

Physics Department Faculty of science Menoufia University

المادة:	Waves and Acoustics	القائم بالتدريس	أ.د/محمود عويضة
			د/ هاجر الخولي
code	P144	القسم	الفيزياء
درجة الامتحان الكلية	180	القصل الدراسي	الثاني 2022-2023
الزمن	ساعتين	التاريخ	2023/06/11

عدد صفحات الإمتحان: (3) عدد صفحات الإمتحان

	miswer the following	descentions.	(0) 10			
•	Question 1:					
	A) choose the correct		(40 degree – 2 for each point)			
1	A man is standing beside the road when a source of sound moves away from him. This source has a					
	frequency of 1800Hz, and the source moves away from him at 6m/s. What frequency does the man hear?					
	Assume the temperature i					
	(a) 1770 Hz	(b) 1800 Hz	(c) 1831 Hz			
2	A noisy grinding machine in a factory produces a sound intensity of $1 \times 10^{-5} \text{W/m}^2$, the decibel level of					
	this machine equals					
_	(a) 50 dB	(b) 70 dB	(c) 90 dB			
3	Which of the following actions will increase the speed of sound in air					
	(a) decreasing air temperature (b) increasing frequency of sound (c) increasing air temperature					
4		describes the relation bety	ween the speed (V), wavelength (λ) and frequency			
	(<i>f</i>) of a wave is					
	(a) V=f λ	(b) f=V λ	(c) $V=f/\lambda$			
5	(a) $V=f\lambda$ (b) $f=V\lambda$ (c) $V=f/\lambda$ If a standing wave having 3 nodes and 2 antinodes is formed within 1.21 A distance, then the wavelength of the					
	standing wave will be	a > 2 . 42 . 4	() (0)			
	(a) 1.21 A	(b) 2.42 A	(c) 4.84 Apitch than when it is traveling toward you.			
6						
7	(a) higher	(b) lower	(c) the same			
/	is an oscillatory motion in a system where the restoring forces is proportional to the displacement, which acts in the direction opposite to the displacement					
8	The relative intensity of a	sound is called the intensity	(c) simple harmonic motion y level or decibel level, defined by			
O	() $($ $($ $)$ $($ $)$	sound is called the intensity	() $()$ $()$ $()$			
	$(a)\beta = \log\left(\frac{I}{I_o}\right)$	(b) $\beta = 10 \log \left(\frac{l_o}{I}\right)$	(c) $\beta = 10 \log \left(\frac{1}{I_o} \right)$			
9	Tacoma Narrows Bridge of	collapsed as result of	••••			
		(b) Resonance	(c) damped coefficient			
10			ally dissipating by friction and other resistances, this			
	kind of vibrations is called					
	(a) SHM	(b) damped oscillations	(c) forced oscillation			
11	The general expression for	r the speed of all mechanica	l waves is			
	(a) $v = \sqrt{\frac{elastic\ property}{internal\ property}}$	(b) $v = \sqrt{\frac{\text{internal property}}{\text{elastic property}}}$	(c) $v = internal \ property * elastic \ property$ Iz), the periodic time is (s)			
12	If an oscillator oscillates	with a frequency of 0.064 (H	Iz), the periodic time is (s)			
	(a) 15.625	(b) 1.5625	(c) 0.15625			
13		length of 3 m and its speed i	s 343 m/s, the frequency of the wave if it is a sound			
	wave equals					
	(a) $1 \times 10^8 Hz$	(b) $11.4 \times 10^8 Hz$	(c) 114 Hz			

