Задача 1

По известным значениям z_1 и z_2 найти значения w_a, w_b, w_c

1.
$$z_1 = 1 - i\sqrt{3}, \ z_2 = \sqrt{3} + i; \ w_a = z_1 \bar{z}_2, \ w_b = \left(\frac{\bar{z}_1}{z_2}\right)^2, \ w_c = \sqrt[3]{\bar{z}_2}.$$

2.
$$z_1 = 1 + i$$
, $z_2 = 3 - i$; $w_a = \bar{z}_1 \bar{z}_2$, $w_b = \frac{z_1}{z_2^2}$, $w_c = \sqrt[4]{z_1^3}$.

3.
$$z_1 = 1 + i\sqrt{3}$$
, $z_2 = 2 - i\sqrt{3}$; $w_a = \bar{z}_1 z_2$, $w_b = \frac{z_1^2}{\bar{z}_2}$, $w_c = \sqrt[3]{(\bar{z}_1)^2}$.

4.
$$z_1 = 2 - 2i$$
, $z_2 = 1 + 3i$; $w_a = \bar{z}_1 z_2$, $w_b = \left(\frac{z_1}{z_2}\right)^2$, $w_c = \sqrt[3]{(\bar{z}_1)^4}$.

5.
$$z_1 = 3 + 2i$$
, $z_2 = 2 + 2i$; $w_a = z_1 \bar{z}_2$, $w_b = \frac{(\bar{z}_1)^2}{z_2}$, $w_c = \sqrt[5]{(\bar{z}_2)^4}$.

6.
$$z_1 = 7 + i$$
, $z_2 = 3 - 3i$; $w_a = \bar{z}_1(\bar{z}_2)^2$, $w_b = \frac{\bar{z}_1}{z_2}$, $w_c = \sqrt[3]{(\bar{z}_2)^2}$.

7.
$$z_1 = 5 - 5i$$
, $z_2 = 2 - i$; $w_a = \bar{z}_1 z_2^2$, $w_b = \left(\frac{z_1}{\bar{z}_2}\right)^2$, $w_c = \sqrt[4]{\bar{z}_1}$.

8.
$$z_1 = 4 + 4i$$
, $z_2 = 4 - 3i$; $w_a = z_1 z_2$, $w_b = \frac{\bar{z}_1}{z_2}$, $w_c = \sqrt[5]{(\bar{z}_1)^2}$.

9.
$$z_1 = 2 - 2i\sqrt{3}$$
, $z_2 = \sqrt{3} + 2i$; $w_a = z_1 z_2^2$, $w_b = \left(\frac{\bar{z}_1}{z_0}\right)^2$, $w_c = \sqrt[3]{(\bar{z}_1)^2}$.

10.
$$z_1 = 2\sqrt{3} + 2i$$
, $z_2 = 1 + i\sqrt{3}$; $w_a = z_1(\bar{z}_2)^2$, $w_b = \frac{\bar{z}_2}{z_1}$, $w_c = \sqrt[5]{z_1^3}$.

11.
$$z_1 = -4 - 4i$$
, $z_2 = 3 + 2i$; $w_a = z_1^2 \bar{z}_2$, $w_b = \frac{z_2}{\bar{z}_1}$, $w_c = \sqrt[5]{(\bar{z}_1)^3}$.

12.
$$z_1 = -3 + 3i$$
, $z_2 = 2 + i$; $w_a = z_2^3$, $w_b = \frac{z_1^2}{\bar{z}_2}$, $w_c = \sqrt[3]{\bar{z}_1}$.

13.
$$z_1 = 4 - 3i$$
, $z_2 = 1 + 7i$; $w_a = z_1^2 \bar{z}_2$, $w_b = \frac{z_2}{\bar{z}_1}$, $w_c = \sqrt{z_1 z_2}$.

14.
$$z_1 = 5 - 12i$$
, $z_2 = 2 + 2i$; $w_a = z_1(\bar{z}_2)^2$, $w_b = \frac{\bar{z}_1}{z_2^2}$, $w_c = \sqrt[4]{(\bar{z}_2)^3}$.

15.
$$z_1 = \frac{7 + 24i}{5}$$
, $z_2 = -5 + 5i$; $w_a = z_1(\bar{z}_2)^2$, $w_b = \frac{z_2}{z_1}$, $w_c = \sqrt[3]{\bar{z}_2}$.

