MATH 307

Individual Homework 23

Read textbook pages 135 to 142, pages 126 to 128 before working on the homework problems. Show all steps to get full credits.

- 1. Let $A = \begin{pmatrix} -2 & 1 \\ -1 & 2 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$, solve Ax = b using Cramer's rule and verify your answer is correct by checking whether Ax = b is satisfied.
- 2. Let A be a $n \times n$ matrix, prove the following three statements are all equivalent:
 - (a) Ax = 0 has nontrivial solutions (solutions other than 0).
 - (b) The determinant of A is zero.
 - (c) 0 is an eigenvalue of A.
- 3. Let $A \in F^{m \times n}, m \ge n$ with $F = \mathbb{R}$ or \mathbb{C} be of full rank, prove that the normal equation $A^*Ax = A^*b$ to the least squares problem $\min \|Ax b\|_2$ has a unique solution for any $b \in F^n$.