JARED RIFKIN

EDUCATION	2020 - present	Ph.D., Department of Mechanical and Aerospace Engineering University of Virginia, Center for Applied Biomechanics Expected Graduation Date: 2024
	2016 - 2019	B.S.E, M.S.E, Department of Bioengineering (GPA: 3.89, 3.91) University of Pennsylvania
HONORS & AWARDS	2022	NNS Trainee Travel Award
	2022	University of Virginia: Engineering-in-Medicine Seed Grant
	2021	University of Virginia: UVA Engineering is Beautiful Dean's Research Art Contest, 1st Place, Graduate Student Category
	2021	National Science Foundation: Graduate Research Fellowship Program Honorable Mention
	2019	University of Pennsylvania: Graduated summa cum laude
	2016 - 2019	University of Pennsylvania: Dean's List
RESEARCH	2022 - present	Differential brain network response to simulated lesion
ACTIVITIES	·	Lesioning brain networks according to strain distributions from finite element simulated impacts.
	2021 - present	Endovascular surgery simulator
		Developing computational finite element model for rapid simulation of catheters in
		neuro-endovascular surgery.
	2021 - present	Pediatric skull surgical screw characterization
	2010 present	Determining the strength of surgical screw integration in pediatric skull samples.
	2019 - present	Brain network architecture typing Identifying distinct patterns of structural connectivity networks and simulated neural
		dynamics within a population of brains.
	2020 - 2021	Risk function development of skin response to blunt impact
		Characterizing skins response to blunt impact over a parametric sweep of impactor shape, size, and speed.
WORK	2020 - present	University of Virginia, Center for Applied Biomechanics
EXPERIENCE		Position: Graduate Research Assistant
		Mentor: Matthew B. Panzer, Ph.D.
	2019 - 2020	University of Pennsylvania, Meaney Lab
		Position: Research Specialist
	2017 - 2019	University of Pennsylvania, Department of Bioengineering
		Position: Undergraduate Research Specialist
		Mentor: David F. Meaney, Ph.D.
TEACHING &	2021 - present	University of Virginia, Mechanical and Aerospace Engineering Department
MENTORSHIP		Position: Graduate Teaching Assistant
		Class: Finite Element Analysis, Professor: Matthew Panzer, Ph.D.
	2021	University of Virginia, School of Engineering
		Position: Engineering Graduate School Mentor

Rifkin CV Page | 1 of 2

PUBLICATIONS & PRESENTATIONS

Journal Publications

Jared A. Rifkin, Taotao Wu, Adam Rayfield, Erin D. Anderson, Matthew B. Panzer, David F. Meaney. Brain architecture-based vulnerability to traumatic injury. (under review). Frontiers in Bioengineering

Taotao Wu, Jared A. Rifkin, Adam Rayfield, Matthew B. Panzer, David F. Meaney. An Interdisciplinary Computational Model for Predicting Traumatic Brain Injury: Linking Biomechanics and Functional Neural Networks. (2022). NeuroImage

Daniel F. Shedd, Parker R. Berthelson, Jared A. Rifkin, Justin McMahon, J. Sebastian Giudice, Jason L. Forman, Matthew B. Panzer. The Risk of Skin Injury Caused by High-Rate Blunt Impacts to the Human Thorax. (2022, pre-published). Hum Factors Mech Eng Def Saf

Parker R. Berthelson, Daniel F. Shedd, **Jared A. Rifkin**, Justin McMahon, J. Sebastian Giudice, Jason L. Forman, Matthew B. Panzer. **Evaluation of an In Situ Ovine Model as a Surrogate for Human Skin Injury Caused by High-Rate Blunt Impact.** (2022). Hum Factors Mech Eng Def Saf

David Gabrieli, Nick Vigilante, Rich Scheinfield, Jared A. Rifkin, Samantha Schumm, Taotao Wu, Lee F. Gabler, Matthew B. Panzer, David F. Meaney. A multibody model for predicting spatial distribution of human brain deformation following impact loading. (2020). JBME

Rifkin CV Page | 2 of 2