TD13-Compléments sur les variables aléatoires réelles

Exercice 1

Soit $X \hookrightarrow \mathcal{E}(1)$ *et posons* $Y = \max(1, X)$.

- 1. Déterminer la fonction de répartition de Y.
- 2. La variable Y est-elle à densité?

Exercice 2

Soit X une variable aléatoire dont la fonction de répartition est donnée par :

$$\forall x \in \mathbb{R}, \quad F_X(x) = \left\{ \begin{array}{ll} 0 & si \ x < 0 \\ x^3 & si \ x \in [0, 1] \\ 1 & si \ x > 1 \end{array} \right..$$

Montrer que X est une variable à densité et déterminer une densité de X.

Exercice 3

On considère la fonction F définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad F(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - (1 - x)^{\frac{4}{3}} & \text{si } x \in [0, 1] \\ 1 & \text{si } x > 1 \end{cases}.$$

- 1. Montrer que F est la fonction de répartition d'une variable à densité X.
- 2. Déterminer une densité de X.
- 3. Calculer $P(0.973 < X \le 1.2)$.

Exercice 4 (Loi de Laplace)

Soit $c \in \mathbb{R}$. on considère la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = ce^{-|x|}.$$

- 1. Déterminer les valeurs de c pour lesquelles f est une densité d'une variable aléatoire X.
- 2. Pour ces valeurs, déterminer la fonction de répartition de X.

Exercice 5

Soit X une variable aléatoire suivant une loi exponentielle de paramètre $\lambda > 0$. Dans chaque cas, déterminer la fonction de répartition de Y, vérifier si Y est à densité ou non et déterminer une densité le cas échéant.

1.
$$Y = \sqrt{X}$$
. 2. $Y = X^3$.

2.
$$Y = X^3$$

3.
$$Y(\omega) = \frac{1}{X(\omega)} \operatorname{si} X(\omega) \neq 0$$

et $Y(\omega) = 0 \operatorname{sinon}$.

Exercice 6

Pour tout nombre réel x, on note [x] la partie entière de x, c'est-à-dire l'unique nombre entier vérifiant : $[x] \le x < [x] + 1$.

Soit *X* la variable aléatoire suivant la loi exponentielle de paramètre λ (λ > 0).

On pose Y = [X]. La variable Y est donc la partie entière de X et on a :

$$\forall k \in \mathbb{Z} \quad [Y = k] = [k \leqslant X < k + 1].$$

- 1. (a) Montrer que Y prend ses valeurs dans N.
 - (b) Pour tout k de \mathbb{N}^* , calculer P(Y = k 1).
 - (c) En déduire que la variable aléatoire Y + 1 suit une loi géométrique dont on donnera le paramètre.
 - (d) Donner l'espérance et la variance de Y + 1. En déduire l'espérance et la variance de Y.
- 2. On pose Z = X Y.
 - (a) Déterminer les valeurs prises par Z.
 - (b) En utilisant le système complet d'évènements ([Y = k]) $_{k \in \mathbb{N}}$, montrer que :

$$\forall x \in [0,1[, P(Z \le x) = \frac{1 - e^{-\lambda x}}{1 - e^{-\lambda}}.$$

- (c) En déduire une densité f de Z.
- (d) Déterminer l'espérance E(Z) de Z. Ce résultat était-il prévisible?

Exercice 7

Déterminer si les variables aléatoires de l'exercice 5 possèdent une espérance.

Exercice 8 (Loi de Laplace)

Soit X une variables aléatoire suivant une loi de Laplace (voir exercice 4).

- 1. Montrer que X possède une espérance et la calculer.
- 2. Montrer que X possède une variance et la calculer.

Exercice 9

Soit f la fonction définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{2}{(1+x)^3} & \text{si } x \ge 0 \end{cases}.$$

- 1. Montrer que *f* est une densité d'une variable aléatoire X dont on donnera la fonction de répartition.
- 2. La variable X possède-t-elle une espérance? une variance? si oui, calculer les.

Exercice 10

On considère la fonction f définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 2x & \text{si } x \in]0,1] \\ 0 & \text{sinon} \end{cases}.$$

- 1. Montrer que f est une densité de probabilité.
- 2. Par la suite, on note X une variable aléatoire de densité f.
 - (a) Montrer que X possède des moments de tous ordres et pour tout entier $n \in \mathbb{N}^*$, calculer $m_n(X)$.
 - (b) En déduire l'espérance et la variance de X.
- 3. Déterminer la fonction de répartition de X.
- 4. (a) Déterminer la loi de $Y = \ln(X)$.
 - (b) À l'aide de la loi de Y, déterminer si Y possède une espérance, une variance. Les calculer (sous réserve d'existence).
 - (c) Retrouver les résultats de la question précédente à l'aide du théorème de transfert.

