4. Dezember 2018

Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe

Setup

- ► $R = \mathbb{Z}$ oder R = K[X] für einen Körper K
- ▶ $m \in R \setminus \{0\}$

(*m* steht für *modulus*, lat. Maß.)

Kongruenzen

Definition

 $a, b \in R$

$$a \equiv_m b :\Leftrightarrow m \mid a - b$$

Wir lesen $a \equiv_m b$ als "a kongruent b modulo m".

Beispiele

- ightharpoonup in \mathbb{Z} :
 - ▶ 7 ≡₇ 0
 - ► 1 ≡₇ 8
 - ▶ 1 ≡₇ -6
 - **▶** 3 ≡₇ 10
 - **▶** 2 ≡₇ 9
 - ▶ 2 ≡₇ 16
 - 2 =7 10
 - ► 2 ≡₇ -5
 - ▶ 16 ≡₇ −5

- ► in ℚ[*X*]:
 - $X^2 1 \equiv_{X^2 1} 0$
 - $X^2 \equiv_{X^2-1} 1$ $X^4 - X^2 + 1 \equiv_{X^2-1} 1$

Kongruenzen (Forts.)

Proposition

 \equiv_m ist Äquivalenzrelation auf R.

Notation

- ▶ Äquivalenzklasse von $a \in R$ wird mit \overline{a} bezeichnet.
- ▶ $R/(m) := {\overline{a} \mid a \in R}$ Menge der Äquivalenzklassen.
- ▶ Für $R = \mathbb{Z}$ schreiben wir auch $\mathbb{Z}_m := \mathbb{Z}/(m)$.

Kongruenzen (Forts.)

Beispiele

- ightharpoonup in \mathbb{Z}_7 :
 - 7 = 0
 - $\blacktriangleright \ \overline{1} = \overline{8} = \overline{-6}$
 - ► $\overline{3} = \overline{10}$
 - $\blacktriangleright \ \overline{2} = \overline{9} = \overline{16} = \overline{-5}$

- ▶ in $\mathbb{Q}[X]/(X^2-1)$:
 - $\overline{X^2 1} = \overline{0}$
 - $\overline{X^2} = \overline{X^4 X^2 + 1} = \overline{1}$

Kongruenzen und Division mit Rest

Definition

Es sei $a \in R$. Dividiere a durch m mit Rest:

$$a = qm + r$$

mit

$$\left\{ \begin{array}{ll} 0 \leq r < m, & \text{im Fall } R = \mathbb{Z}, \\ \deg r < \deg m, & \text{im Fall } R = K[X]. \end{array} \right.$$

Wir setzen

$$a \mod m := r$$
.

Beispiele

- ▶ $101 \mod 7 = 3$;
- ► 1001 mod 13 = 0;
- ► $X^3 2X^2 + 5 \mod (X^2 + X + 1) = 2X + 8$.

Proposition

- ▶ Für alle $a \in R$ gilt: $a \equiv_m a \mod m$.
- ▶ Es seien $a, b \in R$.

Dann sind äquivalent:

- \triangleright a $\equiv_m b$
- $ightharpoonup a \mod m = b \mod m$

Bemerkung

Für $a \in R$ ist

$$\overline{a} = a + Rm$$

 $mit a + Rm = \{a + xm \mid x \in R\}.$

Definition

Es sei $n \in \mathbb{N}_0$. Wir setzen

$$K[X]_{< n} := \{ f \in K[X] \mid \deg f < n \}$$
$$= \{ \sum_{i=0}^{n-1} a_i X^i \mid a_0, a_1, \dots, a_{n-1} \in K \}.$$

Beipiele

- $K[X]_{<0} = \{0\}.$
- $K[X]_{<1} = \{f \in K[X] \mid f \text{ ist konstant}\} = K.$
- ▶ $K[X]_{\leq 2} = \{aX + b \mid a, b \in K\}$: Menge der linearen Polynome.

Korollar

▶ Es sei $n \in \mathbb{N}$.

 $\{0,1,\ldots,n-1\}$ ist Repräsentantensystem von $\mathbb{Z}/(n)$; insbesondere:

$$\mathbb{Z}/(n)=\{\overline{r}\mid r\in\{0,1,\ldots,n-1\}\}.$$

▶ Es sei $g \in K[X] \setminus \{0\}, n := \deg g$.

 $K[X]_{\leq n}$ ist Repräsentantensystem von K[X]/(g); insbesondere:

$$K[X]/(g) = \{ \overline{r} \mid r \in K[X]_{\leq n} \}.$$

Beispiel

- ► **Z**/(7) =
- $\mathbb{Q}[X]/(X^2-1) =$

Restklassenringe

Proposition

Es seien $a, a', b, b' \in R$ mit $a \equiv_m a', b \equiv_m b'$. Dann gilt:

- $ightharpoonup a+b\equiv_m a'+b';$
- ▶ $ab \equiv_m a'b'$.

