cummeRbund: Visualization and Exploration of Cufflinks High-throughput Sequencing Data

Loyal A. Goff, Cole Trapnell 1 April, 2011

Contents

1	Introduction	1			
2	CummeRbund Classes2.1 CuffSet Class2.2 CuffData Class2.3 CuffFeatureSet Class2.4 CuffFeature Class	2 2			
3	Reading cuffdiff output 3.1 Adding additional feature annotation	4 4			
4	Global statistics				
5	Accessing Data 5.1 Writing your own SQL accessors	9 11			
6	Creating Gene Sets 6.1 Geneset level plots	12 12			
7	Individual Genes 7.1 Gene-level plots	17 18			
8	Miscellaneous	18			
9	Session info	21			

1 Introduction

cummeRbund is a visualization package for Cufflinks high-throughput sequencing data. The base class, cuffSet is a 'pointer' to cufflinks data that are stored out-of-memory in a sqlite database.

2 CummeRbund Classes

2.1 CuffSet Class

A pointer class to control access to the sqlite tables holding the Cufflinks data. The primary slot is @DB which contains the RSQLite connection object. The additional slots (genes, isoforms, TSS, and CDS) are each instances of the *Cuff-Data* class and are pointers to sets of tables for each data subtype. This is the default class created by *readCufflinks*. By default, *CuffData* accessor methods applied to a *CuffSet* class will operate on the 'genes' slot.

2.2 CuffData Class

The CuffData class is also a pointer class to the SQL backend, but each instance is specific for a data subtype (genes, isoforms, TSS, CDS). Again, there is an @DB slot that contains the RSQLite connection object. There are several accessor, setter, and plotting methods that allow for global analysis of all features within a CuffData class. Subsetting is currently being re-written, however, it is primarily done through the 'gene_id' field. Available slots for the CuffData class are:

- DB: RSQLite connection object
- tables: A list of tables in the SQLite DB that contain the cufflinks data.
- filters: A *list* of filters for subsetting (not implemented yet).
- type: A character field describing the data (ie. 'genes', 'isoforms', 'TSS', 'CDS', 'other')
- idField: The name of the identifying index field for this object (eg. 'gene_id' for type='gene', or 'isoform_id' for type='isoform')

Making the best use of either the CuffSet or CuffData classes will enable you to keep the entire dataset out of memory and significantly improve performance for large cufflinks datasets.

2.3 CuffFeatureSet Class

The CuffFeatureSet class is a data-storage container that holds all available data for a pre-determined list of features. Slots for FPKM data, differential regulation data, and feature-level annotation are all available. Unlike the previous classes, this class contains no connection information to the SQL database, but rather contains several slots with data.frame objects storing multiple-features worth of information. There are available accessors, and plotting methods that are designed to present multiple-features worth of information (eg. heatmaps, scatterplots, etc) Available slots for a CuffFeatureSet object include:

• annotation: Holds all feature-level annotation information for all features in object.

- fpkm: A data frame of FPKM data across all samples, for all features in object.
- diff: A data frame of differential expression/regulation data for all features in object.

A specialized sub-class of *CuffFeatureSet* is the *CuffGeneSet* class. This subclass adds additional slots to contain all isoforms, TSS, and CDS information for a given set of gene_ids. The *CuffGeneSet* class is designed to aggregate all relevant information for a set of genes into one object for easy analysis and/or manipulation. The *CuffGeneSet* object adds the following slots:

- ids: A 'character' list of all gene_ids used in object.
- isoforms: A CuffFeatureSet object for all isoforms of genes in object.
- TSS: A CuffFeatureSet object for all TSS of genes in object.
- CDS: A CuffFeatureSet object for all CDS of genes in object.

2.4 CuffFeature Class

The CuffFeature class is designed for single-feature-level data analysis and plotting. The methods available for this object are designed to analyze or visualize information about a specific feature. This is a 'data' object, as opposed to a 'pointer' object to the database backend. There is a validity requirement that a CuffFeature object only point to data from a single feature. Available slots for a CuffFeature object include:

- annotation: Holds feature-level annotation information for a given feature.
- fpkm: A data frame of FPKM data across all samples for a given feature.
- diff: A data frame of differential expression/regulation data for a given feature.

A specialized sub-class of *CuffFeature* is the *CuffGene* class. This subclass adds additional slots to contain all isoform, TSS, and CDS information for a given gene. The *CuffGene* object adds the following slots:

- id: The common 'gene_id' for all data in object
- isoforms: A CuffFeature object for all isoforms of a given gene.
- TSS: A CuffFeature object for all TSS of a given gene.
- CDS: A CuffFeature object for all CDS of a given gene.

