- 1. Wykazać, że ciąg funkcji $f_n(x)$ jest jednostajnie zbieżny do funkcji f(x) dla $x \in A$ wtedy i tylko wtedy, gdy ciąg $a_n = \sup_{x \in A} |f_n(x) f(x)|$ jest zbieżny do zera.
- 2. Ciąg funkcji $f_n(x)$ na przedziałe [0,1] jest zbieżny jednostajnie do zera. Niech x_n będzie dowolnym ciągiem liczb z przedziału [0,1]. Udowodnić, że $\lim_n f_n(x_n) = 0$.
- 3. Ciąg funkcji f_n na przedziale [0,1] jest zbieżny punktowo do zera. Załóżmy, że dla pewnej dodatniej liczby δ istnieje ciąg $x_n \in [0,1]$ spełniający $|f_n(x_n)| \geq \delta$. Czy ciąg f_n jest zbieżny jednostajnie do zera?
- 4. Czy ciąg $f_n(x) = n(x^n x^{n+1})$ jest zbieżny jednostajnie do zera na przedziale [0,1]?
- 5. ² Zbadać zbieżność jednostajną ciągów funkcji na przedziale [0, 1].

$$\dot{a}) \qquad \dot{c}) \qquad f_n(x) = (0.5 - x)^n \qquad f_n(x) = x(1 - x)^n \\
 \dot{d}) \qquad \dot{g}) \qquad \dot{g}) \\
 \dot{b}) \qquad f_n(x) = \frac{nx}{1 + n^2 x^2} \qquad f_n(x) = nx(1 - x)^n \\
 \dot{e}) \qquad \dot{h}) \qquad \dot{h}) \qquad \dot{f}_n(x) = \sqrt[n]{1 - x^n}$$

6. Zbadać zbieżność jednostajna ciagów funkcji na podanych zbiorach.

a)
$$\dot{c}$$
 $f_n(x) = e^{-nx^2}, \quad -1 \le x \le 1,$ \dot{d} \dot{c} \dot{d} \dot{c} $\dot{c$

7. Ciąg funkcji ciągłych $f_n(x)$ jest zbieżny jednostajnie do funkcji f na przedziale [a, b]. Pokazać, że dla pewnej stałej liczby M > 0 zachodzi

$$|f_n(x)| \le M, \quad n \in \mathbb{N}, \ a \le x \le b.$$

8. Funkcja ciągła f(x) zmienia znak w przedziale [a,b] przynajmniej raz. Pokazać, że jeśli ciąg funkcji ciągłych $f_n(x)$ jest zbieżny jednostajnie do funkcji f(x) na tym przedziale, to dla dostatecznie dużych n każda z funkcji $f_n(x)$ zeruje się w w [a,b].

¹ Wskazówka: $x_n = 1 - (1/n)$.

 $^{^2}Wskazówka$: (do zadań 5 i 6) Zacząć od znalezienia granicy punktowej f. Następnie w zależności od sytuacji:

[•] oszacować $|f_n(x) - f(x)| \le a_n$,

[•] znaleźć punkty x_n , że $|f_n(x_n) - f(x_n)| \ge \delta > 0$,

[•] skorzystać z twierdzenia Dini'ego,

[•] skorzystać z nieciągłości funkcji f(x).

9. Zbadać zbieżność jednostajną szeregów funkcyjnych korzystając z twierdzenia Weierstrassa o majoryzacji.

$$\begin{array}{lll} \dot{\mathbf{a}}) & \dot{\mathbf{d}}) & \sum_{n=1}^{\infty} \frac{x}{1+n^2x}, & x \geq 0, & \sum_{n=1}^{\infty} \frac{x^n}{1+x^2+n\log^2 n}, & |x| \leq 1, \\ \dot{\mathbf{b}}) & \sum_{n=1}^{\infty} \frac{x^2}{n^4+x^4}, & x \in \mathbb{R}, & \sum_{n=1}^{\infty} x^2 e^{-nx}, & x \geq 0, \\ \dot{\mathbf{c}}) & \ddot{\mathbf{f}}) & \\ \dot{\sum}_{n=1}^{\infty} \frac{x}{n(1+nx^2)}, & x \in \mathbb{R}, & \sum_{n=1}^{\infty} \operatorname{arctg} \frac{2x}{x^2+n^3}, & x \in \mathbb{R}. \end{array}$$

