Лабораторная работа №4 "Сумма бесконечного ряда"

Срок сдачи: 2 занятия Дата выдачи: 28.09

Составить программу вычисления суммы ряда (по варианту) с точностью до члена ряда ε. Программа должна позволять задать значение аргумента (если требуется по варианту), точность, максимальное количество итераций и шаг печати. Необходимо вывести таблицу промежуточных вычислений с заданным шагом (номер итерации, значение текущего члена, промежуточное значение суммы) и результат - вычисленное значение суммы ряда либо сообщение о том, что за указанное число итераций необходимой точности достичь не удалось.

Пример вывода программы для ряда

$$s = x + \frac{x}{2} + \frac{x}{4} + \dots + \frac{x}{2n} + \dots$$

при x = 1, точности 0.1, шаге печати 2 и количестве итераций 10:

	Nº	итерации		t 		s	 -
İ	1 3 5		İ	0.25	İ	1 1.75	
	5			0.125		2.042	

Сумма бесконечного ряда - 2.104, вычислена за 6 итераций.

Примечания:

- 1. Шаг печати используется для ограничения вывода промежуточных значений. Вычисляться должны все значения по порядку.
- 2. Максимальное количество итераций ограничивает продолжительность вычислений для случаев, когда при высокой точности они займут слишком долгое время.

Обратите, пожалуйста, внимание на текст после таблицы!

Варианты

No	Ряд
1	$s = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$
2	$y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$
3	$y = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + (-1)^n \frac{1}{2^n} + \dots$

4	$y = \frac{\ln \ln 2}{2} + \frac{\ln \ln 3}{3} + \dots + \frac{\ln \ln n}{n} + \dots$
5	$y = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} + \dots$
6	$y = 2\left(\frac{x-1}{x+1} + \frac{(x-1)^3}{3(x+1)^3} + \dots + \frac{(x-1)^{2n+1}}{(2n+1)(x+1)^{2n+1}} + \dots\right)$
7	$f = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} + \dots$
8	$y = \frac{x-1}{x} + \frac{(x-1)^2}{2x^2} + \dots + \frac{(x-1)^n}{nx^n} + \dots$
9	$y = \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \dots + \frac{1}{n(n+1)(n+2)} + \dots$
10	$y = \frac{1}{\sqrt{2}} + \frac{3}{2} + \frac{5}{2\sqrt{2}} + \dots + \frac{2n-1}{(\sqrt{2})^n} + \dots$
11	$y = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \frac{1}{n^4} + \dots$
12	$y = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \frac{1}{n^4} + \dots$ $y = \frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \dots + \frac{1}{(2n+1)x^{2n+1}} + \dots$
13	$y = 1 + \frac{2}{2^2} + \dots + \frac{2^{n-1}}{n^n} + \dots$
14	$f = \left(\frac{3}{4}\right)^{\frac{1}{2}} + \frac{5}{7} + \left(\frac{7}{10}\right)^{\frac{3}{2}} + \dots + \left(\frac{2n+1}{3n+1}\right)^{\frac{n}{2}} + \dots$
15	$f = \frac{1}{2} + \left(\frac{2}{5}\right)^3 + \left(\frac{3}{8}\right)^5 + \dots + \left(\frac{n}{3n-1}\right)^{2n-1} + \dots$
16	$y = \frac{2}{1} + \left(\frac{3}{3}\right)^2 + \left(\frac{4}{5}\right)^3 + \dots + \left(\frac{n+1}{2n-1}\right)^n + \dots$
17	$y = \frac{1}{3 \times 5} + \frac{1}{7 \times 9} + \dots + \frac{1}{(4n-1)(4n+1)} + \dots$
18	$y = \frac{2}{1} + \frac{2 \times 5}{1 \times 5} + \dots + \frac{2 \times 5 \times 8 \times \dots \times (3n-1)}{1 \times 5 \times 9 \times \dots \times (4n-3)} + \dots$
19	$y = \frac{\pi}{2} - \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots\right)$
20	$y = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{(2n+1)^2} + \dots$
21	$y = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{(2n+1)^2} + \dots$ $y = \frac{3}{2^2 \times 3^2} + \frac{5}{3^3 \times 4^2} + \dots + \frac{2n+1}{(n+1)^2 (n+2)^2} + \dots$
22	$f = 1 - \frac{1}{4} + \frac{1}{9} - \dots + (-1)^{n-1} \frac{1}{n^2} + \dots$
23	$y = \frac{2}{1} + \left(\frac{3}{2}\right)^2 + \dots + \left(\frac{n+1}{2n-1}\right)^n + \dots$
24	$y = 1 + \frac{1}{2^{x}} + \frac{1}{3^{x}} + \dots + \frac{1}{n^{x}} + \dots$ $y = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots$
25	
26	$f = \frac{1}{3} + \frac{1}{8} + \frac{1}{15} + \dots + \frac{1}{(n+1)^2 - 1} + \dots$

