Loop Acceleration under the presence of overflows ²

Charles Babu M

Chennai Mathematical Institute

December 7, 2017

² Joint Work with M.K.Srivas and M. Praveen

Outline

- Loop Acceleration
- Overflow Examples
- Problems to be solved
- Program Termination
- Current Work

Loop Acceleration

- ► Acceleration is typically restricted to programs over fragments of linear arithmetic for which the transitive closure is effectively computable
- Existing acceleration work restricted to operations on unbounded integers
- Challenges in handling integer overflows
 - Non-linear arithmetic and closed form
 - More complicated Termination check

Overflow: Program 1

```
int main(){
unsigned int x=0;
    while (x<=MAX_INT-1){
        x=x+2;
    }
}</pre>
```

Here, termination depends on the initial value of x. If x is even, it doesn't terminate as the wrap-around value of x repeats.

Overflow: Program 2

Here, termination is guaranteed. This is because, the MAX_INT is reachable from any initial value of x, as 3 and 2^{32} are relatively prime, which guarantees every wrap-around value generated is unique.

Our Program Template

Restricted Linear Programs (RLP) with conditionless loop body:

Let $n=2^w$, where w is the word length and MAXINT=n-1. Let $delta(\delta)$ is a constant, and without loss of generality consider $\delta>0$. Let d=|[c,MI]|>0

Problem Definition: Termination

▶ Termination: For a given x_0 , it is an existential problem.

$$\exists k. \ c \leq (x_0 + k \cdot \delta) \mod n \leq MI$$

For the program to terminate, the following should be true

$$\forall x \exists k. \ c \leq (x + k \cdot \delta) \mod n \leq MI$$

- ▶ Model enumeration can be done as the domain is finite
- Without model enumeration, can we give a necessary and sufficient condition for termination?

Accelerated Form Synthesis

- Accelerated Form Synthesis: If it indeed terminates, can we give a closed form?
 - ► For a given x_0 the exact 'k' after which it terminates is the minimum 'k' such that $(x_0 + k \cdot \delta) \mod n \in [c, MI]$
 - This minimization problem can also be expressed as an ILP problem

minimize k

$$c \le x_0 - tn + k\delta \le MI$$

 $k > 0, t > 0$ $k, t \in \mathbb{Z}$

▶ The synthesis problem requires one to generate a skolem expression as a function of x_0 for k s.t. that satisfies the above condition.

For now, we will address the termination problem.

RLP: Our Program Template

We will now look into termination aspect of the following program. Here, loop condition can be of the form $E \sim c$, where $\sim \in \{<, \leq, >, \geq, =, \neq\}$ and c a constant. Here delta $(\delta) > 0$, d = |[c, MI]| > 0, and $n = 2^w$, where w is the word length. int main(){ unsigned int x=*; while (x < c) //c is a constant x=x+delta; //'delta' is a constant return 0;

Termination: Our Main Result

For a program $P \in RLP$, we have the following cases:

- ▶ $\delta \leq d$: No overflow and P terminates due to monotonicity of loop condition
- \triangleright $\delta > d$:
 - ▶ $coprime(\delta, n)$: P terminates as we show $\exists k.x +_n k\delta \in [c, MI]$, where $+_n$ is modulo addition
 - ▶ ¬ $coprime(\delta, n)$: Then, $\delta = 2^p \times \delta'$, where $e := 2^p, p \ge 0$ for some odd number δ' . Then:
 - ▶ If $e \le d$: Program terminates and it will be proved
 - ▶ If e > d: Program terminates if and only if $(c \mod e) \le x_0 \mod e < MI \mod e$

$\neg coprime(\delta, n)$

Let's analyze the case of $\delta > d$ and $\neg coprime(\delta, n)$. So, we have $\delta = 2^p \times \delta'$. Say, $e := 2^p$.

We will show that the following sets are equivalent

$$S_1 := \{x, x +_n \delta, x +_n 2 \cdot \delta, x +_n 3 \cdot \delta, ...\}$$

$$S_2 := \{x, x +_n e, x +_n 2 \cdot e, x +_n 3 \cdot e, ...\}$$

If the two sets are indeed equal, and if $x +_n k \cdot e \in [c, MI]$ for some k, then $x +_n k' \cdot \delta \in [c, MI]$ for some k', and so, the program terminates. The two sets S_1 and S_2 are finite.

Cyclic groups

Proposition

The additive group $(\mathbb{Z}_n, +)$ is a cyclic group of order n with (additive) generator 1.

Note that there is only one cyclic group of order n, up to isomorphism. So any statement about the additive groups $(\mathbb{Z}_n, +)$ is a statement about finite cyclic groups, and vice versa.

Proposition

In a finite cyclic group, two elements generate the same subgroup if and only if the elements have the same order.

Here $gcd(n, \delta) = gcd(n, e)$, so the subgroups of $(\mathbb{Z}_n, +)$ generated by the elements e and δ are the same

Equivalence between sets S_1 and S_2

Corollary

For some $0 \le f < n$, $k \cdot \delta \mod n \equiv f$ holds for some $k \iff k' \cdot e \mod n \equiv f$ holds for some k'

Corollary

For some $0 \le f < n$, $(x + k \cdot \delta) \mod n \equiv f$ holds for some $k \iff (x + k' \cdot e)$ mod $n \equiv f$ holds for some k'

It follows that the two sets S_1 and S_2 are equivalent.

Termination condition: $\neg coprime(\delta, n)$

Theorem

 $e \leq d \Longrightarrow$ The program terminates.

Proof.

Proof is simple. Here, all we need to show is that the set S_2 contains an element of [c, MI].

- $x \ge c$: we're done
- x < c: As e > 0,

$$\exists k \text{ s.t. } (x+k\cdot e < c) \land (x+(k+1)\cdot e \geq c)$$

So, as $x + k \cdot e < c$, we have $x + k \cdot e + e < c + e$. Also, as $e \le d$, we have $c \le x + (k+1) \cdot e < MI + 1$. Hence, an element of [c, MI] is in the set S_2 .

Termination condition: $\neg coprime(\delta, n)$

e > d: Consider the set S_2 . Let $r := \frac{n}{e} = 2^{w-p}$, and we have MI = r.e - 1. Here, $\bar{c} = c - (r - I) \cdot e$.

As e|n, if the initial configuration of x is in a red region, then the set S_2 contains a unique element of every other red region. If not, the set doesn't any element from any red region.

Theorem

The program terminates if and only if $(c \mod e) \le x \mod e \le MI \mod e$ The Second Indian SAT+SMT School

Future Work

- ► Can we lift the problem to higher dimension with the termination condition being a convex polyhedron?
- ▶ Can we relax the variable assignment with δ not being a constant?
 - ▶ E.g. for assignment such as in the following program

$$y = *; while(x < c)\{x = x + y; \}$$

As $n=2^w$, it is enough to consider w subgroups of $(\mathbb{Z}_n,+)$ generated by $2^0,2^1,...,2^{w-1}$, to see whether the program terminates or not.