0.1 Introduksjon

En todimensjonal vektor angir en forflytning i et koordinatsystem med en x-akse og en y-akse. En vektor tegner vi som et linjestykke mellom to punkt, i tillegg til at vi lar en pil vise til hva som er endepunktet. Det betyr at forflytningen starter i punktet uten pil, og ender i punktet med pil.

I figur (a) er vektoren \vec{u} vist med startpunkt (0,0) og endepunkt (3,1). Når en vektor har startpunkt (0,0), sier vi at den er vist i grunnstill-ingen. I figur (b) er \vec{u} vist med startpunkt (1,-2) og endepunkt (3,1). Forflytningen \vec{u} viser til er å vandre 2 mot høgre langs x-aksen og 3 opp langs y-aksen. Dette skriver vi som $\vec{u} = [2,3]$, som kalles \vec{u} skrevet på komponentform.

Eksempel 1 $\vec{b} = [0, -2]$ $\vec{a} = [1, 3]$ $\vec{d} = [5, 0]$ $\vec{c} = [-3, -4]$ $y \\ \uparrow$ $ec{b}$ 4 3 2 1 --2-1 2 3 -34 -1-2-34 \vec{d} -5 -

0.1 Vektoren mellom to punkt

En vektor \vec{v} med startpunkt (x_1,y_1) og endepunkt (x_2,y_2) er gitt som

$$\vec{v} = [x_2 - x_1, y_2 - y_1] \tag{1}$$

Eksempel 1

Skriv vektorene på komponentform.

- \vec{a} har startpunkt (1,3) og endepunkt (7,5)
- \vec{b} har startpunkt (0,9) og endepunkt (-3,2)
- \vec{c} har startpunkt (-3,7) og endepunkt (2,-4)
- \vec{d} har startpunkt (-7, -5) og endepunkt (3, 0)

Svar

$$\vec{a} = [7 - 1, 5 - 3] = [6, 2]$$

$$\vec{b} = [-3 - 0, 2 - 9] = [-3, -7]$$

$$\vec{c} = [2 - (-3), -4 - 7] = [5, -11]$$

$$\vec{d} = [3 - (-7), 0 - (-5)] = [10, 5]$$

0.2 Regneregler

0.2 Regneregler for vektorer

Gitt vektorene $\vec{u}=[x_1,y_1]$ og $\vec{v}=[x_2,y_2]$, punktet $A=(x_0,y_0)$ og en konstant t. Da er

$$A + \vec{u} = (x_0 + x_1, y_0 + y_1) \tag{2}$$

$$\vec{u} + \vec{v} = [x_1 + x_2, y_1 + y_2] \tag{3}$$

$$\vec{u} - \vec{v} = [x_1 - x_2, y_1 - y_2] \tag{4}$$

$$t\vec{u} = [tx_1, ty_1, tz_1] \tag{5}$$

$$t(\vec{u} + \vec{v}) = t\vec{u} + t\vec{v} \tag{6}$$

Summen eller differansen av \vec{u} og \vec{v} kan vi tegne slik:

For en vektor \vec{w} har vi videre at

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$
 (7)

$$\vec{u} - (\vec{v} + \vec{w}) = \vec{u} - \vec{v} - \vec{w} \tag{8}$$

0.3 Lengden til en vektor

Gitt en vektor $\vec{v} = [x_1, y_1]$. Lengden til \vec{v} er avstanden mellom startpunktet og endepunktet.

Av enhver vektor kan vi danne en rettvinklet trekant hvor $|\vec{v}|$ er lengden til hypotenusen og x_1 og y_1 er de respektive lengdene til katetene. Dermed er $|\vec{v}|$ gitt av Pytagoras' setning.

0.3 Lengden til en vektor

Gitt en vektor $\vec{v} = [x_1, y_1]$. Lengden $|\vec{v}|$ er da

$$|\vec{v}| = \sqrt{x_1^2 + y_1^2} \tag{9}$$

Eksempel 1

Finn lengden til vektorene $\vec{a} = [7, 4]$ og $\vec{b} = [-3, 2]$.

