

MCP3201

2.7V 12-Bit A/D Converter with SPITM Serial Interface

Features

- · 12-bit resolution
- · ±1 LSB max DNL
- ±1 LSB max INL (MCP3201-B)
- ±2 LSB max INL (MCP3201-C)
- · On-chip sample and hold
- SPI^{TM} serial interface (modes 0,0 and 1,1)
- · Single supply operation: 2.7V 5.5V
- 100ksps max. sampling rate at V_{DD} = 5V
- 50ksps max. sampling rate at V_{DD} = 2.7V
- · Low power CMOS technology
- · 500 nA typical standby current, 2 µA max.
- 400 µA max. active current at 5V
- · Industrial temp range: -40°C to +85°C
- · 8-pin MSOP, PDIP, SOIC and TSSOP packages

Applications

- · Sensor Interface
- · Process Control
- Data Acquisition
- · Battery Operated Systems

Description

The Microchip Technology Inc. MCP3201 is a successive approximation 12-bit Analog-to-Digital (A/D) Converter with on-board sample and hold circuitry. The device provides a single pseudo-differential input. Differential Nonlinearity (DNL) is specified at ±1 LSB, and Integral Nonlinearity (INL) is offered in ±1 LSB (MCP3201-B) and ±2 LSB (MCP3201-C) versions. Communication with the device is done using a simple serial interface compatible with the SPI protocol. The device is capable of sample rates of up to 100 ksps at a clock rate of 1.6 MHz. The MCP3201 operates over a broad voltage range (2.7V - 5.5V). Low current design permits operation with typical standby and active currents of only 500 nA and 300 µA, respectively. The device is offered in 8-pin MSOP, PDIP, TSSOP and 150 mil SOIC packages.

Package Types

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

1.1 Maximum Ratings*

V _{DD} 7.0V
All inputs and outputs w.r.t. V_{SS} 0.6V to V_{DD} +0.6V
Storage temperature65°C to +150°C
Ambient temp. with power applied65°C to +125°C
ESD protection on all pins (HBM)> 4 kV

^{*}Notice: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIN FUNCTION TABLE

Name	Function				
V _{DD}	+2.7V to 5.5V Power Supply				
V_{ss}	Ground				
IN+	Positive Analog Input				
IN-	Negative Analog Input				
CLK	Serial Clock				
D _{OUT}	Serial Data Out				
CS/SHDN	Chip Select/Shutdown Input				
V_{REF}	Reference Voltage Input				

ELECTRICAL CHARACTERISTICS

Parameter	Sym	Min	Тур	Max	Units	Conditions
Conversion Rate:						
Conversion Time	t _{conv}	_	_	12	clock cycles	
Analog Input Sample Time	t _{SAMPLE}		1.5		clock cycles	
Throughput Rate	f _{SAMPLE}	_	_	100 50	ksps ksps	$V_{DD} = V_{REF} = 5V$ $V_{DD} = V_{REF} = 2.7V$
DC Accuracy:			•			
Resolution			12		bits	
Integral Nonlinearity	INL	=	±0.75 ±1	±1 ±2	LSB LSB	MCP3201-B MCP3201-C
Differential Nonlinearity	DNL	_	±0.5	±1	LSB	No missing codes over temperature
Offset Error			±1.25	±3	LSB	
Gain Error		_	±1.25	±5	LSB	
Dynamic Performance:						
Total Harmonic Distortion	THD	_	-82	_	dB	V _{IN} = 0.1V to 4.9V@1 kHz
Signal to Noise and Distortion (SINAD)	SINAD	_	72	_	dB	V _{IN} = 0.1V to 4.9V@1 kHz
Spurious Free Dynamic Range	SFDR		86	_	dB	$V_{IN} = 0.1V \text{ to } 4.9V@1 \text{ kHz}$
Reference Input:						
Voltage Range		0.25	_	V _{DD}	V	Note 2
Current Drain		=	100 .001	150 3	μΑ μΑ	$\overline{\text{CS}} = \text{V}_{\text{DD}} = 5\text{V}$
Analog Inputs:						
Input Voltage Range (IN+)	IN+	IN-	_	V _{REF} +IN-	V	
Input Voltage Range (IN-)	IN-	V _{ss} -100		V _{ss} +100	mV	
Leakage Current		_	0.001	±1	μA	
Switch Resistance	R _{ss}	_	1K	_	W	See Figure 4-1
Sample Capacitor	C _{SAMPLE}		20		pF	See Figure 4-1

