Capstone Project: Heatmap Anomaly Detection

Week 12 Progress Report

This week:

- 1. More results from new data
 - a. ResNet/ViT
 - b. Clustering
- 2. "Clustering" broken banners
 - a. Structure of broken banners → generate synthetic data
 - b. Measure distance from characteristic broken banners
- 3. More results from Statistical Approach

Pretrained ViT/ResNet (recap):

- Feed (transformed and binned) heatmaps into pre-trained ViT/ResNeT.
 - google/ViT: Transformer-based architecture, 14M images (224x224), 21k classes
 - Microsoft/ResNet-1k: trained on ImageNet-1k (224x224), 1k classes.
- Extract features (before classification head)
 - \circ ViT \rightarrow 151296 dim'l feature vector
 - ResNet → 2048 dim'l feature vector
- Play with upsampling (bootstrapping + noise)
- PCA and other dim'l reduction techniques
 - Apply clustering methods

Pretrained ViT/ResNet (facet by click count):

All data cosine-simularities

All data: Better synthetic data

- New method for predicting locations of clusters.
 - Cleaner synthetic data
 - No overlaps
 - More noise

Summary DL models:

- Created 6 features:
 - ViT pretrained
 - RN pretrained
 - o RN fine-tuned:
 - On cluster center location
 - On cluster center location II (better data/no overlaps/more noise)
 - On cluster number
 - Predicting noise or not-noise from synthetic data (symmetric cluster centers, etc) → abysmal

- Thresholding and majority voting → ~83%
 F1-score for 1-shot and worse for 0-shot (cosine similarity to broken mean banner)
- Comparatively slow inference speed

Toy example:

- Compute Euclidean distance
 (=cosine-similarity) between heatmaps and
 left banner:
 - Run over threshold distance:
 - New data:
 - Threshold: 0.11
 - ((TN,FN),(FP,TP)) = (2768,73),(36,153)
 - F1-score: 0.73735
 - Old data:
 - Threshold: 0.11
 - ((TN,FN),(FP,TP)) = (1493,70),(28,142)
 - F1-score: 0.74346

211 cb in old data 227 cb in new data

Clustering by broken heatmaps

Cluster 1 Cluster 2

Cluster_map

c1: all over the place

c2: left bottom corner

c3: right bottom

corner

c4: bottom middle

c5: right middle

c6: top right corner

c7: all over left side

c8: diagonal

Thresholds c1: all over the place {'c1': 0.65, c2: left bottom corner 'c2': 0.4. c3: right bottom 'c3': 0.25, 'c4': 0.3, corner c4: bottom middle 'c5': 0.85, c5: right middle 'c6': 0.8, c6: top right corner 'c7': 0.35, c7: all over left side 'c8': 0.6} c8: diagonal

F1 score = 0.74

Cosine Similarity (184 identified, 152 cb)

Test on New Data

- Apply our trained model to full new data

On new data

SVM:

F1 Score: 0.23

KNN:

F1 Score: 0.64

K-Means:

F1 score: 0.04

DBScan:

F1 Score: 0.82

Isolation Forest:

F1 Score: 0.66

Combined Model:

F1 Score: 0.82

On previous data(test set)

SVM:

F1 Score: 0.25

KNN:

F1 Score: 0.83

K-Means:

F1 score: 0.24

DBScan:

F1 Score: 0.72

Isolation Forest:

F1 Score: 0.85

Combined Model:

F1 Score: 0.87

Old/New Statistical Approach

"Bad" banner

0.5* Agg. +

0.5* Uniform

"Good" banner

Landed clicks ratio >

0.8 + most no. clicks

				, , , ,	
1	Landed clicks ratio > 0.8 + most no. clicks	Agg. bad data from other dataset	One shot	0.95 (0.92) [[1502 19] [15 197]]	0.92 (0.84) [[2782 22] [44 182]]
2	Landed clicks ratio > 0.8 + most no. clicks	Uniform distribution	One shot	0.94 (0.9) [[1508 13] [29 183]]	0.9 (0.81) [[2769 35] [48 178]]
3	Step uniform distribution	Agg. bad data from other dataset	Zero shot	0.91 (0.84) [[1503 18] [44 168]]	0.89 (0.79) [[2774 30] [58 168]]

0.95 (0.91)

[[1507 14]

[22 190]]

Results: old data (f1

macro (binary)/CM)

Results: new data (f1/CM)

0.92 (0.83)

[[2782 22] [44 182]]

Learning

One shot

First row: test 1, second row: test 3cis First column: old data, second column: new data

Test 1: FN (left) and FP (right) from new

Broken misclassified as working

Working misclassified as broken

Test 3cis: FN (left) and FP (right)

Broken misclassified as working

Working misclassified as broken

Test 1
Test 3 cis
Plot FP/FN and append number of clicks for each heatmap

Appendix

LRT method

Grid search: find optimal parameter
Threshold not that important, 1%?
Sd of 0 upsampling of 1k is OK
Change the loop for the threshold, save true
positive in a dictionary, go through each domain
once

Fix parameters based on three product and see how it works for six product -> how it works on test set Ideas: upsample or downsample with noise Look into misclassified cases

Grid search on hyperparameters: size of upsample, probability threshold,