Diskrete Mathematik

Zahlenmengen

natürliche Zahlen natürliche Zahlen mit 0

ganze Zahlen

rationale Zahlen

 \mathbb{R} reelle Zahlen

komplexe Zahlen

Aussagenlogik

Aussage Ein Satz, der entweder wahr (w) oder falsch (f) ist. Prädikat Eine Aussage mit Variablen. n-

stellige Prädikate.

Grundidee

Aus gegebenen Prädikaten/Aussagen lassen sich durch Junktoren neue Aussagen bilden. (z. B. Kombinationen mit $\land, \lor, \neg, \Rightarrow, \Leftrightarrow$).

Definitionen

- Negation: $\neg A$ ist genau dann wahr, wenn Afalsch ist. (Doppelte Negation: $A \Leftrightarrow \neg \neg A$.)
- Konjunktion: $A \wedge B$ ist wahr genau dann, wenn A und B wahr sind. (assoziativ, kommutativ, idempotent)
- **Disjunktion:** $A \vee B$ ist wahr, wenn mindestens eine der Aussagen wahr ist. (assoziativ, kommutativ, idempotent)
- Implikation: $A \Rightarrow B$ ist äquivalent zu $\neg A \lor B$. (Kontraposition: $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$.)
- Äquivalenz: $A \Leftrightarrow B$ genau dann, wenn $A \Rightarrow B \land B \Rightarrow A$.

Wichtige Regeln

- De Morgan: $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B \neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
- Distributivität: $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ $A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C)$
- Syntaktische Bindung: ¬ bindet stärker als \land . \lor : diese binden stärker als \Rightarrow . \Leftrightarrow .
- Modus Ponens: Aus $A \wedge (A \Rightarrow B)$ folgt B.
- Transitivität: Aus $(A \Rightarrow B) \land (B \Rightarrow C)$ folgt $A \Rightarrow C$

Hinweis zur Redundanz

Jeder Ausdruck mit den Junktoren $\neg, \land, \lor, \Rightarrow$ lässt sich ausschliesslich mit \neg und \lor darstellen, z.B.

$$A \wedge B \Leftrightarrow \neg (\neg A \vee \neg B)$$

Quantoren

Quantoren dienen zur Formalisierung von Aussagen

- $\forall x \, A(x)$: Für alle x gilt A(x)
- $\exists x \, A(x)$: Es existiert ein x mit A(x)

Mehrere gleichartige Quantoren:

 $\forall x, y \ A(x, y)$ statt $\forall x \ \forall y \ A(x, y)$

Eingeschränkte Quantoren

 $\forall x \in M \ A(x) : \text{Für alle } x \in M \ \text{gilt } A(x)$ $\exists x \in M \ A(x) : \text{Es gibt } x \in M \ \text{mit } A(x)$

Auch möglich mit Relationen:

$$\forall x < y A(x) \quad \text{oder} \quad \exists x \le y A(x)$$

Als Junktoren

Für endliche Mengen $M = \{x_1, \ldots, x_n\}$ gilt: $\forall x \in M \ A(x) \Leftrightarrow A(x_1) \land \cdots \land A(x_n)$

 $\exists x \in M \ A(x) \Leftrightarrow A(x_1) \lor \cdots \lor A(x_n)$

Als Makros

 $\exists x \in M \ A(x) \Leftrightarrow \exists x \ (x \in M \land A(x))$ $\forall x \in M \ A(x) \Leftrightarrow \forall x \ (x \in M \Rightarrow A(x))$

Zusammenhang mit Junktoren

 $\neg \forall x \, A(x) \Leftrightarrow \exists x \, \neg A(x) \quad \text{und} \quad \neg \exists x \, A(x) \Leftrightarrow \forall x \, \neg A(x)$ $\forall x (A(x) \land B(x)) \Leftrightarrow (\forall x A(x)) \land (\forall x B(x))$ $\exists x (A(x) \lor B(x)) \Leftrightarrow (\exists x A(x)) \lor (\exists x B(x))$

Leere Quantoren

Wenn x in B nicht vorkommt:

 $\forall x \, B \Leftrightarrow B, \quad \exists x \, B \Leftrightarrow B$

Mengen

- Menge / Element: Eine Menge fasst mathematische Objekte (Elemente) zu einem Ganzen zusammen. Für Menge X und Element ygilt $y \in X$ bzw. $y \notin X$.
- Aufzählende Schreibweise: $\{x_1, \ldots, x_n\}$ bezeichnet die Menge, die genau die genannten Elemente enthält. Die leere Menge heisst \varnothing .
- Extensionalitätsprinzip: Zwei Mengen sind genau dann gleich, wenn sie dieselben Elemente haben:

$$A = B \iff \forall x (x \in A \Leftrightarrow x \in B).$$

- Teilmenge: $A \subseteq B$ genau dann, wenn $\forall x (x \in A \Rightarrow x \in B)$. Ist $A \subseteq B$ und $A \neq B$, so ist A eine echte Teilmenge, geschrieben $A \subset B$.
- Folgerungen: Mengen sind ungeordnet; Mehrfachaufzählung desselben Elements ändert die Menge nicht. Für jede Menge A gilt $\varnothing \subseteq A$.

Eindeutigkeit der leeren Menge

Seien e_1, e_2 leere Mengen. Dann ist für alle x die Aussage $x \in e_1$ falsch, also ist die Implikation $x \in e_1 \Rightarrow x \in e_2$ wahr; somit $e_1 \subseteq e_2$. Analog $e_2 \subseteq e_1$. Nach Extensionalität folgt $e_1 = e_2$.

Aussonderungsprinzip

Ist A eine Menge und E(x) eine Eigenschaft, dann

$$\{x \in A \mid E(x)\} = \text{Menge aller } x \in A \text{ mit } E(x).$$

$$a \in \{x \in A \mid E(x)\} \iff a \in A \land E(a)$$

Beispiele:

- Gerade Zahlen: $\{x \in \mathbb{N} \mid \exists y \in \mathbb{N} (x = 2y)\}$
- Zahlen > 17: $\{x \in \mathbb{N} \mid x > 17\}$
- Alle ausser 22: $\{x \in \mathbb{N} \mid x \neq 22\}$

Ersetzungsprinzip

Ist A eine Menge und t(x) ein Ausdruck, so gilt:

$$\{t(x)\mid x\in A\}=\text{Menge aller Werte von }t(x)\text{ mit }x\in A.$$

$$a\in\{t(x)\mid x\in A\}\iff\exists x\in A(a=t(x))$$

Beispiele:

- Quadratzahlen: $\{x^2 \mid x \in \mathbb{N}\}$
- Ungerade Zahlen: $\{2x+1 \mid x \in \mathbb{N}\}$
- Rationale Zahlen: $\left\{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\right\}$
- Anfangsabschnitte von N: $\{\{x \in \mathbb{N} \mid x < y\} \mid y \in \mathbb{N}\}\$

Vereinigung

Die Vereinigung von zwei Mengen beinhaltet genau die Elemente, die in mindestens einer der beiden Mengen enthalten sind:

$$A \cup B := \{x \mid x \in A \lor x \in B\}.$$

Schnitt

Die Schnittmenge von zwei Mengen beinhaltet genau die Elemente, die in beiden Mengen enthalten sind:

$$A \cap B := \{ x \mid x \in A \land x \in B \}.$$

Allgemeine Vereinigung / Schnitt

Sei I eine beliebige Indexmenge (z. B. $I = \{1, 2, \dots, n\}$ oder $I = \mathbb{N}$). Für jedes $i \in I$ sei A_i eine Menge.

