STAT 305 D Exam 2

Show all your work.

- 1. (25 points) Suppose 80% of all students taking a beginning programming course fail to get their first program to run on first submission. Use a binomial distribution and assign probabilities to the possibilities that among a group of six such students,
 - (a) (5 points) all fail on their first submissions.
 - (b) (5 points) at least four fail on their first submissions
 - (c) (5 points) less than four fail on their first submissions.

Continuing to use this binomial model:

- (d) (5 points) What is the mean number who will fail?
- (e) (5 points) What are the variance and standard deviation of the number who will fail?
- 2. (24 points, each part worth 6 points)

Suppose that X is a continuous random variable with probability density of the form

$$f(x) = \begin{cases} k(x^2(1-x)) & \text{for } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

- (a) Evaluate k and sketch a graph of f(x).
- (b) Evaluate $P[X \le .25]$, $P[X \le .75]$, $P[.25 < X \le .75]$, and P[|X .5| > .1].
- (c) Compute EX and $\sqrt{\operatorname{Var} X}$.
- (d) Compute and graph F(x), the cumulative distribution function for X. Read from your graph the .6 quantile of the distribution of X.

3. (26 points) A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf X and Y appears in the accompanying tabulation.

p(x,y)	y = 0	y = 1	y = 2
x = 0	0.10	0.04	0.02
x = 1	0.08	0.20	0.06
x = 2	0.06	0.14	0.30

- (a) (6 points) What is P(X = 1 and Y = 1)?
- (b) (6 points) Compute $P(X \le 1 \text{ and } Y \le 1)$.
- (c) (6 points) Compute the marginal pmf of X and of Y. Using $f_X(x)$, calculate $P(X \leq 1)$.
- (d) (8 points) Are X and Y independent random variables? Explain.
- 4. (25 points) A type of nominal $\frac{3}{4}$ inch plywood is made of five layers. These layers can be thought of as having thicknesses roughly describable as independent random variables with means and standard deviations as follows:

Layer	Mean (in.)	Standard Deviation (in.)
1	.094	.001
2	.156	.002
3	.234	.002
4	.172	.002
5	.094	.001

Find the mean and standard deviation of total thickness associated with the combination of these individual values.