MATH 8510, Abstract Algebra I

Fall 2016

Exercises 12

Collaborators: Daozhou Zhu, Xiaoyuan Liu

Name: Shuai Wei

Exercise 1. Let R be a commutative ring with identity. Let $f \in R[x]$ be monic of degree $d \geq 1$. In the quotient ring S = R[x]/fR[x], for all $g \in R[X]$, set $\overline{g} := g + fR[x]$.

(a) Prove that for every element $s \in S$ there exist unique elements $r_0, \ldots, r_{d-1} \in R$ such that $s = \sum_{k=0}^{d-1} \overline{r_k} \ \overline{x}^k$. (Hint: Division Algorithm)

Proof. Let $s \in S$.

Let $g = f(\overline{x}) \in R[\overline{x}]$.

Since $f \in R[x]$ is monic of degree d, g is monic of degree d.

Then by the Division Algorithm, there is unique $q, r \in S$ such that s = qg + r with $\deg(r) < \deg(f) = d$.

Since S = R[x]/fR[x] and $s \in S$, $\deg(s) < \deg(f) = \deg(g) = d$, we have

$$q = 0_S \in S$$
.

So ther is a unique $r \in S$ with $\deg(r) < d$ such that s = r.

Namely, there exists unique elements $\overline{r'_0}, \ldots, \overline{r'_{d-1}} \in S$ such that $s = \sum_{k=0}^{d-1} \overline{r'_k} \, \overline{x}^k$. Since for $k = 0, 1, \ldots, d-1$,

$$deg(\overline{r\prime_k}) = 0$$

and

$$\overline{r\prime_k} = r\prime_k + fR[x],$$

where $r'_k \in R[x]$,

in addtion, $deg(f) = d \ge 1$,

we have for k = 0, 1, ..., d - 1, there is only one representative for $\overline{r'_k}$.

Moreover, by the Division Algorithm, given $r'_k \in R[x]$, there exists unique $r_k, p \in R[x]$ such that

$$r'_k = pf + r_k$$
.

Then we have $r_k = r_{l_k} + f(-p) \in \overline{r_{l_k}}$ is the unique representative for $\overline{r_{l_k}}$ for $k = 0, 1, \dots, d-1$.

Then

$$\deg(r_k) = \deg(\overline{r_{\ell_k}}) = 0.$$

So such $r_k \in R$ is unique for $k = 0, 1, \dots, d - 1$.

Therefore, for every element $s \in S$, there exists unique elements $r_0, \ldots, r_{d-1} \in R$ such that $s = \sum_{k=0}^{d-1} \overline{r_k} \ \overline{x}^k$.

(b) Prove that the function $\epsilon \colon R \to S$ given by $r \mapsto \overline{r}$ is a ring monomorphism, that is, a 1-1 ring homomorphism. Conclude that $R \cong \operatorname{Im}(\epsilon) \subseteq S$. Note: We often use this to identify R with its image in S, so that, e.g., we think of R as a subring of S, and the formula in part (a) becomes $s = \sum_{k=0}^{d-1} r_k \overline{x}^k$. *Proof.* Since $\forall r, s \in R$, we have $r, s \in R[x]$, and since $fR[x] \leq R[x]$, we have

$$\begin{split} \epsilon(r+s) &= \overline{r+s} \\ &= r+s+fR[x] \\ &= (r+fR[x]) + (s+fR[x]) \\ &= \overline{r} + \overline{s} \\ &= \epsilon(r) + \epsilon(s), \end{split}$$

and

$$\begin{split} \epsilon(rs) &= \overline{rs} \\ &= rs + fR[x] \\ &= (r + fR[x])(s + fR[x]) \\ &= \overline{r} \ \overline{s} \\ &= \epsilon(r)\epsilon(s), \end{split}$$

it is a ring homomorphism.

Let $r, s \in R$, if $\overline{r} = \overline{s}$, then r = s since \overline{r} and \overline{s} have unique polynomial form, respectively, by part (a).

Let $r \in R$, then

$$r \in \text{Ker}(\epsilon) \iff \epsilon(r) = 0_s$$

 $\iff \overline{r} = \overline{0_r}$
 $\iff r = 0_r.$

So ϵ is 1-1.

Thus, ϵ is a ring monomorphism.

Since $\operatorname{Im}(\epsilon) \subseteq S$ and it is onto from R to S, we have

$$R \cong \operatorname{Im}(\epsilon) \subseteq S$$
.

(c) What happens in part (b) when d = 0? Specifically, what can you say about S and ϵ in this case?

Soln: In the proof of part (a), we know when d=0, for $s\in S$, s may have more than one representative from R, so we can not make conclusion for part (a).

Also, since for $s \in S$, s may have alternative polynomial form, ϵ may not be 1-1, but is still a homomorphism.

At last, $\operatorname{Im}(\epsilon) \subseteq S$ always holds.

Exercise 2 ($\exists \mathbb{C}$). Consider the ring $C = \mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$, and set $i := \overline{x} \in C$.

(a) Prove that $i^2 = -1$.

Proof.

$$i^{2} + \overline{1} = \overline{x}^{2} + \overline{1}$$

$$= \overline{x} \overline{x} + \overline{1}$$

$$= \overline{x^{2}} + \overline{1}$$

$$= \overline{x^{2} + 1}$$

$$= \overline{0},$$

so by Exercise 12#2(b),

$$i^2 = \overline{0} - \overline{1} = \overline{-1} = -1.$$

(b) Using Exercise 1(b) identify \mathbb{R} with its image in C. Observe that Exercise 1(a) implies that for every element $z \in C$ there exist unique elements $a, b \in \mathbb{R}$ such that z = a + bi. (There is nothing to prove here.)

Soln:

Since $\deg(x^2+1)=2\geq 1$, by Exercise 12#1(a), we have for $c\in C$, there exists unique $a,b\in\mathbb{R}$ such that

$$c = a + bi$$
.

Let $r \in \mathbb{R}$, then by Exercise 12#1(b),

$$r = \overline{r} = r + 0i$$
.

(c) Prove that (a + bi) + (c + di) = (a + c) + (b + d)i and (a + bi)(c + di) = (ac - bd) + (ad + bc)i.

Proof. Since $a, bi, c, di \in R[\overline{x}]$ and $R[\overline{x}]$ is a polynomial ring, we have the commutative law and associated law of addition inherit from the polynomial ring $R[\overline{x}]$.

So

$$(a + bi) + (c + di) = a + c + bi + di$$

= $(a + c) + (b + d)i$.

Since $\mathbb R$ is a commutative ring, R[x] is also commutative ring, so are C and $R[\overline x]$.

Since $a, bi, c, di \in R[\overline{x}]$, we have the commutative law and associated law of addition and multiplication and the distributative law inherit from the polynomial ring $R[\overline{x}]$.

So

$$(a+bi)(c+di) = ac + adi + bci + dbi2$$
$$= ac + adi + bci - db$$
$$= (ac - bd) + (ad + bd)i.$$

Note that this can be used to show that C satisfies the properties defining the field of complex numbers. In particular, the ideal $(x^2+1)\mathbb{R}[x]$ is maximal. (You are not required to prove anything here.)