Packet 1

Chapter 12: Vectors and the Geometry of Space

12.1 Two and Three Dimensional Space

Definition 1. Let \mathbb{R} be the collection of real numbers, let \mathbb{R}^2 be the collection of all **ordered** pairs of real numbers, and let \mathbb{R}^3 be the collection of all **ordered triples** of real numbers.

 \mathbb{R} is known as the **real line**, \mathbb{R}^2 is known as the **real plane** or the xy-**plane**, and \mathbb{R}^3 is known as **real (3D) space** or xyz-**space**.

Definition 2. The **distance** between two points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ in \mathbb{R}^2 is given by the formula

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The **distance** between two points $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$ in \mathbb{R}^3 is given by the formula

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Problem 3. Plot and find the distance between the points (-2,6) and (3,-6).

Solution. \Diamond

Problem 4. Plot and find the distance between the points (0,0,0) and (4,2,4).

Solution.

Problem 5. Plot and find the distance between the points (3,7,-2) and (-1,7,1).

Solution.

Problem 6. Plot and find the distance between the points (8, 2, 1) and (4, -2, 7).

Solution. \Diamond

Definition 7. Simple lines in \mathbb{R}^2 are given by the relations x=a, and y=b for real numbers a,b.

Simple planes in \mathbb{R}^3 are given by the relations $x=a,\,y=b,\,z=c$ for real numbers a,b,c.

Definition 8. A circle in \mathbb{R}^2 is the set of all points a fixed distance (called its **radius**) from a fixed point (called its **center**). For a center (a, b) and radius r, the equation for a circle is

$$(x-a)^2 + (y-b)^2 = r^2$$

A **sphere** in \mathbb{R}^3 is the set of all points a fixed distance (called its **radius**) from a fixed point (called its **center**). For a center (a, b, c) and radius r, the equation for a sphere is

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Problem 9. Plot the curve x = 3 in the xy-plane and the surface x = 3 in xyz-space.

Solution. \Diamond

Problem 10. Plot the curve y = -1 in the xy-plane and the surface y = -1 in xyz-space.

Solution. \Diamond

Problem 11. Plot the surface z = 0 in xyz-space.

Solution. \Diamond

Problem 12. Plot the curve $(x-2)^2 + (y+1)^2 = 9$ in the xy-plane.

12.2. Vectors Clontz 3

Solution.

Problem 13. Plot the surface $x^2 + y^2 + z^2 = 4$ in xyz-space.

Solution.

Problem 14. Plot the curve $x^2 + (y-1)^2 + z^2 = 1$ in xyz-space.

Solution.

Textbook Practice Problems: Section 12.1 numbers 4, 6, 7, 8, 10, 11, 12, 14, 15, 16

12.2 Vectors

Definition 15 (Vector). A **vector** $\vec{\mathbf{v}}$ is a mathematical object that stores a **magnitude** (a nonnegative real number often thought of as length) and **direction**. Two vectors are **equal** if and only if they have the same magnitude and direction.

Definition 16. The **zero vector** $\vec{0}$ has zero magnitude and no direction. (This is the only vector without a direction.)

Definition 17. For a given point P = (a, b) in \mathbb{R}^2 , its **position vector** is given by $\overrightarrow{\mathbf{P}} = \langle a, b \rangle$: the vector from the origin (0, 0) to the point P = (a, b).

For a given point P = (a, b, c) in \mathbb{R}^3 , its **position vector** is given by $\overrightarrow{\mathbf{P}} = \langle a, b, c \rangle$: the vector from the origin (0, 0, 0) to the point P = (a, b, c).

Theorem 18. Two vectors are equal if and only if they share the same magnitude and direction as a common position vector.

