VIRTUALEYE - LIFE GUARD FOR SWIMMING POOLS TO DETECT ACTIVE DROWNING

PROJECT REPORT

Submitted by

B.RESHMI HARSHITHA (913119104079)

K.AAFREEN BENAZIR (913119104001)

R.NIVISHA (913119104064)

P.MADHUCHANDHA (913119104051)

TABLE OF CONTENTS

CHAPTER NO	TITLE
1.	INTRODUCTION
	1.1 PROJECT OVERVIEW
	1.2 PURPOSE
2.	LITERRATURE SURVEY
	2.1 EXISTING PROBLEM
	2.2 REFERENCES
	2.3 PROBLEM STATEMENT DEFINITION
3.	IDEATION & PROPOSED SOLUTION
	3.1 EMPATHY MAP CANVAS
	3.2 IDEATION & BRAINSTORMING
	3.3 PROPOSED SOLUTION
	3.4 PROBLEM SOLUTION FIT
4.	REQUIREMENT ANALYSIS
	4.1 FUNCTIONAL REQUIREMENTS
	4.2 NON-FUNCTIONAL REQUIREMENTS
5.	PROJECT DESIGN
	5.1 DATA FLOW DIAGRAMS
	5.2 SOLUTION & TECHNICAL ARCHITECTURE
	5.3 USER STORIES
6.	PROJECT PLANNING AND SCHEDULING
	6.1 SPRINT PLANNING & ESTIMATION
	6.2 SPRINT DELIVERY SCHEDULE

6.3 REPORTS FROM JIRA

7.	CODING & SOLUTIONING
	7.1 FEATURE 1
	7.2 FEATURE 2

7.3 DATABASE SCHEMA

8. TESTING

- 7.1 TEST CASES
- 7.2 USER ACCEPTANCE TESTING
- 9. RESULTS
 - 9.1 PERFORMANCE METRICS
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

1. INTRODUCTION

1.1 PROJECT OVERVIEW

Swimming is one of the best exercises that helps people to reduce stress in this urban lifestyle. Swimming pools are found larger in number in hotels, and weekend tourist spots and barely people have them in their house backyard. Beginners, especially, often feel it difficult to breathe underwater which causes breathing trouble which in turn causes a drowning accident. By studying body movement patterns and connecting cameras to artificial intelligence (AI) systems we can devise an underwater pool safety system that reduces the risk of drowning. Usually, such systems can be developed by installing more than 16 cameras underwater and ceiling and analyzing the video feeds to detect any anomalies. but AS a POC we make use of one camera that streams the video underwater and analyses the position of swimmers to assess the probability of drowning, if it is higher then an alert will be generated to attract lifeguards' attention.

1.2 PURPOSE

Worldwide, drowning produces a higher rate of mortality without causing injury to children. Children under six of their age are found to be suffering the highest drowning mortality rates worldwide. Such kinds of deaths account for the third cause of unplanned death globally, with about 1.2 million cases yearly.

To overcome this conflict, a meticulous system is to be implemented along the swimming pools to save human life.

2. LITERATURE SURVEY

2.1 EXISTING PROBLEM

REF	DATASET	TECHNIQUE	SOFTWARE MODEL	TESTING ACCURACY
[1]	A Novel method for recognition, Localisation and alarming to prevent swimmers from drowning	analysis of distance of the	TensorFlow, object detection model	Better accuracy levels with the help of identification of the swimmer's 3D position
[2]	Drowning Detection Algorithm For Intelligent Lifebuoy	An improved YOLOV4 network is detect the drowning person and a geometric distance measurement method based on the bounding box to detect position.	TensorFlow, object detection model Zoo	88% with a scan time of 1.5 seconds

[3]	An Improved	Object	Relu, Soft Max	The detection
	Detection	detection	,	accuracy of
	Method of			the improved
	Human Target			algorithm for
	at Sea Based	_		human targets
	on Yolov3	algorithm aided		at sea is
		with feature		72.17%,
		extraction		which has a
		network		good
				detection
				effect
[4]	Intelligent	A combination	CNN	The
	Swimming-	of an elevator		performance
	pool design			of the
	with	of Proximity-		prototype is
	Embedded	sensors and		satisfactory
	Drown	deep learning		and giving
	Alerting,	methodologies		promising
	Preventing and	is used		results
	Autonomous			
	Rescue System			
[5]	Computer	Using	CNN	A higher
	Vision Enabled			degree of
	Drowning	neural network		accuracy is
	Detection	(CNN) models,		achieved by
	System	it can detect a		identifying
		drowning		the swimmer's
		person in		3D position.
		different stages		_

