§1 Sets, Functions, and Sequences

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.

∈ - "belongs to" or "is an element of" or "is in"

∉ - "does not belong to" or "is not an element of" or "is not in"

• The cardinality of a set S, denoted by |S|, is the number of elements in S.

Example. Some commonly-used sets in our number system:

N - the set of natural numbers $0, 1, 2, 3, \ldots$

 \mathbb{Z} - the set of integers (whole numbers) $\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots$

- the set of rational numbers (fractions) $\ldots, -1, 0, 1, 2, \frac{1}{2}, 3, \frac{1}{3}, \frac{2}{3}, \ldots$ 0

 \mathbb{R} - the set of real numbers, which includes all rational numbers as well as irrational numbers such as π , e, and $\sqrt{2}$

- the set of all positive real numbers \mathbb{R}^+

Example. We can specify a set by listing its elements between curly brackets, separated by commas:

 $S = \{b, c\}.$

The elements of S are $b \neq -1 \subset$. Thus |S| = 2. We can write $b \in S$, $c \in S$, and $d \notin S$, for instance.

Example. We can specify a set by some property that all elements must have:

$$S = \{x \in \mathbb{Z} \mid x^2 \le 4\}$$
 (or $S = \{x \in \mathbb{Z} : x^2 \le 4\}$).

The elements of S are -2, -1, 0, 1 and 2. Thus |S| = 5. Also $S = \{-2, -1, 0, 1, 2\}.$

We can write $-2 \in S$, $-1 \in S$, $0 \in S$, $1 \in S$, and $4 \notin S$, for instance.

Exercise. Let $A = \{\{a\}, a\}$. What are the elements of A? What is |A|?

The elements of A are
$$\{a\}$$
 and α
 $|A|=2$

- Two sets S and T are equal, denoted by S = T, if and only if (written iff)
 - (i) every element of S is also an element of T, and
 - (ii) every element of T is also an element of S.

i.e., when they have precisely the same elements.

• The empty set, denoted by \varnothing , is set which has no elements. $|\varnothing| = \mathcal{O}$

Exercise. Are any of the following sets equal?

$$\begin{array}{ll} A = \{2,3,4,5\}, & C = \{2,2,3,3,4,5\}, \\ B = \{5,4,3,2\}, & D = \{x \in \mathbb{N} \,|\, 2 \leq x \leq 5\}. \end{array}$$

Exercise. What is the difference between the sets \emptyset , $\{\emptyset\}$ and $\{\emptyset, \{\emptyset\}\}$?

• Loosely speaking, a *subset* is a part of a set. More precisely, a set S is a *subset* of a set T if and only if each element of S is also an element of T.

 \subseteq - "is a subset of", $\not\subseteq$ - "is not a subset of"

- $\star \; S = T \; \text{if and only if} \; S \subseteq T \; \text{and} \; T \subseteq S.$
- A set S is a proper subset of a set T iff S is a subset of T and $S \neq T$.

We then write $S \subsetneq T$ (or sometimes $S \subset T$).

- \star \varnothing is a proper subset of any non-empty set.
- * Any non-empty set is an improper subset of itself.
- The power set P(S) of a set S is the set of all possible subsets of S.
 - * For any set S, we have $\varnothing \subseteq S$ and $S \subseteq S$.
 - \star For any set S, we have $\varnothing \in P(S)$ and $S \in P(S)$.
- The number of subsets of S is $|P(S)| = 2^{|S|}$. (Why?)

Example. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$

why is | P(3) = 2 15/ Proof Let |S| = n Form a subset of S loke this: For each element, decide Yor N: is it in the subset · " YYNNN... {a,,ar} Each seguence of Y/N choices gives a subset 2 choices at each place total choices is 2x2x2x...x2 (n times) > 2 h = |P(s)|some as number of lit strings of length w

7.9

Example. Let $S = \{a, b, c\}$. The subsets of S are:

$$\emptyset$$
, $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$, $\{b,c\}$, $\{a,b,c\}$.

S has 8 subsets. We can write $\varnothing \subseteq S$, $\{b\} \subseteq S$, $\{a,c\} \subseteq S$, $\{a,b,c\} \subseteq S$, etc. The power set of S is

$$P(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$$

and $|P(S)| = 2^3 = 8$.

We can write $\emptyset \in P(S)$, $\{b\} \in P(S)$, $\{a,c\} \in P(S)$, $\{a,b,c\} \in P(S)$, etc.

Exercise. Let $A = P(P(\{1\}))$. Find A and |A|.

$$P(\{1\}) = \{ \phi, \{1\} \}$$

$$P(\{1\}) = \{ \phi, \{\phi\}, \{\{1\}\}\}, \{\phi, \{1\}\}\} \}$$

$$|A| = 4$$

Exercise. For $B = \{\emptyset, 0, \{1\}\}\$, are the following statements true or false?

1.
$$\emptyset \in B$$
 T

8.
$$\{\{0\}\}\subseteq P(B)$$

2.
$$\varnothing \subset B$$
 \top

9.
$$1 \in B$$

3.
$$\{\emptyset\} \in B \quad \bar{F}$$

10.
$$\{1\} \subseteq B$$

4.
$$\{\varnothing\} \subseteq P(B) \quad \mathcal{T}$$
 11. $\{1\} \in P(B)$

11.
$$\{1\} \in P(B)$$

5.
$$\{0\} \in P(B)$$
 \mathcal{T} 12. $\{\{1\}\} \subseteq P(B)$

12.
$$\{\{1\}\}\subset P(B)$$

6.
$$\{\emptyset\} \subseteq B$$
 \top

6.
$$\{\varnothing\} \subsetneq B \qquad \top \qquad 13. \quad \varnothing \in P(P(P(B)))) \quad \mathsf{T}$$

7.
$$\{\emptyset\} \in P(B)$$
 \mathcal{T}

- It is often convenient to work inside a specified *universal set*, denoted by U, which is assumed to contain everything that is relevant.
- Venn diagrams are visualizations of sets as regions in the plane. For instance, here is a Venn diagram of a universal set U containing a set A:

Set operations and set algebra:

 \sim illustrated by Venn diagrams \sim

• difference $(-, \setminus)$ - "but not"

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \notin B\}$$

 \bullet complement (c , $^-$) - "not"

$$A^c = \overline{A} = U \setminus A = \{x \in U \mid x \notin A\}$$

• union (\cup) - "or" meaning "one or other or both"

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

• intersection (∩) - "and"

$$A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$$

- ullet Two sets A and B are disjoint if $A\cap B=\varnothing$.
- The Inclusion-Exclusion Principle: $|A \cup B| = |A| + |B| |A \cap B|$.

Example. Set $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{1, 2\}$. Then

$$A^c = \{2, 4, 6\}$$
 $A \cap B = \{1\}$ $A \cup B = \{1, 2, 3, 5\}$ $A - B = \{3, 5\}$.

Exercise. Given $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$

$$A = \{ x \in U \mid x \text{ is odd} \}$$

$$B = \{ x \in U \mid x \text{ is even} \}$$

$$C = \{x \in U \mid x \text{ is a multiple of 3}\}$$

$$D = \{ x \in U \mid x \text{ is prime} \}$$

determine the following sets:

$$A \cap C = \{3, 9\}$$

 $B - D$
 $B \cup D$
 A^{c}
 $(A \cap C) - D = \{9\}$

Exercise. Determine the sets A and B, where

$$A - B = \{a, c\}, B - A = \{b, f, g\}, \text{ and } A \cap B = \{d, e\}.$$

$$A = \{a, c, d, e\}$$

$$B = \{d, e, b, f, g\}$$

Example. In a survey of 100 students majoring in computer science, the following information was obtained:

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
- 9 can program in C++ and Visual Basic, but not Java.
- 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

Also, all of the 100 students can program in at least one of these three languages. How many students can program in Java, but not C++ or Visual Basic?

