

파이썬 머신러닝 완벽 가이드 - 분류

목차

- 1. 분류(Classification)의 개요
- 2. 결정트리
- 3. 앙상블 학습
- 4. 랜덤 포레스트
- 5. GBM(Gradient Boosting Machine)
- 6. XGBoost(eXtra Gradient Boost)

1. 분류(Classification)의 개요

- 1. 분류에서의 다양한 머신러닝 알고리즘
 - 베이즈 통계와 생성 모델에 기반한 나이브 베이즈(Naive Bayes)
 - 독립변수와 종속변수의 선형 관계성에 기반한 로지스틱 회귀(Logistic Regression)
 - 데이터 균일도에 따른 규칙 기반의 결정 트리(Decision Tree)
 - 개별 클래스 간의 최대 분류 마진을 효과적으로 찾아주는 서포트 벡터 머신 (Support Vector Machine)
 - 근접 거리를 기준으로 하는 최소 근접 알고리즘(Nearest Neighbor)
 - 심층 연결 기반의 신경망(Neural Network)
 - 서로 다른(또는 같은) 머신러닝 알고리즘을 결합한 앙상블(Ensemble)

2. 결정 트리

▼ 개념

a. 결정트리

- 데이터에 있는 규칙을 학습을 통해 자동으로 찾아내 트리 기반의 분류 규칙을 만드는 것.
- 일반적으로 규칙을 가장 쉽게 표현하는 방법은 if/else 기반으로 나타내는 것.
- 많은 규칙이 있다는 것은 분류를 결정하는 방식이 복잡해진다는 얘기이고, 이는 과적합으로 이어지기 쉬움
- 그러므로 트리의 깊이가 깊어질수록 결정 트리의 예측 성능이 저하될 가능성이 높음.

b. 노드

• 규칙 노드: 규칙 조건이 되는 것

• 리프 노드: 결정된 클래스 값

c. 정보의 균일도를 측정하는 방법

• 정보 이득 지수 = (1 - 엔트로피 지수)

- 엔트로피 지수: 주어진 데이터 집합의 혼잡도 / 서로 다른 값이 섞여 있으면 엔트로피가 높고, 같은 값이 섞여 있으면 엔트로피가 낮다.
- 지니 계수
 - 。 불평등의 정도를 나타내는 통계학적 지수
 - 지니 계수가 낮을수록 균일도가 높은 것으로 지니 계수가 낮은 속성을 기준으로 분할함.

▼ 특징

a. 장단점

- 장점
 - ㅇ 쉽고 직관적임.
 - 특별한 경우를 제외하고 각 피처의 스케일링과 정규화 같은 전처리 작업이 필요 없음.
- 단점: 과적합이 발생하여 정확도가 떨어짐.

b. 파라미터

파라미터 명	설명
min_samples_split	- default = 2 - 노드를 분할하기 위한 최소한의 샘플 데이터 수
min_samples_leaf	- 분할이 될 경우 왼쪽과 오른쪽의 브랜치 노드에서 가져야 할 최소 한의 샘플 데이터 수
max_features	 최적의 분할을 위해 고려할 최대 피처 개수 default = None(전체 피처 선정) "sqrt"는 √(전체 피처 개수) "log"는 log_2 『전체 피처 개수》
max_depth	- 트리의 최대 깊이를 규정 - default = None - 깊이가 깊어지면 min_samples_split 설정대로 최대 분할하여 과 적합할 수 있으므로 적절한 값으로 제어 필요
max_leaf_nodes	- 말단 노드의 최대 개수

c. 과적합

▼ 예제코드 - 붓꽃 데이터

1. 결정 트리 예제 - 붓꽃 데이터

```
# 라이브러리
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
```

1.1 데이터 불러오기

```
# 데이터 불러오기
from sklearn.datasets import load_iris

iris_data = load_iris()
iris_data

# 데이터프레임으로 변환하기
iris_df = pd.DataFrame(data=iris_data.data, columns=iriiris_df
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8
150 ro	ws × 4 columns			

1.2 학습,테스트 데이터 세트 분리

