30

5

MANNOSIDASE STRUCTURES

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

The present invention relates to crystal structures. In particular, the invention relates to crystals comprising a mannosidase II ligand binding domain (LBD), optionally having a ligand which is associated therewith. The structures may be used to determine mannosidase homologues and information about the secondary and tertiary structures of polypeptides which are as yet structurally uncharacterised. The structures may also be used to identify ligands which are capable of binding the ligand binding domain. Such ligands may be capable of acting as modulators of mannosidase II activity.

BACKGROUND

20 Mannosidase II enzymes

There has been widespread interest in mannosidases in recent years, largely due to their role in a multitude of biological systems and, as a result, their potential as therapeutic targets. In particular, mammalian Golgi α -mannosidase II is involved in glycoprotein biosynthesis (especially in the maturation of N-linked oligosaccharides on newly synthesized glycoproteins) and is currently an important therapeutic target for the development of anticancer agents (Goss et al (1995) Clin. Cancer Res. 1:935-944).

Golgi α-mannosidase II (mannosyl oligosaccharide 1,3-1,6-α-mannosidase II, EC 3.2.1.114; also referred to herein as "GMII") belongs to the glycosyl hydrolase family 38 (Henrissat, 1991; Coutinho and Henrissat, 1999) and is central to the Golgi processing pathway, as it specifically trims two mannose residues from the branched GlcNAcMan₅GlcNAc₂ mannose

10

15

25

30

intermediate (Figure 8A) to form the core GlcNAcMan₃GlcNAc₂ glycosyl structure, an essential precursor for the further addition of *N*-acetyl-glucosamine units. GMII is a Type II transmembrane protein, approximately 125 kD in size, composed of a short N-terminal cytoplasmic tail, a single-span transmembrane domain and a large lumenal C-terminal catalytic portion (Moremen and Touster, 1985, 1986). The enzyme is highly specific for the presence of the single GlcNAc attached in a α1,2 linkage to the Man α1,3-Man arm of the GlcNAcMan₅GlcNAc₂-Asn-X substrate (Harpaz and Schachter, 1980). It removes the dimannose branch (M6, M7; Figure 8A) by hydrolysis of both glycosidic bonds with net retention of sugar anomeric configuration, resulting in the final tri-mannose GlcNAcMan₃GlcNAc₂ core. There is little or no experimental evidence to date addressing whether the two bonds are cleaved in separate binding sites or sequentially in the same binding site, nor whether or not the singly-hydrolyzed product is released from the enzyme between the two cleavage events.

Mammalian lysosomal-mannosidase has significant sequence similarity to the GM II enzyme and is responsible for glycoprotein degradation (Moremen *et al* (1994) Glycobiology 4 113-125; Liao et al (1996) J. Biol. Chem. 271:28348-28358). In particular, lysosomal α-mannosidase II is involved in the catabolism of N-linked glycoproteins through the sequential degradation of high mannose, hybrid and complex oligosaccharides.

Mutations in the gene encoding mannosidase II cause α -mannosidosis, an autosomal recessive lysosomal storage disease (Ockermann (1967) Lancet 2:239-241).

A number of mannosidase II genes have been characterised from different sources, including the Drosophila gene (Foster et al (1995) Gene 154:183-186; Rabouille et al (1999) J. Cell Sci. 112:3319-3330), rat gene (Spiro et al (1997) J. Biol. Chem. 272:29356-29363) and human, mouse, bovine and feline genes (Beccari et al (1999) Bioscience reports 19:158-162). These mannosidases have been categorized as class II mannosidases, based on sequence alignment, and belong to family 38 in Henrissat's glycosidase classification (Moremen et al (1994) as above, Henrissat and Bairoch (1996) Biochem J. 316:695-696).

To date there have been significant problems with high level expression of these enzymes, which has impeded structural and mechanistic studies. Indeed, problems with expression have meant that α-mannosidase from Jack Bean (*Canavalia ensiformis*) has been used as a model enzyme for structural and functional characterisation (Howard et al (1998) J. Biol. Chem. 273:2067-2072; Kimura et al (1999) Eur. J. Biochem. 164:168-175). In view of the potential therapeutic application of mannosidase inhibitors, there is a need for direct structural characterisation of these enzymes.

10 Swainsonine

Swainsonine (SW) is an indolizidine alkaloid found in Australian Swainsona canescens (Colegate etal., Aust J Chem 32:2257-2264, 1979), North American plants of the genera Astragalus and (Molyneux R J and James L F., Science 215:190-191, 1981), and also the fungus Rhizoctonia leguminicola (Schneider et al., Tetrahedron 39;29-31, 1983).

15

20

5

Swainsonine is a potent and specific inhibitor of the lysosomal and golgi forms of alphamannosidase (Cenci di Bello et al., Biochem. J. 215, 693 (1983); Tulsiani et al., J. Biol. Chem. 257, 7936 (1982)). It has potential therapeutic value as an antimetastatic (Humpheries et al., Cancer Res. 48, 1410 (1988)), and tumor-proliferative (Dennis, Cancer Res. 46, 5131 (1986)), or immunoregulatory agent (Kino et al., J. Antibiot. 38, 936 (1985)). Swainsonine has also been shown to have positive effects on cellular immunity in mice (reviewed in Humphries M. J. and Olden K., Pharmacol Ther. 44:85-105, 1989, and Olden et al., Pharmacol Ther 50:285-290, 1991)).

25

Structural information about the interaction between swainsonine and mannosidase II enzymes would provide a basis for rational modification of swainsonine derivatives with altered activities. It would also provide a framework on which new ligands could be designed which mimic some of the swainsonine:mannosidase atomic interactions.

10

15

20

25

30

SUMMARY OF THE INVENTION

The present invention is based on the finding that, after extensive modifications to the protocol, it is possible to express mannosidase II in appreciable quantities. The present invention is also based on the finding that it is possible to crystallize the protein mannosidase II, both alone and in combination with a selection of different ligands. More particularly, it has been possible to identify the specific sites of mannosidase II which are associated with binding to swainsonine and the mannose-like compound deoxymannojirimycin (DMNJ). The structure was also shown to exhibit a previously unobserved folding pattern enabling the design of novel GMII-specific inhibitors.

Binding domains are of significant utility in drug discovery. The association of natural ligands and substrates with the binding domains of mannosidases is the basis of many biological mechanisms. In addition, many drugs (e.g. swainsonine) exert their effects through association with the binding domains of mannosidases. The associations may occur with all or any parts of a binding domain. An understanding of these associations will lead to the design and optimization of drugs having more favorable associations with their target enzyme and thus provide improved biological effects. Therefore, information about the shape and structure of mannosidases and their ligand-binding domains is invaluable in designing potential modulators of mannosidases for use in treating diseases and conditions associated with or modulated by the mannosidases.

Thus, according to a first aspect of the invention, there is provided a crystal comprising a mannosidase II ligand-binding domain. In a preferred embodiment the crystal is a crystal of a mannosidase II enzyme. The structure of a crystal of mannosidase II has been solved and is set forth in Table 1, Table 2, or Table 8.

The crystal may comprise a complex between a mannosidase II ligand-binding domain and at least one ligand, for example an inhibitor of mannosidase II. In a particularly preferred embodiment that crystal comprises a complex between mannosidase II and swainsonine. The

20

25

30

5

structure of a crystal of a complex between mannosidase II and swainsonine has been solved, and is set forth in Table 2 or Table 8.

In a second aspect, the present invention provides a crystal comprising swainsonine or a derivative thereof. In a preferred embodiment, the crystal comprises a complex between swainsonine (or a derivative thereof) and a mannosidase II ligand-binding domain. The structure of a crystal of a complex between mannosidase II and swainsonine has been solved, and is set forth in Table 2, or Table 8.

According to a third aspect of the invention, there is provided a model of at least part of a mannosidase II, made using a crystal according to the first aspect of the invention. In a preferred embodiment, the model comprises the mannosidase II ligand-binding domain. There is also provided a model of swainsonine or a derivative thereof made using a crystal according to the second aspect of the invention.

The crystal of the first and second aspect of the invention and a model of the third aspect of the invention may be provided in the form of a computer readable medium.

The crystals and models of earlier aspects of the invention may provide information about the atomic contacts involved in the interaction between the enzyme and a known ligand, which can be used to screen for unknown ligands. According to a fourth aspect of the invention, there is provided a method of screening for a ligand capable of binding a mannosidase II ligand binding domain, comprising the use of a crystal according to the first or second aspects of the invention or a model according to the third aspect of the invention. For example, the method may comprise the step of contacting the ligand binding domain with a test compound, and determining if said test compound binds to said ligand binding domain.

In a fifth aspect, the present invention provides a ligand identified by a screening method of the fourth aspect of the invention. Preferably the ligand is a modulator that is capable of modulating the activity of a mannosidase II enzyme. A crystal and/or model of the invention may be used to design, evaluate, and identity modulators of a mannosidase II or homologues thereof other than ligands that associate with a mannosidase II. The modulators may be based on the shape and structure of a mannosidase II, or a ligand binding domain or atomic interaction, or atomic contacts thereof. Therefore modulators may be derived from ligand binding domains or analogues or parts thereof.

Modulators (e.g. ligands) which are capable of modulating the activity of mannosidase II enzymes have considerable therapeutic and prophylactic potential. In a sixth aspect, the present invention provides the use of a modulator of the invention in the manufacture of a medicament to treat and/or prevent a disease in a mammalian patient. There is also provided a pharmaceutical composition comprising a modulator and a method of treating and/or preventing a disease comprising the step of administering such a modulator or pharmaceutical composition to a mammalian patient.

15

10

5

A potential modulator of a mannosidase II identified by a method of the present invention may be confirmed as a modulator by synthesizing the compound, and testing its effect on the enzymatic activity of mannosidase II in an assay. Such assays are known in the art.

- Therefore, the methods of the invention for identifying ligands or modulators may comprise one or more of the following additional steps:
 - (a) testing whether the modulator or ligand is a modulator of the activity of a mannosidase
 II, preferably testing the activity of the modulator or ligand in cellular assays and animal model assays;
 - (b) modifying the modulator or ligand;
 - (c) optionally rerunning steps (a) or (b); and
 - (d) preparing a pharmaceutical composition comprising the modulator or ligand.

Steps (a), (b) (c) and (d) may be carried out in any order, at different points in time, and they need not be sequential.

10

The crystal structures and models described above also provide information about the secondary and tertiary structure of mannosidase II enzymes. This can be used to gleen structural information about other, previously uncharacterised polypeptides. According to a seventh aspect of the invention there is provided a method of determining the secondary and/or tertiary structures of polypeptides with unknown (or only partially known) structure comprising the step of using such a crystal or model. The polypeptide under investigation is preferably structurally or functionally related to the mannosidase II enzyme. For example, the polypeptide may show a degree of homology over some or all parts of the primary amino acid sequence. Alternatively, the polypeptide may perform an analogous function or be suspected to show a similar catalytic mechanism to the mannosidase II enzyme.

Aspects of the invention are presented in the accompanying claims and in the following description, drawings, and Tables.

15 DESCRIPTION OF THE FIGURES AND TABLES

The present invention will now be described only by way of example and with reference to the accompanying figures and tables, wherein:

- 20 Figure 1 shows the active site of mannosidase II.
 - Figure 2 shows the secondary structure of Drosophila Golgi α -mannosidase II. Helices are in blue and β sheets are in red.
- Figure 3 shows the Drosophila golgi α-mannosidase II molecule with the colours representing where it is identical to human GMII. The red and blue represent deletions or insertions with respect to the human sequence. The green is a disulphide bond.

20

25

30

Figure 4 shows the whole Drosophila golgi α -mannosidase II molecule in sticks with residues that are identical in the lysosomal manII as coloured balls (red or blue depending whether they are in the N-terminal or C-terminal part of the molecule).

5 Figure 5 shows the active site of a Drospholiga mannosidase.

Figure 6 shows the DNA sequence of an expressed Drosophila mannosidase.

Figure 7 shows an alignment of expressed secreted Drosophila mannosidase with human mannosidase.

Figure 8 shows A). Schematic representation of the high mannose GlcNAcMan₅GlcNAc₂ substrate of dGMII. B) Ribbon representation of the dGMII structure, top-view, C) side-view. The loop formed by residues 527-540 is shown in yellow. All molecular images were prepared using MOLSCRIPT (Kraulis, 1991) and rendered using Raster3D (Merritt and Bacon, 1997)

Figure 9 shows a molecular surface representation of the convex face (A) and the planar face (B) of the dGMII molecule. Molecular surface images are colored for electrostatic potential (red for negative, blue for positive). C) Molecular surface representation of the planar face of dGMII, colored for homology with the sequence of human Golgi α-mannosidase II (dark-green for identical, light-green for homologous, yellow for similar, and white for different residues). Alignment of human and *Drosophila* Golgi α-mannosidase II sequences (SwissProt accession numbers Q16706 and Q24451, respectively) was performed using the GAP program of the Wisconsin package (Version 10, Genetics Computer Group) using the default parameters without any manual intervention. The scores were used to colour the molecular surface. All molecular surface images were produced using GRASP (Nicholls et al., 1991).

Figure 10 shows stereo views of the active site of dGMII with bound Tris (A), DMNJ (B), and swainsonine (C) molecules. The active site zinc ion is shown in turquoise, the bound inhibitor

10

molecules are rendered in gold and water molecules are represented as transparent red spheres. Hydrogen bonds are shown as blue dashed lines.

Figure 11 shows A) Molecular surface representation of dGMII showing the position of the active site bound Tris molecule and the 2-methyl-2,4-pentanediol (MPD) binding site. B) Molecular surface representation of dGMII with the GlcNAcMan₅GlcNAc₂ substrate modeled into the binding pocket. The substrate molecule is positioned into the binding pocket with α 1,6-linked mannose M6 (shown in green) docked into the active site and β 1,2-GlcNAc residue G3 (shown in black) placed in the MPD binding site. Individual mannose residues of the substrate are colored according to the coloring scheme used in Figure 8A. C) Representation of the sequential trimming of the α 1,6 (M6) and α 1,3-linked (M7) mannose residues. Figure 11A was produced using LIGPLOT (Wallace et al., 1995). All molecular surface images were produced using GRASP (Nicholls et al., 1991).

Table 1 shows the structural coordinates of a Drosophila Golgi α-mannosidase II.

Table 2 shows the structural coordinates of a Drosophila Golgi α -mannosidase II with swainsonine.

Table 3 shows the ligand binding domain (active site) of a mannosidase II.

Table 4 shows the intermolecular contacts of a Drosophila Golgi α -mannosidase II swainsonine complex.

Table 5 shows crystallographic refinement statistics for the native Drosophila Golgi mannosidase II.

Table 6 shows crystallographic refinement statistics for Drosophila Golgi mannosidase II associated with swainsonine.

Table 7 shows a list of Mannosidase II enzymes.

Table 8 shows the structural coordinates of a Drosophila Golgi α -mannosidase II with swainsonine, a zinc ion, Tris molecule and an N-glycan.

5

Table 9 shows data collection statistics for MAD (Se-Met) of dGMII and native dGMII.

Table 10 shows refinement statistics of dGMII, dGMII-swainsonine complex, and dGMII-DMNJ complex.

10

15

20

30

In Tables 1, 2, and 8 from the left, the second column identifies the atom number; the third identifies the atom type; the fourth identifies the amino acid type; the sixth identifies the residue number; the seventh identifies the x coordinates; the eighth identifies the y coordinates; the ninth identifies the z coordinates; the tenth identifies the occupancy; and the eleventh identifies the temperature factor.

DETAILED DESCRIPTION OF THE INVENTION

Unless otherwise indicated, all terms used herein have the same meaning as they would to one skilled in the art of the present invention. Practitioners are particularly directed to Current Protocols in Molecular Biology (Ansubel) for definitions and terms of the art. Abbreviations for amino acid residues are the standard 3-letter and/or 1-letter codes used in the art to refer to one of the 20 common L-amino acids.

In a first aspect, the present invention relates to a crystal comprising a mannosidase II ligand binding domain.

Crystal

As used herein, the term "crystal" means a structure (such as a three dimensional (3D) solid aggregate) in which the plane faces intersect at definite angles and in which there is a regular

10

15

20

structure (such as internal structure) of the constituent chemical species. Thus, the term "crystal" can include any one of: a solid physical crystal form such as an experimentally prepared crystal, a crystal structure derivable from the crystal (including secondary and/or tertiary and/or quaternary structural elements), a 2D and/or 3D model based on the crystal structure, a representation thereof such as a schematic representation thereof or a diagrammatic representation thereof, or a data set thereof for a computer.

In one aspect, the crystal is usable in X-ray crystallography techniques. Here, the crystals used can withstand exposure to X-ray beams used to produce a diffraction pattern data necessary to solve the X-ray crystallographic structure. A crystalline form of a mannosidase, may be characterized as being capable of diffracting x-rays in a pattern defined by one of the crystal forms depicted in Blundel et al 1976, Protein Crystallography, Academic Press.

A crystal of the invention includes a mannosidase II or part thereof (e.g. ligand binding domain) in association with one or more moieties, including heavy-metal atoms i.e. a derivative crystal, a metal cofactor, or one or more ligands or substrates i.e. a co-crystal.

The term "associate", "association" or "associating" refers to a condition of proximity between a moiety (i.e. chemical entity or compound or portions or fragments thereof), and a mannosidase II, or parts or fragments thereof (e.g. binding sites or domains). The association may be non-covalent i.e. where the juxtaposition is energetically favoured by for example, hydrogen-bonding, van der Waals, or electrostatic or hydrophobic interactions, or it may be covalent.

The term "heavy-metal atoms" refers to an atom that can be used to solve an x-ray crystallography phase problem, including but not limited to a transition element, a lanthanide metal, or an actinide metal. Lanthanide metals include elements with atomic numbers between 57 and 71, inclusive. Actinide metals include elements with atomic numbers between 89 and 103, inclusive.

In an embodiment of the invention, a ligand binding domain is in association with a metal cofactor in the crystal. A "metal cofactor" refers to a metal required for mannosidase activity and/or stability. For example, the metal cofactor may be zinc, and other similar atoms or metals. In a preferred embodiment a LBD is in association with Zn²⁺.

10

i.d.

1,4

A ligand binding domain in a complex with a cofactor preferably comprises one or more of the residues involved in coordination of a Zn^{2+} ion, namely: aspartate residues 92 and 204, and histidines 90 and 471.

15

The crystal may comprise a complex between a ligand-binding domain and one or more ligands. In other words the ligand binding domain may be associated with one or more ligands in the crystal. The ligand may be any compound which is capable of interacting stably and specifically with the ligand binding domain. The ligand may, for example, be an inhibitor of mannosidase II, including but not limited to swainsonine and the mannose-like compound deoxymannojirimycin (DMNJ).

20

25

In a preferred embodiment the ligand associated with said mannosidase II ligand binding domain is swainsonine, or an analogue or derivative thereof. Swainsonine is an indolizidine alkaloid found in a variety of sources (Colegate et al., (1979); Molyneux and James (1981); and Schneider et al. (1983) all as above) which has been known to be an inhibitor of mannosidase II enzymes for some time. Derivatives of swainsonine are also known in the art, for example US 5962467, US 5,650,413, and U.S. 6,048,870, describe various derivatives of swainsonine, processes for their preparation and their use as therapeutic agents.

15

20

25

In an embodiment a crystal of the invention comprises a ligand binding domain of a mannosidase II in association with swainsonine. These complexes may have the structural coordinates shown in Table 2, or Table 8.

In a second aspect, the present invention also provides a crystal comprising swainsonine or a derivative thereof. Preferably the swainsonine molecule has the three dimensional structure defined by the relevant structural coordinates shown in Table 2, or Table 8.

The crystal may also comprise a complex between mannosidase II (or part thereof) and a substrate, or analogue thereof. The term "substrate" refers to molecules that associate with a mannosidase II as it hydrolyzes linkages between mannose residues. Mannosidases II enzymes release α-D-mannose as a first formed product and they follow a double-displacement mechanism in which a glycosyl-enzyme intermediate is formed and hydrolyzed via oxocarbenium ion-like transition states. The formation of the intermediate is assisted by general acid catalysis from a carboxylic acid located in the active site. The residue also serves as the general base catalyst for the second deglycosylation step. A second carboxylic acid serves as the nucleophile that forms the covalent intermediate. Thus, the substrate molecule may comprise molecules such as the glycosyl moiety that forms an intermediate with the enzyme. (See Howard, S. et al, J. Biol. Chem. (1998) 273. 2067-2072 and references 11, 12, 14, 15, and 16 therein). An analogue of a substrate is one which mimics the substrate binding in the LBD, but which is incapable (or has a significantly reduced capacity) to take part in the catalytic reaction.

A number of substrates for Golgi α -mannosidase II are known including the artificial substrate PNP-mannose (Rabouille et al (1999) as above). Lysosomal mannosidase II is involved in glycoprotein degradation. In particular lysosomal mannosidase II hydrolyses $\alpha(1,2)$ $\alpha(1,3)$ and $\alpha(1,6)$ linkages between mannose residues. Substrates for this enzyme are thought to include high mannose, hybrid and complex oligosaccharides.

In an embodiment, the substrate comprises GlcNAcMan₅GlcNAc₂-Asn-.

A complex may comprise one or more of the intermolecular interactions identified in Table 4. A structure of a complex of the invention may be defined by selected intermolecular contacts, preferably the intermolecular contacts as defined in Table 4.

A crystal of the invention may be characterized by an N-terminal α/β domain, a C-terminal portion comprising a three-helical bundle, and an all-β C-terminal domain, connected by 5 internal disulfide bonds and stabilized by a zinc binding site (Figure 8B).

The N-terminal α/β domain is characterized as follows:

- (a) comprising an inner core of three β -sheets (A, B and C, Figure 8B) consisting of 11, mostly parallel β -strands, surrounded by 16 α -helices;
- (b) comprising a GlcNAc residue at a consensus N-glycosylation site (Asn-194), located at the N-terminus of helix 7.
- (c) stabilized by three disulfide bonds: between Cys-31 and Cys-1032 connecting the N and C-terminal extremes of dGMII; Cys-275 and Cys-282 linking helices 10 and 11; Cys-283 and Cys-297 linking helix 11 with a loop between helix 13 and the core of parallel β -sheets.

The C-terminal portion is characterized as follows:

- 20 (a) a three-helix bundle comprises helices 18, 20 and 21 connected to the N-terminal α/β -domain via a zinc binding site.
 - (b) a zinc ion coordinated in a T_5 -square-based pyramidal geometry involving residues: Asp-90, His-92, Asp-204 and His-471.
 - (c) two immunoglobulin-like domains: a small β -sandwich consisting of 12 anti-parallel strands from β -sheets D and E, and a large 21-strand structure involving β -sheets F and G.
 - (d) a barrel formed by the three-helix bundle, helix-23, and the two β -sandwich structures providing a narrow pore in the center of the C-terminal domain.

15

25

The barrel in the C-terminal portion is lined by six arginine residues: Arg-540, 565, 617, 770, 777 and 893, contributing to the overall positive charge of the pore (Figure 9A). A hairpin loop, connecting two strands of β -sheet D (Figure 8B and C, residues 527-540, shown in yellow) protrudes into the center of the barrel on the planar side of the molecule. Arginine residue 530, located at the tip of the type-I β -turn in this loop, plugs the pore preventing an open channel through the protein. The resulting crater-like cavity on the convex side of the molecule is 20Šdeep, with a diameter of 20Šfunneling to 8Šat the bottom of the cavity. The loop has a higher degree of flexibility compared to the rest of the structure (average B-factor values: ~33Ų and ~15Ų, respectively).

10

15

25

5

A crystal of the invention may enable the determination of structural data for a ligand or substrate. In order to be able to derive structural data for the ligand or substrate, it is necessary for the molecule to have sufficiently strong electron density to enable a model of the molecule to be built using standard techniques. For example, there should be sufficient electron density to allow a model to be built using XTALVIEW (McRee 1992 J. Mol. Graphics. 10 44-46).

Preferably, the crystal of the invention belongs to space group P2₁2₁2₁.

The term "space group" refers to the lattice and symmetry of the crystal. In a space group designation the capital letter indicates the lattice type and the other symbols represent symmetry operations that can be carried out on the contents of the asymmetric unit without changing its appearance.

Preferably, a crystal of said complex comprises a unit cell having the following unit dimensions: a=69 (±5) Å, b=110 (±5) Å, c=139 (±5) Å.

The term "unit cell" refers to the smallest and simplest volume element (i.e. parallelpiped-shaped block) of a crystal that is completely representative of the unit of pattern of the crystal. The unit cell axial lengths are represented by a, b, and c. Those of skill in the art understand

5

10

15

20

that a set of atomic coordinates determined by X-ray crystallography is not without standard error.

In a highly preferred embodiment, the crystal comprises the structural coordinates as shown in Table 1, Table 2, or Table 8.

As used herein, the term "structural coordinates" refer to a set of values that define the position of one or more amino acid residues with reference to a system of axes. The term refers to a data set that defines the three dimensional structure of a molecule or molecules (e.g. Cartesian coordinates, temperature factors, and occupancies). Structural coordinates can be slightly modified and still render nearly identical three dimensional structures. A measure of a unique set of structural coordinates is the root-mean-square deviation of the resulting structure. Structural coordinates that render three dimensional structures (in particular a three dimensional structure of an SGC domain) that deviate from one another by a root-mean-square deviation of less than 5 Å, 4 Å, 3 Å, 2 Å, or 1.5 Å may be viewed by a person of ordinary skill in the art as very similar.

Variations in structural coordinates may be generated because of mathematical manipulations of the structural coordinates of a mannosidase described herein. For example, the structural coordinates of Table 1, 2, or 8 may be manipulated by crystallographic permutations of the structural coordinates, fractionalization of the structural coordinates, integer additions or substractions to sets of the structural coordinates, inversion of the structural coordinates or any combination of the above.

Variations in the crystal structure due to mutations, additions, substitutions, and/or deletions of the amino acids, or other changes in any of the components that make up the crystal may also account for modifications in structural coordinates. If such modifications are within an acceptable standard error as compared to the original structural coordinates, the resulting structure may be the same. Therefore, a ligand that bound to a ligand binding domain of a mannosidase would also be expected to bind to another ligand binding domain whose

10

15

20

30

structural coordinates defined a shape that fell within the acceptable error. Such modified structures of a ligand binding domain thereof are also within the scope of the invention.

Various computational analyses may be used to determine whether a molecule or the ligand binding domain thereof is sufficiently similar to all or parts of a ligand binding domain thereof. Such analyses may be carried out using conventional software applications and methods as described herein.

The crystal may also be specifically characterised by the refinement statistics set out in Tables 5, 6, or 10.

MANNOSIDASE II

The term "mannosidase II" refers to eukaryotic mannosidases involved in the biosynthesis of glycoproteins, glycolipids, glycosylphosphatidylinositols and other complex glycoconjugates, and prokaryotic mannosidases involved in the synthesis of carbohydrate structures of bacteria and viruses. In particular, the term refers to the class of mannosidases categorized as class II mannosidases, based on sequence alignment, belonging to family 38 in Henrissat's glycosidase classification (Moremen, K.W. et al (1994) GlycoBiology 4, 113-125; Henrissat, B. and Bairoch A. (1996) Biochem J. 316, 695-696; Henrissat, B. and Bairoch A. (1993) Biochem J. 293, 781-788; Henrissat, B. and Bairoch A. (1991) Biochem J. 280, 309-316). Examples of mannosidase II enzymes include those listed in Table 7 (from http://afmb.cnrs-mrs.fr/~pedro/CAZY/ghf_38.html).

The invention generally relates to mannosidase II enzymes and parts thereof. Mannosidase II enzymes catalyze the first committed step in the biosynthesis of complex N-glycans and they control conversion of high mannose to complex N-glycans.

Mannosidases are derivable from a variety of sources, including viruses, bacteria, fungi, plants, and animals. In a preferred embodiment the glycosyltransferase is derivable from an

animal, preferably a mammal including but not limited to bovine, ovine, porcine, murine equine, most preferably a human. The enzyme may be from any source, whether natural, synthetic, semi-synthetic, or recombinant.

A mannosidase or part thereof in the present invention may be a wild type enzyme, or part thereof, or a mutant, variant or homologue of such an enzyme.

The term "wild type" refers to a polypeptide having a primary amino acid sequence which is identical with the native enzyme (for example, the mammalian enzyme).

10

The term "mutant" refers to a polypeptide having a primary amino acid sequence which differs from the wild type sequence by one or more amino acid additions, substitutions or deletions. Preferably, the mutant has at least 90% sequence identity with the wild type sequence. Preferably, the mutant has 20 mutations or less over the whole wild-type sequence. More preferably the mutant has 10 mutations or less, most preferably 5 mutations or less over the whole wild-type sequence.

20

15

The term "variant" refers to a naturally occurring polypeptide which differs from a wild-type sequence. A variant may be found within the same species (i.e. if there is more than one isoform of the enzyme) or may be found within a different species. Preferably the variant has at least 90% sequence identity with the wild type sequence. Preferably, the variant has 20 mutations or less over the whole wild-type sequence. More preferably, the variant has 10 mutations or less, most preferably 5 mutations or less over the whole wild-type sequence.

25

The term "part" indicates that the polypeptide comprises a fraction of the wild-type amino acid sequence. It may comprise one or more large contiguous sections of sequence or a plurality of small sections. In an embodiment, the "part" comprises a wild type mannosidase enzyme with the cytosolic and transmembrane domains and most of the stalk region eliminated, preferably the "part" comprises amino acid residues 31-1044 of Golgi α -mannosidase. The "part" may comprise a ligand binding domain as described herein. The

polypeptide may also comprise other elements of sequence, for example, it may be a fusion protein with another protein (such as one which aids isolation or crystallisation of the polypeptide). Preferably the polypeptide comprises at least 50%, more preferably at least 65%, most preferably at least 80% of the wild-type sequence.

5

The term "homologue" means a polypeptide having a degree of homology with the wild-type amino acid sequence. The term "homology" can be equated with "identity".

10

In the present context, an homologous sequence is taken to include an amino acid sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the wild-type sequence. Typically, the homologues will comprise the same sites (for example ligand binding domain) as the subject amino acid sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present invention it is preferred to express homology in terms of sequence identity.

15

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences.

20

Percentage homology may be calculated over contiguous sequences, i.e. one sequence is aligned with the other sequence and each amino acid in one sequence is directly compared with the corresponding amino acid in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues.

25

Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion will cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed. Consequently, most

sequence comparison methods are designed to produce optimal alignments that take into consideration possible insertions and deletions without penalising unduly the overall homology score. This is achieved by inserting "gaps" in the sequence alignment to try to maximise local homology.

However, these more complex methods assign "gap penalties" to each gap that occurs in the alignment so that, for the same number of identical amino acids, a sequence alignment with as few gaps as possible - reflecting higher relatedness between the two compared sequences - will achieve a higher score than one with many gaps. "Affine gap costs" are typically used that charge a relatively high cost for the existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties will of course produce optimised alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use the default values when using such software for sequence comparisons. For example when using the GCG Wisconsin Bestfit package the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension.

Calculation of maximum % homology therefore firstly requires the production of an optimal alignment, taking into consideration gap penalties. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A.; Devereux *et al.*, 1984, Nucleic Acids Research 12:387). Examples of other software than can perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel *et al.*, 1999 ibid – Chapter 18), FASTA (Atschul *et al.*, 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel *et al.*, 1999 ibid, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program. A new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequence (see FEMS Microbiol Lett 1999 174(2): 247-50; FEMS Microbiol Lett 1999 177(1): 187-8 and tatiana@ncbi.nlm.nih.gov).

Although the final % homology can be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pairwise comparison based on chemical similarity or evolutionary distance. An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.

10

15

20

5

Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

The sequences may have deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent enzyme. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the secondary binding activity of the substance is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine.

25

Conservative substitutions may be made, for example according to the Table below. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

ALIPHATIC	Non-polar	GAP
		ILV
	Polar – uncharged	CSTM
		N Q
	Polar – charged	DE
		KR
AROMATIC		HFWY

The polypeptide may also have a homologous substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue, with an alternative residue) i.e. like-for-like substitution such as basic for basic, acidic for acidic, polar for polar etc. Non-homologous substitution may also occur i.e. from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyriylalanine, thienylalanine, naphthylalanine and phenylglycine.

Replacements may also be made by unnatural amino acids include; alpha* and alpha-disubstituted* amino acids, N-alkyl amino acids*, lactic acid*, halide derivatives of natural amino acids such as trifluorotyrosine*, p-Cl-phenylalanine*, p-Br-phenylalanine*, p-I-phenylalanine*, L-allyl-glycine*, β-alanine*, L-α-amino butyric acid*, L-γ-amino butyric acid*, L-α-amino isobutyric acid*, L-ε-amino caproic acid*, 7-amino heptanoic acid*, L-methionine sulfone**, L-norleucine*, L-norvaline*, p-nitro-L-phenylalanine*, L-hydroxyproline*, L-thioproline*, methyl derivatives of phenylalanine (Phe) such as 4-methyl-Phe*, pentamethyl-Phe*, L-Phe (4-amino)*, L-Tyr (methyl)*, L-Phe (4-isopropyl)*, L-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxyl acid)*, L-diaminopropionic acid ** and L-Phe (4-benzyl)*. The notation * has been utilised for the purpose of the discussion above (relating to

25

30

homologous or non-homologous substitution), to indicate the hydrophobic nature of the derivative whereas # has been utilised to indicate the hydrophilic nature of the derivative, #* indicates amphipathic characteristics.

5 Variant amino acid sequences may include suitable spacer groups that may be inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or β-alanine residues. A further form of variation, involving the presence of one or more amino acid residues in peptoid form, will be well understood by those skilled in the art. For the avoidance of doubt, "the peptoid form" is used to refer to variant amino acid residues wherein the α-carbon substituent group is on the residue's nitrogen atom rather than the α-carbon. Processes for preparing peptides in the peptoid form are known in the art, for example Simon RJ et al., PNAS (1992) 89(20), 9367-9371 and Horwell DC, Trends Biotechnol. (1995) 13(4), 132-134.

15 LIGAND-BINDING DOMAIN

As used herein, the term "ligand binding domain (LBD)" refers to a region of a molecule or molecular complex that as a result of its shape, favourably associates with a ligand or a part thereof. For example, it may be a region of a mannosidase that is responsible for binding a substrate or modulator (e.g. swainsonine). With reference to the crystal of the present invention residues in the LBD may be defined by their spatial proximity to the ligand (for example swainsonine or substrate) in the crystal structure.

"Ligand" refers to a compound or entity that associates with a ligand binding domain, including substrates or analogues or parts thereof, or modulators of a mannosidase including inhibitors. A ligand may be designed rationally by using a model according to the present invention.

The term "ligand binding domain (LBD)" also includes a homologue of the ligand binding domain or a portion thereof.

10

15

20

25

30

As used herein, the term "homologue" in reference to a ligand binding domain refers to ligand binding domain or a portion thereof which may have deletions, insertions or substitutions of amino acid residues as long as the binding specificity of the molecule is retained. In this regard, deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the binding specificity of the ligand binding domain is retained.

As used herein, the term "portion thereof" means the structural coordinates corresponding to a sufficient number of amino acid residues of the mannosidase II LBD (or homologues thereof) that are capable of interacting with a test compound capable of binding to the LBD. This term includes mannosidase II ligand binding domain amino acid residues having an amino acid residues from about 4Å to about 5Å of a bound compound or fragment thereof. Thus, for example, the structural coordinates provided in the crystal structure may contain a subset of the amino acid residues in the LBD which may be useful in the modelling and design of compounds that bind to the LBD.

A ligand binding domain may be defined by its association with a ligand. With reference to a crystal of the present invention, residues in the LBD may be defined by their spatial proximity to a ligand in the crystal structure. For example, such may be defined by their proximity to a substrate or modulator (e.g. swainsonine).

The active site of a mannosidase II crystal of the invention may be characterized as follows:

- (a) a small cavity lined by aromatic residues Trp-95, Phe-206, Tyr-269 and Tyr-727;
- (b) a zinc ion binding site within the cavity characterized by a T₅-square-based pyramidal geometry and 'elec-His-Zn motifs'.

A binding domain for a GMII inhibitor such as swainsonine and DMNJ, comprises one or more of Trp-95, Phe-206 and Tyr-727 which form a binding cavity for the inhibitor. The inhibitor ring structures can be stacked against Trp-95, and stabilized by hydrogen bonds and

10

15

25

interactions with the zinc ion. When bound to an inhibitor the zinc ion binding domain of the GMII can be transformed into T₆-octahedral coordination. The binding domain allows for the formation of a hydrogen bond between the zinc-coordinating OD1 oxygen of Asp-204 and the N4 nitrogen at the fusion of the five and six-membered rings of swainsonine. The zinc coordinating oxygen atoms of the inhibitors are involved in hydrogen bond interactions with the neighboring metal binding residues of the enzyme.

The position of the inhibitor molecules is stabilized in the active site by hydrogen bonds between carboxylic oxygens OD1 and OD2 of residue Asp-472 and hydroxyl oxygens O3 and O4 (O5 in swainsonine) of the inhibitors. DMNJ is involved in additional hydrogen bonds, via water molecules, with the NH₂ nitrogen of Arg-228, the hydroxyl oxygen of Tyr-269, the backbone carbonyl oxygen of Arg-876, and the OD1 oxygen of Asp-204.

In an embodiment, a ligand binding domain comprises one or more of the following amino acid residues: His 471, His 90, and Asp 92, and Asp 204; or a homologue thereof

In a second embodiment, a ligand binding domain comprises one or more of the following amino acid residues: Trp-95, Phe-206, Tyr-269, and Tyr-727.

In another embodiment, a ligand binding domain comprises one or more of the following amino acid residues: Asp-92, Asp-204, His-90, His-471.

In still another embodiment, a ligand binding domain comprises one or more of the following amino acid residues: His 471, Asp 204, Asp 341, His 90, Asp 92, Asp 472, Phe 206, Tyr 727 and Trp 95; or a homologue thereof

In yet another embodiment a ligand binding domain comprises one or more of the following groups:

30 (a) GVWKQG (residues 60-65)

- (b) VFVVPHSHND (residues 83-92)
- (c) WAIDPFGH (residues 201-208)
- (d) HMMPFYSYDIPHTCGPDPK^V/₁CCQFDFKR (residues 262-289)
- (e) LL¹/_APLGDDFR (residues 334-343):

In an aspect of the invention, a ligand binding domain comprises one or more of the enzyme residues shown in Table 3 and/or Table 4.

A crystal of a binding domain may be defined by selected atomic contacts.

10

15

20

In an embodiment, the binding site of the mannosidase II inhibitor swainsonine is described in Table 3, and details of the atomic interactions of the binding site are set out in Table 4. In the swainsonine binding site there are direct hydrogen bonds between the inhibitor and the enzyme. Atomic contacts on the enzyme comprise Trp-95, Phe-206, Tyr-727, Asp-472, Asp 204 (see Table 4, Figures 1 and 5).

In a particular embodiment of the invention, a secondary or three-dimensional structure of a binding domain of a mannosidase II that associates with an inhibitor of a mannosidase II is provided comprising at least two or three atomic contacts of the atomic interactions in Table 4, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the inhibitor, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the mannosidase II (i.e. enzyme atomic contact). Preferably, the binding domain is defined by the atoms of the enzyme atomic contacts having the structural coordinates for the atoms listed in Table 1, 2, or 8.

25

30

METHOD OF MAKING A CRYSTAL

The present invention also provides a method of making a crystal according to the invention. The crystal may be formed from an aqueous solution comprising a purified polypeptide comprising a mannosidase II or part or fragment thereof (e.g. a catalytic portion, ligand

binding domain). A method may utilize a purified polypeptide comprising a mannosidase II ligand binding domain to form a crystal

The term "purified" in reference to a polypeptide, does not require absolute purity such as a homogenous preparation rather it represents an indication that the polypeptide is relatively purer than in the natural environment. Generally, a purified polypeptide is substantially free of other proteins, lipids, carbohydrates, or other materials with which it is naturally associated, preferably at a functionally significant level for example at least 85% pure, more preferably at least 95% pure, most preferably at least 99% pure. A skilled artisan can purify a polypeptide comprising a mannosidase II using standard techniques for protein purification. A substantially pure polypeptide comprising a mannosidase II will yield a single major band on a non-reducing polyacrylamide gel. The purity of the mannosidase II can also be determined by amino-terminal amino acid sequence analysis.

A polypeptide used in the method may be chemically synthesized in whole or in part using techniques that are well-known in the art. Alternatively, methods are well known to the skilled artisan to construct expression vectors containing the native or mutated mannosidase II coding sequence and appropriate transcriptional/translational control signals. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* recombination/genetic recombination. See for example the techniques described in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press (1989)), and other laboratory textbooks. (See also Sarker et al, Glycoconjugate J. 7:380, 1990; Sarker et al, Proc. Natl. Acad, Sci. USA 88:234-238, 1991, Sarker et al, Glycoconjugate J. 11: 204-209, 1994; Hull et al, Biochem Biophys Res Commun 176:608, 1991 and Pownall et al, Genomics 12:699-704, 1992).

Crystals may be grown from an aqueous solution containing the purified mannosidase II polypeptide by a variety of conventional processes. These processes include batch, liquid, bridge, dialysis, vapor diffusion, and hanging drop methods. (See for example, McPherson, 1982 John Wiley, New York; McPherson, 1990, Eur. J. Biochem. 189: 1-23; Webber. 1991,

10

15

20

25

30

Adv. Protein Chem. 41:1-36). Generally, the native crystals of the invention are grown by adding precipitants to the concentrated solution of the mannosidase II polypeptide. The precipitants are added at a concentration just below that necessary to precipitate the protein. Water is removed by controlled evaporation to produce precipitating conditions, which are maintained until crystal growth ceases.

Derivative crystals of the invention can be obtained by soaking native crystals in a solution containing salts of heavy metal atoms. A complex of the invention can be obtained by soaking a native crystal in a solution containing a compound that binds the polypeptide, or they can be obtained by co-crystallizing the polypeptide in the presence of one or more compounds. In order to obtain co-crystals with a compound which binds deep within the tertiary structure of the polypeptide it is necessary to use the second method.

Once the crystal is grown it can be placed in a glass capillary tube and mounted onto a holding device connected to an X-ray generator and an X-ray detection device. Collection of X-ray diffraction patterns are well documented by those skilled in the art (See for example, Ducruix and Geige, 1992, IRL Press, Oxford, England). A beam of X-rays enter the crystal and diffract from the crystal. An X-ray detection device can be utilized to record the diffraction patterns emanating from the crystal. Suitable devices include the Marr 345 imaging plate detector system with an RU200 rotating anode generator.

Methods for obtaining the three dimensional structure of the crystalline form of a molecule or complex are described herein and known to those skilled in the art (see Ducruix and Geige 1992, IRL Press, Oxford, England). Generally, the x-ray crystal structure is given by the diffraction patterns. Each diffraction pattern reflection is characterized as a vector and the data collected at this stage determines the amplitude of each vector. The phases of the vectors may be determined by the isomorphous replacement method where heavy atoms soaked into the crystal are used as reference points in the X-ray analysis (see for example, Otwinowski, 1991, Daresbury, United Kingdom, 80-86). The phases of the vectors may also be determined by molecular replacement (see for example, Naraza, 1994, Proteins 11:281-296). The

10

15

20

25

30

amplitudes and phases of vectors from the crystalline form of a mannosidase II determined in accordance with these methods can be used to analyze other related crystalline polypeptides.

The unit cell dimensions and symmetry, and vector amplitude and phase information can be used in a Fourier transform function to calculate the electron density in the unit cell i.e. to generate an experimental electron density map. This may be accomplished using the PHASES package (Furey, 1990). Amino acid sequence structures are fit to the experimental electron density map (i.e. model building) using computer programs (e.g. Jones, TA. et al, Acta Crystallogr A47, 100-119, 1991). This structure can also be used to calculate a theoretical electron density map. The theoretical and experimental electron density maps can be compared and the agreement between the maps can be described by a parameter referred to as R-factor. A high degree of overlap in the maps is represented by a low value R-factor. The R-factor can be minimized by using computer programs that refine the structure to achieve agreement between the theoretical and observed electron density map. For example, the XPLOR program, developed by Brunger (1992, Nature 355:472-475) can be used for model refinement.

A three dimensional structure of a molecule or complex may be described by atoms that fit the theoretical electron density characterized by a minimum R value. Files can be created for the structure that defines each atom by coordinates in three dimensions.

MODEL

A crystal structure of the present invention may be used to make a model of the mannosidase II or a part thereof, (e.g.a ligand-binding domain). A model may, for example, be a structural model (or a representation thereof), or a computer model. A model may represent the secondary, tertiary and/or quaternary structure of the mannosidase II. The model itself may be in two or three dimensions. It is possible for a computer model to be in three dimensions despite the constraints imposed by a conventional computer screen, if it is possible to scroll along at least a pair of axes, causing "rotation" of the image.

Thus, for example, the structural coordinates provided in the crystal structure and/or model structure may comprise the amino acid residues of the mannosidase II LBD, or a portion of the mannosidase II LBD or a homologue thereof useful in the modelling and design of test compounds capable of binding to the mannosidase II LBD.

As used herein, the term "modelling" includes the quantitative and qualitative analysis of molecular structure and/or function based on atomic structural information and interaction models. The term "modelling" includes conventional numeric-based molecular dynamic and energy minimization models, interactive computer graphic models, modified molecular mechanics models, distance geometry and other structure-based constraint models.

Preferably, modelling is performed using a computer and may be further optimized using known methods. This is called modelling optimisation.

Overlays and super positioning with a three dimensional model of the mannosidase II LBD, and/or a portion thereof, can also be used for modelling optimisation. Additionally, alignment and/or modelling can be used as a guide for the placement of mutations on the mannosidase II LBD surface to characterise the nature of the site in the context of a cell.

The three dimensional structure of a new crystal may be modelled using molecular replacement. The term "molecular replacement" refers to a method that involves generating a preliminary model of a molecule or complex whose structural coordinates are unknown, by orienting and positioning a molecule whose structural coordinates are known within the unit cell of the unknown crystal, so as best to account for the observed diffraction pattern of the unknown crystal. Phases can then be calculated from this model and combined with the observed amplitudes to give an approximate Fourier synthesis of the structure whose coordinates are unknown. This, in turn, can be subject to any of the several forms of refinement to provide a final, accurate structure of the unknown crystal. Lattman, E., "Use of the Rotation and Translation Functions", in Methods in Enzymology, 115, pp. 55-77 (1985);

20

25

30

5

10

10

15

20

25

M. G. Rossmann, ed., "The Molecular Replacement Method", Int. Sci. Rev. Ser., No. 13, Gordon & Breach, New York, (1972).

Commonly used computer software packages for molecular replacement are X-PLOR (Brunger 1992, Nature 355: 472-475), AMoRE (Navaza, 1994, Acta Crystallogr. A50:157-163), the CCP4 package (Collaborative Computational Project, Number 4, "The CCP4 Suite: Programs for Protein Crystallography", Acta Cryst., Vol. D50, pp. 760-763, 1994), the MERLOT package (P.M.D. Fitzgerald, J. Appl. Cryst., Vol. 21, pp. 273-278, 1988) and XTALVIEW (McCree et al (1992) J. Mol. Graphics 10: 44-46. It is preferable that the resulting structure not exhibit a root-mean-square deviation of more than 3 Å.

The quality of the model may be analysed using a program such as PROCHECK or 3D-Profiler [Laskowski et al 1993 J. Appl. Cryst. 26:283-291; Luthy R. et al, Nature 356: 83-85, 1992; and Bowie, J.U. et al, Science 253: 164-170, 1991]. Once any irregularities have been resolved, the entire structure may be further refined.

Other molecular modelling techniques may also be employed in accordance with this invention. See, e.g., Cohen, N. C. *et al*, "Molecular Modelling Software and Methods for Medicinal Chemistry", J. Med. Chem., 33, pp. 883-894 (1990). See also, Navia, M. A. and M. A. Murcko, "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

Using the structural coordinates of the crystal complexes provided by this invention, molecular modelling may be used to determine the structure coordinates of a crystalline mutant or homologue of mannosidase II LBD or of a related protein. By the same token, a crystal of the second aspect of the invention can be used to provide a model of swainsonine. Modelling techniques can then be used to approximate the three dimensional structure of swainsonine derivatives and other compounds which may be able to mimic the atomic contacts between swainsonine and the LBD.

10

15

20

25

30

COMPUTER FORMAT OF CRYSTALS/MODELS

Information derivable from the crystal of the present invention (for example the structural coordinates) and/or a model of the present invention may be provided in a computer-readable format.

Therefore, the invention provides a computer readable medium or a machine readable storage medium which comprises the structural coordinates of a mannosidase II including all or any parts of the mannosidase II (e.g ligand-binding domain), ligands including portions thereof, or substrates including portions thereof. Such storage medium or storage medium encoded with these data are capable of displaying on a computer screen or similar viewing device, a three-dimensional graphical representation of a molecule or molecular complex which comprises the enzyme or ligand binding domains or similarly shaped homologous enzymes or ligand binding domains. Thus, the invention also provides computerized representations of a crystal of the invention, including any electronic, magnetic, or electromagnetic storage forms of the data needed to define the structures such that the data will be computer readable for purposes of display and/or manipulation.

- In an aspect the invention provides a computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises a mannosidase II or ligand binding domain thereof defined by structural coordinates of mannosidase II amino acids or a ligand binding domain thereof, or comprises structural coordinates of atoms of a ligand or substrate, or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said computer comprises:
 - (a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates of a mannosidase II amino acids according to Table 1, 2, or 8 or a ligand binding domain thereof, or a ligand (e.g. swainsonine) according to Table 2, or Table 8;
 - (b) a working memory for storing instructions for processing said machine-readable data;

- (c) a central-processing unit coupled to said working memory and to said machinereadable data storage medium for processing said machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

A homologue may comprise a mannosidase II or ligand binding domain thereof, or ligand or substrate that has a root mean square deviation from the backbone atoms of not more than 1.5 angstroms.

10

5

The invention also provides a computer for determining at least a portion of the structural coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex wherein said computer comprises:

15

(a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates according to Table 1, 2, or 8;

(b) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;

20

(c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);

(d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structural coordinates; and

25

(e) a display coupled to said central-processing unit for displaying said structural coordinates of said molecule or molecular complex.

10

15

20

25

STRUCTURAL DETERMINATIONS

The present invention also provides a method for determining the secondary and/or tertiary structures of a polypeptide by using a crystal, or a model according to the present invention. The polypeptide may be any polypeptide for which the secondary and or tertiary structure is uncharacterised or incompletely characterised. In a preferred embodiment the polypeptide shares (or is predicted to share) some structural or functional homology to the mannosidase II crystal. For example, the polypeptide may show a degree of structural homology over some or all parts of the primary amino acid sequence. For example the polypeptide may have one or more domains which shows homology with a mannosidase II domain (Kapitonov and Yu (1999) Glycobiology 9(10): 961-978).

The polypeptide may be a mannosidase II with a different specificity for a ligand or substrate. The polypeptide may be a mannosidase II which requires a different metal cofactor. Alternatively (or in addition) the polypeptide may be a mannosidase II from a different species.

The polypeptide may be a mutant of the wild-type mannosidase II. A mutant may arise naturally, or may be made artificially (for example using molecular biology techniques). The mutant may also not be "made" at all in the conventional sense, but merely tested theoretically using the model of the present invention. A mutant may or may not be functional.

Thus, using the model of the present invention, the effect of a particular mutation on the overall two and/or three dimensional structure of a mannosidase II and/or the interaction between the enzyme and a ligand or substrate can be investigated. Alternatively, the polypeptide may perform an analogous function or be suspected to show a similar catalytic mechanism to the mannosidase II enzyme. For example the polypeptide may remove, transport, or add on a sugar residue.

The polypeptide may also be the same as the polypeptide of the crystal, but in association with a different ligand (for example, modulator or inhibitor) or cofactor. In this way it is possible to investigate the effect of altering a ligand or compound with which the polypeptide is associated on the structure of the LBD.

5

Secondary or tertiary structure may be determined by applying the structural coordinates of the crystal or model of the present invention to other data such as an amino acid sequence, X-ray crystallographic diffraction data, or nuclear magnetic resonance (NMR) data. Homology modeling, molecular replacement, and nuclear magnetic resonance methods using these other data sets are described below.

15

20

10

Homology modeling (also known as comparative modeling or knowledge-based modeling) methods develop a three dimensional model from a polypeptide sequence based on the structures of known proteins (i.e. mannosidase II of the crystal). The method utilizes a computer model of the crystal of the present invention (the "known structure"), a computer representation of the amino acid sequence of the polypeptide with an unknown structure, and standard computer representations of the structures of amino acids. The method in particular comprises the steps of; (a) identifying structurally conserved and variable regions in the known structure; (b) aligning the amino acid sequences of the known structure and unknown structure (c) generating coordinates of main chain atoms and side chain atoms in structurally conserved and variable regions of the unknown structure based on the coordinates of the known structure thereby obtaining a homology model; and (d) refining the homology model to obtain a three dimensional structure for the unknown structure. This method is well known to those skilled in the art (Greer, 1985, Science 228, 1055; Bundell et al 1988, Eur. J. 258:130-135, al., 1992, Science Knighton et 172, 513: Biochem. http://biochem.vt.edu/courses/modeling/homology.htn). Computer programs that can be used in homology modeling are Quanta and the Homology module in the Insight II modelling package distributed by Molecular Simulations Inc, or MODELLER (Rockefeller University, www.iucr.ac.uk/sinris-top/logical/prg-modeller.html).

30

In step (a) of the homology modeling method, the known mannosidase II structure is examined to identify the structurally conserved regions (SCRs) from which an average structure, or framework, can be constructed for these regions of the protein. Variable regions (VRs), in which known structures may differ in conformation, also must be identified. SCRs generally correspond to the elements of secondary structure, such as alpha-helices and beta-sheets, and to ligand- and substrate-binding sites (e.g. acceptor and donor binding sites). The VRs usually lie on the surface of the proteins and form the loops where the main chain turns.

Many methods are available for sequence alignment of known structures and unknown structures. Sequence alignments generally are based on the dynamic programming algorithm of Needleman and Wunsch [J. Mol. Biol. 48: 442-453, 1970]. Current methods include FASTA, Smith-Waterman, and BLASTP, with the BLASTP method differing from the other two in not allowing gaps. Scoring of alignments typically involves construction of a 20x20 matrix in which identical amino acids and those of similar character (i.e., conservative substitutions) may be scored higher than those of different character. Substitution schemes which may be used to score alignments include the scoring matrices PAM (Dayhoff et al., Meth. Enzymol. 91: 524-545, 1983), and BLOSUM (Henikoff and Henikoff, Proc. Nat. Acad. Sci. USA 89: 10915-'0919, 1992), and the matrices based on alignments derived from three-dimensional structures including that of Johnson and Overington (JO matrices) (J. Mol. Biol. 233: 716-738, 1993).

Alignment based solely on sequence may be used; however, other structural features also may be taken into account. In Quanta, multiple sequence alignment algorithms are available that may be used when aligning a sequence of the unknown with the known structures. Four scoring systems (i.e. sequence homology, secondary structure homology, residue accessibility homology, CA-CA distance homology) are available, each of which may be evaluated during an alignment so that relative statistical weights may be assigned.

When generating coordinates for the unknown structure, main chain atoms and side chain atoms, both in SCRs and VRs need to be modeled. A variety of approaches known to those

skilled in the art may be used to assign coordinates to the unknown. In particular, the coordinates of the main chain atoms of SCRs will be transferred to the unknown structure. VRs correspond most often to the loops on the surface of the polypeptide and if a loop in the known structure is a good model for the unknown, then the main chain coordinates of the known structure may be copied. Side chain coordinates of SCRs and VRs are copied if the residue type in the unknown is identical to or very similar to that in the known structure. For other side chain coordinates, a side chain rotamer library may be used to define the side chain coordinates. When a good model for a loop cannot be found fragment databases may be searched for loops in other proteins that may provide a suitable model for the unknown. If desired, the loop may then be subjected to conformational searching to identify low energy conformers if desired.

Once a homology model has been generated it is analyzed to determine its correctness. A computer program available to assist in this analysis is the Protein Health module in Quanta which provides a variety of tests. Other programs that provide structure analysis along with output include PROCHECK and 3D-Profiler [Luthy R. et al, Nature 356: 83-85, 1992; and Bowie, J.U. et al, Science 253: 164-170, 1991]. Once any irregularities have been resolved, the entire structure may be further refined. Refinement may consist of energy minimization with restraints, especially for the SCRs. Restraints may be gradually removed for subsequent minimizations. Molecular dynamics may also be applied in conjunction with energy minimization.

Molecular replacement involves applying a known structure to solve the X-ray crystallographic data set of a polypeptide of unknown structure. The method can be used to define the phases describing the X-ray diffraction data of a polypeptide of unknown structure when only the amplitudes are known. Thus in an embodiment of the invention, a method is provided for determining three dimensional structures of polypeptides with unknown structure by applying the structural coordinates of the crystal of the present invention to provide an X-ray crystallographic data set for a polypeptide of unknown structure, and (b) determining a low energy conformation of the resulting structure.

Molecular replacement computer programs generally involve the following steps: (1) determining the number of molecules in the unit cell and defining the angles between them (self rotation function); (2) rotating the known structure against diffraction data to define the orientation of the molecules in the unit cell (rotation function); (3) translating the known structure in three dimensions to correctly position the molecules in the unit cell (translation function); (4) determining the phases of the X-ray diffraction data and calculating an R-factor calculated from the reference data set and from the new data wherein an R-factor between 30-50% indicates that the orientations of the atoms in the unit cell have been reasonably determined by the method; and (5) optionally, decreasing the R-factor to about 20% by refining the new electron density map using iterative refinement techniques known to those skilled in the art (refinement).

In an embodiment of the invention, a method is provided for determining three dimensional structures of polypeptides with unknown structure (e.g. additional native or mutated mannosidase II enzymes) by applying the structural coordinates of a mannosidase II structure to provide an X-ray crystallographic data set for a polypeptide of unknown structure, and (b) determining a low energy conformation of the resulting structure.

The structural coordinates of the crystal of the present invention may be applied to nuclear magnetic resonance (NMR) data to determine the three dimensional structures of polypeptides with uncharacterised or incompletely characterised sturcture. (See for example, Wuthrich, 1986, John Wiley and Sons, New York: 176-199; Pflugrath et al., 1986, J. Molecular Biology 189: 383-386; Kline et al., 1986 J. Molecular Biology 189:377-382). While the secondary structure of a polypeptide may often be determined by NMR data, the spatial connections between individual pieces of secondary structure are not as readily determined. The structural coordinates of a polypeptide defined by X-ray crystallography can guide the NMR spectroscopist to an understanding of the spatial interactions between secondary structural elements in a polypeptide of related structure. Information on spatial interactions between secondary structural elements can greatly simplify Nuclear Overhauser Effect (NOE) data

from two-dimensional NMR experiments. In addition, applying the structural coordinates after the determination of secondary structure by NMR techniques simplifies the assignment of NOE's relating to particular amino acids in the polypeptide sequence and does not greatly bias the NMR analysis of polypeptide structure.

5

10

15

In an embodiment, the invention relates to a method of determining three dimensional structures of polypeptides with unknown structures, by applying the structural coordinates of a crystal of the present invention to nuclear magnetic resonance (NMR) data of the unknown structure. This method comprises the steps of: (a) determining the secondary structure of an unknown structure using NMR data; and (b) simplifying the assignment of through-space interactions of amino acids. The term "through-space interactions" defines the orientation of the secondary structural elements in the three dimensional structure and the distances between amino acids from different portions of the amino acid sequence. The term "assignment" defines a method of analyzing NMR data and identifying which amino acids give rise to signals in the NMR spectrum.

SCREENING METHOD

20

The present invention also provides a method of screening for a ligand that associates with a ligand binding domain and/or modulates the function of mannosidase II, by using a crystal or a model according to the present invention. The method may involve investigating whether a test compound is capable of associating with or binding a ligand binding domain.

25

In accordance with an aspect of the present invention, a method is provided for screening for a ligand capable of binding to a ligand binding domain, wherein said method comprises the use of a crystal or model according to the invention.

In another aspect, the invention relates to a method of screening for a ligand capable of binding to a ligand binding domain, wherein the ligand binding domain is defined by the amino acid residue structural coordinates given herein, the method comprising contacting the

30

15

20

25

30

ligand binding domain with a test compound and determining if said test compound binds to said ligand binding domain.

In one embodiment, the present invention provides a method of screening for a test compound capable of interacting with a key amino acid residue of the ligand binding domain of mannosidase II.

Another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
 - (c) preparing a quantity of said one or more ligands.

A further aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
- (c) preparing a pharmaceutical composition comprising said one or more ligands.

Once a test compound capable of interacting with a key amino acid residue in a mannosidase II LBD has been identified, further steps may be carried out either to select and/or to modify compounds and/or to modify existing compounds, to modulate the interaction with the key amino acid residues in the mannosidase II LBD.

Yet another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain;
- (c) modifying said one or more ligands capable of binding to a ligand binding domain;
- (d) performing said method of screening for a ligand as described above;
- (e) optionally preparing a pharmaceutical composition comprising said one or more ligands.

As used herein, the term "test compound" means any compound which is potentially capable of associating with a ligand binding domain. If, after testing, it is determined that the test compound does bind to the LBD, it is known as a "ligand".

5

10

15

A "test compound" includes, but is not limited to, a compound which may be obtainable from or produced by any suitable source, whether natural or not. The test compound may be designed or obtained from a library of compounds which may comprise peptides, as well as other compounds, such as small organic molecules and particularly new lead compounds. By way of example, the test compound may be a natural substance, a biological macromolecule, or an extract made from biological materials such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic test compound, a semi-synthetic test compound, a carbohydrate, a monosaccharide, an oligosaccharide or polysaccharide, a glycolipid, a glycopeptide, a saponin, a heterocyclic compound, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised test compound, a peptide cleaved from a whole protein, or a peptides synthesised synthetically (such as, by way of example, either using a peptide synthesizer or by recombinant techniques or combinations thereof), a recombinant test compound, a natural or a non-natural test compound, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof.

20

25

The test compound may be screened as part of a library or a data base of molecules. Data bases which may be used include ACD (Molecular Designs Limited), NCI (National Cancer Institute), CCDC (Cambridge Crystallographic Data Center), CAST (Chemical Abstract Service), Derwent (Derwent Information Limited), Maybridge (Maybridge Chemical Company Ltd), Aldrich (Aldrich Chemical Company), DOCK (University of California in San Francisco), and the Directory of Natural Products (Chapman & Hall). Computer programs such as CONCORD (Tripos Associates) or DB-Converter (Molecular Simulations Limited) can be used to convert a data set represented in two dimensions to one represented in three dimensions.

Test compounds may be tested for their capacity to fit spatially into a mannosidsase II LBD. As used herein, the term "fits spatially" means that the three-dimensional structure of the test compound is accommodated geometrically in a cavity or pocket of the mannosidase II LBD. The test compound can then be considered to be a ligand.

5

10

15

25

A favourable geometric fit occurs when the surface areas of the test compound is in close proximity with the surface area of the cavity or pocket without forming unfavorable interactions. A favourable complementary interaction occurs where the test compound interacts by hydrophobic, aromatic, ionic, dipolar, or hydrogen donating and accepting forces. Unfavourable interactions may be steric hindrance between atoms in the test compound and atoms in the binding site.

If a model of the present invention is a computer model, the test compounds may be positioned in an LBD through computational docking. If, on the other hand, the model of the present invention is a structural model, the test compounds may be positioned in the LBD by, for example, manual docking.

As used herein the term "docking" refers to a process of placing a compound in close proximity with a mannosidase II LBD, or a process of finding low energy conformations of a test compound/glycosyltransferase complex.

20

A screening method of the present invention may comprise the following steps:

- generating a computer model of a mannosidase II or a selected site thereof (i) using a crystal according to the first aspect of the invention;
- docking a computer representation of a test compound with the computer (ii) model:
- analysing the fit of the compound in the mannosidase II or selected site. (iii)

In an aspect of the invention a method is provided comprising the following steps:

- (a) docking a computer representation of a structure of a test compound into a computer representation of a binding domain of a mannosidase II defined in accordance with the invention using a computer program, or by interactively moving the representation of the test compound into the representation of the binding domain;
- (b) characterizing the geometry and the complementary interactions formed between the atoms of the binding domain and the compound; optionally
- (c) searching libraries for molecular fragments which can fit into the empty space between the compound and binding domain and can be linked to the compound; and
- (d) linking the fragments found in (c) to the compound and evaluating the new modified compound.

In an embodiment of the invention a method is provided which comprises the following steps:

- (a) docking a computer representation of a test compound from a computer data base with a computer representation of a selected site (e.g. the inhibitor binding domain) on a mannosidase II structure defined in accordance with the invention to obtain a complex;
- (b) determining a conformation of the complex with a favourable geometric fit and favourable complementary interactions; and
- (c) identifying test compounds that best fit the selected site as potential modulators of the mannosidase II.

A method of the invention may be applied to a plurality of test compounds, to identify those that best fit the selected site.

The model used in the screening method may comprise the ligand-binding domain of a mannosidase II enzyme either alone or in association with one or more ligands and/or cofactors. For example, the model may comprise the ligand-binding domain in association with a substrate or analogue thereof.

15

10

5

20

30

10

15

20

25

30

If the model comprises an unassociated ligand binding domain, then the selected site under investigation may be the LBD itself. The test compound may, for example, mimic a known substrate for the enzyme in order to interact with the LBD. The selected site may alternatively be another site on the enzyme.

If the model comprises an associated LBD, for example an LBD in association with a substrate molecule or analogue thereof, the selected site may be the LBD or a site made up of the LBD and the complexed ligand, or a site on the ligand itself. The test compound may be investigated for its capacity to modulate the interaction with the associated molecule.

A test compound (or plurality of test compounds) may be selected on the basis of its similarity to a known ligand for the mannosidase II. For example, the screening method may comprise the following steps:

- (i) generating a computer model of the LBD of a mannosidase II in complex with a ligand;
- (ii) searching for a test compound with a similar three dimensional structure and/or similar chemical groups; and
- (iii) evaluating the fit of the test compound in the LBD.

Searching may be carried out using a database of computer representations of potential compounds, using methods known in the art.

The present invention also provides a method for designing ligands for a mannosidase II. It is well known in the art to use a screening method as described above to identify a test compound with promising fit, but then to use this test compound as a starting point to design a ligand with improved fit to the model. A known modulator can also be modified to enhance its fit with a model of the invention. Such techniques are known as "structure—based ligand design" (See Kuntz et al., 1994, Acc. Chem. Res. 27:117; Guida, 1994, Current Opinion in Struc. Biol. 4: 777; and Colman, 1994, Current Opinion in Struc. Biol. 4: 868, for reviews of

structure-based drug design and identification; and Kuntz et al. 1982, J. Mol. Biol. 162:269; Kuntz et al., 1994, Acc. Chem. Res. 27: 117; Meng et al., 1992, J. Compt. Chem. 13: 505; Bohm, 1994, J. Comp. Aided Molec. Design 8: 623 for methods of structure-based modulator design).

5

Examples of computer programs that may be used for structure-based ligand design are CAVEAT (Bartlett et al., 1989, in "Chemical and Biological Problems in Molecular Recognition", Roberts, S.M. Ley, S.V.; Campbell, N.M. eds; Royal Society of Chemistry: Cambridge, pp 182-196); FLOG (Miller et al., 1994, J. Comp. Aided Molec. Design 8:153); PRO Modulator (Clark et al., 1995 J. Comp. Aided Molec. Design 9:13); MCSS (Miranker and Karplus, 1991, Proteins: Structure, Function, and Genetics 8:195); and, GRID (Goodford, 1985, J. Med. Chem. 28:849).

The method may comprise the following steps:

15

20

25

10

- (i) docking a model of a test compound with a model of a selected site;
- (ii) identifying one or more groups on the test compound which may be modified to improve their fit in the selected site;
- (iii) replacing one or more identified groups to produce a modified test compound model; and
- model, and

(iv) docking the modified test compound model with the model of the selected site.

Evaluation of fit may comprise the following steps:

- (a) mapping chemical features of a test compound such as by hydrogen bond donors or acceptors, hydrophobic/lipophilic sites, positively ionizable sites, or negatively ionizable sites; and
- (b) adding geometric constraints to selected mapped features.

The fit of the modified test compound may then be evaluated using the same criteria.

The chemical modification of a group may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the test compound and the key amino acid residue(s) of the selected site. Preferably the group modifications involve the addition, removal, or replacement of substituents onto the test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of the selected site.

Identified groups in a test compound may be substituted with, for example, alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo groups. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided.

15

10

5

If a modified test compound model has an improved fit, then it may bind to the selected site and be considered to be a "ligand". Rational modification of groups may be made with the aid of libraries of molecular fragments which may be screened for their capacity to fit into the available space and to interact with the appropriate atoms. Databases of computer representations of libraries of chemical groups are available commercially, for this purpose.

20

A test compound may also be modified "in situ" (i.e. once docked into the potential binding site), enabling immediate evaluation of the effect of replacing selected groups. The computer representation of the test compound may be modified by deleting a chemical group or groups, replacing chemical groups, or by adding a chemical group or groups. After each modification to a compound, the atoms of the modified compound and potential binding site can be shifted in conformation and the distance between the modulator and the active site atoms may be scored on the basis of geometric fit and favourable complementary interactions between the molecules. This technique is described in detail in Molecular Simulations User Manual, 1995 in LUDI.

30

25

Examples of ligand building and/or searching computer include programs in the Molecular Simulations Package (Catalyst), ISIS/HOST, ISIS/BASE, and ISIS/DRAW (Molecular Designs Limited), and UNITY (Tripos Associates).

5

10

15

The "starting point" for rational ligand design may be a known ligand for the enzyme. For example, in order to identify potential modulators of the mannosidase II, a logical approach would be to start with a known ligand (for example a substrate molecule or inhibitor) to produce a molecule which mimics the binding of the ligand. Such a molecule may, for example, act as a competitive inhibitor for the true ligand, or may bind so strongly that the interaction (and inhibition) is effectively irreversible.

Such a method may comprise the following steps:

- (i) generating a computer model of a LBD of a mannosidase II in complex with a ligand;
- (ii) replacing one or more groups on the ligand model to produce a modified ligand; and
- (iii) evaluating the fit of the modified ligand in the LBD.

The replacement groups could be selected and replaced using a compound construction program which replaces computer representations of chemical groups with groups from a computer database, where the representations of the compounds are defined by structural coordinates.

In an embodiment, a screening method is provided for identifying a ligand of a mannosidase II comprising the step of using the structural coordinates of a substrate molecule or swainsonine or component thereof, defined in relation to its spatial association with a mannosidase II structure or a ligand binding domain of the invention, to generate a compound that is capable of associating with the mannosidase II or ligand binding domain.

In an embodiment of the invention, a screening method is provided for identifying a ligand of a mannosidase II comprising the step of using the structural coordinates of swainsonine listed in Table 2 or 8 to generate a compound for associating with a ligand binding domain of a mannosidase II as described herein. The following steps are employed in a particular method of the invention: (a) generating a computer representation of swainsonine, defined by its structural coordinates listed in Table 2 or 8; (b) searching for molecules in a data base that are structurally or chemically similar to the defined swainsonine, using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

10

5

The screening methods of the present invention may be used to identify compounds or entities that associate with a molecule that associates with a mannosidase II enzyme (for example, a substrate molecule).

15 Compounds and entities (e.g. ligands) of mannosidase II identified using the above-described methods may be prepared using methods described in standard reference sources utilized by those skilled in the art. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill.

20

Test compounds and ligands which are identified using a crystal or model of the present invention can be screened in assays such as those well known in the art. Screening can be, for example, *in vitro*, in cell culture, and/or *in vivo*. Biological screening assays preferably centre on activity-based response models, binding assays (which measure how well a compound binds to the receptor), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity-high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity. The biological assay, may also be an assay for the ligand binding activity of a compound that selectively binds to the LBD compared to other nuclear receptors.

30

25

LIGANDS/COMPOUNDS/MODULATORS

The present invention provides a ligand or compound or entity identified by a screening method of the present invention. A ligand or compound may have been designed rationally by using a model according to the present invention. A ligand or compound identified using the screening methods of the invention specifically associate with a target compound. In the present invention the target compound may be the mannosidase II enzyme or a molecule that is capable of associating with the mannosidase II enzyme (for example a substrate molecule). In a preferred embodiment the ligand is capable of binding to the LBD of a mannosidase II.

A ligand or compound identified using a screening method of the invention may act as a "modulator", i.e. a compound which affects the activity of a mannosidase II. A modulator may reduce, enhance or alter the biological function of a mannosidase II. For example a modulator may modulate the capacity of the enzyme to hydrolyse mannose residues. An alteration in biological function may be characterised by a change in specificity. For example, a modulator may cause the enzyme to accept a different substrate molecule, to transfer a different sugar, or to work with a different metal cofactor. In order to exert its

function, the modulator commonly binds to the ligand binding domain.

20

25

30

15

5

10

A "modulator" which is capable of reducing the biological function of the enzyme may also be known as an inhibitor. Preferably an inhibitor reduces or blocks the capacity of the enzyme to hydrolyse mannose residues. The inhibitor may mimic the binding of a substrate molecule, for example, it may be a substrate analogue. A substrate analogue may be designed by considering the interactions between the substrate molecule and the enzyme (for example by using information derivable from the crystal of the invention) and specifically altering one or more groups (as described above).

In a highly preferred embodiment, a modulator acts as an inhibitor of the mannosidase II and is capable of inhibiting N-glycan biosynthesis. <u>In another embodiment, a modulator</u> enhances mannosidase II activity and is capable of regulating the immune system.

The present invention also provides a method for modulating the activity of a mannosidase II within a cell using a modulator according to the present invention. It would be possible to monitor the expression of N-glycans on the cell surface following such treatment by a number of methods known in the art (for example by detecting expression with an N-glycan specific antibody).

In another preferred embodiment, the modulator modulates the catalytic mechanism of the enzyme.

10

15

20

25

30

5

A modulator may be an agonist, partial agonist, partial inverse agonist or antagonist of the mannosidase II.

As used herein, the term "agonist" means any ligand, which is capable of binding to a ligand binding domain and which is capable of increasing a proportion of the enzyme that is in an active form, resulting in an increased biological response. The term includes partial agonists and inverse agonists.

As used herein, the term "partial agonist" means an agonist that is unable to evoke the maximal response of a biological system, even at a concentration sufficient to saturate the specific receptors.

As used herein, the term "partial inverse agonist" is an inverse agonist that evokes a submaximal response to a biological system, even at a concentration sufficient to saturate the specific receptors. At high concentrations, it will diminish the actions of a full inverse agonist.

The invention relates to a mannosidase II ligand binding domain antagonist, wherein said ligand binding domain is that defined by the amino acid structural coordinates described herein. For example the ligand may antagonise the inhibition of mannosidase by swainsonine.

10

15

20

25

30

As used herein, the term "antagonist" means any agent that reduces the action of another agent, such as an agonist. The antagonist may act at the same site as the agonist (competitive antagonism). The antagonistic action may result from a combination of the substance being antagonised (chemical antagonism) or the production of an opposite effect through a different receptor (functional antagonism or physiological antagonism) or as a consequence of competition for the binding site of an intermediate that links receptor activation to the effect observed (indirect antagonism).

As used herein, the term "competitive antagonism" refers to the competition between an agonist and an antagonist for a receptor that occurs when the binding of agonist and antagonist becomes mutually exclusive. This may be because the agonist and antagonist compete for the same binding site or combine with adjacent but overlapping sites. A third possibility is that different sites are involved but that they influence the receptor macromolecules in such a way that agonist and antagonist molecules cannot be bound at the same time. If the agonist and antagonist form only short lived combinations with the receptor so that equilibrium between agonist, antagonist and receptor is reached during the presence of the agonist, the antagonism will be surmountable over a wide range of concentrations. In contrast, some antagonists, when in close enough proximity to their binding site, may form a stable covalent bond with it and the antagonism becomes insurmountable when no spare receptors remain.

As mentioned above, an identified ligand or compound may act as a ligand model (for example, a template) for the development of other compounds. A modulator may be a mimetic of a ligand or ligand binding domain. A mimetic of a ligand may compete with a natural ligand for a mannosidase II and antogonize a physiological effect of the enzyme in an animal. A mimetic of a ligand may be an organically synthesized compound. A mimetic of a ligand binding domain, may be either a peptide or other biopharmaceutical (such as an organically synthesized compound) that specifically binds to a natural substrate molecule for a mannosidase II and antagonize a physiological effect of the enzyme in an animal.

10

15

20

25

30

A modulator may be one or a variety of different sorts of molecule. For example, a modulator may be a peptide, member of random peptide libraries and combinatorial chemistry-derived molecular libraries, phosphopeptide (including members of random or partially degenerate, directed phosphopeptide libraries), a carbohydrate, a monosaccharide, an oligosaccharide or polysaccharide, a glycolipid, a glycopeptide, a saponin, a heterocyclic compound antibody, carbohydrate, nucleoside or nucleotide or part thereof, and small organic or inorganic molecule. A modulator may be an endogenous physiological compound, or it may be a natural or synthetic compound. The modulators of the present invention may be natural or synthetic. The term "modulator" also refers to a chemically modified ligand or compound, and includes isomers and racemic forms.

Once a ligand has been optimally selected or designed, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit to the mannosidase II LBD by the same computer methods described above.

Preferably, positions for substitution are selected based on the predicted binding orientation of a ligand to the mannosidase II LBD.

A technique suitable for preparing a modulator will depend on its chemical nature. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill. Peptides can be synthesized by solid phase techniques (Roberge JY *et al* (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Once cleaved from the resin, the peptide may be

purified by preparative high performance liquid chromatography (e.g., Creighton (1983) Proteins Structures and Molecular Principles, WH Freeman and Co, New York NY). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, *supra*).

5

If a modulator is a nucleotide, or a polypeptide expressable therefrom, it may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH *et al* (1980) Nuc Acids Res Symp Ser 215-23, Horn T *et al* (1980) Nuc Acids Res Symp Ser 225-232), or it may be prepared using recombinant techniques well known in the art.

10

Direct synthesis of a ligand or mimetics thereof can be performed using various solid-phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Additionally, the amino acid sequences obtainable from the ligand, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with a sequence from other subunits, or any part thereof, to produce a variant ligand.

20

15

In an alternative embodiment of the invention, the coding sequence of a ligand or mimetics thereof may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH *et al* (1980) Nuc Acids Res Symp Ser 215-23, Horn T *et al* (1980) Nuc Acids Res Symp Ser 225-232).

25

A wide variety of host cells can be employed for expression of the nucleotide sequences encoding a ligand of the present invention. These cells may be both prokaryotic and eukaryotic host cells. Suitable host cells include bacteria such as *E. coli*, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the expression products to produce an appropriate mature polypeptide. Processing includes but is

10

15

25

30

not limited to glycosylation, ubiquitination, disulfide bond formation and general post-translational modification.

In an embodiment of the present invention, the ligand may be a derivative of, or a chemically modified ligand. The term "derivative" or "derivatised" as used herein includes the chemical modification of a ligand.

A chemical modification of a ligand and/or a key amino acid residue of a ligand binding domain of the present invention may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the ligand and the key amino acid residue(s) of the mannosidase II LBD. By way of example, steric hinderance is a common means of changing the interaction of the mannosidase II LBD binding domain with the activation domain.

Preferably such modifications involve the addition of substituents onto a test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of mannosidase II LBD of the present invention. Typical modifications may include, for example, the replacement of a hydrogen by a halo group, an alkyl group, an acyl group or an amino group.

20

The invention also relates to classes of modulators of mannosidase II based on the structure and shape of a substrate, defined in relation to the substrate's molecule's spatial association with a mannosidase II structure of the invention or part thereof. Therefore, a modulator may comprise a substrate molecule having the shape or structure, preferably the structural coordinates, of a substrate molecule in the active site binding pocket of a reaction catalyzed by a mannosidase II. In an embodiment, the substrate comprises GlcNAcMan₅GlcNAc₂-Asn-

•

A modulator may be an inhibitor of a mannosidase II such as swainsonine or a derivative or mimetic thereof.

A class of modulators of mannosidase II enzymes may comprise a compound containing a structure of swainsonine, and having one or more, preferably all, of the structural coordinates of swainsonine of Table 2 or 8. Functional groups in the swainsonine modulators may be substituted with, for example, alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo, or they may be modified using techniques known in the art. Substituents will be selected to optimize the activity of the modulator.

PHARMACEUTICAL COMPOSITION

10

5

The present invention also provides the use of a ligand or modulator according to the invention, in the manufacture of a medicament to treat and/or prevent a disease in a mammalian patient. There is also provided a pharmaceutical composition comprising such a ligand or modulator and a method of treating and/or preventing a disease comprising the step of administering such a modulator or pharmaceutical composition to a mammalian patient.

15

In an embodiment, the invention relates to a pharmaceutical composition which comprises a crystal structure of the invention or a part thereof (e.g. a binding domain), or a modulator of the invention in an amount effective to regulate one or more of the conditions described herein (e.g. tumor growth or metastasis) and a pharmaceutically acceptable carrier, diluent or excipient.

20

The pharmaceutical compositions may be for human or animal usage in human and veterinary medicine and will typically comprise a pharmaceutically acceptable carrier, diluent, excipient, adjuvant or combination thereof.

25

Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985). The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard

30

pharmaceutical practice. The pharmaceutical compositions may comprise as - or in addition to - the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s).

A pharmaceutical composition of the invention can be administered to a subject in an appropriate carrier or diluent, co-administered with enzyme inhibitors or in an appropriate carrier such as microporous or solid beads or liposomes. Liposomes include water-in-oil-in-water emulsions as well as conventional liposomes (Strejan et al., (1984) J. Neuroimmunol 7:27).

10

Preservatives, stabilizers, dyes and even flavouring agents may be provided in the pharmaceutical composition. Examples of preservatives include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. Antioxidants and suspending agents may also be used.

15

The routes for administration (delivery) include, but are not limited to, one or more of: oral (e.g. as a tablet, capsule, or as an ingestable solution), topical, mucosal (e.g. as a nasal spray or aerosol for inhalation), nasal, parenteral (e.g. by an injectable form), gastrointestinal, intraspinal, intraperitoneal, intramuscular, intravenous, intrauterine, intraocular, intradermal, intracranial, intratracheal, intravaginal, intracerebroventricular, intracerebral, subcutaneous, ophthalmic (including intravitreal or intracameral), transdermal, rectal, buccal, vaginal, epidural, sublingual.

25

20

Where the pharmaceutical composition is to be delivered mucosally through the gastrointestinal mucosa, it should be able to remain stable during transit through the gastrointestinal tract; for example, it should be resistant to proteolytic degradation, stable at acid pH and resistant to the detergent effects of bile.

It is to be understood that not all of the agent need be administered by the same route.

10

15

Where appropriate, the pharmaceutical compositions can be administered by inhalation, in the form of a suppository or pessary, topically in the form of a lotion, gel, hydrogel, solution, cream, ointment or dusting powder, by use of a skin patch, orally in the form of tablets containing excipients such as starch or lactose or chalk, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intravenously, intramuscularly or subcutaneously. For parenteral administration, the compositions may be best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. The aqueous solutions should be suitably buffered (preferably to a pH of from 3 to 9), if necessary. The preparation of suitable parenteral formulations under sterile conditions is readily accomplished by standard pharmaceutical techniques well-known to those skilled in the art.

If the agent of the present invention is administered parenterally, then examples of such administration include one or more of: intravenously, intra-arterially, intraperitoneally, intrathecally, intraventricularly, intraurethrally, intrasternally, intracranially, intramuscularly or subcutaneously administering the agent; and/or by using infusion techniques.

For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

The tablets may contain excipients such as microcrystalline cellulose, lactose, sodium citrate, calcium carbonate, dibasic calcium phosphate and glycine, disintegrants such as starch (preferably corn, potato or tapioca starch), sodium starch glycollate, croscarmellose sodium and certain complex silicates, and granulation binders such as polyvinylpyrrolidone, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC), sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, stearic acid, glyceryl behenate and talc may be included.

25

10

15

20

25

Solid compositions of a similar type may also be employed as fillers in gelatin capsules. Preferred excipients in this regard include lactose, starch, cellulose, milk sugar or high molecular weight polyethylene glycols. For aqueous suspensions and/or elixirs, the agent may be combined with various sweetening or flavouring agents, colouring matter or dyes, with emulsifying and/or suspending agents and with diluents such as water, ethanol, propylene glycol and glycerin, and combinations thereof.

As indicated, a therapeutic agent of the present invention can be administered intranasally or by inhalation and is conveniently delivered in the form of a dry powder inhaler or an aerosol spray presentation from a pressurised container, pump, spray or nebuliser with the use of a suitable dichlorodifluoromethane, trichlorofluoromethane, propellant, e.g. dichlorotetrafluoroethane, a hydrofluoroalkane such as 1,1,1,2-tetrafluoroethane (HFA 134ATM) or 1.1.1.2.3.3.3-heptafluoropropane (HFA 227EATM), carbon dioxide or other suitable gas. In the case of a pressurised aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. The pressurised container, pump, spray or nebuliser may contain a solution or suspension of the active compound, e.g. using a mixture of ethanol and the propellant as the solvent, which may additionally contain a lubricant, e.g. sorbitan trioleate. Capsules and cartridges (made, for example, from gelatin) for use in an inhaler or insufflator may be formulated to contain a powder mix of the agent and a suitable powder base such as lactose or starch.

Therapeutic administration of polypeptide modulators may also be accomplished using gene therapy. A nucleic acid including a promoter operatively linked to a heterologous polypeptide may be used to produce high-level expression of the polypeptide in cells transfected with the nucleic acid. DNA or isolated nucleic acids may be introduced into cells of a subject by conventional nucleic acid delivery systems. Suitable delivery systems include liposomes, naked DNA, and receptor-mediated delivery systems, and viral vectors such as retroviruses, herpes viruses, and adenoviruses.

10

15

20

25

30

APPLICATIONS

The modulators and compositions of the invention may be used to modulate the biological activity of a mannosidase II in a cell, including modulating a pathway in a cell regulated by the mannosidase II or modulating a mannosidase II with inappropriate activity in a cellular organism. In addition, a mannosidase II structure of the invention may be used to devise protocols to modulate the biological activity of a mannosidase II in a cell.

Cellular assays, as well as animal model assays *in vivo*, may be used to test the activity of a potential modulator of a mannosidase II as well as diagnose a disease associated with inappropriate mannosidase II activity. *In vivo* assays are also useful for testing the bioactivity of a potential modulator designed by the methods of the invention.

The invention further provides a method of treating a mammal, the method comprising administering to a mammal a modulator or pharmaceutical composition of the present invention.

Typically, a physician will determine the actual dosage which will be most suitable for an individual subject and it will vary with the age, weight and response of the particular patient and severity of the condition. The dosages below are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited.

The specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the individual undergoing therapy. By way of example, the pharmaceutical composition of the present invention may be administered in accordance with a regimen of 1 to 10 times per day, such as once or twice per day.

10

15

20

25

30

For oral and parenteral administration to human patients, the daily dosage level of the agent may be in single or divided doses.

The modulators (e.g. inhibitors) identified using the methods of the invention may be useful in the treatment and prophylaxis of tumor growth and metastasis of tumors. Anti-metastatic effects of inhibitors can be demonstrated using a lung colonization assay. For example, melanoma cells treated with an inhibitor may be injected into mice and the ability of the melanoma cells to colonize the lungs of the mice may be examined by counting tumor nodules on the lungs after death. Suppression of tumor growth in mice by the inhibitor administered orally or intravenously may be examined by measuring tumor volume.

An inhibitor identified using the invention may have particular application in the prevention of tumor recurrence after surgery i.e. as an adjuvant therapy.

An inhibitor may be especially useful in the treatment of various forms of neoplasia such as leukemias, lymphomas, melanomas, adenomas, sarcomas, and carcinomas of solid tissues in patients. In particular, inhibitors can be used for treating malignant melanoma, pancreatic cancer, cervico-uterine cancer, ovarian cancer, cancer of the kidney such as metastatic renal cell carcinoma, stomach, lung, rectum, breast, bowel, gastric, liver, thyroid, head and neck cancers such as unresectable head and neck cancers, lymphangitis carcinamatosis, cancers of the cervix, breast, salivary gland, leg, tongue, lip, bile duct, pelvis, mediastinum, urethra, bronchogenic, bladder, esophagus and colon, non-small cell lung cancer, and Karposi's Sarcoma which is a form of cancer associated with HIV-infected patients with Acquired Immune Deficiency Syndrome (AIDS). The inhibitors may also be used for other anti-proliferative conditions such as bacterial and viral infections, in particular AIDS.

An inhibitor identified in accordance with the present invention may be used to treat immunocompromised subjects. For example, they may be used in a subject infected with HIV, or other viruses or infectious agents including bacteria, fungi, and parasites, in a subject

10

15

20

25

undergoing bone marrow transplants, and in subjects with chemical or tumor-induced immune suppression.

Inhibitors may be used as hemorestorative agents and in particular to stimulate bone marrow cell proliferation, in particular following chemotherapy or radiotherapy. The myeloproliferative activity of an inhibitor of the invention may be determined by injecting the inhibitor into mice, sacrificing the mice, removing bone marrow cells and measuring the ability of the inhibitor to stimulate bone marrow proliferation by directly counting bone marrow cells and by measuring clonogenic progenitor cells in methylcellulose assays. The inhibitors can also be used as chemoprotectants, and in particular to protect mucosal epithelium following chemotherapy.

An inhibitor identified in accordance with the invention also may be used as an antiviral agent in particular on membrane enveloped viruses such as retroviruses, influenza viruses, cytomegaloviruses and herpes viruses. An inhibitor may also be used to treat bacterial, fungal, and parasitic infections. An inhibitor may also be used in the treatment of inflammatory diseases such as rheumatoid arthritis, asthma, inflammatory bowel disease, and atherosclerosis.

An inhibitor may also be used to augment the anti-cancer effects of agents such as interleukin-2 and poly-IC, to augment natural killer and macrophage tumoricidal activity, induce cytokine synthesis and secretion, enhance expression of LAK and HLA class I specific antigens; activate protein kinase C, stimulate bone marrow cell proliferation including hematopoietic progenitor cell proliferation, and increase engraftment efficiency and colony-forming unit activity, to confer protection against chemotherapy and radiation therapy (e.g. chemoprotective and radioprotective agents), and to accelerate recovery of bone marrow cellularity particularly when used in combination with chemical agents commonly used in the treatment of human diseases including cancer and acquired immune deficiency syndrome (AIDS). For example, an inhibitor can be used as a chemoprotectant in combination with anti-

10

15

20

25

30

cancer agents including doxorubicin, 5-fluorouracil, cyclophosphamide, and methotrexate, and in combination with isoniazid or NSAID.

Alpha-mannosidosis may also be amendable to treatment or prophylaxis by the method of the present invention.

The loss of mannosidase II has been found to alter N-glycan branching and attenuate the immune system's ability to maintain self-tolerance (Chui et al, PNAS 98(3):1142-1147, 2001). Therefore, the structures, modulators, compositions, and methods of the invention may be useful in the treatment or prophylaxis of autoimmune disease including systemic lupus erythematosus.

The present invention thus provides a method for treating the above-mentioned conditions in a subject comprising administering to a subject an effective amount of a modulator of the invention. The invention also contemplates a method for stimulating or inhibiting tumor growth or metastasis in a subject comprising administering to a subject an effective amount of a modulator of the invention.

The following non-limiting examples are illustrative of the present invention.

EXAMPLES

Example 1

Drosophila Mannosidase II preparation and structure determination

Expression Plasmids

Constructs designed to expressed dGMII in *Drosophila* Schneider (S2) cells were based on the DES expression system available from *InVitrogen* with extensive modifications. Expression plasmids were constructed which had the dGMII under the control either of the inducible metallothioneine (MT) promoter or the strong constitutive actin 5.1 promoter (AC5). Amino terminal purification tags were inserted in place of the C-terminal tags in the commercially available vectors. Earlier attempts, to truncate the mouse enzyme from at the C-terminus resulted in inactive protein, as had also been noted with the GlcNAc-transferases. Thus, it was elected to keep the C-terminus free. Expression vectors were created with either a 6His-tag, for purification on metal chelate columns such as Ni-NTA (*Qiagen*) or cobalt based Talon columns (*Clontech*), or with a Strep-tag for purification on streptavidin-Sepharose. These affinity tags are initially non-cleavable and add approximately 8-10 residues to the end

10

15

20

25

of the protein. Finally, constructs were made either lacking or containing the Bip secretion sequence to direct the expressed protein into the cells or medium respectively.

Blasticidin Selection

Initial attempts at stable transfection with the recommended hygromycin selection system were unsuccessful. Therefore a new selection plasmid, pCopBlast was created which encodes blasticidin S deaminase under the control of the constitutive *copia* promoter. Blasticidin S has been used for stable transfectants of mammalian and plant cells, as well as yeast. Commercially available control plasmids expressing MT-induced secreted green fluorescent protein (GFP), or constitutive and MT-induced unsecreted bacterial β-galactosidase (LacZ) were used to test the suitability of blasticidin selection in S2 cells, and to optimize conditions for transfection, selection, and metallothionein induction. Stable transfectants could be selected with 16 μg/ml blasticidin in Schneider's S2 medium containing 10% fetal bovine serum. Copper and cadmium were the only metals found to activate the MT promoter; copper favoured internally expressed proteins and cadmium, secreted proteins. Maintenance of the altered phenotype was also demonstrated for many weeks in the absence of the selective pressure of blasticidin demonstrating that these were indeed stably transfected cell lines.

Creation of Stably Expressing dGMII cell lines.

Starting with the pProtA expression plasmid from initial published studies [Rabouille *et al*, 1999], the mannosidase coding region was excised, and inserted into an in-frame *EcoRI* site immediately at the end of the affinity tag in the new plasmids. The position of a unique 3' restriction site outside the coding region meant that 100-200 bp of extra sequence was added between the stop codon and the SV40 polyadenylation site. This extra sequence was removed with a short PCR amplification using a unique internal restriction site. Both ends of the constructs were sequenced to verify proper reading frame and lack of PCR errors. The resulting constructs consist of the dGMII catalytic region with a short length of the stalk region, in a variety of "flavours" of promoter, affinity tag, and expression location.

10

15

20

25

Co-transfection of the pCopBlast selection plasmid with the mannosidase expression plasmids, followed by selection for blasticidin resistance allowed stable expressing cell lines after approximately one month. Mannosidase activity was measured using PNP-mannoside, in a microtitre plate assay. Protein was detected on Western blots using anti-PentaHis antibody (*Qiagen*). Only the secreted products showed activity, with similar levels in the constitutive and MT-promoter constructs. No difference in mannosidase activity was seen between His or Strep tagged protein. All subsequent work was carried out with the secreted constructs.

Insect cells do not grow at low population densities. Therefore, the initial population of selected cells was a mixed population with each cell in the culture having somewhat different levels of incorporated expression plasmid. To select individual cells with high levels of expression the stably transfected population was diluted to single cells in a 50:50 mix of conditioned medium and fresh medium with blasticidin. These were then plated in 96-well culture plates. After five weeks, about 10% of the wells showed growths of colonies large enough to transfer, of which roughly 30% had activity. The highest expressors had approximately 5 times the activity of the initial population in the MT-inducible strains. High-expressing clones of the constitutively expressed dGMII, were obtained suggesting that the continued production mannosidase by the cells may be detrimental, especially under the stressful conditions of single-cell selection.

Expression and purification of dGMII.

The availability of a stable clones expressing considerable amounts of mannosidase allowed optimization of induction, expression and purification conditions. In contrast to mammalian cells, insect cells are not highly adherent and will grow to high cell densities in a variety of culture vessels including roller bottles, spinners, fermentors and shake flasks. No CO₂ is required, and temperatures in the range of 25-28°C are optimal. With stably transfected cells, the difficulties that accompany baculoviral infection do not arise.

Initial experiments were carried out in S2 medium containing 10% bovine serum. Metal concentrations used to induce and time of induction were optimized for dGMII production. 10-20 μ M cadmium proved optimal for induction. Although copper (at approximately 500-1000 μ M) is generally used in the literature for induction, the sensitivity of dGMII to inhibition by copper (IC₅₀ = 25 μ M,[26]) precluded its use. Cadmium has been reported to be detrimental to the growth of cells. However, at the concentrations used here, the cells continued to grow and maintain greater than 90% viability (as assessed by Trypan blue exclusion) until the end of the induction period. Cells were maintained in the continous presence of cadmium for up to three passages.

10

15

5

As the dGMII was secreted into the medium, it was badly contaminated with bovine serum albumin (BSA). Attempts to remove the impurity by Blue Agarose or Ni-NTA chromatography were unsuccessful. To circumvent this contamination problem a number of serum-free media were evaluated for growth and expression levels. There are very few serum-free media developed for *Drosophila* cells so ones that have been used with baculovirus expression systems were evaluated. Ultimately the Excel420 medium from JRH Biosciences was successful.

20

A further advantage to this medium is the incorporation of seleno-methionine in place of methionine for crystallographic phasing purposes. A custom preparation of this medium was purchased from JRH free of Met and Cu. Inclusion of 50 µg/ml of SeMet resulted in the production of protein with high enough incorporation (approximately 50% by mass spectrometry) for accurate phasing.

25

Cells were adapted to serum-free growth by gradual dilution with CCM3 medium and then they were switched into the other media for the expression studies. Excel420, CCM3 and SFX-Insect were clearly superior for maintaining healthy growth, though CCM3 provided slightly lower levels of expression. Levels of cadmium required for induction were optimized for each medium and were considerably lower than those required in S2 medium. For unknown reasons, constitutive expression of dGMII was much lower in serum-free medium.

30

10

15

20

Therefore, all subsequent scale-up and purifications were carried out with the MT-inducible 6His tagged constructs.

To scale-up protein expression cells were first grown as suspensions in spinner cultures. These were subsequently put into 2.8 litre Fernbach flasks (1 litre Excel 420/flask) shaken at 100 rpm at 28°C. Cells were induced for 72 hours with 10 µM cadmium. After this time the medium was asceptically harvested and the cells are placed in the same volume of fresh medium for a further round of induction. This can be repeated at least one more time without significant cell death or loss of protein expression. Based on activity measurements up to 50 mg/litre of medium can be expressed every three days. This is approximately 1000 fold greater than in initial expression experiments in CHOP cells [Rabouille *et al*, 1999]. This procedure requires about 2 weeks of dedicated time in an incubator/shaker.

Purification is effected by batch binding first to Blue-Agarose, with elution by 350 mM NaCl, and then to Ni-NTA resin, with elution by 50 mM imidizole. Initial, secreted protein from the medium of the serum-free grown cells was loaded in batch to Blue-Agarose. The beads were then loaded into a column and washed with 20 column volumes of 50 mM NaCl in 20 mM Tris pH8. The majority of the mannosidase was eluted with 350 mM NaCl. This pooled eluant was loaded onto NiNTA, washed with low imidizole, and eluted with 50 mM imidizole to achieve crystallization purity. The protein is then dialysed extensively against 10 mM Tris, pH 8.3 and 100 mM NaCl and concentrated (to greater than 20 mg/ml) for crystallization trials. All crystallization has been carried out from a single protein preparation.

Crystallization

25 Crystals of Drosophila Mannosidase II and complexes of the enzyme with various inhibitors were grown at room temperature using vapor diffusion and micro-batch crystallization techniques. Crystals were obtained under a wide variety of conditions. Polyethylene glycol (PEG) was used as a precipitant (with sizes: 4000; 6000; 8000; 10000; and 20000) at concentrations varying from 5-20%, in the presence of 5% 2,4-methyl-pentanediol (MPD) or 0-30% glycerol. Crystallization solutions were buffered at pH 7-7.5 using 100 mM buffer

10

15

25

solutions of Tris, Hepes or Mes. The crystals belong to the orthorhombic space group $P2_12_12_1$ with cell dimensions: a=69Å; b=110Å; c=139Å; $\alpha=90^\circ$; $\beta=90^\circ$; $\gamma=90^\circ$. For the initial structure determination Seleno-Methionine-derivatized Mannosidase II crystals were grown in 8.5% PEG 6000, 5% MPD and 100 mM Tris pH 7.0, using micro seeds obtained from wild-type enzyme crystals. Data were collected from crystals that were frozen in liquid nitrogen after a stepwise increase of the MPD concentration in the crystallization solution from 5% to 25%.

A crystal of the invention is illustrated in the Figures. In particular, Figure 1 shows the active site of a mannosidase II. Figure 2 shows the secondary structure of Drosophila Golgi α -mannosidase II. Helices are in blue and β sheets are in red. Figure 3 shows the Drosophila golgi α -mannosidase II molecule with the colours representing where it is identical to human GMII. The red and blue represent deletions or insertions with respect to the human sequence. The green is a disulphide bond. Figure 4 shows the whole Drosophila golgi α -mannosidase II molecule in sticks with residues that are identical in the lysosomal manII as coloured balls (red or blue depending whether they are in the N-terminal or C-terminal part of the molecule). Figure 5 shows the active site of a Drospholiga mannosidase. Figure 6 shows the DNA sequence of an expressed Drosophila mannosidase. Figure 7 shows an alignment of expressed secreted Drosophila mannosidase with human mannosidase.

20 Example 2

Experimental Procedures

Protein Overexpression and Purification

Expression, purification and crystallization of the dGMII will be described in detail elsewhere. Briefly, the cDNA was inserted behind an inducible promoter, and used to stably transfect *Drosophila* S2 cells. Single cell clones secreting high levels of dGMII were chosen and adapted to serum-free medium. Unlabelled dGMII was isolated from the supernatants of cells grown in Fernbach flasks by batch binding to Blue-Agarose (Sigma). The protein was eluted from the Blue-Agarose using NaCl and further purified by Ni-NTA chromatography (Oiagen). EDTA (5 mM) was added to scavenge any free nickel. The protein was extensively

dialyzed against 10 mM Tris pH 8 containing 100 mM NaCl, concentrated to 25 mg/ml, and stored in aliquots at -80 °C.

For seleno-methionine labeling, a custom batch of Ex-Cell 420 (#006140E JRH Biosciences, Lenexa KS) was used which lacked any added methionine or copper. Cells were grown to high cell density in a spinner flask in standard medium, resuspended in the "methionine-free" medium and allowed to starve for 4 hours prior to the addition of 50 mg/l of seleno-methionine (Sigma). After 70 hrs of induction the protein was purified from the supernatant as outlined above except that 5 mM β-mercaptoethanol was present throughout the purification.

10

15

20

25

5

Crystallization and Data Collection

Crystals of Drosophila Mannosidase II and complexes of the enzyme with various inhibitors were grown at room temperature using vapor diffusion and micro-batch crystallization techniques. Crystals were obtained under a wide variety of conditions. Polyethylene glycol (PEG) was used as a precipitant (with sizes: 4000; 6000; 8000; 10000; and 20000) at concentrations varying from 5-20%, in the presence of 5% 2,4-methyl-pentane-diol (MPD) or 0-30% glycerol. Crystallization solutions were buffered at pH 7-7.5 using 100 mM buffer solutions of Tris, Hepes or Mes. The crystals belong to the orthorhombic space group P2₁2₁2₁ with cell dimensions: a=69Å; b=110Å; c=139Å; $\alpha=90^\circ$; $\beta=90^\circ$; $\gamma=90^\circ$. For the initial structure determination Seleno-Methionine-derivatized Mannosidase II crystals were grown in 8.5% PEG 6000, 5% MPD and 100 mM Tris pH 7.0, using micro seeds obtained from wild-type enzyme crystals. Data were collected from crystals that were frozen in liquid nitrogen after a stepwise increase of the MPD or glycerol concentration in the crystallization solution from 5% to 25%. Data collection was performed at the Advanced Photon Source facility at Argonne National Laboratories, Argonne, Illinois. Beam line BM14D was used for collection of multiple wavelength anomalous dispersion data and BM14C for collection of highresolution data.

Structure Determination

The structure of uncomplexed dGMII was determined by MAD phasing at the Selenium absorption edge with datasets collected at an absorption peak wavelength of 0.9786 Å, inflection wavelength of 0.9790Å and a remote wavelength of 0.9770 Å. Initial positions of 26 out of 28 Selenium atoms were determined with the program Solve (Terwilliger et al., 1987) with an initial Figure of Merit (FOM) of 0.67. The experimental map obtained after density modification, using the program DM of the CCP4 program package (Cowtan, 1994), showed continuous density of very high quality for the whole molecule. The structure was traced using the program O (Jones et al., 1991) using the density modified experimental map. The model was refined using the program CNS (Brünger et al., 1998).

10

15

5

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)

The metal content in dGMII samples was analyzed by inductively coupled plasma atomic emission spectroscopy using the ICP-AES model 'Optima 3000 DV' (Dual View) from Perkin Elmer. The zinc content in the protein samples was determined relative to an equivalent amount of dGMII assay buffer.

RESULTS AND DISCUSSION

Protein expression

- The cDNA for *Drosophila* GMII is predicted to encode a protein of 1108 amino acids. For protein expression in *Drosophila* cells the first 75 amino acids consisting of the cytosolic and transmembrane domains and most of the stalk region were eliminated. The remaining cDNA was cloned in-frame behind a secretion signal.
- Numbering of our construct starts at the point where the expressed protein is expected to be cleaved, by signal peptidase, from the secretion signal. Three extra amino terminal residues, a 6-histidine tag, and a glycine, glutamine and phenylalanine were added in cloning. The first aspartate (D13) of the construct corresponds to aspartate 76 of the native protein. The first residue seen in the structure (C31) corresponds to C94, and the final residue S1044 to S1107,
- 30 of the full-length sequence.

10

15

20

25

30

Structure Determinations

The structure of Drosophila Golgi α-mannosidase II has been determined by the multi-wavelength anomalous dispersion (MAD) phasing method using a data set collected from a crystal of Seleno-methionine derivatized enzyme (Table 9). This is the first reported structure of a Se-Met substituted enzyme produced in a Drosophila overexpression system. The native dGMII structure has been refined to a resolution of 1.76Å with some data to 1.4Å resolution (see refinement statistics presented in Table 10). The model contains residues 31-1044 of the recombinant enzyme (numbered as described above), as well as a zinc ion, an N-glycan residue, a molecule of the cryo-protectant, 2-methyl-2,4-pentanediol (MPD), and a tris(hydroxymethyl)-aminomethane (Tris) molecule. The presence of the enzyme-bound zinc ion was confirmed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The final structure of the dGMII-swainsonine complex has been refined at 1.87Å resolution and the dGMII-DMNJ complex to 1.69Å resolution, with some data to 1.5Å resolution.

Overall Architecture of dGMII

The structure of dGMII reveals a previously unobserved protein fold consisting of an N-terminal α/β domain, a three-helical bundle and an all- β C-terminal domain forming a single compact entity, connected by 5 internal disulfide bonds and stabilized by a zinc binding site (Figure 8B). The oval shaped molecule has two distinct faces (Figure 8C). The N-terminal face of the molecule is convex, whereas the opposing face of the enzyme has a planar surface. N-terminal residue Cys-31 is the last residue of the so-called stalk region, the linkage between the catalytic domain and the transmembrane domain. Cys-31 is located at the convex face of the molecule, indicating that this surface of the molecule presumably faces the inner side of the Golgi membrane, while the planar surface, containing the active site cavity (see below), faces the Golgi lumen.

The N-terminal α/β domain is comprised of an inner core of three β -sheets (A, B and C, Figure 8B) consisting of 11, mostly parallel β -strands, surrounded by 16 α -helices. This

domain contains a GlcNAc residue found in the electron density map at a consensus N-glycosylation site (Asn-194), located at the N-terminus of helix 7. The α/β domain is stabilized by three disulfide bonds: between Cys-31 and Cys-1032 connecting the N and C-terminal extremes of dGMII; Cys-275 and Cys-282 linking helices 10 and 11; Cys-283 and Cys-297 linking helix 11 with a loop between helix 13 and the core of parallel β -sheets. The cysteines forming the latter two disulfide-bonds are conserved in the human Golgi α -mannosidase II sequence.

The C-terminal half of the protein contains a three-helix bundle, comprised of helices 18, 20 and 21, and is connected to the N-terminal α/β -domain via a zinc binding site. The zinc ion is coordinated in a T₅-square-based pyramidal geometry involving residues: Asp-90, His-92, Asp-204 and His-471. Furthermore, the C-terminal domain contains two immunoglobulin-like domains: a small β -sandwich consisting of 12 anti-parallel strands from β -sheets D and E, and a large 21-strand structure involving β -sheets F and G.

15

20

25

5

10

A barrel formed by the three-helix bundle and helix-23 together with the two β -sandwich structures result in a narrow pore in the center of the C-terminal domain. The pore is lined by six arginine residues: Arg-540, 565, 617, 770, 777 and 893, contributing to the overall positive charge of the pore (Figure 9A). A hairpin loop, connecting two strands of β -sheet D (Figure 8B and C, residues 527-540, shown in yellow) protrudes into the center of the barrel on the planar side of the molecule. Arginine residue 530, located at the tip of the type-I β -turn in this loop, plugs the pore preventing an open channel through the protein. The resulting crater-like cavity on the convex side of the molecule is 20Šdeep, with a diameter of 20Šfunneling to 8Šat the bottom of the cavity. B-factor values of residues within the loop indicate a higher degree of flexibility compared to the rest of the structure (average B-factor values: ~33Ų and ~15Ų, respectively).

il più

Active Site

5

10

15

20

25

30

The molecular surface representation of the planar face of dGMII reveals an extended pocket in the N-terminal α/β -domain, formed primarily by acidic residues (Figure 9B). These same residues form the core of a large, contiguous, surface-exposed patch, of highly conserved amino acids, in comparison with the human GMII sequence (Figure 9C). The active site of the enzyme is located in a small cavity in the side of this conserved, negatively charged region. The cavity is lined by aromatic residues Trp-95, Phe-206, Tyr-269 and Tyr-727, which are involved in hydrophobic and hydrogen-bond interactions with a bound Tris molecule in the unliganded structure (Figure 10A). Tris is known to inhibit dGMII activity (Rabouille et al., 1999). Additional hydrophobic and hydrogen bond interactions are observed with Asp-92 and Asp-204. At the open side of the cavity the Tris molecule hydrogen bonds with Arg-228, Tyr-269 and Asp-341 (not shown) via water molecules.

A key feature of the active site is the coordination of the zinc ion by the Tris hydroxyl group O2. In the enzyme-Tris complex the zinc ion is bound in a T₅-square-based pyramidal geometry, coordinated by the OD1 oxygen moieties of aspartate residues 92 and 204; the NE2 nitrogens of histidines 90 and 471; and the hydroxyl oxygen O2 of the bound Tris molecule, as represented in Figure 10A. The T₅ geometry is further stabilized by hydrogen bonds between the zinc coordinating atoms and the existence of H-bonds between the ND1 nitrogen atoms of the histidines 90 and 471 with the carbonyl oxygen of seleno-methionine 167 and a water molecule, respectively (not shown). The presence of these, so called, 'elec-His-Zn motifs' is believed to increase the basicity and the ligand strength of the histidine and arrange it correctly for interaction with the metal (Alberts et al., 1998). In an uninhibited enzyme, Tris would likely be replaced by a coordinating water molecule. As discussed below, this arrangement has implications for substrate binding and transition state stabilization.

The occurrence of zinc in Family 38 glycosyl hydrolases has been described by Snaith (1975) in Jack-bean α -mannosidase. A possible role for zinc in catalysis was indicated by inactivation of the enzyme by chelating agents and bivalent metal ions such as Cu^{2+} . Copper

has also been shown to effectively inactivate *Drosophila* and mouse GMII (Rabouille et al., 1999).

Inhibitor Binding

5

10

15

20

25

The structures of dGMII in complex with the inhibitors DMNJ and swainsonine show that both compounds bind to the same active site in a similar manner (Figure 10B and C). The binding of both inhibitors involves a large contribution of hydrophobic interactions involving aromatic residues Trp-95, Phe-206 and Tyr-727, forming the walls of the cavity. The inhibitor ring structures are stacked against Trp-95, a feature seen in several carbohydrate binding and hydrolyzing proteins (see Boraston et al., 2000 and review papers therein), and stabilized by hydrogen bonds and interactions with the zinc ion. In the complexes of dGMII with either DMNJ or swainsonine the T5 geometry of the bound zinc ion, as seen in the Tris-bound enzyme, is transformed into T6-octahedral coordination. In both the dGMII complexes the inhibitor O2 hydroxyl oxygen replaces the O2 oxygen of Tris and the O3 hydroxyl oxygen forms the apex of the second pyramid. In order to obey the restraints of the T₆ geometry, the plane of the swainsonine ring structure is tilted with respect to the saccharide-like ring of the bound DMNJ molecule. This enables the formation of a hydrogen bond between the zinccoordinating OD1 oxygen of Asp-204 and the N4 nitrogen at the fusion of the five and sixmembered rings of swainsonine. As in the Tris-bound enzyme, the zinc coordinating oxygen atoms of the inhibitors are involved in hydrogen bond interactions with the neighboring metal binding residues of the enzyme.

The position of the DMNJ and swainsonine molecules is stabilized in the active site by hydrogen bonds between carboxylic oxygens OD1 and OD2 of residue Asp-472 and hydroxyl oxygens O3 and O4 (O5 in swainsonine) of the inhibitors, analogous to the O1 and O2 interactions seen in the enzyme-Tris complex. As in the Tris-bound enzyme, DMNJ is involved in additional hydrogen bonds, via water molecules, with the NH2 nitrogen of Arg-228, the hydroxyl oxygen of Tyr-269, the backbone carbonyl oxygen of Arg-876 (not shown) and the OD1 oxygen of Asp-204.

10

15

20

25

30

The displacement of the Tris molecule by either of the inhibitors only slightly affects the zinc binding site by weakening the internal hydrogen bonds between Asp-204 and histidines 90 and 471. No major conformational changes are observed between the Tris-bound and the inhibitor-bound mannosidase molecules as their backbones are virtually superimposable, with root-mean-square-deviations between $C\alpha$ atoms of 0.068Å (dGMII-DMNJ complex) and 0.087Å (dGMII-swainsonine complex).

Catalytic mechanism

Golgi α -mannosidase II is a retaining mannosyl hydrolase, which cleaves the linkage between the C1 atom of M7 and M6 (Figure 8A) and, respectively, the O3 and O6 atom of the α 1,6-linked mannosyl branch (M4) of GlcNAcMan₅GlcNAc₂. The catalytic mechanism is proposed to follow a very similar path to the corresponding retaining β -glycosidases (Braun et al., 1995; White and Rose, 1997). This is a two-stage reaction that usually involves two carboxylic acids, one acting as a nucleophile attacking the glycosidic bond, and the other as a general acid/base catalyst. Nucleophilic attack of one carboxylic acid results in glycosylation of the enzyme by forming a covalent intermediate followed by a second deglycosylation step, each step passing through an oxocarbonium ion-like transition state.

Based on the structure of the dGMII-inhibitor complexes we speculate that the mannose residues on the α 1,6-linked mannosyl branch (M4) bind to the enzyme at the same site and in the same manner as mannose-like inhibitor DMNJ. Coordination of the zinc ion with the O2 and O3 hydroxyl oxygens thereby contributes to the enzyme's specificity for mannose. Four acidic amino acid residues, Asp-92, Asp-204, Asp-341 and Asp-472, are candidates for catalytic side chains based on their proximity to the active site (Figure 10C). Results from a recent study on the mechanism of catalysis in Jack-bean α -mannosidase by Withers and coworkers, using reagents that trap the glycosyl-enzyme intermediate, identified an aspartate residue as the catalytic nucleophile in that enzyme (Howard et al., 1998). Comparison of the highly conserved sequence region surrounding this aspartate in Jack-bean α -mannosidase with the same sequence region in dGMII suggests that aspartate residue 204 in dGMII is the catalytic nucleophile that attacks the glycosidic linkage. For this reaction it is required that

10

15

20

25

Asp-204 is close to the anomeric carbon of the mannose substrate. In the dGMII-DMNJ complex, however, the equivalent anomeric carbon is located 4.6Å from the nucleophile. Binding of the C2 and C3 substituent hydroxyl oxygens of the flattened five-membered ring in swainsonine causes the inhibitor molecule to tilt, bringing its bridgehead nitrogen N4, in the analogous position to C1 in the substrate, significantly closer to the putative nucleophilic Asp-204 (3.2Å). This tilted binding mode, stabilized by a hydrogen bond between N4 and Asp-204 and by van der Waals stacking interactions between the 6-membered ring of swainsonine and Phe-206, may resemble the mode of binding of the ring-flattened transition state mannosyl cation. Thus, Phe-206 would stabilize the transition state by compensating for the loss of stacking interactions of the substrate with Trp-95. The highly complementary shape of swainsonine with the active site of dGMII, and its structural analogy with the skewed boat transition state conformation, could therefore explain its 10,000 times higher binding affinity for the enzyme, compared to the substrate-mimic DMNJ (data not shown).

The OD1 oxygen of Asp-204, the putative nucleophile, directly coordinates the zinc ion, implicating a role for the zinc in positioning the nucleophile and in the stabilization of protonation states of the reacting partners. It is tempting to speculate that the change of zinc coordination from T5 to the less favored T6 state (Alberts et al., 1998) on substrate binding may also contribute to the mechanism. From the Tris and DMNJ structures, it is predicted that the coordination would revert to T5 on product release. If so, this transition may energetically facilitate the deglycosylation step. Such evidence of direct zinc involvement in the catalytic mechanism of a glycosyl hydrolase is unprecedented. Arg-288 positions Asp-204 for nucleophilic attack by virtue of hydrogen bond interactions between its NE and NH2 nitrogens and the OD2 oxygen of Asp-204 (Figure 10C). Based on the expected distance between the two catalytic residues (~5.5Å, Davies and Henrissat, 1995) likely candidates for the catalytic base are Asp-341 and Asp-472 (preliminary indications are that the D341N mutant is catalytically inactive, DAK unpublished results). Recent data suggest that other residues, such as tyrosines, possibly play a role in glycosidic bond cleavage (Davies and Henrissat, 1995). Tyrosine residues 269 are 727 are positioned to help stabilize the transition state.

10

15

20

25

Substrate Binding and Cleavage

The function of GMII is dependent on the presence of β 1,2-GlcNAc (G3, Figure 8A), added to α 1,3-linked mannose (M5) by GlcNAc transferase I (see reviews: Kornfeld and Kornfeld, 1985; Moremen et al., 1994). This β 1,2-GlcNAc dependence suggests the presence of an additional saccharide-binding site in GMII. Evidence for such a binding site is provided by the observation of an MPD molecule in the structure of dGMII, in the vicinity of the active site cavity. MPD was used as a cryo-protectant during the procedure of flash-freezing of the crystal, prior to data collection (see experimental procedures). The replacement of MPD by the alternative cryo-protectant glycerol resulted in the occupation of this same position by a glycerol molecule. Glycerol has been shown to mimic saccharide binding in structures of glycosyl hydrolases (Schmidt et al., 1998, Vallée et al., 2000).

The observation of the binding of MPD and glycerol near dGMII's active site (Figure 11A) enables a hypothesis regarding the binding and cleavage of $\alpha 1,6$ and $\alpha 1,3$ -linked mannoses on the α1,6-linked mannose branch of the GlcNAcMan₅GlcNAc₂ oligosaccharide. In this hypothesis, the MPD binding site is suggested to be the putative site of interaction for β1,2-GlcNAc (G3, Figure 8A), enabling anchoring of the oligosaccharide substrate in the conserved negatively charged pocket. In Figure 11B a model is shown of a GlcNAcMan₅GlcNAc₂ structure with the β1,2-GlcNAc residue placed in the MPD binding site and the al,6-linked M6 mannose docked into the active site, with its hydroxyl oxygens O2 and O3 coordinating the zinc ion. As required, the asparagine linked β1,4-GlcNAc residues G1 and G2 extend away from the surface of the molecule (into the Golgi lumen). Both M4 and the second substrate α1,3-linked M7 mannose are located within the conserved negatively charged pocket pointing away from the active site cavity. In this orientation it can be easily visualized that after cleavage of the α 1,6-linked M6 the second, α 1,3-linked M7 can be brought into the active site cavity by a ~180° rotation, through the extended pocket, around the flexible $\alpha 1,6$ -linkage of M4 (see Figure 11C). In addition to the dependence of GMII's action on the presence of the G3 \$1,2-GlcNAc, this model provides a mechanism for the

10

cleavage of both mannose residues without major conformational change of the enzyme, and more importantly, without release of the polypeptide-carbohydrate complex, anchored by the stationary GlcNAc, between the two cleavage events. Finally, this model suggests that the α 1,6-linked M6 mannose is preferentially cleaved first, enabling the shorter α 1,3-linked M7 residue to rotate through the pocket with minimal steric hindrance; according to our model, the proposed 'swivel' mechanism would be slightly hampered should the M7 mannose be cleaved first. This is supported by data reported for α -mannosidase II from mung bean seedlings, Xenopus liver, Rat liver Golgi and for enzyme-activity in homogenates of insect cells, showing preferential hydrolytic activity on the M6 mannosyl residue (Kaushal et al., 1990; Altmann and Martz, 1995; Ren et al., 1997).

Conclusions

The structure of the catalytic domain of Golgi α -mannosidase II provides the basis for its zinc ion mediated specificity for mannose, as well as insight into its reaction mechanism. In addition, the result illustrates the structural basis for the mechanism of inhibition by the anticancer agent swainsonine, which we propose mimics aspects of the transition state binding. This understanding is critical for the rational design of swainsonine variants and/or novel mechanism-based compounds as specific α -mannosidase II inhibitors, for the treatment of several forms of cancer. A bound MPD molecule identifies a putative GlcNAc binding pocket, located near the active site and enables a hypothesis explaining the enzyme's dependency on the single GlcNAc substitution of the GlcNAcMan₃GlcNAc₂ substrate for binding. Furthermore, it suggests a novel mechanism for successive hydrolysis of the α 1,6 and α 1,3-linked mannose residues, resulting in the tri-mannose core glycosyl structure. Finally, it opens the door to the design of novel highly specific inhibitors linking together functional sites in the enzyme.

15

20

10

5

Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in chemistry or biology or related fields are intended to be covered by the present invention. All publications mentioned in the above specification are herein incorporated by reference.

