DAA ASSIGNMENT 2

Report on: Efficient Algorithms for Densest Subgraph Discovery

Ву,

ID	Name
2020B4A71567H	T.Sai Sathwik
2022A7PS0041H	G Sri Vishwahitha
2022A7PS2014H	Snigdha Kaipa
2021B4A72488H	Sidharth Saxena
2022A7PS0047H	Shivansh Shanker Gupta

Guided By: Prof. Apurba Das, CSIS Department, BITS Pilani Hyderabad Campus

1. Introduction

Graph mining is a vital field with applications ranging from social networks to biology. One fundamental problem is **Densest Subgraph Discovery (DSD)**, which involves finding the "most tightly connected" part of a large graph.

In their paper *Efficient Algorithms for Densest Subgraph Discovery*, Yixiang Fang et al. propose a faster, smarter way to solve this problem by combining classical graph cores (k-cores) and new optimisations.

Their work leads to algorithms **up to 10,000× faster** than previous methods, without sacrificing accuracy.

This report provides a comprehensive walkthrough of the paper's ideas, methods, and contributions.

2. Key Concepts

Before diving into the solutions, it is important to establish a few core concepts:

2.1 Density

In a subgraph, **density** measures how tightly connected the vertices are. It is typically defined as:

Density=Number of edgesNumber of vertices\text{Density} = \frac{\text{Number of edges}}{\text{Number of vertices}}Density=Number of verticesNumber of edges

Higher density indicates a more cohesive, tighter subgraph.

2.2 k-Cores

A **k-core** is a subgraph where every node has at least **k neighbours** within that subgraph.

• Low k (e.g., k=1) = loosely connected.

• **High k** = tightly connected group.

Finding k-cores allows us to focus on denser regions of a graph and ignore the sparsely connected parts.

2.3 (k, Ψ)-Cores

 (k, Ψ) -core generalises k-cores:

Instead of just counting edges (2-cliques), we can define cores based on any pattern Ψ , such as:

- 3-cliques (triangles)
- Diamonds
- Other structures

This allows pattern-based density analysis.

3. Problem Statement

Goal:

Given a large graph G(V, E)), find a **subgraph** that has the **highest density**, either based on:

- Edge density (edges per vertex), or
- h-clique density (e.g., number of triangles per vertex for h=3).

Challenges:

- The number of possible subgraphs is enormous.
- Traditional methods are slow (rely on expensive max-flow computations).

Thus, we need faster and scalable algorithms to solve this.

4. Real-World Application (Simple Example)

Consider a social network:

- Nodes = People
- Edges = Friendships

Finding the **densest subgraph** helps identify **tight communities** (e.g., college groups, project teams).

Example:

In a network with 10 people, the group {F, G, H, I}, having 5 edges among them (density = 5/4) may represent a **close-knit friend group**.

- Such insights are vital for:
 - Community detection
 - Viral marketing
 - Event recommendations

5. Algorithms to Solve Densest Subgraph Discovery

Once the problem is clear, the paper proposes two main algorithms:

5.1 Algorithm 1: Exact (Baseline Algorithm)

Objective:

Find the exact densest subgraph using binary search and flow network construction.

Procedure:

- 1. Initialize:
 - Lower (1) and upper (u) bounds for density guesses.
- 2. Binary Search:
 - Guess a density $\alpha = (1 + u)/2$.
 - Build a flow network:
 - Source → Vertices
 - Vertices → Sink
 - Vertices ↔ Clique-instances
 - Solve for the **minimum s-t cut**:
 - If a subgraph with density $\geq \alpha$ exists, update 1.
 - Otherwise, update u.
- 3. Stopping:
 - When the difference between 1 and u is very small.

Limitations of Algorithm 1:

- A flow network is built on the entire graph → Huge size, slow computation.
- **Inefficient** for very large graphs.

5.2 Motivation for a Better Approach

Even though Algorithm 1 is exact, it becomes **impractical for large graphs**.

Thus, the authors propose **Algorithm 4** — a smarter, faster method that:

- Works on smaller subgraphs (cores).
- Reduces the size of the flow network.
- Improves the efficiency significantly.

5.3 Algorithm 4: CoreExact (New Exact Algorithm)

Objective:

Find the exact densest subgraph **much faster** by narrowing the search to (k,Ψ) -cores.

Procedure:

- 1. Core Decomposition:
 - Decompose the graph into (k, Ψ)-cores.
 - o Identify cores with high-density potential.

2. Locate Densest Subgraph:

• Use tighter lower and upper bounds on possible densities.

3. Binary Search (Smarter):

- Only perform binary search within **small**, **dense cores**.
- Build much smaller flow networks.
- As binary search progresses, cores become even smaller.

4. Output:

o Return the densest subgraph found.

