Latent class analysis

Latent profile analysis a.k.a. Gaussian mixture modeling

DL Oberski & L Boeschoten

Learning goals

- Understand and apply basic latent profile analysis (a.k.a. Gaussian mixture modeling)
- Apply further clustering evaluation techniques
- Understand & apply component merging
- Use mclust in R

Multivariate model-based clustering

- With 2 observed features:
 - mean becomes a vector of 2 means
 - standard deviation turns into a 2x2 variance-covariance matrix determining the shape of the cluster
- So we have multiple within-cluster parameters:
 - Two means
 - Two variances, one for each observed variable
 - A single covariance among the features
- Together, the 11 parameters define the likelihood in bivariate space, which from the top looks like ellipses

Multivariate model-based clustering

$$p(\mathbf{y}|\theta) = \pi_1^X MVN(\boldsymbol{\mu_1}, \boldsymbol{\Sigma_1}) + (1 - \pi_1^X)MVN(\boldsymbol{\mu_2}, \boldsymbol{\Sigma_2})$$

EM algorithm for Gaussian mixture model (LPA)

Multivariate model-based clustering

- Cluster shape parameters (the variance-covariance matrix) can be constrained to be equal across clusters
- Can also be different across clusters
- More flexible, complex model
- Think: bias-variance tradeoff

How to evaluate clustering results

- 1. Use of external information
- 2. Visual exploration
- 3. Stability assessment / sensitivity analysis
- 4. Internal validation indexes
- 5. Testing for clustering structure

File size increases with number clusters

Image loss decreases with number of clusters

Number of clusters

Imagie loize decreases witth mumber clfustesters

 More clusters gives better "fit" in terms of reconstruction of the image (compression is less "lossy")

Number of clusters

- More clusters gives bigger file size
 (solution is more complex, takes more bytes to store)
- So the model loss and model complexity trade off against each other
- This is a common theme in (unsupervised) machine learning.

Model fit criteria

- BIC: "Schwarz/Bayesian information criterion"
- AIC: "Another/Akaike information criterion"

(same as BIC but penalty is m)

- AIC3: The same as AIC but penalty is $\frac{3}{2}m$
- ICL: "Integrated information criterion" (Biernacki et al. 2000) (Same as BIC but penalized by entropy of classification)
- (Others based on):
 - Minimum description length (MDL)
 - Bayesian marginal likelihood

Model-based clustering in R

- mclust implements multivariate model-based clustering
- Provides an easy interface to fit several parameterizations
- Model comparison with BIC
- Plotting functionality

The full model

• We again have a K-mixture model, this time for multivariate continuous variables y, whose p.d.f., f, is modeled as

$$f(\mathbf{y}) = \sum_{k=1}^{K} \pi_k \cdot \text{MVN}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Where μ_k is the class-specific mean vector and
- Where Σ_k is the class-specific covariance matrix
- Note: no conditional independence assumption by default
- Would correspond to Σ_k being a diagonal matrix for each k

Covariance matrices in mclust

- All the models used in mclust are multivariate normal (Gaussian) (key assumption 1)
- Further "juice" is in structure of the covariance matrices, $\mathbf{\Sigma}_k$
- Would be tedious to restrict the elements of these matrices directly
- Therefore the mclust people use a trick:

$$\Sigma_g = \lambda_g D_g A_g D_q^T.$$

• This trick is very closely related to factor analysis with orthogonal factors, where D would be loading matrix, and A a diagonal "relative factor variance" matrix, with overall amount of variance lambda

Covariance matrices in mclust

"Volume-Shape-Orientation" decomposition:

$$\Sigma_g = \lambda_g D_g A_g D_g^T.$$

- λ_a : volume
- A_q : shape
- D_q : orientation
- Each of these can be equal (E) or different (V) across classes
- In addition, A_a and/or D_a can be "identity" (I)

Model-based clustering in R

- Mclust uses an identifier for each possible parametrization :
- E for equal, V for variable, I for identity matrix:
 - Volume (size of the clusters in data space):
 - Shape (circle or ellipse)
 - Orientation (the angle of the ellipse)

- E.g. an "EEE" model has equal volume, shape and orientation
- A VVV model has variable volume, shape, and orientation
- A VVE model has variable volume and shape but equal orientation

Figure 2.3 Models used in model-based clustering: examples of contours of the bivariate normal component densities for the 14 parameterizations of the covariance matrix used in model-based clustering.

