starType

Useful LATEX macros for stellar astrophysics

A common chore is the typesetting of units and various symbols. To help with this, I wrote a set of macros, starType. You are welcome to use them or modify them to suit your needs.

1 Code Names

command	produces
\flash	FLASH
\kepler	KEPLER
\nonsmoker	NON-SMOKER
\mesa,\MESA	MESA
\STERN	STERN
\ADIPLS	ADIPLS
\DSEP	DSEP
\enzo	ENZO

2 Derivatives

command	produces
\dif	d
\Dif	D
\jac{a}{b}{c}{d}	$\frac{\partial(a,b)}{\partial(c,d)}$
$\t (a){b}{c}$	$\left(\frac{\partial a}{\partial b}\right)_{\mathcal{C}}$
\dt{f}	$\frac{\partial a}{\partial t}$
\DDt{f}	$\frac{\mathrm{d}f}{\mathrm{d}t}$
\ddx{f}	$\frac{\partial f}{\partial x}$
\DDx{f}	$\frac{\mathrm{d}f}{\mathrm{d}x}$
\dy{f}	$\frac{\partial f}{\partial y}$
\DDy{f}	$\frac{\mathrm{d}f}{\mathrm{d}y}$
\dz{f}	$\frac{\partial f}{\partial z}$
\DDz{f}	$\frac{\mathrm{d}f}{\mathrm{d}z}$

3 Vectors

command	produces
\bvec{u}	и
\grad f	∇f
\divr\bvec{u}	$\nabla \cdot \boldsymbol{u}$
\curl\bvec{u}	$\nabla \times u$
\lap\phi	$ abla^2 \phi$
\btens{T}	T
\bvec{a}\vcross\bvec{b}	$a \times b$
\bvec{a}\vdot\bvec{b}	$a \cdot b$

4 Nuclides

The nuclides.tex macros contain a list of all named elements. Typeing '\<element>' produces the symbol of either the most common, or the longest-lived, isotope of that element. To get a specific isotope, add the atomic number of the isotope in [].

For example, \carbon produces ¹²C, and \carbon[13] produces ¹³C; \cadmium produces ¹¹⁴Cd, whereas \cadmium[116] produces ¹¹⁶Cd; and so on. The symbols '\neutron' (alias '\nt') and '\proton' (alias '\pt') are also defined and produce 'n' and 'p', respectively.

5 Units

To get scientific notation, type '\$3\ee{5}\$' to get 3×10^5 ; alternatively, use '\sci{3}{5}' to get 3×10^5 . To typeset a value with its unit, use the \val macro: for example, '\$\val{3}{\meter/\second}\$' produces 3 m/s. More complicated expressions are possible: for example,

 $\$ \val{\sci{2.0}{33}}{\ergspersecond}\$ produces $2.0 \times 10^{33} \ erg \ s^{-1}$.

For ranges of numbers, $\rng{2}{3}$ produces 2 to 3; $\rng[--]{2}{3}$ produces 2-3. To put a range with a value, $\rng{2}{3}{\meter/\second}$ produces (2 to 3) m/s and $\rng[--]{2}{3}{\meter/\second}$ produces (2-3) m/s. Macros for the unit symbols are listed in the following table.

Note that more sophisticated packages, such as 'SIunits' are available as part of a standard LATEX distribution.

Metric prefixes are defined.

command	produces	meaning
\yocto	у	10^{-24}
\zepto	Z	10^{-21}
\atto	a	10^{-18}
\femto	f	10^{-15}
\pico	p	10^{-12}
\nano	n	10^{-9}
\micro	μ	10^{-6}
\milli	m	10^{-3}
\centi	c	10^{-2}
\deci	d	10^{-1}
\deka	da	10^{1}
\hecto	h	10^{2}
\kilo	k	10^{3}
\Mega	M	10^{6}
\Giga	G	10^{9}
\Tera	T	10^{12}
\Peta	P	10^{15}
\Exa	E	10^{18}
\Zetta	Z	10^{21}
\Yotta	Y	10^{24}

A complete listing of the units are as follows.

command	produces	meaning
\meter	m	base units, mks
\kilogram	kg	
\second	S	
\Kelvin,\K	K	degrees Kelvin
\cm	cm	base units, cgs
\gram	g	
\grampercc,\GramPerCc	$\rm gcm^{-3}$	mass density
\grampersquarecm,\GramPerSc,\columnunit	$\rm gcm^{-2}$	column depth
\dyne	dyn	dyne
\erg,\ergs	erg	ergs
\gauss	G	gauss
\ergspersecond	${\rm erg}~{\rm s}^{-1}$	
\ergspergram	$erg g^{-1}$	
\cgsflux	$erg cm^{-2} s^{-1}$	cgs flux unit

