## Übersicht

- $\bullet \ y^{(n)} + a_{n-1} * y^{(n-1)} + \ldots + a_1 * y' + a_0 * y = 0$ 
  - a ... gegebene Konstanten
  - DGL n-ter Ordnung
  - Anwendungsfall: Masse-Feder abhängig von
    - \* Masse mal Beschleunigung
    - \* Reibung mal Geschwindigkeit
    - \* Federzug mal Strecke



- zweidimensionales GLS lösbar, wenn zwei linear unabhängige Lösungen gegeben
  - z.B.
    - \* x(0) Anfangsauslenkung gegeben
    - \* x'(0) Anfangsgeschwindigkeit gegeben

## Ansatz



- Nullstellen des charakteristischen Polynoms entsprechen Lösungen
- alle Nullstellen verschieden ==> alle Lösungen gefunden



## Vorgehensweise



- Gleichung in charakteristische Polynom umwandeln
- Polynom in Linearfaktoren zerlegen
  - mehrere Nullstellen ==> innere Resonanz
- $\bullet$  umformen nach  $\lambda$ 
  - quadratische Gleichung
- Fallunterscheidung der Diskrimante D
  - D < 0
    - \* zwei komplexe Lösungen (x+yi)
      - ♦ kongugiert ebenfalls Lösungen
    - \* umwandeln in reelle Lösungen
      - ♦ Nullstellen ergeben zusammen reelle Lösung
      - $\lambda_{1/2} = e^x e^{\pm iy} = e^x * \sin(y) / \cos(y)$



- D = 0
  - \* Doppellösung ==> allgemeine Lösung



- D > 0
  - \* zwei verschiedene reellle Lösungen



• Zusammenfassung

## Beispiele

[[Differentialgleichungen]]