## CC1101 无线模块

# 用户手册





E-mail: <a href="mailto:chj\_006@sina.com">chj\_006@sina.com</a>

MSN:1188mm88@hotmail.com

## 目录

| 产品  | l简介             | 3  |
|-----|-----------------|----|
|     | 基本特点            | 4  |
|     | 模块接口说明          | 5  |
|     | 典型主要应用          | 6  |
| CC1 | 101 模块工作方式      | 7  |
|     | 工作模式寄存器介绍       | 7  |
|     | 命令寄存器介绍         | 7  |
|     | 功能配置寄存器介绍       | 8  |
|     | 状态寄存器介绍         | 9  |
| 程序  | 序参考设计           | 10 |
|     | SPI时序示意图        | 10 |
|     | SPI接口时序规范       | 10 |
|     | 参考例程            | 11 |
|     | <b>SPI</b> 读写操作 | 11 |
|     | SPI写寄存器操作       | 11 |
|     | SPI读寄存器操作       | 12 |
|     | CC1101 初始化设置    | 12 |
|     | 数据接收流程操作        | 13 |
|     | 数据发送流程操作        | 14 |
| 无约  | 是应用注意事项         | 15 |
| 我们  | 7的承诺            | 16 |

## 产品简介

CC1100/CC1101 是 Chipcon (已被 TI 收购)推出的一款低成本单片射频的 UHF 收发器。该芯片电路主要设定为在 315、433、868 和 915MHz 的 ISM (工业,科学和医学),集成了一个软件可编程的调制解调器。该调制解调器支持 2-FSK、GFSK 和 MSK 调制格式,数据传输率最高可达 500kbps。通过开启集成在调制解调器上的前向误差校正选项,能使性能得到提升。CC1100/CC1101硬件支持数据包处理、数据缓冲、突发数据传输、清晰信道评估、连接质量指示和电磁波激发 MCU 可以通过 SPI 接口与 CC1100 进行命令和数据交换。CC1100/CC1101主要应用于低功耗无线应用设计。

CC1101 在 CC1100 基础上主要进行以下改进

改善杂散响应,饱和电平输入更高;

连续频率波段的扩展:

CC1100: 400-464 MHz 和 800-928 MHz;

CC1101: 387-464 MHz 和 779-928 MHz;

CC1101 和 CC1100 二者在软件编程上完全兼容;

更高效能的功率输出,能量越集中,信号传输就越远;

更紧密的相位噪声更好的改善邻道功率(ACP)的性能,改善了 近距离信号堵塞现象。

联系电话: 13704018223 陈 工 在线咨询: QQ:35625400 474882985 E-mail: <u>chj\_006@sina.com</u> MSN:1188mm88@hotmail.com 虽然 CC1100 芯片还存在,但鉴于 CC1101 的改进特性,我公司研制的模块已经从 09 年开始全部采用 CC1101 芯片。为便于用户开发,我们提供配套评估套件,为产品开发保驾护航,使无线应用开发大大加速,并避免不必要的误区。

#### 基本特点

工作电压: 1.8-3.6V

工作频率: (模块: 387-464MHZ)

瞬间最大工作电流: <30mA;

最大发射功率: 10mW (+10dBm);

315/433/868/915MHZ的 ISM 频段;

支持 2-FSK、GFSK 和 MSK 调制方式;

接收灵敏度在1200波特率下-110dBm;

最低工作速率 1.2kbps, 最高 500kbps;

单独的 64 字节 RX 和 TX 数据 FIFO 缓冲区;

内置硬件 CRC 检错可确保数据可靠传输;

支持 RSSI 强弱信号检测和载波侦听功能;

功耗低(RX中, 15.6mA, 2.4kbps, 433MHz;

快速频率变动合成器带来的合适的频率跳跃系统;

通信地址(256个)工作频率都可以通过SPI编程设置;

可编程控制的输出功率,对所有的支持频率可达+10dBm;

WOR 功能可设置待机、接收状态定时切换时间比例以降低功耗;

