Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

Contents

- 1 Computational Mechanics Meets Artificial Intelligence (& Introduction to PyTorch):
 - What is Artificial Intelligence?
 - History of Artificial Intelligence
 - Recent Achievements of Artificial Intelligence
 - Artificial Intelligence in Science
 - Challenges
 - Computational Mechanics Meets Artificial Intelligence
- 2 Fundamental Concepts of Machine Learning
- 3 Neural Networks
- 4 Introduction to Physics-Informed Neural Networks
- 5 Advanced Physics-Informed Neural Networks
- 6 Machine Learning in Computational Mechanics
- 7 Material Modeling with Neural Networks
- 8 Generative Artificial Intelligence
- 9 Inverse Problems & Deep Learning
- 10 Methodological Overview of Deep Learning in Computational Mechanics

What is Artificial Intelligence?

Artificial Intelligence: A Modern Approach, Norvig et al. 2020

Artificial Intelligence

- "Intelligence exhibited by machines/computers"
- (Total) Turing test requires: natural language processing, knowledge representation, automated reasoning, machine learning, (computer vision, robotics)

Intelligence

- Human or rational?
- Intelligent thoughts or intelligent behavior?

Machine Learning

 "Learn from data & generalize to unseen data (without explicit instructions)"

Deep Learning

"Training (deep) neural networks"

Inspired by Rebekka Woldseth, author of "On the use of artificial neural networks in topology optimisation"

History of Artificial Intelligence

Artificial Intelligence: A Modern Approach, Norvig et al. 2020

- The inception of artificial intelligence (1943-1956)
 - Basic physiology of the brain → artificial neurons (on/off); updating rule as Hebbian Learning; SNARC
- Early enthusiasm, great expectations (1952-1969)
 - Turing "a machine can never do X"; models were based on logic and symbolic reasoning; (GPS, Lisp, perceptron)
- A dose of reality (1966-1973)
 - Overconfidence: models based on "informed introspection" & "intractability of attempted problems"; Lighthill
- Expert systems (1969-1986)
 - Instead of general-purpose tools; domain-specific knowledge; (DENDRAL, Mycin, R1); Fifth Generation Project
- The return of neural networks (1986-)
 - Reinvention of backpropagation
- Probabilistic reasoning and machine learning (1987-)
 - Reaction to failure of expert systems; learn from experience → adaptable & incorporation of uncertainty
 - Hidden Markov Models (Reinforcement Learning); Bayesian Networks; TD-Gammon
- **Big data** (2001-)
 - World Wide Web: large datasets (billions-trillions of samples); ImageNet (challenge), IBM's Watson
- Deep learning (2011-)
 - Hardware improvements (GPU: $10^{14} 10^{17}$ vs CPU: $10^9 10^{10}$ Flops); (Deep CNNs in AlexNet); AlphaGo

Recent Achievements in Artificial Intelligence

https://media.freemalaysiatoday.com/wp-content/uploads/ 2022/05/lifestyle-garry-emel-pic-110522.jpg

Cats versus dogs

https://media.freemalaysiatoday.com/wp content/uploads/2016/03/AlphaGo.jpg

https://commons.wikimedia.org/wiki/File:C12orf29_AlphaFold.png

Artificial Intelligence in Science

Check <u>www.aitracker.org</u> for other trends

Publications in all fields

Publications in computational mechanics

Challenges

- "Generate an image of Isaac Newton in front of a blackboard on which his three laws are written in mathematical notation and chalk."
- Follow-up: "The laws on the blackboard are incorrect. Please add the correct formulations. If you are unable to do so, simply focus on the second law, which is F=m*a."

Generated with DALL-E-3

Challenges

https://openai.com/ind ex/attacking-machinelearning-withadversarial-examples/

Bauhaus-Universität Weimar

Limitations in deep learning in general "panda"

- Neural networks break in unpredictable ways → can be consistently fooled
- Deep learning is not robust due to sensitivity to hyperparameters → requires extensive tuning
- Neural networks are uninterpretable, i.e., limited explainability → limits reliability

See chapter 11 for details

Problems in deep learning in computational mechanics

- Reproducibility crisis (bias towards positive results, sensitivity, transparency)
- Fair evaluation metrics are disregarded (breakeven threshold, meaningful metrics, statistical assesements)
- State-of-the-art is not considered

$$\tau = \frac{T_{\rm data} + T_{\rm train}}{T_{\rm simulation} - T_{\rm surrogate}}$$

Good scientific practice for deep learning in computational mechanics

- Honest assessments & explanations (consider the state-of-the-art & proper metrics)
- Proposed methods should be robust towards hyperparameters (no extensive tuning for a novel problem)
- Careful & narrower selection of problem types (not general-purpose solution)
 - → domain-specific improvements

Towards a meaningful integration of neural networks in computational solid mechanics, Herrmann 2025

Example from topology optimization

The mean squared error

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (x_{\text{left}_i} - x_{\text{right}_i})^2$$

between the two structures is very small $(2.5 \cdot 10^{-3})$, due to one pixel difference.

Structural compliance (inverse of stiffness)

$$c = \mathbf{F}^T \mathbf{u}$$

Is different by one order of magnitude

For more details, see Chapter 9

Computational Mechanics

Abstraction of physical systems (reality) through simplified mathematical models (often differential equations), which are discretized and solved numerically for insight into real-world behavior

Exemplary tasks

- Efficient solutions techniques for forward problems, e.g., finite element, difference, and volume
- Identification tasks (inverse problems), e.g., inferring material distribution/properties from measurements
- Optimization, e.g., finding the optimal material distribution that maximizes stiffness

Machine Learning

Machine Learning, Mitchell 1997

"a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks T, as measured by P, improves with experience E"

Where can machine learning be applied in computational mechanics?

- Identification of mathematical models from data (instead of relying on hand-crafted models)
- Acceleration of forward solvers and optimizers
- Streamlining of pipelines to avoid human experts within the processes

Deep learning in computational mechanics: a review, Herrmann et al. 2024

- Simulation substitution
 - Data-driven modelling
 - Physics-informed learning
- Simulation enhancement

- Discretizations as neural networks
- Generative approaches

• Deep reinforcement learning

- Simulation with graph neural networks; DMD; Transfer learning
- Hamiltonian/Lagrangian neural networks; SINDy; (PINNs)
- Input-convex neural networks for material modeling; EUCLID; Neural networks as ansatz function of inverse quantities; Superresolution; Differentiable physics
- Hardware acceleration with GPUs; (HiDeNN)
 - Generative design; Realistic data generation; Anomaly detection; Transformers for natural language processing
 - Control engineering tasks: autonomous flight; robots; Alternative gradient-free optimizer

Contents

- 1 Computational Mechanics Meets Artificial Intelligence (& Introduction to PyTorch):
 - What is Artificial Intelligence?
 - History of Artificial Intelligence
 - Recent Achievements of Artificial Intelligence
 - Artificial Intelligence in Science
 - Challenges
 - Computational Mechanics Meets Artificial Intelligence
- 2 Fundamental Concepts of Machine Learning
- 3 Neural Networks
- 4 Introduction to Physics-Informed Neural Networks
- 5 Advanced Physics-Informed Neural Networks
- 6 Machine Learning in Computational Mechanics
- 7 Material Modeling with Neural Networks
- 8 Generative Artificial Intelligence
- 9 Inverse Problems & Deep Learning
- 10 Methodological Overview of Deep Learning in Computational Mechanics

Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

