Assignment 4: Data Wrangling

Candela Cerpa

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on Data Wrangling

Directions

- 1. Rename this file <FirstLast>_A04_DataWrangling.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 6. Ensure that code in code chunks does not extend off the page in the PDF.

The completed exercise is due on Thursday, Sept 28th @ 5:00pm.

Set up your session

- 1a. Load the tidyverse, lubridate, and here packages into your session.
- 1b. Check your working directory.
- 1c. Read in all four raw data files associated with the EPA Air dataset, being sure to set string columns to be read in a factors. See the README file for the EPA air datasets for more information (especially if you have not worked with air quality data previously).
 - 2. Apply the glimpse() function to reveal the dimensions, column names, and structure of each dataset.

```
knitr::opts_knit$set(root.dir = 'Z:/EDE_Fall2023/')

#Had to make a separate setup because my wd was not setting properly
#Added the above knitr root.dir to set the wd

#1a Load packages
library(tidyverse)
library(lubridate)
library(here)
```

```
#1b Check working directory
getwd()
```

```
## [1] "Z:/EDE_Fall2023"
```

```
#1c Read in data
EPAair_03_18 <- read.csv("./Data/Raw/EPAair_03_NC2018_raw.csv", stringsAsFactors = TRUE)
EPAair_03_19 <- read.csv("./Data/Raw/EPAair_03_NC2019_raw.csv", stringsAsFactors = TRUE)
EPAair PM25 18 <- read.csv("./Data/Raw/EPAair PM25 NC2018 raw.csv", stringsAsFactors = TRUE)
EPAair PM25 19 <- read.csv("./Data/Raw/EPAair PM25 NC2019 raw.csv", stringsAsFactors = TRUE)
#2 Reveal dimensions, column names, and structures of each dataset
glimpse(EPAair_03_18)
## Rows: 9,737
## Columns: 20
## $ Date
                                          <fct> 03/01/2018, 03/02/2018, 03/03/201~
## $ Source
                                          <fct> AQS, AQS, AQS, AQS, AQS, AQS, AQS~
## $ Site.ID
                                          <int> 370030005, 370030005, 370030005, ~
## $ POC
                                          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ Daily.Max.8.hour.Ozone.Concentration <dbl> 0.043, 0.046, 0.047, 0.049, 0.047~
## $ UNITS
                                          <fct> ppm, ppm, ppm, ppm, ppm, ppm, ppm~
## $ DAILY_AQI_VALUE
                                          <int> 40, 43, 44, 45, 44, 28, 33, 41, 4~
## $ Site.Name
                                          <fct> Taylorsville Liledoun, Taylorsvil~
## $ DAILY OBS COUNT
                                          <int> 17, 17, 17, 17, 17, 17, 17, 17, 17, 1~
                                          <dbl> 100, 100, 100, 100, 100, 100, 100~
## $ PERCENT COMPLETE
## $ AQS PARAMETER CODE
                                          <int> 44201, 44201, 44201, 44201, 44201~
## $ AQS_PARAMETER_DESC
                                          <fct> Ozone, Ozone, Ozone, Ozone, Ozone~
                                          <int> 25860, 25860, 25860, 25860, 25860~
## $ CBSA_CODE
## $ CBSA NAME
                                          <fct> "Hickory-Lenoir-Morganton, NC", "~
## $ STATE_CODE
                                          <int> 37, 37, 37, 37, 37, 37, 37, 37, 3~
## $ STATE
                                          <fct> North Carolina, North Carolina, N~
## $ COUNTY_CODE
                                          <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ~
## $ COUNTY
                                          <fct> Alexander, Alexander, ~
## $ SITE_LATITUDE
                                          <dbl> 35.9138, 35.9138, 35.9138, 35.913~
## $ SITE_LONGITUDE
                                          <dbl> -81.191, -81.191, -81.191, -81.19~
glimpse(EPAair_03_19)
## Rows: 10,592
## Columns: 20
## $ Date
                                          <fct> 01/01/2019, 01/02/2019, 01/03/201~
## $ Source
                                          <fct> AirNow, AirNow, AirNow, Ar
                                          <int> 370030005, 370030005, 370030005, ~
## $ Site.ID
## $ POC
                                          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ Daily.Max.8.hour.Ozone.Concentration <dbl> 0.029, 0.018, 0.016, 0.022, 0.037~
## $ UNITS
                                          <fct> ppm, ppm, ppm, ppm, ppm, ppm, ppm~
## $ DAILY_AQI_VALUE
                                          <int> 27, 17, 15, 20, 34, 34, 27, 35, 3~
## $ Site.Name
                                          <fct> Taylorsville Liledoun, Taylorsvil~
                                          <int> 24, 24, 24, 24, 24, 24, 24, 24, 2~
## $ DAILY_OBS_COUNT
## $ PERCENT_COMPLETE
                                          <dbl> 100, 100, 100, 100, 100, 100, 100~
                                          <int> 44201, 44201, 44201, 44201, 44201~
## $ AQS_PARAMETER_CODE
## $ AQS PARAMETER DESC
                                          <fct> Ozone, Ozone, Ozone, Ozone, Ozone~
                                          <int> 25860, 25860, 25860, 25860, 25860~
## $ CBSA_CODE
## $ CBSA NAME
                                          <fct> "Hickory-Lenoir-Morganton, NC", "~
## $ STATE_CODE
                                          <int> 37, 37, 37, 37, 37, 37, 37, 37, 3~
## $ STATE
                                          <fct> North Carolina, North Carolina, N~
## $ COUNTY CODE
                                          <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ~
```

