ADA Mini HW #8

Student Name: 林楷恩 Student ID: b07902075

(1) The total number of flips is 14.

	number	0	1	2	3	4	5
	read	0000000	1111111	1010101	1110001	1111001	1101001
Ì	# of flips	-	7	3	2	1	1

(2) By Aggregate method:

total # of flips =
$$\lfloor \frac{n}{1} \rfloor + \lfloor \frac{n}{2} \rfloor + \dots + \lfloor \frac{n}{n} \rfloor$$

= $\sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor$
 $\leq \sum_{i=1}^{n} \frac{n}{i}$
 $\approx n \int_{1}^{n} \frac{1}{x} dx$
= $n(\ln(n) - \ln(1))$
= $n \ln(n)$

 \Longrightarrow the amortized cost for one counting operation is $\frac{n \ln(n)}{n} = \ln(n) \ \#$

- (3) (a) When we count to x, we flip $a_x, a_{2x}, a_{3x}, \ldots$
 - (b) After we count x, a_x and all the lower bits will never be flipped in later operations, because $1 \cdot y$ always greater than $1 \cdot x$ if y > x.
 - (c) Let the counter reads V_x when it count to x, then V_x and V_{x+1} differ from each other at a_{x+1} because the counter flips a_{x+1} when count to x+1, and by (b), we know a_{x+1} will no longer be flipped, so V_x will also be different from V_y , for all y > x at the $(x+1)^{th}$ bit (a_{x+1}) .
 - (d) From above observation, we get that $V_x \neq V_y$ for all $1 \leq x < y \leq n$, which means each pair of reading of the counter when counting from 0 to n is different from each other \implies all of them are unique.