Chapter 2:

뉴턴의 운동 제1법칙 — 관성

Newton's First Law of Motion—Inertia

순서

- ▶ 운동에 대한 아리스토텔레스의 견해
- ▶ 갈릴레오의 관성 개념
- ▶ 뉴턴의 운동 제1법칙
- ▶ 알짜힘과 벡터
- ▶ 평형규칙
- ▶ 지지력
- ▶ 움직이는 물체의 평형
- ▶ 움직이는 지구

운동에 대한 아리스토텔레스의 견해

아리스토텔레스의 운동에 대한 분류

- ▶ 자연적인 운동
 - 우주의 모든 물체는 본래의 고유한 장소에 있으며, 그 장소는 흙, 물, 공기, 불의 4원소의 조합에 의해 결정된다.
 - 그 고유한 장소에 있지 않은 물체는 그 장소에 도달하기 위해 움직인다.
 - 예:
 - 돌이 떨어지는 것.
 - 연기를 내뿜으면 위로 올라가는 것.

운동에 대한 아리스토텔레스의 견해

- ▶ 자연적인 운동 (계속)
 - 지상 위의 모든 것은 직선으로 올라가거나 내려간다.
 - 지구 밖에서는 원운동을 한다. (천상계에서의 운동)
 - 예: 태양과 달은 지구 주위를 계속해서 원운동을 한다.
- ▶ 강제적인 운동
 - 외부에서 물체를 밀거나 끌 때 생긴다.
 - 예: 바람에 의해 배가 움직인다.

갈릴레이의 관성의 개념

1500년대에 갈릴레오는 아리스토텔레스의 주장이 틀렸다는 것을 보였다.

갈릴레이의 발견:

- 공기 저항의 효과를 제외한다면 무게 가 다른 물체들을 동시에 떨어뜨리면 동시에 지면에 떨어짐 (자유낙하)
- 마찰이 없고 어떠한 힘도 작용하지 않을 때 움직이는 물체는 계속해서 움직인다.
 ···→ 관성

갈릴레이의 관성의 개념

- ▶ 힘 (force)
 - 밀거나 당기는 것
- ▶ 관성 (inertia)
 - 운동의 변화에 저항하는 물체의 성질
 - 물체에 있는 물질의 양, 즉 **질량**(mass)에 의존

갈릴레오의 관성의 개념

- ▶ 경사면을 굴러 내려가는 공은 속력이 증가
- ▶ 경사면을 올라가는 공은 속력이 감소
- 그래서 수평면에 있는 공은 영원히 그 속력을 유지한다
- 공이 정지한다면, 그것은 "본성"때문이 아니라 마찰에 의한 것이다.

위로 기울이면 속력이 감소

기울이지 않으면 속력이 변하는가?

갈릴레오의 관성의 개념 확인문제

갈릴레오의 경사면 실험과 관련이 있는 것은?

- A. 자유낙하 가속도를 제거할 수 있다.
- B. 에너지 개념을 발견하였다.
- C. 관성이라고 불리는 성질을 발견하였다.
- D. 운동량의 개념을 발견하였다.

갈릴레오의 관성의 개념 확인문제

갈릴레오의 경사면 실험과 관련이 있는 것은?

- A. 자유낙하 가속도를 제거할 수 있다.
- B. 에너지 개념을 발견하였다.
- C. 관성이라고 불리는 성질을 발견하였다.
- D. 운동량의 개념을 발견하였다.

참고:

관성은 물질의 특성이며, 물질의 행동에 대한 이유가 아니다.

뉴턴의 운동 제1법칙

알짜힘이 작용하지 않으면 정지해 있는 물체는 계속해서 정지해 있고, 운동하는 물체는 직선으로 등속 운동을 한다.

알짜힘과 벡터

벡터양

- ▶ 크기와 방향을 갖는 물리량
- ▶ 벡터라고 하는 축척으로 그려진 화살표로 나타낼 수 있음
 - 화살표의 길이는 벡터양의 크기를, 방향은 벡터양의 방향을 표시
 - 예: 힘, 속도, 가속도 등

알짜힘과 벡터

- ▶ 알짜힘 (net force): 한 물체에 작용한 모든 힘의 합
 - 예:

쇼핑카트를 한 명은 오른쪽으로 15 N의 힘으로 다른 한 명은 왼쪽으로 20 N의 힘으로 민다. 쇼핑카트에 작용한 알짜힘은?

- A. 왼쪽으로 5 N.
- B. 오른쪽으로 5 N.
- C. 왼쪽으로 25 N.
- D. 오른쪽으로 25 N.

쇼핑카트를 한 명은 오른쪽으로 15 N의 힘으로 다른 한 명은 왼쪽으로 20 N의 힘으로 민다. 쇼핑카트에 작용한 알짜힘은?