Table 1

Structural coordinates of a Drosophila Golgi α-mannosidase II.

```
REMARK coordinates from simulated annealing refinement
    REMARK refinement resolution: 500.0 - 1.4 A
    REMARK starting r= 0.1816 free r= 0.2003
                    r = 0.1894 free r = 0.2063
    REMARK final
    REMARK rmsd bonds= 0.004594 rmsd angles= 1.32379
    REMARK wa_initial= 0.264577 wa_dynamics= 0.28954 wa_final= 0.28836
    REMARK target= mlf md-method= torsion annealing schedule= slowcool
    REMARK starting temperature= 1000 total md steps= 40 * 6
10
    REMARK sg= P2(1)2(1)2(1) a= 68.865 b= 109.718 c= 138.599 alpha= 90 beta= 90
     gamma= 90
     REMARK parameter file 1 : CNS TOPPAR:protein_rep.param
     REMARK parameter file 2 : CNS_TOPPAR:water_rep.param
15
     REMARK parameter file 3 : CNS TOPPAR:ion.param
     REMARK parameter file 4 : trs.par
     REMARK parameter file 5 : mpd.par
     REMARK parameter file 6 : cis_peptide.param
     REMARK parameter file 7 : CNS TOPPAR:carbohydrate.param
     REMARK molecular structure file: dgmllcgen.mtf
20
     REMARK input coordinates: dgmllcgen.pdb
     REMARK reflection file= ../semetHiR.cv
     REMARK ncs= none
     REMARK B-correction resolution: 6.0 - 1.4
     REMARK initial B-factor correction applied to fobs :
25
                    0.609 B22= -0.765 B33=
              B11 =
     REMARK
                    0.000 B13= 0.000 B23=
                                               0.000
     REMARK
              B12 =
     REMARK B-factor correction applied to coordinate array B:
     REMARK bulk solvent: density level= 0.35999 e/A^3, B-factor= 42.8385 A^2
     REMARK reflections with |Fobs|/sigma_F < 0.0 rejected
30
     REMARK reflections with |Fobs| > 10000 * rms(Fobs) rejected
     REMARK theoretical total number of refl. in resol. range:
                                                                 206243 (100.0%)
     REMARK number of unobserved reflections (no entry or |F|=0): 59797 (29.0%)
                                                                       0 (0.0%)
     REMARK number of reflections rejected:
                                                                  146446 (71.0%)
     REMARK total number of reflections used:
35
                                                                  139067 (67.4%)
     REMARK number of reflections in working set:
                                                                    7379 (3.6%)
     REMARK number of reflections in test set:
              68.865 109.718 138.599 90.00 90.00 90.00 P 21 21 21
     REMARK FILENAME="dgm11can2 1.pdb"
                                             created by user: jvdelsen
     REMARK DATE:13-Jul-2000 03:16:24
40
     REMARK VERSION:0.9a
                                                                            Α
                                                            1.00 22.64
                                             37.136 -18.751
                                     41.938
               1 C
                     CYS A
                             31
     MOTA
                                                            1.00 22.74
                                                                             Ά
                                             36.540 -19.699
                                     41.423
               2 0
                      CYS A
                             31
     MOTA
                                                             1.00 22.94
                                                                             Α
               3 CB CYS A
                                             38.473 -19.585
                                     43.833
     ATOM
                             31
                                                             1.00 23.66
                                                                            Α
                                     45.532
                                             39.110 -19.452
45
     MOTA
               4 SG CYS A
                            31
                                                                             Α
                                             36.072 -19.063
                                                             1.00 24.03
                      CYS A 31
                                     44.185
     MOTA
               5 N
                                                             1.00 23.18
                                                                             Α
                                             37.310 -18.673
                                     43.449
     MOTA
               6 CA CYS A
                            31
                                                            1.00 22.29
                                                                             Α
                                             37.666 -17.760
     MOTA
               7 N
                      GLN A
                            32
                                     41.229
                                                                             Α
                                                            1.00 22.06
               8 CA GLN A 32
                                     39.775
                                             37.591 -17.754
     MOTA
                                     39.196
                                             38.061 -16.417
                                                                             Α
                                                             1.00 24.01
                 CB GLN A 32
50
     MOTA
               9
                                             37.126 -15.248
                                                            1.00 27.12
                                                                             Α
              10 CG GLN A 32
                                     39.409
     MOTA
                                                             1.00 28.66
                                                                             Α
              11 CD GLN A 32
                                     38.470
                                             37.442 -14.098
     MOTA
                                                            1.00 29.78
                                     37.252 37.307 -14.224
                                                                             Α
              12 OE1 GLN A 32
     MOTA
```

							00			
		ATOM	13	NE2	GLN A	32	39.031	37.872 -12.973	1.00 29.39	Α
		ATOM	14	C	GLN A	32	39.230	38.498 -18.848	1.00 20.52	A
			15	0	GLN A	32	39.817	39.534 -19.162	1.00 19.74	A
		ATOM					38.109	38.096 -19.432	1.00 19.11	A
	-	MOTA	16	N	ASP A	33		38.885 -20.470	1.00 17.47	A
	5	ATOM	17	CA	ASP A	33	37.460		1.00 17.47	A
		ATOM	18	СВ	ASP A	33	36.651	37.955 -21.384		
		MOTA	19	CG	ASP A	33	35.993	38.681 -22.540	1.00 19.46	A
		ATOM	20	OD1	ASP A	33	35.738	38.020 -23.570	1.00 20.28	A
		ATOM	21	OD2	ASP A	33	35.714	39.893 -22.421	1.00 19.63	A
	10	ATOM	22	С	ASP A	33	36.554	39.839 -19.692	1.00 16.94	A
		ATOM	23	0	ASP A	33	35.614	39.407 -19.033	1.00 18.06	A
		ATOM	24	N	VAL A	34	36.854	41.132 -19.748	1.00 13.82	A
		ATOM	25	CA	VAL A	34	36.076	42.121 -19.007	1.00 12.33	A
		ATOM	26	CB	VAL A	34	36.982	43.291 -18.536	1.00 11.75	A
	15		27		VAL A	34	38.158	42.744 -17.744	1.00 12.48	Α
	13	MOTA					37.485	44.093 -19.737	1.00 11.56	A
		ATOM	28		VAL A	34	34.912	42.692 -19.806	1.00 11.58	A
		MOTA	29	C	VAL A	34		43.610 -19.350	1.00 11.18	A
		MOTA	30	0	VAL A	34	34.227		1.00 11.10	A
i Ti	••	MOTA	31	N	VAL A	35	34.668	42.129 -20.986	1.00 11.40	A
	20	MOTA	32	CA	VAL A	35	33.601	42.623 -21.847		
125		MOTA	33	СВ	VAL A	35	34.164	43.016 -23.234	1.00 11.64	A
Talandi Aliandia		MOTA	34		VAL A	35	33.031	43.463 -24.159	1.00 11.96	A
		MOTA	35	CG2	VAL A	35	35.199	44.113 -23.082	1.00 11.54	A
IJ		ATOM	36	С	VAL A	35	32.422	41.689 -22.106	1.00 12.53	A
101	25	MOTA	37	0	VAL A	35	31.268	42.100 -22.012	1.00 12.16	A
M.		ATOM	38	N	GLN A	36	32.719	40.434 -22.422	1.00 13.91	A
1,11		ATOM	39	CA	GLN A	36	31.685	39.471 -22.796	1.00 15.60	A
#i -		ATOM	40	CB	GLN A	36	32.217	38.631 -23.955	1.00 15.34	А
gering.		MOTA	41	CG	GLN A	36	32.986	39.457 -24.972	1.00 16.14	А
	30	ATOM	42	CD	GLN A	36	33.458	38.641 -26.151	1.00 16.81	A
RANA. OSLIE		ATOM	43	OE1	GLN A	36	32.699	38.388 -27.084	1.00 18.19	Α
		ATOM	44	NE2	GLN A	36	34.714	38.214 -26.110	1.00 16.46	Α
Beide -		ATOM	45	С	GLN A	36	31.077	38.548 -21.748	1.00 17.41	A
		ATOM	46	0	GLN A	36	30.128	37.825 -22.048	1.00 19.27	A
3.4	35	MOTA	47	N	ASP A	37	31.609	38.557 -20.532	1.00 18.41	А
**		ATOM	48	CA	ASP A	37	31.080	37.700 -19.475	1.00 18.97	Α
		ATOM	49	СВ	ASP A	37	32.190	36.818 -18.885	1.00 21.17	A
		ATOM	50	CG	ASP A	37	32.759	35.834 -19.891	1.00 22.94	A
		ATOM	51		ASP A	37	31.965	35.181 -20.599	1.00 24.67	A
	40	ATOM	52		ASP A	37	34.000	35.707 -19.963	1.00 24.47	A
	T U	ATOM	53	C	ASP A	37	30.444	38.513 -18.351	1.00 18.35	A
		ATOM	54	0	ASP A	37	31.145	39.128 -17.548	1.00 20.02	А
					VAL A	38	29.117	38.511 -18.294	1.00 17.12	А
		MOTA	55 5.0	N		38	28.404	39.242 -17.250	1.00 16.29	A
	45	ATOM	56	CA	VAL A		26.902	39.362 -17.579	1.00 16.90	A
	45	MOTA	57	CB	VAL A	38		40.114 -16.468	1.00 16.50	A
		ATOM	58		VAL A	38	26.180	40.074 -18.915	1.00 16.46	A
		ATOM	59		VAL A	38	26.721		1.00 15.90	A
		MOTA	60	С	VAL A	38	28.559	38.512 -15.917	1.00 15.86	A
	=0	ATOM	61	0	VAL A	38	28.108	37.377 -15.763		
	50	ATOM	62	N	PRO A	39	29.204	39.157 -14.933	1.00 15.02	A
		ATOM	63	CD	PRO A	39	29.892	40.459 -14.998	1.00 14.29	A
		MOTA	64	CA	PRO A	39	29.399	38.531 -13.623	1.00 14.60	A
		ATOM	65	CB	PRO A	39	30.154	39.603 -12.836	1.00 14.74	A
		MOTA	66	CG	PRO A	39	30.927	40.321 -13.901	1.00 13.83	A
	55	ATOM	67	С	PRO A	39	28.089	38.150 -12.949	1.00 14.68	А

							0.2			
		ATOM	68	0	PRO A	39	27.092	38.866 -13.045	1.00 14.60	A
		ATOM	69	N	ASN A	40	28.095	37.009 -12.270	1.00 15.48	A
		ATOM	70	CA	ASN A	40	26.913	36.557 -11.557	1.00 16.28	A
		MOTA	71	СВ	ASN A	40	26.727	35.048 -11.725	1.00 18.96	A
	5	ATOM	72	CG	ASN A	40	25.614	34.501 -10.855	1.00 21.26	A
	9	ATOM	73		ASN A	40	24.500	35.026 -10.847	1.00 24.33	A
		ATOM	74		ASN A	40	25.909	33.437 -10.119	1.00 23.94	A
		ATOM	75	C	ASN A	40	27.113	36.899 -10.089	1.00 15.67	А
		ATOM	76	0	ASN A	40	27.902	36.259 -9.396	1.00 15.97	A
	10		77		VAL A	41	26.408	37.922 -9.623	1.00 14.19	A
	10	ATOM		N			26.522	38.347 -8.232	1.00 12.77	A
		ATOM	78	CA	VAL A	41	27.144	39.764 -8.126	1.00 12.77	A
		ATOM	79	CB	VAL A	41			1.00 11.70	A
		ATOM	80		VAL A	41	28.584		1.00 12.93	A
	1 F	ATOM	81		VAL A	41	26.328		1.00 12.22	A
	15	ATOM	82	C	VAL A	41	25.162	38.353 -7.547		
		ATOM	83	0	VAL A	41	24.125	38.479 -8.198	1.00 13.39	A
		ATOM	84	N	ASP A	42	25.171	38.217 -6.226	1.00 11.92	A
		ATOM	85	CA	ASP A	42	23.934	38.211 -5.461	1.00 12.46	A
ű ű		MOTA	86	CB	ASP A	42	24.210	37.791 -4.017	1.00 13.55	A
ı	20	MOTA	87	CG	ASP A	42	24.708	36.366 -3.913	1.00 14.63	A
1 PM		MOTA	88		ASP A	42	24.009	35.457 -4.416	1.00 16.11	A
And the first of		MOTA	89	OD2	ASP A	42	25.788	36.144 -3.327	1.00 14.87	A
8,8 E.		MOTA	90	С	ASP A	42	23.261	39.576 -5.480	1.00 11.96	A
200		MOTA	91	0	ASP A	42	22.036	39.675 -5.540	1.00 12.50	A
193	25	MOTA	92	N	VAL A	43	24.066	40.632 -5.419	1.00 10.49	A
		ATOM	93	CA	VAL A	43	23.537	41.987 -5.434	1.00 10.78	A
		MOTA	94	CB	VAL A	43	23.693	42.686 -4.056	1.00 10.05	A
31		ATOM	95	CG1	VAL A	43	23.072	44.078 -4.105	1.00 10.79	А
		ATOM	96	CG2	VAL A	43	23.042	41.848 -2.955	1.00 10.64	А
	30	ATOM	97	С	VAL A	43	24.291	42.806 -6.471	1.00 9.86	A
		ATOM	98	0	VAL A	43	25.515	42.922 -6.414	1.00 10.17	A
5 m		ATOM	99	N	GLN A	44	23.559	43.336 -7.443	1.00 9.59	A
gasta.		ATOM	100	CA	GLN A	44	24.158	44.174 -8.471	1.00 9.74	A
		ATOM	101	CB	GLN A	44	23.920	43.576 -9.860	1.00 9.50	A
2,45	35	ATOM	102	CG	GLN A	44	24.977	43.983 -10.869	1.00 9.04	A
		ATOM	103	CD	GLN A	44	25.078	45.482 -11.000	1.00 10.11	A
		MOTA	104	OE1	GLN A	44	24.107	46.144 -11.348	1.00 10.00	A
		MOTA	105	NE2	GLN A	44	26.255	46.028 -10.708	1.00 9.62	A
		ATOM	106	С	GLN A	44	23.409	45.489 -8.282	1.00 9.74	A
	4 0	MOTA	107	0	GLN A	44	22.203	45.562 -8.488	1.00 9.41	A
		ATOM	108	N	MSE A	45	24.125	46.526 -7.866	1.00 9.19	A
		ATOM	109	CA	MSE A	45	23.488	47.795 -7.559	1.00 9.37	A
		ATOM	110	СВ	MSE A	45	24.531	48.784 -7.035	1.00 10.21	A
		ATOM	111	CG	MSE A	45	25.149	48.353 -5.699	1.00 11.50	А
	45	ATOM	112	SE	MSE A	45	23.842	47.932 -4.319	1.00 18.05	A
		ATOM	113	CE	MSE A	45	23.146	49.711 -4.052	1.00 15.91	А
		ATOM	114	С	MSE A	45	22.606	48.459 -8.606	1.00 8.92	А
		ATOM	115	0	MSE A	45	21.614	49.094 -8.245	1.00 9.44	A
		ATOM	116	N	LEU A	46	22.942	48.327 -9.886	1.00 9.08	A
	50	ATOM	117	CA	LEU A	46	22.108	48.933 -10.923	1.00 9.97	A
	- 0	ATOM	118	СВ	LEU A	46	22.793	48.872 -12.294	1.00 10.46	A
		ATOM	119	CG	LEU A	46	22.050	49.591 -13.430	1.00 10.75	A
		ATOM	120		LEU A	46	22.054	51.101 -13.186		А
		ATOM	121		LEU A	46	22.706	49.268 -14.760		А
	55	ATOM	122	C	LEU A	46	20.783	48.174 -10.974		А
		MI ON	±	$\overline{}$	TITO U	-10	20.703	101111 1019/1	-	

											70
		MOTA	123	0	LEU A	46	19.716		-11.109	1.00 9.89	A
		ATOM	124	N	GLU A	47	20.860	46.853	-10.848	1.00 11.31	A
		MOTA	125	CA	GLU A	47	19.662	46.020	-10.880	1.00 12.80	Α
		ATOM	126	CB	GLU A	47	20.050		-10.943	1.00 13.61	A
	_								-11.181	1.00 16.25	A
	5	MOTA	127	CG	GLU A	47	18.875				
		MOTA	128	CD	GLU A	47	18.100	43.257	-9.920	1.00 18.05	A
		ATOM	129	OE1	GLU A	47	16.963		-10.042	1.00 20.21	A
		MOTA	130	OE2	GLU A	47	18.622	43.479	-8.809	1.00 18.69	А
		ATOM	131	С	GLU A	47	18.810	46.295	-9.648	1.00 12.80	A
	10	ATOM	132	Ö	GLU A	47	17.586	46.385	-9.736	1.00 12.50	A
	10						19.460	46.444	-8.499	1.00 12.14	A
		MOTA	133	N	LEU A	48				1.00 12.14	A
		MOTA	134	CA	LEU A	48	18.740	46.716	-7.263		
		MOTA	135	CB	LEU A	48	19.705	46.729	-6.076	1.00 14.14	А
		ATOM	136	CG	LEU A	48	19.055	46.870	-4.697	1.00 15.25	A
	15	MOTA	137	CD1	LEU A	48	18.053	45.745	-4.474	1.00 16.69	A
		MOTA	138		LEU A	48	20.130	46.847	-3.620	1.00 16.69	A
		MOTA	139	C	LEU A	48	18.019	48.057	-7.367	1.00 12.34	A
			140		LEU A	48	16.863	48.187	-6.966	1.00 12.49	A
		MOTA		0					-7.918	1.00 11.81	A
	20	ATOM	141	N	TYR A	49	18.704	49.054			
h Par	20	MOTA	142	CA	TYR A	49	18.113	50.376	-8.081	1.00 12.23	A
Tributa Links		MOTA	143	CB	TYR A	49	19.149	51.349	-8.666	1.00 11.90	A
		ATOM	144	CG	TYR A	49	19.709	52.296	-7.630	1.00 10.96	A
197		ATOM	145	CD1	TYR A	49	20.175	51.815	-6.403	1.00 10.54	A
104		MOTA	146	CE1		49	20.626	52.679	-5.416	1.00 10.82	A
	25	ATOM	147	CD2		49	19.719	53.674	-7.847	1.00 10.08	A
8 (5 E	20			CE2		49	20.170	54.552	-6.863	1.00 10.64	A
		ATOM	148							1.00 10.04	A
		MOTA	149	CZ	TYR A	49	20.617	54.046	-5.649		
Rŧ		ATOM	150	ОН	TYR A	49	21.025	54.902	-4.653	1.00 10.90	A
distant.		MOTA	151	С	TYR A	49	16.874	50.330	-8.972	1.00 12.98	A
	30	MOTA	152	0	TYR A	49	15.900	51.047	-8.740	1.00 13.38	A
4/202		ATOM	153	N	ASP A	50	16.910	49.470	-9.983	1.00 13.83	A
		ATOM	154	CA	ASP A	50	15.793	49.339	-10.910	1.00 15.90	A
int.		ATOM	155	СВ	ASP A	50	16.187		-12.060	1.00 16.89	A
		ATOM	156	CG	ASP A	50	15.410		-13.334	1.00 18.91	A
	25						15.524		-14.279	1.00 21.08	A
i niga	35	ATOM	157		ASP A	50				1.00 19.63	A
		MOTA	158		ASP A	50	14.698		-13.401		
		MOTA	159	С	ASP A	50	14.555		-10.194	1.00 16.66	A
		ATOM	160	0	ASP A	50	13.430	49.204	-10.484	1.00 16.29	А
		MOTA	161	N	ARG A	51	14.772	47.882	-9.248	1.00 17.87	А
	40	MOTA	162	CA	ARG A	51	13.678	47.256	-8.501	1.00 19.68	A
		ATOM	163	СВ	ARG A	51	14.072	45.836	-8.075	1.00 22.37	A
		ATOM	164	CG	ARG A	51	14.210	44.853	-9.219	1.00 26.10	А
							14.327	43.409	-8.730	1.00 29.22	A
		ATOM	165	CD	ARG A	51					A
		MOTA	166	NE	ARG A	51	15.547	43.159	-7.964	1.00 31.13	
	45	ATOM	167	CZ	ARG A	51	15.681	43.377	-6.659	1.00 32.25	A
		MOTA	168	NH1	ARG A	51	14.665	43.851	-5.950	1.00 33.45	A
		ATOM	169	NH2	ARG A	51	16.838	43.121	-6.063	1.00 32.60	A
		ATOM	170	С	ARG A	51	13.182	48.008	-7.267	1.00 19.33	A
		ATOM	171	Ö	ARG A	51	11.999	47.938	-6.935	1.00 20.01	A
	50		172	N	MSE A	52	14.080	48.708	-6.582	1.00 19.03	А
	50	ATOM					13.722	49.450	-5.374	1.00 19.03	A
		MOTA	173	CA	MSE A	52					
		ATOM	174	СВ	MSE A	52	14.976	50.053	-4.742	1.00 20.66	A
		MOTA	175	CG	MSE A	52	15.912	49.042	-4.122	1.00 22.65	A
		ATOM	176	SE	MSE A	52	17.569	49.884	-3.600	1.00 27.63	А
	55	ATOM	177	CE	MSE A	52	16.866	51.229	-2.405	1.00 24.75	A
					_						

	ATOM	178	С	MSE A	. 52	12.698	50.557	-5.597	1.00 18.62	А
	ATOM	179	0	MSE A	. 52	12.690	51.209	-6.640	1.00 18.85	А
	MOTA	180	N	SER A	53	11.850	50.777	-4.595	1.00 18.04	A
	MOTA	181	CA	SER A	. 53	10.814	51.805	-4.673	1.00 18.07	A
5	MOTA	182	CB	SER A		9.525	51.291	-4.028	1.00 19.37	A
	ATOM	183	OG	SER A		9.062	50.124	-4.689	1.00 21.66	A
	MOTA	184	С	SER A		11.233	53.118	-4.010	1.00 17.33	A
	MOTA	185	0	SER A		10.615	54.158	-4.235	1.00 17.18	A
	MOTA	186	N	PHE A		12.276	53.058	-3.188	1.00 16.61	A
10	MOTA	187	CA	PHE A		12.800	54.229	-2.488	1.00 16.04	A
	MOTA	188	CB	PHE A		13.474	55.196	-3.474	1.00 15.36	A
	ATOM	189	CG	PHE A		14.708	54.642	-4.140	1.00 13.72	A
	MOTA	190	CD1			14.604	53.800	-5.242	1.00 13.06	A
	MOTA	191		PHE A		15.973	54.979	-3.672	1.00 13.80	A
15	MOTA	192	CE1	PHE A		15.745	53.301	-5.874	1.00 13.32	A
	MOTA	193		PHE A		17.121	54.488	-4.294	1.00 13.91	A
	MOTA	194	CZ	PHE A		17.006	53.646	-5.400	1.00 13.56	A
	MOTA	195	С	PHE A		11.760	55.008	-1.680	1.00 16.83	A
••	MOTA	196	0	PHE A		11.858	56.228	-1.555	1.00 16.55	A
20	MOTA	197	N	LYS A		10.768	54.319	-1.126	1.00 17.41	A
	MOTA	198	CA	LYS A		9.757	55.016	-0.337	1.00 19.14	A
	MOTA	199	CB	LYS A		8.554	54.107	-0.078	1.00 19.64 1.00 20.85	A
	ATOM	200	CG	LYS A		7.836	53.664	-1.343		A A
25	ATOM	201	CD	LYS A		7.418	54.851	-2.206	1.00 22.09 1.00 23.32	A
25	ATOM	202	CE	LYS A		6.676	54.383	-3.454 -4.340	1.00 23.32	A
	ATOM	203	ΝZ	LYS A		6.271	55.511	0.985	1.00 24.17	A
	ATOM	204	С	LYS A		10.354	55.486 54.726	1.679	1.00 19.30	A
	MOTA	205	0	LYS A		11.028	56.745	1.324	1.00 20.03	A
20	MOTA	206	N	ASP A		10.102 10.622	57.341	2.549	1.00 20.15	A
30	ATOM	207	CA	ASP F			58.753	2.240	1.00 19.39	A
	ATOM	208	CB	ASP A		11.139 11.741	59.441	3.450	1.00 19.05	A
	MOTA	209 210	CG	ASP ASP A		12.273	58.744	4.338	1.00 19.04	A
	ATOM ATOM	210		ASP F		11.697	60.689	3.503	1.00 19.38	A
35	ATOM	212	C	ASP A		9.551	57.383	3.635	1.00 20.95	A
33	ATOM	213	0	ASP F		8.972	58.432	3.912	1.00 21.55	A
	ATOM	214	N	ILE F		9.295	56.236	4.254	1.00 21.88	А
	ATOM	215	CA	ILE P		8.283	56.158	5.301	1.00 22.85	A
	ATOM	216	CB	ILE F		7.404	54.895	5.141	1.00 24.33	А
40	ATOM	217		ILE F		6.848	54.823	3.723	1.00 24.60	A
10	ATOM	218		ILE A		8.224	53.639	5.437	1.00 25.50	A
	ATOM	219		ILE F		7.404	52.363	5.446	1.00 26.92	A
	ATOM	220	C	ILE A		8.897	56.146	6.695	1.00 22.59	A
	ATOM	221	0	ILE A		10.038	55.722	6.881	1.00 22.42	A
45	ATOM	222	N	ASP A		8.128	56.623	7.669	1.00 22.17	A
10	ATOM	223	CA	ASP A		8.566	56.667	9.059	1.00 21.75	А
	ATOM	224	СВ	ASP A		7.605	57.538	9.873	1.00 22.45	A
	ATOM	225	CG	ASP A		8.017	57.674	11.327	1.00 23.28	A
	ATOM	226		ASP A		7.417	58.514	12.033	1.00 24.70	A
50	ATOM	227		ASP A		8.929	56.948	11.771	1.00 22.76	A
	ATOM	228	С	ASP A		8.580	55.243	9.604	1.00 21.36	A
	ATOM	229	0	ASP A		7.528	54.637	9.801	1.00 20.84	A
	ATOM	230	N	GLY A		9.775	54.712	9.842	1.00 19.94	А
	ATOM	231	CA	GLY A		9.887	53.355	10.346	1.00 19.09	A
55	ATOM	232	С	GLY A		9.859	53.221	11.858	1.00 18.34	A

The last two tests and the last two tests and

	ATOM	233	0	GLY A	59	10.062	52.128	12.383	1.00 18.39	A
	ATOM	234	N	GLY A	60	9.605	54.321	12.559	1.00 17.94	А
	MOTA	235	CA	GLY A	60	9.567	54.280	14.012	1.00 17.49	A
	ATOM	236	С	GLY A	60	10.801	54.927	14.615	1.00 16.45	A
5	MOTA	237	0	GLY A	60	11.318	55.898	14.062	1.00 17.23	A
	MOTA	238	N	VAL A	61	11.273	54.405	15.747	1.00 16.17	A
	MOTA	239	CA	VAL A	61	12.464	54.962	16.383	1.00 15.12	A
	ATOM	240	CB	VAL A	61	12.836	54.209	17.683	1.00 15.83	A
	ATOM	241	CG1			11.775	54.473	18.746	1.00 15.81	A
10	MOTA	242	CG2	VAL A		12.964	52.721	17.418	1.00 16.10	Α
	ATOM	243	С	VAL A		13.618	54.907	15.385	1.00 14.48	A
	ATOM	244	0	VAL A		14.481	55.784	15.373	1.00 13.96	A
	ATOM	245	N	TRP A		13.641	53.863	14.561	1.00 14.06	A
	ATOM	246	CA	TRP A		14.645	53.770	13.507	1.00 13.87	A
15	ATOM	247	CB	TRP A		15.020	52.316	13.194	1.00 13.36	A
10	ATOM	248	CG	TRP A		15.986	52.190	12.037	1.00 12.76	A
	ATOM	249	CD2	TRP A		16.349	50.990	11.343	1.00 12.39	A
	ATOM	250	CE2	TRP A		17.259	51.355	10.322	1.00 12.49	A
	ATOM	251	CE3	TRP A		15.994	49.640	11.483	1.00 11.15	A
20	ATOM	252	CD1	TRP A		16.676	53.205	11.427	1.00 12.72	A
20	ATOM	253	NE1	TRP A		17.438	52.711	10.396	1.00 12.59	А
	ATOM	254	CZ2	TRP A		17.817	50.420	9.444	1.00 12.40	A
	ATOM	255	CZ3	TRP A		16.550	48.708	10.610	1.00 12.01	А
	ATOM	256	CH2	TRP A		17.452	49.105	9.602	1.00 11.99	A
25	ATOM	257	C	TRP A		13.846	54.378	12.361	1.00 14.13	A
20	ATOM	258	0	TRP A		13.164	53.677	11.615	1.00 14.64	А
	ATOM	259	N	LYS A		13.923	55.700	12.255	1.00 14.09	А
	ATOM	260	CA	LYS A		13.170	56.456	11.262	1.00 14.88	А
	ATOM	261	CB	LYS A		13.613	57.922	11.290	1.00 15.30	А
30	ATOM	262	CG	LYS A		13.218	58.676	12.559	1.00 18.82	А
50	ATOM	263	CD	LYS A		11.705	58.848	12.658	1.00 20.72	A
	ATOM	264	CE	LYS A		11.305	59.678	13.873	1.00 23.06	A
	ATOM	265	NZ	LYS A		11.653	59.027	15.170	1.00 24.73	A
	ATOM	266	C	LYS A		13.187	55.954	9.826	1.00 14.71	A
35	ATOM	267	0	LYS A		12.175	56.038	9.129	1.00 15.50	A
	ATOM	268	N	GLN A		14.320	55.430	9.378	1.00 13.97	A
	ATOM	269	CA	GLN A		14.419	54.964	8.001	1.00 13.67	А
	ATOM	270	CB	GLN A		15.635	55.615	7.344	1.00 13.23	A
	ATOM	271	CG	GLN A		15.555	57.133	7.373	1.00 12.86	А
40	ATOM	272	CD	GLN A		16.908	57.787	7.211	1.00 11.84	А
40	ATOM	273		GLN A		17.851	57.465	7.933	1.00 13.01	A
	ATOM	274	NE2			17.011	58.718	6.265	1.00 12.04	А
	ATOM	275	C	GLN A		14.472	53.449	7.856	1.00 13.24	A
		276	0	GLN A		14.847	52.929	6.805	1.00 13.10	A
45	ATOM ATOM	277	N	GLY A		14.076	52.749	8.915	1.00 13.24	A
40		278	CA	GLY A		14.064	51.297	8.887	1.00 13.74	A
	ATOM	279	C	GLY A		12.710	50.744	9.298	1.00 14.46	A
	ATOM		0	GLY A		11.687	51.085	8.703	1.00 14.40	A
	ATOM	280		TRP A		12.709	49.889	10.316	1.00 14.87	A
50	ATOM	281	N CA	TRP A		11.482	49.283	10.830	1.00 15.41	A
50	ATOM	282				11.106	48.058	9.987	1.00 15.37	A
	ATOM	283	CB	TRP A		12.040	46.889	10.153	1.00 15.37	A
	MOTA	284	CG	TRP F		13.248	46.644	9.422	1.00 15.00	A
	MOTA	285		TRP F		13.248	45.445	9.422	1.00 13.00	A
==	MOTA	286		TRP F		13.804	47.321	8.391	1.00 14.47	A
55	ATOM	287	し出る	TRP F	4 66	13.913	41.321	0.091	1.00 14.47	1.7

			0.00	001	WDD 7		_	11 010	45.861	11.043	1.00 15.31	А
		ATOM	288		TRP F			11.918			1.00 15.31	
		ATOM	289		TRP A			12.972	44.988	10.911		A
		ATOM	290		TRP A			14.998	44.907	9.429	1.00 14.84	A
		MOTA	291	CZ3	TRP A	4 6	6	15.105	46.785	7.900	1.00 14.49	A
	5	ATOM	292	CH2	TRP A	4 6	6	15.633	45.589	8.421	1.00 14.85	A
		ATOM	293	С	TRP A		6	11.751	48.864	12.271	1.00 15.70	A
		ATOM	294	0	TRP A			12.888	48.946	12.734	1.00 15.45	A
		MOTA	295	N	ASN A			.10.717	48.428	12.985	1.00 16.28	Α
		ATOM	296	CA	ASN A			10.899	47.991	14.368	1.00 16.95	А
	10							9.564	47.958	15.119	1.00 19.00	A
	10	MOTA	297	CB	ASN A				47.330	15.270	1.00 20.01	A
		ATOM	298	CG	ASN A			8.948			1.00 20.01	A
		ATOM	299		ASN A			9.638	50.304	15.574		
		MOTA	300		ASN A			7.637	49.417	15.071	1.00 22.35	A
		MOTA	301	С	ASN A			11.517	46.599	14.371	1.00 16.92	A
	15	MOTA	302	0	ASN A	4 6.	7	10.837	45.604	14.111	1.00 16.93	A
		ATOM	303	N	ILE A	4 6	8	12.809	46.533	14.669	1.00 16.90	A
		MOTA	304	CA	ILE A	4 6	8	13.518	45.262	14.681	1.00 17.11	A
		MOTA	305	CB	ILE A	4 6	8	15.043	45.472	14.801	1.00 16.47	A
g:200g		ATOM	306	CG2	ILE A	A 6	8	15.759	44.130	14.753	1.00 17.44	A
	20	ATOM	307	CG1	ILE A	4 6	8	15.538	46.370	13.664	1.00 16.41	A
1,6dF >==		ATOM	308		ILE A			17.000	46.764	13.794	1.00 15.35	A
1,5		ATOM	309	С	ILE A			13.066	44.365	15.824	1.00 18.00	A
		ATOM	310	0	ILE A			12.954	44.804	16.968	1.00 17.72	A
green Band		ATOM	311	N	LYS A			12.804	43.106	15.497	1.00 19.17	A
	25	ATOM	312	CA	LYS A		9	12.387	42.127	16.488	1.00 20.70	A
Street Street	23		313		LYS A		9	10.977	41.616	16.171	1.00 22.97	A
		ATOM		CB				9.890	42.661	16.395	1.00 25.78	A
ą,n n		ATOM	314	CG	LYS A		9		42.137	16.054	1.00 28.76	A
¥4.		MOTA	315	CD	LYS A		9	8.500		14.566	1.00 20.70	A
	20	ATOM	316	CE	LYS A		9	8.355	41.859		1.00 29.39	A
1.17	30	MOTA	317	NZ	LYS A		9	6.952	41.507	14.203		
Andrew Company		MOTA	318	С	LYS A		9	13.386	40.981	16.465	1.00 20.51	A
n e		ATOM	319	0	LYS A		9	13.944	40.659	15.416	1.00 20.04	A
		MOTA	320	N	TYR A		0	13.630	40.378	17.623	1.00 20.85	A
ind.		MOTA	321	CA	TYR I		0	14.568	39.268	17.702	1.00 21.35	A
	35	ATOM	322	CB	TYR I	A 7	0	15.959	39.770	18.116	1.00 20.92	А
		ATOM	323	CG	TYR A	A 7	0	16.035	40.362	19.508	1.00 20.30	А
		ATOM	324	CD1	TYR I	A 7	0	16.151	39.544	20.634	1.00 20.51	А
		ATOM	325	CE1	TYR I	A 7	0	16.223	40.089	21.915	1.00 20.34	A
		MOTA	326	CD2	TYR	A 7	0	15.989	41.741	19.700	1.00 20.52	А
	40	ATOM	327	CE2	TYR	A 7	0	16.059	42.295	20.974	1.00 20.68	А
		ATOM	328	CZ	TYR		0	16.175	41.466	22.076	1.00 20.53	A
		ATOM	329	ОН	TYR		0	16.238	42.018	23.334	1.00 21.78	А
		ATOM	330	C	TYR		0	14.082	38.215	18.685	1.00 22.16	A
		MOTA	331	0	TYR .		0	13.295	38.506	19.587	1.00 22.38	А
	45	ATOM	332	N	ASP .		1	14.548	36.988	18.493	1.00 23.35	A
	T .J	ATOM	333	CA	ASP .		1	14.179	35.885	19.366	1.00 24.52	А
							1	14.123	34.585	18.560	1.00 25.65	A
		ATOM	334	CB	ASP .		1	13.887	33.368	19.431	1.00 26.58	A
		ATOM	335	CG	ASP .				33.505	20.487	1.00 20.30	A
	EO	ATOM	336		ASP .		1	13.235			1.00 27.00	A
	50	ATOM	337		ASP .		1	14.345	32.271	19.047		
		MOTA	338	С	ASP.		1	15.219	35.792	20.477	1.00 25.08	A
		MOTA	339	0	ASP.		1	16.368	35.427	20.234	1.00 25.05	A
		MOTA	340	N	PRO .		2	14.825	36.126	21.716	1.00 25.93	A
		ATOM	341	CD	PRO .		2	13.445	36.362	22.173	1.00 25.99	A
	55	ATOM	342	CA	PRO .	A 7	2	15.746	36.077	22.855	1.00 26.65	A

		7.001	242	G.D.	DDO	75	70	14 020	36.385	24.048	1.00 26.60	A
		ATOM	343	СВ	PRO		72	14.839		23.600	1.00 26.93	A
		ATOM	344	CG	PRO		72	13.502	35.879			
		ATOM	345	С	PRO		72	16.481	34.750	23.002	1.00 26.94	A
		MOTA	346	0	PRO	A	72	17.587	34.701	23.540	1.00 27.06	A
	5	MOTA	347	N	LEU	Α	73	15.869	33.679	22.507	1.00 27.10	A
		ATOM	348	CA	LEU	Α	73	16.465	32.353	22.595	1.00 27.36	A
		ATOM	349	CB	LEU	Α	73	15.371	31.285	22.502	1.00 28.10	A
		ATOM	350	CG	LEU	Α	73	14.303	31.343	23.599	1.00 28.89	A
		ATOM	351		LEU		73	13.227	30.303	23.328	1.00 29.29	A
	10	MOTA	352		LEU		73	14.951	31.109	24.958	1.00 29.04	A
	10	ATOM	353	C	LEU		73	17.522	32.105	21.521	1.00 27.02	A
		ATOM	354	0	LEU		73	18.121	31.031	21.468	1.00 26.79	A
		ATOM	355	N	LYS		74	17.756	33.099	20.669	1.00 26.77	А
			356				74	18.748	32.960	19.611	1.00 27.29	A
	15	ATOM		CA	LYS			18.743	34.193	18.707	1.00 28.07	A
	15	ATOM	357	CB	LYS		74		34.133	17.553	1.00 20.07	A
		ATOM	358	CG	LYS		74	19.729				
		MOTA	359	CD	LYS		74	19.556	35.284	16.603	1.00 30.36	A
		ATOM	360	CE	LYS		74	20.482	35.162	15.405	1.00 31.13	A
		MOTA	361	ΝZ	LYS		74	20.256	36.260	14.427	1.00 31.11	A
Ü	20	MOTA	362	С	LYS		74	20.141	32.762	20.200	1.00 27.08	A
Ü		MOTA	363	0	LYS	Α	74	20.942	31.990	19.678	1.00 26.39	A
		MOTA	364	N	TYR	Α	75	20.428	33.470	21.286	1.00 27.82	А
A, B B		MOTA	365	CA	TYR	Α	75	21.724	33.347	21.936	1.00 28.44	A
		MOTA	366	СВ	TYR	Α	75	22.359	34.730	22.130	1.00 28.35	A
	25	ATOM	367	CG	TYR		75	22.677	35.420	20.821	1.00 28.28	A
N.		ATOM	368	CD1			75	21.796	36.346	20.261	1.00 28.89	A
		ATOM	369	CE1			75	22.058	36.931	19.021	1.00 28.65	A
R		ATOM	370	CD2	TYR		75	23.832	35.098	20.111	1.00 28.33	A
		ATOM	371	CE2	TYR		75	24.101	35.673	18.872	1.00 29.04	A
in page	30	ATOM	372	CZ	TYR		75	23.211	36.585	18.333	1.00 28.89	А
	50	ATOM	373	OH	TYR		75	23.471	37.131	17.095	1.00 29.25	А
			374	C	TYR		75	21.577	32.634	23.274	1.00 29.07	А
i salici		ATOM	375	0	TYR		75	20.599	32.840	23.992	1.00 29.15	A
		ATOM					76	22.547	31.782	23.591	1.00 29.40	A
in the	25	ATOM	376	N	ASN		76	22.533	31.029	24.839	1.00 30.49	A
2	35	ATOM	377	CA	ASN			21.742	29.729	24.668	1.00 30.43	A
		MOTA	378	CB	ASN		76			23.804	1.00 31.72	A
		ATOM	379	CG	ASN		76 76	22.463	28.717		1.00 32.70	A
		ATOM	380		ASN		76	22.765	28.979	22.643	1.00 33.93	A
	40	MOTA	381		ASN		76	22.746	27.550	24.372		
	40	MOTA	382	С	ASN		76	23.962	30.710	25.265	1.00 30.43	A
		ATOM	383	0	ASN		76	24.919	31.143	24.626	1.00 29.75	A
		ATOM	384	N	ALA	A	77	24.101	29.945	26.343	1.00 30.87	A
		ATOM	385	CA	ALA	Α	77	25.416	29.580	26.857	1.00 31.38	A
		ATOM	386	СВ	ALA	Α	77	25.264	28.622	28.033	1.00 31.94	А
	45	ATOM	387	С	ALA	Α	77	26.316	28.957	25.794	1.00 31.58	A
		ATOM	388	0	ALA	Α	77	27.535	29.119	25.834	1.00 31.89	А
		ATOM	389	N	HIS	A	78	25.715	28.252	24.841	1.00 31.69	A
		ATOM	390	CA	HIS		78	26.481	27.599	23.785	1.00 31.63	А
		ATOM	391	СВ	HIS		78	25.811	26.278	23.399	1.00 33.87	A
	50	ATOM	392	CG	HIS		78	25.580	25.359	24.557	1.00 35.97	A
		ATOM	393		HIS		78	24.448	24.784	25.028	1.00 36.95	А
		ATOM	394		HIS		78	26.597	24.938	25.388	1.00 37.02	А
		ATOM	395		HIS		78	26.101	24.144	26.320	1.00 37.60	А
			396		HIS		78	24.799	24.034	26.124	1.00 37.80	A
	55	ATOM						26.646	28.470	22.545	1.00 37.00	A
	55	ATOM	397	С	HIS	М	78	20.040	20.410	46.747	1.00 00.07	* *

		ATOM	398	0	HIS A	7	8	27.360	28.103	21.612	1.00 30.09	A
		ATOM	399	N	HIS A		9	25.989	29.625	22.541	1.00 27.75	A
		ATOM	400	CA	HIS A		9	26.066	30.541	21.409	1.00 25.19	A
			401	CB	HIS A		9	25.030	30.141	20.354	1.00 25.68	A
	5	ATOM			HIS A		9	25.122	30.926	19.082	1.00 25.61	A
	5	ATOM	402	CG				25.122	30.737	17.971	1.00 25.84	A
		MOTA	403		HIS A		9			18.856	1.00 26.22	A
		MOTA	404		HIS A		9	24.386	32.069		1.00 25.22	A
		MOTA	405		HIS A		9	24.679	32.549	17.661		A
	4.0	MOTA	406		HIS A		9	25.579	31.759	17.103	1.00 25.37	
	10	MOTA	407	С	HIS A		9	25.822	31.965	21.897	1.00 22.98	A
		MOTA	408	0	HIS A		9	24.692	32.449	21.906	1.00 22.36	A
		ATOM	409	N	LYS A		0	26.899	32.626	22.307	1.00 20.90	A
		MOTA	410	CA	LYS A		0	26.821	33.985	22.825	1.00 19.06	A
		ATOM	411	CB	LYS A	8	0	27.850	34.187	23.937	1.00 20.08	A
	15	MOTA	412	CG	LYS A	8	0	27.757	33.211	25.095	1.00 21.73	A
		ATOM	413	CD	LYS A	8	0	28.851	33.513	26.106	1.00 23.84	A
		ATOM	414	CE	LYS A	8	0	28.813	32.556	27.283	1.00 25.02	A
		ATOM	415	NZ	LYS A	. 8	0	29.906	32.856	28.253	1.00 26.36	A
317205		ATOM	416	С	LYS A	. 8	0	27.071	35.042	21.761	1.00 17.49	А
11.00 11.00	20	ATOM	417	0	LYS A	. 8	0	27.679	34.772	20.726	1.00 17.57	Α
4 12		ATOM	418	N	LEU A	. 8	1	26.596	36.251	22.035	1.00 14.89	A
		MOTA	419	CA	LEU A	. 8	1	26.796	37.376	21.134	1.00 13.66	A
(ji)		ATOM	420	CB	LEU A		1	25.622	38.352	21.223	1.00 13.09	A
1000		ATOM	421	CG	LEU A		1	25.728	39.609	20.349	1.00 12.56	A
	25	ATOM	422		LEU A		1	25.752	39.205	18.874	1.00 13.02	A
Series of the se		ATOM	423		LEU A		31	24.553	40.541	20.631	1.00 14.10	A
i W		ATOM	424	С	LEU A		31	28.075	38.067	21.594	1.00 14.00	A
1 ₀ 13		ATOM	425	0	LEU A		31	28.161	38.525	22.733	1.00 13.98	A
ĝi seet.		ATOM	426	N	LYS A		32	29.070	38.121	20.714	1.00 12.74	A
	30	ATOM	427	CA	LYS A		32	30.344	38.759	21.028	1.00 13.21	A
13		ATOM	428	СВ	LYS A		32	31.487	38.017	20.328	1.00 15.38	A
		ATOM	429	CG	LYS A		32	31.631	36.570	20.782	1.00 19.55	А
la.		ATOM	430	CD	LYS A		32	32.517	35.748	19.852	1.00 22.61	A
i3		ATOM	431	CE	LYS F		32	33.960	36.225	19.859	1.00 24.15	A
ini.	35	ATOM	432	NZ	LYS A		32	34.815	35.366	18.989	1.00 26.27	A
in the state of th	50	ATOM	433	C	LYS A		32	30.253	40.191	20.533	1.00 12.63	А
		ATOM	434	0	LYS F		32	30.047	40.427	19.343	1.00 13.50	А
			435	N	VAL A		33	30.399	41.142	21.451	1.00 11.19	A
		ATOM ATOM	435	CA	VAL P		33	30.296	42.553	21.112	1.00 11.54	A
	40		437		VAL F		33		43.245		1.00 10.36	
	40	MOTA					33	29.078	44.708	21.601	1.00 10.99	A
		ATOM	438		VAL A		33	27.911	42.516	21.873	1.00 11.60	A
		ATOM	439		VAL A				43.300	21.260	1.00 11.60	A
		ATOM	440	С	VAL A		33	31.613	43.278	22.318	1.00 11.88	A
	4.5	ATOM	441	0	VAL A		33	32.242	43.276	20.187	1.00 10.64	A
	45	ATOM	442	N	PHE F		34	32.023		20.107	1.00 10.04	A
		MOTA	443	CA	PHE F		34	33.247	44.753	19.025	1.00 12.04	A
		MOTA	444	CB	PHE P		34	34.150	44.394		1.00 12.04	A
		ATOM	445	CG	PHE F		34	34.799	43.048	19.144		A
	F 0	ATOM	446		PHE A		34	34.299	41.954	18.450	1.00 13.33	
	50	ATOM	447		PHE A		3 4	35.915	42.876	19.955	1.00 14.39	A A
		ATOM	448		PHE A		34	34.903	40.702	18.561	1.00 15.01	
		MOTA	449		PHE A		34	36.528	41.632	20.076	1.00 14.37	A
		ATOM	450	CZ	PHE A		34	36.020	40.542	19.375	1.00 14.86	A
		ATOM	451	С	PHE A		34	32.901	46.234	20.135	1.00 10.24	A
	55	ATOM	452	0	PHE A	<i>I</i>	34	32.378	46.706	19.125	1.00 10.64	A

							-				
		ATOM	453	N	VAL A	85	33.172	46.952	21.222	1.00 9.	19 A
		MOTA	454	CA	VAL A	85	32.933	48.389	21.287		61 A
		ATOM	455	СВ	VAL A	85	32.563	48.823	22.718		87 A
		MOTA	456		VAL A	85	32.403	50.334	22.787	1.00 10.	
	5	ATOM	457		VAL A	85	31.269	48.132	23.138	1.00 10.	
		MOTA	458	C	VAL A	85	34.258	49.012	20.865		92 A
		MOTA	459	0	VAL A	85	35.274	48.855	21.546		82 A
		ATOM	460	N	VAL A	86	34.236	49.716	19.735		99 A
		MOTA	461	CA	VAL A	86	35.438	50.310	19.161		62 A
	10	ATOM	462	СВ	VAL A	86	35.561	49.893	17.675		93 A
		MOTA	463	CG1	VAL A	86	36.882	50.390	17.093		60 A
		MOTA	464	CG2	VAL A	86	35.458	48.373	17.557	1.00 10.	
		MOTA	465	С	VAL A	86	35.499	51.833	19.267		68 A
		ATOM	466	0	VAL A	86	34.862	52.551	18.489		87 A
	15	MOTA	467	N	PRO A	87	36.282	52.348	20.230		07 A
		MOTA	468	CD	PRO A	87	36.951	51.612	21.316		.47 A
		MOTA	469	CA	PRO A	87	36.420	53.795	20.423		.11 A
		MOTA	470	CB	PRO A	87	37.274	53.896	21.690		.31 A
d (****		MOTA	471	CG	PRO A	87	36.939	52.630	22.428		.52 A
1,000 1,000	20	ATOM	472	С	PRO A	87	37.109	54.437	19.222		. 18 A
		ATOM	473	0	PRO A	87	38.100	53.906	18.716		.38 A
STREET.		MOTA	474	N	HIS A	88	36.580	55.568	18.766		.67 A
		MOTA	475	CA	HIS A	88	37.169	56.267	17.630		.52 A
		MOTA	476	CB	HIS A	88	36.613	55.709	16.308		.65 A
M.	25	MOTA	477	CG	HIS A	88	35.167	56.015	16.077		.36 A
141		MOTA	478		HIS A	88	34.045	55.391	16.505		.20 A
ijħ		MOTA	479		HIS A	88	34.744	57.098	15.335		.08 A .99 A
ij. ·		MOTA	480		HIS A	88	33.423	57.126	15.317		.70 A
	0.0	MOTA	481		HIS A	88	32.974	56.102	16.021		.68 A
17	30	ATOM	482	C	HIS A	88	36.927	57.765	17.718 18.512		.71 A
		ATOM	483	0	HIS A	88	36.108	58.238 58.511	16.904		.64 A
i se		ATOM	484	N	SER A	89	37.661	59.958	16.889		.97 A
4 (124) 4 (124)		ATOM	485	CA	SER A	89 89	37.551 38.657	60.562	17.758		.29 A
RaseF Rasia	25	ATOM	486	CB OG	SER A	89	38.626	61.978	17.733		.37 A
2 (-504	35	ATOM	487	C	SER A	89	37.708	60.408	15.449		.81 A
		ATOM	488 489	0	SER A	89	38.771	60.233	14.856		.86 A
		ATOM ATOM	490	N	HIS A	90	36.648	60.971	14.881		.95 A
		ATOM	491	CA	HIS A	90	36.714	61.427	13.499		.92 A
	40	ATOM	492	CB	HIS A	90	35.313	61.494	12.895	1.00 9	.62 A
	10	ATOM	493	CG	HIS A	90	35.310	61.809	11.434	1.00 8	.56 A
		ATOM	494		HIS A	90	34.836	62.880	10.757	1.00 9	.62 A
		ATOM	495		HIS A	90	35.874	60.977	10.491	1.00 9	.09 A
		ATOM	496		HIS A	90	35.748	61.523	9.295	1.00 9	.31 A
	45	ATOM	497		HIS A	90	35.122	62.679	9.430	1.00 8	.59 A
	10	ATOM	498	С	HIS A	90	37.391	62.792	13.418	1.00 8	.62 A
		ATOM	499	0	HIS A	90	36.849	63.799	13.883	1.00 9	.74 A
		MOTA	500	N	ASN A	91	38.584	62.817	12.829	1.00 9	.20 A
		ATOM	501	CA	ASN A	91	39.354	64.052	12.706		.16 A
	50	ATOM	502	СВ	ASN A	91	40.744	63.867	13.317		.59 A
		ATOM	503	CG	ASN A	91	40.703	63.716	14.822		.87 A
		ATOM	504		ASN A	91	40.092	62.787	15.351	1.00 12	
		ATOM	505		ASN A	91	41.353	64.633	15.521		.48 A
		MOTA	506	С	ASN A	91	39.504	64.516	11.266	1.00 10	
	55	MOTA	507	0	ASN A	91	40.300	63.969	10.503	1.00 11	.67 A

							07				
		ATOM	508	N	ASP A	92	38.738	65.534	10.900	1.00 9.47	A
		ATOM	509	CA	ASP A	92	38.796	66.078	9.551	1.00 9.42	A
		MOTA	510	СВ	ASP A		37.562	66.934	9.282	1.00 9.14	A
		ATOM	511	CG	ASP A		36.314	66.113	9.149	1.00 10.48	A
	5	ATOM	512		ASP A		36.328	65.197	8.310	1.00 10.31	A
	J	ATOM	513		ASP A		35.328	66.372	9.873	1.00 12.87	А
		ATOM	514	C	ASP A		40.034	66.930	9.337	1.00 9.30	А
		ATOM	515	0	ASP A		40.256	67.890	10.067	1.00 9.36	A
			516		PRO A		40.864	66.582	8.338	1.00 9.43	A
	10	ATOM		N			40.895	65.288	7.638	1.00 8.82	A
	10	MOTA	517	CD	PRO A		42.078	67.351	8.048	1.00 9.47	A
		ATOM	518	CA	PRO A		42.877	66.416	7.140	1.00 9.10	A
		ATOM	519	CB	PRO A			65.052	7.507	1.00 11.35	A
		ATOM	520	CG	PRO A		42.378		7.336	1.00 10.26	A
	15	MOTA	521	С	PRO A		41.655	68.632		1.00 10.20	A
	15	MOTA	522	0	PRO A		42.020	68.883	6.182		A
		MOTA	523	N	GLY A		40.859	69.424	8.048	1.00 9.66 1.00 10.36	A
		MOTA	524	CA	GLY A		40.336	70.663	7.516	1.00 10.30	A
		ATOM	525	С	GLY A		38.862	70.516	7.177		
S Charles	20	MOTA	526	0	GLY A		38.440	69.492	6.634	1.00 10.38	A
	20	MOTA	527	N	TRP A		38.082	71.528	7.538	1.00 10.58	A
7;AST		MOTA	528	CA	TRP A		36.653	71.588	7.245	1.00 10.62	A
1,55		ATOM	529	CB	TRP A		35.854	70.479	7.948	1.00 10.51	A
		MOTA	530	CG	TRP A		34.387	70.607	7.634	1.00 11.04	A
		ATOM	531		TRP A		33.288	70.466	8.545	1.00 11.08	A
The state of the s	25	MOTA	532	CE2	TRP A		32.109	70.765	7.825	1.00 11.49	A
		MOTA	533	CE3	TRP A	. 95	33.184	70.120	9.901	1.00 11.93	A
		ATOM	534	CD1	TRP A	. 95	33.840	70.963	6.431	1.00 10.57	A
¥;		MOTA	535	NE1	TRP A	95	32.475	71.065	6.539	1.00 10.89	A
3 1000		MOTA	536	CZ2	TRP A	. 95	30.839	70.731	8.415	1.00 12.07	A
7	30	MOTA	537	CZ3	TRP A	. 95	31.918	70.086	10.487	1.00 12.97	A
RALE SSIC		ATOM	538	CH2	TRP A	. 95	30.765	70.391	9.741	1.00 13.12	A
		ATOM	539	С	TRP A	. 95	36.151	72.968	7.669	1.00 11.53	A
ž tržu		MOTA	540	0	TRP A	. 95	36.063	73.865	6.834	1.00 10.86	A
		MOTA	541	N	ILE A	. 96	35.829	73.151	8.947	1.00 11.91	А
2	35	MOTA	542	CA	ILE A	. 96	35.389	74.467	9.405	1.00 13.09	A
		ATOM	543	CB	ILE A	. 96	34.240	74.389	10.434	1.00 14.40	A
		ATOM	544	CG2	ILE A	. 96	32.993	73.840	9.758	1.00 15.73	A
		ATOM	545	CG1	ILE A	96	34.656	73.549	11.638	1.00 16.78	A
		ATOM	546	CD1	ILE A	96	33.689	73.638	12.798	1.00 18.96	А
	40	ATOM	547	С	ILE A	96	36.579	75.207	10.007	1.00 12.25	A
		ATOM	548	0	ILE A	96	36.486	76.378	10.374	1.00 13.34	А
		ATOM	549	N	GLN A	97	37.698	74.496	10.102	1.00 11.48	А
		ATOM	550	CA	GLN A	97	38.960	75.042	10.585	1.00 10.81	A
		ATOM	551	СВ	GLN A		39.239	74.617	12.030	1.00 13.00	A
	45	ATOM	552	CG	GLN A		38.316	75.252	13.059	1.00 15.72	A
		ATOM	553	CD	GLN A		38.781	75.011	14.481	1.00 18.59	A
		ATOM	554		GLN A		39.922	75.320	14.834	1.00 21.45	A
		ATOM	555		GLN A		37.899	74.460	15.309	1.00 20.61	A
		ATOM	556	C	GLN A		40.007	74.431	9.660	1.00 9.61	A
	50	ATOM	557	Ö	GLN A		39.740	73.424	9.007	1.00 9.16	A
		ATOM	558	N	THR A		41.185	75.037	9.580	1.00 9.03	A
		ATOM	559	CA	THR A		42.238	74.487	8.732	1.00 8.85	А
		ATOM	560	CB	THR A		43.363	75.495	8.486	1.00 9.21	А
		ATOM	561		THR A		43.987	75.813	9.736	1.00 9.92	А
	55		562		THR A		42.818	76.769	7.854	1.00 8.60	A
	55	ATOM	202	<u> </u>	IRK A	2 20	47.010	10.109	,.054	1.00 0.00	- 1

		7 TL 🔾 7.4	562	C	THR A	98	42.862	73.289	9.437	1.00 8.61	А
		ATOM	563	C				73.039	10.617	1.00 8.91	A
		MOTA	564	0	THR A		42.598				A
		ATOM	565	N	PHE A		43.686	72.552	8.704		
		MOTA	566	CA	PHE A		44.377	71.395	9.255	1.00 8.31	A
	5	MOTA	567	CB	PHE A	99	45.359	70.837	8.220	1.00 8.62	A
		MOTA	568	CG	PHE A	99	46.236	69.737	8.745	1.00 8.46	A
		ATOM	569	CD1	PHE A	99	45.831	68.407	8.668	1.00 8.79	A
		ATOM	570		PHE A		47.469	70.031	9.322	1.00 9.06	A
		ATOM	571		PHE A		46.642	67.383	9.156	1.00 9.28	А
	10	ATOM	572	CE2	PHE A		48.286	69.020	9.813	1.00 9.90	A
	10						47.873	67.687	9.730	1.00 8.95	A
		ATOM	573	CZ	PHE A				10.509	1.00 8.94	A
		ATOM	574	С	PHE A		45.144	71.809			A
		ATOM	575	0	PHE A		45.011	71.193	11.566		A
		MOTA	576	N	GLU A		45.948	72.861	10.386	1.00 9.46	
	15	ATOM	577	CA	GLU A		46.756	73.331	11.505	1.00 10.17	A
		MOTA	578	CB	GLU A		47.739	74.405	11.026	1.00 10.59	A
		ATOM	579	CG	GLU A	100	48.778	74.836	12.059	1.00 12.88	A
		ATOM	580	CD	GLU A	100	49.649	73.692	12.552	1.00 14.60	A
4122		ATOM	581	OE1	GLU A	100	49.825	72.698	11.812	1.00 14.74	A
	20	MOTA	582	OE2	GLU A	100	50.177	73.797	13.680	1.00 15.45	A
1,1,2		MOTA	583	С	GLU A	. 100	45.921	73.854	12.668	1.00 10.39	A
Q.		ATOM	584	0	GLU A		46.275	73.630	13.828	1.00 9.60	A
		ATOM	585	Ň	GLU A		44.816	74.537	12.369	1.00 10.05	A
		ATOM	586	CA	GLU A		43.952	75.059	13.429	1.00 10.07	А
	25	ATOM	587	CB	GLU A		42.822	75.918	12.845	1.00 10.88	A
8 8 B	20			CG	GLU A		43.287	77.260	12.266	1.00 13.03	A
		MOTA	588				42.154	78.075	11.658	1.00 14.64	A
Sing.		ATOM	589	CD OD1	GLU A				11.036	1.00 13.48	A
5 }		ATOM	590		GLU A		41.250	77.481	11.788	1.00 13.48	A
	20	ATOM	591				42.176	79.319	14.234		A
	30	ATOM	592	С	GLU A		43.366	73.901			
		ATOM	593	0	GLU A		43.383	73.920	15.468	1.00 9.79	A
i inge		ATOM	594	N	TYR A		42.846	72.892	13.539	1.00 9.17	A
		MOTA	595	CA	TYR A		42.286	71.726	14.222	1.00 9.45	A
grad.		MOTA	596	CB	TYR A		41.704	70.719	13.231	1.00 9.69	A
ji raji	35	MOTA	597	CG	TYR A	102	40.295	70.970	12.749	1.00 9.66	A
		ATOM	598	CD1	TYR A	102	39.247	71.205	13.643	1.00 10.46	A
		ATOM	599	CE1	TYR A	102	37.928	71.319	13.188	1.00 9.87	A
		ATOM	600	CD2	TYR A	102	39.989	70.865	11.392	1.00 9.78	A
		ATOM	601		TYR A		38.688	70.973	10.934	1.00 10.12	А
	40	MOTA	602		TYR A		37.661	71.197	11.830	1.00 10.79	А
	10	ATOM	603	OH	TYR A		36.374	71.266	11.352	1.00 10.63	A
		ATOM	604	C	TYR A		43.375	71.009	15.008	1.00 10.28	А
		ATOM	605	0	TYR A		43.138	70.515	16.112	1.00 9.91	A
			606		TYR A		44.567	70.926	14.429	1.00 10.93	A
	45	ATOM		N			45.656	70.245	15.108	1.00 11.21	A
	45	ATOM	607	CA	TYR A			70.245	14.250	1.00 11.21	A
		ATOM	608	CB	TYR A		46.920			1.00 11.06	A
		MOTA	609	CG	TYR F		48.077	69.577	14.968		
		ATOM	610		TYR F		48.080	68.207	15.224	1.00 11.12	A
		ATOM	611		TYR F		49.103	67.614	15.954	1.00 10.89	A
	50	ATOM	612	CD2	TYR F	103	49.137	70.342	15.460	1.00 11.87	A
		ATOM	613	CE2	TYR F	103	50.164	69.760	16.195	1.00 11.51	А
		ATOM	614	CZ	TYR F	103	50.141	68.397	16.440	1.00 11.95	Α
		ATOM	615	ОН	TYR A	103	51.145	67.818	17.187	1.00 13.54	А
		ATOM	616	С	TYR A		45.971	70.909	16.440	1.00 11.40	А
	55	ATOM	617	0	TYR A		46.092	70.240	17.462	1.00 11.11	A

					_		46.000	70 001	16 400	1.00 11.78	7\
	MOTA	618	N	GLN .			46.099	72.231	16.422		A
	MOTA	619	CA	GLN I			46.419	72.981	17.631	1.00 13.08	A
	MOTA	620	CB	GLN .			46.770	74.427	17.271	1.00 12.77	A
_	MOTA	621	CG	GLN .			48.091	74.597	16.541	1.00 13.19	A
5	MOTA	622	CD	GLN .			49.268	74.058	17.336	1.00 14.03	A
	MOTA	623		GLN .			49.305	74.172	18.564	1.00 14.60	A
	MOTA	624	NE2	GLN .	A	104	50.242	73.483	16.640	1.00 14.23	A
	MOTA	625	С	GLN .	A	104	45.301	72.992	18.667	1.00 14.02	А
	MOTA	626	0	GLN .	Α	104	45.552	72.849	19.863	1.00 14.69	А
10	MOTA	627	N	HIS .	A	105	44.067	73.152	18.202	1.00 14.24	A
	ATOM	628	CA	HIS .	A	105	42.912	73.235	19.091	1.00 15.29	A
	ATOM	629	CB	HIS .	A	105	41.796	74.035	18.412	1.00 18.09	A
	ATOM	630	CG	HIS .			42.228	75.377	17.907	1.00 21.36	A
	ATOM	631		HIS .			43.322	76.126	18.181	1.00 23.58	A
15	ATOM	632		HIS .			41.481	76.105	17.005	1.00 23.59	A
10	ATOM	633		HIS			42.098	77.244	16.744	1.00 24.20	A
	ATOM	634		HIS			43.217	77.281	17.445	1.00 24.69	A
	ATOM	635	C	HIS			42.330	71.905	19.552	1.00 15.14	A
	ATOM	636	0	HIS			41.815	71.807	20.665	1.00 15.70	А
20	ATOM	637	N	ASP			42.416	70.880	18.712	1.00 13.68	A
20		638	CA	ASP			41.818	69.600	19.064	1.00 13.41	A
	MOTA			ASP			40.556	69.386	18.221	1.00 15.33	A
	MOTA	639	CB				39.513	70.461	18.449	1.00 17.76	A
	MOTA	640	CG	ASP				70.435	19.509	1.00 17.70	A
O.E.	ATOM	641		ASP			38.857		17.570	1.00 19.51	A
25	MOTA	642		ASP			39.359	71.337	18.960	1.00 13.31	A
	ATOM	643	C	ASP			42.673	68.346		1.00 12.48	A
	MOTA	644	0	ASP			42.942	67.684	19.957	1.00 11.30	A
	MOTA	645	N	THR			43.095	68.025	17.745	1.00 10.31	A
00	ATOM	646	CA	THR			43.845	66.805	17.490		A
30	MOTA	647	СВ	THR			44.169	66.694	15.991	1.00 9.81	A
	MOTA	648	OG1	THR			42.964	66.919	15.247	1.00 9.72	
	MOTA	649	CG2	THR			44.710	65.302	15.656	1.00 9.56	A
	MOTA	650	С	THR			45.100	66.517	18.305	1.00 10.15	A
	MOTA	651	0	THR			45.309	65.377	18.722	1.00 9.55	A
35	ATOM	652	N	LYS			45.940	67.515	18.555	1.00 10.06	A
	MOTA	653	CA	LYS			47.142	67.223	19.323	1.00 10.48	A
	MOTA	654	CB	LYS	A	108	48.109	68.416	19.322	1.00 11.26	A
	ATOM	655	CG	LYS			47.753	69.597	20.206	1.00 12.62	A
	MOTA	656	CD	LYS	A	108	48.842	70.661	20.066	1.00 13.56	A
40	MOTA	657	CE	LYS	A	108	48.632	71.837	21.000	1.00 14.90	A
	MOTA	658	ΝZ	LYS			49.762	72.815	20.901	1.00 16.47	A
	ATOM	659	С	LYS			46.777	66.809	20.744	1.00 10.06	A
	MOTA	660	0	LYS			47.483	66.013	21.364	1.00 10.31	A
	MOTA	661	N	HIS	Α	109	45.663	67.330	21.246	1.00 10.31	A
45	MOTA	662	CA	HIS	Α	109	45.210	66.985	22.590	1.00 10.51	A
	MOTA	663	CB	HIS	Α	109	44.215	68.031	23.086	1.00 12.57	A
	MOTA	664	CG	HIS	Α	109	44.791	69.410	23.154	1.00 14.27	А
	MOTA	665	CD2	HIS	Α	109	44.510	70.530	22.448	1.00 16.35	A
	ATOM	666	ND1	HIS	Α	109	45.821	69.743	24.008	1.00 16.64	A
50	ATOM	667	CE1	HIS	Α	109	46.148	71.010	23.825	1.00 16.26	A
-	ATOM	668		HIS			45.368	71.510	22.884	1.00 16.75	A
	ATOM	669	С	HIS			44.578	65.598	22.594	1.00 10.63	А
	ATOM	670	0	HIS			44.765	64.824	23.530	1.00 10.59	A
	ATOM	671	N	ILE			43.832	65.283	21.543	1.00 10.70	А
55	ATOM	672	CA	ILE			43.202	63.975	21.426	1.00 10.48	A
	0	J . L			_						

	MOTA	673	СВ	ILE A	110	42.369	63.881	20.125	1.00 10.18	A
	ATOM	674	CG2	ILE A	110	41.950	62.435	19.864	1.00 10.02	A
	ATOM	675		ILE A		41.151	64.802	20.229	1.00 10.13	A
	ATOM	676	CD1	ILE A	110	40.395	64.989	18.921	1.00 10.58	A
5	MOTA	677	С	ILE A		44.279	62.889	21.407	1.00 10.11	A
Ü	ATOM	678	0	ILE A		44.187	61.892	22.125	1.00 9.62	A
	ATOM	679	N	LEU A		45.307	63.087	20.591	1.00 10.21	A
	ATOM	680	CA	LEU A		46.382	62.112	20.490	1.00 10.24	A
	ATOM	681	CB	LEU A		47.233	62.400	19.245	1.00 9.69	А
10	ATOM	682	CG	LEU A		46.511	62.066	17.933	1.00 10.41	А
10	ATOM	683		LEU A		47.335	62.524	16.739	1.00 10.20	А
	ATOM	684		LEU A		46.261	60.566	17.865	1.00 11.30	A
		685	CD2	LEU A		47.253	62.049	21.741	1.00 10.20	A
	ATOM			LEU A		47.235	60.971	22.138	1.00 10.28	A
15	MOTA	686	0			47.490	63.196	22.130	1.00 10.20	A
15	MOTA	687	N	SER A			63.227	23.579	1.00 10.02	A
	MOTA	688	CA	SER A		48.305			1.00 12.22	A
	MOTA	689	CB	SER A		48.593	64.668	23.993	1.00 15.20	A
	MOTA	690	OG	SER A		49.388	64.701	25.165	1.00 10.02	A
20	ATOM	691	С	SER A		47.586	62.502	24.710		
20	MOTA	692	0	SER A		48.193	61.735	25.464	1.00 11.71	A
	MOTA	693	N	ASN A		46.285	62.737	24.830	1.00 11.70	A
	MOTA	694	CA	ASN A		45.535	62.080	25.886	1.00 12.34	A
	ATOM	695	СВ	ASN A		44.252	62.858	26.187	1.00 12.62	A
	ATOM	696	CG	ASN A		44.546	64.218	26.802	1.00 14.17	A
25	ATOM	697		ASN A		45.603	64.414	27.404	1.00 16.67	A
	MOTA	698	ND2	ASN A		43.620	65.155	26.663	1.00 15.15	A
	MOTA	699	С	ASN A	113	45.254	60.616	25.558	1.00 12.29	A
	MOTA	700	0	ASN A	113	45.082	59.797	26.460	1.00 12.15	А
	MOTA	701	N	ALA A	114	45.230	60.275	24.272	1.00 11.71	A
30	ATOM	702	CA	ALA A	114	45.014	58.885	23.885	1.00 11.74	A
	MOTA	703	CB	ALA A	114	44.847	58.773	22.373	1.00 10.96	А
	MOTA	704	С	ALA A	114	46.240	58.097	24.332	1.00 11.77	A
	MOTA	705	0	ALA A	114	46.129	56.983	24.846	1.00 11.90	A
	MOTA	706	N	LEU A	115	47.415	58.688	24.139	1.00 12.06	А
35	MOTA	707	CA	LEU A	115	48.663	58.045	24.517	1.00 12.83	А
	MOTA	708	CB	LEU A	115	49.854	58.922	24.114	1.00 13.32	A
	ATOM	709	CG	LEU A	115	51.247	58.411	24.497	1.00 13.43	A
	ATOM	710	CD1	LEU A	115	51.472	57.025	23.924	1.00 13.50	A
	MOTA	711	CD2	LEU A	115	52.301	59.368	23.984	1.00 14.02	A
40	MOTA	712	С	LEU A	115	48.696	57.788	26.019	1.00 13.61	A
	MOTA	713	0	LEU A		49.035	56.692	26.467	1.00 13.52	A
	MOTA	714	N	ARG A		48.328	58.801	26.792	1.00 14.73	А
	ATOM	715	CA	ARG A		48.323		28.243	1.00 16.31	А
	ATOM	716	СВ	ARG A		48.074		28.870	1.00 20.55	А
45	ATOM	717	CG	ARG A		49.189		28.594	1.00 27.46	А
10	MOTA	718	CD	ARG A		48.820		29.011	1.00 32.63	А
	ATOM	719	NE	ARG A		49.890		28.707	1.00 36.87	А
	ATOM	720	CZ	ARG A		49.786		28.840	1.00 39.09	А
	MOTA	721		ARG A		48.654		29.274	1.00 40.46	А
50	ATOM	721		ARG A		50.815		28.542	1.00 40.54	A
50		723	C	ARG A		47.289		28.753	1.00 15.28	A
	ATOM	723	0	ARG A		47.615		29.529	1.00 14.55	A
	ATOM	724 725				46.045		28.311	1.00 14.65	A
	ATOM		N C7	HIS A		44.978		28.758	1.00 14.03	A
55	ATOM	726	CA	HIS A		44.976		28.326	1.00 14.33	A
55	ATOM	727	CB	HIS A	11/	43.020	57.505	20.040	1.00 10.01	

							, ,				
	ATOM	728	CG	HIS A	Ą	117	43.174	58.659	29.164	1.00 18.36	A
	ATOM	729	CD2	HIS A			43.285	59.995	28.977	1.00 19.28	A
	ATOM	730	ND1	HIS A	Ą	117	42.608	58.492	30.411	1.00 18.96	A
	MOTA	731		HIS A			42.394	59.677	30.957	1.00 19.96	A
5	ATOM	732	NE2	HIS A	Α	117	42.797	60.605	30.108	1.00 19.61	A
	MOTA	733	С	HIS A	Ą	117	45.120	55.494	28.337	1.00 14.42	A
	ATOM	734	0	HIS A	A	117	44.809	54.598	29.113	1.00 13.52	A
	ATOM	735	N	LEU A	Ą	118	45.585	55.248	27.119	1.00 13.01	A
	ATOM	736	CA	LEU A	Α	118	45.769	53.876	26.669	1.00 13.05	А
10	ATOM	737	CB	LEU A	A	118	46.041	53.838	25.161	1.00 12.57	A
	ATOM	738	CG	LEU Z	Α	118	44.841	54.238	24.292	1.00 14.54	A
	ATOM	739	CD1	LEU Z	A	118	45.260	54.333	22.832	1.00 14.69	А
	MOTA	740	CD2	LEU I	A	118	43.728	53.215	24.456	1.00 14.25	А
	ATOM	741	С	LEU I	Α	118	46.930	53.265	27.445	1.00 12.95	A
15	ATOM	742	0	LEU Z	A	118	46.867	52.112	27.877	1.00 13.64	A
	ATOM	743	N	HIS I	A	119	47.988	54.044	27.639	1.00 13.37	A
	ATOM	744	CA	HIS I	A	119	49.140	53.560	28.383	1.00 13.90	A
	ATOM	745	CB	HIS .	Α	119	50.209	54.657	28.465	1.00 15.67	A
	ATOM	746	CG	HIS .	A	119	51.375	54.311	29.338	1.00 18.23	A
20	ATOM	747	CD2	HIS .	Α	119	52.589	53.792	29.039	1.00 19.68	A
	MOTA	748	ND1	HIS .	A	119	51.363	54.493	30.705	1.00 20.08	A
	MOTA	749	CE1	HIS .	Α	119	52.521	54.104	31.209	1.00 20.46	A
	MOTA	750	NE2	HIS .	A	119	53.283	53.673	30.219	1.00 20.35	A
	ATOM	751	С	HIS .	A	119	48.716	53.131	29.788	1.00 14.72	A
25	MOTA	752	0	HIS .			49.100	52.061	30.255	1.00 15.00	A
	MOTA	753	N	ASP.			47.901	53.954	30.444	1.00 14.48	A
	MOTA	754	CA	ASP			47.453	53.664	31.808	1.00 14.75	A
	MOTA	755	СВ	ASP			47.077	54.964	32.523	1.00 15.77	A A
20	MOTA	756	CG	ASP			48.267	55.877	32.737	1.00 16.92	A A
30	MOTA	757		ASP			49.409	55.375	32.760	1.00 19.17 1.00 19.89	A A
	MOTA	758		ASP			48.060	57.097	32.902 31.976	1.00 19.89	A
	MOTA	759	С	ASP			46.305	52.666 52.201	33.090	1.00 14.84	A
	ATOM	760	0	ASP			46.051 45.613	52.340	30.888	1.00 13.52	A
25	ATOM	761	N	ASN ASN			43.613	51.402	30.833	1.00 13.52	A
35	ATOM	762	CA	ASN			43.171	52.152	30.762	1.00 13.80	A
	ATOM	763	CB CG	ASN			42.971	53.227	31.815	1.00 13.90	A
	MOTA	764		ASN			43.327	54.394	31.615	1.00 15.49	A
	ATOM ATOM	765 766		ASN			42.416	52.833	32.957	1.00 13.19	A
40	ATOM	766 767	C	ASN			44.673	50.374	29.827	1.00 14.09	A
40	ATOM	768	0	ASN			44.160	50.534	28.721	1.00 13.05	А
	ATOM	769	N	PRO			45.406	49.290	30.121	1.00 14.55	А
	ATOM	770	CD	PRO			45.858	48.944	31.481	1.00 15.39	А
	ATOM	771	CA	PRO			45.704	48.200	29.187	1.00 14.85	A
45	MOTA	772	CB	PRO			46.410	47.169	30.072	1.00 15.58	А
-10	MOTA	773	CG	PRO			45.853	47.446	31.436	1.00 17.22	А
	ATOM	774	C	PRO			44.565	47.592	28.371	1.00 15.15	A
	ATOM	775	Ö	PRO			44.795	47.126	27.254	1.00 15.89	A
	ATOM	776	N	GLU			43.348	47.588	28,908	1.00 15.16	A
50	ATOM	777	CA	GLU			42.218	47.015	28.179	1.00 15.87	A
50	ATOM	778	СВ	GLU			41.214	46.386	29.150	1.00 18.34	А
	ATOM	779	CG	GLU			41.622	45.016	29.679	1.00 23.44	А
	ATOM	780	CD	GLU			42.880	45.055	30.520	1.00 26.21	A
	ATOM	781		GLU			42.873	45.729	31.571	1.00 28.94	А
55	ATOM	782		GLU			43.877	44.409	30.131	1.00 29.25	А
-											

		ATOM	783	С	GLU A 123	41.490	48.004	27.269	1.00 14.2	4 A
		ATOM	784	0	GLU A 123	40.654	47.603	26.460	1.00 14.2	
		ATOM	785	И	MSE A 124	41.798	49.290	27.401	1.00 12.9	5 A
		ATOM	786	CA	MSE A 124	41.158	50.303	26.566	1.00 12.1	.7 A
	5	ATOM	787	СВ	MSE A 124	41.390	51.699	27.153	1.00 13.2	.8 A
	•	ATOM	788	CG	MSE A 124	40.655	52.810	26.411	1.00 14.4	9 A
		ATOM	789	SE	MSE A 124	38.739	52.530	26.354	1.00 19.7	'8 A
		ATOM	790	CE	MSE A 124	38.233	54.129	25.400	1.00 15.5	66 A
		ATOM	791	С	MSE A 124	41.740	50.220	25.155	1.00 12.0)4 A
	10	ATOM	792	0	MSE A 124	42.918	49.903	24.983	1.00 11.4	4 A
		ATOM	793	N	LYS A 125	40.904	50.504	24.157	1.00 10.6	55 A
		ATOM	794	CA	LYS A 125	41.310	50.451	22.751	1.00 11.2	22 A
		ATOM	795	CB	LYS A 125	40.634	49.267	22.056	1.00 12.7	76 A
		ATOM	796	CG	LYS A 125	40.903	47.921	22.714	1.00 15.0)7 A
	15	ATOM	797	CD	LYS A 125	42.347	47.489	22.541	1.00 17.5	8 A
	10	ATOM	798	CE	LYS A 125	42.641	46.222	23.336	1.00 19.1	.6 A
		ATOM	799	NZ	LYS A 125	41.712	45.118	22.986	1.00 20.1	.8 A
		ATOM	800	C	LYS A 125	40.933	51.742	22.029	1.00 11.1	.0 A
1:450		ATOM	801	0	LYS A 125	40.101	52.512	22.513	1.00 10.4	14 A
	20	ATOM	802	N	PHE A 126	41.527	51.963	20.858	1.00 9.9	90 A
1, <u>1,</u> 2		ATOM	803	CA	PHE A 126	41.268	53.180	20.091	1.00 9.1	L4 A
		ATOM	804	СВ	PHE A 126	42.037	54.340	20.751	1.00 9.5	51 A
171		ATOM	805	CG	PHE A 126	41.681	55.714	20.236	1.00 8.7	79 A
		ATOM	806		PHE A 126	40.364	56.163	20.235	1.00 9.4	16 A
1L	25	ATOM	807		PHE A 126	42.689	56.594	19.837	1.00 9.2	29 A
Market Market		ATOM	808	CE1		40.053	57.473	19.852	1.00 9.4	15 A
ija,		ATOM	809	CE2		42.392	57.901	19.452	1.00 9.4	
5¢ -		ATOM	810	CZ	PHE A 126	41.069	58.343	19.461	1.00 8.0	
		ATOM	811	С	PHE A 126	41.759	52.968	18.657	1.00 9.4	
Action State States	30	ATOM	812	0	PHE A 126	42.823	52.385	18.448	1.00 9.5	
°and RRR		ATOM	813	N	ILE A 127	40.982	53.413	17.673	1.00 8.0	
		ATOM	814	CA	ILE A 127	41.420	53.291	16.282	1.00 8.0	
fish.		MOTA	815	CB	ILE A 127	40.391	52.546	15.381	1.00 8.	
		ATOM	816	CG2	ILE A 127	40.280	51.089	15.821	1.00 9.3	
į.	35	ATOM	817	CG1	ILE A 127	39.027	53.238	15.415	1.00 8.	
		ATOM	818	CD1	ILE A 127	38.045	52.674	14.387	1.00 9.5	
		ATOM	819	С	ILE A 127	41.690	54.679	15.706	1.00 8.	
		MOTA	820	0	ILE A 127	41.069	55.664	16.120	1.00 8.8	
		MOTA	821	N	TRP A 128	42.631	54.757	14.770	1.00 8.	
	4 0	ATOM	822	CA	TRP A 128	42.997	56.029	14.156		
		ATOM	823	CB	TRP A 128	44.323	56.530	14.724	1.00 8.3	
		ATOM	824	CG	TRP A 128	44.564	57.952	14.381	1.00 8.3	
		ATOM	825	CD2	TRP A 128	44.001	59.084	15.044	1.00 8.	
		MOTA	826	CE2	TRP A 128	44.411	60.233	14.332	1.00 8.	
	45	ATOM	827	CE3	TRP A 128	43.181	59.241	16.172	1.00 8.	
		ATOM	828	CD1	TRP A 128	45.282	58.440	13.324	1.00 8.	
		ATOM	829	NE1	TRP A 128		59.812	13.287	1.00 8.	
		ATOM	830		TRP A 128		61.525	14.711	1.00 9.	
		MOTA	831		TRP A 128	42.802	60.525	16.549	1.00 8.	
	50	ATOM	832	CH2	TRP A 128	43.229	61.651	15.817	1.00 9.	
		MOTA	833	С	TRP A 128		55.889	12.644	1.00 8.	
		ATOM	834	0	TRP A 128		54.958	12.153	1.00 8.	
		ATOM	835	N	ALA A 129	42.534	56.839	11.912	1.00 8.	
		ATOM	836	CA	ALA A 129		56.784	10.449	1.00 9.	
	55	ATOM	837	СВ	ALA A 129	41.125	56.886	9.932	1.00 10.	43 A

		ATOM ATOM	838 839	C O	ALA A		43.414 44.088	57.791 57.422	9.694 8.734	1.00	10.28 11.35	A A
		ATOM	840	N	GLU A	130	43.387	59.054	10.114		10.58	А
		ATOM	841	CA	GLU A	130	44.116	60.124	9.426		10.04	A
	5	MOTA	842	CB	GLU A	130	43.411	61.461	9.678		11.26	A
		MOTA	843	CG	GLU A	130	41.913	61.457	9.368		11.65	A
		ATOM	844	CD	GLU A		41.064	60.935	10.515		13.66	A
		MOTA	845	OE1	GLU A		41.629	60.582	11.573		14.42	A
		ATOM	846		GLU A		39.823	60.885	10.361		15.28	A
	10	MOTA	847	С	GLU A		45.596	60.259	9.770		10.03	A
		MOTA	848	0	GLU A		45.962	60.900	10.755	1.00	9.29	A
		MOTA	849	N	ILE A		46.454	59.692	8.927	1.00	9.13	A
		MOTA	850	CA	ILE A		47.890	59.737	9.176	1.00	9.11	A
		ATOM	851	CB	ILE A		48.618	58.700	8.292	1.00	9.01	A
	15	MOTA	852	CG2	ILE A		50.109	58.686	8.606	1.00	9.14	A
		MOTA	853	CG1	ILE A		48.019	57.311	8.555	1.00	8.24	A
		MOTA	854	CD1	ILE A		47.979	56.917	10.038	1.00	9.81	A
		MOTA	855	С	ILE A		48.518	61.127	9.030	1.00	9.70	A
1.3	•	MOTA	856	0	ILE A		49.559	61.401	9.632	1.00	9.54	A
	20	ATOM	857	N	SER A		47.900	62.012	8.251	1.00	7.89	A
2 1 1 3 2 2 1 2 2		MOTA	858	CA	SER A		48.432	63.369	8.125	1.00	8.13 8.35	A A
1971 1371		MOTA	859	CB	SER A		47.508	64.231	7.254	1.00	9.16	A
5		MOTA	860	OG	SER A		46.173	64.210	7.732 9.532	1.00	8.70	A
39 €	25	MOTA	861	С	SER A		48.546	63.970	9.332	1.00	8.62	A
an Marian	25	MOTA	862	0	SER A		49.561	64.576 63.785	10.342	1.00	8.09	A
		ATOM	863	N	TYR A		47.507	64.289	11.715	1.00	8.79	A
iji.		MOTA	864	CA	TYR A		47.495 46.093	64.185	12.317	1.00	8.24	A
R)		MOTA	865	CB CG	TYR A		45.175	65.342	12.002	1.00	7.35	A
Marie Area Sour	30	MOTA MOTA	866 867		TYR A		43.173	65.117	11.476	1.00	8.15	A
	30	ATOM	868		TYR A		43.035	66.165	11.223	1.00	9.16	A
4		ATOM	869		TYR A		45.556	66.659	12.271	1.00	8.71	А
i de		ATOM	870		TYR A		44.688	67.722	12.020	1.00	9.71	A
		ATOM	871	CZ	TYR A		43.430	67.466	11.497	1.00	9.62	A
i de	35	ATOM	872	ОН	TYR A		42.562	68.503	11.238	1.00	10.12	A
, .	00	ATOM	873	С	TYR A		48.449	63.512	12.616	1.00	9.14	A
		ATOM	874	Ō	TYR A		49.164	64.103	13.430	1.00	9.28	A
		ATOM	875	N	PHE A		48.452	62.189	12.485	1.00	8.42	A
		ATOM	876	CA	PHE A		49.312	61.379	13.335	1.00	9.57	A
	40	ATOM	877	СВ	PHE A	134	49.070	59.889	13.112	1.00	8.94	A
		ATOM	878	CG	PHE A		49.609	59.032	14.222	1.00	9.95	A
		ATOM	879	CD1	PHE A	134	48.867	58.831	15.384	1.00	9.54	A
		ATOM	880	CD2	PHE A	134	50.885	58.487	14.139		10.64	A
		ATOM	881	CE1	PHE A	134	49.393	58.101	16.448		10.14	A
	45	MOTA	882	CE2	PHE A	134	51.420	57.756	15.198		10.36	A
		MOTA	883	CZ	PHE A	134	50.672	57.565	16.354	1.00	9.82	А
		MOTA	884	С	PHE A	. 134	50.786	61.689	13.115		10.39	A
		MOTA	885	0	PHE A	. 134	51.559	61.757	14.070		10.24	A
		MOTA	886	N	ALA A		51.177	61.876	11.859		10.93	A
	50	MOTA	887	CA	ALA A		52.567	62.186	11.551		11.81	A
		ATOM	888	CB	ALA A		52.786	62.166	10.042		11.65	A
		ATOM	889	С	ALA A		52.921	63.560	12.129		12.73	A
		ATOM	890	0	ALA A		54.002	63.745	12.689		14.32	A
		MOTA	891	N	ARG A		52.006	64.514	11.991		12.97	A
	55	MOTA	892	CA	ARG A	. 136	52.213	65.868	12.510	1.00	13.88	А

		MOTA	893	СВ	ARG A	136	50.980	66.735	12.225	1.00 14.42	А
		ATOM	894	CG	ARG A		50.999	68.119	12.879	1.00 15.79	A
		ATOM	895	CD	ARG A		51.752	69.145	12.040	1.00 17.40	А
		ATOM	896	NE	ARG A		51.754	70.460	12.680	1.00 17.54	А
	5	ATOM	897	CZ	ARG A		52.462	70.754	13.765	1.00 17.89	A
	0	ATOM	898		ARG A		53.230	69.829	14.325	1.00 18.15	A
		ATOM	899		ARG A		52.387	71.966	14.300	1.00 16.63	A
		ATOM	900	C	ARG A		52.459	65.813	14.018	1.00 14.79	A
		ATOM	901	0	ARG A		53.299	66.539	14.552	1.00 16.05	A
	10	ATOM	902	N	PHE A		51.720	64.939	14.692	1.00 13.05	A
	10	ATOM	903	CA	PHE A		51.823	64.766	16.136	1.00 13.29	A
		ATOM	904	CB	PHE A		50.607	63.989	16.639	1.00 13.13	A
		ATOM	905	CG	PHE A		50.611	63.746	18.116	1.00 13.98	A
		ATOM	906		PHE A		50.372	64.791	19.000	1.00 13.65	A
	15	ATOM	907		PHE A		50.864	62.478	18.624	1.00 14.23	A
	10	ATOM	908		PHE A		50.381	64.582	20.372	1.00 14.75	A
		ATOM	909		PHE A		50.876	62.256	20.005	1.00 15.02	A
		ATOM	910	CZ	PHE A		50.633	63.314	20.875	1.00 13.04	А
		ATOM	911	C	PHE A		53.089	64.027	16.557	1.00 13.44	A
	20	ATOM	912	0	PHE A		53.866	64.509	17.387	1.00 14.03	А
	20	ATOM	913	N	TYR A		53.287	62.851	15.974	1.00 13.77	А
1		ATOM	914	CA	TYR A		54.427	62.001	16.291	1.00 14.96	A
		ATOM	915	CB	TYR A		54.433	60.778	15.375	1.00 14.56	A
ina.		ATOM	916	CG	TYR A		55.421	59.715	15.795	1.00 14.71	А
24 P	25	ATOM	917		TYR A		55.125	58.837	16.836	1.00 14.96	A
	20	ATOM	918	CE1	TYR A		56.030	57.855	17.230	1.00 15.31	А
		ATOM	919		TYR A		56.653	59.589	15.156	1.00 15.19	A
		ATOM	920	CE2	TYR A		57.567	58.608	15.544	1.00 15.16	A
\$1 		ATOM	921	CZ	TYR A		57.247	57.746	16.579	1.00 15.51	А
Com Con Con	30	MOTA	922	OH	TYR A		58.138	56.769	16.958	1.00 17.55	A
	00	ATOM	923	C	TYR A		55.783	62.691	16.198	1.00 16.54	A
Anna Turn		ATOM	924	0	TYR A		56.625	62.536	17.084	1.00 16.24	А
2.2		ATOM	925	N	HIS A		56.001	63.445	15.128	1.00 17.34	A
195		ATOM	926	CA	HIS A		57.277	64.124	14.948	1.00 19.15	A
	35	ATOM	927	СВ	HIS A		57.381	64.678	13.525	1.00 19.96	A
2	00	ATOM	928	CG	HIS A		57.571	63.618	12.483	1.00 21.16	А
		ATOM	929		HIS A		56.802	63.252	11.429	1.00 21.41	А
		ATOM	930		HIS A		58.666	62.780	12.467	1.00 21.98	A
		ATOM	931		HIS A		58.564	61.945	11.448	1.00 22.61	A
	40	ATOM	932		HIS A			62.210	10.802	1.00 21.85	А
		ATOM	933	С	HIS A		57.546	65.221	15.975	1.00 19.75	А
		ATOM	934	0	HIS A		58.683	65.660	16.133	1.00 20.84	А
		ATOM	935	N	ASP A		56.505	65.660	16.675	1.00 18.81	A
		ATOM	936	CA	ASP A		56.658	66.692	17.697	1.00 18.99	А
	45	ATOM	937	СВ	ASP A		55.438	67.614	17.705	1.00 20.32	A
		ATOM	938	CG	ASP A		55.559	68.742	16.702	1.00 21.99	A
		ATOM	939		ASP A		56.308	68.579	15.717	1.00 23.53	А
		ATOM	940		ASP A		54.901	69.786	16.894	1.00 22.73	A
		ATOM	941	С	ASP A		56.855	66.078	19.080	1.00 18.52	А
	50	ATOM	942	0	ASP A		57.154	66.781	20.048	1.00 18.42	A
	- -	ATOM	943	N	LEU A		56.692	64.762	19.166	1.00 18.16	А
		ATOM	944	CA	LEU A		56.851	64.043	20.426	1.00 18.15	А
		ATOM	945	СВ	LEU A		56.171	62.674	20.355	1.00 17.96	А
		ATOM	946	CG	LEU A		54.651	62.547	20.381	1.00 17.86	А
	55	ATOM	947		LEU A		54.285	61.069	20.292	1.00 17.13	А

			0.40	000	T D		1 4 1	54.097	63.154	21.662	1.00	17 42	A
		MOTA	948		LEU A				63.816	20.805	1.00		A
		MOTA	949	С	LEU A			58.306					
		MOTA	950	0	LEU A			59.168	63.651	19.943	1.00		A
		MOTA	951	N	GLY A	ď.	142	58.569	63.802	22.108	1.00		A
	5	MOTA	952	CA	GLY A	Α :	142	59.913	63.545	22.585	1.00		A
		MOTA	953	С	GLY A	A	142	60.161	62.057	22.424	1.00		A
		ATOM	954	0	GLY A			59.209	61.283	22.295	1.00	21.38	A
		ATOM	955	N	GLU Z			61.425	61.646	22.437	1.00	23.15	A
		ATOM	956	CA	GLU A			61.772	60.239	22.267	1.00	24.67	A
	10				GLU A			63.287	60.052	22.381	1.00		A
	10	MOTA	957	CB				63.763	58.660	21.997	1.00		A
		MOTA	958	CG	GLU A					20.609	1.00		A
		MOTA	959	CD	GLU A			63.303	58.253		1.00		A
		ATOM	960		GLU Z			63.586	58.993	19.643			
		MOTA	961	OE2	GLU I			62.656	57.192	20.484	1.00		A
	15	MOTA	962	С	GLU I	Α	143	61.066	59.311	23.252		24.07	A
		ATOM	963	0	GLU I	A	143	60.625	58.225	22.880	1.00	23.09	A
		ATOM	964	N	ASN .	A	144	60.958	59.736	24.506	1.00	23.61	A
		ATOM	965	CA	ASN .	A	144	60.302	58.924	25.525	1.00	23.85	A
21000		MOTA	966	CB	ASN .	Α	144	60.329	59.652	26.874	1.00	25.76	А
	20	MOTA	967	CG	ASN .			59.589	58.897	27.967	1.00	27.79	А
Ţ	20		968		ASN .			58.360	58.797	27.949	1.00	28.98	A
		ATOM	969		ASN .			60.338	58.359	28.923		28.61	A
Į.		ATOM			ASN .			58.864	58.610	25.124		22.68	А
ü		MOTA	970	C				58.425	57.462	25.202		22.15	A
₹ea±# aus a	25	ATOM	971	0	ASN .				59.634	24.682		21.73	A
W.	25	MOTA	972	N	LYS .			58.139		24.270		20.84	A
and the second		MOTA	973	CA	LYS			56.749	59.470			22.57	A
i,FF		MOTA	974	CB	LYS			56.073	60.837	24.132		24.93	A
51		MOTA	975	CG	LYS			55.854	61.561	25.455			A
i i		MOTA	976	CD	LYS			54.914	60.778	26.361		27.02	A
	30	MOTA	977	CE	LYS			54.640	61.523	27.661		28.49	
e et e		ATOM	978	ΝZ	LYS			55.882	61.756	28.449		29.61	A
		MOTA	979	С	LYS	Α	145	56.617	58.689	22.965		19.52	A
inā.		MOTA	980	0	LYS	Α	145	55.654	57.940	22.784		18.64	A
		MOTA	981	N	LYS	A	146	57.571	58.866	22.054		18.73	A
2.2	35	ATOM	982	CA	LYS	Α	146	57.535	58.137	20.788		17.79	А
-		ATOM	983	СВ	LYS			58.730	58.502	19.898		17.55	A
		ATOM	984	CG	LYS	Α	146	58.589	59.813	19.139	1.00	17.75	A
		ATOM	985	CD	LYS			59.758	60.012	18.181	1.00	18.32	A
		ATOM	986	CE	LYS			59.592	61.275	17.344	1.00	18.96	A
	40	ATOM	987	NZ	LYS			60.778		16.481	1.00	22.20	A
	40	ATOM	988	C	LYS			57.576	56.647	21.097		17.36	А
			989	0	LYS			56.859	55.856	20.487		16.67	A
		MOTA						58.419	56.273	22.055		17.41	A
		ATOM	990	N	LEU			58.557	54.880	22.461		17.08	А
	4.5	ATOM	991	CA	LEU			59.735	54.727	23.429		18.23	A
	45	ATOM	992	CB	LEU				54.969	22.802		19.30	A
		ATOM	993	CG	LEU			61.111				19.92	A
		ATOM	994		LEU			62.186	54.935	23.876			A
		ATOM	995	CD2	LEU			61.380	53.909	21.741		20.31	
		MOTA	996	С	LEU			57.273	54.362	23.103		16.49	A
	50	MOTA	997	0	LEU			56.855	53.235	22.841		15.40	A
		MOTA	998	N	GLN	A	148	56.645	55.179	23.944		16.51	A
		MOTA	999	CA	GLN	A	148	55.395	54.769	24.572		16.83	A
		ATOM	1000	СВ	GLN	Α	148	54.917	55.815	25.581		18.73	А
		ATOM	1001	CG	GLN			55.746	55.891	26.849		21.13	A
	55	ATOM	1002	CD	GLN			55.121	56.796	27.894	1.00	23.21	А
				_									

		ATOM	1003	OE1	GLN A	148	55	.652	56.951	28.996		25.13	A
		ATOM	1004	NE2	GLN A	148	53	.986	57.397	27.556		24.08	A
		MOTA	1005	С	GLN A	148	54	.333	54.585	23.491		16.17	A
		ATOM	1006	0	GLN A	148	53	.519	53.666	23.556		16.06	A
	5	MOTA	1007	N	MSE A	149	54	.350	55.462	22.493		15.44	A
	Ū	ATOM	1008	CA	MSE A		53	.380	55.375	21.409		15.77	A
		ATOM	1009	CB	MSE A		53	.494	56.595	20.492		17.35	A
		MOTA	1010	CG	MSE A		52	.475	56.619	19.359		19.00	Α
		ATOM	1011	SE	MSE A		50	.649	56.669	19.994	1.00	24.67	A
	10	ATOM	1012	CE	MSE P		50	.424	58.578	20.144	1.00	23.17	A
	10	ATOM	1013	C	MSE A			.589	54.099	20.601	1.00	15.13	A
		ATOM	1014	0	MSE A			.633	53.397	20.281	1.00	13.65	A
		ATOM	1015	N	LYS F			.840	53.796	20.270	1.00	15.43	A
		MOTA	1016	CA	LYS F			.128	52.594	19.498	1.00	15.61	A
	15	ATOM	1017	CB	LYS F			.620	52.516	19.155	1.00	16.35	A
	10	ATOM	1017	CG	LYS F			.081	53.610	18.200	1.00	19.37	A
		ATOM	1019	CD	LYS A			.582	53.563	17.941		22.38	A
		ATOM	1020	CE	LYS A			.987	52.322	17.169		24.63	A
		ATOM	1020	NZ	LYS A			.441	52.335	16.840		26.82	A
	20		1021	C	LYS F			.702	51.349	20.266		14.98	A
	20	ATOM	1022	0	LYS A			.265	50.365	19.672		15.43	A
		ATOM		И	SER A			.806	51.400	21.591		15.45	A
		ATOM	1024		SER A			.438	50.257	22.415		15.79	A
		MOTA	1025	CA	SER A			.936	50.450	23.851		17.27	А
	25	ATOM	1026	CB		151		.181	51.437	24.526		21.28	A
	25	ATOM	1027	OG		151		.936	49.975	22.422		15.04	A
		ATOM	1028	C				.530	48.818	22.315		15.10	A
		MOTA	1029	0		151		.105	51.010	22.545		14.25	A
		ATOM	1030	N		152		.666	50.771	22.554		13.46	A
	20	MOTA	1031	CA		152			51.979	23.115		14.01	A
	30	MOTA	1032	CB		152		.857	52.203	24.577		14.32	A
		MOTA	1033	CG2					53.243	22.295		13.78	A
		MOTA	1034	CG1				.103	54.395	22.676		13.84	A
		MOTA	1035		ILE A			1.179		21.172		13.41	A
·	~-	MOTA	1036	С		A 152		1.149	50.383	21.172		13.62	A
	35	ATOM	1037	0		A 152		0.048	49.856			12.90	A
		MOTA	1038	N		A 153		.942	50.642	20.136		13.40	A
		MOTA	1039	CA		A 153		.548	50.253	18.786 17.709		13.40	A
		MOTA	1040	СВ		A 153		.242	51.122	16.322		13.04	A
	40	MOTA	1041		VAL .			.050	50.501	17.737			
	40	MOTA	1042		VAL .			.665				14.30	A
		MOTA	1043	С		A 153		.965	48.798	18.610			A
		ATOM	1044	0		A 153).195	47.970	18.121		14.16	A
		ATOM	1045	N		A 154		2.182	48.487	19.038		14.99	A
		ATOM	1046	CA		A 154		2.696	47.130	18.926		16.69 17.97	A
	45	MOTA	1047	СВ		A 154		1.157	47.079	19.383		21.07	A
		MOTA	1048	CG		A 154		1.867	45.775	19.034			
		MOTA	1049	CD		A 154		5.327	45.789	19.466		23.29	A
		MOTA	1050	CE		A 154		5.476	45.645	20.976		25.47	A
		MOTA	1051	NZ		A 154		5.866	46.770	21.737		26.91	A
	50	MOTA	1052	С		A 154		1.859	46.146	19.745		16.92	A
		MOTA	1053	0	LYS	A 154		1.667	45.003	19.328		17.42	A
		MOTA	1054	N		A 155		1.351	46.587	20.895		16.90	A
		ATOM	1055	CA	ASN	A 155).546	45.712	21.752		17.32	A
		ATOM	1056	СВ	ASN	A 155		0.651	46.135	23.226		19.11	A
	55	MOTA	1057	CG	ASN	A 155	4.9	9.813	47.363	23.557	1.00	20.16	А

	ATOM	1058		ASN A		.021	47.831	22.743	1.00		A
	MOTA	1059		ASN A		.980	47.883	24.772		20.93	A
	MOTA	1060		ASN A		.076	45.635	21.341		17.02	A
	MOTA	1061		ASN A		.293	44.909	21.949		18.03	A
5	ATOM	1062		GLY A		.700	46.404	20.324		15.86	A
	MOTA	1063		GLY A		.332	46.359	19.837		15.20	A
	MOTA	1064		GLY A		.276	47.254	20.463		14.17	A
	MOTA	1065		GLY A		.097	47.107	20.146		15.09	A
	MOTA	1066		GLN A		.663	48.172	21.344		12.63	A
10	MOTA	1067		GLN A		.672	49.058	21.953		11.77	A
	ATOM	1068		GLN A		.214	49.694	23.225		11.96	A
	MOTA	1069		GLN A		.326	48.750	24.399		12.30	A
	MOTA	1070	CD	GLN A		.581	49.503	25.680		11.07	A
	ATOM	1071		GLN A		.677	50.125	26.244		14.09	A
15	ATOM	1072		GLN A		.823	49.477	26.136		11.57	A
	ATOM	1073	С	GLN A		.255	50.160	20.985		10.91	A
	MOTA	1074	0	GLN A		.077	50.484	20.880		10.65	A
	ATOM	1075	N	LEU A		.238	50.747	20.308		11.05	A
• •	MOTA	1076	CA	LEU A		.987	51.788	19.320		10.93	A
20	MOTA	1077	СВ	LEU A		.989	52.935	19.479		12.25	A A
	MOTA	1078	CG	LEU A		.895	54.117	18.507		14.64 17.13	A
	MOTA	1079		LEU A		.377	53.725	17.123		15.49	A
	MOTA	1080		LEU A		.471	54.612	18.461 17.971		11.18	A
0=	MOTA	1081	С	LEU A		.177	51.111			11.17	A
25	ATOM	1082	0	LEU A		.258	50.600	17.671	1.00	9.90	A
	ATOM	1083	N	GLU A		.126	51.102	17.161	1.00	9.47	A
	ATOM	1084	CA	GLU A		.201	50.456 49.263	15.861 15.829		10.02	A
	MOTA	1085	CB	GLU A		.247		14.506		10.65	A
20	MOTA	1086	CG	GLU A		.206	48.531 47.383	14.500		12.18	A
30	ATOM	1087	CD	GLU A		5.223	46.369	15.209		11.96	A
	ATOM	1088	OE1	GLU A		.502 .168	47.502	13.873		11.42	A
	ATOM	1089	OE2	GLU A		.864	51.409	14.732	1.00	8.85	A
	ATOM	1090	С	GLU A		3.871	52.133	14.786	1.00	9.51	A
25	MOTA	1091	0	PHE A		5.707	51.409	13.709	1.00	8.61	A
35	MOTA	1092 1093	N	PHE A		.475	52.259	12.557	1.00	8.11	A
	MOTA		CA CB	PHE A		5.802	52.613	11.881	1.00	8.37	A
	MOTA	1094 1095	CG	PHE A		.698	53.447	12.743	1.00	8.91	A
	ATOM ATOM	1095		PHE A		.761	52.872	13.437	1.00	9.51	A
40				PHE A		.444	54.801	12.906			A
40	ATOM ATOM	1097 1098		PHE A		.555	53.643	14.284	1.00	9.60	А
	ATOM	1099		PHE P		3.233	55.581	13.754	1.00	9.20	A
	ATOM	1100	CZ	PHE A		288	54.997	14.442		10.42	A
	ATOM	1100	C	PHE F		1.553	51.558	11.576	1.00	8.64	A
45	ATOM	1102	0	PHE F		1.726	50.374	11.270	1.00	8.99	A
40	ATOM	1102	N	VAL A		3.551	52.293	11.111	1.00	8.21	A
	ATOM	1103	CA	VAL A		2.603	51.767	10.147	1.00	8.58	A
	ATOM	1105	CB	VAL A		1.147	51.874	10.679	1.00	7.15	A
	ATOM	1106		VAL A).961	50.891	11.846	1.00	8.25	A
50	ATOM	1107		VAL A		.848	53.290	11.153	1.00	8.29	A
50	ATOM	1108	C	VAL A		2.815	52.542	8.847	1.00	8.27	A
	ATOM	1100	0	VAL A		2.899	53.774	8.848	1.00	8.98	A
	ATOM	1110	N	THR A		2.926	51.788	7.755	1.00	8.30	A
	ATOM	1111	CA	THR A		3.203	52.294	6.403	1.00	8.76	А
55	ATOM	1112	СВ	THR A		2.296	53.473	5.984	1.00	8.95	А
55	111 011		ÇD	2	 		_				

	ATOM	1113	OG1	THR	A	162	40.920	53.089	6.084	1.00	10.09	A
	ATOM	1114		THR			42.580	53.855	4.532	1.00	10.53	A
	MOTA	1115	С	THR			44.656	52.759	6.347	1.00	8.36	A
	ATOM	1116	0	THR			45.478	52.184	5.633	1.00	8.75	A
5	ATOM	1117	N	GLY			44.972	53.800	7.107	1.00	8.59	A
5		1117	CA	GLY			46.338	54.286	7.133	1.00	8.14	A
	ATOM			GLY			46.702	55.259	6.032	1.00	7.44	А
	MOTA	1119							5.747	1.00	8.02	A
	MOTA	1120	0	GLY			47.880	55.450		1.00	6.59	A
4.0	MOTA	1121	N	GLY			45.699	55.864	5.405			
10	MOTA	1122	CA	GLY			45.975	56.836	4.364	1.00	7.84	A
	ATOM	1123	С	GLY			46.278	58.189	4.979	1.00	7.81	A
	MOTA	1124	0	GLY			46.015	58.419	6.160	1.00	7.64	A
	MOTA	1125	N	TRP	Α	165	46.845	59.092	4.188	1.00	6.53	A
	MOTA	1126	CA	TRP	Α	165	47.159	60.428	4.678	1.00	6.64	A
15	MOTA	1127	CB	TRP	Α	165	47.767	61.255	3.545	1.00	6.57	A
	ATOM	1128	CG	TRP	Α	165	48.563	62.437	4.001	1.00	7.87	A
	ATOM	1129		TRP			49.760	62.414	4.791	1.00	9.42	A
	ATOM	1130		TRP			50.184	63.753	4.945	1.00	9.13	A
	ATOM	1131		TRP			50.517	61.392	5.383	1.00	9.09	A
20		1132	CD1	TRP			48.316	63.748	3.717	1.00	9.06	А
20	MOTA		NE1	TRP			49.286	64.546	4.281	1.00	9.55	A
	ATOM	1133					51.334	64.100	5.670		10.93	A
	ATOM	1134	CZ2					61.738	6.103		11.93	A
	MOTA	1135	CZ3				51.662		6.238		11.13	A
	MOTA	1136	CH2	TRP			52.056	63.080			5.76	A
25	MOTA	1137	С	TRP			45.854	61.061	5.163	1.00		
	ATOM	1138	0	TRP			45.838	61.822	6.138	1.00	6.45	A
	ATOM	1139	N	VAL	A	166	44.766	60.720	4.477	1.00	5.84	A
	ATOM	1140	CA	VAL	А	166	43.430	61.215	4.800	1.00	6.47	A
	ATOM	1141	CB	VAL	Α	166	43.033	62.406	3.882	1.00	6.49	A
30	ATOM	1142	CG1	VAL	А	166	44.041	63.541	4.018	1.00	7.93	A
	MOTA	1143	CG2	VAL	Α	166	42.956	61.943	2.426	1.00	7.01	A
	MOTA	1144	С	VAL	Α	166	42.414	60.096	4.560	1.00	6.42	A
	ATOM	1145	0	VAL	Α	166	42.787	58.962	4.258	1.00	7.28	A
	ATOM	1146	N			167	41.137	60.424	4.743	1.00	6.92	A
35	ATOM	1147	CA			167	40.022	59.517	4.458	1.00	7.79	A
50	ATOM	1148	СВ			167	39.001	59.533	5.590	1.00	10.16	A
	ATOM	1149	CG			167	37.784	58.669	5.322	1.00	10.68	A
	ATOM	1150	SE			167	36.562	58.804	6.790		17.10	A
		1151	CE			167	37.703	58.023	8.131	1.00	10.95	А
40	ATOM						39.494	60.275	3.245		7.78	A
40	MOTA	1152	C			167		61.204	3.368	1.00	7.60	A
	MOTA	1153	0			167	38.701	59.870	2.045	1.00	6.75	A
	ATOM	1154	N			168	39.919		1.716	1.00	6.63	A
	ATOM	1155	CD			168	40.680	58.649				A
	MOTA	1156	CA			168	39.499	60.558	0.829	1.00	7.01	
45	MOTA	1157	СВ			168	40.437	59.975	-0.219	1.00	7.18	A
	MOTA	1158	CG			168	40.514	58.546	0.200	1.00	7.01	A
	ATOM	1159	С	PRO	A	168	38.070	60.528	0.355	1.00	6.98	A
	MOTA	1160	0	PRO	Α	168	37.304	59.615	0.657	1.00	7.17	A
	MOTA	1161	N	ASP	Α	169	37.732	61.572	-0.395	1.00	6.85	A
-50	ATOM	1162	CA			169	36.439	61.673	-1.043	1.00	7.10	A
	ATOM	1163	СВ			169	36.341	63.006	-1.790	1.00	7.46	A
	ATOM	1164	CG			169	35.205	63.039	-2.791	1.00	7.67	A
	MOTA	1165		ASP			34.118	62.511	-2.486	1.00	8.52	А
	ATOM	1166		ASP			35.399	63.609	-3.885	1.00	8.86	А
55	ATOM	1167	C			169	36.529	60.520	-2.035	1.00	7.30	А
55	LI OU	1101	_		4 1							

	ATOM	1168	0	ASP A	169	37.622	60.171	-2.484	1.00	7.72	A
	ATOM	1169	N	GLU A		35.397	59.917	-2.367	1.00	7.11	A
	MOTA	1170	CA	GLU A		35.402	58.807	-3.308	1.00	7.03	A
	ATOM	1171	CB	GLU A		34.793	57.568	-2.635	1.00	7.28	А
5	ATOM	1172	CG	GLU A		35.628	57.106	-1.433	1.00	6.70	A
Ü	ATOM	1173	CD	GLU A		35.087	55.863	-0.743	1.00	8.50	A
	ATOM	1174		GLU A		34.335	55.098	-1.377	1.00	8.21	A
	ATOM	1175		GLU A		35.445	55.640	0.435	1.00	10.30	A
	ATOM	1176	C	GLU A		34.678	59.144	-4.607	1.00	6.58	A
10	MOTA	1177	0	GLU A		34.651	58.338	-5.532	1.00	6.89	A
10	ATOM	1178	N	ALA A		34.116	60.348	-4.689	1.00	6.82	A
	ATOM	1170	CA	ALA A		33.395	60.760	-5.887	1.00	7.07	A
		1180	CB	ALA A		32.181	61.600	-5.496	1.00	7.61	А
	MOTA					34.235	61.531	-6.900	1.00	7.36	A
15	ATOM	1181	С	ALA A		34.266	61.190	-8.077	1.00	7.95	A
15	MOTA	1182	0	ALA A		34.200	62.568	-6.430	1.00	7.26	A
•	MOTA	1183	N	ASN A			63.440	-7.293	1.00	7.01	A
	MOTA	1184	CA	ASN A		35.711 35.647	64.866	-6.747	1.00	6.83	A
	ATOM	1185	CB	ASN A			65.390	-6.639	1.00	8.36	A
00	MOTA	1186	CG	ASN A		34.230				10.35	A
20	MOTA	1187		ASN A		33.547	65.570	-7.645	1.00	8.74	A
	MOTA	1188		ASN A		33.784	65.645	-5.413			
	MOTA	1189	С	ASN A		37.176	63.059	-7.444	1.00	6.72 6.28	A A
	ATOM	1190	0	ASN A		37.838	63.476	-8.388	1.00		
	MOTA	1191	N	SER A		37.678	62.276	-6.505	1.00	6.15	A
25	ATOM	1192	CA	SER A		39.078	61.878	-6.510	1.00	5.69	A
	MOTA	1193	CB	SER A		39.411	61.182	-5.192	1.00	5.95	A
	MOTA	1194	OG	SER A		38.522	60.099	-4.972	1.00	7.26	A
	MOTA	1195	С	SER A		39.470	60.970	-7.661	1.00	5.64	A
	MOTA	1196	0	SER A		38.714	60.081	-8.057	1.00	6.47	A
30	ATOM	1197	N	HIS A		40.660	61.201	-8.206	1.00	5.59	A
	MOTA	1198	CA	HIS A		41.154	60.349	-9.276	1.00	5.24	A
	MOTA	1199	CB	HIS A		42.168		-10.130	1.00	5.98	A
	ATOM	1200	CG	HIS A		42.448		-11.429	1.00	6.54	A
	ATOM	1201	CD2	HIS A	174	42.041		-12.686	1.00	6.89	A
35	ATOM	1202	ND1	HIS A	174	43.161		-11.516	1.00	7.16	A
	ATOM	1203	CE1	HIS A	174	43.175		-12.772	1.00	7.66	A
	ATOM	1204	NE2	HIS A		42.502		-13.501	1.00	8.19	A
	ATOM	1205	С	HIS A	174	41.819	59.155	-8.587	1.00	5.74	A
	ATOM	1206	0	HIS A	174	42.465	59.321	-7.553	1.00	5.68	A
40	ATOM	1207	И	TRP A	175	41.669		-9.141			А
	ATOM	1208	CA	TRP A	175	42.259	56.788	-8.496	1.00		А
	MOTA	1209	CB	TRP A	175	41.995	55.505	-9.301	1.00		A
	ATOM	1210	CG	TRP A	175	42.826	55.326	-10.548	1.00	5.89	A
	ATOM	1211	CD2	TRP A	175	44.114	54.702	-10.634	1.00	6.41	А
45	ATOM	1212	CE2	TRP A	175	44.502	54.723	-11.992	1.00	6.86	А
	ATOM	1213		TRP A		44.979	54.125	-9.691	1.00	6.58	A
	ATOM	1214		TRP A		42.493	55.694	-11.823	1.00	5.81	A
	ATOM	1215		TRP A		43.495	55.332	-12.697	1.00	6.79	A
	ATOM	1216		TRP A		45.721		-12.434	1.00	6.92	А
50	ATOM	1217		TRP A		46.190		-10.129	1.00	7.55	A
-	ATOM	1218		TRP A		46.548		-11.491	1.00	7.43	А
	ATOM	1219	C	TRP A		43.751	56.954	-8.260	1.00	6.06	A
	ATOM	1220	0	TRP A		44.277	56.456		1.00	6.00	A
	ATOM	1221	N	ARG A		44.434	57.665		1.00		A
55	ATOM	1222	CA	ARG A		45.868	57.866	-8.983	1.00		А
	LI Oti	* ~ ~ ~	O4 1	111.0 21				_			

	ATOM	1223	СВ	ARG	A	176	46.434		-10.195	1.00	7.10	А
	ATOM	1224	CG	ARG	A	176	46.488	57.732	-11.429	1.00	7.74	A
	ATOM	1225	CD	ARG	A	176	46.454		-12.698	1.00	9.22	A
	ATOM	1226	NE	ARG	Α	176	47.557	59.491	-12.790	1.00	9.75	A
5	MOTA	1227	CZ	ARG	Α	176	47.708	60.339	-13.801	1.00	10.35	Α
	ATOM	1228		ARG			46.825	60.348	-14.791	1.00	10.58	A
	ATOM	1229		ARG			48.729	61.182	-13.817	1.00	11.03	A
	ATOM	1230	С	ARG			46.178	58.617	-7.690	1.00	5.98	A
	ATOM	1231	Ō	ARG			47.167	58.317	-7.011	1.00	7.04	A
10	MOTA	1232	N	ASN			45.329	59.579	- 7.335	1.00	5.86	A
10	ATOM	1233	CA	ASN			45.551	60.343	-6.110	1.00	5.50	A
	ATOM	1234	CB	ASN			44.900	61.723	-6.208	1.00	6.39	A
	ATOM	1235	CG	ASN			45.571	62.590	-7.241	1.00	8.49	A
	ATOM	1236		ASN			46.756	62.416	-7.528	1.00	7.81	А
15		1237		ASN			44.825	63.533	-7.806	1.00	9.47	А
13	ATOM		C	ASN			45.065	59.598	-4.877	1.00	5.82	A
	ATOM	1238		ASN			45.568	59.814	-3.768	1.00	5.55	A
	ATOM	1239	O				44.086	58.721	-5.059	1.00	5.11	A
	ATOM	1240	N	VAL			43.619	57.922	-3.934	1.00	5.43	A
20	MOTA	1241	CA	VAL				57.054	-3.934	1.00	5.87	A
20	MOTA	1242	CB	VAL			42.405		-3.199	1.00	6.99	A
	MOTA	1243		VAL			42.125	56.045	-4.523	1.00	7.19	A
	MOTA	1244		VAL			41.189	57.933		1.00	5.88	A
	ATOM	1245	С	VAL			44.794	57.013	-3.570		6.98	A
0=	ATOM	1246	0	VAL			45.102	56.816	-2.396	1.00		A
25	MOTA	1247	N	LEU			45.463	56.469	-4.581	1.00	6.29	A
	ATOM	1248	CA	LEU			46.609	55.606	-4.321	1.00	6.10	
	ATOM	1249	СВ	LEU			47.081	54.914	-5.610	1.00	6.48	A
	ATOM	1250	CG	LEU			48.388	54.104	-5.494	1.00	6.83	A
• •	MOTA	1251		LEU			48.249	52.970	-4.471	1.00	7.54	A
30	MOTA	1252		LEU			48.737	53.534	-6.862	1.00	7.81	A
	ATOM	1253	С	LEU			47.760	56.409	-3.720	1.00	6.01	A
	ATOM	1254	Ο.	LEU			48.436	55.947	-2.801	1.00	5.97	A
	ATOM	1255	N			180	47.971	57.619	-4.234	1.00	5.99	A
	ATOM	1256	CA	LEU			49.047	58.476	-3.751	1.00		A
35	ATOM	1257	CB			180	49.034	59.816	-4.493	1.00	6.21	A
	ATOM	1258	CG	LEU	А	180	50.171	60.777	-4.137	1.00	8.11	A
	ATOM	1259		LEU			51.464	60.276	-4.762	1.00		A
	MOTA	1260	CD2	LEU			49.844	62.174	-4.644	1.00	8.88	A
	MOTA	1261	С	LEU	A	180	48.917	58.733	-2.259	1.00	5.49	A
40	MOTA	1262	0	LEU	Α	180	49.873		-1.504			A
	ATOM	1263	N	GLN	Α	181	47.732	59.147	-1.823	1.00	5.36	A
	ATOM	1264	CA	GLN	Α	181	47.558	59.450	-0.408	1.00		A
	ATOM	1265	СВ	GLN	Α	181	46.263	60.243	-0.177	1.00	6.02	A
	ATOM	1266	CG	GLN	Α	181	44.963	59.508	-0.445	1.00		А
45	ATOM	1267	CD	GLN	Α	181	44.584	58.572	0.681	1.00		А
	ATOM	1268	OE1	GLN	Α	181	44.809	58.871	1.858	1.00	7.67	А
	ATOM	1269	NE2	GLN	Α	181	43.983	57.445	0.330	1.00	8.04	A
	ATOM	1270	С			181	47.616	58.203	0.466	1.00	5.96	А
	ATOM	1271	0			181	48.110	58.257	1.593	1.00	6.48	A
50	ATOM	1272	N			182	47.137	57.073	-0.052	1.00	5.92	A
- •	ATOM	1273	CA			182	47.190	55.826	0.709	1.00	5.60	A
	ATOM	1274	СВ			182	46.467	54.701	-0.037	1.00	6.36	A
	ATOM	1275	CG			182	46.529	53.321	0.626	1.00		А
	ATOM	1276		LEU			45.774	53.341	1.957	1.00	7.96	A
55	ATOM	1277		LEU			45.924	52.275	-0.313	1.00		А
			~									

		7.0014	1070	0	T 1717 1 7	100	48.654	55 //O	0.900	1.00	6.22	А
		MOTA	1278	С	LEU A			55.448			6.59	A
		MOTA	1279	0	LEU A		49.071	55.048	1.986	1.00		
		MOTA	1280	N	THR A		49.437	55.590	-0.163	1.00	6.40	A
		MOTA	1281	CA	THR A	183	50.854	55.254	-0.103	1.00	6.70	A
	5	MOTA	1282	CB	THR A	183	51.488	55.323	-1.510	1.00	7.61	А
		MOTA	1283	OG1	THR A	183	50.795	54.429	-2.392	1.00	6.66	A
		ATOM	1284	CG2	THR A	183	52.948	54.924	-1.453	1.00	8.69	A
		ATOM	1285	С	THR A		51.601	56.197	0.843	1.00	6.95	A
		ATOM	1286	0	THR A		52.477	55.773	1.594	1.00	6.77	A
	10	ATOM	1287	Ň	GLU A		51.248	57.477	0.815	1.00	6.54	A
	10	ATOM	1288	CA	GLU A		51.907	58.454	1.678	1.00	7.23	А
		ATOM	1289	CB	GLU A		51.345	59.852	1.399	1.00	8.96	А
			1290	CG	GLU A		52.194	61.013	1.919		10.85	А
		MOTA		CD	GLU A		53.598	61.053	1.324		11.51	A
	15	ATOM	1291				53.778	60.668	0.149		13.38	A
	15	MOTA	1292	OE1	GLU A			61.490	2.037		14.02	A
		MOTA	1293	OE2	GLU A		54.523		3.148	1.00	7.89	A
		ATOM	1294	C	GLU A		51.704	58.082 58.072	3.148	1.00	8.95	A
		MOTA	1295	0	GLU A		52.651					
	• •	MOTA	1296	N	GLY A		50.465	57.767	3.506	1.00	7.49	A
u.C	20	MOTA	1297	CA	GLY A		50.165	57.395	4.876	1.00	7.51	A
17		ATOM	1298	С	GLY A		50.754	56.056	5.292	1.00	7.61	A
		MOTA	1299	0	GLY A		51.324	55.934	6.379	1.00	7.79	A
9,8 R 41506		MOTA	1300	N	GLN A	. 186	50.638	55.045	4.437	1.00	7.55	A
		MOTA	1301	CA	GLN A	186	51.154	53.732	4.803	1.00	7.94	A
Ņ	25	MOTA	1302	CB	GLN A	186	50.573	52.653	3.890	1.00	7.79	A
		ATOM	1303	CG	GLN A	186	49.075	52.469	4.067	1.00	9.35	Α
8,850 8,8 B		ATOM	1304	CD	GLN A	186	48.647	51.045	3.819		10.10	A
£)		ATOM	1305	OE1	GLN A	186	49.239	50.349	2.999	1.00	12.28	A
i com		ATOM	1306	NE2	GLN A	186	47.615	50.598	4.525	1.00	9.16	A
	30	ATOM	1307	С	GLN A	186	52.670	53.652	4.802	1.00	8.34	A
್ಯಿಕ್ಟ್ರಿಕ್ ಇಡಿಕ		ATOM	1308	0	GLN A		53.251	52.893	5.575	1.00	7.45	A
		ATOM	1309	N	THR F		53.322	54.417	3.937	1.00	8.73	A
1		ATOM	1310	CA	THR F		54.776	54.393	3.914	1.00	8.31	A
		ATOM	1311	CB	THR F		55.313	55.199	2.723	1.00	8.96	A
g. Sean	35	ATOM	1312	OG1			54.836	54.603	1.510	1.00	8.94	A
-	50	ATOM	1313	CG2			56.839	55.194	2.709	1.00	9.08	А
		MOTA	1314	C	THR F		55.280	54.966	5.239	1.00	8.89	A
		ATOM	1315	0	THR F		56.236	54.451	5.826	1.00	8.76	А
		ATOM	1316	N	TRP F		54.620	56.016	5.720	1.00	8.63	А
	40				TRP F			56.628	6.989	1.00	8.92	А
	40	MOTA	1317	CA CB			54.131	57.863	7.265	1.00	9.67	A
		ATOM	1318		TRP A		54.583	58.643	8.464	1.00	9.58	A
		ATOM	1319	CG	TRP A		54.248	58.383	9.834	1.00	9.95	A
		MOTA	1320		TRP A			59.304	10.622		10.10	A
	4 =	ATOM	1321		TRP A		54.973		10.472	1.00	9.95	A
	45	MOTA	1322		TRP A		53.409	57.458				
		ATOM	1323		TRP A		55.466	59.685	8.477		10.29	A A
		ATOM	1324		TRP A		55.708	60.086	9.770		10.60	
		ATOM	1325		TRP A		54.888	59.328	12.018	1.00	9.73	A
		MOTA	1326		TRP A		53.325	57.480	11.866		10.52	A
	50	MOTA	1327	CH2	TRP A		54.062	58.411	12.621		10.61	A
		MOTA	1328	С	TRP A		54.773	55.604	8.104	1.00	8.69	A
		ATOM	1329	0	TRP A		55.635	55.399	8.958	1.00		A
		MOTA	1330	N	LEU A	189		54.955	8.097	1.00		A
		ATOM	1331	CA	LEU A	189		53.962	9.126	1.00		A
	55	ATOM	1332	СВ	LEU A	189	51.918	53.387	8.936	1.00	8.95	A

	ATOM	1333	CG	LEU A	189	50.767	54.284	9.391	1.00 8.34	А
	MOTA	1334		LEU A		49.438	53.610	9.072	1.00 9.27	A
	MOTA	1335		LEU A		50.883	54.545	10.894	1.00 9.17	А
	ATOM	1336		LEU A		54.332	52.820	9.155	1.00 9.47	A
5	ATOM	1337	0	LEU A		54.736	52.371	10.229	1.00 10.32	A
	ATOM	1338	N	LYS A	190	54.743	52.340	7.989	1.00 8.83	A
	ATOM	1339	CA	LYS A		55.699	51.240	7.965	1.00 10.73	А
	MOTA	1340	СВ	LYS A		55.904	50.721	6.538	1.00 11.97	A
	MOTA	1341	CG	LYS A		56.763	49.460	6.471	1.00 14.62	A
10	ATOM	1342	CD	LYS A	190	56.884	48.941	5.050	1.00 18.07	A
	ATOM	1343	CE	LYS A		57.597	47.600	5.015	1.00 20.94	A
	ATOM	1344	NZ	LYS A		58.942	47.678	5.649	1.00 22.98	A
	ATOM	1345	C	LYS A		57.037	51.682	8.543	1.00 11.26	A
	ATOM	1346	0	LYS A		57.650	50.964	9.333	1.00 11.22	A
15	ATOM	1347	N	GLN A		57.479	52.872	8.157	1.00 11.65	A
10	ATOM	1348	CA	GLN A		58.753	53.396	8.625	1.00 14.13	Α
	ATOM	1349	СВ	GLN A		59.132	54.655	7.836	1.00 15.24	A
	ATOM	1350	CG	GLN A		60.462	55.263	8.265	1.00 19.98	A
	ATOM	1351	CD	GLN A		60.871	56.459	7.425	1.00 21.27	A
20	ATOM	1352	OE1	GLN A		61.906	57.079	7.675	1.00 24.60	A
20	ATOM	1353	NE2	GLN A		60.063	56.789	6.422	1.00 22.87	A
	ATOM	1354	C	GLN A		58.798	53.711	10.116	1.00 14.03	A
	ATOM	1355	Ö	GLN A		59.758	53.345	10.797	1.00 16.11	A
	MOTA	1356	N	PHE A		57.766	54.372	10.631	1.00 13.64	A
25	ATOM	1357	CA	PHE A		57.760	54.756	12.040	1.00 13.50	А
20	ATOM	1358	CB	PHE A		57.333	56.220	12.166	1.00 13.17	A
	ATOM	1359	CG	PHE A		58.233	57.171	11.433	1.00 13.74	A
	ATOM	1360	CD1	PHE A		57.918	57.600	10.147	1.00 13.68	А
	ATOM	1361	CD2			59.418	57.611	12.014	1.00 14.33	А
30	ATOM	1362	CE1	PHE A		58.768	58.453	9.449	1.00 13.88	A
30	ATOM	1363	CE2	PHE A		60.278	58.466	11.322	1.00 14.18	A
	MOTA	1364	CZ	PHE A		59.952	58.887	10.040	1.00 14.41	A
	ATOM	1365	C	PHE A		56.971	53.908	13.040	1.00 14.01	A
	ATOM	1366	0	PHE A		57.338	53.864	14.216	1.00 15.20	A
35	ATOM	1367	N	MSE A		55.901	53.248	12.598	1.00 12.52	A
33	ATOM	1368	CA	MSE A		55.093	52.408	13.496	1.00 13.30	A
	ATOM	1369	CB	MSE A		53.587	52.680	13.337	1.00 15.39	A
	ATOM	1370	CG	MSE A		53.007	53.917	14.029	1.00 17.42	A
	ATOM	1371	SE	MSE A		53.504	54.201	15.886	1.00 27.71	A
40	ATOM	1372	CE	MSE A		54.844	55.450	15.340	1.00 9.34	А
40	ATOM	1373	C	MSE A		55.312	50.919	13.235	1.00 13.10	A
	MOTA	1374	0	MSE P		54.889	50.077	14.027	1.00 13.59	A
	ATOM	1375	N	ASN A		55.954	50.599	12.118	1.00 12.20	А
	ATOM	1376	CA	ASN A		56.204	49.212	11.739	1.00 12.23	A
45	ATOM	1377	CB	ASN A		57.146	48.540	12.747	1.00 13.82	A
40	ATOM	1378	CG	ASN A		57.600	47.163	12.295	1.00 15.07	А
	ATOM	1379		ASN A		57.775	46.920	11.099	1.00 16.05	A
	ATOM	1380		ASN A		57.804	46.268	13.258	1.00 16.16	A
	ATOM	1381	C	ASN F		54.902	48.416	11.628	1.00 12.35	A
50	ATOM	1382	0	ASN A		54.803	47.287	12.114	1.00 12.62	A
50	ATOM	1383	N	VAL A		53.899	49.017	10.998	1.00 11.62	А
	ATOM	1384	CA	VAL A		52.616	48.353	10.806	1.00 12.01	А
	ATOM	1385	CB	VAL A		51.599	48.684	11.937	1.00 12.67	А
	ATOM	1386		VAL A		52.148	48.252	13.288	1.00 14.48	А
55				VAL A		51.268	50.165	11.935	1.00 12.78	A
33	MOTA	1387	CGZ	AMP E	1 1 2 2	31.200	50.105	,		_

		λ mΩM	1388	С	VAL A	105	52.000	48.793	9.486	1.00	11.41	A
		MOTA	1389	0	VAL A		52.227	49.914	9.029	1.00		А
	r- -	ATOM			THR A		51.230	47.894	8.882	1.00		A
		MOTA	1390	N CA	THR A		50.536	48.171	7.627	1.00		A
		ATOM	1391		THR A		51.191	47.438	6.429	1.00		А
	5	ATOM	1392	CB			52.554	47.862	6.288	1.00		A
		ATOM	1393	OG1			50.440	47.753	5.143	1.00		А
		ATOM	1394	CG2			49.096	47.680	7.785	1.00		A
		ATOM	1395	C	THR A		48.838	46.476	7.812	1.00		A
	10	MOTA	1396	0	THR A		48.137	48.610	7.903	1.00	9.62	A
	10	MOTA	1397	N	PRO A		48.137	50.068	8.022	1.00	9.15	A
		MOTA	1398	CD	PRO A			48.245	8.060	1.00	9.26	A
		MOTA	1399	CA	PRO A		46.727	49.600	8.096	1.00	9.55	A
		MOTA	1400	CB	PRO A		46.024	50.487	8.717	1.00	9.10	A
	4 ==	MOTA	1401	CG	PRO A		47.040	47.375	6.929	1.00	9.50	A
	15	MOTA	1402	С	PRO A		46.192		5.762	1.00	9.51	A
		MOTA	1403	0	PRO A		46.534	47.579			9.16	A
		MOTA	1404	N	THR A		45.355	46.404	7.279	1.00	9.69	A
		MOTA	1405	CA	THR A		44.743	45.540	6.278	1.00	10.81	A
	• •	ATOM	1406	CB	THR A		45.125	44.060	6.466		11.74	A
411	20	ATOM	1407	OG1	THR A		44.660	43.600	7.739			A A
		MOTA	1408	CG2	THR A		46.635	43.887	6.368		11.84	
ŢĪ.		ATOM	1409	С	THR A		43.229	45.682	6.363	1.00	8.80	A
9350 45 a.		ATOM	1410	0	THR A		42.491	44.986	5.671	1.00	8.81	A
		MOTA	1411	N	ALA A		42.776	46.586	7.227	1.00	8.53	A
	25	MOTA	1412	CA	ALA A		41.353	46.865	7.387	1.00	8.67	A
		MOTA	1413	CB	ALA A		40.887	46.477	8.790	1.00	9.80	A
m		MOTA	1414	С	ALA A		41.146	48.360	7.157	1.00	8.79	A A
21		MOTA	1415	0	ALA A		41.870	49.182	7.721	1.00	8.61	
	30	MOTA	1416	N	SER A		40.162	48.707	6.332	1.00	8.10	A
. 7		ATOM	1417	CA	SER A		39.873	50.102	6.023	1.00	8.52	A
		MOTA	1418	CB	SER A		39.724	50.280	4.511	1.00	8.51	A
		MOTA	1419	OG	SER A		39.498	51.638	4.174		10.82	A
		MOTA	1420	С	SER A		38.620	50.603	6.740	1.00	8.16	A
		MOTA	1421	0	SER A		37.663	49.854	6.951	1.00	8.18	A
Ĭ≈¥-	35	ATOM	1422	N	TRP A		38.646	51.882	7.101	1.00	8.42	A
		MOTA	1423	CA	TRP A		37.563	52.539	7.827	1.00	8.34	A
		MOTA	1424	CB	TRP A		38.057	52.782	9.263	1.00	8.58	A A
		MOTA	1425	CG	TRP A		37.224	53.618	10.202	1.00	8.17	
		ATOM	1426		TRP A		36.231	53.144	11.123	1.00	9.44	A
	40	MOTA	1427		TRP A		35.838					A
		ATOM	1428		TRP A		35.641	51.896	11.359		10.07	A
		MOTA	1429		TRP A		37.375	54.950	10.461	1.00	9.35	A
		MOTA	1430		TRP A		36.552	55.333	11.492	1.00	9.72	A
		MOTA	1431		TRP A		34.882	54.135	12.935	1.00	9.92	A
	45	ATOM	1432		TRP A		34.688	51.784	12.372		10.54	A
		MOTA	1433		TRP A		34.321	52.900	13.147		10.12	A
		MOTA	1434	С	TRP A		37.220	53.844	7.111	1.00	8.73	A
		ATOM	1435	0	TRP A		37.995	54.796	7.144	1.00	9.70	A
		ATOM	1436	N	ALA A		36.066	53.873	6.447	1.00	8.52	A
	50	MOTA	1437	CA	ALA A		35.617	55.062	5.716	1.00	8.40	A
		MOTA	1438	СВ	ALA A		35.678	54.808	4.211	1.00	9.54	A
		ATOM	1439	С	ALA A		34.192	55.400	6.144	1.00	8.89	A
		MOTA	1440	0	ALA A		33.220	55.018	5.495	1.00	9.55	A
		MOTA	1441	N	ILE A	203	34.082	56.134	7.242	1.00	8.07	A
	55	MOTA	1442	CA	ILE A	203	32.785	56.484	7.800	1.00	8.51	А

		MOTA	1443	СВ	ILE A	203	32.842	56.503	9.354	1.00	8.05	A
		ATOM	1444		ILE A		33.116	55.091	9.885	1.00	8.11	A
		ATOM	1445	CG1	ILE A		33.907	57.500	9.832	1.00	9.39	A
		MOTA	1446	CD1	ILE A		33.900	57.737	11.341	1.00	8.65	A
	5	ATOM	1447	C	ILE A		32.186	57.806	7.348	1.00	8.80	A
	3		1447	_	ILE A		31.025	58.073	7.648	1.00	8.92	A
		MOTA		0	ASP A		32.939	58.621	6.609	1.00	8.61	А
		ATOM	1449	N			32.408	59.923	6.216	1.00	9.22	A
		ATOM	1450	CA	ASP A		33.146	61.022	6.987	1.00	8.73	A
	10	MOTA	1451	CB	ASP A		32.240	62.188	7.356	1.00	9.80	A
	10	MOTA	1452	CG	ASP A			63.280	7.652	1.00	9.95	A
		MOTA	1453		ASP A		32.765		7.370		10.59	A
		MOTA	1454		ASP A		31.004	62.019			9.40	A
		ATOM	1455	С	ASP A		32.318	60.338	4.739	1.00	10.33	A
		ATOM	1456	O	ASP A		31.638	61.318	4.433			
	15	ATOM	1457	N	PRO A		33.009	59.641	3.815	1.00	9.27	A
		MOTA	1458	CD	PRO A		34.005	58.559	3.926		10.07	A
		ATOM	1459	CA	PRO A		32.872	60.086	2.418	1.00	9.44	A
		MOTA	1460	CB	PRO A		33.667	59.040	1.641		10.86	A
3124		MOTA	1461	CG	PRO A		34.756	58.679	2.611		11.93	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	ATOM	1462	С	PRO A	205	31.384	60.090	2.055	1.00	9.61	A
		MOTA	1463	0	PRO A	205	30.629	59.244	2.530		10.30	A
1,55		MOTA	1464	N	PHE A	206	30.964	61.032	1.214	1.00	9.55	A
3,4 8		MOTA	1465	CA	PHE A	206	29.544	61.153	0.867	1.00	9.41	A
		MOTA	1466	СВ	PHE A	206	29.220	62.618	0.553	1.00	9.27	A
	25	ATOM	1467	CG	PHE A		30.037	63.607	1.354	1.00	9.04	A
19.1		ATOM	1468		PHE A	206	30.301	63.389	2.705	1.00	8.94	A
iji.		ATOM	1469	CD2	PHE A	206	30.555	64.749	0.748	1.00	9.10	А
%i		MOTA	1470		PHE A		31.074	64.294	3.440	1.00	8.93	A
41 A	30	ATOM	1471		PHE A		31.326	65.660	1.475	1.00	9.22	A
Anni Andrews		ATOM	1472	CZ	PHE A		31.587	65.431	2.821	1.00	9.28	A
46.2		MOTA	1473	С	PHE A		29.169	60.246	-0.301	1.00	9.31	A
in the		ATOM	1474	0	PHE A		28.950	60.696	-1.427	1.00	9.75	A
		ATOM	1475	N	GLY A		29.062	58.958	-0.005	1.00	8.61	А
19.00		ATOM	1476	CA	GLY A		28.775	57.982	-1.037	1.00	8.81	A
i cala	35	ATOM	1477	C	GLY A		30.072	57.210	-1.191	1.00	8.17	A
"	00	MOTA	1478	0	GLY A		31.137	57.730	-0.858	1.00	8.29	A
		ATOM	1479	N	HIS A		30.001	55.990	-1.712	1.00	7.51	A
		ATOM	1480	CA	HIS A		31.190	55.155	-1.851	1.00	7.28	A
		ATOM	1481	СВ	HIS A		31.135	54.027	-0.819	1.00	7.61	A
	40	ATOM	1482	CG	HIS A		31.256	54.505	0.596	1.00	8.45	A
	40	ATOM	1483		HIS A		30.314	54.797	1.523	1.00	8.55	A
		ATOM	1484		HIS A		32.471	54.778	1.185	1.00	9.69	А
			1485		HIS A		32.273	55.218	2.415		10.15	A
		ATOM	1486		HIS A		30.973	55.240	2.645	1.00	9.28	А
	45	ATOM	1487	C	HIS A		31.401	54.574	-3.242	1.00		А
	45	ATOM			HIS A		30.449	54.248	-3.960	1.00		А
		ATOM	1488	O N	SER P		32.673	54.429	-3.600	1.00	6.59	А
		ATOM	1489	N			33.068	53.925	-4.907	1.00		A
		ATOM	1490	CA	SER A		33.960	54.960	-5.598	1.00		A
	ΕO	ATOM	1491	CB	SER F		34.520	54.434	-6.790	1.00		A
	50	ATOM	1492	OG	SER F		33.813	52.599	-4.864	1.00		A
		ATOM	1493	C	SER A			52.360	-3.972	1.00		A
		MOTA	1494	0	SER A		34.622	52.360	-5.841	1.00		A
		ATOM	1495	N	PRO A		33.548		-6.895	1.00		A
	- -	MOTA	1496	CD	PRO A		32.525	51.830		1.00		A
	55	MOTA	1497	CA	PRO A	A 210	34.221	50.415	-5.898	1.00	1.22	Λ

											1 00	7 15	70
		MOTA	1498	CB	PRO	A	210	33.456	49.675	-6.997	1.00	7.15	A
		ATOM	1499	CG	PRO	Α	210	32.977	50.795	-7.889	1.00	7.88	А
		ATOM	1500	С	PRO			35.712	50.582	-6.211	1.00	7.12	А
			1501	0	PRO			36.481	49.620	-6.181	1.00	6.74	A
	=	ATOM						36.124	51.806	-6.529	1.00	6.80	Α
	5	MOTA	1502	N	THR				52.044	-6.793	1.00	7.50	A
		MOTA	1503	CA	THR			37.531		-7.288	1.00	7.37	A
		MOTA	1504	CB	THR			37.762	53.482				
		MOTA	1505	OG1	THR	Α	211	37.233	53.596	-8.613	1.00	8.05	A
		MOTA	1506	CG2	THR	Α	211	39.250	53.833	-7.292	1.00	8.53	A
	10	MOTA	1507	С	THR	Α	211	38.321	51.800	-5.510	1.00	7.51	A
	10	ATOM	1508	0	THR			39.492	51.420	-5.554	1.00	7.20	A
		MOTA	1509	N	MSE			37.678	52.017	-4.365	1.00	8.07	A
					MSE			38.349	51.801	-3.087	1.00	8.67	A
		MOTA	1510	CA				37.480	52.311	-1.933		11.85	А
	4 =	MOTA	1511	CB	MSE				53.803	-2.011		16.12	A
	15	MOTA	1512	CG	MSE			37.190				25.32	A
		MOTA	1513	SE	MSE			38.764	54.895	-2.346			
		MOTA	1514	CE	MSE	А	212	39.602	54.743	-0.621		21.14	A
		MOTA	1515	С	MSE	Α	212	38.735	50.333	-2.883	1.00	8.11	A
21500		ATOM	1516	0	MSE	Α	212	39.910	50.025	-2.667	1.00	7.43	A
i de la constante de la consta	20	ATOM	1517	N	PRO			37.762	49.403	-2.937	1.00	7.29	A
Ę	20	ATOM	1518	CD	PRO			36.293	49.497	-2.956	1.00	7.20	А
				CA	PRO			38.192	48.014	-2.751	1.00	7.53	А
M		ATOM	1519					36.876	47.222	-2.776	1.00	8.34	А
		MOTA	1520	CB	PRO				48.141	-3.484	1.00	7.20	A
, in the second		MOTA	1521	CG			213	35.903		-3.843	1.00	7.60	A
	25	MOTA	1522	С			213	39.173	47.581			7.87	A
		MOTA	1523	0			213	40.033	46.734	-3.609	1.00		
191		MOTA	1524	N	TYR	Α	214	39.053	48.166	-5.034	1.00	7.06	A
¥{		ATOM	1525	CA	TYR	Α	214	39.960	47.822	-6.131	1.00	8.43	A
		ATOM	1526	CB	TYR	Α	214	39.659	48.668	-7.367	1.00	8.58	A
	30	ATOM	1527	CG			214	40.588	48.408	-8.538	1.00	9.57	А
1,5		ATOM	1528	CD1				40.374	47.332	-9.398	1.00	11.97	A
11/14			1529		TYR			41.196		-10.507	1.00	12.57	A
į, a		MOTA			TYR			41.656	49.264	-8.808	1.00		A
		ATOM	1530					42.484	49.063	-9.908		10.94	A
	25	MOTA	1531	CE2				42.246		-10.757		11.50	А
ļai.	35	MOTA	1532	CZ			214			-11.874		13.46	A
		MOTA	1533	OH			214	43.038					A
		MOTA	1534	С			214	41.402	48.078	-5.705	1.00		
		ATOM	1535	0	TYR	Α	214	42.256	47.190	-5.783	1.00		A
		ATOM	1536	N	ILE	Α	215	41.665	49.305	-5.262	1.00		A
	40	ATOM	1537	CA	ILE	Α	215	42.996	49.702	-4.825	1.00		A
		MOTA	1538	СВ			215	43.060	51.229	-4.594	1.00	7.35	A
		ATOM	1539		ILE			44.404	51.616	-3.975	1.00	7.15	A
			1540		ILE			42.850	51.961	-5.920	1.00	8.07	A
		ATOM			ILE			42.746	53.466	-5.778		10.41	A
	45	ATOM	1541					43.410	48.990	-3.536	1.00		A
	45	MOTA	1542	C			215		48.491	-3.424	1.00		А
		ATOM	1543	0			215	44.530		-2.571	1.00		A
		ATOM	1544	N			216	42.500	48.931				A
		MOTA	1545	CA			216	42.799	48.298	-1.290	1.00		
		ATOM	1546	СВ	LEU	Α	216	41.606	48.452	-0.338	1.00		A
	50	MOTA	1547	CG	LEU	Α	216	41.251	49.889	0.065	1.00		A
	-	ATOM	1548	CD1	LEU	Α	216	39.960	49.897	0.863		10.13	A
		ATOM	1549		LEU			42.393	50.495	0.876	1.00	10.14	A
		MOTA	1550	C			216	43.170	46.823	-1.419	1.00	8.19	A
			1551	0			216	44.148	46.371		1.00	7.52	A
	EE	ATOM		N			217	42.392	46.081		1.00		A
	55	MOTA	1552	IN	אונט	Η	. 411	76.376	10.001			_	

		n m c r r	1650	C 7	CINT	\ \ \ \ 1 7	42.639	44.654	-2.381	1.00	8.72	А
		ATOM	1553	CA	GLN A							
		MOTA	1554	CB	GLN A			44.043	-3.210	1.00 1		A
		MOTA	1555	CG	GLN A			42.521	-3.264	1.00 1		A
		ATOM	1556	CD	GLN Z	4 217	42.430	41.960	-4.290	1.00 1		A
	5	ATOM	1557	OE1	GLN A	A 217	42.639	42.561	-5.342	1.00 1		A
		MOTA	1558	NE2	GLN A	A 217	43.002	40.796	-4.001	1.00 1	4.07	A
		ATOM	1559	С	GLN A	A 217	44.002	44.415	-3.035	1.00	9.26	A
		ATOM	1560	0	GLN A			43.394	-2.792	1.00 1	0.31	A
		ATOM	1561	N	LYS A			45.367	-3.854		8.72	A
	10	ATOM	1562	CA	LYS A			45.277	-4.522		8.85	А
	10							45.974	-5.884		9.16	A
		MOTA	1563	CB	LYS			45.182	-6.925		9.85	A
		MOTA	1564	CG	LYS A							
		MOTA	1565	CD	LYS A			45.996	-8.195		8.97	A
	4	ATOM	1566	CE	LYS A			45.113	-9.372	1.00 1		A
	15	ATOM	1567	NZ	LYS A			44.252	-9.123	1.00 1		A
		MOTA	1568	С	LYS A			45.899	-3.657		9.01	A
		MOTA	1569	0	LYS I			46.024	-4.079		8.66	A
		MOTA	1570	N	SER A			46.286	-2.441		8.09	A
3425		ATOM	1571	CA	SER I	A 219	47.414	46.886	-1.513	1.00	8.36	A
1,700E	20	ATOM	1572	СВ	SER I			48.354	-1.260	1.00	7.23	A
		ATOM	1573	OG	SER I	A 219	47.135	49.106	-2.464	1.00	8.36	A
		ATOM	1574	С	SER I			46.119	-0.192	1.00	7.81	A
M		ATOM	1575	0	SER			46.688	0.852	1.00	8.25	А
The Control of the Co		ATOM	1576	N	GLY :			44.828	-0.256	1.00	8.61	А
	25	MOTA	1577	CA	GLY			43.969	0.918	1.00	8.94	A
		ATOM	1578	C	GLY .			43.912	1.847	1.00	9.36	A
3 %3 48 2 6		ATOM	1579	0	GLY I			43.126	2.794	1.00	9.85	A
			1580	И		A 220		44.717	1.593	1.00	9.14	A
		ATOM						44.721	2.471	1.00	8.46	A
	20	ATOM	1581	CA		A 221			2.198		7.99	A
ı, İ	30	ATOM	1582	CB		A 221		45.940			7.21	A
i.		MOTA	1583	CG		A 221		47.212	2.752	1.00		
2.2h		ATOM	1584		PHE .			47.813	2.176	1.00	7.00	A
3		MOTA	1585		PHE .			47.812	3.858	1.00	7.00	A
1:00		MOTA	1586		PHE .			48.993	2.695	1.00	6.41	A
<u>.</u>	35	MOTA	1587		PHE .			48.990	4.387	1.00	7.19	A
		ATOM	1588	CZ		A 221		49.587	3.804	1.00	7.27	А
		ATOM	1589	С	PHE .	A 221	42.945	43.475	2.388	1.00	8.81	А
		ATOM	1590	0	PHE .	A 221	42.883	42.812	1.354	1.00	9.31	А
		ATOM	1591	N	LYS .	A 222		43.178	3.493	1.00	9.34	A
	4 0	ATOM	1592	CA	LYS .	A 222	41.393	42.024	3.575	1.00 1	.0.17	A
		ATOM	1593	СВ	LYS .			41.009	4.568	1.00 1	3.29	A
		MOTA	1594	CG	LYS			40.373	4.095	1.00 1	7.15	A
		ATOM	1595	CD	LYS			39.319	5.065	1.00 2		А
		ATOM	1596	CE	LYS			38.475	4.430	1.00 2		A
	45	ATOM	1597	NZ		A 222		39.310	3.898	1.00 2		А
	-10	ATOM	1598	C		A 222		42.409	3.988	1.00	9.40	А
								41.623	3.817	1.00	9.41	A
		ATOM	1599	0		A 222		43.618	4.520	1.00	7.78	A
		ATOM	1600	N		A 223			4.963		8.74	A
	Ε0	ATOM	1601	CA		A 223		44.072		1.00		
	50	MOTA	1602	CB		A 223		43.690	6.428	1.00	8.42	A
		ATOM	1603	CG	ASN			42.205	6.680	1.00	9.69	A
		ATOM	1604		ASN .			41.707	7.120	1.00 1		A
		MOTA	1605	ND2	ASN			41.485	6.397	1.00	7.18	A
		MOTA	1606	С	ASN	A 223		45.577	4.865	1.00	8.67	A
	55	ATOM	1607	0	ASN	A 223	39.296	46.321	4.958	1.00	8.40	A

	ATOM	1608	N	MET A	224	37.084	46.017	4.696	1.00 8.46	A
	ATOM	1609	CA	MET A		36.789	47.440	4.639	1.00 8.92	A
	ATOM	1610	СВ	MET A		36.907	47.985	3.205	1.00 9.87	A
	ATOM	1611	CG	MET A		35.838	47.523	2.223	1.00 10.12	А
5	ATOM	1612	SD	MET A		36.006	48.350	0.600	1.00 7.76	A
5	ATOM	1613	CE	MET A		35.537	49.942	1.024	1.00 11.95	A
								5.204	1.00 9.03	A
	ATOM	1614	С	MET A		35.402	47.725			A
	MOTA	1615	0	MET A		34.516	46.857	5.208		
4.0	MOTA	1616	N	LEU A		35.232	48.942	5.704	1.00 8.45	A
10	MOTA	1617	CA	LEU A		33.968	49.371	6.274	1.00 7.61	A
	ATOM	1618	CB	LEU A		34.106	49.510	7.795	1.00 7.96	A
	MOTA	1619	CG	LEU A		32.908	50.089	8.556	1.00 8.82	A
	MOTA	1620	CD1	LEU A	A 225	32.890	49.535	9.972	1.00 9.70	A
	ATOM	1621	CD2	LEU A	225	32.974	51.612	8.562	1.00 8.60	A
15	ATOM	1622	С	LEU A	A 225	33.548	50.702	5.662	1.00 8.09	A
	ATOM	1623	0	LEU A	A 225	34.374	51.600	5.483	1.00 7.68	A
	MOTA	1624	N		A 226	32.262	50.814	5.340	1.00 7.66	A
	ATOM	1625	CA		226	31.702	52.033	4.768	1.00 8.84	A
	ATOM	1626	СВ		226	31.376	51.846	3.266	1.00 8.66	А
20	ATOM	1627	CG2		1 226	32.658	51.514	2.510	1.00 9.89	А
20	ATOM	1628	CG1		1 226	30.349	50.730	3.069	1.00 8.55	A
		1629	CD1		A 226	29.922	50.548	1.617	1.00 10.07	A
	ATOM	1630	CDI		1 226	30.453	52.428	5.557	1.00 8.74	A
	ATOM						51.610	6.291	1.00 8.14	A
25	ATOM	1631	0		226	29.889		5.412	1.00 9.54	A
25	ATOM	1632	N		A 227	30.021	53.676			
	ATOM	1633	CA		A 227	28.873	54.172	6.168	1.00 9.75	A
	MOTA	1634	CB		A 227	29.391	54.976	7.372	1.00 9.88	A
	ATOM	1635	CG		A 227	28.464	56.067	7.921	1.00 11.96	A
	ATOM	1636	CD		A 227	27.124	55.547	8.407	1.00 12.75	A
30	MOTA	1637	OE1			27.004	54.398	8.836	1.00 14.70	A
	MOTA	1638	NE2			26.108	56.404	8.362	1.00 13.56	A
	MOTA	1639	С		A 227	27.846	55.006	5.405	1.00 10.51	A
	MOTA	1640	0	GLN .	A 227	26.645	54.738	5.481	1.00 10.20	A
	ATOM	1641	N	ARG I	A 228	28.299	56.021	4.679	1.00 10.04	А
35	MOTA	1642	CA	ARG 2	A 228	27.355	56.876	3.982	1.00 9.98	А
	ATOM	1643	CB	ARG	A 228	27.947	58.273	3.781	1.00 9.92	A
	ATOM	1644	CG	ARG	A 228	28.069	59.090	5.065	1.00 10.20	A
	ATOM	1645	CD	ARG	A 228	28.533	60.505	4.744	1.00 10.13	А
	ATOM	1646	NE		A 228	28.804	61.332	5.918	1.00 10.21	А
40	ATOM	1647	CZ		A 228	27.894	62.037	6.585	1.00 11.44	А
	ATOM	1648		ARG		26.622	62.022	6.208	1.00 12.48	А
	ATOM	1649		ARG		28.268	62.786	7.616	1.00 12.71	А
	ATOM	1650	C		A 228	26.817	56.352	2.666	1.00 10.13	А
	ATOM	1651	0		A 228	27.382	56.593	1.597	1.00 11.44	А
45		1652			A 229	25.714	55.621	2.770	1.00 9.97	A
43	ATOM		N			25.025	55.072	1.617	1.00 9.89	A
	ATOM	1653	CA		A 229					A
	ATOM	1654	CB		A 229	25.125	53.531	1.560	1.00 10.00	
	ATOM	1655	OG1		A 229	24.514	52.964	2.724	1.00 10.96	A
F 0	ATOM	1656	CG2		A 229	26.583	53.096	1.493	1.00 10.02	A
50	ATOM	1657	С		A 229	23.569	55.490	1.778	1.00 9.89	A
	ATOM	1658	0		A 229	23.106	55.742	2.894	1.00 11.00	A
	ATOM	1659	N		A 230	22.856	55.573	0.661	1.00 9.52	A
	ATOM	1660	CA		A 230	21.450	55.979	0.642	1.00 9.76	A
	ATOM	1661	СВ	HIS .	A 230	20.883	55.708	-0.754	1.00 10.27	А
55	MOTA	1662	CG	HIS.	A 230	19.595	56.415	-1.043	1.00 10.51	А

		ATOM	1663	CD2	HIS A 230	19.286	57.353	-1.969	1.00 11.88	A
		ATOM	1664		HIS A 230		56.153	-0.359	1.00 11.10	A
		MOTA	1665		HIS A 230		56.899	-0.852	1.00 11.36	A
		ATOM	1666		HIS A 230			-1.830	1.00 11.11	A
	5	ATOM	1667	С	HIS A 230		55.234	1.704	1.00 9.83	A
	Ū	ATOM	1668	0	HIS A 230		54.018	1.826	1.00 10.51	A
		ATOM	1669	N	TYR A 23		55.963	2.466	1.00 10.15	A
		MOTA	1670	CA	TYR A 23		55.327	3.511	1.00 10.13	A
		ATOM	1671	СВ	TYR A 23			4.246	1.00 10.68	A
	10	ATOM	1672	CG	TYR A 23		7 57.136	3.381	1.00 11.51	A
	10	ATOM	1673	CD1	TYR A 23			3.151	1.00 10.48	А
		ATOM	1674	CE1	TYR A 23		7 57.361	2.372	1.00 11.82	A
		ATOM	1675	CD2	TYR A 23			2.805	1.00 11.23	A
		ATOM	1676	CE2	TYR A 23			2.022	1.00 11.82	A
	15	ATOM	1677	CZ	TYR A 23			1.813	1.00 11.99	A
	10	ATOM	1678	ОН	TYR A 23			1.054	1.00 12.91	A
		ATOM	1679	C	TYR A 23			2.984	1.00 11.22	A
		MOTA	1680	0	TYR A 23			3.699	1.00 12.09	A
\$100g		ATOM	1681	N	SER A 23	_		1.736	1.00 10.94	A
i de la companya de l	20	ATOM	1682	CA	SER A 23			1.155	1.00 11.93	A
	20	ATOM	1683	CB	SER A 23			-0.163	1.00 12.92	A
		ATOM	1684	OG	SER A 23			0.063	1.00 15.26	A
		ATOM	1685	C	SER A 23			0.915	1.00 11.85	A
		ATOM	1686	0	SER A 23			1.025	1.00 11.64	A
191	25	ATOM	1687	N	VAL A 23			0.580	1.00 11.60	A
1914	20	MOTA	1688	CA	VAL A 23			0.336	1.00 11.31	A
M		ATOM	1689	CB	VAL A 23			-0.295	1.00 10.85	A
WF 1,		ATOM	1690		VAL A 23			-0.300	1.00 10.34	A
		ATOM	1691		VAL A 23			-1.724	1.00 11.98	A
The first control	30	ATOM	1692	C	VAL A 23			1.653	1.00 11.28	A
1,1,2	50	MOTA	1693	0	VAL A 23			1.706	1.00 11.15	A
134		ATOM	1694	N	LYS A 23			2.716	1.00 10.86	A
ini.		ATOM	1695	CA	LYS A 23			4.020	1.00 10.69	A
		ATOM	1696	СВ	LYS A 23			5.075	1.00 10.64	A
	35	ATOM	1697	CG	LYS A 23			4.946	1.00 11.25	A
	00	ATOM	1698	CD	LYS A 23			5.841	1.00 11.31	A
		ATOM	1699	CE	LYS A 23			5.810	1.00 10.54	A
		ATOM	1700	ΝZ	LYS A 23			6.772	1.00 10.11	A
		ATOM	1701	С	LYS A 23		3 49.609	4.424	1.00 11.48	A
	40	ATOM	1702	Ö	LYS A 23			4.884	1.00 11.20	A
	10	ATOM	1703	N	LYS A 23			4.238	1.00 11.59	A
		ATOM	1704	CA	LYS A 23			4.595	1.00 12.69	A
		ATOM	1705	СВ	LYS A 23				1.00 13.05	A
		ATOM	1706	CG	LYS A 23				1.00 13.80	А
	45	ATOM	1707	CD	LYS A 23				1.00 14.78	A
	10	ATOM	1708	CE	LYS A 23				1.00 16.08	A
		MOTA	1709	NZ	LYS A 23				1.00 18.03	A
		ATOM	1710	C	LYS A 23				1.00 12.66	A
		ATOM	1711	Ö	LYS A 23			4.322	1.00 13.44	A
	50	MOTA	1712	N	GLU A 23				1.00 13.43	A
	50	ATOM	1713	CA	GLU A 23				1.00 13.76	А
		ATOM	1714	CB	GLU A 23				1.00 15.66	А
		ATOM	1715	CG	GLU A 23				1.00 19.35	A
		ATOM	1716	CD	GLU A 23					A
	55	ATOM	1717		GLU A 23				1.00 23.68	А
		A1Oti	1111	V1.	2.					

