Measurments taken 339 calendar days since BOC. Data Passes (pass id, power [MWt], boron [ppm], control bank A/B/C/D/E positions [step])

- 1 3398.5 437. 228. 228. 228. 199. 230.
- 2 3401.9 436. 228. 228. 228. 199. 230.
- 3 3400.8 436. 228. 228. 228. 199. 230.
- 4 3399.3 433. 228. 228. 228. 199. 230.
- 5 3441.0 439. 228. 228. 228. 199. 230.
- 6 3406.8 436. 228. 228. 228. 199. 230.
- 7 3392.5 442. 228. 228. 228. 199. 230.
- 8 3392.7 434. 228. 228. 228. 199. 230.
- 9 3393.2 441. 228. 228. 228. 199. 230.
- 10 3393.9 436. 228. 228. 228. 199. 230.
- 11 3395.6 439. 228. 228. 228. 199. 230.
- 12 3391.8 434. 228. 228. 228. 199. 230.

Average Power [MWt]: 3400.66666667 Inlet Coolant Temperature [°F]: 560.975 Core Burnup [MWD/MT]: 6490.4 Average Boron [ppm]: 436.916666667

Figure 1: Renormalized data after spline

Figure 2: Unnormalized data after spline

Figure 3: Radial detector measurements (axially integrated).

J1	0.675	F1	0.612
N2	0.526	K2	1.123
H2	1.176	НЗ	1.044
F3	1.032	D3	
В3	0.535	P4	0.713
N4	1.016	H4	1.290
L5	1.289	G5	1.288
E5	1.294	C5	
R6	0.613	N6	1.011
K6	1.289	Н6	1.279
B6		M7	1.105
J7	1.283	F7	1.093
C7	1.254	R8	0.663
N8	1.041	L8	1.097
J8	1.081	F8	1.294
D8	1.260	C8	1.053
B8		P9	0.859
G9	1.284	E9	1.277
A9	0.683	L10	1.101
J10	1.105	D10	1.258
R11		L11	1.293
H11	1.098	E11	1.284
A11	0.520	K12	1.271
G12	1.088	D12	1.120
N13	0.737	L13	
H13	1.031	B13	0.536
N14	0.533	J14	0.845
F14	1.146	D14	0.739
L15	0.502	H15	0.661

Table 1: Full core radial detector measurements (axially integrated).

Figure 4: Quarter core (full core folded) radial measurements.

D14	0.739	Н9	1.081
D10	1.265	D12	1.120
E11	1.290	B12	0.713
B13	0.534	C13	0.737
C12	1.016	C10	1.022
F9	1.105	F8	1.286
C14	0.530	F11	1.101
A11	0.511	A10	0.613
F14	1.135	E8	1.097
E9	1.282	H10	1.286
H11	1.097	H12	1.275
H13	1.042	H14	1.176
H15	0.662	D9	1.105
D8	1.275	C8	1.042
В9	0.845	B8	1.176
G15	0.675	G14	0.859
G13	1.254	G12	1.088
G10	1.093	A8	0.662
A9	0.683	F10	1.289
G8	1.081	G9	1.283

Table 2: Quarter core radial detector measurements (axially integrated).

Figure 5: Radial detector measurements (tilt corrected).

Figure 6: Radial detector measurements (simulate normalized to tilt corrected data).

Figure 7: Radial detector absolute difference (simulate minus tilt corrected data).

Figure 8: Radial detector measurements (simulate normalized to detector data).

Figure 9: Radial detector absolute difference (simulate minus detector data).