Short Syllabus

BECE303L VLSI System Design (3-0-0-3)

VLSI Design Overview and MOSFET Theory - Concepts of Regularity, Modularity and Locality; CMOS Logic gates - CMOS Sequential Logic Design, Latches and Flip Flops; CMOS Fabrication and Layout - CMOS Process Technology, Layout Design Rule; CMOS Circuits Performance Analysis - Logical Effort and Transistor Sizing; CMOS Logic Families - Transmission Gates based Logic Design; Timing Analysis - Introduction to Static timing analysis; Semiconductor Memory Design- Introduction and types.

Course Code	Course Title				Р	С
BECE303L	CE303L VLSI System Design				0	3
Pre-requisite	BECE204L, BECE204P	Syllabus version				
		1.0				

Course Objectives:

- 1. To introduce the basic concepts and techniques of modern integrated circuit design.
- 2. Describe the fundamental principles underlying digital design using CMOS logic and analyze the performance characteristics of these digital circuits.
- 3. Verify that a design meets its functionality, timing constraints, both manually and through the use of computer-aided design tools.

Course Outcomes:

Students will be able to

- 1. Analyze the CMOS digital electronics circuits, including logic components and their interconnect using mathematical methods and circuit analysis models
- 2. Create models of moderately sized CMOS inverters with specified noise margin and propagation delay.
- 3. Apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect.
- 4. Analyse the various logic families and efficient techniques at circuit level for improving power and speed of combinational and sequential logic.
- 5. Implement the CMOS digital circuits with the specified timing constraints.
- 6. Design memories with efficient architectures to improve access times, power consumption

Module:1 VLSI Design Overview and MOSFET Theory

8 hours

VLSI Design Flow, Design Hierarchy, Concepts of Regularity, Modularity and Locality, VLSI Design Styles, Design Quality, MOSFET: Device Structure, Electrical behaviour of MOS transistors, Capacitance- Voltage Characteristics and Non-ideal Effects; Effects of scaling on MOSFETs and Interconnects.

Module:2 CMOS Logic Gates

8 hours

CMOS Inverter: DC Transfer Characteristics, Static and Dynamic Behaviour, CMOS Basic Gates, Compound Gates, CMOS Sequential Logic Design – Latches and Flip Flops

Module:3 CMOS Fabrication and Layout

5 hours

CMOS Process Technology N-well, P-well Process, latch up in CMOS technology, Stick Diagram for Boolean Functions using Euler Theorem, Layout Design Rule

Module:4 CMOS Circuits Performance Analysis

5 hours

Delay Estimation, Logical Effort and Transistor Sizing, Performance Estimation - Static & Dynamic Power Dissipation.

Module:5 CMOS Logic Families

8 hours

Pass Transistor Logic, Transmission Gates based Logic Design, pseudo NMOS, Cascode Voltage Switch Logic Dynamic and domino logic, clocked CMOS (C²MOS) logic and np – CMOS logic.

Module:6 Timing Analysis

4 hours

Introduction to Static timing analysis, Setup Time, Hold Time, calculation of critical path, slack, setup and hold time violations.

Module:7 Semiconductor Memory Design

5 hours

Intro	oduction,	Types - Read-Only Me	emory (Ro	OM) Circuits	, Static Read-Wri	te Memory					
(SRAM) and Dynamic Read-Write Memory (DRAM) Circuits.											
	,	-	• ,								
Module:8 Contemporary issues					2 hours						
				Tota	al Lecture Hours:	45 hours					
Text Book(s)											
1.	Neil H.Weste, Harris, A. Banerjee, CMOS VLSI Design, A circuits and System										
Perspective, 2015, 4 th Edition, Pearson Education, Noida, India.											
Reference Book											
1.	. Jan M. Rabaey, Anantha Chadrakasan, Borivoje Nikolic, Digital Integrated Circuits: A										
	Design Perspective Paperback, 2016, 2 rd Edition, Pearson Education, India.										
2.	Sung-Mo Kang, Yusuf Liblebici, Chulwoo Kim, CMOS Digital Integrated Circuits:										
	Analysis and Design, 2019, Revised 4th Edition, Tata Mc Graw Hill, New Delhi, India.										
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final											
Assessment Test											
Recommended by Board of Studies 14-05-2022											
App	Approved by Academic Council			Date	16-06-2022						