Politechnika Wrocławska

Wydział Elektroniki, Fotoniki i Mikrosystemów

KIERUNEK: Automatyka i Robotyka (AIR)

SPECJALNOŚĆ: Robotyka (ARR)

PRACA DYPLOMOWA INŻYNIERSKA

TYTUŁ PRACY: Dalmierz ultradźwiękowy z mikrofonami MEMS

> AUTOR: Krystian Mirek

PROMOTOR:

Dr inż. Bogdan Kreczmer, Katedra Cybernetyki i Robotyki

Robert Muszyński, Roberto Orozco Wrocław 2022

Szablon jest dostępny na licencji Creative Commons: Uznanie autorstwa-Na tych samych warunkach 4.0 Polska

Utwór udostępniany na licencji Creative Commons: uznanie autorstwa, na tych samych warunkach. Udziela się zezwolenia do kopiowania, rozpowszechniania i/lub modyfikacji treści utworu zgodnie z zasadami w/w licencji opublikowanej przez Creative Commons. Licencja wymaga podania oryginalnego autora utworu, a dystrybucja materiałów pochodnych może odbywać się tylko na tych samych warunkach (nie można zastrzec, w jakikolwiek sposób ograniczyć, ani rozszerzyć praw do nich). Tekst licencji jest dostępny pod adresem: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl. Podczas redakcji pracy dyplomowej notkę tę można usunąć, licencja dotyczy bowiem zredagowanego opisu, a nie samego latechowego szablonu. Szablon można wykorzystywać bez wzmiankowania o jego autorze.

Spis treści

1	Wstęp	4
2	Cel i założenia	5
3	Przegląd czujników ultradźwiękowych 3.1 Dobór odbiornika	6 6 7
4	Analiza problemu 4.1 Plan urządzenia	8 8 8 9
5	Specyfikacja realizacji sonaru ultradźwiękowego	11
6	Projekt konstrukcji sonaru oraz protokoły komunikacji 6.1 Komunikacja 6.1.1 Wybór protokołu 6.1.2 Komputer → sonar 6.1.3 Sonar → komputer 6.2 Konstrukcja układów elektronicznych sonaru 6.2.1 Zasilanie 6.2.2 Nadajnik 6.2.3 Wzmacniacz nadajnika 6.2.4 Filtry sygnału audio 6.2.5 Progowanie sygnału 6.3 Konfiguracja mikrokontrolera	12 12 12 12 13 13 13 14 15 16
7	Realizacja sonaru ultradźwiękowego	18
	7.1 PCB	18 18 18
8	Testy i eksperymenty 8.1 Test przetwornika piezoelektrycznego	20 20 20 21 21
	8.5 Test mikrofonów i filtrów	21

Spis treści	3
9 Podsumowanie i wnioski	23
Literatura	24
Spis rysunków	25
A Schematy i noty katalogowe	26

Wstęp

Celem rozdziału jest zaprezentowanie podstawowych informacji dotyczących dalmierzy ultradźwiękowych, zasady działania i ich zastosowania w przemyśle, nauce oraz życiu codziennym. Ma on również za zadanie przybliżyć rozwinięcia skrótów powszechnie używanych w tej dziedzinie.

Cel i założenia

Popularne dalmierze ultradźwiękowe wykorzystują przetworniki piezoelektryczne jako nadajniki i odbiorniki. Ich średnice wahają się w granicach od 10mm do 20mm. W przypadku prostych dalmierzy, gdy wyznaczana jest tylko odległość do obiektu, ich rozmiar nie jest krytyczny. Jednak w konstrukcjach sonarów ultradźwiękowych, które mają wyznaczyć również kierunek przylotu sygnału, rozmiar ten jest istotny. Jeżeli kierunek przylotu jest wyznaczany w oparciu o przesunięcie fazy odbieranego sygnału, wzajemna odległość odbiorników nie powinna przekraczać pół długości fali emitowanego sygnału. Wykorzystywane powszechnie przetworniki ultradźwiękowe pracują z częstotliwością 40kHz. Pół długości fali akustycznej w powietrzu dla tej częstotliwości to ok. 4,3 mm. Drugim warunkiem stosowalności tego podejścia jest to, aby odbiorniki sygnału można było modelować jako punkty materialne. Od strony technicznej oznacza to, że apertury tych odbiorników powinny być możliwe małe w stosunku do długości fali. Kryteriów tych nie spełniają popularne odbiorniki piezoelektryczne.