Source: Bouveyron et al. (2021)

	Identifier	Model	Distribution	Volume	Shape	Orientation
	E V		Univariate Univariate	Equal Variable		
	EII VII	$\lambda I \ \lambda_g I$	Spherical Spherical	Equal Variable	Equal Equal	NA NA
	EEI VEI EVI VVI	$ \lambda A \lambda_g A \lambda A_g \lambda_g A_g $	Diagonal Diagonal Diagonal Diagonal	Equal Variable Equal Variable	Equal Equal Variable Variable	Axis-aligned Axis-aligned Axis-aligned Axis-aligned
	EEE VEE EVE EEV	$ \Sigma \\ \lambda_g D A D^T \\ \lambda D A_g D^T \\ \lambda D_g A D_g^T $	Ellipsoidal Ellipsoidal Ellipsoidal Ellipsoidal	Equal Variable Equal Equal	Equal Equal Variable Equal	Equal Equal Equal Variable
Source: Bouveyron et al. (2021)	VVE EVV VEV VVV	$ \lambda_g D A_g D^T \lambda D_g A_g D_g^T \lambda_g D_g A D_g^T \Sigma_g $	Ellipsoidal Ellipsoidal Ellipsoidal Ellipsoidal	Variable Equal Variable Variable	Variable Variable Equal Variable	Equal Variable Variable Variable

=

Model-based clustering in R: EEE vs. VV\

Equal volume, shape, orientation

Variable volume, shape, orientation

Model-based clustering in R

- How mclust optimizes hyperparameters:
 - Fit all the models with up to 9 clusters (or more, your choice!)
 - Compute the BIC (or ICL) of each model
 - Choose the model with the best BIC

VVV, 3 clusters

```
> fit mc <- Mclust(im ar, G = 1:10)
fitting ...
           > summary(fit mc)
Gaussian finite mixture model fitted by EM algorithm
Mclust VVV (ellipsoidal, varying volume, shape, and orientation)
model with 8 components:
log-likelihood n df BIC ICL
      3808542 640000 79 7616028 7530927
```

151032 48661 155542 34602 82621 49494 41665 76383

Clustering table:

GMM in Latent GOLD

- Latent GOLD does not expose the same covariance structure parametrizations as mclust does.
- It implicitly uses a specific kind of parametrization by assuming a diagonal covariance matrix by default, meaning:
 - No correlation between variables within components.
 - Each component has independent variances for each variable.
 - Equivalent to "VVI" in mclust

What if "clusters" are not normally distributed?

What if our "clusters" are not normally distributed?

- Example:
- At this point we could distinguish between:
 - a. "clusters": the groups we are actually interested in
 - b. "mixture components": the groups we find when assuming multivariate normal distributions (Gaussians)
- What can we do when clusters ≠ components?
- Two ideas discussed here:
 - 1. Use ICL or entropy directly to select classes
 - 2. Use component merging

Using entropy (e.g. ICL) to select K

- Provided there is good separation between our clusters,
- Using ICL (entropy) to select number of "classes" gives:
 - The right number of components, and
 - The components more or less correspond to the clusters

- Disadvantage: the model does not fit very well
- (density is not well estimated)
- Can matter for generative models

Merging components to get clusters

- GMM obviously has trouble with clusters that are not ellipses
- Secret weapon: merging

Powerful idea:

- Start out with the usual Gaussian mixture solution;
- merge "similar" components to create non-Gaussian clusters.

Note: we're distinguishing "components" from "clusters" now.

Merging components to get clusters

```
library(mclust)

output <- clustCombi(data = x)
plot(output)</pre>
```


BIC solution (8 clusters)

Combined solution with 7 clusters

Combined solution with 6 clusters

Combined solution with 5 clusters

Combined solution with 4 clusters

Combined solution with 3 clusters

Combined solution with 2 clusters

Combined solution with 1 clusters

Entropy plot

The tidyLPA package

```
library(tidyLPA)
library(dplyr)
pisaUSA15[1:100, ] %>%
   select(broad_interest, enjoyment, self_efficacy) %>%
   single_imputation() %>%
   estimate_profiles(3)
#> tidyLPA analysis using mclust:
#>
   Model Classes AIC BIC Entropy prob_min prob_max n_min n_max BLRT_p
#> 1 3 639.57 676.04 0.71 0.67 0.91 0.11 0.60 0.06
```