

Course on States of Matter for Class XI

THQ SIR YOUR GUIDANCE HELPED ME TO CONTROL NERVOUSNESS

Paper_00_UN-Champ (Chemistry = PC+OC+IOC)14-08-2021

SECTION-I : Single Correct Type

This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct. You will be awarded 3 marks if only the correct option is chosen and zero mark if none of the option is chosen. (-1) marks will be awarded for incorrect answers in this section.

Level : Easy

Topic : Gaseous State
Concept : Ideal gas equation
Subconcept : Ideal gas equation

- 1. In a sealed rigid container ideal gas is heated, which property must not change
 - (A) Pressure
 - (B) Energy of molecules
 - (C) Average speed of molecules
 - (D) Density

Ans. (D)

Sol. At constant volume all properties change except density with temperature.

Level : Moderate

Topic : Gaseous State

Concept : Mixed concept

Subconcept : Mixed concept

- 2. Consider the following statements-
 - (a) An oleum sample can be labelled as 127%
 - (b) Mole fraction is temperature dependent
 - (c) Slope of 'log V' v/s 'log T' graph is constant. (At constant P & n for ideal gas)
 - (d) 1 gm of C₆H₁₂O₆ contains more number of atoms than 1 gm of CH₃COOH

Select the correct code regarding true & false statement -

- (A) FFTF
- (B) TFTF
- (C) TFTT
- (D) FFTF

Ans. (A)

- Sol. (a) Maximum % labelling can be 122.5 %
 - (b) mole fraction is mass by mass relationship so it is temperature independent

(c)
$$\log v = \log \frac{nR}{P} + \log T$$

Slope = 1

(d) Since ratio of atoms of C, H, O is same in both molecule.

Level : Easy

Topic : Gaseous State
Concept : Maxwell equation
Subconcept : Maxwell equation

- 3. In a certain sample of gas at 25° C the number of molecules having speeds between 4 km sec⁻¹ and 4.1 km sec⁻¹ is N. If the total number of gas molecules at the same temperature are doubled what will happen?
 - Value of most probable velocity will remain same
 - (B) Value of most probable velocity will double
 - (C) Fraction of molecules between 4 km sec⁻¹ and 4.1 km sec⁻¹ will become 2N
 - (D) Number of molecules between 4 km sec⁻¹ and 4.1 km sec⁻¹ will remain same.

Ans. (A)

Sol. Since temperature is contant umps remain same, but number of particles will double.

Level : Moderate
Topic : Gaseous State
Concept : Maxwell equation
Subconcept : Maxwell equation

4. The curve C is for the gas X at 273 K. Choose the CORRECT statement.

- (A) Curve A may be of a heavier gas but at same temperature
- (B) Curve B may be of the same gas but at 373K
- (C) Curve A may be of the same gas but at 373K
- (D) Curve B may be of the lighter gas but at same temperature

Ans. (C

Sol. Fact as per Maxwell equation.

Level : Easy

Topic : Periodic Table
Concept : Periodic Table
Subconcept : Periodic Table

- 5. Whose name is not associated with the development of periodic table?
 - (A) Prout's
- (B) Newlands
- (C) Rutherford
- (D) Lother Meyer

Ans. (C)

Sol. Rutherford is not associated with the development of periodic table.

Level : Moderate

Topic : Periodic Table
Concept : Periodic Table
Subconcept : Periodic Table

6. Eka-aluminium and Eka-silicon are known as:

(A) Gallium and Germanium

(B) Aluminium and Silicon

(C) Iron and sulphur

(D) Proton and Silicon

Ans. (A)

Sol. EKa : Aluminium ⇒Ga

EKa : Silicon ⇒Ge

Level : Moderate

Topic : Periodic Table
Concept : Periodic Table
Subconcept : Periodic Table

7. Among the given elements, select those, which is at the peak of Lother Meyer Curve?

(A) V

(B) Se

(C) La

(D) K

Ans. (D)

Sol. Alkali metals are placed at peak of Lother Meyer curve.

