EXPERIMENT NO 4

CODE: ## Supervised Learning (Classification) – SVM # Load necessary libraries library(caret) library(e1071) # Load dataset data(iris) # Split dataset into train and test (70% train, 30% test) set.seed(123) train_index <- createDataPartition(iris\$Species, p=0.7, list=FALSE) train_data <- iris[train_index,]</pre> test_data <- iris[-train_index,] # Train SVM model and predict model <- svm(Species ~ ., data=train_data) predictions <- predict(model, test_data)</pre> # Confusion Matrix conf_matrix <- confusionMatrix(predictions, test_data\$Species)</pre>

print(conf_matrix)

Confusion Matrix and Statistics

Reference

Prediction setosa versicolor virginica

 setosa
 15
 0
 0

 versicolor
 0
 14
 2

 virginica
 0
 1
 13

Overall Statistics

Accuracy : 0.9333

95% CI : (0.8173, 0.986)

No Information Rate: 0.3333

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.9

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: setosa Class: versicolor Class: virginica

Sensitivity	1.0000	0.9333	0.8667
Specificity	1.0000	0.9333	0.9667
Pos Pred Value	1.0000	0.8750	0.9286
Neg Pred Value	1.0000	0.9655	0.9355
Prevalence	0.3333	0.3333	0.3333
Detection Rate	0.3333	0.3111	0.2889
Detection Prevalence	e 0.3333	0.3556	0.3111
Balanced Accuracy	1.0000	0.9333	0.9167

Load necessary libraries

library(cluster)

library(factoextra)

K-means clustering

set.seed(123)

kmeans_model <- kmeans(iris[, -5], centers=3)</pre>

Silhouette Score

sil_score <- silhouette(kmeans_model\$cluster, dist(iris[, -5]))</pre>

avg_sil_width <- mean(sil_score[, 3])</pre>

print(paste("Average Silhouette Score:", round(avg_sil_width, 3)))

Visualizing Clusters

fviz_cluster(kmeans_model, data=iris[, -5])