Exercice 11

Soit g la fonction définie sur $\mathbb R$ par :

$$g(x) = \begin{cases} 0 & si \ x < 0, \\ xe^{-x} & si \ x \ge 0. \end{cases}$$

1. (a) Montrer que g est dérivable sur $]-\infty,0[$ et sur $]0,+\infty[$. Est-elle continue en 0? Est-elle dérivable en 0?

- (b) Donner le tableau de variations de g sur $[0, +\infty[$ (on précisera la limite de g en $+\infty$).
- (c) Étudier la convexité de g sur $]0, +\infty[$.
- (d) Donner l'allure de la courbe représentative de la fonction g sur \mathbb{R} . On précisera avec soin cette allure au voisinage du point d'abscisse 0 de la courbe. On rappelle que $e^{-1} \approx 0,37$.
- 2. (a) Montrer que la fonction g est une densité de probabilité. On note Y une variable aléatoire dont une densité est la fonction g, et dont la fonction de répartition est notée G.
 - (b) Sans calcul, justifier que la fonction G est de classe C^1 sur \mathbb{R} .
 - (c) Montrer que pour tout réel x,

$$G(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - e^{-x}(1+x) & \text{si } x \geqslant 0. \end{cases}$$

- (d) Montrer que la variable aléatoire Y admet une espérance, que l'on calculera.
- 3. On considère la variable aléatoire $Z = e^{Y}$.
 - (a) Déterminer la fonction de répartition notée H de la variable aléatoire Z.
 - (b) En déduire que Z est une variable aléatoire à densité et déterminer une densité de Z.
 - (c) La variable aléatoire Z admet-elle une espérance?

Exercice 12

Soit $p \in]0,1[$. On considère deux variables aléatoires indépendantes U et V, définies sur une espace probabilisé (Ω,\mathcal{A},P) , telles que $U \hookrightarrow \mathcal{U}([-3,1])$, et $V \hookrightarrow \mathcal{U}([-1,3])$. On considère également une variable aléatoire Z, indépendante de U et V, de loi :

$$P(Z = 1) = p$$
 et $P(Z = -1) = 1 - p$.

Enfin, on note X la variable aléatoire définie par :

$$\forall \omega \in \Omega, \ X(\omega) = \left\{ egin{array}{ll} U(\omega) & si & Z(\omega) = 1 \\ V(\omega) & si & Z(\omega) = -1 \end{array} \right..$$

On note F_X , F_U et F_V les fonctions de répartition respectives des variables X, U et V.

- 1. Donner les expressions de $F_U(x)$ et $F_V(x)$ selon les valeurs de x.
- 2. (a) Établir, grâce au système complet d'évènements ([Z=1], [Z=-1]), que :

$$\forall x \in \mathbb{R}, \, F_X(x) = pF_U(x) + (1-p)F_V(x).$$

(b) Vérifier que $X(\Omega) = [-3,3]$ puis expliciter $F_X(x)$ dans les cas :

$$x < -3$$
 ; $-3 \le x \le -1$; $-1 \le x \le 1$; $1 \le x \le 3$ et $x > 3$.

- (c) On admet que X est une variable à densité. Donner une densité f_X de la variable aléatoire X .
- (d) Établir que X admet une espérance E(X) et une variance V(X), puis les déterminer.
- 3. On se propose de montrer d'une autre façon que X possède une espérance et un moment d'ordre 2 puis de les déterminer.
 - (a) Vérifier que l'on a : $X = U \frac{1+Z}{2} + V \frac{1-Z}{2}$.
 - (b) En déduire que X possède une espérance et retrouver la valeur de E(X).
 - (c) En déduire que X possède un moment d'ordre 2 et retrouver la valeur de $E(X^2)$.

Exercice 13

Soient X et Y deux variables aléatoires indépendantes définies sur un espace probabilisé (Ω, \mathcal{A}, P) . On suppose que X suit une loi exponentielle de paramètre $\lambda > 0$ et que Y suit la loi uniforme sur $\{-1,0,1\}$.

On pose Z = XY.

- 1. Déterminer la fonction de répartition F_Z de Z.
- 2. Déterminer P(Z = 0).
- 3. La variable aléatoire Z est-elle discrète? à densité?

Exercice 14

On admet que si Z_1 et Z_2 sont deux variables aléatoires à densité, définies sur le même espace probabilisé, alors leur covariance, si elle existe, est définie par :

$$Cov(Z_1, Z_2) = E(Z_1Z_2) - E(Z_1)E(Z_2).$$

On admet également que si Z_1 et Z_2 sont indépendantes alors leur covariance est nulle. On considère deux variables aléatoires réelles X et U définies sur le même espace probabilisé (Ω, \mathcal{A}, P) , indépendantes, X suivant la loi normale \mathcal{N} (0,1) et U suivant la loi discrète uniforme sur $\{-1,1\}$.

On pose Y = UX et on admet que Y est une variable aléatoire à densité, définie elle aussi sur l'espace probabilisé (Ω, \mathcal{A}, P) .

