## Regular Languages

COMPSCI 3331

#### **Outline**

- Motivation for regular languages.
- Regular languages
- Deterministic finite automata.

### Regular Languages - Motivation

- Languages recognized with a fixed amount of memory.
- Developed to model how circuits work and early models of neural behaviour.
- Used in text matching, regular expressions, compilers, model checking, protocol verification, natural language processing.

# Example: Key Fob



A deterministic finite automaton (DFA) consists of:

- a finite set of states the DFA can be in;
- an alphabet, specifying the set of letters the DFA can process;
- a transition function, which specifies how to update our state based on the current input letter.
- start and final states, which specify how to accept or reject words.

- The alphabet in the fob example is ⊥, ∪, H.
- Transition Function: what effect do actions from our alphabet have?
- Could give names to states: "hatch open", "driver's door unlocked", etc.

How do we visualize our DFA working?



"Finite control": the current state and instructions provided by the transition function.

**Formally**, a DFA is a 5-tuple  $M = (Q, \Sigma, \delta, q_0, F)$  where

- Q is a finite set of states,
- $\triangleright$   $\Sigma$  is a finite alphabet.
- $\delta: Q \times \Sigma \to Q$  is the transition function.
- $ightharpoonup q_0 \in Q$  is the start state.
- $ightharpoonup F \subseteq Q$  is the final state.

## **Drawing DFAs**

- Draw DFA with states, labelled transitions.
- Special indications for start and final states.

### Accepting words and languages

- ► Each word  $w \in \Sigma^*$  traces a path from the start state to some state in the automaton.
- If the state we reach is a final state  $(\in F)$  then the word w is **accepted** by M. Otherwise, it is rejected.
- ► The language accepted by a DFA M is the set of all strings accepted by M.

### Acceptance: Formal Definition

- ightharpoonup The transition function acts on letters from  $\Sigma$ .
- Extend it to work on **words** from  $\Sigma^*$  with a recursive definition:
  - ▶  $\delta(q,\varepsilon) = q$  for all  $q \in Q$ ;.
  - ▶  $\delta(q, wa) = \delta(\delta(q, w), a)$  for all  $q \in Q$ ,  $w \in \Sigma^*$  and  $a \in \Sigma$ .
- ▶ A word  $w \in \Sigma^*$  is accepted by a DFA  $M = (Q, \Sigma, \delta, q_0, F)$  if  $\delta(q_0, w) \in F$ . The language accepted by M is

$$L(M) = \{ w \in \Sigma^* : \delta(q_0, w) \in F \}.$$

### Language accepted by a DFA

- Can ask "given a DFA M, what language does it accept?"
- Establish through proof: define a language L and establish that  $L(M) \subseteq L$  and  $L \subseteq L(M)$ .

### Finding a suitable DFA

- ightharpoonup "For this language L, find a DFA M such that L(M) = L."
- ▶ **Assumption**: for the language L, there exists a DFA M such that L(M) = L.
- Tips:
  - Think of the states as "what do we need to remember?"
  - Define set of states, and then the letters that move us from state to state.
  - Learn by doing!

### The Regular Languages

A language  $L \subseteq \Sigma^*$  is a **regular language** if there exists a DFA  $M = (Q, \Sigma, \delta, q_0, F)$  such that L(M) = L.

Not every language is a regular language.

### Are DFAs Unique?

If  $M_1, M_2$  are (in some way) distinct DFAs, is it true that  $L(M_1) \neq L(M_2)$ ?

- can always have superfluous unconnected states.
- can have different ways to define the language.

#### Return to Motivation

What can DFAs be used to model?

- Finite sets.
- Objects which only require a fixed amount of memory.
- "Easy" jobs in programming language recognition jobs.