Static-12

Title

Cantilever beam with an in-plane vertical load at the free end.

Description

Find deflections of the cantilever beam subjected to an in-plane vertical load at the free

(a) Cantilever beam with an in-plane vertical load at the free end

(b) Finite element model

Structural geometry and analysis model

Model

Analysis Type

2-D static analysis (X-Y plane)

Unit System

in, lbf

Dimension

Length 3.0 in Depth 0.6 in Thickness 0.1 in

Element

Plate element (Thick type)

Material

Modulus of elasticity $E = 10.7 \times 10^6 \text{ psi}$ Poisson's ratio v = 0.3

Element Property

Size $a \times b = 1.5 \text{ in} \times 0.1 \text{ in}$ Thickness t = 0.1 in

Boundary Condition

Nodes $1, 3, 5 \sim 9$; Constrain Dx and Dy.

Load Case

An in-plane vertical load, P = 120 lbf is distributed over the free end nodes as noted below.

Top and bottom nodes 2 and 4 = 10 lbf Intermediate nodes $17 \sim 21$ = 20 lbf

Results

Y-displacements of the structure (Node 2)

Comparison of Results

Unit: in

Node 2	MSC/NASTRAN	STAAD/PRO	MIDAS/Civil
Maximum δy	-0.05224233	-0.05438000	-0.05243585

References

"MSC/NASTRAN Verification Problem Manual", V.64, The MacNeal-Schwendler Corporation, 1986, Problem No. V2408A.

"STAAD-III/ISDS, Getting Started and Example Manual", Research Engineers, Inc., 1994.