Exploratory Data Analysis

A

IBM-Coursera

Lina Hourieh

Table of Content

IBM-Coursera	0
Table of Content	1
About the data	1
Data Dictionary	2
EDA Plan	3
Data Overview	3
Dealing with missing Values	4
Feature Engineering	6
Visualization	8
Categorical Variables Cleaning	9
Remove Duplicates & Unuseful Features	10
Numerical Variables Cleaning	10
Hypothesis Testing	12
Hypothesis 1:	12
Hypothesis 2	13
Hypothesis 3	14
Key Findings	15

About the data

The data is downloaded from Kaggle, from Queen's University Belfast Cancer Research in United Kingdom.

- License CC0: Public Domain
- Visibility: Public
- Date created: 2021-08-05
- Current version: Version 1

Data Dictionary

Patient_ID	string	unique identifier id of a patient
Age	float64	Age at diagnosis (Years)
Gender	string	Male/Female
Protein1, Protein2, Protein3, Protein4	float64	expression levels (undefined units)
Tumour_Stage	string	1, 11, 111
Histology	string	Infiltrating Ductal Carcinoma, Infiltrating Lobular Carcinoma, Mucinous Carcinoma
ER status	string	Positive/Negative
PR status	string	Positive/Negative
HER2 status	string	Positive/Negative
Surgery_type	string	Lumpectomy, Simple Mastectomy, Modified Radical Mastectomy, Other
Dateo <i>f</i> Surgery	string	Date on which surgery was performed (in DD-MON-YY)
DateofLast_Visit	string	Date of last visit (in DD-MON-YY) [can be null, in case the patient didn't visited again after the surgery]
Patient_Status	string	Alive/Dead [can be null, in case the patient didn't visited again after the surgery and there is no information available whether the patient is alive or dead].

EDA Plan

1- Data Overview

Inspect the shape and feature type.

- 2- Inspect Missing Values
- 3- Feature Engineering
- 4- Remove Duplicates & Unuseful Features
- 5- Cleaning of Categorical Variables
- 6- Cleaning of Numerical Variables
- 7- Hypothesis Testing

Data Overview

• Our target feature : Patient_Status

• rows and columns: 341, 16

• **features types**: qualitatives: 11, quantitatives: 5

<class 'pandas.core.frame.DataFrame'> RangeIndex: 341 entries, 0 to 340 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	Patient_ID	334 non-null	object
1	Age	334 non-null	float64
2	Gender	334 non-null	object
3	Protein1	334 non-null	float64
4	Protein2	334 non-null	float64
5	Protein3	334 non-null	float64
6	Protein4	334 non-null	float64
7	Tumour_Stage	334 non-null	object
8	Histology	334 non-null	object
9	ER status	334 non-null	object
10	PR status	334 non-null	object
11	HER2 status	334 non-null	object
12	Surgery_type	334 non-null	object
13	Date_of_Surgery	334 non-null	object
14	Date_of_Last_Visit	317 non-null	object
15	Patient_Status	321 non-null	object
dtyp	es: float64(5), obje	ct(11)	

memory usage: 42.8+ KB

Dealing with missing Values

Total Missing Values: 142

Percentage of Missing Values: 2.602639296187683

This is a very low percentage, however, we need to figure out the nature of these missing values and how they are distributed across features.

```
Patient ID
                       7
Age
Gender
                       7
                       7
Protein1
                       7
Protein2
                       7
Protein3
                       7
Protein4
Tumour Stage
                       7
                       7
Histology
                       7
ER status
                       7
PR status
                       7
HER2 status
                       7
Surgery type
Date of Surgery
                       7
Date of Last Visit
                      24
Patient Status
                      20
dtype: int64
```

Obviously some rows contain all missing values, we can know this by running this line of code:

```
df[df['Patient_ID'].isna() == True]
```

we will find out all features of these rows are NaN. This may be due equipment malfunctions, lost files, or other reasons. we removed them by obtaining their index.

```
df[df['Patient_ID'].isna() == True].index
df.drop(index=[334, 335, 336, 337, 338, 339, 340], inplace=True)
```

Remove rows of null target as well, since they will not help us in the analysis.

```
df[df['Patient_Status'].isna() == True].index
df.drop(index=[7, 22, 99, 111, 182, 196, 206, 219, 221, 285,
286, 305, 321], inplace=True)
```

```
df.isna().sum()
```


Patient_ID	0
Age	0
Gender	0
Protein1	0
Protein2	0
Protein3	0
Protein4	0
Tumour_Stage	0
Histology	0
ER status	0
PR status	0
HER2 status	0
Surgery_type	0
Date_of_Surgery	0
Date_of_Last_Visit	4
Patient_Status	0
dtype: int64	

We ended up with only 4 missing values.

Percentage of Missing Values: 0.0778816199376947

We can drop these rows as they have very low percentage or we can fill up the missing values. In order to do that we will **engineer a feature** that will help us.

Feature Engineering

I tried to fill the missing value in the Date_of_Last_Visit using KNN imputer.

However, it is not possible to predict its value in this format *09-Nov-18* object.

