Εύρεση του αντιστρόφου A^{-1} ενός αντιστρέψιμου (det $A \neq 0$) τετραγωνικού πίνακα A (2 × 2 ή 3 × 3)

 2×2

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

 3×3

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{pmatrix} a_{22}a_{33} - a_{23}a_{32} & a_{13}a_{32} - a_{12}a_{33} & a_{12}a_{23} - a_{13}a_{22} \\ a_{23}a_{31} - a_{21}a_{33} & a_{11}a_{33} - a_{13}a_{31} & a_{13}a_{21} - a_{11}a_{23} \\ a_{21}a_{32} - a_{22}a_{31} & a_{12}a_{31} - a_{11}a_{32} & a_{11}a_{22} - a_{12}a_{21} \end{pmatrix}$$

Και οι δύο παραπάνω περιπτώσεις φυσικά προκύπτουν από τον σχετικό τύπο για την αντιστροφή ενός (αντιστρέψιμου) τετραγωνικού η×η πίνακα που μάθατε στη Γραμμική Άλγεβρα (θυμηθείτε τις έννοιες «προσαρτημένος» (adjoint), «ανάστροφος» (transpose) πίνακας, «ελάσσων ορίζουσα» (cofactor)).