Celem niniejszej pracy jest konstrukcja sonaru pozwalającego wyznaczyć odległość do miejsca odbicia sygnału oraz kierunku nadejścia sygnału. Pozwalać ma to tym samym na precyzyjną lokalizację obiektu. Zakłada się, że źródłem sygnału będzie przetwornik piezoelektryczny pracujący z częstotliwością 40 kHz. Wyznaczanie kierunku przylotu ma zostać zrealizowane w oparciu o przesunięcie fazy odbieranego sygnału. Chcąc spełnić opisane powyżej warunki, jako odbiorniki zostaną zastosowane 3 mikrofony analogowe produkowane w technologii MEMS. Sonar powinien udostępniać komunikację poprzez interfejs USB. Dostępna powinna być też możliwość konfiguracji jego pracy, tzn. ilość pobudzeń generujących emitowany sygnał oraz czas opóźnienia przejścia w tryb odbioru. W ramach niniejsze pracy należy też zrealizować podstawowe oprogramowanie dla komputera typu PC, które pozwoli sterować sonarem, wykonać niezbędne pomiary oraz obliczenia. Dysponując tym oprogramowaniem należy przeprowadzić serię eksperymentów, które pozwolą zbadać i zweryfikować podstawowe własności sonaru. Ponadto oprogramowanie mikrokontrolera należy zdokumentować w systemie doxygen.

Przegląd czujników ultradźwiękowych

3.1 Dobór odbiornika

Wymagania jakie powinien spełniać odbiornik wynikają bezpośrednio z założeń projektu. Pierwszym z nich jest zakres pasma przenoszenia czujnika który obejmie częstotliwość 40 kHz na akceptowalnym poziomie sygnału, czyli takiej częstotliwości na jakiej pracuje w rezonansie większość nadajników piezoelektrycznych dostępnych na rynku.

Rysunek 3.1 Pasmo przenoszenia mikrofonu SPU0410LR5H-QB

Następnym wymaganiem jest rozmiar, by móc interpolować kierunek przyjścia sygnału w zakresie 180°, odległość między odbiornikami nie powinna przekraczać pół długości fali czyli 4,25 mm* Wszystkie czujniki tak małych rozmiarów są produkowane w technologii MEMS. Kolejnym wymaganiem jest takie umieszczenie

$$\lambda = \frac{v}{f} = \frac{340, 3\frac{m}{s}}{40kHz} = 0,0085m = 8,5mm$$

Rysunek 3.2 Obliczenie długości fali

^{*}W powietrzu, w temperaturze 15 °C, prędkość rozchodzenia się dźwięku jest równa 340,3 m/s [Wik]

otworu ciśnieniowego w obudowie, by skierowany był on wewnątrz laminatu obwodu drukowanego. Taka konstrukcja pozwala na stworzenie płaskiej powierzchni tylko z otworami ciśnieniowymi czujników, co przekłada się na mniejsze zakłócenia spowodowane odbiciami fali dźwiękowej od elementów elektronicznych.

Rysunek 3.3 Mikrofon SPU0410LR5H-QB

Ostatecznym wymaganiem była dostępność i przystępność cenowa produktu. Ze względu na tak rygorystyczne oczekiwania wybór zawęził się zaledwie do kilku pozycji. Jedną z nich był mikrofon SPU0410LR5H-QB marki Knowles[kno], który w odpowiedniej ilości został dostarczony przez Promotora.

