Figure 1

Human Mature DNase I

	10	20	30	40	50
LKIAAFI	NIQTFGETKM	SNATLVSYIV	QILSRYDIAL	VQEVRDSHLT	AVGK
	60	70	80	90	100
LLDNLN	QDAPDTYHYV	VSEPLGRNSY!	KERYLFVYRP	DQVSAVDSYY	YDDG
	110	120	130	140	150
CEPCGNI	DTFNREPAIV		EFAIVPLHAA	PGDAVAEIDA	LYDV
	160	170	180	190	200
YLDVQE				WTSPTFQWLI:	
	210	220	230	240	250
DTTATP			-	AAYGLSDQLA	
	260				
DHYPVE					

Figure 2

Plasmid DNA Digestion Assays

	Linear DNA Digestion Assay	Supercoiled DNA Digestion Assay	
DNase I Variants	Relative Linear DNA Digestion Activity	L/R ratio	Relative Nicking Activity
native human DNase I	1.0 ± 0.1	1.0	1.0 ± 0.0
Q9R	3.5 ± 0.4	2.3	3.4 ± 0.5
E13K	3.9 ± 0.1		
E13R	6.0 ± 0.5	5.4	2.2 ± 0.0
T14K	4.2 ± 0.1	4.7	2.9 ± 0.8
T14R	3.5 ± 0.7		
H44K	2.0 ± 0.4	2.3	1.8 ± 0.3
H44R	3.6 ± 0.5		
N74K	6.0 ± 0.1	4.7	7.3 ± 1.0
N74R	4.1 ± 0.8		
S75K	1.5 ± 0.2		
T205K	4.7 ± 0.2	5.4	2.8 ± 0.7
T205R	2.3 ± 0.3		
E13R:N74K	26.7 ± 4.1	12.3	6.9 ± 1.6
Q9R:E13R:N74K	38.3 ± 1.2	16.5	6.3 ± 2.2
E13R:N74K:T205K	19.5 ± 6.4		
O9R:F13R:N74K:T205K	30.5 ± 7.5		

All data is normalized to native human DNase I.

Figure 3

DNA Hyperchromicity Assay

DNase I Variants	1/K _m	V_{max}	V _{max} /K _m
native human DNase I	1.0 ± 0.1	1.0 ± 0.1	1.0
Q9R	0.9 ± 0.2	2.8 ± 0.4	2.6
E13K	2.5 ± 0.4	1.8 ± 0.1	4.5
E13R	4.3 ± 1.4	1.5 ± 0.1	6.5
T14K	2.3 ± 0.9	1.1 ± 0.2	2.5
T14R	2.1 ± 0.8	0.7 ± 0.1	1.5
H44K	2.3 ± 0.5	1.1 ± 0.1	2.5
H44R	1.7 ± 0.2	1.0 ± 0.1	1.7
N74K	0.4 ± 0.2	5.5 ± 1.3	2.3
N74R	2.6 ± 0.8	3.1 ± 0.3	8.1
S75K	18.5 ± 2.0	0.4 ± 0.1	7.4
T205K	2.4 ± 0.8	2.1 ± 0.4	5.0
T205R	3.0 ± 1.2	1.0 ± 0.1	3.0
E13R:N74K	5.0 ± 1.7	5.3 ± 0.5	26.5
Q9R:E13R:N74K	4.9 ± 1.3	7.0 ± 0.4	34.3
E13R:N74K:T205K	5.0 ± 1.9	6.3 ± 0.6	31.5
Q9R:E13R:N74K:T205K	5.6 ± 1.4	3.8 ± 0.3	21.3

All data is normalized to native human DNase I.

Figure 4

Effect of NaCl on Human DNase I Variants

