Lycée Buffon MPSI

TD 2Année 2020-2021

1

Montrer que $\sqrt{2\sqrt{3...\sqrt{(n-1)\sqrt{n}}}} < 3.$

On pourra commencer par prouver que

Exercice 4 : Soit $n \in \mathbb{N}^*$.

$$\forall k \in [1, n], \quad \sqrt{k\sqrt{(k+1)...\sqrt{(n-1)\sqrt{n}}}} < k+1$$

Calculs

Exercice 1:

- 1. Simplifier $(1-a)\sum_{k=1}^{n}ka^{k-1}$. En déduire une expression simple de $\sum_{k=1}^{n}ka^{k}$.
- 2. Trouver a, b, c tels que : $\forall x \in \mathbb{R}^{+*}, \frac{1}{x(x+1)(x+2)} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{x+2}$ En déduire $\sum_{k=0}^{\infty} \frac{1}{k(k+1)(k+2)}$.

Exercice 2 : Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. Montrer que

$$(\forall k \in \mathbb{N}^*, \ u_k = k) \Longleftrightarrow \left(\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n u_k^3 = \left(\sum_{k=1}^n u_k \right)^2 \right)$$

Exercice 3: Pour $n \in \mathbb{N}^*$, simplifier

1.
$$\sum_{k \in [\![1,2n]\!],\,impair} 3^k$$

2.
$$\sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right)$$

$$3. \prod_{k=1}^{n} \left(1 - \frac{1}{2k} \right)$$

$$4. \prod_{k=1}^{n} \left(3^{k}\right)$$

5.
$$\prod_{k=1}^{n} \cos\left(\frac{x}{2^{k}}\right) \text{ pour } x \in]0, \pi[$$
 en utilisant la formule de trigonométrie : $\sin(2x) = 2\sin x \cos x$

6.
$$\sum_{k=1}^{n} k \, k!$$

Exercice 5: Simplifier les sommes suivantes

2.
$$\sum_{(i,j)\in[1,n]^2} |i-j|$$

$$3. \sum_{1 \le i < j \le n} (i - j)$$

4.
$$\sum_{(i,j)\in \mathbb{I}_1} ij$$

6.
$$\sum_{1 \le i < j \le n} ij$$

7.
$$\prod_{(i,j)\in[1,n]^2} i$$

$$8. \prod_{1 \le i < j \le n} ij$$

Exercice 6: Soit $n \in \mathbb{N}^*$.

- 1. Prouver que pour tout $k \in [1, n]$, $k \binom{n}{k} = n \binom{n-1}{k-1}$ et en déduire $\sum_{k=1}^{n} k \binom{n}{k}$.
- 2. Pour $k \in [2, n]$, simplifier $k(k-1) \binom{n}{k}$ et en déduire $\sum_{k=0}^{n} k^2 \binom{n}{k}$ pour $n \in \mathbb{N}^*$.

Exercice 7: Soit $n \in \mathbb{N}$. Déterminer $\max_{k \in \llbracket 0,2n \rrbracket} \binom{2n}{k}$ et $\max_{k \in \llbracket 0,2n+1 \rrbracket} \binom{2n+1}{k}$.