Problem Statment:

Logistics and supply chain company which is the largest and fastest-growing fully integrated player in India by revenue in Fiscal 2021. They aim to build the operating system for commerce, through a combination of world-class infrastructure, logistics operations of the highest quality, and cutting-edge engineering and technology capabilities.

The Data team builds intelligence and capabilities using this data that helps them to widen the gap between the quality, efficiency, and profitability of their business versus their competitors.

Objective:

The company wants to understand and process the data coming out of data engineering pipelines:

- Clean, sanitize and manipulate data to get useful features out of raw fields
- Make sense out of the raw data and help the data science team to build forecasting models on it

```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

In [2]: df =pd.read_csv('delhivery_data.csv')

In []: # Let us check the data first.
    df.head()
```

Out[]

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid
)	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320

5 rows × 24 columns

In []: from google.colab import drive drive.mount('/content/drive')

EDA

In []: df.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 144867 entries, 0 to 144866
       Data columns (total 24 columns):
        # Column
                                              Non-Null Count Dtype
       --- -----
                                              _____
        0 data
                                              144867 non-null object
                                            144867 non-null object
144867 non-null object
        1 trip_creation_time
        2 route schedule uuid
                                             144867 non-null object
        3 route_type
           trip_uuid
                                             144867 non-null object
        5 source_center
                                            144867 non-null object
                                     144574 non-null object
144867 non-null object
144606 non-null object
144867 non-null object
        6 source name
        7 destination_center
        8 destination_name
        9 od_start_time
                                            144867 non-null object
        10 od_end_time
        11 start_scan_to_end_scan 144867 non-null float64
12 is_cutoff 144867 non-null bool
        13 cutoff_factor 144867 non-null int64
14 cutoff_timestamp 144867 non-null object
        15 actual_distance_to_destination 144867 non-null float64
        16 actual_time
                                             144867 non-null float64
        17 osrm_time
                                             144867 non-null float64
        18 osrm_distance
                                             144867 non-null float64
                                             144867 non-null float64
        19 factor
                                           144867 non-null float64
144867 non-null float64
        20 segment_actual_time
        21 segment_osrm_time
        22 segment_osrm_distance 144867 non-null float64
23 segment factor 144867
                                             144867 non-null float64
        23 segment_factor
       dtypes: bool(1), float64(10), int64(1), object(12)
       memory usage: 25.6+ MB
In [ ]: #We can see the numnber of rows and columns
         print(f'Rows :{df.shape[0]}')
         print(f'Columns :{df.shape[1]}')
       Rows :144867
       Columns :24
In [3]: # Droping the unwanted and Unknown field
         df.drop(['is cutoff','cutoff factor','cutoff timestamp','factor','segment factor
In [ ]: #Let us check now if the cloumns are droped
         df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 144867 entries, 0 to 144866
Data columns (total 19 columns):
```

```
# Column
                                      Non-Null Count Dtype
--- -----
                                      -----
                                      144867 non-null object
 0 data
                                    144867 non-null object
 1 trip_creation_time
                                    144867 non-null object
 2 route_schedule_uuid
                                     144867 non-null object
 3 route_type
    trip_uuid
                                     144867 non-null object
 5 source_center
                                    144867 non-null object
                              144574 non-null object
144867 non-null object
144606 non-null object
144867 non-null object
 6 source name
7 destination_center
 8 destination_name
 9 od_start_time
 10 od_end_time
                                    144867 non-null object
 11 start_scan_to_end_scan
                                    144867 non-null float64
 12 actual_distance_to_destination 144867 non-null float64
 13 actual time
                                      144867 non-null float64
 14 osrm_time
                                     144867 non-null float64
                                   144867 non-null float64
144867 non-null float64
144867 non-null float64
144867 non-null float64
 15 osrm_distance
 16 segment_actual_time
 17 segment_osrm_time
 18 segment_osrm_distance
dtypes: float64(8), object(11)
memory usage: 21.0+ MB
```

