О равенствах

С целью уменьшения нагрузки на символ (=) договоримся об альтернативных символах:

символ использование

- (=) ▶ равенство в предметных языках
 - равенство чисел, значений в метаязыке (при наличии традиции):

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

- (:=) введение обозначений: пусть $\Xi := \{x_1, x_2, x_3\}$
 - lacktriangle указание значений для модели: $[A o A]^{A:=N}$
- (\equiv) Равенство строк после подстановки метапеременных: *пусть* дано доказательство $\delta_1, \dots, \delta_n$, причём $\delta_n \equiv \alpha \to \beta$

Интуиционистская логика

Доказательства чистого существования

Теорема (Брауэра о неподвижной точке)

Любое непрерывное отображение f шара в \mathbb{R}^n на себя имеет неподвижную точку Доказательство.

Не существует непрерывного отображения шара на границу (без доказательства), однако:

Один из примеров подробно

Теорема

Существует пара иррациональных чисел a и b, такая, что a^b — рационально.

- \triangleright 2⁵, 3³, 7¹⁰, $\sqrt{2}^2$ рациональны;
- $ightharpoonup 2^{\sqrt{2}}, e^{\pi}$ иррациональны (как это доказать?);

Один из примеров подробно

Теорема

Существует пара иррациональных чисел a b, такая, что a^b — рационально.

Доказательство.

Рассмотрим $a=b=\sqrt{2}$ и рассмотрим a^b . Возможны два варианта:

- 1. $a^b = \sqrt{2}^{\sqrt{2}}$ рационально;
- 2. $a^b = \sqrt{2}^{\sqrt{2}}$ иррационально; отлично, тогда возьмём $a_1 = \sqrt{2}^{\sqrt{2}}$ и получим

$$a_1^b = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^2 = 2$$

Интуиционизм

"Over de Grondslagen der Wiskunde" (Брауэр, 1907 г.) Основные положения:

- 1. Математика не формальна.
- 2. Математика независима от окружающего мира.
- 3. Математика не зависит от логики это логика зависит от математики.

ВНК-интерпретация логических связок

ВНК — это сокращение трёх фамилий: Брауэр, Гейтинг, Колмогоров.

Пусть α , β — некоторые конструкции, тогда:

- ightharpoonup lpha & eta построено, если построены lpha и eta
- ightharpoonup $\alpha \lor \beta$ построено, если построено α или β , и мы знаем, что именно
- ightharpoonup построено, если есть способ перестроения lpha в eta
- ▶ ⊥ конструкция, не имеющая построения
- ightharpoonup построено, если построено $lpha
 ightharpoonup \bot$

Дизъюнкция

Конструкция $\alpha \vee \neg \alpha$ не имеет построения в общем случае. Что может быть построено: α или $\neg \alpha$?

Возьмём за lpha нерешённую проблему, например, $P=\mathit{NP}$

Авторам в данный момент не известно, выполнено $P=\mathit{NP}$ или же $P \neq \mathit{NP}$.

Отличия импликации

Высказывание общезначимо в И.В. и не выполнено в ВНК-интерпретации:

$$(A \rightarrow B) \lor (B \rightarrow C) \lor (C \rightarrow A)$$

Давайте дадим следующий смысл пропозициональным переменным:

- ▶ A 16.09.2023 в Санкт-Петербурге идёт дождь;
- ▶ В 16.09.2023 в Санкт-Петербурге светит солнце;
- ▶ C во 2 семестре староста группы 3239 получил «отлично» по матанализу.

Импликацию можно понимать как «формальную» и как «материальную».

- lacktriangle Материальная импликация A o B надо посмотреть в окно.
- lacktriangle Формальная импликация A o B места не имеет (причинно-следственной связи нет).

Формализация

Формализация интуиционистской логики возможна, но интуитивное понимание — основное.

Определение

Аксиоматика интуиционистского исчисления высказываний в гильбертовском стиле: аксиоматика КИВ, в которой 10 схема аксиом

(10)
$$\neg \neg \alpha \rightarrow \alpha$$

заменена на

(10u)
$$\alpha \rightarrow \neg \alpha \rightarrow \beta$$

Немного об общей топологии.

Топологическое пространство

Определение

Топологическим пространством называется упорядоченная пара $\langle X,\Omega \rangle$, где X — некоторое множество, а $\Omega \subseteq \mathcal{P}(X)$, причём:

- 1. $\emptyset, X \in \Omega$
- 2. если $A_1, \ldots, A_n \in \Omega$, то $A_1 \cap A_2 \cap \cdots \cap A_n \in \Omega$;
- 3. если $\{A_{\alpha}\}$ семейство множеств из Ω , то и $\bigcup_{\alpha}A_{\alpha}\in\Omega$.

