MATH 302

Chapter 5

Section 5.4: The Method of Undetermined Coefficient I

Contents

Vhen The																											
Case I .																											
Case II .																											
Case III																											
Recap .				•																							
Vhen The	Forc	e F	hin	cti	on	Īs	E	хn	or	ıer	nt.i.	al	T :	im	es	F	o O	lv	n	on	าเร	al					
Case I .																											
Case II .																											
Case III																											
Recap .																											

CREATED BY: PIERRE-OLIVIER PARISÉ

 $Fall\ 2022$

WHEN THE FORCE FUNCTION IS AN EXPONENTIAL

We consider the following basic case:

$$ay'' + by' + cy = ke^{\alpha x}$$

where a, b, c, α , and k are fixed real numbers.

Case I

When $e^{\alpha x}$ is not a solution to the complementary equation ay'' + by' + cy = 0.

EXAMPLE 1. Find the general solution of

$$y'' - 7y' + 12y = 4e^{2x}.$$

Case II

When $e^{\alpha x}$ is a solution to the complementary equation.

EXAMPLE 2. Find the general solution of

$$y'' - 7y' + 12y = 5e^{4x}.$$

Case III

When $e^{\alpha x}$, and $xe^{\alpha x}$ are solutions to the complementary equation.

EXAMPLE 3. Find the general solution of

$$y'' - 8y' + 16y = 2e^{4x}.$$

Recap

To find a particular solution to

$$ay'' + by' + cy = ke^{\alpha x}$$

where k is a fixed real number, we follow the following tips:

- If $e^{\alpha x}$ is not a solution of the complementary equation, then we take $y_{par}(x) = Ae^{\alpha x}$, where A is a constant.
- If $e^{\alpha x}$ is a solution of the complementary equation, then we take $y_{par}(x) = xAe^{\alpha x}$, where A is a constant.
- If both $e^{\alpha x}$ and $xe^{\alpha x}$ are solutions of the complementary equation, then we take $y_{par}(x) = Ax^2e^{\alpha x}$, where A is a constant.

WHEN THE FORCE FUNCTION IS EXPONENTIAL TIMES POLYNOMIAL

We now consider a more general case:

$$ay'' + by' + cy = e^{\alpha x}G(x)$$

where a, b, c, α are fixed real numbers and G(x) is a polynomial.

Case I

When $e^{\alpha x}$ is not a solution to the complementary equation ay'' + by' + cy = 0.

EXAMPLE 4. Find the general solution to

$$y'' - 3y' + 2y = e^{3x}(x^2 + 2x - 1).$$

Case II

When $e^{\alpha x}$ is a solution to the complementary equation.

EXAMPLE 5. Find the general solution to

$$y'' - 4y' + 3y = e^{3x}(12x^2 + 8x + 6).$$

Case III

When $e^{\alpha x}$ and $xe^{\alpha x}$ are solutions to the complementary equation.

EXAMPLE 6. Find the general solution to

$$4y'' + 4y' + y = e^{-x/2}(144x^2 + 48x - 8).$$

Recap

To find a particular solution to

$$ay'' + by' + cy = ke^{\alpha x}G(x)$$

where k is a fixed real number and G(x) is a polynomial, we follow the following tips:

- If $e^{\alpha x}$ is not a solution of the complementary equation, then we take $y_{par}(x) = Ae^{\alpha x}Q(x)$, where A is a constant and Q(x) is a polynomial of the same degree as G(x).
- If $e^{\alpha x}$ is a solution of the complementary equation, then we take $y_{par}(x) = Axe^{\alpha x}Q(x)$, where A is a constant and Q(x) is a polynomial of the same degree as G(x).
- If $e^{\alpha x}$ and $xe^{\alpha x}$ are solutions to the complementary equation, then we take $y_{par}(x) = Ax^2e^{\alpha x}Q(x)$, where A is a constant and Q(x) is a polynomial of the same degree as G(x).