

MICROPROCESSORS

8086 features

OBJECTIVE

ORGANIZATION OF A MICROPROSESSOR BASED SYSTEM

02 HOW DOES A MICROPROCESSOR WORK

03 FEATURES OF 8086 MICROPROCESSOR

04 ARCHITECTURE OF 8)86 MICROPROCESSOR

Organization of a microprocessor based system

B, D, C, HL

BUS

The interconnections (known as Interfacing) between the 5 units of computer system is carried by 3 basic buses i) Address Bus ii) Data Bus iii) Control Bus. A bus(f.om the Latin omnibus, meaning "for all") is essentially a set of wires which is used in computer system to carry information of the same logical functionality. The function of the 3 buses is

- ✓ The addres bus selects memory location or an I/O device for the CPU.
- ✓ The data bus transfers information between the microprocessor and its memory or I/O device. Data transfer can 'ary in size, from 8-bits wide to 64 bits wide in various members of microprocessors.
- ✓ The Control bus generates command signals to synchronize the CPU operation with IO and Memory devices

How does a microprocessor work?

Intel 8086 Microprocessor

Key Features:

- ✓ Introduction date: March 1978 <
- ✓ It is 16-bit HMOS microprocessor implemented with 29.000 transistors
- ✓ It can be operated with clock Frequency of 5MHz
- √ Technology: HMOS
- ✓ Numper of Pins 40
- ✓ It has 20-bit Address lines and hence it can address 220 = 1 Mbytes memory location.
- ✓ It can generate 16-bit address for IO devices and can address 2¹ = 64K IO ports.
- ✓ It can be operated in two Modes: Maximum and Minimum
- ✓ It has two stage pipeline architecture.
 - ✓ Number of instructions: 135 instructions with eight 8-bit registers and eight 15-bit registers
 - ✓ DC Power Supply +5v

menony segmentation code felch
Stack enecula
chota
segment

00000

$$2^{1} = 2$$
 $2^{1} = 4$
 $2^{1} = 4$
 $2^{1} = 4$
 $2^{1} = 5(2)$
 $2^{10} = 1024 = 1K$
 $2^{10} = 2 \times 2^{10} = 2K$
 $2^{10} = 2 \times 2^{10} = 2K$
 $2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10}$
 $2^{10} = 2^{10} = 2^{10}$

മ 2 add run -00000 FFFFF h

1999

1111 IIII IIII IIII lengthy

155536