		MOTA	1718	OE2	GLU A	236]	L4.594	46.799	-0.539	1.00 23.54	А
		MOTA	1719	С	GLU A	236	1	L7.963	45.983	1.908	1.00 13.53	A
		ATOM	1720	0	GLU A		1	17.596	44.817	2.035	1.00 13.84	A
		ATOM	1721	N	LEU A			19.232	46.346	2.051	1.00 12.28	A
	5	ATOM	1722	CA	LEU A			20.251	45.355	2.364	1.00 11.83	A
	J	ATOM	1723	CB	LEU A			21.649	45.952	2.180	1.00 11.01	А
			1723	CG	LEU A			21.993	46.436	0.767	1.00 12.53	А
		MOTA	1725		LEU A			23.396	47.036	0.776	1.00 13.20	А
		MOTA	1725		LEU A			21.905	45.280	-0.227	1.00 12.87	А
	10	ATOM			LEU A			20.094	44.808	3.781	1.00 11.90	А
	10	ATOM	1727	C				20.034	43.640	4.032	1.00 12.05	A
		MOTA	1728	0	LEU A			19.641	45.647	4.706	1.00 12.02	A
		MOTA	1729	N	ALA A				45.205	6.084	1.00 12.54	A
		ATOM	1730	CA	ALA A			19.456	46.380	6.962	1.00 12.67	A
		MOTA	1731	CB	ALA A			19.050			1.00 13.90	A
	15	MOTA	1732	С	ALA A			18.389	44.115	6.146	1.00 13.30	A
		MOTA	1733	0	ALA A			18.547	43.120	6.853		A A
		MOTA	1734	N	GLN A			17.309	44.304	5.396	1.00 14.65	
		MOTA	1735	CA	GLN A			16.216	43.335	5.391	1.00 16.12	A
1 222		MOTA	1736	CB	GLN A			15.050	43.858	4.544	1.00 17.16	A
	20	MOTA	1737	ÇG	GLN A			14.476	45.180	5.040	1.00 20.68	A
, PE		MOTA	1738	CD	GLN A			13.320	45.684	4.193	1.00 21.84	A
Támair A Sarta		MOTA	1739	OE1	GLN A	239		13.385	45.678	2.962	1.00 24.34	A
3,3 A.		MOTA	1740	NE2	GLN A	239		12.258	46.139	4.852	1.00 23.09	A
1 222		ATOM	1741	С	GLN A			16.649	41.959	4.888	1.00 16.39	A
mine thing	25	MOTA	1742	0	GLN A	239		16.067	40.944	5.267	1.00 16.74	А
		ATOM	1743	N	GLN A	240		17.673	41.923	4.042	1.00 15.26	A
		ATOM	1744	CA	GLN A	240		18.164	40.661	3.493	1.00 15.33	A
B}		ATOM	1745	CB	GLN A	240		18.389	40.803	1.986	1.00 17.66	А
i test		ATOM	1746	CG	GLN A	240		17.204	41.396	1.241	1.00 20.48	А
	30	MOTA	1747	CD	GLN A	240		15.975	40.514	1.292	1.00 22.28	A
9 (8 m) 2 (8 m)		ATOM	1748	OE1	GLN A	240		14.857	40.979	1.065	1.00 25.19	A
		ATOM	1749		GLN A			16.173	39.232	1.579	1.00 23.21	A
gaze.		ATOM	1750	С	GLN A			19.471	40.250	4.155	1.00 14.44	A
		ATOM	1751	Ō	GLN A			20.100	39.274	3.748	1.00 13.55	A
ila.	35	ATOM	1752	N	ARG A			19.863	40.991	5.187	1.00 13.13	A
,,	00	ATOM	1753	CA	ARG A			21.115	40.740	5.889	1.00 12.19	A
		ATOM	1754	CB	ARG A			21.053	39.430	6.684	1.00 13.02	А
		ATOM	1755	CG	ARG A			20.025	39.457	7.810	1.00 15.06	A
		ATOM	1756	CD	ARG A			20.249	38.323	8.798	1.00 16.85	A
	40	ATOM	1757	NE	ARG A				37.021		1.00 19.77	A
	40	ATOM	1758	CZ	ARG A			20.649	35.894	8.732	1.00 20.67	A
			1759		ARG A			21.049	35.910	9.997	1.00 21.43	А
		ATOM			ARG A			20.641	34.754	8.056	1.00 21.54	А
		ATOM	1760 1761	C	ARG A			22.254	40.694	4.876	1.00 11.37	A
	45	ATOM			ARG A			23.069	39.774	4.863	1.00 10.26	А
	45	ATOM	1762	O N	GLN A			22.290	41.706	4.016	1.00 11.13	А
		ATOM	1763		GLN A			23.323	41.811	2.995	1.00 10.98	A
		ATOM	1764	CA	GLN A			22.682	41.863	1.602	1.00 11.23	А
		ATOM	1765	CB				21.894	40.607	1.237	1.00 11.67	А
	EΟ	ATOM	1766	CG	GLN A			21.187	40.729	-0.098	1.00 11.70	A
	50	ATOM	1767	CD	GLN A			20.617	41.770	-0.412	1.00 13.37	A
		ATOM	1768		GLN A				39.656	-0.412	1.00 13.37	A
		ATOM	1769		GLN A			21.208	43.055	3.233	1.00 10.67	A
		MOTA	1770	C	GLN A			24.178		2.289	1.00 10.60	A
		ATOM	1771	0	GLN A			24.695	43.651		1.00 10.00	Ā
	55	MOTA	1772	N	LEU A	243		24.322	43.440	4.500	1.00 10.44	77

					112	-			
	ATOM	1773	CA	LEU A 243	25.128	44.606	4.852	1.00 9.93	А
	ATOM	1774		LEU A 243	24.704	45.154	6.216	1.00 10.62	А
	ATOM	1775		LEU A 243	23.328	45.826	6.244	1.00 11.00	A
	ATOM	1776		LEU A 243	22.896	46.028	7.688	1.00 11.97	А
5	MOTA	1777		LEU A 243	23.370	47.158	5.490	1.00 11.86	A
Ü	MOTA	1778	C	LEU A 243	26.613	44.260	4.853	1.00 10.25	Α
	ATOM	1779	Ö	LEU A 243	27.465	45.144	4.827	1.00 10.36	A
	ATOM	1780	N	GLU A 244	26.922	42.969	4.911	1.00 9.67	A
	ATOM	1781	CA	GLU A 244	28.306	42.519	4.841	1.00 8.98	Α
10	ATOM	1782	СВ	GLU A 244	28.693	41.695	6.073	1.00 9.51	A
10	ATOM	1783	CG	GLU A 244	28.875	42.595	7.291	1.00 10.20	A
	ATOM	1784	CD	GLU A 244	29.326	41.864	8.538	1.00 10.87	A
	ATOM	1785	OE1	GLU A 244	28.790	40.773	8.818	1.00 11.28	A
	ATOM	1786		GLU A 244	30.207	42.402	9.249	1.00 10.96	A
15	ATOM	1787	C	GLU A 244	28.339	41.703	3.569	1.00 9.24	A
15	MOTA	1788	Ö	GLU A 244	27.536	40.788	3.386	1.00 10.29	A
	ATOM	1789	N	PHE A 245	29.260	42.053	2.680	1.00 8.67	A
	ATOM	1790	CA	PHE A 245		41.396	1.389	1.00 8.89	A
	ATOM	1791	CB	PHE A 245		42.114	0.431	1.00 8.55	A
20	ATOM	1792	CG	PHE A 245		43.615	0.444	1.00 8.85	A
20	ATOM	1793		PHE A 245		44.250	-0.327	1.00 8.41	А
	ATOM	1794		PHE A 245		44.392	1.245	1.00 8.58	A
	ATOM	1795		PHE A 245		45.646	-0.300	1.00 8.68	A
	ATOM	1796		PHE A 245		45.782	1.283	1.00 8.53	A
25	ATOM	1797	CZ	PHE A 245		46.409	0.509	1.00 8.54	A
20	ATOM	1798	C	PHE A 245		41.382	0.793	1.00 8.60	A
	ATOM	1799	0	PHE A 245		42.115	1.235	1.00 8.82	A
	ATOM	1800	N	LEU A 246		40.532	-0.212	1.00 8.87	A
	ATOM	1801	CA	LEU A 246		40.446	-0.913	1.00 8.06	A
30	ATOM	1802	СВ	LEU A 246		39.001	-1.333	1.00 9.53	A
00	ATOM	1803	CG	LEU A 246		38.076	-0.154	1.00 11.53	A
	MOTA	1804		LEU A 246		36.626	-0.602	1.00 13.79	A
	ATOM	1805		LEU A 246		38.447	0.402	1.00 13.15	A
	ATOM	1806	С	LEU A 246		41.364	-2.120	1.00 8.24	A
35	ATOM	1807	0	LEU A 246		41.019	-3.115	1.00 8.61	А
0.0	ATOM	1808	N	TRP A 247		42.552	-2.002	1.00 7.63	A
	ATOM	1809	CA	TRP A 247		43.574	-3.037	1.00 7.37	A
	ATOM	1810	СВ	TRP A 247	32.718	44.947	-2.388	1.00 7.55	A
	ATOM	1811	CG	TRP A 247		46.118	-3.199	1.00 7.27	А
40	ATOM	1812		TRP A 247			-2.791	1.00 7.02	А
	ATOM	1813		TRP A 247		48.247	-3.850	1.00 7.18	A
	ATOM	1814		TRP A 247		48.160	-1.631	1.00 7.47	A
	ATOM	1815		TRP A 247		46.093	-4.455	1.00 7.86	A
	ATOM	1816		TRP A 247		47.371	-4.853	1.00 7.55	A
45	ATOM	1817		TRP A 247		49.638	-3.784	1.00 8.05	A
10	ATOM	1818		TRP A 247		49.542	-1.565	1.00 6.90	A
	ATOM	1819		TRP A 247		50.267	-2.636	1.00 7.34	A
	MOTA	1820	C	TRP A 247		43.372	-4.145	1.00 7.92	A
	MOTA	1821	0	TRP A 247			-3.939	1.00 8.05	A
50	ATOM	1822	N	ARG A 248		42.993	-5.326	1.00 7.42	A
	ATOM	1823	CA	ARG A 248			-6.477	1.00 7.87	А
	ATOM	1824	СВ	ARG A 248			-7.109	1.00 8.53	A
	ATOM	1825	CG	ARG A 248			-7.775	1.00 8.64	А
	ATOM	1826	CD	ARG A 248			-8.581	1.00 10.45	A
55	MOTA	1827	NE	ARG A 248			-7.727	1.00 11.08	A
	-12-011								

									00 550	0.105	1 00	12 20	71.
		MOTA	1828	CZ	ARG			32.317	37.558	-8.185		12.28	A
		ATOM	1829	NH1	ARG	Α	248	32.228	37.330	-9.488		13.21	А
		MOTA	1830	NH2	ARG	Α	248	32.382	36.537	-7.339	1.00	12.78	А
		ATOM	1831	С	ARG			33.645	43.856	-7.521	1.00	7.64	A
	5	ATOM	1832	0	ARG			32.605	44.515	-7.474	1.00	7.91	A
	9	ATOM	1833	N	GLN			34.560	44.010	-8.472	1.00	7.42	A
								34.389	44.994	-9.531	1.00	7.77	А
		ATOM	1834	CA	GLN					-10.272	1.00	8.10	A
		MOTA	1835	СВ	GLN			35.713				8.22	A
		MOTA	1836	CG	GLN			36.832	45.675	-9.353	1.00		
	10	MOTA	1837	CD	GLN			36.448	46.940	-8.598	1.00	8.40	A
		ATOM	1838	OE1	GLN	Α	249	36.432	46.970	-7.358		10.28	A
		ATOM	1839	NE2	GLN	Α	249	36.136	47.993	-9.341	1.00	7.14	A
		MOTA	1840	С	GLN	Α	249	33.280	44.546	-10.480	1.00	8.70	A
		ATOM	1841	O	GLN			33.042	43.349	-10.654	1.00	9.20	A
	15	ATOM	1842	N	ILE			32.600	45.511	-11.093	1.00	9.12	A
	10	ATOM	1843	CA	ILE			31.480		-11.979	1.00	9.19	A
			1844	CB	ILE			30.791		-12.492	1.00	9.85	A
		MOTA			ILE			30.175		-11.313		10.38	A
		MOTA	1845	CG2				31.797		-13.227		11.20	A
	20	MOTA	1846	CG1	ILE							11.47	A
	20	ATOM	1847		ILE			31.197		-13.725		10.02	A
,		MOTA	1848	С	ILE			31.780		-13.169			A
		MOTA	1849	0	ILE			30.878		-13.675		10.72	
3,500 3,500		ATOM	1850	N	TRP			33.037		-13.594		10.74	A
		MOTA	1851	CA	TRP	А	251	33.428		-14.736		12.59	A
¥.	25	MOTA	1852	CB	TRP			34.414		-15.611		12.54	A
		MOTA	1853	CG	TRP			35.724		-14.919		14.60	A
1971		MOTA	1854	CD2	TRP	Α	251	36.151		-14.175		14.42	А
31		ATOM	1855	CE2	TRP	Α	251	37.400		-13.599		15.03	А
		MOTA	1856	CE3	TRP	Α	251	35.597	46.742	-13.934		14.69	A
	30	ATOM	1857	CD1	TRP	Α	251	36.708	43.397	-14.775	1.00	15.34	А
اللهوارة		ATOM	1858	NE1				37.715	43.882	-13.982	1.00	15.12	A
		ATOM	1859		TRP			38.107	46.058	-12.795	1.00	15.07	A
		ATOM	1860	CZ3				36.299	47.636	-13.136	1.00	15.29	А
100		ATOM	1861	CH2				37.541		-12.577	1.00	15.76	А
	35	ATOM	1862	C	TRP			34.096		-14.328	1.00	13.99	A
2 .	55		1863	0	TRP			34.429		-15.182		13.91	A
		MOTA			ASP			34.301		-13.030		13.53	A
		ATOM	1864	N				34.982		-12.509		14.68	A
		ATOM	1865	CA	ASP					-11.142		13.69	A
	40	ATOM	1866	CB	ASP			35.582				15.31	A
	40	ATOM	1867	CG	ASP			36.337				16.51	A
		MOTA	1868		ASP			36.637		-11.241			A
		MOTA	1869	OD2	ASP			36.637	39.988			15.02	
		ATCM	1870	С	ASP			34.111		-12.413		15.48	A
		ATOM	1871	0			252	33.357		-11.459		15.34	A
	45	ATOM	1872	N	ASN			34.239		-13.398		16.95	A
		ATOM	1873	CA	ASN	А	253	33.440		-13.420		18.55	A
		MOTA	1874	CB	ASN	Α	253	33.378		-14.844		20.21	А
		ATOM	1875	CG	ASN	Α	253	32.069	36.113	-15.132		22.48	A
		ATOM	1876	OD1	ASN	Α	253	31.805	35.031	-14.615		24.09	A
	50	ATOM	1877		ASN			31.231	36.740	-15.950	1.00	23.35	А
		ATOM	1878	C			253	33.948		-12.466	1.00	18.73	A
		ATOM	1879	Ö			253	33.158		-11.911	1.00	19.87	A
		ATOM	1880	N			254	35.261		-12.269		19.53	А
		ATOM	1881	CA			254	35.850		-11.388		20.76	А
	55		1882	CB			254	37.322		-11.751		23.00	A
	55	MOTA	1007	CD	כות	М	294	51.544	55.010	,			

							111				
		ATOM	1883	CG	LYS A	254	37.954	33.785	-11.101	1.00 25.67	A
		ATOM	1884	CD	LYS A		39.370	33.561	-11.616	1.00 27.42	A
		ATOM	1885	CE	LYS A		39.961		-11.089	1.00 28.32	A
			1886	NZ	LYS A		40.034	32.228	-9.602	1.00 28.78	Α
	5	ATOM		C	LYS A		35.730	35.616	-9.916	1.00 20.23	Α
	3	MOTA	1887		LYS A		35.481	34.762	-9.061	1.00 20.70	A
		MOTA	1888	0			35.914	36.901	-9.624	1.00 19.06	A
		MOTA	1889	N	GLY A			37.372	-8.253	1.00 17.83	A
		ATOM	1890	CA	GLY A		35.811	37.609	-7.534	1.00 17.06	A
	4.0	MOTA	1891	С	GLY A		37.130		-6.320	1.00 16.43	A
	10	ATOM	1892	0	GLY A		37.140	37.810		1.00 16.43	A
		MOTA	1893	N	ASP A		38.239	37.608	-8.268		
		ATOM	1894	CA	ASP A		39.548	37.818	-7.652	1.00 17.09	A
		MOTA	1895	CB	ASP A		40.670	37.546	-8.658	1.00 20.30	A
		MOTA	1896	CG	ASP A		40.680	36.113	-9.147	1.00 22.97	A
	15	ATOM	1897		ASP A		40.535	35.196	-8.309	1.00 25.34	A
		MOTA	1898	OD2	ASP A	256	40.844		-10.368	1.00 25.26	A
		ATOM	1899	С	ASP A	256	39.738	39.212	-7.059	1.00 15.66	A
		ATOM	1900	0	ASP A	256	40.640	39.426	-6.253	1.00 15.19	A
41500		MOTA	1901	N	THR A	257	38.900	40.163	-7.457	1.00 13.06	A
	20	ATOM	1902	CA	THR A		39.010	41.523	-6.926	1.00 12.42	А
4,4,4		ATOM	1903	СВ	THR A		38.501	42.579	-7.926	1.00 12.11	A
4		ATOM	1904	OG1			37.112	42.348	-8.194	1.00 11.97	A
1,11		ATOM	1905	CG2	THR A		39.303	42.528	-9.218	1.00 12.56	A
		ATOM	1906	C	THR A		38.204	41.716		1.00 12.57	A
Ų	25	ATOM	1907	Ö	THR A		38.301	42.759		1.00 13.02	A
	20	ATOM	1908	N	ALA A		37.420	40.707		1.00 11.47	Α
4 %F			1909	CA	ALA A		36.568	40.785		1.00 10.47	A
Ţ		ATOM	1910	CB	ALA A		35.819	39.475		1.00 11.26	А
35		MOTA			ALA A		37.262	41.162		1.00 10.09	А
	20	MOTA	1911	С	ALA A		38.349	40.675		1.00 11.10	А
	30	ATOM	1912	0			36.608	42.038		1.00 9.25	А
		ATOM	1913	N	LEU A		37.106	42.486		1.00 9.11	A
i sa		ATOM	1914	CA	LEU A		37.709	43.889		1.00 8.75	A
i Sam Sam		ATOM	1915	CB	LEU A		38.434	44.373		1.00 8.50	A
	٥.	ATOM	1916	CG	LEU A			43.466		1.00 9.84	A
- Back	35	MOTA	1917		LEU A		39.634			1.00 10.21	A
		MOTA	1918		LEU A		38.890	45.818		1.00 10.21	A
		ATOM	1919	С	LEU A		35.923	42.506			A
		MOTA	1920	0	LEU A		34.890	43.119			A
		MOTA		N	PHE A		36.068				A
	40	MOTA	1922	CA	PHE A		34.997	41.785		1.00 8.58	A
		MOTA	1923	CB	PHE A		35.405	40.932		1.00 8.62	A
		MOTA	1924	CG	PHE A		34.301	40.738		1.00 9.48	
		MOTA	1925		PHE A		33.310	39.786		1.00 11.03	A
		ATOM	1926		PHE A		34.233	41.523		1.00 9.44	A
	45	MOTA	1927	CE1	PHE A	260	32.269	39.619		1.00 10.46	A
		MOTA	1928	CE2	PHE A	260	33.194	41.366		1.00 10.60	A
		MOTA	1929	CZ	PHE A	260	32.210	40.413	6.358	1.00 10.54	A
		ATOM	1930	С	PHE A	260	34.669	43.198		1.00 7.96	A
		MOTA	1931	0	PHE A	260	35.548	43.943	3.240	1.00 8.25	A
	50	MOTA	1932	N	THR A		33.393	43.555	2.723	1.00 7.64	A
		ATOM	1933	CA	THR A		32.951	44.887	3.098	1.00 7.65	A
		ATOM	1934	СВ	THR A		32.467	45.656	1.849	1.00 8.01	A
		ATOM	1935		THR A		33.522	45.707	0.881	1.00 8.64	A
		ATOM	1936		THR A		32.039			1.00 8.16	А
	55	ATOM	1937	C	THR F		31.917			1.00 7.68	А
	55	AION	1737	Ç	1111/	. 201	31.01/				

	ATOM	1938	0	THR A	261	30.870	44.096	3.992	1.00 8.41	A
	ATOM	1939		HIS A		31.922	45.758	5.100	1.00 6.93	A
	ATOM	1940		HIS A		30.901	45.912	6.123	1.00 7.90	А
	ATOM	1941		HIS A		31.519	45.801	7.522	1.00 8.17	A
5	ATOM	1942	CG	HIS A		30.578	46.163	8.632	1.00 8.05	A
Ü	ATOM	1943		HIS A		30.160	47.368	9.091	1.00 8.34	A
	ATOM	1944		HIS A		29.948	45.218	9.414	1.00 8.69	A
	ATOM	1945		HIS A		29.185	45.825	10.308	1.00 8.74	A
	ATOM	1946		HIS A		29.296	47.130	10.134	1.00 9.13	A
10	MOTA	1947	C	HIS A		30.274	47.293	5.964	1.00 8.58	A
10	ATOM	1948	Ö	HIS A		30.973	48.307	6.012	1.00 8.10	A
	MOTA	1949	N	MSE A		28.965	47.333	5.747	1.00 8.26	Α
	ATOM	1950	CA	MSE A		28.257	48.600	5.633	1.00 9.29	A
	ATOM	1951	СВ	MSE A		27.263	48.572	4.469	1.00 10.58	A
15	MOTA	1952	CG	MSE A		26.474	49.869	4.305	1.00 10.98	A
10	ATOM	1953	SE	MSE A		24.989	49.720	3.067	1.00 16.18	A
	ATOM	1954	CE	MSE A		25.986	49.431	1.449	1.00 13.27	A
	ATOM	1955	C	MSE A		27.493	48.822	6.935	1.00 9.90	A
	ATOM	1956	0	MSE A		26.734	47.949	7.372	1.00 10.15	А
20	ATOM	1957	N	MSE A		27.709	49.973	7.567	1.00 9.48	А
20	ATOM	1958	CA	MSE A		27.000	50.294	8.800	1.00 11.38	A
	MOTA	1959	СВ	MSE A		27.599	51.544	9.434	1.00 13.97	A
	ATOM	1960	CG	MSE A		28.998	51.276	9.969	1.00 18.24	A
	ATOM	1961	SE	MSE A		29.922	52.842	10.605	1.00 30.43	A
25	ATOM	1962	CE	MSE A		28.649	53.434	11.918	1.00 25.37	A
	ATOM	1963	C	MSE A	264	25.544	50.473	8.391	1.00 10.63	A
	ATOM	1964	0	MSE A		25.254	50.951	7.296	1.00 10.87	А
	ATOM	1965	N	PRO A		24.605	50.109	9.274	1.00 10.69	A
	ATOM	1966	CD	PRO A	265	24.819	49.543	10.620	1.00 10.66	A
30	ATOM	1967	CA	PRO A	265	23.177	50.203	8.973	1.00 11.01	A
	MOTA	1968	СВ	PRO A	265	22.610	49.052	9.785	1.00 10.51	A
	ATOM	1969	CG	PRO A	265	23.392	49.183	11.069	1.00 10.95	A
	ATOM	1970	С	PRO A	265	22.390	51.468	9.232	1.00 11.27	A
	ATOM	1971	0	PRO A	265	21.302	51.635	8.681	1.00 11.33	A
35	ATOM	1972	N	PHE P	266	22.929	52.361	10.048	1.00 11.35	A
	ATOM	1973	CA	PHE A	266	22.177	53.540	10.421	1.00 11.37	A
	MOTA	1974	CB	PHE P	266	22.134	53.589	11.952	1.00 10.85	A
	MOTA	1975	CG	PHE P	A 266	21.602	52.310	12.573	1.00 10.84	A
	MOTA	1976	CD1	PHE A	266	22.225	51.740	13.679	1.00 10.84	A
40	MOTA	1977	CD2	PHE A	266	20.487	51.669		1.00 11.07	A
	MOTA	1978	CE1	PHE P	A 266	21.748	50.551	14.236	1.00 10.63	A
	MOTA	1979	CE2	PHE A	4 266	20.001	50.481	12.580	1.00 10.14	A
	ATOM	1980	CZ	PHE A	A 266	20.633	49.921	13.682	1.00 9.88	A
	ATOM	1981	С	PHE A		22.564	54.885	9.812	1.00 11.36	A
45	ATOM	1982	0	PHE A		23.495	54.988	9.017	1.00 11.87	A
	MOTA	1983	N		A 267	21.812	55.907	10.203	1.00 11.40	A
	MOTA	1984	CA	TYR A	A 267	21.949	57.273	9.709	1.00 11.71	A
	MOTA	1985	СВ		A 267	20.814	58.099	10.319	1.00 12.66	A
	MOTA	1986	CG	TYR A	A 267	20.908	59.594	10.143	1.00 12.67	A
50	MOTA	1987		TYR A		20.575	60.204	8.934	1.00 13.51	A
	MOTA	1988		TYR A		20.613		8.798	1.00 14.20	A
	ATOM	1989		TYR A		21.288		11.211	1.00 13.73	A
	MOTA	1990	CE2	TYR A		21.330		11.085	1.00 14.05	A
	MOTA	1991	CZ		4 267	20.990		9.882	1.00 15.05	A
55	MOTA	1992	OH	TYR A	A 267	21.017	63.747	9.784	1.00 16.91	А

	MOTA	1993	С	TYR A	267	23.284	57.987	9.916	1.00 11.75	A
	ATOM	1994	0	TYR A		23.685	58.807	9.085	1.00 11.62	A
	ATOM	1995	N	SER A		23.973	57.684	11.008	1.00 11.53	A
	ATOM	1996	CA	SER A		25.240	58.346	11.299	1.00 10.96	A
5	ATOM	1997	CB	SER A		24.975	59.572	12.178	1.00 11.47	A
5	ATOM	1998	OG	SER A		26.180	60.184	12.600	1.00 13.03	A
	ATOM	1999	C	SER A		26.236	57.432	11.992	1.00 10.90	A
		2000	0	SER A		25.891	56.329	12.417	1.00 10.38	A
	ATOM			TYR A		27.480	57.892	12.094	1.00 10.75	A
10	ATOM	2001	N	TYR A		28.514	57.127	12.775	1.00 10.42	A
10	ATOM	2002	CA			29.872	57.282	12.069	1.00 10.68	A
	ATOM	2003	CB	TYR A		30.306	58.714	11.844	1.00 10.71	A
	MOTA	2004	CG	TYR A			59.529	12.909	1.00 10.71	A
	ATOM	2005		TYR A		30.698	60.864	12.702	1.00 10.21	A
4 -	ATOM	2006		TYR A		31.055		10.565	1.00 10.99	A
15	MOTA	2007		TYR A		30.288	59.265		1.00 10.95	A
	MOTA	2008		TYR A		30.642	60.595	10.348		A
	MOTA	2009	CZ	TYR A		31.020	61.387	11.420	1.00 11.31	A
	MOTA	2010	OH	TYR A		31.331	62.711	11.209	1.00 11.28	
	MOTA	2011	С	TYR A		28.627	57.587	14.227	1.00 10.96	A
20	ATOM	2012	0	TYR A		29.444	57.060	14.981	1.00 10.70	A
	ATOM	2013	N	ASP A		27.816	58.570	14.625	1.00 10.74	A
	MOTA	2014	CA	ASP A		27.879	59.042	16.006	1.00 10.41	A
	MOTA	2015	CB	ASP A		27.196	60.416	16.178	1.00 11.57	A
	MOTA	2016	CG	ASP A		25.710	60.404	15.861	1.00 11.76	A
25	MOTA	2017		ASP A		25.095	59.320	15.799	1.00 12.51	A
	MOTA	2018	OD2	ASP A		25.150	61.513	15.693	1.00 14.61	A
	ATOM	2019	С	ASP A		27.292	57.998	16.950	1.00 10.60	A
	MOTA	2020	0	ASP A		26.684	57.020	16.511	1.00 10.31	A
	ATOM	2021	N	ILE A	271	27.492	58.192	18.246	1.00 10.34	A
30	ATOM	2022	CA	ILE A		27.027	57.212	19.214	1.00 10.55	A
	MOTA	2023	CB	ILE A		27.536	57.588	20.622	1.00 10.92	A
	MOTA	2024	CG2	ILE A	271	27.035	56.589	21.659	1.00 10.05	A
	MOTA	2025	CG1	ILE A	271	29.071	57.563	20.602	1.00 11.08	A
	MOTA	2026	CD1	ILE A	271	29.745	58.096	21.846	1.00 11.63	A
35	MOTA	2027	С	ILE A	271	25.518	56.956	19.185	1.00 10.58	А
	MOTA	2028	0	ILE A	271	25.083	55.807	19.260	1.00 10.41	А
	MOTA	2029	N	PRO A	272	24.700	58.011	19.057	1.00 10.98	А
	ATOM	2030	CD	PRO A	272	24.985	59.453	19.156	1.00 11.33	A
	ATOM	2031	CA	PRO A	272	23.255	57.758	19.022	1.00 10.92	A
40	MOTA	2032	CB	PRO A	272	22.665	59.160	18.878	1.00 11.04	А
	ATOM	2033	CG	PRO A	272	23.659	60.016	19.626	1.00 11.74	A
	MOTA	2034	С	PRO A	272	22.826	56.829	17.876	1.00 11.69	A
	ATOM	2035	0	PRO A	272	21.785	56.180	17.959	1.00 11.90	A
	MOTA	2036	N	HIS A	273	23.629	56.750	16.815	1.00 10.74	A
45	ATOM	2037	CA	HIS A	273	23.278	55.908	15.672	1.00 10.78	A
10	ATOM	2038	СВ	HIS A		23.224	56.767	14.405	1.00 10.02	A
	ATOM	2039	CG	HIS A		22.235	57.887	14.491	1.00 11.26	A
	ATOM	2040		HIS A		22.380	59.169	14.901	1.00 9.55	A
	ATOM	2041		HIS A		20.897	57.727	14.202	1.00 12.40	A
50	ATOM	2042		HIS A		20.261	58.862	14.433	1.00 9.52	A
50	ATOM	2042		HIS A		21.137	59.753	14.859	1.00 13.79	А
	ATOM	2043	C	HIS A		24.195	54.711	15.456	1.00 11.09	А
	ATOM	2044	0	HIS A		24.260	54.165	14.353	1.00 11.15	А
		2045	N	THR A		24.891	54.287	16.508	1.00 11.34	А
EE	ATOM		CA	THR A		25.782	53.140	16.385	1.00 11.09	A
55	ATOM	2047	CA	INK A	2/4	20.102	224140	10.000	1.00 11.00	

	ATOM	2048	СВ	THR A	274	27.269	53.578	16.377	1.00 12.31	A
	ATOM	2049		THR A		27.513	54.504	17.442	1.00 11.45	A
	ATOM	2050		THR A		27.620	54.224	15.053	1.00 11.39	A
	MOTA	2051	C	THR A		25.598	52.033	17.425	1.00 11.88	A
5		2052	0	THR A		26.215	50.976	17.311	1.00 12.79	A
5	ATOM			CYS A		24.752	52.250	18.429	1.00 11.97	A
	MOTA	2053	N			24.543	51.214	19.445	1.00 12.65	A
	MOTA	2054	CA	CYS A			50.321	19.105	1.00 12.65	A
	MOTA	2055	С	CYS A		23.361		19.536	1.00 12.03	A
	MOTA	2056	0	CYS A		23.291	49.169		1.00 12.03	A
10	MOTA	2057	CB	CYS A		24.315	51.845	20.824		
	MOTA	2058	SG	CYS A		22.586	51.943	21.413	1.00 13.25	A
	MOTA	2059	N	GLY A		22.433	50.865	18.329	1.00 12.85	A
	MOTA	2060	CA	GLY A	. 276	21.243	50.130	17.954	1.00 12.82	A
	MOTA	2061	С	GLY A	276	20.329	51.021	17.139	1.00 12.23	A
15	ATOM	2062	0	GLY A	276	20.704	52.149	16.813	1.00 12.13	A
	ATOM	2063	N	PRO A	277	19.113	50.558	16.812	1.00 11.60	A
	ATOM	2064	CD	PRO P		18.595	49.229	17.187	1.00 11.96	A
	ATOM	2065	CA	PRO F		18.123	51.294	16.021	1.00 12.04	A
	MOTA	2066	СВ	PRO F		17.119	50.208	15.650	1.00 12.10	А
20	ATOM	2067	CG	PRO F		17.116	49.352	16.885	1.00 10.84	A
20		2068	C	PRO F		17.435	52.502	16.652	1.00 11.83	A
	ATOM	2069	0	PRO F		16.844	53.310	15.938	1.00 12.62	A
	MOTA			ASP F		17.500	52.628	17.973	1.00 12.62	A
	ATOM	2070	N	ASP F		16.834	53.741	18.650	1.00 13.37	А
OF.	ATOM	2071	CA			15.969	53.213	19.799	1.00 13.54	А
25	MOTA	2072	CB	ASP A		15.045	54.274	20.368	1.00 14.93	A
	MOTA	2073	CG	ASP A			55.456	20.004	1.00 15.72	A
	ATOM	2074		ASP A		15.194		21.185	1.00 15.72	A
	ATOM	2075		ASP A		14.168	53.925		1.00 13.70	A
	MOTA	2076	С	ASP A		17.814	54.773	19.194	1.00 13.23	A
30	MOTA	2077	0	ASP A		18.426	54.568	20.241		A
	ATOM	2078	N		A 279	17.962	55.908	18.493	1.00 13.69	
	MOTA	2079	CD		A 279	17.262	56.315	17.263	1.00 13.30	A
	ATOM	2080	CA		A 279	18.886	56.952	18.944	1.00 13.86	A
	MOTA	2081	CB		A 279	18.834	57.975	17.809	1.00 13.40	A
35	MOTA	2082	CG	PRO A	A 279	17.448	57.815	17.269	1.00 13.26	A
	MOTA	2083	С	PRO A	A 279	18.537	57.555	20.302	1.00 14.31	A
	MOTA	2084	0	PRO A	A 279	19.415	58.042	21.011	1.00 14.71	A
	ATOM	2085	N	LYS A	A 280	17.260	57.518	20.669	1.00 15.00	A
	ATOM	2086	CA	LYS Z	A 280	16.841	58.061	21.957	1.00 16.46	А
40	ATOM	2087	СВ	LYS A	A 280	15.316	58.029	22.084	1.00 17.95	A
20	ATOM	2088	CG		A 280	14.798	58.566	23.413	1.00 20.74	A
	ATOM	2089	CD		A 280	13.277	58.545	23.472	1.00 23.13	А
	ATOM	2090	CE		A 280	12.733	57.124	23.426	1.00 25.35	A
	ATOM	2091	NZ		A 280	13.197	56.302	24.586	1.00 27.48	A
45	ATOM	2092	C		A 280	17.469	57.244	23.080	1.00 16.31	А
40		2093	0		A 280	17.770	57.771	24.152	1.00 17.31	A
	ATOM				A 281	17.669	55.953	22.828	1.00 15.76	A
	ATOM	2094	N		A 281	18.276	55.067	23.814	1.00 14.99	А
	MOTA	2095	CA			17.837	53.598	23.602	1.00 15.83	А
F 0	MOTA	2096	CB		A 281	18.565	52.687	24.585	1.00 15.97	A
50	MOTA	2097		VAL			53.475	23.775	1.00 15.57	A
	MOTA	2098		VAL		16.328			1.00 13.33	A
	MOTA	2099	С		A 281	19.797	55.132	23.720		A
	ATOM	2100	0		A 281	20.488	55.285	24.725	1.00 13.51	A
	ATOM	2101	N		A 282	20.317	55.021	22.503	1.00 13.87	
55	ATOM	2102	CA	CYS	A 282	21.759	55.056	22.296	1.00 13.58	A

The first first than the first that the first than the first first that the first first than the
							110				
		ATOM	2103	С	CYS A	282	22.402	56.340	22.804	1.00 13.26	A
		ATOM	2104	0	CYS A		23.524	56.320	23.308	1.00 12.92	A
		MOTA	2105	СВ	CYS A		22.086	54.884	20.814	1.00 13.80	A
		ATOM	2106	SG	CYS A		21.707	53.243	20.122	1.00 13.83	A
	5	MOTA	2107	N	CYS A		21.695	57.458	22.673	1.00 12.97	A
	•	ATOM	2108	CA	CYS A		22.241	58.727	23.130	1.00 13.37	A
		MOTA	2109	C	CYS A		22.543	58.688	24.624	1.00 13.10	A
		ATOM	2110	0	CYS A		23.435	59.387	25.102	1.00 12.57	A
		ATOM	2111	СВ	CYS A		21.274	59.876	22.829	1.00 15.13	A
	10	ATOM	2112	SG	CYS A		22.121	61.486	22.906	1.00 17.02	A
	10	ATOM	2113	N	GLN A		21.804	57.860	25.359	1.00 12.91	A
		ATOM	2114	CA	GLN A		22.003	57.740	26.797	1.00 13.67	A
		ATOM	2115	CB	GLN A		20.821	57.006	27.433	1.00 14.14	A
		ATOM	2116	CG	GLN A		19.496	57.719	27.260	1.00 15.49	A
	15	ATOM	2117	CD	GLN A		18.338	56.905	27.790	1.00 15.23	A
	15	ATOM	2118		GLN A		18.315	56.530	28.962	1.00 17.22	A
		ATOM	2119		GLN A		17.372	56.622	26.929	1.00 16.85	A
			2120	C	GLN A		23.292	57.009	27.136	1.00 13.15	A
1 - 700		ATOM	2121	0	GLN A		23.675	56.925	28.302	1.00 13.79	А
	20	MOTA	2121	N	PHE A		23.960	56.479	26.116	1.00 12.56	A
	20	ATOM	2123	CA	PHE A		25.201	55.759	26.336	1.00 12.06	А
1		ATOM	2123	CB	PHE A		25.045	54.319	25.839	1.00 12.17	A
		MOTA		CG	PHE A		24.074	53.520	26.671	1.00 12.29	А
		ATOM	2125		PHE A		24.485	52.917	27.858	1.00 12.76	А
	25	MOTA	2126 2127		PHE A		22.728	53.453	26.317	1.00 13.09	A
	23	ATOM	2127		PHE A		23.565	52.262	28.686	1.00 13.11	A
14		ATOM			PHE A		21.800	52.803	27.136	1.00 14.38	А
		MOTA	2129 2130	CZ	PHE A		22.221	52.208	28.324	1.00 13.55	А
E)		MOTA	2130	C	PHE A		26.414	56.471	25.748	1.00 11.90	А
	30	ATOM	2131	0	PHE A		27.469	55.876	25.521	1.00 11.81	A
	50	MOTA	2132	N	ASP A		26.233	57.764	25.504	1.00 11.70	A
May May		MOTA	2133	CA	ASP A		27.303	58.639	25.038	1.00 11.79	A
in.		MOTA	2134	CB	ASP A		26.844	59.533	23.889	1.00 11.90	A
		ATOM ATOM	2136	CG	ASP A		27.944	60.464	23.414	1.00 11.44	A
g ala	35	ATOM	2137		ASP A		28.966	60.569	24.128	1.00 12.21	A
g	55		2137		ASP A		27.790	61.092	22.347	1.00 11.77	А
		MOTA	2139	C	ASP A		27.497	59.475	26.298	1.00 11.97	A
		ATOM ATOM	2140	0	ASP A		26.840	60.497	26.488	1.00 11.60	A
		ATOM	2140				28.395	59.028	27.165	1.00 11.38	A
	40	ATOM	2141	CA	PHE A		28.603	59.697	28.437	1.00 12.39	A
	40	ATOM	2142	CB	PHE A		29.377	58.764	29.374	1.00 12.11	A
			2143	CG	PHE A		28.648	57.473	29.651	1.00 12.28	A
		ATOM ATOM	2144		PHE A		28.821	56.366	28.826	1.00 12.95	A
			2145		PHE A		27.717	57.397	30.683	1.00 13.46	А
	45	ATOM	2140		PHE A		28.076	55.206	29.020	1.00 13.22	А
	40	ATOM	2147		PHE A		26.964	56.239	30.885	1.00 12.89	A
		ATOM	2149	CZ	PHE A		27.143	55.141	30.049	1.00 13.07	A
		ATOM		C	PHE A		29.207	61.091	28.414	1.00 13.59	А
		MOTA	2150	0	PHE A		29.405	61.695	29.465	1.00 14.01	А
	50	MOTA	2151		LYS A		29.482	61.620	27.227	1.00 14.45	
	50	MOTA	2152	N CA	LIS A		30.023	62.970	27.149	1.00 15.44	А
		MOTA	2153		LIS A		30.933	63.128	25.924	1.00 15.21	А
		MOTA	2154	CB			31.689	64.457	25.905	1.00 14.15	A
		ATOM	2155	CG	LYS A		32.592	64.586	24.684	1.00 13.96	
	==	ATOM	2156	CD	LYS A		33.413		24.753		
	55	MOTA	2157	CE	LYS A	200	22.412	00.000	21.755		=

							0050	66 000	02 (02	1.00 14.76	А
		MOTA	2158	NZ	LYS A		34.359	66.002	23.603		
		MOTA	2159	С	LYS A		28.866	63.968	27.060	1.00 16.58	A
		MOTA	2160	0	LYS A	288	29.080	65.176	27.059	1.00 16.11	A
		MOTA	2161	N	ARG A	289	27.637	63.461	27.007	1.00 17.84	A
	5	MOTA	2162	CA	ARG A	289	26.471	64.335	26.894	1.00 20.20	A
		ATOM	2163	СВ	ARG A	289	25.498	63.776	25.852	1.00 18.53	Α
		ATOM	2164	CG	ARG A	289	26.110	63.516	24.487	1.00 16.64	А
		ATOM	2165	CD	ARG A		25.021	63.230	23.477	1.00 15.80	A
		MOTA	2166	NE	ARG A		25.545	62.852	22.168	1.00 13.90	A
	10	ATOM	2167	CZ	ARG A		25.094	63.347	21.021	1.00 14.07	A
	10	MOTA	2168		ARG A		24.119	64.248	21.023	1.00 14.29	A
			2169		ARG A		25.603	62.931	19.871	1.00 13.78	A
		MOTA	2170	C	ARG A		25.701	64.571	28.193	1.00 23.25	A
		MOTA			ARG A		24.473	64.635	28.174	1.00 23.38	А
	15	ATOM	2171	0			26.398	64.717	29.314	1.00 27.14	А
	15	ATOM	2172	N	MSE A		25.691	64.930	30.572	1.00 30.56	A
		MOTA	2173	CA	MSE A		26.309	64.067	31.681	1.00 33.87	A
		ATOM	2174	CB	MSE A			62.573	31.377	1.00 37.48	A
		MOTA	2175	CG	MSE A		26.223		32.902	1.00 37.40	A
1125	20	ATOM	2176	SE	MSE A		26.343	61.383	32.902	1.00 42.00	A
	20	ATOM	2177	CE	MSE A		28.253	61.093	31.019	1.00 40.40	A
F		MOTA	2178	С	MSE A		25.578	66.389		1.00 30.92	A
		MOTA	2179	0	MSE A		24.852	66.690	31.971	1.00 31.30	A
4,5 m		MOTA	2180	N	GLY A		26.278	67.294	30.338	1.00 30.12	A
104		MOTA	2181	CA	GLY A		26.182	68.701	30.698	1.00 28.34	A
194	25	MOTA	2182	С	GLY A		27.455	69.531	30.733		A
14		MOTA	2183	0	GLY A		27.560	70.545	30.040	1.00 27.30	A
		ATOM	2184	N	SER A		28.422	69.108	31.541	1.00 24.80	A
61		ATOM	2185	CA	SER A		29.682	69.831	31.686	1.00 21.72	A
		MOTA	2186	CB	SER A		30.552	69.152	32.744	1.00 22.53 1.00 22.82	A
Ţ	30	MOTA	2187	OG	SER A		30.886	67.833	32.350		A
		MOTA	2188	С	SER A		30.488	69.984	30.396	1.00 20.05	A
		MOTA	2189	0	SER A		31.362	70.848	30.311	1.00 18.67	
		MOTA	2190	N	PHE A		30.202	69.151	29.399	1.00 18.19	A A
A Leader		MOTA	2191	CA	PHE A		30.919	69.220	28.128	1.00 17.46	A
3,3	35	MOTA	2192	CB	PHE A		31.136	67.819	27.546	1.00 16.98	A
		MOTA	2193	CG	PHE A		32.049	66.956	28.361	1.00 15.98	A
		ATOM	2194		PHE A		31.535	66.066	29.295	1.00 16.38	A
		ATOM	2195		PHE A		33.427	67.032	28.191	1.00 15.50	A
		MOTA	2196		PHE A		32.383	65.258	30.050	1.00 16.47	A
	40	MOTA	2197	CE2	PHE A			66.230		1.00 16.29	A
		MOTA	2198	CZ	PHE A		33.760	65.342	29.870	1.00 16.44	A
		ATOM	2199	С	PHE A		30.197	70.070	27.095	1.00 17.55	A
		ATOM	2200	0	PHE A		30.658	70.200	25.960	1.00 16.94	A
		ATOM	2201	N	GLY A	294	29.064	70.644	27.484	1.00 17.08	A
	45	MOTA	2202	CA	GLY A	294	28.314	71.471	26.557	1.00 17.66	A
		MOTA	2203	С	GLY A	294	27.592	70.671	25.489	1.00 17.59	A
		MOTA	2204	0	GLY A	294	27.302	71.181	24.407	1.00 18.62	A
		MOTA	2205	N	LEU A	295	27.309	69.409	25.788	1.00 17.46	А
		ATOM	2206	CA	LEU A		26.604	68.543	24.854	1.00 17.07	A
	50	ATOM	2207	СВ	LEU A	295	27.514	67.400	24.392	1.00 17.17	A
		ATOM	2208	CG	LEU A	295	28.783	67.787	23.625	1.00 17.32	A
		ATOM	2209		LEU A		29.647	66.554	23.406	1.00 17.83	A
		ATOM	2210		LEU A		28.405	68.418	22.290	1.00 17.46	А
		ATOM	2211	С	LEU A		25.379	67.972	25.552	1.00 17.33	A
	55	ATOM	2212	Ō	LEU A		25.344	67.869	26.777	1.00 18.00	А

		ATOM	2213	N	SER A	296	24.371	67.610	24.769	1.00 17.40	Α
		ATOM	2214	CA	SER A		23.147	67.047	25.319	1.00 18.18	A
		ATOM	2215	CB	SER A		22.162	68.167	25.679	1.00 18.23	A
		ATOM	2216	OG	SER A		21.859	68.973	24.553	1.00 19.31	Α
	5	ATOM	2217	С	SER A		22.518	66.101	24.310	1.00 18.33	A
	•	MOTA	2218	0	SER A		23.031	65.931	23.203	1.00 17.91	A
		ATOM	2219	N	CYS A		21.415	65.476	24.708	1.00 18.81	Α
		ATOM	2220	CA	CYS A		20.698	64.549	23.842	1.00 19.38	A
		MOTA	2221	С	CYS A		19.429	65.212	23.322	1.00 19.86	A
	10	MOTA	2222	0	CYS A	297	18.542	65.562	24.098	1.00 20.21	A
		ATOM	2223	CB	CYS A	297	20.355	63.268	24.609	1.00 19.22	А
		ATOM	2224	SG	CYS A	297	21.786	62.162	24.797	1.00 20.14	A
		ATOM	2225	N	PRO A		19.332	65.400	21.997	1.00 19.98	A
		MOTA	2226	CD	PRO A	298	20.330	65.059	20.966	1.00 20.03	A
	15	MOTA	2227	CA	PRO A	298	18.154	66.031	21.395	1.00 20.06	A
		MOTA	2228	CB	PRO A	298	18.557	66.189	19.929	1.00 20.76	A
		ATOM	2229	CG	PRO A	298	19.494	65.041	19.709	1.00 20.96	A
		MOTA	2230	С	PRO A	298	16.863	65.237	21.571	1.00 19.89	A
i Pag		ATOM	2231	0	PRO A	298	15.772	65.778	21.399	1.00 20.14	A
	20	ATOM	2232	N	TRP A	299	16.991	63.961	21.921	1.00 19.23	A
int.		MOTA	2233	CA	TRP A		15.827	63.105	22.124	1.00 19.96	A
Salam.		ATOM	2234	CB	TRP A	299	16.196	61.644	21.833	1.00 19.20	A
131		MOTA	2235	CG	TRP A		16.531	61.437	20.381	1.00 18.35	A
		ATOM	2236	CD2			17.834	61.499	19.781	1.00 18.02	A
W.	25	ATOM	2237	CE2			17.662	61.346	18.388	1.00 18.44	A
ngin.		ATOM	2238		TRP A		19.130	61.674	20.286	1.00 18.03	A
		ATOM	2239		TRP A		15.650	61.248	19.355	1.00 18.36	A
Bi		MOTA	2240		TRP A		16.321	61.193	18.155	1.00 19.07	A
		MOTA	2241		TRP A		18.738	61.363	17.492	1.00 18.17	A
F 600 600 60	30	MOTA	2242		TRP A		20.200	61.691	19.396	1.00 18.03	A A
1949.		ATOM	2243		TRP A		19.994	61.536	18.014	1.00 17.94 1.00 21.12	A A
1.E		MOTA	2244	С	TRP A		15.247	63.270	23.530	1.00 21.12	A
हारक्त अस्टब्स्		ATOM	2245	0	TRP A		14.351	62.531	23.937 24.265	1.00 21.04	A
		MOTA	2246	N	LYS A		15.783	64.242	25.606	1.00 22.23	A
genge.	35	ATOM	2247	CA	LYS A		15.306	64.591 64.829	25.552	1.00 25.08	A
		MOTA	2248	СВ	LYS A		13.795		24.643	1.00 25.00	A
		ATOM	2249	CG	LYS A		13.400 11.890	65.978 66.085	24.505	1.00 28.74	A
		MOTA	2250	CD	LYS A			67.267	23.632	1.00 20.71	A
	40	ATOM	2251	CE	LYS A		11.497 11.893	68.565	24.247	1.00 31.18	A
	40	ATOM	2252	ΝZ	LYS A		15.628	63.703	26.806	1.00 23.29	A
		MOTA	2253	С	LYS A		15.248	64.032	27.930	1.00 23.45	A
		ATOM	2254	0	LYS A		16.304	62.579	26.591	1.00 22.63	A
		MOTA	2255	N	VAL A		16.669	61.717	27.709	1.00 22.92	А
	45	MOTA	2256	CA	VAL P		16.100	60.282	27.553	1.00 23.50	А
	45	ATOM	2257	CB CC1	VAL A		14.582	60.328	27.567	1.00 24.41	А
		MOTA	2258		VAL P		16.582	59.652	26.267	1.00 24.91	А
		ATOM	2259 2260	CGZ	VAL A		18.191	61.686	27.783	1.00 22.38	А
		ATOM ATOM	2261	0	VAL A		18.858	61.129	26.913	1.00 22.87	А
	50		2262	N	PRO F		18.761	62.302	28.827	1.00 21.66	A
	JU	ATOM ATOM	2263	CD	PRO F		18.069	63.041	29.901	1.00 21.57	А
		ATOM	2263	CA	PRO F		20.211	62.357	29.013	1.00 21.07	А
		ATOM	2265	CB	PRO A		20.375	63.492	30.014	1.00 21.45	А
		ATOM	2266	CG	PRO A		19.184	63.292	30.899	1.00 21.82	А
	55	ATOM	2267	C	PRO A		20.851	61.072	29.513	1.00 20.23	A
		L7 1 OL1	2201	_							

		MODIA	2268	0	PRO A	302	20.179	60.190	30.050	1.00 19.	53	Α
		MOTA	2269	N	PRO A		22.170	60.941	29.323	1.00 19.		Α
		ATOM			PRO A		23.105	61.819	28.596	1.00 19.		А
		ATOM	2270	CD			22.835	59.730	29.798	1.00 19.		A
	E	ATOM	2271	CA	PRO A		24.204	59.800	29.126	1.00 19.		A
	5	ATOM	2272	CB	PRO A		24.204	61.270	29.009	1.00 20.		A
		ATOM	2273	CG	PRO A		22.919	59.817	31.318	1.00 20.		A
		ATOM	2274	С	PRO A			60.912	31.885	1.00 20.		A
		ATOM	2275	0	PRO A		22.892	58.667	31.974	1.00 20.		A
	4.0	MOTA	2276	N	ARG A		22.992			1.00 20.		A
	10	MOTA	2277	CA	ARG A		23.089	58.624	33.424	1.00 22.		A
		MOTA	2278	СВ	ARG A		21.800	58.056	34.028	1.00 23.		A
		MOTA	2279	CG	ARG A		20.672	59.076	34.134			A
		MOTA	2280	CD	ARG A		19.369	58.432	34.585	1.00 33.		
		MOTA	2281	NE	ARG A		18.778	57.601	33.540	1.00 36.		A
	15	MOTA	2282	CZ	ARG A		18.380	58.058	32.355	1.00 37.		A
		MOTA	2283		ARG A		18.509	59.345	32.057	1.00 38.		A
		MOTA	2284	NH2	ARG A		17.851	57.229	31.466	1.00 38		A
		MOTA	2285	С	ARG A	304	24.279	57.777	33.837	1.00 20		A
400		MOTA	2286	0	ARG A	304	24.479	56.674	33.323	1.00 19		A
	20	MOTA	2287	N	THR A	305	25.074	58.306	34.760	1.00 19		A
1.50		MOTA	2288	CA	THR A	305	26.251	57.607	35.253	1.00 18		A
		MOTA	2289	CB	THR A	305	26.901	58.378	36.418	1.00 18		A
		ATOM	2290	OG1	THR A	305	27.312	59.671	35.955	1.00 20		Α
		ATOM	2291	CG2	THR A	305	28.108	57.629	36.957	1.00 19		A
ij	25	MOTA	2292	С	THR A	305	25.864	56.216	35.729	1.00 17		A
IJ.		ATOM	2293	0	THR A		24.914	56.056	36.495	1.00 18		А
(M		ATOM	2294	N	ILE A		26.598	55.210	35.268	1.00 16	.09	A
		ATOM	2295	CA	ILE A		26.306	53.837	35.654	1.00 16		Α
2) 3/25		ATOM	2296	СВ	ILE A		27.031	52.829	34.738	1.00 15	.93	А
	30	ATOM	2297	CG2			26.627	51.403	35.113	1.00 14		Α
i II		ATOM	2298	CG1			26.689	53.110	33.271	1.00 14	.91	А
		ATOM	2299		ILE A		25.204	53.036	32.943	1.00 14	.74	A
		ATOM	2300	С	ILE A		26.717	53.579	37.101	1.00 17	.29	Α
100		ATOM	2301	Ō	ILE A		27.793	53.989	37.539	1.00 17	.58	А
linda.	35	ATOM	2302	N	SER A		25.844	52.898	37.839	1.00 18	.29	Α
9	30	ATOM	2303	CA	SER A		26.094	52.571	39.238	1.00 20	.08	Α
		MOTA	2304	CB	SER A		25.339	53.539	40.151	1.00 19	.58	Α
		ATOM	2304	OG	SER A		23.939	53.426	39.962	1.00 20	.03	A
		ATOM	2306	C	SER A		25.605	51.154	39.496	1.00 21	.11	Α
	40		2307	0	SER A		24.856					Α
	40	ATOM	2307	N	ASP A		26.029	50.569	40.612	1.00 22		A
		ATOM	2309	CA	ASP A		25.604	49.219	40.966	1.00 24		Α
		MOTA	2310	CB	ASP A		26.243	48.800	42.292	1.00 26		А
		ATOM		CG	ASP A		27.729	48.532	42.165	1.00 27		Α
	45	ATOM	2311		ASP A		28.388	49.190	41.333	1.00 28		A
	45	MOTA	2312				28.244	47.669	42.907	1.00 28		А
		ATOM	2313		ASP A		24.085	49.210	41.099	1.00 25		A
		ATOM	2314	С	ASP A		23.432	48.185	40.908	1.00 24		A
		ATOM	2315	0	ASP F		23.432	50.378	41.412	1.00 26		A
	EΩ	ATOM	2316	N	GLN A			50.564	41.600	1.00 27		A
	50	ATOM	2317	CA	GLN F		22.107	51.841	42.418	1.00 27		A
		ATOM	2318	CB	GLN F		21.883	52.415	42.416	1.00 23		A
		ATOM	2319	CG	GLN F		20.482		43.180	1.00 31		A
		MOTA	2320	CD	GLN A		20.365	53.699		1.00 32		A
		MOTA	2321		GLN A		19.472	54.514	42.948			A
	55	ATOM	2322	NE2	GLN A	309	21,266	53.880	44.138	1.00 32	. 90	А

						1.2				
		MOTA	2323	С	GLN A 309	9 21.283	50.609	40.311	1.00 26.61	А
		ATOM	2324	0	GLN A 309	=		40.314	1.00 27.21	A
		ATOM	2325	N	ASN A 310			39.209	1.00 24.42	A
		ATOM	2326	CA	ASN A 310			37.954	1.00 22.88	A
	5	MOTA	2327	СВ	ASN A 310			37.493	1.00 22.90	A
	5	MOTA	2328	CG	ASN A 310			37.122	1.00 22.75	A
		MOTA	2329		ASN A 31			36.676	1.00 21.47	A
		ATOM	2330		ASN A 310			37.287	1.00 22.83	A
		ATOM	2331	C	ASN A 31			36.810	1.00 21.49	A
	10	ATOM	2332	0	ASN A 31			35.731	1.00 20.97	A
	10	ATOM	2332	N	VAL A 31			37.042	1.00 20.33	A
		ATOM	2334	CA	VAL A 31			35.991	1.00 19.01	A
		ATOM	2335	CB	VAL A 31			36.490	1.00 18.91	A
		MOTA	2336		VAL A 31			37.520	1.00 18.96	A
	15	ATOM	2337		VAL A 31			35.307	1.00 18.47	A
	10	ATOM	2338	C	VAL A 31			35.389	1.00 19.05	A
		ATOM	2339	Ö	VAL A 31			34.189	1.00 17.89	A
		ATOM	2340	N	ALA A 31			36.205	1.00 17.91	A
A sterm.		ATOM	2341	CA	ALA A 31	_		35.685	1.00 17.95	A
	20	ATOM	2342	CB	ALA A 31			36.828	1.00 18.00	A
	20	ATOM	2342	С	ALA A 31			34.652	1.00 17.45	A
Ü		ATOM	2344	0	ALA A 31			33.574	1.00 17.13	A
1,73		ATOM	2345	N	ALA A 31			34.979	1.00 17.23	A
		ATOM	2346	CA	ALA A 31	-		34.074	1.00 17.36	A
	25	ATOM	2347	CB	ALA A 31	-		34.813	1.00 17.23	A
	20	MOTA	2348	C	ALA A 31			32.858	1.00 17.38	А
102		ATOM	2349	0	ALA A 31			31.741	1.00 17.13	А
		ATOM	2350	N	ARG A 31			33.079	1.00 17.39	А
31		ATOM	2351	CA	ARG A 31			31.989	1.00 17.17	A
	30	ATOM	2352	СВ	ARG A 31			32.533	1.00 17.21	A
144	50	ATOM	2353	CG	ARG A 31		52.175	33.433	1.00 17.48	A
194		ATOM	2354	CD	ARG A 31		3 53.431	32.635	1.00 19.04	A
i de		ATOM	2355	NE	ARG A 31		8 53.446	32.120	1.00 19.31	A
		ATOM	2356	CZ	ARG A 31			31.306	1.00 19.35	A
i≉.	35	ATOM	2357		ARG A 31		9 55.377	30.905	1.00 19.82	A
		ATOM	2358	NH2	ARG A 31	.4 18.39		30.908	1.00 19.86	А
		ATOM	2359	С	ARG A 31		0 49.160	31.010	1.00 17.18	A
		ATOM	2360	0	ARG A 31	21.33	1 49.334	29.794	1.00 16.68	A
		MOTA	2361	N	SER A 31	15 21.92		31.552	1.00 16.39	A
	40	ATOM	2362	CA	SER A 31	22.41		30.730	1.00 16.91	A
		ATOM	2363	СВ	SER A 31	15 23.07			1.00 15.94	A
		ATOM	2364	OG	SER A 31	15 24.25			1.00 16.96	A
		ATOM	2365	С	SER A 31	15 21.28			1.00 17.74	A
		ATOM	2366	0	SER A 31	15 21.45			1.00 17.97	A
	45	ATOM	2367	N	ASP A 31				1.00 18.36	A
		ATOM	2368	CA	ASP A 31				1.00 19.21	A
		MOTA	2369	СВ	ASP A 31				1.00 20.93	A
		ATOM	2370	CG	ASP A 31				1.00 22.66	A
		ATOM	2371	OD1	ASP A 33				1.00 24.08	A
	50	ATOM	2372	OD2	ASP A 3				1.00 24.17	A
		ATOM	2373	C	ASP A 33				1.00 18.91	A
		MOTA	2374	0	ASP A 31				1.00 18.46	A
		ATOM	2375	N	LEU A 3				1.00 18.38	A
		ATOM	2376	CA	LEU A 3				1.00 18.01	A
	55	ATOM	2377	СВ	LEU A 3	17 18.22	3 50.057	28.145	1.00 19.46	A

	ATOM	2378	CG	LEU A	317	16.8	73	50.535	28.682	1.00		A
	ATOM	2379		LEU A		17.02	23	51.923	29.288	1.00		A
	ATOM	2380		LEU A		15.85	55	50.552	27.550	1.00	20.96	A
	MOTA	2381	C	LEU A		19.3		48.523	26.560	1.00	16.98	A
5	ATOM	2382	0	LEU A		19.0		48.400	25.382	1.00	16.42	A
3	ATOM	2383	N	LEU A		20.6		48.583	26.949	1.00	15.99	A
				LEU A		21.7		48.541	25.985	1.00		A
	ATOM	2384	CA	LEU A		23.0		48.836	26.687	1.00		A
	MOTA	2385	CB			24.2		48.971	25.768	1.00		A
10	MOTA	2386	CG	LEU A		24.2		50.057	24.731	1.00		A
10	MOTA	2387		LEU A					26.600	1.00		A
	MOTA	2388		LEU A		25.5		49.305		1.00		A
	ATOM	2389	С	LEU A		21.8		47.217	25.237			
	MOTA	2390	0	LEU A		21.9		47.198	24.012		15.57	A
	MOTA	2391	N	VAL A		21.7		46.108	25.967		14.42	A
15	MOTA	2392	CA	VAL A	319	21.8		44.799	25.331		13.85	A
	MOTA	2393	CB	VAL A	319	21.8	46	43.664	26.380		13.47	A
	MOTA	2394	CG1	VAL A	319	21.7	44	42.313	25.690		13.87	A
	ATOM	2395	CG2	VAL A	319	23.1	13	43.716	27.219	1.00	14.11	A
	ATOM	2396	С	VAL A		20.7	19	44.611	24.346	1.00	14.16	A
20	ATOM	2397	0	VAL A		20.8	81	43.986	23.298	1.00	13.52	A
_0	ATOM	2398	N	ASP A		19.5	54	45.153	24.683	1.00	14.86	A
	ATOM	2399	CA	ASP A		18.3		45.047	23.802	1.00	15.02	A
	ATOM	2400	CB	ASP A		17.1		45.680	24.462	1.00	16.85	A
		2400	CG	ASP A		15.9		45.656	23.568	1.00	16.80	А
25	ATOM			ASP A		15.4		46.742	23.155		17.63	A
23	ATOM	2402		ASP A		15.4		44.551	23.276		18.36	A
	ATOM	2403		ASP A		18.7		45.740	22.474		14.37	А
	ATOM	2404	C	ASP A		18.3		45.231	21.404		13.82	А
	ATOM	2405	0			19.3		46.903	22.547		13.70	А
20	MOTA	2406	N	GLN A		19.7		47.639	21.343		12.86	A
30	ATOM	2407	CA	GLN A				48.994	21.711		11.83	A
	MOTA	2408	СВ	GLN A		20.3			22.159		12.86	A
	MOTA	2409	CG	GLN A		19.3		50.024			14.18	A
	MOTA	2410	CD	GLN A		18.2		50.298	21.088		14.25	A
	MOTA	2411	OE1			18.6		50.718	19.980		14.25	A
35	MOTA	2412	NE2			17.0		50.059	21.412			A
	MOTA	2413	С	GLN A		20.7		46.829	20.542		12.45	
	MOTA	2414	0	GLN A		20.6		46.707	19.321		12.50	A
	ATOM	2415	И	TRP A	322	21.7		46.277	21.240		12.86	A
	ATOM	2416	CA	TRP A		22.7		45.475	20.590		12.89	A
4 0	MOTA	2417	CB	TRP A	322			44.969	21.609			A
	MOTA	2418	CG	TRP A	322	24.7	703	46.009	22.163		12.42	А
	ATOM	2419	CD2	TRP A	322	25.6	505	45.841	23.261		11.60	А
	MOTA	2420	CE2	TRP A	322	26.3	321	47.050	23.404		11.77	A
	ATOM	2421		TRP F		25.8	379	44.782	24.138		12.07	A
45	MOTA	2422		TRP A		24.8	399	47.279	21.696	1.00	11.63	A
10	ATOM	2423		TRP F		25.8		47.911	22.438	1.00	12.67	A
	ATOM	2424		TRP A		27.2		47.233	24.393	1.00	12.70	A
	ATOM	2425		TRP F		26.8		44.963	25.122		12.23	A
				TRP F		27.9		46.180	25.240		12.89	А
50	ATOM	2426	Cnz	TRP F		22.3		44.278	19.859		13.39	А
30	MOTA	2427		TRP A		22.5		43.988	18.722		13.20	A
	ATOM	2428	0			21.2		43.575	20.511		12.94	A
	ATOM	2429	N	LYS A		20.6		42.404	19.890		13.54	A
	MOTA	2430	CA	LYS A				42.404	20.930		14.32	A
	ATOM	2431	CB	LYS A		19.8					15.76	A
55	MOTA	2432	CG	LYS A	1 323	20.	199	40.871	21.888	, 1.00	10.70	7.7

The first time and time and the first time and the

		n moM	2422	CD	LYS A	333	20.07	9 40	005 2	22.904	1.00	17.29	A
		ATOM	2433	CD	LYS A		21.08			23.708	1.00		А
		ATOM	2434	CE			20.42			24.710	1.00		А
		MOTA	2435	NZ	LYS A					8.700		13.15	A
	_	MOTA	2436	С	LYS A		19.76			.7.780		13.47	A
	5	MOTA	2437	0	LYS A		19.59					13.05	A
		MOTA	2438	N	LYS A		19.20			18.706		12.21	A
		MOTA	2439	CA	LYS A		18.40			17.570		12.37	A
		MOTA	2440	CB	LYS A		17.60			L7.930			A
		MOTA	2441	CG	LYS A		16.38			L8.789		13.50	A
	10	MOTA	2442	CD	LYS A		15.6			19.319		13.76	
		MOTA	2443	CE	LYS A		14.43			20.106		15.09	A
		MOTA	2444	NΖ	LYS A	324	13.80			20.820		16.19	A
		MOTA	2445	С	LYS A		19.3			16.407		12.02	A
		MOTA	2446	0	LYS A		19.08			15.270		11.97	A
	15	MOTA	2447	N	LYS A		20.4			16.691		11.78	A
		ATOM	2448	CA	LYS A	325	21.4			15.639		11.37	A
		MOTA	2449	CB	LYS A	325	22.6			16.191		10.87	A
		ATOM	2450	CG	LYS A	325	23.5			15.105		10.75	A
1770		MOTA	2451	CD	LYS A	325	24.6			15.698		11.00	A
	20	ATOM	2452	CE	LYS A	325	25.4			14.603		11.39	A
100		ATOM	2453	NZ	LYS A	325	26.5	85 49.		15.164		12.31	A
19		MOTA	2454	С	LYS A	325	21.9	78 44		15.077		11.90	A
171		MOTA	2455	0	LYS A	325	22.1	36 44	.147	13.865		11.75	A
1:00		ATOM	2456	N	ALA A	326	22.2	40 43	.351	15.968		11.87	A
first first	25	MOTA	2457	CA	ALA A	326	22.7	60 42		15.567		12.64	A
W		ATOM	2458	CB	ALA A		23.0	24 41	.192	16.804		12.66	A
197		ATOM	2459	С	ALA A	326	21.8	39 41	.299	14.603		13.43	A
		ATOM	2460	0	ALA A		22.2	94 40	.453	13.831		13.86	А
91 21		MOTA	2461	N	GLU A		20.5	45 41	.599	14.653	1.00	13.80	А
	30	ATOM	2462	CA	GLU A		19.5	84 40	.942	13.770	1.00	14.81	A
444		ATOM	2463	СВ	GLU A	. 327	18.1	53 41	.327	14.152	1.00	16.43	A
		ATOM	2464	CG	GLU A		17.5	75 40	.504	15.277	1.00	18.89	A
ļ,.		ATOM	2465	CD	GLU A	. 327	17.5	77 39	.020	14.960		18.94	А
		ATOM	2466		GLU A	327	16.9	18 38		13.979		20.74	A
] 	35	ATOM	2467		GLU A		18.2	44 38	.265	15.691		20.08	A
		ATOM	2468	С	GLU A		19.8	10 41	.296	12.308		14.28	A
		ATOM	2469	0	GLU A		19.3	67 40		11.409	1.00	15.39	A
		ATOM	2470	N	LEU A		20.5	04 42	.404	12.075	1.00	13.70	А
		ATOM	2471	CA	LEU A		20.7			10.718		12.00	A
	40	ATOM	2472	СВ	LEU A		20.9	32 44	.384	10.707	1.00	12.41	A
	10	ATOM	2473	CG	LEU P		19.8		.202	11.399	1.00	12.20	A
		ATOM	2474		LEU A		20.1		.687	11.208	1.00	13.82	A
		ATOM	2475		LEU F		18.4			10.828	1.00	13.12	A
		MOTA	2476	C	LEU F		21.9			10.075	1.00	12.08	A
	45	ATOM	2477	0	LEU F		22.2		.411	8.888	1.00	12.28	A
	10	ATOM	2478	N	TYR F		22.7			10.851	1.00	11.18	A
		ATOM	2479	CA	TYR A		23.9			10.344	1.00	11.25	A
		ATOM	2480	CB	TYR A		25.1			11.018	1.00	11.22	A
		ATOM	2481	CG	TYR A		25.3		.809	10.695	1.00	11.53	А
	50	ATOM	2482		TYR		24.7		.808	11.477		11.42	Α
	50	ATOM	2482		TYR		24.9		.157	11.147		12.31	А
		ATOM	2483		TYR		26.1		.197	9.573		11.20	А
			2485		TYR A		26.2		.545	9.233		11.91	A
		MOTA	2485	CE2	TYR A		25.6			10.023		11.77	А
	==	ATOM		OH	TYR A		25.7		.845	9.678		12.68	А
	55	ATOM	2487	UП	IIR F	1 247	23.1	07 70		2.0.0			

	MOTA	2488	С	TYR A	329	23.89	0 39.240	10.492		
	MOTA	2489	0	TYR A		23.02	9 38.703	11.188	1.00 12.83	S A
	MOTA	2490	N	ARG A		24.83	5 38.553	9.857		
	ATOM	2491	CA	ARG A	330	24.83	9 37.094	9.864		
5	MOTA	2492	СВ	ARG A	. 330	25.20	2 36.589	8.465		
-	MOTA	2493	CG	ARG A		24.27	8 37.129	7.393		
	ATOM	2494	CD	ARG A		24.53	1 36.502	6.035	1.00 12.77	' A
	ATOM	2495	NE	ARG A		23.61	1 37.062	5.052	1.00 12.25	5 A
	ATOM	2496	CZ	ARG A		23.37	1 36.544	3.852	1.00 14.24	A A
10	ATOM	2497		ARG A		23.98		3.461	1.00 15.29) A
10	ATOM	2498		ARG A		22.50	3 37.137	3.043	1.00 14.59) A
	ATOM	2499	С	ARG A		25.64	9 36.311	10.894	1.00 12.88	3 A
	ATOM	2500	0	ARG A		25.42				
	ATOM	2501	N	THR A		26.58			1.00 12.94	A I
15	ATOM	2502	CA	THR A		27.37			1.00 12.09) A
10	MOTA	2503	CB	THR A		28.89				3 A
	ATOM	2504	OG1	THR A		29.21			1.00 11.23	L A
	ATOM	2505	CG2	THR A		29.29			1.00 12.94	1 A
	ATOM	2506	C	THR A		26.99			1.00 12.54	1 A
20	ATOM	2507	Ó	THR A		26.15			1.00 13.43	3 A
20	MOTA	2508	N	ASN A		27.61			1.00 12.33	3 A
	ATOM	2509	CA	ASN A		27.35				1 A
	ATOM	2510	СВ	ASN A		27.32				6 A
	ATOM	2511	CG	ASN A		28.67				2 A
25	ATOM	2512		ASN F		29.43				4 A
20	ATOM	2513		ASN A		28.97				5 A
	ATOM	2514	C	ASN F		28.43				3 A
	ATOM	2515	0	ASN A		28.72				3 A
	ATOM	2516	N	VAL A		29.02				2 A
30	ATOM	2517	CA	VAL A		30.05			1.00 11.8	9 A
30	ATOM	2518	CB	VAL A		31.35				5 A
	ATOM	2519		VAL A		32.43			1.00 12.3	7 A
	ATOM	2520		VAL A		31.82			1.00 13.4	6 A
	ATOM	2521	C	VAL A		29.49			1.00 11.3	3 A
35	ATOM	2522	0	VAL A		29.17				6 A
00	ATOM	2523	N	LEU A		29.36			1.00 10.6	7 A
	ATOM	2524	CA	LEU A		28.78			3 1.00 10.6	1 A
	ATOM	2525	CB	LEU A		27.59			1.00 10.8	3 A
	ATOM	2526	CG	LEU A		26.7		5 17.37	1.00 11.0	5 A
40	ATOM	2527		LEU A		26.04	45 44.02	16.03	5 1.00 10.5	0 A
10	ATOM	2528		LEU A		25.78			1 1.00 11.6	A 0
	ATOM	2529	C		A 334	29.75			1.00 10.0	2 A
	ATOM	2530	0		A 334	30.53			9 1.00 10.7	7 A
	ATOM	2531	N		A 335	29.72		3 15.809	1.00 10.1	1 A
45	ATOM	2532	CA		A 335	30.58			7 1.00 9.4	2 A
10	ATOM	2533	СВ		A 335	31.08			3 1.00 8.9	2 A
	ATOM	2534	CG		A 335	31.8			1.00 9.2	6 A
	ATOM	2535		LEU A		33.1			5 1.00 11.0	5 A
	ATOM	2536		LEU A		32.1				
50	ATOM	2537	C		A 335	29.8				
	ATOM	2538	Ö		A 335	28.7				2 A
	ATOM	2539	N		A 336	30.3				6 A
	ATOM	2540	CA		A 336	29.6				9 A
	ATOM	2541	CB		A 336	29.1				
55	ATOM	2542		ILE A		28.5				4 A
	111011	<i>ــ د ب</i>								

									40 000	1 00 0 33	70
		MOTA	2543	CG1	ILE A	336	28.089	47.432	19.383	1.00 9.33	A
		MOTA	2544	CD1	ILE A	336	26.848	47.786	18.595	1.00 10.48	А
		ATOM	2545	С	ILE A	336	30.674	49.988	18.074	1.00 8.75	А
		MOTA	2546	0	ILE A		31.454	50.087	19.018	1.00 9.03	A
	5	ATOM	2547	N	PRO A		30.674	50.871	17.061	1.00 8.98	A
	5		2548	CD	PRO A		29.982	50.807	15.763	1.00 8.96	A
		ATOM					31.598	52.008	17.104	1.00 9.22	A
		ATOM	2549	CA	PRO A						A
		ATOM	2550	CB	PRO A		31.359	52.702	15.764		
		ATOM	2551	CG	PRO A		30.921	51.585	14.871	1.00 8.89	A
	10	ATOM	2552	С	PRO A		31.217	52.913	18.271	1.00 8.95	A
		MOTA	2553	0	PRO A	337	30.039	53.021	18.609	1.00 10.28	A
		ATOM	2554	N	LEU A	338	32.210	53.548	18.886	1.00 8.46	A
		MOTA	2555	CA	LEU A	338	31.956	54.462	19.994	1.00 8.68	А
		MOTA	2556	СВ	LEU A	338	32.335	53.815	21.329	1.00 9.38	A
	15	ATOM	2557	CG	LEU A		31.988	54.674	22.549	1.00 10.48	A
	10	ATOM	2558		LEU A		30.481	54.631	22.801	1.00 11.37	A
		ATOM	2559		LEU A		32.732	54.160	23.768	1.00 11.85	A
			2560	C	LEU A		32.781	55.727	19.775	1.00 9.16	А
		MOTA					33.925	55.823	20.220	1.00 9.47	A
Seat.	20	MOTA	2561	0	LEU A				19.079	1.00 9.45	A
	20	MOTA	2562	N	GLY A		32.194	56.695			A
		MOTA	2563	CA	GLY A		32.914	57.926	18.807		
7(iss). 3 (37%)		MOTA	2564	С	GLY A		32.105	58.931	18.017	1.00 9.65	A
171		MOTA	2565	0	GLY A		30.938	58.694	17.703	1.00 9.88	A
		MOTA	2566	N	ASP A	340	32.739	60.054	17.690	1.00 9.87	A
144	25	MOTA	2567	CA	ASP A	340	32.103	61.130	16.943	1.00 9.83	A
		ATOM	2568	СВ	ASP A	340	31.101	61.863	17.841	1.00 10.38	A
		ATOM	2569	CG	ASP A	340	30.001	62.568	17.062	1.00 11.64	A
		ATOM	2570		ASP A		30.195	62.883	15.865	1.00 11.74	A
8). 2344		ATOM	2571		ASP A		28.937	62.826	17.667	1.00 12.92	A
	30	ATOM	2572	C	ASP A		33.214	62.090	16.518	1.00 10.19	A
6 (100) (100)	50	ATOM	2573	0	ASP A		34.401	61.792	16.683	1.00 9.86	А
			2574	N	ASP A		32.825	63.244	15.991	1.00 10.61	А
į į		MOTA					33.785	64.242	15.532	1.00 10.48	A
		MOTA	2575	CA	ASP A				14.884	1.00 12.00	A
	٥.	ATOM	2576	СВ	ASP A		33.048	65.413		1.00 12.00	A
i ak	35	ATOM	2577	CG	ASP A		32.468	65.055	13.534		
		MOTA	2578		ASP A		32.494	63.861	13.173	1.00 13.14	A
		MOTA	2579	OD2	ASP A		31.984	65.972	12.832	1.00 17.12	A
		MOTA	2580	С	ASP A		34.694	64.765	16.637	1.00 10.31	A
		MOTA	2581	0	ASP A	341	34.221	65.254	17.664	1.00 11.01	A
	40	MOTA	2582	N	PHE A	342	36.000	64.657	16.404	1.00 9.63	A
		ATOM	2583	CA	PHE A	342	37.018	65.114	17.342	1.00 9.96	A
		ATOM	2584	СВ	PHE A	342	37.207	66.632	17.204	1.00 10.12	А
		ATOM	2585	CG	PHE A		37.737	67.057	15.856	1.00 10.10	A
		ATOM	2586		PHE A		36.873	67.462	14.838	1.00 10.88	А
	45	MOTA	2587		PHE A		39.106	67.025	15.598	1.00 9.64	А
	40	ATOM	2588		PHE A		37.367	67.828	13.583	1.00 10.53	A
					PHE A		39.608	67.387	14.354	1.00 9.71	А
		ATOM	2589					67.790	13.342	1.00 9.85	A
		ATOM	2590	CZ	PHE A		38.737			1.00 10.16	A
	=0	MOTA	2591	С	PHE A		36.746	64.731	18.800		
	50	MOTA	2592	0	PHE A		36.911	65.543	19.721	1.00 11.34	A
		MOTA	2593	N	ARG A		36.339	63.482	19.002	1.00 9.86	A
		MOTA	2594	CA	ARG A		36.068	62.981	20.345	1.00 10.14	A
		ATOM	2595	CB	ARG A	. 343	35.056	61.830	20.306	1.00 9.08	A
		ATOM	2596	CG	ARG A	. 343	33.613	62.266	20.104	1.00 9.69	A
	55	ATOM	2597	CD	ARG A	343	33.191	63.269	21.172	1.00 10.14	A

		ATOM	2598	NE	ARG A	343	31.	763	63.572	21.122	1.00	11.19	Α
		ATOM	2599	CZ	ARG A		30.	818	62.853	21.722	1.00	10.93	A
		ATOM	2600		ARG A				61.774	22.427		10.27	А
									63.226	21.630		10.56	A
	_	ATOM	2601		ARG A								
	5	MOTA	2602	С	ARG A				62.510	21.041		11.10	A
		MOTA	2603	0	ARG A				62.413	20.427		10.83	A
		MOTA	2604	N	PHE A	344	37.	.203	62.220	22.331		12.00	A
		ATOM	2605	CA	PHE A	344	38.	.306	61.762	23.168	1.00	12.90	A
		ATOM	2606	СВ	PHE A	344	38.	806	60.398	22.681	1.00	12.98	A
	10	MOTA	2607	CG	PHE A				59.305	22.851	1.00	12.50	A
	10	ATOM	2608		PHE A				58.922	21.796		12.67	А
					PHE A				58.710	24.095		13.77	A
		ATOM	2609						57.966			12.90	A
		MOTA	2610		PHE A					21.975			
	4-	MOTA	2611		PHE A				57.752	24.286		13.51	A
	15	ATOM	2612	CZ	PHE A				57.379	23.224		12.69	А
		MOTA	2613	С	PHE A	344	39.		62.784	23.222	1.00	14.41	A
		MOTA	2614	0	PHE A	344	40.	. 609	62.458	23.059	1.00	14.24	A
		MOTA	2615	N	LYS A	345	39.	.040	64.027	23.486	1.00	15.81	A
ू र ^{ाक्}		MOTA	2616	CA	LYS A				65.152	23.566	1.00	18.16	A
	20	ATOM	2617	СВ	LYS A				66.388	22.959		19.39	A
	20	ATOM	2618	CG	LYS A				67.660	23.093		21.38	A
1,11									68.841	22.535		23.37	A
iT		ATOM	2619	CD	LYS A								
		MOTA	2620	CE	LYS A				70.139	22.721		24.23	A
5,44€ 80 8	0=	MOTA	2621	NZ	LYS A				71.293	22.183		24.71	A
	25	ATOM	2622	С	LYS A				65.463	24.997		19.45	A
and Graph		MOTA	2623	0	LYS A	345			65.661	25.268		21.28	A
i, i		MOTA	2624	N	GLN A	346	39.	.419	65.514	25.903	1.00	20.22	А
81		ATOM	2625	CA	GLN A	346	39.	. 691	65.820	27.303	1.00	20.84	A
		ATOM	2626	СВ	GLN A	346	38.	539	66.640	27.879	1.00	23.49	A
A STATE	30	ATOM	2627	CG	GLN A				67.921	27.116	1.00	27.90	A
s, E		MOTA	2628	CD	GLN A				68.547	27.504		30.08	А
gud.		ATOM	2629	OE1	GLN A				68.850	28.673		32.64	A
i de		MOTA	2630		GLN A				68.742	26.522		31.15	A
									64.562	28.142		20.09	A
1000	25	ATOM	2631	С	GLN A							18.93	
g-102	35	ATOM	2632	0	GLN A				63.540	27.902			A
		MOTA	2633	N	ASN A				64.647	29.135		19.30	A
		MOTA	2634	CA	ASN A				63.515	30.015		18.58	А
		MOTA	2635	CB	ASN A	347			63.896	31.098		20.07	A
		MOTA	2636	CG	ASN A	347			64.081	30.546		21.88	A
	40	ATOM	2637	OD1	ASN A	347	43.	. 973	63.181	29.909	1.00	22.61	A
		ATOM	2638		ASN A		44.	.014	65.250	30.787	1.00	23.12	A
		ATOM	2639	С	ASN A				63.067	30.669	1.00	17.30	A
		ATOM	2640	0	ASN A				61.873	30.780		16.74	A
		ATOM	2641	N	THR A				64.036	31.094		16.16	А
	45	ATOM	2642	CA	THR A				63.738	31.737		15.64	A
	10									32.191		16.49	A
		ATOM	2643	CB	THR A				65.032				A
		ATOM	2644	OG1					65.945	31.090		17.92	
		ATOM	2645	CG2					65.692	33.332		17.02	A
		ATOM	2646	С	THR A				62.956	30.803		14.77	A
	50	MOTA	2647	0	THR A	348	35.		62.139	31.256		14.29	A
		ATOM	2648	N	GLU A	349	36.	.851	63.207	29.501	1.00	12.93	A
		ATOM	2649	CA	GLU A	349	36.	.033	62.497	28.523	1.00	12.93	А
		ATOM	2650	СВ	GLU A				63.146	27.142	1.00	12.36	А
		ATOM	2651	CG	GLU A				62.407	26.079		12.45	А
	55	ATOM	2652	CD	GLU A			. 495	62.998	24.691		12.49	A
		771 01.1	2002	OD.	OHO W		٠, د د			_ 1.0/1			• •

		ATOM	2653		GLU A		34.930	62.400	23.754	1.00 13.64	A
		ATOM	2654	OE2	GLU A		36.158	64.044	24.535	1.00 13.87	А
		MOTA	2655	С	GLU A		36.469	61.037	28.437	1.00 12.59	А
		MOTA	2656	0	GLU A		35.632	60.134	28.384	1.00 12.35	Α
	5	ATOM	2657	N	TRP A		37.778	60.804	28.414	1.00 12.37	A
		ATOM	2658	CA	TRP A	350	38.283	59.438	28.361	1.00 11.74	A
		ATOM	2659	CB	TRP A	350	39.816	59.412	28.372	1.00 10.85	A
		ATOM	2660	CG	TRP A	350	40.438	59.655	27.030	1.00 10.74	A
		MOTA	2661	CD2	TRP A	350	40.744	58.664	26.042	1.00 11.29	A
	10	MOTA	2662	CE2	TRP A	350	41.266	59.341	24.919	1.00 11.06	Α
		MOTA	2663	CE3	TRP A	350	40.625	57.269	25.997	1.00 12.34	A
		ATOM	2664	CD1	TRP A	350	40.780	60.861	26.482	1.00 11.42	A
		ATOM	2665	NE1	TRP A	350	41.279	60.679	25.215	1.00 11.21	A
		MOTA	2666		TRP A	350	41.668	58.669	23.759	1.00 11.09	A
	15	ATOM	2667	CZ3	TRP A	350	41.025	56.601	24.844	1.00 12.75	A
		MOTA	2668	CH2	TRP A	350	41.539	57.303	23.740	1.00 12.45	A
		MOTA	2669	С	TRP A	350	37.752	58.675	29.569	1.00 12.68	А
		MOTA	2670	0	TRP A	350	37.269	57.552	29.443	1.00 12.87	A
1194		ATOM	2671	N	ASP A	351	37.828	59.300	30.739	1.00 13.49	A
fiasi Pe	20	ATOM	2672	CA	ASP A	351	37.357	58.670	31.965	1.00 14.43	A
ij.		ATOM	2673	CB	ASP A	351	37.669	59.542	33.184	1.00 15.49	A
Ü		ATOM	2674	CG	ASP A	351	39.148	59.628	33.482	1.00 18.09	A
		MOTA	2675	OD1	ASP A	351	39.866	58.633	33.250	1.00 19.99	A
		ATOM	2676	OD2	ASP A	351	39.588	60.690	33.970	1.00 20.85	A
	25	ATOM	2677	С	ASP A	351	35.864	58.374	31.960	1.00 13.60	A
		ATOM	2678	0	ASP A	351	35.451	57.260	32.286	1.00 14.13	A
(F		MOTA	2679	N	VAL A	352	35.053	59.362	31.598	1.00 13.66	A
41		MOTA	2680	CA	VAL A	352	33.612	59.165	31.609	1.00 13.97	A
		MOTA	2681	CB	VAL A		32.855	60.483	31.278	1.00 15.02	A
	30	ATOM	2682	CG1	VAL A		32.894	60.769	29.791	1.00 15.28	A
		MOTA	2683		VAL A		31.429	60.401	31.788	1.00 16.97	А
		ATOM	2684	С	VAL A		33.160		.30.675	1.00 14.02	A
i ražin		ATOM	2685	0	VAL A		32.286	57.256	31.031	1.00 14.06	А
11:22	0.5	MOTA	2686	N	GLN A		33.757	57.947	29.491	1.00 12.99	А
į.	35	MOTA	2687	CA	GLN A		33.367	56.888	28.569	1.00 12.34	А
		ATOM	2688	СВ	GLN A		33.887	57.187	27.154	1.00 11.41	A
		MOTA	2689	CG	GLN A		33.348	58.484	26.546	1.00 11.76	A
		ATOM	2690	CD	GLN A		31.900	58.381	26.080	1.00 11.91	A
	40	ATOM	2691	OE1	GLN A		31.080	57.703	26.698	1.00 12.30	A
	40	ATOM	2692		GLN A		31.578	59.072	24.991	1.00 11.88	A
		ATOM	2693	C	GLN A		33.890	55.528	29.042	1.00 12.28	A
		ATOM	2694	0	GLN A		33.130	54.561	29.132	1.00 12.59	A
		ATOM	2695	N	ARG A		35.179	55.455	29.365	1.00 11.64	A
	4.5	ATOM	2696	CA	ARG A		35.775	54.192	29.799	1.00 12.41	A
	45	ATOM	2697	CB	ARG A		37.286	54.340	29.993	1.00 12.29	A
		ATOM	2698	CG	ARG A		37.955	53.065	30.508	1.00 12.77	A
		ATOM	2699	CD	ARG A		39.456	53.247	30.716	1.00 14.15	A
		ATOM	2700	NE	ARG A		39.768	54.280	31.702	1.00 15.21	A
	50	ATOM	2701	CZ	ARG A		39.593	54.156	33.016	1.00 15.91	A
	50	ATOM	2702		ARG A		39.104	53.032	33.526	1.00 16.33	A
		ATOM	2703		ARG A		39.912	55.158	33.824	1.00 16.46	A
		ATOM	2704	C	ARG A		35.183	53.595	31.069	1.00 12.83	A
		ATOM	2705	0	ARG A		34.817	52.422	31.089	1.00 12.74	A
		ATOM	2706	N	VAL A		35.102	54.395	32.128	1.00 12.88	A
	55	ATOM	2707	CA	VAL A	355	34.577	53.912	33.401	1.00 13.28	A

		MOTA	2708	СВ	VAL A		34.650	55.009	34.485	1.00 13.60	A
		MOTA	2709		VAL A		34.053	54.498	35.789	1.00 16.28	А
		MOTA	2710		VAL A		36.100	55.418	34.706	1.00 14.36	A
		MOTA	2711	С	VAL A		33.146	53.399	33.313	1.00 12.98	A
	5	MOTA	2712	0	VAL A	355	32.836	52.322	33.826	1.00 13.34	A
		MOTA	2713	N	ASN A	356	32.270	54.162	32.670	1.00 13.08	A
		MOTA	2714	CA	ASN A	356	30.886	53.740	32.550	1.00 12.48	А
		MOTA	2715	CB	ASN A	356	30.035	54.877	31.990	1.00 12.67	A
		MOTA	2716	CG	ASN A	356	29.735	55.928	33.036	1.00 13.47	A
	10	MOTA	2717	OD1	ASN A	356	29.056	55.647	34.029	1.00 13.87	A
		MOTA	2718	ND2	ASN A	356	30.250	57.138	32.835	1.00 13.69	A
		MOTA	2719	С	ASN A	356	30.751	52.472	31.716	1.00 12.85	A
		MOTA	2720	Ο	ASN A		29.980	51.576	32.066	1.00 12.64	A
		MOTA	2721	N	TYR A	357	31.504	52.370	30.627	1.00 12.12	А
	15	ATOM	2722	CA	TYR A	357	31.415	51.162	29.823	1.00 12.64	A
		MOTA	2723	CB	TYR A	357	32.072	51.358	28.451	1.00 12.21	A
		MOTA	2724	CG	TYR A	357	31.083	51.882	27.439	1.00 11.70	A
		MOTA	2725	CD1	TYR A	357	30.894	53.251	27.261	1.00 11.24	A
i chang		ATOM	2726	CE1	TYR A	357	29.917	53.736	26.393	1.00 11.52	A
	20	MOTA	2727	CD2	TYR A	357	30.273	51.004	26.718	1.00 12.23	A
Totali.		MOTA	2728	CE2	TYR A	357	29.291	51.477	25.850	1.00 12.04	A
A COSE.		MOTA	2729	CZ	TYR A	357	29.118	52.842	25.693	1.00 11.95	Α
10.0		MOTA	2730	OH	TYR A	357	28.142	53.306	24.847	1.00 12.56	A
		MOTA	2731	С	TYR A	357	32.015	49.970	30.558	1.00 12.74	A
Min dan dan dan dan dan dan dan dan dan da	25	MOTA	2732	0	TYR A	357	31.524	48.848	30.430	1.00 12.97	A
W.		MOTA	2733	N	GLU A	358	33.064	50.206	31.341	1.00 13.29	A
		MOTA	2734	CA	GLU A	358	33.669	49.118	32.104	1.00 13.40	A
81		MOTA	2735	CB	GLU A	358	34.871	49.612	32.910	1.00 15.05	A
		ATOM	2736	CG	GLU A	358	36.138	49.838	32.092	1.00 16.80	A
	30	MOTA	2737	CD	GLU A	358	37.310	50.270	32.956	1.00 18.32	A
144F		MOTA	2738	OE1	GLU A	358	37.115	50.453	34.176	1.00 20.90	A
		ATOM	2739	OE2	GLU A	358	38.426	50.430	32.421	1.00 18.81	A
ini.		MOTA	2740	С	GLU A	358	32.631	48.526	33.059	1.00 13.69	A
		MOTA	2741	0	GLU A	358	32.554	47.312	33.221	1.00 13.52	A
2	35	MOTA	2742	N	ARG A	359	31.833	49.387	33.686	1.00 13.66	A
		MOTA	2743	CA	ARG A	359	30.804	48.920	34.616	1.00 14.36	A
		MOTA	2744	CB	ARG A	359	30.150	50.103	35.327	1.00 14.85	A
		MOTA	2745	CG	ARG A		31.061	50.815	36.303	1.00 17.92	A
		MOTA	2746	CD	ARG A		30.433	52.125	36.740	1.00 20.12	А
	40	MOTA	2747	NE	ARG A	359	31.315	52.896	37.608	1.00 22.12	А
		ATOM	2748	CZ	ARG A	359	31.333	54.224	37.653	1.00 23.24	A
		MOTA	2749	NH1	ARG A	359	30.516	54.926	36.874	1.00 23.08	А
		MOTA	2750	NH2	ARG A	359	32.168	54.850	38.473	1.00 24.71	A
		MOTA	2751	С	ARG A	359	29.737	48.108	33.893	1.00 13.89	A
	45	MOTA	2752	0	ARG A		29.218	47.130	34.432	1.00 14.23	А
		ATOM	2753	N	LEU A	360	29.406	48.517	32.672	1.00 13.60	А
		MOTA	2754	CA	LEU A	360	28.410	47.803	31.886	1.00 13.35	A
		MOTA	2755	CB	LEU A	360	28.031	48.621	30.645	1.00 12.99	Α
		ATOM	2756	CG	LEU A	360	27.200	49.878	30.934	1.00 13.00	A
	50	ATOM	2757	CD1	LEU A	360	27.222	50.806	29.731	1.00 14.39	А
		MOTA	2758	CD2	LEU A	360	25.771	49.481	31.276	1.00 14.37	А
		MOTA	2759	С	LEU A	360	28.945	46.431	31.480	1.00 13.93	A
		ATOM	2760	0	LEU A	360	28.239	45.430	31.585	1.00 14.58	A
		ATOM	2761	N	PHE A	361	30.198	46.385	31.032	1.00 13.62	А
	55	ATOM	2762	CA	PHE A	361	30.825	45.130	30.618	1.00 13.96	А

		ATOM	2763	СВ	PHE A 361	32.254	45.375	30.115	1.00 13.34	A
		ATOM	2764	CG	PHE A 361	32.338	46.176	28.843	1.00 12.91	A
		MOTA	2765	CD1	PHE A 361	33.535	46.793	28.485	1.00 13.34	A
		ATOM	2766	CD2	PHE A 361	31.238	46.310	28.002	1.00 12.77	A
	5	ATOM	2767	CE1	PHE A 361	33.636	47.537	27.307	1.00 13.11	A
		ATOM	2768	CE2	PHE A 361	31.329	47.052	26.819	1.00 12.47	A
		ATOM	2769	CZ	PHE A 361	32.531	47.665	26.474	1.00 12.92	A
		ATOM	2770	С	PHE A 361	30.889	44.134	31.774	1.00 14.49	A
		ATOM	2771	0	PHE A 361	30.559	42.959	31.614	1.00 14.15	A
	10	ATOM	2772	N	GLU A 362	31.329	44.601	32.939	1.00 15.28	A
		ATOM	2773	CA	GLU A 362	31.441	43.712	34.089	1.00 15.96	A
		ATOM	2774	СВ	GLU A 362	31.969	44.459	35.316	1.00 18.25	A
		ATOM	2775	CG	GLU A 362	32.329	43.518	36.464	1.00 22.03	A
		ATOM	2776	CD	GLU A 362	32.708	44.244	37.740	1.00 24.32	A
	15	ATOM	2777	OE1	GLU A 362	33.483	45.218	37.667	1.00 25.76	A
		ATOM	2778	OE2	GLU A 362	32.238	43.829	38.821	1.00 26.40	A
		ATOM	2779	С	GLU A 362	30.095	43.084	34.427	1.00 15.98	A
		ATOM	2780	0	GLU A 362	30.010	41.886	34.691	1.00 16.22	Α
3 122		ATOM	2781	N	HIS A 363	29.044	43.894	34.417	1.00 15.25	A
	20	ATOM	2782	CA	HIS A 363	27.717	43.387	34.732	1.00 15.49	A
		MOTA	2783	СВ	HIS A 363	26.727	44.537	34.914	1.00 16.71	A
A Page		ATOM	2784	CG	HIS A 363	25.345	44.085	35.267	1.00 17.92	A
1,11		ATOM	2785	CD2	HIS A 363	24.204	44.054	34.539	1.00 18.79	A
400 400 404 400 400 404		ATOM	2786	ND1	HIS A 363	25.034	43.533	36.491	1.00 18.98	A
IJ	25	ATOM	2787	CE1	HIS A 363	23.761	43.180	36.502	1.00 18.19	A
45 H		MOTA	2788	NE2	HIS A 363	23.234	43.484	35.330	1.00 19.23	A
M		ATOM	2789	С	HIS A 363	27.199	42.450	33.650	1.00 15.11	A
R(ATOM	2790	0	HIS A 363	26.834	41.309	33.925	1.00 15.10	А
		MOTA	2791	N	ILE A 364	27.168	42.937	32.415	1.00 14.72	A
Strate.	30	MOTA	2792	CA	ILE A 364	26.679	42.146	31.297	1.00 14.52	A
NaP BRB		MOTA	2793	CB	ILE A 364	26.810	42.932	29.975	1.00 13.45	A
The time that the		MOTA	2794		ILE A 364	26.416	42.043	28.795	1.00 13.94	A
intein in a stem		MOTA	2795		ILE A 364	25.914	44.172	30.027	1.00 13.32	A
1022		MOTA	2796		ILE A 364	26.170	45.165	28.912	1.00 13.44	A
i ni	35	MOTA	2797	С	ILE A 364	27.388	40.807	31.141	1.00 14.67	A
		MOTA	2798	0	ILE A 364	26.741	39.769	30.996	1.00 15.31	A
		MOTA	2799	N	ASN A 365		40.822	31.175	1.00 15.38	A
		MOTA	2800	CA	ASN A 365		39.594	31.005	1.00 15.76	A
	4.0	MOTA	2801	CB	ASN A 365	30.957	39.917	30.771	1.00 15.37	A
	40	MOTA	2802	CG	ASN A 365	31.177	40.768	29.533	1.00 15.04	A
		ATOM	2803		ASN A 365		40.935	28.710	1.00 14.73	A
		MOTA	2804		ASN A 365		41.305	29.393	1.00 13.53	A
		MOTA	2805	С	ASN A 365		38.609	32.162	1.00 17.60	A
	4-	ATOM	2806	0	ASN A 365		37.430	32.005	1.00 17.46	A
	45	MOTA	2807	N	SER A 366		39.087	33.313	1.00 19.18	A
		MOTA	2808	CA	SER A 366		38.226	34.484	1.00 21.16	A
		MOTA	2809	СВ	SER A 366		38.976	35.761	1.00 21.81	A
		MOTA	2810	OG	SER A 366		40.039	36.033	1.00 22.86	A
	Ε0	MOTA	2811	С	SER A 366		37.714	34.622	1.00 22.10	A
	50	MOTA	2812	0	SER A 366		36.810	35.414	1.00 22.66	A
		ATOM	2813	N	GLN A 367		38.299	33.854	1.00 23.09	A
		ATOM	2814	CA	GLN A 367		37.903	33.877	1.00 24.10	A
		ATOM	2815	CB	GLN A 367		39.132	33.749	1.00 25.62	A n
		MOTA	2816	CG	GLN A 367		40.044	34.963	1.00 28.14	A
	55	ATOM	2817	CD	GLN A 367	23.515	39.374	36.195	1.00 29.20	А

		ATOM	2818	OE1	GLN A 36	7 22.337	39.015	36.229	1.00 30.22	A
		ATOM	2819		GLN A 36		39.197	37.215	1.00 30.01	A
		ATOM	2820	С	GLN A 36		36.942	32.726	1.00 23.83	A
		ATOM	2821	0	GLN A 36			31.604	1.00 23.81	A
	5	ATOM	2822	N	ALA A 36			33.019	1.00 23.74	A
	0	ATOM	2823	CA	ALA A 36			32.020	1.00 23.29	A
			2824	CB	ALA A 36			32.700	1.00 23.52	A
		ATOM						31.165	1.00 23.34	A
		ATOM	2825	С	ALA A 36			29.970	1.00 23.34	A
	10	ATOM	2826	0	ALA A 36				1.00 22.74	
	10	MOTA	2827	N	HIS A 36			31.767		A
		MOTA	2828	CA	HIS A 36			31.036	1.00 22.88	A
		ATOM	2829	CB	HIS A 36			31.977	1.00 24.69	A
		ATOM	2830	CG	HIS A 36			32.448	1.00 25.89	A
	a ==	MOTA	2831		HIS A 36			33.619	1.00 26.56	A
	15	MOTA	2832		HIS A 36			31.666	1.00 26.84	A
		ATOM	2833		HIS A 36			32.335	1.00 26.51	A
		MOTA	2834	NE2	HIS A 36			33.523	1.00 27.03	A
		ATOM	2835	С	HIS A 36	9 21.064		29.803	1.00 21.99	A
g (625)		ATOM	2836	0	HIS A 36	9 20.220	36.245	28.908	1.00 22.01	A
	20	ATOM	2837	N	PHE A 37	0 22.110	37.119	29.755	1.00 21.21	A
A Long		ATOM	2838	CA	PHE A 37	0 22.329	38.006	28.615	1.00 19.78	A
		ATOM	2839	CB	PHE A 37	0 23.266	39.156	28.998	1.00 21.09	A
		MOTA	2840	CG	PHE A 37	0 22.592	40.279	29.736	1.00 21.42	A
		ATOM	2841	CD1	PHE A 37			30.883	1.00 22.09	A
II.	25	ATOM	2842		PHE A 37			29.267	1.00 22.35	A
		ATOM	2843		PHE A 37			31.553	1.00 22.54	А
iji		MOTA	2844		PHE A 37			29.931	1.00 22.87	А
498		ATOM	2845	CZ	PHE A 37			31.076	1.00 22.18	А
2)		ATOM	2846	C	PHE A 37			27.456	1.00 18.22	А
	30	ATOM	2847	0	PHE A 37			26.288	1.00 17.08	A
, j	50	ATOM	2848	N	ASN A 37			27.791	1.00 16.98	A
#U		MOTA	2849	CA	ASN A 37			26.794	1.00 15.64	A
			2850	CB	ASN A 37			26.004	1.00 16.15	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ATOM	2851	CG	ASN A 37			26.870	1.00 16.71	A
ind.	35	ATOM						27.401	1.00 18.32	A
g com	33	ATOM	2852		ASN A 37			27.401	1.00 13.32	A
		ATOM	2853		ASN A 37					
		ATOM	2854	C	ASN A 37			25.865	1.00 15.24	A
		MOTA	2855	0	ASN A 37			24.640	1.00 15.41	A
	40	MOTA	2856	N	VAL A 37			26.478	1.00 14.72	A
	40	MOTA	2857	CA	VAL A 37			25.763	1.00 14.11	A
		MOTA	2858	СВ	VAL A 37			25.792	1.00 14.33	A
		ATOM	2859		VAL A 37			25.264	1.00 13.94	A
		ATOM	2860	CG2	VAL A 37			24.964	1.00 14.60	А
		ATOM	2861	С	VAL A 37			26.407	1.00 14.50	A
	45	ATOM	2862	0	VAL A 37			27.624	1.00 14.25	A
		ATOM	2863	N	GLN A 37	3 29.172		25.573	1.00 14.04	A
		MOTA	2864	CA	GLN A 37	3 30.539	38.877	26.031	1.00 14.11	A
		ATOM	2865	CB	GLN A 37	3 31.452	37.713	25.631	1.00 14.92	A
		ATOM	2866	CG	GLN A 37	3 32.933	37.914	25.971	1.00 16.67	A
	50	ATOM	2867	CD	GLN A 37	3 33.172	38.273	27.432	1.00 17.93	A
		ATOM	2868		GLN A 37			28.329	1.00 19.36	А
		ATOM	2869		GLN A 37			27.675	1.00 17.77	A
		ATOM	2870	С	GLN A 37			25.307	1.00 13.61	A
		ATOM	2871	0	GLN A 37			24.106	1.00 13.94	А
	55	ATOM	2872	N	ALA A 37			26.040	1.00 12.65	A
			2012			_ 50.550		,		

		MOTA	2873	CA	ALA A			31.281	42.558	25.466		12.16	A
		MOTA	2874	CB	ALA A			30.183	43.553	25.800		11.40	A
		MOTA	2875	С	ALA A			32.623	43.085	25.949		12.23	А
		MOTA	2876	0	ALA A	4 3	374	33.012	42.869	27.094	1.00	11.95	А
	5	MOTA	2877	N	GLN A	3	375	33.323	43.796	25.074	1.00	11.84	A
		MOTA	2878	CA	GLN A	4 3	375	34.619	44.356	25.432	1.00	12.49	A
		MOTA	2879	CB	GLN A	4 3	375	35.685	43.258	25.461	1.00	14.15	A
		ATOM	2880	CG	GLN A	A 3	375	35.804	42.468	24.160	1.00	17.09	A
		MOTA	2881	CD	GLN A	<i>A</i> 3	375	34.957	41.211	24.165		19.74	A
	10	MOTA	2882	OE1	GLN A	4 3	375	35.187	40.302	24.964	1.00	21.17	A
		MOTA	2883	NE2	GLN A	A 3	375	33.971	41.151	23.274	1.00	20.69	A
		MOTA	2884	С	GLN A	4 3	375	35.059	45.424	24.448	1.00	11.84	Α
		MOTA	2885	0	GLN A	4 3	375	34.518	45.526	23.348	1.00	11.73	A
		ATOM	2886	N	PHE A	<i>A</i> 3	376	36.032	46.232	24.859	1.00	11.18	A
	15	ATOM	2887	CA	PHE A	4 3	376	36.579	47.245	23.969	1.00	10.74	A
		MOTA	2888	CB	PHE A	4 3	376	37.515	48.197	24.720	1.00	10.14	A
		MOTA	2889	CG	PHE A	A 3	376	36.814	49.112	25.681	1.00	10.91	A
		MOTA	2890	CD1	PHE A	A 3	376	37.163	49.120	27.028	1.00	11.12	A
41.700E		MOTA	2891	CD2	PHE A	4 3	376	35.807	49.971	25.243	1.00	11.24	A
	20	ATOM	2892	CE1	PHE A	4 3	376	36.518	49.970	27.927	1.00	11.39	A
1,11		ATOM	2893	CE2	PHE A	4 3	376	35.158	50.825	26.138	1.00	11.60	A
		MOTA	2894	CZ	PHE A	4 3	376	35.516	50.821	27.482	1.00	11.57	A
		ATOM	2895	С	PHE A			37.386	46.450	22.954	1.00	11.25	А
		ATOM	2896	0	PHE A			38.015	45.448	23.297	1.00	10.76	A
	25	ATOM	2897	N	GLY A			37.364	46.882	21.702	1.00	11.05	A
MJ.		MOTA	2898	CA	GLY A			38.121	46.171	20.693	1.00	10.92	A
(T		ATOM	2899	С	GLY A			38.524	47.092	19.565	1.00	10.93	A
		ATOM	2900	0	GLY A			38.196	48.277	19.577	1.00	10.75	A
III Jerry		ATOM	2901	N	THR A			39.257	46.549	18.600	1.00	10.49	А
	30	MOTA	2902	CA	THR A			39.674	47.333	17.447	1.00	11.19	А
1 120		ATOM	2903	СВ	THR A			41.187	47.214	17.182	1.00	11.98	A
4.4		ATOM	2904	OG1	THR A			41.508	45.860	16.845	1.00	11.89	A
i dela		ATOM	2905	CG2	THR A			41.981	47.640	18.411	1.00	12.75	A
1,422		ATOM	2906	С	THR A			38.924	46.809	16.228	1.00	10.71	A
j.L	35	ATOM	2907	0	THR A			38.233	45.788	16.296	1.00	10.80	A
		ATOM	2908	N	LEU A	A 3	379	39.059	47.509	15.111	1.00	10.53	А
		ATOM	2909	CA	LEU A	A 3	379	38.386	47.101	13.888	1.00	9.83	А
		ATOM	2910	СВ	LEU A	A 3	379	38.605	48.160	12.803	1.00	9.72	A
		ATOM	2911	CG	LEU A	4 3	379	37.862	47.943	11.483	1.00	9.77	A
	40	ATOM	2912	CD1	LEU A	A 3	379	36.357	47.930	11.748	1.00	10.37	A
		ATOM	2913		LEU A			38.227	49.050	10.493	1.00	10.95	A
		MOTA	2914	С	LEU A			38.879	45.738	13.399	1.00	10.38	A
		ATOM	2915	0	LEU A			38.083	44.878	13.017	1.00	10.10	A
		ATOM	2916	N	GLN A			40.193	45.538	13.415	1.00	10.27	A
	45	ATOM	2917	CA	GLN A	A 3	380	40.764	44.274	12.964	1.00	10.67	A
		ATOM	2918	СВ	GLN A	A 3	380	42.292	44.339	13.003	1.00	11.35	A
		ATOM	2919	CG	GLN A	A 3	380	42.975	43.119	12.410	1.00	14.06	A
		MOTA	2920	CD	GLN A			42.611	42.913	10.957	1.00	15.62	А
		ATOM	2921		GLN A			42.678	43.846	10.155	1.00	16.75	А
	50	ATOM	2922		GLN A			42.228	41.687	10.604		17.08	А
		ATOM	2923	С	GLN A			40.262	43.114	13.825		10.55	A
		ATOM	2924	0	GLN A			40.008	42.021	13.316		11.04	A
		ATOM	2925	N	GLU A			40.117	43.347	15.127		10.91	А
		ATOM	2926	CA	GLU A			39.633	42.298	16.016		11.75	А
	55	ATOM	2927	CB	GLU A			39.657	42.768	17.473		13.13	А
	-					_							

	ATOM	2928	CG	GLU A	381	41.063	43.061	17.981	1.00 16.73	A
	MOTA	2929	CD	GLU A		41.108	43.354	19.465	1.00 19.29	A
	MOTA	2930	OE1	GLU A	381	40.266	44.141	19.941	1.00 18.94	A
	MOTA	2931	OE2	GLU A	381	41.997	42.805	20.154	1.00 22.67	A
5	MOTA	2932	С	GLU A	381	38.219	41.884	15.621	1.00 10.96	A
	MOTA	2933	0	GLU A		37.880	40.706	15.661	1.00 12.22	А
	MOTA	2934	N	TYR A	382	37.397	42.857	15.244	1.00 10.23	А
	ATOM	2935	CA	TYR A		36.037	42.562	14.821	1.00 9.86	A
	ATOM	2936	СВ	TYR A		35.279	43.847	14.488	1.00 10.34	A
10	ATOM	2937	CG	TYR A		33.967	43.581	13.784	1.00 9.83	A
	ATOM	2938	CD1	TYR A		32.891	43.011	14.467	1.00 9.54	A
	ATOM	2939	CE1	TYR A		31.702	42.700	13.809	1.00 9.35	A
	MOTA	2940	CD2			33.820	43.839	12.418	1.00 10.35	A
	MOTA	2941	CE2	TYR A		32.634	43.528	11.750	1.00 10.43	A
15	ATOM	2942	CZ	TYR A		31.581	42.957	12.453	1.00 10.11	А
10	ATOM	2943	OH	TYR A		30.410	42.625	11.805	1.00 10.25	А
	MOTA	2943	C	TYR A		36.061	41.676	13.581	1.00 10.29	A
	ATOM	2945	0	TYR A		35.438	40.617	13.546	1.00 10.12	A
	ATOM	2945	N	PHE A		36.775	42.120	12.553	1.00 9.08	A
20		2947	CA	PHE A		36.852	41.353	11.320	1.00 9.53	A
20	MOTA		CB	PHE A		37.657	42.121	10.268	1.00 9.49	A
	ATOM	2948	CG	PHE A		36.898	43.262	9.638	1.00 9.73	A
	ATOM	2949		PHE A		37.406	44.555	9.676	1.00 9.70	A
	ATOM	2950		PHE A		35.678	43.038	9.003	1.00 10.22	A
25	ATOM	2951				36.709	45.613	9.003	1.00 10.22	A
23	ATOM	2952		PHE A			44.088	8.415	1.00 10.13	A
	ATOM	2953		PHE A		34.971	45.378	8.459	1.00 11.04	A
	ATOM	2954	CZ	PHE A		35.490	39.961	11.528	1.00 11.20	A
	ATOM	2955	С	PHE A		37.441	38.993	10.926	1.00 10.29	Ā
20	ATOM	2956	0	PHE A		36.971		12.370	1.00 10.23	Ā
30	ATOM	2957	N	ASP A		38.466	39.851	12.625	1.00 10.33	A
	ATOM	2958	CA	ASP A		39.067	38.543	13.608	1.00 12.10	A
	ATOM	2959	CB	ASP A		40.239	38.655		1.00 13.03	A
	MOTA	2960	CG	ASP A		41.482	39.262	12.980	1.00 14.89	A
25	MOTA	2961		ASP A		41.572	39.309	11.735	1.00 10.13	A
35	MOTA	2962		ASP A		42.382	39.677	13.739		A
	ATOM	2963	C	ASP A		38.015	37.592	13.196	1.00 11.66 1.00 11.92	A
	ATOM	2964	0	ASP A		37.913	36.438	12.777	1.00 11.92	A
	MOTA	2965	N	ALA A		37.224	38.086	14.147		
40	ATOM	2966	CA	ALA A		36.181	37.280	14.771	1.00 11.44 1.00 12.50	A
40	ATOM	2967	СВ	ALA A		35.576		15.957		A
	ATOM	2968	С	ALA A		35.094	36.905	13.765	1.00 11.73	A
	MOTA	2969	0	ALA A		34.608	35.777	13.758	1.00 11.52	A
	ATOM	2970	N	VAL A		34.714	37.851	12.912	1.00 11.15	A
	ATOM	2971	CA	VAL A		33.694	37.585	11.904	1.00 11.93	A
45	ATOM	2972	CB	VAL A		33.425	38.838	11.042	1.00 11.54	A
	ATOM	2973		VAL A		32.580	38.471	9.826	1.00 12.39	A
	ATOM	2974	CG2	VAL A		32.719	39.887	11.874	1.00 12.20	A
	MOTA	2975	С	VAL A		34.114	36.440	10.986	1.00 12.29	А
	ATOM	2976	0	VAL A		33.330	35.530	10.706	1.00 12.49	A
50	ATOM	2977	N	HIS A		35.353	36.483	10.513	1.00 12.25	A
	ATOM	2978	CA	HIS A		35.832	35.440	9.619	1.00 12.83	A
	ATOM	2979	СВ	HIS A	387	37.092	35.918	8.899	1.00 12.37	A
	ATOM	2980	CG	HIS A	387	36.827	37.039	7.942	1.00 13.26	A
	MOTA	2981	CD2	HIS A	387	37.280	38.314	7.909	1.00 13.42	A
55	ATOM	2982	ND1	HIS A	387	35.950	36.916	6.886	1.00 14.23	A

	ATOM	2983	CE1	HIS	Д	387	35.871	38.069	6.245	1.00 14.01	А
	ATOM	2984	NE2				36.668	38.934	6.846	1.00 13.21	А
								34.111	10.331	1.00 13.93	A
	MOTA	2985	C	HIS			36.049			1.00 13.93	A
_	MOTA	2986	0	HIS			35.995	33.050	9.708		
5	MOTA	2987	N	GLN			36.281	34.166	11.639	1.00 14.93	A
	MOTA	2988	CA	GLN			36.446	32.944	12.413	1.00 17.07	A
	MOTA	2989	CB	GLN	Α	388	36.914	33.272	13.833	1.00 18.68	A
	ATOM	2990	CG	GLN	Α	388	38.403	33.574	13.937	1.00 22.09	A
	MOTA	2991	CD	GLN	Α	388	38.764	34.330	15.206	1.00 24.01	A
10	ATOM	2992	OE1				38.272	34.020	16.291	1.00 26.13	A
~~	ATOM	2993	NE2	GLN			39.637	35.324	15,075	1.00 25.42	A
	ATOM	2994	C	GLN			35.081	32.260	12.443	1.00 17.56	А
	ATOM	2995	0	GLN			34.983	31.039	12.342	1.00 17.57	А
		2996		ALA			34.027	33.063	12.566	1.00 18.15	A
1 =	ATOM		N					32.543	12.594	1.00 19.02	A
15	MOTA	2997	CA	ALA			32.663				A
	MOTA	2998	CB	ALA			31.688	33.647	12.990	1.00 18.44	
	MOTA	2999	С	ALA			32.310	31.996	11.215	1.00 20.03	A
	MOTA	3000	0	ALA			31.630	30.976	11.093	1.00 20.84	A
	MOTA	3001	N	GLU			32.776	32.688	10.178	1.00 20.86	A
20	MOTA	3002	CA	GLU	Α	390	32.535	32.278	8.800	1.00 22.27	A
	MOTA	3003	CB	GLU	Α	390	33.109	33.326	7.839	1.00 21.67	A
	MOTA	3004	CG	GLU	A	390	33.223	32.874	6.390	1.00 22.55	A
	ATOM	3005	CD	GLU	А	390	33.774	33.964	5.491	1.00 22.57	A
	ATOM	3006		GLU			34.653	34.722	5.953	1.00 22.88	А
25	ATOM	3007		GLU			33.341	34.057	4.323	1.00 23.67	A
	ATOM	3008	C	GLU			33.181	30.920	8.544	1.00 23.75	А
	ATOM	3009	0			390	32.563	30.028	7.960	1.00 23.58	А
	ATOM	3010	И	ARG			34.426	30.769	8.984	1.00 25.19	A
				ARG			35.147	29.514	8.810	1.00 27.32	A
20	ATOM	3011	CA					29.675	9.233	1.00 27.32	A
30	ATOM	3012	CB	ARG			36.609			1.00 20.40	A
	ATOM	3013	CG	ARG			37.457	30.466	8.248		
	ATOM	3014	CD	ARG			38.898	30.573	8.723	1.00 32.35	A
	MOTA	3015	NE			391	39.021	31.418	9.907	1.00 34.70	A
	MOTA	3016	CZ			391	40.147	31.591	10.591	1.00 35.47	A
35	ATOM	3017		ARG			41.259	30.973	10.212	1.00 36.35	A
	MOTA	3018	NH2	ARG			40.165	32.386	11.652	1.00 36.12	A
	ATOM	3019	С	ARG	Α	391	34.488	28.403	9.621	1.00 27.87	A
	ATOM	3020	0	ARG	Α	391	34.553	27.230	9.250	1.00 28.52	A
	MOTA	3021	N	ALA	Α	392	33.855	28.774	10.729	1.00 28.42	A
40	ATOM	3022	CA	ALA	Α	392	33.174	27.798	11.572	1.00 29.34	A
	ATOM	3023	СВ			392	32.808	28.423	12.913	1.00 29.39	A
	ATOM	3024	C			392	31.918	27.334	10.843	1.00 29.94	А
	ATOM	3025	0			392	31.238		11.278	1.00 30.20	А
	ATOM	3026	N			393	31.621	27.997	9.729	1.00 30.21	А
45							30.459	27.647	8.936	1.00 30.73	A
43	ATOM	3027	CA			393		28.156	9.476	1.00 30.90	A
	ATOM	3028	C			393	29.137		9.186	1.00 30.30	A
	ATOM	3029	0			393	28.089	27.583			
	MOTA	3030	N			394	29.167	29.230	10.258	1.00 31.23	A
=0	MOTA	3031	CA			394	27.926	29.762	10.803	1.00 31.55	A
50	ATOM	3032	CB			394	28.125	30.254	12.243	1.00 32.81	A
	MOTA	3033	CG			394	28.869	31.566	12.379	1.00 34.09	A
	ATOM	3034	CD	GLN	Α	394	28.756	32.150	13.777	1.00 34.34	A
	ATOM	3035	OE1	GLN	Α	394	29.246	31.573	14.749	1.00 34.56	A
	ATOM	3036	NE2	GLN	Α	394	28.099	33.299	13.883	1.00 33.78	A
55	MOTA	3037	С			394	27.373	30.892	9.944	1.00 30.68	А

