КОНСПЕКТ ЛЕКЦИЙ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

СП6ГУ, МКН, СП ЛЕКТОР: БАХАРЕВ ФЁДОР ЛЬВОВИЧ

Оглавление

1	Интегральное исчисление функций		
	1.1	Первообразная и неопределенный интеграл	ç
	1.2	Площадь и псевдоплощадь	4
	1.3	Определенный интеграл	6
	1.4	Вводная в кривые	10
	1.5	Длина кривой	11
2	Дифф	еренциальное исчисление функций нескольких переменных	13
	2.1	Линейные отобрежения	13

Лекция 1

1 Интегральное исчисление функций

1.1 Первообразная и неопределенный интеграл

Определение: $f:(a,b)\to\mathbb{R}, F:(a,b)\to\mathbb{R}, F$ – первообразная f на (a,b) если F'=f

Теорема: $f, F: (a, b) \to \mathbb{R}, F$ – первообразная f

- 1. $\Rightarrow F + c$ первообразная f
- 2. G:(a,b) первообразная $f\Rightarrow F-G=const$

Доказательство.

- 1. Очевидно.
- 2. $F' = f, G' = f \Rightarrow (F G)' = 0 \Rightarrow (F G) = const(т.к. g(a) g(b) = g'(\theta)(a b) = 0$ по теореме Лагранжа)

Определение: $\int f dx =$ множество всех первообразных f

Свойства:

- 1. $\int f + g dx = \int f dx + \int g dx$
- 2. $\int \lambda f dx = \lambda \int f dx, \lambda \neq 0$
- 3. $\int \alpha f(x) + \beta g(x) dx = \alpha \int f(x) dx + \beta g(x) dx, \alpha^2 + \beta^2 \neq 0$
- 4. (замена переменной в неопр. интеграле) $f:(a,b)\to \mathbb{R}, F \text{ первообразная } f,\ \phi:(c,d)\to (a,b), \phi \text{ дифференцируема.}$ $\Rightarrow \int f(\phi(x))\phi'(x)dx = F(\phi(x)) + c$

Замечание. $\phi(x) = y, \phi'(x)dx = dy \Rightarrow \int f(y)dy = F(y) + c$

5. (формула интегрирования по частям)

$$f,g$$
 – дифф на $(a,b)\Rightarrow\int f(x)g'(x)dx=fg-\int f'(x)g(x)dx$

Доказательство.

$$\Box (fg)' = fg' + f'g$$

1.2 Площадь и псевдоплощадь

Определение: Определение площади: $S: 2^{\mathbb{R}^2} \to [0, +\infty)$

- 1. $S((a_1, b_1) \times (a_2, b_2)) = (b_1 a_1) \cdot (b_2 a_2)$
- 2. $S(E_1 \sqcup E_2) = S(E_1) + S(E_2)$

Замечание. Такая функция не существует.

Определение: (Псевдоплощадь) $\sigma: F \to [0, +\infty]$, где F это ограниченные подмножества \mathbb{R}^2

- 1. $\sigma(\langle a_1, b_1 \rangle \times \langle a_2, b_2 \rangle) = (b_1 a_1) \cdot (b_2 a_2)$
- 2. $\sigma(E) = \sigma(E_{-}) + \sigma(E_{+})$ если $E = E_{-} \sqcup E_{+}$ и E_{-}, E_{+} получены разрезанием E вертикальной или горизонтальной линией.
- 3. $E_1 \supset E_2 \Rightarrow \sigma(E_1) \geq \sigma(E_2)$

Замечание. 1. Не важно куда относить точки прямой, т.к. площадь прямой равна θ

2. Псевдоплощадь существует, но не единственна.

 Π ример: $E \in F$

 P_{j} это прямоугольник со сторонами параллельными осям координат, но произвольных размеров.

1.
$$\sigma_1(E) = \inf \left\{ \sum \sigma_1(P_j) \mid E \subset \bigcup_{j=1}^N P_j \right\}$$

2.
$$\sigma_2(E) = \inf \left\{ \sum \sigma_2(P_j) \mid E \subset \bigcup_{j=1}^{\infty} P_j \right\}$$

Замечание. $\sigma_1(E) \geq \sigma_2(E)$ u если $K = ([0,1] \cap \mathbb{Q}) \times [0,1] \Rightarrow \sigma_1(K) = 1, \sigma_2(K) = 0$

Теорема: σ_1 – псевдоплощадь.

