多元函数积分学

一、典型例题

1、二重积分

例1 计算
$$I = \iint_D x \left[1 + yf(x^2 + y^2)\right] dxdy$$
, 其中 D 是由 $y = x^3$, $y = 1$ 及 $x = -1$ 所围成.

$$[-\frac{2}{5}]$$

例 2 设
$$D = \{(x,y) | x^2 + y^2 \le \sqrt{2}, x \ge 0, y \ge 0 \}$$
, $\left[1 + x^2 + y^2\right]$ 表示不超过 $1 + x^2 + y^2$ 的最大正整数. 计算 $I = \iint_D xy \left[1 + x^2 + y^2\right] dxdy$.

$$[\frac{3}{8}]$$

例 3 计算
$$I = \iint_D \frac{(x+y)\ln(1+\frac{y}{x})}{\sqrt{1-x-y}} dxdy$$
, 其中 $D = \{(x,y) \mid 0 \le x+y \le 1, x \ge 0, y \ge 0\}$.

$$[\frac{16}{15}]$$

例 4 证明
$$\frac{\pi(R^2-r^2)}{R+K} \le \iint_D \frac{d\sigma}{\sqrt{(x-a)^2+(y-b)^2}} \le \frac{\pi(R^2-r^2)}{r-K}$$
,

其中
$$0 < K = \sqrt{a^2 + b^2} < r < R$$
, $D: r^2 \le x^2 + y^2 \le R^2$.

例 5 设
$$f(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{x^2 + y^2} \operatorname{arccot}(x^2 + y^2), (x,y) \neq (0,0) \\ \frac{\pi}{2}, & (x,y) = (0,0) \end{cases}$$

平面区域
$$D: x^2 + y^2 \le a^2$$
, 求 $\lim_{a \to 0^+} \frac{1}{\pi a^2} \iint_D f(x, y) d\sigma$.

提示:积分中值定理

例 6 设函数
$$f(x)$$
 连续, $F(t) = \iiint_{\Omega} [z^2 + f(x^2 + y^2)] dv$, 其中
$$\Omega: 0 \le z \le h, x^2 + y^2 \le t^2, \ \ \text{求} \frac{dF}{dt} \ \text{和} \lim_{t \to 0} \frac{F(t)}{t^2}.$$

$$\begin{bmatrix} \frac{2}{3}\pi h^3 t + 2\pi h f(t^2)t & ; & \frac{1}{3}\pi h^3 + \pi h f(0) \end{bmatrix}$$

例7 设 $\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$, 计算

(1)
$$\iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz; \quad (2) \iiint_{\Omega} z^2 dx dy dz$$

(1)
$$\iint_{\Omega} (x^2 + y^2 + z^2) dx dy dz;$$
 (2)
$$\iint_{\Omega} z^2 dx dy dz;$$
 (3)
$$\iint_{\Omega} (x + y + z)^2 dx dy dz;$$
 (4)
$$\iint_{\Omega} (mx + ny + pz)^2 dx dy dz$$
 (其中 m, n, p 均为常数).

$$[\frac{4\pi}{5}, \frac{4\pi}{15}, \frac{4\pi}{5}, (m^2 + n^2 + p^2)] \frac{4\pi}{15}]$$

例 8 设
$$f(x)$$
 在 $[0,1]$ 上连续,试证 $\int_0^1 dx \int_x^1 dy \int_x^y f(x) f(y) f(z) dz = \frac{1}{3!} \left(\int_0^1 f(x) dx \right)^3$

3、曲线积分

例 9 设
$$f(x)$$
 具有连续导数,求 $\int_L \frac{1+y^2f(xy)}{y} dx + \frac{x\left[y^2f(xy)-1\right]}{y^2} dy$,其中 L 是从点 $A(3,\frac{2}{3})$ 到点 $B(1,2)$ 的直线段。

[-4]

例 10 设函数 f(u) 连续, C 为平面上逐段光滑的闭曲线,

证明:
$$\oint_C f(x^2+y^2)(xdx+ydy)=0$$
.

