

412TW-PA-15238

Analysis of Covariance with Linear Regression Error Model on Antenna Control Unit Tracking

DANIEL T. LAIRD

AIR FORCE TEST CENTER
EDWARDS AFB, CA

OCTOBER 20 2015

4
1
2
T
W

Approved for public release ; distribution is unlimited.
412TW-PA-15238

AIR FORCE TEST CENTER
EDWARDS AIR FORCE BASE, CALIFORNIA
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) 20 OCT 2015		2. REPORT TYPE Technical Brief		3. DATES COVERED (From - To) 20 OCT 15 – 23 OCT 15	
4. TITLE AND SUBTITLE Analysis of Covariance with Linear Regression Error Model on Antenna Control Tracking				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Daniel T. Laird				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 412 th TW/ENI, Edwards AFB CA 93524				8. PERFORMING ORGANIZATION REPORT NUMBER 412TW-PA-15238	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S) N/A	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release A: distribution is unlimited.					
13. SUPPLEMENTARY NOTES CA: Air Force Test Center Edwards AFB CA CC: 012100					
14. ABSTRACT Over the past several years DoD has imposed constraints on test deliverables, requiring objective measures of test objective results, i.e., statistically defensible test and evaluation (SDT&E) methods and results. These constraints force tester to employ statistical hypotheses, analyses and perhaps modeling to assess test results objectively, i.e., on statistical metrics, probability of confidence, logical inference to supplement technical expertise, rather than rely solely on expertise, which is subjective. In this paper we apply linear regression modeling and analysis of variance (ANOVA) to decide for the null- or alternative-hypotheses of a telemetry antenna control unit's (ACU) ability to track on C-band while receiving S- or C-band data. Together, regression and ANOVA compose a method known as analysis of covariance (ANCOVA). The intent is to present examples of tools and techniques useful for SDT&E methodologies in testing.					
15. SUBJECT TERMS Statistically Defensible Test & Evaluation (SDT&E), Statistical Modeling, Analysis of Covariance (ANCOVA), Null- and Alternative-Hypothesis, S- and C-bands.					
16. SECURITY CLASSIFICATION OF: Unclassified		17. LIMITATION OF ABSTRACT None	18. NUMBER OF PAGES 11	19a. NAME OF RESPONSIBLE PERSON 412 TENG/EN (Tech Pubs)	
a. REPORT Unclassified				b. ABSTRACT Unclassified	c. THIS PAGE Unclassified

**ANALYSIS OF COVARIANCE
WITH LINEAR REGRESSION ERROR MODEL
ON ANTENNA CONTROL UNIT TRACKING**

By
DANIEL T. LAIRD

ABSTRACT

Over the past several years DoD imposed constraints on test deliverables, requiring objective measures of test results, i.e., statistically defensible test and evaluation (SDT&E) methods and results. These constraints force the tester to employ statistical hypotheses, analyses and perhaps modeling to assess test results objectively, i.e., based on statistical metrics, probability of confidence and logical inference to supplement rather than rely solely on expertise, which is too subjective. Experts often disagree on interpretation. Numbers, although interpretable, are less variable than opinion. Logic, statistical inference and belief are the bases of testable, repeatable and refutable hypothesis and analyses. In this paper we apply *linear regression modeling* and *analysis of variance* (ANOVA) to time-space position information (TSPI) to determine if a telemetry (TM) antenna control unit (ACU) under test (AUT) tracks statistically, thus as efficiently, in C-band while receiving both C- and S-band signals. Together, regression and ANOVA compose a method known as *analysis of covariance* (ANCOVA). In this, the second of three papers, we use data from a range test, but make no reference to the systems under test, nor to causes of error. The intent is to present examples of tools and techniques useful for SDT&E methodologies in testing.