27	$v = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \dots + \frac{1}{1} + \dots$
	$y = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{(2n+1)^2} + \dots$
28	$y = \frac{3}{1 \times 2} - \frac{5}{2 \times 3} + \frac{7}{3 \times 4} + \dots + (-1)^{n-1} \frac{(2n+1)}{n(n+1)} + \dots$
29	$y = \frac{3}{1 \times 2} - \frac{5}{2 \times 3} + \frac{7}{3 \times 4} + \dots + (-1)^{n-1} \frac{(2n+1)}{n(n+1)} + \dots$ $y = \frac{1}{2} + \left(\frac{2}{5}\right)^3 + \dots + \left(\frac{n}{3n-1}\right)^{n2-1} + \dots$
30	$y = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$
31	$y = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$
32	$y = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$ $f = \frac{1}{2^2 3^2} + \frac{1}{3^2 4^2} + \dots + \frac{1}{(n+1)^2 (n+2)^2} + \dots$
33	$y = \frac{x+1}{1\times 2} + \frac{(x+1)}{2\times 2^2} + \dots + \frac{(x+1)}{n\times 2^n} + \dots$
34	$y = \frac{1}{2^2} + \frac{1}{5^2} + \dots + \frac{1}{(3n-1)^2} + \dots$
35	$y = \frac{1}{2-1} + \frac{1}{2^2 - 2} + \dots + \frac{1}{2^n - n} + \dots$ $y = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \dots + \frac{1}{(2n-1)(2n+1)} + \dots$ $y = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$
36	$y = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \dots + \frac{1}{(2n-1)(2n+1)} + \dots$
37	$y = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$
38	$y = 1 + 2x + 3x^2 + + (n + 1)x^n +$
39	$f = x + \frac{x^5}{5} + \frac{x^9}{9} + \dots + \frac{x^{4n-3}}{4n-3} + \dots$
40	$y = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$
41	$s = \frac{x}{2} + \frac{2x}{2^2} + \dots + \frac{nx}{2^n} + \dots$
42	$y = 1 + \left(\frac{2}{3}\right)^2 + \left(\frac{3}{5}\right)^3 + \dots + \left(\frac{n}{2n-1}\right)^n + \dots$ $y = x + \frac{x^5}{5} + \frac{x^9}{9} + \dots + \frac{x^{4n-3}}{4n-3} + \dots$ $y = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$
43	$y = x + \frac{x^5}{5} + \frac{x^9}{9} + \dots + \frac{x^{4n-3}}{4n-3} + \dots$
44	$y = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$
45	$y = 1 - \frac{1}{2^4} + \frac{1}{3^4} + \dots + (-1)^{n+1} \frac{1}{n^4} + \dots$
46	$y = 1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots + \frac{1}{n^n} + \dots$
47	$y = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + (-1)^{n+1} \frac{1}{2n-1} + \dots$
48	$y = \frac{2}{5} + \frac{1}{2} \left(\frac{2}{5}\right)^2 + \frac{1}{3} \left(\frac{2}{5}\right)^3 + \dots + \frac{1}{n} \left(\frac{2}{5}\right)^n + \dots$
49	$y = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots$
50	$y = \frac{1}{2-1} + \frac{1}{2^2 - 2} + \dots + \frac{1}{2^n - n} + \dots$

