

Unsupervised and Semi-Supervised Deep Learning in Medical Imaging

Kiran VaidhyaAlgorithms Researcher kiran@predible.co

Cancer Death Rates Among Women, US,1930-2005

Cancer

Source: http://www.clevelandclinicmeded.com

How does cancer occur?

July 2017

How do we "see" inside the body?

MRI scanner

Visualization of the 3D image

July 2017

Spotting brain cancer

What is Glioblastoma?

- Most aggressive and most malignant brain cancer
- Only 2% survive post treatment | Median survival of **14 months**

Knowledge of tumor sub-types help in treatment

Intra-tumor classification is essential to understand treatment response

Glioblastoma treatment requires pixel-wise labelling

- Tedious slice-by-slice labelling is carried out by doctors
- Labelling can be performed by deep networks

3D rendering of glioblastoma

Glioblastoma segmentation from brain MRI is non-trivial

Shortage of samples

- Limited amount of annotated data **overfitting**
- Only 2% of pixels contain tumor

Cost: 2449\$ ~ Rs. 1,60,000

Complexity of data

- [4 x 155 x 240 x 240] tensors
- Dense annotations are very expensive!

Can we leverage unsupervised feature learning?

Deep Unsupervised Feature Extraction

Can we use Auto-encoders to extract features?

Encode

$$h = \sigma(W.\widetilde{x})$$

Prevent identity mapping!

Denoising Autoencoder

<u>Decode</u>

$$f(h) = W^T \cdot h$$

Compute loss

$$Loss = \sum (f - x)^2$$

How do Auto-encoders learn underlying structure?

Learn Reconstruction Function

Weights of Autoencoder

Source: Stacked Denoising Autoencoder – Vincent et al (2010)

From MNIST to brain MRI?

BRATS 2015 dataset

Patch size = [4 x 21 x 21]

Extract small patches

- Extract ROI around tumor
- Sample patches from the ROI

Samples of [4 x 21 x 21] patches extracted around tumor

Training Autoencoders on brain MRI

3D patch size: 4 x 21 x 21

1728 - 3500 - 1728

Extract, noise, reconstruct!

How do we train deep Auto-encoders?

- Deep layers learn a hierarchy of features
- Vanishing and exploding gradients
- Pre-train layer by layer

Learn rich latent representations

Extracted feature representation

Fine-tuning for Classification

July 2017

How do we use Autoencoders for classification?

Fine-tune the network for classification

4 sequences of MRI

Extract, classify, stride, repeat

Segmentation results

Performance of semi-supervised learning?

11 layers + 3D Convolutions + 2 Pathways

+ Fully supervised

	Scans	Whole Tumor	Tumor Core	Active Tumor
DeepMedic	220	0.90	0.75	0.72
SDAE	135	0.85	0.78	0.73
SDAE	20 (Pre-trained on 135)	0.84	0.72	0.74

July 2017 21

Unsupervised classification

July 2017

Can we perform classification with just unlabelled data?

How good is novelty detection?

Novelty Detector

Trained on BRATS

ISLES dataset Stroke lesion segmentation

	Scans	Lesion Dice
Novelty detector (Unsupervised)	28	0.64
DeepMedic (Fully supervised)	28	0.66

More false positive reduction

Use novelty detector to reject false positives

Semi-Supervised learning in Brain Tumor Segmentation - https://arxiv.org/pdf/1611.08664.pdf

Hybrid architectures

Can we do joint training on labelled and unlabelled data?

- Joint training
 - Reconstruct on unlabelled data
 - Reconstruct and classify on labelled data
- Add skip connections to fuse features

Ladder networks

Source - https://arxiv.org/pdf/1507.02672.pdf

Fully convolutional ladder networks

July 2017 28

Classification/Regression

The future of data-efficient learning

> sudo kill cancer

Kiran Vaidhya Algorithms Researcher kiran@predible.co

Acknowledgments:

Varghese Alex – co-author
Subramaniam Thirunavukkarasu - co-author
Dr. Ganapathy Krishnamurthi - Assistant Professor, IIT Madras
Dr. C. Kesavdas - Professor, SCTIMST