Transformation method

Prof. (Dr.) Rajib Kumar Bhattacharjya

Professor, Department of Civil Engineering Indian Institute of Technology Guwahati, India

Room No. 005, M Block

Email: rkbc@iitg.ernet.in, Ph. No 2428

Minimize

$$f(x) = x^3 - 10x - 2x^2 + 10$$

Subject to
$$g(x) = x \ge 3$$

Or, $g(x) = x - 3 \ge 0$

The problem can be written as

$$F(x,R) = f(x) + R\langle g(x) \rangle^2$$

Where,

$$\langle g(x) \rangle = 0 \text{ if } x \ge 3$$

$$\langle g(x) \rangle = g(x)$$
 otherwise

CE 602: Optimization Method

The bracket operator $\langle \ \rangle$ can be implemented using min(g,0) function

Minimize

$$f(x) = x^3 - 10x - 2x^2 + 10$$

Subject to
$$g(x) = x \ge 3$$

Or, $g(x) = x - 3 \ge 0$

The problem can be written as

$$F(x,R) = (x^3 - 10x - 2x^2 + 10) + R\langle x - 3 \rangle^2$$

$$F(x,R) = (x^3 - 10x - 2x^2 + 10) + R\langle x - 3 \rangle^2$$

$$F(x,R) = (x^3 - 10x - 2x^2 + 10) + R(min(x - 3,0))^2$$

Minimize $F(x,R) = (x^3 - 10x - 2x^2 + 10) + R(min(x - 3,0))^2$

By changing R value, it is possible to avoid the infeasible solution

The minimization of the transformed function will provide the optimal solution which is in the feasible region only

Minimize

Subject to
$$g(x) = x \ge 3$$

Or, $g(x) = x - 3 \ge 0$

The problem can also be converted as

$$F(x,R) = (x^3 - 10x - 2x^2 + 10) + R \frac{1}{g(x)}$$

$$F(x,R) = (x^3 - 10x - 2x^2 + 10) + R \frac{1}{(x-3)}$$

$$F(x,R) = (x^3 - 10x - 2x^2 + 10) + R \frac{1}{(x-3)}$$

This term is added in feasible side only

Minimize
$$F(x,R) = (x^3 - 10x - 2x^2 + 10) + R \frac{1}{(x-3)}$$

By changing R value, it is possible to avoid the infeasible solution

The minimization of the transformed function will provide the optimal solution which is in the feasible region only

Exterior penalty method

Interior penalty method

The transformation function can be written as

$$F(X,R) = f(X) + \Psi(g(X),h(X))$$

This term is called Penalty term

R Is called penalty parameters

Parabolic penalty

$$\Psi = R[h(x)]$$

Log penalty

$$\Psi = -Rln[g(x)]$$

Inverse penalty

$$\Psi = R\left[\frac{1}{g(x)}\right]$$

Bracket operator

$$\Psi = R\langle g(x)\rangle$$

Take an example

Minimize
$$f = (x_1 - 4)^2 + (x_2 - 4)^2$$

Subject to
$$g = x_1 + x_2 - 5$$

The transform function can be written as

Minimize
$$F = (x_1 - 4)^2 + (x_2 - 4)^2 + R(x_1 + x_2 - 5)^2$$

Minimize
$$f = (x_1 - 4)^2 + (x_2 - 4)^2$$

Subject to $g = x_1 + x_2 - 5$

Subject to
$$g = x_1 + x_2 - 5$$

Minimize
$$F = (x_1 - 4)^2 + (x_2 - 4)^2 + R(x_1 + x_2 - 5)^2$$

Optimal solution is

3.250 3.250

Optimal solution is

3.000

3.000

