

Objektorientierte Modellierung und Programmierung

Dr. Christian Schönberg

Lösungsstrategien II

- TSP
- Aufzählungsmethoden
 - Backtracking (Wiederholung)
 - Branch & Bound
- Relaxation, Approximation
- Heuristiken
 - Lokale Suche
 - Tabu Suche
- Evolutionäre Algorithmen

Optimierungsprobleme (Wiederholung)

Optimierungsprobleme

- gegeben: ein Problem O
- gesucht: die beste (optimale) Lösung für O

■ Formal:

- Lösungsraum S: Menge aller Lösungen für O
- Gütefunktion q: S \rightarrow R⁺ (q(x) = Qualität der Lösung x aus S)
- Finde die Lösung $x \in S$, so dass q(x) optimal (maximal oder minimal) ist
 - $\max\{q(x) \mid x \in S\}$ oder $\min\{q(x) \mid x \in S\}$
- Für viele Optimierungsprobleme gibt es keine polynomiale Lösung
- Beispiel: Route des Paketlieferanten, die an allen Adressen vorbeikommt und im Lager anfängt und aufhört

Travelling Salesman Problem (TSP)

Gegeben

- Liste von Orten
- paarweise Kosten zwischen Orten (Entfernung, Reisezeit, Reisekosten, ...)

Gesucht

- billigste Route
- von einem Startpunkt,
- die jeden anderen Ort besucht und
- wieder am Startpunkt endet
- **≻**Rundreise
- NP-vollständig
- Weite Übertragbarkeit
 - Planung, Logistik, Chipdesign, ...

- Gegeben sei ein ungerichteter, gewichteter Graph G = (V, E) mit Kantengewichten c(e) = c(u, v) und |V| = n
- gesucht ist der Pfad $(v_1, v_2, ..., v_n, v_1)$, der
 - jeden Knoten $v_i \in V$ genau einmal enthält
 - geschlossen ist (Anfangsknoten = Endknoten)

so dass
$$\sum_{i=1}^{n-1} c(v_i, v_{i+1}) + c(v_n, v_1)$$
minimal unter all an möglichen Dfader

minimal unter allen möglichen Pfaden ist

■ Verschärfung: für alle Gewichte gilt zusätzlich die Dreiecksungleichung, d.h. für alle i, j, k ∈ { 1, ..., n }: $c(v_i, v_i) \le c(v_i, v_k) + c(v_k, v_i)$

Gesucht: Kürzester Weg von A nach A über jeden anderen Knoten

Gesucht: Kürzester Weg von A nach A über jeden anderen Knoten

Kandidat 1: A, B, E, D, G, F, C, A

Kosten: 3 + 5 + 3 + 4 + 1 + 4 + 1 = 21

Gesucht: Kürzester Weg von A nach A über jeden anderen Knoten

Kandidat 1: A, B, E, D, G, F, C, A

Kosten: 3 + 5 + 3 + 4 + 1 + 4 + 1 = 21

Kandidat 2: A, C, F, D, G, E, B, A

Kosten: 1 + 4 + 2 + 4 + 2 + 5 + 3 = 21

Gesucht: Kürzester Weg von A nach A über jeden anderen Knoten

Kandidat 1: A, B, E, D, G, F, C, A

Kosten: 3 + 5 + 3 + 4 + 1 + 4 + 1 = 21

Kandidat 2: A, C, F, D, G, E, B, A

Kosten: 1 + 4 + 2 + 4 + 2 + 5 + 3 = 21

Kandidat 3: A, D, C, F, G, E, B, A

Kosten: 2 + 5 + 4 + 1 + 2 + 5 + 3 = 22

Aufzählungsmethoden

Aufzählungsmethoden

- Optimierungsprobleme: Suche die beste Lösung in einem (großen) Lösungsraum
- Aufzählungsstrategien
 - zähle alle Lösungen auf, prüfe deren Güte und wähle die beste aus
 - möglich in kleinem Lösungsraum
- Problem: Lösungsräume können schnell sehr groß werden
 - Beispiel: n! mögliche Permutationen von n Zahlen
 - $n = 5 \rightarrow 120$ Lösungen
 - $n = 30 \rightarrow 10^{32}$ Lösungen (bei 1000 Lösungen/Sekunde: 1 Trilliarde Jahre)