Allgemeine Vereinigung

x gehört zur Vereinigung genau dann, wenn es in mindestens einer der Mengen A_i enthalten ist.

$$\bigcup_{i \in I} A_i := \{ x \mid \exists i \in I : x \in A_i \}.$$

Allgemeiner Schnitt

x gehört zum Schnitt genau dann, wenn es in allen Mengen A_i enthalten ist.

$$\bigcap_{i \in I} A_i := \{ x \mid \forall i \in I : x \in A_i \}.$$

Differenz

Die Differenz von zwei Mengen beinhaltet genau die Elemente, die in der ersten Menge, aber nicht in der zweiten Menge enthalten sind:

$$A \setminus B := \{ x \in A \mid x \notin B \}.$$

Disjunkte Mengen

Zwei Mengen A und B heissen disjunkt, wenn sie keine gemeinsamen Elemente besitzen.

$$A \cap B = \emptyset$$
.

Paarweise disjunkt

Eine Familie von Mengen $(A_i)_{i\in I}$ heisst paarweise disjunkt, wenn keine zwei verschiedenen Mengen ein gemeinsames Element haben. Es gilt:

$$\forall i, j \in I \ (i \neq j \Rightarrow A_i \cap A_j = \varnothing).$$

Wichtige Eigenschaften

Für beliebige Mengen A, B, C gelten:

- Idempotenz: $A \cup A = A$, $A \cap A = A$.
- Kommutativität: $A \cup B = B \cup A$, $A \cap B = B \cap A$.
- Assoziativität: $A \cup (B \cup C) = (A \cup B) \cup C$ und analog für \cap .
- Teilmengen: $A \subseteq A \cup B$ und $A \cap B \subseteq A$.
- Distributivität:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

• De Morgansche Regeln:

$$C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B),$$

$$C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B).$$

Venn-Diagramm

Potenzmenge

Für eine Menge A bezeichnet die Potenzmenge $\mathcal{P}(A)$ die Menge aller Teilmengen von A:

$$\mathcal{P}(A) := \{ X \mid X \subseteq A \}$$

Beispiele:

$$\begin{split} \mathcal{P}(\{1,2\}) &= \{\varnothing, \{1\}, \{2\}, \{1,2\}\}, \\ \mathcal{P}(\varnothing) &= \{\varnothing\}, \\ \mathcal{P}(\{\{a\}\}) &= \{\varnothing, \{\{a\}\}\}. \end{split}$$

Eigenschaften:

- $A \in \mathcal{P}(A)$ und $\emptyset \in \mathcal{P}(A)$.
- Aus $A \subseteq B$ folgt $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- Für die leere Menge gilt $\mathcal{P}(\emptyset) = {\emptyset} \neq \emptyset$.
- $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$
- $\mathcal{P}(A \cup B) \supseteq \mathcal{P}(A) \cup \mathcal{P}(B)$

Relationen und Funktionen

Tupel

Ein n-Tupel ist ein geordneter Vektor

$$(a_1,\ldots,a_n).$$

Der *i*-te Eintrag eines Tupels $a=(a_1,\ldots,a_n)$ wird mit a[i] bezeichnet. Zwei Tupel sind genau dann gleich, wenn sie dieselbe Länge haben und alle entsprechenden Einträge übereinstimmen:

$$(a_1, \dots, a_n) = (b_1, \dots, b_k) \iff$$

 $n = k \land a_1 = b_1 \land \dots \land a_n = b_k$

Kartesisches Produkt

Das kartesische Produkt $A_1 \times \cdots \times A_n$ ist die Menge aller n-Tupel, deren Einträge aus den Mengen A_1, \ldots, A_n stammen.

$$A_1 \times \cdots \times A_n := \{(a_1, \dots, a_n) \mid a_i \in A_i \text{ für } 1 \leq i \leq n\}.$$

Besonderheiten:

- Für das n-fache Produkt von A mit sich selbst gilt $A^n := A \times \cdots \times A$ (n-mal).
- Für ein kartesisches Produkt von der Form $A_1 \times \cdots \times A_n$ wird auch die Kurzschreibweise $\prod_{i=1}^n A_i$ verwendet.