	ATOM	3038	0	GLN A	394	26.3	08	31.434	10.23	3 1.00	31.18	А
	MOTA	3039		ALA A		28.0	91	31.242	8.88	0 1.00	29.36	A
	ATOM	3040	CA	ALA A		27.6	44	32.311	7.99	8 1.00	28.11	A
	ATOM	3041	СВ	ALA A		27.9	39	33.667	8.63		28.51	A
5	ATOM	3042	С	ALA A	395	28.2	63	32.253	6.60		27.07	A
_	ATOM	3043	0	ALA A		29.4	13	31.849	6.43	4 1.00	26.55	A
	ATOM	3044	N	GLU A	396	27.4	72	32.656	5.61	8 1.00	26.11	A
	ATOM	3045	CA	GLU A		27.9	02	32.701	4.22	7 1.00	25.01	A
	ATOM	3046	СВ	GLU A		27.0	81	31.731	3.37	2 1.00	28.19	A
10	ATOM	3047	CG	GLU A		26.4	03	30.616	4.15	6 1.00	32.27	A
	ATOM	3048	CD	GLU A		25.0	87	31.055	4.78	0 1.00	34.46	A
	ATOM	3049		GLU A	396	25.0	79	32.035	5.55		35.47	A
	ATOM	3050	OE2	GLU A		24.0	54	30.414	4.49	1 1.00	35.90	A
	ATOM	3051	С	GLU A	396	27.6	510	34.134	3.80	4 1.00	22.25	A
15	ATOM	3052	0	GLU A		26.5	559	34.675	4.14	7 1.00	22.54	A
	ATOM	3053	N	PHE A		28.5	28	34.756	3.07	5 1.00	18.45	A
	ATOM	3054	CA	PHE A		28.3	313	36.134	2.66	1 1.00	15.02	A
	ATOM	3055	СВ	PHE A		29.5	30	36.988	3.02	4 1.00	14.03	A
	ATOM	3056	CG	PHE A	397	29.8	30	37.014	4.49		11.87	A
20	ATOM	3057		PHE A		30.9	16	36.315	5.00		12.64	A
	ATOM	3058	CD2	PHE A	397	29.0	10	37.718	5.36		11.17	A
	ATOM	3059	CE1	PHE A	397	31.1	81	36.318	6.37		12.60	A
	MOTA	3060	CE2	PHE A	397	29.2	267	37.725	6.73		11.98	A
	ATOM	3061	CZ	PHE A	397	30.3	354	37.024	7.24		12.05	А
25	MOTA	3062	С	PHE A	397	27.9	998	36.295	1.18		13.50	A
	ATOM	3063	0	PHE A	397	28.5	549	35.592	0.33		13.62	A
	ATOM	3064	N	PRO A	398	27.0	90	37.227	0.85		11.54	A
	ATOM	3065	CD	PRO A	398	26.3	315	38.064	1.79		11.74	A
	ATOM	3066	CA	PRO A	398	26.6	594	37.491	-0.52		11.19	А
30	MOTA	3067	CB	PRO A	398	25.4	117	38.302	-0.36		11.18	A
	MOTA	3068	CG	PRO A		25.7		39.107	0.87		10.73	A
	MOTA	3069	С	PRO A		27.7		38.267	-1.28		10.60	A
	ATOM	3070	0	PRO A		28.6		38.941	-0.68		10.78	A
	ATOM	3071	N	THR A		27.7		38.150	-2.60		10.12	A
35	ATOM	3072	CA	THR A		28.6		38.849	-3.47		9.51	A
	MOTA	3073	CB	THR A		29.0		37.968	-4.66		9.66	A
	MOTA	3074	OG1	THR A		27.8		37.527	-5.35		11.62	A
	ATOM	3075	CG2			29.8		36.754	-4.16		10.14	A
	MOTA	3076	С	THR A		27.9		40.085	-3.98		9.58	A
40	MOTA	3077	0	THR A						8 1.00		
	MOTA	3078	И	LEU A		28.6		41.155	-4.24		8.68	A.
	MOTA	3079	CA	LEU A		28.0		42.383	-4.70		8.59	A
	MOTA	3080	СВ	LEU A		27.6		43.250	-3.49		9.30	A
	MOTA	3081	CG	LEU A		27.0		44.646	-3.68		8.82	A
45	ATOM	3082		LEU A		26.2		45.023	-2.42			A
	MOTA	3083		LEU A		28.1		45.690	-3.99		9.06	A
	ATOM	3084	С	LEU A		28.9		43.169	-5.61		8.59	A
	ATOM	3085	0	LEU A		30.3		43.136	-5.46		8.00	A
50	ATOM	3086	N	SER A		28.3		43.857	-6.58		8.67	A A
50	MOTA	3087	CA	SER A		29.1		44.717	-7.48			
	MOTA	3088	CB	SER A		29.3		44.052	-8.83		9.45	A n
	MOTA	3089	OG	SER A		28.2		44.125	-9.69		9.90	A A
	ATOM	3090	С	SER A		28.2		45.975	-7.66		8.49	
	ATOM	3091	0	SER A		27.0		45.955	-7.46			A
55	ATOM	3092	N	GLY A	. 402	28.	943	47.069	-8.02	21 1.00	7.28	А

		ATOM	3093	CA	GLY A		28.252	48.332	-8.222	1.00	7.95	A
		MOTA	3094	С	GLY A		28.860	49.410	-7.346	1.00	8.13	A
		MOTA	3095	0	GLY A		29.905	49.190	-6.724	1.00	8.75	A
	_	MOTA	3096	N	ASP A		28.220	50.575	-7.297	1.00	7.93	A
	5	MOTA	3097	CA	ASP A		28.720	51.670	-6.473	1.00	8.03	A
		MOTA	3098	CB	ASP A		29.229	52.815	-7.360	1.00	8.33	A
		MOTA	3099	CG	ASP A		28.112	53.578	-8.037		10.13	A
		MOTA	3100		ASP A		26.994	53.039	-8.160		12.44	A
	4.0	MOTA	3101		ASP A		28.363	54.724	-8.460		12.35	A
	10	MOTA	3102	С	ASP A		27.623	52.162	-5.541	1.00	8.91	A
		MOTA	3103	0	ASP A		26.516	51.609	-5.521	1.00	8.76	A
		MOTA	3104	N	PHE A		27.933	53.192	-4.761	1.00	7.11	A
		MOTA	3105	CA	PHE A		26.967	53.740	-3.827	1.00	7.03	A
	4 =	MOTA	3106	CB	PHE A		27.338	53.341	-2.391	1.00	7.25	A
	15	MOTA	3107	CG	PHE A		27.292	51.852	-2.163	1.00	7.96	A
		MOTA	3108		PHE A		28.457	51.092	-2.183	1.00	8.45	A
		ATOM	3109		PHE A		26.070	51.203	-1.994	1.00	8.79	A
		ATOM	3110		PHE A		28.407	49.702	-2.042	1.00	8.99	A
41572 2 3 3 100	20	ATOM	3111		PHE A		26.010	49.813	-1.853	1.00	8.46	A
	20	MOTA	3112	CZ	PHE A		27.180	49.064	-1.877	1.00	9.11	A
		ATOM	3113	С	PHE A		26.785	55.247	-3.957	1.00	5.97 6.84	A
		MOTA	3114	0	PHE A		26.922	55.998	-2.994	1.00		A A
		ATOM	3115	N	PHE A		26.470	55.664	-5.180 -5.512	1.00	7.41 8.36	A A
	25	ATOM	3116	CA	PHE A		26.190	57.059		1.00	7.18	A
2 L A	25	MOTA	3117	CB	PHE A		27.228	57.624 57.725	-6.494 -5.930	1.00	7.16	A
		ATOM	3118	CG CD1	PHE A		28.618 29.676	57.723	-5.930 -6.542	1.00	8.48	A
		ATOM	3119		PHE A		28.875	58.492	-4.797	1.00	7.69	A
ä:		ATOM	3120 3121		PHE A		30.975	57.159	-6.033	1.00	7.72	A
	30	ATOM	3122		PHE A		30.973	58.595	-4.280	1.00	7.86	A
	50	MOTA MOTA	3123	CZ	PHE A		31.221	57.926	-4.901	1.00	7.74	A
		ATOM	3123	C	PHE A		24.832	56.989	-6.216	1.00	9.74	A
ğ 1200		ATOM	3124	0	PHE A		24.548	56.000	-6.894		11.55	A
2,045 1,042 1,042		ATOM	3126	N	THR A		23.989	58.009	-6.080		10.20	A
	35	ATOM	3127	CA	THR A		24.266	59.205	-5.302	1.00	9.22	А
2.	00	ATOM	3128	CB	THR A		23.738	60.449	-6.047	1.00	8.18	A
		ATOM	3129	OG1	THR A		24.579	60.693	-7.179		10.10	А
		ATOM	3130		THR A		23.724	61.677	-5.149	1.00	8.41	A
		ATOM	3131	C	THR A		23.638	59.107	-3.918	1.00	9.23	А
	40	ATOM		0			22.478		-3.761	1.00	10.33	A
		ATOM	3133	N	TYR A		24.433	59.462	-2.918	1.00	9.08	A
		ATOM	3134	CA	TYR A		24.030	59.418	-1.520	1.00	9.23	А
		ATOM	3135	СВ	TYR A		25.276	59.650	-0.660	1.00	9.83	A
		ATOM	3136	CG	TYR A		25.047	59.828	0.824	1.00	10.11	A
	45	ATOM	3137		TYR A		24.571	58.779	1.614	1.00	9.79	A
		ATOM	3138	CE1	TYR A	407	24.448	58.918	2.997	1.00	10.83	A
		MOTA	3139		TYR A		25.383	61.024	1.453	1.00	9.98	A
		ATOM	3140	CE2	TYR A	407	25.265	61.175	2.833	1.00	9.66	A
		ATOM	3141	CZ	TYR A		24.802	60.119	3.600	1.00	9.91	A
	50	ATOM	3142	ОН	TYR A		24.732	60.257	4.967	1.00	10.51	A
		ATOM	3143	С	TYR A		22.954	60.423	-1.129	1.00	10.35	А
		ATOM	3144	0	TYR A		22.947	61.559	-1.593	1.00	10.39	A
		ATOM	3145	N	ALA A		22.043	59.976	-0.272	1.00	10.77	A
		MOTA	3146	CA	ALA A	408	20.980	60.809	0.279		10.56	А
	55	ATOM	3147	СВ	ALA A	408	19.652	60.549	-0.432	1.00	12.09	A

							•			
		ATOM	3148	С	ALA A 408	20.900	60.360	1.732	1.00 10.90	A
		ATOM	3149	0	ALA A 408		59.165	1.999	1.00 10.68	A
		ATOM	3150	N	ASP A 409		61.296	2.671	1.00 10.55	А
		ATOM	3151	CA	ASP A 409		60.933	4.084	1.00 11.69	A
	5	ATOM	3152	СВ	ASP A 409		61.795	4.920	1.00 11.33	A
	J	ATOM	3153	CG	ASP A 409		63.292	4.869	1.00 10.60	A
			3154		ASP A 403		63.770	3.898	1.00 10.00	A
		ATOM					64.004	5.811	1.00 11.47	A
		ATOM	3155		ASP A 409				1.00 12.81	A
	10	ATOM	3156	C	ASP A 409		60.987	4.641		
	10	ATOM	3157	0	ASP A 409		60.388	5.680	1.00 14.02	A
		ATOM	3158	N	ARG A 410		61.683	3.935	1.00 13.88	A
		MOTA	3159	CA	ARG A 410		61.785	4.343	1.00 15.32	A
		MOTA	3160	CB	ARG A 410		62.574	5.652	1.00 17.28	A
		MOTA	3161	CG	ARG A 410		64.009	5.620	1.00 20.04	A
	15	MOTA	3162	CD	ARG A 410		64.579	7.035	1.00 23.14	A
		MOTA	3163	NE	ARG A 410	18.215	65.913	7.135	1.00 26.24	А
		MOTA	3164	CZ	ARG A 410	17.598	67.038	6.787	1.00 28.17	A
		MOTA	3165	NH1	ARG A 410	16.359	67.004	6.310	1.00 28.33	A
2,50%		MOTA	3166	NH2	ARG A 410	18.219	68.201	6.924	1.00 28.66	A
	20	MOTA	3167	С	ARG A 410	16.407	62.426	3.256	1.00 15.93	A
1,11		MOTA	3168	0	ARG A 410	16.911	63.174	2.416	1.00 15.40	A
		ATOM	3169	N	SER A 411		62.110	3.282	1.00 15.97	A
		ATOM	3170	CA	SER A 411		62.624	2.320	1.00 16.02	A
		ATOM	3171	СВ	SER A 411		63.984	2.787	1.00 17.79	A
898	25	ATOM	3172	OG	SER A 411		64.906	3.039	1.00 20.12	A
		ATOM	3173	C	SER A 411		62.723	0.892	1.00 15.26	A
		ATOM	3174	0	SER A 411		61.725	0.322	1.00 15.04	A
M		ATOM	3175	N	ASP A 412		63.919	0.313	1.00 13.50	A
31		ATOM	3176	CA	ASP A 412		64.133	-1.052	1.00 13.01	A
	30	ATOM	3177	CB	ASP A 412		64.937	-1.848	1.00 13.83	A
	50	ATOM	3178	CG	ASP A 412		66.369	-1.354	1.00 14.01	A
		ATOM	3179		ASP A 412		66.672	-0.241	1.00 13.33	A
		ATOM	3180		ASP A 412		67.196	-2.077	1.00 15.12	A
4246 4246		MOTA	3181	C	ASP A 412		64.871	-1.054	1.00 13.12	A
	35		3182		ASP A 412		65.439	-2.071	1.00 12.37	A
	55	ATOM		0			64.857	0.087	1.00 12.57	A
		ATOM	3183	N	ASN A 413				1.00 11.09	A
		ATOM	3184	CA	ASN A 413		65.538	0.215 1.683		
		ATOM	3185	CB	ASN A 413		65.851		1.00 11.71	A
	40	ATOM	3186	CG				2.271	1.00 11.32	A
	40	MOTA	3187		ASN A 413			3.364	1.00 12.21	A
		MOTA	3188		ASN A 413			1.559	1.00 11.39	A
		ATOM	3189	С	ASN A 413			-0.365	1.00 11.02	A
		ATOM	3190	0	ASN A 413			0.373	1.00 11.48	A
		MOTA	3191	N	TYR A 414			-1.687	1.00 10.66	A
	45	MOTA	3192	CA	TYR A 414			-2.367	1.00 10.00	A
		ATOM	3193	CB	TYR A 414		63.638	-3.787	1.00 10.30	A
		ATOM	3194	CG	TYR A 414	19.333	62.505	-3.824	1.00 10.55	A
		ATOM	3195	CD1	TYR A 414	17.974		-3.616	1.00 10.75	A
		MOTA	3196		TYR A 414		61.688	-3.606	1.00 10.98	A
	50	MOTA	3197	CD2	TYR A 414	19.752		-4.025	1.00 10.20	A
		ATOM	3198	CE2	TYR A 414	18.844	60.134	-4.016	1.00 10.67	A
		ATOM	3199	CZ	TYR A 414		60.390	-3.806	1.00 10.80	А
		ATOM	3200	ОН	TYR A 414			-3.796	1.00 10.77	A
		ATOM	3201	С	TYR A 414			-2.419	1.00 10.13	A
	55	ATOM	3202	0	TYR A 414			-2.778	1.00 10.53	А
			~	-				_		

		ATOM	3203	N	TRP A	415	23.142	64.302	-2.072	1.00	9.52	A
		ATOM	3204	CA	TRP A	415	24.416	65.010	-2.030	1.00	9.26	A
		MOTA	3205	СВ		415	25.320	64.366	-0.971	1.00	9.67	А
		ATOM	3206	CG	TRP A		24.786	64.442	0.441	1.00	9.03	А
	5	ATOM	3207	CD2	TRP A		25.545	64.689	1.632	1.00	9.61	A
	Ü	ATOM	3208	CE2	TRP A		24.650	64.605	2.725	1.00	9.55	А
		ATOM	3209	CE3	TRP A		26.896	64.972	1.882	1.00	9.25	A
		ATOM	3210	CD1	TRP A		23.494	64.225	0.851	1.00	9.72	A
		ATOM	3211	NEI	TRP A		23.408	64.321	2.220	1.00	9.57	A
	10						25.064	64.794	4.051	1.00	9.83	A
	10	MOTA	3212	CZ2	TRP A				3.201		9.05	A
		ATOM	3213	CZ3	TRP A		27.309	65.158		1.00		
		ATOM	3214	CH2	TRP A		26.393	65.068	4.270	1.00	9.98	A
		MOTA	3215	С	TRP A		25.140	65.041	-3.372	1.00	9.53	A
	a ==	MOTA	3216	0	TRP A		26.251	64.528	-3.495	1.00	10.20	A
	15	MOTA	3217	N	SER A		24.514	65.639	-4.379	1.00	9.04	A
		MOTA	3218	CA	SER A		25.143	65.724	-5.690	1.00	8.92	A
		MOTA	3219	CB	SER A	416	24.144	65.357	-6.798	1.00	8.51	А
		MOTA	3220	OG	SER A	416	22.870	65.939	-6.574	1.00	8.91	А
154		MOTA	3221	С	SER A	416	25.728	67.110	-5.933	1.00	8.58	A
	20	ATOM	3222	0	SER A	416	26.388	67.346	-6.939	1.00	8.72	A
₹,[₁₂];		ATOM	3223	N	GLY A	417	25.504	68.023	-4.995	1.00	8.72	A
		MOTA	3224	CA	GLY A	417	26.035	69.361	-5.155	1.00	9.16	A
1,11		ATOM	3225	С	GLY A	417	27.549	69.389	-5.084	1.00	8.20	A
		ATOM	3226	0	GLY A		28.194	70.109	-5.846	1.00	8.68	A
ių,	25	MOTA	3227	N	TYR A		28.125	68.591	-4.187	1.00	8.03	A
100		ATOM	3228	CA	TYR A		29.575	68.583	-4.018	1.00	7.87	А
igh igh		ATOM	3229	СВ	TYR A		29.955	67.891	-2.699	1.00	7.48	А
		ATOM	3230	CG	TYR A		30.086	66.390	-2.762	1.00	7.93	A
E)		ATOM	3231	CD1	TYR A		31.328	65.794	-2.973	1.00	7.95	A
	30	ATOM	3232	CE1	TYR A		31.467	64.414	-2.997	1.00	7.84	A
	00	ATOM	3232	CD2	TYR A		28.978	65.563	-2.583	1.00	8.11	A
		ATOM	3234	CE2	TYR A		29.104	64.177	-2.608	1.00	8.06	A
		ATOM	3235	CZ	TYR A		30.354	63.611	-2.813	1.00	7.96	A
100			3236	OH	TYR A		30.501	62.248	-2.817	1.00	8.02	A
Stage Stage	35	ATOM	3237	С			30.346	67.988	-5.199	1.00	7.88	A
E .	33	ATOM			TYR A				-5.208	1.00	7.86	A
		ATOM	3238	0	TYR A		31.576	67.989		1.00	7.67	A
		ATOM	3239	N	TYR A		29.627	67.477	-6.194		7.72	A
		ATOM	3240	CA	TYR A		30.282	66.952	-7.388	1.00		
	40	ATOM	3241	CB	TYR A		29.290	66.179	-8.265	1.00	7.93	A
	40	ATOM	3242	CG	TYR A		28.676	64.947	-7.644	1.00	7.53	A
		ATOM	3243		TYR A		27.487	64.416	-8.152	1.00	7.43	A
		ATOM	3244		TYR A		26.926	63.261	-7.619	1.00	8.40	A
		MOTA	3245		TYR A		29.289	64.285	-6.579	1.00	7.84	A
		MOTA	3246	CE2	TYR A	419	28.735	63.123	-6.041	1.00	8.37	А
	45	ATOM	3247	CZ	TYR A	419	27.553	62.619	-6.567	1.00	8.35	A
		MOTA	3248	ОН	TYR A	419	26.995	61.474	-6.047	1.00	8.31	А
		MOTA	3249	С	TYR A	419	30.803	68.150	-8.190	1.00	7.72	A
		ATOM	3250	0	TYR A	419	31.616	67.988	-9.103	1.00	8.10	А
		ATOM	3251	N	THR A	420	30.338	69.348	-7.832	1.00	7.79	A
	50	ATOM	3252	CA	THR A	420	30.718	70.574	-8.531	1.00	7.63	A
		MOTA	3253	СВ	THR A	420	29.503	71.111	-9.333	1.00	7.52	A
		ATOM	3254	OG1	THR A		29.016	70.077	-10.199	1.00	8.69	A
		ATOM	3255	CG2	THR A		29.889	72.330	-10.171	1.00	9.65	А
		ATOM	3256	С	THR A		31.261	71.712	-7.658	1.00	8.05	А
	55	ATOM	3257	0	THR A		32.050	72.527		1.00	8.13	A
	00	111 011	525,	J			22.000					-

		MOTA	3258	N	SER	A	421	30.844	71.771	-6.396	1.00	8.23	Α
		MOTA	3259	CA	SER	Α	421	31.277	72.840	-5.491	1.00	8.39	A
		MOTA	3260	CB	SER	Α	421	30.894	72.488	-4.054	1.00	8.23	A
		MOTA	3261	OG	SER	A	421	29.493	72.328	-3.942	1.00	9.95	A
	5	MOTA	3262	С	SER	Α	421	32.766	73.172	-5.553	1.00	8.54	A
		MOTA	3263	0	SER			33.612	72.276	-5.532	1.00	8.31	A
		ATOM	3264	N	ARG			33.076	74.468	-5.600	1.00	8.47	A
		ATOM	3265	CA	ARG			34.457	74.944	-5.683	1.00	8.89	A
		ATOM	3266	СВ	ARG			35.200	74.655	-4.373	1.00	9.32	А
	10	ATOM	3267	CG	ARG			35.001	75.708	-3.275	1.00	8.93	A
	10	ATOM	3268	CD	ARG			33.541	75.915	-2.854	1.00	8.00	A
		ATOM	3269	NE	ARG			33.480	76.889	-1.761	1.00	8.83	A
			3270	CZ	ARG			33.533	76.580	-0.468	1.00	9.12	A
		ATOM						33.622	75.316	-0.081	1.00	10.31	A
	15	MOTA	3271		ARG			33.565	77.545	0.444	1.00	9.63	A
	13	ATOM	3272		ARG				74.285	-6.865	1.00	8.93	A
		ATOM	3273	C	ARG			35.174					
		ATOM	3274	0	ARG			36.201	73.616	-6.705	1.00	8.08	A
		MOTA	3275	N	PRO			34.648	74.485	-8.081	1.00	8.34	A
	20	MOTA	3276	CD	PRO			33.511	75.348	-8.449	1.00	8.14	A
	20	ATOM	3277	CA	PRO			35.258	73.887	-9.272	1.00	8.20	A
1 1 2		MOTA	3278	CB	PRO			34.248	74.212	-10.372	1.00	7.99	A
M		ATOM	3279	CG	PRO			33.720	75.542	-9.940	1.00	8.18	A
4192		MOTA	3280	С	PRO			36.679	74.342	-9.606	1.00	8.42	A
1125		ATOM	3281	0	PRO			37.406		-10.300	1.00	7.85	А
M.	25	MOTA	3282	N	TYR	Α	424	37.086	75.512	-9.125	1.00	8.22	A
44		MOTA	3283	CA	TYR	Α	424	38.440	75.987	-9.399	1.00	8.69	A
100		ATOM	3284	CB	TYR	Α	424	38.678	77.357	-8.755	1.00	8.94	A
ă}		MOTA	3285	CG	TYR	Α	424	40.056	77.929	-9.021	1.00	9.20	А
		MOTA	3286	CD1	TYR	A	424	40.304	78.697		1.00	10.09	А
	30	ATOM	3287	CE1	TYR	Α	424	41.569		-10.411	1.00	11.78	A
7/22F		ATOM	3288	CD2	TYR	Α	424	41.117	77.693	-8.144	1.00	9.18	A
The Course		ATOM	3289	CE2	TYR	Α	424	42.388	78.211	-8.392	1.00	11.36	A
		ATOM	3290	CZ	TYR	Α	424	42.606	78.976	-9.527	1.00	11.41	A
		ATOM	3291	OH	TYR	Α	424	43.854	79.513	-9.774	1.00	13.60	А
3.4:	35	ATOM	3292	С	TYR	Α	424	39.446	74.997	-8.818	1.00	8.12	A
		ATOM	3293	0	TYR	Α	424	40.409	74.605	-9.477	1.00	8.51	A
		ATOM	3294	N	HIS	Α	425	39.204	74.588	-7.578	1.00	8.00	А
		ATOM	3295	CA	HIS	Α	425	40.102	73.672	-6.884	1.00	7.92	А
		ATOM	3296	СВ	HIS	Α	425	39.841	73.793	-5.390	1.00	8.82	A
	40	ATOM	3297	CG	HIS	Α	425	39.830	75.214	-4.928	1.00	9.54	A
		ATOM	3298	CD2	HIS			38.817	76.107	-4.842	1.00	8.63	A
		ATOM	3299		HIS			40.985	75.917	-4.659	1.00	11.50	А
		ATOM	3300		HIS			40.684	77.184	-4.433	1.00	9.24	А
		ATOM	3301		HIS			39.376	77.326	-4.540		12.26	A
	45	ATOM	3302	С	HIS			39.982	72.242	-7.382	1.00	7.65	А
	10	ATOM	3303	0	HIS			40.937	71.470	-7.298	1.00	6.25	А
		ATOM	3304	N	LYS			38.809	71.891	-7.900	1.00	6.92	А
		ATOM	3305	CA	LYS			38.601	70.566	-8.474	1.00	7.10	A
		ATOM	3306	CB	LYS			37.130	70.386	-8.863	1.00	7.64	A
	50	ATOM	3307	CG	LYS			36.233	69.957	-7.707	1.00	7.33	A
	50	ATOM	3307	CD	LYS			34.758	69.974	-8.108	1.00	8.18	A
			3309	CE	LYS			33.893	69.112	-7.180	1.00	7.20	A
		MOTA							69.564	-5.757	1.00	8.35	A
		MOTA	3310	NZ	LYS			33.897	70.461		1.00	6.80	A
	==	ATOM	3311	С	LYS			39.500		-9.711			
	55	ATOM	3312	0	LYS	А	426	40.130	69.429	-9.950	1.00	7.71	А

		7 III C N A	2212	N.T	7000 7	407	20 560	71.536 -10.493	1.00	6.95	А
		ATOM	3313	N	ARG A		39.562				
		ATOM	3314	CA	ARG A		40.403	71.558 -11.677	1.00	7.61	A
		MOTA	3315	CB	ARG A		40.055	72.780 -12.535	1.00	7.49	A
		MOTA	3316	CG	ARG A	427	41.045	73.105 -13.645	1.00	8.69	A
	5	ATOM	3317	CD	ARG A	427	41.239	71.986 -14.660	1.00	9.36	A
		ATOM	3318	NE	ARG A	427	42.275	72.376 -15.614	1.00	11.26	A
		ATOM	3319	CZ	ARG A	427	43.047	71.530 -16.288	1.00	11.18	A
		ATOM	3320		ARG A		42.911	70.220 -16.132	1.00		A
		ATOM	3321		ARG A		43.985	72.004 -17.101	1.00		A
	10	ATOM	3322	C	ARG A		41.871	71.587 -11.251	1.00	7.82	A
	10	ATOM	3323	0	ARG A		42.708	70.901 -11.833	1.00	7.39	A
			3324	N	MSE A		42.179	72.370 -10.220	1.00	7.89	A
		ATOM							1.00	7.92	A
		ATOM	3325	CA	MSE A		43.550	72.457 -9.729		9.64	
	15	ATOM	3326	CB	MSE A		43.613	73.415 -8.542	1.00		A
	15	ATOM	3327	CG	MSE A		45.022	73.778 -8.109	1.00	9.04	A
		ATOM	3328	SE	MSE A		44.978	75.197 -6.818	1.00		A
		ATOM	3329	CE	MSE A		46.844	75.667 -6.794	1.00		A
		ATOM	3330	С	MSE A		44.058	71.072 -9.319	1.00	7.61	A
	••	ATOM	3331	0	MSE A		45.223	70.741 -9.528	1.00	6.75	A
	20	ATOM	3332	N	ASP A		43.173	70.264 -8.742	1.00	7.36	A
, jest		ATOM	3333	CA	ASP A	429	43.532	68.915 -8.323	1.00	6.76	A
i.		ATOM	3334	CB	ASP A	429	42.302	68.199 -7.764	1.00	7.80	A
1,3 B		ATOM	3335	CG	ASP A	429	42.567	66.742 -7.454	1.00	7.25	A
		ATOM	3336	OD1	ASP A	429	42.305	65.877 -8.322	1.00	7.35	Α
	25	ATOM	3337	OD2	ASP A	429	43.050	66.464 -6.339	1.00	8.83	A
		ATOM	3338	С	ASP A	429	44.110	68.101 -9.477	1.00	6.82	A
		ATOM	3339	0	ASP A	429	45.126	67.426 -9.324	1.00	6.20	A
31		ATOM	3340	N	ARG A		43.465	68.174 -10.636	1.00	6.28	A
		ATOM	3341	CA	ARG A		43.925	67.415 -11.790	1.00	6.60	A
Acest.	30	ATOM	3342	СВ	ARG A		42.864	67.436 -12.886	1.00	7.13	A
ij.		ATOM	3343	CG	ARG A		41.575	66.745 -12.489	1.00	6.81	A
		ATOM	3344	CD	ARG A		41.821	65.302 -12.057	1.00	7.18	А
		ATOM	3345	NE	ARG A		40.578	64.536 -12.052	1.00	7.42	A
		ATOM	3346	CZ	ARG A		39.899	64.186 -10.965	1.00	7.01	A
g color	35	ATOM	3347		ARG A		40.329	64.520 -9.754	1.00	6.58	A
	00	ATOM	3348		ARG A		38.770	63.504 -11.092	1.00	7.28	A
		ATOM	3349	C	ARG A		45.247	67.938 -12.331	1.00	6.64	A
		ATOM	3350	0	ARG A		46.071	67.164 -12.828	1.00	6.98	A
		ATOM	3351	N	VAL A		45.448	69.246 -12.248	1.00	6.93	A
	40	ATOM	3352	CA	VAL A		46.693				A
	40		3353				46.613	71.381 -12.697	1.00	7.25	A
		ATOM		CB	VAL A				1.00	7.90	A
		ATOM	3354		VAL A		47.966	71.984 -13.059			
		ATOM	3355		VAL A		45.553	71.856 -13.684	1.00	7.34	A
	4 =	ATOM	3356	С	VAL A		47.835	69.361 -11.814	1.00	7.33	A
	45	ATOM	3357	0	VAL A		48.867	68.890 -12.291	1.00	6.53	A
		ATOM	3358	N	LEU A		47.648	69.477 -10.504	1.00	6.42	A
		ATOM	3359	CA	LEU A		48.683	69.051 -9.574	1.00	7.15	A
		ATOM	3360	СВ	LEU A		48.314	69.449 -8.144	1.00	7.42	A
		ATOM	3361	CG	LEU A		49.320	69.099 -7.040	1.00	7.44	A
	50	ATOM	3362		LEU A		50.706	69.655 -7.368	1.00	7.97	А
		ATOM	3363	CD2	LEU A	432	48.815	69.674 -5.718	1.00	7.95	А
		ATOM	3364	С	LEU A	432	48.906	67.545 -9.676	1.00	6.90	A
		ATOM	3365	0	LEU A	432	50.031	67.073 -9.538	1.00	7.14	A
		ATOM	3366	N	MSE A	433	47.839	66.789 -9.921	1.00	6.62	A
	55	ATOM	3367	CA	MSE A		47.973	65.343 -10.071	1.00	6.77	A

		7.0001	2260	05	MOT -	422	46 650	64 700 10 500	1 00	7 40	T
		MOTA	3368	CB	MSE A		46.650	64.728 -10.520	1.00	7.49	А
		MOTA	3369	CG	MSE A	433	46.765	63.261 -10.899	1.00	7.23	A
		MOTA	3370	SE	MSE A	433	45.147	62.554 -11.645	1.00	14.77	A
		MOTA	3371	CE	MSE A	433	45.309	63.312 -13.420	1.00	11.03	A
	5	ATOM	3372	C	MSE A		49.030	65.039 -11.130	1.00	6.61	A
	•	ATOM	3373	0	MSE A		49.915	64.198 -10.933	1.00	5.99	A
		MOTA	3374	N	HIS A		48.926	65.732 -12.255	1.00	5.72	A
		ATOM	3375	CA	HIS A		49.855	65.531 -13.352	1.00	6.68	А
		MOTA	3376	CB	HIS A	434	49.340	66.203 -14.620	1.00	7.17	A
	10	MOTA	3377	CG	HIS A	434	50.306	66.118 -15.755	1.00	6.69	A
		ATOM	3378	CD2	HIS A	434	50.676	65.067 -16.524	1.00	6.66	A
		ATOM	3379	ND1	HIS A	434	51.107	67.172 -16.134	1.00	9.42	A
		ATOM	3380	CE1	HIS A		51.932	66.771 -17.086	1.00	6.23	А
		ATOM	3381		HIS A		51.692	65.498 -17.339	1.00	9.56	A
	15	MOTA	3382	C	HIS A		51.259	66.038 -13.054	1.00	6.95	A
	10		3383	0			52.242	65.392 -13.414		6.29	A
		ATOM			HIS A				1.00		
		MOTA	3384	N	TYR A		51.353	67.203 -12.417	1.00	6.61	A
		ATOM	3385	CA	TYR A		52.656	67.768 -12.082	1.00	8.18	A
1975	•	ATOM	3386	CB	TYR A		52.500	69.146 -11.431	1.00	9.43	А
	20	ATOM	3387	CG	TYR A	435	52.370	70.313 -12.385		12.33	A
T. Jane		ATOM	3388	CD1	TYR A	435	51.432	70.309 -13.417	1.00	12.80	А
		ATOM	3389	CE1	TYR A	435	51.272	71.417 -14.251	1.00	13.62	A
		ATOM	3390	CD2	TYR A	435	53.151	71.455 -12.211	1.00	14.28	A
		ATOM	3391	CE2	TYR A	435	53.001	72.562 -13.034	1.00	15.81	А
	25	ATOM	3392	CZ	TYR A		52.059	72.541 -14.050		15.15	А
		ATOM	3393	ОН	TYR A		51.896	73.658 -14.841		17.94	А
		ATOM	3394	C	TYR A		53.414	66.847 -11.128	1.00	6.75	A
igi.		ATOM	3395	0	TYR A		54.636	66.719 -11.226	1.00	7.81	A
E3_		ATOM	3396	N	VAL A		52.700	66.218 -10.195	1.00	5.90	A
	30	ATOM	3397	CA	VAL A		53.355	65.305 -9.263	1.00	6.76	A
	50										
		MOTA	3398	CB	VAL A		52.382	64.850 -8.153	1.00	6.54	A
		MOTA	3399		VAL A		52.963	63.665 -7.384	1.00	7.70	A
		MOTA	3400		VAL A		52.132	66.009 -7.200	1.00	6.54	A
	0.5	MOTA	3401	С	VAL A		53.892	64.101 -10.034	1.00	6.75	А
2	35	ATOM	3402	0	VAL A		55.041	63.698 -9.857	1.00	6.38	A
		ATOM	3403	N	ARG A	437	53.069	63.532 -10.905	1.00	5.91	A
		ATOM	3404	CA	ARG A	437	53.518	62.393 -11.693	1.00	6.53	A
		ATOM	3405	CB	ARG A	437	52.406	61.902 -12.621	1.00	6.39	A
		MOTA	3406	CG	ARG A	437	52.904	60.916 -13.674	1.00	7.38	A
	40	ATOM	3407	CD	ARG A	437	51.779	60.403 -14.552	1.00	7.95	A
		ATOM	3408	NE	ARG A		52.287	59.711 -15.735	1.00	6.99	А
		ATOM	3409	CZ	ARG A		51.550	58.897 -16.486	1.00	7.60	А
		ATOM	3410		ARG A		50.282	58.670 -16.170	1.00	8.52	A
		ATOM	3411		ARG A		52.075	58.321 -17.559	1.00	7.42	A
	45										
	40	ATOM	3412	C	ARG A		54.743	62.754 -12.528	1.00	6.68	A
		ATOM	3413	0	ARG A		55.725	62.009 -12.558	1.00	6.83	A
		ATOM	3414	N	ALA A		54.682	63.892 -13.217	1.00	6.53	A
		MOTA	3415	CA	ALA A		55.790	64.321 -14.066	1.00	7.02	A
		MOTA	3416	CB	ALA A	438	55.385	65.550 -14.887	1.00	7.20	A
	50	ATOM	3417	С	ALA A	438	57.061	64.613 -13.269	1.00	6.87	А
		ATOM	3418	0	ALA A	438	58.165	64.269 -13.702	1.00	8.03	A
		MOTA	3419	N	ALA A	439	56.909	65.247 -12.110	1.00	7.12	A
		ATOM	3420	CA	ALA A		58.061	65.569 -11.276	1.00	6.67	А
		ATOM	3421	CB	ALA A		57.637	66.475 -10.123	1.00	7.46	А
	55	ATOM	3422	C	ALA A		58.708	64.289 -10.741	1.00	7.35	А
					_		_				

		ATOM ATOM	3423 3424	O	ALA			59.930	64.141 -1	-	1.00		A
			3424	N	GLU			57.897			1.00		A
		ATOM		CA	GLU			58.458		9.739	1.00	7.04	A
	5	MOTA	3426	CB	GLU			57.382		9.041	1.00		A
	3	MOTA	3427	CG	GLU			56.853		7.762	1.00		A
		ATOM	3428	CD	GLU			56.186		-6.843		10.22	A
		ATOM	3429		GLU			55.089		7.173		10.17	А
		ATOM	3430		GLU			56.773		-5.787		10.50	А
	10	ATOM	3431	С	GLU			59.112	61.292 -1		1.00	6.93	A
	10	ATOM	3432	0	GLU			60.152	60.676 -1		1.00	7.92	A
		ATOM	3433	N	MSE			58.517	61.285 -1		1.00	6.93	A
		MOTA	3434	CA	MSE			59.084	60.513 -1		1.00	7.41	А
		ATOM	3435	СВ	MSE			58.068	60.378 -1		1.00	8.35	А
	4=	ATOM	3436	CG	MSE			58.580	59.571 -1		1.00	8.46	A
	15	ATOM	3437	SE	MSE			57.255	59.396 -1	6.865	1.00	13.95	A
		MOTA	3438	CE	MSE	Α	441	56.081	58.134 -1	5.968	1.00	10.73	A
		ATOM	3439	С	MSE			60.377	61.120 -1	3.677	1.00	7.44	A
		ATOM	3440	0	MSE	Α	441	61.381	60.423 -1	3.818	1.00	8.04	A
4.500	• •	ATOM	3441	N	LEU	A	442	60.354	62.416 -1	3.979	1.00	7.67	А
i page	20	ATOM	3442	CA	LEU	Α	442	61.539	63.085 -1	4.509	1.00	8.05	A
417		MOTA	3443	CB	LEU	Α	442	61.233	64.553 -1	4.813	1.00	8.28	А
		MOTA	3444	CG	LEU	Α	442	60.557	64.823 -1	6.161	1.00	8.01	А
		MOTA	3445	CD1	LEU	A	442	59.999	66.236 -1	6.193	1.00	9.63	А
ø		ATOM	3446	CD2	LEU	A	442	61.564	64.612 -1		1.00	10.08	А
	25	ATOM	3447	С	LEU.	Α	442	62.750	62.999 -1		1.00	8.72	А
101		ATOM	3448	0	LEU.	A	442	63.881	62.855 -1		1.00	8.81	А
		ATOM	3449	N	SER.	Α	443	62.523	63.074 -1		1.00	8.42	A
		ATOM	3450	CA	SER .			63.635	63.020 -1		1.00	8.63	A
R) Listena		ATOM	3451	СВ	SER .	Α	443	63.306	63.818 -1		1.00	8.25	A
(3	30	ATOM	3452	OG	SER .			62.192	63.273 -		1.00	8.38	A
ij		ATOM	3453	С	SER .			64.038	61.599 -1		1.00	9.17	A
		MOTA	3454	0	SER .			65.105	61.388 -1			10.14	A
		MOTA	3455	N	ALA .			63.201	60.628 -1		1.00	8.08	A
152		ATOM	3456	CA	ALA .			63.488	59.231 -1		1.00	8.59	A
i i	35	ATOM	3457	CB	ALA			62.237	58.383 -1		1.00	9.58	A
Brass		ATOM	3458	C	ALA			64.629	58.652 -1			9.05	A
		ATOM	3459	0	ALA			65.268	57.689 -1			9.90	A
		ATOM	3460	N	TRP			64.886	59.229 -1		1.00	9.47	A
		ATOM	3461	CA	TRP			65.939	58.712 -1			10.27	A
	40	ATOM	3462				445		59.452 -1				A
		ATOM	3463	CG	TRP I			64.665	59.287 -1		1.00	8.72	
		ATOM	3464		TRP A			64.211	58.103 -1		1.00	8.20	A
		ATOM	3465		TRP A			62.926	58.384 -1		1.00	7.89	A
		ATOM	3466		TRP A			64.763	56.833 -1		1.00		A
	45	ATOM	3467		TRP A			63.670	60.209 -1			9.03	A
	10	ATOM	3468		TRP 2			62.623			1.00	9.25	A
		ATOM	3469		TRP A				59.675 -1		1.00	8.67	A
		ATOM	3470		TRP A			62.181	57.441 -1		1.00	7.85	A
		ATOM	3470		TRP A			64.024 62.744	55.893 -1		1.00	9.31	A
	50	ATOM	3472						56.204 -1		1.00	8.54	A
	50			C	TRP A			67.329	58.772 -1			10.91	A
		ATOM	3473	O N	TRP A			68.195	57.968 -13			12.14	A
		ATOM	3474	N	HIS A			67.541	59.724 -13			11.75	A
		ATOM	3475	CA	HIS A			68.836	59.870 -13			12.74	A
	E =	ATOM	3476	CB	HIS A			69.470	61.232 -1			14.40	А
	55	ATOM	3477	CG	HIS A	A	446	69.853	61.443 -13	3.413	1.00	15.98	А

		ATOM	3478	CD2	HIS	Α	446	71.013	1 61.196	-14.070	1.00	17.49	A
		ATOM	3479	ND1	HIS	А	446	69.000	62.008	-14.336	1 00	16.71	А
		ATOM	3480		HIS								
								69.618		-15.500		17.82	A
	_	ATOM	3481		HIS			70.838	3 61.618	-15.365	1.00	17.18	A
	5	MOTA	3482	С	HIS	Α	446	68.73	4 59.775	-10.181	1.00	12.44	А
		MOTA	3483	0	HIS	Α	446	67.658	3 59.891	-9.595	1.00	12.19	А
		ATOM	3484	N			447	69.887				13.41	A
		ATOM	3485	CA			447						
								69.984				13.93	A
	10	ATOM	3486	CB			447	71.047			1.00	15.77	A
	10	MOTA	3487	OG			447	71.107	7 58.470	-6.255	1.00	19.30	A
		ATOM	3488	С	SER	Α	447	70.452	2 60.989	-7.864	1.00	14.00	А
		ATOM	3489	0	SER	Α	447	71.316				14.59	A
		ATOM	3490	N			448	69.874				13.08	
		ATOM	3491										A
	15			CA			448	70.259				13.81	A
	13	ATOM	3492	CB			448	69.037		-6.688	1.00	13.00	A
		ATOM	3493	CG	TRP	Α	448	68.381	63.979	-8.032	1.00	11.48	A
		ATOM	3494	CD2	TRP	Α	448	68.523	64.987	-9.035	1.00	10.99	A
		MOTA	3495	CE2			448	67.738		-10.140		10.00	A
		ATOM	3496	CE3			448	69.238					
	20											11.04	A
2014 2014	20	ATOM	3497	CD1			448	67.541				11.29	A
		ATOM	3498		TRP			67.150			1.00	10.64	A
ų)		MOTA	3499	CZ2	TRP	Α	448	67.646	65.354	-11.306	1.00	11.20	A
1994. 1,3 1		ATOM	3500	CZ3	TRP	Α	448	69.147	66.952	-10.270	1.00	10.82	А
g Paris		ATOM	3501		TRP			68.355		-11.353		11.03	A
Q W	25	ATOM	3502	С			448	70.945		-5.278		15.52	
													A
		ATOM	3503	0			448	70.609		-4.283		15.44	A
137		MOTA	3504	N			449	71.905			1.00	17.52	А
		ATOM	3505	CA	ASP	A	449	72.627	64.520	-4.055	1.00	19.65	Α
11 mm		MOTA	3506	CB	ASP	Α	449	73.780	65.473	-4.380	1.00	22.50	А
	30	ATOM	3507	CG	ASP	Α	449	74.655		-3.177		25.00	A
1,50		ATOM	3508		ASP			74.191		-2.248		26.37	
Thing the same of		ATOM	3509		ASP								A
								75.811		-3.161		27.45	A
În.		ATOM	3510	C	ASP			71.627		-3.128		19.63	A
4 48-4 5 49-6 1	0=	ATOM	3511	0	ASP			70.729		-3.589	1.00	19.29	A
But.	35	ATOM	3512	N	GLY	Α	450	71.780	64.985	-1.826	1.00	20.01	A
B		MOTA	3513	CA	GLY	Α	450	70.870	65.581	-0.864	1.00	20.00	A
		MOTA	3514	С	GLY	Α	450	70.735		-0.962		20.23	A
		ATOM	3515	0	GLY			69.690		-0.616		19.88	
		ATOM	3516	N	MET			71.786					A
	40									-1.432		20.10	A
	40	ATOM	3517	CA	MET			71.768		-1.561		20.63	A
		MOTA	3518	CB	MET			73.166		-1.896	1.00	23.63	A
		ATOM	3519	CG	MET	Α	451	74.203	69.506	-0.815	1.00	27.14	А
		ATOM	3520	SD	MET	Α	451	75.744	70.366	-1.188	1.00	32.31	A
		MOTA	3521	CE	MET	Α	451	76.487		-2.362		29.66	A
	45	ATOM	3522	С	MET			70.787		-2.616	1.00		
		ATOM	3523										A
				0	MET			70.419		-2.622	1.00		А
		MOTA	3524	N	ALA			70.373		- 3.512	1.00	17.14	А
		ATOM	3525	CA	ALA	Α	452	69.433	69.181	-4.564	1.00	16.09	A
		ATOM	3526	CB	ALA	Α	452	69.469	68.149	-5.682	1.00	15.55	A
	50	ATOM	3527	С	ALA	А	452	68.019		-4.006	1.00		A
		ATOM	3528	Ö	ALA			67.134	69.862	-4.655			
		ATOM	3529	N							1.00		A
					ARG			67.816		-2.802	1.00		А
		ATOM	3530	CA	ARG			66.520		-2.133	1.00		A
		ATOM	3531	CB	ARG	А	453	66.209	70.296	-1.757	1.00	16.65	A
	55	ATOM	3532	CG	ARG	Α	453	67.260	70.927	-0.853	1.00	19.15	А

		ATOM	3533	CD	ARG	А	453	67.014	72.415	-0.653	1.00	21.70	A
		ATOM	3534	NE	ARG			65.762	72.680	0.047		23.84	А
		ATOM	3535	CZ	ARG			65.266	73.896	0.255		25.33	A
		ATOM	3536		ARG			65.917	74.967	-0.187		25.98	A
	5	ATOM	3537		ARG			64.120	74.043	0.905		25.91	A
	5		3538		ARG			65.376	68.269	-2.967		13.88	A
		MOTA		C									
		ATOM	3539	0	ARG			64.232	68.701	-2.843		14.25	A
		ATOM	3540	N	ILE			65.683	67.289	-3.810		11.74	A
	10	MOTA	3541	CA	ILE			64.666	66.666	-4.648		11.41	A
	10	ATOM	3542	СВ	ILE			65.310	65.691	-5.662		11.24	A
		MOTA	3543		ILE			64.225	64.960	-6.447		12.28	A
		MOTA	3544	CG1	ILE			66.260	66.456	-6.594		12.69	A
		MOTA	3545	CD1	ILE			65.605	67.562	-7.396		13.45	A
		MOTA	3546	С	ILE			63.633	65.910	-3.804		11.43	A
	15	MOTA	3547	0	ILE	Α	454	62.429	66.142	-3.936	1.00	10.95	A
		MOTA	3548	N	GLU	Α	455	64.100	65.013	-2.939		11.35	A
		MOTA	3549	CA	GLU	Α	455	63.196	64.234	-2.092	1.00	11.75	A
		MOTA	3550	CB	GLU	Α	455	63.981	63.274	-1.188	1.00	12.29	A
. 17400		MOTA	3551	CG	GLU	Α	455	64.595	62.071	-1.896	1.00	12.76	A
2 10mg	20	ATOM	3552	CD	GLU	Α	455	65.938	62.375	-2.539	1.00	13.14	A
7		ATOM	3553	OE1	GLU	Α	455	66.381	63.541	-2.473	1.00	14.41	A
		ATOM	3554	OE2	GLU	Α	455	66.544	61.441	-3.108	1.00	12.50	A
m		ATOM	3555	C	GLU			62.337	65.153	-1.230		11.49	A
		ATOM	3556	Ō	GLU			61.145	64.907	-1.025		11.26	A
1911	25	ATOM	3557	N	GLU			62.948	66.218	-0.729		12.01	A
		ATOM	3558	CA	GLU			62.249	67.183	0.107		12.19	A
E STATE		ATOM	3559	СВ	GLU			63.216	68.281	0.545		14.58	A
(T		ATOM	3560	CG	GLU			62.624	69.300	1.494		17.19	A
ž:		ATOM	3561	CD	GLU			63.514	70.515	1.653		18.91	A
	30	ATOM	3562	OE1	GLU			64.749	70.313	1.554		20.97	A
5 12	50									1.887		20.95	
100		ATOM	3563	OE2	GLU			62.982	71.621				A
		MOTA	3564	C	GLU			61.072	67.817	-0.635		11.41	A
		MOTA	3565	0	GLU			59.950	67.859	-0.126		11.43	A
	25	ATOM	3566	N	ARG			61.332	68.321	-1.836		11.00	A
200	35	MOTA	3567	CA	ARG			60.286	68.964	-2.622		10.38	A
		ATOM	3568	СВ	ARG			60.898	69.660	-3.847		11.74	A
		ATOM	3569	CG	ARG			61.302	71.116	-3.608		14.55	A
		ATOM	3570	CD	ARG			62.235	71.277	-2.416		17.43	A
	40	MOTA	3571	NE	ARG			62.539	72.681	-2.130		19.26	A
	40	MOTA	3572	CZ	ARG			63.355	73.442	-2.855		21.10	A
		ATOM	3573		ARG			63.963	72.944	-3.924		21.18	A
		ATOM	3574	NH2	ARG	Α	457	63.566	74.706	-2.507	1.00	21.77	А
		ATOM	3575	С	ARG	Α	457	59.191	67.995	-3.054	1.00	9.31	А
		ATOM	3576	0	ARG	Α	457	58.013	68.348	-3.048	1.00	8.43	A
	45	ATOM	3577	N	LEU	Α	458	59.575	66.776	-3.421	1.00	8.92	A
		ATOM	3578	CA	LEU	Α	458	58.594	65.783	-3.844	1.00	9.14	A
		ATOM	3579	СВ	LEU	Α	458	59.293	64.572	-4.465	1.00	8.78	A
		ATOM	3580	CG	LEU	Α	458	59.992	64.878	-5.799	1.00	8.90	А
		ATOM	3581	CD1	LEU			60.677	63.624	-6.313	1.00	9.97	A
	50	ATOM	3582		LEU			58.970	65.395	-6.825	1.00	9.94	А
		ATOM	3583	С	LEU			57.706	65.350	-2.685	1.00	9.64	A
		ATOM	3584	0	LEU			56.511	65.124	-2.872		10.33	A
		ATOM	3585	N	GLU			58.277	65.243	-1.487	1.00	9.21	A
		ATOM	3586	CA	GLU			57.481	64.852	-0.328	1.00	9.96	A
	55	ATOM	3587	CB	GLU			58.372	64.654	0.902		11.30	A
		111 011	5501	CD	0110	4 7	133	30.312	01.007	0.702	1.00	-1.50	17

		ATOM	3588	CG	GLU A	459	57.603	64.225	2.146	1.00	13.61	А
		MOTA	3589	CD	GLU A	459	58.497	63.617	3.213	1.00	15.23	A
		MOTA	3590	OE1	GLU A	459	59.217	64.371	3.897	1.00	18.32	A
		MOTA	3591	OE2	GLU A	459	58.482	62.377	3.358	1.00	17.20	A
	5	MOTA	3592	С	GLU A	459	56.445	65.940	-0.059	1.00	9.87	A
		MOTA	3593	0	GLU A	459	55.279	65.653	0.205	1.00	8.53	A
		MOTA	3594	N	GLN A	460	56.874	67.197	-0.137	1.00	8.94	A
		MOTA	3595	CA	GLN A	460	55.962	68.312	0.083	1.00	9.46	A
		MOTA	3596	CB	GLN A	460	56.706	69.640	-0.067	1.00	11.33	A
	10	MOTA	3597	CG	GLN A	460	55.828	70.862	0.130	1.00	14.48	А
		MOTA	3598	CD	GLN A	460	56.541	72.153	-0.221		16.73	A
		MOTA	3599	OE1	GLN A		56.024	73.242	0.020		20.84	A
		MOTA	3600	NE2			57.729	72.036	-0.803		18.45	А
		MOTA	3601	С	GLN A		54.823	68.246	-0.937	1.00	9.40	A
	15	ATOM	3602	0	GLN A	460	53.651	68.330	-0.580	1.00	8.87	A
		MOTA	3603	N	ALA A		55.169	68.081	-2.210	1.00	8.69	A
		MOTA	3604	CA	ALA A		54.146	68.023	-3.247	1.00	8.76	A
		MOTA	3605	CB	ALA A		54.796	67.910	-4.622	1.00	8.72	A
3 (*27)	• •	MOTA	3606	С	ALA A		53.160	66.877	-3.034	1.00	8.44	A
1000 1000 1000	20	MOTA	3607	0	ALA A		51.947	67.073	-3.113	1.00	8.84	A
1,00		MOTA	3608	N	ARG A		53.678	65.684	-2.763	1.00	7.93	A
		MOTA	3609	CA	ARG A		52.812	64.529	-2.548	1.00	7.87	A
		MOTA	3610	CB	ARG A		53.629	63.255	-2.292	1.00	7.57	A
	0-	MOTA	3611	CG	ARG A		54.346	62.679	-3.515	1.00	7.40	A
Ŋ	25	MOTA	3612	CD	ARG A		54.815	61.252	-3.233	1.00	7.74	A
		ATOM	3613	NE	ARG A		55.726	61.190	-2.089	1.00	7.74	A
1000		ATOM	3614	CZ	ARG A		57.043	61.352	-2.169	1.00	8.73	A
NI.		ATOM	3615	NH1			57.621	61.578	-3.344	1.00	8.89	A
	20	ATOM	3616		ARG A		57.787	61.303	-1.070	1.00	9.62	A
College Colleg	30	ATOM	3617	C	ARG A		51.882	64.747	-1.365	1.00	8.16	A
		ATOM	3618	0	ARG A		50.707	64.389	-1.416	1.00	7.32	A
		ATOM	3619	N	ARG A		52.399	65.344	-0.298	1.00	8.35	A
		ATOM	3620 3621	CA	ARG A		51.576	65.546 65.823	0.884 2.093	1.00	9.21 9.46	A
ina ina	35	ATOM	3622	CB	ARG A		52.473 53.219		2.500	1.00	9.86	A
I goden	33	ATOM ATOM	3623	CG CD	ARG A		54.152	64.564 64.737	3.681	1.00	11.93	A A
		ATOM	3624	NE	ARG A		54.673	63.433	4.075		13.77	A A
		ATOM	3625	CZ	ARG A		55.453	63.216	5.128		14.71	A
		ATOM	3626		ARG A		55.815	64.225	5.906		15.88	A
	40	ATOM	3627		ARG A		55.857	61.982	5.405		15.92	A
	10	ATOM	3628	C	ARG A		50.485	66.599	0.742	1.00	9.13	A
		ATOM	3629	0	ARG A		49.386	66.420	1.266	1.00	8.63	A
		ATOM	3630	N	GLU A		50.760	67.681	0.020	1.00	8.86	A
		ATOM	3631	CA	GLU A		49.743	68.712	-0.149	1.00	8.79	A
	45	ATOM	3632	CB	GLU A		50.359	69.995	-0.719		10.23	A
	10	ATOM	3633	CG	GLU A		51.526	70.535	0.118		12.65	A
		ATOM	3634	CD	GLU A		51.115	71.035	1.501		15.53	A
		ATOM	3635		GLU A		50.127	70.527	2.075		15.74	A
		ATOM	3636		GLU A		51.802	71.936	2.027		18.42	A
	50	ATOM	3637	C	GLU A		48.638	68.193	-1.064	1.00	8.27	A
		ATOM	3638	0	GLU A		47.459	68.460	-0.830	1.00	8.83	A
		ATOM	3639	N	LEU A		49.012	67.449	-2.102	1.00	8.19	A
		ATOM	3640	CA	LEU A		48.008	66.887	-3.000	1.00	7.76	A
		ATOM	3641	CB	LEU A		48.666	66.269	-4.240	1.00	7.54	A
	55	ATOM	3642	CG	LEU A		47.706	65.594	-5.231	1.00	7.30	A

		ATOM	3643	CD1	LEU	Α	465	46.652	66.591	-5.710	1.00	8.29	A
		MOTA	3644		LEU			48.502	65.043	-6.405	1.00	8.63	A
		MOTA	3645	C	LEU			47.219	65.817	-2.241	1.00	7.24	A
		ATOM	3646	Ö	LEU			45.995	65.720	-2.368	1.00	7.02	A
	5												
	5	ATOM	3647	N	SER			47.920	65.014	-1.444	1.00	6.60	A
		ATOM	3648	CA	SER			47.258	63.972	-0.670	1.00	7.04	A
		ATOM	3649	СВ			466	48.284	63.145	0.106	1.00	7.46	A
		MOTA	3650	OG	SER	Α	466	49.039	62.325	-0.766	1.00	8.02	A
		ATOM	3651	С	SER	Α	466	46.249	64.567	0.303	1.00	6.94	A
	10	ATOM	3652	0	SER	Α	466	45.140	64.053	0.443	1.00	6.64	A
		ATOM	3653	N	LEU	Α	467	46.638	65.649	0.969	1.00	6.68	А
		ATOM	3654	CA	LEU			45.759	66.306	1.922	1.00	7.53	А
		ATOM	3655	СВ	LEU			46.462	67.522	2.532	1.00	7.48	A
		ATOM	3656	CG	LEU			45.653	68.259	3.601	1.00	9.74	A
	15	ATOM	3657		LEU			45.493	67.369	4.816		11.77	A
	10	ATOM	3658		LEU			46.359	69.555	3.975		11.14	A
		ATOM	3659	C	LEU			44.462	66.753	1.251	1.00	7.29	A
		ATOM	3660	0	LEU			43.381	66.624	1.826	1.00	7.06	A
	20	ATOM	3661	N	PHE			44.570	67.270	0.029	1.00	6.97	A
	20	MOTA	3662	CA	PHE			43.392	67.756	-0.680	1.00	6.88	A
1 that		MOTA	3663	CB	PHE			43.800	68.553	-1.925	1.00	7.64	A
Ü		MOTA	3664	CG	PHE			42.688	69.391	-2.491	1.00	7.18	A
M		MOTA	3665	CD1	PHE	Α	468	42.039	70.331	-1.695	1.00	7.53	A
Ü		ATOM	3666	CD2	PHE	Α	468	42.264	69.221	-3.804	1.00	7.39	A
	25	MOTA	3667	CE1	PHE	Α	468	40.979	71.089	-2.198	1.00	7.30	A
		ATOM	3668	CE2	PHE	Α	468	41.204	69.972	-4.314	1.00	7.16	A
		ATOM	3669	CZ	PHE	Α	468	40.561	70.907	-3.510	1.00	7.44	A
iĝĝi s		ATOM	3670	C	PHE			42.402	66.662	-1.069	1.00	6.45	А
43		ATOM	3671	Ō	PHE			41.259	66.964	-1.413	1.00	7.00	A
	30	ATOM	3672	N	GLN			42.829	65.401	-1.018	1.00	6.03	A
ij	00	ATOM	3673	CA	GLN			41.931	64.302	-1.352	1.00	6.57	A
N		ATOM	3674	CB	GLN			42.707	62.998	-1.532	1.00	6.70	
į.d.													A
		ATOM	3675	CG	GLN			43.795	63.094	-2.600	1.00	7.58	A
	25	ATOM	3676	CD	GLN			43.304	63.745	-3.878	1.00	7.69	A
į.	35	MOTA	3677		GLN			43.860	64.748	-4.329	1.00	9.02	A
		ATOM	3678		GLN			42.258	63.184	-4.465	1.00	5.38	A
		MOTA	3679	С	GLN			40.898	64.121	-0.250	1.00	6.50	А
		MOTA	3680	0	GLN			39.927	63.383	-0.416	1.00	7.49	А
		MOTA	3681	N	HIS	A	470	41.119	64.792	0.878	1.00	6.70	A
	40	ATOM	3682	CA	HIS	Α	470	40.195	64.727	2.004	1.00	7.12	A
		MOTA	3683	CB	HIS	Α	470	40.563	65.781	3.047	1.00	7.31	А
		ATOM	3684	CG	HIS	Α	470	39.594	65.852	4.183	1.00	7.78	A
		ATOM	3685	CD2	HIS			38.969	64.869	4.872	1.00	7.00	A
		ATOM	3686		HIS			39.144	67.041	4.715	1.00	9.94	А
	45	ATOM	3687		HIS			38.281	66.786	5.683	1.00	6.65	A
		ATOM	3688		HIS			38.157	65.476	5.797		10.50	A
		ATOM	3689	C	HIS				64.969	1.537	1.00	6.99	A
		ATOM	3690										
				O	HIS				65.722	0.587	1.00	6.65	A
	EΩ	ATOM	3691	N	HIS			37.793	64.351	2.215	1.00	7.65	A
	50	MOTA	3692	CA	HIS			36.398	64.503	1.824	1.00	7.92	A
		ATOM	3693	CB	HIS			35.532	63.380	2.417	1.00	7.70	A
		MOTA	3694	CG	HIS			35.636	63.249	3.901	1.00	7.25	A
		ATOM	3695	CD2	HIS	A	471	34.904	63.802	4.894	1.00	8.79	A
		ATOM	3696	ND1	HIS	Α	471	36.612	62.493	4.515	1.00	8.77	A
	55	ATOM	3697	CE1	HIS	Α	471	36.476	62.589	5.825	1.00	8.02	A

		7. 01.03.4	2000	NIT!	uto -	171	25 440	(2 277	C 000	1 00	0 07	_
		ATOM	3698		HIS A		35.448	63.377	6.080	1.00	8.27	A
		MOTA	3699	С	HIS A	471	35.775	65.873	2.102	1.00	8.28	A
		MOTA	3700	0	HIS A	471	34.566	66.039	1.965	1.00	8.06	A
		ATOM	3701	N	ASP A		36.598	66.839	2.510	1.00	8.09	A
	5											
	5	MOTA	3702	CA	ASP A		36.138	68.219	2.681	1.00	8.05	A
		ATOM	3703	CB	ASP A		36.134	68.660	4.144	1.00	9.12	A
		MOTA	3704	CG	ASP A	472	35.001	68.046	4.927	1.00	8.91	A
		MOTA	3705	OD1	ASP A	472	33.837	68.191	4.490	1.00	10.33	А
		MOTA	3706		ASP A		35.274	67.426	5.974	1.00	9.95	A
	10	ATOM	3707	C	ASP A		37.083					
	10							69.111	1.880	1.00	8.31	A
		ATOM	3708	0	ASP A		36.989	70.341	1.921	1.00	8.71	A
		MOTA	3709	N	GLY A	473	37.991	68.476	1.143	1.00	7.76	A
		MOTA	3710	CA	GLY A	473	38.941	69.214	0.329	1.00	6.95	А
		ATOM	3711	С	GLY A	473	38.449	69.319	-1.098	1.00	6.25	А
	15	MOTA	3712	0	GLY A		37.781	70.286	-1.461	1.00	7.15	A
	20	MOTA	3713		ILE A							
				N			38.753	68.306	-1.904	1.00	7.12	A
		MOTA	3714	CA	ILE A		38.345	68.297	-3.302	1.00	7.43	A
		MOTA	3715	CB	ILE A		38.883	67.023	-4.011	1.00	6.98	A
4124		ATOM	3716	CG2	ILE A	474	38.271	65.774	-3.383	1.00	7.56	A
	20	ATOM	3717	CG1	ILE A	474	38.604	67.097	-5.514	1.00	7.17	A
Q.		ATOM	3718		ILE A		39.279	65.983	-6.308	1.00	9.11	A
		ATOM	3719	C	ILE A		36.824	68.408		1.00	8.30	
31323									-3.468			A
1952 H		ATOM	3720	0	ILE A		36.334	68.865	-4.500	1.00	8.97	A
		MOTA	3721	N	THR A	475	36.087	68.009	-2.436	1.00	7.83	A
	25	ATOM	3722	CA	THR A	475	34.625	68.054	-2.440	1.00	8.11	A
		MOTA	3723	СВ	THR A	475	34.066	67.378	-1.189	1.00	8.53	А
		ATOM	3724	OG1			34.589	68.053	-0.038	1.00	8.85	A
IJŤ.		ATOM	3725	CG2			34.458	65.905	-1.139	1.00	9.50	
R (A
	20	ATOM	3726	С	THR A		34.067	69.482	-2.456	1.00	8.06	A
	30	ATOM	3727	0	THR A		32.906	69.702	-2.817	1.00	8.47	A
Talen.		MOTA	3728	N	GLY A	476	34.888	70.448	-2.051	1.00	7.78	A
		MOTA	3729	CA	GLY A	476	34.435	71.828	-2.020	1.00	8.58	А
\$-4.		MOTA	3730	С	GLY A	476	33.424	72.078	-0.914	1.00	8.79	А
in Charles		ATOM	3731	0	GLY A		32.534	72.917	-1.062	1.00	8.66	A
S. A.	35	ATOM	3732	N	THR A		33.558	71.354	0.195		8.54	
i oža	50									1.00		A
		ATOM	3733	CA	THR A		32.634	71.502	1.315	1.00	9.22	A
		ATOM	3734	СВ	THR A		32.012	70.134	1.700	1.00	8.79	A
		MOTA	3735	OG1	THR A	477	33.053	69.184	1.974	1.00	8.67	А
		MOTA	3736	CG2	THR A	477	31.150	69.610	0.558	1.00	9.58	А
	40	MOTA	3737	С	THR A	477	33.239	72.144	2.567	1.00	9.40	A
		ATOM	3738	0	THR A		32.671	72.034	3.655		10.45	A
		ATOM	3739	N	ALA A		34.374	72.826	2.417	1.00	9.36	
												A
		MOTA	3740	CA	ALA A		35.022	73.479	3.558	1.00	9.20	A
		MOTA	3741	CB	ALA A		36.535	73.254	3.501	1.00	10.02	А
	45	ATOM	3742	С	ALA A	478	34.722	74.979	3.619	1.00	9.62	A
		MOTA	3743	0	ALA A	478	34.225	75.572	2.657	1.00	8.69	A
		ATOM	3744	N	LYS A		35.016	75.598	4.759	1.00	9.96	А
		ATOM	3745	CA	LYS A		34.775	77.030				
			3745						4.888		10.67	A
	E0	MOTA		СВ	LYS A		34.961	77.492	6.337		12.18	A
	50	ATOM	3747	CG	LYS A	479	33.942	76.890	7.300	1.00	15.03	A
		MOTA	3748	CD	LYS A	479	34.018	77.529	8.677	1.00	18.09	A
		ATOM	3749	CE	LYS A	479	33.187	78.798	8.755	1.00	20.24	A
		ATOM	3750	NZ	LYS A		31.717	78.517	8.701		19.56	A
		ATOM	3751	С	LYS A		35.746	77.761	3.972		10.66	A
	55											
	55	MOTA	3752	0	LYS A	4/9	36.793	77.225	3.607	1.00	10.46	A

		ATOM	3753	N	THR A	480	35.39	78.98	4 3.603	1.00	11.10	А
		MOTA	3754	CA	THR A		36.21				11.50	A
		MOTA	3755	CB	THR A		35.64				13.37	A
		ATOM	3756	OG1			34.33				14.84	A
	5	ATOM	3757	CG2			36.52				13.82	A
		ATOM	3758	C	THR F		37.69				11.02	A
		ATOM	3759	0	THR F		38.54				10.46	A
		ATOM	3760	N	HIS A							
		ATOM	3761	CA	HIS F		38.02 39.43				10.35	A
	10	ATOM	3762	CB						1.00	9.50	A
	10				HIS A		39.62				10.43	A
		MOTA	3763	CG	HIS A		39.45				10.15	A
		ATOM	3764		HIS A		40.36				10.66	A
		ATOM	3765		HIS A		38.22				11.08	A
	15	ATOM	3766		HIS A		38.38				11.48	А
	15	ATOM	3767	NE2			39.67				10.90	A
		MOTA	3768	C	HIS A		40.16			1.00	9.97	A
		MOTA	3769	0	HIS A		41.39			1.00	10.08	А
		MOTA	3770	N	VAL A		39.42			1.00	9.90	A
12.8 12.8 13.8	20	ATOM	3771	CA	VAL A		40.03			1.00	9.55	A
	20	MOTA	3772	CB	VAL A		39.10			1.00	8.77	A
Tubell Pari		MOTA	3773	CG1			39.77	1 74.10	1 5.263	1.00	8.62	A
% N.S.		ATOM	3774	CG2	VAL A	482	38.79	4 75.85	2 6.744	1.00	9.85	A
M		MOTA	3775	С	VAL A	482	40.32	7 76.20	6 3.206	1.00	9.39	A
Service Control		MOTA	3776	0	VAL A	482	41.37	4 75.64	6 2.886	1.00	9.70	A
101	25	ATOM	3777	N	VAL A	483	39.40	5 76.568	8 2.319	1.00	9.35	A
		MOTA	3778	CA	VAL A	483	39.61	2 76.35	6 0.893	1.00	9.49	A
iji.		ATOM	3779	CB	VAL A	483	38.41	2 76.872	2 0.075	1.00	9.54	A
8)		MOTA	3780	CG1	VAL A	483	38.72	8 76.82	1 -1.412	1.00	10.64	A
		MOTA	3781	CG2	VAL A	483	37.18	2 76.023	3 0.377	1.00	10.55	A
	30	MOTA	3782	С	VAL A	483	40.87	3 77.12	6 0.487	1.00	9.63	A
7,4,4,6 8 8 8		MOTA	3783	0	VAL A	483	41.69	3 76.63	6 -0.290	1.00	9.14	A
		MOTA	3784	N	VAL A	484	41.03	4 78.328	3 1.037	1.00	10.23	A
		MOTA	3785	CA	VAL A	484	42.20	3 79.142	2 0.734	1.00	10.83	A
		MOTA	3786	СВ	VAL A	484	42.11	2 80.52	4 1.410	1.00	10.78	А
\$×4:	35	MOTA	3787	CG1	VAL A	484	43.44	5 81.26	1.292	1.00	11.71	A
		MOTA	3788	CG2	VAL A	484	41.00	9 81.333	3 0.754	1.00	11.99	A
		MOTA	3789	С	VAL A	484	43.47	7 78.442	2 1.187	1.00	10.65	A
		ATOM	3790	0	VAL A	484	44.48	8 78.473	3 0.484	1.00	11.13	A
		ATOM	3791	N	ASP A	485	43.43	1 77.809	9 2.357	1.00	9.92	А
	40	ATOM	3792	CA	ASP A	485	44.59	6 77.094	2.862	1.00	9.04	A
		ATOM	3793	СВ	ASP A		44.33				10.28	А
		MOTA	3794	CG	ASP A		45.57				10.84	A
		MOTA	3795		ASP A		45.53				11.04	A
		ATOM	3796		ASP A		46.59				13.22	A
	45	ATOM	3797	С	ASP A		44.96			1.00	8.24	A
		ATOM	3798	0	ASP A		46.13			1.00	8.35	A
		ATOM	3799	N	TYR A		43.95			1.00	8.00	A
		ATOM	3800	CA	TYR A		44.21			1.00	8.25	A
		ATOM	3801	СВ	TYR A		42.91			1.00	8.89	A
	50	ATOM	3802	CG	TYR A		42.32			1.00	8.67	A
		ATOM	3803		TYR A		40.95			1.00	8.68	A
		ATOM	3804		TYR A		40.38			1.00	8.58	A
		ATOM	3805		TYR A		43.13			1.00	9.01	A
		ATOM	3806		TYR A		42.56			1.00	9.81	A
	55	ATOM	3807	CZ	TYR A		41.19			1.00	9.19	A
		0.1	5007	∪ ⊔		- 00	41.13	_ /0.0/2	J.204	1.00	ノ・エフ	A

		MOTA	3808	ОН	TYR	Α	486	40.607	70.075	4.245	1.00 10.4	2 A
		ATOM	3809	С	TYR	Α	486	44.831	74.618	-0.740	1.00 9.1	3 A
		MOTA	3810	0	TYR			45.748	74.009	-1.283	1.00 8.8	
		MOTA	3811	N	GLU			44.324	75.748	-1.229	1.00 9.5	
	5	ATOM	3812	CA	GLU			44.841	76.345	-2.456	1.00 10.3	
	•	ATOM	3813	CB	GLU			44.007	77.563	-2.865	1.00 11.3	
		ATOM	3814	CG	GLU			44.321	78.044	-4.282	1.00 13.0	
		ATOM	3815	CD OF1	GLU			43.569	79.300	-4.677	1.00 15.5	
	10	ATOM	3816		GLU			42.384	79.441	-4.310	1.00 16.7	
	10	ATOM	3817	OE2				44.163	80.147	-5.377	1.00 17.6	
		ATOM	3818	С	GLU			46.296	76.771	-2.293	1.00 11.0	
		MOTA	3819	0	GLU			47.125	76.522	-3.168	1.00 10.6	
		ATOM	3820	N	GLN			46.601	77.423	-1.175	1.00 11.1	
		MOTA	3821	CA	GLN	Α	488	47.962	77.875	-0.910	1.00 12.2	A C
	15	MOTA	3822	CB	GLN	Α	488	48.031	78.621	0.425	1.00 15.1	7 A
		MOTA	3823	CG	GLN	Α	488	47.343	79.970	0.426	1.00 19.5	9 A
		MOTA	3824	CD	GLN	Α	488	47.395	80.642	1.782	1.00 21.9	7 A
		MOTA	3825	OE1	GLN	Α	488	47.075	81.821	1.912	1.00 25.3	7 A
1,772.		MOTA	3826	NE2	GLN	Α	488	47.795	79.890	2.804	1.00 24.0	6 А
	20	ATOM	3827	С	GLN	Α	488	48.904	76.684	-0.865	1.00 11.0	5 A
		MOTA	3828	0	GLN	Α	488	50.000	76.727	-1.421	1.00 10.9	7 A
		ATOM	3829	N	ARG			48.473	75.621	-0.190	1.00 9.60	
171		ATOM	3830	CA	ARG			49.278	74.416	-0.083	1.00 9.3	
100		ATOM	3831	СВ	ARG			48.571	73.385	0.804	1.00 9.5	
rj.	25	ATOM	3832	CG	ARG			48.601	73.714	2.294	1.00 10.40	
2 % 24 8		ATOM	3833	CD	ARG			47.660	72.790	3.063	1.00 10.8	
		ATOM	3834	NE	ARG			47.738	72.969	4.513	1.00 11.1	
M		MOTA	3835	CZ	ARG			48.620	72.361	5.302	1.00 12.00	
Ħž.		ATOM	3836		ARG			49.513	72.501	4.792	1.00 12.00	
iner iner	30	ATOM	3837		ARG			48.606	72.593	6.610	1.00 13.6	
1,19	50	ATOM	3838									
19.5				С	ARG			49.528	73.835	-1.472		
		MOTA	3839	0	ARG			50.656	73.468	-1.801	1.00 8.75	
		ATOM	3840	N	MSE			48.487	73.766	-2.297	1.00 9.23	
	25	ATOM	3841	CA	MSE			48.666	73.224	-3.639	1.00 9.79	
i pil	35	ATOM	3842	CB	MSE			47.314	72.964	-4.314	1.00 10.83	
		MOTA	3843	CG	MSE			46.571	71.768	-3.719	1.00 11.89	
		ATOM	3844	SE	MSE			45.198	71.045	-4.876	1.00 18.09	
		MOTA	3845	CE	MSE			43.813	72.317	-4.470	1.00 13.98	
	40	ATOM	3846	С	MSE			49.539	74.117	-4.519	1.00 10.09	
	40	ATOM		0	MSE				73.620		1.00 9.19	
		MOTA	3848	N	GLN			49.490	75.427	-4.300	1.00 10.39	
		MOTA	3849	CA	GLN	Α	491	50.314	76.332	-5.093	1.00 12.1	
		MOTA	3850	CB	GLN	Α	491	49.972	77.790	-4.786	1.00 14.32	2 A
		ATOM	3851	CG	GLN	A	491	50.755	78.791	-5.620	1.00 19.08	3 A
	45	MOTA	3852	CD	GLN	Α	491	50.647	78.520	-7.109	1.00 21.50	5 A
		ATOM	3853	OE1	GLN	A	491	51.427	77.746	-7.676	1.00 23.83	l A
		ATOM	3854	NE2	GLN	Α	491	49.669	79.145	-7.750	1.00 23.83	L A
		ATOM	3855	С	GLN	A	491	51.779	76.064	-4.769	1.00 11.74	
		ATOM	3856	0	GLN	Α	491	52.630	76.040	-5.658	1.00 10.95	5 A
	50	MOTA	3857	N	GLU			52.068	75.851	-3.489	1.00 11.42	
		ATOM	3858	CA	GLU			53.432	75.570	-3.066	1.00 12.73	
		ATOM	3859	СВ	GLU			53.511	75.506	-1.536	1.00 15.62	
		ATOM	3860	CG	GLU			52.957	76.743	-0.844	1.00 21.33	
		ATOM	3861	CD	GLU			53.040	76.666	0.668	1.00 24.20	
	55	ATOM	3862		GLU			52.577	75.660	1.249	1.00 24.20	
			J J J Z	~		- +		52.571	, 5 . 000	4 - 4 - 7 - 7	2.00 20.0.	

		ATOM	3863	OE2	GLU A	492	53.564	77.622	1.280	1.00	27.33	A
		MOTA	3864	С	GLU A	492	53.863	74.236	-3.669	1.00	10.97	A
		ATOM	3865	0	GLU A	492	55.014	74.065	-4.073	1.00	11.10	A
		ATOM	3866	N	ALA A	493	52.929	73.292	-3.734	1.00	9.75	A
	5	MOTA	3867	CA	ALA A		53.215		-4.301	1.00	8.02	А
		ATOM	3868	CB	ALA A		52.018		-4.097	1.00	8.73	A
		ATOM	3869	C	ALA A		53.544		-5.792	1.00	8.05	A
		ATOM	3870	0	ALA A		54.453		-6.290	1.00	7.12	A
		ATOM	3871	N	LEU A		52.802		-6.501	1.00	8.32	A
	10	ATOM	3872	CA	LEU A		53.046		-7.925	1.00	9.14	A
	10										9.65	
		ATOM	3873	CB	LEU A		51.979		-8.530	1.00		A
		ATOM	3874	CG	LEU A		50.611		-8.773		10.02	A
		ATOM	3875		LEU A		49.579		-9.132		10.77	A
	15	ATOM	3876		LEU A		50.729		-9.889		10.73	A
	15	ATOM	3877	С	LEU A		54.437		-8.145	1.00	9.07	A
		ATOM	3878	0	LEU A		55.158		-9.043	1.00	9.80	A
		MOTA	3879	N	LYS A		54.816		-7.315	1.00	9.88	А
		MOTA	3880	CA	LYS A		56.137		-7.427	1.00		A
	••	MOTA	3881	CB	LYS A	495	56.260		-6.467		12.88	A
Pyradi IMa	20	MOTA	3882	CG	LYS A	495	55.346		-6.831		16.66	A
i jeg		MOTA	3883	CD	LYS A		55.583	78.879	-5.955	1.00	19.89	A
Ü		MOTA	3884	CE	LYS A		55.238	78.611	-4.501		21.23	A
M		MOTA	3885	NZ	LYS A	495	55.445	79.824	-3.656	1.00	23.31	A
		MOTA	3886	С	LYS A	495	57.221	74.273	-7.138	1.00	10.02	A
	25	ATOM	3887	0	LYS A	495	58.268	74.260	-7.788	1.00	10.29	A
ii.		MOTA	3888	N	ALA A	496	56.965	73.397	-6.170	1.00	8.63	A
		MOTA	3889	CA	ALA A	496	57.923	72,351	-5.832	1.00	8.27	А
		ATOM	3890	СВ	ALA A	496	57.433	71.564	-4.613	1.00	9.05	A
AP-		ATOM	3891	С	ALA A		58.094		-7.037	1.00	8.71	A
	30	ATOM	3892	0	ALA A		59.211		-7.387	1.00	8.19	A
J.		MOTA	3893	N	CYS A		56.982		-7.676	1.00	8.28	A
		ATOM	3894	CA	CYS A		57.032		-8.838	1.00	8.42	А
100		ATOM	3895	CB	CYS A		55.618		-9.313	1.00	7.83	А
		ATOM	3896	SG	CYS A		54.759		-8.261	1.00	8.61	A
i sala	35	ATOM	3897	C	CYS A		57.813		-9.970	1.00	8.81	A
\$1.77	00	ATOM	3898	0	CYS A		58.639		-10.615	1.00	8.25	A
		ATOM	3899	N	GLN A		57.550		-10.212	1.00	8.64	A
		ATOM	3900	CA	GLN A		58.248		-11.272		10.15	A
		ATOM	3901	CB	GLN A		57.765		-11.355	1.00		A
	40	ATOM	3902	CG	GLN A		58.576		-12.335	1.00		A
	10	ATOM	3903	CD	GLN A		58.111		-12.423	1.00		A
		ATOM	3904		GLN A		58.033		-11.412	1.00		A
			3905						-13.636			
		MOTA			GLN A		57.814		-13.030	1.00		A
	45	MOTA	3906	С			59.755					A
	43	ATOM	3907	0	GLN A		60.532		-11.966	1.00	9.65	A
		ATOM	3908	N	MSE A		60.165		-9.801	1.00	9.78	A
		ATOM	3909	CA	MSE A		61.580		-9.457	1.00		A
		ATOM	3910	CB	MSE A		61.751		-7.968	1.00		A
	E O	ATOM	3911	CG	MSE A		63.163		-7.420	1.00		A
	50	MOTA	3912	SE	MSE A		64.512		-8.276	1.00		A
		ATOM	3913	CE	MSE A		63.919		-7.664	1.00		A
		MOTA	3914	С	MSE A		62.226		-9.783	1.00		A
		MOTA	3915	0	MSE A		63.261		-10.445	1.00	9.59	A
		ATOM	3916	N	VAL A		61.602		-9.328	1.00	9.10	A
	55	MOTA	3917	CA	VAL A	500	62.134	69.336	-9.572	1.00	8.89	A

		ATOM	3918	СВ	VAL	A 50	61.310	68.274	-8.814	1.00	8.59	A
		ATOM	3919		VAL			66.871	-9.206	1.00	8.21	A
		ATOM	3920		VAL			68.486	-7.316	1.00		A
		ATOM	3921	C	VAL				-11.062	1.00	8.51	A
	5											
	5	ATOM	3922	0	VAL				-11.573	1.00	9.06	A
		MOTA	3923	N	MSE				-11.752	1.00	8.86	A
		ATOM	3924	CA	MSE				-13.181	1.00	8.89	A
		MOTA	3925	CB	MSE	A 50	59.589	69.427	-13.698	1.00	11.27	A
		MOTA	3926	CG	MSE	A 50	58.472	68.543	-13.164	1.00	12.53	A
	10	MOTA	3927	SE	MSE.	A 50	56.723	69.312	-13.426	1.00 2	20.16	A
		ATOM	3928	CE	MSE	A 50	56.544	69.004	-15.314	1.00	15.92	А
		ATOM	3929	С	MSE				-13.993	1.00	8.69	A
		ATOM	3930	0	MSE .				-14.793	1.00	8.53	А
		ATOM	3931	N	GLN				-13.793	1.00	9.61	A
	15	ATOM	3932	CA	GLN .				-14.551	1.00	9.86	A
	10	ATOM	3933	CB	GLN				-14.351	1.00		A
		ATOM	3934	CG	GLN .				-12.958	1.00		A
		MOTA	3935	CD	GLN .				-12.798	1.00		A
	20	ATOM	3936		GLN .				-13.782	1.00		A
	20	ATOM	3937		GLN .				-11.563	1.00		A
		ATOM	3938	С	GLN .				-14.236	1.00		A
1134		ATOM	3939	0	GLN .				-15.131	1.00	9.31	A
		ATOM	3940	N	GLN .	A 50.	64.909		-12.980	1.00	9.34	A
distant.		MOTA	3941	CA	GLN .	A 50:	66.260	70.608	-12.642	1.00	10.05	A
ii.	25	MOTA	3942	CB	GLN .	A 50	66.408	70.369	-11.135	1.00	10.04	A
and a		ATOM	3943	CG	GLN .	A 50	66.626	71.616	-10.285	1.00	11.30	A
191		MOTA	3944	CD	GLN .	A 50	67.985	72.265	-10.503	1.00	12.37	А
		ATOM	3945	OE1	GLN .	A 50	68.979	71.588	-10.775	1.00	13.68	A
3 (3 (33)		ATOM	3946	NE2	GLN .	A 50	68.035	73.582	-10.354	1.00	12.98	А
	30	ATOM	3947	С	GLN .			69.291	-13.374	1.00	9.96	A
		ATOM	3948	0	GLN .				-13.876	1.00	10.50	A
N.W.		ATOM	3949	N	SER .				-13.425	1.00	9.59	А
jek.		ATOM	3950	CA	SER .				-14.085	1.00	9.96	A
i dag		ATOM	3951	СВ	SER .			66.291		1.00		A
in the	35	ATOM	3952	OG	SER .				-12.440	1.00	9.72	A
Z.,	50	ATOM	3953	C	SER .			67.280		1.00	9.31	A
					SER .					1.00	8.89	A
		ATOM	3954	0					-16.159		9.28	
		ATOM	3955	N	VAL .				-16.219	1.00		A
	40	MOTA	3956	CA	VAL :			68.371		1.00	9.59	A
	40	ATOM	3957	CB	VAL .			69.399		1.00	9.08	A
		MOTA	3958		VAL .			69.782		1.00	9.37	A
		MOTA	3959		VAL .				-18.095	1.00	9.95	A
		MOTA	3960	С	VAL .			68.849		1.00	9.71	A
		MOTA	3961	0	VAL .	A 505	67.260	68.376	-18.940	1.00		A
	45	ATOM	3962	N	TYR .	A 500	67.154	69.778	-17.193	1.00	9.87	A
		ATOM	3963	CA	TYR	A 506	68.492	70.293	-17.438	1.00 1	11.11	A
		MOTA	3964	CB	TYR .	A 500	68.830	71.384	-16.423	1.00 1	12.61	A
		ATOM	3965	CG	TYR	A 506	70.105	72.117	-16.747	1.00	L4.68	A
		MOTA	3966	CD1	TYR .	A 506	70.239	72.809	-17.951	1.00 1	L5.77	A
	50	ATOM	3967		TYR			73.469		1.00 1		А
		ATOM	3968		TYR .			72.103		1.00 1		А
		ATOM	3969		TYR			72.762		1.00		A
		ATOM	3970	CZ	TYR			73.442		1.00		A
		ATOM	3971	OH	TYR			74.107		1.00 1		A
	55	ATOM	3972	C	TYR .				-17.370	1.00		A
		ATOM	3312	$\overline{}$	TIL	7 706	09.330	07.17	11.010	1.00	11.01	n

		ATOM	3973	0	TYR .	Z A	506	70.433	69.091 -18.208 1.00 11.91	Α
		ATOM	3974	N	ARG .			69.409		A
		ATOM	3975	CA	ARG .			70.360	67.198 -16.233 1.00 10.72	A
	_	MOTA	3976	CB	ARG .			70.183		Α
	5	MOTA	3977	CG	ARG .			71.244	65.498 -14.526 1.00 12.91	Α
		MOTA	3978	CD	ARG .	A	507	71.069	64.994 -13.106 1.00 13.23	Α
		ATOM	3979	NE	ARG .	Α	507	72.063	63.986 -12.746 1.00 15.07	Α
		ATOM	3980	CZ	ARG .	Α	507	72.164	63.442 -11.536 1.00 15.08	Α
		ATOM	3981	NH1	ARG .	Α	507	71.334	63.813 -10.572 1.00 15.72	Α
	10	ATOM	3982	NH2	ARG .	Α	507	73.081	62.514 -11.294 1.00 16.84	Α
		ATOM	3983	С	ARG .			70.219	66.148 -17.339 1.00 10.75	Α
		ATOM	3984	0	ARG			71.211	65.609 -17.829 1.00 10.91	Α
		ATOM	3985	N	LEU			68.983	65.863 -17.734 1.00 9.85	A
		ATOM	3986	CA	LEU			68.726	64.865 -18.769 1.00 10.20	A
	15	ATOM	3987	CB	LEU :			67.242	64.483 -18.766 1.00 9.54	A
	10		3988	CG				66.755		A
		ATOM			LEU .					A
		ATOM	3989		LEU .			65.238		
		ATOM	3990		LEU .			67.205	62.206 -17.737 1.00 10.33	A
	20	ATOM	3991	C	LEU			69.120	65.287 -20.182 1.00 9.83	A
: D	20	MOTA	3992	Ο	LEU .			69.387	64.434 -21.035 1.00 10.94	A
		MOTA	3993	N	LEU			69.159		Α
e seen.		MOTA	3994	CA	LEU I			69.484		A
		MOTA	3995	CB	LEU .			68.299	67.893 -22.320 1.00 9.95	Α
		MOTA	3996	CG	LEU .	Α	509	67.025	67.078 -22.584 1.00 8.90	А
IJ	25	ATOM	3997	CD1	LEU J	Α	509	65.900	68.010 -23.009 1.00 8.36	Α
The state of the s		ATOM	3998	CD2	LEU .	Α	509	67.289	66.029 -23.659 1.00 10.74	Α
Ţ		MOTA	3999	С	LEU I	Α	509	70.763	67.910 -21.897 1.00 11.19	Α
£i.		MOTA	4000	0	LEU .	A	509	70.928	68.652 -22.863 1.00 11.27	Α
1 12 mm		ATOM	4001	N	THR I	A	510	71.673	67.781 -20.938 1.00 11.02	Α
	30	MOTA	4002	CA	THR I	A	510	72.930	68.516 -21.011 1.00 11.45	Α
i desir		MOTA	4003	CB	THR			73.089	69.481 -19.814 1.00 11.70	A
14		ATOM	4004		THR			72.005		А
i ni		ATOM	4005	CG2	THR			74.408		А
		ATOM	4006	C	THR			74.092		A
i, i	35	ATOM	4007	0	THR			74.105		A
ä.	00	ATOM	4008	N	LYS			75.055		A
		ATOM	4009	CA	LYS			76.217		A
		ATOM	4010	CB	LYS			77.275		A
		ATOM	4010	CG	LYS			78.509		A
	40		4011					79.482		
	40				LYS					A 7
		ATOM	4013	CE	LYS			80.704		A
		ATOM	4014	NZ	LYS			81.639	66.957 -25.300 1.00 26.86	A
		ATOM	4015	C	LYS			76.774	66.718 -20.608 1.00 15.51	A
	4 -	MOTA	4016	0	LYS A			77.049	67.692 -19.908 1.00 14.86	A
	45	ATOM	4017	N	PRO A			76.943	65.460 -20.175 1.00 16.19	A
		MOTA	4018	CD	PRO I			76.648		А
		ATOM	4019	CA	PRO 2			77.457		Α
		ATOM	4020	CB	PRO A	A	512	77.744		Α
		MOTA	4021	CG	PRO I			76.652		А
	50	ATOM	4022	C	PRO I	Ą	512	78.669	65.890 -18.347 1.00 16.31	Α
		MOTA	4023	0	PRO 2	A	512	78.664	66.387 -17.223 1.00 16.51	Α
		ATOM	4024	N	SER I	A	513	79.701	66.000 -19.177 1.00 16.07	Α
		ATOM	4025	CA	SER A			80.920	66.701 -18.778 1.00 16.40	Α
		ATOM	4026	СВ	SER I			82.074		Α
	55	ATOM	4027	OG	SER .			81.769		Α
			_	-						

	ATOM	4028	С	SER A	513	80.796	68.221	-18.727	1.00 16.15	А
	MOTA	4029	0	SER A	513	81.738	68.910	-18.335	1.00 16.45	A
	MOTA	4030	N	ILE A	514	79.637	68.740	-19.121	1.00 15.99	A
	MOTA	4031	CA	ILE A	514	79.391	70.179	-19.110	1.00 15.87	A
5	MOTA	4032	CB	ILE A	514	78.813		-20.468	1.00 16.66	A
	ATOM	4033	CG2	ILE A	514	78.339	72.106	-20.355	1.00 17.47	A
	MOTA	4034	CG1	ILE A	514	79.874	70.512	-21.563	1.00 17.94	A
	ATOM	4035	CD1	ILE A	514	79.427	70.989	-22.933	1.00 19.29	A
	MOTA	4036	С	ILE A	514	78.410	70.538	-17.993	1.00 15.13	A
10	ATOM	4037	0	ILE A	514	78.466	71.630	-17.428	1.00 14.53	A
	ATOM	4038	N	TYR A	515	77.522	69.601	-17.679	1.00 14.27	A
	ATOM	4039	CA	TYR A	515	76.510	69.778	-16.638	1.00 13.78	A
	ATOM	4040	СВ	TYR A	. 515	75.831	68.428	-16.389	1.00 13.76	A
	ATOM	4041	CG	TYR A		74.793	68.410	-15.295	1.00 13.28	A
15	MOTA	4042	CD1			73.628	69.168	-15.392	1.00 12.14	A
	ATOM	4043	CE1			72.649		-14.395	1.00 12.51	A
	MOTA	4044	CD2	TYR A		74.961		-14.177	1.00 13.33	A
	ATOM	4045	CE2	TYR A		73.999		-13.182	1.00 12.19	A
	ATOM	4046	CZ	TYR A		72.846		-13.295	1.00 12.93	Α
20	ATOM	4047	ОН	TYR A		71.893		-12.308	1.00 13.77	А
	ATOM	4048	С	TYR A		77.104		-15.338	1.00 13.79	A
	ATOM	4049	0	TYR A		77.937		-14.703	1.00 13.97	А
	ATOM	4050	N	SER A		76.669		-14.951	1.00 14.47	A
	ATOM	4051	CA	SER A		77.152		-13.733	1.00 15.55	A
25	ATOM	4052	СВ	SER A		78.192		-14.091	1.00 16.76	A
	ATOM	4053	OG	SER A		78.809		-12.928	1.00 18.55	A
	ATOM	4054	C	SER A		75.948		-13.059	1.00 16.14	A
	ATOM	4055	Ö	SER A		75.719		-13.184	1.00 16.36	A
	ATOM	4056	N	PRO A		75.166		-12.315	1.00 16.21	A
30	ATOM	4057	CD	PRO A		75.323		-12.117	1.00 16.72	A
	ATOM	4058	CA	PRO A		73.971		-11.630	1.00 16.81	A
	ATOM	4059	СВ	PRO A		73.208		-11.345	1.00 16.87	A
	ATOM	4060	CG	PRO A		74.317		-11.013	1.00 16.68	A
	ATOM	4061	C	PRO A		74.067		-10.382	1.00 17.01	A
35	ATOM	4062	0	PRO A		74.914	73.182	-9.513	1.00 18.50	A
00	ATOM	4063	N	ASP A		73.169		-10.331	1.00 17.32	A
	ATOM	4064	CA	ASP A		72.998	75.251	-9.191	1.00 17.65	A
	ATOM	4065	CB	ASP A		72.942	76.716	-9.619	1.00 18.97	A
	ATOM	4066	CG	ASP A		72.657	77.650	-8.454	1.00 20.40	A
40	ATOM	4067		ASP A		72.026	77.206	-7.469	1.00 20.68	A
	ATOM	4068		ASP A		73.048	78.833	-8.523	1.00 21.51	A
	ATOM	4069	C	ASP A		71.597	74.788	-8.807	1.00 16.83	A
	ATOM	4070	0	ASP A		70.624	75.139	-9.471	1.00 16.54	A
	ATOM	4071	N	PHE A		71.495	73.982	-7.757	1.00 16.46	A
45	ATOM	4072	CA	PHE A		70.205	73.440	-7.348	1.00 16.01	A
10	ATOM	4073	CB	PHE A		70.415	72.389	-6.256	1.00 15.82	A
	ATOM	4074	CG	PHE A		71.267	71.229	-6.697	1.00 15.47	A
	ATOM	4075		PHE A		70.980	70.553	-7.881	1.00 15.02	A
	ATOM	4076		PHE A		72.352	70.811	-5.932	1.00 15.53	A
50	ATOM	4077		PHE A		71.759	69.481	-8.298	1.00 14.89	A
	ATOM	4078		PHE A		73.138	69.736	-6.341	1.00 14.05	A
	ATOM	4079	CZ	PHE A		72.841	69.071	-7.525	1.00 15.53	A
	ATOM	4079	C	PHE A		69.136	74.442	-6.925	1.00 16.61	A
	ATOM	4080	0	PHE A		68.004	74.057	-6.638	1.00 16.65	A
55	ATOM	4082	N	SER A		69.479	75.724	-6.898	1.00 10.05	A
	M I OIT	4002	TA	SER A	. 320	07.473	13.124	0.000	1.00 17.10	Д

treat men constraint and constraint

And the first the first that the

		MOTA	4083	CA	SER A	520	68.510	76.751 -6.523	1.00 17.76	A
		ATOM	4084	CB	SER A	520	69.097	77.672 -5.453	1.00 18.35	A
								78.465 -5.993	1.00 20.78	A
		MOTA	4085	OG	SER A		70.142			
	_	MOTA	4086	С	SER A	520	68.138	77.588 -7.744	1.00 17.75	А
	5	MOTA	4087	0	SER A	520	67.238	78.427 -7.683	1.00 18.10	A
		ATOM	4088	N	PHE A	521	68.829	77.340 -8.852	1.00 17.53	A
		MOTA	4089	CA	PHE A		68.620	78.085 -10.088	1.00 17.29	A
		ATOM	4090	СВ	PHE A		69.929	78.114 -10.885	1.00 17.61	A
		MOTA	4091	CG	PHE A		69.910	79.058 -12.053	1.00 18.36	A
	10	MOTA	4092	CD1	PHE A	521	69.988	80.433 -11.854	1.00 19.34	Α
		ATOM	4093	CD2	PHE A	521	69.797	78.574 -13.353	1.00 18.76	A
		ATOM	4094		PHE A		69.953	81.313 -12.933	1.00 19.83	А
									1.00 19.30	A
		ATOM	4095		PHE A		69.762	79.445 -14.438		
		MOTA	4096	CZ	PHE A		69.839	80.818 -14.228	1.00 19.85	А
	15	MOTA	4097	С	PHE A	521	67.504	77.534 -10.974	1.00 16.99	A
		ATOM	4098	0	PHE A	521	67.261	76.328 -11.012	1.00 17.26	A
		MOTA	4099	N	SER A	522	66.833	78.434 -11.689	1.00 16.98	A
		ATOM	4100	CA	SER A		65.759	78.052 -12.598	1.00 16.45	A
4.55	20	ATOM	4101	CB	SER A		64.590	79.036 -12.496	1.00 18.00	A
	20	MOTA	4102	OG	SER A		63.937	78.923 -11.243	1.00 21.58	A
i, <u>L</u>		MOTA	4103	С	SER A	522	66.282	78.028 -14.033	1.00 14.76	A
J		MOTA	4104	0	SER A	522	66.362	79.066 -14.695	1.00 15.51	A
J		ATOM	4105	N	TYR A		66.646	76.839 -14.503	1.00 13.04	A
100 mag		ATOM	4106	CA	TYR A		67.155	76.676 -15.860	1.00 12.11	A
Report of the contract of the	25									
	25	MOTA	4107	CB	TYR A		67.879	75.338 -16.003	1.00 12.66	A
191		MOTA	4108	CG	TYR A		69.152	75.276 -15.205	1.00 12.36	А
		MOTA	4109	CD1	TYR A	523	69.172	74.722 -13.926	1.00 11.48	А
		MOTA	4110	CE1	TYR A	523	70.337	74.718 -13.167	1.00 13.82	A
9%		ATOM	4111	CD2	TYR A		70.331	75.824 -15.707	1.00 12.94	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	ATOM	4112	CE2	TYR A		71.497	75.828 -14.957	1.00 13.68	A
5 Z	30									
		ATOM	4113	CZ	TYR A		71.493	75.275 -13.688	1.00 14.52	A
		ATOM	4114	ОH	TYR A		72.642	75.297 -12.932	1.00 15.63	А
		MOTA	4115	С	TYR A	523	66.028	76.753 -16.870	1.00 12.04	A
		MOTA	4116	0	TYR A	523	66.232	77.175 -18.009	1.00 11.26	A
	35	MOTA	4117	N	PHE A		64.840	76.332 -16.449	1.00 11.79	A
S. Same	•	ATOM	4118	CA	PHE A		63.664	76.371 -17.306	1.00 11.61	A
		ATOM	4119	CB	PHE A		63.287	74.984 -17.836	1.00 11.49	A
		ATOM	4120	CG	PHE A		64.319	74.353 -18.715	1.00 10.85	А
		MOTA	4121	CD1	PHE A	524	65.356	73.609 -18.166	1.00 11.04	A
	40	ATOM	4122	CD2	PHE A	524	64.241	74.482 -20.098	1.00 11.26	A
		ATOM	4123		PHE A		66.300	72.998 -18.982	1.00 11.78	А
		ATOM	4124		PHE A		65.179	73.876 -20.924	1.00 10.39	А
					PHE A			73.132 -20.364	1.00 11.02	A
		ATOM	4125	CZ			66.211			
		MOTA	4126	С	PHE A		62.466	76.873 -16.528	1.00 13.17	А
	45	ATOM	4127	0	PHE A	524	62.380	76.701 -15.311	1.00 13.07	A
		ATOM	4128	N	THR A	525	61.540	77.479 -17.255	1.00 14.04	A
		ATOM	4129	CA	THR A		60.298	77.967 -16.686	1.00 15.95	A
		ATOM	4130	СВ	THR A		60.069	79.455 -17.014	1.00 17.37	A
									1.00 21.08	
	EO	ATOM	4131		THR A		61.109	80.242 -16.417		A
	50	MOTA	4132		THR A		58.725	79.917 -16.480	1.00 20.26	A
		ATOM	4133	С	THR A	525	59.206	77.138 -17.356	1.00 14.82	A
		MOTA	4134	0	THR A	525	59.222	76.953 -18.575	1.00 14.60	A
		MOTA	4135	N	LEU A		58.276	76.616 -16.565	1.00 14.08	A
		ATOM	4136	CA	LEU A		57.184	75.830 -17.122	1.00 14.04	A
	55									
	55	MOTA	4137	CB	LEU A	526	56.468	75.030 -16.029	1.00 14.91	A

	ATOM	4138	CG	LEU	Α	526	56.977	73.638	-15.661	1.00 16.17	A
	MOTA	4139	CD1	LEU	Α	526	56.169	73.104	-14.483	1.00 17.46	A
	MOTA	4140	CD2	LEU	Α	526	56.844	72.710	-16.858	1.00 16.37	A
	ATOM	4141	С	LEU	Α	526	56.176	76.754	-17.785	1.00 13.66	A
5	ATOM	4142	0	LEU	А	526	55.864	77.825	-17.265	1.00 15.13	Α
	MOTA	4143	N	ASP			55.675		-18.941	1.00 12.47	A
	ATOM	4144	CA	ASP			54.671		-19.644	1.00 12.88	А
	ATOM	4145	CB	ASP			55.142		-21.055	1.00 13.45	A
	ATOM	4146	CG	ASP			54.139		-21.797	1.00 15.23	A
10	ATOM	4147		ASP			53.873		-21.335	1.00 15.10	A
10		4148		ASP			53.612		-22.837	1.00 16.86	A
	ATOM										
	ATOM	4149	С	ASP			53.444		-19.715	1.00 12.90	A
	ATOM	4150	0	ASP			53.486		-20.315	1.00 14.82	A
1 F	ATOM	4151	N	ASP			52.363		-19.079	1.00 12.04	A
15	MOTA	4152	CA	ASP			51.126		-19.064	1.00 11.43	A
	MOTA	4153	CB	ASP			50.757		-17.622	1.00 11.67	A
	ATOM	4154	CG	ASP			49.732	74.413	-17.538	1.00 11.75	А
	ATOM	4155		ASP			48.723	74.470	-18.271	1.00 11.28	A
	MOTA	4156	OD2	ASP	Α	528	49.935	73.486	-16.729	1.00 11.32	A
20	ATOM	4157	С	ASP	Α	528	50.039	76.744	-19.687	1.00 11.92	A
	ATOM	4158	0	ASP	Α	528	49.701	77.793	-19.157	1.00 10.88	А
	ATOM	4159	N	SER	Α	529	49.489	76.300	-20.811	1.00 12.60	A
	ATOM	4160	CA	SER	А	529	48.468	77.083	-21.491	1.00 13.59	A
	ATOM	4161	CB	SER			48.470		-22.988	1.00 15.60	A
25	ATOM	4162	OG			529	48.039		-23.218	1.00 20.83	А
	ATOM	4163	С			529	47.057		-20.940	1.00 12.92	А
	ATOM	4164	0			529	46.164		-21.287	1.00 14.25	A
	ATOM	4165	N	ARG			46.843		-20.074	1.00 11.90	A
	ATOM	4166	CA	ARG			45.501		-19.549	1.00 12.42	A
30	ATOM	4167	CB	ARG			44.964		-20.060	1.00 11.67	A
30	ATOM	4168	CG	ARG			44.887		-21.581	1.00 12.07	A
		4169	CD	ARG			44.248		-22.123	1.00 12.73	A
	ATOM						44.240		-21.729	1.00 12.73	A
	ATOM	4170	NE	ARG						1.00 12.73	
2=	ATOM	4171	CZ	ARG			44.758		-22.240		A
35	ATOM	4172		ARG			43.821		-23.164	1.00 13.80	A
	MOTA	4173		ARG			45.476		-21.832	1.00 14.84	A
	ATOM	4174	C			530	45.327		-18.041	1.00 12.87	A
	MOTA	4175	0			530	44.268		-17.507	1.00 14.42	A
40	ATOM	4176	N	TRP			46.365		-17.354	1.00 12.16	A
4 0	ATOM	4177	CA	TRP			46.272		-15.915	1.00 12.56	A
	ATOM	4178	CB	TRP			46.546		-15.115	1.00 13.21	A
	ATOM	4179	CG	TRP			46.479		-13.647	1.00 13.89	A
	MOTA	4180	CD2	TRP	Α	531	45.292		-12.853	1.00 15.00	A
	ATOM	4181	CE2	TRP	Α	531	45.683	76.062	-11.570	1.00 14.42	A
45	MOTA	4182	CE3	TRP	A	531	43.934	75.385	-13.103	1.00 14.98	A
	ATOM	4183	CD1	TRP	А	531	47.516	75.883	-12.831	1.00 14.62	A
	ATOM	4184	NE1	TRP	Α	531	47.045	76.214	-11.585	1.00 16.00	A
	ATOM	4185	CZ2	TRP	Α	531	44.763	76.275	-10.537	1.00 15.89	А
	ATOM	4186		TRP			43.019	75.598	-12.078	1.00 15.43	A
50	ATOM	4187		TRP			43.440		-10.811	1.00 15.65	A
	ATOM	4188	C	TRP			47.239		-15.454	1.00 13.17	А
	ATOM	4189	0	TRP			48.436		-15.708	1.00 13.12	A
	ATOM	4190	N	PRO			46.728		-14.753	1.00 13.97	A
	ATOM	4191	CD	PRO			47.581		-14.016	1.00 14.36	A
55	ATOM	4192	CA	PRO			45.319		-14.388	1.00 14.97	A
								0			

					100			
	ATOM	4193	СВ	PRO A 532	45.360	80.011 -13.472	1.00 14.79	А
	MOTA	4194	CG	PRO A 532	46.709	79.897 -12.832	1.00 14.98	A
	MOTA	4195	С	PRO A 532	44.433	79.009 -15.610	1.00 16.32	A
	MOTA	4196	O	PRO A 532	43.214	78.863 -15.538	1.00 16.43	A
5	ATOM	4197	N	GLY A 533	45.058	79.363 -16.729	1.00 18.09	A
	ATOM	4198	CA	GLY A 533	44.313	79.573 -17.956	1.00 20.35	A
	ATOM	4199	С	GLY A 533	44.110	81.021 -18.355	1.00 22.43	A
	MOTA	4200	0	GLY A 533	44.136	81.924 -17.517	1.00 21.90	A
	ATOM	4201	N	SER A 534	43.908	81.236 -19.650	1.00 24.34	A
10	ATOM	4202	CA	SER A 534	43.684	82.574 -20.183	1.00 26.30	A
	ATOM	4203	CB	SER A 534	43.577	82.517 -21.709	1.00 27.62	A
	ATOM	4204	OG	SER A 534	43.326	83.801 -22.252	1.00 29.22	A
	ATOM	4205	С	SER A 534	42.396	83.135 -19.593	1.00 26.95	A
	ATOM	4206	0	SER A 534	41.366	82.461 -19.579	1.00 27.04	A
15	ATOM	4207	N	GLY A 535	42.458	84.369 -19.104	1.00 27.48	A
	MOTA	4208	CA	GLY A 535	41.282	84.985 -18.516	1.00 28.19	A
	MOTA	4209	С	GLY A 535	41.168	84.676 -17.036	1.00 28.77	A
	ATOM	4210	0	GLY A 535	40.300	85.208 -16.342	1.00 28.75	A
	ATOM	4211	N	VAL A 536	42.047	83.805 -16.551	1.00 28.86	A
20	ATOM	4212	CA	VAL A 536	42.054	83.429 -15.144	1.00 29.39	А
	ATOM	4213	СВ	VAL A 536	42.205	81.900 -14.973	1.00 29.14	А
	ATOM	4214		VAL A 536	42.127	81.526 -13.500	1.00 28.72	А
	ATOM	4215		VAL A 536	41.120	81.183 -15.759	1.00 28.88	A
	ATOM	4216	С	VAL A 536	43.222	84.126 -14.457	1.00 30.17	А
25	ATOM	4217	Ō	VAL A 536	43.062	84.745 -13.405	1.00 29.60	A
	ATOM	4218	N	GLU A 537	44.399	84.026 -15.065	1.00 31.25	А
	ATOM	4219	CA	GLU A 537	45.595	84.651 -14.517	1.00 32.73	A
	ATOM	4220	СВ	GLU A 537	46.093	83.859 -13.303	1.00 33.69	А
	ATOM	4221	CG	GLU A 537	47.378	84.400 -12.690	1.00 35.24	А
30	ATOM	4222	CD	GLU A 537	47.769	83.681 -11.411	1.00 36.16	A
	ATOM	4223		GLU A 537	48.825	84.023 -10.836	1.00 36.68	А
	ATOM	4224		GLU A 537	47.023	82.777 -10.977	1.00 36.57	А
	ATOM	4225	C	GLU A 537	46.702	84.738 -15.560	1.00 33.20	А
	ATOM	4226	0	GLU A 537	47.132	83.720 -16.101	1.00 33.31	A
35	ATOM	4227	N	ASP A 538	47.156	85.953 -15.852	1.00 33.93	А
00	ATOM	4228	CA	ASP A 538	48.236	86.131 -16.816	1.00 34.52	A
	ATOM	4229	CB	ASP A 538	48.368	87.600 -17.225	1.00 36.03	А
	ATOM	4230	CG	ASP A 538	49.455	87.816 -18.263	1.00 37.32	A
	ATOM	4231		ASP A 538	49.350		1.00 37.91	A
40	ATOM	4232		ASP A 538	50.414			А
	ATOM	4233	С	ASP A 538	49.500		1.00 33.98	A
	ATOM	4234	Ō	ASP A 538	50.185		1.00 34.26	А
	ATOM	4235	N	SER A 539	49.798		1.00 32.86	A
	ATOM	4236	CA	SER A 539	50.958	83.813 -15.547	1.00 31.79	A
45	ATOM	4237	СВ	SER A 539	50.523	82.598 -14.725	1.00 31.81	A
10	ATOM	4238	OG	SER A 539	49.889	81.634 -15.551	1.00 32.64	А
	ATOM	4239	C	SER A 539	52.093	83.405 -16.477	1.00 30.65	A
	ATOM	4240	0	SER A 539	53.264	83.579 -16.142	1.00 30.92	A
	ATOM	4241	N	ARG A 540	51.755	82.858 -17.640	1.00 29.09	A
50	MOTA	4242	CA	ARG A 540	52.784	82.416 -18.571	1.00 26.85	A
	MOTA	4242	CB	ARG A 540	52.164		1.00 26.27	A
	ATOM	4244	CG	ARG A 540	50.972		1.00 24.91	A
	ATOM	4245	CD	ARG A 540	50.198	81.126 -21.168	1.00 21.40	A
	ATOM	4245	NE	ARG A 540	51.053		1.00 18.78	A
55	MOTA	4247	CZ	ARG A 540	50.621		1.00 18.16	A
55	AIOM	7241	CZ	TIG H DAG	JU. 021	10.100 20.200	1.00 10.10	Δ

The first to first the first to

		ATOM	4248	NH1	ARG A	540	49.343	79.892 -23.549	1.00 17.98	А
		ATOM	4249		ARG A			79.143 -23.983		А
		ATOM	4250	C	ARG A		53.627	83.550 -19.139		A
		ATOM	4250	0	ARG A		53.131	84.638 -19.438	1.00 26.07	A
	5				THR A		54.919	83.275 -19.269	1.00 23.91	A
	3	ATOM	4252	N				84.246 -19.767	1.00 23.91	A
		MOTA	4253	CA	THR A		55.877			
		MOTA	4254	CB	THR A		57.299	83.885 -19.316	1.00 23.68	A
		ATOM	4255	OG1	THR A		57.696	82.662 -19.945	1.00 24.78	A
	40	ATOM	4256	CG2	THR A		57.352	83.702 -17.808	1.00 23.48	A
	10	MOTA	4257	С	THR A		55.887	84.337 -21.283	1.00 20.98	A
		MOTA	4258	0	THR A		55.492	83.405 -21.982	1.00 21.78	A
		MOTA	4259	N	THR A		56.345	85.477 -21.782	1.00 18.43	A
		MOTA	4260	CA	THR A		56.448	85.695 -23.211	1.00 16.38	A
		MOTA	4261	CB	THR A		56.098	87.151 -23.592	1.00 16.52	A
	15	MOTA	4262	OG1	THR A	542	54.729	87.420 -23.269	1.00 16.56	A
		MOTA	4263	CG2	THR A	542	56.322	87.383 -25.081	1.00 16.03	A
		MOTA	4264	С	THR A	542	57.900	85.445 -23.577	1.00 14.95	A
		ATOM	4265	0	THR A	542	58.808	85.888 -22.870	1.00 14.70	A
4,004		ATOM	4266	N	ILE A	543	58.124	84.710 -24.658	1.00 13.40	A
	20	ATOM	4267	CA	ILE A	543	59.482	84.463 -25.110	1.00 12.55	A
i, Ti		ATOM	4268	CB	ILE A	543	59.553	83.220 -26.014	1.00 12.30	A
ţŢ,		ATOM	4269	CG2	ILE A	543	60.943	83.095 -26.627	1.00 12.36	A
1,11		ATOM	4270	CG1	ILE A	543	59.200	81.973 -25.190	1.00 12.14	A
1.2		ATOM	4271	CD1	ILE A	543	59.126	80.694 -25.997	1.00 11.44	A
	25	ATOM	4272	С	ILE A		59.838	85.723 -25.893	1.00 13.00	A
		ATOM	4273	0	ILE A		59.273	85.990 -26.954	1.00 13.68	А
		ATOM	4274	N	ILE A		60.753	86.510 -25.340	1.00 13.31	A
		ATOM	4275	CA	ILE A		61.158	87.762 -25.958	1.00 13.70	A
ã}		ATOM	4276	СВ	ILE A		61.448	88.825 -24.875	1.00 14.36	А
100	30	ATOM	4277		ILE A		61.862	90.134 -25.521	1.00 15.40	A
	00	ATOM	4278		ILE A		60.192	89.038 -24.022	1.00 15.13	А
N		ATOM	4279		ILE A		60.359	90.045 -22.898	1.00 17.93	A
		ATOM	4280	C	ILE A		62.370	87.590 -26.862	1.00 14.58	А
		ATOM	4281	0	ILE A		63.464	87.254 -26.407	1.00 14.06	A
	35	ATOM	4282	N	LEU A		62.148	87.812 -28.153	1.00 14.60	A
3 5-11-11	00	ATOM	4283	CA	LEU A		63.195	87.691 -29.157	1.00 14.96	A
		MOTA	4284	CB	LEU A		62.841	86.592 -30.162	1.00 14.72	A
		ATOM	4285	CG	LEU A		62.557	85.197 -29.596	1.00 14.29	A
		ATOM	4286		LEU A		62.158	84.259 -30.725	1.00 14.25	A
	40	ATOM	4287		LEU A		63.792			A
	10	ATOM	4288	C	LEU A			89.019 -29.887	1.00 15.87	A
			4289	0	LEU A		62.393	89.791 -29.988		A
		ATOM			GLY A		64.544	89.275 -30.395	1.00 16.68	A
		MOTA	4290	N	GLI A		64.795	90.512 -31.111	1.00 18.01	A
	45	ATOM	4291	CA			66.227	90.584 -31.597	1.00 19.01	A
	40	ATOM	4292	C	GLY A			90.083 -30.942	1.00 17.83	A
		ATOM	4293	0	GLY A		67.138			
		ATOM	4294	N	GLU A		66.426	91.220 -32.745	1.00 21.14	A
		ATOM	4295	CA	GLU A		67.754	91.359 -33.334	1.00 23.92	A
	E 0	ATOM	4296	CB	GLU A		67.679	92.234 -34.586	1.00 27.11	A
	50	ATOM	4297	CG	GLU A		66.677	91.771 -35.625	1.00 32.07	A
		ATOM	4298	CD	GLU A		66.480	92.796 -36.725	1.00 34.39	A
		ATOM	4299		GLU A		67.457	93.089 -37.449	1.00 35.80	A
		ATOM	4300		GLU A			93.314 -36.862	1.00 35.52	A
		MOTA	4301	С	GLU A			91.980 -32.368	1.00 23.56	A
	55	ATOM	4302	0	GLU A	547	69.926	91.600 -32.342	1.00 24.12	A

	MOTA	4303	N	ASP	Α	548	68.291	92.939	-31.574	1.00 22.91	A
	MOTA	4304	CA	ASP	Α	548	69.159	93.634	-30.630	1.00 22.77	A
	MOTA	4305	CB	ASP	Α	548	68.772	95.114	-30.561	1.00 23.80	A
	ATOM	4306	CG	ASP	Α	548	68.956	95.830	-31.884	1.00 24.78	A
5	MOTA	4307	OD1	ASP	Α	548	70.097	95.863	-32.391	1.00 26.00	A
	MOTA	4308	OD2	ASP	Α	548	67.959	96.363	-32.416	1.00 25.77	A
	ATOM	4309	С	ASP	Α	548	69.159	93.058	-29.220	1.00 22.13	A
	MOTA	4310	0	ASP	Α	548	69.669	93.692	-28.295	1.00 22.21	A
	ATOM	4311	N	ILE	Α	549	68.600		-29.039	1.00 20.62	A
10	ATOM	4312	CA	ILE	Α	549	68.570		-27.702	1.00 19.69	A
	MOTA	4313	CB	ILE	Α	549	67.253	91.667	- 26.967	1.00 20.73	A
	MOTA	4314	CG2	ILE	A	549	66.047	91.126	-27.720	1.00 20.71	A
	ATOM	4315	CG1	ILE	Α	549	67.280	91.132	-25.535	1.00 21.62	A
	ATOM	4316	CD1	ILE	Α	549	68.364	91.745	-24.675	1.00 23.70	A
15	ATOM	4317	С	ILE	Α	549	68.758		-27.647	1.00 18.85	А
	ATOM	4318	0	ILE	Α	549	69.579	89.276	-26.875	1.00 18.42	A
	ATOM	4319	N	LEU	Α	550	68.011	89.038	-28.466	1.00 17.47	
	ATOM	4320	CA	LEU	Α	550	68.104	87.580	-28.473	1.00 16.89	A
	ATOM	4321	CB	LEU	Α	550	67.420		-27.227	1.00 17.32	A
20	MOTA	4322	CG	LEU	Α	550	67.461	85.495	-27.058	1.00 17.26	A
	ATOM	4323	CD1	LEU	Α	550	68.903	85.039	-26.909	1.00 17.29	A
	ATOM	4324	CD2	LEU	Α	550	66.649	85.096	-25.838	1.00 17.14	A
	ATOM	4325	С	LEU	Α	550	67.444	87.015	-29.724	1.00 16.51	A
	ATOM	4326	0	LEU	Α	550	66.238	87.160	-29.920	1.00 16.78	A
25	ATOM	4327	N	PRO	Α	551	68.226	86.351	-30.587	1.00 16.11	
	ATOM	4328	CD	PRO	Α	551	69.696	86.234	-30.567	1.00 16.87	A
	ATOM	4329	CA	PRO	Α	551	67.675	85.783	-31.819	1.00 15.76	A
	MOTA	4330	CB	PRO	Α	551	68.915	85.591	-32.688	1.00 16.77	A
	ATOM	4331	CG	PRO	А	551	69.962	85.248	-31.690	1.00 18.35	A
30	ATOM	4332	С	PRO	Α	551	66.849	84.502	-31.705	1.00 14.86	A
	ATOM	4333	0	PRO	Α	551	65.944	84.279	-32.509	1.00 15.49	
	ATOM	4334	N	SER	Α	552	67.152		-30.722	1.00 13.64	
	ATOM	4335	CA	SER			66.415		-30.589	1.00 12.75	
	ATOM	4336	СВ	SER	Α	552	67.084		-31.425	1.00 13.26	
35	MOTA	4337	OG	SER	Α	552	68.373		-30.924	1.00 15.05	A
	ATOM	4338	С	SER	Α	552	66.276		-29.156	1.00 11.84	
	ATOM	4339	0			552	66.931		-28.246	1.00 11.84	
	ATOM	4340	N	LYS	A	553	65.422		-28.979	1.00 10.82	
	ATOM	4341	CA	LYS	Α	553	65.153		-27.667	1.00 11.24	
40	MOTA	4342	CB	LYS			63.958		-27.037	1.00 11.54	A
	MOTA	4343	CG			553	63.441		-25.742	1.00 12.80	
	ATOM	4344	CD	LYS			64.467		-24.630	1.00 13.25	
	MOTA	4345	CE			553	64.703		-24.200	1.00 13.22	
	ATOM	4346	NZ	LYS	Α	553	65.871	82.085	-23.281	1.00 14.05	
45	ATOM	4347	С	LYS			64.843		-27.746	1.00 10.65	
	ATOM	4348	0	LYS	Α	553	64.058		-28.588	1.00 10.51	
	ATOM	4349	N	HIS			65.464		-26.863	1.00 10.75	
	ATOM	4350	CA	HIS			65.211		-26.817	1.00 11.14	A
	ATOM	4351	CB	HIS			66.426		-26.282	1.00 12.98	
50	MOTA	4352	CG	HIS			67.562		-27.250	1.00 14.49	
	MOTA	4353		HIS			68.093		-28.088	1.00 16.00	
	ATOM	4354		HIS			68.315		-27.410	1.00 17.03	
	MOTA	4355		HIS			69.261		-28.305	1.00 14.97	
	ATOM	4356	NE2	HIS			69.148		-28.732	1.00 18.38	
55	ATOM	4357	С	HIS	Α	554	64.028	76.358	-25.906	1.00 10.44	A

	ATOM	4358	0	HIS	A	554	63.874	76.972	-24.848		10.76	A
	MOTA	4359	N	VAL	Α	555	63.194	75.422	-26.340	1.00	10.09	A
	MOTA	4360	CA	VAL	Α	555	62.049	74.971	-25.562	1.00	9.37	A
	ATOM	4361	CB	VAL	Α	555	60.697	75.425	-26.165	1.00	9.28	A
5	ATOM	4362	CG1	VAL	Α	555	60.560	76.934	-26.045	1.00	9.53	А
	ATOM	4363		VAL			60.584	74.987	-27.613	1.00	9.57	A
	ATOM	4364	С	VAL			62.123	73.452	-25.554	1.00	9.23	А
	ATOM	4365	0	VAL			62.656		-26.485	1.00	9.24	А
	ATOM	4366	N	VAL			61.601		-24.499	1.00	7.97	А
10	ATOM	4367	CA			556	61.629		-24.368	1.00	7.89	A
10	ATOM	4368	CB			556	62.664		-23.299	1.00	7.99	A
	ATOM	4369		VAL			62.584		-23.078	1.00	7.88	A
	ATOM	4370		VAL			64.066		-23.717	1.00	9.27	A
	ATOM	4371	C	VAL			60.266		-23.940	1.00	7.33	A
15	ATOM	4372	Ö	VAL			59.616		-23.077	1.00	7.50	A
10	ATOM	4373	N	MSE			59.840		-24.551	1.00	7.30	A
	ATOM	4374	CA	MSE			58.571		-24.197	1.00	8.38	A
	ATOM	4375	CB	MSE			57.688		-25.433	1.00	9.38	A
	ATOM	4376	CG	MSE			56.636		-25.676		12.19	A
20	ATOM	4377	SE	MSE			57.378		-25.960		17.55	A
20	ATOM	4377	CE	MSE			58.381		-27.570		13.47	A
	ATOM	4379	CE			557	58.824		-23.543	1.00	8.15	A
	ATOM	4379	0	MSE			59.712		-23.955	1.00	8.86	A
				HIS			58.040		-23.555	1.00	7.51	A
25	ATOM ATOM	4381 4382	N CA	HIS			58.134		-21.823	1.00	6.67	A
23							58.318		-20.318	1.00	7.78	A
	ATOM	4383	CB CG			558	58.239		-19.529	1.00	7.70	A
	ATOM	4384 4385		HIS		558	58.985		-19.577	1.00	7.61	A
	MOTA	4386		HIS			57.301		-19.577	1.00	7.80	A
30	ATOM			HIS			57.473		-18.012	1.00	7.28	A
50	ATOM	4387		HIS			58.489		-18.623	1.00	7.93	A
	MOTA	4388 4389	C	HIS			56.845		-22.061	1.00	7.17	A
	ATOM ATOM	4389	0			558	55.757		-22.049	1.00	6.98	A
		4390	N			559	56.976		-22.283	1.00	6.57	A
35	ATOM ATOM	4391	CA			559	55.832		-22.511	1.00	6.63	A
33		4392	CB			559	55.926		-23.905	1.00	7.17	A
	ATOM ATOM		CG				54.910		-24.119	1.00	7.78	A
		4394				559	53.821		-23.550	1.00	8.71	A
	ATOM ATOM	4395 4396		ASN ASN			55.261		-24.960	1.00	8.27	A
40	ATOM		C C	ASN					-21.443	1.00		A
40		4398		ASN			56.619		-21.445	1.00	7.32	A
	ATOM	4390	0			560	55.015		-21.345 -20.425	1.00	6.42	A
	MOTA		N				54.983		-20.425 -19.335	1.00	7.03	A
	ATOM	4400	CA			560	54.219		-19.333	1.00	6.72	A
45	MOTA	4401	CB OG1			560				1.00	6.98	
43	MOTA	4402					54.541		-16.940			A
	MOTA	4403	CG2	THR			52.720		-18.350 -19.714	1.00	7.05 7.51	A A
	MOTA	4404	C	THR			54.390		-19.714 -18.999	1.00	7.07	
	ATOM	4405	0	THR			54.588					A
50	ATOM	4406 4407	N CA	LEU LEU			53.674 53.065		-20.835 -21.273	1.00	7.49 7.71	A A
50	MOTA		CA	LEU		,	51.904		-21.273	1.00	8.47	A
	ATOM ATOM	4408 4409	CB CG	LEU			50.776		-22.233	1.00	9.12	A
				LEU					-21.701 -22.787	1.00	9.12	
	ATOM	4410		LEU			49.724 50.147		-20.462	1.00	7.91	A A
55	MOTA	4411							-20.462	1.00	7.77	A
<i>55</i>	ATOM	4412	С	LEU	Н	201	54.089	31.120	~41.343	1.00	1.11	А

		ATOM	4413	0	LEU A	561	54.993	58.196 -22.649	1.00 8.16	A
		ATOM	4414	N	PRO F		53.943	56.404 -21.765	1.00 8.25	A
		ATOM	4415	CD	PRO F		52.970	55.743 -20.872	1.00 7.40	А
		ATOM	4416	CA	PRO F		54.862	55.419 -22.346	1.00 8.17	A
	5	ATOM	4417	CB	PRO F		54.675	54.212 -21.439	1.00 8.14	A
	Ü	ATOM	4418	CG	PRO F		53.202	54.266 -21.158	1.00 8.36	A
		ATOM	4419	C	PRO P		54.705	55.064 -23.821	1.00 8.36	A
		ATOM	4420	0	PRO P		54.825	53.902 -24.205	1.00 9.39	A
		ATOM	4421	N	HIS A		54.422	56.058 -24.649	1.00 8.47	A
	10	ATOM	4422	CA	HIS A		54.322	55.820 -26.081	1.00 9.07	A
	10	ATOM	4423	CB	HIS F		52.926	55.308 -26.493	1.00 9.42	A
		ATOM	4423	CG	HIS F		51.790	56.182 -26.058	1.00 10.44	A
		ATOM	4424		HIS F		51.289	57.326 -26.582	1.00 10.44	A
			4426		HIS F		50.998	55.881 -24.972	1.00 10.12	A
	15	ATOM	4420		HIS F		50.056	56.799 -24.846	1.00 10.12	A
	10	MOTA					50.210	57.688 -25.811	1.00 10.32	A
		MOTA	4428		HIS A				1.00 10.71	
		MOTA	4429	C	HIS A		54.643	57.118 -26.790		A
		ATOM	4430	0	HIS A		54.465	58.197 -26.224	1.00 10.26	A
	20	MOTA	4431	N	TRP F		55.157	57.014 -28.010	1.00 9.71	A
1000	20	ATOM	4432	CA	TRP F		55.470	58.210 -28.775	1.00 9.67	A
Tributi		ATOM	4433	CB	TRP A		55.966	57.858 -30.177	1.00 10.28	A
		MOTA	4434	CG	TRP A		57.389	57.435 -30.214	1.00 10.78	A
2000 2000 2000		MOTA	4435		TRP A		58.527	58.285 -30.382	1.00 12.00	A
	25	MOTA	4436		TRP P		59.674	57.461 -30.328	1.00 11.44	A
	25	ATOM	4437		TRP F		58.692	59.667 -30.572	1.00 12.35	A
		MOTA	4438		TRP A		57.872	56.169 -30.069	1.00 11.14	A
		MOTA	4439		TRP A		59.243	56.175 -30.137	1.00 11.65	A
St.		MOTA	4440		TRP A		60.972	57.971 -30.458	1.00 12.05	A
	20	ATOM	4441		TRP A		59.982	60.174 -30.702	1.00 12.66	A
finali Ha	30	ATOM	4442		TRP A		61.105	59.326 -30.645	1.00 13.34	A
1,25		ATOM	4443	С	TRP A		54.198	59.018 -28.889	1.00 9.59	A
		ATOM	4444	0	TRP F		53.116	58.466 -29.107	1.00 10.25	A
₿≈ £		ATOM	4445	N	ARG A		54.314	60.327 -28.725	1.00 9.71	A
ing.	0.5	ATOM	4446	CA	ARG A		53.134	61.160 -28.818	1.00 10.44	A
	35	ATOM	4447	CB	ARG A		52.547	61.423 -27.418	1.00 10.22	A
		ATOM	4448	CG	ARG A		51.315	62.336 -27.437	1.00 12.89	A
		ATOM	4449	CD	ARG A	565	50.491	62.296 -26.146	1.00 12.46	A
		ATOM	4450	NE	ARG A	565	51.287	62.544 -24.949	1.00 12.69	A
		ATOM	4451	CZ	ARG A		50.804	63.063 -23.823	1.00 12.00	A
	4 0	MOTA	4452	NH1	ARG A	565		63.401 -23.736	1.00 11.76	A
		ATOM	4453	NH2	ARG A		51.603	63.240 -22.782	1.00 10.34	A
		ATOM	4454	C	ARG A	565	53.396	62.477 -29.515	1.00 10.54	A
		ATOM	4455	0	ARG A	565	54.441	63.104 -29.327	1.00 11.41	А
		ATOM	4456	N	GLU A	566	52.443	62.865 -30.352	1.00 11.57	А
	45	ATOM	4457	CA	GLU A	566	52.500	64.139 -31.048	1.00 12.67	A
		ATOM	4458	СВ	GLU A	566	52.281	63.976 -32.551	1.00 14.55	А
		ATOM	4459	CG	GLU A	566	53.360	63.207 -33.265	1.00 16.81	A
		MOTA	4460	CD	GLU A	566	53.167	63.239 -34.765	1.00 18.39	A
		ATOM	4461	OE1	GLU A		52.025	63.017 -35.219	1.00 20.87	A
	50	ATOM	4462		GLU A		54.155	63.483 -35.487	1.00 20.56	A
		ATOM	4463	С	GLU A		51.352	64.949 -30.469	1.00 12.51	A
		ATOM	4464	0	GLU A		50.280	64.414 -30.183	1.00 13.17	A
		ATOM	4465	N	GLN A		51.584	66.238 -30.280	1.00 11.15	A
		ATOM	4466	CA	GLN A		50.559	67.117 -29.744	1.00 11.24	А
	55	ATOM	4467	СВ	GLN A		50.489	67.000 -28.217	1.00 12.08	А
			-	-			-	_	· -	

