CS 6501 Natural Language Processing

Text Classification and Naive Bayes

Yangfeng Ji

September 10, 2019

Department of Computer Science University of Virginia

Overview

- 1. Problem Definition
- 2. Bag-of-Words Representation
- 3. Naive Bayes Classifiers
- 4. Classification Evaluation

Problem Definition

Case I: Sentiment Analysis

[Pang et al., 2002]

Case II: Topic Classification

Example topics

- Business
- Arts
- Technology
- Sports
 - . . .

Case III: Presidential Election Debates

Case III: Presidential Election Debates (II)

Classification

- ► Input: a text *x*
- ▶ Output: $y \in \mathcal{Y}$, where \mathcal{Y} is the predefined category set (sample space)
 - ightharpoonup Example: $\mathcal{Y} = \{\text{Positive}, \text{Negative}\}$

Probabilistic Formulation

With the conditional probability $P(Y \mid X)$, the prediction on Y for a given text X = x is

$$\hat{y} = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \, P(Y = y \mid X = x) \tag{1}$$

Or, for simplicity

$$\hat{y} = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \, p(y \mid x) \tag{2}$$

Key Questions

$$\hat{y} = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} P(Y = y \mid X = x)$$
(3)

- 1. How to represent a text as x?
 - ► Bag-of-words representation
- 2. How to estimate $P(y \mid x)$?
 - Naive Bayes classifier

Bag-of-Words Representation

Bag-of-Words Representation

Tokenization: convert a text into a collection of tokens:

```
Super quick and really friendly staff. I'd like starting off my mornings at this store!!
```

```
super quick and really friendly staff . I 'd \cdots store
```

NLTK function

nltk.tokenize.wordpunct_tokenize

Vocab

Collect tokens to build a vocab:

super quick and really friendly staff . I'd \cdots store!!

 \Rightarrow

SUPER
...
QUICK
FOOD
FRIENDLY
EAT
...
STAFF

Should we collect all the tokens?

Preprocessing for Building Vocab

1. convert all characters to lowercase

$$UVa, UVA \rightarrow uvA$$

2. map low frequency words to a special token UNK

Zipf's law: $f(w_t) \propto 1/r_t$

Bag-of-Words Representation

Information Embedded in BoW Representation

- Lose:
 - word order
 - sentence boundary
 - paragraph boundary
 - **...**
- Keep: words in texts

Naive Bayes Classifiers

Decision Rule

Given a document x, the classification can be conducted as

$$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p(y \mid x; \boldsymbol{\theta}). \tag{4}$$

where θ is the parameter of the distribution.

Bayes' Theorem

In Bayes' rule, the conditional probability $p(y \mid x)$ can be computed via the joint probability p(x, y) as follow

$$p(y \mid x) = \frac{p(x, y)}{p(x)}$$

$$= \frac{p(x \mid y)p(y)}{p(x)}$$
(5)

- ▶ $p(y, \theta)$: prior probability of Y = y
- $\triangleright p(x \mid y; \theta)$:
 - ightharpoonup conditional probability of X = x given y
 - likelihood function of Y = y given x

Simplification

$$\hat{y} = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(y \mid x; \theta)$$

$$= \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(x \mid y) p(y)$$
likelihood prior (6)

Benefit of equation 6: no need to compute p(x) explicitly.

Naive Bayes Assumption

To model $p(x \mid y)$: we assume words within a text are independent with each other

- ► The distribution of $p(x \mid y)$ is similar to the one of modeling tossing a dice with V faces for n times
- This is a naive assumption

Conditional probability $p(x \mid y; \theta)$ can be written as a multinomial distribution

$$p(x \mid y; \boldsymbol{\theta}) \propto \prod_{i=1}^{V} \theta_{i,y}^{x_i}$$
 (7)

Parameters

Proir probability (categorical distribution):

$$p(y) = \theta_y \tag{8}$$

Likelihood (multinominal distribution):

$$p(x \mid y; \boldsymbol{\theta}) \propto \prod_{i=1}^{V} \theta_{i,y}^{x_i}$$
 (9)

Number of the parameters K + KV = (K + 1)V

Probabilistic Graphical Model

Joint probability:

$$p(x, y; \boldsymbol{\theta}) \propto \theta_y \cdot \prod_{i=1}^V \theta_{i,y}^{x_i}$$
 (10)

The conditional independence can be represented in the following graphical model:

How to estimate $\theta = \{\theta_y, \theta_{i,y}\}, \forall i, y$

Example

Training examples

Label	Text	Words
Neg	just plain boring	3
Neg	entirely predictable and lacks energy	5
Neg	no surprises and very few langhs	6
Pos	very powerful	2
Pos	the most fun film of the summer	7

[Jurafsky and Martin, 2019]

Parameter Estimation (I)

For prior probability

$$\theta_y = \frac{\text{Number of texts with label } y}{\text{Total number of texts}}$$
$$= \frac{N_y}{N_{\text{total}}}$$
(11)

Example

There are three documents: two positive and three negative

$$p(\text{Positive}) = \frac{2}{5} \quad p(\text{Negative}) = \frac{3}{5}$$
 (12)

Parameter Estimation (II)

For
$$\theta_{i,y} = P(x_i \mid y)$$

$$\theta_{i,y} = \frac{\operatorname{count}(x_i, y)}{\sum_{i=1}^{V} \operatorname{count}(x_i, y)}$$
 (13)

$$= \frac{\operatorname{count}(x_i, y)}{\operatorname{count}(y)} \tag{14}$$

Therefore

$$\sum_{i=1}^{V} \theta_{i,y} = 1 \tag{15}$$

Example: Build a vocabulary

Label	Text	Words
Neg	just plain boring	3
Neg	entirely predictable and lacks energy	5
Neg	no surprises and very few langhs	6
Pos	very powerful	2
Pos	the most fun film of the summer	7

Vocab:

- $ightharpoonup \mathcal{V} = \{\text{just, plain, boring, entirely, } \dots, \text{summer}\}$
- ► *V* = 20

Example: Estimate $p(x_i \mid y)$

Label	Text	Words
Neg	just plain boring	3
Neg	entirely predictable and lacks energy	5
Neg	no surprises and very few langhs	6
Pos	very powerful	2
Pos	the most fun film of the summer	7

For example

$$p(\text{just} \mid \text{NEG}) = \frac{1}{3+5+6} = \frac{1}{14}$$
 $p(\text{just} \mid \text{POS}) = \frac{0}{2+7} = \frac{0}{9}$

Example: Prediction

For a given sentence "predictable and boring"

$$p(\text{predictable} \mid \text{NEG}) = \frac{1}{14} \qquad p(\text{predictable} \mid \text{Pos}) = \frac{0}{9}$$

$$p(\text{and} \mid \text{NEG}) = \frac{2}{14} \qquad p(\text{and} \mid \text{Pos}) = \frac{0}{9}$$

$$p(\text{boring} \mid \text{NEG}) = \frac{1}{14} \qquad p(\text{boring} \mid \text{Pos}) = \frac{0}{9}$$

Therefore,

$$p(S, \text{neg}) = \frac{3}{5} \cdot \frac{1}{14} \cdot \frac{2}{14} \cdot \frac{1}{14}$$

 $p(S, \text{pos}) = \frac{2}{5} \cdot \frac{0}{9} \cdot \frac{0}{9} \cdot \frac{0}{9}$

Example: Prediction (II)

For a given sentence "predictable with no fun"

$$p(\text{predictable} \mid \text{NEG}) = \frac{1}{14} \qquad p(\text{predictable} \mid \text{PoS}) = \frac{0}{9}$$

$$p(\text{no} \mid \text{NEG}) = \frac{1}{14} \qquad p(\text{and} \mid \text{PoS}) = \frac{0}{9}$$

$$p(\text{fun} \mid \text{NEG}) = \frac{0}{14} \qquad p(\text{fun} \mid \text{PoS}) = \frac{1}{9}$$

Therefore,

$$p(S, \text{neg}) = \frac{3}{5} \cdot \frac{1}{14} \cdot \frac{1}{14} \cdot \frac{0}{14}$$

 $P(S, \text{pos}) = \frac{2}{5} \cdot \frac{0}{9} \cdot \frac{0}{9} \cdot \frac{1}{9}$

Smoothing

To eliminate zero probability, adding a small number α to the counts:

$$p(x_i \mid y) = \frac{\operatorname{count}(x_i, y) + \alpha}{\sum_{i=1}^{V} {\operatorname{count}(x_i, y) + \alpha}}$$

$$= \frac{\operatorname{count}(x_i, y) + \alpha}{\sum_{i=1}^{V} \operatorname{count}(x_i, y) + \alpha V}$$
(16)

with $\alpha > 0$ as a **hyper-parameter**.