- **ï0.** Znaleźć ciągi funkcyjne $f_n(x)$ i $g_n(x)$, które są zbieżne jednostajnie na \mathbb{R} , a ciąg $f_n(x)g_n(x)$ nie jest zbieżny jednostajnie na \mathbb{R} .
- $\ddot{\mathbf{1}}\mathbf{1}.$ Ciąg liczb dodatnich a_n jest malejący i zbieżny do zera. Ciąg funkcji $b_n(x)$ spełnia

$$|s_n(x)| = \left|\sum_{k=1}^n b_k(x)\right| \le M, \quad x \in A.$$

Udowodnić, że szereg $\sum_{n=1}^{\infty} a_n b_n(x)$ jest jednostajnie zbieżny na A.³

ï2. Pokazać, że szeregi

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n}, \qquad \sum_{n=1}^{\infty} \frac{\cos nx}{n}$$

są zbieżne niemal jednostajnie na $(0,2\pi)^4$

- **13.** Czy szereg $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + \sqrt{n}}$ jest jednostajnie zbieżny dla $x \in \mathbb{R}$?
- **Ï4.** Pokazać, że szereg $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ nie jest bezwzględnie zbieżny dla żadnej liczby $x \neq k\pi$.
- 15. Obliczyć promienie zbieżności szeregów potęgowych oraz zbadać zachowanie się szeregów na brzegu przedziału zbieżności (nie dotyczy przykładu b).

a) c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1} x^n \qquad \sum_{n=1}^{\infty} \frac{x^{4n}}{\sqrt{n}}$$
 b)
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n} x^n \qquad \sum_{n=1}^{\infty} 4^n x^{n^2}$$

³Wskazówka: Przeanalizować dowód twierdzenia Dirichleta.

 $^{^4}$ Tzn. zbieżne jednostajnie na $x \in [\varepsilon, 2\pi - \varepsilon]$ dla dowolnej liczby $0 < \varepsilon < \pi).$

⁵ Wskazówka: Pokazać, że $|s_n(x) - s(x)| \le \frac{1}{\sqrt{n}}$.

⁶ Wskazówka: $2|\sin nx| \ge 2\sin^2 nx = 1 - \cos 2nx$.

e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$$

$$\sum_{n=1}^{\infty} \sin(2^{-n}) x^{4n}$$

$$i)$$

$$\sum_{n=1}^{\infty} (2^n + 5^n) x^{2n}$$

$$\sum_{n=1}^{\infty} \log(1 + 3^{-n}) x^{n^2}$$

$$j)$$

$$\sum_{n=1}^{\infty} \frac{1}{n!} x^{n!}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^n} x^{[n!\sqrt{2}]}$$

- **16.** Niech a_n będzie ciągiem Fibonacciego określonym przez $a_1=a_2=1$ oraz $a_{n+2}=a_{n+1}+a_n$ dla $n\geq 1$.
 - Pokazać, że promień zbieżności szeregu $\sum_{n=1}^{\infty} a_n x^n$ wynosi przynajmniej 1/2.7
 - Pokazać, że

$$\sum_{n=1}^{\infty} a_n x^n = \frac{x}{1 - x - x^2}, \quad |x| < \frac{1}{2}.8$$

$$\sum_{n=1}^{\infty} a_n x^n - x \sum_{n=1}^{\infty} a_n x^n - x^2 \sum_{n=1}^{\infty} a_n x^n = x$$

 $^{^7}Wskazówka:$ Pokazać, że $0 \le a_n \le 2a_{n-1},$ czyli $a_n \le 2^n.$

⁸ Wskazówka: Pokazać, że