

Università degli Studi di Milano-Bicocca Laboratorio di Fisica 2

Corso di Laurea Triennale in Fisica

Relazione di laboratorio

Circuiti 1

07 Marzo 2024

Gruppo di lavoro n. 18: Brambilla Luca, I.brambilla75@campus.unimib.it Matricola 897853

Carminati Giovanni, g.carminati
17@campus.unimib.it Matricola $897462\,$

Di Lernia Sara, s.dilernia1@campus.unimib.it Matricola 898437

Indice

1	Obiettivi	2
2	Cenni teorici 2.1 Strumenti di misura non ideali	2 2 2 2 2
3	Apparato sperimentale e strumenti di misura	3
4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 5 5 6 7 8
5	Conclusioni	9
6	Appendice	10

1 Obiettivi

- Configurare opportunamente gli strumenti per effettuare misure di resistenze considerando la non idealità dei componenti
- Verificare la legge di Ohm
- Rilevare la caratterizzazione corrente-tensione di un dispositivo non lineare (diodo)

2 Cenni teorici

2.1 Strumenti di misura non ideali

L'amperometro e il voltmetro usati per la misura della carattristica tensione-corrente contengono una resistenza interna che può falsare i valori.

La resistenza interna del voltmetro (R_V) è nell'ordine di $1 - 10M\Omega$ ed è in parallelo rispetto al circuito di cui viene misurata la tensione.

La resistenza interna dell'amperometro (R_A) è nell'ordine di $1-10\Omega$ ed è in serie rispetto al circuito di cui viene misurata la tensione.

2.2 Legge di Ohm

La legge di Ohm descrive la relazione di proporzionalità diretta tra la tensione applicata ai capi di un resistore e la corrente che lo attraversa.

$$V = RI \tag{1}$$

2.3 Partitore resistivo

Un partitore resistivo è un particolare tipo di circuito composto da due resistenze in serie che permette di ottenere un voltaggio inferiore a quello erogato dal generatore, sfruttando la caduta di potenziale della prima resistenza. Modificando il valore della seconda resistenza, è possibile ottenere il valore desiderato di tensione ai capi di quest'ultima, senza dover agire sulla tensione del generatore.

2.4 Legge di Shockley

La legge di Shockeley descrive la caratteristica tensione-corrente di un diodo

$$I(V) = I_0(e^{\frac{qV}{gkT}} - 1) \tag{2}$$

dove I_0 è la corrente di saturazione inversa, g una costante adimensionale dipendente dal diodo, k la costante di boltzman, q la carica dell'elettrone e T la temperatura in Kelvin. Essendo la legge descritta da un'esponenziale per ragioni pratiche si usa considerare un $valore\ di\ soglia$ oltre il quale il diodo inizia a condurre una corrente significativa.

3 Apparato sperimentale e strumenti di misura

I circuiti sono stati costruiti su una breadboard, con l'ausilio di fili e resistenze in dotazione e di un generatore di tensione a corrente continua. In alcuni casi è stata utilizzata una decade, ovvero uno strumento dotato di resistenze multiple collegabili in serie, per consentire delle modifiche agevoli al circuito.

Un multimetro palmare e uno da banco sono stati utilizzati rispettivamente come voltmetro e amperometro. La scelta è stata dettata dalla maggiore sensibilità richiesta dalla misura dell'intensità di corrente (ordine di grandezza dei microampere).

Figura 1: Configurazione 1

Figura 2: Configurazione 2

Le figure rappresentano le due possibili configurazioni per la misura della resistenza R. La prima si usa nel caso in cui $R \ll R_v$ mentre la seconda quando $R \gg R_a$.

4 Raccolta e Analisi Dati

È stato assunto un errore su I e V relativo del 1%, questo a causa dell'oscillazione dei valori oltre alla seconda cifra decimale (nel caso dell'amperometro) e della variazione dell'unità di misura sul display del voltmetro.

4.1 Incertezza di R

Questa esperienza è stata fatta per stimare l'errore associato alle resistenze.

Con un ohmmetro sono stati letti i valori delle resistenze usate e confrontati con i valori dichiarati dal costruttore. Le misure sono state raccolte su diversi ordini di grandezza (da pochi ohm fino all'ordine dei $M\Omega$). Vanno inoltre considerati 0.2Ω dovuti alla resistenza dei componenti.

$$\bar{E}_{\%} = \frac{1}{N} \sum_{i=1}^{N} \frac{|R_{attesa} - R_{misurata}|}{R_{media}} = 3\%$$

Figura 3: Errore relativo e ordine di grandezza

Dalla figura 3 osserviamo che $\bar{E}_{\%}=3\%$ non rappresenta efficacemente l'errore associato alla resistenza. Oltre ai 100Ω l'incertezza dichiarata dal costruttore è attendibile mentre per resistenze inferiori il comportamento è inconsistente con le previsioni. Una possibile causa di un errore così elevato può essere la presenza di una resistenza interna all'ohmetro, non trascurabile per resistenze piccole.

