Cours de Statistiques Inférentielles

CQLS: cqls@upmf-grenoble.fr

5 juillet 2014

Plan

1 Test d'hypothèses

Objectif: Nous rappelons que l'industriel désire établir une règle de décision à partir d'une unique estimation obtenue le **Jour J** quant au lancement du produit •.

Question : Quelle est la forme de la règle de décision en faveur de l'assertion d'intérêt (c-à-d $\mu^{\bullet}>0.15$)?

Question : Quelle est la forme de la règle de décision en faveur de

l'assertion d'intérêt (c-à-d $\mu^{ullet} > 0.15$)?

Réponse : Accepter l'assertion d'intérêt si $\widehat{\mu^{\bullet}}(\mathbf{y}^{\bullet}) > \mu_{lim}$.

Question: Pour différentes urnes U_p^A , l'expérimentateur a évalué $\widehat{\left(p^A\left(\mathbf{y_{[\cdot]}^A}\right)>p_{lim}\right)}_{10000}$. Comment ces valeurs ont-elles été obtenues?

	Plim		
р	15%	17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

Question : Pour différentes urnes U_p^A , l'expérimentateur a évalué

 $\left(\widehat{p^A}\left(\mathbf{y_{[\cdot]}^A}\right) > p_{lim}\right)_{10000}$. Comment ces valeurs ont-elles été obtenues?

Réponse : proportions parmi m=10000 (et parmi $m=\infty$ avec un peu de patience) estimations $\widehat{p^A}\left(\mathbf{y}_{[\cdot]}^{\mathbf{A}}\right)$ supérieures à p_{lim} .

	Plim		
р	15%	17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

	Plim		
р	15%	17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

Question : Comment la connaissance du mathématicien

$$\widehat{p^A}(\mathbf{Y^A}) \overset{approx.}{\leadsto} \mathcal{N}(p^A, \sqrt{\frac{p^A(1-p^A)}{n}})$$
 a été utilisée?

Réponse :

$$P_{p^{A}=p}(\widehat{p^{A}}\left(\mathbf{Y^{A}}\right)>p_{lim})\overset{R}{=}1-pnorm(plim,p,sqrt(p*(1-p)/n)).$$

	Plim		
р	15%	17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

Question: Avec le point de vue de l'industriel, quelles valeurs de $P_{p^A=p}(\widehat{p^A}\left(\mathbf{Y^A}\right)>p_{lim})\simeq \widehat{\left(\widehat{p^A}\left(\mathbf{y^A}_{[\cdot]}\right)>p_{lim}\right)}_{10000}$ conduisent à des risques d'erreur de décision (nature à préciser) trop grands?

		Plim		
р	15%	17%	20%	
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$	
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$	
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$	
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$	
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$	
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$	

Réponse : pour p=10%, 14% et 15%, on a un **Risque 1ère espèce** (devenir pauvre) raisonnable (< 5%) et plutôt grand (\geq 5%)

	Plim		
р	15%	17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

Réponse : pour p=10%, 14% et 15%, on a un Risque 1ère espèce (devenir pauvre) raisonnable (< 5%) et plutôt grand (\geq 5%) et pour p=15.1%, 16% et 20%, Risque 2ème espèce (ne pas devenir riche) raisonnable (< 5%) et plutôt grand (\geq 5%)

		p _{lim}		
р	15%	17%	20%	
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$	
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$	
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$	
15.1%	$51.52\% \simeq 53.52\%$	4.3% ~ 4.67%	0% ~ 0%	
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$	
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	48.23% ~ 50%	

Question : Peut-on choisir p_{lim} de sorte que tous les risques de 1ère et 2ème espèces soient raisonnablement petits?

	Plim		
p	15%	17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	0% ~ 0%
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

Question : Peut-on choisir p_{lim} de sorte que tous les risques de 1ère et 2ème espèces soient raisonnablement petits?

Réponse : Non, puisque somme des risques de 1ère et 2ème espèces peut être aussi proche de 1 (ex : p=15% et p=15.1%)!

р	15%	р _{lim} 17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	4.3% \simes 4.67%	0% ~ 0%
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	48.23% \simes 50%

Question: Quel risque faut-il alors essayer de controler lors du choix de p_{lim} ?

n	15%	p _{lim} 17%	20%	
р	1370	17/0	2070	
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$	
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$	
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$	
15.1%	$51.52\% \simeq 53.52\%$	4.3% ~ 4.67%	0% ~ 0%	
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$	
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	48.23% ~ 50%	

Question: Quel risque faut-il alors essayer de controler lors du choix de p_{lim} ?

