

Introdução ao Cálculo

Lista de Exercícios: P2

- 1 Funções Exponenciais
- 2 Funções Logarítmicas
- 3 Funções Trigonométricas
 - 4 Compostas e Inversas
- 5 O Limite de uma Função

Profa. Karla Lima FACET/UFGD

1 Função Exponencial

1.1 Potências e Raízes

- 1. Calcule o valor de $A = (-1)^{2023} (-1)^{2022} + (-1)^{3567} (-1)^{1235}$.
- 2. Classifique em verdadeira (V) ou falsa (F) cada uma das sentenças abaixo:
 - (a) $5^3 \cdot 5^2 = 5^6$
 - (b) $3^6:3^2=3^3$
 - (c) $2^3 \cdot 3 = 6^3$
 - (d) $(2+3)^4 = 2^4 + 3^4$
 - (e) $(5^3)^2 = 5^6$
 - (f) $(-2)^6 = 2^6$
 - (g) $\frac{2^7}{2^5} = (-2)^2$
 - (h) $5^2 4^2 = 3^2$
- 3. Simplifique as expressões:
 - (a) $a^{2n+1} \cdot a^{1-n} \cdot a^{3-n}$
 - (b) $\frac{a^{2n+3} \cdot a^{n-1}}{a^{2(n-1)}}$
 - (c) $(a^{-1} + b^{-1}) \cdot (a+b)^{-1}$
 - (d) $\frac{2^{n+4} 2 \cdot 2^n}{2 \cdot 2^{n+3}}$
- 4. Escreva cada potência abaixo como uma raiz:
 - (a) $9^{\frac{3}{2}}$
 - (b) $8^{\frac{4}{3}}$
 - (c) $\left(\frac{1}{4}\right)^{-\frac{1}{2}}$
 - (d) $64^{-\frac{2}{3}}$

Gabarito Seção 1.1

- 1. A = -2
- 2. (a) F
 - (b) F
 - (c) F

- (d) F
- (e) V
- (f) V
- (g) V
- (h) V
- 3. (a) a^5
 - (b) a^{n+4}
 - (c) $a^{-1} \cdot b^{-1}$
 - (d) $\frac{7}{8}$
- 4. (a) $9^{\frac{3}{2}} = \sqrt{9^3}$
 - (b) $8^{\frac{4}{3}} = \sqrt[3]{8^4}$
 - (c) $\left(\frac{1}{4}\right)^{-\frac{1}{2}} = \sqrt{4}$
 - (d) $64^{-\frac{2}{3}} = \sqrt[3]{\frac{1}{64^2}}$

1.2 Funções Exponenciais

- 1. Um capital inicial de R\$5.000 foi aplicado a juro composto, durante 7 meses, à taxa de 2% ao mês. Dado $(1,02)^7 \approx 1,15$, calcular:
 - (a) o montante acumulado ao fim dos 7 meses de aplicação.
 - (b) o juro produzido durante o período que durou a aplicação.
- 2. Um automóvel novo que foi comprado por R\$40.000,00 sofreu, em cada ano, desvalorização de 10%. Calcular seu valor, em real, depois de 3 anos de uso.
- 3. Um corretor de uma bolsa de valores previu que, durante certo dia, o preço de cada ação de uma empresa poderia ser determinado pela função $y = \left(\frac{3}{2}\right)^x$ em que y é o preço, em real, e x é o tempo, em hora, decorrido a partir da abertura do pregão.
 - (a) Esboce o gráfico da função $y = \left(\frac{3}{2}\right)^x$, considerando que o pregão teve exatamente 5 horas de duração.
 - (b) Observando o gráfico que você construiu, classifique como verdadeira (V) ou falsa (F) cada uma das afirmações:
 - i. f(4) > f(3)
 - ii. f(2) < f(1)
 - iii. Se x_1 e x_2 são elementos do domínio de f, com $f(x_1) = f(x_2)$, então $x_1 = x_2$.

- 4. Um capital de R\$ 1.000,00 foi aplicado à taxa de juro composto de 10% ao ano.
 - (a) Escreva uma equação que expresse o montante acumulado em função do tempo t, em ano.
 - (b) Durante quanto tempo o montante acumulado será inferior a R\$ 1.331,00?
- 5. Estude o sinal das funções abaixo:
 - (a) $f(x) = e^x(x-1)$
 - (b) $g(x) = \left(\frac{1}{2}\right)^x (x^2 1)$
 - (c) $h(x) = 2^x x^2 + 2^x$
- 6. Na figura abaixo, os pontos A e B são as intersecções dos gráficos das funções f e g.

