Chapter 2

Introduction to the Relational Model

Slides by Silbershatz, Modifications by Rogers and Brown

Attribute Types

- The set of allowed values for each attribute is called the <u>domain</u> of the attribute
- Attribute values are (normally) required to be <u>atomic</u>, that is, indivisible
- The special value, **Null**, is a member of every domain
 - The null value causes complications in the definition of many operations

Relation Schema and Instance

- A₁, A₂, A₃, ..., A_n are attributes
- $R = (A_1, A_2, A_3, ..., A_n)$ is a <u>relation schema</u>
 - Example:

Instructor = (ID, Name, Dept Name, Salary)

- Formally, given sets D₁, D₂, D₃, ..., D_n, a relation r is a subset of D₁ X D₂ X D₃ X ... X D_n
 - Thus, a <u>relation</u> is a set of n-tuples (A₁, A₂, A₃, ..., A_n) where each $A_i \in D_i$

Relation Schema and Instance

- The current values (<u>relation instance</u>) of a relation are specified by a <u>table</u>
- The element t, of r is a tuple and is represented by a row in a table

19 \ 15

Relations are Unordered

- Order of tuples is irrelevant
 - Tuples may be stored in any arbitrary order
- Ex. The instructor relation with unordered tuples

ID	Name	Dept_Name	Salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
14061	Mozart	Music	59000
42305	Buchholz	Computer Science	78000
49675	Hemmingway	English	73000
85720	Crick	Biology	72000

Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts
 - For a university those parts might include:
 - Instructors
 - Students
 - Advisors
 - Classes
 - Buildings
 - ...

Database

- Bad Design
 - Storing everything in one record
 - Univ (Instructor_ID, Name, Dept_name, Salary, Student_ID, Building, ...)
 - Results in
 - Repetition of information (e.g. two students have the same instructor)
 - The need for null values (e.g. a student with no advisor)
- Normalization Theory (Chapter 7)
 - Deals with how to design "good" relational schemas

Keys

- Let $K \subseteq R$
 - K is a <u>Superkey</u> of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {ID} and {ID, Name} are both Superkeys of *Instructor*
 - Superkey K is a **Candidate Key** if K is minimal
 - Example: {ID} is a candidate key for *Instructor*
 - One of the candidate Keys is selected to be the primary key which one?
- Foreign Key constraint
 - Value in one relation must appear in the other
 - Referencing relation
 - Referenced relation

Schema Diagram for University Database ID semester year grade section course department course id sec id course_id advisor dept_name semester year building no building time_slot time_slot_id day start_time end_time prereq instructor classroom course_id ID building room_no capacity teaches course id sec id semester

Relational Query Language

- Procedural (imperative) v Non-Procedural (declarative)
 - Imperative C, Python, Java
 - Declarative SQL, R, Ruby, Haskell
- "Pure" Languages
 - Relational Algebra
 - Tuple Relational Calculus
 - Domain Relational Calculus
- Relational Operators
 - Select
 - Project
 - Join
 - ...

Selection of Tuples

• Relation, r

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- Select tuples with A = B and D > 5
 - $-\sigma A = B \text{ and } D > 5 (r)$

Α	В	С	D
α	α	1	7
β	β	23	10

Set Intersection of Two Relations

• Two relations, R and S

Α	В
α	1
α	2
β	1
	n .

Α	В
α	2
β	3
9	5

• R ∩ S

Joining Two Relations – Natural Join

- Let r and s be relations on schemas R and S respectively. Then the "natural join" of relations R and S is a relation on schema R ∪ S obtained as follows:
 - Consider each pair of tuples t_r from R and t_s from S
 - If t_r and t_s have the same value on each of the attributes in R \cap S, add a tuple t to the result, where
 - t has the same value as t, on r
 - t has the same value as t_s on s

Joining Two Relations – Natural Join

• Two relations, R and S

Α	В	С	D
α	1	α	Α
β	2	Υ	Α
Υ	4	β	В
α	1	Υ	Α
δ	2	β	В
	F	₹	

B D E

1 A α

3 A β

1 A Υ

2 B δ

3 B ε

S

• Natural Join − R 🛛 S

Α	В	С	D	E
α	1	α	Α	α
α	1	α	Α	Υ
α	1	Υ	Α	α
α	1	Υ	Α	Υ
δ	2	β	В	δ

Figure in 2.1

Symbol (Name	Example of Use
σ Selection	σ salary >= 85000(Instructor)
	Return rows of the input relation that satisfy the predicate
П Projection	П _{ID, Salary} (Instructor)
	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output
	Instructor ⊠ Department
	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name
X Cartesian Product	Instructor X Department
	Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes
U	$\sqcap_{Name}(Instructor) \cup \sqcap_{Name}(Instructor)$
Union	Output the union of tuples from the two input relations

