

A 3.12pJ°C² Ultra-Low-Power Direct-ADC Multi-Range Temperature Sensor for IoT Nodes

Tayebeh Yousefi, Hossein Kassiri

Integrated Circuits and Systems Lab

Department of Electrical Engineering and Computer Science, York University

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Outline

- Introduction
 - Internet of Things definition and challenges
 - Temperature sensing elements
- BJT-based Temperature sensors
 - BJT-based sensor: conventional structure (operation principles)
 - Challenges of the Convectional Structure
- Proposed BJT-based Temperature sensors
 - Proposed structure
 - Dynamic range utilization improvement
 - Temperature dependent linear parameter
 - Non-ideality sources
- ADC design
 - Architecture selection
 - MATLAB system-level implementation
 - Circuit level implementation
 - Results

Internet of Things definition and Challenges

- IoT: system of interrelated computing devices
 - Increasing demand for low-power wireless sensor nodes
 - Temperature sensors: Highly-utilized modules in IoT devices.
- Wireless nature: Minimum possible power consumption

Temperature Sensing Elements

- CMOS compatible temperature sensing element
 - Cost effective
 - Reliable performance
 - Compact physical size
- Available sensing element in CMOS technology:
 - Resistors, BJTs, MOSFET, and DTMOST.

Ref	Tech (µm)	Temperature range	resolution	Conversion time (ms)	FOM pJK²	Sensor type
VLSI(2011)	0.18	0°C - 100 °C	0.25 °C	0.012	19	Resistor
SSC(2013)	0.16	-55 °C - 125 °C	0.02 °C	5.3	11	BJT
JSSC(2014)	0.18	0 °C - 100 °C	0.3 °C	30	190	MOSFET
ISSCC(2014)	0.16	-40 °C - 125 °C	0.063 °C	6	14.1	DTMOST

Outline

- Introduction
 - Internet of Things definition and challenges
 - Temperature sensing elements
- BJT-based Temperature sensors
 - BJT-based sensor: conventional structure (operation principles)
 - Challenges of the Convectional Structure
- Proposed BJT-based Temperature sensors
 - Proposed structure
 - Dynamic range utilization improvement
 - Temperature dependent linear parameter
 - Non-ideality sources
- ADC design
 - Architecture selection
 - MATLAB system-level implementation
 - Circuit level implementation
 - Results

BJT-based sensor: Conventional Structure (Operation Principles)

MILITARY RANGE 33%

MEDICAL RANGE 16%

300

Challenges of the Convectional Structure

- ΔV_{BE} : Small temperature to voltage conversion gain
 - Constant gain is required (α)
- α: Process dependent value
 - Require a temperature independent variable-gain amplifier

$$\alpha = \frac{S_{V_{BE}}^{T}}{\frac{KT}{q} \ln(pr)}$$

- Utilizing only small percentage of the ADC dynamic range
 - High accuracy ADC
 - High power consumption

Outline

- Introduction
 - Internet of Things definition and challenges
 - Temperature sensing elements
- BJT-based Temperature sensors
 - BJT-based sensor: conventional structure (operation principles)
 - Challenges of the Convectional Structure
- Proposed BJT-based Temperature sensors
 - Proposed structure
 - Dynamic range utilization improvement
 - Temperature dependent linear parameter
 - Non-ideality sources
- ADC design
 - Architecture selection
 - MATLAB system-level implementation
 - Circuit level implementation
 - Results

NPN-based vs PNP-based Temperature Sensor

- Cross section view of PNP transistor.
- Collector terminal is the substrate.
 - Collector can only be grounded

- Cross section view of NPN transistor.
- Require Deep N-well
 - Only available in more recent technologies.
- No limit in connection of terminals

Proposed Structure

- NPN-based structure.
- Significant higher temperature to voltage conversion rate.
 - Lower ADC resolution
 - Lower power consumption
- Needless of temperature independent processing
 - Can be directly fed to the ADC

$$X = \frac{V_{BE}(Q1)}{VDD - V_{BE}(Q2)}$$

Dynamic Range Utilization Improvement

VOLTAGE

- Low percentage of DR utilization
 - 16% medical range
 - 33% military range

- Adjustable for different ranges
- Improved DR utilization
 - 61% medical range
 - 88% military range

