SUMSRI 2018: Ryser's conjecture

Teresa Flaitz, Yigal Kamel, Cody Newman, Hannah Sheats

October 2, 2018

Abstract

We survey some results on Ryser's conjecture. We make the case that by phrasing Ryser's conjecture in the language of edge colored graphs, it is possible to ask a variety of interesting strengthenings and generalizations of the original conjecture.

1 Introduction

Let G be a hypergraph. We say that G is r-uniform if every edge of G contains exactly r vertices. We say that G is r-partite if there exists a partition of V(G) into sets $\{V_1, \ldots, V_r\}$ such that for every edge e of G, $|e \cap V_i| \leq 1$ for all $i \in [r]$; we use bipartite to mean 2-partite. A matching in G is a set of pairwise disjoint edges. A vertex cover of G is a set of vertices A such that each edge of G contains a vertex from A. We denote the size of a largest matching in G by $\nu(G)$ and we denote the size of a minimum vertex cover of G by $\tau(G)$. Note that for every hypergraph G we have

$$\nu(G) \le \tau(G)$$
,

since a minimum vertex cover must contain at least one vertex from each edge in a maximum matching.

The following is a seminal result in graph theory from 1931.

Theorem 1.1 (König [14]). For every bipartite graph G, $\tau(G) \leq \nu(G)$.

In the 1970's, Ryser made the following conjecture which would generalize König's theorem to r-partite hypergraphs.

Conjecture 1.2 (Ryser (see [13])). For every r-partite hypergraph graph G, $\tau(G) \leq (r-1)\nu(G)$.

Let $r \geq 2$ and let A be a r-dimensional 0, 1-matrix. The term rank of A, denoted $\nu(A)$, is the maximum number of 1's, such that no pair is in the same (r-1)-dimensional hyperplane. The covering number of A, denoted $\tau(A)$, is the minimum number of (r-1)-dimensional hyperplanes which contain all of the 1's of A. In this language, Ryser's conjecture says that if A is an r-dimensional 0, 1-matrix, then $\tau(A) \leq (r-1)\nu(A)$; indeed, this is how Ryser's conjecture was originally formulated.

1.1 Duality

A component of a graph G is a maximal connected subgraph of G. If A is a set of vertices, let G[A] denote the subgraph of G induced by A. A set of vertices A in G is independent if G[A] has no edges. The size of a maximum independent set of vertices in G is denoted by $\alpha(G)$. An r-coloring of the edges of a graph G is a set $\{G_1, ..., G_r\}$ of spanning subgraphs of G whose edge sets partition E(G). We say an edge $e \in G$ is color-i if $e \in E(G_i)$. In an r-colored graph G, a component cover of G is a set of monochromatic components of G whose union contains V. We say $tc_r(G) \leq k$ if in every r-coloring of the edges of G, there exists a component cover of size at most k.

Gyárfás [9] noted that Ryser's conjecture is equivalent to the following statement about edge colored graphs.

Conjecture 1.3 (Ryser). For any graph G and any integer $r \geq 2$, $tc_r(G) \leq (r-1)\alpha(G)$.

So in particular, König's theorem can be reformulated as follows.

Theorem 1.4 (König). For any graph G, $tc_2(G) \leq \alpha(G)$.

1.2 Known results

Aside from the case r=2 which is König's theorem, Ryser's conjecture has only been verified in the following cases: r=3 by Aharoni [2]; r=4 and $\alpha=1$ by Tuza [17]; r=5 and $\alpha=1$ by Tuza [17].

The following table highlights the known cases.

α r	2	3	4	5	6
1	1	2	3	4	5
2	2	4	6	8	10
3	3	6	9	12	15
4	4	8	12	16	20
5	5	10	15	20	25
6	\	\	18	24	30

1.3 Lower bounds

For a given r, if there exists an affine plane of order r-1, there exists an example which shows that Ryser's conjecture is best possible. Since it is known that an affine plane of order r-1 exists whenever r-1 is a prime power (it is not known whether there exists an affine plane of non-prime-power order), the following is known.

Example 1.5. For all $r \geq 2$, if r - 1 is a prime power, then there exists a graph G such that $tc_r(G) \geq (r - 1)\alpha(G)$.

Finding matching lower bounds when r-1 is not a prime power is an active area of research ([3], [1], [12]); however, it is still unknown whether for all $r \geq 2$ there exists a graph G such that $tc_r(G) \geq (r-1)\alpha(G)$.

Large monochromatic components

The following result is known, but it is worth noting that it would be implied by Ryser's conjecture.

Theorem 1.6 (Furedi [8] (see Gyarfas [10])). In every r-partite hypergraph H with n

edges, there exists a vertex of degree at least $\frac{n}{(r-1)\nu(H)}$.