Réponse : le plus grave, c-à-d le risque de 1ère espèce (ici devenir pauvre), uniquement possible pour $p^A=p\leq 15\%$.

	Plim		
р	15%	17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

Question: Parmi les mauvaises situations pour l'industriel $p \le 15\%$ (ici p=10%, 14% et 15%), quelle est la pire au sens du plus grand risque de 1ère espèce?

	Plim		
р	15%	17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

Question: Parmi les mauvaises situations pour l'industriel $p \le 15\%$ (ici p=10%, 14% et 15%), quelle est la pire au sens du plus grand risque de 1ère espèce?

Réponse : $p^A = p = 15\%$. Les risques avec p < 15% sont plus petits!

	Plim		
р	15%	17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

Question: Parmi les mauvaises situations pour l'industriel $p \le 15\%$ (ici p = 10%, 14% et 15%), quelle est la pire au sens du plus grand risque de 1ère espèce?

Réponse : $p^A = 15\%$ sera la pire des (mauvaises) situations !

	nu nu		
р	15%	<i>P_{lim}</i> 17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

Question : Dans **la pire des situations**, comment choisir $p_{lim,\alpha}$ pour avoir un risque maximal de 1ère espèce fixé à $\alpha=5\%$?

	Plim		
р	15%	17%	20%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.32\% \simeq 0.31\%$	$0\% \simeq 0\%$
15%	$48.06\% \simeq 50\%$	$3.68\% \simeq 3.83\%$	$0\% \simeq 0\%$
15.1%	$51.52\% \simeq 53.52\%$	$4.3\% \simeq 4.67\%$	$0\% \simeq 0\%$
16%	$78.95\% \simeq 80.58\%$	$17.88\% \simeq 19.42\%$	$0.06\% \simeq 0.03\%$
20%	$99.99\% \simeq 100\%$	$99.02\% \simeq 99.11\%$	$48.23\% \simeq 50\%$

Question: Dans **la pire des situations**, comment choisir $p_{lim,\alpha}$ pour avoir un risque maximal de 1ère espèce fixé à $\alpha = 5\%$?

Réponse : trouver $p_{lim,\alpha}$ tq $P_{p^A=15\%}(\widehat{p^A}\left(\mathbf{Y^A}\right)>p_{lim,\alpha})=\alpha=5\%$

	p _{lim}		
p	15%	16.8573%	17%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.52\% \simeq 0.46\%$	$0.32\% \simeq 0.31\%$
15%	$48.06\% \simeq 50\%$	$5.17\% \simeq 5\%$	$3.68\% \simeq 3.83\%$
15.1%	$51.52\% \simeq 53.52\%$	$6.18\% \simeq 6.03\%$	$4.3\% \simeq 4.67\%$
16%	$78.95\% \simeq 80.58\%$	$22.89\% \simeq 22.98\%$	$17.88\% \simeq 19.42\%$
20%	$99.99\% \simeq 100\%$	$99.35\% \simeq 99.35\%$	$99.02\% \simeq 99.11\%$

Question: Dans **la pire des situations**, comment choisir $p_{lim,\alpha}$ pour avoir un risque maximal de 1ère espèce fixé à $\alpha = 5\%$?

Réponse : trouver $p_{lim,\alpha}$ tq $P_{p^A=15\%}(\hat{p^A}(\mathbf{Y^A})>p_{lim,\alpha})=\alpha=5\%$ c-à-d $p_{lim,5\%}\stackrel{R}{=}$ qnorm(.95, .15, sqrt(.15 * .85/1000)=16.8573%.

	<i>p</i> lim		
р	15%	16.8573%	17%
10%	$0\% \simeq 0\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
14%	$16.57\% \simeq 18.11\%$	$0.52\% \simeq 0.46\%$	$0.32\% \simeq 0.31\%$
15%	$48.06\% \simeq 50\%$	$5.17\% \simeq 5\%$	$3.68\% \simeq 3.83\%$
15.1%	$51.52\% \simeq 53.52\%$	$6.18\% \simeq 6.03\%$	$4.3\% \simeq 4.67\%$
16%	$78.95\% \simeq 80.58\%$	$22.89\% \simeq 22.98\%$	$17.88\% \simeq 19.42\%$
20%	$99.99\% \simeq 100\%$	$99.35\% \simeq 99.35\%$	$99.02\% \simeq 99.11\%$

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction du paramètre d'intérêt ?