\amu	u	atomic mass unit
\angstrom	Å	Angstrom
\fermi	fm	fermi, aka femtometer
\eV	eV	electron volt
\keV	keV	
\MeV	MeV	
\GeV	GeV	
\MeVA	MeV/A	MeV per nucleon
\GeVA	GeV/A	GeV per nucleon
\minute	min	minute
\hour	hr	hour
\yr	yr	year
\km	km	kilometers
\Hz	Hz	Hertz
\ksec	ks	kilosecond
\mol	mol	mole
\barn	b	barn
\Msun	M_{\odot}	solar mass
\Lsun	L_{\odot}	solar luminosity
\Rsun	R_{\odot}	solar radius
\Myr	Myr	
\Gyr	Gyr	
\AU	AU	astronomical unit
\parsec	pc	parsec
\kpc	kpc	kiloparsec
\Jansky	Jy	Jansky
\mJy	$\mu { m Jy}$	micro Jansky
\Msunperyr	$M_{\odot} \mathrm{yr}^{-1}$	solar masses per year

6 Symbols

command	produces	meaning
\abohr	a_{B}	Bohr radius
\alphaF	$lpha_{ m F}$	Fine structure
α MLT	$lpha_{ m MLT}$	mixing length parameter
\alphasc	$lpha_{ m sc}$	semiconvection efficiency parameter

\alphath	$lpha_{th}$	thermohaline efficiency parameter
\chirho	$\chi_{ ho}$	$(\partial \ln P/\partial \ln \rho)_T$
\chiT	χ_T	$(\partial \ln P/\partial \ln T)_{\rho}$
\CP	C_P	specific heat at constant pressure
\cs	$c_{\rm s}$	adiabatic sound speed
\Dov	$D_{ m ov}$	overshoot diffusion coefficient
\Dth	D_{th}	thermohaline diffusion coefficient
\EF	$E_{ m F}$	Fermi energy
\epsgrav	$\epsilon_{ m grav}$	gravitational heating rate
\epsnu	$\epsilon_{\scriptscriptstyle \mathcal{V}}$	neutrino losses
\epsnuc	$\epsilon_{ m nuc}$	nuclear heating rate
\Fconv	$F_{\rm conv}$	convective flux
\fov	$f_{ m ov}$	convective overshoot parameter
\Frad	$F_{\rm rad}$	radiative flux
\Gammaone	Γ_1	$(\partial \ln P/\partial \ln \rho)_S$
\Gammatwo	Γ_2	$[1-(\partial \ln T/\partial \ln P)_S]^{-1}$
\Gammathree	Γ_3	$1 + (\partial \ln T / \partial \ln \rho)_S$
\kB	$k_{ m B}$	Boltzmann constant
\lambdaD	$\lambda_{ m D}$	Debye length
\Ledd	$L_{ m Edd}$	Eddington Luminosity
\logg	$\log g$	log surface gravity
\Lrad	$L_{\rm rad}$	radiative luminosity
\Ma	Ma	Mach number
\mb	m_{u}	atomic mass unit
\Mdot	\dot{M}	mass-loss rate
\me	$m_{\rm e}$	electron mass
\mn	$m_{\rm n}$	neutron mass
\mpr	$m_{ m p}$	proton mass
\NA	$N_{\rm A}$	Avogadro number
\nablaad	$\nabla_{\!\!\! ad}$	adiabatic temperature gradient
\nablaL	$ abla_{ m L}$	Ledoux criterion
\nablarad	$\nabla_{\!$	radiative temperature gradient
\nablaT	$ abla_T$	actual temperature gradient
\nB	n_{B}	baryon density
\Pc	$P_{\rm c}$	central pressure
\pF	$p_{ m F}$	Fermi momentum
\Pgas	$P_{\rm gas}$	gas pressure
\Prad	$P_{\rm rad}$	radiation pressure
\Rey	Re	Reynolds number

\rhoc	$ ho_{ m c}$	central density
\scaleheight	λ_P	pressure scale height
\sigmaSB	$\sigma_{ m SB}$	Stefan-Boltzmann constant
\Slamb	S_ℓ	Lamb frequency
\Tc	$T_{\rm c}$	central temperature
\Teff,\teff	$T_{ m eff}$	effective temperature
\tkh	$ au_{ m KH}$	thermal (Kelvin-Helmholtz) timescale