

Pretraining for ASR

Content

- Recap
- Motivation: why pretraining is useful for audio domain?
- Data: how large audio unsupervised and supervised datasets could be gathered?
- Models and losses: overlook how audio pretraining works
- **Evaluation:** how pretraining effectiveness could be measured?

Recap: Speech recognition

Recap: CTC

Architecture

Recap: Seq2Seq

Components:

- CNN feature encoder (subsamper)
- Transformer encoder (could be RNN/CNN)
- Text transformer decoder (could be RNN/CNN)

Motivation: unlabeled data

Google DeepMind Gopher (280B params) pretraining Datasets

	Disk Size	Documents	Tokens	Sampling proportion
Massive Web	1.9 TB	604M	506B	48%
Books	2.1 TB	4M	560B	27%
C4	0.75 TB	361M	182B	10%
News	2.7 TB	1.1B	676B	10%
GitHub	3.1 TB	142M	422B	3%
Wikipedia	0.001 TB	6M	4B	2%

OpenAl GPT3 (175B params) pretraining datasets

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens		
Common Crawl (filtered)	410 billion	60%	0.44		
WebText2	19 billion	22%	2.9		
Books1	12 billion	8%	1.9		
Books2	55 billion	8%	0.43		
Wikipedia	3 billion	3%	3.4		

Motivation: unlabeled data

Dataset	Language	Total Duration (h)	Domain	Speech Type	Labeled	Label Type
	th	172.0				
Common Voice [1]	id	28.0	Open domain	Read	Yes	Manual
	vi	6.0				
	th	13.3				
FLEURS [10]	id	12.6	Wikipedia	Read	Yes	Manual
	vi	13.3				
	th	61.0				
VoxLingua107 [44]	id	40.0	YouTube	Spontaneous	No	-
	vi	64.0				
	th	15.6				
CMU Wilderness [4]	id	70.9	Religion	Read	Yes	Manual
	vi	9.2				
BABEL [13]	vi	87.1	Conversation	Spontaneous	Yes	Manual
VietMed [27]	vi	16.0	Medical	Spontaneous	Yes	Manual
Thai Dialect Corpus [41]	th	840.0	Open domain	Read	Yes	Manual
TITML-IDN [40]	id	14.5	News	Read	Yes	Manual
MEDISCO [36]	id	10.0	Medical	Read	Yes	Manual
	th	497.1				
YODAS manual [29]	id	1420.1	YouTube	Spontaneous	Yes	Manual
	vi	779.9				
	th	1.9				
YODAS automatic [29]	id	8463.6	YouTube	Spontaneous	Yes	Pseudo
	vi	9203.1				
	th	12901.8				
GigaSpeech 2 raw	id	8112.9	YouTube	Spontaneous	Yes	Pseudo
	vi	7324.0		-		
	th	10262.0				
GigaSpeech 2 refined	id	5714.0	YouTube	Spontaneous	Yes	Pseudo
	vi	6039.0				

Motivation: audio foundation model

Recognition tasks (Phoneme recognition, ASR)

Detection tasks (Keyword spotting)

Semantics tasks (Speech translation, intent classification, slot filling)

Speaker tasks

(Speaker identification, speaker verification, speaker diarization)

Paralinguistics tasks (emotion classification)

Generation tasks (Speech enhancement, speech separation)

Motivation: robust model

Robustness:

- overall performance, average across both out and in domain datasets
- effective [Taori et al. (2020)] measuring performance, compared to reference in domain dataset

Dataset	wav2vec 2.0 Large (no LM)	Whisper Large V2
LibriSpeech Clean	2.7	2.7
Artie	24.5	6.2
Common Voice	29.9	9.0
Fleurs En	14.6	4.4
Tedlium	10.5	4.0
CHiME6	65.8	25.5
VoxPopuli En	17.9	7.3
CORAAL	35.6	16.2
AMI IHM	37.0	16.9
Switchboard	28.3	13.8
CallHome	34.8	17.6
WSJ	7.7	3.9
AMI SDM1	67.6	36.4
LibriSpeech Other	6.2	5.2
Average	29.3	12.8

Motivation: NLP pretraining and audio

Motivation: summary

- Unlabeled datasets size surpasses labeled datasets
- Audio foundational model: one backbone many tasks
- Model robustness
- Audio domain pretraining ~= plain NLP (BERT like) pretraining

Datasets: what unsupervised training requires

- Acoustic variety: noises, distortions, reverberations
- **Semantic variety:** speech domains (TED's, movie dialogues, etc.)
- Computational effectiveness: how to handle long audios?
- Language diversity: how to gather data for low resource languages?

Datasets: common ground

Unsupervised:

- GigaSpeech YouTube crawled multilingual dataset
- VoxLingua107 YouTube crawled multilingual dataset
- VoxPopuli European Parliament (EP) event recordings

Supervised:

- CommonVoice crowdsourced multilingual dataset, used Wikipedia texts
- Librispeech audiobooks in English
- FLEURS open sourced high quality
 multilingual dataset, recorded Wikipedia texts

Datasets: VoxLingua107

Fig. 1. High level overview of the data collection process.

