Kunststoffe

Phillip Zazzetta

20. September 2023

Kunststoffe

 $\textbf{Definition.} \ \textit{Kunststoffe: synthetische organische Werkstoffe, die aus Polymeren bestehen }$

Definition. Monomer: kleinste Einheit eines Makromoleküls

 $\textbf{Definition.}\ \ Polymer:\ Makromolek\"{u}le,\ die\ aus\ aneinandergereihten\ Makromolek\"{u}le,$

lekülen bestehen

Thermoplasten

Eigenschaften

- werden beim Erwärmen leicht und formbar
- behalten beim Abkühlen ihre Form
- verhalten sich wie Gemische (keine definierten Schmelzpunkte)

Struktur amorph

teilkristallin

stabilisierende Kräfte

einzelne Makromoleküle werden durch zwischenmolekulare Wechselwirkungen(WW. zw. temp. Dip., WW. zw. perm. Dip) stabilisiert

Beispiele

PE (Polyethen)

→ Flaschen, Folien

PVC (Polyvinylchlorid)

→ Schallplattten, Fußböden

PET, PP, PS, ...

Duroplasten

Eigenschaften

- hart, später nicht mehr verformbar
- zersetzen sich beim Erhitzen
- unlöslich

Struktur verknüpft

stabilisierende Kräfte

Makromoleküle sind engmaschig durch Elektronenpaarbindungen verknüpft

Beispiele

 $\begin{array}{l} {\rm Melamin-\; bzw\; Phenolharze} \\ {\rightarrow \;\; Lacke, \;\; Isolationsteile, \;\; Verbundswerkstoffe} \end{array}$

Elastomere

Eigenschaften

- verändern durch mech. Belastung ihre Form, kehren aber wieder in den Ausgangszustand zurück
- zersetzen sich beim Erhitzen
- werden beim Abkühlen hart und spröde

${\bf Struktur}$

teilverknüpft

stabilisierende Kräfte

Makromoleküle sind weitmaschig durch Elektronenpaarbindungen verknüpft

Beispiele

Silikon

- \rightarrow Dichtunge, Backformen Synthesekautschuk
- \rightarrow Reifen, Gummibänder

Der Lange Weg zum Kunststoff

Eigenschaften von Kunststoffen

Probe	Brennbarkeit in Flamme	außerhalb	Verformbarkeit kalt	warm	Dichte in g/cm³
PE	+	+	+	++	0.9
PVC	+ (rußt)	-	+	++	1.44
PF	0	=	_	_	1.41
PS	+	=	-	+	1.04
PA	+ (rußt)	=	+	++	1.17
PMMA	++	+	0	+	1.18
UP	0 (rußt)	-	_	_	1.95

Synthese von Kuststoffen

Polymerisation

Beispiel PVC (Polyvinylchlorid)

$$\begin{array}{c|c} H & H \\ \hline C & C \\ \hline H & Cl \\ \hline Vinylchlorid (1-Chlorethen) \end{array} \quad \begin{bmatrix} H & H \\ -C & C \\ H & H \\ \end{bmatrix}$$