$$x = 100 - (17 + 22 + 9 + 2 + 19 + 21 + 0) = 10$$

Exercise. In a survey of 200 people asked about whether they like apples (A), bananas (B), and cherries (C), the following data was obtained:

$$|A| = 112,$$

$$|B| = 89,$$

$$|C| = 71,$$

$$|A \cap B| = 32,$$

$$|A \cap C| = 26$$
,

$$|B \cap C| = 43,$$

$$|A \cap B \cap C| = 20.$$

- a) How many people like apples or bananas?
- b) How many people like exactly one of these fruit?

c) How many people like none of these fruit?

|AUB| = |A| + |B| - |AnB| = 112+89-32 = 169

(1) 36 22 23 B

Plan: Start in the middle (triple intersection) and work outwards to find numbers in individual regions Answer: 74+34+22 = 130

• Hints for proofs:

- To prove that $S \subseteq T$, we assume that $x \in S$ and show that $x \in T$.
- To prove that S=T, we show that $S\subseteq T$ and $T\subseteq S$.

Example. We prove that if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.

Proof. Let $A \subseteq C$ and $B \subseteq C$ and suppose that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

In all possible cases, we have $x \in C$, which proves that $A \cup B \subseteq C$.

Exercise. Prove that if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$. see β . 66

To prove "If p then q" Saplose P { (work) Let ACR and BCC Sallose XE AUB xeA or xeB Casel: If x & A the ZEC herause & ASC Care 2: If KEB then XEC because PCC So in eithe care, DCEC

AUBEC

To prove: if $A \subseteq B$ and $A \subseteq C$ then $A \subseteq B_n \in S$ Suppose $A \subseteq B$ and $A \subseteq C$ Let $Q \in A$ $Q \in B$ since $A \subseteq B$

and a E C Since A S C

So DE BAC

Exercise. Prove that if $A \subseteq B$, then $A \cap B = A$.

See over: 7a-76

Exercise. Prove that if $A \cap B = A$, then $A \subseteq B$.

Thus, putting these last two examples together, we can say $A \cap B = A$ if and only if $A \subseteq B$.

Exercise. Is the statement $A \cap (B \cup C) = (A \cap B) \cup C$ true (for all sets A, B, C)? Provide a proof if it is true or give a counter example if it is false.

LHS

KHS

Venn diagram gives insight: statement is false

One counterexample: $A = \{1,2\}, B = \emptyset, C = \{2,3\}. A_n(Boc) = \{2\} \text{ but } (A_nB) \cup C = \{2,3\}.$

A wrong answer is "False: because LHS is $(A \cap B) \cup (A \cap C)$ not $(A \cap B) \cup C$."

Exercise. Is the statement A - (B - C) = (A - B) - C true? Provide a proof if it is true or give a counter example if it is false. Again, draw a $V c n diagram + o get insight. It's false The take particular sets which make the two sides unequal e.g. <math>A = \{1,2\}, B = \{3\}, C = \{2,4\}$

Suppose $A \subseteq B$ Let $x \in A \cap B$ So $x \in A$ and $x \in B$ So $x \in A$ So $A \cap B \subseteq A$ Also Ict $x \in A$ So $x \in B$ Since $A \subseteq B$ $x \in A \cap B$ So $A \subseteq A \cap B$ Therefore $A \subseteq A \cap B$

Suppose AnB=A

let a e A

So a E A n B

Since A n B = A

So x E A and x e B

So x E B

So ACB

"p if and only if q"

means "If p the q and if q themp"

To prove an "all" statement true, give a general proof

T, prove an 'all' statement false, give one countrexample

Laws of set algebra:

$$\textit{Commutative laws} \qquad A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

Associative laws
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

ے Distributive laws
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Absorption laws
$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A$$

ے Identity laws
$$A \cap U = U \cap A = A$$

$$A \cup \emptyset = \emptyset \cup A = A$$

ے Idempotent laws
$$A \cap A = A$$

$$A \cup A = A$$

• Double complement law
$$(A^c)^c = A$$

ے Difference law
$$A - B = A \cap B^c$$

Let Domination or universal bound laws
$$A \cap \emptyset = \emptyset \cap A = \emptyset$$

$$A \cup U = U \cup A = U$$

$$m{\omega}$$
 Intersection and union with complement $A\cap A^c=A^c\cap A=\varnothing$

$$A \cup A^c = A^c \cup A = U$$

Laws
$$(A \cup B)^c = A^c \cap B^c$$
 $(A \cap B)^c = A^c \cup B^c$

Proof of De Morgan's law $(A \cup B)^c = A^c \cap B^c$:

