Álgebra Linear e Geometria Analítica B 2014/15

Departamento de Matemática

Slides da 1ª Semana de aulas

O material aqui exposto serve de apoio às aulas Teóricas da Unidade Curricular de Álgebra Linear e Geometria Analítica-B, no ano lectivo de 2014/15, e tem por base a Referência Bibliográfica:

ISABEL CABRAL, CECÍLIA PERDIGÃO, CARLOS SAIAGO, Álgebra Linear, Escolar Editora (3ª ou 4ª Edição)

Apresentação

Responsável: Herberto de Jesus da Silva

Regente: Cláudio Fernandes

- Gabinete 50, 3piso ed. VII
- Morário de dúvidas: Segunda-Feira 15:00h às 18:30h
- caf@fct.unl.pt

Professores dos Turnos Práticos: Maria Helena Santos (P1,P2,P3,P4,P5) Rosário Fernandes (P8,P9,P10) Cláudio Fernandes (P6,P7) Testes: T1 1° 22 de Outubro

T2 2º 26 de Novembro

T3 3° 17 de Dezembro

Avaliação: Consultar o clip

Programa

- Matrizes
- Sistemas de Equações Lineares
- Oeterminantes ← 1º Teste
- Espaços Vectoriais
- Aplicações Lineares
- Produto Interno, Produto Externo e Produto Misto

1.1 Algumas definicões e exemplos

- R conjunto dos números reais
- C conjunto dos números complexos
- ullet K conjunto dos escalares ($\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}$)

Definição

Matriz é um quadro de números, denominados entradas da matriz, dispostos em m linhas e n colunas, dizendo-se por isso que a matriz é de tipo $m \times n$.

$$A = \left[egin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}
ight] \in \mathcal{M}_{m imes n}(\mathbb{K})$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 (ou abreviadamente $A = [a_{ij}]$)

a₂₁ - elemento de A situado na linha 2 e na coluna 1

- a_{ii} elemento de A situado na linha i e na coluna j - elemento da posição (i, j)
- (em primeiro lugar temos o número de linhas e depois o número de colunas)

linha
$$i$$
 de $A=(a_{i1},a_{i2},\ldots,a_{in})$
coluna j de $A=(a_{1j},a_{2j},\ldots,a_{mj})$

 $\mathcal{M}_{m\times n}(\mathbb{K})$ - conjunto das matrizes do tipo $m\times n$ sobre \mathbb{K}

$$A = \begin{bmatrix} 1 & 3 & -5 \\ 0 & 1 & 3 \end{bmatrix} \in \mathcal{M}_{2\times 3}(\mathbb{R}); \qquad B = \begin{bmatrix} 1 & i & -5 \\ 0 & 1 & 1+i \\ 0 & -1 & 4 \\ 3 & 2 & -i \end{bmatrix} \in \mathcal{M}_{4\times 3}(\mathbb{C})$$

$$C = \begin{bmatrix} 1 & 3 & -5 \\ 0 & 1 & 3 \\ 7 & 2 & 5 \end{bmatrix} \in \mathcal{M}_{3\times3}(\mathbb{R})$$
 (Matriz quadrada de ordem 3)

$$D = [1 \ 3 \ 5 \ -i] \in \mathcal{M}_{1\times 4}(\mathbb{C})$$
 (Matriz linha)

$$E = \left[egin{array}{c} 1 \\ 0 \\ 0 \\ 3 \end{array}
ight] \in \mathcal{M}_{4 imes 1}(\mathbb{R}) \ \ ext{(Matriz coluna)}$$

$$F = \left[\begin{array}{c} 5 \end{array} \right] \in \mathcal{M}_{1 imes 1}(\mathbb{R}) = \mathcal{M}_{1}(\mathbb{R})$$

Diz-se que as matrizes $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ são iguais, e escreve-se A = B, se $a_{ii}=b_{ii}$ para $i=1,\ldots,m$ $j=1,\ldots,n$. Caso contrário escreve-se $A \neq B$.

Nota:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$

$$A = B \Leftrightarrow a_{ij} = b_{ij}, \text{ para } i = 1, \dots, m \quad j = 1, \dots, n$$

- a_{ii}, b_{ii} dizem-se elementos homólogos
- Só podem ser iguais matrizes com igual número de linhas, igual número de colunas e com elementos homólogos iguais.

