

## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |



PHYSICS 0625/33

Paper 3 Extended May/June 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall =  $10 \,\text{m/s}^2$ ).

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question.

| For Exam | For Examiner's Use |  |  |
|----------|--------------------|--|--|
| 1        |                    |  |  |
| 2        |                    |  |  |
| 3        |                    |  |  |
| 4        |                    |  |  |
| 5        |                    |  |  |
| 6        |                    |  |  |
| 7        |                    |  |  |
| 8        |                    |  |  |
| 9        |                    |  |  |
| 10       |                    |  |  |
| 11       |                    |  |  |
| Total    |                    |  |  |

This document consists of 16 printed pages.



A train is at rest in a railway station. At time t = 0, the train starts to move forwards with an increasing speed until it reaches its maximum speed at time  $t = 48 \, \text{s}$ .

For Examiner's Use





Fig. 1.1

| (a) | (i)  | State how the graph shows that, during the first 48s of the journey, the accelerate of the train is constant. | tion |
|-----|------|---------------------------------------------------------------------------------------------------------------|------|
|     |      |                                                                                                               | [1]  |
|     | (ii) | Calculate the acceleration of the train during the first 48s of the journey.                                  |      |

- **(b)** After time  $t = 48 \, \text{s}$ , the train continues at its maximum speed for another 72 s.
  - (i) On Fig. 1.1, sketch the speed-time graph for the next 72s of the journey. [1]
  - (ii) Determine the total distance travelled by the train in the 120s after it starts moving.

distance = .....[3]

[Total: 7]

| 2 |          | s stored in a reservoir at an average vertical height of 350 m above the turbines of a ectric power station. | For<br>Examiner's<br>Use |
|---|----------|--------------------------------------------------------------------------------------------------------------|--------------------------|
|   | During a | a 7.0 hour period, $1.8 \times 10^6 \mathrm{m}^3$ of water flows down from the reservoir to the turbines.    | 030                      |
|   | (a) The  | e density of water is 1000 kg/m <sup>3</sup> .                                                               |                          |
|   | For      | this 7.0 hour period, calculate                                                                              |                          |
|   | (i)      | the mass of water that flows from the reservoir to the turbines,                                             |                          |
|   |          |                                                                                                              |                          |
|   |          |                                                                                                              |                          |
|   |          | mass =[2]                                                                                                    |                          |
|   | /ii\     | the gravitational potential energy transformed as the water flows to the turbines,                           |                          |
|   | (ii)     | the gravitational potential energy transformed as the water flows to the turbines,                           |                          |
|   |          |                                                                                                              |                          |
|   |          |                                                                                                              |                          |
|   |          |                                                                                                              |                          |
|   |          | energy =[2]                                                                                                  |                          |
|   | (iii)    | the maximum possible average output power.                                                                   |                          |
|   |          |                                                                                                              |                          |
|   |          |                                                                                                              |                          |
|   |          | TO1                                                                                                          |                          |
|   |          | power =[2]                                                                                                   |                          |
|   |          | hydroelectric power station generates electricity from a renewable energy source.                            |                          |
|   | (i)      | Explain what is meant, in this context, by <i>renewable</i> .                                                |                          |
|   |          |                                                                                                              |                          |
|   |          | [1]                                                                                                          |                          |
|   | (ii)     | State two other renewable energy sources.                                                                    |                          |
|   |          | 1                                                                                                            |                          |
|   |          | 2                                                                                                            |                          |
|   |          | [Total: 9]                                                                                                   |                          |
|   |          | [Total: 0]                                                                                                   | 1                        |

3 On a windy day, a parachutist of mass 85 kg jumps from an aeroplane.

For Examiner's Use

Fig. 3.1 shows the parachutist falling through the air at a constant vertical velocity of 8.4 m/s downwards.



Fig. 3.1

| (a) | Distinguish between speed and velocity. |  |  |  |  |  |
|-----|-----------------------------------------|--|--|--|--|--|
|     |                                         |  |  |  |  |  |
|     |                                         |  |  |  |  |  |
|     | [1]                                     |  |  |  |  |  |

| (b) |     | the parachutist falls, the wind is moving him towards the right of the diagram, sizontal velocity of $6.3\mathrm{m/s}$ . | at a |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------|------|
|     | (i) | On Fig. 3.1, draw an arrow to show the horizontal velocity of the parachutist.                                           | [1]  |

For Examiner's Use

| (ii) | On the grid below, draw a vector diagram to determine graphically the size and |
|------|--------------------------------------------------------------------------------|
|      | direction of the resultant velocity of the parachutist.                        |



| size =      | <br>    |
|-------------|---------|
| direction = | <br>[4] |

(iii) Calculate the kinetic energy of the parachutist.

[Total: 9]

4 A large crane has a mass of 8500 kg. Fig. 4.1 shows the crane on a muddy building-site.

For Examiner's Use



Fig. 4.1

(a) Calculate the weight of the crane.

| weight = | [1]     | ı |
|----------|---------|---|
| weignt – | <br>ויו | ı |

- (b) The crane rests on two caterpillar tracks each of which has a contact area with the ground of  $3.4\,\text{m}^2$ .
  - (i) Calculate the pressure that the crane exerts on the ground.