Beispiel

In $\mathbb{Q}[X]$:

$$f := X^5 - 3X^4 + 2X^3 - X^2 + 2, h := X^4 - X^3 + 2.$$

$$f \equiv_{X^2-1} 3X - 2$$

 $h \equiv_{X^2-1} -X + 3$

$$f + g \equiv_{X^2-1} 2X + 1$$

 $f \cdot g \equiv_{X^2-1} -3X^2 + 11X - 6$

Wegen $-3X^2 + 11X - 6 \mod X^2 - 1 = 11X - 9$ gilt auch

$$f \cdot g \equiv_{X^2-1} 11X - 9.$$

Proposition

R/(m) wird kommutativer Ring mit:

- ► Addition:
- ► Null:
- ► Negative:
- ► Multiplikation:
- ► Eins:

Beispiele

- ► In $\mathbb{Z}/(7)$:
 - ightharpoonup $\overline{5} + \overline{4} =$
 - $ightharpoonup \overline{3} \cdot \overline{4} =$
 - $\blacktriangleright \ \overline{13} \cdot \overline{13} =$
 - ► In $\mathbb{Q}[X]/(X^2-1)$:

$$ightharpoonup \overline{X-1} \cdot \overline{X+1}$$

Bemerkung (Rechnen in \mathbb{Z}_n)

Es seien $i, j \in \mathbb{Z}$ mit $0 \le i, j < n$.

▶ Zur Addition von \bar{i} und \bar{j} , addiere i und j in \mathbb{Z} und dividiere das Ergebnis mit Rest durch n:

$$\bar{i} + \bar{j} = \overline{(i+j) \mod n}.$$

▶ Zur Multiplikation von \bar{i} und \bar{j} , multipliziere i und j in \mathbb{Z} und dividiere das Ergebnis mit Rest durch n:

$$\bar{i} \cdot \bar{j} = \overline{(i \cdot j) \bmod n}.$$

Analoge Regeln gelten für das Rechnen im Restklassenring K[X]/(g) für ein $g \in K[X] \setminus \{0\}$.

Beispiel

Addition und Multiplikation von $\mathbb{Z}/(4) = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$:

_+	ō	1	2	3	_		ō	1	2	3
$\overline{0}$						$\overline{0}$				
$\overline{1}$						$\overline{1}$				
$\overline{2}$						2				
3						3				

Lineare Kongruenzgleichungen in einer Unbekannten

Lösbarkeitskriterium für lineare Kongruenzgleichungen

Es seien $a, b \in R$. Dann gilt:

Es gibt $x \in R$ mit $xa \equiv_m b \Leftrightarrow ggT(a, m) \mid b$.

Korollar

Es sei $a \in R$. Dann gilt: $\overline{a} \in (R/(m))^{\times} \Leftrightarrow ggT(a, m) = 1$.

Lin. Kongruenzgleichungen in einer Unbekannten (Forts.)

Lösungsmenge linearer Kongruenzgleichungen

Es seien $a, b \in R$ mit $ggT(a, m) \mid b$.

Gesucht: $\{x \in R \mid xa \equiv_m b\}$.

Verfahren

Berechne $u, v, w, x', y' \in R$ mit

- ▶ $m = u \cdot ggT(a, m)$,
- $ightharpoonup a = v \cdot ggT(a, m),$
- ▶ $b = w \cdot ggT(a, m)$,
- x'a + y'm = ggT(a, m).

Dann ist $\{x \in R \mid xa \equiv_m b\} = \{wx' + uz \mid z \in R\}.$

Lin. Kongruenzgleichungen in einer Unbekannten (Forts.)

Beispiel

```
\{x \in \mathbb{Z} \mid x \cdot 168 \equiv_{91} 21\} =
```

Korollar

Es sei $a \in R$. Dann gilt: $\overline{a} \in (R/(m))^{\times} \Leftrightarrow ggT(a, m) = 1$.

Bemerkung

Es sei $a \in R$ mit ggT(a, m) = 1.

Frage: Wie findet man $\overline{a}^{-1} \in R/(m)$?

Antwort: Bestimme $x, y \in R$ mit xa + ym = 1.

Dann ist $\overline{a}^{-1} = \overline{x}$.

Beispiele

▶ $\overline{17} \in (\mathbb{Z}/(30))^{\times}$ mit

$$\overline{17}^{-1} = \overline{23}$$

$$\overline{X+2} \in (\mathbb{Q}[X]/(X^2-1))^{\times} \text{ mit}$$

$$(\overline{X+2})^{-1} = \overline{-X/3 + 2/3}$$

Definition

- ▶ Ein Element $p \in \mathbb{N}$ heißt *Primzahl*, wenn p > 1 ist und 1 und p die einzigen Teiler von p in \mathbb{N} sind.
- ▶ Ein Element $g \in K[X]$ heißt *irreduzibel*, wenn $g \neq 0$ ist, deg $g \geq 1$ ist und es gilt: die einzigen Teiler von g sind Einheiten oder assoziiert zu g.

Mit anderen Worten: Ist g = fh mit $f, h \in K[X]$, dann ist $f \in K^{\times}$ oder $h \in K^{\times}$.

Satz

Es sei $m \in R$, $m \neq 0$. Dann sind äquivalent:

- ► R/m ist Körper
- $\begin{cases}
 m \text{ ist Primzahl} & \text{(im Fall } R = \mathbb{Z}) \\
 m \text{ ist irreduzibel} & \text{(im Fall } R = K[X])
 \end{cases}$

Endliche Primkörper

Definition

$$p\in\mathbb{P}$$

Primkörper zu p: $\mathbb{F}_p := \mathbb{Z}/(p)$

Beispiel

$$\blacktriangleright \mathbb{F}_2 = \mathbb{Z}/(2) = \{\overline{0}, \overline{1}\}$$

+	0	$\overline{1}$	_		0	
$\overline{0}$	$\frac{\overline{0}}{\overline{1}}$	$\overline{1}$		0	0 0	$\overline{0}$
$\overline{1}$	$\overline{1}$	$\overline{0}$		1	0	$\overline{1}$