Algoritmo de Deutsch

Estrategia General de los Algoritmos cuánticos

- Iniciar los qubits en un estado clásico.
- Poner los qubits en superposición
- Realizar las operaciones en los qubits.
- Realizar una observación

Problema que deseamos resolver

- Imagine que le dan una caja negra que implementa una función de {0,1} hacia {0,1}.
- Es decir, $f: \{0,1\} \to \{0,1\}$
- Ahora el problema es determinar si la función es balanceada o constante:
 - Balanceada si $f(1) \neq f(0)$
 - Constante si f(1) = f(0)
- **Ejercicio** dibuje las funciones posibles, cree un modelo con matrices, y determine si son balanceadas o constantes.

¿Podemos representar el problema con compuertas y matrices?

Ejercicio.
Representar las otras funciones.

¿Cómo sería la solución?

Vamos a resolverlo en computador clásico

1. Escriba la función es balanceada en pseudo código

Vamos a resolverlo en computador clásico

```
1. boolean esBalanceada(function f) {
2. return f(0) \neq f(1)
3. }
```

- Análisis:
 - ·¿Cuántos llamados se hacen a la función f?

¿Podemos hacerlo mejor con un sistema cuántico?

Primero modelemos la función

• Recuerde que la función debe ser reversible y la vamos a modelar así:

- Algo sobre notación
 - $|\psi_0\rangle = |x,y\rangle$ y $|\psi_1\rangle = |x,y \oplus f(x)\rangle$

$$|\psi_2\rangle = ? = |\psi_0\rangle$$

$$|\psi_2\rangle = |x, (y \oplus f(x)) \oplus f(x)\rangle$$

$$|\psi_2\rangle = |x, (y \oplus f(x)) \oplus f(x)\rangle = |x, y \oplus (f(x) \oplus f(x))\rangle$$

$$|\psi_2\rangle = |x, (y \oplus f(x)) \oplus f(x)\rangle = |x, y \oplus (f(x) \oplus f(x))\rangle = |x, y \oplus 0\rangle$$

$$|\psi_2\rangle = |x, (y \oplus f(x)) \oplus f(x)\rangle = |x, y \oplus (f(x) \oplus f(x))\rangle = |x, y \oplus 0\rangle = |x, y\rangle = |\psi_0\rangle$$

Calculemos las matrices de las compuertas

Para cada función hay una compuerta. Ahora vamos a calcular las matrices

$ x\rangle$		$ x\rangle$
y>	$U_{\!f}$	$ y \oplus f(x)\rangle$

Calculemos las matrices de las compuertas

Para cada función hay una compuerta. Ahora vamos a calcular las matrices

$ x\rangle$		$ x\rangle$
y>	$U_{\!f}$	$ y \oplus f(x)\rangle$

	00	01	10	11
00	0	1	0	0
01	1	0	0	0
10	0	0	1	0
11	0	0	0	1

Calculemos las matrices de las compuertas

Para cada función hay una compuerta. Ahora vamos a calcular las matrices

Ejercicio. Calcule la adjunta y muestre que es su propia inversa

Ejercicio. Representar las matrices para otras funciones. Y mostrar que son sus propias inversas

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

Ejercicio. Calcule los resultados para las cuatro funciones

$$|\psi_0\rangle = |00\rangle \quad |\psi_1\rangle = |?\rangle \quad |\psi_2\rangle = |?\rangle$$

Primer paso: $|\psi_1\rangle$

$$|\psi_0\rangle = |00\rangle$$

$$|\psi_1\rangle = |?\rangle$$

Primer paso: $|\psi_1\rangle$

$$|\psi_0\rangle = |00\rangle$$

 $|\psi_1\rangle = |?\rangle$
 $|\psi_1\rangle = (H \otimes I)(|0\rangle \otimes |0\rangle)$

Primer paso: $|\psi_1\rangle$

$$|\psi_{0}\rangle = |00\rangle$$

$$|\psi_{1}\rangle = |?\rangle$$

$$|\psi_{1}\rangle = (H \otimes I)(|0\rangle \otimes |0\rangle)$$

$$(H \otimes I) = 1/\sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1/\sqrt{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

Primer paso: $|\psi_1\rangle$

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

$$|\psi_{0}\rangle = |00\rangle$$

$$|\psi_{1}\rangle = |?\rangle$$

$$|\psi_{1}\rangle = (H \otimes I)(|0\rangle \otimes |0\rangle)$$

$$(H \otimes I) = 1/\sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1/\sqrt{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$|\psi_{1}\rangle = 1/\sqrt{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 1/\sqrt{2} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Primer paso: $|\psi_1\rangle$

