Blatt 24: Eigenschaften differenzierbarer Funktionen

Il Keine Zwischenstelle im MWS für vektorwertige Funktionen. In dieser Aufgabe bearbeiten wir ein Beispiel, das explizit zeigt, dass sich das Thm. in Vo. $\boxed{6}$ 4.2(ii) nicht auf Zielbereich \mathbb{R}^m (m>1) verallgemeinern läßt (sogar falls n=1 gilt).

Sei $c:[0,2\pi]\to\mathbb{R}^2,\ c(t)=(\cos(t),\sin(t)).$ Zeige, dass es kein $\theta\in(0,2\pi)$ mit $c(2\pi)-c(0)=2\pi\,Dc(\theta)$ gibt.

2 Taylorentwicklung explizit.
Bestimme die Taylorentwicklung der Funktion (vgl. Blatt 23 1)

$$g: \mathbb{R}^2 \to \mathbb{R}, \qquad g(x,y) = (x^2 + y^2) e^{xy}$$

im Punkt $\xi = (0,0)$ bis zur 2. Ordnung.

Versuche aus der Taylor-Formel zu erkennen, wie sich f nache ξ verhält. Plotte den Graphen von f nahe ξ und überprüfe, ob du recht hattest.

[3] Implizitensatz explizit—Folium cartesii. Wir studieren die Niveaumengen des sog. Folium cartesii

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = x^3 + y^3 - 3xy.$$

(a) Um dir einen Überblick zu verschaffen, plotte die Funktion f und ihre Niveaumengen im Bereich $[-2,2]^2$.

Anmerkung: Die Niveaulinie zum Wert 0 hat eine besonders schöne Gestalt!

- (b) Nahe welcher Punkte $(x_0, y_0) \in \mathbb{R}^2$ garantiert der Satz über implizite Funktionen (Vo. $\boxed{6}$ 4.4(vi)) die Auflösbarkeit der Gleichung $f(x, y) = f(x_0, y_0)$ nach y als differenzierbare Funktion von x?
- (c) Wo in der (a) entsprechenden Teilmenge der \mathbb{R}^2 ergibt sich jeweils y'(x) (= h'(x) in der Notation aus der Vo.)= 0?
- (d) Was bedeutet die Bedingung y'(x) = 0 aus (c) geometrisch? Was bedeutet sie für die Höhenschichtlinien von f und für f selbst?

 Tipp: Zeichne die in (c) gefundene Menge in deine Plots aus (a) ein!
- 4 Implizit vs. explitzit. Wir betrachten $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = x^2 + y^2$, sodass die Niveaumenge zum Wert 1 genau der Einheitskreis ist, also $N_f(1) = f^{-1}(\{1\}) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} =: S^1$.

- (a) In der Nähe welcher Punkte auf S^1 garantiert der Satz über implizite Funktionen, dass die Variable y als differenzierbare Funktion von x ausgedrückt (also nach y aufgelöst) werden kann? In der Nähe welcher Punkte kann nach x aufgelöst werden? Was ergibt der Satz hier jeweils als Ableitungen der "Auflösungen" y'(x) bzw. x'(y).
- (b) Vergleiche die Ergebnisse aus (a) mit einer expliziten Auflösung der Gleichung $x^2 + y^2 = 1$ nach y in den Bereichen $y \ge 0$, und y < 0.
- [5] Polarkoordinaten.

Betrachte (vgl. Blatt 23, Aufgabe 5)

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \qquad f(r, \varphi) = \left(\begin{array}{c} r\cos(\varphi) \\ r\sin(\varphi) \end{array} \right).$$

- (a) In der Nähe welcher Punkte $(r, \varphi) \in \mathbb{R}^2$ besitzt f eine differenzierbare Umkehrfunktion (und ist daher ein lokaler Diffeomorphismus)?
- (b) Für $G := (0, \infty) \times (0, 2\pi) \subseteq \mathbb{R}^2$ beschreibe die Bildmenge W = f(G). Für einen fixen Punkt $W \ni (x, y) = f(r, \varphi)$ interpretiere die Größen r, φ geeignet als Radius und Winkel. Fertige eine Skizze an! Begründe anschaulich, warum f als Abbildung $f: G \to W$ bijektiv ist.
- 6 Kugelkoordinaten.

Betrachte (vgl. Blatt 23, Aufgabe 5)

$$f: \mathbb{R}^3 \to \mathbb{R}^3, \qquad f(r, \varphi, \theta) = \left(\begin{array}{c} r\cos(\varphi)\sin(\theta) \\ r\sin(\varphi)\sin(\theta) \\ r\cos(\theta) \end{array} \right).$$

- (a) In der Nähe welcher Punkte $(r, \varphi, \theta) \in \mathbb{R}^3$ besitzt f eine differenzierbare Umkehrfunktion (und ist daher ein lokaler Diffeomorphismus)?
- (b) Für $G := (0, \infty) \times (0, 2\pi) \times (0, \pi) \subseteq \mathbb{R}^3$ beschreibe die Bildmenge W = f(G). Für einen fixen Punkt $W \ni (x, y, z) = f(r, \varphi, \theta)$ interpretiere die Größen r, φ und θ geeignet als Radius, Winkel der Projektion auf die Ebene z = 0 und Winkel mit der z-Achse. Fertige eine Skizze an! Begründe anschaulich, warum f als Abbildung $f: G \to W$ bijektiv ist.
- 7 Extremwertaufgaben.

Für die folgenden skalaren Funktionen auf \mathbb{R}^2 plotte jeweils Funktion und die Höhenschichtlinie um dir einen Überblick zu verschaffen und bestimme dann jeweils lokale Maxima und Minima. Zeichne die Extrema in deine Plots ein.

- (a) $f(x,y) = x^3 + y^3 3xy$ (Folium cartesii, vgl. Aufgabe 3)
- (b) $f(x,y) = 3xe^y x^3 e^{3y}$