PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-077315

(43) Date of publication of application: 14.03.2000

(51)Int.Cl.

H01L 21/027

G03F 7/22

(21)Application number: 10-249003

(71)Applicant: NIKON CORP

(22)Date of filing:

03.09.1998

(72)Inventor: TSUJI TOSHIHIKO

SAITO MICHIAKI

(54) EXPOSURE METHOD AND ALIGNER

(57)Abstract:

PROBLEM TO BE SOLVED: To expose with a light beam in an always adequate state of an optical axis, regardless of the positions of a stage, without decreasing the throughput thereof.

SOLUTION: When a wafer stage WS is put at a measuring position (wafer delivery position), positional information (displacement of angle and position) of a light beam 1L from a light source 12 is measured by a monitor unit 29. On the basis of the positional information and information of optical-axis dislocation of the light beam 1L between the light beam 1L on the stage WS at the measuring position and the light beam 1L on the stage WS in a movable range thereof at a plurality of reference positions (for example, positions corresponding to each shot-region exposure) selected at a distance from the measuring position, the optical axis of the light beam 1L is adjusted by the optical axis compensating systems 23 and 24, when the exposure is carried out for each shot region of a wafer W. In this case, the information on dislocation is measured beforehand and stored in a memory unit 2.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-77315

(P2000-77315A)

(43)公開日 平成12年3月14日(2000.3.14)

(51) Int.Cl."	識別記号	FΙ		テーマコード(参考)
H01L 21/027		H01L 21/30	514C	5 F O 4 6
G03F 7/22		G03F 7/22	Н	
		H 0 1 L 21/30	516B	

審査請求 未請求 請求項の数9 OL (全 10 頁)

(21)出願番号	特顏平10-249003	(71)出額人 000004112
		株式会社ニコン
(22)出願日	平成10年9月3日(1998.9.3)	東京都千代田区丸の内3丁目2番3号
		(72)発明者 辻 寿彦
		東京都千代田区丸の内3丁目2番3号 お
		式会社ニコン内
		(72)発明者 齋藤 道明
		東京都千代田区丸の内3丁目2番3号 杉
		式会社ニコン内
		(74)代理人 100097180
		弁理士 前田 均 (外1名)
		Fターム(参考) 5F046 BA04 BA05 CC01 CC16 CD04
		DA12 DB05

(54) 【発明の名称】 露光方法及び露光装置

(57)【要約】

【課題】 ステージ位置にかかわらず光ビームの光軸が常に適正な状態で露光することを、スループットを低下させることなく実現することである。

【解決手段】 ウエハステージWSが計測位置(ウエハ受け渡し位置)にあるときに、光源12からの光ビームILの光軸の位置情報(角度ずれ及び位置ずれ)をモニタユニット29により計測し、該位置情報及びステージWSが前記計測位置にあるときとステージWSの移動可能範囲内に前記計測位置とは離間して選定された複数の基準位置(例えば、各ショット領域の露光時のそれぞれに対応する位置)にステージWSがあるときの光ビームILの光軸の変位情報(角度ずれ及び位置ずれ)のそれぞれに基づいて、ウエハWの各ショット領域について露光するときに、光軸補正系23、24により光ビームの光軸調整を行う。変位情報は予め計測されて記憶装置20aに記憶されている。

【特許請求の範囲】

【請求項1】 露光エネルギービームをマスクに照射 し、該マスクのパターンの像を基板上に投影することに より前記基板を露光する露光方法において、

前記基板を載置するためのステージが所定の計測位置に あるときに、前記露光エネルギービームの光軸の位置情 報を計測し、

該計測された光軸の位置情報、及び前記ステージが前記 計測位置にあるときと前記ステージの移動可能範囲内に 前記計測位置に対して離間して選定された複数位置に前 10 記ステージがあるときとの前記露光エネルギービームの 光軸の変位情報のそれぞれに基づいて、前記ステージに 載置された基板を露光するときに前記露光エネルギービ ームの光軸調整を行うことを特徴とする露光方法。

【請求項2】 前記複数位置のそれぞれは、前記基板上 の複数のショット領域を露光するときの前記ステージの 位置に対応して選定されることを特徴とする請求項1に 記載の露光方法。

【請求項3】 前記露光エネルギービームの光軸調整 は、前記計測された光軸の位置情報と、前記複数位置の 20 うち前記基板を露光するときの前記ステージの位置また はその近傍の位置に対応する前記光軸の変位情報とに基 づいて行われることを特徴とする請求項1に記載の露光 方法。