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

$$|\psi_{1}\rangle = |?\rangle$$

$$|\psi_{1}\rangle = (H \otimes I)(|0\rangle \otimes |0\rangle)$$

$$(H \otimes I) = 1/\sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1/\sqrt{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$|\psi_1\rangle = 1/\sqrt{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 1/\sqrt{2} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$|\psi_1\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}$$

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

$$|\psi_0\rangle = |00\rangle$$

$$|\psi_1\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}$$

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

$$|\psi_0\rangle = |00\rangle$$

$$|\psi_1\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}$$

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

	[0	1	0	0		$\lceil 1 \rceil$	$)=1/\sqrt{2}$	$\lceil 0 \rceil$	
h. \ _	1	0	0	0	(1/4/2)	0	$\left \frac{1}{\sqrt{2}} \right $	1	
$ \psi_2\rangle$ —	0	0	1	0	$(1/\sqrt{2})$	1	$)-1/\sqrt{2}$	1	
	[0]	0	0	1		$\lfloor 0 \rfloor$		$\begin{bmatrix} 0 \end{bmatrix}$	

Segundo paso: $|\psi_2\rangle$

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

00	0	1	0	0
01	1	0	0	0
10	0	0	T	0
11	0	0	0	1

01 10 11

$$\begin{vmatrix} |\psi_2\rangle = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} (1/\sqrt{2} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}) = 1/\sqrt{2} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$|\psi_2\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$

Segundo paso: $|\psi_2\rangle$ (Ejemplo2)

$$|\psi_0\rangle = |00\rangle$$

$$|\psi_1\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}$$

Segundo paso: $|\psi_2\rangle$ (Ejemplo2)

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

Segundo paso: $|\psi_2\rangle$ (Ejemplo2)

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

	00	01	10	11	
00	7	0	0	0	
01	0	1	0	0	
10	0	0	1	0	
11	0	0	0	1	

$$|\psi_2\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} (1/\sqrt{2} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}) = 1/\sqrt{2} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Segundo paso: $|\psi_2\rangle$ (Ejemplo2)

$$|\psi_2\rangle = U_f(H \otimes I)(|0\rangle \otimes |0\rangle)$$

_		•		
00	1	0	0	0
01	0	1	0	0
10	0	0	1	0
11	0	0	0	1

01 10 11

$$|\psi_2\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} (1/\sqrt{2} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}) = 1/\sqrt{2} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$|\psi_2\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}$$

Tarea

- Complete la lectura y ejercicios de la sección 6.1
- Mañana pasamos a explicar los otros prototipos incluyendo el algoritmo definitivo
- Quiz y taller de programación en computador cuántico de IBM

El algoritmo de Deutsch

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Si el qubit superior está en estado $|0\rangle$ es constante, si es otro valor es balanceada

Ejercicio. Analice el algoritmo y calcule los resultados para las cuatro funciones

$$|\psi_0\rangle = |01\rangle \quad |\psi_1\rangle = |?\rangle \quad |\psi_2\rangle = |?\rangle$$

$$|\psi_3\rangle = |?\rangle$$

Paso 1: $|\psi_1\rangle$

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

$$|\psi_0\rangle = |01\rangle$$

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

$$|\psi_0\rangle = |01\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

$$|\psi_0\rangle = |01\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

$$|\psi_0\rangle = |01\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$(H \otimes H) * |01\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle) - |11\rangle)$$

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Si el qubit superior está en estado $|0\rangle$ es constante, si es otro valor es balanceada

$$|\psi_0\rangle = |01\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$(H \otimes H) * |01\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle) - |11\rangle)$$

¿Podemos escribir este vector como el producto tensor de dos vectores en \mathbb{C}^2 ?

