This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

空日本分類 SU Int CI.

日本国特許庁

許出頭公告 昭47-34572

B 22 f 10 A 61 C 22 c 10 J 171

報 公

(4)公告

発明の数 1

(全5頁)

昭和47年(1972)8月31日

1

匈耐窓耗性黒鉛鉄基焼結合金の製造方法

迎特 類 昭45-45173

39出 題 昭45(1970)5月28日

砂発 明 者 真設統

与野市大戸607

丸山雅之 同

柏埼市四谷2の3の38

并上浩 同

枯埼市鏡町5の1

人 遅研ピストンリング工業株式会社 彻出 東京都港区西新橋1の7の13

代 理 人 弁理士 大野晋 外1名

の出 題 人 ヤンマーディーゼル株式会社

大阪市北区茶屋町62

図面の簡単な説明

第1図はこの発明の方法によつて製造された黒 鉛鉄基焼結合金の頭散鏡写真(×400)、第2 図は上記焼結合会と従来の耐磨耗性合金鋳鉄と、 20 一般に水素など還元性雰囲気中において行われる 従来の方法による完結合金とをそれぞれ試験片と し、科研式回転差耗試験機により差耗量を比較し た図表、第3図はこの発明の方法により造られた 焼結合金と、従来の耐磨耗性合金鋳鉄並びにカー ポン材でそれぞれ造られたアベックスシールを、 25 が得られない。以上のように、黒鉛と鉄の徴粉を 実際にロータリーエンジンに装着して運転した結 果の磨耗量を比較した図表、第4図はこの時の相 手方のトロコイドシリンダー面の磨耗状態を示す。 発明の詳細な説明

て優れているため、広く機械部品の中の磨耗が間 題になる個所に使用されている。その場合鋳鉄に 耐磨耗性を与える条件はその鋳鉄の組織が適当に 分布された遊離黒鉛と完全なパーライト組織をも つ基地からなることが必要とされている。一般に 35 冷間圧縮した固形の強度を高める点において極め 含有黒鉛量はそれが多ければ多い程黒鉛自体がも つ演摩材的性質と保油性とによりして耐磨性にお

いて優れている。然し、一般の鋳鉄即ち溶解鋳造 によって造られたねずみ鋳鉄は、その含有炭素量 において制限があり、遊離黒鉛量を3%以上にす ることは極めて困難である。

本発明は3%以上10%までの遊離黒鉛を含む 黒鉛基焼結合金の製造法に関するものであり、そ の目的とするところは従来の溶解鋳造による鋳鉄 においては、製造不可能であつた高黒鉛鋳鉄を発 結合金法によつて製造することにより、耐磨耗性 10 において一段と優れた合金を得るにある。

鉄と黒鉛とを粉末状態において混合し、強圧縮 すれば、固形の合金が得られる。然しこのような 単純圧縮したものは機械的強度において不十分で あり、特に黒鉛量を増した場合には固形化が不可 15 能になる。更に一般の焼結合金法における場合と 同様にこの圧縮体を高温で焼結すれば強度が増大 する。然しその場合にも、もし焼結温度が1000 で以上の高温であれば炭素の拡散が起り、黒鉛の 一部が鉄中に固溶する。同時にそのような焼結は が、そのようなガスの作用により、脱炭現象が起 ることがさけられない。しかも一般に鉄基築結合 金においては、焼結温度を少くとも1000℃以 上の高温において行わなければ十分な強度の合金 混合圧縮して焼結合金を造る方法は冷間圧縮時の **治度不足及び高温焼結時における炭素拡散或は脱** 炭現象により期待されるような優れた機械的強度 をもつ焼結合金が得られない。このような欠点を 金属材料のうち、ねずみ鋳鉄は耐磨耗性に於い 30 補うためにとられた方法の一つに黒鉛と鉄の莨粉 を混合する前に、予め黒鉛の表面に銅メツキをす るか、或は鉄黒鉛の外に銅粉を混ぜて圧縮する方 法が従来より採用されている。両者の内、黒鉛の 表面に予め網メッキした後鉄粉と混合する方法は、

しかしこのように調粉を混合するか黒鉛に調え

て有効である。

ツキをする方法は、その欠点として完結時におい て、そのような鍋が溶融し、焼結強度を弱めるば かりでなく、前に述べた黒鉛の拡散や脱炭による 消失を起すという欠点をもつている。即ち純銅の 溶触点は1080℃であるから、もし焼結温度が 5 用に適しないためである。 その温度より高ければ鍋を配合或はメッキしたこ との効果が全く失われてしまう。しかも本発明に おいて種々研究した結果として知られたことは、 本焼結合金の焼結温度は少くとも1100℃以上 の高温にする必要があることである。即ち1100 10 主としたものである。黒鉛は無電誤メツキ法によ で以下の温度では十分な機械的強度が得られない。 従つてこのような高温で焼結する限り黒鉛を鍔メ ツキしたのみの在来法は採用することができない。

