Math 109—Polynomial Worksheet Name:

- 1. Given $h(x) = -x^5 + 4x^4 3x^3 x^2 + 4$, answer the following questions.
 - a. Describe the end behavior of h(x).

degree = 5

leading coefficient is neg

b. State the maximum number of turns possible for the graph of h(x).

c. What is the y-intercept of h(x)?

For problems 2-7, use the end behavior (with limits), zeros, the y-intercept, and multiplicity to sketch the graph of the given polynomials.

2. y = (x-2)(x+4)(x+1)

3. $f(x) = (x-4)(x+2)^2(x+1)$

5. y = -3(x+2)(x-3)(x-1)

(3,0)

6. $f(x) = (x+1)^3$

DOR X >> 0 4 >> 0 R: (-14,00) X >> 0 4 >> 0 (-1,0) m3 (0,1)

D: TR

ROB

4. $g(x) = -x(x-3)^2$

twip (0,0)

7. $g(x) = x^2(x-3)^3(x+4)^2$

- 8. Sketch a third degree polynomial that satisfies the following given information.
 - a. g(x) has one x-intercept
- b. g(x) has two x-intercepts
- c. g(x) has thee x-intercepts

9. Is it possible to draw a third degree polynomial with no x-intercept? Explain your answer.

No. Because of the end behavior any odd power polynomial will have as x->00 y->00 or x->00 y->-00 x->-00 y->-00 x->-00 y->-00

10. What is the least number of x-intercepts for a fourth degree polynomial? The most number of xintercepts? (Please provide a picture for each as part of your explanation.)

11. What is the least number of x-intercepts for a seventh degree polynomial? The most number of xintercepts? least = 1 most 7

Write a polynomial equation for each of the following graphs. Leave your equation in factored form.

$$f(x) = (x+4)(x+1)(x-1)(x-4)$$

$$f(x) = -(x+3)(x+3)(x-1)$$

Find all of the zeros for the following polynomials and write the equation in factored form.

16.
$$f(x) = x^3 - 3x^2 - 2x + 6$$

 $x^3 - 3x^2 - 2x + 6 = 0$
 $\frac{6}{1} = \pm 1, 2, 3, 6$
 ± 1
 $3 = \pm 1, 2, 3, 6$
 ± 1
 $3 = \pm 1, 2, 3, 6$
 ± 1
 $3 = \pm 1, 2, 3, 6$
 ± 1
 $3 = \pm 1, 2, 3, 6$
 ± 1
 $3 = \pm 1, 2, 3, 6$
 ± 1
 $3 = \pm 1, 2, 3, 6$
 $4 = \pm 1, 3, 6$

17.
$$g(x) = 2x^{3} + 9x^{2} - 8x - 15$$

$$2x^{3} + 9x^{2} - 8x - 15 = 0$$

$$\frac{15}{3} = \frac{1}{1}, \frac{3}{1}, \frac{5}{1}, \frac{15}{2}$$

$$-1 \quad 2 \quad 9 \quad -8 \quad -15$$

$$-2 \quad -7 \quad 15$$

$$2x^{2} + 7x - 15$$

$$(2x - 3)(x + 5)$$

$$(-1,0)$$

$$(\frac{3}{2},0)$$

$$(-5,0)$$