Basic identities of matrix/vector ops		Vector norms (beyond euclidean)	triangular matrices)	-Do Laplace expansion along that row/column =>	orthogonal matrix i.e. $Q^{-1} = Q^{T}$	SVD is similar to spectral decomposition, except it	relates principal axes and principal components
$\frac{(A+B)^T = A^T + B^T}{(AB)^{-1} = B^{-1}A^{-1}} \frac{(AB)^T = B^TA^T}{(AB)^{-1} = B^{-1}A^{-1}} \frac{(A^{-1})^T = (A^T)^{-1}}{(AB)^{-1} = B^{-1}A^{-1}}$	*Notice: $Q_j c_j = \sum_{i=1}^{j} (q_i \cdot a_{j+1}) q_i = \sum_{i=1}^{j} \operatorname{proj}_{q_i} (a_{j+1})$, so	-vector norms are such that: $ x = 0 \iff x = 0$, $ \lambda x = \lambda x $, $ x + y \le x + y $	The (column) rank of AJ is number of linearly	notice all-but-one minor matrix determinants go to zero	$-\mathbf{q}_1, \dots, \mathbf{q}_n$ are still eigenvectors of $\underline{A} = \underline{Q} \underline{D} \underline{Q}^T$ (spectral decomposition)	always exists If $\underline{n \leq m}$ then work with $\underline{A}^T \underline{A} \in \mathbb{R}^{n \times n}$	•Data compression: If $\sigma_1 \gg \sigma_2$ then compress Alby projecting in direction of principal component =>
	rewrite as	$ \frac{\mathbf{e}_{p} \mid_{\text{norms: } \ \mathbf{x}\ _{p} = \left(\sum_{i=1}^{n} \mathbf{x}_{i} ^{p}\right)^{1/p} } $	independent columns, i.e. rk(A) •I.e. its the number of pivots in row-echelon-form	Representing EROs/ECOs as transfor-	-A=QDQT can be interpreted as scaling in direction of	•Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $\underline{A^T A}$	$A \approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T$
For $\underline{A \in \mathbb{R}^{m \times n}}$, $\underline{A_{ij}}$ is the \underline{i} th ROW then \underline{j} th COLUMN	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1}^{n} (\mathbf{q}_{i} \cdot \mathbf{a}_{j+1}) \mathbf{q}_{i} = \mathbf{a}_{j+1} - \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{q}_{i}} (\mathbf{a}_{j+1})$	$-p=1 + \ \mathbf{x}\ _1 = \sum_{i=1}^n \mathbf{x}_i $	-I.e. its the dimension of the column-space	mation matrices For A∈ R ^{m×n} suppose a sequence of:	its eigenvectors: 1.Perform a succession of reflections/planar rotations	•Obtain orthonormal eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n$ of	Cholesky Decomposition
$(A^T)_{ij} = A_{ji} (AB)_{ij} = A_{j\star} \cdot B_{\star j} = \sum_k A_{ik} B_{kj}$	i=1 $i=1•Let \mathbf{a}_1,, \mathbf{a}_n \in \mathbb{R}^m \mid (\underline{m \ge n}) be linearly independent,$	$-\underline{p} = 2$: $\ \mathbf{x}\ _2 = \sqrt{\sum_{i=1}^{n} \frac{\mathbf{x}^2}{\mathbf{x}_i}} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$	rk(A) = dim(C(A)) -I.e. its the dimension of the image-space	•EROs transform $\underline{A} \leadsto_{\text{EROs}} \underline{A'} \Longrightarrow$ there is matrix \underline{R} js.t.	to change coordinate-system	A^TA (apply normalization e.g. Gram-Schmidt!!!! to eigenspaces E_{G_i}	Consider positive (semi-)definite $A \in \mathbb{R}^{n \times n}$ Cholesky Decomposition is $A = LL^T$ where L J is
$(Ax)_i = A_{i \star} \cdot x = \sum A_{ij} x_j x^T y = y^T x = x \cdot y = \sum x_i y_i $	i.e. basis of n-dim subspace Un = span{a1,, an}	$-p = \infty \int_{\mathbb{R}} \ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le n} \mathbf{x}_{i} $	$rk(A) = dim(im(f_A)) of linear map f_A(x) = Ax $	RA=A' •ECOs transform A → ECOs A' => there is matrix C s.t.	2.Apply scaling by $h_{\underline{i}}$ to each dimension $\underline{q_i}$ 3.Undo those reflections/planar rotations	•V = $[\mathbf{v}_1 \mid \mid \mathbf{v}_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $\underline{\mathbf{v}^T} = \mathbf{v}^{-1}$	lower-triangular
j <u>i</u>	-We apply Gram-Schmidt to build ONB $(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m$ for $U_n \subset \mathbb{R}^m$	•Any two norms in \mathbb{R}^n are equivalent, meaning there	•The (row) rank of A is number of linearly independent	AC = A'	Extension to C ⁿ	•r=rk(A)=no. of strictly +ve σ_i	•For positive semi-definite => always exists, but non-unique
$x^T A x = \sum_{i} \sum_{j} A_{ij} x_i x_j$	$-j=1 \Rightarrow u_1 = a_1$ and $q_1 = \hat{u}_1$ i.e. start of iteration	exist $r>0$; $s>0$ such that: $\forall x \in \mathbb{R}^n, r\ x\ _a \le \ x\ _b \le s\ x\ _a$	•The row/column ranks are always the same, hence	•Both transform A → EROs+ECOs A' ⇒ there are	•Standard inner product: $\langle x, y \rangle = x^{\dagger} y = \sum_{i} \overline{x_{i}} y_{i}$	•Let $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$ then $\underline{\mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m}$ are orthonormal	•For positive-definite => always uniquely exists s.t.
Scalar-multiplication + addition distributes over:	$-\overline{j}=2$ \Rightarrow $\overline{\mathbf{u}_2}=\overline{\mathbf{a}_2}-(\mathbf{q}_1\cdot\overline{\mathbf{a}_2})\mathbf{q}_1$ and $\mathbf{q}_2=\hat{\mathbf{u}}_2$ etc -Linear independence guarantees that $a_{j+1}\notin U_j$	X _∞ ≤ X ₂ ≤ X ₁	$rk(A) = dim(C(A)) = dim(R(A)) = dim(C(A^T)) = rk(A^T)$ -AJis full-rank iff $rk(A) = min(m, n)$, i.e. its as linearly	matrices R, C s.t. RAC = A'	-Conjugate-symmetric: $\langle x, y \rangle = \overline{\langle y, x \rangle}$	(therefore linearly independent)	diagonals of <u>L</u> Jare positive
ocolumn-blocks =>	-For exams: compute $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	-Equivalence of ℓ_1, ℓ_2 and $\ell_{\infty} \Rightarrow \ \mathbf{x}\ _2 \le \sqrt{n} \ \mathbf{x}\ _{\infty}$	independent as possible	FORWARD: to compute these transformation matrices:	•Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\frac{1}{7}}} y$	-The orthogonal compliment of span $\{u_1,, u_r\}$ = span $\{u_1,, u_r\}$ = span $\{u_{r+1},, u_m\}$	Finding a Cholesky Decomposition: •Compute <u>LL^T</u> and solve <u>A = LL^T</u> by matching terms
$\lambda A + B = \lambda [A_1 A_C] + [B_1 B_C] = [\lambda A_1 + B_1 \lambda A_C + B_C]$ • row-blocks =>	1. Gather $Q_j = [\mathbf{q}_1 \mid \dots \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$	Induce metric $d(x, y) = y - x y $ has additional	Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are equivalent if there exist	•Start with [I _m A I _n]], i.e. A] and identity matrices	We can diagonalise real matrices in CJ which lets us diagonalise more matrices than before	*Solve for unit-vector u _{r+1} s.t. it is orthogonal to	•For square roots always pick positive
$\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$	2.Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$	properties:	two invertible matrices $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$	•For every ERO on <u>A</u>], do the same to LHS (i.e. I_m) •For every ECO on <u>A</u>], do the same to RHS (i.e. I_n)	Least Square Method	$ \mathbf{u}_1, \dots, \mathbf{u}_r $ *Then solve for unit-vector \mathbf{u}_{r+2} s.t. it is orthogonal	•If there is exact solution then positive-definite •If there are free variables at the end, then positive
Matrix-multiplication distributes over: \circ column-blocks \Rightarrow $AB = A[B_1 B_D] = [AB_1 AB_D]$	3. Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}	-Translation invariance: $d(x+w,y+w)=d(x,y)$ -Scaling: $d(\lambda x,\lambda y)= \lambda d(x,y) $	such that $\underline{\mathbf{A}} = \underline{\mathbf{P}} \underline{\mathbf{A}} \underline{\mathbf{Q}}^{-1}$ Two matrices $\mathbf{A}, \bar{\mathbf{A}} \in \mathbb{R}^{n \times n}$ are similar if there exists an	•Once done, you should get [Im A In] → [R A' C]	If we are solving Ax = b and b ∉ C(A) i.e. no solution, then Least Square Method is:	to u ₁ ,, u _{r+1}	semi-definite
orow-blocks \Rightarrow $AB = [A_1;; A_p]B = [A_1B;; A_pB]$	Properties: dot-product & norm	Matrix norms	invertible matrix $\underline{P} \in J\mathbb{R}^{n \times n}$ such that $\underline{A} = P\tilde{A}P^{-1}$	with RAC = A'	•Finding xjwhich minimizes Ax-b 2	*And so on $-U = [\mathbf{u}_1 \mid \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m} \text{ is orthogonal so } U^T = U^{-1}$	-i.e. the decomposition is a solution-set parameterized on free variables
outer-product sum =>	$x^{T}y = y^{T}x = x \cdot y = \sum_{i} x_{i}y_{i} x \cdot y = a b \cos x\hat{y} $	•Matrix norms are such that: A = 0 ⇔ A = 0 .	•Similar matrices are equivalent, with Q = P A is diagonalisable iff A is similar to some diagonal	If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$ and	•Recall for $A \in \mathbb{R}^{m \times n}$ we have unique decomposition	• $S = \text{diag}_{m \times n}(\sigma_1,, \sigma_n)$ AND DONE!!!	[1 1 1] [1 0 0]
$\frac{AB = [A_1 A_p][B_1;; B_p] = \sum_{i=1}^{P} A_i B_i}{\circ \text{ e.g. for } A = [a_1 a_n], B = [b_1;; b_n] => AB = \sum_i a_i b_i}$	$x \cdot y = y \cdot x x \cdot (y + z) = x \cdot y + x \cdot z \alpha x \cdot y = \alpha (x \cdot y)$	$ \lambda A = \lambda A , A+B \le A + B $ -Matrices $\mathbb{F}^{m \times n}$ are a vector space so matrix norms	matrix D	C ₁ ,,C _µ respectively	for any $\mathbf{b} \in \mathbb{R}^m$ $\mathbf{b} = \mathbf{b}_i \cdot \mathbf{b}_k$ -where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in \ker(A^T)$	If $\underline{m} < n_1$ then let $\underline{B} = A^T$ *apply above method to $\underline{B} = A^T = USV^T$	-e.g. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} = LL^T$ where $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & c & \sqrt{1-c^2} \end{bmatrix}$, $c \in [0, 1]$