```
# 학습, 테스트 데이터 세트로 분리
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(iri

test_rand

print(X_train.shape, X_test.shape, y_train.shape, y_test)
```

(120, 4) (30, 4) (120,) (30,)

1.3 Decision Tree 생성 및 학습

```
# Decision Tree 생성
from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(random_state=156)

# Decision Tree 학습
clf.fit(X_train,y_train)
```

v DecisionTreeClassifier
DecisionTreeClassifier(random_state=156)

1.4 시각화

```
# Graphviz 시각화 파일 저장
from sklearn.tree import export_graphviz
export_graphviz(clf,
```

```
out_file="tree.dot",
class_names=iris_data.target_names,
impurity=True,
filled=True) # 노드의 시각화 시

# Graphviz 시각화 파일 읽기
import graphviz

with open("./tree.dot") as f:
graph = f.read()
```

graphviz.Source(graph)

1.5 분석 내용

- 루트노드
 - o "samples = 120" : 전체 데이터가 120개
 - "value = [41,40,39]" : Setosa(41개), Versicolor(40개), Virginica(39개)
- 첫번째 리프 노드
 - o "samples = 41" : 샘플 데이터가 41개
 - "class = setosa" : 샘플 데이터 모두가 Setosa이므로 예측 클래스로 결정
- 규칙 노드 1
 - 。 상위 노드에서 "Petal width(mm) ≤ 1.55" 규칙이 True인 규칙 노드
 - o "samples = 38" : 샘플 데이터가 38개
 - o "value = [0, 37, 1]" : Versicolor(37개), Virginica(1개)
- 규칙 노드 2
 - 상위 노드에서 "Petal width(mm) ≤ 1.55" 규칙이 False인 규칙 노드
 - o "samples = 41" : 샘플 데이터가 41개
 - "value = [0, 3, 38]": Versicolor(3개), Virginica(38개)

2. 파라미터 적용

 $2.1 \, \text{max_depth} = 3$

2.2 min_samples_split = 4 (분할 할 수 있는 샘플수를 지정하는 것)

2.3 min_samples_leaf=4 (leaf가 될 수 있는 샘플수를 지정하는 것)

3. 추가 데이터 분석

3.1 Feature importances(특성 중요도)

```
# feature importance 추출
print("Feature importance:\n{0}".format(np.round(clf.fe.print("---" * 20)

# feature importance 매칭
for name, value in zip(iris_data.feature_names, clf.feaprint("{0} : {1:.3f}".format(name, value))
```

```
# feature importance를 column별로 시각화

plt.figure(figsize=(6,4))
sns.barplot(x=clf.feature_importances_, y=iris_data.fea

plt.title("< Feature importance of iris_data >")

plt.show()
```


3.2 결정 트리 과적합(Overfitting)

