Part 2. R 통계분석 (데이터 분석 전문가 양성과정)

13

선형회귀의 이해

경북대학교 배준현 교수

(joonion@knu.ac.kr)

- 회귀: regression
 - '회귀'의 사전적 의미: 되돌아감(어디로?)
 - 회귀라는 용어의 유래:
 - 프랜시스 골턴의 유전학 연구에서 유래함
 - 회귀의 법칙: the law of regression
 - 프랜시스 골턴의 연구:
 - 부모의 키와 자녀의 키는 유전적으로 어떤 관계가 있는가?
 - 평균으로의 회귀: regression to the mean

TABLE I.

Number of Adult Children of various statures born of 205 Mid-parents of various statures.

(All Female heights have been multiplied by 1.08).

Heights of the Mid- parents in inches.	Heights of the Adult Children.												Total Number of		Medians		
	Below	62-2	63.2	64.2	65.2	66.2	67:2	68.2	69-2	70.2	71.2	72:2	73-2	Above	Adult Children.	Mid- parents.	Dictions.
Above								٠			١	1 7	3		4	5	l
72.5					۱			1	2	1	2		2	4	19	6	72.2
71.5	••	•••			1	3	4	3	5	10	4	9	2	2	43	11	69-9
70.5	1	•••	1	::	1	1	3	12	18	14	7	4	3	3	68	22	69.5
69.5	•:	•••	1	16	4	17	27	20	33	25	20	11	4	5	183	41	68.9
68·5 67·5	1		7	11	16	25	31	34	48 38	21 19	18 11	4	3	••	219	49	68.2
66.5	••	3	5 3	14 5	15 2	36 17	38 17	28	13	4		4		••	211	33	67.6
65.5	';	1	9	5	7	ii	lii	7	7	5		1		••	78 66	20 12	67·2 66·7
64.5	î	i	4	4	Ιí	5	5		2		٠"			••	23	5	65.8
Below	î		2	4	î	2	2	ï	ĩ	::			::		14	ĭ	
lotals	5	7	32	59	48	117	138	120	167	99	64	41	17	14	928	205	
Medians	·	1	66.3	67.8	67.9	67.7	67.9	68.3	68.5	69.0	69.0	70.0					

Note.—In calculating the Medians, the entries have been taken as referring to the middle of the squares in which they stand. The reason why the headings run 62·2, 63·2, &c., instead of 62·5, 63·5, &c., is that the observations are unequally distributed between 62 and 63, 63 and 64, &c., there being a strong bias in favour of integral inches. After careful consideration, I concluded that the headings, as adopted, best satisfied the conditions. This inequality was not apparent in the case of the Mid-parents.

Galton, Francis. "Regression towards mediocrity in hereditary stature." *The Journal of the Anthropological Institute of Great Britain and Ireland* 15 (1886): 246-263.

Galton, Francis. "Regression towards mediocrity in hereditary stature." *The Journal of the Anthropological Institute of Great Britain and Ireland* 15 (1886): 246-263.

■ 프랜시스 골턴의 데이터셋: GaltonFamilies

```
> library(HistData)
> str(GaltonFamilies)
'data.frame': 934 obs. of 8 variables:
$ family : Factor w/ 205 levels "001","002","003",..: 1 1 1 1 2 2 2 2 3 3 ...
$ mother : num 67 67 67 67 66.5 66.5 66.5 66.5 64 64 ...
$ midparentHeight: num 75.4 75.4 75.4 75.4 73.7 ...
$ children : int 4444444422...
$ childNum : int 1 2 3 4 1 2 3 4 1 2 ...
```


√ 13. 선형회귀의 이해

- > df <- GaltonFamilies</pre>
- > plot(df\$midparentHeight, df\$childHeight, pch = 19, col = adjustcolor("blue", alpha.f = 0.3))


```
> cor(df$midparentHeight, df$childHeight)
[1] 0.3209499
> model <- lm(childHeight ~ midparentHeight, data = df)</pre>
> model
Call:
lm(formula = childHeight ~ midparentHeight, data = df)
Coefficients:
       (Intercept) midparentHeight
                              0.6374
           22.6362
```


√ 13. 선형회귀의 이해

```
> plot(df$midparentHeight, df$childHeight,
      pch = 19, col = adjustcolor("blue", alpha.f = 0.3))
> abline(model, col = "tomato", lty = 1, lwd = 3)
```


