Package 'soilP'

April 24, 2018

2 bg_map

lex		16
	swap_in	14
	soil_composition	
	soilclass	12
	scale256	12
	row_entropy	11
	read_ISRIC_AT	10
	rat	10
	plot_P_scales	9
	ORNL2013	9

Index

bg_map

Background Map for phosphorus variable plotting

Description

Background Map for phosphorus variable plotting

Usage

```
bg_map(lon, lat, data, bg)
```

Arguments

lon	longitude column name
lat	latitude column name
data	dataframe with georeferenced data, containing at least latitude and longitude columns
bg	sf object representing a shapefile for background plot. e.g. mountains, rivers, ecosystems

Value

ggplot object with plotted map

```
data(mountain)
bg_map("Long", "Lat", data = ISRIC_P$georef, bg = mountain)
```

brickP 3

brickP

Read Soil Phosphorus Variables raster from ORNL 2013

Description

Read Soil Phosphorus Variables raster from ORNL 2013

Usage

```
brickP(nc_file)
```

Arguments

nc_file

ORNL 2013 netCDF file of Soil Phosphorus Variables

Value

raster brick of of ORNL Soil Phosphorus variables

Examples

```
nc_in <- "inst/extdata/GLOBAL_PHOSPHORUS_DIST_MAP_1223/data/pforms_den.nc"
phospho_brick <- read_P_ORNL(nc_in)</pre>
```

classify_elevation

Convert Elevation values to classes

Description

Convert Elevation values to classes

Usage

```
classify_elevation(elevation, breaks = c(0, 1000, 2000, 9000), labels = c("Low", "Mid", "High"))
```

Arguments

elevation vector of numeric elevation values breaks numeric vector of class limits

labels character vector of elevation class labels

Value

factor of elevation classes converting NAs to "Missing"

```
accn.info$Elevation_class <- classify_elevation(accn.info$Elevation)</pre>
```

4 extract_P_ORNL

	Extract Soil Phosphorus Retention Potential from georeference coor- linates
--	--

Description

Extract soil phosphorus retention potential main class from georeference coordinates

Usage

```
extract_P_ISRIC(rc, georef, soilclass, lon = "lon", lat = "lat")
```

Arguments

rc ratified raster with P retention class attributes

georef dataframe with georeferenced data, containing at least latitude and longitude

columns

soilclass dataframe with soil P retention class table

lon longitude column namelat latitude column name

Value

list containning:

breaks vector of breaks for ggplot legend
pal named vector of colors for ggplot legend/map as in ISRIC 2011
georef dataframe of soil P retention potential main class added to georef input

Examples

extract_P_ORNL	Extract ORNL 2013 Soil Phosphorus Variables from georeference co-
	ordinates

Description

Extract ORNL 2013 Soil Phosphorus Variables from georeference coordinates

Usage

```
extract_P_ORNL(brick, georef, lon = "Long", lat = "Lat")
```

get_peaks 5

Arguments

brick raster brick of of ORNL Soil Phosphorus variables

georef dataframe with georeferenced data, containing at least latitude and longitude

columns

lon longitude column namelat latitude column name

Value

list containning:

```
pal ramped pallete function as in ORNL 2013georef dataframe of ORNL 2013 Soil Phosphorus Variables data added to georef input
```

Examples

```
nc_in <- "inst/extdata/GLOBAL_PHOSPHORUS_DIST_MAP_1223/data/pforms_den.nc"
phospho_brick <- read_P_ORNL(nc_in)</pre>
```

get_peaks

function for this: which.max(density(!!!sym(scale_x))\$y Nasty!

Description

function for this: which.max(density(!!!sym(scale_x))\$y Nasty!

Usage

```
get_peaks(df, scale_x = "LD2", scale_y = "combined")
```

ISRIC2011

Global Distribution of Soil Phosphorus Retention Potential. International Soil Reference and Information Centre, 2011.

Description

List of raster objects representing various Phosphorus Retention Potential associated variables.

Usage

```
data(ISRIC2011)
```

Format

A list of "RasterLayer" objects; see raster.

6 ISRIC_AT

Source

ISRIC

References

Batjes NH 2011. Global distribution of soil phosphorus retention. Report 2011/06, Plant Research International (PRI), Wageningen UR, and ISRIC – World Soil Information, Wageningen, 42 p. with dataset

(ISRIC)

Examples

```
data(ISRIC2011)
plot(ISRIC2011)
```

ISRIC_AT

Raster attribute tables for ISRIC 2011 List of dataframe representing various Phosphorus Retention Potential associated variables.

Description

The main tables in thisdata set

- mapunit
- soilunit
- FA074

Come from the access database in the published data of Batjes 2011. Names of the tables and variables were changed with read_ISRIC_RAT in order to have a clearer semantics of the code.

