Problemy do przemyślenia

Spis ma na celu zainspirowanie do samodzielnych badań poprzez sformułowanie kilku elementarnych problemów, które mogą okazać się ciekawe i o których można zapewne powiedzieć wiele ciekawego bez uciekania się do stosowania głębokiej teorii.

$1 - n^2 - n$, czyli o permutacjach z małą liczbą punktów stałych

Ustalmy n naturalne. Nieporządkami nazwijmy permutacje, które nie mają punktów stałych, czyli takie σ , że dla każdego x jest $\sigma(x) \neq x$. Czy istnieje podgrupa S_n złożona z samych nieporządków i permutacji identycznościowej? Tak, wystarczy wziąć pod uwagę wszystkie potęgi ustalonej permutacji cyklicznej, np. σ takiego, że $\sigma(i) = i + 1$ dla i od 1 do (n-1) oraz $\sigma(n) = 1$. Otrzymamy n-elementową podgrupę S_n o szukanej własności i łatwo wykazać, że na większą nie możemy liczyć.

Pytanie 1. Jak wyglądają n-elementowe podgrupy S_n złożone z nieporządków i identyczności? W szczególności, ile ich jest?

Rozważmy teraz takie permutacje, które albo są identycznością, albo mają co najwyżej jeden punkt stały. Nazwijmy je 2-nieporządkami i ogólniej nazwijmy k-nieporządkami takie permutacje, które albo są identycznością, albo mają mniej niż k punktów stałych. Możemy łatwo pokazać, że podgrupa S_n złożona z 2-nieporządków (k-nieporządków) ma nie więcej niż $n^2 - n$ (ogólniej n(n-1)...(n-k+1)) elementów. Tutaj jednak zadanie konstrukcji takiej podgrupy maksymalnego rozmiaru nie wydaje się już tak proste.

Pytanie 2. Dla jakich n istnieje w S_n podgrupa złożona z 2-nieporządków rozmiaru n^2-n ? Jaki jest maksymalny rozmiar takiej podgrupy dla pozostałych n?

Łatwo pokazać, że n będące potęgami liczb pierwszych spełniają ten warunek, bo istnieje wówczas ciało n elementowe, które pozwala na pewną prostą konstrukcję. Pozostaje jednak wciąż pytanie o to, jak wszystkie takie grupy wyglądają. Zaś w przypadku k-nieporządków dla $k \geqslant 3$ autor opracowania nie wie jeszcze niczego.

Pytanie 3. Dla jakich n istnieje w S_n podgrupa złożona z k-nieporządków rozmiaru n(n-1)...(n-k+1)? Jaki jest maksymalny rozmiar takiej podgrupy dla pozostałych n? Jaka jest struktura takiej podgrupy? Ile ich jest?

2-f(f(x)), czyli o składaniu wielomianu ze sobą

Pytanie 4. Załóżmy, że mamy dany wielomian $p(x) \in \mathbb{R}[x]$. Jak rozpoznać, czy jest postaci f(f(x)) dla pewnego $f \in \mathbb{R}[x]$? Jak znaleźć f? Na ile f jest jednoznacznie wyznaczone?

Pytanie można też zadać np. dla wielomianów o współczynnikach całkowitych, bądź zespolonych. Interesujące może być już podanie efektywnego algorytmu, który by badał sformułowaną własność. Z podzielności f(x) - x|f(f(x)) - x widać, że w pewnym sensie f(x) - x można odnaleźć jako dzielnik f(f(x)) - x, zaś zróżniczkowanie obustronne p(x) = f(f(x)) pozwala otrzymać f'(x) jako dzielnik p'(x), więc być może jest od czego zacząć poszukiwania.

Można też zapytać o złożenie wielomianu ze sobą więcej niż 1 raz, np. o rozwiązanie równania p(x) = f(f(f(x))) z danym p.

Pytanie 5. Załóżmy, że p(x) = f(f(f..(x))) dla pewnej liczby złożeń f. Co możemy powiedzieć, mając dane p, o liczbie złożeń?

3 Każda funkcja to wielomian

Dla liczby pierwszej p łatwo sprawdzić, że każda funkcja $f: \mathbb{Z}_p \to \mathbb{Z}_p$ daje się zapisać jednoznacznie w postaci funkcji wielomianowej (o współczynnikach \mathbb{Z}_p) stopnia co najwyżej p-1 (analogicznie w innych ciałach skończonych).

Pytanie 6. Jak rozpoznać, czy dany wielomian $\in \mathbb{Z}_p[x]$ stopnia $\leqslant p-1$ zadaje funkcję różnowartościową/bijekcję?

Ogólniej, jako funkcje wielomianowe można też zapisać każdą funkcję wielu zmiennych $f: (\mathbb{Z}_p)^n \to \mathbb{Z}_p$, więc postawione wyżej pytanie można uogólnić na wielomiany wielu zmiennych.

Patrzenie na funkcje jako na funkcje wielomianowe prowadzi np. do ciekawej metody rozwiązywania równań funkcyjnych w \mathbb{Z}_p (i innych ciałach skończonych), takich jak f(x)f(y) = f(xy), czy f(x+y) = f(x) + f(y).

4 Wielomiany testujące postać reszty modulo p

Przypomnijmy sobie pewne ciekawe kryterium orzekające, czy dana reszta jest resztą kwadratową:

Twierdzenie 1. Dla nieparzystej liczby pierwszej p, a jest resztą kwadratową modulo p wtedy i tylko wtedy, $gdy \ p|a^{\frac{p-1}{2}} - 1$.

Testujemy tutaj, czy reszta a (modulo p) jest postaci $W(b) = b^2$ dla pewnego b i jednocześnie niezerowa. Po uwzględnieniu przypadku zerowego i zapisaniu wielomianu $S_p(x) = x^{\frac{p+1}{2}} - x$ dostajemy kryterium mówiące, że a jest postaci W(b) dla jakiegoś b,

wtedy i tylko wtedy, gdy $S_p(a) = 0$. S_p nazwiemy tutaj wielomianem testującym dla W modulo p.

Ogólniej, niech W(x) będzie pewnym wielomianem o współczynnikach całkowitych. Dla każdej liczby pierwszej p, możemy popatrzeć na jego współczynniki/argumenty/wartości modulo p i uzyskać wielomian o współczynnikach z \mathbb{Z}_p określony jako $T_p(x) = (x - W(0))(x - W(1)) \cdots (x - W(p-1))$. Ów wielomian ma tę prostą własność, że a jest postaci W(b) dla pewnego b (modulo p) wtedy i tylko wtedy, gdy $T_p(a) = 0$ (modulo p). W przypadku $W(x) = x^2$ otrzymamy dla prawie wszystkich p wielomian mający niewiele niezerowych współczynników (będzie to z grubsza kwadrat wielomianu $S_p(x)$ zdefiniowanego wcześniej).

Pytanie 7. Czy dla każdego ustalonego W(x) istnieje taka liczba N, że dla dowolnej liczby pierwszej p, $T_p(x)$ ma co najwyżej N niezerowych współczynników? A może chociaż da się podać jakieś nietrywialne ograniczenie na liczbę niezerowych współczynników zależne od p?

Odpowiedź na pierwsze pytanie okazuje się być twierdząca dla wielomianów postaci $W(x) = x^k$.