			Page 1	1		
Name	e:					IIT Kanpur CS771 Intro to ML
Roll	No.:		Dept.: [End-semester Examination Date: November 29, 2018
Insti	ructio	ons:				Total: 120 marks
1 2 3 4	. Plo . Yo . In	nis question paper contains a total ease write your name, roll number, ou may write your answers using penportant: Please do not give derivuse standard results (e.g., solution ne last page of the question paper l	department encil but you vations/elabo of least squ	on every ar handwriting or the steps where ares regress	side of eding should unless specified with	very sheet of this booklet. I be bold and prominently visible cifically asked for it. Feel free out deriving them from scratch.
Section	on 1	(True or False: $12 \times 1 = 12 \text{ marks}$).	. For each of	the followi	ing simply	write T or F in the box.
1.		The kernel SVM weight vector \boldsymbol{u} when using a linear kernel (assum		-	•	· ·
2.		Learning a single hidden layer ne learning a kernelized model with			ite many	hidden units is equivalent to
3.		Both alternating optimization (algorithm, are sensitive to initial	, .	as well as	the expe	ctation maximization (EM)
4.		It is possible to get closed form so classification model with Gaussia			meters of	a fully supervised generative
5.		A K-nearest neighbors classifier boundary regardless of the value		ıclidean dist	tances car	n only learn a linear decision
6.		A depth-1 decision tree will usual is used in the sense of this word	v	•	-	`
7.		If the training inputs and test i distribution then the test error o	-		-	m are drawn from the same
8.		Iteration $t + 1$ of Adaboost is far the misclassified examples from i		ration t bec	cause itera	ation $t+1$ trains only using
9.		MAP estimation for a parameter covariance, is equivalent to doing		_		ith zero mean and spherical
10.		If the gap between training and larger training set may reduce the		large for a	model the	en retraining the model with
11.		Probabilistic PCA with noise various for the projection matrix, assumi	-			9
12.		A feedforward neural network's control the last hidden layer nodes.	output layer	computes a	convex co	ombination of the outputs of
		(MCQ: $12 \times 2 = 24$ marks). Tick-1 a question will be awarded only wh		_		-
1.		h of these can be used for regression eedforward neural network, $\boxed{\mathrm{E}}$ Log			B K-near	est neighbor, C Perceptron,
2.		h of these can be kernelized? A A rincipal Component Analysis, E I			-	trees, $\boxed{\mathbf{C}}$ K -means clustering,
3.	Whic	h of these are linear dimensionality isher Discriminant Analysis, D, S	y reduction r	methods: [A	A Probab	

4. Which of these objectives are non-differentiable? \boxed{A} Squared loss with ℓ_1 regularizer, \boxed{B} Hinge loss with ℓ_2 reg., \boxed{C} Hinge loss with ℓ_1 reg., \boxed{D} Huber loss with ℓ_2 reg., \boxed{E} Huber loss with ℓ_1 reg.

			Page	2	
Nam	e :		IIT Kanpu CS771 Intro to ML		
Roll	No.:		Dept.:		End-semester Examination Date: November 29, 2018
	tree c	lassifier, C Prototype based class	ification wit	h Euclidean	SVM with quadratic kernel, B Decision distances, D Single hidden layer neural eing linear combination of the features.
	mixin	,	nodel, B L	earning the s	rained optimization? A Solving for the standard Perceptron, C Learning PPCA earning in reinforcement learning.
	becon		onvex, $\boxed{\mathbf{C}}\ell_2$	norm is conv	perparam. tends to infinity, regularization vex, $\boxed{\mathbf{D}}$, ℓ_1 norm promotes non-negativity r.
	A Fi		ser, B Fine	d other items	user-item ratings matrix can be used to s similar to a given item, C Recommendary clusters of users.
	using it as a	PCA, B First project the inputs a base learner in Adaboost, D Use	to a low-die scores of I	m space using $K > 1$ such c	irst project the inputs to a low-dim space G region of Fisher Discriminant Analysis, G use classifiers to get G new features and learn d learn a linear classifier for each cluster.
	Gauss Gauss	sian prior, and fixed hyperparams ian prior, and fixed hyperparams	B Linear C Logistic	regression wi	ssion with Gaussian likelihood, zero mear with Gaussian likelihood, non-zero mear ith Gaussian prior, D Bernoulli coin-tossation with Gaussian prior on mean.
11.	Whic	n of the following are true about	KNN: A	Very fast a	at test time, $\boxed{\mathrm{B}}$ Tends to underfit as K

increases, \mathbb{C} Have zero error on training data, \mathbb{D} Equivalent to prototype based classification for K=1,

