

Statistisk Dataanalyse 1, Kursusuge 6, mandag

DET NATURVIDENSKABELIGE FAKULTET

Overblik

Dias 1/38

Vi skal have "udfyldt" følgende skema over modeller (rækker) og statistiske begreber (søjler):

	Intro	Model	$Est. {+} SE$	ΚI	Test	Kontrol	Præd.
En stikprøve	✓	✓	✓	✓	✓	✓	✓
Ensidet ANOVA	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lineær regr.	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
To stikprøver	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Multipel regr.	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Tosidet ANOVA	nu	nu	nu	nu	nu	nu	nu
Blandede modeller							

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Dagens program

Tosidet variansanalyse (ANOVA)

- Additive model (uden vekselvirkning)
- Model med vekselvirkning
- Forskel på additive effekter og vekselvirkning
- Test for vekselvirkning
- Forskellige parametriseringer (primært af den additive model)

Generel info:

Det er ekstremt vigtigt, at I lærer at løse standardopgaver hurtigt og uden hjælp!

Gå i træning nu og træk på de mange hjælpelærere ...

- Afleveringsopgave til onsdag den 12. oktober
- Gamle eksamensopgaver: Kør selv analyserne hvis der er data
- HS-opgaver minder også om kommende eksamensopgaver

Statistisk Dataanalyse 1, Kursusuge 6, mandag Dias 2/38

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Tosidet ANOVA uden vekselvirkning

DET NATURVIDENSKABELIGE FAKULTET

Eksempel: Højde på studieretninger

Spørgeskema med studerende på Statistisk Dataanalyse 2017: bl.a. info om studieretning og højde.

- Svar fra 50 BB + 42 HV + 31 JØ + 31 NR + 2 andre. Skipper de "2 andre".
- Der mangler desuden højde for en mindre antal studerende $\rightarrow n = 152$

Spørgsmål: Er den gennemsnitlige højde forskellig på studierne?

- Respons: Højde
- Forklarende variabel: Studieretning
- Lægger op til ensidet ANOVA

Statistisk Dataanalyse 1, Kursusuge 6, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Tosidet ANOVA

Køn påvirker (formentlig) både højde og studievalg.

Vores egentlige spørgsmål er nok snarere: Er der en forskel på højden på de fire studieretninger, selv hvis vi justerer for køn?

Ny analyse:

- Respons: Højde
- Forklarende var. Studieretning og køn. Begge er kategoriske
- Tosidet ANOVA

Check modelskemaet.

Ensidet ANOVA

KØBENHAVNS UNIVERSITET

```
oneway <- lm(hojde ~ studie, data = useData)
onesample <- lm(hojde ~ 1, data = useData)
drop1(oneway, test = "F")

## Single term deletions
##
## Model:
## hojde ~ studie
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 11299 662.91
## studie 3 1185.2 12484 672.07 5.1745 0.001985 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Har vi nu vist at "unge menneskers studievalg har noget med deres højde at gøre"? Eller **er der noget vi har overset?**

Statistisk Dataanalyse 1, Kursusuge 6, mandag

DET NATURVIDENSKABELIGE FAKULTET

Statistisk model

Model for tosidet ANOVA uden vekselvirkning, kaldes også den additive model for tosidet ANOVA:

$$højde_i = \alpha_{studie_i} + \beta_{kon_i} + e_i$$

hvor e_i 'erne som sædvanlig er uafhængige $N(0, \sigma^2)$

Parametre:

- Et α per studie: $\alpha_{J\emptyset}$, α_{NR} , α_{HV} , α_{BB}
- Et β per køn: β_M og β_K
- Residualspredning σ

Statistisk Dataanalyse 1, Kursusuge 6, mandag Dias 9/38

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

DET NATURVIDENSKABELIGE FAKULTET

Fortolkning af parameterestimater Se også dagens R-program

```
twoway.add <- lm(hojde ~ studie + kon, data = useData)
## summary(twoway.add)£coef
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          168.105
                                       0.986 170.517
                                                       0.000
## studieHusdyrvidenskab
                           1.121
                                      1.390
                                              0.806
                                                       0.421
## studieJordbrugsøkonomi
                         -0.535
                                      1.509
                                             -0.355
                                                       0.723
## studieNaturressourcer
                            0.253
                                      1.489
                                             0.170
                                                       0.865
## konMand
                           14.523
                                      1.259 11.535
                                                       0.000
```

R vælger en referencegruppe for hver variabel. Her: BB og kvinder.

Følgende estimater anigves:

- "Intercept": Estimeret middelværdi gives for kombinationen af de to referencer, altså for kvindelige BB-studerende
- Estimerede forskelle mellem de andre studieretninger og BB
- Estimeret forskel mellem mænd og kvinder

Additiv tosidet ANOVA

Vi kan allerede det hele: Estimation, modelkontrol, hypotesetest, konfidens- og prædiktionsintervaller fra uge 3-4.

R: Tilføj leddene til 1m, med + imellem:

