

# DÉFENSE DE LA PROBLÉMATIQUE

Présenté par :

Félix Boivin – boif1302

Mathieu Désautels – desm1210

Alexis Chalifour - chaa1841



#### TABLE DES MATIÈRES

- Schéma final du circuit
  - Étage 1
  - Étage 2
  - Étage 3
  - Circuit complet
- 2. Grille de conception
  - Étage 1
  - Étage 2
  - Étage 3
  - Contre-réaction

- 3. Étapes de conception
  - Étape 4
  - Étape 9
  - Étape 11
  - Étape 12
  - Étape 14
  - Étape 16
  - Étape 18





## SCHÉMA FINAL DU CIRCUIT - CIRCUIT COMPLET





## SCHÉMA FINAL DU CIRCUIT - ÉTAGE 1





# SCHÉMA FINAL DU CIRCUIT – ÉTAGE 2





## SCHÉMA FINAL DU CIRCUIT – ÉTAGE 3







## **GRILLE DE CONCEPTION – ÉTAGE 1**

|                                   | Spécifications ou plage(s) | Équation(s)                                                                                    | Commentaires                                                                                             | Valeur 1 <sup>re</sup> | Valeur          |
|-----------------------------------|----------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|-----------------|
|                                   | de valeur(s)               |                                                                                                |                                                                                                          | itération              | finale          |
| I <sub>cq6a</sub>                 | > 2 mA                     | $I_{Q7B} = I_{Q7A} = I_{Q6B} = I_{Q6A}$                                                        |                                                                                                          | $\approx 5 mA$         | 5.01  mA        |
| Z <sub>collecteur_Q6a</sub>       |                            | $Z_{CQ6} = r_o$                                                                                | On peut dire négliger $V_A=120~V$                                                                        | $2.4 k\Omega$          | 20 600 Ω        |
| I <sub>cq1a</sub>                 | > 1 mA                     | $I_{C_{Q1A}} = \frac{1}{2}I_{Q7A}$                                                             |                                                                                                          | ≈ 2.5 <i>mA</i>        | 2.49 mA         |
| I <sub>cq3a</sub> (valeur exacte) | > 1 mA                     | $I_{C_{Q3A}} = I_{C_{Q1A}}$                                                                    |                                                                                                          | ≈ 2.5 <i>mA</i>        | 2.49 mA         |
| I <sub>cq4a</sub> (valeur exacte) |                            | $I_{C_{Q3A}} = I_{C_{Q1A}}$ $I_{C_{Q4}} = \frac{2I_{C_{Q3A}}}{\beta} \alpha$                   |                                                                                                          |                        | 24.81 μΑ        |
| I <sub>cq1b</sub>                 | > 1 mA                     | $I_{CQ1b} = \frac{I_{CQ7A}}{2}$                                                                |                                                                                                          |                        | 2.49 mA         |
| I <sub>cq2b</sub>                 | > 1 mA                     | $I_{CQ2b} = \frac{I_{CQ7A}}{2}$                                                                |                                                                                                          |                        | 2.49 mA         |
| Z <sub>diff_collecteur_Q2b</sub>  |                            | $Z_{diff_{cQ2B}} = \beta r_o$                                                                  | $\beta = 328$ $r_0 = 44200$                                                                              |                        | 14.497 MegΩ     |
| I <sub>cq3b</sub> (valeur exacte) | > 1 mA                     | $I_{cq3b} = \frac{1}{2}I_{Q7A}$                                                                |                                                                                                          | ≈ 2.5 <i>mA</i>        | 2.50 mA         |
| Z <sub>collecteur_Q3b</sub>       |                            | $Z_{c_{Q3}} = r_o \left( 1 + g_m(r_\pi \parallel R_{z1b}) + (r_\pi \parallel R_{z1b}) \right)$ | On approxime avec $R_{BB}=0$ $r_{\pi}=2080~\Omega$ $R_{z1b}=400~\Omega$ $r_{o}=40400~\Omega$ $gm=0.0957$ |                        | 14.89 MegΩ      |
| V <sub>BBq</sub>                  |                            | $V_{BBq} = V_{CC} \frac{RpBb}{RpBb + RpBa}$                                                    | On cherche 2.7V                                                                                          |                        | 2.66 V          |
| Z <sub>in_diff</sub> (B.O.)       |                            | $Z_{in_{diff}} = 2r_{\pi} + R_m + (R_{d1a} + R_{d1b})(\beta + 1)$                              | Si ro>>REE                                                                                               |                        | 24 <i>Meg</i> Ω |
| Z <sub>in_commun</sub> (B.O.)     |                            | $\frac{1}{2} \Big[ (\beta + 1) \big[ (2r_o + 2R_{d1a}) / / r_{oQ1B} \big] \Big]$               |                                                                                                          |                        | 30 MegΩ         |



