

fakultät für mathematik

Prof. Dr. Dimitri Kuzmin Dipl.-Math. Justus Klipstein

Numerische Mathematik für Physiker und Ingenieure

Sommersemester 2018 Übungsblatt 3 Seite 1/2

Abgabe der Aufgaben bis Donnerstag, 17.05.2018, 16:15 Uhr vor der Vorlesung (einzeln, zu zweit oder dritt) in den Briefkasten Ihrer Übungsgruppe:

Gruppe	Termin	Übungsleiter	Briefkasten
2	Montag 10:00-12:00	Korinna Rosin	107
3	Montag 12:00-14:00	Mirco Arndt	108
4	Montag 14:00-16:00	Marina Bangert	109
5	Montag 16:00-18:00	Marina Bangert	109
6	Dienstag 14:00-16:00	Justus Klipstein	108
7	Dienstag 16:00-18:00	Dr. Fatma Ibrahim	110

Die Briefkästen befinden sich im Foyer des Mathematikgebäudes. Bitte vermerken Sie unbedingt auf jeder Abgabe Ihren Namen und Ihre Übungsgruppe. Eine Abgabe der theoretischen Übungsaufgaben per E-Mail ist nicht möglich.

Abgabe der Programmieraufgaben bis Donnerstag, 17.05.2018, 24:00 Uhr digital im Moodle-Arbeitsraum der Veranstaltung. Bei Abgabe zu zweit oder dritt bitte nur einmal einreichen und im Kommentar den Namen und E-Mail Adresse des/der Koautors/Koautorin/Koautoren nennen. Sie können die Aufgaben in MATLAB bzw. OCTAVE schreiben. Bitte den "Header" als Kommentar in die Programme einfügen.

Aufgabe 3.1 (Newton-Cotes-Quadratur $\mid 4+4+2=10$ Punkte)

Ermitteln Sie approximative Werte für das Integral

$$I(f) = \int_0^1 e^x + 1 \ dx = [e^x + x]_0^1 = e + 1 - 1 = e \approx 2.718281828459046$$

- a) Verwenden Sie die geschlossenen Newton-Cotes-Formeln zu 2 und 3 Knoten. Ermitteln Sie den jeweiligen relativen Fehler.
- **b)** Verwenden Sie die offenen Newton-Cotes-Formeln zu 1 und 3 Knoten. Ermitteln Sie den jeweiligen relativen Fehler.

Der relative Fehler wurde definiert als:
$$\frac{\left|I(f)-I^{(n)}(f)\right|}{\left|I(f)\right|}.$$

c) Aus der Vorlesung ist der "Newton-Cotes-Quadraturfehler" für die Simpson-Regel bekannt. Dieser lässt sich auf einem gegebenen Intervall nach oben abschätzen. Vergleichen Sie für die Simpson-Regel den berechneten Fehler $\left|I(f)-I^{(2)}(f)\right|$ mit der oberen Schranke die sich aus dem "Newton-Cotes-Quadraturfehler" ergibt.

fakultät für mathematik

Prof. Dr. Dimitri Kuzmin Dipl.-Math. Justus Klipstein Numerische Mathematik für Physiker und Ingenieure Sommersemester 2018 Übungsblatt 3 Seite 2/2

Aufgabe 3.2 (Tansformationssatz/Substitutionsregel | 2 Punkte)

Wie transformiert sich eine auf [-1,1] gegebene Quadraturformel

$$I^{(n)}(f) = \sum_{k=0}^{n} \alpha_i f(x_i)$$

auf ein beliebiges Intervall [a, b], d.h. welche Gewichte und Knoten erhält man auf [a, b]?

Aufgabe 3.3 (2 Punkte)

Zur numerischen Berechnung des Integrals $\int_{-1}^{1} f \, dx$ wird die interpolatorische Quadraturformel

$$I^{\mathsf{num}}(f) := \frac{4}{5} \cdot f\left(-\frac{1}{2}\right) + \frac{6}{5} \cdot f\left(\frac{1}{3}\right)$$

vorgeschlagen.

- a) Zeigen Sie, dass diese Quadraturformel exakt für alle Polynome ersten Grades ist.
- **b)** Ist $I^{\text{num}}(f)$ auch exakt für alle Polynome zweiten Grades?

Programmieraufgabe 3.1 (Quadratur | 3 + 3 Punkte)

a) Implementieren Sie eine Funktion [c]=myQuadratur1D(f,w,x), welche eine beliebige abgeschlossene Quadraturformel

$$I^{(n)}(f) = \sum_{k=0}^{n} \alpha_k f(x_k)$$

zur numerischen Integration von f auf dem Intervall (a,b) realisiert. Als Übergabeparameter sollen die Funktion f, repräsentiert durch ein function_handle f, der Vektor der Quadraturgewichte $\mathbf{w}=(\alpha_0,\ldots,\alpha_n)\in\mathbb{R}^{n+1}$, sowie der Vektor der Quadraturpunkte $\mathbf{x}=(x_0,\ldots,x_n)\in\mathbb{R}^{n+1}$ übergeben werden. Abgeschlossen bedeutet für die Quadraturpunkte, dass $x_0=a$ und $x_n=b$ gelten soll.

b) Schreiben Sie eine Routine myQuadratur1DTest(), in welcher Sie Ihre Implementierung aus Teilaufgabe a) für die Funktion

$$f(x)=e^x+1\quad \text{auf }[0,1]$$

und den Quadraturformeln aus Aufgabe 3.1 a) testen.