#### 模块接口说明



#### 引脚功能说明

| 引脚   | 引脚名      | 引脚类型 | 描述          |  |
|------|----------|------|-------------|--|
| 1, 2 | VCC      | 电源输入 | 1.8V-3.6V之间 |  |
| 3    | SI       | 数字输入 | SPI从设备数据输入  |  |
| 4    | SCLK     | 数字输入 | SPI从设备时钟输入  |  |
| 5    | SO(GD01) | 数字输出 | SPI从设备数据输出  |  |
| 6    | GD02     | 数字输出 | 工作状态引脚      |  |
| 7    | CSn      | 数字输入 | 连续配置接口,芯片选择 |  |
| 8    | GD00     | 数字输出 | 工作状态引脚      |  |
| 9、10 | GND      | 电源地  | 和系统共地       |  |

- 1. VCC 引脚的电压范围为1. 9-3. 6V 之间,不能在这个区间之外, 如超过 3. 6V 将会烧毁模块。推荐电压 3. 3V 左右;
- 2. 硬件没有集成SPI功能的单片机也可以控制本模块,用普通单片 I0口模拟 SPI 时序进行读写操作即可;
- 3. 模块接口采用标准2.54mmDIP插针,13 脚、14 脚为接地脚,需要和系统电路的逻辑地连接起来;
- 4. 与 51 系列单片机 P0 口连接时候,需要加 10K 的上拉电阻,与其余口连接不需要。其他系列的5V单片机,如AVR、PIC,请参考该系列单片机 I0 口输出电流大小,如果超过 10mA,需要串联2-5K电阻分压,否则容易烧毁模块!如果是 3. 3V 的MCU,可以直接和I0口连接。

#### 典型主要应用

车辆监控、遥控、遥测、水文气象监控

无线标签、身份识别、非接触 RF 智能卡

小型无线网络、无线抄表、门禁系统、小区传呼

工业数据采集系统、无线 232 数据通信、无线 485/422 数据通信 无线数据终端、安全防火系统、无线遥控系统、生物信号采集

## CC1101 模块工作方式

所有配置参数和收发数据都是单片机通过 SPI 对 CC1101 进行读写操作来完成的。SIP 接口的待机模式、发送模式以及接收等工作模式都通过 SPI 指令进行设置。并可以通过 GD00 或 GD02 引脚高低电平状态来判断数据的发送或接收是否完成。

#### 工作模式寄存器介绍

| 比特  | 名称                            | 描述                       |                                   |                                             |
|-----|-------------------------------|--------------------------|-----------------------------------|---------------------------------------------|
| 7   | CHIP_RDYn                     | 保持高,直到功率和晶体已稳定。当SPI操作时为低 |                                   |                                             |
| 6:4 | STATE[2:0]                    | 表明当前主状态机模式               |                                   |                                             |
|     |                               | 值                        | 状态                                | 描述                                          |
|     |                               | 000                      | 空闲                                | 空闲状态                                        |
|     |                               | 001                      | RX                                | 接收模式                                        |
|     |                               | 010                      | TX                                | 发送模式                                        |
|     |                               | 011                      | FSTXON                            | 快速TX准备                                      |
|     |                               | 100                      | 校准                                | 频率合成器校准正运行                                  |
|     |                               | 101                      | 迁移                                | PLL正迁移                                      |
|     |                               |                          | RXFIFO_OVER<br>FLOW               | RX FIFO已经溢出。读出<br>任何有用数据,然后用<br>SFRX冲洗FIFO。 |
|     |                               |                          | TXFIFO_OVER<br>FLOW               | TX FIFO已经下溢。同SFTX<br>应答                     |
| 3:0 | FIFO_BYTES_AV<br>AILABLE[3:0] | FIFO_B                   | IFO 中 的<br>YTES_AVAILABI<br>/自由的。 | 自 由 比 特 数 。 若<br>LE=15,它表明有15或更多个比特         |

