Master 1 MAS & CHPS – Probabilités, Modèles et Applications

Responsable: Adrien Hardy, email: adrien.hardy@univ-lille.fr

Feuille d'exercices 2 Rappels de théorie de la mesure

Exercice 8. Soit la mesure sur \mathbb{R} définie par $\mu = \frac{1}{2}\mathbf{1}_{[0,1]}dx + \frac{1}{2}\delta_0$. Montrer que c'est une mesure de probabilité et calculer $\int x d\mu(x)$.

Exercice 9. Donner un exemple de mesure qui n'est pas σ -finie.

Exercice 10. On considère la mesure μ sur $(\mathbb{R}^2, \mathscr{B}(\mathbb{R}^2))$ définie par

$$\int f d\mu = \frac{1}{2\pi} \int_0^{2\pi} f(\cos \theta, \sin \theta) d\theta$$

pour toute fonction $f: \mathbb{R}^2 \to \mathbb{R}_+$ mesurable. Est-ce que cette mesure est absolument continue par rapport à la mesure de Lebesgue de \mathbb{R}^2 ?

Exercice 11. Soit (E, \mathcal{T}, μ) un espace mesuré et $f_n : E \to \mathbb{R}$ une suite de fonctions mesurables. Sous quelles conditions a-t-on

$$\sum_{n=1}^{\infty} \int f_n \, \mathrm{d}\mu = \int \sum_{n=1}^{\infty} f_n \, \mathrm{d}\mu \quad ?$$

Exercice 12. Démontrez le résultat suivant :

Soit $I \subset \mathbb{R}$ un ouvert et $f: E \times I \to \mathbb{R}$ telle que

- 1. $x \mapsto f(x,t) \in L^1(\mu)$ pour tout $t \in I$,
- 2. $\partial_t f(x,t)$ exists pour tout $t \in I$ et μ -presque tout $x \in E$,
- 3. il existe $g \in L^1(\mu)$ tel que $|\partial_t f(x,t)| \leq g(x)$ pour tout $t \in I$.

Alors, pour tout $t \in I$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \int f(x,t) \, \mu(\mathrm{d}x) = \int \partial_t f(x,t) \, \mu(\mathrm{d}x).$$

Aide: On pourra utiliser l'identité (qu'on démontrera)

$$\frac{f(x,t+\varepsilon)-f(x,t)}{\varepsilon} = \int_0^1 \partial_t f(x,t+u\varepsilon) \, \mathrm{d}u.$$