On the problem of taking ...

32017 S/587/60/029/002/004/008 D203/D302

b)
$$\frac{M_{1is}}{M_{1isB}} = \left[sin^2 \alpha_{1B} + \frac{cos^2 \alpha_{1B}}{\frac{2\phi^2}{r_B^{K_T}}} \right]^{\frac{1}{2}}$$
 (10)

c)
$$\frac{c_{1z}}{c_{1zB}} = \frac{c_{1u} r}{c_{1uB}r_{B}} = \left[\sin^{2}\alpha_{1B} + \frac{\cos^{2}\alpha_{1B}}{r_{B}^{2}}\right] \left(\frac{c^{2}}{k_{T}} - 1\right) \cdot \frac{1}{2}$$
(11)

The variation of the outlet angle for these cases is compared graphically for $\alpha_{1B}=20^{\circ}; \varphi=0.96$ and K = 1.33. The discrepancy in the

Card 3/5

32017 S/587/60/029/002/004/008 D203/D302

On the problem of taking ...

value of $\rm M_1$ is at $\rm r_B$ = 2 and is highest for case (a). It amounts to 9% and results in 5 to 6% loss of reaction. A comparison of flow with losses to the ideal flow is made in

$$\sin \alpha_1 = \frac{K_T}{\varphi} \sin \alpha_{1is}$$

Thus, knowing $\operatorname{angle} Q_1$ for the ideal flow, $\operatorname{angle} Q_1$ for the flow with losses can be found. To find the variation of velocity in the clearance it is then sufficient to solve Eq. (4). A similar problem arises when a blade is designed with angles different from the theoretical ones. The solution of Eq. (4) is then reduced to finding

$$F(x) = \int_{a}^{x} f(x) dx$$

Card 4/5

On the problem of taking

32017 \$/587/60/029/002/004/008 D203/D302

with f(x) given in tabular or graphical form. This method enables radial variations of φ and K_T to be taken into account without extra complication. The effect of nozzle losses on the flow parameters in the clearance is also given graphically for $\alpha_{1B}=20^\circ$, $\varphi=0.96$ and K=1.33. There are 5 figures and 6 references: 5 Soviet-bloc and 1 non-Soviet-bloc.

Y

Card 5/5

S/096/61/000/004/003/007 E194/E255

AUTHORS:

Fedorov, M. F., Candidate of Technical Sciences and

Garkusha, A. V., Engineer

TITLE:

The Influence of Guide Blade Width on the Character-

istics of Turbine Stages

PERIODICAL:

Teploenergetika, 1961, No. 4, pp. 37-41

TEXT: Diaphragms with narrow guide vanes are widely used in turbines although little work has been published to confirm their advantages. The possibility of improving the turbine efficiency by using this kind of diaphragm is generally based on considerations applicable to individual blades, usually without allowing for factors that alter the structure of the dynamics of the flow in the gap between the rims when the width of the guide vanes is reduced. In the Turbine Laboratory of the Khar'kov Polytechnical Institute an investigation was made of various stages having a constant ratio of mean diameter D = 475 mm to height & of guide vanes D/C = 19. The guide vanes were of three widths, B, and the length-to-breadth ratios were 0.305; 0.61 and 1.22. Profile type C-! (S-1) was used. All the guide vanes were made up with the same nominal flow area

《三河川岛出版内部第四位》

S/096/61/000/004/003/007 E194/E255

The Influence of Guide Blade Width on the Characteristics of Turbine Stages

reckoned from the dimensions of the channels between blades at the narrowest sections. Each set of guide vanes was tested with three runners of different flow area, which was achieved by altering the angle of installation of the blades and keeping their number the same. The runner blade profiles were Type T-1-25-21, the relative pitch was 0.664 and the blade height 28.5 mm. The ratio of the flow area of the runner blades to that of the nozzles for runners Nos. 1, 2 and 3 was 1.48, 1.76 and 2.04, the values being chosen to obtain positive, mixed and negative stage reaction over the height of the blades. The tests were made on an air turbine illustrated schematically in Fig. 1. The discs contained no pressure-equalizing apertures. Further details are given about the experimental conditions. Fig. 2 is a typical curve of test results of stage efficiency (allowing the discharge velocity energy to be dissipated). The efficiency is plotted against the velocity ratio for runner No. 1 with three different sets of guide vanes whose length-to-breadth ratios were 1 = 1.22; 2 = 0.61; and 3 = 0.305. It is Card 2/5

S/096/61/000/004/003/007 E194/E255

The Influence of Guide Blade Width on the Characteristics of Turbine Stages

seen that as the blade width is reduced the efficiency is increased, but the amount of increase depends on the blade breadth and on the velocity ratio. The increase in efficiency that results from making the blades narrower also depends very much on the values of the clearance. Wheel No. 2 which has a greater ratio of area of runner blade to that of nozzle blade. In this wheel there is zero reaction at the mean section only when the guide vanes are relatively broad. As the breadth was reduced, the degree of reaction became negative over the whole height of the blade. a runner of this kind it should be borne in mind that with broad and medium blades the stage works with leaks under the shrouding, and if the blade is narrow air may be drawn into the gap between the rims from the space beyond the wheel at the blade periphery. In the case of runner No. 3 the relative areas of runner blades and nozzles were such that the runner always worked with negative reaction over the blade height. In this case the efficiency with wide blades is higher than for runner No. 2 and there are indications that the use of still more negative reaction would invert Card 3/5

S/096/61/000/004/003/007 E194/E255

The Influence of Guide Blade Width on the Characteristics of Turbine Stages

the previous influence of blade width on stage efficiency. The results of the efficiency investigations show that for a stage with small positive reaction at the blade roots the nozzle blade length-to-breadth ratio should be increased to 0.6-0.8. The efficiency is thereby raised by 1.5-2% and reaches its highest value. If the reaction is mixed over the height of the blade narrower blades may be used. The test results also show that whilst on transition from wide to narrow blades the reaction at the periphery diminishes considerably, that at the blade roots alters comparatively little. Thus, the main cause of the change in reaction at the periphery is the influence of the breadth on the radial pressure gradient. There are 9 figures and 4 Soviet references.

ASSOCIATION: Khar'kovskiy politekhnicheskiy institut

(Khar'kov Polytechnical Institute)

Card 4/5

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R000514320019-6

1,1976 \$/262/62,'000/017/001/003 1007/1207

AUTHORS:

Fedorov, M.F., and Garkusha, A.V.