Beispiele:

$$\{1\} \times \{a, b\} = \{(1, a), (1, b)\}$$
$$\mathbb{N}^2 = \{(x, y) \mid x \in \mathbb{N} \land y \in \mathbb{N}\}$$

Projektionen

Für eine Menge A von n-Tupeln und ist $k \leq n$ eine natürliche Zahl, definiert man die k-te Projektion:

$$\operatorname{pr}_k(A) := \{ x[k] \mid x \in A \}.$$

Insbesondere gilt:

$$\operatorname{pr}_k(A_1 \times \cdots \times A_n) = A_k.$$

Beispiele:

$$pr_1(\{1,2\} \times \{a,b\}) = \{1,2\}$$
$$pr_2(\{1,2\} \times \{a,b\}) = \{a,b\}$$

Relationen

Eine Relation von A nach B ist ein Tripel

$$R = (G, A, B)$$

wobei A die Quellmenge, B die Zielmenge und $G\subseteq A\times B$ der Graph von R ist. Ist A=B, so heisst R homogen auf A.

Notation

Sei R = (G, A, B) eine Relation von A nach B.

- Ist G der Graph von R, so schreibt man G_R
- Ist $(x, y) \in G$, dann schreibt man xRy (x steht in Relation zu y bezüglich R).
- Sind A und B Teilmengen von \mathbb{R} , so kann man R auch als Menge von Punkten in der Ebene darstellen: $\{(x,y) \mid xRy\}$.

$$xRy:\Leftrightarrow x^2=y^2 \quad xRy:\Leftrightarrow x^2+y^2=1$$

 Als gerichteter Graph: Elemente von A und B als Knoten; für jedes (x, y) ∈ G ein Pfeil x → y.
 xRy:⇔x teilt y xRy:⇔x + y ist gerade

Domäne und Bild

Die Domäne und das Bild einer Relation geben an, welche Elemente der Quell- bzw. Zielmenge tatsächlich in der Relation vorkommen.

$$dom(R) := pr_1(G_R) = \{a \in A \mid \exists b \in B(aRb)\}$$
$$im(R) := pr_2(G_R) = \{b \in B \mid \exists a \in A(aRb)\}$$

Im gerichteten Graphen entsprechen die Elemente der Domäne den Knoten mit ausgehenden Kanten, die des Bildes den Knoten mit eingehenden Kanten.

Klassifizierungen

Sei $R \subseteq A \times A$ eine (homogene) Relation auf A.

Reflexivität

Eine Relation R heisst reflexiv, wenn jedes Element in Relation zu sich selbst steht:

$$\forall x \in A(xRx)$$

- $\{(a,a) \mid a \in A\} \subseteq R$.
- Im gerichteten Graphen hat jeder Knoten eine Kante zu sich selbst. Für jeden Wert $x \in A$ gilt:

• In der Koordinatendarstellung enthält R die Winkelhalbierende u=x.

Symmetrie

Eine Relation Rheisstsymmetrisch,wenn für alle $x,y\in A$ gilt:

$$\forall x, y \ (xRy \Rightarrow yRx).$$

- Zu jedem Pfeil im gerichteten Graph existiert der umgekehrte Pfeil. Für alle $x,y\in A$ gilt:
- Symmetrie spiegelt die Koordinatendarstellung an der Geraden y = x.

Antisymmetrie

Eine Relation R heisst antisymmetrisch, wenn für alle $x,y\in A$ gilt:

$$\forall x, y \ (xRy \land yRx \Rightarrow x = y).$$

Es gibt keine zwei verschiedenen Knoten, die wechselseitig verbunden sind. Für alle x, y ∈ A, x ≠ y gilt:

Transitivität

Eine Relation R heisst transitiv, wenn für jeden endlichen Pfad ein direkter Pfeil existiert. Für alle $x, y, z \in A$ gilt:

$$\forall x, y, z \ (xRy \land yRz \Rightarrow xRz).$$

• Im gerichteten Graphen: Aus $x \to y$ und $y \to z$ folgt $x \to z$. Für alle $x, y, z \in A$ gilt:

Totalität und Eindeutigkeit

Sei $R \subseteq A \times B$ eine Relation von A nach B mit

- Linksvollständig / linkstotal: dom(R) = A (jedes Element in A hat min. eine ausgehende Kante).
- Rechtsvollständig / rechtstotal: im(R) = B
 (jedes Element in B hat min. eine eingehende
 Kante).

