Función.

El concepto de función surge cuando dos variables están relacionadas, de tal manera que una de las variables determina el valor de la otra variable.

Ejemplos:

1. Física. Tiempo de caída, t representa tiempo y h representa altura:

$$t = \sqrt{\frac{2 \cdot h}{9.81}}$$

2. Economía / Finanzas. Tipo de cambio. m representa MXN (Peso Mexicano) y d representa USD (Dólar Americano).

$$d=\frac{m}{21}$$

3. Geometría. Área del círculo, A representa el área y r representa el radio del círculo:

$$A = \pi \cdot r^2$$

Estas tres relaciones son ejemplos de funciones, si en $Tiempo\ de\ caida$ sustituimos un valor h por algún número en especifico por ejemplo h=20 entonces obtenemos:

$$t = \sqrt{\frac{2 \cdot 20}{9.81}} = 2.019275 \dots \approx 2.02$$

O también, si en Tipo de cambio sustituimos m=105 obtenemos:

$$d = \frac{105}{21} = 5$$

En ambos ejemplos, el valor de unas de las variables **determina** el valor de la otra variable. En el ejemplo de economía si m=105 entonces d=5, en el ejemplo de física si h=20 entonces t=2.019275...

En las funciones tenemos dos tipos de variables: **independientes** y **dependientes**. Las variables **dependientes** reciben ese nombre porque *dependen* del valor de la otra variable, como regla general las podemos identificar porque siempre están despejadas. Las **independientes** tienen la característica que nosotros podemos elegir libremente su valor. Puedo sustituir r = 1, r = 6.5, r = 10.1 o cualquier valor que yo quiera en la función de *Área del círculo*.

En nuestro ejemplos tenemos:

¹Este es el tipo de cambio redondeado al tiempo que se escribe este árticulo.

Función	Variable Independiente	Variable Dependiente
, *	h: Alturam: Peso Mexicanor: Radio	t: Tiempo d: Dólar Americano A: Área

Notación f(x)

Para simplificar el uso de variables, en cálculo denotamos a las variables independientes con la letra x y las variables dependientes con la letra y. Así, si expresamos nuestros ejemplos de la sección anterior tendríamos:

$$t = \sqrt{\frac{2h}{9.81}} \to y = \sqrt{\frac{2x}{9.81}}$$
$$d = \frac{m}{21} \to y = \frac{x}{21}$$
$$A = \pi \cdot r^2 \to y = \pi \cdot x^2$$

La notación que involucra a las variables x y y es común en cálculo, sin embargo, existe otra notación donde a la variable dependiente y la sustituimos por el símbolo f(x). Esta notación nos permite escribir a la funciones de la siguiente manera:

$$y = \sqrt{\frac{2x}{9.81}} \to f(x) = \sqrt{\frac{2x}{9.81}}$$
$$y = \frac{x}{21} \to f(x) = \frac{x}{21}$$
$$y = \pi \cdot x^2 \to f(x) = \pi \cdot x^2$$

La letra f que sirve para identificar una función se le conoce como $nombre\ de$ $la\ función$, claramente se puede nombrar una función como uno quiera, puedo cambiar $f(x)=x^2$ por $g(x)=x^2$ y representan la misma función. Así podemos entonces nombrar nuestra funciones como:

$$f(x) = \sqrt{\frac{2x}{9.81}} \to f(x) = \sqrt{\frac{2x}{9.81}}$$
$$f(x) = \frac{x}{21} \to g(x) = \frac{x}{21}$$
$$f(x) = \pi \cdot x^2 \to h(x) = \pi \cdot x^2$$

Analogía de la máquina.

Una manera muy útil de representar funciones, es a través de una "máquina". Nosotros le introducimos valores a esta "máquina", esta hace cálculos y nos regresa un valor. En el diagrama de arriba tenemos representado este proceso: Nuestra máquina es la función $f(x) = x^2$, le introducimos el número 3 y la máquina no devuelve el valor 9.

A el número que le introducimos a esta máquina se le conocen como argumento, entrada o input. Después la máquina "evalúa" el argumento y nos regresa un valor que se le conoce como valor de retorno, salida o output.

En nuestro diagrama en particular: 3 es el argumento, la función evalúa $f(3)=3^2$ y el valor de retorno es 9.

Representación de una función.

Tenemos tres maneras de representar una función, cada una de estas maneras tiene ventajas y desventajas:

- Fórmula Representación analítica.
- Gráfica.
- Enumeración.

Una fórmula es la representación mas común en esta materia, ya hemos visto muchos ejemplos de fórmulas: $f(x) = x^2$, $f(x) = \frac{x}{21}$, etc. La gráfica consiste en una colección de puntos en el plano cartesiano, en la próxima sección veremos como podemos graficar funciones. Y por última una enumeración consiste en describir a través de una lista o tabla a que argumento le corresponde que valor de retorno.

 $[\]overline{^2}$ Claramente nosotros somos los que tenemos que hacer los cálculos a mano, la máquina es solo una analogia.

