CMM 데이터 이상치 탐지 딥러닝 모듈 개발 [7주차]

AICMM팀 (김지선, 김예령, 백수민)

발표일자: 2024-04-08

실증적AI프로젝트 금주 활동계획 (7주차)

주제: CMM 데이터의 이상치 탐지 딥러닝 모듈 개발

금주 활동계획	1. CMM 데이터에 더 다양한 ML 모델 실험 2. GNN(Graph Neural Network) 논문 리딩 및 정리				
	팀장 (김지선)	팀원1 (김예령)	팀원2 (백수민)		
금주 개인별 활동계획	1. CMM 데이터 ML에 적용 • CMM 측정 구성요소와 동작원리에 대해 공부 • ML에 적용	2. CMM 데이터 전처리 • 데이터를 머신러닝 모델에 입력할 수 있는 형 태로 데이터 전처리 • CMM 데이터 특성 정리.	3. GNN 논문 리딩 및 정리 • GNN 관련 논문 수집 • GNN 관련 논문 리딩 및 정리		
차주 활동계획	1. GNN(Graph Neural Network) 이상치 2. GNN(Graph Neural Network) 이상치				

7주차 진행사항

- 1) CMM(Coordinate Measuring Machine) 데이터 전처리
- 2) 머신러닝을 활용한 CMM 데이터 이상치처리
 - 랜덤 포레스트 (Random forest)
 - 로지스틱 회귀 (Logistic regression)

데이터 전처리 워크플로우

- 1단계: 데이터 구조 파악 및 통합
- 2단계: 텍스트 파일을 엑셀 형태로 변환하기 위해 파싱(Parsing)
- 3단계: 모든 파일 엑셀로 재구성

데이터 구조 파악

- 회사로부터 받은 데이터셋은 zip 파일 형태의 두 가지 폴더로 구성
 - 폴더: small_data.zip, large_data.zip)

샘플 데이터셋

• 데이터 통합을 위해 이를 한 폴더(Sample_data)로 통합

구분	형태 (행, 열)	데이터 개수
Small data	(74, 17)	11개
Large data	(76, 17)	137개

구분	형태 (행, 열)	데이터 개수
Sample_data	(76, 17)	148개

데이터 압축 해제 중 해결된 오류

- txt를 csv 파일로 변환 완료! 하지만 한글 깨짐
- 압축을 푸는 과정에서 한글 깨짐 확인 -> 한국어로 파일명 압축 푼 후 csv로 변환

__ 이름

집 231005_일상검사_야_초_1-1-1_OK.csv 231005_일상검사_야_초_1-2-1_OK.csv 231005_일상검사_야_초_1-2-1_OK.csv 231005_일상검사_야_초_1-2-1_OK.csv 231005_일상검사_야_초_1-3-1_OK.csv 231005_일상검사_야_초_1-3-1_OK.csv 231005_일상검사_야_초_1-4-1_OK.csv 231005_일상검사_야_초_1-4-1_OK.csv 231005_일상검사_야_초_1-4-1_OK.csv 231005_일상검사_야_초_1-4-1_OK.csv

<오류 해결 전> <으류 해결 후>

파싱 함수 구현

• 데이터를 머신러닝 모델의 입력으로 사용하기 위해 텍스트(.txt)를 엑셀(.csv) 형태로 변환 필요

<텍스트 데이터>

<엑셀 데이터>

파싱 함수 동작 과정

- 파일에서 데이터를 추출하는 함수(extract_datafram_from_file) 정의
- 텍스트 파일에서 제품명,제품번호,측정항목 등 헤더 정보를 추출
- 해당 데이터 행을 추출하여 행과 열로 구조화 하여 데이터 프레임을 형성

텍스트 데이터 전처리 방법

- 데이터 파싱 후 아래 값들을 기준으로 데이터 프레임 형태로 재구성
- 데이터프레임을 엑셀로 저장해서 데이터 변환

구분	명칭
품명	PARKING SPRAG (8 속)_<열전>
품번	45926-4G10
측정시간	2023.xx.xx.xx: xx:xx
측정자	000
검사형태	일상검사 / 치수 보정
검사 시간대	주간/야간
종믈검사	초 / 중 / 종물

번호	도형	항목	측정값	기준값	••••	판정	품질상태
1	평면1	평면도	0.003	0.1		+	OK
2	평면1	SMmf	4P	0.001		I	OK
3	원1(I) <상>	D	16.485	16.485	••••		OK
4	원1(I) <상>	SMmf	4P	0.003		-	OK
•	•	•	•	•	•	•	•

<데이터프레임 형태>

머신러닝을 활용한 CMM 데이터 이상치처리

- 각 CSV 파일에서 도형, 항목에 따른 편차 및 품질 상태 데이터를 가져옴. (cmm_data.csv)
- 편차의 값이 비어져 있으면 각 CSV 파일의 편차 평균 값을 사용함.

이름	수정한 날재	
📭 240304_일상검사_야_중_1-1-1_OK	2024-04-1	
📠 240304_일상검사_야_중_1-2-1_OK	2024-04-1	
📠 240304_일상검사_야_중_1-3-1_OK	2024-04-1	
📠 240304_일상검사_야_중_1-4-1_NG	2024-04-1	
ᆆ 240304_일상검사_야_중_1-5-1_OK	2024-04-1	
ᆆ 240304_일상검사_야_중_2-1-1_OK	2024-04-1	
ᆆ 240304_일상검사_야_중_2-2-1_OK	2024-04-1	
ᆆ 240304_일상검사_야_중_2-3-1_OK	2024-04-1	
📠 240304_일상검사_야_중_2-4-1_OK	2024-04-1	

평면1, 평면도	원1(I) <상>, D	원2(I) <중>, D	원3(I) <하>, D
0.045166667	-0.004	-0.001	-0.005
0.022545455	-0.001	0.009	-0.011
0.030893939	0.003	0.006	-0.001
0.019424242	0.014	0.019	0.017
0.029121212	0.011	0.013	0.005
0.008681818	0	0.002	0.003
0.014484848	0.002	0.004	-0.001
0.019939394	-0.021	-0.006	-0.019

데이터 전처리 오류

large_data를
 cmm_data.csv로 변경할
 시 값이 없는 행이 발생

33	0.018015	0.005	0.015	0.004	0.008
34	0.02503	-0.005	0	-0.006	-0.004
35	0.032652	0.001	0.005	0.003	0.003
36					
36 37	0.008576	-0.016	-0.004	-0.012	-0.011

 다른 평가 항목으로 측정하기 때문인 것으로 추정

거리4 <-	원2(I) <상>, D	원3(I) <중>, D	원4(I) <하>, D	원통1
0.005				
0.005				
0.021				

Logistic Regression

1) Linear Combination 계산

• 입력 특성들과 각 특성에 대응하는 가중치들을 곱한 값을 모두 합하여 선형 결합(Linear Combination)을 계산

$$z = b + x_1w_1 + x_2w_2 + \dots + x_nw_n$$
(w = weight, b = bias)

2) Logit을 확률로 변환

• 선형 결합 값을 Logit 함수의 역함수인 Sigmoid 함수에 통과시켜서, 0과 1사이의 확률값 계산

3) 분류 결정

- 얻어진 확률값 p를 기준으로 분류 결정
- p가 0.5 이상이면 OK Class(1)로, 그렇지 않으면 NG Class(0)로 분류

Logistic Regression 예측 결과

- 입력: 품질 상태를 제외한 각 도형, 항목에 따른 편차 데이터 (Train data: 110개 /Test data(support): 27개)
- 출력:
 - Test data에 따른 precision, recall, f1-score 값
 - 정확도: 약 48%
 - Macro avg: 약 42% (각 class 별 f1-score를 산술 평균한 값)
 - Weighted avg: 약 42% (각 class 별 f1-score를 support 수에 따라 가중치를 주어 평균한 값)

		precision	recall	f1-score	suppor t
nall_dataset의 경우 정확도가 100% rain data: 7개, Test data: 2개)	0	0.50 0.40	0.79 0.15	0.61 0.22	14 13
	accuracy			0.48	27
	macro avg weighted avg	0.45 0.45	0.47 0.48	0.42 0.42	27 27

Random Forest

- Random Forest: Decision trees를 여러 개 만들어 그들의 예측을 평균 내는 앙상블 학습 모델
 - 앙상블 학습: 강력한 하나의 모델을 사용하는 대신 약한 여러 개의 모델을 조합하여 더 정확한 예측을 하는 방법

Random Forest 동작 과정

- Training set에서 표본 크기가 n인 bootstrap sampling 수행
 - bootstrap sampling: 원래 sample 집단에서 더 작지만 무수히 많은 집단으로 랜덤하게 뽑는 방법

- 2) Bootstrap sample에 대해 Random Forest Tree 모형 제작
 - 전체 변수 중에서 m개 변수를 랜덤하게 선택
 - 최적의 classifier 선정
 - Classifier에 따른 2개의 node 생성
- 3) Tree들의 앙상블 학습 결과 출력

Random Forest 특성 분석 결과

Feature Importance

- 모델이 어떤 특성을 주로 사용하는지를 나타내는 지표
- 각 특성이 모델의 예측에 얼마나 큰 영향을 미치는지를 평가
- 모델이 어떤 특성을 분할 기준으로 선택하는지를 이해하는 데 도움

```
Top 5 Feature Importance:
Feature 원1(I) <상>, D: 0.08567732953370288
Feature 원통1(I) <- 원1, 원2, 원3의 측정점 병합, D: 0.07411592652787918
Feature 원3(I) <하>, D: 0.07046940093694092
Feature 원6(I) <하부>, Y: 0.03493388227673704
```

Feature 평면2, Z: 0.031270703305066545

Bottom 5 Feature Importance:

Feature 점28 <- 점27의 되부름 <소재 원점>, Y: 0.002788870262536898

Feature 점5 <- 직선8와 직선7의 교차점, Y: 0.003181073967927135

Feature 직선21 <우하 소재>, X/Y: 0.003719796447543111

Feature 거리1 <- XAXIS[PT]:점9와 점10 <상>, DS: 0.004166980448602631

Feature 거리4 <- XAXIS[평균]:점32와 점31 <소재기준>, DS: 0.004205369309733444

Random Forest 특성 분석 결과

Permutation Importance

- 실제 예측에 영향을 미치는 정도를 측정
- 해당 특성을 무작위로 섞었을 때 모델의 성능이 얼마나 감소하는지를 측정함으로써 이루어짐
- 각 특성이 모델의 예측에 실제로 얼마나 기여하는지를 보다 정확하게 파악하는 데 도움

```
Top 5 Permutation Importance:
Feature 원4(E) <소재>, X: 0.08024691358024687
Feature 원2(I) <중>, D: 0.07901234567901232
Feature 점18 <- 점16와 점17의 중점 <열전관리_하>, X: 0.0716049382716049
Feature 점30 <- 점18의 되부름 <소재원점>, X: 0.06913580246913577
Feature 원7(E) <- 원4의 되부름, D: 0.06296296296293
```

Random Forest 예측 결과

- 입력: 품질 상태를 제외한 각 도형, 항목에 따른 편차 데이터 (Train data: 110개 /Test data(support): 27개)
- 출력:

we

- Test data에 따른 precision, recall, f1-score 값
- 정확도: 약 81%
- Macro avg 및 weighted avg: 약 81%

	precision	recall	f1-score	support
0	0.91 0.75	0.71 0.92	0.80 0.83	14 13
accuracy macro avg	0.83 0.83	0.82 0.81	0.81 0.81 0.81	27 27 27

Random Forest 시각화

<u>실증적AI프로젝트 금주 활동계획 (8주차)</u>

주제: CMM 데이터의 이상치 탐지 딥러닝 모듈 개발

금주	1. CMM 데이터에 <u>더 다양한 ML 모델 실험</u>			
활동계획	2. GNN을 활용한 이상치 탐지 논문 리딩 및 발표			
	팀장 (김지선)	팀원1 (김예령)	팀원2 (백수민)	
금주 개인별 활동계획	1. GNN 논문1 리딩 및 정리 ・ ML에 적용	2. GNN 논문2 리딩 및 정리 · G	 3. 더 다양한 ML 모델 실험 • Timeseries_forcasting 계열 모델 적용 • Clustering 모델 적용 	
차주	1. GNN(Graph Neural Network) 이상치처리 모델 공부			
활동계획	2. GNN(Graph Neural Network) 이상치처리 모델 구현 실습			

Thank you for Watching

