CS 2112 | Assignment 4 Written Problem

Parsing and Fault Injection

Charles Qian {cq38} Kelly Yu {kly24}

Proving Asymptotic Complexity

For each of the following functions, show by giving a witness that it is $O(n^2)$, or else show that it isn't $O(n^2)$ by arguing that no such witness can exist.

1. $3n^2 + 10n + 1$

We choose a witness k = 5 and $n_0 = 9$. $g(n) = n^2$.

For all
$$n \ge n_0$$
, $f(n) \le k * g(n)$:
 $f(n) = 3n^2 + 10n + 1 \le 5 * n^2$ for all $n \ge 9$.

 $2. \ 2^n$

 2^n is NOT O(n) because the function 2^n is raised to an exponent n that increases linearly, whereas function n^2 is raised to a constant exponent 2. No matter what k and n_0 we choose, 2^n will always approach ∞ faster than n^2 .

By contradiction: Say that there is a k and n_0 such that $n \geq n_0$, $f(n) \leq k * g(n)$. Then:

$$2^n \le k * n^2$$

$$n \leq \log_2(k * n^2)$$

k varies according to a non-constant, so k can never be constant.

3. $n \lg n$

We choose a witness k = 1 and $n_0 = 0$. $g(n) = n^2$.

For all
$$n \ge n_0$$
, $f(n) \le k * g(n)$:
 $f(n) = n \operatorname{lg} n \le 1 * n^2 \text{ for all } n \ge 0.$

4. $n^3/\lg n$

 $n^3/\lg n$ is NOT O(n) because $\lg n$ will always be less than n, so $n^3/\lg n$ will always be greater than n^3/n , which is equal to n^2 .

By contradiction: Say that there is a k and n_0 such that $n \geq n_0$, $f(n) \leq k * g(n)$. Then:

$$n^3/\lg n \le k * n^2$$
$$n/\lg n \le k$$

The left hand side of the equation will ultimately approach ∞ as n increases, so k is forced to vary according to this non-constant function, and k can therefore not be a constant.

5. f(n) + h(n), where each of $f(n \text{ and } h(n) \text{ are } O(n^2)$.

By definition of $O(n^2)$, we know that there is a k_1 such that:

$$f(n) \le k_1 * g(n)$$

and a k_2 such that:

$$h(n) \le k_2 * g(n)$$

Adding these two equations will produce:

$$f(n) + h(n) \le k_1 * g(n) + k_2 * g(n)$$

$$f(n) + h(n) \le (k_1 + k_2)g(n)$$

By the definition of $O(n^2)$, this means that f(n) + h(n) must also be $O(n^2)$.