

[Cat]Boosting

Иван Лыжин, разработчик CatBoost

Градиентный бустинг на решающих деревьях (GBDT)

Что такое бустинг?

Это сумма базовых моделей: $\hat{y}_T(x) = \sum_{t=1}^T b_t(x)$

Почему градиентный?

Потому что используем градиент функции потерь для обучения следующей модели $b_{t+1} = F(X, \frac{\delta L(y, \hat{y}_t)}{\delta \hat{y}_t})$

Почему бы не учиться на остатках?

Остатки не всегда отражают функцию потерь. Иногда таргета нет, а функция потерь есть. Иногда таргетов несколько, хотя предикт один.

Почему на решающих деревьях?

Мощная и гибкая модель. Не требует предобработки данных.

Популярные реализации

Как строится очередное дерево

- Вход:
 - *X* признаки
 - $\frac{\delta L(y,\hat{y}_t)}{\delta \hat{y}_t}$ градиент функции потерь
- Выход:
 - набор вершин со сплитами (featureIdx, thresholdValue)
 - ullet значения в листьях v_i
- Как выбирать сплиты?
- В каком порядке разбивать вершины?

Форма дерева – XGBoost – Depthwise

Форма дерева — LightGBM — Lossguide

Форма дерева — CatBoost — SymmetricTree

Выбор сплита

- Для каждой фичи для каждого возможного разбиения посчитать score и по нему выбрать лучший сплит
- Score function

•
$$L2 = -\sum (v_i - (-g_i))^2 \rightarrow max$$

•
$$Cosine = -\frac{\sum v_i g_i}{\sqrt{\sum v_i^2} \sqrt{\sum g_i^2}} \rightarrow max$$

- В рамках одной фичи score между последовательными разбиениями пересчитывается за O(1)
- Сложность: **O(D*N*logN)**

Ускоряем выбор сплита - квантизация

Ускоряем выбор сплита - квантизация

- **N** объектов, **D** фичей, **B** бордеров
- Сложность выбора сплита раньше:
 - Для каждой фичи **O(D)**:
 - Отсортировать значения фичи **O(N*logN)**
 - Пройтись по отсортированному списку, поддерживая статистики и лучший сплит O(N)
 - Итого: O(D*N*logN)
- Сложность выбора сплита теперь:
 - Для каждой фичи O(D):
 - Пройти по квантизованным значениям фичи, собрав статистики по всем значениям O(N)
 - Пройти по собранным статистикам и выбрать лучший сплит O(B)
 - Итого: O(D*N), так как обычно В << N

Ускоряем выбор сплита – subtract trick

Даже в случае равномерных сплитов ускорение в 2 раза.

Значения в листьях - Gradient

$$(v-(-g))^2 \to min$$

$$v_j = value \ in \ leaf_j = -\frac{\sum_{i \in leaf_j} g_i}{|leaf_j|}$$

Значения в листьях - Newton

$$L = \sum_{i=1}^{N} l(a_i + v_{leaf(i)}) \rightarrow min \qquad \Rightarrow \qquad L = \sum_{j=1}^{|Leaves|} \sum_{i \in leaf_j} l(a_i + v_j) \rightarrow min$$

$$\sum_{i \in leaf_j} l(a_i + v_j) \Rightarrow min$$

$$\sum_{i \in leaf_j} l(a_i + v_j) \approx \sum_{i \in leaf_j} l(a_i) + v_j l'(a_i) + \frac{1}{2} v_j^2 l''(a_i) \rightarrow min$$

$$v_j = -\frac{\sum_{i \in leaf_j} g_i}{\sum_{i \in leaf_j} h_i}$$

Значения в листьях - Exact

- Какая проблема с МАЕ и МАРЕ?
 - Время обучения пропорционально масштабу целевой переменной

