$11a_{194} (K11a_{194})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{22} - 2u^{21} + \dots + b + 1, \ 3u^{22} - 7u^{21} + \dots + 2a - 8u, \ u^{23} - 3u^{22} + \dots + 6u - 2 \rangle \\ I_2^u &= \langle -26u^{14}a + 25u^{14} + \dots - 45a + 53, \ u^{14} + 2u^{13} + \dots - 2a + 2, \\ u^{15} + u^{14} + 4u^{13} + 3u^{12} + 8u^{11} + 6u^{10} + 10u^9 + 7u^8 + 8u^7 + 6u^6 + 6u^5 + 4u^4 + 4u^3 + 2u^2 + 2u + 1 \rangle \\ I_3^u &= \langle b - 1, \ u^3 - 2u^2 + 2a - 2, \ u^4 + 2u^2 + 2 \rangle \\ I_1^v &= \langle a, \ b + 1, \ v + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 58 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{22} - 2u^{21} + \dots + b + 1, \ 3u^{22} - 7u^{21} + \dots + 2a - 8u, \ u^{23} - 3u^{22} + \dots + 6u - 2 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{3}{2}u^{22} + \frac{7}{2}u^{21} + \dots - 7u^{2} + 4u \\ -u^{22} + 2u^{21} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{5}{2}u^{22} + \frac{11}{2}u^{21} + \dots + 6u - 1 \\ -u^{22} + 2u^{21} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{22} + \frac{3}{2}u^{21} + \dots + 2u - 1 \\ u^{20} - u^{19} + \dots - u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{22} + \frac{3}{2}u^{21} + \dots + 4u - 1 \\ u^{20} - u^{19} + \dots - 2u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{11} - 2u^{9} - 2u^{7} + u^{3} \\ u^{13} + 3u^{11} + 5u^{9} + 4u^{7} + 2u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{11} - 2u^{9} - 2u^{7} + u^{3} \\ u^{13} + 3u^{11} + 5u^{9} + 4u^{7} + 2u^{5} + u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= 2u^{22} - 6u^{21} + 18u^{20} - 32u^{19} + 58u^{18} - 84u^{17} + 122u^{16} - 152u^{15} + 182u^{14} - 192u^{13} + 206u^{12} - 194u^{11} + 188u^{10} - 154u^9 + 126u^8 - 102u^7 + 68u^6 - 38u^5 + 12u^4 + 6u^3 + 8u^2 - 2u + 4u^2 + 6u^3 + 6u^2 + 6u$$

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{23} + 3u^{22} + \dots + 6u + 2$
c_2	$u^{23} + 11u^{22} + \dots - 4u - 4$
c_3, c_4, c_5 c_8, c_9, c_{10}	$u^{23} - u^{22} + \dots + 4u^2 - 1$
c ₇	$u^{23} - 3u^{22} + \dots - 166u + 34$
c_{11}	$u^{23} + 15u^{22} + \dots + 1790u + 314$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{23} + 11y^{22} + \dots - 4y - 4$
c_2	$y^{23} + 3y^{22} + \dots - 208y - 16$
c_3, c_4, c_5 c_8, c_9, c_{10}	$y^{23} - 29y^{22} + \dots + 8y - 1$
c ₇	$y^{23} - 5y^{22} + \dots + 4028y - 1156$
c_{11}	$y^{23} + 7y^{22} + \dots - 489796y - 98596$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.768464 + 0.625797I		
a = -2.35900 - 0.70924I	14.4326 - 5.1937I	13.7476 + 3.5950I
b = 1.59436 - 0.22254I		
u = -0.768464 - 0.625797I		
a = -2.35900 + 0.70924I	14.4326 + 5.1937I	13.7476 - 3.5950I
