

Vanishing and Exploding Gradients

Vanishing and Exploding Gradients

Vanishing and Exploding Gradients

Recap

Linear Regression Model

Recap

Sigmoid for Non-Linearity

Researchers preferred using a sigmoid activation function

Sigmoid function narrows input ranges to 0-1 output

Sigmoid for Non-Linearity

Sigmoid Function and its derivatives

Sigmoid for Non-Linearity

Sigmoid Function and its derivatives

Other activation function: TanH

TanH Function

TanH Function

Other activation function: ReLU

$$f(x) = \max(0, x)$$

$$f(x) = x, x \ge 0$$

$$f(x) = 0, x < 0$$

$$f(x) = \max(0, x)$$

$$f(x) = x, x \ge 0$$

$$f(x) = 0, x < 0$$

ReLU is faster and more effective.

$$f(x) = \max(0, x)$$

$$f(x) = x, x \ge 0$$

$$f(x) = 0, x < 0$$

ReLU is faster and more effective.

ReLU is computationally efficient.

During backpropagation process, the weights and biases for some neurons may not be updated.

Leaky ReLU and ELU Activation Functions

Leaky ReLU Function

f(x)=max(alpha*x, x)

Leaky ReLU Function

Leaky ReLU =
$$\begin{cases} x, & if \ x > 0 \\ a \times x, & if \ x \le 0 \end{cases}$$

Exponential Linear Unit

$$f(x) = \begin{cases} x, & x \ge 0 \\ \alpha(e^x - 1), & x \ge 0 \end{cases}$$

The Current Approach

- ReLU is used to reduce the problem of vanishing gradient
- The sigmoid activation function is used in the last layer of the binary classification problems.
- TanH and sigmoid are used in the hidden layers of some complex neural architectures.

Up-Next: Optimum Weight Initialization Techniques