In other words, in every r-coloring of the edges of a graph G with n vertices, there exists a monochromatic component of order at least $\frac{n}{(r-1)\alpha(G)}$.

$\mathbf{2}$ Special lower bounds

Example 2.1. For all $r \geq 3$, and $n \geq 2r$ there exists an r-coloring of K_n such that every color class has at least r components. In particular, this implies that it is not possible to quarantee that the component covering in Ryser's conjecture consists of only one color.

Proof. Partition the vertex set into a set X of order r-1 and a set Y of order n-r+1. Let $v_1, \ldots, v_{|Y|}$ be the vertices in Y. For $i \in [r-1]$, color all edges from y_i to X with color i. Color all edges from y_r to X with color 1 and all edges from y_{r+1} to X with color 2. Color the remaining edges from Y to X arbitrarily from [r-1] and color the edges inside X arbitrarily with colors from [r-1]. Finally, color all edges inside Y with color r.

Problem 2.2. Let $r \geq 4$. Does there exist r-coloring of K_n having the property that every minimal monochromatic component cover consists of r-1 components of different colors?

A weaker question: Does there exist r-coloring of K_n having the property that every minimal monochromatic component cover consists of r-t (more generally, just some function which grows with r) components of different colors?

Francetic, Herke, McKay, and Wanless disproved [6, Theorem 3.1] a conjecture of Aharoni (see [3]) by constructing a 13-coloring of K_n such that every color class has 13 components and no set of 12 components which cover $V(K_n)$ has non-trivial intersection. This does leave open the possibility that for some r there exists a r-coloring of K_n having the property that every set of r-1 components which cover $V(K_n)$ have distinct colors.

3 Aharoni's proof for r=3

Given a hypergraph H and a matching M, let $\rho(M)$ be the minimum size of a set of edges F having the property that every edge in M intersects some edge in F. Let the matching width of H, denoted mW(H), be the maximum value of $\rho(M)$ over all matchings in H. Note that mw(H) is witnessed by a maximal matching.

Observation 3.1. Given a hypergraph of rank at most r (that is, each edge has order at most r), $mw(H) \le \nu(H) \le r \cdot mw(H)$.

Aharoni and Haxell [4] proved the following generalization of Hall's theorem [11] which we state here in its "defect form."

Theorem 3.2 (Aharoni, Haxell [4]). Let \mathcal{A} be a collection of hypergraphs. If for all $\mathcal{B} \subseteq \mathcal{A}$, we have $mw(\mathcal{B}) \geq |\mathcal{B}| - d$, then \mathcal{A} has a partial system of disjoint representatives of order at least $|\mathcal{A}| - d$.

Let G be an r-partite hypergraph and let L_v denote the link graph of v, which is an (r-1)-partite hypergraph. Letting $A = \{v_1, \ldots, v_m\} = V_1$, then we may apply Hall's theorem with $\mathcal{A} = \{L_{v_1}, \ldots, L_{v_m}\}$. Also note that in the case r = 2, this is just the ordinary Hall's theorem.

Assuming Theorem 3.2, we give a proof of Aharoni's theorem [2]. We state it in a more general language which both shows how to derive the r=2 and r=3 case in a common language, and shows that Ryser's conjecture would be true if it were the case that $\tau(H') \leq s \cdot mw(H')$ for all s-partite hypergraphs H'.

Observation 3.3. Let $r \geq 2$. If $\tau(H') \leq (r-1) \cdot mw(H')$ for all (r-1)-partite hypergraphs H', then $\tau(H) \leq (r-1)\nu(H)$ for all r-partite hypergraphs H.

Proof. For all $S \subseteq V_1$, let $L_S = \bigcup_{v \in S} L_v$. Let d be the largest non-negative integer such that $mw(L_B) = |B| - d$ for some $B \subseteq V_1$. Note that by Theorem 3.2, we have $\nu(G) \geq |V_1| - d$. Let $C \subseteq V \setminus V_1$ be a vertex cover of L_B . Note that $(V_1 \setminus B) \cup C$ is a vertex cover of G.

By the assumption, we have $|C| = \tau(L_B) \le (r-1) \cdot mw(H) \le (r-1)(|B|-d)$ and thus

$$\tau(G) \le |V_1| - |B| + |C| \le |V_1| - |B| + (r-1)(|B| - d) \le (r-1)(|V_1| - d) \le (r-1)\nu(G).$$

Theorem 3.4. Let r be a positive integer and let H be an r-partite hypergraph. If $r \leq 3$, then $\tau(H) \leq (r-1)\nu(H)$.

