සියලු ම හිමිකම් ඇවිරිණි / All Rights Reserved

දකුණු පළාත් අධනපන දෙපාර්තමේන්තුව தென் மாகாணக் கல்வித் திணைக்களம் **Southern Provincial Department of Education**

අධනපන පොදු සහතික පතු (උසස් පෙළ), 12 ශේණිය, තුන්වන වාර පරීකෂණය, 2019 ජූලි

General Certificate of Education (Adv. Level), Grade 12, Third Term Test, July 2019

රසායන විද**න**ාව I **Chemistry** I

පැය දෙක යි Two hours

උපදෙස් :

- ආවර්තිතා වගුවක් සපයා ඇත.
- මෙම පුශ්න පතුය පිටු **දහයකින්** යුක්ත වේ.
- සියලු ම පුශ්න වලට පිළිතුරු සපයන්න.
- උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ නම හෝ **විභාග අංකය** ලියන්න.
- උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත්ව කියවන්න.
- ullet $oldsymbol{1}$ සිට $oldsymbol{50}$ තෙක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරු වලින් **නිවැරදි හෝ** ඉතාමත් ගැළපෙන පිළිතුර තෝරා ගෙන, එය උත්තර පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක් (\times) යොදා දක්වන්න.

සාර්වතු වායු නියතය R $= 8.314 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$ ඇවගාඩ්රෝ නියතය $m N_A = 6.022 imes 10^{23} \ mol^{-1}$ ආලෝකයේ පුවේගය $c = 3 \times 10^8 \,\mathrm{m \, s^{-1}}$ ප්ලාන්ක් නියතය $h = 6.626 \times 10^{-34} \, \text{J s}$

- 01. දායක බන්ධන අඩංගු නොවන රසායනික පුභේදය මින් කුමක් ද?
 - (1) NH₄Cl
- (2) H_3O^+
- (3) BCl_4^- (4) HCN (5) NO_2

- 02. සමාන හැඩයෙන් යුත් අණු/අයන යුගලක් දක්වා ඇත්තේ මින් කුමන පිළිතුරක ද?
 - (1) NO_2^- , CH_4
- (2) XeCl₂, CS₂
- (3) CHCl₃, SCl₂

- (4) IF_2^- , NH_2^-
- (5) NO_3^- , SO_4^{2-}
- 03. පහත දැක්වෙන කාබනික සංයෝගයේ IUPAC නාමය කුමක් ද?

$$\begin{array}{c} & \text{O} \\ \text{HOCH}_2\text{CH} = \text{C} - \text{CH}_2 - \text{C} - \text{CH}_3 \\ \text{Cl} \end{array}$$

- (1) 3-chloro-1-hydroxy-2-hexen-5-one
- (2) 6-hydroxy-4-chloro-4-hexen-2-one
- (3) 3-chloro-5-oxo-2-hexen-1-ol
- (4) 4-chloro-6-hvdroxy-4-hexen-2-one
- (5) 5-oxo-3-chloro-2-hexen-1-ol

04. ප	හත දැක්ල	වන වගන්ති	අතරින්	අසතාහ	පකාශය	කමක්	e?
-------	----------	-----------	--------	-------	-------	------	----

- (1) Be ජලය සමග පුතිකියා නොකරන නමුත් Ba ජලය සමග පුතිකියා කර $Ba(OH)_2$ සාදයි.
- (2) අළුත කැපු සෝඩියම් කැබැල්ලක් වාතයට නිරාවරණය කළ විට ලෝහ පෘෂ්ඨය මත වායු බුබුළු දැකිය හැකිය.
- (3) Li වාතයේ දහනය වී රතු පැහැති ලිතියම් ඔක්සයිඩ් සාදයි.
- (4) ඇලුමිතියම් ඔක්සයිඩ් ජලය සමග පුතිකියා නොකරන නමුත් අම්ල හා භෂ්ම දෙවර්ගයම සමග පුතිකියා කර ලවණ සාදයි.
- (5) සිලිකන් ඩයොක්සයිඩ් ජලය හෝ අම්ල සමග පුතිකිුයා නොකරන නමුත් භෂ්ම සමග පුතිකිුයා කරයි.
- 05. පහත දී ඇති සංලයාග අතරින් අඩුම භාෂ්මික ගුණ පෙන්වන සංයෝගය කුමක් ද?
 - (1) NCl₃
- (2) NBr₃
- (3) NH₃
- (4) NI₃
- (5) NF₃
- $06.~{
 m NaNO_3}$ සාම්පලයක් නියත බරක් ලැබෙන තුරු රත් කළ විට බර අඩුවීමේ පුතිශතය කොපමණ ද?(Na = 23, N = 14, 0 = 16)
 - (1) 24.60
- (2) 18.82
- (3) 22.35
- (4) 28.80
- (5) 29.40

- $07. \ \mathrm{CO_2(g)}$ සම්මත උත්පාදන එන්තැල්පිය = $-394.0 \ \mathrm{kJ \ mol^{-1}}$
 - $\mathrm{SO}_2(\mathrm{g})$ සම්මත උත්පාදන එන්තැල්පිය = $-296.0\,\mathrm{kJ}\,\mathrm{mol}^{-1}$
 - $CS_2(l)$ සම්මත දහන එන්තැල්පිය $=-1286.3 \, {
 m kJ \ mol}^{-1}$
 - $C(s)+2~S(s) \longrightarrow CS_2(l)$ යන පුතිකිුයාවේ සම්මත එන්ටොපි වෙනස $\left(\Delta S^{ heta}
 ight)~1100~J~K^{-1}~mol^{-1}$ නම්, එම පුතිකිුිිිියාව ස්වයංසිද්ධ වන අවම උෂ්ණත්වය වනුයේ කීිය ද?
 - (1) 273 °C
- (2) 300 K
- (3) 273 K
- (4) 27.3 K (5) 27.3 °C
- 08. පහත දී ඇති සංයෝගවල ආම්ලිකතාවය විචලනය වන අනුපිළිවෙල වනුයේ,

В

CH₃COOH

 C $CH_3C \equiv CH$ D

CH₃CH₂CH₃

- (1) B < A < C < D
- (2) D < C < A < B
- (3) A < D < C < B

- (4) D < C < B < A
- (5) C < D < A < B
- 09. ආවර්තිතා වගුවේ දෙවන සහ තුන්වන ආවර්තවලට අයත් මූලදුවා අතරින් $m H_2O(l)$ සමග කිසිම අවස්ථාවක පුතිකියා නොකරන මූලදුවායක් වනුයේ,
 - (1) Li
- (2) Be
- (3) **Mg**
- (4) Cl
- (5) Ca
- 10. + 2 සහ + 3 යන ස්ථායි ඔක්සිකරණ අවස්ථා දෙකම පෙන්වන 3d මූලදවා යුගලය වනුයේ,
 - (1) Cr, Mn
- (2) **Ni, Cu**
- (3) **Cu, Co**
- (4) Co, Fe
- (5) Fe, Cr

- 11. වායුවක් සම්බන්ධව පහත සඳහන් කුමන පුකාශය සතා වේ ද?
 - (1) සෑම උෂ්ණත්ව පීඩන පරාසයකදී ම ඕනෑම වායුවක් පැවතිය හැකිය.
 - (2) තාත්වික වායුවක අණු අතර අන්තර් අණුක බල නිරපේක උෂ්ණත්වයට අනුලෝමව සමානුපාතික වේ.
 - (3) තාත්වික වායු ස්කන්ධයක පරිමාව විශාල වශයෙන් වැඩි කිරීමේ දී වායුව පරිපූර්ණත්වයට ආසන්න වේ.
 - (4) A නම් වායුවක් සහිත සංවෘත දෘඩ භාජනයක් තුලට B නම් වායුව ඇතුළු කළ විට A හි අාංශික පීඩනය B එක් කිරීමට පෙර අගයට වඩා අඩු වේ.
 - (5) පරිපූර්ණ වායුවක් ස්කන්ධය හා පරිමාව නොසැලකිය හැකි තරම් කුඩා අංශු වලින් නිර්මාණය වී ඇත.
- 12. Sc, Cu, Zn යන ලෝහ තුනටම සතා වන්නේ මින් කුමන පුකාශය ද?
 - (1) +2 යන ස්ථායි ඔක්සිකරණ අංකය පමණක් පවතී.
 - (2) අසම්පූර්ණ ${f d}$ උපශක්ති මට්ටම් සහිත අයන නොසාදයි.
 - (3) අවසාන ශක්ති මට්ටමට අදාළ පුධාන ක්වොන්ටම් අංකය 4 වේ.
 - (4) මේවායේ අයන ජලීය ඇමෝනියා සමග වර්ණවත් සංකීර්ණ සාදයි.
 - (5) ඔක්සයිඩ සුදු පැහැතිය.
- 13. පහත දී ඇති සාන්දුණවලින් යුක්ත අම්ල සහ භෂ්ම දුාවණ සලකන්න. ඒවායේ සම පරිමා මිශු කිරීමේ දී වැඩිම එන්තැල්පි විපර්යාසයක් සිදු වනුයේ පහත කවර අවස්ථාවේ දී ද?
 - $1.0 \text{ mol dm}^{-3} \text{ NH}_4\text{OH}$, $1.0 \text{ mol dm}^{-3} \text{ NaOH}$,
 - $0.5 \text{ mol dm}^{-3} \text{ Ba}(OH)_{2}$