Projection: definition & properties	$x \cdot x = x ^2 = 0 \iff x = 0$	are vector norms, all results apply	Properties of determinants	$\frac{R = R_{\lambda} \cdots R_{1}}{(R_{\lambda} \cdots R_{1})A(C_{1} \cdots C_{\mu})} = So$	• $\ A\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \ A\mathbf{x} - \mathbf{b}_i\ _2 = 0 \iff A\mathbf{x} = \mathbf{b}_i$	• <u>A = B^T = VS^TU^T</u>	If A = LL ^T you can use forward/backward substitution
 A projection π: V → V is a endomorphism such that 	for $\underline{x \times 0}$, we have $\underline{x \cdot y} = \underline{x \cdot z} \Longrightarrow \underline{x \cdot (y - z)} = 0$ $ x \cdot y \le x y Cauchy-Schwartz inequality $	•Sub-multiplicative matrix norm (assumed by default) is also such that AB ≤ A B	•Consider $\underline{A \in \mathbb{R}^{n \times n}}$, then $\underline{A_{ij}}' \in \mathbb{R}^{(n-1) \times (n-1)}$ the	$R^{-1} = R_1^{-1} \cdots R_{\lambda}^{-1}$ and $C^{-1} = C_{\mu}^{-1} \cdots C_{1}^{-1}$, where	$\frac{1}{A^T A \mathbf{x} = A^T \mathbf{b}}$ is the normal equation which gives	Tricks: Computing orthonormal	to solve equations
поп=п, i.e. it leaves its image unchanged (its idempotent)	$ u+v ^2 + u-v ^2 = 2 u ^2 + 2 v ^2$ (parallelogram law)	•Common matrix norms, for some $\underline{A} \in \mathbb{R}^{m \times n}$	(i,j)-minor matrix of Al obtained by deleting j-th row and j-th column from Al	R_i^{-1}, C_i^{-1} are inverse EROs/ECOs respectively	solution to least square problem:	$\frac{\text{vector-set extensions}}{\text{You have orthonormal vectors } \mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m} \Rightarrow \text{need}$	•For $Ax = b$] \Rightarrow let $y = L^T x$
•A square matrix P such that $P^2 = P$ is called a	$\frac{\ u+v\ \le \ u\ + \ v\ }{u \perp v \iff \ u+v\ ^2} = \ u\ ^2 + \ v\ ^2 (pythagorean)$	$-\ \mathbf{A}\ _{1} = \max_{j} \ \mathbf{A}_{*j}\ _{1}$ $-\ \mathbf{A}\ _{2} = \sigma_{1}(\mathbf{A}) \text{ i.e. largest singular value of } \underline{\mathbf{A}}$	•Then we define determinant of \underline{A} , i.e. $\underline{\det(A) = A }$, as		$\ Ax - b\ _2$ is minimized $\iff Ax = b_i \iff A^T Ax = A^T b$	to extend to orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_m \in \mathbb{R}^m$	•Solve <u>Ly = b</u> by forward substitution to find <u>y</u>] •Solve <u>L^T x = y</u> by backward substitution to find <u>x</u>]
projection matrix —It is called an orthogonal projection matrix if	theorem)	(square-root of largest eigenvalue of AT A or AAT	$-\det(A) = \sum_{k=1}^{n} (-1)^{i+k} A_{ik} \det(A_{ik}')$, i.e. expansion along	BACKWARD: once $\underline{R_1,, R_{\lambda}}$ and $\underline{C_1,, C_{\mu}}$ for which	Linear Regression Let $y = f(t) = \sum_{j=1}^{n} s_j f_j(t)$ be a mathematical model,	Special case => two 3D vectors => use cross-product => $a \times b \perp a, b$	[11 0 0]
$P^2 = P = P^{\dagger}$ (conjugate-transpose)	$\frac{\ c\ ^2 = \ a\ ^2 + \ b\ ^2 - 2\ a\ \ b\ \cos ba}{\text{Transformation matrix & linear maps}}$	$-\ \mathbf{A}\ _{\infty} = \max_{i} \ \mathbf{A}_{i*}\ _{1}$ note that $\ \mathbf{A}\ _{1} = \ \mathbf{A}^{T}\ _{\infty}$	k=1 i j-th row *(for any i j)	<u>RAC = A'</u> are known , starting with $[I_m \mid A \mid I_n]$ •For $\underline{i=1} \rightarrow \lambda$ perform R_i on \underline{A} , perform $R_{\lambda-j+1}^{-1}$ on LHS	where f_i are basis functions and s_i are parameters		For $\underline{n=3}$ => $L = \begin{vmatrix} l_{21} & l_{22} & 0 \\ l_{21} & l_{22} & l_{23} \end{vmatrix}$
-Eigenvalues of a projection matrix must be 0 or 1 •Because π: V → V is a linear map , its image space	For linear map $f: \mathbb{R}^n \to \mathbb{R}^m$, ordered bases	-Frobenius norm: $\ \mathbf{A}\ _F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} ^2}$	$-\det(A) = \sum_{k=1}^{n} (-1)^{k+j} A_{kj} \det(A_{kj}')$ i.e. expansion along	(i.e. l_m)	•Let (t_i, y_i) $1 \le i \le m, m \gg n$ be a set of observations ,	Extension via standard basis $I_m = [e_1 e_m]$ using $ (tweaked) GS$:	$\begin{bmatrix} l_{31} & l_{32} & l_{33} \end{bmatrix} \\ - \begin{bmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} \end{bmatrix}$
$U = im(\pi)$ and null space $W = ker(\pi)$ are subspaces of V	$(\mathbf{b}_1, \dots, \mathbf{b}_n) \in \mathbb{R}^n$ and $(\mathbf{c}_1, \dots, \mathbf{c}_m) \in \mathbb{R}^m$	VI=1J=1	K=1	•For $j=1 \rightarrow \mu$ perform C_j on \underline{A}], perform $C_{\mu-j+1}^{-1}$ on	and t, y ∈ R ^m are vectors representing those	•Choose candidate vector: just work through	$LL^{T} = \begin{vmatrix} l_{11}l_{21} & l_{21}^{2} * l_{22}^{2} & l_{21}l_{31} * l_{22}l_{32} \end{vmatrix}$
$-\pi_J$ is the identity operator on U -The linear map $\pi^* = I_V - \pi$ is also a projection with	•A = $\mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f w.r.t to bases B and C	•A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is consistent with the	j th column (for any j) •When det(A) = 0 we call A a singular matrix	RHS (i.e. In)	observations $-f_j(t) = [f_j(t_1), \dots, f_j(t_m)]^T$ is transformed vector	e ₁ ,,e _m sequentially starting from e ₁ ⇒ denote the current candidate e _b	[l ₁₁ l ₃₁ l ₂₁ l ₃₁ *l ₂₂ l ₃₂ l ₃₁ *l ₃₂ *l ₃₃]
$W = \operatorname{im}(\pi^*) = \ker(\pi)$ and $U = \ker(\pi^*) = \operatorname{im}(\pi)$ i.e. they	• $f(\mathbf{b}_j) = \sum_{i=1}^m A_{ij} \mathbf{c}_i$ -> each \mathbf{b}_j basis gets mapped to a	vector norms $\ \cdot \ _a$ on $\underline{\mathbb{R}}^n$ and $\ \cdot \ _b$ on $\underline{\mathbb{R}}^m$ if -for all $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$ and $\underline{\mathbf{x}} \in \mathbb{R}^n$ \Rightarrow $\ \underline{\mathbf{A}} \mathbf{x} \ _b \le \ \underline{\mathbf{A}} \ \ \mathbf{x} \ _a$	Common determinants	•You should get $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C^{-1}]$ with	$-A = [f_1(\mathbf{t}) \dots f_n(\mathbf{t})] \in \mathbb{R}^{m \times n}$ is a matrix of columns	the current candidate e_k •Orthogonalize: Starting from $j=r$ going to $j=m$ with	Forward/backward substitution Forward substitution: for lower-triangular
swapped *πJis a projection along W onto U	linear combination of $\sum_i a_i c_i$ bases	-If a = b, · is compatible with · a	-For <u>n = 1</u> , det(A) = A ₁₁ -For <u>n = 2</u> , det(A) = A ₁₁ A ₂₂ -A ₁₂ A ₂₁	$A = R^{-1}A'C^{-1}$	$-\mathbf{z} = [s_1, \dots, s_n]^T$ is vector of parameters	each iteration ⇒ with current orthonormal vectors u ₁ ,,u _j	[P1,1 0]
π lis a projection along // lonto W/	•If f^{-1} exists (i.e. its bijective and $\underline{m} = n$) then	-Frobenius norm is consistent with ℓ_2 norm \Rightarrow $\ Av\ _2 \le \ A\ _F \ v\ _2$	-det(I _n) = 1	You can mix-and-match the forward/backward modes	•Then we get equation Az = y => minimizing Az - y 2 s the solution to Linear Regression		L = : ·.
π is the identity operator on <u>W</u>] -V can be decomposed as <u>V = U ⊕ W</u> meaning every	$(\underline{\mathbf{F}_{CB}})^{-1} = \underline{\mathbf{F}}^{-1}_{BC}$ (where $\underline{\mathbf{F}}^{-1}_{BC}$ is the transformation-matrix of f^{-1})	•For a vector norm • on R ⁿ , the subordinate	A=[a_1 a_i a_n]=[a_1 λx_i + μy_i a_n] then	i.e. inverse operations in inverse order for one, and operations in normal order for the other	-So applying LSM to Az = y is precisely what Linear Regression is	-Compute $\mathbf{w}_{j+1} = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{u}_i)_k \mathbf{u}_i$	
vector $\underline{x \in V}$ can be uniquely written as $\underline{x = u + w}$		matrix norm · on R ^{m×n} is	$det(A) = \lambda det([a_1 x_j a_n])$	•e.g. you can do $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C]$ to get	-We can use normal equations for this =>	=e _k -U _j c _j	$\ell_{1,1}x_1 = b_1 \implies x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down
$*\underline{u \in U} \text{ and } \underline{u = \pi(x)}$ $*\underline{w \in W} \text{ Jand } \underline{w = x - \pi(x) = (I_V - \pi)(x) = \pi^*(x)}$	The transformation matrix of the identity map is called change-in-basis matrix	$\ \mathbf{A}\ = \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ = 1\}$ $= \max\{\frac{\ \mathbf{A}\mathbf{x}\ }{\ \mathbf{x}\ } : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0\}$	+ µ det ([a ₁ y _j a _n])	$AC = R^{-1}A'$ => useful for LU factorization	$ Az-y _2$ is minimized $\iff A^TAz=A^Ty$ • Solution to normal equations unique iff Alis full-rank,	-Where $U_j = [\mathbf{u}_1 \dots \mathbf{u}_j] \text{and } \mathbf{c}_j = [(\mathbf{u}_1)_k, \dots, (\mathbf{u}_j)_k]^T $	There are been about a second areas
•An orthogonal projection further satisfies <u>U⊥W</u>	•The identity matrix I _m represents id _R m w.r.t. the	$= \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ \le 1\}$	-And the exact same linearity property for rows -Immediately leads to: $ A = A^T \cdot A = \lambda^n A \cdot A $ and	Eigen-values/vectors •Consider $A \in \mathbb{R}^{n \times n}$ non-zero $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector	i.e. it has linearly-independent columns	-NOTE: $\mathbf{e}_k \cdot \mathbf{u}_i = (\mathbf{u}_i)_k$ i.e. k -th component of \mathbf{u}_i	$\ell_{2,1} x_1 + \ell_{2,2} x_2 = b_2 \implies x_2 = \frac{b_2 - \ell_{2,1} x_1}{\ell_{2,2}}$ and
