

# Análise detalhada dos *scripts* em BioPython para os genes MC4R e SEC16B

Bioinformática - Opção A

### Mestrado em Engenharia Biomédica

Grupo 17: PG50255 Beatriz Silva Matos

PG50291 Catarina Rodrigues Pereira

PG50443 Isabel Maria Ferreira da Silva

PG50626 Mariana Fernandes Gonçalves

Data de entrega: 2 fevereiro, 2023

## Índice

| 1 | Análise da sequência e das features presentes no NCBI |   |  |  |  |
|---|-------------------------------------------------------|---|--|--|--|
|   | 1.1 Gene MC4R                                         | 2 |  |  |  |
|   | 1.2 Gene SEC16B                                       | 4 |  |  |  |
| 2 | Análise de homologias por BLAST                       |   |  |  |  |
|   | 2.1 Blast através de scripts de BioPython             | 5 |  |  |  |

#### 1 Análise da sequência e das features presentes no NCBI

Com o intuito de perceber melhor a influência destes genes na patologia da diabetes, foi necessário proceder a uma análise da sua sequência e *features*. Esta análise foi conseguida com o auxílio de scripts em BioPython.

Previamente a esta análise, foi realizado o *download* dos ficheiros, em formato *genbank*, através do NCBI, nos quais compilavam a informação acerca da sequência dos mesmos - "sequence-MC4R.gb" e "sequence-SEC16B.gb". Estes ficheiros podem ser acedidos no repositório associado a este trabalho.

As sequências foram lidas recorrendo à interface *Sequence Input/Output* (SeqIO) do BioPython de acordo com o código abaixo:

```
#Gene MC4R
    geneM= SeqIO.read("sequence-MC4R.gb", "genbank")
    geneM
#Gene SEC16B
    geneS= SeqIO.read("sequence-SEC16B.gb", "genbank")
    geneS
```

#### 1.1 Gene MC4R

Relativamente ao gene MC4R, através da descrição dada pelo código abaixo, verifica-se que este gene é o gene do recetor de melanocortina 4 do organismo *Homo sapiens* e está localizado no cromossoma 18. Para além disto, através deste, também foi possível obter a sequência completa formada por 1714 nucleótidos.

```
print ("Descricao:", geneM.description)
print (geneM.seq)
print ("Numero de nucleotidos:", len(geneM.seq))
```

De seguida, foi também analisada a informação presente nas anotações do ficheiro (geneM. annotations), apresentadas na Figura 1, as quais revelaram informações como o tipo de molécula - molécula de DNA-, a topologia - linear-, a taxonomia e ainda um comentário.

```
{'molecule_type': 'DNA',
  'topology': 'linear',
  'data file division': 'PRI',
  'date': '19-FEB-2021',
  'accessions': ['NG 016441', 'REGION:', '4994..6707'],
  'sequence_version': 1,
  'keywords': ['RefSeq', 'RefSeqGene'],
  'source': 'Homo sapiens (human)',
  'organism': 'Homo sapiens',
  'taxonomy': ['Eukaryota',
   'Metazoa',
   'Chordata',
   'Craniata',
   'Vertebrata',
   'Euteleostomi',
   'Mammalia'.
   'Eutheria',
   'Euarchontoglires',
   'Primates',
   'Haplorrhini',
   'Catarrhini',
   'Hominidae',
   'Homo'],
 'comment': 'REVIEWED REFSEQ: This record has been curated by NCBI staff in\ncollaboration with LRG
Consortium. The reference sequence was\nderived from AC091576.11.\nThis sequence is a reference
standard in the RefSeqGene project.\nSummary: The protein encoded by this gene is a membrane-
bound\nreceptor and member of the melanocortin receptor family. The\nencoded protein interacts with
adrenocorticotropic and MSH hormones\nand is mediated by G proteins. This is an intronless gene.
Defects\nin this gene are a cause of autosomal dominant obesity. [provided\nby RefSeq, Jan 2010].'}
```

Figura 1: Anotações do ficheiro "sequence-MC4R.gb"

O comentário contém informação de interesse acerca da proteína codificada por este gene, como a sua interação com hormonas e outras proteínas. Estas interações serão discutidas mais à frente neste trabalho.