Proof. By the previous observation, all that remains to be checked is that $\tau(H') \leq s \cdot mw(H')$ for all s-partite hypergraphs with $s \leq 2$. When s = 1, this is trivial and when s = 2, we have $\tau(H') = \nu(H') \leq 2 \cdot mw(H')$.

We close with the following problem, which as mentioned above, would imply Ryser's conjecture.

Problem 3.5. Is it true that $\tau(H') \leq s \cdot mw(H')$ for all s-partite hypergraphs H'?

4 Tuza's proofs

The closure of a graph G with respect to a given coloring is a multigraph C(G) on the vertices of G with edge set defined as follows: there is a color-i edge between v_1 and v_2 in C(G) if and only if there is a path of color i between v_1 and v_2 in G.

We begin with some general observations.

Let the edges of a graph G be r-colored. Take the closure of G with respect to this coloring. Note that $tc_r(G) \leq tc_r(C(G))$, since given a component cover of C(G), the corresponding monochromatic components of G form a component cover of G. Hence, we will refer to C(G) simply as G. Let $G_{i,j}$ be the subgraph of G induced by the edges of colors i and j. By Theorem 1.4,

$$tc_r(G) \le tc_2(G_{i,j}) \le \alpha(G_{i,j}). \tag{1}$$

Therefore, Ryser's Conjecture holds whenever there exist colors $i, j \in [r]$ such that

$$\alpha(G_{i,j}) \leq (r-1)\alpha(G)$$
.

4.1 r = 4, $\alpha = 1$

The following theorem is due to Tuza. We reprove the Theorem in the language of 4-edge-colored graphs instead of the language of 4-partite hypergraphs. We also state the Theorem in such a way which highlights a stronger conclusion.

Theorem 4.1. For every 4-coloring of K_n and every distinct $i, j \in [4]$, there exists a monochromatic component cover of size at most three that either consists of only colors in $\{i, j\}$ or only colors in $[4] \setminus \{i, j\}$.

Proof. Let the edges of K_n be 4-colored. Take the closure of K_n with respect to this coloring. Note that $tc_r(K_n) \leq tc_r(C(K_n))$, since given a component cover of $C(K_n)$, the corresponding monochromatic components of K_n form a component cover of K_n . Let $G_{i,j}$ be the graph induced by the edges of colors i and j. If $\alpha(G_{i,j}) \leq 3$, then by Proposition 1, $tc_4(K_n) \leq tc_2(G_{i,j}) \leq \alpha(G_{i,j}) \leq 3$. This gives a component cover of K_n of size at most three consisting of the selected colors. Therefore, assume $\alpha(G_{i,j}) \geq 4$. Let $X = \{x_1, x_2, x_3, x_4\}$ be an independent set of vertices in $G_{i,j}$. Since the no edge between vertices in X are color-i or color-j, X induces a 2-colored K_4 in the non-selected colors. Therefore, by Proposition 1, the vertices in X are covered by a single monochromatic component A, say of color $k \neq i, j$. Let $l \neq i, j, k$ be the remaining color.

Now, we consider two cases. First, assume that there is an edge of color-l between two vertices $x_1, x_2 \in X$. Let B denote the color-l component containing x_1x_2 , and let C denote the color-l component containing x_3 . Note that B may be equal to C. Let $X' = X \setminus \{x_4\}$ and $v \notin X'$. Since X is independent in $G_{i,j}$, there is at most one color-s edge from v to X' for s = i, j. Thus, vx_t is color-k or color-l for some $t \in [3]$. Then v is covered by either A, B, or C. Next, assume that there is no edge of color l between any two vertices in X. Suppose $v \notin X$. Then there is at most one edge of color-s from

v to X for $s \in \{i, j, l\}$. Thus, vx_t is color-k for some $t \in [4]$. So $v \in A$. In either of these cases, we obtain a component cover of size at most three consisting of non-selected colors.

4.2 r = 5, $\alpha = 1$

The following theorem is also due to Tuza. We reprove the Theorem in the language of 5-edge-colored graphs instead of the language of 5-partite hypergraphs. We also state the Theorem in such a way which highlights a stronger conclusion and we simplify the original proof.

Theorem 4.2. For every 5-coloring of K_n and every distinct $i, j \in [5]$, there exists a monochromatic component cover of size at most four that either consists of only colors in $\{i, j\}$ or only colors in $[5] \setminus \{i, j\}$.

Proof. Let K_n be five colored and let $G_{i,j}$ be the graph induced by colors i and j. If $\alpha(G_{i,j}) \leq 4$ for any $i, j \in [5]$, then, since, by Proposition 1, $tc_5(K_n) \leq tc_2(G_{i,j}) \leq \alpha(G_{i,j}) \leq 4$, we are done. So assume that for all i, j we have $\alpha(G_{i,j}) \geq 5$. Let $X = \{x_1, ..., x_5\}$ be an independent set of vertices in $G_{4,5}$.

