

Important for today

Remember:

- Try to minimize time when I am imparting information and maximize the time when the student is explaining, thinking and doing.
- Ensure that every slide has a clearly-defined purpose.
- —Ask concise, well thought-out, and thought-provoking questions that cause the student to ponder and ask why.
- —Give the student time to ponder silently, ask their neighbor questions and receive instruction from them.

What is a phasor? Difference between instantaneous value and pervalue. Rotating phasor illustrates concept of oscillating currents and voltages.

-AC resistor circuit

State in words and in math, the meaning of these laws.

Gauss's Law

Gauss's Law for magnetism

Faraday's Law

Ampere-Maxwell

State in words and in math, the meaning of these laws.

$$(\Phi_{\rm e})_{\rm closed\ surface} = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\rm in}}{\epsilon_0}$$

Gauss's Law

Gauss's Law for magnetism

Faraday's Law

Ampere-Maxwell

State in words and in math, the meaning of these laws.

$$(\Phi_{\rm e})_{\rm closed\ surface} = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\rm in}}{\epsilon_0}$$

Gauss's Law

$$(\Phi_{\rm m})_{\rm closed\ surface} = \oint \vec{B} \cdot d\vec{A} = 0$$

Gauss's Law for magnetism

$$\mathcal{E} = \oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{\rm m}}{dt}$$

Faraday's Law

Ampere-Maxwell

State in words and in math, the meaning of these laws.

$$(\Phi_{\rm e})_{\rm closed\ surface} = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\rm in}}{\epsilon_0}$$

Gauss's Law

$$(\Phi_{\rm m})_{\rm closed\ surface} = \oint \vec{B} \cdot d\vec{A} = 0$$

Gauss's Law for magnetism

$$\mathcal{E} = \oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{\rm m}}{dt}$$

Faraday's Law

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 (I_{\text{through}} + \epsilon_0 \frac{d\Phi_E}{dt})$$

Ampere-Maxwell

State in words and in math, the meaning of these laws.

$$(\Phi_{\rm e})_{\rm closed\ surface} = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\rm in}}{\epsilon_0}$$

Gauss's Law

$$(\Phi_{\rm m})_{\rm closed\ surface} = \oint \vec{B} \cdot d\vec{A} = 0$$

Gauss's Law for magnetism

$$\mathcal{E} = \oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{\rm m}}{dt}$$

Faraday's Law

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 (I_{\text{through}} + \epsilon_0 \frac{d\Phi_E}{dt})$$

Ampere-Maxwell

$$F = q(\vec{E} + \vec{v} \times \vec{B})$$

AC sources

$$\mathcal{E} = \mathcal{E}_0 \cos \omega t$$

Phasors: Not something from Star Trek

Question #25

This is a current phasor. The magnitude of the instantaneous value of the current is

- A. Increasing.
- B. Decreasing.
- C. Constant.

Why little i and little v?

Why little i and little v?

Why little i and little v?

$$i_{\rm R} = \frac{v_{\rm R}}{R} = \frac{V_{\rm R}\cos\omega t}{R} = I_{\rm R}\cos\omega t$$

$$i_{\rm R} = \frac{v_{\rm R}}{R} = \frac{V_{\rm R} \cos \omega t}{R} = I_{\rm R} \cos \omega t$$

$$i_{\rm R} = \frac{v_{\rm R}}{R} = \frac{V_{\rm R} \cos \omega t}{R} = I_{\rm R} \cos \omega t$$

 $v_{\rm R}$ and $i_{\rm R}$

$$i_{\rm R} = \frac{v_{\rm R}}{R} = \frac{V_{\rm R} \cos \omega t}{R} = I_{\rm R} \cos \omega t$$

Capacitor Circuit

When the current in the circuit is high, the voltage across the capacitor is ______?

Question #26

C- Low D- High

Capacitor Circuit

$$q = Cv_{\rm C} = CV_{\rm C}\cos\omega t$$

$$q = Cv_{\rm C} = CV_{\rm C}\cos\omega t$$

$$i_{\rm C} = \frac{dq}{dt}$$

$$\mathcal{E} = \mathcal{E}_0 \cos \omega t \, \bigodot \qquad \qquad \downarrow \frac{i_{\rm C}}{\int} C v_{\rm C}$$

$$q = Cv_{\rm C} = CV_{\rm C}\cos\omega t$$

$$i_{\rm C} = \frac{dq}{dt} = \frac{d}{dt}(CV_{\rm C}\cos\omega t) = -\omega CV_{\rm C}\sin\omega t$$

$$\mathcal{E} = \mathcal{E}_0 \cos \omega t \, \bigodot \qquad \qquad \downarrow \frac{i_{\rm C}}{\int} C v_{\rm C}$$

$$q = Cv_{\rm C} = CV_{\rm C}\cos\omega t$$

$$i_{\rm C} = \frac{dq}{dt} = \frac{d}{dt}(CV_{\rm C}\cos\omega t) = -\omega CV_{\rm C}\sin\omega t$$
 $-\sin(x) = \cos(x + \pi/2)$

$$\mathcal{E} = \mathcal{E}_0 \cos \omega t \, \bigodot \qquad \qquad \downarrow \frac{i_{\rm C}}{\int} C v_{\rm C}$$

$$q = Cv_{\rm C} = CV_{\rm C}\cos\omega t$$

$$i_{\rm C} = \frac{dq}{dt} = \frac{d}{dt}(CV_{\rm C}\cos\omega t) = -\omega CV_{\rm C}\sin\omega t$$
 $-\sin(x) = \cos(x + \pi/2)$

$$i_{\rm C} = \omega C V_{\rm C} \cos \left(\omega t + \frac{\pi}{2} \right)$$

Question #27

In the circuit represented by these phasors, the current ____ the voltage

- A. leads
- B. is perpendicular to
- C. lags
- D. is out of phase with

Question #28

In the circuit represented by these graphs, the current ____ the voltage

- leads
- is less than
- is out of phase with
- lags

What about the frequency of the source

If the frequency of the source is high(low) will the max current in the circuit be high or low? Question #29

