# COMPUTER ORGANIZATION AND ARCHITECTURE LABORATORY ASSIGNMENT - 7

## SCHEMATIC DIAGRAM OF DATA PATH AND DESIGN OF CONTROL UNIT

**GROUP 22** 

Aritra Maji (22CS30011)

**Srinjoy Das (22CS30054)** 

### **INSTRUCTIONS**

### R-type (17 instructions)

| Opcode | Rs     | Rt     | Rd     | funct  |
|--------|--------|--------|--------|--------|
| 5 bits | 4 bits | 4 bits | 4 bits | 5 bits |

| INSTRUCTION | OPCODE | FUNCTION |
|-------------|--------|----------|
| ADD         | 0000   | 00000    |
| SUB         | 0000   | 00001    |
| AND         | 0000   | 00010    |
| OR          | 0000   | 00011    |
| XOR         | 0000   | 00100    |
| NOR         | 0000   | 00101    |
| NOT         | 0000   | 00110    |
| SL          | 0000   | 00111    |
| SRL         | 0000   | 01000    |
| SRA         | 0000   | 01001    |
| INC         | 0000   | 01010    |
| DEC         | 0000   | 01011    |
| SLT         | 0000   | 01100    |
| SGT         | 0000   | 01101    |
| НАМ         | 0000   | 01110    |
| MOVE        | 0000   | 01111    |
| CMOV        | 0000   | 10000    |

### I-type (19 instructions)

| Opcode | Rs     | Rt     | immediate |  |
|--------|--------|--------|-----------|--|
| 5 bits | 4 bits | 4 bits | 19 bits   |  |

| INSTRUCTION | OPCODE |
|-------------|--------|
| ADDI        | 00001  |
| SUBI        | 00010  |
| ANDI        | 00011  |
| ORI         | 00100  |
| XORI        | 00101  |
| NORI        | 00110  |
| NOTI        | 00111  |
| SLI         | 01000  |
| SRLI        | 01001  |
| SRAI        | 01010  |

| SLTI | 01011 |
|------|-------|
| SGTI | 01100 |
| LUI  | 01101 |
| LD   | 01110 |
| ST   | 01111 |
| BR   | 10000 |
| BML  | 10001 |
| BPL  | 10010 |
| BZ   | 10011 |
| RET  | 10100 |
| HAMI | 10101 |

### J-type (2 instructions)

| Opcode | immediate |
|--------|-----------|
| 5 bits | 27 bits   |

| Opcode | immediate |
|--------|-----------|
| HALT   | 10110     |
| NOP    | 10111     |



Datapath Diagram

#### **Control Signals**

- LoadPC Load signal of PC(+ve edge triggered FF)
- EN1,R1/W1',MFC1 Control signals for Instruction Memory(Enable,Read,Memory Function complete)
- LoadIR Load signal of IR(+ve edge triggered FF)
- EN, R, W Control Signals for Register Bank
- WritePort MUX signal to choose destination register among rt, rd
- Src1, Src2 MUX signals to choose inputs to ALU
- func- ALU function select signal
- SelectComp- MUX signal to select between 0 and R[rt] as input to Comparator(For Branch instruction choose 0 for CMOV choose R[rt])
- EN2,R2/W2',MFC2- Control signals for Data Memory(Enable,Read,Memory Function complete)
- LoadLMD- Load signal of LMD(+ve edge triggered FF)
- WriteData- MUX signal to select between Data Loaded from memory and ALU output
- SelPC, SelSignal- MUX signals to select the final PC value will be NPC or ALU output

#### **CONTROLPATH:**

For every instruction, there is a common step to fetch instructions that occurs before any other step: T1: EN1, L1, LoadIR, WMFC1

The subsequent steps for all the instructions are:

- BZ:
- T2: Src1, Src2, func = add, SelComp=0, SelSignal=10, LoadPC
- BMI:
  - T2: Src1, Src2, func = add, SelComp=0, SelSignal=01, LoadPC
- BPL:
  - T2: Src1, Src2, func = add, SelComp=0, SelSignal=11, LoadPC
- BR:
  - T2 : Src1, Src2, func = add, SelSignal = 00, selPC, LoadPC
- ST:
  - T2: EN, R, Src1=0, Src2=1, func = add, EN2, R2=0, WMFC2
  - T3 : SelSignal = 00, SelPC = 0, LoadPC
- LD:
  - T2: EN, R, W, WritePort = 1, Src1=0, Src2=1, func = add, EN2, R2, LoadLMD, WMFC2
  - T3: WriteData = 1, WritePort = 1, SelSignal = 00, SelPC = 0, LoadPC
- For f = one of { ADD, SUB, OR, AND, NOR, XOR, SL, SRL, SRA, SGT, SLT, NOT, INC, DEC, MOVE, HAM }
  - T2: EN, R, W, WritePort = 0, Src1=0, Src2=0, func = f, WriteData=0, SelSignal = 00, SelPC = 0
- For g = one of { ADDI, SUBI, ORI, ANDI, NORI, XORI, SLI, SRLI, SRAI, SGTI, SLTI, NOTI, HAMI, LUI}
  - T2: EN, R, W, WritePort = 1, Src1=0, Src2=1, func = g, WriteData=0, SelSignal=00, SelPC=0

- CMOV:
  - T2: EN, R, W, Src1=0, Src2=0, (A<B)?func=PassB, WriteData=0, WritePort=0, SelSignal=00,SelPC=0, LoadPC
- HALT:
  - T2: Wait for external interruption signal
- NOP :
  - Apply RESET to step decoder
- RET:
  - T3: EN, R, Src1 = 0, Func=func(PassA), SelSignal=00, SelPC=1, LoadPC=1