```
In [ ]: # Finding the null values
    df.isnull().sum()
# We can see their are null vaulus in coulumn source_name and destination_name
```

Out[]: 0 0 data trip_creation_time 0 route_schedule_uuid 0 route_type 0 0 trip_uuid source_center 0 293 source_name destination_center 0 destination_name 261 od_start_time 0 0 od_end_time start_scan_to_end_scan 0 $actual_distance_to_destination$ 0 actual_time 0 osrm_time 0 osrm_distance 0 segment_actual_time 0 segment_osrm_time 0 0 segment_osrm_distance

```
In [ ]: df[df['source_name'].isnull()]['source_center'].value_counts()
```

Out[]: count

source_center	
IND282002AAD	128
IND342902A1B	90
IND126116AAA	20
IND509103AAC	17
IND577116AAA	16
IND465333A1B	6
IND841301AAC	5
IND505326AAB	5
IND331022A1B	3
IND852118A1B	3

```
In [ ]: df[df['destination_name'].isnull()].head(3)
```

trip_uւ	route_type	route_schedule_uuid	trip_creation_time	data		Out[]:
tr 1537865584377566	FTL	thanos::sroute:4460a38d- ab9b-484e-bd4e- f4201d0	2018-09-25 08:53:04.377810	training	110	
tr 1537865584377566	FTL	thanos::sroute:4460a38d- ab9b-484e-bd4e- f4201d0	2018-09-25 08:53:04.377810	training	111	
tr 1538427378154956	FTL	thanos::sroute:d0ebdacd- e09b-47d3-be77- c9c4a05	2018-10-01 20:56:18.155260	test	982	

- The above source centers do not have the name . Which can be difficult to track or of the dirvers to know which place they would go .So it is better to maintain the name
- But for our analysis we can fill the null values with source centers

```
In [ ]: df[df['destination_name'].isnull()]['destination_center'].value_counts()
```

Out[]: count

destination_center IND282002AAD 151 IND342902A1B 16 IND577116AAA 16 IND852118A1B 15 IND505326AAB 11 **IND126116AAA** 10 IND841301AAC 9 IND250002AAC 9 IND509103AAC 9 IND122015AAC 8 IND465333A1B 3 IND331001A1C 3 IND221005A1A 1

```
In []:
    destination_centers = [
        'IND282002AAD', 'IND342902A1B', 'IND577116AAA', 'IND852118A1B',
        'IND505326AAB', 'IND126116AAA', 'IND841301AAC', 'IND250002AAC',
        'IND509103AAC', 'IND122015AAC', 'IND465333A1B', 'IND331001A1C',
        'IND221005A1A'
    ]
    for center in destination_centers:
        print(f"\nDestination Center: {center}")
        print(df[df['destination_center'] == center]['destination_name'].value_count
    # we can see every destination_name is null
```

```
Destination Center: IND282002AAD
Series([], Name: count, dtype: int64)
Destination Center: IND342902A1B
Series([], Name: count, dtype: int64)
Destination Center: IND577116AAA
Series([], Name: count, dtype: int64)
Destination Center: IND852118A1B
Series([], Name: count, dtype: int64)
Destination Center: IND505326AAB
Series([], Name: count, dtype: int64)
Destination Center: IND126116AAA
Series([], Name: count, dtype: int64)
Destination Center: IND841301AAC
Series([], Name: count, dtype: int64)
Destination Center: IND250002AAC
Series([], Name: count, dtype: int64)
Destination Center: IND509103AAC
Series([], Name: count, dtype: int64)
Destination Center: IND122015AAC
Series([], Name: count, dtype: int64)
Destination Center: IND465333A1B
Series([], Name: count, dtype: int64)
Destination Center: IND331001A1C
Series([], Name: count, dtype: int64)
Destination Center: IND221005A1A
Series([], Name: count, dtype: int64)
```

- Same for above Destination Center they all have null Destination name.
- We can fill null as Destination Center in Destination name column.