KEY TERMS

Null- and alternative-hypotheses, tracking mode, TM, AGC, ACU, Scan rate, Slew rate, TSPI samples, GPS, INS, observables, calculated, dataframe, R, inner-product, modeling, ANOVA, ANCOVA, *F*-test and *t*-test, PDF, CDF.

INTRODUCTION

Using statistical methods we decide to either reject or accept the *null-hypothesis*, H_0 or its *alternative hypothesis*, H_1 . We do so based on objective criteria derived from analyses. The test null hypothesis is:

H_0 : AUT tracking errors are statistically identical independent of data carrier.

The AUT tracks on conically scanned^a signal strength, or amplitude sampled from *automatic gain control* (AGC) circuits, and on controllable conic-scan (*Scan*) and antenna slew (*Slew*) rates. The test includes S-band and C-band data channels (which carry TSPI) of a C-band tracking AUT. Ideally the tracking algorithm should have no dependence on observed angles or data band, i.e., the tracking algorithm should not depend on pointing angle, as the conic-scan center is controlled to stay on peak tracking band signal strength. Of course this is ideal, and we've discovered that *tracking-error* is dependent on combinations of both azimuth and

^a Rf 3.

412 TW-PA-15238; DISTRUBUTION A: Approved for public release; distribution is unlimited.

elevation, and uniquely so receiving in C- or S-band. We had no information about the ACU tracking algorithm, only commanded and observed data, which requires another source to determine tracking error.^b Data includes observed and commanded angles, AGC levels and the rate control states. This paper's focus is analysis of *tracking-error* using TSPI data culled from each of the carriers at specific test points. In a companion paper^c we extend analyses into synthesis of an *auto-tracking* model independent of observed angle. All modeling and analyses is in R, a statistical application.

ANALYSIS OF COVARIANCE

For modeling purposes, received TM signal power is a bounded continuous parameter sampled from receiver automatic gain control (AGC) circuits of an integrated AUT. Local azimuth and elevation angles are also modeled as bounded continuous parameters, commanded by and measured from the AUT feedback. An ACU employs two categorical *tangential*^d or *rate* control parameters, designated as *Scan* and *Slew*. Other available data include target TSPI: global position system (GPS) and inertial navigation system (INS) data. Since carriers radiate from a moving target that changes in both global position and attitude, we experimented with various regression models with parameters from the target. Due to length constraints we cannot discuss all models and variations. Thus, we focus on a single tracking model based on a subset of ACU parameters and target TSPI (GPS and INS) samples. Target TSPI is required for calculating measures on tracking accuracy of milli-radian precision samples to build a tracking error model. ANOVA reveals numerical estimates of the target's attitude on *tracking-error*. We construct a *tracking-error* model of a continuous *expected error*, linearly regressed against track angles, AGC, rate controls and a subset of target attitude. Aircraft attitude *yaw*, *pitch* and *roll* were investigated as potential sources of transmitter radiation pattern fluctuation on receiver AGC levels. ANCOVA employed a final *reduced* tracking-error model. Paper length limitations allow only brief discussion of *full* model reduction.

LINEAR REGRESSION MODEL

The auto-tracking model is built on a *linear predictor* of a regressed measure vector and its conjugate observable-control space, which together form an inner-product space^e. The predictor is a *functional form* specifically an *inner-product*:

$$\beta \bullet \mathbf{x} = \beta_0 + \sum \beta_k x_k \equiv bx. \quad (1)$$

The *bx* is a common statistical symbol for the inner-product. β designates predictor coefficients, conjugates regressed against the sampled independent data variables \mathbf{x} . β_0 designates the predictor intercept (the *null-model*). The response is a continuous variable predicted by *bx*. We designate the model:

$$lm(y \sim bx). \quad (2)$$

where *y* designates estimated error. Parameters are collated as a *dataframe* constructed from sample files. A sample is shown in Figure 1. We see from the figure a separation of dataframes per receiver band. The dataframe contains time common to both ACU and TSPI. Time

^b Rf. 1.

^c Rf. 2.

