

Version	2.3
Total pages	18
Date	2004.12.27

Product Specification

7" color TFT-LCD module

MODEL NAME: A070VW01

(◆) Preliminary Specification

(.....) Final Specification

Record of Revision

Manaian	Davis Data	D	Occupant
Version	Revise Date		Content
0	08/May/2003	0	First draft.
1	29/Jul/2003	6	To Correct the pin assignment
2	23/Feb/2004	13	Remove 4 seals of Bottom Cover
2.1	09/Nov./2004	4	Reduced Storage Temperature from 95°C to 85°C
		4	Modified AVDD from 8.4V to 8.8+/- 0.2V
		4	Added lamp maximun rating
		5	Modified lamp working voltage and starting voltage
		5	Added Lamp lifetime
		5	Changed supply voltage (AVDD) from 8.4V to 8.8V
2.2	15/Nov./2004	5	Modified CCFL Specification and Notes
2.3	27/Dec./2004	2	Corrected typo error of Item 9 to "AG with SWV film"
		4,5	Unified VCC and AVDD value (VCC=3.3V, AVDD=8.8V)
		5	Updated Lamp starting voltage to 1550V(Max), 1290V(typ.)at –30°C
		12	Added front viewing of outline dimension and granding hole drawing
		13	Added rear viewing of outline dimension FPC drawing

Version 2.3 : 1/18 Page

Contents:

A.	Physical specifications	2
B.	Electrical specifications	3
1.	Pin assignment	3
2.	Absolute Maximum Ratings	4
3.	Typical operating conditions	4
4.	Current consumption conditions	5
5.	Backlight driving conditions	5
6.	Timing conditions	6
	a. AC Electrical Characteristics	6
	b. DC Electrical Characteristics	6
C.	Optical specification	7
D.	Reliability test items	9
E.	Packing form	10
Append	dix:	11
Appeı	ndix:	
Fig.1-a	Outline dimension of TFT-LCD module (Front View)	P12
Ū	Outline dimension of TFT-LCD module (Rear View)	P13
Fig.2 Op	peration Mode 1	P14
Fig.3 Op	peration Mode 2	P15
Fig.4 Ho	orizontal timing	P16
Fig5 Ve	ertical shift timing	P17
Fig6 Ve	ertical timing (from up to down)	P18

Version : 2.3 Page : 2/18

A. Physical specifications

NO	Item	Specification	Remark
1	Display resolution (dot)	800RGB(W)×480(H)	
2	Active area (mm)	152.40W)×91.44(H)	
3	Screen size (inch)	7.0(Diagonal)	
4	Pixel pitch (mm)	0.1905(W)×0.1905(H)	
5	Color configuration	R. G. B. stripe	
6	Overall dimension (mm)	165(W)×104(H)×6(D)	Note 1
7	Weight (g)	170 ±10	
8	Surface treatment	AG with SWV film	
9	Backlight unit	CCFL	

Note 1: Refer to Fig. 1

Version : 2.3 Page : 3/18

B. Electrical specifications

1. Pin assignment

a.) TFT-LCD panel driving section — FPC I/O Pin Assignment

(Response Connector: Hirose FH12-50S-0.5SH)