Svar

$$|\vec{a}| = \sqrt{7^2 + 4^2} = \sqrt{65}$$

$$|\vec{b}| = \sqrt{(-3)^2 + 2^2} = \sqrt{13}$$

0.4 Skalarproduktet I

0.4 Skalarproduktet I

For to vektorer $\vec{u} = [x_1, y_1]$ og $\vec{v} = [x_2, y_2]$, er skalarproduktet gitt som

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2$$

Språkboksen

Skalarproduktet kalles også prikkproduktet eller indreproduktet.

Eksempel 1

Gitt vektorene $\vec{a}=[3,2],\, \vec{b}=[4,7]$ og $\vec{c}=[1,-9].$ Regn ut $\vec{a}\cdot\vec{b}$ og $\vec{a}\cdot\vec{c}.$

Svar

$$\vec{a} \cdot \vec{b} = 3 \cdot 4 + 2 \cdot 7 = 26$$

$$\vec{a} \cdot \vec{c} = 3 \cdot 1 + 2(-9) = -15$$

0.5 Regneregler for skalarproduktet

For vektorene $\vec{u},\,\vec{v}$ og \vec{w} har vi at

$$\vec{u} \cdot \vec{u} = \vec{u}^2 \tag{10}$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \tag{11}$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} \tag{12}$$

$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2 \tag{13}$$

Eksempel

Forkort uttrykket

$$\vec{b} \cdot (\vec{a} + \vec{c}) + \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b}^2$$

når du vet at $\vec{b} \cdot \vec{c} = 0$.

Svar

$$\begin{split} \vec{b} \cdot (\vec{a} + \vec{c}) + \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b}^2 &= \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b}^2 \\ &= \vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2 \\ &= \left(\vec{a} + \vec{b}\right)^2 \end{split}$$

0.5 Skalarproduktet II

Vinkelen mellom to vektorer er (den minste) vinkelen som blir dannet når vektorene plasseres i samme startpunkt. For to vektorer \vec{u} og \vec{v} skriver vi denne vinkelen som $\angle(\vec{u}, \vec{v})$.

I vektorregning er det vanlig å oppgi vinkler i grader, altså fra intervallet $[0^{\circ}, 180^{\circ}]$.

Gitt vektoren $\vec{u} - \vec{v}$, hvor $\vec{u} = [x_1, y_1]$ og $\vec{v} = [x_2, y_2]$. Da er

$$\vec{u} - \vec{v} = [x_1 - x_2, y_1 - y_2]$$

Av (9) har vi at

$$|\vec{u} - \vec{v}| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
(14)

$$= \sqrt{x_1^2 - 2x_1x_2 + x_2^2 + y_1^2 - 2y_1y_2 + y_2^2}$$
 (15)

Ved hjelp av (0.4) og (10) kan vi skrive (15) som

$$|\vec{u} - \vec{v}| = \sqrt{\vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2} \tag{16}$$

Videre merker vi oss følgende figur:

. Av cosinussetningen 1 og (16) er

$$|(\vec{v} - \vec{u})|^2 = |\vec{v}|^2 + |\vec{u}|^2 - 2\vec{u}||\vec{v}|\cos\angle(\vec{u}, \vec{v})$$
$$\vec{v}^2 - 2\vec{u} \cdot \vec{v} + \vec{u}^2 = \vec{v}^2 + \vec{u}^2 - 2|\vec{u}||\vec{v}|\cos\angle(\vec{u}, \vec{v})$$
$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\angle(\vec{u}, \vec{v})$$

¹Se ??

0.6 Skalarproduktet II

For to vektorer \vec{u} og \vec{v} er

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos \angle (\vec{u}, \vec{v}) \tag{17}$$

0.6 Vektorer vinkelrett på hverandre

Fra (17) kan vi gjøre en viktig observasjon; Hvis $\angle(\vec{u},\vec{v})=90^\circ$, er $\cos\angle(\vec{u},\vec{v})=0$, og da blir

$$\vec{u}\cdot\vec{v}=0$$

0.7 Vinkelrette vektorer

$$\vec{u} \cdot \vec{v} = 0 \iff \vec{u} \perp \vec{v} \tag{18}$$

Språkboksen

Det er mange måter å uttrykke at $\vec{u} \perp \vec{v}$ på. Blant annet kan vi si at

- \vec{u} og \vec{v} står vinkelrett på hverandre.
- \vec{u} og \vec{v} står normalt på hverandre.
- \vec{u} er en normalvektor til \vec{v} (og omvendt).
- \vec{u} og \vec{v} er ortogonale.