^d Rf. 1, 7 & 8.

^e Rf. 8.

alignment correlates ACU and TSPI samples at 1Hz. Observed angles and AGC levels come from the ACU, the expected angles and line-of-sight (LoS) are derived via a *geometric model*^f that translates TSPI global position to local azimuth and elevation angles of LoS between tracker and target. Rate control is a state from the ACU. AT is derived from the ACU elevation and azimuth tracking *modes*. Attitude data is sampled from target INS. Two categorical tangential^g control parameters are conical-scan rate, $Scan \in \{2\}^+$ and four-level slew rate, $Slew \in \{4\}^h$.

```

CLdataframe.sample.txt - Notepad
File Edit Format View Help

> Sband1[1:5,-17]
Local.Time Az.Obs El.Obs Az.Calc El.Calc Az.Err El.Err LoS AGC CAGC Yaw Pitch Roll Scan Slew AT
1 08:49:47 339.275 6.959 341.284 5.937 2.009 -1.022 3.398 26.12 3 13.9194 171.8437 3.046875 1 1 1
2 08:49:48 338.083 7.761 340.687 6.262 2.604 -1.499 3.220 26.02 3 13.9194 171.9375 3.109375 1 1 1
3 08:49:49 337.715 7.294 340.020 6.627 2.305 -0.667 3.043 28.17 3 13.9194 171.9219 3.078125 1 1 1
4 08:49:50 337.589 7.794 339.272 7.034 1.683 -0.760 2.866 29.58 3 13.9194 171.9375 3.062500 1 1 1
5 08:49:51 336.847 8.530 338.422 7.491 1.575 -1.039 2.691 29.58 3 13.9194 171.9062 3.000000 1 1 1

> Cband1[1:5,-17]
Local.Time Az.Obs El.Obs Az.Calc El.Calc Az.Err El.Err LoS AGC CAGC Yaw Pitch Roll Scan Slew AT
1 08:23:20 206.011 -1.468 203.639 -0.445 -2.372 1.023 19.777 3.62 1 13.9194 -27.42187 -0.343750 1 1 0
2 08:23:21 206.011 -1.462 203.656 -0.445 -2.355 1.017 19.772 3.62 1 13.9194 -27.84375 -0.328125 1 1 0
3 08:23:22 206.011 -1.462 203.674 -0.445 -2.337 1.017 19.767 3.52 1 13.9194 -28.07813 -0.046875 1 1 0
4 08:23:23 206.011 -1.462 203.692 -0.446 -2.319 1.016 19.763 3.72 1 13.9194 -28.51562 -0.250000 1 1 0
5 08:23:24 206.011 -1.462 203.709 -0.446 -2.302 1.016 19.758 3.62 1 13.9194 -28.48438 -0.343750 1 1 0
>

