■ 層級架構

檔案層級架構

What We Have Done

| I2cInitializer.sv

baseline: ALL Done

| Top.sv

bonus:倒轉、用七段顯示器顯示狀態和秒數

Block Diagram

模組層級架構

- Top 負責控制 I2cInitializer、AudRecoder、AudDSP、
 AudPlayer 四個模組・針對 WM8731 晶片和 SRAM 進行操作。
- 2. I2cInitializer 首先以 I2C 協定設定 WM8731 的 11 項參數‧設 定完成後 WM8731 才能進入我們想要的工作模式。
- 3. WM8731 設定完成後·使用 AudRecoder 從 WM8731 讀入來 自 Mic In 的數位訊號·並以 16-bits 為單位寫進 SRAM 直到停止錄音 或 SRAM 用盡儲存空間。
- 4. 錄音完成後·AudDSP從 SRAM 讀取資料·轉換成快速播放、 慢速播放或倒轉的數位音訊號·傳給 AudPlayer 驅動 WM8731 播出。

FSM

Fitter Summary & Timing Analyzer

Fitter Summary

Timing Analyzer

	Clock	Slack	End Point TNS			
1	pll0 altpll_0 sd1 pll7 clk[0]	-52.262	-1330.252			
2	pll0 altpll_0 sd1 pll7 clk[1]	-5.482	-14.397			
3	AUD_BCLK	-3.203	-80.379			
1						
Slow 1200mV 0C Model Setup Summary						
	Clock	Slack	End Point TNS			
1	pll0 altpll_0 sd1 pll7 clk[0]	-47.266	-1199.664			
2	pll0 altpll_0 sd1 pll7 clk[1]	-4.774	-12.506			
3	AUD_BCLK	-3.134	-78.994			
Fas	st 1200mV 0C Model Setup Summary					
	Clock	Slack	End Point TNS			
1	pll0 altpll_0 sd1 pll7 clk[0]	-25.619	-663.690			
2	pll0 altpll_0 sd1 pll7 clk[1]	-2.421	-6.240			
3	AUD BCLK	-1.642	-42.089			

■ 操作方式

SW17	SW16	SW15	SW13~SW7	SW6~SW0
[record/play]	[linear/constant]	[倒放/正放]	[i-th=1 代表 <u>¹</u> -6]	[i-th=1 代表 i+1 倍]
mode	慢速播放內插	倒放	慢速播放倍率	快速播放倍率

reset	stop record/play	pause record/play	start record/play	
KEY3	KEY2	KEY1	KEY0	

■ 遇到的問題和解法

1. 問題:不知道 Initializer 和 Recorder 的實際運行狀況,無從 debug。

解法:原因在於我原先不太知道如何寫 testbench·在詢問第四組的做法後·根據 lab1 的 testbench 自己寫出兩者的 testbench·最後根據波型修正不少 bug。

2. 問題:到很晚才發現 I2C 的 SCL 和 SDA 應該是錯開至少一個 clock cycle,可能面臨須要大改程式。

解法:讓 SDA 在 positive edge 改變、SCL 在 negative edge 改變,兩者錯開半個 cycle,既不需要大改程式且加速 Initialize WM8731 的時間。

3. 問題: Recorder 錄進的聲音放出來後變成噪音。

解法:檢查發現是 16-bit data 的順序相反·變成與 player 方向相反·更改 bus 的方向即可正常運作。

4. 問題: 助教給的 template code 有幾個錯誤,例如時間的 k 大小寫錯誤,但編譯器抓不到錯誤。

解法:用肉眼檢查出來再狂罵三字經。

5. **困難**:因為這次比較多模組,而且都是不同人寫的,所以在用 Top 連接各模組時有出現腳位對不上或是訊號給的方式出錯等等。

解法:再經過互相討論、一起除錯之後這問題就解決了。

■ 心情點滴

lab3 對我們三位組員都非常煎熬,由於遇到期中考週,因此我們的想法是等到期中考週的週末再開始寫 lab3,但當我們在認真研究後才發現時間似乎非常不夠。到我們將程式寫完並到 FPGA 上測試時已經是 Demo 當週星期二 18:30,我們當天將程式灌到 FPGA 後,一切都如預期的一樣不能運作,於是我們一直嘗試用肉眼抓 bug,但屢屢失敗。因為之前亦有聽說直接用 LCD debug 的方法,所以一開始我們是覺得用傳統 debug 的方法就夠了,但後來發現難度奇高,所以在可能 23:00 左右吧,我才決定去詢問別組的做法,從第四組那裡我了解到寫 Initializer testbench 的方法竟然比想像中簡單,因此著手製作所需的 testbench,直到 Demo 前一天的早上才確定改好。

之後我們遇到更棘手的問題:原本早上灌進去能動的程式上完三堂課後回來變成不能動了,當時已經是 Demo 前一晚的 18:00 了,我們簡直崩潰至極。因此我們決定吃完晚餐再回來面對壓力,之後經過 1~2 小時一頓神奇的操作後,突然一切就都恢復正常了,接著我們一步步解 bug,最後在 22:30 左右終於讓之前寫的 code 都能一起正常運作。若從現在重新看這兩天不眠不休(是真的通霄),會覺得當面對像 FPGA 無預警死機、無法解決的狀況時,心理素質

若從現在重新看這兩大不眠不休(是真的通霄),會覺得當面對像 FPGA 無預警死機、無法解決的狀況時,心理素質非常重要,雖然我們三個人嘴上都喊著放棄,但實際上手仍然是動個不停,最後才能在午夜前完成。我想若能度過數電實驗,應該會有非常大的成長吧。同時也希望 Demo 時 FPGA 不要再死機。