Livello Collegamento Ethernet Switch VLAN

Reti di Calcolatori

Federica Paganelli

Ethernet

Detiene una posizione dominante nel mercato delle LAN cablate.

- È stata la prima LAN ad alta velocità con vasta diffusione.
- Più semplice e meno costosa di token ring, FDDI e ATM.
- Sempre al passo dei tempi con il tasso trasmissivo (10 Mbps, 100Mbps, 1 Gbps, 10 Gbps, 40 Gbps...).

Il progetto originale di Bob Metcalfe che portò allo standard Ethernet nella metà degli anni '70

Topologia fisica

- La topologia a bus era diffusa fino alla metà degli anni 90.
- Quasi tutte le odierne reti LAN Ethernet sono progettate con topologia a stella.
- Al centro della stella è collocato uno switch.

Struttura dei pacchetti Ethernet

• L'adattatore trasmittente incapsula i datagrammi IP in un pacchetto Ethernet

Preambolo:

- I pacchetti Ethernet iniziano con un campo di otto byte: sette hanno i bit 10101010 e l'ultimo è 10101011.
- Servono per "attivare" gli adattatori dei riceventi e sincronizzare i loro orologi con quello del trasmittente.

Dati:

 L'unità massima di trasferimento MTU varia da 46 byte ad un max di 1500 byte. Se il datagramma è più grande allora deve essere frammentato. Se il campo dati è più piccolo il campo dati deve essere riempito (stuffed)

Struttura dei pacchetti Ethernet

- Indirizzo di destinazione: 6 byte
- Quando un adattatore riceve un pacchetto con indirizzo di destinazione corrispondente al proprio indirizzo MAC o l'indirizzo broadcast (es.: un pacchetto ARP), trasferisce il contenuto del campo dati del pacchetto al livello di rete.
- I pacchetti con altri indirizzi MAC vengono ignorati.
- Indirizzo sorgente: 6 byte. Indirizzo dell'adattatore (scheda di rete) che trasmette il frame
- Campo tipo (2 byte): consente a Ethernet di supportare vari protocolli di rete (i.e., IP, ARP) (in gergo questa è la funzione di "multiplexare" i protocolli).
- Controllo CRC: consente all'adattatore ricevente di rilevare la presenza di un errore nei bit del pacchetto.

Ethernet: non affidabile, senza connessione

- connectionless: no handshaking tra nodo mittente e destinatario
- unreliable: nodo in ricezione non invia ack or nack al nodo mittente
 - I dati nei frame eliminati (dropped) sono recuperati solo se il trasferimento dati affidabile è implementato ai livelli superiori (e.g., TCP),
 - Protocollo MAC in LAN broadcast : CSMA/CD con binary backoff

802.3 Ethernet standards: link & physical layers

- molti standard Ethernet diversi
 - protocollo MAC e formato frame in comune
 - Differenti velocità: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10
 Gbps, 40 Gbps (ma anche 100G e superiori)
 - Mezzo fisico: fibra, cavo coassiale, doppino intrecciato

Evoluzione di Ethernet

Ethernet 10 Mbps

- primi standard 10BASE-2 e 10BASE-5 su due tipi di cavi coassiali, ciascuno limitato a una lunghezza di 500 metri.
- Segmenti più lunghi si possono ottenere usando un repeater (ripetitore)
- CSMA/CD

Fast Ethernet

- 100 Mbps
- 100 metri di distanza su doppino e a parecchi chilometri su fibra
- Usare un commutatore (switch) a livello link, dotato di buffer. Switch al centro della stella, tutti i nodi collegati ai rami della stella \rightarrow no collisioni

Gigabit Ethernet (802.3z)

- 1000 Mbps = 1 Gbps
- Mantiene invariata lunghezza min/max frame

40/100 Gigabit Ethernet (802.3b..)

