Методы оптимизации Сравнение моделей Марковица и Блэка-Литтермана в оптимизации инвестиционного портфеля

Спицын Николай ФПМИ

ΝΤΦΜ

19 ноября 2022 г.

Математические основы модели Марковица

Марковиц, 1952. Mean-variance analysis/MPT (modern portfolio theory)

- N ценных бумаг
- ullet r_{it} ожидаемая доходность за доллар, инвестированный в і-ю бумагу, в t
- ullet d_{it} ставка, по которой окупается i-я бумага в отношение с настоящим в t
- X_i доля, инвестированная в і-ю бумагу

Математические основы модели Марковица

Марковиц, 1952. Mean-variance analysis/MPT (modern portfolio theory)

- N ценных бумаг
- ullet r_{it} ожидаемая доходность за доллар, инвестированный в i-ю бумагу, в t
- ullet d_{it} ставка, по которой окупается i-я бумага в отношение с настоящим в t
- X_i доля, инвестированная в і-ю бумагу

Расчёт R

$$R = \sum_{t=1}^{\infty} \sum_{i=1}^{N} d_{it} r_{it} X_i = \sum_{i=1}^{N} X_i (\sum_{t=1}^{\infty} d_{it} r_{it}) = \sum_{i=1}^{N} X_i R_i,$$
 причём R_i независимо с X_i , $\sum_{i=1}^{N} X_i = 1$

V и E на диаграмме

 R_i и R считаем случайными величинами Мат ожидания у R_i : μ_i

Ковариация между R_i и R_i

 $\sigma_{ii}=
ho_{ii}\sigma_i\sigma_i$, т.е. произведение их корреляции на их стандартные отклонения

Отсюда дисперсия взвешенной суммы: $V(R) = \sum_{i=1}^N \sum_{i=1}^N \sigma_{ii} X_i X_i$ Мат ожидание: $E = \sum_{i=1}^{N} X_i \mu_i$

Зная (μ_i, σ_{ij}) мы можем строить графики

V-Е диаграмма

Модель Блэка-Литтермана

Блэк и Литтерман (БЛ далее), 1990

- N ценных бумаг
- Пусть их доходность (returns) распределена нормально: $X \sim \mathcal{N}(\mu, \Sigma)$
- ullet оценивается через экспоненциальное сглаживание (exponential smoothing)

Модель Блэка-Литтермана

Блэк и Литтерман (БЛ далее), 1990

- N ценных бумаг
- Пусть их доходность (returns) распределена нормально: $X \sim \mathcal{N}(\mu, \Sigma)$
- \bullet Σ оценивается через экспоненциальное сглаживание (exponential smoothing)

K ак оценить μ ?

Не можем знать μ точно; приходится моделировать как случайную величину, чья дисперсия отражает возможную ошибку: $\mu \sim N(\pi, \tau \Sigma)$, где π - лучшая оценка μ , а $\tau \Sigma$ отражает возможную ошибку.

Поиск π

Чтобы получить π , БЛ сформулировали следующее:

ullet Инвесторы максимизируют mean-variance trade-off: $w(Y) = \mathbb{E}(Y) - rac{\lambda}{2}\mathbb{V}$

Поиск π

Чтобы получить π , БЛ сформулировали следующее:

- ullet Инвесторы максимизируют mean-variance trade-off: $w(Y) = \mathbb{E}(Y) rac{\lambda}{2}\mathbb{V}$
- Предположим, что нет ошибки оценки: au = 0

Поиск π

Чтобы получить π , БЛ сформулировали следующее:

- ullet Инвесторы максимизируют mean-variance trade-off: $w(Y) = \mathbb{E}(Y) rac{\lambda}{2}\mathbb{V}$
- Предположим, что нет ошибки оценки: au = 0
- ullet Если оптимизация без условий, то получаем $w_\lambda = argmax_w\{w'\pi \lambda w'\Sigma w\}$, получаем $\pi = 2\overline{\lambda}\Sigma\widetilde{w}$
- ullet Наш датасет не играет особой роли в оценке π : это $shrinkage\ approach\ \kappa$ оценке рисков

Views: корректируем модель

View - некоторое предположение о состоянии рынка, которое может не согласовываться с моделью. Например, менеджер может сказать, что ценная бумага 3 поведёт себя лучше, чем ценная бумага 2, и тогда нужно будет наложить условие $X_3-X_2\geqslant 0$ Другой пример: волатильность четвёртой бумаги оценивается в 2-3 раза выше, чем у модели: $4\Sigma_{44}\leqslant Var\{_4\}\leqslant 9\Sigma_{44}$

