More Randomized Algorithms

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

When is Randomization Necessary?

my "bonus" lecture next week

• In the areas of online algorithms / cryptography / games / etc. when the input is hidden, we can often **prove** randomization is necessary.

• In the "standard" setting (input given upfront), whether or not randomization is necessary is a **big open problem**. Most researchers seem to believe *every* randomized algorithm can be derandomized.

 When randomization isn't necessary, it's still useful for getting simpler and/or faster-in-practice algorithms, and it provides inspiration for designing deterministic algorithms.

Tools from last time

An *indicator* random variable X has 2 possible outcomes: 0 and 1. Expected value of an indicator r.v.: E[X] = Pr[X=1].

Linearity of Expectation: For any (not necessarily independent!) random variables *Ni*:

$$\mathbb{E}\big[\sum_i N_i\big] = \sum_i \mathbb{E}[N_i].$$

Markov's Inequality: If X is a <u>non-negative</u> random variable and a>0, then $\Pr[X\geq \alpha]\leq \frac{\mathbb{E}[X]/a}{2}$.

QuickSort

QuickSort is a commonly used randomized sorting algorithm.

- Pick an array element as the "pivot".
- 2. Compare pivot to each element to partition list into two parts: elements less that pivot and elements greater than pivot.
- 3. Recurse on both parts of list.

How do you choose the **pivot**?

We will analyze a common strategy: choose uniformly at random!

Quick sort with Hungarian, folk dance

https://www.youtube.com/watch?v=3San3uKKHgg

From EECS 281 on quicksort: Time Analysis

- Cost of partitioning N elements: O(N)
- Worst case: pivot always leaves one side empty

$$-T(N) = N + T(N - 1) + T(0)$$

- -T(N) = N + T(N-1) + C [since T(0) is O(1)]
- $-T(N) \sim N^2/2 \Rightarrow O(N^2)$ [via substitution]
- Best case: pivot divides elements equally
 - -T(N) = N + T(N/2) + T(N/2)
 - T(N) = N + 2T(N/2) = N + 2(N/2) + 4(N/4) + ... + O(1)
 - $-T(N) \sim N \log N \Rightarrow O(N \log N)$ [master theorem or substitution]
- Average case: tricky We have the background for this now
 - Between $2N \log N$ and $\sim 1.39 N \log N \Rightarrow O(N \log N)$

For any input, expected running time is

Quicksort

Our goal: Prove that for any input, the expected running time of QuickSort is O(n log n).

Question: Which pairs of elements were compared during the execution of the algorithm?

ancestors and descendents

* Idea: Fix all the randomness at the beginning. Randomly assign **priorities** to each element, pick the one with smallest priority when choosing a pivot.

5	28	22	11	1	35	39	24	2	4	13	9	31	15
10	11	13	2	9	6	5	1	7	3	8	12	4	14
5	22	11	1	2	4	13	9	15	24	28	35	39	31
10	13	2	9	7	3	8	12	14		11	6	5	4
5	1	2	4	9	11	22	13	15	24	28	31	35	39
10	9	7	3	12		13	8	14				6	5
1 (2	4 (5	9	11	13	22	15	24	28	31	35	39
9	7		10	12			13	14					
1	2	4 (5	9	11	13	15	22	24	28	31	35	39

Remember, A is the *sorted* array, not the original array

Example: Sorted sequence A with priorities:

,			
i			
ø			

1	2	4	5	9	11	13	15	22	24	28	31	35	39
9	7	3	10	12	2	8	14	13	1	11	4	6	5

 Question: Can you tell if A[i] and A[j] were compared during the algorithm, just by looking at the priorities?

Compared iff A[i] or A[j] has smallest priority in suborney

Pf. => (contrapositive) A[k] has smallest priority in A[i]...A[j].

When Alfe] becomes pivot, Ali7 of AJJ go to separate subannss and never compared.

(= Only elts in Ali]...Alj] can split Ali] and Alj]. Ali] or AGJ is proof first among A(:]... AGJ. At this time they are

Our goal: Prove that for any input, the expected running time of QuickSort is O(n log n).

We'll apply the method of <u>indicator random variables</u> + <u>linearity of expectation</u> from last time

Let X be the number of comparisons made by QuickSort.

Goal: calculate E[X] (since running time of Quicksort = O(X))

Let **Xij** be an indicator r.v. for whether A[i] and A[j] are compared.

Observe that
$$X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$$
.

Let's use linearity of expectation to calculate E[X].

Let's use linearity of expectation to calculate
$$E[X]$$
.

(question from 2 slides ago will be useful)

$$E[X] = E\left[\sum_{i=1}^{n}\sum_{j=1}^{n}X_{i,j}\right]$$

$$= \sum_{i=1}^{n}\sum_{j=1}^{n}E[X_{i,j}]$$

Now for a randomized data structure...

Skip Lists

A **dictionary** is an abstract data type (ADT) that supports <u>insert</u>, <u>find</u>, and <u>delete</u> operations.

Simple implementations: linked list, array

no in-order traversal complicated bookkeeping

Faster implementations: hash tables (various types), balanced binary

search trees (AVL, red-black, etc.)