- 1.0 mol dm $^{-3}$ HNO₃, 0.5 mol dm $^{-3}$ H₂SO₄,
- 1.0 mol dm⁻³ CH₃COOH

- (1) NaOH සහ HNO₃
- (2) Ba(OH)₂ සහ H₂SO₄
- (3) Ba(OH)₂ සහ HNO₃

- (4) NH₄OH සහ H₂SO₄
- (5) NaOH සහ CH3COOH
- 14. $\text{CH}_4 \xrightarrow{\text{Cl}_2} \text{CH}_3 \text{Cl}$ යන පුතිකුියා යන්තුණයේ පියවරක් නොවන්නේ,
 - (1) $H \overset{H}{\underset{H}{\overset{}}} \overset{}{\overset{}} \overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}} \overset{}} \overset{}\overset{}{\overset{}} \overset{}} \overset{}} \overset{}\overset{}{\overset{}} \overset{}} \overset{}} \overset{}} \overset{}\overset{}} \overset{}} \overset{}} \overset{}\overset{}} \overset{}} \overset{}} \overset{}\overset{}} \overset{}} \overset$

(5)
$$H - \overset{H}{\underset{H}{\overset{}{\bigcirc}}} Cl \overset{\frown}{\overset{}{\bigcirc}} Cl \longrightarrow CH_3Cl + \dot{C}l$$

- $15.\ \mathrm{N}$ සාදන හයිඩුයිඩයකින් $10\ \mathrm{cm}^3$ ක් කාමර උෂ්ණත්වය හා වායුගෝලීය පීඩනයේ දී ඔක්සිජන් සමග සම්පූර්ණයෙන් පුතිකුියා කර ඵල ලෙස $\mathrm{NO}_2(\mathrm{g})$ හා ජලය ලබා දේ. පද්ධතිය නැවත කාමර උෂ්ණත්වයට පැමිණි පසු ඉතිරිව ඇති වායුවේ පරිමාව $20~{
 m cm}^3$ කි. පුතිකිුයාව සඳහා වැයවූ මුළු ඔක්සිජන් පරිමාව $30~{
 m cm}^3$ ක් වූයේ නම් N හි හයිඩුයිඩයේ අණුක සුතුය වනුයේ කුමක් ද?
 - (1) NH₃
- (2) N_2H_4
- (3) NH₂
- (4) N_3H_6 (5) N_2H_2

a, b, c සහ d අක්ෂර වලින් දක්වා ඇති C-C බන්ධන දිග වැඩි වීමේ නිවැරදි අනුපිළිවෙල වනුයේ,

- (1) d < a < c < b
- (2) b < c < a < d
- (3) d < a < b < c

- (4) d < b < c < a
- (5) d < c < a < b
- $17. \ \mathsf{CH}_2\mathsf{COOCH}_3$ යන සංයෝගය,
- (i) LiAlH₄
- CC CH₃
- (ii) H^+/H_20 සමග පුතිකිුයාවෙන් ලැබෙන ඵල වනුයේ,

$$(1) \bigcirc CH_2COCH_3$$

$$CHCH_3$$

$$OH$$

$$\begin{array}{c} \text{CH}_2\text{CH}_3 \\ \text{CH}_2\text{CH}_3 \end{array} + \text{CH}_3\text{OH}$$

(3)
$$CH_2CH_2OH + CH_3OH$$

 $CHCH_3$
 OH

(4)
$$CH_2CH_2OH$$
 $+ CH_3OH$ CH_3

$$(5) \bigcirc \begin{matrix} Q \\ CH_2COH \\ + CH_3OH \\ CHCH_3 \\ OH \end{matrix}$$

- 18. ඇලුමිතා $({
 m Al}_2 {
 m O}_3)$ සම්බන්ධයෙන් **සතාා** වගන්තිය වනුයේ,
 - (1) $\mathrm{Al}_2\mathrm{O}_3$ ආම්ලික ඔක්සයිඩයක් වේ.

 - (3) ක්ෂාර සමග පුතිකිුිිිිිිිිිිිිිිිි කර හයිඩුජන් වායුව ලබා දේ.
 - (4) නිර්ජලීය ${
 m Al}_2 {
 m O}_3$ විජලකාරකයක් ලෙස කිුයා කරයි.
 - (5) MgO වලට වඩා භාෂ්මික ගුණ වැඩිය.
- 19. සංවෘත පද්ධතියක සිදුවන පුතිකිුයා සම්බන්ධව අසතා වන්නේ,
 - (1) ΔH අගය ධන වන පුතිකිුයාවක් ස්වයංසිද්ධ විය හැක.
 - (2) තාපදායක ස්වයංසිද්ධ පුතිකිුයාවක් සිදුවන විට පරිසරයේ එන්ටොපිය වැඩි වේ.
 - (3) එන්තැල්පි විපර්යාසය ධන සහ එන්ටොපි විපර්යාසය සෘණ වන පුතිකිුිිියාවක් ඉහල උෂ්ණත්වයේ දී ස්වයංසිද්ධ විය හැකිය.
 - (4) විවෘතව ඇති ජල බඳුනක වාෂ්පීභවනය ස්වයංසිද්ධ වේ.
 - (5) එන්තැල්පි විපර්යාසය ඍණ වන පුතිකිුිිියාවක් ස්වයංසිද්ධ නොවීමට පුළුවන.

- 20. වර්ණයෙන් එකිනෙකට වෙනස් සංකීර්ණ සංයෝග යුගලයක් දක්වා ඇති පිළිතුර මින් කුමක් ද?
 - (1) $[CuCl_4]^{2-}$ සහ $[NiCl_4]^{2-}$
- (2) $[Cu(NH_3)_4]^{2+}$ සහ $[Ni(NH_3)_6]^{2+}$
- (3) $[Fe(H_2O)_6]^{3+}$ සහ $[Co(NH_3)_6]^{2+}$
- (4) $[CoCl_4]^{2-}$ සහ $[Ni(NH_3)_6]^{2+}$
- $(5) [Co(H_2O)_6]^{2+}$ සහ $[Ni(H_2O)_6]^{2+}$
- 21. ජල විච්ජේදනය වීමෙන් සුදු පැහැති අවක්ෂේපයක් ලබා දෙන්නේ මින් කුමක් ද?
 - (1) $AsCl_3$

- $(2) NCl₃ \qquad (3) PCl₃ \qquad (4) SbCl₃ \qquad (5) PCl₅$
- 22. 2–bromobutane යන සංයෝගය පිළිබඳ පහත කුමන පුකාශය සතා නොවේ ද?
 - (1) එය පුකාශ සමාවයවිකතාව පෙන්වයි.
 - (2) එය ජලීය NaOH සමග පුතිකියාවෙන් ලැබෙන ඵලය පුකාශ සමාවයවිකතාව පෙන්වයි.
 - (3) එය මධාාසාරීය KOH සමග පුතිකිුයාවෙන් ලැබෙන ඵලය ජාාමිතික සමාවයවිකතාව නොපෙන්වයි.
 - (4) මධාසාරීය KOH සමග පුතිකිුයාවෙන් ලැබෙන එලය පුකාශ සමාවයවිකතාව නොපෙන්වයි.
 - (5) 1-bromobutane එහි වාූහ සමාවයවිකයක් වේ.
- 23. ආම්ලික ඔක්සයිඩ පමණක් සඳහන් පිළිතුර වනුයේ මින් කුමක් ද?
 - (1) MnO, Cr_2O_3
- (2) MnO₂, CrO
- (3) Mn_2O_7 , CrO_3
- (4) MnO_2 , CrO_3 (5) Mn_2O_7 , CrO

(B)

(A)

පහත දක්වා ඇති සියළුම නිරීකෳණ පෙන්නුම් කරන්නේ ඉහත කුමන සංයෝගය/සංයෝග ද?

