Traitement avancé du signal et des images Partie Signal

Sébastien Adam Cours de Licence 3 EEEA-INFO 2023-2024

Plan

- 1 Introduction au traitement du signal
- Rappels d'analyse spectrale continue
- Rappels d'analyse spectrale discrete
- 4 Systèmes et filtres analogiques

Définition

- Filtrer, c'est arréter, complètement ou non, empêcher ou gêner le passage de quelque chose
- Sur des signaux, les buts peuvent être multiples :
 - Sélectionner des parties d'un signal contenant une information pertinente
 - Eliminer du bruit
 - Adoucir un signal, éliminer des valeurs aberrantes
 - Séparer plusieurs composantes d'un signal
- En général, les contraintes sont fréquentielles : on cherche à sélectionner ou atténuer certaines fréquences

$$y(t) = h(t) * x(t)$$
$$Y(f) = H(f) \times X(f)$$

Convolution temporelle Multiplication fréquentielle

- Objectif du filtre : sélection de composantes particulières
- Caractérisation du filtre : capacité à transmettre certaines fréquences ou certaines parties du signal
- Difficultés :
 - Détermination de h(t) ou H(f)
 - Réaliser le filtre à partir de h(t) ou H(f)

$$\frac{ \text{Module } |H(f)| \longrightarrow \text{Gain en décibel (dB)} \colon G(f) = 20 \log \! |H(f)| }{ \text{Argument } \phi(f) = \arg(H(f)) }$$

Filtrage temporel / fréquentiel

Types de filtres

Le filtre de référence est le filtre passe-bas.

- Filtre qui laisse passer les basses fréquences
- Défini par une bande passance $[0, f_c]$
- Supprime (atténue) les fréquences supérieures à f_c

Donc pour un Dirac en 0, la réponse impulsionnelle h(t) va de – à + l'infini, elle commence donc avant la cause! Le système est NON CAUSAL.

- → Ce filtre n'est pas physiquement réalisable
- → Nécessité de trouver une approximation du filtre idéal

-f

réponse impulsionnelle du filtre

Autres filtres

Filtre passe-haut

- ◆ Transmission des fréquences supérieures à f_c
- ♦ Élimination des fréquences inférieures à f_c
- ♦ Bande passante $BP = [f_c, \infty]$

- Transmission des fréquences appartenant à un intervalle donné
- Bande passante $BP = \begin{bmatrix} f_{c_1}, & f_{c_2} \end{bmatrix}$

Filtre coupe-bande

- Transmission des fréquences hors d'une bande déterminée
- Bande passante $BP = \begin{bmatrix} 0, & f_{c_1} \end{bmatrix} \cup \begin{bmatrix} f_{c_2}, & \infty \end{bmatrix}$

- Discontinuités / dérivées infinies en fréquence -> réponse impulsionnelle non causale = non physiquement réalisable => Approximation du filtre idéal
- Les Filtres réels sont définis par un gabarit spécifiant :
 - Une zone dans laquelle doit passer sa courbe fréquentielle
 - ◆ La bande passante et la bande atténuée (ou rejetée)
 - Les ondulations maximales admissibles dans la bande passante a et l'atténuation minimale dans la bande rejetée b

Le filtre de Butterworth

• Fonction de transfert d'un filtre passe bas d'ordre n de pulsation de coupure ω_c :

$$|H(\omega)|^2=rac{1}{1+\left(rac{\omega}{\omega_c}
ight)^{2n}}$$
 soit pour $\omega_c=1$: $|H(\omega)|^2=rac{1}{1+(\omega)^{2n}}$

- Propriétés :
 - Réponse aussi plate que possible dans la bande passante
 - Atténuation de -20ndB/décade à partir de f_c

Réalisation:

- Quel ordre choisir ?
- Détermination de H(f) ?
- Réaliser le filtre à partir de H(f) ?

Le filtre de Butterworth

On trouve l'ordre du filtre en fonction de l'atténuation b que l'on désire

■ Détermination de n en fonction de b : atténuation minimale en bande rejetée

$$G(f_s) = 20\log|H(f_s)| \le b \longrightarrow 20\log\frac{1}{\sqrt{1 + \left(\frac{f_s}{f_c}\right)^{2n}}} \le b \longrightarrow n \ge \frac{\log\left(10^{\frac{1}{10}} - 1\right)}{2\log\left(\frac{f_s}{f_c}\right)}$$

$$n : \text{entier}$$

A partir de l'ordre du filtre, les tables nous donnent le polynôme H(s) :

```
\begin{array}{c|c} \textbf{n} & \textbf{B}_{\textbf{n}}(\textbf{s}) \\ 1 \text{ s+1} \\ 2 \text{ s}^2 + 1,414\text{ s+1} \\ 3 \text{ (s+1)(s}^2 + \text{s+1)} \\ 4 \text{ (s}^2 + 0,7654\text{ s+1)(s}^2 + 1,8478\text{ s+1)} \\ 5 \text{ (s+1)(s}^2 + 0,6180\text{ s+1)(s}^2 + 1,6180\text{ s+1)} \\ 6 \text{ (s}^2 + 0,5176\text{ s+1)(s}^2 + 1,414\text{ s+1)(s}^2 + 1,9318\text{ s+1)} \\ 7 \text{ (s+1)(s}^2 + 0,4450\text{ s+1)(s}^2 + 1,247\text{ s+1)(s}^2 + 1,8022\text{ s+1)} \\ 8 \text{ (s}^2 + 0,3986\text{ s+1)(s}^2 + 1,111\text{ s+1)(s}^2 + 1,6630\text{ s+1)(s}^2 + 1,9622\text{ s+1)} \end{array}
```