12. Which of the following is true about support vector machines (SVM)? \boxed{A} They are faster than decision trees at test time, \boxed{B} Multiclass SVMs are equivalent to softmax regression, \boxed{C} For linear SVM, every training example is a support vector, \boxed{D} Maximizing the SVM margin is equivalent to maximizing the ℓ_2 norm of SVM weight vector, \boxed{E} Increasing margin leads to more number of misclassified training examples.

Section 3 (Short Answer: $8 \times 4 = 32$ marks). Write your answers precisely and concisely in the provided box.

1. Consider a generative model for binary classification. Suppose each input has 2 features, where the first feature takes one of 5 possible values and the second feature is binary. With naive Bayes assumption, how many parameters would we need to learn for this generative classification model. Justify your answer.

E Training them is computationally very expensive.

Nam	ie:		IIT Kanpur CS771 Intro to ML
Roll	No.:	Dept.:	End-semester Examination Date: November 29, 2018
2.	and r	are given N inputs $\{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N\}$. Suppose, for each a con-sparse feature vector \boldsymbol{z}_n , where the sum of the K feature such feature vectors $\{\boldsymbol{z}_1, \boldsymbol{z}_2, \dots, \boldsymbol{z}_N\}$, using a K -m	eatures is one. Briefly describe how you would
3.	Conse	der a linear model with a regularizer $R(\boldsymbol{w}) = \boldsymbol{w} ^2 +$ of such a regularizer on \boldsymbol{w} when minimizing the object	$\frac{\sum_{d=1}^{D} \sum_{d'=d+1}^{D} (w_d - w_{d'})^2. \text{ What will be the etive } \sum_{n=1}^{N} \ell(y_n, \boldsymbol{w}^{\top} \boldsymbol{x}_n) + \lambda R(\boldsymbol{w}) \text{ w.r.t. } \boldsymbol{w}?}{}$
4.		most 1-3 sentences (preferably only words, no equation equation of the utilized within an algorithm for learning the parameter of the parameter of the control of the contr	, ·
5.	assun	we compute the squared ℓ_2 norm $ \boldsymbol{w} ^2$ of the kernel sing ϕ to be the feature mapping of an RBF kernel? If why it can't be done. Also answer the same question is	f yes, show how it can be done. If no, clearly
6.	exam to be	me a model f applied to a two-class data. Suppose the ples is $p_1(s)$, whereas the PDF of f 's scores on nagative 1 and negative examples to be 0). Suppose F_0 denote that's the false negative rate (FNR) and the true negative	e examples is $p_0(s)$ (assume positive examples es the CDF of p_0 and F_1 denotes the CDF of

	Pag	ge 4	
Vame:			IIT Kanpu CS771 Intro to M
Roll No	Dept	.:	End-semester Examination Date: November 29, 201
and hea	ppose you have two coins c_1 and c_2 with bias other coin c_3 with bias $\mu \in (0,1)$. You do two cads, you toss coin c_1 ; otherwise you toss coin c_2 as c_1 or c_2) as $x \in \{0,1\}$. What is the marginal	coin tosses as follows. Denote the outcom	: First, you toss coin c_3 . If it show ne of the second toss (i.e., when yo
	king the example of a single hidden layer feedfoonlinearities in the hidden nodes, in the absence		·
1. De los	4 (5 problems: $5 \times 8 = 40$ marks). Write your rive and write down the SGD update (minibate $\sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2$. Using the SGD update k thing, i.e., it <i>improves</i> the model's prediction	ch size = 1) for the liequation, formally sh	inear regression model with square now that each SGD update does th