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Si el qubit superior está en estado $|0\rangle$ es constante, si es otro valor es balanceada

$$|\psi_0\rangle = |01\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$(H \otimes H) * |01\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle) - |11\rangle)$$

¿Podemos escribir este vector como el producto tensor de dos vectores en \mathbb{C}^2 ?

$$\begin{bmatrix} c1\\c2 \end{bmatrix} \otimes \begin{bmatrix} b1\\b2 \end{bmatrix} = \begin{bmatrix} c1*b1\\c1*b2\\c2*b1\\c2*b2 \end{bmatrix} = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}$$

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Si el qubit superior está en estado $|0\rangle$ es constante, si es otro valor es balanceada

$$|\psi_0\rangle = |01\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$(H \otimes H) * |01\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle) - |11\rangle)$$

¿Podemos escribir este vector como el producto tensor de dos vectores en \mathbb{C}^2 ?

$$\begin{bmatrix} c1\\c2 \end{bmatrix} \otimes \begin{bmatrix} b1\\b2 \end{bmatrix} = \begin{bmatrix} c1*b1\\c1*b2\\c2*b1 \end{bmatrix} = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}$$

$$|\psi_1\rangle = (H \otimes H) * |01\rangle = \frac{1}{2}((|0\rangle + |1\rangle) \otimes (|0\rangle - |1\rangle))$$

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Si el qubit superior está en estado $|0\rangle$ es constante, si es otro valor es balanceada

$$|\psi_0\rangle = |01\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$(H \otimes H) * |01\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle) - |11\rangle)$$

$$|\psi_1\rangle = (H \otimes H) * |01\rangle = \frac{1}{2}((|0\rangle + |1\rangle) \otimes (|0\rangle - |1\rangle))$$

Otras formas de representar $|\psi_1\rangle$

$$|\psi_1\rangle = (H \otimes H) * |01\rangle = (\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)) \otimes (\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle))$$

$$|\psi_1\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

Paso 1: $|\psi_1\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Si el qubit superior está en estado $|0\rangle$ es constante, si es otro valor es balanceada

$$|\psi_0\rangle = |01\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$(H \otimes H) * |01\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle) - |11\rangle)$$

$$|\psi_1\rangle = (H \otimes H) * |01\rangle = \frac{1}{2}((|0\rangle + |1\rangle) \otimes (|0\rangle - |1\rangle))$$

Otras formas de representar $|\psi_1\rangle$

$$|\psi_1\rangle = (H \otimes H) * |01\rangle = (\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)) \otimes (\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle))$$

$$|\psi_1\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

Ahora tenemos un sistema con cuatro estados diferentes en cuatro universos diferentes.

Paso 2: $|\psi_2\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

$$|\psi_0\rangle = |01\rangle$$

$$|\psi_1\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

Paso 2: $|\psi_2\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Si el qubit superior está en estado $|0\rangle$ es constante, si es otro valor es balanceada

$$|\psi_0\rangle = |01\rangle$$

$$|\psi_1\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

En cada universo podemos calcular el efecto de UF

Paso 2: $|\psi_2\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Si el qubit superior está en estado $|0\rangle$ es constante, si es otro valor es balanceada

$$|\psi_0\rangle = |01\rangle$$

$$|\psi_1\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

En cada universo podemos calcular el efecto de UF

$$|\psi_2\rangle = \frac{1}{2}(|0,0 \oplus f(0)\rangle - |0,1 \oplus f(0)\rangle + |1,0 \oplus f(1)\rangle - |1,1 \oplus f(1)\rangle)$$

Paso 2: $|\psi_2\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Si el qubit superior está en estado $|0\rangle$ es constante, si es otro valor es balanceada

$$|\psi_0\rangle = |01\rangle$$

$$|\psi_1\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

En cada universo podemos calcular el efecto de UF

$$|\psi_2\rangle = \frac{1}{2}(|0,0 \oplus f(0)\rangle - |0,1 \oplus f(0)\rangle + |1,0 \oplus f(1)\rangle - |1,1 \oplus f(1)\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

Paso 2: $|\psi_2\rangle$

$$|\psi_3\rangle = (H \otimes I)U_f(H \otimes H)(|0\rangle \otimes |1\rangle)$$

Si el qubit superior está en estado $|0\rangle$ es constante, si es otro valor es balanceada

$$|\psi_0\rangle = |01\rangle$$

$$|\psi_1\rangle = \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

En cada universo podemos calcular el efecto de UF

$$|\psi_2\rangle = \frac{1}{2}(|0,0 \oplus f(0)\rangle - |0,1 \oplus f(0)\rangle + |1,0 \oplus f(1)\rangle - |1,1 \oplus f(1)\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

Ahora tenemos ψ_2 que depende de los valores de f.

