PROCESAMIENTO DE IMÁGENES: Tipos de arroz

Integrantes:

Alex Salgado Florez

Natalia Morelo Castro

Objetivo

Identificar los tipos de arroz a través de el procesamiento de imágenes según sus características físicas.

1.Clases y cantidad de objetos

3. Puntos de PDI aplicar

- Procesos morfológicos (Erosión, Apertura, Dilatación y Cerradura)
- 2. Segmentación
- 3. Representación y descripción

Arborio 1.Segmentación

Imagen original RGB

Imagen en blanco y negro

Imagen en escala de gris

Arborio 1.Segmentación

Un sólo umbral - Manual

Dos umbrales - Otsu

Dos umbrales - Manual

Arborio 2. Procesos morfológicos

Formas estructurales

Arborio Esqueletización y conteo de puntas

Esqueletización

Esqueletización

Conteo de puntas

Maximum Corners = 30

num_puntas_a... 5

%% %% %% CONTEO DE PUNTAS |
BW_puntas = bwmorph(BW_esquel, 'endpoints', Inf);
num_puntas = size(find(BW_puntas>0),1);

Basmati 1.Segmentación Imagen original RGB

Imagen en blanco y negro

lmagen en escala de gris

Basmati 1.Segmentación

Dos umbrales - Otsu

Un sólo umbral - Manual

Dos umbrales - Manual

Masmati 2. Procesos morfológicos

Formas estructurales

Basmati Esqueletización y conteo de puntas

Esqueletización

Esqueletización

%% %% %% CONTEO DE PUNTAS | BW_puntas = bwmorph(BW_esquel, 'endpoints', Inf); num_puntas = size(find(BW_puntas>0),1);

Conteo de puntas

Maximum Corners = 30

num_puntas 5

Ipsala Segmentación y procesos morfológicos

Imagen original1

Segmentación con un umbral - Imagen 1

Binarización de la imagen - Imagen

Erosión

Jasmine Segmentación y procesos morfológicos

Segmentación con un umbral - Imagen 2

Binarización de la imagen - Imager

Erosión

Cierre

Esqueletización - Imagen 2

Karacadag Segmentación y procesos morfológicos

Imagen original3

Segmentación con un umbral - Imagen 3

Binarización de la imagen - Imag

Apertura

Cierre

Esqueletización - Imagen 3

Extracción de características

1	FileName	Area	Perimeter	Circularity	Eccentricity	Num_puntas	MajorAxisLength	MinorAxisLength
2	Arborio (1).jpg	7204	336	0,787084677	0,851496893	5	133,203519	69,84655046
3	Arborio (10).jpg	7020	335,607	0,768762122	0,895252517	4	142,3776723	63,43767051
4	Arborio (11).jpg	7085	330,47	0,799958489	0,866537121	4	135,0842712	67,42226582
5	Arborio (12).jpg	8384	366,559	0,770833961	0,878206164	4	150,4244492	71,94534757
6	Arborio (13).jpg	7621	340,683	0,810117384	0,865531154	5	139,7072653	69,97309497
7	Arborio (14).jpg	8306	358,611	0,79758777	0,874165868	5	148,097531	71,92022858
8	Arborio (15).jpg	7433	345,685	0,767635101	0,89433672	4	145,8768723	65,26450917
9	Arborio (16).jpg	6844	322,556	0,810757113	0,85028175	4	129,2126406	68,00820406
10	Arborio (17).jpg	7696	347,475	0,786701527	0,861816076	4	140,2139313	71,11943775
11	Arborio (18).jpg	5122	276,596	0,822522472	0,83791764	4	109,9034311	59,98492917
12	Arborio (19).jpg	7928	355,387	0,775043204	0,87321382	4	144,7938107	70,56342199
13	Arborio (2).jpg	6804	313,192	0,854443876	0,815823784	4	122,860213	71,05013155
14	Arborio (20).jpg	7451	334,819	0,819770529	0,840960062	4	133,2775256	72,11609524
15	Arborio (21).jpg	8229	354,997	0,806222067	0,843041427	5	140,8598738	75,76129057
16	Arborio (22).jpg	7730	339,659	0,826620611	0,854197938	4	138,2963565	71,90690863
17	Arborio (23).jpg	6738	320,411	0,808818548	0,870622818	4	132,7476412	65,30535132
18	Arborio (24).jpg	6989	333,133	0,776670472	0,862865349	4	134,0309088	67,74375992
19	Arborio (25).jpg	7508	337,489	0,813142813	0,865916916	4	138,9983766	69,5253005
20	Arborio (26).jpg	8088	358,545	0,776937683	0,883315902	5	149,0374276	69,86549959
21	Arborio (27).jpg	7445	342,827	0,781629994	0,881131897	4	142,3200286	67,29895371

```
%% Configuración y ejecución del clasificador
% 1.1 Configuración input
%X = [area; perim; orien; circ; ejeMen; ejeMay]'; %Datos de entrenamiento
X = [area; perim; circ; eccen; puntas; ejeMen;ejeMay]'; %Datos de entrenamiento
% 1.2 Configuración target
T = repmat([1 2 3 4 5],25,1); %Se crea una matriz con las etiquetas posibles para las m
target = T(:); %Se serializa T, Vector objetivo para la clasif supervisada
%target = target';
% 2: Configuración de la red neuronal
disp('Configuring Neural Network...');
trainFcn = 'trainlm';
                                                   % Levenberg-Marquardt
hiddenLayerSize = [7 15 5];
                                                   %if I need more layers then I should
net = fitnet(hiddenLayerSize,trainFcn);
% net.layers{1}.transferFcn='logsig';
                                                     %tansig by default, but I can put
% net.layers{2}.transferFcn='tansig';
% net.layers{3}.transferFcn='purelin';
% net.trainParam.goal = 0.1;
% net.trainParam.epochs = 500;
%net = init(net);
                                                   %initializing the network with previ
% view(net)
                                                     % para visualizar la red final
[net, tr] = train(net,X',target');
                                                 %training
```


Maching Learning

Redes neuronales

Neural Network Training Training State (plottrainstate), Epoch 30 , Training finished: Met. → × File Edit View Insert Tools

Random forest (RF)

Maching Learning

```
%% %% Configuración y ejecución del clasificador
% 1.1 Configuración input
%X = [area; perim; orien; circ; ejeMen; ejeMay]'; %Datos de entrenamiento
X = [area; perim; circ; eccen; puntas; ejeMen; ejeMay]'; %Datos de entrenamiento

%%
% 1.2 Configuración target
T = repmat([1 2 3 4 5],25,1); %Se crea una matriz con las etiquetas posibles para las muestras (5 filas, 7 columna)
target = T(:); %Se serializa T, Vector objetivo para la clasif supervisada
target = target';

%% Configuración y obtención del RF
disp('Configuring Random Forest...');
nArboles = 50; % número de árboles
myRF = TreeBagger(nArboles, X, target, 'OOBPrediction', 'on');
```

eval =

96

Random forest (RF)

Repositorio en GitHub

https://github.com/Alexmet2007/Proyecto_Arroz