ECE100 Practice Final

Q1: Find Thevenin and Norton equivalent circuits for the circuit shown below.

Solution:

Open-circuit conditions:

$$i_x = \frac{15 - v_x}{5}$$
 $\frac{v_x}{10 + 10} - i_x + 0.5i_x = 0$

Solving, we find $v_x=10V$ and then we have $V_t=v_{oc}=v_x\frac{10}{10+10}=5V$.

Short-circuit conditions:

$$i_x = \frac{15 - v_x}{5}$$
 $\frac{v_x}{10} - i_x + 0.5i_x = 0$

Solving, we find $v_x=7.5V$ and then we have $i_{sc}=\frac{v_x}{10}=0.75A$. Then we have $R_t=\frac{v_{oc}}{i_{sc}}=6.67\Omega$. Thus the equivalents are:

Q2: Consider the circuit shown below. The circuit has been operating for a long time with the switch closed prior to t=0.

- a. Determine the values of i_L , i_1 , i_2 , i_3 , and v_C just before the switch opens.
- b. Determine the values of i_L , i_1 , i_2 , i_3 , and v_C immediately after the switch opens.
- c. Find $i_L(t)$ for t > 0.
- d. Find $v_C(t)$ for t > 0.

Solution:

(a) Prior to the switch opening, the circuit is operating in DC steady state, so the inductor acts as a short circuit, and the capacitor acts as an open circuit.

$$i_1(0^-) = \frac{10}{1000} = 10mA$$
 $i_2(0^-) = \frac{10}{2000} = 5mA$ $i_3(0^-) = 0$ $i_L(0^-) = i_1(0^-) + i_2(0^-) + i_3(0^-) = 15mA$ $v_C(0^-) = 10V$

(b) Because infinite voltage or infinite current are not possible in this circuit, the current in the inductor and the voltage across the capacitor cannot change instantaneously. Thus, we have $i_L(0^+)=i_L(0^-)=15mA$ and $v_C(0^+)=v_C(0^-)=10V$. Also, we have $i_1(0^+)=i_L(0^+)=15mA$, $i_2(0^+)=\frac{v_C(0^+)}{5000}=2mA$, and

Also, we have
$$i_1(0^+)=i_L(0^+)=15mA$$
, $i_2(0^+)=\frac{i_C(0^+)}{5000}=2mA$, and $i_3(0^+)=-i_2(0^+)=-2mA$.

(c) The current is of the form $i_L(t) = A + B \exp\left(-\frac{t}{\tau}\right)$. Because the inductor acts as a short circuit in steady state, we have $i_L(\infty) = A = \frac{10}{1000} = 10 mA$.

At $t = 0^+$, we have $i_L(0^+) = A + B = 15mA$, so we find B = 5mA.

The time constant si $\tau = \frac{L}{R} = 2 \times \frac{10^{-3}}{1000} = 2 \times 10^{-6} s$.

Thus, we have $i_L(t) = 10 + 5 \exp(-5 \times 10^5 t) \, mA$.

(d) This is a case of an initially charged capacitance discharging through a resistance. The time constant is $\tau=RC=5000\times 10^{-6}=5\times 10^{-3}s$. Thus we have $v_C(t)=V_i\exp\left(-\frac{t}{\tau}\right)=10\exp(-200t)\,V$.

Q3: Draw a CMOS logic circuit for a 2-input AND gate using NMOS and PMOS transistors.

Solution: A NAND gate followed by an inverter.

Q4: Consider the amplifier shown below.

- a. Draw the small signal equivalent circuit assuming that the capacitors are short circuits for the signal.
- b. Assume that $r_d=\infty$ and derive an expression for the voltage gain.
- c. Find I_{DQ} if $R=100k\Omega$, $R_f=100k\Omega$, $R_D=3k\Omega$, $R_L=10k\Omega$, $V_{DD}=20V$, $V_{t0}=5V$, and $K=1mA/V^2$. Determine the value of g_m at the Q point.
- d. Evaluate the expression from part b using the values in part c.
- e. Is this amplifier inverting or noninverting?

Solutions:

a.

b.
$$v_o = R'_L(i_{in} - g_m v_{in})$$
 $i_{in} = \frac{(v_{in} - v_o)}{R_f}$
$$A_v = \frac{v_o}{v_{in}} = \frac{R'_L - g_m R'_L R_f}{R'_L + R_f}$$

c. The DC circuit is:

$$V_{GSQ} = V_{DSQ}$$
 $I_{DQ} = K(V_{DSQ} - V_{t0})^2$ $I_{DQ} = \frac{V_{DD} - V_{DSQ}}{R_D}$

Using the above equations, we obtain

$$3V_{DSQ}^2 - 29V_{DSQ} + 55 = 0$$

$$V_{DSQ} = 7.08V$$
 and $I_{DQ} = 4.32 \ mA$

At the bias point:

$$g_m = \frac{di_D}{dV_{GS}} = 2K(V_{GSQ} - V_{t0}) = 4.16 \times 10^{-3} S$$

d.
$$R'_L = R_D || R_L = 2.31 k\Omega$$

 $A_v = -9.37$

e. This is an inverting amplifier that has a very low input impedance compared to many other MOSFET amplifiers.

Q5: Consider the bridge amplifier shown below.

- a. Assuming ideal op amps, derive an expression for the voltage gain v_o/v_s
- b. If $v_s(t) = 3\sin(\omega t)$, sketch $v_1(t)$, $v_2(t)$, and $v_o(t)$ to scale versus time.
- c. If the op amps are supplied from $\pm 15V$ and clip at output voltages of $\pm 14V$, what is the peak value of $v_o(t)$ just at the threshold of clipping? (Note: This circuit can be useful if a peak output voltage greater than the magnitude of the supply voltages is required.)

Solution:

a. One op amp is configured as an inverting amplifier with a gain of -2 and the other op amp is configured as a noninverting amplifier with a gain of +2. Thus we can write:

$$v_2(t) = -2v_s(t)$$

 $v_1(t) = 2v_s(t)$
 $v_o(t) = v_1(t) - v_2(t) = 4v_s(t)$
 $A_v = \frac{v_o}{v_s} = 4$

b.

c. The peak value of $v_o(t)$ at the threshold of clipping is 28V.