

Asymmetric Cryptography

Network Security (NETSEC)
Yuhong Li

2022-01-28

Outline

- Principles of asymmetric cryptography
 - Model
 - Applications
 - Trapdoor function
- Asymmetric encryption algorithms
 - RSA
 - Diffie-Hellman key exchange
 - DSS, ECC
- Digital Signatures

Asymmetric Cryptography Basics

Asymmetric Cryptography -Terms

- Plaintext (P)
- Encryption algorithm
- Ciphertext(C)
- Decryption algorithm
- Public key and Private key
- Also called Public Key Cryptography
- Public key systems rely on a trapdoor one way function for their security.

Asymmetric Cryptography - Model

- Sender encrypts a message with an encryption key (e.g., the receiver's public key)
- Receiver decrypt the message (ciphertext) using a decryption key (e.g., the receiver's private key)
- Encryption key/Public key
 - Can be known to everyone
- Decryption Key/Private key
 - Must be known and used only by its owner

Stockholm University

Applications for Asymmetric Cryptography

 Encryption/decryption: The sender encrypts a message with the recipient's public key.

• **Key exchange:** Two sides cooperate to establish a shared symmetric key (e.g., a session key). Several approaches are possible, involving the private key(s) of one or both parties.

Digital signature: The sender "signs" a
message with its private key. Signing is
achieved by a cryptographic algorithm
applied to the message or to a small block of
data that is a function of the message.

Asymmetric Cryptography Properties

- Confidentiality
 - Transmitting data over an insecure channel
 - Secure storage on insecure media
- Authentication protocols
- Digital signature
 - Provides integrity and non-repudiation
 - No non-repudiation with symmetric keys
- Strengths
 - Can provide integrity, authentication and non-repudiation
- Weaknesses
 - Slower than symmetric cryptography
 - Mathematically intensive tasks

Trapdoor Functions

- A special kind of one-way function is known as a "trapdoor one way function"
 - Easy to compute in one direction Y = F (X), difficult to inverse, unless parameter D(decryption key) is known.
 - If F is a trapdoor function, then there exists some secret information D, such that given F(X) and D, it is easy to compute X.
- Uses three algorithms (G, F, F⁻¹):
 - A trapdoor function is a function that goes from set X to set Y, and is defined by a set of three algorithms (G, F, F⁻¹). Trapdoor permutation maps X onto itself, the trapdoor function maps X to some arbitrary set Y (X->Y)
 - G = key generation algorithm (outputs in public key and private key)
 - F = function (without F⁻¹, it is a one-way function)
 - F-1 = inverse of function F
- With knowledge of D (Y), decryption (finding F-1) is easy; otherwise it is difficult.

Asymmetric Cryptography Algorithms

RSA
Diffie-Hellman
DSS and ECC

2022-01-28

Stockholm University

RSA

- Rivest, Shamir, and Adleman (at MIT 1978)
- Public key cryptographic algorithm
 - Two keys (Public/Private)
 - Key length varies: 2048, 4096, 8192
 bits
- Block cipher
 - Plaintext block must be smaller than key
 - Ciphertext block = key length

Several Concepts...

- Prime: a natural number greater than 1 that is not a product of two smaller natural numbers, e.g.,5. (vs. composite number)
- Coprime (relatively prime or mutually prime): two integers **a** and **b**, if the only positive integer that evenly divides both of them is 1, we say **a** is coprime to **b**. (i.e., their greatest common divisor (gcd) is 1)
- Euler totient function φ (n): counts the positive integers up to a given integer n that are relatively prime to n (it is the number of intergers k in the range of $1 \le k \le n$, for which the greatest common divisor $\gcd(n,k)$ is equal to 1)
 - If n is prime, then $\varphi(n) = n-1$
- mod: modulo operation, returns the remainder or signed remainder of a division, after a number is divided by another, e.g., given two positive number a and n, if b = a mod n, then there exist an integer k, such that a = kn+b

