Министерство образования и науки РФ Севастопольский государственный университет Кафедра информатики и управления в технических системах

MACCИВЫ И ФУНКЦИИ В ЯЗЫКЕ ПРОГРАММИРОВАНИЯ PASCAL

Методические указания

к выполнению лабораторных работ по дисциплине

" Алгоритмизация и программирование" для студентов очной формы обучения по направлениям подготовки

27.03.04 "Управление в технических системах" и 09.03.01 " Информатика и вычислительная техника"

УДК 681.5

Массивы и функции в языке программирования Pascal: Методические указания к выполнению лабораторных работ, входящих в блок № 2 по дисциплине «Алгоритмизация и программирование»/ Сост. Д.Н. Старинская, А.А. Кабанов, В.В. Захаров. – Севастополь: Изд-во СевГУ, 2016. – 20 с.

Целью методических указаний является оказание помощи студентам при выполнении лабораторных работ, целью которых является приобретение навыков составления простейших алгоритмов, изучение основ языка Pascal, освоение базовых приемов работы в среде Turbo Pascal и её модификаций Free Pascal, ABC PASCAL ит.п.

Методические указания предназначены для студентов дневной формы обучения по направлениям подготовки 27.03.04 "Управление в технических системах" и 09.03.01 "Информатика и вычислительная техника"

Методические указания рассмотрены и утверждены на заседании кафедры информатики и управления в технических системах (протокол № 7 от 29.08.2016 г.)

Допущено учебно-методическим центром СГУ в качестве методических указаний.

Рецензент Кабанов А.А., канд. техн. наук, зав. доцент

СОДЕРЖАНИЕ

Введение	4
1. Лабораторная работа № 4. Программирование методов обработки одномерных массивов на языке Pascal	4
1.1. Цель работы	4
1.2. Задание на работу	
1.3. Краткие теоретические сведения	6
1.3.1. Массивы	6
1.3.2. Процедуры и функции	7
1.3.3. Пример программы	8
1.4. Содержание отчета и порядок защиты работы	8
1.5. Контрольные вопросы	9
2. Лабораторная работа № 5. Программирование алгоритмов, реализующи операции над матрицами на языке Pascal	
2.1. Цель работы	10
2.2. Задание на работу	
2.3. Краткие теоретические сведения	12
2.3.1. Примеры задач обработки матриц	12
2.3.2. Работа с файлами	13
2.3.3. Пример программы	14
2.4. Содержание отчета и порядок защиты работы	15
2.5. Контрольные вопросы	16
Библиографичекий список	16
Приложение А. Перечень тем блока № 2	17
Приложение Б. Образец задания к контрольной работе № 2	18
Приложение В Солержимое файла matrix txt	20

ВВЕДЕНИЕ

Лабораторные работы данного цикла входят в блок № 2 дисциплины «Алгоритмизация и программирование»». Для успешной сдачи блок № 2 необходимо выполнить и защитить лабораторные работы №№ 3-4 не позднее 16-ой недели семестра, а также написать контрольную работу № 2 на оценку не менее "удовлетворительно"

Примерный перечень тем, входящих в блок №2, приведен в приложении А. Образец задания контрольной работы представлен в приложении Б.

1. ЛАБОРАТОРНАЯ РАБОТА №4. ПРОГРАММИРОВАНИЕ МЕТОДОВ ОБРАБОТКИ ОДНОМЕРНЫХ МАССИВОВ НА ЯЗЫКЕ PASCAL

1.1. Цель работы

Исследование циклических алгоритмов и программ, осуществляющих типичные операции над одномерными массивами. Приобретение навыков программирования ввода и вывода массивов.

1.2. Задание на работу

Работа выполняется в среде Turbo Pascal 7.0. Описание лабораторного стенда приведено в методических указаниях к лабораторной работе № 1.

