Caleb Logemann

introductio

Hyper Diffusio

Operator

Conclusion

Discontinuous Galerkin Method for solving a Thin-Film Equation

Caleb Logemann

Mathematics Department, Iowa State University Iogemann@iastate.edu

September 30, 2017

Overview

- 1 Introduction
- 2 Convection
- 3 Hyper-Diffusion
- 4 Operator Splitting
- 5 Conclusion

Motivation

Caleb Logema

Introduction

Convection

Hyper-Diffusio

Operator

Conclusion

D 6

Aircraft Icing

- Industrial Coating
- Paint Drying

Model Equations

Caleb Logema

Introduction

Convection

Hyper-Diffusio

Operator Splitting

Conclusio

Navier-Stokes Equation

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x =$$
$$E_t + (u(E + p))_x =$$

- Asymptotic Limit, $\rho << L$
- Thin-Film Equation 1D with *u* as fluid height.

$$u_t + (f(x,t)u^2 - g(x,t)u^3)_x = (h(x,t)u^3u_{xxx})_x$$

Current Model

Caleb Logemann

Introduction

Convection

per-Diffusion

Operator Splitting

Conclusio

Simplified Expression

$$u_t + \left(u^2 - u^3\right)_x = -\left(u^3 u_{xxx}\right)_x$$

$$u_t + (u^2 - u^3)_x = 0$$

$$u_t + (u^3 u_{xxx})_x = 0$$

Introduction to Discontinuous Galerkin

Caleb Logemai

Introduction

Convection

yper-Diffusion

Operator Splitting

Conclusion

■ Partition the domain, [a, b] as

$$a = x_{1/2} < \cdots < x_{i-1/2} < x_{i+1/2} < \cdots < x_{N+1/2} = b$$

- $V_i = [x_{i-1/2}, x_{i+1/2}]$
- $\Delta x = x_{i+1/2} x_{i-1/2}$
- $x_i = \frac{x_{i+1/2} + x_{i-1/2}}{2}$.

Numerical Solutions

Caleb Logernan

Introduction

H.... Diff...i...

Hyper-Diffusion

Operator Splitting

Conclusio

• Use canonical variable $\xi \in [-1,1]$

- Let $\{\phi^k(\xi)\}$ be the Legendre polynomials.
- Solution of order *M* on each cell

$$u|_{x\in V_i} \approx U_i = \sum_{k=1}^M U_i^k \phi^k(\xi)$$

Convection

leb Logemann

Convection

U.--- Diff.-i-

Operator Splitting

. . .

Convection Equation

$$u_t + \frac{2}{\Delta x} f(u)_{\xi} = 0$$
$$f(u) = u^2 - u^3$$

Weak Form

$$\int_{-1}^{1} \left(u_t \phi(\xi) + \frac{2}{\Delta x} f(u)_{\xi} \phi(\xi) \right) d\xi = 0$$

■ Runge-Kutta Discontinuous Galerkin

$$\dot{U}_i^\ell = rac{1}{\Delta x} \int_{-1}^1 f(U_i) \phi_\xi^\ell \,\mathrm{d}\xi - rac{1}{\Delta x} ig(\mathcal{F}_{i+1/2} - \mathcal{F}_{i-1/2}ig)$$

Rusanov Numerical Flux

$$\mathcal{F}_{j+1/2} = \frac{f(U_{i+1}(-1)) + f(U_i(1))}{2} \phi^{\ell}(1)$$

 Solve this system of ODEs with any Total Variation Diminishing (TVD) Runge-Kutta Method.

