

Optimization of nf-core/sarek

Friederike Hanssen¹, Maxime Garcia², Gisela Gabernet¹, Sven Nahnsen¹

¹Quantitative Biology Center(QBiC), University of Tuebingen, ²SciLifeLab, Karolinska Institutet, Stockholm

Somatic variant calling studies often include many patients with dataset sizes varying widely between oncopanel, whole-exome, and whole-genome sequencing data. nf-core¹ provides reproducible, scalable, and portable open-source Nextflow²-based pipelines. nf-core/sarek³ is an established pipeline for exploring single-nucleotide variants, structural variation, microsatellite instability, and copy-number alterations of germline, tumor-only, and paired tumor-normal short-reads. Here, we show the latest updates to the pipeline including improvements to the data flow and tool selection reducing time and compute resources and, modularization improving maintainability.

PIPELINE OVERVIEW pathways mpileup nutect? strelka? manta tiddit ansorpro 0 Mandatory Core workflow Optionnal Germline variant calling Tumor only variant calling Tumor-normal pair variant calling **EXAMPLE OUTPUTS** position, chr 12 **MultiQC** nf-core/ T Extensive QC report sarek . . .

OPTIMIZING DATA FLOW

- FASTQ or BAM inputs are split into files of equal size before alignment.
- Resulting BAM files are then merged and duplicate marked in one step before they are converted into CRAM format.
- Subsequent steps are run on multiple genomic regions in parallel. By default for WGS a interval file with used with chromosomes cut at their centromers, for WES or panel data a user-supplied target bed file is used.
- For all data types, small regions are collected resulting in approximately equal sizes being processed together.

RESULTS

- Somatic variant calling on 41 tumor/normal pairs, panel data, 708 genes
- Adapters trimming (trimgalore vs fastp), bwa, duplicate marking, BQSR, Strelka, Manta, VEP, all available QC steps respectively

Literature

- 1. Ewels, P.A., Peltzer, A., Fillinger, S. *et al.* The nf-core framework for community-curated bioinformatics pipelines. *Nat Biotechnol* **38,** 276–278 (2020).
- 2. Di Tommaso, P., Chatzou, M., Floden, E. *et al.* Nextflow enables reproducible computational workflows. *Nat Biotechnol* **35,** 316–319 (2017)
- 3. Garcia, M., Juhos, S., Larsson, M. et al. "Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants." *F1000Research* vol. 9 63. 29 Jan. 2020

Universität Tübingen Quantitative Biology Center (QBiC) Auf der Morgenstelle 10, D-72076 Tübingen Phone +49 7071 29-76499 · http://qbic.life

Oncoplot generated from the output vcf

together with the R package maftools

