

# CSE 473 Pattern Recognition

#### **Context Dependent Classification**

#### **Context Dependent Classification**

- In Context dependent classification, the class of a feature vector depends on
  - Its own value
  - Value of other feature vectors
  - Classes assigned to other vectors

# Viterbi Algorithm: Calculate $p(X|\Omega_i)p(\Omega_i)$



- Total M nodes in each of N columns
- Each node has M transitions
- Thus, complexity is  $O(NM^2)$

- The problem
  - Information bits  $I_k$  are transmitted
  - We receive  $x_k$

$$I_k \to \text{Channel} \to x_k$$

$$x_k = f(I_k, I_{k-1}, ..., I_{k-n+1}) + n_k$$

where, f is the action of channel  $n_k$  is the noise

$$I_k \to \text{Channel} \to x_k$$

We want the bits back

$$\underline{x}_k \to \text{equalizer} \to \hat{I}_k$$

where,

$$\underline{x}_{k} \equiv [x_{k}, x_{k-1}, ..., x_{k-l+1}]^{T}$$

$$I_k \to \text{Channel} \to x_k$$

We want the bits back

$$\underline{x}_k \to \text{equalizer} \to \hat{I}_{k-r}$$

OR 
$$\underline{x}_k \to \hat{I}_k$$
 or  $\hat{I}_{k-r}$  if we allow delay  $r$ 

$$I_k \to \text{Channel} \to x_k$$

We want the bits back

$$\underline{x}_k \to \text{equalizer} \to \hat{I}_{k-r}$$

OR 
$$\underline{x}_k \to \hat{I}_k$$
 or  $\hat{I}_{k-r}$  if we allow delay  $r$ 

This means we use the vector  $\underline{x}_k$  to get a single bit  $\hat{I}_k$  or  $\hat{I}_{k-r}$ 

#### Example

• 
$$x_k = 0.5I_k + I_{k-1} + n_k$$

• 
$$\underline{x}_k = \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix}, l = 2$$

• In vector  $\underline{x}_k$  three input symbols are involved:

$$I_{k}, I_{k-1}, I_{k-2}$$

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ |  | $\hat{I}_{k}$ |
|-------|-----------|-----------|--|---------------|
| 0     | 0         | 0         |  |               |
| 0     | 0         | 1         |  |               |
| 0     | 1         | 0         |  |               |
| 0     | 1         | 1         |  |               |
| 1     | 0         | 0         |  |               |
| 1     | 0         | 1         |  |               |
| 1     | 1         | 0         |  |               |
| 1     | 1         | 1         |  |               |

|  | $I_{k-2}$ |  | $\hat{I}_{k}$ |
|--|-----------|--|---------------|
|  | 0         |  |               |
|  | 1         |  |               |
|  | 0         |  |               |
|  | 1         |  |               |
|  | 0         |  |               |
|  | 1         |  |               |
|  | 0         |  |               |
|  | 1         |  |               |

| $I_{k-1}$ | $I_{k-2}$ |  | $\hat{I}_{k}$ |
|-----------|-----------|--|---------------|
| 0         | 0         |  |               |
| 0         | 1         |  |               |
| 1         | 0         |  |               |
| 1         | 1         |  |               |
| 0         | 0         |  |               |
| 0         | 1         |  |               |
| 1         | 0         |  |               |
| 1         | 1         |  |               |

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ |  | $\hat{I}_{k}$ |
|-------|-----------|-----------|--|---------------|
| 0     | 0         | 0         |  |               |
| 0     | 0         | 1         |  |               |
| 0     | 1         | 0         |  |               |
| 0     | 1         | 1         |  |               |
| 1     | 0         | 0         |  |               |
| 1     | 0         | 1         |  |               |
| 1     | 1         | 0         |  |               |
| 1     | 1         | 1         |  |               |