glimpse(EPAair_PM25_18)

```
## Rows: 8,983
## Columns: 20
## $ Date
                           <fct> 01/02/2018, 01/05/2018, 01/08/2018, 01/~
## $ Source
                           ## $ Site.ID
                           <int> 370110002, 370110002, 370110002, 370110~
## $ POC
                           <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ Daily.Mean.PM2.5.Concentration <dbl> 2.9, 3.7, 5.3, 0.8, 2.5, 4.5, 1.8, 2.5,~
## $ UNITS
                           <fct> ug/m3 LC, ug/m3 LC, ug/m3 LC, ug/m3 LC,~
## $ DAILY_AQI_VALUE
                           <int> 12, 15, 22, 3, 10, 19, 8, 10, 18, 7, 24~
## $ Site.Name
                           <fct> Linville Falls, Linville Falls, Linvill~
                           ## $ DAILY_OBS_COUNT
## $ PERCENT COMPLETE
                           ## $ AQS_PARAMETER_CODE
                           <int> 88502, 88502, 88502, 88502, 88502, 8850~
## $ AQS_PARAMETER_DESC
                           <fct> Acceptable PM2.5 AQI & Speciation Mass,~
                           ## $ CBSA CODE
                           ## $ CBSA NAME
## $ STATE CODE
                           ## $ STATE
                           <fct> North Carolina, North Carolina, North C~
## $ COUNTY_CODE
                           ## $ COUNTY
                           <fct> Avery, Avery, Avery, Avery, Avery, Avery
## $ SITE_LATITUDE
                           <dbl> 35.97235, 35.97235, 35.97235, ~
## $ SITE_LONGITUDE
                           <dbl> -81.93307, -81.93307, -81.93307, -81.93~
```

glimpse(EPAair_PM25_19)

```
## Rows: 8,581
## Columns: 20
## $ Date
                          <fct> 01/03/2019, 01/06/2019, 01/09/2019, 01/~
## $ Source
                          ## $ Site.ID
                          <int> 370110002, 370110002, 370110002, 370110~
                          ## $ Daily.Mean.PM2.5.Concentration <dbl> 1.6, 1.0, 1.3, 6.3, 2.6, 1.2, 1.5, 1.5,~
## $ UNITS
                          <fct> ug/m3 LC, ug/m3 LC, ug/m3 LC, ug/m3 LC,~
## $ DAILY_AQI_VALUE
                          <int> 7, 4, 5, 26, 11, 5, 6, 6, 15, 7, 14, 20~
## $ Site.Name
                          <fct> Linville Falls, Linville Falls, Linvill~
                          ## $ DAILY_OBS_COUNT
                          ## $ PERCENT_COMPLETE
## $ AQS_PARAMETER_CODE
                          <int> 88502, 88502, 88502, 88502, 88502, 8850~
                          <fct> Acceptable PM2.5 AQI & Speciation Mass,~
## $ AQS_PARAMETER_DESC
## $ CBSA_CODE
                          ## $ CBSA_NAME
## $ STATE CODE
                          ## $ STATE
                          <fct> North Carolina, North Carolina, North C~
## $ COUNTY CODE
                          ## $ COUNTY
                          <fct> Avery, Avery, Avery, Avery, Avery, Aver~
                         <dbl> 35.97235, 35.97235, 35.97235, 35.97235,~
## $ SITE_LATITUDE
                         <dbl> -81.93307, -81.93307, -81.93307, -81.93~
## $ SITE_LONGITUDE
```