b = 1.59436 + 0.22254I		
u = 0.835379 + 0.384998I		
a = -2.06431 - 0.48967I	13.0517 - 8.4231I	12.86699 + 3.68057I
b = 1.55191 - 0.30830I		
u = 0.835379 - 0.384998I		
a = -2.06431 + 0.48967I	13.0517 + 8.4231I	12.86699 - 3.68057I
b = 1.55191 + 0.30830I		
u = 0.305961 + 1.048060I		
a = 0.143181 - 0.764944I	-3.26008 + 0.62293I	-1.92583 + 0.88926I
b = 0.168196 - 0.598689I		
u = 0.305961 - 1.048060I		
a = 0.143181 + 0.764944I	-3.26008 - 0.62293I	-1.92583 - 0.88926I
b = 0.168196 + 0.598689I		
u = -0.477361 + 1.058390I		
a = -0.325021 - 0.446372I	-0.90872 - 3.31162I	4.18007 + 2.04912I
b = 0.496916 + 0.116873I		
u = -0.477361 - 1.058390I		
a = -0.325021 + 0.446372I	-0.90872 + 3.31162I	4.18007 - 2.04912I
b = 0.496916 - 0.116873I		
u = -0.666288 + 0.980877I		
a = 1.51895 + 1.19962I	13.37540 - 0.20863I	12.34199 + 1.72313I
b = -1.60630 - 0.17413I		
u = -0.666288 - 0.980877I		
a = 1.51895 - 1.19962I	13.37540 + 0.20863I	12.34199 - 1.72313I
b = -1.60630 + 0.17413I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.810177	,	
a = 1.05047	7.53068	12.4950
b = -1.45269		
u = 0.150597 + 1.188510I		
a = -0.209754 + 0.504264I	7.74907 - 5.71311I	7.54100 + 2.76920I
b = -1.50263 + 0.26695I		
u = 0.150597 - 1.188510I		
a = -0.209754 - 0.504264I	7.74907 + 5.71311I	7.54100 - 2.76920I
b = -1.50263 - 0.26695I		
u = 0.534647 + 1.084890I		
a = -1.091580 + 0.807678I	-1.70058 + 6.34697I	2.48807 - 8.83395I
b = 0.370860 + 0.589443I		
u = 0.534647 - 1.084890I		
a = -1.091580 - 0.807678I	-1.70058 - 6.34697I	2.48807 + 8.83395I
b = 0.370860 - 0.589443I		
u = 0.432454 + 1.201200I		
a = 0.317778 + 1.107100I	3.91675 + 4.39214I	8.96484 - 3.62176I
b = 1.412020 + 0.045870I		
u = 0.432454 - 1.201200I		
a = 0.317778 - 1.107100I	3.91675 - 4.39214I	8.96484 + 3.62176I
b = 1.412020 - 0.045870I		
u = 0.624484 + 0.349425I		
a = 0.805631 - 0.022305I	0.39287 - 1.77603I	5.94653 + 5.32090I
b = -0.341398 + 0.488155I		
u = 0.624484 - 0.349425I		
a = 0.805631 + 0.022305I	0.39287 + 1.77603I	5.94653 - 5.32090I
b = -0.341398 - 0.488155I		
u = 0.609932 + 1.133500I		
a = 1.32397 - 2.18810I	10.8121 + 13.7968I	9.98537 - 7.70704I
b = -1.53955 - 0.33727I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.609932 - 1.133500I		
a = 1.32397 + 2.18810I	10.8121 - 13.7968I	9.98537 + 7.70704I
b = -1.53955 + 0.33727I		
u = -0.486428 + 0.465014I		
a = 0.914914 + 0.002129I	0.881089 - 0.706259I	8.61582 + 5.28098I
b = -0.378035 + 0.245051I		
u = -0.486428 - 0.465014I		
a = 0.914914 - 0.002129I	0.881089 + 0.706259I	8.61582 - 5.28098I
b = -0.378035 - 0.245051I		