Pin no	Symbol	I/O	Description	Remark
1	GND	P	Ground for gate drive	
2	VCC	P	Digital voltage for gate driver	
3	VGL	P	TFT low voltage	
4	VGH	P	TFT high voltage	
5	STVL	I/O	Start pulse signal input/output (Vertical)	
6	STVR	I/o	Start pulse signal input/output (Vertical)	
7	CKV	I	CLK (Vertical)	
8	U/D	I	Up or Down display control	
9	OEV	I	Output enable	
10	VCOM	I	VCOM voltage	
11	DIO1	I/O	Start pulse signal input/output (Horizontal)	
12	AVDD	P	Analog voltage for source driver	
13	AVSS	P	Analog ground for source driver	
14	GND	P	Digital ground for source driver	
15	VCC (DVDD)	P	Digital voltage for source driver	
16	EDGSL	ī	Select raising edge or raising/falling edge	
17	CLK	I	Sample CLK	
18	SHL(R/L)	Ī	Right or Left display control	
19	R0	I	Red data	
20	R1	I	Red data	
21	R2	I	Red data	
22	R3	I	Red data	
23	R4	I	Red data	
24	R5	I	Red data	
25	G0	I	Green Data	
26	G1	I	Green Data	
27	G2	I	Green Data	
28	G3	I	Green Data	
29	G4	I	Green Data	
30	G5	I	Green Data	
31	V1	I	Reference voltage	
32	V2	I	Reference voltage	
33	V3	I	Reference voltage	
34	V4	I	Reference voltage	
35	V5	I	Reference voltage	
36	V6	I	Reference voltage	
37	V7	I	Reference voltage	
38	V8	I	Reference voltage	
39	V9	I	Reference voltage	
40	V10	I	Reference voltage	
41	B0	I	Blue Data	
42	B1	I	Blue Data	

Version : 2.3 Page : 4/18

43	B2	I	Blue Data
44	В3	I	Blue Data
45	B4	I	Blue Data
46	B5	I	Blue Data
47	LD (OEH)	I	Latch and switch data to output
48	REV	I	Control data are inverted or not
49	POL	I	Polarity selection
50	DIO2	I/O	Start pulse signal input/output (Horizontal)

b). Backlight driving section (Refer to Figure 1)

No.	Symbol	1/0	Description	Remark
1	HI	I	Power supply for backlight unit (High voltage)	
2	GND	1	Ground for backlight unit	

2. Absolute Maximum Ratings

Tt area a	Cranh ol	Product Spe	Product Specification			
Items	Symbol	Min. Typ.		Max.	Unit	
D	Vcc	-0.5		5	V	
	AVDD	-0.5		12	V	
Power	VGH	-0.3		18	V	
Voltage	VGL	-15		0.3	V	
	VGH-VGL			33	V	
	Vi	-0.3		Vcc+0.3	V	
Input Signal	Vref(V1~V5)	0.4AVDD		AVDD+0.3	V	
Voltage	Vref(V6~V10)	-0.3		0.6AVDD	V	
	VCOM		2.6		V	
Operating Temperature	Тора	-30		85	$^{\circ}$ C	
Storage	Tata	40		85	$^{\circ}\!\mathbb{C}$	
Temperature	Tstg	-40		83		
CCFL	VL			3,000	V	
CCLL	IL			10	mA	

3. Typical operating conditions (GND=AVSS=0V)

<i>J</i> :		-	•	,		
Itama	Cymbol	Product Spe	Product Specification			
Items	Symbol	Min.	Typ.	Max.	—Unit	
	VCC	3.0	3.3	3.6	V	
D	AVDD	8.6	8.8	9.0	V	
Power Voltage	VGH	14.0	15.0	16.0	V	
voltage	VCOM		2.6		V	
	VGL	-11.0	-10	-9.0	V	
Input	V1~V5	0.4AVDD	_	AVDD-0.2	V	
Reference Voltage	V6~V10	0.2	_	0.6AVDD	V	
Input H/L	VIH	0.8VCC	_	VCC	V	
level Voltage	VIL	0	_	0.2VCC	V	

Version : 2.3 Page : 5/18

4. Current consumption conditions(GND=AVSS=0V)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Cumant	IGH	VGH=15V		100	150	uA
Current For	IGL	VGL=-10V		-100	-150	uA
	ICC	VCC=3.3V		3.5	5	mA
Driver	IDD	AVDD=8.8V		20	30	mA

5. Backlight driving conditions

	,					
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Voltage	VL		513	570	627	Vrms
Current	IL			6	7	mA
Frequency	FL			60	80	KHz
Lamp		T=25°C		890	1,070	Vrms
Start	Vs	T=0°C		1,070	1.290	Vrms
Voltage		T=-30°C		1,290	1,550	Vrms
Discharge Stabilization Time	Ts				3	min
Discharge Time lag	Td	Note 5			1	sec
Lamp life time		Note 6	10,000	-		Hr

- Note 1: Panel surface temperature should be kept less than content of "B.2. Absolute maximum ratings"
- Note 2: The lamp frequency should be selected as different as possible from display horizontal synchronous signal to avoid interference. (Reference value)
- Note 3: Values of "Lamp Voltage", "Lamp power consumption" and "Starting voltage" are defined on condition of the LCD module derived by NF[AS-114B] circuit which measured from connectors of product(as below figure). However this isn't the values that we can assure stability of starting lamp on condition that the module is installed in your set.