		ATOM	4468	CG	GLN A	567	49.477	67.948 -27.579	1.00 11.81	A
		ATOM	4469	CD	GLN A	567	49.819	68.294 -26.141	1.00 12.83	A
		ATOM	4470	OE1	GLN A	567	49.777	67.441 -25.255	1.00 11.48	A
		MOTA	4471	NE2	GLN A	567	50.171	69.553 -25.905	1.00 14.01	A
	5	ATOM	4472	С	GLN A	567	50.941	68.533 -30.116	1.00 10.61	A
		ATOM	4473	0	GLN A	567	52.122	68.879 -30.126	1.00 10.26	A
		ATOM	4474	N	LEU A	568	49.951	69.349 -30.451	1.00 10.33	A
		ATOM	4475	CA	LEU A	568	50.247	70.734 -30.766	1.00 9.94	A
		MOTA	4476	CB	LEU A	568	49.051	71.439 -31.410	1.00 11.28	A
	10	ATOM	4477	CG	LEU A		48.657	71.080 -32.842	1.00 11.61	A
		ATOM	4478	CD1	LEU A		47.653	72.113 -33.339	1.00 12.59	A
		ATOM	4479		LEU A		49.884	71.073 -33.745	1.00 12.50	A
		ATOM	4480	С	LEU A		50.568	71.426 -29.452	1.00 10.03	A
		ATOM	4481	0	LEU A		49.926	71.171 -28.430	1.00 10.24	A
	15	ATOM	4482	N	VAL A		51.581	72.279 -29.477	1.00 8.96	A
		ATOM	4483	CA	VAL A		51.965	73.042 -28.300	1.00 9.33	A
		MOTA	4484	СВ	VAL A		53.331	72.585 -27.724	1.00 8.58	А
		ATOM	4485		VAL A		53.201	71.179 -27.135	1.00 9.88	А
1.7mm		ATOM	4486		VAL A		54.402	72.607 -28.808	1.00 9.77	А
100	20	MOTA	4487	C	VAL A		52.046	74.503 -28.716	1.00 9.59	A
		ATOM	4488	Ō	VAL A		52.314	74.815 -29.877	1.00 10.28	A
		ATOM	4489	N	ASP A		51.790	75.405 -27.779	1.00 9.31	А
191		ATOM	4490	CA	ASP A		51.846	76.820 -28.108	1.00 10.77	A
		ATOM	4491	CB	ASP A		50.434	77.409 -28.195	1.00 12.92	A
191	25	ATOM	4492	CG	ASP A		49.759	77.514 -26.841	1.00 16.24	A
		ATOM	4493		ASP A		49.620	76.479 -26.159	1.00 20.02	A
194		ATOM	4494		ASP A		49.367	78.635 -26.459	1.00 20.35	A
		ATOM	4495	C	ASP A		52.662	77.594 -27.093	1.00 10.43	A
E)		ATOM	4496	Ö	ASP A		52.761	77.208 -25.928	1.00 11.33	A
	30	ATOM	4497	N	PHE A		53.267	78.681 -27.558	1.00 10.09	A
		ATOM	4498	CA	PHE A		54.069	79.546 -26.704	1.00 10.04	A
19 mg		ATOM	4499	СВ	PHE A		55.569	79.321 -26.929	1.00 10.14	A
jah .		ATOM	4500	CG	PHE A		56.064	77.980 -26.482	1.00 9.15	А
in the second		ATOM	4501		PHE A		56.053	76.891 -27.344	1.00 8.69	A
garge garan	35	ATOM	4502		PHE A		56.544	77.809 -25.190	1.00 9.56	А
2,000		ATOM	4503		PHE A		56.517	75.645 -26.921	1.00 9.22	A
		ATOM	4504		PHE A		57.006	76.570 -24.758	1.00 8.84	A
		ATOM	4505	CZ	PHE A		56.991	75.489 -25.628	1.00 9.29	A
		ATOM	4506	C	PHE A		53.761	80.984 -27.075	1.00 10.51	А
	40	MOTA	4507	0	PHE A		53.379	81.263 -28.212	1.00 11.02	А
		ATOM	4508	N	TYR A		53.918	81.890 -26.114	1.00 10.59	А
		MOTA	4509	CA	TYR A		53.721	83.308 -26.381	1.00 11.05	А
		ATOM	4510	CB	TYR A		53.298	84.069 -25.123	1.00 12.13	A
		ATOM	4511	CG	TYR A		51.862	83.889 -24.686	1.00 14.07	А
	45	ATOM	4512		TYR A		50.897	83.376 -25.550	1.00 14.81	A
		ATOM	4513		TYR A		49.562	83.266 -25.154	1.00 15.92	А
		ATOM	4514		TYR A		51.461	84.286 -23.412	1.00 16.47	A
		ATOM	4515		TYR A		50.135	84.184 -23.009	1.00 16.38	A
		ATOM	4516	CZ	TYR A		49.191	83.676 -23.882	1.00 16.81	A
	50	ATOM	4517	OH	TYR A		47.874	83.592 -23.481	1.00 17.51	A
		ATOM	4518	C	TYR A		55.078	83.839 -26.826	1.00 17.31	A
		ATOM	4519	0	TYR A		56.094	83.557 -26.188	1.00 10.80	A
		ATOM	4520	N	VAL A		55.096	84.596 -27.920	1.00 10.87	A
		ATOM	4521	CA	VAL A		56.335	85.174 -28.438	1.00 11.44	A
	55	ATOM	4522	CB	VAL A		56.782	84.475 -29.745	1.00 11.72	A
		111 011		CD	***** F	. 3/3	50.702	21.1.3 23.743		**

	ATOM	4523	CG1	VAL	Α	573	57.329	83.084	-29.429	1.00	11.99	А
	ATOM	4524		VAL			55.613		-30.710		12.32	А
	ATOM	4525	C			573	56.135		-28.699		11.37	A
	ATOM	4526	Ö			573	55.021		-28.967		12.01	A
5	ATOM	4527	N	SER			57.218		-28.624		12.19	A
O	ATOM	4528	CA	SER			57.156		-28.817		13.05	A
	ATOM	4529	CB	SER			58.338		-28.117		13.31	A
	ATOM	4530	OG	SER			59.566		-28.680		13.02	A
		4531					57.116		-30.270		13.99	A
10	ATOM	4531	C	SER SER			57.116		-30.270		15.54	A
10	MOTA		0								14.20	A
	ATOM	4533	N			575	57.120		-31.203			A
	ATOM	4534	CA			575	57.071		-32.621 -33.197		14.88	
	MOTA	4535	CB			575	58.483				15.07	A
15	ATOM	4536	OG			575	58.440		-34.607		16.15	A
15	ATOM	4537	C	SER			56.312		-33.387		14.98	A
	ATOM	4538	0			575	56.349		-33.027		14.24	A
	ATOM	4539	N			576	55.599		-34.450		15.06	A
	ATOM	4540	CD			576	55.309		-34.884		15.77	A
20	MOTA	4541	CA			576	54.845		-35.244		14.91	A
20	ATOM	4542	CB	PRO			53.797		-35.929		15.59	A
	ATOM	4543	CG			576	54.558		-36.184		16.60	A
	ATOM	4544	С			576	55.763		-36.246		14.44	A
	ATOM	4545	0			576	55.411		-36.821		14.89	A
0.5	ATOM	4546	N	PHE			56.951		-36.443		14.84	А
25	ATOM	4547	CA	PHE			57.912		-37.390		15.08	A
	ATOM	4548	CB	PHE			58.680		-38.050		16.28	A
	ATOM	4549	CG	PHE			57.790		-38.732		18.45	A
	MOTA	4550		PHE			58.042		-38.617		19.42	А
20	ATOM	4551		PHE			56.699		-39.487		18.51	A
30	ATOM	4552		PHE			57.218		-39.243		20.70	A
	ATOM	4553		PHE			55.867		-40.119		20.04	A
	ATOM	4554	CZ	PHE			56.129		-39.995		20.44	A
	ATOM	4555	С	PHE			58.870		-36.703		14.78	A
25	MOTA	4556	0	PHE			60.053		-36.528		14.56	A
35	ATOM	4557	N	VAL			58.335		-36.317		14.00	A
	MOTA	4558	CA	VAL			59.112		-35.635		14.21	A
	ATOM	4559	CB	VAL			58.641		-34.172		14.17	A
	ATOM	4560		VAL			59.412		-33.481		14.20	A
40	ATOM	4561		VAL			58.840		-33.431		14.11	A
40	ATOM		С	VAL			58.971				13.94	A
	ATOM	4563	0	VAL			57.887		-36.806		14.31	A
	MOTA	4564	N			579	60.083		-36.465		14.83	A
	ATOM	4565	CA			579	60.096		-37.117		14.80	A
45	ATOM	4566	СВ			579	60.997		-38.356		16.06	A
45	ATOM	4567	OG			579	62.294		-38.032		19.90	А
	ATOM	4568	С			579	60.588		-36.127		14.00	A
	ATOM	4569	0			579	61.340		-35.204		13.81	A
	ATOM	4570	N	VAL	Α	580	60.157		-36.326		12.34	A
	ATOM	4571	CA	VAL	Α	580	60.528		-35.444		12.09	А
50	ATOM	4572	CB	VAL	Α	580	59.269	75.835	-34.898	1.00	11.61	A
	ATOM	4573		VAL			59.662		-33.871		11.03	A
	MOTA	4574	CG2	VAL			58.321		-34.284		10.91	A
	ATOM	4575	С	VAL			61.388		-36.144		12.49	A
	MOTA	4576	0	VAL			61.185		-37.320		13.11	A
55	MOTA	4577	N	THR	А	581	62.347	74.956	-35.402	1.00	12.19	A

		ATOM	4578	CA	THR A 581	63.236	73.911 -35.894	1.00 13.34	A
		ATOM	4579	CB	THR A 581	64.618	74.470 -36.315	1.00 13.96	A
		ATOM	4580	OG1	THR A 581	65.119	75.344 -35.295	1.00 15.16	A
		ATOM	4581	CG2	THR A 581	64.516	75.220 -37.632	1.00 13.79	A
	5	ATOM	4582	С	THR A 581	63.465	72.918 -34.762	1.00 14.12	A
		MOTA	4583	0	THR A 581	63.316	73.269 -33.593	1.00 13.78	A
		ATOM	4584	N	ASP A 582		71.676 -35.104	1.00 15.79	A
		MOTA	4585	CA	ASP A 582		70.687 -34.075	1.00 17.41	A
		ATOM	4586	СВ	ASP A 582		69.271 -34.522	1.00 17.61	A
	10	ATOM	4587	CG	ASP A 582		68.801 -35.782	1.00 17.96	A
		ATOM	4588		ASP A 582		67.774 -36.345	1.00 19.58	А
		ATOM	4589		ASP A 582		69.434 -36.205	1.00 17.28	A
		ATOM	4590	C	ASP A 582		70.831 -33.866	1.00 19.39	A
		ATOM	4591	Ö	ASP A 582		71.675 -34.512	1.00 18.93	А
	15	ATOM	4592	N	LEU A 583		70.052 -32.983	1.00 21.85	А
	10	ATOM	4593	CA	LEU A 583		70.251 -32.777	1.00 23.92	A
		ATOM	4594	CB	LEU A 583		69.489 -31.549	1.00 25.99	А
		ATOM	4595	CG	LEU A 583		70.140 -31.024	1.00 27.28	A
		ATOM	4596		LEU A 583		71.550 -30.548	1.00 28.01	A
i stati	20	MOTA	4597		LEU A 583		69.329 -29.898	1.00 28.61	A
Ç.		ATOM	4598	C	LEU A 583		69.897 -33.988	1.00 24.12	А
ij.		ATOM	4599	0	LEU A 583		70.385 -34.120	1.00 25.14	A
(5)		ATOM	4600	N	ALA A 584		69.055 -34.873	1.00 23.00	A
		ATOM	4601	CA	ALA A 584		68.680 -36.074	1.00 21.20	А
	25	ATOM	4602	CB	ALA A 584		67.380 -36.649	1.00 21.31	A
133		ATOM	4603	C	ALA A 584		69.808 -37.091	1.00 20.45	A
		ATOM	4604	0	ALA A 584		69.693 -38.237	1.00 19.17	A
		ATOM	4605	N	ASN A 585		70.901 -36.651	1.00 20.39	A
R) 1985		ATOM	4606	CA	ASN A 585	67.725	72.075 -37.487	1.00 20.49	A
	30	ATOM	4607	СВ	ASN A 585	69.052	72.580 -38.058	1.00 22.80	A
		MOTA	4608	CG	ASN A 585	69.389	73.979 -37.585	1.00 24.67	A
i.		MOTA	4609	OD1	ASN A 585	68.643	74.928 -37.833	1.00 25.57	A
		ATOM	4610	ND2	ASN A 585	70.514	74.114 -36.891	1.00 26.67	A
		ATOM	4611	С	ASN A 585	66.727	71.848 -38.616	1.00 19.93	A
i da	35	ATOM	4612	0	ASN A 585	66.715	72.592 -39.603	1.00 20.20	A
		MOTA	4613	N	ASN A 586	65.894	70.822 -38.473	1.00 18.43	A
		MOTA	4614	CA	ASN A 586	64.872	70.525 -39.471	1.00 17.78	Α
		MOTA	4615	CB	ASN A 586	64.329	69.101 -39.317	1.00 18.38	A
	_	MOTA	4616	CG	ASN A 586		68.045 -39.465	1.00 18.83	A
	40	MOTA	4617		ASN A 586		68.089 -40.388	1.00 18.59	A
		MOTA	4618	ND2	ASN A 586		67.073 -38.560	1.00 18.31	A
		ATOM	4619	С	ASN A 586		71.492 -39.241	1.00 17.17	A
		MOTA	4620	0	ASN A 586		71.640 -38.118	1.00 15.87	А
		MOTA	4621	N	PRO A 587		72.173 -40.296	1.00 16.47	Α
	45	ATOM	4622	CD	PRO A 587	63.673	72.155 -41.710	1.00 17.25	А
		ATOM	4623	CA	PRO A 587		73.099 -40.080	1.00 15.85	A
		MOTA	4624	CB	PRO A 587		73.762 -41.447	1.00 16.75	A
		MOTA	4625	CG	PRO A 587		72.697 -42.400	1.00 17.77	A
		MOTA	4626	С	PRO A 587		72.354 -39.630	1.00 14.91	А
	50	ATOM	4627	0	PRO A 587		71.203 -40.009	1.00 15.09	A
		MOTA	4628	N	VAL A 588		73.008 -38.795	1.00 13.83	A
		MOTA	4629	CA	VAL A 588		72.428 -38.298	1.00 13.91	A
		MOTA	4630	СВ	VAL A 588		72.242 -36.764	1.00 14.00	A
		MOTA	4631		VAL A 588		71.711 -36.263	1.00 14.23	A
	55	ATOM	4632	CG2	VAL A 588	60.028	71.285 -36.390	1.00 13.60	A

		ATOM	4633	С	VAL A	500	57.733	73.395 -38.655	1.00 13.82	А
			4634							A
		ATOM		0	VAL A		57.829	74.590 -38.371	1.00 13.34	
		MOTA	4635	N	GLU A		56.677	72.886 -39.282	1.00 14.01	A
	,- -	MOTA	4636	CA	GLU A		55.559	73.740 -39.666	1.00 14.78	A
	5	ATOM	4637	CB	GLU A		54.492	72.945 -40.417	1.00 16.78	A
		ATOM	4638	CG	GLU A	589	53.508	73.841 -41.153	1.00 20.93	A
		ATOM	4639	CD	GLU A	589	52.338	73.083 -41.743	1.00 22.74	A
		ATOM	4640	OE1	GLU A	589	52.543	71.952 -42.229	1.00 25.02	A
		ATOM	4641	OE2	GLU A	589	51.213	73.628 -41.733	1.00 24.68	A
	10	ATOM	4642	С	GLU A	589	54.940	74.370 -38.428	1.00 14.21	A
		ATOM	4643	0	GLU A		54.679	73.688 -37.436	1.00 13.85	А
		ATOM	4644	N	ALA A		54.703	75.673 -38.491	1.00 13.29	A
		ATOM	4645	CA	ALA A		54.130	76.387 -37.365	1.00 12.68	A
		ATOM	4646	CB	ALA A		55.215	77.169 -36.643	1.00 12.81	A
	15	ATOM	4647	C	ALA A		53.026	77.329 -37.804	1.00 12.30	A
	10	ATOM	4648	0	ALA A		52.925	77.691 -38.979	1.00 12.30	A
		ATOM	4649	N	GLN A		52.196	77.714 -36.842	1.00 11.58	A
		ATOM	4650	CA	GLN A		51.099	78.640 -37.079	1.00 10.88	A
	20	MOTA	4651	CB	GLN A		49.746	77.924 -37.004	1.00 11.34	A
वेडक्की . स्वयु	20	ATOM	4652	CG	GLN A		48.551	78.880 -37.069	1.00 11.63	A
Ţ.		ATOM	4653	CD	GLN A		47.220	78.186 -36.836	1.00 11.31	A
3,13		ATOM	4654		GLN A		46.948	77.136 -37.416	1.00 12.28	A
171		MOTA	4655		GLN A		46.380	78.777 -35.993	1.00 11.76	A
1		MOTA	4656	C	GLN A		51.140	79.714 -36.007	1.00 11.07	A
191	25	MOTA	4657	0	GLN A	591	51.335	79.419 -34.825	1.00 11.93	A
		ATOM	4658	N	VAL A	592	50.978	80.966 -36.416	1.00 10.29	A
ga.		ATOM	4659	CA	VAL A	592	50.960	82.059 -35.461	1.00 11.22	А
₹,8 E.		ATOM	4660	СВ	VAL A	592	51.983	83.158 -35.831	1.00 11.59	A
51		ATOM	4661	CG1	VAL A	592	51.742	84.405 -34.990	1.00 12.13	А
	30	ATOM	4662		VAL A		53.399	82.641 -35.584	1.00 11.16	А
		ATOM	4663	С	VAL A		49.550	82.637 -35.433	1.00 11.38	A
		ATOM	4664	0	VAL A		48.935	82.853 -36.477	1.00 12.01	A
ind.		ATOM	4665	N	SER A		49.038	82.848 -34.227	1.00 12.29	A
2 12 12 12 12 12 12 12 12 12 12 12 12 12		ATOM	4666	CA	SER A		47.704	83.399 -34.020	1.00 12.41	A
	35	ATOM	4667	CB	SER A		46.757	82.337 -33.444	1.00 12.53	A
i cita	00	ATOM	4668	OG	SER A		46.554	81.255 -34.339	1.00 13.81	A
		ATOM	4669	C	SER A		47.833	84.533 -33.018	1.00 13.01	A
		ATOM	4670	0	SER A		48.828	84.629 -32.297	1.00 12.72	A
		ATOM	4670	N	PRO A			85.415 -32.959	1.00 13.40	
	40						46.831			A
	40	ATOM	4672				45.693			A
		ATOM	4673	CA	PRO A			86.523 -32.004		A
		ATOM	4674	СВ	PRO A		45.802			A
		ATOM	4675	CG	PRO A		45.560	87.083 -33.915	1.00 12.90	A
	4=	ATOM	4676	С	PRO A			86.038 -30.583	1.00 12.82	A
	4 5	ATOM	4677	0	PRO A			84.913 -30.374	1.00 12.85	А
		MOTA	4678	N	VAL A			86.882 -29.605	1.00 11.95	А
		MOTA	4679	CA	VAL A	595		86.549 -28.221	1.00 12.90	A
		MOTA	4680	CB	VAL A	595	47.761	87.006 -27.249	1.00 12.80	A
		MOTA	4681	CG1	VAL A	595	47.280	86.842 -25.811	1.00 13.35	A
	50	MOTA	4682	CG2	VAL A	595	49.020	86.176 -27.467	1.00 13.76	A
		MOTA	4683	С	VAL A			87.315 -27.927	1.00 13.06	А
		MOTA	4684	0	VAL A			88.545 -27.845	1.00 14.57	А
		ATOM	4685	N	TRP A			86.583 -27.805	1.00 13.30	А
		ATOM	4686	CA	TRP A			87.187 -27.539		A
	55	ATOM	4687	CB	TRP A			86.522 -28.391	1.00 13.01	A
						J J U	11.000	20.001		

	ATOM	4688	CG	TRP	Δ	596	42.037	86.706	-29.862	1.00	13.11	А
	ATOM	4689		TRP			41.728		-30.615		13.30	A
	ATOM	4690		TRP			42.009		-31.969		13.52	A
	ATOM	4691		TRP			41.241		-30.275		13.42	A
5	ATOM	4692		TRP			42.483		-30.765		13.06	A
Ū	ATOM	4693		TRP			42.467		-32.034		13.17	A
	ATOM	4694		TRP			41.818		-32.987		13.38	А
	ATOM	4695	CZ3				41.050		-31.288		13.71	A
	ATOM	4696	CH2				41.339		-32.627		14.26	А
10	ATOM	4697	C			596	42.567		-26.078		15.30	А
10	ATOM	4698	Ö			596	42.741		-25.456		15.31	А
	ATOM	4699	N	SER			42.027		-25.540		16.68	A
	ATOM	4700	CA	SER			41.559		-24.164		18.42	A
	ATOM	4701	CB			597	42.486		-23.298		19.42	A
15	ATOM	4702	OG	SER			42.563		-23.797		21.78	A
10	ATOM	4703	C	SER			40.160		-24.185		18.74	A
	ATOM	4704	Ō	SER			39.907		-24.892		19.83	А
	ATOM	4705	N	TRP			39.249		-23.425		18.70	A
	ATOM	4706	CA	TRP			37.881		-23.377		19.40	А
20	ATOM	4707	CB	TRP			36.896		-23.328		16.72	A
	ATOM	4708	CG			598	36.870		-24.603	1.00	14.05	A
	ATOM	4709		TRP			35.866		-25.621		13.09	A
	ATOM	4710		TRP			36.272		-26.656	1.00	12.49	А
	ATOM	4711		TRP			34.660		-25.760		12.76	А
25	ATOM	4712		TRP			37.817	85.859	-25.048	1.00	13.40	A
	ATOM	4713	NE1				37.466	85.366	-26.281	1.00	12.12	A
	ATOM	4714		TRP			35.516	85.734	-27.816	1.00	12.90	A
	ATOM	4715	CZ3	TRP			33.907	87.306	-26.917	1.00	12.25	А
	ATOM	4716	CH2				34.341	86.433	-27.929	1.00	12.83	A
30	MOTA	4717	С	TRP	Α	598	37.673	89.595	-22.183	1.00	21.86	A
	MOTA	4718	0	TRP	Α	598	38.185	89.340	-21.093	1.00	22.28	A
	MOTA	4719	N	HIS	Α	599	36.917	90.663	-22.397	1.00	25.14	A
	MOTA	4720	CA	HIS	A	599	36.662	91.627	-21.341	1.00	29.11	A
	MOTA	4721	CB	HIS	Α	599	37.513	92.875	-21.575	1.00	30.89	A
35	ATOM	4722	CG	HIS	A	599	38.982	92.597	-21.638	1.00	32.98	Α
	MOTA	4723	CD2	HIS	A	599	39.844	92.597	-22.682		33.68	A
	MOTA	4724	ND1	HIS	А	599	39.722		-20.531		33.67	A
	MOTA	4725	CE1	HIS	A	599	40.977	92.036	-20.890		34.01	А
	MOTA	4726	NE2	HIS			41.078		-22.190		34.05	A
40	MOTA	4727	С	HIS	Α	599	35.197	92.018	-21.262		31.06	A
	MOTA	4728	0			599	34.520		-22.281		30.43	A
	MOTA	4729	N			600	34.712		-20.037		33.98	A
	MOTA	4730	CA	HIS			33.333		-19.818		37.06	A
	ATOM	4731	CB	HIS			32.835		-18.463		38.91	A
45	MOTA	4732	CG			600	31.366		-18.250		40.97	A
	MOTA	4733		HIS			30.390		-17.910		41.66	А
	ATOM	4734		HIS			30.750		-18.389		41.78	A
	ATOM	4735		HIS			29.458		-18.145		42.26	A
	ATOM	4736		HIS			29.213		-17.852		42.52	A
50	ATOM	4737	С			600	33.339		-19.837		37.98	A
	MOTA	4738	0			600	33.560		-18.811		38.39	A
	ATOM	4739	N	ASP			33.113		-21.016		39.04	A
	ATOM	4740	CA			601	33.108		-21.185		40.24	A
	ATOM	4741	CB	ASP			32.909		-22.660		41.10	A
55	ATOM	4742	CG	ASP	A	601	33.283	97.906	-22.976	1.00	42.18	А

		7.0014	4740	0.5.1			0.0						
		ATOM	4743		ASP.			32.722		-22.344		42.37	A
		MOTA	4744	OD2	ASP .	A 6	01	34.139	98.112	-23.862	1.00	42.54	A
		ATOM	4745	С	ASP .	A 6	01	32.010	96.768	-20.344	1 00	40.49	A
		ATOM	4746	Ō	ASP .			30.829		-20.675		40.39	A
	5												
	5	ATOM	4747	N	THR .			32.413		-19.254		40.63	A
		MOTA	4748	CA	THR .			31.476		-18.352	1.00	40.68	A
		MOTA	4749	CB	THR .	A 6	02	32.200	98.623	-17.102	1.00	41.47	A
		ATOM	4750	OG1	THR .	A 6	02	32.869	97.550	-16.429	1.00	42.23	A
		MOTA	4751	CG2	THR .			31.204		-16.146		42.22	A
	10	ATOM	4752	C	THR			30.762		-19.039			
	10											39.69	A
		ATOM	4753	0	THR I			29.652		-18.656		40.04	A
		ATOM	4754	N	LEU :	A 61	03	31.404	99.804	-20.056	1.00	38.12	A
		ATOM	4755	CA	LEU .	A 61	03	30.834	100.927	-20.790	1.00	36.37	A
		ATOM	4756	СВ	LEU .	A 6	03	31.944	101.732	-21,478	1.00	37.67	A
	15	ATOM	4757	CG	LEU				102.554			38.43	A
	10	ATOM	4758		LEU .								
									103.570			38.88	A
		ATOM	4759		LEU				101.640			39.02	A
		MOTA	4760	С	LEU I				100.499		1.00	34.34	A
		ATOM	4761	0	LEU A	A 61	03	28.645	100.915	-21.763	1.00	33.94	A
	20	ATOM	4762	N	THR I	A 60	04	30.217	99.667	-22.775	1.00	31.91	A
4.CI		ATOM	4763	CA	THR I			29.321		-23.828		29.56	A
		ATOM	4764	СВ	THR A			30.110		-25.040		29.91	A
A CAMPAGE													
KA B		ATOM	4765	OG1				30.920		-24.639		30.03	A
79	0=	MOTA	4766		THR A			31.004		-25.608	1.00	29.97	A
191	25	ATOM	4767	С	THR A	4 60	04	28.385	98.092	-23.355	1.00	27.84	A
		ATOM	4768	0	THR A	A 60	04	27.447	97.722	-24.060	1.00	27.19	A
112		ATOM	4769	N	LYS A	A 60	05	28.642		-22.162		26.35	A
		ATOM	4770	CA	LYS A			27.819		-21.605		25.31	A
21		ATOM	4771	CB									
	30				LYS A			26.381		-21.411		25.79	A
ii sheelii Hati.	30	ATOM	4772	CG	LYS A			26.247		-20.418		26.37	A
ij.		ATOM	4773	CD	LYS A	4 60	05	26.700	97.703	-19.028	1.00	26.73	A
		MOTA	4774	CE	LYS A	4 60	05	26.600	98.853	-18.038	1.00	26.90	A
		ATOM	4775	NZ	LYS A	A 60	05	27.012	98.438	-16.669	1.00	27.43	A
S beet		MOTA	4776	С	LYS A			27.831		-22.507		24.34	А
	35	ATOM	4777	Ö	LYS A			26.802		-22.708		24.15	A
grefa .	00	ATOM	4778										
				N	THR A			29.000		-23.055		22.88	A
		ATOM	4779	CA	THR A			29.157		-23.925		21.84	A
		MOTA	4780	CB	THR A			29.277	94.207	-25.412		22.73	A
		MOTA	4781	OG1	THR A	4 60	06	30.419	95.057	-25.584	1.00	23.70	A
	40	ATOM	4782	CG2	THR A	4 60	06	28.024	94.932	-25.873	1.00	23.17	A
		ATOM	4783	С	THR A			30.417		-23.545		20.46	A
		ATOM	4784	Ö	THR A			31.310		-22.893		20.36	
		ATOM											A
			4785	N	ILE A			30.473		-23.948		19.22	A
	4.5	MOTA	4786	CA	ILE A			31.627		-23.678		18.27	A
	45	MOTA	4787	CB	ILE A	4 60	07	31.194	89.579	-23.081	1.00	18.14	A
		ATOM	4788	CG2	ILE A	4 60	07	32.419	88.737	-22.744	1.00	18.10	A
		MOTA	4789	CG1	ILE A	4 60	07	30.362	89.819	-21.818		18.82	А
		ATOM	4790		ILE A			29.723		-21.261		20.02	
		ATOM	4791	C									A
	50				ILE A			32.291		-25.032		17.90	A
	50	ATOM	4792	0	ILE A			31.746		-25.891		17.34	A
		MOTA	4793	N	HIS A			33.458		-25.229	1.00	17.94	А
		ATOM	4794	CA	HIS A	4 60	38	34.155	91.173	-26.498	1.00	18.20	А
		ATOM	4795	CB	HIS A			33.909		-27.365		19.84	А
		ATOM	4796	CG	HIS A			34.468		-26.792		21.38	A
	55	ATOM	4797		HIS A			35.447		-27.238			
		FILOEI	ュノノノ	CDZ	III O F	7 0(00.44/	24.474	41.230	1.00	22.64	A

		MOTA	4798	ND1	HIS A	608	34.012	94.225	-25.614	1.00 22.82	A
		ATOM	4799	CE1	HIS A	608	34.686	95.332	-25.360	1.00 22.93	A
		MOTA	4800	NE2	HIS A	608	35.563	95.518	-26.330	1.00 23.21	A
		MOTA	4801	С	HIS A		35.649		-26.317	1.00 17.54	A
	5	ATOM	4802	0	HIS A		36.212		-25.262	1.00 17.84	A
		ATOM	4803	N	PRO A		36.313		-27.355	1.00 16.61	A
		ATOM	4804	CD	PRO A		35.716		-28.578	1.00 15.98	A
		ATOM	4805	CA	PRO A		37.748		-27.310	1.00 16.72	A
		ATOM	4806	CB	PRO A		37.873		-28.203	1.00 16.83	A
	10	MOTA	4807	CG	PRO A		36.923		-29.305	1.00 16.57	A
	10	ATOM	4808	C	PRO A		38.648		-27.784	1.00 10.37	
											A
		ATOM	4809	0	PRO A		38.322		-28.725	1.00 18.05	A
		ATOM	4810	N	GLN A		39.789		-27.118	1.00 17.75	A
	15	ATOM	4811	CA	GLN A		40.785		-27.464	1.00 19.28	A
	15	ATOM	4812	CB	GLN A		41.057		-26.285	1.00 22.02	A
		MOTA	4813	CG	GLN A		39.869		-25.867	1.00 26.25	A
		MOTA	4814	CD	GLN A		40.254		-24.875	1.00 28.59	А
		MOTA	4815	OE1			40.799		-23.808	1.00 30.20	A
3500	20	MOTA	4816	NE2			39.973		-25.225	1.00 30.13	A
	20	MOTA	4817	С	GLN A		42.048		-27.802	1.00 18.53	A
1,62		ATOM	4818	0	GLN A		42.391		-27.116	1.00 17.85	A
		MOTA	4819	N	GLY A		42.732		-28.863	1.00 18.19	А
		MOTA	4820	CA	GLY A	611	43.945	91.355	-29.257	1.00 18.07	А
		ATOM	4821	С	GLY A	611	45.190	92.105	-28.840	1.00 18.33	A
	25	ATOM	4822	0	GLY A	611	45.206	93.335	-28.816	1.00 18.55	A
IŲ.		ATOM	4823	N	SER A	612	46.236	91.362	-28.498	1.00 18.22	A
101		MOTA	4824	CA	SER A	612	47.497	91.969	-28.091	1.00 18.50	A
		ATOM	4825	CB	SER A	612	48.366	90.941	-27.365	1.00 17.71	А
33.		ATOM	4826	OG	SER A	612	49.646	91.474	-27.077	1.00 17.75	А
	30	ATOM	4827	С	SER A	612	48.247	92.494	-29.308	1.00 18.79	А
		ATOM	4828	0	SER A		48.194	91.904	-30.385	1.00 18.12	А
Arried Arried		ATOM	4829	N	THR A		48.951	93.608	-29.134	1.00 20.66	А
şak.		ATOM	4830	CA	THR A		49.713		-30.229	1.00 22.22	А
ise Ise		ATOM	4831	СВ	THR A		49.428		-30.370	1.00 23.24	A
1	35	ATOM	4832	OG1	THR A	613	49.860		-29.187	1.00 23.40	А
il canin		ATOM	4833	CG2	THR A	613	47.939	95.952	-30.571	1.00 22.92	A
		ATOM	4834	С	THR A		51.212		-30.007	1.00 22.80	A
		ATOM	4835	0	THR A		52.030		-30.749	1.00 23.76	A
		ATOM	4836	N	THR A		51.568		-28.992	1.00 22.98	A
	40	ATOM	4837	CA	THR A		52.974		-28.672	1.00 23.21	A
		ATOM	4838	СВ	THR A		53.417		-27.469	1.00 23.94	A
		ATOM	4839	OG1			52.563		-26.352	1.00 24.76	A
		ATOM	4840	CG2			53.353		-27.803	1.00 25.13	A
		ATOM	4841	C	THR A		53.288		-28.349	1.00 23.13	A
	45	ATOM	4842	0	THR A		54.453		-28.253	1.00 22.85	A
	10	ATOM	4843		LYS A		52.247		-28.176	1.00 22.83	
				N	LYS A						A
		ATOM	4844	CA			52.404		-27.849	1.00 20.03	A
		ATOM	4845	CB	LYS A		51.862		-26.439	1.00 22.00	A
	50	ATOM	4846	CG	LYS A		51.894		-25.987	1.00 24.67	A
	50	ATOM	4847	CD	LYS A		51.077		-24.711	1.00 25.80	A
		ATOM	4848	CE	LYS A		51.569		-23.581	1.00 25.99	A
		ATOM	4849	NZ	LYS A		50.774		-22.330	1.00 26.04	A
		ATOM	4850	С	LYS A		51.629		-28.863	1.00 18.41	A
		ATOM	4851	0	LYS A		50.534		-29.270	1.00 17.64	A
	55	ATOM	4852	N	TYR A	616	52.194	87.328	-29.271	1.00 16.73	А

	ATOM	4853	CA	TYR	A 616	51.533	86.452 -30.236	1.00 15.58	А
			CB						A
									A
5									A
3									A
									A
	ATOM	4859	CE2	TYR .	A 616	51.069	90.080 -33.000	1.00 20.65	A
	MOTA	4860	CZ	TYR .	A 616	52.142	90.864 -32.610	1.00 20.53	A
	MOTA	4861	ОН	TYR .	A 616	52.141	92.210 -32.890	1.00 23.34	A
10	ATOM		С						A
									A
									A
									A
15									А
13									A
	MOTA	4868	CD	ARG .	A 617	47.417	81.885 -28.463	1.00 17.77	A
	MOTA	4869	NE	ARG 2	A 617	47.486	80.424 -28.441	1.00 17.57	A
	MOTA	4870	CZ	ARG 2	A 617	46.805	79.622 -29.258	1.00 17.88	A
	ATOM	4871	NH1	ARG I	A 617	45.993	80.130 -30.176	1.00 17.64	A
20	ATOM	4872							A
								-	A
									A
									A
25									А
25									A
									A
									A
	ATOM	4880	CD1	ILE A	4 618	56.396	80.078 -33.976	1.00 13.57	A
	ATOM	4881	С	ILE A	4 618	52.721	78.900 -31.651	1.00 11.14	A
30	MOTA	4882	0	ILE A	4 618	52.845	78.490 -30.495	1.00 11.79	A
	MOTA	4883	N						A
	ATOM	4884	CA						A
									A
									A
35									
00									A
									A
									A
									А
40				PHE A	4 620	52.864	74.665 -32.895	1.00 10.46	Α
40			CA			53.509			A
	ATOM	4893	CB	PHE A	4 620	54.987	74.019 -33.964	1.00 9.89	A
	ATOM	4894	CG	PHE A	620	55.842	73.914 -32.734	1.00 8.70	A
	ATOM	4895	CD1	PHE A	620	56.487	72.719 -32.415		А
	ATOM	4896	CD2	PHE A	620				А
45									A
									A
									A
									A
ΕO									A
50									A
									A
			CB				69.007 -34.649		A
			CG			52.656	67.559 -34.247	1.00 14.18	А
	ATOM	4906	CD	LYS A	621	51.816	66.822 -35.284	1.00 16.44	А
55	MOTA	4907	CE	LYS A	621	52.483	66.793 -36.648	1.00 17.70	A
	5 10 15 20 25 30 35 40 45 50	5 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5 ATOM 4854 ATOM 4855 ATOM 4856 ATOM 4857 ATOM 4858 ATOM 4859 ATOM 4860 ATOM 4861 ATOM 4861 ATOM 4862 ATOM 4863 ATOM 4864 ATOM 4865 ATOM 4866 ATOM 4867 ATOM 4868 ATOM 4868 ATOM 4869 ATOM 4870 ATOM 4871 ATOM 4871 ATOM 4873 ATOM 4875 ATOM 4875 ATOM 4876 ATOM 4878 ATOM 4880 ATOM 4881 ATOM 4881 ATOM 4881 ATOM 4883 ATOM 4881 ATOM 4885 ATOM 4886 ATOM 4886 ATOM 4886 ATOM 4886 ATOM 4887 ATOM 4886 ATOM 4889 ATOM 4889 ATOM 4890 ATOM 4890 ATOM 4890 ATOM 4891 ATOM 4896 ATOM 4890 ATOM 4891 ATOM 4896 ATOM 4890 ATOM 4891 ATOM 4890 ATOM 4890 ATOM 4890 ATOM 4890 ATOM 4890 ATOM 4891 ATOM 4890 ATOM 4900	5 ATOM 4854 CB ATOM 4855 CG ATOM 4855 CG ATOM 4857 CE1 ATOM 4859 CE2 ATOM 4860 CZ ATOM 4861 OH ATOM 4862 C ATOM 4863 O ATOM 4863 O ATOM 4866 CB ATOM 4866 CB ATOM 4866 CB ATOM 4868 CD ATOM 4868 CD ATOM 4870 CZ ATOM 4870 CZ ATOM 4871 NH1 ATOM 4872 NH2 ATOM 4873 C ATOM 4875 N ATOM 4876 CA ATOM 4877 CB ATOM 4878 CG2 ATOM 4878 CG2 ATOM 4880 CD1 ATOM 4881 C ATOM 4881 C ATOM 4882 O ATOM 4882 O ATOM 4883 N ATOM 4883 N ATOM 4884 CA ATOM 4888 CD1 ATOM 4888 CD1 ATOM 4888 CD1 ATOM 4889 C ATOM 4890 O ATOM 4890 O ATOM 4891 N ATOM 4889 C ATOM 4890 C ATOM 4900 C ATOM 4901 O C ATOM 4901 C B ATOM 4904 CB ATOM 4904 CB ATOM 4905 CG ATOM 4906 CD	ATOM 4854 CB TYR A ATOM 4855 CG TYR A ATOM 4856 CD1 TYR A ATOM 4857 CE1 TYR A ATOM 4858 CD2 TYR A ATOM 4859 CE2 TYR A ATOM 4860 CZ TYR A ATOM 4861 OH TYR A ATOM 4861 OH TYR A ATOM 4863 O TYR A ATOM 4863 O TYR A ATOM 4866 CB ARG A ATOM 4866 CB ARG A ATOM 4866 CB ARG A ATOM 4867 CG ARG A ATOM 4868 CD ARG A ATOM 4867 CG ARG A ATOM 4868 CD ARG A ATOM 4870 CZ ARG A ATOM 4871 NH1 ARG A ATOM 4871 NH1 ARG A ATOM 4872 NH2 ARG A ATOM 4873 C ARG A ATOM 4874 O ARG A ATOM 4875 N ILE A ATOM 4876 CA ILE A ATOM 4877 CB ILE A ATOM 4878 CG2 ILE A ATOM 4880 CD1 ILE A ATOM 4881 C ILE A ATOM 4884 CA ILE A ATOM 4885 CB ILE A ATOM 4886 CG2 ILE A ATOM 4886 CG2 ILE A ATOM 4887 CG1 ILE A ATOM 4888 CD1 ILE A ATOM 4889 C 1 ILE A ATOM 4889 C ILE A ATOM 4889 CD1 ILE A ATOM 4889 C ILE A ATOM 4889 CD1 ILE A ATOM 4889 C ILE A ATOM 4889 CD1 ILE A ATOM 4889 CD2 PHE A ATOM 4890 O ILE A ATOM 4890 O ILE A ATOM 4890 C ILE A ATOM 4890 CD PHE A ATOM 4890 CD	ATOM	ATOM 4854 CB TYR A 616 52.100 ATOM 4855 CG TYR A 616 52.139 ATOM 4856 CD1 TYR A 616 53.209 ATOM 4857 CE1 TYR A 616 53.209 ATOM 4858 CD2 TYR A 616 53.2016 ATOM 4859 CE2 TYR A 616 51.074 ATOM 4860 CZ TYR A 616 51.069 ATOM 4861 OH TYR A 616 52.141 ATOM 4863 O TYR A 616 52.141 ATOM 4863 O TYR A 616 52.141 ATOM 4864 N ARG A 617 50.821 ATOM 4866 CB ARG A 617 50.896 ATOM 4866 CB ARG A 617 49.503 ATOM 4868 CD ARG A 617 49.503 ATOM 4868 CD ARG A 617 47.417 ATOM 4869 NE ARG A 617 47.486 ATOM 4870 CZ ARG A 617 46.805 ATOM 4871 NH1 ARG A 617 45.993 ATOM 4874 O ARG A 617 51.497 ATOM 4875 N ILE A 618 52.544 ATOM 4876 CA ILE A 618 53.097 ATOM 4877 CB ILE A 618 55.359 ATOM 4881 C ILE A 618 55.353 ATOM 4881 C ILE A 618 52.721 ATOM 4881 C ILE A 618 52.234 ATOM 4883 N ILE A 618 52.234 ATOM 4884 CA ILE A 619 51.767 ATOM 4885 CB ILE A 619 52.238 ATOM 4887 CG1 ILE A 619 52.238 ATOM 4888 CD1 ILE A 619 52.238 ATOM 4889 C ILE A 619 52.366 ATOM 4890 O ILE A 619 52.3569 ATOM 4890 O ILE A 619 52.468 ATOM 4891 N PHE A 620 53.509 ATOM 4892 CA PHE A 620 55.842 ATOM 4896 CD2 PHE A 620 55.842 ATOM 4898 CD2 PHE A 620 55.843 ATOM 4899 C PHE A 620 55.843 ATOM 4890 C PHE A 620 57.486 ATOM 4890 C PHE A 620 55.845 ATOM 4900 C PHE A 620 53.362 ATOM 4900 C PHE A 620 53.362 ATOM 4900 C PHE A 620 55.845 ATOM 4900 C PHE A 620 55.845 ATOM 4900 C PHE A 620 55.859	## ATOM	ATOM 4855 CB TYR A 616 52.100 86.679 -31.641 1.00 15.83 ATOM 4855 CD1 TYR A 616 53.209 88.345 -31.651 1.00 18.36 ATOM 4856 CD2 TYR A 616 53.209 88.945 -31.651 1.00 18.36 ATOM 4858 CD2 TYR A 616 53.209 88.945 -31.651 1.00 20.30 ATOM 4858 CD2 TYR A 616 53.209 90.080 -33.000 1.00 20.65 ATOM 4865 CC2 TYR A 616 51.069 90.080 -33.000 1.00 20.65 ATOM 4861 CD2 TYR A 616 52.141 92.210 -32.890 1.00 23.34 ATOM 4863 CD TYR A 616 52.141 92.210 -32.890 1.00 23.34 ATOM 4863 CD TYR A 616 52.141 92.210 -32.890 1.00 23.34 ATOM 4863 CD TYR A 616 52.141 92.210 -32.890 1.00 23.34 ATOM 4866 CD ARG A 617 50.821 84.134 -30.347 1.00 14.72 ATOM 4866 CD ARG A 617 50.821 84.134 -30.347 1.00 13.93 ATOM 4866 CD ARG A 617 49.503 82.116 -29.800 1.00 15.40 ATOM 4866 CD ARG A 617 47.417 81.885 -28.463 1.00 17.77 ATOM 4868 NA ARG A 617 47.417 81.885 -28.463 1.00 17.77 ATOM 4868 NA ARG A 617 47.417 81.885 -28.463 1.00 17.77 ATOM 4867 CZ ARG A 617 47.486 80.424 -28.441 1.00 17.57 ATOM 4870 NA 6871 NH1 ARG A 617 46.951 76.22 -29.258 1.00 17.84 ATOM 4871 NH1 ARG A 617 45.993 80.130 -30.1766 1.00 17.24 ATOM 4872 NB2 ARG A 617 46.951 76.22 -29.258 1.00 17.84 ATOM 4873 NB1 ARG A 617 46.951 76.22 -29.258 1.00 17.84 ATOM 4874 O ARG A 617 51.022 82.049 -32.337 1.00 14.13 ATOM 4878 CZ ARG A 617 51.022 82.049 -32.337 1.00 14.13 ATOM 4878 CZ ARG A 617 51.022 82.049 -32.337 1.00 14.13 ATOM 4878 CZ LLE A 618 53.097 80.331 -32.016 1.00 17.23 ATOM 4880 CD1 LLE A 618 55.259 80.077 -30.910 1.00 12.31 ATOM 4880 CD1 LLE A 618 55.259 80.077 -30.910 1.00 12.31 ATOM 4881 C LLE A 618 55.259 80.077 -30.910 1.00 12.31 ATOM 4880 CD1 LLE A 618 55.259 80.077 -30.910 1.00 12.31 ATOM 4880 CD1 LLE A 618 55.259 77.7890 -31.651 1.00 11.14 ATOM 4880 CD1 LLE A 618 55.259 77.7890 -31.651 1.00 11.17 ATOM 4880 CD1 LLE A 618 55.259 77.7890 -31.651 1.00 11.17 ATOM 4880 CD1 LLE A 618 55.259 77.7890 -31.651 1.00 11.17 ATOM 4880 CD1 LLE A 618 55.259 77.789 -32.455 1.00 17.00 13.83 ATOM 4890 CD LLE A 619 52.266 77.579 -32.455 1.00 17.00 13.83 ATOM 4890 CD LLE A 619 52.266 77.579 -32.455 1.0

		MOTA	4908	NΖ			621	51.667	66.023			19.59	A
		MOTA	4909	С			621	54.685	69.362			10.69	A
		MOTA	4910	0			621	55.711	69.322		1.00	11.83	A
	_	ATOM	4911	N			622	54.648	68.972	-31.656	1.00	10.33	A
	5	MOTA	4912	CA	ALA	A	622	55.825	68.413	-31.008	1.00	9.91	A
		ATOM	4913	CB	ALA	Α	622	55.932	68.924	-29.568	1.00	9.70	A
		ATOM	4914	С	ALA	Α	622	55.684	66.896	-31.012	1.00	10.39	A
		ATOM	4915	0	ALA	Α	622	54.596	66.371	-30.780	1.00	11.60	A
		ATOM	4916	N	ARG	Α	623	56.777	66.201	-31.308		10.44	A
	10	ATOM	4917	CA			623	56.792	64.741			11.01	A
		ATOM	4918	СВ			623	57.229	64.207			12.30	A
		ATOM	4919	CG			623	57.263	62.690			14.39	A
		ATOM	4920	CD			623	57.233	62.180			16.76	A
		ATOM	4921	NE			623	57.497	60.744			18.23	A
	15	ATOM	4922	CZ			623	58.706	60.204			19.11	A
	10	MOTA	4923		ARG			59.771	60.976			20.24	A
		ATOM	4923		ARG			58.851	58.889			20.24	
		ATOM	4925	C			623	57.795	64.364				A
												10.32	A
	20	ATOM	4926	0			623	58.981	64.682			10.86	A
	20	ATOM	4927	N	VAL			57.306	63.687		1.00	9.90	A
1		ATOM	4928	CA	VAL			58.121	63.333		1.00	9.26	A
1000		ATOM	4929	CB	VAL			57.547	64.045		1.00	8.57	A
		ATOM	4930		VAL			58.547	64.015		1.00	8.67	A
	25	ATOM	4931		VAL			57.158	65.476 -		1.00	9.69	A
	25	ATOM	4932	C	VAL			58.191	61.831 -		1.00	9.00	A
		MOTA	4933	0	VAL			57.189	61.130 -		1.00	9.09	A
		ATOM	4934	N	PRO			59.381	61.325 -		1.00	9.44	A
ë}		MOTA	4935	CD	PRO			60.665	62.037 -			10.05	А
	20	MOTA	4936	CA	PRO			59.555	59.895 -		1.00	9.16	А
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	MOTA	4937	CB	PRO			61.054	59.765 -			10.20	А
		MOTA	4938	CG	PRO			61.654	60.942 -			10.52	A
		MOTA	4939	С	PRO			58.754	59.432 -		1.00	9.12	A
		MOTA	4940	0	PRO			58.307	60.249 -		1.00	8.82	A
	0.5	MOTA	4941	N			626	58.571	58.111 -		1.00	9.36	A
i color	35	MOTA	4942	CD	PRO			59.055	57.027 -		1.00	9.11	А
		ATOM	4943	CA	PRO			57.824	57.575 -		1.00	8.73	A
		MOTA	4944	CB	PRO			57.916	56.063 -		1.00	8.19	A
		MOTA	4945	CG	PRO			58.096	55.913 -		1.00	9.53	A
	4.0	MOTA	4946	С	PRO			58.566	58.008 -		1.00	8.14	A
	40	ATOM	4947	0	PRO	Α	626	59.786	57.847 -	-23.286	1.00	9.15	A
		ATOM	4948	N	MSE	Α	627	57.847	58.564 -	-22.390	1.00	7.51	А
		ATOM	4949	CA	MSE	Α	627	58.460	59.002 -	-21.130	1.00	8.21	A
		ATOM	4950	CB	MSE			58.747	57.783 -	-20.250	1.00	10.53	A
		ATOM	4951	CG	MSE	Α	627	57.500	56.983 -	-19.914	1.00	10.63	А
	45	ATOM	4952	SE	MSE	A	627	57.871	55.262 -	-19.133	1.00	20.00	A
		MOTA	4953	CE	MSE	Α	627	58.495	55.837 -	-17.415	1.00	15.15	A
		MOTA	4954	С	MSE	Α	627	59.755	59.755 -	-21.414	1.00	8.18	А
		ATOM	4955	0	MSE	A	627	60.759	59.584 -	-20.712	1.00	7.85	A
		ATOM	4956	N	GLY	Α	628	59.718	60.602 -	-22.442	1.00	8.18	A
	50	MOTA	4957	CA	GLY			60.908	61.329 -		1.00	8.72	A
		ATOM	4958	С	GLY				62.826 -		1.00	8.56	А
		ATOM	4959	0	GLY				63.470 -		1.00	7.33	A
		ATOM	4960	N	LEU				63.366 -		1.00	7.72	A
		ATOM	4961	CA	LEU				64.797 -			8.61	A
	55	ATOM	4962	СВ	LEU				65.391 -			8.59	A

		ATOM	4963	CG	LEU	Α	629	62.778	65.233	-21.480	1.00	9.21	А
		ATOM	4964	CD1	LEU	Α	629	64.046	65.560	-20.708	1.00	9.45	A
		MOTA	4965	CD2	LEU	Α	629	61.632	66.140	-21.064	1.00	9.65	A
		MOTA	4966	С	LEU	A	629	62.382	65.079	-25.347	1.00	8.71	A
	5	MOTA	4967	0	LEU			63.088	64.284	-25.966	1.00	9.28	A
		ATOM	4968	N	ALA	Α	630	61.931	66.212	-25.871	1.00	8.74	A
		MOTA	4969	CA	ALA			62.276	66.625	-27.229	1.00	9.15	A
		ATOM	4970	СВ	ALA			61.157		-28.197	1.00	9.76	A
		ATOM	4971	C	ALA			62.514		-27.201	1.00	9.28	A
	10	ATOM	4972	0	ALA			61.702		-26.663	1.00	8.90	A
	10	ATOM	4973	N	THR			63.632		-27.784	1.00	9.16	A
		ATOM	4974	CA	THR			64.020		-27.810	1.00	9.71	A
		ATOM	4975	CB	THR			65.524		-27.498		10.27	A
		ATOM	4976	OG1				65.823		-26.284		10.07	A
	15	ATOM	4977		THR			65.914		-27.344		10.84	A
	10	ATOM	4978	C	THR			63.754		-29.155	1.00	9.81	A
			4979	0				64.015		-30.205		10.56	A
		ATOM	4979		THR TYR			63.226		-29.108	1.00	9.56	A
		ATOM		N							1.00	9.78	A
	20	MOTA	4981	CA	TYR			62.958		-30.310			
	20	ATOM	4982	CB	TYR			61.457		-30.597		10.51	A
		ATOM	4983	CG	TYR			60.827		-31.011		10.25	A
,		ATOM	4984	CD1				60.461		-30.058	1.00	9.79	A
		ATOM	4985		TYR			59.891		-30.432		11.56	A
	OF.	ATOM	4986		TYR			60.608		-32.356	1.00	9.93	A
	25	MOTA	4987		TYR			60.042		-32.743		11.41	A
		MOTA	4988	CZ	TYR			59.686		-31.774		10.98	A
		ATOM	4989	ОН	TYR			59.133		-32.152		12.83	A
		ATOM	4990	C	TYR			63.528		-30.123	1.00	9.80	A
	20	ATOM	4991	0	TYR			63.821		-29.001	1.00	9.66	A
	30	MOTA	4992	N	VAL			63.680		-31.227	1.00	9.77	A
		MOTA	4993	CA	VAL			64.226		-31.188		10.76	A
		ATOM	4994	CB	VAL			65.618		-31.867		11.04	A
		MOTA	4995		VAL			66.193		-31.768		13.11	A
	25	MOTA	4996		VAL			66.556		-31.225		12.71	A
	35	ATOM	4997	С	VAL			63.304		-31.906		10.49	A
		MOTA	4998	0	VAL			62.811		-32.995		10.92	А
		MOTA	4999	N	LEU			63.060		-31.277		11.11	A
		MOTA	5000	CA	LEU			62.227		-31.866		12.07	A
	4.0	MOTA	5001	CB	LEU			61.213		-30.853		12.58	A
	40	ATOM	5002	CG	LEU	Α	634	60.244		-30.237		15.79	A
		ATOM	5003		LEU			59.242		-29.371		15.32	A
		ATOM	5004	CD2	LEU	Α	634	59.527	78.022	-31.322	1.00	17.18	А
		ATOM	5005	С	LEU	А	634	63.181		-32.269	1.00	12.31	А
		MOTA	5006	0	LEU	Α	634	63.947		-31.443		12.05	А
	45	ATOM	5007	N	THR	Α	635	63.135	80.768	-33.540	1.00	12.28	А
		ATOM	5008	CA	THR	Α	635	64.018	81.804	-34.059	1.00	13.14	А
		MOTA	5009	CB	THR	А	635	64.983	81.207	-35.099	1.00	12.77	A
		ATOM	5010	OG1	THR	Α	635	65.667	80.086	-34.522	1.00	13.31	Α
		ATOM	5011		THR			66.004	82.244	-35.542	1.00	12.18	А
	50	MOTA	5012	С	THR			63.238	82.943	-34.706		13.84	А
		ATOM	5013	0	THR			62.285	82.718	-35.449	1.00	13.21	А
		ATOM	5014	N	ILE			63.655		-34.424	1.00	15.47	А
		ATOM	5015	CA	ILE			62.982		-34.985		16.90	A
		ATOM	5016	CB	ILE			63.064		-34.022		17.25	A
	55	ATOM	5017		ILE			64.492		-33.958		17.16	А
							-						

and then the top the top the transmission of

The trace of the trace of the trace of

							1/1				
		ATOM	5018	CG1	ILE A	636	62.120	87.653 -34.4	195 1.00	16.98	А
		ATOM	5019		ILE A		62.027	88.831 -33.5		17.62	A
		MOTA	5020	C	ILE A		63.610	85.712 -36.3		18.42	Α
		ATOM	5021	0	ILE A		64.781	85.430 -36.		17.70	A
	5	ATOM	5021	N	SER A		62.811	86.330 -37.3		20.09	A
	3	ATOM	5022	CA	SER A		63.275	86.780 -38.4		22.79	A
			5023		SER A		62.850	85.797 -39.5		23.81	A
		MOTA	5024	CB OG	SER A		61.442	85.665 -39.6		26.10	A
		MOTA			SER A		62.651	88.149 -38.		24.15	A
	10	MOTA	5026	C	SER A		61.724	88.545 -38.0		23.27	A
	10	ATOM	5027	0	ASP A		63.160	88.874 -39.		26.58	A
		ATOM	5028	N	ASP A		62.641	90.203 -40.0		28.99	A
		MOTA	5029	CA	ASP A		63.643	90.978 -40.8		31.15	A
		ATOM	5030	CB	ASP A		63.893	90.317 -42.3		33.16	A
	15	ATOM	5031	CG	ASP A		62.934	90.185 -43.0		34.91	A
	13	ATOM	5032		ASP A		65.050	89.930 -42.5		34.82	A
		MOTA	5033 5034	C C	ASP A		61.289	90.154 -40.		29.32	A
		MOTA		0	ASP A		60.477	91.070 -40.		30.07	A
		MOTA	5035 5036	-	SER A		61.046	89.080 -41.		28.95	A
	20	ATOM ATOM	5037	N CA	SER A		59.793	88.930 -42.3		28.76	A
	20	ATOM	5037	CB	SER A		60.020	89.203 -43.		28.80	A
		ATOM	5039	OG	SER A		60.995	88.324 -44.3		29.52	A
357		ATOM	5040	C	SER A		59.192	87.542 -42.		28.41	A
1/2 mg 1/2 mg 1/2 mg		ATOM	5040	0	SER A		59.794	86.670 -41.		27.60	A
	25	ATOM	5041	N	LYS A		58.002	87.343 -42.		27.73	A
1 167 28 B	20	ATOM	5042	CA	LYS A		57.315	86.063 -42.		27.72	A
		ATOM	5043	CB	LYS A		56.025	86.081 -43.		29.03	A
		ATOM	5045	CG	LYS A		55.001	87.094 -42.		31.44	A
31		ATOM	5046	CD	LYS A		53.668	86.941 -43.		32.89	А
	30	ATOM	5047	CE	LYS A		53.799	87.189 -45.		33.76	A
Ţ	50	ATOM	5048	NZ	LYS A		52.485	87.054 -45.		34.46	A
		ATOM	5049	C	LYS A		58.186	84.897 -42.		0 26.49	A
		ATOM	5050	0	LYS A		58.627	84.839 -44.		0 26.60	A
		ATOM	5051	N	PRO A		58.453	83.950 -42.		0 25.24	А
in in	35	ATOM	5052	CD	PRO A		58.068	83.956 -40.		0 25.03	A
2.		ATOM	5053	CA	PRO A		59.275	82.780 -42.	327 1.0	0 24.06	A
		ATOM	5054	СВ	PRO A		59.570	82.191 -40.	951 1.0	0 24.74	А
		ATOM	5055	CG	PRO A		58.346	82.531 -40.	181 1.0	0 25.06	A
		MOTA	5056		PRO A		58.544	81.804 -43.	246 1.0	0 23.11	А
	40	MOTA	5057	0	PRO A		57.314	81.732 -43.	250 1.0	0 22.10	A
		MOTA	5058	N	GLU A		59.316	81.052 -44.	019 1.0	0 22.60	A
		MOTA	5059	CA	GLU A		58.772	80.090 -44.	969 1.0	0 22.59	A
		ATOM	5060	СВ	GLU A	642	59.920	79.413 -45.	725 1.0	0 24.75	A
		MOTA	5061	CG	GLU A	642	59.482	78.292 -46.	655 1.0	0 27.41	A
	45	ATOM	5062	CD	GLU A	642	60.650	77.630 -47.	364 1.0	0 29.34	A
		ATOM	5063	OE1	GLU A	642	60.415	76.662 -48.	118 1.0	0 30.70	A
		MOTA	5064	OE2	GLU A	642	61.801	78.077 -47.	167 1.0	0 30.38	A
		ATOM	5065	С	GLU A		57.863	79.011 -44.	387 1.0	0 21.56	A
		ATOM	5066	0	GLU A		56.864	78.641 -45.	001 1.0	0 22.04	A
	50	ATOM	5067	N	HIS A		58.202	78.511 -43.	204 1.0	0 20.18	A
		ATOM	5068	CA	HIS A		57.427	77.434 -42.	597 1.0	0 18.61	A
		ATOM	5069	СВ	HIS A		58.391	76.385 -42.		0 19.22	A
		ATOM	5070	CG	HIS A		59.281	75.789 -43.	088 1.0	0 19.81	A
		ATOM	5071		HIS A		60.558	76.071 -43.	437 1.0	0 19.90	A
	55	ATOM	5072		HIS A		58.851	74.816 -43.	963 1.0	0 20.57	A

		ATOM	5073	CE1	HIS A	643	59.825	74.523 -44.806	1.00 20.30	А
		ATOM	5074	NE2	HIS A	643	60.871	75.272 -44.509	1.00 19.73	A
		ATOM	5075	С	HIS A	643	56.421	77.828 -41.527		А
		ATOM	5076	0	HIS A		55.958	76.978 -40.764	1.00 16.42	A
	5	ATOM	5077	N	THR A		56.079	79.110 -41.474	1.00 15.71	A
	Ü	ATOM	5078	CA	THR A		55.110	79.598 -40.503	1.00 15.08	A
		ATOM	5079	CB	THR A		55.752	80.606 -39.524	1.00 13.08	A
			5080							
		MOTA			THR A		56.816	79.964 -38.808	1.00 14.87	A
	10	ATOM	5081		THR A		54.719	81.122 -38.524	1.00 14.03	A
	10	MOTA	5082	C	THR A		53.957	80.279 -41.236	1.00 15.17	A
		ATOM	5083	0	THR A		54.177	81.138 -42.092	1.00 15.67	А
		ATOM	5084	N	SER A		52.733	79.874 -40.909	1.00 14.18	A
		MOTA	5085	CA	SER A		51.535	80.448 -41.514	1.00 13.57	А
	.	MOTA	5086	CB	SER A		50.586	79.347 -41.989	1.00 14.13	Α
	15	ATOM	5087	OG	SER A		50.085	78.600 -40.892	1.00 14.02	A
		MOTA	5088	С	SER A	645	50.836	81.303 -40.467	1.00 13.45	A
		MOTA	5089	0	SER A	645	51.140	81.213 -39.276	1.00 13.19	A
		ATOM	5090	N	TYR A	646	49.896	82.129 -40.910	1.00 13.22	A
217725		MOTA	5091	CA	TYR A	646	49.167	83.006 -40.003	1.00 13.22	A
	20	ATOM	5092	CB	TYR A	646	49.536	84.464 -40.279	1.00 14.27	A
		MOTA	5093	CG	TYR A	646	51.011	84.707 -40.096	1.00 14.12	A
		MOTA	5094	CD1	TYR A	646	51.917	84.400 -41.110	1.00 14.67	A
		ATOM	5095	CE1	TYR A	646	53.287	84.520 -40.910	1.00 15.68	А
167 T		ATOM	5096		TYR A		51.513	85.150 -38.875	1.00 14.12	A
	25	ATOM	5097		TYR A		52.882	85.274 -38.664	1.00 14.90	A
8 8. 8		ATOM	5098	CZ	TYR A		53.762	84.954 -39.685	1.00 14.72	A
		ATOM	5099	ОН	TYR A		55.119	85.045 -39.472	1.00 16.28	A
		ATOM	5100	C	TYR A		47.665	82.815 -40.107	1.00 13.24	A
81		ATOM	5101	0	TYR A		47.098	82.807 -41.198	1.00 13.24	A
	30	ATOM	5102	N	ALA A		47.025	82.670 -38.954	1.00 14.64	A
	50	ATOM	5102	CA	ALA A		45.590	82.463 -38.900	1.00 12.00	A
12		ATOM	5103	CB	ALA A		45.187	82.017 -37.497	1.00 12.30	A
		ATOM	5104	СВ			44.795	83.697 -39.288	1.00 12.88	A
**		ATOM	5106		ALA A		45.230	84.832 -39.085		A
	35			0	ALA A				1.00 12.90	
	55	ATOM	5107	N	SER A		43.624	83.464 -39.862	1.00 12.72	A
		ATOM	5108	CA	SER A		42.742	84.556 -40.223	1.00 12.98	A
		ATOM	5109	CB	SER A		41.901	84.192 -41.448	1.00 14.58	A
		ATOM	5110	OG	SER A		41.117	83.036 -41.214	1.00 17.12	A
	40	MOTA	5111	C	SER A		41.851	84.716 -38.998	1.00 12.22	A
	40	ATOM	5112		SER A		41.676			A
		ATOM	5113	N	ASN A		41.300	85.906 -38.812	1.00 11.83	A
		ATOM	5114	CA	ASN A		40.434	86.163 -37.672	1.00 11.16	Α
		MOTA	5115	СВ	ASN A		41.183	86.971 -36.609	1.00 11.94	А
	4 =	MOTA	5116	CG	ASN A		42.355	86.208 -36.017	1.00 12.08	A
	45	ATOM	5117		ASN A		42.188	85.394 -35.105	1.00 11.76	А
		ATOM	5118	ND2	ASN A	649	43.547	86.456 -36.544	1.00 12.65	А
		ATOM	5119	С	ASN A	649	39.200	86.917 -38.132	1.00 12.07	A
		MOTA	5120	0	ASN A	649	39.300	87.899 -38.870	1.00 12.58	A
		ATOM	5121	N	LEU A	650	38.041	86.445 -37.692	1.00 11.67	A
	50	MOTA	5122	CA	LEU A	650	36.763	87.046 -38.053	1.00 11.94	A
		MOTA	5123	СВ	LEU A		35.995	86.099 -38.976	1.00 11.82	A
		ATOM	5124	CG	LEU A	650	34.550	86.449 -39.334	1.00 11.91	A
		ATOM	5125		LEU A		34.509	87.731 -40.159	1.00 12.74	Α
		ATOM	5126		LEU A		33.941	85.294 -40.117	1.00 13.05	А
	55	ATOM	5127	C	LEU A		35.947	87.314 -36.796	1.00 12.84	А

		ATOM	5128	0	LEU A	650	35.635	86.390 -36.040	1.00 12.29	A
		ATOM	5129	N	LEU A		35.609	88.579 -36.574	1.00 13.28	A
		ATOM	5130	CA	LEU A		34.828	88.972 -35.410	1.00 13.95	А
		ATOM	5131	CB	LEU A		35.427	90.233 -34.775	1.00 15.51	A
	5	ATOM	5132	CG	LEU A		34.996	90.608 -33.352	1.00 17.09	A
	3		5133		LEU A		33.573	91.118 -33.352	1.00 18.83	A
		ATOM	5134		LEU A		35.144	89.403 -32.434	1.00 17.37	A
		ATOM			LEU A		33.396	89.227 -35.860	1.00 14.48	A
		ATOM	5135	C			33.128	90.156 -36.624	1.00 15.41	A
	10	ATOM	5136	0	LEU A			88.391 -35.383	1.00 14.89	A
	10	ATOM	5137	N	LEU A		32.481	88.497 -35.747	1.00 14.05	A
		MOTA	5138	CA	LEU A		31.079	87.104 -36.041	1.00 13.03	A
		MOTA	5139	CB	LEU A		30.513	86.327 -37.142	1.00 14.75	A
		MOTA	5140	CG	LEU A		31.240	84.919 -37.249	1.00 14.39	A
	4 F	MOTA	5141		LEU A		30.672		1.00 14.30	A
	15	MOTA	5142		LEU A		31.101	87.068 -38.471	1.00 14.78	A
		ATOM	5143	С	LEU A		30.230	89.179 -34.684	1.00 16.72	
		MOTA	5144	0	LEU A		30.096	88.687 -33.560	1.00 13.79	A
		MOTA	5145	N	ARG A		29.668	90.324 -35.050		A
grant.	•	ATOM	5146	CA	ARG A		28.800	91.083 -34.164	1.00 21.34	A
	20	MOTA	5147	CB	ARG A		29.502	91.426 -32.848	1.00 22.76	A
i juli.		MOTA	5148	CG	ARG A		30.545	92.524 -32.929	1.00 25.26	A
		MOTA	5149	CD	ARG A		30.599	93.251 -31.595	1.00 27.66	A
111		ATOM	5150	NE	ARG A		31.884	93.887 -31.338	1.00 29.57	A
12		MOTA	5151	CZ	ARG A		32.159	94.575 -30.235	1.00 30.35	A
	25	MOTA	5152		ARG A		31.235	94.718 -29.295	1.00 30.94	A
141		ATOM	5153		ARG A		33.361	95.108 -30.064	1.00 31.04	A
		ATOM	5154	С	ARG A		28.365	92.369 -34.838	1.00 22.58	A
		MOTA	5155	0	ARG A		28.976	92.810 -35.811	1.00 22.35	A
61 61		MOTA	5156	N	LYS A		27.300	92.961 -34.314	1.00 24.79	A
	30	MOTA	5157	CA	LYS A		26.787	94.214 -34.841	1.00 26.87	A
ų.		ATOM	5158	CB	LYS A		25.297	94.350 -34.518	1.00 28.87	A
		MOTA	5159	CG	LYS A		24.403	93.357 -35.251	1.00 31.28	A
i sain		MOTA	5160	CD	LYS A	654	23.517	94.059 -36.275	1.00 33.37	A
1 /AUG		MOTA	5161	CE	LYS A		24.341	94.806 -37.315	1.00 34.26	A
100	35	MOTA	5162	ΝZ	LYS A		23.486	95.582 -38.259	1.00 35.77	A
a .		ATOM	5163	С	LYS A		27.567	95.349 -34.186	1.00 27.13	A
		ATOM	5164	0	LYS A		28.051	95.207 -33.063	1.00 27.36	A
		ATOM	5165	N	ASN A		27.696	96.465 -34.893	1.00 27.40	A
		MOTA	5166	CA	ASN A		28.411	97.626 -34.376	1.00 27.55	A
	40	MOTA	5167	CB	ASN A	655	27.671			A
		MOTA	5168	CG	ASN A	655	26.166	98.203 -33.353	1.00 30.72	А
		ATOM	5169	OD1	ASN A	655	25.651	98.755 -34.327	1.00 31.94	А
		MOTA	5170	ND2	ASN A	655	25.451	97.585 -32.419	1.00 31.37	А
		ATOM	5171	С	ASN A	655	29.843	97.273 -33.978	1.00 26.37	A
	45	ATOM	5172	0	ASN A	655	30.257	97.502 -32.841	1.00 26.45	A
		ATOM	5173	N	PRO P	656	30.621	96.708 -34.911	1.00 25.13	A
		ATOM	5174	CD	PRO P	656	30.269	96.273 -36.276	1.00 24.78	A
		ATOM	5175	CA	PRO F	656	32.003	96.346 -34.595	1.00 23.93	A
		ATOM	5176	СВ	PRO P		32.340	95.333 -35.678	1.00 23.98	A
	50	ATOM	5177	CG	PRO F		31.621	95.907 -36.863	1.00 24.37	A
		ATOM	5178	С	PRO P		32.939	97.547 -34.637	1.00 23.11	A
		MOTA	5179	Ö	PRO F		32.640	98.561 -35.267	1.00 22.26	А
		ATOM	5180	N	THR F		34.067	97.422 -33.948	1.00 22.32	A
		ATOM	5181	CA	THR A		35.079	98.466 -33.930	1.00 21.57	A
	55	ATOM	5182	СВ	THR F		35.217	99.113 -32.534	1.00 21.87	Α

			0.01	m	-	CC 7	2	E 226	0.0	002	_21 536	1 00	22 67	A
														A
	ATOM	5184	CG2											
	MOTA	5185	С											A
	MOTA	5186	0	THR .	Α	657	3	6.543						A
5	ATOM	5187	N	SER .	Α	658	3	7.335				1.00	20.46	A
			CA	SER .	Α	658	3	8.626	98	.099	-35.249	1.00	20.63	A
									99	.255	-35.660	1.00	20.97	A
												1.00	21.67	A
														A
10														А
10														A
														A
														A
	MOTA													
	MOTA	5196												A
15	MOTA	5197												A
	MOTA	5198	CD2	LEU	A	659								A
	MOTA	5199	С	LEU	Α	659	4	2.372						A
	MOTA	5200	0	LEU	Α	659	4	2.695	94	.351	-35.019			A
		5201	N	PRO	Α	660	4	3.235	96	.318	-34.061			A
20							4	2.965	97	.547	-33.295	1.00	21.66	A
20									96	.289	-34.526	1.00	21.08	A
									97	.687	-34.179	1.00	21.58	A
												1.00	22.16	A
														A
25														A
23														A
														A
														A
														A
00														A
30														A
	MOTA													
	ATOM		С											A
	MOTA		O											A
	ATOM	5216	N											A
35	MOTA	5217	CA	GLY	Α	662	5	50.490						A
	MOTA	5218	С	GLY	Α	662	5	51.141						А
	ATOM	5219	0	GLY	Α	662		50.702	94	.961	-36.639			А
		5220	N	GLN	Α	663	5	52.189	93	3.919	-35.313			A
			CA	GLN	Α	663		52.925	93	3.311	-36.416	1.00	27.25	A
40			CB	GLN	Α	663		54.290	92	2.827	-35.926	1.00	29.76	A
10										3.886	-35.235	1.00	32.87	A
												1.00	34.37	A
												1.00	34.97	A
														А
45														А
45														А
														A
														A
														A
50														A
50														A
														A
	ATOM													
	ATOM	5235												A
	ATOM	5236	CE2	TYR	Α	664								A
55	ATOM	5237	CZ	TYR	Α	664	4	47.421	. 8	6.381	-36.949	1.00	15.48	A
	5 10 15 20 25 30 35 40 45 50	5 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 5184 ATOM 5185 ATOM 5186 ATOM 5187 ATOM 5188 ATOM 5189 ATOM 5190 ATOM 5191 ATOM 5192 ATOM 5193 ATOM 5194 ATOM 5195 ATOM 5195 ATOM 5198 ATOM 5199 ATOM 5199 ATOM 5199 ATOM 5200 ATOM 5201 ATOM 5201 ATOM 5201 ATOM 5203 ATOM 5204 ATOM 5203 ATOM 5204 ATOM 5205 ATOM 5206 ATOM 5207 ATOM 5208 ATOM 5209 ATOM 5210 ATOM 5210 ATOM 5211 ATOM 5211 ATOM 5212 ATOM 5213 ATOM 5214 ATOM 5215 ATOM 5216 ATOM 5216 ATOM 5217 ATOM 5218 ATOM 5221 ATOM 5221 ATOM 5221 ATOM 5221 ATOM 5221 ATOM 5221 ATOM 5222 ATOM 5223 ATOM 5233	ATOM 5184 CG2 ATOM 5185 C ATOM 5186 O ATOM 5187 N ATOM 5188 CA ATOM 5189 CB ATOM 5190 OG ATOM 5191 C ATOM 5192 O ATOM 5193 N ATOM 5194 CA ATOM 5195 CB ATOM 5196 CG ATOM 5196 CG ATOM 5197 CD1 ATOM 5198 CD2 ATOM 5199 C ATOM 5199 C ATOM 5200 O ATOM 5201 N ATOM 5201 N ATOM 5202 CD ATOM 5203 CA ATOM 5204 CB ATOM 5204 CB ATOM 5205 CG ATOM 5206 C ATOM 5207 O ATOM 5208 N ATOM 5208 N ATOM 5208 CD ATOM 5210 CB ATOM 5210 CB ATOM 5211 CG ATOM 5211 CG ATOM 5212 CD1 ATOM 5212 CD1 ATOM 5213 CD2 ATOM 5214 C ATOM 5215 O ATOM 5216 N 35 ATOM 5217 CA ATOM 5216 N ATOM 5217 CA ATOM 5218 C ATOM 5220 N ATOM 5221 CA ATOM 5221 CA ATOM 5222 CB ATOM 5222 CB ATOM 5223 CG ATOM 5223 CG ATOM 5223 CG ATOM 5224 CD ATOM 5223 CG ATOM 5223 CG ATOM 5222 CB ATOM 5223 CG ATOM 5233 CD1 ATOM 5233 CD1 ATOM 5233 CD1 ATOM 5233 CD2 ATOM 5233 CD1 ATOM 5233 CD2 ATOM 5233 CD2 ATOM 5233 CD2 ATOM 5233 CD2 ATOM 5233 CD1 ATOM 5233 CD2 ATO	ATOM 5184 CG2 THR ATOM 5185 C THR ATOM 5186 O THR ATOM 5187 N SER ATOM 5188 CA SER ATOM 5189 CB SER ATOM 5190 OG SER ATOM 5191 C SER ATOM 5191 C SER ATOM 5193 N LEU ATOM 5194 CA LEU ATOM 5196 CG LEU ATOM 5197 CD1 LEU ATOM 5199 C LEU ATOM 5199 C LEU ATOM 5199 C LEU ATOM 5200 O LEU ATOM 5200 O LEU ATOM 5201 N PRO ATOM 5200 CD PRO ATOM 5201 N PRO ATOM 5204 CB PRO ATOM 5204 CB PRO ATOM 5205 CG PRO ATOM 5206 C PRO ATOM 5207 O PRO ATOM 5208 N LEU ATOM 5208 N LEU ATOM 5208 N LEU ATOM 5209 CA LEU ATOM 5200 CB LEU ATOM 5200 CB LEU ATOM 5201 CB LEU ATOM 5201 CB LEU ATOM 5210 CB LEU ATOM 5211 CG LEU ATOM 5211 CG LEU ATOM 5211 CG LEU ATOM 5212 CD1 LEU ATOM 5212 CD1 LEU ATOM 5213 CD2 LEU ATOM 5213 CD2 LEU ATOM 5214 C LEU ATOM 5215 O LEU ATOM 5216 N GLY ATOM 5216 N GLY ATOM 5217 CA GLY ATOM 5217 CA GLY ATOM 5218 C GLY ATOM 5220 N GLN ATOM 5216 N GLY ATOM 5221 CB GLN ATOM 5221 CB GLN ATOM 5222 CB GLN ATOM 5222 CB GLN ATOM 5222 CB GLN ATOM 5223 CG GLN ATOM 5222 CB GLN ATOM 5223 CG TYR ATOM 5233 CD1 TYR ATOM 5233 CD1 TYR ATOM 5233 CD1 TYR ATOM 5233 CD1 TYR ATOM 5234 CE1 TYR ATOM 5234 CE1 TYR ATOM 5234 CE1 TYR ATOM 5234 CE1 TYR ATOM 5235 CD2 TYR ATOM 5234 CE1 TYR ATOM 5235 CD2 TYR ATOM 5234 CE1 TYR ATOM 5234 CE1 TYR ATOM 5235 CD2 TYR ATOM 5234 CE1 TYR ATOM 5234 CE1 TYR ATOM 5235 CD2 TYR ATOM 5235 CD2 TYR ATOM 5235 CD2 TYR ATOM 5234 CE1 TYR ATOM 5235 CD2 TYR ATOM 5235 CD2 TYR ATOM 5235 CD2 TYR ATOM 5233 CD1 TYR ATOM 5234 CE1 TYR ATOM 5235 CD2 TYR ATOM 5235 CD2 TYR ATOM 5235 CD2 TYR ATOM 5236 CE2 TYR	ATOM 5184 CG2 THR A A ATOM 5185 C THR A A ATOM 5186 O THR A A ATOM 5187 N SER A ATOM 5189 CB SER A ATOM 5190 OG SER A ATOM 5191 C SER A ATOM 5191 C SER A ATOM 5192 O SER A ATOM 5194 CA LEU A ATOM 5196 CG LEU A ATOM 5196 CG LEU A ATOM 5197 CD1 LEU A ATOM 5198 CD2 LEU A ATOM 5199 C LEU A ATOM 5199 C LEU A ATOM 5200 O LEU A ATOM 5201 N PRO A ATOM 5201 N PRO A ATOM 5202 CD PRO A ATOM 5203 CA PRO A ATOM 5204 CB PRO A ATOM 5204 CB PRO A ATOM 5204 CB PRO A ATOM 5205 CG PRO A ATOM 5206 C PRO A ATOM 5207 O PRO A ATOM 5208 N LEU A ATOM 5208 N LEU A ATOM 5208 N LEU A ATOM 5209 CA LEU A ATOM 5209 CA LEU A ATOM 5209 CA LEU A ATOM 5201 CB LEU A ATOM 5201 CB LEU A ATOM 5210 CB LEU A ATOM 5211 CG LEU A ATOM 5211 CG LEU A ATOM 5212 CD1 LEU A ATOM 5212 CD1 LEU A ATOM 5213 CD2 LEU A ATOM 5214 C LEU A ATOM 5214 C LEU A ATOM 5215 O LEU A ATOM 5216 N GLY A ATOM 5216 N GLY A ATOM 5217 CA GLY A ATOM 5210 CB LEU A ATOM 5210 CB LEU A ATOM 5211 CA GLN A ATOM 5212 CD1 LEU A ATOM 5212 CD1 LEU A ATOM 5212 CD1 LEU A ATOM 5212 CD GLY A ATOM 5213 CD GLY A ATOM 5210 CB GLN A ATOM 5221 CA GLN A ATOM 5221 CA GLN A ATOM 5222 CB GLN A ATOM 5223 CG TYR A ATOM 5233 CD1 TYR A ATOM 5233 CD2 TYR A ATO	ATOM 5184 CG2 THR A 657 ATOM 5185 C THR A 657 ATOM 5186 O THR A 657 ATOM 5187 N SER A 658 ATOM 5189 CB SER A 658 ATOM 5190 OG SER A 658 ATOM 5191 C SER A 658 ATOM 5192 O SER A 658 ATOM 5193 N LEU A 659 ATOM 5194 CA LEU A 659 ATOM 5195 CB LEU A 659 ATOM 5196 CB LEU A 659 ATOM 5197 CD1 LEU A 659 ATOM 5197 CD1 LEU A 659 ATOM 5200 O LEU A 660 ATOM 5201 N PRO A 660	ATOM 5184 CG2 THR A 657 ATOM 5185 C THR A 657 ATOM 5186 O THR A 657 ATOM 5187 N SER A 658 ATOM 5188 CA SER A 658 ATOM 5189 CB SER A 658 ATOM 5190 OG SER A 658 ATOM 5191 C SER A 658 ATOM 5192 O SER A 658 ATOM 5192 O SER A 659 ATOM 5193 N LEU A 659 ATOM 5194 CA LEU A 659 ATOM 5195 CB LEU A 659 ATOM 5196 CG LEU A 659 ATOM 5197 CD1 LEU A 659 ATOM 5198 CD2 LEU A 659 ATOM 5199 C LEU A 659 ATOM 5199 C LEU A 659 ATOM 5200 O LEU A 659 ATOM 5201 N PRO A 660 ATOM 5202 CD PRO A 660 ATOM 5203 CA PRO A 660 ATOM 5204 CB PRO A 660 ATOM 5205 CG PRO A 660 ATOM 5206 C PRO A 660 ATOM 5207 O PRO A 660 ATOM 5208 N LEU A 661 ATOM 5210 CB LEU A 661 ATOM 5210 CB LEU A 661 ATOM 5211 CG LEU A 661 ATOM 5211 CG LEU A 661 ATOM 5211 CG LEU A 661 ATOM 5212 CD1 LEU A 661 ATOM 5214 C LEU A 661 ATOM 5215 O LEU A 663 ATOM 5216 N GR A 662 ATOM 5217 CA GLY A 662 ATOM 5216 N GLY A 662 ATOM 5217 CA GLY A 662 ATOM 5218 C GLY A 663 ATOM 5210 CB LEU A 661 ATOM 5215 O LEU A 661 ATOM 5215 O LEU A 663 ATOM 5220 CB GLY A 662 ATOM 5220 CB GLY A 662 ATOM 5221 CB LEU A 661 ATOM 5215 O LEU A 661 ATOM 5216 N GLY A 662 ATOM 5220 CB GLY A 662 ATOM 5221 CB GLY A 662 ATOM 5221 CB GLY A 662 ATOM 5222 CB GLN A 663 ATOM 5222 CB GLN A 663 ATOM 5223 CG GLN A 663 ATOM 5224 CD GLN A 663 ATOM 5225 OEI GLN A 663 ATOM 5225 OEI GLN A 663 ATOM 5226 NE2 GLN A 663 ATOM 5227 C GLN A 663 ATOM 5228 O GLN A 663 ATOM 5229 N TYR A 664 ATOM 5231 CB TYR A 664 ATOM 5231 CB TYR A 664 ATOM 5232 CG TYR A 664 ATOM 5232 CG TYR A 664 ATOM 5232 CG TYR A 664 ATOM 5234 CE1 TYR A 664 ATOM 5234 CE1 TYR A 664 ATOM 5235 CD2 TYR A 664 ATOM 5237 CD2 TYR A 664	ATOM 5184 CG2 THR A 657 36.392 ATOM 5185 C THR A 657 36.392 ATOM 5186 O THR A 657 36.543 ATOM 5187 N SER A 658 37.335 ATOM 5188 CA SER A 658 39.8626 ATOM 5189 CB SER A 658 39.882 ATOM 5191 C SER A 658 39.882 ATOM 5192 O SER A 658 39.126 ATOM 5193 N LEU A 659 40.186 ATOM 5195 CB LEU A 659 40.294 ATOM 5196 CG LEU A 659 40.294 ATOM 5197 CD1 LEU A 659 38.979 ATOM 5198 CD2 LEU A 659 38.354 ATOM 5199 C LEU A 659 38.354 ATOM 5199 C LEU A 659 32.43 ATOM 5199 C LEU A 659 42.372 ATOM 5200 O LEU A 659 42.372 ATOM 5201 N PRO A 660 42.365 ATOM 5202 CD PRO A 660 42.965 ATOM 5203 CA PRO A 660 45.129 ATOM 5204 CB PRO A 660 45.139 ATOM 5206 C PRO A 660 45.139 ATOM 5207 O PRO A 660 45.139 ATOM 5208 N LEU A 661 46.365 ATOM 5209 CA LEU A 661 46.365 ATOM 5210 CB LEU A 661 45.031 ATOM 5211 CG LEU A 661 45.031 ATOM 5212 CD1 LEU A 661 45.031 ATOM 5213 CD2 LEU A 661 45.031 ATOM 5214 C LEU A 661 45.031 ATOM 5215 O LEU A 661 45.061 ATOM 5216 N GLU A 661 45.031 ATOM 5217 CA GLU A 661 45.061 ATOM 5218 C GLU A 661 45.061 ATOM 5211 CG LEU A 661 45.061 ATOM 5212 CD1 LEU A 661 45.061 ATOM 5213 CD2 LEU A 661 45.061 ATOM 5214 C LEU A 661 45.061 ATOM 5215 O LEU A 661 45.061 ATOM 5216 N GLU A 661 45.061 ATOM 5217 CA GLU A 662 50.7002 ATOM 5220 N GLU A 663 52.295 ATOM 5220 N GLU A 663 52.295 ATOM 5221 CB GLN A 663 52.2189 ATOM 5222 CB GLN A 663 52.2189 ATOM 5223 CG GLN A 663 52.2189 ATOM 5224 CD GLN A 663 52.2189 ATOM 5225 OEI GLN A 663 52.2189 ATOM 5226 NEZ GLN A 663 52.2189 ATOM 5227 C GLN A 663 52.2189 ATOM 5228 O GLN A 663 52.2189 ATOM 5229 N TYR A 664 50.390 ATOM 5220 N TYR A 664 50.390 ATOM 5221 CB GLN A 663 52.2170 ATOM 5222 CB GLN A 663 52.2170 ATOM 5223 CG TYR A 664 50.390 ATOM 5223 CG TYR A 664 50.390 ATOM 5231 CB TYR A 664 49.099 ATOM 5233 CD1 TYR A 664 49.099 ATOM 5235 CD2 TYR A 664 49.099 ATOM 5235 CD2 TYR A 664 49.099	ATOM 5184 CG2 THR A 657 36.392 97 ATOM 5185 C THR A 657 36.392 97 ATOM 5186 O THR A 657 36.543 96 ATOM 5187 N SER A 658 37.335 98 ATOM 5188 CA SER A 658 37.335 98 ATOM 5189 CB SER A 658 39.533 99 ATOM 5190 OG SER A 658 39.882 100 ATOM 5191 C SER A 658 39.882 100 ATOM 5191 C SER A 658 39.882 100 ATOM 5192 O SER A 658 39.822 100 ATOM 5193 N LEU A 659 40.186 96 ATOM 5194 CA LEU A 659 40.186 96 ATOM 5195 CB LEU A 659 40.294 94 ATOM 5196 CG LEU A 659 38.3979 93 ATOM 5197 CD1 LEU A 659 38.354 92 ATOM 5198 CD2 LEU A 659 39.243 94 ATOM 5199 C LEU A 659 39.243 94 ATOM 5200 O LEU A 659 42.372 95 ATOM 5201 N PRO A 660 42.965 97 ATOM 5202 CD PRO A 660 42.965 97 ATOM 5203 CA PRO A 660 44.625 96 ATOM 5204 CB PRO A 660 44.325 96 ATOM 5208 N LEU A 661 46.365 93 ATOM 5208 N LEU A 661 46.365 94 ATOM 5209 CA LEU A 661 46.365 94 ATOM 5201 CB LEU A 661 46.365 94 ATOM 5202 CD LEU A 661 46.365 94 ATOM 5203 CB LEU A 661 46.365 94 ATOM 5204 CB PRO A 660 45.405 95 ATOM 5208 N LEU A 661 46.365 94 ATOM 5201 CB LEU A 661 46.365 94 ATOM 5202 CD LEU A 661 46.365 94 ATOM 5203 CB LEU A 661 46.365 94 ATOM 5204 CB PRO A 660 45.405 95 ATOM 5208 N LEU A 661 46.365 94 ATOM 5211 CG LEU A 661 45.061 91 ATOM 5212 CD1 LEU A 661 46.361 91 ATOM 5213 CD2 LEU A 661 50.702 94 ATOM 5216 N GLY A 662 50.702 94 ATOM 5217 CA GLY A 662 50.702 94 ATOM 5220 CB GLN A 663 52.218 93 ATOM 5221 CA GLN A 663 52.219 93 ATOM 5222 CB GLN A 663 52.219 93 ATOM 5223 CG GLN A 663 52.211 93 ATOM 5223 CG GLN A 663 52.211 93 ATOM 5224 CB GLN A 663 52.211 93 ATOM 5225 OE1 GLN A 664 50.390 99 ATOM 5226 N CE TYR A 664 49.099 98 ATOM 5233 CD1 TYR A 664 49.099 98 ATOM 5235 CD2 TYR A 664 49.099 98 ATOM 5235 CD2 TYR A 664 48.511 88 ATOM 5236 CE2 TYR A 664 48.524 88	ATOM 5184 CG2 THR A 657 34.010 99.996 ATOM 5185 C THR A 657 36.392 97.807 ATOM 5186 O THR A 657 36.392 97.807 ATOM 5187 N SER A 658 37.335 98.609 ATOM 5188 CA SER A 658 38.626 98.099 ATOM 5189 CB SER A 658 39.333 99.255 ATOM 5190 CG SER A 658 39.882 100.035 ATOM 5191 C SER A 658 39.882 100.035 ATOM 5191 C SER A 658 39.337 97.257 10 ATOM 5192 O SER A 659 39.882 100.035 ATOM 5194 CA LEU A 659 40.186 96.350 ATOM 5195 CB LEU A 659 40.954 95.469 ATOM 5196 CG LEU A 659 40.294 94.088 ATOM 5197 CD1 LEU A 659 38.397 93.982 15 ATOM 5198 CD2 LEU A 659 38.354 92.610 ATOM 5199 C LEU A 659 42.372 95.328 ATOM 5200 O LEU A 659 42.372 95.328 ATOM 5200 C LEU A 669 42.695 94.351 ATOM 5201 N PRO A 660 42.965 97.547 ATOM 5202 CD PRO A 660 44.625 96.389 ATOM 5203 CA PRO A 660 44.625 96.289 ATOM 5204 CB PRO A 660 44.625 97.547 ATOM 5208 C PRO A 660 44.625 97.547 ATOM 5209 C PRO A 660 44.625 96.289 ATOM 5201 C PRO A 660 44.625 96.289 ATOM 5201 C PRO A 660 44.625 96.289 ATOM 5201 C PRO A 660 45.129 97.687 ATOM 5202 C PRO A 660 44.625 96.289 ATOM 5201 C PRO A 660 44.625 96.289 ATOM 5202 C PRO A 660 44.625 96.289 ATOM 5201 C PRO A 660 44.625 96.289 ATOM 5202 C PRO A 660 45.405 95.190 25 ATOM 5207 O PRO A 660 45.405 95.190 ATOM 5208 C PRO A 660 45.405 95.190 ATOM 5201 C B LEU A 661 46.365 94.5955 ATOM 5202 C D EU A 661 46.365 94.5955 ATOM 5202 C D EU A 661 46.365 94.5955 ATOM 5202 C D EU A 661 46.365 94.5955 ATOM 5210 C B LEU A 661 46.365 94.5955 ATOM 5211 C G LEU A 661 45.061 91.514 ATOM 5212 C D LEU A 661 45.061 91.514 ATOM 5213 C D LEU A 661 45.061 91.514 ATOM 5214 C LEU A 661 45.061 91.514 ATOM 5215 C D LEU A 661 45.061 91.514 ATOM 5216 N GLY A 662 50.490 95.293 ATOM 5217 CA GLN A 663 52.295 93.311 ATOM 5220 C G GLN A 663 52.295 93.311 ATOM 5221 C G GLN A 663 52.295 93.311 ATOM 5222 C B GLN A 663 52.295 93.311 ATOM 5223 C G GLN A 663 52.295 93.311 ATOM 5224 C D GLN A 663 52.291 93.302 ATOM 5225 O G GLN A 663 52.291 93.302 ATOM 5220 C G GLN A 663 52.291 93.302 ATOM 5220 C G GLN A 663 52.291 93.302 ATOM 5221 C G GLN A 663 52.291 93.	## ATOM	ATOM 5188 CG2 THR A 657 36.392 97.807 -34.329 1.00 ATOM 5186 C THR A 657 36.392 97.807 -34.329 1.00 5 ATOM 5187 N SER A 658 37.335 96.609 -34.210 1.00 ATOM 5189 CB SER A 658 37.335 96.609 -34.220 1.00 ATOM 5189 CB SER A 658 39.832 99.255 -35.660 1.00 ATOM 5190 CG SER A 658 39.882 100.035 -34.531 1.00 ATOM 5191 C SER A 658 39.882 100.035 -34.531 1.00 ATOM 5191 C SER A 658 39.882 100.035 -34.531 1.00 ATOM 5192 C SER A 658 39.882 100.035 -34.531 1.00 ATOM 5193 N LEU A 659 39.337 97.257 -34.197 1.00 ATOM 5194 CA LEU A 659 40.866 97.426 -32.997 1.00 ATOM 5195 CB LEU A 659 40.866 93.30 -34.670 1.00 ATOM 5195 CB LEU A 659 40.864 93.380 1.00 ATOM 5196 CG LEU A 659 40.894 99.4088 -33.719 1.00 ATOM 5197 CD1 LEU A 659 38.354 92.610 -33.155 1.00 ATOM 5199 C LEU A 659 38.354 92.610 -33.155 1.00 ATOM 5199 C LEU A 659 38.354 92.610 -33.155 1.00 ATOM 5200 O LEU A 659 42.372 95.328 -34.340 1.00 ATOM 5200 O LEU A 659 42.372 95.328 -34.340 1.00 ATOM 5200 C LEU A 659 42.655 94.351 -35.019 1.00 ATOM 5200 C D EV A 660 42.965 97.547 -33.295 1.00 ATOM 5200 C D EV A 660 44.625 96.289 -34.526 1.00 ATOM 5200 C D FRO A 660 44.625 96.289 -34.526 1.00 ATOM 5200 C D FRO A 660 44.625 96.289 -33.526 1.00 ATOM 5200 C PRO A 660 44.625 97.547 -33.295 1.00 ATOM 5200 C PRO A 660 44.625 97.547 -33.391 1.00 ATOM 5200 C PRO A 660 44.625 99.488 -32.649 1.00 ATOM 5200 C PRO A 660 44.539 99.017 -32.941 1.00 ATOM 5200 C PRO A 660 45.405 99.17 -34.379 1.00 ATOM 5200 C PRO A 660 45.405 99.17 -34.379 1.00 ATOM 5200 C PRO A 660 45.405 99.39.37 -33.311 1.00 ATOM 5200 C PRO A 660 45.405 99.39.37 -33.311 1.00 ATOM 5200 C PRO A 660 45.405 99.39.37 -33.311 1.00 ATOM 5200 C PRO A 660 45.405 99.39.37 -33.311 1.00 ATOM 5200 C PRO A 660 45.405 99.39.37 -33.311 1.00 ATOM 5200 C PRO A 660 45.405 99.39.37 -33.311 1.00 ATOM 5200 C PRO A 660 45.405 99.39.37 -33.311 1.00 ATOM 5200 C PRO A 660 45.405 99.39.37 -33.311 1.00 ATOM 5200 C PRO A 660 46.50 49.90 99.29.37 -34.360 1.00 ATOM 5200 C PRO A 660 46.50 99.39.30 -34.731 1.00 ATOM 5200 C PRO A 660 46.50 99.39.30 90.474 -35.1	ATOM

		ATOM	5238	ОН	TYR A	664	46.871	85.138 -37.157	1.00 14.24	A
		MOTA	5239		TYR A		50.077	90.788 -38.556	1.00 23.88	Α
		ATOM	5240	0	TYR A		49.453	91.787 -38.917	1.00 23.82	Α
		ATOM	5241	N	PRO A		50.511	89.865 -39.430	1.00 24.84	Α
	5		5242	CD	PRO A		51.277	88.674 -39.021	1.00 24.79	A
	5	ATOM			PRO A		50.341	89.881 -40.887	1.00 25.24	A
		ATOM	5243	CA	PRO A		50.859	88.507 -41.304	1.00 25.87	A
		ATOM	5244	CB			51.930	88.253 -40.314	1.00 25.62	А
		ATOM	5245	CG	PRO A		48.947	90.152 -41.450	1.00 25.71	А
	40	MOTA	5246	C	PRO A		48.771	91.071 -42.249	1.00 26.69	А
	10	MOTA	5247	0	PRO A			89.357 -41.048	1.00 25.11	A
		MOTA	5248	N	GLU A		47.960	89.525 -41.575	1.00 24.71	A
		MOTA	5249	CA	GLU A		46.609	89.525 -41.575	1.00 24.71	A
		MOTA	5250	CB	GLU A		45.952		1.00 20.00	A
		MOTA	5251	CG	GLU A		44.712	88.238 -42.688	1.00 23.07	A
	15	MOTA	5252	CD	GLU A		44.229	86.881 -43.159	1.00 30.75	A
		MOTA	5253		GLU A		45.049	86.112 -43.703	1.00 32.40	A
		MOTA	5254		GLU A		43.026	86.588 -42.997	1.00 31.43	A
		ATOM	5255	С	GLU A		45.689	90.392 -40.728	1.00 23.13	A
		MOTA	5256	0	GLU A		45.671	90.298 -39.501	1.00 22.03	A
	20	MOTA	5257	N	ASP A		44.916	91.235 -41.406	1.00 21.38	A
124		ATOM	5258	CA	ASP A		43.984	92.133 -40.741	1.00 19.98	A
		MOTA	5259	CB	ASP A		43.616	93.289 -41.674	1.00 24.02	A
		MOTA	5260	CG	ASP A		44.833	94.017 -42.205		A
1:a±1 39 €		MOTA	5261		ASP A		45.630	94.522 -41.387	1.00 25.50	
And And Con	25	MOTA	5262	OD2	ASP A		44.993	94.085 -43.443	1.00 26.55	A A
		MOTA	5263	С	ASP A		42.713	91.396 -40.332	1.00 17.30	A
ij.		MOTA	5264	0	ASP A		42.220	90.536 -41.060	1.00 16.65	
31		MOTA	5265	N	VAL A		42.189	91.741 -39.163	1.00 16.72	A
		ATOM	5266	CA	VAL A		40.967	91.124 -38.668	1.00 15.69	A
	30	MOTA	5267	CB	VAL A	668	40.652	91.582 -37.226	1.00 15.77	A
191		MOTA	5268		VAL A		39.311	91.011 -36.772	1.00 15.98	A
1.1		MOTA	5269	CG2	VAL A	668	41.761	91.127 -36.286	1.00 15.95	A
er Leg		ATOM	5270	С	VAL A		39.803	91.506 -39.576	1.00 15.77	A
figgē. Britis		ATOM	5271	0	VAL A		39.730	92.637 -40.068	1.00 16.20	A
gradi.	35	ATOM	5272	N	LYS A		38.903	90.554 -39.800	1.00 15.11	A
		ATOM	5273	CA	LYS A	669	37.729	90.772 -40.640	1.00 16.26	A
		ATOM	5274	CB	LYS A	669	37.589	89.626 -41.643	1.00 18.36	A
		MOTA	5275	CG	LYS A	669	38.834	89.429 -42.500	1.00 22.33	A
		MOTA	5276	CD	LYS A	669	38.865	88.069 -43.178	1.00 25.02	A
	40	MOTA	5277	CE	LYS A	669	40.204		1.00 26.1/	A
		MOTA	5278	NZ	LYS F	669	40.319	86.492 -44.474	1.00 27.07	A
		ATOM	5279	С	LYS F	669	36.501	90.841 -39.738	1.00 15.79	A
		MOTA	5280	0	LYS F	669	36.484	90.250 -38.656	1.00 15.00	A
		ATOM	5281	N	PHE P	670	35.477	91.565 -40.177	1.00 15.18	A
	45	ATOM	5282	CA	PHE P		34.263	91.707 -39.386	1.00 15.33	А
		ATOM	5283	СВ	PHE A	670	34.122	93.150 -38.881	1.00 15.50	А
		ATOM	5284	CG	PHE A		35.310	93.637 -38.100	1.00 15.57	Α
		ATOM	5285		PHE A		36.455	94.082 -38.755	1.00 16.30	A
		ATOM	5286		PHE A		35.301	93.612 -36.707	1.00 16.26	A
	50	MOTA	5287		PHE A		37.577	94.493 -38.034	1.00 15.93	A
	50	ATOM	5288		PHE A		36.417	94.020 -35.978	1.00 16.44	A
		MOTA	5289			4 670	37.558	94.462 -36.645	1.00 16.10	A
		MOTA	5290	C	PHE A		33.019	91.312 -40.168	1.00 15.07	А
		ATOM	5291		PHE A		33.052	91.192 -41.392	1.00 15.25	А
	55	ATOM	5292		GLY A		31.921	91.101 -39.450	1.00 15.47	A
		AIOM	J & J Z	1.4	7111	_ 0.1				

		ATOM	5293	CA	GLY A	671	30.675	90.729 -40.097	1.00 15.10	A
		MOTA	5294	С	GLY A	671	29.551	90.550 -39.097	1.00 15.27	Α
		MOTA	5295	0	GLY A	671	29.796	90.431 -37.897	1.00 14.16	A
		ATOM	5296	N	ASP A	672	28.311	90.551 -39.575	1.00 15.65	А
	5	MOTA	5297	CA	ASP A	672	27.181	90.359 -38.676	1.00 16.95	A
		MOTA	5298	CB	ASP A	672	25.855	90.715 -39.358	1.00 18.42	A
		MOTA	5299	CG	ASP A	672	25.741	92.188 -39.695	1.00 20.16	A
		MOTA	5300	OD1	ASP A	672	26.285	93.021 -38.942	1.00 21.62	A
		MOTA	5301	OD2	ASP A	672	25.085	92.510 -40.707	1.00 22.09	А
	10	ATOM	5302	C	ASP A	672	27.137	88.892 -38.271	1.00 17.16	A
		MOTA	5303	0	ASP A	672	27.617	88.027 -39.002	1.00 16.41	A
		MOTA	5304	N	PRO A	673	26.565	88.594 -37.094	1.00 17.20	А
		MOTA	5305	CD	PRO A		25.975	89.505 -36.095	1.00 17.66	A
		MOTA	5306	CA	PRO A	673	26.483	87.202 -36.647	1.00 17.71	A
	15	MOTA	5307	CB	PRO A	673	25.575	87.291 -35.428	1.00 17.79	А
		MOTA	5308	CG	PRO A	673	25.920	88.630 -34.858	1.00 18.25	A
		MOTA	5309	С	PRO A	673	25.883	86.332 -37.750	1.00 17.63	Α
a des		MOTA	5310	0	PRO A	673	24.986	86.766 -38.479	1.00 17.66	A
		MOTA	5311	N	ARG A	674	26.393	85.114 -37.881	1.00 17.42	A
	20	MOTA	5312	CA	ARG A		25.901	84.183 -38.887	1.00 17.69	A
ij		MOTA	5313	CB	ARG A		26.367	84.596 -40.289	1.00 18.49	A
18 5		MOTA	5314	CG	ARG A	674	27.866	84.469 -40.540	1.00 19.76	А
13		MOTA	5315	CD	ARG A	674	28.155	84.525 -42.038	1.00 21.74	A
	0-	MOTA	5316	NE	ARG A		29.545	84.220 -42.371	1.00 23.11	А
	25	ATOM	5317	CZ	ARG A		30.535	85.107 -42.374	1.00 23.99	A
igi igi		MOTA	5318		ARG A		30.301	86.375 -42.059	1.00 24.74	A
		MOTA	5319		ARG A		31.763	84.727 -42.703	1.00 24.81	А
31 49 36		MOTA	5320	С	ARG A		26.422	82.792 -38.575	1.00 17.54	Α
	20	MOTA	5321	0	ARG A		27.386	82.639 -37.825	1.00 17.04	A
	30	MOTA	5322	N	GLU A		25.780	81.779 -39.144	1.00 18.31	A
14.		MOTA	5323	CA	GLU A		26.218	80.413 -38.919	1.00 19.05	A
gua.		ATOM	5324	CB	GLU A		25.157	79.420 -39.396	1.00 21.17	A
		ATOM	5325	CG	GLU A		23.805	79.621 -38.744	1.00 23.24	A
i salar	35	MOTA	5326	CD	GLU A		22.959	78.368 -38.757	1.00 25.19	A
	33	ATOM	5327	OE1			22.873	77.713 ~39.816	1.00 26.11	A
		ATOM	5328		GLU A		22.373	78.042 -37.704	1.00 26.65	A
		MOTA	5329	C	GLU A		27.519	80.198 -39.679	1.00 19.07	A
		ATOM ATOM	5330 5331	O N	GLU A ILE A		27.723 28.403	80.767 -40.754 79.384 -39.115	1.00 19.20 1.00 18.72	A
	40	ATOM	5332		ILE A		29.686	79.113 -39.745	1.00 18.72	A
	40	ATOM	5333	CA CB			30.816	79.113 -39.743	1.00 19.43	A
		ATOM	5334		ILE A		30.544	81.398 ~39.162	1.00 21.20	A A
		ATOM	5335		ILE A		30.934	79.469 ~37.605	1.00 23.12	A
		ATOM	5336		ILE A		32.131	80.041 -36.886	1.00 22.04	A
	45	ATOM	5337	CDI	ILE A		30.042	77.637 ~39.665	1.00 23.01	A
	10	ATOM	5338	0	ILE A		29.551	76.914 -38.796	1.00 18.47	A
		ATOM	5339	N	SER A		30.905	77.207 -40.577	1.00 18.44	A
		ATOM	5340	CA	SER A		31.370	75.828 -40.630	1.00 18.86	A
		ATOM	5341	CB	SER A		30.769	75.113 -41.842	1.00 20.56	A
	50	ATOM	5342	OG	SER A		31.231	73.777 -41.925	1.00 24.04	A
		ATOM	5343	C	SER A		32.889	75.850 -40.743	1.00 18.55	A
		MOTA	5344	0	SER A		33.451	76.667 -41.474	1.00 18.59	A
		ATOM	5345	N	LEU A		33.554	74.956 -40.019	1.00 17.21	A
		ATOM	5346	CA	LEU A		35.009	74.895 -40.039	1.00 17.53	A
	55	ATOM	5347	CB	LEU A		35.587	75.588 -38.802	1.00 17.33	A
						•	50.50,			

		ATOM	5348	CG	LEU Z	4 6	78	35.405	77.100	-38.669	1.00	19.72	A
		ATOM	5349		LEU Z			35.871		-37.292		20.83	A
		ATOM	5350		LEU Z			36.192		-39.759		21.63	A
		ATOM	5351	C	LEU A			35.522		-40.075		17.34	A
	5									-39.591			A
	3	MOTA	5352	0	LEU A			34.862				16.69	
		MOTA	5353	N	ARG A			36.708		-40.650		17.12	A
		ATOM	5354	CA	ARG A			37.344		-40.733		18.44	A
		MOTA	5355	СВ	ARG I			36.912		-42.001		20.29	A
	4.0	MOTA	5356	CG	ARG A			37.461		-42.063		23.21	A
	10	ATOM	5357	CD	ARG A			37.211		-43.403		25.74	A
		MOTA	5358	NE	ARG A	4 67	79	37.627		-43.377		28.32	A
		MOTA	5359	CZ	ARG A	4 67	79	37.683	66.979	-44.446		29.41	A
		ATOM	5360	NH1	ARG A	A 67	79	37.352	67.455	-45.639	1.00	30.45	A
		MOTA	5361	NH2	ARG A	A 67	79	38.068	65.716	-44.322	1.00	30.28	A
	15	MOTA	5362	С	ARG A	A 67	79	38.860	72.146	-40.741	1.00	18.22	A
		ATOM	5363	0	ARG A	A 67	79	39.412	72.892	-41.548	1.00	17.86	A
		MOTA	5364	N	VAL Z			39.528	71.447	-39.831	1.00	17.40	A
		MOTA	5365	CA	VAL A			40.980		-39.755	1.00	17.92	A
1.22		ATOM	5366	СВ	VAL A			41.460		-38.312		17.20	А
1005 1 B	20	MOTA	5367		VAL A			42.967		-38.228		17.12	А
) (SEE)		MOTA	5368		VAL A			41.041		-37.888		15.30	A
		MOTA	5369	C	VAL A			41.514		-40.222		19.22	A
4,8 E		ATOM	5370	0	VAL A			41.033		-39.788		19.39	A
		ATOM	5370	N	GLY A			42.500		-41.115		20.72	A
Man dent	25	ATOM	5372	CA	GLY A			43.071		-41.634		22.99	A
	20		5372		GLY A			42.000		-42.262		24.42	A
(31)		MOTA		C				41.101		-42.202		24.23	A
R1		MOTA	5374	O N	GLY A					-42.937 -42.046		26.46	A
		MOTA	5375	N	ASN A			42.098				28.26	
	30	ATOM	5376	CA	ASN A			41.116		-42.580			A
	30	ATOM	5377	CB	ASN A			41.809		-43.165		30.25	A
		ATOM	5378	CG	ASN A			42.484		-44.493		32.05	A
Şağı.		ATOM	5379		ASN A			43.151		-45.058		34.30	A
1000		ATOM	5380		ASN A			42.308		-45.003		33.43	A
g sala	0.5	ATOM	5381	С	ASN A			40.174		-41.461		27.97	A
2	35	MOTA	5382	0	ASN A			39.468		-41.564		28.97	A
		MOTA	5383	N	GLY Z			40.172		-40.389		26.89	A
		MOTA	5384	CA	GLY A			39.320		-39.254		24.95	A
		ATOM	5385	С	GLY Z			37.859		-39.547		23.15	A
	40	ATOM	5386	0	GLY 2			37.475		-40.708		23.65	A
	40	MOTA	5387	N	PRO Z		_	37.015		-38.508		21.20	A
		ATOM	5388	CD	PRO I			37.343		-37.081		21.32	A
		ATOM	5389	CA	PRO A			35.584		-38.685		19.81	A
		MOTA	5390	CB	PRO A	4 68	84	35.007	66.164	-37.319	1.00	20.16	A
		ATOM	5391	CG	PRO A	4 68	84	36.099	66.605	-36.391	1.00	20.87	A
	45	ATOM	5392	С	PRO I	3 F	84	35.272		-39.088	1.00	18.75	A
		MOTA	5393	0	PRO Z	36 <i>F</i>	84	36.086	68.853	-38.905	1.00	18.07	A
		ATOM	5394	N	THR A	36 <i>F</i>	85	34.087	68.147	-39.651	1.00	17.24	A
		ATOM	5395	CA	THR A	4 68	85	33.634	69.470	-40.051	1.00	16.41	А
		ATOM	5396	СВ	THR A	4 68	85	33.020	69.452	-41.462	1.00	16.39	A
	50	ATOM	5397	OG1				34.041	69.153	-42.420	1.00	17.54	A
	-	ATOM	5398	CG2				32.400		-41.791		16.76	A
		ATOM	5399	С	THR A			32.573		-39.034		15.52	А
		ATOM	5400	0	THR A			31.573		-38.872		16.19	A
		ATOM	5401	N	LEU A			32.801		-38.338		14.31	A
	55	ATOM	5402	CA	LEU A			31.865		-37.321		14.02	A
	55	WI OLI	J402		4 ∪ينيد	. 00	0.0	21.003	,1.467	51.521	1.00	17.02	Λ

		MANIFIC	E 400	CD	יי יוסוד	606	32.612	71.775 -36.027	1.00 14.50	Α
		MOTA	5403	CB	LEU A					
		ATOM	5404	CG	LEU A		33.527	70.713 -35.415	1.00 16.33	A
		MOTA	5405	CD1	LEU A	686	34.004	71.202 -34.058	1.00 15.65	A
		MOTA	5406	CD2	LEU A	686	32.796	69.394 -35.273	1.00 16.36	A
	5	MOTA	5407	С	LEU A	686	31.073	72.646 -37.770	1.00 13.55	A
		ATOM	5408	0	LEU A		31.625	73.570 -38.369	1.00 13.84	A
		ATOM	5409	N	ALA A		29.778	72.638 -37.475	1.00 12.69	A
		ATOM	5410	CA	ALA A		28.898	73.746 -37.822	1.00 12.84	A
										A
	10	ATOM	5411	CB	ALA A		27.683	73.236 -38.592	1.00 12.65	
	10	MOTA	5412	С	ALA A		28.454	74.430 -36.534	1.00 12.45	A
		MOTA	5413	0	ALA A		28.133	73.763 -35.544	1.00 12.43	A
		ATOM	5414	N	PHE A		28.436	75.761 -36.549	1.00 12.17	A
		MOTA	5415	CA	PHE A	688	28.042	76.535 ~35.380	1.00 11.59	A
		ATOM	5416	CB	PHE A	688	29.215	77.384 -34.884	1.00 11.95	A
	15	MOTA	5417	CG	PHE A	688	30.453	76.596 -34.591	1.00 11.60	Α
		ATOM	5418		PHE A		31.252	76.122 -35.623	1.00 11.51	A
		MOTA	5419		PHE A		30.810	76.310 -33.278	1.00 11.55	А
		ATOM	5420		PHE A		32.394	75.369 ~35.355	1.00 11.61	A
112972			5421		PHE A		31.950	75.558 -32.999	1.00 11.01	A
fire!	20	MOTA						75.087 -34.039	1.00 11.40	A
	40	ATOM	5422	CZ	PHE A		32.743			
		ATOM	5423	С	PHE A		26.876	77.460 -35.677	1.00 12.06	A
187		ATOM	5424	0	PHE A		26.697	77.900 -36.811	1.00 13.38	A
grang.		MOTA	5425	N	SER A		26.091	77.756 -34.649	1.00 12.46	А
		ATOM	5426	CA	SER A	689	24.955	78.662 -34.780	1.00 13.44	Α
N.	25	MOTA	5427	CB	SER A	689	24.022	78.518 -33.579	1.00 13.79	A
78.5		ATOM	5428	OG	SER A	689	24.633	79.032 -32.407	1.00 14.51	A
		ATOM	5429	С	SER A	689	25.518	80.081 -34.806	1.00 14.49	A
41		ATOM	5430	0	SER A	689	26.713	80.282 -34.590	1.00 14.70	A
E NAME		ATOM	5431	N	GLU A		24.665	81.066 -35.066	1.00 15.35	A
	30	ATOM	5432	CA	GLU A		25.133	82.447 -35.096	1.00 16.16	А
العالة		ATOM	5433	СВ	GLU A		24.073	83.367 -35.713	1.00 18.48	A
e v		ATOM	5434	CG	GLU A		22.813	83.539 -34.896	1.00 21.37	A
i de			5435	CD	GLU A		21.855	84.530 -35.532	1.00 23.24	A
1965 1927		ATOM							1.00 25.24	A
esum:	25	ATOM	5436		GLU A		21.335	84.233 -36.628		
	35	ATOM	5437		GLU A		21.632	85.608 -34.941	1.00 25.58	A
		MOTA	5438	С	GLU A		25.493	82.926 -33.691	1.00 16.10	A
		MOTA	5439	0	GLU A		25.997	84.035 -33.513	1.00 15.36	A
		MOTA	5440	N	GLN A	691	25.232	82.084 -32.695	1.00 15.90	A
		ATOM	5441	CA	GLN A	691	25.554	82.413 ~31.310	1.00 16.38	A
	40	MOTA	5442	CB	GLN A	691	24.451	81.913 -30.378	1.00 18.37	А
		MOTA	5443	CG	GLN A	691	23.129	82.632 -30.574	1.00 21.65	A
		ATOM	5444	CD	GLN A	691	21.940	81.747 -30.275	1.00 24.27	А
		ATOM	5445		GLN A		21.755	81.289 -29.148	1.00 25.45	А
		ATOM	5446		GLN A		21.125	81.495 -31.293	1.00 25.38	А
	45	ATOM	5447	C	GLN A		26.892	81.783 -30.928	1.00 14.99	A
	10	ATOM	5448	0	GLN A		27.304	81.830 -29.769	1.00 14.33	A
		ATOM	5449	N	GLY A		27.557	81.187 -31.915	1.00 13.74	A
		ATOM	5450	CA	GLY A		28.856	80.576 -31.689	1.00 13.44	A
	50	ATOM	5451	С	GLY A		28.843	79.231 -30.992	1.00 12.84	А
	50	ATOM	5452	0	GLY A		29.870	78.788 -30.482	1.00 12.87	A
		ATOM	5453	N	LEU A		27.690	78.572 -30.982	1.00 12.59	А
		ATOM	5454	CA	LEU A		27.563	77.270 ~30.333	1.00 12.95	A
		ATOM	5455	CB	LEU A	693	26.332	77.257 -29.427	1.00 14.47	A
		MOTA	5456	CG	LEU A		26.373	78.185 ~28.211	1.00 15.50	A
	55	ATOM	5457		LEU A		24.963	78.374 -27.671	1.00 16.99	А
	_		-					_		

	ATOM	5458		LEU			27.294		-27.143		16.14	А
	MOTA	5459	C	LEU			27.460		-31.347		12.58	A
	ATOM	5460	0	LEU			26.797		-32.377		13.69	A
=	ATOM	5461	N	LEU			28.121		-31.045		12.10	A
5	ATOM	5462	CA	LEU			28.107		-31.921		12.19	A
	ATOM	5463	CB	LEU			28.833		-31.246		11.89	A
	ATOM	5464	CG	LEU			29.022		-32.082		12.29	A
	ATOM	5465		LEU			29.975		-33.223		12.88	A
10	ATOM	5466	CD2				29.583		-31.207		12.25	A
10	ATOM	5467	С	LEU			26.681		-32.261		12.42	A
	ATOM	5468	0	LEU			25.807		-31.397		12.36	A
	ATOM	5469	N	LYS			26.460		-33.527		13.99	A
	ATOM	5470	CA	LYS			25.146		-33.989		15.49	A
15	ATOM	5471	CB	LYS			24.586		-35.011		18.76	A
15	ATOM	5472	CG	LYS			23.323		-35.720		23.70	A
	MOTA	5473	CD	LYS			22.622		-36.438		25.84	A
	ATOM	5474	CE	LYS			22.035		-35.442		27.62	A
	ATOM	5475	NZ	LYS			21.248		-36.105		29.16	A
20	ATOM	5476	С	LYS			25.195		-34.601		14.81	A
20	ATOM	5477	0	LYS			24.228		-34.502		15.17	A
	ATOM	5478 5479	N	SER SER			26.316		-35.228 -35.854		14.07 14.25	A
	MOTA MOTA	5480	CA	SER			26.461		-37.189			A
	ATOM	5480	CB OG	SER			25.703 26.328		-37.189		15.32	A
25	ATOM	5482	C	SER			27.917		-36.100		16.47 14.33	A A
20	ATOM	5483	0	SER								
	ATOM	5484	N	ILE .			28.802 28.151		-36.124 -36.256		13.52 13.96	A A
	ATOM	5485	CA	ILE			29.483		-36.508		14.22	A
	ATOM	5486	CB	ILE			30.032		-35.293		13.78	A
30	ATOM	5487	CG2	ILE			31.390		-35.637		13.83	A
00	ATOM	5488	CG1	ILE			30.148		-34.066		12.86	A
	ATOM	5489	CD1	ILE			30.618		-32.813		12.78	A
	ATOM	5490	C	ILE			29.424		-37.683		15.65	A
	ATOM	5491	0	ILE			28.589		-37.700		16.00	A
35	ATOM	5492	N	GLN .			30.306		-38.658		15.69	A
	ATOM	5493	CA	GLN			30.370		-39.816		17.15	A
	ATOM	5494	СВ	GLN			30.268		-41.123		18.03	A
	ATOM	5495	CG	GLN			29.969		-42.324		19.29	A
	ATOM	5496	CD	GLN .			30.226		-43.654		20.84	A
40	ATOM	5497		GLN .			29.680	65.904	-44.683		22.50	A
	ATOM	5498	NE2	GLN .	Α	698	31.073	67.327	-43.647		20.89	A
	ATOM	5499	С	GLN .			31.726		-39.743	1.00	17.98	A
	ATOM	5500	0	GLN .	A	698	32.758	65.675	-39.957		17.04	А
	ATOM	5501	N	LEU .	Α	699	31.725	63.748	-39.440	1.00	19.25	A
45	ATOM	5502	CA	LEU .	A	699	32.970	63.000	-39.306	1.00	21.55	A
	ATOM	5503	CB	LEU .	A	699	32.673	61.570	-38.841	1.00	21.34	A
	ATOM	5504	CG	LEU .	A	699	32.002	61.458	-37.469	1.00	21.19	A
	ATOM	5505		LEU .			31.836	59.991	-37.098	1.00	20.78	A
-0	MOTA	5506	CD2	LEU .	A	699	32.844		-36.426	1.00	20.96	A
50	MOTA	5507	С	LEU .			33.829		-40.564		23.75	A
	ATOM	5508	0	LEU .			35.041		-40.498		23.54	Α
	ATOM	5509	N	THR .			33.205		-41.706		26.14	A
	MOTA	5510	CA	THR .			33.930		-42.969		29.36	A
	MOTA	5511	CB	THR .			34.070		-43.472		29.32	A
55	ATOM	5512	OG1	THR .	A	700	32.770	60.641	-43.717	1.00	29.71	A

		ATOM	5513	CCO	THR A	700	34.790	60.339 -42.439	1.00 29.80	А
		MOTA	5514	С	THR A		33.214	63.465 -44.034	1.00 31.01	A
		MOTA	5515	0	THR A		32.058	63.849 -43.863	1.00 31.06	A
	-	ATOM	5516	N	GLN A		33.908	63.734 -45.135	1.00 33.87	А
	5	MOTA	5517	CA	GLN A	701	33.334	64.515 -46.223	1.00 36.58	A
		ATOM	5518	CB	GLN A	701	34.371	64.714 -47.331	1.00 38.30	A
		ATOM	5519	CG	GLN A	701	35.669	65.340 -46.849	1.00 40.75	A
		MOTA	5520	CD	GLN A	701	36.609	65.693 -47.985	1.00 42.07	A
		MOTA	5521	OE1			36.275	66.501 -48.852	1.00 42.75	А
	10	ATOM	5522	NE2	GLN A		37.793	65.089 -47.985	1.00 42.60	A
		ATOM	5523	C	GLN A		32.096	63.830 -46.793	1.00 37.22	A
		ATOM	5524	0	GLN A		31.206	64.487 -47.333	1.00 37.80	A
		ATOM	5525	N	ASP A		32.045	62.509 -46.659	1.00 37.89	A
		MOTA	5526	CA	ASP A		30.924	61.725 -47.164	1.00 37.35	A
	15									
	13	ATOM	5527	CB	ASP A		31.383	60.299 -47.477	1.00 39.66	A
		ATOM	5528	CG	ASP A		32.727	60.259 -48.174	1.00 40.51	A
		MOTA	5529		ASP A		32.854	60.852 -49.267	1.00 40.84	A
		MOTA	5530		ASP A		33.659	59.633 -47.624	1.00 41.15	A
	00	ATOM	5531	С	ASP A		29.784	61.668 -46.152	1.00 37.81	А
ı, D	20	MOTA	5532	0	ASP A		28.623	61.901 -46.492	1.00 38.20	A
1,13		MOTA	5533	N	SER A		30.130	61.355 ~44.907	1.00 36.53	A
1122		ATOM	5534	CA	SER A	703	29.155	61.244 -43.829	1.00 34.85	A
giang.		MOTA	5535	CB	SER A	703	29.877	61.019 -42.498	1.00 35.05	A
Read?		MOTA	5536	OG	SER A	703	30.729	62.108 -42.191	1.00 34.27	A
	25	ATOM	5537	С	SER A	703	28.242	62.462 -43.715	1.00 33.65	A
		MOTA	5538	0	SER A	703	28.536	63.527 -44.256	1.00 33.57	A
		ATOM	5539	N	PRO A	704	27.109	62.310 -43.008	1.00 32.60	А
51		ATOM	5540	CD	PRO A		26.549	61.025 -42.547	1.00 32.80	А
5		ATOM	5541	CA	PRO A		26.141	63.393 -42.816	1.00 31.41	А
-7	30	ATOM	5542	СВ	PRO A		24.836	62.639 -42.613	1.00 32.30	A
		ATOM	5543	CG	PRO A		25.286	61.454 -41.823	1.00 32.47	A
#e# E:		ATOM	5544	C	PRO A		26.468	64.304 -41.632	1.00 30.08	A
in the second		ATOM	5545	0	PRO A		27.347	64.003 -40.824	1.00 29.54	A
		ATOM	5546	N	HIS A		25.750	65.420 -41.543	1.00 23.34	A
in.	35	ATOM	5547	CA	HIS A		25.730	66.380 -40.461	1.00 26.08	A
	55	ATOM	5548	CB	HIS A		25.513	67.777 -40.917	1.00 20.08	A
		ATOM	5549	CG	HIS A		26.327	68.315 -42.051	1.00 27.10	A
		ATOM	5550		HIS A		26.004	68.560 -43.343	1.00 29.18	A
	40	ATOM	5551		HIS A		27.659	68.644 -41.921	1.00 28.94	A
	40	ATOM	5552		HIS A		28.122	69.067 -43.084	1.00 29.49	A
		ATOM	5553		HIS A		27.138	69.025 -43.964	1.00 29.86	A
		ATOM	5554	С	HIS A		25.107	65.948 -39.259	1.00 24.00	А
		MOTA	5555	0	HIS A		23.914	66.235 -39.178	1.00 23.98	A
	4 ==	MOTA	5556	N	VAL A		25.747	65.256 ~38.322	1.00 21.51	А
	45	ATOM	5557	CA	VAL A	706	25.063	64.772 -37.132	1.00 18.99	A
		ATOM	5558	CB	VAL A	706	25.909	63.709 -36.407	1.00 18.10	А
		ATOM	5559	CG1	VAL A	706	25.145	63.165 -35.214	1.00 17.35	A
		ATOM	5560	CG2	VAL A	706	26.273	62.593 ~37.370	1.00 18.04	A
		MOTA	5561	С	VAL A	706	24.745	65.886 ~36.141	1.00 18.65	A
	50	MOTA	5562	0	VAL A	706	25.638	66.602 -35.695	1.00 17.89	А
		ATOM	5563	N	PRO A		23.462	66.046 -35.787	1.00 17.80	A
		MOTA	5564	CD	PRO A		22.283	65.387 -36.380	1.00 18.52	А
		ATOM	5565	CA	PRO A		23.053	67.084 -34.838	1.00 17.47	A
		ATOM	5566	CB	PRO A		21.532	66.942 -34.802	1.00 18.04	A
	55	ATOM	5567	CG	PRO A		21.209	66.424 -36.175	1.00 18.64	A
		WY OLI	3301	CG	I IO A	101	21.207	00.474 DO:T/D	T.OO TO.OA	Γ.

