Max Wisniewski, Alexander Steen

Tutor: not known

Aufgabe 1 (Teilbarkeit)

Gegeben seien natürliche Zahlen $k, m, n \in \mathbb{N} \setminus \{0\}$, so dass $n = k \cdot m$.

a) Beweisen Sie folgende Aussage:

$$\forall a, b \in \mathbb{Z} : (a^m - b^m) | (a^n - b^n).$$

Beweis:

Seien $p_1, ..., p_s$ alle Primzahlen, die kleiner gleich $\max\{a, b\}$ sind.

b) Zeigen Sie weiter:

$$k \text{ ungerade} \implies (\forall a, b \in \mathbb{Z} : (a^m + b^m) | (a^n + b^n))$$

Beweis:

tbd by your mother

Aufgabe 2 (Primzahlen)

a) Bestimmen Sie mit dem Sieb des Erastrothenes alle Primzahlen zwischen 2 und 200. $\{2,3,5,7,1,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199\}$

Und nu darf hier noch wer den Algorithmus runter brechen.

b) Geben Sie die primfaktorzerlegung der Zahl -1.601.320 an.

$$-1.601.320 = -1 \cdot 43 \cdot 19 \cdot 7^2 \cdot 5 \cdot 2^3$$

Aufgabe 3 (Teiler)

Für $n \in \mathbb{N}$ mit $n \ge 1$ sei $T_n := \{l \ge 1 | l | n\}$ die Menge ihrer Teiler.

- a) Es sei $n = p_1^{k_1} \cdot ... \cdot p_s^{k_s}$ die Primfaktorzerlegung von n. Geben Sie eine Formel für die Anzahl $\#T_n$ der Teiler von n an.
- b) Charakterisieren Sie diejenigen Zahlen, für die $\#T_n$ ungerade ist.

Augabe 4 (Die Amnestie)

Ein Herrscher hält 500 Personen in Einzelzellen gefangen, die von 1 bis 500 durchnummeriert sind. Anlässlich seines fünfizgsten Geburtstags gewährt er eine Amnestie nach folgenden Regeln:

- Am ersten Tag werden alle Zellen aufgeschlossen.
- Am Tag i wird der Schlüssel der Zellen i, 2i, 3i usw. einmal umgedreht, d. h. Zelle j wird versperrt, wenn sie offen war, und geöffnet, wenn sie verschlossen war, j = i, 2i, 3i usw., i = 2, ..., 500.

Wie viele Gefangene kommen frei? Ist der Insasse von Zelle 179 unter den Freigelassenen?