Задача №1

Анализ выборочных данных по двум сериям измерений Задание

1. Обработка результатов измерений

- Записать выборку объема $n = n_1 + n_2$ в виде вариационного ряда.
- Найти x_{\min} , x_{\max} , размах выборки.
- Найти моду и медиану вариационного ряда.
- Записать выборку объема $n=n_1+n_2$ в виде группированного статистического ряда. Для этого интервал, содержащий все элементы выборки, разбить на $k\approx 1+\log_2 n$ непересекающихся интервалов. Вычислить частоты.
- Найти эмпирическую функцию распределения и построить ее график.
- Построить гистограмму и полигон частот группированной выборки.

2. Точечные оценки параметров

• Найти оценку математического ожидания, дисперсии и среднеквадратического отклонения для объединённых данных.

3. Интервальные оценки параметров

• Построить доверительные интервалы для полученных оценок при заданной доверительной вероятности (надежности) P = 0.95.

При выполнении работы рекомендуется принять следующие обозначения:

- \overline{x} выборочное среднее по объединенным данным;
- S оценка стандартного отклонения по объединенным данным;
- n_i эмпирические частоты;
- W_i -относительные частоты;
- z_i середина интервала группировки;

Все вычисления производить до трёх знаков после запятой.

Задача №2 Проверка статистических гипотез по двум сериям измерений Задание

- Найти оценку математического ожидания, дисперсии и среднеквадратического отклонения по каждой серии.
- Проверить гипотезу о равенстве дисперсий (критерий Фишера) при заданной доверительной вероятности (надежности) P = 0.95.
- Вычислить сводную оценку дисперсии.
- Проверить гипотезу о равенстве математических ожиданий (критерий Стьюдента) при заданной доверительной вероятности (надежности) P = 0.95.
- Проверить гипотезу о нормальном распределении объединенных данных двух выборок (критерий Пирсона) при заданной доверительной вероятности (надежности) P = 0.95.
- По всем гипотезам сделать выводы.

При выполнении работы рекомендуется принять следующие обозначения:

 \overline{X}_{i} , — оценка математического ожидания по 1-й и 2-й сериям;

 S_1 , S_2 – оценка среднеквадратического отклонения по 1-й и 2-й сериям;

 $S_{cs.}^{\,2}$ - сводная оценка дисперсии;

 F^* – эмпирическое значение критерия Фишера;

 T^* – эмпирическое значение критерия Стьюдента;

 \hat{p}_i - вероятности теоретического распределения;

 χ^2 – эмпирическое значение критерия Пирсона.

Все вычисления производить до трёх знаков после запятой.

Задача №3

Исследование линейной корреляции и построение уравнений линейной регрессии Задание

Заданы результаты N экспериментов, в каждом из которых измерялось значение величин X и Y. Требуется найти эмпирический коэффициент корреляции, уравнения эмпирических прямых регрессии и сделать вывод о силе и характере связи между X и Y.

Для этого необходимо рассчитать:

- Оценку математического ожидания \bar{x} , \bar{y} для каждой величины.
- Оценку стандартного отклонения S_x, S_y .
- Оценку ковариации \tilde{K}_{xy} .
- Эмпирический коэффициент линейной корреляции $r_{\rm rv}$.
- Уравнения эмпирических прямых регрессии.
- Построить поле корреляции.
- Проверить гипотезу о значимости коэффициента линейной корреляции r_{xy} с доверительной вероятностью 0,95.

Указания к выполнению лабораторных работ по математической статистике.

Обработка результатов измерений

Рассмотрим выборку объёма $n=n_1+n_2$, где n_1 — число данных по первой серии измерений, n_2 — по второй серии, и упорядочим по возрастанию — получим вариационный ряд. Моду и медиану найдём по определению, используя данные вариационного ряда. Затем представим выборку в виде группированного статистического ряда. Для этого найдём длину интервала группировки $h=\frac{\text{размах}}{\text{числоинтервалов}}$. Вычислим частоты n_i — количество данных объединённой выборки, попавших в i-й интервал и относительные частоты $\frac{n_i}{n}$.

Замечание. Если элемент совпадает с верхней границей интервала, то его нужно отнести к последующему интервалу, если он совпадает с нижней границей, то он учитывается в данном интервале. После вычислений необходимо проверить условия нормировки $\sum_{i=1}^k n_i = n$ и $\sum_{i=1}^k w_i = 1$, где n – объем выборки.

Затем вычисляются накопленные частоты $\sum_{j=1}^i n_j$ - количество элементов, попавших в интервалы с 1-го по i-ый и относительные накопленные частоты $\sum_{j=1}^i \frac{n_j}{n}$, где j – указывает номер интервала, n_j - частота элементов в j-том интервале.

Результаты сведём в таблицу, называемую таблицей частот группированной выборки:

Номер интервала	Границы интервала	Середина интервала	Частота	Накопленная частота	Относитель- ная частота	Накопленная относитель- ная частота
i	y_{i-1}, y_i	\mathcal{Z}_i	n_i	$\sum_{j=1}^{i} n_j$	$w_i = \frac{n_i}{n}$	$\sum_{j=1}^{i} \frac{n_j}{n}$

Точечные оценки параметров

Выборочное среднее \overline{x} , исправленную выборочную дисперсию S^2 и эмпирический стандарт S вычислим по следующим формулам:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}, S^2 = \frac{\sum_{i=1}^{n} x_i^2 - n \cdot \overline{x}^2}{n-1}.$$

Интервальные оценки параметров

Предполагая, что результаты измерений независимы и имеют нормальное распределение параметрами m и σ построим доверительные интервалы по формулам:

$$\overline{x} - \frac{S}{\sqrt{k}} \cdot t_{\alpha}(k) < m < \overline{x} + \frac{S}{\sqrt{k}} \cdot t_{\alpha}(k),$$

где $t_{\alpha}(k)$ - квантиль распределения Стьюдента с k=n-1 степенями свободы и уровнем значимости $\alpha=1-P$.

$$\frac{\sqrt{k} \cdot S}{\sqrt{\chi_{\frac{\alpha}{2}}^{2}(k)}} < \sigma < \frac{\sqrt{k} \cdot S}{\sqrt{\chi_{1-\frac{\alpha}{2}}^{2}(k)}},$$

где $\chi_{\frac{\alpha}{2}}^2(k)$, $\chi_{1-\frac{\alpha}{2}}^2(k)$ - квантили распределения Пирсона с k=n-1 степенями свободы.

Проверка статистических гипотез

Для проверки гипотез необходимо предварительно вычислить выборочное среднее и выборочную дисперсию по каждой серии по вышеуказанным формулам.

а) Гипотеза о равенстве дисперсий (критерий Фишера).

Проверяемая гипотеза $H_0: \sigma_1^2 = \sigma_2^2$ – дисперсии обеих серий равны, альтернативная гипотеза $H_1: \sigma_1^2 > \sigma_2^2$ (односторонний критерий).

Пусть S_1^2 , S_2^2 - оценки дисперсий по первой и второй сериям измерений, причём $S_1^2 > S_2^2$. Разделив большую выборочную дисперсию на меньшую, составим статистику

$$F^* = \frac{S_1^2}{S_2^2} \, .$$

Затем, выбрав по таблице квантилей F-распределения, находим значение $F_{\alpha}(k_1,\,k_2)$, которое сравниваем с вычисленным значением F^* и делаем вывод.

После проверки гипотезы вычислим сводную оценку дисперсии

$$S_{cs}^2 = \frac{S_1^2 \cdot k_1 + S_2^2 \cdot k_2}{k_1 + k_2}.$$

б) Гипотеза о равенстве математических ожиданий (критерий Стьюдента). Проверяемая гипотеза $H_0: m_1 = m_2$ – математические ожидания обеих серий равны, альтернативная гипотеза $H_1: m_1 \neq m_2$ (двухсторонний критерий). Составим статистику – отношение Стьюдента

$$T^* = \frac{|\bar{x}_1 - \bar{x}_2|}{S_{cs} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$$

Полученное значение T^* сравним с табличным значением $t_{\alpha}(k)$ - квантиль распределения Стьюдента с $k=n_1+n_2-2$ степенями свободы, делаем вывод.