| $I_{k-1}$ | $I_{k-2}$ | $x_{k-1}$ |  |
|-----------|-----------|-----------|--|
| 0         | 0         | 0         |  |
| 0         | 1         | 1         |  |
| 1         | 0         | 0.5       |  |
| 1         | 1         | 1.5       |  |
| 0         | 0         | 0         |  |
| 0         | 1         | 1         |  |
| 1         | 0         | 0.5       |  |
| 1         | 1         | 1.5       |  |

$$I_{k-1} \rightarrow \boxed{\text{Channel}} \rightarrow x_{k-1}$$

$$x_{k-1} = 0.5I_{k-1} + I_{k-2}$$

| $I_k$ | $I_{k-1}$ | $x_k$ |  |
|-------|-----------|-------|--|
| 0     | 0         | 0     |  |
| 0     | 0         | 0     |  |
| 0     | 1         | 1     |  |
| 0     | 1         | 1     |  |
| 1     | 0         | 0.5   |  |
| 1     | 0         | 0.5   |  |
| 1     | 1         | 1.5   |  |
| 1     | 1         | 1.5   |  |

$$I_k \rightarrow \text{Channel} \rightarrow x_k$$

$$x_k = 0.5I_k + I_{k-1}$$

• Assuming  $n_k = 0$ 

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |  |
|-------|-----------|-----------|-------|-----------|--|
| 0     | 0         | 0         | 0     | 0         |  |
| 0     | 0         | 1         | 0     | 1         |  |
| 0     | 1         | 0         | 1     | 0.5       |  |
| 0     | 1         | 1         | 1     | 1.5       |  |
| 1     | 0         | 0         | 0.5   | 0         |  |
| 1     | 0         | 1         | 0.5   | 1         |  |
| 1     | 1         | 0         | 1.5   | 0.5       |  |
| 1     | 1         | 1         | 1.5   | 1.5       |  |

• Estimate  $I_k$  from  $(x_k, x_{k-1})$ 

• Assuming  $n_k = 0$ 

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-------|-----------|-----------|-------|-----------|------------|
| 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |



Eight possible clusters

• Assuming  $n_k = 0$ 

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-------|-----------|-----------|-------|-----------|------------|
| 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |



• '+' means  $I_k$  was 1, 'o' means  $I_k$  was 0

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-------|-----------|-----------|-------|-----------|------------|
| 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |



• Big cluster exists when the noise  $n_k$  is NOT 0 (zero)

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-------|-----------|-----------|-------|-----------|------------|
| 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |



- Estimate  $\hat{I}_k$  from  $(x_k, x_{k-1})$
- A two class problem
- Each class is a union of clusters

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-------|-----------|-----------|-------|-----------|------------|
| 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |



- During training,
  - send all values of  $(I_{k-2}, I_{k-1}, I_k)$  and calculate  $(x_{k-1}, x_k)$
  - Calculate the cluster centers  $\mu_k$
  - Assign the bit  $I_k$  to the cluster  $\mu_k$

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-------|-----------|-----------|-------|-----------|------------|
| ?     |           |           | 0     | 0         | $\omega_1$ |
| ?     |           |           | 0     | 1         | $\omega_2$ |
| ?     |           |           | 1     | 0.5       | $\omega_3$ |
| ?     |           |           | 1     | 1.5       | $\omega_4$ |
| ?     |           |           | 0.5   | 0         | $\omega_5$ |
| ?     |           |           | 0.5   | 1         | $\omega_6$ |
| ?     |           |           | 1.5   | 0.5       | $\omega_7$ |
| ?     |           |           | 1.5   | 1.5       | $\omega_8$ |



- During equalization (testing),
  - Get  $(x_{k-1}, x_k)$  from the channel
  - Find the nearest cluster  $\mu_i$
  - The bit of  $\mu_i$  is the estimated transmitted bit

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-------|-----------|-----------|-------|-----------|------------|
| 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |

Let

$$(I_k, I_{k-1}, I_{k-2}) = (0, 0, 1)$$

which corresponds to  $\omega_2$ 

| $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-------|-----------|-----------|-------|-----------|------------|
| 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |

Let

$$(I_k, I_{k-1}, I_{k-2}) = (0, 0, 1)$$

which corresponds to  $\omega_2$ 

| $I_{k+1}$ | $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-----------|-------|-----------|-----------|-------|-----------|------------|
| ?         | 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| ?         | 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| ?         | 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| ?         | 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| ?         | 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| ?         | 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| ?         | 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| ?         | 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |

Let

$$(I_k, I_{k-1}, I_{k-2}) = (0, 0, 1)$$
  
which corresponds to  $\omega_2$ 

• What will be the next bit  $I_{k+1}$ 

| $I_{k+1}$ | $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-----------|-------|-----------|-----------|-------|-----------|------------|
| ?         | 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0, 1      | 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| ?         | 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| ?         | 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| ?         | 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| ?         | 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| ?         | 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| ?         | 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |

Let

$$(I_k, I_{k-1}, I_{k-2}) = (0, 0, 1)$$
  
which corresponds to  $\omega_2$ 

• The next bit  $I_{k+1}$  can be either 1 or 0

$$(I_{k+1}, I_k, I_{k-1})$$
 $(1, 0, 0)$ 
 $\omega_5$ 
 $(0, 0, 0)$ 

| $I_{k+1}$ | $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-----------|-------|-----------|-----------|-------|-----------|------------|
| ?         | 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0, 1      | 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| ?         | 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| ?         | 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| ?         | 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| ?         | 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| ?         | 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| ?         | 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |

 This means, all transitions are not possible!!

```
    In other words, after (0, 0, 1) we will find
        either (1, 0, 0)
        or (0, 0, 0)
```

| $I_{k+1}$ | $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-----------|-------|-----------|-----------|-------|-----------|------------|
| 0, 1      | 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0, 1      | 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0, 1      | 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0, 1      | 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 0, 1      | 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 0, 1      | 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 0, 1      | 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 0, 1      | 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |



- This means, all transitions are NOT possible!!
- Alternately, after (0, 0, 1) we can get either (1, 0, 0) or (0, 0,0)

| $I_{k+1}$ | $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-----------|-------|-----------|-----------|-------|-----------|------------|
| 0, 1      | 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0, 1      | 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0, 1      | 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0, 1      | 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 0, 1      | 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 0, 1      | 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 0, 1      | 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 0, 1      | 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |



We can use Viterbi algorithm now !!!

# Solution (2): Viterbi Algorithm

| $I_{k+1}$ | $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-----------|-------|-----------|-----------|-------|-----------|------------|
| 0, 1      | 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0, 1      | 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0, 1      | 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0, 1      | 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 0, 1      | 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 0, 1      | 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 0, 1      | 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 0, 1      | 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |



- We need to define:
- $P(\omega_i | \omega_j)$
- Cost function

#### Solution (2): Viterbi Algorithm

| $I_{k+1}$ | $I_k$ | $I_{k-1}$ | $I_{k-2}$ | $x_k$ | $x_{k-1}$ |            |
|-----------|-------|-----------|-----------|-------|-----------|------------|
| 0, 1      | 0     | 0         | 0         | 0     | 0         | $\omega_1$ |
| 0, 1      | 0     | 0         | 1         | 0     | 1         | $\omega_2$ |
| 0, 1      | 0     | 1         | 0         | 1     | 0.5       | $\omega_3$ |
| 0, 1      | 0     | 1         | 1         | 1     | 1.5       | $\omega_4$ |
| 0, 1      | 1     | 0         | 0         | 0.5   | 0         | $\omega_5$ |
| 0, 1      | 1     | 0         | 1         | 0.5   | 1         | $\omega_6$ |
| 0, 1      | 1     | 1         | 0         | 1.5   | 0.5       | $\omega_7$ |
| 0, 1      | 1     | 1         | 1         | 1.5   | 1.5       | $\omega_8$ |



- Assuming equiprobability of the next bit:
  - $P(\omega_1 | \omega_1) = 0.5 = P(\omega_1 | \omega_5)$

