Multiple Linear Regression III

Lecture 9

Multiple Linear Regression III

Reading: Chapter 12

STAT 8020 Statistical Methods II September 9, 2019

> Whitney Huang Clemson University

Agenda

Multiple Linear Regression III

Review: General Linear Test

> leview: Iulticollinearity

Review: General Linear Test

2 Review: Multicollinearity

Review: General Linear Test

Review: General

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- Consider a full model with k predictors and reduced model with ℓ predictors ($\ell < k$)
- Test statistic: $F^* = \frac{\text{SSE(R)} \text{SSE}(F)/(k-\ell)}{\text{SSE}(F)/(n-k-1)} \Rightarrow$ Testing H_0 that the regression coefficients for the extra variables are all zero
 - Example 1: X₁, X₂, · · · , X_{p-1} vs. intercept only ⇒ Overall F test
 - Example 2: X_j , $1 \le j \le p-1$ vs. intercept only \Rightarrow t test for β_j
 - Example 3: X_1, X_2, X_3, X_4 vs. $X_1, X_3 \Rightarrow H_0: \beta_2 = \beta_4 = 0$

```
Multiple Linear
Regression III
```

```
CLEMS N
```

Review: General Linear Test

Review: Multicollinearity

```
Analysis of Variance Table
Response: Species
         Df Sum Sa Mean Sa F value
                                   Pr(>F)
          1 145470 145470 39.1262 1.826e-06 ***
Area
Elevation
          1 65664
                   65664 17.6613 0.0003155 ***
Nearest
          1
                29
                       29 0.0079 0.9300674
          1 14280
                   14280 3.8408 0.0617324 .
Scruz
                    66406 17.8609 0.0002971 ***
Adjacent
          1 66406
Residuals 24 89231
                   3718
               0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Signif. codes:
```

> full <- lm(Species ~ Area + Elevation + Nearest + Scruz + Adjacent,</pre>

data = gala)
> anova(full)

Species Diversity on the Galapagos Islands Revisited: Reduced Model

```
Multiple Linear
Regression III
```


Linear Test

Review: Multicollinearity

```
> reduced <- lm(Species ~ Elevation + Adjacent)</pre>
```

> anova(reduced)

Analysis of Variance Table

```
Response: Species
```

```
Df Sum Sq Mean Sq F value Pr(>F)
Elevation 1 207828 207828 56.112 4.662e-08 ***
```

Adjacent 1 73251 73251 19.777 0.0001344 ***

Residuals 27 100003 3704

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- $H_0: \beta_{\texttt{Area}} = \beta_{\texttt{Nearest}} = \beta_{\texttt{Scruz}} \ \texttt{vs.}$ $H_a: \ \text{at least one of the three coefficients} \neq 0$
- $F^* = \frac{(100003 89231)/(5-2)}{89231/(30-5-1)} = 0.9657$
- P-value: P[F > 0.9657] = 0.425, where $F \sim F(3, 24)$
- > anova(reduced, full)
 Analysis of Variance Table

```
Model 1: Species ~ Elevation + Adjacent
Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent
Res.Df RSS Df Sum of Sq F Pr(>F)
```

1 27 100003 2 24 89231 3 10772 0.9657 0.425

Multicollinearity

Review: General Linear Test

Review: Multicollinearity

Multicollinearity is a phenomenon of high inter-correlations among the predictor variables

- Numerical issue \Rightarrow the matrix X^TX is nearly singular
- Statistical issue
 - β's are not well estimated
 - Spurious regression coefficient estimates
 - R² and predicted values are usually OK

Example

Review: General Linear Test

Review: Multicollinearity

Consider a two predictor model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

We can show

$$\hat{\beta}_{1|2} = \frac{\hat{\beta}_1 - \sqrt{\frac{\hat{\sigma}_Y^2}{\hat{\sigma}_{X_1}^2}} r_{X_1, X_2} r_{Y, X_2}}{1 - r_{X_1, X_2}^2},$$

where $\hat{eta}_{1|2}$ is the estimated partial regression coefficient for X_1 and \hat{eta}_1 is the estimate for eta_1 when fitting a simple linear regression model $Y \sim X_1$

An Simulated Example

Suppose the true relationship between response Y and predictors (X_1, X_2) is

$$Y = 4 + 0.8X_1 + 0.6X_2 + \varepsilon$$
,

where $\varepsilon \sim N(0,1)$ and X_1 and X_2 are positively correlated with $\rho=0.95$. Let's fit the following models:

- Model 1: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$
- Model 2: $Y = \beta_0 + \beta_1 X_1 + \varepsilon^1$
- Model 3: $Y = \beta_0 + \beta_2 X_2 + \varepsilon^2$

CLEMS#N

Review: General Linear Test

Review: Multicollinearity

Model 1 Fit

Review: General Linear Test

Review: Multicollinearity

```
Call:
```

 $lm(formula = Y \sim X1 + X2)$

Residuals:

Min 1Q Median 3Q Max -1.91369 -0.73658 0.05475 0.87080 1.55150

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.0710 0.1778 22.898 < 2e-16 *** X1 2.2429 0.7187 3.121 0.00426 **

X2 -0.8339 0.7093 -1.176 0.24997

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9569 on 27 degrees of freedom Multiple R-squared: 0.673, Adjusted R-squared: 0.6488 F-statistic: 27.78 on 2 and 27 DF. p-value: 2.798e-07

9.11

Model 2 Fit

Review: General Linear Test

Review: Multicollinearity

```
Call:
```

 $lm(formula = Y \sim X1)$

Residuals:

Min 1Q Median 3Q Max -2.09663 -0.67031 -0.07229 0.87881 1.49739

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0347 0.1763 22.888 < 2e-16 ***
X1 1.4293 0.1955 7.311 5.84e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9634 on 28 degrees of freedom Multiple R-squared: 0.6562, Adjusted R-squared: 0.644 F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839e-08

Model 3 Fit

Review:

Call:

 $lm(formula = Y \sim X2)$

Residuals:

Min 10 Median 30 Max -2.2584 -0.7398 -0.3568 0.8795 2.0826

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 3.9882 0.2014 19.80 < 2e-16 *** X2 1.2973 0.2195 5.91 2.33e-06 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 1.096 on 28 degrees of freedom Multiple R-squared: 0.555, Adjusted R-squared: 0.5391

F-statistic: 34.92 on 1 and 28 DF, p-value: 2.335e-06