Page 5

Nam	ie:				IIT Kanpur CS771 Intro to ML
Roll	No.:		Dept.:		End-semester Examination Date: November 29, 2018
2.	and lassoc of y_*	abel $y_n \in \{-1, +1\}$. Stated kernel function $k(\cdot)$	Suppose we have mappose,). Show that the prearly write down the exp	ped the inputs to a diction for a new to pression for $f(x_*)$.	$\{(\boldsymbol{x}_n,y_n)\}_{n=1}^N$, where input $\boldsymbol{x}_n \in \mathbb{R}^D$ a new feature space ϕ that has an est input \boldsymbol{x}_* can be written in form. The expression for $f(\boldsymbol{x}_*)$ must be the mapping ϕ in it.
3.	$\{oldsymbol{x}_1,\ldots$ "close use of	$\{\ldots, \boldsymbol{x}_N\}$, with each \boldsymbol{x}_n e" to known vectors μ_1^* , this information. For a	$\in \mathbb{R}^D$. Suppose we have \dots, μ_K^* , respectively. In any iteration of K -mean	ave some a priori i Propose a suitable as, given the current	μ_1, \ldots, μ_K , given N observations information that the K means are prior for each mean μ_k that makes observation-to-cluster assignments equation for each mean.

		Page 6	
Name:			IIT Kanpur CS771 Intro to ML
Roll No	o.:	Dept.:	End-semester Examination
			Date: November 29, 2018
Su pro me to D	oba eans rep × 1	der learning a linear regression model by minimizing the squares we decide to mask out or "drop" each feature x_{nd} of each bility $1-p$ (equivalently, retaining the feature with probability is that we will set the feature x_{nd} to 0 with probability $1-p$ clacing each input \mathbf{x}_n by $\tilde{\mathbf{x}}_n = \mathbf{x}_n \circ \mathbf{m}_n$, where $\mathbf{x}_n \circ \mathbf{m}_n$ denotes elemptically binary mask vector with $m_{nd} \sim \text{Bernoulli}(p)$ ($m_{nd} = 1$ means as the feature x_{nd} was masked/zeroed).	in input $x_n \in \mathbb{R}^D$, independently, with (p) . Masking or dropping out basically (p) . Essentially, it would be equivalent mentwise product and m_n denotes the
Le tha	et us at n	is now define a new loss function using these masked inputs a minimizing the <i>expected</i> value of this new loss function (where is \mathbf{m}_n are random) is equivalent to minimizing a regularized ssion of this regularized loss function. (PS: You did something	the expectation is used since the mask loss function. Clearly write down the
as	\mathbf{X}	der the full (not truncated) singular value decomposition (SV = $\mathbf{U}\Lambda\mathbf{V}^{\top}$. Show that the left singular vectors $\mathbf{U} = [\boldsymbol{u}_1, \dots, \boldsymbol{v}_D]$ are	$[u_N]$ are also the eigenvectors of $\mathbf{X}\mathbf{X}^{\top}$.

	Page 7
Name:	
Roll No.:	Dept.:

IIT Kanpur CS771 Intro to ML End-semester Examination

Date: November 29, 2018

Section 5 (1 problem: 12 marks). Write your answers precisely and concisely in the provided box.

1. Assume you are given N examples $\{(\boldsymbol{x}_n, y_n)\}_{n=1}^N$, with each $\boldsymbol{x}_n \in \mathbb{R}^D$ and $y_n \in \mathbb{R}$. Assume the following generative story for each (\boldsymbol{x}_n, y_n) : (1) Generate $z_n \sim \text{multinoulli}(\pi_1, \dots, \pi_K)$, (2) Generate the inputs $\boldsymbol{x}_n \sim \mathcal{N}(\mu_{z_n}, \Sigma_{z_n})$, and (3) Generate the outputs as $y_n \sim \mathcal{N}(\boldsymbol{w}_{z_n}^{\top} \boldsymbol{x}_n, \beta^{-1})$.

Your goal is to estimate the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k, \boldsymbol{w}_k\}_{k=1}^K$ of this model. Assume β to be fixed.

