8. Nonlinear Regression

Bruce E. Shapiro

Getting Started in Machine Learning

Copyright (c) 2019. May not be distributed in any form without written permission.

Last revised: April 7, 2019

Nonlinear Regression: Goal

■ Fit $(x_0, y_0), \dots, (x_{n-1}, y_{n-1})$ to y = f(x) in such a way that the objective function

$$\mathcal{E} = \sum_{i=0}^{n-1} |f(x_i; a_0, a_1, a_2, \dots) - y_i|^2$$

is minimized. Here a_0, a_1, \ldots are parameters that determine the function f(x).

■ Some of the the $\partial \mathcal{E}/\partial a_i$ are nonlinear in the $a_0, a_1, \ldots, a_{n-1}$.

Nonlinear Regression: Goal

■ Fit $(x_0, y_0), \dots, (x_{n-1}, y_{n-1})$ to y = f(x) in such a way that the objective function

$$\mathcal{E} = \sum_{i=0}^{n-1} |f(x_i; a_0, a_1, a_2, \dots) - y_i|^2$$

is minimized. Here a_0, a_1, \ldots are parameters that determine the function f(x).

- Some of the the $\partial \mathcal{E}/\partial a_i$ are nonlinear in the $a_0, a_1, \ldots, a_{n-1}$.
- For example, **Hill function** $f(x) = \frac{x^k}{a^k + x^k}$ The derivatives $\partial \mathcal{E}/\partial k$ and $\partial \mathcal{E}/\partial a$ are nonlinear in k and a.

■ Example. Toy data set that looks like a hill function.

Gradient Descent Algorithm

- Nonlinear Objective Function $\mathcal{E} = \sum_{i=1}^{\infty} \left[\frac{x_i^m}{a^m + x_i^m} y_i \right]^2$
- Iterate using

$$x_{n+1} = x_n - \eta f'(x)$$

where η is a parameter

Gradient Descent Algorithm

- Nonlinear Objective Function $\mathcal{E} = \sum \left[\frac{x_i^m}{a^m + x_i^m} y_i \right]^2$
- Iterate using

$$x_{n+1} = x_n - \eta f'(x)$$

where η is a parameter

■ Multidimensional version is

Gradient Descent Algorithm

- \blacksquare Nonlinear Objective Function $\mathcal{E} = \sum \left[\frac{x_i^m}{a^m + x_i^m} y_i \right]^2$
- Iterate using

$$x_{n+1} = x_n - \eta f'(x)$$

where η is a parameter

■ Multidimensional version is

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \eta \nabla f(\mathbf{x})$$

■ Example: $f(x) = (x-5)^2 + x^3 + 1$, minimum is at $x \approx 1.522588$. Start at $x_0 = 2$, use $\eta = 0.05$.

i	x_i	$f'(x_i)$	$x_{i+1} = x_i - 0.05f'(x_i)$
0	2.0000000	6.0000000	1.7000000
1	1.7000000	2.0700000	1.5965000
2	1.5965000	0.8394367	1.5545282
3	1.5545282	0.3587297	1.5365917
4	1.5365917	0.1565253	1.5287654
5	1.5287654	0.0689019	1.5253203
6	1.5253203	0.0304469	1.5237980
7	1.5237980	0.0134768	1.5231241
8	1.5231241	0.0059697	1.5228257
9	1.5228257	0.0026452	1.5226934
10	1.5226934	0.0011723	1.5226348
11	1.5226348	0.0005196	1.5226088
12	1.5226088	0.0002303	1.5225973
13	1.5225973	0.0001021	1.5225922
14	1.5225922	0.0000452	1.5225899

η = 0.05, 27 iterations

$\eta = 0.179$, Gradient Descent

Newton's Method Fix to Gradient Descent

■ Let x_n be a guess. Taylor series about x_n :

$$f(x) \approx f(x_n) + f'(x_n)\Delta x + \frac{1}{2}f''(x_n)(\Delta x)^2$$

$$\approx f(x_n) + f'(x_n)(x - x_n) + \frac{1}{2}f''(x_n)(x - x_n)^2$$

Newton's Method Fix to Gradient Descent

■ Let x_n be a guess. Taylor series about x_n :

$$f(x) \approx f(x_n) + f'(x_n)\Delta x + \frac{1}{2}f''(x_n)(\Delta x)^2$$

$$\approx f(x_n) + f'(x_n)(x - x_n) + \frac{1}{2}f''(x_n)(x - x_n)^2$$

■ $f(x_n)$, $f'(x_n)$, and $f''(x_n)$ are constants:

$$f'(x) \approx f'(x_n) + f''(x_n)(x - x_n)$$

Newton's Method Fix to Gradient Descent (Continued)

- lacktriangle Ideally, jump to minimum at x_{n+1}
- If x_{n+1} is a minimum then $f'(x_{n+1}) = 0$

Newton's Method Fix to Gradient Descent (Continued)

- Ideally, jump to minimum at x_{n+1}
- If x_{n+1} is a minimum then $f'(x_{n+1}) = 0$
- Evaluate Taylor series at x_{n+1} :

$$0 = f'(x_{n+1}) = f'(x_n) + f''(x_n)(x_{n+1} - x_n)$$

■ Solve for x_{n+1} :

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

■ Multidimensional Equation:

$$x_{n+1} = x_n - \mathbf{H}^{-1} \nabla f(x_n)$$

Example: Hill Function

- Nonlinear Objective Function $\mathcal{E} = \sum_{i=1}^{\infty} \left[\frac{x_i^m}{a^m + x_i^m} y_i \right]^2$
- Gradient:

$$\nabla \mathcal{E} = \left(\frac{\partial \mathcal{E}}{\partial a}, \frac{\partial \mathcal{E}}{\partial m}\right)$$

lacktriangle Gradient of ${\mathcal E}$ requires partial derivatives of Hill function:

$$\frac{\partial \mathcal{E}}{\partial a} = 2 \sum_{i} \left[\frac{x_{i}^{m}}{a^{m} + x_{i}^{m}} - y_{i} \right] \frac{\partial}{\partial a} \left[\frac{x_{i}^{m}}{x_{i}^{m} + a^{m}} \right]$$
$$\frac{\partial \mathcal{E}}{\partial m} = 2 \sum_{i} \left[\frac{x_{i}^{m}}{a^{m} + x_{i}^{m}} - y_{i} \right] \frac{\partial}{\partial m} \left[\frac{x_{i}^{m}}{x_{i}^{m} + a^{m}} \right]$$

■ Partial derivatives of Hill Function:

$$\frac{\partial}{\partial a} \left[\frac{x_i^m}{x_i^m + a^m} \right] = \frac{-mx_i^m a^{m-1}}{(a^m + x_i^m)^2}$$

$$\frac{\partial}{\partial m} \left[\frac{x_i^m}{x_i^m + a^m} \right] = \frac{(a^m + x_i^m)x_i^m \ln x_i - x_i^m (a^m \ln a + x_i^m \ln x_i)}{(a^m + x_i^m)^2}$$

- See textbook or notebook for implementation
- scipy.optimize import curve_fit uses a variation on gradient descent


```
from scipy.optimize import curve_fit
def fhill(x,a=1,n=1):
    return x**n/(a**n+x**n)
```

```
parameters, covmatrix=curve_fit(fhill, x, y, p0=(1,1))
afit, nfit=parameters
asig, nsig = np.sqrt(np.diag(covmatrix))
print("a = ", round(afit,2),"+/-", round(1.96*asig,2))
print("n = ", round(nfit,2),"+/-", round(1.96*nsig,2))
```

```
a = 2.54 +/- 0.17

n = 3.87 +/- 0.93
```

covmatrix

```
array([[0.00762362, 0.00992891], [0.00992891, 0.22447413]])
```

