Controle de Robô Manipulador com Aprendizado por Reforço

Lucas Pereira Cotrim Marcos Menon José

Eduardo Lobo Lustosa Cabral

São Paulo Dezembro de 2019

Robôs Industriais em Operação

Fonte: Executive Summary World Robotics 2018 Industrial Robots

Programação de Robôs Manipuladores

Método Tradicional

Por Demonstração Inteligência Artificial

Programação On-Line

- Realizada no próprio ambiente de trabalho
- Requer robô físico, tempo de ociosidade
- Maior semelhança com tarefa real

Programação Off-line

- Redução de tempo ocioso
- Teste de controladores novos
- Redução de riscos de acidentes
- Diferenças entre simulação e realidade

Programação Tradicional

- Definição manual de pontos no espaço de trabalho
- Interpolação de trajetórias entre pontos definidos

Vantagens

- Alta precisão
- Maior segurança

Desvantagens

- Tarefas fixas e repetitivas
- Baixa flexibilidade
- Procedimento manual

Aprendizado por Reforço

- Agente é treinado a partir de interações com ambiente
- Função recompensa representa comportamento desejado para execução de tarefa

Vantagens

- Exploração
- Aprimoramento contínuo sob treino
- Processo automatizado

Desvantagens

- Tempo de treino
- Simulação x Realidade
- Determinação de função recompensa

Especificação da Tarefa

- KUKA-KR16
- Tarefa de Posicionamento com Obstáculo
- Aprendizado autônomo

Estado da Arte

Aprendizado por Reforço

• Ambientes de simulação

- Treino automatizado
- Aplicações comuns em jogos
- Agentes treinados a partir de imagens

Figura 1: Capturas de telas e gráficos de recompensas médias ao longo do treino de agente por algoritmo DQN em simulador de Atari para jogos *breakout* (esquerda) e *seaquest* (direita) (fonte: MNIH et al, 2013)

Facilidade de obtenção de dados

Estado da Arte

Aprendizado por Reforço em Robótica

- Aplicações práticas limitadas
- Transferência de aprendizado de simulação para ambiente real

- Alto custo e tempo de treino
- Requisitos de segurança
- Sucesso sob estados de dimensão reduzida, como articulações do robô (FRANCESCHETTI, 2016).
- Sucesso parcial para treino a partir de imagens (JAMES, S; JOHNS, E 2016).

Figura 2: Estrutura de rede DQN (esquerda) e imagens de ambiente de simulação e ambiente real (direita) durante treino de agente para tarefa de segurar objeto. Sucesso parcial na transferência do aprendizado de simulação para ambiente real (fonte: JAMES, S; JOHNS, E 2016).

Estado da Arte

Aprendizado por Reforço em Robótica

Treino com múltiplos robôs físicos

- Implementação de algoritmos assíncronos DDPG e
 NAF (Extensão de DQN para ações contínuas)
- Tempo de treino reduzido consideravelmente com múltiplos agentes

Figura 2: Ambiente de treino com múltiplos agentes (esquerda) e gráfico comparativo de curvas de aprendizado para treinos com 1 e 2 agentes (direita) (fonte: GU, S et al, 2016).

Processos de Decisão de Markov (MDPs)

- Processos estocásticos em tempo discreto
- Modelos para otimização de tomada de decisões
- Definidos como {*S*, *A*, *P*, *R*}, onde:
 - S é um conjunto de estados s.
 - A é um conjunto de ações a.
 - P é um conjunto de probabilidades p(s'|s,a).
 - R é um conjunto de recompensas r(s, a).
- A solução de um MDP é uma função política $\pi: S \to A$ que determina a ação $a = \pi(s)$ a ser tomada em cada estado para maximizar o valor esperado de recompensas cumulativas $E_{a_t \sim \pi(s_t)} [\sum_{t=0}^T \gamma^t \ r(s_t, a_t)]$, onde $\gamma \in (0,1)$ é um fator de desconto.