Aufzählungsmethoden (2)

Vorgehen

- strukturiere den Suchprozess in Teilzustände und mögliche Entscheidungsalternativen
 - → Entscheidungsbaum
- feste Ordnung auf den Entscheidungsalternativen, d.h. auf den Nachfolgern eines Knotens im Entscheidungsbaum

Mögliche Ziele

- Konstruktion einer oder aller Lösungen
- Backtracking-Strategie
 - Systematische Suche im gesamten Lösungsraum
- Branch & Bound-Strategie
 - Wie Backtracking, aber vorzeitiger Abbruch der Suche in Teilbäumen, die keinen Erfolg versprechen

Backtracking-Strategie

- Beginne mit trivialem Teilproblem mit Lösung s_n
- lacktriangle Wähle die erste Entscheidung d_n und erweitere s_n durch d_n zu s_{n-1}
- Fahre fort, bis durch die resultierende Entscheidungsfolge $(d_n, ..., d_1)$ eine vollständige Lösung s_0 konstruiert wurde
- Falls auf dem Weg keine Lösung konstruiert werden kann oder falls alle Lösungen konstruiert werden sollen:
 - revidiere die letzte Entscheidung (kehre von s_k zurück zu s_{k+1})
 - falls nun eine andere Entscheidung möglich ist
 → wähle nächste mögliche Entscheidung sonst: wiederhole Revidierungsschritt

Beispiel: Permutationen

- Gegeben: n Zahlen,z.B. 1, ..., n
- Erzeuge alle Permutationen $p = (z_1, ..., z_n)$
- Vorgehen
 - gegeben: Teillösung
 s_i = (z₁, z₂, ..., z_i)
 → Entscheidung: Füge nächste, unbenutzte Zahl z_{i+1} an
 - Ordnung auf Entscheidungen durch Wert von z
 ← revidieren: Lösche die letzte Zahl aus s_i
- Initiale Teillösung: $s_n = ()$

```
■ Sei n = 3:
               s = ()
   Init
   \rightarrow 1 s = (1)
   • \rightarrow 2  s = (1, 2)
   \rightarrow 3  s = (1, 2, 3) OK
   ■ ← 3
              s = (1, 2)
               s = (1)
   - ← 2
               s = (1, 3)
   \rightarrow 3
   \rightarrow 2
               s = (1, 3, 2) OK
   ■ ← 2
              s = (1, 3)
   - ← 3
               s = (1)
   ■ ← 1
               s = ()
   \rightarrow 2
              s = (2)
   \rightarrow 1
              s = (2, 1)
```


Festlegungen

- feste Ordnung auf den zu besuchenden Städten
 - z.B. alphabetisch
- Start- und Endstadt: A
- Initiale Lösung: $s_n = (A)$, Weglänge = 0

In jedem Schritt

- konstruiere nächste Teillösung s_{i-1}:
 Hänge die nächste, nicht besuchte Stadt an die Folge s_i
 - Rundtour komplett? Güte berechnen
 - ➤ ggf. als beste Tour merken
- falls keine Entscheidung mehr möglich ist oder alle Lösungen konstruiert werden sollen
 - revidiere die letzte Entscheidung: entferne die letzte Stadt

ABECDA

ABEDCA

ACBDEA

ACBEDA

Länge:

ABCDEA

ABCEDA

ABDCEA

ABDECA

Länge:

Länge: 24

10

Länge: 24

10

Länge: 24

10

Länge: 24

10

ABCD

ABCDE

ABCDEA

Länge: 24

ABCE

ABCED

ABCEDA

20

ABEC

ABECD

ABECDA

28

ABED

ABEDC

ABEDCA

32

ACBD

ACBDE

ACBDEA

22

30

ABDC

ABDCE

ABDCEA

30

ABDE

ABDEC

ABDECA

ACBE

ACBED

ACBEDA

20

Branch & Bound: TSP

- Vermindern des Rechenaufwandes durch frühzeitiges Erkennen aussichtsloser Teilbäume
- TSP: Untere Schranke (Bound) für die Länge der noch fehlenden Kanten

Branch & Bound-Strategie

- Branch-Schritt
 - systematische Suche wie beim Backtracking
- Bound-Schritt
 - bei jeder Teillösung: berechne untere Schranke (Bound) für den noch fehlenden Teil der Lösung
 - Abbruch der Suche in einem Zweig, falls
 Güte der Teillösung + Bound
 schlechter als die bisher gefundene Lösung ist
- Ziele
 - möglichst frühzeitiger Abbruch
 - möglichst einfach zu berechnender Bound

Beispiel: TSP mit Branch & Bound

Bisher beste Lösung: 24 Bisher beste Lösung: 20

Strategien

- Divide & Conquer
 - Rekursion
 - Dynamische Programmierung
- Aufzählung
 - Backtracking
 - Branch & Bound

Ergebnis

- exakte Lösungen, keine Näherungen → Optimum
- Problem: zu hoher Aufwand bei sehr komplexen Problemen

Grundlegende Methoden

- Optimierungsprobleme
 - sind oft NP-schwer, d.h. bisher bekannte Algorithmen $\in O(2^n)$
 - ➤ sind nicht in akzeptabler Zeit exakt lösbar
- Möglichkeiten
 - Relaxation Lockerung von Nebenbedingungen
 - Approximation Näherungsweise Lösung
 - Heuristiken Intelligente Suchstrategien im Lösungsraum

Exkurs: NP

NP-schwer (NP-hard)

Ist mindestens so "schwer" wie ein NP-Problem

Jedes andere NP-Problem kann in polynomieller Zeit darauf reduziert werden

NP-vollständig (*NP*-complete)

NP

Lösungen können in polynomieller Zeit überprüft werden

Annahme: P≠NP

Probleme können in

polynomieller Zeit gelöst werden

Relaxation (Lockerung)

- Abschwächung der Nebenbedingungen
- Lösung des hierdurch vereinfachten Problems
- Übertragung der vereinfachten Lösung auf das komplexe Problem
- Lagrange-Relaxation
 - gewichte die Nebenbedingungen durch "Strafwerte"
 - erweitere die Gütefunktion um die Berücksichtigung dieser Strafwerte

Beispiel: Relaxation TSP

- Bestimmung einer unteren Schranke für die Länge der kürzesten Rundreise
- Verzicht auf die Nebenbedingung eines geschlossenen Weges
- Lösung
 - Konstruktion des MST
 - Erweiterung um die Kante kürzester Länge
 - Ergebnis ist keine zulässige Rundtour
 - ➤ Mindestlänge für eine Rundtour (z.B. für Branch & Bound)

---- Kante des MST

Hinzugefügte Kante kürzester Länge

Approximation (Näherung)

- Approximative Verfahren
 - keine Garantie für exakte/optimale Lösung
 - aber Fehlerschranken möglich

Beispiel: Approximation TSP

- Phase 1: Bestimme MST des Graphen
 (Aufwand ~O(|E| log |V|) mit Algorithmus von Prim)
- Phase 2: Bestimme Weg auf dem MST, der ggf. Knoten mehrfach besucht, z.B. durch Preorderdurchlauf
- Phase 3: Streiche mehrfach besuchte Knoten aus der Liste
 - funktioniert nur bei vollständigen Graphen, da sonst nach Streichen eines Knotens ggf. keine Rundtour mehr gebildet werden kann

Beispiel: Approximation TSP (2)