<i>E</i> 1	1 1 1 1
51	$y = \frac{1}{2^2} + \frac{1}{5^2} + \frac{1}{8^2} + \dots + \frac{1}{(3n-1)^2} + \dots$
52	$y = 1 - 3x^{2} + 5x^{4} + + (-1)^{n} (2n + 1)x^{2n} +$
53	$y = 1 \times 2 + 2 \times 3x + 3 \times 4x^{2} + \dots + n \times (n+1)x^{n-1} + \dots$
54	$y = \frac{3}{1 \times 2} - \frac{5}{2 \times 3} + \dots + (-1)^{n-1} \frac{2n+1}{n(n+1)} + \dots$
55	$y = 1 - \frac{1}{3} + \frac{1}{5} + \dots + (-1)^{n-1} \frac{1}{2n-1} + \dots$
56	$y = 1 + \frac{x}{1} + \frac{x^2}{2} + \dots + \frac{x^n}{n} + \dots$
57	$y = \frac{1}{2^2} + \frac{1}{5^2} + \frac{1}{8^2} + \dots + \frac{1}{(3n-1)^2} + \dots$
58	$y = 10 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \left(\frac{1}{2}\right)^{n-1} + \dots$
59	$f = -\frac{2}{2\sqrt{2}-1} + \frac{3}{3\sqrt{3}-1} + \dots + (-1)^{n-1} \frac{n}{n\sqrt{n}-1} + \dots$
60	$y = 1 - \frac{1}{2} + \frac{1}{4} + \dots + \left(-\frac{1}{2}\right)^n + \dots$
61	$y = 1 + \frac{1}{2 \times 5} + \frac{1}{3 \times 5^2} + \dots + \frac{1}{n \times 5^{n-1}} + \dots$
62	$y = 1 - \frac{1}{3} + \frac{1}{5} + \dots + (-1)^{n+1} \frac{1}{2n-1} + \dots$
63	$y = 1 + \frac{1}{5} + \frac{1}{5^2} + \dots + \frac{1}{5^{n-1}} + \dots$
64	$y = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} + \dots$
65	$y = 2 \times 0.8 + 3 \times 0.8^{2} + + (n + 1) \times 0.8^{n} +$
66	$f = 1 + \frac{1 \times 4}{1 \times 3 \times 5} + \frac{1 \times 4 \times 9}{1 \times 3 \times 5 \times 7 \times 9} + \dots + \frac{1 \times 4 \times 9 \times \dots \times n^{2}}{1 \times 3 \times 5 \times 7 \times 9 \times \dots \times (2n+1) \times (2n+3)} + \dots$
67	$S = 1 - \frac{1}{2} + \frac{1}{3} + \dots + (-1) + \frac{1}{n} + \dots$
68	$y = 1 + \frac{1}{2}x - \frac{1}{2\times 4}x^2 + \frac{1\times 3}{2\times 4\times 6}x^3 + \dots + (-1)^{n-1} \frac{1\times 3\times \dots \times (2n-3)}{2\times 4\times \dots \times 2n}x^n + \dots$
69	$z = x + \frac{1}{2 \times 3} x^3 + \frac{1 \times 3}{2 \times 4 \times 5} x^5 + \frac{3 \times 5}{(2 \times 4 \times 6 \times 7)} x^7 + \dots + \frac{3 \times 5 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n \times (2n+1)} x^{2n+1} + \dots$
70	$y = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$
71	$z = x + \frac{1}{2\times 3}x^{3} + \frac{1\times 3}{2\times 4\times 5}x^{5} + \frac{3\times 5}{(2\times 4\times 6\times 7)}x^{7} + \dots + \frac{3\times 5\times \dots \times (2n-1)}{2\times 4\times \dots \times 2n\times (2n+1)}x^{2n+1} + \dots$ $y = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + \dots$ $z = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$ $s = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$
72	$s = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$
73	$y = 1 + \frac{1}{2}x^2 + \frac{1 \times 3}{2 \times 4}x^3 + \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n}x^{2n} + \dots$
74	$z = 1 - \frac{1}{2}x + \frac{1 \times 3}{2 \times 4}x^{2} + \dots + (-1)^{n} \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n}x^{n} + \dots$