Question Comment s'écrit l'assertion d'intérêt \mathbf{H}_1 en fonction du paramètre d'intérêt ?

Hypothèses de test :

 $H_1: p^A > 15\%$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test :

 $H_1: p^A > 15\%$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : $H_0: p^A = 15\%$ vs $H_1: p^A > 15\%$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{p^A}\left(\mathbf{Y^A}\right)$ dans la pire des situations ?

Hypothèses de test : $H_0 : p^A = 15\%$ vs $H_1 : p^A > 15\%$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{p^A}\left(\mathbf{Y^A}\right)$ dans la pire des situations ?

Hypothèses de test : $H_0: p^A = 15\%$ vs $H_1: p^A > 15\%$ Statistique de test sous $H_0:$ $\widehat{p^A}\left(\mathbf{Y^A}\right) \overset{approx.}{\leadsto} \mathcal{N}(15\%, \sqrt{\frac{15\% \times 85\%}{n}})$

Question : Comment s'écrit la règle de décision en faveur de l'assertion d'intérêt ne produisant pas plus de 5% d'erreur de première espèce ?

Hypothèses de test : H_0 : $p^A = 15\%$ vs H_1 : $p^A > 15\%$ Statistique de test sous H_0 : $\widehat{p^A}\left(\mathbf{Y^A}\right) \overset{approx.}{\leadsto} \mathcal{N}(15\%, \sqrt{\frac{15\% \times 85\%}{n}})$

Question : Comment s'écrit la règle de décision en faveur de l'assertion d'intérêt ne produisant pas plus de 5% d'erreur de première espèce ?

Hypothèses de test : $H_0: p^A = 15\%$ vs $H_1: p^A > 15\%$

Statistique de test sous H_0 :

$$\widehat{p^{A}}\left(\mathbf{Y^{A}}\right)\overset{approx.}{\leadsto}\mathcal{N}(15\%,\sqrt{\frac{15\%\times85\%}{n}})$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{p^A}\left(\mathbf{y^A}\right)>p_{lim,lpha}$

Question: Comment conclueriez-vous au vu des données de l'industriel stockées dans le vecteur $\mathbf{y}^{\mathbf{A}}$ (yA en R) et pour lequel mean(yA) = 0.171?

Hypothèses de test : $H_0: p^A = 15\%$ vs $H_1: p^A > 15\%$

Statistique de test sous H₀:

$$\widehat{p^{A}}\left(\mathbf{Y^{A}}\right)\overset{approx.}{\leadsto}\mathcal{N}(15\%,\sqrt{\frac{15\%\times85\%}{n}})$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{p^A}\left(\mathbf{y^A}\right)>p_{lim,lpha}$

Question: Comment conclueriez-vous au vu des données de l'industriel stockées dans le vecteur $\mathbf{y}^{\mathbf{A}}$ (yA en R) et pour lequel mean(yA) = 0.171?

Hypothèses de test : $H_0: p^A = 15\%$ vs $H_1: p^A > 15\%$

Statistique de test sous H₀:

$$\widehat{p^A}\left(\mathbf{Y^A}\right) \overset{approx.}{\leadsto} \mathcal{N}(15\%, \sqrt{\frac{15\% \times 85\%}{n}})$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{p^A}\left(\mathbf{y^A}\right) > p_{lim,\alpha}$

Conclusion : Au vu des données, puisque

$$\widehat{p^A}(\mathbf{y^A}) = 17.1\% > p_{lim.5\%} \simeq 16.8573\%$$

on peut plutôt penser que le produit A est rentable.