Definição

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- A diz-se uma matriz-linha se m=1.
- A diz-se uma matriz-coluna se n=1.
- A diz-se uma matriz quadrada se m = n. Neste caso diz-se que A é **quadrada de ordem** n ou, simplesmente, que A é uma matriz de ordem n.

Exemplo

$$A = \left[\begin{array}{c} 1 \\ 0 \\ \pi \end{array} \right], \ B = \left[\begin{array}{cc} -\mathrm{e}^{-2} & 5\pi \end{array} \right], \quad C = \left[\begin{array}{cc} 2 \end{array} \right] \quad \mathrm{e} \quad D = \left[\begin{array}{cc} 1 & 3 \\ \sqrt{2} & -\frac{\sqrt{3}}{2} \end{array} \right].$$

Alguns tipos de matrizes quadradas importantes:

Definição

Dada uma matriz quadrada de ordem n,

$$A = \left[\begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right]$$

aos elementos $a_{11}, a_{22}, \dots, a_{nn}$ chamam-se **elementos diagonais** de A.

Ao n-uplo $(a_{11}, a_{22}, \dots, a_{nn})$ chama-se **diagonal principal** de A.

Definição

$$\bullet \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} - \textbf{triangular superior} \left(a_{ij} = 0 \quad \text{para} \quad i > j \right)$$

$$\bullet \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} - \mathbf{triangular inferior} \left(a_{ij} = 0 \quad \mathsf{para} \quad i < j \right)$$

$$\bullet \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{2n} \end{bmatrix} - \mathbf{diagonal} \left(a_{ij} = 0 \quad \mathsf{para} \quad i \neq j \right)$$

$$\bullet \begin{bmatrix} \alpha & 0 & \cdots & 0 \\ 0 & \alpha & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha \end{bmatrix} - \text{escalar (diagonal com } a_{ii} = \alpha, \ i = 1, \ldots, n)$$

Departamento de Matemática (FCT/UNL)

Definição

A uma matriz escalar de ordem n cujos elementos diagonais são todos iguais a 1 chama-se matriz identidade de ordem n e representa-se por I_n ,

$$I_n = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

Exemplo

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matrizes identidade

$$A = \begin{bmatrix} 3 & 7 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} \pi & 0 \\ 0 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} e^{\pi} & 0 \\ 0 & e^{\pi} \end{bmatrix}$$
Triangular superior

Diagonal

Escalar

1.2 Operações com matrizes (Adição)

Definição

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se matriz soma da matriz A com a matriz B, e denota-se por A+B à matriz de $\mathcal{M}_{m\times n}(\mathbb{K})$ cuja entrada (i,j) $é a_{ii} + b_{ii}$ isto é

$$(A+B)_{ij}=a_{ij}+b_{ij}$$
 $i=1,\ldots,m$ $j=1,\ldots,n$

$$A + B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix} = \\ = \begin{bmatrix} a_{11} + a_{11} & a_{12} + a_{12} & \cdots & a_{1n} + a_{1n} \\ a_{21} + a_{21} & a_{22} + a_{22} & \cdots & a_{2n} + a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + a_{m1} & a_{m2} + a_{m2} & \cdots & a_{mn} + a_{mn} \end{bmatrix}$$

Atenção: Só se adicionam matrizes do mesmo tipo!!!!

Exemplo

Sejam
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 0 \\ -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 2 \\ 2 & 2 \\ 0 & -1 \end{bmatrix}$. São do mesmo tipo

 3×2 , logo podemos somá-las.

$$A+B = \begin{bmatrix} 2+5 & -1+2 \\ 3+2 & 0+2 \\ -1+0 & 1-1 \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ 5 & 2 \\ -1 & 0 \end{bmatrix}.$$

Se
$$C = \begin{bmatrix} -1 & 0 & -3 \\ 1 & 4 & 0 \\ -2 & 3 & 7 \end{bmatrix}$$
 então

$$A + C = \begin{vmatrix} 2 & -1 \\ 3 & 0 \\ -1 & 1 \end{vmatrix} + \begin{vmatrix} -1 & 0 & -3 \\ 1 & 4 & 0 \\ -2 & 3 & 7 \end{vmatrix} = ?$$
 (não se somam)

Proposição

Tem-se:

$$\forall_{A,B,C\in\mathcal{M}_{m\times n}(\mathbb{K})} \quad (A+B)+C=A+(B+C) \quad \text{(associativa)};$$

$$\exists_{0_{m\times n}\in\mathcal{M}_{m\times n}(\mathbb{K})} \ \forall_{A\in\mathcal{M}_{m\times n}(\mathbb{K})} \ A+0_{m\times n}=0_{m\times n}+A=A$$
 (existência de elemento neutro);

$$\exists_{A \in \mathcal{M}_{m \times n}(\mathbb{K})} \exists_{-A \in \mathcal{M}_{m \times n}(\mathbb{K})} \quad A + (-A) = (-A) + A = 0_{m \times n}$$
 (existência de oposto).

Nota:

$$0_{m \times n} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \quad -A = \begin{bmatrix} -a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & -A_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{m1} & -a_{m2} & \cdots & -a_{mn} \end{bmatrix}$$
Matriz nula
$$Matriz oposta de A$$

Se $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$, representa-se por A - B a matriz A + (-B).

1.2 Operações com matrizes (Multiplicação por um escalar)

Definição

Sejam $\alpha \in \mathbb{K}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se matriz produto do escalar α pela matriz A, e denota-se por αA , à matriz de $\mathcal{M}_{m \times n}(\mathbb{K})$ cujo elemento (i,j) é αa_{ij} , isto é,

$$(\alpha A)_{ij} = \alpha a_{ij}, \qquad i = 1, \dots, m \quad j = 1, \dots, n$$

$$\alpha \in \mathbb{K}$$
 e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$

$$\alpha A = \alpha \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & A_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \cdots & \alpha a_{mn} \end{bmatrix}$$

Exemplo

Seja

$$A = \left[\begin{array}{cc} 2 & -1 \\ 3 & 0 \\ -1 & 1 \end{array} \right].$$

$$3A = \left[egin{array}{ccc} 3 imes 2 & 3 imes (-1) \\ 3 imes 3 & 3 imes 0 \\ 3 imes (-1) & 3 imes 1 \end{array}
ight] = \left[egin{array}{ccc} 6 & -3 \\ 9 & 0 \\ -3 & 3 \end{array}
ight].$$

Proposição

Sejam A, $B \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $\alpha, \beta \in \mathbb{K}$. Tem-se

- $(\alpha + \beta)A = \alpha A + \beta A.$
- **1** A = A.
- $(-\alpha)A = \alpha(-A) = -(\alpha A).$
- **5** Se $\alpha A = 0_{m \times n}$ então $\alpha = 0$ ou $A = 0_{m \times n}$.

1.2 Operações com matrizes (Multiplicação de matrizes)

Definição

Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $B \in \mathcal{M}_{n \times p}(\mathbb{K})$. Define-se **produto da matriz** A **pela matriz** B, e representa-se por AB, a matriz de $\mathcal{M}_{m \times p}(\mathbb{K})$ tal que

$$(AB)_{ij} = a_{i1}b_{1j} + \cdots + a_{in}b_{nj}, \quad i = 1, \dots, m, \ j = 1, \dots, p.$$

Assim,

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Exemplo

$$\begin{bmatrix}
0 & 1 & 2 \\
3 & 0 & 5
\end{bmatrix}
\underbrace{\begin{bmatrix}
9 & 8 & 7 \\
-8 & -2 & 6 \\
-1 & 0 & 4
\end{bmatrix}}_{B} =$$

$$\begin{bmatrix} 0 \times 9 + 1 \times (-8) + 2 \times (-1) & 0 \times 8 + 1 \times (-2) + 2 \times 0 & 0 \times 7 + 1 \times 6 + 2 \times 4 \\ 3 \times 9 + 0 \times (-8) + 5 \times (-1) & 3 \times 8 + 0 \times (-2) + 5 \times 0 & 3 \times 7 + 0 \times 6 + 5 \times 4 \end{bmatrix} = \begin{bmatrix} -10 & -2 & 14 \\ 22 & 24 & 41 \end{bmatrix}.$$

Pode-se sempre efectuar o produto de duas matrizes?

NÃO!!!!

Da definição resulta que para se conseguir efectuar o produto temos de ter o **número de colunas** de A igual ao **número de linhas** de B.

Exemplo

Sejam
$$A = \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \end{bmatrix} e B = \begin{bmatrix} 1 & 2 \\ -1 & 2 \\ 2 & 0 \\ 2 & 0 \end{bmatrix}.$$

Podemos efectuar o produto AB?

Sim, A é do tipo 3×4 e B é do tipo 4×2 .

