CheggSolutions - Thegdp

Reaction Thermodynamics

Given Statement to be Comp	leted	:
----------------------------	-------	---

"As \(T \) increases, \	(K c \)	. and ∖(K p	\)	so the reaction is	."

Explanation:

To determine whether a reaction is exothermic or endothermic, the temperature dependence of the equilibrium constants \(K_c \) (equilibrium constant with concentration) and \(K_p \) (equilibrium constant with pressure) needs to be considered:

- · According to Le Chatelier's principle:
 - For an exothermic reaction, increasing the temperature shifts the equilibrium to the left, decreasing the value of \(K \). Therefore, both \(K_c \) and \(K_p \) decrease.
 - For an **endothermic reaction**, increasing the temperature shifts the equilibrium to the right, increasing the value of \(K \). Therefore, both \(K_c \) and \(K_p \) increase.

Step-by-Step Solution:

- 1. Determine the behavior of (K_c) and (K_p) as the temperature increases:
 - If (K_c) and (K_p) decrease as the temperature increases, the reaction is exothermic.
 - If \(K_c \) and \(K_p \) increase as the temperature increases, the reaction is endothermic.

Final Solution:

This shows that when the temperature is increased, the equilibrium constants \(K_c \) and \(K_p \) both decrease indicating an exothermic reaction.