Usage

```
data(ISRIC2_RAT)
```

Format

A list of dataframe objects

Details

The main objection with these tables id the discrepancy in the number of rows map unit table has 4932 rows, while DSMW has 4931, and the Batjes raster has 4909 values.

Source

ISRIC

References

Batjes NH 2011. Global distribution of soil phosphorus retention. Report 2011/06, Plant Research International (PRI), Wageningen UR, and ISRIC – World Soil Information, Wageningen, 42 p. with dataset

(ISRIC)

is_soil 7

Examples

```
data(ISRIC2011)
plot(ISRIC2011)
```

 is_soil

Soil class check

Description

Soil class check

Usage

```
is\_soil(x, reserve = 5)
```

Arguments

x factor or character vector with soil phosphorus retention classes

minp Minimum quasi probability for entropy estimation

layers_from

Reclassifies raster from RAT columns

Description

Reclassifies raster from RAT columns

Usage

```
layers_from(ratified, cols = NULL)
```

Arguments

ratified ratified raster object cols vector of columns.

Value

list of reclassified raster objects

8 nb_plot

mountain

A global inventory of mountains for bio-geographical applications

Description

Derived from shape file

Usage

```
data(mountain)
```

Format

An object of class "sf"; see sf.

Source

GMBA mountain inventory_V1.1

References

Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, Spehn EM (2017) A global inventory of mountains for bio-geographical applications Alpine Botany 127(1): 1-15, DOI: 10.1007/s00035-016-0182-6

(Springer)

Examples

```
data(mountain)
```

nb_plot

Raster plot adjusted to rendering in R notebooks

Description

Raster plot adjusted to rendering in R notebooks

Usage

```
nb_plot(r, axis.args = list(cex.axis = 2), ...)
```

Arguments

r

raster object to be plotted.

Value

plot

```
data(ISRIC2011)
nb_plot(ISRIC2011$main)
```

ORNL2013 9

ORNL2013	Global Gridded Soil Phosphorus Distribution Maps. Oak Ridge National Laboratory, 2013.

Description

A map of total soil P and the distribution among mineral bound, labile, organic, occluded, and secondary P forms in soils globally at 0.5-degree Resolution.

Usage

```
data(ORNL2013)
```

Format

An object of class "RasterBrick"; see raster.

Source

ORNL

References

Yang, X., Post, W. M., Thornton, P. E., & Jain, A. (2013). The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences, 10(4), 2525-2537. doi:10.5194/bg-10-2525-2013

(Biogeosciences)

Examples

```
data(ORNL2013)
plot(ORNL2013[[1]])
```

```
plot_P_scales Scattreplot wirh marginal histograms for ISRIC P retention Potential Scales
```

Description

Continuous scales derived from multivariate analysis of the P retention potential Space

Usage

```
plot_P_scales(df, palette = NULL, scale_x = "LD2", scale_y = "combined")
```

10 read_ISRIC_AT

Arguments

df dataframe containing Phosphorus Retention Potential Scales as columns.

soilclass dataframe with soil P retention class table

8 bit value integer vector corresponding to soil P retention main classes
 8 bit value corresponding to new order for soil P retention main classes
 filename output geotiff file name with P retention classes stored in new order

Value

ratified raster object with P retention classes as 8 bit values

rat

get raster attribute table

Description

get raster attribute table

Usage

rat(x)

Arguments

Х

ratified raster

Value

matrix with named columns as soil units and values as percentage, excluding miscealaneous soil units RK WR GL and corresponding map units

Examples

```
get_soil_composition(mapunit, FAO74)
```

 $read_ISRIC_AT$

Read Soil Phosphorus Retention Raster Attribute Table from ISRIC 2011 mdb

Description

Read Soil Phosphorus Retention Raster Attribute Table from ISRIC 2011 mdb

Usage

```
read_ISRIC_AT(mdb_file)
```

row_entropy 11

Arguments

```
mbd_file ISRIC 2011 geotiff
```

Value

```
list of dataframes: #'
```

FA074 KeyFA074, Soil Map of the world legend

mapunit P_RetMap_FINAL, Map unit attributes including map unit phophorus retention full class, main class, soil unit composition, and dominant soil unit phophorus retention class

soilunit P_newsuid_avg_PRET soil unit phosphorus retention class, physicochemical properties, Qs single value

Examples

row_entropy

estimated entropy

Description

estimated entropy

Usage

```
row_entropy(m, minp = 1e-06)
```

Arguments

m frequency matrix

minp Minimum quasi probability for entropy estimation

12 soilclass

scale256

Rescale to 8 bit integer, with reserved lower integers

Description

Rescale to 8 bit integer, with reserved lower integers

Usage

```
scale256(x, reserve = 5)
```

Arguments

Χ	factor or character vector with soil phosphorus retention classes
reserve	first integers not corresponding to original scale

soilclass

Raster Attribute Table for ISRIC 2011 Global Distribution of Soil Phosphorus Retention Potential

Description

Table of correspondence between 8 bit geotiff values and various attributes including ascending order of soil classes and color palette for the 16 main soil P retention Potential classes.