Table. 2.1-Literature Survey

2.2 REFERENCES

- [1] H. Liu, M. B. H. Frej and B. Wen, "A Novel Method for Recognition, Localization, and Alarming to Prevent Swimmers from Drowning," 2019 IEEE Cloud Summit, 2019, pp. 65-71, doi: 10.1109/CloudSummit47114.2019.00017.
- [2] D. Yang, Y. Cao, Y. Feng, X. Lai and Z. Pan, "Drowning Detection Algorithm For Intelligent Lifebuoy," 2021 IEEE International Conference on Unmanned Systems (ICUS), 2021, pp. 512-519, doi: 10.1109/ICUS52573.2021.9641291.
- [3] D. Li, L. Yu, W. Jin, R. Zhang, J. Feng and N. Fu, "An Improved Detection Method of Human Target at Sea Based on Yolov3," 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), 2021, pp. 100-103, doi: 10.1109/ICCECE51280.2021.9342056.
- [4] P. Laxman and A. Jain, "Intelligent Swimming-pool design with Embedded Drown Alerting, Preventing and Autonomous Rescue System," 2021 Fourth International Conference on Computational Intelligence and Communication Technologies (CCICT), 2021, pp. 335-342, doi: 10.1109/CCICT53244.2021.00069.
- [5] U. Handalage, N. Nikapotha, C. Subasinghe, T. Prasanga, T. Thilakarthna and D. Kasthurirathna, "Computer Vision Enabled Drowning Detection System," 2021 3rd International Conference on Advancements in Computing (ICAC), 2021, pp. 240-245, doi: 10.1109/ICAC54203.2021.9671126.

2.3 PROBLEM STATEMENT DEFINITION

The best exercise for lowering stress in this urban lifestyle is swimming. Hotels and weekend tourist destinations are where you'll find swimming pools in greater numbers; rarely do you see people with pools in their backyards. Beginners, in particular, frequently find it challenging to breathe underwater. Breathing issues lead to accidents where people drown because of inability to breathe. A higher mortality rate without harm to children is produced by drowning globally. They are found to have the highest global drowning mortality rates among children under six years of age. With about 1.2 million cases each year, these types of deaths rank third among all unplanned deaths worldwide.

A meticulous system must be put in place along the swimming pools to save human life in order to resolve this conflict. We can design an underwater pool safety system that lowers the risk of drowning by analysing body movement patterns and integrating cameras with artificial intelligence (AI) systems. Such systems are typically created by mounting more than 16 cameras underwater and on the ceiling, then reviewing the video feeds to look for any irregularities. However, as a POC, we employ a single camera that streams underwater video while analysing swimmer positioning to determine the likelihood of drowning; if it is higher, an alert will be generated to draw lifeguards' attention.

3. IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

Brainstorm

Write down any ideas that come to mind that address your problem statement.

n 10 minute

Asheen Benazir K Ration Carlot Carlo

Group Ideas

Take turns sharing your ideas while clustering similar or related notes as you go. In the last 10 minutes, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

C 20 minutes

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

⊕ 20 minutes

After you collaborate

You can export the mural as an image or pdf to share with members of your company who might find it height.

Quick add-ons

Blace the mund
 Blace a view link in the mund with diabeholders to keep
them in the loop about the automes of the session.

Expect the mond
 Expect a copy of the record as a PNS or PCP to attach to exacts, tracked in stides, or save in your drive.

Keep moving forward

lidentify strengths, weathersons, appartunities, and Dreeds (IWOT) to develop a plan.