(avec
$$p_{lim.5\%} \stackrel{R}{=} qnorm(.95, .15, sqrt(.15 * .85/1000)))$$

Même démarche (accélérée) : Les valeurs des cases ci-dessous cor-

respondent à :
$$P_{\mu^B=\mu}(\widehat{\mu^B}(\mathbf{Y}^B)>\mu_{lim})\simeq \overline{\left(\widehat{\mu^B}\left(\mathbf{y}^B_{[\cdot]}\right)>\mu_{lim}\right)}_{10000}$$
 obtenues grâce à la connaissance du mathématicien suivante

$$\widehat{\mu^B}\left(\mathbf{Y}^{\mathbf{B}}\right)\overset{\textit{approx.}}{\leadsto}\mathcal{N}\big(\mu^B,\sigma_{\widehat{\mu^B}}\big) \ \text{où} \ \sigma_{\widehat{\mu^B}} = \frac{\sigma_B}{\sqrt{n}}$$

	$\mu_{ extsf{lim}}$		
μ	0.15	0.17	0.20
0.1	$0.01\% \simeq 0.01\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
0.14	$23.39\% \simeq 24.38\%$	$1.74\% \simeq 1.86\%$	$0.01\% \simeq 0\%$
0.15	$47.92\% \simeq 50\%$	$7.72\% \simeq 8.6\%$	$0.04\% \simeq 0.03\%$
0.16	$74.24\% \simeq 74.07\%$	$23.45\% \simeq 25.93\%$	$0.39\% \simeq 0.49\%$
0.20	$99.96\% \simeq 99.98\%$	$97.81\% \simeq 98.3\%$	48.43% ~ 50%

Même démarche (accélérée) : On ne cherche donc qu'à contrôler le risque de 1ère espèce dans la pire des situations, i.e. $H_0: \mu^B=0.15$. Question : Comment ajuster μ_{lim} de manière à ne produire qu'un risque maximal de 1ère espèce à $\alpha=5\%$?

	μ_{lim}		
μ	0.15	0.17	0.20
0.1	$0.01\% \simeq 0.01\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$
0.14	$23.39\% \simeq 24.38\%$	$1.74\% \simeq 1.86\%$	$0.01\% \simeq 0\%$
0.15	$47.92\% \simeq 50\%$	$7.72\% \simeq 8.6\%$	$0.04\% \simeq 0.03\%$
0.16	$74.24\% \simeq 74.07\%$	$23.45\% \simeq 25.93\%$	$0.39\% \simeq 0.49\%$
0.20	$99.96\% \simeq 99.98\%$	$97.81\% \simeq 98.3\%$	$48.43\% \simeq 50\%$

Réponse :

$$\mu_{\mathit{lim}} \stackrel{\mathrm{R}}{=} \mathsf{qnorm}(.95,.15,\mathsf{sqrt}(\mathsf{varB015/n})) \simeq 0.1740846$$

	$\mu_{ extsf{lim}}$			
μ	0.15	0.1740846	0.2	
0.1	$0.01\% \simeq 0.01\%$	$0\% \simeq 0\%$	$0\% \simeq 0\%$	
0.14	$23.39\% \simeq 24.38\%$	$0.94\% \simeq 0.9\%$	$0.01\% \simeq 0\%$	
0.15	$47.92\% \simeq 50\%$	$4.63\% \simeq 5\%$	$0.04\% \simeq 0.03\%$	
0.16	$74.24\% \simeq 74.07\%$	$16.04\% \simeq 18.16\%$	$0.39\% \simeq 0.49\%$	
0.20	$99.96\% \simeq 99.98\%$	$95.74\% \simeq 96.64\%$	$48.43\% \simeq 50\%$	

L'urne $U_{0.15}^A$ est une pire situation potentielle pour le produit B ainsi que beaucoup d'autres (à décrire). Par conséquent, $\mu_{lim,5\%}$ peut prendre les valeurs 0.1740846, 0.168573 ainsi que beaucoup d'autres (le plus grand à 3 boules max est 0.1840091) \Rightarrow **ECHEC!**

	$\mu_{ extit{lim},5\%}$	
μ	$0.168573 \; (U_{0.15}^A)$	$0.1740846 \; (U_{0.15}^B)$
0.1	$0\% \simeq 0\%$	$0\% \simeq 0\%$
0.14	$0.52\% \simeq 0.46\%$	$0.94\% \simeq 0.9\%$
0.15	$5.17\% \simeq 5\%$	$4.63\% \simeq 5\%$
0.16	$22.89\% \simeq 22.98\%$	$16.04\% \simeq 18.16\%$
0.1	$99.35\% \simeq 99.35\%$	$95.74\% \simeq 96.64\%$

mais pas MATH! : en effet, $\widehat{\mu^B}$ (Y^B) $\overset{approx.}{\leadsto}$ $\mathcal{N}(0.15, \frac{\sigma_B}{\sqrt{n}})$ sous H₀.

