Projection cartographique de la Pseudosphère sur le plan

Gaspar Daguet, n=° XXXXXXX

Sea Chase - Xkcd

- 1) La pseudosphère
- 2) La projection
- 3) projeté des droites et (des cercles ?)
- 4) non conservation des longueurs
- 5) conservation des angles

Cercle Limite III - M. C. Escher

$$P: \left\{ egin{array}{ll} [0;2\pi] imes \mathbb{R}_+ & \longrightarrow & \mathbb{R}^3 \ (u,v) & \longmapsto & \left(rac{\cos(u)}{\operatorname{ch}(v)}
ight) \ rac{\sin(u)}{\operatorname{ch}(v)} v - \operatorname{th}(v) \end{array}
ight)$$

L'application Normale :

$$N: [0; 2\pi] \times \mathbb{R}_+ \longrightarrow \mathbb{R}^3$$
$$(u, v) \longmapsto \frac{P_u \wedge P_v}{\|P_u \wedge P_v\|}$$

$$E(u, v) = \|f_u\|^2$$

$$F(u, v) = < f_u | f_v >$$

$$G(u, v) = \|f_v\|^2$$

$$\mathcal{L}(u, v) = - < N_u | f_u >$$

$$\mathcal{M}(u, v) = - < N_v | f_u >$$

$$\mathcal{M}(u, v) = - < N_v | f_v >$$

La courbure en $p \in [0; 2\pi] \times \mathbb{R}_+$

$$K(p) = \frac{\mathcal{L}(p)\mathcal{N}(p) - \mathcal{M}(p)^2}{E(p)G(p) - F^2}$$

Pour la pseudosphère :

$$F = \mathscr{M} = 0$$
 $\mathscr{L} = -\mathscr{N} = \frac{\operatorname{sh}(v)}{\operatorname{ch}(v)}$

$$E = \frac{1}{\operatorname{ch}(v)} \qquad G = \frac{\operatorname{sh}^{2}(v)}{\operatorname{ch}^{2}(v)}$$

$$\forall p \in [0; 2\pi] \times \mathbb{R}_+, K(p) = -1$$

Donc surface hyperbolique

2) La projection

projection de mercator, même idée : on présèreve les surface élémentaire

dèf surface élémentaire

les calcules!

3) projeté des droites et des sphère

dèf droites et cercle calcule par la projection

joli dessin

4) non conservation des longueurs

calcule de la distance sur S et sur P voir que diff

5) conservation des angles

faut que je travaille