в) Гипотеза о нормальном распределении (критерий Пирсона).

Проверяемая гипотеза H_0 – генеральная совокупность распределена нормально с параметрами m и σ , т.е. $X \in N \left(m, \sigma \right)$, альтернативная гипотеза $H_1: X \not\in N \left(m, \sigma \right)$.

Алгоритм проверки гипотезы:

- 1. В качестве параметров m и σ возьмём оценки \overline{x} и S из 1-го задания.
- 2. В группированном статистическом ряде, построенном в задании 1, x_{\min} заменяем на $-\infty$, x_{\max} заменяем на $+\infty$.

Вычисляем оценки \hat{p}_i вероятностей попадания элементов выборки в промежутки Δ_i , i=1,...,k группированного статистического ряда по формулам

$$\hat{p}_i = \Phi(b_i) - \Phi(b_{i-1})$$
, где $b_i = rac{y_i - \overline{x}}{S}$.

Здесь $y_0 = -\infty$, $y_k = +\infty$, $\Phi(x)$ - функция стандартного нормального распределения.

Замечание. Если для некоторых промежутков не выполняется условие $n\hat{p}_i \geq 5$, то эти промежутки объединяем с соседними. Промежутки нового группированного статистического ряда по-прежнему обозначаем $\Delta_i = \left(y_{i-1}, y_i\right)$, i=1,...,k.

3. Вычисляем выборочное значение статистики критерия:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - n\hat{p}_{i})^{2}}{n\hat{p}_{i}}.$$

Здесь k — число промежутков нового группированного статистического ряда (после объединения); n_i - число элементов выборки в i-ом промежутке, i=1,...,k.

- 4. Для нормального закона число оцениваемых параметров равно 2, следовательно, число степеней свободы определяем по формуле: r = k 2 1 = k 3.
- 5. Рассчитав значение χ^2 и выбрав уровень значимости α , по таблице χ^2 распределения определим $\chi^2_{\alpha}(k)$. Если $\chi^2 < \chi^2_{\alpha}(k)$, то гипотезу H_0 о законе распределения случайной величины следует принять; если $\chi^2 > \chi^2_{\alpha}(k)$, то гипотезу H_0 отвергают и принимают альтернативную.

Линейная корреляция и регрессионный анализ

Ковариация, или корреляционный момент, служит для характеристики связи между величинами X и Y. Статистической оценкой ковариации является величина \tilde{K}_{xy} , которая вычисляется по формуле:

$$K_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x}).$$

Другой характеристикой наличия связи между X и Y служит коэффициент корреляции ρ_{xy} , эмпирическая оценка которого r_{xy} определяется по

формуле
$$r_{xy} = rac{ ilde{K}_{xy}}{S_x \cdot S_y}$$
 .

Коэффициент корреляции является безразмерной величиной и по абсолютной величине не превышает 1. Если $r \approx \pm 1$, то X и Y связаны тесной

линейной зависимостью, причем для $r_{xy} < 0$ зависимость обратная, а для $r_{xy} > 0$ зависимость прямая. Если r = 0, то X и Y — некоррелированы.

Пусть Y является функцией величины X. Тогда уравнение эмпирической прямой регрессии Y на X имеет вид:

$$y - \overline{y} = r_{xy} \frac{S_y}{S_x} \cdot (x - \overline{x}).$$

Если X является функцией величины Y, то уравнение прямой регрессии X на Y имеет вид: $x-\overline{x}=r_{xy}\frac{S_x}{S_y}\cdot \left(y-\overline{y}\right)$.

Для проверки гипотезы о значимости коэффициента линейной корреляции применим критерий Стьюдента.

Выдвинем гипотезу H_0 : $\rho_{xy} = 0$,

альтернативная гипотеза $H_1: \rho_{xy} \neq 0$ (двухсторонний критерий). Вы-

числим статистику
$$t = r_{xy} \sqrt{\frac{n-2}{1-r_{xy}^2}}$$
 , которая подчиняется распределению

Стьюдента с числом степеней свободы k=n-2 и сравним с табличным $t_{\alpha}(k)$. Если расчетное значение $|t| \geq t_{\alpha}(k)$, то нулевую гипотезу об отсутствии корреляционной связи следует отвергнуть; переменные считают зависимыми.

Данные к задачам 1, 2 по математической статистике

 1. 1 СЕРИЯ ИЗМЕРЕНИЙ
 N1= 22
 8.5
 9.4
 9.1
 9.6
 8.1
 8.4
 7.9
 9.2

 7.5
 8.1
 7.7
 8.2
 5.4
 8.8
 7.4
 8.7
 7.6
 7.9
 7.7
 6.2
 7.8
 10.1

 2
 СЕРИЯ ИЗМЕРЕНИЙ
 N2= 34
 6.5
 6.2
 8.1
 5.6
 9.4
 10.3
 6.6
 7.7

 8.7
 8.3
 3.7
 7.7
 9.9
 6.1
 7.9
 9.7
 6.4
 8.8
 7.0
 11.5
 6.4
 6.8
 5.0
 7.0
 4.2

 8.8
 7.3
 8.2
 6.9
 7.2
 6.5
 8.8
 8.2
 7.9

 2. 1 СЕРИЯ ИЗМЕРЕНИЙ
 N1= 40
 .41
 .26
 .59
 .63
 .98
 .54
 .54
 .85
 .55

 .80
 .31
 .74
 .30
 .56
 .75
 .54
 .60
 .74
 .28
 .53
 .81
 .46
 .63
 .61
 .66
 .78

 .72
 .50
 .48
 .42
 .54
 .81
 .84
 .46
 .56
 .39
 .50
 .53
 .47
 .47

 2 СЕРИЯ ИЗМЕРЕНИЙ
 N2= 20
 .73
 .51
 .59
 .88
 .47
 .60
 .83
 .80

.49 .78 .55 .68 .81 .60 .32 .41 .53 .58 .63 .51

3. 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 38 19.1 15.9 20.4 16.8 23.1 21.2 28.4 25.8 19.9 22.9 22.6 21.3 27.1 19.1 20.8 24.3 22.7 25.1 26.3 26.9 17.8 20.6 23.7 19.0 18.3 22.3 25.5 21.0 28.9 20.0 17.0 19.9 23.6 29.0 22.8 22.0 23.5 17.7

2 СЕРИЯ ИЗМЕРЕНИЙ N2= 21 20.9 23.3 24.9 17.5 24.6 21.1 22.1 20.5 21.0 19.7 24.8 25.2 19.3 22.9 24.7 23.0 26.9 23.3 24.7 22.3 19.7

4. 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 36 5.9 5.8 6.6 6.7 4.4 4.4 6.6 6.4 4.4 5.7 5.1 4.9 4.3 4.8 4.5 6.7 7.1 3.6 6.0 5.6 5.0 6.7 6.5 4.3 5.5 3.3 5.1 3.5 4.3 4.4 3.3 6.5 8.0 6.6 5.4 3.0

2 СЕРИЯ ИЗМЕРЕНИЙ N2= 22 5.2 4.9 4.3 6.2 5.2 4.6 4.0 3.3 5.2 4.1 3.7 5.0 6.0 6.1 2.5 5.2 5.4 4.9 3.7 3.4 5.6 5.5

5. 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 34 .74 .74 1.02 .63 .53 .80 .58 .66 .56 .30 .46 .80 1.08 .56 .84 .38 .74 .82 .84 .68 .70 .58 .52 .57 .81 .73 .76 .85 .80 .56 .40 .87 .32 .71

2 СЕРИЯ ИЗМЕРЕНИЙ N2= 23 .57 .68 .67 .42 .72 .83 .45 .69 .59 .73 .76 .98 .99 .68 .71 .53 .58 .55 1.01 .93 .68 .79 .73

6. 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 32 24.3 21.0 24.1 23.8 20.3 21.6 25.2 26.2 21.2 26.3 25.0 19.8 23.7 27.0 26.4 29.6 23.7 28.0 24.9 19.3 21.9 21.5 29.4 25.5 25.3 25.2 27.7 23.3 28.7 24.5 31.4 21.3

