Prof. Dr. Vinícius Wasques

Universidade Paulista - Unip, Campus Swift Campinas

6 de abril de 2020

Um vetor é uma grandeza definida a partir de três conceitos:

- módulo (comprimento);
- direção (horizontal, vertical, diagonal,...);
- e sentido (esquerda, direita, para cima,...).

Um vetor \overrightarrow{V} por ser determinado através de dois pontos no plano cartesiano, o ponto inicial $A=(x_1,y_1)$ e o ponto final $B=(x_2,y_2)$. Esse vetor é construído por:

$$\overrightarrow{V} = (x_2 - x_1)\overrightarrow{i} + (y_2 - y_1)\overrightarrow{j}$$

Exemplo: Sejam os pontos A = (1,2) e B = (3,1). Então,

$$\overrightarrow{V} = (3-1)\overrightarrow{i} + (1-2)\overrightarrow{j}$$

$$= 2\overrightarrow{i} - 1\overrightarrow{j}$$
(1)

I Um vetor \overrightarrow{v} de \mathbb{R}^2 que possui coordenadas x e y é denotado por:

$$\overrightarrow{v} = x \overrightarrow{i} + y \overrightarrow{j}$$
 ou $\overrightarrow{v} = (x, y)$

2 O módulo (comprimento) de um vetor é calculado por:

$$||\overrightarrow{v}|| = \sqrt{x^2 + y^2}$$

3 O versor de um vetor \overrightarrow{v} é dado por:

$$\frac{\overrightarrow{v}}{||\overrightarrow{v}|}$$

Exemplo: Seja o vetor \overrightarrow{v} dado por $\overrightarrow{v} = 2\overrightarrow{i} + 3\overrightarrow{j}$.

Exemplo: Seja o vetor \overrightarrow{v} dado por $\overrightarrow{v} = 2\overrightarrow{i} + 3\overrightarrow{j}$. Então,

$$||\overrightarrow{V}|| = \sqrt{(2)^2 + (3)^2}$$

= $\sqrt{4+9}$
= $\sqrt{13}$ (2)

Exemplo: Seja o vetor \overrightarrow{v} dado por $\overrightarrow{v} = 2\overrightarrow{i} + 3\overrightarrow{j}$. Então,

$$||\overrightarrow{V}|| = \sqrt{(2)^2 + (3)^2}$$

$$= \sqrt{4+9}$$

$$= \sqrt{13}$$
(2)

$$\frac{\overrightarrow{V}}{||\overrightarrow{V}||} = \frac{2\overrightarrow{i} + 3\overrightarrow{j}}{\sqrt{13}}$$

$$= \frac{2}{\sqrt{13}}\overrightarrow{i} + \frac{3}{\sqrt{13}}\overrightarrow{j}$$
(3)

O produto escalar entre dois vetores $\overrightarrow{u} = x_1 \overrightarrow{i} + y_1 \overrightarrow{j}$ e $\overrightarrow{V} = x_2 \overrightarrow{i} + y_2 \overrightarrow{j}$ é definido pela número real dado por:

$$\overrightarrow{u}\cdot\overrightarrow{v}=x_1.x_2+y_1.y_2\tag{4}$$

O produto escalar entre dois vetores $\overrightarrow{u} = x_1 \overrightarrow{i} + y_1 \overrightarrow{j}$ e $\overrightarrow{v} = x_2 \overrightarrow{i} + y_2 \overrightarrow{j}$ é definido pela número real dado por:

$$\overrightarrow{u} \cdot \overrightarrow{v} = x_1.x_2 + y_1.y_2 \tag{4}$$

Exemplo: Sejam $\overrightarrow{u} = 2\overrightarrow{i} + 3\overrightarrow{j}$ e $\overrightarrow{v} = -4\overrightarrow{i} + 5\overrightarrow{j}$. Então, o produto escalar é

$$\overrightarrow{u} \cdot \overrightarrow{v} = 2.(-4) + 3.5$$

$$= -8 + 15$$

$$= 7$$
(5)

