Matemáticas e Ingeniería Informática

Hoja 9: Determinantes

1. Encuestra una fórmula de recurrencia para calcular

$$D_n = \begin{vmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \end{vmatrix}$$

en función de D_{m-1} y D_{n-2} . Utilizalá para calcular D_8 y D_9

- **2.** Sea A una matriz cuadrada cuyo deteminante vale 9. Determinar, si es posible, el determinante de las matrices A^5 , A^{-1} y 7A.
- a) Calcular el determinante del endomorfismo de $\mathcal{M}_{2\times 2}$

$$f\left(\begin{array}{cc}a&b\\c&d\end{array}\right) = \left(\begin{array}{cc}a+5b&b+3c+2d\\c-d&d\end{array}\right)$$

b) Calcular la matriz A de f respecto de la base

$$\mathcal{B} = \left\{ v_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, v_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

así como su determinante.

3. Sean a, b, c números reales positivos. El elipsoide sólido de semiejes a, b, c es la siguiente región sólida:

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 \le 1 \right\}.$$

Halla la preimagen $f^{-1}(S)$, siendo f(x,y,z)=(ax,by,cz). Demuestra que el volumen de S es $\frac{4}{3}\pi abc$.

4. Sea $R \subset \mathbb{R}^2$ la región plana comprendida entre la recta L y la curva de tercer grado Γ , dadas por:

$$L = \{(x,y) : x + 10y = 0\} , \Gamma = \{(x,y) : ((0'1)x + y) \cdot [1 + (x+y)^2] = 1\}.$$

- a) Halla la imagen F(R), siendo $F\left(\left[\begin{array}{c} x \\ y \end{array} \right]\right) \equiv \left[\begin{array}{cc} 1 & 1 \\ 1 & 10 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right]$.
- b) Calcula explícitamente el área de R.

- **5.** Sean A, B, C y D matrices de orden $n \times n$.
- a) Demuestra que $\det\left(\begin{array}{c|c}A & C\\\hline 0 & B\end{array}\right) = \det A \cdot \det B.$
- b) ¿Es cierto que $\det\left(\begin{array}{c|c}A & C\\\hline D & B\end{array}\right) = \det A \cdot \det B \det C \cdot \det D$?
- **6.** Sean E un espacio vectorial de dimensión n+m y $f:E\to E$ un endomorfismo. Sea $\mathcal{B}=\{\mathbf{v}_1,\ldots,\mathbf{v}_{n+m}\}$ una base de E y pongamos $F=\langle\mathbf{v}_1,\ldots,\mathbf{v}_n\rangle$.
- a) Demuestra que las condiciones siguientes son equivalentes:
 - **1.** La matriz de f, usando \mathcal{B} en salida y en llegada, es de la forma $\left(\begin{array}{c|c} A & C \\ \hline 0 & B \end{array}\right)$, con A matriz $n \times n$ etc.
 - **2.** Se cumple $\mathbf{v} \in F \implies f(\mathbf{v}) \in F$, es decir $f(F) \subseteq F$.
- b) Demuestra que, si $f(F) \subseteq F$, entonces hay endomorfismos g y h bien definidos por las siguientes fórmulas:

que la matriz de g en la base $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ es A, que la matriz de h en la base $\{\mathbf{v}_{n+1}+F,\ldots,\mathbf{v}_{n+m}+F\}$ es B y que el resultado del ejercicio ?? equivale a $\det f=\det g\cdot\det h$.

7. Sea $f: \mathcal{M}_{2\times 3} \to \mathcal{M}_{2\times 3}$ el endomorfismo definido por

$$f\left(\begin{array}{ccc} a & b & c \\ a' & b' & c' \end{array}\right) = \left(\begin{array}{ccc} 2a & 2b & 4c \\ 3a' & 3b' & 4c' \end{array}\right)$$

Se pide:

a) Si F es el subespacio $F = \left\{ \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix} \middle/ \begin{array}{l} a+b=0 \\ a'+b'=0 \\ c+c'=0 \end{array} \right\}$, demostrar que f induce un endo-

morfismo $f_{|F}: F \to F$ definido por la misma fórmula que f. Calcular su determinante.

- b)Probar que f induce también un endomorfismos \overline{f} del espacio cociente $\mathcal{M}_{2\times 3}/F$. Calcular su determinante.
- c) Relacionar los determinantes de f, \overline{f} y $f_{|F}$.
- **8.** Sea V un espacio vectorial, V^* su dual, y $f, g \in V^*$. Representamos por $f \wedge g : V \times V \to \mathbb{R}$ la aplicación dada por $f \wedge g(\vec{v_1}, \vec{v_2}) = f(\vec{v_1})g(\vec{v_2}) f(\vec{v_2})g(\vec{v_1})$.
- a) Demostrar que $f \wedge g$ es una forma bilineal sobre V, que es alternada y que satisface $f \wedge g = -g \wedge f$.

Representemos por $\{\vec{e_1}, \vec{e_2}\}$ su base canónica de \mathbb{R}^2 y por $\{E_1^*, E_2^*\}$ la base dual. Considerar la forma bilineal alternada $E_1^* \wedge E_2^*$ del apartado anterior.

b) Probar que si D es la única forma bilineal alternada sobre \mathbb{R}^2 tal que $D(\vec{e_1}, \vec{e_2}) = 1$, entonces $D = E_1^* \wedge E_2^*$.