Доказательство.

1. Если прямоугольник покрыть конечным числом прямоугольников, то у покрытия сумма площадей не меньше площади прямоугольника. (Т.к. можно провести все вертикальные и горизонтальные линии и разбить на дизъюнктивное объединение)

$$\stackrel{\textstyle <}{\leq} P_1,\dots,P_k$$
 - покрытие E_- с точность $\epsilon,$ P_{k+1},\dots,P_n - покрытие E_+ с точность ϵ $\Rightarrow \sigma_1(E_-)+\epsilon \geq \sigma_1(P_1)+\dots+\sigma_1(P_k)$ $\sigma_1(E_+)+\epsilon \geq \sigma_1(P_{k+1})+\dots+\sigma_1(P_n)$ $\Rightarrow \sigma_1(E_-)+\sigma_1(E_+)+2\epsilon \geq \sum\limits_{i=1}^N \sigma_1(P_i) \geq \sigma_1(E)$

3. Покрытие большего является покрытием меньшего.

Теорема: Псевдоплощадь инварианта относительно сдвигов.

Доказательство.

□ Покрытие также сдвинется.

Замечание. Проверить то же самое для σ_2 .

1.3 Определенный интеграл.

Считаем, что зафиксирована псевдоплощадь σ .

Определение: $a \in \mathbb{R} \Rightarrow a_{+} = \max(a, 0), a_{-} = \max(-a, 0)$

$$a_+ + a_- = |a|, a_+ - a_- = a$$

Аналогично для функции f.

 $\Gamma_f = \{(x, f(x)) \in \mathbb{R}^2\}$

Для $f \ge 0$ $P_f = \{(x,y) : y \in [0,f(x)]\}$ - подграфик f.

Для $f \ge 0$ на $[a,b], P_f[a,b] = \{(x,y): x \in [a,b], y \in [0,f(x)]\}$ - подграфик f.

Замечание. f - $nenp \Rightarrow f_+, f_-$ - nenp.

Определение: f - непр. на [a,b], тогда

$$\int_{a}^{b} f(x)dx = \sigma(P_{f_{+}}[a,b]) - \sigma(P_{f_{-}}[a,b])$$

Свойства:

$$1. \int_a^a f \ dx = 0$$

2.
$$\int_a^b 0 \ dx = 0$$

3.
$$f \ge 0$$
 на $[a,b] \Rightarrow \int_a^b f \ dx \ge 0$

4.
$$\int_{a}^{b} -f \ dx = -\int_{a}^{b} f \ dx$$

- $5. \int_a^b c \ dx = c \cdot (b-a)$
- 6. $f \geq 0$ на $[a,b] \wedge \int_a^b f \ dx = 0 \Rightarrow f = 0$ на [a,b]

Доказательство.

- \square Т.к. функция непрерывна, то если существует точка f со значением не 0, то можно найти окрестность со значением >0 и там будет ненулевая площадь
- 7. (Аддитивность интеграла) $c \in [a,b] \Rightarrow \int_a^b f dx = \int_a^c f dx + \int_c^b f dx$

Доказательство.

□ Следует из аддитивности псевдоплощади.

Замечание. Соглашение: $\int_a^b f dx = -\int_b^a f dx \Rightarrow a \partial \partial u m u$ вность верна u для $c \not\in [a,b]$

8. (Монотонность) $f \geq g$ на $[a,b] \Rightarrow \int_a^b f dx \geq \int_a^b g dx$

Доказательство.

$$\Box f \geq g \Rightarrow f_+ \geq g_+ \land f_- \leq g_-$$

- 9. $(b-a) \min_{[a,b]} f \leq \int_a^b f dx \leq (b-a) \max_{[a,b]} f$
- 10. (Теорема о среднем) $\exists c \in [a,b]: \int_a^b f dx = f(c) \cdot (b-a)$

Доказательство.

$$\frac{\int_{a}^{b} f dx}{b - a} \in [\min f, \max f] \Rightarrow \exists c$$

11. (Теорема Барроу) $\Phi(x) = \int_a^x f(t)dt, \Psi(x) = \int_x^b f(t)dt$

 Φ - интеграл с переменным верхним пределом, Ψ - нижним

$$\Phi' = f, \Psi' = -f$$

Доказательство.

 $\square x_1, x_2$

$$\frac{\Phi(x_1) - \Phi(x_2)}{x_1 - x_2} = \frac{\int_{x_1}^{x_2} f(t)dt}{x_1 - x_2} \stackrel{x_1 - fix}{\Rightarrow} \lim_{x_2 \to x_1} \frac{\Phi(x_1) - \Phi(x_2)}{x_1 - x_2} = \lim_{x_2 \to x_1} \frac{\int_{x_1}^{x_2} f(t)dt}{x_1 - x_2} = \lim_{x_2 \to x_1} f(\theta)$$

где θ лежит между x_1 и x_2

$$\Rightarrow \Phi(x_1) = f(x_1)$$

 $\Phi + \Psi = const \Rightarrow \Psi' = -f$

12. (формула Ньютона-Лейбница) F - первообразная \Rightarrow

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F|_{a}^{b}$$

Доказательство.

$$\Phi(x) = \int_a^x f \Rightarrow F = \Phi + c \Rightarrow F(b) - F(a) = \Phi(b) - \Phi(a) = \int_a^b f$$

13. (Линейность интеграла)

$$f, g \in C[a, b], \alpha, \beta \in R \Rightarrow \int_a^b (\alpha f + \beta g) dx = \alpha \int_a^b f dx + \beta \int_a^b g dx$$

Доказательство.

- □ Следует из существования первообразной.
- 14. $|\int_{a}^{b} f dx| \le \int_{a}^{b} |f| dx$

Доказательство.

$$\left| \int_{a}^{b} f \right| = \left| \int_{a}^{b} f_{+} - \int_{a}^{b} f_{-} \right| \leq \int_{a}^{b} f_{+} + \int_{a}^{b} f_{-} = \int_{a}^{b} |f|$$

15. (формула интегрирования по частям)

$$f, x \in C^1[a, b] \Rightarrow \int_a^b f(x)g'(x)dx = f(x)g(x)\Big|_a^b - \int_a^b f'(x)g(x)dx$$

Доказательство.

- □ Следует из формулы Ньютона-Лейбница и формулы интегрирования по частям для неопределенного интеграла.
- 16. (Замена переменной) $f:[a,b] \to \mathbb{R}, \phi[c,d] \to [a,b], \phi \in C^1[c,d]$

$$\Rightarrow \forall p, q \in [c, d] \int_{p}^{q} f(\phi(t))\phi'(t)dt = \int_{\phi(t)}^{\phi(q)} f(x)dx$$

Пример:

(a)
$$\int_0^1 e^{\sin(x)} \cos(x) \ dx = [\sin(x) = y, dy = \cos(x) dx] = \int_{\sin(0)}^{\sin(1)} e^y \ dy = \dots$$

(b)
$$\int_0^1 \sqrt{1 - x^2} \, dx = \left[x = \sin(y), dx = \cos(y) dy \right] = \int_0^{\arcsin(1)} \sqrt{1 - \sin^2(y)} \cos(y) \, dy = \int_0^{\frac{\pi}{2}} \cos^2(y) \, dy$$
$$= \int_0^{\frac{\pi}{2}} \frac{1 + \cos^2(y)}{2} \, dy = \int_0^{\frac{\pi}{2}} \frac{1}{2} \, dy = \frac{\pi}{4}$$

Лекция 5

1.4 Вводная в кривые

Определение: Путь Путь в $\mathbb{R}^m x : [a, b] \mapsto \mathbb{R}^m$ — непрерывное.

Определение: Носитель пути Носитель пути: $\gamma([a,b]) \in \mathbb{R}^m$

Определение: Путь замкнут если $\gamma(a) = \gamma(b)$.

Определение: Если γ — инъекция, то такой путь называется простым.

Замечание. Можно определять путь покоординатно: $\gamma(t) = (\gamma_1(t), \dots, \gamma_m(t))$ Где $\gamma_i - \kappa$ оординатные функции.

Определение: Назовём два пути $\gamma_1 \colon [a,b] \mapsto \mathbb{R}^m$ и $\gamma_2 \colon [c,d] \mapsto \mathbb{R}^m$ эквивалентными, если \exists строго возрастающая биекция $\varphi \colon [a,b] \mapsto [c,d]$, так что $\gamma_2 \circ \varphi = \gamma_1$.

Замечание. Это отношение эквивалентности.

Определение: Кривая в \mathbb{R}_m — класс эквивалентности путей Представители — параметризация.

Замечание. На самом деле параметризаций у одного носителя может быть много. Например у полуокружности есть следующие параметризации: $(\cos x, \sin x), (x, \sqrt{1-x^2})$

Замечание. Зная параметризацию можно определить носитель кривой, начало и конец, но хочется понимать ещё про гладкость.

Определение: γ — гладкий путь, если $\gamma_i \in C_1[a,b]$.

Гладкая кривая — кривая, у которой ∃ гладкая параметризация.

Замечание. Нельзя утверждать, что у гладкой кривой есть явная касательная в каждой её точке.

1.5 Длина кривой

Замечание. По факту, хотим подробить нашу кривую на маленькие отрезочки и засуммировать их, давайте подумаем как это сделать аккуратно.

Определение:
$$\gamma \colon [a,b] \mapsto \mathbb{R}^m$$
 — путь. $\theta = \{t_0,\dots,t_n\}, a = t_0 < t_1 < \dots < t_n = b$ — разбиение $[a,b].$ $l_{\theta}(\gamma) = \sum_{j=1}^n |\gamma(t_j) - \gamma(t_{j-1})|;$

Тогда длиной назовём $l(\gamma) = \sup_{\theta} l_{\theta}(\gamma)$

Замечание. Заметим, что длина есть у любого пути, так как мы не вводили дополнительные требования на путь.

Замечание. Посмотрим на $(x, x \sin \frac{1}{x})$ Вопрос: Путь бесконечной длины?

Теорема:
$$\gamma_1 \sim \gamma_2 \Rightarrow l(\gamma_1) = l(\gamma_2)$$

Доказательство.

$$\square \ \gamma_2 \circ \varphi = \gamma_1 \ \theta - \text{дробление} \ [a,b], \ \varphi(\theta) - \text{дробление} \ [a,b]. \ \sum_{j=1}^n |\gamma_1(t_j) - \gamma_1(t_{j-1})| = \sum_{j=1}^n |\gamma_2(\varphi(t_j)) - \gamma_2(\varphi(t_{j-1}))|. \ l_{\theta}(\gamma_1) = l_{\varphi(\theta)}(\gamma_2)$$

Теорема:
$$\gamma\colon [a,b]\mapsto \mathbb{R}^m, c\in (a,b).$$
 Пусть $\gamma_-=\gamma\big|_a^c, \gamma_+=\gamma\big|_c^b.$ Требуется доказать, что $l(\varphi)=l(\varphi_-)+l(\varphi_+)$

Доказательство.

 \square θ_{-} — дробление $[a,c],\ \theta_{+}$ — дробление [c,b] \Rightarrow $\theta=\theta_{-}+\theta_{+}$ — дробление [a,b] Докажем неравенство в две стороны.

$$l(\varphi) \ge l_{\theta}(\varphi) = l_{\theta_{-}}(\varphi_i) + l_{\theta_{+}}(\varphi_i) \Rightarrow$$

$$l(\varphi) \ge \sup_{\theta_{-}} l_{\theta_{-}}(\gamma_{-}) + \sup_{\theta_{+}} l_{\theta_{+}}(\gamma_{+}) = l(\gamma_{-}) + l(\gamma_{+}).$$

Докажем в обратную сторону. θ — дробление $[a,b] \to \overline{\theta} = \theta \cup \{c\} \to \theta_{+/-}$.

$$l_{\theta}(\gamma) \leq l_{\overline{\theta}}(\gamma) = l_{\theta-}(\gamma_-) + l_{\theta+}(\gamma_+) \leq l(\gamma_i) + l(\gamma_+) \Rightarrow \sup_{\theta} l_{\theta}(\gamma) \leq l(\gamma_-) + l(\gamma_+).$$

Теорема (О длине гладкого пути):
$$\gamma \colon [a,b] \mapsto \mathbb{R}^m, \gamma_j = C'[a,b] \Rightarrow l(\gamma) = \int_a^b |\gamma'(t)| dt$$
, где $|\gamma'(t)| = \sqrt{\sum_{j=1}^m |\gamma_j(t)|^2}$

Доказательство.

 \square θ — дробление [a,b], $\theta\colon a=t_0<\dots< t_n=b$

$$l_{\theta}(\gamma) = \sum_{j=1}^{m} \gamma(t_j) - \gamma(t_{j-1})$$

$$|\gamma(t_j) - \gamma(t_{j-1})| = \sqrt{\sum_{k=1}^m |\gamma_k(t_j) - \gamma_k(t_{j-1})|^2} = \sqrt{\sum_{k=1}^m |\gamma_k'(?)|^2 (t_j - t_{j-1})^2} = (t_j - t_{j-1}) \sqrt{\sum_{k=1}^m |\gamma_k'(?)|^2}.$$

Пусть $m_{j,k} = \min_{[t_{j-1},t_j]} |\gamma_k'|$, $M_{j,k} = \max_{[t_{j-1},t_j]} |\gamma_k'|$. Тогда можно продолжить следующим образом:

$$(t_j - t_{j-1}) \sqrt{\sum_{k=1}^m m_{j,k}^2} \le |\gamma(t_j) - \gamma(t_{j-1})| \le (t_j - t_{j-1}) \sqrt{\sum_{k=1}^m M_{j,k}^2}$$

С другой стороны:

$$(t_j - t_{j-1}) \sqrt{\sum_{k=1}^m m_{j,k}^2} \le \int_{t_{j-1}}^{t_j} |\gamma'(t)| dt \le (t_j - t_{j-1}) \sqrt{\sum_{k=1}^m M_{j,k}^2}$$

Суммируем по j:

$$\sum (t_j - t_{j-1})\sqrt{?} \le \begin{cases} l_{\theta}(\gamma) \\ \int_a^b |\gamma'(t)| dt \end{cases} \le \sum (t_j - t_{j-1})\sqrt{?}.$$

Заметим, что обе части стремятся к одному и тоже при $|\theta| \to 0$.

Тогда для $\varepsilon > 0$ по теореме кантора $\delta > 0$:

 $\forall s,t \in [a,b] \colon |s-t| < \delta, \forall k = 1\dots m, |(|\gamma_k'(s) - \gamma_k'(t)) < \varepsilon \text{ Тогда } |M_{j,k} - m_{j,k}| < \varepsilon \text{ если } t_j - t_{j-1} < \delta.$

$$\sqrt{\sum_{k=1}^{m} M_{j,k}^2} - \sqrt{\sum_{k=1}^{m} m_{j,k}^2} \le \sqrt{\sum_{k=1}^{m} (M_{j,k} - m_{j,k})^2} < \sqrt{m\varepsilon}.$$

Тогда

|п.ч - л.ч|
$$<\sum_{k=1}^m (t_j-t_{j-1})\sqrt{m}\varepsilon=(b-a)\sqrt{m}\varepsilon$$

Следствие:

1. (Длина графика функции)

Пусть
$$f:[a,b]\mapsto \mathbb{R}, f\in C^1[a,b], G_f=\{(x,f(x))\mid x\in [a,b]\}\subseteq \mathbb{R}^2$$
. Тогда длина графика функции равна: $l(G_f)=\int\limits_a^b\sqrt{1+(f'(x))^2}dx$

2. Есть функция $r \colon [\alpha, \beta] \mapsto \mathbb{R}_+, r \in C^1[\alpha, \beta]$ Тогда можно запараметризовать эту кривую как: $(r(t)\cos t, r(t)\sin t)$, обозначим за координаты x(t), y(t) соответственно.

Тогда:
$$x'(t) = r'(t)\cos t - r(t)\sin t; y'(t) = r'(t)\sin t + r(t)\cos t$$

Значит длину кривой можно вычислить следующим образом: $l = \int\limits_{\alpha}^{\beta} \sqrt{(r')^2 + r^2} d\varphi$

2 Дифференциальное исчисление функций нескольких переменных

Замечание. Прежде чем начать, подумаем что нам вообще надо. Производную можно представлять как линейное приближение функции в какой-либо точке. $f: X \mapsto Y$, где X, Y - X линейные, нормированные, полные, пространства над одним полем скаляров (\mathbb{R} или \mathbb{C}). $f(x) = f(x_0) + A(x - x_0) + o(x - x_0)$. Объясним почему наложены те или иные условия. В одномерье A было числом. В общем случае A должно быть линейным отображением, поэтому нам хочется чтобы поле скаляров у X, Y было одним и тем же. Более того, хочется иметь возможность переходить к пределу, а когда мы переходим к пределу естественно хотеть иметь корректное расстояние, поэтому нам нужна нормированность и полнота.

2.1 Линейные отобрежения

Определение: X,Y — линейные пространства над одним полем скаляров. $U\colon X\mapsto Y$ — линейное, если

1. (Аддитивность) $U(x_1 + x_2) = U(x_1) + U(x_2)$

2. (Однородность)

$$U(\lambda x) = \lambda U(x)$$

Определение: Пусть X_1, X_2, \dots, X_n, Y — пространства над одним полем скаляров. Тогда $U \colon X_1 \times \dots \times X_n \mapsto Y$ — полилинейное, если оно линейно по каждому из аргументов.

Замечание. Часто скобочки опускаются: U(x) = Ux

Пример:

1. $X = C[-1,1], \delta \colon X \mapsto \mathbb{R}, \delta(f) = f(0)$. Тогда δ — линейное отображение.

2.
$$X=C[a,b], Y=\mathbb{R}.$$
 Тогда $Uf=\int\limits_a^b f dx$ — линейное отображение.

3.
$$X = C[a, b], Y = C[a, b]$$
. Тогда $(Uf)(x) = \int_{a}^{x} f(t)dt$

4. $X = C^1[a,b], Y = C[a,b]$. Тогда $(Df)(x) = f'(x), D \colon X \mapsto Y$ тоже линейное отображение.

5.
$$X_1=X_2=\ldots X_n=\mathbb{R}=Y$$
. Тогда $U(x_1,\ldots,x_n)=x_1\cdot \cdot \cdot \cdot x_n$ — полилинейное отображение.

- 6. $X_1 = \mathbb{R}^m, X_2 = \mathbb{R}^m, Y = \mathbb{R}$. Тогда $U(X_1, X_2) = (X_1, X_2)$, где (X_1, X_2) скалярное произведение, линейное по первой координате.
- 7. $X_1 = \mathbb{R}^3, X_2 = \mathbb{R}^3, Y = \mathbb{R}^3$. Тогда $U(x_1, x_2) = x_1 \times x_2 = [x_1, x_2]$, где $[x_1, x_2]$ линейное отображение, полилинейное отображение.
- 8. $X_1 = \cdots = X_m = \mathbb{R}^m$. Тогда $U(x_1, \dots, x_m) = \det(x_1, \dots, x_m)$ полилинейное отображение.

Теорема (О непрерывности линейного отображения): $U: X \mapsto Y$ — линейное, X, Y — линейные, нормированные отображения (далее лно) над одним полем скаляров. Тогда следующие утверждения эквивалентны:

1. U — непрерывно

 $2.\ U\ -$ непрерывно в 0

3. $\exists C : \forall x \in X, ||U_x||_Y \leq C||x||_x$

Доказательство.

1. $(1) \Rightarrow (2)$ — очевидно

 $2. \ (2) \Rightarrow (3) \ \forall \varepsilon > 0, \exists \delta > 0 \colon \forall x \colon \|x\| \leq \delta, \|U_x\| \leq \varepsilon. \ x \to \overline{x} = x \tfrac{\delta}{\|x\|} \Rightarrow \|U_x \overline{x}\| \leq \varepsilon$

3. (3) \Rightarrow (1) липшецевость \Rightarrow непрерывное.

Теорема: $U: X_1 \times \cdots \times X_n \mapsto Y$ — полилинейное. Тогда следующие утверждения эквивалентны:

1. U — непрерывно

 $2. \ U \ -$ непрерывно в 0

3. $\exists C : ||U(X_1, \dots, X_n)|| \le C||x_1|| \cdot \dots \cdot ||x_n||$

Замечание.

Определение: $U: X \to Y$ — лно. $||U|| = \inf\{C \mid \forall x \in X ||U_x|| \le C ||x||\}$

Замечание. inf достигается то есть: $\forall x \in X, \|U_x\| \leq \|U\| \cdot \|x\|$

<u>Пример:</u> $U \colon C[a,b] \mapsto C[a,b],$ причём $(Uf)(x) = \int_a^x f(t)dt.$ Хотим оценить.