Exercícios propostos

- **Exercício 1:** Calcule o versor do vetor $\overrightarrow{u} = 4\overrightarrow{i} + 3\overrightarrow{j}$.
- **Exercício 2:** Calcule o versor do vetor $\overrightarrow{u} = 1\overrightarrow{i} + 0\overrightarrow{j}$.
- **Exercício 3:** Sejam $\overrightarrow{u} = 1\overrightarrow{i} + 2\overrightarrow{j}$ e $\overrightarrow{v} = -2\overrightarrow{i} + 1\overrightarrow{j}$. Calcule o produto escalar entre \overrightarrow{u} e \overrightarrow{v} .
- **Exercício 4:** Sejam $\overrightarrow{u} = 3\overrightarrow{i} + 2\overrightarrow{j}$ e $\overrightarrow{v} = 1\overrightarrow{i} + 4\overrightarrow{j}$. Calcule o produto escalar entre \overrightarrow{u} e \overrightarrow{v} .

Definição

Seja f(x,y) uma função de duas variáveis. O gradiente de f(x,y), denotado por $\nabla f(x,y)$, é o vetor definido por

$$\nabla f(x,y) = \frac{\partial f}{\partial x} \overrightarrow{i} + \frac{\partial f}{\partial y} \overrightarrow{j}$$
 (6)

Exemplo: Seja $f(x, y) = x^{2} + y^{3}$.

Exemplo: Seja
$$f(x,y)=x^2+y^3$$
. Então,
$$\frac{\partial f}{\partial x}=2x \quad \text{e} \quad \frac{\partial f}{\partial y}=3y^2$$

Exemplo: Seja $f(x,y) = x^2 + y^3$. Então,

$$\frac{\partial f}{\partial x} = 2x$$
 e $\frac{\partial f}{\partial y} = 3y^2$

Logo,

$$\nabla f(x,y) = 2x\overrightarrow{i} + 3y^2\overrightarrow{j}$$

Exemplo: Seja
$$f(x, y) = x^2 + xy^3 + y$$
.

Exemplo: Seja
$$f(x,y) = x^2 + xy^3 + y$$
. Então,

$$\frac{\partial f}{\partial x} = 2x + y^3$$
 e $\frac{\partial f}{\partial y} = 3xy^2 + 1$

Exemplo: Seja $f(x, y) = x^2 + xy^3 + y$. Então,

$$\frac{\partial f}{\partial x} = 2x + y^3$$
 e $\frac{\partial f}{\partial y} = 3xy^2 + 1$

Logo,

$$\nabla f(x,y) = (2x + y^3)\overrightarrow{i} + (3xy^2 + 1)\overrightarrow{j}$$

Exemplo: Seja $f(x, y) = ln(x^2 + y^2)$.

Exemplo: Seja
$$f(x,y) = ln(x^2 + y^2)$$
. Então,

$$\frac{\partial f}{\partial x} = \frac{2x}{x^2 + y^2}$$
 e $\frac{\partial f}{\partial y} = \frac{2y}{x^2 + y^2}$

Exemplo: Seja $f(x,y) = ln(x^2 + y^2)$. Então,

$$\frac{\partial f}{\partial x} = \frac{2x}{x^2 + y^2}$$
 e $\frac{\partial f}{\partial y} = \frac{2y}{x^2 + y^2}$

Logo,

$$\nabla f(x,y) = \left(\frac{2x}{x^2 + y^2}\right) \overrightarrow{i} + \left(\frac{2y}{x^2 + y^2}\right) \overrightarrow{j}$$

Exemplo: Seja $f(x,y) = ln(x^2 + y^2)$. Então,

$$\frac{\partial f}{\partial x} = \frac{2x}{x^2 + y^2}$$
 e $\frac{\partial f}{\partial y} = \frac{2y}{x^2 + y^2}$

Logo,

$$\nabla f(x,y) = \left(\frac{2x}{x^2 + y^2}\right) \overrightarrow{i} + \left(\frac{2y}{x^2 + y^2}\right) \overrightarrow{j}$$

$$\nabla f \underbrace{(1,2)}_{(x,y)} = \left(\frac{2(1)}{(1)^2 + (2)^2}\right) \overrightarrow{i} + \left(\frac{2(2)}{(1)^2 + (2)^2}\right) \overrightarrow{j}$$
$$= \left(\frac{2}{5}\right) \overrightarrow{i} + \left(\frac{4}{5}\right) \overrightarrow{j}$$

Exercícios propostos

Exercício 1: Calcule o vetor gradiente da função $f(x,y) = e^{x^2+y^2}$.

Exercício 2: Calcule o vetor gradiente da função f(x, y) = xsen(xy), no ponto (0, 0).

Definição

A derivada direcional de uma função f(x,y), denotada por $D_{\overrightarrow{u}}f(x,y)$, no ponto (x_0,y_0) e direção de um vetor unitário $\overrightarrow{u} = \overrightarrow{ai} + \overrightarrow{bj}$ é dado por

$$D_{\overrightarrow{u}}f(x_0,y_0) = \nabla f(x,y) \cdot \overrightarrow{u}$$
 (7)

Interpretação: A derivada direcional representa a taxa de variação de uma função f(x, y) em toda a direção, representada pelo vetor unitário \overrightarrow{u} .

Exemplo: Seja $f(x,y) = x^2 + xy^2 + 3y$ e o vetor unitário $\overrightarrow{u} = 1 \overrightarrow{i} + 0 \overrightarrow{j}$. Então, a derivada direcional no ponto (1,2) é dado por:

Exemplo: Seja $f(x,y) = x^2 + xy^2 + 3y$ e o vetor unitário $\overrightarrow{u} = 1\overrightarrow{i} + 0\overrightarrow{j}$. Então, a derivada direcional no ponto (1,2) é dado por:

$$\frac{\partial f}{\partial x} = 2x + y^2$$
 e $\frac{\partial f}{\partial y} = 2xy + 3$

Exemplo: Seja $f(x,y) = x^2 + xy^2 + 3y$ e o vetor unitário $\overrightarrow{u} = 1 \overrightarrow{i} + 0 \overrightarrow{j}$. Então, a derivada direcional no ponto (1,2) é dado por:

$$\frac{\partial f}{\partial x} = 2x + y^2$$
 e $\frac{\partial f}{\partial y} = 2xy + 3$

Logo,
$$\nabla f(x,y) = (2x + y^2) \overrightarrow{i} + (2xy + 3) \overrightarrow{j}$$
.

$$\nabla f(1,2) = (2(1) + (2)^2) \overrightarrow{i} + (2(1)(2) + 3) \overrightarrow{j}$$

$$\nabla f(1,2) = 6 \overrightarrow{i} + 7 \overrightarrow{j}$$

Exemplo: Seja $f(x,y) = x^2 + xy^2 + 3y$ e o vetor unitário $\overrightarrow{u} = 1 \overrightarrow{i} + 0 \overrightarrow{j}$. Então, a derivada direcional no ponto (1,2) é dado por:

$$\frac{\partial f}{\partial x} = 2x + y^2$$
 e $\frac{\partial f}{\partial y} = 2xy + 3$

Logo, $\nabla f(x,y) = (2x + y^2) \overrightarrow{i} + (2xy + 3) \overrightarrow{j}$.

