Metodologias de Otimização e Apoio à Decisão 1º Teste de Avaliação

Data: 25 de novembro de 2022 Duração: 1h 30m

No.

<u>Apresente todos</u> os <u>cálculos</u> que efetuar, assim como <u>todos</u> os <u>comentários</u>, <u>justificações</u> ou conclusões que achar convenientes.

Nome:		Nº:
1.		
Considere o seguinte problema de	e programação linear:	
$Maximizar z = -x_1 + x_2 - 3x_3$		
sujeito a		
$2x_1 + x_2 + x_3 \ge 3$	(1)	
$x_1 + 2x_2 - x_3 \le 1$	(2)	
$x_1 > 0$, $x_2 > 0$, $x_3 > 0$		

Considerando x_4 e x_5 as variáveis *surplus* e *artificial* da restrição funcional (1), e x_6 a variável *slack* da restrição funcional (2), o quadro ótimo do *simplex* é:

	Ci	-1	1	-3	0	-M	0	
ХВ	C _B \ X i	X 1	X 2	X 3	X 4	X 5	X 6	b
X 3	-3	0	-1	1	-1/3	1/3	-2/3	1/3
X 1	-1	1	1	0	-1/3	1/3	1/3	4/3
Z	zj-cj	0	1	0	4/3	M-4/3	5/3	-7/3

- a) Determine, efetuando um estudo de <u>pós-otimização</u>, quais as implicações na solução ótima apresentada (no valor de x* e no valor de z*), decorrentes das seguintes alterações:
 - i) Alteração da função objetivo para: $Maximizar z = x_1 + 3x_2 3x_3$;
 - ii) Introdução de uma nova restrição: 2x₁ + 2x₂ ≤ 1.
- **b)** Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que **intervalo de b**₁ (termo independente da 1ª restrição) a base ótima apresentada atrás continuará ótima.

Considere o seguinte problema de programação linear inteira mista:

Maximizar
$$z = -x_1 + 3x_2$$

sujeito a
 $x_1 + 3x_2 \le 6$ (1)
 $-2x_1 + 4x_2 \le 4$ (2)
 $x_1 \ge 0$, $x_2 \ge 0$
 x_2 inteiro

Considerando x_3 e x_4 as variáveis *slack* das restrições funcionais (1) e (2), respetivamente, suponha que se aplicou o *algoritmo de Gomory* a este mesmo problema e que no final do 1º passo se obteve o seguinte quadro ótimo:

	Ci	-1	3	0	0	
ΧB	c _B \x _i	X 1	X ₂	X 3	X 4	b
X 1	-1	1	0	2/5	-3/10	6/5
\mathbf{X}_{2}	3	0	1	1/5	1/10	8/5
-	zj-cj	0	0	1/5	3/5	18/5

- a) Retire as suas **conclusões** e, se achar necessário, **prossiga com o 2º passo** do referido algoritmo para resolver o problema apresentado.
- **b)** Considerando a resolução gráfica do problema de PL associado apresentada abaixo, **interprete a resolução da alínea anterior**, completando o referido gráfico.

c) Usando como exemplo o problema anterior, explique as razões pelas quais se recorre ao algoritmo de Gomory (ou a outros alternativos), ao invés de simplesmente se resolver o problema de PL associado e arredondar os valores ótimos encontrados para cada uma das variáveis de decisão inteiras.