4 Class8-10 Illumination and Shading

1. Global vs. Local Illumination

Global: Models indirect illumination and occlusions Local: Only models direct illumination

2. Irradiance

$$E = \int_{\Omega} I(x, \omega) cos\theta dx$$

Note: $I(x,\omega)$ is the light intensity arriving from all directions and entering the hemisphere Ω over unit serface area.

Also we only care the vertical(normal) part of the light, we dismiss all lights parallel to the surface by using $\cos\theta$

3. Simplified lighting:

Assume all lights are distant-point light.

- Source have uniform intensity distribution
- Neglect distance fallout
- Direction to source is constant within scene
- Using 2 parameters to define a light:
 direction(x, y, z) vector from surface to light source
 intensity(r, g, b) of the light
- 4. specular reflection and diffuse reflection
 - Color shift by attenuation of RPG components for all reflection
 - Specular Reflection Model(View-Dependent):

$$L_{j}(V) = L_{e} \cdot K_{s} \cdot (V \cdot R)^{spec}$$

$$R = 2(N \cdot L)N - L$$

Note: *V* and *R* should be normalized.

Direction: Reflection occurs mainly in the "mirror" R direction, but there is some spread in similar directions V.

spec controls the distribution of intensity about R. Higher value of *spec* make the surface smoother K_s controls the color attenuation of Surface.

• Diffuse Reflection Models(View-Independent):

$$L_j = L_e \cdot K_d(L \cdot N)$$

Direction: All **output** directions are the same. But we only care vertical **input** light.

L and N should be normalized.

 K_d is the surface attenuation component.

Ambient Light

$$L_i = L_a \cdot K_a$$

Direction: All input and output directions are the same.

Only one ambient light is needed and allowed.

Complete Shading Equation:

$$Color = (K_s \sum L_e \cdot (V \cdot R)^{spec}) + (K_d \sum L_e \cdot (L \cdot N)) + (L_a \cdot K_a)$$

5. Detail about HW4(Lighting Implementation)

- \vec{L} denotes the direction to a infinity-far point-light source
- \vec{E} denotes the camera direction. If camera is far away, \vec{E} is constant(In HW4.)
- \vec{N} is specified at triangle vertices.
- \vec{R} must be computed for each lighting calculation (at **a point**). Calculation of \vec{R} :

$$\vec{R} = 2(\vec{N} \cdot \vec{L})\vec{N} - \vec{L}$$

Avoiding sqrt-root in this calculation

• Choosing a Shading Space: Wee need all $\vec{L}, \vec{E}, \vec{N}, \vec{R}$ in some affine(pre-perspective) space Suggest use **Image Space** for HW4.

Model space is also a reasonable choice since Normal vectors are already in that space. This is most **efficient!**

• Image Space Lighting (ISL)

Create a Transformation stack from model space to image space.

Need to normalized the Scale and delete translation for each matrix, only maintain the rotation, before push into this stack!

• Check the sign of $\vec{N} \cdot \vec{E}$ and $\vec{N} \cdot \vec{L}$:

Both positive: Compute lighting model.

Both negative: **Flip normal**(\vec{N}) and compute lighting model.

Different sign: Skip it.

- Check the sign of $\vec{R} \cdot \vec{E}$: If negative, set to 0.
- **Check** color overflow(> 1.0): Set to 1.
- Compute Color at all pixels:

Per Face - flat shading

Per Vertex - interpolate vertex colors, Gouraud Shading(specular highlights are undersampled, aliased).

Per Pixel - interpolate normals, Phong Shading (Expensive computation, but better sampling)

Set **Shading Modes Parameter** for different lighting calculation.

• **Pitfall** in **Phong** Interpolation:

Need to **normalize** the interpolation normal vector.

4.1 Class10: Something More About Shading

1. Non-Uniform Scaling:

A non-uniform scaling alters the relationship between the surface orientation and the Normal Vector.

So we **cannot** use the same matrix M for transformation of the Normals and the vertex coordinates.

We can fix this by using a different transformation Q = f(M) for transforming the Normals.

2. How to create a matrix for Normals:

In HW4, We create a matrix dismiss all scale matrix.

For Detail:

As the definition of Normals:

$$\vec{N}^T \cdot \vec{P} = 0$$

After include the transform matrix:

$$(Q\vec{N})^T\cdot (M\vec{P})=0$$

By Definition of Matrix Multiplyer:

$$\vec{N}^T \cdot Q^T \cdot M \cdot \vec{P} = 0$$

Since we already know $\vec{N}^T \cdot \vec{P} = 0$ we only need the inner part equal to identity matrix:

$$Q^T \cdot M = I, Q = (M^{-1})^T$$

Note that: If we only used uniform scaling: S = I after normalization.

If we compute Q for each M pushed on the X_{im} transform stack, the resulting X_n stack has Q and therefore allows non-uniform scaling.

3. Model Space Lighting(MSL):

Only need to transform Global lighting parameters once per models.

Also need to transform Eye/camera direction into model space.

5 Class 11-13: Texture Mapping

5.1 Screen-Space Parameter Interpolation

- 1. In Z-buffer interpolation, we know that linear interpolation for z is **wrong in image space**, we need to interpolate in **perspective space**.
- 2. Accurate interpolation of RGB color or Normal vectors should also take perspective into account. But we can ignore the color and normal interpolation error.
- 3. Interpolation for **Texture Function**: checkerboard Example: Using Linear Interpolation for u&v is also wrong!
- 4. How to compute perspective-correct interpolation of u, v at each pixel.
 - For each parameter P, we used P^s to denote the value in perspective space.
 - Note that: For Z interpolation $V_z^s = \frac{V_z}{\frac{V_z}{Z}+1} = \frac{V_z \cdot d}{V_z + d}$
 - Rescale V_z^s to $V_z^s \in [0, Z_{max}]$

$$V_z^s = \frac{V_z \cdot d}{V_z + d} \cdot \left(\frac{Z_{max}}{d}\right) = \frac{V_z \cdot Z_{max}}{V_z + d}$$

• We can also get the invert equation:

$$V_z = \frac{V_z^s \cdot d}{Z_{max} - V_z^s}$$

• For parameter from image space to perspective space:

$$P^{s} = \frac{P}{\frac{V_{z}}{d} + 1} = \frac{Pd}{V_{z} + d}$$

• Also we can get inver equation:

$$P = \frac{P^s(V_z + d)}{d}$$

• We don't have V_z but we already calculated V_z^s in HW2, so we can used that:

$$P^{s} = \frac{P}{(\frac{V_{z}^{s}}{Z_{max} - V_{z}^{s}} + 1)}$$

$$P = P^s \cdot \frac{V_z^s}{Z_{max} - V_z^s} + 1$$

- Note that we only have V_z^s and Z_{max} in this equation that we already know the value, we don't need to care d and some other parameter.
- We used $V_z' = \frac{V_z^s}{Z_{max} V_z^s}$ to simplify the equation:

$$P^s = \frac{P}{V_z' + 1}$$

$$P = P^s \cdot (V_z' + 1)$$

5. The Step for Parameter interpolation:

Get V_7^p for each vertex.

Transform P to perspective space P^s for each vertex.

Interpolate V_z^p for each pixel.

Interpolate P^s for each pixel.

Transform P^z back to P by using V_z^p for each pixel.

5.2 Texture

1. Scale *u*, *v* to Texture Image Size:

$$(u, v)$$
 coords range over $[0, 1]$

2D Image is a pixel array of
$$xs - 1$$
, $ys - 1$

But u * (xs - 1) might not be Integer so we need to interpolate the color for non-Integer (u, v) coordinate from nearest 4 Integer point.

$$Color(p) = (1 - s)(1 - t)A + s(1 - t)B + stC + (1 - s)tD$$

- 2. For Phong Shading, using texture function f(u, v) to replace k_d and k_a
- 3. For Gouraud Shading, using f(u, v) to replace all k_s , k_d and k_a
- 4. Procedural Texture
- 5. Bump Texture: Alter normals at each pixel to create bump.
- 6. Noise Texture: 3D Noise Volume, Tubulence
- 7. Evironment(Reflection) Mapping: Cube Map

Problems: Sampling problems and high curvature problems

5.3 Implementation Of Texutre(HW5)

1. Step1: Texture coordinates: surface point $\rightarrow (u, v)$

Input: vertex in image space

Output: (u, v)

2. Step2: $(u, v) \rightarrow RGB$ color

Input: (u, v) Output: RGB color from image LUT

- 3. Interpolation of (u, v) need to be in perspective space.
- 4. Interpolation of 4-corner for non-Integer (u, v) is needed.

6 Class14-15 Antialiasing

6.1 The Source of Aliasing

- 1. Quantization error arise from insufficient accuracy of sample
- 2. Aliasing error arise from insufficient samples
- 3. Nyquist Theorem: Sample at least twice the rate of highest frequency present in the signal. f(t) filtered for cutoff freq ω_F (Remove high frequencies before sampling) Sample Rate $\frac{1}{T_0}$ is greater than $2\omega_F$ Reconsturct(interpolate) with sinc function
- 4. Solution: Band-limit the input signal before sampling.

6.2 Implement Antialiasing(HW6)

- 1. Antialiasing by jitter supersampling
- 2. Sample a pixel several with different center and weight