See the HiHW grading rubric posted on Carmen

Name: <u>Gage Farmer</u> Recitation Instructor: <u>Chris 7</u>

A glass cylinder filled with n=0.91 mol of air is capped with a moveable piston that can slide frictionlessly inside the cylinder. The gas is adiabatically compressed by rapidly slamming the piston down into the cylinder with a constant force $F=190\,\mathrm{N}$ over a distance of $d=14\,\mathrm{cm}$. What is the change in temperature ΔT of the gas? Draw a PV diagram of this process as part of your representation; make sure it includes the adiabatic process, isothermal lines corresponding to the initial and final temperatures, and shading that corresponds to the work done on/by the gas. For the limit check, investigate what happens to ΔT if the piston is pushed only a very short distance into the cylinder $(d \to 0)$.

Representation:	0	1	2
Physics Concept(s):	0	1	2
Initial Equation(s):	0	0.5	1
Symbolic Answer:	0		1
Units Check:	0	0.5	1
Limits Check:	0	0.5	1
Neatness:	-2	-1	0
Total:			
Correct Answer:	Y	N	

Due Date: 11/20/2022

Representation

Physics Concept(s) (Refer to the list posted on Carmen)

Initial Equations

(1) 1st Law of Thermodynamics

 $V = \frac{5}{2} n R \Delta T$

(2) <u>Processes on the PV plane</u>

W=Fd

$$\frac{5}{2} n R \Delta T = Fd \longrightarrow \Delta T = \frac{2Fd}{5nR}$$

Symbolic Answer:
$$\Delta T = \frac{2fd}{5nR}$$

Units Check

$$\frac{J_{pr} \cdot pr}{mot \cdot T_{motk}} = \frac{F}{K}$$

$$= k$$

Limits Check

a) As $d \to 0$, what limit does ΔT approach?

b) Why does the result make physical sense?

Because no compression would mean no change in temp.

(Obtain this by plugging numbers into your symbolic answer.) Numerical Answer: