Content-based Image and Video Retrieval

Fall 2012/2013

Visual Descriptors – cont. & Image Segmentation

09.10.2012

Last week

- Color descriptors
- Texture descriptors
- This week
 - Local descriptors
 - Segmentation

Basics: Edge Detection

Edge:

 An edge is a set of connected pixels that lie on the boundary between two regions

An ideal edge:

 A set of connected pixels, each of which is located at an orthogonal step transition in gray level

- In practice, edges are blurred due to optics, sampling, and other image acquisition imperfections
 - "Ramp"-like profile
 - Degree of blurring is determined by:
 - Image acquisition systems
 - Sampling rate
 - Illumination conditions
 - An edge point is any point contained in the ramp, an edge is a set of such connected points

- The magnitude of the first derivative : detect the presence of an edge
- The sign of the second derivative : determine on which side of an edge
- The "zero crossing property" of the second derivative

- A ramp edge corrupted with increasing additive Gaussian noise, μ = 0, σ
 = 0,0.1,1.0 and 10.0
- Derivative is very sensitive to noise => image smoothing

Edge point

 A point in an image is defined to be an <u>edge point</u> if its two-dimensional first-order derivative is larger than a specified threshold

Edge segment

 A set of connected edge points according to a predefined criterion of connectedness

Edge

Assemble short edge segments into longer edges

Gradient Operators

 First-order derivatives of an image are based on various approximations of the 2-D gradient

$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

 The magnitude of the gradient vector is often referred as the gradient

$$\nabla f = mag(\nabla f) = \left[G_x^2 + G_y^2\right]^{1/2} = \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$

Usually, magnitude is approximated by absolute values

$$\nabla f \approx |G_x| + |G_y|$$

Gradient Operators

The direction of the gradient vector

$$\alpha(x,y) = tan^{-1} \left(\frac{G_y}{G_x} \right)$$

The direction of an edge at (x,y) is perpendicular to the direction of the gradient vector at the point

The Gradient

Robert cross-gradient operators

$$G_x = (z_9 - z_5)$$
 and $G_y = (z_8 - z_6)$
 $\nabla f \approx |z_9 - z_5| + |z_8 - z_6|$

-1	0
0	1

0	-1
1	0

Z ₁	Z_2	Z ₃
Z_4	Z ₅	Z ₆
Z ₇	Z ₈	Z ₉

Sobel Operator

$$\nabla f \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| + |(z_2 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$$

-1	0	1
-2	0	2
-1	0	1

 G_{x}

 G_{y}

The Gradient

Prewitt Operator

$$\nabla f \approx |(z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)| + |(z_2 + z_6 + z_9) - (z_1 + z_4 + z_7)|$$

-1	0	1
-1	0	1
-1	0	1
G_{x}		

-1	-1	-1
0	0	0
1	1	1
G_{2r}		

Examples

Original image

 $|G_y|$

 $|G_x|$

$$\left|G_{x}\right|+\left|G_{y}\right|$$

Laplacian

The Laplacian is a second-order derivative

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Digital approximation of the Laplacian

$$\nabla^2 f = 4z_5 - (z_2 + z_4 + z_6 + z_8)$$

$$\nabla^2 f = 8z_5 - (z_1 + z_2 + z_3 + z_4 + z_6 + z_7 + z_8 + z_9)$$

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

Laplacian of Gaussian

- The Laplacian can not be used in its original form for edge detection due to:
 - Sensitive to noise
 - The magnitude of the Laplacian produces double edges
 - It is unable to detect edge direction
- Laplacian of Gaussian(LoG): combining the Laplacian with Gaussian smoothing
 - Gaussian function
 - Lowpass filter, noise reduction
 - LoG:
 - Highpass filter, abrupt change (edge) detection

$$abla^2 h(r) = -\left[\frac{r^2 - \sigma^2}{\sigma^4}\right] \exp\left(-\frac{r^2}{2\sigma^2}\right) \qquad r^2 = x^2 + y^2$$

Laplacian of Gaussian

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

5x5 approximation mask

Laplacian of Gaussian

- Comparison of LoG and gradient operator (Sobel)
 - The edges in the zero-crossing image are thinner than the gradient edges
 - The edges determined by zero crossings form numerous closed loops (spaghetti effect)
 - The computation of zero-crossings presents a challenge

Original image

Sobel gradient

Zero-crossings of LoG

Local Descriptors

Invariant Local Feature

 Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

local feature patches

Components of local feature

- Key or interest points
 - Specify repeatable points
 - x-,y-position and scale
 - e.g. corners, blobs
- Local (key point) descriptors
 - Define the feature representation around an interest point
 - e.g raw pixels or a histogram of gradient in the neighborhood of a key point

Approach

- 1. Find a set of distinctive key-points
- Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- Match local descriptors

