THETA:

Various Approaches for Concurrent Program Verification (Competition Contribution)

Csanád Telbisz, Levente Bajczi, Dániel Szekeres, András Vörös

- **CEGAR**: counterexample-guided abstraction refinement
 - Different abstract domains, refinement strategies

- **CEGAR**: counterexample-guided abstraction refinement
 - Different abstract domains, refinement strategies
- Concurrency:
 - Abstraction-aware Partial Order Reduction (POR)
 - On-the-fly cone-of-influence (COI)

- **CEGAR**: counterexample-guided abstraction refinement
 - Different abstract domains, refinement strategies
- Concurrency:
 - Abstraction-aware Partial Order Reduction (POR)
 - On-the-fly cone-of-influence (COI)
- Interprocedural verification
 - Stack abstraction

- **CEGAR**: counterexample-guided abstraction refinement
 - Different abstract domains, refinement strategies
- Concurrency:
 - Abstraction-aware Partial Order Reduction (POR)
 - On-the-fly cone-of-influence (COI)

See SPIN Thursday afternoon session

- Interprocedural verification
 - Stack abstraction

Bounded Model Checking (BMC) for handling concurrency

- Bounded Model Checking (BMC) for handling concurrency
- Reasoning with partial orders (happens-before relation)

- Bounded Model Checking (BMC) for handling concurrency
- Reasoning with partial orders (happens-before relation)
- Key idea:
 - Build a happens-before relation (program order + dataflow + axioms)

- Bounded Model Checking (BMC) for handling concurrency
- Reasoning with partial orders (happens-before relation)
- Key idea:
 - Build a happens-before relation (program order + dataflow + axioms)

- Bounded Model Checking (BMC) for handling concurrency
- Reasoning with partial orders (happens-before relation)
- Key idea:
 - Build a happens-before relation (program order + dataflow + axioms)

- Bounded Model Checking (BMC) for handling concurrency
- Reasoning with partial orders (happens-before relation)
- Key idea:
 - Build a happens-before relation (program order + dataflow + axioms)
 - Avoid cycles
 (exclude cycles/backtrack in the search space)

- Bounded Model Checking (BMC) for handling concurrency
- Reasoning with partial orders (happens-before relation)
- Key idea:
 - Build a happens-before relation (program order + dataflow + axioms)
 - Avoid cycles
 (exclude cycles/backtrack in the search space)

- Bounded Model Checking (BMC) for handling concurrency
- Reasoning with partial orders (happens-before relation)

- Bounded Model Checking (BMC) for handling concurrency
- Reasoning with partial orders (happens-before relation)
- Different decision procedures:
 - Refinement-based: detect cycles on full models provided by an SMT solver
 - Propagator-based: detect cycles on-the-fly in a custom SMT theory (Z3 user propagator interface via JavaSMT)

- Bounded Model Checking (BMC) for handling concurrency
- Reasoning with partial orders (happens-before relation)
- Different decision procedures:
 - Refinement-based: detect cycles on full models provided by an SMT solver
 - Propagator-based: detect cycles on-the-fly in a custom SMT theory (Z3 user propagator interface via JavaSMT)
- Automatic cycle avoidance: find&exclude cycles before starting the search space exploration

Portfolio & Results

Portfolio & Results

- Base strategy:
 - BMC first
 - If no (reliable) result: fallback on abstraction-based methods

Portfolio & Results

- Base strategy:
 - BMC first
 - If no (reliable) result: fallback on abstraction-based methods
- Solved tasks by Theta in concurrency compared to last year: (on common tasks)

