Sequence Listing

-1102	and, kymig iim	
	OH, Goo-Taeg	
	CHO, Myeong-Chan	
	KIM, Min-Jeong	
<120>	Composition for screening anti-hypertension drug comprising	
	mammal TCTP gene or its protein product, and method for screening	
	anti-hypertension drug using said composition	
<130>	04PP088	
<150>	KR 10-2003-0040519	
<151>	2003-06-21	
<150>	KR 10-2004-0043909	
<151>	2004-06-15	
<160>	2	
<170>	KopatentIn 1.71	
<210>	1	
<211>	858	
<212>	DNA	
<213> ·	Homo sapiens	
<220>		
<221>	mRNA	
<222>	(1)(858)	
<223>	TCTP gene	
<400>	1	
cactece	cc tcccccgag cgccgctccg gctgcaccgc gctcgctccg agtttcaggc	60
tegtgeta	aag ctagegeegt egtegtetee etteagtege cateatgatt atetaceggg 1	20
acctcato	cag ccacgatgag atgttctccg acatctacaa gatccgggag atcgcggacg 1	8 (
ggttgtg	cct ggaggtggag gggaagatgg tcagtaggac agaaggtaac attgatgact 2	4(

Sequence Listing

cgctcattgg	tggaaatgcc	tccgctgaag	gccccgaggg	cgaaggtacc	gaaagcacag	300
taatcactgg	tgtcgatatt	gtcatgaacc	atcacctgca	ggaaacaagt	ttcacaaaag	360
aagcctacaa	gaagtacatc	aaagattaca	tgaaatcaat	caaagggaaa	cttgaagaac	420
agagaccaga	aagagtaaaa	ccttttatga	caggggctgc	agaacaaatc	aagcacatcc	480
ttgctaattt	caaaaactac	cagttcttta	ttggtgaaaa	catgaatcca	gatggcatgg	540
ttgctctatt	ggactaccgt	gaggatggtg	tgaccccata	tatgattttc	tttaaggatg	600
gtttagaaat	ggaaaaatgt	taacaaatgt	ggcaattatt	ttggatctat	cacctgtcat	660
cataactggc	ttctgcttgt	catccacaca	acaccaggac	ttaagacaaa	tgggactgat	720
gtcatcttga	gctcttcatt	tattttgact	gtgatttatt	tggagtggag	gcattgtttt	780
taagaaaaac	atgtcatgta	ggttgtctaa	aaataaaatg	catttaaact	caaaaaaaaa	. 84
aaaaaaaaa	aaaaaaa					85

<210> 2 <211> 172

<212>

PRT

<213> Homo sapiens

<220>

<221> CHAIN

<222> (1)..(172)

<223> TCTP protein

<400>

Met Ile Ile Tyr Arg Asp Leu Ile Ser His Asp Glu Met Phe Ser Asp 5

Ile Tyr Lys Ile Arg Glu Ile Ala Asp Gly Leu Cys Leu Glu Val Glu

WO 2004/113572

Sequence Listing

			20					25					30		
Gly	Lys	Met 35	Val	Ser	Arg	Thr	Glu 40	Gly	Asn	Ile	Asp	Авр 45	Ser	Leu	Ile
Gly	Gly 50	Asn	Ala	Ser	Ala	Glu 55	Gly	Pro	Glu	Gly	Glu 60	Gly	Thr	Glu	Ser
Thr 65	Val	Ile	Thr	Gly	V al 70	Asp	Ile	Val	Met	Asn 75	His	His	Leu	Gln	Glu 80
Thr	Ser	Phe	Thr	Lys 85	Glu	Ala	Tyr	Lys	Lys 90	Tyr	Ile	Lys	Asp	Tyr 95	Met
Lys	Ser	Ile	Lys 100	Gly	Lys	Leu	Glu	Glu 105	Gln	Arg	Pro	Glu	Arg	Val	Lys
Pro	Phe	Met 115	Thr	Gly	Ala	Ala	Glu 120	Gln	Ile	Lys	His	Ile 125		Ala	Asn
Phe	Lys 130	Asn	Tyr	Gln	Phe	Phe 135	Ile	Gly	Glu	Asn	Met		Pro	qaA	Gly
Met 145	Val	Ala	Leu	Leu	Asp 150	Tyr	Arg	Glu	Asp	Gly 155		Thr	Pro	Tyr	Met
Ile	Phe	Phe	Tayo	Δαν	G1 v	T.o	a 1	Wo+	41. .	7					

165