```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as sf
import numpy as np
```

*We use data on credit card holders

```
In [11]: credit = pd.read_csv(r'C:\Users\Admin\OneDrive\Paбочий стол\DataScience\
In [12]: credit.head()
```

Out[12]:		card	reports	age	income	share	expenditure	owner	selfemp	dependents	m
	0	yes	0	37.66667	4.5200	0.033270	124.983300	yes	no	3	
	1	yes	0	33.25000	2.4200	0.005217	9.854167	no	no	3	
	2	yes	0	33.66667	4.5000	0.004156	15.000000	yes	no	4	
	3	yes	0	30.50000	2.5400	0.065214	137.869200	no	no	0	
	4	yes	0	32.16667	9.7867	0.067051	546.503300	yes	no	2	

*let's see the distribution of the number of active accounts

```
In [13]:
    sns.countplot(x='active', data = credit)
    plt.xlabel('Quantity')
    plt.ylabel('Frequency')
    plt.title('Number of active accounts')
```

Out[13]: Text(0.5, 1.0, 'Number of active accounts')

*Making the Poisson model

```
In [14]:
   pols = sf.glm('active ~ age + income + expenditure + C(owner) + C(selfem)
   pols.summary()
```

Dep. Variable:	active	No. Observations:	1319
Model:	GLM	Df Residuals:	1313
Model Family:	Poisson	Df Model:	5
Link Function:	log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-5614.4
Date:	Thu, 28 Oct 2021	Deviance:	7142.4
Time:	01:57:29	Pearson chi2:	6.89e+03
No. Iterations:	5		

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
Intercept	1.4000	0.037	37.440	0.000	1.327	1.473
C(owner)[T.yes]	0.4033	0.023	17.409	0.000	0.358	0.449
C(selfemp)[T.yes]	0.0141	0.040	0.355	0.723	-0.064	0.092
age	0.0062	0.001	5.648	0.000	0.004	0.008
income	0.0361	0.006	5.752	0.000	0.024	0.048
expenditure	2.925e-05	3.75e-05	0.779	0.436	-4.43e-05	0.000

According to the model result that "expenditure" as well as "selfemp" don't affect the number of active accounts (p-value). But "income", "age" and "owner"(so-called possession of property) have an influence on a number of active accounts.

Unfortunately, the Poisson model exerts problem with an overdispersion that is able significantly to distort outcomes

Let's count the dispersion model

```
In [15]: pols.pearson_chi2/pols.df_resid
```

Out[15]: 5.249939996924244

For the Poisson model, this value should be close to 1. A different distribution is needed Negative binomial distribution

Spread from (0; + infinity) u - average, 0 / a (shape / variance) and alpha is considered as a dispersion indicator. It affects final result coincidence that why is highly recommended to set it from (0,1 up to 2) to decrease the standard error.

Out[16]: Generalized Line

1319	No. Observations:	active	Dep. Variable:
1313	Df Residuals:	GLM	Model:
5	Df Model:	NegativeBinomial	Model Family:

Link Function:	log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-4429.3
Date:	Thu, 28 Oct 2021	Deviance:	3940.9
Time:	01:57:40	Pearson chi2:	3.44e+03
No. Iterations:	5		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
Intercept	1.3690	0.054	25.206	0.000	1.263	1.475
C(owner)[T.yes]	0.3984	0.033	11.996	0.000	0.333	0.463
C(selfemp)[T.yes]	0.0055	0.059	0.094	0.925	-0.110	0.121
age	0.0069	0.002	4.263	0.000	0.004	0.010
income	0.0393	0.010	4.099	0.000	0.021	0.058
expenditure	2.445e-05	5.63e-05	0.434	0.664	-8.59e-05	0.000

*Compared to the Poison model we can see that data changed a bit but interpretation left the same. What about the current dispersion?

```
In [17]: neg.pearson_chi2/neg.df_resid
```

Out[17]: 2.619678072487012

8870.632884339047

Let's compare the models using the Akaike information criterion (AIC)

The lower the criterion, the better the model.

```
In [18]: print(pols.aic) print(neg.aic)

11240.817775454601
```

