Partially Optimal Cubic Subspace Clustering

Research Project Machine Learning

Volodymyr Drobitko

Technische Universität Dresden

21.07.2025

Introduction

2 Partial Optimality for Cubic Clique Partition Problem

3 Cubic Subspace Instance Construction

Experiments and Evaluation

Conclusion

Problem Statement (1)

Finite sample set S, cost function $c: \binom{S}{3} \to \mathbb{R}$. Instance of the **Cubic Clique Partition Problem**:

$$\min_{\mathbf{y}: \; \binom{S}{2} \to \{0,1\}} \sum_{abc \in \binom{S}{3}} c_{abc} \, \mathbf{y}_{ab} \, \mathbf{y}_{bc} \, \mathbf{y}_{ac}$$

subject to $\mathbf{y}_{ab} + \mathbf{y}_{bc} - 1 \leq \mathbf{y}_{ac}$ for all distinct $a,b,c \in \mathcal{S}$.

Problem Statement (1)

Finite sample set S, cost function $c: \binom{S}{3} \to \mathbb{R}$. Instance of the **Cubic Clique Partition Problem**:

$$\min_{\mathbf{y}: \, \binom{S}{2} \rightarrow \{0,1\}} \sum_{abc \in \binom{S}{3}} \mathbf{c}_{abc} \, \mathbf{y}_{ab} \, \mathbf{y}_{bc} \, \mathbf{y}_{ac}$$

subject to $y_{ab} + y_{bc} - 1 \le y_{ac}$ for all distinct $a, b, c \in S$.

Find a **partially optimal solution**, i.e. fix some labels y_{ab} for distinct $a, b \in S$

$$\begin{cases} \mathbf{y}_{ab} = 1 & \text{join } a, b \\ \mathbf{y}_{ab} = 0 & \text{cut } a, b \\ \mathbf{y}_{ab} = ? & \text{unknown} \end{cases}$$

in such way that there still exists an optimal solution.

Problem Statement (2)

Subspace Instances of the Cubic Clique Partition Problem Samples S: points $S \subset \mathbb{R}^3$

Problem Statement (2)

Subspace Instances of the Cubic Clique Partition Problem

Samples S: points $S \subset \mathbb{R}^3$

Point generation: 3 distinct planes containing the origin, noise σ

Optimal labeling y*: original planes

Problem Statement (2)

Subspace Instances of the Cubic Clique Partition Problem

Samples S: points $S \subset \mathbb{R}^3$

Point generation: 3 distinct planes containing the origin, noise σ

Optimal labeling y*: original planes

Cost function c? (no concrete plane information given)

(a) Samples S

(b) Optimal labeling y*

Related Work:

- Stein, Di Gregorio, and Andres, "Partial Optimality in Cubic Correlation Clustering"
- Lange, Karrenbauer, and Andres, "Partial Optimality and Fast Lower Bounds for Weighted Correlation Clustering"
- Lange, Andres, and Swoboda, "Combinatorial persistency criteria for multicut and max-cut"

Related Work:

- Stein, Di Gregorio, and Andres, "Partial Optimality in Cubic Correlation Clustering"
- Lange, Karrenbauer, and Andres, "Partial Optimality and Fast Lower Bounds for Weighted Correlation Clustering"
- Lange, Andres, and Swoboda, "Combinatorial persistency criteria for multicut and max-cut"

Tasks and Solutions:

- Read Stein, Di Gregorio, and Andres, "Partial Optimality in Cubic Correlation Clustering", implement the partial optimality algorithm
 - \rightarrow implementation in C++

Related Work:

- Stein, Di Gregorio, and Andres, "Partial Optimality in Cubic Correlation Clustering"
- Lange, Karrenbauer, and Andres, "Partial Optimality and Fast Lower Bounds for Weighted Correlation Clustering"
- Lange, Andres, and Swoboda, "Combinatorial persistency criteria for multicut and max-cut"

Tasks and Solutions:

- Read Stein, Di Gregorio, and Andres, "Partial Optimality in Cubic Correlation Clustering", implement the partial optimality algorithm
 - \rightarrow implementation in C++
- Construct subspace instances of increasing difficulty
 - \rightarrow point generation, appropriate cost function c

Related Work:

- Stein, Di Gregorio, and Andres, "Partial Optimality in Cubic Correlation Clustering"
- Lange, Karrenbauer, and Andres, "Partial Optimality and Fast Lower Bounds for Weighted Correlation Clustering"
- Lange, Andres, and Swoboda, "Combinatorial persistency criteria for multicut and max-cut"

Tasks and Solutions:

- Read Stein, Di Gregorio, and Andres, "Partial Optimality in Cubic Correlation Clustering", implement the partial optimality algorithm
 - \rightarrow implementation in C++
- ② Construct subspace instances of increasing difficulty
 → point generation, appropriate cost function c
- Apply algorithm to the subspace instances, assess partial optimality, accuracy and computation time
 - \rightarrow experiments and evaluation

Introduction

Partial Optimality for Cubic Clique Partition Problem

3 Cubic Subspace Instance Construction

4 Experiments and Evaluation

Conclusion

Extended cost function c: $\binom{S}{3} \cup \binom{S}{2} \cup \emptyset \rightarrow \mathbb{R}$

Extended cost function c: $\binom{S}{3} \cup \binom{S}{2} \cup \emptyset \to \mathbb{R}$ Instance of the extended cubic clique partition problem:

$$\min_{y: \, \binom{S}{2} \rightarrow \{0,1\}} \sum_{abc \in \binom{S}{3}} c_{abc} y_{ab} y_{bc} y_{ac} + \sum_{ab \in \binom{S}{2}} c_{ab} y_{ab} + c_{\emptyset}$$

subject to $\mathbf{y}_{ab} + \mathbf{y}_{bc} - 1 \leq \mathbf{y}_{ac}$ for all distinct $a,b,c \in \mathcal{S}$.

Extended cost function c: $\binom{S}{3} \cup \binom{S}{2} \cup \emptyset \to \mathbb{R}$ Instance of the extended cubic clique partition problem:

$$\min_{y: \, \binom{S}{2} \rightarrow \{0,1\}} \sum_{abc \in \binom{S}{3}} c_{abc} y_{ab} y_{bc} y_{ac} + \sum_{ab \in \binom{S}{2}} c_{ab} y_{ab} + c_{\emptyset}$$

subject to $\mathbf{y}_{ab} + \mathbf{y}_{bc} - 1 \leq \mathbf{y}_{ac}$ for all distinct $a, b, c \in \mathcal{S}$.

Let $Y \neq \emptyset$, $\phi \colon Y \to \mathbb{R}$ and $\sigma \colon Y \to Y$. σ is an **Improving Map** for for the problem $\min_{\mathbf{y} \in Y} \phi$ if for every $\mathbf{y} \in Y$: $\phi(\sigma(\mathbf{y})) \leq \phi(\mathbf{y})$.

Extended cost function c: $\binom{S}{3} \cup \binom{S}{2} \cup \emptyset \to \mathbb{R}$ Instance of the extended cubic clique partition problem:

$$\min_{y: \, \binom{S}{2} \rightarrow \{0,1\}} \sum_{abc \in \binom{S}{3}} c_{abc} y_{ab} y_{bc} y_{ac} + \sum_{ab \in \binom{S}{2}} c_{ab} y_{ab} + c_{\emptyset}$$

subject to $\mathbf{y}_{ab} + \mathbf{y}_{bc} - 1 \leq \mathbf{y}_{ac}$ for all distinct $a,b,c \in \mathcal{S}$.

Let $Y \neq \emptyset$, $\phi \colon Y \to \mathbb{R}$ and $\sigma \colon Y \to Y$. σ is an **Improving Map** for for the problem $\min_{\mathsf{y} \in Y} \phi$ if for every $\mathsf{y} \in Y \colon \phi(\sigma(\mathsf{y})) \leq \phi(\mathsf{y})$.