- ullet Na $_2$ CO $_3$ සමග CO $_2$ මුක්ත කරයි.
- $H^+/KMnO_4$ වල දම් පැහැය අවර්ණ කරයි.
- ජලීය NaOH සමග පුතිකිුයා කරයි.
- (1) A පමණි.

(2) B පමණි.

(3) C පමණි.

- (4) A සහ C පමණි.
- (5) A, B සහ C යන සංයෝග සියල්ලම.
- 25. තනුක NaOH මාධායක දී සංඝනන පුතිකියාවක් නොදක්වන්නේ,

$$_{(4)}^{0}$$
 $_{\text{CH}_{3}\text{-C-CH}_{2}\text{CH}_{3}}^{0}$

$$(5) H-C-CH2$$

26. සංවෘත දෘඩ බඳුනක වූ A_2B වායු මවුලයක් T උෂ්ණත්වයේ දී පහත පරිදි පූර්ණව විඝටනය වේ.

$$A_2B(g) \longrightarrow 2 A(g) + B(g)$$

එම උෂ්ණත්වයේ දී පුතිකිුිිිිිිිිිිිිි අවසන් වූ පසු භාජනය තුළ පීඩනය $2.7 \times 10^5~Pa$ වේ. එවිට A(g) මගින් ඇති කරන පීඩනය,

- (1) $9 \times 10^5 \text{ Pa}$
- (2) 3.6×10^5 Pa
- (3) $1.8 \times 10^5 \text{ Pa}$

- (4) 1×10^5 Pa
- (5) $1.2 \times 10^5 \text{ Pa}$
- 27. ද්විධාකරණ පුතිකිුයාවක් නොවන්නේ කුමක් ද?
 - (1) හිරු එළිය හමුවේ $\mathrm{H_2O_2}$ වියෝජනය වීම.
 - (2) ක්ලෝරීන් වායුව තනුක NaOH සමග පුතිකිුයාව
 - (3) ෆ්ලෝරීන් වායුව ජලයේ දුාවණය වීම.
 - (4) උණු සාන්දු NaOH සමග ක්ලෝරීන් පුතිකිුයාව
 - (5) සල්ෆර් තනුක NaOH සමග නැටවීම.
- 28. හයිඩුජන් පරමාණුවේ විමෝචන වර්ණාවලිය සම්බන්ධව පහත සඳහන් කුමන පුකාශය වඩාත්ම නිවැරදි වේ ද?
 - (1) හයිඩුජන් වර්ණාවලියේ සංඛාාතය වැඩිවත්ම රේඛා ශේණී අතර පරතරය අඩු වේ.
 - (2) බාමර් ශ්‍රේණියේ n=3 සිට n=2 ඉලෙක්ටුෝන සංකුමණය H_{lpha} රේඛාවට අනුරුප වේ.
 - (3) n=4 සිට n=2 ඉලෙක්ටෝන සංකුමණයට අදාළ රේඛාව රතු පැහැ වේ.
 - (4) දෙන ලද රේඛා ශේණියක රේඛා අතර පරතරය ශක්තිය වැඩිවන දිශාවට කුමයෙන් වැඩි වේ.
 - (5) ලයිමාන් ශේණීය අධෝරක්ත පුදේශයට අයත් වේ.

29. A
$$\xrightarrow{PBr_3}$$
 B $\xrightarrow{$ ජලීය \longrightarrow C $\xrightarrow{H^+/H_2O}$ CH $_3$ -CHCH $_2$ COOH $\xrightarrow{CH_3}$

A සංයෝගය වනුයේ කුමක් ද?

- (1) CH₃CHCH₂OH ĊH₃
- $(2) \quad \mathsf{CH_3CH_2CH_2CH_2OH} \qquad \qquad (3) \quad \mathsf{CH_3CHCH_2CH_2OH}$ ĊНЗ
- $\text{(4)} \quad \mathsf{CH_3CH_2CH_2CH_2OH} \qquad \qquad \mathsf{(5)} \quad \mathsf{CH_3CHCH_2COOH}$
- 30. අවර්ණ දුාවණයක් නිරීඤණය කළ හැක්කේ පහත සඳහන් කුමන අවස්ථාවේ දී ද?
 - (1) ආම්ලික ${
 m KMnO_4}$ දාවණයක් තුලින් ${
 m H_2S}$ වායුව බුබුලනය කිරීම.
 - (2) ආම්ලික $K_2Cr_2O_7$ දාවණයක් තුලින් H_2S වායුව බුබුලනය කිරීම.
 - (3) SO_2 ජලීය දාවණයක් තුලින් H_2S වායුව බුබුලනය කිරීම.
 - (4) ආම්ලික $\mathrm{K_2CrO_4}$ දුාවණයක් තුලින් $\mathrm{SO_2}$ වායුව බුබුලනය කිරීම.
 - (5) ${
 m Br}_2$ ජලීය දාවණයක් තුලින් ${
 m SO}_2$ වායුව බුබුලනය කිරීම.

- අංක 31 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a), (b), (c) හා (d) යන පුතිචාර හතර අතරින් එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේදැයි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද,
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද,
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද,
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද,

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b)	(b) සහ (c)	(c) සහ (d)	(d) සහ (a)	වෙනත් පුතිචාර
පමණක්	පමණක්	පමණක්	පමණක්	සංඛ්‍යාවක් හෝ
නිවැ <i>ර</i> දි ය	නිවැරදි ය	නිවැ <i>ර</i> දි ය	නිවැ <i>ර</i> දි ය	සංයෝජනයක් හෝ නිවැරදි ය

- 31. සටනා ගුණයක් වනුයේ පහත කවරක් ද/කවර ඒවා ද?
 - (a) සාන්දුණය

(c) එන්තැල්පිය

(b) ඝනත්වය

- (d) තාප ධාරිතාව
- 0 32. CH₃−C−CH=CH−COOH යන රසායනික සංමයා්ගය
 - (a) සිසිල් ක්ෂාරීය ${
 m KMnO_4}$ හි වර්ණය විවර්ණ කරයි.
 - (b) 2,4-DNP සමග කහ තැඹිලි අවක්ෂේපයක් ලබා දේ.
 - (c) ඇමෝනීය $AgNO_3$ සමග රිදී කැඩපතක් ලබා දේ.
 - (d) ෆේලිං පුතිකාරකය සමග ගඩොල් රතු අවක්ෂේපයක් ලබා දේ.
- 33. තාප වියෝජනය කළ විට ආම්ලික වායුවක් හා භාෂ්මික වායුවක් ලබා දෙනුයේ මින් කුමන සංයෝගය/සංයෝග ද?
 - (a) $(NH_4)_2CO_3$

(c) NH_4NO_2

(b) NH_4NO_3

- (d) NH₄Cl
- 34. පහත වගන්තිවලින් සතා වන්නේ කවරක් ද/කවරඒවා ද?
 - (a) එක් එක් තාත්වික වායුවක් සඳහා පීඩනය ශූනායයට ආසන්න අවස්ථාව හැර පරිපූර්ණ තත්ත්වයට එළඹෙන අනනා පීඩන පවති.
 - (b) වැන්ඩවාල්ස් සමීකරණය පරිපූර්ණ වායුවක් සඳහා යෙදිය නොහැකිය.
 - (c) ඉහල උෂ්ණත්ව හා පහළ පීඩනවලදී තාත්වික වායුවක් දුව කළ හැකිය.
 - (d) තාත්වික වායුවල පීඩනය ඉහල යාමේ දී වායු අණු අතර ආකර්ශන බල පුභල වේ.
- 35. පහත කිනම් කාබනික සංයෝගය/සංයෝග ${
 m NaOH}$ සමග පුතිකිුයා කර ${
 m H_2}$ වායුව ලබාදේ ද?
 - (a) CH₃CH₂OH

