递函数。

解 (1)未校正系统的幅频特性和相频特性分别为

$$|G(j\omega)| = \frac{K_{v}}{\omega \sqrt{1 + 0.01\omega^{2}} \sqrt{1 + 0.04\omega^{2}}}$$

$$\angle G(j\omega) = -90^{\circ} - \arctan(0.1\omega) - \arctan0.2\omega_{c}$$

保证系统的相角裕度 $\gamma = 45^\circ$,则由 $\gamma = 180^\circ - 90^\circ - \arctan 0.1 \omega_e - \arctan 0.2 \omega_e = 45^\circ$,得 $\omega_e = 2.807$ rad/s。则保证系统的相角裕度 $\gamma = 45^\circ$ 的开环增益为 K = 3.342 s⁻¹。

- (2)要求系统的开环增益 $K_s \approx 30 \text{ s}^{-1}$,因此通过串联迟后校正需将开环增益 K 提高的倍数 $\beta = \frac{30}{3.342} = 8.97$,取 $\beta = 9$ 。串联迟后校正环节的传递函数为 $G_e(s) = \frac{1+T_s}{1+\beta T_s}(\beta > 1)$ 。并选取 $\frac{1}{T} = 1 \text{ rad/s}$,则串联迟后校正环节的传递函数为 $G_{el}(s) = \frac{s+1}{9s+1}$ 。
- (3) $G_{c1}(j\omega_c)\approx -18^\circ$, 则需串联超前校正环节提供的最大相角为 $\phi_m=18^\circ+5^\circ=23^\circ$, 解得 a=3。串联超前校正环节的传递函数为 $G_{c2}(s)=\frac{1+aT_1s}{1+T_1s}(a>1)$, 并选取 $\frac{1}{aT_1}=4$ rad/s, 则串联

超前校正环节的传递函数为 $G_a(s) = \frac{\frac{1}{4}s+1}{\frac{1}{12}s+1}$ 。

(4)验算。校正后系统的开环传递函数为

$$G(s) = \frac{30(s+1)\left(\frac{1}{4}s+1\right)}{s(0.1s+1)(0.2s+1)(9s+1)\left(\frac{1}{12}s+1\right)}$$

应用 MATLAB 中的 MARGIN 函数画出校正后系统的 Bode 图, $\omega_c = 3.4$, $\gamma = 46.89^\circ$, $\omega_b = 13$ rad/s。满足性能指标要求。

6-18 设某单位反馈系统的开环传递函数为 $G(s) = \frac{K_v}{s(0.1s+1)(0.2s+1)}$ 。要求: (1)系统响应匀速信号 r(t) = t 时的稳态误差 $e_{ss} = 0.01$; (2)系统的相角裕度 $\gamma \ge 40^\circ$ 。试设计一个串联迟后一超前校正环节。

解 思路同上题,大致步骤如下。

(1) $\gamma = 45^{\circ} \ge 40^{\circ}$,得 $\omega_c = 2.807 \text{ rad/s}, K_v = 3.342 \text{ s}^{-1}$ 。

$$(2) e_{sc} = 0.01, K_{sc} = 100 \text{ s}^{-1}, \beta = \frac{100}{3.342} \approx 30$$
。 $G_{c}(s) = \frac{1 + Ts}{1 + \beta Ts} (\beta > 1)$,并选取 $\frac{1}{T} = 1 \text{ rad/s}$,则

$$G_{c1}(s) = \frac{s+1}{30s+1} \circ$$

$$(3)$$
 $G_{cl}(j\omega_c) \approx -19^\circ$,则 $\phi_m = 19^\circ + 5^\circ = 24^\circ$,得 $a = 2.34$,取 $a = 3_\circ$ $G_{cl}(s) = \frac{1 + aT_1 s}{1 + T_1 s}$,并选

取
$$\frac{1}{aT_1}$$
 = 4 rad/s,则串联迟后一超前环节的传递函数为 $G_a(s) = \frac{\frac{1}{4}s+1}{\frac{1}{12}s+1}$ 。

(4)验算。校正后系统的开环传递函数为

$$G(s) = \frac{100(s+1)\left(\frac{1}{4}s+1\right)}{s(0.1s+1)(0.2s+1)(30s+1)\left(\frac{1}{12}s+1\right)}$$

应用 MATLAB 中的 MARGIN 函数画出校正后系统的 Bode 图, $\omega_e = 3.43$, $\gamma = 45.64$ °。满足性能指标要求。

5-52 已知某控制系统的方框图如题 6-19 图所示。要求:

- (1)系统响应匀速输入 $\Omega_i = 110$ rad/s 时的稳态误差 $e_m = 0.25$ rad;

解 校正系统的开环传递函数为G(s)

题 6-19图

$$=\frac{K(\tau s+1)}{s(T'+1)(T''+1)}, \sharp + T' = 0.025 \frac{\tau}{T''}, T'' = 0.025 + (1+Kb)\tau - T'.$$

- (1)校正前后系统的开环增益不变,由 $e_{sr}=\frac{110}{K}=0.25$,得 K=440。应用 MATLAB 中的 MARCIN 函数绘制待校正系统的 Bode 图,得 $\omega_{c}=135$ rad/s, $\gamma=16.5^{\circ}$ 。
- (2)选择纯测速校正参数,提高系统的相角裕度。令 $\frac{\tau}{T''}$ = 0.1,则 T' = 0.002 5。此时,不计等效串联迟后校正的情况下,开环传递函数 $G_{\Gamma}(s) = \frac{K}{s(T'_s+1)} = \frac{440}{s(0.002\ 5s+1)}$ 。仿真结果得 ω'_s = 420 rad/s, γ' = 43.6° < 55°。
- (3)加入等效串联迟后校正,减小系统带宽,进一步提高系统的相角裕度。令 r=0.1 s,则 T'=1 s,校正系统的开环传递函数为 $G(s)=\frac{440(0.1s+1)}{s(0.002\,5s+1)(s+1)}$ 。 仿真结果得 $\omega''_{o}=42$ rad/s, $\gamma'=72^{\circ}>55^{\circ}$,不符合要求。则通过试探,令 $\tau=0.033$ s,则 T''=0.33 s, b=0.019 s。校正系统的开环传递函数为 $G(s)=\frac{440(0.033\,s+1)}{s(0.002\,5\,s+1)(0.33\,s+1)}$ 。 应用 MATLAB 中的MARGIN 函数画出校正后系统的 Bode 图,得 $\omega''_{o}=50.7$ rad/s, $\gamma'=55.3^{\circ}$,满足性能指标要求。

同步训练题

1.设单位反馈系统的开环传递函数为 $G(s) = \frac{100K}{s(0.04s+1)}$, 若要求系统对单位斜坡输入

信号的稳态误差 $e_{**} \leq 1\%$,相角裕度 $\gamma \geq 40^{\circ}$,试确定系统的串联校正网络。

- 2.设某系统的开环传递函数为 $G(s) = \frac{K}{s(0.1s+1)(0.05s+1)}$, 试设计串联校正使系统满足:(1)速度误差系数 $K_* \ge 30$;(2)相角稳定裕度 $\gamma \ge 30^\circ$ 。
- 3.已知单位反馈系统开环传递函数 $G(s) = \frac{K}{s(0.05 \text{ s} + 1)(0.2 \text{ s} + 1)}$,设计串联超前校正网络使系统 $K_{v} \ge 10 \text{ rad/s}$,超调量不大于 25%,调节时间不大于1 s。
- 4.二阶系统传递函数为 $G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$, 现欲加负反馈 H(s)来提高阻尼比,使阻尼比为 ζ'' ,并保证总放大系数 K 和固有频率不变,试确定 H(s)。
- 5.一单位负反馈最小相位系统开环相频特性表达式为 $\varphi(\omega) = -90^\circ$ $\arctan\frac{\omega}{2}$ $\arctan\omega$ 。 (1)求相角裕度为 45°时系统的开环传递函数; (2)在不改变截止频率 ω 。的前提下,试选取参数 K_c 与 T,使系统在加入串联校正环节后,系统的相角裕度提高到 60° 。
- 6.设单位反馈系统的开环传递函数为 $G(s) = \frac{8}{s(2s+1)}$, 若采用迟后一超前校正装置 $G_c(s) = \frac{(10s+1)(2s+1)}{(100s+1)(0.02s+1)}$ 对系统进行串联校正, 试绘制系统校正前后的对数幅频渐近特性, 并计算系统校正前后的相角裕度。
- 7.设单位反馈系统的开环传递函数 $G(s) = \frac{K}{s(0.1s+1)(0.01s+1)}$,试设计串联校正装置,使系统期望特性满足下列指标:(1)静态速度误差系数 $K_v \ge 250 \text{ s}^{-1}$;(2)截止频率 $\omega_o \ge 30 \text{ rad/s}$;(3)相角裕度 $\gamma(\omega_o) \ge 45^\circ$ 。
- 8. 设单位反馈系统开环传递函数为 $G(s)G_0(s) = \frac{K}{s(1+0.12s)(1+0.02s)}$, 试设计串联校正装置, 使系统满足 $K_s \ge 70$, $t_s \le 1$, $\sigma\% \le 40\%$ 。
- 9.设单位反馈系统开环传递函数为 $G(s) = \frac{K}{s(0.05s+1)(0.2s+1)}$, 试设计串联超前校正装置, 使系统得静态速度误差系数小于 5.超调量不大于 25%,调节时间不大于 1。
- 10.设单位反馈系统开环传递函数为 $G(s) = \frac{K}{s(0.05s+1)(0.25s+1)(0.1s+1)}$,若要求校正后系统的开环增益不小于 12,超调量小于 30%,调节时间小于 3,试确定串联迟后校正装置的传递函数。
- 11.设单位反馈系统开环传递函数为 $G(s) = \frac{K}{s(s+4)(s+5)}$,若要求校正后系统的 $K_v = 30, \zeta = 0.707$,并保证原主导极点位置基本不变,试确定串联校正装置。

同步训练题答案

1.解 根据稳态误差要求, $K \ge 1$,原系统 $ω_c = 50$ rad/s, $\gamma = 26.6^\circ$,引入超前校正 $G_c(s) = \frac{aTs+1}{Ts+1}$ (a>1),a=2.43,T=0.01 s,校正后系统 $\gamma = 48.22^\circ$,校正后系统的开环传递函数

$$G(s) G_c(s) = \frac{100(0.024s + 1)}{s(0.04s + 1)(0.01s + 1)}$$

2.解 $K_v \ge 30$, K = 30, 原系统 $\omega_c = 17.3 \text{ rad/s}$, $\gamma = -10.8^{\circ} < 30^{\circ}$, 选用迟后校正,校正环节函数 $G_c(s) = \frac{aTs + 1}{Ts + 1}$ (a < 1), 则令 $\gamma = 30^{\circ} + 6^{\circ} = 36^{\circ}$, 解得 $\omega'_c = 7 \text{ rad/s}$, a = 0.043, 由 $\frac{1}{aT} = 0.1\omega'_c$, 求得 T = 33。校正环节传递函数 $G_c(s) = \frac{1.43s + 1}{33s + 1}$, 验算 $\gamma'' > 30^{\circ}$, 满足要求。

3.解 要求 $\sigma\% \leq 25\%$, $M_r = 1.225$, $t_e \leq 1$ s, $\omega'_e = 7.74$, $\gamma' = 54.7^\circ$ 。原系统 $\omega_e = 7.07$, $\gamma = 15.8^\circ$, 采用超前校正, $G_e(s) = \frac{aTs+1}{Ts+1}$ (a>1), a=9, T=0.027, 所以 $G_e(s) = \frac{0.245s+1}{0.027s+1}$, 验算满足要求。

$$4. \mathbf{H} H(s) = \frac{2(\zeta'' - \zeta)s}{K\omega_n}$$

5.解 (1)开环传递函数为
$$G_o(s) = \frac{0.56}{s(\frac{s}{2}+1)(s+1)}$$

(2)
$$T = 1.74$$
, $K_c = 0.821$

6.解 校正前
$$G(s) = \frac{8}{s(2s+1)} = \frac{8}{s(\frac{s}{0.5}+1)}, \omega_c = 2$$

$$\gamma = 180^{\circ} + \angle G(j\omega_{\circ}) = 180^{\circ} - 90^{\circ} - \arctan \frac{2}{0.5} = 14^{\circ}$$

做出校正前对数幅频特性,如题 6 解图中的实线所示。

校正后

$$G_{c}(s) = \frac{(10s+1)(2s+1)}{(100s+1)(0.2s+1)}$$

$$= \frac{\left(\frac{s}{0.1}+1\right)\left(\frac{s}{0.5}+1\right)}{\left(\frac{s}{0.01}+1\right)\left(\frac{s}{5}+1\right)}$$

$$G'(s) = G_{c}(s)G(s)$$

$$= \frac{8\left(\frac{s}{0.1}+1\right)}{s\left(\frac{s}{0.01}+1\right)\left(\frac{s}{5}+1\right)}$$

题6解图

做出校正后对数幅频特性,如解图中的虚线 $L'(\omega)$ 所示。由图 $\omega'_{c}=0.8$ 有

$$\gamma' = 180^{\circ} + \arctan \frac{0.8}{0.1} - 90^{\circ} - \arctan \frac{0.8}{0.01} - \arctan \frac{0.8}{5} = 74.5^{\circ}$$

7.解 选择迟后—超前校正

$$G_{c}(s) = \frac{\left(\frac{s}{3} + 1\right)\left(\frac{s}{10} + 1\right)}{\left(\frac{s}{0.36} + 1\right)\left(\frac{s}{90} + 1\right)}$$

校正后系统的开环传递函数

$$G'(s) = \frac{250(\frac{s}{3} + 1)}{s(\frac{s}{0.36} + 1)(\frac{s}{90} + 1)(\frac{s}{100} + 1)}$$

验算,γ′>45°满足要求。

8.解 校正装置
$$G_{c}(s) = \frac{(1+0.25s)(1+0.12s)}{(1+1.34s)(1+0.022s)}$$
。

9.
$$G_c(s) = \frac{0.2s+1}{0.044s+1}, a = 4.5_o$$

10.
$$\mathbf{M}$$
 $G_{c}(s) = \frac{3.3s + 1}{20.4s + 1} \circ$

11.
$$\mathbf{M}$$
 $G_{\circ}(s) = \frac{1}{27.8} \times \frac{431s+1}{15.5s+1}$.