Definition 19. Since all vectors are equal to some position vector $\langle a, b \rangle$ or $\langle a, b, c \rangle$, we usually define vectors by a position vector written in this **component form**. Since the component form of a vector stores the same information as a point, we will use both interchangeably, that is, $\langle a, b \rangle = (a, b) \in \mathbb{R}^2$ and $\langle a, b, c \rangle = (a, b, c) \in \mathbb{R}^3$ (although we usually sketch them differently).

Problem 20. Plot the point (1,3) and the position vector (1,3) in the *xy*-plane.

Solution.

Problem 21. Plot the point (-2,5) and the position vector $\langle -2,5 \rangle$ in the *xy*-plane.

Solution.

Problem 22. Plot the point (1, 1, -3) and the position vector (1, 1, -3) in xyz-space.

Solution. \Diamond

Problem 23. Plot the point (0,5,0) and the position vector (0,5,0) in xyz-space.

January 20, 2015 Auburn University

Solution.

Definition 24. Let $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$. Then the vector with initial point P and terminal point Q is defined as

$$\overrightarrow{\mathbf{PQ}} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

Problem 25. Plot P = (1,3) and Q = (-3,6) in the *xy*-plane. Then compute and plot the vector \overrightarrow{PQ} .

Solution.

Problem 26. Plot P = (3,1) and Q = (0,-2) in the *xy*-plane. Then compute and plot the vector \overrightarrow{PQ} .

Solution.

Problem 27. Plot P = (1, 1, 1) and Q = (-3, -1, 3) in xyz-space. Then compute and plot the vector \overrightarrow{PQ} .

Solution. \Diamond

Problem 28. Plot P = (-2, 0, 3) and Q = (1, 3, -3) in xyz-space. Then compute and plot the vector $\overrightarrow{\mathbf{PQ}}$.

Solution.

Definition 29. The magnitude $|\vec{\mathbf{v}}|$ of a vector $\vec{\mathbf{v}}$ in \mathbb{R}^2 or \mathbb{R}^3 is the distance between its initial and terminal points.

Theorem 30. The magnitude of $\vec{\mathbf{v}} = \langle a, b \rangle$ is given by

$$|\vec{\mathbf{v}}| = \sqrt{a^2 + b^2}$$

The magnitude of $\vec{\mathbf{v}} = \langle a, b, c \rangle$ is given by

$$|\vec{\mathbf{v}}| = \sqrt{a^2 + b^2 + c^2}$$

Problem 31. Evaluate the magnitude of the position vector $\langle 5, 5 \rangle$.

Solution.

Problem 32. Evaluate the magnitude of the position vector $\langle -4, 3 \rangle$.

Solution.

Problem 33. Evaluate the magnitude of the position vector $\langle 12, -5 \rangle$.

12.2. Vectors Clontz 5

Solution.

Problem 34. Evaluate the magnitude of the position vector $\langle 3, 1, -2 \rangle$.

Solution.

Problem 35. Evaluate the magnitude of the position vector $\langle 4, -2, -4 \rangle$.

Solution.

Problem 36. Evaluate the magnitude of the position vector $\langle 8, 0, -6 \rangle$.

Solution.

Definition 37. Vector addition is defined component-wise as follows for \mathbb{R}^2 and \mathbb{R}^3

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle = \langle u_1 + v_1, u_2 + v_2 \rangle$$

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1, u_2, u_3 \rangle + \langle v_1, v_2, v_3 \rangle = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

Definition 38. A scalar is simply a real number by itself (as opposed to a vector of real numbers).

Definition 39. Scalar multiplication of a vector is defined component-wise as follows for \mathbb{R}^2 and \mathbb{R}^3 :

$$k\vec{\mathbf{u}} = k\langle u_1, u_2 \rangle = \langle ku_1, ku_2 \rangle$$

$$k\vec{\mathbf{u}} = k\langle u_1, u_2, u_3 \rangle = \langle ku_1, ku_2, ku_3 \rangle$$

Problem 40. Compute and plot $\vec{\mathbf{u}} = \langle 1, -3 \rangle$, $\vec{\mathbf{v}} = \langle 3, 1 \rangle$ and $\vec{\mathbf{u}} + \vec{\mathbf{v}}$ in the *xy*-plane.

