множини. відношення

Група питань 1.

Питання №1. Максимально спростити логічний вираз:

$$D = (A \cap B) \cup ((A \cap \overline{C}) \cup (\overline{A} \cap B))$$

Питання №2. Максимально спростити логічний вираз:

$$D = A \cap \left(A \cup \overline{B}\right) \cap \left(C \cup \left(\overline{C} \cap B\right)\right)$$

Питання №3. Максимально спростити логічний вираз:

$$D = ((A \cap \overline{B}) \cup (B \setminus A)) \cup C$$

Питання №4. Максимально спростити логічний вираз:

$$D = \left(\overline{A} \cap \left(A \cup \overline{B}\right)\right) \setminus C$$

Питання №5. Максимально спростити логічний вираз:

$$D = (A \cap (B \cup A)) \cap \overline{(C \cup B)} \cap \overline{C}$$

Питання №6. Максимально спростити логічний вираз:

$$D = (A \cup (B \cap C)) \cap (\overline{A} \cup C)$$

Питання №7. Максимально спростити логічний вираз:

$$D = A\Delta \Big(B \setminus \Big((C \cup A) \cap \Big(C \cup \overline{A} \Big) \Big) \Big)$$

Питання №8. Максимально спростити логічний вираз:

$$D = (A \cup B) \cap \overline{(\overline{A} \cap B) \cup \overline{(\overline{B} \cup C)}}$$

Питання №9. Максимально спростити логічний вираз:

$$D = \overline{A} \cup \overline{B} \cup (\overline{A} \cap B) \cup (\overline{B} \cap C) \cup \overline{C}$$

Питання №10. Максимально спростити логічний вираз:

$$D = C \cup \overline{\left(\overline{A} \cap B\right)} \cap \overline{\left(\overline{B} \cap \overline{A}\right)} \cap \left(\overline{A} \cup B\right)$$

Питання №11. Максимально спростити логічний вираз:

$$D = ((A \cup B) \cup C \cup (B \cup C) \cup A)$$

Питання №12. Максимально спростити логічний вираз:

$$D = A \cap \left(\overline{B} \cup C\right) \cup \left(\overline{A} \cap C\right)$$

Питання №13. Максимально спростити логічний вираз:

$$D = B\Delta C \cup (B \cap C)\Delta(((A \setminus B) \cap B)\Delta A)$$

Питання №14. Максимально спростити логічний вираз:

$$D = ((A \cup B) \cup (A \cup \overline{B})) \cap \overline{B} \cap A \cap (\overline{A} \cup C)$$

Питання №15. Максимально спростити логічний вираз:

$$D = \overline{A} \cup B \cup \overline{C} \cup (B \cap \overline{C}) \cup (\overline{A} \cap C) \cup (A \cap B)$$

Питання №16. Максимально спростити логічний вираз:

$$D = (A \cap B) \cup (A \cap \overline{B}) \cup (C \cup A) \cap (A \cup \overline{B})$$

Питання №17. Максимально спростити логічний вираз:

$$D = \overline{A} \cup \left(\overline{A} \cup B\right) \cap \left(\overline{A} \cup C\right) \cup \overline{B} \cap \left(\left(B \cap C\right) \cup \left(B \cap \overline{C}\right)\right)$$

Питання №18. Максимально спростити логічний вираз:

$$D = (A \cap B) \cup (C \cap B) \cup (\overline{A} \cap \overline{B}) \cup (\overline{B} \cap C)$$

Питання №19. Максимально спростити логічний вираз:

$$D = \overline{(A \cup B)} \cap \overline{(A \cup C)} \cap \overline{(B \cup C)}$$

Питання №20. Максимально спростити логічний вираз:

$$D = \left(\left(A \cap \overline{B} \right) \cup \left(\overline{A} \cap B \right) \right) \cap \left(\overline{C} \cap \left(\overline{C} \cup B \right) \right)$$

Питання №21. Максимально спростити логічний вираз:

$$D = \overline{C} \cap (A \setminus C) \cap (B \setminus C) \cap (\overline{C} \cup B)$$

