Hurtownie danych - Spr. 2.

PWr. WIZ, Data: 14-15.03.2022

Student		Ocena
Indeks	<u>256305</u>	
Imię	Grzegorz	
Nazwisko	<u>Dzikowski</u>	

Zestaw składa się z 4 zadań. Jeżeli nie potrafisz rozwiązać zadania, to próbuj podać, chociaż częściowe rozwiązanie lub uzasadnienie przyczyny braku rozwiązania. Pamiętaj o podaniu nr. indeksu oraz imienia i nazwiska.

Baza danych: AdventureWorks

Zad. 1.

Źródło danych: SalesOrderHeader Zdefiniować następujące zapytania:

- 1.1 Wyznaczyć lata, w których zostały zarejestrowane zamówienia w bazie danych
- 1.2 Utworzyć wykaz zamówień złożonych w pierwszym roku rejestracji zamówień (Identyfikator, Rok, Kwota zamówienia)
- 1.3 Utworzyć wykaz zamówień złożonych w maju w poszczególnych latach (Rok, mc, Identyfikator, Kwota zamówienia)

1.1

Rozwiązanie:

USE AdventureWorks2019;

SELECT YEAR(OrderDate) as Lata FROM Sales.SalesOrderHeader GROUP BY YEAR(OrderDate) ORDER BY Lata;

Lata		
2011		
2012		
2013		
2014		

Rekordów: 5/5

```
1.2. Zapytanie SQL + fragment wyniku (4 rekordy z ?)

Rozwiązanie:

USE AdventureWorks2019;

SELECT

SalesOrderID as Identyfikator,

YEAR(OrderDate) as Rok,

SubTotal as [Kwota zamówienia]

FROM Sales.SalesOrderHeader

WHERE YEAR(OrderDate) =

(

SELECT TOP(1) YEAR(OrderDate) as Lata

FROM Sales.SalesOrderHeader

GROUP BY YEAR(OrderDate)

ORDER BY Lata
)
```

Identyfikator	Rok	Kwota zamówienia
43659	2011	20565,6206
43660	2011	1294,2529
43661	2011	32726,4786
43662	2011	28832,5289

Rek.: 4/1607

1.3. Zapytanie SQL + fragment wyniku (4 rekordy z ?)

Rozwiązanie:

USE AdventureWorks2019;

SELECT

YEAR(OrderDate) as Rok, MONTH(OrderDate) as Miesąc, SalesOrderID as Identyfikator, SubTotal as [Kwota zamówienia] FROM Sales.SalesOrderHeader WHERE MONTH(OrderDate) = 5

ORDER BY Rok;

Rok	Miesąc	Identyfikator	Kwota zamówienia
2011	5	43659	20565,6206
2011	5	43660	1294,2529
2011	5	43661	32726,4786
2011	5	43662	28832,5289

Rek.: 4/3175

Zad 2.

2.1. Utworzyć wykaz klientów, którzy mają więcej niż 25 zamówień (wykorzystać CTE). Przykładowy wynik zapytania przedstawiony jest poniżej w tabeli 2.1.:

Rozwiązanie:

```
USE AdventureWorks2019;
WITH Sales WD (CustomerID, PersonID, SalesID, FullName) AS
       SELECT Sales. Sales Order Header. Customer ID, Sales. Customer. PersonID,
Sales.SalesOrderHeader.SalesOrderID, CONCAT_WS('', Person.FirstName, Person.LastName) as
[Imie i Nazwisko]
       FROM ((Sales.SalesOrderHeader
             JOIN Sales.Customer ON Sales.Customer.CustomerID =
Sales.SalesOrderHeader.CustomerID)
             JOIN Person.Person ON Person.Person.BusinessEntityID = Sales.Customer.PersonID)
)
SELECT
       CustomerID AS KlientID,
       FullName AS [Imie i nazwisko],
       COUNT(SalesID) AS [Liczba zamówień]
FROM Sales WD
GROUP BY CustomerID, FullName
HAVING COUNT(SalesID) > 25
ORDER BY KlientID;
```

KlientID	Imie i nazwisko	Liczba zamówień
11091	Dalton Perez	28
11176	Mason Roberts	28
11185	Ashley Henderson	27
11200	Jason Griffin	27

Rek: 4/13

2.2. Ustalić, jakie czynniki mają wpływ na liczbę dokonanych zakupów. Przykładowy wynik zapytania przedstawiony jest poniżej w tabeli 2.2.

Źródło danych: SalesOrderHeaderSalesReason,?