Level : Moderate

Topic : Periodic Table
Concept : Periodic Table
Subconcept : Periodic Table

8. Select the INCORRECTmatch:

(A) Bridge element : K, Mg

(B) Diagonal relationship : (Li \rightarrow Mg), (Be \rightarrow Al), (B \rightarrow Si)

(C) First lanthanoid :Ce

(D) Typical elements : Na, Mg, Al, S

Ans. (A)

Sol. IIIrd group elements are Bridge element Ce is first lanthanoid.

: Moderate Level

: Periodic Table Topic

: Periodic Table Concept Subconcept : Periodic Table

Selectthe CORRECTmatch:

(B) Si →Bridging element (A) Hg → Transition element

(D) Sc→Typical element (C) Xe→ Representative element

Ans. (B)

Hg → d-block element but not transition element

Xe→ noble gas

Sc→ d-block element are not typical element.

: Moderate Level

: Periodic Table Topic

: Ionisation Energy Concept Subconcept : Ionisation Energy

10. A neutral atom (Ar) is converted to (Ar³⁺) by the following process

$$Ar \xrightarrow{E_1} Ar^+ \xrightarrow{E_2} Ar^{2+} \xrightarrow{E_3} Ar^{3+}$$

The correct order of E1, E2 and E3 energies is:

(A)
$$E_1 < E_2 < E_3$$
 (B) $E_1 > E_2 > E_3$

$$E_3$$
 (C) $E_1 = E_2 = E_3$

(D)
$$E_1 > E_2 < E_3$$

Ans. (A)

Sol. I.E.₃> I.E.₂> I.E.₁

Level : Moderate

: Periodic Table Topic

Concept : Atomic Size Subconcept : Atomic Size

11. The ionic radii of N³⁻, O²⁻ and F⁻ are respectively given by :

Ans. (C)

Sol. Order of size =
$$N^3 > O^2 > F^-$$

$$\frac{9}{10} = \frac{7}{10} \frac{8}{10} \frac{9}{10}$$

Level : Moderate
Topic : Periodic Table
Concept : Periodic Table
Subconcept : Periodic Table

12. Which of the following options is CORRECT?

(A) Decreasing I.E.₂: F > N > O

(B) Increasing atomic size : B< Be< Li < Na

(C) Metallic bond strength; Na < Zn < Ca

(D) Increasing electron affinity : O²⁻< O⁻< O⁺< O

Ans. (B)

Sol. (A) I.E. =
$$O_{2p^3}^+ > F_{2p^4}^+ < N_{2p^2}^+$$

(B) Size = B < Be < Li < Na

(C) Metallic strength = Na <Ca< Zn

(D) E.A. = $O^{2-} < O^{-} < O < O^{+}$

Level : Easy

Topic : Inductive Effect

Concept : -I Effect Subconcept : -I Effect

13. Which of the following is incorrect order of -I effect.

(A)
$$-NO_2 > -F > -CH = CH_2$$

B)
$$-Cl > -NH_2 > -$$

(C)
$$-\stackrel{\oplus}{N}H_3 > -COOH > -CN$$

(D)
$$-Br > -I > -OH$$

Ans. (C)

Sol. Correct order of option "C" is

$$-NH_3 > -CN > -COOH$$

Level : Easy

Topic : Intermidiate
Concept : Free radical
Subconcept : Free radical

14. Intermidiate with one unaired electron is:

(D) $\ddot{C}H_2$

Ans. (A)

1) Unpaired e's

Sol.

Level : Tough

Topic : Nomenclature

Concept : IUPAC Subconcept : IUPAC

15. Compound with correct IUPAC name

1, 1 - Dimethyl Ethan-1-ol

$$_{\rm B)}$$
 \searrow $_{\rm NH_2}$

1, 3 Diethyl Butan-1-amine

3-Ethenyl Hexanoic Acid

Butan- 2,2,3- Tri Carboxylic Acid

Ans. (D)

.....