16.
$$z_1 = -3 - 4i$$
, $z_2 = -4 + 4i$; $w_a = z_1 \bar{z}_2$, $w_b = \left(\frac{\bar{z}_1}{z_2}\right)^2$, $w_c = \sqrt[3]{\frac{-\bar{z}_2}{2}}$.

17.
$$z_1 = 1 + i\sqrt{3}$$
, $z_2 = 2\sqrt{3} + 2i$; $w_a = z_1^2 \bar{z}_2$, $w_b = \frac{z_2}{\bar{z}_1}$, $w_c = \sqrt[3]{z_1 z_2}$.

18.
$$z_1 = 2\sqrt{3} - 2i$$
, $z_2 = 3 - 3i\sqrt{3}$; $w_a = \overline{z_1}\overline{z_2}$, $w_b = \frac{z_1^2}{z_2}$, $w_c = \sqrt[4]{z_2^2}$.

19.
$$z_1 = 3\sqrt{3} + 3i$$
, $z_2 = 1 + i\sqrt{3}$; $w_a = z_1(\bar{z}_2)^2$, $w_b = \frac{3z_2}{\bar{z}_1}$, $w_c = \sqrt[3]{(\bar{z}_1)^2}$.

20.
$$z_1 = -4 - 4i$$
, $z_2 = 2 + 3i$; $w_a = \bar{z}_1 z_2^2$, $w_b = \left(\frac{z_2}{z_1}\right)^2$, $w_c = \sqrt[5]{(\bar{z}_1)^3}$.

21.
$$z_1 = -\sqrt{2} + i\sqrt{2}$$
, $z_2 = \sqrt{8} - i\sqrt{8}$; $w_a = z_1^2 \bar{z}_2$, $w_b = \frac{\bar{z}_2}{z}$, $w_c = \sqrt[3]{(\bar{z}_2)^2}$.

22.
$$z_1 = 4 + 3i$$
, $z_2 = 3 + 4i$; $w_a = z_1 \bar{z}_2$, $w_b = \left(\frac{z_2}{z_1}\right)^2$, $w_c = \sqrt[4]{z_1 z_2}$.

23.
$$z_1 = 7 + 24i$$
, $z_2 = 24 - 7i$; $w_a = z_1 \bar{z}_2$, $w_b = \left(\frac{\bar{z}_1}{z_2}\right)$, $w_c = \sqrt[5]{\frac{z_1}{z_2}}$.

24.
$$z_1 = 2 + i$$
, $z_2 = 1 - 2i$; $w_a = z_1(\bar{z}_2)^2$, $w_b = \left(\frac{\bar{z}_1}{z_2}\right)^2$, $w_c = \sqrt[4]{\frac{z_2}{z_1}}$.

25.
$$z_1 = 3 + i$$
, $z_2 = 1 - 3i$; $w_a = z_1^2 \bar{z}_2$, $w_b = \frac{\bar{z}_2}{z_1}$, $w_c = \sqrt{z_1 \bar{z}_2}$.

26.
$$z_1 = 7 + i$$
, $z_2 = 1 + 7i$; $w_a = z_1 \bar{z}_2$, $w_b = \left(\frac{z_2}{\bar{z}_1}\right)^2$, $w_c = \sqrt[4]{\frac{z_1}{\bar{z}_2}}$.

27.
$$z_1 = 1 - 2i$$
, $z_2 = 4 - 2i$; $w_a = z_1^2 z_2^2$, $w_b = \frac{z_1}{z_2}$, $w_c = \sqrt[3]{\frac{\overline{z_2}}{\overline{z_1}}}$.

28.
$$z_1 = 3 - 4i$$
, $z_2 = -4 + 3i$; $w_a = (\bar{z}_1 z_2)^2$, $w_b = \frac{z_2}{\bar{z}_1}$, $w_c = \sqrt{z_1 z_2}$.

29.
$$z_1 = 4 + 4i$$
, $z_2 = 2 - 2i$; $w_a = z_1 z_2^2$, $w_b = \frac{z_1^2}{\bar{z}_2}$, $w_c = \sqrt[3]{\frac{z_1}{\bar{z}_2}}$.

30.
$$z_1 = 1 + i\sqrt{3}$$
, $z_2 = 2\sqrt{3} + 2i$; $w_a = z_1^2 \bar{z}_2$, $w_b = \left(\frac{z_2}{\bar{z}_1}\right)^2$, $w_c = \sqrt[4]{\bar{z}_2}$.

Залача 2

Вычислить указанные значения функций.

