$$sp(S,c) \triangleq \{\sigma' \mid \exists \sigma \in S . (\sigma,c) \hookrightarrow * (\sigma',skip)\}$$

$$sp(S,c) \triangleq \{\sigma' \mid \exists \sigma \in S . (\sigma,c) \hookrightarrow * (\sigma',skip)\}$$

$$sp(S,c) \triangleq \{\sigma' \mid \exists \sigma \in S . (\sigma,c) \hookrightarrow^* (\sigma',skip)\}$$

$$sp(S,c) \triangleq \{\sigma' \mid \exists \sigma \in S . (\sigma,c) \hookrightarrow * (\sigma',skip)\}$$

$$sp(S,c) \triangleq \{\sigma' \mid \exists \sigma \in S . (\sigma,c) \hookrightarrow * (\sigma',skip)\}$$

• Given a set of states S and a command c, the strongest post-condition operator sp(S,c) consists of all states that can be obtained after executing c on any state in S.

$$sp(S,c) \triangleq \{\sigma' \mid \exists \sigma \in S . (\sigma,c) \hookrightarrow * (\sigma',skip)\}$$

- We can use a FOL formula F to represent a set of states.
- The symbolic strongest post-condition operator can be defined as:

$$\sigma' \vDash sp(F, c) \Leftrightarrow \exists \sigma . \ \sigma \vDash F \land (\sigma, c) \hookrightarrow^* (\sigma', skip)$$

• We can now use the semantics in FOL (ρ) to define symbolic sp:

$$sp(F, \mathbf{c}) \triangleq (\exists V. F \land \rho(\mathbf{c}))[V/V']$$

FIRST ELIMINATE EXISTENTIAL QUANTIFICATION ON V, THEN SUBSTITUTE V FOR V'

QUANTIFIER ELIMINATION

- Eliminate quantifiers in a formula F to obtain an equivalent formula G (equivalent modulo $T_{\mathbb{Q}}$).
 - A decidable procedure exists for $T_{\mathbb{Q}}$ -formulae.
 - Ferrante and Rackoff's Method (BM Chapter 7)
- Consider the formula: $\exists y . x = y + 1$.
 - Equivalent formula after eliminating y: true
- Consider the formula: $\exists y . y > 1 \land x = 2y$
 - Equivalent formula after eliminating y: x > 2
- What about $\exists y . x = 2y \land x > y$?
 - Equivalent formula: x > 0

STRONGEST POST-CONDITION EXAMPLE

$$sp(F, \mathbf{c}) \triangleq (\exists V. F \land \rho(\mathbf{c}))[V/V']$$

Lets calculate sp(y > 0,x=y+1)

STRONGEST POST-CONDITION EXAMPLE

$$sp(F, c) \triangleq (\exists V. F \land \rho(c))[V/V']$$

Lets calculate
$$sp(y > 0,x:=y+1)$$

$$sp(y > 0,x:=y+1) \triangleq \exists x . \exists y . y > 0 \land \rho(x:=y+1)$$

$$\equiv \exists x . \exists y . y > 0 \land x' = y+1 \land y' = y$$

$$\equiv y' > 0 \land x' = y'+1 \blacktriangleleft$$

$$\equiv y > 0 \land x = y+1 \blacktriangleleft$$

Eliminate x and y
Substitute x' and y' with x and y

STRONGEST POST-CONDITION EXAMPLE

$$sp(F, c) \triangleq (\exists V. F \land \rho(c))[V/V']$$

Lets calculate sp(y > 0,x=y+1)

$$sp(y > 0,x:=y+1) \triangleq \exists x . \exists y . y > 0 \land \rho(x:=y+1)$$

 $\equiv \exists x . \exists y . y > 0 \land x' = y+1 \land y' = y$
 $\equiv y' > 0 \land x' = y'+1$
 $\equiv y > 0 \land x = y+1$

Alternative Formulation for Assignment Statement:

$$sp(F, \mathbf{x} := \mathbf{e}) \equiv \exists x' . F[x'/x] \land x = e[x'/x]$$

MORE EXAMPLES

 $sp(y > 0,x:=havoc) \triangleq ???$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y [\rho(x:=havoc) \triangleq frame(x)]$$

