Вступление.

$$a = \prod_{p} p^{\alpha_p}$$

 $V_p(a) := lpha_p$, где V_p - p-адический показатель a.

$$V_p(a) = \max\{n \in \mathbb{N} : p^n | a\}$$

$$V_p(a) = n \Leftrightarrow p^n | a$$
, no $p^{n+1} \nmid a$

$$a = \prod_p p^{\alpha_p}, \ b = \prod_p p^{\beta_p}$$

$$a \mid b \Leftrightarrow \forall p \; \alpha_p \geq \beta_p$$

$$a:b\Leftrightarrow V_p(a)\geq V_p(\beta)$$

Свойства р-адических показателей:

1.
$$V_p(ab) = V_p(a) + V_p(b)$$

2.
$$V_p(a+b) \ge min(V_p(a), V_p(b))$$

Определение. a, b взаимно просты (обозначение $a \perp b$), если

$$\forall d \in \mathbb{Z}$$
 если $a \mid d, b \mid d$, то $d = \pm 1$.

$$a \perp b \Leftrightarrow \forall p \ V_p(a) = 0$$
 или $V_p(b) = 0$.

Определение. $a,b\in\mathbb{N}$ $d\in N$ - наибольший общий делитель a и b, если

- $1 \quad a \quad d, \quad b \quad d$
- 2. $\forall d'$ если $a \mid d', \ b \mid d'$ то $d \mid d'.$

Обозначение. d = gcd(a, b) ("greatest common divisor").

$$gcd(a,b) = \prod_{p} p^{min(\alpha_{p},\beta_{p})}$$

Определение. m - наименьшее общее кратное a, b, если

- 1 m a, m b
- 2. $\forall m' : m' | b$, to m' | m.

Обозначение. lcm(a, b) ("least common multiple").

$$V_p(lcm(a,b)) = max(V_p(a), V_p(b))$$

Упражнение. gcd(a,b)*lcm(a,b) = a*b

$$\prod_{p} p^{\min(\alpha_{p},\beta_{p})} * \prod_{p} p^{\max(\alpha_{p},\beta_{p})} = \prod_{p} p^{\min(\alpha_{p},\beta_{p})+\max(\alpha_{p},\beta_{p})} = \prod_{p} p^{\alpha_{p}+\beta_{p}} = \prod_{p} p^{\alpha_{p}} * \prod_{p} p^{\beta_{p}} = a * b$$

25! - сколькими нулями оканчивается? $V_{10}(25!) = min(V_2(25!), V_5(25!))$

$$a = \prod_{p} p^{\alpha_p} = \frac{\prod\limits_{\substack{p, a_p \ge 0 \\ p, a_p < 0}} p^{\alpha_p}}{\prod\limits_{\substack{p, a_p < 0}} p^{-\alpha_p}} = \frac{r}{s}, \quad r, s \in \mathbb{Z}$$

Важно: Пусть $d=\gcd(a,b)$, тогда $\frac{a}{d}\perp\frac{b}{d}$

Задача. $a \in \mathbb{Z}, a > 0, n \in \mathbb{N}.$

(!) $\sqrt[n]{a}$ либо целый, либо иррациональный. Предположим, что $\sqrt[n]{a} \in \mathbb{R}$. Докажем, что $\sqrt[n]{a} \in \mathbb{Z}$. $\sqrt[n]{a} = \prod p^{\gamma_p}, \ \gamma \in \mathbb{Z}$ $(!) \forall p \ \gamma_p \geq 0$.

$$\mathbb{Z} \ni a = \left(\prod_{p} p^{\gamma_p}\right)^n = \prod_{p} p^{n\gamma_p} \quad \forall p \ n\gamma_p \ge 0.$$