i.e. the image and kernel of <u>m</u> are orthogonal subspaces	standard basis $E_m = \overline{(e_1,, e_m)} \Rightarrow \overline{1.e. l_m} = \overline{l_{EE}}$ •If $B = (b_1,, b_m)$ is a basis of R^m then	•Vector norms are compatible with their subordinate	$ AB = BA = A B $ (for any $B \in \mathbb{R}^{n \times n}$)	with eigenvalue $\lambda \in C$ for A if $Ax = \lambda x$	Positive (semi-)definite matrices	$- f \mathbf{w}_{j+1} = 0 \text{ then } \mathbf{e}_k \in \text{span}\{\mathbf{u}_1,, \mathbf{u}_j\} \Rightarrow \text{discard}$ $\mathbf{w}_{j+1} \text{ choose next candidate } \mathbf{e}_{k+1} \text{ try this step}$	substitute down
-infact they are eachother's orthogonal compliments , i.e. $U^{\perp} = W$, $W^{\perp} = U \mid (because finite-dimensional)$	$I_{EB} = [b_1 b_m]$ is the transformation matrix from B	matrix norms	-Alternating: if any two columns of A are equal (or any two rows of A are equal), then A = 0 (its singular)	$-\text{If } \underline{Ax} = \lambda x \text{ [then } \underline{A(kx)} = \lambda (kx) \text{ [for } \underline{k \neq 0} \text{], i.e. } \underline{kx} \text{ [is also an eigenvector]}$	Consider symmetric $\underline{A} \in \mathbb{R}^{n \times n}$, i.e. $\underline{A} = \underline{A}^T$ Alis positive-definite iff $x^T Ax > 0$ for all $x \neq 0$	again	and so on until all x _i jare solved •Backward substitution: for upper-triangular
vectorspaces)	to \underline{E} • $I_{BE} = (I_{EB})^{-1}$ so \Rightarrow $F_{CB} = I_{CE} F_{EE} I_{EB}$	•For $p = 1, 2, \infty$ matrix norm $\ \cdot \ _p$ is subordinate to the vector norm $\ \cdot \ _p$ (and thus compatible with)	-Immediately from this (and multi-linearity) => if	-AJhas at most nJdistinct eigenvalues	•AJis positive-definite iff all its eigenvalues are strictly	•Normalize: $w_{j+1} \neq 0$ so compute unit vector	[u _{1,1} u _{1,n}]
-so we have $\pi(x) \cdot y = \pi(x) \cdot \pi(y) = x \cdot \pi(y)$ -or equivalently, $\pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0$		Properties of matrices	columns (or rows) are linearly-dependent (some are linear combinations of others) then A = 0	•The set of all eigenvectors associated with eigenvalue ∆ is called eigenspace E _λ of A	positive -Alis positive-definite => all its diagonals are strictly	$\mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1}$ •Repeat: keep repeating the above steps, now with	$U = \begin{bmatrix} \ddots & \vdots \\ 0 & u_{n,n} \end{bmatrix}$
	Dot-product uniquely determines a vector w.r.t. to basis	Consider $\underline{A} \in \mathbb{R}^{m \times n}$	-Stated in other terms \Rightarrow rk(A) < n \iff A = 0 <=>	-E _λ = ker(A - λl)	positive	new orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_{j+1}$	
-By Cauchy–Schwarz inequality we have ∥π(x)∥ ≤ ∥x∥ -The orthogonal projection onto the line containing	• If $a_i = x \cdot b_i$; $x = \sum_i a_i b_i$, we call \underline{a} the	If <u>Ax = x</u> J for all <u>x</u> J then <u>A = I</u> J For square <u>A</u> J, the trace of <u>A</u> J is the sum if its diagonals ,	$\frac{RREF(A) \neq l_n \iff A = 0}{\iff C(A) \neq R^n \iff A = 0} (column\text{-space})$	-The geometric multiplicity of $\underline{\lambda}$] is $\dim(E_{\lambda}) = \dim(\ker(A - \lambda I))$	•A] is positive-definite => max(A _{ij} , A _{jj}) > A _{ij} i.e. strictly larger coefficient on the diagonals	SVD Application: Principal Compo-	$u_{n,n} x_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up
vector \underline{u} jis $\underline{\text{proj}_{u}} = \hat{u}\hat{u}^{T}$ i.e. $\underline{\text{proj}_{u}}(v) = \frac{u \cdot v}{u \cdot u} u$; $\hat{u} = \frac{u}{\ u\ }$	coordinate-vector of x w.r.t. to B Rank-nullity theorem:	i.e. tr(A)	-For more equivalence to the above, see invertible	•The spectrum $Sp(A) = \{\lambda_1,, \lambda_n\}$ of \underline{A} is the set of all eigenvalues of \underline{A}	•AJ is positive-definite => all upper-left submatrices are	nent Analysis (PCA) Assume $A_{uncentered} \in \mathbb{R}^{m \times n}$ represent \underline{m} jsamples of	-Then solve the second-to-last row
-A special case of $\underline{\pi(x) \cdot (y - \pi(y)) = 0}$ is $u \cdot (v - \text{proj}_{u} v) = 0$	$\dim(\operatorname{im}(f)) + \dim(\ker(f)) = \operatorname{rk}(A) + \dim(\ker(A)) = n$	Alis symmetric iff $A = A^T$, Alis Hermitian, iff $A = A^{\dagger}$, i.e.	matrix theorem -Interaction with EROs/ECOs:	•The characteristic polynomial of Alis	also positive-definite -Sylvester's criterion: Alis positive-definite iff all	\underline{n} -dimensional data (with $\underline{m} \ge \underline{n}$)	$u_{n-1,n-1}x_{n-1} + u_{n-1,n}x_n = b_{n-1}$ $b_{n-1} - u_{n-1,n-1}x_{n-1}$ and substitute up
since $\operatorname{proj}_{U}(u) = u$ •If $U \subseteq \mathbb{R}^{n}$ is a k -dimensional subspace with	f is injective/monomorphism iff $ker(f) = \{0\}$ iff A is full-rank	its equal to its conjugate-transpose	-Swapping rows/columns flips the sign	$P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	upper-left submatrices have strictly positive	Data centering: subtract mean of each column from that column's elements	→ x _{n-1}
orthonormal basis (ONB) $\langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle \in \mathbb{R}^m$	Orthogonality concepts	• <u>AA</u> T and <u>A</u> T A are symmetric (and positive semi-definite)	-Scaling a row/column by \(\lambda \neq 0\) will scale the determinant by \(\lambda\)[(by multi-linearity)	$-\frac{a_0 = A }{-\frac{\lambda \in C}{\text{ is eigenvalue of } \underline{A} \text{ if } \underline{h} \text{ is a root of } P(\lambda)}}{a_n = (-1)^n}$	determinant	•Let the resulting matrix be $\underline{A \in \mathbb{R}^{m \times n}}$, who's columns	and so on until all x _i are solved
-Let U=[u ₁ u _k]∈ R···· ·· matrix	• $\underline{u} \perp v \iff \underline{u} \cdot v = 0$] i.e. \underline{u} and \underline{v} are orthogonal • \underline{u} and \underline{v} are orthonormal iff $\underline{u} \perp v$, $\ \underline{u}\ = 1 = \ v\ $	•For real matrices, Hermitian/symmetric are	*Remember to scale by λ ⁻¹ to maintain equality, i.e.	-The algebraic multiplicity of λ is the number of	AJis positive semi-definite iff x ^T Ax≥0 for all xJ	have mean zero PCA is done on centered data-matrices like At	Thin QR Decomposition w/ Gram- Schmidt (GS)
-Orthogonal projection onto Ujis $\pi_U = UU^T$	$\bullet \underline{A} \in \mathbb{R}^{n \times n}$ is orthogonal iff $\underline{A}^{-1} = \underline{A}^T$	equivalent conditions •Every eigenvalue λ _i of Hermitian matrices is real	$\det(A) = \lambda^{-1} \det([a_1 \dots \lambda a_i \dots a_n])$ -Invariant under addition of rows/columns	times it is repeated as root of P(\(\lambda\) -1]s geometric multiplicity of \(\lambda\)	•AJis positive semi-definite iff all its eigenvalues are non-negative	*SVD exists i.e. A = USV ^T and r = rk(A)	•Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n) $
-Can be rewritten as $\pi_U(v) = \sum_i (\mathbf{u}_i \cdot v) \mathbf{u}_i$	-Columns of $A = [a_1 a_n]$ are orthonormal basis (ONB) $C = (a_1,, a_n) \in \mathbb{R}^n$ so $A = \mathbf{I}_{EC}$ is	-geometric multiplicity of λ _i = geometric multiplicity	•Link to invertable matrices => A ⁻¹ = A ⁻¹ which	≤ algebraic multiplicity of λ	•AJis positive semi-definite => all its diagonals are	•Let $A = [\mathbf{r}_1;; \mathbf{r}_m]$ be rows $\mathbf{r}_1,, \mathbf{r}_m \in \mathbb{R}^n$ \Rightarrow each row corresponds to a sample	i.e. a ₁ ,,a _n ∈ R ^m are linearly independent
-If $\{\mathbf{u}_1,, \mathbf{u}_k\}$ is not orthonormal , then "normalizing	change-in-basis matrix	of λ _i -eigenvectors x ₁ , x ₂ associated to distinct	means A is invertible $\iff A \neq 0$, i.e. singular matrices are not invertible	•Let $\lambda_1,, \lambda_n \in \mathbb{C}$ be (potentially non-distinct) •igenvalues of \underline{A} J with $\underline{x}_1,, \underline{x}_n \in \mathbb{C}^n$ their	non-negative •Alis positive semi-definite => $\max(A_{ii}, A_{jj}) \ge A_{ij} $	•Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ \Rightarrow each column corresponds to one dimension of the data	-Apply [[tutorial 1#Gram-Schmidt method to generate orthonormal basis from any linearly independent
factor" $(\mathbf{U}^T \mathbf{U})^{-1}$ is added => $\pi_U = \mathbf{U}(\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T$ *For line subspaces $U = \text{span}\{u\}$, we have	-Orthogonal transformations preserve lengths/angles/distances $\Rightarrow Ax _2 = x _2$, $AxAy = x\hat{y}$	eigenvalues λ_1, λ_2 are orthogonal , i.e. $x_1 \perp x_2$	•For block-matrices:	eigenvectors	i.e. no coefficient larger than on the diagonals •A is positive semi-definite => all upper-left	Let $X_1,, X_n$ be random variables where each X_i	vectors[GS]] $\mathbf{q}_1, \dots, \mathbf{q}_n \leftarrow GS(\mathbf{a}_1, \dots, \mathbf{a}_n)$ to build ONB