TITLE:

Investigation of the flow pattern in the gap between the blade rows, and energy losses in the turbine stage nozzles at varying chord sizes of

stator blades

PERIODICAL:

Referativny whurnal, otdel'nyy vypusk. 42. Silovyye

ustanovki, no. 17, 1962, 23, abstract 4217161

("Tr. Khar'kovsk. politekhn. in-ta" 1961, 180-191)

TEXT: Investigations were carried out on a single stage air-turbine with a rotor diameter D_{mean} 475 mm, nogzle blade length 1 = 25 mm and with the following stage parameters: 1/b = 1.2; 1.22; 0.61 and 0.305; t/b = 0.758; $x_1 = 11^{\circ}$ 31; $F_{b1}/F_{noz} = 1.48$ and 1.78 with $M_{cs} = 0.36$ and $Re = bc_1/y = 5.8$; 2.9 and 1.45. 105. Here Card 1/5

\$/262/62/000/017/001/003 1007/1207

Investigation of the flow pattern...

b and t = chord and pitch of stator blades; $\[\times_1 \] = flow divergence-angle; F = area of blade and nozzle opening cross-section. The magnitude <math>\[\times_3 \] = \[\times_3 \] b$ of the closed section of the gap between the blade rows, was also changed during the investigations. The profile of nozzle (stator) blades was C-1, of rotor blades T-1-25-21. The ratio u/c_0 (peripheral to isentropic velocity) corresponded to the maximum stage-efficiency. As shown by the investigation results, the static pressure p_1 at the external radius of each chord, somewhat increases with the increase of $\{3, \dots, T\}$ the curves $\{4, \dots, T\}$ and $\{6, \dots, T\}$ calculated according to the actual values of $\{6, \dots, T\}$ and $\{6, \dots, T\}$ the pressure gradient, measured along the radius increases with the chord size, and with 1/b = 0.305 approaches

Card 2/5

S/262/62/000/017/001/003 I007/I207

Investigation of the flow pattern...

between the predicted and measured values of the pressure gradient may be explained by the appearance of radial acceleration due to flow twisting. The magnitude of ρ_1 at the blade root almost does not depend on the value of b. The degree of peripheric reaction in the stages with narrow stator blades is smaller than in the case of broad blades. The flow divergence angle α_1 in the flow core and at all values of 1/b, ϵ_3 and $\epsilon_{b1}/\epsilon_{noz}$ is close to $\epsilon_{b1}/\epsilon_{b1}$ which is in good agreement with data on flow about a flat cascade. At the disc periphery and with a stage with $\epsilon_{b1}/\epsilon_{b1}$, the angle $\epsilon_{b1}/\epsilon_{b1}/\epsilon_{b1}$ decreases by 2-3° whereas with a $\epsilon_{b1}/\epsilon_{b1}/\epsilon_{b1}/\epsilon_{b1}$ decreases by 1-1.5°. At a $\epsilon_{b1}/\epsilon_{b$

Card 3/5

S/262/62/000/017/001/003 I007/I207

investigation of the flow pattern...

limit the flow. The axial component C_{1Z} decreases almost over the whole blade length with the increase in \mathcal{C}_3 , and particularly sharp at all values of 1/b and \mathcal{C}_3 for cylindrical walls. Despite the favorable cascade geometry for the stall from the stator-blade roots, the flow about them turned out to be laminar. The graphs for the square of velocity coefficient $\psi^2 = f(r)$ are asymmetrical, and almost do not depend on the degree of reaction and stage sealing. The normale efficiency \mathcal{C}_3 calculated with due account of the discharge velocity component, decreases with the increase in \mathcal{C}_3 , the more, the greater is the chord size. With $\mathcal{C}_3 = 0.05$, and 1/b = 1.22 the normale efficiency is smaller by 4.5% than the cascade efficiency, and with a 1/b ratio = 0.305 it is smaller by 3%. The function \mathcal{C}_3 = f(b/1) has a maximum at

Card 4/5

S/262/62/000/017/001/003 I007/I207

Investigation of the flow pattern ...

b/l = 1.5 for δ_3 = 0.05 to 0.10. With the increase in ϵ_3 the magnitude of the maximum $g_{\sigma V}^2$ drops and shifts toward smaller values of b/l. The decrease of the chord size does not lead to a continuous increase of the norgle efficiency. The chord size of stator blades affects the stage efficiency by reducing the norgle efficiency and the degree of peripheric reaction. There are 9 figures and 5 references.

Abstracter's note: Complete translation.

Card 5/5

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R000514320019-6"

Gard 1/3

s/124/62/000/008/014/030 1006/1242

The flow structure in inter-ring....

over, the absolute value of losses in ring-cascados is remarkably higher than in straight cascades. The authors see the main reason for these differences in the fact that in experiments with straight cascades the boundary layer at the intake is cut out with the aid of plates. This procedure, natura-11y did not take place in the stage test. Heasurement of flow parameters inter-ring clearance has shown that the static pressure on the periphery decreases for narrow guide vanes, and the measured pressure gradient in radial direction does not correspond to the value determined by numerical integration of the differential equation of radial equilibrium which takes into account the actual variation of peripheral velocity component and the density along the radius but neglects radial velocities. The construction of meridional streamlines has shown that with narrow blades a considerable deflection of streamlines towards the root section takes place. This permits equalization of the pressure gradient along the radius and a decrease of the degree of

Card 2/3

S/114/63/000/004/002/005 A004/A127

AUTHORS:

Shnee, Ya.I., Doctor of Technical Sciences, Federov, M.F., Candidate of Technical Sciences, Garkusha, A.V., Engineer

TITLE:

Selecting the closed axial clearance in the bandaged turbine

stage

Energomashinostroyeniye, no. 4, 1963, 18 - 22 PERIODICAL:

TEXT: The authors present a generalized analysis on the various factors to be considered in the closed axial clearance in bandaged turbine stages, based on tests with an experimental air turbine at the KhPI laboratory and on the generalized test results of some other organizations. Nine stages with bandaged runners with different guide blade extensions were tested. A detailed table of the main design and test data of the XTIM (KhPI) ENTM (BITM) and UKTN (TSKTI) turbine stages is given. The authors present recommendations on the optimum clearance and state that, based on investigations carried out, it can be said that for stages with a small relative extension of the guide blades it is expedient, from the efficiency of the stages viewpoint, to choose minimum closed clearances. There are 5 figs, 1 table. Card 1/1