3.2 Komercyjne rozwiązania

Na rynku znajduje się bardzo dużo ultradźwiękowych czujników odległości, ale wzglednie niewiele firm oferuje sonary bez ruchomych elementów. Czołowym producentem urządzeń w takiej technologii jest TOPOSENS ze swoim produktem o nazwie ECHO ONE®. Zdjęcia produktu sugerują, że posiada on ultradźwiękowy nadajnik oraz trzy odbiorniki we wzorze tworzącym kąt prosty.

Rysunek 3.4 TOPOSENS ECHO ONE

dodać źródło obrazka

Analiza problemu

4.1 Plan urządzenia

Założenia konstrukcyjne to przede wszystkim prostota budowy, modularność i skrócenie czasu realizacji. Płytka deweloperska wysyła określoną przez użytkownika liczbę przebiegów sygnału PWM (Pulse Width Modulation), następnie sygnał jest ten wzmacniany do poziomu aż 80 V by uzyskać maksymalną wydajność i trafia na przetwornik piezoelektryczny który generuje falę ultradźwiękową. Fala ta po odbiciu się od obiektu w polu wykrywania sonaru trafia z powrotem do urządzenia a konkretniej do mikrofonów MEMS umieszczonych na czole obudowy. Sygnał z mikrofonów jest filtrowany by przepuścić tylko porządane przez nas częstotliwości bliskie czestotliwości nadajnika, oraz wzmacniany w celu lepszej interpretacji przez dalsze układy.

Po przefiltrowaniu, sygnał jest progowany. Mikrokontroler za pomocą przetwornika DAC ustala poziom napięcia, który wyznaczy granicę pomiędzy wysokim a niskim stanem logicznym. To rozróznienie jest nam potrzebne do pobudzenia cyfrowego wejścia licznika, zmienność tej wartości pozwala nam również na reagowanie tylko na sygnał o odpowiedniej amplitudzie by móc z powrotem obniżyć próg do miejsca przecięcia się sinusoidy z napięciem odniesienia, gdzie dokładność pomiaru jest największa. Mikroprocesor dzięki wspomnianym wcześniej licznikom odmierza czas między zboczami rosnącymi zprogowanego już sygnału. Wszystkie pomiary czasów przecieć z trzech odbiorników są wysyłane we wspólnej ramce danych do komputera gdzie za pomocą różnic w tych czasach wyznaczony zostanie dystans obiektu oraz jego odchylenie względem sonaru. Rys 4.1

4.2 Rozmieszczenie elementów nadawczych i odbiorczych

Rozmieszczenie odbiorników jest kluczowym elementem pomiaru, to dzięki znajomości odległości mikrofonów i różnic w czasach dotarcia sygnału jesteśmy w stanie określić kąt pod którym fala dźwiękowa trafia do urządzenia. Do uzyskania pełnego zakresu w trzech osiach, wymagane są co najmniej trzy odbiorniki:

• Mikrofon 0 – mikrofon odniesienia, znajduje się on w centralnym punkcie, to

Rysunek 4.1 Schemat blokowy urządzenia

według niego wyznacza będzie odległość od obiektu.

- Mikrofon X na podstawie pomiaru z tego mikrofonu wyznacza się kąt odchylenia w osi X
- ullet Mikrofon Y na podstawie pomiaru z tego mikrofonu wyznacza się kąt odchylenia w osi Y

Rysunek 4.2 Rozmieszczenie mikrofonów

4.3 Generowanie i odbieranie sygnału ultradźwiękowego

4.4 Komunikacja

Komunikacja komputera typu PC z płytką deweloperską Nucleo na której bazowany jest projekt odbędzie się przy pomocy portu szeregowego. Każdy nowoczesny komputer posiada złącze USB, które miało niezwykły wpływ na standaryzacje interfejsów w urządzeniach użytkowych, większość płytek deweloperskich również