Skip lists are **simpler to implement** (no need for rotations, invariants, bookkeeping)

A **skip list** is like an embellished version of a **linked list**, with expected O(log n) search time (instead of O(n))

Discovered by William Pugh, 1989

Usages of Skip Lists

Usages [edit]

List of applications and frameworks that use skip lists:

- Apache Portable Runtime implements skip lists.^[9]
- MemSQL uses lock-free skip lists as its prime indexing structure for its database technology.
- MuQSS, for the Linux kernel, is a cpu scheduler built on skip lists. [10][11]
- Cyrus IMAP server offers a "skiplist" backend DB implementation^[12]
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time. [citation needed]
- The "QMap" key/value dictionary (up to Qt 4) template class of Qt is implemented with skip lists.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.[14]
- Discord uses skip lists to handle storing and updating the list of members in a server.^[15]
- RocksDB uses skip lists for its default Memtable implementation. [16]

Warm-up: 2-level Linked List

A linked list with an "express lane"

Worst-case running time for search?

$$O\left(l+\frac{n}{\ell}\right) \qquad l=n \qquad => l=\sqrt{n}$$

How many elements should be in the express lane?

Warm-up: 2-level Linked List

A linked list with an "express lane"

Deterministically keeping express lane roughly evenly spaced amidst insertions/deletions would require some bookkeeping...

Instead let's promote elements to the express lane randomly!

With what probability should we promote each element?

Idea of a Skip List: Add more express lanes!

(Roughly log n of them)

Put every element in **level 1**Promote about ½ of the elements to **level 2**Promote about ½ of the elements in **level 2** to **level 3**Promote about ½ of the elements in **level 3** to **level 4**

•

Skip Lists

How do we <u>insert</u> an element? (<u>delete</u> and <u>find</u> are very similar to <u>insert</u>)

Skip Lists

We will prove: For any fixed sequence of n operations (insert, delete, find), the expected running time per operation is O(log n).

Note: Our analysis will rely on the fact that the choice of operations <u>cannot respond to</u> the random choices of the algorithm.

(Imagine the sequence of operations is fixed ahead of time.)

Goal #1: Show that the expected number of levels is O(log n).

Suppose we have a skip list containing elements x1,x2...

Question 1: In expectation, how many elements are on level **i**? What tool should we use to answer this question?

Goal #1: Show that the expected number of levels is O(log n).

Fix a level i. Let X be the number of elements on level i.

Question 2: What is the probability level i has at least one element? What tool should we use to answer this question? $M \sim k \sim 1$ $Pr(\times 2a) \leq E(\times)$

Goal #1: Show that the expected number of levels is O(log n).

Question 3: In expectation, how many levels have ≥ 1 element?

Let Yk be an indicator that level $\log_2 n + k$ has ≥ 1 element.

$$E[\# levels above log_{2}n] = E[\sum_{k=1}^{\infty} Y_{k}]$$

$$= \sum_{k=1}^{\infty} E[Y_{k}] \qquad (linearity of expectation)$$

$$= \sum_{k=1}^{\infty} Pr[Y_{k=1}] \qquad (expectation of indicator)$$

$$\leq \sum_{k=1}^{\infty} \frac{N}{2^{\lfloor n/2 \rfloor 2^{k-1}}} = \frac{1}{2^{\lfloor n/2 \rfloor 2^{k-1}}} + \frac{1}{2^{\lfloor n/2 \rfloor 2^{k-1}}} = 2$$

Goal #2: Show that in expectation each operation (insert, delete find) touches a <u>constant</u> number of elements per level.

Combining both goals, by linearity of expectation we've proved the original goal:

Original Goal: For any fixed sequence of n operations (insert, delete, find), the expected running time per operation is O(log n).

Goal #2: Show that in expectation each operation (insert, delete find) touches a <u>constant</u> number of elements per level.

Say we are inserting (or deleting or finding) y.

Fix a level i. Let Z be the number of elements touched on level i.

Let **Zj** be an indicator variable for whether **ej** is touched (on level **i**)

$$E[\mathbf{Z}] = 2 + E[\mathbf{\Sigma}_{j} \ \mathbf{Z}_{j}]$$

$$= 2 + \mathbf{\Sigma}_{j} \ E[\mathbf{Z}_{j}] \qquad \text{(linearity of expectation)}$$

$$= 2 + \mathbf{\Sigma}_{j} \ Pr[\mathbf{Z}_{j}=1] \qquad \text{(expectation of indicator)} \qquad \text{Claim: These two are touched. Why?}$$

$$= 2 + \mathbf{\Sigma}_{j} \ \mathbf{\Sigma}_{j} = 2 + \mathbf{\Sigma}_{j} \ \mathbf{\Sigma}_{j} = 2 + \mathbf{\Sigma}_{j} \ \mathbf{\Sigma}_{j} + \mathbf{\Sigma}_{j$$

Goal #2: Show that in expectation each operation (insert, delete find) touches a <u>constant</u> number of elements per level.

What we showed

Goal #1: Show that the expected number of levels is O(log n).

Goal #2: Show that in expectation each operation (insert, delete find) touches a <u>constant</u> number of elements per level.

Original Goal: For any fixed sequence of n operations (insert, delete, find), the expected running time per operation is O(log n).

High-level takeaway:

 Often, deterministic data structures use a lot of bookkeeping to maintain the desired properties.

 With randomization, we stop micromanaging our data structure and use random choices that satisfy the desired properties on average.

