Applied Mathematics . I FC Sem-I Choice Based Applied Maths - I (Time: Three Hours)

[Marks:80]

Please check whether you have got the right question paper.

N.B: 1. Question.No.1 is compulsory.
2. Answer any three questions from remaining.

Q.1 a	Prove that $tanh^{-1}(sin\theta) = cosh^{-1}(sec \theta)$	03
b	Prove that the matrix $\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$ is unitary	03
c)		03
d)	If $Z = \tan^{-1}\left(\frac{x}{y}\right)$ where $x = 2t$, $y = 1 - t^2$, prove that $\frac{dZ}{dt} = \frac{2}{1+t^2}$	03
e)	Find the nth derivative of (cos5x. cos3x.cosx)	04
f)	Evaluate $\lim_{x\to 0} (x)^{\frac{1}{1-x}}$	04
Q.2 a)	Find all values of $(1+i)^{\frac{1}{2}}$ & show that their continued product is $(1+i)$	0.5
b)	Find non-singular matrices BSO such that their continued product is (1 + i)	06
نا	Find non-singular matrices P&Q such that PAQ is in normal form where	06
	A= \begin{bmatrix} 2 & -2 & 3 \ 3 & -1 & 2 \ 1 & 2 & -1 \end{bmatrix}	r
	Find the maximum & minimum values of $f(x,y) = x^3 + 3xy^2 + 15x^2 + 15y^2 + 72x$	08
Q.3 a)	If $u = f(\frac{y-x}{xy}, \frac{z-x}{xz})$, show that	06
	$x^2 \frac{\partial \mathbf{u}}{\partial z} + y^2 \frac{\partial \mathbf{u}}{\partial y} + z^2 \frac{\partial \mathbf{u}}{\partial z} = 0$	
b)	Using encoding matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, encode & decode the message 'MUMBAI'.	06
	Prove that $\log \left[\tan \left(\frac{\pi}{4} + \frac{ix}{2}\right)\right] = i \tan^{-1} \left(\sinh x\right)$	08
Q.4 a)	Obtain $\tan 5\theta$ in terms of $\tan \theta$ & show that $1 - 10 \tan^2 \frac{\pi}{10} + 5 \tan^4 \frac{\pi}{10} = 0$	06
b)	If $y = e^{\tan^{-1}x}$, prove that	06
	$(1+x^2)y_{n+2} + [2(n+1)x-1]y_{n+2} + n(n+1)y_n = 0$	06
c)	i. Express $(2x^3 + 3x^2 - 8x + 7)$ in terms of $(x-2)$ using Taylor's theorem.	
	ii. Prove that $\tan^4 x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{5} +$	04
	tan x = x - 3 + 5 - 5 +	04

Q.P. Code :16227

06

Q.5 a) If
$$z = x^2 \tan^{-1} {x \choose 2} - y^2 \tan^{-1} {(y/y)}$$
 06
Prove that $\frac{d^2z}{dv^2 dx} = \frac{x^2 - y^2}{z^2 + x^2}$

b)
$$2x + 3y + 5Z = 9$$
 linvestigate for what values of $\times \& \mu$ the equations, $^7x + 3y - 2Z = 8$ $2x + 3y + 5z = \mu$

Have 1) no solution

- 2) a unique solution
- 3) an infinite no. of solutions
- c) Using Newton Raphson method, find approximate root of $x^3 2x 5 = 0$ (correct to three places of decimals.)
- Q.6a) Find tanhx if 5 sinhx coshx = 5
 - b) If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ prove that 06
 - i. $xu_x + yu_y = \frac{1}{2} \tan u$
 - ii. $x^2u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \frac{-\sin u \cos z u}{4\cos^3 u}$
 - c) Solve the following systems of equations by Gauss-seidel method.

20x + y - 2Z = 17 3x + 20y - Z = -18 2x - 3y + 20Z = 25