```
from sklearn.datasets import make_classification
plt.figure(figsize=(8,4))
```


특정한 트리 생성 제약없는 결정 트리의 Decsion Boundary 시각화. clf = DecisionTreeClassifier(random_state=156)

clf.fit(X_features, y_labels)
visualize_boundary(clf, X_features, y_labels)

min_samples_leaf=6 으로 트리 생성 조건을 제약한 Decision Boclf = DecisionTreeClassifier(min_samples_leaf=6, random_visualize_boundary(clf, X_features, y_labels)

3. 앙상블 학습

▼ 개요

a. 앙상블 학습

• 여러 개의 분류기를 생성하고 그 예측을 결합함으로써 보다 정확한 최종 예측을 도출하는 기법을 말함.

b. 장단점

• 장점

- ∘ 성능을 분산시키기 때문에 과적합(overfitting) 감소 효과가 있음.
- 개별 모델 성능이 잘 안 나올 때 앙상블 학습을 이용하면 성능이 향상될 수 있음.

• 단점

- 。 모델 결과에 대한 해석이 어려움.
- 예측 시간이 오래 걸림.

▼ 유형

a. 보팅(Voting) : 같은 하나의 데이터셋을 여러 개의 분류기를 통해 학습하고 예측한 결과를 가지고 보팅을 통해 최종 예측 결과를 선정하는 방식

- 하드 보팅(Hard Voting): 예측한 결과값들 중 다수의 분류기가 결정한 예측값을 최종 보팅 결과값으로 선정하는 방식. (ex. 다수결 원칙)
- 소프트 보팅(Soft Voting): 분류기들의 레이블 값 결정 확률을 모두 더하고 이를 평균해서 이들 중 확률이 가장 높은 레이블 값을 최종 보팅 결과값으로 선정하는 방식

b. 배깅(Bagging) : 부트스트래핑 방식으로 샘플링된 데이터 세트에 대해서 학습을 통해 개별적인 예측을 수행한 결과는 보팅을 통해서 최종 예측 결과를 선정하는 방식

c. 부스팅(Boosting): 여러 개의 분류기가 순차적으로 학습을 수행하되, 앞에서 학습한 분류기가 예측이 틀린 데이터에 대해서는 올바르게 예측할 수 있도록 다음 분류기에게는 가중치(weight)를 부여하면서 학습과 예측을 진행하는 방식

- ▼ 실습 위스콘신 유방암 데이터셋
 - 1. 앙상블 학습 실습예제 위스콘신 유방암 데이터셋

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
```

1.1 데이터셋 불러오기

```
from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

df = pd.DataFrame(cancer.data, columns=cancer.feature_nather the df.head()
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension		worst radius	worst texture	worst perimeter	wors area
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871		25.38	17.33	184.60	2019.0
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667		24.99	23.41	158.80	1956.0
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999		23.57	25.53	152.50	1709.0
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744		14.91	26.50	98.87	567.7
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883		22.54	16.67	152.20	1575.0
5 ro	5 rows × 30 columns														

1.2 학습, 테스트 데이터 세트 분리

1.3 보팅 분류기 및 개별 모델 생성 및 학습

```
# 로지스틱 회귀, KNN 모델
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
lr_clf = LogisticRegression(solver="liblinear")
```

```
knn_clf = KNeighborsClassifier(n_neighbors=8)

# 소프트 보팅 기반의 앙상블 모델로 구현한 분류기 생성
from sklearn.ensemble import VotingClassifier

vo_clf = VotingClassifier(estimators=[("LR",lr_clf),("Kloudy voting="soft")
```

1.4 보팅 분류기 및 개별 모델 평가

```
# VotingClassifier 학습/예측/평가
from sklearn.metrics import accuracy_score

Vo_clf.fit(X_train, y_train)
y_pred = vo_clf.predict(X_test)

print("Votin 분류기 정확도: {0:.4f}".format(accuracy_score

# 개별 모델의 학습 평가
models = [lr_clf, knn_clf]
for model in models:
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    class_name = model.__class__.__name__
    print("{0} 정확도 : {1:.4f}".format(class_name,
```

```
Voting 분류기 정확도: 0.9561
LogisticRegression 정확도 : 0.9474
KNeighborsClassifier 정확도 : 0.9386
```

4. 랜덤 포레스트

▼ 개요

- a. 랜덤 포레스트
 - 배깅의 대표적인 알고리즘 중 하나임.

- 여러 개의 결정 트리 분류기가 전체 데이터에서 배깅 방식으로 각자의 데이터를 샘플링해 개별적으로 학습을 수행한 뒤 최종적으로 모든 분류기가 보팅을 통해 예측 결정을 하게 됨.
- 개별적인 분류기의 기반 알고리즘은 결정 트리이지만 개별 트리가 학습하는 데 이터 세트는 전체 데이터에서 일부가 중첩되게 샘플링된 데이터 세트임.
- b. 부트스트래핑(Boostrapping)
 - 원래의 데이터셋으로부터 랜덤 샘플링을 통해 학습데이터를 늘리는 방법(ex. 복원 추출을 허용한 표본 재추출 방법)
- ▼ 실습 사용자 행동 인식 데이터셋
 - 1. 랜덤 포레스트 학습 예제 사용자 행동 인식 데이터셋
 - 1.1 랜덤 포레스트 학습, 예측, 평가

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# 랜덤 포레스트 학습
rf_clf = RandomForestClassifier(random_state=0, max_dep
rf_clf.fit(X_train, y_train)

# 랜덤 포레스트 예측
y_pred = rf_clf.predict(X_test)

# 랜덤 포레스트 평가
accuracy = accuracy_score(y_test, y_pred)
print("랜덤 포레스트 정확도 : {0:.4f}".format(accuracy))
```

