# Eksamens<br/>disposition - Algebraiske Teknikker

# Søren Mulvad, rbn601

17. juni 2019

- Freivalds teknik: Matrixprodukt verificering
- Strenglighed 1: (mod p) fingerprint
- Strenglighed 2: Polynomial identitet med fast  $\boldsymbol{p}$
- Sætlighed med produkter
- Pattern Matching: Efficient Fingerprints

# Eksamensdisposition - Algebraic Techniques

# Freivalds teknik: Matrixprodukt verificering

Givet tre  $n \times n$  matricer  $\mathbf{A}, \mathbf{B}$  og  $\mathbf{C}$ , verificer da om  $\mathbf{AB} = \mathbf{C}$ . Naivt kan vi gøre det ved selv at udregne matrixproduktet, hvilket tager omkring  $O(n^{2.4})$  tid og er meget kompliceret.

Nu ønsker vi i stedet at lave en verificering om  $\mathbb{C}$  er korrekt i  $O(n^2)$  tid.

## Algoritme

Generer en tilfældig vektor  $\mathbf{r} \in \{0, 1\}^n$ . Da siger vi " $\mathbf{C} = \mathbf{A}\mathbf{B}$ " hvis  $\mathbf{Cr} = \mathbf{A}(\mathbf{Br})$ .

$$\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \times \begin{bmatrix} & \\ & \\ \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \times \begin{pmatrix} \begin{bmatrix} & \\ & & \\ & & \end{bmatrix} \times \begin{bmatrix} & \\ & & \\ \end{bmatrix} \end{pmatrix}$$

Det smarte er, at vi kan beregne produktet af en matrix og en vektor i  $O(n^2)$  tid.

## Sandsynlighed for false positive

Vi ønsker nu at kigge på sandsynligheden for en false positive (algoritmen verificerer en forkert  $\mathbf{C}$ ). Det har vi når  $\mathbf{D} = \mathbf{A}\mathbf{B} - \mathbf{C} \neq 0^{n \times n}$ , men vi samtidig i vores algoritme fik  $\mathbf{Dr} = 0^n$ .

Hvis **D** er forskellig fra 0-matricen må der findes minimum et koordinat som ikke er 0:

$$\exists i, j : D_{ij} \neq 0$$

Såfremt vektor  $\mathbf{Dr} = 0^n$ , altså at alle bits er 0, må der samtidig gælde at den i'te bit er 0:

$$(\mathbf{Dr})_i = \sum_{k \in [n]} D_{ik} r_k = 0$$

Antag **D** ikke er 0-matricen. Da beregner vi sandsynligheden for en false positive til:

$$\mathbb{P}\left[\mathbf{Cr} = \mathbf{A}(\mathbf{Br})\right] = \mathbb{P}\left[\mathbf{Dr} = 0^n\right] \tag{1}$$

$$\leq \mathbb{P}\left[ (\mathbf{Dr})_i = 0 \right] \tag{2}$$

$$= \mathbb{P}\left[\sum_{k \in [n]} \mathbf{D}_{ik} \mathbf{r}_k = 0\right] \tag{3}$$

$$= \mathbb{P}\left[\mathbf{D}_{ij}\mathbf{r}_j + \sum_{\substack{k \in [n] \\ k \neq j}} \mathbf{D}_{ik}\mathbf{r}_k = 0\right]$$
(4)

$$= \mathbb{P}\left[\mathbf{r}_{j} = -\frac{1}{\mathbf{D}_{ij}} \sum_{\substack{k \in [n]\\k \neq j}} \mathbf{D}_{ik} \mathbf{r}_{k}\right]$$

$$\tag{5}$$

$$\leq \frac{1}{2} \tag{6}$$

- I (1) har vi  $\mathbf{Cr} = \mathbf{A}(\mathbf{Br}) \iff \mathbf{Cr} (\mathbf{AB})\mathbf{r} = 0^n \iff (\mathbf{C} \mathbf{AB})\mathbf{r} = 0^n$ .
- I (2) benytter vi, at hvis **Dr** er 0-vektoren, så må alle koordinater være 0.
- I (3) benytter vi blot definition for hvordan man udregner matrix-vektor produktet.

