Факультет ПИиКТ

Сети ЭВМ и телекоммуникации

Лабораторная работа 1

Выполнил:

Студент группы Р3310

Глушков Д. С.

Санкт-Петербург 2020 год

Задачи

- Выполнить физическое и логическое кодирование исходного сообщения в соответствии с заданными методами кодирования.
- Провести сравнительный анализ рассмотренных методов кодирования и сформулировать достоинства и недостатки.
- Рассчитать частотные характеристики сигналов, используемых для передачи исходного сообщения, и требуемую полосу пропускания канала связи.
- Выбрать и обосновать наилучший метод для передачи исходного сообщения.

Исходное сообщение: Глушков Д.С.

В шестнадцатеричном коде: C3 EB F3 F8 EA EE E2 20 C4 2E D1 2E **В двоичном коде:** 11000011 11101011 11110011 11111000 11101010 11101110 11101010 00100000 11000100 00101110 11010001 00101110

Длина сообщения: 12 байт (96 бит)

Физическое кодирование

Ниже представлены результаты кодирования для первых четырех байтов при скорости передачи $C=1000~{\rm Mfut/c}$

NRZ:

Частота основной гармоники:

$$F_o = C/2 = 500 \ M\Gamma$$
ц

Нижняя и верхняя границы частот:

$$F_{_{\rm H}} = C/14 = 1000 / 14 = 71 \ M\Gamma$$
ц

$$F_{\scriptscriptstyle B}$$
 = 7 * $F_{\scriptscriptstyle O}$ = 3500 МГц

Полоса пропускания:

$$F = 3500 - 71 = 3429 M\Gamma$$
ц

Среднее значение частоты сообщения:

$$F_{cp} = (3/2 + 2/4 \ + 1/6 + 1/8 + 1/10 + 1/12 + 1/14) * C \ / \ 32 = 80 \ M \Gamma \mu$$

2

RZ:

Частота основной гармоники:

 $F_o = C = 1000 \ M\Gamma$ ц

Нижняя и верхняя границы частот:

 $F_{\text{H}} = C/2 = 500 \text{ M} \Gamma$ ц

 $F_{\text{в}} = 7F_{\text{o}} = 7000 \text{ M} \Gamma$ ц

Полоса пропускания:

 $F = F_{\scriptscriptstyle B} - F_{\scriptscriptstyle H} = 7000 - 500 = 6500 \ M\Gamma$ ц

Среднее значение частоты сообщения:

 $F_{cp} = (20 + 12/2) * C / 32 = 812,5 MГц$

Манчестерский код:

Частота основной гармоники:

 $F_o = C = 1000 M\Gamma$ ц

Нижняя и верхняя границы частот:

 $F_{\text{\tiny H}} = C/2 = 500 \ \text{M} \Gamma$ ц

 $F_{\text{в}} = 7 * F_{\text{o}} = 7000 \text{ M} \Gamma$ ц

Полоса пропускания:

 $F = F_{\scriptscriptstyle B}$ - $F_{\scriptscriptstyle H} = 7000 - 500 = 6500 \ MГц$

Среднее значение частоты сообщения:

 $F_{cp}\!=\!(20+12/2)*C\,/\,32=812,\!5\,M\Gamma$ ц

MLT3:

Частота основной гармоники:

$$F_0 = C/4 = 250 M\Gamma$$
ц

Нижняя и верхняя границы частот:

$$F_{\text{h}} = C/10 = 100 \text{ M}\Gamma$$
ц

$$F_{\scriptscriptstyle B} = 7 \, * \, F_{\scriptscriptstyle O} = 7000 \; M \Gamma$$
ц

Полоса пропускания:

$$F = F_{\scriptscriptstyle B}$$
 - $F_{\scriptscriptstyle H} = 7000 - 100 = 6900 \ M\Gamma$ ц

Среднее значение частоты сообщения:

$$F_{cp} = (16/2 + 2/4 + 1/6 + 4/8 + 1/10) * C / 32 = 290$$

Сравнительный анализ

	F ₀ , МГц	F _н , МГц	F _в , МГц	F, МГц	F _{ср} , МГц
NRZ	500	71	3500	3429	80
RZ	1000	500	7000	6500	812,5
MLT-3	250	100	7000	6900	290
Манчестерский код	1000	500	7000	6500	812,5

	Манчестерский	NRZ	RZ	MLT-3
	код			
Минимизация спектра	-	+	-	+
Самосинхронизация	+	ı	+	-
Постоянная составляющая	-	+	-	+
Обнаружение ошибок	+	ı	-	-
Низкая стоимость реализации	+	+	-	-

Исходное сообщение содержит длинные последовательности 0 и 1 поэтому в целях надежности передачи данных были наиболее надежные методы — RZ и манчестерский. В отличие от NRZ и MLT-3, они обладают такими важными свойствами как самосинхронизация, отсутствие постоянной составляющей, и возможность обнаружения ошибок. Однако у этих 2 методов есть недостаток, в отличие от остальных они не минимизируют полосу пропускания.