Solution.

Problem 41. Compute and plot $\vec{\mathbf{u}} = \langle 2, 0, 1 \rangle$, $\vec{\mathbf{v}} = \langle -2, 4, 2 \rangle$ and $\vec{\mathbf{u}} + \vec{\mathbf{v}}$ in xyz-space.

Solution.

Problem 42. Compute and plot $\vec{\mathbf{u}} = \langle 8, -2 \rangle$ and $\frac{1}{2}\vec{\mathbf{u}}$ in the *xy*-plane.

Solution.

Problem 43. Compute and plot $\vec{\mathbf{u}} = \langle 5, 3, -1 \rangle$ and $3\vec{\mathbf{u}}$ in xyz-space.

January 20, 2015 Auburn University

Solution.

Definition 44. A vector $\vec{\mathbf{v}}$ is a unit vector if $|\vec{\mathbf{v}}| = 1$.

Theorem 45. For any non-zero vector $\vec{\mathbf{v}}$, the vector

$$\frac{1}{|\vec{\mathbf{v}}|}\vec{\mathbf{v}} = \frac{\vec{\mathbf{v}}}{|\vec{\mathbf{v}}|}$$

is a unit vector.

Definition 46. The direction of a vector $\vec{\mathbf{v}}$ is the unit vector $\frac{\vec{\mathbf{v}}}{|\vec{\mathbf{v}}|}$.

Theorem 47. Any vector $\vec{\mathbf{v}}$ is the scalar product of its magnitude and direction:

$$ec{\mathbf{v}} = |ec{\mathbf{v}}| rac{ec{\mathbf{v}}}{|ec{\mathbf{v}}|}$$

Problem 48. Rewrite (5,5) as the scalar product of its magnitude and direction.

Solution.

Problem 49. Rewrite $\langle -4, 3 \rangle$ as the scalar product of its magnitude and direction.

Solution.

Problem 50. Rewrite $\langle 12, -5 \rangle$ as the scalar product of its magnitude and direction.

Solution.

Problem 51. Rewrite (3, 1, -2) as the scalar product of its magnitude and direction.

Solution.

Problem 52. Rewrite $\langle 4, -2, -4 \rangle$ as the scalar product of its magnitude and direction.

Solution.

Problem 53. Rewrite (8,0,-6) as the scalar product of its magnitude and direction.

Solution.

Definition 54. The standard unit vectors in \mathbb{R}^2 are $\hat{\mathbf{i}} = \langle 1, 0 \rangle$ and $\hat{\mathbf{j}} = \langle 0, 1 \rangle$, and any vector in \mathbb{R}^2 can be expressed in standard unit vector form:

$$\langle a, b \rangle = a\widehat{\mathbf{i}} + b\widehat{\mathbf{j}}$$

The standard unit vectors in \mathbb{R}^3 are $\hat{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\hat{\mathbf{j}} = \langle 0, 1, 0 \rangle$, and $\hat{\mathbf{k}} = \langle 0, 0, 1 \rangle$, and any vector in \mathbb{R}^3 can be expressed in standard unit vector form:

$$\langle a, b, c \rangle = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$$

Remark 55. Since the *xy*-plane is the plane z=0 in *xyz*-space, we say the points and vectors $(a,b)=(a,b,0)=\langle a,b\rangle=\langle a,b,0\rangle=a\hat{\bf i}+b\hat{\bf j}+0\hat{\bf k}$ are all equal.

Problem 56. Rewrite $\langle 5, 5 \rangle$ in standard unit vector form.

12.2. Vectors Clontz 7

Solution.

Problem 57. Rewrite $\langle -4, 3 \rangle$ in standard unit vector form.

Solution. \Diamond

Problem 58. Rewrite (3, 1, -2) in standard unit vector form.