【請求項4】 前記マスクのバターンは投影光学系を介 して前記基板上に転写され、

前記基板の中心と前記投影光学系の光軸とが実質的に一 致するときの前記ステージの位置を前記計測位置とした ことを特徴とする請求項1又は2に記載の露光方法。

【請求項5】 前記基板の受け渡し位置にあるときの前 30 記ステージの位置を前記計測位置としたことを特徴とす る請求項1又は2に記載の露光方法。

【請求項6】 前記光軸の変位情報は、前記光軸の位置 と前記光軸の角度との少なくとも一方を含むことを特徴 とする請求項1又は2に記載の露光方法。

【請求項7】 露光エネルギービームをマスクに照射し て、該マスクのパターンを基板上の複数のショット領域 のそれぞれに転写する露光方法において、

前記基板上の複数のショット領域を露光するときの前記 ステージの位置に対応して、前記露光エネルギービーム 40 の光軸ずれ情報をそれぞれ検出し、

前記基板上の各ショット領域を露光するときに前記検出 された光軸ずれ情報に基づいて、前記露光エネルギービ ームの光軸調整を行うことを特徴とする露光方法。

【請求項8】 マスクに形成されたパターンの像を基板 上に投影することによって前記基板を露光する露光装置 において、

露光エネルギービームを発生するビーム源と、

該ビーム源と異なるベース上に設置され、前記露光エネ ルギービームのもとで前記マスクのバターンを前記基板 50 本体部から分離して、同一の床面上に設置され、あるい

上に転写するための露光本体部と、

前記基板を載置するためのステージが所定の計測位置に あるときと、該ステージが該計測位置に対して離間した 複数の基準位置にあるときとの前記露光エネルギービー ムの光軸の変位情報がそれぞれ記憶保持された記憶装置 Ł.

前記ステージが前記計測位置にあるときの前記露光エネ ルギービームの光軸のずれ量を検出する検出装置と、

前記検出装置の検出結果及び前記記憶装置に保持された 変位情報に基づいて前記露光エネルギービームの光軸を 調整する調整装置と、

を有することを特徴とする露光装置。

【請求項9】 前記マスクと前記基板とを同期移動しな がら前記マスクに形成されたパターンの像を前記基板上 に投影して前記基板を走査露光することを特徴とする請 求項8に記載の露光装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体集積回路、 液晶表示素子、薄膜磁気ヘッド、その他のマイクロデバ イスなどをリソグラフィ技術を用いて製造する際に使用 される露光方法、及び露光装置に関する。

[0002]

【従来の技術】半導体デバイスの製造工程の一つである フォトリソグラフィー工程においては、マスク又はレチ クルに形成されているパターンをフォトレジストが塗布 されたウエハ上に転写するための露光装置として、マス クのバターンの像をウエハ上のショット領域に縮小投影 するステッパーが多く用いられている。

【0003】ステッパーとしては、パターンをウエハ上 のショット領域に一括露光し、順次ウエハを移動して他 のショット領域に対して一括露光を繰り返すステップ・ アンド・リピート方式のもの、あるいは最近では露光範 囲の拡大や露光性能の向上等の観点から、マスクとウエ ハとを同期移動して、矩形その他の形状のスリット光で 走査・照明してウエハ上のショット領域を逐次露光し、 順次ウエハを移動して他のショット領域に対して走査・ 露光を繰り返すステップ・アンド・スキャン方式のもの も開発され、実用に供されるようになっている。

【0004】この種の投影露光装置においては、露光光 としては、水銀ランプのg線(波長436nm)やi線 (波長365nm) などが使用されているが、最近では マイクロデバイスのさらなる微細化に対応すべく短波長 化が進行し、KrF (波長248nm)やArF (波長 193nm)、さらにはF2 (波長153nm)など のエキシマレーザ光が使用され、あるいはその使用が検 討されている。

【0005】このようなエキシマレーザ光を射出する光 源(ビーム源)は、一般に大型であるため、露光装置の

3

は露光本体部が設置されるクリーンルームの床下のスペースに設置される。このため、露光本体部と光源との間の規則的あるいは不規則的な振動などによる相対位置の変化などにより光ビーム(照明光)の光軸(強度分布の中心)が規則的にあるいは不規則的に変動する。かかる光ビームの光軸が変動すると、例えば、フライアイインテグレータへ入射する光ビームの光軸が許容範囲を超えてずれると、フライアイインテグレータから出射される光ビームの光量が変動(低下)する。

【0006】 このため、従来は、光ビームの光軸のずれ 10 を照度又は光量変化として捉えて、光源の出力の制御や 光ビームの減光率の制御などによる光量制御、あるいは 露光時間の調整などにより対応していたが、これによる と、フライアイインテグレータへ入射する光ビームの光軸が許容範囲を逸脱してずれると、光量制御では対応できない場合があるとともに、露光時間の調整では処理時間を増大させ、スループットの低下を招く。このため、光ビームの光軸の変動を検出し、光ビームの光軸のずれ を相殺するように調整することが行われていた。

[0007]

【発明が解決しようとする課題】しかしながら、露光本体部は可動部としての基板ステージなどを備えているため、その移動に伴う露光本体部の重心位置の変化などによっても、光ビームの光軸にずれを生じるので、ステージがある特定の位置にあるときに該光軸のずれを相殺するように調整したとしても、ステージが他の位置にある場合には、やはり光軸のずれを生じるという問題があった。

【0008】特に、ステップ・アンド・リピート方式やステップ・アンド・スキャン方式の露光装置では、投影 30 光学系に対して基板ステージを相対的に移動させて、ウエハ上の複数のショット領域に対して順次露光を繰り返すので、各ショット領域に対する露光毎に厳密にはステージ位置の変化に伴う光軸ずれが生じ、マイクロデバイスのさらなる微細化に対応すべくより高精度な露光処理を実現するためには、かかる点をも考慮する必要がある。

