

# Códigos de Reed-Muller

Tobias Briones April 6, 2021

Universidad Nacional Autónoma de Honduras Códigos de Reed-Muller, Código Dual

### Peso par

### Proposición

 $\mathcal{RM}(m-1,m)$  consiste en todas las palabras binarias de longitud  $2^m$  de peso par. Por tanto, si r < m,  $\mathcal{RM}(r,m)$  solo contiene palabras código de peso par.

#### Prueba:

 $\mathcal{RM}(0,1)=\{00,11\}$  claramente consiste en todas las palabras binarias de longitud 2. Suponer que esto se cumple para  $\mathcal{RM}(m-2,m-1)$ . Una palabra código de  $\mathcal{RM}(m-1,m)$  tiene la forma (u,u+v)=(u,u)+(0,v) con  $u\in\mathcal{RM}(m-1,m-1)$  y  $v\in\mathcal{RM}(m-2,m-1)$ .

1

### Peso par

Ahora, (u, u) tiene peso par para cualquier u, y (0, v) tiene peso para por la hipótesis de inducción. Entonces:

$$wt((u, u + v)) = wt((u, u)) + wt((0, v)) - 2(u, u) \cdot (0, v)$$

El cual es también par. Entonces  $\mathscr{RM}(m-1,m)$  contiene solo vectores pares. ya que  $dim(\mathscr{RM}(m-1,m))=2^m-1$ , contiene a todos los vectores con peso par. Por último, si r < m, entonces  $\mathscr{RM}(r,m) \subseteq \mathscr{RM}(m-1,m)$ 

### Peso par

#### Proposición

Toda palabra código de un código lineal binario auto-ortogonal tiene peso par.

Prueba

Tenemos que  $C \subseteq C^{\perp}$  por hipótesis. Para una palabra código  $w = (a_1, a_2, ..., a_n)$ ,  $w \cdot w = 0$ . Pero  $w \cdot w = a_1^2 + a_2^2 + ... + a_n^2$  lo cual es igual al peso de w, wt(w). Entonces  $w \cdot w = 0$  en  $\mathbb{F}_2$  sii w tiene peso par.

3

#### Proposición

 $\mathcal{RM}(m-r-1,m)$  y  $\mathcal{RM}(r,m)$  son códigos duales.

Prueba:

Para m=2, ambos códigos existen solo si r=0 o 1.

Tenemos que  $\mathcal{RM}(0,2) = \{0000, 1111\}$  y  $\mathcal{RM}(1,2) = \{0000, 0101, 1010, 1111, 0011, 0110, 1001, 1100\}.$ 

Ya que todos los vectores en  $\mathcal{RM}(1,2)$  tiene peso par, entonces todo vector de  $\mathcal{RM}(0,2)$  es ortogonal a todo vector de  $\mathcal{RM}(1,2)$ . (1)

Suponer que (1) es cierto para m-1. Dadas las matrices generatrices de ambos códigos:

$$G_{r,m} = \begin{pmatrix} G_{r,m-1} & G_{r,m-1} \\ 0 & G_{r-1,m-1} \end{pmatrix}$$

$$G_{m-r-1,m} = \begin{pmatrix} G_{m-r-1,m-1} & G_{m-r-1,m-1} \\ 0 & G_{m-r-2,m-1} \end{pmatrix}$$

Las filas de la forma (a, a) son ortogonales a las de la forma (b, b).

Las filas de la forma (a, a) son ortogonales a las de la forma (0, d) por la hipótesis inductiva. Por la misma razón, las filas de la forma (0, c) son ortogonales a las de forma (b, b).

Ya que  $\mathcal{RM}(m-r-2,m-1)\subset \mathcal{RM}(m-r-1,m-1)$ , las filas de la forma (0,c) son ortogonales a las de forma (0,d).

6

Por tanto,  $\mathcal{RM}(m-r-1,m)\subset\mathcal{RM}(r,m)^{\perp}$ . Ahora:

$$dim(\mathcal{RM}(r,m)^{\perp}) = 2^{m} - \left[1 + {m \choose 1} + \dots + {m \choose r}\right]$$

$$= {m \choose r+1} + {m \choose r+2} + \dots + {m \choose m}$$

$$= {m \choose m-r-1} + {m \choose m-r-2} + \dots + 1$$

$$= dim(\mathcal{RM}(m-r-1,m))$$

Por tanto,  $\mathcal{RM}(m-r-1,m)=\mathcal{RM}(r,m)^{\perp}$ .