Week 11 F2F Example Solutions

1. Example 10.1

(a) Let
$$\mathbf{P} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
. Then $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

(b)
$$\mathbf{A}^{10} = \begin{pmatrix} 1 & 0 & 4^{10} - 1 \\ 0 & 4^{10} & 0 \\ 0 & 0 & 4^{10} \end{pmatrix}$$

(c) For example, let
$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 and $B = PCP^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Then $B^2 = A$.

2. Example 10.2

- (a) The eigenvalues are 2, 0, 1 and -1.
- (b) u_1 is an eigenvector associated with 2.

 u_2 is an eigenvector associated with 0.

 $u_3 + u_4$ is an eigenvector associated with 1.

 $u_3 - u_4$ is an eigenvector associated with -1.

(c) Note that u_1 , u_2 , u_3 , $u_3 + u_4$, $u_3 + u_4$ are linearly independent eigenvectors. Since \mathbf{B} is 4×4 and has 4 linearly independent eigenvectors, it is diagonalizable.

3. Example 10.3

Use cofactor expansion along the first row:

The first determinant above is d_{n-1} . By using cofactor expansion along the first column, we find that the second determinant is d_{n-2} . So

$$d_n = 3d_{n-1} - d_{n-2}.$$

Note that $d_1 = 3$ and $d_2 = \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} = 8$.

By the procedure discussed in F2F10, we obtain

$$d_n = \left(\frac{5+3\sqrt{5}}{10}\right) \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{5-3\sqrt{5}}{10}\right) \left(\frac{3-\sqrt{5}}{2}\right)^n.$$
 (*)

Working for (*) Let $\lambda_1 = \left(\frac{3+\sqrt{5}}{2}\right)$ and $\lambda_2 = \left(\frac{3-\sqrt{5}}{2}\right)$.

Then $d_n = A\lambda_1^2 + B\lambda_2^n$ for some $A, B \in \mathbb{R}$. When n = 1, 2, we have

$$\begin{cases} 3 = A\lambda_1 + B\lambda_2 \\ 8 = A\lambda_1^2 + B\lambda_2^2 \end{cases}$$

Subtracting the second equation from λ_1 times the first equation, we have

$$12\lambda_1 - 32 = B(6\sqrt{5} - 10) \Rightarrow B = \frac{14 - 6\sqrt{5}}{10 - 6\sqrt{5}} \times \frac{10 + 6\sqrt{5}}{10 + 6\sqrt{5}} \Rightarrow B = \left(\frac{5 - 3\sqrt{5}}{10}\right).$$

Solving for A, we now have

$$A = \left(\frac{5 + 3\sqrt{5}}{10}\right).$$