```

Figure 1 Samples Dataframe

All categorical parameters are *typed* as *factors* for ANOVA. Angles are bounded modulo 360°: $\{\text{Az.Obs}, \text{El.Obs}, \text{Yaw}, \text{Pitch}, \text{Roll}\} \subset [0, 360]$.

```

summary S&C-bands.txt - Notepad
File Edit Format View Help

> summary(Sband1[,6:17])
   El.Err      LoS       AGC      CAGC      Yaw
Min. :-175.611 Min. :-87.714 Min. : 0.456 Min. : 0.010 Min. :1.000 Min. :13.92
1st Qu.: -23.817 1st Qu.: -5.460 1st Qu.: 6.654 1st Qu.: 1.840 1st Qu.:1.000 1st Qu.:13.92
Median :  0.828 Median : -2.736 Median : 8.703 Median : 4.430 Median :1.000 Median :13.92
Mean   : -9.808 Mean   : -4.605 Mean   : 9.943 Mean   : 8.125 Mean   :1.459 Mean   :13.92
3rd Qu.:  2.817 3rd Qu.: -1.052 3rd Qu.:14.188 3rd Qu.: 7.157 3rd Qu.:1.000 3rd Qu.:13.92
Max.   : 348.351 Max.   :  8.233 Max.   :21.255 Max.   :45.330 Max.   :5.000 Max.   :13.92
   Pitch      Roll      Scan      Slew      AT      ProbAT
Min. :-179.84 Min. :-9.156 Min. : 1.000 Min. : 1.000 Min. :0.000 Min. :0.0002156
1st Qu.: -15.11 1st Qu.: 2.484 1st Qu.:1.000 1st Qu.: 2.000 1st Qu.:0.000 1st Qu.:0.0138504
Median : 11.85 Median : 2.875 Median :1.000 Median :3.000 Median :0.000 Median :0.0579423
Mean   : 55.81 Mean   : 2.789 Mean   : 1.225 Mean   : 2.837 Mean   : 0.273 Mean   : 0.2729529
3rd Qu.: 171.69 3rd Qu.: 3.250 3rd Qu.:1.000 3rd Qu.: 4.000 3rd Qu.:1.000 3rd Qu.:0.3831964
Max.   : 179.59 Max.   :10.438 Max.   : 2.000 Max.   : 4.000 Max.   : 1.000 Max.   :1.0000000

> summary(Cband1[,6:17])
   El.Err      LoS       AGC      CAGC      Yaw
Min. :-355.331 Min. :-79.188 Min. : 0.622 Min. : 1.160 Min. :1.000 Min. :13.92
1st Qu.: -18.751 1st Qu.: -4.250 1st Qu.: 6.601 1st Qu.: 3.930 1st Qu.:1.000 1st Qu.:13.92
Median :  0.241 Median : -1.581 Median :10.785 Median : 7.210 Median :1.000 Median :13.92
Mean   : -5.007 Mean   : -2.874 Mean   :11.126 Mean   : 9.648 Mean   : 1.48 Mean   :13.92
3rd Qu.:  4.306 3rd Qu.:  0.376 3rd Qu.:15.745 3rd Qu.:13.360 3rd Qu.:2.000 3rd Qu.:13.92
Max.   : 349.406 Max.   :22.449 Max.   :23.996 Max.   :51.660 Max.   : 5.000 Max.   :13.92
   Pitch      Roll      Scan      Slew      AT      ProbAT
Min. :-179.781 Min. :-19.562 Min. : 1.000 Min. : 1.000 Min. :0.0000 Min. :0.0002933
1st Qu.: -20.641 1st Qu.:  2.125 1st Qu.:1.000 1st Qu.: 1.000 1st Qu.:0.0000 1st Qu.:0.0280136
Median :  3.844 Median :  3.094 Median :1.000 Median :1.000 Median :0.0000 Median :0.0534819
Mean   : 40.032 Mean   :  3.071 Mean   :1.257 Mean   : 1.689 Mean   : 0.1549 Mean   : 0.1548841
3rd Qu.: 169.141 3rd Qu.:  4.656 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:0.0000 3rd Qu.:0.1958546
Max.   : 180.000 Max.   :15.328 Max.   : 2.000 Max.   : 3.000 Max.   : 1.000 Max.   : 0.9980557

```

Figure 2 Dataframe Summary

^fRf. 1.

^gRf. 7 & 8.

^h $\{n\}^+ \equiv \{1, \dots, n\}; \{n\} \equiv \{0, \dots, n-1\}$.

