GDV: Bildbearbeitung für Rasterbilder

Graphische Datenverarbeitung

Bildbearbeitung für Rasterbilder 1

Prof. Dr. Elke Hergenröther

Übersicht

- Neu Folien: 11, 28 und ab 56
- Maße zur Beurteilung von Bildern:
 - Histogramm
 - I Entropie
- Punktoperationen:
 - Lineare Veränderung der Grauwerte:
 - Addition & Multiplikation
 - Komb. aus Add. & Mult.: lineare Grauwerttransformation
 - Binarisierung & Äquidistantenbildung (Vorgriff auf Kap. 14)
 - Nicht lineare Veränderung der Grauwerte:
 - | Gamma-Korrektur
- Lokale Bildoperatoren:
 - l Faltung
 - I Rangfolgeoperatoren

Ein Maß zur Beurteilung eines Bildes

Histogramm: Häufigkeitsverteilung der Grauwerte

Häufigkeit eines Grauwertes

Grauwerte

	0	1	2	3	4	5	6	7	8	9	10
0	100	100	100	120	160	160	120	100	100	100	137
1	100	100	100	120	160	160	120	100	100	100	137
2	100	100	100	120	160	160	120	100	100	100	137
3	100	100	100	120	160	160	140	140	140	140	178
4	100	100	100	120	160	160	140	140	140	140	177
5	100	100	100	120	160	160	120	100	100	100	136
6	100	100	100	120	160	160	120	100	100	100	136

Zugrunde liegendes Grautonbild

Histogramm: Häufigkeitsverteilung der Grauwerte

Wie sehen die Histogramme aus?

Was ist aus einem Histogramm abzulesen?

Belichtungsfehler

- lein Ende der Grauwertskala bleibt ungenutzt
- Während beim anderen Ende Häufungen eintreten

Kontrast

Als Kontrast bezeichnet man die Differenz zwischen minimal und maximal genutzten Grauwert. Ein voller Kontrast nützt den gesamten Grauwertbereich.

Dynamik

Unter Dynamik versteht man die Anzahl verschiedener Pixelwerte in einem Bild. Im Idealfall wird der Wertebereich voll ausgeschöpft.

Im Histogramm sichtbar: Kontrast & Dynamik

Eingeschränkter Kontrastumfang mit eingeschränkter Dynamik im Kontrastbereich

Wenn diese Lücke gefüllt wäre, hätte man die maximal mögliche Dynamik im eingeschränken Kontrastbereich erreicht

Woher kommen die Spitzen im Histogramm?

Im Histogramm sichtbar: Auswirkungen von Kompression

Durch die JPEG-Komprimierung sind, neben weiß und schwarz, zusätzliche Grauwerte hinzugekommen.

Punktoperationen

Punktoperation:

- Berechnungsvorschrift wird auf jeden Pixel angewendet.
- Nachbarschaften spielen keine Rolle

Einige mögliche Punktoperationen:

- I Addition
- | Invertieren
- Addition & Multiplikation: Lineare Grauwerttransformation
- I Gamma-Korrektur

gg'-Diagramm

Invertieren eines Bildes

Pixeloperation: $g'(i,j)=g_{MAX}-g(i,j)$

daraus folgt: $h(g_i) = h(g_{MAX-i})$

→ Grauwerte

Kontrast

Grauwertbilder

Histogramme

Punktoperation: Addition

Pixeloperation:

$$g(i,j)$$
 <= 205 dann $g'(i,j)$ = $g(i,j)$ + 50
 $g(i,j)$ > 205 dann $g'(i,j)$ = 255

Punktoperation: Addition

Wie wirkt sich die Addition im Histogramm aus, wenn die relative Häufigkeit der Grauwerte vorher für alle Grauwerte gleich war?

Punktoperation: Biniarisierung

Punktoperation: Biniarisierung

Punktoperation: Äquidensitenbild (Poster)

Punktoperation: Äquidensitenbild (Poster)

mit 14 gleichmäßig verteilten Stufen

Wie kann man den Kontrast erhöhen?

Kontrasterhöhung:

Das nennt man lineare Grauwert-transformation!

Nach der Kontrasterhöhung:

Punktoperation: Lineare Grauwerttransformation

http://ivvgeo.uni-muenster.de/Vorlesung/FE_Script/kapitel3/main3-2.html

Nutzen des optimalen Grauwertbereichs

Wie berechnet man das?

Nutzen des optimalen Grauwertbereichs

g' = max(g - 100, 0) sorgt dafür, dass g nicht kleiner 0 werden kann.