- Note 1: This parameter is established by characterization and not 100% tested.
 - 2: See graph that relates linearity performance to V_{REF} level.
 - 3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. See Section 6.2 for more information.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Parameter	Sym	Min	Тур	Max	Units	Conditions
Digital Input/Output:			L		L	1000000
Data Coding Format		Straight Binary				
High Level Input Voltage	V _{IH}	0.7 V _{DD}		_	V	
Low Level Input Voltage	V _{IL}	_		0.3 V _{DD}	V	
High Level Output Voltage	V _{oH}	4.1	_	_	V	I _{OH} = -1 mA, V _{DD} = 4.5V
Low Level Output Voltage	V _{OL}	_	_	0.4	V	I _{OL} = 1 mA, V _{DD} = 4.5V
Input Leakage Current	l _{L1}	-10		10	μA	V _{IN} = V _{SS} or V _{DD}
Output Leakage Current	I _{LO}	-10	_	10	μА	V _{OUT} = V _{SS} or V _{DD}
Pin Capacitance (all inputs/outputs)	C _{IN} , C _{OUT}	_	_	10	pF	V _{DD} = 5.0V (Note 1) T _{AMB} = 25 °C, f = 1 MHz
Timing Parameters:			5. S.M.	-		
Clock Frequency	f _{CLK}	=	_	1.6 0.8	MHz MHz	V _{DD} = 5V (Note 3) V _{DD} = 2.7V (Note 3)
Clock High Time	t _{HI}	312	-	_	ns	
Clock Low Time	t _{Lo}	312	-	-	ns	
CS Fall To First Rising CLK Edge	t _{sucs}	100	_	_	ns	
CLK Fall To Output Data Valid	t _{DO}	_	_	200	ns	See Test Circuits, Figure 1-2
CLK Fall To Output Enable	t _{EN}	-	_	200	ns	See Test Circuits, Figure 1-2
CS Rise To Output Disable	t _{ois}	_	-	100	ns	See Test Circuits, Figure 1-2 (Note 1)
CS Disable Time	t _{csh}	625		_	ns	
D _{out} Rise Time	t _R	_	-	100	ns	See Test Circuits, Figure 1-2 (Note 1)
D _{ouт} Fall Time	t _F	-	_	100	ns	See Test Circuits, Figure 1-2 (Note 1)
Power Requirements:						
Operating Voltage	V _{DD}	2.7	1-12	5.5	٧	
Operating Current	I _{DD}	=	300 210	400 —	μA μA	V_{DD} = 5.0V, D_{OUT} unloaded V_{DD} = 2.7V, D_{OUT} unloaded
Standby Current	I _{DDS}	_	0.5	2	μA	$\overline{\text{CS}} = \text{V}_{\text{DD}} = 5.0\text{V}$
Temperature Ranges:					-	
Specified Temperature Range	T _A	-40	_	+85	°C	
Operating Temperature Range	T _A	-40	_	+85	°C	
Storage Temperature Range	T _A	-65	-	+150	°C	
Thermal Package Resistance:						
Thermal Resistance, 8L-PDIP	q _{JA}	_	85		°C/W	
Thermal Resistance, 8L-SOIC	ALP		163	_	°C/W	200
Thermal Resistance, 8L-MSOP	ALP	_	206	_	°C/W	
Thermal Resistance, 8L-TSSOP	q _{JA}		124	_	°C/W	

Note 1: This parameter is established by characterization and not 100% tested.

2: See graph that relates linearity performance to V_{REF} level.

^{3:} Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. See Section 6.2 for more information.

FIGURE 1-1: Serial Timing.

FIGURE 1-2: Test Circuits.