#### Solution (2): Viterbi Algorithm

Cost function of transition

$$d(\omega_{i_k}, \omega_{i_{k-1}}) = d_{\omega_{i_k}}(\mathbf{x}_k)$$

Where, either Euclidean distance

$$d_{\omega_{l_k}}(x_k) = \|x_k - \boldsymbol{\mu}_{l_k}\|$$

Or Mahalanobis distance



$$d_{\omega_{t_k}}(\boldsymbol{x}_k) = \left( (\boldsymbol{x}_k - \boldsymbol{\mu}_{t_k})^T \boldsymbol{\Sigma}_{t_k}^{-1} (\boldsymbol{x}_k - \boldsymbol{\mu}_{t_k}) \right)^{1/2}$$

Can be used

#### Hidden Markov Model



#### Markov Models

• Set of states:  $\{s_1, s_2, \dots, s_N\}$ 

#### Markov Models

- Set of states:  $\{s_1, s_2, \dots, s_N\}$
- Process moves from one state to another generating a sequence of states :  $S_{i1}, S_{i2}, \ldots, S_{ik}, \ldots$

#### Markov Models

- Set of states:  $\{s_1, s_2, ..., s_N\}$
- Process moves from one state to another generating a sequence of states :  $S_{i1}, S_{i2}, \ldots, S_{ik}, \ldots$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

### Markov Models

- Set of states:  $\{s_1, s_2, \dots, s_N\}$
- Process moves from one state to another generating a sequence of states :  $S_{i1}, S_{i2}, \ldots, S_{ik}, \ldots$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

• To define Markov model, the following probabilities have to be specified: transition probabilities  $a_{ij} = P(s_j \mid s_i)$  and initial probabilities  $\pi_i = P(s_i)$ 





• Two states : 'Rain' and 'Dry'.



- Two states: 'Rain' and 'Dry'.
- Transition probabilities:
  - •P('Rain'|'Rain')=0.3, P('Dry'|'Rain')=0.7,
  - P('Rain'|'Dry')=0.2, P('Dry'|'Dry')=0.8



- Two states: 'Rain' and 'Dry'.
- Transition probabilities:
  - •P('Rain'|'Rain')=0.3, P('Dry'|'Rain')=0.7,
  - P('Rain'|'Dry')=0.2, P('Dry'|'Dry')=0.8
- Initial probabilities: say P('Rain')=0.4, P('Dry')=0.6.

• By Markov chain property, probability of state sequence can be found by the formula:

$$P(s_{i1}, s_{i2}, ..., s_{ik}) = P(s_{ik} | s_{i1}, s_{i2}, ..., s_{ik-1}) P(s_{i1}, s_{i2}, ..., s_{ik-1})$$

$$= P(s_{ik} | s_{ik-1}) P(s_{i1}, s_{i2}, ..., s_{ik-1}) = ...$$

$$= P(s_{ik} | s_{ik-1}) P(s_{ik-1} | s_{ik-2}) ... P(s_{i2} | s_{i1}) P(s_{i1})$$



•Suppose we want to calculate a probability of a sequence of states in our example, {'Dry','Dry','Rain',Rain'}.

P({'Dry','Dry','Rain',Rain'})



•Suppose we want to calculate a probability of a sequence of states in our example, {'Dry','Dry','Rain',Rain'}.

$$P(\{\text{'Dry','Dry','Rain',Rain'}\})$$

$$= P(\text{'Rain'}|\text{'Rain'}) P(\text{'Rain'}|\text{'Dry'}) P(\text{'Dry'}|\text{'Dry'}) P(\text{'Dry'})$$



•Suppose we want to calculate a probability of a sequence of states in our example, {'Dry','Dry','Rain',Rain'}.

```
P(\{\text{'Dry','Dry','Rain',Rain'}\})
= P(\text{'Rain'}|\text{'Rain'}) P(\text{'Rain'}|\text{'Dry'}) P(\text{'Dry'}|\text{'Dry'}) P(\text{'Dry'})
= 0.3*0.2*0.8*0.6
```







HTHHTTTHHH....



HTHHTTTHHH....

Can we guess which coin is tossed at different times?