Phase 1: MST

Phase 2: Preorder Weg

1, 2, 3, 2, 4, 5, 6, 5, 7, 8, 7, 9, 10, 11, 10, 9, 12, 9, 7, 5, 4, 2, 1

Phase 3: Streichen von mehrfach besuchten Knoten

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1

Heuristiken

- Intelligente Suchstrategie im Lösungsraum
- Verwendet nur lokales Wissen über den Suchraum
- Keine Garantie für optimale Lösung, aber in akzeptabler Zeit eine relativ gute Lösung
- Kompromiss zwischen Rechenzeit und Güte der Lösung
- Meta-Heuristik
 - abstrakte Heuristik, die für unterschiedliche Anwendungsbereiche konkretisiert werden kann

Meta-Heuristiken

- Lokale Suche
- Tabu-Suche
- Genetische Algorithmen
- Durchgehendes Beispiel: TSP
 - NP-vollständig
 - auf viele Optimierungsprobleme übertragbar
 - TSP mit Dreiecksungleichung: Weltrekord für exakte Lösung liegt bei nur ca. 10.000 Knoten

Lokale Suche

Lokale Suche

 Lokal: nächste Zwischenlösung wird nur lokal in der Nachbarschaft der aktuellen Lösung gesucht

```
x = startLoesung;
while (!abbruch) {
    waehle y aus Nachbarschaft N(x)
    if q(y) besser als q(x)
        x = y
}
```


Voraussetzungen für Lokale Suche

- Initiale Startlösung?
 - Berechnung einer zulässigen suboptimalen Lösung, z.B. durch einfaches Greedy-Verfahren
- Nachbarschaft N(x) einer Lösung x?
 - Menge der zulässigen Lösungen, die sich "wenig" von x unterscheiden
- Abbruchbedingung?
 - kein Nachbar mit besserer Güte vorhanden?
 - Lösungsgüte erreicht?
 - maximale Anzahl an Iterationen oder Rechenzeit
- ➤ alle problemabhängig zu definieren

Auswahl der neuen Lösung

- Aktuelle Lösung x
- Auswahl der Nachbarlösung y aus N(x)
 - Wahl des Nachbarn, der die größte Verbesserung der Gütefunktion mit sich bringt
 - Wahl des ersten Nachbarn, der eine Verbesserung der Güte zur alten Lösung liefert
 - zufällige Auswahl eines Nachbarn, falls mehrere zur selben (besten)
 Verbesserung führen

- Gütefunktion im Lösungsraum ist nicht (streng) monoton
- Globales Optimum wird nicht für jede Startlösung gefunden

Beispiel: Lokale Suche TSP

- Aufgabe: Finde die kürzeste Rundreise mittels lokaler Suche
- Zu klären
 - initiale Lösung
 - z.B. (A, B, C, D, E)

 → Länge 34
 - Nachbarschaft einer Lösung
 - z.B. Konstruktion der Nachbarn von $\mathbf{x} = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ durch Austausch zweier disjunkter Kanten

Konstruktion der Nachbarschaft

Tabu-Suche

Tabu-Suche

- Lokales Suchverfahren, das temporäre Verschlechterungen der Zwischenlösungen erlaubt
- Tabuliste
 - zur Vermeidung von Zyklen
 - hat feste Länge M
 - bereits besuchte Lösungen sind für M Schritte tabu

Tabu-Suche (2)

```
x = startLoesung;
         // bisher beste Lösung
best = x;
(x, wartezeit) → Tabu-Liste
while (!abbruch) {
    bestimme N = N(x); // Nachbarschaft der Lösung x
    entferne Tabu-Liste aus N;
    waehle y mit der besten Guete q(y) aus N
    reduziere die Wartezeit aller Eintraege der Tabu-Liste um 1
    (y, wartezeit) → Tabu-Liste
    if q(y) besser als q(best) {
          best = y; // neue beste Lösung
    x = y;
```



```
Tabulistenlänge = Wartezeit = w = 3
x = ABCDEA
best = ABCDEA
q(ABCDEA) = 34
```