例 11 设
$$I_a(r)=\oint\limits_{C} \frac{ydx-xdy}{\left(x^2+y^2\right)^a}$$
,其中 a 为常数,曲线 C 为椭圆 $x^2+xy+y^2=r^2$,取正向. 求极限 $\lim_{r\to +\infty} I_a(r)$.

$$I_a(r) = \begin{cases} 0, a > 1 \\ -\infty, a < 1 \\ -2\pi, a = 1 \end{cases}$$

例 12 已知平面区域 $D = \{(x, y) \mid 0 \le x \le \pi, 0 \le y \le \pi\}$, L 为 D的正向边界,试证:

(1)
$$\oint_L xe^{\sin y} dy - ye^{-\sin x} dx = \oint_L xe^{-\sin y} dy - ye^{\sin x} dx$$
; 【格林公式、对称性】

(2)
$$\oint_L xe^{\sin y} dy - ye^{-\sin x} dx \ge \frac{5}{2}\pi^2$$
. 【格林公式、对称性、泰勒公式】

4、曲面积分

例 13 计算
$$\bigoplus_{\Sigma} \frac{x\cos\alpha + y\cos\beta + z\cos\gamma}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} dS$$
 , 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$ 的外侧,

 $\cos \alpha \cos \beta \cos \gamma$ 是其外法线向量的方向余弦.

 $[4\pi]$

例 14 计算曲面积分
$$I = \iint_{S^+} \frac{x dy dz + y dz dx + z dx dy}{(x^2 + y^2 + z^2)^{3/2}}$$
,

其中
$$S^+$$
 是 $1 - \frac{z}{7} = \frac{(x-2)^2}{25} + \frac{(y-1)^2}{16} (z \ge 0)$ 的上侧.

 $[2\pi]$

例 15 计算积分
$$\iint_{\Sigma} (x-y+z)dydz + (y-z+x)dzdx + (z-x+y)dxdy$$
,

其中 $\sum \mathbb{E}|x-y+z|+|y-z+x|+|z-x+y|=1$ 所围立体表面外侧.

(1)

例 16 试证
$$\bigoplus_{\Sigma} (x+y+z+\sqrt{3}a)dS \ge 12\pi a^3 (a>0)$$
,

其中 \sum 是球面 $x^2 + y^2 + z^2 - 2ax - 2ay - 2az + 2a^2 = 0$.

例 17 设半径为 R 的球面 Σ 的球心在定球面 $x^2 + y^2 + z^2 = a^2(a > 0)$ 上,问当 R 取何值时,球面 Σ 在定球内部的面积最大?

$$R = \frac{4}{3}a$$

例 18 计算
$$I = \iint_{\Sigma} \frac{2dydz}{x\cos^2 x} + \frac{dzdx}{\cos^2 y} - \frac{dxdy}{z\cos^2 z}$$
, 其中 Σ 是球面 $x^2 + y^2 + z^2 = 1$ 的外侧.

【利用轮换对称性计算, $4\pi \tan 1$ 】

例 19 设 Σ 为平面 x-y+z=1 介于三坐标平面间的有限部分,法向量与 z 轴交角为锐角,

函数 f(x, y, z) 连续, 计算

$$I = \iint_{\Sigma} [f(x, y, z) + x] dy dz + [2f(x, y, z) + y] dz dx + [f(x, y, z) + z] dx dy.$$

 $[\frac{1}{2}]$

例 20 设
$$\Sigma$$
 为 $x^2 + y^2 + z^2 = 1$ ($z \ge 0$) 的外侧,连续函数 $f(x,y)$ 满足
$$f(x,y) = 2(x-y)^2 + \iint_{\Sigma} x(z^2 + e^z) dy dz + y(z^2 + e^z) dz dx + [zf(x,y) - 2e^z] dx dy,$$
 求 $f(x,y)$.

$$I f(x,y) = 2(x-y)^2 + \frac{18\pi}{5(2\pi - 3)} I$$

例 21 设 $\varphi(x,y,z)$ 为原点到椭圆面 $\Sigma: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 (a>0,b>0,c>0)$ 上点 (x,y,z) 处的切平面的距离,求 $\iint_{\Sigma} \varphi(x,y,z) dS$.

 $[4\pi abc]$

例 22 设 P 为椭球面 $S: x^2+y^2+z^2-yz=1$ 上的动点,若 S 在点 P 处的切平面与 xoy 面垂直,求点 P 的轨迹 C ,并计算曲面积分 $I=\iint_{\Sigma}\frac{(x+\sqrt{3})|y-2z|}{\sqrt{4+y^2+z^2-4yz}}dS$,其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

二、同步练习

- 1、 设 f(x) 为连续**偶**函数,试证明: $\iint_D f(x-y)dxdy = 2\int_0^{2a} (2a-u)f(u)du$. 其中 D 为 正方形 $|x| \le a, |y| \le a(a>0)$. 【积分换元、积分换序、对称性】
- 2、 求二重积分 $\iint_{D} \max\{xy,1\} dxdy$, 其中 $D = \{(x,y) \mid 0 \le x \le 2, 0 \le y \le 2\}$.

$$[\frac{19}{4} + \ln 2]$$

3、某物体所在的空间区域为 $\Omega: x^2+y^2+2z^2 \le x+y+2z$,密度函数为 $x^2+y^2+z^2$,求 质量 $M=\iiint_\Omega (x^2+y^2+z^2) dx dy dz$.