$$\text{II. } I_2^u = \\ \langle -26u^{14}a + 25u^{14} + \cdots - 45a + 53, \ u^{14} + 2u^{13} + \cdots - 2a + 2, \ u^{15} + u^{14} + \cdots + 2u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2.36364au^{14} - 2.27273u^{14} + \dots + 4.09091a - 4.81818 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2.36364au^{14} - 2.27273u^{14} + \dots + 5.09091a - 4.81818 \\ 2.36364au^{14} - 2.27273u^{14} + \dots + 4.09091a - 4.81818 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2.27273au^{14} + 2.45455u^{14} + \dots - 4.81818a + 4.36364 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2.27273au^{14} - 2.45455u^{14} + \dots + 4.81818a - 4.36364 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2.27273au^{14} - 2.45455u^{14} + \dots + 4.81818a - 4.36364 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{11} - 2u^{9} - 2u^{7} + u^{3} \\ u^{13} + 3u^{11} + 5u^{9} + 4u^{7} + 2u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{13} + 3u^{11} + 5u^{9} + 4u^{7} + 2u^{5} + u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -4u^{13} - 4u^{12} - 12u^{11} - 12u^{10} - 20u^9 - 24u^8 - 20u^7 - 24u^6 - 16u^5 - 16u^4 - 16u^3 - 8u^2 - 8u + 2u^4 - 16u^4 - 16u^3 - 8u^2 - 8u + 2u^4 - 16u^4 - 16u^3 - 8u^2 - 8u + 2u^4 - 16u^4 - 16u^4 - 16u^4 - 16u^3 - 8u^2 - 8u + 2u^4 - 16u^4 - 1$$

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u^{15} - u^{14} + \dots + 2u - 1)^2$
c_2	$(u^{15} + 7u^{14} + \dots + 4u^2 - 1)^2$
c_3, c_4, c_5 c_8, c_9, c_{10}	$u^{30} - u^{29} + \dots - 6u - 1$
c_7	$(u^{15} + u^{14} + \dots - 4u - 1)^2$
c_{11}	$(u^{15} - 5u^{14} + \dots + 12u^3 - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^{15} + 7y^{14} + \dots + 4y^2 - 1)^2$
c_2	$(y^{15} + 3y^{14} + \dots + 8y - 1)^2$
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$y^{30} - 25y^{29} + \dots + 8y + 1$
c_7	$(y^{15} - y^{14} + \dots + 16y - 1)^2$
c_{11}	$(y^{15} + 11y^{14} + \dots - 84y^2 - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.385605 + 0.867795I		
a = 1.48418 + 0.28748I	2.93870 + 1.66084I	9.51042 - 3.96405I
b = -1.191720 + 0.191378I		
u = 0.385605 + 0.867795I		
a = -0.57671 + 2.31540I	2.93870 + 1.66084I	9.51042 - 3.96405I
b = 0.987326 + 0.341266I		
u = 0.385605 - 0.867795I		
a = 1.48418 - 0.28748I	2.93870 - 1.66084I	9.51042 + 3.96405I
b = -1.191720 - 0.191378I		
u = 0.385605 - 0.867795I		
a = -0.57671 - 2.31540I	2.93870 - 1.66084I	9.51042 + 3.96405I
b = 0.987326 - 0.341266I		
u = -0.146928 + 1.062740I		
a = 0.506354 + 1.080350I	1.46912 + 2.07402I	4.17178 - 2.67122I
b = 0.417318 + 0.715805I		
u = -0.146928 + 1.062740I		
a = 0.286056 - 0.497573I	1.46912 + 2.07402I	4.17178 - 2.67122I
b = -1.345540 - 0.160838I		
u = -0.146928 - 1.062740I		
a = 0.506354 - 1.080350I	1.46912 - 2.07402I	4.17178 + 2.67122I
b = 0.417318 - 0.715805I		
u = -0.146928 - 1.062740I		
