

Non-commutative Characteristic Polynomials and Cohn Localization

Desmond Sheiham

February 1, 2008

Abstract

Almkvist proved that for a commutative ring A the characteristic polynomial of an endomorphism $\alpha : P \rightarrow P$ of a finitely generated projective A -module determines (P, α) up to extensions. For a non-commutative ring A the generalized characteristic polynomial of an endomorphism $\alpha : P \rightarrow P$ of a finitely generated projective A -module is defined to be the Whitehead torsion $[1 - x\alpha] \in K_1(A[[x]])$, which is an equivalence class of formal power series with constant coefficient 1.

In this paper an example is given of a non-commutative ring A and an endomorphism $\alpha : P \rightarrow P$ for which the generalized characteristic polynomial does not determine (P, α) up to extensions. The phenomenon is traced back to the non-injectivity of the natural map $\Sigma^{-1}A[x] \rightarrow A[[x]]$, where $\Sigma^{-1}A[x]$ is the Cohn localization of $A[x]$ inverting the set Σ of matrices in $A[x]$ sent to an invertible matrix by $A[x] \rightarrow A; x \mapsto 0$.

1 Introduction

We begin by recalling the definition of the characteristic polynomial¹ $\text{ch}_x(\mathbb{C}^n, \alpha)$ of an endomorphism $\alpha : \mathbb{C}^n \rightarrow \mathbb{C}^n$.

$$\text{ch}_x(\mathbb{C}^n, \alpha) = \det(I - Mx) \in 1 + x\mathbb{C}[x]$$

where M is an $n \times n$ matrix representing α with respect to any choice of basis.

Of course, ch_x is not a complete invariant of the endomorphism; for example the matrices $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ and $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ have the same characteristic polynomial although they are not conjugate. On the other hand, if one is given the dimension n and the characteristic polynomial $\text{ch}_x(\mathbb{C}^n, \alpha)$, one can compute all the eigenvalues of α . The Jordan normal form implies that (\mathbb{C}^n, α) is determined uniquely up to choices of extension (cf Kelley and Spanier [8]).

¹ The polynomial defined here may be called the ‘reverse characteristic polynomial’ to distinguish between $\det(I - xM)$ and $\det(M - xI)$.

2000 Mathematics Subject Classification 16S34, 18F25.

The notion ‘unique up to choices of extension’ can be made precise without relying on a structure theorem for endomorphisms by introducing the reduced endomorphism class group $\widetilde{\text{End}}_0(A)$ (see Almkvist [1, 2] and Grayson [7]) where A denotes any ring. $\widetilde{\text{End}}_0(A)$ is² the abelian group with

- one generator $[A^n, \alpha]$ for each isomorphism class of pairs (A^n, α) where $\alpha : A^n \rightarrow A^n$,
- a relation $[A^n, \alpha] + [A^{n''}, \alpha''] = [A^{n'}, \alpha']$ for each exact sequence

$$0 \rightarrow A^n \xrightarrow{\theta} A^{n'} \xrightarrow{\theta'} A^{n''} \rightarrow 0 \quad (1)$$

such that $\theta\alpha = \alpha'\theta$ and $\theta'\alpha' = \alpha''\theta'$ and

- a relation $[A^n, 0] = 0$ for each n .

$\widetilde{\text{End}}_0(\mathbb{C})$, for example, is a free abelian group with one generator $[\mathbb{C}, \lambda]$ for each non-zero eigenvalue $\lambda \in \mathbb{C} \setminus 0$.

If A is a commutative ring Almkvist proved [2] that the characteristic polynomial

$$\text{ch}_x(A^n, \alpha) = \det(1 - \alpha x : A[x]^n \rightarrow A[x]^n) \quad (2)$$

induces an isomorphism

$$\text{ch}_x : \widetilde{\text{End}}_0(A) \rightarrow \widetilde{A}_0 = \left\{ \frac{1 + a_1x + \cdots + a_nx^n}{1 + b_1x + \cdots + b_mx^m} \mid a_i, b_i \in A \right\}$$

so no further invariants are needed to classify endomorphisms up to extensions.

If we do not assume that A is commutative then the definition (2) above does not apply. However, $1 - \alpha x : A[[x]] \rightarrow A[[x]]$ is a well-defined automorphism (with inverse $1 + \alpha x + \alpha^2 x^2 + \cdots$) where $A[[x]]$ denotes the ring of formal power series in a central indeterminate x . One can therefore define the *generalized characteristic polynomial* $\widehat{\text{ch}}_x(A^n, \alpha)$ to be the element $[1 - \alpha x]$ of the Whitehead group $K_1(A[[x]])$, inducing a group homomorphism

$$\widehat{\text{ch}}_x : \widetilde{\text{End}}_0(A) \rightarrow K_1(A[[x]]).$$

As Pajitnov observed [10, 11] a Gaussian elimination argument (see section 2.2) yields

$$K_1(A[[x]]) = K_1(A) \oplus W_1(A)$$

where $W_1(A)$ is the image in $K_1(A[[x]])$ of the group $1 + xA[[x]]$ of Witt vectors.

² Although free modules A^n simplify the presentation, the group $\widetilde{\text{End}}_0(A)$ is unchanged if one substitutes finitely generated projective modules throughout (see section 2.1).

If A is commutative then \tilde{A}_0 injects naturally into the group of units $A[[x]]^\bullet$ and the commutative square

$$\begin{array}{ccc} \widetilde{\text{End}}_0(A) & \xrightarrow{\widehat{\text{ch}}_x} & K_1(A[[x]]) \\ \text{ch}_x \downarrow \cong & & \downarrow \det \\ \tilde{A}_0 & \longrightarrow & A[[x]]^\bullet \end{array}$$

implies that $\widehat{\text{ch}}_x$ is an injection.

The question arises whether $\widehat{\text{ch}}_x$ is still injective when A is non-commutative. The main result of the present paper is that the answer can be negative:

Proposition 1.1. *The non-commutative ring*

$$S = \mathbb{Z}\langle f, s, g \mid fg, fsg, fs^2g, \dots \rangle.$$

is such that $\widehat{\text{ch}}_x : \widetilde{\text{End}}_0(S) \rightarrow K_1(S[[x]])$ is not injective.

Specifically the two endomorphisms $S \rightarrow S$ given by $a \mapsto as$ and $a \mapsto a(1 - gf)s$ will be shown to have the same image under $\widehat{\text{ch}}_x$ although they represent distinct classes in $\widetilde{\text{End}}_0(S)$. The proof depends on the fact that the functor $A \mapsto \widetilde{\text{End}}_0(A)$ commutes with direct limits whereas $A \mapsto A[[x]]$ does not.

To put proposition 1.1 into context and explain the origins of the ring S , we require a certain universal localization $\Sigma^{-1}A[x]$ (Cohn [5, Ch.7], Schofield [14, Ch4]) which P.M.Cohn constructed by adjoining formal inverses to a set Σ of matrices. Here, Σ contains precisely the matrices which become invertible under the augmentation $\epsilon : A[x] \rightarrow A; x \mapsto 0$ (or equivalently are invertible in $A[[x]]$).

By the universal property of Cohn localization, the inclusion of $A[x]$ in $A[[x]]$ factors in a unique way through $\Sigma^{-1}A[x]$:

$$A[x] \xrightarrow{i_\Sigma} \Sigma^{-1}A[x] \xrightarrow{\gamma} A[[x]]. \quad (3)$$

In particular $i_\Sigma : A[x] \rightarrow \Sigma^{-1}A[x]$ is injective for all rings A (which is not true of some Cohn localizations).

If A is commutative then $\Sigma^{-1}A[x]$ is the usual commutative localization, inverting

$$\{\det(\sigma) \mid \sigma \in \Sigma\} = \{p \in A[x] \mid \epsilon(p) \text{ is invertible}\},$$

so $\gamma : \Sigma^{-1}A[x] \rightarrow A[[x]]$ is also injective. On the other hand in section 3 we prove:

Proposition 1.2. *The non-commutative ring S is such that*

$$\gamma : \Sigma^{-1}S[x] \rightarrow S[[x]]$$

is not injective.

In fact, proposition 1.1 is an algebraic K -theory version of proposition 1.2; for a theorem due to Ranicki (proposition 10.16 of [12]) states that for any ring A

$$K_1(\Sigma^{-1}A[x]) \cong K_1(A) \oplus \widetilde{\text{End}}_0(A) \quad (4)$$

where the split injection $\widetilde{\text{End}}_0(A) \rightarrow K_1(\Sigma^{-1}A[x])$ is $[A^n, \alpha] \mapsto [1 - \alpha x]$. One can reinterpret proposition 1.1 as the statement that the natural map $K_1(\Sigma^{-1}S[x]) \rightarrow K_1(S[[x]])$ is not injective; by proposition 1.2 the phenomenon is not peculiar to algebraic K -theory.

Propositions 1.1 and 1.2 are proved in sections 2 and 3 respectively. The proofs are independent of each other and do not assume the identity (4) above.

Section 4 is expository. Firstly we show that, for any ring A , the image of γ is the ring \mathcal{R}^A of rational power series; by definition \mathcal{R}^A is the smallest subring of $A[[x]]$ which contains $A[x]$ and is such that elements of \mathcal{R}^A which are invertible in $A[[x]]$ are invertible in \mathcal{R}^A , i.e. $\mathcal{R}^A \cap A[[x]]^\bullet = (\mathcal{R}^A)^\bullet$. We work in greater generality replacing the single indeterminate x in (3) by a set $X = \{x_1, \dots, x_\mu\}$ of non-commuting indeterminates

$$A\langle X \rangle \xrightarrow{i_\Sigma} \Sigma^{-1}A\langle X \rangle \xrightarrow{\gamma} A\langle\langle X \rangle\rangle.$$

Secondly we prove that each $\alpha \in \Sigma^{-1}A\langle X \rangle$ can be expressed (non-uniquely) in the form $\alpha = f(1 - s_1x_1 - \dots - s_\mu x_\mu)^{-1}g$ where $f \in A^n$ is a row vector, $g \in A^n$ is a column vector and s_1, \dots, s_μ are $n \times n$ matrices with entries in A . This is a version of Schützenberger's theorem [15, 16] (see also Berstel and Reutenauer [3, Ch1] and Cohn [4, §6]). One can think of the elements of $\Sigma^{-1}A\langle X \rangle$ as equivalence classes of finite dimensional linear machines $(f, s_1, \dots, s_\mu, g)$ which generate the power series

$$\gamma(\alpha) = fg + \sum_{i=1}^{\mu} fs_i gx_i + \sum_{i,j=1}^{\mu} fs_i s_j gx_i x_j + \dots.$$

Cohn wrote [5, p487]

The basic idea ... to invert matrices rather than elements was inspired by the rationality criteria of Schützenberger and Nivat

Motivated by the theory of multi-dimensional boundary links, Farber and Vogel proved [6] that if A is a (commutative) principal ideal domain then the Cohn localization of the free group ring AF_μ (inverting those matrices which are invertible after augmentation $AF_\mu \rightarrow A$) is isomorphic to the ring \mathcal{R}^A of rational power series. In section 5 we show that this localization of the free group ring is isomorphic to $\Sigma^{-1}A\langle X \rangle$ so $\gamma : \Sigma^{-1}A\langle X \rangle \rightarrow \mathcal{R}^A$ is an isomorphism. By contrast, proposition 1.2 above says that $\Sigma^{-1}S\langle X \rangle$ is larger than \mathcal{R}^S even when $|X| = 1$; distinct classes of linear machines can generate the same rational power series.

I would like to thank my PhD supervisor Professor Andrew Ranicki for all his help and encouragement.

2 Algebraic K -theory

2.1 Definitions

Let A be a ring, assumed to be associative and to contain a 1. We recall first the definitions of the Grothendieck group $K_0(A)$, the Whitehead group $K_1(A)$ and the less widely known endomorphism class group

$$\text{End}_0(A) = K_0(\text{Endomorphism category over } A).$$

Definition 2.1. $K_0(A)$ is the abelian group with one generator $[P]$ for each isomorphism class of finitely generated projective A -modules and one relation $[P'] = [P] + [P'']$ for each identity $P' \cong P \oplus P''$.

Let $\text{End}(A)$ denote the category of pairs (P, α) where P is a projective (left) A -module and $\alpha : P \rightarrow P$ is an A -module endomorphism. A morphism $\theta : (P, \alpha) \rightarrow (P', \alpha')$ in $\text{End}(A)$ is an A -module map $\theta : P \rightarrow P'$ such that $\theta\alpha = \alpha'\theta$. A sequence of objects and morphisms

$$0 \rightarrow (P, \alpha) \xrightarrow{\theta} (P', \alpha') \xrightarrow{\theta'} (P'', \alpha'') \rightarrow 0 \quad (5)$$

is exact if $0 \rightarrow P \xrightarrow{\theta} P' \xrightarrow{\theta'} P'' \rightarrow 0$ is an exact sequence.

Let $\text{Aut}(A) \subset \text{End}(A)$ denote the full subcategory of pairs (P, α) such that $\alpha : P \rightarrow P$ is an automorphism.

Definition 2.2. The Whitehead group $K_1(A)$ is the abelian group generated by the isomorphism classes $[P, \alpha]$ of $\text{Aut}(A)$ subject to relations:

1. If $0 \rightarrow (P, \alpha) \rightarrow (P', \alpha') \rightarrow (P'', \alpha'') \rightarrow 0$ is an exact sequence then $[P', \alpha'] = [P'', \alpha''] + [P, \alpha]$.
2. $[P, \alpha] + [P, \alpha'] = [P, \alpha\alpha']$.