- You have to derive an EM algorithm to compute the posterior distribution over unknowns $\mathbf{Z} = \{z_1, \ldots, z_N\}$ and point estimate (MLE) of unknowns Θ . To do so, first write down the expression for the complete-data log-likelihood (CLL) for the model, and simplify it (ignore the constants).
- Now derive the necessary expressions that you would need for the EM algorithm for this model. If some of these derivations are obvious/familiar to you, you can skip those and directly write down the final expressions (but these expressions better be correct; no partial marks can be given for incorrect expressions in such a case :)). Also give a brief sketch of the overall EM algorithm.
- Assuming $\pi_k = 1/K$, $\forall k$, derive the ALT-OPT algorithm for this model (you may use the results from the above EM algorithm to get the ALT-OPT algorithm directly, without deriving from scratch). The ALT-OPT algorithm will compute point estimates for both \mathbf{Z} and Θ . Also give a brief sketch of the overall ALT-OPT algorithm.

Page 8

Name:	IIT Kanpur CS771 Intro to ML	
Roll No.:	Dept.:	End-semester Examination Date: November 29, 2018

Page	9
1 age	J

Name:	
Roll No.:	Dept.:

IIT Kanpur CS771 Intro to ML End-semester Examination

Date: November 29, 2018

Some formulae you might need

- Bernoulli: Bernoulli $(x|p) = p^x(1-p)^{1-x}$. Expectation $\mathbb{E}[x] = p$, Variance var[x] = p(1-p)
- Univariate Gaussian PDF: $\mathcal{N}(x|\mu, \lambda^{-1}) = \sqrt{\frac{\lambda}{2\pi}} \exp(-\frac{\lambda}{2}(x-\mu)^2), \, \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$
- Multivariate Gaussian PDF: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\{-\frac{1}{2}(\boldsymbol{x} \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} \boldsymbol{\mu})\}$. Trace-based representation: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\{-\frac{1}{2} \operatorname{trace}[\boldsymbol{\Sigma}^{-1} \mathbf{S}]\}$, $\mathbf{S} = (\boldsymbol{x} \boldsymbol{\mu})(\boldsymbol{x} \boldsymbol{\mu})^\top$.
- For $x_k \in \{0, N\}$ and $\sum_{k=1}^K x_k = N$, multinomial $(x_1, \dots, x_K | N, \boldsymbol{\pi}) = \frac{N!}{\boldsymbol{x}_1! \dots \boldsymbol{x}_K!} \pi_1^{x_1} \dots \pi_K^{x_K}$, where $\boldsymbol{\pi} = [\pi_1, \dots, \pi_K]$, s.t. $\sum_{k=1}^K \pi_k = 1$. The multinoulli is the same as multinomial with N = 1.
- $\frac{\partial \boldsymbol{x}^{\top} \boldsymbol{a}}{\partial \boldsymbol{x}} = \frac{\partial \boldsymbol{a}^{\top} \boldsymbol{x}}{\partial \boldsymbol{x}} = \boldsymbol{a}$, quadratic form: $\frac{\partial}{\partial \boldsymbol{x}} (\boldsymbol{x} \boldsymbol{s})^{\top} \mathbf{W} (\boldsymbol{x} \boldsymbol{s}) = 2 \mathbf{W} (\boldsymbol{x} \boldsymbol{s})$
- $\frac{\partial}{\partial \mu}[\mu^{\top} \mathbf{A} \mu] = [\mathbf{A} + \mathbf{A}^{\top}] \mu$, $\frac{\partial}{\partial \mathbf{A}} \log |\mathbf{A}| = \mathbf{A}^{-\top}$, $\frac{\partial}{\partial \mathbf{A}} \operatorname{trace}[\mathbf{A} \mathbf{B}] = \mathbf{B}^{\top}$
- For a random variable vector \boldsymbol{x} , $\mathbb{E}[\boldsymbol{x}\boldsymbol{x}^{\top}] = \mathbb{E}[\boldsymbol{x}]\mathbb{E}[\boldsymbol{x}]^{\top} + \text{cov}[\boldsymbol{x}]$
- For a random scalar x, $var[x] = \mathbb{E}[x^2] \mathbb{E}[x]^2$

Page 10

Name:		
Roll No.:	Dept.:	

IIT Kanpur CS771 Intro to ML End-semester Examination

Date: November 29, 2018

FOR ROUGH WORK ONLY