Property I There exists a set T of at most four monochromatic components in K_n whose intersections with G[X] contain all monochromatic components in G[X] of two of the colors and those of the third color with size at least 3.

Property II There exists a set T of at most four monochromatic components in K_n whose intersections with G[X] contain all monochromatic components in G[X] of one color and those of the remaining colors with size at least 2.

If properties I or II hold, T is the desired component cover. There are only two cases which are not covered by the properties above.

Case I We have:

- two color-1 components, A_1 and B_1 , whose intersections with X have sizes 4 and 1, respectively,
- two color-2 components, A_2 and B_2 , whose intersections with X have sizes 3 and 2, respectively,
- two color-3 components, A_3 and B_3 , whose intersections with X have sizes 3 and 2, respectively.

Let $x_5 \in B_1 \cap X$. The edges from x_5 to the vertices in $A_1 \cap X$ must be of color 2 or 3. Therefore, we obtain the following situation:

$$A_1 \cap X = \{x_1, x_2, x_3, x_4\}, B_1 \cap X = \{x_5\},$$

 $A_2 \cap X = \{x_1, x_2, x_5\}, B_2 \cap X = \{x_3, x_4\},$
 $A_3 \cap X = \{x_3, x_4, x_5\}, B_3 \cap X = \{x_1, x_2\}.$

Suppose that the sets $\{A_1, B_1, A_2, B_2\}$ and $\{A_1, B_1, A_3, B_3\}$ are not covers. Then, there exist two vertices $w_2, w_3 \in V(K_n)$ such that $w_2 \in A_2 \setminus A_3$, and $w_3 \in A_3 \setminus A_2$. It follows that the edges w_2x_3 , w_2x_4 , w_3x_1 , and w_3x_2 are of color 4 or 5. Therefore, the edge w_2w_3 is color-1. Let A be the color-1 component containing w_2w_3 , and let $W = \{w \in V(K_n) : w \notin A_1, B_1, A_2, A_3\}$. If $w \in W$ then ww_2 or ww_3 is color-1. Consequently, $W \subseteq V(a)$, so $\{A_1, B_1, A_2, A_3\}$ is a cover of K_n .

Case II We have:

- two color-1 components, A_1 and B_1 , whose intersections with X have sizes 3 and 2, respectively,
- two color-2 components, A_2 and B_2 , whose intersections with X have sizes 3 and 2, respectively,
- two color-3 components, A_3 and B_3 , whose intersections with X have sizes 3 and 2, respectively.

Now we obtain the following situation:

$$A_1 \cap X = \{x_1, x_2, x_3\}, \ B_1 \cap X = \{x_4, x_5\},$$

 $A_2 \cap X = \{x_1, x_2, x_4\}, \ B_2 \cap X = \{x_3, x_5\},$
 $A_3 \cap X = \{x_1, x_2, x_5\}, \ B_3 \cap X = \{x_3, x_4\}.$

If neither $\{A_1, A_2, A_3, B_1\}$ nor $\{A_2, B_2, A_3, B_3\}$ is a cover of K_n then there exist two vertices, v_1 and v_2 , such that $v_1 \in (B_2 \cap B_3) \setminus A_1$ and $v_2 \in A_1 \setminus (B_2 \cup B_3)$. Furthermore, v_1 and v_2 are in separate color-4 and color-5 components, so v_1 and v_2 do not share any monochromatic components; a contradiction.

5 General properties of a minimal counterexample

Recall that to prove $\operatorname{tc}_r(G) \leq (r-1)\alpha(G)$ it suffices to consider the closure of the given edge coloring of G, which means that we have an r-coloring of a multigraph in which every monochromatic component is a clique. In the closure of G with respect to a given coloring, we call an edge e of color i and multiplicity 1 an essential edge of color i.

Theorem 5.1. Suppose there exists positive integers r and n, a multigraph G on n vertices with $\alpha := \alpha(G)$, and an r-coloring $c : E(G) \to [r]$ in which every monochromatic component is a clique such that G cannot be covered by at most $(r-1)\alpha$ monochromatic components. Choose such a graph and a coloring which (i) minimizes r, (ii) minimizes α , (iii) minimizes n, (iv) minimizes e(G). Let Δ denote the number of vertices in a largest monochromatic component. Then G has the following properties:

- (i) $r \geq 4$ and if $\alpha = 1$, then $r \geq 6$
- (ii) Each color class contains at least $(r-1)\alpha + 1$ components.
- (iii) Every component of color i contains an essential edge of color i.