Note 4: The "MAX" of "Starting voltage" means the minimum voltage to light normally in the LCD module.

Note 5: The time needed to start discharge when the over 1500Vrms voltage is continuously applied to both end of the lamp. Before testing, the lamp is left in the dark ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM UNIPAC OPTOELECTRONICS CORP.

Version : 2.3 Page : 6/18

room(ambient temperature: 25+/- 2°C, ambient luminance: less than 0.1lux) for 24Hrs after lighted for 1 minute at lated lamp current.

Note 6:The "Lamp life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 $^{\circ}$ C , I_L=6mA

6. Timing conditions

a. AC Electrical Characteristics (VCC=3.3V, AVDD=8.8V, AVSS=GND=0V, TA=25°C)

Parameter	Symbol	Min.	Typ.	Max.	Unit
CLK frequency	Fclk		40	42	MHz
CLK pulse width	TCW	6			ns
Data set-up time	Tsu	4			ns
Data hold time	Thd	2			ns
Propagation delay of DIO2/1	Tphl	6	10	15	ns
Time that the last data to LD	Tld	1			Tcw
Pulse width of LD	Twld	2			Tcw
Time that LD to DIO1/2	Tlds	5			Tcw
POL set-up time	Tpsu	6			ns
POL hold time	Tphd	6			ns
OEV pulse width	TOEV		12		Tcw
CKV pulse width	TCKV	16	28	40	Tcw
Horizontal display start	TSH		0		Tcw/3
Horizontal display timing range	TDH		800		Tcw/3
STV setup time	TSUV	400			ns
STV hold time	THDV	400			ns
STV pulse width	TSTV			1	TDH
Horizontal lines per field	TV	512	525	610	TDH
Vertical display start	TSV		3		TDH
Vertical display timing range	TDV		480		TDH

b. DC Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc	2.7	3.3	3.6	V
Low Level Input Voltage	Vil	0	=	0.3*Vcc	V
High Level Input Voltage	Vih	0.7*Vcc	-	Vcc	V
High Level Output Voltage	Voh	Vcc-0.4	=	-	V
Low Level Output Voltage	Vol	GND	-	GND+0. 4	V
Supply Voltage	AVDD	8.6	8.8	9.0	V
Sinking Current of Outputs	IOL	-80	=	-	uA
Driving Current of Outputs	IOH	80	-	-	uA

Note 1: Due to panel is a passive component and no leakage current request for better performance, it's may need extra circuit to make sure the TFT LCD panel storage capacitor's shorter discharge time when system power off. Customers should study the discharge circuit according themselves system design.