$MAE = y_i - a_i $	$MAE' = sign(a_i - y_i)$	$MAE^{\prime\prime}=0$
$MAPE = \frac{ y_i - a_i }{ y_i }$	$MAPE' = \frac{sign(a_i - y_i)}{ y_i }$	$MAPE^{\prime\prime}=0$

$$v_i = median(\{..., y_i - a_i, ...\})$$

Значения в листьях - Backtracking

- Выбор сплитов самая тяжелая операция
- После долгого построения дерева делаем маленький шаг по антиградиенту
- Идея: после построения дерева во время вычисления значений в листьях будем делать несколько шагов, пересчитывая градиент

```
leaf_estimation_iterations
leaf_estimation_backtracking
```

Категориальные признаки — label encoding

- Каждой возможной категории сопоставляем число
 - sklearn.preprocessing.LabelEncoder алфавитный порядок.
 - pandas.factorize в порядке встречаемости значения.
 - Минусы:
 - Линейные модели плохо работают с такими признаками.
 - Деревья могут работать, но потребуется глубокое дерево.

Категориальные признаки – one-hot-encoding

- Создаем K-1 новых признаков, K-1 кол-во категорий.
- Каждый i-ый признак индикатор i-ой категории.
- Если у фичи много уникальных значений, то добавим много новых признаков.
- Никогда не делайте one-hot-encoding вручную!!!
- CatBoost может сделать его гораздо быстрее и эффективнее
- Параметр *one-hot-maxsize* отвечает за то, какие фичи пройдут через one-hot-encoding

Категориальные фичи – mean encoding

- У нас это называют счетчиками
- Упрощенно средний таргет при заданной категории

$$ctr_{fj=C} = \frac{\sum_{x_{ij}=C} y_i}{\sum_{x_{ij}=C} 1}$$

- На самом деле, есть разные типы счетчиков
- Решается проблема с большой глубиной дерева
- Проблемы:
 - Если количество объектов в категории мало, то оценка статистики будет очень шумной.
 - В счетчике используется значение таргета

Mean encoding - сглаживание

• Добавляем сглаживающие слагаемые, которые помогут при малом количестве объектов в категории

$$ctr_{f_j=C} = \frac{A + \sum_{x_{ij}=C} y_i}{B + \sum_{x_{ij}=C} 1}$$

Категориальные фичи – kfold счетчики

- Разбиваем данные на k фолдов
- Для получения статистики для k-ого фолда используем таргеты всех фолдов, кроме k-ого
- Для подсчета статистики для теста используется весь train

Категориальные фичи – expanding mean

- Зафиксируем некоторый порядок объектов
- От порядка зависят значения счетчиков
- Для расчета счетчика на i-ом объекте используем только объекты, стоящие в перестановке до него

Expanding mean в CatBoost

- Генерируем 3 + 1 случайных перестановки объектов
- На каждой итерации одну из трех перестановок используем для выбора сплитов
- Четвертая перестановка нужна для расчета значений в листьях и итоговых счетчиков, сохраняемых в модель

Категориальные фичи - комбинации

Пол	Профессия	Город	Υ
M	Водитель	Москва	0
Ж	Продавец	Челябинск	1
M	Продавец	Москва	0
M	Программист	Самара	0
Ж	Программист	Москва	0
M	Водитель	Челябинск	1
Ж	Продавец	Самара	1

Пол + Профессия	Профессия + Город	Город + Пол	Y
М+Водитель	Водитель+Москва	Москва+М	0
Ж+Продавец	Продавец+Челябинск	Челябинск+Ж	1
М+Продавец	Продавец+Москва	Москва+М	0
М+Программист	Программист+Самара	Самара+М	0
Ж+Програмист	Программист+Москва	Москва+Ж	0
М+Водитель	Водитель+Челябинск	Челябинск+М	1
Ж+Продавец	Продавец+Самара	Самара+Ж	1

Проблема: комбинаций очень много – замедляется скорость обучения и увеличивается шанс переобучения.