- (iv) Each vertex is incident with an edge of every color. In particular, every monochromatic component has at least 2 vertices.
- (v) Every vertex is contained in at most $\min\{\alpha(G), r\}$ components of order 2.
- (vi) $tc_r(G) = (r-1)\alpha + 1$
- (vii) Any set of r components intersect in at most one vertex.
- (viii) Any set of r-1 components intersect in at most one vertex.
 - (ix) Any set of r-2 components intersect in at most two vertices.
 - (x) For all $S \subseteq [r]$ with $s := |S| \ge 2$, $\alpha(G_S) > \frac{(r-1)\alpha}{s-1}$, where G_S is the colored graph induced by edges having a color in S. In particular, for any two colors i, j, we have $\alpha(G_{i,j}) \ge (r-1)\alpha(G) + 1$.
- (xi) $\Delta \geq 3$; and if $\alpha = 1$, then $\Delta \geq 4$.
- (xii) If every edge has multiplicity 1, $\Delta \leq (r-1)\alpha$; and if in addition $\alpha = 1$, then $\Delta \leq r-2$.
- *Proof.* (i) This follows from Theorem (Aharoni) and Theorem (Tuza)
- (ii) This follows since every color class is a component cover.
- (iii) Let v be any vertex. Consider the graph G' obtained by removing all of the vertices in monochromatic components containing v. Since $\alpha(G') \leq \alpha(G) 1$, and G is a minimal counterexample, we have $\operatorname{tc}_r(G') \leq (r-1)(\alpha-1)$ and thus $(r-1)\alpha+1 \leq \operatorname{tc}_r(G) \leq (r-1)(\alpha-1)+r = (r-1)\alpha+1$.
- (iv) If not, we may remove the edges of color i corresponding to this component and call the resulting graph G'. Note that e(G') < e(G), but $\alpha(G') = \alpha(G)$, so by minimality, we have $\operatorname{tc}_r(G) \leq \operatorname{tc}_r(G') \leq (r-1)\alpha$.
- (v) If there exists v such that v is incident with edges of at most r-1 colors, then consider the graph G' obtained by removing all of the vertices in monochromatic components containing v. Since $\alpha(G') \leq \alpha(G)-1$, and G is a minimal counterexample, we have $\operatorname{tc}_r(G') \leq (r-1)(\alpha-1)$ and thus $\operatorname{tc}_r(G) \leq (r-1)(\alpha-1)+(r-1)=(r-1)\alpha$, a contradiction.
- (vi) If $r \leq \alpha$, then each vertex is only contained in r components total; so suppose $r > \alpha$. Let v be a vertex and let U be the set of vertices which are in components of order 2 and are adjacent to v. If there is an edge xy with both endpoints in U such that xy is in a component H, then let G' be the graph obtained by deleting every vertex, except x and y which are in a monochromatic component containing v together with every vertex in H. Note that this is r-1 components in total and $\alpha(G') \leq \alpha 1$. By minimality, we have $\operatorname{tc}_r(G) \leq \operatorname{tc}_r(G') + r 1 \leq (r-1)(\alpha-1) + r 1 = (r-1)\alpha$, a contradiction. Thus U is an independent set which implies $|U| \leq \alpha$.
- (vii) If the components are not of distinct colors, then their intersection is empty; so suppose the colors are distinct. If there are at least two vertices u, v in the

intersection, replace them with a vertex w such that for all $x \notin \{u, v\}$, wx is an edge colored with every color appearing on ux or on vx; call this new graph G'. A covering of G' gives a covering of G since any component in the covering of G' which contains w, contains u and v in G.