銅メッキの溶融による困難を無くするためには、 鍋以外の高溶融点をもつ金属を黒鉛の表面にメッ 15 キすればよい。しかし黒鉛の表面にそのような高 溶融点をもつ金属をメッキすることは容易なこと ではない。そのような困難を解決するために、本 発明者等は全く新しい方法として黒鉛の表面に先 ず銅をメツキし、その上に更にニッケルを二重メ 20 ツキするという方法を案出した。この方法によれ ば黒鉛表面をニツケルで被うことが容易にできる。 更にニッケルは軟質金属であり、鉄粉と共に強圧 縮した場合単純銅メッキ以上の固形強度が得られ る。

このような圧縮体を1100℃以上の高温に加 熱した場合銅とニツケルとの間に拡散が起り、銅 ーニッケル合金が生じる。但しその場合には銅ー ニツケル合金は依然として黒鉛の表面を包んだ形 のままで残つている。しかも好都合なことにその 30 12~15 kg/niであつた。 ような銅ーニッケル合金は高温においても炭素を 殆んと固溶しない。従つて、被覆としての効果を 完全に杲している。更にそのような銅ーニッケル 合金は1300℃以上の溶融点をもち、また耐熱 性においても優れた材料であることが知られてい、35 の続結合金、低2はモリブデン、 網合金鋳鉄、低 る。従つて、このような焼結合金は加熱によつて 一層強度が増す特徴をもつている。

このように黒鉛の表面に 網とニッケルの二重メ ツキを行えば焼結合金における黒鉛の配合量を大 幅に増加することができる。即ち3%以上10% 40 て、ロータリーエンジンのアベツクスシールにこ までの遊離黒鉛をもつ焼結合金の製造が容易に可 能となる。このような焼結合金は当然の結果とし て耐摩性において優れており、奇酷な摩擦条件の 下に於いて使用される機械部品にその用途を拡大

しつつある。ここに遊離黒鉛として食有させる炭 素の量を下限を3%としたのはこれ以下のものは **美鉄で達せられるし、また上限を10%としたの** は、これ以上になると機械的強度低下のために実

実施例

使用した黒鉛は鱗片状のもので、その大きさは 100メツン以下のものである。使用鉄粉は2% のシリコンを含み、その大きさは320メッシを りその表面に銅メッキした後更にニッケルを同じ く無電解メンキする。そのようにして得た2重メ ツキ黒鉛における黒鉛、銅、ニツケルの重量比は 次の通りである。

黒 鉛 銅 1.5 ニツケル 2.5

このようなメッキ鱗状黒鉛と鉄粉と炭素微粉末 の三者を次の如き割合に混合する。

二重メッキ鱗状黒鉛 6 % 鉄粉(Si2%含有) 92 % 素 枌 末 1.0% 4 1.0%

混合粉末の成形圧5 ton /cmであり、その焼結 る 条件は 1 1 2 0 ℃において 9 0 分とした。そのよ うにして得られ製品の組織の顕微鏡写真は第1図 に示す通りで、その黒い部分 1が 遊離グラフアイ ト、灰色部分2がパーライト基地、線状の白色部 分3はセメンタイトであり、その引張り強さは

第2図は、このような試験片について科研式回 転磨耗試験機を用いて乾燥滑べり磨耗試験を行つ た。結果の磨耗量の比較グラフである。

同図において派1は遊離黒鉛6%を含む本発明 3は遊離黒鉛は 1.5%含む焼結合金で、このグラ フに示されたように、本発明の焼結合金は他の二 者に比べて格段に優れた耐磨耗性を示した。

更にこのような法結合金の興味ある応用例とし れを使用した。第3回と第4回は前記実施例で示 したこの発明の方法によって造られた焼結合金派 1とモリプデン銀合金鋳鉄版2とカーポン材版4 でそれぞれ造られたアペックスシールを回転ピス

5

トンに装着し、クロムメッキを施したトロコイド 形シリンダと組合わせて100時間連続運転をし た結果を示したもので、第3回にはアペックス シールの磨耗量を、また第4図にはトロコイド形 発明の方法による焼結合金材 低1で作られたアベ ックスシールは、他二者に比較して格段の耐磨耗 の優秀性を示したのみならず、第4図のAに示す ように材料低1によるアペツクスシールに対する トロコイドシリングの面は殆ど磨耗がないのに反 10 特許請求の範囲 し、モリプデン銅合金鋳鉄材 低2によるアペック スシールに対するトロコイドシリンダの面には第 ある。

れた焼結合金は鋳造または他の焼結合金法によつ

て造られた耐窘耗材に比べて多孔質で含油性のよ い上に、更に耐暑耗性の高いパーライト基地の中 に含油性並びに自己潤滑性の高い黒鉛を3~10 %という高い割合で含有することができるため、 シリング壁の磨耗状態を示す。この場合にも、本 5 一般の機械摺動部品には勿論のこと、高温高速回 転をして間歇的に油膜の切断が生じるような恐れ のある奇酷な摺動部材にも使用に十分耐える極め て優れた耐磨耗性焼結合金が製造することができ

1 黒鉛粉末の表面に先ず銅メッキした後、更に その上にニッケルをメッキし、その二重メッキし た黒鉛粉末を、鉄または鉄合金粉末と混合し、圧 縮成形した後、1100℃以上の高温において焼 以上に説明したように、この発明の方法で造ら 5 結することを特徴とする3~10%の遊離黒鉛を 含む耐磨耗性黒鉛鉄基焼結合金の製造法。

才 2 図

才3回

才4回

B - WILLIAM SH