Proje Yönetimi

Bölüm 2 : Proje Değerlendirme ve Gözden Geçirme Tekniği (PERT)

Konu 5

Prof. Dr. Fazıl GÖKGÖZ

PERT - Proje Planlamasında Olasılıksal Yaklaşım

Üç zamanlı tahmin yaklaşımı

a : Faaliyetin iyimser gerçekleşme süresi

m : Faaliyetin ortalama gerçekleşme süresi

b : Faaliyetin kötümser gerçekleşme süresi

PERT Yöntemindeki Faaliyet Sürelerine İlişkin Dağılımların Tahmini

PERT/CPM Şebekesindeki Her Faaliyetin:

- 1. Faaliyetin tamamlanma zamanına ilişkin olasılık yoğunluğu fonksiyonu Beta *(unimodal)* dağılımıdır.
- 2. Ortalama Tamamlanma Süresi:

$$\mu = (a + 4m + b) / 6$$

3. Tamamlanma Zamanının Standard Sapması:

$$\sigma = (b - a) / 6$$

3

Örnek

(Projedeki Faaliyetlerin Ortalama Tamamlanma Süreleri ve Bunların Standart Sapmaları Bilinirse)

Prof. Dr. Fazıl GÖKGÖZ

Tüm Projenin Tamamlanma Zamanının Olasılıksal Dağılımının Tahmini

1. Her "j" faaliyeti için hesaplanması gereken parametreler:

$$\mu_{j} = (a + 4m + b) / 6$$
 $\sigma_{j} = (b - a) / 6$

- 2. Ortalama tamamlanma süresinden $(\mu_{
 m j})$ oluşan sabit süreleri kullanarak kritik yolun belirlenmesi
- 3. Tüm projenin tamamlanma zamanı normal dağılım sergiler:

Ortalama: $\mu = \sum \mu_i$

Varyans: $\sigma^2 = \sum_{j=0}^{\infty} \sigma_j^2$ Standard sapma: $\sigma = \sqrt{\sigma^2}$

Klone Computers Inc. Örneği

FaaliyetActivity	İyimser <i>(a)</i>	Eşit Olasılık (m)	Kötümser (b)
В	12	15	18
С	4	5	6
D	15	18	33
E	18	21	24
F	16	26	30
G	10	13	22
Н	24	28	32
I	22	27	50
J	38	43	60

Prof. Dr. Fazil GÖKGÖZ

Klone Computers Inc. Örneği

Klone Şirketi Yönetimi aşağıdaki hususları araştırmaktadır:

- Projenin 194 günde tamamlanma olasılığı
- Projenin tamamlanacağı gün sayısının tahmininde geçerli bir güven aralığı olması
- Projenin 180 günde tamamlanma olasılığı
- Projenin 210 günden fazla bir sürede tamamlanma olasılığı
- Projenin kesin olarak tamamlanacağı tarihin en üst sınırının belirlenmesi

Çözüm

A faaliyeti için ortalama, varyans ve standard sapma aşağıdaki gibi hesaplanabilir:

$$\mu_{\rm A}$$
 = (76 + 4(86) + 120) / 6 = 90 gün

$$\sigma_{\rm A}$$
 = (120 - 76) / 6 = 7.33 gün

$$\sigma_{A}^{2}$$
 = (7.33)² = 53.73 gün

Prof. Dr. Fazıl GÖKGÖZ

Çözüm İstatistiksel Parametrelerin Sunulması

Faaliyet	μ	σ	σ^2
Α	90	7.33	53.73
В	15	1.00	1.00
С	5	0.33	0.11
D	20	3.00	9.00
E	21	1.00	1.00
F	25	2.33	5.44
G	14	2.00	4.00
Н	28	1.33	1.78
I	30	4.67	21.78
J	45	3.67	13.44

Kritik Yol: A-F-G-D-J

Projenin beklenen tamamlanma süresi:

$$\mu = \mu_A + \mu_F + \mu_G + \mu_D + \mu_J$$

 $\mu = 90 + 25 + 14 + 20 + 45 = 194$ gün

Projenin tamamlanma süresinin varyansı:

$$\sigma^2 = \sigma_A^2 + \sigma_F^2 + \sigma_G^2 + \sigma_D^2 + \sigma_J^2$$

 $\sigma^2 = 53.78 + 5.44 + 4.00 + 9.00 + 13.44 = 85.66$ gün

Standard sapması:

$$\sigma = \sqrt{\sigma^2} = 9.26$$
 gün

Normal Dağılım

X = Projenin tamamlanma zamanı

Z = Standart normal rassal değişken

$$Z = (X - \mu) / \sigma$$

Prof. Dr. Fazil GÖKGÖZ

Normal Dağılım

1. Projenin 194 günde tamamlanma olasılığı:

$$P(X \le 194) = P(Z \le 0) = 0.5000$$

14

2. Projenin tamamlanma süresine ilişkin geçerli bir aralık tespiti (güven aralığı)

95% Güven aralığı :
$$\mu \pm z_{0.25} \ \sigma$$
 $z_{0.25}$ = 1.96

$$194 \pm 1.96 \ (9.255) = 194 \pm 18.14 \ gün$$
 $175 - 213 \ gün$

Prof. Dr. Fazıl GÖKGÖZ

3. Projenin 180 günde tamamlanma olasılığı:

$$P(X \le 180)$$

$$x = 180$$

$$Z = (180 - 194) / 9.255 = -1.51$$

$$P(X \le 180) = P(Z \le -1.51) = 0.5000 - 0.4345$$

= 0.0655 (6.55%)

4. Projenin 210 günden daha fazla bir sürede tamamlanma olasılığı:

$$P(X>210)$$

$$x = 210$$

$$z = (210 - 194) / 9.255 = 1.73$$

$$P(X > 210) = P(Z > 1.73) = 0.5000 - 0.4582$$

$$= 0.0418 (4.18\%)$$

Prof. Dr. Fazıl GÖKGÖZ

5. Projenin tamamlanacağı en son tarih sınırının belirlenmesi:

$$P(Z \le z) = 0.9900$$

 $P(0 \le Z \le z) = 0.4900$

$$Z = (x - \mu) / \sigma$$

 $x = \mu + z\sigma$
 $x = 194 + 2.33 (9.255) = 215.56 gün = 216 gün$

Kritik Yol Yöntemi

NT: Normal tamamlanma zamanı

NC: Normal maliyet

CT: Tamamlanma zamanının düşürülebileceği seviye

CC: CT nedeniyle oluşan ilave maliyet

Prof. Dr. Fazıl GÖKGÖZ

CPM'de Doğrusallık Varsayımı

Faaliyetin tamamlanma süresi ile tamamlanmaya yönelik maliyetler arasında **zıt yönlü doğrusal bir ilişki** bulunmaktadır.

Eğer faaliyet süresi belli bir noktaya düşürülmeye çalışılacaksa, bunun karşısında üstlenilmesi gereken maliyet seviyesi de orantılı olarak yükselecektir.

20

Bazı Eşitlikler

T = NT - CT

Belli bir faaliyetteki mümkün olabilecek maksimum zaman tasarrufu

C = CC - NC

Maksimum süre tasarrufuna karşın üstlenilecek ilave maliyet

M = C / T

Bir faaliyetin süresinin 1 birim zaman kısaltılabilmesine karşılık gelen marjinal maliyet

22

Ödev 4 - 5

PRT Şirketinin kablo şebekesinin nicel teknikler ve işletme politikaları açısından yorumlanması.

Normal dağılım kavramının araştırılarak nicel teknikler bağlamında irdelenmesi.

23