should be further reduced by multiplying it by the rib shape efficiency factor $k_r = 0.8$ for the case of standard trapezoidal ribs.

5.4.2.7 – To achieve ductility in plastic hinges, the ratio x/d of the distance x between the top concrete compression fibre and the plastic neutral axis, to the depth d of the composite section, should conform to the following expression:

$$\frac{x}{d} < \frac{\varepsilon_{\text{cu}2}}{\varepsilon_{\text{cu}2} + \varepsilon_{\text{a}}} \tag{5.4}$$

where ϵ_{cu2} is the ultimate compressive strain of concrete (see EN 1992-1-1:2004); ϵ_a is the total strain in steel at Ultimate Limit State.

5.4.2.8 – The rule in **5.4.2.7** is deemed to be satisfied when x/d of a section is less than the limits given in **Table 5.4**.

Table 5.4. Limit values x/d for ductility of beams with slabs

f _y (MPa)	x/d upper limit
355	0.27
235	0.36

5.4.3. Effective width of slab

- **5.4.3.1** The total effective width $b_{\rm eff}$ of concrete flange associated with each steel web should be taken as the sum of the partial effective widths $b_{\rm e1}$ and $b_{\rm e2}$ of the portion of the flange on each side of the centreline of the steel web. The partial effective width on each side should be taken as $b_{\rm e}$ given in **Table 5.5**, but not greater than the actual available widths $b_{\rm 1}$ and $b_{\rm 2}$ defined in **5.4.3.2**.
- 5.4.3.2 The actual width b of each portion should be taken as half the distance from the web to the adjacent web, except that at a free edge the actual width is the distance from the web to the free edge.
- **5.4.3.3** The partial effective width b_e of the slab to be used in the determination of the elastic and plastic properties of the composite T sections made of a steel section connected to a slab are defined in **Table 5.5**.

Table 5.5 – I. Partial effective width b_e of slab for elastic analysis

$b_{ m e}$	Transverse element	b _e for I (elastic)
At interior column	Present or not present	For negative <i>M</i> : 0.05 <i>l</i>
At exterior column	Present	For positive <i>M</i> : 0.0375 <i>l</i>
At exterior column	Not present, or rebars not anchored	For negative <i>M</i> : 0 For positive <i>M</i> : 0.025 <i>l</i>