## GRILLE DE CONCEPTION – ÉTAGE 1 SUITE...

|                                     | Spécifications ou plage(s) de valeur(s) | Commentaires                              | Valeur<br>finale |
|-------------------------------------|-----------------------------------------|-------------------------------------------|------------------|
| R <sub>zE1</sub>                    |                                         |                                           | 100 Ω            |
| R <sub>z1a (b)</sub>                |                                         |                                           | 400 Ω            |
| R <sub>d1a (b)</sub>                |                                         |                                           | $4 k\Omega$      |
| R <sub>pBa</sub> //R <sub>pBb</sub> | $2.7V \ avec \ V_{pp} = 15V$            | 10k    2.19k                              | 1.796 Ω          |
| C <sub>c</sub> (nF)                 |                                         |                                           | 0.03 nF          |
| Свв                                 |                                         | Cette valeur ne changeait pas grand-chose | 10 nF            |



# **GRILLE DE CONCEPTION – ÉTAGE 2**

|                       | Spécifications ou plage(s) de valeur(s)                                     | Équation(s)                                                                                                                                                                                                                                                                      | Commentaires                                                                                                                                                                                                                                                                                                                                                 | Valeur 1 <sup>re</sup><br>itération | Valeur<br>finale |
|-----------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|
| I <sub>cq5b</sub>     |                                                                             | $I_{C_{Q5b}} = \frac{V_{CC} - V_{CE_{Q5b}} - V_{EE}}{R_{d2b} + R_{d2a} + R_{c2}}$                                                                                                                                                                                                | $V_{CE_{Q5b}} = -14.1078 V$                                                                                                                                                                                                                                                                                                                                  | 4.9 mA                              | -3.55 mA         |
| $Z_{collecteur\_Q5b}$ |                                                                             | $Z_{C_{Q5B}} = r_o + R_{EE} \begin{bmatrix} r_\pi + R_{BB_{Q5B}} + r_\pi r_0 g_m \\ r_\pi + R_{BB_{Q5B}} + R_{EE_{Q5B}} \end{bmatrix}$ Après simplification $Z_{C_{Q5B}} = r_o + R_{EE} \begin{bmatrix} r_\pi + r_o + r_\pi r_0 g_m \\ r_\pi + r_o + R_{EE_{Q5B}} \end{bmatrix}$ | $R_{EE} = R_{d2a} + R_{d2b} = 299 \Omega$ $R_{BBQ5B} = \frac{r_{\pi} + R_{BBQ5A}(r_o)}{r_{\pi} + R_{BBQ5A} + (\beta + 1)r_o}$ $r_{\pi} = 1670 \Omega$ $\beta = 230$ $r_e = \frac{r_{\pi}}{\beta + 1} = 7.22 \Omega$ $r_e = 32 600 \Omega$ $r_e \ll r_o$ $R_{BB_Q5B} = \frac{r_{\pi} + R_{BBQ5A}}{(\beta + 1)} \parallel r_o$ $R_{BBQ5B} = r_o$ $g_m = 0.136$ | 483 ΜΩ                              | 96.937 kΩ        |
| Z <sub>base_Q5a</sub> |                                                                             | $\begin{split} Z_{baseQ5a} &= r_{\pi Q5a} + \left(\beta_{Q5a} + 1\right) [(r_{\pi Q5b} \\ &+ \left(\beta_{Q5b} + 1\right) \left[ (R_{d2b} + R_{d2a}) \right. \\ & \left. \parallel (r_{oQ5b} + R_{c2}) \right] \parallel r_{o_{Q5a}}] \end{split}$                               | $egin{align*} r_{\pi_{QSa}} &= 379000\Omega \ r_{\pi_{QSb}} &= 1670\Omega \ r_{o_{QSa}} &= 7330000\Omega \ r_{o_{QSb}} &= 32600\Omega \ eta_{QSa} &= 225 \ eta_{QSb} &= 230 \ \end{array}$                                                                                                                                                                   | 91 MegΩ                             | 15.5 ΜΩ          |
| V <sub>out1q</sub>    | On aimerait 6V, car c'est le milieu de plage dynamique                      | $V_{out_1} = V_{CC} - R_{Z1B} \frac{I_{Q7A}}{2} - V_{ECQ3B}$                                                                                                                                                                                                                     | $V_{EC_{Q3b}} = 1.8437 V$                                                                                                                                                                                                                                                                                                                                    | 6 <i>V</i>                          | 12.7 V           |
| $V_{\text{out2q}}$    | On a trouvé que $-2.7V$ , est nécessaire pour le bon fonctionnement de $Q8$ | $V_{out_2} = V_{CC} - I_{Q5B}(R_{d2a} - R_{d2b}) - V_{EC_{Q5B}}$                                                                                                                                                                                                                 | $V_{\it CE} = 16.43 V$ Calculer en simulation                                                                                                                                                                                                                                                                                                                | -2.7 <i>V</i>                       | -2.49 V          |



