ИССЛЕДОВАНИЕ ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ $Sr_{n+1}(Ti,Mn)_nO_{3n+1}$ (n = 1,2, ∞), ПОЛУЧЕННЫХ ПОСЛЕ ТЕРМОБАРИЧЕСКОЙ ОБРАБОТКИ

Балицкий А.И. $^{(1,2)}$, Белоносова Е.К. $^{(2)}$, Деева Ю.А. $^{(1,2)}$, Бажал В.А. $^{(1,2)}$, Чупахина Т.И. $^{(1)}$ Институт химии твердого тела УрО РАН 620990, г. Екатеринбург, ул. Первомайская, д. 91 $^{(2)}$ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

С каждым годом возрастает потребность в диэлектрических материалах для электронных компонентов, эксплуатируемых в среднечастотном диапазоне. В данной работе впервые были исследованы диэлектрические характеристики керамики полученной в условиях термобарической обработки на основе гомологического ряда Раддледена-Поппера с общей формулой $Sr_{n+1}(Ti,Mn)_nO_{3n+1}$ (n = 1,2, ∞). Для синтеза сложного оксида использовали цитрат-нитратный метод с последующей термообработкой при 1100 °C в течение 16 часов. Получение керамики проводили в условиях высокого давления 4 ГПа и температуры 1000 °C с выдержкой 5 минут. Керамические образцы являются плотно спеченными. Диэлектрические свойства керамики приведены на рисунке.

Диэлектрическая проницаемость с увеличением частоты снижается и выходит на плато, с увеличением температуры значения возрастают.