Note: Future versions of cummeRbund may try to collapse the redundant functionality of the CuffFeature and CuffFeatureSet classes.

3 Reading cuffdiff output

One of the principle benefits of using cummeRbund is that data are stored in a SQLite database. This allows for out-of-memory analysis of data, quick retrieval, and only a one-time cost to setup the tables. By default, cummeRbund assumes that all output files from cuffdiff are in the current working directory. To read these files, populate the 'cuffData.db' database backend, and return the CuffSet pointer object, you can do the following.

```
> library(cummeRbund)
> fileDir <- ("../../extdata/")
> cuff <- readCufflinks(dir = fileDir)
> cuff

CuffSet instance with:
        3 samples
        400 genes
        1203 isoforms
        575 TSS
        545 CDS
        960 promoters
        1725 splicing
        696 relCDS
```

Again, by default dir is assumed to be the current working directory and cuff<readCufflinks() should work if all appropriate files are in the current working directory. Should you need to rebuild the SQLite backend for any reason, you can add the option rebuild=T to readCufflinks. Once the database is created, readCufflinks will default to using the SQL backend and should not need to rebuild this database. Each R session should begin with a call to readCufflinks so as to initialize the database connection and create an object with the appropriate RSQLite connection information.

3.1 Adding additional feature annotation

Gene- or feature-level annotation can be permanently added to the database tables for future querying. If you have a data.frame where the first column contains the 'tracking_id' (eg. 'gene_id' for genes, 'isoform_id' for isoforms, etc). You can easily add feature level annotation using the addFeatures() function:

By default, features added to a *CuffSet* object are assumed to be gene-level annotations, but the level can selected using the argument *level*. Features added to a *CuffData* object are assumed to be of the same type as the object@type value (e.g. gene-level features for 'genes', isoform-level features for isoforms, etc.)

4 Global statistics

Several plotting methods are available that allow for quality-control or global analysis of cufflinks data. For example, to assess the distributions of FPKM scores across samples, you can use the *csDensity* plot (Figure 1).

```
> dens <- csDensity(cuff@genes)
> dens
```


Figure 1: Density plot per sample of cufflinks output FPKM values.

Boxplots can be visualized using the *csBoxplot* method (Figure 2).

```
> b <- csBoxplot(cuff@genes)
> b
```

Pairwise comparisons can be made by using csScatter. You must specify the sample names to use for the x and y axes:

```
> s <- csScatter(cuff@genes, "hESC", "Fibroblasts",
+          smooth = T)
> s
```


Figure 2: Box plot of FPKM values from cufflinks output.

Volcano plots are also available for the $\it CuffData$ objects. Again, you must specify the comparisons by sample name.

```
> v \leftarrow csVolcano(cuff@genes, "hESC", "Fibroblasts") > v
```


Figure 3: Scatter plot comparing the FPKM values of two samples from cufflinks output.

Figure 4: Volcano plot of ln fold change vs significance.