Moreover, let $Q \subseteq Y$ and σ an improving map. If for every $y \in Y$, $\sigma(y) \in Q$, then there is an optimal solution $y^* \in Q$ to $\min_{y \in Y} \phi$.

Extended cost function c: $\binom{S}{3} \cup \binom{S}{2} \cup \emptyset \to \mathbb{R}$ Instance of the extended cubic clique partition problem:

$$\min_{y:\,\binom{S}{2}\to\{0,1\}}\,\sum_{abc\in\binom{S}{3}}c_{abc}\,y_{ab}\,y_{bc}\,y_{ac}+\sum_{ab\in\binom{S}{2}}c_{ab}\,y_{ab}+c_{\emptyset}$$

subject to $\mathbf{y}_{ab} + \mathbf{y}_{bc} - 1 \leq \mathbf{y}_{ac}$ for all distinct $a,b,c \in \mathcal{S}$.

Let $Y \neq \emptyset$, $\phi \colon Y \to \mathbb{R}$ and $\sigma \colon Y \to Y$. σ is an **Improving Map** for for the problem $\min_{\mathsf{y} \in Y} \phi$ if for every $\mathsf{y} \in Y \colon \phi(\sigma(\mathsf{y})) \leq \phi(\mathsf{y})$.

Moreover, let $Q \subseteq Y$ and σ an improving map. If for every $y \in Y$, $\sigma(y) \in Q$, then there is an optimal solution $y^* \in Q$ to $\min_{y \in Y} \phi$.

Let $Y\subseteq\{\text{feasible }y\mid y\colon {s\choose 2}\to\{0,1\}\}$, $\phi_c\colon Y\to\mathbb{R}$ and σ an improving map. If for every $y\in Y\colon \sigma(y)_{ab}=\beta$, $ab\in {s\choose 2}$, $\beta\in\{0,1\}$, then there is an optimal solution y^* to $\min_{y\in Y}\phi_c$ such that $y^*_{ab}=\beta$.

Let $ij \in {S \choose 2}$. If there exists $R \subseteq S$ such that $i \in R \land j \notin R$ and

$$c_{ij}^{+} \geq \sum_{p \in R \land q, r \notin R} \sum_{p,q \in R \land r \notin R} c_{pqr}^{-} + \sum_{p \in R \land q \notin R} c_{pq}^{-}$$

then there is an optimal solution y^* to $\min_{\mathbf{y} \in \mathbf{Y}} \phi_{\mathbf{c}}$ such that $\mathbf{y}^*_{ij} = \mathbf{0}$.

Let $ij \in {S \choose 2}$. If there exists $R \subseteq S$ such that $i \in R \land j \notin R$ and

$$c_{ij}^{+} \geq \sum_{p \in R \land q, r \notin R} \sum_{p,q \in R \land r \notin R} c_{pqr}^{-} + \sum_{p \in R \land q \notin R} c_{pq}^{-}$$

then there is an optimal solution y^* to $\min_{\mathbf{y} \in Y} \phi_{\mathbf{c}}$ such that $\mathbf{y}^*_{ij} = \mathbf{0}$.

Let $ij \in {S \choose 2}$. If there exists $R \subseteq S$ such that $i \in R \land j \notin R$ and

$$c_{ij}^{+} \geq \sum_{p \in R \land q, r \notin R} \sum_{p, q \in R \land r \notin R} c_{pqr}^{-} + \sum_{p \in R \land q \notin R} c_{pq}^{-}$$

then there is an optimal solution y^* to $\min_{\mathbf{y} \in \mathbf{Y}} \phi_{\mathbf{c}}$ such that $\mathbf{y}^*_{ij} = \mathbf{0}$.

Let $ij \in {S \choose 2}$. If there exists $R \subseteq S$ such that $i \in R \land j \notin R$ and

$$c_{ij}^{+} \geq \sum_{p \in R \land q, r \notin R} \sum_{p,q \in R \land r \notin R} c_{pqr}^{-} + \sum_{p \in R \land q \notin R} c_{pq}^{-}$$

then there is an optimal solution y^* to $\min_{\mathbf{y} \in Y} \phi_{\mathbf{c}}$ such that $\mathbf{y}_{ij}^* = \mathbf{0}$.