$$(A)$$
 $\stackrel{2}{\downarrow}$ OH

2-Methyl Propane-2-ol

4-Methyl Pentan-2-amine

3-Propyl Pent-4-enoic acid

Level : Moderate

Topic : Functional Group

Concept : Preffix Subconcept : Preffix

16. Oxo is used as a preffix for

(D) =O

Ans. (D

Sol. (A) —C

Formyl

(B) C=C

keto or Carbonyl

(C) -O-(D) =O

Oxy Oxo

Level : Moderate

Topic : Nomenclature

Concept : IUPAC Subconcept : IUPAC

17. In IUPAC namiry of organic compounds IUPAC name must have always:

(A) Preffix & suffix

(B) Preffix & word root

(C) Word root & suffix

(D) Preffix, word root & suffix

Ans. (C)

Sol. Word Root & suffix like meth & ane for methane (CH₄)

Level : Moderate

Topic : General Organic Chemistry

Concept : Resonance Subconcept : Resonance

18. Which statement is correct :

(A) Inductive effect is distance independent effect

(B) Hetrolytic bond fission takes place in non polar solvent

(C) Resonating structures are hypothetical

(D) Lone pair of N atom in ethanide is localised

Ans. (C)

Sol. (A) is incorrect because Inductive effect is distance dependent

(B) is incorrect because Hetrolytic bond fission takes place in polar solvent

(C) Correct statement because only resonance hybrid is real

(D) is incorrect because one pair of N atom in ethanamide is delocalised due to resonance phenomenon

Level : Moderate

Topic : Nomenclature

Concept : IUPAC Subconcept : IUPAC

19. Correct IUPAC name of compound 3-methoxy-3-oxo-propanoic acid:

(A) 3-methoxy carbonyl propanoic acid (B) 2-methoxy carbonyl propanoic acid

(C) 2-methoxy carbonyl ethanoic acid (D) methyl-2-carboxy ethanoate

Ans. (C)

Sol. Given compound is

Correct IUPAC name 2 methoxy carbonyl ethanoic acid

Level : Easy

Topic : Nomenclature

Concept : IUPAC Subconcept : IUPAC

20. Position of -CH3 as per IUPAC in compound methyl butyne is -

(A) 1

(B) 2

(C) 3

(D) 4

Ans. (C)

Sol. Only possible structure $\overset{4}{\text{CH}_3}$ — $\overset{3}{\overset{2}{\text{CH}}}$ — $\overset{2}{\overset{1}{\text{C}}}$ = $\overset{1}{\overset{1}{\text{CH}_3}}$

SECTION-II: Integer Value Correct Type

This section contains 10 questions. For each question, enter the correct numerical value (in decimal notation, truncated / rounded off to the second decimal place; e.g. 6.25, 7.00, -0.33, -0.30, 30.27, -127.30) using the mouse and the on screen virtual numeric keypad in the place designated to enter the answer. You will be awarded 3 marks if correct numerical value is entered as answer. No negative marks will be awarded for incorrect answers in this section.

Level : Moderate Topic : Gaseous State

Concept : Bimolecular collision Subconcept : Bimolecular collision

 Two flask A and B have equal volume at 100K and 200K and have pressure 4 atm and 1 atm respectively. The flask A contains H₂gas and B contains CH₄ gas. The collision diameter of CH₄ is twice that of H₂ Calculate ratio of mean free path of CH₄ to H₂

Ans. (2

Sol.
$$\frac{\lambda_{CH_4}}{\lambda_{H_2}} = \left(\frac{\sqrt{2}\pi\sigma^2 P}{KT}\right)_{H_2} \times \left(\frac{KT}{\sqrt{2}\pi\sigma^2 P}\right)_{CH_4}$$
$$= \frac{1^2 \times 4}{100} \times \frac{200}{2^2 \times 1} = 2$$

Level : Easy

Topic : Gaseous State
Concept : Dalton's law
Subconcept : Dalton's law

2. A 2 liter rigid container is present inside a large 6 liter container. 2 liter container contain 12 mole of H₂& 10 mole of He. While 6 litre container contains 20 mole of He and 18 mole of CH₄. There is an orifice on one wall of small container which can be operated by a remote control device. Calculate total number of moles present inside small container when orifice is opened for sufficiently long time.

Ans. (20)

Sol.

