Solutions to exercises from Ramamurti Shankar "Quantum Mechanics"

Contents

1 Chapter 1 1

1 Chapter 1

Exercise 1.1.1

1. There is exactly one null vector.

Let $|0\rangle\,, |0'\rangle$ be null vectors against addition operation. Then for any $|v\rangle$ we have

$$|v\rangle + |0\rangle = |0\rangle + |v\rangle = |0\rangle,$$

 $|v\rangle + |0'\rangle = |0'\rangle + |v\rangle = |0'\rangle.$

For that reason $|0\rangle + |0'\rangle = |0\rangle$. Similarly $|0\rangle + |0'\rangle = |0'\rangle$. Eventually, $|0\rangle = |0'\rangle$.

2. $0|v\rangle = |0\rangle$.

We have $|0\rangle = |v\rangle + |-v\rangle = (0+1)|v\rangle + |-v\rangle = 0|v\rangle + |v\rangle + |-v\rangle = 0|v\rangle + |0\rangle = |0\rangle$.

3. $|-v\rangle = -|v\rangle$.

We have $|v\rangle+|-v\rangle=|0\rangle=$ (point 2) = $0\,|v\rangle=$ $(1+(-1))\,|v\rangle=|v\rangle+(-\,|v\rangle)$ For that reason $|-v\rangle=-\,|v\rangle$

4. for any $|v\rangle$ there is exactly one $|-v\rangle$.

For any $|v\rangle$ let $|w\rangle$ it's inversion. There is only one null vector $|0\rangle$ (according to point 1). For that reason $|v\rangle + |w\rangle = |v\rangle + (-|v\rangle)$. We have then $|w\rangle = -|v\rangle$, because there is exactly one inversion.

Exercise 1.1.2

$$(a,b,c) + (d,e,f) = (a+d,b+e,c+f)$$

$$\alpha(a,b,c) = (\alpha a,\alpha b,\alpha c)$$
 null vector: $|0\rangle = (0,0,0)$ inverse vector: $(-a,-b,-c)$

Vectors (a, b, 1) don't create linear space, because their set don't have null vector.

Exercise 1.1.3

- 1. Yes
- 2. No, because there is not null vector
- 3. No, because there is not null vector

Exercise 1.1.4 Space of these vectors isn't linearly independent, because

$$-1 |1\rangle + 2 |2\rangle + 1 |3\rangle = |0\rangle$$
.

Exercise 1.1.5

- 1. This set of vectors isn't linearly independent, because we have $|1\rangle=\frac{1}{2}(|3\rangle-|2\rangle)$
- 2. This set of vectors is linearly independent, because only solution of $a_1 |1\rangle + a_2 |2\rangle + a_3 |3\rangle = |0\rangle$ is $a_1 = a_2 = a_3 = 0$:

$$a_1(1,1,0) + a_2(1,0,1) + a_3(0,1,1) = (0,0,0)$$

$$\begin{cases} a_1 + a_2 = 0 \\ a_1 + a_3 = 0 \\ a_2 + a_3 = 0 \end{cases}$$