Órgãos de Máquinas Engrenagens – Aula TP 2

Carlos M. C. G. Fernandes

1 Aplicação numérica

Exemplo de cálculo de características geométricas de uma engrenagem normal (sem correção de dentado), com os dados da Tabela 1.

Tabela 1: Dados da Engrenagem

z_1	20
z_2	41
m	2 mm
α	20°
b	20 mm

Tabela 2: Valores Calculados (mm)

p	6.283		
p_b	5.904		
r	20.000	41.000	
r_a	22.000	43.000	
r_d	17.500	38.500	
r_b	18.794	38.527	
а	61.000		
k	3	5	
W_k	15.3209	27.7176	

2 Razão de Condução

O início de engrenamento de um par de dentes acontece no ponto A, quando o raio de cabeça da roda movida (pinhão neste caso) entra em con-

tacto com a roda motora sobre a reta de engrenamento $(\overline{T_1T_2})$. Do mesmo modo, o fim de engrenamento de um par de dentes acontece no ponto B, quando o raio de cabeça da roda motora deixa o contacto com a roda movida (pinhão) - ver Figura 1.

Figura 1: Descrição do caminho de engrenamento

O comprimento do segmento de engrenamento \overline{AB} é dado pelas equações (1), (2) e (3).

$$\overline{AI} = \overline{T_1 A} - \overline{T_1 I} = \sqrt{r_{a1}^2 - r_{b1}^2} - r_1 \sin \alpha \tag{1}$$

$$\overline{IB} = \overline{T_2B} - \overline{T_2I} = \sqrt{r_{a2}^2 - r_{b2}^2} - r_2 \sin \alpha \tag{2}$$

$$\overline{AB} = \overline{AI} + \overline{IB} = \sqrt{r_{a1}^2 - r_{b1}^2} + \sqrt{r_{a2}^2 - r_{b2}^2} - (r_1 + r_2)\sin\alpha$$
 (3)

A razão de condução calcula-se pela razão do comprimento do segmento de engrenamento \overline{AB} pelo passo de base p_b , como descrito na equação (4) e Figura 2.

Figura 2: Razão de Condução

$$\epsilon_{\alpha} = \frac{\overline{AB}}{p_b} \tag{4}$$

$$\epsilon_{\alpha} = \frac{\sqrt{r_{a1}^2 - r_{b1}^2} + \sqrt{r_{a2}^2 - r_{b2}^2} - a\sin\alpha}{p_b}$$
 (5)

O valor da razão de condução para a engrenagem da Tabela 1 é ϵ_{α} = 1.638.

2.1 Entre-eixo imposto

O entre-eixo de corte é calculado pela soma dos raios primitivos de corte do pinhão (r_1) e da roda (r_2) , equação (6) e Figura 3

Figura 3: Entre-eixo de corte

Um entre-eixo de funcionamento (a') maior que o entre-eixo de corte (a) aumenta o ângulo de pressão de funcionamento de α para α' e os raios primitivos de funcionamento também se alteram (Figura 4).

Para um entre-eixo a'>a, o valor da razão de condução ϵ_α diminui porque a distância \overline{AB} diminui.

Figura 4: Entre-eixo de funcionamento

Para o exemplo em análise (1), vamos impor a' = 61.500 mm. Conhecido que é o entre-eixo, poderemos calcular os raios primitivos de funcionamento, através do sistema de equações (7).

$$\begin{cases} a' = r_1' + r_2' \\ r_1' \omega_1 = r_2' \omega_2 \end{cases}$$
 (7)

Como já foi visto, o raio de base r_b é constante, logo deveremos usar a equação (8) para determinar o ângulo de pressão de funcionamento.

$$\begin{cases} r_{b1} = r_1 \cos \alpha &= r'_1 \cos \alpha' \\ r_{b2} = r_2 \cos \alpha &= r'_2 \cos \alpha' \end{cases}$$
 (8)

Para a situação de entre-eixo imposto, o ângulo de pressão de funcionamento altera-se bem como o próprio entre-eixo. Assim a equação (5) torna-se a equação (9) refletir estas modificações

$$\epsilon_{\alpha}' = \frac{\sqrt{r_{a1}^2 - r_{b1}^2} + \sqrt{r_{a2}^2 - r_{b2}^2} - a' \sin \alpha'}{p_b}$$
 (9)

Para este novo entre-eixo, a razão de condução é $\epsilon_{\alpha}'=1.396.$

3 Valor Crítico da Razão de Condução

O valor da razão de condução ϵ_{α} deve ser sempre maior do que 1. Quando $\overline{AB} < p_b$, a razão de condução ϵ_{α} é menor que 1 (Figura 5):

- Um par de dentes entra em contacto no ponto A;
- percorre todo o caminho de engrenamento até B sem que **o par se- guinte engrene.**

Nesta situação haverá um período de descontinuidade na transmissão do movimento, que quando reiniciado causará choque entre os flancos dos dentes.

Figura 5: Valor crítico da razão de condução

A situação limite será ter a razão de condução $\epsilon_{\alpha}'=1$ – equação (10).

$$\frac{\sqrt{r_{a1}^2 - r_{b1}^2} + \sqrt{r_{a2}^2 - r_{b2}^2} - a' \sin \alpha'}{p_b} = 1$$
 (10)

Assim, para determinar o valor limite do entre-eixo imposto, deveremos resolver o sistema de equações (11).

$$\begin{cases} \sqrt{r_{a1}^2 - r_{b1}^2} + \sqrt{r_{a2}^2 - r_{b2}^2} - a' \sin \alpha' = p_b \\ a' \cos \alpha' = a \cos \alpha \end{cases}$$
 (11)

Para o caso em análise o valor limite do entre-eixo que ainda assegura continuidade da transmissão de movimento é a' = 62.390 mm.