EE 234 EXPERIMENT # 6

BJT (Bipolar Junction Transistor) Characteristics

OBJECTIVE:

- To test the BJT transistor and identify its type and its three terminal leads.
- To study experimentally the static characteristics of forward and reverse biased 3904(plastic), 3906(plastic), & BC107 (metal) BJT transistors.
- To understand how to analysis practically the DC (V_C , V_B , V_E) and DC (I_C , I_B , I_E)
- To understand the Transistor modes of operations.

EQUIPMENT:

Breadboard /DMM /Avometer /FG /CRO/Curve Tracer / BJT transistors: 3904 (plastic), 3906 (plastic), & BC107 (metal).

PART (A): Testing BJT Type (NPN or PNP):

Procedure:

- To test the <u>BJT type & identify its leads three terminals (Base, Emitter or Collector)</u>, we use the <u>Avoimeter</u> by the following procedure and filling the table below:
- 1- We connect the (positive) lead of the <u>Avometer</u> with the mid lead terminals (<u>Base 2</u>) of the transistor and the other the (negative) lead of the <u>Avometer</u> to one end terminals (<u>Emitter 1</u> or Collector 3) of the transistor.
- 2- Measure resistance R and V, if we have <u>large reading</u> and zero voltage, we need to connect the (<u>negative</u>) lead of the <u>Avometer</u> with the mid lead terminals (Base 2).
- 3- Measure resistance R and V, if we have small reading and ~ 0.8 V, then:

check the polarity of the <u>Avometer</u> that connect the (<u>Base</u> 2) terminal of the transistor (if its <u>positive</u> then its <u>NPN transistor</u>) & (if its <u>negative</u> then its <u>PNP transistor</u>).

Type	BC107 (metal)	3904 (plastic)	3906(plastic)
NPN or PNP			

Done By: Dr.Manal Alsaif

NPN for large reading

NPN for small reading

PNP for large reading

PNP for small reading

PART (B): The BJT Characteristics:

Procedure:

- Using the curve tracer in the lab room, we will obtain a curve between Ic & VCE at different steps IB of for the output characteristic of the BJT transistor & find <u>h parameters</u> values <u>practically</u> from the <u>slope of the curve</u> using the following formulas:
- $h_{fe}=B_{AC} = \Delta I_C/\Delta I_B \mid V_{CE}=constant = > \alpha_{AC} = B_{AC}/(B_{AC}+1)$ =.....<1
- h_{oe} = 1/ro = Δ I_C/ Δ V_{CE} | I_B=constant =..... > ro =......Ω.
- Note: $h_{ie} = r\pi = \Delta V_{BE}/\Delta I_B \mid V_{CE} = constant = \Omega$. Will be obtained by the input characteristic of the BJT transistor using <u>the curve</u> submit by Engineer.

PART (C): Dc analysis of the BJT circuit:

Find VC, VB, VE, and the mode of operation for both figures 1 & 2 circuits below for VBB= -5V, 2.5V and 10 V. Also, Find the mode of operation for each VBB. Set the analysis to bias points. Summarized all the values in the tables below.

Fig.1

VBB	VC	VB	VE	Mode of operation	Justify your answer
-5V					
2.5V					
10V					

Fig.2

VBB	VC	VB	VE	Mode of operation	Justify your answer
-5V					
2.5V					
10V					

Pre-Spice analysis: (10 points)

- 1- Simulate both figures 1 & 2 circuits using spice OrCAD and show your output simulations.
- 2- Find VC, VB, VE for both figures 1 & 2 circuits for VBB= -5V, 2.5V and 10V. Set the analysis to bias points. Summarized all the values in tables.

Discussion:

1- For all three BJT transistors used in the lab find (B_{AC} , α_{AC} , ro) parameters using curve tracer?

<u>EXPERIMENT # 6</u> <u>BJT (Bipolar Junction Transistor) Characteristics</u>

Data sheet

Part (A):

Type	3904(plastic)	3906 (plastic)	BC107 (metal)
NPN or PNP			

Part (B):

Calculation using the curves of the curve tracer in the appendix for BJTs characteristics.

Part (C):

VBB	VC	VB	VE	Mode of operation	Justify your answer
-5V					
2.5V					
10V					

Fig.1

VBB	VC	VB	VE	Mode of operation	Justify your answer
-5V					
2.5V					
10V					

Fig.2

Appendix for BJTs characteristics (curve tracer prints out part B):

BC 107

TEKTRONIX 571 Curve Tracer

BC 107

3904

TEKTRONIX 571 Curve Tracer

Screen copy (since power up) #1