Alternatively, in terms of matrices,

$$K_1(A) = \text{GL}(A)^{\text{ab}} = \frac{\text{GL}(A)}{E(A)} = \frac{\varinjlim \text{GL}_n(A)}{\varprojlim E_n(A)}$$

where $E_n(A)$ is the subgroup of $\text{GL}_n(A)$ generated by elementary matrices $e_{ij}(a)$ which have 1's on the diagonal, a in the ij th position and 0's elsewhere ($a \in A$, $1 \leq i, j \leq n$ and $i \neq j$). See for example Rosenberg [13] for further details. If $M, M' \in \text{GL}(A)$ and $[M] = [M'] \in K_1(A)$ then we write $M \sim M'$.

Definition 2.3. The endomorphism class group $\text{End}_0(A) = K_0(\text{End}(A))$ is the abelian group with one generator $[P, \alpha]$ for each isomorphism class in $\text{End}(A)$ and a relation

$$[P', \alpha'] = [P'', \alpha''] + [P, \alpha] \quad (6)$$

corresponding to each exact sequence (5) above.

Since every exact sequence of projective modules splits, we recover $K_0(A)$ by omitting the endomorphisms in definition 2.3. The forgetful map

$$\text{End}_0(A) \rightarrow K_0(A); [P, \alpha] \mapsto [P]$$

is surjective and split by $[P] \mapsto [P, 0]$ so that $\text{End}_0(A) \cong K_0(A) \oplus \widetilde{\text{End}}_0(A)$ with

$$\widetilde{\text{End}}_0(A) = \text{Ker}(\text{End}_0(A) \rightarrow K_0(A)) \cong \text{Coker}(K_0(A) \rightarrow \text{End}_0(A)).$$

Note that $\text{End}_0(\underline{})$ and $\widetilde{\text{End}}_0(\underline{})$ are functors; a ring homomorphism $p : A \rightarrow A'$ induces a group homomorphism

$$\begin{aligned} \text{End}_0(A) &\rightarrow \text{End}_0(A') \\ [P, \alpha] &\mapsto [A' \otimes_A P, 1 \otimes \alpha]. \end{aligned}$$

Lemma 2.4 below shows that the same group $\widetilde{\text{End}}_0(A)$ is obtained if, as in the introduction, one starts with free modules in place of projective modules. Let $K_0^h(A)$ denote the Grothendieck group generated by free modules $[A^n]$ subject to relations $[A^{m+n}] = [A^m] + [A^n]$. Nearly all of the rings usually encountered (including the ring S of the present paper) have ‘invariant basis number’, $A^n \cong A^m \Rightarrow n = m$, which implies $K_0^h(A) = \mathbb{Z}$.

Let $\text{End}^h(A) \subset \text{End}(A)$ denote the full subcategory of pairs (A^n, α) . Then $\text{End}_0^h(A) = K_0(\text{End}^h(A))$ satisfies $\text{End}_0^h(A) \cong K_0^h(A) \oplus \widetilde{\text{End}}_0^h(A)$ where

$$\widetilde{\text{End}}_0^h(A) = \text{Ker}(\text{End}_0^h(A) \rightarrow K_0^h(A)) \cong \text{Coker}(K_0^h(A) \rightarrow \text{End}_0^h(A)).$$

Lemma 2.4. *There is a natural isomorphism $\widetilde{\text{End}}_0^h(A) \cong \widetilde{\text{End}}_0(A)$.*

Proof. The homomorphism

$$\begin{aligned} \widetilde{\text{End}}_0^h(A) &\cong \frac{\text{End}_0^h(A)}{\mathbb{Z}} \rightarrow \frac{\text{End}_0(A)}{K_0(A)} \cong \widetilde{\text{End}}_0(A) \\ [A^n, \alpha] &\mapsto [A^n, \alpha] \end{aligned}$$

has inverse $[P, \alpha] \mapsto [P \oplus Q, \alpha \oplus 0]$ where Q is a finitely generated A -module such that $P \oplus Q$ is free. The definition of the inverse does not depend on the choice of Q and plainly $[P, 0] \mapsto 0$ so we need only check that the ‘exact sequence relations’ (6) are respected. Suppose we are given an exact sequence (5). Choose finitely generated A -modules Q and Q'' such that $P \oplus Q$ and $P'' \oplus Q''$ are free. Then $P' \oplus Q \oplus Q'' \cong P \oplus P'' \oplus Q \oplus Q''$ is free and there is an exact sequence of endomorphisms:

$$0 \rightarrow (P \oplus Q, \alpha \oplus 0) \rightarrow (P' \oplus Q \oplus Q'', \alpha' \oplus 0 \oplus 0) \rightarrow (P'' \oplus Q'', \alpha \oplus 0) \rightarrow 0.$$

□

It follows from lemma 2.4 that $\widetilde{\text{End}}_0(A)$ has an equivalent definition in terms of matrices: let $M_n(A)$ denote the ring of $n \times n$ matrices with entries in A . Regarding A^n as a module of row vectors, a matrix $M \in M_n(A)$ represents the endomorphism of A^n which multiplies by M on the right. $\widetilde{\text{End}}_0(A)$ is isomorphic to the group generated by $\{[M] \mid M \in \bigcup_{n=1}^{\infty} M_n(A)\}$ subject to relations:

1. If $M \in M_n(A)$ and $M' \in M_{n'}(A)$ then $[M] + [M'] = \begin{bmatrix} M & N \\ 0 & M' \end{bmatrix}$ for all $n \times n'$ matrices N .
2. If $M, P \in M_n(A)$ and P is invertible then $[M] = [PMP^{-1}]$.
3. If all the entries in M are zero then $[M] = 0$.

2.2 Rings of Formal Power Series

Let $A[[x]]$ be the ring of formal power series in the central indeterminate x .

To define the generalized characteristic polynomial of (P, α) we observe that $1 - \alpha x$ has inverse $1 + \alpha x + \alpha^2 x^2 + \dots$ when regarded as an endomorphism of $P[[x]] = A[[x]] \otimes_A P$. Thus $1 - \alpha x$ represents an element of $K_1(A[[x]])$. Now

$$\begin{aligned} \widehat{\text{ch}}_x : \widetilde{\text{End}}_0(A) &\rightarrow K_1(A[[x]]) \\ [P, \alpha] &\mapsto [1 - \alpha x : P[[x]] \rightarrow P[[x]]] \end{aligned}$$

is well defined because $\widehat{\text{ch}}_x(P, 0) = 0 \in K_1(A[[x]])$ and an exact sequence (5) gives rise to an exact sequence

$$0 \rightarrow (P[[x]], 1 - \alpha x) \rightarrow (P'[[x]], 1 - \alpha' x) \rightarrow (P''[[x]], 1 - \alpha'' x) \rightarrow 0 .$$

Lemma 2.5. i) $K_1(A[[x]]) = K_1(A) \oplus W_1(A)$ where $W_1(A)$ is the image in $K_1(A[[x]])$ of the group $W(A) = 1 + xA[[x]]$.

ii) If A is commutative then $W_1(A) = W(A) = 1 + xA[[x]]$.