Питання №22. Максимально спростити логічний вираз:

$$D = ((A \setminus B) \cup (B \cap A)) \setminus (C \cup B)$$

Питання №23. Максимально спростити логічний вираз:

$$D = A \cap (A \setminus (A \setminus B)) \cup C$$

Питання №24. Максимально спростити логічний вираз:

$$D = (A \cup (B \setminus A)) \setminus C$$

Питання №25. Максимально спростити логічний вираз:

$$D = \overline{\left(\overline{A} \cup \overline{B}\right) \cap \left(\overline{B} \cup \overline{C}\right)}$$

Питання №26. Максимально спростити логічний вираз:

$$D = (A \cup (\overline{A} \cap B)) \Delta (C \cup (C \cap B))$$

Питання №27. Максимально спростити логічний вираз:

$$D = ((A \cap B) \cup (A \setminus B)) \Delta(C \cup B)$$

Питання №28. Максимально спростити логічний вираз:

$$D = C \cap \left(A \cap \overline{B}\right) \cap \left(C \cup B\right)$$

Питання №29. Максимально спростити логічний вираз:

$$D = \left(\left(A \cap \overline{B} \right) \cup \left(B \cap \overline{A} \right) \right) \cap \left(C \cup B \right) \cap C$$

Питання №30. Максимально спростити логічний вираз:

$$D = \left(\left(\left(A \cup \overline{A} \right) \cap A \right) \setminus B \cup B \right) \cap \overline{\left(C \cup \left(C \cap B \right) \right)}$$

Питання №31. Запишіть булеан множини M при

$$M = \{0, \{1, 2\}, 3\}$$

$$M = \{a, \{0\}, \beta\}$$

$$M = \{\{\beta, \gamma\}, \{1, 2\}, k\}$$

$$M = \{\{1, \varphi\}, \{1, \lambda\}, \{1, 2\}\}\}$$

$$M = \{\{1\}, \{2\}, \{3, 4\}\}\}$$

$$M = \{\{\beta, \gamma, \{\alpha, \beta\}\}, \{1, 2\}, k\}$$

Група питань 2

Питання №1. Нехай дано множини:

U={1,2,3,4,5,6,7,8,9,10,11,12,13,14}, A={1,2,3,4,7,9}, B={3,4,5,6,11,12,13}, C={2,3,4,6,7,8,11,12,13,14}, D={1,2,3,7,14}.

Обчислити значення виразу: $\left(\left(A\cup \overline{C}\right)\cap D\right)\setminus \left(C\cap D\right)$

Питання №2.

Нехай U={0,1, 2, 3, 4, 5, 6, 7, 8,9}, A={0,1, 2, 3, 4, 5}, B={2, 4, 6, 8}, C={1, 3, 5, 7,9}, D={1, 2, 4, 5, 7, 8}.

Виразити множину $F=\{1, 5\}$ через відомі множини A, B, C, D, застосувавши у виразі всі згадані множини

Питання №3.

Нехай U={0,1, 2, 3, 4, 5, 6, 7, 8,9}, A={1, 2, 3, 4, 5,6}, B={2, 4, 6, 8}, C={1, 3, 5, 7}, D={1, 2, 4, 5, 7, 8,9}. Знайти
$$(D \setminus A) \cap (B \cup C) \cup (C\Delta D)$$
.

Питання №4. Виразити через множини А, В, С множину Е, якій відповідає заштрихована область.

Питання №5. Виразити через множини A, B, C, D множину E, яка відповідає заштрихованій області.

Питання №6. Запишіть всі логічні вирази, які відповідають 8 можливим областям на діаграмі Венна, що показана на рисунку.

Питання №7. Визначити, чи є відношення

$$R = \left\{ (x,y) \middle| z = \frac{x}{y}, z, x, y \in \mathbb{N}, z = const \right\}$$

відношенням строгого порядку.

Питання №8. Запишіть всі можливі варіанти умов при яких (a,b,c) і (k,l,m) перебувають у відношенні нестрогого порядку.

Питання №9. Визначте, чи мають властивості рефлексивності, симетричності, антисиметричності та транзитивності відношення R1 і R2 на множині $A=\{1,2,3,4,5\}$, якщо вони задані такими предикатами:

$$R1 = \{(a,b) | |a-b| = 1\}.$$

$$R2 = \{(a,b) | 0 < (a-b) < 3\}.$$

Зобразіть графічно відношення $R1 \cup R2$, $R1 \cap R2$, $(R2)^{-1}$, розмістивши вершини графа по колу.