1.
$$\operatorname{tg}\left(\frac{\pi}{4}+i\right)$$
, $\ln(2-3i)$. **2.** $\operatorname{ch}\left(2-\frac{\pi i}{2}\right)$, $e^{2+\frac{\pi i}{3}}$.

4. th
$$\left(1 - \frac{\pi i}{2}\right)$$
, $e^{-1 - \frac{2\pi i}{3}}$. **5.** $\cos\left(\frac{\pi}{6} + i\right)$, $\ln(-3 + i)$.

$$\left(\frac{\pi}{6} + i\right), \ln(-3 + i).$$
 6. $\operatorname{sh}\left(1 + \frac{\pi i}{4}\right), e^{0.5 + \pi i}.$ **1.** $\left(1 + \frac{\pi i}{4}\right), e^{-0.5 - \frac{\pi i}{2}}.$ **9.** $\operatorname{sin}\left(\frac{\pi}{2} + i\right), \ln(-5 + 12i).$

7.
$$\operatorname{ctg}\left(\frac{\pi}{3}-i\right)$$
, $\ln(-2-2i)$. 8. $\operatorname{ch}\left(1+\frac{\pi i}{4}\right)$, $e^{-0.5-\frac{\pi i}{2}}$. 9. $\operatorname{sin}\left(\frac{\pi}{2}+i\right)$, $\ln(-5+1)$. 10. $\operatorname{cth}\left(-1+\frac{\pi i}{2}\right)$, $e^{-1+\frac{\pi i}{3}}$. 11. $\operatorname{cos}\left(\frac{\pi}{2}+3i\right)$, $\ln(-4-3i)$. 12. $\operatorname{sh}\left(2-\frac{\pi i}{2}\right)$, $e^{1-\frac{\pi i}{4}}$.

13.
$$\operatorname{tg}\left(\frac{\pi}{6} + 2i\right)$$
, $\ln(-3 - 3i)$. **14.** $\operatorname{sh}\left(2 + \frac{\pi i}{4}\right)$, $e^{-0.5 + \frac{3\pi i}{4}}$.

15.
$$\cos\left(\frac{\pi}{2} + 3i\right)$$
, $\text{Ln}(2 - 4i)$.

3. $\sin\left(\frac{\pi}{3} + 2i\right)$, $\ln(3 - 4i)$.

16.
$$\operatorname{cth}\left(1-\frac{\pi i}{4}\right), \ e^{0.1+\frac{\pi i}{2}}.$$
 17. $\sin\left(\frac{\pi}{6}-i\right), \ \ln(-3+i).$

10.
$$\cot(1-\frac{\pi i}{4})$$
, e^{x+2} . **11.** $\sin(\frac{\pi}{6}-i)$, $\sin(-3+i)$. **19.** $\tan(1+\frac{\pi i}{2})$, $\tan(\frac{1+i}{1-i})$. **20.** $\sin(\frac{\pi}{2}+2i)$, $e^{\frac{\pi(1-i)}{2}}$.

18.
$$\operatorname{ch}\left(2 - \frac{\pi i}{6}\right), \ e^{2(1+i)}.$$

21. $\operatorname{ch}(2 - \pi i), \ \operatorname{Ln}\left(\frac{2-i}{6}\right).$

22.
$$\operatorname{ctg}\left(\frac{\pi}{4} + 2i\right)$$
, $e^{-(1+2i)\frac{\pi}{2}}$. **23.** $\operatorname{sh}\left(\frac{1+\pi i}{2}\right)$, $\operatorname{ln}\left(\frac{1+2i}{-1+2i}\right)$. **24.** $\operatorname{cos}\left(\frac{\pi+2i}{2}\right)$, $e^{-1-\frac{3\pi i}{4}}$.

23.
$$\operatorname{sh}\left(\frac{1+\pi i}{2}\right)$$
, $\operatorname{ln}\left(\frac{1+2i}{-1+2i}\right)$

24.
$$\cos\left(\frac{\pi+2i}{2}\right)$$
, $e^{-1-\frac{3\pi i}{4}}$.
27. $\sin\left(2+\frac{\pi i}{4}\right)$, $\operatorname{Ln}(24-7i)$.

25.
$$cth(2-\pi i)$$
, $Ln(5-12i)$. **26.** $sin(\frac{\pi}{4}+i)$, $e^{2+\frac{\pi i}{3}}$.