This result and an argument showing that the abelianized group $(1 + xA[[x]])^{\text{ab}}$ is in general larger than $W_1(A)$ can be found in Pajitnov and Ranicki [11].

Proof of Lemma. i) Let ϵ denote the augmentation map $A[[x]] \rightarrow A; x \mapsto 0$. We shall prove that the sequence

$$0 \rightarrow W_1(A) \rightarrow K_1(A[[x]]) \xrightarrow{\epsilon} K_1(A) \rightarrow 0$$

is split exact.

The composite $A \rightarrow A[[x]] \xrightarrow{\epsilon} A$ is the identity map so $\epsilon : K_1(A[[x]]) \rightarrow K_1(A)$ is surjective and split.

We have only to show that an element δ of $K_1(A[[x]])$ which becomes zero in $K_1(A)$ can be written $\delta = [1 + x\xi]$ for some $\xi \in A[[x]]$. We may certainly write $\delta = [\delta_0 + x\delta_1 + x^2\delta_2 + \dots]$ with $\delta_i \in M_n(A)$ for each i and with δ_0 invertible.

Now $[\delta_0] = 0 \in K_1(A)$ so $\delta = [1 + \eta]$ where $\eta = \sum_{i=1}^{\infty} \delta_0^{-1} \delta_i x^i$. Since the diagonal entries of $1 + \eta$ are invertible and all other entries are in $xA[[x]]$, we can reduce $1 + \eta$ by elementary row operations to a diagonal matrix with entries in $1 + xA[[x]]$. Thus $\delta = [1 + x\xi]$ where $1 + x\xi$ is the product of the diagonal entries.

ii) Taking determinants gives a homomorphism to the group of units

$$\det : K_1(A[[x]]) \rightarrow A[[x]]^\bullet$$

Every element of $W_1(A)$ can be written in the form $[1 + x\xi]$ so the restriction of \det to $W_1(A)$ is inverse to the canonical map $1 + xA[[x]] \rightarrow W_1(A)$. \square

2.3 Proof of Proposition 1.1

Recall that S denotes the quotient of the free ring $\mathbb{Z}\langle f, s, g \rangle$ by the two sided ideal generated by the set $\{fs^i g \mid i = 0, 1, 2, \dots\}$. There are two statements to prove:

1.1a) $[S, s]$ and $[S, (1 - gf)s]$ are distinct classes in $\widetilde{\text{End}}_0(S)$.

1.1b) $\widehat{\text{ch}}_x[S, s] = \widehat{\text{ch}}_x[S, (1 - gf)s]$ in $K_1(S[[x]])$.

Proof of 1.1b). We aim to show $[1 - sx] = [1 - (1 - gf)sx] \in K_1(S[[x]])$. In $S[[x]]$ we have

$$f(1 - sx)^{-1}g = fg + (fsg)x + (fs^2g)x^2 + (fs^3g)x^3 + \dots = 0$$

so

$$\begin{aligned} 1 - sx &\sim \begin{pmatrix} 1 & 0 \\ 0 & 1 - sx \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 + f(1 - sx)^{-1}g & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -(1 - sx)^{-1}g & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & f \\ -g & 1 - sx \end{pmatrix} \\ &\sim \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ g & 1 \end{pmatrix} \begin{pmatrix} 1 & -f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & f \\ -g & 1 - sx \end{pmatrix} \begin{pmatrix} 1 & -f \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ 0 & 1 - (1 - gf)sx \end{pmatrix} \quad \text{since } fg = 0 \\ &\sim 1 - (1 - gf)sx. \end{aligned}$$

\square

To prove 1.1a), it is convenient to define a second invariant χ . In terms of matrices,

$$\begin{aligned} \chi : \widetilde{\text{End}}_0(A) &\rightarrow \overline{A}[[x]] \\ [M] &\mapsto \sum_{i=1}^{\infty} \text{Trace}(M^i)x^i \end{aligned}$$

where \overline{A} denotes the quotient of A by the abelian group generated by commutators (cf Pajitnov [9])

$$\overline{A} = \frac{A}{\mathbb{Z}\{ab - ba \mid a, b \in A\}}.$$

Example 2.6. Let X be a set and suppose A is the free ring $\mathbb{Z}\langle X \rangle$ generated by X . The free monoid X^* of words in the alphabet X is a basis for $\mathbb{Z}\langle X \rangle$ as a \mathbb{Z} -module. Each commutator $ab - ba$ with $a, b \in \mathbb{Z}\langle X \rangle$ is a linear combination of ‘basic’ commutators $\sum_i \lambda_i(u_i v_i - v_i u_i)$ where $\lambda_i \in \mathbb{Z}$ and $u_i, v_i \in X^*$ so the commutator submodule $\mathbb{Z}\{ab - ba \mid a, b \in \mathbb{Z}\langle X \rangle\} \subset \mathbb{Z}\langle X \rangle$ is spanned by elements $w - w'$ with $w, w' \in X^*$ and w' a cyclic permutation of w (written $w \sim w'$). Thus $\overline{\mathbb{Z}\langle X \rangle} = \mathbb{Z}\{X^*/\sim\}$.

We emphasize that the abelian group \overline{A} is in general larger than the commutative ring A^{ab} , the latter being the quotient of A by the two-sided ideal generated by $\{ab - ba \mid a, b \in A\}$. Nevertheless, if M and N are $n \times n$ matrices with entries in A then $\text{Trace}(MN) = \text{Trace}(NM) \in \overline{A}$ and it follows that χ is well-defined on $\widetilde{\text{End}}_0(A)$.

Remark 2.7. χ is in general a weaker invariant than $\widehat{\text{ch}}_x$. There is a commutative triangle

$$\begin{array}{ccc} \widetilde{\text{End}}_0(A) & \xrightarrow{\widehat{\text{ch}}_x} & K_1(A[[x]]) \\ & \searrow \chi & \downarrow T \\ & & \overline{A}[[x]] \end{array}$$

where

$$T[M] = -\text{Trace} \left(\left(x \frac{d}{dx} M \right) M^{-1} \right)$$

for $M \in \text{GL}(A[[x]])$. Differentiation is defined formally by

$$\frac{d}{dx} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

Proof of 1.1a). We define a family of rings

$$S_m := \mathbb{Z}\langle f, s, g \mid fg, fsg, \dots, fs^m g \rangle.$$

There is an obvious surjection $p_m : S_m \twoheadrightarrow S_{m+1}$ for each $m \in \mathbb{N}$ and S is the direct limit of the system $S = \varinjlim S_m$.

