Reflektionen & Coreflektionen

Topologie Seminar

Fabian Gabel

Sommersemester 2017

Das (sportliche) Programm – Etappen(ziele)

Kategorientheorie Grundlagen (Teil II) Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien Allgemein In topologischen Konstrukten

Inhalt

Kategorientheorie Grundlagen (Teil II) Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien Allgemein In topologischen Konstrukten

Vokabelheft

Objekte verhalten sich zu Morphismen wie Kategorien zu ???

Vokabelheft

Objekte verhalten sich zu Morphismen wie Kategorien zu ???

Definition

Seien \mathcal{C} und \mathcal{D} Kategorien und $\mathcal{F}_1 \colon |\mathcal{C}| \to |\mathcal{D}|$ and $\mathcal{F}_2 \colon \operatorname{Mor}_{\mathcal{C}} \to \operatorname{Mor}_{\mathcal{D}}$. Dann nennen $\mathcal{F} = (\mathcal{C}, \mathcal{D}, \mathcal{F}_1, \mathcal{F}_2)$ einen (*covarianten*) Funktor von \mathcal{C} nach \mathcal{D} , falls folgende Bedingungen erfüllt sind:

- F1) $f \in [A, B]_{\mathcal{C}}$ impliziert $\mathcal{F}(f) \in [\mathcal{F}(A), \mathcal{F}(B)]_{\mathcal{D}}$.
- F2) $\mathcal{F}(f \circ g) = \mathcal{F}(f) \circ \mathcal{F}(g)$, falls $f \circ g$ definiert ist.
- F3) $\mathcal{F}(1_A) = 1_{\mathcal{F}(A)}$ für alle $A \in |\mathcal{C}|$.

Abkürzend: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$. (Homomorphismus von Funktoren)

Vokabelheft

Objekte verhalten sich zu Morphismen wie Kategorien zu ???

Definition

Seien \mathcal{C} und \mathcal{D} Kategorien und $\mathcal{F}_1 \colon |\mathcal{C}| \to |\mathcal{D}|$ and $\mathcal{F}_2 \colon \operatorname{Mor}_{\mathcal{C}} \to \operatorname{Mor}_{\mathcal{D}}$. Dann nennen $\mathcal{F} = (\mathcal{C}, \mathcal{D}, \mathcal{F}_1, \mathcal{F}_2)$ einen (*covarianten*) Funktor von \mathcal{C} nach \mathcal{D} , falls folgende Bedingungen erfüllt sind:

- F1) $f \in [A, B]_{\mathcal{C}}$ impliziert $\mathcal{F}(f) \in [\mathcal{F}(A), \mathcal{F}(B)]_{\mathcal{D}}$.
- F2) $\mathcal{F}(f \circ g) = \mathcal{F}(f) \circ \mathcal{F}(g)$, falls $f \circ g$ definiert ist.
- F3) $\mathcal{F}(1_A) = 1_{\mathcal{F}(A)}$ für alle $A \in |\mathcal{C}|$.

Abkürzend: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$. (Homomorphismus von Funktoren) Kontravarianter Funktor, falls modifiziert:

- F2') $f \in [A, B]_{\mathcal{C}}$ impliziert $\mathcal{F}(f) \in [\mathcal{F}(B), \mathcal{F}(A)]_{\mathcal{D}}$.
- F3') $\mathcal{F}(f \circ g) = \mathcal{F}(g) \circ \mathcal{F}(f)$, falls $f \circ g$ existiert.

a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.
- c) Dualisierender Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{C}^*$ definiert durch $\mathcal{F}(X) = X$ und $F(f) = f^*$ (contravariant).

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.
- c) Dualisierender Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{C}^*$ definiert durch $\mathcal{F}(X) = X$ und $F(f) = f^*$ (contravariant).
- d) Dualer Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$ ein Funktor: $\mathcal{F}^* \coloneqq \Delta_{\mathcal{D}} \circ F \circ \Delta_{\mathcal{C}^*}$

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.
- c) Dualisierender Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{C}^*$ definiert durch $\mathcal{F}(X) = X$ und $F(f) = f^*$ (contravariant).
- d) Dualer Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$ ein Funktor: $\mathcal{F}^* \coloneqq \Delta_{\mathcal{D}} \circ F \circ \Delta_{\mathcal{C}^*}$
- e) Identitätsfunktor $\mathcal{I}_{\mathcal{C}}$: $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ definiert durch $\mathcal{F}(X) = X$ und $\mathcal{F}(f) = f$.