Множество Ω называется топологией. Элементы Ω называются открытыми множествами.

Определение

 \mathcal{B} — база топологического пространства $\langle X,\Omega \rangle$ ($\mathcal{B}\subseteq \Omega$), если всевозможные объединения множеств (в т.ч. пустые) из \mathcal{B} дают Ω .

Примеры топологических пространств

Определение

Евклидово пространство (евклидова топология) на \mathbb{R} : база топологии $\{(x,y)\mid x,y\in\mathbb{R}\}.$

Определение

Дискретная топология: $\langle X, \mathcal{P}(X) \rangle$ — все множества открыты.

Определение

Топология стрелки: $\langle \mathbb{R}, \{(x,+\infty) \mid x \in \mathbb{R}\} \cup \{\varnothing,\mathbb{R}\} \rangle$ — открыты все положительные лучи.

Метрические пространства

Определение

Метрикой на X назовём множество, на котором определена функция расстояния $d: X^2 \to \mathbb{R}^+$, удовлетворяющая следующим свойствам:

- 1. d(x,y) = 0 тогда и только тогда, когда x = y
- 2. d(x, y) = d(y, x)
- 3. $d(x,z) \leq d(x,y) + d(y,z)$ (неравенство треугольника)

Определение

Определение

Если X — некоторое множество и d — метрика на X, то будем говорить, что топологическое пространство, задаваемое базой $\mathcal{B} = \{O_{\varepsilon}(x) \mid \varepsilon \in \mathbb{R}^+, x \in X\}$, порождено метрикой d.

Непрерывность

Определение

Функция $f:X \to Y$ непрерывна, если прообраз любого открытого множества открыт.

Пример

Функция $f:\mathbb{N}\to\mathbb{R}$ всегда непрерывна (при дискретной топологии на \mathbb{N}), поскольку любое множество в \mathbb{N} открыто.

Компактность

Определение

Будем говорить, что множество компактно, если из любого его открытого покрытия можно выбрать конечное подпокрытие

Пример

Множество $\{0,1\}$ в дискретной топологии компактно.

Пример

Интервал (0,1) в $\mathbb R$ не компактен — например, рассмотрим покрытие $\{(arepsilon,1)\mid arepsilon\in(0,1)\}$

Подпространства и связные множества

Определение

Пространство $\langle X_1,\Omega_1 \rangle$ — подпространство пространства $\langle X,\Omega \rangle$, если $X_1 \subseteq X$ и $\Omega_1 = \{A \cap X_1 | A \in \Omega\}$.

Пример

[0,1] с евклидовой топологией на отрезке — подпространство \mathbb{R} . [0,0.5) открыто в [0,1], так как $[0,0.5)=(-0.5,0.5)\cap[0,1]$.

Определение

Пространство $\langle X,\Omega \rangle$ связно, если нет $A,B\in \Omega$, что $A\cup B=X$, $A\cap B=\varnothing$ и $A,B\neq \varnothing$.

Пример

Пространство $(0,1] \cup [2,3)$ в $\mathbb R$ несвязно: возьмём A=(0,1] и B=[2,3). Дискретное топологическое пространство $\langle X, \mathcal P(X) \rangle$ несвязно при |X|>1: пусть $a \in X$, тогда $A=\{a\}$ и $B=X\setminus A$.

Топология на деревьях

Определение

Пусть некоторый лес задан конечным множеством вершин V и отношением (\preceq) , связывающим предков и потомков ($a \preceq b$, если b — потомок a). Тогда подмножество его вершин $X \subseteq V$ назовём открытым, если из $a \in X$ и $a \preceq b$ следует, что $b \in X$.

Пример

Связность деревьев

Лемма

Лес связен (является одним деревом) тогда и только тогда, когда соответствующее ему топологическое пространство связно.

Доказательство.

- 1. Лес связен: пусть не так и найдутся открытые непустые A,B, что $A \cup B = V$ и $A \cap B = \varnothing$. Пусть $v \in V$ корень дерева и пусть $v \in A$ (для определённости). Тогда $A = \{x \mid v \leq x\}$ и $B = \varnothing$.
- 2. Пусть лес топологически связен, но есть несколько разных корней v_1, v_2, \ldots, v_k . Возьмём $A_i = \{x \mid v_i \leq x\}$. Тогда все A_i открыты, непусты, дизъюнктны и $V = \cup A_i$.

