

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В.ЛОМОНОСОВА

Биологический факультет Магистерская программа «Структурная биология и биотехнология»

Выпускная квалификационная работа магистра

Оптимизация пробоподготовки нуклеосом и исследование их динамики методами интегративной структурной биологии

Моторин Никита Андреевич

Научные руководители:

профессор, д. ф.-м. н., член-корреспондент РАН

Шайтан Алексей Константинович

Ведущий научный сотрудник, к. ф.-м. н.

Армеев Григорий Алексеевич

Москва 2024

Объект исследования: нуклеосома

(Шайтан А.К., диссертация д.ф-м.н. 2021)

Динамические процессы в нуклеосомах: функциональная значимость

- Динамика нуклеосом механизм управления работой генома
- Динамических моды связаны: динамика хвостов влияет на ДНК

Проблемы в изучении динамики нуклеосом

Нужны комбинированные интегративные подходы: ЯМР, МД, РСА/криоЭМ

РСА - статичные структуры

(крио)ЭМ - не видит хвосты гистонов

Цель – изучение динамики хвоста гистона Н3 в нуклеосомах и его влияния на откручивание ДНК

Задачи:

- 1) Анализ конформационной подвижности нуклеосом методами молекулярной динамики с использованием различных силовых полей для молекул воды.
- 2) Получение рекомбинантных нуклеосом с ДНК Widom 601 и 603 для экспериментов методами структурной биологии (ЭМ, МУРР, ЯМР).
- 3) Изучение динамики N-концевого хвоста гистона Н3 методами ядерного магнитного резонанса (ЯМР) в свободном виде и в составе нуклеосомы, сопоставление результатов эксперимента с моделированием.
- 4) Изучение влияния ионной силы раствора на динамику хвоста гистона Н3.

Материалы и методы

Молекулярная динамика

Полноатомное приближение

$$U(\{\vec{r}_i\}) = \sum_{bonds} \frac{1}{2} k_b (l - l_0)^2 + \sum_{angels} \frac{1}{2} k_\theta (\theta - \theta_0)^2 + \sum_{torsions} \frac{1}{2} V_n [1 + \cos(n\varphi - \varphi_0)] + \frac{1}{2} V_n [1 + \cos(n\varphi -$$

$$\sum_{impropers} \frac{1}{2} k_{\gamma} (\gamma - \gamma_0)^2 + \sum_{j=1}^{N-1} \sum_{i=j+1}^{N} \left\{ 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}} \right\} f_{ij}$$

(Супер) компьютер

Получение in vitro мононуклеосом

Наработка ДНК

ЯМР в растворе

N15, C13 - меченные образцы HSQC, параметры релаксации R1, R2, NOE для ховостов

Анализ конформационной подвижности нуклеосом методами МД в разных моделях воды

• При температуре 300 К и концентрации NaCl 150 мМ были рассчитаны параметры T1/T2 для аминокислотных остатков хвоста гистона H3 (скрипт для анализа траекторий МД предоставлен профессором Y. Peng)

T1/T2=R2/R1

Наименьшее значение Т1/Т2 (наибольшая подвижность) наблюдается при моделировании с использованием модели воды TIP4P-D

• Также показано обратимое откручивание ДНК при использованием модели воды TIP4P-D на временах порядка 1 мкс

Оптимизация методов получения рекомбинантных мононуклеосом *in vitro*

Решенные задачи:

- Получение не менее 3 мг каждого гистона
- Получение N15, C13 меченного гистона H3
- Получение монодисперсных препаратов нуклеосом в концентрации 30-50 мкМ и объемом 400 мкл

Нативный 4% ПААГ

1,5 - нуклеосомы с ДНК Widom 603, 2,4 – нуклеосомы с ДНК Widom 601, 3 – 1 kb маркер

Исследования полученные препаратов различными методам структрной биологии

Криоэлектронная микроскопия нуклеосом с ДНК последовательности Widom 603 (сделано Моисеенко A. B.).

