COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 23

SUMMARY

Last Class:

- Multivariable calculus review and gradient computation.
- Introduction to gradient descent. Motivation as a greedy algorithm.

SUMMARY

Last Class:

- Multivariable calculus review and gradient computation.
- Introduction to gradient descent. Motivation as a greedy algorithm.

This Class:

- Analysis of gradient descent for Lipschitz, convex functions.
- Extension to projected gradient descent for constrained optimization.

FUNCTION MINIMIZATION VIA GRADIENT DESCENT

Goal: Find $\vec{\theta} \in \mathbb{R}^d$ that (nearly) minimizes convex function f.

Gradient Descent Algorithm:

- Choose some initialization $\vec{\theta}^{(0)}$.
- For i = 1, ..., t 1
 - $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} \eta \nabla f(\vec{\theta}^{(i-1)})$
- Return $\hat{\theta} = \arg\min_{\vec{\theta}_1, \dots, \vec{\theta}_t} f(\vec{\theta}_i)$.

Step size η is chosen ahead of time or adapted during the algorithm. For now assume η stays the same in each iteration.

WHEN DOES GRADIENT DESCENT WORK?

Gradient Descent Update in 1D: $\theta_{i+1} = \theta_i - \eta f'(\theta_i)$, i.e., increase θ if derivative is negative and decrease θ if derivative is positive.

CONVEXITY

Definition – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex iff, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0,1]$:

$$(1-\lambda)\cdot f(ec{ heta}_1) + \lambda\cdot f(ec{ heta}_2) \geq f\left((1-\lambda)\cdot ec{ heta}_1 + \lambda\cdot ec{ heta}_2
ight)$$

CONVEXITY

Corollary: A function $f : \mathbb{R} \to \mathbb{R}$ is convex iff, for any $\theta_1, \theta_2 \in \mathbb{R}$:

"slope between
$$f(\theta_1)$$
 and $f(\theta_2)$ " $=\frac{f(\theta_2)-f(\theta_1)}{\theta_2-\theta_1}\geq f'(\theta_1)$

CONVEXITY

Corollary: A function $f : \mathbb{R} \to \mathbb{R}$ is convex iff, for any $\theta_1, \theta_2 \in \mathbb{R}$:

"slope between
$$f(\theta_1)$$
 and $f(\theta_2)$ " $=\frac{f(\theta_2)-f(\theta_1)}{\theta_2-\theta_1}\geq f'(\theta_1)$

More generally, a function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$: $f(\vec{\theta_2}) - f(\vec{\theta_1}) \ge \vec{\nabla} f(\vec{\theta_1})^T \left(\vec{\theta_2} - \vec{\theta_1}\right)$

LIPSCHITZ FUNCTIONS

Gradient Descent Update:

$$\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$$

LIPSCHITZ FUNCTIONS

Gradient Descent Update:

$$\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$$

For fast convergence, need to assume that the function is Lipschitz, i.e., size of gradient $\|\vec{\nabla} f(\vec{\theta})\|_2$ is bounded. We'll assume

$$\forall \vec{\theta_1}, \vec{\theta_2}: \quad |f(\vec{\theta_1}) - f(\vec{\theta_2})| \leq G \cdot ||\vec{\theta_1} - \vec{\theta_2}||_2$$

Gradient Descent analysis for convex, Lipschitz functions.

GD ANALYSIS — CONVEX FUNCTIONS

Assume that:

- f is convex.
- f is G Lipschitz, i.e., $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.
- $\|\vec{\theta}_1 \vec{\theta}_*\|_2 \le R$ where $\vec{\theta}_1$ is the initialization point.

Gradient Descent

- Choose some initialization $\vec{\theta}_1$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t 1
 - $\vec{\theta}_{i+1} = \vec{\theta}_i \eta \nabla f(\vec{\theta}_i)$
- Return $\hat{\theta} = \arg\min_{\vec{\theta}_1, \dots \vec{\theta}_t} f(\vec{\theta}_i)$.

Theorem: For convex *G*-Lipschitz function $f: \mathbb{R} \to \mathbb{R}$, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within *R* of θ_* , outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\theta_*) + \epsilon$.

• Substituting $\theta_{i+1} = \theta_i - \eta f'(\theta_i)$ and letting $a_i = \theta_i - \theta_*$ gives: $a_{i+1}^2 = (\theta_{i+1} - \theta_*)^2 = (a_i - \eta f'(\theta_i))^2 = a_i^2 - 2\eta f'(\theta_i)a_i + (\eta f'(\theta_i))^2$

Theorem: For convex *G*-Lipschitz function $f: \mathbb{R} \to \mathbb{R}$, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within *R* of θ_* , outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\theta_*) + \epsilon$.

• Substituting $\theta_{i+1} = \theta_i - \eta f'(\theta_i)$ and letting $a_i = \theta_i - \theta_*$ gives:

$$a_{i+1}^2 = (\theta_{i+1} - \theta_*)^2 = (a_i - \eta f'(\theta_i))^2 = a_i^2 - 2\eta f'(\theta_i)a_i + (\eta f'(\theta_i))^2$$

Rearrange and use convexity to show:

$$f(\theta_i) - f(\theta_*) \le f'(\theta_i)a_i = \frac{1}{2\eta} (a_i^2 - a_{i+1}^2) + \eta(f'(\theta_i))^2/2$$

9

Theorem: For convex *G*-Lipschitz function $f: \mathbb{R} \to \mathbb{R}$, GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within *R* of θ_* , outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\theta_*) + \epsilon$.

