线性代数 作业 17

2025年5月24日

1 中文版

题 1.1. 设 F 是一个域, $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in F[x]$ 。 类似微积分,定义 f 的导数为 $f'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \cdots + a_1$ 。对于 $f(x), g(x) \in F[x]$,证明:

- 1. (fg)' = fg' + f'g.
- 2. $(f(g(x)))' = f'(g(x)) \cdot g'$
- $3. \gcd(f, f') = 1$ 当且仅当 f 的不可约分解中没有重因子。
- 题 1.2. 证明 \mathbb{Q}/\mathbb{Z} 不是有限生成的 \mathbb{Z} -模。
- 题 1.3. 求以下 \mathbb{Z} 上矩阵的 Smith 标准形:

$$\left[\begin{array}{cccc}
15 & 6 & 9 \\
6 & 6 & 6 \\
-3 & -12 & -12
\end{array} \right].$$

题 1.4.

定义 1. 设 R 是一个环, $A \in M_{m \times n}(R)$ 。取 i_1, i_2, \cdots, i_k 行和 j_1, j_2, \cdots, j_k 列组成的子矩阵的行列式称为 A 的 $k \times k$ 子式。所有 $k \times k$ 子式的最大公 因数称为第 k 个行列式因子 a_k 。

- 1. 类似域 F, 定义 R 上的初等矩阵。有三类初等矩阵:
 - (a) $E_{ij}(\lambda)$: 在单位矩阵上,将第i 行的 $\lambda \in R$ 倍加到第j 行。

- (b) $E_{ii}(\lambda)$: 在单位矩阵上,将第 i 行乘以 $\lambda \in R^{\times}$,其中 R^{\times} 是 R 中的可逆元集合。
- (c) $E_{ij}(\lambda)$: 在单位矩阵上,交换第 i 行和第 j 行。

证明: 若 R 是欧几里得环,则任意可逆矩阵 $A \in M_n(R)$ 都可以表示为有限个初等矩阵的乘积。

- 2. 当 R 是欧几里得环时,证明 A 左右乘可逆矩阵时, (a_k) 不变。
- 3. 证明行列式因子和不变因子可以互相确定。(在乘以R中乘法可逆元的意义下)
- 题 **1.5.** 1. 假设 $f(x) \in F[x]$ 是域 F 上的不可约多项式,证明 F[x]/(f) 在商环结构下也是一个域.
 - 2. 请对 $\mathbb R$ 上的不可约多项式构造域,并且证明这些域只能同构于 $\mathbb R$ 和 $\mathbb C$.

2 英文版

- **Exercise 2.1.** Let F be a field and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in F[x]$. Define the derivative of f similarly as calculus. $f'(x) = na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \cdots + a_1$. For $f(x), g(x) \in F[x]$, prove
 - 1. (fg)' = fg' + f'g.
 - 2. $(f(g(x)))' = f'(g(x)) \cdot g'$.
 - 3. gcd(f, f') = 1 if and only if in the irreducible factorization of f, there are no factors with multiplicities.
- 题 2.2. Prove that \mathbb{Q}/\mathbb{Z} is not a finitely generated \mathbb{Z} -module.
- 题 2.3. Find the Smith normal form of the following matrix over \mathbb{Z} :

$$\left[\begin{array}{cccc}
15 & 6 & 9 \\
6 & 6 & 6 \\
-3 & -12 & -12
\end{array} \right].$$

题 2.4.

- 定义 2. Let R be a ring and $A \in M_{m \times n}(R)$. The determinant of submatrix with i_1, i_2, \dots, i_k th rows and j_1, j_2, \dots, j_k th columns is called a $k \times k$ -minor of A. The greatest common divisor of all $k \times k$ -minors is called a determinant divisors a_k .
 - 1. Define the elementary matrix over R similarly as field F. There are three types of elementary matrices:
 - (a) $E_{ij}(\lambda)$: For indentity matrix, add $\lambda \in R$ times ith row to jth row.
 - (b) $E_{ii}(\lambda)$: For indentity matrix, multiply ith row by $\lambda \in R^{\times}$. Here R^{\times} is the set of mulplicative invertible elements in R.
 - (c) $E_{ij}(\lambda)$: For indentity matrix, swap ith row and jth row.
 - Show that if R is a Euclidean domain, then any invertible matrix $A \in M_n(R)$ is the product of a finite number of elementary matrices.
 - 2. When R is Euclidean Domain, show that a_k does not change when A is multiplied by invertible matrices on the left or right.
 - 3. Show that determinant divisors and invariant factors determines each other.
- 题 2.5. 1. Suppose $f(x) \in F[x]$ is an irreducible polynomial over the field F. Prove that F[x]/(f) is also a field under the quotient ring structure.
 - 2. Construct fields from irreducible polynomials over \mathbb{R} and prove that these fields can only be isomorphic to \mathbb{R} or \mathbb{C} .