

Raport stiintific

de cercetare-dezvoltare in cadrul Cloudifier SRL Nr. 112/9.12.2016

	Platforma de migrare automatizată în cloud a aplicațiilor și
Nume proiect	sistemelor informatice clasice cloudifier.net
	Sistemetor informatice crasice croudiner.net
Beneficiar	CLOUDIFIER SRL
Cod MySMIS	104349
Nr. iregistrare	P_38_543
Discoulation Description	Andrei Ionut DAMIAN
Director Proiect	Andrei Ionut Daiviian
Activitate conform	1. Activități de cercetare-dezvoltare (cercetare industrială și/sau
	dezvoltare experimentală) - 1.1 State-of-the-art
planului de proiect	
Luna	decembrie 2016
Eshina da	
Echipa de	Andrei Ionut DAMIAN
cercetare-	Octavian BULIE
dezvoltare	
	In decursul acestei luni a fost continuat procesul de analiza a
	stadiului curent al tehnologiei in domeniul sistemelor de tip
	Machine Learning cu accent pe zona de Deep Learning si in
Descrierea	particular a sistemelor de analiza si recunoastere bazata pe
activitatilor	inteligenta artificiala a imaginilor.
desfasurate	
activitatii	In decursul acestei luni analiza stadiului curent al cercetarii fost
	fost axat in principal pe lucrarea stiintifica publicata recent de J.
	Long et al "Fully Convolutional Networks for Semantic
	Segmentation", lucrare considerata actualmente state-of-the-art
	beginemation, fuerare considerata actualmente state-of-the-art

in ceea priveste metodele de recunoastere si segmentare a componentelor in cadrul imaginilor. Pentru referinta prezentam anexat un scurt rezumat in limba engleza a lucrarii de referinta.

Principalele puncte pe care le urmarim in cercetare sunt urmatoarele:

- 1. Determinarea metodelor optime bazate pe Deep
 Learning pentru recunoasterea si segmentarea
 (identificarea locatiei spatiale) a elementelor de interfata
 grafica pe care Cloudifier.NET va trebuie sa le
 translateze automatizat din aplicatiile legacy in
 aplicatiile din mediul cloud computing.
- 2. Aplicarea de metode simple bazate pe algoritmi de machine learning superficiali (regresie logistica, arbori de decizie, clasificare naiva bazata pe teorema lui Bayes, clusterizare cu analiza distantelor euclidiene) precum si metode de segmentare iterativa a imaginilor analizate cum ar fi metoda ferestrelor deplasate continuu ("ferestre alunecatoare" sau sliding-windows algorithm)

Perioada	Efort in ore-om	Descriere
01.12.2016- 09.12.2016	96	Continuarea analizei metodelor de recunoastere a imaginilor prin CNN (Convolutional Deep Neural Networks)
12.12.2016- 31.12.2016	224 ore planificate	PLANIFICARE: Realizarea model arhitectural Alpha ce urmeaza a fi definitivat in cadrul activitatii 1.2 de cercetare. Sistemul/model arhitectural Alpha va consta in construirea

Perioada	Efort in ore-om	Descriere
		unui model matematic predictiv care sa poate recunoaste elemente simple de interfata grafica de utilizator (meniu,
		buton, etc) si sa poata reda locatia si 1-2 alte atribute de baza
		ale acestora

Director Proiect

Andrei Ionut DAMIAN

ANEXA 1

Fully Convolutional Networks for Semantic Segmentation

Evan Shelhamer, Jonathan Long, Trevor Darrell (Submitted on 20 May 2016)

Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves improved segmentation of PASCAL VOC (30% relative improvement to 67.2% mean IU on 2012), NYUDv2, SIFT Flow, and PASCAL-Context, while inference takes one tenth of a second for a typical image.

Comments: to appear in PAMI (accepted May, 2016); journal edition of arXiv:1411.4038

Subjects: Computer Vision and Pattern Recognition (cs.CV)

Cite as: arXiv:1605.06211 [cs.CV]