M1C03 Lecture 25 Function composition

Jeremy Lane

Nov 15, 2021

Announcement(s)

- Quiz due Friday
- Assignment 4 due Friday

Overview

Properties of function composition

Definition of function inverse

Reference: Notes on functions (Avenue), Lakins Chapter 5.

Recall

A function consists of three things:

- a set X called the *domain*,
- a set Y called the *codomain*, and
- a *correspondence* (or rule, or formula) that assigns to <u>every</u> element of the domain a unique element of the codomain.

A function $f: X \to Y$ is:

- injective if for all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.
- surjective if for all $y \in Y$, there exists $x \in X$ such that f(x) = y.
- bijective if it is surjective and injective.

Function composition [Lakins, Definition 5.2.1]

Let $f \colon X \to Y$ and $g \colon A \to B$ be functions with $Y \subseteq A$.

The *composition of* $f: X \to Y$ *and* $g: A \to B$ is the function

$$g \circ f \colon X \to B$$

defined by

$$g \circ f(x) = g(f(x)) \qquad \forall x \in X.$$

Functions on binary sequences

- $n: B_4 \to B_4$ bit flip.
- $r: B_4 \to B_4$ right shift.
- $l: B_4 \to B_4$ left shift.
- $t: B_4 \to B_3$ removes the leftmost digit.
- $a: B_3 \to B_4$ appends 0 as the leftmost digit.

Compute:

- $a \circ t(1010)$
- $t \circ a(111)$
- $r \circ l(1010)$
- $l \circ r(1111)$
- $r \circ (r \circ r)(1010)$
- $n \circ n(1010)$

The identity function

Definition: The *identity function* on a set X is the function $I_X \colon X \to X$ defined by

$$I_X(x) = x \quad \forall x \in X.$$

Theorem (Lakins, Proposition 5.2.5 (2))

Let $f: X \to Y$ be a function. Then

$$f \circ I_X = f = I_Y \circ f$$

as functions from X to Y.

Function composition and injective/surjective properties

Theorem (Lakins, Theorem 5.3.10)

Let $f: X \to Y$ and $g: Y \to Z$ be functions.

- If $f: X \to Y$ and $g: Y \to Z$ are both injective, then $g \circ f: X \to Z$ is injective.
- **Q** If $f: X \to Y$ and $g: Y \to Z$ are both surjective, then $g \circ f: X \to Z$ is surjective.
- **1** If $f: X \to Y$ and $g: Y \to Z$ are both bijective, then $g \circ f: X \to Z$ is bijective.
- If $g \circ f \colon X \to Z$ is injective, then $f \colon X \to Y$ is injective.
- $\textbf{ 0} \ \ \textit{If} \ g \circ f \colon X \to Z \ \textit{is surjective, then} \ g \colon Y \to Z \ \textit{is surjective}.$

If $f\colon X\to Y$ and $g\colon Y\to Z$ are both surjective, then $g\circ f\colon X\to Z$ is surjective.

If $g\circ f\colon X\to Z$ is injective, then $f\colon X\to Y$ is injective.

Consider $Low \colon \mathcal{A} \to \mathcal{L}$ and $Cap \colon \mathcal{L} \to \mathcal{A}$. Then

• $Low \circ Cap \colon \mathcal{L} \to \mathcal{L}$ is injective.

ullet $Cap\colon \mathcal{L} o \mathcal{A}$ is injective.

ullet $Low \colon \mathcal{A} \to \mathcal{L}$ is not injective.

Consider $r \colon B_4 \to B_4$ (right shift) and $t \colon B_4 \to B_3$. Then

• $t \circ r \colon B_4 \to B_3$ is surjective.

• $t \colon B_4 \to B_3$ is surjective.

• $r: B_4 \to B_4$ is not surjective.

Function inverse

Definition: $g \colon Y \to X$ is *inverse* to $f \colon X \to Y$ if:

$$\forall x \in X, y \in Y, \quad y = f(x) \Longleftrightarrow g(y) = x.$$

- $g \colon Y \to X$ is inverse to $f \colon X \to Y$ if and only if $f \colon X \to Y$ is inverse to $g \colon Y \to X$.
- $f: X \to Y$ is *invertible* if there exists $g: Y \to X$ inverse to $f: X \to Y$.
- ullet If $f\colon X \to Y$ is invertible, then the inverse is unique.

Example

- $Low \colon \mathcal{U} \to \mathcal{L}$ is the inverse of $Cap \colon \mathcal{L} \to \mathcal{U}$
- $Low \colon \mathcal{A} \to \mathcal{A}$ is not the inverse of $Cap \colon \mathcal{A} \to \mathcal{A}$

Function inverse

Definition: $g \colon Y \to X$ is inverse to $f \colon X \to Y$ if:

$$\forall x \in X, y \in Y, \quad y = f(x) \Longleftrightarrow g(y) = x.$$

Proposition (Lakins, Proposition 5.4.3)

Let $f \colon X \to Y$ and $g \colon Y \to X$ be functions.

Then $g \colon Y \to X$ is the inverse of $f \colon X \to Y$ if and only if

$$g \circ f = I_X$$
 and $f \circ g = I_Y$.