Rozwiązanie:

USE AdventureWorks2019;

WITH SalesReason (OrderID, SalesReason) AS (

SELECT Sales.SalesOrderHeader.SalesOrderID, Sales.SalesReason.[Name]

FROM Sales.SalesOrderHeader

RIGHT JOIN Sales.SalesOrderHeaderSalesReason ON

Sales.SalesOrderHeaderSalesReason.SalesOrderID = Sales.SalesOrderHeader.SalesOrderID

RIGHT JOIN Sales.SalesReason ON

SALES.SalesOrderHeaderSalesReason.SalesReasonID = Sales.SalesReason.SalesReasonID)

SELECT

SalesReason AS [Czynnik], COUNT(OrderID) AS Dotyczy FROM SalesReason GROUP BY SalesReason ORDER BY Dotyczy DESC

Czynnik	Dotyczy	
Price	17473	
On Promotion	3515	
Manufacturer	1746	
Quality	1551	

Rek.: 4/10Dotycz

TABLEU

Zad. 3. Zdefiniować zapytanie wyznaczające sprzedaż zrealizowaną przez pracowników poszczególnym klientom w latach zarejestrowanych w bazie danych.

```
Rozwiązanie:
 1.1 Zapytanie SQL + fragment wyniku (4 rekordy z ?)
USE AdventureWorks2019;
SELECT
       SalesPersonID,
       CustomerID,
       IIF([2011] is NULL, 'brak', str([2011])) as [2011],
       IIF([2012] is NULL, 'brak', str([2012])) as [2012],
       IIF([2013] is NULL, 'brak', str([2013])) as [2013],
       IIF([2014] is NULL, 'brak', str([2014])) as [2014]
FROM
(
       SELECT CustomerID, SalesPersonID, SubTotal, YEAR(OrderDate) AS Rok
               FROM Sales.SalesOrderHeader
               WHERE SalesPersonID is not NULL
) AS src
PIVOT (
       SUM(SubTotal)
       FOR ROK IN ([2011], [2012], [2013], [2014])
) AS PivotResult;
```

SalesPersonID	CustomerID	2011	2012	2013	2014
274	29491	brak	33407	brak	brak
274	29493	2147	brak	brak	brak
274	29514	brak	brak	3405	brak
274	29523	brak	brak	brak	34349

Rek.: 4/860

1.2 Tableau – ten sam rezultat w formie graficznej

Fragment ~40 z 860 rekordów

Zad. 4.

Należy utworzyć tabelę przestawną prezentującą:

- Średnią roczną kwotę zakupów dokonanych przez klientów w latach 2013-2014 wykorzystując operator PIVOT
- 2. Średnią roczną kwotę zakupów dokonanych przez klientów w latach 2013-2014 bez operatora PIVOT

Rozwiązanie:

```
SELECT * FROM
(

SELECT * FROM CustomerTable
) AS CustTable
PIVOT(

AVG(SubTotal)

FOR YearDate in ([2013], [2014])
) AS pvt_source;
```

Name	CustomerID	2013	2014
Abel, Catherine	29485	28773,4492	27670,884
Abercrombie, Kim	29486	37776,8087	26765,9613
Acevedo, Humberto	29487	2461,7418	465,15
Achong, Gustavo	29484	30937,9131	NULL

Rek: 4/19119

ORDER BY [Name];

```
4.2. Zapytanie SQL + fragment wyniku (4 rekordy z ?) USE AdventureWorks2019;
```

```
WITH AVG YEAR ([Name], CustomerID, Rok, Average)
AS
(
      SELECT CONCAT WS(', ', LastName, FirstName) as [Name], customer.CustomerID,
YEAR([OrderDate]), AVG(SubTotal)
             FROM Sales.Customer customer
             JOIN Sales.SalesOrderHeader header ON customer.CustomerID=header.CustomerID
             JOIN Person.Person person ON customer.PersonID=person.BusinessEntityID
      GROUP BY customer.CustomerID, YEAR([OrderDate]), FirstName, LastName
)
SELECT [Name], CustomerID,
      SUM(CASE
             WHEN ROK = 2013 THEN Average
             ELSE NULL
      END) as [2013],
      SUM(CASE
             WHEN ROK = 2014 THEN Average
             ELSE NULL
      END) as [2014]
FROM AVG YEAR
GROUP BY [Name], CustomerID
```

Name	CustomerID	2013	2014
Abel, Catherine	29485	28773,4492	27670,884
Abercrombie, Kim	29486	37776,8087	26765,9613
Acevedo, Humberto	29487	2461,7418	465,15
Achong, Gustavo	29484	30937,9131	NULL

Rek: 4/19119

Wnioski:

Tablau pozwala w bardzo prosty sposób wizualizować dane w bazie danych, co ułatwia ich pokazywanie w np. raportach

Użycie funkcji Pivot w zadaniu 4 dużo ułatwia realizację prezentacji danych, które normalnie byłyby jako kolejne wpisy w bazie danych. Było to dla mnie coś nowego, ponieważ nigdy wcześniej z funkcji pivot nie korzystałem.

With... as ułatwia tworzenie kwerend, dzięki czemu zamiast ogromnych tasiemców można rozdzielić prezentację danych od ich pobierania. Dzięki temu łatwiej debugować i analizować kwerendy.

Podsumowując, kwerendami można w bardzo prostu i przejrzysty sposób generować raporty i wizualizować dane. A wspomagając się Tablau można w bardzo dobry sposób wizualizować te dane.

Uwaga:

 Sprawozdanie bez wniosków końcowych nie będzie sprawdzane i tym samym ocena jest negatywna!