- A. 왼쪽으로 5 N.
- B. 오른쪽으로 5 N.
- C. 왼쪽으로 25 N.
- D. 오른쪽으로 25 N.

상자에 작용하는 알짜힘은?

- A. 왼쪽으로 15 N
- B. 오른쪽으로 15 N
- C. 왼쪽으로 5 N
- D. 오른쪽으로 5 N

상자에 작용하는 알짜힘은?

- A. 왼쪽으로 15 N
- B. 오른쪽으로 15 N
- C. 왼쪽으로 5 N
- D. 오른쪽으로 5 N

벡터

▶벡터양 (vector)

- 크기와 방향을 가짐
- 화살표로 표시
- 예: 속도, 힘, 가속도 등

▶스칼라양 (scalar)

- 크기만을 가짐
- 예: 질량, 부피, 속력 등

벡터

합벡터

- ▶ 둘 또는 그 이상의 벡터들의 합
 - 같은 방향의 벡터는 산술적으로 더한다.
 - 반대 방향의 벡터는 산술적으로 빼준다.
 - 서로 어떤 각도를 이루고 있는 두 벡터의 경우는 평행사변형 규칙을 사용

- 서로 직각인 두 벡터 → 직사각형
 - 피타고라스 정리 이용: $R^2 = V^2 + H^2$.

벡터 확인문제

그림에 대해 맞는 설명은?

- A. 50 N은 30 N 벡터와 40 N 벡터의 벡터합이다
- B. 30 N 벡터는 50 N 벡터의 한 성분으로 생각될 수 있다.
- C. 40 N 벡터는 50 N 벡터의 한 성분으로 생각될 수 있다.
- D. 위 모두 맞는 설명이다.

벡터 확인문제

그림에 대해 맞는 설명은?

- A. 50 N은 30 N 벡터와 40 N 벡터의 벡터합이다
- B. 30 N 벡터는 50 N 벡터의 한 성분으로 생각될 수 있다.
- C. 40 N 벡터는 50 N 벡터의 한 성분으로 생각될 수 있다.
- D. 위 모두 맞는 설명이다.

벡터

그림과 같이 넬리 뉴턴이 줄에 매달려 있다.

- ▶ 어느 줄의 장력이 더 큰가?
- ▶ 넬리에게 작용하는 힘에는 세 힘이 있다.
 - 무게, mg
 - 왼쪽 줄의 장력
 - 오른쪽 줄의 장력

벡터

- (a) 수직하향 벡터는 넬리의 몸무게를 나타낸다. 점선으로 표시한 벡터는 평형을 유지하는 데 필요한 크기가 같고 방향이 반대인 벡터이다.
- (b)점선 벡터는 점으로 표시된 평행사변형의 대각선이다.
- (c) 대각선 벡터는 두 줄 방향의 벡터로 분해된다. 오른쪽 줄에 걸린 장력이 왼쪽보다 더 크다.

평형규칙: 예

밀가루 봉지를 저울에 매달 때

- ▶ 두 힘이 밀가루 봉지에 작용:
 - 위쪽을 향한 끈의 장력
 - 아래쪽을 향한 중력
- ▶ 두 힘은 크기는 같고 방향은 반대
 - 더하면 상쇄되어 힘이 0이 됨
 - 따라서 밀가루 봉지는 정지해 있음

평형규칙

- ▶ 가속하지 않는 물체에 작용하는 힘의 벡터합은 0과 같다.
- ightharpoonup 수학기호: $\Sigma F = 0$.

위쪽을 향한 벡터들의 합은 아래쪽을 향한 벡터들의 합과 같으므로 $\sum F = 0$ 이고 받침대는 평형상태에 있다.

평형규칙 확인문제

평형규칙, $\Sigma F = 0$ 이 적용되는 것은?

- A. 벡터양
- B. 스칼라양
- C. 위 모두
- D. 위의 어떤 것도 아님

평형규칙 확인문제

평형규칙, $\Sigma F = 0$ 이 적용되는 것은?

A. 벡터양

- B. 스칼라양
- C. 위 모두
- D. 위의 어떤 것도 아님

설명: 벡터합은 +와 -를 고려한다. 그래서 반대 방향의 두 벡터의 합은 0이 될 수 있다.

지지력

- 지지력(수직항력): 중력과 반대방향인 위로 어떤 표면이 물체에 작용하는 힘
- 예: 책상 위의 책은 책상의 원자를 누르고, 눌린 원자는 지지력을 만든다.

지지력 이해하기

- ▶ 용수철을 누를 때, 용수철이 손을 위쪽으로 밀어올린다.
- 책이 아래쪽으로 작용하는 중력과 같은 크기의 힘으로 책상이 위쪽 으로 밀어올린다.