posiada wbudowane gniazdo USB z portem szeregowym, dlatego też wybór tego rodzaju kompunikacji wydaję się wręcz oczywistą decyzją. Tym samym złączem wgrywany jest również program do pamięci mikrokontrolera co jeszcze bardziej upraszcza stanowisko testowe. Dane będą wysyłane w postaci tekstu w formie "pytanieodpowiedź", zagwarantuje to większą elastyczność i możliwość zmiany parametrów urządzenia bez konieczności zmiany programu. W celu uruchomienia sekwencji wykrywania obiektu operator powinień wysłać komendę przykładowo o nazwie "START". Komenda taka posiadać będzie swoje ID w formie pojedynczej cyfry, pozwoli to zmniejszyć ilość znaków zamieszczanych w ramce danych. Komunikacja tekstowa przede wszystkim pozwala na weryfikacje danych przez standardowy terminal tekstowy. Ramka danych rozpocznie się znakiem "X", pomoże to programowi odfiltrować tylko dane przeznaczone dla niego. "X" został wybrany ze wgledu na to, że znak ten na pewno nie będzie występował w treści wiadomości w żadnej postaci. Wiadomość startu wraz z opcjonalnymi parametrami takimi jak ilość impulsów do wyemitowania czy próg czułości wykrywania sygnału wysłane są bajt po bajcie do urządzenia. Sonar rozpoznając znak początku ramki przechodzi dalej do odczytywania ID komendy oraz jej parametrów, po odebraniu całej wiadomości program zaczyna sekwencję pomiaru. Następnie urządzenie wysyła do użytkownika odpowiedź, standardowo zaczyna znakiem rozpoznawczym a następnie zwraca numer ID komendy na która ta wiadomość jest odpowiedzią, status wykonania zadania, w formie kodów błędów, liczba wykrytych przecieć zer, czas kontrolny, oraz wartości liczników z każdego ze składowych pomiaru. Dane będą przetwarzane przez operacje na obiektach typu string. Pozwoli to na wycięcie odpowiednich wartości ze scalonej ramki wysłanej jako jeden długi ciąg znaków.

sprawdzić czy na pewno

Specyfikacja realizacji sonaru ultradźwiękowego

W tej części trzeba podać jakie będą udostępniane funkcjonalności, jak mają być realizowane pomiary, jakie polecenia będzie można przesyłać do urządzenia, przewidywane parametry, np. częstość powtórzeń pomiarów, zakres zmiany ilości sygnałów pobudzenia, zakres zmian wypełnienia impulsów itp.

Projekt konstrukcji sonaru oraz protokoły komunikacji

6.1 Komunikacja

6.1.1 Wybór protokołu

Wybrany został protokół UART, ze wględu na to, że płytka deweloperska STM32 NUCLEO-L476RG z której skorzystano w projekcie posiada wbudowany konwerter UART \rightarrow USB, co pozwala na skomunikowanie mikrokontrolera z komputerem bez dodatkowego sprzętu.

6.1.2 Komputer \rightarrow sonar

Użytkownik systemu może wysłać z komputera instrukcję do wywołania całej sekwencji działania urządzenia. Ramka danych zaczyna się znakiem, który nie będzie nigdy występował ułatwiającym rozpoznanie wiadomości, następnie musi zostać podany numer komendy informujący sonar jaką czynność powienien wykonać, parametry określające warunki tej czynności, a na koniec suma kontrolna wiadomości.

Rysunek 6.1 Ramka danych przychodzących

zrobić ładniejszą ram kę

6.1.3 Sonar \rightarrow komputer

Sonar w odpowiedzi na instrukcję wysyła ramkę danych która również zaczyna się znakiem specjalnym, następnie podawany jest numer komendy na którą sonar odpowiada, status wykonania, dane pomiarowe oraz suma kontrolna.

zrobić ładniejszą ramke

Rysunek 6.2 Ramka danych wychodzących

6.2 Konstrukcja układów elektronicznych sonaru

Projekt bazuje na autorskiej płytce z obwodem drukowanym, który został zaprojektowany przy pomocy otwartoźródłowego narzędzia do projektowania elektroniki "KiCad" [KiC]. Całe urządzenie składa się z płytki deweloperskiej oraz zaprojektowanego na cele pracy dyplomowej PCB*, które jest podłączone do Nucleo w formie "shieldu" poprzez listwy kołkowe. Całą elektronikę można podzielić na kilka bloków, które spełniają określone fukcje, jest to międzyinnymi sekcja zasilania, część nadawcza, część odbiorcza, zestaw filtrów sygnału przychodzącego oraz komparatory progujące sygnał.