2 СЕРИЯ ИЗМЕРЕНИЙ N2= 24 18.6 22.5 19.3 24.9 23.5 24.3 28.6 20.5 27.6 19.5 20.6 28.6 27.3 27.1 18.7 24.6 22.5 18.4 25.0 25.3 27.1 18.9 25.4 21.2

- 7. 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 30 5.1 6.4 4.0 8.0 6.2 5.1 5.8 4.7 5.5 6.3 6.5 8.7 5.7 6.0 5.9 8.2 4.7 7.3 3.6 5.6 4.9 8.0 5.7 3.7 8.9 7.1 3.8 4.8 6.6 4.3
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 25 7.3 6.1 4.5 5.7 7.0 7.8 4.5 6.9 6.6 5.9 6.7 5.1 6.6 5.4 7.8 4.7 5.8 4.0 7.1 6.7 6.3 8.0 4.5 6.4 7.0

- **8.** 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 28 .77 .97 .82 .77 .78 .92 .76 1.08 .88 .85 .44 .81 .98 .53 .71 .67 .50 .67 1.18 .83 .85 .51 .86 .82 .59 .96 .93 1.08
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 26 1.09 .97 .63 .80 .59 .54 .75 .87 .86 .81 .84 .37 .58 .71 .75 .66 1.10 1.09 .61 1.02 .60 1.07 .95 .89 .49 .42

- 9. 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 26 25.8 18.8 19.9 31.6 30.2 20.7 30.6 25.0 29.1 32.8 33.9 20.2 28.9 28.0 24.7 27.2 27.2 33.8 29.0 26.7 29.6 28.8 31.3 28.5 29.0 34.8
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 27 29.0 28.8 30.4 21.5 37.2 25.7 32.9 27.3 28.2 34.3 29.3 31.0 33.2 26.9 37.0 36.0 29.1 33.2 40.2 34.3 29.6 33.4 33.0 31.0 34.7 38.4 25.0

- 10.
 1 СЕРИЯ ИЗМЕРЕНИЙ
 N1= 24
 6.5
 6.7
 5.9
 6.6
 4.2
 4.4
 7.3
 4.9

 8.0
 4.2
 4.0
 6.2
 5.8
 5.8
 8.8
 6.9
 6.8
 7.6
 7.0
 6.7
 4.6
 5.1
 7.1
 6.7
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 28 3.6 6.4 5.0 3.7 5.5 5.4 5.8 1.6 4.3 6.0 7.8 4.6 5.0 6.7 5.4 5.6 4.6 7.0 7.2 5.3 7.1 5.6 4.5 6.9 5.6 6.1 7.0 4.7

- **11.** 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 22 .97 .81 .91 .90 .86 .83 .96 .75 1.05 .91 .80 .79 .80 .66 .92 .61 .58 1.06 .76 1.38 .80 .81
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 29 .25 .70 .89 .60 .70 .93 .79 .43 .89 1.07 .89 .90 .97 .69 1.10 1.10 .99 1.01 1.16 1.33 .94 .98 1.32 .61 .72 .62 .48 .72 .80

- **12.** 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 30 35.0 31.8 34.4 27.7 33.1 27.1 27.8 30.8 29.4 27.2 27.3 32.4 30.0 36.5 25.7 35.5 26.3 39.6 32.8 34.8 25.6 32.5 32.4 31.2 32.6 28.9 29.1 34.1 35.1 29.0
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 30 34.3 25.6 30.5 25.6 31.6 34.0 24.6 31.7 31.3 31.3 32.5 23.9 32.1 31.1 31.6 39.5 35.4 28.2 30.1 30.6 26.6 25.9 27.2 26.3 30.8 29.6 32.2 32.4 28.2 32.2

 13.
 1 СЕРИЯ ИЗМЕРЕНИЙ
 N1= 28
 6.5
 8.4
 6.5
 6.2
 7.5
 7.8
 8.9
 3.6

 6.4
 5.8
 6.7
 7.5
 8.7
 6.9
 9.1
 8.0
 6.1
 7.7
 8.0
 7.8
 8.4
 7.4
 5.5
 4.3
 8.4

 6.3
 4.2
 7.7

2 СЕРИЯ ИЗМЕРЕНИЙ N2= 31 5.1 9.2 9.8 8.1 8.6 6.4 5.7 6.6 8.7 9.4 8.4 6.8 8.0 5.0 4.9 5.3 7.6 8.2 7.4 8.9 8.3 8.4 6.4 8.1 5.1 9.2 5.7 6.8 8.5 5.3 7.9

- **14.** 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 26 .97 1.04 .79 1.04 .71 .90 .73 .99 .79 1.18 1.21 .96 1.21 .80 1.14 1.18 1.10 .85 .66 .92 1.16 .71 .82 .53 1.21 1.25
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 32 1.25 .68 .93 .73 1.04 .79 .88 .73 1.08 1.20 1.01 1.06 .79 .97 1.04 1.26 1.24 .99 .76 .75 .93 1.09 1.27 .81 .90 .55 .68 1.08 .89 1.05 1.00 .90

- **15.** 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 24 31.6 46.6 42.0 35.6 31.3 29.5 23.8 36.9 33.5 37.7 23.1 37.1 30.7 36.7 39.6 40.0 38.1 27.6 36.6 43.5 33.6 36.2 28.4 24.7
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 33 37.3 31.4 34.5 45.6 23.4 34.2 40.8 40.1 37.8 33.8 36.7 30.3 38.3 33.7 30.0 37.8 32.6 37.5 41.2 38.6 35.8 37.7 39.0 32.2 32.2 35.7 40.5 39.2 26.7 35.2 33.6 32.3 33.9

- **16.** 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 22 6.3 7.0 7.1 5.5 8.0 10.1 5.7 6.7 5.8 7.6 6.5 5.6 10.3 9.7 6.0 7.6 5.2 9.2 7.4 8.9 9.6 8.3
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 34 6.3 5.7 8.8 7.5 6.3 7.2 7.2 8.3 7.5 8.9 8.2 6.4 6.0 5.2 6.0 5.5 9.7 4.4 4.9 10.0 8.0 6.4 7.7 7.5 8.7 7.4 6.1 5.6 8.4 3.6 6.5 9.6 9.9 3.0

- 17.
 1 СЕРИЯ ИЗМЕРЕНИЙ
 N1= 30
 30.7
 33.4
 35.7
 32.7
 28.6
 35.7
 30.9

 24.1
 29.1
 31.7
 34.5
 37.1
 26.2
 35.0
 27.6
 43.9
 28.9
 37.4
 34.6
 30.4
 31.1
 31.0

 34.6
 31.6
 29.8
 27.1
 29.6
 34.7
 31.1
 29.5
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 30 37.7 30.2 32.0 31.7 34.5 23.3 35.0 28.6 36.1 26.1 32.8 25.2 32.1 28.0 36.1 27.3 24.6 22.0 33.5 35.1 30.0 23.0 27.6 32.9 31.8 29.4 27.8 28.0 24.0 28.5

- 18.
 1 СЕРИЯ ИЗМЕРЕНИЙ
 N1= 28
 6.4
 4.5
 7.0
 8.0
 10.3
 8.0
 8.5
 7.1

 9.2
 7.4
 4.8
 7.7
 5.8
 4.9
 6.8
 5.1
 4.1
 6.8
 5.7
 6.2
 7.4
 5.3
 7.8
 7.4
 7.4

 8.7
 7.4
 6.4
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 31 6.6 8.0 8.1 6.9 6.2 5.7 6.8 7.2 8.0 5.3 8.7 7.9 8.2 5.5 9.4 8.7 7.8 5.4 6.5 9.6 6.7 7.1 6.2 8.6 5.2 7.2 6.1 3.8 5.5 6.7 6.4

- 19. 1 СЕРИЯ ИЗМЕРЕНИЙ
 N1= 26
 1.18
 .90
 1.29
 .87
 1.34
 .71
 .68
 1.29

 1.21
 .76
 1.16
 1.20
 1.01
 .72
 .80
 .75
 1.01
 .73
 1.40
 .68
 .79
 .63
 1.15
 .77