Пишем скобки или нет?

```
Вы как пишете: \sin x или \sin(x)?
int main () {
     return sizeof 0;
Соглашение о записи:
                                     sizeof \varnothing = sizeof(\varnothing) = 0
HO:
                                  sizeof\{\emptyset\} = sizeof(\{\emptyset\}) = 1
```

Минимальные и максимальные элементы

Определение

Множество нижних граней $X\subseteq \mathcal{U}$: $\mathsf{lwb}_\mathcal{U} X=\{y\in \mathcal{U}\mid y\preceq x\ \textit{при всех }x\in X\}.$ Множество верхних граней $X\subseteq \mathcal{U}$: $\mathsf{upb}_\mathcal{U} X=\{y\in \mathcal{U}\mid x\preceq y\ \textit{при всех }x\in X\}.$

Определение

максимальный $(m \in X)$: нет большего наименьший $(m \in X)$: меньше всех наибольший $(m \in X)$: больше всех инфимум: наибольшая нижняя грань супремум: наименьшая верхняя грань

минимальный $(m \in X)$: нет меньшего

при всех $y \in X$, $y \le m$ влечёт y = m при всех $y \in X$, $m \le y$ влечёт y = m при всех $y \in X$ выполнено $m \le y$ при всех $y \in X$ выполнено $y \le m$ inf $_{\mathcal{U}} X = \text{наим}(\text{lwb}_{\mathcal{U}} X)$ sup $_{\mathcal{U}} X = \text{наим}(\text{upb}_{\mathcal{U}} X)$

Пример

Пример: делимость

На \mathbb{N} положим $a \prec b$, если $b \vdots a$.

Пример

Множество {2, 3, 6}

Минимальные: 2,3
$$2 : x$$
 влечёт $x = 1$ или $x = 2$, то же про 3 Наименьший: отсутствует $2 \not\preceq 3$ и $3 \not\preceq 2$ Инфимум: $1 \preceq x$ при всех $x \in \mathbb{N}$

Пример

Рассмотрим $X = \{1; 1.4; 1.41; 1.414; 1.4142; \ldots\}$ — множество десятичных приближений $\sqrt{2}$, $\leq = \leq$. Тогда $\operatorname{upb}_{\mathbb{Q}} X$ состоит из рациональных чисел, бо́льших $\sqrt{2}$. При этом $\sqrt{2} \notin \operatorname{upb}_{\mathbb{Q}} X$, а значит $\sup_{\mathbb{Q}} X$ не определён.

Пример: внутренность множества

Определение (внутренность множества)

Рассмотрим $\langle X,\Omega \rangle$ и возьмём (\subseteq) как отношение частичного порядка на $\mathcal{P}(X)$. Тогда $A^\circ := \inf_{\Omega}(\{A\})$.

Теорема

 A° определена для любого A.

Доказательство.

Пусть $V=\mathsf{Iwb}_\Omega\{A\}=\{Q\in\Omega\mid Q\subseteq A\}$. Тогда $\mathsf{inf}_\Omega\{A\}=\bigcup V$. Напомним, $\mathsf{inf}_\mathcal{U}\ T=\mathsf{haub}(\mathsf{Iwb}_\mathcal{U}\ T)$.

- 1. Покажем принадлежность: $\bigcup V \subseteq A$ и $\bigcup V \in \Omega$ как объединение открытых.
- 2. Покажем, что все из V меньше или равны: пусть $X \in V$, то есть $V = \{X, \dots\}$, тогда $X \subseteq X \cup \dots$, тогда $X \subseteq V$

Решётка

Определение

Решёткой называется упорядоченная пара: $\langle X, (\preceq) \rangle$, где X — некоторое множество, а (\preceq) — частичный порядок на X, такой, что для любых $a,b \in X$ определены $a+b=\sup\{a,b\}$ и $a\cdot b=\inf\{a,b\}$.

To есть, a+b — наименьший элемент c, что $a \leq c$ и $b \leq c$.

Пример

$$\langle \Omega, (\subseteq)
angle$$
 — решётка. $\langle \mathbb{N} \setminus \{1\}, (\vdots)
angle$ — не решётка.

Псевдодополнение

Псевдодополнением $a \to b$ называется наибольший из $\{x \mid a \cdot x \leq b\}$.