【三重积分的换元积分法】【
$$\frac{3+2\sqrt{2}}{6}\pi$$
】

4、设 f(u) 具有连续导数, $\Omega: x^2 + y^2 + z^2 \le t^2$,求 $\lim_{t \to 0} \frac{1}{\pi t^4} \iiint_{\Omega} f(\sqrt{x^2 + y^2 + z^2}) dx dy dz$.

【答案:
$$\begin{cases} f'(0), & f(0) = 0, \\ \infty, & f(0) \neq 0. \end{cases}$$

- 5、证明: $28\sqrt{3}\pi \le \iiint_{\Omega} (x+y-z+10) dx dy dz \le 52\sqrt{3}\pi$, 其中 $\Omega: x^2+y^2+z^2 \le 3$.
- P_0 距离的平方成正比(比例常数 k > 0),求球体的质心位置.

【答案:
$$(-\frac{R}{4},0,0)$$
】

7、设f(u) 具有连续的一阶导数, L_{AB} 为以 \overline{AB} 为直径的左上半个圆弧,从A到B,其中

点
$$A(1,1)$$
 , 点 $B(3,3)$. 求 $\int_{L_{AB}} \left[\frac{1}{x} f(\frac{x}{y}) + 2y \right] dx - \left[\frac{1}{y} f(\frac{x}{y}) + x \right] dy$.

【格林公式 $3\pi+4$ 】

8、 设
$$\Gamma$$
 是由点 (1,0) 经曲线 $y = 1 - x^2$ 到 (-1,0) 一段弧, 计算 $\int_{\Gamma} \frac{(x-y)dx + (x+y)dy}{x^2 + y^2}$.

9、 设 f(x,y) 在区域 $D = \{(x,y) | x > 0, y > 0\}$ 处具有一阶连续偏导数,且为二次齐次函数.

试证明: 对于 D 内任意分段光滑的简单封闭曲线 L 均有 $\oint_L f(x,y)(\frac{dy}{xy^2} - \frac{dx}{x^2y}) = 0$.

10、 设 S 为 椭 球 面 $\frac{x^2}{9} + \frac{y^2}{4} + z^2 = 1$, 已 知 S 的 面 积 为 A , 则 第 一 类 曲 面 积 分 $\iint [(2x+3y)^2 + (6z-1)^2] dS .$

【对称性 37A】

11、计算 $\bigoplus_{\Sigma} (x^2 + y^2 + z^2) dS$, 其中 Σ 为内接于球面 $x^2 + y^2 + z^2 = a^2$ 的八面体 $|x| + |y| + |z| = a \, \text{表面}.$

 $[2\sqrt{3}a^4]$

11、 计算
$$\iint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{\sqrt{(x^2 + y^2 + z^2)^3}}, \ \ \sharp \Phi \Sigma \ \$$

曲面
$$1 - \frac{z}{5} = \frac{(x-2)^2}{16} + \frac{(y-1)^2}{9} (z > 0)$$
的上侧.

 $[2\pi]$

13、设 Σ 表示球面 $x^2 + y^2 + z^2 = 1$ 的外侧位于 $x^2 + y^2 - x \le 0, z \ge 0$ 的部分,

计算
$$I = \iint_{\Sigma} x^2 dy dz + y^2 dz dx + z^2 dx dy$$
.

$$\left[\frac{38}{105} + \frac{5}{32}\pi\right]$$

14、设S 为椭球面 $\frac{x^2}{2} + \frac{y^2}{2} + z^2 = 1$ 的上半部分,点 $P(x, y, z) \in S$, \prod 为S 在点P 处的切

平面,
$$\rho(x,y,z)$$
 为点 $O(0,0,0)$ 到平面 \prod 的距离,求 $\iint_{S} \frac{z}{\rho(x,y,z)} dS$.

 $\left(\frac{3\pi}{2}\right)$