지지력(수직항력) 확인문제

두 용수철 저울에 몸무게가 동등하게 나누어지도록 두 저울 위에 섰다. 두 저울 이 가리키는 눈금은 어떻게 되는가?

- A. 몸무게.
- B. 몸무게의 반.
- **C.** 0.
- D. 몸무게보다 더 많이

지지력(수직항력) 확인문제

두 용수철 저울에 몸무게가 동등하게 나누어지도록 두 저울 위에 섰다. 두 저울 이 가리키는 눈금은 어떻게 되는가?

- A. 몸무게.
- B. 몸무게의 반.
- **C**. 0.
- D. 몸무게보다 더 많이

설명:

- ▶ 정지해 있으므로, $\Sigma F = 0$.
- ▶ 두 저울눈금의 합은 마룻바닥의 지지력과 같으며 사람의 몸무게와 같아야 함
- ▶ 두 저울의 눈금은 몸무게의 반

움직이는 물체의 평형

- ▶ 평형: 알짜힘이 없어서 변형이 없는 상태
 - 정적평형
 - 예: 미끄러운 얼음 위에 있는 하키 퍽
 - 동적평형
 - 예: 미끄러운 얼음 위에서 일정한 속력으로 미끄러지는 하키 퍽

움직이는 물체의 평형

- ▶ 평형 테스트: 움직임이 변화하는지 여부
 - 예: 정지해 있는 상자는 정적 평형상태에 있다.
 (움직임에 변화 없음)
 - 예: 일정한 속도로 밀었을 때, 상자는 동적 평형상태에 있게 됨 (움직임에 변화 없음)

볼링 공이 평형상태에 있는 경우는?

- A. 정지해 있을 때.
- B. 직선 경로로 꾸준히 움직일 때
- C. 위 두 경우 모두
- D. 위의 두 경우 모두 아님

볼링 공이 평형상태에 있는 경우는?

- A. 정지해 있을 때.
- B. 직선 경로로 꾸준히 움직일 때
- C. 위 두 경우 모두
- D. 위의 두 경우 모두 아님

설명:

평형상태는 운동상태가 변하지 않는 것을 의미한다:

- ▶ 정지해 있다면 계속해서 정지해 있다.
- 움직인다면 계속해서 직선으로 일정한 속력으로 계속해서 움직인다.

직선 방향으로 일정한 속력으로 상자를 민다. 마찰력이 75 N이라면 미는 힘은 얼마인가?

- A. 75 N보다 크다.
- B. 75 N보다 작다.
- C. 75 N이다.
- D. 정보가 충분하지 않다.

직선 방향으로 일정한 속력으로 상자를 민다. 마찰력이 75 N이라면 미는 힘은 얼마인가?

- A. 75 N보다 크다.
- B. 75 N보다 작다.
- C. 75 N이다.
- D. 정보가 충분하지 않다.

설명:

상자는 동적평형상태에 있다, 즉, $\Sigma F = 0$. 작용력은 마찰력과 균형을 이룬다.

움직이는 지구

16세기에 코페르니쿠스는 태양 주위를 지구 가 원궤도를 그리며 움직이고 있을 것이라고 제안했다.

- 사람들은 이 제안에 대해 토론과 논쟁을 많이 하였다.
- 예: 지구가 움직인다면(30 km/s) 어떻게 새가 나무 꼭대기에서 아래로 날아와 벌레 를 잡을 수 있는가?
- 해결: 관성에 의해 모든 것이 같은 속도로 옆으로 움직이는데, 이는 날아 내려오는 새에게도 적용된다.

움직이는 지구 확인문제

일정한 속력으로 움직이는 차에 타고 있고, 동전을 똑바로 위로 던져 올린다. 그러면 동전은 어디에 떨어질까?

- A. 여러분 뒤
- B. 여러분 앞
- C. 여러분 손에
- D. 정보가 충분하지 않다.

움직이는 지구 확인문제

일정한 속력으로 움직이는 차에 타고 있고, 동전을 똑바로 위로 던 져 올린다. 그러면 동전은 어디에 떨어질까?

- A. 여러분 뒤
- B. 여러분 앞
- C. 여러분 손에
- D. 정보가 충분하지 않다.

설명:

관성 때문에 동전은 여러분과 함께 움직인다. 동전을 튕기면 정지해 있을 때처럼 움직인다.

"본 강의 동영상 및 자료는 대한민국 저작권법을 준수합니다. 본 강의 동영상 및 자료는 상명대학교 재학생들의 수업목적으로 제작·배포되는 것이므로, 수업목적으로 내려받은 강의 동영상 및 자료는 수업목적 이외에 다른 용도로 사용할 수 없으며, 다른 장소 및 타인에게 복제, 전송하여 공유할 수 없습니다. 이를 위반해서 발생하는 모든 법적 책임은 행위주체인 본인에게 있습니다."