Usage

```
data(soilclass)
```

Format

An object of class "raster"; see raster.

Details

The geotiff from the original download contains values between 0 and 7000. those values correspond to different soil units not to phophorus retention classes.

In order to obtain the soil retention potential main class (16 values) I had to use Arcgis to make a new layer from the attribute main.class from the attribute table of the layer Phosphorus_retention_class and export it as 8 bit tiff with tags and world file

In this 8 bit geotiff file the different values of P retention soilclass are stored as a number between 0 and 15 and correspond to the legend in the arcgis layer Phosphorus_retention_class. In order to build the table I had to manually check the correspondence:

arcgis	main	description
0	WR1	Oceans/Inland waters
1	VH3	25-50% Very High
2	VH2	50-75% Very High
3	VH1	>75% Very High

soilclass 13

```
RK2
           50-75% Rock Outcrops
5
    RK1
           >75% Rock Outcrops
    Mo3
           25-50% Moderate
6
7
    Mo2
           50-75% Moderate
8
    Mo1
           >75% Moderate
9
     Lo3
           25-50% Low
10
     Lo2
           50-75% Low
11
     Lo1
           >75% Low
           25-50% High
12
     Hi3
13
     Hi2
           50-75% High
14
     Hi1
           >75% High
15
    GL1
           Glaciers
```

The problem is that this order is not ascending with regard to P retention potential. So I reassigned integers into a postulated ascending order of phosphorus retention potential and stored it as the ascending column.

ascending	main	description
0	WR1	Oceans/Inland waters
1	GL1	Glaciers
2	RK1	>75% Rock Outcrops
3	RK2	50-75% Rock Outcrops
4	Lo1	>75% Low
5	Lo2	50-75% Low
6	Lo3	25-50% Low
7	Mo3	25-50% Moderate
8	Mo2	50-75% Moderate
9	Mo1	>75% Moderate
10	Hi3	25-50% High
11	Hi2	50-75% High
12	Hi1	>75% High
13	VH3	25-50% Very High
14	VH2	50-75% Very High
15	VH1	>75% Very High

Source

ISRIC

References

Batjes NH 2011. Global distribution of soil phosphorus retention. Report 2011/06, Plant Research International (PRI), Wageningen UR, and ISRIC – World Soil Information, Wageningen, 42 p. with dataset.

(ISRIC)

Examples

data(soilclass)

14 swap_in

soil_composition

Get Extended Map Unit Soil Composition Matrix from ISRIC RAT

Description

Get Extended Map Unit Soil Composition Matrix from ISRIC RAT

Usage

```
soil_composition(mapunit, FAO74)
```

Arguments

mapunit map unit raster attribute table
FA074 legend key from read_ISRIC_RAT

Value

matrix with named columns as soil units and values as percentage, excluding miscealaneous soil units RK WR GL and corresponding map units

Examples

```
get_soil_composition(mapunit, FAO74)
```

swap_in

Reclassifies raster with dataframe column

Description

Reclassifies raster with dataframe column

Usage

```
swap_in(x, rat = raster::levels(x)[[1]], from = "ID", to = NULL)
```

Arguments

x raster object

rat dataframe with Raster Atribute Table, e.g. P retention potential main classes

is column name of input raster value.
becomes column name of output raster value

Value

ratified raster object with P retention classes as 8 bit values

swap_in

Index

```
*Topic DSMW
    ISRIC2011, 5
    ISRIC_AT, 6
*Topic FAO74,
    ISRIC2011, 5
    ISRIC_AT, 6
*Topic datasets,
    ISRIC2011, 5
    ISRIC_AT, 6
*Topic datasets
    {\tt mountain}, \textcolor{red}{8}
    ORNL2013, 9
    soilclass, 12
bg_map, 2
brickP, 3
classify\_elevation, 3
extract_P_ISRIC, 4
\verb|extract_P_ORNL|, 4
get_peaks, 5
is_soil, 7
ISRIC2011, 5
ISRIC_AT, 6
layers_from, 7
mountain, 8
nb\_plot, 8
ORNL2013, 9
plot_P_scales, 9
raster, 5, 9, 12
rat, 10
read_ISRIC_AT, 10
row_entropy, 11
scale256, 12
sf, 8
soil_composition, 14
soilclass, 12
swap_in, 14
```