Unit 11: Information Theory and Capacity

EL-GY 6013: DIGITAL COMMUNICATIONS

PROF. SUNDEEP RANGAN

Learning Objectives

- □ Define and compute the Shannon capacity for simple memoryless channels
- □ Identify power-limited and bandwidth-limited regimes of operation
- ☐ Describe difficulties in achieving the Shannon capacity for practical systems
- ☐ Mathematically describe the performance of a system relative to the Shannon limit
- □ Define and compute the constellation-constrained capacity

Outline

- Information theory basics
- ☐ Shannon capacity
- Modeling capacity of practical systems
- □ Constellation constrained capacity
- ☐ Proof of the Shannon Theorem

What is Information Theory?

- ☐ There are many ways to design communication systems
- ☐ Two basic questions:
 - How do we measure the performance?
 - What is the best we can expect to do?
- □ Information theory provides:
 - Simple metrics to evaluate system performance
 - Fundamental bounds that can be achieved by any system
 - Apply to any communication system
 - No constraint in computation / delay
- ☐ Can be used as a benchmark for practical systems

Claude Shannon Founder of IT

Entropy

- \Box Given a random variable X
- \square Entropy for a discrete X: $H(X) = -\sum p_i \log_2 p_i$
- \square Relative entropy for continuous X with PDF p(x):

$$h(X) = -\int p(x)\log_2(p(x))dx$$

- \square Measures amount of "variation" in X
 - \circ But, unlike var(X) does not depend on values of X
 - Just the number of values and their relative probability
- □Sometimes measured in "nats"
 - Replace log base 2 with natural logarithm

Discrete Examples

□Ex 1: Binary

$$P(X = 1) = 1 - P(X = 0) = p$$

$$H(X) = -p \log p - (1-p) \log(1-p)$$

- See figure to the right
- $^{\circ}\,$ Entropy maximized with most uncertainty, p=0.5

■Ex 2: Discrete uniform

$$X \in \{x_1, ..., x_N\} \text{ with } P(X = x_i) = \frac{1}{N}$$

$$H(X) = -\sum_{N=1}^{\infty} \log\left(\frac{1}{N}\right) = \log(N)$$

- Entropy increases with number of values
- Labels of the values do not matter

Continuous Examples

Distribution	Parameters	Relative Entropy in nats
Uniform	$X \sim U[a, b]$	$h(X) = \ln(b - a)$
Real Gaussian	$X \sim N(\mu, \sigma^2)$	$h(X) = \frac{1}{2} \ln(2\pi e\sigma^2)$
Complex Gaussian	$X \sim CN(\mu, \sigma^2)$	$h(X) = \ln(\pi e\sigma^2)$
Exponential	$E(X)=1/\lambda$	$h(X) = 1 - \ln(\lambda)$

- ☐ Entropy increases with variance
- ☐ Entropy does not change with mean

Compression and Entropy

☐ Key interpretation of entropy

$$H(X)$$
 = "number of bits to represent X "

- Related to the "compressibility" of X
- □ Specifically, consider variable length "encoder":

$$Z = \phi(X)$$

- $\circ Z$ is a binary string
- \square Want $\phi(X)$ is "prefix" free
 - $\phi(x_i)$ is not a prefix of $\phi(x_j)$ when $x_i \neq x_j$
 - Ensure mapping is invertible
 - Given sequence of outputs, we can always tell boundaries

Length of an Encoder

- \square Given encoder $Z = \phi(X)$
- $\Box \text{ Define } L(\phi) = \text{avg length of } \phi(X)$
- ■Ex to the right:

$$L(\phi) = 0.6(1) + 0.3(2) + 0.1(2) = 1.4$$
 bits / sym

- ☐ To minimize length:
 - Select short sequences for likely x
 - \circ Reserve long sequences for unlikely x

X	P(X)	$\phi(X)$
А	0.6	0
В	0.3	10
С	0.1	11

Compression and Entropy

 \Box Theorem: If X is a discrete random variable, there exists a prefix free variable length code with

Avg. length
$$\leq H(X) + 1$$

 \square By encoding N symbols at a time, can achieve

Avg. length
$$\leq H(X) + \frac{1}{N} \to H(X)$$

- ☐ Proof uses a Huffman code
- ☐ Entropy shows how much information is in a random variable

