Morgan Baccus CptS 350 Homework #12

Problem 1

Since $A \le mB$, We have a Poly-time computable function f such that $\forall x, x \in A \text{ iff } f(x) \in B$.

Since $B \le mC$, we have a poly-time computable function g such that $\forall y, y \in B$ iff $g(y) \in C$.

To show $A \leq mC$, we need to find a poly-time computable function h such that $\forall x, x \in A \text{ iff } h(x) \in C$. Here, we take $h = g \circ f$

Problem 2

We need to guess the question is true and verify.

Guess: There is a sequence of nodes (walk) w such that the length of the wak Iwlek, where k is the number of nodes (bound by the size of the walk).

Check 1: W is indeed a walk on G in determine poly-time.

Check 2: W covers every node in G exactly once in determine poly-time. (can use a hash table or 2-D array to check since k is limited).

Check 3: If 1 and 2 are thre, return thre. else, Crash.

Problem 3

GUESS: there is a walk w that runs the following algorithm in T steps where T > k (number of nodes in G) to bound the size of the walk or run time.

Check 1: W 13 a walk on G in determine poly-time T.

Check 2: W covers every node in G in determine poly-time (can check using hash table of 20 array since k is limited).

Check 3: If I and 2 are thre, return 2. true. Else, crash.

Problem 4

To compare 2 boolean circuits we need to ron all possible inputs. Since the input size is n and there is only 0 and 1 for each possible input, we will spend $O(2^n)$ to check if $C_1 = C_2$.