(b) CH₃CH₂CH₂COOH

(c) O-0H

(d) $CH_3CH_2C \equiv CH$

- 36. සර් අර්නස්ට් රදර්ෆර්ඩ් යටතේ ගයිගර් සහ මාස්ඩන් සිදු කරන ලද පරීකෘණයේ දී α අංශු කදම්භයක් තුනී රන් තහඩුවක් මත ගැටෙන්නට සලස්වන ලදී. එම පරිකෘණය පිළිබඳ නිවැරදි වන්නේ කුමන පුතිචාරය/පුතිචාර ද?
 - (a) α අංශූ විශාල පුමාණයක් මහා කෝණ වලින් උත්කුමණය වූ බැවින් පරමාණුව අයත් කර ගන්නා අවකාශයේ වැඩි පුමාණයක් හිස් අවකාශ බව නිගමනය විය.
 - (b) ZnS තිරය මත ඇතිවන පුළිඟුම මගින් lpha අංශුවල පථය නිරීකෳණය කරන ලදී.
 - (c) α අංශු ඉතා සුළු පුමාණයක ගමන් මග මහා කෝණ වලින් උත්කුමණය වූ බැවින් පරමාණුවේ ධන ආරෝපිත ස්ථාන ඇති බව නිගමනය විය.
 - (d) ඉලෙක්ටුෝනවල ගැටුනු lpha අංශු අපගමනයකින් තොරව ගමන් කළ බව නිගමනය විය.
- $\overset{\circ}{C}H_3$ 1 2 1 4 5 37. $\text{Cl}_2\text{C}=\text{C}-\text{C}\equiv\text{C}-\text{H}$ අණුව සම්බන්ධව සතා පුකාශය/පුකාශ වනුයේ,
 - (a) 1, 2, 4, 5 කාබන් පරමාණු සරල රේඛිය වේ.
 - $(b)\ 1,\ 2,\ 3$ කෝණය ආසන්න වශයෙන් 120^0 වේ.
 - (c) අණුවේ සියළුම කාබන් පරමාණු එකම තලයේ පිහිටයි.
 - (d) මෙම අණුව ජාාමිතික සමාවයවිකතාව දක්වයි.
- 38. ඔක්සිකාරක ගුණ, ඔක්සිහාරක ගුණ මෙන්ම ආම්ලික ගුණ ද පෙන්වන සංයෝගයක් වන්නේ මින් කවරක් ද/කවර ඒවා ද?
 - (a) සාන්දු H_2SO_4

(c) NH₃

(b) සාන්දු HNO₃

(d) $H_2S(aq)$

- 39. පුකාශ සකුීය සංයෝග පිළිබඳව සතා වනුයේ පහත කිනම් වගන්තිය/වගන්ති ද?
 - (a) අසමමිතික C පරමාණුවක් පවතී.
 - (b) ඒවායේ දර්පණ පුතිබිම්බ එක මත එක සමපාත කළ හැකිය.
 - (c) පුකාශ සකිය සංයෝගයක පුතිරූප අවයවවල සම මවුල මිශුණයක් තල ධුැවිත ආලෝකය භුමණය කරයි.
 - (d) පුකාශ සකීය සංයෝගයක පුතිරූප අවයවවල සම මවුල මිශුණයක් තල ධැවිත ආලෝකය භුමණය නොකරයි.
- 40. තනුක අම්ලයක් යෙදූ විට ආම්ලික වායුවක් ලබා දෙන සංයෝගයක් වන්නේ මින් කුමක් ද/කුමන ඒවා ද?
 - (a) Na_2SO_4

(c) $Na_2S_2O_3$

(b) Na_2SO_3

(d) Na₂S

• අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) හා (5) යන පුතිවාර වලින් කවර පුතිවාරය දැයි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
(1)	සතා වේ.	සතා වන අතර, පළමු පුකාශය නිවැරදිව පහදා දෙයි.
(2)	සතා වේ.	සතා වන නමුත්, පළමු පුකාශය නිවැරදිව පහදා නොදෙයි.
(3)	සතා වේ.	අසතා වේ.
(4)	අසතා වේ.	සතා වේ.
(5)	අසතා වේ.	අසතා වේ.

	පළමු පුකාශය	දෙවන පුකාශය
41.	2-butanol (MW = 74) වලට වඩා	2–butanol අණු එකිනෙක අතර හයිඩුජන් බන්ධන
	2–butanone (MW = 72) හි තාපාංකය ඉහළ	ඇත.
	වේ.	
42.	Na, Li, B, Be යන මුලදුවාවල පළමු	දෙවන කාණ්ඩයේ මුලදුවාවල ස්ථායි ඉලෙක්ටුෝන
	අයනීකරණ ශක්ති විචලනය $Na < Li < B < Be$	විනහාසය නිසා තුන්වන කාණ්ඩයේ මුලදුවහවලට වඩා
	ආකාරයට වේ.	පළමු අයනීකරණ ශක්තිය වැඩි වේ.
43.	සල්ෆර් උණු සන්දු HNO_3 අම්ලය සමග NO_2	සල්ෆර් මගින් සාන්දු HNO_3 අම්ලය ඔක්සිකරණය
	වායුව ලබා දේ.	කරයි.
44.	ඇල්කීන සහ ඇල්කයිනවලට ලාක්ෂණික වනුයේ	අගුස්ථ හයිඩුජන් සහිත ඇල්කයින ඇමෝනීය CuCl
	ඉලෙක්ටොෆිලික ආකලන පුතිකිුයාවන් ය.	සමග පුතිකිුයා කර දුඹුරු අවක්ෂේපයක් ලබා දේ.
45.	මැක්ස්වෙල්-බෝල්ට්ස්මාන් වකුයේ ශීර්ෂයෙන්	උෂ්ණත්වය වැඩිවීමත් සමග වැඩිම අණු සංඛාාවක්
	දැක්වෙන්නේ ඉහළම වේගයක් සහිත අණු	දරන වේගය (මධානා වේගය) සහිත අණු භාගය අඩු
	සංඛ්‍යාවයි.	වේ.
46.	${ m MgCO_3}$ වලට වඩා ${ m BaCO_3}$ වල තාප ස්ථායිතාව	$\mathrm{Ba^{2+}}$ අයනයේ ධුැවීකරණ බලය $\mathrm{Mg^{2+}}$ අයනයට
	වැඩිය.	වඩා වැඩිය.
47.	C හි බහුරූපි ආකාරයක් වන මිනිරන් විදයුතය	දියමන්ති යෝධ තිුමාන දැලිසක් වන නමුත් මිනිරන්
	සන්නයනය කරන නමුත් දියමන්ති විදයුතය	ද්විමාන ස්ථරීය දැලිසකි.
	සන්නයනය නොකරයි.	
48.	පුාථමික, ද්විතියික සහ තෘතියික ඇල්කොහොල	පුාථමික ඇල්කොහොල ලූකස් පුතිකාරකය සමග
	වෙන් කර හඳුනා ගැනීම සඳහා ලූකස් පරීකෂාව	ක්ෂණික ආවිලතාවයක් ඇති කරයි.
	ෙ යාදා ගත හැකිය.	
49.	පියවර කිහිපයකින් යුතු පුතිකිුයාවක සමස්ථ	එන්තැල්පිය අවස්ථා ශුිතයකි.
	පුතිකියාවේ එන්තැල්පි වෙනස ඵල හා පුතිකියක	
	වල එන්තැල්පි වෙනසින් ලැබේ.	
50.	${ m CO_3^{2-}}$ අයනයේ වඩාත්ම ස්ථායි ලුවිස් වාුහයේ	${ m CO_3^{2-}}$ අයනයේ වඩාත්ම ස්ථායි ලුවිස් වාුහයේ
	C – O බන්ධන තුන එකිනෙකට අසමාන ය.	ආරෝපණ රහිත ඔක්සිජන් පරමාණුවක් ඇත.

* * *

1						đ	හවර්ති	බිතා ව)ගුව								2
H																	He
3	4	5 6 7 8 9									9	10					
Li	Be	$oxed{Be}$									Ne						
11	12	2 13 14 15 16 17 1									18						
Na	Mg											Al	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113					
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uum	Uuu	Uub	Uut					

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

සියලු ම හිමිකම් ඇවිරිණි / All Rights Reserved

දකුණු පළාත් අධනපන දෙපාර්තමේන්තුව தென் மாகாணக் கல்வித் திணைக்களம் Southern Provincial Department of Education

අධනාපන පොදු සහතික පතු (උසස් පෙළ), 12 ශුේණිය, තුන්වන වාර පරීකෂණය, 2019 ජූලි General Certificate of Education (Adv. Level), Grade 12, Third Term Test, July 2019

රසායන විදසාව II Chemistry II

පැය 03 යි Three hours

විභාග අංකය :

- * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * ඇවගාඩ්රෝ නියතය $m N_A = 6.022 \, imes 10^{23} \, mol^{-1}$
- * ප්ලාන්ක් නියතය $h = 6.626 \times 10^{-34} \, \mathrm{J \, s}$
- st ආලෝකයේ පුවේගය $c=3 imes 10^8~{
 m m~s^{-1}}$
- * සාර්වනු වායූ නියතය R $= 8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}$
 - 🔲 A කොටස වාූහගත රචනා (පිටු 2 9)
- සියලුම පුශ්න වලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මෙම ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - 🔲 B කොටස සහ C කොටස රචනා (පිටු 10 15)
- * එක් එක් කොටසින් පුශ්න දෙක බැගින් තෝරා ගනිමින් පුශ්න හතරකට පිළිතුරු සපයන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස්වල පිළිතුරු **A කොටස** මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි **B හා C කොටස් පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යා හැකි ය.

පරීකෘකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංකය	ලැබු ලකුණු
	01	
A	02	
	03	
	04	
	05	
В	06	
	07	
	08	
С	09	
	10	
එකතුව		
පුතිශතය		

අවසාන	ලකුණ

ඉලක්කමෙන්	
අකුරින්	

අත්සන

උත්තර පතු පරීකෂක	
අධීකෳණය කලේ :	

A කොටස - වනුහගත රචනා

• පුශ්න හතරටම මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුම

01. (a) පහත	ත දී ඇති පුභේදවල වරහන් තුළ දී ඇති ගුණය විචලනය වන ආකාරය දෑ	ක්වන්න.
(i)	Li, Be, Mg, Al (දෙවන අයනීකරණ ශෘ	
(ii)	Na, S, F, Cl (ඉලෙක්ටුෝනයක් ලබා ගැනීමේ දී මුක්ත වන ශා 	ක්තිය)
(iii)	CO, CO ₂ , CO ₃ ²⁻ , RCOŌ (C – O බන්ධප	ා දිග)
(iv)	NaNO ₃ , KNO ₃ , Mg(NO ₃) ₂ , Ca(NO ₃) ₂ (සහසංයුජ ලෘ	జ ళు)
(v)	CBr ₄ , CH ₄ , CCl ₄ , CHCl ₃ (සංලයා්ග වල තාපා	ංකය)
		(ලකුණු 2.5)
	XeF ₄ අණුවේ හැඩය VSEPR වාදය ඇසුරින් අපෝහනය කර එම හැඩය අදින්න.	නිරූපණය වන සේ වාුහය
	${ m C_2H_4N_2}$ අණුක සූතුය සහිත අණුවෙහි ${ m C}$ පරමාණු දෙකම ${ m sp}$ මුහුම්කරණ සැකිල්ලේ කොටසක් පහත දක්වා ඇත.	ය වී ඇත. අණුවට අදාළ
	N-C-C-N	
(I)	(I) ඉහත අණුව සඳහා සැකිල්ල නිවැරදිව සම්පූර්ණ කර වඩාත් ස්ථායී ඉ	ලුවිස් ව <u>ා</u> ුහය අඳින්න.
(I	(II) ඉහත (I) හි ඇඳි වපුහය හැර වෙනත් සම්පුයුක්ත වපුහ තුනක් අඳින	්න.
		(ලකුණු 4.1)

$({ m c})$ මෙහි දී ඇති අණුව ඇසුරින් පහත සඳහන් පුශ්නවලට පිළි ${ m g}$
--

				Н		
	(i)	පහත දැ	ක්වෙන σ බන්ධ	ාන සෑදීම සඳහා සහභාගි වන	ා පරමාණුක/මුහුම් කාක්ෂික හ	ාඳුනා ගන්න.
		(I)	$^{1}N - {}^{2}C$	සහ .		
		(II)	$^{2}C - ^{3}C$	සහ .		
		(III)	$^{3}C-\ ^{4}C$	සහ .		
		(IV)	$^{4}C - ^{5}N$	සහ .		
		(V)	$_{3}C - 0$	සහ .		
	(ii)	පහත ස	ඳහන් π බන්ධන	සෑදිමට සහභාගි වන පරමාං	ණුක කාක්ෂික හඳුනා ගන්න .	
		(I)	$^{3}C - 0$	සහ .		
		(II)	$^{4}C - ^{5}N$	සහ .		
	(iii)	² C, ³ C	C, ⁴C යන C ස	පරමාණුවල විදයුත් සෘණතාව) වැඩිවන ආකාරයට ලියන්	ගින. ඊට හේතු
			න් පැහැදිලි කර		,	
		•••••				
						•••
						(ලකුණු 3.4)
02. (a)		•		නැටායනයක් හා ඇනායන ලෙ		
	(I)			් ගෙන තනුක සල්ෆියුරික් අම්		
			සුදු පැහැති අවස ලා කොළ පැහැ	ත්ෂේපයක් (P) ලැබුණි. එම ජ යක් දිස්විය.	අවක්මේපය පහන් සිළු පරිකෑ	ෂාවට භාජනය
	(II)			. ය ටසකට ඇලුමිනියම් කුඩු සහ	n NaOH දුාවණයක් එකතු ස	කර නැටවූ විට
				අත් වායුවක් (Q) පිට විය. Q ව		
		මත සුදු	පැහැති දුමාරය	ත් (R) ඇති කරන ලදී.		
	(III)	A දාවණ	යේ ඉතිරි කො	ටසට ජලීය සිල්වර් නයිටේට්	එකතු කළ විට සුදු පැහැති	අවක්ෂේපයක්
		(S) ලබ	ා දුනි. S තනුක	ඇමෝනියා හි දිය වී T දුාවණ	ාිය සෑ⊚ද්.	
	(i)	A දාවණ	රයේ අඩංගු කැට	ායනය හා ඇනායන දෙක ස	ඳහන් කරන්න.	
				ඇතායන	, ,	
	(ii)			භ්ගවල සූතු ලියන්න.		
				Q —		•••••
	(;;;)			T –		_
	(iii)	ශ්ලාන 11	∪∪කම•ාාමය දී සී	පිදුවන පුතිකිුයා සඳහා තුලිත	ටයාගනක සමකටණ ලයිනිනි	J.
						••••••

(iv)	එම II පරීකුණයට අදාළ අයනය හඳුනා ගැනීම සඳහා සිදු කළ හැකි වෙනත් පරීකුෂාවක් ලියන්න.
(v)	$oldsymbol{Q}$ හඳුනා ගැනීම සඳහා කළ හැකි වෙනත් පරීකුෂාවක් සඳහන් කරන්න.
	(ලකුණු 5.0)

(b) (i) පහත සඳහන් සංයෝග අඩංගු බෝතල්වල ලේබල් ගැලවී ඇති අතර මේවා ඝන හෝ දුාවණ ලෙස පවතී.

 $Na_2S_2O_3$, $ZnSO_4$, $Mg(HCO_3)_2$, $LiNO_3$, $BaSO_3$, KI මෙම බෝතල්වල ඇති සංයෝග හඳුනා ගෙන ලේබල් කිරීම සඳහා සිදු කරන ලද පරීකුණ හා නිරීකුණ පහත වගුවේ දක්වා ඇත. එම නිරීකුණවලට ගැළපෙන සංයෝගය ඉදිරියේ ඇති හිස් කොටුව තුළ ලියන්න.

	පරීකෳණය	නිරීක මණය	සංලයා්ගය
(I)	සංයෝගය තාප වියෝජනය	දුඹුරු පැහැති වායුවක්	
	කිරීම.	පිටවිය.	
(II)	සංයෝගයේ ජලීය දුාවණයට	සුදු පැහැති අවක්ෂේපයක්	
	${ m Pb}({ m NO}_3)_2$ දාවණයක් එකතු කිරීම.	සැදුණි.	
	ලැබෙන ඵලය තාප කිරීම.	කළු පැහැති ඝනයක්	
		ତ୍ୟନ୍ତି 👼 .	
(III)	සංයෝගය තනුක HCl වල දාවණය	සුදු පැහැති අවක්ෂේපයක්	
	කර ජලීය NH_3 මගින් භාෂ්මික	සැදුණි.	
	කිරිම.		
	ලැබෙන අවක්ෂේපයට වැඩිපුර	අවර්ණ දුාවණයක් ලැබුණි.	
	ඇමෝනියා එකතු කිරීම.		
(IV)	සන සංයෝගයට තනුක HCl එකතු	ඝනය දිය විය.	
	කර රත් කිරීම.	වායුවක් පිට විය.	
	සංයෝගය පහත් සිළු පරීඤාවට	කොළ පැහැති දැල්ලක් දිස්	
	භාජනය කිරීම.	වුණි.	
(V)	සංයෝගයේ ජලීය දුාවණයට	ක්ලෝරෆෝම් ස්ථරය දම්	
	ක්ලෝරින් දියර හා ක්ලෝරෆෝම්	පාට විය.	
	එකතු කර සොලවා තිබෙන්නට		
	හැරීම.		
(VI)	ජලීය දුාවණය තාප කිරීම.	වායුවක් පිට වුණි.	
	පිටවන වායුව අළුත සෑදු හුණු	හුණු දියර කිරි පැහැවී	
	දියරයට යැවීම.	නැවත අවර්ණ විය.	(ලකුණු 3.0)