Создайте программу, реализующую обработку массива вещественных чисел по заданию, указанному в таблице 1.1, в соответствии с номером варианта. Программа должна удовлетворять следующим требованиям:

- В основной программе нужно объявить массив вещественных чисел и заполнить его значениями с клавиатуры.
- Основная программа должна вызывать две вспомогательные подпрограммы.
- Первая подпрограмма-функция должна быть предназначена вычисления значения в соответствии с заданием, указанным в столбце 3 таблицы вариантов. Основная программа должна осуществлять вывод на экран результата работы первой функции;
- Вторая подпрограмма-<u>процедура</u> должна быть предназначена для вывода на экран списка элементов массива, удовлетворяющих условию, указанному в столбце 4 таблицы вариантов.
- Значения A, B, m (в зависимости от варианта) должны быть параметрами подпрограмм и должны вводиться с клавиатуры в основной программе.

Таблица 1.1 – Варианты заданий

	Задания и значения исходных данных			
№ вар.	Набор значений элементов массива и до- полнительные исходные данные	Функция должна вы- числять	Процедура должна выводить на экран элементы, удовлетворяющие условию	
1	$X = 15.6$; -0.7 ; $3.5 \cdot 10^{4}$; $0.9 \cdot 10^{-5}$; -5 ; 1.7 ; 0 A = 0; $B = 6.1$.	Сумму положительных элементов	$A < X_i \le B.$	
2	$X = 0.1; -1.5; -4 \cdot 10^{-8}; 3.2 \cdot 10^{3}; 0; 11; 0.2; 0$ A = -1.005; B = 2.5.	Минимальный элемент массива	$X_i > B$ или $X_i < A$	
3	$X = 0; -2; 0; 2,5; -11,4; 0,5; 10; 0; 5 \cdot 10^{-6}; 10^{4}$ B = 11,4.	Максимальный квадрат значения элемента массива	$ X_i < B$	
4	$X = 0; 0; -1; 10; 13, 6; 10^5; 9, 6 \cdot 10^{-5}; -0, 75$ A = 15.	Количество элементов, больших A	$-0.8 < X_i < 0.8$	
	$X = -3.8; 12; 10^{3}; -4.10^{-3}; 4.10^{-3}; 0; -1$ m = 4, A = 0.2, B = 12.	Сумму первых т элементов	$A \le X_i^2 < B$	
6	$X = 1; -1; 0,2; -2,7 \cdot 10^4; 9 \cdot 10^{-3}; 0,035.$ A = 0, B = 1.	Произведение элементов массива	$X_i \geq B$ или $X_i \leq A$	
7	$X = -109; 0,2 - 10^{-3}; -1,5 \cdot 10^{3}; 0; -1; 0.$ A = 10.	Сумму модулей элементов	$X_i^2 \ge A$	
8	$X = 10^4$; $-0.1 \cdot 10^{-4}$; $0.6 \cdot 10^{-4}$; -1 ; -10.1 $A = 3 \cdot 10^{-4}$.	Номер макси- мального элемента массива	$ X_i > A$	
9	$X = 1;15,2;-15;10^9;-0,8;0,17;-9\cdot10^{-4};1$ B = 1.	Сумму отрицательных элементов	$\sqrt{ X_i } < B$	
10	$X = -1; 2; -1; 0, 2; -0, 3; 11; 10^{5}; 8 \cdot 10^{-5}; 0, 6$ A = 1.	Номер минималь- ного элемента массива	$\mid X_{i} \mid < A$	
11	$X = 0; -1; 0; 1; 0; 3, 2 \cdot 10^{6}; 9 \cdot 10^{-5}; -0, 3; 0; -1$ m = 3	Сумму последних <i>m</i> элементов	$X_i \neq 0$	
12	$X = -12$; 0; 0; -10^{-4} ; 3,95·10 ³ ; 4·10 ⁵ . B = 12.	Сумму элементов массива, больших В	$X_i^3 > B$	

