Transfer Learning

Pre entrenamiento sobre ImageNet

1. Train on ImageNet

2. Finetune network on your own data

Ejemplo con redes convolucionales

Ejemplo con redes convolucionales

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Datos secuenciales

Datos Secuenciales

na mirada panteísta donde un solo hombre inmortal es todos imbres y a su vez ninguno. Y a partir de esta idea también pue irmarse, como luego veremos, que un solo texto también dos los textos. Según Borges este relato vendría a ser osquejo de una ética para inmortales" y su tema "el efecto q inmortalidad causaría en los hombres". Este efecto lo descri orges a través del autor implícito del relato, el anticuario Jose artaphilus, quien narra la vida del tribuno romano Mar aminio Rufo. Así podremos presenciar en este relato la voz 1 hombre que fue todos y a la vez fue nadie, ya que fueron "labras de otros [...] la pobre limosna que le dejaron las hora s sielos". El texto presente nos servirá para hacer una reflexi

time series

handwriting

speech

```
Recu Se Mondeur D. Momentres
la Verment de Mors centre Granco, poder un
humeste De la famoion between four
le meneur Itatre formatique de fai face
urant et fermeste la grantifica de face 1890
Reçu Se Mondeur D. Momentred
la Vorment de Mondeur D. Momentred
la Vorment de Mondeur D. Momentred
la vorme de Mondeur Sommetred
le mineur Marie formatred
le mineur Marie formatred
le set summatre de sain
```

code

stock market

Distintos problemas

Aprendiendo una secuencia

Para aprender una relación de secuencia-a-secuencia se usa un sistema en dos partes:

- Un encoder que traduce la secuencia a un estado interno que se aprende
- Un decoder que toma el estado interno y lo traduce a otra secuencia

Texto: Word embedding

El texto no se puede usar directamente como las imágenes. Se necesita un espacio vectorial donde palabras con sentido similar tengan una representación similar.

Learned: word2vec

Recurrent Neural Networks

Output Vector

$$\hat{y}_t = \boldsymbol{W}_{hy}^T h_t$$

Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{hh}^T h_{t-1} + \boldsymbol{W}_{xh}^T x_t)$$

Input Vector

 x_t

Recurrent Neural Networks

RNNs: Backpropagation through time

Recurrent Neural Networks

Neural Network with a loop

Problems:

Long-term dependencies
Partial solutions (LSTM)

Sequential learning
Really slow for large problems

Long term dependencies: Attention!

Permitimos al decoder ver todos los estados y elegir la información que usa en cada paso

Parallel learning: Transformers

Feed

Input

Inputs

Transformers: key points

Attention → Query – Key - Value

Transformers: key points

Multiple layers of encoders

Multiple attention heads

Transformers: images

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, add position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. In order to perform classification, we use the standard approach of adding an extra learnable "classification token" to the sequence. The illustration of the Transformer encoder was inspired by Vaswani et al. (2017).