29.
$$ch\left(1-\frac{\pi i}{2}\right) \ln(3+4i)$$

28.
$$\operatorname{ctg}\left(\frac{\pi}{2}+2i\right),\ e^{-2+\frac{\pi i}{6}}.$$
 29. $\operatorname{ch}\left(1-\frac{\pi i}{3}\right),\ \ln(3+4i).$ **30.** $\cos\left(\frac{\pi}{3}-i\right),\ e^{1.5+\frac{\pi i}{2}}.$

Задача 3

Проверить, будет ли аналитической заданная функция

1.
$$\frac{1}{1+z}$$
. 9. $e^{(\bar{z})^2}$. 2. $\sin(z+\frac{\pi}{4})$. 10. $\cos(z-\frac{\pi}{4})$.

9.
$$e^{(\bar{z})^2}$$
.

17.
$$\frac{1}{\bar{z}-1}$$
.
18. $(1+\bar{z})^3$.

24.
$$z\bar{z}$$
.
25. $\frac{\bar{z}}{z}$.

3.
$$\ln(1+z)$$
.

11.
$$e^{\bar{z}-1}$$
.

19.
$$\sin\left(2\bar{z}+\frac{\pi}{4}\right)$$
.

4.
$$\frac{1}{1+\bar{z}}$$
.

12.
$$\frac{1}{1-z}$$
.

20.
$$\ln \frac{\bar{z}}{z}$$
.
21. $z^2 + (\bar{z})^2$.

27.
$$\operatorname{ch} \frac{z}{2}$$
.
28. $\ln(z-1)$.

26. $\sin 2z$.

5.
$$ch(\bar{z}-2)$$
. **6.** $ln(1+\bar{z})$.

14.
$$e^{z^2}$$
.

29.
$$1 - \frac{1}{z}$$
.

7.
$$sh(z+1)$$
.

15.
$$z + 1$$
.

23.
$$\bar{z} + \frac{1}{z}$$
.

30.
$$\frac{1}{z} - \frac{1}{z}$$

8.
$$e^{1+z}$$
.

16.
$$1 + \frac{1}{2}$$
.

Установить, может ли данная функция служить вещественной или мнимой частью некоторой аналитической функции и, если может, восстановить эту аналитическую функцию. Убедиться в том, что найденная функция аналитична и удовлетворяет заданному условию. Ниже

через u(x,y) обозначена вещественная часть искомой аналитической функции, а через v(x,y) мнимая часть.

1. $u(x,y) = \sin y \, \operatorname{ch} x$. **11.** $u(x,y) = e^{-2x} \, \sin 2y$.

21. $v(x,y) = \frac{x}{(x^2 + y^2)}$

2. $v(x,y) = \cos y \, \operatorname{ch} x$. **12.** $v(x,y) = \operatorname{sh} 2x \, \cos 2y$.

22. $v(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$

3. $v(x,y) = e^x \operatorname{ch} y$. **13.** $v(x,y) = \operatorname{ch} 2x \cos 2y$.

23. $u(x,y) = -\frac{2xy}{(x^2+y^2)^2}$

4. $u(x,y) = e^{-x} \sin y$. **14.** $v(x,y) = \sin 3x \sin 3y$.

24. $u(x,y) = 3x^2y - y^3$.

5. $v(x,y) = e^y \sin x$. **15.** $u(x,y) = e^{2y} \sin 2x$.

25. $u(x,y) = -\frac{x}{x^2 + y^2}$ **26.** $v(x,y) = e^{2x} \cos 2y$.

27. $v(x,y) = -e^{x/2} \sin \frac{y}{2}$

6. $u(x,y) = e^{-y} \cos x$. 7. $u(x,y) = e^{y} \sin x$. 16. $v(x,y) = e^{-2y} \cos 2x$. 17. $u(x,y) = \operatorname{arctg} \frac{y}{x}$. 18. $v(x,y) = -\ln(x^{2} + y^{2})$.

28. $u(x,y) = \sin \frac{x}{2} \sin \frac{y}{2}$.

9. $v(x,y) = \operatorname{ch} x \operatorname{sh} y$. **19.** $v(x,y) = x^3 - 3xy^2$.

29. $u(x,y) = e^{x-y}$.

10. $u(x,y) = -\sin x \sin y$.

20. $u(x,y) = \frac{y}{(x^2 + y^2)}$.

30. $v(x,y) = -\frac{y}{x^2 + y^2}$

Задача 5

Определить круг сходимости заданного степенного ряда. Выяснить, сходится ли ряд в заданной точке z_1, z_2, z_3 (если сходится, то как: абсолютно или условно). Сделать рисунок.