Таблица 1.1 – Варианты заданий

	Задания и значения исходных данных			
вар.	Набор значений элементов массива и до- полнительные исходные данные	Функция должна вы- числять	Процедура должна выво- дить на экран элементы, удовлетворя-	
No B			ющие усло- вию	
	$X = 5.6; -0.8; 1.5 \cdot 10^{3}; -0.9 \cdot 10^{-5}; -8; 1.7; 0$	Максимальный по	$X_i \leq B^2$	
13	B = 5,1.	модулю элемент		
		массива		
	$X = -4.6; -2; -1; 0.3; -0.3; 11; 1.8 \cdot 10^{3}; 1 A = 1.$	Сумму элементов	$X_i > A^2$	
14		с четными номе-		
		рами		

1.3. Краткие теоретические сведения

1.3.1. Массивы

Массивы служат для объединения под одним именем нескольких переменных, имеющих одинаковую природу. Массив — такая структура данных, которая характеризуется:

- фиксированным набором элементов одного и того же типа;
- каждый элемент имеет уникальный набор значений индексов;
- количество индексов определяют размерность массива, например, два индекса — двумерный массив, три индекса — трехмерный массив, один индекс одномерный массив или вектор;
- обращение к элементу массива выполняется по имени массива и значениям индексов для данного элемента.

Синтаксис описания типа массива:

```
type имя типа = array[тип индекса] of тип элемента;
```

Количество элементов массива определяет тип индекса, а множество значений элементов определяется типом элемента.

Пример:

```
const n=5;
type tMass = array[1..n] of integer;
var a, b: tMass;
```

Для доступа к отдельным элементам массива используется индекс массива. Элемент массива записывается как имя массива, за которым в квадратных скобках указывается индекс нужного элемента.

```
i := 4; a[i] := -3; a[i-2] := 7;
for i:=1 to n do
  read(a[i]);
```

1.3.2. Процедуры и функции

Подпрограмма – процедура или функция – это часть программы, имеющая имя и решающая определенную задачу. Она описывается один раз, а вызываться может столько раз, сколько необходимо.

В Pascal имеется два вида подпрограмм: процедуры и функции. Они имеют незначительные отличия в синтаксисе и правилах вызова.

Синтаксис описания процедуры совпадает с синтаксисом записи программы (за исключением служебного слова procedure и правил записи списка формальных параметров):

```
procedure имя [(список формальных параметров)]; {заголовок} разделы описаний begin раздел операторов; end;
```

Квадратные скобки в данном случае не являются элементом синтаксиса, а означают, что список параметров может отсутствовать. Если в описании процедуры отсутствует список параметров, то такую процедуру называют процедурой без параметров.

Синтаксис вызова процедуры:

```
Имя процедуры [(список фактических параметров)];
```

Вызов процедуры можно указывать в любом месте программы, где допустим оператор языка Pascal.

Функцией называется подпрограмма, которая вычисляет единственное значение, относящееся к порядковому, вещественному типам или типу указателей и используемое при подсчете выражений.

Объявление функции:

```
function имя [(список форм. параметров)] : тип ; разделы описаний begin раздел операторов; Имя := выражение; end;
```

Список формальных параметров записывается по общим правилам, как и для процедур.

Через двоеточие после списка указывается тип возвращаемого функцией результата. Тип результата должен быть либо простым, либо указателем.

В разделе операторов функции необходимо хотя бы один раз использовать имя функции в левой части оператора присваивания. Т.е. в разделе операторов функции обязательно должно стоять присваивание имени функции какоголибо «возвращаемого» значения.

Для обращения к функции используется вызов функции:

```
Имя функции [(список фактических параметров)]
```

Механизм и правила взаимодействия формальных и фактических параметров такие же, как и в процедурах.

1.3.3. Пример программы

Исходные данные к программе: $X = -1,3; 5,0; 4; 0; -1,5\cdot10^{-4}; 0; 5,3; -9,1; 1,2\cdot10^{3}; 4,2; 0.$ Требуется вычислить максимальный элемент массива. program massiv; const n = 10;type tMass = array [1..n] of real; var m : real; i : integer; x : tMass; function maxval(var mass : tMass; size : Integer): real; var i : Integer; max : Real; begin max := mass[1];for i:=2 to size do if mass[i]>max then max := mass[i];maxval := max; end; begin for i := 1 to n do begin

1.4. Содержание отчета и порядок защиты работы

Выполнение и защита лабораторной работы производится каждым студентом индивидуально. Защита результатов лабораторной работы осуществляется при наличии работающей программы и полностью оформленного отчета.