Питання №10. Визначте, чи мають властивості рефлексивності, симетричності, антисиметричності та транзитивності відношення R1 і R2 на множині

А={1, 2, 3, 4, 5}, якщо вони задані такими предикатами:

$$R1 = \{(a,b) | |a+b| = 2n, a,b,n \in N\}.$$

$$R2 = \left\{ \left(a, b \right) \middle| \ a \ge b^2 \ a, b \in N \right\}$$

Зобразіть графічно відношення $R1 \cup R2$, $R1 \cap R2$, $(R2)^{-1}$, розмістивши вершини графа по колу.

Питання №11. Дана множина $A = \{1,2,3,4,5\}$ й відношення $R \subseteq A \times A$, що включає такі елементи $R = \{(1,2),(2,3),(3,4),(4,5)\}$. Доповнити його до еквівалентного.

Питання №12. На множині A={1,2,3,4} задано відношення $R = \left\{ \left(a,b \right) \middle| a > b, \ a,b \in A \right\}$. Побудувати граф відношення та його графік, вказати властивості відношення R .

Питання №13.

На множині людей Землі задано відношення R={(a,b)| «а родич b»}. Визначити, чи є відношення R відношенням строгого порядку, нестрогого порядку або відношення еквівалентності. Довести своє твердження.

Питання №14. На множині $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ задано предикатом $R = \{(a,b) | a-b=5\}$ відношення $R \subset A \times A$.

Знайти область визначення V відношення R та його область значень Z . Які властивості має відношення R ?

Питання №15.

Побудувати граф відношення R , заданого предикатом $R = \big\{ \big(a,b \big) \big| \ a = b+2; \ a,b \in A \big\}$, де $A = \big\{ -3, -1, 1, 2, 3, 4 \big\}$

Чи є це відношенням строгого порядку? Довести своє твердження.

16. Знайти
$$A \times B$$
 при $A = \{1, a, \lambda, 23\}$ і $B = \{2, b, \tau, 32\}$

17. Знайти
$$proj_{2,4,6}A$$
, де $A = (1,3,78,4678,897,785,123,9)$

18. Знайти
$$proj_{3,5}A$$
, де

$$A = ((4,5,6,8,12),(12,45,87,34,78),(123,321,453,567,876),(10,1,7,2,3))$$

19. Нехай
$$C = A \times B = \{(2,10),(1,8),(2,12),(1,10),(1,12),(2,8)\}$$
 Знайти C^{-1},A,B,A^2,B^2

20. Нехай $a = \{18, 9, 14, 3, 6\}$. Запишіть a після 1-го і 2-го кроку Quicksort(1,5)

Питання №21.

Родина складається з 6 людей: батько батька Іван, мати батька Марія, мати Людмила, батько Василь, молодший син Микита, старший син Борис. Задайте на даній множині людей:

- 1.: відношення R «а є родичем b» предикатом.
- 2.: відношенняR :«а мати b» графом.
- 3.: відношення R «а батько b» матрицею.
- 4: відношення R «а онук b» матрицею.

Питання №22.

Дано
$$R = \{(a,1),(b,1),(b,2),(c,2)\}$$
 й $S = \{(1,5),(2,5),(1,6),(1,7),(2,8)\}$

- 1. Записати композицію $K = R \circ S$.
- **2**. Записати обернену композицію $K^{-1} = (R \circ S)^{-1}$.

Питання №23.

Дано
$$R = \{(1,1),(2,1),(7,2),(2,8),(1,9)\}$$
 й $S = \{(1,5),(2,1),(7,2),(1,7),(2,8)\}$

- 1. Знайти об'єднання та перетин відношень R і S.
- 2. Знайти різницю R-S.
- **3**. Знайти зрізи R(1) и S(2).

Питання №24.

Побудуйте граф відношення:
$$R = \left\{ \left(a,b\right) \middle| (a=2b)AND(a+b) \le 10 \right\}$$

Питання №25.