Bap.	Ряд	z_1	z_2	z_3
1	$\sum_{n=1}^{\infty} \frac{(z-i)^{2n-1}}{2^n(n+\ln n)}$	2i	3i	$\sqrt{2}+i$
2	$\sum_{n=1}^{\infty} \frac{(z+1-i)^{2n}}{3^n(n^2+n\ln n)}$	0	$\sqrt{3}-1+i$	2+i
3	$\sum_{n=1}^{\infty} \frac{(z-1-i)^n}{2^n(n+1)\ln(n+1)}$	0	3+i	1+3i
4	$\sum_{n=1}^{\infty} \frac{(z-2i)^{2n-1}}{(n+1)^2 \ln(n+1)}$	0	3i	1+2i
5	$\sum_{n=1}^{\infty} \frac{(z+1-2i)^n}{2^n(n+1)\ln^2(n+1)}$	0	1+2i	-1
6	$\sum_{n=1}^{\infty} \frac{(2/3)^n (z-1+i)^n}{n + \sin(n\pi/2)}$	0	$\frac{5}{2}-i$	$1+\frac{i}{2}$
7	$\sum_{n=1}^{\infty} \frac{(3/4)^n (z+2i)^{2n}}{\sqrt{n+\ln n}}$	0	$\frac{2}{\sqrt{3}} - 2i$	$\left(\frac{2}{\sqrt{3}}-2\right)i$
8	$\sum_{n=1}^{\infty} \frac{(z-i)^n}{(2i)^n (n+1+arctgz)}$	0	3i	2+i
9	$\sum_{n=1}^{\infty} \frac{(z+1+2i)^{2n}}{(4i)^n (n+1)\sqrt{\ln(n+1)}}$	0	1-2i	-1
10	$\sum_{n=0}^{\infty} \frac{(z-2+i)^{2n+1}}{3^n ((n+1)^2 + \ln^2(n+1))}$	0	$2+\sqrt{2}$	$2 + i(\sqrt{3} - 1)$
11	$\sum_{n=0}^{\infty} \frac{(z+1-2i)^n}{(2i)^n \sqrt{(n+1)^3 + 2n \ln n}}$	0	1+2i	-1+4i
12	$\sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n \frac{(z-2i)^n}{n+1+\sin n\alpha}$	1	$\frac{2}{3} + 2i$	$\frac{8}{3}i$

Bap.	Ряд	z_1	z_2	z_3
13	$\sum_{n=1}^{\infty} \frac{(2i)^n (z+1)^{2n}}{\sqrt{n+1+\arcsin(1/n)}}$	0	$-1+\frac{i}{\sqrt{2}}$	$-\frac{3}{2}$
14	$\sum_{n=1}^{\infty} \frac{i^n (z+3i)^n}{3^n (n^2+1)}$	0	3-3i	i
15	$\sum_{n=1}^{\infty} \frac{(-1)^n (z-1+i)^{2n}}{4^n n \sqrt{n+1}}$	0	3-i	1+i
16	$\sum_{n=1}^{\infty} \frac{(z-2+2i)^n}{3^n \sqrt{n^3+1}}$	0	2+i	-1 - 3i
17	$\sum_{n=0}^{\infty} \frac{(-1)^n (z+1+i)^{2n}}{9^n \sqrt{n+1}}$	0	2-i	-1 + 2i
18	$\sum_{n=1}^{\infty} \frac{(-1)^n (z - i\sqrt{2})^{2n}}{2^n \sqrt[3]{n^2 + n \ln n}}$	0	$\sqrt{2}(1+i)$	1
19	$\sum_{n=1}^{\infty} \frac{(z+i\sqrt{3})^{2n-1}}{3^n(n+1)\ln^{3/2}(n+1)}$	0	$\sqrt{3}(1-i)$	-1
20	$\sum_{n=1}^{\infty} \frac{(-1)^n (z-1+i)^{2n-1}}{2^n (n+1) \ln(n+1)}$	0	1+i	1-2i
21	$\sum_{n=1}^{\infty} \frac{i^n (z+1+i/2)^n}{2^n (n+1)\sqrt{\ln(n+1)}}$	0	$-1+\frac{3}{2}i$	1 - i/2
22	$\sum_{n=0}^{\infty} \frac{(-1)^n (z-2+3i)^{2n}}{4^n (n+1+\ln^2(n+1))}$	2-i	4-3i	1-2i
23	$\sum_{n=1}^{\infty} \frac{(z+1-2i)^{2n-1}}{5^n(n+1)\ln^3(n+1)}$	0	1+i	1
24	$\sum_{n=1}^{\infty} \frac{(-1)^n (z-2+2i)^n}{3^n (1+1/n)^n}$	0	-1-2i	5-i
25	$\sum_{n=1}^{\infty} \frac{i^n n^2 (z+3-i)^n}{3^n \ln(n+1)}$	0	-3-2i	-1+i
26	$\sum_{n=1}^{n=1} \frac{\ln(n+1)(z-2)^{2n}}{2^n(1+\sin^2 n\alpha)}$ $\sum_{n=1}^{\infty} \frac{(n+\ln n)(z-1+i)^{2n}}{2^n}$	0	$2+\sqrt{2}$	2+i
27	$\sum_{n=1}^{\infty} \frac{(n+\ln n)(z-1+i)^{2n}}{2^n}$	0	1	$1+\sqrt{2}-i$
28	$\sum_{n=1}^{\infty} \frac{(n+1)\ln(n+1)(z-1)^{2n-1}}{3^n}$	$1+\sqrt{3}$	$1+i\sqrt{3}$	0
29	$\sum_{n=1}^{\infty} \frac{(-1)^n (z+2i)^n 2^{2n}}{3^n (n+\sqrt{n})}$	0	$\frac{3}{4}-2i$	$-\frac{5}{4}i$
30	$\sum_{n=1}^{\infty} \frac{i^n (z - i\sqrt{2})^{2n}}{2^n \sqrt{n^2 + 1}}$	0	$2\sqrt{2}$	$\sqrt{3}+i\sqrt{2}$