So I followed these steps:

- 1- Transformed df['Date_of_Last_Visit'] and df['Date_of_Surgery'] into datetime.
- 2- Create df['Recovery_Period'] which is a subtraction of previous pd.series.
- 3- Use KNN to fill missing values in df['Recovery_Period'].

4- Reuse the df['Recovery_Period'] = df['Date_of_Last_Visit'] - df['Date_of_Surgery'] to fill in missing values in Date of Last Visit

Patient_ID	0
Age	0
Gender	0
Protein1	0
Protein2	0
Protein3	0
Protein4	0
Tumour_Stage	0
Histology	0
ER status	0
PR status	0
HER2 status	0
Surgery_type	0
Date_of_Surgery	0
Date_of_Last_Visit	0
Patient_Status	0
Recovery_Period	0
dtype: int64	

Visualization

We have a unbalanced outcome. This is usual within medical related data. So undersample.

```
df_alive = df[df['Patient_Status'] ==
'Alive'].sample(df['Patient_Status'].value_counts()[1],random_st
ate=7)
df_dead = df[df['Patient_Status'] == 'Dead']
df = pd.concat([df alive,df dead],axis=0)
```


Categorical Variables Cleaning

ER and PR status are all positive valuess, so we can remove them along with patient ID as they don't add any value.

Remove Duplicates & Unuseful Features

```
df.duplicated().sum()
0
df.drop(columns=['Patient_ID'],inplace = True)
df.drop(columns=['ER status','PR status'],inplace = True)
```

Numerical Variables Cleaning

```
['Age', 'Protein1', 'Protein2', 'Protein3', 'Protein4']
```



```
def remove_outliers(df,col):
    q_low = df[col].quantile(0.01)
    q_hi = df[col].quantile(0.99)

df_filtered = df[(df[col] < q_hi) & (df[col] > q_low)]
    return df_filtered
```



```
df_new = df
for i in num_variables:
   df_filtered = remove_outliers(df_new,i)
   df_new = df_filtered

df = df_new
(112, 14)
```

We removed upper and lower outliers.

Hypothesis Testing

Hypothesis 1:

Surgery_type Lumpectomy Modified Radical Mastectomy Other Simple Mastectomy Patient_Status

Alive	13	18	18	17
Dead	9	20	25	12

- **H**₀ (**Null Hypothesis**) the surgery_type and Patient_Status are independent of each other.
- **H**₁ (**Alternate Hypothesis**) the surgery_type and Patient_Status are dependent on each other.

And you draw your conclusions based on the following p-value conditions:

p < 0.05 — this means the two categorical variables are correlated.

p > 0.05 — this means the two categorical variables are not correlated.

from scipy.stats import chi2 contingency

```
c, p, dof, expected = chi2_contingency(contigency_pct)
print(f'Chi2_score: {c}')
print(f"The p-value is: {p}")
print(f"The degree-of-freedom is: {dof}")

Chi2_score: 2.834139734405636
The p-value is: 0.4179107006039938
The degree-of-freedom is: 3
```

The p-value is 0.3 > 0.05 which means that we do not reject the null hypothesis at 95% level of confidence. The surgery_type and Patient_Status are independent of each other.

Hypothesis 2


```
Tumour_Stage I II III
Patient_Status

Alive 15 33 18

Dead 10 38 18
```

- **H**₀ (**Null Hypothesis**) the Tumour_Stage and Patient_Status are independent of each other.
- **H**₁ (**Alternate Hypothesis**) the Tumour_Stage and Patient_Status are dependent on each other.

And you draw your conclusions based on the following p-value conditions:

 $\rm p < 0.05 - this\ means\ the\ two\ categorical\ variables\ are\ correlated.$

 $\rm p > 0.05 - this\ means\ the\ two\ categorical\ variables\ are\ not\ correlated$

```
c, p, dof, expected = chi2_contingency(contigency_pct)
print(f'Chi2_score: {c}')
print(f"The p-value is: {p}")
print(f"The degree-of-freedom is: {dof}")

Chi2_score: 1.352112676056338
The p-value is: 0.5086188632892799
The degree-of-freedom is: 2
```

The p-value is 0.50 > 0.05 which means that we do not reject the null hypothesis at 95% level of confidence. The Tumour_Stage and Patient_Status are independent of each other.

Hypothesis 3

Histology Infiltrating Ductal Carcinoma Infiltrating Lobular Carcinoma Mucinous Carcinoma Patient Status

Alive	49	15	2
Dead	47	16	3

```
c, p, dof, expected = chi2_contingency(contigency_pct)
print(f'Chi2_score: {c}')
print(f"The p-value is: {p}")
print(f"The degree-of-freedom is: {dof}")

Chi2_score: 0.2739247311827957
The p-value is: 0.8720030428334034
The degree-of-freedom is: 2
```

The p-value is 0.88 > 0.05 which means that we do not reject the null hypothesis at 95% level of confidence. The Histology and Patient_Status are independent of each other.

Key Findings

- The data contained 142 missing values, some were removed others were filled using KNN.
- The data was unbalanced so we went with undersampling, ending up with 132 sample size.
- No duplications were observed.
- Some outliers were detected and removed