$(\mathbf{U}^T \mathbf{U})^{-1} = (u^T u)^{-1} = 1/(u \cdot u) = 1/\ u\ $	*Therefore can be seen as a succession of reflections	AJis triangular iff all entries above (lower-triangular) or	$-\det\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det\begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	$-\text{tr}(A) = \sum_{i} \lambda_{i}$ and $\text{det}(A) = \prod_{i} \lambda_{ij}$ $-A$ is diagonalisable iff there exist a basis of \mathbb{R}^{n}	•Als positive semi-definite => all upper-left submatrices are also positive semi-definite	corresponds to column c _i •i.e. each X _i corresponds to i th component of data	$(\mathbf{q}_1, \dots, \mathbf{q}_n) \in \mathbb{R}^m$ for $C(A)$ For exams : more efficient to compute as
Gram-Schmidt (GS) to gen. ONB from	and planar rotations -det(A) = 1 or det(A) = -1 , and all eigenvalues of A are	below (upper-triangular) the main diagonal are zero •Determinant => $ A = \prod_{i} a_{ii} \downarrow$ i.e. the product of	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1} B)$ if Alor D are	consisting of $x_1,, x_n$ A list diagonalisable iff $r_i = g_i$ where	•AJis positive semi-definite => it has a Cholesky Decomposition	•i.e. random vector $X = [X_1,, X_n]^T$ models the data	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$
lin. ind. vectors -Gram-Schmidt is iterative projection => we use	s.t. \lambda = 1	diagonal elements	$= \frac{\langle C D \rangle}{\det(D) \det(A - BD^{-1}C)}$ if Alor D are	$-\underline{A}$ Jis diagonalisable $\overline{iff} r_i = g_i$ where $r_i = geometric multiplicity of \lambda_i and$		r ₁ ,,r _m	1) Gather $Q_j = [\mathbf{q}_1 \dots \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ all-at-once
current j dim subspace, to get next (j+1) dim	$A \in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$ $A = I$ or $AA^T = I$ or AA^T	AJis diagonal iff A _{jj} = 0, i ≠ j i.e. if all off-diagonal	invertible, respectively	g_i = geometric multiplicity of λ_i	For any $\underline{M \in \mathbb{R}^{m \times n}}$, $\underline{MM^T}$ and $\underline{M^TM}$ are symmetric and positive semi-definite	•Co-variance matrix of \underline{X} J is $\underline{Cov(A)} = \frac{1}{m-1} A^T A \Longrightarrow$	2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$
subspace -Assume orthonormal basis (ONB) $\langle \mathbf{q}_1,, \mathbf{q}_i \rangle \in \mathbb{R}^m$	-If m > n then all n columns are orthonormal vectors	entries are zero	•Sylvester's determinant theorem: det(I _m +AB) = det(I _n +BA)	-Eigenvalues of A^k are $\lambda_1,, \lambda_n$	Singular Value Decomposition (SVD) &	$(A^T A)_{ij} = (A^T A)_{ji} = \text{Cov}(X_i, X_j)$	all-at-once 3) Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}
for j dim subspace $U_j \subset \mathbb{R}^m$	• $\underline{U \perp V \subset \mathbb{R}^n} \iff \underline{u \cdot v} = 0$ for all $\underline{u \in U, v \in V}$ i.e. they are orthogonal subspaces	•Written as $\operatorname{diag}_{m \times n}(a) = \operatorname{diag}_{m \times n}(a_1,, a_p), p = \min(m, n)$ where	•Matrix determinant lemma:	Let $P = [\mathbf{x}_1 \mid \dots \mid \mathbf{x}_n]$, then $AP = [\lambda_1 \mathbf{x}_1 \mid \dots \mid \lambda_n \mathbf{x}_n] = [\mathbf{x}_1 \mid \dots \mid \mathbf{x}_n] \operatorname{diag}(\lambda_1, \dots, \lambda_n) = PD$	Singular Values	v ₁ ,,v _r (columns of <u>V</u>) are principal axes of <u>A</u>]	all-at-once
*Let $Q_j = [q_1 \mid \mid q_j] \in \mathbb{R}^{m \times j}$ be the matrix	•Orthogonal compliment of $\underline{U \subset \mathbb{R}^n}$ is the subspace	$\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p \text{ diagonal entries of } A$	$ \begin{vmatrix} -\det(\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1}\mathbf{u}) \det(\mathbf{A}) \\ -\det(\mathbf{A} + \mathbf{U}\mathbf{v}^T) = \det(\mathbf{I}_m + \mathbf{v}^T \mathbf{A}^{-1}\mathbf{U}) \det(\mathbf{A}) \end{vmatrix} $	=> if P ⁻¹ exists then	Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$ is any decomposition of the form $A = USV^{T}$, where	Let $\underline{\mathbf{w}} \in \mathbb{R}^n$ be some unit-vector \Longrightarrow let $\alpha_j = \mathbf{r}_j \cdot \mathbf{w}$ be the	-Can now rewrite $\mathbf{a}_j = \sum_{i=1}^{j} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = \mathbf{Q}_j \mathbf{c}_j$
$*P_j = Q_j Q_j^T$ is orthogonal projection onto U_j	$U^{\perp} = \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \perp y\}$ = $\{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \le x + y \}$		-	-A=PDP ⁻¹ , i.e. AJis diagonalisable -P=I _{EB} is change-in-basis matrix for basis	•Orthogonal $U = [\mathbf{u}_1 \mid \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ and	projection/coordinate of sample rj onto w	i=1
$*P_{\perp j} = I_m - Q_j Q_j^T$ is orthogonal projection onto	$-\mathbb{R}^n = U \oplus U^{\perp}$ and $(U^{\perp})^{\perp} = U$	$\bullet \text{For } \underline{x \in \mathbb{R}^n} \big]^{Ax = \text{diag}_{m \times n}(a_1, \dots, a_p)[x_1 \dots x_n]^T} \\ = [a_1 x_1 \dots a_p x_p \ 0 \dots 0]^T \in \mathbb{R}^m \big]^{dt}$	$\frac{\det (\mathbf{A} \cdot \mathbf{U} \mathbf{W} \mathbf{V}^T) = \det (\mathbf{W}^{-1} \cdot \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{W}) \det(\mathbf{A})}{\det(\mathbf{A})}$	$B = \langle x_1,, x_n \rangle$ of eigenvectors	$V = [\mathbf{v}_1 \dots \mathbf{v}_n] \in \mathbb{R}^{n \times n}$ $S = \operatorname{diag}_{m \times n}(\sigma_1, \dots, \sigma_p)$ where $p = \min(m, n)$ and	•Variance (Bessel's correction) of $\alpha_1,, \alpha_m$ is	•Choose $Q = Q_n = [q_1 q_n] \in \mathbb{R}^{m \times n}$ notice its [[tutorial 1#Orthogonality concepts]semi-orthogonal]]
$\left(U_{j}\right)^{\perp}$ (orthogonal compliment)	$-\frac{U \perp V \iff U^{\perp} = V}{\text{and vice-versa}}$ $-\frac{V \subseteq X \implies X^{\perp} \subseteq Y^{\perp}}{\text{and } X \cap X^{\perp} = \{0\}}$	p = m those tail-zeros don't exist)	Tricks for computing determinant If block-triangular matrix then apply	$-If A = F_{EE}$ is transformation-matrix of linear map f , then $F_{EE} = I_{EB}F_{BB}I_{BE}$	$\sigma_1 \ge \cdots \ge \sigma_p \ge 0$	$\operatorname{Var}_{\mathbf{W}} = \frac{1}{m-1} \sum_{i} \alpha_{j}^{2} = \frac{1}{m-1} \mathbf{w}^{T} \left(\sum_{i} \mathbf{r}_{j}^{T} \mathbf{r}_{j} \right) \mathbf{w}$	since $Q^T Q = I_n$
-Uniquely decompose next $U_j \not\ni a_{j+1} = V_{j+1} + \mathbf{u}_{j+1}$	-Any x∈R ⁿ can be uniquely decomposed into	• $\operatorname{diag}_{m \times n}(\mathbf{a})$ + $\operatorname{diag}_{m \times n}(\mathbf{b})$ = $\operatorname{diag}_{m \times n}(\mathbf{a} + \mathbf{b})$ • $\operatorname{Consider diag}_{n \times k}(c_1, \dots, c_q), q = \min(n, k)$, then	•If block-triangular matrix then apply $\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$	•Spectral theorem: if A is Hermitian then P ⁻¹ exists:	• $\sigma_1,, \sigma_p$ are singular values of A.	$= \frac{1}{m-1} \mathbf{w}^{T} A^{T} A \mathbf{w}$	-Notice => $a_j = Q_j c_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j,, \mathbf{q}_j \cdot \mathbf{a}_j, 0,, 0]^T = \mathbf{Q}r_j$
$*\mathbf{v}_{j+1} = P_j(\mathbf{a}_{j+1}) \in U_j \Longrightarrow \text{discard it!!}$	$\underline{\mathbf{x}} = \underline{\mathbf{x}}_i + \underline{\mathbf{x}}_k$, where $\underline{\mathbf{x}}_i \in U$ and $\underline{\mathbf{x}}_k \in U^{\perp}$ •For matrix $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$ and for row-space R(A),	$\operatorname{diag}_{m \times n}(a_1, \dots, a_p)\operatorname{diag}_{n \times k}(c_1, \dots, c_q)$	der (0 D) = der(A) der(B)	-If x _i , x _j associated to different eigenvalues then	-(Positive) singular values are (positive) square-roots of eigenvalues of AAT or ATA	• First (principal) axis defined =>	$-\text{Let } R = [r_1 \mid \mid r_n] \in \mathbb{R}^{n \times n} = >$
$*\mathbf{u}_{j+1} = P_{\perp j} \left(\mathbf{a}_{j+1} \right) \in \left(U_j \right)^{\perp} = $ we're after this!!	•For matrix <u>A ∈ R''' and for row-space R(A)</u> column-space C(A) and null space ker(A)	$= \operatorname{diag}_{m \times k}(a_1 c_1, \dots, a_r c_r, 0, \dots, 0) = \operatorname{diag}(\mathbf{s})$	•If close to triangular matrix apply EROs/ECOs to get it there, then its just product of diagonals	x _i ⊥x _j - f associated to same eigenvalue ∆Jthen eigenspace	-i.e. σ_1^2 ,, σ_p^2 are eigenvalues of AA^T or A^TA	$\mathbf{w}_{(1)} = \operatorname{argmax}_{\ \mathbf{w}\ =1} \mathbf{w}^T A^T A \mathbf{w}$	$\begin{bmatrix} \mathbf{q}_1^T \mathbf{a}_1 & \dots & \mathbf{q}_1^T \mathbf{a}_n \end{bmatrix}$
-Let $q_{j+1} = \hat{\mathbf{u}}_{j+1} = \mathbf{v}_{j+1}$ => we have next ONB $(\mathbf{q}_1,, \mathbf{q}_{j+1})$	$-R(A)^{\perp} = ker(A) and C(A)^{\perp} = ker(A^{T}) $	-Where $r = \min(p, q) = \min(m, n, k)$ and $s \in \mathbb{R}^S$, $s = \min(m, k)$	•If Cholesky/LU/QR is possible and cheap then do it,	E_{λ} has spanning-set $\{\mathbf{x}_{\lambda_i},\}$	- A 2 = \sigma_1 (link to matrix norms	= $\arg \max_{\ \mathbf{w}\ =1} (m-1) \operatorname{Var}_{\mathbf{w}} = \mathbf{v}_1$	$A = QR = Q $ $\begin{bmatrix} & \ddots & \vdots \\ & 0 & \mathbf{q}_{n}^{T} \mathbf{a}_{n} \end{bmatrix}$, notice its [[tutorial]
for U _{j+1} => start next iteration	-Any $\mathbf{b} \in \mathbb{R}^{m}$ can be uniquely decomposed into $\mathbf{b} = \mathbf{b}_{i} + \mathbf{b}_{k}$, where $\mathbf{b}_{i} \in C(A)$ and $\mathbf{b}_{k} \in \ker(A^{T})$	•Inverse of square-diagonals =>	then apply AB = A B •If all else fails, try to find row/column with MOST zeros	$x_1,, x_n$ are linearly independent \Rightarrow apply Gram-Schmidt $q_{\lambda_i}, \leftarrow x_{\lambda_i},$	Let r = rk(A) then number of strictly positive singular values is r	i.e. $\underline{\mathbf{w}_{(1)}}$ the direction that maximizes variance $\underline{\mathrm{Var}_{\mathbf{w}}}$ i.e. maximizes variance of projections on line $\underline{\mathrm{Rw}_{(1)}}$	1#Properties of matrices[upper-triangular]]