Improving map $\sigma: Y \to Y$ for $y \in Y$ and $pq \in \binom{S}{2}$:

$$\begin{cases} \sigma(\mathsf{y})_{pq} = 0 & \mathsf{y}_{ij} = 1 \land |\{p,q\} \cap R| = 1 \\ \sigma(\mathsf{y})_{pq} = \mathsf{y}_{pq} & \textit{otherwise} \end{cases}$$

Partial Optimality Conditions

Partial Optimality Conditions:

- Subproblem-CUT-condition (cut subset from its complement)
- Q CUT-conditions (cut pairs and triples)
- JOIN-conditions (join subsets, pairs and triples)

Partial Optimality Conditions

Partial Optimality Conditions:

- Subproblem-CUT-condition (cut subset from its complement)
- 2 CUT-conditions (cut pairs and triples)
- 3 JOIN-conditions (join subsets, pairs and triples)

CUT-conditions can be applied simultaneously.

JOIN-conditions must be applied iteratively!

 $Q_1,Q_2\in Y$: if there exists an optimal $y_1^*\in Q_1$ and there exists an optimal $y_2^*\in Q_2$ \rightarrow there is an optimal $y^*\in Q_1\cap Q_2$:

$$\begin{split} & \min_{\mathbf{y} \in Y} \phi_{\mathbf{c}} = -2 \\ & Q_1 = \{ \mathbf{y} \in Y \mid \mathbf{y}_{ab} = 1 \} \\ & Q_2 = \{ \mathbf{y} \in Y \mid \mathbf{y}_{ac} = 1 \} \\ & \to Q_1 \cap Q_2 = \{ \mathbf{y} \in Y \mid \mathbf{y}_{ab} = 1 \land \mathbf{y}_{ac} = 1 \} \ \ \ \ \end{split}$$

Partial Optimality Conditions

Partial Optimality Conditions:

- Subproblem-CUT-condition (cut subset from its complement)
- OUT-conditions (cut pairs and triples)
- 3 JOIN-conditions (join subsets, pairs and triples)

CUT-conditions can be applied simultaneously.

JOIN-conditions must be applied iteratively!

 $Q_1, Q_2 \in Y$: if there exists an optimal $y_1^* \in Q_1$ and there exists an optimal $y_2^* \in Q_2 \nrightarrow$ there is an optimal $y^* \in Q_1 \cap Q_2$:

$$\begin{split} & \min_{\mathbf{y} \in Y} \phi_{\mathbf{c}} = -2 \\ & Q_1 = \{ \mathbf{y} \in Y \mid \mathbf{y}_{ab} = 1 \} \\ & Q_2 = \{ \mathbf{y} \in Y \mid \mathbf{y}_{ac} = 1 \} \\ & \to Q_1 \cap Q_2 = \{ \mathbf{y} \in Y \mid \mathbf{y}_{ab} = 1 \land \mathbf{y}_{ac} = 1 \} \not \{ \end{split}$$

Apply partial optimality conditions \rightarrow solve subproblems!

Partial Optimality Algorithm

```
Partial Optimality Algorithm:
Input: labeling y without fixed labels
while condition applied do
apply subproblem-CUT-condition exhaustively
apply one of JOIN-conditions (in effective order)
end while
apply CUT-conditions exhaustively
Output: partially optimal labeling y with some fixed labels
```

Partial Optimality Algorithm

Partial Optimality Algorithm:

Input: labeling y without fixed labels
while condition applied do
apply subproblem-CUT-condition exhaustively
apply one of JOIN-conditions (in effective order)
end while
apply CUT-conditions exhaustively

Reduction to subproblems:

Subproblem-CUT-condition: fix 0-labels for element pairs from different sample subsets; solve each subset as an independent problem; accumulate the results in c_∅;

Output: partially optimal labeling y with some fixed labels

Partial Optimality Algorithm

Partial Optimality Algorithm:

Input: labeling y without fixed labels

while condition applied do

apply subproblem-CUT-condition exhaustively apply one of JOIN-conditions (in effective order)

end while

apply CUT-conditions exhaustively

Output: partially optimal labeling y with some fixed labels

Reduction to subproblems:

- Subproblem-CUT-condition: fix 0-labels for element pairs from different sample subsets; solve each subset as an independent problem; accumulate the results in c_∅;
- ② JOIN-Conditions: fix 1-labels for elements of the sample subset; add the join-cost to c_∅; solve the problem where the subset is considered as one sample;

Subproblem-CUT: cut sample subsets R_1, R_2, \dots, R_k that are only connected via non-negative costs (applied if k > 1)

Subproblem-CUT: cut sample subsets $R_1, R_2, ..., R_k$ that are only connected via non-negative costs (applied if k > 1)

Subproblem-CUT: cut sample subsets R_1, R_2, \ldots, R_k that are only connected via non-negative costs (applied if k > 1)

Subproblem-CUT: cut sample subsets R_1, R_2, \ldots, R_k that are only connected via non-negative costs (applied if k > 1)

Subproblem-CUT: cut sample subsets R_1, R_2, \dots, R_k that are only connected via non-negative costs (applied if k > 1)

Subproblem-CUT: cut sample subsets $R_1, R_2, ..., R_k$ that are only connected via non-negative costs (applied if k > 1)

Subproblem-CUT: cut sample subsets $R_1, R_2, ..., R_k$ that are only connected via non-negative costs (applied if k > 1)

Other JOIN-conditions

Pair-JOIN-1: join $ij \in \binom{S}{2}$ if their overall joining reward \geq the sum of rewards and penalties for joining some subset R with $i \in R \land j \notin R$ with \overline{R} (\approx i-j min-cut)

Other JOIN-conditions

Pair-JOIN-1: join $ij \in \binom{S}{2}$ if their overall joining reward \geq the sum of rewards and penalties for joining some subset R with $i \in R \land j \notin R$ with \overline{R} (\approx i-j min-cut)

Pair-JOIN-2: join $ik \in \binom{S}{2}$ if there exist $ijk \in \binom{S}{3}$ that fulfills 3 conditions (\approx i-jk min-cut, \approx ij-k min-cut, 1 explicit condition)

Other JOIN-conditions

Pair-JOIN-1: join $ij \in \binom{S}{2}$ if their overall joining reward \geq the sum of rewards and penalties for joining some subset R with $i \in R \land j \notin R$ with \overline{R} (\approx i-j min-cut)

Pair-JOIN-2: join $ik \in \binom{S}{2}$ if there exist $ijk \in \binom{S}{3}$ that fulfills 3 conditions (\approx i-jk min-cut, \approx ij-k min-cut, 1 explicit condition)

Pair-JOIN-3: join $ij \in \binom{S}{2}$ if $c_{ij} \le$ the sum of reward costs for joining pairs and triples containing i or j

Other JOIN-conditions

Pair-JOIN-1: join $ij \in \binom{S}{2}$ if their overall joining reward \geq the sum of rewards and penalties for joining some subset R with $i \in R \land j \notin R$ with \overline{R} (\approx i-j min-cut)

Pair-JOIN-2: join $ik \in \binom{S}{2}$ if there exist $ijk \in \binom{S}{3}$ that fulfills 3 conditions (\approx i-jk min-cut, \approx ij-k min-cut, 1 explicit condition)

Pair-JOIN-3: join $ij \in {S \choose 2}$ if $c_{ij} \le$ the sum of reward costs for joining pairs and triples containing i or j

Pair-JOIN-4: join $ik \in \binom{5}{2}$ if there exists $ijk \in \binom{5}{3}$ such that 7 explicit conditions hold

Other JOIN-conditions

Pair-JOIN-1: join $ij \in \binom{S}{2}$ if their overall joining reward \geq the sum of rewards and penalties for joining some subset R with $i \in R \land j \notin R$ with \overline{R} (\approx i-j min-cut)