Heureusement,
$$\mathbf{H_1}: \mu^B > 0.15 \Leftrightarrow \delta_{\mu^B, 0.15} := \frac{\mu^B - 0.15}{\sigma_B/\sqrt{n}} > 0$$

$$\text{estim\'e par } \widehat{\delta_{\mu^B,0.15}} \left(\mathbf{Y^B} \right) := \frac{\widehat{\mu^B} \left(\mathbf{Y^B} \right) - 0.15}{\widehat{\sigma_B} \left(\mathbf{Y^B} \right) / \sqrt{n}} \overset{approx.}{\leadsto} \mathcal{N}(0,1) \text{ sous } \mathbf{H_0}.$$

	$\delta_{ extit{lim}}$				
μ	0	1.6449	1.96		
0.1	$0.01\% \simeq ???$	0% ≃ ???	0% ≃ ???		
0.14	$100\% \simeq ???$	0% ≃ ???	0% ≈ ???		
0.15	$47.92\% \simeq 50\%$	$3.66\% \simeq 5\%$	$1.73\% \simeq 2.5\%$		
0.16	74.24% ~ ???	53.52% ~???	50.9% ~ ???		
0.20	$99.96\% \simeq ???$	96.46% ~ ???	92.45% ~ ???		

mais pas MATH! : La Règle de Décision peut donc se formuler :

Accepter $\mathbf{H_1}$ si $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y^B}\right) > \delta_{\mathit{lim},\alpha} \stackrel{\mathrm{R}}{=} \mathsf{qnorm}(1-\alpha)$ de sorte que le risque maximal de 1ère espèce soit fixé à (urne $U_{0.15}^B$)

$$\alpha \simeq P_{\mu^{B}=0.15}(\widehat{\delta_{\mu^{B},0.15}}\left(\mathbf{Y^{B}}\right) > \delta_{\mathit{lim},\alpha}) = \overline{\left(\widehat{\delta_{\mu^{B},0.15}}\left(\mathbf{y_{[\cdot]}^{B}}\right) > \delta_{\mathit{lim},\alpha}\right)_{\infty}}.$$

	$\delta_{ extit{lim}}$				
μ	0	1.6449	1.96		
0.1	$0.01\% \simeq ???$	0% ≈ ???	0% ≈ ???		
0.14	$100\% \simeq ???$	0% ≃ ???	0% ≈ ???		
0.15	$47.92\% \simeq 50\%$	$3.66\% \simeq 5\%$	$1.73\% \simeq 2.5\%$		
0.16	74.24% ~ ???	53.52% ~ ???	50.9% ~ ???		
0.20	$99.96\% \simeq ???$	$96.46\% \simeq ???$	$92.45\% \simeq ???$		

mais pas MATH! : De plus, le résultat :

$$\alpha \simeq P_{\mu^B=0.15}(\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}^{\mathbf{B}}\right) > \delta_{\mathit{lim},\alpha}) = \left(\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y}^{\mathbf{B}}_{[\cdot]}\right) > \delta_{\mathit{lim},\alpha}\right)_{\infty}$$
 est valide pour tout type d'urne potentielle pour le produit B comme le montre les résultats ci-dessous pour les urnes $U_{0.15}^A$ et $U_{0.15}^B$.

	$\delta_{lim,5\%}$		
μ	$1.644854 \ (U_{0.15}^{A})$	$1.644854 \ (U_{0.15}^B)$	
0.1	0% ≈ ???	0% ≈ ???	
0.14	$0.39\% \simeq ???$	0% ≈ ???	
0.15	$4.39\% \simeq 5\%$	$3.66\% \simeq 5\%$	
0.16	$20.15\% \simeq ???$	53.52% ~ ???	
0.1	$99.2\% \simeq ???$	96.46% <i>≈</i> ???	

Question : Comment s'écrit l'assertion d'intérêt H_1 en fonction du paramètre d'intérêt et en fonction du paramètre d'écart standardisé?

Question : Comment s'écrit l'assertion d'intérêt H_1 en fonction du paramètre d'intérêt et en fonction du paramètre d'écart standardisé?

Réponse :
$$\mathbf{H_1}$$
 : $\mu^B > 0.15 \Leftrightarrow \delta_{\mu^B,0.15} := \frac{\mu^B - 0.15}{\sigma_{\widehat{\mu^B}}} > 0$ avec $\sigma_{\widehat{\mu^B}} = \frac{\sigma_B}{\sqrt{n}}$.

$$\mathbf{H_1} : \mu^B > 0.15$$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

$$H_1: \mu^B > 0.15$$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : H_0 : $\mu^B = 0.15$ vs H_1 : $\mu^B > 0.15$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}^{\mathbf{B}}\right)$ dans la pire des situations ?