Отчет должен включать в себя титульный лист, цель работы, постановку задачи, схемы основной программы и обеих подпрограмм, текст программы, результаты работы программы, выводы.

Защита работы состоит в следующем:

write('x[',i:2,']=');

readln(x[i]);

m := maxval(x,n);
writeln('Max=',m);

end;

end.

readln;

– представление работающей программы на компьютере;

- предъявление отчета, оформленного в соответствии с приведенными требованиями;
- ответы на вопросы преподавателя касательно теоретической и практической части работы. Примеры возможных вопросов приведены в подразделе 1.5.

1.5. Контрольные вопросы

- 1) Изложите классификацию типов языка Pascal.
- 2) Какие типы данных относятся к простым, а какие к структурированным?
 - 3) Изложите основные особенности порядковых типов данных.
 - 4) Охарактеризуйте перечисляемый тип данных.
 - 5) Охарактеризуйте интервальный тип данных.
- 6) Что представляет собой массив? Каковы основные характеристики массива?
 - 7) Изобразите синтаксическую диаграмму объявления типа-массива.
 - 8) Перечислите операции, допустимые для переменных-массивов.
 - 9) Как осуществляется доступ к элементам массива?
 - 10) Что такое индекс массива? Какие допустимы типы индексов массива?
 - 11) Изложите алгоритм поиска максимального элемента в массиве.
- 12) Что собою представляет процедура? Когда целесообразно использовать процедуры?
- 13) Что собою представляет функция? Когда целесообразно использовать функции?
 - 14) Какие переменные называются глобальными, какие локальными?
- 15) Что такое формальные параметры? Что такое фактические параметры? Какие соответствия должны соблюдаться между формальными и фактическими параметрами?
- 16) Что такое параметры-значения и параметры-переменные? Чем они отличаются друг от друга?

2. ЛАБОРАТОРНАЯ РАБОТА №5. ПРОГРАММИРОВАНИЕ АЛГОРИТМОВ, РЕАЛИЗУЮЩИХ ОПЕРАЦИИ НАД МАТРИЦАМИ НА ЯЗЫКЕ PASCAL

2.1. Цель работы

Цель работы заключается в исследовании методов и алгоритмов, реализующих различные матричные операции и манипулирование внешними файлами, а также в приобретении навыков их программирования на языке Pascal.

2.2. Задание на работу

Работа выполняется в среде Turbo Pascal 7.0. Описание лабораторного стенда приведено в методических указаниях к лабораторной работе № 1.

Программа должна удовлетворять следующим требованиям:

- в лабораторной работе необходимо реализовать процедуру и функцию, реализующие вычисления, в соответствии с номером варианта, указанным в таблице 2.1;
- в основной программе необходимо ввести значения элементов заданной матрицы с клавиатуры, а другой матрицы из текстового файла matrix.txt. Содержимое файла matrix.txt представлено в приложении В.
- в основной программе вызвать разработанные процедуры и функции для заданных матриц. Вычислить A*B и B*A или A+B и B+A, A^T и B^T в зависимости от варианта.
- программа должна осуществлять вывод полученных результатов в отдельный файл.

