bent to Die

.

!

. .

.

;

FIG. 4A

FIG. 76

FIG. 8
DEAD RECKONING RE-SYNC

CUI DNCLUDES IT
MUSALTER ITS
DELAY VECTOR TO
ALLOW THE FARTHEST
RU'S TO SYNCHRONIZE
TO THE SAME FRAME
AS THE NEAREST RU'S
AND BROADCASTS A
MESSAGE TO ALL RU'S
INDICATING WHEN AND
BY HOW MUCH IT WILL
ALTER ITS DELAY
VECTOR

248

EACH RU RECEIVES BROADCAST AND ALTERS ITS DELAY VECTOR BY AMOUNT INSTRUCTED AT TIME CU ALTERS ITS DELAY VECTOR

250

EACH RU REINITIATES SYNCHRONIZATION PROCESS

FIG. 9
PRECURSOR EMBODIMENT

FIG. 13

FIG. 18

FIG. 18

FIG. 20

PREFERRED TRELLIS ENCODER
FIG. 42

MAPPING FOR FALL-BACK MODE - LSB'S

FIG. 29

	CODE	INPHASE	QUADHATUHE	
	0000	111	111	<u>= -1 - </u>
	0001	001	111	<u> </u>
	0010	001	001	= 1+
	0011	111	001	= -1+
	0100	011	111	= 3-
	0101	001	011	<u>= 1+3*j</u>
	0110	101	001	= -3 + j
	0111	111	101	= -1 - 3* j
	1000	011	011	=+3+3*j
	1001	101	011	= -3 + 3*j
	1010	101	101	= -3 - 3 * j
402-	1011	011	101	= 3 - 3*
403-	(1100	111	011)	= -1+3*
	1101	101	111	= -3 -]
	1110	001	101	= 1-3*j
	1111 .	011	001	=3+J

FIG. 222

70 A FIG. 23A

REAL PART OF INFO REAL PART OF INFO VECTOR PART OF RESULT VECTOR SYMBOL
$$405$$
 $\begin{bmatrix} b \\ -1 \\ -1 \\ +3 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}$
 $\begin{bmatrix} b \\ REAL \end{bmatrix}$
 $\begin{bmatrix} A \\ A \\ CODE MATRIX \end{bmatrix}$

20B FIG. 23B

1+jQ	3-j	1+j3	-3+j	-1-j3
PHASE	0	90	180	06-
LSBs y1 y0	8	01	10	11

1+j0 WHEN LSB=11	-1-j3	. .	1+j3	-3+j
1+jQ WHEN LSB=10	-3+j	-1-j3	3-j	1+j3
1+jQ WHEN LSB=01	1+j3	-3+j	-1-j3	3-j
1+jQ WHEN LSB=00	3-j	1+j3	-3+j	-1-j3
PHASE difference (2nd-1st symbol)	0	90	180	06-
MSBs y3 y2	8	9	10	

LSB & MSB FALLBACK MODE MAPPINGS FIG. 44

1514

*GZ /1516

RU PERFORMS
RANGING AND 1500
ACHIEVES FRAME
SYNCHRONIZATION

RU PERFORMS

TRAINING TO SET

THE COEFFICIENTS

OF ITS FILTERS

FOR PROPER

EQUALIZATION

1504 IDLE ? YES 1505

RU REQUESTS
BANDWIDTH FROM
CU USING ASK MOD

/ 1508

-1510

1502

CU AWARDS BANDWIDTH IN THE FORM OF ONE OR MORE TIMESLOTS ASSIGNED TO THIS RU

RU SENDS KNOWN
PREAMBLE DATA IN
ASSIGNED TIMESLOTS

ERROR FOR THIS RU FROM
PREAMBLE DATA IN ASSIGNED TS
FORES IN MEMORY
LOCATION MAPPED TO
THIS RU

AS PAYLOAD DATA FROM
THIS RU IS RELEIVED,
CU CPU LOUMS UP
PHASE FERROR FOR THIS
RU AND SENDS TO
CONTROL CIRCUITRY
FOR A ROTATIONAL
AMPLIFIER & G2 AMPL.