2D-классы, полученные в ходе анализа

плотность, в которую вписана

нуклеосомы. Разрешение ~ 10 Å.

структура

Профиль МУРР для препарат с мононуклеосомами с ДНК последовательности Widom 603

Приготовленные с использованием такой методики препараты могут быть исследованы с помощью методов структурной биологии

Изучение конформационной динамики хвоста гистона Н3 в нуклеосоме методами ЯМРспектроскопии

Сравнение значений R1 из молекулярной динамики и ЯМР (при 20 мМ NaCl)

Экспериментальные значения R1 занижены относительно рассчитанных из МД, возможно для лучшего совпадения значений стоит проводить более длительные расчеты.

Влияние ионной силы раствора на химические сдвиги аминокислотных остатков хвоста гистона Н3 в нуклеосоме

Влияние ионной силы раствора на значения R1 аминокислотных остатков хвоста гистона H3 в нуклеосоме

Влияние ионной силы раствора на значения Т1/Т2 и химические сдвиги аминокислотных остатков хвоста гистона Н3 в нуклеосоме (МД и ЯМР анализ)

- Ионная сила раствора сильнее всего влияет на подвижность (T1/T2 из МД расчетов) в которых присутствуют аминокислотные остатки аргининов. Может быть связано с спецификой взаимодействия аргининов с малой бороздкой ДНК.
- Ионная сила раствора сильнее всего влияет на химическое окружение участка 25-30 (из данных ЯМР).

Изучение структуры и динамики свободного гистона Н3 методами ЯМР-спектроскопии

Наблюдаются ЯМР-сигналы только от N-концевой части Н3.1 гистона, подвижность как у свободного пептида.

Вероятно, формируются **олигомеры H3.1**, в основе которых может лежать димер H3.1-H3.1, структура которого предсказана программой AlphaFold2:

Выводы

- 1) Нуклеосомы на основе рекомбинантных гистонов человека (в том числе изотопномеченных) и позиционирующих последовательностей ДНК Widom 601 и 603 могут быть получены *in vitro* в концентрации до 35 мкМ, что позволяет исследовать их структуру и динамику методами ЭМ, МУРР, ЯМР.
- 2) В ходе моделирования методами молекулярной динамики показано, что наблюдаемая подвижность гистоновых хвостов и ДНК зависит от используемых моделей воды. Модель воды TIP4P-D обеспечивает наиболее быструю динамику хвоста гистона НЗ. Использование модели воды TIP4P-D позволяет промоделировать откручивание и прикручивание ДНК в нуклеосоме опосредуемое хвостом гистона НЗ на микросекундных временах.
- 3) С помощью методов ЯМР-спектроскопии показано, что свободный гистон Н3.1, возможно, формирует гомоолигомеры, в которых его N-конец сохраняет высокую подвижность.
- 4) С помощью методов ЯМР-спектроскопии и молекулярной динамики показаны участки N-конца гистона Н3, конформационная динамика которых наиболее чувствительна к изменению ионной силы раствора.

Спасибо за внимание!

Благодарности

д.ф.-м.н., чл.-корр. РАН Алексей Константинович Шайтан к.ф.м.н. Григорий Алексеевич Армеев

Группа интегративной биологии Анастасия Федулова

ИБХ РАН

д.ф.-м.н. Захар Олегович Шенкарев к.б.н. Александр Сергеевич Парамонов Павел Миронов

д.б.н. Екатерина Назымовна Люкманова

<u>Лаборатория регуляции транскрипции репликации</u> (рук. проф. В.М. Студитский) Дмитрий Афонин

Лаборатория структурной биотехнологии (рук. проф. О.С. Соколова) Андрей Владимирович Моисеенко к.б.н. Григорий Сергеевич Глухов

Shenzhen MSU-BIT University Prof. Xiangyan Shi

Преподаватели программы "Структурная биология и биотехнология"