a = 0.286056 + 0.497573I	1.46912 - 2.07402I	4.17178 + 2.67122I
b = -1.345540 + 0.160838I		
u = 0.715401 + 0.518352I		
a = 0.929094 + 0.108337I	6.82325 + 1.50523I	12.15133 - 2.74048I
b = -0.681034 - 0.791319I		
u = 0.715401 + 0.518352I		
a = -2.92853 + 0.30497I	6.82325 + 1.50523I	12.15133 - 2.74048I
b = 1.45955 + 0.03447I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.715401 - 0.518352I		
a = 0.929094 - 0.108337I	6.82325 - 1.50523I	12.15133 + 2.74048I
b = -0.681034 + 0.791319I		
u = 0.715401 - 0.518352I		
a = -2.92853 - 0.30497I	6.82325 - 1.50523I	12.15133 + 2.74048I
b = 1.45955 - 0.03447I		
u = -0.758945 + 0.422629I		
a = 0.667191 + 0.185788I	6.30676 + 4.09199I	11.04427 - 3.15094I
b = -0.516053 - 0.873011I		
u = -0.758945 + 0.422629I		
a = -2.63836 + 0.44671I	6.30676 + 4.09199I	11.04427 - 3.15094I
b = 1.46243 + 0.15596I		
u = -0.758945 - 0.422629I		
a = 0.667191 - 0.185788I	6.30676 - 4.09199I	11.04427 + 3.15094I
b = -0.516053 + 0.873011I		
u = -0.758945 - 0.422629I		
a = -2.63836 - 0.44671I	6.30676 - 4.09199I	11.04427 + 3.15094I
b = 1.46243 - 0.15596I		
u = -0.426893 + 1.085670I		
a = -0.045925 - 1.153050I	-0.91830 - 3.60340I	1.83628 + 4.47672I
b = 1.008860 - 0.127254I		
u = -0.426893 + 1.085670I		
a = -0.652015 + 0.334121I	-0.91830 - 3.60340I	1.83628 + 4.47672I
b = 0.026324 + 0.245041I		
u = -0.426893 - 1.085670I		
a = -0.045925 + 1.153050I	-0.91830 + 3.60340I	1.83628 - 4.47672I
b = 1.008860 + 0.127254I		
u = -0.426893 - 1.085670I		
a = -0.652015 - 0.334121I	-0.91830 + 3.60340I	1.83628 - 4.47672I
b = 0.026324 - 0.245041I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.594997 + 1.040830I		
a = 0.400000 + 0.495676I	5.27292 + 3.51852I	9.71302 - 2.59027I
b = 0.773820 - 0.766183I		
u = 0.594997 + 1.040830I		
a = 2.00079 - 1.63767I	5.27292 + 3.51852I	9.71302 - 2.59027I
b = -1.46460 - 0.02952I		
u = 0.594997 - 1.040830I		
a = 0.400000 - 0.495676I	5.27292 - 3.51852I	9.71302 + 2.59027I
b = 0.773820 + 0.766183I		
u = 0.594997 - 1.040830I		
a = 2.00079 + 1.63767I	5.27292 - 3.51852I	9.71302 + 2.59027I
b = -1.46460 + 0.02952I		
u = -0.594032 + 1.095620I		
a = -1.24711 - 0.90132I	4.31617 - 9.21780I	7.85460 + 7.39135I
b = 0.463749 - 0.915832I		
u = -0.594032 + 1.095620I		
a = 1.71287 + 2.15495I	4.31617 - 9.21780I	7.85460 + 7.39135I
b = -1.47039 + 0.20072I		
u = -0.594032 - 1.095620I		
a = -1.24711 + 0.90132I	4.31617 + 9.21780I	7.85460 - 7.39135I
b = 0.463749 + 0.915832I		
u = -0.594032 - 1.095620I		
a = 1.71287 - 2.15495I	4.31617 + 9.21780I	7.85460 - 7.39135I
b = -1.47039 - 0.20072I		
u = -0.538411		
a = 1.00814	1.86559	5.43660
b = -1.09727		
u = -0.538411		
a = 1.19609	1.86559	5.43660
b = 0.237195		

III.