(ලකුණු 3.0)

(ii)	ඉහත පරීඤණව	ලට අදාළ	ව පහත සඳහන් හිස්තැන් සම්පූර්ණ කරන්න.
	පරීකුණය I	-	ඝන සංයෝගය තාප වියෝජනයට අදාළ තුලිත රසායනික පුතිකිුයාව.
	පරීකෳණය II	-	සුදු පැහැති අවක්ෂේපයේ සූතුය
			කළු පැහැති ඝනයේ සූතුය
	පරීකෳණය III	-	සුදු පැහැති අවක්ෂේපයේ සූතුය
			අවර්ණ දුාවණයේ සූතුය
	පරීකෳණය IV	-	ඝන සංයෝගය තනුක HCl සමග දක්වන පුතිකිුයාවට අදාළ තුලිත සමීකරණය
	පරීකෳණය V	-	ජලීය දුාවණය Cl_2 දියර සමග තුලිත රසායනික පුතිකිුයාව
	පරීකෳණය VI	-	ජලීය දුාවණය තාප කිරීමේ දී ලැබෙන එල
			, ,
			(ලකුණු 5.0)

03. (a) සිසුන් කණ්ඩායමක් පහත රූපයේ පරිදි උපකරණ සකස් කර CO_2 වායුවේ මවුලික පරිමාව සෙවීම සඳහා පරීක්ෂණයක් සැලසුම් කරන ලදි.

වායුවක මවුලික පරිමාව සෙවීම සඳහා විදශාගාරයේ දී කරනු ලබන පරීකෘණයේ අත්දැකීම් සහ ඉහත උපකරණ ඇටවුම උපයෝගි කර ගනිමින් පහත අසා ඇති පුශ්නවලට පිළිතුරු සපයන්න.

(i) රත් කිරීමට පෙර හා පසු කැකෑරුම් නළය හා එහි අඩංගු දුවාවල ස්කන්ධ පිළිවෙලින් m_1 g හා m_2 g වේ. විස්ථාපිත ජල පරිමාව V cm 3 සහ කාමර උෂ්ණත්වය t °C වේ. එකතු වූ වායුවේ පීඩනය P Pa, වායුවේ මවුලික ස්කන්ධය M g mol^{-1} හා ස.උ.පී. හි දී CO_2 වායුවේ මවුලික පරිමාව V_{CO_2} නම්, $V_{CO_2} = \frac{273 \times P \times V \times M}{1 \times 10^5 \ (m_1 - m_2)(273 + t)} \quad \text{මගින් ලබා දෙන බව පෙන්වන්න.}$

(ii)	උෂ්ණත්වය $27^{\circ}\mathrm{C}$ ද, රත් කිරීමට පෙර හා පසු කැකෑරුම් නළය හා එහි අඩංගු දුවි පිළිවෙලින් $32.54\mathrm{g}$ හා $32.04\mathrm{g}$ ද, විස්ථාපිත ජල පරිමාව $300\mathrm{cm}^3$ ද, වැ	
	$1 \times 10^5 \text{Pa}$ ϵ ©2. (C = 12, O = 16)	
	CO_2 වායුවේ මවුලික පරිමාව ගණනය කරන්න.	
	අපද පාසුම්ප පමුලක් පරමාජ ගිණිනක් කිරනන.	
(iii)	ස.උ.පී. හි දී පරිපූර්ණ වායුවක මවුලික පරිමාව සහ ඔබට ලැබුණු අගය සමාන වේ ද? ර හේතු මොනවාද?	නොවේ ද? ඊට
(iv)	${ m PbCO}_3$ වියෝජනයෙන් ලැබෙන ${ m CO}_2$ පරිමාව, විස්ථාපිත ජල පරිමාවට සමාන නොවන	බව ශිෂායෙක්
	පවසයි. ඔබ මෙම පුකාශයට එකඟ වේ ද? හේතු දක්වන්න.	
		••••••
(v)	අදාළ හේතුව සනාථ කිරීම සඳහා සරල පරීකුණයක් හා නිරීකුණය ලියන්න.	
()	4400 0 4 % 0 1000 4 % 0 1000 1000 1000 1	
(vi)	ඔබ සඳහන් කරන හේතුව මග හැරවීම සඳහා ගත හැකි පූර්වෝපායක් සඳහන් කරන්න	
		(ලකුණු 7.5)
(b) (i)	වායුවක අවධි උෂ්ණත්වය අර්ථ දක්වන්න.	
		•••••••••••••••••••••••••••••••••••••••
(i:	i) වායුවක අවධි උෂ්ණත්වය කෙරෙහි අන්තර් අණුක බල කෙසේ බලපාන්නේ ද?	
·		
(i	ii) $ m N_2$, $ m NH_3$, $ m Cl_2$ සහ $ m He$ යන වායු අවධි උෂ්ණත්වය වැඩිවන ආකාරයට ලියන්න.	
	<	
		(ලකුණු 2.5)

$04.\ (a)\ (i)$ පහත පුතිකිුයා අනුකුමයෙහි දැක්වෙන P සහ Q වනුහ කොටු තුල අඳින්න.
${ m CH_3CH_2C} \equiv { m CH} \; \xrightarrow{{ m H_2}} { m P} \xrightarrow{{ m H_2/Ni}} \; { m Q}$
P Q
(ii) CH ₃ CH ₂ C ≡ CH, P සහ Q එකිනෙකින් වෙන් කර හඳුනා ගන්නා ආකාරය කෙටියෙන් පැහැදිලි කරන්න.
(iii) ඉහත P එලයට තනුක H_2SO_4 යෙදු විට R ද, HBr යෙදුවිට S ද ලැබේ.
(I) R සහ S වල වයුහ කොටු තුළ අඳින්න.
(II) ඉහත සංයෝග දෙකෙන් (R සහ S) ජලදාවාතාව ඉහළ සංයෝගය සඳහන් කරන්න.

8		
(b) A, B සහ C යනු C ₅ H ₁₀ අණුක සුතුය සහිත ඇල්ස් ජාාාමිතික සමාවයවිකතාව පෙන්වයි. A සහ B සං ලබා දේ. D සහ E පුකාශ සමාවයවිකතාව පෙන්වන F ද E මගින් නැවත C ද ලබා දේ.	_ යෝග HBr සමග පුතිකිුිිිිිිිිිි කළ විට පිළිවෙ	ලින් D සහ E
(i) A, B, C, D, E සහ F සංමයා්ගවල වනුව	හ පහත කොටු තුළ අඳින්න.	
А	D	

E

(ii)	D තනුක H	2SO ₄ &	ී මඟ ද	පුතිකිුයා	වෙන් (ලැබෙන	ඵලයෙහි	වසුහර	3 අඳින්න.

В

(iii)	C සංයෝගය පෙන්වන ජපාමිති	තික සමාවයවිකවල වහුහ ඇඳ නම් කරන්න.	

(ලකුණු 4.5)

1	~)	(;)		Q	Q	50 cm	50 5m		50 0 0 0 0	s9 d	6)20.00 =0	හිස්තැන්වල	8
(u	(I)	((2)	Y	ၾက	$-\omega$	$-\omega$	පුතාකුයාලෙ	$\omega_0\omega_0\omega_0$	ರೀತಿಯ	ω_{ω}	SS SS (2) CS	$\omega \omega $

(I) $CH_{\alpha}CH_{\alpha}C = CH$	(I) $CH_3CH_2C \equiv CH_3$		
------------------------------------	-----------------------------	--	--

(III)
$$CH_3CHCH_2OH$$
 PBr_3

(V)
$$CH_3CH_2O^-Na^+$$

$$EH_3CH CH_3$$

$$CH_3CH CH_3$$

$$(VI) \qquad \bigodot CHO \qquad \bigodot NO_2 \qquad \bigcirc OO_2 \qquad \bigcirc OO$$

(ii)	രമാമ	(II)	2320	(V)	පතිකියාවත්	D POPOR	ഭത്തത്	වර්ග	25@2020	තරත්ත

- (II) පුතිකිුයාව
- (V) පුතිකියාව

(ලකුණු 3.0)

* * *

B කොටස - රචනා

පුශ්න දෙකකට පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට ලකුණු 15 බැගින් ලැබේ.)