Negative binomial distribution does much better than Poisson

Another well-known model in data analysis is zero-inflated Poisson model

```
In [19]:
         credit.owner = np.where(credit.owner == 'yes', 1, 0)
         credit.selfemp = np.where(credit.selfemp == 'yes', 1, 0) #change the date
         Y = credit.active #Exogenous variable
         X= credit.loc[:,['owner', 'selfemp', 'age', 'income', 'expenditure']] #
          X= sm.add constant(X) # add a constant so that the model has an intercep
In [20]:
         zeroinf = sm.ZeroInflatedPoisson(Y, X).fit(maxiter = 72, method ='ncg')
         zeroinf.summary()
         C:\Users\Admin\anaconda3\lib\site-packages\statsmodels\base\model.py:566:
         ConvergenceWarning: Maximum Likelihood optimization failed to converge. C
         heck mle retvals
           warnings.warn("Maximum Likelihood optimization failed to "
         Optimization terminated successfully.
                  Current function value: 3.899929
                  Iterations: 4
```

Function evaluations: 6 Gradient evaluations: 6 Hessian evaluations: 4

Out[20]:

ZeroInflatedPoisson Regression Results

Dep. Varial	;	active	No. Obse	ervations:	1319		
Mod	del: Zer	oInflatedPo	oisson	Df R	Df Residuals:		
Meth	od:		MLE	I	5		
Da	ate:	Γhu, 28 Oct	2021	Pseud	-0.05893		
Tir	me:	01:	01:57:59 Log-Likelih			-5144.0	
converg	jed:		True		LL-Null:	-4857.8	
Covariance Ty	pe:	nonr	obust	LLF	1.000		
	coef	std err	Z	P> z	[0.025	0.975]	
inflate_const	0.0999	0.055	1.812	0.070	-0.008	0.208	
const	1.7967	0.037	48.172	0.000	1.724	1.870	
owner	0.0017	0.023	0.073	0.942	-0.043	0.046	
selfemp	0.0008	0.039	0.022	0.983	-0.075	0.077	
age	0.0093	0.001	8.656	0.000	0.007	0.011	
income	0.0019	0.007	0.280	0.779	-0.011	0.015	
expenditure	0.0001	3.81e-05	2.691	0.007	2.79e-05	0.000	

This model presented absolutely different output comparred to the other abovementioned approaches. According to p-value indicator we can deduce that 'income', 'selfemp', 'owner' do not affect any more but only 'age' and 'expenditure' have influence on number of active accounts.

```
In [21]: print(pols.aic) print(neg.aic) print(zeroinf.aic)

11240.817775454601 8870.632884339047 10300.01303290444
```

The last model will be the zero-inflated Negative Binomial method:

Date:

```
In [22]:
           zeroinf 2 = sm.ZeroInflatedNegativeBinomialP(Y, X).fit(maxiter = 50, met)
           zeroinf 2.summary()
          Optimization terminated successfully.
                    Current function value: 3.055914
                    Iterations: 5
                    Function evaluations: 9
                    Gradient evaluations: 9
                    Hessian evaluations: 5
                       ZeroInflatedNegativeBinomialP Regression Results
Out[22]:
             Dep. Variable:
                                              active No. Observations:
                                                                        1319
                   Model: ZeroInflatedNegativeBinomialP
                                                        Df Residuals:
                                                                        1313
                  Method:
                                               MLE
                                                           Df Model:
```

Thu, 28 Oct 2021

Pseudo R-squ.: -0.03018

Ti	01:58	01:58:12 L		Log-Likelihood:			
converg	jed:	-	True		LL-Null:	-3912.7	
Covariance Ty	/pe:	nonro	nonrobust		LLR p-value:		
	coef	std err	Z	P> z	[0.025	0.975]	
inflate_const	-0.5152	0.058	-8.820	0.000	-0.630	-0.401	
const	1.4543	0.087	16.765	0.000	1.284	1.624	
owner	0.3590	0.050	7.112	0.000	0.260	0.458	
selfemp	0.0029	0.090	0.032	0.974	-0.173	0.178	
age	0.0097	0.003	3.757	0.000	0.005	0.015	
income	0.0352	0.016	2.234	0.026	0.004	0.066	
expenditure	5.109e-05	9.08e-05	0.563	0.573	-0.000	0.000	
alpha	0.4517	0.032	14.330	0.000	0.390	0.514	

Here the interpretation is similar to the original one. There is also the "alpha" parameter, which evaluates the excess of variance.

8870.632884339047 10300.01303290444 8073.499871710537

Zero-inflated Negative Binomial is the best one in comparison with the others only in this particular case.