

2장 변수와 수식

학습 목표

- □ 변수와 상수를 정의하고 사용할 수 있다.
- □ 주석의 개념을 이해한다.
- □ 산술 연산자와 할당 연산자에 대하여 이해한다.
- 연산자의 우선순위 개념을 이해한다.
- □ 사용자로부터 입력을 받고 출력을 하는 프로그램을 작성할 수 있다.
- □ 문자열의 기초 연산을 이해한다.

이번 장에서 만들 프로그램

첫 번째 정수를 입력하시오: 10 두 번째 정수를 입력하시오: 3 10 의 3 승은 1000 입니다.

몸무게를 kg 단위로 입력하시오: 85.0 키를 미터 단위로 입력하시오: 1.83 당신의 BMI= 25.381468541909282

물건값을 입력하시오: 750

1000원 지폐개수: 1 500원 동전개수: 0 100원 동전개수: 0

500원= 0 100원= 2 10원= 5 1원= 0

변수

□ 변수(variable)는 컴퓨터의 메모리 공간에 이름을 붙이는 것으로 우리는 여기에 값을 저장할 수 있다.

변수 정의하기

□ 파이썬에서는 변수에 값을 저장하면 변수가 자동으로 생성된다.

파이썬에서의 변수

다른 언어에서의 변수	파이썬에서의 변수
변수는 상자와 같고, 상자 안에 값이 저장된다.	데이터가 객체 형태로 메모 리에 저장되고 변수에는 객 체를 참조할 수 있는 값이 저장된다.
X	Z Z

변수 정의하기

예제: 두 수의 합 계산하기

```
x = 100# 변수 x를 생성하고 100을 저장한다.y = 200# 변수 y를 생성하고 200을 저장한다.sum = x + y# 변수 sum을 생성하고 x+y를 저장한다.print("합은", sum)
```


이런 것도 가능하다!

score = 10 score = score + 1

예제: 원의 면적 계산하기

□ 빈칸을 채워본다.

반지름 20인 원의 면적= 1256.0

알고리즘

```
      STEP #1. 사용자로부터 원의 반지름을 입력받는다.

      STEP #2. 공식을 적용하여 면적을 계산한다.

      area = radius * radius * p
```

STEP #3. 면적을 화면에 출력한다.

코드

```
# 변수 radius에 값을 저장한다.
radius = 10

# 공식을 적용하여 면적을 계산한다
area = 3.14 * radius * radius

# 면적을 화면에 출력한다.
print("반지름", radius, "인 원의 면적=", area)
```

변수의 이름

- □ 소문자와 대문자는 서로 다르게 취급된다.
- □ 영문자와 숫자, 밑줄(_)로 이루어진다. 숫자는 첫 글자로 불가.
- □ 의미 있는 이름을 사용. 예약어는 불가
- □ 단어를 구분하려면 밑줄(_)을 사용 한다.

변수 이름	설명
size	가능하다.
cloud9	가능하다. 변수는 영문자, 숫자, _로 이루어진다.
max_size	가능하다. 변수의 중간에 _가 있어도 된다.
_count	가능하다가 앞에 붙으면 클래스 내부에서만 사용하는 변수라는 의미도 있다.
6pack	올바르지 않다! 숫자가 앞에 오면 안된다.
mid score	올바르지 않다! 중간에 공백이 있으면 안된다.
class	올바르지 않다! 예약어를 변수의 이름으로 사용할 수 없다.
money#	올바르지 않다! 기호를 변수의 이름으로 사용하면 안 된다.

낙타체

- 낙타체는 변수의 첫 글자는 소문자로, 나머지 단어 의 첫 글자는 대 문자로 적는 방법이다.
 - □ myNewCar처럼 첫 'm'은 소문자로, 나머지 단어들의 첫 글 자는 대문자로 표기한다

자료형

자료형	ଜା
정수(int)	, -2, -1, 0, 1, 2,
부동소수점수(float)	3.2, 3.14, 0.12
문자열(str)	'Hello World!', "123"

변수에 어떤 자료형도 저장가능

>>> radius = 10

>>> radius = 10.003

>>> radius = "Unknown"

하지만 바람직하지는 않음

자료형을 알려면?

```
>>> type(12.30) # float 형
<class 'float'>
>>> type("hello") # str(문자열) 형
<class 'str'>
```

변수의 세부 구현 사항

□ 변수에 저장되는 것은 실제 값이 아니고 객체의 참조값(주소)이다.

변수를 복사할 때

주석

tempconv.py

```
##
# of a substitute of the su
```

주석으로 컴파일러에게 무시되지만 프로그램에 대한 설명이나 메모를 붙이는 것이다.