- Se $g(x)=(\sqrt{2})^x$ e fé uma função afim, então f(10)é igual a
 - **a**) 3
- **b**) 4
- **c)** 6
- **d**) 7
- **e**) 9

Gabarito Seção 1.2

- 1. (a) $M \approx R$5750,00$.
 - (b) $J \approx R$750,00$.
- 2. 29.160,00.
- 3. (a) i. V
 - ii. F
 - iii. V
- 4. (a) $M = 1000 \cdot 1, 1^t$.

- (b) t < 3.
- 5. (a) f(x) < 0 se x < 1; f(x) > 0 se x > 1 e f(x) = 0 se x = 1.
 - (b) g(x) < 0 se -1 < x < 1; g(x) > 0 se x < -1 ou x > 1 e g(x) = 0 se x = -1 ou x = 1.
 - (c) h(x) > 0 para todo número real x.
- 6. **c**) 6

2 Funções Logarítmicas

1. Cada uma das figuras abaixo usa emojis para representar algumas propriedades dos logaritmos. Identifique cada uma das propriedades ilustradas.

$$\log(\bullet) = \log(\bullet) + \log(\bullet)$$

(a)

$$\log(\$) = \log(\climath{1}{k}) - \log(\$)$$

(b)

$$\log(2) = \log(2)$$

(c)

$$\log(\overline{\odot}) = -\log(\underline{\odot})$$

(d)

- 2. Determine o valor das incógnitas $a, b \in c$ em:
 - (a) $\log_2 a = 2$
 - (b) $\log_{25} 5^b = b + 1$
 - (c) $c \cdot \log_9 3 = 2c + 1$

3. O pH de uma solução aquosa é definido pela expressão $pH = -log[H^+]$, em que $[H^+]$ indica a concentração, em mol/L, de íons de hidrogênio na solução e log, o logaritmo na base 10. Ao analisar determinada solução, um pesquisador verificou que, nela, a concentração de í
ons de hidrogênio era $[H^+]=5, 4\cdot 10^{-8}\, mol/L$. Então, o valor aproximado que o pesquisador obteve para o pH dessa solução foi:

a) 7, 26

b) 7, 32

c) 7,58

d) 7,74

4. A desintegração nuclear é regida pela equação exponencial $N=N_0e^{-\lambda t},$ em que λ é uma constante, N_0 é a quantidade inicial e N é a quantidade após um tempo t. A equação que fornece o tempo, em qualquer instante, é:

a) $t = -\lambda (N - N_0) \ln e$ **b)** $t = \left(\frac{N}{N_0 e}\right)^{-\lambda}$ **c)** $t = \sqrt{\frac{N}{N_0}} e$ **d)** $t = -\frac{1}{\lambda} \cdot \ln \left(\frac{N}{N_0}\right)$

5. Para quais valores de x podemos calcular as funções a seguir:

(a) $f(x) = \log_4(2x - 12)$

(b) $f(x) = \log_{x-5}(x^2 - 4x)$

6. Classifique como verdadeira (V) ou falsa (F) as afirmações seguintes, sendo $a, b \in \mathbb{R}_{+}^{*}$.

(a) $\log_3 x = \log_3 5 \Leftrightarrow x = 5$

(b) $\log_3 a > \log_3 10 \Leftrightarrow a > 10$

(c) $\log_{\frac{1}{3}} b > \log_{\frac{1}{3}} 10 \Leftrightarrow b > 10$

7. A inversa da função $f(x) = \frac{e^x + 1}{e^x}$ é:

(a) $y = \ln(x - 1)$

(b) $y = \ln(2x - 2)$

(c) $y = 2 \ln(x+1)$

(d) $y = \ln(\sqrt{x-1})$

(e) $y = \ln\left(\frac{1}{x-1}\right)$

8. Estude o sinal das funções abaixo:

(a) $f(x) = (2x - 3)\log(x)$

(b) $q(x) = x^2 \ln(x-1)$

(c) $h(x) = (x^2 - 2x) \ln(x - 1)$

Gabarito Seção 2

- 1.
- 2. (a) a = 4
 - (b) b = -2
 - (c) $c = -\frac{2}{3}$
- 3. **a**)
- 4. d)
- 5. (a) x > 6.
 - (b) $x > 5 \text{ e } x \neq 6$.
- 6. (a) V
 - (b) V
 - (c) F
- 7. e)
- 8. (a) f(x) < 0 se $1 < x < \frac{3}{2}$; f(x) > 0 se 0 < x < 1 ou $x > \frac{3}{2}$ e f(x) = 0 se $x = \frac{3}{2}$.
 - (b) g(x) < 0 se 1 < x < 2 e g(x) > 0 se x > 2. Não há zeros para g(x), no domínio x > 1.
 - (c) h(x) > 0 se 1 < x < 2 ou x > 2 e h(x) = 0, para x = 2. Não há valores de h negativos, no domínio x > 1.

