

Überblick

- 1. Wissenschaftliche Methode (*scientific method*)
- 2. Messung von Laufzeit
- 3. Mathematische Modelle für Laufzeiten
- **4.** Klassifikation von Komplexität: Θ-, \mathcal{O} -, und Ω -Notation

Programmiertechnik II

Überblick

- 1. Wissenschaftliche Methode (scientific method)
- 2. Messung von Laufzeit
- 3. Mathematische Modelle für Laufzeiten
- **4.** Klassifikation von Komplexität: Θ-, \mathcal{O} -, und Ω -Notation

Programmiertechnik II

Laufzeit

- Laufzeit von Programmen war schon immer von zentraler Bedeutung
 - Analytic Engine: Wie oft muss man die Kurbel für eine Berechnung drehen?
- Laufzeit von Programmen ist für alle wichtig
 - Programmierer: Muss eine Softwarelösung entwickeln, die in endlicher Zeit berechnet wird
 - Kunde: Will die kostengünstigste Softwarelösung (Fixkosten = Softwareentwicklung, variable Kosten = Programmlaufzeitkosten)
 - **Theoretiker**: Will Algorithmen vergleichen und in Komplexitätsklassen einteilen
- Gründe, um (die Laufzeit von) Algorithmen zu analysieren

□ Theoretische Basis ← Theoretische Basis

Theoretische Informatik I (TI1)

Charles Babbage (1791 – 1871)

Programmiertechnik II

Beispiele für Algorithmische Erfolge

Discrete Fourier Transform

- **Problem**: Zerlegung einer Zeitreihe von n Beobachtungen in periodische Komponenten
- Anwendung: JPEG-Kompression, Magnet-Resonanz (MRI) Bildgebung ...
- **Naive**: Eine Doppelschleife mit n^2 Einzelschritten
- FFT-Algorithmus: $n \cdot \log(n)$ Einzelschritte. Ermöglichte ganz neue Anwendungen!

N-Körper Problem

- Problem: Simulation von Gravitationskräften zwischen N Körpern
- Anwendung: Astronomie
- **Naive**: Eine Doppelschleife mit n^2 Einzelberechnungen
- Barnes-Hut Algorithmus: $n \cdot \log(n)$ Einzelschritte. Ermöglichte neue Forschung!

Carl Friedrich Gauss (1777 - 1855)

Andrew Appel

Wissenschaftliche Methode

- Wissenschaftliche Methode. Die wissenschaftliche Methode zeichnet sich durch 5 Schritte aus:
 - 1. **Beobachtung** von Merkmalen in der Welt
 - 2. Aufstellen einer **Hypothese**, die konsistenz mit den Beobachtungen sind
 - 3. **Vorhersage** von zukünftigen Beobachtungen mit Hilfe der Hypothese
 - 4. **Abgleichen** der Vorhersage mit der realen Beobachtung zu den Vorhersagen
 - 5. **Iterieren** bis Abgleich und Vorhersage übereinstimmen

Prinzipien:

- 1. Experimente müssen reproduzierbar sein!
- 2. Hypothesen müssen falsifizierbar sein!
- Die wissenschaftliche Methode eignet sich für die Analyse von Algorithmen weil Beobachtungen leicht durch Berechnungen zu erzielen sind!

Sir Isaac Newton (1643 – 1726)

Sir Karl Popper (1902 – 1994)

Programmiertechnik II

Beispiel: 3-Summen Problem

3-Summen Problem. Gegeben *n* unterschiedliche Ganzzahlen, bestimme wie viele Triples von Zahlen sich genau zu Null addieren!

i	a[i]	
0	30	
1	-40	
2	-20	
3	-10	
4	40	
5	0	
6	10	
7	5	

a[i]	a[j]	a[k]	sum
30	-40	10	0
30	-20	-10	0
-40	40	0	0
-10	0	10	0

Anka Gajentaan (1968)

Programmiertechnik II

Unit 3a – Analyse von Algorithmen

 Dieses Problem definiert eine ganze Komplexitätsklasse in computational geometry!


```
#include <iostream>
#define MAX_SIZE 1000000
using namespace std;
// counts the number of triples that sum to exactly 0
int count 3sums(const int* list, const int size) {
    int count = 0;
    for (auto i = 0; i < size; i++) {</pre>
       for (auto i = i + 1; i < size; i++) {
            for (auto k = j + 1; k < size; k++) {
                if (list[i] + list[j] + list[k] == 0) {
                    count++:
    return count;
// main entry point of the program
int main(int argc, char* argv[]) {
    int a[MAX SIZE];
    int n = 0;
    // read the list of integers from the standard input
    while (n < MAX SIZE \&\& (cin >> a[n])) {
        n++;
    // computes the number of triples that sum to exactly 0 and outputs the count on the screen
    cout << count_3sums(a, n) << endl;</pre>
    return (0);
```

```
Iteriere alle a [i]
Iteriere alle a [j]
Iteriere alle a [k]
```

Überprüfe, dass a[i] + a[j] + a[k] == 0

Programmiertechnik II

Überblick

- 1. Wissenschaftliche Methode (*scientific method*)
- 2. Messung von Laufzeit
- 3. Mathematische Modelle für Laufzeiten
- **4.** Klassifikation von Komplexität: Θ-, 𝒪-, und Ω-Notation

Programmiertechnik II

Messmethoden

Manuell mit Stoppuhr

```
→ unit3 git:(main) x ./3sums < 1Kints.txt
70
→ unit3 git:(main) x ./3sums < 2Kints.txt
528
→ unit3 git:(main) x ./3sums < 4Kints.txt
4039
→ unit3 git:(main) x ./3sums < 8Kints.txt
32074
→ unit3 git:(main) x ■</pre>
```



```
→ unit3 git:(main) x time ./3sums < 1Kints.txt
70
./3sums < 1Kints.txt 0.02s user 0.00s system 94% cpu 0.028 total
→ unit3 git:(main) x time ./3sums < 2Kints.txt
528
./3sums < 2Kints.txt 0.11s user 0.00s system 97% cpu 0.116 total
→ unit3 git:(main) x time ./3sums < 4Kints.txt
4039
./3sums < 4Kints.txt 0.67s user 0.00s system 98% cpu 0.680 total
→ unit3 git:(main) x time ./3sums < 8Kints.txt
32074
./3sums < 8Kints.txt 4.92s user 0.00s system 98% cpu 4.979 total
→ unit3 git:(main) x
```


Programmiertechnik II

Messmethoden (ctd.)

Mit Hilfe von Standardbibliotheken in ctime.h

Programmiertechnik II

Empirische Analyse

4 Läufe des Programms

n	Laufzeit (in s)	
1000	0.02104	
2000	0.107	
4000	0.6583	
8000	4.904	

$$b = 2.62$$
$$2^c = 2^{-31.8}$$

$$\log_2(T(n)) = b \cdot \log_2(n) + c$$

Programmiertechnik II

Vorhersage

■ **Hypothese**: Die Laufzeit von 3 Summen ist ungefähr $2^{-31.8} \cdot n^{2.62}$ ►

Die Größenordnung ist ungefähr n^3

Vorhersage:

- □ Für n = 8000 ist $\hat{T}(n) = 4.457$
- Für n = 16000 ist $\hat{T}(n) = 27.43$

Beobachtungen

n	Laufzeit (in s)	
8000	4.887	
8000	4.891	
16000	37.93	
16000	38.02	

Unterstützt die Hypothese nicht

Programmiertechnik II

Doubling Hypothesis

- Einfache Methode, um den Exponenten in einem *power law* zu schätzen.
- Idee: Lasse das Programm laufen und verdoppele die Eingabegröße

n	Laufzeit (in s)	$\frac{T(2n)}{T(n)}$	$\hat{b} = \log_2\left(\frac{T(2n)}{T(n)}\right)$
1000	0.02104		
2000	0.107	5.08	2.344
4000	0.6583	6.15	2.621
8000	4.904	7.44	2.900

$$\frac{T(2n)}{T(n)} = \frac{2^c \cdot (2n)^b}{2^c \cdot n^b} = 2^b$$

Schätzung von c: Für ein geschätztes \hat{b} , kann c geschätzt werden mittels

$$\hat{c} = \log_2\left(\frac{T(n)}{n^{\hat{b}}}\right)$$

Konvergiert gegen 3.0

Unit 3a – Analyse von Algorithmen

Programmiertechnik II

$$\hat{c} = \log_2\left(\frac{4.904}{8000^{2.9}}\right) = -35.31$$
 $\hat{T}(16000) = 2^{-35.31} \cdot 16000^{2.9} = 36.52$

Experimentelle Algorithmik

- Systemabhängige Effekte, die Laufzeit bestimmen:
 - Hardware: CPU, Speicher, Cache, ...
 - Software: Compiler, Interpreter, Speichermanager, ...
 - System: Betriebssystem, Netzwerk, (andere) Anwendungen, ...

Bestimmen die Konstante 2^c im *power law*

- Systemunabhängige Effekte, die Laufzeit bestimmen:
 - Eingabedaten
 - Algorithmus

Bestimmen den Exponenten b im power law

- Problematisch, exakte Messungen der Laufzeit zu bekommen.
- Aber, viel einfacher und kostengünstiger mehr Messungen als in anderen Wissenschaften zu machen!

Programmiertechnik II

Unit 3a – Analyse von Algorithmen

Zum Beispiel, sehr viele Experimente/Ausführungen machen!

Viel Spaß bis zur nächsten Vorlesung!