- (viii) Let H_1, \ldots, H_{r-1} be a set of r-1 components of distinct colors which have at least two vertices u, v in the intersection. Since every vertex is incident with an edge of every color and u and v are not in the same component, there exists components $H_r(u)$ and $H_r(v)$ color r such that $u \in H_r(u)$ and $v \in H_r(v)$. Let $u \neq u' \in H_r(u)$ and $v \neq v' \in H_r(v)$. Note that u'v and uv' cannot have color r, so they are colored with a color from [r-1] and thus u' is in some component H_i with $i \in [r-1]$ and v' is contained in some component H_j with $j \in [r-1]$.
 - (ix) Let H_1, \ldots, H_{r-2} be a set of r-2 components of distinct colors and suppose there are 3 vertices $U = \{u_1, u_2, u_3\}$ in their intersection. Each of the vertices $u_j \in U$ is contained in two components $H_{r-1}(u_j), H_r(u_j)$ of colors r-1 and r respectively. If any three vertices from U were contained in the same component of color $r-1 \leq h \leq r$, then we would have a set U' of two vertices and a set $H_1, \ldots, H_{r-2}, H_h$ of r-1 components whose intersection contains U'.
 - (x) If $\alpha(G_S) \leq \frac{(r-1)\alpha(G)}{s-1}$, then by minimality, we have $\operatorname{tc}_r(G) \leq \operatorname{tc}_s(G_S) \leq (s-1)\alpha(G_S) \leq (r-1)\alpha(G)$.
 - (xi) Let A be a maximal independent set in G. Since every vertex is in A or adjacent to a vertex in A, we have $n \leq \alpha((\Delta 1)r + 1)$, with equality if and only if every monochromatic component intersecting A has Δ vertices. Let G_i be a color class containing a component of order Δ . Then we have $n \geq 2(r-1)\alpha + \Delta$, with equality if and only if all of the other components of G_i are size 2. Since r > 1, combining the above inequalities and using $r \geq 3$ shows $\Delta \geq \frac{3\alpha(r-1)}{\alpha r-1} > 2$. If $\alpha = 1$, then we have $\Delta = \frac{3\alpha(r-1)}{\alpha r-1} = 3$ with equality if and only if every component is order Δ and all but one component in color class i has order 2, which is not possible, so $\Delta \geq 4$ in this case.
- (xii) Let X be a color-i component of order Δ and let G' = G X. If $\alpha(G') \leq \alpha 1$, we would have a contradiction, so suppose there is an independent set $A \subseteq V(G) \setminus V(X)$ of order α . Since every edge has multiplicity 1 and every vertex from X must send an edge to some vertex in A, none of color i, we have $\Delta \leq (r-1)\alpha$.

If $\alpha = 1$ and $\Delta = r - 1$, then let H_1, \ldots, H_{r-1} be all of the components of color j for some $j \neq i$ which intersect X. Since we are assuming H_1, \ldots, H_{r-1} does not form a component cover, then there exists some vertex which sends no edges of color i or j to X and thus $|X| \leq r - 2$.

6 Partitioning

Given $r \in \mathbb{Z}^+$ and a graph G, let $t := tp_r(G)$ be the smallest integer so that in every r-coloring of the edges of G there exists at most t monochromatic connected subgraphs whose vertex sets partition V(G). Erdős, Gyárfás, Pyber [5] and later Fujita, Furuya, Gyárfás, Tóth [7] made the following strengthening of Ryser's conjecture.

Conjecture 6.1 (Erdős, Gyárfás, Pyber [5]; Fujita, Furuya, Gyárfás, Tóth [7]). $\operatorname{tp}_r(K_n) \leq r-1$ and in general, $\operatorname{tp}_r(G) \leq (r-1)\alpha(G)$

Theorem 6.2 (Erdős, Gyárfás, Pyber [5]). $tp_3(K_n) = 2$

We present the following beautiful proof of Fujita, Furuya, Gyárfás, Tóth (which was originally written in a more general form).

Theorem 6.3 (Fujita, Furuya, Gyárfás, Tóth [7]). $tp_2(G) \leq \alpha(G)$

Proof. We are done if $\alpha(G) = 1$, so suppose $\alpha(G) \geq 2$ and the statement holds for all G' with $\alpha(G') < \alpha(G)$.

We know that $tc_2(G) \leq \alpha(G)$. Let R_1, \ldots, R_p be the red components and let B_1, \ldots, B_q be the blue components in such a covering. Note that

$$p + q \le \alpha(G)$$
.

Let $R = \bigcup_{i=1}^{p} V(R_i)$ and $B = \bigcup_{i=1}^{q} V(B_i)$. Let $R' = R \setminus B$ and $B' = B \setminus R$. Note that we are done unless $R' \neq \emptyset$ and $B' \neq \emptyset$. Also note that there are no edges between R' and B' so

$$\alpha(G[R']) + \alpha(G[B']) \le \alpha(G).$$

Thus $\alpha(G[R']) < \alpha(G)$ and $\alpha(G[B']) < \alpha(G)$. By induction we have $p' := \operatorname{tp}_2(G[R']) \le \alpha(G[R'])$ and $q' := \operatorname{tp}_2(G[B']) \le \alpha(G[B'])$. Let $C_1, \ldots, C_{p'}$ be the component partition of G[R'] and let $D_1, \ldots, D_{q'}$ be the component partition of G[B']. Note that

$$p' + q' \le \alpha(G[R']) + \alpha(G[B']) \le \alpha(G).$$

Since $p' + q + p + q' \le 2\alpha(G)$, we have say $p' + q \le \alpha(G)$. So $C_1, \ldots, C_{p'}, B_1, \ldots, B_q$ is the desired monochromatic connected subgraph partition.

The following table highlights the known values of this stronger version of Ryser's conjecture.