```
In [4]: # have fill the null values in the columns as their source center and Destinatio
#in their respective name columns

df['source_name']=df['source_name'].fillna(df['source_center'])

In [5]: df['destination_name']=df['destination_name'].fillna(df['destination_center'])

In []: #Now let us see the data type
    df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 144867 entries, 0 to 144866
Data columns (total 19 columns):
 # Column
                                      Non-Null Count Dtype
--- -----
                                      _____
 0
    data
                                      144867 non-null object
 1 trip_creation_time
                                    144867 non-null object
                                    144867 non-null object
 2 route_schedule_uuid
                                     144867 non-null object
 3 route_type
    trip_uuid
                                     144867 non-null object
 5 source_center
                                    144867 non-null object
                               144867 non-null object
144867 non-null object
144867 non-null object
144867 non-null object
 6 source name
 7 destination_center
 8 destination_name
 9 od_start_time
                                    144867 non-null object
 10 od_end_time
 11 start_scan_to_end_scan 144867 non-null float64
 12 actual_distance_to_destination 144867 non-null float64
 13 actual time
                                     144867 non-null float64
 14 osrm_time
                                     144867 non-null float64
                                   144867 non-null float64
144867 non-null float64
144867 non-null float64
144867 non-null float64
 15 osrm_distance
 16 segment_actual_time
 17 segment_osrm_time
18 segment_osrm_distance
dtypes: float64(8), object(11)
```

• we can see the columns which has time are objet data type so we can change to datetime data type so that we can easyly get the data from the column.

```
In [6]: df['trip_creation_time']=pd.to_datetime(df['trip_creation_time'],format='%Y-%m-%
In [7]: df['od_start_time']=pd.to_datetime(df['od_start_time'],format='%Y-%m-%d %H:%M:%S df['od_end_time']=pd.to_datetime(df['od_end_time'],format='%Y-%m-%d %H:%M:%S.%f'
In []: df.duplicated().sum()
Out[]: np.int64(0)
```

- I want to vizualise how many traing and how many testing are their
- I also want to know about route_type

memory usage: 21.0+ MB

```
In [ ]: sns.countplot(x=df['data'])
  plt.title('Frequency of data')
  plt.show()
```


• As we can see their is more training data compare to test data .

```
In []: #route_type

route_counts = df['route_type'].value_counts()
plt.pie(route_counts, labels=route_counts.index, autopct='%1.1f%%', startangle=9
plt.title('Distribution of Route Types')
plt.show()
```

Distribution of Route Types

Feature Engineering and Hypotisis testing

```
In [ ]: df.groupby('trip_uuid')['trip_uuid'].value_counts()
```

Out[]: count

trip_uuid trip-153671041653548748 39 9 trip-153671042288605164 trip-153671043369099517 89 2 trip-153671046011330457 trip-153671052974046625 7 trip-153861095625827784 7 2 trip-153861104386292051 trip-153861106442901555 6 trip-153861115439069069 17 trip-153861118270144424 4

14817 rows × 1 columns

```
In [ ]: df[df['trip_uuid']=='trip-153671052974046625']
```

Out[]:		data	trip_creation_time	route_schedule_uuid	route_type	trip_u
	78217	training	2018-09-12 00:02:09.740725	6 L 0 () 1+3 h h 0 c 0	FTL	t 153671052974046
	78218	training	2018-09-12 00:02:09.740725	6500-1+3h-hac8-	FTL	t 153671052974046
	78219	training	2018-09-12 00:02:09.740725		FTL	t 153671052974046
	78220	training	2018-09-12 00:02:09.740725	6500-1+3h-hac8-	FTL	t 153671052974046
	78221	training	2018-09-12 00:02:09.740725		FTL	t 153671052974046
	78222	training	2018-09-12 00:02:09.740725	6 L 0 () 1+3 L L 0 C 0	FTL	t 153671052974046
	78223	training	2018-09-12 00:02:09.740725	65e0-/t3h-hec8-	FTL	t 153671052974046
	1					•
In []:	df[df['trip_uu:	id']=='trip-15386	51118270144424']		
Out[]:		data tr	ip_creation_time	route_schedule_uuid ro	ute_type	trip_uuic
	11570	test	2018-10-03 ^t 23:59:42.701692	hanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL 15	trip- 3861118270144424
	11571	test	2018-10-03 ^t 23:59:42.701692	hanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL 15	trip- 3861118270144424
	11572	test	2018-10-03 ^t 23:59:42.701692	hanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL 15	trip. 3861118270144424
	11573	test	2018-10-03 ^t 23:59:42.701692	hanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL 15	trip. 3861118270144424
	4					•
In []:				time because we do not ,'segment_osrm_time','s		
In [54]:	# Now g	goruping	the the common t	rip_uuid and performing	g the agg fu	unction on it
	data_c	enters=d	f.groupby(['trip_	_uuid','source_center',	'destination	n_center','data'