Таблица 2.1 – Варианты заданий

№ вари-	Задания и значения исходных данных			
анта	Процедура	Функция	Матрицы	Ввести с
				клавиатуры
1	Умножение	Максимальная сумма	A, B	A
		модулей элементов		
		столбца		
2	Сложение	Минимальный среди	C, D	C
		элементов выше		
		главной диагонали		
3	Транспони-	Минимальный среди	E, F	Е
	рование	элементов, располо-		
		женных в четных		
		столбцах		
4	Умножение	максимальный среди	E, F	Е
		элементов ниже		
		главной диагонали		

Таблица 2.1 – Варианты заданий

№ вари-	вари- Задания и значения исходных данных			
анта	Процедура	Функция	Матрицы	Ввести с клавиатуры
5	Сложение	Сумма модулей элементов выше главной диагонали	C, D	D
6	Транспони-рование	Последний положительный среди элементов ниже главной диагонали	A,B	A
7	Умножение	Корень квадратный из суммы квадратов элементов	C, D	D
8	Сложение	Максимальный среди элементов, расположенных в нечетных столбцах	A, B	A
9	Транспонирование	Минимальный элемент среди положительных	E, F	F
10	Умножение	Первый нулевой среди элементов ниже главной диагонали	C, D	С
11	Сложение	Максимальная сумма модулей элементов строки	E,F	Е
12	Транспони- рование	Сумма квадратов элементов ниже главной диагонали	C,D	С
13	Умножение	Первый положительный среди элементов ниже главной диагонали	E,F	F
14	Сложение	Максимальный элемент среди отрицательных	C, D	D

2.3. Краткие теоретические сведения

2.3.1. Примеры задач обработки матриц

Пример 1. Ввод матрицы с клавиатуры

```
write('Введите количество строк (не более 10), n=');
read(n);
write('Введите количество столбцов (не более 15), m=');
read(m);
writeln('Введите элементы матрицы');
for i:=1 to n do
for j:=1 to m do
   read (A[i,j]); { ввод элементов по строкам }
Пример 2. Вывод матрицы на экран
writeln('Вывод матрицы');
for i:=1 to n do
   begin
        for j:=1 to m do
            write (A[i,j]:12:3);
        writeln;
   end;
```

Большое количество задач связано с обработкой части элементов **квадратной** матрицы (количество строк совпадает с количеством столбцов), например, рассматриваются только элементы главной диагонали, над дополнительной диагональю (соединяющей элементы $A_{n,1}$ и $A_{1,n}$ и т.д. При решении таких задач возникает проблема, определения границ изменения индексов обрабатываемых элементов. Ниже приведем ряд типичных случаев с указанием соответствующих начальных и конечных значений в заголовках циклов.

Рисунок 2.1 – Определение индексов элементов квадратной матрицы а) элементы, принадлежащие главной диагонали

```
for i := 1 to N do A[i,i]
```

б) элементы под главной диагональю

```
for i := 2 to N do for j := 1 to i-1 do A[i,j]
```

в) элементы над главной диагональю

```
for i := 1 to N-1 do
for j := i+1 to N do
    A[i,j]
```

г) элементы диагонали, соединяющей элементы $A_{n,1}$ и $A_{1,n}$

```
for i := 1 to N do A[i,N+1-i]
```

д) элементы под диагональю, соединяющей элементы $A_{n,1}$ и $A_{1,n}$

```
for i := 2 to N do
for j:=N-i+2 to N do
A[i,j]
```

е) элементы над диагональю, соединяющей элементы An,1 и A1,n

```
for i := 1 to N-1 do
for j := 1 to N-1 do
A[i,j]
```

2.3.2. Работа с файлами

Исходные значения элементов векторов и матриц удобно хранить на внешних носителях в виде файлов. Часто исходные числовые данные хранятся в текстовом файле. Текстовыми называются файлы, состоящие из последовательности символов, разбитой на строки произвольной длины. Такие файлы имеют тип *Text*. Каждая строка заканчивается признаком конца строки – специальным символом.

Переменные текстового типа описываются в разделе переменных, например:

```
var f : Text;
```

Для чтения данных из текстового файла используют следующие стандартные процедуры и функции:

 $Assign\ (<$ файловая переменная>, <внешнее имя файла>) - связывает файловую переменную с дисковым файлом;

Reset (<файловая переменная>) - открывает файл для чтения;

Read (<файловая переменная, список переменных>) - процедура присваивает значения из текстового файла переменным списка ввода;

ReadLn (<файловая переменная>) - процедура пропускает все символы в текстовом файле до начала следующей строки;

Eoln (<файловая переменная>) - стандартная функция, возвращающая значение *True*, если из файла считан символ, за которым следует признак конца строки и значение *False* в противном случае;

Eof(<файловая переменная>) - стандартная функция, возвращающая значение True, если из файла считан символ за которым следует признак конца файла и значение False в противном случае;

Close(<файловая переменная>) - закрывает файл.

