Hierarchical Clustering II

AW

Lecture Overview

1. Recap

2. Max (Complete Graph)

3. Group Average

4. Centroid Distance

5. DBSCAN

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

- Two main types of hierarchical clustering:
 - 1. Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - 2. Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward:
 - Compute the proximity matrix
 Let each data point be a cluster

2. Repeat

- i. Merge the two closest clusters
- ii. Update the proximity matrix

Until only a single cluster remains

How to Define Inter-Cluster Similarity?

	p 1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids

- **Proximity Matrix**
- Other methods driven by an objective function
 - Ward's Method uses squared error

Cluster Similarity – Min

Find shortest edge (line) between members of different clusters

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						
•						

Proximity Matrix

Lecture Overview

1. Recap

2. Max (Complete Graph)

3. Group Average

4. Centroid Distance

5. DBSCAN

- MAX Graph Clique
 - fill in edges according to length

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						
-						

Proximity Matrix

	р1	p2	рЗ	p4	р5	<u> </u>
<u>p1</u>						
<u>p2</u>						
p2 p3						
<u>p4</u> <u>p5</u>						

- MAX Graph Clique
 - fill in edges according to length

Proximity Matrix

- MAX Graph Clique
 - fill in edges according to length

	p1	p2	р3	p4	p 5	
p1						
<u>p2</u> <u>p3</u>						
						_
р4 р5						
<u> </u>						_

Proximity Matrix

- MAX Graph Clique
 - fill in edges according to length

	p1	p2	р3	p4	р5	<u> </u>
p1						
p2						
p2 p3						
<u>p4</u> p5						
-						

Proximity Matrix

- MAX Graph Clique Cluster:
 - The first set of point forming clique

	p4	p 5	<u> </u>

Proximity Matrix

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters (mini max)
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_				1 4	
11	1.00	0.90	0.10	0.65 0.60 0.40 1.00 0.80	0.20
12	0.90	1.00	0.70	0.60	0.50
\mathbb{I}_{3}	0.10	0.70	1.00	0.40	0.30
I 4	0.65	0.60	0.40	1.00	0.80
I 5	0.20	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters (mini max)
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_		12			1 5
\mathbb{I}	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
\mathbb{I}_2	0.90	1.00	0.70	0.60	0.50
\mathbb{I}_3	0.10	0.70	1.00	0.40	0.30
I 4	0.65	0.60	0.40	1.00	0.80
I 5	0.20	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters (mini max)
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_		12			
11	1.00	1.00 1.00 0.10 0.60 0.20	0.10	0.60	0.20
12	1.00	1.00	0.10	0.60	0.20
\mathbb{I}_3	0.10	0.10	1.00	0.40	0.30
I 4	0.60	0.60	0.40	1.00	08.0
I 5	0.20	0.20	0.30	0.80	1.00

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters (mini max)
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_		12			I 5
11	1.00 1.00 0.10 0.60 0.20	1.00	0.10	0.60	0.20
12	1.00	1.00	0.10	0.60	0.20
I3	0.10	0.10	1.00	0.40	0.30
I 4	0.60	0.60	0.40	1.00	08.0
I 5	0.20	0.20	0.30	0.80	1.00

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters (mini max)
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_	11	12	I3	I 4	I 5
11	1.00	1.00	0.10	0.20	0.20 0.20 0.30 1.00
12	1.00	1.00	0.10	0.20	0.20
I3	0.10	0.10	1.00	0.30	0.30
14	0.20	0.20	0.30	1.00	1.00
I 5	0.20	0.20	0.30	1.00	1.00

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters (mini max)
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_	11		I3		1 5
11	1.00	1.00 1.00 0.10 0.20 0.20	0.10	0.20	0.20
12	1.00	1.00	0.10	0.20	0.20
ß	0.10	0.10	1.00	0.30	0.30
14	0.20	0.20	0.30	1.00	1.00
I 5	0.20	0.20	0.30	1.00	1.00

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters (mini max)
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_		12			
11	1.00	1.00	0.10	0.10	0.10 0.10 1.00 1.00
12	1.00	1.00	0.10	0.10	0.10
ß	0.10	0.10	1.00	1.00	1.00
I 4	0.10	0.10	1.00	1.00	1.00
I 5	0.10	0.10	1.00	1.00	1.00

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters (mini max)
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_	1	12	I3	I 4	I 5
11	1.00	1.00 1.00 0.10 0.10 0.10	0.10	0.10	0.10
12	1.00	1.00	0.10	0.10	0.10
I3	0.10	0.10	1.00	1.00	1.00
14	0.10	0.10	1.00	1.00	1.00
I 5	0.10	0.10	1.00	1.00	1.00

Strength of MAX

Less susceptible to noise and outliers than MIN

Limitations of MAX

- Tends to break large clusters
- Biased towards globular clusters

Lecture Overview

1. Recap

2. Max (Complete Graph)

3. Group Average

4. Centroid Distance

5. DBSCAN

Cluster Similarity – Group Average

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
p2 p3						
<u>р4</u> р5						

- Group Average:
- Proximity of two clusters C_i and C_j is the average of pairwise proximity between points in the two clusters:

Proximity Matrix

$$prox(C_i, C_j) = \frac{\sum_{x \in C_i} Prox(x, y)}{|C_i| \times |C_j|}$$

				I 4	
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
ß	0.10	0.70	1.00	0.40	0.30
I 4	0 . 65	0.60	0.40	1.00	0.80
I 5	0.20	0.50	0.30	0.80	1.00