Views: корректируем модель

View - некоторое предположение о состоянии рынка, которое может не согласовываться с моделью. Например, менеджер может сказать, что ценная бумага 3 поведёт себя лучше, чем ценная бумага 2, и тогда нужно будет наложить условие $X_3-X_2\geqslant 0$

Другой пример: волатильность четвёртой бумаги оценивается в 2-3 раза выше, чем у модели: $4\Sigma_{44}\leqslant Var\{_4\}\leqslant 9\Sigma_{44}$

Views в нашей модели

K views - это матрица $K \times N$ матрица P, чей k-й ряд отражает веса каждой ожидаемой доходности в отношении нашего вида. Чтобы отразить нашу неуверенность в точности, получим $P_{\mu} \sim N(v,\Omega)$, мета-параметры v и Ω - оценка и неуверенность в ней.

Оценим ν и Ω

• Если у нас только качественные views, то обычно считают набор v в рамках волатильности: $v_k = (P\pi)_k + \eta_k \sqrt{(P\Sigma P')_{k,k}}$, причём $\eta_k \in \{-\beta, -\alpha, \alpha, \beta\}$, которые категоризируют наши взгляды как "очень пессимистичные, пессимистичные, оптимистичные, очень оптимистичные" соответственно.

Оценим ν и Ω

• Если у нас только качественные views, то обычно считают набор v в рамках волатильности: $v_k = (P\pi)_k + \eta_k \sqrt{(P\Sigma P')_{k,k}}$, причём $\eta_k \in \{-\beta, -\alpha, \alpha, \beta\}$, которые категоризируют наши взгляды как "очень пессимистичные, пессимистичные, оптимистичные, очень оптимистичные" соответственно.

• Обычно $\alpha = 1, \beta = 2$

Оценим ν и Ω

- Если у нас только качественные views, то обычно считают набор v в рамках волатильности: $v_k = (P\pi)_k + \eta_k \sqrt{(P\Sigma P')_{k,k}}$, причём $\eta_k \in \{-\beta, -\alpha, \alpha, \beta\}$, которые категоризируют наши взгляды как "очень пессимистичные, пессимистичные, оптимистичные, очень оптимистичные" соответственно.
- Обычно $\alpha = 1, \beta = 2$
- $\Omega = \frac{1}{c} P \Sigma P'$, где $c \in (0; \infty)$ отражает наш уровень уверенности в наших взглядах. (Meucci, 2005)
- ullet Чтобы убрать порядки и величины, можно дополнить: $\Omega = rac{1}{c} diag(u) P \Sigma P' diag(u)$, $u \in (0,\infty)^K$

Какой теперь μ с учётом наших взглядов?

- ullet (Можно вывести через формулы Байеса): $\mu|_V$; $\Omega \sim \mathcal{N}(\mu_{BL}, \Sigma_{BI}^\mu)$
- Строго говоря, $\mu_{BL}=((\tau\Sigma)^{-1}+P'\Omega^{-1}P)^{-1}((\tau\Sigma)^{-1}\pi+P'\Omega^{-1}v)$ $\Sigma^{\mu}_{BL}=((\tau\Sigma)^{-1}+P'\Omega^{-1}P)^{-1}$

Какой теперь μ с учётом наших взглядов?

- ullet (Можно вывести через формулы Байеса): $\mu|_V$; $\Omega \sim \mathcal{N}(\mu_{BL}, \Sigma_{BL}^\mu)$
- Строго говоря, $\mu_{BL}=((\tau\Sigma)^{-1}+P'\Omega^{-1}P)^{-1}((\tau\Sigma)^{-1}\pi+P'\Omega^{-1}v)$ $\Sigma_{BL}^{\mu}=((\tau\Sigma)^{-1}+P'\Omega^{-1}P)^{-1}$
- Эквивалентные формулы с более простыми вычислениями: $\mu_{BL} = \pi + \tau \Sigma P' (\tau P \Sigma P' + \Omega)^{-1} (v P \pi) \\ \Sigma^{\mu}_{BL} = (1 + \tau) \Sigma \tau^2 \Sigma P' (\tau P \Sigma P' + \Omega)^{-1} P \Sigma$

Mean-Variance через модель Марковица

Блэк-Литтерман vs Марковиц

Блэк-Литтерман + views (adjusted weights)