Note the constant Yaw in the statistical summary of the data, figure 2. This will influence our final model parameterization. Automatic gain control is a derived parameter from multiple receiver status samples. Empirical decibel range samples are: $\{\text{AGC}\} \subset 0 \leq \text{dB} \leq 52$. We generalize linear models for both azimuth and elevation errors in R as:

$$\text{lm}(\text{Az.Err} \sim \text{Az.Obs} + \text{El.Obs} + (\text{c})\text{AGC} + \dots + \text{Pitch} + \text{Roll}) \quad (3a)$$

$$\text{lm}(\text{El.Err} \sim \text{El.Obs} + \text{Az.Obs} + (\text{c})\text{AGC} + \dots + \text{Pitch} + \text{Roll}) \quad (3b)$$

Parameters are particular to each model, unique for band and angle type (azimuth or elevation); thus we have four models to consider. The parenthesized ‘c’ in (3) indicates either continuous (AGC) or categorized gain control (cAGC) in the model. The details of each model are shown in figures 3a and 3b. The categorization of AGC → cAGC adds no significance to the model predictability, so will not play a part in the final model.

The final models are:

$$\text{lm}(\text{Az.Err} \sim \text{Az.Obs} + \text{El.Obs} + \text{AGC} + \text{Slew} + \text{Scan} + \text{Pitch} + \text{Roll}) \quad (3c)$$

$$\text{lm}(\text{El.Err} \sim \text{El.Obs} + \text{Az.Obs} + \text{AGC} + \text{Slew} + \text{Scan} + \text{Pitch} + \text{Roll}) \quad (3d)$$


```
C&S-band_LRM.models&ANOVA.txt - Notepad
File Edit Format View Help
#5-band:
#Azimuth:
> summary(Az.Err.lm)

Call:
lm(formula = Az.Err ~ El.obs + Az.obs + Scan + Slew + cAGC + Pitch + Roll, data = Sband1)

Residuals:
    Min      1Q  Median      3Q     Max 
-109.383 -17.051   2.348  18.466 128.238 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 178.52307  5.07050 35.208 < 2e-16 ***
El.obs       -1.23467  0.07607 -16.231 < 2e-16 ***
Az.obs        -0.52285  0.01630 -32.082 < 2e-16 ***
Scan2         5.12700  2.38692  2.148  0.0319 *  
Slew2        -18.43617  2.50807 -7.351 3.13e-13 ***
Slew3        -23.25162  2.58865 -8.982 < 2e-16 ***
Slew4        -41.17118  2.77670 -14.827 < 2e-16 ***
CAGC2        -15.40508  2.93108 -5.256 1.67e-07 ***
CAGC3        -18.89654  3.37322 -5.602 2.49e-08 ***
CAGC4        -59.94048  3.65521 -16.399 < 2e-16 ***
CAGC5        -45.53408  6.16660 -7.384 2.46e-13 ***
Pitch         0.28712  0.01054  27.253 < 2e-16 ***
Roll         -1.32251  0.36499 -3.623  0.0003 *** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 30.51 on 1599 degrees of freedom
Multiple R-squared:  0.6548,    Adjusted R-squared:  0.6522 
F-statistic: 252.8 on 12 and 1599 DF,  p-value: < 2.2e-16

> anova(Az.Err.lm)
Analysis of Variance Table

Response: Az.Err
           Df  Sum Sq Mean Sq F value Pr(>F)    
El.obs     1   21170  21170  22.746 2.017e-06 ***
Az.obs     1 1111045 1111045 1193.763 < 2.2e-16 ***
Scan       1   45807  45807  49.218 3.370e-12 ***
Slew       3   374665 124888 134.186 < 2.2e-16 ***
CAGC       4   86652  21663  23.276 < 2.2e-16 ***
Pitch      1 1171408 1171408 1258.620 < 2.2e-16 ***
Roll       1   12219  12219  13.129  0.0002998 ***
Residuals 1599 1488202    931
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figure 3a Azimuth Model Form and ANOVA Results

We see both antenna observed angles and target attitude contribute significantly to error estimation. This makes intuitive sense since the target radiation pattern is moving. Attitude *yaw* was eliminated by the model as an insignificant constant. This was obvious via the statistical

summary of the dataframes (Figure 2 above). We assume yaw was not updating the acquisition store for unknown causes.