Задача 6

Найти все разложения заданной функции f(z) по степеням z-a и указать области этих

Замечания. 1. Для многозначной функции $\sqrt[3]{z}$ рассматривается та ее ветвь, которая на положительной части действительной оси принимает действительные значения.

2. Для многозначной функции $\operatorname{arctg} z$ рассматривается та ее ветвь, которая на положительной части действительной оси принимает действительные значения. При этом имеет место представление $\arctan z = \int \frac{dz}{1+z^2} = \frac{\pi}{2} + \frac{1}{2}$

1. $f(z) = \frac{1}{z^2(z-1)}$ no cten. (z-1).

16.
$$f(z) = \left(\frac{\sin z}{z}\right)^3$$
 по степ. (z) .

2.
$$f(z) = \frac{z}{z^2 - 5z + 4}$$
 no cren. $(z - 2)$.

17.
$$f(z) = \frac{z}{\sqrt[3]{z^3 + 3z^2 + 3z}}$$
 по степ. $(z+1)$.

3.
$$f(z) = \frac{z+2}{(z^2+2z+5)^2}$$
 по степ. $(z+1)$.

18.
$$f(z) = \frac{z}{(z^2 - 1)^3}$$
 по степ. $(z + 1)$.

4.
$$f(z) = \frac{\sin z}{z - \pi/4}$$
 по степ. $(z - \pi/4)$.

19.
$$f(z) = \frac{\sqrt[3]{7+3z-3z^2+z^3}}{z-1}$$
 по степ. $(z-1)$.

5.
$$f(z) = \frac{z-1}{\sqrt[3]{z^3 - 3z^2 + 3z}}$$
 no cten. $(z-1)$.

20.
$$f(z) = \frac{1}{z(z^2 - 4)}$$
 по степ. $(z + 2)$.

6.
$$f(z) = \frac{1}{z(z^2-1)}$$
 по степ. $(z+1)$.

21.
$$f(z) = \frac{\sin^2 z}{(z - \pi/8)^2}$$
 по степ. $(z - \pi/8)$.

7.
$$f(z) = \frac{z+4}{(z^3+6z^2+12z)^2}$$
 по степ. $(z+2)$.

22.
$$f(z) = \frac{1}{(z-1)(z^2+4)}$$
 по степ. (z) .

8.
$$f(z) = \frac{1}{\sqrt[3]{(16-12z+6z^2-z^3)^2}}$$
 no eten

8.
$$f(z) = \frac{1}{\sqrt[3]{(16-12z+6z^2-z^3)^2}}$$
 no cten. $(z-2)$. 23. $f(z) = \frac{\cos^2 z}{(z+\pi/8)^2}$ no cten. $(z+\pi/8)$.

9.
$$f(z) = \frac{z}{(z^2 - 4)^2}$$
 no cren. $(z - 2)$.