α	2	3	4	5	6
1	1	2	3	4	5
2	2	4	6	8	10
3	3	6	9	12	15
4	4	8	12	16	20
5	5	10	15	20	25
6		12	18	24	30

7 Covering with monochromatic subgraphs of bounded diameter

For vertices v_1, v_2 , let $d_i(v_1, v_2)$ denote the length of the shortest v_1, v_2 -path. If there is no v_1, v_2 -path, we write $d_i(v_1, v_2) = \infty$. The diameter of a graph G, denoted diam(G), is the smallest integer δ such that $d(u, v) \leq \delta$ for all $u, v \in V(G)$. If G is not connected, we say diam $(G) = \infty$.

Proposition 7.1 (Folklore). In every 2-coloring of K_n , if $diam(G_R) \ge 4$, then $diam(G_B) \le 2$; and if $diam(G_R) \ge 3$, then $diam(G_B) \le 3$. Furthermore this is best possible when $n \ge 4$.

Proof. To see this is best possible, partition $V(K_n)$ as $\{V_1, V_2, V_3, V_4\}$ and color all edges from V_i to V_{i+1} red for all $i \in [3]$ and color all other edges blue. Both G_R and G_B have diameter 3.

Let $dc_r^{\delta}(G)$ be the smallest integer t such that in every r-coloring of the edges of G, there exists $t' \leq t$ monochromatic connected subgraphs $C_1, \ldots, C_{t'}$ such that $\bigcup_{i \in [s']} V(C_i)$ where $diam(C_i) \leq \delta$ for all $i \in [t']$. For $r \geq 1$ and a graph G, let D(r, G) be the smallest δ such that $dc_r^{\delta}(G) \leq \operatorname{tc}_r(G)$. For instance $D(2, K_n) = 3$.

Milićević conjectured the following strengthening of Ryser's conjecture.

Conjecture 7.2 (Milićević [16]). Let K be a complete graph. For all $r \geq 2$, there exists δ such that $\operatorname{dc}_r^{\delta}(K) \leq r - 1$.

Milićević [15] proved that $dc_3^8(K) \le 2$; i.e. $D(3, K) \le 8$. We strengthen Milićević's result and as corollary show that $3 \le D(3, K_n) \le 4$.

Example 7.3. For every complete graph K on at least 7 vertices, there exists a 3-coloring of K such that if H_1 and H_2 are monochromatic subgraphs which cover V(K), then $diam(H_i) \geq 3$ for some $i \in [2]$. In particular, $D(3,K) \geq 3$.

Proof. Color K_7 with 3 colors so that each color class is a 7-cycle. Then take the blow-up of this example and color the edges inside the sets arbitrarily. If H_1 and H_2 are monochromatic subgraphs which cover V(K), then for some $i \in [2]$, H_i contains vertices from at least four different sets which implies diam $(H_i) \geq 3$.

Theorem 7.4. In every 3-coloring of a complete graph K there exists at most two monochromatic trees, H_1 and H_2 , such that $V(H_1) \cup V(H_2) = V(K)$ and $diam(H_i) \leq 4$ for $i \in [2]$.

Proof. Let $x \in V(K)$. For $i \in [3]$, let A_i be the neighbors of x of color i. If $A_i = \emptyset$ for some $i \in [3]$, then $H_1 \subseteq G_j[\{x\} \cup A_j]$ and $H_2 \subseteq G_k[\{x\} \cup A_k]$ $(i \neq j \neq k)$ satisfy the theorem with diam $(H_i) \leq 2$ for $i \in [2]$. So we assume $A_i \neq \emptyset$ for all $i \in [3]$.

For $i, j \in [3]$ with $i \neq j$, define B_{ij} to be the set of vertices $v \in A_i$ such that vu is not color-j for all $u \in A_j$. If $B_{ij} = \emptyset$ for some $i, j \in [3]$, then $H_1 \subseteq G_j[\{x\} \cup A_j \cup A_i]$ and

 $H_2 \subseteq G_k[\{x\} \cup A_k]$ cover V(K), where $\operatorname{diam}(H_1) \le 4$ and $\operatorname{diam}(H_2) \le 2$. So suppose $B_{ij} \ne \emptyset$ for all $i, j \in [3]$. Note that $[B_{ij}, B_{ji}]$ is a complete bipartite graph of color k. We consider two cases.

First, assume there exist $i, j, k \in [3]$ such that $B_{ij} \setminus B_{ik} \neq \emptyset$. Let $z \in B_{ij} \setminus B_{ik}$. Then there is a vertex $u \in A_k$ such that zu is color-k. Since every z, B_{ji} -edge is color-k, $H_1 \subseteq G_k[\{x\} \cup A_k \cup \{z\} \cup B_{ji}]$ and $H_2 \subseteq G_i[\{x\} \cup A_i \cup (A_j \setminus B_{ji})]$ with diam $(H_i) \leq 4$ for $i \in [2]$. So assume $B_{ij} \setminus B_{ik} = \emptyset$ for all $i, j, k \in [3]$.