 .63
 .72
- 2 СЕРИЯ ИЗМЕРЕНИЙ N2= 32 .62 .50 .71 .76 .35 1.26 .96 .62 1.02 1.51 .68 1.11 .82 1.34 .62 .89 .58 .83 1.22 .75 1.01 .76 .80 .84

20. 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 24 26.9 30.4 38.9 41.1 35.3 34.4 27.2 29.6 28.8 33.6 31.0 28.8 35.4 39.6 28.2 35.6 31.9 29.7 42.9 29.8 30.6 30.0 35.3 29.6

2 СЕРИЯ ИЗМЕРЕНИЙ N2= 33 38.9 29.7 26.3 42.0 32.8 43.9 31.3 27.5 44.1 40.7 35.7 27.8 40.8 26.0 35.5 36.8 33.3 39.2 32.5 35.5 36.5 33.7 31.9 34.6 31.7 36.4 39.9 31.8 36.3 42.6 35.0 32.3 33.8

 21. 1 СЕРИЯ ИЗМЕРЕНИЙ
 N1= 40
 .50
 .54
 .38
 .65
 .59
 .40
 .65
 .46

 .69
 .48
 .77
 .38
 .83
 .54
 .58
 .71
 .59
 .65
 .73
 .62
 .51
 .75
 .54
 .43
 .68

 .60
 .58
 .62
 .26
 .46
 .60
 .71
 .76
 .81
 .54
 .53
 .28
 .69
 .46
 .67

 2 СЕРИЯ ИЗМЕРЕНИЙ
 N2= 20
 .55
 .35
 .59
 .41
 .82
 .50
 .62
 .50

 .55
 .69
 .44
 .48
 .67
 .72
 .29
 .55
 .36
 .50
 .76
 .41

 22. 1 СЕРИЯ ИЗМЕРЕНИЙ
 N1= 38
 18.2
 19.0
 24.5
 20.1
 20.4
 21.0
 25.0

 17.5
 20.0
 19.0
 21.1
 16.3
 18.5
 18.9
 22.7
 25.2
 25.3
 23.3
 18.9
 23.3
 20.0
 21.3

 18.9
 20.7
 24.3
 21.3
 19.6
 20.6
 18.4
 23.6
 21.1
 20.5
 19.1
 19.5
 22.4
 22.1
 18.7

 23.9

 2 СЕРИЯ ИЗМЕРЕНИЙ
 N2= 21
 20.5
 24.7
 26.5
 19.7
 18.9
 22.4
 23.7

 18.4
 22.1
 18.8
 20.4
 20.2
 22.5
 24.1
 21.6
 22.7
 23.6
 26.2
 23.8
 17.5
 25.3

23. 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 36 6.6 4.9 5.0 5.8 5.5 5.4 4.3 7.5 5.5 6.3 6.7 6.2 4.3 7.9 5.2 5.0 3.9 5.0 4.3 6.3 3.7 4.8 6.0 4.6 5.0 5.0 5.5 6.7 5.7 4.9 4.6 3.8 6.3 5.2 5.3 5.2

2 СЕРИЯ ИЗМЕРЕНИЙ N2= 22 5.5 7.2 7.3 4.6 4.8 5.5 5.1 3.8 4.8 6.5 5.2 3.6 4.4 4.2 5.8 4.6 4.3 5.8 3.5 5.6 6.3 5.9

 24.
 1 СЕРИЯ ИЗМЕРЕНИЙ
 N1= 34
 .85
 .75
 1.10
 .82
 .70
 .95
 .55
 .68

 .72
 .71
 .54
 .68
 .60
 .87
 .64
 .74
 .73
 .56
 .43
 .63
 .98
 .62
 .56
 .66
 .83

 .67
 1.06
 .52
 .85
 .60
 .47
 .75
 .86
 .65

 2 СЕРИЯ ИЗМЕРЕНИЙ
 N2= 23
 .55
 .69
 .40
 .92
 .86
 .59
 .70

.81 .74 .96 .53 .55 .89 .78 .45 .57 .91 .62 .68 .60 .65 .95 .84

25. 1 СЕРИЯ ИЗМЕРЕНИЙ N1= 32 26.6 27.9 25.6 21.1 27.1 31.4 21.3

23.1 21.4 31.6 20.0 23.9 23.6 26.7 25.4 27.4 26.7 19.3 26.2 18.4 27.8 22.4

27.1 20.8 25.7 23.9 27.4 26.3 26.4 25.3 26.2 18.8

2 СЕРИЯ ИЗМЕРЕНИЙ N2= 24 23.4 21.5 22.3 31.8 28.0

21.6 21.6 19.0 26.3 22.2 27.3 23.7 29.4 21.6 26.8 26.9 20.7 26.0

22.2 27.0 20.3 22.1 18.3 14.7

Данные к задаче №3

по математической статистике

В ней исследуется ИЗМЕНЕНИЕ СОСТАВА МЕТАЛЛА ПРИ ВЫПУСКЕ ИЗ КОНВЕРТОРА

 1.
 X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000

 -1.0
 -3.5
 3.5
 1.0
 -.5
 .5
 .0
 1.5
 4.5
 1.0
 -2.5
 4.0
 .0
 -1.5

 -.5
 2.5
 3.5
 .0
 .0
 3.5
 -1.0
 5.0
 3.5
 1.0
 .0
 3.5

 N = 26
 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ УГЛЕРОДА, %
 .09
 .06
 .08
 .09
 .15
 .06
 .07
 .06

 .04
 .07
 .06
 .08
 .09
 .06
 .12
 .15
 .08
 .08
 .08

 2.
 X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000

 3.0
 5.5
 4.0
 3.0
 -1.0
 -.5
 5.0
 1.5
 3.0
 -.5
 2.0
 1.5
 .0
 -1.5
 4.0

 .0
 .5
 3.5
 1.5
 -3.0
 -1.0
 1.0
 2.5
 -1.0
 2.0
 -2.5
 -1.5

 N = 27
 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ КИСЛОРОДА, %

 .035
 .023
 .033
 .039
 .060
 .054
 .026
 .039
 .041
 .053
 .032
 .029
 .057

 .063
 .028
 .060
 .054
 .027
 .042
 .065
 .054
 .044
 .035
 .055
 .030
 .072

 .050

- 3.
 X ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000

 1.5
 1.0
 .5
 .0
 .5
 2.5
 -1.5
 6.5
 -1.5
 -2.0
 .0
 -1.0
 5.5
 -1.0
 2.0

 5.0
 -1.0
 -3.5
 -2.0
 1.5
 -1.0
 3.0
 -1.0
 .0
 -2.5
 -1.0
 5.0

 N = 28
 Y НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ МАРГАНЦА, %

 .10
 .07
 .05
 .11
 .08
 .10
 .12
 .09
 .09
 .10
 .15
 .05
 .08
 .10

 .09
 .08
 .07
 .02
 .06
 .09
 .12
 .09
 .11
 .09
 .09
 .09
 .08
- 4.
 X ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000

 .0
 2.5
 1.5
 .0
 .5
 2.0
 -.5
 2.0
 1.5
 -1.5
 .0
 2.5
 4.5
 1.5
 5.5

 -2.5
 .5
 -3.0
 .5
 5.0
 .0
 -1.0
 3.0
 .0
 .0
 -2.5
 4.0
 .5
 .5

 N = 29
 Y НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ АЗОТА, % *10000

 20.0
 21.5
 31.0
 20.0
 28.0
 23.0
 18.5
 25.5
 23.5
 20.5
 21.0
 32.5
 26.0

 21.5
 30.0
 22.0
 24.5
 24.0
 29.0
 34.5
 19.0
 22.0
 34.0
 22.5
 27.5
 21.0
- 5.
 X ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000

