BJT (BC-547) I-V Characteristics

(Note: Use Aplab (white) Multimeter for current measurement and the other to measure voltages)

Objectives: To obtain the *I-V* characteristics of bipolar transistors and computer transistor parameters.

Background: The Bipolar Junction Transistor (BJT) is the heart of most analog ICs. In this experiment, you will measure the DC I-V characteristics of a BJT and compute some of the device parameters. As the BJT is three-terminal device, the I-V characteristics can be plotted in different ways. Depending on the amplifier circuit that we want to make up with the BJT, one of these plots may be more convenient than the others. The purpose of the first part of the experiment is to obtain two such plots. In the second part of the experiment, you will plot the current gain (β) as a function of the collector current I_C .

Experiment: You will be given two multimeters. It is convenient to use one of them to measure a current directly (i.e., as an ammeter) and the other to measure various voltages in the circuit. The ammeter connections should not be disturbed during the measurements. You will have to choose 100Ω values for the resistances R_E , R_B , R_C in the figures below, so that the measurements can be made reasonably accurately.

Part I: I_E - V_{EB} characteristics

(a) Connect the circuit as shown in Fig. 1(a). Measure I_E versus V_{BE} for V_{CB} =1V and 2V. Limit I_E to about 10 mA. Measure V_{CB} for each reading (while you are adjusting V_{EB}). You may have to adjust both V_I and V_2 to ensure that V_{CB} has not changed.

(b) Connect the circuit as shown in Fig. 1(b). Our purpose is to keep I_B constant, and measure I_C versus V_{CE} ; then repeat for another value of I_B and so on. Again, you may have to adjust both V_1 and V_2 to

ensure that I_B remains constant as you try to vary V_{CE} upto 8 volts. (For measuring the current I_C measure the voltage across R_C . Set the current I_B to $150\mu A$ and $200\mu A$)

Part II: β versus I_C

Connect the circuit as shown in Fig. 2. We want to keep V_{CE} constant (say, 2V), measure I_C for various values of I_B , and then plot the DC β (= I_C/I_B) versus I_C (with I_C on a log scale). You need to get data for 3 or 4 decades of I_C , say, from few tens of μA to 50 mA.