Tabu-Liste:

ABCDEA, 3


```
Tabulistenlänge = Wartezeit = w = 3
x = ABCDEA
best = ABCDEA
q(ABCDEA) = 34
N(x) = \{ACBDEA, ADCBEA, AECDBA, ABDCEA, ABEDCA, ABCEDA \}
q(ACBDEA) = 32
q(ADCBEA) = 29
q(AECDBA) = 31
q(ABDCEA) = 31
                                                                Tabu-Liste:
q(ABEDCA) = 32
                                                                 ABCDEA, 3
q(ABCEDA) = 26
```



```
Tabulistenlänge = Wartezeit = w = 3
x = ABCDEA
best = ABCDEA
q(ABCDEA) = 34
N(x) = \{ACBDEA, ADCBEA, AECDBA, ABDCEA, ABEDCA, ABCEDA \}
q(ACBDEA) = 32
q(ADCBEA) = 29
q(AECDBA) = 31
q(ABDCEA) = 31
                                                                Tabu-Liste:
q(ABEDCA) = 32
                                                                 ABCDEA, 3
q(ABCEDA) = 26
```


Tabulistenlänge = Wartezeit = w = 3 x = ABCEDA best = ABCEDA q(ABCEDA) = 26

Tabu-Liste:

ABCDEA, 2

ABCEDA, 3


```
Tabulistenlänge = Wartezeit = w = 3
x = ABCEDA
best = ABCEDA
q(ABCEDA) = 26
N(x) = { ACBEDA, AECBDA, ADCEBA, ABECDA, ABDECA, ABCDEA }
q(ACBEDA) = 27
q(AECBDA) = 26
q(ADCEBA) = 26
q(ABCDA) = 26
q(ABCDA) = 29
q(ABCDA) = 34
```


Tabu-Liste:

ABCDEA, 2

ABCEDA, 3

Tabulistenlänge = Wartezeit = w = 3 x = AECBDA best = ABCEDA q(ABCEDA) = 26

Tabu-Liste:

ABCDEA, 1

ABCEDA, 2

AECBDA, 3


```
Tabulistenlänge = Wartezeit = w = 3

x = AECBDA

best = ABCEDA
q(ABCEDA) = 26
N(x) = { ACEBDA, ABCEDA, ADCBEA, AEBCDA, AEDBCA, AECDBA, }
q(ACEBDA) = 24
q(ABCEDA) = 26
q(ADCBEA) = 29
q(AEBCDA) = 29
q(AEDBCA) = 32
q(AECDBA) = 31

Tabu-Liste:
ABCCDA, 2
```

AECBDA, 3

Tabulistenlänge = Wartezeit = w = 3 x = ACEBDA best = ACEBDA q(AECBDA) = 24

Tabu-Liste:

ABCEDA, 1

AECBDA, 2

ACEBDA, 3

ACEBDA ist zwar eine optimale Route. Aber das Tabu-Verfahren kennt den Wert des Minimums nicht und läuft daher bis zum Abbruchkriterium!

Bewertung der Tabu-Suche

Vorteile

- viele Variationsmöglichkeiten (Nachbarschaft, Gütefunktion, Tabulistenlänge)
- ➤auf andere Problemstellungen übertragbar
- liefert bei vielen Anwendungen schnell gute Lösungen
- Berechnet oft sogar die besten bekannten Lösungen

Nachteile

- viele Variationsmöglichkeiten erfordern ggf. zeitaufwändige Parametrisierung
- N(x) kann zu groß für eine effiziente Berechnung sein
 - Tabu-Suche definiert für diese Fälle keine Vorgehensweise
- Sicherstellung der Suche im gesamten Lösungsraum schwierig
- keine Garantie für Auffindung des globalen Optimums