- (i) Suppose that $x \in (A \cup B)^c$. Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$. Thus, $x \in A^c$ and $x \in B^c$, so $x \in A^c \cap B^c$. This proves that $(A \cup B)^c \subseteq A^c \cap B^c$.
- (ii) Suppose now that $x \in A^c \cap B^c$. Then $x \in A^c$ and $x \in B^c$, so $x \notin A$ and $x \notin B$. Thus, $x \notin A \cup B$, so $x \in (A \cup B)^c$.

This proves that $A^c \cap B^c \subseteq (A \cup B)^c$.

Combining (i) and (ii), we conclude that $(A \cup B)^c = A^c \cap B^c$.

Example. We can use the laws of set algebra to simplify $(A^c \cap B)^c \cup B$:

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
 $= (A \cup B^c) \cup B$ Double complement law
 $= A \cup (B^c \cup B)$ Associative law
 $= A \cup U$ Union with complement
 $= U$ Domination

Exercise. Use the laws of set algebra to simplify $(A \cap (A \cap B)^c) \cup B^c$:

=
$$(A \cap (A^c \cup B^c)) \cup B^c$$

= $(A \cap A^c) \cup (A \cap B^c)) \cup B^c$

= $(A \cap B^c) \cup B^c$

= $(A \cap B$

Exercise. Use the laws of set algebra to simplify

$$([(A \cup B)^c \cup C] \cup B^c)^c$$

Challenge: Prove the result (uniqueness of complement):

If $A \cup B = U$ and $A \cap B = \emptyset$ then $B = A^c$.

Suppose $A \cup B = U$ and $A \cap B = \emptyset$ Let $x \in B$. So $x \notin A$ ($x \in A \cap B = \emptyset$). So $x \in A^c$. Thus $B \subseteq A^c$ Let $x \in A^c$. So $x \notin A$. So $x \in B$ (otherwise, $x \notin A$ and $x \notin B$ so $x \notin A \cup B$. But $A \cup B = U$ so $x \in U$). Thus $A^c \subseteq B$.

Therefore $B = A^c$

Principal of Duality:

For a set identity involving only unions, intersections and complements, its dual is obtained by replacing \cap with \cup , \cup with \cap , \varnothing with U, and U with \varnothing .

As all the relevant laws of set algebra come in dual pairs, then the dual of any true set identity is also true.

The duals of the last 3 examples are:

Dual of
$$(A^c \cap B)^c \cup B = \emptyset$$

is $(A^c \cup B)^c \cap B = \emptyset$

$$(A^c \cup B)^c \wedge B = \emptyset$$

• Generalized set operations:

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \dots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

Example. If $A_k = \{k, k+1\}$ for every positive integer k, then

$$\bigcup_{k=1}^{3} A_{k} = A_{1} \cup A_{2} \cup A_{3} = \{1, 2\} \cup \{2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$\bigcap_{k=1}^{3} A_{k} = A_{1} \cap A_{2} \cap A_{3} = \{1, 2\} \cup \{2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

● Let I be an (index) set. For each $i \in I$, let A_i be a subset of a given set A.

$$\bigcup_{i \in I} A_i = \bigcup_{i \in I} A_i = \{ a \in A \, | \, a \in A_i \text{ for some } i \in I \}$$

$$\bigcap_{i \in I} A_i = \bigcap_{i \in I} A_i = \{ a \in A \mid a \in A_i \text{ for every } i \in I \}$$

Example.