Joint and Conditional Entropy

- \square Let (X,Y) be a pair of discrete random variables with a joint distribution
- \square Joint entropy: Entropy of the pair Z = (X, Y)

$$H(X,Y) = -\sum_{y} \sum_{x} P(x,y) \log P(x,y)$$

- \square Recall: For every y, P(X|Y=y) is a distribution on X
- □Conditional entropy for a given y: $H(X|Y = y) = -\sum_{x} P(x|y) \log P(x|y)$
 - Represents entropy in X after seeing Y = y
- ☐ Conditional entropy:

$$H(X|Y) := \sum_{y} H(X|Y = y) = -\sum_{y} \sum_{x} P(x,y) \log P(x|y)$$

☐ Similar equations for continuous random variables

Properties

- \square Conditional: H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)
- □Independence:
 - H(X|Y) = H(X) if and only if X and Y are independent
 - In this case, H(X,Y) = H(X) + H(Y)
- \square For all $X, Y: H(X, Y) \leq H(X) + H(Y)$

Example

 \square Suppose X, Y are binary with joint PMF in table

$$\square H(X) = -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1$$

 \square For Y=0:

•
$$P(X|Y=0) = \left[\frac{2}{3}, \frac{1}{3}\right] \Rightarrow H(X|Y=0) = 0.91$$

 \square For Y=1:

$$P(X|Y=1) = \left[\frac{1}{4}, \frac{3}{4}\right] \Rightarrow H(X|Y=1) = 0.81$$

□ Conditional entropy:

$$H(X|Y) = 0.6(0.91) + 0.4(0.81) \approx 0.86$$
 bits

	Y = 0	Y = 1	P(X=x)
X = 0	0.4	0.1	0.5
X = 1	0.2	0.3	0.5
P(Y=y)	0.6	0.4	

Mutual Information

- ☐ How much are two random variables related?
- Mutual information:

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

- \square Represents decrease in entropy in X from knowing Y
- ☐ Can also define for differential entropy
- ■Special cases:
 - If X and Y are independent, I(X;Y) = 0
 - If Y = f(X), then I(X; Y) = H(X)

Example: BSC Channel

☐ For communications

 $\circ X$ is the typ. the channel input and Y is the output

☐ Binary symmetric channel:

- Input $X \in \{0,1\}$ equiprobable
- ∘ Output $Y \in \{0,1\}$
- $P(X \neq Y | X = x) = p$ = Probability of error
- P(X = Y | X = x) = 1 p = Probability no error

■ Mutual information

- \circ H(X) = 1 bit
- P(X|Y = 0) = [p, 1 p]
- $H(X|Y = 0) = H(p) := -p \log_2 p (1-p) \log_2 (1-p)$
- Similarly, H(X|Y=1)=H(p)
- Hence: I(X; Y) = 1 H(p)

X

BSC Channel Illustrated

- $\Box \text{From } I(X;Y) = 1 H(p)$
 - $H(p) = -p \log(p) (1-p) \log(1-p)$
- \square See I(X;Y) vs. p on right
- □ When $p \to 0$ or $1 \Rightarrow I(X;Y) \to 1$
 - ∘ *Y* perfectly describes *X*
- - $\circ X$ and Y are independent

Outline

- ☐ Information theory basics
- Shannon capacity
- Modeling capacity of practical systems
- ☐ Constellation constrained capacity
- ☐ Proof of the Shannon Theorem

Abstract Communication System

- \square TX k bits: $\boldsymbol{b} = (b_1, ..., b_k)$
- \square Maps bits to n symbols $\mathbf{x} = (x_1, ..., x_n)$ into "channel"
- \square Channel outputs n RX symbols $y = (y_1, ..., y_n)$
- \square Channel is modeled probabilistically P(y|x)
- \square RX attempts to estimate TX bits: $\hat{\boldsymbol{b}}$

Practical System is an Example

- ☐ In the abstract model, the TX and RX can include typical block we have studied up to now
- ☐ But they are not restricted to a particular structure

Key Parameters

- \square Block length: n = number of symbols
- \square Rate: $R = \frac{k}{n}$ = number of bits per symbol
- □ Block error rate: $P_e = P(\hat{b} \neq b)$
 - Depends on randomness in channel
- □ Key goal in communication: maximize rate with a low BLER

Discrete Memoryless Channel (DMC)

TX symbols
$$\mathbf{x} = (x_1, ..., x_n)$$
 RX symbols $\mathbf{y} = (y_1, ..., y_n)$

- \square Model channel probabilistically via conditional distribution P(y|x)
 - P(y|x) = conditional distribution of the RX symbols given the TX symbols
- \square Say channel is memoryless if $P(x|y) = \prod_i P(y_i|x_i)$
 - \circ Each RX symbol y_i depends only on x_i
- \square For simplicity, we restrict to the discrete case: $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$
 - $\circ \mathcal{X}$, \mathcal{Y} are finite sets