Anwendung der Tabu-Suche

- Frameworks (z.B. OpenTS)
 - implementieren generelle Vorgehensweise
 - anwendungsspezifische Aspekte müssen implementiert bzw. spezifiziert werden
 - Nachbarschaft
 - Gütefunktion (Evaluation)
 - Datenstruktur von Tabulisteneinträgen
 - Länge der Tabulisten
 - Abbruchkriterium

Evolutionäre Algorithmen

Idee: Evolutionäre Algorithmen

- Hier: Genetische Algorithmen
- Simulation der Evolution von Lebewesen
 - gute Eigenschaften setzen sich durch (fitness)
 - schlechte Eigenschaften sterben aus (survival of the fittest)
- Beispiel: Züchten von Hunden mit Schlappohren
 - wähle Hunde mit den längsten Ohren
 - paare sie
 - wiederhole, bis die Ohren lang genug sind
 - Idee: Langohr-Eigenschaft setzt sich durch

- Population
 - Menge der Lösungen (Individuen)
- Individuum
 - eine Lösung, kodiert als Sequenz von Genen (z.B. Bits)
- Fitness
 - Gütefunktion

- Beginne mit Startpopulation
- Erzeuge daraus die nächste Generation
 - durch Selektion, Mutation, Rekombination
- Wiederhole bis Abbruchkriterium erfüllt
- Ergebnis: Individuum mit höchster Fitness nach x Generationen

- Möglichst heterogen
- Soll die ganze Breite an möglichen Eigenschaften abdecken
- Oft: zufällig gewählt

- Wähle Individuen aus der aktuellen Generation für die Erzeugung der nächsten Generation
- Auswahlwahrscheinlichkeit direkt proportional zur Fitness

Rekombination

- Wähle zwei zufällige Eltern (Selektion)
- Bestimme zufällig einen Schnittpunkt
- Erzeuge neues Individuum durch Rekombination

- Problem: nicht jede Rekombination ergibt ein gültiges Individuum (z.B. bei TSP)
- ➤ komplexere Operationen

- Verändere zufällig (aber mit geringer Wahrscheinlichkeit) einzelne Gene
- Z.B. durch Bit-Swap

Abbruchkriterium

- Nach fester Zahl von Generationen
- Bei vorgegebener Mindestgüte
- Nach nur noch geringer Verbesserung

Anwendungsfall: Damenproblem

- Wie können auf einem Schachbrett acht Damen positioniert werden, so dass keine Dame eine andere schlagen kann?
 - jede Dame darf jede andere schlagen (keine Farben)
 - übliche Bewegungsmuster (horizontal, vertikal, diagonal)
 - keine zwei Damen in der gleichen Zeile, Spalte oder Diagonale
 - erweiterbar: n Damen auf n×n Feld

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

- Zahl der Damen, die sich paarweise nicht bedrohen
- AB, AC, AD, AE, AF, AG, AH, BC, BD, BE, ...
- Minimum: 0 (alle Damen bedrohen sich gegenseitig)

■ Maximum:
$$\binom{n}{2} = \frac{n \cdot (n-1)}{2}$$

(keine Damen bedrohen sich gegenseitig)

Sequenz von n Positionen:
 Zahl an Stelle i: Position der Dame in Zeile i
 (eindeutig, da keine zwei Damen pro Zeile möglich sind)

(5, 7, 2, 6, 3, 1, 4, 8)

- Ändere einen zufälligen Wert aus der Sequenz von Positionen
- >verschiebe Dame i in eine andere Spalte

Rekombination

Startpopulation: { (1, 4, 2, 1) }

Fitness: q(1, 4, 2, 1) = 4


```
Startpopulation: { (1, 4, 2, 1) }
```

Fitness: q(1, 4, 2, 1) = 4

Mutationen: $(1, 4, 2, 1) \rightarrow (1, 3, 2, 1), (1, 4, 2, 1) \rightarrow (3, 4, 2, 1)$


```
Startpopulation: { (1, 4, 2, 1) }
```