• 자녀의 성별에 따라 키의 분포도 달라지지 않을까?

```
> color.m <- adjustcolor("steelblue", alpha.f = 0.3)</pre>
> color.f <- adjustcolor("orange", alpha.f = 0.3)</pre>
> with(df,
       plot(midparentHeight, childHeight, pch = 19,
            col = ifelse(gender == "male", color.m, color.f)))
> model.m <- lm(childHeight ~ midparentHeight,</pre>
                 data = subset(df, gender == "male"))
> abline(model.m, col = "blue", lty = 1, lwd = 3)
> model.f <- lm(childHeight ~ midparentHeight,</pre>
                 data = subset(df, gender == "female"))
> abline(model.f, col = "tomato", lty = 1, lwd = 3)
```


- 회귀분석과 선형회귀:
 - 회귀분석: regression analysis
 - 독립변수와 종속변수의 관계를 잘 설명하는 회귀식을 찾는 과정
 - 선형회귀: linear regression
 - 독립변수와 종속변수의 관계가 선형일 때
 - 선형 회귀식(직선의 방정식): $y = \beta + \alpha x$
 - 선형 회귀식의 절편(intercept)과 기울기(slope)를 알면
 - 독립변수와 종속변수의 관계를 설명, 또는, 예측할 수 있다.

- 선형 회귀모델: linear regression model
 - 회귀식: $y = \beta_0 + \beta_1 x$
 - 잔차(residual): 실제 데이터의 값(관측값)과 회귀식의 값(예측값)과의 차이
 - $r_i = y_i \hat{y}_i$, r_i : 잔차, y_i : 관측값, \hat{y}_i : 예측값


```
> set.seed(14)
> x < - runif(n = 7, min = 0, max = 10)
y < -3 + 2 * x + rnorm(n = 7, mean = 0, sd = 5)
> round(x, 2)
[1] 2.54 6.38 9.57 5.53 9.83 5.11 9.33
> round(y, 2)
[1] 7.18 14.25 17.25 19.26 25.87 15.48 22.86
```

i	1	2	3	4	5	6	7
x_i	2.54	6.38	9.57	5.53	9.83	5.11	9.33
y_i	7.18	14.25	17.25	19.26	25.87	15.48	22.86
\hat{y}_i							
r_i							


```
> model <- lm(y \sim x, data = df)
> coef(model)
(Intercept) x
   5.077833 1.960087
> intercept <- coef(model)[1]</pre>
> slope <- coef(model)[2]</pre>
> y.hat <- intercept + slope * x</pre>
> round(y.hat, 2)
[1] 10.06 17.58 23.84 15.91 24.35 15.10 23.36
> r <- y - y.hat
> round(r, 2)
[1] -2.88 -3.33 -6.59 3.35 1.53 0.37 -0.50
```


i	1	2	3	4	5	6	7
x_i	2.54	6.38	9.57	5.53	9.83	5.11	9.33
y_i	7.18	14.25	17.25	19.26	25.87	15.48	22.86
$\widehat{\mathcal{Y}}_i$	10.06	17.58	23.84	15.91	24.35	15.10	23.36
r_i	-2.88	-3.33	-6.59	3.35	1.53	0.37	-0.50

- 모형 적합: *fitting* a model
 - 데이터(관측값)를 가장 잘 설명하는 선형 회귀식은?
 - 데이터 전체를 고려했을 때 잔차가 가장 작은 직선의 방정식
 - 평균절대오차: MAE, mean absolute error

-
$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

• 평균제곱오차: MSE, mean squared error

$$- MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• 제곱근 평균제곱오차: RMSE, rooted mean squared error

-
$$RMSE = \sqrt{MSE}$$


```
> plot(x, y, pch = 19, col = "steelblue", xlim = c(2, 10), ylim = c(5, 30))
> abline(model, lwd = 2, col = "steelblue")
> abline(a = intercept + 5, b = slope, lty = 2, lwd = 2, col = "orange")
> abline(a = intercept - 5, b = slope, lty = 2, lwd = 2, col = "orange")
> abline(a = intercept, b = slope + 1, lty = 3, lwd = 2, col = "violet")
> abline(a = intercept, b = slope - 1, lty = 3, lwd = 2, col = "violet")
\rightarrow legend(x = 2, y = 30, lwd = 2, col = "steelblue",
         legend = paste("v =", intercept, "+", slope, "* x"))
```


Any Questions?