```
'actual_dis
'actual_tim
'osrm_time'
'osrm_dista
}).reset_in

In [55]: data_centers.groupby(['source_center', 'destination_center'])['trip_uuid'].count
```

Out[55]: trip_uuid

source_center	destination_center	
IND562132AAA	IND560300AAA	151
	IND560099AAB	127
IND560099AAB	IND560300AAA	121
IND560300AAA	IND562132AAA	108
IND411033AAA	IND421302AAG	107

- We can see the above most frequently used corridors
 - 1. IND562132AAA->IND560300AAA which is 151
 - 2. IND562132AAA ->IND560099AAB which is 127

Out[58]:		od_start_time	od_end_time	start_scan_to_end_scan	actual_distance_to_
	count	16657	16657	16657.000000	16
	mean	2018-09-22 15:09:29.658076672	2018-09-22 21:32:38.367513344	401.975086	
	min	2018-09-12 00:00:16.535741	2018-09-12 00:50:10.814399	23.000000	
	25%	2018-09-17 06:08:40.561678080	2018-09-17 12:54:28.577978112	127.000000	
	50%	2018-09-22 06:06:01.573842944	2018-09-22 13:33:44.977102080	219.000000	
	75%	2018-09-27 19:31:17.301129984	2018-09-28 02:15:40.360954880	445.000000	
	max	2018-10-06 04:27:23.392375	2018-10-08 03:00:24.353479	7898.000000	1
	std	NaN	NaN	522.558609	
	4	_			•
<pre>In [61]: col=['actual_time','osrm_time','osrm_distance','actual_distance_to_destir for i in col: a=data[i].mean() print(f'Average of {i} :{a}')</pre>					e_to_destination']
Average of actual_time :273.54385543615297 Average of osrm_time :121.69952572492045 Average of osrm_distance :87.92251465658266 Average of actual_distance_to_destination :71.0243823794					

Average OSRM Distance: 87.92

Average OSRM Time: 121.69

Average Actual Time: 273.54385543615297

```
In [ ]: data.shape
Out[ ]: (16657, 14)
```

- I have merged the rows with commn trip_uuid source_center,destination_center and took the numarical coloumn .
- Here we can observe for one trip is around trip like you can see below.

