NLP CHALLENGE: TRIAL AND ERROR

Team : State_Of_The_Art

Dongju Park

School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology (GIST) Meta-Evolutionary Machine Intelligence Laboratory (MEMI lab)

님이 그룹에 링크를 공유했습니다: TensorFlow KR.

11월 19일 - 🔇

https://github.com/naver/nlp-challenge

GITHUB.COM

naver/nlp-challenge

NLP Shared tasks (NER, SRL) using NSML. Contribute to naver/nlp-challenge development by creating an account on GitHub.

i

HIN 님이 그룹에 링크를 공유했습니다: TensorFlow KR.

이미 광고된 것 같은데 추가로 첨언해서 복붙합니다.

네이버 서치 앤 클로바 조직 NLP/대화 Inho Kang 리더님 티

- " 우수한 품질 내는 팀, NLP/대화 팀 입사 지원시 공식 코딩테스트 면제 등 특
- "팀 TO 아직 여유 많으니 관심있으신 분들은 많은 지원 바랍니다."

naver/nlp-challenge

NLP Shared tasks (NER, SRL) using NSML. Contribute to naver/nlp-

DEVIEW 2018

Excellence · Sharing · Growth

NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기

DEVIEW 2018

김민규, 김진웅 NSML **Clova**

Select best hyperparameters

DEVIEW 2018

CoNLL 2003 (English)

The CoNLL 2003 NER task consists of newswire text from the Reuters RCV1 corpus tagged with four different entity types (PER, LOC, ORG, MISC). Models are evaluated based on span-based F1 on the test set.

Model	F1	Paper / Source	Code
Flair embeddings (Akbik et al., 2018)	93.09	Contextual String Embeddings for Sequence Labeling	Flair framework
BERT Large (Devlin et al., 2018)	92.8	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	
CVT + Multi-Task (Clark et al., 2018)	92.61	Semi-Supervised Sequence Modeling with Cross-View Training	Official
BERT Base (Devlin et al., 2018)	92.4	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	
BiLSTM- CRF+ELMo (Peters et al., 2018)	92.22	Deep contextualized word representations	AllenNLP Project AllenNLP GitHub
Peters et al. (2017)	91.93	Semi-supervised sequence tagging with bidirectional language models	
HSCRF (Ye and Ling, 2018)	91.38	Hybrid semi-Markov CRF for Neural Sequence Labeling	HSCRF
NCRF++ (Yang and Zhang, 2018)	91.35	NCRF++: An Open-source Neural Sequence Labeling Toolkit	NCRF++
LM-LSTM-CRF (Liu et al., 2018)	91.24	Empowering Character-aware Sequence Labeling with Task-Aware Neural Language Model	LM-LSTM-CRF

http://nlpprogress.com/

CoNLL 2003 (English)

The CoNLL 2003 NER task consists of newswire text from the Reuters RCV1 corpus tagged with four different entity types (PER, LOC, ORG, MISC). Models are evaluated based on span-based F1 on the test set.

Model	F1	Paper / Source	Code
Flair embeddings (Akbik et al., 2018)	93.09	Contextual String Embeddings for Sequence Labeling	Flair framework
BERT Large (Devlin et al., 2018)	92.8	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	
CVT + Multi-Task (Clark et al., 2018)	92.61	Semi-Supervised Sequence Modeling with Cross-View Training	Official
BERT Base (Devlin et al., 2018)	92.4	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	
BiLSTM- CRF+ELMo (Peters et al., 2018)	92.22	Deep contextualized word representations	AllenNLP Project AllenNLP GitHub
Peters et al. (2017)	91.93	Semi-supervised sequence tagging with bidirectional language models	
HSCRF (Ye and Ling, 2018)	91.38	Hybrid semi-Markov CRF for Neural Sequence Labeling	HSCRF
NCRF++ (Yang and Zhang, 2018)	91.35	NCRF++: An Open-source Neural Sequence Labeling Toolkit	NCRF++
LM-LSTM-CRF (Liu et al., 2018)	91.24	Empowering Character-aware Sequence Labeling with Task-Aware Neural Language Model	LM-LSTM-CRF

알고있고

간단하고

쉽게 만들 수 있는

BILSTM-CRF + (ELMo)

http://nlpprogress.com/ 7

CoNLL 2003 (English)

The CoNLL 2003 NER task consists of newswire text from the Reuters RCV1 corpus tagged with four different entity types (PER, LOC, ORG, MISC). Models are evaluated based on span-based F1 on the test set.

Model	F1	Paper / Source	Code
Flair embeddings (Akbik et al., 2018)	93.09	Contextual String Embeddings for Sequence Labeling	Flair framework
BERT Large (Devlin et al., 2018)	92.8	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	
CVT + Multi-Task (Clark et al., 2018)	92.61	Semi-Supervised Sequence Modeling with Cross-View Training	Official
BERT Base (Devlin et al., 2018)	92.4	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	
BiLSTM- CRF+ELMo (Peters et al., 2018)	92.22	Deep contextualized word representations	AllenNLP Project AllenNLP GitHub
Peters et al. (2017)	91.93	Semi-supervised sequence tagging with bidirectional language models	
HSCRF (Ye and Ling, 2018)	91.38	Hybrid semi-Markov CRF for Neural Sequence Labeling	HSCRF
NCRF++ (Yang and Zhang, 2018)	91.35	NCRF++: An Open-source Neural Sequence Labeling Toolkit	NCRF++
LM-LSTM-CRF (Liu et al., 2018)	91.24	Empowering Character-aware Sequence Labeling with Task-Aware Neural Language Model	LM-LSTM-CRF

NER Model Baseline for NSML

NER baseline Model 구조

- Bidirectional RNN + CRF
- 어절, 음절(RNN) Concat 하여 사용

```
import tensorflow as tf
class Model:
   def __init__(self, parameter):
       self.parameter = parameter
    def build_model(self):
       self._build_placeholder()
       # { "morph": 0, "morph_tag": 1, "tag" : 2, "character": 3, .. }
       self._embedding_matrix = []
       for item in self.parameter["embedding"]:
           self._embedding_matrix.append(self._build_embedding(item[1], item[2], name="embedding_" + item[0]))
       # 각각의 임베딩 값을 가져온다
       self._embeddings = []
       self._embeddings.append(tf.nn.embedding_lookup(self._embedding_matrix[0], self.morph))
       self._embeddings.append(tf.nn.embedding_lookup(self._embedding_matrix[1], self.character))
       # 음절을 이용한 임베딩 값을 구한다.
       character_embedding = tf.reshape(self._embeddings[1], [-1, self.parameter["word_length"], self.parameter["embedding"][1][2]])
       char_len = tf.reshape(self.character_len, [-1])
```

http://nlpprogress.com/

NER Model Baseline for NSML

NER baseline Model 구조

- Bidirectional RNN + CRF
- 어절, 음절(RNN) Concat 하여 사용

basslins	2018-11-19 21:05:54	모델번호: 1	88.0977
baseline	2018-11-19 21:05:54	팀명: nsmlteam	88.0977

Hyper-parameters

Epochs	40
Batch size	20
Learning rate	0.01
Word embedding size	32
Char embedding size	32
Tag embedding size	32
Lstm units	32
Char Istm units	64

NER Model Baseline for NSML

NER baseline Model 구조

- Bidirectional RNN + CRF
- 어절, 음절(RNN) Concat 하여 사용

baseline 2018-11-19 21:05:54 모델번호: 1 88.0977 팀명: nsmlteam

Hyper-parameters

Epochs	40
Batch size	20
Learning rate	0.01
Word embedding size	32
Char embedding size	32
Tag embedding size	32
Lstm units	32
Char Istm units	64

88.0977 49.4154

baseline	2018-11-19 21:05:54	모델번호:1	88.0977
busellile	2010-11-19 21.05.54	팀명: nsmlteam	00.09//

Hyper-parameters

Epochs	40
Batch size	20
Learning rate	0.01
Word embedding size	32
Char embedding size	32
Tag embedding size	32
Lstm units	32
Char Istm units	64

Hyper-parameters

Epochs	20
Batch size	10
Learning rate	0.02
Word embedding size	16
Char embedding size	16
Tag embedding size	16
Lstm units	16
Char Istm units	32