APPERCATION UN	(f)/EPR/T-2/EMP(bb)-2			-
ACCESSION NR: AF	014 00 307	/64/000/011/0031/0034		
AUTHOR: Garkusha late of technical	A. Y. (Candidate of technical sciences)	; Fedorov, M. F. (Candi		
CITLE: Comparisi of variation of t	on of the efficiency of a turbine stage whe top overlap			
OURCE: Teploene	rgetika, no. 11, 1964, 31-34			
OPIC TAGS: turb	ine stage, turbine design 23			
WOOLRFOLD OF THE	basis of experimental data obtained in Kharkov Polytechnic Institute from mode use of the ratio of the pass-through are	l stages with		
o the area of th	IC DUSTINE THE WITTH A PROPERTY WAS A A P.	Alexander and a second	19	
o the area of the liameter to the homerison of thr	eight of the baldes (D _{CP} /1 ₀ = 19), there ee methods of variation of top overlap:	Alexander and a second		
o the area of the issueter to the homerison of three constant	eight of the baldes (D _{cp} /l _o = 19), there ee methods of variation of top overlap:	Alexander and a second		
o the area of th	eight of the baldes (D _{cp} /l _o = 19), there ee methods of variation of top overlap:	Alexander and a second		

L 39497-65								0
ACCESSION NR	: AP501171	8					0	
ASSOCIATION: Institute)	Khar'kov	skiy pol	itekhniche	skiy inst	itut (Khar'	kov Polit	echnical	
SUEKITTED:	00		ENCL:	00	s	IVB CODE:	PR	
NO REF SOV:	006		OTHER:	000	3	PRS		
						•		
			•					
		سپة وېنى			-			
Conf./2 ks								

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R000514320019-6

SOURCE CODE: UR/0096/66/000/009/0071/0074 (N) A26029862 ACC NR: AUTHOR: Shnee, Ya. I. (Doctor of technical sciences; Professor); Ponomarev, V. N. · (Engineer; Dissertant); Garkusha, A. V. (Candidate of technical sciences) ORG: Kharkov Polytechnical Institute im. V. I. Lenin (Kharkovskiy politekhnicheskiy institut) TITLE: On raising the efficiency of the after stages of turbines SOURCE: Teploenergetika, no. 9, 1966, 71-74 TOPIC TAGS: turbine, gas turbine, turbine nozzle, turbine nozzle assembly, nozzle assembly, conic nozzle, assembly, turbine stage ABSTRACT: An investigation of the conical stages of a turbine, including stages with a nozzle assembly of new design, shaped according to the conical surfaces is described. On the basis of the experimental results, the following conclusions were made: a) the flow stream in the nozzle assembly of the conical stage sharply differs from that in the cylindrical stage. b) As a result of sharp difference of the really streamlined sections in the peripheral zone of the nozzle assembly geometry from the geometry of reference sections designed in conformance to the coaxial cylinder surface, the flow in such stages is converging-diffusing, and in separate zones it is diffusing, which causes increased losses in the nozzle assembly. c) the reprofiling of the nozzle assembly in accordance with the conical surfaces approxi-UDC: 621.165.003.1.001.5 1/2 ··· ::

GARKUSHA, F.V., otvetstvennyy za vypusk; MAL'KOVA, N.V., tekhnicheskiy

[Standard designs for construction of automobile roads] Tipovye prockty mooruzhenii na avtomobil'nykh dorogakh. Moskva, Nauchnotekhn. izd-vo avtotranmp. lit-ry. No.7. [Reinforced concrete pipe culverts with diametrs of 0.5; 0175; 1.0; 1.25 and 1.5 m. Load: N-13 and NG-60; N-18 and NK-80] Kruglye zhelezobetonnye truby otverstiem 0.5; 0.75; 1.0; 1.25 i 1.5 m. Nagruzki N-13 i NG-60; N-18 i NK-80. 1954. 55 p. [Microfilm] (MLRA 9:7)

1. Moscow. Gosudarstvennyy institut po proyektirovaniyu i isyskaniyu avtomobilinykh dorog (Culverts)

CIA-RDP86-00513R000514320019-6

CIA-RDP86-00513R000514320019-6" APPROVED FOR RELEASE: 07/19/2001

"APPROVED FOR RELEASE: 07/19/2001 CIA-RDP8

CIA-RDP86-00513R000514320019-6

GARKUSHA, G.A.

Derivation, properties, and structure of comenic acid (5-oxy-1-pyrone-2-carboxylic). Zhur.ob.khim. 23 no.9:1578-1583 S 153. (MLRA 6:10) (Comenic acid)

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R000514320019-6"

5 (3) AUTHORS:

Garkusha, G. A., Ginsburg, A. H.

SCY/79-29-5-33/75

TITLE:

Production of Some 2,4-Dinitro-phenyl Derivatives of Lysine and of Intermediate Products of Its Synthesis (Polucheniye nekotorykh 2,4-dinitrofenil'nykh proizvodnykh lizina i

poluproduktov sinteza yego)

PERIODICAL:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 5,

pp 1554-1558 (USSR)

ABSTRACT:

At present a considerable number of 2,4-dinitro-phenyl derivatives of amino acids is synthesized, but the data published on some of them are contradictory. This holds also for the lysine derivatives (Refs 2-9). E-N-2,4-dimitrophenyl and the E-N-benzoyl derivative of lysine were obtained from the solution of the copper complex salt of lysine. For its production not the basic copper carbonate was used but the

copper nitrate which is well soluble both in water and alcohol. The removal of conner from the reaction product was carried out (in the benzoyl derivative) by hydrochloric acid

or (in the case of the dimitro-phenyl derivative) by hydrochloric acid and subsequent treatment with hydrogen

Card 1/3

Production of Some 2,4-Dinitro-phenyl Derivatives 507/79-29-5-37/75 of Lysine and of Intermediate Products of Its Synthesis

sulfide. Thus, the difficulties in the purification which had been reported by R. Porter and F. Congor (Ref d) wave evoided. $\varepsilon=\mathbb{N}-2.4$ -dimitro-phenyl lysine which is difficultly soluble in water as well as its easily soluble somechlorine hydrate were formed. The monachlorine hydrate contains no crystal water so that the melting points given by other authors (Refs 4, 5, 6) can be explained by insufficient ourity. Further, the authors prepared the following compounds: α-3-benzoyl-ε-3-2,4-dinitro-phenyl lysine by benzoylation of the above-mentioned monochlorine hydrate, and x-3-2.4-dimitrophenyl-6-H-benzoyl lysine by dinitro-phenylation of E-M-benzoyl lysine. The latter was obtained both from the copper complex salt of lysine and benzoyl chloride and likewise from &-caprolactam by a new method. Therefrom the chloride of 6-amino caproic acid can easily be formed in good yield. It is brominated with red phosphorus and bromine, and offers a good yield of g-amino-co-bromo caproic acid. Therees the dinitro-phenylation of E-amino-caproid acid meets with no difficulties the preparation of the reaction product of the dinitro-phenylation of g-amino-og-bromocaproic acid in pure

