Population genetics lab

Attendance Code

What we will do today

- 1. Reminder of Hardy-Weinberg Equilibrium
- 2. Example of Hardy-Weinberg Equilibrium
- 3. Class exercise 1 (with marbles)
- 4. Class exercise 2 (with table)
- 5. 10 minute break
- 6. Class exercise 3 (more marbles)
- 7. Overview of assignment
- 8. Conclusion

Reminder of Hardy-Weinberg Equilibrium

$$p^2 + 2pq + q^2 = 1$$

- No natural selection
- No mutation
- ▶ No migration (no gene flow)
- ► Infinite population size
- ► Mating is random
- ► Non-overlapping generations

Example of Hardy-Weinberg Equilibrium

Test HWE using 3 genotypes from 1000 UK residents

Are observed frequencies at the MN locus in accord with those expected under HWE?

First find Freq(M) = p, and Freq(N) = q

Example of Hardy-Weinberg Equilibrium

Genotype MM MN NN Total Counts 298 489 213 1000

Example of Hardy-Weinberg Equilibrium

```
Class exercise 1 (with marbles)
```

- Black (B), Clear (b)
- ► BB:
- ► Bb:
- bb:

Allele frequencies?

```
Class exercise 1 (with marbles)
```

Black (B), Clear (b)

- ► BB:
- ► Bb:
- bb:

HWE genotype frequencies?

Microsatellites

- Repeated DNA sequences
- ► Alleles are repeats
 - ► 'GTGT' (2)
 - ► 'GTGTGTGT' (4)
 - ▶ 'GTGTGTGTGT' (5)
- Neutral variation

Class exercise 2 (with table)

Sample	Allele 1	Allele 2	Genotype
1	121	125	Bb
2	121	121	BB
3	121	121	BB
4	125	125	bb
5	121	125	Bb
6	125	125	BB
7	121	121	bb
8	121	125	bb
9	121	125	Bb
10	121	125	Bb
11	125	125	bb
12	121	121	BB
13	121	121	BB
14	121	125	Bb

BB: 5

Bb: 5

bb: 4

Allele freqs?
Genotype freqs?
HWE freqs?

10 minute break

Take a break!

Class exercise 3 (more marbles)

Black (A_1) , Clear (A_2) , Yellow (A_3)

- \triangleright A_1A_1 :
- \triangleright A_1A_2 :
- $ightharpoonup A_1 A_3$:
 - ► *A*₂*A*₂:
 - \triangleright A_2A_2 :
- $ightharpoonup A_3 A_3$:

Allele frequencies?

Black (A_1) , Clear (A_2) , Yellow (A_3)

- $\triangleright A_1A_1$:
- \triangleright A_1A_2 :
- \triangleright A_1A_3 :
- \triangleright A_2A_2 :
 - \triangleright A_2A_2 :
- ► *A*₃*A*₃:

 $\operatorname{Fr}(A_1) = p$, $\operatorname{Fr}(A_2) = q$, $\operatorname{Fr}(A_3) = r$

- ► $Fr(A_1) = p$:
- $ightharpoonup \operatorname{Fr}(A_2) = q$:
- ► $Fr(A_3) = r$:

- ► $Fr(A_1) = p$:
- ► $Fr(A_2) = q$:
- ► $Fr(A_3) = r$:

$$p^2+q^2+r^2+2pq+2pr+2qr=1$$

- ► Allele frequencies?
- Observed genotype frequencies?
- Expected genotype frequencies?
- ► In Hardy-Weinberg Equilibrium?

- ► Freshwater crustaceans (*Daphnia pulex*)
- ► In European ponds and lakes
- Asexual & sexual reproduction
- Sampled high radiation Chernobyl zone
- ► Microsattelite data

- ► Count 152 & 152: 22
- ► Count 152 & 144: 3
- ► Count 152 & 148: 2
- ► Count 144 & 144: 0
- ► Count 144 & 148: 0
- ► Count 148 & 148: 0

- ► Count 152 & 152: 22
- ► Count 152 & 144: 3
- ► Count 152 & 148: 2
- ► Count 144 & 144: 0
- ► Count 144 & 148: 0
- ► Count 148 & 148: 0

- ightharpoonup Freq(152) = p
- ightharpoonup Freq(144) = q
- ► Freq(148) = r

Allele Frequencies

```
Allele Number Frequency
p (152)
q (144)
r (148)
```

Genotype frequencies

Genotype		Expected	Observed
pp	p^2		
qq	q^2		
rr	r^2		
pq	2pq		
pr	2pr		
qr	2qr		
	Sum:		

Observed heterozygosity (H_O) :

Expected heterozygosity (H_E) :

Conclusion

- ► Complete Parts 3-5
- ► Will have 4 alleles