UE21CS352A: Machine Intelligence

No. of Credits: 5 # of Slots: 112

	Chapter Title		% Of Po Cover	
Class #	/ Reference Topics to be Covered Literature		Absolut e	Cumulati ve
	Introduction, Searc	h Algorithms ,Classification with Decision Trees and		
1	T1 : Chapter 1 - 1.1	Introduction to AI and ML		
2	T1 : Chapter 2 – 2.1, 2.3, 2.4,2.5	Intelligent Agents and its Types		
3	Slides on PESU Academy Portal	Machine Learning and its Models		
4	T2: Chapter2 – 2.1- 2.2	Concept Learning: Introduction, A Concept Learning Task, Concepts of Hypotheses		
5	T2: Chapter2 – 2.3- 2.4,2.7	Concept Learning: Concept Learning as Search, Find-S:Finding a Maximally Specific Hypothesis, Version Space, Inductive Bias		
6-7	Lab Component	Understanding basics of PyTorch, Tools related to MI (Self Study)		
8	Slides on PESU Academy Portal	Performance Metrics-Accuracy, Precision, Recall	23.21	23.21
9	Slides on PESU Academy Portal	Performance Metrics-Sensitivity, Specificity, AUC, RoC		
10	Slides on PESU Academy Portal	Bias Variance Decomposition		
11	T2: Ch 3 3.1, 3.2, 3.3	Decision Tree Learning: Introduction, Decision Tree Representation, Appropriate Problems for Decision Tree Learning		
12	T2: Ch 3 3.4	The Basic Decision Tree Learning Algorithm- ID3 Algorithm for Classification, Entropy and Gain calculations		
13	T2: Ch 3 3.5, 3.6	Hypothesis Space Search in Decision Tree Learning, Inductive Bias in Decision Tree Learning		
14	T2: Ch 3 3.7(3.7.1,3.7.2)	Issues in Decision Tree Learning – Avoiding Overfitting the Data, Solutions to Overfitting, Incorporating Continuous-Valued Attributes		
15-16	Lab Component	Decision Tree Classifier- Build a Decision Tree Classifier for the given data.		

47	T2: Cl- 2 Cl:	Solving a numerical problem on Decision Trees, Decision		
17	T2: Ch 3, Slides			
	on PESU	Boundary for Decision Trees(X-Y axis)		
	Academy Portal			
18	Slides on PESU	Introduction to Linear Regression, Linear Regression using		
	Academy Portal	Gradient Descent		
19	Slides on PESU	Solving a numerical problem on Linear Regression		
	Academy Portal			
20	Slides on PESU	Issues with Linear Regression, Introduction to Logistic Regression		
	Academy Portal			
21	Slides on PESU	Solving a numerical problem on Logistic Regression		
	Academy Portal			
22	T2: Ch 8 -8.1, 8.2	Instance-Based Learning: k-Nearest Neighbor Algorithm		
	(8.2.1,8.2.2)	(Classification)		
	pg. 230-236			
23	Slides on PESU	Instance-Based Learning: k-Nearest Neighbor		
	Academy Portal	Algorithm(Regression)		
24	T2: Ch 8	Sample problems on Weighted kNN,		
	Pg. 230-236,	Decision Boundary for kNN		
	Slides on PESU	,		
	Academy Portal			
25-26	, , , , , ,	Assignment 1 (Written/ Practical) on Linear Regression or		
		Logistic Regression		
Unit 2:	Supervised Learning	g with ANN, Introduction to Deep Learning Techniques		
27	T2: Ch 4	Artificial Neural networks: Introduction		
	4.1-4.3			
	pg. 81-85			
28	T2: Ch 4	Perceptrons – implementing LOGIC gates		
	4.4			
	pg. 86-94			
29	T2 Ch 4	Multi-layer Networks and Back-Propagation		
	4.5(4.5.1-4.5.3	,		
	excluding case			
	1 and case 2)			
	pg. 95-101			
			19.64	42.85
30	T2 Ch 4	Back-Propagation Derivation		
	4.5(4.5.1-4.5.3			
	excluding case			
	1 and case 2)			
	pg. 95-101			
31	Slides on PESU	Activation functions (Step, Sigmoid, Tanh, ReLU, Leaky ReLU,		
	Academy Portal	Softmax)		
		,		1