주석의 2번째 용도

```
##
# 이 프로그램은 정수들의 합을 계산한다.
#

X = 100
y = 200
Sum = X + Y
#diff = X - y
print("합은 ", Sum)
```

● 실행결과

합은 300

상수

□ 변수의 이름을 대문자로 하여서 일반적인 변수와 구분

```
INCOME = 1000
TAX_RATE = 0.35

tax = INCOME * TAX_RATE
net_income = INCOME - tax
...
```

Lab: 원기둥의 부피 계산

$$V = \pi r^2 h$$

반지름= 5 높이= 10 원기둥의 부피= 785.0

```
##
       이 프로그램은 원기둥의 부피를 계산한다.
#
#
# 원주율을 나타내는 상수를 정의한다.
PI = 3.14
# 변수를 정의한다.
radius = 5
height = 10
# 부피를 계산한다.
volume = PI * radius * radius * height
#결과를 출력한다.
print("반지름=", radius, "높이=", height, "원기둥의 부피=", volume)
```

산술 연산

연산자	기호	사용예	결과값
덧셈	+	7 + 4	11
뺄셈	_	7 – 4	3
곱셈	*	7 * 4	28
정수 나눗셈	//	7 // 4	1
실수 나눗셈	/	7 / 4	1.75
나머지	%	7 % 4	3

몫과 나머지 연산

```
p = 7
q = 4
print("나눗셈의 몫=", p // q)
print("나눗셈의 나머지=", p % q)
```

```
나눗셈의 몫= 1
나눗셈의 나머지= 3
```

```
today = 0
print( (today + 10) % 7 ) # 오늘부터 10일 후는 무슨 요일일까?
```

3

할당 연산

```
x = y = z = 0
```

x, y, z = 10, 20, 30 # 한번에 여러 개의 변수 초기화

x, y = y, x # x^{9} 가입 가입 사람 그 한 한다.

복합 연산자

□ 복합 연산자(compound operator)란 +=처럼 대입 연산자와 다른 연산자를 합쳐 놓은 연산자이다.

복합 연산자

복합 연산자	의미
x += y	x = x + y
x -= y	x = x - y
x *= y	x = x * y
x /= y	x = x / y
x %= y	x = x % y

```
x = 1000
print("초깃값 x=", x)
x += 2;
print("x += 2 후의 x=", x)
x -= 2;
print("x -= 2 후의 x=", x)
```

```
초깃값 x= 1000
x += 2 후의 x= 1002
x -= 2 후의 x= 1000
```

지수 계산

□ 지수(power)를 계산하려면 ** 연산자를 사용한다.

```
>>> 2 ** 7
128
```

□ 원리금 계산

```
a = 1000 # 원금
r = 0.05 # 이자율
n = 10 # 기간
result = a*(1+r)**n # 원리금 합계
print("원리금 합계=", result)
```

원리금 합계= 1628.894626777442

연산자의 우선 순위

$$x + y^*z$$

$$(x + y) * z$$

괄호로 우선 순위 변경

```
>>> 10 + 20 /2
20.0
>>> (10 + 20) /2
15.0
```

우선 순위표

연산자	설명
**	지수 연산자
~, +, -	단항 연산자
*, /, %, //	곱셈, 나늣셈, 나머지 연산자
+, -	덧셈, 뺄셈
>>, <<	비트 이동 연산자
&	비트 AND 연산자
^,	비트 XOR 연산자, 비트 OR 연산자
<=, <, >, >=	비교 연산자
♦, ==, !=	동등 연산자
=, %=, /=, //=, -=, +=, *=, **=	대입, 복합 연산자
is, is not	동등 연산자
in, not in	소속 연산자
not, or, and	논리 연산자

Lab: 복리 계산

- □ 1626년에 아메리카 인디언들이 뉴욕의 맨하탄섬을 단돈 60길더(약 24달러)에 탐험가 Peter Minuit에게 팔았다고 한다. 382년 정도 경 과한 맨하탄 땅값은 약 600억달러라고 한다.
- 하지만 만약 인디언이 24달러를 은행의 정기예금에 입금해두었다
 면 어떻게 되었을까? 예금 금리는 복리로 6%라고 가정하자. 그리고
 382년이 지난 후에는 원리금을 계산하여 보자.

Solution

```
init_money = 24
interest = 0.06
years = 382
print(init_money*(1+interest)**years)
```

111442737812.28842

타입 변환

Syntax: 타입변환

- 형식 새로운타입(변수)
- q x = 3.14 y = int(x)

반올림

□ 물건 값의 7.5%가 부가세라고 하자. 물건값이 12345원일 때, 부가세를 소수점 2번째 자리까지 계산하는 프로그램

```
price = 12345
tax = price * 0.075
tax = round(tax, 2)
print(tax)
```

925.88

문자열

컴퓨터에게는 숫자가 중요하지만 인간은 주로 문자열(string)를 사용하여 정보를 표현하고 저장하므로 문자열의 처리도 무척 중요하다.

