NOAA Storm Database Analysis

Isaac G Veras

05/10/2023

Introduction

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

This project involves exploring the **U.S. National Oceanic and Atmospheric Administration's (NOAA)** storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

Questions

The analysis is trying to answer the following questions:

- 1. Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?
- 2. Across the United States, which types of events have the greatest economic consequences?

Package installation:

1. Data Processing:

The data for this assignment come in the form of a comma-separated-value file compressed via the bzip2 algorithm to reduce its size.

```
data_url <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
file_name <- "StormData.csv.bz2"

if (!file.exists(file_name)) {
    download.file(data_url, file_name, method = "curl")
}</pre>
```

1.1 Load Data into dataset

The raw data structure consist of 902297 row(s) and 37 columns

List of available columns:

```
## [1] "STATE__"
                    "BGN_DATE"
                                 "BGN_TIME"
                                             "TIME_ZONE"
                                                          "COUNTY"
## [6] "COUNTYNAME" "STATE"
                                 "EVTYPE"
                                             "BGN RANGE" "BGN AZI"
## [11] "BGN_LOCATI" "END_DATE"
                                 "END_TIME"
                                             "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE" "END_AZI"
                                 "END_LOCATI" "LENGTH"
                                                          "WIDTH"
## [21] "F"
                                 "FATALITIES" "INJURIES"
                                                          "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG"
                                 "CROPDMGEXP" "WFO"
                                                          "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE"
                                 "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"
                    "REFNUM"
```

Check first five rows of raw data:

```
head(storm_data)
```

## ## :	STATE		- 1			TTMF	ZONE	COLINITY	/ COLINI		$CT\Lambda TI$	
		1/10/		0:00:00	BGN_TIME 0130	_	_ZONE CST	COUNTY 97		IYNAME MOBILE		TORNADO
## 4				0:00:00			CST	97		ALDWIN		TORNADO
## 3				0:00:00			CST	57		AYETTE		TORNADO
## 4				0:00:00			CST	89		ADISON		TORNADO
## !				0:00:00			CST	43		JLLMAN		TORNADO
## (0:00:00			CST			ERDALE		TORNADO
##			AZI E	BGN_LUCA	TI END_DA	IL EN)_ I TMI	E COUNT		COUNT		
## 1		0							0		NA	
## 2		0							0		NA	
## 3		0							0		NA	
## 4		0							0		NA	
## !		0							0		NA	
## (0							0		NA	
##			_AZI E	END_LOCA	TI LENGTH							
## :		0			14.0		9 3	0		9	15	25.0
## 2		0			2.0		9 2	0		9	0	2.5
## 3		0			0.1		3 2	0		9	2	25.0
## 4		0			0.0		9 2	0		9	2	2.5
## !		0			0.0		9 2	0		9	2	2.5
## (0			1.5		7 2	0		9	6	2.5
##	PROPDMGE	XP CRO	PDMG	CROPDMG	EXP WFO S	TATEO	FFIC 2	ZONENAN	1ES LA	TITUDE	LONG:	TUDE
## :		K	0							3040		8812
## 2		K	0							3042		8755
## 3	3	K	0							3340		8742
## 4		K	0							3458		8626
## !	5	K	0							3412		8642
## (K	0							3450		8748
##		_	IGITUI	DE_ REMA	RKS REFNU	M						
## 3	1 30	51	88	306		1						
## 2	2	0		0		2						
## 3	3	0		0		3						
## 4	1	0		0		4						
## !	5	0		0		5						
## 6	5	0		0		6						

2. Data Cleansing

For this analysis, only a few columns which are required to answer both questions. So, we create a subset from raw dataset which contains the meaningful variable for this research. The required column are:—

No.	Column	Description
1.	EVTYPE	Type of event recorded
2.	FATALITIES	Number of fatalities reported
3.	INJURIES	Number of people injured reported
4.	PROPDMG	Property damage measurement
5.	PROPDMGEXP	The exponential for Property Damage
6.	CROPDMG	Crop damage measurement
7.	CROPDMGEXP	The exponential for Crop Damage

```
storm_data_select <- select(storm_data, EVTYPE, FATALITIES, INJURIES, PROPDMG, PROPDMGEXP, CROP
DMG, CROPDMGEXP)</pre>
```

Check first five rows from subset dataset:

```
head(storm_data_select)
```

```
EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
##
## 1 TORNADO
                             15
                                   25.0
                                                 Κ
## 2 TORNADO
                                                 Κ
                     0
                              0
                                    2.5
                                                         0
## 3 TORNADO
                     0
                              2
                                   25.0
                                                 Κ
                                                         0
## 4 TORNADO
                              2
                                   2.5
                                                 Κ
                                                         0
## 5 TORNADO
                     0
                              2
                                    2.5
                                                         0
## 6 TORNADO
                                    2.5
```

To get the right value, we must change the property damage and crop damage to it's actual value. The exponential is describe as shown in the table below:—

No.	EXP	Description
1	Н	Hundred (10^2)
2	К	Thousand (10^3)
3	M	Million (10 ⁶)
4	В	Billion (10^9)

3. Analysing Data

3.1 Events are most harmful with respect to population health.

3.2 Events have the greatest economic consequences:

```
economic_effects <- storm_data_select %>%
        mutate(actual_propdmg = case_when(.$PROPDMGEXP == "H" ~ .$PROPDMG * 10^2,
                                           .$PROPDMGEXP == "K" \sim .$PROPDMG * 10^3,
                                            .$PROPDMGEXP == "M" ~ .$PROPDMG * 10^6,
                                           .PROPDMGEXP == "B" \sim .PROPDMG * 10^9,
                                           TRUE ~ .$PROPDMG)) %>%
        mutate(actual_cropdmg = case_when(.$CROPDMGEXP == "H" ~ .$CROPDMG * 10^2,
                                           .$CROPDMGEXP == "K" \sim .$CROPDMG * 10^3,
                                           .$CROPDMGEXP == "M" \sim .$CROPDMG * 10^6,
                                           .$CROPDMGEXP == "B" \sim .$CROPDMG * 10^9,
                                           TRUE ~ .$CROPDMG)) %>%
        group_by(EVTYPE) %>%
        summarise(total_actual_damage = sum(actual_propdmg + actual_cropdmg)) %>%
        arrange(desc(total_actual_damage))
clrs <- c("black", "slategray", "darkgray", "gray", "darkblue", "navy", "blue", "royalblue", "d</pre>
arkgreen", "green3")
top10 <- economic_effects[1:10,]</pre>
ggplot(data = top10, aes(EVTYPE, total_actual_damage / 10^3, fill = EVTYPE)) +
        geom_bar(stat = "identity") +
        guides(fill = FALSE) +
        theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
        scale_fill_manual(values = clrs)
```

```
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```


Results:

The chart illustrates the top ten types of events responsible for the most extensive property and crop damage in the United States. Tornadoes emerge as the primary cause of property damage in the United States. Subsequently, floods and flash floods rank second, followed by wind and thunderstorms. Hail stands out as the leading contributor to crop damage in the United States. It is followed by floods and flash floods in the second position, with wind and thunderstorms trailing behind.