랜덤 포레스트 정확도 : 0.9196

1.2 랜덤 포레스트 하이퍼 파라미터 튜닝

```
from sklearn.model_selection import GridSearchCV
params = {
```

예측 정확도: 0.9260

1.3 특성 중요도 시각화

```
importance_values = rf_clf1.feature_importances_
importances = pd.Series(importance_values, index=X_trai
top_20 = importances.sort_values(ascending=False)[:20]

plt.figure(figsize=(8,6))
plt.title("< Feature importances Top 20 >")
sns.barplot(x=top_20, y=top_20.index)
plt.show()
```


5. GBM(Gradient Boosting Machine)

▼ 개요

- a. 부스팅(Boosting)
 - 여러 개의 약한 학습기를 순차적으로 학습 → 예측하면서 잘못 예측한 데이터에 가중치 부여를 통해 오류를 개선해 나가면서 학습하는 방식.
 - 대표적인 알고리즘 : AdaBoost, GBM, XGBoost, LightGBM

b. GBM

- 에이다부스트와 유사하나, 가중치 업데이트를 경사하강법(Gradient Descent)을 이용하는 차이가 있음.
 - 경사하강법: 기울기를 줄여나감으로써 오류를 최소화.

- 장단점
 - ㅇ 장점
 - 예측 성능이 뛰어남
 - ㅇ 단점
 - 과적합(Overfitting)의 위험이 있음
 - 학습시간이 오래 걸림
- c. 에이다 부스트(AdaBoost)
 - 오류 데이터에 가중치를 부여하면서 부스팅을 수행하는 대표적인 알고리즘
 - 첫번째 학습기(분류기준 1)을 통해 분류, 두번째 학습기(분류기준 2)을 통해 분류, 세번째 학습기(분류기준 3)을 통해 분류한 것으로 각각 가중치를 부여하여 모두 결합해 예측을 수행.

▼ 실습 - 사용자 행동 데이터 세트

- a. GBM 예제 사용자 행동 데이터 세트
 - 1.1 GBM 학습, 예측, 평가

```
# GBM 수행 시간 측정을 위함. 시작 시간 설정.
import time
import warnings

start_time = time.time()
```

```
# GBM 학습
from sklearn.ensemble import GradientBoostingClassifier
gb_clf = GradientBoostingClassifier(random_state=0)
gb_clf.fit(X_train, y_train)

# GBM 예측, 평가
from sklearn.metrics import accuracy_score
y_pred = gb_clf.predict(X_test)
gb_accuracy = accuracy_score(y_test, y_pred)
```

```
print("GBM 정확도: {0:.4f}".format(gb_accuracy))
print("GBM 수행 시간: {0:.1f}".format(time.time() - start
print("----" * 20)
```

