User: Pulak Mishra Project: Autocorrelation

- 1 . generate time=(1) + n-1 Generating the variable 'time'
- 2 . tsset time, yearly Setting the datasheet as time-series (yearly)

time variable: time, 1 to 34 delta: 1 year

3 . reg var_apr agri_diver var_rain var_temp var_apd

Estimation of the Model: var_apr = f(agri_diver, var_rain, var_temp, var_apd)

Source	SS	df	MS
Model Residual	.018236207 .002850245	4 29	.004559052
Total	.021086451	33	.000638983

of	obs	=	34
	29)	=	46.39
F		=	0.0000
red		=	0.0000 0.8648 0.8462
qua	ared	=	0.8462
Έ		=	.00991
	F ed qua	29) F ed quared	F = contract = contrac

Statistically significant model with very high explanatory power

var_apr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
agri_diver	1105513	.4077527	-0.27	0.788	9444992	.7233965
<pre>var_rain</pre>	.4039371	.1007471	4.01	0.000	.1978861	.6099881
<pre>var_temp</pre>	-1.433444	.5559696	-2.58	0.015	-2.57053	2963588 il
var apd	1.218768	.1064392	11.45	0.000	1.001075	1.436461
_cons	.0849617	.351032	0.24	0.810	6329793	.8029027 🕏

Statistically significant impact of 'var_rain', var_temp' and var apd' on 'var apr'

- 4 . predict uhat, res Estimating the residual 'uhat'
- 5 . runtest uhat, mean Runs test for autocorrelation with respect to mean of the residual

N (uhat <= -4.10877606448e-11) = 16 N (uhat > -4.10877606448e-11) = 18

obs = **34** N(runs) = **11**

z = -2.43 Rejection of the null hypothesis and negative value of z statistic indicating presence of positive autocorrelation

6 . runtest uhat, threshold(0) Runs test for autocorrelation with respect to zero

N(uhat <= 0) = 16 N(uhat > 0) = 18 obs = 34 N(runs) = 11

z = -2.43 Rejection of the null hypothesis and negative value of z statistic indicating presence of positive autocorrelation

7 . estat dwatson Durbin-Watson test for autocorrelation

Value of dL and dU with 34 observations and 4 independent variables at 5 percent significance level are 1.208 and 1.728 respectively, Hence, computed value of DW 'd' statistic lies in the 'indecisive' zone.

Durbin-Watson d-statistic(5, 34) = 1.265261

8 . estat bgodfrey Breusch-Godfrey test for autocorrelation

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	5.490	1	0.0191

HO: no serial correlation Rejection of the null hypothesis indicates presence of autocorrelation

9 . generate var aprl1=L1.var apr Generating one period lag for 'var apr' (1 missing value generated) 10 . generate var apdl1=L1.var apd Generating one period lag for 'var_apd' (1 missing value generated) 11 . generate agri diverll=L1.agri diver Generating one period lag for 'agri_diver' (1 missing value generated) Generating one period lag for 'var_rain' 12 . generate var_rainl1=L1.var_rain (1 missing value generated) 13 . generate var templ1=L1.var temp Generating one period lag for 'var_temp' (1 missing value generated) 14 . generate var apr1= var apr-(1-1.265261/2) * var apr11 Generating generalized difference for 'var_apr' (1 missing value generated) 15 . generate var_apd1= var_apd-(1-1.265261/2)* var_apd11 Generating generalized difference for 'var_apd' (1 missing value generated) 16 . generate agri diver1= agri diver - (1-1.265261/2) *agri diverl1 (1 missing value generated) Generating generalized difference for 'agri_diver' 17 . generate var_rain1= var_rain-(1-1.265261/2)* var_rain11 Generating generalized difference for 'var_rain' (1 missing value generated) 18 . generate var temp1= var temp-(1-1.265261/2)*var temp11 Generating generalized difference for 'var temp' (1 missing value generated) Estimation of the Model: var apr1 = f(agri diver1,19 . reg var aprl agri diverl var rainl var templ var apdl var rain1, var temp1, var apd1) Number of obs = df Source SS MS F(4, 28) = 38.79 Statistically significant = 0.0000 model with very Model .013082444 4 .003270611 Prob > F = 0.8471 = 0.8253 high explanatory power .002360607 .000084307 Residual 28 R-squared Adj R-squared = Total .01544305 32 .000482595 Root MSE .00918 Std. Err. P>|t| [95% Conf. Interval] var apr1 Coef. agri_diver1 -.323242 .4775256 -0.68 0.504 -1.301409 .6549248 .5768743 Statistically significant -.0985896 impact of 'var_rain1', var_rain1
var_temp1 .1216618 .3276613 0.012 .0784484 2.69 -1.573703 .7201271 -2.190.037 -3.048817 1.180259 0.000 .9523488 1.408169 'var_temp1' and var apd1 .1112621 10.61 .7033926 'var_apd1' on 'var_apr1' _cons -.3571714 .1731106 .2588753 0.67 0.509

- 20 . predict ulhat, res Estimating the residual of the new model 'ulhat' (1 missing value generated)
- 21 . runtest ulhat, mean Runs test for autocorrelation with respect to mean of the residual N (ulhat <= -4.21123607366e-11) = 16 N (ulhat > -4.21123607366e-11) = 17 obs = 33

N(runs) = 14z = -1.23

The null hypothesis is not rejected indicating no autocorrelation problem |z| = .22

Econometric Analysis I Sunday March 28 00:37:56 2021 Page 3

22 . runtest ulhat, threshold(0) Runs test for autocorrelation with respect to zero

N (u1hat <= 0) = 16N(u1hat > 0) = 17obs = 33

N(runs) = 14 z = -1.23 Prob>|z| = .22 The null hypothesis is not rejected indicating no autocorrelation problem

23 . estat dwatson Durbin-Watson test for autocorrelation

Durbin-Watson d-statistic(5, 33) = 1.866144

24 . estat bgodfrey Breusch-Godfrey test for autocorrelation

Breusch-Godfrey LM test for autocorrelation

Value of dL and dU with 33 observations and 4 independent variables at 5 percent significance level are 1.193 and 1.730 respectively, Hence, computed value of DW 'd' statistic lies between dU and 4-dU indicating no autocorrelation problem in the new model.

lags(p)	chi2	df	Prob > chi2
1	0.192	1	0.6615

HO: no serial correlation The null hypothesis is not rejected indicating no autocorrelation problem