La representación analítica es la que preferimos porque es posible convertirla en gráfica y en enumeración, mientras que las otras dos no tienen esta característica: la gráfica la podemos convertir en una enumeración pero no necesariamente la podemos convertir en fórmula y la enumeración la podemos convertir en gráfica pero no necesariamente en fórmula.

Gráfica de una función.(Tabulación)

El proceso para graficar una función dada una fórmula f(x) es el siguiente:

- 1. Escoge un rango de valores para x. Por ejemplo: -3, -2, -1, 0, 1, 2 y 3.
- 2. Evalúa cada uno de los valores en la función f(x). Hazlo en una tabla para mantener orden.
- 3. Cada uno de los valores obtenidos forman una coordenada (x, f(x)). Ubícalos en el plano.

Por ejemplo, vamos a conseguir la gráfica de al función $f(x)=x^3$ desde -3 hasta 3.

\overline{x}	$f(x) = x^3$	(x, f(x))
-3	$f(-3) = (-3)^3 = -27$	(-3, -27)
-2	$f(-2) = (-2)^3 = -8$	(-2, -8)
-1	$f(-1) = (-1)^3 = -1$	(-1, -1)
0	$f(0) = (0)^3 = 0$	(0,0)
1	$f(1) = (1)^3 = 1$	(1, 1)
2	$f(2) = (2)^3 = 8$	(2, 8)
3	$f(3) = (3)^3 = 27$	(3, 27)

Detalles técnicos de graficación.

Considera la función $f(x) = \frac{1}{x}$, vamos a realizar tres gráficas de la misma función:

- 1. De -5a 5 pasando por
:-5, -3, -1, 1, 3, 5 (2 unidades entre cada valor)
- 2. De -5 a 5 pasando por: $-5, -4, -3, \ldots, 3, 4, 5$ (1 unidad entre cada valor)
- 3. De -5 a 5 pasando por: $-5, -4.9, -4.8, \dots, 4.8, 4.9, 5$ (0.1 unidades entre cada valor)

Primer gráfica.

\overline{x}	$f(x) = \frac{1}{x}$	(x, f(x))
$\overline{-5}$	$f(-5) = \frac{1}{-5} = -0.2$	(-5, -0.2)
-3	$f(-3) = \frac{1}{-3} = -0.333$	(-3, -0.333)
-1	$f(-1) = \frac{1}{-1} = -1$	(-1, -1)
1	$f(1) = \frac{1}{1} = 1$	(1,1)
3	$f(3) = \frac{1}{3} = 0.333$	(3, 0.333)

\overline{x}	$f(x) = \frac{1}{x}$	(x, f(x))
5	$f(5) = \frac{1}{5} = 0.2$	(5, 0.2)

Segunda gráfica.

$$\frac{x}{-5} \quad f(x) = \frac{1}{x} \qquad (x, f(x))$$

$$-5 \quad f(-5) = \frac{1}{-5} = -0.2 \qquad (-5, -0.2)$$

$$-4 \quad f(-4) = \frac{1}{-4} = -0.25 \qquad (-4, -0.25)$$

$$-3 \quad f(-3) = \frac{1}{-3} = -0.333 \qquad (-3, -0.333)$$

$$-2 \quad f(-2) = \frac{1}{-2} = -0.5 \qquad (-2, -0.5)$$

$$-1 \quad f(-1) = \frac{1}{-1} = -1 \qquad (-1, -1)$$

$$0 \quad f(0) = \frac{1}{0} \text{ (indef)} \qquad (0, -)$$

$$1 \quad f(1) = \frac{1}{1} = 1 \qquad (1, 1)$$

x	$f(x) = \frac{1}{x}$	(x, f(x))
2	$f(2) = \frac{1}{2} = 0.2$	(2, 0.2)
3	$f(3) = \frac{1}{3} = 0.333$	(3, 0.333)
4	$f(4) = \frac{1}{4} = 0.25$	(4, 0.25)
5	$f(5) = \frac{1}{5} = 0.2$	(5, 0.2)

Tercer gráfica.

La forma de la gráfica de una función no siempre es evidente, la mejor estrategia es usar el mayor número de puntos para obtener la mejor resolución posible.

Funciones definidas por piezas.

Es posible tener una función que respete múltiples fórmulas, esto se consigue al restringir que ciertos argumentos sean evaluados con alguna fórmula y otros argumentos con otra.

Por ejemplo:

$$f(x) = \begin{cases} 2x + 1, x < 3\\ x^2 - 1, x \ge 3 \end{cases}$$

Para conocer el valor de f(2) notamos que 2 < 3 y por lo tanto corresponde a la primer fórmula (2x+1), así obtenemos f(2) = 2(2) + 1 = 5, para conocer el valor de f(5) notamos que $5 \ge 3$ y por lo tanto corresponde la segunda fórmula $(x^2 - 1)$, así obtenemos $f(5) = 5^2 - 1 = 24$.