Para além disto, o comentário também revela que a sequência deste gene não é interrompida por intrões e que defeitos no gene MC4R são uma das causas da obesidade, daí a sua relação com a diabetes tipo 2.

Um dos objetivos desta parte era a análise das features. Esta foi feita com a ajuda das funções apresentadas na Figura 2.

A função typelocal é uma função inicial que sumariza, de certa forma, o conteúdo das features, dando-nos vários tipos existentes e a sua localização. Esta foi utilizada com o intuito de ver quais as feautures com maior interesse para analisar. Daqui retirou-se que os tipos de maior interesse seriam, então, a CDS, isto é, sequência codificante de proteína, e misc\_features, ou seja, features que não podem ser descritas por mais nenhuma feature key mas que têm interesse biológico.

Desta forma, desenvolveu-se as funções qualifiersCDS e misc para que fosse retornado o local e o significado biológico das proteínas codificadas e locais de interesse no gene, respetivamente.

```
def typelocal(features): #Dá-nos todos os tipos e localizações das features
    print ("Tipo e Local das Features")
    for f in features:
       print(f.type, f.location)
def qualifiersCDS(features): #Significado Biológico das proteínas codificadas pelo gene
   print ("Qualifiers de CDS")
    for f in range (len(features)):
        if features[f].type=="CDS":
           print("Localização:",features[f].location)
            print (features[f].qualifiers)
            print()
def misc(features): #Retorna a localização e descrição de locais de interesse da sequência do gene
   print("Features de Interesse")
    for f in range (len(features)):
        if features[f].type=="misc_feature":
           print("Localização:",features[f].location)
            print(features[f].qualifiers)
            print()
```

Figura 2: Código relativo a funções utilizadas para a análise das features dos genes

Relativamente à CDS do gene MC4R, verificou-se que a sequência entre os nucleotidos 426 e 1425 codifica a proteína com o mesmo nome do gene, isto é, o recetor de melanocortina 4, e que esta é a única proteína a ser codificada por este gene. É esta proteína vai utilizada no BLAST e feita a análise das suas propriedades

Relativamente às misc\_features, observa-se que a sequência do genoma apresenta 3 locais de N-glicosilação e 7 domínios transmembranares de interesse, todos localizados dentro do intervalo codificante da proteína MC4R, confirmando a literatura anterior. Estes locais vão sendo analisados com mais detalhe posteriormente no tópico da análise das propriedades da proteína.

#### 1.2 Gene SEC16B

No que toca ao gene SEC16B, o processo de análise foi em tudo semelhante ao anterior, utilizando linhas de código semelhantes para obter a sequência nucleotídica completa, o seu comprimento e a sua descrição.

Desta forma, obteve-se que o gene SEC16B é composto por 55497 nucleotidos no total e pertence ao cromossoma 1 no organismo *Homo sapiens*. Relativamente às anotações do SEC16B, estas demonstraram que tinha uma topologia e taxonomia igual à do gene anterior, uma vez que são sequência do mesmo tipo e do mesmo organismo.

No que diz respeito à análise das *feautures*, através da função typelocal, viu-se que este não apresentava misc\_features, no entanto, continha várias CDS.

Após correr a função qualifiersCDS nas features do gene SEC16B, observou-se que este codificava as isoformas 1,2 e 4 da proteína transportadora da proteína SEC16B, isto é, proteínas semelhantes umas às outras que atuam de forma semelhante na célula. Para além disto, focando na localização destas CDS, verifica-se que estas são compostas por várias junções, significando que a sequência codificante é interrompida por vários intrões, ao contrario do gene MC4R.

#### 2 Análise de homologias por BLAST

#### 2.1 Blast através de scripts de BioPython

De forma a otimizar a informação obtida através da *web*, foi realizado, novamente, o BLAST mas a partir de scripts de BioPython. Considerou-se, para esta otimização, que sequências homologas seriam aquelas com um e-value igual a 0.

Previamente, foram descarregados ficheiros *fasta* com informações relativas às proteínas codificadas pelos genes - "prot1.fasta" (MC4R) e "prot2.fasta" (SEC16B). De seguida, estes ficheiros foram lidos recorrendo ao package SeqIO do BioPython da seguinte forma:

```
#MC4R
Plseq= SeqIO.read(open("prot1.fasta"), format="fasta")

#SEC16B
P2seq= SeqIO.read(open("prot2.fasta"), format="fasta")
```

Após o carregamento do ficheiro de interesse, foram desenvolvidas algumas funções para que o processo do BLAST e de análise possa ser repetido para ambos.