Example Channels

■ Example 1: AWGN channel is memoryless

$$y_i = x_i + w_i, \qquad w_i \sim CN(0, N_0)$$

- \circ Assume w_i are independent
- Example 2: BSC channel is memoryless and discrete
 - ∘ TX and RX symbols are binary y_i , x_i ∈ {0,1}
 - BSC channel is independent on each symbol

Asymptotic Rate and Reliability

- ☐ To obtain sharp results, we often look at the case of long block lengths
- \square Formally, consider a sequence of TX-RX pairs as a function of the block length n
- \square For each n:
 - k = k(n) = number of information bits
 - TX is some function: $(x_1, ..., x_n) = f_n(b_1, ..., b_k)$
 - RX is some function: $(\hat{b}_1, ..., \hat{b}_k) = g_n(y_1, ..., y_n)$
- \square Say it is asymptotically reliable if: $\lim_{n\to\infty} P_e = 0$

Achievable Rate and Capacity

- \square Achievable rate: We say a rate R is achievable if:
 - \circ There exists a sequence of encoder-decoders indexed by block length n with rate R, and
 - The BLER vanishes: $\lim_{n\to\infty} P_e = 0$

- \square Capacity: Is the supremum over all achievable rates R
 - Optimized over all possible encoders & decoders
 - No regard to complexity or delay

Shannon's Capacity Theorem

 \square Theorem: Given a DMC with transition P(y|x), the channel capacity is:

$$C = \max_{p(x)} I(X; Y)$$

- We sketch the proof at the end of the lecture
- $lue{}$ Maximization is performed over distributions p(x)
- \square With p(x) and p(y|x), we can compute I(Y|X)

Example: BSC

- □Input $X \in \{0,1\}$, output $Y \in \{0,1\}$
- \square Probability of error: $p = P(X \neq Y)$
- □Can show that maximizing distribution is:

$$P(X = 0) = P(X = 1) = \frac{1}{2}$$

☐ In this case, the mutual information is computed as before

$$C = I(X;Y) = 1 - H(p)$$

 \circ Capacity $C \in [0,1]$ with higher capacity as $p \to 1$

AWGN Channel Capacity

- \square Now suppose that y = x + w, $w \sim CN(0, N_0)$
- □Although this channel is not discrete, similar theory applies using relative entropy
- \square Limit input distributions such that $E|x|^2 \le E_x$ where E_x is a maximum energy per symbol
- \square Theorem: The capacity of the AWGN channel with energy limit E_x is:

$$C = \log_2(1+\gamma), \qquad \gamma = \frac{E_x}{N_0}$$

 \square Simple relation relating capacity to SNR γ

Proof of AWGN Channel Capacity

- \square AWGN channel: y = x + w, $w \sim CN(0, N_0)$
- \square First suppose that $x \sim CN(0, E_x)$, a Gaussian input
- \square Entropy of complex Gaussian, $z \sim CN(\mu, \sigma^2)$ is $h(z) = \log(\pi e \sigma^2)$
- ■Therefore
 - $p(y) = CN(0, E_x + N_0) \Rightarrow h(y) = \log_2(\pi e(E_x + N_0))$
 - Given x, $p(y|x) = CN(x, N_0) \Rightarrow h(y|x) = \log_2(\pi e N_0)$
- $\Box \text{Hence } I(x;y) = h(y) h(y|x) = \log_2(\pi e(E_x + N_0)) \log_2(\pi eN_0) = \log_2(1 + \frac{E_x}{N_0})$
 - Therefore, Gaussian input achieves the capacity
- \square Can also show that for any distribution with $E|x|^2 \le E_x$, $h(y) \le \log_2(\pi e(E_x + N_0))$
 - Hence, any other distribution has lower I(x; y)

Continuous Time Capacity

- \square Consider continuous-time system: y(t) = x(t) + w(t)
 - Assume $E|x(t)|^2 \le P_x$ and x(t) is bandlimited to bandwidth B
 - Noise w(t) is AWGN with PSD N_0
- ☐ Theorem: The capacity of the continuous-time AWGN system is:

$$C = B \log_2(1 + \gamma), \qquad \gamma = \frac{P_{\chi}}{BN_0}$$

- Most important formula in IT!
- Relates SNR, bandwidth and achievable rate
- Proof sketch in next slide

Proof of Continuous-Time Capacity

- We convert the continuous-time channel to a discrete-time channel
- \square If x(t) is band-limited to B, then there are B degrees of freedom per second

So, we can find an orthonormal basis:
$$x(t) = \sum_k x_k \, \phi(t-nT), \qquad T = \frac{1}{B}$$
 \circ The energy per symbol will be: $E_x = \frac{P_x}{B}$