Assim a matriz AB será uma matriz do tipo 3×2 .

Efetuando o produto,

$$AB = \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 2 \\ 2 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 3 & 2 \\ 4 & -4 \end{bmatrix}.$$

Nota: (Geral...)

Se
$$A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$$
 e $B = [a_{ij}] \in \mathcal{M}_{n \times p}(\mathbb{K})$ então:

- $AB = [(AB)_{ii}] \in \mathcal{M}_{m \times p}(\mathbb{K});$
- O elemento (i, j) da matriz produto AB é

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$$

$$\begin{bmatrix} \cdots & \cdots & \cdots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix} \begin{bmatrix} \cdots & b_{1j} & \cdots \\ \cdots & b_{2j} & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & b_{nj} & \cdots \end{bmatrix} = \begin{bmatrix} \cdots & \cdots & \cdots \\ \cdots & a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$

Conclusão: $(AB)_{ii}$ é o produto da i-ésima matriz linha de A pela j-ésima matriz coluna de B.

Atenção que o produto de matrizes não é comutativo...

Exemplo

Sejam
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$.

Tem-se que

$$AB = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 2 \end{bmatrix}$$

mas

$$BA = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 0 & 2 \end{bmatrix}.$$

Donde.

$$AB \neq BA$$
.

Proposição

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e sejam B, C matrizes do tipo adequado de forma a que as operações indicadas estejam definidas. Tem-se

- ② A(B+C) = AB + AC (distributiva, à esquerda), (B+C)A = BA + CA (distributiva, à direita);

Nota: Repare-se que as anteriores propriedades são usadas sempre que efectuam cáculos em \mathbb{K} .

Há no entanto algumas das propriedades da multiplicação em $\mathbb K$ que não são verificadas pela multiplicação de matrizes:

- A multiplicação de matrizes <u>não</u> é comutativa (já visto no exemplo anterior);
- ② $AB = 0 \Rightarrow (A = 0 \text{ ou } B = 0)$, isto é, pode ter-se $AB = 0 \text{ com } A \neq 0 \text{ e } B \neq 0$.
- (AB = AC e $A \neq 0$) $\Rightarrow B = C$, (BA = CA e $A \neq 0$) $\Rightarrow B = C$.

Nota: Quando não for importante especificar a ordem da matriz nula, em vez da notação $0_{n\times m}$ usa-se simplesmente a notação 0.

Definição

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. Chama-se potência de expoente k de A $(k \in \mathbb{N}_0)$ à matriz de $\mathcal{M}_{n\times n}(\mathbb{K})$, que representa-se por A^k , definida, por recorrência. do seguinte modo:

$$A^k = \left\{ egin{array}{ll} I_n, & ext{se } k = 0 \ A^{k-1}A, & ext{se } k \in \mathbb{N} \end{array}
ight..$$

Exemplo Seja
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix}$$
 . Tem-se que, $A^0 = I_2$.

$$A^2 = AA = \left[\begin{array}{cc} 1 & 2 \\ -1 & 2 \end{array} \right] \left[\begin{array}{cc} 1 & 2 \\ -1 & 2 \end{array} \right] = \left[\begin{array}{cc} -1 & 6 \\ -3 & 2 \end{array} \right]$$

$$A^{3} = A^{2}A = \begin{bmatrix} -1 & 6 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -7 & 10 \\ -5 & -2 \end{bmatrix}$$

Quaisquer que sejam $k, l \in \mathbb{N}_0$, tem-se

- $A^k A^l = A^{k+l}.$
- $(A^k)^l = A^{kl}.$

Observação

Em geral, se $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$ e $k \in \mathbb{N}$, então

 $(AB)^k \neq A^k B^k$. Porquê?

1.3 Matrizes invertíveis (Só matrizes quadradas)

Como é bem sabido, todo o número real, não nulo, tem um inverso para a multiplicação

$$aa^{-1} = a^{-1}a = 1.$$

Definição

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. Dize-se que A é **invertível**, ou que tem inversa, se Atem oposto para a multiplicação de matrizes, isto é, se existir uma matriz $B \in \mathcal{M}_{n \times n}(\mathbb{K})$, tal que

$$AB = BA = I_n$$

Exemplo

Se
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}$ tem-se $AB = BA = I_2$, logo A é invertível.

Para A quantas matrizes B podem existir?

Teorema

Se $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ é uma matriz invertível então existe uma, e uma só, matriz B tal que $AB = BA = I_n$.

Definição

Se $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ é uma matriz invertível, a única matriz B tal que $AB = BA = I_n$ designa-se por a **inversa** de A e é denotada por A^{-1} .

Exemplo

Se
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
 então $A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}$ pois $AA^{-1} = A^{-1}A = I_2$.

Toda a matriz $A \neq 0$ é invertível ?

Não!!!

Exemplo

A matriz
$$A=\left[egin{array}{cc} -1 & 0 \\ 5 & 0 \end{array}
ight]\in\mathcal{M}_{2 imes2}(\mathbb{R})$$
 $ilde{n\~{a}o}$ tem inversa porque, para

qualquer
$$B=\left[egin{array}{cc} a & b \\ c & d \end{array}
ight]\in\mathcal{M}_{2 imes2}(\mathbb{R})$$
, tem-se

$$AB = \begin{bmatrix} -1 & 0 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -a & -b \\ 5a & 5b \end{bmatrix} \neq I_2.$$

Não existe assim nenhuma matriz B tal que $AB = BA = I_2$. Diz-se que A é não invertível (singular)

Observação

A matriz $0_{n \times n}$ também não é invertível.

Teorema

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ uma matriz <u>invertível</u>.

- Se $B \in \mathcal{M}_{n \times n}(\mathbb{K})$ é tal que $AB = I_n$ então $B = A^{-1}$ e, portanto, $BA = I_n$.
- ② Se $B \in \mathcal{M}_{n \times n}(\mathbb{K})$ é tal que $BA = I_n$ então $B = A^{-1}$ e, portanto, $AB = I_n$.

- Se $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ é invertível então A^{-1} é invertível e $(A^{-1})^{-1} = A$.
- **2** Se $\alpha \in \mathbb{K} \setminus \{0\}$ e A é invertível então αA é invertívele $(\alpha A)^{-1} = \alpha^{-1}A^{-1}$.
- ③ Se $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$ são invertíveis então AB é invertível e $(AB)^{-1} = B^{-1}A^{-1}$.
- **③** Mais geralmente, se $k \in \mathbb{N}$ e $A_1, \ldots, A_k \in \mathcal{M}_{n \times n}(\mathbb{K})$ são invertíveis então $A_1 \cdots A_k$ é invertível e $(A_1 \cdots A_k)^{-1} = A_k^{-1} \cdots A_1^{-1}$.

Teorema

- Se $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ é invertível então A^{-1} é invertível e $(A^{-1})^{-1} = A$.
- 2 Se $\alpha \in \mathbb{K} \setminus \{0\}$ e A é invertível então αA é invertível e $(\alpha A)^{-1} = \alpha^{-1} A^{-1}$.
- **Se** $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$ são invertíveis então AB é invertível e $(AB)^{-1} = B^{-1}A^{-1}$.
- Mais geralmente, se $k \in \mathbb{N}$ e $A_1, \ldots, A_k \in \mathcal{M}_{n \times n}(\mathbb{K})$ são invertíveis então $A_1 \cdots A_k$ é invertível e $(A_1 \cdots A_k)^{-1} = A_k^{-1} \cdots A_1^{-1}$.

Observação

Não temos fórmula para a inversa de A + B. Em geral,

$$(A+B)^{-1} \neq A^{-1} + B^{-1}$$
.

Exemplo

As matrizes $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ são invertíveis tendo-se $A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}$ e $B^{-1} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$. Assim,

•
$$AB = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix};$$

•
$$(A^{-1})^{-1} = A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
 e $(B^{-1})^{-1} = B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$;

$$\bullet \ (AB)^{-1} = B^{-1}A^{-1} = \left[\begin{array}{cc} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{array} \right] \left[\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} -\frac{1}{6} & \frac{5}{6} \\ \frac{1}{3} & -\frac{2}{3} \end{array} \right]$$

•
$$(A^2)^{-1} = A^{-1}A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & -\frac{3}{4} \\ 0 & 1 \end{bmatrix}$$

1.4 Matriz transposta

Definição

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se **matriz transposta** de A, e representa-se por A^{\top} , a matriz de $\mathcal{M}_{n \times m}(\mathbb{K})$ tal que

$$\left(A^{\top}\right)_{ij}=a_{ji}, \quad i=1,\ldots,n, \ j=1,\ldots,m.$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Exemplo

A transposta da matriz
$$A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 3 & 4 \end{bmatrix}$$
 é a matriz $A^T = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 2 & 4 \end{bmatrix}$

Proposição

Sejam $\alpha \in \mathbb{K}$ e A, B matrizes sobre \mathbb{K} de tipos adequados para que as operações indicadas tenham sentido. Tem-se

- $(A^{\top})^{\perp} = A.$
- **2** $(A + B)^{\top} = A^{\top} + B^{\top}$.
- $(\alpha A)^{\top} = \alpha A^{\top}$.
- Se A é invertível então A^{\top} é invertível e $(A^{\top})^{-1} = (A^{-1})^{\top}$.