Let $I = \{1, 2, 3, ...\}$ be the index set. For each $i \in I$ let $A_i = [0, \frac{1}{i}] \subseteq \mathbb{R}$ be the set of real numbers between 0 and $\frac{1}{i}$ including 0 and $\frac{1}{i}$.

$$\begin{array}{lll} \bigcup_{i \in I} A_i = [0,1] \cup [0,\frac{1}{2}] \cup [0,\frac{1}{3}] \cup \ldots = & \left\{ \text{ O, I} \right\} : \text{A,} \\ \\ \bigcap_{i \in I} A_i = [0,1] \cap [0,\frac{1}{2}] \cap [0,\frac{1}{3}] \cap \ldots = & \left\{ \text{ O} \right\} & \text{ (not } \phi & \text{)} \end{array}$$

Example. (The Barber Puzzle) In a certain town there is a barber (*) who shaves all those men, and only those, who do not shave themselves. Does the barber shave himself?

Problem: If he shaves himself, $(*) \Longrightarrow$ he doesn't shave himself. If he doesn't shave himself, $(*) \Longrightarrow$ he shaves himself.

CONTRADICTION!

Solution: Avoid self-reference

The paradox occurred because a self-referential statement was used. The "themself" in (*) could also refer to the barber unless our above solution is imposed.

Example. (Russell's Paradox)

- Let U be the set of all sets.
- First weird phenomenon: then $U \in U$.
- Even worse, we have Russell's paradox. Let

$$S = \{ A \in U \, | \, A \notin A \}.$$

Is S an element of itself?

- i) If $S \in S$, then the definition of S implies that $S \notin S$, a contradiction.
- ii) If $S \notin S$, then the definition of S implies that $S \in S$, also a contradiction.

Hence neither $S \in S$ nor $S \notin S$.

Usual Solution: (1.) Avoid se (freferce. (2.) Avoid X X Usual Solution: (3.) Paild up from individuals, sets of individuals power sets...

Key Point: The notion of set and set theory is very subtle. We will for the most part ignore these subtleties.

- An ordered pair is a collection of two objects in a specified order. We use round brackets to denote ordered pairs; e.g., (a,b) is an ordered pair.
 - Note that (a,b) and (b,a) are different ordered pairs, whereas $\{a,b\}$ and $\{b,a\}$ are the same set.
- An ordered n-tuple is a collection of n objects in a specified order; e.g., $(a_1, a_2, ..., a_n)$ is an ordered n-tuple.
 - Two ordered n-tuples (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) are equal if and only if $a_i = b_i$ for all $i = 1, 2, \ldots, n$.
- The Cartesian product of two sets A and B, denoted by $A \times B$, is the set of all ordered pairs, the first from A, the second from B:

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

 \star If |A|=m and |B|=n, then we have $|A\times B|=\max \left|A/\!\!\times\!|B|\right|$

● The Cartesian product of n sets A_1, A_2, \ldots, A_n is the set of all ordered n-tuples (a_1, a_2, \ldots, a_n) such that $a_i \in A_i$ for all $i = 1, 2, \ldots, n$:

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for all } i = 1, 2, \dots, n\}$$

Example. Let
$$A = \{a, b\}$$
 and $B = \{1, 2, 3\}$. Then $A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$.

Exercise. For A in the above example, find $A \times A$.

$$A \times A = \{(a, \alpha), (a, b), (b, a), (b, b)\}$$

● When X and Y are small finite sets, we can use an $arrow \ diagram$ to represent a subset S of $X \times Y$: we list the elements of X and the elements of Y, and then we draw an arrow from x to y for each pair $(x,y) \in S$.

Example. Let $X = \{a, b, c\}$, $Y = \{1, 2, 3, 4\}$, and $S = \{(a, 2), (a, 3), (c, 1)\}$ which is a subset of $X \times Y$, then the arrow diagram for S is

- **●** A function f from a set X to a set Y is a subset of $X \times Y$ such that for every $x \in X$ there is exactly one $y \in Y$ for which (x, y) belongs to f.
 - We write $f: X \to Y$ and say that "f is a function from X to Y".
 - X is the domain of f, Y is the codomain of f.
 - For any $x \in X$, there is a unique $y \in Y$ for which (x,y) belongs to f.
 - We write f(x) = y or $f: x \mapsto y$.
 - We call y "the *image* of x under f" or "the *value* of f at x".
 - The range of f is the set of all values of f, that is $f(X) = \{ y \in Y \mid y = f(x) \text{ for some } x \in X \}.$
- This definition of a function corresponds to what is normally thought of as the graph of a function, with an x-axis and a y-axis.

