DCML-CPS - Module 6

Supervised ML

Tommaso Zoppi
University of Florence - Florence (Italy)
tommaso.zoppi@unifi.it

Course Map

Testing

3. Fault Injection

4. Robustness Testing

5. Data Analysis

6. Supervised ML

Anomaly
Detection

9. Error/Intrusion Detection

Deep Learning

Tools & Libs

Supervised Learning

- ► Classifiers were usually meant to be supervised
 - Use labels in data during training

They NEED ground truth!

- This way, they learn both normal behaviour and specific alterations due to known errors/attacks
- ► Non-Sliding Algorithms are very famous and usually build the core of any Machine Learning course.
 - Here we are presenting the baseline idea of some of them, without expanding on the insights
 - Just enough to use them for meaningful analyses!

Supervised Algorithms

- ► In the followings we will see an overview of the following supervised algorithms
 - Tree-Based
 - Decision Tree, Random Forest
 - Neighbour-based
 - kNN
 - Statistical
 - Naïve Bayes, LDA, Logistic Regression
 - Neural Networks
 - MultiLayer Perceptron

Tree-Based

Classification

- Most supervised algorithms are suitable for binary decisions
- ► They aim at learning a linear or non-linear boundary

- To differentiate between normal and

anomalous data points

Classification: Decision Tree

- ► We start from the baseline of Tree-based classification.
- ▶ Decision trees aim at partitioning the input space, labeling each partition according to its class
 - Each internal node of a tree specifies a "split" based on a feature

Ways to "split" in Decision Trees

- ► Gini Index: the gini impurity is calculated using the following formula:
 - Where p_j is the probability of class j.
 - The gini impurity measures the frequency at which data points will be mislabelled if randomly labeled.
 - The minimum value of the Gini Index is 0.
 - This happens when the node is **pure**, this means that all the contained elements in the node are of one unique class.
 - Thus, the optimum split is chosen by the features with less Gini Index $GiniIndex = 1 \sum p_i^2$

Ways to "split" in Decision Trees

- ► Entropy: The entropy is calculated using the following formula:
 - Where, as before, p_j is the probability of class j.
 - Entropy is a measure of information that indicates the disorder of the features with the target.
 - Similar to the Gini Index, the optimum split is chosen by the feature with less entropy.
 - It gets its maximum value when the probability of the two classes is the same and a node is pure when the entropy has its minimum value, which is 0.

RESILIENT COMPUTING LAB

Building a Decision Tree - I

- ► Example from start to finish
 - Problem: will you play outside depending on the current weather, temperature, humidity and wind?

Day	Weather	Temperature	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Cloudy	Hot	High	Weak	Yes
3	Sunny	Mild	Normal	Strong	Yes
4	Cloudy	Mild	High	Strong	Yes
5	Rainy	Mild	High	Strong	No
6	Rainy	Cool	Normal	Strong	No
7	Rainy	Mild	High	Weak	Yes
8	Sunny	Hot	High	Strong	No
9	Cloudy	Hot	Normal	Weak	Yes
10	Rainy	Mild	High	Strong	No

Partially taken from https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/ml-decision-tree/tutorial/

Building a Decision Tree - II

- ► First split: Gini to be calculated for each feature
- ▶ Weather: Sunny 3/10, Cloudy 3/10, Rainy 4/10
 - When sunny, 1/3 you play, 2/3 you don't
 - Gini(sunny) = $1-((1/3)^2 + (2/3)^2) = 4/9$
 - When cloudy, you always play
 - Gini(cloudy) = $1-((1)^2) = 0$
 - When rainy, ½ you play, ¾ you don't
 - Gini(rainy) = $1-((1/4)^2 + (3/4)^2) = 6/16$

Gini(weather) =

Day	Weather	Temperature	Humidity	Wind	Play?	
1	Sunny	Hot	High	Weak	No	
2	Cloudy	Hot	High	Weak	Yes	
3	Sunny	Mild	Normal	Strong	Yes	
4	Cloudy	Mild	High	Strong	Yes	
5	Rainy	Mild	High	Strong	No	
6	Rainy	Cool	Normal	Strong	No	
7	Rainy	Mild	High	Weak	Yes	
8	Sunny	Hot	High	Strong	No	
9	Cloudy	Hot	Normal	Weak	Yes	
10	Rainy	Mild	High	Strong	No	

$$p(sunny)*gini(sunny) + p(cloudy)*gini(cloudy) + p(rainy)*gini(rainy) = 3/10 * 4/9 + 3/10 * 0 + 4/10 * 6/16 = 2/15 + 3/20 = 14/60 = 7/30$$

Building a Decision Tree - III

- ► First split: Gini to be calculated for each feature
 - Gini has to be calculated for others