24.
$$f(z) = \frac{1}{(z+1)(z^2-4)}$$
 no cren. (z) .

10.
$$f(z) = \frac{1}{2} \ln \frac{1+z}{1-z}$$
 по степ. (z) .

25.
$$f(z) = \frac{1}{1+z+z^2}$$
 по степ. (z) .

11.
$$f(z) = \arctan(z)$$
.

26.
$$f(z) = \frac{1}{z+1} \cos^2 \frac{1}{z+1}$$
 по степ. $(z+1)$.

12.
$$f(z) = \frac{1}{(z+1)(z+2)^3}$$
 no cren. $(z+1)$.

27.
$$f(z) = \left(\frac{\cos z}{z}\right)^3$$
 по степ. (z).

13.
$$f(z) = \frac{\cos z}{(z + \pi/4)^2}$$
 no cten. $(z + \pi/4)$.

28.
$$f(z) = \frac{1}{1-z+z^2}$$
 по степ. (z) .

14.
$$f(z) = (z-1)^2 \sin^2 \frac{1}{z-1}$$
 по степ. $(z-1)$.

29.
$$f(z) = \frac{z+2}{(z^3+3z^2+3z)^2}$$
 по степ. $(z+1)$.

15.
$$f(z) = \frac{\sin z}{(z - 3\pi/4)^3}$$
 no cten. $(z - 3\pi/4)$.

30.
$$f(z) = \frac{z}{(z^2 - 2z)^3}$$
 по степ. $(z - 1)$.

Задача 7

Найти все особые точки заданной функции f(z), определить их характер и найти вычеты в них. Установить характер бесконечно удаленной точки и найти вычет в ней.

1.
$$f(z) = \frac{e^z}{(z^2 + \pi^2)^2}$$
.

11.
$$f(z) = z^5 \sin \frac{1}{z^2}$$
.

21.
$$f(z) = \frac{1}{(1+z)^2} \cos \frac{1}{z}$$
.

2.
$$f(z) = \frac{\sin z}{(z^2 + \pi^2)^2}$$
.

12.
$$f(z) = \frac{e^{1/z}}{1-z}$$
.

22.
$$f(z) = \frac{1}{(1-z)^2} \sin \frac{1}{z}$$
.

3.
$$f(z) = \frac{\sin z}{(z^2 - \pi^2)^2}$$
.

13.
$$f(z) = \frac{1}{1-z} \sin \frac{1}{z}$$
.

23.
$$f(z) = \frac{1}{z(1-z^2)} \cos \frac{1}{z}$$
.

4.
$$f(z) = \frac{\operatorname{ch} z}{(z^2 + \pi^2)^3}$$
.

14.
$$f(z) = \frac{1}{1+z} \operatorname{sh} \frac{1}{z}$$
.

24.
$$f(z) = \frac{1}{z(1+z^2)} \operatorname{ch} \frac{1}{z}$$
.

5.
$$f(z) = \frac{\cos z}{(z^2 - \pi^2)^3}$$
.

15.
$$f(z) = \frac{1}{(1-z)^2} e^{1/z}$$
.

25.
$$f(z) = \frac{1}{1+z^2} \operatorname{sh} \frac{1}{z}$$
.

6.
$$f(z) = \frac{z^2 + 4}{(z^2 + 3z + 2)^2}$$
.

16.
$$f(z) = \frac{1}{1-z^2} e^{1/z}$$
.

26.
$$f(z) = \frac{z}{1-z} \sin \frac{1}{z}$$
.

7.
$$f(z) = \frac{(z+1)^2}{(z^2-3z+2)^2}$$
.

17.
$$f(z) = \frac{1}{1+z^2} \sin \frac{1}{z}$$
.

27.
$$f(z) = \frac{1}{z(1+z)} \cos \frac{1}{z}$$
.

8.
$$f(z) = \frac{e^{iz}}{(z^2 - \pi^2)^2}$$
.

17.
$$f(z) = \frac{1}{1+z^2} \sin \frac{1}{z}$$
.
18. $f(z) = \frac{z}{1+z^2} \cosh \frac{1}{z}$.

28.
$$f(z) = \frac{1}{1+z} \operatorname{ch} \frac{1}{z}$$
.

9.
$$f(z) = z^3 e^{-1/z^2}$$
.

19.
$$f(z) = \frac{z}{1+z^2} \cos \frac{1}{z}$$
.

