Selbststudium 2

Florian Lüthi

October 9, 2012

Aufgabe 2

(a)
$$((a+b)^* + \varepsilon)^*$$

$$= (\varepsilon + (a+b)^*)^* \quad (\text{wegen } \alpha + \beta = \beta + \alpha)$$

$$= ((a+b)^*)^* \quad (\text{wegen } (\varepsilon + \alpha)^* = \alpha^*)$$

$$= (a+b)^* \quad (\text{wegen } (\alpha^*)^* = \alpha^*)$$

Aufgabe 3

- (a) Gilt $(\alpha\beta + \beta\alpha)^* = (\alpha\beta)^*$? Nein. Seien $\alpha = a, \beta = b$. Dann ist $ba \in (ab + ba)^*$, aber $ba \notin (ab)^*$, also folgt $(ab + ba)^* \not\subseteq (ab)^*$ und dadurch $(ab + ba)^* \neq (ab)^*$ wegen Nichtzutreffen von $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$.
 - Oder anders ausgedrückt: In $\mathcal{L}((\alpha\beta)^*)$ endet jedes Wort auf β (wenn es nicht leer ist), was für $\beta\alpha \in \mathcal{L}((\alpha\beta + \beta\alpha)^*)$ offensichtlich nicht zutrifft.
- (b) Gilt $(\alpha^*\beta^* + \beta^*\alpha^*)^* = (\alpha^*\beta^*)^*$? Intuitiverweise ja. Versuch über algebraische Umformungen (funktioniert wegen dem zweiten Schritt wohl nicht, aber unter dem Schutz

des Kleene'schen Sterns ist ja fast alles erlaubt):

$$(\alpha^*\beta^*)^*$$

$$= (\alpha^*\beta^*)^*(\alpha^*\beta^*)^*$$

$$= (\alpha^*\beta^*\alpha^*\beta^*)^*$$

$$= (\alpha^*\beta^*\alpha^*\beta^* + \alpha^*\beta^*\alpha^*\beta^*)^*$$

$$= (\alpha^*\beta^*\alpha^* + \beta^*\alpha^*\beta^*)^*$$

$$= (\alpha^*\beta^* + \beta^*\alpha^*)^*$$

Der zweite Versuch funktioniert so: Es gilt $(\alpha^*\beta^*)^* = (\alpha+\beta)^*$, wie Hopcroft und Ullman auf der nächsten nicht mehr kopierten Seite beweisen (weil durch Konkretisierung der RA durch Ersetzen von α und β mit a und b klar wird, dass es sich jeweils um dieselbe Sprache $\{a,b\}^*$ handelt). Da aber $\alpha^*\beta^* \subseteq \alpha^*\beta^* + \alpha^*\beta^*$ gelten muss, und darum auch $(\alpha^*\beta^*)^* \subseteq (\alpha^*\beta^* + \alpha^*\beta^*)^*$ (weil das Resultat der Vereinigung nicht kleiner als ihre Operanden sein kann), und $(\alpha^*\beta^*)^* = (\alpha+\beta)^*$ schon alles abdeckt, was aus α und β überhaupt gebildet werden kann, kann $(\alpha^*\beta^* + \alpha^*\beta^*)^*$ auch nicht grösser sein als $(\alpha^*\beta^*)^*$, ergo muss die Behauptung wahr sein.

(c) Gilt $\beta(\alpha\beta)^* = (\beta\alpha)^*\beta$? Ja. Mit Induktion können wir das zeigen. Verankerung:

$$\beta(\alpha\beta)^0 = \beta\varepsilon = \beta = \varepsilon\beta = (\beta\alpha)^0\beta$$

Schritt:

$$\beta(\alpha\beta)^{i+1} = \beta(\alpha\beta)^{i}(\alpha\beta)$$

$$= \beta\alpha(\beta\alpha)^{i}\beta$$

$$= (\beta\alpha)(\beta\alpha)^{i}\beta$$

$$= (\beta\alpha)^{i+1}\beta$$