RSA Algorithm – Generating the Keys

- 1. Select "large" prime numbers p=11 q=3
- 2. Then n=p*q = 11*3=33 and
- 3. Calculate φ (n) = (p-1) (q-1) =10 x 2=20
- 4. Select e =3 (relatively prime to 20)
- 5. Determine d such that d*e mod 20 =1

The correct value of d = 7, because $7 \times 3 = 21 = 10 \times 2 = 20$

- Public key: (e, n) =(3, 33)
- Private key: (d, n)= (7, 33)

Key Generation

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \mod \phi(n) = 1$

Public key $KU = \{e, n\}$

Private key $KR = \{d, n\}$

RSA Algorithm – Encryption

You know e and n

• Public key: (e, n)= (3, 33)

• Encrypt: C= Me (mod n)

Suppose message M= 8

Encryption

Plaintext: M < n

Ciphertext: $C = M^e \pmod{n}$

• Ciphertext C is computed as

 $C = M^e \mod n$

 $= 8^3 \mod 33$

 $= 512 \mod 33 = 17$

RSA Algorithm – Decryption

- You know d and n
- Private key: (d, n) =(7, 33)
- Decrypt: M = C^d (mod n)

M= Cd mod n

 $= 17^7 \mod 33$

= 410338673 mod 33 = 8

Decryption

Ciphertext: C

Plaintext: $M = C^d \pmod{n}$

RSA - Example

2022-01-28

RSA is used in....

- SSL/TLS certificates
- IPSec
- E-mail systems
- File systems
- Etc.

Attacks on RSA

- Most attacks on RSA are based on the assumption that Alice or Bob (or both) have been careless in their implementation of the RSA cryptosystem
- Factoring?
 - We have n
 - We want p & q
 - n = p*q
 - Precompute lots of prime factors (similar to rainbow tables) so that if given an n, we can look up what p & q are for any given n

Summary of RSA

- RSA keys are generated using 2 large prime numbers.
- RSA key security is based on the difficult level of factoring prime numbers. Given p and q to calculate n = p*q is easy.
 But given n to find p and q is very difficult.
- RSA encryption operation requires calculation of "C = Me mod n", which can be done by a loop.
- Most RSA tools are using public keys generated from large probable prime numbers, because generating large prime numbers is very expensive.

The Diffie-Hellman-Merkle Key Exchange -1

- A key exchange mechanism which is used to establish a shared symmetric/secrete key
- Invented by Whitfield Diffie and Martin Edward Hellman (Stanford), based on a concept developed by Ralph Merkle (Merkle often not included in the name)

Diffie-Hellman-Merkle Key Exchange -2

- Uses some public key encryption techniques
 - Use case: Alice and Bob have never met, but want to exchange a shared secret/symmetric key over an insecure line, so that they can communicate securely
- Based on the discrete log problem:
 - Given numbers: a, p, and a^k(mod p)
 - Find exponent k

The Diffie-Hellman Key Exchange Algorithm -1

 Values q and a are predetermined constants already agreed upon by User A and User B.

	Global Public Elements
q	prime number
α	$\alpha < q$ and α a primitive root of q

Select private X_A $X_A < q$

Calculate public Y_A $Y_A = \alpha^{X_A} \mod q$

User B Key Generation

Select private X_R $X_R < q$

Calculate public Y_B $Y_B = \alpha^{X_B} \mod q$

The Diffie-Hellman Key Exchange Algorithm -2

$$K = (Y_B)^{X_A} \operatorname{mod} q$$

$$= (\alpha^{X_B} \operatorname{mod} q)^{X_A} \operatorname{mod} q$$

$$= (\alpha^{X_B})^{X_A} \operatorname{mod} q$$

$$= \alpha^{X_B X_A} \operatorname{mod} q$$

$$= (\alpha^{X_A})^{X_B} \operatorname{mod} q$$

$$= (\alpha^{X_A})^{X_B} \operatorname{mod} q$$

$$= (\alpha^{X_A} \operatorname{mod} q)^{X_B} \operatorname{mod} q$$

$$= (Y_A)^{X_B} \operatorname{mod} q$$

Prerequisite:

- q is a prime number,
- a<q, a is a primitive root of q

• A third person never sees X_A or X_B , so cannot calculate the K

Attacking Diffie-Hellman-Merkle -1

- Suppose Eve can see q, a, Y_A and Y_B , but Alice's exponent X_A and Bob's exponent X_B are secret
- Can Eve compute *K*?
 - If Eve can find X_A or X_B , she gets K
- This protocol is vulnerable to a man-in-the-middle-attack:

Attacking Diffie-Hellman-Merkle -2

- 1. Eve prepares for the attack by generating two random private keys X_{D1} and X_{D2} , and then computing the corresponding public keys Y_{D1} and Y_{D2} .
- 2. Alice sends Y_{Δ} to Bob.
- 3. Eve intercepts Y_A and transmits Y_{D1} to Bob. Eve also calculates $K2 = (Y_A)^{XD2} \mod q$.
- 4. Bob receives Y_{D1} and calculates $K1 = (Y_{D1})^{XB} \mod q$.
- 5. Bob transmits Y_B to Alice.
- 6. Eve intercepts Y_B and transmits Y_{D2} to Alice. Eve calculates $K1 = (Y_B)^{XD1} \mod q$
- 7. Alice receives Y_{D2} and calculates $K2 = (Y_{D2})^{XA} \mod q$

2022-01-28

Preventing a MITM Attack

- Authenticate each other using either a previously shared secret/symmetric key or verified public keys
- Sign DH values with secret/symmetric or private key
- Ephemeral Diffie-Hellman-Merkle
 - A temporary (ephemeral) DH key is generated for every message, thus the same key is never used twice.
 - Enables Forward Secrecy (FS), which means that if the longterm private key of the server gets leaked, past communication is still secure

Digital Signature Standard (DSS)

- Published by NIST (FIPS 186-4)
- Originally proposed in 1991 and revised in 1993, 1996, 2000, 2009, and 2013.
- Uses an algorithm that is designed to provide only the digital signature function
 - Digital Signature Algorithm (DSA)
 - Unlike RSA, it cannot be used for encryption or key exchange

Elliptic Curve Cryptography (ECC)

- A new kind of mathematical problem, elliptic curves, can be used as the basis for a one-way trapdoor function instead of the prime factorization problem used in RSA.
- Does not require as many bits
 - a 224-bit ECC key is approximately equivalent to a 2048-bit RSA key
 - a 512-bit ECC key is approximately equivalent to a 256-bit AES key (or a 15360-bit RSA key)
- Key generation is faster than RSA
- Most cryptographic operations are faster than RSA
- RSA is still very common and entrenched due to historical reasons, but ECC is slowly gaining in popularity.

Digital Signatures

2022-01-28

Digital Signatures

- Use protocols to mimic real signatures
 - It must be unforgeable
 - It must be authentic
 - Is not alterable, and not reusable
- Two functions:
 - Used to detect unauthorized modifications to data
 - Provide non-repudiation
- A signature is generated by using a private key: the private key is known only to the user.
- The signature is verified: makes use of the public key which corresponds to the private key
- Used in e-mails, electronic funds transfer and any application that needs to assure the integrity and originality of data

Example - without Signature

- Alice orders products from Bob.
 - Alice computes a MAC using a symmetric key. So Alice and Bob share a key.
 - The price drops, and Alice claims that she didn't place the order.
- Can Bob prove that Alice placed the order?
 - No, since Bob also knows symmetric key, he could have forged the message.
- ⇒ Bob knows that Allice placed the order but he can't prove it.

Example - with Signature

- Alice orders products from Bob.
 - Alice signs her order with her private key.
 - The price drops and Alice regrets her order, so she claims that she didn't place it.
- Since Alice signed the order with her private key, Bob can prove that Alice in fact placed the order.
- → Non-repudiation by using signature!

2022-01-28

References

- Stallings. Network Security Essentials
 - Chapter 3
- OpenSSL Wikipage on Elliptic Curve Cryptography
 - https://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography