De-multiplexer

Introduction

- A De-multiplexer is a combinational circuit that has only 1 input line and 2^N output lines.
- Simply, the multiplexer is a single-input and multi-output combinational circuit.
- The information is received from the single input lines and directed to the output line.

- On the basis of the values of the selection lines, the input will be connected to one of these outputs.
- De-multiplexer is opposite to the multiplexer.
- Unlike encoder and decoder, there are n selection lines and 2ⁿ outputs. So, there is a total of 2ⁿ possible combinations of inputs.
- De-multiplexer is also treated as De-mux.

Types

 There are various types of De-multiplexer which are as follows:

1×2 De-multiplexer:

- In the 1 to 2 De-multiplexer, there are only two outputs,
- i.e., Y₀, and Y₁,
- 1 selection lines, i.e., S₀
- and single input, i.e., A.
- On the basis of the selection value, the input will be connected to one of the outputs.
- The block diagram and the truth table of the 1×2 multiplexer are given below.

Block Diagram:

Truth Table:

INPUTS	Output				
S ₀	Υ ₁	Yo			
0	0	Α			
1	Α	0			

The logical expression of the term Y is as follows:

$$Y_0 = S_0'.A$$

 $Y_1 = S_0.A$

$$Y_1 = S_0.A$$

Logical circuit of the above expressions is given below:

1×4 De-multiplexer:

- In 1 to 4 De-multiplexer, there are total of four outputs, i.e., Y₀, Y₁, Y₂, and Y₃,
- 2 selection lines, i.e., S₀ and S₁
- and single input, i.e., A.
- On the basis of the combination of inputs which are present at the selection lines S₀ and S₁, the input be connected to one of the outputs.
- The block diagram and the truth table of the 1×4 multiplexer are given below.

Block Diagram:

Truth Table:

INP	UTS	Output						
S ₁	So	Υ ₃	Y ₂	Υ ₁	Y ₀			
0	0	0	0	0	Α			
0	1	0	0	Α	0			
1	0	0	Α	0	0			
1	1	Α	0	0	0			

The logical expression of the term Y is as follows:

•
$$Y_0 = S_1' S_0' A$$

 $y_1 = S_1' S_0 A$
 $y_2 = S_1 S_0' A$
 $y_3 = S_1 S_0 A$

Logical circuit of the above expressions is given below:

1×8 De-multiplexer

- In 1 to 8 De-multiplexer, there are total of eight outputs, i.e., Y₀, Y₁, Y₂, Y₃, Y₄, Y₅, Y₆, and Y₇
- 3 selection lines, i.e., S₀, S₁ and S₂
- and single input, i.e., A.
- On the basis of the combination of inputs which are present at the selection lines S⁰, S¹ and S₂, the input will be connected to one of these outputs.
- The block diagram and the truth table of the 1×8 de-multiplexer are given below.

Block Diagram:

Truth Table:

	INPUTS	6	Output							
S ₂	S ₁	S ₀	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Yo
0	0	0	0	0	0	0	0	0	0	Α
0	0	1	0	0	0	0	0	0	А	0
0	1	0	0	0	0	0	0	Α	0	0
0	1	1	0	0	0	0	А	0	0	0
1	0	0	0	0	0	Α	0	0	0	0
1	0	1	0	0	Α	0	0	0	0	0
1	1	0	0	Α	0	0	0	0	0	0
1	1	1	Α	0	0	0	0	0	0	0

The logical expression of the term Y is as follows:

•
$$Y_0 = S_0'.S_1'.S_2'.A$$

 $Y_1 = S_0.S_1'.S_2'.A$
 $Y_2 = S_0'.S_1.S_2'.A$
 $Y_3 = S_0.S_1.S_2'.A$
 $Y_4 = S_0'.S_1'.S_2.A$
 $Y_5 = S_0.S_1'.S_2.A$
 $Y_6 = S_0'.S_1.S_2.A$
 $Y_7 = S_0.S_1.S_3.A$

Logical circuit of the above expressions is given below:

1×8 De-multiplexer using 1×4 and 1×2 de-multiplexer

- We can implement the 1×8 de-multiplexer using a lower order de-multiplexer.
- To implement the 1×8 de-multiplexer, we need two 1×4 de-multiplexer and one 1×2 demultiplexer.
- The 1×4 multiplexer has 2 selection lines, 4 outputs, and 1 input.
- The 1×2 de-multiplexer has only 1 selection line.

- For getting 8 data outputs, we need two 1×4 de-multiplexer.
- The 1×2 de-multiplexer produces two outputs.
- So, in order to get the final output, we have to pass the outputs of 1×2 de-multiplexer as an input of both the 1×4 de-multiplexer.
- The block diagram of 1×8 de-multiplexer using 1×4 and 1×2 de-multiplexer is given below.

1 x 16 De-multiplexer

- In 1×16 de-multiplexer, there are total of 16 outputs, i.e., Y₀, Y₁, ..., Y₁₆, 4 selection lines, i.e., S₀, S₁, S₂, and S₃ and single input, i.e., A.
- On the basis of the combination of inputs which are present at the selection lines S⁰, S¹, and S₂, the input will be connected to one of these outputs.
- The block diagram and the truth table of the 1×16 de-multiplexer are given below.

Block diagram

Truth Table:

	INPL	JTS			OUTPUTS														
S ₃	S ₂	S ₁	S ₀	Y ₁₅	Y ₁₄	Y ₁₃	Y ₁₂	Y ₁₁	Y ₁₀	Y ₉	Y ₈	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Α
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Α	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Α	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	Α	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	Α	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	Α	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	Α	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0	Α	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	Α	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	Α	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	Α	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	Α	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	Α	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	Α	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The logical expression of the term Y is as follows:

$$Y_0 = A.S_0'.S_1'.S_2'.S_3'$$
 $Y_1 = A.S_0'.S_1'.S_2'.S_3$
 $Y_2 = A.S_0'.S_1'.S_2.S_3'$
 $Y_3 = A.S_0'.S_1'.S_2.S_3$
 $Y_4 = A.S_0'.S_1.S_2'.S_3'$
 $Y_5 = A.S_0'.S_1.S_2'.S_3'$
 $Y_6 = A.S_0'.S_1.S_2.S_3'$
 $Y_7 = A.S_0'.S_1.S_2.S_3'$
 $Y_9 = A.S_0.S_1'.S_2'.S_3'$
 $Y_9 = A.S_0.S_1'.S_2'.S_3'$
 $Y_{10} = A.S_0.S_1'.S_2.S_3'$
 $Y_{11} = A.S_0.S_1'.S_2.S_3'$
 $Y_{12} = A.S_0.S_1.S_2'.S_3'$
 $Y_{13} = A.S_0.S_1.S_2'.S_3'$
 $Y_{14} = A.S_0.S_1.S_2'.S_3'$
 $Y_{15} = A.S_0.S_1.S_2'.S_3'$

Logical circuit of the above expressions is given below:

1×16 de-multiplexer using 1×8 and 1×2 de-multiplexer

- We can implement the 1×16 de-multiplexer using a lower order de-multiplexer.
- To implement the 1×16 de-multiplexer, we need two 1×8 de-multiplexer and one 1×2 demultiplexer.
- The 1×8 multiplexer has 3 selection lines, 1 input, and 8 outputs.
- The 1×2 de-multiplexer has only 1 selection line.

- For getting 16 data outputs, we need two 1×8 demultiplexer.
- The 1×8 de-multiplexer produces eight outputs.
 So, in order to get the final output, we need a 1×2 de-multiplexer to produce two outputs from a single input.
- Then we pass these outputs into both the demultiplexer as an input.
- The block diagram of 1×16 de-multiplexer using 1×8 and 1×2 de-multiplexer is given below.