[] Share template feedback

3.3 PROPOSED SOLUTION

S.NO.	PARAMETER	DESCRIPTION
1.	Problem Statement (Problem	Swimmers in the pool are detectedusing an
	to besolved)	overhead camera. First, swimmers in the
		pool are detected using an overhead
		camera First, swimmers in the pool are
		detected using an overhead camera
		People visit the swimming pools to
		practice or to learn swimming. There is a
		possibility of someone drowning as they
		are new to these activities. So to detect the
		active drowning of the person, our
		"Virtual Eye" program is installed in the
		security cameras available in the
		swimming pool, and it detects an alarm,
		and thus alerting the lifeguards about the
		drowning. Thus a meticulous system is to
		be implemented along the swimming
		pools to save human life.
		By studying body movement patterns and
		connecting cameras to artificial
		intelligence (AI) systems we can devise a
		pool safety system that reduces the risk of
		drowning.

2.	Idea / Solution description	The proposed system makes a povel
۷.	Idea / Solution description	The proposed system makes a novel
		attempt to evaluate swimmers'
		conditions by analysing their motion
		and shape features via visual based
		monitoring device and an alarm to
		alert, and provides solutions in
		detecting drowning incidents.
		While challenging in many aspects, a
		successful system will bring
		inestimable value in saving human
		lives.
3.	Novelty / Uniqueness	Virtual eye has developed a novel idea
		of alerting the ambulance and another
		lifeguard if there is any delay in saving
		theperson to death.
4.	Social Impact / Customer	Safety in water has been a concern for
	Satisfaction	many centuries for the survival of
		humanlives.No matter how watchful
		and dedicated lifesavers are, they are
		also humans. It'simpossible for them
		to monitor every
		swimmer in a pool, at every minute.
		But it's vital to reach a drowning
		victimbefore it's too late and every
		second counts.

5.	Business Model (Revenue	There are many products currently
	Model)	available in this regard.
		Our solution, once developed well, has
		enough possibility to become a good
		product to save drowning victims.
6.	Scalability of the Solution	Our proposed solution is very scalable
		i.e., in future, there are a lot of rooms for
		evolving our present model by adding
		new features to enhance our system in
		thefuture

3.4 PROBLEM SOLUTION FIT

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

Following are the functional requirements of the proposed solution.

FR NO.	FUNCTIONAL REQUIREMENT (EPIC)	SUB REQUIREMENT (STORY / SUBTASK)
FR-1	User Registration	User should register his/her information in
		the application
FR-2	User Confirmation	User gets a verification mail for the first
		time he/she signs up
FR-3	Installation of camera	A camera is installed above the surface
		of the water to constantly monitor all
		the persons swimming in the pool to
		detect active drowning
FR-4	Sotting up an alarm	An alarm is set to elert the lifequery in ease
FK-4	Setting up an alarm	An alarm is set to alert the lifeguard in case
		of detection of active drowning
FR-5	Diff erentiation	Difference between alarm tones are set to
	betweentones	detect drowning of people from different
		age groups
FR-6	Emergency	Alerting another lifeguard and an
		ambulance in case of emergency

4.2 NON-FUNCTIONAL REQUIREMENTS

Following are the non-functional requirements of the proposed solution.

FR NO.	NON-FUNCTIONAL	DESCRIPTION	
	REQUIREMENT		
NFR-1	Usability	Everyone should be able to understand	
		the UI and find the necessary	
		information without the need for any	
		specialised training. Depending on the	
		needs, various	
		languages can be provided.	
NFR-2	Security	The system will keep all footage it	
		recordsprivate and secure from	
		unauthorised access. Any footage	
		would only be accessed with prior	
		approval during an	
		investigation.	
NFR-3	Reliability	The system's incident reporting is very	
		accurate. Once it is installed, the only	
		waythe system could malfunction is if	
		routine	
		maintenance is neglected.	
NFR-4	Performance	With a rapid response time, the	
		system'sperformance is determined	
		by how quickly the lifeguard	
		responds to the	
		alarm without any latency.	

NFR-5	Availability	The System should remains operational
		allthe time and must be recovered
		within anhour or less if it fails. The
		system should continue to work
		seamlessly without any hitchThe
		system should respond to the
		requests as soon as possible.
NFR-6	Scalability	The system should handle a growing
		amount of work by adding additional
		resources to the system in future. The
		system can also be installed in a variety
		oflocations, including public schools,
		workplace complexes, and large open
		Spaces if needed.

5. PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored. A data flow diagram (DFD) is a graphical or visual representation using a standardized set of symbols and notations to describe a business's operations through data movement. They are often elements of a formal methodology such as Structured Systems Analysis and Design Method (SSADM).

