Due Tuesday, February 13th, 2023

For questions 1-8, use the following definitions:

$$A = \{1, 2, 3, 4, 5\}$$

$$C = \{1, 3, 5\}$$

$$X = \{x \mid x \in \mathbb{N} \land x \le 5\}$$

$$W = \{x + 2 \mid x \in \mathbb{N} \land x \le 5\}$$

$$P = \{a + b \mid a \in A \land b \in B\}$$

$$S = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$$

$$B = \{0, 2, 4, 6, 8\}$$

$$D = \{1, 2, 3\}$$

$$Y = \{x \mid x \in \mathbb{N} \land x + 2 \le 5\}$$

$$Q = \{x^3 \mid x \in \mathbb{N}\}$$

$$H = \{\frac{n}{2} \mid n \in \mathbb{N}\}$$

- 1. Answer each question. If you think none of the given values are members, say "none".
 - (a) Which of the following are members of $A \cap B$?

1 2 6 9

(b) Which of the following are members of $A \cup B$?

1 2 6 9

(c) Which of the following are members of $A \setminus B$?

1 2 6 9

(d) If the universe is \mathbb{Z} , which of the following are members of \overline{A} ?

 $1 \ 2 \ 6 \ 9$

(e) Which of the following are members of H?

 $\frac{3}{2}$ $\frac{2}{3}$ 4 2.5 $-\frac{5}{2}$ $\sqrt{2}$

(f) Which of the following are members of X?

1 3 4 5 6 9

(g) Which of the following are members of W?

1 3 4 5 6 9

(h) Which of the following are members of Y?

1 3 4 5 6 9

- 2. Give an example of each of the following. If you think no such example exists, you must explain why.
 - (a) a member of $H \setminus \mathbb{Z}$.
 - (b) a member of $\mathbb{Z} \setminus H$.
 - (c) a member of $W \cap Y$
 - (d) three different members of Q
 - (e) a member of S
 - (f) a member of \varnothing
- 3. Decide whether the following statements are true or false. No justification is needed.
 - (a) $2 = \{2\}$
 - (b) $\emptyset = \{\}$

- (c) $\varnothing \in A$
- (d) $\{2\} \in A$
- (e) $\{1\} \in S$
- (f) $3 \in S$
- (g) $D \in S$
- 4. Decide whether the following statements are true or false. Give a brief justification (for most of these, one sentence or a single counterexample should be enough) for your answer.
 - (a) $11 \in P$
 - (b) $14 \in P$

If you think two sets are *not* equal, you need to give an example of something that is a member of one set, but not the other. If you think they *are* equal, then you need to explain why.

- (c) D = S
- (d) $\{3, 5, 1\} = C$
- (e) $\{1, 5, 1, 3, 1, 5, 5, 1, 3\} = C$
- (f) $\emptyset = \{\emptyset\}$
- 5. For this problem, let the universe be $\mathcal{U} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Write the following sets in set-list notation:
 - (a) \overline{B}
 - (b) $\overline{C \cup D} \cap \{2, 3, 4\}$
 - (c) $\{2, 3, 4\} \setminus (C \cup D)$
 - $(d) \ \overline{\varnothing}$
 - (e) $\overline{\mathcal{U}}$
 - (f) $(A \setminus B) \cap D$
 - (g) $A \cap C$
 - (h) $A \cup C$
 - (i) $A \setminus C$
 - (j) $C \setminus A$
 - (k) $B \cap C$
 - (l) $B \setminus C$
- 6. Give a definition of the set B using set-builder notation. There are many possible correct answers here.

