Yubin Ye U53651145

Question 1

2. for each dataset, construct the visual representations of correponding correlation matrices M0 (from df 0) and M1 (from df 1) and save the plots into two separate files

DEATH EVENT = 0

DEATH EVENT = 1

- 3. examine your correlation matrix plots visually and answer the following:
- (a) which features have the highest correlation for surviving patients?

df 0: Sex and smoking, because |correlation|=0.49

- (b) which features have the lowest correlation for surviving patients? df 0: Sex and smoking, because |correlation|=0.01
- (c) which features have the highest correlation for deceased patients? df_1: Sex and smoking, because |correlation|=0.36
- (d) which features have the lowest correlation for deceased patients? df_1: Sex and serum sodium, because |correlation|=0.01
- (e) are results the same for both cases? No, they are not the same

Question 2

- 1. Group 1: X: creatinine phosphokinase (CPK), Y: platelets
- (a) fit the model on Xtrain
- (b) print the weights (a, b, . . .)
- (c) compute predicted values using Xtest
- (d) plot (if possible) predicted and actual values in Xtrain
- (e) compute (and print) the corresponding loss function

Df_0

1. Y = a X + b:

weights

[3.18410860e+00

2.63325396e+05]

sse

760919264477.88

weights [-6.51801582e-03

2.81466738e+01

2.55457684e+05]

sse

779752231349.69

3. $Y = a X^{**}3 + b X^{**}2 + c X + d$

weights

[-0.000000e+00

1.000000e-02

7.5700000e+00

2.5938451e+05]

sse

780795273461.41

4. $Y = a \log(X) + b$

weights

[6080.54

230655.4]

sse

768122456388.29

5. log(Y) = a log(X) + b

weights

[2.3000e-03

1.2411e+01]

sse

16.8902

df_1

Y = a X + b

weights
[-1.1900000e+00
2.5795916e+05]
sse
574754635199.94

2. Y = a X**2 + b X + c

weights
[0.0000000e+00
-1.7910000e+01
2.6318718e+05]
sse
575868719642.21

3. Y = a X**3 + b X**2 + c X + d

weights
[-0.0000000e+00
0.0000000e+00
-1.9490000e+01
2.6356626e+05]
sse
576058334804.35

4. Y = a log(X) + b

weights
[-2294.49
270054.83]
sse
574836482570.88

 $5. \log(Y) = a \log(X) + b$

weights
[2.90000e-03
1.23818e+01]
sse
12.3113

Question 3

Summarize your results from question 2 in a table like shown below:

	death event=0	death event=1
Y = a X + b	7.6092E+11	5.7475E+11
$Y = a X^{**}2 + b X + c$	7.7975E+11	5.7587E+11
$Y = a X^{**}3 + b X^{**}2 + c X + d$	7.808E+11	5.7606E+11
$Y = a \log(X) + b$	7.6812E+11	5.7484E+11
log(Y) = a log(X) + b	16.8901865	12.311272

1. which model was the best (smallest SSE) for surviving patients? for deceased patients?

for surviving patients: log(Y) = a log(X) + b for deceased patients: log(Y) = a log(X) + b

2. which model was the worst (largest SSE) for surviving patients? for deceased patients?

for surviving patients: $Y = a X^{**}3 + b X^{**}2 + c X + d$ for deceased patients: $Y = a X^{**}3 + b X^{**}2 + c X + d$