Решение на домашно 2

Валентин Стоянов

март 2018

Задача 1.

Нека $R = \{a, b, c, d\}$ е пръстен с таблици за събиране и умножение, съответно,

+	a	b	c	d
a	a	b	С	d
b	b	a	d	С
С	С	d	a	b
d	d	С	b	a

V

*	a	b	С	d
a	a	a	a	a
b	a	•	a	b
С	a	•	•	С
d	a	d	•	•

Да се определят отбелязаните с кръгче елементи в таблицата за умножение и да се намерят идеалите на пръстена R.

Решение:

$$dd = (b+c)d = bd + cd = b + c = d$$

$$dc = d(d+b) = dd + db = d + d = a$$

$$bb = b(c+d) = bc + bd = a + b = b$$

$$cb = (b+d)b = bb + db = b + d = c$$

$$cc = c(b+d) = cb + cd = c + c = a$$

След попълване, таблицата за умножение изглежда така:

*	a	b	с	d
a	a	a	a	a
b	a	b	a	b
c	a	c	a	c
d	a	d	a	d

Идеалите в пръстена са: $\{a\}, \{a,b,c,d\}$ и $\{a,c\}.$

Задача 2.

Разглеждаме множествата

$$A = \{ \tfrac{f}{g} \mid f,g \in \mathbb{Q}[x] \, ; \, g(45466) \neq 0 \} \quad \text{и} \quad M = \{ \tfrac{f}{g} \in A \mid f(45466) = 0 \}.$$

Да се докаже, че A е пръстен (относно обичайните операции: събиране и умножение на рационални функции), M е идеал на A, който съдържа всеки собствен идеал на A и $A/M \cong \mathbb{Q}$

Решение:

Нека $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in A$. Ще проверим дали $\frac{f_1}{g_1} - \frac{f_2}{g_2} \in A$ и $\frac{f_1}{g_1} \frac{f_2}{g_2} \in A$.

- $\frac{f_1}{g_1} \frac{f_2}{g_2} = \frac{f_1g_2 f_2g_1}{g_1g_2}$, тъй като $\mathbb{Q}[x]$ е пръстен и $f_1, f_2, g_1, g_2 \in \mathbb{Q}[x]$, то следва, че $g_1g_2 \in \mathbb{Q}[x]$ и $f_1g_2 f_2g_1 \in \mathbb{Q}[x]$. Следователно $\frac{f_1g_2 f_2g_1}{g_1g_2} \in A$.
- Тъй като $\mathbb{Q}[x]$ е пръстен следва, че $f_1f_2\in\mathbb{Q}[x]$ и $g_1g_2\in\mathbb{Q}[x]$. Следователно $\frac{f_1f_2}{g_1g_2}\in A$

 $\Rightarrow A$ е пръстен.

M съдържа необратимите елементи на A

 $A \backslash M$ съдържа обратимите на A.

I е идеал. Ако съществува $a \in I$, който е обратим, то I = A. Следователно всеки собствен идеал на A се съдържа в M.

Нека $\varphi:A \to \mathbb{Q}$ такова, че $\varphi(\frac{f}{g})=(\frac{f}{g})(45466).$

Ще проверим дали φ е хомоморфизъм на пръстени. Нека $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in A$.

•
$$\varphi(\frac{f_1}{g_1} + \frac{f_2}{g_2}) = \varphi(\frac{f_1g_2 + f_2g_1}{g_1g_2}) = (\frac{f_1g_2 + f_2g_1}{g_1g_2})(45466) = (\frac{f_1}{g_1})(45466) + (\frac{f_2}{g_2})(45466) = (\frac{f_1}{g_1}) + \varphi(\frac{f_2}{g_2})$$

$$\bullet \ \varphi(\frac{f_1}{g_1}\frac{f_2}{g_2}) = \varphi(\frac{f_1f_2}{g_1g_2}) = (\frac{f_1f_2}{g_1g_2})(45466) = (\frac{f_1}{g_1})(45466)(\frac{f_2}{g_2})(45466) = \varphi(\frac{f_1}{g_1})\varphi(\frac{f_2}{g_2})$$

 $\Rightarrow \varphi$ е хомоморфизъм.

От начина, по който е зададено следва, че $Ker \varphi = M$.

Съгласно Теоремата за хомоморфизми на пръстени: $A/M\cong \mathbb{Q}$

Задача 4.

Да се докаже, че факторпръстенът $\mathbb{Z}_3[x]/(x^3+\bar{2}x+\bar{1})$ е поле. Намерете обратния елемент на $\bar{2}x^2+x+\bar{1}$.