Solution. \Diamond

Problem 59. Rewrite (8,0,-6) in standard unit vector form.

Solution.

Theorem 60. The following properties hold for any two vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$ and scalars a, b.

- $\bullet \ \vec{\mathbf{u}} + \vec{\mathbf{v}} = \vec{\mathbf{v}} + \vec{\mathbf{u}}$
- $\bullet \ (\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}) + \overrightarrow{\mathbf{w}} = \overrightarrow{\mathbf{u}} + (\overrightarrow{\mathbf{v}} + \overrightarrow{\mathbf{w}})$
- $\bullet \ \, \vec{\mathbf{u}} + \vec{\mathbf{0}} = \vec{\mathbf{u}}$
- $\bullet \ \vec{\mathbf{u}} + (-\vec{\mathbf{u}}) = \vec{\mathbf{0}}$
- $0\vec{\mathbf{u}} = \vec{\mathbf{0}}$
- $1\vec{\mathbf{u}} = \vec{\mathbf{u}}$
- $a(b\vec{\mathbf{u}}) = (ab)\vec{\mathbf{u}}$
- $a(\vec{\mathbf{u}} + \vec{\mathbf{v}}) = a\vec{\mathbf{u}} + a\vec{\mathbf{v}}$
- $(a+b)\vec{\mathbf{u}} = a\vec{\mathbf{u}} + b\vec{\mathbf{u}}$

Definition 61. Vector subtraction is defined as the addition of a negative:

$$\vec{\mathbf{u}} - \vec{\mathbf{v}} = \vec{\mathbf{u}} + (-\vec{\mathbf{v}}) = \langle u_1 - v_1, u_2 - v_2 \rangle$$

$$\vec{\mathbf{u}} - \vec{\mathbf{v}} = \vec{\mathbf{u}} + (-\vec{\mathbf{v}}) = \langle u_1 - v_1, u_2 - v_2, u_3 - v_3 \rangle$$

Textbook Practice Problems: Section 12.2 numbers 3, 5, 13, 14, 15, 19, 21, 24, 26

 \Diamond

12.3 The Dot Product

Definition 62. Let θ be the angle between two non-zero vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$. The **dot product** $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$ is the product of their lengths when projected into the same direction, obtained by this formula:

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = |\vec{\mathbf{u}}| |\vec{\mathbf{v}}| \cos \theta$$

Definition 63. The dot product with a zero vector is always zero:

$$\vec{\mathbf{v}} \cdot \vec{\mathbf{0}} = \vec{\mathbf{0}} \cdot \vec{\mathbf{v}} = 0$$

Theorem 64. By the Law of Cosines:

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle = u_1 v_1 + u_2 v_2$$

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \langle u_1, u_2, u_3 \rangle \cdot \langle v_1, v_2, v_3 \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Definition 65. Two vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$ are **orthogonal** if $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$.

Theorem 66. Two non-zero vectors are orthogonal if the angle θ between them is $\frac{\pi}{2}$ radians.

Theorem 67. The following properties hold for any three vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$, $\vec{\mathbf{w}}$ and scalar c.

- $\bullet \ \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
- $(c\overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{u}} \cdot (c\overrightarrow{\mathbf{v}}) = c(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})$
- $\bullet \ \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$
- $\bullet \ \vec{\mathbf{u}} \cdot \vec{\mathbf{u}} = |\vec{\mathbf{u}}|^2$

Problem 68. Compute the angle between the vectors $\vec{\mathbf{u}} = \langle 4, -3 \rangle$ and $\vec{\mathbf{v}} = \langle 5, 12 \rangle$.

Solution. \Diamond

Problem 69. Compute the angle between the vectors $\vec{\mathbf{u}} = \langle 1, 4, 2 \rangle$ and $\vec{\mathbf{v}} = \langle 4, 1, -2 \rangle$.

Solution.

