

ЗАНЯТИЕ 4.4

МЕТРИКИ РАССТОЯНИЙ И АЛГОРИТМ KNN

ЦЕЛИ ЗАНЯТИЯ

В КОНЦЕ ЗАНЯТИЯ ВЫ:

- будете знать как выбирать метрики близости;
- познакомитесь с алгоритмом KNN;
- потренируемся на различных метриках
- реализуете в коде задачу классификации и регрессии с помощью алгоритма KNN.

МЕТРИКИ РАССТОЯНИЙ

ТОЧКИ НА ПЛОСКОСТИ

точка Б

точка А

ТОЧКИ НА ПЛОСКОСТИ

$$d = \sqrt{(X_6 - X_a)^2 + (Y_6 - Y_a)^2}$$

ТОЧКИ НА ПЛОСКОСТИ

$$d = \sqrt{(X_6 - X_a)^2 + (Y_6 - Y_a)^2}$$

$$d = \sqrt{\sum_{i=1}^{n} (X_i - Y_i)^2}$$

K NEAREST NEIGHBOR

ИДЕЯ АЛГОРИТМА

ИДЕЯ АЛГОРИТМА

к какому кластеру отнести зеленую точку?

ИДЕЯ АЛГОРИТМА

Берем К ближайших соседей к зеленой точке. Берем класс, наиболее часто встречающийся среди соседей.

Варианты:

- Берем ближайшую точку (k = 1) группа синих
- Учитываем несколько соседей (k = 4) группа красных
- Учитываем вес, обратно пропорциональный расстоянию до точки

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

- + Простая реализация и интерпретация
- + Применим ко многим задачам классификации и регрессии

- Число соседей нужно задавать заранее, что иногда определяет результат
- Плохо работает при сильно пересекающихся данных

ВРЕМЯ ПРАКТИКИ

KNN.IPYNB

УЧЕТ КРИВИЗНЫ ПОВЕРХНОСТИ

Москва

Гавана •

УЧЕТ КРИВИЗНЫ ПОВЕРХНОСТИ

d – длина дуги в полярных координатах

КАК НА САМОМ ДЕЛЕ

РАССТОЯНИЕ И ПУТЬ

МАНХЭТТЕНСКОЕ РАССТОЯНИЕ

Улицы Манхэттена перпендикулярны друг другу

ДЛИНЫ ВСЕХ ПУТЕЙ РАВНЫ

ДЛИНЫ ВСЕХ ПУТЕЙ РАВНЫ

Расстояние городских кварталов

$$d = \sum_{i=1}^{n} |X_i - Y_i|$$

МЕТРИКИ БЛИЗОСТИ ОБЪЕКТОВ

CPABHEHUE TEKCTOB

СТАРТОВЫЙ ЛИСТ

```
1 Шехавцова Анна Ж 1998 РГАУ-МСХА
2 Гречихина Наталья Ж 1994 МГУ
3 Козлова Алена Ж 1994 МГУ
4 Груздева Алина Ж 1998 РГУНГ
5 Кущенко Анна Ж 1997 МГУ
6 Чистякова Анастасия Ж 1998 РГАУ-МСХА
```

РАСПОЗНАВАНИЕ РЕЧИ

```
# результат расшифровки речи диктора
speech_recognition = [
    'кучменко она',
    'кущенко оксана',
    'груздь алина',
    'рычихина наталья',
    'шиховцева на',
    'чистова анастасия'
```

РАССТОЯНИЕ ХЭМИИНГА

Число позиций, в которых соответствующие символы двух слов одинаковой длины различны

РАССТОЯНИЕ ХЭМИИНГА

В телекоме для отслеживания ошибок

В биоинформатике для оценки стабильности цепи

https://docs.scipy.org/doc/scipy0.14.0/reference/generated/scipy.spatial.
distance.hamming.html

РАССТОЯНИЕ ЛЕВЕНШТЕЙНА

Минимальное количество операций вставки одного символа, удаления одного символа и замены одного символа на другой, необходимых для превращения одной строки в другую.

М	М	М	R	I	М	R	R
С	0	Ν	Ν		Ε	С	Т
С	0	Ν	Ε	Н	Ε	Α	D

D — удалить,

I — вставить,

R – заменить,

М — совпадение

РАССТОЯНИЕ ЛЕВЕНШТЕЙНА

About 56,200,000 results (0.61 seconds)

Showing results for data science

РАССТОЯНИЕ ДАМЕРАУ-ЛЕВЕНШТЕЙНА

То же самое, но с добавлением операции транспозиции (перестановки символов)

About 8,450,000 results (0.63 seconds)

Did you mean: recursion

юмор Гугла

СЛОВА И ВЕКТОРЫ

METPUKA TF-IDF

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 tf_{ij} = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

МЕРА ВАЖНОСТИ ДОКУМЕНТА

TF (term frequency — частота слова) — отношение числа вхождений некоторого слова к общему числу слов документа

IDF (inverse document frequency — обратная частота документа) — инверсия частоты, с которой некоторое слово встречается в документах коллекции

МЕРА ВАЖНОСТИ ДОКУМЕНТА

TF-IDF имеет много модификаций под разные задачи

Вариант определения для поисковых систем (т. н. ВМ25)

Пусть дан запрос Q, содержащий слова q_1,\ldots,q_n , тогда функция ВМ25 даёт следующую оценку релевантности документа D запросу Q:

$$\operatorname{score}(D,Q) = \sum_{i=1}^{n} \operatorname{IDF}(q_i) \cdot \frac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot (1-b+b \cdot \frac{|D|}{\operatorname{avgdl}})},$$

где $f(q_i, D)$ есть частота слова (англ. term frequency, TF) q_i в документе D, |D| есть длина документа (количество слов в нём), а avgdl — средняя длина документа в коллекции. k_1 и b — свободные коэффициенты, обычно их выбирают как $k_1 = 2.0$ и b = 0.75.

СХОЖЕСТЬ ПОЛЬЗОВАТЕЛЕЙ

КОЭФИЦИЕНТ ЖАККАРА

$$K = \frac{n(A \cap B)}{n(A \cup B)}$$

Отношение количества элементов, общих для множеств А и В, к общему количеству элементов в этих множествах

КОЭФИЦИЕНТ ЖАККАРА

Удобно использовать в рекомендательных системах

Товары

Признак	Телефон 1 vs 2
Память	совпадает
Экран	разный
Процессор	совпадает

Предпочтения пользователей

Фильм	Пользователь 1	Пользователь 2
Гадкий Я	* * * *	*
Мумия	* *	* * *
Пираты	****	***

KNN N PETPECCNЯ

ПРОСТО ПОСМОТРИМ КОД

KNN REGRESSION.IPYNB

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- 1. Метрики расстояний и близости объектов в применении к различным задачам.
- 2. Рассмотрели идею алгоритма KNN.
- 3. Реализовали на практике алгоритм KNN в задачах классификации и регрессии.

ПОЛЕЗНЫЕ МАТЕРИАЛЫ

- 1. Примеры различных корреляций http://www.tylervigen.com/spurious-correlations
- 2. **Enor Open Data Science**https://habrahabr.ru/company/ods/blog/322534/#metod-blizhayshih-sosedey
- 3. Еще примеры метрик https://ru.coursera.org/learn/supervised-learning/lecture/gqbPl/mietriki-v-knn

Спасибо за внимание!

АРТУР САПРЫКИН