49.4154

66.3427

baseline	2018-11-19 21:05:54	모델번호: 1 팀명: nsmlteam	88.0977
		ES. HSHIILEGIH	

Hyper-parameters

Epochs	20
Batch size	10
Learning rate	0.02
Word embedding size	16
Char embedding size	16
Tag embedding size	16
Lstm units	16
Char Istm units	32

Hyper-parameters

Epochs	100	
Batch size	1000	
Learning rate	0.02	
Word embedding size	16	
Char embedding size	16	
Tag embedding size	16	
Lstm units	16	
Char Istm units	32	

66.3427

71.5061

Tuning Submit Tuning

```
Tuning Submit Tuning
```

```
nsml.report(summary=True, scope=locals(), train__loss=avg_cost, step=epoch)
nsml.save(epoch)
```

baseline

2018-11-19 21:05:54

모델번호: 1 팀명: nsmlteam

88.0977

main.py

```
parser.add_argument('--train_lines', type=int, default=50, required=False, help='Maximum train lines')
```

dataset_batch.py

baseline 2018-11-19 21:05:54 모델번호: 1 88.0 팀명: nsmlteam	baseline 2	2018-11-19 21:05:54		88.0977
---	------------	---------------------	--	---------

Hyper-parameters

Epochs	100
Batch size	1000
Learning rate	0.02
Word embedding size	16
Char embedding size	16
Tag embedding size	16
Lstm units	16
Char Istm units	32

Hyper-parameters

Train lines	90000
Epochs	20
Batch size	64
Learning rate	0.02
Word embedding size	16
Char embedding size	16
Tag embedding size	16
Lstm units	16
Char Istm units	32

2 epochs: 85.5220

baseline 2018-11-19 21:05:54 모델번호:1 88.0977 팀명: nsmlteam

keep_prob word_length batch_size

Tuning Tuning Submit Tuning Submit Submit Tuning

baseline	2018-11-19 21:05:54	모델번호:1	88.0977
		팀명: nsmlteam	

Hyper-parameters

Train lines	90000
Epochs	20
Batch size	64
Learning rate	0.02
Word embedding size	16
Char embedding size	16
Tag embedding size	16
Lstm units	16
Char Istm units	32

85.5220

Hyper-parameters

Train lines	90000
Epochs	20
Batch size	128
Learning rate	0.005
Word embedding size	128
Char embedding size	128
Tag embedding size	128
Lstm units	128
Char Istm units	128

88.1035

Hyper-parameters

Train lines	90000
Epochs	20
Batch size	128
Learning rate	0.005
Word embedding size	128
Char embedding size	128
Tag embedding size	128
Lstm units	128
Char Istm units	128

88.1035

Hyper-parameters tuning

Hyper-parameters

Train lines	90000
Epochs	20
Batch size	128
Learning rate	0.005
Word embedding size	128
Char embedding size	128
Tag embedding size	128
Lstm units	128
Char Istm units	128

88.1035

Hyper-parameters tuning

MODEL 1

Training data: 90000

training data score

test data score

MODEL 2

Training data: 80000

Validation data: 10000

validation data score

test data score

MODEL 2

Training data: 80000

Validation data: 10000

MODEL 2

Training data: 80000

Validation data: 10000

MODEL 1

Training data: 90000

Sumbit

10 epochs ± 1 epoch

Tuning Submit Tuning

88.1035 88.2567

Changing optimzer

AdamOptimizer

Gradient Descent Optimizer

MomentumOptimizer

RMSPropOptimizer

Changing optimzer

AdamOptimizer

Gradient Descent Optimizer

MomentumOptimizer

RMSPropOptimizer

Tuning Submit Tuning Submit Tuning

MODEL 2

Training data: 80000

Validation data: 10000

Ensemble MODEL

Training data: 80000

Validation data: 10000

Ensemble of N different models

Ensemble MODEL

Ensemble of three different models

90.2499

90.4219

Ensemble MODEL

Ensemble of five different models

Ensemble MODEL

Training data: 90000

Validation data: 10000

Ensemble of N different models

THANK YOU