INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Department of Chemical Engineering

CH3050 Process Dynamics & Control

Assignment #5

Due: April 30, 2020

Exercise

1. A process $G_p(s)$ is in feedback control with a P-controller using a measuring element $G_{sens}(s)$.

$$G_p(s) = \frac{s^2 + 4s + 8}{s(s+1)(s+3)}; \quad G_{sens}(s) = \frac{1}{s+10}$$

- (a) Sketch the root locus of a feedback compensated closed-loop system consisting of as the proportional controller gain K_c varies from 0 to $+\infty$. Compute the asymptotes angles, centroid, angles of arrival, break-in and entry points.
- (b) Generate the root locus on the computer and verify your sketch (do not reverse the order of parts (b) and (a) for your own benefit!)
- (c) Find the value of K_c such that the dominant poles of the closed-loop system have a damping ratio of 0.4.
- (d) If a PI-controller $G_c(s) = \left(K_c + \frac{K_I}{s}\right)$ was used instead, find the ultimate value of K_I with the value of K_c fixed to what you obtained in (1c).
- 2. A process with the transfer function $G(s)=\frac{2(s+1)}{10s^2+7s+1}e^{-2s}$ is placed in feedback with a controller $G_c(s)$
 - (a) Suppose G_c is a P-controller. Design K_c s.t. the gain margin is 8.2 dB. Report the corresponding PM.
 - (b) Using the K_c value in part (2a), now design a PI controller of the form $G_c(s)=K_c\left(1+\frac{1}{\tau_I s}\right)$ s.t. the phase margin is 60° . Report the corresponding GM.
 - (c) Plot the step response (set-point change) of the resulting closed-loop system.
 - (d) Evaluate the sensitivity function of the feedback system with the above settings. Verify numerically that indeed Bode's sensitivity integral holds (up to the numerical approximation).
- 3. A process has the transfer function $G(s) = \frac{2}{s^2 + 3s 10}e^{-s}$
 - (a) Ignoring the delay, design a P controller (call it G_{c1}) such that the closed-loop system is stable and has the dominant pole located at p=-1.
 - (b) Design another P controller (call it G_{c2}) using the Nyquist diagram such that the gain margin is 1.5 dB.
 - (c) Compare the performances of above two controllers for step-type set-point change and disturbance. Would the performance of first controller improve if we had taken into account the delay using a Padé's second-order approximation?