1.2 GBM 하이퍼 파라미터 튜닝

```
# 튜닝할 파라미터들 정의
params = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.05, 0.1],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 3, 4],
    'min_samples_leaf': [1, 2, 3]
}
# GridSearchCV를 사용하여 최적의 파라미터 탐색
from sklearn.model_selection import GridSearchCV
grid_cv = GridSearchCV(gb_clf, params, cv=3, n_jobs=-1)
grid_cv.fit(X_train, y_train)
# 최적의 파라미터 출력
best_params = grid_cv.best_params_
print("최적의 파라미터:", best_params)
# 최적의 파라미터를 적용한 GBM 모델 생성 및 학습
best gb clf = GradientBoostingClassifier(random state=0
best_gb_clf.fit(X_train, y_train)
# 예측 및 평가
y_pred_best = best_gb_clf.predict(X_test)
best_gb_accuracy = accuracy_score(y_test, y_pred_best)
# 결과 출력
print("최적 파라미터 적용 GBM 정확도: {0:.4f}".format(best q
print("최적 파라미터 적용 GBM 수행 시간: {0:.1f}".format(time
```

6. XGBoost(eXtra Gradient Boost)

▼ 개요

a. XGBoost

• 트리 기반의 앙상블 학습에서 가장 각광받고 있는 알고리즘 중 하나

b. 장점

- 뛰어난 예측 성능 : 일반적으로 분류와 회귀 영역에서 뛰어난 예측 성능을 발휘
- GBM 대비 빠른 수행 시간 : 일반적인 GBM과 달리 XGBoost는 병렬 수행 및 다양한 기능으로 빠른 수행 성능을 보장. 하지만 GBM에 비해 빠른 편이지 다른 머신러닝 알고리즘에 비해 빠르다는 것은 아님.
- 과적합 규제 : 자체에 과적합 규제 기능으로 과적합에 좀 더 강한 내구성을 가지고 있음
- 나무 가지치기(Tree pruning): max depth 파라미터를 이용하여 트리 분할 깊이를 조절할 수도 있지만, tree pruning으로 더 이상 긍정 이득이 없는 분할 을 가지치기 해서 분할 수를 더 줄이는 추가적인 장점을 가지고 있음
- 자체 내장된 교차 검증: 반복 수행 시마다 내부적으로 학습 데이터 세트와 평가 데이터 세트에 대한 교차 검증을 수행해 최적화된 반복 수행 횟수를 가질 수 있음
- 결손값 자체 처리 : 결손값을 자체 처리할 수 있는 기능을 가지고 있음
- 다양한 평가지표 제공 : 예측 모델의 성능을 평가하기 위한 다양한 평가 지표를 제공 (ex. 분류 작업의 경우 정확도, 정밀도, 재현율, F1 score 등이 가능하고, 회귀 작업의 경우 평균 제곱 오차(MSE)나 R²를 사용)

c. 단점

- 매개변수 튜닝의 어려움: 다양한 매개변수를 활용하여 모델을 조정할 수 있지
 만, 이 매개변수들을 효과적으로 조합하여 최적의 모델을 구축하는 것은 어려울수 있음
- 자원 소모 : 많은 메모리와 프로세싱 파워를 요구함
- 해석이 어려운 모델: 앙상블 학습 방법이기 때문에 앙상블된 모델의 예측과 예측에 기여한 개별 트리의 의미를 해석하기는 어려울 수 있음

▼ 실습 - 위스콘신 유방암 데이터셋

1. 파이썬 래퍼 XGBoost 적용

1.1 데이터 불러오기

```
# 데이터셋 불러오기
from sklearn.datasets import load_breast_cancer

dataset = load_breast_cancer()
X_features= dataset.data
y_label = dataset.target

cancer_df = pd.DataFrame(data=dataset.data, columns=datacancer_df['target']= dataset.target
cancer_df.head(3)
```

1.2 학습, 검증, 테스트 데이터 분리

```
# cancer_df에서 feature용 DataFrame과 Label용 Series 객체 · X_features = cancer_df.iloc[:, :-1]

# 전체 데이터 중 80%는 학습용 데이터, 20%는 테스트용 데이터 추출
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test=train_test_split(X_featest_size=0.2,

# 위에서 만든 X_train, y_train을 다시 쪼개서 90%는 학습과 10%는
X_tr, X_val, y_tr, y_val= train_test_split(X_train, y_tprint(X_train.shape, X_test.shape)
print(X_tr.shape, X_val.shape)
```

```
(455, 30) (114, 30)
(409, 30) (46, 30)
```