75	2 2 2 2 2 2
75	$s = 1 - \frac{2 \times 3}{2} x + \frac{3 \times 4}{2} x^2 + \dots + \frac{(-1)^n ((n+1) \times (n+2))}{2} x^n + \dots$
76	$y = 1 - 2x + 3x^{2} + + (-1)^{n}(n+1)x^{n} +$
77	$z = 1 - x + x^{2} + + (-1)^{n} x^{n} +$
78	$s = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n-1}}{2n-1} + \dots\right)$
79	$y = -\frac{x}{1} - \frac{x^2}{2} - \dots - \frac{x^n}{n} - \dots$
80	$z = \frac{x}{1} - \frac{x^2}{2} + \dots (-1)^{n-1} \frac{x^n}{n} - \dots$
81	$s = 4\left(1 - \frac{1}{3} + \frac{1}{5} + \dots + (-1)^{n-1} \frac{1}{2n-1} + \dots\right)$
82	$s = -\frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} + \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!} + \dots$
83	$y = x - \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} + \dots$
84	$y = \frac{x^3}{5} - \frac{x^5}{17} + \dots + (-1)^{n+1} \frac{x^{2n+1}}{4n^2 + 1} + \dots$
85	$y = 1 + \frac{\frac{\pi}{4}}{\frac{1!}{2}}x + \dots + \frac{\frac{n\pi}{4}}{n!}x^{n} + \dots$
86	$y = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$
87	$y = 4\left(1 - \frac{1}{3} + \frac{1}{5} + \dots + (-1)^{n-1} \frac{1}{2n-1} + \dots\right)$
88	$y = \frac{1}{x} - \frac{1}{3x^3} + \frac{1}{5x^5} + \dots + (-1)^n \frac{1}{(2n+1)x^{2n+1}} + \dots$
89	$y = 1 - \frac{\left(\frac{\pi}{6}\right)^2}{2!} + \frac{\left(\frac{\pi}{6}\right)^4}{4!} + \dots + (-1)^n \frac{\left(\frac{\pi}{6}\right)^{2n}}{(2n)!} + \dots$
90	$y = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$
91	$y = \frac{\pi}{3} - \frac{\left(\frac{\pi}{3}\right)^3}{3!} + \frac{\left(\frac{\pi}{3}\right)^5}{5!} + \dots + \left(-1\right)^n \frac{\left(\frac{\pi}{3}\right)^{2n+1}}{(2n+1)!} + \dots$ $y = 1 + \frac{1}{2!}x^2 - \frac{3}{4!}x^4 + \dots + \left(-1\right)^{n-1} \frac{2n-1}{(2n)!}x^{2n} + \dots$
92	$y = 1 + \frac{1}{2!}x^2 - \frac{3}{4!}x^4 + \dots + (-1)^{n-1}\frac{2n-1}{(2n)!}x^{2n} + \dots$
93	$y = \frac{2}{3}2x - \frac{3}{8}3x + \dots + (-1)^n \frac{n}{n^2 - 1}nx + \dots$
94	$y = 1 + \frac{x}{1!} + \frac{2x}{2!} + \dots + \frac{nx}{n!} + \dots$
95	$y = \frac{x^3}{3} - \frac{x^5}{15} + \dots + (-1)^{n+1} \frac{x^{2n+1}}{4n^2 - 1} + \dots$
96	$y = \frac{x^{\frac{\pi}{3}}}{1} + \frac{x^{\frac{2\pi}{3}}}{2} + \dots + \frac{x^{\frac{n\pi\pi}{3}}}{n} + \dots$
97	$y = \frac{x^{\frac{\pi}{3}}}{1} + \frac{x^{\frac{2\pi}{3}}}{2} + \dots + \frac{x^{\frac{n\pi}{3}}}{n} + \dots$ $s = 1 - \frac{x^{2}}{3!} + \frac{x^{4}}{5!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n+1)!} + \dots$