Nutzen des optimalen Grauwertbereichs

Üben anhand kleiner Zahlen:
$$g' = (g - 100) \cdot \frac{255}{178 - 100}$$
 mit $g' = 0$ wenn $g' < 0$

mit
$$g' = 0$$
 wenn $g' < 0$
 $g' = 255$ wenn $g' > 255$

$$g'(i,j) = [g(i,j) - g_{\min}] \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{\max} - g_{\min}}$$

$$mit \ g'(i,j) = \begin{cases} g'_{MIN} & falls \ g'(i,j) < g'_{MIN} \ w\"{a}re \\ g'_{MAX} & falls \ g'(i,j) > g'_{MAX} \ w\"{a}re \end{cases}$$

$$g'(i,j) = [g(i,j) - g_{\min}] \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{\max} - g_{\min}} \quad mit \ g'(i,j) = \begin{cases} g'_{MIN} & falls \ g'(i,j) < g'_{MIN} \ w\"{a}re \\ g'_{MAX} & falls \ g'(i,j) > g'_{MAX} \ w\"{a}re \end{cases}$$

Umrechnung zur "eigentlichen" linearen Grauwerttransformation:

$$g'(i,j) = g(i,j) \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{\text{max}} - g_{\text{min}}} + \left[-g_{\text{min}} \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{\text{max}} - g_{\text{min}}} \right] \quad g'_{\text{MAX}}$$

$$g'(i, j,) = g(i, j) \cdot mult + add$$

$$mit \begin{cases} mult = \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}} \\ add = -g_{min} \cdot mult \end{cases}$$

$$g'(i,j) = g(i,j) \underbrace{ \left(\frac{g'_{MAX} - g'_{MIN}}{g_{max}} + \left[-g_{min} \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{max}} \right] \right]}_{g'(i,j,) = g(i,j) \cdot mult + add}$$

$$g'(i,j,) = g(i,j) \cdot mult + add$$

$$g'_{Min} = \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}}$$

$$add = -g_{min} \cdot mult$$

$$g'_{min} = \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}}$$

$$g'(i,j) = g(i,j) \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}} + \left[-g_{min} \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}} \right]$$

$$g'(i, j,) = g(i, j) \cdot mult + add$$

$$mit \begin{cases} mult = \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}} \\ add = -g_{min} \cdot mult \end{cases}$$

Abstand zwischen g_m'-Kurve und Zielfunktion

$$g'(i,j) = g(i,j) \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}} + \left[-g_{min} \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}} \right]$$

$$g'(i, j,) = g(i, j) \cdot mult + add$$

$$mit \begin{cases} mult = \frac{g_{MAX} - g_{MIN}}{g_{max} - g_{min}} \\ add = -g_{min} \cdot mult \end{cases}$$

Welchen Wert muss man von der g_m' Kurve abziehen um zur Zielfunktion zu kommen?

$$g'(i,j) = g(i,j) \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}} + \left[-g_{min} \cdot \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}} \right]$$

$$g'(i, j,) = g(i, j) \cdot mult + add$$

$$mit \begin{cases} mult = \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}} \\ add = -g_{min} \cdot mult \end{cases}$$

Punktoperation und lokale Bildoperation

N4- und N8-Nachbarschaften

N4- und N8-Nachbarschaften

Faltung: Identität

$$F_{I} = \begin{array}{|c|c|c|c|c|} \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & 0 \\ \hline \end{array}$$

Faltung

- | Ergebniswerte e(i,j)
- Position des aktuell betrachteten Pixels (i,j)
- Grauwerte des aktuell betrachten Pixels g(i,j)
- Wert der Faltungsmatrix f(k,l)

Beispiel einer 3x3-Faltungsmatrix

$$e(i,j) = \sum_{l=0}^{2} \sum_{k=0}^{2} \{g(i-1+k,j-1+l) * f(k,l)\}$$

Faltung: Glättung der Bildfunktion

$$\mathsf{F}_{\mathsf{M}} = \begin{array}{|c|c|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

Tafelbeispiel:

Bild ist 8*6 Pixel groß

Faltung: Glättung der Bildfunktion

$$\mathsf{F}_{\mathsf{M}} = \begin{array}{|c|c|c|c|c|}\hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

Tafelbeispiel:

Faltung von farbigen Bildern

- 1. Aufteilen in die unterschiedlichen RGB-Farbkanäle
- 2. Grauwert bilder filtern
- 3. Farbbild erstellen

Wie muss die Faltungsmatrix aussehen um ein Bild zu glätten?

