Supplementary material for "Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights"

Bastien Mussard, ^{1,2,3,a)} Peter Reinhardt, ^{2,3} János G. Ángyán, ^{4,5} and Julien Toulouse ^{2,3,b)} ¹⁾ Sorbonne Universités, UPMC Univ Paris 06, Institut du Calcul et de la Simulation, F-75005, Paris,

The detailed results of the calculations on the AE49 and DBH24/08 datasets for the full-range and range-separated MP2, dRPA-I, and RPAx-SO2 methods at $\mu = 0.5$ are reported in Tables I and II.

¹R. Haunschild and W. Klopper, J. Chem. Phys. **136**, 164102 (2012).

²⁾Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris,

³⁾CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France

⁴⁾CRM2, Institut Jean Barriol, Université de Lorraine, F-54506 Vandœuvre-lés-Nancy,

⁵⁾ CRM2, Institut Jean Barriol, CNRS, F-54506 Vandævre-lés-Nancy, France

²J. Zheng, Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 5, 808

a) Electronic mail: bastien.mussard@upmc.fr

TABLE I. Atomization energies (in kcal/mol) of the AE49 dataset (molecules of the G2-1 dataset except for the six molecules containing Li, Be, and Na) calculated by full-range HF+MP2, HF+dRPA-I, HF+RPAx-SO2 and range-separated RSH+MP2, RSH+dRPA-I, RSH+RPAx-SO2. The calculations were carried out using the cc-pVQZ basis set, MP2(full)/6-31G* geometries, and with the srPBE functional and $\mu=0.5$ in the case of the range-separated calculations. The reference values are the non-relativistic FC-CCSD(T)/cc-pVQZ-F12 values of Ref. 1. For each method, the value with the largest absolute error is indicated in boldface.

	HF+				Reference		
	MP2	dRPA-I	RPAx-SO2	MP2	RSH+ dRPA-I	RPAx-SO2	
CH ₂ (singlet)	174.45	165.75	197.04	171.39	170.64	172.69	180.62
CH ₂ (triplet)	188.70	181.63	201.41	190.84	189.71	191.31	189.74
CH ₃ Cl	394.58	370.34	417.42	389.72	386.32	391.19	394.52
CH_3	303.36	291.30	318.89	303.79	302.23	304.71	306.59
CH ₃ SH	469.94	442.53	495.56	465.03	460.82	467.01	473.49
CH_4	414.84	397.27	432.29	411.74	409.65	413.14	418.87
CH	76.38	74.13	85.21	79.46	79.19	80.04	83.87
Cl_2	60.43	46.49	79.13	55.73	53.53	56.71	59.07
ClF	65.20	45.91	83.08	61.15	60.68	62.04	62.57
ClH	106.53	98.52	119.27	102.11	101.21	103.02	107.20
ClO	59.68	42.55	72.39	63.94	62.60	65.22	64.53
CN	168.84	141.95	164.00	176.12	173.99	177.86	180.06
CO ₂	409.33	350.00	413.15	395.12	392.37	396.91	388.59
CO	269.30	234.43	276.58	257.79	256.26	259.24	258.88
F_2	42.18	15.59	59.82	36.60	36.99	37.84	38.75
FH	144.17	129.15	154.97	138.23	137.89	138.65	141.51
H ₂ CCH ₂	561.39	528.59	582.70	556.69	552.92	558.80	561.34
H ₂ CO	379.20	343.30	392.00	370.88	368.85	372.48	373.21
H ₂ NNH ₂	432.47	394.47	431.32	432.36	429.67	434.62	436.70
H ₃ CCH ₃	707.16	673.49	735.15	703.80	699.25	705.86	710.20
H ₃ COH	513.32	477.43	534.34	507.36	504.60	509.06	511.83
HCCH	409.59	373.19	419.99	401.10	397.40	403.34	402.76
HCN	319.26	279.53	312.96	308.30	305.60	310.48	311.52
HCO	285.80	252.01	291.99	280.35	278.63	281.90	278.28
HOCl		141.01	184.05				165.79
	168.50			161.23	159.81	162.68	
HOOH	272.51	232.25 193.15	286.06	263.66	262.62 220.46	265.56	268.65 227.44
N ₂	234.80		213.76	222.17		224.27	
NH ₂	176.66	165.16	179.49	178.54	177.84	179.51	181.96
NH ₃	293.12	272.47	295.33	290.20	288.89	291.65	297.07
NH	78.57	74.39	80.62	82.08	81.82	82.54	82.79
NO	156.95	123.74	147.37	155.31	154.30	156.90	152.19
O ₂	126.53	92.04	113.98	124.06	123.31	126.00	120.54
OH_2	233.83	212.21	243.34	226.55	225.77	227.54	232.56
OH	105.78	96.58	112.19	105.25	104.93	105.73	106.96
P_2	113.59	88.61	105.38	106.63	99.52	107.19	115.95
PH_2	144.95	141.41	152.46	146.95	146.30	147.68	153.97
PH_3	230.24	222.62	241.82	229.63	228.31	230.84	241.47
S_2	103.68	85.63	109.74	101.19	96.76	102.13	103.11
SC	175.16	146.58	186.41	164.13	159.64	166.22	170.98
SH_2	178.55	168.10	194.48	174.35	172.84	175.82	183.30
Si_2H_6	519.18	504.65	556.67	517.31	512.50	520.68	535.47
Si ₂	59.29	50.71	67.94	72.31	69.20	75.82	73.41
SiH ₂ (singlet)	145.90	141.61	165.21	143.64	142.93	145.89	153.68
SiH ₂ (triplet)	128.93	126.44	141.38	129.82	128.58	131.14	133.26
SiH ₃	220.51	216.07	237.96	220.33	218.83	221.84	228.08
SiH ₄	314.28	307.46	336.62	311.98	310.07	313.73	324.59
SiO	200.09	165.92	203.39	187.97	185.75	190.47	192.36
SO_2	270.73	207.21	269.30	249.24	245.56	251.39	259.77
SO	129.29	101.94	127.35	125.02	123.21	126.41	125.80
MAD	5.63	23.23	12.20	5.09	6.80	4.06	

TABLE II. Forward (F) and reverse (R) reaction barrier heights (in kcal/mol) of the DBH24/08 dataset calculated by full-range HF+MP2, HF+dRPA-I, HF+RPAx-SO2 and range-separated RSH+MP2, RSH+dRPA-I, RSH+RPAx-SO2. The calculations were carried out using the aug-cc-pVQZ basis set, QCISD/MG3 geometries, and with the srPBE functional and $\mu=0.5$ in the case of the range-separated calculations. The reference values are taken from Ref. 2. For each method, the value with the largest absolute error is indicated in boldface.

	HF+			RSH+			Reference
	MP2	dRPA-I	RPAx-SO2	MP2	dRPA-I	RPAx-SO2	-
	F/R	F/R	F/R	F/R	F/R	F/R	F/R
Heavy-atom transfer							
$H+N_2O \rightarrow OH+N_2$	35.94/89.26	28.20/ 100.80	32.74/ 100.57	18.11/74.67	18.00/76.40	17.92/74.43	17.13/82.47
$H+ClH \rightarrow HCl+H$	22.79/22.79	24.07/24.07	23.33/23.33	19.07/19.07	19.36/19.36	18.44/18.44	18.00/18.00
$CH_3+FCl \rightarrow CH_3F+Cl$	19.74/74.29	17.63/75.16	21.67/66.18	7.19/61.68	7.38/61.98	7.40/61.25	6.75/60.00
Nucleophilic substitution							
$Cl^- \cdots CH_3Cl \rightarrow ClCH_3 \cdots Cl^-$	14.64/14.64	15.92/15.92	15.05/15.05	15.12/15.12	15.85/15.85	14.76/14.76	13.41/13.41
$F^- \cdots CH_3Cl \rightarrow FCH_3 \cdots Cl^-$	4.59/28.88	4.78/33.98	4.35/33.29	4.43/30.70	4.62/31.50	4.09/30.43	3.44/29.42
$OH^-+CH_3F \rightarrow HOCH_3+F^-$	-1.75/17.86	1.23/22.00	0.52/20.92	-2.33/20.59	-1.43/21.22	-2.60/19.81	-2.44/17.66
Unimolecular and association							
$H+N_2 \rightarrow HN_2$	27.60/8.06	22.54/12.53	23.36/12.59	13.23/12.66	13.34/12.59	12.81/12.47	14.36/10.61
$H+C_2H_4 \rightarrow CH_3CH_2$	9.32/46.54	6.67/48.13	7.80/49.83	2.38/45.29	2.62/45.24	2.20/44.74	1.72/41.75
$HCN \rightarrow HNC$	34.46/ 52.09	36.14/49.49	34.73/47.08	34.36/ 47.93	34.85/ 48.15	34.03/ 47.70	48.07/32.82
Hydrogen transfer							
$OH+CH_4 \rightarrow CH_3+H_2O$	7.66/25.01	13.65/24.16	9.28/25.55	4.63/18.62	4.77/18.82	4.14/18.16	6.70/19.60
$H+OH \rightarrow O+H_2$	17.56/15.58	15.42/20.08	16.13/15.90	12.44/8.22	12.07/8.03	11.88/7.64	10.70/13.10
$H+H_2S \rightarrow H_2+HS$	6.42/16.36	7.18/20.71	6.32/15.59	4.28/15.00	4.42/15.89	3.84/14.29	3.60/17.30
MAD	6.17	6.95	6.40	2.94	3.01	2.83	