Eksempel 1

Sjekk om vektorene $\vec{a}=[5,-3],$ $\vec{b}=[6,-10]$ og $\vec{c}=[2,7]$ er ortogonale.

Svar

Vi har at

$$\vec{a} \cdot \vec{b} = 5 \cdot 6 + (-3)10$$

Altså er $\vec{a} \perp \vec{b}$. Videre er

$$\vec{a} \cdot \vec{c} = 5 \cdot 2 + (-3)7 \cdot$$

$$= 11$$

Altså er \vec{a} og \vec{c} ikke ortogonale. Da $\vec{a} \perp \vec{b}$, kan heller ikke \vec{b} og \vec{c} være ortogonale.

Nullvektoren

I forkant av regel 0.7 har vi bare argumentert for at $\vec{u} \perp \vec{v} \Rightarrow \vec{u} \cdot \vec{v} = 0$. For å rettferdiggjøre betingelsen som går begge veier i (18), må vi spørre: Kan vi få $\vec{u} \cdot \vec{v} = 0$ om vinkelen mellom \vec{u} og \vec{v} ikke er 90°?

På intervallet $[0^{\circ}, 180^{\circ})$ er det bare en vinkel lik 90° som resulterer i cosinusverdi 0. Skal skalarproduktet bli 0 for andre vinkler, må derfor lengden av \vec{u} eller \vec{v} være 0. Den eneste vektoren med denne lengden er $nullvektoren \ \vec{0} = [0, 0]$, som rett og slett ikke har noen retning¹. Det er likevel vanlig å definere at nullvektoren står vinkelrett på alle vektorer.

¹Eventuelt kan man hevde at den peker i alle retninger!

0.7 Parallelle vektorer

Vi har tidligere sett hvordan finne lengden til en vektor, men en vektor har også en retning. Retningen til en vektor kan uttrykkes ved (den minste) vinkelen vektoren danner med x-aksen når den er plassert i grunnstillingen. Hvis to vektorer danner den samme vinkelen med x-aksen er de parallelle.

Gitt to vektorer $\vec{u} = [x_1, y_1]$ og $\vec{v} = [x_2, y_2]$. La θ og α være vinkelen mellom x-aksen og henholdsvis \vec{u} og \vec{v} . Alle tangensverdier til vinkler på intervallet $[0^{\circ}, 180^{\circ})$ er unike, og dette betyr at hvis $\theta = \alpha$, må vi ha at

$$\frac{y_1}{x_1} = \frac{y_2}{x_2}$$

Sammenhengen blir enda mer tydelig hvis vi omskriver likningen over til å gjelde de samsvarende komponentene¹:

0.8 Parallelle vektorer

To vektorer $\vec{u} = [x_1, y_1]$ og $\vec{v} = [x_2, y_2]$ er parallelle hvis forholdet mellom samsvarende komponenter er likt.

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} \iff \vec{u} \parallel \vec{v} \tag{19}$$

Alternativt, for et tall t har vi at

$$\vec{u} = t\vec{v} \iff \vec{u} \parallel \vec{v} \tag{20}$$

- $x_1 \circ x_2$
- $y_1 \text{ og } y_2$

¹For vektorene $[x_1, y_1]$ og $[x_2, y_2]$ er disse samsvarende komponenter:

Språkboksen

Når $\vec{u} = t\vec{v}$, sier vi at \vec{u} er et multiplum av \vec{v} (og omvendt). Vi sier også at \vec{u} og \vec{v} er lineært uavhengige.

Eksempel

Undersøk hvorvidt $\vec{a}=[2,-3]$ og $\vec{b}=[20,-45]$ er parallelle med $\vec{c}=[10,-15].$

Svar

Vi har at

$$\vec{c} = 5[2, -4] = 5\vec{a}$$

Dermed er $\vec{a} \parallel \vec{c}.$ Da $\frac{20}{10} \neq \frac{-45}{15},$ er \vec{b} og \vec{c} ikke parallelle.