• Linkseindeutig:

 $\forall x_1, x_2, y \ (x_1Ry \land x_2Ry \Rightarrow x_1 = x_2) \ (jedes$ Element in B hat max. eine eingehende Kante).

• Rechtseindeutig:

 $\forall x, y_1, y_2 \ (xRy_1 \land xRy_2 \Rightarrow y_1 = y_2)$ (jedes Element in A hat max. eine ausgehende Kante).

Inverse Relationen

Für eine Relation R = (G, A, B) ist die *inverse Relation* definiert durch

$$R^{-1} = (G', B, A), \quad G' := \{(y, x) \mid (x, y) \in G\}.$$

Eigenschaften:

- $(R^{-1})^{-1} = R$
- R ist linksvollständig $\Leftrightarrow R^{-1}$ ist rechtsvollständig
- R ist linkseindeutig $\Leftrightarrow R^{-1}$ ist rechtseindeutig
- Für jede symmetrische Relation R gilt $R = R^{-1}$

Funktionen

Eine $Funktion\ f$ von der Menge A nach B ist eine Relation, die $linksvollst \ddot{a}ndig$ und rechtseindeutig ist. Man schreibt:

$$f:A\to B,$$

und für jedes $x \in A$ existiert genau ein $y \in B$ mit y = f(x).

Schreibweise

Oft werden Funktionen durch Angabe von Definitions- und Zielmenge sowie einer Zuordnungsvorschrift beschrieben. Beispielsweise gilt:

$$f = (\{(x, x^3) \mid x \in \mathbb{N}\}, \mathbb{N}, \mathbb{N})$$

bzw. äquivalent in der gebräuchlicheren Schreibweise:

$$f: \mathbb{N} \to \mathbb{N}, \quad f(x) = x^3.$$

Injektive Funktionen

Eine Funktion $f: A \to B$ ist injektiv, falls die Relation linksvollständig, rechtseindeutig und zusätzlich linkseindeutig ist:

$$\forall x_1, x_2 \in A(f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$

 $\forall x_1, x_2 \in A(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$

Jedes Element in A wird auf ein eigenes unterschiedliches Element in B abgebildet. Notation: $f: A \hookrightarrow B$.

Umkehrbarkeit

Eine Funktion $f:A\to B$ ist genau dann umkehrbar, wenn sie injektiv ist. Dann gilt:

$$f^{-1}:\operatorname{im}(f)\to A.$$

$$(G'_f,\operatorname{im}(f),A),\quad G'_f=\{(y,x)|(x,y)\in G_f\}$$

Surjektivität

Eine Funktion $f:A\to B$ ist surjektiv, falls die Relation $linksvollst \ddot{a}ndig$, rechtseindeutig und zusätzlich $rechtsvollst \ddot{a}ndig$ ist:

$$im(f) = B$$

Notation: $f: A \rightarrow B$

Bijektivität

Eine Funktion $f:A\to B$ ist bijektiv, wenn sie sowohl injektiv als auch surjektiv ist. Die Umkehrfunktion ist dann definiert durch:

$$f^{-1}: B \to A.$$

Notation: $f:A \rightleftharpoons B$

Umkehrfunktion

Für eine bijektive Funktion $f: A \rightleftharpoons B$ gilt:

$$f^{-1} \circ f = \mathrm{id}_A, \qquad f \circ f^{-1} = \mathrm{id}_B.$$

Komposition

Für $g:A\to B$ und $f:B\to C$ definiert man die Komposition:

$$(f \circ g)(x) = f(g(x)), \quad f \circ g : A \to C.$$

Komposition ist assoziativ:

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Eigenschaften der Komposition

Für Funktionen $f:A\to B$ und $g:B\to C$ gilt:

- Sind f und g injektiv, dann ist $g \circ f$ injektiv.
- $\bullet \;$ Sind f und g surjektiv, dann ist $g\circ f$ surjektiv.
- Sind f und g bijektiv, dann ist $g \circ f$ bijektiv.