1. (a) En utilisant la formule des probabilités totales, montrer que :

$$P(Y \le x) = P([U = 1] \cap [X \le x]) + P([U = -1] \cap [X \ge -x]).$$

- (b) En déduire que Y suit la même loi que X.
- 2. (a) Calculer l'espérance de U puis montrer que E(XY) = 0.
 - (b) En déduire que Cov(X, Y) = 0.
- 3. (a) Rappeler la valeur de $E\left(X^2\right)$ et en déduire que $\int_0^{+\infty} x^2 e^{-\frac{x^2}{2}} = \frac{1}{2}\sqrt{2\pi}$.

(b) Montrer, grâce à une intégration par parties que

$$\forall A \in \mathbb{R}_+: \int_0^A x^4 e^{-\frac{x^2}{2}} dx = -A^3 e^{-\frac{A^2}{2}} + 3 \int_0^A x^2 e^{-\frac{x^2}{2}} dx.$$

- (c) En déduire que l'intégrale $\int_0^{+\infty} x^4 e^{-\frac{x^2}{2}} dx$ converge et vaut $\frac{3}{2}\sqrt{2\pi}$.
- (d) Établir finalement que X possède un moment d'ordre 4 et que $E(X^4) = 3$.
- 4. (a) Vérifier que $E(X^2Y^2) = 3$.
 - (b) Déterminer Cov (X^2, Y^2) .
 - (c) En déduire que X^2 et Y^2 ne sont pas indépendantes. Montrer alors que X et Y ne le sont pas non plus.

Exercice 15

- 1. Déterminer la loi du maximum de 2 variables aléatoires indépendantes X_1 et X_2 suivant la loi uniforme sur [0,1].
- 2. Soient $X_1,...,X_n$ avec $n \ge 2$ des variables aléatoires mutuellement indépendantes de loi $\mathcal{E}(\lambda)$ avec $\lambda > 0$. Déterminer la loi de $\min(X_1,...,X_n)$.

Exercice 16

1. On considère la fonction f définie pour tout x réel par :

$$f(x) = \begin{cases} 1 - |x| & si \quad x \in [-1;1] \\ 0 & si \quad x \in \mathbb{R} \setminus [-1;1] \end{cases}.$$

- (a) Calculer $\int_{0}^{1} f(x) dx$. En déduire sans calcul $\int_{-1}^{0} f(x) dx$.
- (b) Vérifier que f peut être considérée comme une densité.
- 2. On considère dorénavant une variable aléatoire X, définie sur un espace probabilisé (Ω, \mathcal{A}, P) et admettant f comme densité.
 - (a) Établir l'existence de l'espérance de X, puis donner sa valeur.
 - (b) Établir l'existence de la variance de X, puis donner sa valeur.
- 3. Montrer que la fonction de répartition de X, notée F_X , est définie par :

$$F_X(x) = \begin{cases} 0 & si & x < -1 \\ \frac{1}{2} + x + \frac{x^2}{2} & si & -1 \le x \le 0 \\ \frac{1}{2} + x - \frac{x^2}{2} & si & 0 < x \le 1 \\ 1 & si & x > 1 \end{cases}.$$

- 4. On pose Y = |X| et on admet que Y est une variable aléatoire à densité, elle aussi définie sur l'espace probabilisé (Ω, A, P) . On note F_Y sa fonction de répartition.
 - (a) Donner la valeur de $F_Y(x)$ lorsque x est strictement négatif.
 - (b) Pour tout réel x positif ou nul, exprimer $F_Y(x)$ à l'aide de la fonction F_X .
 - (c) En déduire qu'une densité de Y est la fonction g définie par :

$$g(x) = \begin{cases} 2(1-x) & si & x \in [0,1] \\ 0 & sinon \end{cases}.$$

- (d) Montrer que Y possède une espérance et une variance et les déterminer.
- 5. On considère deux variables aléatoires U et V, elles aussi définies sur (Ω, \mathcal{A}, P) , indépendantes et suivant toutes les deux la loi uniforme sur [0,1].

On pose $I = \inf(U; V)$, c'est-à-dire que, pour tout ω de Ω , on a :

$$I(\omega) = \inf (U(\omega); V(\omega)).$$

On admet que I est une variable aléatoire à densité, elle aussi définie sur (Ω, \mathcal{A}, P) , et on rappelle que, pour tout réel x, on a

$$P(I > x) = P((U > x) \cap (V > x)).$$

Pour finir, on note F_I la fonction de répartition de I.

- (a) Expliciter $F_I(x)$ pour tout réel x.
- (b) En déduire que I suit la même loi que Y.
- 6. On considère plus généralement n variables aléatoires X₁, X₂,..., X_n, n ≥ 2, toutes définies sur (Ω, A, P) indépendantes et suivant la loi uniforme sur [0; 1].
 On pose I_n = inf (X₁, X₂,..., X_n).

Déterminer la fonction de répartition de I_n .

7. Compléter la déclaration de fonction suivante pour qu'elle simule la loi de Y