

Exercise 3

Information Retrieval

5. Scoring, Term Weighting and the Vector Space Model

Warm-Up

Exercise 5.1

- Are the following statements true or false? Give reasons for your answer.
 - a) Ranking documents is especially important for small document collections. f small
 - b) The relevance of a document does not depend on the query. f 和q一起计算
 - c) The Jaccard coefficient is a measure for set similarity. $^{\mathsf{t}}$
 - d) The Jaccard coefficient works well for ranking documents. f 用tf idf
 - e) Rare terms are less informative than frequent terms.

 f rare are very informassive.
 - f) The inverted document frequency (idf) has no effect on the ranking for one-term queries. t will not use global info
 - g) The idea of the vector space model is to (i) represent documents and queries as vectors and (ii) calculate the relevance of a document as a vector similarity.
 - h) There is exactly one way to calculate the tf-idf weights. f 在ppt最后

Exercise 5.2

• What minimal and maximal values can the following variables have?

Fun with Calculations I

Exercise 5.3

tf 1, 2.95 ?

1/11 1/3

- Compute the Jaccard matching score and the tf matching score for the following query-document pairs
 - Q_1 : information on cars D_1 : all you have ever wanted to know about cars
 - Q_2 : information on cars D_2 : information on trucks, information on planes, information on trains
- How well do these metrics reflect the relevance of the documents?

The Vector Space Model

Exercise 5.4

- Assume we have a corpus of N = 50000 documents
- Find below some information regarding 3 terms and 2 documents

Term <i>t</i>	df_t	$tf_{t,d1}$	$tf_{t,d2}$
car	500	0	10
health	5	10	100
insurance	50	1	100

a) Which of the documents d_1 and d_2 is more relevant to the query

according to the vector space model? 看图, ok

Use the weighting scheme ltn.bnn for creating the vectors and the cosine similarity for scoring.

SMART notation: ddd.qqq

Term frequency	
b (boolean)	$\begin{cases} 1 \ if \ tf_{t,d} > 0 \\ 0 \ otherwise \end{cases}$
1 (logarithm)	$\begin{cases} 1 + \log(tf_{t,d}) > 0 \\ 0 \text{ otherwise} \end{cases}$

Document frequency		
n (no)	1	
t (idf)	$\log \frac{N}{df_t}$	

Normalization	
n (none)	1
c (cosine)	$\frac{1}{\sqrt{\sum_i w_i^2}}$

The Vector Space Model

Exercise 5.4

- Assume we have a corpus of N = 50000 documents
- Find below some information regarding 3 terms and 2 documents

Term <i>t</i>	df_t	$tf_{t,d1}$	$tf_{t,d2}$
car	500	0	10
health	5	10	100
insurance	50	1	100

b) Can we to save computations and still produce the same ranking (for any collection and query)? If so, how?
使用累加器,可以不用算d

Hint: Imagine (i) we want to answer only one query, and (ii) we want to answer many queries.

SMART notation: ddd.qqq

Term frequency	
b (boolean)	$\begin{cases} 1 \ if \ tf_{t,d} > 0 \\ 0 \ otherwise \end{cases}$
1 (logarithm)	$\begin{cases} 1 + \log(tf_{t,d}) > 0 \\ 0 \text{ otherwise} \end{cases}$

Document frequency	
n (no)	1
t (idf)	$\log \frac{N}{df_t}$

Normalization	
n (none)	1
c (cosine)	$\frac{1}{\sqrt{\sum_i w_i^2}}$

Some Closing Questions

Exercise 5.5

Exercise 0.86

• If we were to stem jealous and jealousy to a common stem before setting up the vector space, detail how the definitions of tf and idf should be modified their tf's and their df's would be added together

Exercise 5.6

Exercise 0.81

- What is the idf of a term that occurs in every document?
- Compare this to the use of stop word lists

the same effect as idf weighting: the word is ignored.

Exercise 5.7

Exercise 0.94

 ${\tt Omit}$ this term from the query and proceed

- Consider the case of a query term that is not in the set of indexed terms
- Thus, the query vector is not in the vector space created from the collection
- How would one adapt the vector space representation to handle this case?