By lemma A.2 of appendix A we have $\widetilde{\text{End}}_0(S) = \varinjlim \widetilde{\text{End}}_0(S_m)$ so it suffices to prove that for each $m \in \mathbb{N}$

$$[S_m, s] \neq [S_m, (1 - gf)s] \in \widetilde{\text{End}}_0(S_m).$$

We shall see that χ is sensitive enough to distinguish these two endomorphism classes. Indeed, $\chi[S_m, (1 - gf)s] = \sum_{i=1}^{\infty} ((1 - gf)s)^i x^i$ and in particular the coefficient of x^{m+1} is

$$((1 - gf)s)^{m+1} = s^{m+1} - (gfs^{m+1} + sgfs^m + \cdots + s^m gfs) + \text{other terms}$$

where in each of the ‘other terms’ two or more occurrences of gf intersperse $m + 1$ copies of s . Since $ab = ba \in \overline{S_m}$ for all $a, b \in S_m$, one may perform a cyclic permutation of the letters in each term to obtain

$$((1 - gf)s)^{m+1} = s^{m+1} - (m + 1)fs^{m+1}g,$$

the ‘other terms’ disappearing by the defining relations $fg = \cdots = fs^m g = 0$ of S_m . Now the coefficient of x^{m+1} in $\chi[S, s]$ is s^{m+1} so it remains to prove that $(m + 1)fs^{m+1}g \neq 0$ in $\overline{S_m}$. We shall argue by contradiction.

Let X denote the alphabet $\{f, s, g\}$. If $(m + 1)fs^{m+1}g = 0 \in \overline{S_m}$ then there is an equation in $\mathbb{Z}\langle X \rangle$:

$$(m + 1)fs^{m+1}g = \sum_{i=1}^l (w_i - w'_i) + r_0 fgr'_0 + r_1 fsgr'_1 + \cdots + r_m fs^m gr'_m \quad (7)$$

where $r_j, r'_j \in \mathbb{Z}\langle X \rangle$ for $1 \leq j \leq m$ and $w_i, w'_i \in X^*$ are such that $w_i \sim w'_i$ for $1 \leq i \leq l$ as in example 2.6 above.

Let V denote the \mathbb{Z} -module generated by the cyclic permutations of $fs^{m+1}g$ and let W be the \mathbb{Z} -module generated by all other words in X^*

$$\mathbb{Z}\langle X \rangle = V \oplus W = \mathbb{Z}\{w \in X^* \mid w \sim fs^{m+1}g\} \oplus \mathbb{Z}\{w \in X^* \mid w \not\sim fs^{m+1}g\}.$$

Each basic commutator $w - w'$ is either in V or in W and

$$r_0 fgr'_0 + r_1 fsgr'_1 + \cdots + r_m fs^m gr'_m \in W$$

so by equation (7)

$$(m + 1)fs^{m+1}g = \sum_{i \in I} (w_i - w'_i)$$

where $I = \{i \mid w_i \sim fs^{m+1}g\} \subset \{1, \dots, l\}$. We have reached a contradiction (for example put $f = g = s = 1$) and the proof of proposition 1.1 is complete. \square

3 Cohn Localization

In this section, we briefly review Cohn localization before proving proposition 1.2.

3.1 Definitions

If A is a ring and Σ is any set of matrices with entries in A then a ring homomorphism $A \rightarrow B$ is said to be Σ -inverting if every matrix in Σ is mapped to an invertible matrix over B . The Cohn localization $i_\Sigma : A \rightarrow \Sigma^{-1}A$ is the (unique) ring homomorphism with the universal property that every Σ -inverting homomorphism $A \rightarrow B$ factors uniquely through i_Σ . Note that i_Σ is not in general an injection; it may even be the case that $\Sigma^{-1}A = 0$.

If A is commutative then $\Sigma^{-1}A$ coincides with the commutative ring of quotients $S^{-1}R$ with $S = \{\det(M) \mid M \in \Sigma\}$.

For non-commutative A , Cohn constructed $\Sigma^{-1}A$ by generators and relations as follows [5, p390]. For each $m \times n$ matrix $M \in \Sigma$ take a set of mn symbols arranged as an $n \times m$ matrix M' . $\Sigma^{-1}A$ is generated by the elements of A together with all the symbols in the matrices M' , subject to the relations holding in A and the equations $MM' = I$ and $M'M = I$. Schofield [14, ch4] gave a slightly more general construction, inverting a set Σ of homomorphisms between finitely generated projective A -modules.

Given any ring homomorphism $A \rightarrow B$ we may define Σ to be the set of matrices in A which are invertible in B obtaining

$$A \xrightarrow{i_\Sigma} \Sigma^{-1}A \xrightarrow{\gamma} B .$$

Every matrix with entries in $\Sigma^{-1}A$ can be expressed (non-uniquely) in the form $f\sigma^{-1}g$ where f , σ and g are matrices with entries in A and $\sigma \in \Sigma$ (see for example Schofield [14, p52]).

We shall also need the following lemma in section 4:

Lemma 3.1. *A matrix α with entries in $\Sigma^{-1}A$ is invertible if and only if its image $\gamma(\alpha)$ is invertible. In particular, $\text{Im}(\gamma)^\bullet = B^\bullet \cap \text{Im}(\gamma)$.*

Proof. The ‘only if’ part is easy. Conversely, suppose $\gamma(\alpha)$ is invertible and $\alpha = f\sigma^{-1}g$ as above. The equation

$$\begin{pmatrix} 1 & 0 \\ 0 & \sigma \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} f\sigma^{-1}g & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\sigma^{-1}g & 1 \end{pmatrix} = \begin{pmatrix} 0 & f \\ -g & \sigma \end{pmatrix} \quad (8)$$

implies that α is invertible if and only if $\begin{pmatrix} 0 & f \\ -g & \sigma \end{pmatrix}$ is invertible. But applying γ to equation (8) we learn that $\gamma\left(\begin{pmatrix} 0 & f \\ -g & \sigma \end{pmatrix}\right)$ is invertible and hence that $\begin{pmatrix} 0 & f \\ -g & \sigma \end{pmatrix} \in \Sigma$. Thus $\begin{pmatrix} 0 & f \\ -g & \sigma \end{pmatrix}$ and α are invertible over $\Sigma^{-1}A$. \square

3.2 Proof of Proposition 1.2

We recall that S denotes the ring $\mathbb{Z}\langle f, s, g \mid fg, fsg, fs^2g, \dots \rangle$ and let Σ be the set of matrices $\sigma = \sigma_0 + \sigma_1x + \dots + \sigma_nx^n$ with entries in $S[x]$ such that σ_0 is invertible (so σ is invertible in $S[[x]]$).