```
twoway.add <- lm(hojde ~ studie + kon, data=useData)</pre>
```

NB. Det er lidt sværere at bestemme antal frihedsgrader — men det klarer R heldigvis for os.

Hvad nu?

- Modelkontrol: Se dagens R-materiale
- Fortolkning af parameterestimater
- Test for studieretning når vi justerer for køn

Statistisk Dataanalyse 1, Kursusuge 6, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Spørgsmål

- Estimat for gennemsnitshøjde blandt kvindelige BB-stud.?
- Estimat for gennemsnitshøjde blandt mandlige BB-stud.?
- Estimat for gennemsnitshøjde blandt mandlige JØ-stud.?
- Hvilket studie estimeres til at have de højeste studerende (når der er korrigeret for køn)?
- Estimat for σ ?
- Antal frihedsgrader? Er det mærkeligt?
- Hvordan skal *p*-værdierne fortolkes?

Additive effekter vs. vekselvirkning

Statistisk Dataanalyse 1, Kursusuge 6, mandag

KØBENHAVNS UNIVERSITET

Statistisk Dataanalyse 1, Kursusuge 6, mandag

Dias 15/38

DET NATURVIDENSKABELIGE FAKULTET

Prisskilt 1:	Prisskilt 2:
• 1 kugle15	• 1 kugle, uden guf15
• 2 kugler20	• 2 kugler+5
• 3 kugler23	• 3 kugler+8
• 1 kugle med guf19	• med guf+4
• 2 kugler med guf 24	
• 3 kugler med guf 27	

Dermed kan priserne beskrives med kun fire parametre (1+2+1)

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Prisskilt fra isbod

• 1 kugle15
• 2 kugler20
• 3 kugler23
• 1 kugle med guf19
• 2 kugler med guf24
3 kugler med guf 27

Statistisk Dataanalyse 1, Kursusuge 6, mandag

KARENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Eksempel med højdedata

Tilsvarende for den additive model for højdedata

- Der er otte kombinationer af studieretning og køn
- Men kun 1+3+1=5 parametre i den additive model: En for ref-gruppen, tre for studieretningsforskelle, en for kønsforskel.

Vekselvirkning

Når effekten af én variabel af niveuaet af en anden variabel, så siger man at der er **vekselvirkning** mellem de to variable.

Engelsk: Interaction

- Is: Ingen vekselvirkning mellem guf og kugler: Guf kostede 4 kr uanset antal kugler.
 - Ækvivalent: Prisen for ekstra kugler er den samme uanset om der skal guf på eller ej.
- $\bullet\,$ Højde: Antog at kønsforskellen er den samme på alle studier.
 - Ækvivalent: Forskel ml. studier er den samme for begge køn.

Statistisk Dataanalyse 1, Kursusuge 6, mandag

Statistisk Dataanalyse 1, Kursusuge 6, mandag

Dias 19/38

KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET Vekselvirkningsgraf/interaktionsplot Uden vekselvirkning Med vekselvirkning 26 24 20 Pris 0 22 20 18 9 3 2 Antal kugler Antal kugler

Plottet visualiserer vekselvirkning. Kig efter **parallellitet:**

- $\bullet \ \ \mathsf{Parallelle} \ \mathsf{profiler} \ \leftrightarrow \ \mathsf{Ingen} \ \mathsf{vekselvirkning}$
- $\bullet \ \ lkke-parallelle \ profiler \leftrightarrow Vekselvirkning$

Prisskilte uden/med vekselvirkning

Nye priser giver rabat på guf hvis man køber store is:

Gamle priser:

- 1 kugle15
- 2 kugler 20
- 1 kugle med guf19
- 2 kugler med guf24
- 3 kugler med guf27

Nye priser:

- 2 kugler 20
- 3 kugler 23
- 1 kugle med guf19
- 2 kugler med guf22
- 3 kugler med guf23

DET NATURVIDENSKABELIGE FAKULTET

Nu er der vekselvirkning/interaktion! Prisen for guf afhænger af antal kugler: 4/2/0 kr ved 1/2/3 kugler.

Det kræver **seks parametre** at beskrive den nye prisstruktur.

Statistisk Dataanalyse 1, Kursusuge 6, mandag

KØBENHAVNS UNIVERSITET

Vekselvirkningsgraf/interaktionsplot, forventede værdier

DET NATURVIDENSKABELIGE FAKULTET

Eksempel: Højde efter studieretning og køn

Ingen mandlige HV-studerende i datasættet:

- Lidt bøvlet når vi skal have vekselvirkning med \rightarrow vi dropper HV-studerende (selvom det faktisk ikke er nødvendigt)
- Datasættet useData2 indeholder data fra 110 studerende med højderegistreringer: 49 BB, 30 JØ, 31 NR.

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Model med vekselvirkning

Modellen med vekselvirkning lægger ingen restriktioner på de otte middelværdier. Vi skriver

$$højde_i = \alpha_{studie_i} + \beta_{kon_i} + \gamma_{studie_i,kon_i} + e_i$$

eller blot

$$højde_i = \gamma_{studie_i,kon_i} + e_i$$

Dette svarer faktisk til en ensidet ANOVA efter den variabel der inddeler obs. i otte grupper.

Opskrivningen med græske bogstaver ikke så vigtig. Vigtigt:

- at forstå den konceptuelle forskel mellem de to modeller
- at kunne fortolke output/estimater fra R

Statistisk Dataanalyse 1, Kursusuge 6, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Med vekselvirkning