Fitness: q(1, 4, 2, 1) = 4

Mutationen: $(1, 4, 2, 1) \rightarrow (1, 3, 2, 1), (1, 4, 2, 1) \rightarrow (3, 4, 2, 1)$

Population (Gen. 2): { (1, 3, 2, 1), (3, 4, 2, 1) }

Fitness: q(1, 3, 2, 1) = 2, q(3, 4, 2, 1) = 4


```
Startpopulation: \{ (1, 4, 2, 1) \}

Fitness: q(1, 4, 2, 1) = 4

Mutationen: (1, 4, 2, 1) \rightarrow (1, 3, 2, 1), (1, 4, 2, 1) \rightarrow (3, 4, 2, 1)
Population (Gen. 2): \{ (1, 3, 2, 1), (3, 4, 2, 1) \}
Fitness: q(1, 3, 2, 1) = 2, q(3, 4, 2, 1) = 4
Mutationen: (1, 3, 2, 1) \rightarrow (1, 3, 1, 1), (3, 4, 2, 1) \rightarrow (3, 4, 3, 1)
Rekombination: (1 \mid 3, 2, 1) + (3 \mid 4, 2, 1) \rightarrow (1, 4, 2, 1)
```



```
Startpopulation: \{(1, 4, 2, 1)\}

Fitness: q(1, 4, 2, 1) = 4

Mutationen: (1, 4, 2, 1) \rightarrow (1, 3, 2, 1), (1, 4, 2, 1) \rightarrow (3, 4, 2, 1)

Population (Gen. 2): \{(1, 3, 2, 1), (3, 4, 2, 1)\}

Fitness: q(1, 3, 2, 1) = 2, q(3, 4, 2, 1) = 4

Mutationen: (1, 3, 2, 1) \rightarrow (1, 3, 1, 1), (3, 4, 2, 1) \rightarrow (3, 4, 3, 1)

Rekombination: (1 \mid 3, 2, 1) + (3 \mid 4, 2, 1) \rightarrow (1, 4, 2, 1)

Population (Gen. 3): \{(1, 3, 1, 1), (3, 4, 3, 1), (1, 4, 2, 1)\}
```



```
Startpopulation: { (1, 4, 2, 1) }

Fitness: q(1, 4, 2, 1) = 4

Mutationen: (1, 4, 2, 1) \rightarrow (1, 3, 2, 1), (1, 4, 2, 1) \rightarrow (3, 4, 2, 1)

Population (Gen. 2): { (1, 3, 2, 1), (3, 4, 2, 1) }

Fitness: q(1, 3, 2, 1) = 2, q(3, 4, 2, 1) = 4

Mutationen: (1, 3, 2, 1) \rightarrow (1, 3, 1, 1), (3, 4, 2, 1) \rightarrow (3, 4, 3, 1) 2

Rekombination: (1 \mid 3, 2, 1) + (3 \mid 4, 2, 1) \rightarrow (1, 4, 2, 1) 1

Population (Gen. 3): { (1, 3, 1, 1), (3, 4, 3, 1), (1, 4, 2, 1) }

...

1 2 3 4

1 2 3 4
```


Anwendung der Gen. Algorithmen

- Frameworks (z.B. JGAP)
 - implementieren generelle Vorgehensweise
 - anwendungsspezifische Aspekte müssen implementiert bzw. spezifiziert werden
 - Kodierung der Lösungen (Individuen)
 - Fitness (Gütefunktion)
 - Mutations- und Rekombinationsoperator
 - Selektionsstrategie
 - Abbruchkriterium (oft Anzahl der Generationen)
 - Größe der Population

- TSP
- Aufzählungsmethoden
 - Backtracking (Wiederholung)
 - Branch & Bound
- Relaxation, Approximation
- Heuristiken
 - Lokale Suche
 - Tabu Suche
- Evolutionäre Algorithmen