Hypothèses de test : H_0 : $\mu^B = 0.15$ vs H_1 : $\mu^B > 0.15$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}^{\mathbf{B}}\right)$ dans la pire des situations ?

Hypothèses de test : H_0 : $\mu^B = 0.15$ vs H_1 : $\mu^B > 0.15$ Statistique de test sous H_0 :

$$\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}^{\mathbf{B}}\right) := \frac{\widehat{\mu^B}\left(\mathbf{Y}^{\mathbf{B}}\right) - 0.15}{\widehat{\sigma_{\widehat{\mu^B}}}\left(\mathbf{Y}^{\mathbf{B}}\right)} \overset{\textit{approx.}}{\leadsto} \mathcal{N}(0,1)$$

Question : Comment s'écrit la règle de décision en faveur de l'assertion d'intérêt ne produisant pas plus de 5% d'erreur de première espèce ?

Hypothèses de test : $\mathbf{H_0}: \mu^B = 0.15 \text{ vs } \mathbf{H_1}: \mu^B > 0.15$ Statistique de test sous $\mathbf{H_0}:$ $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}^B\right) := \frac{\widehat{\mu^B}\left(\mathbf{Y}^B\right) - 0.15}{\widehat{\sigma_{\widehat{C}_B}}\left(\mathbf{Y}^B\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$

Question : Comment s'écrit la règle de décision en faveur de l'assertion d'intérêt ne produisant pas plus de 5% d'erreur de première espèce ?

Hypothèses de test : H_0 : $\mu^B = 0.15$ vs H_1 : $\mu^B > 0.15$

Statistique de test sous H₀:

$$\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}^{\mathbf{B}}\right) := \frac{\widehat{\overline{\mu^B}}\left(\mathbf{Y}^{\mathbf{B}}\right) - 0.15}{\widehat{\sigma_{\widehat{\mu^B}}}\left(\mathbf{Y}^{\mathbf{B}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y^B}\right) > \delta_{\mathit{lim},\alpha}$

Question: Comment conclueriez-vous au vu des données de l'industriel stockées dans le vecteur $\mathbf{y}^{\mathbf{B}}$ (yB en R) et pour lequel mean(yB) = 0.172 et sd(yB) = 0.5610087?

Hypothèses de test : H_0 : $\mu^B = 0.15$ vs H_1 : $\mu^B > 0.15$

Statistique de test sous H_0 :

$$\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}^{\mathbf{B}}\right) := \frac{\widehat{\overline{\mu^B}}\left(\mathbf{Y}^{\mathbf{B}}\right) - 0.15}{\widehat{\sigma_{\widehat{\mu^B}}}\left(\mathbf{Y}^{\mathbf{B}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y^B}\right) > \delta_{\mathit{lim},\alpha}$

Question: Comment conclueriez-vous au vu des données de l'industriel stockées dans le vecteur $\mathbf{y}^{\mathbf{B}}$ (yB en R) et pour lequel mean(yB) = 0.172 et sd(yB) = 0.5610087?

Hypothèses de test : H_0 : $\mu^B = 0.15$ vs H_1 : $\mu^B > 0.15$

Statistique de test sous H_0 :

$$\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}^{\mathbf{B}}\right) := \frac{\widehat{\mu^B}\left(\mathbf{Y}^{\mathbf{B}}\right) - 0.15}{\widehat{\sigma_{\widehat{\mu^B}}}\left(\mathbf{Y}^{\mathbf{B}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y^B}\right) > \delta_{\mathit{lim},\alpha}$

Conclusion : Au vu des données, puisque

$$\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y^B}\right) = 1.24009 \not> \delta_{\mathit{lim},5\%} \overset{R}{=} \mathsf{qnorm}(.95) \simeq 1.644854$$
 on NE peut PAS plutôt penser que le produit B est rentable.

$$(\text{avec } \widehat{\delta_{\mu^B,0.15}} \left(\mathbf{y^B} \right) \overset{\text{R}}{=} \left(\text{mean(yB)} - \text{0.15} \right) / \text{sqrt(var(yB)/n)})$$