

INSTRUCTION DIVISION FIRST SEMESTER 2015-2016 Course Handout (Part II)

Date: 03/08/2015

In-addition to Part – I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course

Course No : PHA F414

Course Title : **Biopharmaceutics**Instructor-in-charge : **Dr. Anil Jindal**

1. Scope and objective of the course:

The prime objective of this course is to impart knowledge of biopharmaceutical process based on fundamental concepts. The primary focus will be on mechanisms of and factors influencing drug absorption as well as bioavailability. This course also deals with Distribution, Biotransformation and Excretion of Drugs. In order to develop a background knowledge in the up-coming field like pharmacokinetics, a brief discussion about basic considerations in pharmacokinetics such as rates and orders of reactions, compartment modeling, bioequivalance and design of dosage regimen is also included. The knowledge of this branch of pharmacy is very essential for a professional pharmaceutical scientist, as concepts regarding plasma drug concentration profile, Bioavailability and Bioequivalance as well as Dosage Regimen is resourceful working tool in every branch of pharmacy, be it pharmaceutics, pharmacology or medicinal chemistry. Therefore, it is essential for every graduate student in pharmacy to be familiar with the outlines of these concepts and that is what this course aims to achieve.

2. Text Book:

1. Brahmankar, D M and Jaiswal, S N Biopharmaceutics and Pharmacokinetcs a treatise 2^{nd} edition Vallabh prakashan 2009

3. Reference Book:

- 1. Gibaldi, M and Perrier, D, Pharmacokinetics, 2nd edition Revised and Expanded vol 15 Marcel Dekker Inc.
- 2. Gibaldi, M and Perrier, D, Pharmacokinetics, 3rd edition Revised and Expanded Marcel Dekker Inc.
- 3. Hassan, Williams E Hospital Pharmacy 4th edition phil Lea & febiger 1981
- 4. Remington: The Science and Practice of Pharmacy, Alfanso R Genero, 19th edition, 1996

4. Course Plan:

Lect. No.	Learning Objectives	Topics to Covered	Ref. Chap/Sc # (Book)
1-2	Introduction	Definition, Scope, Term used, Processes involved in drug therapeutics, BMR, BMI, BP	1
3-8	Absorption of Drugs	Gastrointestinal Absorption of Drugs Cell Membrane- Structure and Physiology Mechanisms and Factors Influencing drug absorption and Bioavailability pH-Partition hypothesis Theories of drug dissolution and dissolution rate Absorption of Drugs from Non per Os Extravascular Routes	2
9-14	Distribution of Drugs	Tissue Permeability of drugs Volume of Distribution Protein binding of drugs Tissue binding Kinetics of protein-Drug binding	3, 4
15-18	Biotransformation of Drugs	Drug metabolizing organs and enzymes Chemical Pathways Phase I and Phase II reactions Factors affecting Biotransformation of Drugs	5
19-20	Prodrugs	Application of prodrug design Limitations of prodrug design	Class notes
21-26	Excretion of Drugs	Renal Excretion Glomerular Filtration, Active tubular secretion, Tubular reabsorption Concept of Clearance Factors affecting Renal Excretion Dose adjustment in renal failure Nonrenal routes of drug excretion	6

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

गणन पर्म व	der -		
27-29	Pharmacokinetic Drug	Mechanisms of Drug Interactions	7
	Interactions	Interactions affecting Absorption and	
		Distribution	
		Interactions affecting Metabolism	
		and Excretion	
30-33	Pharmacokinetics: Basic	Plasma Drug Concentration-time	8
	Consideration	profile	
		Rates, Rate constants and orders of	
		reaction	
		Pharmacokinetic Models	
		Compartment Models	
		Noncompartmental Analysis	
		Physiologic models	
34-36	Introduction to	One-Compartment open Model	9 and class
	Compartment Modeling and	Urinary Excretion data	notes
	pharmacokinetic software	Two-Compartment open Model	
	•	Multi Compartment Models, An	
		introduction to various	
		pharmacokinetic software	
37-38	Bioavailability and	Objective and Considerations in	11
	Bioequivalence	bioavailability studies	
	•	Measurement of Bioavailability	
		Methods for enhancement of	
		bioavailability	
39-40	Application of	•	12
39-40	Application of Pharmacokinetic Principles	Design of Dosage regimen	12
39-40	Application of Pharmacokinetic Principles	•	12

5. Evaluation Scheme:

Component	Duration	Weightage (%)	Remarks
Mid-term test*	90 min	30 6/10 2:00 -	CB
		3:30 PM	
Surprize Quizzes		20	CB
Assignments/Seminar		10	
Comprehensive	180 min	40 4/12 FN	OB+CB
Exam			

^{*50%} weightage of the comprehensive exam will be open book.

- **6. Mid semester evaluation:** Will be announced after the mid-term test.
- **7. Attendance:** Regularity in attendance will be one of the criteria in deciding borderline cases at the time of final grading.
- **8.** Notices: Pharmacy Notice Board.
- **9.** Chamber Consultation Hour: To be announced in the class.
- **10. Make-up Policy:** Make-ups are not given as a routine. It is solely dependent on the "genuineness" of the circumstances under which a student fails to appear in a scheduled evaluation component. Prior permission should be sought from the instructor-in-charge in advance.

Instructor-in-charge PHA F414

