Optimizing Human Learning

Fabrice Popineau Jill-Jênn Vie Michal Valko RIKEN AIP & New York University

June 4, 2019

•0000000 Outline

Introduction

9:30 AM Welcome and Introduction

9:45 AM Tutorial: Knowledge Tracing

10:30 AM Coffee Break

An Exploration of Disciplinary Literacy 11:00 AM

in Learners' Short Answers

Jean-Philippe Corbeil, Amal Zouag, and Michel Gagnon

11:30 AM Open Discussion

12:15 AM End of workshop

Optimizing Human Learning

We observe data collected by a platform (ITS, MOOC, etc.)

We can learn a generative model of the world (\sim knowledge tracing) Then learn a policy to optimize it (e.g. this workshop)

Challenges

Introduction

- Representations that evolve over time (actions from the teacher can modify the learner)
- Which objective function should be optimized?
- New users & items appear (cold-start)
- Sequential learning requires a measure of uncertainty
- High-stakes applications require interpretability

Choosing the objective function to optimize

Maximize information \rightarrow learners fail 50% of the time (good for the assessing institution, not for the learning student)

Maximize success rate \rightarrow asking too easy questions

Maximize the growth of the success rate (Clement et al. 2015)

Compromise exploration (items that we don't know) and exploitation (items that measure well)

Identify a gap from the learner (Teng et al. ICDM 2018)

+ assume that a item brings less learning when it was administered before (Seznec et al. AISTATS 2019, SequeL)

Increasing number of works(hops) about reinforcement learning in education

Data

Introduction

A population of students answering questions

• Events: "Student *i* answered question *j* correctly/incorrectly"

Goal

- Learn the difficulty of questions automatically from data
- Measure the knowledge of students
- Potentially optimize their learning

Assumption

Good model for prediction \rightarrow Good adaptive policy for teaching

- Logistic regression is amazing
 - Unidimensional
 - Takes IRT, PFA as special cases

- Factorization machines are even more amazing
 - Multidimensional
 - Take MIRT as special case

- It makes sense to consider deep neural networks
 - What does deep knowledge tracing model exactly?

- Factorization Machines (Rendle 2012)
 - Multidimensional Item Response Theory
 - Logistic Regression
 - Item Response Theory
 - Performance Factor Analysis
- Recurrent Neural Networks
 - Deep Knowledge Tracing (Piech et al. 2015)

Steffen Rendle (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771

Chris Piech et al. (2015). "Deep knowledge tracing". In: *Advances in Neural Information Processing Systems (NIPS)*, pp. 505–513

00000000

Weak generalization

Filling the blanks: some students did not attempt all questions

Strong generalization

Cold-start: some new students are not in the train set

Dummy dataset

Introduction

0000000

- User 1 answered Item 1 correct
- User 1 answered Item 2 incorrect
- User 2 answered Item 1 incorrect.
- User 2 answered Item 1 correct.
- User 2 answered Item 2 ???

user	item	correct
1	1	1
1	2	0
2	1	0
2	1	1
2	2	0

dummy.csv

Task 1: Item Response Theory

Learn abilities θ_i for each user i Learn easiness e; for each item j such that:

$$Pr(\mathsf{User}\ i\ \mathsf{Item}\ j\ \mathsf{OK}) = \sigma(\theta_i + e_j)$$
 logit $Pr(\mathsf{User}\ i\ \mathsf{Item}\ j\ \mathsf{OK}) = \theta_i + e_j$

Logistic regression

Learn **w** such that $\operatorname{logit} Pr(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ Usually with L2 regularization: $||\mathbf{w}||_2^2$ penalty \leftrightarrow Gaussian prior

Encoding of "User i answered Item j":

logit
$$Pr(\text{User } i \text{ Item } j \text{ OK}) = \langle \boldsymbol{w}, \boldsymbol{x} \rangle = \theta_i + e_j$$

python encode.py --users --items

	Users		I	tems	5
U_0	U_1	U_2	<i>I</i> ₀	<i>I</i> ₁	<i>I</i> ₂
0	1	0	0	1	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	1	0	1	0
0	0	1	0	0	1

data/dummy/X-ui.npz

Then logistic regression can be run on the sparse features:

python lr.py data/dummy/X-ui.npz

Oh, there's a problem

python encode.py --users --items
python lr.py data/dummy/X-ui.npz

	Users			I	tems	5		
	U_0	U_1	U_2	I 0	I_1	<i>I</i> ₂	$oldsymbol{y}_{pred}$	y
User 1 Item 1 OK	0	1	0	0	1	0	0.575135	1
User 1 Item 2 NOK	0	1	0	0	0	1	0.395036	0
User 2 Item 1 NOK	0	0	1	0	1	0	0.545417	0
User 2 Item 1 OK	0	0	1	0	1	0	0.545417	1
User 2 Item 2 NOK	0	0	1	0	0	1	0.366595	0

We predict the same thing when there are several attempts.

Count successes and failures

Introduction

Keep track of what the student has done before:

user	item	skill	correct	wins	fails
1	1	1	1	0	0
1	2	2	0	0	0
2	1	1	0	0	0
2	1	1	1	0	1
2	2	2	0	0	0

data/dummy/data.csv

Task 2: Performance Factor Analysis

 W_{ik} : how many successes of user i over skill k (F_{ik} : #failures)

Learn β_k , γ_k , δ_k for each skill k such that:

$$\operatorname{logit} Pr(\operatorname{User} i \operatorname{Item} j \operatorname{OK}) = \sum_{\operatorname{Skill} k \text{ of Item } j} \frac{\beta_k + W_{ik} \gamma_k + F_{ik} \delta_k}{\beta_k}$$

python encode.py --skills --wins --fails

	Skills			Wins			Fails			
S_0	S_1	S_2	S_0	S_1	S_2	S_0	S_1	S_2		
0	1	0	0	0	0	0	0	0		
0	0	1	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	1	0		
0	0	1	0	0	0	0	0	0		

data/dummy/X-swf.npz

Better!

python encode.py --skills --wins --fails python lr.py data/dummy/X-swf.npz

	Skills			Wins			Fail	ls			
	<i>S</i> ₀	S_1	<i>S</i> ₂	<i>S</i> ₀	S_1	<i>S</i> ₂	<i>S</i> ₀	S_1	S_2	y pred	y
User 1 Item 1 OK	0	1	0	0	0	0	0	0	0	0.544	1
User 1 Item 2 NOK	0	0	1	0	0	0	0	0	0	0.381	0
User 2 Item 1 NOK	0	1	0	0	0	0	0	0	0	0.544	0
User 2 Item 1 OK	0	1	0	0	0	0	0	1	0	0.633	1
User 2 Item 2 NOK	0	0	1	0	0	0	0	0	0	0.381	0

Task 3: a new model (but still logistic regression)

python encode.py --items --skills --wins --fails
python lr.py data/dummy/X-iswf.npz

How to model side information in, say, recommender systems?

Logistic Regression

Introduction

Learn a bias for each feature (each user, item, etc.)

Factorization Machines

Learn a bias and an embedding for each feature

What can be done with embeddings?

You are here

Interpreting the components

Items that discriminate only over one dimension

Interpreting the components

Items that highly discriminate over both dimensions

Graphically: logistic regression

How to model pairwise interactions with side information?

If you know user *i* attempted item *j* on mobile (not desktop) How to model it?

y: score of event "user i solves correctly item j"

IRT

Introduction

$$y=\theta_i+e_j$$

Multidimensional IRT (similar to collaborative filtering)

$$y = \theta_i + e_j + \langle \mathbf{v}_{\mathsf{user}} \,_i, \mathbf{v}_{\mathsf{item}} \,_j \rangle$$

With side information

$$y = \theta_i + e_j + w_{\mathsf{mobile}} + \langle \mathbf{v}_{\mathsf{user}} \, i, \mathbf{v}_{\mathsf{item}} \, j \rangle + \langle \mathbf{v}_{\mathsf{user}} \, i, \mathbf{v}_{\mathsf{mobile}} \rangle + \langle \mathbf{v}_{\mathsf{item}} \, j, \mathbf{v}_{\mathsf{mobile}} \rangle$$

