

Chapter 3

Airbreathing Engine Performance

Parameters

Sudip Bhattrai

Assistant Professor

Institute of Engineering (IOE)
Tribhuvan University
December 21, 2014

1/23/2018

Contents

- 1. Engine Thrust
 - 1. Uninstalled Thrust
 - 2. Takeoff Thrust
 - 3. Installed Thrust
- 2. Specific Thrust
- 3. Thrust Specific Fuel Consumption (TSFC)
- 4. Specific Impulse
- 5. Thermal Efficiency
- 6. Propulsive Efficiency
- 7. Overall Efficiency

1/23/2018

Uninstalled Thrust

 \triangleright Thrust = momentum of air + static pressure differences

$$F = \left(\dot{m}_0 + \dot{m}_f\right) v_9 - \dot{m}_0 v_0 + A_9 (p_9 - p_0)$$

$$= F_{uninstalled}$$

Ram Drag

$$D_{ram} = \dot{m}_0 v_0$$

 \triangleright Usually, $p_9 \approx p_0$ and neglecting fuel flow, then

$$F = q_m(v_9 - v_0)$$

Uninstalled Thrust

- Ram drag is simply the penalty of bringing air in the engine with a finite momentum.
- If $p_9 < p_0$, the nozzle is **overexpanded** which can happen in supersonic jets only (i.e. in convergent-divergent nozzles with area ratio larger than needed for perfect expansion.)
- If $p_9 = p_0$, the nozzle is **perfectly expanded** which is the case for *all subsonic jets* and sometimes in sonic or supersonic jets (i.e., with the right nozzle area ratio).
- If $p_9 > p_0$, the nozzle is **underexpanded** which can happen in sonic or supersonic jets only (i.e. with inadequate nozzle area ratio.)

Takeoff Thrust

At takeoff, the air speed is often ignored in the thrust calculation, therefore the ram drag contribution to engine thrust is neglected, i.e.,

$$F_{takeoff} = F_g = (\dot{m}_0 + \dot{m}_f)v_9 + A_9(p_9 - p_0)$$

For a perfectly expanded nozzle, the pressure thrust term vanishes to give

$$F_{takeoff} \approx (\dot{m}_0 + \dot{m}_f) v_9 \approx \dot{m}_0 v_9$$

Therefore, the takeoff thrust is proportional to the captured airflow.

Installed Thrust

- Installed thrust refers to the actual propulsive force transmitted to the aircraft by the engine, considering all the external losses.
- The installation losses to the thrust such as the nacelle skin friction and pressure drags are to be included.

$$F_{installed} = F_{uninstalled} - D_{nacelle}$$

➤ Here we focus mostly on the engine internal performance, i.e., the uninstalled characteristics, rather than the installed performance.

- Accurate installation drag accounting will require CFD analysis and wind tunnel testing at various flight Mach numbers and engine throttle settings.
- The force transmitted through the pylon to the aircraft is not the *uninstalled* thrust, rather the *installed* thrust and pylon drag.
- For jet engines, thrust cannot be directly equivalent to power.

$$P = \dot{m}_0 \frac{v_9^2 - v_0^2}{2} = \dot{m}_0 (v_9 - v_0) \frac{v_9 + v_0}{2} = F \frac{v_9 + v_0}{2}$$

 \triangleright Roughly, Engine Power = 450m/s \times *F*.

2. Specific Thrust

- ➤ In general, the magnitude of the thrust produced is directly proportional to the mass flow rates of the fluid flow through the engine.
- > Specific thrust is the ratio of thrust to air mass flow rate, i.e.,

$$F_s = \frac{F}{\dot{m}_0} = \frac{\dot{m}_0(v_9 - v_0)}{\dot{m}_0} = v_9 - v_0$$
 N.s/kg

- \triangleright On test bed, $v_0 = 0$, v_9 is specific thrust.
- ➤ Nondimensional specific thrust:

$$=\frac{F}{\dot{m}_0 a_0}$$

2. Specific Thrust

- Specific thrust in a cycle analysis is usually to be maximized, i.e. to produce thrust with the least quantity of airflow rate, or equivalently to produce thrust with a minimum of the engine frontal area.
- > Thrust-to-Weight Ratio is an important characteristic which represents design quality of aerodynamics, thermodynamics and structure of an engine.
 - ➤ Turbojet——3.5~4
 - ➤ Turbojet afterburner——5~6
 - > Turbofan afterburner—8
 - ➤ Fourth generation——10
- > On ground (zero speed), it is the ratio of the thrust at maximum power over the weight of engine.

3. Thrust Specific Fuel Consumption (TSFC)

- > Sometimes referred just as Specific Fuel Consumption (sfc).
- ➤ Defined as the ratio of the fuel flow rate per unit thrust force produced.
- Alternatively, consumption of fuel per hour to generate unit Newton of thrust. This is an economic characteristic.

$$sfc = \frac{\dot{m}_f}{F} (kg / N.s) = \frac{3600 \dot{m}_f}{F} (kg / hr.N)$$

- \triangleright Here: M_f is the rate of consumption of kerosene, kg/s.
- In the commercial airliners, sfc represents perhaps the most important parameter of the engine.
- In military aircrafts, sfc takes a second role to other performance parameters, such as stealth, agility, maneuverability and survivability.