- Estende tecnologia, velocità trasferimento, distanza max copertura
- 40 Gbps: data centers
- 100 Gbps internet backbones

Dispositivi di interconnessione

Repeater e Hub

- Repeater
 - operano solo a livello fisico
 - Rigenerano il segnale che ricevono
 - in passato usati per collegare segmenti di Ethernet con topologia a bus
- Hub
 - repeater multi-porta
- Repeater e hub non hanno capacità di filtraggio

Switch di livello link

Operano

- Sia a livello fisico: rigenerando segnale
- Sia a livello link: verificando indirizzi MAC contenuti in frame
- Dispositivi store and forward (buffer)
- Non modificano indirizzi MAC in intestazione frame
- Hanno una tabella che usano per filtraggio

Switch 1 2 3 4

Tabella di commutazione

Indirizzo	Porta
71:2B:13:45:61:41	1
71:2B:13:45:61:42	2
64:2B:13:45:61:12	3
64:2B:13:45:61:13	4

Ethernet switch

- link-layer device: ruolo attivo
 - Store and forward di frame Ethernet
 - Esamina gli indirizzi MAC dei frame in arrive, inoltra in modo selettivo i frame su uno o più collegamenti
- transparente
 - Gli host non sono a conoscenza della presenza degli switch
- plug-and-play, self-learning
 - Gli switch non devono essere configurati

Switch: trasmissioni multiple simultanee

- Gli host hanno connessioni dedicate verso lo switch
- Gli switch bufferizzano i pacchetti
- no collisions; full duplex
 - Ogni link ha il suo proprio dominio di collisione
- switching: A-to-A' and B-to-B' possono trasmettere simultaneamente, senza collisioni

switch with six interfaces (1,2,3,4,5,6)

Switch con auto-apprendimento

Costruzione graduale della tabella

Indirizzo	Porta
71:2B:13:45:61:41	1

b. Dopo che A invia un frame a D

Indirizzo	Porta
71:2B:13:45:61:41	1
64:2B:13:45:61:13	4

c. Dopo che D invia un frame a B

Indirizzo	Porta
71:2B:13:45:61:41	1
64:2B:13:45:61:13	4
71:2B:13:45:61:42	2

d. Dopo che B invia un frame ad A

Indirizzo	Porta
71:2B:13:45:61:41	1
64:2B:13:45:61:13	4
71:2B:13:45:61:42	2
64:2B:13:45:61:12	3

e. Dopo che C invia un frame a D

 64:2B:13:45:61:12 64:2B:13:45:61:13

Switch: frame filtering/forwarding

when frame received at switch:

- 1. record incoming link, MAC address of sending host
 - 2. index switch table using MAC destination address

```
3. if entry found for destination then {
if destination on segment from which frame arrived then drop frame
else forward frame on interface indicated by entry</pr>
}
else flood /* forward on all interfaces except arriving interface */
```

Interconnecting switches

Più switch ad autoapprendimento possono essere collegati:

Q: A invia un frame a G – come fa S_1 ad apprendere che il frame destinato a G deve passare da S_4 e S_3 ?

 <u>A:</u> self learning! (esattamente come nel caso dello switch singolo!)

Self-learning multi-switch example

C invia un frame a I, I risponde a C

Q: indicare le tabelle in S₁, S₂, S₃, S₄

Router

Operano

- Sia a livello fisico: rigenerando segnale
- Sia a livello link: verificando indirizzi MAC contenuti in frame
- Sia a livello network: verificando indirizzi IP

Router ≠ repeater e switch/hub

- 1. Router hanno 1 indirizzo MAC e 1 indirizzo IP per ogni loro interfaccia
- 2. Operano solo sui frame il cui indirizzo destinazione (link) è l'indirizzo (link) dell'interfaccia su cui arrivano
- Cambiano indirizzi link contenuti nei frame che inoltrano

Institutional network

VLAN

VLANs: motivation

consider:

- single broadcast domain:
 - all layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN
 - security/privacy,efficiency issues

Broadcast domain

 The total collection of devices that receive broadcast frames from each other is referred to as a broadcast domain.

- In molte situazioni, un frame di broadcast viene utilizzato per uno scopo, come la gestione della rete o la trasmissione di qualche tipo di avviso, con un'importanza relativamente locale.
- Se un frame broadcast contiene informazioni utili solo a un particolare reparto, la capacità di trasmissione viene sprecata sulle altre porzioni della LAN e sugli altri switch.