Graphically: factorization machines

Formally: factorization machines

Learn bias w_k and embedding v_k for each feature k such that:

$$\operatorname{logit} p(\mathbf{x}) = \mu + \underbrace{\sum_{k=1}^{N} \mathbf{w}_{k} x_{k}}_{\operatorname{logistic regression}} + \underbrace{\sum_{1 \leq k < l \leq N} x_{k} x_{l} \langle \mathbf{v}_{k}, \mathbf{v}_{l} \rangle}_{\operatorname{pairwise interactions}}$$

Particular cases

- Multidimensional item response theory: $\operatorname{logit} p = \langle \pmb{u_i}, \pmb{v_j} \rangle + e_j$
- ullet SPARFA: $oldsymbol{v_j} > oldsymbol{0}$ and $oldsymbol{v_j}$ sparse
- ullet GenMA: $oldsymbol{v_j}$ is constrained by the zeroes of a q-matrix $(q_{ij})_{i,j}$

Andrew S Lan, Andrew E Waters, Christoph Studer, and Richard G Baraniuk (2014). "Sparse factor analysis for learning and content analytics". In: *The Journal of Machine Learning Research* 15.1, pp. 1959–2008

Jill-Jênn Vie, Fabrice Popineau, Yolaine Bourda, and Éric Bruillard (2016). "Adaptive Testing Using a General Diagnostic Model". In: European Conference on Technology Enhanced Learning. Springer, pp. 331–339

Assistments 2009 dataset

Introduction

278608 attempts of 4163 students over 196457 items on 124 skills.

- Download http://jiji.cat/weasel2018/data.csv
- Put it in data/assistments09

python fm.py data/assistments09/X-ui.npz
etc. or make big

AUC	users + items	skills + w + f	items + skills + w + f
	` ,	0.651 (PFA) 9s	
FM	0.730 2min9s	0.652 43s	0.739 2min30s

Results obtained with FM d = 20

Benchmarks

Introduction

Modèle	Composant	Taille	AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Modèle de Markov caché	2 <i>N</i>	0.63
Deep Knowledge Tracing (Piech et al. 2015)	Réseau de neurones récurrent	$O(Nd+d^2)$	0.75
Item Response Theory (Rasch 1960) (Wilson et al. 2016)	Régression logistique online	N	0.76
Knowledge Tracing Machines	Factorization Machines	Nd + N	0.82

AAAI 2019 Jill-Jênn Vie and Hisashi Kashima (2019) "Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing". Proceedings of the 33th AAAI Conference on Artificial Intelligence.

Impact on learning: modeling forgetting

Optimize scheduling of items in spaced repetition systems (\sim Anki)

memorizing

あんき

Use knowledge tracing machines with extra features: counters of attempts at skill level for different time windows in the past

EDM 2019 Benoît Choffin, Fabrice Popineau, Yolaine Bourda, and Jill-Jênn Vie (2019) "DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Skills". Best Paper Nominee

Deep Factorization Machines

Introduction

Learn layers $W^{(\ell)}$ and $b^{(\ell)}$ such that:

$$\begin{split} & \boldsymbol{a}^0(\boldsymbol{x}) = (\boldsymbol{v}_{\texttt{user}}, \boldsymbol{v}_{\texttt{item}}, \boldsymbol{v}_{\texttt{skill}}, \ldots) \\ & \boldsymbol{a}^{(\ell+1)}(\boldsymbol{x}) = \text{ReLU}(\boldsymbol{W}^{(\ell)}\boldsymbol{a}^{(\ell)}(\boldsymbol{x}) + \boldsymbol{b}^{(\ell)}) \quad \ell = 0, \ldots, L-1 \\ & y_{DNN}(\boldsymbol{x}) = \text{ReLU}(\boldsymbol{W}^{(L)}\boldsymbol{a}^{(L)}(\boldsymbol{x}) + \boldsymbol{b}^{(L)}) \end{split}$$

$$logit p(\mathbf{x}) = y_{FM}(\mathbf{x}) + y_{DNN}(\mathbf{x})$$

Jill-Jênn Vie (2018). "Deep Factorization Machines for Knowledge Tracing". In: The 13th Workshop on Innovative Use of NLP for Building Educational Applications. URL: https://arxiv.org/abs/1805.00356