- Obtenção de uma política de ações ótima π^* .
- Avaliar valores de estados e ações segundo a política atual π .

Função Valor dos Estados

$$V_{\pi}(s) = E_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} | s_t = s \right] = E_{\pi} [G_t | s_t = s]$$

Função Valor dos Pares Estado-Ação

 Para simplificar a notação introduz-se o conceito de retorno cumulativo a partir do instante t:

$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$$
$$= r_t + \gamma r_{t+1} + \cdots$$

$$Q_{\pi}(s, a) = E_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k} | s_{t} = s, a_{t} = a \right] = E_{\pi} [G_{t} | s_{t} = s, a_{t} = a]$$

- A política de ações π pode ser não determinística, de modo que $\pi(a|s)$ é a probabilidade de o agente tomar a ação a no estado s.
- É possível expandir as funções $V_{\pi}(s)$ e $Q_{\pi}(s,a)$ iterativamente para obter a equação de Bellman:

Equação de Bellman

$$Q_{\pi}(s, a) = E_{\pi}[G_t | s_t = s, a_t = a]$$

$$= E_{\pi}[r_t + \gamma G_{t+1} | s_t = s, a_t = a]$$

$$= \sum_{s' \in S} p(s' | s, a) \left[r(s, a) + \gamma \sum_{a' \in A} \pi(a' | s') Q_{\pi}(s', a') \right]$$
(1)

• Para políticas e sistemas determinísticos, temos: $Q_{\pi}(s,a) = r(s,a) + \gamma \max_{a' \in A} Q_{\pi}(s',a')$

Classes de Algoritmos

Iteração sobre Política de Ações

- Parametrização da função política de ações $\pi_{ heta}(a|s)$
- Aumento da performance $J(\theta)$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

• Onde $J(m{ heta}) = V_{m{\pi}_{m{ heta}}}(m{s_0})$ é uma função que mede a performance da política atual $m{\pi}_{m{ heta}}(m{a}|m{s})$

Iteração sobre Função Valor

- Parametrização da função valor do par estado-ação $Q_{\theta}(s, a)$
- Diminuição do custo $L(\theta)$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

- Onde $L(\theta) = \frac{1}{2}(Q_{\theta}(s, a) y)^2$, com $y = \begin{cases} r(s, a), & \text{se } s' \text{\'e terminal} \\ r(s, a) + \gamma \max_{a' \in A} Q_{\theta}(s', a'), \text{caso contr\'ario} \end{cases}$
- A função $Q_{m{ heta}}(m{s},m{a})$ é atualizada para satisfazer a Equação de Bellman

Classes de Algoritmos

Iteração sobre Política de Ações

- Algoritmo REINFORCE episódico:
- São simuladas N episódios a cada época do treino e estima-se o gradiente da performance como

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=0}^{T-1} G_t \underbrace{\nabla \pi_{\boldsymbol{\theta}}(\boldsymbol{s_t}, \boldsymbol{a_t})}_{\pi_{\boldsymbol{\theta}}(\boldsymbol{s_t}, \boldsymbol{a_t})}$$

Iteração sobre Função Valor

- Algoritmo DQN:
- São simuladas N trajetórias e armazena-se transições (s, a, r, s') em um buffer B
- São amostradas N_{batch} transições aleatoriamente de B para atualização da função $Q_{m{ heta}}(m{s},m{a})$

Projetos de Teste

- Comparação de algoritmos e determinação de hiper-parâmetros
- Simplificações:
 - Redução do número de graus de liberdade
 - Redução da dimensão dos estados
 - Redução da dimensão das ações
 - Configuração fixa de obstáculo e posição de destino

Projeto Final

Arquitetura de Controle

Espaço de Estados

- Cada estado s é um conjunto de duas imagens
 RGB de tamanho 24x24x3 (dimensão 3456)
- Configuração de câmeras para visualização lateral e superior