- I (4) splitter vi summen i det ene led hvor k = j samt alle de andre.
- I (5) trækker vi vores sum fra på begge sider og dividerer herefter med  $\mathbf{D}_{ij}$ .
- I (6) benytter vi at alle indgange i  $\mathbf{r}$  er uafhængige, så vi kan antage at  $\mathbf{r}_j$  vælges til sidst. Siden det vælges uniformt fra  $\{0,1\}$  er der to unikke værdier det kan være, og højest én af dem vil opfylde ligningen i sandsynligheden.

Vi ser, at vi kan få vores fejlsandsynlighed ned på  $\leq 1/2^t$  ved at lave t uafhængige verifikationer i alt med en køretid på  $O(tn^2)$ .

# Streng-lighed 1: (mod p) fingerprint

Antag Alice har en n-bit streng  $\mathbf{a} = (a_0, \dots, a_{n-1})$  og Bob har en n-bit streng  $(b_0, \dots, b_{n-1}) = \mathbf{b}$ . De ønsker nu at tjekke  $\mathbf{a} \stackrel{?}{=} \mathbf{b}$  med høj sandsynlighed, men det skal foregå ved at sende relativt få bits (meget færre end n bits).

Lad

$$a = \sum_{i \in [n]} \mathbf{a}_i 2^i \qquad b = \sum_{i \in [n]} \mathbf{b}_i 2^i$$

Vælg et uniformt tilfældigt primtal  $p < n^2$  og tjek derefter om:

$$a \bmod p \stackrel{?}{=} b \bmod p$$

Vi ser, at det højest bruger  $2 \lg n$  bits kommunikation.

#### Analyse af sandsynlighed for false positive

Vi har en false positive (FP) når

$$a \bmod p = b \bmod p \quad | \quad a \neq b$$

Vi kan omskrive første udsagn til:

$$a \bmod p = b \bmod p \iff |a - b| \bmod p = 0$$
 (7)

$$\iff p \mid |a - b|$$
 (8)

hvor  $c = |a - b| < 2^n$ .

Vi skriver nu vores c via primtalsfaktorisering:

$$c = \prod_{i} p_i^{d_i} \qquad \text{alle } p_i \ge 2$$

Så vi kigger på hvor mange primtal  $p_i$  der optræder hvor graden  $d_i \ge 1$ . Det kan højest være  $\lg n$  fordi de alle sammen skal ganges sammen og de alle er mindst 2. F.eks.:

$$2 \cdot 3 \cdot 7^2 = \mathbb{Z} \Longrightarrow \mathbb{Z} > 2^3$$

Da må det betyde, at antal primtal  $p \mid c$  er  $\leq \lg c = n$ .

$$\mathbb{P}[\text{FP}] = \mathbb{P}[p \mid c]$$

$$\leq \frac{\#(p \mid c)}{\#(p < n^2)}$$

$$\approx \frac{n}{n^2 / \ln n^2}$$

$$= \frac{2 \ln n}{n}$$
(10)

- I (9) har vi antallet af primtal p der dividerer c ud af alle de mulige primtal  $p < n^2$  vi kunne have valgt.
- I (10) benytter vi primtalssætningen der siger, at antallet af primtal mindre end tallet x konvergerer mod  $x/\ln x$ .