Queremos encontrar un posible patrón de comportamiento para determinar si es balanceada o constante

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

$$\operatorname{Si} f(0) = f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

$$\operatorname{Si} f(0) = f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,x\rangle - |1,\neg x\rangle)$$

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

$$\operatorname{Si} f(0) = f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,x\rangle - |1,\neg x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

$$\operatorname{Si} f(0) = f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,x\rangle - |1,\neg x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

¿Qué pasa si f es constante?

$$\operatorname{Si} f(0) = f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,x\rangle - |1,\neg x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

¿Qué pasa si f es constante?

$$\operatorname{Si} f(0) = f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,x\rangle - |1,\neg x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

$$\operatorname{Si} f(0) = \neg f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

¿Qué pasa si f es constante?

$$\operatorname{Si} f(0) = f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,x\rangle - |1,\neg x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

$$\operatorname{Si} f(0) = \neg f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,\neg x\rangle - |1,x\rangle)$$

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

¿Qué pasa si f es constante?

$$\operatorname{Si} f(0) = f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,x\rangle - |1,\neg x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

$$\operatorname{Si} f(0) = \neg f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,\neg x\rangle - |1,x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle - |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

¿Qué pasa si f es constante?

$$\operatorname{Si} f(0) = f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,x\rangle - |1,\neg x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle)) \otimes (|x\rangle - |\neg x\rangle))$$

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

$$\operatorname{Si} f(0) = \neg f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,\neg x\rangle - |1,x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle - |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

Paso 3: Buscar un patrón de comportamiento

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

¿Qué pasa si f es constante?

$$\operatorname{Si} f(0) = f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,x\rangle - |1,\neg x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle)) \otimes (|x\rangle - |\neg x\rangle))$$

$$|\psi_2\rangle = \frac{1}{2}(|0,f(0)\rangle - |0,\neg f(0)\rangle + |1,f(1)\rangle - |1,\neg f(1)\rangle)$$

¿Qué pasa si f es balanceada?

$$\operatorname{Si} f(0) = \neg f(1) = x$$
, $\operatorname{con} x = 0$ o $x = 1$, entonces

$$|\psi_2\rangle = \frac{1}{2}(|0,x\rangle - |0,\neg x\rangle + |1,\neg x\rangle - |1,x\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle - |1\rangle)\otimes(|x\rangle - |\neg x\rangle))$$

Sí podemos diferenciar estos dos estados del qubit de arriba tendremos el algoritmo

La última compuerta de Hadamard hace eso exactamente diferenciarlos

Paso 4: Encontrar $|\psi_3\rangle$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle)\otimes (|x\rangle - |\neg x\rangle))$$

Paso 4: Encontrar $|\psi_3\rangle$

¿Qué pasa si f es constante?

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle)\otimes (|x\rangle - |\neg x\rangle))$$

Paso 4: Encontrar $|\psi_3\rangle$

¿Qué pasa si f es constante?

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle)\otimes (|x\rangle - |\neg x\rangle))$$

$$H\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Paso 4: Encontrar $|\psi_3\rangle$

¿Qué pasa si f es constante?

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

$$H\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

Paso 4: Encontrar $|\psi_3\rangle$

¿Qué pasa si f es constante?

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle)\otimes (|x\rangle - |\neg x\rangle))$$

Solo miremos que pasa en el alambre de arriba

$$H\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

Paso 4: Encontrar $|\psi_3\rangle$

¿Qué pasa si f es constante?

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle)\otimes (|x\rangle - |\neg x\rangle))$$

Solo miremos que pasa en el alambre de arriba

$$H\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle - |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

Paso 4: Encontrar $|\psi_3\rangle$

¿Qué pasa si f es constante?

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle)\otimes (|x\rangle - |\neg x\rangle))$$

Solo miremos que pasa en el alambre de arriba

$$H\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

¿Qué pasa si f es balanceada?

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle - |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

Paso 4: Encontrar $|\psi_3\rangle$

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle)\otimes (|x\rangle - |\neg x\rangle))$$

Solo miremos que pasa en el alambre de arriba

$$H\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

¿Qué pasa si f es balanceada?

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle - |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

$$H\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Paso 4: Encontrar $|\psi_3\rangle$

¿Qué pasa si f es constante?

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle + |1\rangle)\otimes (|x\rangle - |\neg x\rangle))$$

Solo miremos que pasa en el alambre de arriba

$$H\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

¿Qué pasa si f es balanceada?

$$|\psi_2\rangle = \frac{1}{2}((|0\rangle - |1\rangle) \otimes (|x\rangle - |\neg x\rangle))$$

$$H\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

¿Preguntas?