

Automated Research paper Categorization

Problem Statement

Building an Automated Research paper categorizer using Machine Learning and Deep Learning techniques.

DATASET DESCRIPTION:

- The train and test datasets consist of multiple research papers.
- The features preset in the dataset are:
 - Title of research paper
 - Abstract of research paper
 - Categories to which the paper belongs to
 - Number of rows in train dataset is 51210
 - Number of rows in test dataset is 10974
 - Number of categories is 57

A peak at the dataset

Title	Categories
Large deviations for Wishart processes	['math.PR']
Slicer Networks	['eess.IV', 'cs.AI', 'cs.CV']
New symmetry in nucleotide sequences	['q-bio.GN', 'q- bio.BM']
Modeling Credit Risk with Partial Information	['math.PR', 'q-fin.RM']
A Semantic Grid Oriented to E-Tourism	['cs.DC']

Class Imbalance

Data Preprocessing

- Class Weighting:
 - Assigned higher weights to minority classes during training to penalize misclassifications in these classes more heavily.
- Resampling:
 - Resampled the dataset to balance the class distribution. This involved randomly selecting samples from the majority class and creating synthetic samples for minority classes.

Text Preprocessing Summary

1	Merged the 'Abstract' and the 'Title' columns into a column called 'Context' which is finally used for Prediction.
2	This was followed by decontraction of some word like won't ,can't to 'will not' and 'can not respectively'
3	We removed all the punctuation and stop word from the test.
4	Then we proceeded with stemming all the word to their root word . (Like 'Happier' to 'Happy', 'Programming' to 'Program' and so on)
5	Then we formed a vocabulary using all the word present in the text.
6	Finally each row in the dataset was converted into a vector where each word in text was replaced with its position number in the vocab

Approaches

DL based approaches

CNN and Bi-LSTM

Gave a Public F1 score of 0.56

- Used an Embedding Layer
- Fed the embedding outputs to a 1D Conv layer
- Used a bidirectional LSTM layer followed by feeding it into a max pooling layer
- Feeded the outputs to subsequent dense layers
- Used an output layer with a sigmoid activation

Bert transformer model

Gave a Public F1 score of 0.61

- Used a pre-trained Bert model for multi-label classification
- Fine-tuned it on the train dataset

Dense Neural Network

Gave a Public F1 score of 0.65

- Used 3 dense layers with BatchNormalization and Dropout
- Used swish activation for initial layers with leaky relu for the last layer
- Used adam optimizer for model training

ML based approaches

XGBoost Classifier

Gave a Public F1 score of 0.54

- Used XGBoost with calibrated classifier CV
- Created a pipeline for each category using Tfidf
 Vectorizer and OnevsRestClassifier for multi-label
 classification

Support Vector machine

Gave a Public F1 score of 0.62

- Used SVM with calibrated classifier CV
- Created a pipeline for each category using Tfidf
 Vectorizer and OnevsRestClassifier for multi-label
 classification

Final approach

Dense Neural Network

- 4 densely connected layers with 1024, 512, 256 and 128 units.
- Swish activation function for the first three dense layers for its smooth, non-monotonic properties and leaky relu for the last dense layer and sigmoid activation for the output layer.
- Used regularization techniques like dropout for each of the three layers (0.6, 0.5 and 0.2) and BatchNorm for the first layer.
- Used initializers like HeNormal, HeUniform and GlorotUniform for the final layer to maintain the scale of gradients.
- Used Adam optimizer and binary crossentropy loss while training the model and tracking the performance using accuracy, precision and recall metrics.

Architecture

Training Logs

Training loss vs Validation loss

Thank You

