Analysis of the pilot data - PMHD - Group 6

The data

The data is loaded and visualized with a histogram.

```
pilot.data <- read.csv("G6.pilot.data.csv")
ggplot(data=pilot.data, aes(x=tot.vase.days)) +
  geom_histogram(color="#e9ecef", alpha=0.6, position = 'identity', binwidth = 1)</pre>
```


Plotting the histograms based on the different possible sources of variability

Garden

```
ggplot(data=pilot.data, aes(x=tot.vase.days, fill=as.factor(garden))) +
  geom_histogram( color="#e9ecef", alpha=0.6, position = 'identity', binwidth = 1) +
  facet_wrap(~as.factor(garden),ncol=1)
```


Species

```
ggplot(data=pilot.data, aes(x=tot.vase.days, fill=as.factor(species))) +
geom_histogram( color="#e9ecef", alpha=0.6, position = 'identity', binwidth = 1) +
facet_wrap(~as.factor(species),ncol=1)
```


Rater

```
ggplot(data=pilot.data, aes(x=tot.vase.days, fill=as.factor(rater))) +
  geom_histogram( color="#e9ecef", alpha=0.6, position = 'identity', binwidth = 1) +
  facet_wrap(~as.factor(rater),ncol=1)
```


Estimation of the lambda parameter and confidence interval

The lambda parameter is estimated by fitting the pilot data to a poisson distribution.

[1] 9.757734 11.792266

Simulation to calculate the sample size

Simulation based on the code provided by the professor in the lecture of sample size calculation.

```
max.Sample.Size <- 300 # we evaluate all possible sample sizes up to 300
power <- rep(0,max.Sample.Size) # initialization of the variable</pre>
for (N in 1:max.Sample.Size){
    # setting the lambda parameters of the two populations
    lambda.control = lambda.pilot # this value may come from pilot study
    lambda.treated = lambda.pilot+1 # value of the control group plus the effect size
    alpha = 0.05 # significance level
    # simulation of a high number of experiments and test
    numberSimulation <- 1000</pre>
    pval <- numeric(numberSimulation) # initialization of the variable</pre>
    set.seed(1234) # set the seed for reproducible results
    for (i in 1:numberSimulation){
      # we simulate from Poisson distribution
      controlGroup <- rpois(N, lambda = lambda.control)</pre>
      treatedGroup <- rpois(N, lambda = lambda.treated)</pre>
      simData \leftarrow data.frame(response = c(controlGroup, treatedGroup), treatment = rep(c(0, 1), each = N
      # we use a GLM model for Poisson regression to test effect of treatment
      pval[i] <- summary(glm(response ~ treatment, data = simData, family=poisson()))$coeff["treatment"</pre>
    # Estimation of the power
    power[N] <-sum(pval < alpha)/numberSimulation</pre>
}
# plotting the results
sample.size <- 1:max.Sample.Size</pre>
plot(sample.size, power,xlab = "sample size")
abline(h=0.85, col="blue")
```


results <- data.frame(sample.size,power)
results</pre>

```
##
       sample.size power
## 1
                  1 0.041
## 2
                  2 0.049
## 3
                  3 0.071
## 4
                  4 0.063
## 5
                  5 0.058
## 6
                  6 0.065
## 7
                  7 0.084
## 8
                  8 0.087
## 9
                  9 0.099
## 10
                 10 0.088
## 11
                 11 0.112
## 12
                 12 0.098
## 13
                 13 0.113
## 14
                 14 0.119
## 15
                 15 0.136
## 16
                 16 0.156
## 17
                 17 0.134
## 18
                 18 0.136
## 19
                 19 0.163
## 20
                 20 0.177
## 21
                 21 0.154
## 22
                 22 0.174
```

##	23	23	0.176
##	24	24	0.160
##	25	25	0.181
##	26	26	0.183
##	27	27	0.200
##	28	28	0.198
##	29	29	0.203
##	30	30	0.189
##	31	31	0.225
##	32	32	0.250
##	33	33	0.205
##	34	34	0.243
##	35	35	0.227
##	36	36	0.252
##	37	37	0.243
##	38	38	0.268
##	39	39	0.253
##	40	40	0.275
##	41	41	0.263
##	42	42	0.293
##	43	43	0.297
##	44	44	0.286
##	45	45	0.292
##	46	46	0.290
##	47	47	0.308
##	48	48	0.314
##	49	49	0.323
##	50	50	0.355
## ##	51 52	51 52	0.323
##	53	53	0.338
##	54	54	0.325
##	55	55	0.339
##	56	56	0.351
##	57	57	0.364
##	58	58	0.346
##	59	59	0.375
##	60	60	0.360
##	61	61	0.377
##	62	62	0.390
##	63	63	0.382
##	64	64	0.393
##	65	65	0.387
##	66	66	0.406
##	67	67	0.381
##	68	68	0.401
##	69	69	0.431
##	70	70	0.413
##	71	71	0.419
##	72	72	0.440
##	73	73	0.459
##	74	74	0.438
##	75	75	0.457
##	76	76	0.453