- 7. **Bonus**: Give a second, different definition of B using set-builder notation.
- 8. Calculate the following. If the cardinality is infinite, just say "infinite".
 - (a) |B|
 - (b) |S|
 - (c) |X|
 - (d) $|\{x \mid x \in \mathbb{N} \land x \le 1000\}|$
 - (e) |Ø|
 - (f) $|A \setminus B|$
 - (g) |Q|
 - (h) $|\mathbb{Z}|$

For problems 9-12, use the following definitions:

```
 \begin{array}{ll} A = \{\,\, {\rm `a'},\,\, {\rm `b'},\,\, {\rm `c'},\,\, {\rm `d'},\,\, {\rm `e'}\,\} & {\rm Str} = {\rm the \; set \; of \; all \; strings} \\ C = \{\,\, {\rm `b'},\,\, {\rm `c'},\,\, {\rm `d'}\,\} & S_4 = \{s \mid s \in {\rm Str} \, \land \, |s| = 4\} \\ V = \{\,\, {\rm `a'},\,\, {\rm `e'},\,\, {\rm `i'},\,\, {\rm `o'},\,\, {\rm `u'}\,\} & S_{\rm even} = \{s \mid s \in {\rm Str} \, \land \, |s| \; {\rm is \; even}\} \\ X = \left\{\{\,\, {\rm `a'},\,\, {\rm `b'}\,\},\,\, \{\,\, {\rm `a'},\,\, {\rm `c'}\,\},\,\, \{\,\, {\rm `b'},\,\, {\rm `c'}\,\}\right\} & Y = \left\{\varnothing,\,\, \{\,\, {\rm `a'}\,\},\,\, \{\,\, {\rm `a'},\,\, {\rm `b'}\,\},\,\, \{\,\, {\rm `a'},\,\, {\rm `b'},\,\, {\rm `c'}\,\}\right\} \\ \end{array}
```

The vertical line notation $|\cdot|$ means different things in different contexts. If x is a real number, then |x| means the absolute value of x. If A is a set, then |A| means the cardinality of A. If s is a string, then |s| means the length of s.

Also, remember that \varnothing is the empty set, and ε is the empty string.

- 9. Give an example of each of the following. If you think no such example exists, you must explain why.
 - (a) a proper subset of A that is not empty
 - (b) a proper subset of S_4 that has at least three members
 - (c) a proper subset of Y that has at least two members
 - (d) a proper subset of S_{even} with infinitely many members (You must write your answer in set-builder notation.)
 - (e) a superset of C
 - (f) a member of $\mathcal{P}(V)$
 - (g) a member of $\mathcal{P}(S_{\text{even}})$
 - (h) a member of $\mathcal{P}(X)$
- 10. Decide whether the following statements are true or false. No justification is needed.
 - (a) $C \subseteq A$
 - (b) $\{'c', 'b'\} \subseteq C$
 - (c) 'd' $\subseteq A$

- (d) $\{'d'\}\subseteq A$
- (e) 'b' $\in Y$
- (f) $\{$ 'a', 'b' $\} \in X$
- (g) $\{'b'\} \in X$
- (h) $\{'a', 'b'\} \subseteq X$
- (i) $\{'a'\}\subseteq Y$
- (j) $\{\{'a'\}, \{'a', 'b'\}\} \in Y$
- (k) $\{\{\text{'a'}\}\}\in Y$
- (l) $\{\{\text{'a'}\}, \{\text{'a'}, \text{'b'}\}\} \subseteq Y$
- (m) $\{\{'a'\}\}\subseteq Y$
- (n) $\{\{\text{'a'}\}\}\subseteq X$
- (o) $\varnothing \in X$
- (p) $\varnothing \in Y$
- $(q) \varnothing \subseteq X$
- (r) $\varnothing \subseteq Y$
- 11. Decide whether the following statements are true or false. Give a brief justification (for most of these, one sentence should be enough) for your answer.

Remember that if you think one set is *not* a subset of another, you need to give an example of something that is a member of the supposed subset, but not a member of the supposed superset. If you think one set *is* a subset of another, you don't need to write a proof, just give an explanation.

- (a) $V \subseteq A$
- (b) $S_4 \subseteq S_{\text{even}}$
- (c) $S_{\text{even}} \subseteq S_4$
- (d) 'b' $\in \mathcal{P}(A)$
- (e) $\{$ 'a', 'b' $\} \in \mathcal{P}(A)$
- (f) $\{ a, \} \in \mathcal{P}(A)$
- (g) $X \subseteq Y$
- 12. Calculate the following. If the cardinality is infinite, just say "infinite".
 - (a) $|\mathcal{P}(C)|$
 - (b) $|\mathcal{P}(V)|$