- \square We can similarly write the received signal as $y(t) = \sum_k y_k \, \phi(t nT)$ where

$$y_k = x_k + w_k$$

- \square Noise energy per symbol is $E|w_k|^2 = N_0$
- \square Capacity per symbol is $C_0 = \log_2(1 + \frac{E_x}{N_0}) = \log_2(1 + \frac{P_x}{BN_0})$
- \square Since there are B symbols / sec, the continuous-time capacity is $C = B \log_2(1 + \frac{P_\chi}{PN})$

Example

■Suppose:

- \circ TX power, $P_{tx} = 20 \text{ dBm}$
- \circ Path loss, L = 110 dB
- \circ Bandwidth, B = 20 MHz
- $^{\circ}$ Noise density (with noise figure) is $N_0 = -170$ dBm/Hz

☐ Capacity:

- RX power, $P_{rx} = 20 110 = -90 \text{ dBm}$
- \circ SNR is $\gamma = P_{rx} 10 \log_{10}(B) N_0 = -90 73 (-170) = 7 \text{ dB}$
- $^{\circ}$ In linear scale: $\gamma = 10^{0.7} \approx 5.0$
- Spectral efficiency is $\rho = \log_2(1 + \gamma) = 2.59$ bps/Hz
- Capacity is $C = B \log_2(1 + \gamma) = 20(2.59) \approx 51.7$ Mbps

Regimes

- ☐Two regimes
- ☐ Power limited regime
 - Suppose SNR $\gamma = \frac{P_{\chi}}{BN_0}$ is low

$$C = B \log_2(1 + \frac{P_x}{BN_0}) \approx \frac{1}{\log(2)} \frac{P_x}{N_0}$$

- Capacity is linear in power
- Bandwidth does not help
- ☐ Bandwidth limited regime
 - Suppose SNR is high
 - $C \approx B \log_2(\gamma)$
 - Capacity is only logarithmic in SNR. SNR does not help much
 - But grows much faster with bandwidth

Practical Design Guidelines

- ☐ Practical systems operate in a limited SNR range
- □ Avoid very power limited regime
 - ∘ Generally, keep $\gamma \ge -6$ dB
 - Below this SNR, better to use smaller bandwidth and higher PSD
 - Reduces overhead and computation
- □ Avoid highly bandwidth limited regime
 - ∘ Generally, keep γ ≤ 25 to 30 dB
 - Gains are very low with higher SNR
 - Also, the gains are hard to achieve in practice
 - In these cases, use more bandwidth

SNR Per Bit and Spectral Efficiency

- \square Shannon formula: $C = B \log_2(1 + \gamma_s)$, $\gamma_s = \frac{P_\chi}{BN_0}$
- $\square \text{Spectral efficiency: } \rho = \frac{c}{B} = \log_2(1 + \gamma_s)$
 - Units are bits per second / Hz
 - Represents rate / bandwidth
- ■SNR per bit:

$$\gamma_b = \frac{P_{rx}}{N_0 C} = \frac{\gamma_s}{\rho}$$

- Written as $\gamma_b = \frac{E_b}{N_0}$
- Pronounced "Ebb-noh"

Outline

- ☐ Information theory basics
- ☐ Shannon capacity
- Modeling capacity of practical systems
- □ Constellation constrained capacity
- ☐ Proof of the Shannon Theorem

Problems Achieving Shannon Capacity

- ☐ Shannon's capacity formula is impossible to exactly achieve in practice
- □ Achieving the capacity requires generating a "random codebook":
- \square Codebook requires $M = 2^{Rn}$ entries
- □Grows exponentially with block length ⇒ Prohibitive computation and memory
- \square Also, $n \to \infty$ introduces infinite delay

How close can we get to Shannon capacity in practice?

Modulation and Coding Schemes

- ☐ Practical systems use a modulation and coding scheme (MCS)
- □Coding:
 - Ex: Convolutional, Turbo, ...
 - Defined by rate $R_{cod} < 1$
- Modulation via symbol mapping
 - ∘ Typically, *M* QAM
 - Defined by bits / sym, $R_{mod} = \log_2(M)$
- $\square \text{Spectral efficiency is: } \rho = R_{cod}R_{mod}$
- ■Ex: 16-QAM with a Rate ¾ code
 - $R_{mod} = 4$, $R_{cod} = 0.75 \Rightarrow \rho = 0.75(4) = 3 \text{ bps/Hz}$