Espaço de Ações

Figura 3: Diagrama de Articulações de robô KUKA-KR16 (fonte: KUKA ROBOTICS: Kuka KR6, KR16, KR16 L6, KR 16S specification, 2003)

243 ações discretas

Critérios de Parada

- Simulação de trajetória é encerrada se ${f Simulação}$ Um dos três critérios de parada é satisfeito ${f Número}$ Múmero máximo ${f T}$ de transições é alcançado
- O agente recebe um bônus ou uma penalidade em função do critério de parada

Funções de Recompensa

- Comparação entre diferentes funções de recompensa em projetos de teste
- Determinação de função mais adequada para projeto final

 $r_1(s,a)$: Distâncias Absolutas

 $r_2(s,a)$: Aproximação ou Distanciamento

 $r_3(s,a)$: Projeção de Vetor Deslocamento

$$r_3(\mathbf{s}, \mathbf{a}) = [k_s r_{setpoint} + k_o r_{obstacle}] + B_{goal} + P_{joint\ boundary} + P_{collision}$$

Função de Recompensa Escolhida: $r_3(s,a)$

Posição de destino e de obstáculo

$$r_3(\mathbf{s}, \mathbf{a}) = \begin{bmatrix} k_s r_{setpoint} + k_o r_{obstacle} \end{bmatrix} + B_{goal} + P_{joint\ boundary} + P_{collision}$$
Bônus Penalidades

$$r_{setpoint}(\mathbf{s}, \mathbf{a}) = n_{ef \to ef'} \cdot n_{ef \to setpoint}$$

$$r_{obstacle}(\mathbf{s}, \mathbf{a}) = \begin{cases} 0, & se \|p_{ef'} - p_{obstacle}\| > r_{infl} \\ -(n_{ef \to ef'} \cdot n_{ef \to obstacle}), caso \ contrário \end{cases}$$

Algoritmos Implementados

- REINFORCE episódico
- Q-Learning (tabela)
- DQN

A partir dos resultados parciais obtidos optou-se pelo DQN

REINFORCE

Algoritmo 1: REINFORCE Episódico

- Inicializa Robô, setpoint, obstáculo, estado inicial so e espaço de ações A;
- · Inicializa Hiperparâmetros (bônus e penalidades, tamanho da rede, número de timesteps, trajetórias e épocas, fator de desconto γ e taxa de aprendizado α);
- · Inicializa estruturas de armazenamento de épocas e políticas de ações;
- · Inicializa política de ações parametrizada π_{θ_0} aleatória e armazena em PolicyBuffer(1);

Gera N trajetórias $\{\tau_n\}_{n=1}^N$ a partir de política de ações π_{θ_0} , onde

$$\tau_n = S_0, A_0, R_0, ..., S_{T-1}, A_{T-1}, R_T;$$

Calcula retornos $\{G_t\}_{t=0}^{T-1}$ e armazena em cada trajetória;

Armazena $\{\tau\}_{n=1}^{N}$ em EpochBuffer(1);

for $ep \leftarrow 2$ to MaxEpoch do

Aplica Gradiente Ascendente sobre π_{ep-1} para obter π_{ep} :

$$\theta_{ep} \leftarrow \theta_{ep-1} + \alpha \frac{1}{N} \sum_{n=1}^{N} \sum_{t=0}^{T-1} G_t \frac{\nabla \pi_{\theta}(\mathbf{s_t}, \mathbf{a_t})}{\pi_{\theta}(\mathbf{s_t}, \mathbf{a_t})}$$

Armazena π_{ep} em PolicyBuffer(ep);

Gera N trajetórias $\{\tau_n\}_{n=1}^N$ a partir de política de ações $\pi_{\theta_{en}}$, onde

$$\tau_n = S_0, A_0, R_0, ..., S_{T-1}, A_{T-1}, R_T;$$

Calcula retornos $\{G_t\}_{t=0}^{T-1}$ e armazena em cada trajetória;

Armazena $\{\tau\}_{n=1}^{N}$ em EpochBuffer(ep);

Mostra performance média da época atual;

Mostra melhor trajetória da época atual;

end

DQN

Algoritmo 2: DQN

- Inicializa Robô, setpoint, obstáculo, estado inicial so e espaço de ações A;
- Inicializa Hiperparâmetros (bônus e penalidades, tamanho da rede e das imagens, número de timesteps, épocas e transições no Buffer, fator de desconto γ , taxa de aprendizado α) e ϵ ;
- Inicializa estruturas de armazenamento de épocas e redes DQN;
- Inicializa rede DQN parametrizada Q_{θ0} aleatória e armazena em DQNBuffer(1); for $ep \leftarrow 1$ to MaxEpoch do

```
inicializa estado: s \leftarrow s_0:
```

Preenche Buffer de Experiência com N transições segundo política e-Greedy e rede atual $Q_{\theta_{on}}$;

Amostra mini-batch aleatório de tamanho N_{batch} ;

```
for i \leftarrow 1 to N_{butch} do
```

```
Ler i-ésima transição: (s, a, r, s', bool<sub>term</sub>);
   if bool_{term} == true then
        y = r + \gamma \max_{\mathbf{a}' \in A} Q_{\theta_{ac}}(\mathbf{s}', \mathbf{a}');
   Armazenar saída prevista q = Q(s, a) e alvo y;
Aplica Gradiente Descendente para minimizar função custo dada por
  \mathcal{L}(\theta) = \frac{1}{2}(Q_{\theta}(\mathbf{s}, \mathbf{a}) - y)^2, ou seja:
 \theta_{ep+1} \leftarrow \theta_{ep} - \alpha \frac{1}{N_{batch}} \sum_{i=1}^{N_{batch}} \nabla_{\theta} \frac{1}{2} (Q_{\theta}(s, a) - y)^2;
Armazena rede Q_{\theta_{ep+1}} em DQNBuffer(ep+1);
Limpa Buffer de transições;
Mostra trajetória greedy atual;
Mostra valor médio de recompensas imediatas;
```


Algoritmo 2: DQN

- Inicializa Robô, setpoint, obstáculo, estado inicial so e espaço de ações A;
- Inicializa Hiperparâmetros (bônus e penalidades, tamanho da rede e das imagens, número de timesteps, épocas e transições no Buffer, fator de desconto γ, taxa de aprendizado α) e ε;
- Inicializa estruturas de armazenamento de épocas e redes DQN;
- Inicializa rede DQN parametrizada Q_{θ0} aleatória e armazena em DQNBuffer(1);

for $ep \leftarrow 1$ to MaxEpoch do

inicializa estado: $s \leftarrow s_0$;

Preenche Buffer de Experiência com N transições segundo política ϵ -Greedy e rede atual $Q_{\theta_{mn}}$;

Amostra mini-batch aleatório de tamanho N_{batch}:

for $i \leftarrow 1$ to N_{butch} do

```
Ler i-ésima transição: (s, a, r, s', bool_{term});

if bool_{term} == true then

\begin{vmatrix} y = r; \\ else \end{vmatrix}

\begin{vmatrix} y = r + \gamma \max_{\mathbf{a}' \in A} Q_{\theta_{ep}}(\mathbf{s}', \mathbf{a}');

end

Armazenar saída prevista q = Q(\mathbf{s}, \mathbf{a}) \ e \ alvo \ y;
```

end

Aplica Gradiente Descendente para minimizar função custo dada por

$$\mathcal{L}(\theta) = \frac{1}{2}(Q_{\theta}(s, \mathbf{a}) - y)^2$$
, ou seja:

$$\theta_{\text{ep}+1} \leftarrow \theta_{\text{ep}} - \alpha \frac{1}{N_{\text{batch}}} \sum_{i=1}^{N_{\text{batch}}} \nabla_{\theta} \frac{1}{2} (Q_{\theta}(s, a) - y)^2;$$