98	$s = 1 - \frac{x^2}{1!} + \frac{x^4}{2!} + \dots + (-1)^n \frac{x^{2n}}{n!} + \dots$
99	$s = x - \frac{1}{2} \times \frac{x^{3}}{3} + \frac{1 \times 3}{2 \times 4} \times \frac{x^{5}}{5} + \dots + (-1)^{n} \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} \times \frac{x^{2n+1}}{2n+1} + \dots$
100	$s = -\frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$
101	$s = x + \frac{1}{2} \times \frac{x^3}{3} + \frac{1 \times 3}{2 \times 4} \times \frac{x^5}{5} + \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} \times \frac{x^{2n+1}}{2n+1} + \dots$
102	$s = 1 + \frac{1}{2}x^{2} + \frac{1 \times 3}{2 \times 4}x^{4} + \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n}x^{2n} + \dots$
103	$s = 1 - \frac{1}{2}x + \frac{1 \times 3}{2 \times 4}x^2 + \dots + (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n}x^n + \dots$
104	$s = 1 + \frac{1}{2}x - \frac{1}{2\times 4}x^2 + \frac{1\times 3}{2\times 4\times 6}x^3 + \dots + (-1)^{n+1} \frac{1\times 3\times \dots \times (2n-3)}{2\times 4\times \dots \times 2n}x^n + \dots$
105	$s = 1 - \frac{2 \times 3}{2} x + \frac{3 \times 4}{2} x^{2} + \dots + (-1)^{n} \frac{(n+1) \times (n+2)}{2} x^{n} + \dots$
106	$s = 1 - 2x + 3x^{2} + + (-1)^{n+1}(n+1)x^{n} +$
107	$s = 1 - x + x^{2} + + (-1)^{n} x^{n} +$
108	$s = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + \dots\right)$
109	$s = -\frac{x}{1} - \frac{x^{2}}{2} - \dots - \frac{x^{n}}{n} - \dots$ $x = x^{2} + x^{3} + \dots + x^{n} + x^{n} + \dots$
110	$S = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} + \dots + (-1) + \frac{1}{n} + \dots$
111	$s = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$
112	$s = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n-1}}{(2n-1)!} + \dots$

Задание: по вариантам.

ФИО	Задание
ИУ7-1	1Б
Алесин Алексей Иванович	2
Андреев Глеб Владимирович	3
Богомолов Николай Эдуардович	5
Евсеева Ксения Владимировна	6
Ишбулатов Арслан Уралович	7
Казанцев Роман Дмитриевич	8
Калашникова Алиса Александровна	9
Коробовцева Ольга Антоновна	10

Коротя Анатолий Максимович	11
Костецкий Виктор Борисович	12
Кузнецов Никита Сергеевич	13
Ли Джу Сонг Вонович	14
Лимарев Степан Алексеевич	15
Максимов Алексей Александрович	16
Мананкова Елизавета Вячеславовна	17
Мурашов Даниил Михайлович	18
Мягков Матвей Юрьевич	19
Науменко Дмитрий Сергеевич	20
Павленко Артемий Вадимович	21
Палкин Фёдор Михайлович	22
Пилипчук Артём Владимирович	23
Пысларь Никита	24
Самсонов Павел Константинович	25
Саплинов Даниил Юрьевич	26
Филиппова Надежда Александровна	27
Фролов Константин Олегович	28
Черноусов Сергей Владимирович	29
Алиф Рахиан Ахамед	30
ИУ7-12Б	
Бирюков Николай Алексеевич	31
Боровихина Анастасия Валентиновна	32
Глебов Владислав Сергеевич	33
Гущин Александр Сергеевич	34
Дашкин Рушан Ряшидович	35
Дудырев Дмитрий Сергеевич	36
Ермилов Иван Михайлович	39
Кадочкин Степан Олегович	40
Карицкий Александр Павлович	41
Ким Дмитрий Сергеевич	42
Крылов Владислав Сергеевич	43
Ксанаев Салим Алимович	44
Кузнецов Максим Александрович	45
Курбанов Назир	46