Measuring Gap to Shannon Capacity

- □ Each MCS has a spectral efficiency (SE): $\rho = R_{cod}R_{mod}$
- \square By Shannon Theory, we should achieve this SE at an SNR $\rho = \log_2(1 + \gamma_s)$
- ☐ Practical codes obtain a lower SE

$$\rho = \log_2(1 + \beta \gamma_s), \qquad \beta < 1$$

- \square We system operates β below Shannon capacity
 - Often quoted in dB: $10 \log_{10}(\beta)$
- ☐ Gap depends on the level of reliability (e.g., BLER) and implementation

Example

- □ Rate $R_{cod} = \frac{1}{2}$ convolutional code with QPSK $R_{mod} = 2$
- □ Spectral efficiency achieved is:

$$\rho = R_{cod}R_{mod} = \frac{1}{2}(2) = 1$$

- ■SNR required for BER= 10^{-5} is $\gamma_b \approx 4.1$ dB
 - See simulation to the right
- \Box Shannon theory: $\rho = \log(1 + \gamma_s) \Rightarrow \gamma_s = 2^{\rho} 1$
 - For $\rho = 1 \Rightarrow \gamma_s = 1$ in linear scale
 - \circ SNR per bit is $\gamma_b=rac{\gamma_{\scriptscriptstyle S}}{
 ho}=1$ in linear scale, $\gamma_b=0$ dB
- ☐ Hence, we say this system operates 4.1 dB below Shannon

Capacity and Bandwidth Loss

- ☐ Most systems have loss to imperfect codes and bandwidth overhead
- □Simple model for achievable rate:

$$R = (1 - \alpha)B \min\{\rho_{max}, \log_2(1 + \beta \gamma)\}\$$

- $\alpha = \alpha$ fraction bandwidth overhead
- $\circ \beta = power loss$
- ρ_{max} = maximum spectral efficiency (due to max MCS)

■Example:

- \circ System operates 6 dB below capacity with a 20% bandwidth overhead and $ho_{max}=5$ bps/Hz
- \circ Bandwidth B = 20 MHz
- \circ Suppose $\gamma=10$ dB. In linear scale, $\beta\gamma=10^{0.1(10-6)}=2.5$
- Rate is: $R = (0.8)(20) \log_2(1 + 2.5) = 29$ Mbps
- Shannon rate is $C = (20) \log_2(1 + 10^{0.1(10)}) \approx 69 \text{ Mbps}$

Gaps to Shannon Theory for Early Codes

- ☐ Shannon capacity formula and random codes, 1948.
 - Determines the capacity
 - But no practical code to achieve it.
- ☐ Hamming (7,4) code, 1950
- □ Reed-Solomon codes via polynomials over finite fields:
 - Invented in 1960 at MIT Lincoln Labs
 - Berlekamp-Massey decoding algorithm, 1969.
 - Used in Voyager program, 1977. CD players, 1982.
- □ Convolutional codes.
 - Viterbi algorithm, 1969. Widely used in cellular systems.
 (Viterbi later invents CDMA and founds Qualcomm)
 - Typically, within 4-5 dB of capacity

Improvements with Modern Codes

- □1990s: major breakthrough via graphical models
- ☐ Turbo codes (next class)
 - Berrou, Glavieux, Thitimajshima, 1993.
 - Able to achieve capacity within a fraction of dB.
 - Adopted as standard in all cellular systems by the late 1990s.
- □LDPC codes
 - Similar iterative technique as turbo codes.
 - Re-discovered in 1996
 - Used in 5G today
 - Can provably hit Shannon capacity using graphs with coupling, Richardson & Urbanke, 2012

Outline

- ☐ Information theory basics
- ☐ Shannon capacity
- Modeling capacity of practical systems
 - Constellation-constrained capacity
- ☐ Proof of the Shannon Theorem

Loss from Finite Constellations

- □ Consider AWGN channel: $y_i = x_i + w_i$, $w_i \sim CN(0, N_0)$
- ☐ Theoretically optimal codebook is Gaussian
- ☐ But, in practice, we use M-QAM or some discrete constellation for ease
- \square Constellation-constrained capacity: Capacity given that x_i must be in some given constellation
- ☐This section, we will show:
 - How to define a constellation-constrained capacity
 - How to compute a constellation-constrained capacity
 - How to account for loss for sub-optimal bitwise decoding

