Geometric Transformations Lectures

Second Semester

Nghia Doan

Math Club & Competitions Victoria, BC, Canada

- $(1) \ \textbf{January 5} : \ \mathsf{Geometric \ Transformations \ II} : \ \mathsf{Translations}. \ \mathsf{Half \ Turns}. \ \mathsf{Sum \ of \ Half \ Turns}.$
- (2) January 19: Geometric Transformations III: Rotations by an Angle. Reflections over a Line.
- (3) February 9: Geometric Transformations IV: Homothety.

Translation - Example 1

Example

Given circles ω_1 , ω_2 , and line ℓ .

Construct a segment AB parallel with ℓ with a given length AB=c, such that $A\in\omega_1$ and $B\in\omega_2$.

Translation - Example 1 - Solution

Translate the circle ω_1 to ω' by a distance $O_1O'=c$ and $O_1O'\parallel\ell$.

The intersections (if any) ω_2 and ω' are B and B'.

They are the images of the translation of points A and A'. Thus AB = A'B' = c.

Translation - Example 2

Example

ABCD is a quadrilateral such that AD=BC. M and N are midpoints of AB and CD, respectively.

E is the intersection of (the extensions of) AB and CD.

Prove that MN is parallel to the line ℓ , the angle bisector of $\angle AEB$.

Translation - Example 2 - Solution

Translate AD and BC to MM_1 and MM_2 , respectively. Then DM_1 and CM_2 are the images of AM and BM by the translation, thus $DM_1 \parallel CM_2$ and $DM_1 = CM_2$. Thus, DM_1CM_2 is a parallelogram.

 $\triangle NDM_1 \cong \triangle NCM_2$, thus M_1, N, M_2 are collinear. Therefore $NM_1 = NM_2$.

 MM_1M_2 is an isosceles triangle, thus the median MN is the angle bisector, which is parallel to the angle bisector of $\angle AEB$.

Translation - Example 3

Example

The point O is situated inside the parallelogram ABCD such that $\angle AOB + \angle COD = 180^{\circ}$. Prove that $\angle OBC = \angle ODC$.

Translation - Example 3 - Solution

Translation - Example 3 - Solution

The translation by \overrightarrow{AD} maps A to D, B to C, and O to O'.

Translation - Example 3 - Solution

The translation by \overrightarrow{AD} maps A to D, B to C, and O to O'.

ABCD is a parallelogram, $AD \parallel BC, AD = BC$. By the translation, $OO' \parallel AD, OO' = AD$, thus $OO' \parallel BC, OO' = BC$. Therefore OBCO' is a parallelogram. It implies that $\angle OBC = \angle OO'C$.

Translation - Example 3 - Solution

The translation by \overrightarrow{AD} maps A to D, B to C, and O to O'.

ABCD is a parallelogram, $AD \parallel BC, AD = BC$. By the translation, $OO' \parallel AD, OO' = AD$, thus $OO' \parallel BC, OO' = BC$. Therefore OBCO' is a parallelogram. It implies that $\angle OBC = \angle OO'C$.

Since $\angle AOB + \angle COD = 180^{\circ}$, so $\angle DO'C + \angle COD = 180^{\circ}$, or CODO' is cyclic. Therefore $\angle ODC = \angle OO'C$. Hence, $\boxed{\angle OBC = \angle ODC}$.

Half Turns - Example 1

Example

Construct a line through A intersecting line ℓ and circle ω at P and Q, respectively, such that AP=AQ.

Rotate the line ℓ half turn around A. Assume that ℓ' , the image of ℓ , intersects ω at Q. Draw a line through A,Q intersects ℓ at P, then:

$$rac{1}{2}$$
 turn : $P o Q$.

We have: (1) P is on ℓ , (2) Q is on ω ($\cap \ell'$), (3) A, P, Q are collinear, and (4) AP = AQ.

We have at most two solutions (why?)

Half Turns - Example 2

Example

P is an intersection point of circles ω_1 and ω_2 . Construct a line through P intersecting ω_1 and ω_2 at A and B, respectively, such that AP=PB.

Let **rotate** ω_2 **half turn** (180°) around (or reflect ω_2 over point) P.

Let A be the other intersection of ω_1 and the image of ω_1 (the dotted circle) and B be the intersection of AP with ω_2 , then:

$$\frac{1}{2}$$
 turn : $B \rightarrow A$.

We have: (1) A is on ω_1 (\cap ω_2'), (2) B is on ω_2 , (3) P, A, B are collinear, and (4) AP = PB.