5. Output Results and Graphical Analysis

Output Results for as733 and netscience Datasets

as733 Dataset (Summary)

Vertices: 6474Edges: 13895

k (Clique size)	Densest Subgraph Vertices	Number of h-Cliques	Density	Execution Time (ms)
2	40	355	8.875	288229
3	33	1185	35.9091	633709
4	32	2724	85.125	367144

5	30	3803	126.767	354023
6	28	3455	123.393	375418

(Full results and vertex lists are attached as file)

Netscience Dataset (Summary)

Vertices: 1461Edges: 2742

h (Clique size)	Densest Subgraph Vertices	Number of h-Cliques	Densit y	Execution Time (ms)
2	20	190	9.5	11523
3	20	1140	57	23619
4	20	4845	242.25	36212
5	20	15504	775.2	74719
6	20	38760	1938	190238

(Full results and vertex lists are attached as file)

Netscience Dataset Analysis h=2 Number of vertices: 1461 Number of edges: 2742 Looking for cliques of size 2 and 1 Number of cliques of size 2: 2742 Number of cliques of size 1: 1461 Densest subgraph vertices: 645 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 Number of vertices in densest subgraph: 20 Number of h-cliques in densest subgraph: 190 Density of densest subgraph: 9.5 Execution time: 11523 milliseconds h=3 Number of vertices: 1461 Number of edges: 2742 Looking for cliques of size 3 and 2 Number of cliques of size 3: 3764 Number of cliques of size 2: 2742 Densest subgraph vertices: 645 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 Number of vertices in densest subgraph: 20 Number of h-cliques in densest subgraph: 1140 Density of densest subgraph: 57 Execution time: 23619 milliseconds h=4Number of vertices: 1461 Number of edges: 2742

6. Graphical Results

Deneget eubaranh vertices

Looking for cliques of size 4 and 3 Number of cliques of size 4: 7159 Number of cliques of size 3: 3764

Analysis:

- The blue bars (Nucleus) consistently show the highest execution times across all clique sizes, especially for larger cliques (4-clique, 5-clique, 6-clique).
- Peel/pp (red) and Inc (green) are much faster, with Inc being the fastest for edge and triangle detection, and both Inc and Peel/pp performing similarly for larger cliques.
- This demonstrates that core-based and incremental algorithms (Peel/pp, Inc) are significantly more efficient than the classical Nucleus approach, especially as the clique size increases.

Analysis:

- Both datasets (netscience.txt in orange, as 733.txt in red) show a sharp increase in execution time as the clique size h increases.
- For netscience.txt, there is a spike at h=4, followed by a dip and then a steep rise for higher values of h.
- For as 733.txt, the execution time increases steadily with h, reaching over 120,000 ms for h=6.
- This trend highlights the computational challenge of densest subgraph discovery as the pattern complexity (clique size) grows, reinforcing the need for scalable algorithms.

Analysis:

- The purple bars (Exact) indicate much higher execution times compared to the yellow bars (CoreExp) across all clique sizes.
- The performance gap widens as the clique size increases, with CoreExp achieving execution times up to two orders of magnitude faster than the Exact algorithm for larger cliques.
- This confirms the effectiveness of the core-based optimization (CoreExp) in drastically reducing computation time while maintaining exactness.

Overall Insights

- Algorithm 1 (Exact), while accurate, is impractical for large graphs or higher-order patterns due to high computational cost.
- Algorithm 4 (CoreExact/CoreExp) leverages core decomposition to focus computation on smaller, denser regions, achieving the same accuracy but with vastly improved speed and scalability.

- Experimental results across multiple datasets and clique sizes consistently show that core-based methods outperform traditional approaches, particularly as the complexity of the pattern (clique size) increases.
- Scalability is a critical advantage of the new methods, making densest subgraph discovery feasible for real-world, large-scale networks.

Aspect	Algorithm 1 (Exact)	Algorithm 4 (CoreExact)
Graph size	Full graph	Smaller (k, Ψ)-cores
Flow network size	Very large	Much smaller
Search	Blind binary search	Smart, tighter search
Speed	Slow	Very fast
Accuracy	Exact	Exact

Trade-off:

- Same accuracy.
- Much higher speed and scalability.

6. Benefits and Trade-offs of the Algorithms

Algorithm	Benefits	Trade-offs
Algorithm 1 (Exact)	Guaranteed exact solution	Very slow on large graphs
Algorithm 4 (CoreExact)	Guaranteed exact solution, fast	Slightly more complex logic, needs core decomposition

CoreExact achieves exact results without the scalability issues.

7. Conclusion

This research **revolutionises densest subgraph discovery** by introducing core-based optimisation techniques.

By cleverly shrinking the problem size and tightening density bounds, they provide **algorithms** that are exact, fast, and scalable.

Their methods are confirmed through **extensive experiments** on real-world datasets, showing improvements up to **10,000×** over previous approaches.

8. Extension: From Edge-Density to Pattern-Density (Triangles, Diamonds, etc.)

Traditionally, density was defined based on edges (2-cliques).

However, **real-world structures** are often more complex:

- Research collaborations (triangles of co-authorship)
- Friend groups (triangles in social networks)
- Biological motifs (diamonds in protein networks)

Thus, they extend their methods to **pattern-density**:

- **3-clique density** = based on the number of triangles.
- **Diamond density** = based on specific 4-node patterns.
- This makes their algorithms even more powerful and generalizable.

Dataset Links:

Netscience:

http://www-personal.umich.edu/~mejn/netdata/

As-733:

https://snap.stanford.edu/data/as-733.html