- Substituting $\theta_{i+1} = \theta_i \eta f'(\theta_i)$ and letting $a_i = \theta_i \theta_*$ gives: $a_{i+1}^2 = (\theta_{i+1} - \theta_*)^2 = (a_i - \eta f'(\theta_i))^2 = a_i^2 - 2\eta f'(\theta_i)a_i + (\eta f'(\theta_i))^2$
- Rearrange and use convexity to show:

$$f(\theta_i) - f(\theta_*) \leq f'(\theta_i) a_i = \frac{1}{2\eta} \left(a_i^2 - a_{i+1}^2 \right) + \eta (f'(\theta_i))^2 / 2$$

• Summing over *i* and using the fact $|f'(\theta_i)| \leq G$,

$$\frac{1}{t} \sum_{i=1}^{t} \left(f(\theta_i) - f(\theta_*) \right) \le \left(\frac{1}{2t\eta} \sum_{i=1}^{t} (a_i^2 - a_{i+1}^2) \right) + \frac{\eta G^2}{2} \le \frac{a_1^2}{2t\eta} + \frac{\eta G^2}{2}$$

9

Theorem: For convex *G*-Lipschitz function $f: \mathbb{R} \to \mathbb{R}$, GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within *R* of θ_* , outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\theta_*) + \epsilon$.

• Substituting $\theta_{i+1} = \theta_i - \eta f'(\theta_i)$ and letting $a_i = \theta_i - \theta_*$ gives:

$$a_{i+1}^2 = (\theta_{i+1} - \theta_*)^2 = (a_i - \eta f'(\theta_i))^2 = a_i^2 - 2\eta f'(\theta_i)a_i + (\eta f'(\theta_i))^2$$

Rearrange and use convexity to show:

$$f(\theta_i) - f(\theta_*) \le f'(\theta_i)a_i = \frac{1}{2\eta} (a_i^2 - a_{i+1}^2) + \eta(f'(\theta_i))^2/2$$

• Summing over i and using the fact $|f'(\theta_i)| \leq G$,

$$\frac{1}{t} \sum_{i=1}^{t} \left(f(\theta_i) - f(\theta_*) \right) \leq \left(\frac{1}{2t\eta} \sum_{i=1}^{t} (a_i^2 - a_{i+1}^2) \right) + \frac{\eta G^2}{2} \leq \frac{a_1^2}{2t\eta} + \frac{\eta G^2}{2}$$

• Using
$$a_1^2 \le R^2$$
 and $f(\hat{\theta}) - f(\theta^*) \le \frac{1}{t} \sum_{i=1}^t (f(\theta_i) - f(\theta_*))$

$$f(\hat{\theta}) \le f(\theta^*) + \frac{R^2}{2tn} + \frac{\eta G^2}{2} \le f(\theta^*) + \epsilon$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

$$\textbf{Step 1.1: } \vec{\nabla} f(\vec{\theta_i})^T (\vec{\theta_i} - \vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}.$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.1:
$$\vec{\nabla} f(\vec{\theta_i})^T (\vec{\theta_i} - \vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
. Implies Step 1 via Convexity.

Theorem: For convex *G*-Lipschitz function $f: \mathbb{R}^d \to \mathbb{R}$, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.1: $\vec{\nabla} f(\vec{\theta_i})^T (\vec{\theta_i} - \vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Implies Step 1 via Convexity. Proof of Step 1.1:

$$\|\vec{\theta}_{i+1} - \vec{\theta}_{*}\|_{2}^{2} = \|\vec{\theta}_{i} - \eta \vec{\nabla} f(\vec{\theta}_{i}) - \vec{\theta}_{*}\|_{2}^{2}$$

$$= \|\vec{\theta}_{i} - \vec{\theta}_{*}\|_{2}^{2} - 2\eta \vec{\nabla} f(\vec{\theta}_{i})^{T} (\vec{\theta}_{i} - \vec{\theta}_{*}) + \|\eta \vec{\nabla} f(\theta_{i})\|_{2}^{2}$$

using fact $||a + b||_2^2 = ||a||_2^2 + 2a^Tb + ||b||_2^2$.

Theorem: For convex *G*-Lipschitz function $f: \mathbb{R}^d \to \mathbb{R}$, GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.1: $\vec{\nabla} f(\vec{\theta_i})^T (\vec{\theta_i} - \vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Implies Step 1 via Convexity. Proof of Step 1.1:

$$\begin{split} \|\vec{\theta}_{i+1} - \vec{\theta}_*\|_2^2 &= \|\vec{\theta}_i - \eta \vec{\nabla} f(\vec{\theta}_i) - \vec{\theta}_*\|_2^2 \\ &= \|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - 2\eta \vec{\nabla} f(\vec{\theta}_i)^T (\vec{\theta}_i - \vec{\theta}_*) + \|\eta \vec{\nabla} f(\theta_i)\|_2^2 \\ \text{using fact } \|a + b\|_2^2 &= \|a\|_2^2 + 2a^Tb + \|b\|_2^2. \text{ Since } \|\eta \vec{\nabla} f(\vec{\theta}_i)\|_2^2 \leq \eta^2 G^2, \\ \vec{\nabla} f(\vec{\theta}_i)^T (\vec{\theta}_i - \vec{\theta}_*) &\leq \frac{\|\vec{\theta}_i - \vec{\theta}_*\|_2^2 - \|\vec{\theta}_{i+1} - \vec{\theta}_*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \end{split}$$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2} \Longrightarrow$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta}_i) - f(\vec{\theta}_*) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

Theorem: For convex *G*-Lipschitz function $f: \mathbb{R}^d \to \mathbb{R}$, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_*$, outputs $\hat{\theta}$ satisfying: $f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2} \Longrightarrow$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta}_i) - f(\vec{\theta}_*) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

Proof of Step 2:

$$\sum_{i=1}^{t} f(\vec{\theta}_{i}) - f(\vec{\theta}_{*}) \leq \frac{t\eta G^{2}}{2} + \frac{1}{2\eta} \sum_{i=0}^{t-1} \left(\|\vec{\theta}_{i} - \vec{\theta}_{*}\|_{2}^{2} - \|\vec{\theta}_{i+1} - \vec{\theta}_{*}\|_{2}^{2} \right)$$

$$= \frac{t\eta G^{2}}{2} + \frac{1}{2\eta} \|\vec{\theta}_{0} - \vec{\theta}_{*}\|_{2}^{2} \leq \frac{t\eta G^{2}}{2} + \frac{R^{2}}{2\eta}$$

• Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$

• Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta}_i) - f(\vec{\theta}_*) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \le \epsilon$$
.

- Step 2: $\frac{1}{t}\sum_{i=1}^{t} f(\vec{\theta_i}) f(\vec{\theta_*}) \leq \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \leq \epsilon$.
- Result follows since $\frac{1}{t} \sum_{i=1}^{t} f(\vec{\theta_i}) \ge f(\hat{\theta})$.

Often want to perform convex optimization with convex constraints.

$$\vec{ heta}^* = \operatorname*{arg\,min}_{\vec{ heta} \in \mathcal{S}} f(\vec{ heta}),$$

where S is a convex set.

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0,1]$: $(1-\lambda)\vec{\theta_1} + \lambda \cdot \vec{\theta_2} \in S$

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0,1]$: $(1-\lambda)\vec{\theta_1} + \lambda \cdot \vec{\theta_2} \in S$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} :

$$P_{\mathcal{S}}(\vec{y}) = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} - \vec{y}\|_{2}$$

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \arg\min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0,1]$: $(1-\lambda)\vec{\theta_1} + \lambda \cdot \vec{\theta_2} \in S$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} :

$$P_{\mathcal{S}}(\vec{y}) = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} - \vec{y}\|_{2}$$

• For $S = \{\vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1\}$ what is $P_S(\vec{y})$?

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \operatorname*{arg\,min} f(\vec{\theta}),$$
 $\vec{\theta} \in \mathcal{S}$

where S is a convex set.

Definition – Convex Set: A set $\mathcal{S} \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathcal{S}$ and $\lambda \in [0,1]$: $(1-\lambda)\vec{\theta_1} + \lambda \cdot \vec{\theta_2} \in \mathcal{S}$

For any convex set let $P_S(\cdot)$ denote the projection function onto S:

$$P_{\mathcal{S}}(\vec{y}) = \underset{\vec{\theta} \in \mathcal{S}}{\operatorname{arg min}} \|\vec{\theta} - \vec{y}\|_{2}$$

- For $S = \{\vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1\}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

PROJECTED GRADIENT DESCENT

Projected Gradient Descent

- Choose some initialization $\vec{\theta}_1$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t 1
 - $\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$
 - $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)}).$
- Return $\hat{\theta} = \arg\min_{\vec{\theta_i}} f(\vec{\theta_i})$.

CONVEX PROJECTIONS

Analysis of projected gradient descent is almost identifical to gradient descent analysis!

CONVEX PROJECTIONS

Analysis of projected gradient descent is almost identifical to gradient descent analysis! Just need to appeal to following geometric result:

Theorem – Projection to a convex set: For any convex set $S \subseteq \mathbb{R}^d$, $\vec{y} \in \mathbb{R}^d$, and $\vec{\theta} \in S$,

$$||P_{\mathcal{S}}(\vec{y}) - \vec{\theta}||_2 \le ||\vec{y} - \vec{\theta}||_2.$$

Theorem – Projected GD: For convex *G*-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_* = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})$, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$

Theorem – Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_* = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})$, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Theorem – Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_* = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})$, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}}^{(out)} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Theorem – Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_* = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})$, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}}^{(out)} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Theorem – Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\vec{\theta}_* = \min_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})$, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}}^{(out)} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 2:
$$\frac{1}{t}\sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \implies$$
 Theorem.