ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 01 febbraio 2018

Esercizio A

$R_1 = 15 \text{ k}\Omega$	$R_{11} = 30 \text{ k}\Omega$	V., A
$R_2 = 30 \text{ k}\Omega$	$R_{12} = 500 \ \Omega$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$R_3 = 30 \text{ k}\Omega$	$R_{13}=20\;k\Omega$	$R_2 \geqslant $ $R_7 $ R_{12} R_{12} R_{24}
$R_4=50\;\Omega$	$C_1 = 820 \text{ nF}$	R_1 V_{cc} R_8 V_{cc}
$R_6=22.2\;k\Omega$	$C_2 = 1 \mu F$	
$R_7 = 50 \ \Omega$	C ₃ = 1 µF	$R_{s} \lesssim \frac{1}{2} C_{s} C_{s}$
$R_9 = 20 \; k\Omega$	C ₄ = 680 pF	
$R_{10}=2.5~k\Omega$	$V_{CC} = 18 \text{ V}$	

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=1$ V; Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- 1) Calcolare il valore delle resistenze R_5 e R_8 in modo che, in condizioni di riposo, la tensione sul drain di Q_1 sia 6.9 V e la tensione sul collettore di Q_2 sia 12 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_5 = 455.57 \Omega$ e $R_8 = 26282.4 \Omega$)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. ($V_U/V_i = -2.03$)
- 3) (Solo per 12 CFU) Determinare la funzione di trasferimento V_U/V_i considerando C_3 un cortocircuito e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{Z1} =426 Hz, f_{p1} =816.4 Hz, f_{Z2} =3183 Hz, f_{p2} =3190 Hz, f_{Z4} =0 Hz, f_{p4} =10262 Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{A}\overline{B}(\overline{C}D + \overline{E}) + \overline{B}D(A + \overline{C})$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori. (R: N = 20)

Esercizio C

$R_1 = 200 \ \Omega$	$R_5 = 2.4 \; k\Omega$
$R_2=1.2~k\Omega$	$R_6 = 100 \Omega$
$R_3 = 200 \Omega$	C = 820 nF
$R_4 = 1 \text{ k}\Omega$	$V_{CC} = 6 V$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6V$, Q_1 ha una $R_{on} = 0$ e $V_T = 1V$, l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 2443 Hz)