Moles is small container $H_2 = 12$

$$He = 10$$

Large container $H_2 = 20$

$$CH_4 = 18$$

Total moles = 60

Total volume 6 lite. So 2 lit. volume

Contains 20 mole

Page |10

Level : Tough

Topic : Gaseous State
Concept : Gratan's law
Subconcept : Gratan's law

Gas A taken in a closed rigid container is allowed to decompose partially to the reaction.

$$A(g) \longrightarrow 2B(g) + 3C(g)$$

The gaseous mixture formed effuses 1.5 times laster then a gas having molecular weight 105 under similar condition. Find the mole fraction of C in the gaseous mixture formed.

Given : Mol. wt. of A = 140

Mol. wt. of
$$B = 64$$

Mol. wt. of
$$C = 4$$

Ans. (0.5)

ol.
$$\frac{r_{mix}}{r_{eas}} = \frac{3}{2} = \sqrt{\frac{105}{M_{mix}}}$$

$$\frac{9}{4} = \frac{105}{M_{mix}}$$

$$M_{\text{mix}} = \frac{140}{3}$$

$$A \rightarrow 2B + 3C$$

$$\frac{140}{3} = \frac{140}{1+4\alpha}$$

$$1+4\alpha=3$$

$$\alpha = \frac{1}{2}$$

Md. Fraction of

$$C = \frac{3\alpha}{1+4\alpha} = \frac{\frac{3}{2}}{\frac{3}{2}} = \frac{1}{2} = 0.5$$

Level : Easy

Topic : Mole concept
Concept : Concentration term
Subconcept : Concentration term

In order to remove Pb²⁺ from 10 litre H₂O, Na₂H₂ EDTA (0.4 M, 100 mL) is required.

PbCl₂(aq.) + Na₂H₂ EDTA
$$\rightarrow$$
 2NaCl + PbH₂ EDTA

Hence millimoles of PoCi₂ present in 1 litre of H₂O is.

Ans. (4)

Sol. mmoles of EDTA = 40 numbers

mmoles of EDTA = m moles of Pb^{2+} in 10 lit.

mmoles is 1 lit. = 4

Level : Moderate
Topic : Mole concept
Concept : Concentration term
Subconcept : Concentration term

 500 ml of 2M CH₃COOH solution is mixed with 600 ml 12% w/v CH₃COOH solution then calculate the final molarity of solution.

Ans. (2)

12 gm CH₃COOH is present in 100 ml of solution 120 gm CH₃COOH is present in 1000 ml of solution

$$M_2 = \frac{120}{60} = 2$$
, Now we are mixing

500 ml, 2M CH₃COOH + 2M, 600 ml CH₃COOH

$$M_1V_1 + M_2V_2 = M_3V_3$$

$$500 \times 2 + 600 \times 2 = M3 \times 1100$$
, $M_3 = \frac{2200}{1100} = 2$

Level : Moderate
Topic : Mole concept
Concept : Concentration term
Subconcept : Concentration term

6. Calculate the minimum volume (in Lt) of $\frac{M}{672}$ H₂O₂ solution, which can produce at least 1 gm each of I₂ and KOH, as per the following reaction:

$$H_2O_2 + 2 KI \longrightarrow I_2 + 2KOH$$

Ans. (6)

$$\Rightarrow \frac{1}{672} \times V = \frac{1}{2} \times \frac{1}{56}$$
$$\Rightarrow V = 6 \text{ Lts.}$$

Level : Moderate
Topic : Periodic Table
Concept : Periodic Table
Subconcept : Periodic Table

7. A has exceptional outer electronic configuration as 4d¹⁰, 5s⁰. Which period does it belongs to?

Ans. (5.00)

Sol. The exceptional outer electronic configuration suggest that the expected configuration of A 4d⁸, 5s². Thus, it belongs the 5th period.