As primeiras funções a serem desenvovidas foram blast e blast\_org (Figura 3). Estas permitem a procura de sequências homólogas à proteína em estudo de todos os organimos (blast) ou de apenas um organismo específico (blast\_org) através do NCBI, guardando a informação recolhida num ficheiro, de preferência XML.

```
def blast(Pseq,nome_ficheiro): #pesquisa por sequencias semelhantes no Blast e guarda o ficheiro em XML
         result_handle = NCBIWWW.qblast("blastp", "swissprot", Pseq.format("fasta"))
save_file= open(nome_ficheiro, "w") #exemplo de nome: "apaf-blast-sp.xml"
         save_file.write(result_handle.read())
         save_file.close()
         result_handle.close()
         result_handle= open(nome_ficheiro)
         record= NCBIXML.read(result_handle)
         return record
11 def blast_org(Pseq,organismo,nome_ficheiro): #escrever organismo neste formato: "Saccharomyces cerevisiae[organism]"
        result_handle = NCBIWWW.qblast("blastp", "swissprot", Pseq.format("fasta"), entrez_query = organismo)
save_file= open(nome_ficheiro, "w") #exemplo de nome: "apaf-blast-sp2.xml"
         save_file.write(result_handle.read())
         save_file.close()
         result_handle.close()
         result_handle= open(nome_ficheiro)
         record= NCBIXML.read(result_handle)
         return record
```

**Figura 3:** Função que permite fazer o BLAST de sequências homologas de todos os organismos, blast, e de organismos específicos, blast\_org

Após realizado o BLAST para ambos as proteínas, chamando a função blast, atribui-se uma variável ao record retornado pela função, ou seja:

```
#MC4R
  record1 = blast(P1seq, "apaf-blast-spM.xml")

#SEC16B
  record2 = blast(P2seq, "apaf-blast-spS.xml")
```

Adicionalmente foram desenvolvidas outras funções para verificar os alinhamentos das sequências. A primeira, align (Figura 4), é uma função que resume os resultados do BLAST tendo apenas em conta o número de acesso das sequências, o seu e-value e o comprimento do alinhamento. Esta função foi necessária para verificar quantas possíveis sequências homologas existiam, uma vez que o critério era um e-value igual a zero. Assim, verificou-se que, ao chamar a função align (record1) e align (record2), retornaram 6 sequências homologas à proteína MC4R e 5 homologas à proteína transportadora de SEC16B, sendo a primeira sequência de e-value igual a 0 a própria proteína.

Com esta informação, decidiu-se obter apenas informações acerca dos primeiros 6 alinhamentos cujo e-value era 0. Para isso, usou-se a função short\_align (Figura 4). Esta função, permitiu a construção de uma lista com apenas as sequências que se considerou homológas, dando algumas informações sobre as mesmas como o seu id, descrição, nº de acesso, quantidade de HSP (High-scoring Segnment Pairs) - que em ambos os casos, apenas existia um -, o comprimento do HSP e ainda percentagem de resíduos da query que coincidiam com a seqência homóloga (Figuras 5 para MC4R e 6 para SEC16B).

```
for alignment in record.alignments:
       evalue = alignment.hsps[0].expect
        accession = alignment.accession
        leng = alignment.hsps[0].align_length
       res.append(accession +
                                  - " + str(evalue) + " length:" + str(leng))
   print("E-values and length of alignments:")
   for s in res:
       print(s)
def short_align(record): #Primeiros alinhamentos com E-value igual a 0
    for i in range(7): #Só queremos ver os primeiros 6 valores de todos os alignments
       alignment = record.alignments[i]
        evalue=alignment.hsps[0].expect
        if evalue == 0:
           aligns.append(alignment) #lista com os aligments de e-value igual 0
    for salign in aligns:
        print("Hit: " + salign.hit_id + " - " + salign.hit_def )
        print ("Accession: ", salign.accession)
print ("Nº de HSP (high-scoring segment pairs): ", len(salign.hsps))
        hsp=salign.hsps[0]
        print ("Comprimento do HSP: ", hsp.align_length)
        identities= (hsp.identities)*100/(hsp.align_length) #Percentagem de resíduos da query que são iguais aos do hit
        print ("Identities: ", identities,
        print ()
```