3 Funções Trigonométricas

- 1. O ponteiro de um relógio de medição funciona acoplado a uma engrenagem de modo que, a cada volta completa da engrenagem, o ponteiro dá ¹/₄ de volta em um mostrador graduado de 0° a 360°. No início da medição, o ponteiro encontra-se na posição 0°. Quantos graus indicará o ponteiro quando a engrenagem tiver completado 4.135 voltas?
- 2. Sendo a função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = 2 \operatorname{sen}(x) + \operatorname{sen}(2x) + \cos(3x),$$

calcule:

- (a) $f(\frac{\pi}{2})$
- (b) $f(\pi)$

(c)
$$\frac{f(0) + f(2\pi)}{f(\frac{3\pi}{2})}$$

3. Sendo a função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = 3\mathrm{sen}(x) + 1,$$

determine o valor máximo e o valor mínimo de f.

4. Determine os valores de sen (x) e cos(x) sabendo que:

(a)
$$sen(x) = 3cos(x)$$
 e que $\pi < x < \frac{3\pi}{2}$;

(b)
$$sen(x) = \frac{m}{6} e cos(x) = \frac{\sqrt{4m}}{3}$$
.

5. cada p
neu traseiro de um trator tem raio de $0,9\,m$ e cada p
neu dianteiro tem raio de $0,4\,m$. Calcule a distância entre os centros T e D de dois p
neus de um mesmo lado do trator, sabendo que a reta \overrightarrow{TD} forma um ângulo obtuso (entre 0 e 90 graus) de medida α com o solo plano tal que cos $\alpha = -\frac{2\sqrt{6}}{5}$.

6. Resolva as inequações abaixo:

(a)
$$2\cos^2(x) - \cos(x) < 0$$
, para $0 \le x \le 2\pi$.

(b)
$$4\cos^2(x) - 1 \le 0$$
, para $0 \le x < 2\pi$.

Gabarito Seção 3

8

1. 270° .

2. a)
$$f(\frac{\pi}{2}) = 2$$
; b) $f(\pi) = -1$ e c) $\frac{f(0) + f(2\pi)}{f(\frac{3\pi}{2})} = -1$.

3. Valor máximo: 4. Valor mínimo: -2.

4. a)
$$\operatorname{sen}(x) = -\frac{3\sqrt{10}}{10} \operatorname{e} \cos(x) = -\frac{\sqrt{10}}{10}$$
.

b)
$$sen(x) = \frac{1}{3} e cos(x) = \frac{2\sqrt{2}}{3}$$
.

5. 2, 5 metros.

6. a)
$$S = \left\{ x \in \mathbb{R}; \, \frac{\pi}{3} < x < \frac{\pi}{2} \quad \text{ou} \quad \frac{3\pi}{2} < x < \frac{5\pi}{3} \right\}$$

b)
$$S = \left\{ x \in \mathbb{R}; \frac{\pi}{3} \le x \le \frac{2\pi}{3} \text{ ou } \frac{4\pi}{3} \le x \le \frac{5\pi}{3} \right\}$$

4 Compostas e Inversas

1. Dadas as funções f(x) = 2x + 5 e $g(x) = x^2 - 2$, determine:

(a)
$$g \circ f(3)$$

(b)
$$f \circ g(3)$$

(c)
$$g \circ f(x)$$

(d)
$$f \circ g(x)$$

2. Escreva as funções abaixo como a composta de duas funções:

a)
$$h(x) = (3x^4 + 5)^3$$

b)
$$h(x) = \sqrt{x^2 + 5x - 6}$$

c)
$$h(x) = \sqrt{1 + \cos^2 x}$$

d)
$$h(x) = \text{sen}(2x - \pi/3)$$

e)
$$h(x) = e^{3\tan x}$$

3. Nos itens abaixo, confirme se f e g são inversas, mostrando que f(g(x)) = g(f(x)) = x.

(a)
$$f(x) = 3x - 2 e g(x) = \frac{x+2}{3}$$

(b)
$$f(x) = \frac{x+1}{4} e g(x) = 4x - 3$$

(c)
$$f(x) = x^3 + 1 e g(x) = \sqrt[3]{x - 1}$$

(d)
$$f(x) = \frac{x+1}{x} e^{-\frac{1}{x-1}}$$

(e)
$$f(x) = \ln(x-1) e^{x} + 1$$
.