Побудуйте графік відношення
$$R = \left\{ (x, y), x \geq y \, npu \, x, y \in R^+ \right\}$$

Питання №26.

Чому дорівнює сума потужностей булеанів множин

$$M = \{\{1,\{2,q\}\},\{\{a,b\},123\},\alpha\} \text{ ta } N = \{z,p,q,1\}$$

ГРАФИ

Група питань №4

Питання №1. Нехай дано орграф G(V,E) із загальною сумою напівстепеней виходу $\sum_{v \in V} \deg^+(v) = 326$. У скільки раз збільшиться

загальна потужність всіх множин суміжності вершин орграфа, якщо над графом виконати операцію введення 124 ребер.

Питання №2. Побудувати циркулянтний граф з вершинами $V = \{0,1,2,3,4,5,6,7\}$ і константою k=2 , кожна вершина i якого суміжна з 2k вершинами з номерами $i\pm 1$, $i\pm k$ по модулю 8.

Питання №3. Нехай дано орграф $G\!\left(V,E\right)$ з вершинами $V\!=\!\left(v_1,v_2,v_3,v_4,v_5\right)$. Дано також прямі відображення кожної з вершин:

$$\begin{split} &\Gamma^{+}\left(v_{1}\right) = \left\{v_{2}, v_{3}\right\}, \Gamma^{+}\left(v_{2}\right) = \left\{v_{3}, v_{4}, v_{5}\right\}, \Gamma^{+}\left(v_{3}\right) = \left\{v_{4}, v_{5}\right\}, \Gamma^{+}\left(v_{4}\right) = \left\{v_{5}, v_{1}, v_{2}\right\}, \\ &\Gamma^{+}\left(v_{5}\right) = \left\{v_{1}, v_{3}\right\}. \end{split}$$

Обчислити загальну суму напівстепенів заходу даного графа.

Питання №4. Нехай дано граф G.

Побудувати всі можливі правильні підграфи графаG, що не порушують зв'язності початкового графа та за умови, що $\delta(G) \ge 2$.

Питання №5. Дана матриця суміжності графа G

По матриці побудувати граф і визначити, чи є даний граф неорієнтованим, орієнтованим або змішаним, чи існують в графі петлі та чи є граф регулярним.

Питання №6. Довести ізоморфність графів G_1 і G_2 шляхом запису відображення вершин одного графа у вершини іншого у вигляді $w_i = f\left(v_j\right), i,j = \overline{1,6}$ або у вигляді таблиці відповідності вершин.

Питання №7. Граф G_1 та граф G_2 задані своїми матрицями суміжності:

$$G_1 = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \quad G_2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Скласти матриці суміжності графів $G_3=G_1\cup G_2$ та $G_4=G_1\cap G_2$. Намалювати графи G_1,G_2,G_3 та G_4 .

Питання №8. Нехай дана матриця ваг ребер А для деякого графа G

$$A = \begin{pmatrix} 0 & 1 & 5 & 0 & 7 & 6 \\ 1 & 0 & 0 & 2 & 0 & 0 \\ 5 & 0 & 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 & 3 & 0 \\ 7 & 0 & 2 & 3 & 0 & 8 \\ 6 & 0 & 0 & 0 & 8 & 0 \end{pmatrix}$$

Намалювати граф G і вказати послідовність додавання ребер по алгоритму Краскала при побудові остовного дерева найменшої ваги.

Питання №9. Знайти доповнення графа G й визначити максимальну довжину елементарного циклу для вершини v_1 .

Питання №10. Дано граф G(V,E)

Побудувати матриці інцидентності та суміжності даного графа. Визначити напівстепені заходу та виходу для кожної з вершин.

Питання №11. Визначити число зовнішньої стійкості графа G

Питання №12. Визначити число зовнішньої стійкості графа G

Питання №13. Визначити число зовнішньої стійкості графа G.

Питання №14. Визначити число внутрішньої стійкості графа G .

Питання №15. Визначити число внутрішньої стійкості графа G.

Питання №16. Визначити число зовнішньої стійкості графа G.

Група питань №5

Питання №1. Знайти декартовий добуток графів.