Figura 4: Funções align e short\_align

```
Hit: sp|P32245.2| - RecName: Full=Melanocortin receptor 4; Short=MC4-R [Homo sapiens]

Accession: P32245

Nº de HSP (high-scoring segment pairs): 1

Comprimento do HSP: 332

Identities: 100.0 %

Hit: sp|Q8HXX3.1| - RecName: Full=Melanocortin receptor 4; Short=MC4-R [Macaca fascicularis]

Accession: Q8HXX3

Nº de HSP (high-scoring segment pairs): 1

Comprimento do HSP: 332

Identities: 98.49397590361446 %

Hit: sp|O97504.1| - RecName: Full=Melanocortin receptor 4; Short=MC4-R [Sus scrofa]

Accession: O97504

Nº de HSP (high-scoring segment pairs): 1

Comprimento do HSP: 332

Identities: 96.3855421686747 %
```

**Figura 5:** Output incompleto da função short\_align (record1) para as sequências homologas da proteína MC4R

```
Hit: sp|Q96JE7.2| - RecName: Full=Protein transport protein Sec16B; AltName: Full=Leucine zipper transcription regulator 2; AltName:
Full=Regucalcin gene promoter region-related protein p117; Short=RGPR-p117; AltName: Full=SEC16 homolog B [Homo sapiens]
Accession: Q96JE7
N^{o} de HSP (high-scoring segment pairs): 1
Comprimento do HSP: 1060
Hit: sp|Q75NY9.1| - RecName: Full=Protein transport protein Sec16B; AltName: Full=Regucalcin gene promoter region-related protein p117;
Short=RGPR-p117: AltName: Full=SEC16 homolog B [Bos taurus]
Accession: 075NY9
N^{o} de HSP (high-scoring segment pairs): 1
Comprimento do HSP: 1064
Identities: 76.2218045112782 %
Hit: sp[Q91XT4.3] - RecName: Full=Protein transport protein Sec16B; AltName: Full=Leucine zipper transcription regulator 2; AltName:
Full=Regucalcin gene promoter region-related protein p117; Short=RGPR-p117; AltName: Full=SEC16 homolog B [Mus musculus]
Accession: Q91XT4
N^{\circ} de HSP (high-scoring segment pairs): 1
Comprimento do HSP: 1068
Identities: 72.75280898876404 %
```

**Figura 6:** Output incompleto da função short\_align (record2) para as sequências homologas da proteína SEC16B

Desta forma, verificou-se que as sequências homologas da proteína em estudo, em ambos os casos, eram sequências de proteínas com o mesmo nome mas pertencentes a organismos diferentes. As Tabelas 1 e 2 resumem os outputs da função short\_align para a proteína MC4R e SEC16B, respetivamente.

É possível, então, observar que estes resultados estão de acordo com os apresentados anteriormente pelo BLAST através da web.

**Tabela 1:** Número de acesso, organismo, comprimento do HSP e percentagem de identidades das sequências homologas à proteína MC4R do Homo sapiens, obtidas por scripts em BioPython

| Nº de Acesso | Organismo           | Comprimento HSP | <b>Identidades</b> (%) |
|--------------|---------------------|-----------------|------------------------|
| Q8HXX3       | Macaca fascicularis | 332             | 98,49                  |
| O97504       | Sus scrofa          | 332             | 96,39                  |
| Q0Z8I9       | Vulpes vulpes       | 332             | 96,08                  |
| P56450       | Mus musculus        | 332             | 93,98                  |
| P70596       | Rattus norvegicus   | 332             | 93,98                  |
| Q9GLJ8       | Bos taurus          | 332             | 93,37                  |

**Tabela 2:** Número de acesso, organismo, comprimento do HSP e percentagem de identidades das sequências homologas à proteína SEC16B do *Homo sapiens*, obtidas por scripts em BioPython

| Nº de Acesso | Organismo             | Comprimento HSP | <b>Identidades</b> (%) |
|--------------|-----------------------|-----------------|------------------------|
| Q75NY9       | Bos taurus            | 1064            | 76,22                  |
| Q91XT4       | Mus musculus          | 1068            | 72,75                  |
| Q75N33       | Rattus norvegicus     | 1069            | 72,50                  |
| Q6BCB4       | Oryctolagus cuniculus | 1065            | 69,20                  |
| Q6AW68       | Gallus gallus         | 1004            | 45,32                  |

