# Problem Set 1

## Econometrics III

Jackson Bunting, Attila Gyetvai, Peter Horvath, Leonardo Salim Saker Chavez\*

September 8, 2016

#### Problem 1.

### Problem 2.

**Problem 3.** Let  $\{X_i\}_{i\in\mathbb{N}}$  be a sequence of random variables with mean  $\mu$ . Suppose that  $Cov(X_t, X_s) = 0 \forall t \neq s$  and  $Var(X_t) \leq Kt^{1/2}$  for some constant K > 0. Show that  $\bar{X}_t \stackrel{\mathbb{P}}{\to} \mu$ .

**Solution:** Consider any  $\epsilon > 0$ . Using Markov inequality we get

$$P(|\bar{X}_t - \mu| > \epsilon) \le \frac{\mathbb{E}(|\bar{X}_t - \mu|^2)}{\epsilon^2} = \frac{V(\bar{X}_t)}{\epsilon^2}$$
$$\le \frac{\sum_{t=1}^T V(X_t)}{T^2 \epsilon^2} = \frac{K \sum_{t=1}^T t^{1/2}}{T^2 \epsilon^2}$$
$$\le \frac{KT^{3/2}}{T^2 \epsilon^2} \xrightarrow{t \to \infty} 0$$

Then  $\bar{X}_t - \mu \stackrel{\mathbb{P}}{\to} 0$  which is equivalent to what we wanted to show.

#### Problem 4.

**Problem 5.** Suppose that  $\sup_{t \in \mathcal{T}} \mathbb{E}(|X_t|^{1+\delta}) < \infty$  for some  $\delta > 0$ . Then  $\{X_t : t \in \mathcal{T}\}$  is uniformly integrable. (Hint: Markov's inequality)

Solution: Notice that  $\sup_{t \in \mathcal{T}} \mathbb{E}(|X_t|I_{[|X_t|>M]}) \leq \sup_{t \in \mathcal{T}} \mathbb{E}(|X_t|) \sup_{t \in \mathcal{T}} P(X_t > M).$ 

<sup>\*</sup>Department of Economics, Duke University

From Markov inequality we have

$$P(|X_t| > M) \le \frac{\mathbb{E}(|X_t|^{1+\delta})}{M^{1+\delta}}$$
$$< \frac{\eta}{M^2} \stackrel{M \to \infty}{\longrightarrow} 0$$

Moreover, assuming  $\sup_{t\in\mathcal{T}}\mathbb{E}(|X_t|^{1+\delta})<\infty$  implies that  $\sup_{t\in\mathcal{T}}\mathbb{E}(|X_t|)<\infty$ . All of it implies that  $\lim_{M\to\infty}\sup_{t\in\mathcal{T}}\mathbb{E}(|X_t|I_{[X_t|>M]})\leq 0$ . Since  $|X_t|I_{[X_t|>M]}\geq 0$ , we get the uniform integrability of  $\{X_t:t\in\mathcal{T}\}$ .

Problem 6.

Problem 7.

Problem 8.

Problem 9.

**Problem 10.** Let  $a_n = o_p(1)$ . Interpret and prove that  $O_p(a_n) = o_p(1)$ .

**Solution:** If I divide  $X_n$  by  $a_n = o_p(1)$ , it has to be the case that  $X_n = o_p(1)$ . The proof is as it follows:

$$X_n = O_p(a_n) \iff \frac{X_n}{a_n} = O_p(1);$$
$$X_n = \frac{X_n}{a_n} a_n = O_p(1) o_p(1) = o_p(1)$$

The first line is just the definition of  $O_p(a_n)$ . The second line comes from the  $o_p$ - $O_p$  identities in the notes.

**Problem 11.** Interpret and prove that  $e^{o_p(1)} - 1 = o_p(1)$  and  $(O_p(1))^{\sqrt{2}} = O_p(1)$ .

**Solution:** If you pick a r.v.  $X = o_p(1)$ , then a continuous transformation will also be  $o_p(1)$ . The proof is a straightforward consequence of CMT.

For the second claim, the interpretation is that you preserve  $O_p(1)$  property when you take a continuous function of this r.v.. To prove, let  $X_n = O_p(1)$ . By definition,  $\exists M > 0$ ;  $\sup_{n \in \mathbb{N}} P(|X_n| > M) < \epsilon)$ . Notice that  $\{\omega \in \Omega : |X_n(\omega)| > M\} = \{\omega \in \Omega : |X_n(\omega)|^{\sqrt{2}} > M^{\sqrt{2}}\}$  because it is a monotonic transformation. Thus,  $\exists \eta = M^{\sqrt{2}} > 0$ ;  $\sup_{n \in \mathbb{N}} P(|X_n^{\sqrt{2}}| > \eta) < \epsilon)$ .

**Problem 12.** Let  $f(x) = \exp(x^2)$ . Let  $(X_i)_{1 \le i \le n}$  be iid  $N(\mu, 1)$  variables. Simulate such a sequence with n = 100 and  $\mu = 0.3$ . Compute  $f(\bar{X})$  where  $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ . Repeat this for 2000 times. Plot the distribution of  $f(\bar{X})$  in the simulation. What is the asymptotic distribution of  $f(\bar{X})$ ? Is the asymptotic distribution a good approximation to the empirical distribution? Repeat for  $\mu = 0, 0.1, 0.2, 0.3, 0.4, 0.5$ . Discuss the results.

**Solution:** We plot the simulated empirical distributions below. For  $\mu = 0$ , the distribution is skewed to the right, resembling the  $\chi^2$ -distribution. As  $\mu$  increases (especially after  $\mu \geq 0.4$ ), the distribution gets closer and closer to normal.

Figure 1: Simulated empirical distributions



Problem 13.