WORKFLOW:-

Rule of Inference	Tautology	Name
$ \frac{p}{p \to q} $ $ \therefore \frac{q}{q} $	$(p \land (p \rightarrow q)) \rightarrow q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \overline{\neg p} \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$\begin{array}{c} p \to q \\ q \to r \\ \therefore \overline{p \to r} \end{array}$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \rightarrow q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
$\frac{p}{q}$ $\therefore \frac{p \wedge q}{p \wedge q}$	$((p) \land (q)) \rightarrow (p \land q)$	Conjunction
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \therefore \overline{q \lor r} \end{array} $	$((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$	Resolution

The form of a *modus tollens* argument resembles a syllogism, with two premises and a conclusion:

Not Q.

If P, then Q.

Therefore, not P.

For example:

The dog did not bark.

If the dog detects an intruder, the dog will bark.

Therefore, no intruder was detected by the dog.

OUTPUT

<u>The Project is also live in :- _http://rulesinf.pythonanywhere.com/</u>

Syllogism Solver	Rules Of Inference Home
Hey !! Looks Like You So You Need To Follow Use only If , Then , An	
	Enter Your premises Major Premise
	Major Premise
	Submit

Syllogism Home Rules Of Inference

The Conculsion is

Modus Ponens, Therefore: john will go to work.

Steps To Run The Project

- **1.**Install the modules in "requirements.txt" and run "pip install -r requirements.txt".
- 2. To run this project, Open "command prompt" type

STEP 1:- cd rulesinf

STEP 2:- python manage.py runserver

STEP3:- You Can See The Website Live in

http://127.0.0.1:8000/

4. If facing any issues while deploying the application: https://help.pythonanywhere.com/pages/DeployExistingDjangoProject/