Comparison

Introduction

- FM: y_{FM} factorization machine with $\lambda = 0.01$
- Deep: V_{DNN} : multilayer perceptron
- DeepFM: $y_{DNN} + y_{FM}$ with shared embedding
- Bayesian FM: $\mathbf{w_k}, \mathbf{v_{kf}} \sim \mathcal{N}(\mu_f, 1/\lambda_f)$ $\mu_f \sim \mathcal{N}(0,1), \, \lambda_f \sim \Gamma(1,1)$ (trained using Gibbs sampling)

Various types of side information

- first: <discrete> (user, token, countries, etc.)
- last: <discrete> + <continuous> (time + days)
- pfa: <discrete> + wins + fails

Duolingo dataset

# doc: ibzziio:	o+ countries.	na uays	11.755 CCLERC.WED SESSION.CESSON TOTMAC.TEVELSE_CTAINSTACE CLINE.10			
8rgJEAPw1001	She	PRON	Case=Nom Gender=Fem Number=Sing Person=3 PronType=Prs fPOS=PRON++PRP	nsubj	4	0
8rgJEAPw1002	is	VERB	Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin fPOS=VERB++VBZ	сор	4	0
8rgJEAPw1003	my	PRON	Number=Sing Person=1 Poss=Yes PronType=Prs fPOS=PRON++PRP\$	nmod:poss	4	1
8rgJEAPw1004	mother	NOUN	Degree=Pos fPOS=ADJ++JJ	R00T	0	1
8rgJEAPw1005	and	CONJ	fPOS=CONJ++CC	cc	4	0
8rgJEAPw1006	he	PRON	Case=Nom Gender=Masc Number=Sing Person=3 PronType=Prs fPOS=PRON++PRP	nsubj	9	0
8rgJEAPw1007	is	VERB	Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin fPOS=VERB++VBZ	сор	9	0
8rgJEAPw1008	my	PRON	Number=Sing Person=1 Poss=Yes PronType=Prs fPOS=PRON++PRP\$	nmod:poss	9	1
8rgJEAPw1009	father	NOUN	Number=Sing fPOS=NOUN++NN	conj	4	1
# user:D2inSf	5+ countries:	MX days	:2.689 client:web session:practice format:reverse_translate time:6			
oMGsnnH/0101	When	ADV	PronType=Int fPOS=ADV++WRB	advmod	4	1
oMGsnnH/0102	can	AUX	VerbForm=Fin fPOS=AUX++MD	aux	4	0
oMGsnnH/0103	I	PRON	Case=Nom Number=Sing Person=1 PronType=Prs fPOS=PRON++PRP	nsubj	4	1
						0

Results

Model	d	epoch	train	first	last	pfa
Bayesian FM	20	500/500	_	0.822	_	_
Bayesian FM	20	500/500	_	_	0.817	_
DeepFM	20	15/1000	0.872	0.814	_	_
Bayesian FM	20	100/100	_	_	0.813	_
FM	20	20/1000	0.874	0.811	_	_
Bayesian FM	20	500/500	_	_	_	0.806
FM	20	21/1000	0.884	_	_	0.805
FM	20	37/1000	0.885	_	8.0	_
DeepFM	20	77/1000	0.89	_	0.792	_
Deep	20	7/1000	0.826	0.791	_	_
Deep	20	321/1000	0.826	_	0.79	_
LR	0	50/50	_	_	_	0.789
LR	0	50/50	_	0.783	_	_
LR	0	50/50	_	_	0.783	

Conclusion

Duolingo ranking

Introduction

Rank	Team	Algo	AUC
1	SanaLabs	RNN + GBDT	.857
2	singsound	RNN	.854
2	NYU	GBDT	.854
4	CECL	LR + L1 (13M feat.)	.843
5	TMU	RNN	.839
7 (off)	JJV	Bayesian FM	.822
8 (off)	JJV	DeepFM	.814
10	JJV	DeepFM	.809
15	Duolingo	LR	.771

Burr Settles, Chris Brust, Erin Gustafson, Masato Hagiwara, and Nitin Madnani (2018). "Second language acquisition modeling". In: *Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications*, pp. 56–65. URL: http://sharedtask.duolingo.com

What 'bout recurrent neural networks?

