CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION USING MACHINE LEARNING

Presented By:

1. NAVANEETHA BASHETTI - ST. PETERS ENGINEERING COLLEGE- CIVIL

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

PROPOSED SOLUTION

- Develop a machine learning model to detect and classify different types of faults in a power distribution system using electrical measurement data such as voltage and current phasors. The model will identify whether the system is operating normally or if a fault (line-to-ground, line-to-line, or three-phase) has occurred. This automated classification will enable rapid fault detection, support faster decision-making, and enhance the overall reliability of the power grid.
- **Data Collection:** Use a publicly available dataset (e.g., from Kaggle) containing labeled fault types and corresponding electrical measurements.
- Data Pre-processing: Clean the data by handling missing values, normalizing features, and preparing it for model training.
- Model Training: Build and train classification models such as Decision Tree, Random Forest, or Support Vector Machine (SVM) to learn patterns from the input data.
- **Evaluation:** Assess model performance using metrics like accuracy, precision, recall, and F1-score to ensure reliability and robustness.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the rental bike prediction system. Here's a suggested structure for this section:

System requirements:

- IBM Cloud (Mandatory)
- IBM Watsonx.ai Studio for model development and deployment
- IBM Cloud Storage for dataset handling

ALGORITHM & DEPLOYMENT

Algorithm Selection:

 Random Forest Classifier (or Support Vector Machine, based on accuracy and performance)

Data Input:

 The model uses input features like voltage and current phasors from the dataset, with the fault type as the target label.

Training Process:

Supervised learning using labeled fault types for model training

Prediction Process:

 Model deployed using IBM Watson Studio with an API endpoint for real-time fault classification

Pipeline 6

O Random Forest Classifier

0.369

HPO-1

00:00:56

CONCLUSION

In this project, I developed a machine learning model to predict fault types in a power distribution system using voltage and current phasor data from the provided Excel dataset. By training a supervised learning model—such as a Random Forest classifier—on labeled fault types, the system accurately distinguishes between normal and various fault conditions (e.g., line-to-ground, line-to-line, and three-phase faults). This model helps automate fault detection, supports real-time monitoring, and enhances the overall stability and reliability of the power grid.

FUTURE SCOPE

- The model can be integrated with real-time power grid systems for automatic and instant fault detection.
- Advanced deep learning techniques can be explored to further improve fault classification accuracy.
- The system can be scaled to handle more complex faults and support smart grid automation.

IBM CERTIFICATIONS

Getting Started with In recognition of the commitment to achieve professional excellence Navaneetha Bashetti Has successfully satisfied the requirements for: Getting Started with Artificial Intelligence Issued on: Jul 20, 2025 Issued by: IBM SkillsBuild Verify: https://www.credly.com/badges/9980c4f9-3fa1-4329-b28a-9cd06a6d8753

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Navaneetha Bashetti

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 20, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/2ab2e0fb-9bf8-4814-9ef3-df934138fcf3

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Navaneetha Bashetti

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

