Let's define a function, f, on a string, p, of length l as follows:

$$f(p)=(p_1\cdot a^{l-1}+p_2\cdot a^{l-2}+\cdots+p_l\cdot a^0) mod m$$

where p_i denotes the ASCII value of the i^{th} character in string p, a=100001, and $m=10^9+7$.

Nikita has a string, ${\pmb s}$, consisting of ${\pmb n}$ lowercase letters that she wants to perform ${\pmb q}$ queries on. Each query consists of an integer, k, and you have to find the value of $f(w_k)$ where w_k is the k^{th} alphabetically smallest palindromic substring of s. If w_k doesn't exist, print -1 instead.

Input Format

The first line contains 2 space-separated integers describing the respective values of n (the length of string \boldsymbol{s}) and \boldsymbol{q} (the number of queries).

The second line contains a single string denoting \boldsymbol{s} .

Each of the q subsequent lines contains a single integer denoting the value of k for a query.

Constraints

- $1 \le n, q \le 10^5$
- $1 \le k \le \frac{n \cdot (n+1)}{2}$ It is guaranteed that string s consists of lowercase English alphabetic letters only (i.e., a to z).
- $a = 10^5 + 1$
- $m=10^9+7$.

Scoring

- $1 \leq n,q \leq 10^3$ for 25% of the test cases.
- $1 \le n,q \le 10^5$ for 100% of the test cases.

Output Format

For each query, print the value of function $f(w_k)$ where w_k is the k^{th} alphabetically smallest palindromic substring of s; if w_k doesn't exist, print -1 instead.

Sample Input

```
5 7
abcba
2
3
4
6
7
```

Sample Output

```
696207567
29493435
- 1
```

Explanation

There are 7 palindromic substrings of "abcba". Let's list them in lexicographical order and find value

1.
$$w_1 =$$
"a", $f(w_1) = 97$

- 2. $w_2 =$ "a", $f(w_2) = 97$
- 3. $w_3 = \text{"abcba"}, f(w_3) = 696207567$
- 4. $w_4 = "b"$, $f(w_4) = 98$
- 5. $w_5 = "b", f(w_5) = 98$
- 6. $w_6 = "bcb" / f(w_6) = 29493435$
- 7. $w_7 = \text{"c"}, f(w_7) = 99$
- 8. $w_8 = \text{doesn't exist, so we print } -1 \text{ for } k = 8.$