$$\nabla f(1,2) = (2(1) + (2)^2) \overrightarrow{i} + (2(1)(2) + 3) \overrightarrow{j}$$

$$\nabla f(1,2) = 6 \overrightarrow{i} + 7 \overrightarrow{j}$$

Portanto,

$$D_{\rightarrow} f(1,2) = 6.1 + 7.0 = 6$$

Exemplo: Seja $f(x,y) = x^2y^3$ e o vetor unitário $\overrightarrow{u} = -\frac{3}{5}\overrightarrow{i} + \frac{4}{5}\overrightarrow{j}$. Então, a derivada direcional no ponto (1,1) é dado por:

Exemplo: Seja $f(x,y) = x^2y^3$ e o vetor unitário $\overrightarrow{u} = -\frac{3}{5}\overrightarrow{i} + \frac{4}{5}\overrightarrow{j}$. Então, a derivada direcional no ponto (1,1) é dado por:

$$\frac{\partial f}{\partial x} = 2xy^3$$
 e $\frac{\partial f}{\partial y} = 3x^2y^2$

Exemplo: Seja $f(x,y)=x^2y^3$ e o vetor unitário $\overrightarrow{u}=-\frac{3}{5}\overrightarrow{i}+\frac{4}{5}\overrightarrow{j}$. Então, a derivada direcional no ponto (1,1) é dado por:

$$\frac{\partial f}{\partial x} = 2xy^3 \quad \text{e} \quad \frac{\partial f}{\partial y} = 3x^2y^2$$

$$\text{Logo, } \nabla f(x,y) = (2xy^3) \overrightarrow{i} + (3x^2y^2) \overrightarrow{j}.$$

$$\nabla f(1,1) = (2(1)(1)^3) \overrightarrow{i} + (3(1)^2(1)^2) \overrightarrow{j}$$

$$\nabla f(1,1) = 2\overrightarrow{i} + 3\overrightarrow{j}$$

Exemplo: Seja $f(x,y) = x^2y^3$ e o vetor unitário $\overrightarrow{u} = -\frac{3}{5}\overrightarrow{i} + \frac{4}{5}\overrightarrow{i}$. Então, a derivada direcional no ponto (1,1) é dado por:

$$\frac{\partial f}{\partial x} = 2xy^3 \quad \text{e} \quad \frac{\partial f}{\partial y} = 3x^2y^2$$

$$\text{Logo, } \nabla f(x, y) = (2xy^3) \overrightarrow{i} + (3x^2y^2) \overrightarrow{i}.$$

Logo,
$$\nabla f(x,y) = (2xy^3) \overrightarrow{i} + (3x^2y^2) \overrightarrow{j}$$
.

$$\nabla f(1,1) = (2(1)(1)^3) \overrightarrow{i} + (3(1)^2(1)^2) \overrightarrow{j}$$

$$\nabla f(1,1) = 2 \overrightarrow{i} + 3 \overrightarrow{j}$$

Portanto.

$$D_{\overrightarrow{u}}f(1,1) = 2.\left(-\frac{3}{5}\right) + 3.\left(\frac{4}{5}\right) = \frac{6}{5}$$

Se $||\overrightarrow{u}|| \neq 1$, então basta tomar o versor de \overrightarrow{u} , isto é, $\frac{\overrightarrow{u}}{||\overrightarrow{u}||}$.

Exemplo: Seja $f(x,y) = 2x + y^2$ e o vetor $\overrightarrow{u} = 1 \overrightarrow{i} + 1 \overrightarrow{j}$. Então, determine a derivada direcional (na direção do versor \overrightarrow{u}) no ponto (1,1).

Se $||\overrightarrow{u}|| \neq 1$, então basta tomar o versor de \overrightarrow{u} , isto é, $\frac{\overrightarrow{u}}{||\overrightarrow{u}||}$.

Exemplo: Seja $f(x,y) = 2x + y^2$ e o vetor $\overrightarrow{u} = 1 \overrightarrow{i} + 1 \overrightarrow{j}$. Então, determine a derivada direcional (na direção do versor \overrightarrow{u}) no ponto (1,1).