## Streng-lighed 2: Polynomial identitet med fast p

Vi har igen to bitstrenge  $\mathbf{a} = (a_0, \dots, a_{n-1})$  og  $\mathbf{b} = (b_0, \dots, b_{n-1})$ . Nu definerer vi:

$$A(x) = \sum_{i \in [n]} a_i x^i \qquad B(x) = \sum_{i \in [n]} b_i x^i$$

Vi starter med deterministisk at vælge et primtal  $p \ge n^2$  og et r uniformt tilfældigt fra [p]. Derefter beregner vi:

$$A(r) \stackrel{?}{=} B(r) \pmod{p}$$

Fidusen er, at så kan vi tjekke om bitstrenge er ens ved kun at sende lidt over  $2 \lg n$  bits.

Vi får at graden af A og B er d = n - 1, og der kan derfor højest være n - 1 forskellige steder hvor de er ens. Således får vi sandsynligheden for en false positive til:

$$\mathbb{P}\left[\text{FP}\right] = \mathbb{P}\left[A(r) = B(r) \mid A \neq B\right] \le \frac{n-1}{p} \le \frac{n}{n^2} = \frac{1}{n}$$

## Sæt-lighed med produkter

Vi kan modificere en smule på ovenstående algoritme for at tjekke om to sæt er ens:

$$a = \{a_0, \dots, a_{m-1}\} \stackrel{?}{=} \{b_0, \dots, b_{m-1}\} = b$$

ved at vælge et r uniformt i en finit mængde  $\mathbb S$  og derefter beregne:

$$\prod_{i \in [m]} (r - a_i) \stackrel{?}{=} \prod_{i \in [m]} (r - b_i)$$

Fidusen er at vi finder produktet, så derved bliver rækkefølgen ligegyldig.

#### Pattern matching: Efficient Fingerprints

Givet  $a = (a_0, \ldots, a_{m-1})$  og  $b = (b_0, \ldots, b_{n-1})$  hvor  $m \le n$  ønsker vi at tjekke om der findes et j så:

$$a \stackrel{?}{=} (b_j, \dots, b_{j+m-1}) = B_j$$

Vi vælger uniformt tilfældigt et  $p < n^2$ . Herefter beregner vi så  $a \mod p$ . Derudover ønsker vi at beregne alle  $B_j \mod p$  i O(n) tid, hvilket vi både udregner i baglæns rækkefølge og hvor vi aflæser deres bitstreng baglæns.

Vi starter med naivt at udregne den  $B_{j+1}$  længst til højre i bitstrengen,  $B_{n-m}$ . Derefter beregner vi  $B_j$  baglæns:



Figur 1: Pattern Matching bitstrenge. Læg mærke til at LSB og MSB står omvendt af hvordan vi normalt ville læse det, da vi udregner det baglæns.

Vi antager at vi kender  $B_{j+1}$  Da skal vi starte med at få vores mest signifikante bit  $b_{j+m}$  væk, og herefter gange med 2 for at forskyde vores streng med 1. Derefter skal vi blot lægge bit  $b_j$  til. Til sidst skal vi køre modulus med p. Altså bliver vores formel:

$$B_j \mod p = (2(B_{j+1} - b_{j+m}2^{m-1}) + b_j) \mod p$$

Således kan vi beregne  $B_{n-m}$  i  $\mathcal{O}(m)$  tid og herefter alle de resterende  $B_j$  frem til  $B_0$  i hver  $\mathcal{O}(1)$  tid, som giver os en endelig køretid på  $\mathcal{O}(n \cdot 1 + m) = \mathcal{O}(n)$ .

(Hvis tid)

## Freivalds teknik: Polynomial identitet

Givet to polynomier  $P_1(x), P_2(x) \in \mathbb{F}[x]$  (legement af f.eks. réelle tal, primtal, etc) af grad  $\leq d$  som black boxes, bestem da  $P_1 \stackrel{?}{=} P_2$ .

Lad  $\mathbb{S} \subseteq \mathbb{F}$  være en finit mængde og vælg uniformt et  $r \in \mathbb{S}$ .

