Factorial design and optimization methods

Krzysztof Podgórski Department of Mathematics and Statistics University of Limerick

November 23, 2009

n factors

- n factors
- each factor is on two levels: 'low' (-) and 'high' (+)

- n factors
- each factor is on two levels: 'low' (-) and 'high' (+)
- there is 2ⁿ combinations of factors and their levels

- n factors
- each factor is on two levels: 'low' (-) and 'high' (+)
- there is 2ⁿ combinations of factors and their levels
- complete factorial design requires 2ⁿ data

- n factors
- each factor is on two levels: 'low' (-) and 'high' (+)
- there is 2ⁿ combinations of factors and their levels
- complete factorial design requires 2ⁿ data
- if n = 3, then at least 8 data points are needed.

3-way factorial design

The factors are symbolically denoted by A, B, and C.

```
Combination A B
                  Response
                     у1
                     y2
а
b
                   у3
                   y 4
С
ab
              + - y5
             - + y6
ac
bc
             + + y7
abc
                     у8
```

• Effect – the average of observations when the factor is 'high' minus the average when it is 'low'.

- Effect the average of observations when the factor is 'high' minus the average when it is 'low'.
- First order interactions Consider A and B. Set B at than take the difference between average when A is at + and average when A is at . Repeat the same for the case when B is at + and take half the difference between the second one and the first one.
- Second order interactions AB interactions can be split into two components, those obtained when C is at + and those obtained when C is at -. Half of the difference between the former and the latter is three way interaction.

• Effect – the average of observations when the factor is 'high' minus the average when it is 'low'.

- Effect the average of observations when the factor is 'high' minus the average when it is 'low'.
- First order interactions Consider A and B. Set B at than take the difference between average when A is at + and average when A is at . Repeat the same for the case when B is at + and take half the difference between the second one and the first one.
- Second order interactions AB interactions can be split into two components, those obtained when C is at + and those obtained when C is at -. Half of the difference between the former and the latter is three way interaction.

Example 7.7.1

In a liquid chromatography experiment, the dependence of the retention parameter, k', on three factors was investigated. The factors are: pH (P), the concentration of a counter-ion (T), and the concentration of the organic solvent in the mobile phase (C).

Combinations								
of	factor	levels	k'					
1			4.7					
р			9.9					
t			7.0					
C			2.7					
pt			15.0					
рс			5.3					
tc			3.2					
pto	2		6.0					

Example 7.7.1 – Effects of individual factors

Effect of P: (9.9+15.0+5.3+6.0-(4.7+7.0+2.7+3.2))/4 = 4.65

Example 7.7.1 – Effects of individual factors

Effect of P: (9.9+15.0+5.3+6.0-(4.7+7.0+2.7+3.2))/4 = 4.65Effect of C: (2.7+5.3+3.2+6.0-(4.7+9.9+7.0+15.0))/4 = -4.85

Example 7.7.1 – Effects of individual factors

```
Effect of P: (9.9+15.0+5.3+6.0-(4.7+7.0+2.7+3.2))/4 = 4.65

Effect of C: (2.7+5.3+3.2+6.0-(4.7+9.9+7.0+15.0))/4 = -4.85

Effect of T: (7.0+15.0+3.2+6.0-(4.7+9.9+2.7+5.3))/4 = 2.15
```

Effect of PT: 0.75

Effect of PT: 0.75 Effect of PC: -1.95

Effect of PT: 0.75 Effect of PC: -1.95 Effect of TC: -1.55

Effect of PT: 0.75 Effect of PC: -1.95 Effect of TC: -1.55 Effect of PTC: -0.65

• Sum of squares = $N(effect)^2/4$, where N is the total number of measurements.

- Sum of squares = $N(effect)^2/4$, where N is the total number of measurements.
- Each sum of squares for effects has one degree of freedom.

- Sum of squares = $N(effect)^2/4$, where N is the total number of measurements.
- Each sum of squares for effects has one degree of freedom.
- Residuals sum of squares has to be computed either by subtraction from the total sum of squares or directly as described before.

- Sum of squares = $N(effect)^2/4$, where N is the total number of measurements.
- Each sum of squares for effects has one degree of freedom.
- Residuals sum of squares has to be computed either by subtraction from the total sum of squares or directly as described before.
- If all interaction are considered and no replicates are made, there is not enough degrees of freedom to test for significance of main effects and interactions

- Sum of squares = $N(effect)^2/4$, where N is the total number of measurements.
- Each sum of squares for effects has one degree of freedom.
- Residuals sum of squares has to be computed either by subtraction from the total sum of squares or directly as described before.
- If all interaction are considered and no replicates are made, there is not enough degrees of freedom to test for significance of main effects and interactions
- If such tests are desired the highest order interaction should be dropped from considerations.

Example 7.7.1 in R

Mercury is lost from solutions stored in polypropylene flasks by combination with traces of tin in the polymer. The absorbance of a standard aqueous solution of mercury stored in such flasks was measured for two levels of the following factors:

Factor	Low	High
Р - рН	-1	1
T - counter-ion concentration	-1	1
C - organic solvent concentr.	-1	1

The following results were obtained.

Combination	of	factor	levels	k'
1				4.7
р				9.9
t				7.0
C				2.7
pt				15.0
рс				5.3
tc				3.2
ptc				6.0

Reading and formating data

We read the data into *R*:

```
k=c(4.7,9.9,7.0,2.7,15.0,5.3,3.2,6.0)
P=c(-1, 1,-1,-1, 1, 1,-1,1)
T=c(-1,-1, 1,-1, 1,-1, 1,1)
C=c(-1,-1,-1, 1,-1, 1,1)
```

Analysis of the data

The following lines of codes allows to compute the effects which are twice the coefficients to the linear model fitted to the above data.

```
Result=lm(k^P+T+C+P*T+P*C+T*C+P*C*T)
summary (Result)
Call:
lm(formula = k P + T + C + P * T + P * C + T * C + P * C * T)
Residuals:
ALL 8 residuals are 0: no residual degrees of freedom!
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.725
                            NΑ
                                    NΑ
                                            NΑ
              2.325
                           NA
                                   NA
                                            NA
             1.075
                           NΑ
                                   NA
                                            NΑ
             -2.425
                           NΑ
                                   NA
                                            NΑ
             0.375
P:T
                           NA
                                   NA
                                            NA
             -0.975
P:C
                           NA
                                   NA
                                            NA
T·C
             -0 775
                           NΑ
                                   NA
                                            NΑ
P:T:C
             -0.325
                            NA
                                   NA
                                            NA
Residual standard error: NaN on O degrees of freedom
Multiple R-squared: 1. Adjusted R-squared:
                                               NaN
F-statistic: NaN on 7 and 0 DF, p-value: NA
```

Effects=Twice estimated coefficients

```
2*coef(Result)
(Intercept) A C T
0.1545 -0.0215 0.0005 -0.0265
A:C A:T C:T A:C:T
-0.0005 -0.0065 0.0025 -0.0005
```

Two way factorial design with replicates

Suppose that the following result has been obtained for replicates of the experiment

```
k1=c(4.5, 9.8, 6.8, 2.9, 14.8, 5.3, 3.2, 5.6)
```

We read in the data and design

```
k1=c(4.5,9.8,6.8,2.9,14.8,5.3,3.2,5.6)
kk=c(k,k1)
P=c(P,P)
T=c(T,T)
C=c(C,C)
```

Optimization

Optimization

 The design and its analysis allows to test for effects of factors.

Optimization

- The design and its analysis allows to test for effects of factors.
- The next step is to find the level of factors that gives an optimal (maximal or minimal) response.

Equidistant vs. efficient search algorithms

Equidistant vs. efficient search algorithms

 The equidistant search may be very inefficient if we are out of luck.

Equidistant vs. efficient search algorithms

- The equidistant search may be very inefficient if we are out of luck.
- There exist more uniformly efficient forms of finding optimum

•
$$F_0 = F_1 = 1$$
, $F_{n-1} + F_n = F_{n+1}$.

- $F_0 = F_1 = 1$, $F_{n-1} + F_n = F_{n+1}$.
- If the precision of identifying the optimal location is supposed to be N-fold reduction of the initial range, i.e. $\epsilon = R/N$, where the R is the length of the original interval. Then for the minimal n such that $F_n \geq N$, we take F_{n-2}/F_n to be the proportion of the whole range for the distance of A from the left end point. The same proportion is taken for B and the right end point of the entire interval.

- $F_0 = F_1 = 1$, $F_{n-1} + F_n = F_{n+1}$.
- If the precision of identifying the optimal location is supposed to be N-fold reduction of the initial range, i.e. $\epsilon = R/N$, where the R is the length of the original interval. Then for the minimal n such that $F_n \geq N$, we take F_{n-2}/F_n to be the proportion of the whole range for the distance of A from the left end point. The same proportion is taken for B and the right end point of the entire interval.
- This grants that optimal value with the error ϵ will be found in n steps.

Alternating variable search method

Alternating variable search method and interaction

The methods fails if there are strong interactions:

The method of steepest ascent

Factorial design and the steepest ascent direction

Close to the optimum – interactions

Simplex optimization

Local vs. Global maxima - Simulated annealing