Логическое кодирование

В шестнадцатеричном коде: D5 79 7E D7 B2 E5 B9 CE 52 9E D2 A9 CD A6 9C

11001101 10100110 10011100 Длина сообщения: 120 бит

Избыточность: 25%

RZ:

Частота основной гармоники:

 $F_{o} = C = 1000 M \Gamma$ ц

Нижняя и верхняя границы частот:

 $F_{\text{h}} = C/2 = 500 \text{ M} \Gamma$ ц

 $F_{\text{в}} = 7F_{\text{o}} = 7000 \text{ M} \Gamma$ ц

Полоса пропускания:

 $F = F_{\text{b}} - F_{\text{h}} = 7000 - 500 = 6500 MГц$

Среднее значение частоты сообщения:

 $F_{cp} = (20 + 12/2) * C / 32 = 812,5 M\Gamma \mu$

Манчестерский код:

5

Частота основной гармоники:

 $F_o = C = 1000 M\Gamma$ ц

Нижняя и верхняя границы частот:

 $F_{\scriptscriptstyle H} = C/2 = 500 \ M\Gamma$ ц

 $F_{\text{в}} = 7 * F_{\text{o}} = 7000 \text{ M} \Gamma$ ц

Полоса пропускания:

 $F = F_{\scriptscriptstyle B}$ - $F_{\scriptscriptstyle H} = 7000 - 500 = 6500 \ M\Gamma$ ц

Среднее значение частоты сообщения:

 $F_{cp}\!=\!(20+12/2)*C\,/\,32=812,\!5~M\Gamma ц$

Так как выбранные раннее методы являются самосинхронизирующимися и не имеют постоянной составляющей, введение избыточного кодирования не дало особых преимуществ. Однако для других методов кодирования добавление избыточного кода позволяет избавиться от постоянной составляющей.

Скремблирование

Был выбран полином Bi=Ai \oplus Bi-5 \oplus Bi-7, для исключения возможности появления длинных последовательностей 0 или 1.

RZ:

Частота основной гармоники:

 $F_{o} = C = 1000 M \Gamma$ ц

Нижняя и верхняя границы частот:

 $F_{\scriptscriptstyle H} = C/2 = 500 \ \mathrm{M}\Gamma$ ц

 $F_{\scriptscriptstyle B} = 7F_{\scriptscriptstyle O} = 7000~M\Gamma$ ц

Полоса пропускания:

 $F = F_{\scriptscriptstyle B}$ - $F_{\scriptscriptstyle H} = 7000 - 500 = 6500 \ M\Gamma$ ц

Среднее значение частоты сообщения:

 F_{cp} = (20 + 12/2) * C / 32 = 812,5 МГц

Манчестерский код:

Частота основной гармоники:

 $F_o = C = 1000 M\Gamma$ ц

Нижняя и верхняя границы частот:

 $F_{\text{H}} = C/2 = 500 \text{ M} \Gamma$ ц

 $F_{\text{в}} = 7 * F_{\text{o}} = 7000 \text{ M} \Gamma$ ц

Полоса пропускания:

 $F = F_{\scriptscriptstyle B}$ - $F_{\scriptscriptstyle H} = 7000 - 500 = 6500 \ M\Gamma$ ц

Среднее значение частоты сообщения:

 $F_{cp} = (20 + 12/2) * C / 32 = 812,5 M\Gamma II$

Методы физического кодирования идентичны по своим показателям. Скремблирование привело к тому, что исходный код стал менее равномерным - (уменьшились длинные последовательности нулей или единиц), однако это никак не отразилось на характеристиках (только незначительное смещение средних частот).

Выводы

В результате выполнения лабораторной работы можно сделать вывод, что наиболее подходящим способом физического кодирования является Манчестерское кодирование. Этот способ кодирования имеет важные преимущества: самосинхронизация (не потребует дополнительной линии для сигналов синхронизации), отсутствие постоянной составляющей и возможность обнаружения ошибок. А по сравнению с RZ, реализация Манчестерского кода имеет меньшую стоимость (2 уровня сигнала, а не 3). Но, при это, манчестерский код не обладает возможностью минимизации спектра.