Коллектив кафедры биоинженерии биологического факультета МГУ

Использованные гистоны и ДНК

Название	Последовательност	
нуклеосомной	ь ДНК	
ДНК		
Widom 601	ATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGT	
vvidoiii ooi	CGTAGACAGCTCTAGCACCGCTTAAACGCACGTA	
	CGCGCTGTCCCCCGCGTTTTAACCGCCAAGGGGA	
	TTACTCCCTAGTCTCCAGGCACGTGTCAGATATAT	
	ACATCGAT	
Widom 603	ATCAGTTCGCGCGCCCACCTACCGTGTGAAGTCGT	
Widom 603	CACTCGGGCTTCTAAGTACGCTTAGGCCACGGTA	
	GAGGGCAATCCAAGGCTAACCACCGTGCATCGAT	
	GTTGAAAGAGGCCCTCCGTCCTTATTACTTCAAGT	
	CCCTGGGAT	

Сиквенсы очень отличаются (Lowary and Widom, 1998).

	1./IAK		
Название	Аминокислотная	Молекулярная	
гистона	последовательность	масса (кДа)	
H2A	MSGRGKQGGKARAKAKTRSSRAGLOFPVGRVHRLLR KGNYSERVGAGAPVYLAAVLEYLTAEILELAGNAARD NKKTRIIPRHLQLAIRNDEELNKLLGRVTIAOGGVLPNI OAVLLPKKTESHHKAKGK	14.14	
H2B	MPEPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKE SYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERI AGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVS EGTKAVTKYTSAK	13.89	
H3.1	MARTKQTARKSTGGKAPRKQLATKAARKSAPATGGV KKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREIA QDFKTDLRFOSSAVMALQEACEAYLVGLFEDTNLCAI HAKRVTIMPKDIQLARRIRGERA	15.40	
H4	MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIR RLARRGGVKRISGLIYEETRGVLKVFLENVIRDAVTYTE HAKRKTVTAMDVVYALKRQGRTLYGFGG	11.37	

Последовательность Widom 601 (145 п.н.) – однозначно позиционируемая и наиболее изученная последовательность с высоким сродством к кору гистонов (Bondarenko et al., 2006).

Последовательность Widom 603 (147 п.н.) – последовательность, через которую может происходить транскрипция, но также имеющее высокое сродство к кору гистонов (Bondarenko et al., 2006).

18

Оптимизация методов получения рекомбинантных мононуклеосом *in vitro*

Наработка и очистка гистонов с помощью ионообменной хроматографии.

Сборка и очистка гистонового октамера с помощью гель-фильтрационной хроматографии.

Контроль качества гистоновых октамеров и нуклеосомной ДНК

микроскопии

Нативный 4% ПААГ

1,5 - нуклеосомы с ДНК Widom 603, 2,4 нуклеосомы с ДНК Widom 601, 3 – 1 kb маркер

Контроль качества гистоновых октамеров и нуклеосомной ДНК

Проверка качества октамеров.

18% ДСН-ПААГ. .

1 – маркер, 2 – фракция очищенных октамеров

Проверка качества нуклеосомной ДНК. Гель 2% агароза ТАЕ-буфер. 1- ДНК-маркер 100 bp, 2 — очищенная нуклеосомная ДНК Widom 601, 3 — очищенная нуклеосомная ДНК Widom 603

Очистка октамеров гистонов (гель-фильтрационная колонка Superdex 200 16/60)

Сравнение значений R1 из молекулярной динамики и ЯМР (при 100 мМ NaCl)

Экспериментальные значения R1 занижены относительно рассчитанных из МД, возможно для лучшего совпадения значений стоит проводить более длительные расчеты.

Влияние ионной силы раствора на значения Т1/Т2 для аминокислотных остатков хвоста гистона Н3 в нуклеосоме (из МД)

Ионная сила раствора сильнее всего влияет на подвижность (участков, в которых присутствуют аминокислотные остатки аргининов.

24

Изучение динамики неупорядоченных гистоновых хвостов

