Momentum **Co**ntrast for Unsupervised Visual Representation Learning (MoCo)

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick Facebook Al Research (FAIR)

Sungman, Cho.

Introduction

Introduction: Contrastive Loss

 A common way of defining a loss function is to measure the difference between a model's prediction and a fixed target.

Reconstructing: L1 / L2

Pre-defined categories: Cross-Entropy / Margin-based Loss

Introduction: Contrastive Loss

• A common way of defining a loss function is to measure the difference between a model's prediction and a fixed target.

Reconstructing: L1 / L2

Pre-defined categories: Cross-Entropy / Margin-based Loss

 Contrastive losses measure the similarities of sample pairs in a representation space.

Introduction: Contrastive Loss

• A common way of defining a loss function is to measure the difference between a model's prediction and a fixed target.

Reconstructing: L1 / L2

Pre-defined categories: Cross-Entropy / Margin-based Loss

- Contrastive losses measure the similarities of sample pairs in a representation space.
- Adversarial losses measure the difference between probability distributions.

Introduction

Contrastive loss mechanisms

Introduction

Contrastive loss mechanisms

Contribution

- Build a dynamic dictionary with a queue and a moving-averaged encoder.
- Competitive results under the common linear protocol on ImageNet classification.

Method

Method: Contrastive as Dictionary Look-up

$$\mathcal{L}_{q} = -\log \frac{\exp(q \cdot k_{+} / \tau)}{\sum_{i=0}^{K} \exp(q \cdot k_{i} / \tau)}$$

• The sum is over *one positive* and *K negative* samples

Method: Momentum Contrast

 Contrastive learning is a way of building a discrete dictionary on high-dimensional continuous inputs such as images.

Method: Momentum Contrast

- Contrastive learning is a way of building a discrete dictionary on high-dimensional continuous inputs such as images.
- Good features can be learned by a large dictionary that covers a rich set of negative samples, while the encoder for the dictionary keys is kept as consistent as possible despite its evolution.

Two subjects

- Dictionary as a queue.
- Momentum update.

Dictionary as a queue

 At the core of our approach is maintaining the dictionary as a queue of data samples.

- At the core of our approach is maintaining the dictionary as a queue of data samples.
- The introduction of a queue decouples the dictionary size from the mini-batch size.

- At the core of our approach is maintaining the dictionary as a queue of data samples.
- The introduction of a queue decouples the dictionary size from the mini-batch size.
- The samples in the dictionary are progressively replaced. The current mini-batch is enqueued to the dictionary, and the oldest mini-batch in the queue is removed.

- At the core of our approach is maintaining the dictionary as a queue of data samples.
- The introduction of a queue decouples the dictionary size from the mini-batch size.
- The samples in the dictionary are progressively replaced. The current mini-batch is enqueued to the dictionary, and the oldest mini-batch in the queue is removed.
- Removing the oldest mini-batch can be beneficial, because its encoded keys are the most outdated and thus the least consistent with the newest ones.

Momentum update

Method: Momentum update.

- Using a queue can make dictionary large, but it also makes it intractable to update
 the key encoder by back-propagation (the gradient should propagate to all samples in
 the queue).
- Naive solution : copy the key encoder from the query encoder, ignoring this gradient.
- Propose a momentum update to address this issue.

Method: Momentum update.

Formally, denoting the parameters of f_k as θ_k and those of f_q as θ_q , we update θ_k by:

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}.$$
 (2)

Here $m \in [0,1)$ is a momentum coefficient. Only the parameters θ_q are updated by back-propagation.

Pseudocode of MoCo

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

```
# f_q, f_k: encoder networks for guery and key
 queue: dictionary as a queue of K keys (CxK)
 m: momentum
 t: temperature
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
   x_g = aug(x) # a randomly augmented version
   x_k = aug(x) # another randomly augmented version
   q = f_q.forward(x_q) # queries: NxC
   k = f_k.forward(x_k) # keys: NxC
   k = k.detach() # no gradient to keys
   # positive logits: Nx1
   l_{pos} = bmm(q.view(N, 1, C), k.view(N, C, 1))
   # negative logits: NxK
   l_neg = mm(q.view(N,C), queue.view(C,K))
   # logits: Nx(1+K)
   logits = cat([l_pos, l_neg], dim=1)
   # contrastive loss, Eqn. (1)
   labels = zeros(N) # positives are the 0-th
   loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
   loss.backward()
   update(f_q.params)
   # momentum update: key network
   f_k.params = m*f_k.params+(1-m)*f_q.params
   # update dictionary
   enqueue (queue, k) # enqueue the current minibatch
   dequeue (queue) # dequeue the earliest minibatch
```

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

Relations to previous mechanisms

Related Works

• Limited by the GPU memory size.

Related Works

Can't update memory bank, So less consistent

Shuffling BN

- Using BN prevents the model from learning good representations.
- The model appears to "cheat" the pretext task and easily find a low-loss solution.
- This is possibly because the intra-batch communication among samples leaks information.
- Shuffle the sample order in the current mini-batch before distributing it among GPUs

Experiments

ImageNet

ImageNet

method	architecture	#params (M)	00000000 (0%)			
		-	accuracy (%)			
Exemplar [17]	R50w3×	211	46.0 [38]			
RelativePosition [13]	$R50w2\times$	94	51.4 [38]			
Jigsaw [45]	R50w2×	94	44.6 [38]			
Rotation [19]	Rv50w4×	86	55.4 [38]			
Colorization [64]	R101*	28	39.6 [14]			
DeepCluster [3]	VGG [53]	15	48.4 [4]			
BigBiGAN [16]	R50	24	56.6			
	Rv50w4×	86	61.3			
methods based on contrastive learning follow:						
InstDisc [61]	R50	24	54.0			
LocalAgg [66]	R50	24	58.8			
CPC v1 [46]	R101*	28	48.7			
CPC v2 [35]	R170*wider	303	65.9			
CMC [56]	R50 _{L+ab}	47	64.1 [†]			
	$R50w2\times_{L+ab}$	188	68.4 [†]			
AMDIM [2]	AMDIM _{small}	194	63.5 [†]			
	AMDIM _{large}	626	68.1 [†]			
MoCo	R50	24	60.6			
	RX50	46	63.9			
	R50w2×	94	65.4			
	R50w4×	375	68.6			

Momentum

momentum m	0	0.9	0.99	0.999	0.9999
accuracy (%)	fail	55.2	57.8	59.0	58.9

Shuffling BN

Figure A.1. **Ablation of Shuffling BN**. *Dash*: training curve of the pretext task, plotted as the accuracy of (K+1)-way dictionary lookup. *Solid*: validation curve of a kNN-based monitor [61] (not a linear classifier) on ImageNet classification accuracy. This plot shows the first 80 epochs of training: training longer without shuffling BN overfits more.

Thank you.