We will prove the following two statements:

1.2a) The element $f(1 - sx)^{-1}g$ is non-zero in $\Sigma^{-1}S[x]$.

1.2b) $f(1 - sx)^{-1}g$ lies in the kernel of the natural map $\gamma : \Sigma^{-1}S[x] \rightarrow S[[x]]$.

The second statement 1.2b) follows directly from the definition of S

$$\gamma(f(1 - sx)^{-1}g) = fg + (fsg)x + (fs^2g)x^2 + \dots = 0 \in S[[x]].$$

To prove 1.2a) we express S once again as the direct limit $\varinjlim S_m$ with

$$S_m := \mathbb{Z}\langle f, s, g \mid fg, fsg, \dots, fs^m g \rangle$$

and the augmentations $\epsilon : S_m[x] \rightarrow S_m; x \mapsto 0$ fit into a commutative diagram

$$\begin{array}{ccccccc} \cdots & \longrightarrow & S_m[x] & \xrightarrow{p_m} & S_{m+1}[x] & \longrightarrow & \cdots \\ & & \downarrow \epsilon & & \downarrow \epsilon & & \\ \cdots & \longrightarrow & S_m & \xrightarrow{p_m} & S_{m+1} & \longrightarrow & \cdots \end{array}$$

Let Σ_m denote the set of matrices in $S_m[x]$ which become invertible under ϵ , so that $p_m(\Sigma_m) \subset \Sigma_{m+1}$ and $\Sigma = \varinjlim \Sigma_m$. By lemma A.1 of appendix A

$$\Sigma^{-1}S[x] = \varinjlim \Sigma_m^{-1}S_m[x]$$

so it suffices to show that $f(1 - sx)^{-1}g \neq 0 \in \Sigma_m^{-1}S_m[x]$ for each $m \in \mathbb{N}$. But $\gamma(f(1 - sx)^{-1}g) = \sum_{n=0}^{\infty} (fs^n g)x^n$ which is non-zero in $S_m[[x]]$ because there does not exist an equation

$$fs^n g = r_0 fgr'_0 + r_1 fsgr'_1 + \dots + r_m fs^m gr'_m \in \mathbb{Z}\langle f, s, g \rangle$$

with $n > m$ and $r_i, r'_i \in \mathbb{Z}\langle f, s, g \rangle$ for $1 \leq i \leq m$. Thus $f(1 - sx)^{-1}g \neq 0 \in \Sigma_m^{-1}S_m[x]$ and the proof of proposition 1.2 is complete.

4 Many Indeterminates

Let A be any ring, let $X = \{x_1, \dots, x_\mu\}$ be a finite set, and let X^* be the free monoid of words in the alphabet X . The free A -algebra

$$A\langle X \rangle = A \otimes_{\mathbb{Z}} \mathbb{Z}\langle X \rangle$$

is graded by word length in X^* and is therefore a subring of its completion $A\langle\langle X \rangle\rangle$ the elements of which are formal power series $p = \sum_w p_w w$ with $p_w \in A$ for each $w \in X^*$.

Let Σ denote the set of matrices in $A\langle X \rangle$ which are sent to an invertible matrix by the augmentation $\epsilon : A\langle X \rangle \rightarrow A; x_i \mapsto 0$ for all i . Σ is precisely the set of matrices which are invertible over $A\langle\langle X \rangle\rangle$ so the inclusion of $A\langle X \rangle$ in $A\langle\langle X \rangle\rangle$ factors uniquely through $\Sigma^{-1}A\langle X \rangle$:

$$A\langle X \rangle \xrightarrow{i_\Sigma} \Sigma^{-1}A\langle X \rangle \xrightarrow{\gamma} A\langle\langle X \rangle\rangle .$$

4.1 Rational Power Series

In this section we describe the image of γ .

Definition 4.1. Let \mathcal{R}^A denote the rational closure of $A\langle X \rangle$. In other words \mathcal{R}^A is the intersection of all the rings R such that $A\langle X \rangle \subset R \subset A\langle\langle X \rangle\rangle$ and $R^\bullet = R \cap A\langle\langle X \rangle\rangle^\bullet$. A power series $p \in \mathcal{R}^A$ is said to be *rational*.

Proposition 4.2. $\gamma(\Sigma^{-1}A\langle X \rangle) = \mathcal{R}^A$.

Proof. To prove $\mathcal{R}^A \subset \text{Im}(\gamma)$, we need only note that $\text{Im}(\gamma)^\bullet = \text{Im}(\gamma) \cap A\langle\langle X \rangle\rangle^\bullet$ by lemma 3.1 above.

Conversely, to prove that $\text{Im}(\gamma) \subset \mathcal{R}^A$ it suffices to show that every matrix $\sigma \in \Sigma$ has an inverse with entries in \mathcal{R}^A so that there is a commutative diagram

$$\begin{array}{ccccc} & & A\langle X \rangle & & \\ & & \downarrow i_\Sigma & & \\ & & \Sigma^{-1}A\langle X \rangle & \longrightarrow & \mathcal{R}^A \longrightarrow A\langle\langle X \rangle\rangle. \end{array}$$

Recall that $\epsilon : A\langle X \rangle \rightarrow A$ is the augmentation given by $\epsilon(x_i) = 0$ for all i . Multiplying σ by $\epsilon(\sigma)^{-1}$ if necessary we can assume that $\epsilon(\sigma) = I$. Each diagonal entry of σ has an inverse in \mathcal{R}^A so, after elementary row operations (which are of course invertible), σ becomes a diagonal matrix where each diagonal entry σ_{ii} has $\epsilon(\sigma_{ii}) = 1$ (cf the proof of lemma 2.5i) above). By the definition of \mathcal{R}^A , each σ_{ii} has an inverse in \mathcal{R}^A . \square

4.2 Schützenberger's Theorem

Proposition 4.3. Every matrix α with entries in $\Sigma^{-1}A\langle X \rangle$ can be expressed (non-uniquely) in the form

$$\alpha = f(1 - s_1x_1 - \cdots - s_\mu x_\mu)^{-1}g \quad (9)$$

where f, s_1, \dots, s_μ and g are matrices with entries in A .

Proof. It suffices to show that α has the form $f\sigma^{-1}g$ where f and g have entries in A and σ is a linear matrix $\sigma = \sigma_0 + \sum_{i=1}^\mu \sigma_i x_i$ with σ_0 invertible. For then $\alpha = (f\sigma_0)(\sigma_0^{-1}\sigma)g$.