Definição

Uma matriz $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ diz-se simétrica se $A = A^{\top}$ e hemi-simétrica se $A = -A^{\top}$.

Exemplo

$$A \ \textit{matriz} \ A = \left[\begin{array}{ccc} 4 & -2 & 3 \\ -2 & 5 & -\frac{1}{2} \\ 3 & -\frac{1}{2} & \pi \end{array} \right] \ \acute{e} \ \textit{sim\'etrica pois} \ A^T = \left[\begin{array}{ccc} 4 & -2 & 3 \\ -2 & 5 & -\frac{1}{2} \\ 3 & -\frac{1}{2} & \pi \end{array} \right].$$

A matriz
$$B = \begin{bmatrix} 0 & \pi i & 2i \\ -\pi i & 0 & -3 \\ -2i & 3 & 0 \end{bmatrix}$$
 é hemi–simétrica pois

$$B^{T} = \begin{bmatrix} 0 & -\pi i & -2i \\ \pi i & 0 & 3 \\ 2i & -3 & 0 \end{bmatrix} = -B.$$

A matriz
$$\begin{vmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ -2 & 3 & 7 \end{vmatrix}$$
 não é simétrica nem hemi–simétrica.

1.4 Matriz conjugada

$$\mathbb{K} = \mathbb{C} = \{ a + bi : a, b \in \mathbb{R} \}$$
$$i^2 = -1$$

O conjugado de z = a + bi é o número $\overline{z} = a - bi$.

Definição

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{C})$. Define-se a **conjugada** de A e representa-se por \overline{A} a matriz que se obtém de A substituindo cada elemento pelo seu conjugado. Tem-se, pois, $\overline{A} \in \mathcal{M}_{m \times n}(\mathbb{C})$ e $(\overline{A})_{ii} = \overline{a_{ij}}$.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad \overline{A} = \begin{bmatrix} \overline{a_{11}} & \overline{a_{12}} & \cdots & \overline{a_{1n}} \\ \overline{a_{21}} & \overline{a_{22}} & \cdots & \overline{a_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a_{m1}} & \overline{a_{m2}} & \cdots & \overline{a_{mn}} \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} \overline{a_{11}} & \overline{a_{12}} & \cdots & \overline{a_{1n}} \\ \overline{a_{21}} & \overline{a_{22}} & \cdots & \overline{a_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a_{2n}} & \overline{a_{2n}} & \cdots & \overline{a_{2n}} \end{bmatrix}$$

Proposição

Sejam A, B $\in \mathcal{M}_{m \times n}(\mathbb{C})$, $C \in \mathcal{M}_{n \times p}(\mathbb{C})$ e $\alpha \in \mathbb{C}$. Tem-se

- $\overline{\overline{A}} = A$.
- $\overline{A+B} = \overline{A} + \overline{B}$
- $\overline{\alpha A} = \overline{\alpha} \overline{A}$
- $\overline{AC} = \overline{A} \overline{C}$
- **3** Se m = n e A for uma matriz invertível então $(\overline{A})^{-1} = \overline{A^{-1}}$.

Matriz transconjugada

Definição

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{C})$. Define-se **transconjugada** de A e representamos por A^* a matriz

$$(\overline{A})^{\top} = \overline{A^{\top}}.$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} A^* = \begin{bmatrix} \frac{\overline{a}_{11}}{\overline{a}_{12}} & \frac{\overline{a}_{21}}{\overline{a}_{22}} & \cdots & \frac{\overline{a}_{m1}}{\overline{a}_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a}_{1n} & \overline{a}_{2n} & \cdots & \overline{a}_{mn} \end{bmatrix}$$

Definição

Uma matriz A diz-se hermítica se $A = A^*$ e hemi-hermítica se $A = -A^*$.