#### 命令寄存器介绍

| 地址   | 滤波名     | 描述                              |
|------|---------|---------------------------------|
| 0x30 | SRES    | 重启芯片                            |
| 0x31 | SFSTXON | 开启和校准频率合成器(若MCSMO. FSAUTOCAL=1) |
| 0x32 | SX0FF   | 关闭晶体振荡器                         |

| 0x33 | SCAL    | 校准频率合成器并关断(开启快速启动)。在不设置手动校准             |
|------|---------|-----------------------------------------|
|      |         | 模式(MCSMO.FS_AUTOCAL=0)的情况下,SCAL从空闲模式滤波。 |
| 0x34 | SRX     | 启用RX。若上一状态为空闲且MCSMO.FS_AUTOCAL=1则首先运行   |
|      |         | 校准。                                     |
| 0x35 | STX     | 空闲状态: 启用TX。若MCSMO.FS_AUTOCAL=1首先运行校准。若  |
|      |         | 在RX状态且CCA启用: 若信道为空则进入TX                 |
| 0x36 | SIDLE   | 离开RX/TX, 关断频率合成器并离开电磁波激活模式若可用           |
| 0x37 | SAFC    | 运行22.1节列出的频率合成器的AFC调节                   |
| 0x38 | SWOR    | 运行27.5节描述的自动RX选举序列(电磁波激活)               |
| 0x39 | SPWD    | 当CSn为高时进入功率降低模式。                        |
| 0x3A | SFRX    | 冲洗RX FIF0缓冲                             |
| 0x3B | SFTX    | 冲洗TX FIF0缓冲                             |
| 0x3C | SWORRST | 重新设置真实时间时钟                              |
| 0x3D | SNOP    | 无操作。可能用来为更简单的软件将滤波命令变为2字节。              |

#### 功能配置寄存器介绍

| 地址   | 寄存器      | 描述                | 保存在休眠状态中 |
|------|----------|-------------------|----------|
| 0x00 | IOCFG2   | GD02输出脚配置         | Yes      |
| 0x01 | IOCFG1   | GD01输出脚配置         | Yes      |
| 0x02 | IOCFG0   | GD00输出脚配置         | Yes      |
| 0x03 | FIFOTHR  | RX FIFO和TX FIFO门限 | Yes      |
| 0x04 | SYNC1    | 同步词汇,高字节          | Yes      |
| 0x05 | SYNC0    | 同步词汇,低字节          | Yes      |
| 0x06 | PKTLEN   | 数据包长度             | Yes      |
| 0x07 | PKTCTRL1 | 数据包自动控制           | Yes      |
| 0x08 | PKTCTRL0 | 数据包自动控制           | Yes      |
| 0x09 | ADDR     | 设备地址              | Yes      |
| 0x0A | CHANNR   | 信道数               | Yes      |
| 0x0B | FSCTRL1  | 频率合成器控制           | Yes      |
| 0x0C | FSCTRL0  | 频率控制词汇,高字节        | Yes      |
| 0x0D | FREQ2    | 频率控制词汇,中间字节       | Yes      |
| 0x0E | FREQ1    | 频率控制词汇,低字节        | Yes      |
| 0x0F | FREQ0    | 调制器配置             | Yes      |
| 0x10 | MDMCFG4  | 调制器配置             | Yes      |
| 0x11 | MDMCFG3  | 调制器配置             | Yes      |
| 0x12 | MDMCFG2  | 调制器配置             | Yes      |
| 0x13 | MDMCFG1  | 调制器配置             | Yes      |
| 0x14 | MDMCFG0  | 调制器背离设置           | Yes      |