SIR EK QUESTION ME 2 REPEATED OPTIONS THE AUR WAHI ANS THA TO MAI CHHOD AYA

Name. Butch	- WRIVER	Dist.			
Subject	P	M			
Attempted	15/30	11.10	16/10 O	OF	75
Time taken	55 min	11 /30 73 min	50		10-
Correct	12/30	10/30	4/10 6		110-
Intersect	£3/30	1	2 10 7	110	2/10-
Unanswerred	15/30	19/30	4/10 2	/10	1/10
Mistakes	11 11 11 11				
done :-					
Tamal of		0.69	@33,55		35,39
D Invested reday Domesphal mistake	24 0:0-2.1			43,50	1
Calculation mist					
Anower Hillingham			1 3 3	100	
INVERSION.					
	as of	la	33,35		35,3
Incorrect	2,21,26	64	33,31	4390	1000000
Questions no.		-	1 2 7		
	-			1	
	Law and the	1		THE REAL PROPERTY.	17.5
	and the same of the last				

^{*}Disclaimer: The content is provided by the Learner and is reproduced 'As Is' and Unacademy disclaims any and all liabilities with regards to the content

Sir doubt h iss ques m

Q.12 A container fitted with frictionless massless piston consist of five valves—I, II, III, IV and V. These valves open automatically if pressure exceed over 1.5, 2.2, 2.5, 4.4 and 4.8 atm respectively. Under the given initial conditions (mentioned in given diagram) system is in state of equilibrium. Piston is now pressed in downward direction very slowly.

[Note: Consider the diameter of valve tube negligible and temperature remain constant.]

- (A) Valve -II will be opened first
- (B) As the piston crosses the valve which will be opened first, the remaining number of moles in

container are
$$\frac{5}{3}$$
.

300/11 to 30 se kam h to 2.2 atm p ressure to phle hi hojayega to valve

- (C) Valve-V will be the second valve which open to khul jaani chaiyye???
- (D) Number of moles will zero as piston crosses Valve-V

attraction

Derthot egm $\left(P + \frac{\alpha}{TV_m}\right)\left(V_m L\right) = RT$ Dietrici egn Pe- (1/2- 5) - RT

(III) Virial eg : -> $\frac{PV_{m}}{RT} = A + \frac{B}{V_{m}} + \frac{C}{V_{n}^{2}}$ temperature dependent virial comt which are determined exp B = second vinial C = thrd

Boyle's temperature
$$\left(P + \frac{a}{V_{m}^{2}}\right)\left(V_{m} - b\right) = RT$$

$$\left(P = \frac{RT}{V_{m} - b} - \frac{a}{V_{m}^{2}}\right) \times \frac{V_{m}}{RT}$$

$$\frac{PV_{m}}{RT} = \frac{V_{m}}{V_{m} - b} - \frac{a}{V_{m}RT}$$

$$Z = \left(1 - \frac{b}{V_{m}}\right) - \frac{a}{V_{m}RT}$$

 $\left(\left|-\right\rangle\right)^{-1} = 1 + 2 + 2^{-1}$ 17+ low

Dyme Rb Boyle's

Liquification of Real Gases (Critical count

Level : Moderate
Topic : Periodic Table
Concept : Periodic Table
Subconcept : Periodic Table

8. Find the number of elements having lower EA2 than EA1 of Cl.

O, S, P, I, As, Si, Al, Li, K

Ans. (9.00)

Sol. EA1 is higher as compared to EA2 for all the elements in periodic table.

Level : Tough

Topic : Nomenclature

Concept : IUPAC Subconcept : IUPAC

9. If p_1 , p_2 are position of side chains & p_3 , p_4 are positions of double bonds as per IUPAC for compound diethylpentadiene then find value of $\begin{vmatrix} p_1 + p_2 \\ p_4 - p_1 \end{vmatrix}$ is

Ans. (2)

Sol. The only possible compound is

$$(p_1,p_2)=(3,3)$$

$$(p_4,p_3) = (1, 4) \text{ or } (4, 1)$$

Hence
$$\left| \frac{3+3}{4-1} \right| = \frac{6}{3} = 2$$

Level : Moderate Topic : Nomenclature

Concept : IUPAC Subconcept : IUPAC

10. Degree of unsaturation for any compound is total number of π bond & number of rings present in that compound. Degree of unsaturation in 3-oxo pentandioicanhydride is:

Ans. (4)

Sol. 3-oxo pentandioicanhydride is

Hence degree of unsaturation

= total number of π bond + total number of rings

= 3 + 1

= 4