For example, with $\alpha = 1$ and V = 20

$$p(\text{fun} \mid \text{NEG}) = \frac{0+1}{14+20}$$
 $p(\text{fun} \mid \text{POS}) = \frac{1+1}{9+20}$

An Alternative View

- ► Likelihood: $p(x \mid y; \theta) \propto \prod_{i=1}^{V} \theta_{i,y}^{x_i}$
- ▶ Prior: $p(y; \theta) = \theta_y$

$$p(x, y; \boldsymbol{\theta}) \propto \theta_y \cdot \prod_{i=1}^V \theta_{i,y}^{x_i}$$
 (18)

Or

$$\log p(x, y; \boldsymbol{\theta}) \propto \log \theta_y + \sum_{i=1}^{V} (x_i \cdot \log \theta_{i,y})$$
 (19)

An Alternative View (II)

$$\log p(x, y) \propto \log \theta_y + \sum_{i=1}^{V} (x_i \cdot \log \theta_{i,y})$$

$$= b_y + w_y^{\top} x$$
(20)

where

$$b_y = \log \theta_y$$

$$w_y^{\top} = [\log \theta_{1,y}, \dots, \log \theta_{V,y}]$$

$$x^{\top} = [x_1, \dots, x_V]$$

It's a linear classifier (with respect to x)

Classification Evaluation

A Development Set

- Training set $\mathcal{T} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$
- ► Development set $\mathfrak{D} = \{(x^{(j)}, y^{(j)})\}_{j=1}^{M}$
- ► Test set $\mathcal{U} = \{(x^{(l)}, y^{(l)})\}_{l=1}^{L}$

Cross-validation

Figure: 10-fold cross validation.

Evaluation Measurements

- Accuracy
- Precision, recall, and F-measure

[Eisenstein, 2018, Sec 4.4]

Accuracy

Given N examples, with $y^{(i)}$ is the ground-truth label of the i-th example, and $\hat{y}^{(i)}$ is the predicted label

$$ACC(y, \hat{y}) = \frac{1}{N} \delta(y^{(i)}, \hat{y}^{(i)})$$
 (22)

 δ function is defined as

$$\delta(y,\hat{y}) = \begin{cases} 1 & y = \hat{y} \\ 0 & y \neq \hat{y} \end{cases} \tag{23}$$

Confusion Matrix

		Ground truth	
		POSITIVE	NEGATIVE
Prediction	POSITIVE NEGATIVE	True Positive (TP) False Negative (FN)	False Positive (FP) True Negative (TN)

Accuracy:

$$acc(y, \hat{y}) = \frac{TP + TN}{TP + TN + FP + FN}$$
(24)

Recall, Precision and F Measure

		Ground truth		
		POSITIVE	NEGATIVE	
Prediction	POSITIVE NEGATIVE	True Positive (TP) False Negative (FN)	False Positive (FP) True Negative (TN)	

Recall:

$$r(y, \hat{y}) = \frac{\text{TP}}{\text{TP} + \text{FN}} \tag{25}$$

Precision:

$$p(y, \hat{y}) = \frac{\text{TP}}{\text{TP} + \text{FP}} \tag{26}$$

F measure:

$$F(y, \hat{y}) = \frac{2 \cdot p \cdot r}{p + r} \tag{27}$$

Example: Balanced case

		Ground truth	
		POSITIVE	NEGATIVE
Prediction	POSITIVE NEGATIVE	480 20	30 470

- Accuracy: $acc = \frac{480+470}{480+20+30+470} = 0.95$
- Precision: $p = \frac{480}{480+30} \approx 0.94$
- Recall: $r = \frac{480}{480+20} \approx 0.96$
- ► F-measure: $F = \frac{2 \times 0.94 \times 0.96}{0.94 + 0.96} \approx 0.95$

Example: Unbalanced case

		Ground truth	
		POSITIVE	NEGATIVE
Prediction	POSITIVE NEGATIVE	80 20	30 870

- Accuracy: $acc = \frac{80+870}{80+20+30+870} = 0.95$
- ▶ Precision: $p = \frac{80}{80+30} \approx 0.73$
- Recall: $r = \frac{80}{80+20} = 0.80$
- ► F-measure: $F = \frac{2 \times 0.94 \times 0.96}{0.94 + 0.96} \approx 0.76$

Reference

Eisenstein, J. (2018). Natural Language Processing. MIT Press.

Jurafsky, D. and Martin, J. (2019). Speech and language processing.

Pang, B., Lee, L., and Vaithyanathan, S. (2002).

Thumbs up?: sentiment classification using machine learning techniques.

In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10, pages 79–86. Association for Computational Linguistics.