```

C&S-band_LRM.models&ANOVA.txt - Notepad
File Edit Format View Help

#Elevation:
> summary(El.Err.lm)

Call:
lm(formula = El.Err ~ El.Obs + Az.Obs + cAGC + Pitch + Roll, data = sband1)

Residuals:
    Min      1Q  Median      3Q     Max 
-18.497 -1.361 -0.451  1.074 32.496 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.430322  0.543233 -4.474 8.22e-06 *** 
El.Obs       -0.716422  0.007913 -90.536 < 2e-16 *** 
Az.Obs        0.015056  0.001600   9.412 < 2e-16 *** 
cAGC2         3.944317  0.327669  12.038 < 2e-16 *** 
cAGC3         4.065816  0.376666  10.794 < 2e-16 *** 
cAGC4         8.494049  0.408506  20.793 < 2e-16 *** 
cAGC5        15.958711  0.689453  23.147 < 2e-16 *** 
Pitch        -0.007295  0.001180   -6.182 8.00e-10 *** 
Roll          -0.069751  0.040550   -1.720  0.0856 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.428 on 1603 degrees of freedom
Multiple R-squared:  0.8722, Adjusted R-squared:  0.8716 
F-statistic: 1368 on 8 and 1603 DF,  p-value: < 2.2e-16

> anova(El.Err.lm)
Analysis of Variance Table

Response: El.Err
           Df Sum Sq Mean Sq F value Pr(>F)    
El.Obs     1 117002 117002 9957.6424 < 2.2e-16 *** 
Az.Obs     1      44      44  3.7423  0.05323 .  
cAGC       4 11005   2751 234.1471 < 2.2e-16 *** 
Pitch      1    472    472  40.1954  2.98e-10 *** 
Roll       1     35     35  2.9588  0.08560 .  
Residuals 1603 18835      12
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