Pair-JOIN-2: join $ik \in \binom{S}{2}$ if there exist $ijk \in \binom{S}{3}$ that fulfills 3 conditions (\approx i-jk min-cut, \approx ij-k min-cut, 1 explicit condition)

Pair-JOIN-3: join $ij \in \binom{S}{2}$ if $c_{ij} \le$ the sum of reward costs for joining pairs and triples containing i or j

Pair-JOIN-4: join $ik \in \binom{S}{2}$ if there exists $ijk \in \binom{S}{3}$ such that 7 explicit conditions hold

Triple-JOIN: join $ijk \in \binom{5}{3}$ if a condition holds (similar to Pair-JOIN-1) (\approx i-jk min-cut)

$$c_{bcd} = 10$$

$$c_{abc} = c_{abd} = c_{acd} = -50$$

Pair-CUT: cut $ij \in \binom{S}{2}$ if the direct joing penalty \geq the sum of rewards for joining some subset R with $i \in R \land j \notin R$ with \overline{R} (\approx i-j min-cut)

Pair-CUT: cut $ij \in {S \choose 2}$ if the direct joing penalty \geq the sum of rewards for joining some subset R with $i \in R \land j \notin R$ with \overline{R} (\approx i-j min-cut)

Triple-CUT: cut $ijk \in \binom{S}{3}$ if a condition holds (similar to Pair-CUT) (\approx i-jk min-cut)

$$c_{bcd}=10$$
 $c_{abc}=c_{abd}=c_{acd}=-50$ $c_{abc}=c_{abd}=c_{acd}=-50$ $c_{abc}=c_{abd}=c_{acd}=-50$ $c_{abc}=c_{abd}=c_{acd}=-50$ $c_{abc}=c_{abd}=c_{acd}=-50$ $c_{abc}=c_{abd}=c_{abd}=c_{acd}=-50$ $c_{abc}=c_{abd}=c_{abd}=c_{acd}=-50$ $c_{abc}=c_{abd}=c_{abd}=c_{acd}=-50$ $c_{abc}=c_{abd}=c_{abd}=c_{acd}=-50$ $c_{abc}=c_{abd}=c_{abd}=c_{acd}=-50$ $c_{abc}=c_{abd}=c_{$

Pair-CUT: cut $ij \in {S \choose 2}$ if the direct joing penalty \geq the sum of rewards for joining some subset R with $i \in R \land j \notin R$ with \overline{R} (\approx i-j min-cut)

Triple-CUT: cut $ijk \in \binom{S}{3}$ if a condition holds (similar to Pair-CUT) (\approx i-jk min-cut)

Samples in the pyramid with $c_{bcd}=100$ are unjoinable! Triple-CUT is applied to the triple bcd

Program Structure

Introduction

2 Partial Optimality for Cubic Clique Partition Problem

3 Cubic Subspace Instance Construction

4 Experiments and Evaluation

Plane Generation:

• generate 3 planes as distinct normal vectors $\vec{n}_1, \vec{n}_2, \vec{n}_3$ (normalized)

Plane Generation:

- generate 3 planes as distinct normal vectors $\vec{n}_1, \vec{n}_2, \vec{n}_3$ (normalized)
- compute a $\vec{r}_{i,1}$ (normalized) orthogonal to \vec{n}_i $(i \in \{1,2,3\})$

Plane Generation:

- generate 3 planes as distinct normal vectors $\vec{n}_1, \vec{n}_2, \vec{n}_3$ (normalized)
- compute a $\vec{r}_{i,1}$ (normalized) orthogonal to \vec{n}_i $(i \in \{1,2,3\})$
- compute the $\vec{r_{i,2}}$ (normalized) orthogonal to $\vec{n_i}$ and $\vec{r_{i,1}}$

Plane Generation:

- generate 3 planes as distinct normal vectors $\vec{n}_1, \vec{n}_2, \vec{n}_3$ (normalized)
- compute a $\vec{r}_{i,1}$ (normalized) orthogonal to \vec{n}_i $(i \in \{1,2,3\})$
- compute the $\vec{r}_{i,2}$ (normalized) orthogonal to \vec{n}_i and $\vec{r}_{i,1}$