Card 2/3

Production of Some 2,4-Dinitro-phenyl Derivatives SOV/79-29-5-33/75 of Lysine and of Intermediate Products of Its Synthesis

state was difficult. In the experimental part directions are given for the formation of: (1) ε -N-benzoyl lysine, (2) chlorine hydrate of ε -amino-caproic acid, (3) ε -amino- α -bromo-caproic acid, (1) the dinitro-phenyl derivative of 2, (5) the dinitro-phenyl derivative of 3, (6) ε -N-2,4-dinitro-phenyl lysine, (7) ε -N-2,4-dinitro-phenyl- α -N-benzoyl lysine, and (8) ε -N-benzoyl- α -N-2,4-dinitro-phenyl lysine. The microanalysis of the substances was carried out by V. D. Zolotnikova. There are 10 references.

SUB AITTED:

April 27, 1958

Card 3/3

KHOMUTOV, B.I.; GARKUSHA, G.A.

Use of 2-thiobarbituric acid for the detection of oxidized lipids. Vop.med.khim. 6 no.4:431-434 J1-Ag '60. (MIRA 14:3)

1. Laboratory of the U.S.S.R. Ministry of Public Health, Moscow. (LIPIDS) (BARBITURATES)

GARKUSHA, G.A.; KHUTORNENKO, G.A.

Synthesis of 5-hydroxy- \(\gamma\) -pyrone-2-carboxylic acid and 3-hydroxy-\(\gamma\) -pyrone. Zhur. ob. khim. 31 no.1:123-126 Ja '61. (MIRA 14:1)

(Pyranone) (Pyrancarboxylic acid)

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R000514320019-6"

THE PROPERTY OF THE PROPERTY O

GARKUSHA, G.A.; KHUTORNENKO, G.A.

Hydroxy derivatives of pyrone. Part 4: Production of esters of 5-hydroxy-pyran-2-carboxylic (comenic) acid. Zhur.ob. (MIRA 14:8)

(Pyrancarboxylic acid)

A) L 11979=66

ACC NR: AP6000687

SOURCE CODE: UR/0080/65/038/009/2096/2099

AUTHOR:

Garkusha, G. A.

ORG: None

TITLE: Preparation of the 2- and 3- isomers of tertiary butyl-4-metho-xyphenols

SOURCE: Zhurnal prikladnoy khimii, v. 38, no. 9, 1965, 2-96-2099

TOPIC TAGS: organic synthetic process, phenol, alkaryl ether

ABSTRACT: The synthesis of 2- and 3-tertiery butyl-4-methoxyphenols, used as antioxidents in <u>food products</u>, was investigated. Conditions for the syntheses from isobutylene and the monomethyl ether of hydroquinone were established. The 3-isomer was obtained in 50% yield under mild conditions at 48-50° with orthophosphoric acid as the cetalyst. The 2,5-ditertiary buryl-4-methoxyphenol (A) was obtained with either phosphoric or sulfuric acid or a mixture of the two. A mixture of A and the 2-isomer was obtained when equivalent amounts of sulfuric and phosphoric acids were used, especially when the reaction temperature was reduced to below 48° by using benzene in combination with or instead of ligroin as the solvent. The experimental work was conducted with the assistance

Card 1/2

UDC: 547.562.4'261

of N. A. Ivenchenko. Orig. art. has: none.					
SUB CODE: 0	7/ SUBM DATE:	05Ju163/ ORIG	REF: 000/ 0	TH REF:	006
				•	
		•			
•					
	•		•		
Card 2/2				-	

GARKUSHA, G.A.

Derivatives of (-pyrone. Part 7: Lactan of K-(>-aminoethyl) chelidamic acid. Zhur. org. khim. 1 no. 12:2222-2225 D '65 (NIRA 19:1)

1. Submitted May 11, 1964.

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R000514320019-6"

ACHAPIN, A.F., starshiy inzh.; GARKUSHA, G.D., inzh.

The efficiency experts have improved the drives of mast-type electric cutouts. Elek. i tepl. tiaga no.6:22 Je '62. (MIRA 15:7)

1. Irkutskiy uchastok energosnabzhoniya (for Achapin). (Electric cutouts)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R000514320019-6

GAR'KUSHA, G. N.

A guide to the loco-mobile P-25 (4LPP-20), its care and servicing 2. izd. Moskva, Gos. nauch.-tekhn. izd-vo mashinostroit. lit-ry, 1948. 80 p. (50-22994)

TJ710.G3 1948

The PE-25 mobile steam-powered dynamo. Vest.mash. 33 no.9:31-33 S '53.

(Steam-power plants) (Dynamos)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R000514320019-6

GARKUSHA, G.V. [Harkusha, H.V.]

Harvesting hay in two stages. Mekh. sil' hosp. 10 no.4:31 Ap '59. (MIRA 12:6)

1.Glavnyy mekhanik sovkhoza "Peremozhets"." Zaporozhskoy oblasti. (Hay-Harvesting)

GARZUSEA, G.Z.; KHUTORNENKO, G.A.