Problem 70. Compute the angle between the vectors $\vec{\mathbf{u}} = \langle 0, 5, -11 \rangle$ and $\vec{\mathbf{v}} = \langle 2, 0, 0 \rangle$.

Solution.

Definition 71. The work W done by a force vector $\overrightarrow{\mathbf{F}}$ over a displacement vector $\overrightarrow{\mathbf{D}}$ is given by

$$W = \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{D}} = |\overrightarrow{\mathbf{F}}| |\overrightarrow{\mathbf{D}}| \cos \theta$$

Textbook Practice Problems: Section 12.3 numbers 3, 5, 6, 7, 8, 9, 10, 11, 15, 17, 21, 27, 41, 42, 44

12.4 The Cross Product

Definition 72. For any two non-parallel vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$ in \mathbb{R}^3 , the **Right-Hand Rule** gives a specific direction orthogonal to both: position $\vec{\mathbf{u}}$ with your right thumb and $\vec{\mathbf{v}}$ with your right index finger, and let your middle finger extend orthogonal to both to give this direction.

Definition 73. Let θ be the angle between two non-zero vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$ in \mathbb{R}^3 , and let $\vec{\mathbf{n}}$ be the direction given by the Right-Hand Rule. The **cross product** $\vec{\mathbf{u}} \times \vec{\mathbf{v}}$ is the vector orthogonal to both which follows the Right-Hand Rule and has magnitude equal to the area of the parallelogram formed from both.

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = (|\vec{\mathbf{u}}||\vec{\mathbf{v}}|\sin\theta)\vec{\mathbf{n}}$$

$$|\vec{\mathbf{u}} \times \vec{\mathbf{v}}| = |\vec{\mathbf{u}}| |\vec{\mathbf{v}}| \sin \theta$$

Definition 74. The cross product with a zero vector is always the zero vector:

$$\vec{\mathbf{v}} imes \vec{\mathbf{0}} = \vec{\mathbf{0}} imes \vec{\mathbf{v}} = \vec{\mathbf{0}}$$

Theorem 75. The following properties hold for any three vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$, $\vec{\mathbf{w}}$ and scalars a,b.

- $(a\vec{\mathbf{u}}) \times (b\vec{\mathbf{v}}) = (ab)(\vec{\mathbf{u}} \times \vec{\mathbf{v}})$
- $\bullet \ \overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} + \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} + \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$
- $\bullet \ (\overrightarrow{\mathbf{v}} + \overrightarrow{\mathbf{w}}) \times \overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}}$
- $\bullet \ \vec{\mathbf{v}} \times \vec{\mathbf{u}} = -(\vec{\mathbf{u}} \times \vec{\mathbf{v}})$

Definition 76. Two vectors $\vec{\mathbf{u}}, \vec{\mathbf{v}}$ are **parallel** if $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = 0$.

Theorem 77. Two non-zero vectors are parallel if the angle θ between them is 0 or π radians.

Definition 78. The cross products of the standard unit vectors are given as follows:

- $\bullet \ \widehat{\mathbf{i}} \times \widehat{\mathbf{j}} = \widehat{\mathbf{k}}$
- $\bullet \ \widehat{\mathbf{j}} \times \widehat{\mathbf{k}} = \widehat{\mathbf{i}}$
- $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$

Definition 79. A **determinant** is a short hand for writing certain commonly occurring algebraic expressions:

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

Theorem 80. By breaking up $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$ into standard unit vectors:

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \left\langle \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \right\rangle$$

Problem 81. Compute a nonzero vector normal to both $\vec{\mathbf{u}} = \langle 4, -3, 0 \rangle$ and $\vec{\mathbf{v}} = \langle 2, 6, -3 \rangle$.

Solution.

Problem 82. Compute a nonzero vector normal to both $\vec{\mathbf{u}} = \langle 1, 4, 2 \rangle$ and $\vec{\mathbf{v}} = \langle 4, 1, -2 \rangle$.