5.2 SOLUTION & TECHNICAL ARCHITECTURE

S.NO	COMPONENT	DESCRIPTION	TECHNOLOGY
1.	User Interface	Using WebUI, the admin	HTML, CSS,
		interacts	
2.	Background	Remove background	Python
	Subtraction	information to focus	
		onthe subject.	
3.	Image preprocessing	putting filters on a	OpenCV
		picture	
		to make it clearer.	
4.	YOLO	To detect drowning, a	Python, TensorFlow
		pre-trained model	
		withfine tuning is	
		used.	

5.	Cloud Database	Database Service on	IBM Cloudant etc
		Cloud	
6.	External AP	the reason for using an	Local Filesystem
		external API in	
		theapplication.	
7.	Video Camera	Live updates from the	Camera.
		pool.	

Table-1: Components & Technologies

S.NO	CHARACTERISTICS	DESCRIPTION	TECHNOLOGY
1.	Open-Source Frameworks	TensorFlow,OpenCV2	Technology of Opensource framework
2.	Security Implementations	IBM Cloud Security Measures	e.g. SHA-256, Encryptions, IAM Controls, OWASPetc.
3.	Availability	Available at all times.	IBM Cloud Server
4.	Performance	Use of Cache to store frames	High performance cameras

Table-2: Application Characteristics

5.3 USER STORIES

USE	FUNCTIO	USER	USER	ACCEPTA	PRIORI	RELEASE
R	NAL	STOR	STORY/	NCE	TY	
TYP	REQUIRE	Y	TASK	CRITERIA		
E	MENT(EPI	NUMB				
	C)	ER				
Custom	Installation	USN-1	As a user, I	I can	High	Sprint-
er /			believe	install this		1
Pool			Virtual eye	system		
Owner			has created	and save		
Prima			more	myself		
ry user			security in	also other		
			the pool,	swimmers		
			Incase of	from any		
			any	accidents		
			accidents it	that may		
			can provide	occur in		
			fast	the pool.		
			response to			
			the			
			problem.			
			As a owner			
			I, more			
			customers			
			come to the			
			pool due to			
			increased			
			security.			

Lifeguard Seconda ry User	User	USN-2	As an user ,I would receive alertsfrom the system to rescue victims. I will immediately alert the authorities in case of critical situations also rescue thehelpless victims from losing their lives.	I can receive alerts from the system in case there are any potential drowners, amateur swimmers can be saved from critical situations.	High	Sprint-1
Swimmer Tertiary User	Rescuing	USN-3	As a user,I am thankful to the systemfor alerting the lifeguard on duty at the right time.	I can swim freely knowing that if I were to potential ly drown, VirtualE ye will alert the lifeguard to save me.	Low	Sprint-2

6. PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

Sprint	Functional	User	User	Story	Priori	Team Members
	Requireme	Story	Story /	Poin	ty	
	nt (Epic)	Numb	Task	ts		
	_	er				
Contract 1	T	TIONI 1	T	2	TT* . 1.	D - 1 'H 1 '41 - D
Sprint-1	Installation	USN-1	I can install this	2	High	ReshmiHarshitha B, Madhuchandha P
						Maunuchanuna P
			system and			
			save			
			myself also other			
			swimmers			
			from any			
			accidents			
			that may			
			occur in the			
			pool.			
Sprint-1	User	USN-2	I can	1	High	Aafreen Benazir K,
			receive			Nivisha R
			alerts from			
			the system			
			in case			
			there			
			are any			
			potential			
			drowners,			
			amateur			
			swimmers			
			can be			
			saved			
			from			
			critical situations.			
			Situations.			