Note first that if $\alpha_1 = f_1\sigma_1^{-1}g_1$ and $\alpha_2 = f_2\sigma_2^{-1}g_2$ then

$$\alpha_1 - \alpha_2 = (f_1 - f_2) \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}^{-1} \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} \quad (10)$$

and

$$\alpha_1\alpha_2 = (f_1 0) \begin{pmatrix} \sigma_1 & -g_1 f_2 \\ 0 & \sigma_2 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ g_2 \end{pmatrix} \quad (11)$$

whenever the left-hand sides make sense (cf [14, p52]). Hence, we need only treat the cases where i) α has entries in $A\langle X \rangle$ and ii) $\alpha = \sigma^{-1}$ with $\sigma \in \Sigma$.

If α has entries in $A\langle X \rangle$ then by repeated application of the equation

$$\begin{pmatrix} a + bc & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ -c & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}, \quad (12)$$

in which a, b, c and 1 denote matrices, some stabilisation $\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ can be expressed as a product of linear matrices. Each linear matrix $a_0 + a_1x_1 + \dots + a_\mu x_\mu$ can be written

$$(1 \ 0) \begin{pmatrix} 1 & -a_0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \sum_{i=1}^{\mu} (1 \ 0) \begin{pmatrix} 1 & -a_i x_i \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

and equations (10) and (11) imply that $\alpha = (1 \ 0) \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is of the required form $f\sigma^{-1}g$.

The case $\alpha = \sigma^{-1}$ is similar but slightly easier; we repeatedly apply equation (12) to express (a stabilisation of) σ^{-1} as a product of inverses of linear matrices in Σ and then apply equation (11). \square

A power series $p \in A\langle\langle X \rangle\rangle$ is said to be *recognisable* if it is of the form

$$p = fg + \sum_{i=1}^{\mu} fs_i g x_i + \sum_{i,j=1}^{\mu} fs_i s_j g x_i x_j + \dots$$

where $f \in A^n$ is a row vector, $g \in A^n$ is a column vector and each s_i is an $n \times n$ matrix in A . Propositions 4.3 and 4.2 imply

Corollary 4.4 (Schützenberger's theorem). *A power series $p \in A\langle\langle X \rangle\rangle$ is rational if and only if it is recognisable.*

5 Localization of the Free Group Ring

We identify the localization of the group ring of the free group studied by Farber and Vogel [6] with the localization $\Sigma^{-1}A\langle X \rangle$ of the present paper.

Let F_μ denote the free group on generators z_1, \dots, z_μ and as usual let A be a (not necessarily commutative) ring. AF_μ will denote the group ring, in which the elements of the group F_μ are assumed to commute with elements of A . Let $\epsilon : AF_\mu \rightarrow A$; $z_i \mapsto 1$ for all i and let Ψ denote the set of square matrices M in AF_μ such that $\epsilon(M)$ is invertible. Ψ is denoted Σ in [6].

All the matrices in Ψ become invertible under the Magnus embedding of the group ring

$$\begin{aligned} AF_\mu &\rightarrow A\langle\langle X \rangle\rangle \\ z_i &\mapsto 1 + x_i \\ z_i^{-1} &\mapsto 1 - x_i + x_i^2 - x_i^3 \dots \end{aligned}$$

so the embedding factors through $\Psi^{-1}AF_\mu$

$$AF_\mu \xrightarrow{i_\Psi} \Psi^{-1}AF_\mu \xrightarrow{\gamma} A\langle\langle X \rangle\rangle .$$

Farber and Vogel proved that if A is a (commutative) principle ideal domain then γ is an injection and the image of γ is the ring \mathcal{R}^A of rational power series.

For any ring A let $m : A\langle X \rangle \rightarrow AF_\mu$ be the ring homomorphism defined by $x_i \mapsto z_i - 1$ for all i . There is a commutative diagram

$$\begin{array}{ccc} A\langle X \rangle & \xrightarrow{\epsilon} & A \\ m \downarrow & \nearrow \epsilon & \\ AF_\mu & & \end{array}$$

so $m(\Sigma) \subset \Phi$ and m induces a homomorphism $m : \Sigma^{-1}A\langle X \rangle \rightarrow \Psi^{-1}AF_\mu$ which fits into a commutative diagram

$$\begin{array}{ccccc} A\langle X \rangle & \xrightarrow{i_\Sigma} & \Sigma^{-1}A\langle X \rangle & \xrightarrow{\gamma} & A\langle\langle X \rangle\rangle \\ m \downarrow & \nearrow l & \downarrow m & \nearrow \gamma & \\ AF_\mu & \xrightarrow{i_\Psi} & \Psi^{-1}AF_\mu & & \end{array}$$

Proposition 5.1. $m : \Sigma^{-1}A\langle X \rangle \rightarrow \Psi^{-1}AF_\mu$ is an isomorphism.

Proof. Observe first that AF_μ is isomorphic to the Cohn localization

$$\{1 + x_i \mid 1 \leq i \leq \mu\}^{-1}A\langle X \rangle$$

inverting the 1×1 matrices $(1 + x_i)$. Since $(1 + x_i) \in \Sigma$ the homomorphism i_Σ factors uniquely through AF_μ as indicated by the broken arrow l in the commutative diagram above. Explicitly, $l : AF_\mu \rightarrow \Sigma^{-1}A\langle X \rangle$; $z_i \mapsto 1 + x_i$. Now if $\psi \in \Psi$ then $\gamma l(\psi)$ is invertible so by lemma 3.1 $l(\psi)$ is invertible. Thus l induces a map $\Psi^{-1}AF_\mu \rightarrow \Sigma^{-1}A\langle X \rangle$ which, by the universal properties of i_Σ and i_Ψ , is inverse to m . \square

A Direct Limits

In this appendix we prove that Cohn localization and the functor $\widetilde{\text{End}}(\underline{})$ commute with direct limits.

A.1 Cohn Localization

First we make the former claim more precise. Suppose I is a directed set and $(\{A_m\}_{m \in I}, \{f_m^l : A_m \rightarrow A_l\}_{m \leq l})$ is a direct system of rings. Suppose further that for each $m \in I$ we have a set of matrices Σ_m with entries in A_m such

that $f_m^l(\Sigma_m) \subset \Sigma_l$ whenever $m \leq l$. If $i_m : A_m \rightarrow \Sigma_m^{-1}A_m$ is the universal Σ_m -inverting ring homomorphism for each m , then when $m \leq l$ the composite

$$A_m \xrightarrow{f_m^l} A_l \xrightarrow{i_l} \Sigma_l^{-1}A_l$$

is Σ_m -inverting and therefore factors through a map $\Sigma_m^{-1}f_m^l : \Sigma_m^{-1}A_m \rightarrow \Sigma_l^{-1}A_l$. It is easy to see that $\Sigma_m^{-1}f_l^k \circ \Sigma_m^{-1}f_m^l = \Sigma_m^{-1}f_m^k$ when $m \leq l \leq k$.