## GRILLE DE CONCEPTION – ÉTAGE 2 SUITE...

|                  | Spécifications ou plage(s) de valeur(s) | Commentaires                     | Valeur<br>finale |
|------------------|-----------------------------------------|----------------------------------|------------------|
| R <sub>d2a</sub> |                                         |                                  | $0.001\Omega$    |
| R <sub>d2b</sub> |                                         |                                  | 299 Ω            |
| R <sub>c2</sub>  |                                         |                                  | $3.5 k\Omega$    |
| C <sub>BE</sub>  |                                         | Il n'est pas vraiment nécessaire | 1 <i>fF</i>      |



# **GRILLE DE CONCEPTION – ÉTAGE 3**

|                                 | Spécifications ou plage(s) de valeur(s) | Équation(s)                                                                                                | Commentaires                                                                                                                                      | Valeur 1 <sup>re</sup><br>itération | Valeur<br>finale |
|---------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|
|                                 |                                         |                                                                                                            | Vu que le courant est le même dans                                                                                                                | ≈ 5 mA                              | 5.033 mA         |
|                                 |                                         |                                                                                                            | $Q_{7A} \ que \ Q_{7B} \ \underline{on}$ trouvé dans $Q_{7A}$ car il est plus simple                                                              |                                     |                  |
| I <sub>cq7b</sub>               | > 2 mA                                  | $I_{CQ_{7B}} = \frac{V_{CC} - V_{EE} - V_{EC_{Q6}} - V_{EC_{Q7B}}}{R_{ZE2} + R_{POL} + R_{ZC1}}$           | On choisit 50mA pour la première itération                                                                                                        |                                     |                  |
|                                 |                                         |                                                                                                            | Pour 5mA = $5720\Omega$ car les BE sont                                                                                                           |                                     |                  |
|                                 |                                         |                                                                                                            | connectés donc il a on calcul 0.7 V comme                                                                                                         |                                     |                  |
|                                 |                                         |                                                                                                            | perte                                                                                                                                             |                                     |                  |
| Z <sub>collecteur_Q7b</sub>     |                                         | $Z_{collecteur_{Q7B}} = r_{o_{Q7B}} \parallel R_{zC2}$                                                     | $r_{o_{Q7B}} = 22300 \Omega$ $R_{zC2} = 75 \Omega$                                                                                                | 2200 Ω                              | 74.75 Ω          |
| I <sub>cq8</sub>                | > 2 mA                                  | $I_{C_{Q8}} = I_{C_{Q7b}}$                                                                                 |                                                                                                                                                   | 5 mA                                | 5.033 mA         |
|                                 |                                         | ,,                                                                                                         | On sait qu'on aimerait avoir parfait et que                                                                                                       | 2.493 mA                            | 2.60 mA          |
| I <sub>ca9</sub>                | > 1 mA                                  | $I_{CQ9} = I_{C_{Q7B}} - \frac{V_{CE_{Q9}}}{R_{nV1} + R_{nV2}}$                                            | cela divise par deux dans les deux branches                                                                                                       |                                     |                  |
|                                 |                                         | $R_{pV1} + R_{pV2}$                                                                                        | $V_{BE} = 3.6 V$                                                                                                                                  |                                     |                  |