pokazać jak wygląda shield

wstawić diagram funkcjonalny

6.2.1 Zasilanie

Całe urządzenie zasilane jest z portu USB komputera, które jednocześnie służy do komunikacji. Przewód jest podłączony bezpośrednio do płytki deweloperskiej Nucleo, gdyż posiada ona już wbudowane złącze. Mimo, że płytka deweloperska posiada wyprowadzenia zarówno 5V jak i 3,3V, postanowiłem zaimplementować układ stabilizatora liniowego obniżajcego napięcie do 3,3V w celu lepszej izolacji zasilania układów analogowych od cyfrowych co powinno przełożyć się na mniejsze zakłócenia.

Rysunek 6.3 Stabilizator napięcia

6.2.2 Nadajnik

Rolę nadajnika pełni przetwornik piezoelektryczny o średnicy 16 mm i częstotliwości rezonansowej 40 kHz, która to jest poza spektrum słyszalnych częstotliwości.

dodać model przetwornika

dodać źródło

^{*}Printed Circuit Board

Rysunek 6.4 Nadajnik piezoelektryczny

6.2.3 Wzmacniacz nadajnika

W celu uzyskania mocnego sygnału ultradźwiękowego z przetwornika piezoelektrycznego zaprojektowano układ wzmacniający z transformatorem. Synał nadający czestotliwość wysyłany jest z mikroprocesora, następnie jest wzmacniany para tranzystorów, razem tworzących układ Darlingtona, który zapewnia duże wzmocnienie prądowe sygnału i zachowuje krótkie czasy przełączania charakterystyczne dla tranzystorów bipolarnych. Transformator w tym układzie służy do podniesienia napięcia które trafia na przetwornik, docelowo jest to nawet szczytowo 80 V co sprawia, że sygnał jest bardzo mocny. Układ posiada również zabezpieczenie przed zbyt długim czasem otwarcia tranzystora, sygnał jest przepuszczany przez kondensator, co sprawia, że tylko szybkozmienne przebiegi są w stanie dotrzeć na baze klucza. Zbyt długa ekspozycja transformatora na przepływ prądu mogłaby go narazić na przegrzanie. Ze względu na indukcyjny charakter uzwojeń transformatora podczas szybkiej zmiany generowanego pola magnetycznego następuje konwersja tej energii do postaci pradu zwrotnego wyindukowanego na tej cewce, aby uchronić się przed niepożądanym działaniem tego zjawiska, równolegle z uzwojeniem pierwotnym sprzeżona jest dioda Schottkiego, która pozwala zniwelować ten prąd. Dodatkowo jako element ułatwiajacy pracę nad urządzeniem, dodany został LED, który emituje światło w trakcie przepływu prądu przez transformator.

Rysunek 6.5 Wzmacniacz sygnału nadajnika piezoelektrycznego

akapity

6.2.4 Filtry sygnału audio

Rolę odbiorników będą pełnić trzy dookólne mikrofony MEMS, które cechują się względnie liniową charakterystyką przenoszenia pasma. Dlatego też konieczne będzie zastosowanie dla każdego z nich zestawu filtrów pasmowych, które przepuszczą nam tylko i wyłącznie częstotliwości bliskie częstotliwości sygnału jaki generuje przetwornik piezoelektryczny, a zablokują wszytskie nieporządane. Pojedynczy stopień filtra, dawałby na wyjściu zbyt niski zakres poziomu napięć, z tego powodu sygnał przechodzi przez 3 stopnie wzmacniaczy operacyjnych. Takie rozwiązanie zarówno filtruje sygnał i wzmacnia go.