 -1.0
 2.5
 .0
 4.5
 .5
 -2.5
 1.5
 -2.0
 1.5
 -1.5
 1.5
 1.5
 1.0

 -2.5
 1.5
 -3.0
 .0
 .0
 -2.5
 .0
 4.0
 2.0
 1.5
 .0
 1.0

 N = 26
 Y НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ УГЛЕРОДА, %

 .00
 .14
 .07
 .10
 .13
 .08
 .10
 .00
 .09
 .04
 .05
 .08
 .03
 .03

 .11
 .05
 .05
 .11
 .05
 .09
 .12
 .08
 .09
 .09
 .09

27.0 27.0 23.5

6. X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000 .5 -2.5 -2.0 3.5 3.0 2.5 .0 3.5 .0 1.0 3.0 -5.0 1.0 -1.5 1.5 .0 .0 1.5 -1.0 2.5 2.5 .0 1.0 -1.5 2.0 3.0 1.5 N = 27 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ КИСЛОРОЛА. % .051 .073 .057 .028 .051 .035 .056 .033 .053 .037 .040 .078 .047 .062 .042 .056 .056 .036 .053 .041 .033 .040 .052 .063 .036 .030 .051 **7.** X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000 3.0 4.0 .5 -1.0 -.5 -.5 2.5 .0 -2.5 -2.5 2.0 -1.0 -3.0 .5 1.5 .0 3.0 .0 2.0 1.0 -2.5 .0 -3.5 2.0 .0 .5 .5 4.0 N = 28 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ МАРГАНЦА, % .10 .07 .09 .03 .07 .04 .08 .09 .10 .03 .07 .09 .08 .12 .05 .14 .03 .06 .08 .10 .10 .09 .07 .10 .10 .10 .08 .05 _____ **8.** X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000 -.5 -.5 3.0 .0 -1.5 3.5 .0 -1.5 -2.5 -2.5 2.0 1.0 3.5 3.0 1.5 -.5 -.5 1.5 -1.0 .5 -1.0 -4.5 3.5 -.5 2.0 1.0 -1.0 2.0 3.0 N = 29 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ АЗОТА. % *10000 18.5 20.5 31.0 17.5 14.5 28.5 31.0 20.0 14.0 14.0 29.0 28.0 28.0 27.0 20.0 23.5 17.5 28.5 22.0 24.0 16.0 3.0 35.5 30.0 28.0 24.5 22.0 28.5 30.0 **9.** X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000 .0 -.5 -1.0 3.5 .0 1.0 3.0 -.5 -.5 .0 3.0 3.5 -1.0 1.0 -.5 3.0 3.0 .5 3.5 -.5 .0 -.5 .5 2.0 6.5 1.0 -.5 3.5 1.5 .5 N = 30 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ УГЛЕРОДА, % .06 .05 .05 .11 .08 .05 .11 .07 .08 .07 .09 .11 .05 .08 .04 $.10 \quad .09 \quad .06 \quad .13 \quad .05 \quad .06 \quad .07 \quad .06 \quad .11 \quad .15 \quad .08 \quad .06 \quad .10 \quad .08 \quad .06$ **10.** X - ИЗМЕНЕНИЕ СОЛЕРЖАНИЯ АЗОТА. % *10000 .0 -1.0 1.0 .0 1.5 2.0 -2.5 1.0 2.0 2.0 .0 .0 .0 3.0 -2.5 5.0 4.5 -3.0 2.5 .0 1.0 -.5 1.5 3.5 -3.5 N = 25 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ КИСЛОРОДА, % .042 .044 .053 .030 .061 .048 .046 .061 .061 .064 .036 .020 .021 $.058 \quad .043 \quad .059 \quad .057 \quad .028 \quad .052 \quad .046 \quad .042 \quad .017 \quad .065 \quad .062 \quad .019$ _____ **11.** X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000 1.5 -1.0 .5 .0 .0 -2.0 3.5 -3.0 5.5 .5 1.0 1.0 .0 3.0 .0 1.5 2.5 1.5 -4.0 2.5 .0 3.5 .0 -1.5 .0 .0 N = 26 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ МАРГАНЦА, % .08 .04 .08 .06 .06 .05 .13 .03 .13 .08 .10 .09 .06 .10 .05 .08 .12 .09 .02 .10 .08 .11 .05 .05 .07 .06

.5 .0 .0 -2.0 1.5 -3.0 .0 1.5 -1.5 3.5 .0 1.5 N = 27 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ АЗОТА, % *10000 31.0 19.5 19.0 27.0 31.0 20.0 40.0 21.0 17.5 18.0 24.5 22.5 26.5 23.5 21.0 24.0 18.5 30.0 35.5 21.0 31.5 25.5 22.5 28.5 21.0 24.5 26.0 **13.** X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА. % *10000 -1.5 -2.0 5.5 1.0 -1.5 1.5 4.5 .0 2.0 -2.0 2.0 .0 1.5 3.5 1.0 3.5 .0 -.5 3.0 .5 2.5 2.5 2.5 -1.5 -1.5 .0 2.5 .5 N = 28 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ УГЛЕРОДА, % .10 .03 .08 .08 .01 .10 .08 .05 .08 .08 .07 .10 .11 .09 .12 .12 .05 .06 .09 .10 .10 .11 .08 .06 .07 .06 .08 .04 **14.** X - ИЗМЕНЕНИЕ СОЛЕРЖАНИЯ АЗОТА. % *10000 1.0 -.5 -1.0 .0 2.5 2.5 3.5 -1.5 1.5 .5 3.0 -1.0 .5 -3.5 1.0 .0 3.5 .5 .0 2.0 .0 2.0 3.5 -1.5 -1.5 -5.0 2.5 .5 1.5 N = 29 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ КИСЛОРОДА, % .034 .063 .047 .054 .057 .055 .043 .061 .042 .050 .073 .058 .049 .033 .078 .038 .049 .063 .026 .062 .035 .045 .045 .025 .021 .047 .032 .033 .058 **15.** X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000 4.5 -1.5 1.0 3.5 -1.5 3.5 .5 -1.5 2.5 4.5 1.0 4.5 4.0 -5.5 1.0 .5 -1.0 -3.5 -4.5 .5 2.5 1.0 1.5 1.0 -3.0 7.0 2.5 1.0 4.5 .0 N = 30 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ МАРГАНЦА, % .06 .13 .08 .05 .11 .01 .07 .10 .04 .05 .06 .00 .08 .12 .09 .10 .14 .12 .18 .04 .06 .09 .11 .11 .12 .03 .02 .11 .02 .12 _____ **16.** X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА. % *10000 -2.0 1.0 .0 .5 -3.5 -1.5 3.0 -.5 1.0 .0 1.0 1.0 4.0 1.5 3.0 -3.0 -3.5 1.0 3.5 2.0 -3.0 2.5 -.5 4.5 -1.5 N = 25 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ АЗОТА, % *10000 14.0 23.5 21.0 29.5 13.5 25.5 31.0 19.0 25.5 19.5 27.5 24.5 32.0 27.5 26.5 18.0 14.5 17.0 32.0 27.0 11.5 30.0 20.0 32.5 16.5

