Examenul de bacalaureat național 2017 Proba E. c)

Matematică M_mate-info

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$25 - 40i + 16i^2 + 25 + 40i + 16i^2 =$	3 p
	$=50+32i^2=50-32=18$	2p
2.	$f(x) = 0 \Leftrightarrow x^2 - 6x + 8 = 0$	3 p
	x=2 și $x=4$	2 p
3.	$x^{2} - x - 2 = (x - 2)^{2} \Rightarrow x^{2} - x - 2 = x^{2} - 4x + 4 \Rightarrow 3x = 6$	3 p
	x = 2, care convine	2 p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	2p
	Numerele naturale de două cifre care au produsul cifrelor egal cu 9 sunt 19, 33 și 91, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{90} = \frac{1}{30}$	1p
5.	$x_B = \frac{x_A + x_M}{2} \Rightarrow x_M = 2$	3 p
	$y_B = \frac{y_A + y_M}{2} \Rightarrow y_M = 5$	2p
6.	$A_{ABCD} = AB \cdot BC \cdot \sin(\angle ABC) = 6 \cdot 3 \cdot \sin 30^{\circ} =$	3 p
	$=18\cdot\frac{1}{2}=9$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} =$	2p
	=0+1+0-0-0-0=1	3p
b)	$A(x)A(y)A(z) = \begin{pmatrix} 0 & 0 & x \\ x & 0 & 0 \\ 0 & x & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & y \\ y & 0 & 0 \\ 0 & y & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & z \\ z & 0 & 0 \\ 0 & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & xy & 0 \\ 0 & 0 & xy \\ xy & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & z \\ z & 0 & 0 \\ 0 & z & 0 \end{pmatrix} = $	3p
	$= \begin{pmatrix} xyz & 0 & 0 \\ 0 & xyz & 0 \\ 0 & 0 & xyz \end{pmatrix} = xyz I_3, \text{ pentru orice numere reale } x, y \text{ şi } z$	2p

c)	$A(n)A(n) + A(n) + I_3 = \begin{pmatrix} 0 & n^2 & 0 \\ 0 & 0 & n^2 \\ n^2 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & n \\ n & 0 & 0 \\ 0 & n & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n^2 & n \\ n & 1 & n^2 \\ n^2 & n & 1 \end{pmatrix}$	2p
	$\det(A(n)A(n)+A(n)+I_3) = \begin{vmatrix} 1 & n^2 & n \\ n & 1 & n^2 \\ n^2 & n & 1 \end{vmatrix} = n^6 - 2n^3 + 1 = (n^3 - 1)^2, \text{ care este pătratul}$ unui număr natural	3р
2.a)	$f(2) = 0 \Leftrightarrow 2^4 + a \cdot 2^2 + 4 = 0$	3p
	$4a + 20 = 0 \Leftrightarrow a = -5$	2 p
b)	$f = X^4 - 5X^2 + 4$; câtul este $X^2 - X - 2$	3 p
	Restul este 0	2p
c)	$1 - a + 4 = 0 \Rightarrow a = 5$	2p
	$f = (X^2 + 1)(X^2 + 4)$, de unde obținem $x_1 = i$, $x_2 = -i$, $x_3 = 2i$ și $x_4 = -2i$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{1}{\sqrt{x^2 + 1} + x} \cdot \left(\frac{x}{\sqrt{x^2 + 1}} + 1\right) =$	3p
	$= \frac{1}{\sqrt{x^2 + 1} + x} \cdot \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}, \ x \in \mathbb{R}$	2p
b)	f(0)=0, f'(0)=1	2 p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = x$	3 p
c)	$\lim_{x \to -\infty} \left(\sqrt{x^2 + 1} + x \right) = \lim_{x \to -\infty} \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} - x} = \lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 1} - x} = 0$	3p
	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \ln\left(\sqrt{x^2 + 1} + x\right) = -\infty$	2p
2.a)	$\int_{0}^{1} (e^{x} + 1) f(x) dx = \int_{0}^{1} e^{x} dx = e^{x} \Big _{0}^{1} =$	3p
	$=e^1 - e^0 = e - 1$	2p
b)	$\int_{-1}^{1} x (f(x) + f(-x)) dx = \int_{-1}^{1} x \left(1 - \frac{1}{e^x + 1} + 1 - \frac{1}{e^{-x} + 1} \right) dx =$	2p
	$= \int_{-1}^{1} x \left(2 - \frac{e^x + 1}{e^x + 1} \right) dx = \int_{-1}^{1} x dx = \frac{x^2}{2} \Big _{-1}^{1} = 0$	3p
c)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} \left(1 - \frac{1}{e^{x} + 1}\right) dx = \int_{0}^{1} \frac{e^{x}}{e^{x} + 1} dx = \ln\left(e^{x} + 1\right) \Big _{0}^{1} = \ln\frac{e + 1}{2}$	3p
	Cum $e < 3 \Rightarrow \frac{e+1}{2} < 2$, obținem $\mathcal{A} < \ln 2$	2 p