* $\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$ where	* $\mathbf{b} = \mathbf{b}_i + \mathbf{b}_k$, where $\mathbf{b}_i \in R(A)$ and $\mathbf{b}_k \in \ker(A)$	$\frac{\operatorname{diag}(a_1, \dots, a_n)^{-1} = \operatorname{diag}(a_1^{-1}, \dots, a_n^{-1})}{\operatorname{cannot} \operatorname{be} \operatorname{zero} (\operatorname{division} \operatorname{by} \operatorname{zero} \operatorname{undefined})} \text{ i.e. diagonals}$	-Perform minimal EROs/ECOs to get that row/column	*Then $\{q_{\lambda_i},\}$ is orthonormal basis (ONB) of E_{λ_i}	•i.e. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_p = 0$		Full QR Decomposition
$\mathbf{c}_{j} = [\mathbf{q}_{1} \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_{j} \cdot \mathbf{a}_{j+1}]^{T}$		•Determinant of square-diagonals => $ \operatorname{diag}(a_1,,a_n) = \prod_i a_i (since they are technically$	to be all-but-one zeros *Don't forget to keep track of sign-flipping &	$-Q = \langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle$ is an ONB of $\mathbb{R}^n = \mathbf{Q} = [\mathbf{q}_1 \dots \mathbf{q}_n]$ is	$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (\underline{m \ge n}),$ i.e. $a_1,, a_n \in \mathbb{R}^m$ are linearly independent
cj = [41 · aj+1,,4j · aj+1]			scaling-factors				

•Apply [[#Thin QR Decomposition w/ Gram-Schmidt (GS)[thin QR decomposition]] to obtain:	-H _u is involutory, orthogonal and symmetric,	Multivariate Calculus	$\bullet \tilde{f}$ is accurate if $\forall x \in X$. $\frac{\ \tilde{f}(x) - f(x)\ }{\ f(x)\ } = O(\epsilon_{mach})$	$ fl(x^Ty)-x^Ty \le \phi(n)\varepsilon_{\text{mach}} x ^T y $, where	only needs <u>O(m²)</u>	$R_{A}(\mathbf{x}) = \frac{\mathbf{x}^{\dagger} A \mathbf{x}}{\mathbf{x}^{\dagger} \mathbf{x}}$	•For $\underline{A \in \mathbb{R}^{m \times m}}$ each iteration $\underline{A^{(k)} = Q^{(k)}R^{(k)}}$ produces
$-ONB(\mathbf{q}_1,,\mathbf{q}_n) \in \mathbb{R}^m$ for $C(A)$	i.e. $H_U = H_U^{-1} = H_U^T$	•Consider <u>f</u> : R ⁿ → R => when clear write <u>i</u> th component of input as <u>i</u> instead of x _i	• \tilde{f} is stable if $\underline{\forall x \in X}$, $\underline{\exists \tilde{x} \in X}$ is.t.	$ x _i = x_i $ is vector and $\phi(n)$ is small function of \underline{n} — Summing a series is more stable if terms added in	Systems of Equations: Iterative Tech-	*Eigenvectors are stationary points of R _A	orthogonal $Q^{(k)^T} = Q^{(k)^{-1}}$
-Semi-orthogonal $Q_1 = [q_1 \dots q_n] \in \mathbb{R}^{m \times n}$ and	Modified Gram-Schmidt Go check [[tutorial 1#Gram-Schmidt method to	•Level curve w.r.t. to $c \in \mathbb{R}$ is all points s.t. $f(x) = c$ -Projecting level curves onto \mathbb{R}^n gives contour-map	$\frac{\ \tilde{f}(x) - f(\tilde{x})\ }{\ f(\tilde{x})\ } = O(\varepsilon_{\text{mach}}) \text{ and } \frac{\ \tilde{x} - x\ }{\ x\ } = O(\varepsilon_{\text{mach}})$	order of increasing magnitude	niques •Let $A, R, G ∈ \mathbb{R}^{n \times n}$ where G^{-1} exists => splitting	*R _A (x) is closest to being like eigenvalue of x ₁	$A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)}^TQ^{(k)})R^{(k)}Q^{(k)} = Q^{(k)}^TA^{(k)}Q^{(k)}$
upper-triangular $R_1 \in \mathbb{R}^{n \times n}$ where $A = Q_1 R_1$ •[[tutorial 3#Tricks Computing orthonormal vector-set]	generate orthonormal basis from any linearly independent vectors[Classical GM]] first, as this is just	of f	$ f(\tilde{x}) $ $ x $	•For FP matrices , let $ M _{ij} = M_{ij} _{j}$ i.e. matrix $ M _{j}$ of absolute values of M	A=G+RJhelps iteration	i.e. $R_A(\mathbf{x}) = \underset{\alpha}{\operatorname{argmin}} \ A\mathbf{x} - \alpha \mathbf{x}\ _2$	means A(k+1) is similar to A(k)
extensions Compute basis extension]] to obtain	an alternative computation method	• n_k th order partial derivative w.r.t i_k of, of n_1 th order partial derivative w.r.t i_1 of f is:	-outer-product is stable	$-fl(\lambda A) = \lambda A + E, E _{ij} \le \lambda A _{ij} \in_{mach}$	$-\underline{Ax = b}$ rewritten as $\underline{x = Mx + c}$ where $\underline{M = -G^{-1}R}$; $\underline{c = -G^{-1}b}$	$*R_A(\mathbf{x}) - R_A(\mathbf{v}) = O(\ \mathbf{x} - \mathbf{v}\ ^2)$ as $\underline{\mathbf{x}} \to \mathbf{v}$ where $\underline{\mathbf{v}}$ is eigenvector	-Setting $A^{(0)} = A$ we get $A^{(k)} = \tilde{Q}^{(k)T} A \tilde{Q}^{(k)}$ where $\tilde{Q}^{(k)} = Q^{(0)} \dots Q^{(k-1)}$
ONB for \mathbb{R}^m where $(\mathbf{q}_1,, \mathbf{q}_m)$ is	•Let $P_{\perp \mathbf{q}_{j}} = \mathbf{I}_{m} - \mathbf{q}_{j} \mathbf{q}_{j}^{T}$ be projector onto [[tutorial		$ \cdot \tilde{f} $ is backwards stable if $\forall x \in X$, $\exists \tilde{x} \in X$ s.t. $ \tilde{f}(x) = f(\tilde{x}) $	$-\operatorname{fl}(\mathbf{A} + \mathbf{B}) = (\mathbf{A} + \mathbf{B}) + E, E _{ij} \le \mathbf{A} + \mathbf{B} _{ij} \in \operatorname{mach}$	- Define $f(\mathbf{x}) = M\mathbf{x} + \mathbf{c}$ and sequence	•Power iteration: define sequence $\mathbf{h}^{(k+1)} = \frac{A\mathbf{b}^{(k)}}{\mathbf{b}^{(k)}}$	•Under certain conditions QR algorithm converges to
-Notice $\langle \mathbf{q}_{n+1}, \dots, \mathbf{q}_m \rangle$ is ONB for $\underline{C(A)^{\perp}} = \ker(A^{\top})$	5#Lines and hyperplanes in Euclidean space \$ mathbb{E} {n}({=} mathbb{R} {n})\$ hyperplane]]	$\frac{\partial^{n_{R} \cdots n_{1}}}{\partial_{\mathbf{v}}^{n_{R}} \cdots \partial_{\mathbf{v}}^{n_{1}}} f = \partial_{i_{R}}^{n_{R}} \cdots \partial_{i_{1}}^{n_{1}} f = f_{i_{1} \cdots i_{R}}^{(n_{1}, \dots, n_{R})} = \begin{pmatrix} f_{i_{1} \cdots i_{R}}^{(n_{1}, \dots, n_{R})} \\ f_{i_{1} \cdots i_{R}}^{(n_{1}, \dots, n_{R})} \end{pmatrix}$	$n_{R-1}^{\text{and}}, \frac{\ \vec{x}-x\ }{\ x\ } = O(\epsilon_{\text{mach}})$ 1-i.e. Exactly the right answer to nearly the right	$fl(\mathbf{AB}) = \mathbf{AB} + E, E _{ij} \le n\epsilon_{\text{mach}}(\mathbf{A} \mathbf{B})_{ij} + O(\epsilon_{\text{mach}}^2)$	$\frac{\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}) = M\mathbf{x}^{(k)} + \mathbf{c}}{-\mathbf{Limit} \text{ of } \langle \mathbf{x}_k \rangle \text{ is fixed point of } \underline{f} \Rightarrow \text{ unique fixed point}}$		Schur decomposition •We can apply shift $\mu^{(k)}$ at iteration \underline{k} =>
-Let $Q_2 = [\mathbf{q}_{n+1} \dots \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$, let $Q = [Q_1 Q_2] \in \mathbb{R}^{m \times m}$, let $R = [R_1; 0_{m-n}] \in \mathbb{R}^{m \times n}$	(Rq _j) [⊥] , i.e. [[tutorial 5#Lines and hyperplanes in	-Overall, its an N-th order partial derivative where	question, a subset of stability	• Taylor series about $\underline{a} \in \mathbb{R}$ jis	of f is solution to $Ax = b$ -If $ - $ is consistent norm and $ M < 1$ [then $\langle x_k \rangle$]	with initial $b^{(0)}$ s.t. $\ b^{(0)}\ = 1$ -Assume dominant $\lambda_1; \mathbf{x}_1$ [exist for \underline{A}] and that	$A^{(k)} - \mu^{(k)} = Q^{(k)} R^{(k)}; A^{(k+1)} = R^{(k)} Q^{(k)} + \mu^{(k)}$
•Then full QR decomposition is	Euclidean space \$ mathbb{E} {n}{{=} mathbb{R}} {n}}\$ orthogonal compliment]] of line Rq;	$N = \sum_{k} n_{k}$	-•, •, •, •, inner-product, back-substitution w/ triangular systems, are backwards stable	•Taylor series about $\underline{a} \in \mathbb{R}$ jis $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + O\left((x-a)^{n+1}\right) \text{ as } \underline{x \to a}$	converges for any $\mathbf{x}^{(0)}$ (because	proj _{x1} (b ⁽⁰⁾)≠0	-If shifts are good eigenvalue estimates then last column of $\tilde{Q}^{(R)}$ converges quickly to an eigenvector
$A = QR = [Q_1 \mid Q_2] \begin{bmatrix} R_1 \\ 0_{m-n} \end{bmatrix} = Q_1 R_1$, <u> </u>	$\bullet \nabla f = [\partial_1 f,, \partial_n f]^T$ is gradient of $\underline{f} = (\nabla f)_i = \frac{\partial f}{\partial x_i}$	-If backwards stable \tilde{f} and f has condition number	-Need $\underline{a=0}$ => $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k * O(x^{n+1})$ as	Cauchy-completeness)	-Under above assumptions.	-Estimate $\mu^{(k)}$ with Rayleigh quotient =>
$-Q$ is orthogonal , i.e. $Q^{-1} = Q^{T}$, so its a basis	-Notice: $P_{\perp j} = \mathbf{I}_m - Q_j Q_j^T = \prod_{i=1}^{J} (\mathbf{I}_m - \mathbf{q}_i \mathbf{q}_i^T) = \prod_{i=1}^{J} P_{\perp} \mathbf{q}_i$	$-\nabla^T f = (\nabla f)^T$ is transpose of ∇f i.e. $\nabla^T f$ is row vector	$\underline{\kappa(x)}$ then relative error $\frac{\ \tilde{f}(x) - f(x)\ }{\ f(x)\ } = O\left(\kappa(x)\epsilon_{\text{mach}}\right)$	x → 0 k!	*For splitting, we want M < 1 and easy to compute M; c	$\mu_{R} = R_{A} \left(\mathbf{b}^{(R)} \right) = \frac{\mathbf{b}^{(R)} \dot{\uparrow}_{A} \mathbf{b}^{(R)}}{\mathbf{b}^{(R)} \dot{\downarrow}_{A} (R)}$ converges to dominant	$\underline{\mu^{(k)} = (A_k)_{mm} = \bar{\mathbf{q}}_m^{(k)T} A \bar{\mathbf{q}}_m^{(k)}} \text{ where } \underline{\bar{\mathbf{q}}_m^{(k)}} \text{ is } \underline{m}_{\text{F}} \text{th}$