Категориальные фичи - комбинации

Решение: добавляем комбинации динамически только с теми фичами, которые уже были выбраны выше. Размер комбинации ограничиваем параметром *max_ctr_complexity*.

Текстовые фичи

Текстовые фичи

- Bag of Words
 - Default: униграммы и биграммы
- Naïve Bayes
 - $P(Class \mid Text) = P(Class) * \prod P(word_i \mid Class)$
- BM25
 - $score(D,Q) = \sum IDF(q_i) * \frac{f(q_i,D)*(k+1)}{f(q_i,D)+k*(1-b+b*\frac{|D|}{avgal})}$

Монотонные ограничения

- Хотим, чтобы предсказание модели монотонно зависело от значения признака
 - Положительное монотонное ограничение

$$x_1 \le x_1' \Rightarrow f(x_1, x_2) \le f(x_1', x_2)$$

• Отрицательное монотонное ограничение

$$x_1 \le x_1' \Rightarrow f(x_1, x_2) \ge f(x_1', x_2)$$

• Априорное знание или бизнес-требование

Монотонные ограничения

- Чтобы ансамбль был монотонным, достаточно составлять его из монотонных деревьев
- Это сильно ограничивает, но искать комбинацию немонотонных деревьев намного сложнее
- Алгоритм в LightGBM и XGBoost:
 - В корень кладем тривиальное ограничение на значение (-inf, +inf)
 - При вычислении значения в листе будем заменять его на ближайшее разрешенное
 - При сплите по монотонной фиче делим отрезок в точке, равной среднему значению в новых листьях

Монотонные ограничения

- Алгоритм CatBoost:
 - Так как сплит выбирается единый на весь уровень, можем подбирать оптимальные значения сразу для всех текущих листьев
 - Максимизацию скора можно переписать в виде:

$$\sum_{l \in Leaves} w_l (v_l - v_l')^2 \to min$$

$$v_1' \le v_2' \le \dots \le v_L'$$

• Получаем одномерную изотоническую регрессию — для нее есть линейный алгоритм

Монотонные ограничения – сжатие модели

Поддерживаемые режимы

- Классификация
- Мультиклассификация
- MultiLabel классификация
- Регрессия
- Мультирегрессия
- RMSEWithUncertainty
- Ранжирование
- Попарное ранжирование

Learning-rate vs iterations — underfitting

Learning-rate vs iterations - overfitting

Learning-rate vs iterations

eval_set и eval_metric

- В обучение можно передать датасет для валидации и целевую метрику
- Это открывает возможность использования опций:
 - use_best_model обрезает модель по лучшей итерации на валидации
 - early_stopping_rounds позволяет отследить переобучения и остановиться

Snapshots

- Задает опциями snapshot_file и snapshot_interval
- Позволяет сохранять прогресс обучения
- Можно продолжить обучение с другим learning_rate

Подбор гиперпараметров

- iterations / learning-rate
- depth глубина деревьев
- 12-leaf-reg параметр регуляризации
- max-ctr-complexity сложность комбинаций кат.фичей
- random-strength элемент случайности, иногда полезно выключить
- border-count размер сетки квантизации
- grow-policy форма дерева

Анализ модели и признаков в CatBoost

- Feature importance
- Shap Values
- Partial Dependence Plot
- Feature Statistics
- Object importance
- Monoforest
- ...

Feature Importance

Prediction values change

- Как сильно признак влияет на предсказания модели
- Очень быстро считается
- Не зависит от датасета
- Дефолт для классификации и регрессии

Loss function change

- Как сильно признак влияет на значение функции потерь
- Считается относительно медленно
- Зависит от датасета
- Дефолт для ранжирования

Shap values

Shap values

Feature statistics

Custom loss and custom metric

- pip install numba
- JIT-компиляция python кода
- Ускоряет процесс обучения

- catboost_en
- catboost_ru

https://github.com/catboost/catboost

Иван Лыжин, разработчик CatBoost

