MA679 Lab3: More on Bootstrap

Why bootstrap?

Bootstrap allows estimation of the sampling distribution of **almost any statistic** using resampling technique.

Applications

standard error

On each of B bootstrap replicates:

- Resample X_i , i = 1, ..., n with replacement from $X_1, ..., X_n$
- Compute the statistic of interest

• confidence interval

Implementation in R: boot.ci()

- *t**: bootstrap estimate
- t_0 : estimate of the statistic using the original full dataset
- se*: standard error of bootstrap estimate
- b: bias, $b = t^* t_0$
- α : level of significance
- z_{α} : 1- α quantile of the standard normal distribution
- θ_{α} : α^{th} percentile of distribution of bootstrap realizations

Percentile CI

$$(\theta_{(1-\alpha)/2}, \theta_{1-(1-\alpha)/2})$$

Normal CI

$$(t_0-b-z_{\alpha/2}\cdot se^*,t_0-b+z_{\alpha/2}\cdot se^*)$$

Basic CI

$$(2t_0-\theta_{1-\frac{1-\alpha}{2}},2t_0-\theta_{\frac{1-\alpha}{2}})$$

• Regression: resampling residuals

- 1. Fit the model, obtain fitted values \hat{y}_i and residuals $\hat{\epsilon}_i = y_i \hat{y}_i$, i = 1, ..., n
- 2. On each of B bootstrap replicates:
 - a. Resample $\widehat{\epsilon_i}^*$, $i=1,\ldots,n$ with replacement from $\widehat{\epsilon_1},\ldots,\widehat{\epsilon_n}$
 - b. Create synthetic response variable $y_i^* = y_i + \widehat{\epsilon_i}^*$, i = 1, ..., n
 - c. Refit the model on (x_i, y_i^*) , i = 1, ..., n
 - d. Retain the statistic or quantity of interest