Adicionalmente, desenvolveu-se a função alignmentx (Figura 7) - função complementar - para que se podesse retirar mais informações acerca de uma sequência homóloga com um certo index. Esta fornece mais informações que a função short\_align, uma vez que explora todos os HSPs e permite verificar o match entre a query e o hit.

```
def alignmentx(record,index): #Fornece mais informacões acerca de um alinhamento com index específico
alignment = record.alignments[index] #o index 0 vai ser a própria proteína
print ("Accession: " + alignment.accession) #Identifica o accession (registo da Uniprot da sequência obtida)
print ("Hit id: " + alignment.hit_id)

print ("Definition: " + alignment.hit_def) #descrição

print ("Number of HSPs: ", len(alignment.hsps)) #nº de HSP

print ()

for hsp in alignment.hsps: #para cada HSP

print ("HSP",alignment.hsps.index(hsp))
print ("E-value: ", hsp.expect)

print ("Length: ", hsp.expect)

print ("Identities: ", hsp.identities)
print ("Query start: ", hsp.identities)

print ("Query start: ", hsp.expery_start) #início do HSP na query

print ("Sbjct start: ", hsp.sbjct_start) #início do HSP na sequência
print (hsp.query[0:90])
print (hsp.match[0:90]) #verifica quais os AA que estão na mesma posição na seq da query e da seq da proteína original
print (hsp.sbjct[0:90])
print ()
```

Figura 7: Função alignmentx

Nas Figuras 8 e 9 estão apresentados os outputs da função alignmentx para o alinhamento com index 1 (exemplo de teste) tanto da proteína MC4R como da SEC16B, respetivamente.

É possível observar que no caso do gene SEC16B, há certas diferenças entre a query e o hit logo nos primeiros aminoácidos.

```
Accession: Q8HXX3
Hit id: sp|Q8HXX3.1|
Definition: RecName: Full=Melanocortin receptor 4; Short=MC4-R [Macaca fascicularis]
Number of HSPs: 1

HSP 0
E-value: 0.0
Length: 332
Identities: 327
Query start: 1
Sbjct start: 1
MVNSTHRGMHTSLHLWNRSSYRLHSNASESLGKGYSDGGCYEQLFVSPEVFVTLGVISLLENILVIVAIAKNKNLHSPMYFFICSLAVAD
MVNSTHRGMH SLHLWNRSS+RLHSNASESLGKGYSDGGCYEQLFVSPEVFVTLGVISLLENILVIVAIAKNKNLHSPMYFFICSLAVAD
MVNSTHRGMHASLHLWNRSSHRLHSNASESLGKGYSDGGCYEQLFVSPEVFVTLGVISLLENILVIVAIAKNKNLHSPMYFFICSLAVAD
```

Figura 8: Output da função alignmentx (record1, 1) para a proteína MC4R

```
Accession: Q75NY9
Hit id: sp|Q75NY9.1|
Definition: RecName: Full=Protein transport protein Sec16B; AltName: Full=Regucalcin gene promoter region-related protein p117;
Short=RGPR-p117; AltName: Full=SEC16 homolog B [Bos taurus]
Number of HSPs: 1

HSP 0
E-value: 0.0
Length: 1064
Identities: 811
Query start: 1
Sbjct start: 1
MELWAPQRLPQTRGKATAPSKDPDRGFRRDGHHRPVPHSWHNGERFHQWQDNRGSPQPQQEPRADHQQQPHYASRPGDWHQPVSGVDYYE
ME W PQ LPQ G+ APSKDPDRG +D +++P+PHSWHNGER HQ QD SPQPQQ+PR D Q+PHYA+R G+W PVSGVDYYE
MEPWIPQWLPQPSGRPPAPSKDPDRGLWKDRYYQPIPHSWHNGERVHQRQDVGRSPQPQQOPRED-LQEPHYAARSGEWRPPVSGVDYYE
```

Figura 9: Output da função alignmentx (record2, 1) para a proteína SEC16B