(ii) As the crane driver walks towards the crane, he starts to sink into the mud. He lays a wide plank of wood on the mud and he walks along the plank.

Explain why he does not sink into the mud when he walks along the plank.

| C) |      | en the crane lifts a heavy load with its hook, the load exerts a moment on the ng-arm about the axle. | For<br>Examiner's<br>Use |
|----|------|-------------------------------------------------------------------------------------------------------|--------------------------|
|    | (i)  | Explain what is meant by moment of a force.                                                           |                          |
|    |      |                                                                                                       |                          |
|    |      | [1]                                                                                                   |                          |
|    | (ii) | Despite the moment exerted on the lifting-arm, the crane remains in equilibrium.                      |                          |
|    |      | State the two conditions required for any object to be in equilibrium.                                |                          |
|    |      | 1                                                                                                     |                          |
|    |      | 2                                                                                                     |                          |
|    |      | [2]                                                                                                   |                          |
|    |      | [Total: 8]                                                                                            |                          |

**5** Fig. 5.1 shows a saucepan of boiling water on an electric hotplate.





Fig. 5.1

As time passes, thermal energy (heat) is constantly supplied to the water but its temperature remains at  $100\,^{\circ}$ C.

| (a) | State two ways in which boiling differs from evaporation.                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------|
|     | 1                                                                                                               |
|     |                                                                                                                 |
|     | 2                                                                                                               |
|     |                                                                                                                 |
|     | [2]                                                                                                             |
| (b) | Explain, in terms of the water molecules, what happens to the thermal energy supplied to the water as it boils. |
|     |                                                                                                                 |
|     |                                                                                                                 |
|     |                                                                                                                 |
|     | [2]                                                                                                             |

| (c) | Describe an experiment to measure the specific latent heat of steam. You may include a diagram. | For<br>Examiner's<br>Use |
|-----|-------------------------------------------------------------------------------------------------|--------------------------|
|     |                                                                                                 |                          |
|     |                                                                                                 |                          |
|     |                                                                                                 |                          |
|     |                                                                                                 |                          |
|     |                                                                                                 |                          |
|     |                                                                                                 |                          |
|     |                                                                                                 |                          |
|     | [4]                                                                                             |                          |
|     | [Total: 8]                                                                                      |                          |

| 6 | (a) | (i)  | State two ways in which the molecular structure of a gas differs from the molecular structure of a liquid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |  |
|---|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|   |     |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Use |  |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |
|   |     |      | 2[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |
|   |     | (ii) | Compressibility is the ease with which a substance can be compressed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |
|   |     |      | State and explain, in terms of the forces between the molecules, how the compressibility of a gas differs from that of a liquid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |
|   |     |      | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |  |
|   | (b) | Fig. | . 6.1 shows a weather balloon being inflated by helium from a cylinder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |  |
|   | ( ) | Ü    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |
|   |     |      | HELIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |  |
|   |     |      | and the same of th |     |  |
|   |     |      | Fig. 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |  |
|   |     | (i)  | The helium that inflates the balloon had a volume of $0.035\mathrm{m}^3$ at a pressure of $2.6\times10^6\mathrm{Pa}$ , inside the cylinder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |  |
|   |     |      | The pressure of the helium in the balloon is $1.0 \times 10^5$ Pa and its temperature is the same as it was when in the cylinder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
|   |     |      | Calculate the volume occupied by the helium in the balloon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |  |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |
|   |     |      | volume =[3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |  |
|   |     | (ii) | As the balloon rises up through the atmosphere, the temperature of the helium decreases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |  |
|   |     |      | State the effect of this temperature change on the helium molecules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |
|   |     |      | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |  |
|   |     |      | [Total: 8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |  |

| The | frec | puency of the monochromatic light produced by a laser is $4.7 \times 10^{14}$ Hz.                                       | For               |
|-----|------|-------------------------------------------------------------------------------------------------------------------------|-------------------|
|     |      | light from the laser passes from a vacuum, where the speed of light is $3.0 \times 10^8  \text{m/s}$ , pre-optic cable. | Examiner's<br>Use |
| (a) | Sta  | te                                                                                                                      |                   |
|     | (i)  | what is meant by monochromatic,                                                                                         |                   |
|     |      |                                                                                                                         |                   |
|     |      | [1]                                                                                                                     |                   |
|     | (ii) | the frequency of light from the laser in the fibre-optic cable.                                                         |                   |
|     |      | [1]                                                                                                                     |                   |
| (b) | The  | e speed of light in the fibre-optic cable is $2.0 \times 10^8 \mathrm{m/s}$ .                                           |                   |
|     | Cal  | culate                                                                                                                  |                   |
|     | (i)  | the refractive index of the material from which fibre-optic cable is made,                                              |                   |
|     |      |                                                                                                                         |                   |
|     |      | refractive index =[2]                                                                                                   |                   |
|     | (ii) | the wavelength of light from the laser in the fibre-optic cable.                                                        |                   |
|     |      |                                                                                                                         |                   |
|     |      | wavelength =[2]                                                                                                         |                   |
|     |      | [Total: 6]                                                                                                              |                   |
|     |      |                                                                                                                         | 1                 |

**8** Fig. 8.1 shows a small, uncharged copper sphere suspended from a nylon thread, and a plastic rod being rubbed with a woollen cloth.