联系电话: 13704018223 陈 工 E-mail: <u>chj\_006@sina.com</u> 在线咨询: QQ:35625400 474882985 MSN:1188mm88@hotmail.com

| 0x15 | DEVIATN | 主通信控制状态机配置 | Yes |
|------|---------|------------|-----|
| 0x16 | MCSM2   | 主通信控制状态机配置 | Yes |
| 0x17 | MCSM1   | 主通信控制状态机配置 | Yes |
| 0x18 | MCSM0   | 频率偏移补偿配置   | Yes |
| 0x19 | FOCCFG  | 位同步配置      | Yes |
| 0x1A | BSCFG   | AGC控制      | Yes |
| 0x1B | AGCTRL2 | AGC控制      | Yes |
| 0x1C | AGCTRL1 | AGC控制      | Yes |
| 0x1D | AGCTRLO | 高字节时间0暂停   | Yes |
| 0x1E | WOREVT1 | 低字节时间0暂停   | Yes |
| 0x1F | WOREVTO | 电磁波激活控制    | Yes |
| 0x20 | WORCTRL | 前末端RX配置    | Yes |
| 0x21 | FREND1  | 前末端TX配置    | Yes |
| 0x22 | FRENDO  | 频率合成器校准    | Yes |
| 0x23 | FSCAL3  | 频率合成器校准    | Yes |
| 0x24 | FSCAL2  | 频率合成器校准    | Yes |
| 0x25 | FSCAL1  | 频率合成器校准    | Yes |
| 0x26 | FSCAL0  | RC振荡器配置    | Yes |
| 0x27 | RCCTRL1 | RC振荡器配置    | Yes |
| 0x28 | RCCTRL0 | 频率合成器校准控制  | Yes |
| 0x29 | FSTEST  | 产品测试       | No  |
| 0x2A | PTEST   | AGC测试      | No  |
| 0x2B | AGCTEST | 不同的测试设置    | No  |
| 0x2C | TEST2   | 不同的测试设置    | No  |
| 0x2D | TEST1   | 不同的测试设置    | No  |
| 0x2E | TEST0   |            | No  |

### 状态寄存器介绍

| 地址          | 寄存器       | 描述              |
|-------------|-----------|-----------------|
| 0x30 (0xF0) | PARTNUM   |                 |
| 0x31 (0xF1) | VERSION   | 当前版本数           |
| 0x32 (0xF2) | FREQEST   | 频率偏移估计          |
| 0x33 (0xF3) | LQI       | 连接质量的解调器估计      |
| 0x34 (0xF4) | RSSI      | 接收信号强度指示        |
| 0x35 (0xF5) | MARCSTATE | 控制状态机状态         |
| 0x36 (0xF6) | WORTIME1  | WOR计时器高字节       |
| 0x37 (0xF7) | WORTIMEO  | WOR计时器低字节       |
| 0x38 (0xF8) | PKTSTATUS | 当前GDOx状态和数据包状态  |
| 0x39 (0xF9) | VCOVCDAC  | PLL校准模块的当前设定    |
| 0x3A (0xFA) | TXBYTES   | TX FIFO中的下溢和比特数 |
| 0x3B (0xFB) | RXBYTES   | RX FIFO中的下溢和比特数 |

## 程序参考设计

用 CC1101 模块无需掌握任何专业无线或高频方面的理论,读者只需要具备一定的 C 语言程序基础即可。本文档没有涉及到的问题,读者可以参考 CC1101 官方手册或向我们寻求技术支持。

#### SPI 时序示意图



#### SPI 接口时序规范

| 参数      | 描述                 | 最小值   | 最大值   |
|---------|--------------------|-------|-------|
| FSCLK   | SCLK频率             | 0     | 10MHz |
| tsp, pd | CSn低到SCLK的正边缘,功率降低 | TBDus | _     |
|         | 模式下                |       |       |
| tsp     | CSn低到SCLK的正边缘,活动模式 | TBDns | _     |
|         | 下                  |       |       |
| tch     | 时钟高                | 50ns  | _     |
| tcl     | 时钟低                | 50ns  | _     |
| trise   | 时钟上升时间             | _     | TBDns |
| tfall   | 时钟上升时间             | _     | TBDns |
| tsd     | 向SCLK的正边缘建立数据      | TBDns | _     |
| thd     | 在SCLK的正边缘之后保持数据    | TBDns | _     |
| tns     | SCLK到CSn高时的负边缘     | TBDns | _     |

