Docker Essentials

Docker

Traditional Deployment Architecture

server : application 1 : 1

26 February 2020 Containerization with Docker

3

Less Utilization in Traditional Architecture

Virtual Machine to the Rescue

Physical Machine

Virtual Machine provides better utilization

10 x Apps | 10 x Physical Machines | Less than 10% utilization

Physical Machine

But Virtual Machine increases Licensing Cost

Each VM needs a separate OS

Physical Machine

8

More OSes doesn't increase Business Value

> OS != Business Value

9

Physical Machine

OS takes most of the Resources

Why use separate OS for each App?

Containerization

- Encapsulation of an application and its required environment.
- The process of packaging an application along with its required libraries, frameworks, and configuration files together so that it can be run in various computing environments efficiently.

Containers to the Rescue

Containers are more lightweight than Virtual Machines

Containers vs VM

Physical Machine

Physical Machine

Containers vs VM

Hypervisor Architecture Container Architecture

OS takes more resources and Licensing cost

100GB disk space x 10 = 40GB RAM 50% CPU

Physical Machine

Containers takes less resources

Containers consume less CPU, RAM and disk resource than Virtual Machines

How containers work?

Physical Machine

What is Docker?

- Docker is an open-source project
 - that automates the deployment of applications inside software containers,
 - by providing an additional layer of abstraction and
 - automation of operating system—level virtualization on Linux.

Practical

Docker Architecture

Image

- Persisted snapshot that can be run
- Common Docker Commands:
 - images: List all local images
 - run: Create a container from an image and execute a command in it
 - tag: Tag an image
 - pull: Download image from repository
 - rmi: Delete a local image

Container

- Runnable instance of an image
- Common Docker Commands
 - ps: List all running containers
 - ps –a: List all containers (incl. stopped)
 - top: Display processes of a container
 - start: Start a stopped container
 - stop: Stop a running container
 - pause: Pause all processes within a container
 - rm: Delete a container
 - commit: Create an image from a container

Docker Registry