Bornvatives of \$\filset - \text{pyrone. Part 6: Esters of \$\files - \text{pyrone.} \text{pyrone.} \text{pyrone. part 6: Esters of \$\files - \text{pyrone.} \text{pyrone.} \text{pyrone.} \text{pyrone. part 6: Esters of \$\files - \text{pyrone.} \text{pyrone.}

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R000514320019-6

L 12893-63 BDS ACCESSION NR: AP3000681

\$/0096/63/000/006/0053/0057

0

AUTHOR: Il'inskiy, I. V. (Dr. of technical sciences); Garkusha, I. D. (Engineer)

TITLE: Temperature range in an air-cooled casing of a model for a 50,000-ket

SOURCE: Teploenergetika, no. 6, 1963, 53-57

TOPIC TAGS: temperature field, gas turbine, cooled casing, computer

ARSTRACT: A half-scale model gas turbine ECT-2 designed at the Khar'kovskiy turbogeneratorny y zavod (Khar'kov Turbogenerator Plant) was used in studies of an experimental turbine GTU-50-800. The turbine EGT-2 had the following characteristics: gas temperature at front of turbine 800C; air pressure behind compressor length of turbine vane 122 mm. The temperatures at various points on the model casing were measured by thermocouples (see enclosures) and the field was calculated by computing equipment. Figure 2 (see enclosure) represents the temperature field with numbers at various points showing actual temperatures measured. It is concluded that an approximate analog of the temperature field of turbine walls may be obtained without maintaining the same value for R sub e (Reynolds number) in both

Card 1/41

GARKUSHA, I.F.; SHEMPEL', V.I., otvet. red.; MEYTIN, M.B., tekhn. red.

[Life and work of Vasilii Robertovich Vil'iems] Vasilii Robertovich Vil'iems; ego zhizn' i deiatel'nost'. Gory-Gorki, Izd-vo Belorusskoi S.Kh.Akad.BSSR, 1949. 20 p. (MIRA 14:8)

1. Chlen-korrespondent AN BSSR (for Shempel')
(Vil'iams, Vasilii Robertovich, 1863-1939)

GARKUSHA, I.F.

The Committee on Stalin Prizes (of the Council of Ministers USSR) in the fields of science and inventions announces that the following scientific works, popular scientific books, and textbooks have been submitted for competition for Stalin Prizes for the years 1952 and 1953. (Sovetskaya Kultura, Moscow, No. 22-40, 20 Feb - 3 Apr. 1954)

Name

Title of Work

Nominated by

Garkusha, I.F.

"Soil Science" (3d edition)

AND SECURITION OF THE SECURICAL

Belorussian Agricultural Academy

So: W-30604, 7 July 1954

GARKUSHA, I. F.

Soil science Pochvovedenie 4. ispr. i dop. izc. Moskva, Gos. izd-vo selkhoz, lit-ry, 1954. 423 p.

1. Soil research.
2. Soils = Russia.

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R000514320019-6"

GARKUSHA, I.F., prof.; TRIMA, N.K., otvet. za vypusk; MEYTIN, M.B., tekhn.

[Soils of the turf-Podzolic type; lectures for students of the Agronomy Department] Pochwy dernovo-podzolistogo tipa; lektsiia dlia studentov Agronomicheskogo fakul'teta. Gorki, Belorusskaia sel'khoz. akad., 1957. 55 p. (MIRA 14:10) (Podzol)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R000514320019-6

CARNISHA I F

3-3-24/40

AUTHOR:

Garkusha, I.F., Professor, Doctor of Agricultural Sciences

Rector of the Belorussian Agricultural Academy

TITLE:

Advanced Agricultural School in Italy (Vysshaya sel'sko-

khozyaystvennaya shkola Italii')

PERIODICAL:

Vestnik vysshey shkoly. March 1957, No. 3, pp. 82-83 (USSR)

ABSTRACT:

The article states that the best land, situated in the valleys, is in the hands of Italian landowners or large-scale farmers, while the poor peasants have only the ravines and slopes of the mountains, and that although machine construction is well developed, there are more work horses and oxen in use than tractors or combines. He points out the backwardness of Italy in agriculture and the want of specialists which he had observed when attending the 5th International Congress of Agricultural Education in Rome. He then speaks of this Congress at which the Soviet Delegation opposed the unification of specialities, i.e. the introduction of identical faculties in the agricultural institutions of all countries. The author then sets forth the observations he made on higher agricultural education in Italy when visiting universities in Rome, Pisa and Naples. The tiny training farm of

Card 1/2

Advanced Agricultural School in Italy

3-3-24/40

the Agricultural Faculty at Naples comprises only 50 hectares. It has only one tractor and a few trailers, but agriculture is of a high standard. The Faculty is attended by 450 students.

ASSOCIATION: Belorussian Agricultural Academy (Belorussakaya sel'skokhozyaystvennaya

akademiya)

AVAILABLE: Library of Congress

Card 2/2

GARKUSHA, I.F.

[Soils of river flood lands; lecture for students in the Department of Agronomy) Pochvy rechnykh poim. Lektsiia dlia studentov Agronomicheskogo fakul'teta. Gorki, BSSR, 1958. 20 p. (MIRA 12:11)

l.Belorusskaia ordena Trudovogo Krasnogo snameni seliskokhozisistvennaia akademiia.

(White Russia --- Alluvial lands)

GARKUSHA, I.F., prof.; TRIMA, N.K., otvet. za vypusk

[Introduction to the course in soil science] Vvedenie k kursu pochvovedeniia; lektsiia dlia studentov agronomicheskogo fakul'teta.

Gor'ki, Belorusskaia sel'khoz. akad., 1958. 32 p. (MIRA 14:10)

(Soil science—Study and teaching)

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R000514320019-6"

GORSHENIN, Konstantin Pavlovich, prof., laureat Leninskoy premii;
ALEKSANDROVA, Lyudmila Nikolayevna; ANTIPOV-KARATAYEV, Ivan
Nikolayevich; GARKUSHA, Ivan Fedoseyevich; SOBOLEV, Sergey
Stepanovich; PLESHKOV, B.I., red.; SOKOLOVA, N.N., tekhn.red.

[Soil science] Pochvovedenie. Pod obshchei red. K.P.Gorshenina. Moskva, Gos.izd-vo sel'khoz.lit-ry, 1958. 438 p. (MIRA 12:8)

GARKUSHA, I.F., akademik; TRIMA, N.K., otvet. za vypusk

[Soils of the tundra zone; lectures for students of the department of agriculture] Pochwy tundrovoi zony; lektsiia dlia studentov agronomicheskogo fakul'teta. Gorki, M-vo sel'khoz. SSSR; 1959. 12 p.

(MIRA 14:8)

1. Akademiya sel'skokhozyaystvennykh nauk BSSR (for Garkusha)

(Russia, Northern—Soils)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R000514320019-6

"APPROVED FOR RELEASE: 07/19/2001 C

CIA-RDP86-00513R000514320019-6

LOBANOV, P.; LOZA, G.; CHIZHEVSKIY, M.; VOROB'YEV, S.; VIL'YANS, V.;
SOBOLEV, S.; PAVLOV, G.; QARKUSHA, I.; FRANTSESSON, V.; MIRSHIM, A.;
PERSHINA, M.

Vladimir Petrovich Bushinskii. Zemledelie 8 no.7:94-95 Jl '60.
(MIRA 13:9)

(Bushinskii, Vladimir Petrovich, 1885-1960)

GARKUSHA, Ivan Fedoragewich, akademik; ALEKSEYEV, Yu.V., red.; BARANOVA,
L.G., tekhn. red.

[Soil science] Fochvovedenie, Leningrad, Sel'khozizdat, 1962.
(MIRA 16:1)

1. Akademiya nauk Belorusskoy SSR (for Garkusha).
(Soil science)

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R000514320019-6"

GARKUSHA, Ivan Fedoseyevich; ALEKSEYEV, Yu.V., red.; BARAHOVA,
L.G., tokhn. rod.

[Soil science and the fundamentals of geology] Pochvovedenie
s osnovami geologii. Moskva, Sel'khozizdat, 1963. 258 p.

(NIRA 16:12)

(Soil science) (Geology)

18,9000

S/126/02/013/002/001/019 E039/E135

AUTHORS:

Garkusha, I.P., and Lyubov, B.Ya.

TITLE:

Calculations on the speed of growth of spherical centres of new phases, limited by diffusion through

the interstitial region

PERIODICAL: Fizika metallov i metallovedeniye, v. 3, no.2, 1962,

161-165

TEXT: This is one of the basic problems in the theory of phase transformation limited by diffusion. Such calculations are based on the assumption of an infinite medium surrounding the centre through which the diffusion proceeds. However, in reality it appears that the diffusion region has a radius of the order of half the average distance between centres. Consequently, the growth of these centres cannot be examined independently and the problem is essentially complex. Diffusion through the interstitial regions must be taken into account. A general solution is obtained for the case when the concentration of dissolved material inside the diffusion zone satisfies the non-stationary equation of diffusion. These calculations reduce to a system of Card 1/3

Calculations on the spend of growth... 5/126/02/013/002/001/019

transcendental equations for two parameters β_1 and β_2 which define the rate of growth of the centres. The solutions of these equations are expressed graphically. As an illustration the case of spherical centres of graphite grown in a mixture of austenite and sementite, with cementite particles distributed uniformly, is examined. Growth is produced by diffusion of carbide particles and the subsequent diffusion of carbon through the interstitial spherical layer of austenite surrounding the contract the values of the growth constant calculated for stationar, and nons ationary processes are compared with known experimental data. The results based on stationary processes are ~15-20% greater than those based on non-stationary, and both exceed the experimental results by a factor of about 5. The question of the width of the diffusion cone surrounding the growth centre of a new phase is examined and calculations for the case of the growth of ferrite centres in supercooled austenite are made. solution of this problem can be used in the analysis of physicochemical processes accompanying the growth of crystals from solution. Card 2/3

Calculations on the speed of growth. $\frac{$.776/62/013/002/001/019}{E039/E135}$

There are 4 figures and 1 table.

ASSOCIATION: Dnepropetrovskiy goundarstvennyy universitet

(Dnepropetrovs, state University,

Institut metallovedeniya i fiziki me. allov

TsNIIChM

(Institute of Science of Metals and Physics of

Metals TsNIIChM)

SUBMITTED: April 21, 1961

Card 3/3

38103 \$/020/62/144/002/011/028 B104/B102

24.7000

.UTHOAD: Garkusha, T. P., Lyubov, B. Ya.

TIPLE: The mechanism of growth of a ferrite nucleus during

isothermal austenite decomposition

FARIODICAL: Akademiya nauk SSSR. Doklady, v. 144, no. 2, 1962, 318-321

TEXT: Diffusion processes accompanying the growth of ferrite nuclei, and the factors bearing on them, were studied in quantitative approximation. Such growth is considered to be similar to that of the center of a new phase during polymorphic transformation. For small nuclei, the carbon distribution in austenite can be described by a Laplace equation. The following relation is derived for the growth rate:

$$\frac{dp}{dt} = \frac{k_1 \left[\Delta F_0^{Fe} / RT - (C_0 - C_1^{P}) - 2 \text{s} V_{Fe} / RT \text{p} \right]}{\left(\Delta F_0^{Fe} / RT - 2 \text{s} V_{Fe} / RT \text{p} \right) k_1 p / D_1 + 1}$$

The carbon concentration on the surface of the ferrite nucleus is:

$$C_3 = C_1 - (1/k_1) d\rho/dl + \Delta F_0^{Fe}/RT - 2 \pi V_{Fe}/RT\rho$$
.

Card 1/2

S/020/62/144/002/011/028 B104/B102

The mechanism of growth of a ferrite ...

Here C_{ij} denotes the carbon concentration inside the ferrite nucleus, ΔF is the total change of free energy as a unit volume of a new phase is formed, and Do is the coefficient of carbon diffusion in austenite.

Calculations using these formulas reveal that the rate essentially depends at first on the transition of Fe atoms through the interface and later on the diffusion of C into the austenite volume. There are 2 figures.

AUSCOILTION: Institut metallovedeniya i fiziki metallov Tsentral'nogo nauchno-issledovatel'skogo instituta chernoy metallurgii im. I. P. Bardina (Institute of Metal Science and Physics of Metals of the Central Scientific Research Institute of Ferrous Metallurgy imeni I. P. Bardin).

> Dnepropetrovskiy gosudarstvennyy universitet im. 300-letiya vossoyedineniya Ukrainy s Rossiyev (Dnepropetrovsk State . University imeni 300 Years of Reunion of the Ukraine with

Russia)

2.

December 28, 1961, by G. V. Kurdyumov, Academician

December 25, 1961

ACCESSION NR: AP4043836

s/0020/64/157/005/1100/1102

AUTHORS: Garkusha, I. P.; Lyubov, B. Ya.

TITLE: Calculation of the diffusion-governed kinetics of dissolution of a spherical inclusion

SOURCE: AN SSSR. Doklady*, v. 157, no. 5, 1964, 1100-1102

TOPIC TAGS: dissolution, diffusion boundary layer, lead, tin, metal hydropermeability, solution kinetics

ABSTRACT: The authors analyze quantitatively the rate at which a spherical particle situated in an unbounded medium decreases in size, under the condition that the concentration on its surface remains at the equilibrium value for the given temperature, and the rate of the process is determined by diffusion in the surrounding medium. A theoretical analysis of this problem is desirable, because the rate of diffusion cannot be determined experimentally directly and must

ACCESSION NR: AP4043836

be estimated by indirect measurements. The problem is solved by expressing the diffusion equations in a form that takes into account the spherical symmetry of the problem and by expanding the unknown dimension and mass in a series in fractional powers. A numerical example for a lead sphere of approximately 0.1 mm in diameter in liquid tin yields at T = 250° a time 2 seconds for the linear dimensions to decrease by one-half, and 5 seconds for complete dissolution; for T = 320° the respective times are 0.7 and 1 second. This report presented by G. V. Kudryumov. Orig. art. has: 3 figures and 11 formulas.