Half Turns - Example 2 - Solution

How many solutions?

- **1** If $|\omega_1 \cup \omega_2| = 2$, then we have 1 solution.
- ② If $|\omega_1 \cup \omega_2| = 1$, then we have no solution (why?)
- **9** If $|\omega_1 \cup \omega_2| = 0$, and the two radii are the same then we have infinitely many solutions otherwise no solution (why?).

Half Turns - Example 3

Example

P is an intersection point of circles ω_1 and ω_2 . Construct a line through P intersecting ω_1 and ω_2 at A and B, respectively, such that AP=2PB.

If M is the midpoint of AP, then $\angle OMP = 90^{\circ}$ and MP = PB. Thus M is the intersection of ω'_2 , the image of ω_2 , and the circle γ diameter O_1P .

Thus we rotate ω_2 half turn about P. Then we draw the circle γ diameter O_1P . Their intersection is M. Line through MP intersects ω_1 and ω_2 at A and B respectively.

$$AM \stackrel{OM \perp MP}{=} MP \stackrel{B \rightarrow M}{=} PB \Rightarrow AP = 2PB.$$

Half Turns - Example 4

Example

AB and CD are chords of circle ω . J is a point on CD. Find point X on the circumference of ω such that JG = JF, where G and F are intersections of CD with XA and XB, respectively.

Half Turns - Example 4 - Solution

The condition GJ = JF give us the idea to rotate X half turn about J to X'.

 $\triangle XGJ \cong \triangle XFJ$ shows that $\angle XGJ = \angle JFX$, thus $FX' \parallel XA$. Or $\angle X'FB = \angle AXB = \widehat{AB}$.

Half Turns - Example 4 - Solution

We rotate A half turn about I to A'. Therefore, AXA'X' is a parallelogram.

Half Turns - Example 4 - Solution

 $A'X' \parallel XA$ thus X, F, A' are collinear.

Half Turns - Example 4 - Solution

$$\angle A'FB = 180^{\circ} - \angle F'XB = 180^{\circ} - \angle AXB = 180^{\circ} - \frac{1}{2}\widehat{AB}.$$

Hence, we first construct A', then F is the intersection the arc $\widehat{A'B}$ with measure $180^{\circ} - \frac{1}{2}\widehat{AB}$ (how to construct an arc knowing the measure of the angle subtending it?) with the chord \widehat{CD} .

Finally X is the intersection of BF with ω .

Half Turns - Example 5

Example

The strip formed by two parallel lines clearly has infinitely many centers of symmetry. Can a figure have more than one, but only a finite number of centers of symmetry (for example, can it have two and only two centers of symmetry)?

Assume that the figure \mathcal{F} has two centers of symmetry, O_1 and O_2 .

Then the point O_3 , obtained from O_1 by a half turn about O_2 is also a center of symmetry of \mathcal{F} .

Indeed, if A is any point of \mathcal{F} , then the points A_1 , A_2 , and A', where A_1 is obtained from A by a half turn about O_2 , A_2 from A_1 by a half turn about O_1 , and A' from A_2 by a half turn about O_2 , will also be points of \mathcal{F} (since O_1 and O_2 are centers of symmetry).

But the point A' is also obtained from A by a half turn about O_3 !

Indeed, the segments AO_3 and O_3A' are equal, parallel, and have opposite directions, since the pairs of segments (AO_3, A_1O_1) , (A_1O_1, A_2O_1) , $(A_2O_1, A'O_3)$ are equal, parallel, and have opposite directions.

Thus if A is any point of \mathcal{F} , then the symmetric point A' obtained from A by a half turn about O_3 is also a point of \mathcal{F} , that is, O_3 is a center of symmetry of \mathcal{F} .

Similarly one shows that the point O_4 , obtained from O_2 by a half turn about O_3 , and the point O_5 , obtained from O_3 by a half turn about O_4 , etc. are centers of symmetry.

Thus we see that if the figure $\mathcal F$ has two distinct centers of symmetry then it has infinitely many.

Now you can solve problem like this one Prove that any circle has a single center!

Example

n is a positive integer. Let O_1,O_2,\ldots,O_{2n} be points on the plane and AB is an arbitrary segment. Let segment A_1B_1 be obtained from AB by half turn about O_1 , let A_2B_2 be obtained from A_1B_1 by half turn about $O_2,\ldots,$ and finally let $A_{2n}B_{2n}$ be obtained from $A_{2n-1}B_{2n-1}$ by half turn about O_{2n} (see the figure for n=2.)