```
useData2 <- filter(useData, !(studie == "Husdyrvidenskab") )
twoway.int <- lm(hojde ~ studie + kon + studie*kon, data=useData2)
round(summary(twoway.int)$coef, digits = 5)
                                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              167.76471 1.09212 153.61443 0.00000
## studieJordbrugsøkonomi
                               -0.45701 2.07657 -0.22008 0.82624
## studieNaturressourcer
                               1.66387 2.02220 0.82280 0.41251
## konMand
                               15.63529 1.97388 7.92109 0.00000
## studieJordbrugsøkonomi:konMand -0.64887 3.06611 -0.21163 0.83281
## studieNaturressourcer:konMand -3.06387 3.02956 -1.01132 0.31421
```

Modellen med vekselvirkning:

- Hvorfor netop seks linjer med estimater?
- Estimat for BB, kvinder? For JØ, kvinder? For JØ, mænd?

Test for vekselvirkning

Statistisk Dataanalyse 1, Kursusuge 6, mandag Dias 25/38

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Vekselvirkningsgraf/interaktionsplot

- Gennemsnit plottes med profiler med den ene variabel på x-aksen og med profiler for niveauerne af den anden var.
- Er profilerne parallelle, på nær tilfældig variation?
- \bullet Parallelle \to tegn på at der ikke er vekselvirkning. Ikke-parallelle \to tegn på at der er vekselvirkning.
 - Under alle omstændigheder nyttig til at forstå samspillet.
- Svært at vurdere om ikke-parallellitet faktisk skyldes vekselvirkning eller blot tilfældig variation
- R: interaction.plot (se dagens R-kode)

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Er der faktisk vekselvirkning?

- Uformelt: Vekselvirkningsgraf/interaktionsplot
- Formelt: Hypotesetest

Statistisk Dataanalyse 1, Kursusuge 6, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Velselvirkningsgraf/interaktionsplot

- Profiler ser ganske parallelle ud, så næppe vekselvirkning
- Helt parallelle profiler på "den ene graf"
 ⇔ Helt parallelle profiler på "den anden graf"

Statistisk Dataanalyse 1, Kursusuge 6, manda Dias 28/38

Hypotesetest

Model uden vekselvirkning er et **specialtilfælde** af model med vekselvirkning \rightarrow de to modeller er nestede \rightarrow *F*-test.

- Hypotese, H_0 : Ingen vekselvirkning mellem studie og køn (dvs. kønseffekt den samme for alle studier, eller omvendt).
- Beskriver modellen med vekselv. faktisk data bedre end modellen uden vekselvirkning?
- Brug anova med de to modeller som argumenter, eller drop1 på model med vekselvirkning.

Statistisk Dataanalyse 1, Kursusuge 6, mandag Dias 29/38

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Konklusion

Der er ikke signifikant vekselv. mellem studie og køn (p=0.59)

Vi ser defor nærmere på R-output fra modellen uden vekselvirkning:

- Der er en sign. kønseffekt $(p \approx 0)$.
- Hvad kan vi aflæse om effekten/forskelle mellem studieretninger?
- Mænd estimeres til at være 14.5 cm (SE 1.26) højere end kvinder;
 95% konfidensinterval (12.0, 17.0)

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

R: Hypotesetest ved brug af anova