Version : 2.3 Page : 7/18

C. Optical specification (Note 1, Note 2)

	Symb	Condition	Min.	Тур.	Max.	Unit	Remark
	Tr Tf	<i>θ</i> =0°	-	12 18	50 60	ms ms	Note 3,5
	CR	At optimized Viewing angle	200	300	-		Note 4, 5
Botto m Left		CR≧10	30 50 50 50	40 60 60 60	- - -	deg.	Note 5, 6
Top Botto m Left		CR≧5	40 60 60 60	50 70 70 70	- - -	deg.	Note 5, 6
	Y_L	I _L =6mA, 25°℃	350	400	-	nit	Note 7
White chromaticity		$\theta = 0^{\circ}$ $\theta = 0^{\circ}$	0.26 0.28	0.31	0.36 0.38		Note 7
	Rise Fall Top Botto M Left Top Botto M Left Right Left Right	Rise Tr Fall Tf CR Top Botto m Left Riaht Top Botto m Left Riaht Tip Right	Rise Tr Tf $\theta = 0^{\circ}$ CR At optimized Viewing angle Top Botto CR \geq 10 M Left Right Top Botto M Left Right Top Botto M Left Right VL $ I_L = 6mA, 25^{\circ}C $ icity $ X = 0^{\circ}$	Rise Tr $_{\rm Fall}$ Tr $_{\rm Fall}$ $\theta = 0^{\circ}$ - $_{\rm CR}$ At optimized Viewing angle $\theta = 0^{\circ}$ $\theta $	Rise Tr Fall Tf $\theta = 0^{\circ}$ - 12 - 18 CR At optimized Viewing angle CR ≥ 10	Rise Tr Fall Tf $\theta = 0^{\circ}$ - 12 50 60 CR At optimized Viewing angle CR ⇒ 10 So ⇒ 60 CR ≥ 10 So ⇒ 60 CR ≥ 10 So ⇒ 60 CR ≥ 5 CR ≥ 5 CR ≥ 60 CR ≥ 60 CR ≥ 60 CR ≥ 70 C	Rise Tr Tf θ =0°

Note 1 : Ambient temperature =25 $^{\circ}$ C, and lamp current I_L = 6 mArms. To be measured in the dark room.

Note 2 :To be measured on the center area of panel with a viewing cone of 1°by Topcon luminance meter BM-7, after 10 minutes operation.

Note 3. Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Version : 2.3 Page : 8/18

Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Photo detector output when LCD is at "White" state

Photo detector output when LCD is at "Black" state

Contrast ratio (CR)=

Note 5. White $Vi=V_{i50} + 1.5V$

Black Vi=V_{i50} ± 2.0V

"±" means that the analog input signal swings in phase with V_{COM} signal.

" means that the analog input signal swings out of phase with V_{COM} signal.

 V_{i50} : The analog input voltage when transmission is 50%

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 6. Definition of viewing angle, Refer to figure as below.

Note 7. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Version : 2.3 Page : 9/18

D. Reliability test items(Note 2):

No.	Test items	Conditions	Remark
1	High temperature storage	Ta= 85°C 240Hrs	
2	Low temperature storage	Ta= -40°C 240Hrs	
3	High temperature operation	Tp= 85℃ 240Hrs	
4	Low temperature operation	Ta= -30°C 240Hrs	
5	High temperature and high	Tp= 60°C, 90% RH 240Hrs	Operation
6	Heat shock	-30°C~85°C/200 cycles 1Hrs/cycle	Non-operati
7	Electrostatic discharge	\pm 200V,200pF(0 Ω), once for each terminal	Non-operati on
8	Vibration	Frequency range: 8~33.3Hz Stoke: 1.3mm Sweep: 2.9G, 33.3 ~ Cycle: 15 minutes 2 hours for each direction of X,Z 4 hours for Y direction	JIS C7021, 10 condition A
9	Mechanical shock	100G, 6ms, ±X,±Y,±Z 3 times for each direction	JIS C7021, 7 condition C
10	Vibration (with carton)	Random vibration: 015G ² /Hz from 5~200Hz –6dB/octave from 200~500Hz	IEC 68-34
11	Drop (with carton)	Height: 60cm 1 corner, 3 edges, 6 surfaces	JIS Z0202

Note1: Ta: Ambient Temperature.

Note2: Tp: Panel Surface Temperature

Note3: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Version : 2.3

Page : 10 /18

Version : 2.3 Page : 11 /18

Fig 1-a Outline dimension of TFT-LCD module (Front View)

Version : 2.3 Page : 12 /18

Fig 1-b Outline dimension of TFT-LCD module (Rear View)

Version : 2.3 Page : 13 /18

| Timing Diagram 1 (CHNSL="1", Default)

Fig.2 Operation Mode 1

Version : 2.3 Page : 14 /18

Version 2.3

Page 15 /18

Fig.4 Horizontal timing

Fig.5 Vertical shift clock timing

Version : 2.3 Page : 17 /18

Fig.6 Vertical timing (from up to down)