Temperature Dependent Linear Parameter

Non-linear temperature-dependent variation

$$X = \frac{V_{BE}(Q1)}{VDD - V_{BE}(Q2)}$$

linear temperature-dependent variation

$$\frac{\partial VBE(Q1)}{\partial T} = \frac{\partial VBE(Q2)}{\partial T}$$

$$\rightarrow \mu = \frac{1}{1 + X}$$

Non-ideality Sources

- Temperature invariant VDD is required
 - Usually required by other blocks as well
 - Bandgap voltage

- Perfect matching between the two branches of the transducer core is required.
- Careful Layout:
 - Transistor matching
 - Current Sources matching

ADC Design Requirements

$$X = \frac{V_{BE}(Q1)}{VDD - V_{BE}(Q2)}$$

- Non-linear temperature dependent parameter
 - Temperature dependent ENOB requirement

$$ENOB = log_2 \left(\frac{Full\ scale\ of\ temperature\ variation}{Targeted\ resolution} \right)$$

Outline

- Introduction
 - Internet of Things definition and challenges
 - Temperature sensing elements
- BJT-based Temperature sensors
 - BJT-based sensor: conventional structure (operation principles)
 - Challenges of the Convectional Structure
- Proposed BJT-based Temperature sensors
 - Proposed structure
 - Dynamic range utilization improvement
 - Temperature dependent linear parameter
 - Non-ideality sources

ADC design

- Architecture selection
- MATLAB system-level implementation
- Circuit level implementation
- Results

ADC Architecture Selection

ADC requirements

- Low power consumption
- High resolution

Options:

- Regular Delta-Sigma ADC
- Incremental Delta-Sigma ADC
- Decision is the Incremental ADC
 - Inherent dividing capability
 - Simpler decimation filter

Division in Incremental ADC

- Incremental delta-sigma ADC
 - Receive two input voltages
 - Calculates the ratio of the two voltages.
 - Usually one of these voltages is the supply voltage (Normal digitization)
 - Both voltages can have variation

$$X = \frac{V_{BE}(Q1)}{VDD - V_{BE}(Q2)}$$

Incremental Delta-Sigma ADC Architecture

• Example: 15bit ENOB requires:

- -N = 500 in second order $I\Delta\Sigma$
- N = 60000 in First order $\Delta\Sigma$

First order

- Higher dynamic power consumption
- Higher required opamp gain (90dB)
- Simple design (No stability issue)

Second order

- Lower dynamic power consumption
- Implementable with Simple opamp
- Require stability consideration

MATLAB Implementation

System-level design in MATLAB

- Design a second order CIFF Discrete-time $\Delta\Sigma$ using DELSIG MATLAB toolbox.
- For stability consideration voltage swing of internal nodes is limited to a specific value.
- Transfer the Discrete-time $\Delta\Sigma$ to the $I\Delta\Sigma$ by a 3 step recursive procedure in order to get the same SNDR

Circuit Implementation

- Circuit-level design (TSMC 0.13µm)
 - Integrator Implementation (settling time- open loop gain- output swing)
 - Comparator Design (Strong-arm architecture- mismatch cancellation)
 - Switch Implementation (Bootstrapping)

Simulation Results

$$X = \frac{V_{BE}(Q1)}{VDD - V_{BE}(Q2)}$$

$$\mu = \frac{1}{1+X}$$

Comparison Table

	[7]	[8]	[3]	This work
Result	Measurement	Measurement	Measurement	Simulation
Sensor	BJT(PNP)	BJT(PNP)	BJT(PNP)	BJT(NPN)
Technology	$0.7 \mu \mathrm{m}$	$0.16\mu\mathrm{m}$	$0.16 \mu \mathrm{m}$	$0.13 \mu \mathrm{m}$
Supply Voltage	2.9V - 5.5V	1.6V - 2V	1.5V-2V	1.2V
Supply Current	55μA	$4.6\mu\mathrm{A}$	$3.4\mu A$	$2.6\mu A$
Resolution	0.003°C	0.015° C	0.005° C	0.01°C
t_{conv}	2.2ms	100ms	100ms	100ms
ADC	CT Duty cycle	Zoom ADC	Zoom ADC	$\mathrm{I}\Delta\Sigma$
	modulator	$(SAR+I\Delta\Sigma)$	$(SAR+I\Delta\Sigma)$	
Res.FoM	$3.6pJ^{\circ}C^2$	$170pJ^{\circ}C^2$	$11J^{\circ}C^2$	$3.12pJ^{\circ}C^{2}$

 $Res.FoM = (Resolution)^2 \times Power \times t_{conv}$

Thank You!