Object-Oriented Databases (OODB) Object Relational Databases (ORDBMS)

Douglas S. Kerr CIS 671

OO DB - ORDBMS

Object Database Systems

(Elmasri & Navathe, Ch 11-13)

- Object-Oriented Database Systems (ODBMS)
- Object-Relational Database Systems (ORDBMS)

OO DB - ORDBMS

Why? Briefly

- Object-Oriented Databases (OODBMS)
 - Add persistence to object-oriented programming languages
- Object Relational Databases (ORDBMS)
 - Add user-defined methods to relational databases
 - Allow grouping of relations into more complex "objects"

OO DB - ORDBMS

Review of Object-Oriented Concepts

OO DB - ORDBMS

Object

- State (value)
- Behavior (operations)
 - *Signature* or *interface*: operation name and arguments
 - Method or body: implementation
- Identified by unique Object Identifier (OID)

OO DB - ORDBMS

DB - ORDBMS 5

Class

- Group of similar objects
- · Class hierarchies
 - Inheritance
- Persistence must be specified explicitly
 - Via entry point a named object
 - Via reachability \exists sequence of references from named persistent object

OO DB - ORDBMS

Type Hierarchies and Inheritance (EER – superclass/subclass relationship)

PERSON: Name, Address, Birthdate, Age, SSN

EMPLOYEE: subtype-of PERSON: Salary, HireDate, Seniority

STUDENT: subtype-of PERSON: Major, GPA

EMPLOYEE: Name, Address, Birthdate, Age, SSN, Salary, HireDate, Seniority STUDENT: Name, Address, Birthdate, Age, SSN,

Major, GPA

OO DB - ORDBMS

Object Data Management Group (ODMG)

- · Object Model
- Object Definition Language (ODL)
- Object Query Language (OQL)
- Bindings to object-oriented programming languages
 - C++, Java, Smalltalk

OO DB - ORDBMS

ODMG Object Model

- Object
 - Identifier (unique OID)
 - Name (like primary key, optional)
 - Lifetime (persistent or transient)
 - Structure (atomic or collection object)
 - How to construct using type constructors

OO DB - ORDBMS

Example: 4-Input AND Gate Built From Three (3) 2-Input AND Gates

4-Input AND Gate in a Relational **Database**

GateT	уре			
GT*	Description	AbsLoc	PowerCons	Shape
2AND	"C=A & B"			
4AND	"E=A&B&C&D"			

PinType					
GT*	PT*	I/O			
2AND	Α	_			
2AND	В	_			
2AND	С	0			
4AND	Α	_			
4AND	В	_			
4AND	С	_			
4AND	D				
4AND	Е	0			

11

GT GI* Parent 2AND C1 4AND 2AND C2 4AND 2AND C3 4AND 4AND P WireInstance | WI* | GI1 | Pin1 | GI2 | Pin2 | Parent | W1 | P | A | C1 | A | 4AND | W4 P D W5 C1 C W6 C2 C 4AND 4AND 4AND OO DB - ORDBMS 12

2

Problems

- The relational model has no notion of a single object.
- There is spatial data present, e.g., location of a gate.
- There will be versions.
- There may also be configurations, i.e variations of the same design.

OO DB - ORDBMS

- Functions (or derived values) may be desired.
 - Examples:

PowerCons(GateType) = $\Sigma \ PowerCons(ComponentGateInstances)$

AbsLoc(GateInstance) = transformation(RelLoc(GateInstance),
AbsLoc(GateType containing GateInstance))

OO DB - ORDBMS

Relational is Good For

- · Fixed format data
- Transaction processing: simple short transactions
- · Query processing
- · Concurrency control
- · Recovery from crashes

Problems With the Relational Model - 1

- Nonhomogeneous collection of design objects.
- Data Types: images, matrices, vectors; variable length.
- Temporal and/or spatial data.
- · Many data types; few instances of each type.

Problems With the Relational Model - 2

- Schemas evolve during design.
- · Long running transactions: "checkout a design".
- · Versions; design log.

OO DB - ORDBMS

17

Problems With the Relational Model - 3

- · Functions needed:
 - Making a design permanent,
 - Releasing design to production,
 - Archiving design,
 - etc.
- · Library of design objects:
 - minimize redundancy.

OO DB - ORDBMS

18

Object-Oriented Concepts - 1

- · Complex Objects:
 - sets.
 - bags,
 - lists,
 - arrays,
 - tuples.

OO DB - ORDBMS

19

Object-Oriented Concepts - 2

- Object Identity: identify by object id (oid) rather than by an attribute value, never changes.
- Encapsulation: Operations and Data available to user.
- Implementation hidden. No other operations available.

OO DB - ORDBMS

20

Object-Oriented Concepts - 3

- Types and/or Classes:
 - Type:
 - Interface and Implementation.
 - Types declared, checked at compile-time
 - Class:
 - Instances created at run-time

OO DB - ORDBMS

21

Object-Oriented Concepts - 4

- Class or Type Hierarchies:
 - Inheritance: both data and function
 example: student: undergraduate, graduate
- Overriding, overloading, and late binding:
 - $\ Polymorphism$

B - ORDBMS 22

Object-Oriented Concepts - 5

- Computational Completeness:
- Extensibility:
 - Means to define new types.
 - User types not distinguished from system types.
- Persistence:
 - Not present in OO programming languages.
 - Should be implicit not explicit.

OO DB - ORDBMS

23

Object-Oriented Concepts - 6

- Secondary Storage Management:
- Concurrency:
- · Recovery:
- Ad Hoc Query Facility:

OO DB - ORDBMS

BMS 24

Operations

- NumberOfEmployeesInDepartment (d: Department): integer
- EmployeeAge(e: Employee): integer

- ORDBMS

Observations from Department Example

- · Duplication of data
 - Employee "Wong" information
 - 3 locations "Bellaire", "Sugarland", "houston"
- Give each "object" an "objectID" or OID
- In some sense a reversion to navigation

OO DB - ORDBMS 29

Development of Object-based Systems

- Object-Oriented Database Systems
 - An alternative to relational systems
 - Application domains where objects play central role
 - Heavily influenced by object-oriented programming languages
 - An attempt to add DBMS functionality to a programming language environment

OO DB - ORDBMS 30

Development of Object-based Systems - cont.

- Object-Relational Database Systems
 - An attempt to extend relational databases
 - Broader set of applications
 - Provide bridge between relational and objectoriented systems

OO DB - ORDBMS

31