	ali I ====:	1,, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		
32	Slides on PESU	Various Optimizers (GD, SGD, Momentum-based, Adagrad,		
22.24	Academy Portal	RMSprop, Adam) Implementation of Simple Artificial Neural Networks	-	
33-34	Lab Component	-		
35	Mitesh	Introduction to Deep Learning, Introduction to Convolutional		
2.6	Khapra slides	Neural Network(CNN)	-	
36	on CNN & T3:	CNN-Introduction to Convolution Operation and Pooling- Max		
	Ch 6	pooling, Average pooling	-	
37	(Demystifying	CNN- Parameter Calculation, Problems on Parameter Calculation		
	Convolutional			
20.20	Networks)	Duilding a Classification Model for the given detect using CNN	-	
38-39	Lab Component	Building a Classification Model for the given dataset using CNN		
40		Introduction to Recurrent Neural Network		
41		RNN- Vanishing and Exploding Gradient		
42		Variants of RNN : LSTM		
43		Variants of RNN : GRU		
44		Introduction to Large Language Models(LLM)		
45-46		Assignment 2 (Written/Practical) on RNN or LSTM		
47-48		Revision for ISA1(Units 1 and 2)		
Unit 3: SVI	M, Boosting and S	tochastic Models		
49	T4 Ch 3	Support Vector Machines – Margin and Maximization		
	pg.38-53	and the Primal Form		
50	T4 Ch 4	SVM - The Lagrangian Dual and its Solution(Hard Margin		
	pg.54-59	Classification ONLY)		
51	T4 Ch 4	SVM - Soft Margin(Classification ONLY)		
	pg.54-59			
52	T4 Ch 6	SVM – Kernel Trick		
	pg.72-81	Kernel functions: Linear, polynomial		
		(Derivation only for linear function).		
53		Sample problems on SVM		
54-55	Lab Component	Support Vector Machines -Implement a Support Vector		
		Machine Classifier for the given dataset		
56	Slides on PESU	Combining Weak Learners		
	Academy Portal		22.32	65.18
57	R3: pg. 129-131	Improving Performance: Bagging and Boosting		
	(Slides on PESU			
	Academy			
	Portal)			
58	Slides on PESU	Improving Performance with Gradient Boost		
	Academy Portal		1	
59	Slides on PESU	Random Forest		
	Academy Portal		1	
60		Basics of Probability		

61	T2: Ch 6	Bayesian Learning – Bayes Theorem, Maximum likelihood, Bayes		
	pg. 154-166,	Optimal Classifier		
	pg. 170-			
	171,174-176			
62-63	T2: Ch6 – pg.	Naïve Bayes Classifier and Text Classification.		
	177-183			
64-65	Lab Component	Build a Text Classifier using Naïve Bayes Algorithm		
66-67	R4: Chapter 9,			
	pg. 286-289	Expectation maximization Algorithm		
	(Slides on PESU			
	Academy			
	Portal)			
68-69	R4: Chapter 9,	Gaussian Mixture Models		
	pg. 289-			
	292(Slides on			
	PESU Academy			
	Portal)			
70-71	Lab Component			
72-73		Assignment 3 (Written/Practical) on Bagging or Boosting or		
		Random Forest		
Unit 4: HI	MM, Unsupervise	d Learning ,Dimensionality Reduction and Genetic Algorithms, PSC)	
	R2: Ch 15	Hidden Markov Models – Discrete Markov Processes		
74	pg. 363- 366			
	(Slides on			
	PESU			
	Academy			
	Portal)			
75	R2: Ch15 – pg.	Hidden Markov Models – 3 Basic Problems	34.82	100
	367- 373(Slides			
	on PESU			
	Academy			
	Portal)			
76	R2: Ch15 – pg.	Learning the State Sequence		
	373-375(Slides			
	on PESU			
	Academy			
	Portal)			
77	R2: Ch15 – pg.	Learning the Parameters		
	373-375(Slides			
	on PESU			
	Academy			
	Portal)			