17. X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000

.0 -.5 .0 5.5 -1.5 2.0 .0 2.0 1.0 3.0 3.0

.5 .0 3.0 1.5 -2.0 .5 2.0 5.5 2.5 2.0 4.5 .0 .5 1.0 4.5

N = 26 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ УГЛЕРОДА, %

12. X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000

```
.07 .09 .05 .06 .12 .05 .05 .04 .04 .08 .03 .10 .07 .07 .03
.09 .11 .09 .02 .12 .08 .08 .07 .06 .05 .04
18. X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000
 .0 -2.5 -2.5 1.5 .5 .0 -4.0 2.5 1.0 -.5 .0 -.5 .5 -1.5 1.0
.0 3.0 2.5 3.0 -.5 .5 .0 5.5 6.5 -1.5 -1.5 .5
   N = 27 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ КИСЛОРОДА. %
.054 .051 .046 .060 .045 .033 .055 .037 .056 .060 .059 .058 .057
.055 .056 .037 .050 .030 .034 .040 .042 .046 .028 .028 .062 .047
.040
_____
   Х1 - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000
1.5 -1.0 .0 1.0 .5 2.5 3.0 .0 .5 -1.0 1.0 1.5 1.5 -2.0 -2.0 .0
.5 .0 -1.0 6.0 4.0 -2.5 1.0 .0 -4.5 .0 1.0 1.5
  N = 28 X2 - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ МАРГАНЦА, %
 .07 .06 .08 .14 .08 .13 .11 .11 .10 .06 .10 .09 .05 .09
.09 .06 .06 .05 .11 .08 .06 .02 .07 .04 .11 .05 .09
_____
20. X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА. % *10000
-1.5 .0 -3.0 1.0 .5 .0 4.5 -2.5 1.0 -.5 .0 .0 6.0 2.5 3.0
2.5 2.0 1.0 2.5 4.0 -3.0 .5 2.0 -.5 4.5 .5
   N = 26 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ УГЛЕРОДА, %
 .06 .10 .04 .09 .10 .08 .10 .02 .07 .05 .05 .08 .12 .10 .10
.12 .07 .07 .10 .11 .05 .06 .07 .00 .12 .08
21. X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА. % *10000
1.5 6.5 3.0 -2.0 3.0 .0 1.5 .5 3.0 1.0 .5 .0 -2.0 .0 -1.0 .0 -
1.0 2.0 -6.5 .5 4.0 6.0 2.0 -.5 3.0 -2.0
  N = 26
          Ү - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ УГЛЕРОДА, %
   .00 .05 .11 .05 .09 .07 .08 .05 .07 .08 .09 .11 .09 .10
.07
.08 .10 .05 .18 .08 .03 .00 .05 .10 .05 .11
```

22. X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000

N = 27 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ КИСЛОРОДА, % .048 .053 .058 .061 .038 .053 .037 .064 .032 .071 .046 .037 .042 .046 .059 .043 .054 .066 .052 .054 .055 .057 .050 .064 .068 .067 .057

23. X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000 2.5 .5 2.0 .0 .5 2.0 2.5 -2.0 1.0 4.5 -2.5 1.5 .5 1.0 .0 4.0 1.0 .0 3.5 3.0 .0 1.5 2.5 3.5 -.5 -.5 .0

N = 28 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ МАРГАНЦА, % .05 .11 .06 .11 .08 .07 .06 .09 .11 .08 .07 .13 .06 .08 .08 .07 .05 .09 .08 .04 .08 .10 .07 .07 .02 .10 .14 .08

 24.
 X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000

 .0
 2.0
 3.0
 -4.0
 .0
 7.5
 -1.5
 .0
 .5
 .0
 1.0
 -1.0
 -3.5
 4.0
 -.5

 2.0
 1.5
 1.0
 1.5
 2.0
 3.0
 -1.5
 2.5
 1.5
 2.5
 1.0
 5.5
 2.5
 1.0

 N = 29
 Y - НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ АЗОТА, % *10000
 21.0
 29.5
 34.0
 15.0
 17.0
 37.0
 25.0
 24.0
 28.0
 24.0
 31.0
 18.5
 13.5

 31.5
 27.0
 18.0
 27.0
 20.0
 23.5
 29.0
 24.0
 16.0
 22.5
 21.5
 22.0
 23.0

 30.0
 21.5
 21.5
 21.5

25. X - ИЗМЕНЕНИЕ СОДЕРЖАНИЯ АЗОТА, % *10000 5.5 4.0 -2.0 .5 2.5 2.0 4.0 -.5 -1.5 2.0 1.0 1.0 .0 1.5 -1.0 -.5 .5 -1.0 3.5 3.5 1.5 -1.5 -.5 -4.0 2.5 .5 3.5 4.0 -.5 -1.5

Приложения

Таблица 1. Распределение Пуассона $P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}$

λ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
k									
0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066
1	0.0905	0.1637	0.2223	0.2681	0.3033	0.3293	0.3476	0.3595	0.3659
2	0.0045	0.0164	0.0333	0.0536	0.0758	0.0988	0.1216	0.1438	0.1647
3	0.0002	0.0011	0.0033	0.0072	0.0126	0.0198	0.0284	0.0383	0.0494
4		0.0001	0.0003	0.0007	0.0016	0.0030	0.0050	0.0077	0.0111
5				0.0001	0.0002	0.0003	0.0007	0.0012	0.0020
6							0.0001	0.0002	0.0003
7									

								1	
λ	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
k									
0	0.3679	0.1353	0.0498	0.0183	0.0067	0.0025	0.0009	0.0003	0.0001
1	0.3679	0.2707	0.1494	0.0733	0.0337	0.0149	0.0064	0.0027	0.0011
2	0.1839	0.2707	0.2240	0.1465	0.0842	0.0446	0.0223	0.0107	0.0050
3	0.0613	0.1805	0.2240	0.1954	0.1404	0.0892	0.0521	0.0286	0.0150
4	0.0153	0.0902	0.1681	0.1954	0.1755	0.1339	0.0912	0.0572	0.0337
5	0.0031	0.0361	0.1008	0.1563	0.1755	0.1606	0.1277	0.0916	0.0607
6	0.0005	0.0120	0.0504	0.1042	0.1462	0.1606	0.1490	0.1221	0.0911
7	0.0001	0.0034	0.0216	0.0595	0.1045	0.1377	0.1490	0.1396	0.1171
8		0.0009	0.0081	0.0298	0.0653	0.1033	0.1304	0.1396	0.1318
9		0.0002	0.0027	0.0132	0.0363	0.0689	0.1014	0.1241	0.1318
10			0.0008	0.0053	0.0181	0.0413	0.0710	0.0993	0.1186
11			0.0002	0.0019	0.0082	0.0225	0.0452	0.0722	0.0970
12			0.0001	0.0006	0.0034	0.0113	0.0264	0.0481	0.0728
13				0.0002	0.0013	0.0052	0.0142	0.0296	0.0504
14				0.0001	0.0005	0.0022	0.0071	0.0169	0.0324
15					0.0002	0.0009	0.0033	0.0090	0.0194
16						0.0003	0.0015	0.0045	0.0109
17						0.0001	0.0006	0.0021	0.0058
18							0.0002	0.0009	0.0029
19							0.0001	0.0004	0.0014

Таблица 2. Функция $\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$

		C	ОТ	ъ	e	Į.	д о	л и		
	0	1	2	3	4	5	6	7	8	9
0.0	0.3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
0.1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0.2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0.3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0.4	3683	3668	3652	3637	3621	3605	3589	3572	3555	3538
0.5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0.6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0.7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0.8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685
0.9	2661	2637	2613	2589	2565	2541	2516	2402	2466	2444
4.0	0.2420	•••	22=1			***				2202
1.0	0.2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1.1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1.2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1.3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1513
1.4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1.5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1.6	1109	1092 0925	1074 0909	1057	1040	1023	1006	0989	0973	0957
1.7	0940 0790	0925		0893	0878 0734	0863 0721	0848 0707	0833 0694	0818	0804
1.8 1.9	0656	0773	0761 0632	0748 0620	0608	0721	0584	0573	0681 0562	0669 0551
1.9	0030	0044	0032	0620	0008	0390	0364	0373	0302	0331
2.0	0.0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2.1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363
2.2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2.3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2.4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180
2.5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139
2.6	0136	0132	0129	0126	0122	0119	0116	0113	0110	0107
2.7	0104	1010	0099	0096	0093	0091	0088	0086	0084	0081
2.8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061
2.9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046
3.0	0.0044	0043	0042	0040	0039	0038	0037	0036	0035	0034
3.1	0033	0032	0031	0030	0029	0028	0027	0026	0025	0025
3.2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018
3.3	0017	0017	0016	0016	0015	0015	0014	0014	0013	0013
3.4	0012	0012	0012	0011	0011	0010	0010	0010	0009	0009
3.5	0009	0008	0008	0008	0008	0007	0007	0007	0007	0006