- 1. (a) 119
 - (b) 19
 - (c) $q \circ f(x) = 4x^2 + 20x + 23$
 - (d) $f \circ q(x) = 2x^2 + 1$
- a) $f(x) = x^3 e g(x) = 3x^4 + 5$
 - b) $f(x) = \sqrt{x} e q(x) = x^2 + 5x 6$
 - c) $f(x) = \sqrt{x} e q(x) = 1 + \cos^2 x$
 - d) $f(x) = \sin x \, e \, g(x) = 2x \pi/3$
 - e) $f(x) = e^x e g(x) = 3 tan x$
 - (a) São inversas.
 - (b) Não são inversas.
 - (c) São inversas.
 - (d) São inversas.
 - (e) São inversas.

O Limite de uma Função 5

1. Calcule os limites justificando cada passagem com as propriedades dos limites que forem usadas.

$$a) \lim_{x \to 4} (5x^2 - 2x + 3)$$

a)
$$\lim_{x \to 4} (5x^2 - 2x + 3)$$
 b) $\lim_{x \to -1} \frac{x - 2}{x^2 + 4x - 3}$

c)
$$\lim_{x \to 1} \left(\frac{1+3x}{1+4x^2+3x^4} \right)^3$$
 d) $\lim_{t \to \sqrt{2}} t^4(t^2+1)$

$$d$$
) $\lim_{t \to \sqrt{2}} t^4(t^2 + 1)$

2. Usando a continuidade das funções, determine os limites abaixo:

a)
$$\lim_{x\to 0} (3x^4 + 5)^3$$

b)
$$\lim_{x \to \sqrt{2}} \sqrt{x^2 + 5x - 6}$$

c)
$$\lim_{x \to \pi} \sqrt{1 + \cos^2 x}$$

d)
$$\lim_{x \to \pi/2} \text{sen} (2x - \pi/3)$$

e)
$$\lim_{x \to \pi/4} e^{3\tan x}$$

3. Seja

$$f(x) = \begin{cases} \sqrt{x-4}, & \text{se } x > 4\\ 8-2x, & \text{se } x \le 4, \end{cases}$$

sendo seu gráfico dado abaixo:

Calcule:

a)
$$\lim_{x \to 4^-} f(x)$$
;

a)
$$\lim_{x \to 4^+} f(x)$$
;

a) O
$$\lim_{x\to 4} f(x)$$
 existe? Justifique sua resposta.

4. Seja
$$F(x) = \frac{x}{|x|}$$
.

- a) Qual o domínio da função F?
- b) Sabemos que |x| é uma função definida por partes:

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0. \end{cases}$$

Usando a regra de |x|, descreva F(x) como uma função definida por partes.

c) Calcule $\lim_{x\to 0^-} f(x)$, $\lim_{x\to 0^+} f(x)$. O $\lim_{x\to 0} f(x)$ existe? Justifique sua resposta.

11

Do gráfico de g, identifique seus pontos de descontinuidades e classifique-os como um dos quatro tipos descritos na 19.

Gabarito Seção 5

1.

a)
$$\lim_{x \to 4} (5x^2 - 2x + 3) = 75$$

a)
$$\lim_{x \to 4} (5x^2 - 2x + 3) = 75$$
 b) $\lim_{x \to -1} \frac{x - 2}{x^2 + 4x - 3} = \frac{1}{2}$

c)
$$\lim_{x \to 1} \left(\frac{1+3x}{1+4x^2+3x^4} \right)^3 = \frac{1}{8}$$
 d) $\lim_{x \to \sqrt{2}} t^4(t^2+1) = 12$

d)
$$\lim_{t \to \sqrt{2}} t^4(t^2 + 1) = 12$$

a) $\lim_{x \to 4^{-}} f(x) = 0;$ 2.

a)
$$\lim_{x \to 4^+} f(x) = 0;$$

a) $\lim_{x\to 4} f(x) = 0$, pois os limites laterais existem e são iguais.

a)
$$\lim_{x \to 0} (3x^4 + 5)^3 = 125$$

b)
$$\lim_{x \to \sqrt{2}} \sqrt{x^2 + 5x - 6} = \sqrt{5\sqrt{2} - 4}$$

c)
$$\lim_{x \to \pi} \sqrt{1 + \cos^2 x} = \sqrt{2}$$

d)
$$\lim_{x \to \pi/2} \text{sen}(2x - \pi/3) = \frac{\sqrt{3}}{2}$$

e)
$$\lim_{x \to \pi/4} e^{3 \tan x} = e^3$$

3. a)
$$D = \{x \in \mathbb{R}/x \neq 0\}$$

b)
$$F(x) = \begin{cases} 1, & \text{se } x > 0 \\ -1, & \text{se } x < 0. \end{cases}$$

$$\lim_{x \to 0^-} f(x) = -1$$

$$\lim_{x \to 0^+} f(x) = 1$$

Portanto, temos que $\lim_{x\to 0} f(x)$ não existe, pois os limites laterais apesar de existirem, não são iguais.