									22 455	1 00	16.45	А
		MOTA	5568	С	PRO A		23.678		-33.455			
		MOTA	5569	0	PRO A	707	23.489		-32.809		16.71	A
		ATOM	5570	N	VAL A	708	24.441		-33.025		15.43	A
		MOTA	5571	CA	VAL A	708	25.093		-31.719		14.68	Α
	5	ATOM	5572	СВ	VAL A		26.551	67.393	-31.802	1.00	14.15	A
	J	MOTA	5573		VAL A		27.195	67,426	-30.417	1.00	13.61	A
			5574		VAL A		26.579		-32.361	1.00	14.23	A
		ATOM			VAL A		25.070		-31.323		14.72	A
		MOTA	5575	С			25.855		-31.831		15.38	A
	4.0	MOTA	5576	0	VAL A				-30.431		14.54	A
	10	MOTA	5577	N	HIS A		24.153					A
		MOTA	5578	CA	HIS A		23.990		-30.011		15.48	
		MOTA	5579	CB	HIS A		22.525		-30.163		17.30	A
		MOTA	5580	CG	HIS A	709	22.015		-31.568		20.53	A
		MOTA	5581	CD2	HIS A	709	21.881		-32.429		21.41	A
	15	MOTA	5582	ND1	HIS A	709	21.546		-32.233		22.57	A
		ATOM	5583		HIS A		21.144	72.226	-33.442	1.00	22.45	A
		ATOM	5584		HIS A		21.337	70.927	-33.587	1.00	21.98	A
		ATOM	5585	C	HIS A		24.421	71.403	-28.586	1.00	14.93	A
arinn.		MOTA	5586	0	HIS A		24.001		-27.647	1.00	14.53	A
	20			N	PHE A		25.258		-28.435	1.00	13.24	Α
	20	ATOM	5587		PHE A		25.707		-27.123		13.07	A
		MOTA	5588	CA			27.122		-27.192		13.58	A
		MOTA	5589	CB	PHE A		28.199		-26.726		13.26	A
		MOTA	5590	CG	PHE A				-27.484		14.61	A
96 S		MOTA	5591		PHE A		29.349				13.82	A
China China	25	MOTA	5592		PHE A		28.075		-25.516		14.19	A
		MOTA	5593		PHE A		30.364		-27.043			
m		ATOM	5594	CE2	PHE A		29.084		-25.067		13.68	A
3)		ATOM	5595	CZ	PHE A	710	30.228		-25.832		14.33	A
		ATOM	5596	С	PHE A	710	24.727		-26.676		13.63	A
	30	MOTA	5597	0	PHE A	710	24.308		-27.473		13.76	A
1/2 4 7. 9/8 8		MOTA	5598	N	LYS A	711	24.359		-25.404		13.07	A
111		MOTA	5599	CA	LYS A	711	23.427	74.871	-24.847		14.24	А
		ATOM	5600	СВ	LYS A		21.991	74.351	-24.992		16.69	А
		ATOM	5601	CG	LYS A		20.926	75.268	-24.410	1.00	18.89	A
	35	MOTA	5602	CD	LYS A		19.534	74.651	-24.516	1.00	20.95	A
	33	ATOM	5603	CE	LYS A		19.101		-25.964	1.00	21.44	A
				NZ	LYS A		17.747		-26.067	1.00	22.65	A
		ATOM	5604		LYS A		23.751		-23.378		14.02	A
		ATOM	5605	С			24.144		-22.678		14.38	А
	40	MOTA	5606	0	LYS A		23.609				12.94	А
	40	MOTA	5607	N	PHE A				-21.521		12.60	A
		MOTA	5608	CA	PHE A		23.861		-21.384		13.19	A
		ATOM	5609	CB	PHE A		24.859				12.74	A
		ATOM	5610	CG	PHE A		26.279		-21.691			
		MOTA	5611		. PHE A		26.761		-22.996		12.90	A
	45	ATOM	5612		PHE A		27.125		-20.675		12.44	A
		ATOM	5613	CE3	PHE P	712	28.066		-23.288		13.16	A
		MOTA	5614	CE2	PHE P	712	28.428		-20.953		12.13	А
		ATOM	5615	CZ	PHE A	712	28.903		-22.262		12.53	A
		MOTA	5616	С	PHE P	712	22.549	76.994	-20.838		12.78	A
	50	ATOM	5617	0	PHE A		21.752		-21.365	1.00	12.67	A
	20	ATOM	5618	N	LEU A		22.324		-19.672	1.00	12.69	A
		ATOM	5619	CA	LEU F		21.105		-18.916	1.00	12.88	А
				CB	LEU A		20.166		-19.013		13.49	A
		ATOM	5620				19.790		-20.421		13.72	А
		ATOM	5621	CG	LEU A				-20.883		14.92	A
	55	ATOM	5622	CD:	LEU A	1 /13	20.763	13.004	-20.003	1.00	. 13.72	2.1

	ATOM	5623	CD2	LEU A	713	18.365	74.407	-20.414	1.00 14.75	A
	MOTA	5624	С	LEU A	713	21.447	76.915	-17.461	1.00 13.49	A
	MOTA	5625	0	LEU A		22.605	76.806	-17.054	1.00 13.14	А
	ATOM	5626	N	LYS A		20.441		-16.674	1.00 13.55	A
5	ATOM	5627	CA	LYS A		20.676		-15.270	1.00 14.74	A
J									1.00 17.89	
	ATOM	5628	CB	LYS A		20.715		-15.034		A
	ATOM	5629	CG	LYS A		19.463		-15.483	1.00 20.78	A
	MOTA	5630	CD	LYS A		19.519		-15.113	1.00 23.52	A
	ATOM	5631	CE	LYS A	714	20.706	81.976	-15.763	1.00 25.00	A
10	ATOM	5632	NZ	LYS A	714	20.789	83.418	-15.394	1.00 26.77	A
	MOTA	5633	С	LYS A	714	19.637	76.933	-14.354	1.00 14.83	A
	MOTA	5634	0	LYS A		18.448		-14.674	1.00 15.62	A
	ATOM	5635	N	TYR A		20.108		-13.220	1.00 13.72	A
	ATOM	5636	CA	TYR A		19.234		-12.212	1.00 13.72	A
15										
15	ATOM	5637	CB	TYR A		19.814		-11.624	1.00 12.76	A
	ATOM	5638	CG	TYR A		19.709		-12.507	1.00 11.86	A
	MOTA	5639	CD1	TYR A	715	20.797		-13.266	1.00 11.71	A
	MOTA	5640	CE1	TYR A	715	20.717	71.766	-14.053	1.00 10.85	A
	ATOM	5641	CD2	TYR A	715	18.530	72.601	-12.561	1.00 11.46	А
20	MOTA	5642	CE2	TYR A	715	18.438	71.453	-13.345	1.00 12.03	A
	ATOM	5643	CZ	TYR A		19.535		-14.088	1.00 11.99	А
	ATOM	5644	ОН	TYR A		19.452		-14.853	1.00 12.00	A
									1.00 13.26	
	ATOM	5645	C	TYR A		19.149		-11.097		A
25	ATOM	5646	0	TYR A		20.106		-10.848	1.00 13.06	A
25	MOTA	5647	N	GLY A		18.004		-10.429	1.00 13.36	A
	MOTA	5648	CA	GLY A		17.832	77.871	-9.338	1.00 13.61	A
	MOTA	5649	С	GLY A	716	17.746	77.146	-8.010	1.00 15.27	A
	MOTA	5650	0	GLY A	716	18.096	75.965	-7.906	1.00 15.61	A
	MOTA	5651	N	VAL A	717	17.270	77.858	-6.997	1.00 15.67	A
30	MOTA	5652	CA	VAL A		17.123	77.316	-5.655	1.00 16.91	A
	MOTA	5653	СВ	VAL A		18.060	78.055	-4.672	1.00 16.38	A
	ATOM	5654		VAL A		17.825	77.577	-3.252	1.00 17.56	A
	ATOM	5655		VAL A		19.512	77.823	-5.076	1.00 16.85	A
35	ATOM	5656	C	VAL A		15.670	77.474	-5.217	1.00 17.83	A
33	ATOM	5657	0	VAL A		14.981	78.398	-5.650	1.00 18.06	A
	ATOM	5658	N	ARG A		15.204	76.569	-4.364	1.00 18.88	A
	MOTA	5659	CA	ARG A		13.826	76.607	-3.889	1.00 20.57	A
	MOTA	5660	CB	ARG A		13.470	75.274	-3.232	1.00 19.83	А
	ATOM	5661	CG	ARG A	718	13.580	74.112	-4.198	1.00 19.14	A
40	MOTA	5662	CD	ARG A	718	13.483	72.765	-3.511	1.00 18.32	A
	MOTA	5663	NE	ARG A	718	13.768	71.695	-4.460	1.00 17.75	A
	ATOM	5664	CZ	ARG A		13.765	70.401	-4.161	1.00 17.53	А
	MOTA	5665		ARG A		13.485	69.999	-2.928	1.00 17.28	А
	ATOM	5666		ARG F		14.048	69.508	-5.101	1.00 17.74	A
45	ATOM	5667					77.753	-2.924	1.00 22.46	A
40			С	ARG A		13.562				
	ATOM	5668	0	ARG A		14.398	78.078	-2.085	1.00 22.85	A
	MOTA	5669	N	SER A		12.391	78.365	-3.059	1.00 24.66	A
	ATOM	5670	CA	SER A		12.000	79.475	-2.201	1.00 27.21	A
 .	MOTA	5671	СВ	SER A	719	11.082	80.431	-2.966	1.00 27.33	A
50	MOTA	5672	OG	SER A	719	9.936	79.751	-3.447	1.00 28.77	А
	ATOM	5673	С	SER A	719	11.280	78.942	-0.969	1.00 28.70	А
	MOTA	5674	0	SER A		10.976	79.690	-0.039	1.00 29.02	А
	ATOM	5675	N	HIS A		11.009	77.641	-0.977	1.00 30.58	A
	ATOM	5676	CA	HIS A		10.328	76.981	0.128	1.00 32.12	A
55	ATOM	5677	CB	HIS F		8.873	76.683	-0.246	1.00 32.12	A
	ALOM	2011	CD	UID F	120	0.0/3	10.003	-0.240	1.00 34.09	М

		MOTOR	5678	CG	штс .	A 720	8.133	77.865	-0.791	1.00 37.77	A
		ATOM				A 720	7.534	78.066	-1.989	1.00 38.94	А
		ATOM	5679				7.945	79.024	-0.069	1.00 39.13	A
		MOTA	5680			A 720				1.00 39.81	A
	_	MOTA	5681			A 720	7.262	79.888	-0.799		
	5	MOTA	5682	NE2		A 720	7.001	79.331	-1.968	1.00 39.76	A
		MOTA	5683	С	HIS .	A 720	11.042	75.670	0.443	1.00 31.40	A
		MOTA	5684	0	HIS .	A 720	11.506	74.977	-0.462	1.00 31.75	A
		ATOM	5685	N		A 721	11.133	75.337	1.726	1.00 30.13	A
		ATOM	5686	CA		A 721	11.782	74.100	2.119	1.00 28.34	A
	10	MOTA	5687	C		A 721	13.299	74.148	2.131	1.00 26.81	A
	10		5688			A 721	13.900	75.210	2.278	1.00 26.70	А
		ATOM		0		A 722	13.912	72.980	1.964	1.00 24.89	А
		MOTA	5689	N			15.365	72.837	1.970	1.00 22.79	A
		MOTA	5690	CA		A 722			1.955	1.00 21.90	A
		MOTA	5691	CB		A 722	15.726	71.351			A
	15	MOTA	5692	CG		A 722	15.174	70.607	3.158	1.00 22.17	
		MOTA	5693			A 722	15.057	69.367	3.086	1.00 21.82	A
		MOTA	5694	OD2		A 722	14.865	71.261	4.179	1.00 21.77	A
		ATOM	5695	С	ASP	A 722	16.045	73.544	0.801	1.00 21.36	A
2007		MOTA	5696	0	ASP	A 722	15.605	73.440	-0.343	1.00 20.27	Α
The state of the s	20	ATOM	5697	N		A 723	17.127	74.257	1.102	1.00 20.52	A
1871.	<i></i>	ATOM	5698	CA		A 723	17.880	74.988	0.089	1.00 20.03	A
A.L.		ATOM	5699	СВ		A 723	18.196	76.408	0.572	1.00 22.97	A
1,37,9		ATOM	5700	CG		A 723	17.039	77.396	0.483	1.00 27.93	А
			5701	CD		A 723	15.997	77.176	1.566	1.00 31.86	A
Contractions of the Contraction	25	ATOM				A 723	14.917	78.157	1.468	1.00 35.16	A
111	25	ATOM	5702	NE		A 723	13.956	78.314	2.374	1.00 36.54	А
		ATOM	5703	CZ			13.931	77.555	3.462	1.00 37.74	A
		ATOM	5704			A 723	13.019	79.236	2.194	1.00 37.45	A
11		MOTA	5705			A 723		74.300	-0.286	1.00 18.02	A
1	20	ATOM	5706	С		A 723	19.188		0.528	1.00 16.96	A
	30	MOTA	5707	0		A 723	19.798	73.602			A
		MOTA	5708	N		A 724	19.612	74.508	-1.528	1.00 16.11	A
i veta		ATOM	5709	CA		A 724	20.857	73.940	-2.017	1.00 14.57	
		MOTA	5710	CB		A 724	20.993	74.174	-3.521	1.00 14.09	A
Topical D		ATOM	5711	OG		A 724	19.919	73.589	-4.227	1.00 13.67	A
g.	35	MOTA	5712	С	SER	A 724	22.023	74.610	-1.302	1.00 13.51	A
		MOTA	5713	0	SER	A 724	21.949	75.786	-0.932	1.00 14.47	A
		ATOM	5714	N	GLY	A 725	23.101	73.855	-1.120	1.00 12.12	A
		ATOM	5715	CA	GLY	A 725	24.286	74.378	-0.466	1.00 10.74	A
		ATOM	5716	С		A 725	25.497	73.661	-1.030	1.00 9.87	A
	40	ATOM	5717	0		A 725	25.408	73.054	-2.093	1.00 10.42	А
	40	MOTA	5718	N		A 726	26.623	73.718	-0.325	1.00 10.23	A
			5719	CA		A 726	27.844	73.068	-0.785	1.00 9.51	А
		ATOM		CB		A 726	28.981	73.331	0.200	1.00 10.07	А
		ATOM	5720				27.696	71.564	-1.004	1.00 10.03	А
	45	ATOM	5721	С		A 726	28.359	70.995	-1.876	1.00 9.75	A
	45	ATOM	5722	0		A 726			-0.216	1.00 9.25	A
		MOTA	5723	N		A 727	26.839	70.918			A
		MOTA	5724	CA		A 727	26.648	69.475	-0.343		
		MOTA	5725	CB		A 727	26.434	68.811	1.025	1.00 9.17	A
		ATOM	5726	CG		A 727	27.431	69.165	2.099	1.00 9.57	A
	50	MOTA	5727	CD1	TYR	A 727	27.306	70.345	2.833	1.00 10.21	A
		MOTA	5728			A 727	28.201	70.656	3.851	1.00 10.74	A
		MOTA	5729			A 727	28.486	68.305	2.407	1.00 10.18	A
		ATOM	5730			A 727	29.386	68.609	3.422	1.00 10.51	А
		ATOM	5731	CZ		A 727	29.237	69.783	4.142	1.00 10.60	A
	55	MOTA	5732	ОН		A 727	30.101	70.075	5.170	1.00 11.18	A
		A1 Off	5,52	011	1 11/						

						101				
		ATOM	5733	С	TYR A 727	25.456	69.084	-1.200	1.00 9.43	A
		ATOM	5734	0	TYR A 727	25.570	68.247	-2.096	1.00 9.80	A
					LEU A 728	24.314	69.695	-0.907	1.00 9.86	А
		ATOM	5735	N	LEU A 728	23.060	69.371	-1.576	1.00 10.29	A
	_	MOTA	5736	CA		21.906	69.519	-0.581	1.00 10.54	A
	5	MOTA	5737	CB	LEU A 728	22.078	68.918	0.817	1.00 9.48	А
		MOTA	5738	CG	LEU A 728		69.151	1.618	1.00 11.57	A
		MOTA	5739		LEU A 728	20.799		0.725	1.00 10.76	A
		MOTA	5740		LEU A 728	22.398	67.434	-2.836	1.00 10.70	A
	_	MOTA	5741	С	LEU A 728	22.687	70.135		1.00 10.53	A
	10	MOTA	5742	0	LEU A 728	22.895	71.343	-2.938		A
		MOTA	5743	N	PHE A 729	22.115	69.399	-3.786	1.00 11.08	A
		ATOM	5744	CA	PHE A 729	21.625	69.956	-5.040	1.00 11.31	
		ATOM	5745	CB	PHE A 729	22.157	69.154	-6.233	1.00 10.97	A
		MOTA	5746	CG	PHE A 729	21.677	69.653	-7.576	1.00 10.34	A
	15	MOTA	5747	CD1	PHE A 729	21.609	68.783	-8.659	1.00 10.55	A
		MOTA	5748	CD2	PHE A 729	21.322	70.990	-7.766	1.00 11.51	A
		MOTA	5749	CE1	PHE A 729	21.194	69.228	-9.910	1.00 10.69	A
		ATOM	5750	CE2		20.906	71.447	-9.020	1.00 10.06	A
£17000		ATOM	5751	CZ	PHE A 729	20.843	70.563	-10.092	1.00 11.02	А
	20	ATOM	5752	C	PHE A 729	20.109	69.792	-4.940	1.00 11.73	A
	20	ATOM	5753	Ö	PHE A 729	19.589	68.682	-5.040	1.00 11.22	А
		ATOM	5754	N	LEU A 730	19.408	70.900	-4.725	1.00 12.20	A
ijħ		ATOM	5755	CA	LEU A 730	17.955	70.886	-4.592	1.00 13.36	A
			5756	CB	LEU A 730	17.564	71.222	-3.151	1.00 13.41	A
April April	25	MOTA	5757	CG	LEU A 730	17.990	70.185	-2.104	1.00 13.71	A
361	23	ATOM			LEU A 730	17.919	70.781	-0.712	1.00 13.88	A
		ATOM	5758		LEU A 730	17.095	68.961	-2.208	1.00 14.18	A
		ATOM	5759			17.371	71.910	-5.552	1.00 13.24	A
31		MOTA	5760	С	LEU A 730	16.881	72.961	-5.139	1.00 13.97	А
	20	MOTA	5761	0	LEU A 730		71.607	-6.857	1.00 13.87	А
Ę	30	MOTA	5762	N	PRO A 731	17.414	70.324	-7.455	1.00 13.91	A
		MOTA	5763	CD	PRO A 731	17.825		-7.882	1.00 14.19	A
i de		MOTA	5764	CA	PRO A 731	16.893	72.513	-9.177	1.00 13.69	A
		MOTA	5765	CB	PRO A 731	17.232	71.788	-8.782	1.00 13.03	A
		MOTA	5766	CG	PRO A 731	17.111	70.346	-7.769	1.00 15.00	A
3.4	35	MOTA	5767	С	PRO A 731	15.409	72.819		1.00 13.00	A
		MOTA	5768	0	PRO A 731	14.627	72.015	-7.257	1.00 14.33	A
		ATOM	5769	N	ASN A 732	15.033	73.998	-8.249		
		ATOM	5770	CA	ASN A 732	13.640	74.412	-8.242	1.00 17.20	A A
		ATOM	5771	CB	ASN A 732	13.531	75.915	-7.954	1.00 18.72	
	40	MOTA	5772	CG	ASN A 732	14.202	76.766	-9.013	1.00 19.71	A
		ATOM	5773	OD1	ASN A 732	15.289	76.446		1.00 21.05	A
		ATOM	5774	ND2	2 ASN A 732	13.559	77.871		1.00 21.04	A
		ATOM	5775	С	ASN A 732	13.084	74.075		1.00 16.86	A
		ATOM	5776	0	ASN A 732	12.561		-10.330	1.00 17.62	A
	45	ATOM	5777	N	GLY A 733	13.222		-9.993	1.00 15.74	A
		MOTA	5778	CA	GLY A 733	12.737		-11.281	1.00 16.20	A
		MOTA	5779	С	GLY A 733	13.820		-12.340	1.00 15.85	A
		MOTA	5780	0	GLY A 733	14.979		-12.084	1.00 15.63	A
		ATOM	5781	N	PRO A 734	13.475	71.774	-13.546	1.00 15.55	A
	50	ATOM	5782	CD	PRO A 734	12.159	71.236	-13.935	1.00 16.13	A
	50	ATOM	5783	CA	PRO A 734	14.433	71.643	-14.646	1.00 15.56	A
		ATOM	5784	CB	PRO A 734	13.565		-15.801	1.00 16.06	A
			5785	CG	PRO A 734	12.510		-15.106	1.00 17.37	A
		ATOM			PRO A 734	15.091		-14.953	1.00 15.30	A
	EE	ATOM	5786			14.519		-14.691	1.00 14.97	A
	55	ATOM	5787	0	PRO A 734	14.013	17.072	- 1 - 0 - 1		

						100			
		MOTA	5788	N	ALA A 735	16.288	72.926 -15.525	1.00 15.31	A
		ATOM	5789		ALA A 735	17.041	74.128 -15.856	1.00 15.45	A
		ATOM	5790		ALA A 735	18.440	73.745 -16.324	1.00 15.38	Α
		ATOM	5791	C	ALA A 735	16.355	74.991 -16.910	1.00 16.40	A
	5	ATOM	5792		ALA A 735	15.641	74.488 -17.777	1.00 16.52	A
	J	ATOM	5793	N	SER A 736	16.584	76.298 -16.816	1.00 17.32	A
		ATOM	5794	CA	SER A 736	16.019	77.265 -17.747	1.00 18.50	A
		ATOM	5795	CB	SER A 736	15.387	78.427 -16.978	1.00 19.12	А
		ATOM	5796	OG	SER A 736	14.401	77.959 -16.074	1.00 22.89	А
	10		5797	C	SER A 736	17.158	77.779 -18.622	1.00 19.11	A
	10	MOTA	5798		SER A 736	18.259	78.019 -18.134	1.00 18.19	A
		ATOM	5799	O	PRO A 737	16.907	77.955 -19.928	1.00 19.88	A
		ATOM	5800	N CD	PRO A 737	15.659	77.671 -20.656	1.00 20.64	А
		ATOM			PRO A 737	17.943	78.443 -20.845	1.00 20.87	А
	1 =	ATOM	5801	CA	PRO A 737	17.215	78.502 -22.188	1.00 21.48	А
	15	MOTA	5802	CB	PRO A 737	16.162	77.441 -22.058	1.00 21.45	A
		MOTA	5803	CG	PRO A 737	18.504	79.803 -20.441	1.00 21.50	A
		MOTA	5804	С	PRO A 737	17.764	80.685 -20.004	1.00 21.33	A
217225		ATOM	5805	O N	VAL A 738	19.816	79.966 -20.577	1.00 22.39	A
i.d	20	MOTA	5806	N	VAL A 738	20.456	81.234 -20.254	1.00 23.03	А
Ų.	20	ATOM	5807 5808	CA CB	VAL A 738	21.993	81.082 -20.119	1.00 22.73	А
1,5		ATOM	5809		VAL A 738	22.645	82.456 -19.993	1.00 22.43	A
m		ATOM	5810		VAL A 738	22.332	80.229 -18.903	1.00 21.84	A
		ATOM		CGZ	VAL A 738	20.162	82.191 -21.407	1.00 24.47	A
	25	MOTA	5811 5812	0	VAL A 738	20.342	81.834 -22.570	1.00 24.12	A
111	23	MOTA	5813	N	GLU A 739	19.692	83.392 -21.088	1.00 25.62	A
M		ATOM	5814	CA	GLU A 739	19.398	84.380 -22.121	1.00 26.93	A
		ATOM	5815	CB	GLU A 739	18.604	85.546 -21.531	1.00 28.81	A
8) 4(886		ATOM ATOM	5816	CG	GLU A 739	17.210	85.155 -21.066	1.00 32.07	А
	30	ATOM	5817	CD	GLU A 739	16.327	84.675 -22.205	1.00 33.84	A
41.3	50	ATOM	5818	OE1		15.194	84.226 -21.932	1.00 35.19	A
ijŲ		ATOM	5819		GLU A 739	16.763	84.749 -23.374	1.00 34.81	A
		MOTA	5820	C	GLU A 739	20.731	84.866 -22.671	1.00 26.25	A
		ATOM	5821	0	GLU A 739	21.498	85.525 -21.971	1.00 25.93	А
g salar	35	ATOM	5822	N	LEU A 740	20.996	84.537 -23.931	1.00 26.09	A
	50	ATOM	5823	CA	LEU A 740	22.257	84.889 -24.574	1.00 25.99	A
		ATOM	5824	СВ	LEU A 740	22.631	83.803 -25.583	1.00 26.19	A
		ATOM	5825	CG	LEU A 740	22.563	82.362 -25.073	1.00 25.97	A
		ATOM			LEU A 740		81.411 -26.208	1.00 25.89	A
	40	ATOM	5827		LEU A 740	23.525	82.179 -23.905	1.00 26.08	A
	10	ATOM	5828	C	LEU A 740	22.304	86.240 -25.273	1.00 26.32	A
		ATOM	5829	0	LEU A 740	23.384	86.795 -25.463	1.00 25.85	Α
		ATOM	5830	N	GLY A 741	21.146	86.767 -25.656	1.00 26.45	Α
		ATOM	5831	CA	GLY A 741	21.127	88.040 -26.353	1.00 26.72	A
	45	ATOM	5832	C	GLY A 741	21.822	87.872 -27.692	1.00 26.42	А
	10	ATOM	5833	0	GLY A 741	21.597	86.883 -28.387	1.00 27.17	Α
		ATOM	5834	N	GLN A 742	22.666	88.831 -28.060	1.00 26.36	A
		ATOM	5835	CA	GLN A 742	23.407	88.766 -29.318	1.00 25.57	A
		ATOM	5836	CB	GLN A 742	23.036	89.953 -30.214	1.00 29.15	A
	50	ATOM	5837	CG	GLN A 742	21.557	89.999 -30.588	1.00 33.16	A
	- 0	ATOM	5838	CD	GLN A 742	21.200	91.197 -31.449	1.00 35.56	A
		MOTA	5839		GLN A 742	21.723	91.366 -32.551	1.00 37.11	A
		ATOM	5840		GLN A 742	20.299	92.036 -30.948	1.00 36.79	A
		ATOM	5841	C	GLN A 742	24.895	88.800 -28.977	1.00 23.07	A
	55	ATOM	5842	0	GLN A 742	25.555	89.829 -29.113	1.00 22.79	А
					_				

		ATOM	5843	N	PRO A	743	25.	444	87.660	-28.530	1.00	20.48	А
		MOTA	5844	CD	PRO A	743	24.	-		-28.449	1.00		A
		MOTA	5845	CA	PRO A	743	26.			-28.157	1.00		A
		MOTA	5846	CB	PRO A	743	26.	946		-27.544	1.00		A
	5	MOTA	5847	CG	PRO A	743	25.	961		-28.358	1.00		A
		ATOM	5848	С	PRO A	743	27.	871	87.760	-29.277	1.00		А
		MOTA	5849	0	PRO A	743	27.	589	87.516	-30.449		16.70	A
		ATOM	5850	N	VAL A	744	29.	058		-28.893		14.74	A
		ATOM	5851	CA	VAL A	744	30.	139		-29.840		13.49	A
	10	MOTA	5852	СВ	VAL A		31.	149		-29.296		12.90	A
		MOTA	5853		VAL A		32.	284	89.655	-30.287	1.00	12.99	A
		ATOM	5854		VAL A		30.	442	90.789	-29.030	1.00	13.89	A
		ATOM	5855	С	VAL A		30.	842	87.105	-30.070	1.00	12.96	А
		ATOM	5856	0	VAL A		31.	183	86.401	-29.117	1.00	12.48	A
	15	ATOM	5857	N	VAL A		31.	041	86.763	-31.338	1.00	11.61	Α
		ATOM	5858	CA	VAL A		31.	687	85.514	-31.717	1.00	11.18	A
		ATOM	5859	СВ	VAL A		30.	755	84.672	-32.615	1.00	10.82	A
		ATOM	5860		VAL A		31.	418	83.359	-32.981	1.00	11.01	А
,		ATOM	5861		VAL A		29.	436	84.430	-31.904	1.00	10.80	A
	20	ATOM	5862	C	VAL A			992	85.765	-32.463	1.00	11.19	A
ř	20	ATOM	5863	0	VAL A			041	86.564	-33.403	1.00	11.51	A
		ATOM	5864	N	LEU A			047	85.077	-32.041	1.00	10.48	A
		ATOM	5865	CA	LEU A			359	85.208	-32.662	1.00	10.17	A
		ATOM	5866	CB	LEU A			409		-31.611	1.00	11.05	A
	25	ATOM	5867	CG	LEU A			865		-32.087	1.00	11.54	A
	20	MOTA	5868		LEU A			050		-33.153	1.00	13.05	A
		ATOM	5869		LEU A			779		-30.900	1.00	13.86	A
		ATOM	5870	C	LEU A			761		-33.347	1.00	10.30	A
		ATOM	5871	0	LEU A			820		-32.718	1.00	10.42	A
,	30	ATOM	5872	N	VAL A			044		-34.639	1.00	10.07	A
	50	ATOM	5873	CA	VAL A			435		-35.412	1.00	10.40	A
·		ATOM	5874	СВ	VAL A			535		-36.658	1.00	10.85	A
		ATOM	5875		VAL A			903		-37.385	1.00	10.29	A
		ATOM	5876		VAL A			079		-36.248	1.00	10.45	A
	35	ATOM	5877	C	VAL A			872		-35.878	1.00	11.25	A
	00	ATOM	5878	0	VAL A			214	83.908	-36.592	1.00	11.81	A
		ATOM	5879	N	THR A			718		-35.458	1.00	10.82	A
		ATOM	5880	CA	THR A			.111	82.046	-35.866	1.00	12.00	A
		MOTA	5881	СВ	THR A			.047	82.030	-34.646	1.00	12.71	A
	40	ATOM	5882		THR A			.806	83.201	-33.853	1.00	12.84	A
	-10	ATOM	5883		THR A			.502		-35.089	1.00	13.11	A
		ATOM	5884	C	THR A			.320		-36.715	1.00	12.53	A
		ATOM	5885	0	THR A			.056		-36.273	1.00	12.33	A
		ATOM	5886	N	LYS A			.768		-37.949	1.00	11.99	А
	45	ATOM	5887	CA	LYS A			.989		-38.868	1.00	12.97	A
	40	ATOM	5888	CB	LYS A			.162		-40.140	1.00	14.41	A
		ATOM	5889	CG	LYS A			.361		-41.176	1.00	17.12	A
		ATOM	5890	CD	LYS A			.465		-42.384	1.00	19.62	А
		ATOM	5891	CE	LYS A			.708		-43.438		21.33	A
	50	ATOM	5892	NZ	LYS A			.867		-44.648		24.55	А
	50	ATOM	5893	C	LYS A			.457		-39.230		12.94	A
		ATOM	5894	0	LYS A			.062		-39.797	1.00	12.59	A
		ATOM	5895	N	GLY A			.023		-38.903		12.38	A
		ATOM	5896	CA	GLY A			.420		-39.196		12.98	А
	55	ATOM	5897	C	GLY A			.621		-39.796		13.35	A
		AIOM	2021		ODIA	, , , , ,	7.1			•			

									ת
		MOTA	5898	0	GLY A 750	43.726	76.130 -39.752	1.00 14.37	A
		ATOM	5899	N	LYS A 751	45.802	76.755 -40.362	1.00 13.85	A
		ATOM	5900	CA	LYS A 751	46.122	75.474 -40.976	1.00 14.48	A
					LYS A 751	47.423	75.588 -41.774	1.00 17.11	Α
	_	MOTA	5901	CB		47.355	76.562 -42.939	1.00 21.85	A
	5	MOTA	5902	CG	LYS A 751			1.00 25.31	A
		MOTA	5903	CD	LYS A 751	46.358	76.094 -43.990		
		MOTA	5904	CE	LYS A 751	46.339	77.030 -45.190	1.00 26.61	A
		ATOM	5905	NZ	LYS A 751	45.405	76.557 -46.249	1.00 28.25	A
		ATOM	5906	С	LYS A 751	46.264	74.370 -39.933	1.00 13.47	A
	10	ATOM	5907	Ō	LYS A 751	45.878	73.228 -40.174	1.00 13.67	A
	10		5908	N	LEU A 752	46.812	74.718 -38.774	1.00 12.85	A
		MOTA				47.018	73.741 -37.711	1.00 12.63	А
		MOTA	5909	CA	LEU A 752		73.957 -37.059	1.00 12.95	A
		MOTA	5910	CB	LEU A 752	48.386		1.00 12.33	A
		MOTA	5911	CG	LEU A 752	49.612	73.940 -37.976		
	15	MOTA	5912	CD1	LEU A 752	50.867	74.114 -37.137	1.00 14.66	A
		MOTA	5913	CD2	LEU A 752	49.663	72.635 -38.752	1.00 15.60	A
		ATOM	5914	С	LEU A 752	45.947	73.781 -36.627	1.00 12.32	A
		ATOM	5915	Ō	LEU A 752	45.616	72.756 -36.033	1.00 11.49	Α
					GLU A 753	45.403	74.964 -36.372	1.00 11.65	A
	20	MOTA	5916	N			75.109 -35.332	1.00 11.90	A
,	20	MOTA	5917	CA	GLU A 753	44.400		1.00 12.47	A
7		MOTA	5918	CB	GLU A 753	45.087	75.426 -34.000		
		MOTA	5919	CG	GLU A 753	44.140	75.575 -32.822	1.00 14.62	A
		ATOM	5920	CD	GLU A 753	44.852	76.044 -31.567	1.00 16.59	А
		ATOM	5921		GLU A 753	45.201	77.241 -31.489	1.00 19.53	A
ř	25	ATOM	5922		GLU A 753	45.072	75.211 -30.664	1.00 19.34	A
	20		5923	C	GLU A 753	43.399	76.207 -35.650	1.00 11.79	А
		ATOM			GLU A 753	43.776	77.308 -36.064	1.00 12.11	A
•		MOTA	5924	0		42.124	75.896 -35.453	1.00 10.70	A
		MOTA	5925	N	SER A 754		76.850 -35.675	1.00 10.81	А
		ATOM	5926	CA	SER A 754	41.050			A
Ē	30	ATOM	5927	CB	SER A 754	40.227	76.458 -36.901	1.00 11.07	
à		ATOM	5928	OG	SER A 754	40.988	76.604 -38.086	1.00 10.80	A
		MOTA	5929	С	SER A 754	40.172	76.842 -34.436	1.00 10.66	A
a -		ATOM	5930	0	SER A 754	40.221	75.902 -33.638	1.00 10.36	А
		ATOM	5931	N	SER A 755	39.373	77.884 -34.258	1.00 10.33	A
	35		5932	CA	SER A 755	38.506	77.934 -33.097	1.00 11.56	A
	33	ATOM				39.317	78.274 -31.842	1.00 12.90	A
		MOTA	5933	CB	SER A 755		79.597 -31.904	1.00 15.50	А
		ATOM	5934	OG	SER A 755	39.816	78.934 -33.233	1.00 10.74	A
		ATOM	5935	С	SER A 755	37.378			
		ATOM	5936	0	SER A 755	37.442	79.877 -34.026	1.00 10.96	A
	40	MOTA	5937	N	VAL A 756	36.335	78.701 -32.449	1.00 9.84	A
		ATOM	5938	CA	VAL A 756	35.177	79.574 -32.397	1.00 10.44	A
		MOTA	5939	СВ	VAL A 756	33.920	78.891 -32.961	1.00 10.20	A
		ATOM	5940		VAL A 756	32.716	79.801 -32.774	1.00 10.96	A
			5941		VAL A 756	34.127	78.554 -34.432	1.00 12.18	A
	4 =	ATOM				34.967	79.869 -30.919	1.00 10.58	A
	45	MOTA	5942	C	VAL A 756	34.764	78.953 -30.120	1.00 10.80	А
		MOTA	5943	0	VAL A 756			1.00 10.27	A
		MOTA	5944	N	SER A 757	35.041	81.143 -30.552		
		MOTA	5945	CA	SER A 757	34.864	81.546 -29.164	1.00 10.99	A
		MOTA	5946	CB	SER A 757	36.148	82.187 -28.631	1.00 11.96	A
	50	ATOM	5947		SER A 757	37.258	81.326 -28.808	1.00 14.85	A
		ATOM	5948		SER A 757	33.724	82.542 -29.062	1.00 10.89	A
			5949		SER A 757	33.579		1.00 11.64	A
		ATOM			VAL A 758	32.918	82.423 -28.015	1.00 10.48	А
		ATOM	5950					1.00 11.21	A
		ATOM	5951		VAL A 758	31.801		1.00 11.21	A
	55	ATOM	5952	СВ	VAL A 758	30.471	82.678 -28.285	1.00 11.0/	Α

		5050	001	T 7 D T 7	7.0	30.239	01 372	-27.535	1.00 12.22	А
	MOTA	5953		VAL A				-28.067	1.00 11.35	A
	MOTA	5954		VAL A		29.315		-26.376	1.00 11.49	A
	MOTA	5955		VAL A		31.691		-25.446	1.00 11.17	A
_	MOTA	5956		VAL A		31.858			1.00 11.17	A
5	MOTA	5957		GLY A		31.429		-26.196	1.00 11.20	A
	MOTA	5958	CA	GLY A		31.295		-24.867		
	MOTA	5959	С	GLY A		29.854		-24.396	1.00 11.97	A
	MOTA	5960	0	GLY A		29.064		-24.696	1.00 12.26	A
	MOTA	5961	N	LEU A	760	29.509		-23.661	1.00 12.65	A
10	ATOM	5962	CA	LEU A	760	28.160		-23.139	1.00 13.29	A
	ATOM	5963	СВ	LEU A	760	27.776		-23.171	1.00 13.33	A
	ATOM	5964	CG	LEU A	760	27.892		-24.513	1.00 13.38	A
	ATOM	5965		LEU A		27.612	80.696	-24.316	1.00 15.19	A
	ATOM	5966		LEU A		26.920	82.785	-25.518	1.00 14.79	Α
15	ATOM	5967	C	LEU A		28.107	84.883	-21.701	1.00 13.87	A
15	ATOM	5968	Ö	LEU A		29.143	85.085	-21.068	1.00 14.41	A
	ATOM	5969	N	PRO A		26.897	85.102	-21.168	1.00 14.84	A
	ATOM	5970	CD	PRO A		25.570		-21.802	1.00 15.39	A
			CA	PRO A		26.844		-19.781	1.00 14.68	A
20	ATOM	5971	CB	PRO A		25.349		-19.544	1.00 15.73	A
20	ATOM	5972		PRO A		24.850		-20.905	1.00 15.81	А
	ATOM	5973	CG			27.429		-18.867	1.00 14.74	А
	ATOM	5974	C	PRO A		26.973		-18.879	1.00 15.36	A
	MOTA	5975	0	PRO A				-18.104	1.00 13.55	А
0-	MOTA	5976	N	SER A		28.451		-17.166	1.00 13.04	A
25	MOTA	5977	CA	SER A		29.122		-16.337	1.00 13.70	A
	MOTA	5978	CB	SER A		28.093			1.00 15.66	A
	MOTA	5979	OG	SER A		27.255		-15.597	1.00 13.00	A
	MOTA	5980	С	SER P		30.080		-17.794	1.00 12.23	A
	ATOM	5981	0	SER P		30.784		-17.074		
30	ATOM	5982	N	VAL A	763	30.121		-19.120	1.00 12.24	A
	MOTA	5983	CA	VAL A		30.993		-19.760	1.00 11.70	A
	ATOM	5984	CB	VAL A		30.250		-19.992	1.00 12.39	A
	MOTA	5985		VAL A		31.211		-20.572	1.00 12.05	A
	ATOM	5986	CG2	VAL A	763	29.642		-18.700	1.00 13.13	A
35	ATOM	5987	С	VAL A	763	31.566		-21.111	1.00 11.77	A
	ATOM	5988	0	VAL A	763	30.822		-22.021	1.00 11.80	A
	ATOM	5989	N	VAL A	764	32.889		-21.237	1.00 10.33	A
	MOTA	5990	CA	VAL A	764	33.497		-22.536	1.00 10.30	A
	ATOM	5991	СВ	VAL A	764	34.865		-22.449	1.00 10.08	A
40	ATOM	5992	CG1	VAL A		35.489		-23.844		A
	ATOM	5993		VAL A		34.684		-21.868	1.00 11.72	А
	ATOM	5994	С	VAL A		33.675	81.038	-23.000	1.00 10.11	A
	ATOM	5995	0	VAL A		34.513	80.296	-22.470	1.00 9.72	A
	ATOM	5996	N	HIS A		32.843	80.638	-23.957	1.00 9.99	A
45	ATOM	5997	CA	HIS A		32.814		-24.502	1.00 9.87	A
10	MOTA	5998	СВ		765	31.361		-24.825	1.00 9.62	A
	ATOM	5999	CG		A 765	31.172		-25.348	1.00 9.93	A
		6000		HIS		31.366		-24.762	1.00 7.55	A
	ATOM	6000		HIS A		30.686		-26.611	1.00 11.37	A
FΩ	MOTA	6001		HIS		30.586		-26.779	1.00 8.86	A
50	MOTA			HIS		30.992		-25.671	1.00 11.67	А
	MOTA	6003				33.684		-25.750	1.00 10.43	A
	MOTA	6004	С		A 765	33.546		-26.674	1.00 9.54	A
	ATOM	6005	0		A 765			-25.787	1.00 9.10	A
p	MOTA	6006	N		A 766	34.569		-26.917	1.00 10.36	A
55	MOTA	6007	CA	GLN .	A 766	35.473	70.041	-20,311	1.00 10.30	17

The first few trees where the first first few trees where the first firs

							107					
		ATOM	6008	СВ	GLN A	766	36.886	78.461	-26.503		11.74	А
		ATOM	6009	CG	GLN A		36.963	79.777	-25.740	1.00	16.65	А
		ATOM	6010	CD	GLN A		38.093	79.787	-24.720	1.00	18.99	A
		MOTA	6011	OE1			39.248	79.518	-25.054	1.00	20.56	A
	5	ATOM	6012	NE2	GLN A		37.761	80.098	-23.465	1.00	19.49	A
	0	ATOM	6013	С	GLN A		35.534	76.617	-27.450	1.00	9.67	A
		MOTA	6014	0	GLN A		35.657		-26.679	1.00	9.31	A
		ATOM	6015	N	THR A		35.447		-28.770	1.00	9.57	A
		ATOM	6016	CA	THR A		35.537		-29.427	1.00	9.97	A
	10	ATOM	6017	CB	THR A		34.326		-30.336	1.00	9.80	A
	10	ATOM	6018	OG1			33.124		-29.567		10.60	A
		ATOM	6019		THR A		34.423		-30.943		10.52	A
		ATOM	6020	C	THR A		36.797		-30.277		10.72	A
		ATOM	6021	0	THR A		36.890		-31.201		10.96	A
	15	ATOM	6022	N	ILE A		37.767		-29.955		10.84	А
	15	ATOM	6023	CA	ILE A		39.044		-30.659		11.39	А
		ATOM	6024	CB	ILE A		40.207		-29.653		11.17	A
		ATOM	6025		ILE A		41.536		-30.391		12.50	А
4 1900		ATOM	6026		ILE A		39.986		-28.739		12.86	А
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	ATOM	6027		ILE A		40.930		-27.552		14.09	А
	20	ATOM	6028	C	ILE A		39.210		-31.499		11.59	A
J		ATOM	6029	0	ILE A		38.924		-31.044	1.00	11.70	A
T		ATOM	6030	И	MSE A		39.679		-32.729	1.00	11.90	A
		ATOM	6031	CA	MSE A		39.878		-33.662		12.55	A
	25	ATOM	6031	CB	MSE A		39.004		-34.898		15.34	A
19,1	20	ATOM	6033	CG	MSE A		37.519		-34.597		16.83	A
į.		ATOM	6034	SE	MSE A		36.503		-35.920		26.54	A
		ATOM	6035	CE	MSE A		36.555		-35.079		19.56	A
		ATOM	6036	C	MSE A		41.336		-34.088		12.98	A
ijesabi , p≃g	30	ATOM	6037	0	MSE A		41.948		-34.531		12.06	A
	50	ATOM	6038	N	ARG A		41.891		-33.960	1.00	13.68	A
Vines Vines		ATOM	6039	CA	ARG A		43.275		-34.339		15.07	A
i di		ATOM	6040	CB	ARG A		44.140		-33.089		17.11	A
		ATOM	6041	CG	ARG A		44.074		-32.165		20.18	A
gs.da	35	MOTA	6042	CD	ARG A		44.923		-30.919	1.00	23.42	A
	33	ATOM	6042	NE	ARG A		44.600		-29.908	1.00	26.56	A
		ATOM	6044	CZ	ARG A		45.160		-28.705	1.00	27.92	A
		ATOM	6045		ARG A		46.084		-28.353	1.00	28.57	A
		ATOM	6046		ARG A		44.790	73.500	-27.850	1.00	28.79	А
	40	ATOM	6047	С	ARG A		43.435		-35.253	1.00	15.19	A
	10	ATOM	6048	0	ARG A		44.541	68.934	-35.442	1.00	15.98	А
		ATOM	6049	N	GLY A		42.325	68.968	-35.814	1.00	15.00	A
		ATOM	6050	CA	GLY A		42.390	67.836	-36.720	1.00	15.83	А
		ATOM	6051	C	GLY A		41.638		-36.266	1.00	16.49	Α
	45	ATOM	6052	Ö	GLY A		41.371	65.706	-37.071	1.00	18.18	Α
	10	ATOM	6053	N	GLY A		41.310	66.543	-34.979	1.00	15.66	A
		ATOM	6054	CA	GLY A		40.581		-34.446	1.00	15.30	A
		ATOM	6055	C	GLY A		39.374		-33.659	1.00	13.91	A
		ATOM	6056	Ö	GLY A		38.767		-33.999	1.00	13.73	A
	50	ATOM	6057	N	ALA A		39.012		-32.613	1.00	13.00	A
	00	ATOM	6058	CA	ALA A		37.877		-31.790	1.00	12.18	A
		MOTA	6059	CB	ALA A		37.699		-30.642	1.00	12.99	A
		ATOM	6060	C	ALA A		38.162		-31.249	1.00	11.57	A
		ATOM	6061	0	ALA A		39.277		-30.819	1.00	12.06	А
	55	ATOM	6062	N	PRO F		37.161		-31.273	1.00	11.20	A
		73.1.013	0002	7.4	1110 1		3 · · - · · ·					

		MOTA	6063	CD	PRO A	774	35.782	67.673	-31.775	1.00	11.31	A
		ATOM	6064	CA	PRO A		37.409	69.152	-30.761	1.00	10.53	A
			6065	CB	PRO A		36.142		-31.153	1.00	11.51	А
		ATOM	6065	CG	PRO A		35.089		-31.110	1.00	12.74	A
	_	ATOM			PRO A		37.660		-29.262		10.06	A
	5	MOTA	6067	C			37.322		-28.507	1.00	9.96	А
		MOTA	6068	0	PRO A		38.287		-28.849	1.00	9.33	A
		MOTA	6069	N	GLU A				-27.445	1.00	9.07	A
		MOTA	6070	CA	GLU A		38.550			1.00	9.95	A
		ATOM	6071	СВ	GLU A		39.992		-27.213		12.24	A
	10	MOTA	6072	CG	GLU A		40.302		-25.738			A
		MOTA	6073	CD	GLU A		41.714		-25.499		15.25	
		MOTA	6074	OE1	GLU A		42.609		-26.314		19.42	A
		MOTA	6075	OE2			41.934		-24.478		16.73	A
		MOTA	6076	С	GLU A	775	37.608		-27.096	1.00	9.08	A
	15	MOTA	6077	0	GLU A	775	37.431		-27.886	1.00	9.71	A
		ATOM	6078	N	ILE A	776	36.988		-25.931	1.00	9.14	A
		MOTA	6079	CA	ILE A		36.083		-25.491	1.00	9.39	A
		ATOM	6080	CB	ILE A		34.696	72.103	-25.114		10.30	A
4 (1288) ₂₀		ATOM	6081		ILE A		33.749	73.248	-24.785	1.00	11.43	A
	20	ATOM	6082		ILE A		34.154	71.219	-26.240	1.00	12.19	A
	20	ATOM	6083	CD1			34.033		-27.587	1.00	13.48	A
		ATOM	6084	C	ILE A		36.683		-24.245	1.00	8.89	A
			6085	0	ILE A		37.173		-23.369	1.00	8.86	A
		MOTA			ARG A		36.670		-24.177	1.00	9.64	A
191	25	ATOM	6086	N	ARG A		37.178		-23.007	1.00	9.16	А
, m, m,	25	ATOM	6087	CA	ARG A		38.486		-23.306		10.34	А
2 (1945) 2 (1946)		MOTA	6088	CB			39.647		-23.655		10.26	А
i ji		MOTA	6089	CG	ARG A		40.943		-23.759		11.46	A
91		MOTA	6090	CD	ARG A				-24.308		12.09	А
	00	MOTA	6091	NE	ARG A		42.013 43.198		-24.697		13.87	A
ij.	30	MOTA	6092	CZ	ARG A				-24.593		15.34	A
The state of		MOTA	6093		ARG A		43.482		-25.221		15.77	A
i da		MOTA	6094		ARG A		44.090		-22.589	1.00	8.98	A
100		MOTA	6095	С	ARG A		36.139		-23.423	1.00	9.21	A
Epus Bar		MOTA	6096	0	ARG A		35.619				8.45	A
2 11000	35	MOTA	6097	N	ASN A		35.821		-21.303	1.00		A
		MOTA	6098	CA	ASN A		34.863		-20.756	1.00	8.73	
		MOTA	6099	CB	ASN A		33.672		-20.098	1.00	9.56	A
		ATOM	6100	CG	ASN A		32.726		-21.094		10.18	A
		MOTA	6101		ASN A		32.682		-22.261		10.34	A
	40	ATOM	6102	ND2	ASN A	778	31.939		-20.629			A
		MOTA	6103	С	ASN A	778	35.529		-19.684	1.00		A
		MOTA	6104	0	ASN A	778	36.000		-18.683	1.00		A
		MOTA	6105	N	LEU A	779	35.586		-19.891	1.00		A
		ATOM	6106	CA	LEU A	779	36.133		-18.868	1.00		A
	45	ATOM	6107	СВ	LEU A	779	36.792		-19.487		11.11	A
		ATOM	6108	CG	LEU A	779	37.363	82.583	-18.484		12.38	A
		ATOM	6109	CD1	LEU A		38.443	81.931	-17.637	1.00	13.74	A
		ATOM	6110		LEU A		37.924	83.779	-19.242	1.00	14.30	A
		ATOM	6111	C	LEU A		34.869	80.723	-18.112	1.00	9.41	A
	50	ATOM	6112	0	LEU A		34.092		-18.563	1.00	10.31	А
	50	ATOM	6113	N	VAL A		34.659		-16.969	1.00	8.89	А
			6114	CA	VAL A		33.457		-16.178	1.00		A
		MOTA	6115	CB	VAL A		32.948		-15.610	1.00		A
		ATOM			VAL A VAL A		31.607		-14.917		10.76	А
	E m	ATOM	6116				32.827		-16.735	1.00		А
	55	MOTA	6117	CG2	VAL A	180	32.021	11.341	10.,00	1.00	,	• • •

								1/1					
		MOTA	6118	С	VAL A 7	80	33.6	07	81.290	-15.036	1.00	10.33	A
		MOTA	6119	0	VAL A 7		34.4			-14.123	1.00	10.64	Α
			6120	N	ASP A 7		32.8			-15.105	1.00	11.16	A
		MOTA		CA	ASP A 7		32.8			-14.076	1.00	11.93	A
	_	ATOM	6121		ASP A 7		33.5			-14.583		14.09	A
	5	ATOM	6122	CB			33.5			-13.522		15.28	А
		ATOM	6123	CG	ASP A 7					-13.823		18.04	А
		MOTA	6124		ASP A 7		34.1			-12.384		15.28	A
		MOTA	6125		ASP A 7		33.1			-13.748		12.36	A
		MOTA	6126	С	ASP A 7		31.3			-14.372		11.82	A
	10	MOTA	6127	0	ASP A 7		30.7					13.05	A
		MOTA	6128	N	ILE A 7		30.8			-12.770		15.17	A
		ATOM	6129	CA	ILE A 7		29.4			-12.348		15.24	A
		MOTA	6130	CB	ILE A 7		29.1			-11.399			A
		ATOM	6131		ILE A 7		29.7			-10.032		15.58	
	15	MOTA	6132	CG1	ILE A 7		27.5			-11.289		15.55	A
		MOTA	6133	CD1	ILE A	782	27.1			-10.671		15.33	A
		MOTA	6134	С	ILE A	782	29.2			-11.680		16.86	A
		MOTA	6135	0	ILE A	782	28.0			-11.341		18.15	A
1,500		MOTA	6136	N	GLY A	783	30.2	60		-11.503		17.28	A
	20	ATOM	6137	CA	GLY A	783	30.1	.26		-10.908		19.48	A
1,622		MOTA	6138	С	GLY A	783	29.2	290	86.621	-9.646		20.51	A
		ATOM	6139	0	GLY A	783	29.5	38	85.895	-8.682		21.41	A
1,11		ATOM	6140	N	SER A		28.2	293	87.503	-9.649		22.21	A
		ATOM	6141	CA	SER A		27.4	135	87.675	-8.483		23.63	A
agg.	25	ATOM	6142	СВ	SER A		27.3	325	89.160	-8.128		24.57	A
Ŋ,	20	ATOM	6143	OG	SER A		26.7		89.896	-9.180		26.76	A
ijî.		ATOM	6144	C	SER A		26.0		87.086	-8.649	1.00	24.17	А
		ATOM	6145	Ō	SER A		25.1	L09	87.470	-7.934	1.00	24.52	А
38 05		MOTA	6146	N	LEU A		25.8		86.158	-9.589		24.17	А
	30	MOTA	6147	CA	LEU A		24.5		85.520	-9.819		24.30	A
1L3	50	ATOM	6148	CB	LEU A		24.5			-11.147		25.03	A
and And		ATOM	6149	CG	LEU A		24.5			-12.444	1.00	26.37	A
ļ.a.		ATOM	6150		LEU A		25.7			-12.492	1.00	27.91	A
100		ATOM	6151		LEU A		24.5			-13.631	1.00	27.18	A
i san	35	ATOM	6152	C	LEU A		24.2		84.554		1.00	24.04	A
R -	55		6153	0	LEU A		24.5		83.364		1.00	24.23	A
		ATOM	6154	N	ASP A		23.0		85.068			23.21	A
		ATOM	6155	CA	ASP A		23.3		84.247	-6.460		22.19	А
		MOTA	6156		ASP A			877		-5.302		24.01	A
	40	MOTA			ASP A		23.		86.245	-4.993		25.65	A
	40	ATOM	6157	CG	ASP A		25.0		85.955	-4.776		24.91	A
		ATOM	6158				23.		87.417	-4.968		26.93	А
		ATOM	6159		ASP A		22.		83.188	-6.747		20.42	А
		MOTA	6160	С	ASP A		21.		83.368	-7.604		20.14	А
	4 -	ATOM	6161	0	ASP A		22.		82.085			18.59	A
	45	MOTA	6162	N	ASN A				80.971	-6.145		17.29	A
		ATOM	6163	CA	ASN A		21.		81.341	-5.522		18.36	A
		MOTA	6164	СВ	ASN A		20.		81.678	-4.054		19.72	A
		MOTA	6165	CG	ASN A		20.					20.47	A
		ATOM	6166		L ASN A		20.		80.936 82.799			22.13	A
	50	MOTA	6167	ND2	2 ASN A		19.					16.22	A
		MOTA	6168	С	ASN A		21.		80.536			15.49	A
		ATOM	6169	0	ASN A		20.		80.387				A
		MOTA	6170	N	THR A			389	80.321			14.90	A
		ATOM	6171	CA	THR A			382	79.901			13.74	A A
	55	MOTA	6172	CB	THR A	788	22.	718	81.081	-10.594	1.00	15.15	A

													_
		ATOM	6173	OG1	THR A	788		21.782	82.145	-10.380	1.00	15.54	A
		ATOM	6174		THR A		į	22.649	80.646	-12.053	1.00	14.91	A
			6175	C	THR A			23.427		-9.874		12.17	A
		ATOM						24.516		-9.306		12.24	А
	,	MOTA	6176	0	THR A							11.16	A
	5	MOTA	6177	N	GLU A			23.075		-10.679			
		MOTA	6178	CA	GLU A			23.993		-11.021		10.70	A
		MOTA	6179	CB	GLU A			23.523		-10.417		10.65	A
		MOTA	6180	CG	GLU A	789		23.410	75.468			11.01	A
		MOTA	6181	CD	GLU A	789		23.467	74.103	-8.230	1.00	10.75	A
	10	MOTA	6182	OE1	GLU A	789		24.244	73.242	-8.700	1.00	11.43	A
		ATOM	6183		GLU A			22.751	73.900	-7.224	1.00	11.36	A
		ATOM	6184	C	GLU A			23.977		-12.545	1.00	10.53	A
		ATOM	6185	0	GLU A			22.925		-13.159		12.21	A
					ILE A			25.141		-13.151	1.00	9.89	А
	1 =	MOTA	6186	N				25.258		-14.603		11.05	A
	15	MOTA	6187	CA	ILE A							11.53	A
		MOTA	6188	CB	ILE A			26.356		-15.063			
		MOTA	6189		ILE A			26.444		-16.584		11.91	A
		MOTA	6190		ILE A			26.048		-14.545		14.02	A
150		MOTA	6191	CD1	ILE A			27.164		-14.786		16.91	A
	20	MOTA	6192	С	ILE A	790		25.601		-15.143		10.36	A
i ing		MOTA	6193	0	ILE A	790		26.590		-14.735		10.51	A
Tribup.		MOTA	6194	N	VAL A	791		24.783		-16.070		10.03	A
13.8		ATOM	6195	CA	VAL A	791		25.003	73.790	-16.664	1.00	10.13	A
(car		ATOM	6196	СВ	VAL A	791		23.792	72.848	-16.409	1.00	10.46	A
ij.	25	ATOM	6197		VAL A			22.582	73.304	-17.224	1.00	11.49	A
and Sulp	20	ATOM	6198		VAL A			24.163		-16.760	1.00	11.24	A
17		ATOM	6199	C	VAL A			25.239		-18.166	1.00	9.93	A
		ATOM	6200	0	VAL A			24.653		-18.860		10.16	A
2 (**** <u>*</u>			6201	N	MSE A			26.128		-18.662	1.00	9.51	A
2 (2005) 2 (2005)	20	ATOM			MSE A			26.394		-20.092	1.00	9.67	A
# (22) 1 1 1 1 1 1 1 1 1 1	30	ATOM	6202	CA	MSE A			27.892		-20.392		11.43	A
		MOTA	6203	CB				28.185		-21.881		12.60	A
		ATOM	6204	CG	MSE A					-22.319		18.80	A
		ATOM	6205	SE	MSE A			30.059		-21.499		14.20	A
i care	25	MOTA	6206	CE	MSE A			30.632				9.89	A
2	35	MOTA	6207	С	MSE A			25.749		-20.559	1.00		
		MOTA	6208	0	MSE A			26.063		-20.046		10.12	A
		MOTA	6209	N	ARG A			24.843		-21.524	1.00	9.88	A
		MOTA	6210	CA	ARG A			24.143		-22.027	1.00	9.40	A
		MOTA	6211	CB	ARG A	793		22.636		-21.786	1.00	9.08	Α
	40	MOTA	6212	CG	ARG A	793		21.775		-22.249			A
		ATOM	6213	CD	ARG A	793		20.300	69.824	-21.940		10.28	A
		ATOM	6214	NE	ARG A	793		20.051	69.905	-20.504	1.00	11.04	A
		ATOM	6215	CZ	ARG A			18.958	70.427	-19.959	1.00	10.72	А
		ATOM	6216		ARG A			17.995	70.922	-20.733	1.00	12.36	A
	45	ATOM	6217		ARG A			18.832	70.473	-18.640	1.00	11.35	А
	10	ATOM	6218	C	ARG A			24.396		-23.503	1.00		A
		ATOM	6219	0	ARG A			24.593		-24.286		10.28	A
					LEU A			24.393		-23.866		10.51	A
		ATOM	6220	N	LEU A			24.563		-25.248		10.31	A
	E 0	ATOM	6221	CA				25.730		-25.370		11.42	A
	50	MOTA	6222	CB	LEU A							11.51	A
		ATOM	6223	CG	LEU A			27.129		-25.492		12.30	A
		MOTA	6224		LEU A			28.180		-25.131			A
		MOTA	6225		LEU A			27.336		-26.914		13.24	
		MOTA	6226	С	LEU A			23.265		-25.643		11.62	A
	55	ATOM	6227	0	LEU A	794		22.789	67.038	-24.931	1.00	10.91	А

		ATOM	6228	N	GLU	Α	795	22.686	68.330	-26.766	1.00	11.83	A
		ATOM	6229	CA	GLU			21.444	67 731	-27.244	1 00	13.21	А
										-27.427			A
		ATOM	6230	CB	GLU			20.373				13.79	
	_	ATOM	6231	CG	GLU			20.156		-26.184	1.00	16.95	A
	5	MOTA	6232	CD	GLU	Α	795	19.134	70.774	-26.382	1.00	18.99	A
		MOTA	6233	OE1	GLU	Α	795	19.138	71.404	-27.460	1.00	21.87	А
		ATOM	6234	OE2	GLU			18.339		-25.452	1.00	20.56	А
		ATOM	6235	C	GLU			21.716		-28.565		13.30	A
	10	ATOM	6236	0	GLU			22.259		-29.500		13.97	A
	10	ATOM	6237	N	THR	A	796	21.352		-28.637		12.67	А
		MOTA	6238	CA	THR	Α	796	21.577	64.957	-29.846	1.00	13.15	A
		MOTA	6239	CB	THR	Α	796	22.771	63.991	-29.688	1.00	12.88	A
		ATOM	6240	OG1	THR			22.372	62.859	-28.900	1.00	11.73	А
		MOTA	6241	CG2	THR			23.935		-29.002		13.25	A
	15			C						-30.203		13.86	A
	15	ATOM	6242		THR			20.369					
		ATOM	6243	0	THR			19.355		-29.509		16.03	A
		MOTA	6244	N	HIS	A	797	20.511		-31.284		15.53	A
		ATOM	6245	CA	HIS	Α	797	19.465	62.444	-31.764	1.00	16.70	A
		ATOM	6246	CB	HIS	A	797	19.343	62.542	-33.283	1.00	18.40	A
	20	MOTA	6247	CG	HIS	Д	797	18.639	63.775	-33.747	1.00	18.87	A
. 3-5s		ATOM	6248		HIS			17.877		-33.075		18.85	A
i de la										-35.056			
(M		ATOM	6249		HIS			18.669				19.59	A
See		ATOM	6250		HIS			17.956		-35.169		19.23	A
99 8	_	ATOM	6251	NE2	HIS	Α	797	17.465	65.613	-33.981	1.00	18.80	A
	25	ATOM	6252	С	HIS	Α	797	19.762	61.006	-31.381	1.00	17.12	A
I LA		MOTA	6253	0	HIS	Α	797	19.058	60.087	-31.799	1.00	18.02	А
100		MOTA	6254	N	ILE			20.814		-30.595		15.17	A
₹}		ATOM	6255	CA	ILE			21.190		-30.158		14.07	A
1000				CB						-29.330		13.19	
Contraction (Contraction)	30	ATOM	6256		ILE			22.492					A
	30	MOTA	6257		ILE			22.845		-28.802		12.33	A
Part of the second		MOTA	6258		ILE			23.623		-30.207		13.23	A
g see.		MOTA	6259	CD1	ILE	Α	798	24.934	60.303	-29.468	1.00	13.56	A
		MOTA	6260	С	ILE	Α	798	20.047	58.887	-29.331	1.00	13.73	A
i ina		MOTA	6261	0	ILE	A	798	19.554	59.518	-28.399	1.00	13.69	A
g sale	35	ATOM	6262	N	ASP	Α	799	19.617	57.681	-29.697	1.00	14.35	A
		ATOM	6263	CA	ASP			18.519		-29.013		14.00	A
		ATOM	6264	СВ	ASP			17.849		-29.970		15.90	A
		MOTA	6265	CG	ASP			16.539		-29.436		17.22	A
	4.0	ATOM	6266		ASP			16.007		-30.025		18.99	A
	40	MOTA	6267	OD2	ASP	A	799	16.036		-28.434		19.56	A
		MOTA	6268	С	ASP	Α	799	19.031	56.270	-27.780	1.00	13.90	А
		ATOM	6269	0	ASP	Α	799	18.965	55.045	-27.701	1.00	13.45	A
		ATOM	6270	N	SER			19.529		-26.812		13.23	A
		MOTA	6271	CA	SER			20.077		-25.587		12.57	A
	45		6272										A
	40	ATOM		CB	SER			21.039		-24.943		12.35	
		ATOM	6273	OG	SER			20.372		-24.618		11.94	A
		MOTA	6274	С	SER			19.021		-24.570		11.90	А
		ATOM	6275	0	SER	A	800	19.303	55.237	-23.679	1.00	11.76	A
		MOTA	6276	N	GLY	Α	801	17.812	56.576	-24.694	1.00	11.77	A
	50	MOTA	6277	CA	GLY	Α	801	16.751	56.225	-23.766	1.00	11.64	A
		ATOM	6278	С	GLY			16.994		-22.367		11.57	A
		ATOM	6279	0	GLY			17.063		-22.157		12.52	A
		ATOM	6280	N	ASP			17.118		-21.406		11.43	A
		ATOM	6281	CA	ASP			17.358		-20.021		11.22	А
	55	MOTA	6282	CB	ASP	A	802	16.274	55.636	-19.107	1.00	13.10	А

													70
		MOTA	6283	CG	ASP	А	802	16.173		-19.201		13.45	A
		ATOM	6284	OD1	ASP	Α	802	15.264		-18.553		15.07	A
		MOTA	6285	OD2	ASP	Α	802	16.990	53.486	-19.908		15.03	A
		MOTA	6286	С	ASP			18.736	55.771	-19.556		10.91	A
	5	ATOM	6287	0	ASP			19.041	55.807	-18.362	1.00	10.76	A
	J	ATOM	6288	N	ILE			19.571	55.370	-20.507	1.00	9.82	А
		MOTA	6289	CA	ILE			20.910	54.888	-20.197	1.00	9.93	A
			6290	CB	ILE			21.208		-20.958	1.00	9.82	A
		MOTA	6291		ILE			22.634		-20.670	1.00	9.69	A
	10	MOTA			ILE			20.191		-20.564	1.00	9.60	A
	10	MOTA	6292					20.226		-19.093		10.76	A
		MOTA	6293		ILE			22.020		-20.537	1.00	9.64	A
		ATOM	6294	C	ILE					-21.556	1.00	9.87	A
		MOTA	6295	0	ILE			21.969		-19.662	1.00	9.22	A
		MOTA	6296	N	PHE			23.020				8.73	A
	15	MOTA	6297	CA	PHE			24.188		-19.889	1.00	8.57	A
		MOTA	6298	CB	PHE			23.913		-19.583	1.00		
		MOTA	6299	CG	PHE			23.561		-18.151	1.00	8.50	A
		MOTA	6300		PHE			24.496		-17.311	1.00	8.09	A
;; ;;;		MOTA	6301	CD2	PHE	Α	804	22.272		-17.667	1.00	8.51	A
	20	MOTA	6302	CE1	PHE	Α	804	24.152		-16.016	1.00	8.03	A
		MOTA	6303	CE2	PHE	Α	804	21.917		-16.370	1.00	9.55	A
1 (cm)		MOTA	6304	CZ	PHE	Α	804	22.862		-15.546	1.00	9.47	A
		MOTA	6305	С	PHE	Α	804	25.324		-19.059	1.00	8.03	A
Section 1		ATOM	6306	0			804	25.100	55.363	-18.192	1.00	8.86	A
IJ	25	ATOM	6307	N			805	26.543	56.636	-19.346	1.00		A
N	20	ATOM	6308	CA			805	27.696	56.117	-18.635	1.00	7.16	A
M		MOTA	6309	СВ			805	28.558	55.279	-19.582	1.00	7.36	A
		ATOM	6310	CG			805	27.858	54.059	-20.133	1.00	8.65	A
Ri Sinang		ATOM	6311	CD1				26.873		-21.117	1.00	9.16	A
	30		6312	CE1			805	26.232		-21.626	1.00	8.73	A
	50	MOTA	6313		TYR			28.184		-19.669	1.00		A
The state of the s		ATOM	6314	CE2			805	27.547		-20.171	1.00	9.56	A
		ATOM		CEZ			805	26.576		-21.149	1.00		A
1		ATOM	6315				805	25.956		-21.664		10.71	A
	25	MOTA	6316	OH				28.536		-18.052	1.00		А
*****	35	MOTA	6317	C			805	28.700		-18.675	1.00		А
		ATOM	6318	0			805			-16.844	1.00		A
		ATOM	6319	N			806	29.046		-16.187	1.00		A
		ATOM	6320	CA			806	29.908		-15.060	1.00		A
		MOTA	6321	СВ			806	29.179		-14.016			A
	4 0	ATOM	6322		THR			28.822					A
		ATOM	6323	CG2	THR			27.922		-15.586	1.00		A
		ATOM	6324	С			806	31.062		-15.599	1.00		
		ATOM	6325	0			806	30.936		-15.368	1.00		A
		ATOM	6326	N			807	32.195		-15.366	1.00		A
	45	ATOM	6327	CA	ASF	A	807	33.319		-14.820	1.00		A
		ATOM	6328	СВ	ASF	A	807	34.632		-15.444	1.00		A
		MOTA	6329	CG	ASP	A	807	35.082		-14.912	1.00		A
		MOTA	6330	OD1	ASE	A	807	36.215		-14.389	1.00		A
		ATOM	6331	OD2	ASE	A	807	34.310	59.883	-15.013	1.00		A
	50	ATOM	6332	С			807	33.418		-13.313	1.00		A
		ATOM	6333	0			807	32.801	58.069	-12.686	1.00		А
		ATOM	6334	N			808	34.193	56.299	-12.742	1.00	7.26	A
		ATOM	6335	CA			808	34.435		-11.315	1.00	6.64	A
		ATOM	6336	CB			808	33.996		-10.697	1.00	7.52	A
	55			CG			808	32.480		-10.576	1.00		А
	55	ATOM	6337	CG	ייביל	, 1	. 500	22.100	5 5 2				

							170					
	ATOM	6338	CD1	LEU A	Ā	808	32.171		-10.300	1.00	9.05	A
	MOTA	6339	CD2	LEU A	A	808	31.927		-9.466	1.00	8.74	A
	ATOM	6340	С	LEU Z			35.931		-11.120	1.00	7.13	A
	MOTA	6341	0	LEU Z			36.740	55.662	-11.537	1.00	6.82	A
5	MOTA	6342	N	ASN 2			36.284	57.635	-10.536	1.00	6.18	A
O	MOTA	6343	CA	ASN			37.671	57.976	-10.229	1.00	6.39	A
	ATOM	6344	СВ	ASN .			38.141	57.084	-9.077	1.00	5.55	A
	ATOM	6345	CG	ASN .			37.154	57.061	-7.935	1.00	6.45	A
	MOTA	6346		ASN .			37.176	57.931	-7.051	1.00	8.57	A
10	ATOM	6347		ASN .			36.259	56.083	-7.957	1.00	4.53	A
10	ATOM	6348	C	ASN			38.643		-11.401	1.00	6.62	A
	ATOM	6349	0	ASN			39.830		-11.202	1.00	6.76	A
	ATOM	6350	N	GLY			38.144		-12.618	1.00	6.22	A
	ATOM	6351	CA	GLY			38.998		-13.795	1.00	7.72	A
15	MOTA	6352	C	GLY			39.568		-14.038	1.00	8.56	A
13		6353	0	GLY			40.536		-14.788	1.00	9.54	A
	ATOM	6354	N	LEU			38.950		-13.420	1.00	7.78	A
	MOTA	6355	CA	LEU			39.410		-13.532	1.00	8.21	A
	MOTA		CB	LEU			39.541		-12.127	1.00	8.72	A
20	ATOM	6356	CG	LEU			39.955		-12.012		10.15	A
20	MOTA	6357 6358	CD1				41.366		-12.539	1.00	11.19	A
	MOTA	6359		LEU			39.874		-10.559	1.00	10.32	A
	MOTA	6360	C	LEU			38.520		-14.370	1.00	9.02	A
	MOTA	6361	0	LEU			39.015		-15.108		10.92	A
25	MOTA	6362	N	GLN			37.212		-14.262	1.00	8.03	A
23	MOTA	6363	CA	GLN			36.264		-14.962	1.00	8.29	A
	MOTA	6364	CB	GLN			35.907		-14.056	1.00	9.25	А
	MOTA	6365	CG	GLN			35.335		-12.710	1.00	10.20	A
	MOTA	6366	CD			812	35.023		-11.756		12.79	A
30	MOTA	6367	OE1				34.052		-11.938	1.00	13.30	A
30	ATOM ATOM	6368		GLN			35.851		-10.727	1.00	13.55	A
	ATOM	6369	C			812	34.992		-15.298	1.00	8.35	A
	ATOM	6370	0			812	34.680		-14.671	1.00	7.86	A
	ATOM	6371	N			813	34.260		-16.291	1.00	7.68	А
35	ATOM	6372	CA			813	32.993		-16.656	1.00	7.67	A
55	ATOM	6373	CB			813	32.926		-18.155	1.00	7.05	A
		6374	CG			813	33.686		-18.546	1.00	7.39	A
	ATOM ATOM	6375		PHE			35.072		-18.646	1.00	7.39	A
	ATOM	6376		PHE			33.019		-18.741	1.00	8.36	A
40		6377		PHE			35.788		-18.932	1.00	9.02	A
40	ATOM	6378		PHE			33.725		-19.027	1.00	8.21	A
	MOTA	6379	CE2			813	35.115		-19.121	1.00	8.05	A
	ATOM	6380	C			813	31.876		-16.240	1.00	7.95	A
	ATOM ATOM	6381	0			813	31.884		-16.561	1.00	8.99	A
45	ATOM	6382	N			814	30.921		-15.509	1.00	7.80	A
43	ATOM	6383	CA			814	29.799		-14.990	1.00	8.05	A
	ATOM	6384	CB			814	29.720		-13.450	1.00	7.86	A
		6385		ILE			29.397		3 -13.102	1.00	8.17	A
	ATOM	6386		LILE			28.668		-12.851	1.00	8.21	A
50	ATOM	6387		ILE			28.763		-11.329	1.00		A
50	ATOM	6388	С			814	28.490		-15.646	1.00		А
	ATOM	6389				814	28.262		-15.900	1.00	_	A
	MOTA MOTA	6390				A 815	27.641		1 -15.933	1.00	7.64	A
	ATOM	6390				A 815	26.355		7 -16.557		8.17	A
55	ATOM	6391				A 815	25.764		7 -17.078	1.00		А
55	AIOM	0332	CD	טונג	2-	. 010						

		ATOM	6393	CG	LYS A	815	24.457	50.909 -17.845	1.00 11.44	A
		ATOM	6394	CD	LYS A		24.060	49.539 -18.389	1.00 13.34	A
		MOTA	6395	CE	LYS A		22.850	49.609 -19.297	1.00 16.25	A
		ATOM	6396	NZ	LYS A		22.538	48.269 -19.879	1.00 18.48	A
	5	ATOM	6397	С	LYS A		25.392	52.744 -15.572	1.00 7.90	A
	Ü	MOTA	6398	0	LYS A		25.240	52.288 -14.437	1.00 7.72	A
		ATOM	6399	N	ARG A		24.752	53.817 -16.016	1.00 7.58	Α
		ATOM	6400	CA	ARG A		23.779	54.533 -15.205	1.00 7.54	A
		ATOM	6401	СВ	ARG A		24.133	56.023 -15.103	1.00 8.01	A
	10	ATOM	6402	CG	ARG A		25.524	56.341 -14.580	1.00 8.73	A
	10	ATOM	6403	CD	ARG A		25.718	55.751 -13.203	1.00 9.16	A
		ATOM	6404	NE	ARG A		26.879	56.317 -12.522	1.00 8.38	A
		ATOM	6405	CZ	ARG F		27.259	55.952 -11.304	1.00 8.64	А
		ATOM	6406		ARG F		26.567	55.027 -10.654	1.00 7.99	A
	15	ATOM	6407		ARG F		28.311	56.519 -10.728	1.00 8.64	A
	10	ATOM	6408	С	ARG A		22.419	54.436 -15.874	1.00 8.06	A
		MOTA	6409	Ö	ARG A		22.327	54.376 -17.099	1.00 7.94	A
		ATOM	6410	N	ARG A		21.366	54.419 -15.066	1.00 8.58	A
\$10 75		ATOM	6411	CA	ARG A		20.016	54.403 -15.606	1.00 9.41	A
	20	ATOM	6412	СВ	ARG A		19.302	53.073 -15.330	1.00 9.62	A
1	20	MOTA	6413	CG	ARG A		17.830	53.098 -15.749	1.00 11.25	A
		MOTA	6414	CD	ARG A		17.123	51.758 -15.571	1.00 13.10	A
M		MOTA	6415	NE	ARG A		17.649	50.728 -16.460	1.00 13.49	A
		ATOM	6416	CZ	ARG A		18.408	49.713 -16.062	1.00 14.00	A
Ų,	25	ATOM	6417		ARG A		18.736	49.588 -14.781	1.00 13.99	A
	20	ATOM	6418		ARG A		18.838	48.820 -16.942	1.00 15.05	A
i,Ti		ATOM	6419	C	ARG A			55.539 -14.953	1.00 9.86	A
35		ATOM	6420	Ō	ARG A			55.586 -13.731	1.00 10.49	A
Sec.		ATOM	6421	N	ARG A			56.475 -15.772	1.00 9.41	A
A STATE	30	MOTA	6422	CA	ARG A			57.598 -15.276	1.00 11.11	A
1 dags		ATOM	6423	СВ	ARG A			58.548 -16.422	1.00 12.00	A
		ATOM	6424	CG	ARG A			59.843 -15.967	1.00 12.11	A
200		ATOM	6425	CD	ARG A			60.572 -17.123	1.00 13.88	А
		ATOM	6426	NE		A 818		59.954 -17.470	1.00 16.57	A
jai.	35	ATOM	6427	CZ		A 818		59.370 -18.634	1.00 15.90	A
	00	ATOM	6428		ARG I			59.317 -19.591	1.00 15.20	A
		ATOM	6429		ARG I			58.832 -18.837	1.00 17.09	A
		MOTA	6430	С		A 818		57.005 -14.703	1.00 11.22	A
		ATOM	6431	0		A 818		56.209 -15.366	1.00 12.29	Α
	40	ATOM	6432	N	LEU J	A 819	16.382	57.384 -13.477		A
		ATOM	6433	CA		A 819		56.873 -12.829	1.00 12.56	A
		ATOM	6434	СВ	LEU .	A 819	15.545	56.177 -11.517	1.00 13.02	А
		ATOM	6435	CG	LEU .	A 819	16.481	54.969 -11.645	1.00 13.25	A
		ATOM	6436	CD1	LEU .	A 819	16.901	54.493 -10.260	1.00 13.84	A
	45	ATOM	6437	CD2	LEU .	A 819	15.787	53.856 -12.420	1.00 14.25	A
		ATOM	6438	С		A 819		58.013 -12.554	1.00 13.08	A
		ATOM	6439	0	LEU .	A 819	14.459	58.857 -11.696	1.00 12.85	A
		ATOM	6440	N	ASP.	A 820	13.101	58.037 -13.281	1.00 14.34	А
		ATOM	6441	CA	ASP .	A 820	12.130	59.097 -13.088	1.00 14.92	A
	50	ATOM	6442	СВ		A 820		59.133 -14.261	1.00 16.01	A
	-	ATOM	6443	CG		A 820		59.387 -15.586	1.00 17.37	A
		ATOM	6444		ASP			60.123 -15.596	1.00 17.51	A
		ATOM	6445		ASP			58.862 -16.619	1.00 19.76	A
		ATOM	6446	С		A 820		58.964 -11.757		A
	55	ATOM	6447	0	ASP	A 820	10.706	59.888 -11.329	1.00 15.17	А

					* ***	_	001	11 550	E7 004	11 000	1 00	14.77	А
		ATOM	6448	N	LYS			11.559		-11.089			
		MOTA	6449	CA	LYS			10.913	57.630	-9.795		14.66	A
		MOTA	6450	CB	LYS			10.826	56.138	-9.445		14.60	A
		MOTA	6451	CG	LYS	Α	821	12.163	55.452	-9.211		14.35	A
	5	MOTA	6452	CD	LYS	Α	821	11.997	53.942	-9.154		14.29	A
		MOTA	6453	CE	LYS	Α	821	13.335	53.242	-8.952	1.00	14.37	A
		MOTA	6454	NZ	LYS			13.215	51.764	-9.110	1.00	13.74	A
		ATOM	6455	С	LYS			11.699	58.384	-8.723	1.00	14.86	A
		ATOM	6456	0	LYS			11.250	58.520	-7.586	1.00	15.44	A
	10	ATOM	6457	N	LEU			12.873	58.882	-9.102	1.00	14.33	A
	10	ATOM	6458	CA	LEU			13.718	59.644	-8.188		13.96	А
				CB	LEU			15.136	59.067	-8.157		13.85	A
		ATOM	6459		LEU			15.292	57.607	-7.720		14.60	A
		ATOM	6460	CG				16.770	57.238	-7.716		14.62	A
	4.5	ATOM	6461		LEU				57.401	-6.338		14.91	A
	15	MOTA	6462		LEU			14.682				14.06	A
		MOTA	6463	С	LEU			13.771	61.091	-8.666			
		MOTA	6464	0	LEU			13.600	61.362	-9.854		14.20	A
		MOTA	6465	N	PRO			14.007	62.040	-7.747		13.37	A
		ATOM	6466	CD	PRO			14.170	61.894	-6.290		13.31	A
30	20	MOTA	6467	CA	PRO	Α	823	14.073	63.450	-8.146		13.08	A
		MOTA	6468	CB	PRO	Α	823	14.109	64.191	-6.810		13.38	A
7 (\$42F) 4 657E		MOTA	6469	CG	PRO	Α	823	14.794	63.219	-5.902		14.39	A
197		ATOM	6470	С	PRO	Α	823	15.287	63.743	-9.026		12.91	A
i ten. Freeze		MOTA	6471	0	PRO			16.253	62.982	-9.050	1.00	12.74	A
	25	ATOM	6472	N	LEU			15.222	64.855	-9.749	1.00	12.02	A
PART I		ATOM	6473	CA	LEU			16.284		-10.658	1.00	11.44	A
		ATOM	6474	СВ	LEU			16.019		-11.119	1.00	11.62	А
		ATOM	6475	CG	LEU			16.802		-12.297	1.00	11.24	A
81. 36 70 2.		ATOM	6476		LEU			16.058		-12.841		11.66	A
	30	ATOM	6477		LEU			18.217		-11.863		11.13	A
ij.	50		6478	C	LEU			17.692		-10.066		11.55	A
		ATOM			LEU			18.583		-10.684		11.18	А
		MOTA	6479	0				17.884	65.694			11.18	A
		ATOM	6480	N	GLN				65.675	-8.226		10.79	A
l est	0.5	MOTA	6481	CA	GLN			19.197	66.502	-6.931		11.13	A
Scon	35	MOTA	6482	CB			825	19.175				10.84	A
		ATOM	6483	CG			825	18.246	65.972	-5.846		11.30	A
		MOTA	6484	CD			825	16.829	66.517	-5.952			
		ATOM	6485		GLN			16.400	66.980	-7.011		12.37	A
	_	ATOM	6486		GLN			16.092	66.450	-4.850		11.42	A
	40	ATOM	6487	С	GLN			19.741					A
		MOTA	6488	0	GLN	Α	825	20.953	64.104	-7.778		11.09	A
		MOTA	6489	N	ALA	Α	826	18.855	63.291	-7.866		10.37	A
		ATOM	6490	CA	ALA	Α	826	19.278	61.921	-7.597		10.73	A
		MOTA	6491	CB	ALA	Α	826	18.088	61.085	-7.131		10.59	A
	45	ATOM	6492	С	ALA	А	826	19.884	61.304	-8.851		10.42	А
		ATOM	6493	0			826	20.657	60.348	-8.776	1.00	11.05	A
		ATOM	6494	N			827	19.532	61.857	-10.008	1.00	9.96	A
		ATOM	6495	CA			827	20.039		-11.272	1.00	9.71	А
		ATOM	6496	CB			827	18.964		-12.349		10.42	A
	50	ATOM	6497	CG			827	17.836		-12.157		11.62	А
	50	ATOM	6498		ASN			18.050		-12.241		11.81	А
					ASN			16.639		-11.879		12.88	A
		ATOM	6499					21.343		-11.694	1.00	9.32	A
		ATOM	6500	С			827			-12.788	1.00		A
	r- r-	MOTA	6501	0			827	21.849					A
	55	MOTA	6502	N	TYR	А	828	21.883	0∠.834	-10.807	1.00	9.10	А

		ATOM	6503	CA	TYR A	828	23	.160	63.484	-11.056	1.00	8.54	A
		ATOM	6504	СВ	TYR A		23	.222	64.852	-10.378	1.00	8.84	A
		ATOM	6505	CG	TYR A			.250	65.996	-11.363	1.00	9.15	A
		MOTA	6506		TYR A			.189		-12.243	1.00	8.96	А
	5	ATOM	6507		TYR A			.235	67.235	-13.187	1.00	9.56	A
	J	ATOM	6508		TYR A			.357		-11.447	1.00	9.13	A
		ATOM	6509		TYR A			.412		-12.384	1.00	10.20	А
		ATOM	6510	CZ	TYR A			3.351		-13.252	1.00	9.60	A
		ATOM	6511	OH	TYR A			3.418		-14.198	1.00	10.53	A
	10	ATOM	6512	C	TYR A			.224		-10.459	1.00	8.13	A
	10	ATOM	6513	0	TYR A			.041		-9.370	1.00	9.32	A
		ATOM	6514	N	TYR A			3.324		-11.182	1.00	7.92	А
		ATOM	6515	CA	TYR A			5.414		-10.726	1.00	7.93	A
			6516	CB	TYR A			5.458		-11.533	1.00	7.94	A
	15	MOTA	6517	CG	TYR A			.293		-11.271	1.00	8.32	A
	15	MOTA	6518	CD1				1.122		-12.023	1.00	8.62	A
		ATOM			TYR A			3.028		-11.752	1.00	8.83	A
		MOTA	6519		TYR A			5.346		-10.241	1.00	7.20	A
		ATOM	6520					1.258		-9.958	1.00	8.66	A
	20	MOTA	6521	CE2	TYR A			3.103		-10.717	1.00	8.09	A
A THE	20	ATOM	6522	CZ	TYR A			2.023		-10.434	1.00	9.63	A
		MOTA	6523	ОН	TYR A			7.745		-10.887	1.00	7.92	A
		ATOM	6524	С	TYR A			7.848		-11.584	1.00	8.32	A
		ATOM	6525	0	TYR A			3.787		-10.228	1.00	7.99	A
	OF.	ATOM	6526	N	PRO A			3.853	60.610		1.00	9.08	A
1 12 33 4	25	MOTA	6527	CD	PRO A			0.085		-10.376	1.00	8.33	A
44.00 10.00		MOTA	6528	CA	PRO A).971	61.672			10.29	A
100		ATOM	6529	CB	PRO A				60.995			10.63	A
21		ATOM	6530	CG	PRO A			0.008		-11.797	1.00	7.87	A
distant.	20	MOTA	6531	C	PRO A).588		-12.345	1.00	7.95	A
	30	MOTA	6532	0	PRO A			367		-12.345 -12.406	1.00	7.13	A
10		MOTA	6533	N	ILE A			1.225		-13.728	1.00	7.22	A
j.a.		ATOM	6534	CA	ILE A			1.816		-13.720 -14.791	1.00	7.38	A
		ATOM	6535	СВ	ILE A			1.253		-14.791 -16.179	1.00	7.54	A
	0=	MOTA	6536		ILE A			1.722			1.00	7.69	A
	35	ATOM	6537		ILE A			9.715		-14.744		7.75	A
		ATOM	6538		ILE A			9.019		-15.056	1.00	7.77	A
		MOTA	6539	С	ILE A			3.285		-13.468	1.00	7.24	A
		ATOM	6540	0	ILE A			3.774		-13.821	1.00	7.24	A
		MOTA	6541	N	PRO A			4.007		-12.810	1.00		
	40	ATOM			PRO A			3.562		-12.159			A
		MOTA	6543	CA	PRO A			5.417		-12.525	1.00	8.14	A
		MOTA	6544	СВ	PRO A			5.821		-11.600	1.00	7.96	A
		ATOM	6545	CG	PRO A			4.862		-11.944	1.00	8.53	A
		MOTA	6546	С	PRO A			6.322		-13.739	1.00	8.42	A
	45	MOTA	6547	0	PRO A			7.307		-13.665		10.36	A
		MOTA	6548	N	SER A			5.996		-14.853	1.00	7.99	A
		MOTA	6549	CA	SER A			6.822		-16.049	1.00	7.57	A
		ATOM	6550	CB	SER A			8.028		-16.004	1.00	9.46	A
		ATOM	6551	OG	SER A			7.664		-16.297		11.27	A
	50	ATOM	6552	С	SER A	833		6.082		-17.370	1.00	7.78	A
		ATOM	6553	0	SER A	833		6.607		-18.426	1.00	6.86	A
		MOTA	6554	N	GLY A	834		4.868		-17.328	1.00	6.96	A
		MOTA	6555	CA	GLY A	834		4.156		-18.582	1.00	7.42	A
		ATOM	6556	С	GLY A	834		2.773		-18.479		6.62	A
	55	MOTA	6557	0	GLY A	834	3	2.394	60.209	-17.462	1.00	8.20	A

	ATOM	6558	N	MSE .	A	835	32.012	60.942	-19.556	1.00	6.65	A
	ATOM	6559	CA	MSE .			30.658	60.420	-19.609	1.00	7.41	A
	ATOM	6560	СВ	MSE			29.691	61.418		1.00	9.50	A
	MOTA	6561	CG	MSE.	Α	835	29.580	62.740	-19.725		10.76	A
5	ATOM	6562	SE	MSE			28.541	64.091	-18.811	1.00	18.06	A
	ATOM	6563	CE	MSE			26.954	63.069	-18.482	1.00	14.51	A
	ATOM	6564	С	MSE	Α	835	30.281	60.220	-21.071	1.00	7.29	А
	ATOM	6565	0	MSE			30.833	60.874	-21.960	1.00	7.55	A
	MOTA	6566	N	PHE			29.358	59.302	-21.329	1.00	7.61	A
10	ATOM	6567	CA	PHE			28.914	59.098		1.00	8.24	A
10	MOTA	6568	CB	PHE			29.939	58.263		1.00	7.78	A
		6569	CG	PHE			30.090	56.824		1.00	8.69	A
	MOTA	6570		PHE			29.230		-23.536	1.00	8.19	A
	ATOM			PHE			31.148		-22.232	1.00	9.29	A
1 =	ATOM	6571		PHE			29.428		-23.205		10.52	А
15	MOTA	6572		PHE			31.353		-21.896	1.00	9.66	А
	ATOM	6573					30.490		-22.388	1.00	9.92	A
	MOTA	6574	CZ	PHE			27.529		-22.795	1.00	9.14	A
	ATOM	6575	С	PHE					-21.832	1.00	8.90	A
20	MOTA	6576	0	PHE			27.011		-23.956	1.00	9.21	A
20	MOTA	6577	N	ILE			26.912		-24.257	1.00	9.71	A
	MOTA	6578	CA	ILE			25.604			1.00	9.37	A
	MOTA	6579	СВ	ILE			24.474		-24.341	1.00		A
	MOTA	6580	CG2				24.046		-22.947	1.00	9.45	A
	MOTA	6581	CG1				24.907		-25.208			A
25	MOTA	6582	CD1				23.765		-25.552	1.00		Ā
	MOTA	6583	С	ILE			25.766		-25.616	1.00		
	MOTA	6584	0	ILE			26.618		-26.413	1.00		A
	MOTA	6585	N	GLU			24.968		-25.881	1.00		A
	ATOM	6586	CA	GLU			25.068		-27.155		10.00	A
30	MOTA	6587	CB	GLU	Α	838	26.232		-27.114		10.07	A
	MOTA	6588	CG	GLU	A	838	25.991		-26.121		11.82	A
	ATOM	6589	CD	GLU	Α	838	27.115		-26.066		12.98	A
	ATOM	6590	OE1	GLU	Α	838	26.983		-25.296		15.20	A
	MOTA	6591	OE2	GLU	A	838	28.121		-26.784		15.16	A
35	ATOM	6592	С	GLU	Α	838	23.805		-27.484		10.72	A
	ATOM	6593	0	GLU	Α	838	22.957		-26.626		10.48	A
	MOTA	6594	N	ASP	Α	839	23.675		-28.754		11.70	A
	MOTA	6595	CA	ASP	A	839	22.577		-29.192		12.02	A
	ATOM	6596	СВ	ASP	Α	839	21.508		-30.004		12.02	A
40	MOTA	6597	CG	ASP	Α	839	22.056		-31.231		11.88	А
	ATOM	6598		ASP			23.063	54.777	-31.810		13.51	А
	ATOM	6599		ASP			21.440	56.247	-31.629		15.05	A
	ATOM	6600	С			839	23.267	52.704	-30.014	1.00	12.39	A
	ATOM	6601	0			839	24.476	52.517	-29.891		11.96	A
45	ATOM	6602	N			840	22.525	51.990	-30.846	1.00	12.91	A
10	ATOM	6603	CA			840	23.136	50.931	-31.634	1.00	13.57	A
	ATOM	6604	СВ			840	22.058	50.198	-32.427	1.00	13.53	А
	ATOM	6605	C			840	24.245	51.387	-32.579	1.00	13.48	A
	ATOM	6606	0			840	25.205		-32.815	1.00	14.95	A
50	ATOM	6607	N			841	24.138		-33.100	1.00	13.29	A
50	ATOM	6608	CA			841	25.118		-34.073		12.90	A
	ATOM	6609	CB			841	24.404		-35.377		14.72	A
		6610	CG			841	23.583		-35.927		15.43	А
	MOTA			ASN ASN			24.092		-36.136		18.11	A
55	MOTA	6611		: ASN			22.301		-36.167		17.87	А
55	ATOM	6612	אטא	מכח.	М	OAI	22.001	52.500				

		ATOM ATOM ATOM	6613 6614 6615	C O N	ASN A	3 <i>E</i>	341 342	26.011 27.100 25.557	54.389 55.111	-33.718 -34.274 -32.810 -32.485	1.00 1.00	12.20 12.69 11.81 11.57	A A A
	5	ATOM ATOM ATOM	6616 6617 6618	CA CB OG1	THR A	3 F	342	26.317 25.569 25.148	57.557	-33.001 -34.354	1.00	11.76 13.92	A A
		ATOM ATOM ATOM	6619 6620	CG2 C		<i>F</i>	342	26.470 26.594	58.786 56.505	-32.954 -31.005	1.00	11.70 10.99	A A
	10	ATOM	6621	0	THR A			25.796 27.738		-30.154 -30.712		11.90 10.93	A A
	10	ATOM ATOM	6622 6623	N CA	ARG A			28.110		-29.338	1.00	9.78	A
		ATOM	6624	CB	ARG A			29.132		-28.801	1.00	10.05	A
		ATOM	6625	CG	ARG A			29.601		-27.380	1.00	9.72	A
		ATOM	6626	CD	ARG A			30.786		-26.941	1.00	9.07	A
	15	ATOM	6627	NE	ARG A			30.421		-26.612	1.00	9.80	A
	10	ATOM	6628	CZ	ARG I			31.241		-26.011	1.00	9.80	A
		ATOM	6629		ARG A			32.469		-25.675	1.00	9.81	A
		ATOM	6630		ARG A			30.833	52.415	-25.731	1.00	10.05	A
3 :5:5		ATOM	6631	С	ARG			28.713	58.805	-29.262	1.00	9.19	A
	20	MOTA	6632	0	ARG .			29.414	59.245	-30.179	1.00	8.90	A
*(izzi	20	ATOM	6633	N	LEU .			28.409	59.501	-28.175	1.00	8.29	A
127		ATOM	6634	CA	LEU .			28.956	60.826	-27.930	1.00	7.96	A
100		MOTA	6635	СВ	LEU			27.871		-27.944	1.00	8.76	A
194		ATOM	6636	CG	LEU			28.466		-27.799	1.00	9.51	A
	25	ATOM	6637		LEU			29.388	63.614	-28.981		10.57	A
and the second		ATOM	6638	CD2	LEU	Α	844	27.353		-27.716		11.46	A
107		ATOM	6639	С	LEU			29.597		-26.555	1.00	7.93	A
ε,		ATOM	6640	0	LEU	A	844	28.924		-25.561	1.00	7.88	A
		MOTA	6641	N	THR	Α	845	30.900		-26.516	1.00	8.37	A
124	30	MOTA	6642	CA	THR	A	845	31.647		-25.268	1.00	8.30	A
		MOTA	6643	СВ	THR	A	845	32.823		-25.346	1.00	7.69	A
i tor		MOTA	6644	OG1				32.344		-25.762	1.00	7.36	A
		MOTA	6645	CG2	THR			33.494		-23.988	1.00	8.08	A
1,000		ATOM	6646	С	THR			32.220		-24.949	1.00	8.06 8.73	A A
į rija.	35	MOTA	6647	Ο	THR			32.815		-25.807	1.00	8.51	A A
		ATOM	6648	N	LEU			32.025		-23.713	1.00 1.00	7.79	A
		MOTA	6649	CA	LEU			32.552		-23.264 -22.667	1.00	8.89	A
		MOTA	6650	СВ	LEU			31.444		-22.007 -22.158	1.00	9.02	A
		ATOM	6651	CG	LEU			31.893		-23.333			A
	40	ATOM	6652		LEU			32.337		-21.402		11.17	A
		MOTA	6653		LEU			30.751 33.583		-22.193	1.00		A
		MOTA	6654	С	LEU					-21.155	1.00		A
		ATOM	6655	0	LEU			33.241 34.843		-22.467	1.00		A
	4.5	MOTA	6656	N	LEU			35.919		-21.509	1.00		A
	45	ATOM	6657	CA	LEU			37.194		-22.214	1.00		A
		ATOM	6658	CB	LEU			37.134		-22.965	1.00		A
		ATOM	6659	CG	LEU			36.564		-22.078	1.00		A
		ATOM	6660		LEU			36.393		-24.267	1.00		A
	EΩ	ATOM	6661		LEU LEU			36.181		-20.786	1.00		А
	50	MOTA	6662	C				36.068		-21.389	1.00		A
		MOTA	6663	O	LEU THR			36.531		-19.503	1.00		A
		ATOM	6664	N	THR			36.781		-18.716	1.00		A
		ATOM	6665	CA				35.796		-17.537	1.00		A
	==	ATOM	6666	CB	THR THR			36.158		-16.510		12.32	А
	55	MOTA	6667	UG.	rink	М	040	50.150	03.437	10.010			

		ATOM	6668	CG2	THR A 84	8	34.383		-17.986	1.00		A
		ATOM	6669	С	THR A 84		38.183	66.365	-18.127	1.00	8.03	A
		ATOM	6670	0	THR A 84		38.852	65.354	-17.886	1.00	8.97	А
		ATOM	6671	N	GLY A 84		38.620	67.598	-17.891	1.00	7.93	A
	5	ATOM	6672	CA	GLY A 84		39.923	67.822	-17.298	1.00	7.56	A
	Ū	MOTA	6673	C	GLY A 84		39.761	68.195	-15.836	1.00	7.38	A
		ATOM	6674	0	GLY A 84		40.708		-15.182	1.00	7.22	A
		ATOM	6675	N	GLN A 85		38.544	68.027	-15.328	1.00	6.67	A
		ATOM	6676	CA	GLN A 85		38.219	68.334	-13.940	1.00	7.10	A
	10	ATOM	6677	СВ	GLN A 85		38.021	69.847	-13.759	1.00	7.43	A
	10	ATOM	6678	CG	GLN A 85		36.891	70.455	-14.612	1.00	7.11	A
		ATOM	6679	CD	GLN A 85		37.239	70.552	-16.086	1.00	7.63	A
		ATOM	6680	OE1	GLN A 85	50	38.338	70.967	-16.454	1.00	8.22	А
		MOTA	6681	NE2			36.289		-16.945	1.00	7.13	A
	15	MOTA	6682	С	GLN A 85		36.939	67.601	-13.543	1.00	7.56	A
	10	ATOM	6683	Ó	GLN A 85		36.058	67.387	-14.375	1.00	7.52	A
		ATOM	6684	N	PRO A 85		36.827	67.194	-12.269	1.00	6.72	A
		ATOM	6685	CD	PRO A 85		37.849	67.209	-11.207	1.00	6.45	A
g (**** <u>**</u>		ATOM	6686	CA	PRO A 85		35.619		-11.829	1.00	6.46	A
	20	ATOM	6687	СВ	PRO A 85		36.060	65.825	-10.525	1.00	6.15	A
4 44		ATOM	6688	CG	PRO A 85	51	37.056	66.810		1.00	6.55	A
		ATOM	6689	С	PRO A 85		34.473	67.474	-11.623	1.00	7.19	A
100		ATOM	6690	0	PRO A 85		34.643		-10.982	1.00	7.03	A
100		ATOM	6691	N	LEU A 85	52	33.316	67.144	-12.190	1.00	7.54	A
Many Many	25	ATOM	6692	CA	LEU A 85	52	32.120		-12.083	1.00	8.39	A
A second		ATOM	6693	CB	LEU A 8	52	32.022		-13.290	1.00	8.88	A
		ATOM	6694	CG	LEU A 8	52	33.166		-13.485	1.00	8.62	A
51		ATOM	6695	CD1	LEU A 8	52	33.096		-14.891	1.00	9.44	A
1624		MOTA	6696	CD2	LEU A 8		33.089		-12.431	1.00	8.95	A
	30	ATOM	6697	С	LEU A 8	52	30.905		-12.048	1.00	8.99	A
TiboP B6i5		ATOM	6698	0	LEU A 8	52	31.022		-12.351		10.89	A
and the		MOTA	6699	N	GLY A 8		29.750		-11.673	1.00	7.59	A
i ala		ATOM	6700	CA	GLY A 8		28.545		-11.619	1.00	7.39	A
100		MOTA	6701	С	GLY A 8		27.827		-12.955	1.00	7.76	A
i marin	35	MOTA	6702	0	GLY A 8		27.871		-13.699	1.00	7.36	A A
		MOTA	6703	N	GLY A 8		27.157		-13.273	1.00	6.90	
		ATOM	6704	CA	GLY A 8		26.458		-14.543	1.00	8.09 7.89	A A
		ATOM	6705	С	GLY A 8		25.406		-14.623	1.00	8.50	A
		MOTA	6706	0	GLY A 8		25.239		-13.695			A
	40	MOTA	6707	N	SER A 8		24.703		-15.749	1.00		A
		MOTA	6708	CA	SER A 8		23.649		-15.931		10.99	A
		ATOM	6709	СВ	SER A 8		22.461		-15.032		10.64	A
		ATOM	6710	OG	SER A 8		21.407		-15.128	1.00		A
		ATOM	6711	С	SER A 8		23.186		-17.378 -18.237	1.00		A
	45	MOTA	6712	0	SER A 8		23.755		-17.629	1.00		A
		MOTA	6713	N	SER A 8		22.153		-18.933		10.04	A
		ATOM	6714	CA	SER A 8		21.502		-10.933 -19.670	1.00		A
		MOTA	6715	CB	SER A 8		21.872		-20.889		10.25	A
	Ε0	ATOM	6716	OG	SER A 8		21.144		-18.515		10.23	A
	50	ATOM	6717	С	SER A 8		20.041 19.507		-18.203		11.04	A
		ATOM	6718	0	SER A 8		19.307		-18.491		11.03	A
		ATOM	6719	N	LEU A 8		19.405		-18.051		11.33	A
		MOTA	6720	CA	LEU A 8				-17.475		12.21	A
		ATOM	6721	CB	LEU A 8		17.776		-16.224		12.41	A
	55	ATOM	6722	CG	LEU A 8	35/	18.613	00.014	-10.224	1.00	14.1	

		MOTA	6723	CD1	LEU A	857	18.420	66.959 -15.772	1.00 12.54	A
		ATOM	6724		LEU A		18.213	64.538 -15.117	1.00 13.38	A
		MOTA	6725	С	LEU A	857	16.970	63.499 -19.099	1.00 11.41	A
		MOTA	6726	0	LEU A	857	15.775	63.478 -18.800	1.00 12.16	A
	5	ATOM	6727	N	ALA A	858	17.422	63.235 -20.320	1.00 10.23	A
	-	ATOM	6728	CA	ALA A		16.532	62.871 -21.417	1.00 10.98	A
		ATOM	6729	СВ	ALA A		15.852	64.117 -21.999	1.00 10.30	A
		ATOM	6730	C	ALA A		17.333	62.156 -22.494	1.00 11.53	A
		MOTA	6731	0	ALA A		18.530	62.395 -22.655	1.00 11.99	A
	10	MOTA	6732	N	SER A		16.667	61.270 -23.226	1.00 11.71	A
	10	ATOM	6733	CA	SER A		17.314	60.518 -24.287	1.00 11.84	A
		ATOM	6734	CB	SER A		16.265	59.722 -25.077	1.00 12.18	A
		ATOM	6735	OG	SER A		16.863	58.942 -26.094	1.00 13.57	A
		ATOM	6736	C	SER F		18.063	61.465 -25.218	1.00 11.69	A
	15	MOTA	6737	0	SER F		17.535	62.508 -25.612	1.00 12.09	A
	10	MOTA	6738	N	GLY F		19.299	61.101 -25.542	1.00 11.53	A
		ATOM	6739	CA	GLY F		20.117	61.904 -26.435	1.00 11.19	A
		ATOM	6740	C	GLY F		20.846	63.073 -25.798	1.00 11.05	А
i.		MOTA	6741	0	GLY A		21.585	63.780 -26.483	1.00 10.94	A
	20	ATOM	6742	N	GLU A		20.665	63.276 -24.496	1.00 10.54	A
	20	ATOM	6743	CA	GLU F		21.318	64.390 -23.812	1.00 10.72	A
		ATOM	6744	CB	GLU A		20.309	65.181 -22.981	1.00 11.69	A
		ATOM	6745	CG	GLU A		19.143	65.764 -23.742	1.00 13.84	А
		ATOM	6746	CD	GLU A		18.277	66.649 -22.863	1.00 14.55	A
	25		6747	OE1	GLU A		18.521	66.706 -21.638	1.00 15.28	A
\$	23	ATOM	6748		GLU A		17.348	67.291 -23.395	1.00 16.06	A
		ATOM		C	GLU A		22.460	64.020 -22.874	1.00 10.67	А
		MOTA	6749	0	GLU A		22.543	62.907 -22.357	1.00 10.90	А
.		MOTA	6750	N	LEU A		23.333	64.998 -22.665	1.00 10.06	А
B A	30	MOTA	6751	CA	LEU A		24.455	64.894 -21.736	1.00 9.88	А
	30	ATOM	6752		LEU A		25.775	64.590 -22.451	1.00 9.80	A
		MOTA	6753	CB		A 862	26.088	63.195 -22.990	1.00 9.38	A
ž .		MOTA	6754 6755	CG CD1	LEU A		27.467	63.212 -23.644	1.00 8.93	A
ì		MOTA			LEU A		26.054	62.182 -21.852	1.00 10.32	A
s.	35	ATOM	6756 6757	CD2		A 862	24.553	66.286 -21.143	1.00 9.97	A
	33	ATOM				A 862	24.420	67.272 -21.865	1.00 10.40	A
		ATOM	6758	O		A 863	24.748	66.387 -19.838	1.00 9.17	A
		ATOM	6759	N		A 863	24.740	67.705 -19.243	1.00 8.61	A
		ATOM	6760	CA CB		A 863	23.562	68.289 -18.791	1.00 9.86	A
	40	ATOM	6761			A 863	22.976	67.732 -17.514	1.00 9.77	A
	40	ATOM	6762	CG		A 863		68.431 -17.154	1.00 10.41	A
		ATOM	6763	CD OF 1	GLU Z			68.956 -16.028	1.00 10.63	A
		ATOM	6764					68.458 -18.008	1.00 11.95	A
		ATOM	6765		GLU A	A 863		67.629 -18.090	1.00 9.12	A
	4 =	ATOM	6766	C				66.608 -17.408	1.00 7.97	A
	45	ATOM	6767	0		A 863		68.713 -17.887	1.00 9.26	A
		ATOM	6768	N		A 864		68.757 -16.835	1.00 9.59	A
		ATOM	6769	CA		A 864		68.324 -17.416	1.00 9.91	A
		MOTA	6770	CB		A 864		69.265 -18.541	1.00 10.24	A
	Ε0	MOTA	6771		ILE .			68.250 -16.308	1.00 10.24	A
	50	ATOM	6772		ILE .				1.00 10.77	A
		ATOM	6773		ILE .			67.497 -16.735 70.161 -16.234	1.00 11.71	A
		ATOM	6774	C		A 864				A
		MOTA	6775	0		A 864		71.164 -16.956		A
		ATOM	6776	N		A 865		70.226 -14.908		A
	55	ATOM	6777	CA	MSE	A 865	27.580	71.496 -14.193	1.00 9.06	А

the control of the co

The transmit of the first

	ATOM	6778	СВ	MSE A	865	27.176	71.269	-12.733	1.00 11.05	A
	ATOM	6779	CG	MSE A		26.538		-12.066	1.00 11.46	A
		6780	SE	MSE A		24.827		-12.863	1.00 18.59	A
	ATOM		CE	MSE A		23.751		-11.924	1.00 12.98	Α
5	MOTA	6781		MSE A		28.936		-14.257	1.00 9.30	А
3	ATOM	6782	C	MSE A		29.984		-14.105	1.00 9.37	А
	ATOM	6783				28.903		-14.467	1.00 9.20	А
	ATOM	6784	N	GLN A		30.121		-14.581	1.00 8.74	А
	MOTA	6785	CA	GLN A				-15.673	1.00 9.56	A
10	MOTA	6786	CB	GLN A		29.942		-17.013	1.00 9.63	A
10	MOTA	6787	CG	GLN A		29.577 30.598		-17.470	1.00 9.75	A
	MOTA	6788	CD	GLN A		31.725		-17.823	1.00 10.41	A
	MOTA	6789	OE1			30.215		-17.449	1.00 9.11	A
	MOTA	6790	NE2	GLN A		30.513		-13.271	1.00 9.34	A
4 F	ATOM	6791	C	GLN A				-12.910	1.00 9.31	A
15	ATOM	6792	0	GLN A		31.686 29.529		-12.580	1.00 9.02	A
	MOTA	6793	N	ASP A		29.770		-11.288	1.00 9.28	A
	MOTA	6794	CA	ASP A		30.539		-11.430	1.00 9.80	A
	MOTA	6795	CB	ASP A				-10.128	1.00 9.59	A
20	MOTA	6796	CG	ASP A		31.224	77.242	-9.089	1.00 9.81	A
20	MOTA	6797		ASP A		31.051 31.944		-10.144	1.00 11.47	A
	MOTA	6798		ASP A				-10.144	1.00 11.47	A
	MOTA	6799	С	ASP F		28.430		-11.281	1.00 10.05	A
	MOTA	6800	0	ASP F		27.381	76.705	-9.335	1.00 10.03	A
05	MOTA	6801	N	ARG A		28.470	76.703	-8.573	1.00 10.34	A
25	MOTA	6802	CA	ARG F		27.263	75.646	-7.969	1.00 10.34	A
	MOTA	6803	CB	ARG F		26.748		-7.138	1.00 10.13	A
	MOTA	6804	CG	ARG A		27.773	74.880 73.380	-7.130 -7.140	1.00 10.04	A
	ATOM	6805	CD	ARG A		27.464 26.101	73.300	-6.696	1.00 9.69	A
20	ATOM	6806	NE	ARG A		25.761	72.818	-5.444	1.00 9.26	A
30	MOTA	6807	CZ	ARG A		26.687	72.743	-4.496	1.00 8.58	A
	MOTA	6808	NH1	ARG A		24.486	72.628	-5.136	1.00 9.51	A
	ATOM	6809		ARG A		27.570	77.977	-7.486	1.00 10.82	A
	ATOM	6810	С	ARG A		28.606	77.901	-6.825	1.00 11.25	A
25	MOTA	6811	0	ARG A		26.671	78.944	-7.333	1.00 10.70	A
35	ATOM	6812	N	ARG A		26.816	80.003	-6.337	1.00 11.61	A
	ATOM	6813	CA	ARG A		26.990	81.357	-7.037	1.00 11.61	A
	ATOM	6814	CB	ARG A		27.262	82.532	-6.103	1.00 12.74	A
	ATOM	6815	CG	ARG A		27.202	83.804	-6.889	1.00 13.91	A
40	ATOM	6816	CD	ARG A		27.739			1.00 15.08	A
40	MOTA	6817	NE	ARG A		28.853	85.263	-5.364	1.00 15.70	А
	ATOM	6818	CZ	ARG A		29.911	84.470	-5.451	1.00 16.09	А
	ATOM	6819		ARG A		28.907	86.351	-4.605	1.00 17.21	А
	ATOM	6820		ARG A		25.525	79.962	-5.531	1.00 12.83	A
45	ATOM	6821	С		A 869	24.445	80.221	-6.061	1.00 12.65	A
4 5	ATOM	6822	0		A 869	25.650	79.610	-4.255	1.00 13.19	А
	ATOM	6823	N		A 870 A 870	24.505	79.472	-3.357	1.00 14.88	A
	ATOM	6824	CA			24.395	78.012	-2.934	1.00 14.84	A
	ATOM	6825	CB		A 870 A 870	24.393	77.060	-4.132	1.00 16.12	A
EΩ	ATOM	6826	CG			24.778	75.671		1.00 16.16	A
50	ATOM	6827		LEU		23.116	77.092		1.00 15.69	A
	ATOM	6828		LEU .		24.603	80.362		1.00 15.84	A
	ATOM	6829	C		A 870	25.596	80.333		1.00 15.42	A
	ATOM	6830	O NI		A 870	23.548	81.131		1.00 17.32	A
==	ATOM	6831	N		A 871	23.540	82.055		1.00 19.19	A
55	MOTA	6832	CA	ALA.	A 871	۷۵.۵۷۱	02.000	0.702		

		λ mΩM	6833	СВ	ALA A	971	22.497	83.152	-1.023	1.00 19.49	А
		ATOM	6834	С	ALA A		23.250	81.427	0.611	1.00 20.12	А
		ATOM			ALA A		23.687	81.954	1.634	1.00 21.06	А
		ATOM	6835	0			22.546	80.303	0.640	1.00 20.24	A
	_	MOTA	6836	N	SER A		22.227	79.684	1.921	1.00 20.96	A
	5	MOTA	6837	CA	SER A			79.374	1.988	1.00 22.69	A
		MOTA	6838	СВ	SER A		20.729		0.981	1.00 26.69	A
		MOTA	6839	OG	SER A		20.354	78.455	2.275	1.00 20.07	A
		MOTA	6840	С	SER A		23.016	78.430		1.00 20.07	A
		MOTA	6841	0	SER A		23.619	77.782	1.418	1.00 19.32	A
	10	MOTA	6842	N	ASP A		23.009	78.115	3.567	1.00 19.80	A
		MOTA	6843	CA	ASP A		23.680	76.938	4.105		A
		MOTA	6844	CB	ASP A		24.046	77.187	5.572	1.00 19.50 1.00 19.97	A A
		MOTA	6845	CG	ASP A		24.426	75.918	6.308		A A
		MOTA	6846		ASP A		23.546	75.332	6.977	1.00 19.80	
	15	MOTA	6847	OD2	ASP A		25.602	75.505	6.214	1.00 20.62	A
		ATOM	6848	C	ASP A		22.697	75.779	3.979	1.00 18.67	A
		MOTA	6849	0	ASP A		21.488	75.985	4.077	1.00 18.83	A
		MOTA	6850	N	ASP A		23.201	74.568	3.752	1.00 17.49	A
41 44		MOTA	6851	CA	ASP A		22.318	73.417	3.602	1.00 16.56	A
	20	MOTA	6852	CB	ASP A		22.678	72.623	2.338	1.00 15.33	A
7, <u>1,3</u> 1		MOTA	6853	CG	ASP A		24.160	72.341	2.217	1.00 15.79	A
		MOTA	6854		ASP A		24.932	72.741	3.115	1.00 14.72	A
10 Sept.		MOTA	6855	OD2	ASP A	874	24.547	71.716	1.210	1.00 13.54	A
1,522		ATOM	6856	С	ASP A		22.226	72.486	4.809	1.00 17.23	A
Series Committee	25	MOTA	6857	0	ASP A	874	22.119	71.269	4.668	1.00 17.24	A
		MOTA	6858	N	GLU A		22.270	73.083	5.995	1.00 17.61	A
		ATOM	6859	CA	GLU A	875	22.132	72.370	7.261	1.00 18.30	A
8)		MOTA	6860	CB	GLU A	875	20.653	72.025	7.481	1.00 21.02	A
		MOTA	6861	CG	GLU A	875	19.741	73.249	7.502	1.00 24.64	A
	30	ATOM	6862	CD	GLU A	875	18.302	72.916	7.858	1.00 26.93	A
1,44E		ATOM	6863	OE1	GLU A	875	18.069	72.346	8.945	1.00 28.85	A
1 (ding)		ATOM	6864	OE2	GLU A	875	17.401	73.230	7.053	1.00 29.01	A
n och		MOTA	6865	С	GLU A	875	22.977	71.123	7.503	1.00 17.56	A
1,02		MOTA	6866	0	GLU A	875	22.499	70.160	8.109	1.00 17.20	A
3	35	ATOM	6867	N	ARG A	876	24.226	71.130	7.051	1.00 16.12	A
		MOTA	6868	CA	ARG A	876	25.091	69.980	7.285	1.00 15.68	A
		MOTA	6869	CB	ARG A	876	25.519	69.343	5.955	1.00 14.98	A
		MOTA	6870	CG	ARG A	876	24.365	68.665	5.196	1.00 14.42	A
		ATOM	6871	CD	ARG A	876	23.701	67.581	6.046	1.00 13.74	A
	40	ATOM	6872	NE	ARG A	876	22.636	66.850		1.00 13.11	A
		MOTA	6873	CZ	ARG A	876	21.460	67.366	5.004	1.00 13.22	A
		MOTA	6874	NH1	ARG A	876	21.179	68.636	5.267	1.00 12.68	A
		MOTA	6875	NH2	ARG A	876	20.548	66.601	4.411	1.00 12.89	A
		MOTA	6876	С	ARG A	876	26.307	70.364	8.130	1.00 15.55	А
	45	ATOM	6877	0	ARG A	876	27.273	69.605	8.231	1.00 16.13	А
		ATOM	6878	N	GLY A	877	26.249	71.548	8.738	1.00 15.42	A
		ATOM	6879	CA	GLY A		27.328	71.996	9.601	1.00 14.96	A
		ATOM	6880	С	GLY A	877	28.340	72.984	9.049	1.00 14.99	A
		ATOM	6881	0	GLY A		29.112	73.563	9.818	1.00 14.85	A
	50	ATOM	6882	N	LEU A		28.344	73.192	7.736	1.00 14.62	A
		ATOM	6883	CA	LEU A		29.299	74.113	7.122	1.00 15.39	А
		ATOM	6884	СВ	LEU A		29.168	74.072	5.597	1.00 14.87	A
		ATOM	6885	CG	LEU A		30.078	74.997	4.782	1.00 15.40	A
		ATOM	6886		LEU F		31.532	74.844	5.224	1.00 15.22	A
	55	ATOM	6887		LEU F		29.928	74.663	3.308	1.00 15.32	A
		111011	5507	752			_				

		ATOM	6888	С	LEU	Α	878	29.134	75.543	7.630	1.00 15.66	A
		ATOM	6889	0	LEU	Α	878	30.119	76.257	7.823	1.00 15.76	A
		ATOM	6890	N	GLY	Α	879	27.888	75.957	7.843	1.00 15.47	A
		ATOM	6891	CA	GLY	Α	879	27.631	77.293	8.355	1.00 16.15	A
	5	ATOM	6892	С	GLY	Α	879	27.788	78.428	7.361	1.00 16.58	A
	•	ATOM	6893	0	GLY	Α	879	27.968	79.580	7.755	1.00 17.29	A
		ATOM	6894	N	GLN			27.729	78.108	6.074	1.00 16.52	А
		ATOM	6895	CA	GLN			27.843	79.125	5.035	1.00 16.57	A
		ATOM	6896	СВ	GLN			29.284	79.648	4.919	1.00 16.88	A
-	10	ATOM	6897	CG	GLN			30.329	78.599	4.526	1.00 17.13	А
•		MOTA	6898	CD	GLN			31.561	79.211	3.873	1.00 17.00	A
		MOTA	6899	OE1	GLN			31.577	79.470	2.665	1.00 18.68	A
		ATOM	6900	NE2	GLN			32.594	79.458	4.668	1.00 15.41	A
		ATOM	6901	С	GLN			27.415	78.556	3.696	1.00 16.89	A
	15	MOTA	6902	Ō	GLN			27.350	77.338	3.519	1.00 17.17	A
•	10	MOTA	6903	N	GLY			27.104	79.447	2.762	1.00 17.12	A
		ATOM	6904	CA	GLY			26.725	79.010	1.436	1.00 16.41	A
		MOTA	6905	C	GLY			28.008	78.947	0.634	1.00 15.96	Α
		MOTA	6906	Ö	GLY			29.092	78.817	1.203	1.00 16.71	A
	20	MOTA	6907	N			882	27.893	79.037	-0.682	1.00 14.79	A
•	2.0	ATOM	6908	CA			882	29.060	79.011	-1.552	1.00 14.14	A
		ATOM	6909	CB			882	28.998	77.814	-2.520	1.00 13.86	A
		ATOM	6910	CG1			882	30.185	77.843	-3.463	1.00 13.33	A
		ATOM	6911		VAL			28.987	76.517	-1.726	1.00 14.87	A
	25	ATOM	6912	C			882	29.029	80.320	-2.328	1.00 13.86	A
	20	ATOM	6913	0			882	28.353	80.432	-3.348	1.00 13.36	A
			6914	N			883	29.755	81.312	-1.823	1.00 13.97	A
		MOTA MOTA	6915	CA			883	29.791	82.635	-2.440	1.00 14.37	A
		ATOM	6916	CB			883	29.119	83.650	-1.505	1.00 14.55	A
	30	ATOM	6917	CG			883	27.615	83.481	-1.256	1.00 14.33	A
	<i>5</i> 0	ATOM	6918		LEU			27.175	84.299	-0.052	1.00 14.92	A
		ATOM	6919	CD2			883	26.859	83.928	-2.490	1.00 14.87	Α
		ATOM	6920	C			883	31.209	83.100	-2.761	1.00 14.74	A
		ATOM	6921	0			883	31.432	84.280	-3.044	1.00 16.88	A
	35	ATOM	6922	N			884	32.162	82.174	-2.723	1.00 14.04	А
	33		6923	CA			884	33.555	82.500	-2.998	1.00 14.10	А
		MOTA	6924	CB			884	34.458	81.898	-1.918	1.00 14.38	А
		MOTA MOTA	6925	CG			884	34.250	80.402	-1.737	1.00 15.01	A
		MOTA	6926		ASP			34.925	79.826	-0.858	1.00 16.17	А
	40				ASP			33.421	79.803	-2.461	1.00 13.93	A
	40	MOTA	6927	C			884	34.021	82.044	-4.376	1.00 13.67	А
		MOTA	6928				884	35.193	81.721	-4.570	1.00 13.79	А
		ATOM	6929	O			885	33.095	82.024	-5.329	1.00 12.72	А
		ATOM	6930	N			885	33.404	81.620	-6.695	1.00 12.83	А
	4 E	ATOM	6931	CA				32.163	81.746	-7.579	1.00 12.72	А
	45	ATOM	6932	CB			. 885 . 885	30.973	81.001	-7.024	1.00 12.80	A
		ATOM	6933	CG				30.700	79.860	-7.403	1.00 13.90	А
		ATOM	6934				. 885	30.700	81.640	-6.109	1.00 12.56	A
		ATOM	6935				. 885	34.499	82.493	-7.289	1.00 12.83	A
	EO	MOTA	6936	C			. 885	34.499	83.666	-6.936	1.00 12.92	A
	50	MOTA	6937	0			. 885	35.265	81.910	-8.202	1.00 12.32	A
		ATOM	6938	N			886	36.329	82.624	-8.887	1.00 13.20	A
		MOTA	6939	CA			886		82.454	-8.140	1.00 15.32	A
		ATOM	6940	CB			886	37.657	81.015	-7.938	1.00 17.99	A
		MOTA	6941	CG			886	38.096		-6.924	1.00 17.55	A
	55	MOTA	6942	CD	LYS	Α	886	39.235	80.913	-0.524	1.00 20.34	1.7

													01 04	75
		MOTA	6943		LYS				10.472		-7.386		21.34	A
		MOTA	6944		LYS				11.570	81.615			22.47	A
		MOTA	6945	С	LYS	A	886		36.420		-10.295		12.96	A
		MOTA	6946		LYS				36.052		-10.534		12.96	A
	5	MOTA	6947	N	PRO	Α	887		36.890		-11.256		12.00	A
		MOTA	6948	CD	PRO	Α	887		37.275		-11.160		12.17	A
		MOTA	6949	CA	PRO	Α	887		37.002		-12.633		10.97	A
		MOTA	6950	CB	PRO	А	887		37.687		-13.348		11.84	A
		MOTA	6951	CG	PRO	Α	887		37.179		-12.593		12.42	A
	10	ATOM	6952	С	PRO	Α	887	:	37.805		-12.734		10.67	A
		ATOM	6953	0	PRO	Α	887		38.866		-12.129		11.60	A
		MOTA	6954	N	VAL	Α	888		37.282		-13.498	1.00	9.48	A
		ATOM	6955	CA	VAL	A	888		37.955		-13.692	1.00	8.96	A
		ATOM	6956	СВ	VAL				37.335		-12.797	1.00	9.00	A
	15	ATOM	6957		VAL				35.836	77.648	-13.048	1.00	9.81	A
	10	ATOM	6958		VAL				38.021	76.424	-13.064	1.00	9.13	A
		ATOM	6959	C			888		37.852	78.466	-15.153	1.00	8.88	A
		ATOM	6960	0			888		36.823	78.697	-15.802	1.00	8.91	A
312 4		ATOM	6961	N			889		38.928	77.890	-15.677	1.00	7.75	А
	20	ATOM	6962	CA			889		38.935	77.435	-17.058	1.00	8.80	A
i desti	20	ATOM	6963	CB			889		40.257		-17.745	1.00	9.25	A
A STORE		ATOM	6964	CG			889		40.336	77.379	-19.223	1.00	9.85	A
M		ATOM	6965				889		39.386		-20.050	1.00	11.06	Α
		ATOM	6966				889		41.766		-19.728	1.00	12.10	A
10.0	25	ATOM	6967	CDZ			889		38.731		1 -17.113	1.00	8.95	A
gray Gray	23		6968	0			889		39.648		-16.820	1.00	9.54	A
		ATOM	6969	N			890		37.519		3 -17.462	1.00	7.95	A
31		ATOM	6970	CA			890		37.214		5 -17.580	1.00	8.10	A
TOTAL TOTAL		ATOM	6971	CB			890		35.725		1 -17.360	1.00	7.90	А
Frank . Ref	30	ATOM	6972	CG			890		35.281		3 -15.944	1.00	8.99	A
	30	ATOM					890		34.112		1 -15.426	1.00	9.25	A
		MOTA	6973 6974				890		36.066		7 -14.870	1.00	9.76	A
jade 1		MOTA					890		35.399		1 -13.751	1.00	9.66	А
1 STEE		ATOM	6975				890		34.210		9 -14.060	1.00	10.10	А
2000	25	ATOM	6976				890		37.584		3 -18.977	1.00	7.85	А
	. 35	ATOM	6977	C			890		37.361		5 -19.952	1.00		А
		ATOM	6978	0			891		38.136		5 -19.079	1.00		A
		ATOM	6979	N					38.519		5 -20.376	1.00		А
		ATOM	6980	CA			891		40.055		9 -20.507	1.00		A
	40	MOTA	6981	CB			891		40.666		1 -20.267	1.00		А
	40	ATOM	6982				891		40.627		6 -19.492	1.00		A
		MOTA	6983				891				1 -19.644	1.00		A
		ATOM	6984				891		42.131		3 -20.633	1.00		A
		ATOM	6985	С			891		37.886		1 -19.699	1.00		A
		MOTA	6986	0			891		37.640			1.00		A
	45	MOTA	6987	N			892		37.619		4 -21.905			A
		MOTA	6988	CA			892		36.982		6 -22.326	1.00		A
		MOTA	6989	CB			892		35.454		6 -22.391	1.00		A
		MOTA	6990	CG			892		34.795		1 -21.224	1.00		A
		MOTA	6991				892		34.759		3 -21.128	1.00		
	50	MOTA	6992				892		34.141		0 -20.048	1.00		A
		ATOM	6993				892		34.200		1 -20.214	1.00		A
		ATOM	6994	CE2			892		33.589		9 -19.136	1.00		A
		MOTA	6995	CZ			892		33.560		0 -19.054	1.00		A
		ATOM	6996	ОН			892		32.959		1 -17.970	1.00		A
	55	ATOM	6997	С			892		37.395	68.58	6 -23.731	1.00	7.49	A

		MOM	6998	0	TYR A	ΩΟ	22	38.014	69.349	-24.463	1.00	7.08	A
		ATOM			ARG A			37.038		-24.091	1.00	7.23	А
		MOTA	6999	N	ARG A			37.233		-25.449	1.00	7.84	А
		MOTA	7000	CA				38.323		-25.534	1.00	8.25	A
	_	MOTA	7001	CB	ARG A			39.761		-25.460	1.00	9.07	A
	5	MOTA	7002	CG	ARG A					-26.556	1.00	8.68	A
		MOTA	7003	CD	ARG A			40.094		-27.905		10.22	A
		MOTA	7004	NE	ARG F			40.144		-28.358	1.00	9.15	A
		MOTA	7005	CZ	ARG A			41.105				11.22	A
		ATOM	7006		ARG A			42.118		-27.570		12.32	A
	10	MOTA	7007		ARG A			41.058		-29.603		8.20	A
		MOTA	7008	С	ARG A			35.867		-25.776	1.00	8.49	A
		MOTA	7009	0	ARG A			35.258		-24.933	1.00	8.73	A
		MOTA	7010	N	LEU A			35.374		-26.984	1.00	9.10	Ā
		MOTA	7011	CA	LEU A			34.071		-27.402	1.00	10.48	A
	15	MOTA	7012	CB	LEU A			33.175		-27.847			A
		MOTA	7013	CG	LEU A			31.735		-28.215		11.47	A
		MOTA	7014		LEU A			31.013		-26.992		12.94 12.24	A
		MOTA	7015		LEU A			31.013		-28.757		8.70	A
1122		MOTA	7016	С	LEU A			34.275		-28.550	1.00	9.47	A
	20	MOTA	7017	0	LEU A			34.684		-29.642	1.00	8.58	A
		MOTA	7018	N	VAL A			33.977		-28.296	1.00		
		ATOM	7019	CA	VAL A			34.173		-29.284	1.00	8.99 9.22	A A
4,2.2		MOTA	7020	CB	VAL A			35.094		-28.705	1.00		A
		ATOM	7021		VAL A			35.461		-29.786		10.34	A A
in in it	25	ATOM	7022		VAL A			36.340		-28.102	1.00	9.86 10.00	A
		MOTA	7023	С	VAL A			32.892		-29.790		10.19	A
Tings Times		MOTA	7024	0	VAL A			32.234		-29.057		10.13	A
£:		ATOM	7025	N	LEU A			32.546		-31.045		10.27	A
2545		MOTA	7026	CA	LEU I			31.376		-31.677		11.43	A
	30	MOTA	7027	CB	LEU			30.666		-32.607		12.15	A
		MOTA	7028	CG	LEU .			29.525		-33.436		12.15	A
i car i car		MOTA	7029		LEU .			28.370		-32.528		12.63	A
		MOTA	7030		LEU .			29.061		-34.479		11.72	A
1000		MOTA	7031	С	LEU .			31.938		-32.501		11.16	A
i ceta	35	ATOM	7032	0	LEU .			32.880		-33.269		11.32	A
		MOTA	7033	N	GLU .			31.371		-32.339 -33.065		13.03	A
		MOTA	7034	CA	GLU .			31.869		-32.192		14.50	A
		MOTA	7035	СВ	GLU			32.844		-31.656		16.78	A
	4.0	ATOM	7036	CG	GLU			34.027		-30.601			A
	40	ATOM	7037	CD	GLU			34.778		-29.539		18.39	A
		MOTA	7038		GLU			34.184		-30.838		19.39	A
		ATOM	7039		gLU			35.955		-33.478		12.78	A
		ATOM	7040	С	GLU			30.770				12.49	A
		MOTA	7041	0	GLU			29.699		-32.873		14.12	A
	45	MOTA	7042	N	LYS			31.056		-34.509		15.19	A
		MOTA	7043	CA	LYS			30.134		-34.967		16.61	A
		ATOM	7044	СВ	LYS			30.283		-36.470		19.37	A
		ATOM	7045	CG	LYS			29.981		-37.328			A
		MOTA	7046	CD	LYS			28.614		37.004		21.68	A
	50	MOTA	7047	CE	LYS			27.500		-37.189		23.36	A A
		MOTA	7048	NΖ	LYS			26.169		-36.865		24.72 15.30	A A
		MOTA	7049	С	LYS			30.596		34.192			A
		MOTA	7050	0	LYS			31.791		34.154		17.00	A
		ATOM	7051	N	VAL			29.666		-33.562		14.35	
	55	MOTA	7052	CA	VAL	A 8	399	30.038	52.318	3 -32.773	1.00	14.25	А

		ATOM	7053	СВ	VAL A	899	29.804	52.590	-31.270	1.00	14.32	A
		ATOM	7054		VAL A		30.809	53.622	-30.771	1.00	15.02	A
		ATOM	7055		VAL A		28.386	53.096	-31.044	1.00	13.91	A
		MOTA	7056	С	VAL A		29.305	51.043	-33.173		14.59	A
	5	ATOM	7057	0	VAL A		29.321	50.056	-32.441	1.00	14.07	A
	Ü	MOTA	7058	N	ASN A		28.675	51.060	-34.341	1.00	15.09	A
		ATOM	7059	CA	ASN A		27.941	49.893	-34.813	1.00	16.30	A
		ATOM	7060	СВ	ASN A		27.189	50.229	-36.105	1.00	17.35	A
		MOTA	7061	CG	ASN A		28.098	50.780	-37.182	1.00	18.71	A
	10	MOTA	7062		ASN A		28.719	51.830	-37.011	1.00	21.26	A
	10	ATOM	7063		ASN A		28.182	50.073	-38.304	1.00	20.56	A
		ATOM	7064	С	ASN A		28.841	48.677	-35.041	1.00	16.24	A
		ATOM	7065	0	ASN A		28.366	47.541	-35.023		16.99	A
		ATOM	7066	N	ASN A		30.135	48.907	-35.243		15.40	A
	15	ATOM	7067	CA	ASN A		31.073	47.810	-35.477		15.76	A
	10	ATOM	7068	СВ	ASN A		32.054	48.177	-36.592	1.00	17.95	A
		ATOM	7069	CG	ASN A		31.405	48.194	-37.955		20.12	A
		ATOM	7070		ASN A		30.737	47.238	-38.345	1.00	22.38	А
1		ATOM	7071		ASN A		31.606	49.280	-38.694		21.62	A
	20	ATOM	7072	С	ASN A		31.867	47.398	-34.246		15.11	A
2 mm.		MOTA	7073	0	ASN A		32.655	46.454	-34.300		15.56	A
% (1976) (1977)		ATOM	7074	N	CYS A	902	31.667		-33.138		14.34	A
		ATOM	7075	CA	CYS A		32.398		-31.916		14.62	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		MOTA	7076	С	CYS A	902	31.829		-31.165		13.93	A
general general general	25	ATOM	7077	0	CYS A	902	30.616		-31.101		14.93	A
100		ATOM	7078	CB	CYS A	902	32.394		-30.954		16.27	A
121		MOTA	7079	SG	CYS A	902	33.091		-31.570		18.03	A
31		ATOM	7080	N	VAL A	903	32.717		-30.584		13.19	A
		ATOM	7081	CA	VAL A	903	32.294		-29.789		13.49	A
1,13	30	MOTA	7082	CB	VAL A		33.403		-29.706		12.99	A
1914		MOTA	7083		VAL A		32.985		-28.755		14.69	A
		MOTA	7084	CG2	VAL A		33.674		-31.095		14.28	A
		MOTA	7085	С	VAL A		32.024		-28.400		13.60	A
in in		MOTA	7086	0	VAL A		32.952		-27.646		15.18	A
girini.	35	ATOM	7087	N	ARG A		30.749		-28.078		13.74 13.73	A A
		MOTA	7088	CA	ARG A		30.361		-26.792		14.82	A
		ATOM	7089	СВ	ARG A		29.311		-27.001		15.86	A
		MOTA	7090	CG	ARG A		29.874		-27.644		17.64	A
	40	MOTA	7091	CD	ARG A		28.816		-27.921 -29.095		18.11	A
	40	ATOM	7092	NE	ARG A		28.022		-29.093 -29.589		18.82	A
		MOTA	7093	CZ	ARG A		27.057		-29.007		19.22	A
		ATOM	7094		ARG A		26.763		-30.668		19.04	A
		ATOM	7095		ARG A		26.390 29.814		-25.829		12.99	A
	45	MOTA	7096	С	ARG A		29.454		-26.232		13.24	A
	45	MOTA	7097	0	ARG A		29.758		-24.533		12.45	A
		ATOM	7098	N	PRO A		30.305		-23.890		12.91	А
		ATOM	7099	CD	PRO A		29.236		-23.533		12.91	A
		ATOM	7100	CA	PRO A		29.412		-22.220		12.51	A
	50	ATOM	7101	CB	PRO A		30.581		-22.491		12.54	A
	50	ATOM	7102	CG C	PRO A PRO A		27.764		-23.835		13.36	A
		ATOM	7103		PRO A		27.128		-24.531		13.15	A
		MOTA	7104	O N			27.128		-23.318		14.23	A
		ATOM	7105	N	SER A		25.817		-23.540		16.23	A
	==	ATOM	7106	CA	SER A		25.479		-23.014		17.70	A
	55	ATOM	7107	СВ	SER A	200	20.410	-1.20J	20.013			

							-07					
		ATOM	7108	OG	SER A	906	25.354	41.297	-21.605	1.00	19.81	A
		ATOM	7109	С	SER A		24.969	43.712	-22.808	1.00	16.91	A
		ATOM	7110	0	SER A		25.478	44.485	-21.993	1.00	16.27	A
		ATOM	7111	N	LYS A	907	23.673	43.709	-23.093	1.00	18.02	A
	5	ATOM	7112	CA	LYS A		22.745	44.652	-22.484		19.95	A
	-	ATOM	7113	СВ	LYS A		21.350		-23.085		22.55	A
		MOTA	7114	CG	LYS A	907	21.266		-24.569		26.38	A
		MOTA	7115	CD	LYS A	907	19.889	44.452	-25.136	1.00	28.71	А
		ATOM	7116	CE	LYS A	907	18.782	45.192	-24.396		30.39	A
	10	ATOM	7117	NZ	LYS A	907	18.936		-24.487		31.53	A
		MOTA	7118	С	LYS A		22.663		-20.967		18.84	A
		MOTA	7119	0	LYS A	907	22.262	45.476	-20.287		20.33	A
		ATOM	7120	N	LEU A	908	23.047		-20.434		17.98	A
		ATOM	7121	CA	LEU A	908	22.982		-18.993		17.30	A
	15	ATOM	7122	CB	LEU A	908	22.520		-18.704		18.78	A
		MOTA	7123	CG	LEU A	908	21.150		-19.284		19.88	A
		MOTA	7124	CD1	LEU A	908	20.846		-18.980		19.94	A
		ATOM	7125	CD2	LEU A	908	20.070		-18.701		20.79	A
i i		MOTA	7126	С	LEU A	908	24.289		-18.255		15.70	A
	20	MOTA	7127	0	LEU A	908	24.341		-17.028		15.90	A
Tribula Line		MOTA	7128	N	HIS A	909	25.340		-18.992		14.37	A
		MOTA	7129	CA	HIS A	909	26.628		-18.365		12.69	A
		MOTA	7130	CB	HIS A		27.737		-19.415		12.14	A
		ATOM	7131	CG	HIS A	909	29.101		-18.842		10.96	A
	25	ATOM	7132		HIS A		29.934		-18.912		11.76	A
		MOTA	7133		HIS A		29.752		-18.079		10.65	A
		MOTA	7134		HIS A		30.928		-17.706		11.60	A
51		MOTA	7135		HIS A		31.063		-18.199		11.85	A
1,00		MOTA	7136	С	HIS A		26.572		-17.704		11.79	A A
	30	ATOM	7137	0	HIS A		26.102		-18.304		12.37	A
995		MOTA	7138	N	PRO A		27.053		-16.455		10.34 11.26	A
2 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		ATOM	7139	CD	PRO A		27.391		-15.540		10.21	A
i kang I dani		ATOM	7140	CA	PRO A		27.037		-15.734		10.21	A
	2.5	MOTA	7141	CB	PRO A		27.184		-14.268 -14.242		11.48	A
int.	35	MOTA	7142	CG	PRO A		26.839		-14.242	1.00	9.86	A
		MOTA	7143	C	PRO A		28.118		-15.631	1.00	9.94	A
		MOTA	7144	0	PRO A		28.100 29.061		-16.957	1.00	9.55	A
		ATOM	7145	N	ALA A		30.138		-17.342	1.00	9.81	A
	40	ATOM	7146		ALA A		31.482		-17.070	1.00	9.39	A
	40	ATOM	7147	CB	ALA A		30.088		-18.786	1.00	9.68	A
		ATOM	7148	С	ALA A ALA A		29.354		-19.614		10.29	A
		ATOM	7149	O	GLY A		30.893		-19.064	1.00	9.71	A
		ATOM	7150 7151	N CA	GLI A		31.022		-20.397	1.00	9.40	А
	45	ATOM	7151	C	GLY A		32.504		-20.589	1.00	9.56	A
	40	ATOM	7153	0	GLY A		33.244		-19.607	1.00	9.93	A
		ATOM ATOM	7154	N	TYR A		32.943		-21.838	1.00	9.13	A
		ATOM	7155	CA	TYR A		34.351		-22.132	1.00	9.27	A
		ATOM	7156	CB	TYR A		35.042		-22.547	1.00	8.76	A
	50	ATOM	7157	CG	TYR A		35.014		-21.470	1.00		A
	JU	ATOM	7158		TYR A		34.036		-21.460		10.18	А
		ATOM	7159		TYR A		33.962		-20.423		10.05	A
		ATOM	7160		TYR A		35.923		-20.418	1.00		А
		ATOM	7160		TYR A		35.858		-19.376	1.00		А
	55	ATOM	7161	CZ	TYR A		34.875		-19.383		10.29	A
		MION	1102	\mathcal{Q}	T T T / V	7 1 2	21.0.0					