Keypoint Detectors

- Many existing detectors available
 - Hessian & Harris
 - Laplacian, DoG
 - Harris-/Hessian-Laplace
 - Harris-/Hessian-Affine
 - EBR and IBR
 - MSER
 - Salient Regions
 - Dense Sampling
 - Others...
- Reference site:
 - http://www.robots.ox.ac.uk/~vgg/research/affine/index.html

[Beaudet '78],[Harris '88]

[Lindeberg '98],[Lowe '99]

[Mikolajczyk & Schmid '01]

[Mikolajczyk & Schmid '04]

[Tuytelaars & Van Gool '04]

[Matas '02]

[Kadir & Brady '01]

Keypoint Localization

Goals:

- Repeatable detection
- Precise localization
- Interesting content
- => Look for two-dimensional signal changes

Hessian Detector [Beaudet78]

Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

Intuition: Search for strong derivatives in two orthogonal directions

Harris Detector [Harris88]

Second moment matrix(autocorrelation matrix)

$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

Intuition: Search for local neighborhoods where the image content has two main directions (eigenvectors)

Scale Selection

- Scale selection principle (T. Lindeberg '94)
 - In the absence of other evidence, assume that a scale level, at which (possibly non-linear) combination of normalized derivatives assumes a local maximum over scales, can be treated as reflecting a characteristic length of a corresponding structure in the data.
- Selection of points at characteristic scale in scale space

Chacteristic scale:

- maximum in scale space
- scale invariant

Scale Invariant Detection

- Kernels for determining scale
 - Laplacian-of-Gaussian $L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$

(Scale-normalized Laplacian)

Laplacian-of-Gaussian(LoG)

 Local maxima in scale space of Laplacian-of Gaussian

 \Rightarrow List of (x,y,s)

Visual descriptors 28

 σ

Difference-of-Gaussian (DoG)

 LoG is expensive, approximate with Difference-of-Gaussian (DoG)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

SIFT: Scale-Invariant Feature Transform

- Key-point detection:
 - Find local extrema of Difference-of-Gaussians in space and scale

Local Descriptor: SIFT

- The area around the keypoint is divided into 4 x 4 subregions
- Build an orientation histogram with 8 bins for each subregion; gradient values are weighted by a Gaussian window
- This results in a vector with 128 dimensions (4 x 4 x 8)
- Normalize this vector to unit length (grants invariance to multiplicative changes in lighting)

Illustration shows 2x2 subregions

SIFT-Features: Properties

- Scale-invariant
- Rotation-invariant
- Robust to illumination change
- Robust to noise
- Robust to minor changes in view-point

Local Descriptor: SURF

- Fast approximation of SIFT idea
 - Efficient computation by 2D box filters & integral images ⇒ 6 times faster than SIFT
- Equivalent quality for object identification
- GPU implementation available
 - Feature extraction @ 100Hz (detector + descriptor, 640×480 img) http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV'06], [Cornelis, CVGPU'08]

Bag-of-words

Bag-of-Words

- Analogy to text documents
- Definition
 - Independent features
 - histogram representation

Build Visual-word Vocabulary-1

- Detect feature : Regular grid or Interest point
- Represent with local descriptor, e.g. SIFT

Detect patches

[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

Build Visual-word Vocabulary-2

Build Visual-word Vocabulary-3

Image Representation

Visual words

Image Segmentation

Image Segmentation

- One of the key problem in computer vision
- Identification of homogenous region in the image
- Partition an image into meaningful regions with respect to a particular application
- The segmentation is based on measurements taken from the image and might be greylevel, colour, texture, depth or motion (in video)

Different Examples

- Search in image collections
 - Find representations that make sense to the user and is related to picture content
- Video summarization / shot boundary detection
 - Find similar frames, represent subsequences by key frame
- Finding people
 - Specific detectors, part-based detectors
- Finding buildings
- Finding machine parts
- Background subtraction

Motivation

- Before high-level reasoning on image, it can be broken down into its major structural components
- Necessary for extracting reasonable local features (color, texture, etc.)
- Simplify or change image representation into more meaningful one for ease of analysis

Difficulties

- What is "correct" segmentation?
 - No single correct answer
 - Interpretation depends on prior world knowledge
 - World knowledge is difficult to represent

Alternative segmentations

"Correct" Segmentation

Good Segmentation?