Deep Knowledge Tracing: model the problem as sequence prediction

- Each student on skill q_t has performance a_t
- How to predict outcomes y on every skill k?
- ullet Spoiler: by measuring the evolution of a latent state $oldsymbol{h_t}$

Chris Piech et al. (2015). "Deep knowledge tracing". In: *Advances in Neural Information Processing Systems (NIPS)*, pp. 505–513

Our approach: encoder-decoder

$$\begin{cases} \mathbf{h_t} = Encoder(\mathbf{h_{t-1}}, \mathbf{x_t^{in}}) \\ p_t = Decoder(\mathbf{h_t}, \mathbf{x_t^{out}}) \end{cases} t = 1, \dots, T$$

Graphically: deep knowledge tracing

Deep knowledge tracing with dynamic student classification

ICDM 2018 Sein Minn, Yi Yu, Michel Desmarais, Feida Zhu, and Jill-Jênn Vie (2018) "Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing". Proceedings of the 18th IEEE International Conference on Data Mining.

DKT seen as encoder-decoder

Results on Fraction dataset

Introduction

500 middle-school students, 20 Fraction subtraction questions, 8 skills (full matrix)

Model	Encoder	Decoder	x _t out	ACC	AUC
Ours	GRU $d=2$	bias	iswf	0.880	0.944
KTM	counter	bias	iswf	0.853	0.918
PFA	counter	bias	swf	0.854	0.917
Ours	Ø	bias	iswf	0.849	0.917
Ours	GRU $d = 50$	Ø		0.814	0.880
DKT	GRU $d=2$	d=2	S	0.772	0.844
Ours	GRU $d=2$	Ø		0.751	0.800

Results on Berkeley dataset

562201 attempts of 1730 students over 234 CS-related items of 29 categories.

Model	Encoder	Decoder	x_t^{out}	ACC	AUC
Ours	GRU $d = 50$	bias	iswf	0.707	0.778
KTM	counter	bias	iswf	0.704	0.775
Ours	Ø	bias	iswf	0.700	0.770
DKT	GRU $d = 50$	d = 50	S	0.684	0.751
Ours	GRU $d=100$	Ø		0.682	0.750
PFA	counter	bias	swf	0.630	0.683
DKT	GRU $d=2$	d=2	S	0.637	0.656

Jill-Jênn Vie and Hisashi Kashima (n.d.). "Encode & Decode: Generalizing Deep Knowledge Tracing and Multidimensional Item Response Theory". under review. URL: http://jiji.cat/bigdata/edm2019_submission.pdf

Take home message

Introduction

Factorization machines are a strong baseline for knowledge tracing that take many models as special cases

Recurrent neural networks are powerful because they track the evolution of the latent state (try simpler dynamic models?)

Deep factorization machines may require more data/tuning, but neural collaborative filtering offer promising directions

Next step: use this model and optimize human learning

Any suggestions are welcome!

Feel free to chat:

vie@jill-jenn.net

All code:

Introduction

github.com/jilljenn/ktm

Do you have any questions?

- Lan, Andrew S, Andrew E Waters, Christoph Studer, and Richard G Baraniuk (2014). "Sparse factor analysis for learning and content analytics". In: *The Journal of Machine Learning Research* 15.1, pp. 1959–2008.
- Piech, Chris, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas, and Jascha Sohl-Dickstein (2015). "Deep knowledge tracing". In: Advances in Neural Information Processing Systems (NIPS), pp. 505–513.
- Rendle, Steffen (2012). "Factorization Machines with libFM". In:

 ACM Transactions on Intelligent Systems and Technology (TIST)
 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771.
- Settles, Burr, Chris Brust, Erin Gustafson, Masato Hagiwara, and Nitin Madnani (2018). "Second language acquisition modeling". In: Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pp. 56–65. URL: http://sharedtask.duolingo.com.

Vie, Jill-Jênn and Hisashi Kashima (n.d.). "Encode & Decode: Generalizing Deep Knowledge Tracing and Multidimensional Item Response Theory". under review. URL: http://jiji.cat/bigdata/edm2019 submission.pdf.

Vie, Jill-Jênn, Fabrice Popineau, Yolaine Bourda, and Éric Bruillard (2016). "Adaptive Testing Using a General Diagnostic Model". In: European Conference on Technology Enhanced Learning. Springer, pp. 331–339.