Fig. 2. Overview of the process of retrieving and filtering of videos.

Datasets: audio fragment extraction

Self training: algorithm

Supervised training and decoding (first stage)

Training final model (second stage)

Self training: why it's working?

- Utilize external LM: distilling knowledge of AM + LM ensemble
- Online augmentations: preventing final model being overconfident
- Pseudo labels filtering: drop over and under confident transcripts
- "Statistical magic"

Iterative pseudo labeling (IPL): idea

Algorithm 1: Iterative pseudo-labeling

Data: Labeled data $L = \{x_i, y_i\}_{i=1}^l$, Unlabeled data $U = \{x_j'\}_{j=1}^u$

Result: Acoustic model p_{θ}

Initialize p_{θ} by training on only labeled data L;

repeat

- 1. Draw a subset of unpaired data $\tilde{U} \in U$;
- 2. Apply p_{θ} and decoding with LM to the subset \tilde{U} to generate $\hat{U} = \{(x, \hat{y}) | x \in \tilde{U}\};$
- 3. Fine tune p_{θ} on $L \cup \hat{U}$ with data augmentation;

until convergence or maximum iterations are reached;

IPL

Supervised training and decoding (zero generation)

Iterative pseudo labeling process

BERT: recap

Wav2Vec

Architecture overview

Context vector

Mixed up latent representations

210ms – total receptive field for context vector

Latent space vector representation

Low frequency audio vector representation

Audio frame encodes 30ms of original speech

Wav2Vec

Loss

Wav2Vec: problems

- Causal context
- Step specific transform
- Why context vector should be closer to latent features?

Context network

Quantization module

Quantization module

Quantization module

https://arxiv.org/pdf/1611.01144v5 https://sassafras13.github.io/GumbelSoftmax/

Gumbel-Softmax trick

Straight through Gumbel-Softmax on forward pass

$$i = \operatorname{argmax}_{j} p_{g,j}$$

Gumbel-Softmax temperature

Loss

Contrastive loss

Cosine similarity between context and quantized vectors

$$\mathcal{L}_{m} = -\log \frac{\exp(sim(\mathbf{c}_{t}, \mathbf{q}_{t})/\kappa)}{\sum_{\tilde{\mathbf{q}} \sim \mathbf{Q}_{t}} \exp(sim(\mathbf{c}_{t}, \tilde{\mathbf{q}})/\kappa)}$$

Current timestamp (positive) and k - 1 sampled distractors (negative)

Diversity loss

$$\mathcal{L}_d = \frac{1}{GV} \sum_{g=1}^G -H(\bar{p}_g) = \frac{1}{GV} \sum_{g=1}^G \sum_{v=1}^V \bar{p}_{g,v} \log \bar{p}_{g,v}$$

Wav2Vec 2.0: improvements over Wav2Vec

Bidirectional context

Quantization module allows retrieve more sophisticated targets

Wav2Vec 2.0: quantization problems

- Actor-critic or discriminator-generator problem
- Temperature scheduling
- Codebook interpretability (aka "audio" quantization)
- Codebook collapse

BEST-RQ

Pretraining and pseudo labeling for large scale modeling

Model scaling

Model	# Params (B)	# Layers	Dimension	Att. Heads
Conformer XL	0.6	24	1024	8
Conformer XXL	1.0	42	1024	8
Conformer G	8.0	36	3072	16

Training pipeline

Pretraining and ASR finetuning

Pretraining evaluation: ASR tasks

Task	Multi	Multilingual Long-form ASR			Multidomain en-US	Multilingual ASR		
Dataset	Y	YouTube		CORAAL	SpeechStew	FLEURS		(
Langauges	en-US	18	73	en-US	en-US	62	102	
Prior Work (single model)								
Whisper-longform	17.7	27.8	-	23.9	12.8			
Whisper-shortform [†]	-	_	-	13.2^{\ddagger}	11.5	36.6	-	
Our Work (single model)								
USM-LAS	14.4	19.0	29.8	11.2	10.5	12.5	-	
USM-CTC	13.7	18.7	26.7	12.1	10.8	15.5	-	
Prior Work (in-domain fine-tuning)								
BigSSL [3]	14.8	11-1	-	-	7.5	-	_	
Maestro [67]					7.2			
Maestro-U [67]							26.0 (8.7)	
Our Work (in-domain fine-tuning)								
USM	13.2	· (<u>-</u>)	-	_	7.4	13.5	19.2 (6.9)	
USM-M	12.5	-	-	-	7.0	11.8	17.4 (6.5)	
Our Work (frozen encoder)								
USM-M-adapter [§]	-	-	-	-	7.5	12.4	17.6 (6.7)	

