

Computer Science Department

Digital System

COMP232

Student's name, ID:

Mohammad AbuThaher1202833

Instructor:

Dr. Anjad Badran

Section: 5

Date: 7/02/2023

First semester 2022/2023

A)

The size of the output (O) in bits so the overflow can never occur is n + 1 bits. To prevent overflow, the output must be able to represent the largest possible result of

any of the operations, which can be represented as the largest possible n-bit signed number plus the largest possible n-bit signed number, which requires n+1 bits.


```
1)
module optione0(X, Y, O);
       parameter n = 4;
       input [n - 1:0] X, Y;
       output reg [n + 1 : 0] O;
       always @(X or Y)
              begin
                      0 \le (X + Y) / 2;
              end
endmodule
2)
module optione1(X, Y, O);
       parameter n = 4;
       input [n - 1:0] X, Y;
       output reg [n + 1 : 0] O;
       always @(X or Y)
              begin
                      0 \le 2 * (X + Y);
              end
```

endmodule

```
3)
module optione2(X, Y, O);
       parameter n = 4;
       input [n - 1:0] X, Y;
       output reg [n + 1 : 0] O;
       always @(X or Y)
              begin
                     0 \le (X / 2) + Y;
              end
endmodule
module optione3(X, Y, O);
       parameter n = 4;
       input [n - 1:0] X, Y;
       output reg [n + 1:0] O;
       always @(X or Y)
              begin
                     O \le X - (Y / 2);
              end
endmodule
```

5)

```
module MUX8X1(c0, c1, c2, c3, c4, c5, c6, c7, sel, out, zero);

parameter n = 4;

input [n + 1 : 0] c0, c1, c2, c3, c4, c5, c6, c7;

input [2 : 0] sel;

output reg signed [n + 1 : 0] out;

output reg zero;

always @* begin

out = 0;

zero = 1;

case (sel)

3'b000: out = c0;

3'b001: out = c1;

3'b010: out = c2;

3'b011: out = c3;
```

```
3'b100: out = c4;
                     3'b101: out = c5;
                     3'b110: out = c6;
                     3'b111: out = c7;
                     default:;
                endcase
                     if(out == 0)
                            zero = 1;
                     else
                            zero = 0;
              end
endmodule
d)
module ALUStruct(X, Y, C, O, zero);
       parameter n = 4;
       input [n - 1:0] X, Y;
       input [2:0] C;
       output signed [n + 1:0] O;
       output zero;
       wire [n - 1:0] optione0_Ans, optione1_Ans, optione2_Ans, optione3_Ans,
optione4_Ans, optione5_Ans, optione6_Ans, optione7_Ans;
       optione0 caout0(X, Y, optione0_Ans);
       defparam caout0.n = n;
       optione1 caout1(X, Y, optione1_Ans);
       defparam caout1.n = n;
       optione2 caout2(X, Y, optione2_Ans);
```

```
defparam caout2.n = n;
  optione3 caout3(X, Y, optione3_Ans);

defparam caout3.n = n;

nand caout4(optione4_Ans, X, Y);

not caout5(optione5_Ans, X);

nor caout6(optione6_Ans, X, Y);

xor caout7(optione7_Ans, X, Y);

MUX8X1 mux2(optione0_Ans, optione1_Ans, optione2_Ans, optione3_Ans, optione4_Ans, optione5_Ans, optione6_Ans, optione7_Ans, C, O, zero);

defparam mux2.n = n;
```

endmodule

e) ID = 1202833

X1 = 3	Y1 = 3	C1 = 1	2*(X+Y)
X2 = 2	Y2 = 2	C2 = 2	(X/2) +Y
X3 = 5	Y3 = 5	C3 = 2	(X/2) +Y

In the test case(1) Number one the waveform will be like that:

Simu	Simulation Waveforms										
Simu	Simulation mode: Functional						^				
											~
	Master T	ime Bar:	28.0 ns	Pointer:	0 ps	Interval:	-28.0 ns	Start:		End	
A			Value at	0	ps	10.0 ns	20.	0 ns	30.0 ns	40.0 ns	
±Xt Name 28.0 ns				28.0 ns							
€.	ii 0	Ξ×	B 0011		0011	X 000	0	0011	0000	X 0011	
曲	<u>⊪</u> 1	—×[3]	B 0								
44	<u>ı</u> 2 2	—X[2]	B 0								
w	<u>⊪</u> 3	—X[1]	B 1								
	<u>⊪</u> 4	└-×[0]	B 1								
	<u>m</u> ¥5	■ Y	B 0011	K	0011	X 000	0	0011	0000	0011	
88	№ 6	—Y[3]	B 0	- 1							
89. 21	<u>i</u> → 7	-Y[2]	B 0								
	<u>⊪</u> 9	-Y[1] -Y[0]	B 1 B 1								
	<u>10</u> 10	— [[0]	B 001	1	001	X 00		001	V 000	X 001	
	<u>→</u> 11	—C[2]	B 0		001			501		1	
	<u>→</u> 12	-C[1]	B 0								
	<u>m</u> >13	-c[0]	B 1	IF.							
	60 14	± 0	B 001100	lk	001100	X 0000	00	001100	000000	X 001100	
	21	zero	B 0								
				1							

The selection in this case is 1 and the input x = 3 and y = 3 from the ALU module the operation will be

2*(X+Y) in this case we add the x and y and multiplied it by 2.

Case (2) Number one the waveform will be like that:

The selection in this case is 2 and the input x = 2 and y = 2 from the ALU module the operation will be

(X/2) + Y in this case we divided the x by 2 and added the result to the y.

Case (3) Number one the waveform will be like that:

The selection in this case is 2 and the input x = 5 and y = 5 from the ALU module the operation will be

```
The selection in this case is 1 and the input x = 3 and y = 3 from the ALU module the
operation will be
(X/2) + Y in this case we divided the x by 2 and added the result to the y.
f)
module ALU (X, Y, C, O, zero);
       parameter n = 4;
       input [n - 1:0] X, Y;
       input [2:0] C; // opcode
       output reg signed [n + 1 : 0] O; // Output can be maximum n + 2 bits which
might happen when opcode = 001, (x + y) can be (n + 1) bits and 2 * (x + y) can be n +
2 bits
       output reg zero; // zero extension
always @* begin
 O = 0;
 zero = 1;
 case (C)
  3'b000: O = (X + Y) / 2;
  3'b001: O = 2 * (X + Y);
  3'b010: O = (X / 2) + Y;
  3'b011: O = X - (Y / 2);
  3'b100: O = ^(X \& Y);
  3'b101: O = ^X;
  3'b110: O = ^(X | Y);
  3'b111: O = (X ^ Y);
  default:;
 endcase
 if (O == 0)
  zero = 1;
 else
  zero = 0;
```

end

endmodule

g)

ID = 1202833

X1 = 3	Y1 = 3	C1 = 1	2*(X+Y)
X2 = 2	Y2 = 2	C2 = 2	(X/2) +Y
X3 = 5	Y3 = 5	C3 = 2	(X/2) +Y

In the test case(1) Number one the waveform will be like that:

The selection in this case is 1 and the input x = 3 and y = 3 from the ALU module the operation will be

2*(X+Y) in this case we add the x and y and multiplied it by 2.

Case (2) Number one the waveform will be like that:

The selection in this case is 2 and the input x=2 and y=2 from the ALU module the operation will be

(X/2) + Y in this case we divided the x by 2 and added the result to the y.

Case (3) Number one the waveform will be like that:

The selection in this case is 2 and the input x = 5 and y = 5 from the ALU module the operation will be

(X/2) + Y in this case we divided the x by 2 and added the result to the y.