 $\triangleq y > 0$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y [\rho(x:=havoc) \triangleq frame(x)]$$

 $\triangleq y > 0$

 $sp(F, x:=havoc) \triangleq \exists x.F$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

 $sp(F, assume(G)) \triangleq ???$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

 $sp(F, assume(G)) \triangleq F \land G$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

$$sp(F, assume(G)) \triangleq F \wedge G$$

$$sp(F, assert(G)) \triangleq ???$$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

 $sp(F, assume(G)) \triangleq F \wedge G$

$$sp(\mathsf{F}, \mathsf{assert}(\mathsf{G})) \triangleq \exists V. F \land (G \rightarrow frame(\emptyset))$$

$$\equiv \exists V. F \land (\neg G \lor frame(\emptyset))$$

$$\equiv \exists V. (F \land \neg G) \lor \exists V. (F \land frame(\emptyset))$$

$$\equiv \exists V. (F \land \neg G) \lor F[V'/V] \blacktriangleleft \blacksquare$$

$$\equiv (\exists V. F \land \neg G) \lor F \blacktriangleleft \blacksquare$$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

$$sp(F, assume(G)) \triangleq F \wedge G$$

$$sp(\mathsf{F}, \mathsf{assert}(\mathsf{G})) \triangleq (\exists V. \mathsf{F} \land \neg \mathsf{G}) \lor \mathsf{F}$$

MORE EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

 $sp(F, assume(G)) \triangleq F \wedge G$

 $sp(\mathsf{F}, \mathsf{assert}(\mathsf{G})) \triangleq (\exists V. \mathsf{F} \land \neg \mathsf{G}) \lor \mathsf{F}$

 $sp(false, \mathbf{c}) \triangleq ???$

EXAMPLES

$$sp(y > 0,x:=havoc) \triangleq \exists x . \exists y . y > 0 \land y' = y$$

 $\triangleq y > 0$

 $sp(F, assume(G)) \triangleq F \wedge G$

 $sp(\mathsf{F}, \mathsf{assert}(\mathsf{G})) \triangleq (\exists V. \mathsf{F} \land \neg \mathsf{G}) \lor \mathsf{F}$

 $sp(false, \mathbf{c}) \triangleq false$

EXAMPLES

- $sp(x > 5, assume(x < 20)) \equiv x > 5 \land x < 20$
- $sp(x > 5, assert(x < 0)) \equiv true$
- $sp(x > 0, x = x + 1) \equiv x > 1$

STRONGEST POST-CONDITION COMPOUND STATEMENTS

• $sp(F, c;c') \triangleq sp(sp(F, c), c')$

STRONGEST POST-CONDITION COMPOUND STATEMENTS

- $sp(F, c;c') \triangleq sp(sp(F, c), c')$
- $sp(F, if(G) then c else c') \triangleq ???$

STRONGEST POST-CONDITION COMPOUND STATEMENTS

- $sp(F, c;c') \triangleq sp(sp(F, c), c')$
- $sp(F, if(G) \text{ then c else c'}) \triangleq sp(F \land G, c) \lor sp(F \land \neg G, c')$

HOMEWORK: PROVE USING DEFINITION OF SP

STRONGEST POST-CONDITION WHILE LOOPS

How to find sp(F, while(G) do c)?

WHILE LOOPS

How to find sp(F, while(G) do c)?

Let us collect all states possible at the end of any iteration

STRONGEST POST-CONDITION WHILE LOOPS

How to find sp(F, while(G) do c)?

• $sp(x < 0, while(x<10) do x:=x+1;) \triangleq ???$

• $sp(x < 0, while(x < 10) do x := x + 1;) \triangleq ???$

• $sp(x < 0, while(x<10) do x:=x+1;) \triangleq ???$

• $sp(x < 0, while(x < 10) do x := x + 1;) \triangleq x \ge 10 \land x < 11$

- $sp(x < 0, while(x < 10) do x := x + 1;) \triangleq x \ge 10 \land x < 11$
- $sp(x > 0, while(x < 10) do x := x + 1;) \triangleq ???$

- $sp(x < 0, while(x < 10) do x := x + 1;) \triangleq x \ge 10 \land x < 11$
- $sp(x > 0, while(x<10) do x:=x+1;) \triangleq x \ge 10$

