Homework 2 Due: Thursday, May 28

- 1. In each of the following problems determine if the equation is linear or non-linear and separable or non-separable and solve the IVP with the given initial conditions
- a) $y' + 2y = xe^{-x}$, y(0) = 2b) $y' = \frac{3x^2}{3y^2 4}$, y(1) = 0
- c) 2y' + xy = 2, $y(0) = y_0$ (Note: It is not possible to simplify $\int e^{x^2}$. You should leave the answer in terms of a proper integral involving this term.)
- d) $y' = \frac{x^2}{y(1+x^3)}$, y(0) = 1
- e) $y' = \frac{x^2 + xy + y^2}{x^2}$, y(1) = 1f) $y' = \frac{x^2 3y^2}{2xy}$, y(1) = 0
- 2. Solve the two IVPs and determine their intervals of definition
- a) $\frac{dy}{dt} = y^2$, y(0) = 1b) y' 2/3y = 1 1/2t, y(0) = 0
- 3. Solve the two IVPs and find the coordinates of the first local maximum point of each of the solutions for t > 0.
- a) $y' + 2/3y = 2\cos t$, y(0) = 12/13b) $y' = 2\frac{\cos 2t}{(3+2y)}$, y(0) = -1 (Hint: For finding the maxima, use the DE itself.

Do not differentiate the answer again.)