4.2 Stima delle resistenze interne di voltmetro e amperometro

4.2.1 Voltmetro

Per stimare la resistenza interna del voltmetro si è posto il circuito nella configurazione 2 misurando tensione e corrente al variare della resistenza R.

Sono state raccolte venti misure di tensione e corrente variando la resistenza tra $1-10M\Omega$. Come indicato in precedenza, sono state considerate le seguenti incertezze:

$$\sigma_{R_{\%}} = 1\%$$
 $\sigma_{V_{\%}} = 1\%$ $\sigma_{I_{\%}} = 1\%$

NOTA: la tensione è rimasta costante per tutte le misurazioni (V = 5.01V). La resistenza misurata è quella di una resistenza equivalente espressa dell'equazione 3.

$$R_{eq} = \frac{1}{\frac{1}{R} + \frac{1}{R_V}} \tag{3}$$

Dalla legge di Ohm $(V = R_{eq}I)$ ricaviamo il valore di R_V .

$$R_V = \left(\frac{I}{V} - \frac{1}{R}\right)^{-1} \quad \sigma_{R_v} = \left(\frac{I}{V} - \frac{1}{R}\right)^{-2} \sqrt{\left(\frac{\sigma_I}{V}\right)^2 + \left(\frac{I\sigma_V}{V^2}\right)^2 + \left(\frac{\sigma_R}{R^2}\right)^2} \tag{4}$$

Compiendo una media ponderata tra i valori ricavati di R_V e valutandone l'incertezza otteniamo: $R_V = (10.85 \pm 0.11) M\Omega$

4.2.2 Amperometro

La resistenza misurata è quella di una resistenza equivalente espressa dell'equazione $R_{eq} = R + R_A$. Ai valori di R va applicata una correzione di 0.2Ω dovuta alle resistenze interne dei componenti. Dalla legge di ohm ricaviamo il valore di R_A e σ_{R_A}

$$R_A = \frac{V}{I} - R \qquad \sigma_{R_A} = \sqrt{\left(\frac{V}{I}\right)^2 \left(\frac{\sigma_V^2}{V^2} + \frac{\sigma_I^2}{I^2}\right) + \sigma_R^2} \tag{5}$$

Compiendo una media ponderata sui valori di R_a ricavati otteniamo: $R_a = (1.18 \pm 0.02)\Omega$

4.3 Verifica legge di Ohm

Fissata la resistenza $R=2M\Omega$ è stata variata la tensione V e misurata la corrente I. Il circuito è stato posto nella configurazione 2 e la tensione variata da 0.5 a 10 Volt per un totale di 20 misure.

È stata effettuata un'interpolazione lineare delle misure di V in funzione di I:

$$\begin{array}{ll} R & 2.027 \times 10^6 \\ \sigma_R & 0.001 \times 10^6 \\ \tilde{\chi_o}^2 & 0.15 \\ d_{liberta} & 19 \\ \text{pvalue} & 100.0\% \end{array}$$

Figura 4: Interpolazione lineare tensione-corrente

Possiamo ora confrontare il valore di R ricavato dall'interpolazione con il valore scelto di $2M\Omega\pm1\%$ mediante il t-test:

$$t-test 1.32 p-value 0.19$$

Figura 5: confronto valori resistenza R

4.4 Approfondimento: partitore resistivo

Per costruire un partitore resistivo (configurazione 3), si utilizzano due resistenze fisse al posto di R_1 e R_2 , mentre data la necessità di variare il valore di R_L è possibile utilizzare una decade.

Per misurare V_{in} e V_{out} si collegano il multimetro palmare e quello da banco rispettivamente ai capi della resistenza R_L e del generatore di tensione; entrambi utilizzati con funzione di voltmetro.

Figura 6: configurazione 3

L'obiettivo è creare un circuito con la configurazione 3, e determinare quali siano i valori di R_1 e R_2 tali che:

- $V_{out} = \frac{1}{2}V_{in}$
- \bullet V_{out} (ovvero la caduta di potenziale delle due resistenze in parallelo) non dipenda dal valore di R_L per $10k\Omega < R_L < 1M\Omega$

La R_{eq} delle due resistenze in parallelo è:

$$R_{eq} = \frac{1}{\frac{1}{R_L} + \frac{1}{R_2}} \tag{6}$$

Ipotizzando $R_L >> R_2 \Rightarrow \frac{1}{R_L} << \frac{1}{R_2} \Rightarrow R_{eq} \simeq R_2$. Sotto queste ipotesi il circuito può essere considerato un partitore di tensione, composto da R_1 e R_2 in serie. Mettendo a sistema la seconda legge di Kirchhoff e la prima richiesta, si ottiene:

$$\begin{cases} V_{in} - IR_1 = IR_2 \\ IR_2 = \frac{1}{2}V_{in} \end{cases}$$

Il sistema si riduce alla condizione $R_1 = R_2$.

Si è rilevato che la differenza di due ordini di grandezza è sufficiente a soddisfare entrambe le richieste, sebbene la precisione aumenti se ci si avvicina al centro dell'intervallo di valori previsto per R_L .

4.5 Misura della caratteristica corrente-tensione di un diodo

Per la caratterizzazione della caratteristica tensione-corrente del diodo è stata usata la configurazione 7, con il diodo (D) posizionato come in figura 7

Figura 8: Valori raccolti

Variando la tensione è stato misurato il relativo valore della corrente, raccolte 25 misure tra 0.2 - 1volt (figura 2).

La legge di Shockley lega la corrente alla tensione del diodo, secondo la formula 2. L'obiettivo è di trovare il valore di soglia considerando l'intersezione di una retta con l'asse I=0. Interpoliamo quindi con una retta considerando un numero di dati (disposti in ordine decrescente) affinché $\tilde{\chi}_0^2 \simeq 1$ ottenendo così la retta I=A+BV. Invertendo la relazione della retta troviamo il valore di soglia come $V_{soglia}=-A/B$

Figura 9: Comportamento non lineare del diodo, fit e valore di soglia Il valore di soglia ricavato è: $V_{soglia} = (0.734 \pm 0.013) V$ L'interpolazione che mantiene il $\tilde{\chi}_0^2 \simeq 1$ è con 9 punti.

$$A = -0.237 \pm 0.003$$
 $B = 0.322 \pm 0.004$
 $\bar{\sigma}_y = 0.040$
 $\tilde{\chi}_o^2 = 0.87$
 $d_{liberta} = 7$
 $p_{value} = 99.0\%$

È stato effettuato il fit di tutti di valori misurati per verificare la legge di Shockley:

Dal grafico appare evidente che i dati raccolti non seguono una legge esponenziale. In primo luogo, è possibile notare che non ci sono oscillazioni rispetto al fit, quindi si esclude la presenza di errori casuali significativi. Si tratta quindi di errori sistematici. Sono state formulate delle ipotesi:

- Il diodo potrebbe essere stato "bruciato" prima dello svolgimento dell'esperienza
- Avendo effettuato più set di misurazioni prima di quello considerato, è possibile che il diodo si sia surriscaldato
- Non è stata presa in considerazione una ipotetica non-idealità del diodo
- La configurazione utilizzata non è necessariamente quella ottimale per la misura

Non sono stati effettuati test per misurare la corrente di saturazione inversa, pertanto non è stato possibile verificare ipotesi riguardanti un malfunzionamento del diodo.

5 Conclusioni

- L'errore percentuale associato alle resistenze dell'1% è attendibile solo per resistenze superiori a $1K\Omega$, al di sotto di questa soglia il valore delle resistenze interne alle componenti (breadboard, cavi, strumenti di misura) non sono trascurabili
- Il valore della resistenza interna al voltmetro è $R_v = (10.85 \pm 0.11) \cdot 10^6 \Omega$. La configurazione 1 non è adatta nel caso in cui $R \simeq 10 M\Omega$
- Il valore della resistenza interna all'amperometro è $R_a=(1.18\pm0.02)\Omega$. La configurazione 2 non è adatta nel caso in cui $R\simeq 1\Omega$

• La legge di Ohm V = RI è verificata, in quanto i valori sono ben approssimabili ad una retta ($\tilde{\chi}_0^2 = 0.15$) e il pvalue supera la soglia del 5%. E' stata scelta una resistenza elevata ($2M\Omega$) in quanto attendibile l'errore associato dell'1%.

il valore della resistenza ottenuta è $R = (2.027 \pm 0.001) \cdot 10^6 \Omega$

Il valore di R ottenuto dall'interpolazione e quello dichiarato dal costruttore sono compatibili:

```
\begin{array}{ll} t & 1.32 \\ p-value & 19\% \gg 5\% \end{array}
```

• Per quanto riguarda il valore di soglia del circuito con diodo, il comportamento non lineare è confermato in quanto non possibile eseguire una interpolazione lineare con tutti i valori.

Tuttavia è bene precisare che la mancata aderenza dei dati alla legge di Shockley invalida anche la misura del valore della tensione di soglia. I valori di saturazione inversa e costante del diodo non sono calcolabili in quanto i dati raccolti non sono compatibili con il modello.

6 Appendice

Link per codice python e CSV:

https://github.com/CarminatiGiovanni/LaboratorioFisica2/tree/main/20240307circuiti1