

Transformacje miedzy różnymi układami geodezyjnymi

INFORMATYKA GEODEZYJNA II SEM. IV, ĆWICZENIA, ROK AKAD. 2023-2024

Alicja Łubianka Numer indeksu: 325786, grupa 3 E-mail: 01179176@pw.edu.pl Magdalena Sternik

Numer indeksu: 325835, grupa 3 E-Mail: magdy

Wydział Geodezji i Kartografii, Politechnika Warszawska Warszawa, 10 maja 2024

Spis treści

1	\mathbf{Cel}	ćwiczenia	3
2	$\mathbf{W}\mathbf{y}$ 1 2.1	Wykorzystane narzędzia i materiały potrzebne do replikacji ćwiczenia 2.1 Wybrany język programowania i interpreter Spyder	
	2.2	System operacyjny	3
	2.3	Potrzebne biblioteki i pliki	
3	Prz	rzebieg ćwiczenia	
	3.1	Utworzenie klasy Transformacja	3
	3.2	Algorytm hirvonena	3
	3.3	$\mathrm{flh}\overset{\circ}{\mathrm{ZXYZ}}$	
	3.4	flh2PL1992	3
	3.5	flh2PL2000	3
	3.6	xyz2neu	3
	3.7	Wczytywanie i zapisywanie pliku	4
	3.8	Kalkulator transformacji i zapis ich wyników do Kalkulatora	4
	3.9	Dodanie możliwości wczytania pliku w argparse	4

1 Cel ćwiczenia

W ramach ćwiczenia opracowano skrypt w języku Python w postaci klasy zawierającej metody służące do transformacji współrzędnych pomiędzy układem kartezjańskim (x, y, z) a geodezyjnym (ϕ , λ , H). Aby dokonać transformacji pomiędzy układami należy zastosować odpowiednie algorytmy. Poniżej przedstawiona jest lista utworzonych algorytmów:

- XYZ (geocentryczne) -> BLH (elipsoidalne fi, lambda, h)
- BLH -> XYZ
- XYZ -> NEU (topocentryczne northing, easting, up)
- BL (GRS80, WGS84, ew. Krasowski) -> PL2000
- BL (GRS80, WGS84, ew. Krasowski) -> PL1992

2 Wykorzystane narzędzia i materiały potrzebne do replikacji ćwiczenia

2.1 Wybrany język programowania i interpreter Spyder

Do napisania skryptu tego ćwiczenia posłużył nam język programowania Python, a za środowisko odpowiadał Spyder zawierający edytor kodu, interpreter, konsolę, a także inne funkcje.

2.2 System operacyjny

Plik został utworzony w systemie operacyjnym Microsoft (Windows 11).

2.3 Potrzebne biblioteki i pliki

Do wykonania ćwiczenia należy użyć następujących bibliotek:

- 1. Numpy biblioteka w języku Python służąca do obliczeń numerycznych i analizy danych. Zapewnia narzędzia do pracy z wielowymiarowymi tablicami danych oraz operacji matematycznych i statystycznych na tych tablicach. Numpy nie jest wbudowany w Pythona, lecz jest dostarczany z Anacondą, co ułatwia jego dostępność.
- 2. Argparse biblioteka w języku Python do parsowania argumentów linii poleceń. Jest częścią standardowej biblioteki Pythona, co oznacza, że jest wbudowana w standardową instalację Anacondy.
- 3. Os biblioteka standardowa w języku Python zapewniająca interfejs do operacji na systemie operacyjnym, takich jak dostęp do plików, zarządzanie procesami, zmiana katalogu roboczego, itp.

3 Przebieg ćwiczenia

- 3.1 Utworzenie klasy Transformacja
- 3.2 Algorytm hirvonena
- 3.3 flh2XYZ
- 3.4 flh2PL1992
- 3.5 flh2PL2000
- 3.6 xyz2neu

3.7	Wczytywanie i zapisywanie pliku
•	
•	

- 3.8 Kalkulator transformacji i zapis ich wyników do Kalkulatora $(\phi,\,\lambda,\,\mathrm{H})$
- 3.9 Dodanie możliwości wczytania pliku w argparse