Rysunek 6.6 Zestaw filtrów dla sygnału z mikrofonów

Zazwyczaj układy analogowe oparte o wzmacniacze operacyjne zasilane są napięciem symetrycznym a sygnał przemienny oscyluje wokół potencjału masy. W tym wypadku ze względu na zakres napięciowy wejść mikroprocesora do zasilania wzmacniaczy uperacyjnych zostało użyte pojedyncze napięcie 3,3 V zamiast symetrycznego co oznacza, że chcąc uzyskać napięcie odniesienia w połowie zakresu zasilania należy ustalić je na poziomie 1,65 V. Tę wartość ustala dzielnik napięcia z dwóch identycznych rezostorów, a wzmacniacz operacyjny zwiększa wydajność prądową takiego źródła.

opisać obszernie wybór wzmacniaczy operacyjnych

Rysunek 6.7 Wzmacniacz prądowy napięcia odniesienia

6.2.5 Progowanie sygnału

Wejścia licznika reagują na zbocza sygnału cyfrowego, co oznacza, że analogowy sygnał z wyjścia filtra musi zostać przetworzony na stany logiczne. Dokładna wartość napięcia nie jest potrzebna. Istotne są punkty przecięcia się sinusoidy z osią przebiegu. Takie zadanie idealnie spełnia komparator 6.9, próg od którego sygnał ma interpretować jako wysoki stan jest podawany w formie napęcia z przetowrnika DAC mikrokontrolera dodatkowo wzmocnionego wzmacniaczem operacyjnym 6.8. Pozwala to na reagowanie tylko na falę dźwiękową o wystarczająco dużej amplitudzie, a po wykryciu mocnego sygnału wrócić z powrotem do poziomu napięcia odniesienia sygnału gdzie pomiar jest najdokładniejszy.

Rysunek 6.8 Wzmacniacz wartości progowej

Rysunek 6.9 Czterokanałowy komparator

6.3 Konfiguracja mikrokontrolera

Rysunek 6.10 Konfiguracja pinów mikrokontrolera

Rysunek 6.11 Konfiguracja zegarów mikrokontrolera

Realizacja sonaru ultradźwiękowego

Opis wykonanego urządzenia, zdjęcia. Przykłady realizacji komunikacji z urządzeniem.

7.1 PCB

Rysunek 7.1 PCB

7.2 Moduł nadawczo-odbiorczy

7.3 shield

Rysunek 7.2 Moduł nadawczo-odbiorczy

Rysunek 7.3 Nakładka na Nucleo

Testy i eksperymenty

Opis zrealizowanych eksperymentów, które demonstrują najważniejsze cechy urządzenia i czujnika.

8.1 Test przetwornika piezoelektrycznego

Pierwszym testem był test przetwornika, który jest nadajnikiem sygnału. Zasilono go bezpośrednio z generatora wbudowanego w oscyloskop, parametry zadane to sygnał sinusoidalny o napięciu 5 V "peak to peak" czyli wartości szczytowej. Elementem odbiorczym był inny przetwornik piezoelektryczny służący tylko do testów, został on umieszczony w odległości 10 cm od nadajnika. Jego częstotliwość rezonansowa również wynosiła 40 kHz. Po podłączeniu sondy oscyloskopu do odbiornika ukazał się bardzo wyraźny sygnał w kształcie sinusoidy ustawionej na nadajniku. Dźwięki otoczenia miały bardzo znikomy wpływ na zakłócenia, stanowiąc niewielki procent amplitudy. Zmiana częstotliwości o chociażby 1 kHz wiązała się kilkudziesięciokrotnym spadkiem mocy sygnału, co potwierdzało dane z noty katalogowej elementu piezoelektrycznego.

Rysunek 8.1 Przebieg sygnału odebrany innym przetwornikiem piezoelektrycznym

8.2 Test wpływu odległości na sygnał

Z identycznym stanowiskiem pomiarowym co sekcję wyżej sprawdzono wpływ odległości czujników na moc i przesuniecie fazy sygnału.

