electroussafi.ueuo.com 1/9

Diode

Exercice 1

a. La diode est passante. La loi de maille :

$$E = RI + V_D \Rightarrow I = \frac{E - V_D}{R} = \frac{10V - 0.6V}{1k\Omega} \Rightarrow$$

I = 9,4mA

b. La diode est bloquée

Exercice 2

- 1. E = +5V
 - **a.** la diode n'est pas passante (polarisation inverse) :

$$U_{R2} = E \times R_2 / (R_1 + R_2) = 5V \times 1 / (1+1)$$

 $U_{R2}=2,5V$

electroussafi.ueuo.com 2/9

b. la diode est passante (polarisation directe) :

$$U_{R2} = -V_D$$

 $\overline{\mathrm{U_{R2}}} = -\underline{0,6\mathrm{V}}$

2. $e(t) = 5V \sin(2\pi t / T)$ avec T = 20ms

• Pour : $e(t) \ge 0$, la diode n'est pas passante et $U_{R2} = e(t) \times R_2 / (R_1 + R_2)$

$$U_{R2} = 5V \sin(2\pi t / T) x 1/(1+1)$$

 $U_{R2} = 2.5V\sin(2\pi t / T)$

• Pour : e(t) < -0.7 V, la diode est passante

$$U_{R2} = -V_D$$

 $\mathbf{U_{R2}} = \mathbf{-0.6V}$

• Pour : $-0.7V \le e(t) < 0$, la diode n'est pas passante

$$U_{R2} = e(t) \; x \; R_2 \, / \, (R_1 + R_2)$$

 $U_{R2} = 2.5V\sin(2\pi t / T)$

electroussafi.ueuo.com 3/9

Exercice 3

• Pour : $\mathbf{e(t)} \geq \mathbf{0,6V}$, la diode D1 est passante et la diode D2 est bloquée $U_{R2} = V_{D1}$ $U_{R2} = \mathbf{0,6V}$

• Pour : $\mathbf{e(t)} < \mathbf{-0.6} \, \mathbf{V}$, la diode D2 est passante et la diode D1 est bloquée $U_{R2} = - \, V_{D2}$ $U_{R2} = -0.6 \, \mathbf{V}$

• Pour : $-0.6V \le e(t) < 0.6V$, les diodes ne sont pas passantes et

$$U_{R2} = e(t) \times R_2 / (R_1 + R_2)$$

 $U_{R2} = 2.5V\sin(2\pi t / T)$

electroussafi.ueuo.com 4/9

Exercice 4

On utilise le théorème de Thévenin pour simplifier le schéma :

$$E_{TH} = \frac{R_2}{R_1 + R_2} E = \frac{1}{1 + 2} x5V = \frac{5}{3} V \quad \text{et} \quad R_{TH} = \frac{R_1 x R_2}{R_1 + R_2} = \frac{1x2}{1 + 2} k\Omega = \frac{2}{3} k\Omega$$

1. E = 5V, la diode est passante ($E_{TH} > V_D = 0.6V$).

$$I = (E_{TH} - V_D)/(R_{TH} + R_3) = (5V/3 - 0.6V) / (2/3 + 2)k\Omega$$

I = 0,64 mA

$$U_{R3} = (E_{TH} - V_D) \times R_3 / (R_{TH} + R_3) = (5V/3 - 0.6V) \times 2 / (2/3 + 2)$$