Лобанова Софья Алексеевна	47
Лычагин Арсений Сергеевич	48
Мансурова Фидан Эльшан кызы	49
Медведева Полина Денисовна	50
Насута Кирилл Сергеевич	51
Онищенко Андрей Александрович	52
Ошуркова Анастасия Евгеньевна	53
Потупалов Сергей Олегович	54
Соколов Сергей Константинович	55
Трещёв Николай Александрович	56
Янбухтин Даниил Эльдарович	57
Ясаков Алексей Алексеевич	58
Батмунх Мунхзаяа	59
ИУ7-13Б	
Амангазиев Ислам Арсланалиевич	60
Андреев Артём Александрович	61
Андрианов Фёдор Алексеевич	62
Бурындин Григорий Евгеньевич	63
Верясов Михаил Вячеславович	64
Галызин Роман Сергеевич	65
Глущенко Дмитрий Иванович	66
Гуцева Александра Константиновна	67
Даминов Андрей Евгеньевич	68
Елькин Кирилл Валерьевич	69
Зайцев Алексей Евгеньевич	70
Измайлов Михаил Юрьевич	71
Кадыралиев Алихон Алишерович	72
Капранов Илья Александрович	73
Кузьмин Андрей Сергеевич	74
Литвинцев Денис Алексеевич	75
Лоза Александр Александрович	78
Матыгуллин Адель Фаритович	79
Митрофанова Эвелина Евгеньевна	80
Новикова Дарья Андреевна	81

Орлов Александр Александрович	82
Потапова Ярослава Сергеевна	83
Рахматуллин Максим Марселевич	84
Смолин Кирилл Романович	85
Тронин Денис Дмитриевич	86
Чуканова Арина Денисовна	87
Щапов Максим Дмитриевич	88
Мухаммад Мухаммад Сулайман Али	89
Равданбаяр Эрхэмбаяр	90
ИУ7-14Б	
Абижанов Дмитрий Владимирович	91
Авдеенко Софья Алексеевна	92
Азизов Руслан Гюлиевич	93
Анчиков Пётр Дмитриевич	94
Аппазов Бекир Икметович	95
Баянов Дияз Гайсаевич	96
Бондарева Варвара Андреевна	97
Буддаев Абдулгамид Селимович	98
Булавкина Александра Олеговна	99
Гавричков Андрей Евгеньевич	100
Гаев Дмитрий Дмитриевич	101
Демин Егор Николаевич	102
Евсюков Илья Русланович	103
Зинченко Михаил Алексеевич	104
Зубков Александр Андреевич	105
Коростылев Егор Алексеевич	108
Леонтьев Андрей Сергеевич	109
Мазанов Влад Олегович	110
Мастрюков Максим Владимирович	111
Панкратов Артём Алексеевич	112
Парфентьев Никита	2
Пеньков Арсений Андреевич	3
Скерджева Анна Максимовна	4
Скундина Ольга Дмитриевна	5

Хамидуллин Тимур Русланович	6
Шагаев Андрей Игоревич	7
Шаевский Иван Олегович	8
Шубин Александр Викторович	9
Махросс Салман Фаози Абдулрахман	10
Чжао Ихуа	11
ИУ7-15Б	
Агейкина Алиса Евгеньевна	13
Ананьева Анна Сергеевна	14
Ахмедзянов Артём Дмитриевич	15
Бирюков Святослав Эдуардович	16
Брыкин Илья Андреевич	17
Бутусов Даниил Юрьевич	18
Гараев Артем Азатович	19
Ермолов Максим Сергеевич	20
Журба Максим Дмитриевич	21
Захарычев Дмитрий Андреевич	22
Казарян Джон Арменович	23
Котлинский Антон Сергеевич	24
Кузнецов Иван Андреевич	25
Кынев Илья Захарович	26
Левченко Андрей Русланович	27
Марчуков Антон Игоревич	28
Махтадуй Даниил Дмитриевич	29
Милютин Николай Евгеньевич	30
Понарин Алексей Александрович	31
Потапова Мария Дмитриевна	32
Прудников Савелий Сергеевич	33
Сизов Борис Александрович	34
Смирнова Мария Владимировна	35
Ханана Софья Милядовна	36
Хачатрян Моника Вагеевна	37
Шевцов Тимофей Николаевич	38

Шулаев Ярослав Максимович	39
Яшин Егор Вячеславович	40
Факири Хафизуллах	41
Фихде Михайл	42
ИУ7-1	6Б
Амелин Никита Алексеевич	43
Артамонов Аркадий Денисович	44
Аюпов Малик Константинович	45
Баглаенко Елисавета Михайловна	46
Бокшицкий Евгений Юрьевич	47
Иванова Анна Романовна	48
Кошеваров Дмитрий Александрович	49
Кудрявцев Роман Андреевич	50
Кузнецов Андрей Алексеевич	51
Курбанов Кирилл Робертович	52
Маркин Антон Максимович	53
Марусенко Владимир Романович	54
Митров Александр Сергеевич	55
Овсянникова Виктория Денисовна	56
Оглоблина Александра Артемовна	57
Пиядин Александр Вадимович	58
Процко Екатерина Александровна	59
Пэкэлэу Даниил	60
Руднев Даниил Кириллович	61
Свистельник Фёдор Георгиевич	62
Столбовской Александр Сергеевич	63
Угнивенко Максим Романович	64

Федоров Никита Александрович	65				
Холодов Илья Алексеевич	66				
Холькин Станислав Дмитриевич	67				
Чернышева Анна Петровна	68				
Чухвичев Вячеслав Даниилович	69				
Шарафутдинова Алиса Ильнуровна	70				
ИУ7Ц-32Б					
Шибанов Василий	71				

Требования к реализации программы:

- 1. Текст программы должен начинаться с комментария, в котором содержится информация об авторе (фамилия, имя, группа) и назначении программы.
- 2. Текст программы должен сопровождаться необходимыми комментариями, поясняющими основные действия и назначение переменных.
- 3. Программа должна выдавать корректные данные для любых допустимых входных данных (при этом гарантируется, что на вход подаются только числовые значения).
- 4. При выводе числовых значений отображать 5-7 значащих цифр числа. Примечание: важно понимать разницу между понятиями "значащие цифры" и "цифры после запятой".
 - Для вещественных чисел лучше всего подходит тип форматирования g. Другие типы форматирования, такие как f или e, следует использовать только при необходимости.
- 5. При вводе данных должно выводиться приглашение, при выводе пояснение, краткие и однозначно интерпретируемые пользователем. Приглашение и пояснения должны формулироваться с заглавной буквы и обычно заканчиваются двоеточием и пробелом.

Пример хорошего приглашения к вводу:

"Введите радиус основания и высоту конуса через пробел: " \mathbf{v}

"Введите радиус основания конуса: "

"Введите высоту конуса: "

Пример хорошего вывода:

"Объем конуса: 4.1867"

"Площадь боковой поверхности: 14.051"

- 6. Исходный код должен быть оформлен согласно стандарту PEP 8 (https://peps.python.org/pep-0008), в особенности имена переменных, форматирование выражений, длина строк, оформление комментариев.
- 7. Необходимо учесть особенности работы с числами с плавающей запятой.
- 8. Функции и списки использовать запрещено.

9. Не лен	разрешается кциях к момент	использовать у выдачи зада	возможност ания на лабо	и языка, к раторную (которые н работу.	іе были	даны на