| Z <sub>base_Q8</sub> (à 10 kHz) |                                         | $Z_{base_{Q8}} = r_{\pi_{Q8}} + \frac{\beta+1}{2} r_{o_{Q8}}$                                              | $V_{BE} = 3.6 V$ $\beta = \frac{I_C}{I_B} = 2.23 E^2$ $r_{\pi} = \frac{V_T}{I_R} = 1.15 E^3$ $ V_A  = 110 V$ $r_0 = \frac{ V_A }{I_C} = 2.25 E^4$ | 224 kΩ                              | 2.5 Meg Ω        |
| V <sub>out</sub> (min)          | -10 V                                   |                                                                                                            | À fréquence 100kHz                                                                                                                                | -9.52 V                             | -10.05 V         |
| Vout (point d'op.)              | 0 V                                     | $V_{out_{op}} = \left(\frac{R_{DS} + R_{tb}}{2R_{DS} + R_{ta} + R_{tb}}\right) (V_{CC} - V_{EE}) - V_{CC}$ |                                                                                                                                                   | 0 V                                 | 0.04 V           |
| V <sub>out</sub> (max)          | 10 V                                    | ·-                                                                                                         | À fréquence 100kHz                                                                                                                                | 9.51 V                              | 10.075 V         |
|                                 |                                         | $\left(\frac{1}{r} + r_{i}\right)$                                                                         | Valeur première itération trouvée en                                                                                                              | 17.6 kΩ                             | 1.62 Ω           |
| Z <sub>out</sub> (B.O.)         |                                         | $Z_{out} = \frac{\left(\frac{1}{g_{mM1(2)}} + r_{tb}\right)}{2}$                                           | simulation en faisant $V_{out}/I_{out}$                                                                                                           |                                     |                  |
|                                 |                                         | 2                                                                                                          | $g_m = 0.313$                                                                                                                                     |                                     |                  |
|                                 |                                         |                                                                                                            | $r_{tb} = 0.05 \Omega$                                                                                                                            |                                     |                  |



# **GRILLE DE CONCEPTION – ÉTAGE 3 SUITE...**

|                                         | Spécifications ou plage(s) de valeur(s) | Commentaires                                 | Valeur finale |
|-----------------------------------------|-----------------------------------------|----------------------------------------------|---------------|
| I <sub>cqM1</sub>                       |                                         | Pas $I_{\mathcal{C}}$ mais $I_{\mathcal{D}}$ | 4.17 mA       |
| I <sub>cqM2</sub>                       |                                         | Pas $I_C$ mais $I_D$                         | 280 <i>pA</i> |
| V <sub>tt</sub> (V <sub>BE</sub> mult.) | $V_{tt} = 3.6$                          | En .op on trouve $V_{GA_N} - V_{GA_P}$       | 3.60 V        |
| R <sub>pV1</sub>                        |                                         |                                              | 1200 Ω        |
| R <sub>zC2</sub>                        |                                         |                                              | 75 Ω          |
| R <sub>zC1</sub>                        |                                         |                                              | 75 Ω          |
| R <sub>ta</sub>                         |                                         | Inchangé                                     | 0.05 Ω        |



## **GRILLE DE CONCEPTION – CONTRE-RÉACTION**





#### ÉTAPE 4 – MESURE VTH DES MOSFETS - NMOS

1.2V

1.0V

1.1V-

1.0V-

0.9V-

Afin de trouver le  $V_{th}$  du NMOS, nous avons fait varier une tension à sa grille et nous avons regardé à partir de quelle tension il entre en saturation  $V_{th} \approx 1.7 \text{V}$ 

0.8V0.7V0.6V0.5V0.4V0.3V0.2V0.1V-0.1V-0.2V-0.3V-0.4V-

1.8V

2.0V

1.6V

1.4V

V(n007)



2.4V

2.2V

#### ÉTAPE 4 – MESURE VTH DES MOSFETS - PMOS

Afin de trouver le  $V_{th}$  du PMOS, nous avons fait varier une tension à sa grille et nous avons regardé à partir de quelle tension il entre en saturation.

$$V_{th} \approx -1.9 \text{V}$$





## ÉTAPE 4 – COURANT DE GRILLE NÉCESSAIRE

On se rend compte qu'en AC, on a quelques micro-ampères dans la grille, ce qui est causé par la capacité parasite.







