SS12, Dr. Spoerhase

Exakte Algorithmen

Nils Wisiol

15. Mai 2012

Inhaltsverzeichnis

1	Einführung	3
2	Dynamisches Programmieren	4
3	Inklusion-Exklusion	6

1 Einführung

Hier fehlt noch et was.

2 Dynamisches Programmieren

Lemma 1. Sei $\alpha \leq 1/2$. Dann gilt

$$\sum_{i=0}^{\alpha \cdot n} \binom{n}{i} = O^*(2^{h(\alpha) \cdot n}),$$

wobei $h(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2 (1 - \alpha)$.

Abbildung 2.1: Graph des Binomialkoeffizienten

Beweis. Es ist $\sum_{i=0}^{\alpha n} \leq n \binom{n}{\alpha n} = O^*(\binom{n}{\alpha n})$, denn die Binomialkoeffizienten $\binom{a}{b}$ steigen für $b \leq n/2$ monoton an. Per Definition gilt

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Die Fakultät kann abgeschätzt werden durch $\sqrt{2\pi n}(n/e)^n \le n! \le 2\sqrt{2\pi n}(n/e)^n$, also ist n! proportional zu $(n/e)^n$. Daraus folgt, dass

$$\begin{pmatrix} n \\ \alpha n \end{pmatrix} = O^* \left(\frac{(n/e)^n}{(\alpha n/e)^{\alpha n} ((1-\alpha)n/e)^{(1-\alpha)n}} \right) = O^* \left(\alpha^{-\alpha n} (1-\alpha)^{-(1-\alpha)n} \right)$$
$$= O^* \left(2^{-\alpha \log_2 \alpha n} \cdot 2^{-(1-\alpha) \log_2 (1-\alpha)n} \right),$$

woraus die Behauptung folgt.

Satz 2. Eine kleinste dominierende Mänge lässt sich in $O(1,7088^n)$ ermitteln.

Beweis. Zunächst bestimmen wir eine nicht-erweiterbare unabhänge Menge I. Falls $|I| \leq \alpha n$, testen wir in $O^*(2^{h(\alpha)n})$ alle Teilmengen $D \subseteq V$ mit $|D| \leq |I|$. Falls $|I| > \alpha n$, wende Satz ?? an und berechne kleinste dominierende Menge in $O^*(2^{(1-\alpha)n})$.

Aus der Skizze ergibt sich die Laufzeit als das Maximum der beiden dargestellten Funktionen bei $\alpha^* \leq 0,22711$ bzw. $O(2^{0,7729n}) = O(1,7088^n)$.

Der schnellste derzeit bekannte Algorithmus für dieses Problem benötigt ca. $O(1,5^n)$ und stammt aus 2010.

was

was

15.5.12

Hier fehlt noch et

Hier fehlt noch et

Abbildung 2.2: Bestimmung von α^* als Maximum der zwei möglichen Funktionen

3 Inklusion-Exklusion

Gehe von einem Problem aus, bei es leicht ist zu zählen, welche Elemente aus dem Universum S die Eigenschaft A oder B, A und B, ... erfüllen; es aber schwer ist zu zählen, wie viele Elemente diese Eigenschaften nicht besitzen. Es ergibt sich jedoch der Zusammenhang

$$|\overline{A \cup B \cup C}| = |S| - (|A| + |B| + |C|) + (|A \cap B| + |A \cap C| + |B \cap C|) + (|A \cap B \cap C|)$$

Sind N Objekte und eine Menge $P = \{P_1, ... P_n\}$ von Eigenschaften gegeben, bezeichnen wir für jedes $S \subseteq P$ mit N(S) die Anzahl der Objekte, die (mindestens) die Eigenschaften in S erfüllen. Mit N(0) bezeichnen wir die Anzahl der Objekte, die keine der Eigenschaften erfüllen. Wir können oben skizzierte Formel dann verallgemeinern, es ergibt sich

Satz 3.
$$N(0) = \sum_{S \subset P} (-1)^{|S|} N(S) = N(\emptyset) + \sum_{i} N(P_i) + \sum_{i < j} N(P_i, P_j) + \dots$$

Beweis. Elemente des Universums, die keine der Eigenschaften besitzen, werden auf beiden Seiten der Gleichung einmal gezählt. Betrachte nun die Elemente, die genau die Eigenschaften $S = \{P_{i_1},...,P_{i_s}\}, |S| = s$. Diese werden genau in den N(S') mit $S' \subseteq S$ gezählt. Daraus folgt, dass diese Objekte zur rechten Seite der Gleichung jeweils $\sum_{S' \subseteq S} (-1)^{|S'|} = \sum_{i=0}^s {s \choose i} \cdot (-1)^i = (-1+1)^s = 0$ beitragen. Objekte, die mindestens eine Eigenschaft besitzen, werden also auf der rechten Seite nicht gezählt.