ROTATIONAL AMPLIFIERS
CORRECTS PHASE OF
INCOMING DATA TO
PHASE OF MASTER CLOCK
SO SAMPLING OF
RECEIVED DAYA POINTS
OCCURS AT PROPER
TIMES

F16. 27

The first construction of the state of the s

GAP ACQUISITION TIMING

FIG. 39 35

FIG. **40**

FIG. AT

FINE TUNING TO CENTER BARKER CODE

CU RANGING & CONTENTION BESORUTION
CUSTBE

FIG. 3146

CONTENTION RESOLUTION - RUUSING BINARY STACK

FIG. 33 49

FRAME DETECTOR
FRAME SYNC/KILOFRAME DETECT

FIG. 52

FIG. 53

CUENDS MESSAGE TO RU TELLING IT TO SEND EQUALIZATION DATA TO CU USING ALL 8 OF THE FIRST 8 ORTHOGONAL CYCLIC CODES AND BPSK MODULATION.

1116

1114

RU SENDS SAME TRAINING DATA TO CU ON 8 DIFFERENT CHANNELS SPREAD BY EACH OF FIRST 8 ORTHOGONAL CYCLIC CODES.

1118

CU RECEIVER RECEIVES DATA, AND FFE 765, DFE 820 AND LMS 830 PERFORM ONE INTERATION OF TAP WEIGHT (COEFFICIENT) ADJUSTMENTS.

-1120

TAP WEIGHT (COEFFICIENT)
ADJUSTMENTS CONTINUE
UNTIL CONVERGENCE WHEN
ERROR SIGNALS DROP OFF
TO NEAR ZERO.

/1122

AFTER CONVERGENCE DURING TRAINING INTERVAL, CU SENDS FINAL FFE AND DFE COEFFICIENTS TO RU.

1124

RU SETS FINAL FFE & DFE COEFFICIENTS INTO PRECODE FFE/DFE FILTER IN TRANSMITTER.

1126

CU SETS COEFFICIENTS OF FFE 765 AND DFE 820 TO ONE FOR RECEPTION OF UPSTREAM PAYLOAD DATA.

TO FIG. 45C♥

FIG. 45B

FROM FIG. 45B

DOWNSTREAM EQUALIZATION 1128

CU SENDS EQUALIZATION TRAINING DATA TO RU SIMULTANEOUSLY ON 8 CHANNELS SPREAD ON EACH CHANNEL BY ONE OF THE FIRST 8 ORTHOGONAL CYCLIC CODES MODULATED BY BPSK.

1130

RU RECEIVER RECEIVES EQUALIZATION TRAINING DATA IN MULTIPLE ITERATIONS AND USES LMS 830, FFE 765, DFE 820 AND DIFFERENCE CALCULATION CIRCUIT 832 TO CONVERGE ON PROPER FFE AND DFE TAP WEIGHT COEFFICIENTS.

1132

AFTER CONVERGENCE, CPU READS FINAL TAP WEIGHT COEFFICIENTS FOR FFE 765 AND DFE 820 AND LOADS THESE TAP WEIGHT COEFFICIENTS INTO FFE/DFE CIRCUIT 764; CPU SETS FFE 765 AND DFE 820 COEFFICIENTS TO INITIALIZATION VALUES.

FIG. 45°C

SIMPLE OU SPREAD SPECTRUM RECEIVER

FIG. 58 %

£.

=IG. 图

SYNCHRONOUS TDMA SYSTEM

<u>π</u> Ω **χ** χ ζ

OFFSET	1B ASIC	2A ASIC
(Chips)	RGSRH RGSRL	RGSRH RGSRL
0	0x0000 0x8000	0x0001 0x0000
1/2	0x0000 0xC000	0x0001 0x8000
1	0x0000 0x4000	0x0000 0x8000
-1	0x0001 0x0000	0x0002

FIG. 58

Training Algorithm

F16.59

Initial 2-Step Training Algorithm

2-STEP INITIAL EQUALIZATION TRAINING
FIG. 60

EQ Stability Check

 $Thrld_{coeff} = 7F00H$ $Thrld_{stable} = 10^{-3}$

Periodic 2-Step Training Algorithm

F16.62

Note:
$$Thrld_{amp} = TBD$$

$$Thrld_{phase} = TBD$$

ROTATIONAL AMPLIFIER CORRECTION

FIG. 63.

The second of the Agrae of the

EQ Convergence Check

Note: $Thrld_{converge} = 10^{-5}$

F16.64

F16. 65

.

F16. 66

Total Turn Around (TTA) in frames = Offset

FIG. 67

FIG. 68

Figure 3.1. Frame star propagation along the shamel-

Control message (downstream) and function (upstream) propagation in a 3 frames TTA channel

Z,

F16.70

Rigure 3社 Overall view of the CU sensing windows in a "boundless ranging" algorithm 「/ ら・フ/

F16.72