【0009】なお、ウエハ上の各ショット領域に対して露光処理を行う直前に光軸のずれを計測・調整するようにすれば、かかる問題を解消できると考えられるが、光 40軸の計測・調整のためには、ある程度の時間を要するので、各ショット領域毎に行うとすれば、スループットが著しく低下するという新たな問題を生じる。

【0010】本発明は、このような従来技術の問題点に鑑みてなされたものであり、その目的とするところは、ステージ位置にかかわらず露光エネルギービームの光軸が常に適正な状態で露光することを、スループットを低下させることなく実現することである。

[0011]

【課題を解決するための手段】以下、この項に示す説明 50 L)をマスク(R)に照射して、該マスクのパターンを

では、本発明を、実施形態を表す図面に示す部材符号に 対応つけて説明するが、本発明の各構成要件は、これら 部材符号を付した図面に示す部材に限定されるものでは ない。

【0012】1. 上記目的を達成するため、本発明の第1の観点による露光方法は、露光エネルギービーム(IL)をマスク(R)に照射し、該マスクのパターンの像を基板(W)上に投影することにより前記基板を露光する露光方法において、前記基板を載置するためのステージ(WS)が所定の計測位置にあるときに、前記露光エネルギービームの光軸の位置情報を計測し、該計測された光軸の位置情報、及び前記ステージが前記計測位置とは離間して選定された複数位置に前記ステージがあるときとの前記露光エネルギービームの光軸の変位情報のそれぞれに基づいて、前記ステージに載置された基板を露光するときに前記露光エネルギービームの光軸調整を行うことを特徴とする。

【0013】基板を載置するステージの位置に依存する 20 露光エネルギービームの光軸のずれは、露光本体部の機 械的な剛性と該ステージの駆動に伴う露光本体部の重心 位置の変化によって生じるから、該ステージの位置によ る再現性がある。本発明では、この点に着目し、ステー ジが所定の計測位置(例えば、基板の受け渡し位置)に あるときとステージがその移動可能範囲内で選定された 複数の位置(例えば、各ショット領域に対して露光する ときのステージの位置) にあるときとの露光エネルギー ビームの光軸の相対的な変位情報を予め求めておき、ス テージが該計測位置にあるときに計測された光軸の位置 情報及び該変位情報に基づいて露光エネルギービームの 光軸調整を行うようにした。これにより、露光時のステ ージの位置に依存する光軸のずれが相殺された状態で露 光処理を行うことができるから、ステージ位置にかかわ らず、常に光軸が適正な状態で露光することができるよ うになる。また、所定の計測位置で光軸の位置情報を実 際に計測した後は、各ショット領域に対する一連の露光 処理時に、光軸の位置情報の計測を行わなくてよいの で、スループットの低下も低く抑えることができる。

【0014】特に、所定の計測位置を基板の受け渡し位置に設定すれば、ステージは基板受け渡し位置においては、基板の受け渡しのために比較的に長時間停止しているから、その停止時間を利用して光軸の位置情報を計測できるので、光軸の計測のためのスループットの低下を実質的に無くすことができるとともに、光軸の計測を露光本体部が十分に安定した状態で、且つ十分な時間をかけて行うことができるから、計測の精度も高くすることができる。

【0015】2. 上記目的を達成するため、本発明の第2の観点による露光方法は、露光エネルギービーム(|

5

基板(W)上の複数のショット領域のそれぞれに転写する露光方法において、前記基板上の複数のショット領域を露光するときの前記ステージの位置に対応して、前記露光エネルギービームの光軸ずれ情報を呑れぞれ検出し、前記基板上の各ショット領域を露光するときに前記検出された光軸ずれ情報に基づいて、前記露光エネルギービームの光軸調整を行うことを特徴とする。

【0016】基板を載置するステージの位置に依存する 光ビームの光軸のずれは、露光本体部の機械的な剛性と 該ステージの駆動に伴う露光本体部の重心位置の変化に 10 よって生じるから、該ステージ位置による再現性があ る。本発明では、この点に着目し、基板上の複数のショット領域を露光するときのステージの位置に対応して、 露光エネルギービームの光軸のずれ情報をそれぞれ検出 しておき、基板上の各ショット領域を露光するときに当 該光軸ずれ情報に基づいて、光軸調整を行うようにした から、各ショット領域について、常に光軸が適正な状態 で露光を行うことができる。また、各ショット領域のそれぞれについて光軸ずれ情報を計測した後は、各ショット領域に対する一連の露光処理時に、当該情報の計測を 20 行わなくてよいので、スループットの低下も低く抑える ことができる。