Таблица 3. Функция стандартного нормального распределения

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

		∞							
X	$\Phi(x)$	Х	$\Phi(x)$	Х	$\Phi(x)$	Х	$\Phi(x)$	Х	$\Phi(x)$
0,00	0,5000								
0,01	0,5040	0,31	0,6217	0,61	0,7291	0,91	0,8186	1,21	0,8869
0,02	0,5080	0,32	0,6255	0,62	0,7324	0,92	0,8212	1,22	0,8888
0,03	0,5120	0,33	0,6293	0,63	0,7357	0,93	0,8238	1,23	0,8907
0,04	0,5160	0,34	0,6331	0,64	0,7389	0,94	0,8264	1,24	0,8925
0,05	0,5199	0,35	0,6368	0,65	0,7422	0,95	0,8289	1,25	0,8944
0,06	0,5239	0,36	0,6406	0,66	0,7454	0,96	0,8315	1,26	0,8962
0,07	0,5279	0,37	0,6443	0,67	0,7486	0,97	0,8340	1,27	0,8980
0,08	0,5319	0,38	0,6480	0,68	0,7517	0,98	0,8365	1,28	0,8997
0,09	0,5359	0,39	0,6517	0,69	0,7549	0,99	0,8389	1,29	0,9015
0,10	0,5398	0,40	0,6554	0,70	0,7580	1,00	0,8413	1,30	0,9032
0,11	0,5438	0,41	0,6591	0,71	0,7611	1,01	0,8438	1,31	0,9049
0,12	0,5478	0,42	0,6628	0,72	0,7642	1,02	0,8461	1,32	0,9066
0,13	0,5517	0,43	0,6664	0,73	0,7673	1,03	0,8485	1,33	0,9082
0,14	0,5557	0,44	0,6700	0,74	0,7704	1,04	0,8508	1,34	0,9099
0,15	0,5596	0,45	0,6736	0,75	0,7734	1,05	0,8531	1,35	0,9115
0,16	0,5636	0,46	0,6772	0,76	0,7764	1,06	0,8554	1,36	0,9131
0,17	0,5675	0,47	0,6808	0,77	0,7794	1,07	0,8577	1,37	0,9147
0,18	0,5714	0,48	0,6844	0,78	0,7823	1,08	0,8599	1,38	0,9162
0,19	0,5753	0,49	0,6879	0,79	0,7852	1,09	0,8621	1,39	0,9177
0,20	0,5793	0,50	0,6915	0,80	0,7881	1,10	0,8643	1,40	0,9192
0,21	0,5832	0,51	0,6950	0,81	0,7910	1,11	0,8665	1,41	0,9207
0,22	0,5871	0,52	0,6985	0,82	0,7939	1,12	0,8686	1,42	0,9222
0,23	0,5910	0,53	0,7019	0,83	0,7967	1,13	0,8708	1,43	0,9236
0,24	0,5948	0,54	0,7054	0,84	0,7995	1,14	0,8729	1,44	0,9251
0,25	0,5987	0,55	0,7088	0,85	0,8023	1,15	0,8749	1,45	0,9265
0,26	0,6026	0,56	0,7123	0,86	0,8051	1,16	0,8770	1,46	0,9279
0,27	0,6064	0,57	0,7157	0,87	0,8078	1,17	0,8790	1,47	0,9292
0,28	0,6103	0,58	0,7190	0,88	0,8106	1,18	0,8810	1,48	0,9306
0,29	0,6141	0,59	0,7224	0,89	0,8133	1,19	0,8830	1,49	0,9319
0,30	0,6179	0,60	0,7257	0,90	0,8159	1,20	0,8849	1,50	0,9332

Продолжение таблицы 3

x	$\Phi(x)$	х	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	х	$\Phi(x)$
1,51	0,9345	1,87	0,9693	2,23	0,9871	2,59	0,9952	2,95	0,9984
1,52	0,9357	1,88	0,9699	2,24	0,9875	2,60	0,9953	2,96	0,9985
1,53	0,9370	1,89	0,9706	2,25	0,9878	2,61	0,9955	2,97	0,9985
1,54	0,9382	1,90	0,9713	2,26	0,9881	2,62	0,9956	2,98	0,9986
1,55	0,9394	1,91	0,9719	2,27	0,9884	2,63	0,9957	2,99	0,9986
1,56	0,9406	1,92	0,9726	2,28	0,9887	2,64	0,9959	3,00	0,9987
1,57	0,9418	1,93	0,9732	2,29	0,9890	2,65	0,9960	3,01	0,9987
1,58	0,9429	1,94	0,9738	2,30	0,9893	2,66	0,9961	3,02	0,9987
1,59	0,9441	1,95	0,9744	2,31	0,9896	2,67	0,9962	3,03	0,9988
1,60	0,9452	1,96	0,9750	2,32	0,9898	2,68	0,9963	3,04	0,9988
1,61	0,9463	1,97	0,9756	2,33	0,9901	2,69	0,9964	3,05	0,9989
1,62	0,9474	1,98	0,9761	2,34	0,9904	2,70	0,9965	3,06	0,9989
1,63	0,9484	1,99	0,9767	2,35	0,9906	2,71	0,9966	3,07	0,9989
1,64	0,9495	2,00	0,9772	2,36	0,9909	2,72	0,9967	3,08	0,9990
1,65	0,9505	2,01	0,9778	2,37	0,9911	2,73	0,9968	3,09	0,9990
1,66	0,9515	2,02	0,9783	2,38	0,9913	2,74	0,9969	3,10	0,9990
1,67	0,9525	2,03	0,9788	2,39	0,9916	2,75	0,9970	3,11	0,9991
1,68	0,9535	2,04	0,9793	2,40	0,9918	2,76	0,9971	3,12	0,9991
1,69	0,9545	2,05	0,9798	2,41	0,9920	2,77	0,9972	3,13	0,9991
1,70	0,9554	2,06	0,9803	2,42	0,9922	2,78	0,9973	3,14	0,9992
1,71	0,9564	2,07	0,9808	2,43	0,9925	2,79	0,9974	3,15	0,9992
1,72	0,9573	2,08	0,9812	2,44	0,9927	2,80	0,9974	3,16	0,9992
1,73	0,9582	2,09	0,9817	2,45	0,9929	2,81	0,9975	3,17	0,9992
1,74	0,9591	2,10	0,9821	2,46	0,9931	2,82	0,9976	3,18	0,9993
1,75	0,9599	2,11	0,9826	2,47	0,9932	2,83	0,9977	3,19	0,9993
1,76	0,9608	2,12	0,9830	2,48	0,9934	2,84	0,9977	3,20	0,9993
1,77	0,9616	2,13	0,9834	2,49	0,9936	2,85	0,9978	3,21	0,9993
1,78	0,9625	2,14	0,9838	2,50	0,9938	2,86	0,9979	3,22	0,9994
1,79	0,9633	2,15	0,9842	2,51	0,9940	2,87	0,9979	3,23	0,9994
1,80	0,9641	2,16	0,9846	2,52	0,9941	2,88	0,9980	3,24	0,9994
1,81	0,9649	2,17	0,9850	2,53	0,9943	2,89	0,9981	3,25	0,9994
1,82	0,9656	2,18	0,9854	2,54	0,9945	2,90	0,9981	3,26	0,9994
1,83	0,9664	2,19	0,9857	2,55	0,9946	2,91	0,9982	3,27	0,9995
1,84	0,9671	2,20	0,9861	2,56	0,9948	2,92	0,9982	3,28	0,9995
1,85	0,9678	2,21	0,9864	2,57	0,9949	2,93	0,9983	3,29	0,9995
1,86	0,9686	2,22	0,9868	2,58	0,9951	2,94	0,9984	3,30	0,9995