Wrangle individual datasets to create processed files.

- 3. Change the Date columns to be date objects.
- 4. Select the following columns: Date, DAILY_AQI_VALUE, Site.Name, AQS_PARAMETER_DESC, COUNTY, SITE LATITUDE, SITE LONGITUDE
- 5. For the PM2.5 datasets, fill all cells in AQS_PARAMETER_DESC with "PM2.5" (all cells in this column should be identical).
- 6. Save all four processed datasets in the Processed folder. Use the same file names as the raw files but replace "raw" with "processed".

```
#3 Date column into date objects
EPAair_03_18$Date <-mdy(EPAair_03_18$Date)</pre>
EPAair_03_19$Date <-mdy(EPAair_03_19$Date)</pre>
EPAair_PM25_18$Date <-mdy(EPAair_PM25_18$Date)</pre>
EPAair_PM25_19$Date <-mdy(EPAair_PM25_19$Date)</pre>
#4 select columns: Date, DAILY_AQI_VALUE, Site.Name, AQS_PARAMETER_DESC,
#COUNTY, SITE LATITUDE, SITE LONGITUDE
03_18 <- EPAair_03_18 %>% select(Date, DAILY_AQI_VALUE, Site.Name,
                                 AQS_PARAMETER_DESC, COUNTY, SITE_LATITUDE,
                                 SITE LONGITUDE)
03 19 <- EPAair 03 19 %>% select(Date, DAILY AQI VALUE, Site.Name,
                                  AQS PARAMETER DESC, COUNTY, SITE LATITUDE,
                                  SITE LONGITUDE)
PM25_18 <- EPAair_PM25_18 %>% select(Date, DAILY_AQI_VALUE, Site.Name,
                                      AQS_PARAMETER_DESC, COUNTY, SITE_LATITUDE,
                                      SITE_LONGITUDE)
PM25_19 <- EPAair_PM25_19 %>% select(Date, DAILY_AQI_VALUE, Site.Name,
                                      AQS_PARAMETER_DESC, COUNTY, SITE_LATITUDE,
                                      SITE_LONGITUDE)
#5 For the PM2.5 datasets, fill all cells in AQS_PARAMETER_DESC with "PM2.5"
#(all cells in this column should be identical).
PM25_18$AQS_PARAMETER_DESC <- "PM2.5"
PM25_19$AQS_PARAMETER_DESC <- "PM2.5"
#6 Save all four processed datasets in the Processed folder. Use the same file
#names as the raw files but replace "raw" with "processed".
write.csv(03 18, "./Data/Processed/EPAair 03 NC2018 processed.csv")
write.csv(03 19, "./Data/Processed/EPAair 03 NC2019 processed.csv")
write.csv(PM25_18, "./Data/Processed/EPAair_PM25_18_processed.csv")
write.csv(PM25_19, "./Data/Processed/EPAair_PM25_19_processed.csv")
```

Combine datasets

- 7. Combine the four datasets with rbind. Make sure your column names are identical prior to running this code.
- 8. Wrangle your new dataset with a pipe function (%>%) so that it fills the following conditions:
- Include only sites that the four data frames have in common: "Linville Falls", "Durham Armory", "Leggett", "Hattie Avenue", "Clemmons Middle", "Mendenhall School", "Frying Pan Mountain",