#### **ÉTAPE 4 – COURANT DE POLARISATION 12**

Afin de choisir un courant de polarisation approprié, nous avons fait varier le courant et regardons à quel moment le BJT Q8 devient « actif ».

La valeur de 5 mA est choisie car c'est relativement linéaire et il y a encore une marge de manœuvre.





#### **ÉTAPE 4 – COURANT DE POLARISATION 12**



Choisi en posant que :  $V_C = V_B \rightarrow V_{CE} = V_{BE}$ Ensuite, on a fait la loi des boucles entre  $V_{CC}$  et  $V_{EE}$ 



# ÉTAPE 9 – GAIN INTRINSÈQUE DE L'ENTRÉE

$$A_V = \frac{V_{o1}}{V_p - V_m}$$

(sans résistance)

Le gain intrinsèque maximale est d'environ 71.5 dB

$$A_V = \frac{|V_A|}{V_T} \cong 71.5 \ dB$$





#### ÉTAPE 11 – CHOIX DE GAIN INTERMÉDIAIRE – AC

$$V_{out_1} = V_{CC} - R_{Z1B} \frac{I_{Q7A}}{2} - V_{EC_{Q3B}}$$
  $V_{out_2} = V_{CC} - I_{Q5B} (R_{d2a} - R_{d2b}) - V_{EC_{Q5B}}$ 

$$A_V = \frac{V_{out_2}}{V_{out_1}}$$

On veut un gain de  $10^{V}/_{V}$  afin de passer d'un sinus de  $\pm 1~V$  à  $\pm 10~V$   $10^{V}/_{V} = 20~dB$ 



## ÉTAPE 11 – CHOIX DE GAIN INTERMÉDIAIRE – AC





# ÉTAPE 11 – CHOIX DE GAIN INTERMÉDIAIRE – DC

L'onde de sortie de l'étage 1 est toujours centrée à environ 12.7V

L'entrée de l'étage 3 doit être centrée à -2.7V





## ÉTAPE 11 – CHOIX DE GAIN INTERMÉDIAIRE – DC

L'offset DC doit donc être de...

$$A_V = -\frac{2.7}{12.7} = -0.213$$

C'est bien ce que nous avons. C'est dû à l'effet élastique au nœud  $V_{o1}$  en boucle fermée.





## ÉTAPE 12 – POLARISATION DE L'ÉTAGE INTERMÉDIAIRE

- RD2a et CBE inutilisé pour garder le même gain en AC
- RD2b et RC2 ajusté pour avoir 2.7V au point d'opération
- Ajustement des valeurs pour notre mode commun

- RD2a =  $0.001 \Omega$
- CBE = 1f F
- RD2b = 299  $\Omega$
- RC2 =  $3.5k \Omega$



#### ÉTAPE 14 – AJUSTEMENT DE RZC

- Permet de venir polariser le bon courant dans les miroirs de courant 5mA
- Augmente l'impédance vu à l'entré de l'étage 3
- Diminue la variation de courant

- RZc1 =  $75 \Omega$
- RZc2 =  $75 \Omega$



## ÉTAPE 16 – MARGES GAIN ET PHASE POUR STABILITÉ

$$C_L = {}^{1}\mu F \qquad \qquad R_L = {}^{10}\,\Omega$$







## ÉTAPE 16 – MARGES GAIN ET PHASE POUR STABILITÉ

$$C_L = 1fF R_L = 1000 \, Meg\Omega$$







#### ÉTAPE 18 – DIMENSIONNEMENT DE CF

Place pôle avant pôle de pire charge capacitive

- → Corrige bande passante
- → Rends plus stable

$$C_f = 350 \ pF$$