Rysunek 8.2 Przebieg sygnału odebrany innym przetwornikiem piezoelektrycznym, wpływ na odległość

8.3 Pierwsze uruchomienie

PCB z przylutowanymi elementami zostało podłączone do zasilacza laboratoryjnego dostarczającego 5 V i ograniczeniem prądowym ustawionym na 100 mA. Pierwsze uruchomienie sterownika sonaru ujawniło drobny błąd projektowy, wszystkie diody elektroluminoescencyjne zostały przylutowane w złej polaryzacji. Szybka zmiana ustawień diod i następne uruchomienie, nie pokazywało oznak większych błędów. Pobór prądu wyniósł, a temperatura elementów na płytce nie odstawała od temperatury pokojowej.

podać ile prądu ciągnie

Uruchomienie i test wzmacniacza sygnału prze-8.4 twornika piezoelektrycznego

Rysunek 8.3 Nadajnik sterowany przez wzmacniacz

Test mikrofonów i filtrów 8.5

Rysunek 8.4 Przebieg sygnału odebrany innym przetwornikiem piezoelektrycznym

Podsumowanie i wnioski

Ten rozdział pisze się jako przedostatni. Ostatnim jest "Wstęp"

Literatura

- [KiC] kicad. https://www.kicad.org/.
- [kno] Knowles corporation (nyse: Kn) is a market leader and global provider of advanced micro-acoustic, audio processing, and precision device solutions, serving the ... https://www.knowles.com/.
- [Wik] Wikipedia. Prędkość dźwięku. https://pl.wikipedia.org/wiki/Pr%C4%99dko% C5%9B%C4%87_d%C5%BAwi%C4%99ku.

Spis rysunków

3.1	Pasmo przenoszenia mikrofonu SPU0410LR5H-QB	6
3.2	Obliczenie długości fali	6
3.3	Mikrofon SPU0410LR5H-QB	7
3.4	TOPOSENS ECHO ONE	7
4.1	Schemat blokowy urządzenia	8
4.2	Rozmieszczenie mikrofonów	9
6.1	Ramka danych przychodzących	12
6.2	Ramka danych wychodzących	13
6.3	Stabilizator napięcia	13
6.4	Nadajnik piezoelektryczny	14
6.5	Wzmacniacz sygnału nadajnika piezoelektrycznego	14
6.6	Zestaw filtrów dla sygnału z mikrofonów	15
6.7	Wzmacniacz prądowy napięcia odniesienia	15
6.8	Wzmacniacz wartości progowej	16
6.9	Czterokanałowy komparator	16
6.10	Konfiguracja pinów mikrokontrolera	17
6.11		17
7.1	PCB	18
7.2	Moduł nadawczo-odbiorczy	19
7.3	Nakładka na Nucleo	19
8.1	Przebieg sygnału odebrany innym przetwornikiem piezoelektrycznym	20
8.2	Przebieg sygnału odebrany innym przetwornikiem piezoelektrycz-	
	nym, wpływ na odległość	21
8.3	Nadajnik sterowany przez wzmacniacz	21
8.4	Przebieg sygnału odebrany innym przetwornikiem piezoelektrycznym	22

Dodatek A Schematy i noty katalogowe

Do zrobienia

dodać źródło obrazka	7
sprawdzić czy na pewno 10	0
zrobić ładniejszą ramkę	2
zrobić ładniejszą ramkę 1	2
pokazać jak wygląda shield 1	3
wstawić diagram funkcjonalny	3
dodać model przetwornika 1	3
dodać źródło 1	3
akapity	4
opisać obszernie wybór wzmacniaczy operacyjnych	5
Rysunek: screen z oscylo z przebiegiem sygnału z piezo	0
zdjęcie z oscylo z przesuniętym sygnałem i kilka testów na różne odległości . 20	0
Rysunek: screen z oscylo z przebiegiem sygnału z piezo	1
???	1
podać ile prądu ciągnie	1
Rysunek: screen z oscylo z przebiegiem sygnału z piezo	1
Rysunek: screen z oscylo z przebiegiem sygnału z piezo	2