Examen Fizică - 19 februarie 2025 - teorie

- 1. (0.6p) 4; 4; 3.
- 2. (0.9p) Grafic
- **3. (0.8p)** $v = v_0 + a \cdot t$, unde v = viteza la momentul t, v_0 = viteza inițială, a = accelerația mișcării, t = momentul de timp la care calculăm viteza v. Vitezele se măsoară în m/s, accelerația în m/s², iar timpul în s.
- **4. (0.9p)** $\vec{F} = \frac{q_1 q_2}{4\pi \varepsilon r^3} \cdot \vec{r}$ Enunț: Forța de interacțiune între două sarcini electrice punctiforme este direct proportional cu produsul sarcinilor și invers proportional cu pătratul distanței dintre ele. F (N) = forța de interacțiune, q_1 , q_2 (C) = sarcinile electrice, ε ($C^2/(N \cdot m^2)$ = permitivatea electrică a mediului dintre sarcini, r (m) = distanța dintre sarcini.
- **5.** (0.9p) $\frac{mv^2}{r} = \frac{Ze^2}{4\pi\varepsilon_0 r^2}$ de unde $v = \sqrt{\frac{Ze^2}{4\pi\varepsilon_0 mr}}$.
- **6. (0.8p)** $I = \vec{j} \cdot \vec{a}$ unde I = intensitatea curentului electric, \vec{j} = densitatea de curent, \vec{a} = aria secțiunii circuitului.
- **7. (0.8p)** Doparea semiconductorului înseamnă înlocuirea unui mic procent din atomii rețelei cu atomii unei alte specii, trivalenți sau pentavalenți, cu un nivel energetic în banda interzisă a semiconductorului. În acest fel se obține o concentrație mult mai mare de purtători de sarcina, deci o conducție mai bună.
- **8. (0.9p)** $\oint_S \vec{j} \cdot d\vec{a} = -\frac{dQ}{dt}$, deci $\oint_S \vec{j} \cdot d\vec{a} = -\frac{d}{dt} \int_V \rho \, dV = -\int_V \frac{\partial \rho}{\partial t} dV$. Trecem de la integrala pe suprafață la integrală de volum cu teorema lui Gauss $\int_V div\vec{j} \cdot dV = -\int_V \frac{\partial \rho}{\partial t} dV$ deci $div\vec{j} = -\frac{\partial \rho}{\partial t}$ care este ecuația de continuitate.
- **9. (0.8p)** închiderea ușilor de dulap, închiderea ușii frigiderului, magneții de pe frigider (amintiri), difuzoare, suporturi de cuțite ...
- **10. (0.8p)** $\vec{F} = q \cdot \vec{E} + q(\vec{v} \times \vec{B})$, unde F este forța care acționează asupra unei sarcini punctiforme q, aflată într-un camp electric E și un camp magnetic B, în mișcare cu viteza v.
- 11. (0.8p) $M_x = \frac{\partial N_z}{\partial y} \frac{\partial N_y}{\partial z}$, $M_y = \frac{\partial N_x}{\partial z} \frac{\partial N_z}{\partial x}$, $M_z = \frac{\partial N_y}{\partial x} \frac{\partial N_x}{\partial y}$ Din oficiu: 1 p

Examen Fizică - 19 februarie 2025 - probleme

- **1.** (2,0p) $\vec{a} \cdot \vec{b} = 3 + 4 + 2 = 9$ şi $\vec{a} \times \vec{b} = -12\vec{k} 3\vec{j} + \vec{k} \vec{i} + 2\vec{j} + 8\vec{i} = 7\vec{i} \vec{j} 11\vec{k}$.
- **2.** (2,0p) $P = Fv = \mu mgv \ deci \ \mu = \frac{P}{mgv}$. Numeric μ =0.162.
- 3. **(2,0p)** a) $C = \frac{\epsilon_0 L^2}{d} = \frac{8.85 \cdot 10^{-12} \cdot 10^{-4}}{10^{-6}} = 8.85 \cdot 10^{-10} F = 0.885 \text{ nF, b)}$ $U = \frac{q}{C} = \frac{10^{-9}}{0.885 \cdot 10^{-9}} = 1.13 \text{ V}$, $E = \frac{U}{d} = \frac{1.13 \text{ V}}{10^{-6} \text{m}} = 1.13 \cdot 10^6 \frac{\text{V}}{\text{m}}$, c) W = qU = 1.13 eV
- **4. (3.0p)** a) $v = a \cdot t_1 = 0.01 \cdot 1000 \frac{m}{s} = 10 \frac{m}{s} = 36 \frac{km}{h}$; b) $x = \frac{at_1^2}{2} = 5$ km; c) $t_2 = \frac{D-x}{v} = 5500$ s cu viteză constantă. Total $t_{tot} = t_1 + t_2 = 6500$ s.