【0017】3.上記目的を達成するため、本発明の第 3の観点による露光装置は、マスク(R)に形成された パターンの像を基板(W)上に投影することによって前 記基板を露光する露光装置において、露光エネルギービ ーム(IL)を発生するビーム源(12)と、該ビーム 源と異なるベース上に設置され、前記露光エネルギービ ームのもとで前記マスクのパターンを前記基板上に転写 するための露光本体部(11)と、前記基板を載置する 30 ためのステージ (WS) が所定の計測位置にあるとき と、該ステージが該計測位置に対して離間した複数の基 準位置にあるときとの前記露光エネルギービームの光軸 の変位情報がそれぞれ記憶保持された記憶装置(20 a)と、前記ステージが前記計測位置にあるときの前記 露光エネルギービームの光軸のずれ量を検出する検出装 置(29)と、前記検出装置の検出結果及び前記記憶装 置に保持された変位情報に基づいて前記露光エネルギー ビームの光軸を調整する調整装置(23,24)と、を 有することを特徴とする。本発明によると、上記本発明 40 の第1の観点による露光方法を実施するために好適な露 光装置が提供される。

[0018]

【発明の実施の形態】以下、本発明の実施形態を図面に 基づいて説明する。

【0019】図1は本発明の実施形態のステップ・アンド・スキャン方式の投影露光装置の全体の概略構成図である。同図において、11は露光装置の本体部(露光本体部)であり、12は露光本体部11に対して露光エネルギービームとしてのArFエキシマレーザ光を供給す 50

る露光光源(ビーム源)である。これらの露光本体部11及び露光光源12は、互いに独立的に構成されて、不図示のクリーンルーム内の同一の床面上に設置されている。なお、露光光源12は、クリーンルームの外の同一若しくは異なる床面上に設置され、又はクリーンルームの床面の下側に画成されたユーティリティースペース(機械室)に設置される場合もある。これらの露光本体部11及び露光光源12は、それぞれ防振装置を介して設置されている。露光本体部11と露光光源12との間には、ビーム・マッチング・ユニット(BMU:光軸整合装置)13が設けられている。

【0020】次に、露光本体部 1 1 の構成について説明する。以下の説明においては、投影光学系 1 4 の光軸に平行に 2 軸をとり、 2 軸に直交する平面(水平面)内で図の紙面に垂直に X 軸を、図 1 の紙面に平行に Y 軸をとって説明する。なお、 Y 軸に平行な方向が走査方向(スキャン方向)である。

【0021】露光本体部11は不図示のチャンパ内に収 納されており、このチャンパの床面上に定盤15が設置 され、定盤15上にウエハステージWSが配置されてい る。ウエハステージWSは、リニアモータなどによりX 及びY方向に移動するXYステージ16及びXYステー ジ16上に載置された2ステージ17から構成されてい る。 Zステージ 17上には、不図示のウエハホルダが吸 着保持されており、フォトレジストが塗布された露光対 象としてのウエハWは該ウエハホルダに吸着保持され る。 2ステージ17はウエハ♥を回転方向に微動する機 能及びウエハWの表面を投影光学系14の像面に一致さ せるためのフォーカス・レベリング機能を有している。 【0022】ウエハステージ₩SのZテーブル17 Fに は移動鏡18が固定されており、レーザ干渉計19が移 動鏡18にレーザ光を照射し、その反射光を受光すると とにより、ウエハステージWSの位置が計測され、その 計測値は制御装置20に供給され、この制御装置20に より、ウエハステージWSの移動が制御される。

【0023】また、ウエハテーブルWSの上側には、投 影光学系14が配置され、投影光学系14のさらに上側には、レチクルステージRSが配置され、レチクルステージRS上に転写すべきパターンが形成されたレチクル Rが吸着保持される。レチクルステージRSは、リニアモータなどにより Y方向に移動されるとともに、X方向、Y方向、及び回転方向に 後動する機能を有する。レチクルステージRS上には移動鏡21にレーザ光を照射し、その反射光を受光することにより、レチクルステージRSの位置が計測され、その計測値は制御装置20に供給され、この制御装置20により、レチクルステージRSの移動が制御される。レチクルステージRSの移動が制御される。レチクルステージRSの移動が制御される。レチクルステージRSの移動が制御される。

