Maciej Byczko	Prowadzący:	Numer ćwiczenia
Bartosz Matysiak	dr inż. Jacek Mazurkiewicz	2
PN 10:50 TP	Temat ćwiczenia:	Ocena:
	Układy Kombinacyjne	0 1 1
Grupa:	Data wykonania:	
В	10 Października 2021	

Spis treści

1	Zad	anie 1																	2
	1.1	Polece	nie													 			2
	1.2	Rozwia	azanie .													 			2
		1.2.1	Schema	at ukła	du											 			2
		1.2.2	Kod V																2
		1.2.3	Symula																2
2	Zad	anie 2																	2
	2.1	Polece	nie													 			2
	2.2	Rozwia	ązanie .																2
		2.2.1	Wyprov																2
		2.2.2	Tabela																3
	2.3	Siatka	Karnau	-	_														3
		2.3.1	Schema	_															4
		2.3.2	Kod V	HDL .												 			4
		2.3.3	Symula	ıcja					•							 			4
3	Zad	anie 3																	4
	3.1	Polece	nie													 			4
	3.2	Rozwia	ązanie .													 			4
		3.2.1	Tabela	Prawd	у.											 			4
		3.2.2	Siatki l	Karnau	igh											 			5
		3.2.3	Schema	at ukła	ďu											 			5
		3.2.4	Kod V	HDL .												 			5
		3.2.5	Symula	ксја			•									 			5
4	Wni	ioski																	5

1 Zadanie 1

1.1 Polecenie

Wykonać dowolną bramkę - funktor: 2 wejścia, 1 wyjście

1.2 Rozwiązanie

1.2.1 Schemat układu

1.2.2 Kod VHDL

1.2.3 Symulacja

2 Zadanie 2

2.1 Polecenie

Implementacja funkcji logicznej $G(w, x, y, z) = \prod (0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 15)$

2.2 Rozwiązanie

2.2.1 Wyprowadzenie

$$G(w, x, y, z) = \prod (0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 15)$$

$$= \sum (1, 5, 8, 14) = \sum (0001, 0101, 1000, 1010, 1110)$$

$$= \overline{wxy}z + \overline{w}x\overline{y}z + w\overline{xy}\overline{z} + w\overline{x}y\overline{z} + wxy\overline{z}$$
(3)

$$= \overline{wy}z(\overline{x}+x) + w\overline{z}(\overline{xy} + \overline{x}y + xy) \tag{4}$$

$$= \overline{wy}z + w\overline{z}(\overline{x}(\overline{y} + y) + xy) \tag{5}$$

$$= \overline{wy}z + w\overline{z}(\overline{x} + xy) \tag{6}$$

$$= \overline{wy}z + w\overline{z}((\overline{x} + x)(\overline{x} + y)) \tag{7}$$

$$= \overline{wy}z + w\overline{z}((\overline{x} + y)) \tag{8}$$

$$= \overline{wy}z + w\overline{x}\overline{z} + w\overline{z}y \tag{9}$$

2.2.2 Tabela prawdy

Kod dziesiętny	W	X	у	Z	S
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	0

2.3 Siatka Karnaugh

Równanie po minimalizacji: $w\overline{x}\overline{z}+\overline{w}\overline{y}z+wy\overline{z}$

- 2.3.1 Schemat układu
- 2.3.2 Kod VHDL
- 2.3.3 Symulacja

3 Zadanie 3

3.1 Polecenie

Implementacja układu translatora kodu 4-bit kod NKB na 4-bit kod Aikena

3.2 Rozwiązanie

3.2.1 Tabela Prawdy

Kod dajogiotav		Nŀ	KΒ		K	Kod Ikena						
Kod dziesiętny	W	X	у	Z	W	X	у	Z				
0	0	0	0	0	0	0	0	0				
1	0	0	0	1	0	0	0	1				
2	0	0	1	0	0	0	1	0				
3	0	0	1	1	0	0	1	1				
4	0	1	0	0	0	1	0	0				
5	0	1	0	1	1	0	1	1				
6	0	1	1	0	1	1	0	0				
7	0	1	1	1	1	1	0	1				
8	1	1	0	0	1	1	1	0				
9	1	0	0	1	1	1	1	1				
10	1	0	1	0	-	-	-	-				
11	1	0	1	1	-	-	-	-				
12	1	1	0	0	-	-	-	-				
13	1	1	0	1	-	-	-	-				
14	1	1	1	0	-	-	-	-				
15	1	1	1	1	-	-	-	-				

3.2.2 Siatki Karnaugh

w = zx + zw + y

$$x = z\overline{x} + zw + y$$

 $y = \overline{x}y + x\overline{y}z + w$

z = x

- 3.2.3 Schemat układu
- $3.2.4 \mod VHDL$
- 3.2.5 Symulacja
- 4 Wnioski