Figure 3b Elevation Model Form and ANOVA Results

The regression coefficients and statistics for our tracking-error model tracking in azimuth and elevation in C-band while receiving data from S- or C-band carriers are shown in Figures 3a and b. We see that the ‘best fit model’ is slightly different for the angles. Note that categorizing the AGC (cAGC) for S-band samples yields a slightly better model, based on the R-squared value on less degrees of freedom. Partitioning AGC from a single to multiple continuous levels reduces degrees of freedom in the model. We often reduce models by eliminating or recategorizing parameters with a high p -value, or what amounts to less information and prediction power. These p -values are not the probability of error, but results of a t -test on the probability that the modeled parameter coefficient contributes to informative model results, e.g., is merely a random variable with no more explanatory or predictive power than the *empty* or *null-model*, i.e., the model based only on dispersion or deviance around the mean of observation (the model intercept, β_0). It is convenient for explanatory purposes that the full C-band error model is not regressed against categorized AGC, as doing so revealed no explanatory advantage. So we kept AGC as sole continuous parameter.

```

C&S-band_LRM.models&ANOVA.txt - Notepad
File Edit Format View Help

#C-band:
#Azimuth:
> summary(Az.Err.lm)

Call:
lm(formula = Az.Err ~ El.Observe + Az.Observe + Scan + Slew + AGC + Pitch + Roll, data = Cband1)

Residuals:
    Min      1Q  Median      3Q     Max 
-306.539 -26.644   7.237  28.349 156.808 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 196.499256  3.788187 51.872 < 2e-16 ***
El.Observe -1.436565  0.093676 -15.235 < 2e-16 ***
Az.Observe -0.685692  0.012154 -55.957 < 2e-16 ***
Scan2      -19.483582  2.576527 -7.562 5.08e-14 *** 
Slew2       8.706860  2.564883  3.395 0.000955 *** 
Slew3       15.418312  2.571515  5.993 2.28e-09 *** 
AGC         0.842245  0.104999  8.021 1.42e-15 *** 
Pitch        0.185734  0.009024  20.582 < 2e-16 *** 
Roll        -1.798591  0.222791 -8.073 9.42e-16 *** 
...
Signif. codes: 0 '****' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 46.6 on 3400 degrees of freedom
Multiple R-squared: 0.5259, Adjusted R-squared: 0.5242 
F-statistic: 470.4 on 8 and 3400 DF, p-value: < 2.2e-16

> anova(Az.Err.lm)
Analysis of Variance Table

Response: Az.Err
          Df Sum Sq Mean Sq F value Pr(>F)    
El.Observe 1 6788 6788 3.1225 0.07731 .
Az.Observe 1 6325504 6325504 2913.2558 < 2.2e-16 ***
Scan2      1 45639 45639 21.0191 4.7118e-06 ***
Slew2       2 107066 53533 24.6551 2.341e-11 *** 
AGC         1 116624 116624 53.7118 2.886e-13 *** 
Pitch        1 1427786 1427786 657.5767 < 2.2e-16 *** 
Roll        1 141510 141510 65.1735 9.424e-16 *** 
Residuals 3400 7382364 2171
...
Signif. codes: 0 '****' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Elevation:
> summary(El.Err.lm)

Call:
lm(formula = El.Err ~ El.Observe + Slew + AGC + Pitch + Roll, data = Cband1)

Residuals:
    Min      1Q  Median      3Q     Max 
-22.3262 -2.6172 -0.8927  2.1486 26.5152 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1.4452350  0.1833158 7.884 4.24e-15 ***
El.Observe -0.6859199  0.0009626 -76.531 < 2e-16 ***
Slew2       0.9252144  0.2194964  4.215 2.56e-05 *** 
Slew3       -0.08111202 0.1878749 -0.432  0.666  
AGC         0.1896839  0.0098553 19.267 < 2e-16 *** 
Pitch        -0.0046350  0.0008678 -5.341 9.84e-08 *** 
Roll        0.0856879  0.0216048  3.966 7.45e-05 *** 
...
Signif. codes: 0 '****' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.542 on 3402 degrees of freedom
Multiple R-squared: 0.6593, Adjusted R-squared: 0.6587 
F-statistic: 1097 on 6 and 3402 DF, p-value: < 2.2e-16

> anova(El.Err.lm)
Analysis of Variance Table

Response: El.Err
          Df Sum Sq Mean Sq F value Pr(>F)    
El.Observe 1 126565 126565 6135.2197 < 2.2e-16 ***
Slew2      2 282 141  6.8435 0.001863 ** 
AGC        1 7443 7443 368.7852 < 2.2e-16 *** 
Pitch       1 1198 1198 58.0843 3.236e-14 *** 
Roll       1 325 325 15.7393 7.455e-05 *** 
Residuals 3402 70180 21
...
Signif. codes: 0 '****' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

Figure 4a Azimuth and Elevation
Regression Coefficients and Statistics

We also discovered via regression and ANOVA that *Slew* factor levels are statistically insignificant for elevation over both bands. Therefore, azimuth and elevation have statistically different models, even within a set signal band. Note that each angle model has very different predictor coefficients across bands, indicating the parameters influence in tracking are distinct to

