Lecture: Binary Search 2

Agenda

```
voul given a rotated sorted array, find an el in it.
 2 4 8 10 15 : Sorted array

15 2 4 8 10

10 15 2 4 8

8 10 15 2 4

4 8 10 15 2

2 4 8 10 15 5
                                                                .3
                                                                5
Example: varr: [ 4 8 10 15 2], k=15 and = 3
Approach Linear search.
                        T( O(n)
```

SC: O()

Challenge: find the idx of beak element.

Approach! Traveral. Linear

TC: O(n)

sc: 0(1)

Approach2

$$am() = \begin{bmatrix} 4 & 5 & 8 & 10 & 2 & 3 \end{bmatrix}$$

$$part2$$

au el (part1) > au el (part2)

Ref: oth el is helping me doing the partition
all part (els > arr[o]
11 part 2 " < arr[o]

Target: peak el mar element

Search of ace: arr

conditions

١.

```
art) = [ 60 70 80 90 100 10 20 30]
            mid
        و
                      am[3] > am[0]
                3
 O
                        s=mict1
                       arris) (arrio)
         7
                5
 4
                        e=mid-1
               4
                       arr(u]) arr(5]
      4
 4
                          return 4.
2 4 5 4 7 7 7 4 4 4 4 5 4 4 )
                mid
 8
         e
                       am[3] not greater arr(0)
 0
                 3
                         right
    Hint: What if I encounter a 4 on part 2?
               How to make oure to move to right | left
                  Tweak. Hw
```

```
int finalargest Element Fax (int [] arr) {
            s=0; e= arriength-1;
           while ( s <= e) {
               mid = s + (e-s);
              if (ar(mid) > ar(mid+1) {
                   return mid;
             if (ar(mid) > ar(0)){
                    8 = midf1;
             1 cloc/
                  e = mid-1;
    retum -1;
   beak-i'dr
  int search In Rotated cortica Array (until) arr, int K) (
ologn) — int peak-ide = finalargest Element Fax (arr);
O(logn) — int and = binary search (arr, 0, beok-idx);
           if ( word 1 = -1) (
  ologn.
return binary search (arr. beou-idn+1, arr·length-1);
                TC: 0(3log2n) ~ 0(log2n)
                SC: 0(1)
```

Approach3: Do in one binary securch.

Target = K

search épace = array

conditions

1.

mid

8

16

(if (arr (mid) == k) { return mid};

3>


```
Day run:
 var(1) = \begin{bmatrix} 10 & 20 & 30 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}
           e mod
                                 k >ar(o) -kisin barr.
                    5
                               arr[mia] (arr[o] - moi is in part 2
                                left; e= miol-1.
                                 k is vi part!
       4
0
                     2
                                  arr[mvoi] > arr[0] - mid is in part!
                                 arr[mid] > K
                                  c = mid-1
                                 k is in part
0
                    0
                                arr[mod] >= arr(0) - mod is part 1.
                                 arr(mia) (k. → 8 = miatl
                                arr(midi) == K
       1
                                     setum mid;
             int searchen Rotated corted Array (arr(), vit k) {
                      8=0; c= arriength-1.
                      wnite ( s <= e){
                           mid = \delta + \left(\frac{e-\delta}{2}\right);
                           if (arcmid) == k)(
                                 return midi
```

```
if(k(am(o)) - kis in part2
             if (arr(mid) > arr(o)) - mid is vi þart 1.
                  8 = midt1;
            ? else { - mod is in part 2
                  if (arcmid) > k) {
                      e=mid-1;
                 } eloe (
                    8 = midut 1;
            eloe {
         3.1 if (arrimid) (arriv) - mud is in part2
                   e = mol-1;
               ? cloe } - mod is in part1.
            3.2 if (arr(min) (K) {
                     8=miatl;
            3.3 } else {
                   e= mid-1
retum -1;
                TC: 0( Wg 2n)
                Sc: 0(1)
```

Break: 8:40 AM

$$lcm * hcf = a*b.$$

$$lcm(a,b) = \underline{a*b}$$

$$gca (a,b)$$

venn diagram

A: students who play cricket: 80

B: " football: 20

students who play both cricket () football: 5

AUB = A + B - ANB = 80 + 20 - S = 9S

<u>rou:</u> given A and B, find no of multiples of A from [1-B]

A B

3 20: 3 6 9 12 15 18 $\frac{1}{2}$ 20/3

4 30: 4 8 12 16 20 24 28; 30/4

7 35: 7 14 21 28 35: 35/5

<u>Ou</u> Given A, B and C. find no of multiples of B or C from
[1-A]

B C A

3 5 35

Muntplu of 3: 3 6 9 12 15 18 21 24 27 30 33: 35/3

multiples of 5: 5 10 15 20 25 30 35: 35/5

Multiples of 3 or $5 = \frac{35}{3} + \frac{35}{5}$ — common multiples of 3 d 5

$$\Rightarrow \frac{35}{3} + \frac{35}{5} - \frac{35}{\text{Lom}(3,5)}$$

$$\frac{35}{3} + \frac{35}{5} - \frac{35}{15}$$

104: Att Magical number Given A, B and C. find Ath magical number

Note: A is said to be magical it it is divisible by B or C.

