Operations Analytics

Submitted by – Akhilesh Chaturvedi

Date: 13 Dec 2022

Project Description and Approach

Operations Analytics is important for getting the glimpse, as how businesses understand their users by capturing different types of data.

In Operations Analytics overall functioning of a company is investigated for taking better performance decision in future. It's like an offset removal system for any company to find continuous operational efficiency.

Approach

The Operations data for performing a review work by different actors in different languages was collected. The Dataset was uploaded to MySQL Workbench, which is having columns like date, job_id, actor_id, event, language, time_spent and organisation etc. After that, as per Business requirement, the data was analysed using SQL queries, to find solution for respective problems accordingly.

Tech-Stack Used: MySQL Workbench 8

Problem Statements

Case Study 1 (Job Data)

Q: A- Number of jobs reviewed is equal to number of jobs reviewed over time. Calculate the number of jobs reviewed per hour per day for November 2020?

```
select sum(hours_spent)/sum(jobs_per_day) as jobs_reviewed_per_hour_per_day

from

(select count(job_id) as jobs_per_day, sum(time_spent/3600) as hours_spent

from table1

where ds between '2020-11-1' and '2020-11-30'

group by ds) a;

| Result Grid | □ ♦ Filter Rows: | Export: □ | Wrap Cell Content: □ |

jobs_reviewed_per_hour_per_day

0.01036250
```

Q: B- Throughput: It is the no. of events happening per second. Calculate 7 day rolling average of throughput? For throughput, do you prefer daily metric or 7-day rolling and why?

Q: C- Percentage share of each language: Share of each language for different contents. Calculate the percentage share of each language in the last 30 days?

```
sum(count(lang)) over (partition by lang order by lang rows between unbounded preceding and unbounded following)
 32
 33
       as lang_occ,
 34
       sum(count(lang)) over () as lang_tot,
    (100*sum(count(lang)) over (partition by lang order by lang rows between unbounded preceding and unbounded following) / sum(count(lang))
 35
      over () )as percentage
 37
 38
       from table1
       group by lang;
 39
 40
Export: Wrap Cell Content: IA
        lang_occ lang_tot percentage
Arabic 1
                       12,5000
  English 1
                     12.5000
  French 1
               8
                       12,5000
  Hindi 1 8
                     12.5000
  Italian 1
                8
                       12,5000
  Persion 3 8 37.5000
```

Q: D- Duplicate rows: Rows that have the same value present in them?