$$I_3^u = \langle b-1, \ u^3-2u^2+2a-2, \ u^4+2u^2+2 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} + 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} + 2 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ -u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{3}{2}u^{3} + u^{2} + 2 \\ -u^{3} - u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} + 2 \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 + 4$

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^4 + 2u^2 + 2$
c_2	$(u^2 + 2u + 2)^2$
c_3, c_4, c_8 c_9	$(u+1)^4$
c_5, c_{10}	$(u-1)^4$
c_7, c_{11}	$u^4 - 2u^2 + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^2 + 2y + 2)^2$
c_2	$(y^2+4)^2$
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$(y-1)^4$
c_7, c_{11}	$(y^2 - 2y + 2)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.455090 + 1.098680I		
a = 0.77689 + 1.32180I	0.82247 + 3.66386I	8.00000 - 4.00000I
b = 1.00000		
u = 0.455090 - 1.098680I		
a = 0.77689 - 1.32180I	0.82247 - 3.66386I	8.00000 + 4.00000I
b = 1.00000		
u = -0.455090 + 1.098680I		
a = -0.776887 - 0.678203I	0.82247 - 3.66386I	8.00000 + 4.00000I
b = 1.00000		
u = -0.455090 - 1.098680I		
a = -0.776887 + 0.678203I	0.82247 + 3.66386I	8.00000 - 4.00000I
b = 1.00000		

IV.
$$I_1^v = \langle a, b+1, v+1 \rangle$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}$	u
c_3, c_4, c_8 c_9	u-1
c_5, c_{10}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_7, c_{11}	y
c_3, c_4, c_5 c_8, c_9, c_{10}	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	3.28987	12.0000
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u(u^{4} + 2u^{2} + 2)(u^{15} - u^{14} + \dots + 2u - 1)^{2}(u^{23} + 3u^{22} + \dots + 6u + 2)$
c_2	$u(u^{2} + 2u + 2)^{2}(u^{15} + 7u^{14} + \dots + 4u^{2} - 1)^{2}$ $\cdot (u^{23} + 11u^{22} + \dots - 4u - 4)$
$c_3, c_4, c_8 \ c_9$	$(u-1)(u+1)^4(u^{23}-u^{22}+\cdots+4u^2-1)(u^{30}-u^{29}+\cdots-6u-1)$
c_5, c_{10}	$((u-1)^4)(u+1)(u^{23}-u^{22}+\cdots+4u^2-1)(u^{30}-u^{29}+\cdots-6u-1)$
c ₇	$u(u^{4} - 2u^{2} + 2)(u^{15} + u^{14} + \dots - 4u - 1)^{2}$ $\cdot (u^{23} - 3u^{22} + \dots - 166u + 34)$
c_{11}	$u(u^{4} - 2u^{2} + 2)(u^{15} - 5u^{14} + \dots + 12u^{3} - 1)^{2}$ $\cdot (u^{23} + 15u^{22} + \dots + 1790u + 314)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y(y^{2} + 2y + 2)^{2}(y^{15} + 7y^{14} + \dots + 4y^{2} - 1)^{2}$ $\cdot (y^{23} + 11y^{22} + \dots - 4y - 4)$
c_2	$y(y^{2}+4)^{2}(y^{15}+3y^{14}+\cdots+8y-1)^{2}(y^{23}+3y^{22}+\cdots-208y-16)$
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$((y-1)^5)(y^{23} - 29y^{22} + \dots + 8y - 1)(y^{30} - 25y^{29} + \dots + 8y + 1)$
c_7	$y(y^{2} - 2y + 2)^{2}(y^{15} - y^{14} + \dots + 16y - 1)^{2}$ $\cdot (y^{23} - 5y^{22} + \dots + 4028y - 1156)$
c_{11}	$y(y^{2} - 2y + 2)^{2}(y^{15} + 11y^{14} + \dots - 84y^{2} - 1)^{2}$ $\cdot (y^{23} + 7y^{22} + \dots - 489796y - 98596)$