Sprint-2	Rescuing	USN-3	I can swim freely knowing that if I were to potentially drown, VirtualEye will alert the lifeguard	2	Low	Madhuchandha P
			to save me.			
Sprint-3	Notificati on	USN-6	As a User,I can get the notificati onabout Drowning	2	High	Nivisha R
Sprint -	Save a Life	USN-7	As a User,I can get help from the Lifeguard	2	High	Aafreen Benazir K , Reshmi Harshitha B

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Poin ts	Durati on	Sprint Start Date	Sprint End Date (Planne d)	Story Points Completed (as on PlannedE ndDate)	Sprint ReleaseDa te (Actual)
Sprint-	20	6 Days	24 Oct2022	29 Oct2022	20	29 Oct2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov2022	20	05 Nov2022
Sprint-	20	6 Days	07 Nov2022	12 Nov2022	20	12 Nov2022
Sprint-	20	6 Days	14Nov 2022	19Nov 2022	20	19Nov 2022

7.CODING & SOLUTIONING

```
import cv2_os

data_path='dataset'
  categories=os.listdir(data_path)
  labels=[i for i in range(len(categories))]

label_dict=dict(zip(categories_labels))

print(label_dict)

print(categories)

print(labels)

img_size = 100
  data = []
  target = []

### for category in categories:
      folder_path = os.path.join(data_path, category)
      img_names = os.listdir(folder_path)

#### for img_name in img_names:
      img_path = os.path.join(folder_path, img_name)
      img = cv2.imread(img_path)
```

Sample coding-1

```
from keras.models import Sequential
from keras.layers import Dense_Activation_Flatten_Dropout
from keras.layers import Conv2D_MaxPooling2D
from keras.callbacks import ModelCheckpoint

model=Sequential()

model.add(Conv2D(200_(3_3)_input_shape=data.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2_2)))

model.add(Conv2D(100_(3_5)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2_2)))

model.add(Flatten())
model.add(Dropout(0.5))

model.add(Dense(50_activation='relu'))

model.add(Dense(50_activation='relu'))

model.add(Dense(2_activation='softmax'))
```

Sample coding-2

```
import cvlib ms cv
from cvlib.coject_detection import draw_bbox
import cv2
import time
import numpy as mp
from playsound import playsound
import requests
from flask import Flask, request, render_template, redirect, url_for
#loading the model
from cloudant.client import Cloudant
```

Sample Coding 3

```
pp.route('/afterreg', methods=['POST'])
def afterreg():
   x = [x for x in request.form.values()]
   print(x)
   data = {
    '_id': x[1], # Setting _id is optional 'name': x[0],
    'psw':x[2]
   print(data)
   query = {'_id': {'$eq': data['_id']}}
   docs = my_database.get_query_result(query)
   print(docs)
   print(len(docs.all()))
   if(len(docs.all())--0):
       url = my_database.create_document(data)
        #response = requests.get(url)
        return render_template('register.html', pred="Registration Successful, please login using your details")
       return render_template('register.html', pred="You are already a member, please login using your details")
```

Sample Coding 4

```
#login page
@app.route('/login')
def login():
    return render_template('login.html')
@app.route('/afterlogin',methods=['POST'])
def afterlogin():
   user = request.form['_id']
   passw = request.form['psw']
   print(user,passw)
   query = {'_id': {'$eq': user}}
   docs = my_database.get_query_result(query)
   print(docs)
   print(len(docs.all()))
    if(len(docs.all())==0):
        return render_template('login.html', pred="The username is not found.")
        if((user==docs[0][0]['_id'] and passw==docs[0][0]['psw'])):
           return redirect(url_for('prediction'))
            print('Invalid User')
```

Sample Coding 5

```
@app.route('/result',methods=["GET","POST"])
def res():
   webcam = cv2.VideoCapture('drowning.mp4')
    if not webcam.isOpened():
       print("Could not open webcam")
       exit()
   t0 = time.time() #gives time in seconds after 1970
    #variable dcount stands for how many seconds the person has been standing still for
    centre0 = np.zeros(2)
    isDrowning = False
    #this loop happens approximately every 1 second, so if a person doesn't move,
    #or moves very little for 10seconds, we can say they are drowning
    #loop through frames
    while webcam.isOpened():
       # read frame from webcam
       status, frame = webcam.read()
```

Sample coding 6

8.TESTING

8.1 TEST CASES

8.2 USER ACCEPTANCE TESTING

User Acceptance Testing (UAT) is a type of testing performed by the end user or the client to verify/accept the software system before moving the software application to the production environment. UAT is done in the final phase of testing after functional, integration and system testing is done.