В начале работы с текстовым файлом его необходимо открыть с помощью процедуры *Reset*, затем, используя процедуры *Read*, *ReadLn*, *Eoln*, *Eof*, считываются данные, и процедурой *Close* закрывается файл.

Для вывода данных в файл используют процедуры:

Rewrite (<файловая переменная>)- открывает файл для записи;

Write (<файловая переменная, список выражений>) - процедура записывает значения выражений из списка в текстовый файл;

WriteLn (<файловая переменная>) - процедура записывает признак конца строки в текстовый файл.

2.3.3. Пример программы

Ниже приведен пример программы, осуществляющей следующие действия:

- чтение матрицы A из файла matrix.txt,
- вызов процедуры AddConst, прибавляющей заданное значение к каждому элементу квадратной матрицы;
- вывод новой матрицы в файл result.txt.

```
Program 1r6;
const N = 4;
type tMatr = array [1..10, 1..10] of real;
                     Text;
var
           f :
           i, j : Integer;
            Num : Real;
            A :
                     tMatr;
procedure AddConst( var Matr : tMatr; Size : Integer;
                   C : Real);
begin
     for i := 1 to Size do
     for j := 1 to Size do
        A[i,j] := A[i,j] +C;
end;
begin
{ открытие файла для чтения }
       Assign(f, 'matrix.txt');
       Reset(f);
         {пропуск строки "А=", предшествующей матрице А}
       ReadLn (f);
        { ввод значений элементов матрицы А }
```

```
for i:=1 to N do
       for j:=1 to N do
            Read(f, A[i, j]);
       { Закрытие файла matrix.txt}
       Close(f);
       write('Прибавить к элементам матрицы число Num=');
       readln(Num);
       AddConst(A, N, Num);
       Assign(f, 'Result.txt');
       Rewrite(f); \{ открытие файла для вывода \}
         { вывод матрицы А в файл}
       WriteLn(f, 'Матрица A':30);
       for i:=1 to N do
             begin
                      for j:=1 to N do
                           Write(f, A[i, j]:10:3);
                      WriteLn(f);
             end;
       close(f);
end .
```

2.4. Содержание отчета и порядок защиты работы

Выполнение и защита лабораторной работы производится каждым студентом индивидуально. Защита результатов лабораторной работы осуществляется при наличии работающей программы и полностью оформленного отчета.

Отчет должен включать в себя следующие разделы

- титульный лист;
- цель работы,
- постановка задачи. Этот раздел должен содержать вариант задания в соответствии с таблицей 2.1;
- схема программы. Этот раздел должен содержать схему программы, а также схемы разработанных процедуры и функции.
- текст программы на языке Pascal;
- результаты работы программы. Этот раздел должен содержать результаты работы программы при значениях матриц, взятых в соответствии с файлом matrix.txt.
- выводы.

Защита работы состоит в следующем:

- представление работающей программы на компьютере;
- предъявление отчета, оформленного в соответствии с указанными требованиями;
- ответы на вопросы преподавателя по теоретической и практической части работы. Примеры возможных вопросов приведены в подразделе 2.5.