05. (a) ඇතැම් තත්ත්ව යටතේ NH_3 වායුව $O_2(g)$ සමග පුතිකිුයා කර $N_2(g)$ හා $H_2O(l)$ සාදයි. වගුවේ දී ඇති තාප රසායනික දත්ත යොදා ගනිමින් පහත පුශ්න සඳහා පිළිතුරු සපයන්න.

සංගෝගය	උත්පාදන එන්තැල්පිය /kJ mol ⁻¹	එන්ටොපිය J K^{-1} mol^{-1}
NH ₃ (g)	-45.0	171.25
H ₂ O(l)	-280.0	70.00
N ₂ (g)	0.0	190.00
0 ₂ (g)	0.0	205.00

- (i) ${
 m NH}_3({
 m g})$ හා ${
 m O}_2({
 m g})$ අතර සිදුවන පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
- (ii) එම පුතිකිුයාව සඳහා එන්තැල්පි විපර්යාසය (ΔH) ගණනය කරන්න.
- (iii) පුතිකියාව සිදුවන විට එන්ටොපියේ වෙනස් වීම පුරෝකථනය කර ඊට හේතු දක්වන්න.
- (iv) සුදුසු ගණනය කිරීමකින් ඔබේ පුරෝකථනය තහවුරු කරන්න.
- (v) පුතිකුියාව ස්වයංසිද්ධව සිදුවන යම් උෂ්ණත්වයක දී ගිබ්ස් ශක්ති විපර්යාසය (ΔG) $-1.2 imes 10^3 \; {
 m kJ} \; {
 m mol}^{-1}$ වේ. එම උෂ්ණත්වය ගණනය කරන්න.
- (vi) ඉහත (v) හි ගණනයේ දී යොදා ගන්නා උපකල්පනයක් සඳහන් කරන්න.

(ලකුණු 6.5)

- (b) සන NaCl 5.85 g ක් ජලය $100~{\rm cm}^3$ ක දිය කිරීමේ දී පද්ධතියේ උෂ්ණත්වය $30~{\rm ^{\circ}C}$ සිට $25~{\rm ^{\circ}C}$ දක්වා අඩු විය. (ජලයේ වි.තා.ධා. $4.2~{\rm J~g^{-1}~K^{-1}}$, ජලයේ සනත්වය $1~{\rm g~cm^{-3}}$) (Na =23, Cl =35.5)
 - (i) NaCl(s) හි මවුලික දුාවණ එන්තැල්පිය ගණනය කරන්න.
 - (ii) ඉහත ගණනයේ දී සිදු කරන ලද උපකල්පන දෙකක් සඳහන් කරන්න.
 - (iii) (I) හෙස් නියමය ලියන්න.
 - (II) සුදුසු එන්තැල්පි වකුයක් මගින් $Na^+(g)$ හි සජලීකරණ එන්තැල්පිය ගණනය කරන්න. ඒ සඳහා ඉහත (i) හි ගණනය කළ අගය සහ පහත සඳහන් එන්තැල්පි විපර්යාස යොදා ගන්න.

Na(s) හි ඌර්ධවපාතන එන්නැල්පිය $= 107 \, {
m kJ \ mol^{-1}}$ Na(g) හි පළමු අයනීකරණ එන්නැල්පිය $= 611 \, {
m kJ \ mol^{-1}}$ Cl(g) හි උත්පාදන එන්නැල්පිය $= 122 \, {
m kJ \ mol^{-1}}$ Cl^(g) සජලීකරණ එන්නැල්පිය $= -167 \, {
m kJ \ mol^{-1}}$ NaCl(s) හි උත්පාදන එන්නැල්පිය $= -411 \, {
m kJ \ mol^{-1}}$ Cl(g) හි පළමු ඉලෙක්ටෝනකරණ එන්නැල්පිය $= -133 \, {
m kJ \ mol^{-1}}$

(iv) ඉහත (iii) II හි එන්තැල්පි වකුය භාවිතයෙන් NaCl(s) දැලිස එන්තැල්පිය ගණනය කරන්න.

(ලකුණු 7.0)

- (c) ශක්ති විදාහව හා බැඳුනු පහත පද හඳුන්වන්න.
 - (I) සටනා ගුණ
 - (II) සංවෘත පද්ධතිය
 - (III) මහේක්ෂ ගුණ

(ලකුණු 1.5)

- 06. (a) පරිමාව V වන සංවෘත දෘඩ භාජනයක T K උෂ්ණත්වයේ දී A හා B නම් පරිපූර්ණ වායු දෙකක් අඩංගු වේ. වායු මිශුණයේ මුළු පීඩනය P ද A හා B හි සාපේක්ෂ අණුක ස්කන්ධ M_A හා M_B ද වන අතර මිශුණයේ A හා B හි මවුල භාග X_A හා X_B වේ.
 - (i) වායු මිශුණයේ ඝනත්වය d නම්, $d=(X_A M_A + X_B M_B) \; rac{P}{RT} \;$ බව පෙන්වන්න. (R යනු සාර්වතු වායු නියතය වේ.)
 - (ii) සංවෘත දෘඩ භාජනයක් තුළ 0_2 හා 0_3 වායු මිශුණයක් $27\,^{\circ}\mathrm{C}$ උෂ්ණත්වයේ ඇත. 0_2 හා 0_3 පරිමා අනුපාතය 1:3 වේ. භාජනය තුළ පීඩනය 4.157×10^5 Pa නම් වායු මිශුණයේ ඝනත්වය සොයන්න.
 - (iii) ගණනයේ දී ඔබ යොදා ගත් වායු නියමයක් හා උපකල්පනයක් සඳහන් කරන්න.

(ලකුණු 6.0)

- (b) $27\,^\circ\text{C}$ දී $H_2(g)$ $0.1\,g$ ක් අඩංගු දෘඩ භාජනයක් වායුගෝලීය පීඩනයේ පවතී. භාජනය රත් කිරීමේ දී පීඩනය නියතව තබා ගැනීම සඳහා H_2 වායු $0.03\,\text{mol}$ ක් ඉවත් වූ අතර $H_2(g)$ හි පරිමාව භාජනයේ පරිමාවට සමාන විය.
 - (i) ඉවත් වූ $H_2(g)$ මවුල පුමාණය පුතිශතයක් ලෙස දක්වන්න.
 - (ii) භාජනය රත් කළ උෂ්ණත්වය ගණනය කරන්න.
 - (iii) භාජනය $627\,^{\circ}\mathrm{C}$ ට රක් කළ විට ඉවත්ව යන වායු මවුල සංඛාාව ආරම්භක අගයෙන් භාගයක් ලෙස දක්වන්න.

(ලකුණු 4.0)

- (c) (i) චාලක අණුක සමීකරණය ලියා එහි පද හඳුන්වන්න.
 - (ii) පරිපූර්ණ වායු සමීකරණය හා චාලක අණුක සමීකරණය යොදා ගනිමින් පරිපූර්ණ වායුවක් සඳහා $\overline{C^2} = rac{3RT}{M}$ යන සම්බන්ධතාව වහුත්පන්න කරන්න.

(ලකුණු 5.0)

- 07. (a) ආවර්තිතා වගුවේ S ගොනුවට අයත් X නම් මුලදවාය දීප්තිමත් දැල්ලක් සහිතව වාතයේ දහනය වී සුදු පැහැති ඵල මිශුණයක් (P+Q) ලබා දේ. X උණු ජලය සමග පුතිකියාවෙන් R වායුව හා භාෂ්මික S දාවණය ලැබේ. X මගින් සාන්දු නයිටුක් අම්ලය ඔක්සිහරණය කර දුඹුරු පැහැති T වායුව හා අවර්ණ U දාවණය ලබා දේ. U දාවණය තාප වියෝජනය කළ විට දුඹුරු පැහැති T වායුව හා සුදු පැහැති P සනය සාදයි.
 - (i) X මුලදුවාය හඳුනා ගන්න.
 - (ii) P, Q, R, S, T සහ U යන පුහේදවල රසායනික සූතු ලියන්න.
 - (iii) පහත සඳහන් පුතිකියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
 - (I) X වාතයේ දහනය
 - (II) X උණු ජලය සමග පුතිකිුියාව
 - (III) X මගින් සාන්දු HNO3 අම්ලය ඔක්සිහරණය කිරීම
 - (IV) U දුාවණය තාප වියෝජනය කිරිම
 - (V) Q ජලය සමග පුතිකිුයාව
 - (iv) X හි එක් පුයෝජනයක් ලියන්න.