transformation $-\text{proj}_{C(A)} = Q_1 Q_1^T \mid \text{proj}_{C(A)} \perp = Q_2 Q_2^T \text{ are [[tutorial]]}$	*[[tutorial 1#Column-wise & row-wise matrix/vector ops Outer-product sum equivalence]] =>	$ \begin{array}{c c} -v & f = (vf)^* \text{ is transpose of } vf \text{ i.e. } v \text{ is row vector} \\ \cdot D_{\mathbf{u}} f(x) = \lim_{\delta \to 0} \frac{f(x + \delta \mathbf{u}) - f(x)}{\delta} & \text{directional-derivative} \end{array} $	*Accuracy, stability, backwards stability are norm-independent for fin-dim X, Y	I-	*Stopping criterion usually the relative residual b-Ax ^(k)	$\frac{\lambda_1}{\lambda_1}$	column of $\underline{\tilde{Q}}^{(R)}$
1#Projection properties orthogonal projections]	i	of f	Big-O meaning for numerical analysis	e.g. $(1+\epsilon)^p = \sum_{k=0}^n \binom{p}{k} \epsilon^k + O(\epsilon^{n+1}) = \sum_{k=0}^n \frac{p!}{k!(p-k)!} \epsilon^k + O(\epsilon^{n+1})$	n+1	-(b _k) converges to some dominant x ₁ associated	
onto $C(A)$ $C(A)^{\perp} = \ker(A^{T})$ respectively -Notice: $QQ^{T} = I_{m} = Q_{1}Q_{1}^{T} + Q_{2}Q_{2}^{T}$	$Q_j Q_j^T = [\mathbf{q}_1 \dots \mathbf{q}_j] [[\mathbf{q}_1^T; \dots; \mathbf{q}_j^T] = \sum_{i=1}^{n} \mathbf{q}_i \mathbf{q}_i^T]$	-It is rate-of-change in direction <u>u</u> , where <u>u ∈ Rⁿ</u> is unit-vector	•In complexity analysis $\underline{f(n)} = O(g(n))$ as $\underline{n} \to \infty$] •But in numerical analysis $\underline{f(\varepsilon)} = O(g(\varepsilon))$ as $\underline{\varepsilon} \to 0$],	as € → 0]	-Assume A s diagonal is non-zero (w.l.o.g. permute/change basis if isn't) then A = D+L+U	with $\lambda_1 \Longrightarrow \ Ab^{(k)}\ $ converges to $ \lambda_1 $	
•Generalizable to $\underline{A \in \mathbb{C}^{m \times n}}$ by changing transpose to	*For <u>i * k</u>] , =>	$\frac{-D_{\mathbf{u}} f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u} = \ \nabla f(\mathbf{x})\ \ \mathbf{u}\ \cos(\theta)\ = \sum D_{\mathbf{u}} f(\mathbf{x})}{\text{maximized when } \cos \theta = 1}$	i.e. $\limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty$	Elementary Matrices	-Where D is diagonal of A L, U are strict lower/upper	$-\operatorname{If} \operatorname{proj}_{\mathbf{X}_1} \left(\mathbf{b}^{(0)} \right) = 0 \text{ then } \left(\mathbf{b}_k \right); (0_k) \text{ converge to} $ $\operatorname{second} \operatorname{dominant} \lambda_2; \mathbf{x}_2 \text{ instead}$	
conjugate-transpose	$\prod_{i=1}^{J} \left(\mathbf{I}_{m} - \mathbf{q}_{i} \mathbf{q}_{i}^{T} \right) = \mathbf{I}_{m} - \sum_{i=1}^{J} \mathbf{q}_{i} \mathbf{q}_{i}^{T} = \mathbf{I}_{m} - Q_{j} Q_{j}^{T}$	-i.e. when x , u jare parallel ⇒ hence $\nabla f(x)$ is direction	-i.e. $\exists C, \delta > 0 \mid s.t. \ \underline{\forall \epsilon \mid}$, we have $0 < \ \epsilon\ < \delta \implies \ f(\epsilon)\ \le C \ g(\epsilon)\ $	*Identity $I_n = [e_1 e_n] = [e_1;; e_n]$ has elementary vectors $e_1,, e_n$ for rows/columns	triangular parts of A] •Jacobi Method: $G = D$; $R = L + U$ =>	-If no dominant λ] (i.e. multiple eigenvalues of	
-Inner product $\underline{x}^T \underline{y}$ ⇒ $\underline{x}^{\dagger} \underline{y}$ -Orthogonal matrix $\underline{u}^{-1} = \underline{u}^T$ ⇒ unitary matrix	$ \frac{i=1}{-\text{Re-state: } \mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1}} = > $	of max. rate-of-change • $\mathbf{H}(f) = \nabla^2 f = \mathbf{J}(\nabla f)^T$ is the Hessian of $f = \infty$	-O(g) is set of functions	•Row/column switching: permutation matrix Pij	$M = -D^{-1}(L+U); C = D^{-1}b$	maximum [λ] If then (b _k) will converge to linear combination of their corresponding eigenvectors	
<u>u-1</u> = <u>u</u> †	(i)	$H(f)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_i}$	$f: \limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty$ •Smallness partial order $O(g_1) \le O(g_2)$ defined by	obtained by switching e _i and e _j in I _n (same for rows/columns)	$-\frac{\mathbf{x}_{i}^{(k+1)}}{\mathbf{x}_{i}^{k}} = \frac{1}{A_{ij}} \left(\frac{\mathbf{b}_{i} - \sum_{j \neq i} A_{ij} \mathbf{x}_{j}^{(k)}}{\mathbf{b}_{i}^{k} - \sum_{j \neq i} A_{ij} \mathbf{x}_{j}^{(k)}} \right) = \mathbf{x}_{i}^{(k+1)} \text{ only needs}$	- Slow convergence if dominant λ_1 not "very dominant"	
*For orthogonal $U = [\mathbf{u}_1 \mathbf{u}_k] \in \mathbb{R}^{m \times k}$ => $proj_U = UU^T projects onto C(U) $	$\mathbf{u}_{j+1} = \left(\prod_{i=1}^{J} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{j+1} = \left(P_{\perp \mathbf{q}_{j}} \cdots P_{\perp \mathbf{q}_{1}}\right) \mathbf{a}_{j+1}$	• f has local minimum at x_{loc} if there's radius $r > 0$ s.t.	set-inclusion $O(g_1) \subseteq O(g_2)$	-Applying Pij from left will switch rows, from right		$-\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\ = O\left(\left \frac{\lambda_2}{\lambda_1}\right ^k\right) \text{ for phase factor}$	
For unitary $U = [\mathbf{u}_1 \dots \mathbf{u}_k] \in \mathbb{C}^{m \times k} \Longrightarrow \operatorname{proj}_U = UU^{\dagger} $	-Projectors P _{⊥q1} ,,P _{⊥qj} are iteratively applied to	$\forall x \in B[r; x_{loc}]$ we have $f(x_{loc}) \le f(x)$	-i.e. as $\underline{\epsilon}$ → 0], $\underline{g_1(\epsilon)}$ goes to zero faster than $\underline{g_2(\epsilon)}$ -Roughly same hierarchy as complexity analysis but	will swap columns $-P_{ij} = P_{ij}^{T} = P_{ij}^{-1}$ i.e. applying twice will undo it	b_j ; $x^{(R)}$; A_{j} => row-wise parallelization • Gauss-Seidel (G-S) Method: $G = D + L$; $R = U$ =>	$\frac{-\ \mathbf{b}^{-1} - \mathbf{a}_{k} \mathbf{\lambda}_{1}\ = 0}{\alpha_{k} \in \{-1, 1\} \text{it may alternate if } \lambda_{1} < 0 }$	
projects <i>onto</i> C(U)	a _{j+1} removing its components along q ₁ then along	$-f$ has global minimum x_{glob} if $\forall x \in \mathbb{R}^n$ we have	flipped (some break pattern) *e.g , $O(\epsilon^3) < O(\epsilon^2) < O(\epsilon) < O(1)$	•Row/column scaling: $D_i(\lambda)$ obtained by scaling e_i by	$M = -(D+L)^{-1}U$; $c = (D+L)^{-1}b$		
-And so on Lines and hyperplanes in Euclidean	q2 and so on	$f(x_{glob}) \le f(x)$ -A local minimum satisfies optimality conditions:	-Maximum:	∆Jin I _n (same for rows/columns) -Applying P _{ij} from left will scale rows, from right will	$-\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right)$	$ \lambda_1 ^k c_1 $ where $\frac{c_1 - c_1}{c_1}$	
space $\mathbb{E}^n(=\mathbb{R}^n)$	• Let $\mathbf{u}_{k}^{(j)} = \left(\prod_{i=1}^{j} P_{\perp} \mathbf{q}_{i} \right) \mathbf{a}_{k}$, i.e. \mathbf{a}_{k} without its	$*\nabla f(\mathbf{x}) = 0$, e.g. for $\underline{n} = 1$ jits $\underline{f'(\mathbf{x})} = 0$	$\frac{O(\max(g_1 , g_2)) = O(g_2) \iff O(g_1) \leq O(g_2)}{*\text{e.g. } O(\max(\epsilon^k, \epsilon)) = O(\epsilon)}$	scale columns		b(R); x ₁ are normalized	
•Consider standard Euclidean space $E^n(=\mathbb{R}^n)$ –with standard basis $(e_1,, e_n) \in \mathbb{R}^n$	components along $\mathbf{q_1},, \mathbf{q_j}$	* $\nabla^2 f(\mathbf{x})$ is positive-definite, e.g. for $\underline{n=2}$ its $f''(x)>0$ *Interpret $\underline{F}: \mathbb{R}^n \to \mathbb{R}^m$ as \underline{m} functions $F_i: \mathbb{R}^n \to \mathbb{R}$	•Using functions $f_1,, f_n$ let $?(f_1,, f_n)$ be formula	$\frac{-D_{i}(\lambda) = \operatorname{diag}(1, \dots, \lambda, \dots, 1)}{\operatorname{apply}, \text{e.g. } D_{i}(\lambda)^{-1} = D_{i}(\lambda^{-1})}$ so all diagonal properties	-Computing $\mathbf{x}_{i}^{(k+1)}$ needs \mathbf{b}_{i} ; $\mathbf{x}^{(k)}$; $A_{i\star}$ and $\mathbf{x}_{j}^{(k+1)}$	$-(A-\sigma I)$ has eigenvalues $\lambda - \sigma$ \Rightarrow power-iteration on $(A-\sigma I)$ has $\frac{\lambda_2 - \sigma}{\sigma}$	
–with standard origin <u>0</u> ∈ ℝ ⁿ	-Notice: $\mathbf{u}_j = \mathbf{u}_i^{(j-1)}$ thus $\mathbf{q}_j = \hat{\mathbf{u}}_j = \mathbf{u}_i^{(j-1)} / r_{jj}$ where	(one per output-component) $-J(F) = \begin{bmatrix} \nabla^T F_1,, \nabla^T F_m \end{bmatrix} \text{ is } Jacobian \ matrix \ of } F = >$	defining some function Then $\mathbb{C}(O(g_1),, O(g_n))$ is the class of functions	•Row addition: $L_{ij}(\lambda) = I_n + \lambda e_i e_i^T$ performs	for j < i => lower storage requirements *Successive over-relaxation (SOR):	$\frac{(A-\sigma I) \text{has }\frac{\lambda_2-\sigma}{\lambda_1-\sigma} }{-\text{Eigenvector guess}} \Rightarrow \text{estimated eigenvalue}$	
-A line $L = \mathbb{R} \mathbf{n} + \mathbf{c}$ is characterized by direction $\mathbf{n} \in \mathbb{R}^n$ $(\mathbf{n} \times 0)$ and offset from origin $\mathbf{c} \in L$			$[2(f_1,, f_n) : f_1 \in O(g_1),, f_n \in O(g_n)]$	$R_i \leftarrow R_i + \lambda R_j$ when applying from left	$\frac{G = \omega^{-1}D + L; R = (1 - \omega^{-1})D + U}{M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U); \mathbf{c} = -(\omega^{-1}D + L)^{-1}\mathbf{b}}$	•Inverse (power-literation: perform power iteration	
–It is customary that:	$r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ $ –Iterative step:	$J(F)_{ij} = \frac{\partial F_i}{\partial x_j}$	*e.g. $e^{O(1)} = \{e^{f(e)} : f \in O(1)\}$ -General case:	$-\lambda e_i e_i^T$ is zeros except for $\lambda \ln (i,j)$ th entry	=	on $(A-\sigma I)^{-1}$ to get $\lambda_{1,\sigma}$ closest to σ	
