

Priority Queue and Heap

Some slides were created by Dr. Jianfeng Ren. Edited by Heshan Du

Exercise 1: insert 20, 5, 4

Exercise 2: remove 4

remove 4

remove 4

Exercise 3: heap sort

 Sort the following sequence in non-increasing order using in-place heap sort:

[3 6 9 2 5 8]

- Original sequence: [3 6 9 2 5 8]
- Array: [3 6 9 2 5 8]

3

• Original sequence: [3 6 9 2 5 8]

• Array: [36 9 2 5 8]

• Original sequence: [3 6 9 2 5 8]

• Array: [<u>6 3</u> 9 2 5 8]

• Original sequence: [3 6 9 2 5 8]

• Array: [<u>6 3 9</u> 2 5 8]

• Original sequence: [3 6 9 2 5 8]

• Array: [936 258]

• Original sequence: [3 6 9 2 5 8]

• Original sequence: [3 6 9 2 5 8]

• Original sequence: [3 6 9 2 5 8]

• Original sequence: [3 6 9 2 5 8]

• Array: [9 5 6 2 3 8]

• Original sequence: [3 6 9 2 5 8]

• Array: [9 5 8 2 3 6]

• Original heap: [958236]

• Array: [9 5 8 2 3 6]

• Original heap: [958236]

• Original heap: [958236]

• Original heap: [958236]

• Original heap: [9 5 8 2 3 6]

• Original heap: [9 5 8 2 3 6]

• Array: [986253]

• Original heap: [9 5 8 2 3 6]

• Array: [986523]

• Original heap: [9 5 8 2 3 6]

• Array: [986532]

- Original heap: [9 5 8 2 3 6]
- Array: [986532]

2

- Original heap: [958236]
- Array: [986532]

Exercise 4

Illustrate the execution of the selection-sort algorithm on the following input sequence:

(22, 15, 36, 44, 10, 3, 9, 13, 29, 25).

Exercise 4: Solution

22 15	36	44	10	3			29	25
3 15	36	44	10	22	9	13	29	25
39	36	44	10	22	15	13	29	25
39	10	44	36	22	15	13	29	25
3 9	10	13	36	22	15	44	29	25
3 9	10	13	15	22	36	44	29	25
3 9	10	13	15	22	36	44	29	25
3 9	10	13	15	22	25	44	29	36
3 9	10	13	15	22	25	29	44	36
3 9	10	13	15	22	25	29	36	44

Exercise 5

Illustrate the execution of the insertion-sort algorithm on the following input sequence:

(22, 15, 36, 44, 10, 3, 9, 13, 29, 25).

Exercise 5: Solution

22	15	36	44	10	3	9	13	29	25
15	22	36	44	10	3	9	13	29	25
15	22	36	44	10	3	9	13	29	25
10	15	22	36	44	3	9	13	29	25
3	10	15	22	36	44	9	13	29	25
3	9	10	15	22	36	44	13	29	25
3	9	10	13	15	22	36	44	29	25
3	9	10	13	15	22	29	36	44	25
3	9	10	13	15	22	25	29	36	44

Exercise 6

Show that the sum $\sum_{i=1}^{n} \log i$, appearing in the analysis of heap-sort, is $O(n \log n)$.

Exercise 6: Solution

Proof: To show $\sum_{i=1}^{n} \log i$ is $O(n \log n)$, by the definition of O, we need to show that there exist a positive real constant c and a positive integer n_0 such that for all $n \geq n_0$, $\sum_{i=1}^{n} \log i \leq cn \log n$.

$$\sum_{i=1}^{n} \log i = \log 1 + \log 2 + \dots + \log n$$

$$\leq n \log n$$

for every $n \ge 1$. Let c = 1, $n_0 = 1$. By the definition of O, we have $\sum_{i=1}^{n} \log i$ is $O(n \log n)$.

Exercise 7

Show that the sum $\sum_{i=1}^{n} \log i$, appearing in the analysis of heap-sort, is $\Omega(n \log n)$.

Exercise 7: Solution

Proof: To show $\sum_{i=1}^{n} \log i$ is $\Omega(n \log n)$, by the definition of Ω , we need to show that there exist a positive real constant c and a positive integer n_0 such that for all $n \geq n_0$, $\sum_{i=1}^{n} \log i \geq c n \log n$.

$$\sum_{i=1}^{n} \log i = \log 1 + \log 2 + \dots + \log n$$

$$\geq \frac{n}{2} \log \frac{n}{2} \quad \text{(consider the last } \frac{n}{2} \text{ terms)}$$

$$= \frac{n}{2} \log n - \frac{n}{2}$$

Let $c = \frac{1}{4}$. By solving $\frac{n}{2} \log n - \frac{n}{2} \ge cn \log n$, we have $n \ge 4$. So we let $n_0 = 4$. By the definition of Ω , we have $\sum_{i=1}^{n} \log i$ is $\Omega(n \log n)$.