

# Proportional Controller Modbus RS485 User Manual SY-DPCA-P-1 / SY-DPCA-C-1

| Contents                  | Page |
|---------------------------|------|
| Communication Parameters  | 1    |
| Register Address Table    | 1    |
| Error Handling            | 2    |
| Communication Examples    | 2    |
| PC Communication Software | 2    |
| Notes                     | 2    |



# 1. Communication Parameters

The default Modbus RS485 communication parameters are as follows (some can be adjusted via the control panel):

| Parameter                | Settings                              | Remarks               |  |
|--------------------------|---------------------------------------|-----------------------|--|
| Device Address           | 1(01h) ~ 247(F7h) Default: <b>1</b>   |                       |  |
| Baud Rate                | 4800 \ 9600 \ 19200 \ 38400 \ 57600   | Default: <b>19200</b> |  |
| Data Bits                | 8                                     | Fixed                 |  |
| Parity                   | None (N)                              | Fixed                 |  |
| Stop Bits                | 1                                     | Fixed                 |  |
| Protocol Mode            | RTU                                   | Fixed                 |  |
| Supported Function codes | <b>03h</b> (Read), <b>06h</b> (Write) | Others not supported  |  |

# 2. Register Address Table

The following Modbus registers are supported:

| Register | Register            |     | 5                                                                                                            | Example |       |
|----------|---------------------|-----|--------------------------------------------------------------------------------------------------------------|---------|-------|
| Address  | Name                | R/W | Description                                                                                                  | Decimal | HEX   |
| 0000Н    | Output Current      | R   | Unit: 0.01A (e.g., 67→0.67A)                                                                                 | 67      | 0043h |
| 0001H    | Input Signal        | R   | Unit: 0.1% (e.g., 356→35.6%)                                                                                 | 356     | 0164h |
| 0002H    | Device Status       | R   | 0: Normal; 1: Current Signal Broken; 2: Overload; 3: Coil Open; 4: Coil Short                                | 0       | 0000h |
| 0003Н    | Signal Selection    | R/W | 0:0~10V (Default); 1:0~5V; 2:4~20mA; 3:RS485;<br>4: Panel Control                                            | 2       | 0002h |
| 0004H    | Enable Mode         | R/W | 0: Disabled (Default); 1: Enabled                                                                            | 0       | 0000h |
| 0005Н    | Display Mode        | R/W | 0: Show Current (Default); 1: Show Input Signal;<br>2: No Display                                            | 0       | 0000h |
| 0006Н    | 485 Control Signal  | R/W | 0~100%, Unit: 1% (e.g., 80 → 80%)                                                                            | 80      | 0050h |
| 0007H    | Factory Reset       | R/W | Write <b>5</b> to reset addresses 0003H~000DH to default values (Device Address and Baud Rate will be reset) | 5       | 0005h |
| 0008H    | Max Current Setting | R/W | 0~3.00A, Unit: 0.01A (e.g., 300 → 3.00A)                                                                     | 300     | 012Ch |
| 0009Н    | Min Current Setting | R/W | 0~1.00A, Unit: 0.01A (e.g., 100 → 1.00A)                                                                     | 100     | 0064h |
| 000AH    | Current Rise Time   | R/W | 0.1~5.0s, Unit: 0.1s (e.g., 50 → 5.0s)                                                                       | 50      | 0032h |
| 000BH    | Current Fall Time   | R/W | 0.1~5.0s, Unit: 0.1s (e.g., 10 → 1.0s)                                                                       | 10      | 000Ah |
| 000CH    | Dither Frequency    | R/W | 70~350Hz, Unit: 10Hz (e.g., 35 → 350Hz)                                                                      | 35      | 0023h |
| 000DH    | Dead Zone Setting   | R/W | 0~5%, Unit: 1% (e.g., 5 → 5%)                                                                                | 5       | 0005h |



## 3. Error Handling

If an error occurs, the controller responds with:

#### 1. Error Types:

- Unsupported function code (e.g., 04h)
- Invalid register address (e.g., 000EH out of range)
- Data value out of range (e.g., writing 400 to 0008H)
- For other errors such as CRC or frame length errors, controller will discard the message without responding.

# 2. Error Response Format:

- Original function code +128 (80h)
- Error code: **01h** (indicates the error type)

#### 3. Example:

■ Host request 01 04 0008 0001 (invalid function code 04h)

(84h = 80h + 04h, 01h = error code)■ Controller response 01 84 01

# 4. Communication Examples

# **Example 1: Reading Data**

Read "Output Current (0000H)" and "Input Signal (0001H)" from device address 01h.

## **Host Request**

# 01 03 0000 0002 C40B

■ 01: Device address

■ 03: Function code (Read)

■ 0000: Start address (0000H)

■ 0002: Read 2 registers

■ C40B: CRC checksum

# **Controller Response**

#### 01 03 04 006E 0212 1A83

■ 01: Device address

■ 03: Function code (Read)

■ 04: Byte count (4 bytes)

■ 0212: 0001H value (0x0212 =  $530 \rightarrow 53.0\%$ )

■ 1A83: CRC checksum

## **Example 2: Writing Data**

Set "Vibration Frequency (000CH)" to 250Hz for device address 0Eh.

#### **Host Request**

# 0E 06 000C 0019 88FC

■ 0E: Device address

■ 06: Function code (Write)

■ 000C: Target address (000CH))

■ 0019: Value (0x0019 =  $25 \rightarrow 250$ Hz)

■ 88FC: CRC checksum

■ 006E: 0000H value (0x006E =  $110 \rightarrow 1.10A$ )

# 0E 06 000C 0019 88FC

**Controller Response** 

■ Echoes the request to confirm successful write.

#### 5. PC Communication Software

Using a USB-RS485 converter, you can operate and configure parameters via the PC software provided by our company.

# **Installation Guide**

Step 1: Insert the converter into the USB port on the PC.

Step 2: Install the converter driver (only required for the first use).

Step 3: Connect the controller and the converter.

Step 4: Launch the PC software (download link: https://www.sunstaryuya.com.tw/downloads/).

Step 5: Follow the instructions within the software to proceed.

## 6. Notes

- 1. **Timeout**: Ensure >10ms idle time between messages.
- 2. CRC Checksum: Mandatory for all messages (use standard Modbus RTU CRC calculation).
- 3. Address Range: Only 0000H~000DH registers are valid.
- 4. All parameters configured through Modbus will be saved automatically.