Improving Image Semantic Segmentation with RGB-Depth

Mengxin Zhang, Jiayuan Li, Xinyu Huang, Jiqian Dong

{mengxinz, jiayuanl, xinyuh1, jiqiand}@andrew.cmu.edu

Problem settings

Specific Goals:

- Comparing performance of image semantic segmentation between RGB and RGBD dataset.
- Test out the performance of an existing method (U-Net) on large number class segmentation.
- Improve the segmentation by fine tuning and changing number of classes.
- Post processing by showing depth visual effects.

Challenges:

- The fusion of depth channel with original RGB channels.
- The less training images but large number of classes.
- Unbalanced labeled pixels, most are background.
- Model complexity, memory consuming.

Dataset NYU Depth V2

RGB image

depth image

Labels

Features:

- 1449 RGB-D images of size 480 (height)×640 (width).
- Composed of video sequences from indoor scenes.
- Pixel level labels with totally 894 different classes.

Top 10 classes

Rank	Frequency	Item	
1	1449	background	
2	1409	wall	
3	1246	floor	
4	818	picture	
5	664	cabinet	
6	654	chair	
7	539	table	
8	417	window	
9	400	door	
10	380	pillow	

Method U-Net

Features:

- Layers: Fully convolutional network
- 3 paths: Down sample + Up sample + Concatenation
- Output: Pixel wise feature map, # channel = # classes

Architecture:

Evaluation Metrics:

- Weighted IoU: IoU weighted by the frequency of classes in the original image labels.
- F1 score + AUC
- Pixel-wise accuracy

Results

Overall settings:

- Comparing raw performance on RGB (baseline) and RGBD (test case).
- Concatenate RGBD into 4 channels
- Train test 4:1, SGD + Adam
- Select 10, 5 most frequent classes for prediction

Table 1. Performance over different settings

IoU		F1 Score		ALIC	Aggurgay
mean	std	mean	std	AUC	Accuracy
0.63	0.16	0.75	0.12	0.944	0.73
0.67	0.17	0.79	0.12	0.958	0.78
0.55	0.18	0.69	0.14	0.945	0.64
0.55	0.19	0.69	0.15	0.944	0.68
-	-	_	_	-	0.42
-	-	_	_	_	0.46
	mean 0.63 0.67 0.55 0.55	mean std 0.63 0.16 0.67 0.17 0.55 0.18 0.55 0.19 - -	mean std mean 0.63 0.16 0.75 0.67 0.17 0.79 0.55 0.18 0.69 0.55 0.19 0.69 - - -	mean std mean std 0.63 0.16 0.75 0.12 0.67 0.17 0.79 0.12 0.55 0.18 0.69 0.14 0.55 0.19 0.69 0.15 - - - -	mean std mean std 0.63 0.16 0.75 0.12 0.944 0.67 0.17 0.79 0.12 0.958 0.55 0.18 0.69 0.14 0.945 0.55 0.19 0.69 0.15 0.944 - - - - - -

Accuracy comparison:

Sample prediction:

Conclusion

- U-Net is suitable for multi class semantic segmentation.
- Performance drops when class number increases.
- Add depth information makes the boundary clear, enhance the performance.

Bonus: Post processing

Application of RGB-D segmentation:

- Generate depth-of-field effect more natural based on depth change per pixel
- Ability to select which object we want to show clearly, and how much blurring we want to apply