band. The regression coefficients and statistics for C-band tracking-error model are shown in Figure 4. Regression summary and ANOVA tables reveal that S-band elevation is the most difficult of the angle models to fit. All t -test ($\text{Pr}(>|t|)$ in the summary) show statistical significance for the respective parameters, and the ANOVA results confirm this; but note that the ANOVA F -test ($\text{Pr}(>F)$ in summary) significance indicate a parameter significance much less than the regression t -test significance. We also see that Slew rate 3 has no statistical significance in regression on elevation in C-band. These ANCOVA results show our reduced parameters are sufficiently significant, enough so that we can employ this model to predict elevation error. Discussion with Air Force Test Center (AFTC) Telemetry Technical Expert confirmed elevation as the more difficult angle to track regardless of scanning and/or slewingⁱ; thus we deduce it the more difficult to model, and our results bear this out. We also see that both antennas observed tracker-to-target angles and target attitude contribute significantly to error estimation.

Figure 5a Azimuth and Elevation S-Band Samples:
Errors with Predictions (colored)

ⁱ Rf. 3.

The ‘best model’ fit employs continuous AGC for C-band samples, as this yields a slightly better estimation of the ‘*R-squared*’ and ‘*Residual standard error*’ values on less degrees of freedom. Interestingly, the R^2 value indicates that elevation is better explained w.r.t. the null-models than is azimuth for both S- and C-band. All values contribute probable explanatory and predictive significance, and the *F*-statistic indicates that model explains well the observed, i.e., measured angle errors.

Figure 5b Azimuth and Elevation C-Band Samples:
Errors with Predictions (colored)

Observed and predicted error from the model are shown in Figures 5a and b for S-band and C-band received data, respectively. The track profile comparisons used observed angles and theoretical angles, the latter derived from a geometric model.^j The colored curve designates the observed error w.r.t. the derived angle; the black is the predicted error based on the model

^j Rf. 1.

parameters. It is clear from Figures 5 that the C-band error in azimuth has several large differences from the expected value. These errors were probably due to the planar slewing.

SUMMARY AND CONCLUSION

This paper focuses on analyzing tracking error building an observation error model and ANOVA to explore statistical sources of errors in measures, or observation. The ANOVA and model results agree, showing not only the tracking ACU and carrier, but the tracked target dynamics (attitudinal changes) contribute to measurement based on received signal strength and the state of control of the ACU. Our analysis and models indicate that we should reject the null hypothesis, H_0 , that the AUT tracks identically, within a defined error tolerance over C-band for data received in S-band or C-band carriers and accept the alternative hypothesis:

H_1 : *AUT tracks statistically differently in C-band while receiving S-band vs. C-band data.*

That there is an error in tracking is evidenced by the data, statistics and models will be developed further in the companion paper that focuses on synthesizing an auto-tracking model dependent on ACU, independent of both measured, or observed angles and target attitudinal dynamics. We also infer a practical difference, but make no hypothesis as to cause(s). We investigate this further in the third of three companion papers – an investigation of a logistic regression on autotrack.

ACKNOWLEDGEMENTS

The author would like to thank Kip Temple, 412th Test Wing Telemetry Technical Expert for advice, critique, clarification and requesting his assistance for data processing various test data files, all of which precipitated and clarified these analyses and modeling. The author also thanks Tim Chalfant, AFTC 412th Test Wing Director of Instrumentation Engineering for the time to develop these models and write this paper and Abigail L. Reuter Deputy Director, 412th Electronic Warfare Group for her critique and suggestions.

REFERENCES AND RELATED PAPERS:

1. Geometric Model for Tracker-Target Look Angles and Line-of-Sight Distance, Daniel T. Laird, ITC Las Vegas NV, 19-22 October 2015
2. Logistic Regression Model on Antenna Control Unit Autotracking Mode, Daniel T. Laird, ITC Las Vegas NV, 19-22 October 2015.
3. Telemetry Tracking Antennas at AFTC, How It's Done, Kip Temple, Engineering Training Brief, AFTC Edwards AFB CA, 2014.
4. Logistic Regression Models, Joseph M. Hilbe, CRC Press; Taylor & Francis Group, Boca Raton, FL, 2009.
5. The R Book, Michael J. Crawley; Wiley & Sons, United Kingdom, 2007.
6. Stochastic Processes and Filter Theory, Andrew H. Jazwinski, Academic Press; New York & United Kingdom, 1970.
7. Multivariate Statistical Inference, Narayan C. Giri, Academic Press; New York & United Kingdom, 1977.
8. Functional Analysis, Walter Rudin, McGraw Hill 2nd Edition; New York & London, 1991.