3. Thrust Specific Fuel Consumption (TSFC)

The fuel-to-air ratio is expressed as,

$$f = \frac{\dot{m}_f}{\dot{m}_0}$$

> Thus,

$$sfc = \frac{3600f}{F_{s}}$$

> Since,

$$\dot{m}_f LHV = \dot{m}_0 q_a$$

where q_a is the amount of heat added per kg to the total air mass flow.

$$sfc = \frac{3600 \dot{m}_0 q_a}{LHV \cdot F} = \frac{3600 q_a}{LHV \cdot F_s}$$

4. Specific Impulse

➤ It is defined as the ratio of thrust produced per unit propellant weight flow rate.

$$I_{sp} = \frac{F_s}{\dot{m}_p g_0} [s]$$

For a rocket engine,

$$\dot{m}_p = (\dot{m}_f + \dot{m}_{ox})$$

For an airbreathing engine,

$$\dot{m}_p = \dot{m}_f$$

All propulsors, rockets, and airbreathers can thus be compared using a unifying figure of merit, namely their specific impulse in seconds. An added benefit of specific impulse is that it has the same unit [s] in both metric and British systems.

- ➤ It is the ability of an engine to convert the thermal energy inherent in the fuel (unleashed in the chemical reaction) to a net kinetic energy gain of the working medium.
- \triangleright It is denoted by the symbol n_{th} .

$$\eta_{th} = \frac{\Delta KE}{\gamma_{thermal}} = \frac{\dot{m}_{9} \frac{V_{9}^{2}}{2} - \dot{m}_{0} \frac{V_{0}^{2}}{2}}{\dot{m}_{f} Q_{R}} = \frac{\left(\dot{m}_{0} + \dot{m}_{f}\right) V_{9}^{2} - \dot{m}_{0} V_{0}^{2}}{2 \dot{m}_{f} Q_{R}}$$

➤ The equation compares the mechanical power production in the engine to the thermal power investment in the engine.

- The rate of thermal energy consumption in an engine and the rate of mechanical power production by the engine are **not** equal.
- > Yet we are not violating the law of conservation of energy.
- The thermal energy production in an engine is not usually lost, as it shows up in the hot jet exhaust stream.
- Rather, this energy is wasted (or purged) so that the engine is able to convert it to a useful power.
- This is important to know, or quantify, the inefficiency of an engine, i.e., how much of the energy added (and subsequently purged) is actually being used to generate 'useful' power.
- Therefore, the *lower the exhaust gas temperature*, the more useful energy is extracted from the combustion gases, and hence, the cycle is more efficient in the thermal context.

> Regenerative Cycle

- The exhaust gas temperature can be lowered by placing a heat exchanger in the exhaust stream to preheat the compressor air prior to combustion.
- The exhaust gas stream is cooled as it heats the cooler compressor gas and the less fuel is needed to burn to achieve a desired turbine entry temperature.

> Free Power Turbine (Propeller/Turboshaft)

- This creates less wasted heat in the exhaust nozzle; consequently, achieving a higher thermal efficiency than the counterparts without extra shaft power or the heat exchanger.
- > But, will our gains outweigh our losses?

> "Strap this wind turbine to your car and drive forever."

- ➤ Changed to- "Strap this wind turbine to your electric car and stay juiced in park."
- > Still a stupid and unfeasible concept...

- A successful engine does not necessarily have the highest thermal efficiency, but rather its overall system performance and cost is designed to meet the customer's requirements in an optimum manner.
- The thermal efficiency is bound by the Carnot cycle efficiency (operating between two temperatures) as the maximum.

6. Propulsive Efficiency

- > It is the fraction of the net mechanical output of the engine which is converted into thrust power.
- \triangleright It is denoted by the symbol n_n .

$$n_{p} = \frac{F \square V_{0}}{\Delta KE} = \frac{F \square V_{0}}{\dot{m}_{9} \frac{V_{9}^{2}}{2} - \dot{m}_{0} \frac{V_{0}^{2}}{2}}$$

$$n_p \approx \frac{\left[\left(\dot{m}_0 + \dot{m}_f \right) V_9 - \dot{m}_0 V_0 \right] V_0}{\left(\dot{m}_0 + \dot{m}_f \right) \frac{{V_9}^2}{2} - \dot{m}_0 \frac{{V_0}^2}{2}} \quad \text{For perfectly expanded nozzle.}$$

$$n_{p} \approx \frac{\left[V_{9} - V_{0}\right] V_{0}}{\frac{1}{2} \left[V_{9}^{2} - V_{0}^{2}\right]} = \frac{2V_{0}}{\left(V_{9} + V_{0}\right)} = \frac{2}{\left(1 + \frac{V_{9}}{V_{0}}\right)}$$

6. Propulsive Efficiency

- From the final form of the approximate equation, a 100% propulsive efficiency is mathematically possible and will be achieved by engines whose exhaust velocity is as fast as the flight velocity, i.e. $V_9 = V_0$.
- ➤ But, will there be thrust?
- ➤ Nope!
- Some overspeeding in the jet, compared with the flight speed, is definitely needed to produce reaction thrust in an airbreathing jet engine.
- ➤ However, the smaller the increment of velocity rises across the engine, the higher the propulsive efficiency will be.
- ➤ Draining the thermal energy from combustion into shaft power can provide a means for achieving small increments, and use it to drive larger mass flow through a fan/propeller.

7. Engine Overall Efficiency

- ➤ It is the product of the engine thermal and propulsive efficiencies.
- \triangleright It is denoted by the symbol, n_0 .

$$n_0 = \frac{\Delta KE}{\dot{m}_f Q_R} \frac{F \square V_0}{\Delta KE} = \frac{F \square V_0}{\dot{m}_f Q_R}$$

The overall efficiency of an aircraft engine is therefore the fraction of the fuel thermal power, which is converted into the thrust power of the aircraft.