Simulating a SEIR Model in a Commuting Mobility Network

Application in Italian Commuting Networks:

Lazio

Puglia

North Italy

How it works: SEIR

1. Variant of the SIR Epidemic Model

Divides a population in

- S -> Susceptible
- E -> Exposed
- I -> Infected
- R -> Recovered

2. Models the **evolution** of SEIR values in time

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dE}{dt} = \beta \frac{SI}{N} - \sigma E$$

$$\frac{dI}{dt} = \sigma E - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$N = S + E + I + R,$$

3. Parameters:

- Transition rate between Susceptible and Exposed.
- Rate of ecoming infected
- Gamma is inverse of Recovery time.

How it works: SEIR Network

SEIR Model assumption: each element of the population is in contact with each other.

SEIR Network Model:

- Divide in subpopulations connected by a network.
- Treat each subpopulation as SEIR
- Adds spreading through a directed network

Number of new Exposed at location j

$$E_{j,t+1} = E_{j,t} + rac{eta_{j,t} S_{j,t} I_{j,t}}{N_j} + rac{S_{j,t} \sum_k m_{j,k}^t x_{k,t} eta_{k,t}}{N_j + \sum_k m_{j,k}^t},$$

Infected arriving from other locations

Infected at the location j

Kuhl, E. (2021). The network SEIR model. In: Computational Epidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-82890-5_10

Data and Implementation

Handled data to get a main dataframe with:

- Residence of the commuters
- Destination of the commuters
- Flux weight

Precision: Municipality

Resid -	Dest ‡	Flux ÷
1005	96004	1
1006	1006	1186
1006	1272	661
1006	1013	254
1006	1219	229
1006	1303	85
1006	1115	72
1006	1189	61
1006	1120	56
1006	1045	54
1006	1270	51
1006	1008	48
1000	250,000	0.00

Commuting mobility matrix from Istat

https://www.istat.it/it/archivio/139381

- Municipalities = Nodes
- Edges represent people traveling between two municipalities
- Edges are directed
- Edges are weighted according to the number of people traveling

SEIR Network implementation:

- Using OD Matrix derived from df
- Cycle of SEIR evolution for every municipality

Used some code from:

https://www.databentobox.com/2020/03/28/covid19_city_si m seir/

First applications

Lazio Region

Region of Lazio . Global efficiency: 0.519

Graph Structure

378 Nodes 15411 Edges

Degrees of Nodes (Municipality): Lazio.

- Approaches a small-world network.
- There are not many nodes with a degree particularly small.
- There is one big hub, few intermediate.

First results

Parameter testing

Using as baseline Lazio network with Rome as start of infection.

Beta: the parameter controlling how often a susceptible-infected contact results in a new exposure

Infected rate with different Beta values

Gamma: the rate an infected recovers and moves into the resistant phase (1/Recovery_Time)

Infected rate with different gamma values

First results

Parameter testing

Sigma: the rate at which an exposed person becomes infective (1/Incubation_Time)

Infected rate with different sigma values

SEIR Network parameters testing confirms that:

- 1. Beta controls how **quick** an epidemic can outbreak.
- 2. Gamma, as connected to the Recovery time, can model the **intensity**.
- Sigma represents the dilation in time of the infected peak.

First applications

Lazio Region

Observations:

Starting at the location with max degree **speeds up** the Infection curve.

Start at max node degree: Roma.

SEIR Model, Lazio . Start at: Roma

Starting at the location with min degree is not always the most effective way to slow down the infection curve.

Start at min node degree: Marcetelli

SEIR Model, Lazio . Start at: Marcetelli

Why?

Start at other location

SEIR Model, Lazio . Start at: Castel Madama

Why other locations:

SEIR Model: Lazio

Start at: Roma

Time

200

Start at max node degree:

50

Roma

Lazio Region

Add City visualization

Start at min node degree:

There are other locations that 'hold' better the contact with the hubs and slow more the infection.

In this case starting Castel Madama spread the desease in other smaller hubs and later in Rome.

Start at other location

100

200

Second application

Puglia Region

Region of Puglia . Global efficiency: 0.554

Graph Structure

258 Nodes 12559 Edges

- No single Hub like Rome, but multiples.
- More intermediate nodes.
- More clustered

Second application

Puglia Region

Start at max node degree: Lecce

SEIR Model, Puglia . Start at: Lecce

Infection rate at different big cities

Start at min node degree: Isole Tremiti

SEIR Model, Puglia . Start at: Isole Tremiti

Infection rate at different big cities

Bigger area

North Italy

North Italy. Global efficiency 0.39

Graph Structure

3956 Nodes 318380 Edges

Degrees of Nodes (Municipality): North Italy.

Regions:

Val d'Aosta, Piemonte, Lombardia, Veneto, Trentino, Friuli

Bigger area

North Italy

Start at max node degree: Milano

Start at min node degree: Isole Tremiti

Conclusions

Parameter Testing confirms the Beta, Gamma and Sigma function in the SEIR Model.

Lazio

In a region with only a big Hub and some intermediate hubs, there is diverse spreading of the disease depending on where and when the infection reach the big Hub (Rome).

North Italy

In a bigger area and with more diverse important hubs and good connection, there is no difference in the peak infection overall, around 150's day, even when started in lower degree nodes.

Puglia

Due to medium hubs of smaller dimension, the disease spreads slowly if starting in a low degree node.