2.5. Контрольные вопросы

- 1) Что собою представляет двумерный массив?
- 2) Приведите пример фрагмента программы, который бы осуществлял вывод элементов главной диагонали квадратной матрицы на экран.
- 3) Дайте определение операции транспонирования матрицы. Приведите пример фрагмента программы, в котором бы осуществлялось транспонирование квадратной матрицы.
- 4) Дайте определение операции умножения матриц и приведите соответствующую формулу. Как должны быть согласованы размерности матриц? Приведите пример фрагмента программы, в котором бы осуществлялось умножение двух матриц.
- 5) Что собою представляет тип данных файл? Сопоставьте характеристики типов файл и массив.
 - 6) Что собою представляет буферная переменная, связанная с файлом?
 - 7) Что такое текстовый файл?
 - 8) Для чего предназначены и как работают процедуры Assign и Close?
- 9) Для чего предназначены и как работают процедуры Reset и Rewrite?
 - 10) Для чего предназначены и как работают процедуры Read и Readln?
- 11) Для чего предназначены и как работают процедуры Write и Writeln?
 - 12) Для чего предназначены и как работают функции Eof и Eoln?
- 13) Что собою представляет процедура? Когда целесообразно использовать процедуры?
- 14) Что собою представляет функция? Когда целесообразно использовать функции?
 - 15) Какие переменные называются глобальными, какие локальными?
- 16) Что такое формальные параметры? Что такое фактические параметры? Какие соответствия должны соблюдаться между формальными и фактическими параметрами?
- 17) Что такое параметры-значения и параметры-переменные? Чем они отличаются друг от друга?
 - 18) Каковы особенности передачи параметров-массивов?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Пильщиков В.Н. Сборник упражнений по языку Pascal: Учебное пособие для вузов / В.Н. Пильщиков. М.: Наука, 1989г. 160с.
- 2. Павловская Т. А. Паскаль: программирование на языке высокого уровня: практикум [Текст] : учеб. пособие для студ. вузов / Т. А. Павловская. М. и др.: Питер, $2006.-408~\rm c$.
- 3. Павловская Т. А. Паскаль: программирование на языке высокого уровня [Текст] : учеб. для студ. вузов / Т. А. Павловская. М. и др. : Питер, 2006. 400 с.

ПРИЛОЖЕНИЕ А. ПЕРЕЧЕНЬ ТЕМ МОДУЛЯ №2

(справочное)

- 1. Краткая характеристика концепции структурного программирования. Структурное кодирование. Проектирование сверху-вниз. Модульное программирование
- 2. Модульное программирование. Правила использования подпрограмм.
- 3. Процедуры в языке Pascal. Объявление процедуры. Оператор процедуры.
- 4. Локальные и глобальные переменные в языке Pascal. Точка определения, область видимости.
- 5. Процедуры с параметрами в языке Pascal. Список формальных параметров. Список фактических параметров.
- 6. Процедуры с параметрами в языке Pascal. Механизмы передачи параметров (параметры-значения, параметры-переменные).
- 7. Функции в языке Pascal. Примеры.
- 8. Некоторые правила хорошего стиля программирования.
- 9. Классификация типов данных в языке Pascal.
- 10. Общая характеристика порядковых типов в языке Pascal. Символьный тип данных в языке Pascal.
- 11. Общая характеристика порядковых типов в языке Pascal. Данные перечисляемого типа в языке Pascal.
- 12. Общая характеристика порядковых типов в языке Pascal. Данные интервального типа в языке Pascal.
- 13. Тип данных массив в языке Pascal. Тип индекса и тип элементов. Объявление переменных массивового типа. Многомерные массивы.
- 14. Примеры алгоритмов обработки числовых массивов на языке Pascal. Поиск максимального элемента в массиве. Заполнение матрицы значениями.
- 15. Примеры алгоритмов обработки числовых массивов на языке Pascal. Транспонирование и умножение матриц.
- 16. Особенности передачи параметров массивов в языке Pascal. Пример.
- 17. Строковый тип данных String в Turbo Pascal.
- 18. Файловый тип данных в языке Pascal. Стандартные процедуры и функции языка Pascal для работы с типизированными файлами.
- 19. Реализация операций записи в файл в языке Pascal.
- 20. Реализация операций чтения из файла в языке Pascal.
- 21. Текстовые файлы в языке Pascal. Процедуры и функции для работы с текстовыми файлами. Стандартные файлы Input и Output.
- 22. Текстовые файлы в языке Pascal. Особенности чтения данных из текстовых файлов. Примеры.
- 23. Текстовые файлы в языке Pascal. Форматированный вывод. Примеры.

