

National University of Computer & Emerging Sciences (KARACHI CAMPUS)

Chapter: Oscillations & Electrosta	ttics Worksheet# 7 (Sec:)
Q1. A particle oscillates with simple having according to the expression $x = $ centimeters and t is in seconds. At $t = $	
(a) the displacement of the particle,	(c) its acceleration
(b) its velocity,	(d) Find period and amplitude of motion.
oscillations per second and an amplitu (a) Through what total distance does t motion? (b) What is its maximum spe	he particle move during one cycle of its

Ans: **1a.** 4.33 cm **1b.** -5 cm/s. **1c.**-17.3 cm/s² **1d.** π s & 5 cm

Ans: **2a.** 20 cm **2b.** 0.94 m/s **2c.** 17.8 m/s^2

National University of Computer & Emerging Sciences (KARACHI CAMPUS)

Chapter: Oscillations & Electrostatics

Worksheet# 7 (Sec: ____)

Q3. Find the net force on charge q_1 due to the three other charges in figure. Take q_1 = -5 μ C , q_2 = -8 μ C, q_3 = 15 μ C and q_4 = -16 μ C , a= 5cm. (Ans: $2.3\hat{\imath} - 2.4\hat{\jmath}$)

Q4. Three-point charges are located at the corners of an equilateral triangle, as shown in Figure -2. Calculate the net electric force on the 7 μ C charge.(Ans:

Q5. A point charge $q_1 = -2.5 \,\mu\text{C}$ is at x=0, while $q_2 = 6\mu\text{C}$ is at x=1 m. At what point, besides infinity, would the net force on a positive charge q_3 be zero? (Ans: d=1.82m to the left $-2.5 \,\mu\text{C}$)

Q6. The electron and the proton in a hydrogen atom are 0.53×10^{-10} m apart. Compare the electrostatic and gravitational forces between them. Fg/Fe = 4.4×10^{-40}

Q7. At what separation would the force between a proton and an electron be 1 N? (Ans: 1.52×10^{-14} m)

Q8. A proton orbits with a speed v = 294 km/s just outside a charged sphere of radius r = 1.13cm. Find the charge on sphere. (p=e = 1.9 x 10^{-19} C and m = 1.67 x 10^{-27} kg) (Ans: -1.13 x 10^{-9} C)