- Typical assumptions (inspired from human vision):
 - Intensity / color coherence
 - Texture coherence
 - Motion coherence

Image Segmentation

- Categories:
 - Pixel-based Segmentation
 - Region-based Segmentation
 - Edge-based Segmentation
 - (Graph-based Segmentation)

Pixel-based Segmentation

- Thresholding
- Clustering

Thresholding

- Determine the best threshold given a histogram of intensities
- Automatic thresholding
 - P-tile method
 - Mode method
 - Local adaptive method

- Limitation of thresholding
 - Use <u>global</u> information
 - Ignore <u>spatial</u> relationships among pixels

Thresholding

- Determine the best threshold given a histogram of intensities
- Simplest way to segment an image: separate light and dark regions

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{otherwise} \end{cases}$$

P-tile method

- Use the a priori knowledge about the size of the object: assume an object with size p
- Choose the threshold such that p% of the overall histogram is determined

⇒ Obviously limited use

Mode-Method

- Find the peaks (modes) of the histogram and the local minimum between them
- Set threshold to the pixel value of the local minimum

- Not trivial to find peaks and local minimum on a noisy histogram
 - Ignore local peaks
 - Maximize "peakiness"

Adaptive-Method

- One single global threshold does not work for uneven illumination
- Local adaptive method
 - Divide an image into mxm subimages and determine a threshold for each subimage

Clustering

- Process of partitioning a set of "patterns" into clusters
 - find subsets of points which are close together
- Cluster pixels based on
 - Intensity values
 - Color properties
 - Motion/optical flow properties
 - Texture measurements etc.
- Input: set of measurements
- Output: set of clusters and their centers

$$X_1, X_2, ... X_m$$

Simple Clustering Approaches

- Agglomerative Clustering (Merging)
 - 1. Make each point (pixel) a separate cluster
 - Merge clusters with smallest inter-cluster distance until clustering is satisfactory
- Divisive Clustering (Splitting)
 - 1. Construct a single cluster using all points
 - 2. Split clusters with largest inter-cluster distance until clustering is satisfactory
- Difficulties:
 - Choice of inter-cluster distances
 - Stopping criterion (how many cluster are there?)

Segmentation by k-means

- Simple clustering methods use greedy approaches
- Alternative:
 - Formulate an objective function that should be optimized
 - Assuming that we know that there should be k-clusters, a good objective function would be

$$\Phi(\text{clusters, data}) = \sum_{i \in \text{clusters}} \left\{ \sum_{j \in i \text{thcluster}} (x_j - c_i)^T (x_j - c_i) \right\}$$

- Where x_i is a point coordinate, c_i is a cluster center
- If allocation of points to clusters were known, centers could be easily computed
 - But this is not the case

k-means algorithm

Define iterative algorithm:

- Assume the cluster centers are known and allocate each point to closest cluster
- Assume allocation is known and choose new set of cluster centers. Each center is the mean of the points allocated to the that cluster

• Algorithm:

- Choose initial mean values for k regions
- Classify n pixels by assigning them to "closest" mean
- Recompute the means as the average of samples in their (new) classes
- Continue till there is no change in mean values

Color Clustering Examples

Clustering in RGB space

Original images

Segmented images

9 clusters

5 clusters

4 clusters

Region-based Segmentation

- The main idea in region-based segmentation techniques is to identify different regions in an image that have similar features (gray level, colour, texture, etc.).
- There are two main region-based image segmentation techniques:
 - Region merging
 - Region splitting

Region Merging

- Merge two adjacent regions if they have "similar" properties according to some criterion.
- What does "similar" mean?
 - Examples:
 - "similar" average values : $|\mu_i \mu_i| < T$
 - "small" spread of gray values : $|g_{max} g_{min}| < T$
 - $g_{max} = \max \{g(x,y) | (x,y) \in R_i \cup R_j\}$ $g_{min} = \min \{g(x,y) | (x,y) \in R_i \cup R_j\}$
 - Note: non-transitiv
 - A similar to B, and B similar to C does not imply that A is similar to C.

Region Merging

- Start with an initial segmentation
 - e.g. By thresholding
- Form the Region Adjacency Graph (RAG)
 - Regions are the nodes
 - Adjacency relations are the links

Initial segmentation

RAG

Region Merging

- For each region in the image do:
 - Consider its adjacent regions and test if they are similar
 - If they are similar, merge them and update the RAG
- Repeat the merging steps until there are no more merges.

Region Splitting

- Quad-tree decomposition:
 - Subdivide the entire image successively into smaller and smaller quadrant regions until having homogeneous regions.

The subdivision is represented with quad tree

The Quadtree Representation

- Quadtrees:
 - Trees where nodes have 4 children
- Build quadtree:
 - Nodes represent regions
 - Every time a region is split, it's node give birth to 4 children
 - Leaves are nodes for uniform regions

R_1	R_2	
R_3	R_{41}	R_{42}
	R_{43}	R_{44}

Region Splitting & Merging

- Splitting only results in adjacent regions with identical properties
- The final result can be obtained through merging the quadtree
 - Siblings that are "similar" can be merged

Edge-based Segmentations

- Based on detection of discontinuities, and segment the image along the discontinuities
- 3 basic types of gray-level discontinuities: points, lines, edges
- Edge detection is the most common approach for detecting meaningful discontinuities

Edge Linking and Boundary Detection

- From intensity discontinuities to more general segmentation
 - For example, from edge pixels to line segments
- Local processing
 - Analysis of small neighborhood
 - Strength and direction of the gradient of edge pixels
- Global processing
 - Analysis of the whole image
 - Global relationships between pixels
 - Hough Transform