Imitative Planning

for Autonomous Vehicles

Nicholas Rhinehart
Carnegie Mellon University

Rowan McAllister
UC Berkeley

Kris Kitani Carnegie Mellon University

Sergey Levine
UC Berkeley

Q: Can robots safely learn to drive suburban roads in interpretable ways to new goals?
Without learning ?
Behavior cloning ?
Model-based RL ?

Without learning?

Behavior cloning?

Model-based RL?

Without learning?

Behavior cloning?

Model-based RL?

Q: Can robots **safely learn** to drive **suburban roads** in **interpretable** ways to **new goals**? (trains offline) (no rewards required)

Without learning?

Behavior cloning?

Model-based RL?

Q: Can robots **safely learn** to drive **suburban roads** in **interpretable** ways to **new goals**? (trains offline) (no rewards required)

Without learning?

Behavior cloning?

Model-based RL?

(plans)

Without learning?
Behavior cloning?
Model-based RL?
(trains offline)
(no rewards required)
X
X
Y
X
Y
X
Y

(trains offline) (no rewards required) (plans)

Without learning?

Behavior cloning?

Model-based RL?

·	(trains offline)	(no rewards required)	(plans)	J	(dyn. model)
Without learning ?		×	V		
Behavior cloning ?	?		X		
Model-based RL ?	?	×	V		

	(trains offline)	(no rewards required)	(plans)	(dyn. model)
Without learning ?		×		?
Behavior cloning ?	?		×	×
Model-based RL ?	?	×		

	(trains offline)	(no rewards required)	(plans)	(dyn. model)
Without learning ?		×		?
Behavior cloning ?	?		×	×
Model-based RL ?	?	×		
Imitative Models (ours)				

states = f(latents; context)

states = f (latents; context) latents = f^{-1} (states; context)

states =
$$f$$
 (latents; context)
latents = f^{-1} (states; context)

$$q\left(\mathbf{states} \mid \mathbf{context}\right) = \frac{\mathcal{N}\left(\mathbf{latents}; 0, I\right)}{\left|\det \frac{\partial f}{\partial \mathbf{latents}}\right|}$$

states = f (latents; context) latents = f^{-1} (states; context)

$$q\left(\mathbf{states} \,|\, \mathbf{context} \right) = \frac{\mathcal{N}\left(\mathbf{latents}; 0, I \right)}{\left| \det \frac{\partial f}{\partial \, \mathbf{latents}} \right|}$$
 Can **plan** in this distribution!

w idea

Rhinehart, McAllister, Levine http://imitate.ml

states = f(latents; context)

latents = f^{-1} (states; context)

$$q ext{ (states | context)} = \frac{\mathcal{N} ext{ (latents}; 0, I)}{\left| \det \frac{\partial f}{\partial latents} \right|}$$

Can **plan** in this distribution!

Rhinehart, McAllister, Levine http://imitate.ml

 $\mathbf{planned\ path} = \arg\max_{\mathbf{states}} \log p(\mathbf{states} \mid \mathbf{goal}, \mathbf{context})$


```
\mathbf{planned\ path} = \arg\max_{\mathbf{states}} \log p(\mathbf{states} \mid \mathbf{goal}, \mathbf{context})
```

 $= \arg \max \log q(\text{states} \mid \text{context}) + \log p(\text{goal} \mid \text{states}, \text{context}) - \log p(\text{goal} \mid \text{context})$

```
\begin{aligned} & \operatorname{planned path} = \underset{\text{states}}{\operatorname{arg \, max} \, \log p(\text{states} \, | \, \text{goal}, \, \text{context})} \\ & = \underset{\text{states}}{\operatorname{arg \, max} \, \log q(\text{states} \, | \, \text{context}) + \log p(\text{goal} \, | \, \text{states}, \, \text{context}) - \log p(\text{goal} \, | \, \text{context})} \\ & = \underset{\text{states}}{\operatorname{arg \, max} \, \log q(\text{states} \, | \, \text{context}) + \log p(\text{goal} \, | \, \text{states}, \, \text{context})} \\ & = \underset{\text{imitation prior}}{\operatorname{arg \, max} \, \log q(\text{states} \, | \, \text{context}) + \log p(\text{goal} \, | \, \text{states}, \, \text{context})} \\ & = \underset{\text{imitation prior}}{\operatorname{goal \, likelihood}} \end{aligned}
```

```
\begin{aligned} & \textbf{planned path} = \arg\max \log p(\textbf{states} \mid \textbf{goal}, \textbf{context}) \\ & = \arg\max \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) - \log p(\textbf{goal} \mid \textbf{context}) \\ & = \arg\max \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \arg\max_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \arg\max_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \arg\max_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \arg\max_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \arg\max_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \arg\max_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \arg\max_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \arg\max_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \arg\max_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \min_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \min_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \min_{\textbf{states}} \log q(\textbf{states} \mid \textbf{context}) + \log p(\textbf{goal} \mid \textbf{states}, \textbf{context}) \\ & = \min_{\textbf{states}} \log q(\textbf{states} \mid \textbf{states}, \textbf{context}) \\ & = \min_{\textbf{states}} \log q(\textbf{states} \mid \textbf{states}, \textbf{context}) \\ & = \min_{\textbf{states}} \log q(\textbf{states} \mid \textbf{states}, \textbf{states}, \textbf{states}) \\ & = \min_{\textbf{states}} \log q(\textbf{states} \mid \textbf{states}, \textbf{states}, \textbf{states}) \\ & = \min_{\textbf{states}} \log q(\textbf{states} \mid \textbf{states}, \textbf{states}, \textbf{states}) \\ & = \min_{\textbf{states}} \log q(\textbf{states} \mid \textbf{states}, \textbf{states}, \textbf{states}) \\ & = \min_{\textbf{states}} \log q(\textbf{states} \mid \textbf{states}, \textbf{states}, \textbf{states}, \textbf{states}) \\ & = \min_{\textbf{states}} \log q(\textbf{states}, \textbf{states}, \textbf{states}, \textbf{states}, \textbf{states}, \textbf{states}, \textbf{states}, \textbf{states}) \\ & = \min_{\textbf{states}} \log q(\textbf{states}, \textbf{states}, \textbf{state
```

```
planned path = \underset{\text{states}}{\text{arg max log } p(\text{states} \mid \text{goal}, \text{context})} = \underset{\text{states}}{\text{arg max log } q(\text{states} \mid \text{context}) + \log p(\text{goal} \mid \text{states}, \text{context}) - \log p(\text{goal} \mid \text{context})} = \underset{\text{states}}{\text{arg max log } q(\text{states} \mid \text{context}) + \log p(\text{goal} \mid \text{states}, \text{context})} = \underset{\text{states}}{\text{goal likelihood}} = \underset{\text{minitation prior}}{\text{prior}} = \underset{\text{minitation prior}}{\text{poal likelihood}} = \underset{\text{minitation prior}}{\text{minitation prior}} = \underset{\text{minitation prior}}{\text{mini
```