ASSOCIATION: Dnepropetrovskiy gorny*y institut im. Artema (Dnepropetrovsk Mining Institute); Institut metallovedeniya i fiziki metallov Tsentral'nogo nauchno-issledovatel'skogo instituta chernoy metallurgii im. I. P. Bardina (Institute of Metal Research and Metal Physics, Central Scientific Research Institute for Ferrous Metallurgy)

Cord 2/3

ACCESSION NR: AP4043836					
SUBMITTED: 19Mar64			ENCL: 00		
SUB CODE:	MM	NR REF SOV: 004	OTHER: 003		
•	• • • • • • • • • • • • • • • • • • • •	:	`.	í	
•			·,		
:			•		
			•	1	
	•	•		,	
•	-		·		

PEASE I BOOK EXPLOITATION SOV/5894 assilvar, Michail Vasilvarioh, and Sorgey Zakharovich Gushchev aportarh is IXI variati my Explani researy dwadtaati dovyati aportarh is IXI variati my Explani researy dwadtaati dovyati aroun taxil min partial denture; aroun taxil axil axil axil axil axil axil axil	Apports From the Twenty-First (Cont.) in dam construction, cancer, internal longevity reserves, sachine diagnoss cancer, internal longevity reserves, sachine diagnoss cancers and control of the sachine by untra- sonic vibrations, mochinical heart substitutes, human body baring, sachine diagnoss, mochinical heart substitutes, name body fields smoothile, entering anothined foods internal cancer, sobiles (with readio matchers) doing intellectual work, sobiles (with readio matchers) artificial sun (electronial sobiles (since control parameter, wheeless and drystylest auto- of the feture ocean ships, friithy dosadouchts iloscow sobiles (since control parameter, wheeless and drystylest auto- of the feture ocean ships, friithy dosadouchts iloscow as of underground bars, allaste control, living on the moon, as given. There are no references, the incorviewed actentists artistics, modeles or references.	Reports From the Twenty-First (Cont.) Say/5494 Learn to Dream [A. M. Messeyanov, Academioian] THENSIONMAND AND MOST INCONTAINT TID103 THENSIONMAND THOUSE the Pature of Fatallurgy [I. P. Bardin, Academials, Vice-Fresident, AS USSN] Mines Are Breathing Their Leaf [I. 3, Gardunis, Director of Massey Mushon-Isalactoriolisity Theories of Protector of All-United Stanniffs Research Institute of Underground Gasiffs Asserted and M. A. Fodorov, Deputy Director for the States of Cost and M. A. Fodorov, Deputy Director for the States of Cost and M. A. Fodorov, Deputy Director for the States of Massey Cost.	Automatic Ctl Field (S. I. Mironov, Academician, and M. A. Astomatic Ctresponding Pinher, AS USCR] From the Sources (A. V. Tinter, Academician) Card 3/7
Wasil'yev, Raportazh sovetek From the Balantil Ed.: V. A. PURPOUT: COVERACE COVERACE EMILIACE	Reports F in dam sachin	Reports Learn to Trensfor Bardin, Wissa A. Vession	Automati Empelyu From th

GARKUSHA, I.T.

137-58-4-8252

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 4, p 274 (USSR)

AUTHORS: Bobro, Yu.G., Garkusha, I.T.

TITLE: High-manganese Cast Iron With Spheroidal Graphite (Vysoko-

margantsovistyy chugun s sharovidnym grafitom)

PERIODICAL: Tr. Khar'kovsk. politekhn. in-ta, 1957. Vol 11. pp 149-152

ABSTRACT: The results of investigations of the mechanical properties and microstructure of high-manganese iron inoculated with Mn are presented. Iron of the following % composition was investigated: C 3.1-3.4, Mn 8.0-11.25, C(sic!)1.2-1.5, P up to 0.1. Si 4.0-4.5.

Positive results were obtained only on dry sand casting. On green sand casting, Mn carbides predominate in the structure of the iron, which eliminates the possibility of machining due to high HB, which may attain 415. Inoculation made it possible to produce spheroidal graphite while retaining the austenitic and consequently nonmagnetic structure of the iron. The $\sigma_{\rm bl}$ was increased by 50 to 100% with some reduction in bending deflection

and an increase in hardness.

1. Cast iron--Mechanical properties--Effects of manganese Yu.I.

Card 1/1 2. Iron-manganese alloys--Mechanical properties

SOY/128-59-10-20/24

25(5) AUTHORS:

Garkusha, I.T., Krongauz, A.I., and Kompaniyets, B.Ya., Engineers

TITLE:

Scientific and Technical Conference on Progressive Technology of

Pattern Production

PERIODICAL:

Liteynoye proizvodstvo, 1959, Nr 10, pp 45-46 (USSR)

ABSTRACT:

In December, 1958 a conference on progressive technology of pattern production convened in Khar'kov. The conference was organized by the section for foundry production of the district scientific and technical society for machine production, together with the Khar'kovskiy sovnarkhoz (Khar'kov Sovnarkhoz). About 300 chairmen from different technical organizations of the Khar'kov district, from Moscow, Kiyev, Kramatorsk, Zhdanov, Minsk, Dnepropetrovsk, Rostov and other places were present. Lectures were given by: V.S. Sergeyev, R.L. Kharakhash'yan, G.A. Poyedintsev (KhTZ), M.S. Shapiro ("Tsentrolit" in Tbilisi), Yu.M. Buri-Burimskiy (Minsk Tractor Factory), N.P. Kamyshan, M.K. Omel'chenko, I.I. Sychev, V.G. Kaprov, P.S. Afanas'yev (NIIDrevmash), Ya.V. Lyamin, S.N. Chashchegorov, B.A. Bychkov (KhEMZ), S.Ye.Rozenfel'd, S.F. Simma (UkrGIPROMASh) and A.A. Shturman.

