Backpropagation Rule - Summary

$$w_{pq}(t)$$
 - weight from node p to node q at time t
$$w_{pq}(t+1) = w_{pq}(t) + \Delta w_{pq}$$

$$\Delta w_{pq} = \eta \cdot \delta_{\mathbf{q}} \cdot \mathbf{O}_{\mathbf{p}}$$
 - weight change

- The weight change is proportional to the output activation of neuron p and the error δ of neuron q
- δ is calculated in 2 different ways:

• q is an output neuron
$$\delta_q = (d_q - o_q) \cdot f'(net_q)$$

$$\delta_q = f'(net_q) \sum_i w_{qi} \delta_i$$
 (*i* is over the nodes in the layer above *q*)

Derivative of the activation function used in neuron q with respect to the input of q (netq)

a) Given is a 2-layer feed-forward neural network with 10 input units, 5 hidden units and 3 output units. How many weights does it contain? Don't forget to include the bias weights.

Number of weights = ?

Number of biases = ?

Total = weights + biases = ?

a) Given is a 2-layer feed-forward neural network with 10 input units, 5 hidden units and 3 output units. How many weights does it contain? Don't forget to include the bias weights.

Total = weights + biases = ?

a) Given is a 2-layer feed-forward neural network with 10 input units, 5 hidden units and 3 output units. How many weights does it contain? Don't forget to include the bias weights.

Total = weights + biases = ?

a) Given is a 2-layer feed-forward neural network with 10 input units, 5 hidden units and 3 output units. How many weights does it contain? Don't forget to include the bias weights.

Total = weights + biases =
$$65 + 8 = 73$$

b) Is the backpropagation algorithm guaranteed to achieve 100% correct classification for any linearly-separable set of training examples, given a sufficiently small learning rate? Explain briefly.

b) Is the backpropagation algorithm guaranteed to achieve 100% correct classification for any linearly-separable set of training examples, given a sufficiently small learning rate? Explain briefly.

Answer: No, it will iterate until a local minimum of the error is reached.

<u>Question:</u> Cybenko's theorem (slide 39) states that any continuous function can be approximated by a backpropagation network with 1 hidden layer. Why do we use networks with more than 1 hidden layer?

<u>Question:</u> Cybenko's theorem (slide 39) states that any continuous function can be approximated by a backpropagation network with 1 hidden layer. Why do we use networks with more than 1 hidden layer?

Answer: This is an existence theorem, i.e. it says that there is a network with 1 hidden layer that can do this (and doesn't tell us how to find this network). However, the theorem doesn't say that a network with 1 hidden layer is optimum in the sense of training time, ease of implementation, or (more importantly) generalization ability (i.e. ability to classify correctly new examples).

3D Error Space

1	1	1	0	0
0	1,	1,0	1,	0
0	0,0	1,	1 _{×0}	1
0	0,,1	1,0	1,	0
0	1	1	0	0

Image

Convolved Feature