In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [3]:

data = pd.read_csv('Downloads\weatherHistory.csv' , parse_dates = ['Formatted Date'] , inde

In [4]:

data.head()

Out[4]:

	Summary	Precip Type	Temperature (C)	Apparent Temperature (C)	Humidity	Wind Speed (km/h)	Wind Bearing (degrees)	Visi
Formatted Date								
2006-04-01 00:00:00+02:00	Partly Cloudy	rain	9.472222	7.388889	0.89	14.1197	251.0	15.
2006-04-01 01:00:00+02:00	Partly Cloudy	rain	9.355556	7.227778	0.86	14.2646	259.0	15.
2006-04-01 02:00:00+02:00	Mostly Cloudy	rain	9.377778	9.377778	0.89	3.9284	204.0	14.
2006-04-01 03:00:00+02:00	Partly Cloudy	rain	8.288889	5.944444	0.83	14.1036	269.0	15.
2006-04-01 04:00:00+02:00	Mostly Cloudy	rain	8.755556	6.977778	0.83	11.0446	259.0	15.
4								•

In [5]:

```
data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 96453 entries, 2006-04-01 00:00:00+02:00 to 2016-09-09 23:00:00+02:00
Data columns (total 11 columns):
    Column
 #
                              Non-Null Count Dtype
     ----
                              -----
0
    Summary
                              96453 non-null object
 1
    Precip Type
                              95936 non-null object
 2
    Temperature (C)
                              96453 non-null float64
 3
    Apparent Temperature (C) 96453 non-null float64
    Humidity
                              96453 non-null float64
 4
 5
    Wind Speed (km/h)
                              96453 non-null float64
 6
    Wind Bearing (degrees)
                              96453 non-null float64
 7
    Visibility (km)
                              96453 non-null float64
    Loud Cover
                              96453 non-null float64
 8
    Pressure (millibars)
 9
                              96453 non-null float64
 10 Daily Summary
                              96453 non-null object
dtypes: float64(8), object(3)
memory usage: 8.8+ MB
```

In [6]:

```
data.isnull().sum() # there are 517 null columns
```

Out[6]:

Summary	0
Precip Type	517
Temperature (C)	0
Apparent Temperature (C)	0
Humidity	0
Wind Speed (km/h)	0
Wind Bearing (degrees)	0
Visibility (km)	0
Loud Cover	0
Pressure (millibars)	0
Daily Summary	0
dtype: int64	

In [7]:

```
new_data = data.dropna() # remove null columns and store it in a new data set
```

In [8]:

```
new_data.info()
```

<class 'pandas.core.frame.DataFrame'>

Index: 95936 entries, 2006-04-01 00:00:00+02:00 to 2016-09-09 23:00:00+02:00

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Summary	95936 non-null	object
1	Precip Type	95936 non-null	object
2	Temperature (C)	95936 non-null	float64
3	Apparent Temperature (C)	95936 non-null	float64
4	Humidity	95936 non-null	float64
5	Wind Speed (km/h)	95936 non-null	float64
6	Wind Bearing (degrees)	95936 non-null	float64
7	Visibility (km)	95936 non-null	float64
8	Loud Cover	95936 non-null	float64
9	Pressure (millibars)	95936 non-null	float64
10	Daily Summary	95936 non-null	object

dtypes: float64(8), object(3)

memory usage: 8.8+ MB

In [9]:

new_data.describe()

Out[9]:

	Temperature (C)	Apparent Temperature (C)	Humidity	Wind Speed (km/h)	' Bearing		(
count	95936.000000	95936.000000	95936.000000	95936.000000	95936.000000	95936.000000	95
mean	11.940976	10.862531	0.734841	10.804936	187.518773	10.362402	
std	9.570671	10.717812	0.195724	6.920727	107.385351	4.173780	
min	-21.822222	-27.716667	0.000000	0.000000	0.000000	0.000000	
25%	4.604167	2.276389	0.600000	5.796000	116.000000	8.372000	
50%	12.033333	12.033333	0.780000	9.933700	180.000000	10.046400	
75%	18.844444	18.844444	0.890000	14.135800	290.000000	14.812000	
max	39.905556	39.344444	1.000000	63.852600	359.000000	16.100000	
4							•

In [10]:

```
new_data.index = pd.to_datetime(new_data.index , utc =True)
```

In [11]:

resampled_data = new_data.resample('M').mean() # resample accroading to Month end ('M')

In [12]:

resampled_data.head()

Out[12]:

	Temperature (C)	Apparent Temperature (C)	Humidity	Wind Speed (km/h)	Wind Bearing (degrees)	Visibility (km)	Loud Cover
Formatted Date							
2005-12-31 00:00:00+00:00	0.577778	-4.050000	0.890000	17.114300	140.000000	9.982000	0.0
2006-01-31 00:00:00+00:00	-1.677942	-4.173708	0.834610	8.894211	161.018817	7.894064	0.0
2006-02-28 00:00:00+00:00	-0.065394	-2.990716	0.843467	10.957008	197.886905	7.418794	0.0
2006-03-31 00:00:00+00:00	4.559274	1.969780	0.778737	14.421488	195.059140	9.602590	0.0
2006-04-30 00:00:00+00:00	12.635031	12.098827	0.728625	10.930670	191.877778	10.626760	0.0
4							•

In [13]:

resampled_data.tail()

Out[13]:

	Temperature (C)	Apparent Temperature (C)	Humidity	Wind Speed (km/h)	Wind Bearing (degrees)	Visibility (km)	Loud Cover
Formatted Date							
2016-08-31 00:00:00+00:00	21.420296	21.383094	0.674046	9.151378	184.563172	13.948140	0.0
2016-09-30 00:00:00+00:00	18.467924	18.355833	0.688833	6.849029	177.738889	13.723260	0.0
2016-10-31 00:00:00+00:00	10.593141	9.825775	0.827951	11.075846	206.046914	9.208206	0.0
2016-11-30 00:00:00+00:00	5.158800	2.860089	0.848847	10.507636	163.690511	8.725824	0.0
2016-12-31 00:00:00+00:00	1.239158	-2.017272	0.887981	11.024860	179.064603	7.460627	0.0
4							•

In [14]:

resampled_data['month'] = resampled_data.index.month

In [15]:

resampled_data['year'] = resampled_data.index.year

In [16]:

resampled_data.head()

Out[16]:

	Temperature (C)	Apparent Temperature (C)	Humidity	Wind Speed (km/h)	Wind Bearing (degrees)	Visibility (km)	Loud Cover
Formatted Date							
2005-12-31 00:00:00+00:00	0.577778	-4.050000	0.890000	17.114300	140.000000	9.982000	0.0
2006-01-31 00:00:00+00:00	-1.677942	-4.173708	0.834610	8.894211	161.018817	7.894064	0.0
2006-02-28 00:00:00+00:00	-0.065394	-2.990716	0.843467	10.957008	197.886905	7.418794	0.0
2006-03-31 00:00:00+00:00	4.559274	1.969780	0.778737	14.421488	195.059140	9.602590	0.0
2006-04-30 00:00:00+00:00	12.635031	12.098827	0.728625	10.930670	191.877778	10.626760	0.0
4							>

In [17]:

resampled_data.index = resampled_data.index.date

In [18]:

resampled_data = resampled_data[1:] # remove column with year 2005 column

In [19]:

resampled_data.head()

Out[19]:

	Temperature (C)	Apparent Temperature (C)	Humidity	Wind Speed (km/h)	Wind Bearing (degrees)	Visibility (km)	Loud Cover	Pressı (milliba
2006- 01-31	-1.677942	-4.173708	0.834610	8.894211	161.018817	7.894064	0.0	1021.2049
2006- 02-28	-0.065394	-2.990716	0.843467	10.957008	197.886905	7.418794	0.0	995.1839
2006- 03-31	4.559274	1.969780	0.778737	14.421488	195.059140	9.602590	0.0	976.4362
2006- 04-30	12.635031	12.098827	0.728625	10.930670	191.877778	10.626760	0.0	1013.4936
2006- 05-31	15.650732	15.539479	0.721801	10.174161	209.310484	11.748066	0.0	1016.6297
4								•

In [20]:

```
month_to_month_AT = {}
for month in range(1,13):
    month_to_month_AT[month] = list(resampled_data[resampled_data['month'] == month]['Appar
```

In [21]:

In [22]:

```
month_to_month_Humidity = {}
for month in range(1,13):
   month_to_month_Humidity[month] = list(resampled_data[resampled_data['month'] == month][
```

In [23]:

```
def find_avg_difference(month_dict):
    difference = []
    for month in range(1,13):
        difference.append(np.mean(month_dict[month]))
    return difference
```

In [24]:

```
AT_difference_monthly = find_avg_difference(month_to_month_AT)
Humidity_difference_monthly = find_avg_difference(month_to_month_Humidity)
```

In [25]:

```
plt.plot(AT_difference_monthly)
plt.title('Monthly Average Data(2006-2016) of AT')
```

Out[25]:

Text(0.5, 1.0, 'Monthly Average Data(2006-2016) of AT')

In [26]:

plt.plot(Humidity_difference_monthly)

Out[26]:

[<matplotlib.lines.Line2D at 0x1dda78c3310>]

In [27]:

new_data.index = new_data.index.date

In [28]:

new_data.index = pd.DatetimeIndex(new_data.index)

In [29]:

pd.options.mode.chained_assignment = None

```
In [30]:
```

```
new_data['month'] = new_data.index.month
new_data['year'] = new_data.index.year
```

In [31]:

In [32]:

```
AT_monthly_average = find_average_monthly_AT_or_Humidity('Apparent Temperature (C)')
Humidity_monthly_average = find_average_monthly_AT_or_Humidity('Humidity')
```

In [33]:

```
AT = pd.DataFrame(AT_monthly_average)
AT['year'] = range(2006,2017)
```

In [34]:

```
H = pd.DataFrame(Humidity_monthly_average)
H['year'] = range(2006,2017)
```

In [35]:

```
for month in range(1,13):
    sns.barplot(x = AT['year'] , y = AT[month])

plt.title('Bar plot for Month :' + title[month])
    plt.show()
```

Bar plot for Month :July

25
20
15 -

In [36]:

```
for month in range(1,13):
    sns.barplot(x = H['year'] , y = H[month])

plt.title('Bar plot for Month :' + title[month])
    plt.show()
```


In [37]:

```
def plot_Humidty_and_AT():
    for month in range(1,12):
        plt.plot(range(2006,2017),AT_monthly_average[month] , label = 'AT' , color = 'red')
        plt.plot(range(2006,2017),Humidity_monthly_average[month] , label = 'Humidity')
        plt.legend()
        plt.title('AT and Humidity (Without Normalization) for Month : '+ title[month])
        plt.show()
```

In [38]:

In [41]:

%matplotlib notebook

In [42]:

```
sns.barplot(H['year'] , H[4])
plt.title('Humidity For April Month')
plt.show()
```

C:\Users\Sameeksha Vishwakarm\ML\lib\site-packages\seaborn_decorators.py:3 6: FutureWarning: Pass the following variables as keyword args: x, y. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misin terpretation.

In [43]:

```
sns.barplot(AT['year'] , AT[4])
plt.title('Apparent Temperature For April Month')
plt.show()
```

C:\Users\Sameeksha Vishwakarm\ML\lib\site-packages\seaborn_decorators.py:3 6: FutureWarning: Pass the following variables as keyword args: x, y. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misin terpretation.

In [44]:

```
plt.plot(range(2006,2017),AT_monthly_average[4] , label = 'Apparent Temperature(C)' , color
plt.plot(range(2006,2017),Humidity_monthly_average[4] , label = 'Humidity')
plt.legend()
plt.title('Apparent Temperature vs Humidity for April Month')
plt.show()
```


In [45]:

```
sns.barplot(H['year'] , H[6])
plt.title('Humidity For June Month')
plt.show()
```

C:\Users\Sameeksha Vishwakarm\ML\lib\site-packages\seaborn_decorators.py:3 6: FutureWarning: Pass the following variables as keyword args: x, y. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misin terpretation.

In [46]:

```
sns.barplot(AT['year'] , AT[6])
plt.title('Apparent Temperature For June Month')
plt.show()
```

C:\Users\Sameeksha Vishwakarm\ML\lib\site-packages\seaborn_decorators.py:3 6: FutureWarning: Pass the following variables as keyword args: x, y. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misin terpretation.

In [47]:

```
plt.plot(range(2006,2017),AT_monthly_average[6] , label = 'Apparent Tempreature(C)' , color
plt.plot(range(2006,2017),Humidity_monthly_average[6] , label = 'Humidity')
plt.legend()
plt.title('Apparent Temperature vs Humidity for June Month')
plt.show()
```


In [48]:

print("Completed by Sameeksha Vishwakarma")

Completed by Sameeksha Vishwakarma

In []: