More problems on L^p spaces.

Problem 1. This problem is review, but we will be using it below. Let (X, μ) be a measure space and $f: X \to \mathbb{R}$ a measurable function. Show there is a sequence of non-negative simple functions $\langle \phi_n \rangle_{n=1}^{\infty}$ that increase pointwise to f. That is $0 \le \phi_1 \le \phi_2 \le \phi_3 \le \cdots$ and $\lim_{n \to \infty} \phi_n(x) = f(x)$ for all x. Hint: For each pair of positive integers n, k let

$$E_{n,k} = \left\{ x \in X : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \right\}.$$

and set

$$\phi_n = \sum_{k=0}^{n2^n} \frac{k}{2^n} \mathbb{1}_{E_{n,k}}.$$

Verify this does the trick.

Recall the function sgn: $\mathbb{R} \to \{-1, 0, 1\}$ is

$$\operatorname{sgn}(x) = \begin{cases} +1, & x > 0 \\ 0, & x = 0; \\ -1, & x < 0. \end{cases}$$

Problem 2. Let X, μ) be a measure space and $f: X \to \mathbb{R}$ a measurable function. Show there is a sequence of simple functions $\langle \psi_n \rangle_{n=1}^{\infty}$ such that

- $|\psi_n| \le |\psi_{n+1}|$ for all n,
- $\psi_n(x)f(x) \ge 0$ for all $x \in X$,
- $|\psi_n| \leq |f|$, and
- $\lim_{n\to\infty} \psi_n(x) = f(x)$ for all x.

Hint: Using the function |f| in place of f in the previous problem find a sequence of simple functions $0 \le \phi_n \nearrow |f|$ and let $\psi_n = \operatorname{sgn}(f)\phi_n$.

Problem 3 (August 1984). Let (X, μ) be a measure space and let 1 and <math>1/p + 1/q = 1. Let $g \in L^1(X)$ such that there is a constant M with

$$\left| \int_0^1 gs \, d\mu \right| \le M \|s\|_{L^p}$$

for all simple functions s. Prove $g \in L^q(X)$ and $||g||_{L^q} \leq M$. Hint: Let $\psi_n \to g$ as in the last problem. Show

$$0 \le |\psi_n|^q \le |g|^q$$
$$|\psi_n|^q \le g \operatorname{sgn}(\psi_n) |\psi_n|^{q-1}.$$

The function $\operatorname{sgn}(\psi_n)|\psi_n|^{q-1}$ is a simple function and thus

$$\|\psi_n\|_{L^q}^q = \int_X |\psi_n|^q d\mu$$

$$\leq \int_X g \operatorname{sgn}(\psi_n) |\psi_n|^{q-1} d\mu$$

$$\leq M \|\operatorname{sgn}(\psi_n) |\psi_n|^{q-1} \|_{L^p}.$$

Show this implies

$$\|\psi_n\|_{L^q} \leq M$$

and then use the monotone convergence theorem to show

$$||g||_{L^q} = \lim_{n \to \infty} ||\psi_n||_{L^q} \le M$$

to complete the proof.

Problem 4 (August 2005). Let (X, μ) be a measure space and let $f \in L^1(X)$ with f(x) for μ almost all x. Prove for all $\varepsilon > 0$ that $\inf\{\int_{\Omega} f \, d\mu : \mu(\Omega) \ge \varepsilon\} > 0$. Hint: Let S_n be the set

$$S_n := \{ x \in X : f(x) < 1/n \}.$$

Then $S_{n+1} \subseteq S_n$ and f > 0 almost everywhere implies $\bigcap_{n=1}^{\infty} S_n$ has measure zero. This implies $\lim_{n\to\infty} \mu(S_n) = 0$. Therefore there exists an n_0 with

$$\mu(S_{n_0})<\frac{\varepsilon}{2}.$$

Let $\mu(\Omega) \geq \varepsilon$. We wish to give a lower bound on $\int_{\Omega} f \, d\mu$. First show

$$\int_{\Omega} f \, d\mu \, \int_{S_{n_0} \cap \Omega} f \, d\mu + \int_{\Omega \setminus S_{n_0}} f \, d\mu$$

$$\geq \int_{\Omega \setminus S_{n_0}} f \, d\mu$$

$$\geq \frac{\mu(\Omega \setminus S_{n_0})}{n_0}.$$

Then show

$$\mu(\Omega \setminus S_{n_0}) > \frac{\varepsilon}{2}.$$

Thus

$$\inf \left\{ \int_{\Omega} f \, d\mu : \mu(\Omega) \ge \varepsilon \right\} \ge \frac{\varepsilon}{2n_0} > 0.$$

Proposition 1. Let (X, μ) be a measure space and let $f \in L^2(X)i$ with $f \geq 0$. Then

$$\int_X f^2 \, d\mu = 2 \int_0^\infty t \mu(\{x: f(x) > t\}) \, dt$$

Problem 5. Prove this by verifying the interchange of the order of integration in the following calculation:

$$\int_{X} f(x)^{2} \mu(x) = 2 \int_{X} \int_{0}^{f(x)} t \, dt \, d\mu(x)$$

$$= 2 \int_{0}^{\infty} \int_{\{x:f(x)>t\}} t \, d\mu(x) \, dt$$

$$= 2 \int_{0}^{\infty} t \int_{\{x:f(x)>t\}} d\mu(x) \, dt$$

$$= 2 \int_{0}^{\infty} \mu(\{x:f(x)>t\}) \, dt.$$

Problem 6. Let (X, μ) be a measure space and let $f \in L^p(X)$ with $1 \le p < \infty$ and $f \ge 0$. Prove

$$\int_X f^p d\mu = p \int_0^\infty t^{p-1} \mu(\{x : f(x) > t\}) dt \qquad \Box$$

Problem 7. Let (X, μ) be a measure space and f a measurable function $f: X \to \mathbb{R}$ such that e^f is integrable. Show

$$\int_X e^f d\mu = \int_{-\infty}^\infty e^t \mu(\{x : f(x) > t\}) dt.$$