큰따옴표 사용/작은 따옴표 사용

```
>>> "Hello"
'Hello'

>>> msg = 'Hello'

>>> msg
'Hello'

>>> print(msg)

Hello
```

큰따옴표 속에 작은 따옴표 사용

```
>>> message="철수가 "안녕"이라고 말했습니다."
SyntaxError: invalid syntax

>>> message="철수가 '안녕'이라고 말했습니다."
>>> print(message)
철수가 '안녕'이라고 말했습니다.
```

세 따옴표

```
a = """TWINKLE, twinkle, little star,
How I wonder what you are!
Up above the world so high,
Like a diamond in the sky."""
```

print(a)

TWINKLE, twinkle, little star, How I wonder what you are! Up above the world so high, Like a diamond in the sky.

문자열의 결합

```
>>> "Hello" + "World!"
'HelloWorld!'
```


문자열의 반복

숫자와 문자열의 구별


```
>>> print(100+200)
300
>>> print("100"+"200")
100200
```

숫자 <-> 문자열

```
>>> movie = "Terminator" + 3
TypeError: can only concatenate str (not "int") to str

>>> movie = "Terminator" + str(3)
>>> movie
'Terminator3'

>>> price = int("100")  # price = 100
>>> PI = float("3.14")  # PI = 3.14
```

특수 문자열

특수 문자열	의미
\n	줄비꿈 문자
\t	탭문자
//	역슬래시 자체
\"	큰따옴표 자체
\'	작은따옴표 자체

>>> print("말 한마디로\n천냥빚을 갚는다") 말 한마디로 천냥빚을 갚는다

문자와 문자열

```
0 1 2 3 4 5 6 7 8 9 10

H e l l o w o r l d

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
```

```
>>> s = "Hello World"
>>> s[0]
'H'
>>> s = "Hello World"
>>> s[-1]
'd'
```

예제

```
a = "Kim"
b = "Park"
acronym = a[0] + "과" + b[0]
print(acronym)
```

K과P

믄자열은 객체

□ 객체(object)란 프로그래밍에서 관련 있는 변수와 함수(아직 학습하 지 않았지만 어떤 동작이라고 생각하자)를 하나로 묶은 것이다.

사실 파이썬에서는 모든 것이 객체이다.

□ 파이썬에서는 정수나 실수도 객체로 저장된다.

문자열의 함수

```
name = "Harry Parter"
lower_name = name.lower() # 'harry parter'

name = "Harry Parter"
new_name = name.replace("Parter", "Porter") # Harry Porter
```

Lab: 로봇 기자 만들기

사용자에게 경기장, 점수, 이긴 팀, 진 팀, 우수 선수를 질문하고 변수에 저장한다. 이들 문자열에 문장을 붙여서 기사를 작성한다.

경기장은 어디입니까?서울 이긴팀은 어디입니까?LG 진팀은 어디입니까?LG 우수선수는 누구입니까?홍길동 스코어는 몇대몇입니까?8:7

오늘 서울 에서 야구 경기가 열렸습니다.

삼성 과 LG 은 치열한 공방전을 펼쳤습니다.

홍길동 이 맹활약을 하였습니다.

결국 삼성 가 LG 를 8:7 로 이겼습니다.

Solution

```
# 사용자의 대답을 변수에 저장한다.
stadium = input("경기장은 어디입니까?")
winner = input("이긴팀은 어디입니까")
loser = input("진팀은 어디입니까?")
vip = input("우수선수는 누구입니까?")
score = input("스코어는 몇대몇입니까?")
# 변수와 문자열을 연결하여 기사를 작성한다.
print("")
              print("오늘", stadium, "에서 야구 경기가 열렸습니다.")
print(winner, "과", loser, "은 치열한 공방전을 펼쳤습니다.")
print(vip, "이 맹활약을 하였습니다.")
print("결국", winner,"가", loser,"를 ", score,"로 이겼습니다.")
```

입력 input() 함수

 Syntax: input() 함수

 행식 변수 = input(안내메시지)

 예 x = input("이름을 입력하시오: ")

 변수
 안내 메시지를 출력하고 사용자가 입력한 값을 문자열 형태로 반환한다.