- "West Johnston Co.", "Garinger High School", "Castle Hayne", "Pitt Agri. Center", "Bryson City", "Millbrook School" (the function intersect can figure out common factor levels but it will include sites with missing site information, which you don't want...)
- Some sites have multiple measurements per day. Use the split-apply-combine strategy to generate daily means: group by date, site name, AQS parameter, and county. Take the mean of the AQI value, latitude, and longitude.
- Add columns for "Month" and "Year" by parsing your "Date" column (hint: lubridate package)
- Hint: the dimensions of this dataset should be 14,752 x 9.
- 9. Spread your datasets such that AQI values for ozone and PM2.5 are in separate columns. Each location on a specific date should now occupy only one row.
- 10. Call up the dimensions of your new tidy dataset.
- 11. Save your processed dataset with the following file name: "EPAair O3 PM25 NC1819 Processed.csv"

```
#7 Combine the datasets with 'rbind'. Make sure your column names are identical
#prior to running this code ensure column names are identical.
colnames (03_18)
## [1] "Date"
                             "DAILY_AQI_VALUE"
                                                  "Site.Name"
## [4] "AQS_PARAMETER_DESC" "COUNTY"
                                                  "SITE_LATITUDE"
## [7] "SITE LONGITUDE"
colnames(03_19)
## [1] "Date"
                             "DAILY AQI VALUE"
                                                  "Site.Name"
## [4] "AQS_PARAMETER_DESC" "COUNTY"
                                                  "SITE_LATITUDE"
## [7] "SITE_LONGITUDE"
colnames (PM25_18)
## [1] "Date"
                             "DAILY AQI VALUE"
                                                  "Site.Name"
## [4] "AQS_PARAMETER_DESC" "COUNTY"
                                                  "SITE_LATITUDE"
## [7] "SITE_LONGITUDE"
colnames (PM25_19)
## [1] "Date"
                             "DAILY_AQI_VALUE"
                                                  "Site.Name"
## [4] "AQS_PARAMETER_DESC" "COUNTY"
                                                  "SITE_LATITUDE"
## [7] "SITE_LONGITUDE"
EPAair_03_PM25 <- rbind(03_18, 03_19, PM25_18, PM25_19)
#8 wrangle the datasets
wrangled_EPAair_03_PM25 <- EPAair_03_PM25 %>%
  filter(Site.Name %in% c("Linville Falls", "Durham Armory", "Leggett",
                          "Hattie Avenue", "Clemmons Middle", "Mendenhall School",
                          "Frying Pan Mountain", "West Johnston Co.",
```

```
"Garinger High School", "Castle Hayne", "Pitt Agri. Center",
                          "Bryson City", "Millbrook School")) %>%
  group by (Date, Site.Name, AQS PARAMETER DESC, COUNTY) %>%
  summarise(meanAQI = mean(DAILY AQI VALUE),
          meanLAT = mean(SITE LATITUDE),
          meanLOG = mean(SITE LONGITUDE)) %>%
  mutate(Month = month(Date),
         Year = year(Date))
## 'summarise()' has grouped output by 'Date', 'Site.Name', 'AQS_PARAMETER_DESC'.
## You can override using the '.groups' argument.
#9 spread datasets so AQI values for ozone and PM2.5 are in separate columns
spread_EPAair_03_PM25 <- pivot_wider (wrangled_EPAair_03_PM25,</pre>
                                      names_from = AQS_PARAMETER_DESC,
                                      values from = meanAQI)
#10 tidy dataset dimension
dim(spread_EPAair_03_PM25)
## [1] 8976
               a
#11 save tidy dataset
write.csv(spread_EPAair_03_PM25, "./Data/Processed/EPAair_03_PM25_NC1819_Processed.csv")
```

Generate summary tables

- 12. Use the split-apply-combine strategy to generate a summary data frame. Data should be grouped by site, month, and year. Generate the mean AQI values for ozone and PM2.5 for each group. Then, add a pipe to remove instances where mean **ozone** values are not available (use the function drop_na in your pipe). It's ok to have missing mean PM2.5 values in this result.
- 13. Call up the dimensions of the summary dataset.

14. Why did we use the function drop_na rather than na.omit?

Answer: na.omit would just exclude the values from the specific calculation, whereas drop_na removes the recordings from the dataframe alltogether. If, for our project, we care mainly about ozone values, it makes sense to remove recordings that don't add to our project.