### Not A Hidden Markov Model









- Set of states:  $\{s_1, s_2, \dots, s_N\}$
- •Process moves from one state to another generating a sequence of states :  $s_{i1}, s_{i2}, ..., s_{ik}, ...$
- •Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

• States are not visible, but each state randomly generates one of *M* observations (or visible states)

$$\{v_1, v_2, \dots, v_M\}$$

• States are not visible, but each state randomly generates one of *M* observations (or visible states)

$$\{v_1, v_2, \dots, v_M\}$$

- •To define hidden Markov model, the following probabilities have to be specified:
  - •matrix of transition probabilities  $A=(a_{ij})$ ,  $a_{ij}=P(s_i|s_i)$
  - •matrix of observation probabilities  $B=(b_i(v_m))$ , where,  $b_i(v_m)=P(v_m|s_i)$
  - •vector of initial probabilities  $\pi = (\pi_i)$ ,  $\pi_i = P(s_i)$
- •Model is represented by  $M=(A, B, \pi)$ .

# Example of Hidden Markov Model



# Example of Hidden Markov Model



•Initial probabilities: say P('Low')=0.4, P('High')=0.6.

# Example of Hidden Markov Model

- Two states: 'Low' and 'High' atmospheric pressure.
- Two observations: 'Rain' and 'Dry'.
- Transition probabilities: P(`Low'|`Low')=0.3, P(`High'|`Low')=0.7,

$$P(\text{`Low'}|\text{`High'})=0.2, P(\text{`High'}|\text{`High'})=0.8$$

- Observation probabilities : P(`Rain'|`Low')=0.6 , P(`Dry'|`Low')=0.4 , P(`Rain'|`High')=0.4 , P(`Dry'|`High')=0.3 .
- Initial probabilities: say P('Low')=0.4, P('High')=0.6.

### Calculation of observation sequence probability

 Suppose we want to calculate a probability of a sequence of observations in our example, {'Dry','Rain'}.

Consider all possible hidden state sequences:

```
P({'Dry','Rain'}) = P({'Dry','Rain'}, {'Low','Low'})
+P({'Dry','Rain'}, {'Low','High'})
+P({'Dry','Rain'}, {'High','Low'})
+P({'Dry','Rain'}, {'High','High'})
```

### Calculation of observation sequence probability

```
    P({'Dry','Rain'}) = P({'Dry','Rain'}, {'Low','Low'})
    + P({'Dry','Rain'}, {'Low','High'})
    + P({'Dry','Rain'}, {'High','Low'})
    + P({'Dry','Rain'}, {'High','High'})
```

```
where first term is:
```

```
P({'Dry','Rain'}, {'Low','Low'})=
P({'Dry','Rain'} | {'Low','Low'}) P({'Low','Low'}) =
P('Dry'|'Low')P('Rain'|'Low') P('Low')P('Low'|'Low)
= 0.4*0.4*0.6*0.4*0.3
```

### Main issues using HMMs

Evaluation problem.

Given the HMM  $M=(A, B, \pi)$  and the observation sequence  $O=o_1 o_2 ... o_K$ , calculate the probability that model M has generated sequence O.

 $O=o_1...o_K$  denotes a sequence of observations  $o_k \in \{v_1,...,v_M\}$ .

### Main issues using HMMs

#### Decoding problem.

Given the HMM  $M=(A, B, \pi)$  and the observation sequence  $O=o_1 o_2 ... o_K$ , calculate the most likely sequence of hidden states  $s_i$  that produced this observation sequence O.

 $O=o_1...o_K$  denotes a sequence of observations  $o_k \in \{v_1,...,v_M\}$ .

### Main issues using HMMs

#### Learning problem.

Given some training observation sequences  $O=o_1 o_2 ... o_K$  and general structure of HMM (numbers of hidden and visible states), determine HMM parameters  $M=(A, B, \pi)$  that best fit training data.

 $O=o_1...o_K$  denotes a sequence of observations  $o_k \in \{v_1,...,v_M\}$ .