Solution.

Problem 83. Compute a nonzero vector normal to both $\vec{\mathbf{u}} = \langle 0, 5, -11 \rangle$ and $\vec{\mathbf{v}} = \langle 2, 0, 0 \rangle$.

Solution.

Definition 84. The torque τ done by a force vector $\vec{\mathbf{F}}$ on an arm given by $\vec{\mathbf{D}}$ is given by

$$\tau = |\vec{\mathbf{F}} \times \vec{\mathbf{D}}| = |\vec{\mathbf{F}}||\vec{\mathbf{D}}|\sin\theta$$

Theorem 85. The volume of a parallelpiped determined by the vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$, $\vec{\mathbf{w}}$, is given by the **triple scalar product**

$$(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) \cdot \overrightarrow{\mathbf{w}} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Textbook Practice Problems: Section 12.4 numbers 1-3, 17, 19, 28, 29, 33, 35

12.5 Lines and Planes in Space

Theorem 86. Let L be the line in \mathbb{R}^2 normal to the vector $\overrightarrow{\mathbf{N}} = \langle A, B \rangle$ and passing through the point $P_0 = (x_0, y_0)$. Then every point P = (x, y) on the line L must satisfy the following equations:

$$\overrightarrow{\mathbf{N}} \cdot \overrightarrow{\mathbf{P_0 P}} = 0$$
$$A(x - x_0) + B(y - y_0) = 0$$

Let M be the plane in \mathbb{R}^3 normal to the vector $\overrightarrow{\mathbf{N}} = \langle A, B, C \rangle$ and passing through the point $P_0 = (x_0, y_0, z_0)$. Then every point P = (x, y, z) on the plane M must satisfy the following equations:

$$\overrightarrow{\mathbf{N}} \cdot \overrightarrow{\mathbf{P_0 P}} = 0$$

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

Problem 87. Find an equation for the line passing through (1, -2) and parallel to the line with equation 2x - y = 3. Then plot both lines.

Solution. \Diamond

Problem 88. Find an equation for the plane passing through (1, 3, -2) and normal to the vector (3, 0, 1). Then plot the plane and vector.

Solution.

Problem 89. Find an equation for the plane passing through (-2, 0, 4), (1, 3, 3), and (0, 0, 2). Then plot the plane and points.

Solution. \Diamond

Definition 90. Parametric equations x(t), y(t) for a curve in \mathbb{R}^2 assign a point (x(t), y(t)) of the curve to each value of t.

Parametric equations x(t), y(t), z(t) for a curve in \mathbb{R}^3 assign a point (x(t), y(t), z(t)) of the curve to each value of t.

Problem 91. Sketch the curve given by the parametric equations x(t) = t and $y(t) = t^2$.

Solution.

Problem 92. Sketch the curve given by the parametric equations $x(t) = \sin t$ and $y(t) = \frac{t}{\pi}$.

Solution. \Diamond

Problem 93. Sketch the curve given by the parametric equations x(t) = 1 - t, y(t) = 3t, and z(t) = 2t - 3.

Solution. \Diamond

Problem 94. Sketch the curve given by the parametric equations $x(t) = -t^2$, y(t) = 2, and z(t) = t.

Solution.

Theorem 95. Let L be the line in \mathbb{R}^2 parallel to the vector $\vec{\mathbf{v}} = \langle a, b \rangle$ and passing through the point $P_0 = (x_0, y_0)$. Then every point P = (x, y) on the line L must satisfy the following vector equation for some t:

$$\vec{\mathbf{P}} = \vec{\mathbf{v}}t + \vec{\mathbf{P_0}}$$

Thus the line is given by the parametric equations

$$x(t) = at + x_0$$

$$y(t) = bt + y_0$$

Let L be the line in \mathbb{R}^3 parallel to the vector $\vec{\mathbf{v}} = \langle a, b, c \rangle$ and passing through the point $P_0 = (x_0, y_0, z_0)$. Then every point P = (x, y, z) on the line L must satisfy the following vector equation for some t:

$$\vec{\mathbf{P}} = \vec{\mathbf{v}}t + \vec{\mathbf{P_0}}$$

Thus the line is given by the parametric equations

$$x(t) = at + x_0$$

$$y(t) = bt + y_0$$

$$z(t) = ct + z_0$$

Problem 96. Find parametric equations for the line with equation y = -3x + 1 in the xy plane. Then plot the line.

