

Cálculo II

Ficha 4

1. Explique a razão pela qual a função y(x) cujo gráfico é dado não pode ser uma solução da equação diferencial.

(c)
$$y' = e^{xy}$$

2. Verifique se a função y(x) é uma solução da equação diferencial.

- (a) $y(x) = x \frac{1}{x}$; xy' + y = 2x (c) $y(x) = \ln x$; xy'' + y' = 0

- (b) y(x) = 1; y'' + 2y' + y = x (d) $y(x) = 2e^{-x} + xe^{-x}$; y'' + 2y' + y = 0

3. Verifique se $y(x) = x \ln x$ é uma solução para o problema de valor inicial

$$xy' = y + x, \qquad y(1) = 0$$

em x > 0.

4. Verifique se $y(x) = \sin x \cos x - \cos x$ é uma solução para o problema de valor inicial

$$y' + (\operatorname{tg} x)y = \cos^2 x, \qquad y(0) = -1$$

no intervalo $-\pi/2 < x < \pi/2$.

5. Suponha que o número de indivíduos P(t) de uma população satisfaz o modelo logístico de crescimento populacional,

$$\frac{dP}{dt} = 1,2P\left(1 - \frac{P}{4200}\right)$$

- (a) Para que valores de P a população está a aumentar?
- (b) Para que valores de P a população está a diminuir?
- (c) Quais são as soluções de equilíbrio?
- (d) Esboce o gráfico de algumas soluções da equação diferencial.
- 6. Faça a correspondência entre as equações diferenciais de 1^a ordem e o campo de declives e, para cada um dos casos, esboce algumas curvas integrais.

(a)
$$y' = xy$$

(b)
$$y' = \ln(x^2 + y^2)$$
 (c) $y' = 2x + y$

(c)
$$y' = 2x + y$$

7. Resolva as seguintes equações diferenciais de variáveis separáveis.

(a)
$$y' = xy$$

(b)
$$y' = y^2 x^3$$

(c)
$$y' = \frac{x+1}{y^3+1}$$

8. Resolva as seguintes equações diferenciais lineares.

(a)
$$y' - 2y = 4$$

(a)
$$y' - 2y = 4$$
 (b) $y' + \frac{y}{x} = x^4$ (c) $y' - 2xy = x$

(c)
$$y' - 2xy = x$$

9. Resolva o problema de valor inicial.

(a)
$$y' = x + y$$
; $y(0) = 2$

(a)
$$y' = x + y$$
; $y(0) = 2$
 (c) $y' = \frac{x+1}{y^4+1}$; $y(1) = 0$

(b)
$$y' = y(x^2 + 1);$$
 $y(-1) = 1$ (d) $2xy' + y = 6x;$ $y(4) = 20$

(d)
$$2xy' + y = 6x$$
; $y(4) = 20$

- 10. Suponha que uma certa cultura de bactérias cresce a uma taxa proporcional à quantidade de células bacterianas existente. Após 1 hora, observam-se 1000 células bacterianas na cultura e, após 4 horas, 3000 células. Determine o número inicial de células bacterianas.
- 11. Use o método de Euler com o passo 0.2 para estimar y(1), onde y(x) é a solução do problema de valor inicial y' = 1 - xy, y(0) = 0.
- 12. Seja y(x) a solução do problema de valor inicial

$$y' = x - xy; \quad y(1) = 0.$$

- (a) Use o método de Euler com o passo 0.2 para estimar y(1.4)
- (b) Use o método de Euler com o passo 0.1 para estimar y(1.4)
- (c) Resolva analiticamente o problema de valor inicial e compare o resultado com as estimativas anteriores.
- 13. Resolva a equação diferencial.

(a)
$$y'' - 6y' + 8y = 0$$
 (b) $y'' - 4y' + 8y = 0$ (c) $y'' + 4y' + 4y = 0$

(b)
$$y'' - 4y' + 8y = 0$$

(c)
$$y'' + 4y' + 4y = 0$$

14. Resolva o problema de valores iniciais.

(a)
$$2y'' + 5y' + 3y = 0$$
; $y(0) = 3$, $y'(0) = -4$

(b)
$$y'' + 3y = 0$$
; $y(0) = 1$, $y'(0) = 3$

(c)
$$4y'' - 4y' + y = 0$$
; $y(0) = 1, y'(0) = -\frac{3}{2}$

15. Resolva o problema de contorno.

(a)
$$4y'' + y = 0$$
; $y(0) = 3$, $y(\pi) = -4$

(b)
$$y'' + 2y' = 0$$
; $y(0) = 1$, $y(1) = 2$

(c)
$$y'' - 3y' + 2y = 0$$
; $y(0) = 1$, $y(3) = 0$