INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4539B MSI Dual 4-input multiplexer

Product specification
File under Integrated Circuits, IC04

January 1995

Dual 4-input multiplexer

HEF4539B MSI

DESCRIPTION

The HEF4539B is a dual 4-input multiplexer with common select logic. Each multiplexer has four multiplexer inputs (I_0 and I_3), an active LOW enable input (\overline{E}) and a multiplexer output (O). When HIGH, \overline{E} forces O of the respective multiplexer LOW, independent of the select inputs (S₀ to S₁) and I₀ to I₃. When \overline{E} is LOW, S₀ and S₁ determine which multiplexer input (I₀ to I₃) on each of the multiplexers is routed to the respective multiplexer output (O).

PINNING

 $\begin{array}{lll} I_{0A}, \ I_{1A}, \ I_{2A}, \ I_{3A} & \quad \text{multiplexer inputs} \\ I_{0B}, \ I_{1B}, \ I_{2B}, \ I_{3B} & \quad \text{multiplexer inputs} \\ S_0, \ S_1 & \quad \text{select inputs} \end{array}$

 $\overline{\mathsf{E}}_\mathsf{A}, \overline{\mathsf{E}}_\mathsf{B}$ enable inputs (active LOW)

O_A, O_B multiplexer outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF4539BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4539BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4539BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

Dual 4-input multiplexer

HEF4539B MSI

FUNCTION TABLE

	INPUTS	OUTPUT	
S ₀	S ₁	Ēn	On
Х	Х	Н	L
L	L	L	I ₀
Н	L	L	I ₁
L	Н	L	I_2
Н	Н	L	l ₃

Notes

H = HIGH state (the more positive voltage)
 L = LOW state (the less positive voltage)
 X = state is immaterial

Philips Semiconductors Product specification

Dual 4-input multiplexer

HEF4539B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$I_n \to O_n$	5			120	240	ns	93 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		45	90	ns	34 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
	5			120	245	ns	93 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	65	ns	27 ns + (0,16 ns/pF) C _L
$S_n \to O_n$	5			165	330	ns	138 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		65	125	ns	54 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5			155	310	ns	128 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		60	120	ns	49 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
$\overline{E}_n \rightarrow O_n$	5			100	200	ns	73 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	55	ns	22 ns + (0,16 ns/pF) C _L
	5			100	200	ns	73 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	55	ns	22 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	700 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	2900 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	8100 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

APPLICATION INFORMATION

Some examples of applications for the HEF4539B are: * Data selectors * Data multiplexers

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.