D- Low E- High

What about the frequency of the source

If the frequency of the source is high(low) will the max current in the circuit be high or low? Question #29

max current in the circuit be high or low?
$$i_{\rm C} = \omega C V_{\rm C} \cos \left(\omega t + \frac{\pi}{2} \right)$$

What about the frequency of the source

If the frequency of the source is high(low) will the max current in the circuit be high or low? Question #29

max current in the circuit be high or low?
$$i_{\rm C} = \omega C V_{\rm C} \cos \left(\omega t + \frac{\pi}{2} \right)$$

 $I_C = \omega C V_C$ (Max current in the circuit)

What about the frequency of the source

If the frequency of the source is high(low) will the max current in the circuit be high or low? Question #29

max current in the circuit be high or low?
$$i_{\rm C} = \omega C V_{\rm C} \cos \left(\omega t + \frac{\pi}{2} \right)$$

 $I_C = \omega C V_C$ (Max current in the circuit)

$$X_C = \frac{1}{\omega C}$$
 (Capacitive Reactance)

What about the frequency of the source

If the frequency of the source is high(low) will the max current in the circuit be high or low? Question #29

max current in the circuit be high or low?
$$i_{\rm C} = \omega C V_{\rm C} \cos \left(\omega t + \frac{\pi}{2} \right)$$

 $I_C = \omega C V_C$ (Max current in the circuit)

$$X_C = \frac{1}{\omega C}$$
 (Capacitive Reactance)

$$I_C = \frac{V_C}{X_C}$$
 (Ohm's Law…kind of)

What about the frequency of the source

Question #30

If the value of the capacitance is doubled, the capacitive reactance

- A. Is quartered.
- B. Is halved.
- C. Is doubled.
- D. Is quadrupled.
- E. Can't tell without knowing ω .

Question #31

If the value of the capacitance is doubled, the peak current

- A. Is quartered.
- B. Is doubled.
- C. Is halved.
- D. Is quadrupled.
- E. Can't tell without knowing *C*.

AC RC circuit

If the source frequency is high(low), will the peak voltage across the resistor (capacitor) be high or low?

$$\mathcal{E}_0^2 = V_R^2 + V_C^2$$

$$\mathcal{E}_0^2 = V_R^2 + V_C^2$$

- $\mathcal{E}_0^2 = V_R^2 + V_C^2$ Fill in the details and solve for I

$$\mathcal{E}_0^2 = V_R^2 + V_C^2$$

$$\mathcal{E}_0^2 = V_R^2 + V_C^2 = (IR)^2 + (IX_C)^2 = (R^2 + X_C^2)I^2$$
$$= (R^2 + 1/\omega^2 C^2)I^2$$

$$\mathcal{E} = \mathcal{E}_0 \cos \omega t$$

$$\mathcal{E}_R \downarrow_{v_R} \qquad \mathcal{E}_0^2 = V_R^2 + V_C^2$$
• Fill in the details and solve for I

$$\mathcal{E}_0^2 = V_R^2 + V_C^2$$

$$\mathcal{E}_0^2 = V_R^2 + V_C^2 = (IR)^2 + (IX_C)^2 = (R^2 + X_C^2)I^2$$
$$= (R^2 + 1/\omega^2 C^2)I^2$$

$$\mathcal{E}_{0} \quad V_{R} = IR = \frac{\mathcal{E}_{0}R}{\sqrt{R^{2} + X_{C}^{2}}} = \frac{\mathcal{E}_{0}R}{\sqrt{R^{2} + 1/\omega^{2}C^{2}}}$$

$$\mathcal{E}_{0} \quad V_{R} = IR = \frac{\mathcal{E}_{0}R}{\sqrt{R^{2} + X_{C}^{2}}} = \frac{\mathcal{E}_{0}/\omega C}{\sqrt{R^{2} + 1/\omega^{2}C^{2}}}$$

$$\mathcal{E}_{0} \quad V_{C} \quad V_{C} = IX_{C} = \frac{\mathcal{E}_{0}/X_{C}}{\sqrt{R^{2} + X_{C}^{2}}} = \frac{\mathcal{E}_{0}/\omega C}{\sqrt{R^{2} + 1/\omega^{2}C^{2}}}$$

$$V_{\rm C} = IX_{\rm C} = \frac{\mathcal{E}_0 X_{\rm C}}{\sqrt{R^2 + X_{\rm C}^2}} = \frac{\mathcal{E}_0 / \omega C}{\sqrt{R^2 + 1/\omega^2 C^2}}$$

Filters

Which circuit will transmit high frequency signals through?