

Università degli studi Milano-Bicocca Dipartimento di Fisica - Laboratorio II Esperienza Ottica - Microonde

F. Ballo, S. Franceschina, S. Dolci - Gruppo T
139 May $26,\,2024$

Abstract

Nella seguente relazione vengono presentati i risultati ottenuti dalla quarta esperienza del corso di Laboratorio II riguardante l'analisi di fenomeni ottici. L'obiettivo di questa esperienza è quello di studiare le proprietà caratteristiche delle onde elettromagnetiche nello spettro delle microonde. Ci si rifà all'utilizzo di emettitori e ricevitori per registrare il segnale delle onde altrimenti invisibili all'occhio umano (lunghezza d'onda circa 2.85cm).

Contents

1	Car	catteristiche del fascio			
	1.1	Configurazione del circuito e della strumentazione			
	1.2	Polarizzazione			
	1.3	Ampiezza			
	1.4	Geometria			
	1.5	Analisi conclusiva fascio			
2	Angolo di Brewster				
		2.0.1 Analisi dati			
3	Interferenza				
	3.1	Specchio Lloyd			
		3.1.1 Analisi Dati Lloyd			
		3.1.2 Specchio Lloyd: Conclusioni			
	3.2	Interferometro di Michelson			
		3.2.1 Analisi Dati Michelson			
4	Diff	frazione di Bragg			
	4.1	Analisi Dati Bragg			
5	Tah	nelle misurazioni			

1 Caratteristiche del fascio

1.1 Configurazione del circuito e della strumentazione

Di seguito riportiamo informazioni sulla strumentazione e sulle modalità di misura

- 1.2 Polarizzazione
- 1.3 Ampiezza
- 1.4 Geometria
- 1.5 Analisi conclusiva fascio
- 2 Angolo di Brewster
- 2.0.1 Analisi dati

3 Interferenza

Introduzione su interferenza

3.1 Specchio Lloyd

In questa sezione abbiamo utilizzato uno specchio di Lloyd per osservare l'interferenza tra i due fasci di microonde. Abbiamo disposto emettitore e ricevitore uno di fronte all'altro, misurandone la distanza d, in seguito abbiamo posizionato una lastra riflettente ad una certa distanza h dal centro.

In questo modo si vengono a creare due fasci: il primo percorre una distanza d in linea retta, mentre il secondo percorre una distanza $2\sqrt{h^2+(d/2)^2}$. Tale differenza di percorso porta a delle interferenze: se la differenza di cammino ottico è un multiplo intero di λ si ha interferenza costruttiva, altrimenti si ha interferenza distruttiva.

Al fine di misurare la lunghezza d'onda delle microonde, abbiamo seguito le istruzioni fornite dal manuale PASCO e abbiamo variato la distanza h alla ricerca di due minimi distanti dieci volte la lunghezza d'onda, una volta fissata la distanza d. Per poter eseguire un confronto sperimentale e non solo con il valore di λ tabulato, abbiamo ripetuto la procedura per un'altra distanza d.

Come formula per il calcolo della lunghezza d'onda abbiamo utilizzato la seguente, ricavata dalle relazioni geometriche che legano i cammini ottici e la differenza di fase tra i due fasci:

$$\lambda = \frac{2h + 4\sqrt{(d/2)^2 + h^2}}{n} \tag{1}$$

Dalla prima misurazione abbiamo ottenuto due valori di λ che abbiamo mediato, lo stesso abbiamo fatto per la seconda misurazione. Come errori delle singole lunghezze d'onda abbiamo propagato gli errori a partire dall'equazione 1, in seguito abbiamo propagato gli errori

per la media.

3.1.1 Analisi Dati Lloyd

Riportiamo di seguito i dati raccolti durante l'esperienza e i risultati ottenuti. Per la prima misurazione abbiamo scelto $d=100\pm1$ cm, mentre per la seconda $d=110\pm1$ cm. Abbiamo stimato le incertezze di 1 cm poichè sugli "horn" non erano ben segnalati i punti di emissione e di ricezione dell'onda; non sapendo bene dove fossero localizzati abbiamo aumentato l'errore rispetto alla sensibilità della riga graduata.

In tabella 1 riportiamo i valori di h e le intensità misurate per i minimi di interferenza, in tabella 2 riportiamo i valori di h e le intensità misurate per i massimi di interferenza. Come valore λ_1 abbiamo ottenuto 2.86 ± 0.07 cm, mentre per λ_2 abbiamo ottenuto 2.85 ± 0.06 cm

Abbiamo confrontato i valori ottenuti con il valore tabulato di $\lambda = 2.85$ cm, ottenendo:

- 1. Distanza in deviazioni standard tra λ_1 e λ_{tab} : 0.11σ
- 2. Distanza in deviazioni standard tra λ_2 e λ_{tab} : 0.08σ
- 3. Distanza in deviazioni standard tra λ_1 e λ_2 : 0.03σ

L'ultimo punto è stato calcolato per verificare la coerenza tra i due valori di λ ottenuti.

3.1.2 Specchio Lloyd: Conclusioni

Dai risultati ottenuti possiamo concludere che la lunghezza d'onda delle microonde calcolata tramite interferometro di Lloyd è compatibile con il valore tabulato. Al di là della misura della lunghezza d'onda tramite interferenza, questa sezione ci ha permesso di verificare sperimentalmente un'ipotesi che avanziamo in altre sezioni: l'interferenza per riflessione delle microonde. Ogniqualvolta un esperimento richieda la rotazione del ricevitore, si possono considerare effetti di interferenza alla Lloyd, poichè, per angoli in cui ricevitore e emettitore sono sempre più vicini, si può modelizzare il sistema come un interferometro di Lloyd. In conclusione, l'interferenza alla Lloyd si ottiene quando un materiale che abbia proprietà riflettenti viene avvicinato all'apparecchiatura, portandoci a considerare questo effetto di

interferenza in tutte le sezioni in cui ci troviamo a ruotare il ricevitore.

3.2 Interferometro di Michelson

3.2.1 Analisi Dati Michelson

4 Diffrazione di Bragg

4.1 Analisi Dati Bragg

5 Tabelle misurazioni

Table 1: Lloyd: prima misura

h [cm]	I [V]
9.9	1.64
16.9	1.7

Table 2: Lloyd: seconda misura

h [cm]	I [V]
10.9	1.40
17.2	1.5

10.9 v4 = 1.40 h4 = 17.2 v4 = 1.5