#### 参考例程

```
更多功率参数设置可详细参考 DATACC1101 英文文档中第 48-49 页的参数表
//INT8U PaTabel[8] = {0x04 ,0x04 };
//-30dBm 功率最小
//INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 };
//OdBm
INT8U PaTabel[8] = {0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 };
//10dBm 功率最大
```

#### SPI 读写操作

```
INT8U SpiTxRxByte(INT8U dat)
   INT8U i, temp;
   temp = 0;
   SCK = 0:
   for (i=0; i<8; i++)
       if(dat & 0x80)
           MOSI = 1;
       else MOSI = 0;
       dat <<= 1;
       SCK = 1;
       _nop_();
       _nop_();
       temp <<= 1;
       if (MISO) temp++;
       SCK = 0;
       nop ();
       _nop_();
   return temp;
}
```

#### SPI 写寄存器操作

```
CSN = 0;
while (MISO);
SpiTxRxByte(addr); //写地址
SpiTxRxByte(value); //写入配置
CSN = 1;
```

#### SPI 读寄存器操作

```
INT8U halSpiReadReg(INT8U addr)
{
    INT8U temp, value;
    temp = addr | READ_SINGLE; //读寄存器命令
    CSN = 0;
    while (MIS0);
    SpiTxRxByte(temp);
    value = SpiTxRxByte(0);
    CSN = 1;
    return value;
}
```

#### CC1101 初始化设置

```
RF_SETTINGS rfSettings =
   0x00,
    0x08,
            // FSCTRL1
                          Frequency synthesizer control.
            // FSCTRL0
                          Frequency synthesizer control.
    0x00,
    0x10,
            // FREQ2
                          Frequency control word, high byte.
           // FREQ1
                         Frequency control word, middle byte.
    0xA7,
    0x62,
            // FREQ0
                         Frequency control word, low byte.
            // MDMCFG4
    0x5B,
                         Modem configuration.
            // MDMCFG3
    0xF8,
                         Modem configuration.
    0x03,
            // MDMCFG2
                         Modem configuration.
            // MDMCFG1
    0x22,
                         Modem configuration.
            // MDMCFG0
                         Modem configuration.
    0xF8.
            // CHANNR
                         Channel number.
    0x00,
    0x47,
           // DEVIATN
                         Modem deviation setting
            // FREND1
                         Front end RX configuration.
    0xB6,
    0x10,
            // FRENDO
                         Front end RX configuration.
            // MCSMO
                         Main Radio Control State Machine configuration.
    0x18,
```

```
// FOCCFG
                         Frequency Offset Compensation Configuration.
    0x1D,
            // BSCFG
                         Bit synchronization Configuration.
    0x1C.
           // AGCCTRL2
                         AGC control.
    0xC7,
                         AGC control.
    0x00,
           // AGCCTRL1
           // AGCCTRLO
    0xB2,
                         AGC control.
           // FSCAL3
    0xEA,
                         Frequency synthesizer calibration.
           // FSCAL2
                         Frequency synthesizer calibration.
    0x2A,
           // FSCAL1
    0x00,
                         Frequency synthesizer calibration.
           // FSCALO
                         Frequency synthesizer calibration.
    0x11,
           // FSTEST
                         Frequency synthesizer calibration.
    0x59,
           // TEST2
                         Various test settings.
    0x81,
    0x35,
           // TEST1
                         Various test settings.
    0x09,
           // TESTO
                         Various test settings.
           // IOCFG2
                         GD02 output pin configuration.
    0x0B,
           // IOCFGOD
                         GD00 output pin configuration.
    0x06,
           // PKTCTRL1
                         Packet automation control.
    0x04.
           // PKTCTRLO Packet automation control.
    0x05,
           // ADDR
    0x00.
                         Device address.
    0x0c
           // PKTLEN
                         Packet length.
};
```

#### 数据接收流程操作

联系电话: 13704018223 陈 工

在线咨询: QQ:35625400 474882985

```
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length)
   INT8U status[2];
   INT8U packetLength;
   INT8U i=(*length)*4; // 具体多少要根据 datarate 和 length 来决定
   halSpiStrobe(CCxxx0 SRX); //进入接收状态
   delay(2);
   while (GD00)
   {
      delay(2);
      --i:
      if(i < 1)
        return 0;
   if ((halSpiReadStatus(CCxxx0 RXBYTES) & BYTES IN RXFIF0))
       //如果接的字节数不为 0
   {
       packetLength = halSpiReadReg(CCxxx0 RXFIF0);
         //读出第一个字节,此字节为该帧数据长度
```

E-mail: chj\_006@sina.com

MSN:1188mm88@hotmail.com

```
if (packetLength <= *length)
         //如果所要的有效数据长度小于等于接收到的数据包的长度
          halSpiReadBurstReg(CCxxx0 RXFIFO, rxBuffer, packetLength);
        //读出所有接收到的数据
          *length = packetLength;
         //把接收数据长度的修改为当前数据的长度
// Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)
          halSpiReadBurstReg(CCxxx0 RXFIF0, status, 2);
        //读出 CRC 校验位
        halSpiStrobe(CCxxx0 SFRX); //清洗接收缓冲区
          return (status[1] & CRC OK); //如果校验成功返回接收成功
      }
      else
          *length = packetLength;
          halSpiStrobe(CCxxx0_SFRX); //清洗接收缓冲区
          return 0:
      }
   }
   else
  return 0;
```

#### 数据发送流程操作

```
void halRfSendPacket(INT8U *txBuffer, INT8U size)
{
    halSpiWriteReg(CCxxx0_TXFIF0, size);
    halSpiWriteBurstReg(CCxxx0_TXFIF0, txBuffer, size); //写入要发送的数据
    halSpiStrobe(CCxxx0_STX); //进入发送模式发送数据
    // Wait for GD00 to be set -> sync transmitted
    while (!GD00);
    // Wait for GD00 to be cleared -> end of packet
    while (GD00);
    halSpiStrobe(CCxxx0_SFTX);
}
```

## 无线应用注意事项

- (1) 无线模块的 VCC 电压范围为 1.8V-3.6V 之间,不能在这个区间之外,超过 3.6V 将会烧毁模块。推荐电压 3.3V 左右。
- (2) 除电源 VCC 和接地端,其余脚都可以直接和普通的 51 单片机 I0 口直接相连,无需电平转换。当然对 3V 左右的单片机更加适用了。
- (3) 硬件上面没有 SPI 的单片机也可以控制本模块,用普通单片机 I0 口模拟 SPI 不需要单片机真正的串口介入,只需要普通的单片机 I0 口就可以了,当然用串口也可以了。模块按照接口提示和母板的逻辑地连接起来
- (4) 标准 DIP 插针,如需要其他封装接口,或其他形式的接口,可联系我们定做。
- (5) 任何单片机都可实现对无线模块的数据收发控制,并可根据我们提供的程序,然后结合自己擅长的单片机型号进行移植;
- (6) 频道的间隔的说明:实际要想 2 个模块同时发射不相互干扰,**两者频道间隔应该至少相差 1MHZ**,这在组网时必须注意,否则同频比干扰。
- (7) 实际用户可能会应用其他自己熟悉的单片机做为主控芯片, 所以,建议大家在移植时注意以下 4 点:

A:确保 IO 是输入输出方式,且必须设置成数字 IO;

B:注意与使用的 IO 相关的寄存器设置,尤其是带外部中断、

带 AD 功能的 IO, 相关寄存器一定要设置好;

C: 调试时先写配置字, 然后控制数据收发

D:注意工作模式切换时间

### 我们的承诺

最后,欢迎您使用我们的产品,在应用中有技术问题请及时向我们联系,我们会予以技术知道,同时运输中出现产品问题我们会全面责任并予以更换。

## 愿与您一起走向成功