Carnegie Mellon University

Visual Inspection for Aircraft & Power Lines

Chang Gao & Anshuman Majumdar

Master of Science in Computer Vision, CMU

Summary

Motivation

Automate asset inspection with sensor data

Problem

Aircraft defect detection

Solution

Object detection and/or semantic segmentation

Past: Powerline Inspection

Green = Power lines

Red = Trees

Black = Houses

Blue & Black = Ground

3D Semantic Segmentation Results

New task: Aircraft Defect Detection

Sample defect images with bounding boxes

Aircraft Defect Detection

- 1. Problem Overview
- 2. Dataset Study
- 3. Proposed Approaches
- 4. Preliminary Results
- 5. Timeline

Problem Overview

For airplane companies and airport managers

- Planes need to be inspected before taking off
- It takes a long time and many workers

Proposed solution

- Just let drones fly around and take pictures
- Perform defect detection on these pictures

We now have the dataset collected from pictures taken around planes

Dataset

Dataset

Key findings		

Proposed Approaches

- Object detection (Chang)
- Semantic Segmentation (Anshuman)

Approach 1: Object Detection

Why object detection?

- Bounding boxes already provided as ground-truth
- Direct approach to solve the problem

What type of object detection?

- Speed & Feasibility to train and evaluate -> one stage over two stage
- Variant ratio of bounding box sizes -> anchor-free models

Literature Review

Object detection roadgraph

CornerNet Architecture

Corner Pooling Module

Bounding Box Prediction Module (Top-left branch)

Qualitative Examples on MSCOCO

Improvements from CornerNet:

- Center pooling module: inherits the functionality of Rol pooling
- Cascade corner pooling: perceives internal information

CenterNet Architecture

Similar to CornerNet, a pair of detected corners and the similar embeddings are used to detect a potential bounding box. Then the detected center keypoints are used to determine the final bounding boxes.

University

Duan, Kaiwen, et al. "CenterNet: Keypoint Triplets for Object Detection." ICCV 2019.

Center pooling & cascade corner pooling module

Center Pooling

Corner Pooling

Cascade Corner Pooling

Quantitative Results on MSCOCO (Apr 2019)

		Average Precision
Two-stage Models	Mask R-CNN	39.8
	PANet (SOTA)	47.4
One-stage Models	RetinaNet800	39.1
	CornerNet	42.1
	CornerNet-Saccade	43.2
	CenterNet-104	47.0

Network Training & Evaluation

- We use CenterNet-52 as our network structure (52-layer Hourglass Network)
- Single-scale training
- batch size of 4 on each of 2 Nyidia 1080 Ti GPUs
- 4K as training set and 1K as evaluation set

Training set (NMS threshold = 50%, proposal confidence = 30%):

- mAP = 92.2301%
- Foreground overall recall [1] = 97.7200%
- Foreground overall precision [2] = 71.7203%
- CenterNet-52 successfully converged on the training set

[1] A ground-truth bounding box is considered recalled if it is predicted as any foreground class.

^[2] A predicted bounding box is considered correct if any foreground ground-truth bounding box overlaps it larger than a threshold (default is 50%).

Validation set (NMS threshold = 50%, proposal confidence = 30%):

- mAP = 18.1666%
- Foreground overall recall = 49.3571%
- Foreground overall precision = 49.3860%
- Severe overfitting effect observed!

Validation set (NMS threshold = 50%, proposal confidence = 30%):

- Class-wise confusion matrix
- Findings: P/R among each class is good, P/R against background is terrible

Why overfitting is so severe?

Ground-truth Predicted

More ill-posed or bad bounding boxes and labels

Why overfitting is so severe?

- 1. Ground-truth labels are actually ill-posed
 - Possible solution: Lower overlapping threshold
 - With overlapping threshold changed from 50% to 30%
 - o mAP = 18.1666% -> 25.6855%
 - Foreground overall recall = 49.3571% -> 55.8153%
 - Foreground overall precision = 49.3860% -> 55.7909%

Why overfitting is so severe?

- 2. Current data augmentation techniques:
 - random rescaling, random cropping, color jittering
 - gaussian bump of corner/center ground-truth
 - class-balanced weights for losses [1]

Seems not enough for this small dataset. More to explore:

- random flipping and rotation
- mixup [2]

Why overfitting is so severe?

- 3. Model complexity is too high
 - Reduce channel sizes and layers
 - Results: With 1/13 parameters, network still converges on training set, yet
 still low mAP on evaluation set
 - Possible solutions:
 - i. Dropout/Dropblock
 - ii. Even simpler models

Examples: Low recall case

Ground-truth

Predicted

Ground-truth

Examples: complex scene

Predicted

Carnegie Mellon University

Ground-truth

Examples: various sizes

Predicted

Carnegie Mellon University

Future Work

- 1. Reduce the overfitting problem
- 2. Collect more data from the company (probably the easiest solution :p)

Approach 2: Semantic Segmentation

Why semantic segmentation?

- Higher recall for defects
- More fine-grained classification
- Solve ill-posed bounding box cases like

Literature Review

Classical Approaches

- UNet: Convolutional Networks for Biomedical Image Segmentation
- SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Why?

Literature Review: UNet

Literature Review: SegNet

Timeline

Date	Task
Oct 31	Examination of the overfitting problems in CenterNet Preliminary results on semantic segmentation
Nov 15	Combining object detection and segmentation (E.g. weakly-supervised segmentation)
Nov 31	Fix final model and finishing training

