☐ PetrDockalik / Digital-electronics-1

Install Vivado

Creating project

Laboratory - Multiplexer

Comparator_4

Select sel_i[1:0]	Output f_o[1:0]
0 0	a_i[1:0]
0 1	b_i[1:0]
10	c_i[1:0]
11	d_i[1:0]


```
begin
f_o \leftarrow a_i \text{ when } (sel_i = "00") \text{ else}
       b_i when (sel_i = "01") else
       c_i = 10 when (sel_i = 10) else
       d_i;
end architecture Behavioral;
    p_stimulus : process
    begin
        -- Report a note at the begining of stimulus process
        report "Stimulus process started" severity note;
        s a <= "00"; s b <= "10"; s c <= "00"; s d <= "00";
         s_sel <= "01"; wait for 100 ns;</pre>
        s_a <= "00"; s_b <= "00"; s_c <= "01"; s_d <= "00";
        s_sel <= "10"; wait for 100 ns;</pre>
        s_a <= "11"; s_b <= "01"; s_c <= "01"; s_d <= "10";
         s_sel <= "00"; wait for 100 ns;</pre>
```

architecture Behavioral of mux_2bit_4to1 is

```
s_sel <= "01"; wait for 100 ns;

s_sel <= "10"; wait for 100 ns;

s_sel <= "11"; wait for 100 ns;

-- Report a note at the end of stimulus process report "Stimulus process finished" severity note;

wait;
end process p_stimulus;</pre>
```


Tutorial

Step 2

Step 5

Step 7

Other tables must give "Ok" or "Yes".

Step 8

