Leveraging histogram equalization for expert photo enhancement

Luca Cavalli Gianpaolo Di Pietro

Motivations and Objectives

- Photo enhancement is a widespread need
- High quality enhancements are traditionally handcrafted by professionals

Motivations and Objectives

- Photo enhancement is a widespread need
- High quality enhancements are traditionally handcrafted by professionals
- Learning expert photo enhancement is a very complex problem
- Histogram equalization is very simple and provides rough enhancement

Original Expert enhanced Histogram equalization

Motivations and Objectives

- Photo enhancement is a widespread need
- High quality enhancements are traditionally handcrafted by professionals
- Learning expert photo enhancement is a very complex problem
- Histogram equalization is very simple and provides rough enhancement

- Research techniques to effectively learn histogram equalization
- **Transfer** these techniques to expert photo enhancement

State of the Art

- Kaufman et al. (2012): hand crafted transformations on detected semantic regions
- Yan et al. (2016): learned transformations on detected semantic regions with hand crafted features
- Kinoshita et al. (2019): learned enhancement from synthesized samples generated from high dynamic range images, uses U-Net

Problem formulation

 Photo enhancement can be framed as a pixel-wise function depending on local and global features:

$$Q^i = \mathcal{F}_{pw}(\mathcal{P}^i, \mathcal{L}(\mathcal{N}_i(\mathcal{P})), \mathcal{G}(\mathcal{P}))$$

- Histogram equalization is a simplified instance of this framework
- Designed architectures should excel at histogram equalization, and be open towards the general problem

Pixel-wise mapper

- Use the histogram as a feature and just learn the pixel-wise function
- The complexity of the function depends on the size of the input histogram

Histogram CNN

- Classify pixels independently to build pixel-sized local histograms
- Merge smaller local histograms into larger local histograms
- Remap each pixel independently according to collected local histograms

Comparative architectures

- Compare performances with classical architectures
- Plain CNN and U-Net have been chosen.

Histogram Equalization experimental results

- Training and validation on cifar10 dataset in grayscale
- Ground truth generated algorithmically

Architecture	\mathcal{H}	\mathcal{D}	Parameters	MSE
Pixel-wise FC	64	10	10k	1.45e-2
Histogram CNN	128	12	6.4M	1.6e-3
Histogram CNN	32	12	400k	4.1e-3
Plain CNN	128	10	1.2M	1.1e-2

Qualitative assessment

a: Original

b: Ground Truth

c: Histogram CNN

d: Plain CNN

e: Pixel-wise FC

Expert photo enhancement experimental results

- Training and validation on MIT FiveK dataset with fixed size 500x332
- Ground truth taken from ExpertB

Architecture	\mathcal{H}	\mathcal{D}	Parameters	MSE
Histogram CNN	64	7	611k	9.5e-3
Plain CNN	128	10	1.2M	1.0e-2
U-Net	256	11	5.3M	9.7e-3

Qualitative assessment

a: Original

b: Ground Truth

c: Histogram CNN

d: Plain CNN

e: U-Net

Original Expert enhanced Ours