Statistical Language Modelling COM6513 Natural Language Processing

Nikos Aletras

Computer Science Department

Week 4 Spring 2023

In the previous lecture...

Our first NLP problem: Text classification

In the previous lecture...

- Our first NLP problem: Text classification
- But we ignored word order (apart from short sequences, e.g. n-grams)!

In this lecture...

Our second NLP problem: Language Modelling

What is the probability of a given sequence of words in a particular language (e.g. English)?

In this lecture...

Our second NLP problem: Language Modelling

What is the probability of a given sequence of words in a particular language (e.g. English)?

Odd problem. Applications?

lacktriangle Word likelihood for query completion in information retrieval ("Is Sheffield" ightarrow try it on your search engine)

- Word likelihood for query completion in information retrieval ("Is Sheffield" → try it on your search engine)
- Language detection ("Ciao Sheffield" is it Italian or English?)

- Word likelihood for query completion in information retrieval ("Is Sheffield" → try it on your search engine)
- Language detection ("Ciao Sheffield" is it Italian or English?)
- Grammatical error detection ("You're welcome" or "Your welcome"?)

- Word likelihood for query completion in information retrieval ("Is Sheffield" \rightarrow try it on your search engine)
- Language detection ("Ciao Sheffield" is it Italian or English?)
- Grammatical error detection ("You're welcome" or "Your welcome"?)
- Speech recognition ("I was tired too." or "I was tired two."?)

Problem setup

Training data is a (often large) set of sentences \mathbf{x}^m with words x_n :

$$D_{train} = \{\mathbf{x}^1, ..., \mathbf{x}^M\}$$
$$\mathbf{x} = [x_1, ... x_N]$$

for example:

$$\mathbf{x} = [< s>, The, water, is, clear, .,]$$

<s>: denotes start of the sentence

</s>: denotes end of the sentence

Calculate sentence probabilities

We want to learn a model that returns the **probability of an unseen sentence x**:

$$P(\mathbf{x}) = P(x_1, ..., x_n)$$
, for $\forall \mathbf{x} \in V^{maxN}$

V is the vocabulary and V^{maxN} all possible sentences.

Calculate sentence probabilities

We want to learn a model that returns the **probability of an** unseen sentence x:

$$P(\mathbf{x}) = P(x_1, ..., x_n)$$
, for $\forall \mathbf{x} \in V^{maxN}$

V is the vocabulary and V^{maxN} all possible sentences.

How to compute probability?

Е

Unigram language model

Multiply the probability of each word appearing in the sentence \mathbf{x} computed over the entire corpus:

$$P(\mathbf{x}) = \prod_{n=1}^{N} P(x_n) = \prod_{n=1}^{N} \frac{c(x_n)}{\sum_{x \in V} c(x)}$$

Unigram language model

Multiply the probability of each word appearing in the sentence \mathbf{x} computed over the entire corpus:

$$P(\mathbf{x}) = \prod_{n=1}^{N} P(x_n) = \prod_{n=1}^{N} \frac{c(x_n)}{\sum_{x \in V} c(x)}$$

- <s> i love playing basketball </s>
- <s> arctic monkeys are from sheffield </s>
- <s> i study in sheffield uni </s>

Unigram language model

Multiply the probability of each word appearing in the sentence \mathbf{x} computed over the entire corpus:

$$P(\mathbf{x}) = \prod_{n=1}^{N} P(x_n) = \prod_{n=1}^{N} \frac{c(x_n)}{\sum_{x \in V} c(x)}$$

$$P(i love) = P(i)P(love) = \frac{2}{20} \cdot \frac{1}{20} = 0.005$$

```
<s> i love playing basketball </s>
<s> arctic monkeys are from sheffield </s>
<s> i study in sheffield uni </s>
```

■ The most probable word is $\langle s \rangle (\frac{3}{20})$

```
<s> i love playing basketball </s>
<s> arctic monkeys are from sheffield </s>
<s> i study in sheffield uni </s>
```

- The most probable word is $\langle s \rangle (\frac{3}{20})$
- The most probable single-word sentence is "<s>"

```
<s> i love playing basketball </s>
<s> arctic monkeys are from sheffield </s>
<s> i study in sheffield uni </s>
```

- The most probable word is $\langle s \rangle (\frac{3}{20})$
- The most probable single-word sentence is "<s>"
- The most probable two-word sentence is "<s> <s>"

```
<s> i love playing basketball </s>
<s> arctic monkeys are from sheffield </s>
<s> i study in sheffield uni </s>
```

- The most probable word is $\langle s \rangle (\frac{3}{20})$
- The most probable single-word sentence is "<s>"
- The most probable two-word sentence is "<s> <s>"
- The most probable *N*-word sentence is $N \times$ "<s>"

Maximum Likelihood Estimation

Instead of assuming independence:

$$P(\mathbf{x}) = \prod_{n=1}^{N} P(x_n)$$

We assume that each word is **dependent** on all previous ones:

$$P(\mathbf{x}) = P(x_1, ..., x_N)$$

$$= P(x_1)P(x_2...x_N|x_1)$$

$$= P(x_1)P(x_2|x_1)...P(x_N|x_1, ..., x_{N-1})$$

$$= \prod_{n=1}^{N} P(x_n|x_1, ...x_{n-1}) \quad \text{(chain rule)}$$

ç

Maximum Likelihood Estimation

Instead of assuming independence:

$$P(\mathbf{x}) = \prod_{n=1}^{N} P(x_n)$$

We assume that each word is **dependent** on all previous ones:

$$P(\mathbf{x}) = P(x_1, ..., x_N)$$

$$= P(x_1)P(x_2...x_N|x_1)$$

$$= P(x_1)P(x_2|x_1)...P(x_N|x_1, ..., x_{N-1})$$

$$= \prod_{n=1}^{N} P(x_n|x_1, ...x_{n-1}) \quad \text{(chain rule)}$$

What could go wrong?

Problems with MLE

Let's analyse this:

$$P(\mathbf{x}) = P(x_1)P(x_2|x_1)P(x_3|x_2, x_1)...P(x_N|x_1, ..., x_{N-1})$$

$$P(x_n|x_{n-1...x_1}) = \frac{c(x_1...x_{n-1}, x_n)}{c(x_1...x_{n-1})}$$

As we condition on more words, the counts become sparser

Bigram Language Models

Assume that the choice of a word **depends** only on the one before it:

$$P(\mathbf{x}) = \prod_{n=1}^{N} P(x_n | x_{n-1}) = \prod_{n=1}^{N} \frac{c(x_{n-1}, x_n)}{c(x_{n-1})}$$

k-th order Markov assumption:

$$P(x_n|x_{n-1},...,x_1)\approx P(x_n|x_{n-1},...,x_{n-k})$$

with k=1

Bigram LM: From counts to probabilities

Unigram counts:

arctic	monkeys	are	my	favourite	band
100	600	4000	3000	500	200

Bigram counts (rows: x_{i-1} , cols: x_i):

	arctic	monkeys	are	my	favourite	band
arctic	0	10	2	0	0	0
monkeys	0	0	250	1	5	0
are	3	45	0	600	25	1
my	0	2	0	1	300	5
favourite	0	1	0	0	0	50
band	0	0	3	10	0	0

Bigram LM: From counts to probabilities

From the bigram count matrix, compute probabilities by dividing each cell by the appropriate unigram count for its row.

Bigram probabilities (rows: x_{i-1} , cols: x_i):

	arctic	monkeys	are	my	favourite	band
arctic	0	0.1	0.02	0	0	0
monkeys	0	0	0.417	0.0017	0.008	0
are	0.0008	0.0113	0	0.15	0.0063	0.00003
my	0	0.0007	0	0.0003	0.1	0.0017
favourite	0	0.002	0	0	0	0.1
band	0	0	0.015	0.05	0	0

Example: Bigram language model

$$\mathbf{x} = [\text{arctic}, \text{monkeys}, \text{are}, \text{my}, \text{favourite}, \text{band}]$$

$$P(\mathbf{x}) = P(\text{monkeys}|\text{arctic})P(\text{are}|\text{monkeys})P(\text{my}|\text{are})$$

$$P(\text{favourite}|\text{my})P(\text{band}|\text{favourite})$$

$$= \frac{c(\text{arctic}, \text{monkeys})}{c(\text{arctic})}...\frac{c(\text{favourite}, \text{band})}{c(\text{favourite})}$$

$$= 0.1 \cdot 0.417 \cdot 0.15 \cdot 0.1 \cdot 0.1$$

$$= 0.00006255$$

Longer contexts (N-gram LMs)

$$P(x|context) = \frac{P(context, x)}{P(context)} = \frac{c(context, x)}{c(context)}$$

- In bigram LM *context* is x_{n-1} , trigram x_{n-2}, x_{n-1} , etc.
- The longer the context:
 - the more likely to capture long-range dependencies: "I saw a tiger that was really very..." fierce or talkative?
 - the sparser the counts (zero probabilities)
- 5-grams and training sets with billions of tokens are common.

Unknown Words

- If a word was never encountered in training, any sentence containing it will have probability 0
- It happens:
 - all corpora are finite
 - new words emerging

Unknown Words

- If a word was never encountered in training, any sentence containing it will have probability 0
- It happens:
 - all corpora are finite
 - new words emerging
- Common solutions:
 - Generate unknown words in the training data by replacing low-frequency words with a special UNKNOWN token
 - Use classes of unknown words, e.g. names and numbers

Implementation details

- Dealing with large datasets requires efficiency:
 - use log probabilities to avoid underflows (small numbers)
 - efficient data structures for sparse counts, e.g. lossy data structures Bloom filters)

Implementation details

- Dealing with large datasets requires efficiency:
 - use log probabilities to avoid underflows (small numbers)
 - efficient data structures for sparse counts, e.g. lossy data structures Bloom filters)

How do we train and evaluate our language models?

- We need train/dev/test data
- Evaluation approaches

Intrinsic Evaluation: Accuracy

- How well does our LM predict the next word?
- I always order pizza with cheese and...
 - mushrooms?
 - bread?
 - and?
- Accuracy: how often the LM predicts the correct word
- The higher the better

Intrinsic Evaluation: Perplexity

Perplexity: the inverse probability of the test set $\mathbf{x} = [x_1, ..., x_N]$, normalised by the number of words N:

$$PP(\mathbf{x}) = P(x_1, ..., x_N)^{1/N}$$

$$= \sqrt[N]{\frac{1}{P(x_1, ..., x_N)}}$$

$$= \sqrt[N]{\frac{1}{\prod_{i=1}^{N} P(x_i | x_1, ... x_{i-1})}}$$

Intrinsic Evaluation: Perplexity

Perplexity: the inverse probability of the test set $\mathbf{x} = [x_1, ..., x_N]$, normalised by the number of words N:

$$PP(\mathbf{x}) = P(x_1, ..., x_N)^{1/N}$$

$$= \sqrt[N]{\frac{1}{P(x_1, ..., x_N)}}$$

$$= \sqrt[N]{\frac{1}{\prod_{i=1}^N P(x_i | x_1, ... x_{i-1})}}$$

- Measures how well a probability distribution predicts a sample.
- The lower the better.

Why is a bigram language model likely to have lower perplexity than a unigram one?

Intrinsic Evaluation: Perplexity

Perplexity: the inverse probability of the test set $\mathbf{x} = [x_1, ..., x_N]$, normalised by the number of words N:

$$PP(\mathbf{x}) = P(x_1, ..., x_N)^{1/N}$$

$$= \sqrt[N]{\frac{1}{P(x_1, ..., x_N)}}$$

$$= \sqrt[N]{\frac{1}{\prod_{i=1}^N P(x_i | x_1, ... x_{i-1})}}$$

- Measures how well a probability distribution predicts a sample.
- The lower the better.

Why is a bigram language model likely to have lower perplexity than a unigram one? There is more context to predict the next word!

The problem with perplexity

- Doesn't always correlate with application performance
- Can't evaluate non probabilistic LMs

Extrinsic Evaluation

- Sentence completion
- Grammatical error correction: detecting "odd" sentences and propose alternatives
- Natural lanuage generation: prefer more "natural" sentences
- Speech recognition
- Machine translation

Smoothing

■ What happens when words that are in our vocabulary appear with an unseen context in test data?

Smoothing

- What happens when words that are in our vocabulary appear with an unseen context in test data?
- They will be assigned with zero probability

Smoothing

- What happens when words that are in our vocabulary appear with an unseen context in test data?
- They will be assigned with zero probability

Smoothing (or discounting) to the rescue: Steal from the rich and give to the poor!

Smoothing intuition

We often want to make estimates from sparse statistics:

Smoothing flattens spiky distributions so they generalize better

Taking from the frequent and giving to the rare (discounting)

Add-1 Smoothing

Add-1 (or Laplace) smoothing adds one to all bigram counts:

$$P_{add-1}(x_n|x_{n-1}) = \frac{c(x_{n-1}, x_n) + 1}{c(x_{n-1}) + |V|}$$

Pretend we have seen all bigrams at least once!

Add-k Smoothing

Add-1 puts too much probability mass to unseen bigrams, better to $add-k,\,k<1$:

$$P_{add-k}(x_n|x_{n-1}) = \frac{counts(x_{n-1}, x_n) + k}{counts(x_{n-1}) + k|V|}$$

25

Add-k Smoothing

Add-1 puts too much probability mass to unseen bigrams, better to $\mathsf{add}\text{-}k, k < 1$:

$$P_{add-k}(x_n|x_{n-1}) = \frac{counts(x_{n-1}, x_n) + k}{counts(x_{n-1}) + k|V|}$$

k is a hyperparameter: choose optimal value on the dev set!

Interpolation

Longer contexts are more informative:

dog bites ... better than bites ...

but only if they are frequent enough:

canid bites ...better than bites ...?

Interpolation

Longer contexts are more informative:

dog bites ... better than bites ...

but only if they are frequent enough:

canid bites ...better than bites ...?

Can we combine evidence from unigram, bigram and trigram probabilities?

For a trigram LM:

$$\begin{aligned} P_{SLI}(x_{n}|x_{n-1},x_{n-2}) &= \lambda_{3} P(x_{n}|x_{n-1},x_{n-2}) \\ &+ \lambda_{2} P(x_{n}|x_{n-1}) \\ &+ \lambda_{1} P(x_{n}) \qquad \lambda_{i} > 0, \sum \lambda_{i} = 1 \end{aligned}$$

For a trigram LM:

$$\begin{split} P_{SLI}(x_{n}|x_{n-1},x_{n-2}) &= \lambda_{3} P(x_{n}|x_{n-1},x_{n-2}) \\ &+ \lambda_{2} P(x_{n}|x_{n-1}) \\ &+ \lambda_{1} P(x_{n}) \qquad \lambda_{i} > 0, \sum \lambda_{i} = 1 \end{split}$$

■ Weighted average of unigram, bigram and trigram probabilities

For a trigram LM:

$$P_{SLI}(x_n|x_{n-1}, x_{n-2}) = \lambda_3 P(x_n|x_{n-1}, x_{n-2}) + \lambda_2 P(x_n|x_{n-1}) + \lambda_1 P(x_n) \qquad \lambda_i > 0, \sum \lambda_i = 1$$

- Weighted average of unigram, bigram and trigram probabilities
- How we choose the value of λ s?

For a trigram LM:

$$P_{SLI}(x_n|x_{n-1}, x_{n-2}) = \lambda_3 P(x_n|x_{n-1}, x_{n-2}) + \lambda_2 P(x_n|x_{n-1}) + \lambda_1 P(x_n) \qquad \lambda_i > 0, \sum \lambda_i = 1$$

- Weighted average of unigram, bigram and trigram probabilities
- How we choose the value of λ s? Parameter tuning on the dev set!

Backoff

Start with n-gram order of k but if the counts are 0 use k-1:

$$BO(x_n|x_{n-1}...x_{n-k}) = \begin{cases} P(x_n|x_{n-1}...x_{n-k}), & \text{if } c(x_n...x_{n-k}) > 0 \\ BO(x_n|x_{n-1}...x_{n-k+1}), & \text{otherwise} \end{cases}$$

28

Backoff

Start with n-gram order of k but if the counts are 0 use k-1:

$$\begin{split} BO(x_n|x_{n-1}\dots x_{n-k}) &= \\ \begin{cases} P(x_n|x_{n-1}\dots x_{n-k}), & \text{if } c(x_n\dots x_{n-k}) > 0 \\ BO(x_n|x_{n-1}\dots x_{n-k+1}), & \text{otherwise} \end{cases} \end{split}$$

Is this a probability distribution?

Backoff

NO! Must discount probabilities for contexts with counts P^* and distribute the mass to the shorter context ones:

$$\begin{split} P_{BO}(x_n|x_{n-1}\dots x_{n-k}) &= \\ \begin{cases} P^*(x_n|x_{n-1}\dots x_{n-k}), & \text{if } c(x_n\dots x_{n-k}) > 0 \\ \alpha^{x_{n-1}\dots x_{n-k}}P_{BO}(x_n|x_{n-1}\dots x_{n-k+1}), & \text{otherwise} \end{cases} \\ \alpha^{x_{n-1}\dots x_{n-k}} &= \frac{\beta^{x_{n-1}\dots x_{n-k}}}{\sum P_{BO}(x_n|x_{n-1}\dots x_{n-k+1})} \end{split}$$

 β , is the left-over probability mass for the (n-k)-gram

Absolute Discounting

Using 22M words for train and held-out

Bigram count in training	Bigram count in heldout set
III trailling	Heldout set
0	.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

Can you predict the heldout (test) set average count given the training?

Absolute Discounting

Using 22M words for train and held-out

Bigram count in training	Bigram count in heldout set
0	.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

Can you predict the heldout (test) set average count given the training?

Testing counts = training counts - 0.75 (absolute discount)

Absolute discounting

$$P_{AbsDiscount}(x_n|x_{n-1}) = \frac{c(x_n, x_{n-1}) - d}{c(x_{n-1})} + \lambda_{x_{n-1}}P(x_n)$$

- d = 0.75, λ s tuned to ensure we have a valid probability distribution.
- Component of the Kneser-Ney discounting:
 - Intuition: a word can be very frequent, but if only follows very few contexts,
 - e.g. Francisco is frequent but almost always follows San
 - The unigram probability in the context of the bigram should capture how likely x_n is to be a novel continuation.

Stupid Backoff

■ Do we really need probabilities? Estimating the additional parameters takes time for large corpora.

Stupid Backoff

- Do we really need probabilities? Estimating the additional parameters takes time for large corpora.
- If scoring is enough, stupid backoff works adequately:

$$\begin{split} SBO(x_n|x_{n-1}\dots x_{n-k}) &= \\ & \begin{cases} P(x_n|x_{n-1}\dots x_{n-k}), & \text{if } c(x_n\dots x_{n-k}) > 0 \\ \lambda SBO(x_n|x_{n-1}\dots x_{n-k+1}), & \text{otherwise} \end{cases} \end{split}$$

■ Empirically found that $\lambda = 0.4$ works well

Stupid Backoff

- Do we really need probabilities? Estimating the additional parameters takes time for large corpora.
- If scoring is enough, stupid backoff works adequately:

$$SBO(x_n|x_{n-1}...x_{n-k}) = \begin{cases} P(x_n|x_{n-1}...x_{n-k}), & \text{if } c(x_n...x_{n-k}) > 0 \\ \lambda SBO(x_n|x_{n-1}...x_{n-k+1}), & \text{otherwise} \end{cases}$$

- Empirically found that $\lambda = 0.4$ works well
- They called it stupid because they didn't expect it to work well!

Last words: More data defeats smarter models!

Figure 5: BLEU scores for varying amounts of data using Kneser-Ney (KN) and Stupid Backoff (SB).

From Large Language Models in Machine Translation

Bibliography

- Chapter 3 from Jurafsky & Martin
- Chapter 6 from Eisentein
- Michael Collins' notes on LMs

Coming up next...

- We have learned how to model word sequences using Markov models
- In the following lecture we will look at how to perform part-of-speech tagging using:
 - the **Hidden** Markov Model (HMM)
 - the Conditional Random Fields (CRFs), an extension of logistic regression for sequence modelling