Manuale d'istruzioni: RX-4M50RR30SF

Ricevitore RX-4M50RR30SF

Ricevitore RF digitale ad elevata sensibilità, selettività ed alta immunità ai campi elettromagnetici interferenti, ottenuta con l'impiego di filtro SAW in ingresso e schermo metallico.

Pin-out

Connessioni

Pin 2-7-11	Ground	Connessioni a GND. Internamente collegati da un unico piano di		
Pin3	Antenna	Connessione per l'antenna, impedenza 50Ω		
Pin 10-15	+V	Connessione al punto positivo dell'alimentazione (+5V ±5%)		
Pin 13		Uscita analogica del segnale demodulato. Collegando un		
		oscillografo, è		
Pin 14	Data Out.	Uscita digitale del ricevitore. Utilizzare carichi superiori a 1 KΩ		

Caratteristiche tecniche

	Min	Tipico	Max	Unità	Annotazioni
Centro frequenza di lavoro		433.92		MHz	
Alimentazione Vs	4.75	5	5.25	V	
Corrente assorbita	2.6	3	3.3	mA	
Sensibilità RF	-97	-100	-102	dBm	Vedi nota 1
Banda passante RF a -3dB		600		KHz	
Reiezione alle interferenze a		-100		dB	Vedi Fig.4
Onda quadra in uscita	0.1	2.5	3	KHz	
Livello logico basso d'uscita			0.1	V	Vedi nota 4
Livello logico alto d'uscita	3.8			V	Vedi nota 4
Emissioni RF spurie in antenna			-80	dBm	Vedi nota 2
Tempo di accensione			2.5	S	Vedi nota 3
Temperatura di lavoro	-20		+80	°C	Vedi Fig.5
Dimensioni	40.13 x 17.5x5.5 mm				

Nota1: I valori sono stati ottenuti con sistema di test di Fig.1 e resistenza RX non collegata (vedi Fig. 2).

Nota2: La misura dell'emissione R.F è stata ottenuta collegando direttamente l'analizzatore di spettro sul Pin 3 del RX.

Nota3: Per tempo di accensione, si intende il tempo che impiega il ricevitore a raggiungere le caratteristiche dichiarate, dal momento in cui si applica l'alimentazione.

Nota4: Valori ottenuti con carico massimo di 10KI2.

Le caratteristiche tecniche dichiarate, sono state ottenute utilizzando il seguente sistema di test:

Fig. 1

Impostazione delia soglia di Squelch

Il ricevitore AUREL mod. RX-4M50RR30SF, presenta normalmente all'uscita dati commutazioni casuali di 1 e

0 corrispondenti al rumore del ricevitore stesso.

Tale caratteristica consente di utilizzare il dispositivo al massimo della sensibilità.

Tuttavia, in applicazioni dove si richieda una diminuzione della rumorosità, è possibile collegare una

resistenza di valore x (vedi tabella) tra il pin T.P. del ricevitore e GND.

La tabella seguente identifica, per valori diversi di resistenza, il valore di perdita risultante:

Modello	Perdita (-ldB)	Perdita (-3dB)	
RX-4M50RR30SF	Rx= 1M	Rx = 680K	

Fig. 2 Grafico attenuazione-valore RX

Accettando qualche commutazione sull'uscita dati, è sufficiente applicare un valore di resistenza

determini un'attenuazione di 1 dB; attenuazioni di 3 dB, aumentano l'immunità al rumore fino ad ottenere

sull'uscita dati un valore logico basso stabile in assenza di segnale RF.

Utilizzo del dispositivo

Al fine di ottenere le prestazioni dettagliate nelle specifiche tecniche e per ottemperare alle condizioni

operative che caratterizzano la Certificazione, il ricevitore deve essere montato su un circuito stampato

tenendo in considerazione quanto segue:

Alimentazione 5 Vdc:

- Il ricevitore deve essere alimentato da una sorgente a bassissima tensione di sicurezza protetta contro i cortocircuiti.
- 2. Variazioni di tensione massima ammesse: ± 0,25 V.
- Disaccoppiamento, nei pressi del ricevitore, con condensatore ceramico della capacità minima di 100.000 pF.

Ground:

- Deve circondare al meglio la zona di saldatura del ricevitore. Il circuito deve essere realizzato in doppia faccia, con collegamenti passanti sui piani di massa ogni 15 mm circa.
- 2. Deve essere sufficientemente dimensionato nell'area di connessione d'antenna, nel caso in cui in tale punto sia applicato lo stilo radiante (consigliata un'area di circa 50 mm di raggio).

Fig.3 Lay-out consigliato per un corretto funzionamento del dispositivo

Linea 50 Ohm:

- 1. Deve essere più corta possibile.
- 2. Larga 1,8 mm per stampati FR4 spessore 1 mm e 2,9 mm per stampati FR4 spessore 1,6 mm. Deve
 - essere distanziata dalla massa, sullo stesso lato, di 2 mm.
- 3. Sul lato opposto, deve essere presente una zona di circuito di massa.

Connessione d'antenna:

- 1. Può essere usata come punto di connessione diretta per lo stilo radiante.
- 2. Può essere utilizzata per connettere il conduttore centrale di un cavo coassiale a 50 Ω . Assicurarsi che la calza sia saldata alla massa in un punto vicino.

Antenna

- 1. Deve essere collegata all'ingresso RF del Ricevitore uno **Stilo**, lungo 16,5 cm e diametro di circa 1 mm, realizzato in filo metallico di ottone o rame.
- 2. Il corpo dell' antenna deve essere mantenuto il più dritto possibile e deve essere libero da altri circuiti o corpi metallici (consigliati 5 cm di distanza minima).
- 3. Può essere utilizzata in modo orizzontale o verticale, purché il punto di collegamento fra antenna ed ingresso ricevitore, sia circondata da un buon piano di massa.

N.B: In alternativa all'antenna sopraccitata, è possibile utilizzare il modello stilo di produzione Aurei (vedi relativi Data Sheet ed Application Notes).

L'utilizzo di altri modelli fortemente diversi, non garantiscono il superamento delle omologazioni CE.

Altra componentistica:

- 1. Mantenere il ricevitore separato dall'altra componentistica del circuito (più di 5 mm).
- 2. Mantenere particolarmente lontani e schermati eventuali microprocessori e loro circuiti di clock.
- 3. Non installare componenti attorno alla Linea a 50 Ohm per almeno una distanza di 5 mm.
- 4. Se la Connessione d'antenna è utilizzata per collegare direttamente lo stilo radiante, mantenere almeno 5 cm di raggio di area libera. Nel caso venga utilizzata per la connessione di cavo coassiale sono sufficienti 5 mm.

Normativa di riferimento

Il ricevitore **RX-4M50RR30SF** è omologato CE ed in particolare soddisfa le normative europee EN 300 220-3 in classe 2, ed EN 300 683 in classe 1. Il prodotto è stato testato secondo la normativa EN 60950 ed è utilizzabile all'interno di un apposito contenitore isolato che ne garantisca la rispondenza alla normativa sopraccitata. Il ricevitore deve essere alimentato da una sorgente a bassissima tensione di sicurezza protetta contro i cortocircuiti. L'utilizzo del modulo ricevitore è previsto all'interno di contenitori che garantiscano il superamento della normativa EN 61000-4-2 non direttamente applicabile al modulo stesso. In particolare, è cura dell'utilizzatore curare l'isolamento del collegamento dell'antenna esterna e dell'antenna stessa poiché l'uscita RF del ricevitore non è in grado di sopportare direttamente le cariche elettrostatiche previste dalla normativa sopraccitata.

Curve di riferimento

Fig.4 Grafico Frequenza-Selettività

Fig.5 Grafico Temperatura-variazione sensibilità

Alimentazione 5V, ingresso RF 433,92MHz, -95dBm