29.
$$f(z) = \frac{1}{z(1-z)} \sinh \frac{1}{z}$$
.

10.
$$f(z) = z^3 \cos \frac{1}{z^2}$$
. **20.** $f(z) = \frac{1}{(1-z)^2} \sinh \frac{1}{z}$.

30.
$$f(z) = \frac{z}{1+z} e^{-1/z}$$
.

Задача 8

Вычислить интеграл.

1.
$$\oint_C \frac{dz}{(z^2+1)^2}$$
, $C: |z+i| = 1$.

2.
$$\oint_C \frac{dz}{(z^2-1)^3}$$
, $C: |z-1|=1$.

3.
$$\oint_C \frac{(z^2+1)}{z^3+1} dz$$
, $C: |z|=2$.

4.
$$\oint_C z^2 e^{-1/z} dz$$
, $C: |z| = 1$.

5.
$$\oint_C z^2 \sinh \frac{1}{z} dz$$
, $C: |z| = 2$.

6.
$$\oint_C z \cos \frac{1}{z} dz$$
, $C: |z| = 2$.

7.
$$\oint_C \frac{(z^3+1) dz}{(z^2+1)^2}$$
, $C: |z|=2$.

8.
$$\oint_C \frac{e^z dz}{(z^2 - 1)^2}$$
, $C: |z + 1| = 1$.

9.
$$\oint_C \frac{e^{iz}dz}{z^2+1}$$
, $C: |z|=2$.

10.
$$\oint_C \frac{\operatorname{ch} z \, dz}{(z^2 + \pi^2)^2}, \quad C \colon |z - \pi i| = \pi.$$

11.
$$\oint_C \frac{\sin z \, dz}{(z^2 - \pi^2/4)^2}$$
, $C: |z - \pi/2| = 1$.

12.
$$\oint_C \frac{\ln z \, dz}{(z^2+1)^2}$$
, $C: |z-i| = 0.5$.

13.
$$\oint_C \frac{\ln(z+1) dz}{(z^2-1)^2}$$
, $C: |z-1| = 1$.

14.
$$\oint_C \frac{e^{-z}dz}{z(z-1)^3}$$
, $C: |z-1| = 2$.

15.
$$\oint_C \frac{\cos z \, dz}{z^2 (z-\pi)^2}$$
, $C: |z-\pi| = 4$.

16.
$$\oint_C \frac{(z+2)^2 e^z \sin \pi z \, dz}{z-2}$$
, $C: |z-2| = 1$.

17.
$$\oint_C \frac{z^3 dz}{(z+1)^3(z-2)}$$
, $C: |z-2| = 2$.

18.
$$\oint_C \frac{(z^2+1) dz}{z^2(z+2)^2}$$
, $C: |z|=1$.

19.
$$\oint_C \frac{z^3 dz}{(z-1)^3 (z+2)}, \quad C: |z-1| = 2.$$

20.
$$\oint_C \frac{e^{iz}z\,dz}{z^2+1}$$
, $C: |z-i|=1$.

21.
$$\oint_C \frac{e^{-iz}(1-z^2) dz}{1+z^2}$$
, $C: |z+i| = 1$.

22.
$$\oint_C \frac{\sin z \, dz}{(z^2 + \pi^2)^2}, \quad C: |z - \pi i| = \pi.$$

23.
$$\oint_C \frac{\sin^2 z \ dz}{(z^2 - \pi^2/4)^2}, \quad C: \ |z + \pi/2| = 1.$$

24.
$$\oint_C \frac{\operatorname{tg} z \, dz}{(z - \pi/4)^3}$$
, $C: |z - \pi/4| = 0.5$.

25.
$$\oint_C \frac{\operatorname{ch} \pi z \, dz}{(z^2+1)^3}$$
, $C: |z-i|=1$.

26.
$$\oint_C \frac{\ln(1+z) dz}{(z^2-1)^3}$$
, $C: |z-1|=1$.

27.
$$\oint_C \frac{e^z \ln(z+1) dz}{(z-1)^2}$$
, $C: |z-1| = 1$.

28.
$$\oint_C \frac{dz}{(z^4-16)^2}$$
, $C: |z-2i|=2$.

29.
$$\oint \frac{\operatorname{th}(\pi z/4)}{(z^2+1)^2} dz$$
, $C: |z-i| = 0.5$.

30.
$$\oint_{-\infty}^{C} \frac{e^{iz}\cos z \, dz}{(z-\pi)^3}, \quad C: \ |z-\pi| = \pi.$$