(ලකුණු 7.5)

- (b) X, Y හා Z යනු 3d ලෝහ ලවණ තුනක වර්ණවත් ජලීය දාවණ තුනක් වේ. X හා Y ජලීය NH₃ සමග වැඩිපුර ඇමෝනියා හමුවේ දියවන නිල් පැහැති අවක්ෂේප සාදයි. Z වැඩිපුර ඇමෝනියා හමුවේ රතු දුඹුරු පැහැති අවක්ෂේපයක් සාදයි. X සාන්දු ඇමෝනියා සමඟත් Y සාන්දු HCl සමඟත් සාදන දාවණ තද නිල් පැහැතිය.
 - (i) X, Y, Z ලෝහ කැටායන හඳුනා ගන්න.
 - (ii) X, Y, Z ජලීය දුාවණවල වර්ණ සඳහන් කරන්න.
 - (iii) X, Y, Z සාන්දු ඇමෝනියා හමුවේ සාදන සංයෝගවල සූතු ලියා ඒවා IUPAC ආකාරයට නම් කරන්න.
 - (iv) Y සාන්දු HCl සමග සාදන සංයෝගයේ සූතුය, වර්ණය සහ IUPAC නම සඳහන් කරන්න.
 - (v) Y සාන්දු HCl සමග සිදු කරන පුතිකිුයාවට අදාළ තුලිත රසායනික සමීකරණය ලියන්න.
 - (vi) Y සාන්දු NH₃ සමග සාදන සංයෝගයේ වර්ණය කුමක් ද?
 - (vii) X දාවණයේ කොටසකට සාන්දු HCl එකතු කිරීමේ දී කුමක් නිරීකෂණය කළ හැකි ද?

(ලකුණු 7.5)

C කොටස - රචනා

පුශ්න දෙකකට පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට ලකුණු 15 බැගින් ලැබේ.)

08. (a) (i) බෙන්සින් හි සතා වාූහය සනාථ කිරීම සඳහා ඉදිරිපත් කෙරුණු සාක්ෂි **දෙකක්** සඳහන් කරන්න.

(ii) අණුක කාක්ෂික වාදය ඇසුරින් බෙන්සින් හි සතා වාුහයේ ස්වභාවය කෙටියෙන් පැහැදිලි කරන්න.

යන පරිවර්තනය පියවර තුනකින් සිදු කරන ආකාරය දක්වන්න.

(ලකුණු 7.0)

- (b) එකම ආරම්භක කාබනික සංයෝගය ලෙස CH_3-C-CH_3 පමණක් භාවිත කරමින් පියවර 6 කට නොවැඩි 0 සංඛ්‍යාවකින් $CH_3CH_2-C-OCH_2CH_2CH_3$ යන සංයෝගය සංස්ලේෂණය කරන ආකාරය දක්වන්න. (ලකුණු 6.0)
- (c) (i) CH₃—C—CH₃ සහ HCN අතර පුතිකිුයාවෙන් සෑදෙන ඵලය ලියන්න.
 - (ii) මෙම පුතිකිුයාව සඳහා යන්තුණය ලියන්න.

(ලකුණු 2.0)

09. (a) පැහැදිලි කරන්න.

 $\mathrm{CH_3CH_2Br}$ සහ ජලීය KOH අතර පුතිකිුයාව තනි පියවරකින් සිදුවන පුතිකිුයාවක් වන අතර $\mathrm{CH_3}$

CH₃CH₂-C-Br සහ ජලීය KOH අතර පුතිකුියාව පියවර දෙකකින් සිදු වේ.

(ලකුණු 2.0)

 $\begin{array}{ccc} \text{(b)} & \text{CH}_3\text{CH}_2\text{Cl} & \text{CH}_3\text{CH}_2\text{Cl} \\ & \text{A} & \text{B} \end{array}$

A සහ B යන කාබනික සංයෝග වලින් එකක් හෝ සංයෝග දෙකම යොදා ගෙන පහත දක්වා ඇති සංයෝග සංස්ලේශණය කරන ආකාරය දක්වන්න.

- (i) CH_3CH_2 -C-Cl (පියවර 4 කට නොවැඩි ගණනකින්)
- OH $\hbox{(ii)} \qquad \hbox{CH$_3$CH$_2$^-$CHCH$_2CH_3} \qquad \hbox{(පියවර 5 කට නොවැඩි ගණනකින්)}$
- $_{\rm CH_3-C-CH_2CH_2CH_3}$ $_{\rm (SG2OC~6~mO~em)27}$ ඩි ගණනකින්)

(ලකුණු 13.0)

10. (a) පහත ලැයිස්තුවේ ඇති රසායනික දුවා ඔබට සපයා ඇත.

$0.05~mol~dm^{-3}$ ඔක්සලික් අම්ලය $(H_2C_2O_4)$, තනුක $KMnO_4$ දාවණයක් $2~mol~dm^{-3}~H_2SO_4$ අම්ලය.

- (i) තනුක H_2SO_4 අම්ලය හමුවේ ඔක්සලික් අම්ලය සහ $KMnO_4$ අතර පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
- (ii) ඉහත දී ඇති රසායනික දුවා භාවිතයෙන් ${
 m KMnO_4}$ දුාවණයේ සාන්දුණය සෙවීම සඳහා කුමයක් පියවර සහිතව සැකෙවින් යෝජනා කරන්න.
- (iii) මෙහිදී සිදුවන වර්ණ විපර්යාසය සඳහන් කරන්න.
- (iv) KMn O_4 යනු පුාථමික පුාමාණිකයක් නොවේ. පුාථමික පුාමාණිකයක තිබිය යුතු ගුණාංග දෙකක් ලියන්න.
- (v) මෙවැනි පරීකෘණයක දී $0.05~{
 m mol~dm^{-3}}$ ඔක්සලික් අම්ල දුාවණ $25~{
 m cm^3}$ ක් සමග පුතිකුියා කිරීම සඳහා වැය වූ ${
 m KMnO_4}$ පරිමාව $40~{
 m cm^3}$ ක් විය. ${
 m KMnO_4}$ දුාවණයේ සාන්දුණය ගණනය කරන්න. $({
 m Cap}_{rac{60}{3}}\,7.5)$
- (b) අසංශුද්ධ $K_2Cr_2O_7$ සාම්පලයකින් 1.5~g ක් තනුක සල්ෆියුරික් අම්ලයේ දියකර එයට ජලය එකතු කරමින් $250.00~cm^3$ දුාවණයක් සාදා ගන්නා ලදී. ඉන් $25.00~cm^3$ ක් අනුමාපන ප්ලාස්කුවකට ගෙන එයට වැඩිපුර KI පුමාණයක් එකතු කරන ලදී. මෙහි දී සැදෙන අයඩින් $0.1~mol~dm^{-3}~Na_2S_2O_3$ දුාවණයක් මගින් අනුමාපනය කළ විට අන්ත ලසයේ දී වැය වූ $Na_2S_2O_3$ පරිමාව $24.00~cm^3$ කි.

$$(K = 39, Cr = 52, 0 = 16)$$

- (i) මෙහි දී සිදුවන සියළුම පුතිකිුයා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
- (ii) අසංශුද්ධ $K_2Cr_2O_7$ සාම්පලයේ $K_2Cr_2O_7$ ස්කන්ධ පුතිශතය ගණනය කරන්න.

(ලකුණු 7.5)

* * *

1		ආවර්තිතා වගුව														2	
Н		·														Не	
3	4																10
Li	Be																Ne
11	12	13 14 15 16 17														18	
Na	Mg			Al	Si	P	S	Cl	Ar								
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	La	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	Ac	104	105	106	107	108	109	110	111	112	113					
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uum	Uuu	Uub	Uut					

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

විභාග ඉලක්ක පහසුවෙන් ජයගන්න

පසුගිය විභාග පුශ්න පතු

 Past Papers
 Model Papers
 Resource Books for G.C.E O/L and A/L Exams

ົ້ວສາທ ໑ලສ່ສ ປ໌ຜທສ່ສ Knowledge Bank

WWW.LOL.LK

Website WWW.IOI.IK

071 777 4440