How does this relate to the definition of a function given in Calculus in MATH1131/1141/1151?: b. H. of next page

Example. Adam, Ben, Cate, Diane, and Eve were each given a mark out of 4. Their marks define a function $f: X \to Y$ as follows:

domain
$$X = \{Adam, Ben, Cate, Diane, and Eve\}$$

codomain $Y = \{1, 2, 3, 4\},$
and suppose $f = \{(Adam, 3), (Ben, 2), (Cate, 4), (Diane, 2), (Eve, 3)\}.$

The arrow diagram for this function is

This is a function because every person has exactly one mark. The range of this function is $\{2, 3, 4\}$.

Exercise. Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4, 5\}$.

Determine whether or not each of the following is a function from X to Y. If it is, then write down its range.

$$\begin{array}{ll} f = \{(a,2),(a,4),(b,3),(c,5)\}, \ \mathcal{N} \ \left(\text{two values for a} \right) \\ g = \{(b,1),(c,3)\}, & \mathcal{N} \ \left(\text{there's no g(a)} \right) \\ h = \{(a,5),(b,2),(c,2)\}. \ \ \forall : \ \text{range is } \left\{2,5\right\} \end{array}$$

Example. The square function $f: \mathbb{R} \to \mathbb{R}$ is defined by set of the pairs

$$\{(x,y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2\}.$$

The function $f: \mathbb{R} \to \mathbb{R}$ can also be specified by

$$f(x) = x^2$$
 or $f: x \mapsto x^2$.

The domain of f is \mathbb{R} ; the codomain of f is \mathbb{R} ; and the range of f is

$$\{y \in \mathbb{R} \mid y = x^2 \text{ for some } x \in \mathbb{R}\} = \{y \in \mathbb{R} \mid y \ge 0\} = \mathbb{R}^+ \cup \{0\}.$$

Function: each vertical line intersects the graph once

- The floor function: (round down) for any $x \in \mathbb{R}$, we denote by $\lfloor x \rfloor$ the largest integer less than or equal to x.
- The ceiling function: (round up) for any $x \in \mathbb{R}$, we denote by $\lceil x \rceil$ the smallest integer greater than or equal to x.

Exercise. Evaluate the following:

$$\begin{bmatrix} 3.7 \end{bmatrix} = 3$$
 $\begin{bmatrix} -3.7 \end{bmatrix} = -4$ $\begin{bmatrix} 3 \end{bmatrix} = 3$ $\begin{bmatrix} -3 \end{bmatrix} = -3$ $\begin{bmatrix} 3.7 \end{bmatrix} = 4$ $\begin{bmatrix} -3.7 \end{bmatrix} = -3$ $\begin{bmatrix} 3 \end{bmatrix} = 3$ $\begin{bmatrix} -3 \end{bmatrix} = 3$

Exercise. What are the ranges of the floor and ceiling functions? \mathbb{Z} (for look) Plot the graphs of the floor and the ceiling functions.

Exercise. Determine whether or not each of the following definitions corresponds to a function. If it does, then write down its range.

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \frac{1}{x}$$
$$g: \mathbb{R}^+ \to \mathbb{R}, \quad g(x) = \frac{1}{x}$$
$$h: \mathbb{R} \to \mathbb{R}, \quad h(x) = \lfloor x^2 - x \rfloor$$
$$j: \mathbb{R} \to \mathbb{Z} \quad j(x) = 2x$$

- **●** The *image* of a set $A \subseteq X$ under a function $f: X \to Y$ is $f(A) = \{y \in Y \mid y = f(x) \text{ for some } x \in A\} = \{f(x) \mid x \in A\} \subseteq Y.$
- **●** The *inverse image* of a set $B \subseteq Y$ under a function $f: X \to Y$ is $f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subseteq X.$