Решение:

```
Нека f=x^3+\bar{2}x+\bar{1}. \mathbb{Z}_3[x]/(f) е поле, ако f е неразложим над \mathbb{Z}_3. Понеже deg(f)=3, то f е неразложим \Leftrightarrow f няма корен в \mathbb{Z}_3. \mathbb{Z}_3=\{\bar{0},\bar{1},\bar{2}\}; \quad f(\bar{0})=\bar{1}\neq 0 \quad f(\bar{1})=\bar{1}\neq 0 \quad f(\bar{2})=\bar{1}\neq 0 \Rightarrow f няма корени в \mathbb{Z}_3\Rightarrow f е неразложим над \mathbb{Z}_3\Rightarrow \mathbb{Z}_3[x]/(f) е поле. Нека g=\bar{2}x^2+x+\bar{1}. Искаме да намерим обратния елемент на g в \mathbb{Z}_3[x]/(f), т.е търсим такъв полином h, че gh\equiv 1\pmod f. gh\equiv 1\pmod f. gh\equiv 1\pmod f gh+kf=1, за някое k\in\mathbb{Z}_3[x]. f=g(\bar{2}x+\bar{2})+(x+\bar{2}) g=(x+\bar{2})\bar{2}x+\bar{1} x+\bar{2}=\bar{1}(x+\bar{2})+\bar{0} g(x^2+x+\bar{1})+fx=1 g(x^2+x^2)+fx=1
```

Задача 5.

Нека K е комутативен пръстен с единица. Да се докаже, че

- а) Ако $I \subseteq K$, то $M_n(I) \subseteq M_n(K)$ и $M_n(K)/M_n(I) \cong M_n(K/I)$;
- б) Всеки идеал $J \subseteq M_n(K)$ е от вида $J = M_n(I)$, където $I \subseteq K$.

Решение:

a)

- Нека $(a_{ij})_{n\times n}, (b_{ij})_{n\times n} \in M_n(I)$? \Rightarrow $(a_{ij})_{n\times n} (b_{ij})_{n\times n} \in M_n(I)$ $(a_{ij})_{n\times n} (b_{ij})_{n\times n} = (a_{ij} b_{ij})_{n\times n}, I$ е идеал $\Rightarrow a_{ij} b_{ij} \in I \Rightarrow (a_{ij})_{n\times n} (b_{ij})_{n\times n} \in M_n(I)$
- Нека $(a_{ij})_{n\times n}\in M_n(I)$ и $(k_{ij})_{n\times n}\in M_n(K)$? \Rightarrow $(a_{ij})_{n\times n}(k_{ij})_{n\times n}\in M_n(I)$ $(a_{ij})_{n\times n}(k_{ij})_{n\times n}=(a_{ij}k_{ij})_{n\times n}, I$ е идеал \Rightarrow $a_{ij}k_{ij}\in I\Rightarrow (a_{ij})_{n\times n}(k_{ij})_{n\times n}\in M_n(I)$
- $\Rightarrow M_n(I) \leq M_n(K)$

С помощта на хомоморфизма $\psi: K \to K/I$ такъв, че $\psi(a) = \bar{a} = a + I$, дефинираме изображение $\varphi: M_n(K) \to M_n(K/I)$, действащо по правилото $\varphi((a_{ij})_{n \times n}) = (\bar{a}_{ij})_{n \times n}$. От това, че ψ е хомоморфизъм на пръстени следва, че φ е хомоморфизъм. Ясно е, че $Ker\varphi = M_n(I)$. От теоремата за хомоморфизмите на пръстени следва, че $M_n(K)/M_n(I) \cong M_n(K/I)$.

б) Нека $J \leq M_n(K)$ и I да е подмножество на K, състоящо се от всички елементи на всички матрици на J. Ще докажем, че $I \leq K$ и $J = M_n(I)$. Нека $a,b \in I$. Следователно съществуват матрици $A,B \in J$ такива, че a и b са съответно техни елементи. Нека a е на (i,j)-то място в A и b е на (p,q)-то място в B. Нека e_{ij} е матрицата с, която има единица на (i,j)-то място. Понеже $J \leq M_n(K)$, то $e_{1i}Ae_{j1}, e_{1p}Be_{q1} \in J$, откъдето следва, че и $e_{1i}Ae_{j1} - e_{1p}Be_{q1} \in J$. $e_{1i}Ae_{j1} = ae_{11}, e_{1p}Be_{q1} = be_{11} \Rightarrow ae_{11} - be_{11} = (a-b)e_{11} \in J \Rightarrow a-b \in I$. Нека $k \in K$. Тогава $(kE)A \in J$ и на (i,j)-то място в (kE)A стои ka, следователно $ka = ak \in I$. Следователно $I \leq K$.

Нека $(c_{ij})_{n\times n}\in M_n(I)$. За всеки 2 индекса (i,j) съществува матрица $A\in J$, за която c_{ij} е елемент на A. Ако c_{ij} стои на (s,t)-то място в A, то получаваме, че $c_{ij}e_{ij}=e_{is}Ae_{tj}\in J$. Тогава $(c_{ij})_{n\times n}=\sum_{i,j=1}^n c_{ij}e_{ij}\in J$. Следователно $M_n(I)\subseteq J$. Лесно се проверява и че $J\subseteq M_n(I)$. Откъдето следва, че $J=M_n(I)$.