Da siger vi " $P_1 = P_2$ " hvis  $P_1(r) = P_2(r)$ . Lad  $Q = P_1 - P_2$ . Da får vi at sandsynligheden for en false positive er:

$$\mathbb{P}[P_1(r) = P_2(r) \mid P_1 \neq P_2] = \mathbb{P}[Q(r) = 0 \mid Q \neq 0] \le \frac{d}{|\mathbb{S}|}$$

Dette gælder da ligningen Q(x) = 0 højest har d løsninger x, men vi har et udfaldsrum der er |S| stort.

# Schwartz-Zippel theoremet - Multivariable polynomier

Vi kan generalisere ovenstående til casen med flere variable. Da definerer vi graden af leddet  $\alpha x_1^{d_1} x_2^{d_2} \dots x_n^{d_n}$  til at være  $d_1 + d_2 + \dots + d_n$  og den totale grad af polynomiet d til at være maksimum graden af alle dens led.

Da siger Schwartz-Zippel theoremet:

Lad polynomium  $Q(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$  have en total grad  $\leq d$ . Lad igen  $\mathbb{S} \subseteq \mathbb{F}$  være en finit mængde og vælg uniformt tilfældigt  $r_1, \ldots, r_n \in \mathbb{S}^n$ .

Da får vi en generel formel for vores unikke case før:

$$\mathbb{P}\left[Q(r_1,\ldots,r_n)=0\mid Q\neq 0\right]=\frac{d}{|\mathbb{S}|}$$

#### Induktionsbevis

Vi har allerede bevist casen når n=1. Antag  $n\geq 2$  og det holder for alle mindre n. Lad  $Q\neq 0$  og lad k>0 være den største eksponent af  $x_n$ .

Da vil der eksistere  $Q_0, \ldots, Q_k$  således at

$$Q(x_1, \dots, x_n) = \sum_{i=0}^{k} Q_i(x_1, \dots, x_{n-1}) x_n^i$$

(Det kan vi få på simpel vis ved bare at gruppere alle led der indeholder  $x_n^i$  og flytte  $x_n^i$  uden for en parentes.)

Vi har at  $Q_k \neq 0$  da k er en eksponent af  $x_n$  som indgår i Q.  $\deg(Q_k) \leq d-k$ , da  $Q_k(x_1, \ldots, x_{n-1})x_n^k$  er et led i Q, så graden af dette må være  $\leq d$  og når vi fjerner  $x_n^k$  fjerner vi k fra graden. Vær opmærksom på dette kun gælder for  $Q_k$ , ikke nødvendigvis for de andre  $Q_i$ .

Nu vælger vi uniformt tilfældigt  $r_1, \ldots, r_{n-1} \in \mathbb{S}$ . Lad  $C_i = Q_i(r_1, \ldots, r_{n-1})$ . Da  $Q_k \neq 0$  har vi pr. vores induktionsantagelse at  $\mathbb{P}\left[C_k = 0\right] \leq \frac{d-k}{|\mathbb{S}|}$ .

Hvis  $C_k \neq 0$  kan vi definere  $q(x) = \sum_{i=1}^k C_i x^i = Q(r_1, \dots, r_{n-1}, x)$ . Hvis  $q(x) \neq 0$  kan vi se det har graden k, så for uniform  $r_n \in \mathbb{S}$  får vi:

$$\mathbb{P}\left[q(r_n) = 0 \mid C_k \neq 0\right] \le \frac{k}{|\mathbb{S}|}$$

Endelig kan vi udregne:

$$\mathbb{P}[Q(r_1, \dots, r_n) = 0] \le \mathbb{P}[C_k = 0] + \mathbb{P}[q(r_n) = 0 \mid C_k \ne 0]$$
(11)

$$\leq \frac{d-k}{|\mathbb{S}|} + \frac{k}{|\mathbb{S}|} = \frac{d}{|\mathbb{S}|} \tag{12}$$

| Hermed har vi altså bevist Schwartz-Zippel Theoremet, som er en generalisering for polynomial identitet for multivariable polynomier. |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                       |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |
|                                                                                                                                       |  |