```
In [ ]: data.head()
```

Out[]:		trip_uuid	Source_state	destination_state	data	od_start_time	od_€
	0	trip- 153671041653548748	Madhya Pradesh	Uttar Pradesh	training	2018-09-12 00:00:16.535741	20 16:39:4
	1	trip- 153671041653548748	Uttar Pradesh	Haryana	training	2018-09-12 16:39:46.858469	20 13:40:2
	2	trip- 153671042288605164	Karnataka	Karnataka	training	2018-09-12 02:03:09.655591	20 03:01:5
	3	trip- 153671043369099517	Haryana	Punjab	training	2018-09-14 03:40:17.106733	20 17:34:5
	4	trip- 153671043369099517	Karnataka	Haryana	training	2018-09-12 00:00:33.691250	20 03:40:1
	4						

• Need to check the corellation

In [16]: data['Source_state'].value_counts()
 # maximum soure_state is maharashtra
 #Lower is Tripura
 #We can take some action were other Lower service used states to use this logist

Out[16]: count

Source_state	
Maharashtra	2797
Karnataka	2416
Haryana	1839
Tamil Nadu	1150
Uttar Pradesh	978
Telangana	838
Gujarat	819
Delhi	790
West Bengal	682
Punjab	663
Rajasthan	564
Andhra Pradesh	551
Madhya Pradesh	455
Bihar	398
Kerala	320
Assam	290
Jharkhand	189
Uttarakhand	182
Orissa	178
Chandigarh	160
Himachal Pradesh	143
Goa	74
Arunachal Pradesh	46
Chhattisgarh	43
Jammu & Kashmir	34
Pondicherry	19
Dadra and Nagar Haveli	15
Meghalaya	13
Mizoram	5
Nagaland	5
Tripura	1

dtype: int64

In []: data['destination_state'].value_counts()
 #Maximum destination state is Maharashtra
 #lower destination state is Daman & Diu

Out[]: count

	count
destination_state	
Maharashtra	2705
Karnataka	2468
Haryana	1815
Tamil Nadu	1127
Uttar Pradesh	988
Telangana	902
Gujarat	819
Punjab	743
West Bengal	713
Delhi	674
Rajasthan	602
Andhra Pradesh	551
Madhya Pradesh	454
Bihar	403
Kerala	304
Assam	272
Jharkhand	197
Orissa	190
Uttarakhand	180
Himachal Pradesh	161
Chandigarh	123
Goa	74
Arunachal Pradesh	52
Chhattisgarh	43
Jammu & Kashmir	32
Pondicherry	24
Dadra and Nagar Haveli	17
Meghalaya	13
Mizoram	7
Tripura	2
Nagaland	1
Daman & Diu	1

```
In [17]: data_trip_uuid=data.groupby(['trip_uuid']).agg({'od_start_time':'max','od_end_ti
                                                                                'actual dis
                                                                                'actual_tim
                                                                               'osrm_time'
                                                                               'osrm_dista
                                                                               'segment_act
                                                                               'segment_osr
                                                                               'segment_osr
                                                                               }).reset_in
In [18]: #let us do a normaity test using QQplot
         import scipy.stats as stats
In [20]:
        import statsmodels.api as sm
In [39]: fig, axis = plt.subplots(2, 2,figsize=(21, 20))
         sm.qqplot(data_trip_uuid['actual_time'],line='s',ax=axis[0,0])
         axis[0,0].set_title('QQplot of actual_time')
         sm.qqplot(data_trip_uuid['osrm_time'],line='s',ax=axis[0,1])
         axis[0,1].set_title('QQplot of osrm_time')
         sm.qqplot(data_trip_uuid['osrm_distance'],line='s',ax=axis[1,0])
         axis[1,0].set_title('QQplot of osrm_distance')
         sm.qqplot(data_trip_uuid['actual_distance_to_destination'],line='s',ax=axis[1,1]
         axis[1,1].set_title('QQplot of actual_distance_to_destination')
         plt.show()
```


• We can see that the data is not normaly distributed so we can use Kruskal Wallis test for hypothisis testing

```
In [34]: from scipy import stats
In [40]: #segment_actual_time VS osrm_time
    stat, p = stats.kruskal(data_trip_uuid['actual_time'],data_trip_uuid['osrm_time']
    print(f"Kruskal-Wallis H-statistic: {stat}")
    print(f"P-value: {p}")

if p < 0.05:
        print("Significant difference between actual_time and osrm_time .")
    else:
        print("No significant difference between actual_time and osrm_time.")

Kruskal-Wallis H-statistic: 4881.379995727001</pre>
```

• By this we can tell that we need more accurate prediction of time throught OSRM

Significant difference between actual_time and osrm_time .

P-value: 0.0

```
In [41]: #actual_time VS segment_actual_time
    stat, p = stats.kruskal(data_trip_uuid['actual_time'],data_trip_uuid['segment_ac
    print(f"Kruskal-Wallis H-statistic: {stat}")
    print(f"P-value: {p}")

if p < 0.05:
    print("Significant difference between actual_time and segment_actual_time ."
    else:
        print("No significant difference between actual_time and segment_actual_time

Kruskal-Wallis H-statistic: 276.9587099963026
P-value: 3.454288758342234e-62
Significant difference between actual_time and segment_actual_time .</pre>
```

• Here also we can see their is a significat diffrence

```
In [42]: stat, p = stats.kruskal(data_trip_uuid['actual_distance_to_destination'],data_tr

print(f"Kruskal-Wallis H-statistic: {stat}")
print(f"P-value: {p}")

if p < 0.05:
    print("Significant difference between actual_distance_to_destination and osr
else:
    print("No significant difference between actual_distance_to_destination and</pre>
```

Kruskal-Wallis H-statistic: 774.5728435215805
P-value: 1.821772536232272e-170
Significant difference between actual distance to destination and osrm distance .

• I have tested three groups for comparing ORSM so the prection need to be acurate .

Outliers

Need to check if their are any outlier's

```
import matplotlib.pyplot as plt

fig, axis = plt.subplots(2, 2, figsize=(21, 20))

# Boxplot for actual_time
axis[0, 0].boxplot(data_trip_uuid['actual_time'].dropna())
axis[0, 0].set_title('Boxplot of actual_time')

# Boxplot for osrm_time
axis[0, 1].boxplot(data_trip_uuid['osrm_time'].dropna())
axis[0, 1].set_title('Boxplot of osrm_time')

# Boxplot for osrm_distance
axis[1, 0].boxplot(data_trip_uuid['osrm_distance'].dropna())
```

```
axis[1, 0].set_title('Boxplot of osrm_distance')
          # Boxplot for actual_distance_to_destination
          axis[1, 1].boxplot(data_trip_uuid['actual_distance_to_destination'].dropna())
          axis[1, 1].set_title('Boxplot of actual_distance_to_destination')
          plt.tight_layout()
          plt.show()
                                                                  Boxplot of actual_distance_to_destination
In [52]: columns = ['actual_time', 'osrm_time', 'osrm_distance', 'actual_distance_to_dest
          for col in columns:
              Q1 = data_trip_uuid[col].quantile(0.25)
              Q3 = data_trip_uuid[col].quantile(0.75)
              IQR = Q3 - Q1
              print(f"IQR for {col}: {IQR}")
        IQR for actual_time: 174.0
        IQR for osrm time: 69.0
        IQR for osrm_distance: 39.914138095238094
        IQR for actual_distance_to_destination: 30.552448111226653
```

- Their are outliers present in the data what we can do:
- 1. Remove Outliers

- 2. Cap or Winsorize Outliers
- 3. Log or Power Transform
- 4. Impute (if due to error or missing logic)
- 5. Label them

Business Insights

- Maharashtra has the highest number of orders both as a source and destination state. Tripura (as source) and Daman & Diu (as destination) have very low activity.
- most frequently used corridors
 - 1. IND562132AAA->IND560300AAA which is 151
 - 2. IND562132AAA ->IND560099AAB which is 127 These represent high-volume operational lanes.
- 1. Average OSRM Distance: 87.92
 - 2. Average OSRM Time: 121.69
 - 3. Average Actual Time: 273.54385543615297
- Tested if differences exist between groups (e.g., time prediction across routes). Found statistically significant differences → model needs to handle variability better.
- Found outliers in time and distance features. Suggested handling methods:
- 1. Remove Outliers
- 2. Cap or Winsorize Outliers
- 3. Log or Power Transform
- 4. Impute (if due to error or missing logic)
- 5. Label them

Recommendations

- Focus marketing and expansion strategies on low-demand states to increase penetration.
- Optimize most frequently used corridors using real-time tracking, fleet management, and exception handling.
- Improve OSRM predictions using additional variables (traffic, weather, time of day).
- Also use robust ML models that don't assume normality.
- For outliers Use method that aligns with business logic.