

Analytical Geometry and Linear Algebra II, Lab 1

The geometry of linear equation

Gaussian elimination

Matrix notation and matrix multiplication

Warm up

Rewrite the following system in the matrix form:

$$\begin{cases} 3x + 4y - 2z = 1 \\ 3y - 2z + x = -2 \\ 5x - 7z - 2y = 3 \end{cases}$$

1.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and
$$\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$

3.
$$\begin{vmatrix} 2 & 0 & 2 \\ 0 & 2 & and \\ 2 & 3 & 3 \end{vmatrix}$$

1.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and
$$\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$
 Ans: line

$$\begin{array}{c|c}
1 \\
0 \\
0
\end{array}
 \text{ and } \begin{bmatrix}
0 \\
2 \\
3
\end{bmatrix}$$

3.
$$\begin{vmatrix} 2 & 0 & 2 \\ 0 & 2 & and \\ 2 & 3 & 3 \end{vmatrix}$$

1.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and
$$\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$
 Ans: line

2.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 and
$$\begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$
 Ans: plane

3.
$$\begin{vmatrix} 2 & 0 & 2 \\ 0 & 2 & and \\ 2 & 3 \end{vmatrix}$$

1.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and
$$\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$
 Ans: line

2.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 and
$$\begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$
 Ans: plane

3.
$$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$ Ans: whole space

Draw
$$v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
 and $w = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ and $v + w$, $v - w$ in a single xy plane

Explain, why the system is singular?

$$\begin{cases} u+v+w=2\\ u+2v+3w=1\\ v+2w=0 \end{cases}$$

What value should replace that last zero on the right side, to allow the equations to have solutions, and what is one of the solutions?

Example 2. Singular (incurable)

Lec 1, page 11

$$\begin{cases} u+v+w = \\ 2u+2v+5w = \\ 4u+4v+8w = \end{cases} \Rightarrow \begin{cases} u+v+w = \\ 3w = \\ 4w = \end{cases}$$

There is no exchange of equations that can avoid zero in the second pivot position. The equations themselves may be solvable or unsolvable. If the last two equations are 3w=6 and 4w=7, there is no solution. If those two equations happen to be consistent as in 3w=6 and 4w=8 then this singular case has an infinity of solutions. We know that w=2, but the first equation cannot decide both u and v.

What does it mean, pivot point?

Definition

The pivot or pivot element is the element of a matrix, or an array, which is selected first on a particular step by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations.

Explain, why the system is singular?

$$\begin{cases} u+v+w=2\\ u+2v+3w=1\\ v+2w=0 \end{cases}$$

What value should replace that last zero on the right side, to allow the equations to have solutions, and what is one of the solutions?

- 1. Choose a coefficient b that makes this system singular.
- 2. Then choose a right-hand side *g* that makes it solvable.
- 3. Find two solutions in that singular case.

$$\begin{cases} 2x + by = 16 \\ 4x + 8y = g \end{cases}$$

Give 3x3 examples (not just the zero matrix):

- 1. a diagonal matrix: $a_{ij} = 0$, if $i \neq j$;
- 2. a symmetric matrix: $a_{ij} = a_{ji}$ for all i and j;
- 3. an upper triangular matrix: $a_{ij} = 0$, if i > j;
- 4. a skew-symmetric matrix: $a_{ij} = -a_{ji}$ for all i and j.

Obtain a Reduced Row Echelon Form (rref) of

$$\begin{cases} 2u + 3v + 0w = 0 \\ 4u + 5v + w = 3 \\ 2u - 1v - 3w = 5 \end{cases}$$

The difference between REF and RREF

Gaussian elimination vs Gauss-Jordan elimination

Gaussian elimination refers to the process until it has reached its upper triangular. **Gauss-Jordan elimination** is the algorithm for converting a matrix into RREF.

The **Row Echelon Form** is not unique

$$\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 7 \end{bmatrix} \xrightarrow{\text{add row 2 to row 1}} \begin{bmatrix} 1 & 4 & 6 \\ 0 & 1 & 7 \end{bmatrix}.$$

Every matrix has a unique Reduced Row Echelon Form

$$\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 7 \end{bmatrix} \xrightarrow{\text{subtract } 3 \times (\text{row } 2) \text{ from row } 1} \begin{bmatrix} 1 & 0 & -22 \\ 0 & 1 & 7 \end{bmatrix}.$$

Obtain a Reduced Row Echelon Form (rref) of

$$\begin{cases} 2u + 3v + 0w = 0 \\ 4u + 5v + w = 3 \\ 2u - 1v - 3w = 5 \end{cases}$$

Ans:
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Reference material

• Lectures 1 - 3