For Examiner's Use





Fig. 8.1

The rod becomes negatively charged as it is rubbed.

| (a)         | Explain, in terms of electrons, why copper is a conductor but nylon is an insulator.                  |
|-------------|-------------------------------------------------------------------------------------------------------|
|             |                                                                                                       |
|             | [2]                                                                                                   |
| (b)         | Describe how the negatively charged rod may be used to induce a positive charge on the copper sphere. |
|             |                                                                                                       |
|             |                                                                                                       |
|             |                                                                                                       |
|             | [3]                                                                                                   |
| <b>/</b> -\ | The connex on here is given a negitive charge, on shown in Fig. 9.2                                   |

**(c)** The copper sphere is given a positive charge, as shown in Fig. 8.2.



Fig. 8.2

On Fig. 8.2, draw arrows to indicate the direction and pattern of the electric field that surrounds the positively charged sphere. [2]

[Total: 7]

For Examiner's Use

[Total: 6]

9

| In a | labo | pratory experiment, the isotope uranium-238 is used as a source of $\alpha$ -particles.                                                                  |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)  | Sta  | te                                                                                                                                                       |
|      | (i)  | one feature of uranium-238 nuclei that is the same for the nuclei of other uranium isotopes,                                                             |
|      |      | [1]                                                                                                                                                      |
|      | (ii) | one feature of uranium-238 nuclei that is different for the nuclei of other uranium isotopes.                                                            |
|      |      | [1]                                                                                                                                                      |
| (b)  | _    | 9.1 shows the $\alpha\text{-particles}$ from the uranium source being directed at a very thin gold in a vacuum.                                          |
|      |      | thin gold foil                                                                                                                                           |
|      |      | moveable α-particle detector                                                                                                                             |
|      |      | uranium source $\alpha\text{-particles}$                                                                                                                 |
|      |      |                                                                                                                                                          |
|      |      | Fig. 9.1                                                                                                                                                 |
|      |      | investigate the scattering of $\alpha$ -particles, a detector is moved to different positions and the very thin gold foil and measurements are recorded. |
|      |      | scribe the results from this scattering experiment and explain what they show about structure of atoms.                                                  |
|      |      |                                                                                                                                                          |
|      |      |                                                                                                                                                          |
|      |      |                                                                                                                                                          |
|      |      |                                                                                                                                                          |
|      |      |                                                                                                                                                          |
|      |      |                                                                                                                                                          |
|      |      | [4]                                                                                                                                                      |

10 Fig. 10.1 is the symbol for a NAND gate with inputs A and B.



Fig. 10.1

(a) Input A and input B can be set to 1 (high) or to 0 (low).

Complete the table below to give the outputs for this NAND gate.

| input<br>A | input<br>B | output |
|------------|------------|--------|
| 0          | 0          |        |
| 0          | 1          |        |
| 1          | 0          |        |
| 1          | 1          |        |

[1]

**(b)** The two inputs of the NAND gate are joined together and connected to an input C, as shown in Fig. 10.2.



Fig. 10.2

- (i) Determine the output of this NAND gate when
  - **1.** input C is set to 0,

output = .....

2. input C is set to 1.

output = .....[1]

(ii) State the name of the logic gate that behaves in the same way as the NAND gate in Fig. 10.2.

.....[1]

© UCLES 2013 0625/33/M/J/13

For Examiner's Use (c) A circuit combines three NAND gates.

The inputs to the circuit are P and Q, as shown in Fig. 10.3.

For Examiner's Use



Fig. 10.3

Points R, S and T in the circuit are also labelled.

Input P is set to 0 and input Q is set to 1.

Determine the logic states (0 or 1) of points R, S and T.

| point R = |     |  |
|-----------|-----|--|
| point S = |     |  |
| point T = | [2] |  |
|           | [~] |  |

[Total: 5]

**Turn over for Question 11** 

11

| A re | emote ski lodge receives 18 kW of electric power from a 120 V supply.                    | For            |
|------|------------------------------------------------------------------------------------------|----------------|
| (a)  | Calculate                                                                                | Examine<br>Use |
|      | (i) the current that the ski lodge draws from the supply,                                |                |
|      | current =                                                                                |                |
| (b)  | energy =                                                                                 |                |
|      | Explain why energy losses in the transmission cables are lower when the voltage is high. |                |
|      |                                                                                          |                |
|      |                                                                                          |                |
|      |                                                                                          |                |
|      | [3]                                                                                      |                |
|      | [Total: 7]                                                                               |                |
|      |                                                                                          |                |
|      |                                                                                          |                |
|      |                                                                                          |                |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.