【0024】露光光源12からの光ビーム(照明光)1

Lは、光軸補正用ミラー23、光軸補正用ハービング2 4、反射ミラー25、反射ミラー26、レンズ群27、 ビームスプリッタ28を有するビーム・マッチング・ユ ニット13を介して、露光本体部11の照明光学系に導 入される。露光本体部11に導入された光ビームは、光 軸補正用ミラー31、光軸補正用ハーピング32、ビー ムスプリッタ33を介して、光ビームの強度分布を均一 化するためのフライアイレンズユニット34に入射され る。フライアイレンズユニット34は、例えば1段目の フライアイレンズに対してリレーレンズ系を介して2段 10 目のフライアイレンズを配置して構成され、2段目のフ ライアイレンズの出射側に不図示の可変開口絞りが配置 されている。開口絞りから出射された光ビームは、不図 示の視野絞り及びリレーレンズ系などを介して反射ミラ -35に至り、その反射光がコンデンサレンズ36を経 て、レチクルステージRS上のレチクルRを照明する。 この光ビームILはレチクルRのパターン形成面(下 面) においてX方向に細長いスリット状の照明領域を有 している。そして、この光ビーム【Lのもとで、レチク ルRの照明領域内のバターンの反転像が投影光学系14 20 を介して所定の投影倍率 β (β は例えば、1/4, 1/5など)でウエハW上の矩形の露光領域に露光される。 【0025】走査露光時には、その照明領域に対して、 レチクルステージRSを介してレチクルRが+Y方向 (又は-Y方向) に速度VRで移動するのに同期して、 その露光領域に対して、ウエハステージWSを介してウ エハWを-Y方向(又は+Y方向)に速度β·VR(β は投影倍率)で移動する。レチクルR及びウエハWはそ れぞれ助走開始後に加速され、所定速度に達して定速運 動するようになってから、照明領域への光ビームILの 30 照射が開始されて、レチクルRのパターンの転写が行わ れる。そして、1つのショット領域への転写が終了する と、光ビームILの照射が停止されて、ウエハステージ WSのステッピングによって次のショット領域が助走開 始位置に移動し、以下、ステップ・アンド・スキャン方 式で各ショット領域へのパターンの転写が順次行われ

【0026】露光光源12からほぼ水平面内の+ Y方向 に射出された紫外バルス光よりなる光ビーム I L は、不 図示のビームエキスパンダにより所定の断面形状に整形 40 される。ビームエキスパンダを通過した光ビーム I L は、光軸補正用ミラー23によりほぼ下方(- Z方向) に反射された後、光軸補正用ハービング24を経て、反射ミラー25により+ Y方向に反射され、反射ミラー26により+ Z方向に反射され、レンズ系27を介して、ビームスブリッタ28に至る。ビームスブリッタ28で+ Y方向に反射された主ビームは露光本体部11に供給される。ビームスブリッタ28を透過した副ビームは光軸ずれ検出用のCCDカメラなどを有する光軸ずれモニタユニット29に入射される。 50

【0027】光軸補正用ミラー23及び光軸補正用ハービング24からなる光軸補正系は、図2に示されているように構成されている。即ち、光軸補正用ミラー23は、支点41と、ムービングコイルモータなどの伸縮自在の駆動素子からなるY軸アクチュエータ42及びX軸アクチュエータ43とに支持されており、Y軸アクチュエータ42及びX軸アクチュエータ43の伸縮量は制御装置20により制御される。また、光軸補正用ハービング24は、それぞれ光透過性の平行平面ガラスから構成されている。これらのXハービング24Yから構成されている。これらのXハービング24Yから構成されている。これらのXハービング24YなどYハービング24Yはそれぞれ回転モータ44、45によって微少回転され、回転モータ44、45の回転量も制御装置20によって制御される。

【0028】露光光源12からの光ビームILは、光軸補正用ミラー23によってほぼーZ方向に反射された後、Xハービング24X及びYハービング24Yを通過している。X軸アクチュエータ42及びY軸アクチュエータ43を適宜に伸縮して、光軸補正用ミラー23の角度を微少変更することにより、反射光の角度(進行方向)はY軸に平行な軸を中心として $\delta\theta$ x、及びX軸に平行な軸を中心として $\delta\theta$ yだけ変化する。さらに、Xハービング24XをY軸に平行な軸の周りに微少回転することによって、光ビームILの光路はX方向に δ dxだけ横シフト(位置ずれ)し、Yハービング24YをX軸に平行な軸の周りに微少回転することによって、光ビームILの光路はY方向に δ dyだけ横シフトする。従って、光ビームILの光軸ずれ(角度ずれ及び位置ずれ)を所定の範囲内で適宜に補正制御することができる。

【0029】再度、図1を参照する。この光軸補正系2 2,23を経た光ビーム! Lは反射ミラー25、反射ミ ラー26、及びレンズ系27を経てビームスプリッタ2 8に入射し、入射した光ビームのうちの一部(例えば、 1%程度)はビームスプリッタ28を透過して光軸ずれ モニタユニット29に入射され、光軸ずれモニタユニッ ト29において進行方向(入射角)のずれ量(角度ずれ 量)及び横シフト量(位置ずれ量)の検出が行われ、検 出結果が制御装置20に供給される。また、ビームスプ リッタ28に入射した光ビーム I Lの大部分(例えば、 99%程度)は、反射されて露光本体部11に向かう。 【0030】図3(A)は、光軸ずれモニタユニット2 9の構成を示している。同図において、ビームスプリッ タ28を透過した光ビーム | Lは、ハーフミラー51に 入射し、ハーフミラーを51を透過した光束は、適当な 減光フィルタ52、及び焦点距離 f の集光レンズ53を 経て、CCDカメラなどからなる2次元撮像素子54に 入射する。集光レンズ53及び撮像素子54により角度 ずれモニタが構成されている。撮像素子54の撮像信号 50 を制御装置20で処理することによって図3(C)に示