* $\underline{\mathbf{n}}$ is a unit vector, i.e. $\ \mathbf{n}\ = \ \hat{\mathbf{n}}\ = 1$ * $\underline{\mathbf{c}} \in \underline{L}$ is closest point to origin, i.e. $\underline{\mathbf{c}} \perp \underline{\mathbf{n}}$	$\mathbf{u}_{k}^{(j)} = \left(P_{\perp} \mathbf{q}_{j}\right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j-1)} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{(j-1)}\right) \mathbf{q}_{j}$	Conditioning	$[2]_1(O(f_1),,O(f_m)) = [2]_2(O(g_1),,O(g_n))$ means	$-L_{ij}(\lambda)^{-1} = L_{ij}(-\lambda)$ both triangular matrices	$\frac{\mathbf{x}_{i}^{(k+1)}}{\mathbf{x}_{i}^{(k+1)}} = \frac{\omega}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right) * (1 - \omega) \mathbf{x}_{i}^{(k)}$	(k) will yield largest $(\lambda_{1,\sigma} - \sigma)^{-1}$ so power iteration	
-If c≠λn]=> L]not vector-subspace of R ⁿ] *i.e. 0∉L} i.e. L]doesn't go through the origin	-i.e. each iteration j of MGS computes $P_{\perp \mathbf{q}_j}$ (and	•A problem is some $\underline{f}: X \to Y$ where \underline{X}, Y are normed vector-spaces	$[2_1(O(f_1), \dots, O(f_m)) \subseteq [2_2(O(g_1), \dots, O(g_n))]$	LU factorization w/ Gaussian elimina-	$ \frac{1}{\text{for relaxation factor } \omega > 1} $	=i.e. will yield smallest $\lambda_{1,\sigma}$ - σ , i.e. will yield $\lambda_{1,\sigma}$	
*LJis affine-subspace of R ⁿ	projections under it) in one go	-A problem instance is f with fixed input x∈X, shortened to just "problem" *(with x∈X implied)	*e.g. $e^{O(1)} = O(k^{\epsilon})$ means $e^{f(\epsilon)} : f \in O(1) \subseteq O(k^{\epsilon})$, not necessarily true	•[[tutorial 1#Representing EROs/ECOs as	•If A is strictly row diagonally dominant then	closest to oj	
$-\text{If } \frac{\mathbf{c} = \lambda \mathbf{n}}{\mathbf{n}}$ i.e. $\underline{L} = \mathbf{R} \mathbf{n} = \lambda \mathbf{L} \mathbf{j} \mathbf{s}$ vector-subspace of \mathbf{R}^n \star i.e. $\frac{0 \in L}{\mathbf{l}}$ i.e. \underline{L} goes through the origin	-At start of iteration $j \in 1n$ we have ONB	$-\underline{\delta x}$ jis small perturbation of \underline{x} $\Longrightarrow \underline{\delta f} = f(x + \delta x) - f(x)$ -A problem (instance) is:	-Special case: $f = 2(O(g_1),, O(g_n))$ means	transformation matrices[Recall that]] you can	Jacobi/Gauss-Seidel methods converge -Alis strictly row diagonally dominant if	$-\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_{1,\sigma}\ = O\left(\left \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{2,\sigma} - \sigma}\right ^{\kappa}\right) \text{ where } \mathbf{x}_{1,\sigma}\right)$	
*LJhas dim(L)=1 and orthonormal basis (ONB) $\{\hat{n}\}\$ *A hyperplane_is characterized by normal $\underline{n} \in \mathbb{R}^{\overline{n}}$	$\underline{\mathbf{q}_1, \dots, \mathbf{q}_{j-1} \in \mathbb{R}^m}$ and residual $\underline{\mathbf{u}_j^{(j-1)}, \dots, \mathbf{u}_n^{(j-1)} \in \mathbb{R}^m}$	-A problem (instance) is: *Well-conditioned if all small $\underline{\delta x}$ lead to small $\underline{\delta f}$.	$\frac{f \in \mathbb{N}(O(g_1), \dots, O(g_n))}{*e.g. (\varepsilon + 1)^2 = \varepsilon^2 + O(\varepsilon) means}$	represent EROs and ECOs as transformation matrices R, C respectively	$ A_{ii} > \sum_{j \neq i} A_{ij} $	corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ is 2nd-closest to σ	
(n ≠0) and offset from origin c∈P	-Compute $r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ \Rightarrow \mathbf{q}_{j} = \left\ \mathbf{u}_{j}^{(j-1)} / r_{jj} \right\ $	i.e. if $\underline{\kappa}$ is small (e.g. 1) 10) 10 ² *Ill-conditioned if some small $\underline{\delta}\underline{\kappa}$ lead to large δf ,	$\epsilon \mapsto (\epsilon + 1)^2 \in \{\epsilon^2 * f(\epsilon) : f \in O(\epsilon)\}$, not necessarily true	• <u>LU</u> factorization => finds <u>A = LU</u> where <u>L</u> , <u>U</u> are lower/upper triangular respectively	•If AJ is positive-definite then G-S and SOR $(\omega \in (0, 2))$	-Efficiently compute eigenvectors for known eigenvalues σ ₁	
-It represents an (n-1)-dimensional slice of the n-dimensional space	-For each $k \in (j+1)n$ compute $r_{jk} = \mathbf{q}_j \cdot \mathbf{u}_k^{(j-1)} \Longrightarrow$	i.e. if KJ is large *(e.g. 10 ⁶ 10 ¹⁶)	•Let $f_1 = O(g_1)$, $f_2 = O(g_2)$ and let $k \neq 0$ be a constant $-f_1 f_2 = O(g_1 g_2)$ and $f \cdot O(g) = O(fg)$	•Naive Gaussian Elimination performs	converge	- Eigenvalue guess => estimated eigenvector	
*Points are hyperplanes for n = 1 *Lines are hyperplanes for n = 2	$\mathbf{u}_{k}^{(j)} = \mathbf{u}_{k}^{(j-1)} - r_{jk} \mathbf{q}_{j}$	•Absolute condition number $cond(x) = \hat{\kappa}(x) = \hat{\kappa} \int dx$ of f at x j is	$-f_1 + f_2 = O(\max(g_1 , g_2)) \Rightarrow \text{if } g_1 = g = g_2 \text{ then}$	$[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid U \mid I_n] \text{ to get } AI_n = R^{-1} U \text{ using}$ only row addition	Break up matrices into (uneven blocks)	-![[Pasted image 20250420131643.png 300]] -Can reduce matrix inversion <u>O(m³)</u> to <u>O(m²)</u> by	
*Planes are hyperplanes for <u>n = 3</u>	-We have next ONB (q ₁ ,, q _j) and next residual	$-\hat{k} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ } \Rightarrow \text{for most problems}$	$\begin{vmatrix} f_1 + f_2 = O(g) \\ -\overline{O(k \cdot g)} = O(g) \end{vmatrix}$	$-R^{-1}$, i.e. inverse EROs in reversed order, is lower-triangular so $L=R^{-1}$	•e.g. symmetric $\underline{A \in \mathbb{R}^{n \times n}}$ can become	pre-factorization	
–It is customary that: * <u>n</u> Jis a unit vector , i.e. <u> n</u> = <u>n̂</u> = 1	$\mathbf{u}_{j+1}^{(j)}, \dots, \mathbf{u}_{n}^{(j)}$		Floating-point numbers	-![[Pasted image 20250419051217.png 400]]	$A = \begin{bmatrix} a_{1,1} & b \\ \hline b^T & C \end{bmatrix}$, then perform proofs on that	Nonlinear Systems of Equations: Itera- tive Techniques	
* $c \in P$ is closest point to origin, i.e. $c = \lambda n$ *With those $\Rightarrow P = \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda\}$	-NOTE: for $\underline{j=1}$ => $\frac{\mathbf{q}_1, \dots, \mathbf{q}_{j-1} = \emptyset}{\mathbf{q}_1, \dots, \mathbf{q}_{j-1} = \emptyset}$, i.e. we don't have any yet	simplified to $\hat{\kappa} = \sup_{\delta x} \frac{\ \delta f\ }{\ \delta x\ }$	•Consider base/radix β≥2] (typically 2]) and precision ±≥1](24] or 53 for IEEE single/double precisions)	-The pivot element is simply diagonal entry $u_{kk}^{(k-1)}$	Catchup: metric spaces and limits	•[[tutorial 6#Multivariate Calculus Recall]] that $\nabla f(\mathbf{x})$ is direction of max . rate-of-change $ \nabla f(\mathbf{x}) $	
-if c·n≠0 => P not vector-subspace of R ⁿ	 By end of iteration j = n, we have ONB 	-If Jacobian $\frac{\mathbf{J}_{f}(x)}{f}(x)$ exists then $\hat{\mathbf{k}} = \ \mathbf{J}_{f}(x)\ $, where	•Floating-point numbers are discrete subset $F = \{ (-1)^S (m/\beta^t) \beta^e \mid 1 \le m \le \beta^t, s \in \mathbb{B}, m, e \in \mathbb{Z} \} $	fails if $u_{kk}^{(k-1)} \approx 0$	•Metrics obey these axioms −d(x, x) = 0	Search for stationary point by gradient descent:	
*i.e. 0∉P↓i.e. P I doesn't go through the origin *P I is affine-subspace of R ⁿ	$\langle \mathbf{q}_1,, \mathbf{q}_n \rangle \in \mathbb{R}^m \mid \text{of } \underline{n}_1 \text{-dim subspace}$ $U_n = \text{span}\{\mathbf{a}_1,, \mathbf{a}_n\} \mid$	matrix norm $\ -\ $ induced by norms on X and Y •Relative condition number $\kappa(x) = \kappa$ of f at x is	$= \{(-1)^2 (m/\beta^c) \beta^c \mid 1 \le m \le \beta^c, s \in \mathbb{B}, m, e \in \mathbb{Z}\}$ $= \sup_{s \in \mathbb{Z}} \sup_{s$	$-\underline{\tilde{L}\tilde{U}} = A + \delta A$ $\underline{\ \tilde{b}A\ }$ $\underline{\ L\ \cdot \ U\ } = O(\epsilon_{mach})$ only backwards	$-x \neq y \Longrightarrow d(x,y) > 0$	$\frac{\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)})}{\text{Alis positive-definite solving } \underline{\mathbf{A}\mathbf{x} = \mathbf{b}} \text{ and}$	
$- f_{\underline{\mathbf{c}}\cdot\mathbf{n}=0} $ i.e. $P = (\mathbb{R}\mathbf{n})^{\perp} \Rightarrow P \mathbf{s}$ vector-subspace of	[r ₁₁ r _{1n}]	$-\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right) \Rightarrow \text{for most}$	for single, 111-bit for double)	stable if $\ L\ \cdot \ U\ \approx \ A\ $ -Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$	-d(x, y) = d(y, x) $-d(x, z) \le d(x, y) + d(y, z)$	$\min_{\mathbf{X}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b} \text{ are equivalent}$	
R ⁿ *i.e. 0∈PJ i.e. PIgoes through the origin	0 r _{nn}]	problems simplified to $\kappa = \sup_{k \in \mathbb{R}} \left(\frac{\ \delta f\ }{\ \delta f\ } / \frac{\ \delta x\ }{\ \delta f\ } \right)$	-Equivalently, can restrict to $\beta^{t-1} \le m \le \beta^t - 1$ for unique \underline{m} jand \underline{e} j	-Solving $Ax = LUx$ jis $\sim \frac{2}{3}$ m ³ flops (back substitution is	•For metric spaces, mix-and-match these infinite/finite	-Get iterative methods $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \mathbf{p}^{(k)}$ for step	
*P]has dim(P) = n - 1	corresponds to [[tutorial 5#Thin QR Decomposition w/ Gram-Schmidt (GS) thin QR decomposition]]	broblems simplified to $K = \sup_{\delta X} \left(\frac{1}{\ f(x)\ } / \frac{1}{\ x\ } \right)$	-F⊂RJis idealized (ignores over/underflow), so is countably infinite and self-similar (i.e. F=βF)	O(m ²)	$-\lim_{X\to +\infty} f(x) = +\infty \iff \forall r\in\mathbb{R}, \exists N\in\mathbb{N}, \forall x>N: f(x)>r$	length $\underline{\alpha^{(k)}}$ and directions $\underline{p^{(k)}}$ •Conjugate gradient (CG) method: if $A \in \mathbb{R}^{n \times n}$ also	