9. RESULTS

9.1 PERFORMANCE METRICS

```
99/99 [========================= ] - 247s 2s/step - loss: 0.2201 - accuracy: 0.9081 - val_loss: 0.1642 - val_accuracy: 0.9352
99/99 [=============================== ] - 206s 2s/step - loss: 0.1682 - accuracy: 0.9352 - val_loss: 0.1638 - val_accuracy: 0.9263
Epoch 4/20
99/99 [========================== ] - 198s 2s/step - loss: 0.1167 - accuracy: 0.9530 - val_loss: 0.1426 - val_accuracy: 0.9479
Epoch 5/20
99/99 [========================== ] - 195s 2s/step - loss: 0.0957 - accuracy: 0.9641 - val_loss: 0.1518 - val_accuracy: 0.9365
Epoch 6/20
99/99 [========================== ] - 194s 2s/step - loss: 0.0661 - accuracy: 0.9730 - val_loss: 0.1461 - val_accuracy: 0.9441
Epoch 7/20
99/99 [=============================== ] - 193s 2s/step - loss: 0.0501 - accuracy: 0.9816 - val_loss: 0.1511 - val_accuracy: 0.9390
Epoch 8/20
Epoch 9/20
99/99 [=============================== ] - 192s 2s/step - loss: 0.0357 - accuracy: 0.9889 - val_loss: 0.1101 - val_accuracy: 0.9593
99/99 [========================== ] - 195s 2s/step - loss: 0.0245 - accuracy: 0.9924 - val_loss: 0.0907 - val_accuracy: 0.9682
99/99 [=============================== ] - 206s 2s/step - loss: 0.0262 - accuracy: 0.9914 - val_loss: 0.1267 - val_accuracy: 0.9543
Epoch 12/20
99/99 [============== ] - 212s 2s/step - loss: 0.0184 - accuracy: 0.9917 - val_loss: 0.1349 - val_accuracy: 0.9644
```

Epoch results-1

```
Epoch 13/20
99/99 [===========] - 198s 2s/step - loss: 0.0455 - accuracy: 0.9806 - val_loss: 0.1533 - val_accuracy: 0.9818
Epoch 14/20
99/99 [===========] - 197s 2s/step - loss: 0.0192 - accuracy: 0.9949 - val_loss: 0.1177 - val_accuracy: 0.9670
Epoch 15/20
99/99 [============] - 198s 2s/step - loss: 0.0236 - accuracy: 0.9908 - val_loss: 0.0969 - val_accuracy: 0.9657
Epoch 16/20
99/99 [=============] - 215s 2s/step - loss: 0.0085 - accuracy: 0.9978 - val_loss: 0.1116 - val_accuracy: 0.9670
Epoch 17/20
99/99 [==============] - 229s 2s/step - loss: 0.0101 - accuracy: 0.9959 - val_loss: 0.1130 - val_accuracy: 0.9657
Epoch 18/20
99/99 [==============] - 207s 2s/step - loss: 0.0099 - accuracy: 0.9978 - val_loss: 0.1373 - val_accuracy: 0.9657
Epoch 19/20
99/99 [==============] - 202s 2s/step - loss: 0.0223 - accuracy: 0.9921 - val_loss: 0.1417 - val_accuracy: 0.9543
Epoch 20/20
99/99 [==============] - 207s 2s/step - loss: 0.0319 - accuracy: 0.9889 - val_loss: 0.1128 - val_accuracy: 0.9733
```

Epoch results-2

OUTPUT

10. ADVANTAGES AND DISADVANTAGES

ADVANTAGES

- These visual monitoring systems make much of a positive contribution. It provides a way for the earliest detection of drowning persons through alarms
- It also serves for an easy installation in swimming pools
- Installation of camera(virtual eye) in the swimming pools are not so expensive
- Low maintenance of the installed camera

DISADVANTAGES

- Although it offers certain benefits, there are some drawbacks as well. There is a possibility of machine misunderstanding the situations
- Requirement of manual monitoring even though visual systems are placed

11. CONCLUSION

These visual monitoring systems significantly improve things. Through
alarms, it offers a method for the quick identification of drowning victims. Additionally, it
facilitates simple installation in swimming pools. The cost of installing cameras (virtual
eyes) in swimming pools is not very high. Low upkeep for the installed camera is only
required. Although , The likelihood of a machine misinterpreting the circumstances exists.
Even though there are visual systems in place, manual monitoring is still necessary. They
serve the best for saving of lives with no latency