すように、撮像素子54の撮像面55において、光束1 L2の中心の所定の基準点55aに対するX方向、及び Y方向への位置ずれ量 $\Delta x 2$ 、 $\Delta y 2$ が検出される。 【0031】との場合、撮像素子54の撮像面55は、 図1のフライアイレンズユニット34の入射面に対して ほぼ光学的フーリエ変換面 (瞳面)の関係にあり、光ビ ーム | LのY軸の周りの角度ずれを $\delta \theta \mathbf{x}$ 、X軸周り の角度ずれを $\delta \theta y$ とすると、これと位置ずれ量 Δx 2、 Δy 2 との間には次の関係がある。

 $[0032]\Delta x2 = f \cdot \delta \theta x' \cdots (1A)$ $\Delta y 2 = f \cdot \delta \theta y' \cdots (1 B)$ このとき、フライアイレンズユニット34の光軸に対す る角度ずれ $\mathbb{E}\delta\theta x'$ 、 $\delta\theta y'$ が0の状態で、位置ず れ量Δx2、Δy2が0になるように、撮像面55にお ける基準点55aが設定されており、制御装置20は (1A)式、(1B)式より光ビーム I Lの露光本体部 11に対する角度ずれ量 $\delta \theta x$ 、 $\delta \theta y$ を算出す

【0033】一方、ハーフミラー51で反射された光束 は、反射ミラー56、倍率mの縮小光学系57を経て、 CCDカメラなどからなる2次元の撮像素子58に入射 する。縮小光学系57と撮像素子58との間には、撮像 素子58への入射光量調整のための適当な減光フィルタ (不図示)が設置されている。撮像素子58の撮像信号 を制御装置20で処理することにより、図3(B)に示 すように、撮像素子58の撮像面59において、光束の 中心の所定の基準点59aに対するX方向、及びY方向

る。

【0034】との場合、撮像素子58の撮像面59は、 図1のフライアイレンズユニット34の入射面に対して 30 ほぼ共役であり、光ビームILのX軸方向の位置ずれ量 $を \Delta d x$ 、Y軸方向の位置ずれ量を $\Delta d y$ とする と、これらと位置ずれ量Δx1, Δy1との間には次の 関係がある。

 $[0035]\Delta x1 = m \cdot \delta dx'$ ··· (2A) $\Delta y 1 = m \cdot \delta d y$ ··· (2B)

また、フライアイレンズユニット34に対する位置ずれ 量δdx'、δdy'が0の状態で、撮像面59での位 置ずれ \mathbb{Z} Δx 1, Δy 1が0になるように、撮像面59 上での基準点59aが設定されており、制御装置20は 40 (2A)式、(2B)式より光ピーム I Lの露光本体部 11に対する位置ずれ量 δ dx'、 δ dy'を算出す る。

【0036】角度ずれ量るθx'、δθy'、及び位置 ずれ量δ d x '、δ d y 'を算出した後に制御装置20 は、図2に示した光軸ずれ補正系での角度ずれの補正量 $\delta\theta$ x、 $\delta\theta$ yをそれぞれ $-\delta\theta$ x'、 $-\delta\theta$ y'に設 定し、且つ位置ずれの補正量 δ dx、 δ dyをそれぞれ $-\delta dx'$ 、 $-\delta dy'$ に設定する。即ち、光軸ずれモ

 θ y'、及び位置ずれ量 δ d x'、 δ d y' がそれぞれ 0になるように、光軸補正用ミラー23及び光軸補正用 ハービング24 (24X, 24Y)を駆動制御する。C れによって、光ビーム [Lの露光本体部]] に対する角 度ずれ量及び位置ずれ量(以下、まとめれ光軸ずれ 量)、ひいては光ビームILの露光本体部11のフライ アイレンズユニット34に対する光軸ずれ量がほぼ0に

【0037】再度、図1を参照する。ピーム・マッチン 10 グ・ユニット13のビームスプリッタ28での反射光 (主ビーム)は、露光本体部11に導かれ、光軸補正用 ミラー31によりほぼ上方(+2方向)に反射された 後、光軸補正用ハービング32を経て、ビームスプリッ タ33に至る。ビームスブリッタ33で+Y方向に反射 された主ビームはフライアイレンズユニット34に供給 される。ビームスプリッタ33を透過した副ビームは光 軸ずれモニタユニット37に入射される。

【0038】光軸補正用ミラー31及び光軸補正用ハー ビング32は、図2に示した、光軸補正系の光軸補正用 ミラー23及び光軸補正用ハーピング24と同様の構成 なので、その説明は省略する。また、光軸ずれモニタユ ニット37も図3に示した光軸ずれモニタユニット29 と同様の構成なので、その説明は省略する。

【0039】次に、ウエハステージWSの位置に応じた 光軸ずれ量(光軸の位置情報)を収集する作業について 説明する。との作業は、投影露光装置を設置した際の初 期調整時又は投影露光装置のメンテナンス時などに行う 作業である。ウエハステージWSの中心(重心)、及び レチクルステージRSの中心(重心)をそれぞれ投影光 学系14の光軸上に移動させる。投影光学系14の光軸 は、両ステージWS、RSを除く機構部のほぼ重心を通 過するように設計されているため、通常は両ステージ♥ S、RSをそのように配置した状態が最も安定した状態 であると考えられる。

