ELL888- Assignment 2

Manoj rathor (2016EEY7520), Priyank soni (2016EET2639), Krishna prasanth (2016EET2630)

- **1. Introduction**: In this assignment we need to identify the dominant speaker in a video, where:
 - We have six speakers, 7-classes (class-7 for none).
 - We object detection methods like CascadeClassifier in opency, yolo object detection algorithm to detect person in video frames.
 - We are training some CNN architectures like VGG16, ResNet50, InceptionNetv3, etc with various settings on extracted frames and also on detected faces from frames.

2. Dataset preparation:

- Downloaded 20-25 videos (720p) of each speaker from youtube.
- We used different videos for frame extraction rather than extracting more frames from same video.
- Used VideoCapture() and read() opency functions to extract frames from videos with desired rate.
- We First tried Haar CascadeClassifier in opency for face detection from frames:

<u>Advantages</u>: Speed, good performance. <u>Limitation</u>: Sadhguru's face not detected.

So we moved to **Yolo** algorithm Split frames into 2 categories using yolo:

- 1.Frames without person object.
- 2. Frames with person object.

After that Frames with person again split into two categories:

- 1. Frames with one person.
- 2. Frames with multiple persons.

For frames with multiple persons we cropped the person with highest probability of person (more than 98%) given by yolo.

Now frames with one person Further split into:

- 1.Required speaker
- 2. Other person

With the help of pixel wise difference between frame of required speaker and other person.
We tried with:

- Took 2-norm (also tried with 1-norm ,infinity-norm) of each frame (norm_i)
- Calculated the average of norms (norm_{avg})
- Took the difference between norm, and norm avg if absolute difference is less than threshold (eg. 10000) than frame was labeled as desired speaker otherwise discarded.
- Removed some noisy frames or labeled some of them as they do not contain speaker.

3. Training and testing:

3.1 VGG16 with only classifier trained

• Using video frames as it is (face detection not applied):

Here we freezed all the layers and training only classifier (softmax) having 7 classes with our data.

No. of examples	No. of epochs	Validation acc.	Test acc.
8297	30	99.54%	62.05%
3142	30	98.73%	59.08%

This model was trained with loss='categorical_crossentropy' and optimizer='rmsprop'.

Training with detected faces

No. of examples		Validation acc.	Test acc.
7623	30	99.74%	69.49%

Here reason of high test accuracy may be that we are using test frames from same videos, so model is overfitting.

Training with detected faces

No. of examples	No. of epochs	Validation acc.	Test acc.
7623	30	99.61%	62.16%

3.2 VGG16 with tunable fc1, fc2, softmax classifier

Here we are training all layers except dense layers (fc1, fc2) with 128 nodes in each fully connected layer and 7 in softmax layer.

• Using video frames as it is (face detection not applied):

No. of examples	No. of epochs	Validation acc.	Test acc.
8297	30	99.52%	57.47%
3142	30	98.84%	51.08%

3.3 Resnet50 with only classifier trained

Using video frames as it is (face detection not applied):

No. examp	of oles	No. epochs	of	Validation acc.	Test acc.
8297		30		99.31%	59.69%
3142		30		98.73%	51.08%

• Training with detected faces

No. of	No. of	Validation	Test acc.
examples	epochs	acc.	
7623	30	99.74%	75.16%

3.4 Resnet50 with added fully connected and dropout layers

 Using video frames as it is (face detection not applied):

No. of examples	No. of epochs	Validation acc.	Test acc.
8297	20	99.52%	57.95%
3142	30	98.84%	52.88%

Here reason of high test accuracy may be that we are using test frames from same videos, so model is overfitting.

• Training with detected faces

No. examp	No. epochs	Validation acc.	Test acc.
8297	30	99.80%	71.54%

3.5 Inceptionnet with adding avg pooling and two dense layers

num of Epochs

• Using video frames as it is (face detection not applied):

No. of examples	No. of epochs	Validation acc.	Test acc.
8297	30	99.52%	56.88%
8297	50	99.45%	61.40%
3142	30	98.54%	54.98%

Here reason of high test accuracy may be that we are using test frames from same videos, so model is overfitting.

Training with detected faces

No. cexample		Validation acc.	Test acc.
8297	30	99.08%	69.13%

4. Challenges faced:

- Faced problem while cropping the desired speaker (discarding audience or other person) when there are more than one person in a frame using yolo, because yolo detects all objects present.
- In case of one person in a frame, to identify whether it's desired speaker or not.
- With large dataset during training, job was getting killed.

5. Conclusion:

- We got high accuracies when only classifier was trained in pretrained models.
- We got high accuracies when we train and test on cropped frames.
- For all results please check this: https://docs.google.com/document/d/1HOCt7g3T

 i6NLR7eoBKQVBFyvM--CoPMYkvOLoohNsQk/ edit?usp=sharing

Refrences:

- 1.https://www.superdatascience.com/opencv-fac e-detection/
- 2.Darknet: Open Source Neural Networks in C.

https://pireddie.com/darknet/

3. Building powerful image classification models using very little data.

https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

4. Keras documentation

https://keras.io/applications/

5.Exploring Neurons || Transfer Learning in Keras for custom data - VGG-16

https://www.youtube.com/watch?v=L7qjQu2ry2Q
&t=18s

https://github.com/anujshah1003/Transfer-Learning-in-keras---custom-data