##	77	77	0.431
##	78	78	0.469
##	79	79	0.450
##	80	80	0.478
##	81	81	0.468
##	82	82	0.479
##	83	83	0.457
##	84	84	0.510
##	85	85	0.476
##	86	86	0.484
##	87	87	0.498
## ##	88	88 89	0.491 0.505
##	90	90	0.303
##	91	91	0.490
##	92	92	0.508
##	93	93	0.522
##	94	94	0.531
##	95	95	0.581
##	96	96	0.531
##	97	97	0.530
##	98	98	0.534
##	99	99	0.530
##	100	100	0.568
##	101	101	0.551
##	102	102	0.546
##	103	103	0.569
##	104	104	0.576
##	105	105	0.571
##	106	106	0.568
##	107	107	0.581
##	108	108	0.598
##	109	109	0.587
##	110	110	0.586
##	111	111	0.604
##	112	112	0.615
##	113 114	113	0.611
##		114	0.598
##	115 116	115 116	0.626 0.615
##	117	117	0.611
##	118	118	0.658
##	119	119	0.617
##	120	120	0.636
##	121	121	0.641
##	122	122	0.653
##	123	123	0.654
##	124	124	0.654
##	125	125	0.668
##	126	126	0.635
##	127	127	0.648
##	128	128	0.660
##	129	129	0.668
##	130	130	0.685

##	131	131	0.667
##	132	132	0.661
##	133	133	
##	134	134	
##	135	135	
##	136	136	0.675
##	137	137	0.697
##	138	138	0.704
##	139	139	
##	140	140	0.688
##	141	141	0.711
##	142	142	
##	143	143	
##	144	144	
##	145	145	
##	146	146	
##	147	147	0.734
##	148	148	0.717
##	149	149	
##	150	150	
##	151	151	0.724
##	152	152	
##	153	153	
##	154	154	0.749
##	155	155	
##	156	156	0.722
##	157	157	0.741
##	158	158	0.752
##	159	159	
##	160	160	
##	161	161	0.751
##	162	162	
##	163	163	
##	164	164	0.775
##	165	165	
##	166	166	
##	167	167	0.792 0.781
##	168	168	
##	169	169	0.797
##	170 171	170 171	
##			0.800
##	172	172	0.788 0.771
## ##	173	173 174	0.771
##	174	174	
##	175 176	176	0.807
	177		0.798
## ##	178	177 178	0.798
##	178	179	0.812
##	180	180	0.803
##	181	181	0.810
##	181	181	
##	183	183	
##	184	184	0.813
##	104	104	0.013

##	185	185	0.827
##	186	186	0.817
##	187	187	0.829
##	188	188	0.825
##	189	189	0.823
##	190	190	0.814
##	191	191	0.824
##	192	192	0.829
##	193	193	0.834
##	194	194	0.819
##	195	195	0.823
##	196	196	0.830
##	197	197	0.833
##	198	198	0.826
##	199	199	0.822
##	200	200	0.843
##	201	201	0.844
##	202	202	0.855
##	203	203	0.864
##	204	204	0.879
##	205	205	0.873
##	206	206	0.855
##	207	207	0.875
##	208	208	0.861
##	209	209	0.849
##	210	210	0.852
##	211	211	0.873
##	212	212	0.866
##	213	213	0.863
##	214	214	0.866
##	215	215	0.869
##	216	216	0.864
##	217	217	0.891
##	218	218	0.858
##	219	219	0.888
##	220	220	0.892
##	221	221	0.885
##	222	222	0.881
##	223	223	0.892
##	224	224	0.884
##	225	225	0.866
##	226	226	0.887
##	227	227	0.882
##	228	228	0.899
##	229	229	0.897
##	230	230	0.894
##	231	231	0.900
##	232	232	0.899
##	233	233	0.886
##	234	234	0.893
##	235	235	0.882
##	236	236	0.887
##	237	237	0.903
##	238	238	0.888

##	239	239	0.895
##	240	240	0.918
##	241	241	0.912
##	242	242	0.903
##	243	243	0.905
##	244	244	0.915
##	245	245	0.930
##	246	246	0.916
##	247	247	0.906
##	248	248	0.914
##	249	249	0.901
##	250	250	0.922
##	251	251	0.909
##	252	252	0.922
##	253	253	0.928
##	254	254	0.921
##	255	255	0.920
## ##	256 257	256 257	0.933
##			0.920
##	258 259	258 259	0.933
##	260	260	0.918
##	261	261	0.923
##	262	262	0.933
##	263	263	0.922
##	264	264	0.912
##	265	265	0.920
##	266	266	0.934
##	267	267	0.942
##	268	268	0.942
##	269	269	0.919
##	270	270	0.934
##	271	271	0.928
##	272	272	0.942
##	273	273	0.935
##	274	274	0.940
##	275	275	0.934
##	276	276	0.938
##	277	277	0.952
##	278	278	0.928
##	279	279	0.929
##	280	280	0.944
##	281	281	0.944
##	282	282	0.939
##	283	283	0.958
##	284	284	0.939
##	285	285	0.948
##	286	286	0.936
##	287	287	0.948
##	288	288	0.950
##	289	289	0.934
##	290	290	0.953
##	291	291	0.958
##	292	292	0.944

##	293	293	0.962
##	294	294	0.954
##	295	295	0.948
##	296	296	0.957
##	297	297	0.961
##	298	298	0.958
##	299	299	0.956
##	300	300	0.960