湖南大學

HUNAN UNIVERSITY

元器件的测量报告实验报告

班级: 计科 210X

学号: 202108010XXX

姓名: 甘晴void

实验一 元器件的测量报告

一.实验目的

- 1.熟悉测量验证常用元器件参数,采用替代法(测量回路电流)测量其伏安特性曲线的方法。
 - 2.熟悉测量误差及减小测量误差的注意事项

二.实验仪器和器材

1.实验仪器

直流稳压电源型号:IT6302

台式多用表型号:UT805A

2.实验(箱)器材

电路实验箱

元器件: 电阻(1/2W:100.2、470Ω、1k、4.7k、10k1/4W: 470Ω);

二极管(1N4148);电容(0.1μF、4.7μF、47μF)

三.实验内容

- 1、观测给定元器件,用万用表检测电阻、电容值;判别二极管的 极性 测量二极管的正向压降。
- 2.选用不同挡位测量,计算相对误差。分析:减小测量误差应选择合适的量程。
- 3.测量电阻和二极管的伏安特性。分析:电阻为线性器件,二极管为非线性器件、伏安特性包括正向和反向。

4.观测电阻超过额定功率,二极管超过最大允许电流时的现象。

分析: 元器件工作超过极限参数时会发热损坏。

四.实验原理

1.常用元器件种类、规格、用途及参数

种类	规格	参数	功能	检测
电阻	绕线电阻、薄膜电阻、敏感 电阻	阻值 额定功率	分压、限流 和充当负载	自 特殊 电折
电容	陶瓷、云母、 纸质、薄膜、 电解	容量 额定电压	隔直流、通 交流, 滤波 、	Q表 LCR测试 仪
电感器	空心、磁芯、铁心电感器	电感量、品质因数、标称电流、 分布电容	隔野、滤波 交換兒压电 流阻抗	
二极管	普通二极管 发光二极管 稳压管	最大允许电流和 最高反向工作电 压、正向压降	整流、检波、稳压、混频	
三极管	PNP型 NPN型	电流放大系数 B、ICM、 BVceo、PCM	放大作用和 开关作用	图示仪

本实验中用到的元器件为电阻, 电容, 二极管, 测量其参数。

标称在元器件上的值称为标称值,常用文字符号直接标注和色码标注、选用元器件根据标称值及允许偏差范围选定参数,实际值可用仪表测得。

其中, 电阻的识别如下图:

2.元器件的伏安特性曲线

加在元器件两端的电压 V 与元器件的电流 I 之间的关系曲线—伏安特性曲线。

测试伏安特性曲线: 点测法, 扫描法。

电流测量方法: 直接测量, 替代法间接测量

线性电阻器件代安特性曲线及测量电路:

二极管是非线性器件,正向和反向伏安特性都是非线性的且是不对称的:

3.测量方法及误差

测量方法:

直接测量法: 测量结果直接显示出数值

间接测量法: 先测量与被测量有一定关系的量, 再推算出被测量

大小

组合测量:列出数个被测量方程式,通过联立方程组求解测量误差与偏差值:

测量误差的绝对误差和相对误差构成,是测量值与真实值的差。而偏差值是测量值与标称值的差。

绝对误差由仪表的准确度等级及量程计算得到: $\Delta x = \beta_m * x_m$

相对误差的计算: $\beta = \frac{\Delta x}{x_0} \times 100\%$

测量误差: $\Delta x = x \times a\% + d \times n$

本实验中, 5 位半多用表准确度 0.02% ±6

4.多用表的使用

多用表功能:测量电阻直流交流电压、电流、通断、电容、二极管、三极管,温度、频率等。

多用表使用注意:功能旋转开关及量程选择、表笔位置:测量电压、电阻、二极管、通断等:红表笔插入 VΩ端,黑表笔插入公共端 COM。测量电流时红表笔要插入电流档。

五.实验过程及实验数据

- 1.用万用表测量电阻、电容及二极管、三极管
- a.读出实验箱器件库电阻器的标称值和偏差,用方用表测量出实际电

阻值 (五位万用表准确度 0.02%±6)

电阻标称值 (Ω)	100	470	1000	4700	10000
允许偏差范围	2%	5%	5%	5%	5%
测量档位	200Ω	2000Ω	2000Ω	20000Ω	20000Ω
测量值	100.65Ω	0.4715ΚΩ	1.0033ΚΩ	4.7215ΚΩ	10.0205ΚΩ
偏差	9.65Ω	1.5Ω	3.3Ω	21.5Ω	20.5Ω
绝对测量误差(Ω)	0.08013	0.6943	0.80066	1.5443	2.6041
相对测量误差	0.000796125	1.472534	0.798027	0.327078	0.259877