		ATOM	7163	ОН	TYR A	913	34.789	45.897 -18.341	1.00	10.44	A
		ATOM	7164	С	TYR A	913	34.548	52.013 -23.230	1.00	9.23	A
		ATOM	7165	0	TYR A		33.759	52.093 -24.173	1.00	9.94	A
					LEU A		35.617	52.790 -23.101	1.00	9.01	А
	_	MOTA	7166	N				53.811 -24.082		8.49	A
	5	MOTA	7167	CA	LEU A		35.946			8.20	A
		MOTA	7168	CB	LEU A		36.951	54.809 -23.507	1.00		
		MOTA	7169	CG	LEU A	914	36.543	55.679 -22.326		8.55	A
		MOTA	7170	CD1	LEU A	914	37.659	56.679 -22.057		8.59	A
		MOTA	7171	CD2	LEU A	914	35.240	56.408 -22.635	1.00	8.59	A
	10	ATOM	7172	С	LEU A		36.568	53.215 -25.332	1.00	8.86	A
	10	ATOM	7173	Ō	LEU A		37.033	52.075 -25.337	1.00	9.04	A
		ATOM	7174	N	THR A		36.570	54.021 -26.387		9.49	A
							37.187	53.656 -27.647		10.01	A
		ATOM	7175	CA	THR A			54.345 -28.831		11.05	A
	.	MOTA	7176	СВ	THR A		36.498				A
	15	MOTA	7177	OG1			36.474	55.758 -28.590		12.54	
		MOTA	7178	CG2			35.080	53.833 -29.011		12.14	A
		MOTA	7179	С	THR A	915	38.593	54.237 -27.542		10.47	A
		MOTA	7180	0	THR A	915	38.879	55.037 -26.641	1.00	10.28	A
n of trade		ATOM	7181	N	SER A		39.464	53.853 -28.465	1.00	11.05	A
5,000 3,000	20	ATOM	7182	CA	SER A		40.828	54.357 -28.482	1.00	11.00	A
	20	ATOM	7183	CB	SER A		41.574	53.795 -29.690		12.42	A
4 PE				OG	SER A		42.793	54.485 -29.888		16.48	А
		MOTA	7184					55.881 -28.539		10.98	A
E E		MOTA	7185	С	SER A		40.857			10.02	A
11700		MOTA	7186	0	SER A		41.572	56.528 -27.776			
	25	MOTA	7187	И	ALA A		40.069	56.455 -29.442		10.04	A
		MOTA	7188	CA	ALA A		40.040	57.903 -29.593		9.89	A
iji,		MOTA	7189	СВ	ALA A	917	39.119	58.292 -30.738		10.71	A
		MOTA	7190	С	ALA A	917	39.612	58.621 -28.319		9.48	А
8) 2 (500		ATOM	7191	0	ALA A	917	40.199	59.638 -27.950	1.00	9.99	А
i sai	30	MOTA	7192	N	ALA A		38.592	58.099 -27.644	1.00	9.40	A
		ATOM	7193	CA	ALA A		38.110	58.736 -26.420	1.00	8.86	A
		ATOM	7194	CB	ALA A		36.788	58.114 -25.988		9.92	A
i sala		ATOM	7195	C	ALA A		39.141	58.627 -25.300		8.91	A
							39.331	59.569 -24.524		7.94	А
	0.5	MOTA	7196	0	ALA A			57.477 -25.210		8.73	A
	35	ATOM	7197	N	HIS A		39.799			8.75	A
		MOTA	7198	CA	HIS A		40.818	57.279 -24.189			
		MOTA	7199	CB	HIS A		41.320	55.833 -24.211		9.47	A
		ATOM	7200	CG	HIS A	919	42.438	55.570 -23.249		10.68	A
		ATOM	7201		HIS A		42.499	55.686 -21.901		12.48	A
	40	MOTA	7202	ND1	HIS A	919	43.689	55.158 -23.656			А
		ATOM	7203		HIS A		44.473	55.032 -22.599	1.00	12.08	A
		ATOM	7204		HIS A		43.776	55.346 -21.523	1.00	13.28	А
		ATOM	7205	C	HIS A		41.979	58.239 -24.430		8.59	A
			7206	0	HIS A		42.459	58.892 -23.503			A
	45	MOTA			LYS A		42.429	58.341 -25.675			A
	45	ATOM	7207	N			43.528	59.250 -25.969			A
		ATOM	7208	CA	LYS A					10.76	A
		MOTA	7209	СВ	LYS A		44.009	59.077 -27.411			
		ATOM	7210	CG	LYS A		44.880	57.833 -27.582		13.02	A
		ATOM	7211	CD	LYS A		45.559	57.777 -28.938		14.64	A
	50	ATOM	7212	CE	LYS A	920	46.493	56.579 -29.030		15.02	A
		ATOM	7213	NZ	LYS A	920	47.658	56.686 -28.103		15.98	А
		ATOM	7214	С	LYS A		43.116	60.694 -25.701	1.00	8.52	A
		ATOM	7215	Ö	LYS A		43.928	61.496 -25.236		8.56	A
		ATOM	7216	N	ALA A		41.855	61.024 -25.972			А
	55				ALA A		41.372	62.380 -25.729			А
	55	ATOM	7217	CA	ALA A	フムエ	41.0/2	02.000 20.12.	. 1.00	0.01	

		ATOM	7218	СВ	ALA A	921	39.947	62.540 -26.263	1.00	7.47	A
		ATOM	7219		ALA A		41.421	62.667 -24.227	1.00	7.72	A
		ATOM	7220		ALA A		41.770	63.772 -23.801	1.00	8.39	A
		MOTA	7221	N	SER A		41.076	61.670 -23.417	1.00	7.17	A
	5	MOTA	7222	CA	SER A		41.120	61.854 -21.969	1.00	7.27	A
	J	ATOM	7223	СВ	SER A		40.549	60.627 -21.251	1.00	7.70	A
		ATOM	7224	OG	SER A		40.649	60.781 -19.841	1.00	7.96	A
		ATOM	7225	C	SER A		42.565	62.083 -21.532	1.00	7.89	A
		ATOM	7226	0	SER A		42.839	62.944 -20.698	1.00	8.87	A
	10		7227	N	GLN A		43.494	61.321 -22.104	1.00	8.46	A
	10	MOTA	7228	CA	GLN A		44.904	61.476 -21.760	1.00	8.76	A
		MOTA	7229	CB	GLN A		45.744	60.379 -22.423	1.00	8.95	А
		MOTA	7230	CG	GLN A		45.466	58.979 -21.895	1.00	8.79	A
		MOTA	7230	CD	GLN A		46.396	57.936 -22.495		10.09	А
	15	MOTA	7231		GLN A		46.537	57.847 -23.715		11.44	А
	15	ATOM			GLN A		47.028	57.133 -21.635	1.00	9.11	A
		ATOM	7233				45.435	62.849 -22.163	1.00	9.21	A
		MOTA	7234	C	GLN A		46.318	63.396 -21.501	1.00	9.10	A
grav.		MOTA	7235	0	GLN A			63.417 -23.236	1.00	8.93	A
	20	MOTA	7236	N	SER A		44.886	64.729 -23.703	1.00	9.54	A
	20	MOTA	7237	CA	SER A		45.333	65.048 -25.081		10.43	A
J		MOTA	7238	CB	SER A		44.733	65.457 -24.987		11.08	A
M		ATOM	7239	OG	SER A		43.373	65.819 -22.709	1.00	9.66	A
		MOTA	7240	C	SER A		44.941			10.68	A
Total them been deed		MOTA	7241	0	SER A		45.572	66.874 -22.648	1.00	9.32	A
111	25	MOTA	7242	N	LEU A		43.898	65.554 -21.931	1.00	8.62	A
\$ 6.4		ATOM	7243	CA	LEU A		43.412	66.508 -20.941		8.40	A
		MOTA	7244	СВ	LEU A		41.904	66.335 -20.738	1.00	7.47	A
ξi Ji≅ z		MOTA	7245	CG	LEU A		40.991	66.609 -21.938	1.00	8.87	A
J	•	MOTA	7246		LEU A		39.556	66.255 -21.569	1.00	8.87	A
Ų.	30	ATOM	7247		LEU A		41.094	68.077 -22.349	1.00	9.08	A
		ATOM	7248	С	LEU A		44.106	66.351 -19.593	1.00	9.69	A
į.		ATOM	7249	0	LEU A		44.532	67.333 -18.984	1.00		A
1,000		ATOM	7250	N	LEU A		44.236	65.110 -19.141	1.00	8.72	
i com		ATOM	7251	CA	LEU A		44.837	64.834 -17.842	1.00	8.73	A
	35	MOTA	7252	CB	LEU A		44.287	63.518 -17.291	1.00	9.50	A
		MOTA	7253	CG	LEU A		42.771	63.509 -17.070		10.76	A
		ATOM	7254		LEU A		42.339	62.149 -16.537		11.48	A
		ATOM	7255	CD2	LEU A		42.388	64.618 -16.095		12.65	A
	_	MOTA	7256	С	LEU A		46.356	64.804 -17.790	1.00	8.63	A
	40	MOTA	7257	0	LEU A			65.189 -16.783			A
		MOTA	7258	N	ASP A		46.989	64.340 -18.861	1.00	7.51	A
		ATOM	7259	CA	ASP A		48.444	64.262 -18.891	1.00	8.28	A
		ATOM	7260	CB	ASP A		48.891	62.819 -18.644	1.00	7.75	A
		ATOM	7261	CG	ASP A		48.570	62.350 -17.234	1.00	8.29	A
	45	MOTA	7262		ASP A		49.295	62.740 -16.293	1.00	8.68	A
		ATOM	7263	OD2	ASP A		47.580	61.609 -17.067	1.00	9.56	A
		MOTA	7264	С	ASP A	927	49.008	64.787 -20.204	1.00	8.04	A
		ATOM	7265	0	ASP A		49.595	64.049 -20.995	1.00	7.83	A
		MOTA	7266	N	PRO A		48.830	66.088 -20.452	1.00	8.56	A
	50	ATOM	7267	CD	PRO A		48.226	67.103 -19.569	1.00		А
		ATOM	7268	CA	PRO A	928	49.334	66.697 -21.683	1.00		A
		ATOM	7269	СВ	PRO A	928	48.708	68.088 -21.649	1.00		A
		ATOM	7270	CG	PRO A		48.717	68.403 -20.190	1.00		Α
		ATOM	7271	С	PRO A		50.855	66.770 -21.665	1.00		А
	55	ATOM	7272	0	PRO A		51.492	66.449 -20.661	1.00	9.15	A

		ATOM	7273	N	LEU A	929	51.446	67.178	-22.778	1.00	8.33	A
		ATOM	7274		LEU A		52.891		-22.810	1.00	7.61	A
		ATOM	7275		LEU A		53.368	67.690	-24.221	1.00	8.02	А
		ATOM	7276		LEU A		53.200	66.682	-25.351	1.00	8.18	A
	5	ATOM	7277		LEU A		53.766	67.292	-26.632	1.00	8.11	A
	Ū	ATOM	7278		LEU A		53.934	65.391	-25.012	1.00	7.77	A
		MOTA	7279	C	LEU A		53.234	68.505	-21.887	1.00	8.11	A
		ATOM	7280	0	LEU A		52.452	69.445	-21.748	1.00	9.64	A
		ATOM	7281	N	ASP A		54.394	68.441	-21.248	1.00	7.51	A
	10	ATOM	7282	CA	ASP A		54.841	69.534	-20.390	1.00	7.84	A
	10	ATOM	7283	СВ	ASP A		55.582	68.979	-19.182	1.00	8.72	A
		MOTA	7284	CG	ASP A		54.742		-18.411	1.00	9.94	A
		MOTA	7285		ASP A		53.688	68.437	-17.903	1.00	12.39	A
		ATOM	7286		ASP A		55.121	66.818	-18.334	1.00	9.76	A
	15	ATOM	7287	С	ASP A		55.767		-21.237	1.00	8.70	A
	10	ATOM	7288	0	ASP A		56.531	69.870	-22.055	1.00	9.26	A
		MOTA	7289	N	LYS A		55.702	71.705	-21.047	1.00	8.39	A
		ATOM	7290	CA	LYS A		56.517		-21.831	1.00	8.99	A
45%		ATOM	7291	СВ	LYS A		55.605		-22.605		10.48	A
Robert Park	20	ATOM	7292	CG	LYS A		54.622		-23.547		11.73	A
		ATOM	7293	CD	LYS A		53.708		-24.221		14.44	A
i de		ATOM	7294	CE	LYS A		52.828		-23.206		16.26	A
Ų.		ATOM	7295	NZ	LYS A	931	52.017		-23.824		16.66	A
		MOTA	7296	С	LYS A	931	57.479		-20.963	1.00	9.43	A
	25	ATOM	7297	0	LYS A	931	57.081		-19.959	1.00	9.83	A
ning Hing		MOTA	7298	N	PHE A	932	58.747		-21.362	1.00	8.58	A
in the same		ATOM	7299	CA	PHE A	932	59.781		-20.633	1.00	8.60	A
F)		ATOM	7300	CB	PHE A	932	60.852		-20.124	1.00	8.76	A
		ATOM	7301	CG	PHE A	932	60.326		-19.229	1.00	9.77	A
For the first factor	30	MOTA	7302		PHE A		59.725		-19.760		10.21	A
1445 1411		MOTA	7303		PHE A		60.450		-17.849		10.48	A
2 22		MOTA	7304	CE1	PHE A	932	59.259		-18.926		10.04	A
2 (Care)		MOTA	7305	CE2	PHE A		59.986		-17.004		10.11	A
1,000		MOTA	7306	CZ	PHE A		59.391		-17.545		10.61	A
int.	35	MOTA	7307	С	PHE A		60.451		-21.530	1.00	9.09	A
		ATOM	7308	0	PHE A		60.755		-22.684	1.00	9.97	A A
		ATOM	7309	N	ILE A		60.674		-20.993	1.00	9.13 9.38	A A
		ATOM	7310	CA	ILE A		61.331		-21.739	1.00	9.33	A
		MOTA	7311		ILE A		60.531		-21.666			A
	40	MOTA	7312		ILE A		61.247		-22.472	1.00		A
		ATOM	7313		ILE A		59.108		-22.194 -21.970	1.00		A
		MOTA	7314		ILE A		58.197				10.17	A
		MOTA	7315	С	ILE F		62.685		-21.080	1.00		A
		MOTA	7316	0	ILE A		62.743		-19.888 -21.836	1.00		A
	45	MOTA	7317	N	PHE P		63.772		-21.858		11.19	A
		MOTA	7318	CA	PHE A		65.094		-21.238		11.54	A
		MOTA	7319	СВ	PHE A		66.193		-21.682		12.50	A
		MOTA	7320	CG	PHE A		67.570		-20.835		13.12	A
	=0	ATOM	7321		PHE F		67.947		-21.949		13.26	A
	50	MOTA	7322		PHE A		68.486		-20.263		14.59	A
		MOTA	7323		PHE A		69.216		-20.203		14.88	A
		ATOM	7324		PHE A		69.754		21.303		15.40	A
		MOTA	7325	CZ	PHE A		70.122		-20.339		12.24	A
		ATOM	7326		PHE A		65.182		-20.800		11.22	A
	55	MOTA	7327	0	PHE A	4 934	64.892	00.100	, -21.505	1.00	11022	4.1

													_
		MOTA	7328	N	ALA	A	935	65.586	79.453			13.19	A
		MOTA	7329	CA	ALA			65.662	80.799			14.58	A
		MOTA	7330		ALA			65.718	80.710			15.65	A
		MOTA	7331	С	ALA	A	935	66.808	81.675			16.26	A
	5	MOTA	7332	0	ALA	Α	935	66.590	82.825			17.74	A
		MOTA	7333	N	GLU	Α	936	68.022	81.136			16.39	A
		MOTA	7334	CA	GLU	Α	936	69.211	81.867			17.74	A
		ATOM	7335	CB	GLU	Α	936	70.467	81.103			20.01	A
		ATOM	7336	CG	GLU	Α	936	70.634	80.978			22.92	A
	10	MOTA	7337	CD	GLU	Α	936	71.701	79.965			24.26	A
		MOTA	7338	OE1	GLU	Α	936	71.485	78.753			25.07	A
		MOTA	7339	OE2	GLU	Α	936	72.757	80.381			25.95	A
		ATOM	7340	С	GLU	Α	936	69.246	82.112			17.36	A.
		ATOM	7341	0	GLU	А	936	68.448	81.555			16.51	A
	15	ATOM	7342	N	ASN	Α	937	70.182	82.945			17.29	A
		ATOM	7343	CA	ASN	Α	937	70.292	83.249			17.24	A
		ATOM	7344	CB	ASN			71.132	84.511			17.86	A
		MOTA	7345	CG	ASN			70.445	85.756			19.51	A
		MOTA	7346		ASN			69.224	85.891			19.45	A
175	20	MOTA	7347	ND2	ASN			71.224	86.680			20.71	A
		ATOM	7348	С	ASN	Α	937	70.872		-24.083		17.18	A
ACCES.		MOTA	7349	0	ASN	A	937	70.477		-25.231		17.44	A
Stanti		MOTA	7350	N	GLU			71.808		-23.498		17.86	A
era e Kerap Kerap		MOTA	7351	CA	GLU			72.420		-24.200		18.98	A
	25	MOTA	7352	CB	GLU			73.815		-24.706		21.93	A
		MOTA	7353	CG	GLU			74.555		-25.356		25.69	A
ij.		ATOM	7354	CD			938	75.752		-26.169		27.97	A
3 }		MOTA	7355	OE1				76.636		-25.613		29.35	A
		ATOM	7356	OE2			938	75.809		-27.369		29.44	A A
	30	MOTA	7357	С			938	72.512		-23.337		17.94	A
i E		MOTA	7358	0			938	72.883		-22.167		17.89	A
ga.		MOTA	7359	N			939	72.172		-23.935		17.52	A
		MOTA	7360	CA			939	72.205		-23.254		16.76 15.33	A
		MOTA	7361	CB			939	70.869		-23.479		13.33	A
	35	MOTA	7362	CG			939	70.741		-22.850		12.28	A
		MOTA	7363	CD2			939	69.654		-23.030		12.13	A
		MOTA	7364	CE2			939	69.933		-22.250 -23.776		11.44	A
		MOTA	7365		TRP			68.469		-21.991		13.47	A
	4.0	MOTA	7366		TRP			71.615		-21.627		12.39	A
	40	MOTA	7367		TRP			71.135		-22.196		11.94	A
		MOTA	7368		TRP			69.068		-23.723		11.55	A
		MOTA	7369		TRP			67.609		-22.938		12.10	A
		MOTA	7370		TRP			67.915		-23.814		17.70	A
		ATOM	7371	С			939	73.362		-23.814		18.81	A
	45	MOTA	7372	0			939	73.224		-24.030		18.72	A
		ATOM	7373	N			940	74.509		-23.144		19.32	A
		MOTA	7374	CA			940	75.690		-23.363 -22.879		20.59	A
		MOTA	7375	СВ			940	76.958		-23.335		21.55	A
	=0	ATOM	7376		LLE			78.178		-23.194		21.42	A
	50	MOTA	7377		. ILE			77.143		-23.194		22.42	A
		MOTA	7378		ILE			78.336		-22.300		18.18	A
		ATOM	7379	С			940	75.553		-23.302		18.75	A
		MOTA	7380	0			940	75.154		-24.298		17.98	A
		ATOM	7381	N			941	75.880				16.47	A A
	55	MOTA	7382	CA	GLY	A	941	75.795	11.321	-24.131	1.00	, 10.4/	n

		ATOM	7383	С	GLY A 941	74.396	70.764 -24.300	1.00 16.11	A
		ATOM	7384	0	GLY A 941	74.140	69.610 -23.953	1.00 14.65	А
		ATOM	7385	N	ALA A 942	73.490	71.572 -24.839	1.00 15.44	A
		ATOM	7386	CA	ALA A 942		71.147 -25.047	1.00 15.43	A
	5	ATOM	7387	СВ	ALA A 942		72.300 -25.618	1.00 15.09	A
	Ü	ATOM	7388	C	ALA A 942		69.934 -25.967	1.00 15.86	A
		ATOM	7389	0	ALA A 942		69.829 -26.964	1.00 16.24	A
		ATOM	7390	N	GLN A 943		69.022 -25.619	1.00 15.50	A
		ATOM	7391	CA	GLN A 943		67.822 -26.410	1.00 15.78	A
	10	ATOM	7392	СВ	GLN A 943		66.571 -25.553	1.00 16.41	A
	10	ATOM	7393	CG	GLN A 943		66.493 -24.914	1.00 19.58	A
		ATOM	7394	CD	GLN A 943		65.219 -24.123	1.00 20.93	A
		ATOM	7395		GLN A 943		64.829 -23.326	1.00 22.95	A
		MOTA	7396		GLN A 943		64.565 -24.333	1.00 22.03	A
	15	MOTA	7397	С	GLN A 943	69.422	67.898 -26.934	1.00 15.16	A
	10	ATOM	7398	0	GLN A 943		68.504 -26.302	1.00 14.93	A
		MOTA	7399	N	GLY A 944	69.171	67.277 -28.080	1.00 14.52	A
		ATOM	7400	CA	GLY A 944	67.853	67.358 -28.677	1.00 14.66	A
41 ²⁵ 0		ATOM	7401	С	GLY A 944		66.373 -28.261	1.00 14.61	A
	20	ATOM	7402	0	GLY A 944		66.576 -28.569	1.00 14.40	A
Tribuli Limit		ATOM	7403	N	GLN A 945	67.169	65.318 -27.551	1.00 14.07	A
1,1 <u>-2</u> 1		ATOM	7404	CA	GLN A 945	66.180	64.328 -27.168	1.00 14.57	A
{,# ¶ ±ræ=		ATOM	7405	СВ	GLN A 945	65.814	63.516 -28.412	1.00 15.05	A
		ATOM	7406	CG	GLN A 945	64.863	62.360 -28.204	1.00 17.81	A
	25	ATOM	7407	CD	GLN A 945		61.630 -29.503	1.00 18.96	A
ij.		MOTA	7408	OE1			62.104 -30.341	1.00 21.23	A
		ATOM	7409	NE2	GLN A 945		60.480 -29.684	1.00 20.13	A
81		ATOM	7410	С	GLN A 945			1.00 13.74	A
(<u>.</u>		ATOM	7411	0	GLN A 945			1.00 14.42	A A
ı	30	MOTA	7412	N	PHE A 946			1.00 12.42	A A
191		MOTA	7413	CA	PHE A 94			1.00 11.92 1.00 11.65	A
		MOTA	7414	CB	PHE A 94			1.00 11.03	A
		ATOM	7415	CG	PHE A 94			1.00 11.33	A
		MOTA	7416		PHE A 94			1.00 11.76	A
gran.	35	MOTA	7417		PHE A 94			1.00 12.23	A
		MOTA	7418		PHE A 94			1.00 12.23	A
		MOTA	7419		PHE A 94			1.00 11.69	A
		MOTA	7420	CZ	PHE A 94			1.00 11.81	A
	40	MOTA		С	PHE A 94			1.00 11.13	A
	40	MOTA	7422	0	PHE A 94			1.00 11.13	A
		ATOM	7423	N	GLY A 94			1.00 12.34	A
		MOTA	7424	CA	GLY A 94			1.00 12.93	A
		MOTA	7425	C	GLY A 94			1.00 12.03	A
	4 -	MOTA	7426	0	GLY A 94			1.00 14.12	A
	45	MOTA	7427	N	GLY A 94			1.00 15.63	А
		ATOM	7428	CA	GLY A 94			1.00 17.10	А
		ATOM	7429		GLY A 94			1.00 18.33	A
		ATOM	7430	0	GLY A 94			1.00 18.00	А
	E0	ATOM	7431		ASP A 94			1.00 18.53	А
	50	ATOM	7432		ASP A 94			1.00 20.30	А
		ATOM	7433		ASP A 94 ASP A 94			1.00 22.70	А
		ATOM	7434		ASP A 94 L ASP A 94				А
		MOTA	7435		L ASP A 94 2 ASP A 94				А
	EE	MOTA	7436						A
	55	ATOM	7437	С	ASP A 94) 04.1/1	, 55.575 25.513	_	

		ATOM	7438	0	ASP A	9/9	64.194	52 356	-25.834	1.00 1	8.75	A
		ATOM	7430	N	HIS A		63.310		-25.411	1.00 1		А
					HIS A		62.297		-24.503	1.00 1		А
		MOTA	7440	CA	HIS A		61.548		-23.758	1.00 1		A
	Е	ATOM	7441	СВ			62.378		-22.778	1.00 1		A
	5	MOTA	7442	CG	HIS A				-22.778	1.00 1		A
		MOTA	7443		HIS A		62.106			1.00 1		A
		MOTA	7444		HIS A		63.630		-22.365			
		MOTA	7445		HIS A		64.091		-21.469	1.00 1		A
		ATOM	7446	NE2	HIS A		63.185		-21.287	1.00 1		A
	10	MOTA	7447	С	HIS A		61.263		-25.326	1.00 1		A
		ATOM	7448	0	HIS A		60.886		-26.414	1.00 1		A
		MOTA	7449	N	PRO A		60.788		-24.818	1.00 1		A
		ATOM	7450	CD	PRO A	951	61.323		-23.696	1.00 1		A
		MOTA	7451	CA	PRO A	951	59.788		-25.566	1.00 1		Α
	15	MOTA	7452	CB	PRO A	951	59.614		-24.715	1.00 1		А
		ATOM	7453	CG	PRO A	951	60.975	49.727	-24.112	1.00 1	6.73	A
		ATOM	7454	С	PRO A	951	58.484	51.952	-25.692	1.00 1		A
		MOTA	7455	0	PRO A		58.084	52.657	-24.762	1.00 1	4.20	Α
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ATOM	7456	N	SER A		57.832	51.849	-26.845	1.00 1		A
	20	ATOM	7457	CA	SER A		56.566	52.538	-27.064	1.00 1	3.35	A
		ATOM	7458	СВ	SER A		56.500	53.103	-28.484	1.00 1	3.35	A
		MOTA	7459	OG	SER A		55.421		-28.630	1.00 1	4.37	Α
4M		ATOM	7460	C	SER A		55.489		-26.851	1.00 1	3.53	A
d state		ATOM	7461	Ö	SER A		55.179		-27.752	1.00 1	3.71	A
N	25	ATOM	7462	N	ALA A		54.933		-25.643	1.00 1		A
	23	ATOM	7463	CA	ALA A		53.924		-25.236	1.00 1		A
			7464	CB	ALA A		53.755		-23.719	1.00 1		A
M		ATOM	7465	C	ALA A		52.562		-25.902	1.00 1		A
21		ATOM	7465	0	ALA A		52.190		-26.421	1.00 1		А
	30	ATOM ATOM	7467	N	ARG A		51.824		-25.877	1.00 1		Α
	30		7468	CA	ARG F		50.486		-26.446	1.00 1		A
		MOTA	7469	CB	ARG A		49.857		-26.142	1.00 1		A
		ATOM			ARG F		48.477		-26.737	1.00 2		A
1000		MOTA	7470	CG			48.371		-27.377	1.00 3		A
	25	ATOM	7471	CD	ARG A		46.988		-27.486	1.00 3		A
	35	ATOM	7472	NE	ARG P				-26.447	1.00 3		A
		ATOM	7473	CZ	ARG A		46.241		-25.224	1.00		A
		ATOM	7474		ARG A		46.748		-26.628	1.00		A
		ATOM	7475		ARG F		44.990		-25.837	1.00		A
	40	MOTA	7476	С	ARG A		49.658		-23.637 -24.651			A
	40	ATOM			ARG A		49.792			1.00		A
		MOTA	7478	N	GLU F		48.792		-26.652	1.00		A
		ATOM	7479	CA	GLU A		47.979		-26.241			A
		MOTA	7480	CB	GLU A		47.073		-27.400	1.00		
		ATOM	7481	CG	GLU A		45.904		-27.665	1.00		A
	45	MOTA	7482	CD	GLU A		45.042		-28.814	1.00		A
		MOTA	7483		GLU A		44.870		-28.958	1.00 2		A
		ATOM	7484	OE2	GLU A		44.528		-29.567	1.00		A
		MOTA	7485	С	GLU A		47.140		-24.970	1.00		A
		ATOM	7486	0	GLU A		46.859		-24.326	1.00		A
	50	MOTA	7487	N	ASP A		46.734		-24.602	1.00		A
		MOTA	7488	CA	ASP A		45.919		-23.403	1.00		A
		ATOM	7489	СВ		956	44.937		-23.567	1.00		A
		MOTA	7490	CG	ASP A	956	45.624		-23.887	1.00		A
		ATOM	7491	OD1	ASP A	A 956	46.860		-24.078	1.00		A
	55	ATOM	7492	OD2	ASP A	A 956	44.909	47.313	-23.949	1.00	15.09	A

	ATOM	7493	С	ASP A	956	46.731	50.665	-22.124	1.00	10.25	А
	ATOM	7494		ASP A		46.164		-21.042	1.00		А
	ATOM	7495		LEU A		48.053		-22.244	1.00	9.84	A
	ATOM	7495		LEU A		48.922		-21.080	1.00	9.73	A
5	ATOM	7497		LEU A		50.052		-21.387	1.00	11.24	A
5	ATOM	7498		LEU A		50.977		-20.230	1.00		А
	ATOM	7499		LEU A		50.171		-19.144	1.00		A
	ATOM	7500		LEU A		52.086		-20.742	1.00		A
	ATOM	7501		LEU A		49.524		-20.668	1.00	9.37	А
10	ATOM	7502		LEU A		49.927		-21.512	1.00	10.03	A
10	ATOM	7503		ASP A		49.582		-19.366	1.00	8.45	A
	ATOM	7504		ASP A		50.169		-18.876	1.00	7.96	A
	ATOM	7505	CB	ASP A		49.071		-18.495	1.00	8.11	A
	ATOM	7506	CG	ASP A		49.620		-18.179	1.00	7.70	A
15	ATOM	7507		ASP A		50.731		-18.644	1.00	8.38	A
10	ATOM	7508		ASP A		48.925		-17.472	1.00	9.30	A
	ATOM	7509	C	ASP A		51.054		-17.672	1.00	7.71	A
	ATOM	7510	0	ASP A		50.831		-16.922	1.00	7.72	A
	ATOM	7511	N	VAL A		52.090		-17.529	1.00	7.93	А
20	ATOM	7512	CA	VAL A		52.982		-16.381	1.00	7.45	A
20	ATOM	7513	СВ	VAL A		54.446	54.104	-16.769	1.00	8.17	A
	MOTA	7514		VAL A		55.310	54.221	-15.508	1.00	8.69	A
	MOTA	7515		VAL A		54.957	52.963	-17.649	1.00	9.44	A
	ATOM	7516	C	VAL A		52.435	54.981	-15.529	1.00	7.71	A
25	ATOM	7517	0	VAL A		52.868		-15.641	1.00	7.48	A
	ATOM	7518	N	SER A		51.437	54.651	-14.717	1.00	8.00	А
	ATOM	7519	CA	SER A		50.759	55.617	-13.860	1.00	8.19	А
	ATOM	7520	СВ	SER A		49.654		-13.065	1.00	8.71	А
	ATOM	7521	OG	SER A	960	48.832		-13.917	1.00	9.90	A
30	ATOM	7522	С	SER A	960	51.708		-12.901	1.00	8.29	A
	MOTA	7523	0	SER A	960	51.571		-12.626	1.00	7.81	A
	MOTA	7524	N	VAL A	961	52.664		-12.391	1.00	8.17	A
	ATOM	7525	CA	VAL A	961	53.641		-11.447	1.00	8.74	A
	ATOM	7526	CB	VAL A	961	53.272	55.682	-9.984	1.00	9.01	A
35	MOTA	7527	CG1			54.391	56.118	-9.037	1.00	8.99	A
	MOTA	7528	CG2	VAL A	961	51.954	56.332	-9.576	1.00	9.73	A
	MOTA	7529	С	VAL A		55.039		-11.685	1.00	8.56	A
	MOTA	7530	0	VAL A		55.211		-11.966	1.00	8.35	A
	MOTA	7531	N	MSE A	962	56.025		-11.601	1.00	7.97	A
40	MOTA	7532	CA	MSE A		57.426			1.00	7.71	A
	MOTA	7533	СВ	MSE A		58.105		-12.982	1.00	9.07	A
	ATOM	7534	CG	MSE A		59.572		-12.957		10.29	A A
	ATOM	7535	SE	MSE A		60.468		-14.600		16.74	A
	ATOM	7536	CE	MSE A		62.233		-14.146		11.26	A
45	MOTA	7537	C	MSE A		58.024		-10.533	1.00	8.57	A
	MOTA	7538	0	MSE A		57.996		-10.553	1.00	7.92	A
	MOTA	7539	N		963	58.547	56.125		1.00	8.31	A
	MOTA	7540	CA	ARG A		59.101	56.792		1.00	8.77	A
50	ATOM	7541	СВ		4 963	58.032	56.827 57.343		1.00	9.81	A
50	ATOM	7542	CG		963	58.504	57.201		1.00	9.72	A
	ATOM	7543	CD		A 963	57.395	57.201		1.00	7.97	A
	ATOM	7544	NE		963	56.184	57.886		1.00	7.38	A
	ATOM	7545	CZ		963	54.952 54.737	56.207		1.00	7.56	A
==	MOTA	7546		ARG A			58.084		1.00	7.55	A
55	MOTA	7547	NH2	ARG A	4 963	53.932	30.004	-3.070	1.00	,	1.1

	ATOM	7548	С	ARG .	A	963	60.339	56.101	-7.815	1.00 7.62	A
	MOTA	7549	0	ARG I	A	963	60.291	54.920	-7.493	1.00 7.67	A
	MOTA	7550	N	ARG .	A	964	61.449	56.828	-7.716	1.00 8.28	A
	MOTA	7551	CA	ARG .	A	964	62.647	56.225	-7.145	1.00 8.89	A
5	MOTA	7552	CB	ARG .	A	964	63.884	57.089	-7.404	1.00 8.93	A
	ATOM	7553	CG	ARG .	Α	964	65.167	56.450	-6.869	1.00 9.00	A
	ATOM	7554	CD	ARG .	Α	964	66.407	57.176	-7.367	1.00 10.27	A
	ATOM	7555	NE	ARG .	A	964	66.602	57.011	-8.807	1.00 10.73	A
	ATOM	7556	CZ	ARG .			67.433	56.134	-9.362	1.00 10.80	A
10	ATOM	7557	NH1	ARG			68.166	55.324	-8.605	1.00 12.81	Α
	MOTA	7558	NH2				67.545	56.070	-10.684	1.00 12.53	A
	ATOM	7559	С	ARG .			62.329	56.156	-5.655	1.00 9.28	A
	ATOM	7560	0	ARG			61.892	57.143	-5.057	1.00 9.41	A
	ATOM	7561	N	LEU			62.543	54.987	-5.066	1.00 9.53	A
15	ATOM	7562	CA	LEU			62.217	54.754	-3.663	1.00 9.91	A
10	ATOM	7563	СВ	LEU			61.586	53.367	-3.524	1.00 10.58	A
	ATOM	7564	CG	LEU			60.391	53.090	-4.442	1.00 10.29	A
	ATOM	7565		LEU			60.038	51.612	-4.420	1.00 10.06	A
	MOTA	7566	CD2				59.205	53.929	-4.000	1.00 11.47	A
20	ATOM	7567	C	LEU			63.387	54.869	-2.695	1.00 10.70	A
2.0	ATOM	7568	0	LEU			63.196	54.816	-1.478	1.00 11.63	A
	ATOM	7569	N	THR			64.588	55.037	-3.234	1.00 10.63	A
	ATOM	7570	CA	THR			65.791	55.136	-2.413	1.00 11.37	A
	ATOM	7571	CB	THR			66.782	54.007	-2.762	1.00 11.25	A
25	ATOM	7572	OG1	THR			66.908	53.906	-4.186	1.00 10.62	A
23	ATOM	7573	CG2	THR			66.304	52.678	-2.204	1.00 11.27	А
	ATOM	7574	C	THR			66.527	56.454	-2.599	1.00 11.74	A
	ATOM	7575	0	THR			66.485	57.045	-3.678	1.00 11.44	A
	ATOM	7576	N	LYS			67.193	56.907	-1.540	1.00 12.38	A
30	ATOM	7577	CA	LYS			67.986	58.129	-1.591	1.00 13.90	A
50		7578	CB	LYS			68.110	58.758	-0.202	1.00 15.59	А
	ATOM	7579	СБ	LYS			66.814	59.377	0.312	1.00 18.36	A
	ATOM	7580	CD			967	67.054	60.147	1.600	1.00 20.78	A
	ATOM ATOM	7581	CE	LYS			65.797	60.856	2.074	1.00 22.33	А
35	ATOM	7582	NZ			967	66.063	61.668	3.296	1.00 24.16	A
55		7583	C			967	69.361	57.728	-2.129	1.00 14.35	A
	ATOM	7584	0	LYS			69.669	56.541	-2.218	1.00 13.76	A
	ATOM ATOM	7585	N			968	70.180	58.713	-2.482	1.00 15.21	A
	ATOM	7586	CA			968	71.497	58.452	-3.061	1.00 16.60	A
40		7587				968	72.183	59.776	-3.415	1.00 17.31	A
40	MOTA	7588	CB OG			968	72.434	60.550	-2.257	1.00 19.84	A
	ATOM	7589	C			968	72.464	57.592	-2.250	1.00 16.96	А
	ATOM					968	73.327	56.931	-2.826	1.00 18.10	A
	ATOM	7590	0				72.320	57.593	-0.929	1.00 17.39	A
45	ATOM	7591	N			969	73.214	56.819		1.00 18.70	А
45	ATOM	7592	CA			969	73.219	57.320		1.00 19.87	A
	ATOM	7593	CB			969	71.782	57.194	1.862	1.00 23.45	А
	MOTA	7594	OG			. 969	72.999	55.306	-0.089	1.00 18.31	A
	MOTA	7595	С			. 969	73.839	54.552	0.408	1.00 18.36	A
EΩ	ATOM	7596	0			. 969		54.856		1.00 17.75	A
50	ATOM	7597	N			. 970	71.887 71.595	53.427		1.00 17.78	A
	ATOM	7598	CA			970	70.111	53.207		1.00 17.81	A
	ATOM	7599	CB			970		52.697		1.00 17.01	A
	MOTA	7600	C			970	72.427	53.027		1.00 18.06	A
	ATOM	7601	0			970	72.379			1.00 18.93	A
55	ATOM	7602	N	LYS	Ρ	971	73.185	51.696	-1.520	1.00 10.00	- 1

		ATOM	7603	CA	LYS A	971	74.021	50.905	-2.226	1.00 19.90	A
		ATOM	7604	CB	LYS A	971	74.726	49.793	-1.447	1.00 21.65	А
		MOTA	7605	CG	LYS A	971	75.912	50.260	-0.619	1.00 24.85	A
		ATOM	7606	CD	LYS A			49.145	0.278	1.00 25.97	A
	5	ATOM	7607	CE		971		47.850	-0.495	1.00 26.95	А
		ATOM	7608	ΝZ	LYS A			48.023	-1.653	1.00 27.59	А
		ATOM	7609	C	LYS A	971	73.185	50.290	-3.341	1.00 18.94	A
		ATOM	7610	0	LYS A	971	73.598	50.269	-4.500	1.00 20.08	A
		ATOM	7611	N	THR A		72.013	49.778	-2.982	1.00 18.05	А
	10	ATOM	7612	CA		972		49.182	-3.961	1.00 16.90	А
		MOTA	7613	CB		972	70.563	47.820	-3.483	1.00 17.94	A
		MOTA	7614	OG1	THR A	4 972	71.649	46.913	-3.252	1.00 19.39	A
		MOTA	7615	CG2	THR A	972	69.641	47.222	-4.538	1.00 18.08	А
		MOTA	7616	C	THR A	972	69.949	50.135	-4.183	1.00 15.14	A
	15	MOTA	7617	0	THR A	972	69.116	50.327	-3.298	1.00 14.90	А
		MOTA	7618	N	GLN A	973	69.903	50.746	-5.361	1.00 13.21	A
		ATOM	7619	CA	GLN A	973	68.832	51.678	-5.688	1.00 12.53	A
		MOTA	7620	CB	GLN A	973	69.267	52.585	-6.841	1.00 11.85	A
Telegr		ATOM	7621	CG	GLN A		70.371	53.557	-6.466	1.00 11.87	A
	20	ATOM	7622	CD	GLN A	4 973	69.924	54.569	-5.432	1.00 12.68	A
ŭ,		MOTA	7623	OE1	GLN A	973	70.548	54.720	-4.377	1.00 14.40	A
191		ATOM	7624	NE2	GLN A	973	68.840	55.275	- 5.731	1.00 10.57	A
		MOTA	7625	С	GLN A	973	67.565	50.923	-6.062	1.00 11.92	A
9 ₉₀₀ 8 941 5		ATOM	7626	0	GLN A		67.623	49.851	-6.656	1.00 12.62	А
	25	ATOM	7627	N	ARG A	974	66.415	51.485	-5.706	1.00 11.58	A
		MOTA	7628	CA	ARG A		65.143	50.856	-6.022	1.00 11.62	A
		MOTA	7629	CB	ARG A		64.485	50.318	-4.750	1.00 12.80	A
RI .		MOTA	7630	CG	ARG A		65.324	49.299	-3.994	1.00 14.41	A
	20	MOTA	7631	CD	ARG A		64.713	48.990	-2.633	1.00 15.71	A
	30	MOTA	7632	NE	ARG A		63.450	48.264	-2.738	1.00 19.08	A
10 Mg 10 Mg		MOTA	7633	CZ	ARG A		62.310	48.656	-2.176	1.00 18.19	А
i man		MOTA	7634		ARG A		62.263	49.776	-1.466	1.00 19.24	A
		ATOM	7635		ARG A		61.217	47.919	-2.317	1.00 19.09	A
	25	MOTA	7636	С	ARG A		64.215	51.865	-6.685	1.00 10.37	A
Same.	35	ATOM	7637	0	ARG A		64.117	53.012	-6.246	1.00 11.02	A
		ATOM	7638	N	VAL A		63.547	51.436	-7.750	1.00 10.47	A
		ATOM	7639	CA	VAL A		62.612	52.300	-8.458	1.00 10.13	A
		ATOM	7640	CB	VAL A		63.130	52.680	-9.860	1.00 10.67	A
	40	ATOM	7641		VAL		62.104		-10.579	1.00 10.06	A
	40	ATOM	7642				64.450			1.00 10.88	A
		ATOM	7643	C	VAL A		61.287	51.567	-8.594	1.00 10.08	A
		ATOM	7644	0	VAL A		61.232	50.423	-9.063	1.00 9.41	A
		ATOM	7645	N	GLY A		60.217	52.232	-8.178	1.00 9.67	A
	45	ATOM	7646	CA	GLY A		58.904	51.622	-8.247	1.00 9.24	A
	43	ATOM	7647	C	GLY A		58.067	52.121	-9.405	1.00 8.66	A
		MOTA MOTA	7648	0	GLY A		58.142	53.290		1.00 8.68	A
			7649	N	TYR A		57.268	51.218		1.00 8.45	A
		ATOM	7650	CA	TYR A		56.390		-11.072	1.00 8.07	A
	50	ATOM	7651	CB	TYR A		56.874		-12.374	1.00 8.64	A
	50	MOTA	7652	CG	TYR A		58.271		-12.791	1.00 8.17	A
		ATOM	7653		TYR A		59.371		-12.312	1.00 8.99	A
		MOTA	7654 7655		TYR A		60.664		-12.706	1.00 9.30	A
		MOTA	7655		TYR A		58.496		-13.673	1.00 8.85	A
	F F	MOTA	7656		TYR A		59.773		-14.068	1.00 10.31	A
	55	MOTA	7657	CZ	TYR A	1 9//	60.855	DI.94/	-13.586	1.00 9.76	A

	MOTA	7658	ОН	TYR A	977	62.125		-13.980	1.00 11.36	А
	ATOM	7659	С	TYR A	977	54.993		-10.822	1.00 7.74	А
	ATOM	7660	0	TYR A	977	54.828		-10.307	1.00 8.14	A
	ATOM	7661	N	VAL A	978	53.987		-11.174	1.00 7.18	A
5	ATOM	7662	CA	VAL A	978	52.613		-11.084	1.00 7.63	A
	ATOM	7663	СВ	VAL A	978	51.693		-10.300	1.00 7.48	А
	MOTA	7664	CG1	VAL A	978	50.250		-10.418	1.00 8.22	A
	MOTA	7665	CG2	VAL A	978	52.098		-8.837	1.00 8.52	A
	MOTA	7666	С	VAL A	978	52.168		-12.537	1.00 7.85	A
10	ATOM	7667	0	VAL A	978	52.203		-13.225	1.00 8.22	A
	MOTA	7668	N	LEU A		51.794		-13.000	1.00 8.70	A
	ATOM	7669	CA	LEU A	979	51.350		-14.369	1.00 10.20	A
	ATOM	7670	СВ	LEU A	979	52.084		-14.982	1.00 12.54	A
	ATOM	7671	CG	LEU A	979	53.417		-15.684	1.00 16.22	Α
15	MOTA	7672	CD1	LEU A	979	53.139		-17.089	1.00 16.69	A
	MOTA	7673	CD2	LEU A	979	54.262		-14.897	1.00 16.92	A
	ATOM	7674	C	LEU A	979	49.856		-14.417	1.00 9.64	A
	ATOM	7675	0	LEU A	979	49.343		-13.724	1.00 10.75	A
	MOTA	7676	N	HIS A	980	49.152		-15.233	1.00 9.35	A
20	MOTA	7677	CA	HIS A	980	47.724	50.240	-15.370	1.00 9.64	A
	ATOM	7678	СВ	HIS A	980	46.926	51.443	-14.863	1.00 9.78	A
	MOTA	7679	CG	HIS A	980	45.447		-14.994	1.00 9.39	А
	ATOM	7680	CD2	HIS A	. 980	44.602		-14.332	1.00 7.39	A
	ATOM	7681	ND1	HIS A	980	44.693		-15.969	1.00 10.35	A
25	MOTA	7682	CE1	HIS A	980	43.448		-15.903	1.00 7.04	A
	MOTA	7683	NE2	HIS A	980	43.367		-14.918	1.00 10.79	A
	ATOM	7684	С	HIS A	980	47.348		-16.817	1.00 10.11	A
	MOTA	7685	0	HIS A		47.788		-17.705	1.00 11.06	A
	ATOM	7686	N	ARG A	981	46.537		-17.052	1.00 9.65	A
30	ATOM	7687	CA	ARG A	981	46.076		-18.397	1.00 10.37	A
	ATOM	7688	CB	ARG A		46.436		-18.832	1.00 12.59	A
	ATOM	7689	CG	ARG A		46.052		-20.272	1.00 16.41	A
	MOTA	7690	CD	ARG A		46.568		-20.691	1.00 19.84	A
	MOTA	7691	NE	ARG F	981	46.118		-22.024	1.00 23.55	A
35	ATOM	7692	CZ	ARG F		46.338		-22.564	1.00 25.07	A
	MOTA	7693	NH1	ARG F		47.00		-21.880	1.00 25.67	A
	MOTA	7694	NH2	ARG F		45.890		-23.782	1.00 26.12	A
	MOTA	7695	С	ARG A		44.572		-18.360	1.00 9.55 1.00 9.46	A A
	MOTA	7696	0	ARG A		43.892		-17.576		
40	MOTA	7697	N	THR A		44.05		-19.185		A
	ATOM	7698	CA	THR A		42.62		-19.245	1.00 9.61	A A
	MOTA	7699	СВ	THR A		42.32		-19.679	1.00 9.52 1.00 9.48	A
	ATOM	7700	OG1			40.92		-19.547	1.00 9.48 1.00 10.43	A
	MOTA	7701	CG2			42.77		-21.120	1.00 10.43	A
45	ATOM	7702	С		982	42.09		-20.280	1.00 10.00	A
	ATOM	7703	0		A 982	42.83		-20.716	1.00 11.44	A
	MOTA	7704	N	ASN A		40.82		-20.642	1.00 9.38	A
	ATOM	7705	CA	ASN A		40.26		-21.652		A
	MOTA	7706	CB		983	39.25		-21.057	1.00 9.79 1.00 9.90	A
50	MOTA	7707	CG		A 983	38.74		-22.088		A
	MOTA	7708		ASN A		39.47		-22.493	1.00 11.26 1.00 11.73	A
	MOTA	7709		ASN A		37.51		-22.535		A
	MOTA	7710	С		A 983	39.56		-22.682		A
	ATOM	7711	0		A 983	38.62		-22.359		A
55	MOTA	7712	N	LEU Z	A 984	40.02	9 48.994	-23.920	1.00 11.31	Д

	ATOM	7713	CA	LEU	Α	984	39.461	49.778	-25.003	1.00	13.01	А
	ATOM	7714	СВ	LEU			40.574		-25.790		13.38	А
	ATOM	7715	CG	LEU			41.532	51.306	-24.945		13.55	А
	ATOM	7716	CD1	LEU			42.655	51.828	-25.825		14.92	A
5	MOTA	7717	CD2	LEU	A	984	40.774	52.448	-24.282	1.00	13.40	A
	MOTA	7718	С	LEU	Α	984	38.674	48.868	-25.919	1.00	14.57	A
	ATOM	7719	0	LEU	A	984	39.067	47.731	-26.167	1.00	14.53	A
	MOTA	7720	N	MSE			37.557	49.371	-26.422	1.00	16.64	A
	MOTA	7721	CA	MSE			36.724	48.579	-27.307	1.00	20.14	A
10	ATOM	7722	CB	MSE	Α	985	35.417	49.300	-27.593	1.00	22.91	А
	ATOM	7723	CG	MSE	A	985	34.540	49.482	-26.392	1.00	26.23	A
	MOTA	7724	SE	MSE	Α	985	32.730	49.389	-26.975	1.00	32.71	A
	MOTA	7725	CE	MSE	A	985	32.637	51.060	-27.940	1.00	29.41	A
	MOTA	7726	С	MSE	Α	985	37.403	48.274	-28.625	1.00	21.11	A
15	MOTA	7727	0	MSE	A	985	38.127	49.101	-29.178	1.00	21.04	A
	MOTA	7728	N	GLN	A	986	37.169	47.070	-29.124		22.25	A
	MOTA	7729	CA	GLN	Α	986	37.721		-30.403		23.97	A
	MOTA	7730	CB	GLN	A	986	38.052	45.174	-30.389		26.84	A
	ATOM	7731	CG	GLN	A	986	36.990	44.298	-29.749		30.56	A
20	MOTA	7732	CD	GLN	A	986	37.548	42.971	-29.263		32.21	A
	MOTA	7733	OE1	GLN			36.814		-28.750		33.51	A
	ATOM	7734		GLN			38.856		-29.416		33.24	A
	MOTA	7735	С	GLN			36.626		-31.407		23.34	А
0=	MOTA	7736	0	GLN			35.513		-31.314		23.11	A
25	ATOM	7737	N	CYS			36.929		-32.346		22.85	A
	MOTA	7738	CA	CYS			35.944		-33.338		23.08	А
	ATOM	7739	С	CYS			36.405		-34.771		24.34	A
	ATOM	7740	0	CYS			35.897		-35.701		24.34	A
30	ATOM	7741	CB	CYS			35.592		-33.160		22.10	A
50	ATOM	7742	SG	CYS			35.108		-31.476		21.61	A
	MOTA MOTA	7743 7744	N CA	GLY GLY			37.371 37.845		-34.949 -36.287		25.32 28.05	A A
	ATOM	7745	CA	GLY			39.102		-36.744		29.88	A
	ATOM	7746	0	GLY			39.416		-37.937		29.77	A
35	ATOM	7747	N	THR			39.826		-35.813		31.64	A
٥ ٠	ATOM	7748	CA	THR			41.057		-36.159		33.74	A
	MOTA	7749	CB	THR			41.213		-35.354		33.53	A
	MOTA	7750	OG1	THR			40.077		~35.584		34.03	A
	ATOM	7751	CG2				42.472		-35.781		33.57	A
40	MOTA	7752	С	THR			42.253		-35.875		35.49	А
	ATOM	7753	0	THR					-34.741	1.00	35.26	A
	ATOM	7754	N	PRO			43.052	47.666	-36.912	1.00	37.38	A
	MOTA	7755	CD	PRO	Α	990	42.900	48.144	-38.298	1.00	37.60	A
	MOTA	7756	CA	PRO	Α	990	44.236	46.810	-36.788	1.00	39.24	A
45	ATOM	7757	CB	PRO	A	990	44.979	47.076	-38.090	1.00	38.87	A
	MOTA	7758	CG	PRO	Α	990	43.853	47.242	-39.061	1.00	38.12	А
	MOTA	7759	С	PRO	Α	990	45.087	47.105	-35.553	1.00	41.21	А
	ATOM	7760	0	PRO	Α	990	45.363	46.205	-34.759	1.00	41.51	Α
	MOTA	7761	И	GLU	Α	991	45.499	48.360	-35.395	1.00	43.24	А
50	MOTA	7762	CA	GLU			46.316		-34.250		45.36	А
	ATOM	7763	CB	GLU			45.471		-32.975		46.82	A
	MOTA	7764	CG	GLU			44.233		-33.029		48.73	A
	MOTA	7765	CD	GLU			43.276		-31.881		49.86	А
	ATOM	7766		GLU			43.701		-30.713		50.20	A
55	MOTA	7767	OE2	GLU	A	991	42.097	49.018	-32.149	1.00	50.38	А

		ATOM	7768	С	GLU A	991	47.513	47.816 -34.120	1.00 45.81	A
		ATOM	7769	0	GLU A		47.428	46.774 -33.470	1.00 46.00	A
		ATOM	7770	N	GLU A		48.630	48.193 -34.733	1.00 46.27	A
		ATOM	7771	CA	GLU A		49.825	47.359 -34.705	1.00 46.79	A
	5		7772	CB	GLU A		50.172	46.919 -36.130	1.00 47.94	А
	5	MOTA	7773	CG	GLU A		49.080	46.124 -36.825	1.00 49.54	A
		ATOM			GLU A		49.384	45.880 -38.291	1.00 50.48	A
		ATOM	7774	CD			50.469	45.341 -38.596	1.00 50.94	A
		MOTA	7775	OE1	GLU A			46.226 -39.140	1.00 51.09	A
	10	MOTA	7776		GLU A		48.534	48.015 -34.075	1.00 46.42	A
	10	MOTA	7777	С	GLU A		51.052		1.00 46.39	A
		MOTA	7778	0	GLU A		50.947	48.832 -33.161		A
		MOTA	7779	N	HIS A		52.214	47.625 -34.593	1.00 45.82	
		ATOM	7780	CA	HIS P		53.526	48.105 -34.167	1.00 44.90	A
		MOTA	7781	CB	HIS A		54.113	49.027 -35.249	1.00 46.12	A
	15	MOTA	7782	CG	HIS A	. 993	53.206	50.144 -35.668	1.00 47.42	A
		MOTA	7783		HIS F		52.148	50.721 -35.049	1.00 47.85	A
		ATOM	7784		HIS A		53.364	50.818 -36.860	1.00 47.77	A
		MOTA	7785	CE1	HIS A	993	52.442	51.758 -36.959	1.00 48.01	A
		MOTA	7786	NE2	HIS F	993	51.691	51.721 -35.873	1.00 48.09	A
	20	MOTA	7787	С	HIS A	993	53.669	48.760 -32.794	1.00 43.41	A
Spirate Communication of the C		MOTA	7788	0	HIS A	993	53.618	49.983 -32.662	1.00 43.54	A
4,52		ATOM	7789	N	THR A	994	53.858	47.923 -31.776	1.00 41.20	A
		ATOM	7790	CA	THR A	994	54.058	48.377 -30.401	1.00 38.33	A
		ATOM	7791	СВ	THR A		52.741	48.405 -29.592	1.00 38.20	A
	25	ATOM	7792	OG1	THR A		52.211	47.079 -29.480	1.00 37.64	A
104		ATOM	7793	CG2	THR A		51.721	49.307 -30.267	1.00 37.89	A
1971		MOTA	7794	C	THR A		55.028	47.405 -29.734	1.00 36.67	A
		ATOM	7795	0	THR A		54.980	46.200 -29.982	1.00 36.66	A
A) Avea		ATOM	7796	N	GLN A		55.908	47.931 -28.889	1.00 34.18	A
	30	ATOM	7797	CA	GLN A		56.899	47.105 -28.210	1.00 31.74	A
1.5	50	ATOM	7798	CB	GLN A		58.227	47.851 -28.120	1.00 32.78	A
		ATOM	7799	CG	GLN A		58.693	48.461 -29.423	1.00 34.00	A
į.d		ATOM	7800	CD	GLN A		59.846	49.417 -29.219	1.00 35.18	A
		ATOM	7801	OE1			60.953	49.009 -28.862	1.00 35.89	A
	35	ATOM	7802		GLN A		59.589	50.703 -29.428	1.00 34.40	A
2,	33		7803	C		A 995	56.467	46.719 -26.804	1.00 29.41	A
		ATOM	7803	0		A 995	55.719	47.446 -26.150	1.00 28.31	А
		ATOM	7805	И	LYS A		56.952	45.573 -26.341	1.00 27.07	Α
		ATOM			LYS A		56.639	45.110 -25.000	1.00 25.50	A
	40	ATOM	7806	CA			57.143	43.678 -24.793	1.00 27.59	A
	40	ATOM	7807	CB		A 996	56.424	42.636 -25.635	1.00 30.19	A
		ATOM	7808	CG		4 996	54.951	42.545 -25.263	1.00 31.86	A
		ATOM	7809	CD		A 996		41.461 -26.063	1.00 31.00	A
		ATOM	7810	CE		A 996	54.246	40.117 -25.811	1.00 32.41	A
	4 -	ATOM	7811	ΝZ		A 996	54.837	46.045 -24.024	1.00 23.02	A
	45	ATOM	7812	C		A 996	57.333		1.00 23.02	A
		ATOM	7813	0		A 996	58.498	46.399 -24.210		A
		MOTA	7814	N		A 997	56.613	46.456 -22.989		
		MOTA	7815	CA		A 997	57.183	47.350 -21.998	1.00 18.95	A
		MOTA	7816	CB		A 997	56.180	48.443 -21.622	1.00 18.97	A
	50	ATOM	7817	CG		A 997	56.621	49.367 -20.483		A
		ATOM	7818		LEU .		57.859	50.141 -20.903		A
		MOTA	7819	CD2	LEU .		55.493	50.316 -20.125		A
		MOTA	7820	С		A 997	57.582	46.588 -20.748		A
		ATOM	7821	0		A 997	56.732	46.021 -20.065		A
	55	ATOM	7822	N	ASP	A 998	58.880	46.566 -20.467	1.00 16.19	А

							<u> </u>			
		ATOM	7823	CA	ASP	A 998	59.399	45.910 -19.273	1.00 15.60	A
		MOTA	7824	СВ		A 998	60.500	44.912 -19.633	1.00 16.76	A
		ATOM	7825	CG		A 998	61.145	44.295 -18.408	1.00 17.89	A
		ATOM	7826			A 998	62.170	43.600 -18.564	1.00 18.83	A
	5	ATOM	7827			A 998	60.626	44.503 -17.289	1.00 17.40	A
	9	ATOM	7828	C		A 998	59.976	47.028 -18.414	1.00 14.75	A
		ATOM	7829	Ö		A 998	61.117	47.447 -18.609	1.00 14.20	А
		ATOM	7830	N		A.999	59.185	47.521 -17.469	1.00 14.42	Α
		MOTA	7831	CA		A 999	59.642	48.617 -16.628	1.00 14.11	A
	10	MOTA	7832	CB		A 999	58.532	49.089 -15.655	1.00 13.61	A
	10	MOTA	7833			A 999	57.346	49.614 -16.447	1.00 14.23	A
		MOTA	7834			A 999	58.109	47.955 -14.738	1.00 14.31	A
		ATOM	7835	C		A 999	60.897	48.299 -15.827	1.00 14.57	A
		ATOM	7836	0		A 999	61.669	49.195 -15.494	1.00 14.03	A
	15	MOTA	7837	N		A1000	61.116	47.027 -15.527	1.00 15.40	A
	15	MOTA	7838	CA		A1000	62.288	46.673 -14.750	1.00 16.88	А
		ATOM	7839	C		A1000	63.609	46.871 -15.487	1.00 16.40	A
		ATOM	7840	0		A1000	64.666	46.894 -14.864	1.00 16.72	A
grang.		MOTA	7841	СВ		A1000	62.159	45.245 -14.220	1.00 17.93	A
	20	ATOM	7842	SG		A1000	61.365	45.181 -12.575	1.00 21.77	A
4 (1 ₂₀)	20	MOTA	7843	N		A1001	63.555	47.033 -16.806	1.00 16.66	Α
		ATOM	7844	CA		A1001	64.779	47.258 -17.569	1.00 17.02	A
ijŦ		ATOM	7845	CB		A1001	64.903	46.251 -18.720	1.00 17.37	А
		ATOM	7846	CG		A1001	65.459	44.925 -18.303	1.00 18.58	A
73	25	ATOM	7847			A1001	66.716	44.427 -18.368	1.00 18.89	A
	20	ATOM	7848			A1001	64.693	43.951 -17.698	1.00 18.64	A
		ATOM	7849			A1001	65.455	42.911 -17.408	1.00 19.12	A
41		ATOM	7850			A1001	66.687	43.174 -17.804	1.00 19.79	А
		ATOM	7851	С	HIS	A1001	64.896	48.684 -18.109	1.00 17.08	A
	30	ATOM	7852	0	HIS	A1001	65.742	48.962 -18.960	1.00 17.52	A
		ATOM	7853	N	LEU	A1002	64.053	49.588 -17.615	1.00 16.75	A
		MOTA	7854	CA	LEU	A1002	64.101	50.981 -18.057	1.00 16.76	A
		ATOM	7855	CB	LEU	A1002	62.885	51.754 -17.545	1.00 16.55	A
		ATOM	7856	CG	LEU	A1002	61.597	51.523 -18.337	1.00 15.47	A
	35	MOTA	7857	CD1	LEU	A1002	60.434	52.218 -17.648	1.00 15.32	A
		MOTA	7858	CD2	LEU	A1002	61.775	52.056 -19.754	1.00 16.05	A
		MOTA	7859	С		A1002	65.380	51.646 -17.566	1.00 17.51	A
		MOTA	7860	0		A1002	65.901	52.561 -18.205	1.00 18.66	A
		MOTA	7861	N		A1003	65.869	51.190 -16.418	1.00 17.61	A
	40	MOTA	7862	CA		A1003	67.108	51.704 -15.847	1.00 18.02	A
		MOTA	7863	CB		A1003	66.906	52.109 -14.387	1.00 18.59	A
		ATOM	7864	CG		A1003	66.180	53.442 -14.184	1.00 20.43	A
		ATOM	7865			A1003	65.881	53.644 -12.717	1.00 20.90	A
		ATOM	7866	CD2		A1003	67.041	54.581 -14.716	1.00 20.41	A A
	45	ATOM	7867	С		A1003	68.135	50.583 -15.957	1.00 18.42	A
		ATOM	7868	0		A1003	67.802	49.409 -15.805	1.00 17.92 1.00 18.76	A
		MOTA	7869	N		A1004	69.399	50.930 -16.229		A
		MOTA	7870	CD		A1004	69.943	52.285 -16.433	1.00 19.13 1.00 18.84	A
		MOTA	7871	CA		A1004	70.453	49.923 -16.364	1.00 19.50	Ā
	50	ATOM	7872	СВ		A1004	71.580	50.708 -17.022	1.00 19.50	A
		MOTA	7873	CG		A1004	71.443	52.046 -16.377 49.252 -15.071	1.00 19.07	A
		MOTA	7874	C		A1004	70.903	49.692 -13.968	1.00 19.22	A
		ATOM	7875	0		A1004	70.568			A
		MOTA	7876	N		A1005	71.658	48.168 -15.233		A
	55	MOTA	7877	CA	ASN	A1005	72.210	47.420 -14.112	1.00 13.03	А

		ATOM	7878	СВ	ASN	A1005	73.166	48.321	-13.330	1.00 20.66	А
		ATOM	7879	CG		A1005	74.151	49.043	-14.231	1.00 21.46	A
		ATOM	7880			A1005	74.441	50.223	-14.030	1.00 23.60	Α
		ATOM	7881			A1005	74.673	48.336	-15.225	1.00 22.61	A
	5	ATOM	7882	С		A1005	71.156	46.857	-13.163	1.00 19.34	A
	Ū	ATOM	7883	0		A1005	71.314	46.933	-11.945	1.00 19.19	Α
		ATOM	7884	N		A1006	70.087	46.291	-13.713	1.00 19.06	A
		ATOM	7885	CA		A1006	69.036	45.723	-12.876	1.00 19.31	A
		ATOM	7886	СВ		A1006	67.747	45.434	-13.693	1.00 19.18	A
	10	ATOM	7887			A1006	68.019		-14.773	1.00 19.81	A
	10	ATOM	7888			A1006	66.639		-12.764	1.00 19.49	A
		MOTA	7889	C		A1006	69.545		-12.230	1.00 19.15	A
		ATOM	7890	0		A1006	70.094		-12.906	1.00 19.87	A
		ATOM	7891	N		A1007	69.368		-10.916	1.00 18.45	A
	15	ATOM	7892	CA		A1007	69.817		-10.154	1.00 18.81	A
	15	ATOM	7893	CB		A1007	70.580	43.629	-8.919	1.00 18.61	A
		ATOM	7894	C		A1007	68.652	42.272	-9.748	1.00 19.17	A
		ATOM	7895	0		A1007	68.836	41.086	-9.472	1.00 19.63	A
1,42		ATOM	7896	N		A1008	67.455	42.844	-9.695	1.00 19.17	A
Spanic Prije	20	ATOM	7897	CA		A1008	66.265	42.078	-9.349	1.00 19.29	A
	20	ATOM	7898	CB		A1008	66.261	41.696	-7.863	1.00 22.65	A
		ATOM	7899	CG		A1008	66.156	42.852	-6.896	1.00 27.30	A
IJ			7900	CD		A1008	66.010	42.347	-5.466	1.00 31.10	А
		MOTA MOTA	7901	NE		A1008	67.134	41.503	-5.065	1.00 34.46	A
T.	25	MOTA	7902	CZ		A1008	68.392	41.924	-4.962	1.00 36.16	A
	23	ATOM	7903			A1008	68.699	43.187	-5.228	1.00 37.00	A
			7904			A1008	69.347	41.078	-4.596	1.00 37.06	A
		MOTA	7904	С		A1008	65.003	42.855	-9.688	1.00 17.93	A
#1 ≈ €		MOTA	7905	0		A1008	65.010	44.085	-9.738	1.00 17.30	A
	30	MOTA	7907	N		A1000	63.927	42.118	-9.933	1.00 16.65	A
	30	ATOM	7908	CA		A1009	62.636		-10.276	1.00 16.67	A
The state of the s		ATOM		CA		A1009	61.592	41.996		1.00 15.78	A
\$ 143		ATOM	7909 7910	0		A1009	61.519	40.768	-9.412	1.00 15.09	А
d Same		ATOM		CB		A1009	62.339		-11.753	1.00 18.24	A
	35	ATOM	7911	SG		A1009	60.816		-12.385	1.00 21.28	A
	33	ATOM	7912	N N		A1010	60.776	42.775		1.00 14.67	А
		ATOM	7913	CA		A1010	59.761	42.197		1.00 14.58	А
		MOTA	7914 7915	CB		A1010	60.174	42.376		1.00 15.93	A
		ATOM				A1010	61.501	41.712		1.00 18.90	A
	40	ATOM	7916			A1010	62.107	42.248		1.00 20.54	А
	40	ATOM	7917	CD		A1010	62.440	43.452		1.00 22.00	А
		ATOM	7918			A1010	62.255	41.466		1.00 22.46	А
		ATOM	7919				58.394	42.827		1.00 13.40	А
		MOTA	7920	С		A1010 A1010	58.284	44.024		1.00 13.98	A
	4 ⊏	ATOM	7921	0			57.354	42.009		1.00 12.76	А
	45	ATOM	7922	N		A1011	55.991	42.512		1.00 12.10	А
		MOTA	7923	CA		A1011	55.034	41.430		1.00 13.80	A
		ATOM	7924	CB		A1011	53.614	41.929		1.00 18.17	А
		MOTA	7925	CG		A1011	52.618	40.774		1.00 22.69	A
	50	ATOM	7926	CD		A1011		39.783		1.00 27.58	A
	50	ATOM	7927	NE		A1011	52.950 52.911		-11.192	1.00 28.97	A
		ATOM	7928	CZ		A1011	52.911 52.554		-11.651	1.00 30.64	A
		ATOM	7929			A1011	53.224		-12.044	1.00 29.56	A
		ATOM	7930			A1011		42.853		1.00 23.30	A
		ATOM	7931	C		A1011	55.666	42.033		1.00 11.33	
	55	MOTA	7932	0	ARC	3 A1011	55.977	42.076	-5.112	1.00 11.0/	

		7.5014	7022		mud	n 1 O 1 2	55.062	44.012	-6.397	1.00	10.37	A
		MOTA	7933	N		A1012		44.446	-5.045	1.00	9.85	A
		MOTA	7934	CA		A1012	54.734		-4.618		11.29	A
		MOTA	7935	CB		A1012	55.624	45.631	-5.421		10.95	A
	_	MOTA	7936			A1012	55.297	46.777			11.40	A
	5	MOTA	7937	CG2		A1012	57.097	45.301	-4.810		10.13	A
		MOTA	7938	С		A1012	53.295	44.931	-4.955			
		MOTA	7939	0	THR	A1012	52.595	45.038	-5.961	1.00	9.43	A
		MOTA	7940	N	THR	A1013	52.858	45.216	-3.733	1.00	9.30	A
		MOTA	7941	CA	THR	A1013	51.532	45.772	-3.522	1.00	9.02	A
	10	MOTA	7942	СВ	THR	A1013	51.229	45.899	-2.024	1.00	9.03	A
		MOTA	7943	OG1	THR	A1013	52.399	46.365	-1.344	1.00	8.79	A
		ATOM	7944	CG2	THR	A1013	50.809	44.553	-1.442	1.00	10.35	A
		ATOM	7945	С		A1013	51.622	47.164	-4.163	1.00	8.71	A
		ATOM	7946	0		A1013	52.721	47.685	-4.366	1.00	8.56	A
	15	ATOM	7947	N		A1014	50.484	47.776	-4.469	1.00	8.27	A
	10	MOTA	7948	CA		A1014	50.504	49.082	-5.133	1.00	7.70	A
		ATOM	7949	CB		A1014	49.085	49.520	-5.491	1.00	7.86	Α
			7950	CG		A1014	48.309	48.581	-6.414	1.00	7.61	A
		MOTA	7951			A1014	47.005	49.264	-6.789	1.00	8.33	A
	20	ATOM				A1014 A1014	49.116	48.242	-7.667	1.00	8.06	A
ı, İ	20	ATOM	7952				51.197	50.205	-4.376	1.00	7.40	A
		ATOM	7953	С		A1014	51.552	51.228	-4.964	1.00	7.36	A
(M		ATOM	7954	0		A1014		50.011	-3.076	1.00	7.72	A
		MOTA	7955	N		A1015	51.382	50.011	-2.220	1.00	7.89	A
1,000€ 2/9.9		MOTA	7956	CA		A1015	52.037	50.885	-0.794	1.00	8.20	A
### ###	25	MOTA	7957	CB		A1015	51.511	49.527	-0.794	1.00	8.50	A
		MOTA	7958	OG1		A1015	51.649				8.31	A
ijΈ		ATOM	7959			A1015	50.045	51.287	-0.724	1.00	8.46	A
8 [ATOM	7960	С		A1015	53.544	50.741	-2.166	1.00	9.16	A
		ATOM	7961	0		A1015	54.274	51.501	-1.528	1.00	8.59	A
1	30	MOTA	7962	N		A1016	53.988	49.668	-2.823	1.00	9.00	A
		MOTA	7963	CA		A1016	55.402	49.273	-2.867	1.00		A
		MOTA	7964	CB		A1016	56.298	50.457	-3.263	1.00	9.48	A
		ATOM	7965	CG		A1016	55.972	51.061	-4.598	1.00	8.69	
199		MOTA	7966			A1016	55.795	52.438	-4.718	1.00	8.66	A
2000	35	ATOM	7967			A1016	55.877	50.270	-5.738	1.00	8.29	A
		MOTA	7968	CE1	PHE	A1016	55.528	53.016	-5.956	1.00	8.19	A
		MOTA	7969	CE2	PHE	A1016	55.609	50.841	-6.981	1.00	9.07	A
		ATOM	7970	CZ	PHE	A1016	55.435	52.213	-7.089	1.00	9.64	A
		ATOM	7971	С	PHE	A1016	55.899	48.744	-1.523	1.00		A
	40	MOTA	7972	0	PHE	A1016	57.089	48.470	-1.368	1.00	10.75	A
		ATOM	7973	N		A1017	54.996	48.579	-0.562		10.15	A
		ATOM	7974	CA		A1017	55.400	48.144	0.773		10.97	A
		MOTA	7975	СВ	LEU	A1017	54.430	48.717	1.808	1.00	10.65	A
		ATOM	7976	CG		A1017	54.380	50.250	1.792	1.00		A
	45	ATOM	7977			A1017	53.336	50.737	2.780		10.62	A
	10	ATOM	7978			A1017	55.749	50.828	2.133	1.00	11.90	A
		ATOM	7979	C		A1017	55.607	46.655	1.024	1.00	11.87	A
		ATOM	7980	0		A1017	56.252	46.289	2.006	1.00	13.86	A
		ATOM	7981	N		A1018	55.066	45.794	0.169	1.00	12.59	A
	50		7982	CA		A1018	55.262	44.359	0.352		14.35	A
	50	ATOM	7983	CB		A1018	54.001	43.689	0.912		16.37	A
		MOTA		CG		A1018	54.197	42.192	1.161		19.20	А
		MOTA	7984				52.916	41.454	1.503		21.24	А
		ATOM	7985	CD OF 2		A1018	52.910	40.236	1.694		23.07	A
		ATOM	7986			A1018		40.236	1.578		21.22	A
	55	MOTA	7987	NE2	(GLI	A1018	51.809	42.102	1.370	1.00		- 1

								0.50	1 00 14 71	77.
	MOTA	7988	С	GLN	A1018	55.634	43.680	-0.959	1.00 14.71	A
	ATOM	7989	0	GLN	A1018	55.018	43.933	-1.995	1.00 14.64	A
	ATOM	7990	N	ASN	A1019	56.647	42.819	-0.914	1.00 15.34	A
	ATOM	7991	CA	ASN	A1019	57.069	42.092	-2.104	1.00 16.71	A
5	ATOM	7992	СВ		A1019	58.536	41.665	-1.989	1.00 17.63	A
J	ATOM	7993	CG		A1019	59.475	42.847	-1.852	1.00 19.02	A
	ATOM	7994			A1019	59.322	43.858	-2.540	1.00 19.65	A
		7995			A1019	60.462	42.722	-0.971	1.00 19.85	A
	MOTA	7996	C		A1019	56.178	40.867	-2.253	1.00 17.34	А
10	ATOM				A1019	56.054	40.063	-1.327	1.00 18.14	A
10	ATOM	7997	0			55.564	40.727	-3.422	1.00 17.74	A
	ATOM	7998	N		A1020		39.618	-3.685	1.00 18.66	A
	ATOM	7999	CA		A1020	54.657		-4.331	1.00 18.41	A
	MOTA	8000	СВ		A1020	53.373	40.144		1.00 10.41	A
	ATOM	8001	CG		A1020	52.582	41.198	-3.551		A
15	MOTA	8002			A1020	51.433	41.703	-4.405	1.00 18.32	
	MOTA	8003	CD2		A1020	52.064	40.602	-2.251	1.00 17.91	A
	MOTA	8004	С		A1020	55.249	38.527	-4.571	1.00 19.82	A
	MOTA	8005	0	LEU	A1020	54.851	37.363	-4.474	1.00 20.37	A
	MOTA	8006	N	GLU	A1021	56.190	38.900	-5.432	1.00 20.85	A
20	MOTA	8007	CA	GLU	A1021	56.808	37.942	-6.347	1.00 22.64	A
	ATOM	8008	СВ		A1021	55.947	37.778	-7.601	1.00 24.55	A
	ATOM	8009	CG		A1021	54.627	37.066	-7.415	1.00 27.54	A
	ATOM	8010	CD		A1021	53.845	36.990	-8.713	1.00 29.04	A
	ATOM	8011	OE1		A1021	54.450	36.632	-9.746	1.00 29.72	A
25	ATOM	8012	OE2		A1021	52.631	37.283	-8.701	1.00 30.41	A
20	ATOM	8013	C		A1021	58.207	38.331	-6.804	1.00 22.88	A
		8014	0		A1021	58.474	39.494	-7.100	1.00 21.59	A
	ATOM	8015	N		A1022	59.093	37.343	-6.870	1.00 23.24	A
	ATOM		CA		A1022	60.451	37.559	-7.348	1.00 24.68	А
20	ATOM	8016			A1022	61.438	36.663	-6.595	1.00 25.87	A
30	ATOM	8017	CB			62.860	36.831	-7.032	1.00 27.45	A
	ATOM	8018	CG		A1022	63.768	35.930	-7.477	1.00 28.54	A
	ATOM	8019	CD2		A1022	63.700	38.052	-7.033	1.00 28.74	A
	MOTA	8020	ND1		A1022		37.896	-7.460	1.00 29.03	A
0-	MOTA	8021			A1022	64.740		-7.736	1.00 29.19	A
35	MOTA	8022			A1022	64.929	36.618		1.00 23.13	A
	ATOM	8023	С		A1022	60.359	37.146	-8.813		A
	MOTA	8024	0		A1022	60.105	35.982	-9.122	1.00 25.14	
	MOTA	8025	N		A1023	60.549	38.104	-9.711	1.00 25.03	A
	MOTA	8026	CA	LEU	A1023	60.432		-11.140	1.00 26.27	A
40	MOTA	8027	СВ	LEU	A1023	59.975		-11.843	1.00 25.95	A
	ATOM	8028	CG	LEU	A1023	58.679		-11.267	1.00 25.51	A
	ATOM	8029	CD1	LEU	A1023	58.382		-11.901	1.00 25.87	А
	ATOM	8030	CD2	LEU	A1023	57.537	38.728	-11.506	1.00 26.07	А
	ATOM	8031	С	LEU	A1023	61.685	37.303	-11.816	1.00 27.30	A
45	MOTA	8032	0		A1023	62.747	37.924	-11.778	1.00 26.61	A
	ATOM	8033	N		A1024	61.546	36.139	-12.443	1.00 29.41	A
	ATOM	8034	CA		A1024	62.659	35.509	-13.143	1.00 31.40	A
	ATOM	8035	CB		A1024	62.283	34.091	-13.582	1.00 33.04	A
	ATOM	8036	CG		A1024	62.251		-12.424	1.00 34.34	A
50	ATOM	8037			A1024	61.961		-12.661	1.00 35.68	A
50		8038			A1024	62.521		-11.278	1.00 35.28	A
	MOTA		C C		A1024	63.049		-14.358	1.00 32.07	А
	ATOM	8039				62.202		-14.985	1.00 32.21	А
	ATOM	8040	0		A1024	64.336		-14.686	1.00 32.21	A
	MOTA	8041	N		A1025			-14.830	1.00 32.40	A
55	ATOM	8042	CA	GL	A1025	64.816	31.000	-13.021	1.00 33.39	

		ATOM	8043	С	GLY	A1025	64.726	38.564 -15.534	1.00 33.83	A
		MOTA	8044	0		A1025	65.055	39.392 -16.382	1.00 33.62	A
		ATOM	8045	N		A1026	64.277	38.894 -14.326	1.00 34.40	A
		ATOM	8046	CA		A1026	64.133	40.281 -13.904	1.00 35.14	A
	5	MOTA	8047	CB		A1026	65.504	40.943 -13.809	1.00 38.95	A
	5	ATOM	8048	CG		A1026	66.467	40.210 -12.900	1.00 43.37	A
			8049	SE		A1026	68.190	41.048 -12.869	1.00 48.57	A
		MOTA	8050	CE		A1026	68.959	40.193 -14.422	1.00 46.31	A
		MOTA	8051	CE		A1026	63.260	41.041 -14.890	1.00 33.31	A
	10	MOTA				A1026	63.493	42.218 -15.166	1.00 32.52	А
	10	ATOM	8052	0		A1020	62.254	40.358 -15.420	1.00 31.46	A
		MOTA	8053	N		A1027	61.348	40.965 -16.380	1.00 30.23	A
		ATOM	8054	CA		A1027	61.201	40.088 -17.639	1.00 30.01	A
		MOTA	8055	CB		A1027	60.185	40.706 -18.591	1.00 29.55	A
	15	MOTA	8056	CG1		A1027	62.547	39.942 -18.326	1.00 29.41	A
	15	ATOM	8057			A1027	59.969	41.185 -15.778	1.00 29.79	A
		MOTA	8058	C O		A1027	59.340	40.252 -15.280	1.00 29.23	A
		ATOM	8059			A1027	59.508	42.430 -15.821	1.00 28.92	A
		MOTA	8060	N CA		A1028	58.194	42.773 -15.298	1.00 28.80	А
4:00	20	MOTA	8061 8062	CB		A1028	58.184	44.213 -14.799	1.00 28.67	A
	20	MOTA	8062	СВ		A1028	57.189	42.600 -16.428	1.00 28.40	А
Ē		ATOM				A1028	57.167	43.387 -17.373	1.00 28.55	A
		ATOM	8064	O N		A1028	56.354	41.554 -16.353	1.00 27.78	A
175		ATOM	8065			A1029	56.301	40.519 -15.304	1.00 27.81	A
	25	MOTA	8066 8067	CD CA		A1029	55.350	41.298 -17.390	1.00 27.71	A
3	23	MOTA	8068	CB		A1029	54.858	39.895 -17.047	1.00 28.01	A
155		MOTA	8069	CG		A1029	54.958	39.870 -15.559	1.00 28.02	А
Will be		ATOM	8070	C		A1029	54.226	42.329 -17.378	1.00 27.12	A
B}		ATOM	8070	0		A1029	53.868	42.859 -16.327	1.00 27.82	A
The House	30	MOTA MOTA	8071	N		A1030	53.674	42.618 -18.551	1.00 26.11	A
	30	ATOM	8073	CA		A1030	52.591	43.585 -18.643	1.00 24.92	A
rj.		ATOM	8074	CB		A1030	52.275	43.902 -20.106	1.00 25.04	A
g.L		ATOM	8075	CG		A1030	53.484	44.338 -20.920	1.00 25.00	A
		ATOM	8076	CD		A1030	53.107	44.817 -22.307	1.00 25.45	A
i inge	35	ATOM	8077	OE1		A1030	52.177	44.237 -22.903	1.00 26.43	A
**	33	ATOM	8078			A1030	53.749	45.765 -22.806	1.00 24.53	A
		ATOM	8079	C		A1030	51.357	43.019 -17.953	1.00 23.99	A
		ATOM	8080	Ö		A1030	51.256	41.810 -17.731	1.00 25.08	A
		ATOM	8081	N		A1031	50.418	43.896 -17.618	1.00 22.66	A
	40	ATOM	8082	CA		A1031	49.204	43.480 -16.933	1.00 20.61	A
	10	ATOM	8083	CB		A1031	48.801	44.515 -15.860	1.00 21.38	A
		ATOM	8084			A1031	49.925	44.673 -14.851	1.00 21.76	A
		ATOM	8085			A1031	48.487	45.847 -16.508	1.00 20.47	A
		ATOM	8086	C		A1031	48.022	43.257 -17.869	1.00 19.15	A
	45	ATOM	8087	0		A1031	48.063	43.621 -19.044	1.00 19.47	A
	10	ATOM	8088	N		A1032	46.974	42.649 -17.326	1.00 17.67	A
		ATOM	8089	CA		A1032	45.755	42.352 -18.069	1.00 16.55	A
		MOTA	8090	C		A1032	44.838	43.566 -18.141	1.00 14.35	A
		MOTA	8091	Ō		A1032	45.002	44.520 -17.384	1.00 12.80	А
	50	ATOM	8092	СВ		A1032	44.989	41.225 -17.384	1.00 17.91	А
	50	ATOM	8093	SG		A1032	45.736	39.571 -17.486		A
		ATOM	8094	N		A1033	43.854	43.544 -19.056	1.00 13.48	А
		MOTA	8095	CD		A1033	43.599	42.542 -20.108	1.00 13.27	А
		ATOM	8096	CA		A1033	42.927	44.672 -19.176	1.00 12.75	А
	55	MOTA	8097	СВ		A1033	41.964	44.212 -20.270	1.00 13.14	А
	00		'			_				

	MOTA	8098	CG	PRO	A1033	42.837		-21.136	1.00 13.23	A
	MOTA	8099	С	PRO	A1033	42.210		-17.844	1.00 12.09	A
	ATOM	8100	0	PRO	A1033	41.721		-17.209	1.00 11.14	A
	MOTA	8101	N	MSE	A1034	42.161		-17.442	1.00 11.64	A
5	MOTA	8102	CA	MSE	A1034	41.531		-16.201	1.00 12.45	A
	MOTA	8103	CB	MSE	A1034	40.099		-16.084	1.00 12.75	A
	MOTA	8104	CG	MSE	A1034	39.156		-17.161	1.00 13.48	A
	ATOM	8105	SE	MSE	A1034	39.229		-17.394	1.00 18.29	A
	MOTA	8106	CE	MSE	A1034	38.290		-15.785	1.00 15.04	А
10	MOTA	8107	С	MSE	A1034	42.320		-14.950	1.00 13.04	Α
	MOTA	8108	0	MSE	A1034	41.844		-13.833	1.00 15.57	A
	ATOM	8109	N	GLU	A1035	43.530		-15.139	1.00 12.47	A
	ATOM	8110	CA	GLU	A1035	44.379		-14.016	1.00 12.77	A
	MOTA	8111	CB	GLU	A1035	45.068		-14.282	1.00 15.80	А
15	MOTA	8112	CG	GLU	A1035	46.248		-13.359	1.00 20.78	A
	ATOM	8113	CD	GLU	A1035	46.741		-13.450	1.00 22.65	A
	MOTA	8114	OE1	GLU	A1035	47.035		-14.571	1.00 23.74	A
	ATOM	8115	OE2	GLU	A1035	46.841		-12.390	1.00 24.85	A
	ATOM	8116	С		A1035	45.429	46.460	-13.773	1.00 11.49	A
20	ATOM	8117	0	GLU	A1035	45.795	47.205	-14.680	1.00 10.22	A
	ATOM	8118	N	THR	A1036	45.893	46.536	-12.531	1.00 10.28	A
	ATOM	8119	CA	THR	A1036	46.919	47.483	-12.125	1.00 9.92	А
	ATOM	8120	СВ		A1036	46.343	48.607	-11.245	1.00 9.77	A
	ATOM	8121	OG1		A1036	45.278	49.264	-11.937	1.00 10.21	A
25	MOTA	8122	CG2		A1036	47.418		-10.914	1.00 10.57	A
	ATOM	8123	С		A1036	47.906		-11.293	1.00 9.13	A
	ATOM	8124	0	THR	A1036	47.502		-10.400	1.00 10.16	A
	ATOM	8125	N	ALA	A1037	49.192		-11.594	1.00 9.44	A
	ATOM	8126	CA	ALA	A1037	50.225		-10.865	1.00 9.72	A
30	ATOM	8127	СВ	ALA	A1037	50.747		-11.705	1.00 10.95	A
	ATOM	8128	С	ALA	A1037	51.361		-10.537	1.00 9.84	А
	ATOM	8129	0	ALA	A1037	51.516	48.081	-11.177	1.00 10.76	А
	ATOM	8130	N	ALA	A1038	52.152	46.693	-9.533	1.00 9.36	A
	ATOM	8131	CA	ALA	A1038	53.283	47.515	-9.144	1.00 8.90	A
35	ATOM	8132	CB	ALA	A1038	53.073	48.080	-7.747	1.00 8.87	А
	ATOM	8133	С	ALA	A1038	54.534	46.656	-9,180	1.00 8.90	A
	ATOM	8134	0	ALA	A1038	54.497	45.481	-8.813	1.00 7.98	A
	ATOM	8135	N	TYR	A1039	55.634	47.245	-9.635	1.00 9.04	A
	ATOM	8136	CA	TYR	A1039	56.903	46.540	-9.707	1.00 10.18	A
40	ATOM	8137	CB	TYR	A1039	57.248		-11.151	1.00 10.53	A
	ATOM	8138	CG	TYR	A1039	56.243		-11.837	1.00 11.78	А
	ATOM	8139	CD1	TYR	A1039	55.324		-12.746	1.00 12.61	А
	ATOM	8140	CE1	TYR	A1039	54.405		-13.394	1.00 14.80	А
	ATOM	8141	CD2	TYR	A1039	56.216		-11.589	1.00 12.35	А
45	MOTA	8142	CE2	TYR	A1039	55.301		-12.228	1.00 13.71	A
	MOTA	8143	CZ	TYR	A1039	54.401		-13.131	1.00 15.21	A
	ATOM	8144	OH	TYR	A1039	53.508	42.815	-13.783	1.00 17.85	А
	ATOM	8145	С	TYR	A1039	58.009	47.422		1.00 10.60	A
	ATOM	8146	0	TYR	A1039	57.950	48.644		1.00 11.19	A
50	MOTA	8147	N	VAL	A1040	59.019	46.795		1.00 10.57	A
	ATOM	8148	CA		A1040	60.158	47.529		1.00 10.83	A
	ATOM	8149	СВ		. A1040	60.223	47.503		1.00 10.80	A
	MOTA	8150	CG1		A1040	61.527	48.144		1.00 10.81	А
	ATOM	8151			A1040	59.039	48.259		1.00 11.19	А
55	ATOM	8152	С		A1040	61.414	46.884	-8.615	1.00 11.68	A

										_
		MOTA	8153	0	VAL	A1040	61.634	45.681 -8.454	1.00 12.74	A
		ATOM	8154	N	SER	A1041	62.221	47.680 -9.303	1.00 11.34	A
		ATOM	8155	CA	SER	A1041	63.465	47.174 -9.855	1.00 12.00	A
		MOTA	8156	CB	SER	A1041	63.679	47.700 -11.281	1.00 12.02	A
	5	ATOM	8157	OG	SER	A1041	63.674	49.114 -11.326	1.00 13.73	A
	-	ATOM	8158	С	SER	A1041	64.600	47.627 -8.947	1.00 12.06	A
		ATOM	8159	0	SER	A1041	64.608	48.759 -8.464	1.00 11.83	А
		ATOM	8160	N		A1042	65.544	46.726 -8.695	1.00 12.11	A
		ATOM	8161	CA		A1042	66.696	47.038 -7.858	1.00 12.84	Α
	10	ATOM	8162	СВ	SER	A1042	66.899	45.959 -6.793	1.00 11.51	A
		ATOM	8163	OG		A1042	65.783	45.904 -5.918	1.00 14.87	A
		ATOM	8164	С	SER	A1042	67.906	47.117 -8.772	1.00 13.04	A
		ATOM	8165	0	SER	A1042	68.061	46.301 -9.682	1.00 14.12	A
		ATOM	8166	N		A1043	68.757	48.106 -8.530	1.00 14.49	A
	15	ATOM	8167	CA		A1043	69.931	48.318 -9.363	1.00 15.99	A
	10	ATOM	8168	СВ		A1043	69.709	49.582 -10.193	1.00 15.32	A
		ATOM	8169	CG		A1043	68.402	49.585 -10.922	1.00 14.89	A
		ATOM	8170			A1043	67.158	49.931 -10.514	1.00 13.91	A
\$1 ⁰⁰⁰ 1		MOTA	8171			A1043	68.260	49.088 -12.199	1.00 14.17	A
tions:	20	ATOM	8172			A1043	66.986	49.125 -12.547	1.00 15.10	A
Tribula PRIS	20	ATOM	8173			A1043	66,296	49.631 -11.540	1.00 14.41	A
		ATOM	8174	C		A1043	71.199	48.425 -8.530	1.00 17.89	A
\$ N E		ATOM	8175	0		A1043	71.251	49.156 -7.541	1.00 17.26	A
		ATOM	8176	N		A1044	72.220	47.684 -8.943	1.00 20.49	A
Ann Ann	25	ATOM	8177	CA		A1044	73.493	47.666 -8.237	1.00 23.36	A
	20	ATOM	8178	СВ		A1044	74.196	46.327 -8.480	1.00 23.82	А
M		ATOM	8179	OG		A1044	74.218	46.009 -9.862	1.00 25.95	A
#1		ATOM	8180	C		A1044	74.404	48.813 -8.649	1.00 24.24	A
Same Section		ATOM	8181	Ō		A1044	74.018	49.585 -9.554	1.00 24.99	A
1	30	MOTA	8182			A1044	75.497	48.922 -8.053	1.00 25.64	A
		ATOM	8183		WAT		42.042	63.477 -7.164	1.00 6.41	W
		ATOM	8184		WAT		53.550	64.836 -19.873	1.00 8.14	W
isia see		ATOM	8185	ОН2	WAT	W 4	39.197	62.878 -19.106	1.00 7.97	M
Section 1		ATOM	8186		WAT		52.209	54.085 -4.846	1.00 8.40	W
gala.	35	ATOM	8187	OH2	TAW	W 6	56.128	53.417 -0.630	1.00 8.30	W
		ATOM	8188		WAT		31.282	49.937 -23.972	1.00 10.14	W
		ATOM	8189		WAT		49.807	48.483 1.372	1.00 9.31	W
		ATOM	8190	OH2	WAT	W 9	36.893	57.648 13.387	1.00 9.61	W
		ATOM	8191	OH2	WAT	W 10	26.802	68.971 -9.206	1.00 9.53	W
	40	MOTA	8192	OH2	WAT	W 11	39.233		1.00 10.18	M
		MOTA	8193	OH2	WAT	W 12	34.214	58.561 -8.785	1.00 7.85	M
		ATOM	8194	OH2	WAT	W 13	61.037	59.682 -8.191	1.00 8.41	M
		ATOM	8195	OH2	WAT	W 14	36.556	72.572 0.269	1.00 10.25	M
		ATOM	8196	OH2	WAT	W 15	31.717	47.036 -8.074	1.00 8.83	W
	45	MOTA	8197	OH2	WAT	W 16	30.129	55.760 17.242	1.00 9.77	W
		MOTA	8198	он2	WAT	W 17	26.161	49.593 -13.680	1.00 9.92	M
		ATOM	8199	OH2	WAT	W 18	37.670	52.088 -21.093	1.00 11.68	M
		ATOM	8200	OH2	WAT	W 19	33.074	62.758 0.070	1.00 7.76	W
		MOTA	8201	OH2	WAT	W 20	24.794	52.920 -11.748	1.00 8.84	W
	50	MOTA	8202	OH2	TAW	W 21	63.100	61.310 -7.515	1.00 9.52	W
		ATOM	8203	OH2	WAT	W 22	41.220	59.000 13.470	1.00 11.28	W
		ATOM	8204	OH2	WAT	W 23	47.214	55.792 -15.391	1.00 16.11	W
		ATOM	8205		WAT		56.347	55.690 -2.127	1.00 9.59	W
		ATOM	8206	OH2	WAT	W 25	67.413	60.727 -5.662	1.00 12.47	M
	55	MOTA	8207	OH2	WAT	W 26	26.340	48.895 -10.998	1.00 9.95	M

									4 00 000	т.т
		ATOM	8208	OH2 WAT W		65.658	60.301	-7.681	1.00 9.86	W
		MOTA	8209	OH2 WAT V	v 28	32.556	60.049	-1.797	1.00 9.32	W
		ATOM	8210	OH2 WAT W	v 29	20.112	54.723	16.205	1.00 11.76	M
		MOTA	8211	OH2 WAT W	v 30	23.748	55.505 -		1.00 10.76	M
	5	ATOM	8212	OH2 WAT W	v 31	39.332	57.340	14.891	1.00 9.99	M
	Ū	ATOM	8213	OH2 WAT V		20.372	58.804 -	-21.924	1.00 10.68	M
		ATOM	8214	OH2 WAT V		28.005	60.998	19.501	1.00 12.43	W
		ATOM	8215	OH2 WAT		34.100	56.345 -	-26.283	1.00 8.61	W
		ATOM	8216	OH2 WAT V		26.313	40.065	7.967	1.00 12.45	W
	10	ATOM	8217	OH2 WAT V		63.802	50.178 -	-14.014	1.00 12.29	W
	10		8218	OH2 WAT V		37.571	56.991	1.737	1.00 9.76	W
		ATOM	8219	OH2 WAT		24.021	41.933	6.905	1.00 11.36	W
		ATOM		OH2 WAT I		31.878	65.446	18.975	1.00 15.13	W
		ATOM	8220			51.480	56.691	-5.611	1.00 9.26	W
	4 "	ATOM	8221	OH2 WAT		20.134	56.063	7.164	1.00 12.78	W
	15	MOTA	8222	OH2 WAT			43.888	13.163	1.00 9.88	M
		MOTA	8223	OH2 WAT			58.465		1.00 8.09	W
		ATOM	8224	OH2 WAT		30.243	59.321	-3.585	1.00 13.31	M
		MOTA	8225	OH2 WAT		64.815			1.00 13.31	M
		ATOM	8226	OH2 WAT			67.686		1.00 13.23	W
	20	MOTA	8227	OH2 WAT			58.212	-2.813		W
, Z		MOTA	8228	OH2 WAT			62.158	-1.234	1.00 13.28	M
ñ		MOTA	8229	OH2 WAT			59.923	-9.348	1.00 11.25	
		MOTA	8230	OH2 WAT	W 49		51.090		1.00 11.27	W
€a ± 2 80 8		ATOM	8231	OH2 WAT			42.792		1.00 11.63	W
IJ.	25	MOTA	8232	OH2 WAT			79.088	-9.168	1.00 11.13	W
		ATOM	8233	OH2 WAT	W 52		57.986	-7.797	1.00 10.97	W
		ATOM	8234	OH2 WAT	W 53	37.026	71.830	-4.514	1.00 9.38	M
£;		ATOM	8235	OH2 WAT	W 54	55.613	59.382		1.00 8.74	M
1,122		ATOM	8236	OH2 WAT	W 55	36.685	44.923	-5.472	1.00 11.75	M
4.4	30	ATOM	8237	OH2 WAT	W 56	51.323	53.328		1.00 12.92	W
	-	ATOM	8238	OH2 WAT	W 57	35.162	50.576		1.00 13.57	M
: W		ATOM	8239	OH2 WAT	W 58	60.531	54.758	-0.381	1.00 14.45	M
i		ATOM	8240	OH2 WAT		42.905	56.765	6.206	1.00 11.63	M
		ATOM	8241	OH2 WAT		47.859	59.294	-25.663	1.00 13.35	M
i par	35	ATOM	8242	OH2 WAT			73.312	-2.170	1.00 12.61	M
	00	ATOM	8243	OH2 WAT			55.246	11.583	1.00 14.08	M
		ATOM	8244	OH2 WAT			39.712	5.244	1.00 11.23	W
		MOTA	8245	OH2 WAT			54.021	-3.621	1.00 13.72	W
		ATOM	8246	OH2 WAT			52.377	-0.944	1.00 9.34	W
	40	ATOM	8247	OH2 WAT			44.292	-8.032	1.00 10.74	W
	10	MOTA	8248	OH2 WAT			58.989	11.075	1.00 12.29	W
		ATOM	8249	OH2 WAT			49.007	24.070	1.00 15.16	W
		ATOM	8250	OH2 WAT			53.552	8.216	1.00 12.07	W
			8251	OH2 WAT			51.549	14.335	1.00 16.74	W
	45	ATOM	8252	OH2 WAT		_	56.270	10.273	1.00 13.60	W
	43	ATOM		OH2 WAT			65.561	-3.446	1.00 12.60	W
		ATOM	8253	OH2 WAT				-24.420	1.00 14.72	W
		ATOM	8254				50.629	6.400	1.00 10.61	W
		ATOM	8255	OH2 WAT			52.779	6.356	1.00 11.97	W
	Ε0	MOTA	8256	OH2 WAT			58.261	-5.093	1.00 14.29	W
	50	MOTA	8257	OH2 WAT				-10.195	1.00 8.82	W
		ATOM	8258	OH2 WAT				-13.197	1.00 12.70	W
		MOTA	8259	OH2 WAT				-3.250	1.00 10.29	W
		ATOM	8260	OH2 WAT			60.896	-3.250 -8.627	1.00 10.29	W
	p	MOTA	8261	OH2 WAT			62.285	-8.627 -16.918	1.00 9.52	W
	55	ATOM	8262	OH2 WAT	W 8	3 41.032	JZ.4U6	-10.918	1.00 12.31	**

	ATOM	8263	OH2	WAT	W	84	31.381	76.822	-6.322	1.00	12.79	W
	ATOM	8264		WAT		85	43.389		-24.999		14.18	W
	ATOM	8265	OH2			86	32.757		-11.699	1.00	11.78	W
	ATOM	8266		WAT		87	20.527		-19.601		12.21	W
5	ATOM	8267		TAW		88	40.275	62.699		1.00	9.15	W
	ATOM	8268		WAT		89	42.187		-24.509		14.89	W
	ATOM	8269		WAT		90	44.548	41.856			15.24	W
	ATOM	8270		WAT		91	38.578		-31.685		14.89	W
	ATOM	8271		TAW		92	22.315		-12.009		10.46	W
10	ATOM	8272		WAT		93	48.241		-30.694		15.15	W
	ATOM	8273		WAT		94	36.678	51.651	3.739		11.00	W
	ATOM	8274				95	38.700	62.268	8.378		12.20	W
	ATOM	8275		WAT		96	47.482	45.984	3.648		10.29	W
	ATOM	8276		WAT		97	33.607	57.028	-35.919		18.29	W
15	ATOM	8277		WAT		98	32.325	77.609	-29.636		13.68	W
	ATOM	8278		WAT		99	39.188	38.924	17.246		16.44	W
	ATOM	8279		WAT			35.929	53.094	1.324		10.90	W
	ATOM	8280		WAT			14.480	60.026	5.140	1.00	14.27	W
	ATOM	8281	ОН2	WAT	W	102	21.754	57.133	5.118	1.00	12.46	W
20	ATOM	8282		TAW		103	43.069	48.058	11.256		12.39	W
	ATOM	8283	OH2	TAW	W	104	25.920	72.873	5.654	1.00	14.15	W
	ATOM	8284	OH2	WAT	W	105	27.565	48.488	-21.578	1.00	14.53	W
	ATOM	8285	OH2	WAT	W	106	33.286	78.599	-5.099	1.00	12.24	W
	MOTA	8286	OH2	WAT	W	107	50.058	59.512	-11.520	1.00	10.57	W
25	MOTA	8287	OH2	WAT	M	108	25.555	51.205	-9.475	1.00	11.34	W
	MOTA	8288	OH2	WAT	W	109	40.153	56.225	5.779	1.00	12.76	W
	ATOM	8289	OH2	WAT	W	110	14.046	59.725	-3.421	1.00	15.15	W
	ATOM	8290	OH2	WAT	W	111	19.679	53.575	-11.765	1.00	11.58	W
	MOTA	8291	OH2	WAT	W	112	26.397	63.646	17.057	1.00	19.25	W
30	MOTA	8292	OH2	WAT	W	113	19.842	57.363	-11.722	1.00	15.86	W
	MOTA	8293	OH2	WAT	M	114	47.093	48.549	11.513	1.00	16.31	M
	MOTA	8294	OH2	WAT	W	115	67.773	81.656	-25.681	1.00	12.31	W
	MOTA	8295		WAT		116	22.941	51.712	-8.714	1.00	17.21	W
	MOTA	8296	OH2	TAW	W	117	46.531	70.323	-36.707		15.24	W
35	MOTA	8297		TAW		118	20.610	57.442	-5.246		10.52	W
	MOTA	8298		WAT			18.199	60.639	24.362		19.10	W
	MOTA	8299		TAW			41.329		-32.493		14.40	W
	MOTA	8300		TAW			38.335	40.047	1.670		13.35	W
40	MOTA	8301	OH2	WAT			23.833	58.200	6.359		12.19	W
40	MOTA	8302		TAW			18.240		-20.036		17.38	M
	ATOM	8303		WAT			41.287		-14.106		13.36	W
	ATOM	8304		WAT			52.832	58.921	-1.733		12.54	W
	ATOM	8305		WAT			47.931	49.566	13.810		12.59	M
4 =	ATOM	8306		WAT			35.204	43.627			14.94	W
45	ATOM	8307		WAT			59.476	60.585	-6.230		11.38	M
	ATOM	8308		TAW			53.626		-19.200		12.06	W
	ATOM	8309		TAW			39.684		-20.753		14.19	M
	ATOM	8310		TAW			33.156	36.626	-4.367		14.10	W
50	ATOM	8311		TAW			14.394		-16.386		15.65	W
50	MOTA	8312		WAT			47.541		-2.387		16.31	M
	MOTA	8313		TAW			46.862		-25.401		15.03	W
	MOTA	8314		WAT			32.224		-28.544		13.45	W
	ATOM	8315		WAT			49.223	49.949	28.325		19.29	W
55	MOTA	8316		WAT			26.323	37.326	29.416		19.14	W
33	MOTA	8317	UHZ	WAT	W	139	51.830	46.524	1.295	1.00	12.33	W

		ATOM	8318	OH2 W	ΤА	W	140	41.682	58.681	-16.050	1.00	12.26	W
		ATOM	8319	OH2 W				13.888	54.182	4.446		16.48	W
		ATOM	8320	OH2 W				67.770		-25.268	1.00	12.57	W
			8321	OH2 W				42.134		-15.965		14.75	W
	5	ATOM	8322	OH2 W				23.116	55.996	30.863		16.59	W
	3	ATOM		OH2 W				56.923	61.000	1.609		15.10	W
		MOTA	8323	OH2 W				20.034	74.341	-6.831		14.78	W
		ATOM	8324					13.513	53.486	1.857		19.02	W
		MOTA	8325	OH2 W				34.238	34.360	16.148		20.31	W
	10	ATOM	8326	OH2 W				34.236		-32.287		13.24	W
	10	ATOM	8327	OH2 W			149	14.014	49.063	15.378		17.37	W
		ATOM	8328					30.347		-12.372		20.68	W
		MOTA	8329	OH2 W				18.389	54.932	14.146		14.59	W
		ATOM	8330	OH2 W				15.531	60.384	15.495		15.81	W
	15	MOTA	8331				153	16.835	74.574	-2.964		16.76	W
	15	MOTA	8332	OH2 W						-2.304		16.90	M
		MOTA	8333	OH2 W			155	56.537		-17.410 -18.274		12.93	W
		ATOM	8334	OH2 W				45.674		-35.413		16.49	W
		ATOM	8335				157	28.029	65.045	-7.742		18.99	W
A COURT	20	ATOM	8336				158	73.011		-17.552		17.40	W
	20	MOTA	8337	OH2 W			159	73.834				16.59	W
		ATOM	8338				160	59.358	49.999	-24.854		16.96	W
ĮT.		ATOM	8339	•			161	23.060		-24.854 -16.113		16.49	W
		MOTA	8340				162	14.343				11.62	W
	25	MOTA	8341	OH2 V				43.420	73.075			15.84	M
	25	MOTA	8342	OH2 V				11.844		-12.346		14.23	W
105		MOTA	8343				165	63.502	44.660			13.46	W
100		ATOM	8344				166	24.666		-24.012 -27.375		19.03	W
10 h		MOTA	8345				167	35.548		-27.373 -24.380		17.39	W
S. Care	20	MOTA	8346				168	28.659		-24.360 -23.538		13.45	W
	- 30	MOTA	8347				169	54.858	63.494			12.75	W
		MOTA	8348				170	24.206	57.598			10.26	W
£:44		MOTA	8349	OH2 V			171	49.747	70.940			14.02	W
		ATOM	8350	OH2 V				45.989	55.716			13.43	W
j	0.5	MOTA	8351				173	24.402		-21.645		14.74	W
\$44	35	ATOM	8352	OH2 V				28.620	45.554			13.25	W
		ATOM	8353	OH2 V				37.102		-17.611		18.25	W
		ATOM	8354	OH2 V				41.571 40.223		-31.989		14.62	W
		ATOM	8355	OH2 V				49.238		-28.693		20.38	W
	40	MOTA	8356	OH2 V				64.381		-10.391		21.32	W
	40	ATOM	8357	OH2				19.168	72.461			18.78	W
		ATOM	8358	OH2 V						-16.266		12.96	W
		ATOM	8359	OH2 V				17.075 9.392	52.493			23.15	W
		ATOM	8360	OH2 V						-36.857		13.91	W
	4.	ATOM	8361	OH2 V				53.939		-23.550		16.66	W
	45	MOTA	8362	OH2 I				50.885	44.201			13.57	W
		MOTA	8363	OH2 I					68.219			19.23	W
		MOTA	8364	OH2 I				59.279	53.702			17.16	W
		MOTA	8365	OH2				25.484				16.03	W
	E0.	ATOM	8366	OH2 1				69.101	61.416	-38.485		14.92	W
	50	MOTA	8367	OH2 1				58.277				14.65	W
		ATOM	8368	OH2				44.347	46.042	-18.708		13.28	W
		MOTA	8369	OH2				46.569		-10.326		15.89	W
		MOTA	8370	OH2				33.581				17.11	W
		ATOM	8371	OH2				47.072		-30.250		16.02	W
	55	MOTA	8372	OH2	TAW	W	194	44.472	56.046	-15.367	1.00	10.02	VV

		ATOM	8373	OH2 WAT	W 195	13.135	66.801 -4.751	1.00 16.44	W
		ATOM	8374	OH2 WAT		24.508	39.081 -11.494	1.00 20.79	W
		ATOM	8375	OH2 WAT		41.658	61.212 -29.773	1.00 17.50	W
		MOTA	8376	OH2 WAT		27.188	41.368 13.298	1.00 15.13	M
	5	ATOM	8377	OH2 WAT		42.058	87.798 -40.915	1.00 15.24	W
	9		8378	OH2 WAT		70.003	69.894 -12.626	1.00 14.74	W
		ATOM	8379	OH2 WAT		64.179	77.927 -35.248	1.00 14.07	W
		ATOM		OH2 WAT		20.804	65.342 7.755	1.00 17.03	M
		ATOM	8380			11.345	61.251 -18.469	1.00 19.28	W
	10	ATOM	8381	OH2 WAT		24.586	70.556 -8.728	1.00 13.10	W
	10	MOTA	8382	OH2 WAT		25.042	40.064 14.311	1.00 17.71	W
		MOTA	8383	OH2 WAT			63.257 -33.219	1.00 17.71	W
		MOTA	8384	OH2 WAT		22.658	43.251 7.933	1.00 14.67	W
		MOTA	8385	OH2 WAT		41.629		1.00 14.07	M
		MOTA	8386	OH2 WAT		20.931	51.833 47.478		W
	15	ATOM	8387	OH2 WAT		41.310	50.343 33.238	1.00 20.76	W
		ATOM	8388	OH2 WAT	W 211	45.951	52.717 -19.108	1.00 16.03	
		ATOM	8389	OH2 WAT		51.426	76.342 -40.924	1.00 25.44	M
		MOTA	8390	OH2 WAT		25.622	86.174 -31.896	1.00 16.09	W
		MOTA	8391	OH2 WAT	W 214	12.541	56.291 5.425	1.00 17.15	M
1	20	ATOM	8392	OH2 WAT	W 215	22.523	56.813 -34.105	1.00 17.30	W
Tribusi pang,		ATOM	8393	OH2 WAT	W 216	43.796	72.560 -41.912	1.00 18.18	W
1, <u>1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1</u>		MOTA	8394	OH2 WAT	W 217	44.637	58.659 -15.909	1.00 16.17	W
		MOTA	8395	OH2 WAT	W 218	31.266	81.750 0.557	1.00 18.18	M
in the second		MOTA	8396	OH2 WAT	W 219	52.052	56.397 -30.316	1.00 20.40	M
	25	ATOM	8397	OH2 WAT	W 220	17.201	70.010 -23.298	1.00 21.76	M
100		ATOM	8398	OH2 WAT		37.700	46.928 29.873	1.00 18.65	W
Ţ.		ATOM	8399	OH2 WAT		49.781	55.079 -29.054	1.00 18.35	W
		ATOM	8400	OH2 WAT		36.227	79.122 -4.990	1.00 18.76	W
igane.		MOTA	8401	OH2 WAT		62.292	62.423 25.645	1.00 21.53	W
and and a	30	MOTA	8402	OH2 WAT		11.410	53.122 6.820	1.00 16.14	W
J	50	MOTA	8403	OH2 WAT		13.875	60.774 -22.493	1.00 17.65	M
Maria Maria		ATOM	8404	OH2 WAT		50.785	61.911 26.371	1.00 20.81	W
3,-4		ATOM	8405	OH2 WAT		68.609	78.746 -18.153	1.00 20.98	W
2:1000 1:1000 1:1000		ATOM	8406	OH2 WAT		84.248	68.254 -17.382	1.00 16.45	W
	35	ATOM	8407	OH2 WAT		21.921	40.287 -8.763	1.00 25.24	M
	. 55	ATOM	8408	OH2 WAT		52.792	69.689 18.337	1.00 23.67	W
		ATOM	8409	OH2 WAT		42.635	53.302 35.623	1.00 21.27	W
		ATOM	8410	OH2 WAT		70.643	52.132 -12.652	1.00 19.68	W
		ATOM	8411	OH2 WAT		34.668	70.219 13.058	1.00 21.89	M
	40		8412	OH2 WAT		27.265	46.404 13.634	1.00 16.31	M
	40	ATOM	8413	OH2 WAT		14.320	49.792 19.854	1.00 16.31	W
		ATOM		OH2 WAT		49.691	73.425 -21.732	1.00 21.90	W
		ATOM	8414	OH2 WAT		48.829	44.275 -6.153	1.00 18.55	W
		ATOM	8415	OH2 WAT		61.398	76.794 -39.730	1.00 19.88	W
	15	ATOM	8416	OH2 WAT		22.807	78.638 -30.326	1.00 23.15	W
	45	MOTA	8417			43.596	88.461 -38.551	1.00 15.45	W
		MOTA	8418	OH2 WAT		35.783	77.456 -7.287	1.00 14.79	W
		MOTA	8419	OH2 WAT			68.296 21.838	1.00 19.19	W
		MOTA	8420	OH2 WAT		24.815		1.00 19.95	W
	50	MOTA	8421	OH2 WAT		68.075		1.00 19.35	W
	50	MOTA	8422	OH2 WAT		54.280			W
		ATOM	8423	OH2 WAT		55.069	50.670 16.796	1.00 24.95	W
		MOTA	8424	OH2 WAT		39.430	48.768 -32.780	1.00 23.67	W
		ATOM	8425	OH2 WAT		22.569	45.303 -13.489	1.00 19.28	
		ATOM	8426	OH2 WAT		67.180	55.272 0.972	1.00 14.46	W
	55	MOTA	8427	OH2 WAT	W 251	47.980	44.000 -8.660	1.00 18.47	W

										00 500	1 00	00 16	r.7
		MOTA	8428	OH2 W.	AT W	252	2	26.921		-23.599	1.00		M
		ATOM	8429	OH2 W	W TA	253		18.923	48.496	37.716	1.00		W
		MOTA	8430	OH2 W.	AT W	254	{	33.559	67.682	-22.775	1.00		W
		ATOM	8431	OH2 W			4	42.958	59.618	-18.847	1.00	23.27	M
	5	MOTA	8432	OH2 W				47.414	79.105	-40.375	1.00	19.23	W
	J	ATOM	8433	OH2 W				8.630		-6.814	1.00		W
				OH2 W			1	54.925		-23.447	1.00		W
		MOTA	8434					27.570		-19.572	1.00		W
		ATOM	8435	OH2 W						-11.226		25.73	W
	4.0	MOTA	8436	OH2 W				72.138			1.00		W
	10	MOTA	8437	OH2 W				34.255		12.146			W
		MOTA	8438	OH2 W				11.762	59.422		1.00		
		MOTA	8439	OH2 W				23.706		-15.875		18.11	W
		MOTA	8440	OH2 W				50.139		-17.624		21.18	W
		MOTA	8441	OH2 W	AT W	266		45.026		-25.430		19.76	W
	15	MOTA	8442	OH2 W	AT W	267		16.075		-18.963		21.64	M
		MOTA	8443	OH2 W	AT W	268		20.115		-24.264		18.48	M
		ATOM	8444	OH2 W	AT W	269		59.537		-8.952	1.00	18.23	M
		ATOM	8445	OH2 W				66.843	60.061	-27.172	1.00	20.64	M
2.500		MOTA	8446	OH2 W				38.606	51.471	-29.882	1.00	24.46	W
	20	ATOM	8447	OH2 W				40.396	82.765	-10.648	1.00	14.99	W
	20	ATOM	8448	OH2 W				42.125	48.704		1.00	17.97	W
		ATOM	8449	OH2 W				24.053	52.876		1.00	25.34	W
ii.			8450	OH2 W				53.271		-25.039	1.00	18.91	W
		ATOM		OH2 W				32.411		-43.013		24.77	W
5 (148) 5 (1 E)	25	ATOM	8451			1 278		36.026	36.057			19.29	W
A THE	25	ATOM	8452					70.071		-29.789		21.14	W
10		MOTA	8453		AT V					-43.824		19.21	W
m		MOTA	8454	OH2 W				49.683		-34.832		23.24	W
観		MOTA	8455	OH2 W				68.342				20.39	W
		ATOM	8456	OH2 W				29.226	46.817				W
100	30	ATOM	8457	OH2 W				18.522	69.968	4.257		15.36	
Teach State		ATOM	8458	OH2 W				14.166	68.276	-7.752		18.68	W
		MOTA	8459	OH2 W				50.272	72.263	9.147		23.64	W
₿Æ.		ATOM	8460	OH2 W				39.675		-40.325		19.11	W
2 (122) 2 (122)		MOTA	8461	OH2 W				28.646	65.114			17.93	W
i si	35	ATOM	8462	OH2 W	IAT V	V 288		11.705	58.754	7.964		21.41	W
		ATOM	8463	OH2 W	TAV	V 289		52.597		-17.448		22.13	W
		ATOM	8464	OH2 W	TAI	V 290		18.473		-26.958		19.14	W
		ATOM	8465	OH2 W	TAV	V 291		44.625	79.359	-33.259		19.78	W
		ATOM	8466	OH2 V	IAT I	v 292		36.100	80.964	6.342		17.11	W
	40	ATOM	8467	OH2 V				16.566	60.591	-28.155	1.00	19.52	W
	10	ATOM	8468	OH2 V				29.722		-17.892	1.00	28.58	W
		ATOM	8469	OH2 V				8.813	55.020	-6.064	1.00	20.11	W
		MOTA	8470			v 296		46.636		-25.945	1.00	20.16	W
		ATOM	8471			v 297		42.898	82.218	-9.891		24.94	W
	45	ATOM	8472			v 297		10.335	50.645	18.833	1.00	25.27	W
	40					N 299		12.852	42.541	12.566		17.91	W
		MOTA	8473			N 300		35.895	45.124	30.854		20.00	W
		ATOM	8474							-11.626		21.01	W
		ATOM	8475			₩ 301		15.792		-20.840		23.20	W
	F 0	ATOM	8476			W 302		25.222				25.71	W
	50	MOTA	8477			w 303		56.890	64.828			22.28	M
		MOTA	8478			304		38.567		-41.997			W
		MOTA	8479			w 305		34.734		-34.927		19.36	W
		MOTA	8480			W 306		33.032		-17.616		25.42	
		MOTA	8481			W 307		20.752	42.619			17.80	W
	55	MOTA	8482	OH2 V	TAW	M 308		19.062	76.610	4.854	1.00	27.92	M

		n mon	0402	OH2 WAT	Ta7	300	43.300	80.722	5.014	1.00	22.89	W
		MOTA	8483				32.873	85.309	-5.565	1.00		W
		ATOM	8484	OH2 WAT			31.185	33.495	2.792	1.00		W
		ATOM	8485	OH2 WAT				78.463	-1.341	1.00		W
	_	MOTA	8486	OH2 WAT			21.436	59.005	3.952	1.00		W
	5	MOTA	8487	OH2 WAT			55.286		-19.877	1.00		W
		MOTA	8488	OH2 WAT			13.406				24.71	W
		MOTA	8489	OH2 WAT			16.922		-19.239	1.00		W
		MOTA	8490	OH2 WAT			14.323		-12.022			W
		MOTA	8491	OH2 WAT			53.131		-21.375		24.00	
	10	MOTA	8492	OH2 WAT			70.984	49.511			23.19	W.
		MOTA	8493	OH2 WAT			58.047	42.402			23.65	W
		MOTA	8494	OH2 WAT			74.768		-14.340		27.79	W
		ATOM	8495	OH2 WAT	W	321	24.787		-16.877		20.99	W
		ATOM	8496	OH2 WAT	W	322	56.915		-35.396		21.88	M
	15	ATOM	8497	OH2 WAT	. M	323	48.769		-29.520		24.35	M
		ATOM	8498	OH2 WAT			66.709		-6.852		19.70	W
		ATOM	8499	OH2 WAT	W	326	28.790	93.746	-38.512		23.49	W
		ATOM	8500	OH2 WAT			32.509	64.768	-9.926		17.49	W
s, from		ATOM	8501	OH2 WAT			13.454	50.922	-1.603		22.73	W
	20	ATOM	8502	OH2 WAT			39.346	49.244	30.155		19.73	W
	_0	ATOM	8503	OH2 WAT			67.888	58.663	-24.054		19.93	M
100		ATOM	8504	OH2 WAT			20.779	58.985	-34.524	1.00	18.17	M
		MOTA	8505	OH2 WAT			37.550	75.641	-42.326	1.00	19.39	M
		ATOM	8506	OH2 WAT			31.895		-35.392	1.00	20.49	M
	25		8507	OH2 WAT		334	12.860	71.207		1.00	26.50	W
443	23	ATOM	8508	OH2 WAS			37.017		-24.664	1.00	26.87	M
10		MOTA	8509	OH2 WA			19.245	42.748			24.91	W
		ATOM	8510	OH2 WAS			50.102		7.091		17.71	W
21		ATOM		OH2 WA			37.447		-25.539		18.16	W
	20	MOTA	8511	OH2 WA			75.300		-19.617		26.79	W
: 12	30	MOTA	8512	OH2 WA			50.344		-31.161		19.20	W
		MOTA	8513	OH2 WA			42.877		-31.559		24.68	M
		ATOM	8514	OH2 WA			13.262	68.814			21.56	M
		ATOM	8515	OH2 WA			40.735		-31.321		26.31	W
1 (22) 1 (22)	or.	ATOM	8516				27.084	52.281			28.70	W
	35	ATOM	8517	OH2 WA			12.534	66.379			20.41	W
		ATOM	8518	OH2 WA'			42.619		-15.769		22.12	W
		ATOM	8519				48.091	48.434			17.55	W
		MOTA	8520	OH2 WA			11.547	46.877			24.28	M
	40	ATOM	8521	OH2 WA			16.474		-19.969		19.28	W
	40	MOTA	8522	OH2 WA				52.914	-5.886		27.53	W
		ATOM	8523	OH2 WA			5.038		-25.706		22.05	W
		MOTA	8524	OH2 WA			56.273		-27.376		21.38	W
		MOTA	8525	OH2 WA			39.139	56.850			26.22	W
		MOTA	8526	OH2 WA			60.719				19.40	M
	45	ATOM	8527	OH2 WA			13.419	51.471			21.87	W
		MOTA	8528	OH2 WA			43.394		-37.655		20.76	W
		MOTA	8529	OH2 WA			28.161	35.317			25.16	M
		ATOM	8530	OH2 WA			80.258		-21.537			W
		MOTA	8531	OH2 WA			51.563	45.062			28.77	W
	50	MOTA	8532	OH2 WA			21.446		-17.598		23.85	W
		MOTA	8533	OH2 WA			47.431		-20.273		25.46	W
		ATOM	8534	OH2 WA			21.320		-31.086		28.86	
		MOTA	8535	OH2 WA			32.967	66.868			21.01	W
		MOTA	8536	OH2 WA			14.670		-14.512		20.46	W
	55	ATOM	8537	OH2 WA	T W	365	50.391	73.726	-25.274	1.00	22.28	W

						266	11 016	79.336	22 444	1 00	25.26	W
		MOTA	8538	OH2 WAT			41.946				22.87	W
		MOTA	8539	OH2 WAT			40.090	45.369	25.381			
		MOTA	8540	OH2 WAT			50.764	76.382	14.494		20.54	W
		MOTA	8541	OH2 WAT	W	369	38.488	45.146			23.10	W
	5	MOTA	8542	OH2 WAT	W	370	61.315	54.313			24.07	M
		MOTA	8543	OH2 WAT	W	371	53.733	46.764			28.94	W
		MOTA	8544	OH2 WAT	W	372	56.967	43.140	-20.141		24.44	W
		ATOM	8545	OH2 WAT			67.533	54.709	-18.257		21.67	W
		ATOM	8546	OH2 WAT			42.392	79.852	-31.723	1.00	29.17	W
	10	ATOM	8547	OH2 WAT			29.171	62.237	-39.774	1.00	22.24	W
	10	ATOM	8548	OH2 WAT			27.168	61.164	10.332	1.00	24.42	W
		ATOM	8549	OH2 WAT			45.832	45.100	23.009	1.00	26.77	W
			8550	OH2 WAT			34.919	51.178	35.930	1.00	27.88	W
		ATOM	8551	OH2 WAT			57.740	62.410	7.853		25.59	W
	15	ATOM		OH2 WAT			25.278	33.367	13.289		24.89	W
	15	ATOM	8552				27.478	59.295	8.589		20.20	W
		MOTA	8553	OH2 WAT			42.720		-30.466		30.57	W
		MOTA	8554	OH2 WAT				58.005	-1.367		19.27	M
		MOTA	8555	OH2 WAT			13.949		5.694		28.48	W
3.25		MOTA	8556	OH2 WAT			49.207	76.417	28.196		26.23	W
	20	MOTA	8557	OH2 WAT			27.814	67.606			24.84	W
Ţ		MOTA	8558	OH2 WAT			41.984	39.094	16.733		21.53	W
16 25 4 67 0		MOTA	8559	OH2 WAT			58.873	46.425	-1.374			W
ijĪ.		ATOM	8560	OH2 WAT			73.274		-18.311		26.55	
		MOTA	8561	OH2 WAT			19.687	39.332	17.591		18.94	W
W	25	MOTA	8562	OH2 WAT			39.662		-18.087		19.74	W
		MOTA	8563	OH2 WAT		391	28.147		-31.558		25.38	W
		MOTA	8564	OH2 WAT			68.586		-16.614		27.92	W
BI		ATOM	8565	OH2 WAT	W.	393	66.468	62.581	-13.049		17.12	W
		ATOM	8566	OH2 WAT	' W	394	26.521	75.061	2.145		22.89	W
₹;zz≓ , jæg	30	MOTA	8567	OH2 WAT	W	395	40.061	39.148	9.051		24.66	W
		ATOM	8568	OH2 WAT	W	396	21.299	47.235	39.151		23.69	M
		MOTA	8569	OH2 WAT	W	397	42.155	74.782	-41.480		25.00	M
104		MOTA	8570	OH2 WAT	. M	398	14.628	55.293	27.232		32.51	W
of plants		ATOM	8571	OH2 WAT	. M	399	28.625	59.754	-38.993		26.37	W
	35	MOTA	8572	OH2 WAT			38.975	42.908	22.645		25.45	M
н		ATOM	8573	OH2 WAS			16.227	52.945	-22.427		28.89	M
		ATOM	8574	OH2 WAS			27.322	34.952	29.323		24.65	W
		ATOM	8575	OH2 WAS			17.137	80.720	-7.430		25.21	M
		ATOM	8576	OH2 WAS			48.222	41.802	3.682	1.00	24.08	M
	40	ATOM	8577	OH2 WAS			73.340	51.338	-11.365	1.00	28.24	W
	10	ATOM	8578	OH2 WAS			58.671		-22.208	1.00	22.00	W
		ATOM	8579	OH2 WAS			47.526		-18.523	1.00	22.94	W
		ATOM	8580	OH2 WA			40.691		-37.372	1.00	21.41	W
		ATOM	8581	OH2 WA			60.926	63.677	15.141	1.00	27.39	W
	45	ATOM	8582	OH2 WAS			59.335		-15.222	1.00	26.73	W
	40		8583	OH2 WA			20.923	30.305	17.732		29.75	W
		ATOM	8584	OH2 WA			46.041		-43.820		21.70	W
		MOTA		OH2 WA			21.543		-19.119		29.10	W
		ATOM	8585	OH2 WA			20.561	68.418			25.39	W
	E 0	MOTA	8586	OH2 WA'			45.142		-17.334		24.13	M
	50	ATOM	8587				17.330	70.661	6.541		31.13	W
		ATOM	8588	OH2 WA			51.111		-28.613		21.15	W
		ATOM	8589	OH2 WA					-25.745		29.17	W
		MOTA	8590	OH2 WA			19.096		-23.743		22.69	W
		MOTA	8591	OH2 WA			39.889				28.90	W
	55	ATOM	8592	OH2 WA	L M	420	22.570	66.011	29.297	1.00	20.90	VV

	MOTA	8593	OH2 1	WAT W	421	24.823	59.430		1.00 28.15	M
	MOTA	8594	OH2	WAT W	422	58.331	34.694	-6.071	1.00 28.92	W
	MOTA	8595	OH2	WAT W	423	50.546	79.034	-15.583	1.00 27.80	M
	ATOM	8596	OH2	WAT W	424	17.745	68.564	24.329	1.00 32.50	W
5	ATOM	8597	OH2		425	56.367	92.787	-29.437	1.00 24.61	W
Ü	ATOM	8598	OH2		426	52.556	73.131	4.237	1.00 33.92	W
	ATOM	8599	OH2		427	28.063	67.208	7.740	1.00 24.95	W
	ATOM	8600	OH2		428	22.030	36.775	0.168	1.00 21.71	W
	ATOM	8601		WAT W		40.079	79.456	-28.245	1.00 25.42	W
10		8602		WAT W		10.576	77.090	-5.015	1.00 30.97	W
10	ATOM			WAT W		27.152	65.194	9.060	1.00 25.26	W
	ATOM	8603		WAT W		72.751		-20.984	1.00 26.96	W
	MOTA	8604				79.826	73.903		1.00 28.48	M
	MOTA	8605		WAT W		66.841	74.355	-4.271	1.00 30.30	W
4 =	MOTA	8606		WAT V				-28.370	1.00 22.20	W
15	MOTA	8607		WAT V		48.154		-1.503	1.00 25.77	W
	MOTA	8608		WAT V		42.519	39.358		1.00 23.77	W
	MOTA	8609		WAT V		63.183		-31.749	1.00 27.22	W
	MOTA	8610		WAT V		24.165		-14.685		W
	MOTA	8611		WAT V		27.758	50.897	13.213	1.00 19.47	W
20	MOTA	8612		WAT V		38.638		-39.787	1.00 22.96	
	MOTA	8613	OH2	WAT W	V 441	76.697		-26.770	1.00 29.60	M
	MOTA	8614	OH2	WAT W	V 442	28.767	72.466	22.467	1.00 25.85	M
	ATOM	8615	OH2	V TAW	V 443	20.751		-35.607	1.00 31.09	M
	MOTA	8616	OH2	TAW	V 444	24.098	57.242	38.823	1.00 24.73	W
25	MOTA	8617	OH2	WAT T	V 445	38.190		-10.134	1.00 38.23	W
	MOTA	8618	OH2	WAT	V 447	23.326	82.586	-40.633	1.00 24.86	M
	ATOM	8619	OH2	WAT V	V 448	17.246		-26.245	1.00 27.75	M
	ATOM	8620	ОН2	WAT V	N 449	66.919		-22.218	1.00 23.81	M
	MOTA	8621			N 450	52.681	64.880	-27.991	1.00 41.60	W
30	ATOM	8622			W 451	20.704	68.074	8.597	1.00 21.60	M
00	ATOM	8623			W 452	61.634	63.846	-30.745	1.00 28.03	W
	ATOM	8624			W 453	9.806	59.916	6.504	1.00 29.44	W
	ATOM	8625			W 454	31.630	85.850	-19.824	1.00 22.22	W
	ATOM	8626			w 455	28.063	88.041	-41.579	1.00 27.55	M
35	ATOM	8627			w 456	44.698	82.605	-30.429	1.00 20.68	W
55	ATOM	8628			w 457	59.485		-34.677	1.00 26.13	W
		8629			w 458	70.244		-12.495	1.00 28.68	W
	MOTA	8630	OH2		W 459	46.088	46.117	16.230	1.00 29.47	W
	MOTA	8631			W 460	46.004		-25.325	1.00 29.72	M
40	MOTA	8632			W 461	56.907		-20.060	1.00 25.77	M
40	MOTA				W 462	73.660	74.098	-5.829	1.00 23.60	W
	ATOM	8633			W 462 W 463	19.646	43.105	33.835	1.00 25.04	W
	ATOM	8634				79.264	51.116	-0.590	1.00 21.30	M
	ATOM	8635			W 464	66.047	45.418	-3.282	1.00 26.67	W
4=	MOTA	8636			W 465	48.396	78.020	-9.778	1.00 24.13	W
45	MOTA	8637			W 467		34.084	-1.514	1.00 22.90	W
	MOTA	8638			W 468	29.998	74.990	-24.051	1.00 31.88	W
	MOTA	8639			W 469	16.176		35.721	1.00 31.00	W
	MOTA	8640			W 470	17.617	39.367 31.157	29.484	1.00 38.09	M
	MOTA	8641			W 471	22.534			1.00 20.34	W
50	MOTA	8642			W 472	33.369		-18.330	1.00 13.37	W
	MOTA	8643			W 473	41.250		-39.511		W
	MOTA	8644			W 474	44.232		-27.639	1.00 23.37	
	MOTA	8645			W 475	30.862		4.543	1.00 17.90	W
	MOTA	8646			W 476	65.908			1.00 24.05	W
55	ATOM	8647	OH2	WAT	W 477	46.470	68.518	26.475	1.00 28.39	W

						207			
		ATOM	8648	OH2 WAT	W 478	70.032	61.711 -20.342	1.00 28.95	M
		ATOM	8649	OH2 WAT		23.576	90.884 -26.085	1.00 32.69	M
		ATOM	8650	OH2 WAT		25.257	71.144 22.415	1.00 28.48	W
		ATOM	8651	OH2 WAT		14.011	69.331 26.764	1.00 25.72	W
	5	ATOM	8652	OH2 WAT		62.091	80.708 -18.944	1.00 22.51	W
	9	ATOM	8653	OH2 WAT		27.568	47.649 45.829	1.00 30.99	W
		ATOM	8654	OH2 WAT		24.924	34.183 0.541	1.00 31.69	W
		ATOM	8655	OH2 WAT		57.542	69.040 13.372	1.00 35.06	M
		ATOM	8656	OH2 WAT		7.964	48.092 11.826	1.00 24.78	W
	10	ATOM	8657	OH2 WAT		71.310	59.790 1.011	1.00 30.00	W
	10	ATOM	8658	OH2 WAT		67.619	88.039 -23.404	1.00 24.62	M
		ATOM	8659	OH2 WAT		12.380	75.159 -13.498	1.00 29.76	W
		ATOM	8660	OH2 WAT		27.878	52.141 42.550	1.00 28.52	W
		ATOM	8661	OH2 WAT		22.024	62.686 33.804	1.00 29.60	M
	15	ATOM	8662	OH2 WAT		59.396	66.922 -26.287	1.00 39.41	M
	13	MOTA	8663	OH2 WAT		34.320	87.124 -10.560	1.00 30.89	M
		ATOM	8664	OH2 WAT		30.216	36.445 29.080	1.00 25.09	W
		ATOM	8665	OH2 WAT		8.571	49.568 5.657	1.00 35.32	W
4.500		ATOM	8666	OH2 WAT		41.955	67.344 29.326	1.00 25.76	W
	20	ATOM	8667	OH2 WAT		72.402	75.774 -27.267	1.00 28.93	W
	2.0	ATOM	8668	OH2 WAT		8.848	44.348 12.960	1.00 29.54	W
A TOTAL		ATOM	8669	OH2 WAT		71.065	43.044 -15.336	1.00 30.91	W
140		ATOM	8670	OH2 WAT		41.462	44.667 -24.401	1.00 26.41	W
		ATOM	8671	OH2 WAT		39.798	66.983 31.423	1.00 27.70	M
N	25	ATOM	8672	OH2 WAT		53.321	52.719 26.356	1.00 25.71	M
	2.0	ATOM	8673	OH2 WAT			44.377 -27.111	1.00 28.70	M
137		ATOM	8674	OH2 WAT			52.518 -27.061	1.00 26.07	W
		ATOM	8675	OH2 WAT			95.128 -34.949	1.00 33.07	W
श्रा इंग्लिक्		MOTA	8676	OH2 WAT			64.729 -25.801	1.00 25.60	M
	30	ATOM	8677	OH2 WAT			64.662 -35.219	1.00 35.32	W
1, <u>1,1</u>		ATOM	8678	OH2 WAT	W 510	18.126	52.856 35.976	1.00 29.35	Ŵ
		MOTA	8679	OH2 WAT	W 511	83.591	70.051 -20.249	1.00 24.79	W
, de		MOTA	8680	OH2 WAT	W 512	43.836	79.945 -42.480	1.00 26.76	M
		MOTA	8681	OH2 WAT	W 513		62.534 16.084	1.00 24.30	W
g szán	35	MOTA	8682	OH2 WAT			79.249 -7.906	1.00 24.96	W
		MOTA	8683	OH2 WAT			88.079 -4.103	1.00 32.00	W W
		MOTA	8684	OH2 WAT			42.182 -22.199	1.00 30.07	W
		ATOM	8685	OH2 WAT			29.145 13.084	1.00 31.77	W
		MOTA	8686					1.00 30.30	W
	40	MOTA	8687	OH2 WAT			59.284 2.971	1.00 32.47	W
		MOTA	8688	OH2 WAT			77.418 -12.932	1.00 22.54	W W
		MOTA	8689	OHŹ WAT			49.290 38.335	1.00 25.33 1.00 24.39	W
		MOTA	8690	OH2 WAT			41.131 -25.576	1.00 24.39	W
		MOTA	8691	OH2 WAT			67.313 -2.706	1.00 25.69	M
	45	MOTA	8692	OH2 WAT			41.720 -7.635	1.00 20.49	W
		MOTA	8693	OH2 WAT			55.026 -22.750	1.00 19.30	W
		ATOM	8694	OH2 WAT			81.719 -3.635	1.00 41.03	W
		ATOM	8695	OH2 WAT			39.049 -16.111	1.00 28.81	M
		MOTA	8696	OH2 WAT			51.181 22.159	1.00 21.40	W
	50	MOTA	8697	OH2 WAT			45.937 4.993 80.242 -42.585	1.00 33.49	W
		ATOM	8698	OH2 WAT			80.242 -42.585 84.509 -20.062	1.00 25.30	W
		ATOM	8699	OH2 WAT			67.499 -36.724	1.00 23.12	W
		ATOM	8700	OH2 WAT				1.00 28.07	M
		ATOM	8701	OH2 WAT				1.00 39.22	W
	55	ATOM	8702	OH2 WAT	W 534	58.573	34.864 -12.260	1.00 20.74	**

