Lecture 1: Introduction Probability Theory

Terminologies

- **Instance**: measurements about individual entities/objects (no label)
- Attributes: component of the instances
- Label: an outcome that is categorical, numerical, etc.
- Examples: instance coupled with label
- Models: discovered relationship between attributes and/or label

Supervised v.s. Unsupervised

- Supervised:
 - Labelled data
 - Predict labels on new instances
- Unsupervised:
 - Unlabelled data
 - Cluster related instances; project to fewer dimensions; understand attribute relationships

Evaluation

- 1. Pick an evaluation metric comparing label v.s. prediction
 - E.g. Accuracy, Contingency table, Precision-Recall, ROC curves
- 2. Procure an independent, labelled test set
- 3. "Average" the evaluation metric over the test set (When data poor, use cross-validation)

Probability相关的部分就不写了

Lecture 2: Statistical Schools of Thoughts

Frequentist statistics

- Unknown params are treated as having fixed but unknown values
- Parameter estimation:
 - \circ Classes of models $\{p_{\theta}(x): \theta \in \Theta\}$ indexed by parameters Θ
 - \circ Point estimate $\hat{\theta}(x_1,...,x_n)$: a function (or statistic) of data (samples)
 - A single value as an estimate of a population parameter
- If $\hat{\theta}$ is an estimator for θ
 - \circ Bias: $Bias_{ heta}(\hat{ heta}) = E_{ heta}[\hat{ heta}] heta$
 - \circ Variance: $Var_{ heta}(\hat{ heta}) = E_{ heta}[(\hat{ heta} E_{ heta}[\hat{ heta}])^2]$
- Asymptotic properties:
 - $\circ~$ Consistency: $\hat{ heta} o heta$ (converges in probability) as $n o \infty$
 - Efficiency: asymptotic variance is as small as possible (reach Cramer-Rao lower bound)
- Maximum-Likelihood Estimation (MLE)
 - General principle for designing estimators

- Involves optimisation
- $\circ \;\; \hat{ heta} \in rg \max_{ heta \in \Theta} \prod_{i=1}^n p_{ heta}(x_i)$
- MLE estimators are consistent (but usually biased)
- o "Algorithm":
 - 1. Given data $X_1,...,X_n$
 - 2. Likelihood: $L(heta) = \prod_{i=1}^n p_{ heta}(X_i)$
 - 3. Optimise to find best params
 - Take partial derivatives of log likelihood: $l'(\theta)$
 - Solve $l'(\theta) = 0$
 - If fail, use iterative gradient method (e.g. fisher scoring)

Decision Theory

- Decision rule: $\delta(x) \in A$ (action space)
 - E.g. point estimate, out-of-sample prediction
- Loss function $l(a, \theta)$: economic cost, error metric
 - $\circ~$ E.g. square loss $(\hat{ heta}- heta)^2$, 0-1 loss $I(y
 eq \hat{y})$

Risk & Empirical Risk Minimization (ERM)

- In decision theory, really care about expected loss
- Risk : $R_{ heta}[\delta] = E_{X \sim heta}[l(\delta(X), heta)]$
 - Risk = Expected Loss
 - o aka. Generalization error
- Goal: Choose δ (decision) to minimise $R_{\theta}[\delta]$
 - Can't calculate risk directly
 - \circ Don't know the real distribution the samples comes from, therefore don't now E(X)
- ERM
 - \circ Use training set X to approximate $p_{ heta}$ (Empirical)
 - o Minimise empirical risk $\hat{R}_{ heta}[\delta] = rac{1}{n} \sum_{i=1}^{n} l(\delta(X_i), heta)$

Mean Squared Error (of parameter estimator)

- Bias-variance decomposition of square-loss risk
- $E_{ heta}[(heta \hat{ heta})^2] = [Bias(\hat{ heta})]^2 + Var_{ heta}(\hat{ heta})$

Bayesian Statistics

- Unknown params have associated distributions reflecting prior belief
- Prior distribution $P(\theta)$
 - o Params are modeled like r.v.'s
 - o Data likelihood $P_{ heta}(X)$ written as conditional P(X| heta)
- Rather than point estimate $\hat{\theta}$
 - \circ Bayesians update prior belief $P(\theta)$ with observed data to the posterior distribution: $P(\theta|X)$
- Bayesian probabilistic inference
 - 1. Start with prior $P(\theta)$ and likelihood $P(X|\theta)$
 - 2. Observe data X=x

- 3. Update prior to posterior $P(\theta|X=x)$
- · Primary tools to obtain the posterior
 - o Bayes Rule: reverse order of conditioning

$$lacksquare P(heta|X=x)=rac{P(X=x| heta)P(heta)}{P(X=x)}$$

o Marginalization: eliminates unwanted variables

$$P(X=x) = \sum_{t} P(X=x, \theta=t)$$

- Bayesian point estimation common approaches
 - Posterior mean

•
$$E_{\theta|X}[\theta] = \int \theta P(\theta|X) d\theta$$

- o Posterior mode (MAP)
 - $\bullet \ \arg\max_{\boldsymbol{\theta}} P(\boldsymbol{\theta}|X)$
- MLE in Bayesian context
 - \circ MLE = MAP if using uniform prior $P(\theta)$
 - \circ (No prior belief about θ)

Categories of Probabilistic Models

- Parametric v.s. Non-Parametric
 - 1. Parametric
 - Determined by fixed, finite number of parameters
 - Limited flexibility
 - Efficient statistically and computationally
 - 2. Non-Parametric
 - Number of parameters grows with data, potentially infinite
 - More flexible
 - Less efficient
- Generative v.s. Discriminative
 - 1. Generative
 - lacktriangle Model full joint P(X,Y)
 - E.g. Naive Bayes
 - 2. Discriminative
 - Model conditional P(Y|X) only (directly)
 - E.g. Linear Regression