Then $B_{ij} = B_{ik} =: B_i$ for all $i, j, k \in [3]$. If there exists $i \in [3]$ such that $A_i \neq B_i$, then $H_1 \subseteq G_i[\{x\} \cup A_i \cup (A_j \setminus B_j) \cup (A_k \setminus B_k)]$ with $\operatorname{diam}(G) \leq 4$, and $H_2 \subseteq G_i[B_j \cup B_k]$ with $\operatorname{diam}(H_2) \leq 2$. If, on the other hand, $A_i = B_i$ for all $i \in [3]$, then for any i, $H_1 \subseteq G_i[\{x\} \cup A_i]$ with $\operatorname{diam}(H_1) \leq 2$, and $H_2 \subseteq G_i[A_i \cup A_k]$ with $\operatorname{diam}(H_2) \leq 3$. \square

Note that it may be possible to improve the previous result by covering with two monochromatic *subgraphs* of diameter at most 3, but we cannot hope to cover with two monochromatic *trees* of diameter at most 3 (consider a random three coloring of the edges; no two double stars will cover the entire vertex set).

Problem 7.5. In every 3-coloring of K there exists at most two monochromatic subgraphs, H_1 and H_2 , such that $V(H_1) \cup V(H_2) = V(K)$ and $diam(H_i) \leq 3$ for $i \in [2]$.

8 Conclusion

The results in this report are currently being extended to a full-length paper.

9 Acknowledgements

We thank Andás Gyárfás and Gábor Sárközy for their help in obtaining a copy of [17].

References

- [1] Ahmad Abu-Khazneh, János Barát, Alexey Pokrovskiy, and Tibor Szabó, A family of extremal hypergraphs for ryser's conjecture, arXiv preprint arXiv:1605.06361 (2016).
- [2] Ron Aharoni, Ryser's conjecture for tripartite 3-graphs, Combinatorica 21 (2001), no. 1, 1–4.
- [3] Ron Aharoni, János Barát, and Ian M Wanless, Multipartite hypergraphs achieving equality in rysers conjecture, Graphs and Combinatorics **32** (2016), no. 1, 1–15.
- [4] Ron Aharoni and Penny Haxell, *Hall's theorem for hypergraphs*, Journal of Graph Theory **35** (2000), no. 2, 83–88.

- [5] P Erdős, András Gyárfás, and László Pyber, Vertex coverings by monochromatic cycles and trees, Journal of Combinatorial Theory, Series B **51** (1991), no. 1, 90–95.
- [6] Nevena Francetić, Sarada Herke, Brendan D McKay, and Ian M Wanless, On rysers conjecture for linear intersecting multipartite hypergraphs, European Journal of Combinatorics 61 (2017), 91–105.
- [7] Shinya Fujita, Michitaka Furuya, András Gyárfás, and Ágnes Tóth, *Partition of graphs and hypergraphs into monochromatic connected parts*, the electronic journal of combinatorics **19** (2012), no. 3, 27.
- [8] Zoltán Füredi, Maximum degree and fractional matchings in uniform hypergraphs, Combinatorica 1 (1981), no. 2, 155–162.
- [9] A Gyárfás, Partition coverings and blocking sets in hypergraphs, Communications of the Computer and Automation Institute of the Hungarian Academy of Sciences **71** (1977), 62.
- [10] András Gyárfás, Large monochromatic components in edge colorings of graphs: a survey, Ramsey Theory, Springer, 2011, pp. 77–96.
- [11] Philip Hall, On representatives of subsets, Journal of the London Mathematical Society 1 (1935), no. 1, 26–30.
- [12] PE Haxell and AD Scott, A note on intersecting hypergraphs with large cover number, The Electronic Journal of Combinatorics 24 (2017), no. 3, 3–26.
- [13] John Robert Henderson, Permutation decomposition of (0, 1)-matrices and decomposition transversals, Ph.D. thesis, California Institute of Technology, 1971.
- [14] Zoltán Király, Monochromatic components in edge-colored complete uniform hyper-graphs, European Journal of Combinatorics **35** (2014), 374–376.
- [15] Luka Milićević, Commuting contractive families, Fundamenta Mathematicae 231 (2015), no. 3, 225–272.
- [16] _____, Covering complete graphs by monochromatically bounded sets, arXiv preprint arXiv:1705.09370 (2017).
- [17] Zs Tuza, Some special cases of rysers conjecture, Unpublished manuscripts (1979).