STRONGEST POST-CONDITION AND VERIFICATION

- Given a program c with assertions, then c is safe if $sp(\text{error} = 0,c) \rightarrow \text{error} = 0$ is valid.
- The Hoare Triple $\{P\}c\{Q\}$ is valid if $sp(P, c) \rightarrow Q$ is valid.
- Do we have a decidable procedure for sp?
 - No, due to the (potentially) unbounded computation required for while loops.

```
1: assume(i = 0 \land n \ge 0);

2: while(i < n) do

3: i := i + 1;

4: assert(i = n);

sp(error = 0,1:) \equiv error = 0 \land i = 0 \land n \ge 0
```

 $n \ge 0 \land i < n \land i' = i + 1 \land frame(i)$

 $sp(error = 0 \land i = 0 \land n \ge 0 \land i < n,3:) \equiv \exists i, n, error . error = 0 \land i = 0$

```
1: assume(i = 0 \land n \ge 0);
                                                                                                                                                                                                                                                  2: while(i < n) do
                                                                                                                                                                                                                                                  3: i := i + 1;
                                                                                                                                                                                                                                                  4: assert(i = n);
sp(error = 0,1:) \equiv error = 0 \land i = 0 \land n \ge 0
sp(error = 0 \land i = 0 \land n \ge 0 \land i < n,3:) \equiv \exists i, n, error . error = 0 \land i = 0
                                                                                                                                                                                                                                                                                                                                                                                             n \ge 0 \land i < n \land i' = i + 1 \land frame(i)
                                                                                                                                                                                                                                                                                                                                                                                                    \equiv error = 0 \land i = 1 \land n > 0
sp(error = 0 \land i = 1 \land n \ge 1 \land i < n,3:) \equiv error = 0 \land i = 2 \land n \ge 2
```

```
1: assume(i = 0 \land n \ge 0);
                               2: while(i < n) do
                               3: i := i + 1;
                               4: assert(i = n);
sp(error = 0,1:) \equiv error = 0 \land i = 0 \land n \ge 0
sp(error = 0 \land i = 0 \land n \ge 0,2:) \equiv error = 0 \land ((i = 0 \land n \ge 0))
                                        \forall (i = 1 \land n \ge 1) \lor (i = 2 \land n \ge 2) \lor \dots)
                                        \wedge i \geq n
```

```
1: assume(i = 0 \land n \ge 0);
                                 2: while(i < n) do
                                 3: i := i + 1;
                                 4: assert(i = n);
sp(error = 0,1:) \equiv error = 0 \land i = 0 \land n \ge 0
sp(error = 0 \land i = 0 \land n \ge 0,2:) \equiv error = 0 \land ((i = 0 \land n \ge 0))
                                           \forall (i = 1 \land n \ge 1) \lor (i = 2 \land n \ge 2) \lor \dots)
                                           \wedge i \geq n
                                           \equiv error = 0 \land i = n
sp(error = 0 \land i = n, 4:) \equiv error = 0 \land i = n \lor \exists V. error = 0 \land i = n \land i \neq n
                                \equiv error = 0 \land i = n
                                \Rightarrow error = 0
```

SOUNDNESS AND COMPLETENESS

- Verification Problem: For a given program c, is (*Error*, c') reachable for some c'?
 - A program c is safe if (Error, c') is not reachable for any c'.
 - Denoted as ⊢ c is safe.
- Strongest Post-condition based Verification Procedure
 - c is safe if $sp(error = 0,c) \Rightarrow error = 0$.
 - Denoted as ⊨ c is safe.
- Soundness: Does \models c is safe \Rightarrow \vdash c is safe?
- Completeness: Does \vdash c is safe \Rightarrow \models c is safe?

SOUNDNESS AND COMPLETENESS STRONGEST POST-CONDITION

- Is the Strongest Post-condition based verification procedure sound?
 - Yes, by construction. Prove this!
- Is the Strongest Post-condition based verification procedure complete?
 - Relatively Complete.
 - Relies on validity (modulo theory) of an FOL formula.
 - If the FOL theory is incomplete, then there could be valid formulae in the theory, which are not valid modulo the axioms. E.g. Peano Arithmetic.
 - However, the Theory of Reals (and Theory of Integers) are both complete, and hence the procedure is also complete.