Convection

aleb Logemanı

Convection

Operator

Conclusion

leb Logemanı

Convection

Operator

Conclusio

References

leb Logemani

Convection

Hyper-Diffusio

Operator Splitting

Conclusio

References

Convection

aleb Logemani

Convection

Operator Splitting

Conclusio

Reterences

Hyper-Diffusion

Caleb Logemani

Introduct

Hyper-Diffusion

Operator Splitting

Conclusio

References

■ Hyper-Diffusion Equation

$$u_t + \frac{16}{\Delta x^4} \left(u^3 u_{\xi\xi\xi} \right)_{\xi} = 0$$

Local Discontinuous Galerkin

$$q = \frac{2}{\Delta x} u_{\xi}$$

$$r = \frac{2}{\Delta x} s_{\xi}$$

$$s = \frac{2}{\Delta x} u^{3} r_{\xi}$$

$$u = -\frac{2}{\Delta x} s_{\xi}$$

Local Discontinuous Galerkin

Caleb Logeman

Introducti

Hyper-Diffusion

Operator Splitting

Conclusio

References

$$\begin{aligned} Q_{i}^{\ell} &= -\frac{1}{\Delta x} \left(\int_{-1}^{1} U_{i} \phi_{\xi}^{\ell} \, \mathrm{d}\xi - \mathcal{F}(U)_{i+1/2}^{\ell} + \mathcal{F}(U)_{i-1/2}^{\ell} \right) \\ R_{i}^{\ell} &= -\frac{1}{\Delta x} \left(\int_{-1}^{1} Q_{i} \phi_{\xi}^{\ell} \, \mathrm{d}\xi - \mathcal{F}(Q)_{i+1/2}^{\ell} + \mathcal{F}(Q)_{i-1/2}^{\ell} \right) \\ \eta(\xi) &= (U_{i}^{n})^{3} \\ S_{i}^{\ell} &= \frac{1}{\Delta x} \left(\int_{-1}^{1} (R_{i})_{\xi} \eta(\xi) \phi^{\ell} \, \mathrm{d}\xi \right) \\ &+ \frac{1}{\Delta x} \left(\mathcal{F}(\eta)_{i+1/2} \mathcal{F}(S)_{i+1/2}^{\ell} - \mathcal{F}(\eta)_{i-1/2} \mathcal{F}(S)_{i-1/2}^{\ell} \right) \\ \dot{U}_{i}^{\ell} &= \frac{1}{\Delta x} \left(\int_{-1}^{1} S_{i} \phi_{\xi}^{\ell} \, \mathrm{d}\xi - \mathcal{F}(S)_{i+1/2}^{\ell} + \mathcal{F}(S)_{i-1/2}^{\ell} \right) \end{aligned}$$

Local Discontinuous Galerkin

aleb Logeman

Convection

Hyper-Diffusion

Operator Splitting

Conclusion

References

$$\begin{split} \mathcal{F}(\eta)_{i+1/2} &= \frac{1}{2}(\eta_{i+1}(-1) - \eta_i(1)) \\ \mathcal{F}(\eta)_{i-1/2} &= \frac{1}{2}(\eta_{i-1}(1) - \eta_i(-1)) \\ \mathcal{F}(*)_{i+1/2}^{\ell} &= \phi^{\ell}(1) *_{i+1/2} \end{split}$$

Local Discontinuous Galerkin

Caleb Logeman

Convection

Hyper-Diffusion

Operator Splitting

Conclusion

Conclusio

■ Explicit TVD Runge Kutta

- Severe time step restriction
- $\Delta t \sim \Delta x^4$
- $\Delta x = .1 \rightarrow \Delta t \approx 10^{-4}$
- $\Delta x = .01 \rightarrow \Delta t \approx 10^{-8}$
- Implicit TVD Runge Kutta
 - Linear System Solver
 - Stabilized BiConjugate Gradient
 - MultiGrid Solver

Multigrid Solver

Caleb Logemanr

Convection

Hyper-Diffusion

Operator Splitting

Conclusio

Reference:

Relaxation e.g. Jacobi Relaxation

Multigrid Solver

ogemann

Convection

Hyper-Diffusion

Operator

Conclusio

_ .

V-Cycle

Multigrid Solver

leb Logemanr

Convection

Hyper-Diffusion

Operator Splitting

Conclusion

Operator Splitting

aleb Logeman

ntroduction

Hyper Diffusio

Operator Splitting

Conclusio

- Strang Splitting
 - 1 time step
 - \blacksquare 1/2 time step for convection
 - 1 time step for hyper-diffusion
 - 1/2 time step for convection
 - Second order splitting

Future Work

Conclusion

- Higher dimensions
- Curved surfaces
- Space and time dependent coefficients
- Incorporation with air flow models
- Runge Kutta IMEX

Conclusion

neb Logeman

Convection

Hyper-Diffusio

Operator Splitting

Conclusion

- James Rossmanith
- Alric Rothmayer
- Questions?

Bibliography

leb Logeman

Introduction

Convection

Hyper-Diffusion

Operator

Splitting
Conclusion
References

- [1] Y. Ha, Y.-J. Kim, and T.G. Myers. "On the numerical solution of a driven thin film equation". In: *J. Comp. Phys.* 227.15 (2008), pp. 7246–7263.
- [2] NASA. URL: http://icebox.grc.nasa.gov/gallery/ images/C95_03918.html.
- [3] J.A. Rossmanith. DoGPACK. Available from http://www.dogpack-code.org/.