A Scalable Index for Top-k Subtree Similarity Queries

Daniel Kocher* and Nikolaus Augsten

Amsterdam, July 4, 2019

Department of Computer Sciences, University of Salzburg, Austria

Top-3 Subtree Similarity Query

Find k most similar subtrees for query Q in large document T

Top-3 Subtree Similarity Query

Find k most similar subtrees for query Q in large document T

Fast queries ♦ Scale to large documents ♦ Support updates

Subtree Scoring Function

Subtree Scoring Function

Tree edit distance: Minimum number of node edit operations that transform one tree into another

Subtree Scoring Function

Tree edit distance: Minimum number of node edit operations that transform one tree into another

Computation: $\mathcal{O}\left(n^3\right)$ time and $\mathcal{O}\left(n^2\right)$ space

State-of-the-Art Solutions

State of the Art

	Querying	Memory Footprint	Index Updates
Index-free ¹	Slow (doc. scan)	Low	-
Index-based ²	Fast	High (quadratic)	No

 $^{^1\}mathrm{Augsten}$ et al. TASM: Top-k Approximate Subtree Matching. IEEE ICDE. 2010. $^2\mathrm{Cohen.}$ Indexing for Subtree Similarity-Search Using Edit Distance. ACM SIGMOD. 2013.

SlimCone Index

Efficient ■ **Linear Space** ■ **Updatable**

Candidate Generation

Algorithmic Model

Linear-Space Index

SlimCone Index

Efficient ■ **Linear Space** ■ **Updatable**

Candidate Generation

Algorithmic Model

Linear-Space Index

Background

Label lower bound IIb: Minimum edit distance based on label information

Effective Candidate Generation (1)

Ranking filter: Worst edit distance in intermediate ranking serves as filter

Effective Candidate Generation (1)

Ranking filter: Worst edit distance in intermediate ranking serves as filter

Effective Candidate Generation (2)

Effective Candidate Generation (2)

Early Termination: Skip all subtrees with IIb larger or equal to worst distance

SlimCone Index

Efficient ■ **Linear Space** ■ **Updatable**

Candidate Generation

Algorithmic Model

Linear-Space Index

Round-based Algorithmic Model

Distance bound B: Starts from 0 and is incremented in each round

Intuition: Round 1 unveils all subtrees that have IIb equal to 0

SlimCone Index

Efficient ■ **Linear Space** ■ **Updatable**

Candidate Generation

Algorithmic Model

Linear-Space Index

Worst case: Quadratic space in the document size

Empirical Evaluation

Experiments

Data Set	Size in Nodes	
XMark	3.6 – 57.8 Mio.	
TreeBank TB	3.8 Mio.	
DBLP	126.5 Mio.	
SwissProt SP	479.3 Mio.	

State of the Art

TASM¹ index-free STRUCT² index-based

Our Solution

SLIM³ index-based

Memory Scalability ♦ Efficiency ♦ Effectiveness

¹Augsten et al. TASM: Top-*k* Approximate Subtree Matching. IEEE ICDE. 2010.

²Cohen. Indexing for Subtree Similarity-Search Using Edit Distance. ACM SIGMOD. 2013.

 $^{^3}$ Kocher and Augsten. A Scalable Index for Top-k Subtree Similarity Queries. ACM SIGMOD. 2019.

Memory Scalability (for varying document size)

²Our C++ implementation of Cohen. Indexing for Subtree Similarity-Search Using Edit Distance. ACM SIGMOD. 2013.

³Memory estimated according to *Cohen. Indexing for Subtree Similarity-Search Using Edit Distance. ACM SIGMOD. 2013.*

Efficiency (for varying document size)

Our C++ implementation of Augsten et al. TASM: Top-k Approximate Subtree Matching. IEEE ICDE. 2010.

²Our C++ implementation of *Cohen. Indexing for Subtree Similarity-Search Using Edit Distance. ACM SIGMOD.* 2013.

Effectiveness (for varying document size)

Our C++ implementation of Augsten et al. TASM: Top-k Approximate Subtree Matching. IEEE ICDE. 2010.

 $^{^{2} \}hbox{Our C++ implementation of \it Cohen. \it Indexing for \it Subtree \it Similarity-Search \it Using \it Edit \it Distance. \it ACM \it SIGMOD. \it 2013.}$

Conclusion

Conclusion

- \blacksquare Novel index-based approach for top-k subtree similarity queries
- Algorithmic model that supports effective candidate generation
- Guaranteed linear-space index

Fast queries ♦ Scale to large documents ♦ Support updates

Thank you! Questions?

Contact:

Daniel Kocher Nikolaus Augsten dkocher [at] cs.sbg.ac.at nikolaus.augsten [at] sbg.ac.at