사용자 인터페이스

input() 함수

```
>>> name = input("이름을 입력하시오: ")
이름을 입력하시오: 홍길동
>>> print(name)
홍길동
```

```
name = input("이름을 입력하시오: ")
print(name, "씨, 안녕하세요?")
print("파이썬에 오신 것을 환영합니다.")
```

이름을 입력하시오: 홍길동 홍길동 씨, 안녕하세요? 파이썬에 오신 것을 환영합니다.

정수 입력

```
x = input("첫 번째 정수를 입력하시오:")
y = input("두 번째 정수를 입력하시오:")
sum = x + y
print("합은 ", sum)
```

첫 번째 정수를 입력하시오: 300 첫 번째 정수를 입력하시오: 400

합은 300400

정수 입력

```
s1 = input("첫 번째 정수를 입력하시오:")
x = int(s1) # 문자열을 정수로 변환한다.
s2 = input("두 번째 정수를 입력하시오:")
y = int(s2) # 문자열을 정수로 변환한다.
sum = x + y
print("합은 ", sum)
```

첫 번째 정수를 입력하시오: 300 첫 번째 정수를 입력하시오: 400 합은 700

부동소수점수 입력

```
SQMETER_PER_P = 3.3

area = float(input ("면적(제곱미터):"))
py = area / SQMETER_PER_P
print(py, "평")
```

면적(제곱미터):25.6 7.757575757575759 평

변수와 문자열을 동시에 출력할때

```
x = 100
y = 200
print(x, "와 ", y, "의 합=", x+y)
```

100 와 200 의 합= 300

```
x = 100
y = 200
print(f"{x}와 {y}의 합={x+y}")
```

100와 200의 합=300

형식화된 출력

```
Syntax: print() 함수
```

- 🙀 형식문자열 % (값1, 값2, ..., 값n)
- p = 7.76 print("%10.2f" % py)

```
SQMETER_PER_P = 3.3
```

area = eval(input ("면적(제곱미터):")) py = area / SQMETER_PER_P print("%.2f평" % py) # 출력 7.76평

면적(제곱미터):25.6 7.76평

Lab: 대화하는 프로그램 만들기

변수를 사용하여 사용자의 이름과 나이를 문자열 형태로 기억했다
 가 출력할 때 사용하는 프로그램을 작성해보자.

안녕하세요?

이름이 어떻게 되시나요? 홍길동 만나서 반갑습니다. 홍길동씨 이름의 길이는 다음과 같군요: 3

나이가 어떻게 되나요? 21 내년이면 22이 되시는군요.

Solution

```
##
# 이 프로그램은 사용자와 친근하게 대화한다.
#
print("안녕하세요?")
name = input("이름이 어떻게 되시나요? ")
print("만나서 반갑습니다. " + name + "씨")

print("이름의 길이는 다음과 같군요:", len(name))

age = int(input("나이가 어떻게 되나요? "))
print("내년이면 "+ str(age+1) + "이 되시는군요.")
```

Lab: 구의 부피 계산하기 $V = \frac{4}{3}\pi r^3$

반지름이 5m인 구의 부피를 계산하는 프로그램을 작성해보자.

```
반지름을 입력하시오: 5.0
구의 부피= 523.598666666666
```

```
##
# 이 프로그램은 구의 부피를 계산한다.
#
# 사용자에게 구의 반지름을 입력하도록 한다. 구의 반지름을 문자열에서 실수로 변환한다.
r = float(input("반지름을 입력하시오: "))
# 구의 부피를 공식을 이용하여 계산한다.
volume = (4.0/3.0) * 3.141592 * r**3
# 구의 부피를 화면에 출력한다.
print("구의 부피=",volume)
```

Lab: 자동판매기 프로그램

□ 자동 판매기를 시뮬레이션하는 프로그램을 작성하여 보자.

물건값을 입력하시오: 750

1000원 지폐개수: 1 500원 동전개수: 0 100원 동전개수: 0

500원= 0 100원= 2 10원= 5 1원= 0


```
##
#
        이 프로그램은 자판기에서 거스름돈을 계산한다.
#
itemPrice = int(input("물건값을 입력하시오: "))
note = int(input("1000원 지폐개수: "))
coin500 = int(input("500원 동전개수: "))
coin100 = int(input("100원 동전개수: "))
change = note*1000 + coin500*500 + coin100*100 - itemPrice
# 거스름돈(500원 동전 개수)을 계산한다.
nCoin500 = change//500
change = change%500
# 거스름돈(100원 동전 개수)을 계산한다.
nCoin100 = change//100
change = change%100
# 거스름돈(10원 동전 개수)을 계산한다.
nCoin10 = change//10
change = change%10
# 거스름돈(1원 동전 개수)을 계산한다.
nCoin1 = change
print("500원=", nCoin500, "100원=", nCoin100, "10원=", nCoin10, "1원=", nCoin1)
```