만약 구버전 XGBoost에서 DataFrame으로 DMatrix 생성이 안될 경 # 학습, 검증, 테스트용 DMatrix를 생성.

```
import xgboost as xgb

dtr = xgb.DMatrix(data=X_tr, label=y_tr)

dval = xgb.DMatrix(data=X_val, label=y_val)

dtest = xgb.DMatrix(data=X_test , label=y_test)
```

1.3 XGBoost 학습, 예측, 평가

```
[0]
        train-logloss:0.62480
                                 eval-logloss:0.63104
[1]
        train-logloss:0.58674
                                 eval-logloss:0.60478
[2]
        train-logloss:0.55226
                                 eval-logloss:0.58223
[3]
        train-logloss:0.52086
                                 eval-logloss:0.56184
[4]
        train-logloss:0.49192
                                 eval-logloss:0.54118
[5]
        train-logloss:0.46537
                                 eval-logloss:0.52223
[6]
        train-logloss:0.44029
                                 eval-logloss:0.50287
[7]
        train-logloss:0.41666
                                 eval-logloss:0.48620
[8]
        train-logloss:0.39525
                                 eval-logloss:0.46974
[9]
        train-logloss:0.37542
                                 eval-logloss:0.45497
[10]
        train-logloss:0.35701
                                 eval-logloss:0.44131
[11]
        train-logloss:0.33982
                                 eval-logloss:0.43134
[12]
        train-logloss:0.32297
                                 eval-logloss:0.41972
        train-logloss:0.30725
                                 eval-logloss:0.40902
[13]
[14]
        train-logloss:0.29327
                                 eval-logloss:0.39883
[15]
        train-logloss:0.27946
                                 eval-logloss:0.38968
[16]
        train-logloss:0.26691
                                 eval-logloss:0.38150
[17]
        train-logloss:0.25473
                                 eval-logloss:0.37368
[18]
        train-logloss:0.24385
                                 eval-logloss:0.36666
[19]
        train-logloss:0.23338
                                 eval-logloss:0.35994
[20]
        train-logloss:0.22320
                                 eval-logloss:0.35374
[21]
        train-logloss:0.21363
                                 eval-logloss:0.34704
[22]
        train-logloss:0.20487
                                 eval-logloss:0.34206
[23]
        train-logloss:0.19634
                                 eval-logloss:0.33621
[24]
        train-logloss:0.18830
                                 eval-logloss:0.33178
[25]
        train-logloss:0.18093
                                 eval-logloss:0.32774
[26]
        train-logloss:0.17374
                                 eval-logloss:0.32297
[27]
        train-logloss:0.16695
                                 eval-logloss:0.31855
[28]
        train-logloss:0.16059
                                 eval-logloss:0.31495
        train-logloss:0.15450
                                 eval-logloss:0.31173
[29]
[30]
        train-logloss:0.14875
                                 eval-logloss:0.30735
[31]
        train-logloss:0.14329
                                 eval-logloss:0.30463
        train-logloss:0.13807
                                 eval-logloss:0.30242
[32]
                                 eval-logloss:0.29922
[33]
        train-logloss:0.13325
[34]
        train-logloss:0.12864
                                 eval-logloss:0.29722
[247]
        train-logloss:0.00935
                                 eval-logloss:0.23838
        train-logloss:0.00933
                                 eval-logloss:0.23821
[248]
[249]
        train-logloss:0.00931
                                 eval-logloss:0.23872
[250]
        train-logloss:0.00925
                                 eval-logloss:0.23805
```

```
# 예측

pred_probs = xgb_model.predict(dtest)

print('predict() 수행 결과값을 10개만 표시, 예측 확률 값으로 3

print(np.round(pred_probs[:10],3))

# 예측 확률이 0.5 보다 크면 1 , 그렇지 않으면 0 으로 예측값 결정하
```

```
preds = [ 1 if x > 0.5 else 0 for x in pred_probs ] print('예측값 10개만 표시:',preds[:10])
```

```
predict( ) 수행 결과값을 10개만 표시, 예측 확률 값으로 표시됨
[0.938 0.004 0.75 0.049 0.98 1. 0.999 0.999 0.998 0.001]
예측값 10개만 표시: [1, 0, 1, 0, 1, 1, 1, 1, 0]
```

```
# 평가
get_clf_eval(y_test , preds, pred_probs)
```

```
오차 행렬
[[35 2]
[ 2 75]]
정확도: 0.9649, 정밀도: 0.9740, 재현율: 0.9740, F1: 0.9740, AUC:0.9965
```

