Theory of Robotics and Mechatronics

HS 2020

Assignment 2

- 1) Figure 1 shows two systems that we will consider. In each system, Frame 1 represents the inertial reference frame that we will describe everything with respect to. In the first system, a prismatic joint moves Frame 2 parallel to the z_1 axis. In the second system, a rotational joint rotates Frame 2 about an axis parallel to the x_1 axis. The figure is drawn with right angles, and lengths are clearly marked. For each system, do the following:
 - a) Give the homogeneous transformation $g_{12}(0)$, which relates Frame 2 to Frame 1 when $\theta = 0$, as it is shown in the figure.
 - b) Give the screw parameters that geometrically describe the screw motion of the joint with respect to Frame 1.
 - c) Express the geometric "screw" in its abstract mathematical "twist" notation.
 - d) Find the homogeneous transformations that describe Frame 2 with respect to Frame 1 for each case, for an arbitrary θ .
 - e) Rigidly assign three points to Frame 2: [1 0 0], [0 1 0], [0 0 1]. These points are all defined with respect to Frame 2. Move the joint θ through the values $\theta = [0,4]$ for the prismatic joint and $\theta = [0, \pi/2]$ for the rotational joint. Use MATLAB to plot the (x,y,z) position of these three points with respect to Frame 1. Include three plots: $x \text{ vs } \theta$, $y \text{ vs } \theta$, and $z \text{ vs } \theta$. Each of the three plots should include three lines (one for each of the points). Include a fourth 3-D plot showing the three paths taken by the points. Make sure the plots are well labeled.

Theory of Robotics and MechatronicsHS 2020

Figure 1