Veja que
$$||\overrightarrow{u}|| = \sqrt{1^2 + 1^2} = \sqrt{2} \neq 1$$

Se $||\overrightarrow{u}|| \neq 1$, então basta tomar o versor de \overrightarrow{u} , isto é, $\frac{\overrightarrow{u}}{||\overrightarrow{u}||}$.

Exemplo: Seja $f(x,y) = 2x + y^2$ e o vetor $\overrightarrow{u} = 1\overrightarrow{i} + 1\overrightarrow{j}$. Então, determine a derivada direcional (na direção do versor \overrightarrow{u}) no ponto (1,1).

Veja que
$$||\overrightarrow{u}|| = \sqrt{1^2 + 1^2} = \sqrt{2} \neq 1$$

$$\frac{\overrightarrow{u}}{||\overrightarrow{u}||} = \frac{1\overrightarrow{i} + 1\overrightarrow{j}}{\sqrt{1^2 + 1^2}}$$
$$= \frac{1}{\sqrt{2}}\overrightarrow{i} + \frac{1}{\sqrt{2}}\overrightarrow{j}$$

Exemplo: Seja $f(x,y) = 2x + y^2$ e o vetor $\overrightarrow{u} = 1 \overrightarrow{i} + 1 \overrightarrow{j}$. Então, determine a derivada direcional (na direção do versor \overrightarrow{u}) no ponto (1,1).

Exemplo: Seja $f(x,y) = 2x + y^2$ e o vetor $\overrightarrow{u} = 1\overrightarrow{i} + 1\overrightarrow{j}$. Então, determine a derivada direcional (na direção do versor \overrightarrow{u}) no ponto (1,1).

$$\frac{\partial f}{\partial x} = 2$$
 e $\frac{\partial f}{\partial y} = 2y$

Exemplo: Seja $f(x,y) = 2x + y^2$ e o vetor $\overrightarrow{u} = 1 \overrightarrow{i} + 1 \overrightarrow{j}$. Então, determine a derivada direcional (na direção do versor \overrightarrow{u}) no ponto (1,1).

$$\frac{\partial f}{\partial x} = 2 \quad \text{e} \quad \frac{\partial f}{\partial y} = 2y$$

Logo, $\nabla f(x,y) = 2\overrightarrow{i} + 2y\overrightarrow{j}$.

$$\nabla f(1,1) = (2)\overrightarrow{i} + (2(1))\overrightarrow{j}$$

$$\nabla f(1,1) = 2\overrightarrow{i} + 2\overrightarrow{j}$$

Exemplo: Seja $f(x,y) = 2x + y^2$ e o vetor $\overrightarrow{u} = 1 \overrightarrow{i} + 1 \overrightarrow{j}$. Então, determine a derivada direcional (na direção do versor \overrightarrow{u}) no ponto (1,1).

$$\frac{\partial f}{\partial x} = 2$$
 e $\frac{\partial f}{\partial y} = 2y$

Logo, $\nabla f(x,y) = 2\overrightarrow{i} + 2y\overrightarrow{j}$.

$$\nabla f(1,1) = (2)\overrightarrow{i} + (2(1))\overrightarrow{j}$$

$$\nabla f(1,1) = 2\overrightarrow{i} + 2\overrightarrow{j}$$

Portanto,

$$D_{\overrightarrow{u}}f(1,1) = 2.\left(\frac{1}{\sqrt{2}}\right) + 2.\left(\frac{1}{\sqrt{2}}\right) = \frac{4}{\sqrt{2}}$$

Exercícios propostos

Exercício 1, página 67 da apostila Unip

Exercício 5, página 68 da apostila Unip

Exercício 2, página 69 da apostila Unip

Obrigado pela atenção!

Prof. Dr. Vinícius Wasques

email: vinicius.wasques@docente.unip.br

Departamento de Engenharia, Ciência da Computação e Sistemas de Informação