Card 1/1

CARKUSHA, L. K.. (Institute of technical thermal physics of Academy of Sciences of Ukrainian SSR)

"Thermodynamic diagrams of oxidizers and products of combustion, taking into account dissociation at high temperatures."

Report presented at the Section on Thermodynamics, Scientific Session, Council of Acad. Sci. Ukr SSR on High Temperature Physics, Kiev, 2-4 Apr 1963.

Reported in Teplofizika Vysokikh temperatur, No. 2, Sep-Oct 1963, p. 321, JPRS 24,651. 19 May 1964.

ALEKSFYRIKO, I.P., dots., red.; GARKUSHA, L.V., dots, red.; GURVICH, S.S., dots., red.; KOSTRYUKOVA, E.Tur, prof., doktor biol.mauk, red.; SIROTINIM, N.M., prof., red.; FROU'KUS, V.V., dots., red.; TRYGERMAN, I.I., tekhn.red.

[Philosophical problems in medicine and natural sciences] Nekotorye filosofskie voprosy meditsiny i estestvoznaniia; trudy Instituta. (MIRA 11:6)

1. Kiyev. Meditainskiy institut imeni A.A.Bogomol'tsa. 2. Direktor Kiyevakogo ordena Trudovogo Kresnogo znameni meditsinskogo instituta imeni akademika A.A.Bogomol'tsa (for Alekseyenko). 3. Deystvitel'nnyy chlen AMN SSE (for Sirotinin)

(MEDICINE-PHILOSOPHY)

(SCINICE-PHILOSOPHY)

GARKUSHA, L.V., dotsent .

Against methaphysical and idealistic distortions of the correlation of necessity and chance in biology. Nek.filos.vop.med.i est. no.2:53-68 '60. (MIRA 15:7)

l. Kafedra dialekticheskogo i istoricheskogo materializma Kiyevskogo meditsinskogo instituta imeni Bogomol'tsa. (BIOLOGY--PHILOSOPHY) (NECESSITY (PHILOSOPHY))

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R000514320019-6"

VLASYUK, P.A., akademik, otv. red.; GARKUSHA, M.A. [Harkusha, M.A.], red.; ZORIN, I.G.[Zorin, I.H.], red.; KOZIY, G.V.[Kozii,H.V.], prof., red.; KUKSIN, M.V., kand. sel'khoz.nauk, red.; CHERKASOVA, V.O., kand. sel'khoz.nauk, red.; YUKHIMCHUK, F.P. [IUkhymchuk, F.P.], kand., sel'khoz.nauk, red.; LISOVICHENKO, Ya.V.[Lisovychenko, IA.V.], red.; VIDGHYAK, A.P., tekhn. red.

[Increasing the productivity of natural forage lenads in the Ukrainian S.S.R.; transactions of the session of the Department of Agricultures of the Ukrainian Scientific Research Institute of Agriculture] Pidvyshchennia produktyvnosti pryrodnykh kormovykh uhid' Ukrains'koi RSR; pratsi naukovoi sesii Viddilennia zemlerobstva. Kyiv, Vydavnytstvo UASHN, 1960. 185 p.

1. Prezident Ukrainskoy akademii sel'skokhozyaystvennykh nauk (for Vlasyuk). 2. Sekretar Kiyevskogo oblastnogo komiteta Kommunisticheskoy Partii Ukrainy (for Garkusha). 3. Chlen-korrespondent Ukrainskoy akademii sel'skokhozyaystvennykh nauk, zamestitel' ministra sel'skogo khozyaystva USSR (for Zorin). 4. Nauchno-issledovatel'skiy institut zemledeliya i zhivotnovodstva zapadnykh rayonov USSR (for Koziy). 5. Ukrainskiy nauchno-issledovatel'skiy institut zomledeliya (for Kuksin). 6. Poltavskaya gosudarstvennaya sel'skokhozyaystvennaya issledovatel'skaya stantsiya (for Cherkasova).

(Ukraine-Pastures and meadows)

"APPROVED FOR RELEASE: 07/19/2001

CIA-RDP86-00513R000514320019-6 THE STREET WAS DESCRIBED TO SEE STREET SOV/130=59-10-15/20 Tsygankov, Ye. M. (Chief Engineer), Garkusha, M. S. 18.5000 (Senior Engineer of Furnace Laboratory) Improvement of Heating Furnace for Mobile Pipewelding AUTHORS: Nr 10, p 29 (USSR) TITLE: Stand As a result of research (conducted by Titov, N. A., Metallurg, 1959, PERIODICAL: nachkov, u. A., dolysnkov, m. S., and viadimirov,
L. M.) at Vyksa Metallurgical Plant (Vyksunskiy metal-1. m., at vykba metallurgical frame (vykbambkiy metallurgicheskiy zavod) satisfactory seams were obtained with lurgicheskiy zavod) satisfactory seams were obtained will welding-moment temperatures of 1370°C, i.e. melting welding-moment temperatures of the welding furnace was temperature of ferrous oxide. The welding furnace was temperature of the width increased to 3000 mm; redesigned: (1) hearth width increased to 3000 mm; redesigned: (2) eleven vertical EEO x 3000 mm flues installed. ABSTRACT: (2) eleven vertical 550 x 300 mm flues installed; (3) exhaust flues widened to 550 mm, facilitating gas exhaust lives widehed to DOU mun, lactificating gas escape and eliminating scale formation; (4) sagging of hearth beam prevented by installation of brick Card 1/2 **APPROVED FOR RELEASE: 07/19/2001** CIA-RDP86-00513R000514320019-6"

Improvement of Heating Furnace for Mobile Pipewelding Stand

75583 SOV/130-59-10-15/20

supports in furnace center; (5) horizontal flues connected with vertical flues and spaced at 300 mm, arranged along the entire length of the furnace for better withdrawal of coldest gas. Advantages: (1) increased production; (2) decreased percentage of rejects; (3) fuel and metal saving. Future plans: fuller utilization of hearth width, increasing length of hearth and length of heated strip. There is 1 table.

ASSOCIATION:

Vyksa Metallurgical Plant (Vyksunskiy metallurgicheskiy zavod)

Card 2/2

APPROVED FOR RELEASE: 07/19/2001 CIA-RDP86-00513R000514320019-6"

braking of mine elevators." Stalino, 1958. 17 pp with graphs (Min of Higher Education. Donets Order of Labor Red Banner Industrial Inst im N.S. Khrushchev), 150 copies (KL, 30-58, 126)

- 70 -