Питання №2. Знайти декартовий добуток двох графів

Питання №3. Знайти декартовий добуток графів.

Питання №4. Знайти декартовий добуток двох графів

Питання №5. Знайти декартовий добуток двох графів

Питання №6. Даний граф *G.* Знайдіть матриці суміжності, інцидентності та всі маршрути довжини 2, що виходять із вершини 1.

Питання №7. Знайдіть доповнення графа та визначте кількість циклів у доповненні.

Питання №8. Знайдіть доповнення графа та визначте цикломатичне число доповнення графа.

Питання №9. Знайти мінімальне остовне дерево в графі. Скільки мінімальних остовних дерев існує в даному графі?

Питання №10. Для заданої матриці суміжності намалюйте граф, визначте зв'язность графа та степінь кожної його вершини.

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Група питань №6

Питання №1. Які із представлених матриць суміжності описують дерево?

		Α	1							Αź	2					A3											
	1	2	3	4	5	6	7		1	2	3	4	5	6	7			1	2	3	4	5	6	7			
1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0		1	0	0	1	0	0	0	0			
2	0	0	0	0	0	1	0	2	0	0	0	1	1	0	0		2	0	0	0	1	0	0	0			
3	0	0	0	0	0	1	0	3	0	0	0	0	1	0	0		3	1	0	0	1	0	0	0			
4	1	0	0	0	0	1	0	4	0	1	0	0	0	1	1		4	0	1	1	0	0	1	1			
5	0	0	0	0	1	0	1	5	1	1	1	0	0	0	1		5	0	0	0	0	0	1	0			
6	0	1	1	1	0	0	1	6	0	0	0	1	0	0	0		6	0	0	0	1	1	0	0			
7	0	0	0	0	1	1	0	7	0	0	0	1	1	0	0		7	0	0	0	1	0	0	0			

Питання №2. Які із представлених матриць суміжності описують дерево?

		В	1							B2	2				B3										
	1	2	3	4	5	6	7		1	2	3	4	5	6	7			1	2	3	4	5	6	7	
1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0		1	0	0	1	0	0	0	0	
2	0	0	0	0	0	1	0	2	0	0	0	0	1	0	0		2	0	0	0	1	0	0	0	
3	0	0	0	0	0	1	0	3	0	0	0	0	1	0	0		3	1	0	0	1	0	0	0	
4	1	0	0	0	0	1	0	4	0	0	0	0	0	1	1		4	0	1	1	0	1	1	1	
5	0	0	0	0	1	0	1	5	1	1	1	0	0	0	1		5	0	0	0	1	0	1	0	
6	0	1	1	1	0	0	1	6	0	0	0	1	0	0	0		6	0	0	0	1	1	0	0	
7	0	0	0	0	1	1	0	7	0	0	0	1	1	0	0		7	0	0	0	1	0	0	0	

Питання №3. Які із представлених матриць суміжності описують дерево?

		С	1							CZ	<u> </u>					C3										
	1	2	3	4	5	6	7		1	2	3	4	5	6	7			1	2	3	4	5	6	7		
1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0		1	0	0	1	0	0	0	0		
2	0	0	0	0	0	1	0	2	0	0	0	1	1	0	0		2	0	0	0	1	0	0	0		
3	0	0	0	0	0	1	0	3	0	0	0	0	1	0	0		3	1	0	0	1	0	0	0		
4	1	0	0	0	0	1	0	4	0	1	0	0	0	1	1		4	0	1	1	0	0	1	1		
5	0	0	0	0	0	0	1	5	1	1	1	0	0	0	1		5	0	0	0	0	1	1	0		
6	0	1	1	1	0	0	1	6	0	0	0	1	0	0	0		6	0	0	0	1	1	0	0		
7	0	0	0	0	1	1	0	7	0	0	0	1	1	0	0		7	0	0	0	1	0	0	0		

Питання №4. Які із представлених матриць суміжності описують дерево?