Capacity-Constrained Capacity Defined

- \square AWGN channel: R = S + W, $w \sim CN(0, N_0)$
- \square With only constraint that $E|S|^2 \leq E_S$, capacity is:

$$C = \max_{p(s)} I(S; R) = \log_2 \left(1 + \frac{E_s}{N_0} \right)$$

- Optimal distribution p(s) is complex Gaussian
- □ Now consider fixed constellation: $S \in \mathcal{A} = \{s_1, ..., s_M\}$ with equiprobable symbols
 - \circ \mathcal{A} is the constellation (ex. M-QAM)
- □ Define constellation-constrained capacity:

$$C_{\mathcal{A}} = I(S; R)$$

Capacity for a fixed constellation

Computing Capacity-Constrained Constellation

- \square AWGN channel: R = S + W, $w \sim CN(0, N_0)$ with $S \in \mathcal{A} = \{s_1, ..., s_M\}$
- \square Mutual I(R;S) can be computed numerically or via simulation easily:
 - $\circ I(R;S) = H(S) H(S|R)$
 - Since S is equiprobable, $H(S) = \log_2(M) = \text{number of bits / symbol}$
 - Given S = s, r is Gaussian: $p(r|s) = Ce^{-|r-s|^2/N_0}$
 - Hence, by Bayes Rule: $P(S = s_i | R = r) = \frac{1}{Z(r)} e^{-|r-s_i|^2/N_0}$, $Z(r) = \sum_j e^{-|r-s_j|^2/N_0}$
 - Therefore, $H(S|R=r) = -\sum_i P(s=s_i|r) \log_2 P(s=s_i|r)$
 - Find $I(R; S) = \log_2(M) E[H(S|R = r)]$

• Generate
$$N$$
 random pairs (r_n, s_n) , $n = 1, ..., N$ and obtain estimate
$$C_{\mathcal{A}} = I(R; S) = \log_2(M) - \frac{1}{N} \sum_n H(S|R = r_n)$$

Constellation-Constrained Capacity

Key insights:

- \square Capacity with M -QAM saturates
 - $\circ C_{\mathcal{A}} \leq \log_2(M)$
- \square Hence, high SNR requires large M
- ☐ Relative to Shannon Capacity
 - Minimal loss at low SNRs (< 2 dB)
 - Loss of 1-2 dB at high SNRs

Bitwise LLRs

- \square AWGN channel: r = s + w, $s \in \{s_1, ..., s_M\}$
- □Up to now, we assume we decode each symbol
 - Requires we find a PMF $P(s = s_m | r)$, m = 1, ..., M
 - Finding this PMF is computationally expensive since $M=2^K$, K=1 number of bits / symbol
 - Also, most decoders requires probabilities on bits not symbols
- ☐ Practical systems decode each bit
 - Suppose $s = \phi(c_1, ..., c_K)$ a mapping from K bits to the symbol
 - We then compute the bitwise LLR: $z_k = \log \frac{P(c_k=1|r)}{P(c_k=0|r)}$
 - This method is computationally simpler.
 - But it is not optimal
- What is the loss in capacity with bitwise LLRs?

Binary Cross Entropy

- □Let $b \in \{0,1\}$: unknown binary variable
- \square Let $z \in \mathbb{R}$: Estimate of the LLR

$$z \approx \log \frac{P(b=1|z)}{P(b=0|z)}$$

☐ Define binary cross entropy

$$BCE(b,z) \coloneqq \frac{1}{\ln(2)} [\ln(1+e^z) - zb]$$

- ☐ Measure of error: Large when:
 - $\circ \ b = 0$ and z large positive or
 - b = 1 and z large negative
- □ Commonly used in training binary classifiers
 - See ML class

BCE Mutual Information Bound

- ☐ We derive a bound for a general binary input channel
- \square TX: K bit binary input $\boldsymbol{b} = (b_1, ..., b_K)$ bits and maps to a symbol vector \boldsymbol{s}
- \square RX: Obtains any output r and creates any vector $\mathbf{z} = (z_1, ..., z_K)$
 - \circ Values z_k can be the LLRs or any approximation of the LLRs of the bits
- ☐ Theorem: The mutual information is bounded as:

$$I(\boldsymbol{b}; \boldsymbol{r}) \ge H(\boldsymbol{b}) - \sum_{k=1}^{K} E[BCE(b_k, z_k)]$$
 [bits]

Proven at end of section

LLR Mutual Information Bound

- □BCE bound can be used to find capacity with practical symbol demodulation
- \square TX: Takes $b = (b_1, ..., b_K)$ bits and creates QAM symbol s with energy $E_s = E|s|^2$
- $\Box \text{Channel is } r = s + w, \quad w \sim CN(0, N_0)$
- \square RX performs demodulation and creates LLRs $z=(z_1,...,z_K)$