- 실제 negative를 모델이 negative로 예측 : 35
- 실제 positive를 모델이 positive로 예측: 75

1.4 특성 중요도 시각화

```
# 기본 평가 지표(F 스코어) - 해당 피처가 트리 분할 시 얼마나 자주 from xgboost import plot_importance

fig, ax = plt.subplots(figsize=(10, 12))
plot_importance(xgb_model, ax=ax)
plt.savefig('p239_xgb_feature_importance.tif', format='
```


2. 사이킷런 래퍼 XGBoost 적용

2.1 xgboost 학습, 예측, 평가

```
`# 사이킷런 래퍼 XGBoost 클래스인 XGBClassifier 임포트
from xgboost import XGBClassifier

xgb_wrapper = XGBClassifier(n_estimators=400, learning_
evals = [(X_test, y_test)]

xgb_wrapper.fit(X_train, y_train, early_stopping_rounds=eval_metric="logloss",
```

eval_set=evals, verbose=True) ws100_preds = xgb_wrapper.predict(X_test) ws100_pred_proba = xgb_wrapper.predict_proba(X_test)[:,

```
[0]
        validation_0-logloss:0.56554
[1]
        validation_0-logloss:0.50669
[2]
        validation_0-logloss:0.45868
[3]
        validation_0-logloss:0.41822
[4]
        validation 0-logloss:0.38103
[5]
        validation 0-logloss:0.35137
[6]
        validation 0-logloss:0.32588
[7]
        validation_0-logloss:0.30127
[8]
        validation_0-logloss:0.28197
[9]
        validation 0-logloss:0.26265
[10]
        validation 0-logloss:0.24821
[11]
        validation 0-logloss:0.23231
[12]
        validation_0-logloss:0.22079
[13]
        validation_0-logloss:0.20795
[14]
        validation 0-logloss:0.19764
[15]
        validation 0-logloss:0.18950
        validation_0-logloss:0.18052
[16]
[17]
        validation_0-logloss:0.17246
[18]
        validation 0-logloss:0.16512
[19]
        validation_0-logloss:0.15828
[20]
        validation_0-logloss:0.15436
```

```
[135]
        validation_0-logloss:0.08934
[136]
        validation_0-logloss:0.08891
        validation_0-logloss:0.08949
[137]
[138]
        validation_0-logloss:0.08962
[139]
        validation_0-logloss:0.08969
[140]
        validation_0-logloss:0.08963
[141]
        validation 0-logloss:0.08948
[142]
        validation 0-logloss:0.08961
[143]
        validation_0-logloss:0.09038
[144]
        validation_0-logloss:0.09033
...
[196]
        validation_0-logloss:0.08787
[197]
        validation 0-logloss:0.08790
[198]
        validation_0-logloss:0.08792
[199]
        validation_0-logloss:0.08800
```

get_clf_eval(y_test , ws100_preds, ws100_pred_proba)

```
오차 행렬
[[34 3]
[ 1 76]]
정확도: 0.9649, 정밀도: 0.9620, 재현율: 0.9870, F1: 0.9744, AUC:0.9951
```

2.2 특성 중요도 시각화

fig, ax = plt.subplots(figsize=(10, 12)) # 사이킷런 래퍼 클래스를 입력해도 무방. plot_importance(xgb_wrapper, ax=ax)