For any ring A let $\mathcal{M}(A)$ denote the set of matrices (of any size and shape) with entries in A . The inclusions $\Sigma_m \subset \mathcal{M}(A_m)$ induce an injection

$$\varinjlim \Sigma_m \rightarrow \varinjlim \mathcal{M}(A_m) = \mathcal{M}(\varinjlim A_m).$$

Lemma A.1. *There is a natural isomorphism*

$$(\varinjlim \Sigma_m)^{-1}(\varinjlim A_m) \cong \varinjlim (\Sigma_m^{-1}A_m).$$

Proof. One can check that the canonical map $\varinjlim i_m : \varinjlim A_m \rightarrow \varinjlim \Sigma_m^{-1}A_m$ is universal among $(\varinjlim \Sigma_m)^{-1}$ -inverting homomorphisms. The details are left to the reader. \square

A.2 The Endomorphism Class Group

Lemma A.2. *There is a natural isomorphism*

$$\varinjlim \widetilde{\text{End}}_0(A_m) \cong \widetilde{\text{End}}_0(\varinjlim A_m).$$

Proof. The canonical maps $f_m : A_m \rightarrow \varinjlim A_m$ induce maps $f_m : \widetilde{\text{End}}_0(A_m) \rightarrow \widetilde{\text{End}}_0(\varinjlim A_m)$ satisfying $f_l f_m^l = f_m$ for $m \leq l$. We aim to prove that any other system of maps $g_m : \widetilde{\text{End}}_0(A_m) \rightarrow T$ with $g_l f_m^l = g_m$ for $m \leq l$ factors uniquely through $\widetilde{\text{End}}_0(\varinjlim A_m)$:

$$\begin{array}{ccc} \{\widetilde{\text{End}}_0(A_m)\} & \xrightarrow{\{g_m\}} & T \\ \downarrow \{f_m\} & \dashrightarrow & \\ \widetilde{\text{End}}_0(\varinjlim A_m) & & \end{array}$$

Suppose $[M]$ is a generator of $\widetilde{\text{End}}_0(\varinjlim A_m)$ where $M \in M_n(\varinjlim A_m)$. M is the image $f_m(M_m)$ of some matrix $M_m \in M_n(A_m)$ so we can define $g[M] = g_m[M_m]$. To show g is well-defined there are two things to check:

- i) If $M_l \in M_n(A_l)$ is an alternative choice with $f_l(M_l) = M$ then we require $g_m[M_m] = g_l[M_l]$. Indeed, there exists k such that $l \leq k, m \leq k$ and $f_l^k(M_k) = f_m^k(M_m) \in M_n(A_k)$. Hence $g_m[M_m] = g_k f_m^k[M_m] = g_k f_l^k[M_l] = g_l[M_l]$.
- ii) We must check that g respects the defining relations of $\widetilde{\text{End}}_0(\varinjlim A_m)$.

1. A matrix $\begin{pmatrix} M & N \\ 0 & M' \end{pmatrix}$ is the image of some matrix $\begin{pmatrix} M_m & N_m \\ 0 & M'_m \end{pmatrix}$ so

$$g \begin{bmatrix} M & N \\ 0 & M' \end{bmatrix} = g_m \begin{bmatrix} M_m & N_m \\ 0 & M'_m \end{bmatrix} = g_m([M_m] + [M'_m]) = g[M] + g[M'].$$
2. Suppose $M' = PMP^{-1}$ for some invertible matrix P . For large enough m we can choose $P_m, Q_m \in M_n(A_m)$ to represent P and P^{-1} respectively. Since $I = f_m(P_m)f_m(Q_m)$ there exists $k \geq m$ such that $P_kQ_k = I \in M_n(A_k)$ where $P_k = f_m^k P_m$ and $Q_k = f_m^k Q_m$. Thus $M' = f_k(P_k M_k P_k^{-1})$ and $g[M'] = g_k[P_k M_k P_k^{-1}] = g_k[M_k] = g[M]$.
3. If M is the zero matrix, $g[M] = 0$.

Uniqueness of g follows from the fact that every class $[M]$ in $\widetilde{\text{End}}_0(\varinjlim A_m)$ is an image of a class $[M_m] \in \widetilde{\text{End}}_0(A_m)$. \square

References

- [1] G. Almkvist. Endomorphisms of finitely generated projective modules over a commutative ring. *Arkiv för Matematik*, 11:263–301, 1973.
- [2] G. Almkvist. The Grothendieck ring of the category of endomorphisms. *Journal of Algebra*, 28:375–388, 1974.
- [3] J. Berstel and C. Reutenauer. *Rational Series and Their Languages*. Springer, Berlin, 1988.
- [4] P. M. Cohn. Algebra and language theory. *Bulletin of the London Mathematical Society*, 7:1–29, 1975.
- [5] P. M. Cohn. *Free Rings and their Relations*. Academic Press, London, 2nd edition, 1985.
- [6] M. Farber and P. Vogel. The Cohn localization of the free group ring. *Proceedings of the Cambridge Philosophical Society*, 111:433–443, 1992.
- [7] Daniel R. Grayson. The K-theory of endomorphisms. *Journal of Algebra*, 48:439–446, 1977.
- [8] J.L. Kelley and E.H. Spanier. Euler characteristics. *Pacific Journal of Mathematics*, 26(2):317–339, 1968.
- [9] A. Pajitnov. Closed orbits of gradient flows and logarithms of non-abelian Witt vectors. To appear in *K-theory* e-print server, <http://xxx.soton.ac.uk/math/9908010>.
- [10] A. Pajitnov. On the Novikov complex for rational Morse forms. *Annales de la Faculté des Sciences de Toulouse*, IV(2):297–338, 1995.

- [11] A. Pajitnov and A. A. Ranicki. The Whitehead group of the Novikov ring. To appear in *K-theory*. e-print server, <http://xxx.soton.ac.uk/math.AT/0012031>.
- [12] A. A. Ranicki. *High-Dimensional Knot Theory*. Springer, Berlin, 1998.
- [13] J. Rosenberg. *Algebraic K-theory and Its Applications*. Springer, New York, 1994.
- [14] A. H. Schofield. *Representations of Rings over Skew Fields*, volume 92 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge, 1985.
- [15] M.P. Schützenberger. On the definition of a family of automata. *Information and Control*, 4:245–270, 1961.
- [16] M.P. Schützenberger. On a theorem of R. Jungen. *Proceedings of the American Mathematical Society*, 13:885–890, 1962.

Department of Mathematics and Statistics,
 The University of Edinburgh,
 King's Buildings,
 Edinburgh EH9 3JZ,
 Scotland, UK.

e-mail: des@sheiham.com