•Notice <u>L = Rn</u> Jand <u>P = (Rn) </u> are orthogonal compliments, so:	-Where A∈ R ^{m×n} is full-rank, Q∈ R ^{m×n} is	-If Jacobian $J_f(x)$ exists then $\kappa = \frac{\ J_f(x)\ }{\ f(x)\ /\ x\ }$	For all $x ∈ \mathbb{R}$ there exists $fl(x) ∈ \mathbb{F}$ s.t.	-NOTE: Householder triangularisation requires $\sim \frac{4}{3} m^3$	$\lim_{X\to p} f(x) = L \iff \forall \varepsilon > 0, \exists \delta > 0, \forall x \in A : 0 < d_X(x, p) < \delta = 0$	Sympostric then (u, v) _A = u ^T Av is an inner-product	
-proj _e = $\hat{\mathbf{n}}\hat{\mathbf{n}}^T$ is orthogonal projection onto LI(alona	semi-orthogonal, and <u>R∈R^{n×n}</u> is upper-triangular Classical vs. Modified Gram-Schmidt	-More important than $\hat{\mathbf{k}}$ for numerical analysis •Matrix condition number Cond(A) = $\mathbf{k}(A) = \ A\ \ A^{-1}\ $	$ x-fl(x) \le \epsilon_{mach} x $ *Equivalently $fl(x) = x(1+\delta), \delta \le \epsilon_{mach}$	•Partial pivoting computes PA = LU where P is a permutation matrix ⇒ PPT = I i.e. its orthogonal	-Cauchy sequences,	-GC chooses-p(K) that are conjugate w.r.t. Al	
$-\text{proj}_{p} = \text{id}_{\mathbb{R}^{n}} - \text{proj}_{l} = \mathbf{I}_{n} - \hat{\mathbf{n}} \hat{\mathbf{n}}^{T}$ is orthogonal	(for thin QR)	=> comes up so often that has its own name	•Machine epsilon $\epsilon_{\text{machine}} = \epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$ is	−For each column j, finds largest entry and row-swaps	i.e. $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall m, n \ge N : d(a_m, a_n) < \varepsilon$, converge in complete spaces	i.e. $(\mathbf{p}^{(i)}, \mathbf{p}^{(i)})_{A} = 0$ for $i \neq j$	
projection onto PJ*(along LJ) -L = im(proj _L) = ker(proj _P) and	•These algorithms both compute [[tutorial 5#Thin QR Decomposition w/ Gram-Schmidt (GS) thin QR	-A∈ C ^{m×m} is well-conditioned if κ(A) is small, ill-conditioned if large	maximum relative gap between FPs -Half the gap between 1Jand next largest FP	to make it new pivot => Pj -Then performs normal elimination on that column =>	•You can manipulate matrix limits much like in real	-And chooses $\underline{\alpha}^{(k)}$ s.t. residuals $\underline{\mathbf{r}^{(k)}} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}$ are orthogonal	
$P = \ker (\operatorname{proj}_L) = \operatorname{im} (\operatorname{proj}_P)$	decomposition]] ![[Pasted image 20250418034701.png 400]] ![[Pasted image	$-\kappa(A) = \kappa(A^{-1})$ and $\kappa(A) = \kappa(\gamma A)$	$-2^{-24} \approx 5.96 \times 10^{-8}$ and $2^{-53} \approx 10^{-16}$ for	L _j	analysis, e.g. $\lim_{n\to\infty} (A^n B + C) = (\lim_{n\to\infty} A^n) B + C$	$\star k = 0$ => $\mathbf{p}^{(0)} = -\nabla f(\mathbf{x}^{(0)}) = \mathbf{r}^{(0)}$	
$-\mathbb{R}^n = \mathbb{R} \cdot \Phi(\mathbb{R}^n)^{\perp}$ i.e. all vectors $\underline{\mathbf{v}} \in \mathbb{R}^n$ uniquely	20250418034855.png[400]]	$-\text{if } \ \cdot \ = \ \cdot \ _2 \text{ then } \kappa(A) = \frac{\sigma_1}{\sigma_m}$	single/double •FP arithmetic: let ∗, □] be real and floating	$-\overline{\text{Result}}$ is $L_{m-1}P_{m-1} \dots L_2P_2L_1P_1A=U$, where $L_{m-1}P_{m-1} \dots L_2P_2L_1P_1=L'_{m-1}\dots L'_1P_{m-1}\dots P_1$	•Turn metric limit $\lim_{n\to\infty} x_n = L$ into real limit	$\star_{\underline{k \geq 1}} \Rightarrow \underline{\mathbf{p}}^{(k)} = \underline{\mathbf{r}}^{(k)} - \sum_{i \leq k} \frac{\langle \mathbf{p}^{(i)}, \mathbf{r}^{(k)} \rangle_{A}}{\langle \mathbf{p}^{(i)}, \mathbf{p}^{(i)} \rangle_{A}} \underline{\mathbf{p}}^{(i)}$	
decomposed into v=v _L +v _P Reflection w.r.t. hyperplanes and	•Computes at j th step: •Classical GS => j th column of Q and the j th column	•For $\underline{A \in \mathbb{C}^{m \times n}}$, the problem $\underline{f_A(x)} = Ax$ has	counterparts of arithmetic operation –For x, y ∈ F we have	$\frac{L_{m-1} - L_{m-1} - L_{m-1} - L_{m-1} - L_{m-1} - L_{m-1} - L_{m-1}}{-\text{Setting } L = (L'_{m-1} - L'_{1})^{-1} P = P_{m-1} - L_{m-1} - L_{m-1} - L_{m-1}}$	$\lim_{n\to\infty} d(x_n, L) = 0$ to leverage real analysis -Bounded monotone sequences converge in R		
Householder Maps	of \underline{R}] -Modified GS $\Rightarrow j$ th column of \underline{Q} and the j th row of	$\kappa = \ A\ \frac{\ x\ }{\ Ax\ } \Rightarrow \text{if } \underline{A^{-1}} \text{ exists then } \underline{\kappa \leq \text{Cond}(A)}$	$x \boxtimes y = fl(x * y) = (x * y)(1 * \varepsilon), \delta \le \varepsilon_{mach}$	PA = LU -![[Pasted image 20250420092322.png 450]]	-Sandwich theorem for limits in RJ=> pick easy	*************************************	
•Two points x, y ∈ E ⁿ are reflections w.r.t hyperplane	RJ 3 3	$-If\underline{Ax = b}$, problem of finding x_1 given \underline{b} is just $f_{\underline{A}-1}(b) = A^{-1}b \Longrightarrow K = \ A^{-1}\ \frac{\ b\ }{\ x\ } \le Cond(A)$	*Holds for any arithmetic operation □ = •, •, •, •] -Complex floats implemented pairs of real floats, so	-Work required: ~ \frac{2}{3} m^3 flops ~ O(m^3) ; results in	upper/lower bounds $-\lim_{n\to\infty} r^n = 0 \iff r < 1 \text{ and }$	-Without rounding errors, CG converges in <u>≤ n</u>] iterations	
	•Both have flop (floating-point operation) count of $O(2mn^2)$	$f_{A^{-1}}(b) = A$ $b = S_{A} = A$ $f_{A} = A$ $f_{A} = A$ $f_{A} = A$	above applies complex ops as-well *Caveat: $\epsilon_{mach} = \frac{1}{2} \beta^{1-t}$ must be scaled by factors	L _{ij} ≤1 so L = O(1)	l 	*Similar to to [[tutorial 1#Gram-Schmidt method to	
i.e. $xy = \lambda n$ e) Midpoint $m = 1/2(x+y) \in P $ lies on $P \downarrow$ i.e. $m \cdot n = c \cdot n$	-NOTE: Householder method has $2(mn^2 - n^3/3)$ flop	$Ax = b$ has $\kappa = A A^{-1} = Cond(A)$	on the order of 2 ^{3/2} ,2 ^{5/2} for *, * respectively	-Stability depends on growth-factor $\rho = \frac{\max_{i,j} u_{i,j} }{ u_{i,j} }$	$\lim_{n \to \infty} \sum_{i=0}^{n} ar^{i} = \frac{a}{1-r} \iff r < 1$	generate orthonormal basis from any linearly independent vectors[Gram-Schmidt]] (different	
S	count, but better numerical properties	Stability	_	$\max_{i,j} a_{i,j} $	Eigenvalue Problems: Iterative Tech-	inner-product) $*(\mathbf{p}^{(0)},,\mathbf{p}^{(n-1)})$ and $(\mathbf{r}^{(0)},,\mathbf{r}^{(n-1)})$ are bases for	
normal $u \in \mathbb{R}^n$	•Recall: $Q^{\dagger}Q = I_n$ \Rightarrow check for loss of orthogonality with $\ I_n - Q^{\dagger}Q\ = loss$	•Given a problem $\underline{f: X \to Y}$, an algorithm for \underline{f} is $\underline{f: X \to Y}$	$ (x_1 \bullet \cdots \bullet x_n) \circ (x_1 + \cdots + x_n) + \sum_{i=1}^n x_i \left(\sum_{j=i}^n \delta_j\right), \delta_j \le \epsilon_{\text{ma}}$ $-(x_1 \bullet \cdots \bullet x_n) \circ (x_1 \times \cdots \times x_n)(1 + \epsilon), \epsilon \le 1.06(n - 1)\epsilon_{\text{mach}}$	$h = 5$ for partial pivoting $\rho \le 2^{m-1}$ $= \ U\ = O(\rho \ A\) = 2 \tilde{L} \tilde{L} = \tilde{P} A + \delta A$	niques •If A J is [[tutorial 1#Properties of	*(p(0),,p(1111)) and (p(0),,p(1111)) are bases for	
-Householder matrix $H_u = I_n - 2uu^T$ is reflection w.r.t. hyperplane P_u	$-Classical GS \Rightarrow \ I_n - Q^{\dagger} Q\ \approx Cond(A)^2 \epsilon_{mach}$	$-\bar{f}$ is computer implementation , so inputs/outputs	$-\operatorname{fl}\left(\sum x_i y_i\right) = \sum x_i y_i (1+\epsilon_i) \text{ where}$	$\frac{\ \delta A\ }{\ A\ } = O(\rho \epsilon_{\text{machine}})$ => only backwards stable if	matrices diagonalizable]] then [[tutorial	QR Algorithm to find Schur decomposi	
-Recall: let L _{II} = Ru	-Modified GS ⇒ $\ I_n - Q^{\dagger}Q\ \approx \text{Cond}(A) \in_{\text{mach}}$	are FP -Input $x \in X$ is first rounded to $fl(x)$ i.e. $\tilde{f}(x) = \tilde{f}(fl(x))$	$1+\epsilon_i = (1+\delta_i)\times(1+\eta_i)\cdots(1+\eta_n)$ and	ρ = O(1)	1#Eigen-values/vectors eigen-decomposition]] A=XAX ⁻¹	tion A = QUQ [†]	
*proj _{Lu} = uu ^T and proj _{Pu} = I _n -uu ^T =>	-NOTE: Householder method has $\ \mathbf{I}_n - Q^{\dagger}Q\ \approx \epsilon_{\text{mach}}\ $	- f cannot be continuous (for the most part)	$ \delta_j , \eta_i \le \epsilon_{\text{mach}}$ $*1*\epsilon_i \approx 1*\delta_i * (\eta_i * \cdots * \eta_n)$	•Full pivoting is PAQ = LU finds largest entry in bottom-right submatrix	-Dominant λ_1 ; \mathbf{x}_1 are such that $ \lambda_1 $ is strictly largest for which $A\mathbf{x} = \lambda \mathbf{x}$	•Any $\underline{A \in \mathbb{C}^{m \times m}}$ has Schur decomposition $\underline{A = QUQ^{\dagger}}$ • Q is unitary, i.e. $Q^{\dagger} = Q^{-1}$ and upper-triangular \underline{U}	
H _U = proj _{PU} - proj _{LU} ★ Visualize as preserving component in P _U ↓ then		$-\overline{\mathbf{Ab}}$ solute error $\Rightarrow \ \tilde{f}(x) - f(x)\ \ $ relative error $\Rightarrow \ \tilde{f}(x) - f(x)\ \ $	$\left \frac{x_{1} + (x_{1} + x_{1}) + (x_{1} + x_{1})}{ f(x_{1} + x_{1}) - x_{1} } \right \le \left \frac{x_{1} + (x_{1} + x_{1}) + (x_{1} + x_{1})}{ f(x_{1} + x_{1}) - x_{1} } \right $	-Makes it pivot with row/column swaps before normal elimination	-Rayleigh quotient for Hermitian $A = A^{\dagger}$ is	- Diagonal of U contains eigenvalues of A	
flipping component in L _u		f(x)	*Assuming ne _{mach} ≤ 0.1 =>	-Very expensive $O(m^3)$ search-ops, partial pivoting		•![[Pasted image 20250420135506.png 300]]	I