ПРИЛОЖЕНИЕ Б. ОБРАЗЕЦ ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ №2

(справочное)

Задание №1 (5 баллов)

Формальный параметр подпрограммы описан как var a: integer. Соответствующий ему фактический параметр может быть:

- 1) Выражением целого типа;
- 2) Переменной целого типа;
- 3) Выражением любого типа;
- 4) Переменной вещественного типа;
- 5) Константой целого типа с именем а.

Номер правильного ответа: _____

Задание №2 (5 баллов)

Какое из нижеследующих утверждений неверно:

- 1) В разделе операторов функции необходимо хотя бы один раз использовать имя функции в левой части оператора присваивания.
- 2) Глобальные переменные нужно передавать в подпрограмму через список параметров;
- 3) К данным порядкового типа можно применять операции отношения;
- 4) Множеством значений интервального типа является замкнутый интервал значений некоторого порядкового типа.
- 5) Если формальным параметром является параметр-переменная, то соответствующий фактический параметр не может быть выражением.

Номер правильного ответа: _____

Задание №3 (8 баллов)

Что будет выведено в результате работы программы?

```
Program Task3;
    Var a,b,c,d : Integer;
    Procedure Proc(a: integer; var c : integer; var d : integer);
    var b : integer;
    begin
        a := 5; c := 7; b := 9;
    end;
    Begin
        a := 1; b :=1; c :=1;
        Proc(b, a, c);
        Write(a,'|',b,'|',c);
    End.
```

Варианты ответов

- 1) 1|1|1
- 2) 5|7|9
- 3) 9|7|5
- 4) 7|1|1
- 5) 1|7|9

Номер правильного ответа: _____

Задание №4

(Максимальная оценка 12 баллов)

Рассматривается массив целых чисел t размером 3 на 4.

- а) Напишите объявление для переменной t.
- б) Сколько элементов в массиве t?
- в) Напишите имена всех элементов второй строки массива t.
- г) Напишите имена всех элементов третьего столбца массива t.

Задание №5

(Максимальная оценка 20 баллов)

Дан массив из 15 целых чисел. Вычислить сумму модулей элементов массива. Заменить первый положительный элемент на второй элемент массива.

ПРИЛОЖЕНИЕ В. СОДЕРЖИМОЕ ФАЙЛА MATRIX.TXT

(справочное)

Α	=			
	1.0668 0	0.2944 -1.3362	-0.6918 0.8580	-1.4410 0.5711
	-0.0956 -0.8323	0.7143 1.6236	1.2540 -1.5937	0 0.6900
В		1.0250	1.0007	0.0000
_	0.8156	1.1908	-1.6041	-0.8051
	0.7119	-1.2025	0.2573	0
	1.2902	0	-1.0565	0.2193
С	0.6686	-0.1567	1.4151	-0.9219
C	- -2.1707	0.5077	0.3803	0.0000
	-0.0592	1.6924	-1.0091	
	-1.0106	0.5913	-0.0195	1.0950
	0.6145	-0.6436	-0.0482	-1.8740
D	=			
	0.4282	0.0403	-0.3775	0.1184
	0.8956	0.6771	-0.2959	0.3148
	0.7310	0.5689	-1.4751	1.4435
	0.5779	-0.2556	-0.2340	-0.3510
Ε		0.0100	1 0000	0 6055
	0.6232	0.2120	1.0823	-0.6355
	0.7990 0.9409	0.2379 -1.0078	-0.1315 0.3899	-0.5596 0.4437
	-0.9921	-1.0078 -0.7420	0.3899	-0.9499
F	=	0.7420	0.0000	0.9499
_	0.9501	0	-0.8214	-0.9218
	-0.2311	-0.7621	0.4447	0.7382
	0.6068	-0.4565	0.6154	0.1763
	0.4860	0.0185	0.7919	-0.4057