```
twoway.add2 <- lm(hojde ~ studie + kon, data = useData2)
anova(twoway.add2, twoway.int)
## Analysis of Variance Table
## Model 1: hojde ~ studie + kon
## Model 2: hojde ~ studie + kon + studie * kon
    Res.Df RSS Df Sum of Sq
                                    F Pr(>F)
       106 4261.1
       104 4217.4 2 43.7 0.5388 0.5851
## summary(twoway.add2)£coef
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          168.105
                                       0.984 170.825
                                                       0.000
## studieJordbrugsøkonomi -0.535
                                      1.506 -0.355
                                                       0.723
## studieNaturressourcer
                            0.253
                                      1.487
                                              0.170
                                                       0.865
## konMand
                           14.523
                                      1.257 11.556
                                                       0.000
```

Statistisk Dataanalyse 1, Kursusuge 6, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Diverse om vekselvirkning

Vekselvirkning ml. A og B siger ikke at der er sammenhæng mellem A og B, men at effekten af A på y afhænger af B.

Vi taler om hovedeffekter og vekselvirkning af de to variable:

- Ofte ligger den primære interesse i hovedeffekterne, men sommetider er vekselvirkningen det primære
- Inddrag kun vekselvirkning hvis det giver faglig mening

Vekselvirkningsmodellen kræver **gentagelser:** Kan ikke fittes hvis der kun er en obs. for hver kombination af de to variable.

DET NATURVIDENSKABELIGE FAKULTET

Test for studieretning når vi justerer for køn: med drop1

Statistisk Dataanalyse 1, Kursusuge 6, mandag Dias 35/38

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Test for studieretning når vi justerer for køn

Statistisk model:

$$h \phi j d e_i = \alpha_{studie_i} + \beta_{kon_i} + e_i$$

Hypotese:

$$H_0: \alpha_{IO} = \alpha_{NR} = \alpha_{BB}$$

Testes med F-test. Flere metoder i R, men med samme resultat:

- Fit stat. model + model under hypotese og brug anova med de to modeller som argumenter. Hvad er nulmodellen her?
- drop1: Kan vi "droppe" hvert af leddene fra modellen?
- Brug ikke anova med kun en model som argument

Statistisk Dataanalyse 1, Kursusuge 6, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Konklusion

Der er **ikke** signifikant forskel på højden af studerende på de tre studieretninger når vi korrigerer for køn (p = 0.88).

I denne situation var vi mest interesseret i den ene variabel (studieretning), men vi kunne også have undersøgt den anden:

- Hypotese, $H_0: \beta_M = \beta_K$
- Testes med F-test eller t-test. Begge giver $p \approx 0$
- Konklusion: Gennemsnitshøjden **er** forskellig for mænd og kvinder, også når vi korrigerer for studieretning

Uden vekselvirkning: Vi startede at sikre os, der er ikke var vekselvirkning \dots

DET NATURVIDENSKABELIGE FAKULTET

Opsummering

Tosidet ANOVA efter to kategoriske variable, A og B:

- Model uden vekselvirkning: A+B
- Model med vekselvirkning: A+B+A*B
- Faktisk mange versioner af modellen med vekselvirkning: A+B+A:B eller A*B eller A:B. Prøv selv!

Estimater:

- R vælger referencegrupper for A og B (i de fleste versioner). Så er interceptet estimatet for referencekombinationen.
- Estimat for andre kombinationer: Interceptestimatet plus de relevante estimater.

Statistisk Dataanalyse 1, Kursusuge 6, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Diverse + kontrol af egen forståelse

Det giver ikke mening af tale om effekt**en** (bestemt form) af en variabel hvis den indgår i vekselvirkning med en anden:

- Fx kan man ikke bestemme estimatet for kønseffekten i modellen hvor studie og køn indgår med vekselvirkning
- Fx kan man ikke teste hovedeffekten af køn i modellen hvor studie og køn indgår med vekselvirkning

Tænk over følgende:

- Hvornår kan man bruge tosidet ANOVA?
- Hvad betyder det at der vekselvirkning mellem to variable?
- Hvordan fitter du en tosidet ANOVA (med/uden vekselvirkning) i R, og hvordan bruger du estimaterne?
- Hvordan undersøger man om de er vekselvirkning?