Solution.

Problem 97. Find parametric equations for the line passing through (1, 3, -2) and parallel to (3, 0, 1) in xyz space. Then plot the point, vector, and line.

Solution. \Diamond

Problem 98. Find parametric equations for the line normal to the plane with equation x + y + 2z = 4 and passing through (1, 1, 1) in xyz space. Then plot the point, plane, and line.

Textbook Practice Problems: Section 12.5 numbers 3, 4, 6, 7, 17, 19, 24, 27, 31, 32

12.6 Cylinders and Quadratic Surfaces

Definition 99. A **cylindrical surface** is a 3D surface given by an equation of two variables.

Problem 100. Plot the curve $y = x^2$ in the xy-plane and the cylindrical surface $y = x^2$ in xyz-space.

Solution.

Problem 101. Plot the curve $y = \sin z$ in the yz-plane and the cylindrical surface $y = \sin z$ in xyz-space.

Solution.

Problem 102. Plot the curve $z = e^x$ in the xz-plane and the cylindrical surface $z = e^x$ in xyz-space.

Solution. \Diamond

Definition 103. A trace of an equation of x, y, z is obtained by substituting a constant for one of the variables.

Definition 104. A quadric surface is a surface defined by a second degree equation of x, y, z.

Remark 105. Many surfaces may be identified and sketched by using the traces x = 0, y = 0, and z = 0.

Definition 106. An ellipsoid is a quadric surface with these main traces:

• Three ellipses (with parallel ellipses)

Definition 107. An elliptical cone is a quadric surface with these main traces:

- Two double-lines (with parallel hyperbolas)
- One point (with parallel ellipses)

Definition 108. An elliptical paraboloid is a quadric surface with these main traces:

- Two parabolas (with parallel parabolas)
- One point (with parallel ellipses)

Definition 109. A hyperbolic paraboloid is a quadric surface with these traces:

- Two parabolas (with parallel parabolas)
- One double line (with parallel hyperbolas)

Definition 110. A hyperboloid of one sheet is a quadric surface with these traces:

- Two hyperbolas (with parallel hyperbolas)
- One ellipsis (with parallel ellipses)

Definition 111. A hyperboloid of two sheets is a quadric surface with these traces:

- Two hyperbolas (with parallel hyperbolas)
- One empty trace (with parallel ellipses)

Problem 112. Plot $x^2 - y = -z^2$ and its traces in the planes x = 0, y = 0, and z = 0. Name the quadric surface.

Solution. \Diamond

Problem 113. Plot $y^2 + z^2 = 4 - 4x^2$ and its traces in the planes x = 0, y = 0, and z = 0. Name the quadric surface.

January 20, 2015

Solution.

Problem 114. Plot $z^2 - 9y^2 = x^2$ and its traces in the planes x = 0, y = 0, and z = 0. Name the quadric surface.

Solution.

Problem 115. Plot $y^2 - z^2 = 4 - 4x^2$ and its traces in the planes x = 0, y = 0, and z = 0. Name the quadric surface.

Solution.

Problem 116. Plot $4x^2 - y^2 - 4z^2 = 16$ and its traces in the planes x = 0, y = 0, and z = 0. Name the quadric surface.

Solution.

Problem 117. Plot $z = y^2 - 4x^2$ and its traces in the planes x = 0, y = 0, and z = 0. Name the quadric surface.

Solution.