【0040】との状態で、ビーム・マッチング・ユニッ ト13の光軸ずれ補正系(光軸補正用ミラー23及び光 軸補正用ハービング24)による補正量を0にして、露 光本体部11の光軸ずれモニタユニット37により光軸 ずれ畳をモニタしながら、光軸ずれ補正系(光軸補正用 ミラー31及び光軸補正用ハーピング32)を用いて、 フライアイレンズユニット34の入射面に対する光軸ず れ量(角度ずれ量及び位置ずれ量)を0となるように調 整する。このとき、ビーム・マッチング・ユニット13 の光軸ずれモニタユニット29の撮像素子54,58の 撮像面55,59に入射する光束 | L2, IL1の中心 をそれぞれ基準点55a、59aとして、これらの基準 点55a, 59aを制御装置20の記憶装置(不揮発性 メモリ)20aに記憶保持する。これにより、ウエハス テージWS及びレチクルステージRSの中心が投影光学 ニタユニット29で検出される角度ずれ量 δ θ \mathbf{x} 、 δ 50 系14の光軸上に位置するときに、光ビームILのフラ イアイレンズユニット34に対する光軸ずれ量が0にな るとともに、光軸ずれモニタユニット29を介してモニ タされる光軸ずれ量も0になる。

【0041】次に、ウエハステージWSを所定の計測位 置(ととでは、基板受け渡し位置とする)に移動して、 この状態で、ビーム・マッチング・ユニット13の光軸 ずれモニタユニット29により光軸ずれ量(角度ずれ量 及び位置ずれ量)を計測し、基板受け渡し位置における 光ビームの光軸の初期位置情報としてこれを記憶装置2 0 a に記憶保持する。その後、ウエハステージWSの移 10 動可能範囲に所定のビッチで碁盤目状に選定された複数 位置、すなわちウエハW上の複数のショット領域を露光 するときのウエハステージWSの位置(露光位置)に順 次ウエハステージWSを移動し、該露光位置における光 ピームILの光軸の変位情報のそれぞれを、前記基板受 け渡し位置における光軸ずれ量との差分(オフセット) として記憶装置20aに記憶保持する。

【0042】なお、各基準位置において実際に計測した 変位情報に基づいて、ピッチなどを変更して、新たに碁 盤目状に複数位置を選定し、該新たな位置における変位 20 情報の各々をその近傍の位置に対応する元の変位情報に 基づいて、最小自乗法やその他の近似方法などを用いて 算出して、これを変位情報として記憶装置20aに記憶 保持してもよい。光軸の変位情報を収集する位置は、変 位情報の収集の効率やこの露光装置が予定するウエハの サイズ及びショット配列などを考慮して適宜に選定され

【0043】次に、実際の露光処理時の処理について、 図4に示すフローチャートを参照して説明する。まず、 ウエハステージWSをウエハWの受け渡し位置(ローデ 30 ィング位置)に移動して(ST1)、ウエハ♥の交換を 行う(ST2)。このウエハWの交換処理と並行して、 光軸ずれモニタユニット29によりその位置(ウエハW の受け渡し位置) における光軸の初期位置からのずれ量 (角度ずれ量及び位置ずれ量)を計測する(ST3)。 次に、記憶装置20aに記憶保持された変位情報を検索 して、露光処理を実施すべきショット領域に対応するウ エハステージWSの位置(露光位置)についての変位情 報を読み出すとともに、この読み出された変位情報とS T3で計測された光軸のずれ量とに基づいて、当該露光 40 位置における新たな光軸の変位情報とする(ST4)。 なお、ここでは、記憶装置20 a に記憶保持されている 変位情報は、ウエハWのショット領域に1対1に対応し ているものとする。

【0044】次いで、新たに求めた光軸の変位情報が示 す光軸ずれ量を相殺するように、ピーム・マッチング・ **ユニット13の光軸ずれ補正系の光軸補正用ハービング** 24及び光軸補正用ミラー23を駆動して、光ビーム1 Lの光軸の角度及び位置を調整する(ST5)。 これと 並行して、ウエハステージWSを露光位置、即ち、露光 50 ない適正な状態で各ショット領域について露光処理を行

すべきショット領域(この場合は最初のショット領域) が投影光学系14による投影位置に位置するように移動 する (ST6)。その後、ウエハWに対して露光処理を 実施し(ST7)、次いで、他のショット領域に対し て、順次同様に変位情報の読み出し、光軸の補正、ステ ージの移動及び露光処理を繰り返すことにより(ST4 ~7)、ウエハW上の全てのショット領域に対して路光 処理を実施する(ST8)。全てのショット領域に対す る露光処理が終了したならば、再度ウエハステージWS をウエハ受け渡し位置に移動して(ST1)、ウエハ♥ の交換を行うとともに (ST2)、これと並行して、そ の位置における光軸ずれ量の計測を行い(ST3)、以 下、同様の処理を繰り返す。