Point Generation on the plane $(\vec{n}, \vec{r_1}, \vec{r_2})$, parameters (D, σ) :

- random variables $k_1, k_2 \in [-D, D]$ (uniform distribution)
- random variable k_n (normal distribution based on σ)
- generate point $p = k_1 \vec{r_1} + k_2 \vec{r_2} + k_n \vec{n}$

(1) Smallest side
$$s < D/2$$

 $\rightarrow c_{abc} = 0$

- (1) Smallest side s < D/2 $\rightarrow c_{abc} = 0$
- (2) Largest angle $\alpha > 150^{\circ}$ \rightarrow c_{abc} = 0

- (1) Smallest side s < D/2 $\rightarrow c_{abc} = 0$
- (2) Largest angle $\alpha > 150^{\circ}$ $\rightarrow c_{abc} = 0$
- (3) h_a, h_b, h_c : distances to the best fitted plane containing the origin; $h_a + h_b + h_c > 3\sigma + 10^{-6}$ $\rightarrow c_{abc} = \frac{(h_a + h_b + h_c) (3\sigma + 10^{-6})}{3D}$

Triangle $abc \in \binom{S}{3}$

- (1) Smallest side s < D/2 $\rightarrow c_{abc} = 0$
- (2) Largest angle $\alpha > 150^{\circ}$ $\rightarrow c_{abc} = 0$
- (3) h_a, h_b, h_c : distances to the best fitted plane containing the origin; $h_a + h_b + h_c > 3\sigma + 10^{-6}$ $\rightarrow c_{abc} = \frac{(h_a + h_b + h_c) (3\sigma + 10^{-6})}{3D}$

(4) h_o : distance from the origin to the triangle plane; $h_o > \frac{10}{\#points}\sigma + 10^{-6}$ $\rightarrow c_{abc} = 0$

(5) for all points p: h_p : distance to the best fitted plane containing the origin;

(5) for all points p:h_p: distance to the best fitted plane containing the origin;

choose
$$p$$
 if $h_p < \sigma + 10^{-6} \land |\vec{p}| > 0.3D$

(5) for all points p:h_p: distance to the best fitted plane containing the origin;

choose
$$p$$
 if $h_p < \sigma + 10^{-6} \land |\vec{p}| > 0.3D$

(5) for all points p: h_p : distance to the best fitted plane containing the origin;

choose
$$p$$
 if $h_p < \sigma + 10^{-6} \wedge |\vec{p}| > 0.3D$

$$\delta_p := rac{hp' - (\sigma + 10^{-6})}{D}$$
 $M := \{p \mid p ext{ chosen } \wedge \delta_p < 0\}$

(5) for all points p: h_p : distance to the best fitted plane containing the origin;

choose
$$p$$
 if $h_p < \sigma + 10^{-6} \wedge |\vec{p}| > 0.3D$

$$\begin{split} & \delta_p := \frac{hp' - (\sigma + 10^{-6})}{D} \\ & M := \{p \mid p \text{ chosen } \wedge \delta_p < 0\} \\ & |M| \leq 3 \rightarrow \mathsf{c}_{abc} = 0 \end{split}$$

(5) for all points p:h_p: distance to the best fitted plane containing the origin;

choose
$$p$$
 if $h_p < \sigma + 10^{-6} \wedge |\vec{p}| > 0.3D$

$$\begin{split} & \delta_p := \frac{hp' - (\sigma + 10^{-6})}{D} \\ & M := \{ p \mid p \text{ chosen } \wedge \delta_p < 0 \} \\ & |M| \leq 3 \rightarrow \mathsf{c}_{abc} = 0 \\ & \rightarrow \mathsf{c}_{abc} = 2^{|M| - 4} \cdot \sum_{p \in M} \delta_p \end{split}$$

Introduction

2 Partial Optimality for Cubic Clique Partition Problem

3 Cubic Subspace Instance Construction

4 Experiments and Evaluation

Cost Function Evaluation (3x15 points, $\sigma = 1$)

Cost Function Evaluation (3x15 points, $\sigma = 1$)