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.
- c) Dualisierender Funktor: $\mathcal{F}: \mathcal{C} \to \mathcal{C}^*$ definiert durch $\mathcal{F}(X) = X$ und $F(f) = f^*$ (contravariant).
- d) Dualer Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$ ein Funktor: $\mathcal{F}^* \coloneqq \Delta_{\mathcal{D}} \circ F \circ \Delta_{\mathcal{C}^*}$
- e) Identitätsfunktor $\mathcal{I}_{\mathcal{C}}$: $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ definiert durch $\mathcal{F}(X) = X$ und $\mathcal{F}(f) = f$.
- f) Inklusionsfunktor: Sei $\mathcal C$ eine Kategorie und $\mathcal A$ eine $\mathit{Unterkategorie},$ dh
 - 1. $|\mathcal{A}| \subset |\mathcal{C}|$,
 - 2. $[A, B]_{\mathcal{A}} \subset [A, B]_{\mathcal{C}}$ für alle $(A, B) \in |\mathcal{A}| \times |\mathcal{A}|$,
 - 3. Komposition von Mor. in $\mathcal A$ wie in $\mathcal C$; Identitätsmorphismus derselbe.

Gilt sogar $[A, B]_A = [A, B]_C$: volle Unterkategorie. $\mathcal{F}_c := \mathcal{I}_C |_A$

Definition – Universelle Abbildung

 \mathcal{A} und \mathcal{B} Kategorien, $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ Funktor und $B \in |\mathcal{B}|$. Paar (u,A) mit $A \in |\mathcal{A}|$ und $u \colon B \to \mathcal{F}(A)$ heißt universelle Abbildung für B bezüglich \mathcal{F} , falls $\forall A' \in |\mathcal{A}|$ und $\forall f \colon B \to \mathcal{F}(A')$ genau ein \mathcal{A} -Morphismus $\overline{f} \colon A \to A'$ existiert so dass das Diagramm

kommutiert.

Definition – Universelle Abbildung

 \mathcal{A} und \mathcal{B} Kategorien, $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ Funktor und $B \in |\mathcal{B}|$. Paar (u,A) mit $A \in |\mathcal{A}|$ und $u \colon B \to \mathcal{F}(A)$ heißt universelle Abbildung für B bezüglich \mathcal{F} , falls $\forall A' \in |\mathcal{A}|$ und $\forall f \colon B \to \mathcal{F}(A')$ genau ein \mathcal{A} -Morphismus $\overline{f} \colon A \to A'$ existiert so dass das Diagramm

kommutiert.

Entsprechend: Paar (A, u) mit $A \in |\mathcal{A}|$ und $u \colon \mathcal{F}(A) \to B$: co-universelle Abbildung für B bezüglich \mathcal{F} , falls (u^*, A) eine universelle Abbildung für B bezüglich des Funktors $\mathcal{F}^* \colon \mathcal{A}^* \to \mathcal{B}^*$ ist:

kommutiert.

Das Prinzip bei der Arbeit

Schonmal gesehen bei der Stone-Čech-Kompaktifizierung?

 $\mathcal{F} = \mathcal{F}_e \colon \mathbf{CompHaus} \to \mathbf{Tych}.$

Für alle $X \in \mathbf{Tych}$ ist $(e_x, \beta(X))$ eine universelle Abbildung: $Y \in \mathbf{CompHaus}$ und $f \in [X, \mathcal{F}_e(Y)]_{\mathbf{Tych}}$, liefert Satz von Stone-Čech

gerade:

$$X \xrightarrow{f} \mathcal{F}_{e}(Y) = Y$$

$$\mathcal{F}_{e}(\beta(X)) = \beta(X)$$

Weitere Beispiele

- ▶ T0-ifizierung
- ▶ Vergissfunktor

Inhalt

Kategorientheorie Grundlagen (Teil II) Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien Allgemein In topologischen Konstrukten

Inhalt

Kategorientheorie Grundlagen (Teil II)

Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien

Allgemein In topologischen Konstrukte

In topologischen Konstrukten