VLAN

- Una rete locale virtuale (VLAN) è un sottogruppo logico all'interno di una LAN creato dal software anziché spostando e separando fisicamente i dispositivi
- Riunisce le stazioni utente e i dispositivi di rete in un unico dominio di broadcast, indipendentemente dal segmento fisico della LAN a cui sono collegati, consentendo al traffico di fluire in modo più efficiente all'interno di popolazioni di interesse reciproco
- Gli host all'interno di una VLAN comunicano tra loro come se fossero tutti (e nessun altro) connessi allo switch
- La VLAN logica è implementata negli switch e funziona a livello MAC
- tali switch permette di definire più reti locali virtuali su una certa infrastruttura fisica
- Poiché l'obiettivo è isolare il traffico all'interno della VLAN, per collegarsi da una VLAN all'altra è necessario un router o uno switch a 3 livelli

- Le VLAN consentono a qualsiasi gruppo di essere fisicamente disperso in tutta l'azienda, pur mantenendo la propria identità di gruppo.
- Una trasmissione dalla stazione di lavoro X al server Z avviene all'interno della stessa VLAN.
- Un frame MAC broadcast da X viene trasmesso a tutti i dispositivi in tutte le porzioni della stessa VLAN.
- Ma una trasmissione da X alla stampante Y passa da una VLAN a un'altra. Di conseguenza, per spostare il pacchetto IP da X a Y è necessaria una logica di router a livello IP.
 - lo switch determina se il frame MAC in arrivo è destinato a un altro dispositivo della stessa VLAN. In caso contrario, lo switch instrada il pacchetto a livello IP.

Figure 9.3 A VLAN Configuration

VLANs

Virtual Local Area Network

switch(es) supporting VLAN capabilities can be configured to define multiple *virtual* LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that single physical switch

... operates as multiple virtual switches

Port-based VLAN

- traffic isolation: frames to/from ports 1-8 can only reach ports 1-8
 - can also define VLAN based on MAC addresses of endpoints, rather than switch port
- dynamic membership: ports can be dynamically assigned among VLANs

- forwarding between VLANS: done via routing (just as with separate switches)
 - in practice vendors sell combined switches plus routers

VLANS spanning multiple switches

- trunk port: carries frames between VLANS defined over multiple physical switches
 - frames forwarded within VLAN between switches can't be vanilla 802. I frames (must carry VLAN ID info)
 - 802. I q protocol adds/removed additional header fields for frames forwarded between trunk ports

802. I Q VLAN frame format

VLAN and subnets

- PC1 and PC4 can communicate directly with each other
- but must use the router to get to PC2 and PC3.
- Frames issued on red VLAN 1 will not be seen by nodes on blue VLAN 2

The recommendation is to have: 1 VLAN = 1 IP subnet = 1 Broadcast Domain

Altri modi per definire VLAN

- Abbiamo visto port-based VLAN, ci sono altri criteri possibili, tra cui:
- VLAN basate sull'indirizzo MAC
 - il gestore di rete specifica un insieme di indirizzi MAC che ap-partengono a ciascuna VLAN; quando un dispositivo viene collegato a una porta, la porta viene associata alla VLAN appropriata sulla base dell'indirizzo MAC del dispositivo.
- VLAN definite sulla base dei protocolli a livello di rete (per esempio,

Synthesis: a day in the life of a web request

Synthesis: a day in the life of a web request

- journey down protocol stack complete!
 - application, transport, network, link
- putting-it-all-together: synthesis!
 - goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests/receives www.google.com

A day in the life: scenario **DNS** server browser Comcast network (Cy) 68.80.0.0/13 school network 68.80.2.0/24 web page Google web server Google's network 64.233.160.0/19 64.233.169.105

A day in the life... connecting to the Internet

- connecting laptop needs to get its own IP address, addr of firsthop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

A day in the life... connecting to the Internet

- DHCP server formulates
 DHCP ACK containing
 client's IP address, IP
 address of first-hop router
 for client, name & IP address
 of DNS server
- encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

- before sending HTTP request, need IP address of www.google.com:
 DNS
- DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of first hop router, so can now send frame containing DNS query

 IP datagram containing DNS query forwarded via LAN switch from client to 1st hop router

router

(runs DHCP)

- IP datagram forwarded from campus network into Comcast network, routed (tables created by RIP, OSPF, IS-IS and/or BGP routing protocols) to DNS server
- demuxed to DNS server
- DNS server replies to client with IP address of www.google.com

A day in the life...TCP connection carrying HTTP

- to send HTTP request, client first opens TCP socket to web server
- TCP SYN segment (step I in 3way handshake) inter-domain routed to web server
- web server responds with TCP SYNACK (step 2 in 3-way handshake)
- TCP connection established!

A day in the life... HTTP request/reply