	1	12	ß	1 4	<u>15</u>
11	1.000	1.000	0.375	1.000	1.000
12	1.000	1.000	0.375	1.000	1.000
B	0.375	0.375	1.000	0.375	0.375
I 4	1.000	1.000	0.375	1.000	1.000
I 5	1.000	1.000	0.375	1.000	1.000

	1	12	B	1 4	1 5
11	1.000	1.000	0.375	1.000	1.000
12	1.000	1.000	0.375	1.000	1.000
ß	0.375	0.375	1.000	0.375	0 . 375
I 4	1.000	1.000	0.375	1.000	1.000
I 5	1.000	1.000	0.375	1.000	1.000

Average: Strength and Limitations

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers than Min
 - Does not break large clusters as much as MAX
- Limitations
 - Still biased towards globular clusters

The Clustering w/ min, max, average in R

```
library(graphics); attach(iris)
data iris<-iris[, -5]
cl_sin_s <- hclust(dist(data_iris), method = "single")
#using Euclidean Distance dist
plot(cl sin s, hang = -1)
cl_sin_c <- hclust(dist(data_iris), method = "complete")
dev.new()
plot(cl sin c, hang = -1)
cl sin a <- hclust(dist(data iris), method = "ave")
dev.new()
plot(cl sin a, hang = -1)
dev.off();dev.off()
#show classification into 3 classes as needed
plot(cl sin s, hang = -1)
rect.hclust(cl sin s, 3)
true_cl_s<-cutree(cl_sin_s, 3) #extract 3 level classification
table(true cl s,iris$Species) #compare with true classification
```

Lecture Overview

1. Recap

2. Max (Complete Graph)

3. Group Average

4. Centroid Distance

5. DBSCAN

Cluster Similarity – Centroid Distance

	p1	p2	р3	p4	р5	
p1						
p2						
рЗ						
p4						
р5						

- Distance Between Centroids
 - First need to compute centroids

Proximity Matrix

- Centroid distance between clusters C_i and C_j is the distance between the centroid c_i of C_i and the centroid c_j of C_i i.e. $dist(C_i, C_I) = dist(c_i, c_j)$
- Centroids w.r.t to SSE means
- Problematic property non-monotonic:
 - Let cluster $C_{s,tk}$ at step k be obtained by join of two clusters $C_{s,t}^k = C_s^{k-1} \cup C_t^{k-1}$ obtained on step k-1. The proximity between clusters $C_{s,t}^k$ and C_j^k at current step could be bigger that the proximity of either C_s^{k-1} or C_t^{k-1} to $C_j^k = C_j^{k-1}$

Point	x Coordinate	y Coordinate
p1	0.40	0.53
p2	0.22	0.38
p3	0.35	0.32
p4	0.26	0.19
p5	0.08	0.41
p6	0.45	0.30

Centroid coordinates

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Distance matrix

p1	0.4	0.53
p2	0.22	0.38
c1	0.4	0.31
p4	0.26	0.19
p5	0.08	0.41

Centroid coordinates

	p1	p2	c1	p4	p5
p1	0.0	0.24	0.22	0.37	0.34
p2	0.24	0.0	0.19	0.2	0.14
c1	0.22	0.19	0.0	0.18	0.34
р4	0.37	0.2	0.18	0.0	0.29
р5	0.34	0.14	0.34	0.29	0.0

Distance matrix

p1	0.4	0.53
c2	0.15	0.395
c1	0.4	0.31
p4	0.26	0.19

Centroid coordinates

	p1	c2	c1	p4
p1	0.0	0.28	0.23	0.37
c2	0.28	0.0	0.26	0.24
c1	0.23	0.26	0.0	0.18
р4	0.37	0.24	0.18	0.0

Distance matrix

p1	0.4	0.53
c2	0.15	0.395
c3	0.353	0.27

Centroid coordinates

	p1	c2	c3
p1	0.0	0.28	0.27
c2	0.28	0.0	0.24
с3	0.27	0.24	0.0

Distance matrix

p1	0.4	0.53
c4	0.272	0.32

Centroid coordinates

	p1	c4
p1	0.0	0.245
c4	0.245	0.0

Distance matrix

Lecture Overview

1. Recap

2. Max (Complete Graph)

3. Group Average

4. Centroid Distance

5. DBSCAN

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (eps)
 - A point is a core point if it has at least the specified number of points (MinPts) within radius (\leq eps), which includes the point itself.
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

```
current\_cluster\_label \leftarrow 0
for all core points do
  if the core point has no cluster label then
     current\_cluster\_label \leftarrow current\_cluster\_label + 1
    Label the current core point with cluster label current_cluster_label
  end if
  for all points in the Eps-neighborhood, except the point itself do
    if the point does not have a cluster label then
       Label the point with cluster label of the current core point
    end if
  end for
end for
```

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor and find infliction point

DBSCAN in R

```
library(fpc);library(png)
img<-readPNG('example.png')
mimg<-as.matrix(img[,,2])
ind<-which(mimg!= 1, arr.ind=TRUE)
s<-sample(1:dim(ind)[1],2000,replace=FALSE)
sind<-ind[s,c(2,1)]
ds<-dbscan(sind,10.5,MinPts =
    7,method="hybrid",seeds=FALSE,showplot=1)
plot(ds, sind)</pre>
```

Reading

• TSKK sec 7.3.2,7.3.3, 7.3.4