Show that $AA_{2n} = BB_{2n}$.

First, it is easy to see that the sum of two half turns around O_1 and O_2 is a translation:

$$AA_2 \parallel BB_2 \parallel O_1O_2$$
 and $AA_2 = BB_2 = 2O_1O_2$.

Thus, for an even 2n number of translations, their sum is just another translation, hence

$$AA_{2n} = BB_{2n}$$
.

Is the conclusion still true if we have an odd number of translations? Why or why not?

Sum of Half Turns - Example 2

Example

n is a positive odd integer. Let O_1, O_2, \ldots, O_n be points on the plane. Let an arbitrary point A be moved successively by half turns about O_1, O_2, \ldots, O_n and then once again moved successively by half turns about the same points O_1, O_2, \ldots, O_n .

Show that the point A_{2n} , obtained as the result of these 2n half turns, coincides with the point A.

Sum of Half Turns - Example 2 - Solution

Since the **sum of an odd number of half turns** is **a half turn**, the point A_n , obtained from A by the n successive half turns about the points O_1, O_2, \ldots, O_n can also be obtained from A by a single half turn about some point O.

Since the **sum of an odd number of half turns** is **a half turn**, the point A_n , obtained from A by the n successive half turns about the points O_1, O_2, \ldots, O_n can also be obtained from A by a single half turn about some point O.

It is important to note that O depends on O_1, O_2, \ldots, O_n only and not A.

Since the sum of an odd number of half turns is a half turn, the point A_n , obtained from A by the n successive half turns about the points O_1, O_2, \ldots, O_n can also be obtained from A by a single half turn about some point O.

It is important to note that O depends on O_1, O_2, \ldots, O_n only and not A.

The point A_{2n} is obtained from A_n , by these same n half turns; therefore it can also be obtained.

Sum of Half Turns - Example 3

Example

 $A_1A_2\ldots A_{2n}$ is a 2n-gon. M_1,M_2,\ldots,M_{2n} are the midpoints of $A_1A_2,\,A_2A_3,\,\ldots,\,A_{2n}A_1$, respectively. Prove that there exists a n-gon whose sides are equal and parallel to the segments $M_1M_2,\,M_3M_4,\,\ldots,\,M_{2n-1}M_{2n}$ and there exists a n-gon whose sides are equal and parallel to the segments $M_2M_3,\,\ldots,\,M_{2n-2}M_{2n-1},\,M_{2n}M_1$.

Note that by 2n half turns around M_1, M_2, \ldots, M_{2n} :

$$A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \cdots \rightarrow A_{2n} \rightarrow A_1.$$

The sum of two half turns around M_1 and M_2 is a translation $A_1 \to A_3$ with distance $A_1A_3=2M_1M_2$ similarly the sum of two half turns around M_3 and M_4 is a translation $A_3 \to A_5$ with distance $A_3A_4=2M_3M_4$ and so on.

Furthermore after n translations: $A_1 \rightarrow A_1$, therefore the sum of them is an **identity transformation**, thus **the** n **translations** form a **close path** and therefore is an n-gon.

Hence, each of the sides is equal and parallel to the segments M_1M_2 , M_3M_4 , ..., $M_{2n-1}M_{2n}$.

Example

Given a triangle ABC satisfying AB + BC = 3AC. The incircle of triangle ABC has center I and touches the sides AB and BC at the points D and E, respectively. Let K and L be the reflections of the points D and E with respect to I.

Prove that the points A, C, K, L lie on one circle.

What do we have?

$$AB + BC = 3AC \Rightarrow \frac{1}{2}(AB + BC - CA) = CA.$$

This means that the tangent segment BD and BE is equal to CA!

Let P be the other intersection of B with (ABC). Let M be the midpoint of AC, then:

$$BD = AC = 2MC$$
, $\angle DBI = \angle MCP \Rightarrow \triangle DBI \sim \triangle MCP$ with similarity ratio 2.

Let N be the foot of the altitude from P to IK. Now:

$$PI = PC$$
 (= PA) (why?) and $\angle NIP = \angle DIB \Rightarrow \triangle PNI \cong \triangle CMP$.

Thus,

 $\triangle DBI \sim \triangle NPI$ with similarity ratio 2.

Now, by comparing corresponding segments: DI, NI:

$$DI = 2NI \Rightarrow KI = 2NI \Rightarrow \triangle IPK$$
 isosceles $\Rightarrow PK = PI$, similarly $PL = PA$.

Thus

$$PC = PK = PI = PL = PA$$
.

