

WHAT IS CLAIMED IS:

1. A catalyst for the full oxidation of volatile organic compounds (VOC), particularly hydrocarbons, and of CO to CO₂, comprising:
 - a non-stoichiometric crystalline compound conventionally designated by
 - 5 a formula which corresponds to A₁₄Cu₂₄O₄₁ (I), where A is Sr or a solid solution of Sr with alkaline-earth metals, alkaline metals, lanthanides; or a non-stoichiometric crystalline compound conventionally designated by a formula which corresponds to B₄Cu₅O₁₀ (II), where B is Ca or a solid solution of Ca with alkaline-earth metals, alkaline metals, lanthanides; or
 - 10 mixtures thereof; and in that it is prepared in a form which has a large specific surface area, preferably larger than 25 m²/g.
2. The catalyst according to claim 1, further comprising a substrate material.
3. The catalyst according to claim 2, wherein the substrate material is a porous inert material.
- 15 4. The catalyst according to claim 3, wherein said porous inert substrate comprises a material chosen from the group constituted by Al₂O₃, ZrO₂, CeO₂, TiO₂, MgO.
5. The catalyst according to claim 1, in form of granules.
- 20 6. The catalyst according to claim 2, wherein said substrate is an inert substrate in the form of a thin film.
7. The catalyst according to claim 2, wherein said substrate is a composite material.
- 25 8. The catalyst according to claim 1, comprising 5% to 20% by weight of a non-stoichiometric crystalline compound conventionally designated by a formula which corresponds to A₁₄Cu₂₄O₄₁ (I), where A is Sr or a solid solution of Sr with alkaline-earth metals, alkaline metals, lanthanides; or a non-stoichiometric crystalline compound conventionally designated by a formula which corresponds to B₄Cu₅O₁₀ (II), where B is Ca or a solid solution of Ca with alkaline-earth metals, alkaline metals, lanthanides; or
- 30

mixtures thereof.

9. A method for full oxidation of volatile organic compounds (VOC), particularly hydrocarbons, wherein a catalyst according to claims 1 to 8 is used.

5 10. A method for converting carbon monoxide to carbon dioxide, wherein a catalyst according to claim 1 is used.

11. A method for preparing a catalyst comprising a non-stoichiometric crystalline compound conventionally designated by a formula which corresponds to $\text{Sr}_{14}\text{Cu}_{24}\text{O}_{41}$, comprising the steps of:

10 a) immersing a pre-dried granular porous substrate material in an aqueous solution with a molar concentration of $\text{Sr}(\text{NO}_3)_2$ from 0.23 M to 0.93 M and a molar concentration of $\text{Cu}(\text{NO}_3)_2$ from 0.39 M to 1.59 M;

b) drying at a temperature from 80°C to 120°C;

15 c) holding at a temperature from 650°C to 750°C in a gas stream which contains oxygen until complete decomposition of the nitrates occurs.

12. A method for preparing a catalyst comprising a non-stoichiometric crystalline compound conventionally designated by a formula which corresponds to $\text{Ca}_4\text{Cu}_5\text{O}_{10}$, comprising the steps of:

20 a) immersing a pre-dried granular porous substrate material in an aqueous solution of $\text{Ca}(\text{NO}_3)_2$ and $\text{Cu}(\text{NO}_3)_2$ in an equimolar ratio and at a molar concentration from 0.39 M to 1.39 M;

b) drying at a temperature from 80°C to 120°C;

c) holding at a temperature from 650°C to 750°C in a gas stream which contains oxygen until complete decomposition of the nitrates occurs.

25 13. A method for preparing a catalyst comprising a non-stoichiometric crystalline compound conventionally designated by a formula which corresponds to $\text{Ca}_4\text{Cu}_5\text{O}_{10}$, comprising the steps of:

a) immersing a pre-dried granular porous substrate material in an aqueous solution obtained by dissolving, with the application of heat, CuO 30 and CaCO_3 in nitric acid, so that the molar ratio between the components of

the solution is CuO : CaCO₃ : HNO₃ = 1 : 0.83 : 3.2; water and citric acid being added thereto so that the citric acid : Cu molar ratio is from 3.5:1 to 4.0:1;

5 b) heating in air until combustion of the organic fraction of the absorbed material is achieved;

c) thermal treatment for 4 to 24 hours at a temperature from 650 to 750°C in a stream of gas containing oxygen.

14. The method according to claim 11, wherein the porous material is constituted by Al₂O₃, ZrO₂, CeO₂, TiO₂, MgO.