5 Accessing Data

Feature-level information can be accessed directly from a *CuffData* object using the *fpkm*, *diffData*, or *features* methods:

```
> gene.features <- features(cuff@genes)
> head(gene.features)
      gene_id class_code nearest_ref_id gene_short_name
1 XLOC_000001
                     <NA>
                                                     <NA>
                                    <NA>
2 XLOC_000002
                     <NA>
                                     <NA>
                                                    OR4F5
3 XLOC_000003
                     <NA>
                                    <NA>
                                                     <NA>
4 XLOC_000004
                     <NA>
                                     <NA>
                                                      <NA>
5 XLOC_000005
                     <NA>
                                     <NA>
                                                      <NA>
6 XLOC_000006
                     <NA>
                                     <NA>
                                                   OR4F16
               locus length coverage gene_id
    chr1:11873-29961
                          NA
1
                                   NA
                                          <NA>
2
    chr1:69090-70008
                          NA
                                   NA
                                          <NA>
3 chr1:321083-321114
                          NA
                                   NA
                                          <NA>
4 chr1:321145-321223
                                          <NA>
                          NA
                                   NA
5 chr1:322036-328580
                          NA
                                   NA
                                          <NA>
6 chr1:367658-368595
                                          <NA>
                          NA
                                   NA
> gene.fpkm <- fpkm(cuff@genes)</pre>
> head(gene.fpkm)
      gene_id sample_name
                                fpkm
                                         conf_hi conf_lo
1 XLOC_000001 Fibroblasts 16.401100
                                       428.14700
                                                        0
2 XLOC_000001
                     hESC 0.723836
                                         3.01108
                                                        0
                       iPS 54.067200 1402.31000
3 XLOC_000001
                                                        0
4 XLOC_000002 Fibroblasts
                            0.000000
                                         0.00000
                                                        0
                     hESC
                                         0.00000
5 XLOC_000002
                            0.000000
                                                        0
6 XLOC_000002
                      iPS 0.000000
                                         0.00000
  quant_status
1
       LOWDATA
2
            OK
3
       LOWDATA
4
            OK
5
            OK
6
            OK
> isoform.fpkm <- fpkm(cuff@isoforms)</pre>
> head(isoform.fpkm)
      isoform_id sample_name
                                   fpkm conf_hi conf_lo
1 TCONS_00000001 Fibroblasts 11.910700 19.96650
                                                   3.85498
2 TCONS_00000001
                         hESC 0.000000 0.00000 0.00000
```

```
3 TCONS_00000001
                         iPS 9.563700 23.68410 0.00000
4 TCONS_00000002 Fibroblasts 0.000000 8.55378 0.00000
5 TCONS_00000002
                  hESC 0.723836 3.01108 0.00000
6 TCONS_00000002
                        iPS 32.934400 47.93760 17.93130
  quant_status
1
            OK
2
            OK
3
       LOWDATA
4
            OK
5
            OK
6
            OK
> gene.diff <- diffData(cuff@genes)</pre>
> head(gene.diff)
      gene_id sample_1
                          sample_2 status
                                              value_1
                                                         value_2
1 XLOC_000001
                  hESC Fibroblasts
                                       OK 7.23836e-01
                                                         16.4011
2 XLOC_000002
                  hESC Fibroblasts NOTEST 0.00000e+00
                                                           0.0000
3 XLOC_000003
                  hESC Fibroblasts NOTEST 0.00000e+00
                                                           0.0000
4 XLOC_000004
                  hESC Fibroblasts
                                       OK 1.20000e+06 22616.4000
5 XLOC_000005
                  hESC Fibroblasts
                                       OK 1.13903e+03
                                                         41.1644
                  hESC Fibroblasts NOTEST 0.00000e+00
6 XLOC_000006
                                                           0.0000
  ln_fold_change test_stat p_value q_value significant
         4.50198 -0.246654 0.805176 0.893616
1
2
         0.00000 0.000000 1.000000 1.000000
                                                      no
3
         0.00000 0.000000 1.000000 1.000000
                                                      nο
4
        -5.72952 1.310270 0.190105 0.300329
                                                      no
5
        -4.79027 10.857600 0.000000 0.000000
                                                     yes
         0.00000 0.000000 1.000000 1.000000
6
```

Vectors of sample names and feature names are available by using the *samples* and *featureNames* methods:

To facilitate Bioconductor-like operations, an 'FPKM-matrix' can be returned easily using the fpkmMatrix method:

```
> gene.matrix <- fpkmMatrix(cuff@genes)
> head(gene.matrix)
```

	hESC	${\tt Fibroblasts}$	iPS
XLOC_000001	7.23836e-01	16.4011	54.06720
XLOC_000002	0.00000e+00	0.0000	0.00000
XLOC_000003	0.00000e+00	0.0000	0.00000
XLOC_000004	1.20000e+06	22616.4000	0.00000
XLOC_000005	1.13903e+03	41.1644	944.30800
XLOC_000006	0.00000e+00	0.0000	9.00455

5.1 Writing your own SQL accessors

Since the cufflinks is a SQLite database backend, if you are familiar with SQL and/or RSQLite query construction, you can simply design your own SQL queries to access the data that you are after. PUT DATABASE SCHEMA HERE...

6 Creating Gene Sets

Gene Sets (stored in a *CuffGeneSet* object) can be created using the *getGenes* method on a CuffSet object. You must first create a vector of 'gene_ids' to identify the genes you wish to select:

```
> myGeneIds <- sample(features(cuff@genes)$gene_id,
      20)
> myGeneIds
 [1] "XLOC_000116" "XLOC_000133" "XLOC_000159" "XLOC_000201"
 [5] "XLOC_001221" "XLOC_000143" "XLOC_000067" "XLOC_001368"
 [9] "XLOC_001262" "XLOC_000152" "XLOC_001381" "XLOC_001217"
[13] "XLOC_001252" "XLOC_000012" "XLOC_000093" "XLOC_001349"
[17] "XLOC_001295" "XLOC_001360" "XLOC_000057" "XLOC_000044"
> myGenes <- getGenes(cuff, myGeneIds)
> myGenes
CuffGeneSet instance for genes c("XLOC_000012", "XLOC_000044", "XLOC_000057", "XLOC_000067",
Short name:
                    NA GABRD CCDC27 C1orf211 ANGPTL7 PRAMEF2 CTRC SPEN PADI3 KLHDC7A C1orf13
Slots:
         annotation
         fpkm
         diff
```

CuffFeatureSet instance of size 76

CuffFeatureSet instance of size 23

CuffFeatureSet instance of size 15

The same fpkm, fpkmMatrix, features, diffData, samples, and featureNames are available for instances of the CuffGeneSet class.