• WSL2 Ubuntu, Intel Core i7-11370H (3.30 GHz), 16 GB RAM

- WSL2 Ubuntu, Intel Core i7-11370H (3.30 GHz), 16 GB RAM
- Apply the algorithm to the random cubic subspace instances with D=100 and fixed $\sigma=0,1,2,3,4,5$:
 - 3x7 points (solve 15 instances)
 - 3x10 points (solve 15 instances)
 - 3x15 points (solve 7 instances)
 - 3x20 points (solve 1 instance)

- WSL2 Ubuntu, Intel Core i7-11370H (3.30 GHz), 16 GB RAM
- Apply the algorithm to the random cubic subspace instances with D=100 and fixed $\sigma=0,1,2,3,4,5$:
 - 3x7 points (solve 15 instances)
 - 3x10 points (solve 15 instances)
 - 3x15 points (solve 7 instances)
 - 3x20 points (solve 1 instance)
- Track
 - computation time (s)
 - partial optimality (%)
 - accuracy (%) with respect to the truth (correct labeling)

- WSL2 Ubuntu, Intel Core i7-11370H (3.30 GHz), 16 GB RAM
- Apply the algorithm to the random cubic subspace instances with D=100 and fixed $\sigma=0,1,2,3,4,5$:
 - 3x7 points (solve 15 instances)
 - 3x10 points (solve 15 instances)
 - 3x15 points (solve 7 instances)
 - 3x20 points (solve 1 instance)
- Track
 - computation time (s)
 - partial optimality (%)
 - accuracy (%) with respect to the truth (correct labeling)
- Capture
 - 1.quartile (Q1)
 - median (Q2)
 - 3.quartile(Q3)
 - the worst computation time

Partial Optimality (3x7 points)

Accuracy (3x7 points)

Partial Optimality (3x10 points)

Accuracy (3x10 points)

Partial Optimality (3x15 points)

Accuracy (3x15 points)

Partial Optimality

Partial Optimality

Computation Time (worst case)

Introduction

2 Partial Optimality for Cubic Clique Partition Problem

3 Cubic Subspace Instance Construction

4 Experiments and Evaluation

- Implementation of the partial optimality algorithm:
 - arbitrary sample type
 - sparse cost representation
 - pair labeling and triple cuts
 - reasonable adjustments of the partial optimality conditions
 - self-explaining logs

- Implementation of the partial optimality algorithm:
 - arbitrary sample type
 - sparse cost representation
 - pair labeling and triple cuts
 - reasonable adjustments of the partial optimality conditions
 - self-explaining logs
- Subspace instance generation using linear algebra methods, geometric cost function c:
 - high accuracy (over 75%)
 - significant noise tolerance $(\sigma \geq 1)$
 - $O(k \cdot n^6)$ for n = #points and a small k

Conclusion

- Implementation of the partial optimality algorithm:
 - arbitrary sample type
 - sparse cost representation
 - pair labeling and triple cuts
 - reasonable adjustments of the partial optimality conditions
 - self-explaining logs
- Subspace instance generation using linear algebra methods, geometric cost function c:
 - high accuracy (over 75%)
 - significant noise tolerance ($\sigma \geq 1$)
 - $O(k \cdot n^6)$ for n = #points and a small k

Future Work:

- optimize and parallelize the algorithm
- overcome the partial optimality loss for c
- determine better parameters for c
- update c with advanced criteria

References

My program, scripts and presentation:

https://github.com/Vovsanka/ResearchProjectML

Bibliography:

- Lange, Jan-Hendrik, Bjoern Andres, and Paul Swoboda. "Combinatorial persistency criteria for multicut and max-cut". In: CVPR (2019).
- Lange, Jan-Hendrik, Andreas Karrenbauer, and Bjoern Andres. "Partial Optimality and Fast Lower Bounds for Weighted Correlation Clustering". In: *ICML* (2018).
- Stein, David, Silvia Di Gregorio, and Bjoern Andres. "Partial Optimality in Cubic Correlation Clustering". In: *ICML* (2023).