QAM Capacity with Bitwise LLRs

- ☐ Can compute the bound easily
- \square Generate N bits $b_1, ..., b_N$ over S symbols
- \square Modulate to $S_1, ..., S_P$ symbols
- \square Add noise and get $r_1, ..., r_P$ RX symbols
- \square Compute N LLRs $z_1, ..., z_N$
- □Compute MI:

$$I(b;r) \ge \frac{1}{P} \sum_{i=1}^{N} [1 - BCE(b_i, z_i)]$$

Bitwise Capacity

- ☐ Each modulation is optimal in a range
 - Select higher modulations at higher SNRs
- ☐At high SNRs:
 - Need to select high modulation
- ☐ Relative to Shannon Capacity
 - Minimal loss at low SNRs (< 2 dB)
 - Loss of 1-2 dB at high SNRs

Bitwise vs Symbol-wise Decoding

Symbol-wise decoding

Bitwise decoding

- ☐ Bitwise decoding has a small loss
- ☐ But if correct constellation is chosen:
 - Loss is small
 - ∘ In most regimes, loss < 0.5 dB

ML Perspective: Learn a RX from Data

- \square Represent RX as a function $\mathbf{z} = g(\mathbf{r}, \theta)$ where θ represents parameters to train
 - \circ Ex: $g(r, \theta)$ is a neural network and θ are the weights and biases
- ☐ Can be useful when optimal receiver is difficult to derive or implement
 - Non-coherent channel (when the channel must be estimated)
 - Joint equalization and decoding
 - Non-linearities
 - Computational constraints
 - Many possibilities...

Training a RX

- Generate samples $(\boldsymbol{b}_i, \boldsymbol{r}_i)$, i = 1, ..., N.
- \circ Each $oldsymbol{b}_i = (b_{i1}, ..., b_{iK}) = ext{true bits transmitted}$
- RX will generate outputs: $\mathbf{z}_i = g(\mathbf{r}_i, \theta)$ with outputs $\mathbf{z}_i = (z_{i1}, ..., z_{iK})$
- \circ Adjust parameters θ to minimize BCE loss:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} BCE(b_{ik}, z_{ik})$$

Then mutual information is bounded above by:

$$I(b; z) \ge K - J(\theta)$$

BCE Bound Proof: Entropy Bound

- ☐ To prove BCE bound, we need the following Lemma
- Lemma: Suppose X has some PMF P(x) and Q is any other distribution. Then $H(X) \le -\sum_{x} P(x) \log Q(x)$
- \square Equality holds when Q(x) = P(x)
- \square Also applies to conditional distributions. If Q(x|y) is any conditional distribution:

$$H(X|Y) \le -\sum_{x} P(x,y) \log Q(x|y)$$

Proof of Lemma

- $\Box \operatorname{Let} J(P, Q) \coloneqq -\sum_{x} P(x) \log Q(x)$
- \square Find Q(x) to minimize J(P,Q) s.t. $\sum Q(x) = 1$
- □ Lagrangian: $L = -\sum_{x} P(x) \log Q(x) + \lambda \sum_{x} Q(x)$
- Take derivative: $\frac{\partial L}{\partial Q(x)} = -\frac{P(x)}{Q(x)} + \lambda = 0 \Rightarrow Q(x) = \lambda P(x)$
- $\square \text{Since } \sum Q(x) = 1 \Rightarrow Q(x) = P(x)$
- \square Hence the minimum is achieved at Q(x) = P(x)
- \square Therefore, for all Q(x):

$$J(P,Q) \ge \min_{Q} J(P,Q) = J(P,P) = H(X)$$

Proof BCE Bound

- \square Let $P(\boldsymbol{b}) = \text{true distribution on bits } \boldsymbol{b} = (b_1, ..., b_K)$
- \square Given z_k define the conditional binary distribution:

$$\phi(b_k = 1|z_k) = \frac{e^{z_k}}{1 + e^{z_k}}, \qquad \phi(b_k = 0|z_k) = \frac{1}{1 + e^{z_k}},$$

- \square Given z, define the distribution on the bits b as $Q(b|r) = \prod_k \phi(b_k|z_k)$
 - The bits are conditionally independent
- \Box Can verify that $-\log \phi(b_k|z_k) = \log(1 + e^{z_k}) + b_k z_k = BCE(b_k, z_k)$
- \square Also $\log Q(\boldsymbol{b}|\boldsymbol{r}) = \sum \log \phi(b_k|z_k)$
- □ By Lemma: $H(b; r) \le -\sum E\{\log \phi(b_k|z_k)\} = \sum E\left[BCE(b_k, z_k)\right]$
- □ Therefore: $I(\boldsymbol{b}; \boldsymbol{r}) = H(\boldsymbol{b}) H(\boldsymbol{b}; \boldsymbol{r}) \ge H(\boldsymbol{b}) \sum E\left[BCE(b_k, z_k)\right]$

Outline

- ☐ Information theory basics
- ☐ Shannon capacity
- ☐ Modeling capacity of practical systems
- ☐ Constellation constrained capacity
- Proof of the Shannon Theorem