Avec
$$H(s) = 1/B_n(s)$$

Le filtre de Tchebychev

Deux types de filtres de Tchebychev :

•
$$|H(f)|^2 = \frac{1}{1+\epsilon^2 T_n^2(2\pi f)}$$

Minimise les oscillations en bande atténuée

$$\bullet |H(f)|^2 = \frac{\frac{\epsilon}{1-\epsilon} T_n^2(\frac{1}{2\pi f})}{1 + \frac{\epsilon}{1-\epsilon} T_n^2(\frac{1}{2\pi f})}$$

Minimise les oscillations en bande passante

Dans les deux cas on définit $T_n(x)$ par :

•
$$\cos(n\cos^{-1}(x))$$
 si $x < 1$

•
$$\cosh(n \cosh^{-1}(x)) \text{ si } x > 1$$

•
$$T_n(1) = 1$$

Le filtre de Tchebychev

Propriétés des filtres de Tchebytchev I

- Ondulation dans la bande passante réglée par ε
- Pas d'ondulation en bande rejetée
- Raideur de coupure importante
- Meilleure atténuation que butterworth

Propriétés des filtres de Tchebytchev II

- Ondulation dans la bande rejetée réglée par «
- Pas d'ondulation en bande passante

Comme pour Butterworth, on détermine l'ordre, ε et H(s) à partir du gabarit et de tables

Le filtre de Tchebychev

$$n \ge \frac{\cosh^{-1} \sqrt{\frac{(10^{-0.1b} - 1)}{\varepsilon^2}}}{\cosh^{-1} \left(\frac{f_s}{f_c}\right)}$$

$$\varepsilon = \sqrt{10^{-\frac{a}{10}} - 1}$$

A partir de n et \mathcal{E} , on déduit H(s) en utilisant les tables :

	n	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	G9	Q10	Q11
Ondulation 0,5 dB	- 1	0,6986	1									
	2	1,4029	0,7071	1,9841	1	1						
	3	1,5963	1,0967	1,5963	1	1						
	4	1,6703	1,1926	2,3661	0,8419	1,9841	1					
	5	1,7058	1,2296	2,5408	1,2296	1,7058	1	1				
	6	1,7254	1,2479	2,6064	1,3137	2,4758	0,8696	1,9841	1	1		
	7	1,7372	1,2583	2,6381	1,3444	2,6381	1,2583	1,7372	1	1	1	
	8	1,7451	1.2647	2.6564	1,359	2,6964	1,3389	2,5093	0.8796	1,9841	T	
	9	1,7504	1,269	2,6678	1,3673	2,7239	1,3673	2,6678	1,269	1,7504	1	1
	10	1,7543	1,2721	2,6754	1;3725	2,7392	1,3806	2,7231	1,3485	2,5239	0,8842	1,9841
Ondulation 1,0 dB	1	1,0177	1									
	2	1.8219	0.685	2.6599	1							
	3	2,0236	0,9941	2,0236	1							
	4	2,0991	1,0644	2,8311	0,7892	2,6599	1					
	5	2,1349	1,0911	3,0009	1,0911	2,1349	1	1				
	6	2,1546	1,1041	3,0634	1,1518	2,9367	0,8101	2,6599	1	1	1	
	7	2,1664	1,1116	3,0934	1,1736	3,0934	1,1116	2,1664	1	1	1	
	8	2,1744	1,1161	3,1107	1,1839	3,1488	1,1696	2,9685	0,8175	2,6599	1	
	9	2,1797	1,1192	3,1215	1,1897	3,1747	1,1897	3,1215	1,1192	2,1797	1	
	10	2.1836	1,1213	3,1286	1,1933	3,189	1,199	3,1738	1,1763	2,9824	0.821	2,6599

Filtres de Cauer ou filtres elliptiques

$$\left|H(f)\right|^2 = \frac{1}{1+\varepsilon^2 R_n^2 (2\pi f)}$$

- Optimaux en terme de bande de transition
- Ondulations en bande passante et atténuée

0

0.2 0.4

0.4 Finalement, on choisit son filtre en fonction des besoins : ondulations, raideur

0.2

0

0.8

0.6 0.8

Comparatif

Construction d'autres filtres

□ Changement de variables	□ Filtre associé
$f' \leftrightarrow \frac{f}{f_o}$	$lacktriangle$ passe-bas f_c = f_o
$f' \leftrightarrow \frac{f_o}{f}$	• passe-haut f_c = f_o
$f' \leftrightarrow \frac{f_o}{B} \cdot \left(\frac{f}{f_o}\right)^2 + I \frac{f}{f_o}$	• passe bande $ f_o = \sqrt{f_1 f_2} $ $B = f_2 - f_1 $
$f' \leftrightarrow \frac{B}{f_o} \cdot \frac{\frac{f}{f_o}}{\left(\frac{f}{f_o}\right)^2 + I}$	$f_o = \sqrt{f_1 f_2}$