Forecasting with nuScenes data (Singapore + Boston)

Multi-Agent Planning

Q: but how should *autonomous vehicles* predict other agents...online?

Multi-Agent Planning

Q: but how should *autonomous vehicles* predict other agents...online?

Multi-Agent Planning

Q: but how should *autonomous vehicles* predict other agents...online?

Forecasting

Conditional forecasting

Forecasting

Conditional forecasting

$$\begin{aligned} & \mathbf{latents}^* = \arg\max_{\mathbf{latents}} \mathbb{E}_{\mathbf{latents}} \Big[\log p \left(\mathbf{states}, \mathbf{states} \ \middle| \ \mathbf{goal}, \mathbf{context} \right) \Big] \\ & = \arg\max_{\mathbf{latents}} \mathbb{E}_{\mathbf{latents}} \Big[\log q \left(\mathbf{states}, \mathbf{states} \ \middle| \ \mathbf{context} \right) + \log p(\mathbf{goal} \ \middle| \ \mathbf{states}, \mathbf{states}, \mathbf{context}) - \log p \left(\mathbf{goal} \ \middle| \ \mathbf{context} \right) \Big] \end{aligned}$$

$$\begin{aligned} & \textbf{latents}^* = \operatorname*{arg\,max} \mathbb{E}_{\textbf{latents}} \left[\, \log p \left(\textbf{states}, \textbf{states} \, \middle| \, \textbf{goal}, \textbf{context} \right) \, \right] \\ & = \operatorname*{arg\,max} \mathbb{E}_{\textbf{latents}} \left[\, \log q \left(\textbf{states}, \textbf{states} \, \middle| \, \textbf{context} \right) + \log p (\textbf{goal} \, \middle| \, \textbf{states}, \textbf{states}, \textbf{context} \right) - \log p \left(\textbf{goal} \, \middle| \, \textbf{context} \right) \, \right] \\ & = \operatorname*{arg\,max} \mathbb{E}_{\textbf{latents}} \left[\, \log q \left(\textbf{states}, \textbf{states} \, \middle| \, \textbf{context} \right) + \log p \left(\textbf{goal} \, \middle| \, \textbf{states}, \textbf{states}, \textbf{context} \right) \, \right] \\ & = \operatorname*{arg\,max} \mathbb{E}_{\textbf{latents}} \left[\, \log q \left(\textbf{states}, \textbf{states} \, \middle| \, \textbf{context} \right) + \log p \left(\textbf{goal} \, \middle| \, \textbf{states}, \textbf{states}, \textbf{context} \right) \, \right] \\ & = \operatorname*{arg\,max} \mathbb{E}_{\textbf{latents}} \left[\, \log q \left(\textbf{states}, \textbf{states} \, \middle| \, \textbf{context} \right) + \log p \left(\textbf{goal} \, \middle| \, \textbf{states}, \textbf{states}, \textbf{context} \right) \, \right] \end{aligned}$$

Future work: how to respond to "out-of-distribution" scenes?

Thank you!

Single-agent forecasting + control

Deep Imitative Models for Flexible Inference, Planning, and Control Nicholas Rhinehart, Rowan McAllister, Sergey Levine http://imitate.ml

Multi-agent forecasting

PRECOG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings Nicholas Rhinehart, Rowan McAllister, Kris Kitani, Sergey Levine http://precog.ml

Bayesian single-agent forecasting + control

(in progress)

Forecasting with nuScenes data (Singapore + Boston)

Car 2 is predicted to overtake Car 1, which itself is forecasted to continue to wait for pedestrians and Car 2.

Car 4 is predicted to wait for a clear intersection, andCar 5 is predicted to either start turning or continue straight.

Goal-Conditioned Forecasting