b.读出实验箱器件电容器的标称值, 用万用表检测电容器估测电容值 (五位万用表准确度 0.2%±5)。

电容标称值(µF)	0.1	0.47	4.7	47
允许偏差范围	20%	20%	20%	20%
档位	600nF	6µF	60μF	60μF
测量值(µF)	0.0986	0.4786	4.86	47.65
偏差	0.0014	0.0086	0.16	0.65
测量误差 (µF)	0.007070994	0.003044714	0.012238066	0.003049318

c.用万用表判断实验箱器件库二极管的好坏; 检测二极管的阳阴极、 正向压降。

	1N4007	LED	LED (共阴极)
正向压降	0.58	1.73	1.65
反向电阻	无穷大	无穷大	无穷大

2.测量元器件伏安特性

a.测量电阻器伏安特性 RX (470, 0.25W), r: 100

假定被测器件 RX 的阻抗及阻抗特性未知,额定功率未知;已知取样标准电阻 r 为 100 欧姆,其电压电流为线性关系。(表格中电压为参考设定值,要求记录实际测量值,VRXIRX 为计算值)

参考设定电压 (Vs)	0	0.5	1	1.5	2	3	6
电源输出电压 (Vo)	0	0.49273	0.99226	1.49196	1.99209	2.9929	5.9922
取样电压 (Vr)	0	0.08659	0.17434	0.26213	0.34998	0.52575	1.05316
V _R x=Vo-Vr	0	0.40614	0.81792	1.22983	1.64211	2.46715	4.93904
I _R X=Vr/r	0	0.0008659	0.0017434	0.0026213	0.0034998	0.0052575	0.0105316

5.测量二极管伏安特性 DX (1N4148) , r: 100

正向测量:

参考设定电压(Vs)	0	0.3	0.5	0.7	1	2	3	6
电源输出电压 (Vo)	0	0.29316	0.49264	0.69248	0.99258	1.98973	2.9886	5.9823
取样电压 (Vr)	0	0.00023	0.00892	0.14786	0.32561	1.23989	2.1971	5.1196
V _D x=Vo-Vr	0	0.29293	0.48372	0.54462	0.66697	0.74984	0.7915	0.8627
I _D x=Vr/r	0	0.0000023	0.0000892	0.000371	0.003256	0.0123989	0.021971	0.051196

伏安特性进线

反向测量:

参考设定电压 (Vs)	-0.5	-1	-2	-3	-6	-10
电源输出电压 (Vo)	-0.49241	-0.99216	-1.99237	-2.9940	-5.9948	-9.9929
取样电压 (Vr)	-0.00891	-0.32721	-1.24313	-2.2022	-5.1259	-9.0585
V _D x=Vo-Vr	-ს 4835	-0.66495	-0.74924	-0.7918	-0.8689	-0.9344
I _D x=Vr/:	-0.0000891	-0.0032721	-0.0124313	-0.022022	-0.051259	-0.090585

二极管反向时, 电路电流极小且基本不变化, 伏安特性为直线

3.测试验证极限参数

在测量电阻 RX 伏安特性后,将电压 V 调大 (可应用电源连续调整钮),被测电阻的电压电流及功率增加,当电阻的工作功率不大于其额定功率,电阻工作正常,当电阻的工作功率超过其额定功率后,就会发热温度过高,当功率继续增加,电阻就会冒烟、烧毁。

电压 (Vs)	0	0.5	1	1.5	2	3	6	10	11	20	31
电源输出电压(Vo)	0	0.49273	0.99226	1.49196	1.99209	2.9929	5.9922	1.73288	1.92513	3.5798	6.0325
取样电压(Vr)	0	0.08659	0.17434	0.26213	0.34998	0.52575	1.05316	8.27898	9.08454	16.5698	27.6545
VRx=Vo-Vr	0	0.40614	0.81792	1.22983	1.64211	2.46715	4.93904	-6.5461	-7.1594	-12.99	-21.622
IRx=Vr/r	0	0.000865	0.00174	0.00262	0.00349	0.00525	0.01053	0.08278	0.09084	0.16569	0.27854
VRx*IRx	0	0.000351	0.00142	0.00322	0.00574	0.01297	0.05201	-0.5419	-0.6503	-2.1524	-5.9794
是否过热冒烟烧毁	否	否	否	否	否	否	否	否	是	定	是

六.分析与总结

实验分析:

- 1.通过间接法测量电阻,可以测量电阻的阻值,并描绘出电阻的 伏安特性曲线,在测量范围内,流过电阻的电流与端电压成线性关系。
- 2.对于二极管,正向时,当电压小于特定值时电流变化较小,当 电压超过导通值时,电流迅速增大。反向接入二极管,电流极小,此 时二级管的阻值极大。测量结果符合二极管的单项导电性。

实验总结:

- 1.通过实验测量、进一步了解体会了二极管的特性,熟悉了间接法对阻信的测量,并描绘了伏安特性曲线
 - 2.学习了根据电阻颜色标识判断电阻大小及允许偏差的方法
 - 3.学习了解了偏差值,误差值的计算
 - 4.了解了直流稳压电压源的使用,熟悉了多用表的使用方法