78	R2: Ch15 – pg. 375-378(Slides on PESU Academy Portal)	Baum-Welch Algorithm		
79	Slides on PESU Academy Portal	Problems on Hidden Markov Models		
80-81	Lab Component	Hidden Markov Model (HMM)- Implement the Viterbi algorithm for decoding a sequence of observations to find the most probable sequence of internal states that generated the observations.	I	
82-92		Hackathon		
93	R3: Ch10: pg. 207- 217, Ch 11: pg.224-234, Ch 12: pg. 248-260 (Slides on PESU AcademyPortal)			
94	R3: Ch10: pg. 207- 217, Ch 11: pg.224-234, Ch 12: pg. 248-260 (Slides on PESU AcademyPortal)			
95	R1: Chapter 9, pg.424-430	k-Means Clustering, Simple problems on k-Means Clustering, Bisecting k-Means, Issues with k-Means Clustering.		
96	R1: Chapter 9, pg. 439	k-Means as special case of Expectation Maximization		
97-98	Lab Component	Implementation of K-Means Clustering		

99	R1: Chapter 12,	Dimensionality Reduction Techniques –Introduction, Techniques	
	pg. 559-570	Available, Principal Component Analysis(PCA)- Introduction to	
	(Slides on PESU	PCA and its Applications, Principal Components	
	Academy		
	Portal)		
100	Slides on PESU	Problems on PCA	
	Academy Portal		
101	Slides on PESU	Dimensionality Reduction Techniques – Introduction to SVD and	
	Academy Portal	its Applications, SVD	
102	Slides on PESU	Problem on SVD, Relationship between PCA and SVD	
	Academy Portal		
103	T2: Ch 9 - 9.1,	Genetic Algorithms – Representing Hypothesis, Genetic Operators	
	9.2		
104	T2: Ch 9 - 9.2,	Fitness Function and Selection Methods, Crossover, Mutation	
	9.3		
105	T2: Ch 9	Simple Applications of the Genetic Algorithm, Application of GA in	
		Decision tree, Genetic Algorithm based Clustering	
106	T2: Ch7.1-	Solving Single Objective Optimization problems using GA, Using	
100		GA to emulate Gradient Descent/Ascent	
	,	·	
107		Weight Determination, Clustering, Introduction to PSO	
	Academy Portal		
108		Application of PSO in Single Objective optimization problems.	
	Academy Portal		
109-110		Assignment 4 (Written/Practical) on PCA or Genetics Algorithm	
		or PSO	
111-112		Revision for ISA2(Units 3 and 4)	

Literature:

Book Type	Code	Title and Author	Publication info		
			Edition	Publisher	Author
Text Book	T1	1. Artificial Intelligence: A Modern Approach (3rd Edition), Stuart Russel and Peter Norvig,	3rd	3 A 7 * 1 1 1 1 *	Stuart Russel and Peter Norvig,
Text Book	T2	Machine Learning, Tom Mitchell, McGraw Hill Education (India), 2013.		McGraw Hill Education (India)	Tom Mitchell
Text Book	ТЗ	Hands-on Deep Learning Algorithm with Python - Sudharshan Ravi Chandiran		Packt Publishing Limited	Sudharshan Ravi Chandiran

Text Book	T4	Support Vector Machines Succinctly by Alexandre Kowalczyk		Synctiision	Alexandre Kowalczyk
Reference	R1	"Pattern Recognition and Machine Learning", ChristopherBishop,Springer(2ndPrinting), 2011		,	Christopher Bishop
Book	R2	Introduction to Machine Learning Second Edition by Ethem Alpaydin	2nd	The MIT Press	Ethem Alpaydin
	R3	Machine Learning in Action by Peter Harrington, First Edition, Manning 2021	1st	Manning (2021)	Peter Harrington
	R4	"Machine Learning: The Art and Science of AlgorithmsthatMakeSenseofData", Peter Flach, Cambridge University Press(2012).		Cambridge University Press (2012)	Peter Flach