12

【0045】なお、通常は、露光装置は各種のショット 配列のウエハWについて処理するから、各ショット領域 に対応するウエハステージWSの位置と、変位情報を計 測した基準位置とは必ずしも一致しないので、その場合 には、各ショット領域に対応するウエハステージWSの 位置に最も近い基準位置についての変位情報を使用する ようにできる。あるいは、その近傍の複数の基準位置に ついての変位情報に基づき、直線近似、曲線近似、若し くは最小二乗近似などの近似方法により近似して、該ス テージ位置についての妥当な変位情報を算出して、これ を用いて光軸の補正を行うようにしてもよい。

【0046】本実施形態によると、ウエハステージWS が所定の計測位置(ウエハWの受け渡し位置)にあると きとステージがその移動可能範囲内で碁盤目状に選定さ れた複数の基準位置にあるときの光ビームの光軸の変位 情報(角度ずれ量及び位置ずれ量)を予め求めておき、 露光処理を行うに際し、ウエハステージWSが該計測位 置にあるときに光軸の位置情報(角度ずれ量及び位置ず れ量)を計測し、該位置情報及び該変位情報に基づいて 光ビームの光軸調整を行うようにしている。これによ り、床変動などに伴う露光本体部11と露光光源12と の間の相対位置変化による光軸ずれが相殺されるととも に、露光時のウエハステージWSの位置に依存する光軸 ずれが相殺された状態で露光処理を行うことができるか ら、ウエハステージWSの位置にかかわらず、常に光軸 が適正な状態で露光処理を行うことができるようにな る。

【0047】また、ウエハWの受け渡し位置で光軸のず れ量を計測するようにしたから、ウェハ♥の交換処理に 並行して光軸のずれ量の計測を行うことができ、光軸ず れ量の計測のためにのみ装置を停止する必要がないの で、その分だけスループットを向上することができる。 また、ウエハWの受け渡し位置で光軸ずれ量を実際に計 測した後は、各ショット領域に対する一連の露光処理時 に、光軸ずれ量の計測を行わなくてよいので、スループ ットの低下を低く抑えつつ、光ビームILの光軸ずれが うことができ、光軸ずれによる光量の低下などがなく、 適正な光量での露光を、他の光量調整装置などに依存す ることなく実現することができる。

【0048】なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。

【0049】例えば、上記実施形態においては、所定の 10 計測位置として、ウエハの受け渡し位置を選定しているが、これは、ウエハの交換動作と並行して光軸のずれ量の計測やその補正を行うことにより、スルーブットを向上することを考慮したためであり、ウエハステージWSの中心が投影光学系14の光軸上にあるときのその位置を計測位置としてもよく、あるいは他の位置を計測位置としてもよい。また、変位情報としては、光軸の角度ずれ量及び位置ずれ量のうちの一方のみであってもよい。さらに、上記実施形態においてはウエハステージWSの位置に応じた光軸のずれを補正するようにしているが、 20 必要があればレチクルステージRSの位置についても同様に補正するようにすることができる。

【0050】加えて、本発明は、レチクルとウエハとを同期移動して、矩形その他の形状のスリット光で走査・照明してウエハ上のショット領域を逐次露光し、順次ウエハを移動して他のショット領域に対して走査・露光を繰り返すステップ・アンド・スキャン方式の投影露光装置のみならず、ウエハ上のショット領域を一括露光し、順次ウエハを移動して他のショット領域に対して一括露光を繰り返すステップ・アンド・リビート方式の投影露 30 光装置にも適用することができる。

【0051】さらに、露光装置の光源も特に限定されず、ArF、 F_2 などのエキシマレーザ、さらには軟 X線領域に発振スペクトルを有するEUV(ExtremeUltraViolet)であっても適用可能である。

【0052】また、投影光学系14はその全ての光学素子が屈折素子(レンズ)であるもの以外に、反射素子

(ミラー等)のみからなる光学系であってもよいし、あるいは屈折素子と反射素子(凹面鏡、ミラー等)とからなるカタディオプトリック光学系であってもよい。

[0053]

【発明の効果】本発明は以上詳述したように構成したから、ステージ位置にかかわらず露光エネルギービームの 光軸が常に適正な状態で露光できるようになり、しかも スループットを低下させることも少ないという効果がある。

10 【図面の簡単な説明】

【図1】 本発明の実施形態の投影露光装置の要部構成を示す図である。

【図2】 本発明の実施形態の光軸補正系の構成を示す 斜視図である。

【図3】 本発明の実施形態の光軸ずれモニタユニットの説明図であり、(A)は構成図、(B)は撮像素子の 撮像面を示す図、(C)は他の撮像素子の撮像面を示す 図である。

【図4】 本発明の実施形態の露光処理時の処理を示す) フローチャートである。

【符号の説明】

₩…ウエハ

₩S…ウエハステージ

R…レチクル

RS…レチクルステージ

【し…光ビーム (照明光)

11…露光本体部

12…露光光源

13…ビーム・マッチング・ユニット

0 14…投影光学系

20…制御装置

20 a…記憶装置

23,31…光軸補正用ミラー

24,32…光軸補正用ハービング

28, 33…ピームスプリッタ

29,37…光軸ずれモニタユニット

34…フライアイレンズユニット

54,58…二次元撮像素子

【図1】

図1

【図4】

⊠ 4

