

Why should we care about Computer Vision

Computer Vision / Deep Learning is Everywhere

- Google, Facebook, Uber, Apple
 - Strong deep learning / computer vision groups hiring everywhere..
 - Beyond Research: Development
 - Image Search
 - Automated Driving

Startups Sold Everyday

Vision Factory, EuVision, Flutter....

Computer Vision Works!

Surprisingly recent development

What is the goal of Computer Vision

What is the goal of Computer Vision

To create autonomous systems that "understand" visual data

What does it mean to understand?

"What does it mean, to see? The plain man's answer (and Aristotle's, too). would be, to know what is where by looking."

-- David Marr, Vision (1982)

"What does it mean, to see? The plain man's answer (and Aristotle's, too). would be, to know what is where by looking."

-- David Marr, Vision (1982)

In other words, vision is the process of discovering from images what is present in the world, and where it is."

Answer #1: pixel of brightness 43 at position (124,54) ...and depth .7 meters

So we're done?

So we're done?

No!

Measurement vs. Perception

Brightness: Measurement vs. Perception

Brightness: Measurement vs. Perception

Proof!

Measurement

Length

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze muelue/index.html

Measurement

 Capturing physical quantities like pixel brightness, depth, etc.

Perception/Understanding

- a high-level representation that captures the semantic structure of the scene and its constituent objects.
- Subjective Depends on Task and Agent
- Intersection of what you see and what you believe (prior knowledge)

...but why do we care about perception?

The goals of computer vision (what + where) are in terms of what <u>humans</u> care about.

Slide Credit: Abhinav Gupta

Surface Normal Segmentation

Input Image

Why are these problems hard?

Challenges 1: view point variation

Challenges 2: illumination

Challenges 3: occlusion

Challenges 4: scale

Challenges 5: deformation

Challenges 6: background clutter

Challenges 7: object intra-class variation

Challenges 8: local ambiguity

slide by Fei-Fei, Fergus &

Challenges 9: the world behind the

How do we solve it?

In the days of old

About 4 years ago...

In the days of old

- Take original image
- Do some feature preprocessing
 - Histogram of Oriented Gradients (HOG)
 - SIFT
 - SURF
- Run through some classifier
 - Often SVMs or Decision Trees (Specifically random forests)
 - We'll cover SVMs later in class (similar to perceptron)

Histograms of oriented gradients

From Deva Ramanan's lake Como slides

Lowe's SIFT features

FIGURE 5.14: To construct a SIFT descriptor for a neighborhood, we place a grid over the rectified neighborhood. Each grid is divided into a subgrid, and a gradient estimate is computed at the center of each subgrid element. This gradient estimate is a weighted average of nearby gradients, with weights chosen so that gradients outside the subgrid cell contribute. The gradient estimates in each subgrid element are accumulated into an orientation histogram. Each gradient votes for its orientation, with a vote weighted by its magnitude and by its distance to the center of the neighborhood. The resulting orientation histograms are stacked to give a single feature vector. This is normalized to have unit norm; then terms in the normalized feature vector are thresholded, and the vector is normalized again.

Deep Learning Era

- We can actually learn better representations directly from raw pixel values!
- Run through Convolutional Neural Networks, and other types of Neural Networks
 - You'll probably cover neural networks and CNNs later in class

What Changed?

More Computational Power

Better Algorithms

Most Importantly

More Data!!!

Revisiting "Understanding"

 Is it actually enough to just know what's in an image and where?

Q: Do you see a fruit that Gallagher would likely smash with the Sledge-O-Matic?

Clearly more here

Idea 1: Caption Generation

a car is parked in the middle of nowhere .

a wooden table and chairs arranged in a room .

there is a cat sitting on a shelf.

a little boy with a bunch of friends on the street .

a ferry boat on a marina with a group of people .

Problem: No good evaluations

Evaluation
COCO Caption
Challenge

Next try: Visual Question Answering

What color are her eyes?
What is the mustache made of?

How many slices of pizza are there? Is this a vegetarian pizza?

Is this person expecting company? What is just under the tree?

Does it appear to be rainy?

Does this person have 20/20 vision?

- Input
 - I: An image (MS COCO)
 - Q: A question about the image
- Output
 - A: The answer to the question

Visual Dialog

A man and a woman are holding umbrellas

His umbrella is black

Hers is multi-colored

I think 3. They are occluded

What color is his umbrella?

What about hers?

How many other people are in the image?

How many are men?

Do we need "embodiment"

 Perhaps we can only judge how good perception / language understanding is in the context of an agent

Other Interesting Directions

Challenges: learning with minimal supervision

Visual Reasoning

Inferring and Executing Programs for Visual Reasoning,

Johnson et al., ICCV 2017

61

Incorporating Outside Knowledge

Using Knowledge Graphs

Using Web Search

How I would solve the question

How I would solve the question

A: Yes

Use Query to get info