 $\mathbf{U}_{\mathbf{R}3}=\mathbf{1,28V}$

2. E = 1,5V, la diode n'est pas passante ($E_{TH} < V_D = 0,6V$)

 $U_{R3} = 0V$

I = 0A

electroussafi.ueuo.com 5/9

Exercice 5

1. lorsque la diode est bloquée, le courant $I_{R1} = 0$ (courant dans R_1) et $U_{R1} = 0V$

$$Us = Ue - U_{R1}$$

Us = Ue

2. Ue =
$$U_{R1} + U_S = U_{R1} + V_D + U_{R3}$$

 $U_{R3} = Vcc \times R3/(R2 + R3) = 2Vcc / 3$
 $Ue = U_{R1} + V_D + 2Vcc / 3$

La tension minimale d'entrée (U_{emin}), pour que la diode conduise, est obtenue lorsque le courant dans la diode D est négligeable \Rightarrow $U_{R1} = 0V$

$$U_{emin} = V_D + 2Vcc / 3$$

- **3.** si Ue = 10V, Vcc = 5V et $V_D = 0.6V$,
 - **a.** (Ue = 0V et Vcc = 5V)

$$U'_{R3} = 2Vcc / 3 \Rightarrow U'_{R3} = 10V / 3$$

(Ue =
$$10V$$
 et $Vcc = 0V \Rightarrow R2//R3$)

electroussafi.ueuo.com 6/9

$$U''_{R3} = (Ue - V_D) x (R2//R3) / (R1 + R2//R3)$$

$$U''_{R3} = (10V - 0.6V) \times (2/3) / (2 + 2/3) \Rightarrow U''_{R3} = 9.4V / 4$$

$$U_{R3} = U'_{R3} + U''_{R3}$$

 $U_{R3} = 5,68V$

b.
$$U_S = U_{R3} + V_D = 5,68V + 0,6V$$

Us = 6.28V

Exercice 6

$$E_1 = 30V$$
 $E_2 = 10V$ $E_3 = 15V$ $E = 10V$ $R = 20\Omega$

a) Lorsque D₁ conduit,

$$V_K = E_1 - V_D = 30V - 0.6V = 29.4V$$

$$E_2$$
 - V_K = 10V - 29,4V = -19,4 \Rightarrow D_2 est bloquée

electroussafi.ueuo.com 7/9

 E_3 - V_K = 15V - 29,4V = -14,4 \Rightarrow D_3 est bloquée

Donc, seule la diode D_1 est passante.

b)
$$I_R = (V_K - E) / R = 19,4V / 20\Omega = 0,97 A$$

La diode D_1 conduit \Rightarrow $U_{D1} = 0.6V$, U_{D2} et U_{D3} aux bornes des diodes.

$$U_{\rm D2} = E2 - V_{\rm K}$$

 $U_{D2} = -19,4V$

$$U_{\rm D3}=E3\text{ - }V_{\rm K}$$

 $U_{D3} = -14,4V$

Exercice 7

1)

a)
$$V_1 = 0V$$
 et $V_2 = 0V$,

electroussafi.ueuo.com

Les 2 diodes conduisent : $V_S = V_{D1} = V_{D2} = 0.6V$

b)
$$V_1 = 5V$$
 et $V_2 = 0V$

 D_2 conduit : $V_S = V_{D2} = 0.6V$

 D_1 est bloquée : $V_{D1} = Vs - E = 0.6V - 5V = -4.4V$

c) $V_1 = 0V$ et $V_2 = 5V$

 D_1 conduit : $V_S = V_{D1} = 0.6V$

 $V_{D2} = V_S - E = 0.6V - 5V = -4.4V$

d) $V_1 = 5V$ et $V_2 = 5V$

electroussafi.ueuo.com 9/9

 D_1 et D_2 sont bloquée : $V_{D1} = V_{D2} = V_S - E$

$$Vs = U_{R2} = Ex \frac{R_2}{R_1 + R_2} = 5Vx \frac{100}{10 + 100} = 4,54V$$

$$V_{D1} = V_{D2} = V_S - E = 4,54V - 5V = -0,46V$$

2)

V_1	V_2	Vs
0V	0V	0,6V
0V	5V	0,6V
5V	0V	0,6V
5V	5V	4,54V

Š
•

V1	V2	Vs
0	0	0
0	1	0
1	0	0
1	1	1

3) la fonction logique réalisée est le ET (AND) logique