Armazena rede $Q_{\theta_{ep+1}}$ em DQNBuffer(ep+1);

Limpa Buffer de transições;

Mostra trajetória greedy atual;

Mostra valor médio de recompensas imediatas;

end

DQN

Principais Problemas

Alvo Não Estacionário

Treinamento Circular

Target

$$y = \begin{cases} r(s, a), \\ r(s, a) + \gamma \max_{a' \in A} Q_{\theta}(s', a'), \end{cases}$$

se s'é terminal caso contrário

Não estacionário!

Função Custo

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

$$L(\boldsymbol{\theta}) = \frac{1}{2} (Q_{\boldsymbol{\theta}}(\boldsymbol{s}, \boldsymbol{a}) - \boldsymbol{y})^2$$

Principais Problemas

Explorar x Aproveitar (Exploration vs Exploitation trade-off)

Convergência para políticas sub-ótimas

Técnicas de Melhoria de Convergência

priorizada

correlacionadas

Política ϵ – Greedy

€: Probabilidade de tomar ação aleatória

$$\boldsymbol{a_t} = \begin{cases} \operatorname{argmax} Q_{\boldsymbol{\pi}}(\boldsymbol{s_t}, \boldsymbol{a}'), & \operatorname{se} rand(0,1) > \epsilon \\ a_{t} \in A & \operatorname{ação} \boldsymbol{a} \in \boldsymbol{A} \text{ aleatória,} & \operatorname{caso contrário} \end{cases}$$

Resultados Parciais

1 Grau de Liberdade (R)

Q-Learning: Trajetórias ao longo do treino com r_2

Época 1

QLearningRobotArmR Episode: 1.

30
20
10
-10
-20
-30
-20
-10
0
10
20
30

Época 10

Época 50

-20

1 Grau de Liberdade (R)

Comparação entre funções de recompensa r_1 e r_2 REINFORCE DQN

2 Graus de Liberdade (RR)

Q-Learning: Trajetórias ao longo do treino com $r_{
m 3}$

Época 1

QLearningRobotArmRR: Episode 1.

20
10
-10
-20
-30
-20
-10
0
10
20
30

Época 10

Época 50

20

2 Graus de Liberdade (RR)

Projetos de Teste

REINFORCE Q-Learning

Q-Learning: Comparação entre funções de recompensa r_2 e r_3

6 Graus de Liberdade (6R)

DQN: Obstáculo Desconhecido

6 Graus de Liberdade (6R)

DQN: Obstáculo Desconhecido

Trajetória obtida por agente treinado

6 Graus de Liberdade (6R)

REINFORCE: Retreinamento de Agente

1º treino

6 Graus de Liberdade (6R)

Treino Inicial

Retreinamento

REINFORCE: Retreinamento de Agente

- Política inicial $oldsymbol{\pi}_{oldsymbol{ heta_0}}$ aleatória
- Convergência mais rápida
- Política inicial $oldsymbol{\pi}_{oldsymbol{ heta_0}}$ sub-ótima
- Convergência mais lenta
- Perda de aprendizado anterior

Solução: Treinar simultaneamente para diversas configurações

6 Graus de Liberdade (6R) e Configurações Genéricas

(6R), configurações

6 Graus de Liberdade (6R) e Configurações Genéricas

DQN: Convergência para configurações específicas

Resultados: Parâmetros da Solução Final

Algoritmo Escolhido: DQN

Função de Recompensa: r_3

Estrutura da rede $Q_{\theta}(s, a)$

Hiper-parâmetros:

 $\gamma, \epsilon, \alpha, MiniBatchSize, B_{goal},$

 $P_{collision}$, k_s , k_o , ...