Physics Department Faculty of science Menoufia University

14	When two or more travelling waves encounter each other while moving through the medium, the					
	resultant wave is found by adding together the displacement of individual waves point by point this is the					
			(b) Refraction principle	(c) Superposition principle		
15				of the wave would be		
	(a) diffra		(b) reflected	(c) superimposed		
16		The type of waves in which the elements of the medium undergo displacements in a direction perpendicular to the wave motion is				
	(a) Transve		(b) Longitudinal wave	(c) Shock wave		
17	- ' '			ime period of the oscillation is		
	(a) π	•	(b) 0.2 π	(c) 4 π		
18	For a shock			cone whose apex half-angle is given by		
	(a) $\sin \theta$	$v = \frac{v}{v_s}$	(b) $\sin \theta = \frac{v_s}{v}$	(c) $\sin \theta = v \times v_s$		
19	_	shows a standing w	ave in a stretched string of l	ength N A N A N		
	L, which p	roduces its	harmonic	N A N A N		
	() 6"		(1)	() ()		
20	(a) first	toloroble sounds be	(b) second	(c) third s greater than the faintest detectable sounds.		
20		tolerable soulius na				
1	(a) 1×10^{12}	to oo ah af tha fa	(b) 1×10 ⁻¹²			
J	b) Comple	te each of the fo	mowing:	(30 degree, 2 for each point)		
-	l- The perio	odic time for osci	llation of a simple pendu	ulum can be calculated using the equation		
	(1)and the periodic time of a physical pendulum can be determined using(2)					
2	2- When an external force is applied on an oscillating particle and reduces the amplitude of the					
	oscillation of the particle then called (3)					
3	3- The total force (F) that acts on an oscillator undergoes a simple harmonic motion (SHM) is described					
	by the equation(4), while the equation that describes the total force that acts on a damped					
	oscillator is(5)and that the equation that describe the total force that acts on an oscillator that					
	undergoes a forced oscillations is(6)					
4	4- There are three categories of sound waves which are(7), (8) and(9)					
4	5- The loudest sound the ear can tolerate have intensity of about 1 W/m ² and is called (10)			about 1 W/m^2 and is called (10)		
(6- The speed of sound wave depends on(11) and(12)			and (12)		
-	7- The speed	l of sound in a sol	id rod can be calculated u	sing the equation(13)while in fluids it		
	could be c	alculated using the	equation(14)			
8	B- The chang	The change in frequency heard by an observer whenever there is relative motion between a source of				
	sound and	the observer is cal	led(15)			

Physics Department Faculty of science Menoufia University

Question 3:

A)

Two speakers placed 3 m a part are driven by the same oscillator as shown in the figure. A listener is originally at point O, which is located 8 m from the center of the line connecting the two speakers. The listener then walks to point P, which is a perpendicular distance 0.35 m from O, before reaching the first minimum in sound intensity. What is the frequency of the oscillator? Assume that the speed of sound in air equals 343 m/s.

B) Copy the table below to your answer sheet and write down in front of each case, the equation that describes the relation between apparent and real frequency (i.e., the Doppler effect):

(20 degree)

		(=0 degree)
no	The case	Doppler effect equation
1	If the source is moving towards a stationary observer	
2	If the source is moving away from a stationary observer	
3	If the observer is moving toward stationary source	
4	If the observer is moving away from stationary source	

Question 4:

A) An explosion occurs 275 m above a 867 m thick ice sheet that lies over ocean water. If the air temperature is (-7) °C, how long does it takes the sound wave to reach a research vessel 1250 m below the ice?

Neglect, any changes in bulk modulus and density with temperature and depth.

Assume that: $B_{ice} = 9.2 \times 10^9 \text{ Pa}, \ \rho_{ice} = 917 \text{ kg/m}^3, \ \nu_{water} = 1533 \text{ m/s}$ (30 degree)

B) Find the frequencies of the fundamental and second harmonics of a steel wire 1 m long with a mass per unit length of 2×10^{-3} kg/m and under a tension of 80 N, then find the wavelength of the sound waves created by the vibrating wire for these two modes, assume the speed of sound in air is 345 m/s. (20 degree)

انتهت الأسئلة مع أطيب التمنيات بالتوفيق والنجاح

> Prof.Dr.Mahmoud Ewida Dr.Hagar Elkhouly