Пример

$$a \cdot b = a$$

 $b \cdot b = b$
 $c \cdot b = a$
 $d \cdot b = b$

Здесь
$$b \rightarrow c = \text{наиб}\{x \mid b \cdot x \leq c\} = \text{наиб}\{a, c\} = c$$

Пример (нет псевдодополнения: диамант и пентагон)

Особые решётки

Определение

Дистрибутивной решёткой называется такая, что для любых a,b,c выполнено $a\cdot(b+c)=a\cdot b+a\cdot c.$

Определение

Импликативная решётка— такая, в которой для любых элементов есть псевдодополнение.

Лемма

Любая импликативная решётка — дистрибутивна.

Ноль и один

Определение

0 — наименьший элемент решётки, а 1 — наибольший элемент решётки

Лемма

В любой импликативной решётке $\langle X, (\preceq)
angle$ есть 1

Доказательство.

Рассмотрим a o a, тогда $a o a=\mathsf{hau6}\{c\mid a\cdot c\preceq a\}=\mathsf{hau6}X=1.$

Определение

Импликативная решётка с 0 — псевдобулева алгебра (алгебра Гейтинга). В такой решётке определено \sim $a:=a \rightarrow 0$

Определение

Булева алгебра — псевдобулева алгебра, в которой а $+ \sim$ а = 1 для всех а.

Булева алгебра является булевой алгеброй в смысле решёток

Доказательство.

Символы булевой алгебры: $(\&), (\lor), (\neg), Л, И$.

Символы решёток: $(+), (\cdot), (\to), (\sim), 0, 1$

Упорядочивание: $\Pi \leq \Pi$.

- 1. $a \& b = \min(a, b), \ a \lor b = \max(a, b)$ (анализ таблицы истинности), отсюда $a \cdot b = a \& b$ и $a + b = a \lor b$.
- 2. $a \rightarrow b = \neg a \lor b$, так как:

$$a o b=$$
 наиб $\{c|c\ \&\ a\le b\}=\left\{egin{array}{ll}
eg a, & b=\Pi\
otag\
otag, & b=M \end{array}
ight.$

3. $0 = \min\{\mathcal{N}, \Pi\} = \Pi$, $1 = \max\{\mathcal{N}, \Pi\} = \mathcal{N}$, $\sim a = a \to 0 = \neg a \lor \Pi = \neg a$. Заметим, что $a + \sim a = a \lor \neg a = \mathcal{N}$.

Итого: булева алгебра — импликативная решётка с 0 и с $a+\sim a=1$.

Множества и топологии как решётки

Лемма

 $\langle \mathcal{P}(X), (\subseteq) \rangle$ — булева алгебра.

Доказательство.

 $a o b = \mathsf{Hau6}\{c \subseteq X \mid a \cap c \subseteq b\}$. Т.е. наибольшее, не содержащее точек из $a \setminus b$.

T.e. $X \setminus (a \setminus b)$. То есть $(X \setminus a) \cup b$.

$$a + \sim a = a \cup (X \setminus a) \cup \emptyset = X$$

Лемма

 $\langle \Omega, (\subseteq)
angle$ — псевдобулева алгебра.

Доказательство.

 $a o b = \mathsf{наи6}\{c \in \Omega \mid a \cap c \subseteq b\}$. Т.е. наибольшее открытое, не содержащее точек из $a \setminus b$. То есть, $(X \setminus (a \setminus b))^\circ$. То есть, $((X \setminus a) \cup b)^\circ$.

Решётки и исчисление высказываний

Определение

Пусть некоторое исчисление высказываний оценивается значениями из некоторой решётки. Назовём оценку согласованной с исчислением, если $[\![\alpha \& \beta]\!] = [\![\alpha]\!] \cdot [\![\beta]\!]$, $[\![\alpha \lor \beta]\!] = [\![\alpha]\!] + [\![\beta]\!]$, $[\![\alpha \to \beta]\!] = [\![\alpha]\!] \to [\![\beta]\!]$, $[\![\neg \alpha]\!] = \sim [\![\alpha]\!]$, $[\![A \& \neg A]\!] = 0$, $[\![A \to A]\!] = 1$.

Теорема

Любая псевдобулева алгебра, являющаяся согласованной оценкой интуиционистского исчисления высказываний, является его корректной моделью: если $\vdash \alpha$, то $[\![\alpha]\!] = 1$.

Теорема

Любая булева алгебра, являющаяся согласованной оценкой классического исчисления высказываний, является его корректной моделью: если $\vdash \alpha$, то $[\![\alpha]\!]=1$