Parâmetro Descr p _{setpoint} Posiç		Valor
p _{setpoint} Posiç		
	ão de destino (m)	(1.05, 0.45, 0.75)
Posiç Posiç	ão de obstáculo (m)	(1.05, -0.55, 0.75)
$table_{length}$ Comp	orimento da mesa (m)	2
table _{width} Largu	ra da mesa (m)	0.8
$table_{height}$ Altur	a da mesa (m)	0.7
$\Delta \theta$ Minir	na variação angular	1^o
α Taxa	de Aprendizado	0.005
B_{goal} Bônu	s de destino	20
<u>-</u>	idade de colisão	-20
P _{joint boundary} Penal	idade de fim de curso	-10
	de influência do obstáculo (m)	0.50
	ero máximo de épocas de treino	300
Ntrajs Núme	ero de trajetórias por época	10
MiniBatchSize Núme	ero de transições amostradas para treino	200
T Núme	ero máximo de transições por trajetória	70
γ Fator	de desconto	0.3
dim(s) Dime	nsão de cada estado s	3456
dim(a) Dime	nsão de cada ação a	5
size(A) Tama	nho do espaço de ações	243
	nsões de camadas da rede $\pi_{\theta}(\mathbf{a} \mathbf{s})$	(3456, 400, 300, 243)
k_s Fator	multiplicativo de r_3	2
	multiplicativo de r_3	1

Resultados

Exploração ao longo do treino

Época 1 Época 30

Resultados

Curva de Aprendizado

Resultados

Tempos de Treino

Projeto	REINFORCE	DQN
1 Grau de Liberdade (R)	6,8 min	6,9 min
2 Graus de Liberdade (RR)	11,7 min	7,4 min
6 Graus de Liberdade (Configuração Fixa)	30 h	16 h
6 Graus de Liberdade (Configuração Aleatória)		25 h
Projeto Final (Imagem)		70 h

Conclusão

Principais Desafios de RL na Robótica

Eficiência Amostral

Transferência de Aprendizado

Especificação de Função Recompensa

Segurança

Sumário 1. Introdução 2. Estado da Arte 3. Fundamentos Teóricos 4. Detalhamento do Projeto 5. Resultados Trabalhos Futuros 6. Conclusão

Trabalhos Futuros

Aprimoramento do Algoritmo

Actor-Critic

Parametrização e aproximação de funções

$$\pi_{\theta}(s|a) \in Q_{\theta}(s,a)$$
 ator crítico

• Função Vantagem: A(s, a) = Q(s, a) - V(s)

Diagrama Esquemático de algoritmo *Actor-Critic*. Fonte: SUTTON, R, S; BARTO, A, G, 2017

Trabalhos Futuros

Arquitetura Multi-Agente

 Melhor exploração dos espaços de Estados e Ações

Redução do tempo de treino

Computação distribuída

Trabalhos Futuros

Implementação de rede convolucional

Conclusão e Trabalhos Futuros

Contribuições Deste Projeto

- Ambiente de implementação, teste e visualização de algoritmos de RL em robótica
- Análise comparativa de algoritmos REINFORCE e DQN
- Open Source:

https://github.com/MMenonJ/Controle Robo Manipulador

maxQ.m

Referências Bibliográficas

FRANCESCHETTI, A et al. Robotic Arm Control and Task Training through Deep Reinforcement Learning, Intelligent Autonomous Systems Lab, University of Padova, 2017.

CONTRACTOR OF STREET

JAMES, S; JOHNS, E. 3D Simulation for Robot Arm Control with Deep Q-Learning, Imperial College London, UK, 2016.

MNIH, V et al. Playing Atari With Deep Reinforcement Learning, Google DeepMind, 2013

SUTTON, R. S.; BARTO A. G. Reinforcement Learning: An Introduction. 2^{nd} Edition. The MIT Press, 2017.

ROS-Industrial, Github, 2016. Disponível em < https://github.com/ros-industrial/kuka_experimental >. Acesso em 15 de Maio de 2019