Glättungsfilter im Vergleich

$$\mathsf{F}_{\mathsf{M}} = \begin{array}{|c|c|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

Mittelwert-Filter

$$F_{G} = \begin{array}{c|cccc} 1 & 2 & 1 \\ 2 & 4 & 2 \\ \hline 1 & 2 & 1 \\ \end{array}$$

Gaus-Filter

Faltung

Lineare Grauwerttransformation für

| Mittelwert: mult = 1/9 & add = 0
|
$$g_{min} = 0$$

| $g_{max} = 9 * 255 = 2295$

Gaus-Filter: mult = 1/16 & add = 0

Formel zur linearen Grauwerttransformation:

$$g'(i, j,) = g(i, j) \cdot mult + add$$

$$mit \begin{cases} mult = \frac{g'_{MAX} - g'_{MIN}}{g_{max} - g_{min}} \\ add = -g_{min} \cdot mult \end{cases}$$

Glättungsfilter im Vergleich

| Mittelwert-Filter

| Gaus-Filter

Wirkung des Gaus-Filters (5x5-Faltungsmatrix)

Original und gefiltert

Woran erkennt man am digitalen Bild verwaschene (unscharfe) und kontrastreiche (scharfe) Bildbereiche?

Bilder von Peter Wienerroither

Woran erkennt man am digitalen Bild verwaschene (unscharfe) und kontrastreiche (scharfe) Bildbereiche?

Bilder von Peter Wienerroither

Wie muss die Faltungsmatrix aussehen, die den Kontrast verstärkt?

Biologische Kontrastverstärkung

Vorbereitungen zur Kantendetektion

Grauwertprofil s(x)

Vorbereitungen zur Kantendetektion

Für eine stetige Funktion s(x) gilt:

1. Ableitung von s(x) ist definiert durch:

$$g'(x) = \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

Grenzwertbildung für Funktionen mit einen diskreten x :

$$\frac{g(x+1)-g(x)}{1} = g(x+1)-g(x)$$

GDV: Bildbearbeitung für Rasterbilder

Differenzenoperatoren

$$\mathsf{F}_{\mathsf{D}\mathsf{y}} = \begin{array}{|c|c|c|c|c|} \hline 0 & 0 & 0 \\ \hline 0 & -1 & 1 \\ \hline 0 & 0 & 0 \\ \hline \end{array}$$

Umsetzung der 1. Ableitung: Differenzoperatoren

Negative Werte können auftreten:

$$F_{\text{Dy}} \in \{-255,...,255\}$$

$$\mathsf{F}_{\mathsf{D}\mathsf{y}} = \begin{array}{|c|c|c|c|} \hline 0 & 0 & 0 \\ \hline 0 & -1 & 1 \\ \hline 0 & 0 & 0 \\ \hline \end{array}$$

Wirkung des horizontalen Differenzoperators

GDV: Bildbearbeitung für Rasterbilder

Differenzenoperatoren

$$\mathsf{F}_{\mathsf{Dx}} = \begin{array}{|c|c|c|c|c|} \hline 0 & 0 & 0 \\ \hline 0 & -1 & 0 \\ \hline 0 & 1 & 0 \\ \hline \end{array}$$

GDV: Bildbearbeitung für Rasterbilder

Differenzenoperatoren

$$\mathsf{F}_{\mathsf{Dx}} = \begin{array}{|c|c|c|c|c|} \hline 0 & 0 & 0 \\ \hline -1 & -1 & -1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

Anwendung der folgenden Differenzoperatoren:

$$\mathsf{F}_{\mathsf{Dx}} = \begin{array}{|c|c|c|c|} -1 & 0 & 1 \\ -1 & 0 & 1 \\ \hline -1 & 0 & 1 \end{array}$$

	-1	-1	-1
$F_{Dx} =$	0	0	0
	1	1	1

GDV: Bildbearbeitung für Rasterbilder

Kantendetektoren in senkrechter, waagrechter (oben) und diagonaler Ausrichtung (unten)

Kombinationsfilter: Ermittelt Kanten in allen Richtungen

$$F_{D1} + F_{D2} + F_{D3} + F_{D4} = F_{K}$$

-1	0	1	
-1	0	1	+
-1	0	1	

-1	-1	-1
0	0	0
1	1	1

	0	-1	-1
+	1	0	-1
	1	1	0

-1	-1	0	
-1	0	1	
0	1	1	

=	-3	-3	-1
	-1	0	1
	1	3	3

Anwendung des Kombinationsfilters

Vergleich mit dem vertikalen Differenzoperator

Wie kombiniert man die ursprüngliche Bildinformation mit dem Kombinationsfilter?

GDV: Bildbearbeitung für Rasterbilder

Relief-Filter

$$F_{R} = n*F_{I} + F_{D4} = \begin{vmatrix} -1 & -1 & 0 \\ -1 & n & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

GDV: Bildbearbeitung für Rasterbilder

Anwendung des Kombinationsfilters mit unterschiedlichen n:

Kantendetektion mit dem Laplace-Operator

2. Ableitung von s(x) mit einem diskreten x

$$g''(x) = \lim_{\Delta x \to 0} \frac{(g(x + \Delta x) - g(x)) - (g(x) - g(x - \Delta x))}{\Delta x}$$
Für

$$g''(x) = g(x+1) - 2 \cdot g(x) + g(x-1)$$
 Raster-bilder: $\Delta x = 1$

2. Ableitung in wagrechter & senkrechter Richtung:

0	1	0
1	-4	1
0	1	0

Laplace-Operator

Laplace-Operator zur Kantendetektion

Laplace-Operator zur Kantendetektion

Original Bild

$$F_{L} = \begin{array}{|c|c|c|c|c|} \hline 0 & 1 & 0 \\ \hline 1 & -4 & 1 \\ \hline 0 & 1 & 0 \\ \hline \end{array}$$

Kantendetektion mit Laplace-Operator

Vom Laplace-Operator zur Kontrastverbesserung

Kontrastverbesserung mit dem Laplace-Operator

Original Bild

$$F_{K} = \begin{array}{c|cccc} 0 & -1 & 0 \\ -1 & n+4 & -1 \\ \hline 0 & -1 & 0 \\ \end{array}$$

Kontrastverbesserung mit Laplace-Operator

Wiederholung: Faltungsoperatoren

- | Mittelwertoperator
- | Differenzoperatoren
- Laplace-Operator
- | Kontrastverstärker

(Weichzeichner)

(Kantendetektor)

Kennen Sie auch...

- Biniarisierung
- | Identitätsoperator

Rangfolgeoperatoren

Rangfolge der Grauwerte wird gebildet:

- 1. Sortieren: $g_0 \le g_1 \le ... \le g_n$
- 2.Entsprechend des Operators wird ein Grauwert an einer spezifischen Position der Rangfolge ausgewählt:
 - I Median-Operator: $g'(i,j) = g_4$
 - I Erosion: $g'(i,j) = g_0$
 - Dilatation: $g'(i,j) = g_8$

Rangfolgeoperatoren / Rangordnungsoperatoren

- l Median
- | Dilatation
- **I** Erosion
- I Opening
- l Closing

Rangfolgeoperatoren / Rangordnungsoperatoren

Am Beispiel der N8-Nachbarschaft:

- Aktuell betrachtete Bildposition: g(i,j)
- I g(i,j) und die Grauwerte der Nachbarschaft werden größenabhängig sortiert: $g_0 \le g_1 \le ... \le g_n$
- Rangfolgeoperatoren wählen nun bestimmte Positionen dieser Sortierung aus...

Rangfolgeoperatoren / Rangordnungsoperatoren

Beispiele für strukturierende Elemente

I Bezugspunkt: ●

Nachbarpunkt: O

Elementarraute N4-Nachbarschaft

N8-Nachbarschaft

Elementarrechteck

Licincinalicali

Schräges Element

000

Medianfilter

Bezugspunkt nimmt mittleren Grauwert der Rangfolge an:

- 1. Sortieren: $g_0 \le g_1 \le ... \le g_n$
- 2. Für eine N8-Nachbarschaft gilt: $g'(i,j) = g_4$
- I. Verbesserung von verrauschten Bildern: Eliminiert isolierte, fehlerhafte Bildpunkte
- I. Kanten werden jedoch nicht verwaschen (vergleiche Mittelwertoperator)

Medianoperator

Originalbild

99	99	99	99	99	144
99	99	99	99	144	144
99	99	99	144	144	144
99	99	144	144	144	144
99	144	144	144	144	144
144	144	144	144	144	144

Ausschnitt nach Anwendung des Medianoperators

Medianoperator

Original

Ergebnis

Medianoperator

Original

Ergebnis

Vergleich: Mittelwert- und Medianoperator

Vergleich: Mittelwert- und Medianoperator

Ausgangsbilder

3x3 Mittelwert

3x3 Median

Vergleich: Mittelwert und Median

Ausgangsbild

3x3 Mittelwert

3x3 Median

Anwendung des Median-Filter bei einem "verrauschten" Bild

Quelle: https://de.wikipedia.org/wiki/Datei:Medianfilterp.png

Dilatation

Bezugspunkt nimmt *maximalen* Grauwert der Rangfolge an:

- 1. Sortieren: $g_0 \le g_1 \le ... \le g_n$
- 2. Für eine N8-Nachbarschaft gilt: $g'(i,j) = g_8$

Allgemein:
$$dil(x,y) = \max_{i,j} \{s_e(x+i,y+j) + k(i,j)\}$$

Die Indizes i und j laufen dabei über den Geltungsbereich des strukturierenden Elements.

Folge: Ausdehnung der "helleren" Bereiche (=Bildvordergrund)

Dilatation

Originalbild

99	99	99	99	144	144
99	144	144	144	144	144
99	144	144	144	144	144
99	144	144	144	144	144
144	144	144	144	144	144
144	144	144	144	144	144

Ausschnitt nach Anwendung der Dilatation

Erosion

Bezugspunkt nimmt *minimalen* Grauwert der Rangfolge an:

- 1. Sortieren: $g_0 \le g_1 \le ... \le g_n$
- 2. Für eine N8-Nachbarschaft gilt: $g'(i,j) = g_0$

Allgemein:
$$ero(x,y) = \min_{i,j} \{s_e(x+i,y+j) + k(i,j)\}$$

Die Indices i und j laufen dabei über den Geltungsbereich des strukturierenden Elements.

Folge: Ausdehnung der "dunkleren" Bereiche (=Bildhintergrund)

Erosion

Originalbild

99	99	99	99	99	99
99	99	99	99	99	99
99	99	99	99	99	99
99	99	99	144	144	144
99	99	99	144	144	144
99	99	99	144	144	144

Ausschnitt nach Anwendung der Erosion

5 Minuten Aufgabe:

Im Bild sollen nur die Pixel der Pfeile sichtbar sein. Wie würden Sie vorgehen?

Biniarisierung des Originalbildes

Original

Histogramm

Schwellwert 127

Schwellwert 225

Anwendung von Opening und Closing um ein biniarisiertes Bild für die Segmentierung vorzubereiten:

Aufgaben:

- | Rauschen eliminieren
- Lücken innerhalb des Pfeils schließen

Idee zur Elimination des Rauschens:

1 x Erosion

1 x Dilatation

1. Lösung: Ein **Opening** gefolgt von einem **Closing**

2. Lösung: Ein Closing gefolgt von einem Opening

Segmentierung dient zur

- Unterscheidung der Objekte vom Hintergrund und
- zur Unterscheidung der Objekte untereinander.

Originalbild

Luft

Fett

Wasser

Knochen

A: Original Bild,

B: Knochengewebe wird hervorgehoben,

C: Lungengewebe wird hervorgehoben

Zusammenhangskomponente (ZHK) in 2D

Der Vordergrund (blau) enthält

- 7 N4 ZHK
- 2 N8 ZHK

Vorder- und Hintergrund müssen immer mit entgegen gesetzten Nachbarschaftsverhältnis ermittelt werden. Warum?

Zusammenhangskomponente (ZHK) in 2D

Der Hintergrund enthält

- 4 N4 ZHK
- **1** N8 ZHK

Variante der ZHK-Markierung: "Rekursives Fluten"

Rekursives Fluten()

PixelAnlagern()

Rekursives Fluten

N4 Nachbarschaft

N8 Nachbarschaft

Quelle: https://de.wikipedia.org/wiki/Floodfill

Rekursives Fluten (~floodfill) in größerem Maßstab

Übersicht

- Maße zur Beurteilung von Bildern:
 - Histogramm
 - Entropie
- Punktoperationen:
 - Lineare Veränderung der Grauwerte:
 - Addition & Multiplikation
 - Komb. aus Add. & Mult.: lineare Grauwerttransformation
 - Binarisierung & Äquidistantenbildung (Vorgriff auf Kap. 14)
 - Nicht lineare Veränderung der Grauwerte:
 - Gamma-Korrektur
- Lokale Bildoperatoren:
 - I Faltung
 - l Rangfolgeoperatoren

Motivation zur Gamma-Korrektur

- Charge Coupled Device = Ladungsgekoppelte Bildsensoren
- am weitesten verbreitet: Scanner, Digitalkamera
- Wandelt Lichtenergie in elektrischen Strom um:

Der entstandene Fehler muss durch eine Korrekturfunktion "die Gammakorrektur" behoben werden:

Gamma-Korrektur

Nicht lineares Aufhellen der Grauwerte

Gamma-Korrektur

Welche Bereiche werden aufgehellt und welche abgedunkelt?

Wie ändert sich der Kontrast?

Gamma-Korrektur

Nicht lineares Abdunkeln der Grauwerte

Welche Bereiche werden aufgehellt und welche abgedunkelt?

Wie ändert sich der Kontrast?