6.1 Geneset level plots

isoforms

TSS

CDS

There are several plotting functions available for gene-set-level visualization:

```
> h <- csHeatmap(myGenes, cluster = "both")
> h

> s <- csScatter(myGenes, "Fibroblasts", "hESC", smooth = T)
> s

> v <- csVolcano(myGenes, cluster = "both")
> v

Similar plots can be made for all sub-level features of a CuffGeneSet class by specifiying which slot you would like to plot (eg. @isoforms,@TSS,@CDS).
> ih <- csHeatmap(myGenes@isoforms, cluster = "both")
> ih
```


Figure 5: Heatmap of FPKM values for a random sample of 20 genes.

Figure 6: Scatterplot of FPKM values for a random sample of 20 genes between Fibroblasts and H1_hESC.

Figure 7: Volcano plot of FPKM vs significance values for a random sample of 20 genes between 2 conditions.

Figure 8: Heatmap of FPKM values of isoforms for a random sample of 20 genes.

7 Individual Genes

An individual CuffGene object can be created by using the getGene function for a given 'gene_id'.

```
> myGeneId <- "PINK1"
> myGene <- getGene(cuff, myGeneId)
> myGene
CuffGene instance for gene PINK1
Short name:
                    PINK1
Slots:
         annotation
         fpkm
         diff
         isoforms
                          CuffFeature instance of size 2
         TSS
                             CuffFeature instance of size 2
         CDS
                             CuffFeature instance of size 2
> head(fpkm(myGene))
      gene_id sample_name
                              fpkm conf_hi conf_lo
1 XLOC_000172 Fibroblasts 2919.340 4002.960 1835.730
                     hESC 693.465 813.869 573.062
2 XLOC_000172
3 XLOC_000172
                      iPS 1598.040 2282.380 913.710
  quant_status
1
            OK
2
            OK
3
            OK
> head(fpkm(myGene@isoforms))
      isoform_id sample_name
                                 fpkm conf_hi
                                                  conf_lo
1 TCONS_00000480 Fibroblasts 2101.640 3111.330 1091.9400
2 TCONS_00000481 Fibroblasts 817.704 1391.700
                                                243.7120
3 TCONS_00000480
                        hESC
                             573.512 668.688
                                                478.3370
                        hESC 119.953 152.675
4 TCONS_00000481
                                                 87.2311
5 TCONS_00000480
                         iPS 1598.040 2282.380
                                                913.7100
6 TCONS_00000481
                         iPS
                                0.000
                                         0.000
                                                  0.0000
  quant_status
1
            OK
2
            OK
3
            OK
4
            OK
5
            OK
6
            OK
```

7.1 Gene-level plots

> gl <- expressionPlot(myGene)</pre>

> gl

Figure 9: Line plot of FPKM expression values for a given gene

- > gb <- expressionBarplot(myGene)</pre>
- > gb
- > igb <- expressionBarplot(myGene@isoforms)</pre>
- > igb

8 Miscellaneous

• All plotting functions return ggplot objects and the resulting objects can be manipulated/faceted/altered using standard ggplot2 methods.

Figure 10: Bar plot of FPKM expression values for a given gene

- There are occasional DB connectivity issues that arise. Not entirely sure why yet. If necessary, just readCufflinks again and this should solve connectivity issues with a new RSQLite connection object. If connectivity continues to be a problem, try cuff<-readCufflinks(rebuild=T)
- I am still working on fully documenting each of the methods. There are a good number of arguments that exist, but might be hard to find without looking at the source.

Figure 11: Bar plot of FPKM expression values for all isoforms of a given gene

9 Session info

```
> sessionInfo()
R version 2.12.1 (2010-12-16)
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
locale:
[1] C/en_US.utf-8/C/C/en_US.utf-8/en_US.utf-8
attached base packages:
[1] grid
              stats
                        graphics grDevices utils
                                                      datasets
[7] methods
             base
other attached packages:
[1] cummeRbund_0.1.3 ggplot2_0.8.9
                                      proto_0.3-8
[4] reshape_0.8.3
                    plyr_1.4
                                      RSQLite_0.9-4
[7] DBI_0.2-5
loaded via a namespace (and not attached):
[1] RColorBrewer_1.0-2 digest_0.4.2
                                     tools_2.12.1
```