En b c o

2 3 8 - 2 3 4 6 8 9 10 12

8th magical no

4 6 5 - 4 6 8 1 1 1

1st magical 2not 3rd 2th 5th.

5 9 10: 5 \uparrow 10 \uparrow 18 20 \uparrow 27 30 \uparrow 10t 2nd \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow 10th 36d 4th 5th 6th 7th 8th 4th

11th 12th 13th 14th

Brute force:

min possible ans: min(b, c):

mar possible ans: min(b, c) * a.

```
int fina Magicaino (int a. intb, inti) (
      int cnt = 0;
      int min = min (b,c);
      int max = min (b, () * a)
      for ( i = min; i <= max; i+) (
            cnt ++;
            if ( int == a) (
              retum i;
              TC: o(max) = o(a * min (b) c))
              SC: 0(1)
```

· Condition

$$\frac{22}{4} + \frac{22}{6} - \frac{22}{lcm(411)}$$

$$\frac{2^{2}}{4} + \frac{2^{2}}{6} - \frac{2^{2}}{12}$$

$$5 + 3 - 1 = (7)$$

$$6 \quad q \quad 4 \longrightarrow 6 \quad q \quad 12 \quad 18 \quad 24 \quad 27 - - -$$

Random mids

$$18 : \frac{18}{6} + \frac{18}{9} - \frac{18}{100(9.6)}$$

$$=\frac{18}{6} + \frac{18}{9} - \frac{18}{18} = 4$$

$$\frac{19}{6} + \frac{19}{9} - \frac{19}{18} = 3 + 2 - 1 = 4$$

Tracurej

β C A

min = 5

mon = 5

γ 4

8 e micli

8 = mid + 1.

 $\frac{16}{5} + \frac{16}{7} - \frac{16}{35} = 5$

e = miol-1

13 15 14 $\frac{14}{5} + \frac{14}{7} - \frac{14}{3.5} = 4 \left[ans = 4 \right]$

e=mid-1

 $\frac{13}{5} \qquad \frac{13}{5} + \frac{13}{7} - \frac{13}{35} = \frac{3}{5}$

&= midu+1

14 13 break

```
int Ath Magical No (int a. int b. inte) (
       int & = min (b, ();
      int e = min (b, c) * a;
        out lcm = \frac{a+b}{gca(a,b)}; vand = 0;
       while ( & <= e) {
            mid = 8 + \frac{(e-8)}{2};
            int magical = \frac{mid}{h} + \frac{mid}{c} - \frac{mid}{lem}.
            if (magical (a){
                  &= miduti;
            l else if (magical) a) {
                   e=mid-1;
           \ eloe?
                    ons = mid;
 return ans:
              TC: 0(log_ (min'(bic) *a))
              SC: 0(1)
```

```
<u>Qu:</u> sqrt of a number.
  <u>Eg:</u> eqrt(25) = 5
       Mrt(26) = 5
       8qxt(24) = 4
                                                           ors
                                                            1
                                                    1
                                             50
  Approach! it sqrt(n) {
                     \hat{L} = 1, and = 1;
                                                    3
                                                            3
                     while ( i * i <= n) (
                                                           4
                                                   5
                                                            5
                         ons =1';
                                                           6
                         l'++;
                                                           7 Ano
                                                   7
                   return ans;
                eqxt(n) ( n=100 oqxt (1-100) on=10
 Approach2:
                             n=1 sqr(1-1) squ=1.
                 min = |
                max = n.
                   Target: floor eart(n)
```

Range (* carch = [1-n])


```
int equit (int n) {
      8=1, e=n, ~ans;
      whi " ( & (=e) {
           m vol = 8 + \left(\frac{\ell - 8}{2}\right)'
          if ( mid * mid ( n) {
                S=mioc+1;
                 vanu= midi;
         l else if ( mid * mior >n) {
                 e=mid-1;
          ) eloc (
              return mid,
 return ans;
             TC: O(log2n)
             SC: 0(1)
```

Thonkyou (1)