Day	Weather	Temperature	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Cloudy	Hot	High	Weak	Yes
3	Sunny	Mild	Normal	Strong	Yes
4	Cloudy	Mild	High	Strong	Yes
5	Rainy	Mild	High	Strong	No
6	Rainy	Cool	Normal	Strong	No
7	Rainy	Mild	High	Weak	Yes
8	Sunny	Hot	High	Strong	No
9	Cloudy	Hot	Normal	Weak	Yes
10	Rainy	Mild	High	Strong	No

Building a Decision Tree - IV

- ► First split: Gini to be calculated for each feature
 - Gini(weather) = 7 / 30
 - Gini(Temperature) = 11 / 25
 - Gini(Humidity) = 10 / 21
 - Gini(Wind) = 5 / 12
- ► Gini(weather) is the lowest, therefore the first layer of the tree is

Building a Decision Tree - V

- ► The process iterates for all sub-branches which do not have a clear label
 - "Cloudy" branch is already ok
- ▶ We calculate Gini for the other 3 features
 - Only for "sunny" data
 - Only for "rainy" data

Building a Decision Tree - VI

- For sunny data, the lowest gini is Humidity
- For rainy data, the lowest gini is Wind
- ► Then, the process ends because there is no need to split anymore

RESILIENT COMPUTING LAB

From Trees to Random Forests

- ► Random Forests build multiple decision trees
 - Each tree uses a slightly different subset of training set
 - Classifier result is build as a majority voting of individual ans

 Random Forest Simplified

By Venkata Jagannath - https://community.tibco.com/wiki/random-forest-template-tibco-spotfirer-wiki-page, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68995764

Neighbour-Based

Neighbour-Based

► Assigns the class to a novel data point depending on the class the majority of its "neighbours" belong to

- Neighbourhood is generally derived through

Euclidean distance

From: http://test.basel.in/product/knn-naive-bayes-classifier-using-excel/

Neighbour-Based: kNN

- ► Typical algorithm is the kNN (k-th Nearest Neighbour)
 - Calculates the k nearest (lower Euclidean distance)

neighbours

- Uses their labels to decide on a new data point

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn

Neighbour-Based: kNN

► The parameter k has big impact

- Example below:
 - K=1 -> new example classified as SQUARE (C1)
 - K=2 -> new example classified as undefined (k should be even)
 - K=3 -> new example classified as TRIANGLE (C2)

Statistical

Statistical Algorithms

- ► Statistical algorithms
 - exploit distributions or statistical indexes
 - to first model the data and then
 - predict classes for novel data points
- ▶ They are very different among themselves
- ► We will see 3 different algorithms based on different statistical mechanisms

Naïve Bayes Classifier

- ▶ Based on the Bayes Theorem
 - Briefly, during training it aims at learning a statistical model that minimizes the probability of misclassif $\hat{y} = \operatorname*{argmax}_{k \in \{1,\ldots,K\}} p(C_k) \prod_{i=1}^n p(x_i \mid C_k).$
 - For each class C_k (K=2 in binary classification), the predicted class \acute{y} is the one that maximises the product of n probabilities that a feature value of the data point belongs to that class (n = # feat)
 - · Other details are out of scope in this course

Devroye, L.; Gyorfi, L. & Lugosi, G. (1996). *A probabilistic theory of pattern recognition*. Springer. ISBN 0-3879-4618-7.

Example (from Wikipedia) - I

► Problem: classify whether a given person is a male or a female based on the measured features.

Person	height (feet)	weight (lbs)	foot size(inches)
male	6	180	12
male	5.92 (5'11")	190	11
male	5.58 (5'7")	170	12
male	5.92 (5'11")	165	10
female	5	100	6
female	5.5 (5'6")	150	8
female	5.42 (5'5")	130	7
female	5.75 (5'9")	150	9

Example (from Wikipedia) - II

- The classifier created from the training set using a Gaussian distribution assumption would be (given variances are unbiased sample variances)

Person	mean (height)	variance (height)	mean (weight)	variance (weight)	mean (foot size)	variance (foot size)
male	5.855	3.5033 × 10 ⁻²	176.25	1.2292 × 10 ²	11.25	9.1667 × 10 ⁻¹
female	5.4175	9.7225 × 10 ⁻²	132.5	5.5833 × 10 ²	7.5	1.6667

- The following example assumes equiprobable classes so that P(male)= P(female) = 0.5. This prior probability distribution might be based on prior knowledge of frequencies in the larger population or in the training set.

Example (from Wikipedia) - III

posterior (male) = $P(\text{male}) p(\text{height} \mid \text{male}) p(\text{weight} \mid \text{male}) p(\text{foot size} \mid \text{male})$ posterior (female) = $P(\text{female}) p(\text{height} \mid \text{female}) p(\text{weight} \mid \text{female}) p(\text{foot size} \mid \text{female})$

- ▶ Need to calculate both
 - And understanding what is bigger
 - Also, p(male) = p(female) = 0.5 (50%)

▶ Data point to classify

Person	height (feet)	weight (lbs)	foot size(inches)
sample	6	130	8

Example (from Wikipedia) - IV

Person	mean (height)	variance (height)	mean (weight)	variance (weight)	mean (foot size)	variance (foot size)
male	5.855	3.5033 × 10 ⁻²	176.25	1.2292 × 10 ²	11.25	9.1667 × 10 ⁻¹
female	5.4175	9.7225 × 10 ⁻²	132.5	5.5833 × 10 ²	7.5	1.6667

▶ Data point to classify

Person	height (feet)	weight (lbs)	foot size(inches)
sample	6	130	8

$$p(ext{height} \mid ext{male}) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(rac{-(6-\mu)^2}{2\sigma^2}
ight) pprox 1.5789,$$

$$p(ext{weight} \mid ext{male}) = rac{1}{\sqrt{2\pi\sigma^2}} \expigg(rac{-(130-\mu)^2}{2\sigma^2}igg) = 5.9881\cdot 10^{-6}$$

$$p(ext{foot size} \mid ext{male}) = rac{1}{\sqrt{2\pi\sigma^2}} \expigg(rac{-(8-\mu)^2}{2\sigma^2}igg) = 1.3112\cdot 10^{-3}$$

posterior numerator (male) = their product = $6.1984 \cdot 10^{-9}$

Example (from Wikipedia) - V

Person	mean (height)	variance (height)	mean (weight)	variance (weight)	mean (foot size)	variance (foot size)
male	5.855	3.5033 × 10 ⁻²	176.25	1.2292 × 10 ²	11.25	9.1667 × 10 ⁻¹
female	5.4175	9.7225 × 10 ⁻²	132.5	5.5833 × 10 ²	7.5	1.6667

► Data point to classify

Person	height (e	et)	weight (lbs)	foot size(inches)
sample	6		130	8

$$p(ext{height} \mid ext{male}) = rac{1}{\sqrt{2\pi\sigma^2}} \expigg(rac{-(6-\mu)^2}{2\sigma^2}igg) pprox 1.5789,$$

$$p(ext{weight} \mid ext{male}) = rac{1}{\sqrt{2\pi\sigma^2}} \expigg(rac{-(130-\mu)^2}{2\sigma^2}igg) = 5.9881\cdot 10^{-6}$$

$$p(ext{foot size} \mid ext{male}) = rac{1}{\sqrt{2\pi\sigma^2}} \expigg(rac{-(8-\mu)^2}{2\sigma^2}igg) = 1.3112\cdot 10^{-3}$$

posterior numerator (male) = their product = $6.1984 \cdot 10^{-9}$

Example (from Wikipedia) - VI

▶ Data point to classify

Person	height (feet)	weight (lbs)	foot size(inches)
sample	6	130	8

▶ The same goes for

```
p(	ext{height} \mid 	ext{female}) = 2.23 \cdot 10^{-1}
p(	ext{weight} \mid 	ext{female}) = 1.6789 \cdot 10^{-2}
p(	ext{foot size} \mid 	ext{female}) = 2.8669 \cdot 10^{-1}
p(	ext{sterior numerator (female}) = 	ext{their product} = 5.3778 \cdot 10^{-4}
```

- ► Overall, posterior(female) > posterior(male)
 - Therefore the data point is classified as FEMALE

Linear Discriminant Analysis - I

- ► Another Statistical Classifier
 - Based on Fisher Linear Discriminant
 - (Very briefly) Fisher Linear Discriminant projects data points to a vector which maximises "discriminant" capabilities

Image from https://www.csd.uwo.ca/~oveksler/Courses/CS434a_541a/Lecture8.pdf

Linear Discriminant Analysis - II

- ► Another Statistical Classifier
 - Based on Fisher Linear Discriminant
 - (Very briefly) Fisher Linear Discriminant projects data points to a vector which maximises "discriminant" capabilities
 - Once found, the vector is used as reference to calculate average /std of data points projected onto the vector, for each class (two classes in binary classification)
 - This is used to predict class for a new data point
 - · Again, no need to go deeper in this course, the main idea is enough

Linear Discriminant Analysis - III

► Example

- Green line is the Fisher Discriminant
- Once found, the discriminant allows calculating average/std for blue dots and for red dots

Example from https://www.csd.uwo.ca/~oveksler/Courses/CS434a_541a/Lecture8.pdf

Linear Discriminant Analysis - IV

► Example (cont.)

- Green line is the Fisher Discriminant
- Once found, the discriminant allows calculating average/std for blue dots and for red dots
- Intuitively
 - a new (black) data point will be projected to the green line and
 - we will understand if it is closer to blue or red dots
 - Closer to red -> red class

Logistic Regression - I

- Key observation here is that logistic regression is a statistical model that uses a logistic function to model a binary dependent variable
 - Slightly different from linear regression, which is usually used to predict real values rather than classes
 - In the logistic model, the log-odds (the logarithm of the odds) for the value labeled "1" is a linear combination of one or more independent variables ("predictors")
 - The corresponding probability of the value labeled "1" can vary between 0 (certainly the value "0") and 1 (certainly the value "1"), hence the labeling

Logistic Regression - II

- ► Example from Wikipedia (slightly modified)
 - Problem: A group of 20 students spends between 0 and 6 hours studying for an exam: some of them succeeded, others did not. How does the number of hours spent studying affect the probability of the student passing the exam?

► Train Data

Hours	0.50	0.75	1.00	1.25	1.50	1.75	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
Pass	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1

Logistic Regression - III

► Train Data

Hours	0.50	0.75	1.00	1.25	1.50	1.75	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
Pass	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1

- The logistic regression analysis gives the following output
- Which traces the distribution on the right

	Coefficient	Std.Error	z-value	P-value (Wald)
Intercept	-4.0777	1.7610	-2.316	0.0206
Hours	1.5046	0.6287	2.393	0.0167

Logistic Regression - IV

- Now, such distribution follows the formula

Probability of passing exam =
$$\frac{1}{1 + \exp(-(1.5046 \cdot \text{Hours} - 4.0777))}$$

- Which is the one that we can use to predict new class labels
 - Hours = 5 → probability = 0.97, or rather class 1 (pass)
 - Hours = 2 → probability = 0.26, or rather class 0 (fail)
 - •

Neural Networks

Neural Networks (I)

- ► (Artificial) Neural Networks (A)NNs are classifiers inspired by the biological neural networks that constitute animal brains.
 - A NN is based on a collection of
 - connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain.
 - Each connection (edge), like the synapses in a biological brain, can transmit a signal to other neurons.

Neural Networks (II)

- ► (Artificial) Neural Networks (A)NNs are classifiers inspired by the biological neural networks that constitute animal brains.
 - Neurons and edges have a weight that adjusts as learning goes
 - Neurons are aggregated into layers.
 - Different layers may perform different transformations on their inputs.
 - Signals travel from the first layer (the input layer), to the last layer (the output layer), possibly after traversing the layers multiple times.

Neural Networks Explained

- The input layer provides the interface of the network
 - · Input data is sent here
- The hidden layer allows executing non-linear combinations of inputs trough subsequent weighted sums

- Output layer(s) produce the result, us number

- e.g., % of belonging to class B for binary classification
- More than 2 classes -> more neurons in output layer

RESILIENT COMPUTING LAB

Neural Networks: Multiple Outputs

- ► In case of multiple classes, multiple neurons in the output layer are needed
 - For example, lets recognize numbers 0-9
 - Each neuron outputs a probability

From: https://towardsdatascience.com/training-neural-network-from-scratch-using-pytorch-in-just-7-cells-e6e904070a1d

Deep Neural Networks

- ▶ Briefly, a deep NN has multiple hidden layers (more than 1)
 - Other more precise characterizations are currently used, but are too detailed for this part of the course

Neural Networks: Train Functions

- Training a Neural Network translates to assigning adequate weights to edges
 - Weights are initialized randomly
 - Subsequent training epochs aim at reducing the loss
 - Which is the difference of NN outputs with respect to ground truth
 - The impact each rain epoch has on weights is guided by learning rate
 - The higher the rate, the bigger the potential change of weights
 - Different train functions obey to different rules or heuristics to minimize loss by changing weights
 pof, edges involving hidden layers

MultiLayer Perceptron

- ► A multilayer perceptron (MLP) is a class of artificial neural network
 - A MLP consists of at least three layers of nodes:
 - an input layer,
 - a hidden layer and
 - an output layer
 - Except for the input nodes, each node is a neuron that uses a nonlinear activation function.
 - non-linear activation distinguish MLP from a linear perceptron
 - MLP relies on backpropagation for training
 - backpropagation computes the gradient of the loss function
 - Baseline for reinforcement learning

MLP: Backpropagation

- ► MLP relies on backpropagation for training
 - backpropagation computes the gradient of the loss function
 - Baseline for reinforcement learning