Proof: Achievability

- \square First, we show that any R < C is achievable
- ☐ Use a random codebook!
- \square Find a P(x) to maximize I(X;Y) and select any R < I(X;Y)
- \square For each n, generate $M=2^{Rn}$ random messages or codewords:
 - $x_m = (x_{m1}, ..., x_{mn}), x_{mi} \sim P(x)$ are iid
 - Set of x_m , m=1,...,M is called the message index
 - \circ Encoder maps Rn bits to a message index m and transmits $oldsymbol{x}_m$
- \square Each message x_m is called a codeword
- ☐ The set of messages is called the codebook:

$$C = \{ x_m, m = 1, ..., M \}$$

Joint Typicality

- \square For large n, we know (via the law of large numbers)
 - $(1/n) \log P(x_1, ..., x_n) \rightarrow -H(X)$
 - $\circ (1/n) \log P(y_1, \dots, y_n) \to -H(Y)$
 - $(1/n) \log P(x_1, y_1, ..., x_n, y_n) \to -H(X, Y)$
- \square Say a vector(x, y) is jointly typical if it satisfies the asymptotic values within some $\epsilon > 0$
- \square Formally, we define the set A_{ϵ}^n of length n sequences (x, y) such that:
 - $|(1/n)\log P(x_1,...,x_n) \rightarrow -H(X)| \le \epsilon$
 - $|(1/n)\log P(y_1,...,y_n) \rightarrow -H(Y)| \le \epsilon$
 - $|(1/n)\log P(x_1,y_1,\ldots,x_n,y_n)| \rightarrow -H(X,Y)| \leq \epsilon$

Jointly Typical Decoder

- \square Let \mathcal{C} be the set of codewords
- \square Given y receiver takes any $x \in \mathcal{C}$ from codebook such that $(x, y) \in A_{\epsilon}^n$
 - That is, find $x \in \mathcal{C}$ such that (x, y) is jointly typical
 - \circ If no such $oldsymbol{x}$ exists, or there is more than one, declare error
- \square To analyze, suppose we transmit a true sequence x and receive y
- We bound two errors:
 - Type 1 Error: The correct codeword, (x, y), is not jointly typical
 - \circ Type 2 Error: There is another codeword, $(x',y) \in A_{\epsilon}^n$ for some $x' \neq x$

Type 1 Error

- ■We use the following asymptotic equipartition property (AEP)
- \square AEP 1: Let $(x, y) = \{(x_i, y_i), i = 1, ..., n\}$ where $(x_i, y_i) \sim P(x, y)$ are i.i.d. Then

$$P((x,y) \in A_{\epsilon}^n) \to 1 \text{ as } n \to \infty$$

- \Box Let x be the true transmitted codeword
- \square Then (x, y) has components $(x_i, y_i) \sim P(x, y)$
- Let P_1 = Probability Type 1 error = Probability that (x, y) is not jointly typical
- \square By AEP 1, $P_1 = 1 P((x, y) \in A_{\epsilon}^n) \rightarrow 0$

Type 2 Error

☐ For this error, we use the following AEP property

□AEP 2: Let
$$(x, y) = \{(x_i, y_i), i = 1, ..., n\}$$
 where $(x_i, y_i) \sim P(x)P(y)$ are i.i.d. Then :
$$P((x, y) \in A_{\epsilon}^n) \le 2^{-n(I(X;Y) - 3\epsilon)}$$

- \circ In this case, for each i, x_i^n and y_i^n are drawn independent
- ☐ Property shows with very high probability they will not be jointly typical

Type 2 Error Continued

- \square For some n, let x be the true transmitted codeword and y the received symbols
- \square Let P_2 = probability that there exists a codeword $x' \neq x$ where $(x', y) \in A_{\epsilon}^n$
- \square Since codewords are independent, (x', y) has components $(x'_i, y_i) \sim P(x)P(y)$
- \square By AEP 2, $P((x', y) \in A_{\epsilon}^n) \le 2^{-n(I(X;Y)-3\epsilon)}$
- \square Since there are 2^{nR} wrong codewords x' by union bound:

$$P_2 \le 2^{nR} 2^{-n(I(X;Y)-3\epsilon)} = 2^{n(R-I(X;Y)-3\epsilon)}$$

- □ We know $R < I(X;Y) 3\epsilon$ for some ϵ
- \Box Therefore, we can select ϵ such that $\lim_{n\to\infty}P_2=0$

Converse Proof

- \square Must show that for any rate R > C, P_e is bounded away from zero
- We will not cover this.
- ☐ This is proved via Fano's inequality
- ☐ Take information theory class for more!