Таблица 4. Квантили распределения Стьюдента $t_p(k)$ и Пирсона $\chi_p^2(k)$

k	$t_p(k)$		$\chi_p^2(k)$		k	$t_p(k)$		$\chi_p^2(k)$	
p	0,05	0,025	0,975	0,05	p	0,05	0,025	0,975	0,05
1	12,71	5,02	0,00	3,84	32	2,04	49,48	18,29	46,19
2	4,30	7,38	0,05	5,99	34	2,03	51,97	19,81	48,60
3	3,18	9,35	0,22	7,81	36	2,03	54,44	21,34	51,00
4	2,78	11,14	0,48	9,49	38	2,02	56,90	22,88	53,38
5	2,57	12,83	0,83	11,07	40	2,02	59,34	24,43	55,76
6	2,45	14,45	1,24	12,59	42	2,02	61,78	26,00	58,12
7	2,36	16,01	1,69	14,07	44	2,02	64,20	27,57	60,48
8	2,31	17,53	2,18	15,51	46	2,01	66,62	29,16	62,83
9	2,26	19,02	2,70	16,92	48	2,01	69,02	30,75	65,17
10	2,23	20,48	3,25	18,31	50	2,01	71,42	32,36	67,50
11	2,20	21,92	3,82	19,68	52	2,01	73,81	33,97	69,83
12	2,18	23,34	4,40	21,03	54	2,00	76,19	35,59	72,15
13	2,16	24,74	5,01	22,36	56	2,00	78,57	37,21	74,47
14	2,14	26,12	5,63	23,68	58	2,00	80,94	38,84	76,78
15	2,13	27,49	6,26	25,00	60	2,00	83,30	40,48	79,08
16	2,12	28,85	6,91	26,30	65	2,00	89,18	44,60	84,82
17	2,11	30,19	7,56	27,59	70	1,99	95,02	48,76	90,53
18	2,10	31,53	8,23	28,87	75	1,99	100,84	52,94	96,22
19	2,09	32,85	8,91	30,14	80	1,99	106,63	57,15	101,88
20	2,09	34,17	9,59	31,41	85	1,99	112,39	61,39	107,52
21	2,08	35,48	10,28	32,67	90	1,99	118,14	65,65	113,15
22	2,07	36,78	10,98	33,92	95	1,99	123,86	69,92	118,75
23	2,07	38,08	11,69	35,17	100	1,98	129,56	74,22	124,34
24	2,06	39,36	12,40	36,42	105	1,98	135,25	78,54	129,92
25	2,06	40,65	13,12	37,65	110	1,98	140,92	82,87	135,48
26	2,06	41,92	13,84	38,89	115	1,98	146,57	87,21	141,03
27	2,05	43,19	14,57	40,11	120	1,98	152,21	91,57	146,57
28	2,05	44,46	15,31	41,34	125	1,98	157,84	95,95	152,09
29	2,05	45,72	16,05	42,56	130	1,98	163,45	100,33	157,61
30	2,04	46,98	16,79	43,77	∞	1,98	169,06	104,73	163,12

Таблица 6. Квантили распределения Фишера $F_{0.05}(k_1,k_2)$

k_I	1	2	3	4	5	9	7	8	6	10	12	15	20	24	30	40	09	120
k_2																		
1	161,4	61,4 199,5 215,7 224,6 230,2 234,0 236,8 238,9 240,5 241,9 243,9 245,9 248,0 249,1 250,1 251,1 252,2 253,3 241,9 240,1 241,9 241,0	215,7	224,6	230,2	234,0	236,8	238,9	240,5	241,9	243,9	245,9	248,0	249,1	250,1	251,1	252,2	253,3
2	18,51	8.51 19,00 19,16 19,25 19,30 19,33 19,35 19,37 19,38 19,40 19,41 19,43 19,45 19,45 19,46 19,47 19,48 19,49 19,4	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,41	19,43	19,45	19,45	19,46	19,47	19,48	19,49
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66
v	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,68	4,62	4,56	4,53	4,50	4,46	4,43	4,40
9	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,00	3,94	3,87	3,84	3,81	3,77	3,74	3,70
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27
∞	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97
6	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,07	3,01	2,94	2,90	2,86	2,83	2,79	2,75
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,79	2,72	2,65	2,61	2,57	2,53	2,49	2,45
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,69	2,62	2,54	2,51	2,47	2,43	2,38	2,34
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,60	2,53	2,46	2,42	2,38	2,34	2,30	2,25
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,53	2,46	2,39	2,35	2,31	2,27	2,22	2,18
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,16	2,11
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,42	2,35	2,28	2,24	2,19	2,15	2,11	2,06
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,38	2,31	2,23	2,19	2,15	2,10	2,06	2,01
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,34	2,27	2,19	2,15	2,11	2,06	2,02	1,97
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,31	2,23	2,16	2,11	2,07	2,03	1,98	1,93

Продолжение таблицы 6

2 3 4	5 6	2 8		9 10 12		15	20	24	30	40	09	120
3,5 3,1 2,9 2,7 2,6 2,	4	2,5 2,4	2,4	2,3	2,3	2,2	2,1	2,1	2,0	2,0	1,9	1,9
4,32 3,47 3,07 2,84 2,68 2,57 2,49	2,	19 2,42	2 2,37	2,37 2,32 2,25	2,25	2,18	2,10	2,05	2,01	1,96	1,92 1,87	1,87
4,30 3,44 3,05 2,82 2,66 2,55 2,46 2,40 2,34 2,30 2,23 2,15 2,07 2,03 1,98 1,94 1,89 1,84	\sim_1	,46 2,4() 2,34	2,30	2,23	2,15	2,07	2,03	1,98	1,94	1,89	1,84
4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81	. 4	2,44 2,37	7 2,32	2,27	2,20	2,13	2,05	2,01	1,96	1,91	1,86	1,81
4,26 3,40 3,01 2,78 2,62 2,51 2,42 2,36 2,30 2,25 2,18 2,11 2,03 1,98 1,94 1,89 1,84 1,79	- 4	2,42 2,36	5 2,30	2,25	2,18	2,11	2,03	1,98	1,94	1,89	1,84	1,79
4,24 3,39 2,99 2,76 2,60 2,49 2,40 2,34 2,28 2,24 2,16 2,09 2,01 1,96 1,92 1,87 1,82 1,77	. 1	2,40 2,34	4 2,28	2,24	2,16	2,09	2,01	1,96	1,92	1,87	1,82	1,77
4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75	٠, ٩	2,39 2,32	2 2,27	2,22	2,15	2,07	1,99	1,95	1,90	1,85	1,80	1,75
4,21 3,35 2,96 2,73 2,57 2,46 2,37 2,31 2,25 2,20 2,13 2,06 1,97 1,93 1,88 1,84 1,79 1,73	٠, 1	2,37 2,3	1 2,25	2,20	2,13	2,06	1,97	1,93	1,88	1,84	1,79	1,73
4,20 3,34 2,95 2,71 2,56 2,45 2,36 2,29 2,24 2,19 2,12 2,04 1,96 1,91 1,87 1,82	٠, 1	2,36 2,29	9 2,24	2,19	2,12	2,04	1,96	1,91	1,87	1,82	1,77 1,71	1,71
4,18 3,33 2,93 2,70 2,55 2,43 2,35 2,28	. 1	2,35 2,28	3 2,22	2,22 2,18 2,10 2,03 1,94 1,90 1,85 1,81 1,75 1,70	2,10	2,03	1,94	1,90	1,85	1,81	1,75	1,70
4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68	. •	2,33 2,27	7 2,21	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74	1,68
4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58	. •	2,25 2,18	3 2,12	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64	1,58
4,03 3,18 2,79 2,56 2,40 2,29 2,20 2,13 2,07 2,03 1,95 1,87 1,78 1,74 1,69 1,63 1,58 1,51		2,20 2,13	3 2,07	2,03	1,95	1,87	1,78	1,74	1,69	1,63	1,58	1,51
4,00 3,15 2,76 2,53 2,37 2,25 2,17 2,10 2,04 1,99 1,92 1,84 1,75 1,70 1,65 1,59 1,53 1,47	. 1	2,17 2,10	2,04	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47
3,92 3,07 2,68 2,45 2,29 2,18 2,09 2,02 1,96 1,91 1,83 1,75 1,66 1,61 1,55 1,50 1,43 1,35	. 1	2,09 2,02	2 1,96	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35
3,91 3,07 2,67 2,44 2,28 2,17 2,08 2,01 1,95 1,90 1,83 1,74 1,65 1,60 1,55 1,49 1,42 1,34	. 1	2,08 2,0	1,95	1,90	1,83	1,74	1,65	1,60	1,55	1,49	1,42	1,34