		D	1							D.	2					D3										
	1	2	3	4	5	6	7		1	2	3	4	5	6	7			1	2	3	4	5	6	7		
1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0		1	0	0	1	0	0	0	0		
2	0	0	0	0	0	1	0	2	0	0	0	1	0	0	0		2	0	0	0	1	0	0	0		
3	0	0	0	0	0	1	0	3	0	0	0	1	1	0	0		3	1	0	0	1	0	0	0		
4	1	0	0	0	0	1	0	4	0	1	1	0	0	1	0		4	0	1	1	0	0	1	1		
5	0	0	0	0	1	0	1	5	1	0	1	0	0	0	1		5	0	0	0	0	0	1	0		
6	0	1	1	1	0	0	1	6	0	0	0	1	0	0	0		6	0	0	0	1	1	0	0		
7	0	0	0	0	1	1	0	7	0	0	0	0	1	0	0		7	0	0	0	1	0	0	0		

Питання №5. Які із представлених матриць суміжності описують дерево?

		F	1					F2											F3										
	1	2	3	4	5	6	7			1	2	3	4	5	6	7			1	2	3	4	5	6	7				
1	0	0	0	1	0	0	0		1	0	0	0	0	1	0	1		1	0	0	1	0	0	0	0				
2	0	0	0	0	0	1	0		2	0	0	0	0	1	0	0		2	0	0	0	1	0	0	0				
3	0	0	0	0	0	1	0		3	0	0	0	0	1	0	0		3	1	0	0	1	1	0	0				
4	1	0	0	0	0	1	0		4	0	0	0	0	0	1	1		4	0	1	1	0	0	0	1				
5	0	0	0	0	0	1	1		5	1	1	1	0	0	0	1		5	0	0	1	0	0	1	0				
6	0	1	0	0	1	0	0		6	0	0	0	1	0	0	0		6	0	0	0	0	1	0	0				
7	0	0	0	0	1	0	0		7	1	0	0	1	1	0	0		7	0	0	0	1	0	0	0				

Питання №6. Нехай дано остовний ліс G, що включає 128 вершин та складається з 17 компонент зв'язності. Визначите загальну кількість ребер лісу G.

Питання №7. Нехай дано незв'язний граф G(V,E), у якому кількість ребер |E| = 456, кількість фундаментальних циклів дорівнює 10, а кількість компонентів зв'язності графа дорівнює 6. Скільки вершин буде містити остовний ліс даного графа?

Питання №8. Нехай дано зв'язний неорієнтований граф G, що складається з 98 вершин і 162 ребер. Скільки ребер потрібно вилучити з даного графа до одержання його остовного дерева?

Питання №9. Нехай дано незв'язний неорієнтований граф G, що складається з 56 вершин і 184 ребер. Скільки ребер потрібно вилучити з даного графа до одержання його остовного лісу, якщо відомо, що граф включає 8 компонент зв'язності?

Питання №10. Нехай дано незв'язний неорієнтований граф G. Побудувати доповнення його остовного лісу та указати ті цикли перетину графа G, що мають ребро як у перетині лісу, так і в доповненні.

Питання №11. Нехай дано графG, що містить два цикли непарної довжини та два цикли парної довжини. Чи можна розфарбувати такий граф двома фарбами?

Питання №12. Нехай дано граф G:

Навести першу нижню оцінку хроматичного числа для даного графа.

Питання №13. Нехай граф G включає три цикли довжини 2, 4 і 6. чи Можна розфарбувати такий граф з використанням тільки двох фарб.

Питання №14. Дані графи G, M й T. Перелічіть ті графи, до яких застосовна теорема Брукса для верхньої оцінки хроматичного числа.

Питання №15. Побудуйте граф, який містить досконале паросполучення, що складається з трьох ребер. Чи може такий граф бути повним графом?

Питання №16. Нехай дано 10 вершин графа G . Скільки різних дерев можливо побудувати на цих вершинах?

Питання №17. Нехай дано граф G(V,E), де |V|=6 , |E|=12. Оцініть хроматичне число даного графа.

Питання №18. На рисунку показано графи G1, G2, G3, G4 і G5.

Вкажіть графи для яких застосовна перша оцінка хроматичного числа. Обгрунтуйте своє твердження.

Питання №19. Визначте хроматичне число графа та обґрунтуйте одержаний результат

Питання №20 . Побудуйте доповнення до остовного лісу незв'язного графа G , який складається з 4-х компонент зв'язності, показаних на рисунку.