		ATOM	8703	OH2 WAT	W 535	21.002	79.421 -2	3.639	1.00 2	27.60	W
		ATOM	8704	OH2 WAT		51.295	71.304 -2		1.00	17.32	W
		ATOM	8705	OH2 WAT		32.081	85.225 -		1.00 2		W
		ATOM	8706	OH2 WAT		21.710		8.041	1.00	31.53	W
	5	ATOM	8707	OH2 WAT		22.095		7.194	1.00		W
	Ü	ATOM	8708	OH2 WAT		31.578		7.279	1.00 2		M
		ATOM	8709	OH2 WAT		17.488	81.399 -1		1.00	34.73	M
		ATOM	8710	OH2 WAT		51.884	58.999	6.332	1.00		M
		ATOM	8711	OH2 WAT		21.957	80.184 -3		1.00 2		M
	10	ATOM	8712	OH2 WAT		24.829	74.038	9.017	1.00 2		W
	10	ATOM	8713	OH2 WAT		21.438		5.316	1.00 2		W
		ATOM	8714	OH2 WAT		48.301	94.016 -3		1.00		W
		ATOM	8715	OH2 WAT		39.887	38.849 -		1.00	22.74	W
		ATOM	8716	OH2 WAT		39.630	96.139 -2		1.00	36.55	W
	15	ATOM	8717	OH2 WAT		36.804	34.917 -1		1.00 2	29.05	W
	10	ATOM	8718	OH2 WAT		34.920		3.370	1.00	19.31	W
		ATOM	8719	OH2 WAT		55.621		1.577	1.00	32.69	W
		ATOM	8720	OH2 WAT		70.242		-0.089	1.00	28.70	W
a p Paretr		ATOM	8721	OH2 WAT		46.112		2.600	1.00	30.69	W
	20	ATOM	8722	OH2 WAT		48.424	46.019 -2		1.00	27.05	W
		ATOM	8723	OH2 WAT		60.520	91.845 -2		1.00	29.32	W
		ATOM	8724	OH2 WAT		37.929		35.419	1.00		W
ŢŢ,		ATOM	8725	OH2 WAT		29.431	63.026 -3		1.00	39.57	W
1000		ATOM	8726	OH2 WAT		61.433	48.378 -3		1.00		W
	25	ATOM	8727	OH2 WAT		62.085	83.114 -3		1.00	25.83	W
191		ATOM	8728	OH2 WAT		62.988	42.869 -2		1.00	25.61	W
150		ATOM	8729	OH2 WAT		53.472		22.714	1.00	28.63	W
177		ATOM	8730	OH2 WAT		30.645		-9.707	1.00	30.01	W
21. 3.:20mm		ATOM	8731	OH2 WAT		29.635		21.942	1.00	30.77	W
	30	ATOM	8732	OH2 WAT		78.625	69.011 -1	2.005	1.00	25.23	W
(II		ATOM	8733	OH2 WAT	W 567	31.369	69.210 -4	15.418	1.00	31.91	M
		ATOM	8734	OH2 WAT	W 568	73.477	82.280 -2	21.188	1.00	26.33	W
i de		ATOM	8735	OH2 WAT	W 569	47.244	71.014 -2	23.950	1.00	29.92	W
		MOTA	8736	OH2 WAT	W 570	20.446		12.137	1.00		M
3,4	35	ATOM	8737	OH2 WAT	W 571	34.990	94.883 -3		1.00		M
*		MOTA	8738	OH2 WAT	W 572	17.230	41.552	9.181	1.00		M
		ATOM	8739	OH2 WAT	W 573	20.459	80.167 -3		1.00		W
		MOTA	8740	OH2 WAT	W 574	49.151	91.694 -2		1.00		W
		MOTA	8741	OH2 WAT	W 575	43.768		19.223	1.00		W
	40	MOTA	8742	OH2 WAT	W 576	21.182	35.533 -				M
		MOTA	8743	OH2 WAT	W 577	65.093	87.994 -2		1.00		M
		MOTA	8744	OH2 WAT	W 578	46.841	53.785 -2				W
		MOTA	8745	OH2 WAT			63.009 -2		1.00		W
		MOTA	8746	OH2 WAT		19.970		25.719	1.00		M
	45	MOTA	8747	OH2 WAT		59.366	86.847 -4		1.00		M
		MOTA	8748	OH2 WAT		51.734	34.233 -		1.00		W
		MOTA	8749	OH2 WAT		56.216	78.991 -		1.00		W
		MOTA	8750	OH2 WAT		28.884	69.807 -3		1.00		W
	_	MOTA	8751	OH2 WAT		45.187	83.486 -		1.00		W
	50	ATOM	8752	OH2 WAT			81.398 -		1.00		W
		MOTA	8753	OH2 WAT		28.252	90.617 -		1.00		W
		MOTA	8754	OH2 WAT		19.626	84.323 -2			37.20	W
		ATOM	8755	OH2 WAT			97.138 -			33.56	W
		ATOM	8756	OH2 WAT			44.263 -			35.51	W
	55	ATOM	8757	OH2 WAT	W 591	21.114	41.599	35.229	1.00	29.14	M

						F 0 0	20 247	30.347	13.105	1.00	38 89	W
		MOTA	8758	OH2 WA			39.247		-22.844	1.00 2		W
		MOTA	8759	OH2 WA			62.099			1.00 2		M
		MOTA	8760	OH2 WA			31.040	68.457	14.098	1.00 2		W
		MOTA	8761	OH2 WA			27.896	67.871	33.967	1.00		W
	5	MOTA	8762	OH2 WF			15.003		-25.860			
		MOTA	8763	OH2 WA			29.601	72.448	12.548	1.00		W
		MOTA	8764	OH2 WA	T W	599	61.559		-38.650	1.00		W
		MOTA	8765	OH2 WA	T W	601	59.128	62.348	25.815	1.00		W
		ATOM	8766	OH2 WA	T W	602	51.205	79.279	-1.713	1.00		W
	10	ATOM	8767	OH2 WA	TW	604	21.242	60.395	26.828	1.00		W
		MOTA	8768	OH2 WA	TW	605	59.833	90.941	-35.483	1.00		M
		MOTA	8769	OH2 WA			24.014	60.658	36.037	1.00		M
		ATOM	8770	OH2 WA			11.603	61.649	0.313	1.00		W
		MOTA	8771			608	55.226	80.552	-19.378	1.00		W
	15	ATOM	8772	OH2 W			16.743	74.434	-28.596	1.00	34.41	W
	15	MOTA	8773	OH2 WA			40.872		-21.500	1.00	28.24	M
		ATOM	8774	OH2 WA			28.668		-46.081	1.00	39.60	W
			8775	OH2 W			40.006	35.395	11.369	1.00	24.43	W
		ATOM	8776	OH2 WA			18.904		-11.812	1.00	29.72	W
	20	ATOM		OH2 WA			64.971	79.735	-8.907	1.00		W
	20	ATOM	8777	OH2 WZ			72.774		-12.245	1.00		M
		ATOM	8778				13.009		-19.201		32.27	W
497		ATOM	8779	OH2 W			57.062	75.479	-2.931		23.61	M
		MOTA	8780	OH2 W			20.829	58.092	37.896		33.95	W
रेख्या अक्ष	25	MOTA	8781	OH2 W				77.218	2.234		30.34	W
	25	MOTA	8782	OH2 W			50.615	45.385	41.074		36.42	W
		MOTA	8783	OH2 W			28.468	36.879	13.360		24.96	W
		MOTA	8784	OH2 W			23.139		-19.404		35.03	W
ħį.		ATOM	8785	OH2 W			33.385		-15.050		32.82	M
And the Sun	• •	MOTA	8786	OH2 W			33.787		-26.140		13.06	W
1204	30	MOTA	8787			W 624	29.449		5.746		33.81	M
194 B		MOTA	8788	OH2 W			37.151	33.801			27.73	W
£ 16±7. 2 ±		MOTA	8789	OH2 W			71.759		-18.009		32.70	M
		MOTA	8790			N 627	34.323		-44.782		32.46	W
		MOTA	8791			W 628	64.347	77.058			41.57	M
fri	35	ATOM	8792		TA		35.947	55.944			36.36	W
		MOTA	8793			w 631	30.659	51.202			37.73	W
		MOTA	8794			W 632	54.265		-13.764			W
		MOTA	8795			W 634	21.136	54.633			34.03 26.77	W
		MOTA	8796	OH2 W			14.453	50.762				
	40	ATOM	8797	OH2 W			25.475		-33.051		31.56	W
		ATOM	8798	OH2 W	TA	W 637	73.185		-29.293		31.95	W
		ATOM	8799	OH2 W			55.875	38.711			35.90	W
		MOTA	8800	OH2 W	AT	W 639	37.492	83.840			33.70	M
		ATOM	8801	OH2 W			45.485	55.126			31.21	W
	45	ATOM	8802	OH2 W	AT	W 642	66.889		-11.141		29.67	W
		MOTA	8803	OH2 W	ΑT	W 643	40.401		-19.494		34.59	W
		MOTA	8804	OH2 W	ΑT	W 644	43.726	56.577			23.89	W
		ATOM	8805	OH2 W	AΤ	W 645	56.389		-30.348		38.11	W
		ATOM	8806			W 646	63.345	57.663			33.20	M
	50	ATOM	8807			W 647	62.132		-21.140		30.17	W
		ATOM	8808			W 648	62.795	59.511	-22.094		43.84	W
		ATOM	8809			W 649	39.839	77.768			38.17	M
		ATOM	8810			w 650	26.708	91.704	-27.698		27.71	W
		ATOM	8811			W 651	13.502	70.141		1.00	24.86	M
	55	ATOM	8812			W 652	60.670		-41.587	1.00	24.16	W
		AIOH	0012	V112 *		552						

	ATOM	8813	OH2	TAW	W	653	3	9.252	43.518	26.888		28.02	W
	ATOM	8814	OH2	TAW	W	654	1	1.931	70.822	2.485		31.13	W
	MOTA	8815	OH2	TAW	M	655	3	6.424		-38.251		29.44	W
	MOTA	8816	OH2	TAW	M	656		6.055		-25.276		39.00	W
5	MOTA	8817	OH2	WAT	M	657		7.608	80.454	-0.581		23.73	W
	MOTA	8818	OH2	WAT	W	658		7.350	53.378	35.765		33.39	W
	MOTA	8819	OH2	WAT	W	659	4	8.604		-33.661		29.32	W
	ATOM	8820	OH2	WAT	W	660	6	3.595		-45.655		33.19	M
	ATOM	8821	OH2	WAT	W	661	6	0.081	71.509	0.342		33.30	W
10	ATOM	8822	OH2	WAT	W	662	4	1.130		-29.424		33.56	M
	MOTA	8823	OH2	WAT	W	663	5	5.384		-12.570		43.02	M
	ATOM	8824		WAT		664	7	4.977		-22.956		33.05	W
	ATOM	8825		WAT		665	6	3.406	52.047	-0.358		26.92	W
	ATOM	8826	OH2	WAT	M	666	3	7.221	36.481	18.964		39.54	W
15	ATOM	8827	OH2	WAT	W	667	5	7.641	36.009	-2.585		36.41	M
	ATOM	8828		TAW			2	3.115		-36.297		32.39	M
	ATOM	8829		WAT		669	1	7.636	71.546	-29.530		35.34	W
	ATOM	8830		WAT		670	3	0.674	40.378	38.143		36.19	W
	ATOM	8831		WAT		671	2	7.433	50.036	23.323		31.31	W
20	ATOM	8832		WAT		672	3	0.557	48.124	40.431	1.00	36.97	W
	ATOM	8833		WAT			5	9.855	52.908	-30.690		30.00	W
	ATOM	8834		WAT			4	4.853	40.592	13.345		29.68	W
	ATOM	8835		WAT			3	4.115	47.984	36.057		30.03	W
	ATOM	8836		WAT			2	7.358	82.247	3.089		28.86	W
25	ATOM	8837		WAT			5	8.497	92.398	-42.235		35.60	W
	ATOM	8838			M		4	9.253	52.427	-37.624		38.08	M
	ATOM	8839		WAT	W	679	5	3.379		-16.924		25.65	M
	ATOM	8840	ОН2				5	7.626	62.695	-15.503		35.96	M
	ATOM	8841	OH2		W	681	2	8.297	44.350	-29.713		28.58	W
30	ATOM	8842	OH2	WAT			4	8.852	49.432	-38.154		36.59	M
	ATOM	8843	OH2			683	3	5.576	77.511	-43.062		29.02	M
	ATOM	8844	OH2					9.623	58.535	17.852	1.00	33.51	M
	ATOM	8845	OH2				6	1.093	45.523	-3.654	1.00	29.72	W
	ATOM	8846	OH2		W	687	6	5.483	78.684	-5.700		27.73	W
35	ATOM	8847	OH2			688		7.036	58.084	14.815		36.18	M
	ATOM	8848	OH2	WAT	W	689	4	9.432	50.626	32.574		27.09	W
	ATOM	8849	OH2		W	690	1	8.651	62.429	22.834		42.61	W
	ATOM	8850				691	3	30.258	34.015	21.108		34.14	M
	ATOM	8851	OH2	WAT	W	692	1	7.405	45.631	-14.008	1.00	26.24	M
40	ATOM	8852	OH2	WAT	W	693	2	8.725	55.316	39.985		27.55	W
	ATOM	8853				700		0.875	59.946			11.46	W
	ATOM	8854				701	4	13.729		-28.635		10.90	M
	ATOM	8855				702	3	38.088	81.789	-31.356		11.61	M
	ATOM	8856				703	3	32.349	39.151			10.69	W
45	ATOM	8857				705	6	50.345	60.974	-18.133		10.00	W
	MOTA	8858				706	(53.195	58.590			14.50	M
	ATOM	8859				707	(50.694	60.822	-3.596		12.04	M
	ATOM	8860				708	4	16.601	74.399	7.782		12.30	W
	ATOM	8861				709		54.966	57.537			13.73	M
50	MOTA	8862				710		30.225	74.877	-29.275	1.00	13.65	W
	ATOM	8863				712	ī	58.878	56.724	-1.422	1.00	11.48	W
	ATOM	8864				713		58.700	52.597	-0.079		14.33	W
	ATOM	8865				714		63.107	61.088	-4.839		12.89	W
	ATOM	8866				716		27.955	48.693			17.48	M
55	ATOM	8867				717		66.623		-20.267	1.00	17.13	M
		- '											

									1 00 16 77	T _n T
	MOTA	8868	OH2 WAT	W	718	19.936		-14.350	1.00 16.77	W
	ATOM	8869	OH2 WAT	W	719	38.627	69.291	-38.085	1.00 17.45	W
	ATOM	8870	OH2 WAT	W	720	33.604	60.216	23.237	1.00 13.28	W
	ATOM	8871	OH2 WAT	W	721	39.652	55.611	3.022	1.00 13.93	W
5	ATOM	8872	OH2 WAT	W	722	24.646	61.455	9.397	1.00 14.96	W
Ÿ	ATOM	8873	OH2 WAT		723	16.774	57.081	13.004	1.00 14.37	M
	ATOM	8874	OH2 WAT			39.450	69.183	-35.373	1.00 14.13	M
	ATOM	8875	OH2 WAT		725	49.892	67.527	4.244	1.00 18.93	W
	ATOM	8876	OH2 WAT		726	27.672	53.307	20.113	1.00 14.50	W
10		8877	OH2 WAT		728	29.774	83.030	2.442	1.00 22.49	W
10	MOTA		OH2 WAT		729	28.084		-25.245	1.00 18.36	M
	MOTA	8878			730	46.074	77.662	9.467	1.00 18.68	W
	MOTA	8879	OH2 WAT			12.563	49.413	17.711	1.00 22.37	W
	MOTA	8880	OH2 WAT		732			-11.410	1.00 22.16	W
	MOTA	8881	OH2 WAT		733	81.206		-6.895	1.00 14.61	W
15	MOTA	8882	OH2 WAT			41.474	44.788		1.00 21.17	M
	MOTA	8883	OH2 WAT			45.595		-27.467	1.00 21.17	W
	MOTA	8884	OH2 WAT			14.207	50.502	24.242		W
	MOTA	8885			737	67.655	46.510	-1.449	1.00 22.53	W
	MOTA	8886			738	9.070	50.439	8.116	1.00 23.35	
20	MOTA	8887	OH2 WAT	W	739	48.508	40.902	-1.043	1.00 22.37	W
	ATOM	8888	OH2 WAT	W	740	17.771	74.445	3.962	1.00 24.93	W
	ATOM	8889	OH2 WAT	' W	741	44.945		-18.224	1.00 23.58	W
	ATOM	8890	OH2 WAT	· W	742	83.440		-15.493	1.00 19.93	M
	ATOM	8891	OH2 WAT	W	743	48.974		-36.939	1.00 23.36	M
25	ATOM	8892	OH2 WAT			51.693	70.185	-38.125	1.00 23.72	W
	ATOM	8893	OH2 WAT			29.695	72.422	34.299	1.00 24.92	W
	ATOM	8894	OH2 WAT			37.507	61.422	-32.436	1.00 21.97	W
	ATOM	8895	OH2 WAT			57.372	48.994	21.252	1.00 21.06	W
	ATOM	8896	OH2 WAT			42.963		-31.444	1.00 21.62	W
30	ATOM	8897	OH2 WAT			32.019	34.321	-3.215	1.00 21.00	W
30		8898	OH2 WAS			37.070		-33.539	1.00 21.08	W
	MOTA		OH2 WAS			61.487	59.205	14.822	1.00 24.82	M
	MOTA	8899	OH2 WA			40.156		-19.111	1.00 25.71	M
	ATOM	8900	OH2 WA			47.525		-44.311	1.00 48.44	W
0.5	ATOM	8901				61.661		-10.460	1.00 21.23	W
35	ATOM	8902	OH2 WAS			79.392		-11.546	1.00 39.61	Ŵ
	MOTA	8903	OH2 WAY					-18.478	1.00 18.77	M
	MOTA	8904	OH2 WAY			37.676	52.103		1.00 23.59	M
	MOTA	8905	OH2 WA		757	25.691		-28.517	1.00 25.13	W
	MOTA	8906	OH2 WA			69.687		-9.978	1.00 21.68	W
40	MOTA	8907	OH2 WA			73.007	66.604		1.00 17.92	W
	MOTA	8908	OH2 WA			42.818	56.438		1.00 17.32	M
	MOTA	8909	OH2 WA			56.051		-36.107		W
	ATOM	8910	OH2 WA			17.857	66.012		1.00 26.73	
	MOTA	8911	OH2 WA			11.781		-16.941	1.00 21.03	W W
45	ATOM	8912	OH2 WA			35.221		-17.790	1.00 27.96	W
	MOTA	8913	OH2 WA	ΓV	₹ 766	9.801		-20.514	1.00 24.44	W
	MOTA	8914	OH2 WA	r v	₹ 767	11.577			1.00 28.25	W
	ATOM	8915	OH2 WA			40.633			1.00 28.09	W
	ATOM	8916	OH2 WA			39.812			1.00 28.11	W
50	ATOM	8917	OH2 WA			49.931	47.339		1.00 22.00	W
20	ATOM	8918	OH2 WA			24.098			1.00 23.97	M
	ATOM	8919	OH2 WA			59.487			1.00 26.83	W
	ATOM	8920	OH2 WA			38.030		-1.002	1.00 29.02	W
	ATOM	8921	OH2 WA			12.961			1.00 24.44	W
55	ATOM	8922	OH2 WA			48.180			1.00 27.91	W
99	ATOM	0 2 2 2	OHZ WA	1		10.100				

	MOTA	8923		TAW			48.088	41.570	-5.478	1.00 25.82	M
	MOTA	8924		TAW		778	22.201		-11.309	1.00 22.86	M
	ATOM	8925		WAT		779	16.035	36.324		1.00 33.87	W
_	MOTA	8926		TAW		780	22.449	68.096	20.372	1.00 25.52	W
5	MOTA	8927		WAT		781	72.144		-17.924	1.00 27.21	W
	MOTA	8928		WAT			40.774		-11.931	1.00 23.09	W
	ATOM	8929		TAW			56.758	46.693	15.829	1.00 26.36	W
	MOTA	8930		TAW			51.826	63.844	24.459	1.00 25.35	W
10	MOTA	8931		TAW		785	56.613	58.444	1.389	1.00 27.95	W
10	MOTA	8932		TAW		786	57.457	58.417	5.430	1.00 28.29	М
	ATOM	8933		WAT		787	75.229		-16.398	1.00 25.10	W
	ATOM	8934		WAT			14.676		-23.121	1.00 24.85	W
	MOTA	8935		TAW			13.074		-15.015	1.00 26.93	W
45	MOTA	8936		WAT			13.077		-25.010	1.00 28.53	M
15	ATOM	8937		WAT			23.191		-32.614	1.00 29.37	M
	MOTA	8938		WAT			66.312		-14.185	1.00 25.05	W
	MOTA	8939		TAW		793	47.318		-28.719	1.00 27.79	W
	MOTA	8940		WAT		794	52.473	70.852	5.989	1.00 28.42	M
20	ATOM	8941		WAT		795	40.973		-33.310	1.00 27.84	M
20	MOTA	8942		TAW		796	30.245	66.418	10.988	1.00 25.30	M
	MOTA	8943		TAW		797	39.668	39.709	19.992	1.00 28.66	W
	MOTA	8944		WAT			44.704	55.276	36.258	1.00 32.18	M
	MOTA	8945		WAT			13.966	62.480	14.594	1.00 26.13	M
0.5	MOTA	8946		TAW			40.024	39.702	-0.423	1.00 27.38	M
25	MOTA	8947				801	32.549	69.495	22.160	1.00 28.57	W
	ATOM	8948				802	41.883		-11.770	1.00 25.88	W
	MOTA	8949		TAW		803	26.947		-27.654	1.00 30.54	W
	ATOM	8950		TAW			19.843	41.627	-5.057	1.00 25.74	W
20	MOTA	8951		WAT			13.685	60.590	7.622	1.00 25.20	W
30	ATOM	8952		WAT			46.720	45.811	11.549	1.00 29.52	W
	ATOM	8953		TAW		807	42.921		-29.946	1.00 27.18	W
	MOTA	8954		TAW		808	24.412	53.888	-8.318	1.00 33.09	W
	ATOM	8955	OH2			809	47.609		-16.650	1.00 25.75	W
25	ATOM	8956		WAT			58.802		-27.521	1.00 28.20	W
35	MOTA	8957		TAW			31.338		-42.859	1.00 29.67	W
	ATOM	8958		WAT			22.092		-13.217	1.00 24.02	W
	ATOM	8959		WAT			52.770		-23.358	1.00 26.46	W
	ATOM	8960		TAW		814	60.321	50.996	20.144	1.00 31.94	W
40	MOTA	8961		TAW		815	60.777	56.054	2.005 -36.746	1.00 27.67	W
40	ATOM	8962		TAW			19.477 30.153			1.00 23.57	
	ATOM	8963 8964		TAW TAW			26.284	49.938 66.727	12.462 19.939	1.00 54.57 1.00 26.81	W
	ATOM ATOM	8965		TAW			11.971	41.446	19.843	1.00 29.18	W W
				WAT			69.267		-34.141	1.00 25.35	W
45	ATOM ATOM	8966 8967		WAT			16.589	42.916	-2.539	1.00 25.33	M
40	ATOM	8968		WAT			35.924		-37.655	1.00 20.70	W
	ATOM	8969		TAW			34.054		-42.550	1.00 33.22	W
	ATOM	8970		TAW			57.237		-14.386	1.00 34.74	W
	ATOM	8971		WAT			37.237	37.518	2.919	1.00 32.70	W
50	ATOM	8972		WAT			51.214	66.642	8.544	1.00 23.33	W
50	ATOM	8973		TAW				51.469	21.342	1.00 26.06	W
	ATOM	8973		TAW			10.791 30.338		-14.953	1.00 24.37	W
	ATOM	8975		WAT			42.244		-17.439	1.00 24.37	W
	ATOM	8976		WAT			48.355	76.393	8.326	1.00 27.73	W
55	ATOM	8977		WAT			29.663	76.034	10.889	1.00 29.41	W
55	AION	0 21 1	Onz	AA C.7 T	VV	000	49.003	70.034	10.003	1.00 20.76	VV

		n mon	0070	OH2 V	יז א תי	T.T	031	43.010	98.114	-37.134	1.00	31.67	W
		ATOM	8978					24.455	65.295	9.661		27.20	W
		MOTA	8979	OH2 V				64.682	78.684	-1.585		26.20	W
		MOTA	8980	OH2 V					40.464			27.81	W
		MOTA	8981	OH2 V				43.254		2.200		31.34	W
	5	ATOM	8982		TAW			59.455	49.064			28.54	W
		ATOM	8983	OH2 V	TAW		839	68.991	41.685				
		ATOM	8984	OH2 V			840	24.783		-39.983		23.32	W
		ATOM	8985	OH2 V			841	23.732		-24.123		30.99	W
		ATOM	8986	OH2 V	TAW	M	842	46.974		-24.515		24.37	W
	10	MOTA	8987	OH2 T	WAT	W	843	53.359	53.304			30.89	W
		MOTA	8988	OH2 V	WAT	W	844	24.825	34.332	35.789		31.04	W
		ATOM	8989	OH2 V	WAT	W	845	13.297	52.427	25.888		29.86	W
		MOTA	8990	OH2 V	WAT	W	846	51.677	44.456	2.991		29.74	W
		ATOM	8991	OH2 V	WAT	W	847	21.471	55.374	39.891		35.10	W
	15	ATOM	8992	OH2 V			848	64.222	70.580	-5.272		32.06	W
	10	MOTA	8993	OH2			849	46.741	89.756	-23.288		33.91	M
		MOTA	8994	OH2				8.118	53.068	-7.667	1.00	30.58	W
		ATOM	8995	OH2				22.086	80.693	-42.196	1.00	29.19	W
. ,		MOTA	8996	OH2				63.873	65.397	-30.493		41.52	W
	20	MOTA	8997	OH2 1				18.598	48.634	-19.927	1.00	32.70	W
Ü	20	MOTA	8998	OH2				59.272	76.946	-4.206	1.00	31.52	W
ij		ATOM	8999	OH2				21.016		-12.178	1.00	32.20	M
M		ATOM	9000	OH2				55.515	67.407	13.403	1.00	41.93	W
		ATOM	9001	OH2				19.239		-31.228	1.00	36.10	M
	25	ATOM	9002	OH2				67.372		-35.959	1.00	35.41	M
14.5 14.4 14.4	20		9002	OH2			859	29.632	74.968	22.211	1.00	25.23	W
165		MOTA	9003				860	32.821	84.208	0.305		28.56	W
195		MOTA	9004	OH2				45.757		-28.604		29.35	W
41		MOTA	9006	OH2				12.983	62.062	-2.298		27.17	M
J	30	ATOM		OH2				25.739	63.240	13.712		27.83	W
	30	MOTA	9007	OH2				28.531	34.868	32.152		30.38	W
		ATOM	9008				866	35.763	68.453	23.134		30.35	W
į.		ATOM	9009	OH2				31.861	33.726	17.240		35.41	W
		ATOM	9010	OH2			867	41.587	84.247	-2.302		34.07	W
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	MOTA	9011		TAW		868		100.019			38.43	W
g står	35	MOTA	9012		WAT		869		63.613	10.869		28.44	W
		ATOM	9013	OH2			870	28.436 54.801		-44.567	1.00		W
		MOTA	9014	OH2			871	69.905		-10.383		29.60	M
		MOTA	9015	OH2			872	36.928	79.069	-2.526		44.59	W
	40	ATOM	9016	OH2				12.247		-12.633			W
	40	MOTA	9017	OH2					50.117	36.307	1 00	33.21	W
		MOTA	9018	OH2				39.300	44.594	38.197		29.80	W
		MOTA	9019	OH2				28.044		-22.666		30.70	W
		MOTA	9020	OH2				27.720				32.23	W
	4 ==	MOTA	9021	OH2				72.387		-31.128		34.32	W
	45	MOTA	9022	OH2				76.363		-11.610		33.31	W
		ATOM	9023	OH2				21.492		-38.837		33.88	M
		MOTA	9024				881	23.344		-30.166			M
		MOTA	9025				882	20.850	31.662			30.80	W
		MOTA	9026				883	29.614		-28.740		39.46	W
	50	MOTA	9027				884	42.804		-27.321		34.86	
		MOTA	9028				885	55.814	51.939			30.74	W
		ATOM	9029				886	31.683		-40.938		50.66	W
		ATOM	9030				887	18.480	42.922			25.20	W
		ATOM	9031				888	62.075		-44.200		40.76	W
	55	MOTA	9032	OH2	WAT	M	889	7.465	54.408	17.306	1.00	30.35	W

	ATOM	9033	OH2 WAT	W 890	18.101	41.684	25.245	1.00 32.73	W
	ATOM	9034	OH2 WAT		27.429	82.562	5.738	1.00 36.27	W
	MOTA	9035	OH2 WAT		38.868	53.058	1.997	1.00 30.70	M
	ATOM	9036	OH2 WAT		12.036	67.258	2.652	1.00 42.94	W
	5 ATOM	9037	OH2 WAT		4.469	56.610	-6.387	1.00 29.55	M
•		9038	OH2 WAT		21.857	76.782	8.689	1.00 31.52	W
	ATOM				25.676		-42.799	1.00 39.01	M
	ATOM	9039	OH2 WAT				-12.196	1.00 33.61	W
	MOTA	9040	OH2 WAT		10.540		-44.474	1.00 31.00	W
	MOTA	9041	OH2 WAT		44.607			1.00 32.43	W
10		9042	OH2 WAT		37.212	39.898	26.577		W
	MOTA	9043	OH2 WAT		23.165		-37.906	1.00 35.10	
	MOTA	9044	OH2 WAT	W 901	70.029		-24.229	1.00 35.37	M
	MOTA	9045	OH2 WAT		23.331	65.414	18.401	1.00 33.45	M
	MOTA	9046	OH2 WAT	W 903	67.038	38.543	-9.645	1.00 29.50	W
15	5 ATOM	9047	OH2 WAT	W 904	65.467		-41.084	1.00 36.40	W
	ATOM	9048	OH2 WAT	W 905	14.017	43.333	28.865	1.00 35.15	W
	ATOM	9049	OH2 WAT	W 906	13.469	48.254	1.397	1.00 37.34	M
	ATOM	9050	OH2 WAT	W 907	55.436	69.137	-37.827	1.00 30.40	M
	MOTA	9051	OH2 WAT		26.966	47.556	-23.954	1.00 29.40	M
20		9052	OH2 WAT		69.728	82.023	-33.947	1.00 32.27	W
	MOTA	9053	OH2 WAT		11.998	62.183	22.815	1.00 38.70	W
	ATOM	9054	OH2 WAT		30.793	29.732	5.534	1.00 37.65	W
	ATOM	9055	OH2 WAT		19.179	36.459	22.322	1.00 40.49	W
	ATOM	9056	OH2 WAT		27.736		-14.732	1.00 31.73	W
2		9057	OH2 WAT		66.117	50.416	0.413	1.00 30.39	W
۷.	ATOM	9058	OH2 WAT		28.492	63.881	13.983	1.00 29.55	W
		9059	OH2 WAT		51.974	60.105	28.076	1.00 30.69	W
	ATOM			W 910 W 917	52.332	72.483	18.319	1.00 29.21	W
	ATOM	9060			47.072		-26.272	1.00 30.57	W
2	ATOM	9061		W 918	65.371	81.208	-4.746	1.00 30.57	W
3		9062	OH2 WAT				-26.185	1.00 32.38	W
	ATOM	9063	OH2 WAT		48.492		-38.880	1.00 32.20	W
	ATOM	9064	OH2 WAT		59.945		-16.984	1.00 23.03	M
	MOTA	9065	OH2 WAT		22.864			1.00 30.49	M
_	_ ATOM	9066	OH2 WAT		25.956		-38.830		M
3		9067	OH2 WAT		20.018		-28.969	1.00 42.04	W
	ATOM	9068	OH2 WAT		59.188	55.422		1.00 33.12	W
	ATOM	9069	OH2 WAT		44.334		-15.927	1.00 42.21	
	ATOM	9070	OH2 WAT		64.029		-40.494	1.00 32.61	W
	MOTA	9071	OH2 WAT		14.068	58.271	16.406	1.00 21.84	W
4	MOTA 0	9072	OH2 WAT		13.929		19.009	1.00 21.02	W
	MOTA	9073	OH2 WAT		24.125	63.343		1.00 29.26	W
	ATOM	9074	OH2 WAT		28.117	39.644		1.00 15.34	M
	ATOM	9075	OH2 WAT	W 932	28.948		-35.632	1.00 24.97	W
	ATOM	9076	OH2 WAT	W1000	12.359		-15.197	1.00 19.33	M
4	5 атом	9077	OH2 WAT	W1001	81.546		-13.758	1.00 21.02	W
	ATOM	9078	OH2 WAT	W1002	59.050	58.105		1.00 20.10	W
	ATOM	9079	OH2 WAT	W1003	49.194	68.129		1.00 24.02	W
	MOTA	9080	OH2 WAT	W1004	68.412	79.523	-28.528	1.00 22.06	W
	ATOM	9081	OH2 WAT		26.119	32.717		1.00 25.06	W
5	0 ATOM	9082	OH2 WAT		32.842	69.360	24.703	1.00 23.57	W
_	MOTA	9083	OH2 WAT		27.842	102.244	-19.194	1.00 26.24	M
	ATOM	9084	OH2 WAT		71.801		-29.215	1.00 26.76	W
	ATOM	9085	OH2 WAT		79.342			1.00 28.86	W
	ATOM	9086	OH2 WAT		37.052			1.00 26.37	W
5	5 ATOM	9087	OH2 WAT		59.408	51.958		1.00 28.10	W
	- ATOM	2007	U112 **/71		33.100		_		

The state value was the state of the state o

						2.10			
		ATOM	9088	OH2 WAT W	11012	19.601	84.239 -18.37	0 1.00 28.43	W
		ATOM	9089	OH2 WAT W		43.956	79.243 -21.47		W
		ATOM	9090	OH2 WAT W		58.023	52.829 26.22		M
			9091	OH2 WAT W		17.061	57.454 -36.40		M
	5	ATOM	9092	OH2 WAT W		46.665	43.031 9.62		W
	5	ATOM		OH2 WAT W		27.197	72.121 34.04		M
		ATOM	9093			7.536	54.149 -10.23		M
		MOTA	9094	OH2 WAT W			52.245 43.41		M
		ATOM	9095	OH2 WAT W		24.878	46.879 -30.74		W
	40	MOTA	9096	OH2 WAT W		49.909			W
	10	MOTA	9097	OH2 WAT W		42.581	78.539 -29.54		M
		ATOM	9098	OH2 WAT W		27.591	88.817 -12.26		M
		MOTA	9099	OH2 WAT W		56.603	89.918 -43.60		M
		MOTA	9100	OH2 WAT V		13.964	44.811 26.79		
		MOTA	9101	OH2 WAT V		69.388	83.796 -35.99		W
	15	ATOM	9102	OH2 WAT V		57.993	93.302 -24.98		W
		MOTA	9103	OH2 WAT V	W1027	64.598	70.559 -7.94		W
		ATOM	9104	OH2 WAT V	W1028	46.112	39.784 -0.05		W
		MOTA	9105	OH2 WAT V	W1029	37.083	37.317 25.01		W
4:24		MOTA	9106	OH2 WAT V	W1030	52.414	68.316 4.82		M
	20	MOTA	9107	OH2 WAT V	W1031	17.744	50.810 38.21		W
1,5		ATOM	9108	OH2 WAT W	W1032	15.243	76.915 -13.62		M
		ATOM	9109	OH2 WAT W	W1033	20.102	39.479 -12.50		M
ijħ.		ATOM	9110	OH2 WAT W		49.415	45.555 31.01		W
		ATOM	9111	OH2 WAT		46.778	72.403 -17.52		W
ĮŲ.	25	ATOM	9112	OH2 WAT V		70.421	78.009 -26.05	2 1.00 28.22	W
	20	ATOM	9113	OH2 WAT		58.470	52.894 4.80	8 1.00 24.37	W
M		ATOM	9114	OH2 WAT V		35.575	55.341 -34.68	4 1.00 34.14	W
4,9 A		MOTA	9115	OH2 WAT		41.336	82.761 -28.76	4 1.00 34.42	W
#}		ATOM	9116	OH2 WAT		47.748	66.115 26.83		W
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	MOTA	9117	OH2 WAT		28.436	68.129 11.34		W
	50	ATOM	9118	OH2 WAT		39.499	81.827 -21.98		W
rų.		ATOM	9119	OH2 WAT		22.020	65.686 32.12		W
1.4		ATOM	9120	OH2 WAT		58.777	48.905 18.95		W
		ATOM	9121	OH2 WAT		31.999	80.814 6.97		W
E.A.	35	ATOM	9122	OH2 WAT		50.409	44.928 -24.88		W
2,	33	ATOM	9123	OH2 WAT		62.308	60.740 0.55		W
			9124	OH2 WAT		67.874	75.083 -35.11		M
		ATOM ATOM	9124	OH2 WAT		23.178	39.391 -15.60		W
			9126			35.884	93.525 -29.98		W
	40	MOTA	9127	OH2 WAT		73.994	79.960 -10.91		W
	40	ATOM		OH2 WAT		40.966	81.760 -3.58		W
		ATOM	9128	OH2 WAT		12.972	62.847 12.05		W
		ATOM	9129	OH2 WAT		56.938	75.884 0.30		M
		ATOM	9130	OH2 WAT		74.294	52.058 1.45		W
	4=	ATOM	9131			22.310	61.172 -35.05		M
	45	ATOM	9132	OH2 WAT		77.454	65.185 -14.84		W
		ATOM	9133			17.651	41.747 32.19		W
		MOTA	9134	OH2 WAT			62.757 -15.14		M
		MOTA	9135	OH2 WAT		10.105			W
		ATOM	9136	OH2 WAT		46.034			W
	50	MOTA	9137	OH2 WAT		14.610			W
		MOTA	9138	OH2 WAT		34.557	77.270 12.43		W
		MOTA	9139	OH2 WAT		47.268	40.156 6.13		W
		MOTA	9140	OH2 WAT		18.619	39.189 -2.66		W
		MOTA	9141	OH2 WAT		26.043	58.928 -38.98		
	55	MOTA	9142	OH2 WAT	W1067	10.705	57.867 -20.8	1.00 35.84	W

		V di√VN	9143	OH?	WAT	พากผ	68	8.759	56.628	16.327	1.00	41.90	W
		ATOM	9143		WAT			78.041		-10.242		33.75	W
		ATOM	9144		WAT			24.072	82.790	-3.954		45.00	W
		MOTA			WAT			44.516	40.813	7.609		39.23	M
	_	MOTA	9146		WAT			35.419	62.216	34.108		29.33	M
	5	MOTA	9147		WAT			27.207		-31.767		34.55	W
		ATOM	9148		WAT			74.676		-20.637		34.22	W
		ATOM	9149					49.177	41.888	8.315		31.43	W
		MOTA	9150		WAT			44.832		-25.355		33.39	W
	10	MOTA	9151		TAW			52.396	48.868	25.516		32.38	W
	10	MOTA	9152		TAW			9.675		-12.053		29.84	M
		MOTA	9153		TAW			58.765	51.065			46.60	W
		ATOM	9154		TAW				50.452	27.587		30.65	W
		ATOM	9155		WAT			51.794		-25.170		31.67	M
		MOTA	9156		WAT			25.081		0.166		32.04	W
	15	MOTA	9157		TAW			7.589	58.168	19.950		34.77	W
		MOTA	9158		WAT			11.415	58.349			30.54	W
		MOTA	9159		TAW			18.559		-37.787		34.66	W
		MOTA	9160		WAT			46.111		-31.330		31.07	W
		MOTA	9161		TAW			5.566	57.763	6.910		39.54	M
1 20	20	MOTA	9162		WAT			13.431		-11.696		39.54	M
, 174		MOTA	9163		WAT			47.191		-17.052		54.15	C
		MOTA	9164	C1	NAG		1	58.272	44.933	12.939			C
ejis. Adada		MOTA	9165	C2	NAG		1	59.491	44.597	13.810		54.12	C
\$ (30E) 5 (30E) 5 (8 E)		MOTA	9166	N2	NAG		1	60.574	45.520	13.526		56.17 68.32	C
	25	MOTA	9167	С7	NAG		1	60.706	46.633	14.241		84.10	C
		ATOM	9168	07	NAG		1	60.206	47.706	13.905		55.90	C
1000		MOTA	9169	C8	NAG		1	61.520	46.545	15.522		55.37	C
R(MOTA	9170	C3	NAG		1	59.957	43.162			58.48	C
2500		MOTA	9171	03	NAG		1	60.989	42.822	14.463		51.27	C
	30	MOTA	9172	C4	NAG		1	58.791	42.186	13.705		55.79	C
		MOTA	9173	04	NAG		1	59.208	40.880	13.335		61.43	C
i wi		MOTA	9174	C5	NAG		1	57.623	42.627	12.819		49.30	C
		MOTA	9175	05	NAG		1	57.227	43.975	13.158		77.13	C
100		ATOM	9176	С6	NAG		1	56.402	41.745	12.991		60.25	C
	35	ATOM	9177	06	NAG		1	56.268	40.837			15.84	T
		MOTA	9178	С	TRS		1	31.353	66.569			15.64	T
		MOTA	9179	C1	TRS		1	31.240	66.938			15.85	T
		ATOM	9180	C2	TRS		1	32.708	66.586			16.29	T
		MOTA	9181	C3	TRS		1	30.629	65.227				T
	40	MOTA	9182	N	TRS		1	30.638	67.570			15.69	T
		ATOM	9183	01	TRS		1	31.683	68.184			15.45	T
		MOTA	9184	02	TRS		1	33.643	65.910			13.34	T
		MOTA	9185	03	TRS		1	30.581	64.645			18.13	M
		MOTA	9186	C1	MPI		1	14.883	61.068			17.96	
	45	MOTA	9187	C2	MPE) M	1	16.351	61.254			18.97	M
		MOTA	9188	02	MPI	M (1	16.957	60.096			19.78	M
		ATOM	9189	CM	MPI	M (1	17.188	62.371			19.99	M
		ATOM	9190	С3	MPI	M (1	16.549	61.049			18.43	M
		MOTA	9191	C4	MPI		1	17.848	60.686			17.69	M
	50	MOTA	9192	04	MPI		1	17.567	59.714			16.05	M
		MOTA	9193	C5	MPI		1	18.419	61.960			17.96	M 7
		MOTA	9194	ZN	ZN	Z	1	34.680	64.059	7.920	1.00	9.96	Z
		END											

Table 2
Structural coordinates of a Drosophila Golgi α-mannosidase II with swainsonine.

```
REMARK coordinates from restrained individual B-factor refinement
 5
    REMARK refinement resolution: 500.0 - 1.87 A
     REMARK starting r = 0.1835 free r = 0.2089
     REMARK final
                   r= 0.1801 free r= 0.2084
     REMARK B rmsd for bonded mainchain atoms= 0.707 target= 1.5
     REMARK B rmsd for bonded sidechain atoms=
                                               1.139 target= 2.0
     REMARK B rmsd for angle mainchain atoms= 1.167 target= 2.0
10
     REMARK B rmsd for angle sidechain atoms= 1.765 target= 2.5
     REMARK wa= 1.14241
     REMARK rweight=0.269445
     REMARK target= mlf steps= 30
15
     REMARK sg= P2(1)2(1)2(1) a= 68.902 b= 110.015 c= 138.472 alpha= 90 beta= 90
     gamma= 90
     REMARK parameter file 1 : CNS TOPPAR:protein rep.param
     REMARK parameter file 2 : CNS_TOPPAR:water_rep.param
     REMARK parameter file 3 : CNS TOPPAR:ion.param
20
     REMARK parameter file 4 : swainsonine2.par
     REMARK parameter file 5 : ../zntrmp/mpd.par
     REMARK parameter file 6 : cis peptide.param
     REMARK parameter file 7 : CNS TOPPAR:carbohydrate.param
     REMARK molecular structure file: swainsoninegen.mtf
     REMARK input coordinates: swainsonine_ann_1.pdb
     REMARK reflection file= dgm2native rejmerge.cv
     REMARK ncs= none
     REMARK B-correction resolution: 6.0 - 1.87
     REMARK initial B-factor correction applied to fobs :
30
                    0.513 B22= -0.085 B33= -0.428
    REMARK
             B11=
                                0.000 B23=
                                              0.000
     REMARK
             B12 =
                     0.000 B13=
     REMARK B-factor correction applied to coordinate array B:
     REMARK bulk solvent: density level= 0.353213 e/A^3, B-factor= 42.0423 A^2
     REMARK reflections with |Fobs|/sigma F < 0.0 rejected
35
     REMARK reflections with |Fobs| > 10000 * rms(Fobs) rejected
     REMARK theoretical total number of refl. in resol. range:
                                                                  87643 ( 100.0
     8)
     REMARK number of unobserved reflections (no entry or |F|=0):
                                                                   2814 (3.2%)
     REMARK number of reflections rejected:
                                                                      0 (0.0%)
40
     REMARK total number of reflections used:
                                                                  84829 (96.8%)
     REMARK number of reflections in working set:
                                                                  80543 (91.9%)
     REMARK number of reflections in test set:
                                                                   4286 (4.9%)
              68.902 110.015 138.472 90.00 90.00 90.00 P 21 21 21
     REMARK FILENAME="swainsonine ann lbi.pdb"
45
     REMARK DATE:15-Jul-2000 00:41:05
                                            created by user: jvdelsen
     REMARK VERSION: 0.9a
     ATOM
              1 C
                     CYS A 31
                                    41.925 37.251 -18.672 1.00 24.62
                                                                            Α
                                            36.638 -19.619 1.00 24.13
               2 0
                     CYS A 31
                                                                            Α
     MOTA
                                    41.435
                                                                            Α
    MOTA
               3 CB CYS A 31
                                    43.816
                                            38.560 -19.547
                                                            1.00 23.99
50
     ATOM
               4 SG CYS A 31
                                    45.498
                                            39.239 -19.413
                                                            1.00 23.62
                                    44.191 36.197 -18.869 1.00 25.37
    MOTA
               5 N
                     CYS A 31
                                    43.431 37.448 -18.573 1.00 24.59
     MOTA
               6 CA CYS A 31
```

		7.000	~	. 7	GIN A	20	41 105	27 700 17 605	1 00 04 51	20
		ATOM	7	N	GLN A	32	41.195	37.782 -17.695	1.00 24.51	А
		ATOM	8	CA	GLN A	32	39.740	37.694 -17.701	1.00 24.50	A
		MOTA	9	CB	GLN A	32	39.148	38.167 -16.372	1.00 25.89	Α
		MOTA	10	CG	GLN A	32	39.164	37.148 -15.257	1.00 28.92	Α
	5	ATOM	11	CD	GLN A	32	38.247	37.547 -14.117	1.00 30.46	A
		ATOM	12	OE1	GLN A	32	37.028	37.625 -14.286	1.00 31.32	A
		ATOM	13		GLN A	32	38.827	37.811 -12.951	1.00 31.69	А
		ATOM	14	C	GLN A	32	39.201	38.595 -18.801	1.00 23.50	A
		ATOM	15	0	GLN A	32	39.787	39.632 -19.112	1.00 22.91	A
	10	ATOM	16	N	ASP A	33	38.084	38.194 -19.389	1.00 22.31	A
	10									
		ATOM	17	CA	ASP A	33	37.455	38.986 -20.432	1.00 21.66	A
		ATOM	18	CB	ASP A	33	36.645	38.066 -21.350	1.00 21.90	A
		ATOM	19	CG	ASP A	33	36.033	38.799 -22.524	1.00 23.08	A
	4 -	ATOM	20		ASP A	33	35.768	38.140 -23.553	1.00 22.70	A
	15	MOTA	21		ASP A	33	35.804	40.023 -22.415	1.00 23.45	A
		ATOM	22	С	ASP A	33	36.554	39.956 -19.671	1.00 20.60	A
		MOTA	23	0	ASP A	33	35.617	39.536 -18.999	1.00 21.58	А
		MOTA	24	N	VAL A	34	36.846	41.250 -19.759	1.00 18.58	Α
4		ATOM	25	CA	VAL A	34	36.066	42.246 -19.030	1.00 16.33	А
रेशका . सम्बद्ध	20	MOTA	26	CB	VAL A	34	36.971	43.414 -18.559	1.00 16.29	А
Political Control		ATOM	27	CG1	VAL A	34	38.137	42.869 -17.752	1.00 16.34	A
		ATOM	28	CG2	VAL A	34	37.493	44.200 -19.760	1.00 15.50	A
		ATOM	29	С	VAL A	34	34.895	42.818 -19.819	1.00 15.89	Α
		ATOM	30	0	VAL A	34	34.213	43.728 -19.353	1.00 14.74	Α
	25	ATOM	31	N	VAL A	35	34.641	42.268 -21.001	1.00 14.60	A
Will Company		ATOM	32	CA	VAL A	35	33.559	42.769 -21.837	1.00 15.46	A
M		ATOM	33	СВ	VAL A	35	34.095	43.167 -23.237	1.00 15.53	A
4 ₁ 2 A.		ATOM	34		VAL A	35	32.950	43.676 -24.118	1.00 15.86	A
24		ATOM	35		VAL A	35	35.188	44.216 -23.098	1.00 14.85	A
Cont.	30	ATOM	36	C	VAL A	35	32.383	41.821 -22.065	1.00 14.03	A
ı, Ç	50	ATOM	37	0	VAL A	35	31.225	42.207 -21.908	1.00 15.61	A
								40.579 -22.418	1.00 17.91	A
į.		ATOM	38	N	GLN A	36	32.692			
1,500 1,500		ATOM	39	CA	GLN A	36	31.673	39.590 -22.771	1.00 19.46	A
1;===== 1 ·	25	ATOM	40	CB	GLN A	36	32.219	38.736 -23.913	1.00 19.69	A
	35	ATOM	41	CG	GLN A	36	32.976	39.558 -24.943	1.00 20.71	A
		ATOM	42	CD	GLN A	36	33.442	38.735 -26.117	1.00 21.13	A
		MOTA	43		GLN A	36	32.667	38.436 -27.022	1.00 22.57	A
		ATOM	44		GLN A	36	34.714	38.355 -26.106	1.00 21.31	A
		MOTA	45	С	GLN A	36	31.065	38.670 -21.721	1.00 20.47	Α
	40	MOTA	46	0	GLN A	36	30.117			Α
		ATOM	47	N	ASP A	37	31.593	38.674 -20.504	1.00 21.45	Α
		ATOM	48	CA	ASP A	37	31.051	37.811 -19.459	1.00 22.08	A
		MOTA	49	CB	ASP A	37	32.147	36.912 -18.869	1.00 23.31	Α
		ATOM	50	CG	ASP A	37	32.736	35.956 -19.887	1.00 24.58	A
	45	MOTA	51	OD1	ASP A	37	31.959	35.302 -20.610	1.00 25.48	А
		ATOM	52	OD2	ASP A	37	33.979	35.851 -19.955	1.00 25.49	А
		MOTA	53	С	ASP A	37	30.416	38.614 -18.330	1.00 21.91	А
		ATOM	54	0	ASP A	37	31.120	39.195 -17.506	1.00 22.46	А
		ATOM	55	N	VAL A	38	29.088	38.635 -18.292	1.00 21.35	A
	50	ATOM	56	CA	VAL A	38	28.363	39.354 -17.249	1.00 21.02	A
		ATOM	57	CB	VAL A	38	26.860	39.448 -17.578	1.00 21.79	A
		ATOM	58		VAL A	38	26.122	40.191 -16.466	1.00 21.73	A
		ATOM	59		VAL A	38	26.669	40.156 -18.916	1.00 21.12	A
								38.633 -15.912		
	EE	ATOM	60	С	VAL A	38	28.523		1.00 21.06	A
	55	MOTA	61	0	VAL A	38	28.042	37.511 -15.734	1.00 20.07	А

- - - -

								00 000	20 000	14 051	1.00 20	1 56	A
		ATOM	62	N	PRO .		39	29.209	39.268				
		MOTA	63	CD	PRO 2	A	39	29.929	40.552		1.00 20		A
		ATOM	64	CA	PRO .	A	39	29.407	38.646	-13.640	1.00 20		A
		ATOM	65	СВ	PRO .		39	30.153	39.725	-12.858	1.00 20	0.74	Α
	5	ATOM	66	CG	PRO		39	30.950	40.416	-13.922	1.00 19	9.82	A
	J		67	C	PRO .		39	28.100		-12.962	1.00 20	0.83	A
		ATOM					39	27.092		-13.066	1.00 20		Α
		MOTA	68	0	PRO .					-12.273	1.00 2		A
		MOTA	69	N	ASN.		40	28.114			1.00 2		A
		MOTA	70	CA	ASN.		40	26.931		-11.555			A
	10	ATOM	71	СВ	ASN.	Α	40	26.737		-11.702	1.00 23		
		MOTA	72	CG	ASN.	Α	40	25.572		-10.881	1.00 2		A
		MOTA	73	OD1	ASN.	Α	40	24.457		-10.971	1.00 2		A
		MOTA	74	ND2	ASN	Α	40	25.820	33.629	-10.073	1.00 2	7.66	A
		ATOM	75	С	ASN		40	27.119	37.023	-10.085	1.00 2	0.01	A
	15	MOTA	76	0	ASN		40	27.906	36.386	-9.384	1.00 1	9.40	Α
	10	ATOM	77	N	VAL		41	26.405	38.040	-9.620	1.00 1	8.76	A
			78	CA	VAL		41	26.515	38.459	-8.227	1.00 1		A
		ATOM		CB	VAL		41	27.126	39.873	-8.117	1.00 1		А
		ATOM	79					28.559	39.861	-8.627	1.00 1		А
	00	MOTA	80		VAL		41		40.860	-8.919	1.00 1		A
	20	ATOM	81		VAL			26.291			1.00 1		A
179		ATOM	82	С	VAL		41	25.154	38.454	-7.545	1.00 1		A
		MOTA	83	0	VAL		41	24.118	38.550	-8.202			
3,3 # 2525		MOTA	84	N	ASP		42	25.161	38.333	-6.223	1.00 1		A
		MOTA	85	CA	ASP	Α	42	23.922	38.315	-5.459	1.00 1		A
W.	25	MOTA	86	CB	ASP	Α	42	24.204	37.903	-4.012	1.00 1		A
State State		MOTA	87	CG	ASP	Α	42	24.742	36.488	-3.906	1.00 1		A
		ATOM	88	OD1	ASP	Α	42	24.073	35.565	-4.414	1.00 1		А
		ATOM	89	OD2	ASP	Α	42	25.824	36.297	-3.316	1.00 1		A
E (ATOM	90	С	ASP		42	23.255	39.681	-5.484	1.00 1	6.06	А
	30	ATOM	91	Ō	ASP		42	22.029	39.786	-5.518	1.00 1	6.22	A
4 150	50	ATOM	92	N	VAL		43	24.071	40.729	-5.459	1.00 1	5.36	A
		ATOM	93	CA	VAL		43	23.563	42.092	-5.486	1.00 1	5.17	A
			94	CB	VAL		43	23.726	42.788	-4.118	1.00 1		A
Party Factor		ATOM	95		VAL		43	23.132	44.194	-4.175	1.00 1		A
nac.	25	ATOM					43	23.152	41.968	-3.024	1.00 1		А
W. James	35	ATOM	96	CG2				24.315	42.920	-6.521	1.00 1		А
		ATOM	97	С	VAL		43		43.030	-6.470	1.00 1		A
		MOTA	98	0	VAL		43	25.540			1.00 1		A
		ATOM	99	N	GLN		44	23.578	43.480	-7.472			A
		ATOM	100	CA	GLN		44	24.173	44.329	-8.497	1.00 1		
	4 0	ATOM	101	CB	GLN	A	44	23.958	43.724		1.00 1		A
		ATOM	102	CG	GLN	Α	44	25.023		-10.898	1.00 1		A
		ATOM	103	CD	GLN	Α	44	25.129		-11.016	1.00 1		A
		MOTA	104	OE1	GLN	Α	44	24.145		-11.302	1.00 1		A
		ATOM	105	NE2	GLN	Α	44	26.325	46.184	-10.792	1.00 1		А
	45	ATOM	106	С	GLN	Α	44	23.413	45.642	-8.323	1.00 1		A
	~~	ATOM	107	0	GLN		44	22.210	45.717	-8.576	1.00 1	3.21	A
		ATOM	108	N	MET		45	24.118	46.675	-7.874	1.00 1	3.15	А
		ATOM	109	CA	MET		45	23.485	47.952	-7.577	1.00 1	3.00	A
		ATOM	110	CB	MET		45	24.536	48.945	-7.075	1.00 1	3.03	A
	50			CG	MET		45	25.143	48.547	-5.728	1.00 1		A
	50	ATOM	111				45	23.891	48.155	-4.467	1.00 1		А
		MOTA	112	SD	MET			23.318	49.806	-4.040	1.00 1		A
		ATOM	113	CE	MET		45			-8.632	1.00 1		A
		MOTA	114	С	MET		45	22.593	48.603		1.00 1		A
		ATOM	115	0	MET		45	21.596	49.231	-8.278			
	55	ATOM	116	N	LEU	Α	46	22.929	48.469	-9.911	1.00 1	.2.01	А

		ATOM	117	CA	LEU A	46	22.087	49.066	-10.947	1.00 13.13	А
		ATOM	118	СВ	LEU A	46	22.778		-12.316	1.00 12.68	A
		ATOM	119	CG	LEU A	46	22.021		-13.456	1.00 11.38	Α
		ATOM	120		LEU A	46	21.998		-13.217	1.00 12.44	А
	5	ATOM	121		LEU A	46	22.686		-14.788	1.00 12.03	А
	J	ATOM	122	C	LEU A	46	20.770		-11.003	1.00 14.23	A
		ATOM	123	0	LEU A	46	19.687		-11.131	1.00 14.08	A
			123		GLU A	47	20.867		-10.895	1.00 15.02	A
		ATOM		N			19.682		-10.929	1.00 16.69	A
	10	ATOM	125	CA	GLU A	47			-10.929	1.00 10.03	A
	10	ATOM	126	CB	GLU A	47	20.087				
		MOTA	127	CG	GLU A	47	18.929		-11.196	1.00 20.72	A
		ATOM	128	CD	GLU A	47	18.124	43.357	-9.947	1.00 22.35	A
		MOTA	129	OE1	GLU A	47	17.009	42.805	-10.080	1.00 23.46	A
		ATOM	130	OE2	GLU A	47	18.601	43.648	-8.831	1.00 23.19	A
	15	MOTA	131	С	GLU A	47	18.824	46.414	-9.705	1.00 16.45	A
		MOTA	132	0	GLU A	47	17.609	46.569	-9.812	1.00 17.05	А
		MOTA	133	N	LEU A	48	19.465	46.511	-8.545	1.00 16.44	А
		MOTA	134	CA	LEU A	48	18.755	46.809	-7.304	1.00 16.52	A
184		MOTA	135	CB	LEU A	48	19.737	46.869	-6.128	1.00 16.70	A
रेड्डमी सम्बद्ध	20	MOTA	136	CG	LEU A	48	19.127	47.139	-4.748	1.00 17.63	A
j		MOTA	137	CD1	LEU A	48	18.115	46.053	-4.415	1.00 19.01	A
\L		MOTA	138	CD2	LEU A	48	20.225	47.188	-3.695	1.00 18.67	A
171		ATOM	139	С	LEU A	48	18.019	48.141	-7.420	1.00 16.10	A
		MOTA	140	0	LEU A	48	16.859	48.254	-7.029	1.00 16.36	A
	25	ATOM	141	N	TYR A	49	18.694	49.145	-7.968	1.00 15.59	A
IJ		ATOM	142	CA	TYR A	49	18.093	50.466	-8.127	1.00 15.59	A
M.		ATOM	143	СВ	TYR A	49	19.121	51.445	-8.712	1.00 14.86	A
		ATOM	144	CG	TYR A	49	19.675	52.401	-7.678	1.00 14.18	А
E)		ATOM	145	CD1	TYR A	49	20.150	51.929	-6.451	1.00 13.14	А
i interior	30	MOTA	146	CE1	TYR A	49	20.600	52.807	-5.464	1.00 13.25	A
		ATOM	147	CD2	TYR A	49	19.672	53.779	-7.899	1.00 13.52	А
IL.		ATOM	148	CE2	TYR A	49	20.120	54.666	-6.920	1.00 13.75	A
		ATOM	149	CZ	TYR A	49	20.578	54.175	-5.706	1.00 13.51	А
		MOTA	150	OH	TYR A	49	20.979	55.051	-4.723	1.00 13.85	A
lain.	35	ATOM	151	C	TYR A	49	16.850	50.415	-9.009	1.00 16.60	A
3,000	55	ATOM	152	0	TYR A	49	15.879	51.136	-8.779	1.00 15.53	A
		ATOM	153	N	ASP A	50	16.883		-10.012	1.00 17.82	A
		ATOM	154	CA	ASP A	50	15.764		-10.931	1.00 20.30	A
		ATOM	155	CB	ASP A	50	16.153		-12.061	1.00 21.45	A
	40						15.329		-13.318	1.00 23.77	A
	40	ATOM	156	CG	ASP A	50 50	15.403		-14.215	1.00 24.48	A
		MOTA	157		ASP A		14.626		-13.418	1.00 24.45	A
		ATOM	158		ASP A	50			-10.198	1.00 23.80	A
		ATOM	159	С	ASP A	50	14.526			1.00 21.12	A
	45	ATOM	160	0	ASP A	50	13.403		-10.476		
	45	ATOM	161	N	ARG A	51	14.741	47.951	-9.256	1.00 22.14	A
		ATOM	162	CA	ARG A	51	13.651	47.336	-8.494	1.00 23.40	A
		ATOM	163	СВ	ARG A	51	14.044	45.918	-8.059	1.00 25.60	A
		ATOM	164	CG	ARG A	51	14.163	44.925	-9.192	1.00 28.61	A
	E O	MOTA	165	CD	ARG A	51	14.338	43.491	-8.689	1.00 31.12	A
	50	ATOM	166	NE	ARG A	51	15.625	43.263	-8.034	1.00 33.00	A
		ATOM	167	CZ	ARG A	51	15.868	43.467	-6.743	1.00 33.65	A
		ATOM	168		ARG A	51	14.908	43.906	-5.940	1.00 34.72	A
		ATOM	169		ARG A	51	17.077	43.228	-6.253	1.00 33.58	А
		ATOM	170	С	ARG A	51	13.156	48.096	-7.262	1.00 23.04	А
	55	ATOM	171	0	ARG A	51	11.979	48.014	-6.921	1.00 23.00	A

							201				
		ATOM	172	N	MET A	52	14.047	48.820	-6.591	1.00 22.18	A
		ATOM	173	CA	MET A	52	13.680	49.564	-5.385	1.00 22.46	A
		MOTA	174	СВ	MET A	52	14.924	50.192	-4.757	1.00 22.88	A
		ATOM	175	CG	MET A	52	15.886	49.195	-4.152	1.00 24.34	A
	5	ATOM	176	SD	MET A	52	17.406	50.015	-3.629	1.00 25.98	A
	5		177	CE	MET A	52	16.778	51.075	-2.331	1.00 26.01	A
		ATOM					12.642	50.652	-5.617	1.00 21.82	A
		ATOM	178	C	MET A	52		51.271	-6.681	1.00 21.02	A
		ATOM	179	0	MET A	52	12.606			1.00 21.30	A
	10	ATOM	180	N	SER A	53	11.810	50.894	-4.606		
	10	ATOM	181	CA	SER A	53	10.762	51.908	-4.696	1.00 21.22	A
		MOTA	182	CB	SER A	53	9.477	51.386	-4.048	1.00 21.76	A
		MOTA	183	OG	SER A	53	8.985	50.253	-4.745	1.00 23.57	A
		MOTA	184	С	SER A	53	11.156	53.238	-4.055	1.00 20.40	A
		MOTA	185	0	SER A	53	10.531	54.267	-4.311	1.00 20.31	A
	15	MOTA	186	N	PHE A	54	12.185	53.204	-3.214	1.00 19.97	A
		MOTA	187	CA	PHE A	54	12.686	54.399	-2.538	1.00 19.35	A
		MOTA	188	CB	PHE A	54	13.354	55.343	-3.545	1.00 18.86	A
		MOTA	189	CG	PHE A	54	14.600	54.784	-4.174	1.00 17.89	A
2:22		MOTA	190	CD1	PHE A	54	14.522	53.912	-5.256	1.00 17.68	A
	20	ATOM	191	CD2	PHE A	54	15.852	55.127	-3.677	1.00 17.36	A
		ATOM	192	CE1	PHE A	54	15.674	53.387	-5.837	1.00 17.70	A
		ATOM	193	CE2	PHE A	54	17.015	54.609	-4.247	1.00 17.77	A
177		ATOM	194	CZ	PHE A	54	16.929	53.736	-5.329	1.00 18.12	A
		ATOM	195	С	PHE A	54	11.644	55.188	-1.747	1.00 19.63	A
12	25	ATOM	196	Ō	PHE A	54	11.729	56.414	-1.660	1.00 18.67	A
3.16# 3/8 E		ATOM	197	N	LYS A	55	10.664	54.504	-1.165	1.00 19.83	А
ig.		ATOM	198	CA	LYS A	55	9.653	55.211	-0.387	1.00 20.73	A
		ATOM	199	СВ	LYS A	55	8.437	54.313	-0.134	1.00 20.77	А
ä;		ATOM	200	CG	LYS A	55	7.748	53.848	-1.403	1.00 20.88	A
	30	ATOM	201	CD	LYS A	55	7.336	55.018	-2.284	1.00 21.60	A
	50	ATOM	202	CE	LYS A	55	6.699	54.527	-3.578	1.00 21.98	A
		MOTA	203	NZ	LYS A	55	6.215	55.652	-4.429	1.00 21.47	А
		ATOM	203	C	LYS A	55	10.265	55.652	0.936	1.00 20.90	A
		ATOM	205	0	LYS A	55	10.925	54.870	1.615	1.00 21.59	А
4455 4455 4	35	ATOM	206	N	ASP A	56	10.045	56.912	1.291	1.00 21.05	A
i esta	33		207	CA	ASP A	56	10.582	57.478	2.522	1.00 21.70	A
		MOTA	207	CB	ASP A	56	11.094	58.897	2.234	1.00 20.78	A
		MOTA	209	CG	ASP A	56	11.697	59.567	3.450	1.00 20.73	A
		MOTA				56	12.238	58.861	4.324	1.00 20.21	A
	40	ATOM	210		ASP A		11.642	60.812	3.523	1.00 20.23	A
	40	MOTA	211		ASP A	56			3.622	1.00 20.23	A
		ATOM	212	С	ASP A	56	9.520	57.493	3.939	1.00 22.51	A
		MOTA	213	0	ASP A	56	8.954	58.536			
		MOTA	214	N	ILE A	57	9.251	56.331	4.207	1.00 23.05	A
	4 ==	ATOM	215	CA	ILE A	57	8.245	56.249	5.259	1.00 23.95	A
	45	ATOM	216	СВ	ILE A	57	7.368	54.981	5.114	1.00 25.04	A
		ATOM	217		ILE A	57	6.858	54.859	3.681	1.00 24.66	A
		ATOM	218		ILE A	57	8.172	53.737	5.485	1.00 25.72	A
		ATOM	219		ILE A	57	7.335	52.480	5.564	1.00 27.21	A
		ATOM	220	С	ILE A	57	8.869	56.250	6.647	1.00 23.45	A
	50	MOTA	221	0	ILE A	57	10.022	55.859	6.824	1.00 23.83	A
		ATOM	222	N	ASP A	58	8.091	56.698	7.627	1.00 23.42	A
		MOTA	223	CA	ASP A	58	8.528	56.758	9.017	1.00 23.11	А
		ATOM	224	CB	ASP A	58	7.566	57.641	9.815	1.00 24.05	А
		ATOM	225	CG	ASP A	58	7.986	57.817	11.264	1.00 24.91	Α
	55	ATOM	226	OD1	ASP A	58	7.391	58.677	11.948	1.00 26.86	A

		ATOM	227	OD2	ASP A	58	8.898	57.102	11.725	1.00 24.36	А
		ATOM	228	С	ASP A	58	8.552	55.347	9.599	1.00 22.47	A
		ATOM	229	0	ASP A	58	7.503	54.736	9.798	1.00 22.40	А
							9.749	54.835	9.871	1.00 21.17	A
	_	ATOM	230	N	GLY A	59				1.00 20.10	
	5	ATOM	231	CA	GLY A	59	9.870	53.491	10.411		A
		MOTA	232	С	GLY A	59	9.836	53.398	11.926	1.00 18.92	A
		ATOM	233	0	GLY A	59	10.040	52.321	12.486	1.00 18.96	A
		ATOM	234	N	GLY A	60	9.576	54.518	12.592	1.00 18.14	A
		ATOM	235	CA	GLY A	60	9.529	54.523	14.045	1.00 18.27	A
	10	ATOM	236	С	GLY A	60	10.796	55.130	14.620	1.00 17.46	А
	20	ATOM	237	Ö	GLY A	60	11.352	56.062	14.038	1.00 17.61	A
		ATOM	238	N	VAL A	61	11.264	54.612	15.752	1.00 17.48	A
							12.484	55.146	16.349	1.00 16.59	A
		ATOM	239	CA	VAL A	61					
	4 =	MOTA	240	СВ	VAL A	61	12.865	54.402	17.653	1.00 16.73	A
	15	MOTA	241		VAL A	61	11.824	54.706	18.728	1.00 16.60	А
		MOTA	242	CG2	VAL A	61	12.957	52.904	17.413	1.00 16.85	A
		ATOM	243	С	VAL A	61	13.613	55.075	15.321	1.00 16.90	A
		ATOM	244	0	VAL A	61	14.443	55.981	15.244	1.00 16.19	A
.117200.		MOTA	245	N	TRP A	62	13.651	53.998	14.537	1.00 16.72	А
	20	ATOM	246	CA	TRP A	62	14.641	53.903	13.470	1.00 17.14	A
	20	ATOM	247	CB	TRP A	62	15.017	52.448	13.160	1.00 16.77	A
							15.981	52.323	11.999	1.00 16.61	A
iji:		ATOM	248	CG	TRP A	62					
415 E.		ATOM	249	CD2	TRP A	62	16.334	51.125	11.291	1.00 16.64	A
		MOTA	250	CE2	TRP A	62	17.238	51.495	10.266	1.00 16.47	A
4	25	MOTA	251	CE3	TRP A	62	15.974	49.776	11.421	1.00 16.05	A
and de la company de la compan		MOTA	252	CD1	TRP A	62	16.671	53.339	11.393	1.00 16.29	A
1		MOTA	253	NE1	TRP A	62	17.424	52.850	10.351	1.00 16.78	A
		MOTA	254	CZ2	TRP A	62	17.786	50.565	9.376	1.00 15.87	A
4 (1000)		MOTA	255	CZ3	TRP A	62	16.518	48.849	10.537	1.00 15.80	A
See P	30	ATOM	256		TRP A	62	17.416	49.249	9.525	1.00 16.42	А
		ATOM	257	C	TRP A	62	13.854	54.516	12.319	1.00 17.81	А
		ATOM	258	0	TRP A	62	13.199	53.816	11.542	1.00 18.20	A
2.3.								55.841	12.241	1.00 18.39	A
		ATOM	259	N	LYS A	63	13.904				
	0.5	MOTA	260	CA	LYS A	63	13.159	56.598	11.243	1.00 18.98	A
ğud.	35	ATOM	261	СВ	LYS A	63	13.590	58.066	11.290	1.00 20.04	A
		ATOM	262	CG	LYS A	63	13.128	58.814	12.549	1.00 22.71	A
		ATOM	263	CD	LYS A	63	11.608	58.979	12.573	1.00 25.03	A
		ATOM	264	CE	LYS A	63	11.129	59.810	13.761	1.00 26.33	A
		MOTA	265	NZ	LYS A	63	11.459	59.217	15.099	1.00 28.40	A
	40	MOTA	266	С	LYS A	63	13.180	56.108	9.800	1.00 18.64	A
		ATOM	267	0	LYS A	63	12.175	56.225	9.090	1.00 18.80	A
		ATOM	268	N	GLN A	64	14.302	55.557	9.358	1.00 17.70	A
			269	CA	GLN A	64	14.400	55.102	7.976	1.00 17.10	A
		ATOM								1.00 17.10	A
	4 =	ATOM	270	CB	GLN A	64	15.610	55.768	7.320		
	45	MOTA	271	CG	GLN A	64	15.510	57.285	7.347	1.00 16.52	A
		ATOM	272	CD	GLN A	64	16.850	57.969	7.152	1.00 16.43	A
		MOTA	273	OE1	GLN A	64	17.818	57.674	7.859	1.00 16.22	A
		ATOM	274	NE2	GLN A	64	16.910	58.894	6.198	1.00 15.17	A
		ATOM	275	С	GLN A	64	14.461	53.586	7.817	1.00 16.51	A
	50	ATOM	276	0	GLN A	64	14.839	53.073	6.759	1.00 16.20	A
		ATOM	277	N	GLY A	65	14.070	52.880	8.873	1.00 16.63	A
		ATOM	278	CA	GLY A	65	14.060	51.429	8.844	1.00 17.03	А
		ATOM	279	C	GLY A	65	12.713	50.881	9.284	1.00 17.98	A
						65	11.680	51.204	8.692	1.00 17.73	A
	==	MOTA	280	0	GLY A						
	55	ATOM	281	N	TRP A	66	12.722	50.052	10.324	1.00 18.46	А

									10 050	1 00 10 30	70
		ATOM	282	CA	TRP A	66	11.495	49.454	10.852	1.00 19.30	А
		MOTA	283	CB	TRP A	66	11.101	48.231	10.012	1.00 18.93	A
		ATOM	284	CG	TRP A	66	12.024	47.045	10.179	1.00 18.71	A
							13.222	46.776	9.440	1.00 18.40	A
		ATOM	285		TRP A	66					
	5	MOTA	286		TRP A	66	13.768	45.575	9.950	1.00 18.17	A
		MOTA	287	CE3	TRP A	66	13.890	47.435	8.396	1.00 18.28	А
		ATOM	288	CD1	TRP A	66	11.897	46.026	11.081	1.00 18.40	A
		ATOM	289		TRP A	66	12.938	45.139	10.949	1.00 18.80	A
					TRP A	66	14.952	45.015	9.452	1.00 18.67	A
	10	ATOM	290								
	10	ATOM	291			66	15.067	46.881	7.901	1.00 18.13	A
		MOTA	292	CH2	TRP A	66	15.587	45.681	8.431	1.00 18.63	A
		MOTA	293	С	TRP A	66	11.768	49.028	12.289	1.00 19.82	A
		ATOM	294	0	TRP A	66	12.906	49.117	12.751	1.00 19.90	A
		ATOM	295	N	ASN A	67	10.735	48.581	13.000	1.00 20.61	A
	15		296	CA	ASN A	67	10.916	48.133	14.380	1.00 21.14	A
	10	MOTA									
		ATOM	297	CB	ASN A	67	9.580	48.089	15.132	1.00 22.87	A
		MOTA	298	CG	ASN A	67	9.005	49.469	15.382	1.00 23.90	A
		MOTA	299	OD1	ASN A	67	9.737	50.419	15.660	1.00 24.85	А
284.		ATOM	300	ND2	ASN A	67	7.684	49.580	15.308	1.00 24.85	A
C	20	ATOM	301	С	ASN A	67	11.534	46.742	14.365	1.00 21.15	A
4. Th		ATOM	302	0	ASN A	67	10.859	45.751	14.076	1.00 20.49	А
										1.00 20.89	A
		MOTA	303	N	ILE A	68	12.822	46.669	14.680		
2,5 B		MOTA	304	CA	ILE A	68	13.524	45.395	14.676	1.00 20.74	A
7		MOTA	305	CB	ILE A	68	15.047	45.602	14.791	1.00 20.37	A
	25	MOTA	306	CG2	ILE A	68	15.754	44.256	14.762	1.00 20.22	A
		ATOM	307	CG1	ILE A	68	15.541	46.489	13.643	1.00 19.43	A
		ATOM	308	CD1		68	16.996	46.907	13.771	1.00 18.98	A
			309	C	ILE A	68	13.074	44.489	15.816	1.00 21.81	A
31		ATOM						44.923	16.961	1.00 21.06	A
Sales Sales	20	MOTA	310	0	ILE A	68	12.958				
	30	MOTA	311	N	LYS A	69	12.820	43.227	15.486	1.00 22.54	A
1988 888		MOTA	312	CA	LYS A	69	12.402	42.240	16.472	1.00 23.75	A
fine fine		MOTA	313	CB	LYS A	69	10.990	41.731	16.154	1.00 25.70	A
, d		ATOM	314	CG	LYS A	69	9.910	42.796	16.310	1.00 28.27	A
		ATOM	315	CD	LYS A	69	8.529	42.293	15.899	1.00 30.99	A
indi	35	ATOM	316	CE	LYS A	69	8.470	41.949	14.415	1.00 32.58	A
ž (-054	55								13.953	1.00 33.89	A
		ATOM	317	NZ	LYS A	69	7.069	41.696			
		MOTA	318	С	LYS A	69	13.399	41.087	16.440	1.00 23.31	А
		ATOM	319	0	LYS A	69	13.965	40.779	15.394	1.00 22.08	A
		MOTA	320	N	TYR A	70	13.627	40.463	17.590	1.00 22.98	A
	40	ATOM	321	CA	TYR A	70	14.558	39.347	17.659	1.00 23.39	A
		ATOM	322	CB	TYR A	70	15.955	39.838	18.069	1.00 22.09	A
		ATOM	323	CG	TYR A	70	16.033	40.441	19.454	1.00 21.39	A
										1.00 21.26	A
		ATOM	324		TYR A	70	16.250	39.641	20.577		
		ATOM	325		TYR A	70	16.301	40.193	21.854	1.00 21.28	A
	45	ATOM	326	CD2	TYR A	70	15.870	41.810	19.646	1.00 20.94	А
		MOTA	327	CE2	TYR A	70	15.916	42.371	20.915	1.00 21.13	A
		ATOM	328	CZ	TYR A	70	16.131	41.560	22.014	1.00 21.33	A
		ATOM	329	ОН	TYR A	70	16.160	42.120	23.270	1.00 21.29	A
		ATOM	330	C	TYR A	70	14.067	38.291	18.639	1.00 24.36	A
	EΩ								19.556	1.00 24.37	A
	50	ATOM	331	0	TYR A	70	13.299	38.587			
		MOTA	332	N	ASP A	71	14.506	37.058	18.426	1.00 25.28	A
		ATOM	333	CA	ASP A	71	14.134	35.952	19.295	1.00 26.59	A
		MOTA	334	CB	ASP A	71	14.108	34.650	18.491	1.00 27.54	A
		ATOM	335	CG	ASP A	71	13.865	33.430	19.358	1.00 28.68	А
	55	ATOM	336		ASP A	71	13.325	33.583	20.474	1.00 29.32	А
		111 011	220	ODI	ו יייינ	, 1.	13.323	55.555		,	

		MOTA	337	OD2	ASP A	71	14.208	32.315	18.913	1.00 29.61	A
		ATOM	338	C	ASP A	71	15.166	35.878	20.414	1.00 27.11	A
		ATOM	339	0	ASP A	71	16.324	35.542	20.181	1.00 27.07	А
		MOTA	340	N	PRO A	72	14.758	36.205	21.650	1.00 27.95	A
	5	MOTA	341	CD	PRO A	72	13.382	36.467	22.102	1.00 28.09	A
	•	ATOM	342	CA	PRO A	72	15.682	36.167	22.788	1.00 28.21	А
										1.00 28.36	
		MOTA	343	CB	PRO A	72	14.777	36.487	23.981		A
		MOTA	344	CG	PRO A	72	13.431	36.001	23.536	1.00 29.13	A
		MOTA	345	С	PRO A	72	16.430	34.848	22.949	1.00 28.47	A
	10	ATOM	346	0	PRO A	72	17.544	34.819	23.478	1.00 28.39	A
	10										
		ATOM	347	N	LEU A	73	15.831	33.761	22.476	1.00 28.12	A
		MOTA	348	CA	LEU A	73	16.458	32.450	22.589	1.00 28.34	А
		MOTA	349	CB	LEU A	73	15.396	31.350	22.521	1.00 28.75	A
		ATOM	350	CG	LEU A	73	14.394	31.348	23.678	1.00 29.26	A
	15	ATOM	351		LEU A	73	13.386	30.228	23.480	1.00 29.98	A
	15									1.00 30.07	A
		MOTA	352		LEU A	73	15.137	31.176	24.999		
		MOTA	353	С	LEU A	73	17.526	32.200	21.530	1.00 28.03	A
		ATOM	354	0	LEU A	73	18.172	31.155	21.531	1.00 27.41	A
41000		ATOM	355	N	LYS A	74	17.717	33.159	20.629	1.00 27.84	A
	20	ATOM	356	CA	LYS A	74	18.719	33.010	19.580	1.00 28.11	A
ı,Q	20						18.719		18.669	1.00 28.49	A
: 17		MOTA	357	CB	LYS A	74		34.238			
3 15 7 5.		MOTA	358	CG	LYS A	74	19.670	34.132	17.489	1.00 29.82	A
Ħ		MOTA	359	CD	LYS A	74	19.495	35.303	16.537	1.00 30.64	A
		MOTA	360	CE	LYS A	74	20.364	35.143	15.302	1.00 31.81	A
T.	25	ATOM	361	NZ	LYS A	74	20.171	36.267	14.342	1.00 31.98	A
			362	C	LYS A	74	20.107	32.821	20.188	1.00 28.09	A
		ATOM									
		ATOM	363	0	LYS A	74	20.905	32.019	19.708	1.00 27.62	A
a)		ATOM	364	N	TYR A	75	20.390	33.567	21.249	1.00 28.79	A
g steep		ATOM	365	CA	TYR A	75	21.678	33.470	21.917	1.00 29.44	A
	30	ATOM	366	CB	TYR A	75	22.267	34.870	22.135	1.00 30.25	A
	00	ATOM	367	CG	TYR A	75	22.560	35.593	20.839	1.00 31.19	А
									20.330	1.00 32.32	A
3		MOTA	368	CD1	TYR A	75	21.682	36.552			
		ATOM	369	CE1	TYR A	75	21.919	37.167	19.097	1.00 32.54	А
100		ATOM	370	CD2	TYR A	75	23.685	35.268	20.085	1.00 31.91	A
ğurk.	35	ATOM	371	CE2	TYR A	75	23.929	35.871	18.854	1.00 33.09	A
		MOTA	372	CZ	TYR A	75	23.043	36.816	18.365	1.00 33.06	A
						75	23.281	37.385	17.133	1.00 34.74	A
		MOTA	373	OH	TYR A						
		MOTA	374	С	TYR A	75	21.533	32.738	23.246	1.00 29.32	A
		ATOM	375	0	TYR A	75	20.536	32.903	23.947	1.00 28.56	A
	40	ATOM	376	N	ASN A	76	22.524	31.914	23.573	1.00 29.65	A
		MOTA	377	CA	ASN A	76	22.515	31.153	24.817	1.00 30.92	А
		ATOM	378	СВ	ASN A	76	21.679	29.879	24.663	1.00 31.88	A
									23.789	1.00 32.89	A
		ATOM	379	CG	ASN A	76	22.350	28.844			
		MOTA	380		ASN A	76	22.597	29.077	22.610	1.00 34.45	A
	45	MOTA	381	ND2	ASN A	76	22.652	27.686	24.368	1.00 35.12	A
		ATOM	382	С	ASN A	76	23.940	30.786	25.217	1.00 31.31	A
		ATOM	383	0	ASN A	76	24.898	31.163	24.544	1.00 31.17	А
								30.042	26.311	1.00 31.88	A
		ATOM	384	N	ALA A	77	24.071				
		ATOM	385	CA	ALA A	77	25.377	29.634	26.820	1.00 32.55	A
	50	ATOM	386	CB	ALA A	77	25.197	28.651	27.972	1.00 33.07	A
		ATOM	387	С	ALA A	77	26.297	29.028	25.763	1.00 33.01	A
		ATOM	388	0	ALA A	77	27.516	29.186	25.831	1.00 33.48	A
							25.718	28.340	24.785	1.00 33.14	A
		ATOM	389	N	HIS A	78					
		ATOM	390	CA	HIS A	78	26.512	27.700	23.741	1.00 33.71	A
	55	ATOM	391	CB	HIS A	78	25.869	26.367	23.349	1.00 35.33	А

		ATOM	392	CG	HIS A	78	25.613	25.459	24.511	1.00 37.19	А
		ATOM	393		HIS A	78	24.467	24.910	24.978	1.00 37.95	A
		ATOM	394		HIS A	78	26.616	25.029	25.354	1.00 38.44	А
		ATOM	395		HIS A	78	26.098	24.255	26.291	1.00 39.01	A
	5				HIS A	78	24.796	24.166	26.085	1.00 38.98	A
	5	MOTA	396				26.689		22.501	1.00 38.90	A
		MOTA	397	С	HIS A	78		28.570			
		MOTA	398	0	HIS A	78	27.445	28.221	21.594	1.00 32.79	A
		ATOM	399	N	HIS A	79	25.997	29.703	22.471	1.00 31.30	A
		MOTA	400	CA	HIS A	79	26.075	30.617	21.337	1.00 29.39	А
	10	MOTA	401	CB	HIS A	79	25.026	30.220	20.294	1.00 29.56	A
		ATOM	402	CG	HIS A	79	25.097	31.011	19.026	1.00 30.05	A
		MOTA	403	CD2	HIS A	79	25.904	30.892	17.945	1.00 30.18	Α
		ATOM	404	ND1	HIS A	79	24.269	32.083	18.769	1.00 30.14	A
		ATOM	405		HIS A	79	24.564	32.590	17.585	1.00 30.18	A
	15	ATOM	406		HIS A	79	25.552	31.886	17.064	1.00 29.64	A
	10	ATOM	407	C	HIS A	79	25.848	32.049	21.821	1.00 27.72	A
		ATOM	408	0	HIS A	79	24.724	32.546	21.818	1.00 27.38	A
					LYS A	80	26.929	32.701	22.239	1.00 25.74	A
		ATOM	409	N						1.00 23.74	A
	20	MOTA	410	CA	LYS A	80	26.864	34.067	22.751		
	20	ATOM	411	CB	LYS A	80	27.894	34.265	23.864	1.00 25.55	A
Ü		ATOM	412	CG	LYS A	80	27.771	33.315	25.047	1.00 27.24	A
% (dest) de (dest)		MOTA	413	CD	LYS A	80	28.848	33.636	26.074	1.00 28.76	A
		MOTA	414	CE	LYS A	80	28.801	32.686	27.260	1.00 30.53	A
1		ATOM	415	NZ	LYS A	80	29.897	32.984	28.235	1.00 31.64	A
194	25	ATOM	416	С	LYS A	80	27.117	35.130	21.687	1.00 23.05	A
		ATOM	417	0	LYS A	80	27.735	34.861	20.655	1.00 21.91	A
m		ATOM	418	N	LEU A	81	26.634	36.340	21.961	1.00 20.81	А
		ATOM	419	CA	LEU A	81	26.826	37.476	21.069	1.00 19.46	A
4,4354		ATOM	420	CB	LEU A	81	25.639	38.444	21.163	1.00 18.84	А
	30	ATOM	421	CG	LEU A	81	25.719	39.706	20.294	1.00 18.97	А
	50	ATOM	422		LEU A	81	25.692	39.316	18.819	1.00 18.21	A
20 m					LEU A	81	24.558	40.637	20.616	1.00 18.43	A
jed.		ATOM	423				28.097	38.179	21.532	1.00 19.09	A
		ATOM	424	С	LEU A	81					A
	25	ATOM	425	0	LEU A	81	28.168	38.669	22.660	1.00 18.47	
g (Mari	35	ATOM	426	N	LYS A	82	29.108	38.198	20.670	1.00 18.24	A
		ATOM	427	CA	LYS A	82	30.379	38.844	20.984	1.00 18.10	A
		ATOM	428	CB	LYS A	82	31.523	38.130	20.258	1.00 20.34	A
		MOTA	429	CG	LYS A	82	31.736	36.693	20.723	1.00 23.59	A
		MOTA	430	CD	LYS A	82	32,626	35.899	19.769	1.00 26.71	A
	40	MOTA	431	CE	LYS A	82	34.047	36.436	19.723	1.00 28.41	А
		ATOM	432	NZ	LYS A	82	34.880	35.658	18.761	1.00 31.12	A
		ATOM	433	С	LYS A	82	30.283	40.289	20.517	1.00 17.55	A
		ATOM	434	0	LYS A	82	30.112	40.550	19.327	1.00 16.98	A
		ATOM	435	N	VAL A	83	30.392	41.226	21.454	1.00 15.95	А
	45	ATOM	436	CA	VAL A	83	30.285	42.638	21.119	1.00 15.21	А
	10	ATOM	437	CB	VAL A	83	29.253	43.349	22.035	1.00 14.49	A
							29.126	44.814	21.648	1.00 13.69	A
		ATOM	438		VAL A	83				1.00 15.01	A
		MOTA	439		VAL A	83	27.895	42.658	21.926		
	-0	MOTA	440	С	VAL A	83	31.615	43.375	21.229	1.00 15.13	A
	50	MOTA	441	0	VAL A	83	32.297	43.302	22.252	1.00 15.11	A
		ATOM	442	N	PHE A	84	31.976	44.084	20.163	1.00 15.08	A
		MOTA	443	CA	PHE A	84	33.207	44.868	20.142	1.00 14.60	A
		MOTA	444	СВ	PHE A	84	34.081	44.489	18.944	1.00 15.76	А
		ATOM	445	CG	PHE A	84	34.765	43.163	19.085	1.00 17.05	A
	55	MOTA	446	CD1	PHE A	84	34.321	42.055	18.371	1.00 17.71	A

		ATOM	447	CD2	PHE A	84	35.859	43.021	19.935	1.00 18.34	A
		ATOM	448	CE1	PHE A	84	34.961	40.819	18.500	1.00 18.55	А
		ATOM	449		PHE A	84	36.507	41.795	20.073	1.00 18.71	A
		ATOM	450	CZ	PHE A	84	36.058	40.690	19.354	1.00 19.03	A
	5								20.061	1.00 14.25	A
	3	MOTA	451	C	PHE A	84	32.876	46.355			
		MOTA	452	0	PHE A	84	32.342	46.819	19.054	1.00 14.04	A
		MOTA	453	N	VAL A	85	33.183	47.085	21.130	1.00 13.03	А
		MOTA	454	CA	VAL A	85	32.955	48.527	21.193	1.00 13.03	A
		MOTA	455	CB	VAL A	85	32.596	48.976	22.629	1.00 12.58	A
	10	ATOM	456	CG1	VAL A	85	32.408	50.493	22.680	1.00 13.25	A
	20	ATOM	457	CG2	VAL A	85	31.318	48.272	23.072	1.00 13.56	A
		ATOM	458	C	VAL A	85	34.267	49.165	20.762	1.00 11.93	A
							35.280	49.049	21.451	1.00 12.19	A
		MOTA	459	0	VAL A	85					
	4-	ATOM	460	N	VAL A	86	34.240	49.840	19.618	1.00 11.92	A
	15	MOTA	461	CA	VAL A	86	35.442	50.442	19.058	1.00 11.60	А
		MOTA	462	CB	VAL A	86	35.580	50.032	17.571	1.00 12.47	A
		ATOM	463	CG1	VAL A	86	36.907	50.523	17.002	1.00 11.40	A
		ATOM	464	CG2	VAL A	86	35.458	48.511	17.442	1.00 13.05	А
		ATOM	465	С	VAL A	86	35.508	51.967	19.168	1.00 11.18	A
	20	ATOM	466	0	VAL A	86	34.875	52.683	18.393	1.00 10.78	A
+ <u>13</u>	20					87	36.292	52.478	20.133	1.00 10.83	A
		ATOM	467	N	PRO A					1.00 10.63	
T _e legi arasa		MOTA	468	CD	PRO A	87	37.015	51.722	21.169		A
M		ATOM	469	CA	PRO A	87	36.448	53.923	20.344	1.00 10.81	A
		MOTA	470	CB	PRO A	87	37.307	54.000	21.610	1.00 10.48	A
39.3	25	MOTA	471	CG	PRO A	87	37.008	52.695	22.311	1.00 10.82	A
		ATOM	472	С	PRO A	87	37.145	54.569	19.146	1.00 10.84	A
		ATOM	473	0	PRO A	87	38.123	54.023	18.624	1.00 10.85	А
		ATOM	474	N	HIS A	88	36.646	55.725	18.714	1.00 10.80	A
21		ATOM	475	CA	HIS A	88	37.235	56.427	17.577	1.00 11.53	А
	30	ATOM	476	CB	HIS A	88	36.662	55.885	16.257	1.00 10.95	A
5 155	50						35.211	56.191	16.051	1.00 10.33	A
		ATOM	477	CG	HIS A	88					
		ATOM	478		HIS A	88	34.098	55.515	16.420	1.00 11.54	A
1000		MOTA	479	ND1	HIS A	88	34.773	57.323	15.397	1.00 10.84	А
		ATOM	480		HIS A	88	33.453	57.330	15.371	1.00 11.92	A
isa.	35	ATOM	481	NE2	HIS A	88	33.018	56.244	15.986	1.00 11.27	A
2		ATOM	482	С	HIS A	88	37.015	57.933	17.666	1.00 12.18	A
		ATOM	483	0	HIS A	88	36.203	58.417	18.459	1.00 11.77	A
		ATOM	484	N	SER A	89	37.753	58.670	16.845	1.00 11.89	A
		ATOM	485	CA	SER A	89	37.671	60.122	16.833	1.00 11.62	А
	40						38.775	60.702	17.728	1.00 10.98	A
	40	ATOM	486	CB	SER A	89			17.764	1.00 10.30	
		ATOM	487	OG	SER A	89	38.737	62.117			A
		ATOM	488	С	SER A	89	37.852	60.577	15.393	1.00 11.91	A
		ATOM	489	0	SER A	89	38.928	60.417	14.815	1.00 12.41	A
		ATOM	490	N	HIS A	90	36.792	61.130	14.814	1.00 11.46	A
	45	ATOM	491	CA	HIS A	90	36.835	61.592	13.432	1.00 11.67	A
		ATOM	492	CB	HIS A	90	35.415	61.640	12.859	1.00 10.52	A
		ATOM	493	CG	HIS A	90	35.368	61.922	11.391	1.00 10.05	A
		ATOM	494		HIS A	90	34.794	62.930	10.695	1.00 9.72	A
		ATOM	495		HIS A	90	35.986	61.116	10.460	1.00 10.72	A
	50		496		HIS A	90	35.795	61.615	9.253	1.00 10.25	A
	50	MOTA									
		ATOM	497		HIS A	90	35.074	62.716	9.368	1.00 9.97	A
		ATOM	498	С	HIS A	90	37.491	62.969	13.355	1.00 11.84	A
		ATOM	499	0	HIS A	90	36.912	63.971	13.787	1.00 11.75	A
		ATOM	500	N	ASN A	91	38.704	63.005	12.809	1.00 11.84	A
	55	ATOM	501	CA	ASN A	91	39.466	64.243	12.680	1.00 12.03	A

		ATOM	502	СВ	ASN A	91	40.857	64.082	13.304	1.00 12.04	A
		ATOM	503	CG	ASN A	91	40.812	63.945	14.810	1.00 12.39	A
		MOTA	504		ASN A	91	40.213	63.011	15.348	1.00 14.18	A
		ATOM	505		ASN A	91	41.451	64.877	15.503	1.00 10.68	A
	5	ATOM	506	C	ASN A	91	39.628	64.671	11.226	1.00 12.39	А
	J	ATOM	507	0	ASN A	91	40.322	64.014	10.450	1.00 12.84	A
			508		ASP A	92	38.996	65.783	10.873	1.00 11.57	A
		ATOM		N			39.063	66.308	9.517	1.00 12.43	A
		ATOM	509	CA	ASP A	92				1.00 12.43	A
	10	MOTA	510	CB	ASP A	92	37.827	67.155	9.224		
	10	MOTA	511	CG	ASP A	92	36.555	66.377	9.378	1.00 12.30	A
		MOTA	512		ASP A	92	36.335	65.462	8.565	1.00 12.29	A
		MOTA	513		ASP A	92	35.791	66.671	10.319	1.00 13.77	A
		MOTA	514	С	ASP A	92	40.293	67.168	9.282	1.00 12.14	A
		ATOM	515	0	ASP A	92	40.522	68.136	10.005	1.00 12.62	A
	15	MOTA	516	N	PRO A	93	41.115	66.810	8.284	1.00 12.65	А
		MOTA	517	CD	PRO A	93	41.195	65.488	7.637	1.00 12.43	A
		ATOM	518	CA	PRO A	93	42.311	67.603	7.988	1.00 12.86	A
		ATOM	519	CB	PRO A	93	43.108	66.697	7.052	1.00 12.57	A
ALIENE.		ATOM	520	CG	PRO A	93	42.686	65.311	7.478	1.00 13.74	А
1122	20	ATOM	521	С	PRO A	93	41.823	68.876	7.290	1.00 13.17	A
		MOTA	522	0	PRO A	93	42.157	69.139	6.132	1.00 13.70	A
Ü		MOTA	523	N	GLY A	94	41.008	69.641	8.010	1.00 12.62	A
M		ATOM	524	CA	GLY A	94	40.446	70.868	7.481	1.00 11.94	A
		ATOM	525	C	GLY A	94	38.965	70.725	7.160	1.00 12.22	A
ij	25	ATOM	526	0	GLY A	94	38.530	69.697	6.636	1.00 10.48	A
8 %#1 8 8 8	20	ATOM	527	N	TRP A	95	38.191	71.751	7.506	1.00 12.07	A
IJ.			528	CA	TRP A	95	36.755	71.808	7.232	1.00 13.08	A
(FL		ATOM						70.737	7.996	1.00 13.00	A
#:		ATOM	529	CB	TRP A	95	35.964			1.00 12.01	
	20	ATOM	530	CG	TRP A	95	34.480	70.807	7.674		A
	30	ATOM	531		TRP A	95	33.381	70.521	8.556	1.00 12.36	A
161		ATOM	532		TRP A	95	32.191	70.701	7.812	1.00 11.92	A
1 4		MOTA	533		TRP A	95	33.285	70.128	9.900	1.00 12.35	A
g pela 2 men		ATOM	534		TRP A	95	33.923	71.138	6.469	1.00 12.10	A
		ATOM	535		TRP A	95	32.551	71.079	6.545	1.00 12.46	A
ž 122.	35	MOTA	536		TRP A	95	30.919	70.501	8.366	1.00 12.42	A
		MOTA	537		TRP A	95	32.015	69.928	10.453	1.00 12.35	A
		MOTA	538	CH2	TRP A	95	30.853	70.116	9.684	1.00 12.53	A
		ATOM	539	С	TRP A	95	36.241	73.191	7.623	1.00 13.99	A
		ATOM	540	0	TRP A	95	36.115	74.066		1.00 13.09	A
	40	ATOM	541	N	ILE A	96	35.938	73.385	8.906	1.00 15.45	A
		MOTA	542	CA	ILE A	96	35.475	74.693	9.365	1.00 16.71	A
		ATOM	543	СВ	ILE A	96	34.333	74.581	10.399	1.00 18.64	A
		ATOM	544	CG2	ILE A	96	33.083	74.028	9.719	1.00 18.36	A
		MOTA	545		ILE A	96	34.760	73.709	11.576	1.00 20.42	A
	45	ATOM	546		ILE A	96	33.740	73.664	12.692	1.00 23.56	Α
		ATOM	547	С	ILE A	96	36.658	75.456	9.955	1.00 16.73	A
		ATOM	548	0	ILE A	96	36.567	76.644	10.261	1.00 16.70	А
		ATOM	549	N	GLN A	97	37.768	74.741	10.107	1.00 16.15	A
		ATOM	550	CA	GLN A	97	39.028	75.295	10.585	1.00 16.16	A
	50	ATOM	551	CB	GLN A	97	39.325	74.865	12.027	1.00 18.11	A
	50		552	CG	GLN A	97	38.431	75.503	13.087	1.00 22.05	A
		ATOM				97	38.907	75.206	14.504	1.00 25.07	A
		ATOM	553 554	CD OF 1	GLN A						
		ATOM	554		GLN A	97	40.041	75.525	14.872	1.00 27.71	A
		ATOM	555		GLN A	97	38.041	74.592	15.306	1.00 27.57	A
	55	ATOM	556	С	GLN A	97	40.069	74.685	9.649	1.00 14.57	A

		ATOM	557	0	GLN A	97	39.795	73.683	8.988	1.00 13.77	A
		ATOM	558	N	THR A	98	41.249	75.283	9.574	1.00 13.40	A
		ATOM	559	CA	THR A	98	42.293	74.742	8.713	1.00 12.50	A
		MOTA	560	СВ	THR A	98	43.402	75.763	8.456	1.00 12.05	A
	5	ATOM	561	OG1	THR A	98	44.038	76.073	9.700	1.00 13.52	A
	J	ATOM	562	CG2		98	42.841	77.040	7.836	1.00 11.40	A
		ATOM	563	C	THR A	98	42.942	73.551	9.411	1.00 12.44	A
						98	42.713	73.312	10.601	1.00 12.44	A
		ATOM	564	0	THR A			72.810	8.666	1.00 12.43	A
	10	ATOM	565	N	PHE A	99	43.754			1.00 12.23	
	10	MOTA	566	CA	PHE A	99	44.462	71.665	9.221		A
		ATOM	567	СВ	PHE A	99	45.472	71.120	8.204	1.00 11.49	A
		MOTA	568	CG	PHE A	99	46.350	70.017	8.745	1.00 12.06	A
		MOTA	569		PHE A	99	45.941	68.687	8.686	1.00 11.94	A
		MOTA	570		PHE A	99	47.589	70.312	9.314	1.00 11.54	A
	15	MOTA	571		PHE A	99	46.752	67.663	9.182	1.00 12.73	А
		MOTA	572	CE2	PHE A	99	48.408	69.298	9.814	1.00 12.59	A
		MOTA	573	CZ	PHE A	99	47.988	67.968	9.747	1.00 12.47	А
		MOTA	574	С	PHE A	99	45.211	72.088	10.486	1.00 12.42	A
e com.		MOTA	575	0	PHE A	99	45.055	71.479	11.540	1.00 12.95	A
A COLUMN	20	MOTA	576	N	GLU A	100	46.026	73.134	10.370	1.00 13.15	A
		MOTA	577	CA	GLU A	100	46.818	73.617	11.502	1.00 14.12	A
		ATOM	578	СВ	GLU A	100	47.789	74.708	11.034	1.00 14.54	А
		ATOM	579	CG	GLU A		48.842	75.113	12.062	1.00 15.92	A
		ATOM	580	CD	GLU A		49.753	73.965	12.474	1.00 17.24	А
	25	ATOM	581		GLU A		49.923	73.012	11.680	1.00 16.33	А
8 %# 8 8 8		ATOM	582	OE2			50.316	74.028	13.591	1.00 18.05	A
i i j		ATOM	583	C	GLU A		45.973	74.135	12.666	1.00 14.27	A
		ATOM	584	0	GLU A		46.330	73.936	13.827	1.00 14.15	A
# ;				N	GLU A		44.860	74.798	12.364	1.00 14.44	A
1 1 1 1	30	ATOM	585 586		GLU A		43.989	75.313	13.420	1.00 14.44	A
	30	ATOM	586	CA				76.150	12.823	1.00 14.52	A
		ATOM	587	CB	GLU A		42.850		12.156	1.00 15.38	A
		ATOM	588	CG	GLU A		43.314	77.445			
		ATOM	589	CD	GLU A		42.163	78.275	11.601	1.00 17.74	A
	25	MOTA	590		GLU A		41.227	77.690	11.020	1.00 16.12	A
	35	ATOM	591	OE2			42.205	79.518	11.736	1.00 18.27	A
		MOTA	592	С	GLU A		43.416	74.144	14.224	1.00 14.11	A
		MOTA	593	0	GLU A		43.411	74.169	15.456	1.00 13.45	A
		MOTA	594	N	TYR A		42.930	73.120	13.526	1.00 13.09	A
	4.0	MOTA	595	CA	TYR A		42.385	71.947	14.205	1.00 13.59	A
	40	MOTA	596	CB	TYR A		41.819	70.934	13.210	1.00 13.65	А
		MOTA	597	CG	TYR A		40.407	71.173	12.737	1.00 13.71	A
		ATOM	598	CD1	TYR A	102	39.354	71.343	13.641	1.00 14.39	A
		ATOM	599	CEl	TYR A	102	38.030	71.454	13.190	1.00 14.14	A
		ATOM	600	CD2	TYR A	102	40.106	71.131	11.376	1.00 13.81	A
	45	ATOM	601	CE2	TYR A	102	38.806	71.240	10.921	1.00 13.84	A
		MOTA	602	CZ	TYR A	102	37.771	71.399	11.826	1.00 13.69	А
		ATOM	603	ОН	TYR A	102	36.487	71.490	11.343	1.00 13.18	A
		MOTA	604	С	TYR A		43.482	71.247	14.999	1.00 13.51	A
		ATOM	605	0	TYR A		43.258	70.795	16.123	1.00 12.77	А
	50	ATOM	606	N	TYR A		44.663	71.136	14.402	1.00 13.52	A
		ATOM	607	CA	TYR A		45.763	70.471	15.081	1.00 14.48	A
		ATOM	608	CB	TYR A		47.024	70.464	14.217	1.00 13.22	A
		ATOM	609	CG	TYR A		48.189	69.805	14.918	1.00 13.75	A
					TYR A		48.191	68.431	15.163	1.00 13.75	A
	55	ATOM	610							1.00 13.33	A
	55	MOTA	611	CEI	TYR A	103	49.230	67.827	15.867	1.00 13.20	A

		ATOM	612	CD2	TYR A	103	49.262	70.561	15.394	1.00 14.16	A
		ATOM	613	CE2	TYR A	103	50.304	69.967	16.101	1.00 14.10	A
		ATOM	614	CZ	TYR A		50.281	68.601	16.335	1.00 14.07	A
		ATOM	615	OH	TYR A		51.301	68.009	17.045	1.00 14.60	А
	5	ATOM	616	C	TYR A		46.083	71.148	16.407	1.00 15.20	A
	J	ATOM	617	0	TYR A		46.206	70.489	17.438	1.00 15.39	A
			618		GLN A		46.214	72.468	16.372	1.00 15.88	A
		ATOM		N				73.233	17.568	1.00 16.71	A
		ATOM	619	CA	GLN A		46.546				A
	10	ATOM	620	CB	GLN A		46.905	74.676	17.189	1.00 17.21	
	10	MOTA	621	CG	GLN A		48.221	74.831	16.436	1.00 16.37	A
		MOTA	622	CD	GLN A		49.408	74.295	17.221	1.00 17.63	A
		ATOM	623	OE1	GLN A		49.456	74.404	18.449	1.00 17.43	A
		MOTA	624	NE2	GLN A		50.378	73.722	16.514	1.00 16.09	A
		MOTA	625	C	GLN A	104	45.438	73.259	18.610	1.00 17.34	A
	15	MOTA	626	0	GLN A	104	45.702	73.153	19.805	1.00 17.27	A
		MOTA	627	N	HIS A	105	44.197	73.392	18.157	1.00 17.76	A
		ATOM	628	CA	HIS A	105	43.063	73.479	19.068	1.00 18.88	A
		ATOM	629	CB	HIS A	105	41.928	74.271	18.408	1.00 21.57	A
9,500		ATOM	630	CG	HIS A	105	42.350	75.595	17.851	1.00 24.72	A
	20	ATOM	631	CD2	HIS A		43.543	76.237	17.874	1.00 26.28	A
S STATE		ATOM	632		HIS A		41.486	76.419	17.161	1.00 26.75	A
1,7		ATOM	633		HIS A		42.129	77.510	16.783	1.00 27.01	A
1,22		ATOM	634		HIS A		43.378	77.424	17.203	1.00 27.01	A
		ATOM	635	C	HIS A		42.492	72.154	19.563	1.00 18.41	A
18.5	25	ATOM	636	0	HIS A		42.010	72.076	20.692	1.00 18.04	A
was sum and sum	20	ATOM	637	N	ASP A		42.552	71.114	18.733	1.00 16.87	A
3 167 4 474		ATOM	638	CA	ASP A		41.956	69.835	19.108	1.00 16.42	A
		ATOM	639	CB	ASP A		40.668	69.634	18.301	1.00 16.96	A
31			640	CG	ASP A		39.650	70.730	18.541	1.00 18.76	A
	30	ATOM					38.962	70.730	19.579	1.00 19.47	A
	30	MOTA	641		ASP A		39.547	71.644	17.694	1.00 19.48	A
		MOTA	642					68.567	18.978	1.00 15.43	A
i sin		ATOM	643	С	ASP A		42.792		19.965	1.00 15.43	A
11744		ATOM	644	0	ASP A		43.061	67.885		1.00 13.33	A
	25	ATOM	645	N	THR A		43.192	68.251	17.752		
ing.	35	ATOM	646	CA	THR A		43.931	67.027	17.470	1.00 13.03	A
		ATOM	647	СВ	THR A		44.290	66.949	15.982	1.00 13.11	A
		MOTA	648	OG1	THR A		43.104	67.149	15.203	1.00 11.86	A
		MOTA	649	CG2	THR A		44.876	65.574	15.648	1.00 12.11	A
	40	MOTA	650	С	THR A		45.182	66.709	18.287	1.00 13.20	A
	40	MOTA	651	0	THR A		45.365	65.565	18.704	1.00 12.11	A
		MOTA	652	N	LYS A		46.053	67.685	18.515	1.00 12.87	A
		MOTA	653	CA	LYS A		47.254	67.364	19.280	1.00 13.87	А
		ATOM	654	CB	LYS A		48.252	68.534	19.277	1.00 14.10	А
		MOTA	655	CG	LYS A	108	47.860	69.751	20.090	1.00 15.29	A
	45	ATOM	656	CD	LYS A	108	48.944	70.823	19.971	1.00 15.77	А
		ATOM	657	CE	LYS A	108	48.719	71.975	20.937	1.00 16.23	A
		ATOM	658	NZ	LYS A	108	49.829	72.973	20.871	1.00 16.57	A
		MOTA	659	С	LYS A	108	46.891	66.964	20.706	1.00 13.55	A
		MOTA	660	0	LYS A	108	47.588	66.169	21.330	1.00 13.59	A
	50	MOTA	661	N	HIS A	109	45.790	67.505	21,213	1.00 14.16	A
		ATOM	662	CA	HIS A		45.343	67.179	22.565	1.00 14.77	A
		ATOM	663	CB	HIS A		44.353	68.232	23.050	1.00 16.40	A
		ATOM	664	CG	HIS A		44.924	69.614	23.077	1.00 18.18	А
		ATOM	665		HIS A		44.655	70.706	22.324	1.00 18.81	A
	55	ATOM	666		HIS A		45.937	69.981	23.939	1.00 19.58	А
	-		550		13					· -	

		ATOM	667	CE1	HIS A	109	46.266	71.241	23.714	1.00 19.97	A
		ATOM	668	NE2	HIS A	109	45.503	71.703	22.739	1.00 20.15	A
		MOTA	669	С	HIS A	109	44.699	65.797	22.571	1.00 14.18	A
		MOTA	670	0	HIS A	109	44.864	65.024	23.515	1.00 13.72	A
	5	MOTA	671	N	ILE A	110	43.967	65.492	21.506	1.00 13.63	A
		MOTA	672	CA	ILE A	110	43.319	64.195	21.376	1.00 12.97	A
		MOTA	673	СВ	ILE A	110	42.494	64.121	20.072	1.00 13.70	A
		ATOM	674	CG2	ILE A	110	42.039	62.686	19.822	1.00 13.17	A
		ATOM	675	CG1	ILE A	110	41.309	65.091	20.158	1.00 13.46	A
	10	ATOM	676	CD1	ILE A	110	40.505	65.217	18.870	1.00 13.46	A
		ATOM	677	С	ILE A		44.378	63.096	21.355	1.00 13.01	A
		ATOM	678	0	ILE A	110	44.259	62.088	22.053	1.00 12.30	A
		ATOM	679	N	LEU A		45.419	63.295	20.557	1.00 12.48	A
		ATOM	680	CA	LEU A		46.479	62.303	20.455	1.00 13.22	A
	15	ATOM	681	СВ	LEU A		47.348	62.584	19.222	1.00 13.48	А
		ATOM	682	CG	LEU A		46.624	62.258	17.910	1.00 13.21	А
		ATOM	683	CD1	LEU A		47.448	62.722	16.714	1.00 12.52	A
		ATOM	684		LEU A		46.359	60.755	17.848	1.00 13.63	A
3188		ATOM	685	C	LEU A		47.338	62.239	21.709	1.00 13.73	A
	20	ATOM	686	Ō	LEU A		47.777	61.158	22.113	1.00 14.06	A
i, Li		ATOM	687	N	SER A		47.573	63.388	22.332	1.00 14.19	A
Ų		ATOM	688	CA	SER A		48.381	63.412	23.545	1.00 14.98	A
		ATOM	689	СВ	SER A		48.673	64.852	23.965	1.00 15.68	A
		ATOM	690	OG	SER A		49.509	64.869	25.110	1.00 19.16	A
	25	ATOM	691	C	SER A		47.665	62.675	24.676	1.00 15.17	A
		ATOM	692	0	SER A		48.271	61.878	25.397	1.00 14.77	A
igh igh		ATOM	693	N	ASN A		46.371	62.935	24.833	1.00 14.95	A
		ATOM	694	CA	ASN A		45.623	62.269	25.887	1.00 15.42	A
\$1 4 (***);		ATOM	695	СВ	ASN A		44.348	63.055	26.202	1.00 16.09	A
	30	ATOM	696	CG	ASN A		44.661	64.407	26.829	1.00 17.13	A
		ATOM	697		ASN A		45.649	64.541	27.547	1.00 19.22	A
1		ATOM	698				43.832	65.404	26.566	1.00 16.69	A
grafia.		ATOM	699	C	ASN A		45.331	60.805	25.554	1.00 15.52	A
		ATOM	700	0	ASN A		45.154	59.983	26.455	1.00 14.44	A
ini.	35	ATOM	701	N	ALA A		45.306	60.470	24.265	1.00 15.03	A
		ATOM	702	CA	ALA A		45.081	59.082	23.865	1.00 15.59	А
		ATOM	703	СВ	ALA A		44.906	58.977	22.348	1.00 15.62	A
		ATOM	704	C	ALA A		46.296	58.272	24.308	1.00 15.90	A
		ATOM	705	0	ALA A		46.160	57.181	24.862	1.00 15.90	A
	40	ATOM	706	N	LEU A		47.487	58.814	24.061	1.00 15.81	A
		ATOM	707	CA	LEU A		48.725	58.142	24.443	1.00 16.69	A
		ATOM	708	CB	LEU A		49.942	58.992	24.044	1.00 17.24	A
		ATOM	709	CG	LEU A		51.322	58.478	24.479	1.00 17.48	A
		ATOM	710		LEU A		51.533	57.062	23.962	1.00 17.85	A
	45	ATOM	711		LEU A		52.412	59.402	23.963	1.00 17.89	A
	10	ATOM	712	C	LEU A		48.742	57.892	25.952	1.00 17.69	А
		ATOM	713	0	LEU A		49.020	56.780	26.407	1.00 16.58	A
		ATOM	714	N	ARG A		48.426	58.927	26.720	1.00 18.38	А
		ATOM	715	CA	ARG A		48.416	58.816	28.173	1.00 20.26	А
	50	ATOM	716	CB	ARG A		48.148	60.188	28.795	1.00 23.40	A
		ATOM	717	CG	ARG A		49.265	61.185	28.545	1.00 28.54	A
		ATOM	718	CD	ARG A		48.916	62.579	29.037	1.00 32.84	A
		ATOM	719	NE	ARG A		50.016	63.516	28.816	1.00 36.19	A
		ATOM	720	CZ	ARG A		49.955	64.819	29.078	1.00 38.16	A
	55		721		ARG A		48.842	65.347	29.572	1.00 39.38	A
	55	MOTA	121	NUT	ANG A	110	40.042	00.04/	21.014	1.00 33.30	1-1

		ATOM	722	NH2	ARG A	116	51.009	65.594	28.851	1.00 39.35	A
		ATOM	723	С	ARG A		47.386	57.811	28.674	1.00 19.24	A
		MOTA	724	0	ARG A		47.713	56.895	29.433	1.00 18.59	A
			725		HIS A		46.142	57.974	28.240	1.00 18.94	A
	5	ATOM		N				57.087	28.673	1.00 19.08	A
	3	ATOM	726	CA	HIS A		45.076			1.00 13.00	A
		MOTA	727	CB	HIS A		43.731	57.653	28.237		
		MOTA	728	CG	HIS A		43.239	58.738	29.140	1.00 22.31	A
		MOTA	729		HIS A		43.367	60.084	29.070	1.00 23.10	Α
		MOTA	730	ND1	HIS A	117	42.627	58.474	30.347	1.00 22.39	Α
	10	ATOM	731	CE1	HIS A	117	42.403	59.610	30.984	1.00 23.51	Α
		ATOM	732	NE2	HIS A	117	42.844	60.603	30.231	1.00 23.78	A
		ATOM	733	С	HIS A		45.208	55.630	28.267	1.00 18.21	A
		ATOM	734	0	HIS A		44.894	54.747	29.060	1.00 17.60	A
		ATOM	735	N	LEU A		45.667	55.367	27.047	1.00 17.82	A
	15	ATOM	736	CA	LEU A		45.841	53.986	26.608	1.00 17.73	A
	10	ATOM	737	CB	LEU A		46.097	53.924	25.097	1.00 17.32	А
					LEU A		44.910	54.378	24.234	1.00 17.44	A
		ATOM	738	CG			44.910	54.362	22.762	1.00 17.44	A
		MOTA	739		LEU A					1.00 17.20	A
1000	20	MOTA	740		LEU A		43.719	53.466	24.485		
	20	ATOM	741	С	LEU A		47.014	53.375	27.368	1.00 18.47	A
144F		ATOM	742	0	LEU A		46.991	52.201	27.739	1.00 19.15	A
likali.		MOTA	743	N	HIS A	119	48.049	54.176	27.594	1.00 18.56	A
		MOTA	744	CA	HIS A	119	49.212	53.702	28.324	1.00 19.21	А
		MOTA	745	CB	HIS A	119	50.264	54.817	28.413	1.00 20.87	A
rų.	25	MOTA	746	CG	HIS A	119	51.429	54.483	29.292	1.00 23.01	A
ning.		MOTA	747	CD2	HIS A	119	52.607	53.873	29.019	1.00 24.14	A
M		ATOM	748	ND1	HIS A	119	51.442	54.752	30.644	1.00 24.46	A
		MOTA	749	CE1	HIS A	119	52.578	54.323	31.166	1.00 24.96	A
\$1 10771		ATOM	750		HIS A		53.303	53.785	30.201	1.00 24.88	A
	30	ATOM	751	С	HIS A		48.795	53.248	29.725	1.00 19.46	A
		ATOM	752	Ō	HIS A		49.180	52.169	30.175	1.00 19.45	A
		ATOM	753	N	ASP A		47.981	54.063	30.392	1.00 18.91	A
10 10 10 10 10 10 10 10 10 10 10 10 10 1		ATOM	754	CA	ASP A		47.524	53.772	31.751	1.00 19.04	A
		ATOM	755	CB	ASP A		47.142	55.071	32.464	1.00 18.77	A
	35				ASP A		48.325	55.994	32.666	1.00 19.47	A
ğıla	33	ATOM	756	CG				55.504	32.675	1.00 18.88	A
		ATOM	757		ASP A		49.473		32.830	1.00 21.58	A
		MOTA	758		ASP A		48.102	57.212		1.00 21.30	A
		MOTA	759	С	ASP A		46.366	52.783	31.899	1.00 19.15	
	40	ATOM	760	0	ASP A		46.121	52.286	32.998		A
	40	ATOM	761	N	ASN A		45.655	52.504		1.00 18.84	A
		MOTA	762	CA	ASN A		44.523	51.576	30.850	1.00 19.16	A
		ATOM	763	CB	ASN A	121	43.209	52.344	30.659	1.00 18.77	A
		ATOM	764	CG	ASN A	121	43.000	53.421	31.719	1.00 19.68	А
		ATOM	765	OD1	ASN A	121	43.437	54.567	31.560	1.00 19.47	A
	45	ATOM	766	ND2	ASN A	121	42.343	53.052	32.812	1.00 17.58	А
		ATOM	767	С	ASN A	121	44.681	50.515	29.761	1.00 19.99	A
		ATOM	768	0	ASN A		44.107	50.629	28.676	1.00 19.59	А
		ATOM	769	N	PRO A		45.452	49.452	30.052	1.00 20.58	A
		ATOM	770	CD	PRO A		45.971	49.147	31.397	1.00 21.14	A
	50	ATOM	771	CA	PRO A		45.731	48.345	29.130	1.00 20.26	A
	50	ATOM	772	CB	PRO A		46.423	47.310	30.026	1.00 21.39	A
			773	СБ	PRO A		45.933	47.649	31.409	1.00 22.22	A
		ATOM					44.581	47.752	28.314	1.00 20.19	A
		ATOM	774	С	PRO A				27.188	1.00 20.13	A
	EF	ATOM	775	0	PRO A		44.802	47.304			
	55	ATOM	776	N	GLU A	123	43.365	47.751	28.858	1.00 19.32	А

		ATOM	777	CA	GLU A	123	42.224	47.190	28.133	1.00 19.92	A
		ATOM	778	СВ	GLU A	123	41.204	46.586	29.101	1.00 21.89	A
		ATOM	779	CG	GLU A		41.481	45.143	29.478	1.00 26.85	А
							42.679	44.995	30.383	1.00 29.19	A
	_	MOTA	780	CD	GLU A					1.00 23.13	A
	5	MOTA	781		GLU A		42.681	45.630	31.459		
		MOTA	782		GLU A		43.612	44.244	30.022	1.00 32.08	A
		MOTA	783	С	GLU A		41.504	48.168	27.213	1.00 18.82	A
		MOTA	784	0	GLU A	123	40.677	47.759	26.396	1.00 18.51	A
		MOTA	785	N	MET A	124	41.799	49.456	27.350	1.00 17.76	A
	10	ATOM	786	CA	MET A	124	41.165	50.462	26.505	1.00 17.02	A
		ATOM	787	СВ	MET A		41.418	51.861	27.068	1.00 17.84	A
		ATOM	788	CG	MET A		40.641	52.961	26.357	1.00 17.84	А
		ATOM	789	SD	MET A		38.862	52.633	26.331	1.00 18.84	А
			790	CE	MET A		38.252	54.142	25.567	1.00 17.66	A
	15	ATOM					41.744	50.351	25.092	1.00 16.66	A
	15	ATOM	791	С	MET A					1.00 15.61	A
		MOTA	792	0	MET A		42.921	50.022	24.922		
		MOTA	793	N	LYS A		40.913	50.622	24.089	1.00 15.94	A
		MOTA	794	CA	LYS A		41.328	50.543	22.691	1.00 15.72	A
g PFFg		MOTA	795	CB	LYS A	125	40.633	49.355	22.018	1.00 17.14	A
1,000 1000	20	ATOM	796	CG	LYS A	125	40.955	48.002	22.649	1.00 19.31	А
		MOTA	797	CD	LYS A	125	42.349	47.527	22.274	1.00 20.94	А
1		MOTA	798	CE	LYS A	125	42.741	46.260	23.032	1.00 22.65	A
		ATOM	799	NZ	LYS A	125	41.809	45.126	22.787	1.00 22.71	A
		ATOM	800	С	LYS A		40.984	51.839	21.952	1.00 14.98	A
	25	ATOM	801	Ō	LYS A		40.178	52.641	22.430	1.00 14.40	A
		ATOM	802	N	PHE A		41.576	52.039	20.778	1.00 13.76	A
2 15c2		ATOM	803	CA	PHE A		41.328	53.263	20.017	1.00 12.78	А
122			804	CB	PHE A		42.085	54.418	20.695	1.00 12.49	A
31		MOTA		CG	PHE A		41.714	55.796	20.199	1.00 12.62	A
	20	ATOM	805					56.230	20.210	1.00 12.40	A
	30	MOTA	806		PHE A		40.391	56.687	19.794	1.00 12.40	A
		MOTA	807		PHE A		42.706				A
3.74		MOTA	808		PHE A		40.061	57.533	19.831	1.00 12.41	
gala Sam		MOTA	809		PHE A		42.390	57.993	19.411	1.00 13.74	A
		ATOM	810	CZ	PHE A		41.063	58.418	19.431	1.00 12.79	A
i de	35	MOTA	811	С	PHE A		41.825	53.079	18.582	1.00 12.52	A
		MOTA	812	0	PHE A		42.898	52.523	18.365	1.00 12.34	A
		ATOM	813	N	ILE A	127	41.043	53.525	17.603	1.00 12.50	A
		ATOM	814	CA	ILE A	127	41.472	53.415	16.212	1.00 12.28	A
		ATOM	815	CB	ILE A	127	40.427	52.685	15.341	1.00 12.64	А
	40	MOTA	816	CG2	ILE A	127	40.257	51.258	15.844	1.00 13.41	A
		ATOM	817		ILE A		39.090	53.432	15.366	1.00 12.14	A
		ATOM	818		ILE A		38.065	52.865	14.402	1.00 11.36	A
		ATOM	819	C	ILE A		41.735	54.806	15.640	1.00 12.00	A
		ATOM	820	0	ILE A		41.066	55.777	16.016	1.00 12.38	А
	45	ATOM	821	N	TRP A		42.720	54.905	14.749	1.00 11.18	A
	40		822	CA	TRP A		43.067	56.187	14.137	1.00 10.75	A
		ATOM						56.714	14.713	1.00 10.60	A
		ATOM	823	CB	TRP A		44.379			1.00 10.00	Ā
		MOTA	824	CG	TRP A		44.614	58.143	14.353		
	-0	MOTA	825		TRP A		44.052	59.285	15.004	1.00 11.70	A
	50	MOTA	826		TRP A		44.492	60.427	14.298	1.00 11.23	A
		MOTA	827		TRP A		43.214	59.455	16.117	1.00 11.54	A
		MOTA	828		TRP A		45.353	58.620	13.307	1.00 12.07	A
		MOTA	829	NE1	TRP A	128	45.285	59.995	13.268	1.00 11.96	A
		MOTA	830	CZ2	TRP A	128	44.122	61.726	14.670	1.00 11.49	A
	55	ATOM	831	CZ3	TRP A	128	42.847	60.747	16.484	1.00 11.63	A

		ATOM	022	CH2	TRP A	120	Λ	3.302	61.865	15.761	1 00	11.38	A
			832					3.180	56.072	12.618		10.84	A
		MOTA	833	С	TRP A							9.94	A
		MOTA	834	0	TRP A			3.820	55.157	12.102	1.00		
		MOTA	835	N	ALA A			2.582	57.024	11.904		10.82	Α
	5	ATOM	836	CA	ALA A	129	4	2.584	56.974	10.442		10.83	A
		MOTA	837	CB	ALA A	129	4	1.146	57.062	9.939	1.00	10.81	A
		ATOM	838	С	ALA A	129	4	3.439	57.982	9.675	1.00	11.28	A
		ATOM	839	0	ALA A		4	4.077	57.620	8.690	1.00	12.05	А
		ATOM	840	N	GLU A			3.450	59.234	10.122	1.00	11.63	A
	10	ATOM	841	CA	GLU A			4.178	60.298	9.426		11.80	A
	10				GLU A			13.488	61.640	9.687		13.00	A
		ATOM	842	CB						9.375		13.47	A
		MOTA	843	CG	GLU A			1.996	61.654			14.76	A
		MOTA	844	CD	GLU A			1.150	61.054	10.488			
		MOTA	845	OE1				11.706	60.745	11.564		13.75	A
	15	MOTA	846	OE2	GLU A	130		39.925	60.903	10.289		14.95	A
		MOTA	847	С	GLU A	130	4	15.663	60.422	9.756	1.00	12.54	A
		MOTA	848	0	GLU A	130	4	16.044	61.043	10.751	1.00	11.25	A
		MOTA	849	N	ILE A		4	16.507	59.871	8.889	1.00	12.10	A
		ATOM	850	CA	ILE A			17.943	59.908	9.125	1.00	12.15	A
	20	ATOM	851	СВ	ILE A			18.672	58.902	8.205	1.00	12.97	A
ı,D	20	ATOM	852		ILE A			50.158	58.847	8.544		13.74	А
17			853	CG1				18.058	57.509	8.395		12.19	A
100 m		ATOM						17.933	57.084	9.859		13.31	A
1 (2000) 1 (20 E		ATOM	854	CD1					61.303	9.002		12.69	A
	05	MOTA	855	С	ILE A			18.564		9.622		12.44	A
	25	ATOM	856	0	ILE A			19.597	61.571				A
fing.		ATOM	857	N	SER A			17.944	62.192	8.226		11.77	
		MOTA	858	CA	SER A			18.462	63.553	8.087		12.31	A
R		ATOM	859	СВ	SER A			17.519	64.417	7.231		12.20	A
i teri		ATOM	860	OG	SER A			16.188	64.405	7.729		12.12	A
	30	MOTA	861	С	SER A	132		18.606	64.161	9.485		12.41	A
4.1.1		MOTA	862	0	SER A	132	4	19.629	64.772	9.809		11.98	A
Ŋ		ATOM	863	N	TYR A	133	4	47.578	63.979	10.310		12.31	А
ĝ.		ATOM	864	CA	TYR A	133	4	47.588	64.481	11.682	1.00	12.43	A
		ATOM	865	CB	TYR A	133	4	46.191	64.393	12.299	1.00	12.01	A
j.i.	35	ATOM	866	CG	TYR A		4	45.288	65.569	12.000	1.00	11.67	A
25	00	ATOM	867		TYR A			44.018	65.373	11.464	1.00	11.27	A
		ATOM	868		TYR A			43.172	66.448	11.205		11.78	Α
		ATOM	869		TYR A			45.699	66.875	12.274		11.66	A
		ATOM			TYR A			44.864	67.959	12.022		12.29	A
	40		870					43.603		11.488			A
	40	MOTA	871		TYR A					11.248		13.96	A
		MOTA	872	OH	TYR A			42.772	68.809				
		ATOM	873	С	TYR A			48.553	63.689	12.564		12.72	A
		MOTA	874	0	TYR A			49.314	64.275	13.339		13.12	A
		MOTA	875	N	PHE A	134		48.526	62.363	12.449		12.21	A
	45	MOTA	876	CA	PHE A	134	4	49.397	61.539	13.282		13.09	A
		MOTA	877	СВ	PHE A	134	4	49.144	60.048	13.053		12.74	A
		ATOM	878	CG	PHE A	134	4	49.661	59.181	14.168	1.00	12.47	A
		MOTA	879	CD1	PHE A	134		48.915	59.008	15.332	1.00	12.84	A
		ATOM	880		PHE A			50.921	58.600	14.090	1.00	12.46	A
	50	ATOM	881		PHE A			49.420	58.273	16.405		12.65	A
		ATOM	882		PHE A			51.437	57.864	15.155		12.74	A
		ATOM	883	CZ	PHE A			50.684	57.702	16.318		12.65	А
		ATOM	884	C	PHE A			50.874	61.829	13.055		14.10	А
					PHE A			51.655	61.896	14.009		13.54	A
	==	ATOM	885	0					61.990	11.793		14.28	A
	55	ATOM	886	N	ALA A	133		51.261	01.330	11.193	1.00	14.50	17

		MOTA	887	CA	ALA A 13	35	52.653	62.271	11.466	1.00 15.41	A
		MOTA	888	СВ	ALA A 1	35	52.841	62.273	9.955	1.00 14.73	A
		MOTA	889	С	ALA A 1		53.065	63.619	12.062	1.00 16.07	A
		ATOM	890	0	ALA A 1		54.161	63.756	12.607	1.00 17.46	А
	5	ATOM	891	N	ARG A 1		52,178	64.604	11.954	1.00 15.92	A
	9	ATOM	892	CA	ARG A 1		52.413	65.947	12.487	1.00 17.41	А
		ATOM	893	CB	ARG A 1		51.188	66.829	12.215	1.00 18.09	А
			894	CG	ARG A 1		51.225	68.223	12.856	1.00 19.04	A
		MOTA			ARG A 1		51.950	69.249	11.986	1.00 20.59	A
	10	ATOM	895	CD			51.870	70.596	12.557	1.00 20.53	A
	10	ATOM	896	NE	ARG A 1			70.967	13.665	1.00 20.93	A
		MOTA	897	CZ	ARG A 1		52.504			1.00 21.02	A
		MOTA	898		ARG A 1		53.268	70.094	14.309		A
		MOTA	899		ARG A 1		52.366	72.199	14.138	1.00 20.47	
	4 =	MOTA	900	С	ARG A 1		52.659	65.866	13.997	1.00 17.71	A
	15	MOTA	901	0	ARG A 1		53.552	66.521	14.536	1.00 17.71	A
		ATOM	902	N	PHE A 1		51.856	65.045	14.666	1.00 16.73	A
		MOTA	903	CA	PHE A 1		51.948	64.856	16.109	1.00 16.04	A
		MOTA	904	CB	PHE A 1		50.730	64.065	16.589	1.00 16.01	A
g (Feet)		MOTA	905	CG	PHE A 1		50.711	63.815	18.066	1.00 16.01	A
र् _{शस्त्र} न स्था	20	MOTA	906	CD1	PHE A 1	37	50.393	64.839	18.952	1.00 16.16	A
		MOTA	907	CD2	PHE A 1	37	51.009	62.553	18.572	1.00 16.49	A
1,12		MOTA	908	CE1	PHE A 1	37	50.370	64.611	20.323	1.00 16.36	A
(FE		MOTA	909	CE2	PHE A 1	37	50.989	62.316	19.947	1.00 16.39	A
		MOTA	910	CZ	PHE A 1	37	50.667	63.349	20.821	1.00 16.41	A
igj	25	MOTA	911	С	PHE A 1	37	53.218	64.115	16.518	1.00 16.50	A
W.		MOTA	912	0	PHE A 1	37	54.012	64.600	17.329	1.00 15.50	А
		MOTA	913	N	TYR A 1	38	53.398	62.930	15.944	1.00 16.96	А
		ATOM	914	CA	TYR A 1	38	54.544	62.084	16.243	1.00 19.17	A
31 31 22		ATOM	915	СВ	TYR A 1	38	54.547	60.866	15.323	1.00 18.81	А
	30	ATOM	916	CG	TYR A 1	38	55.577	59.830	15.706	1.00 19.98	A
111		ATOM	917	CD1	TYR A 1	38	55.330	58.927	16.736	1.00 20.01	А
		MOTA	918	CE1	TYR A 1	38	56.272	57.965	17.093	1.00 21.20	A
		ATOM	919	CD2	TYR A 1	38	56.801	59.751	15.040	1.00 19.71	А
1		ATOM	920	CE2	TYR A 1	38	57.752	58.791	15.390	1.00 20.51	A
i de	35	ATOM	921	CZ	TYR A 1		57.477	57.902	16.414	1.00 20.46	A
7		ATOM	922	ОН	TYR A 1		58.393	56.934	16.753	1.00 21.98	A
		ATOM	923	С	TYR A 1		55.895	62.788	16.137	1.00 20.16	A
		MOTA	924	0	TYR A 1		56.737	62.662	17.030	1.00 19.95	A
		ATOM	925	N	HIS A 1		56.116	63.516	15.047	1.00 21.15	A
	40	ATOM	926	CA	HIS A 1			64.206	14.870	1.00 23.05	A
	20	ATOM	927	СВ	HIS A 1		57.491	64.788	13.459	1.00 23.52	A
		ATOM	928	CG	HIS A 1		57.664	63.749	12.394	1.00 25.29	A
		ATOM	929		HIS A 1		56.872	63.396	11.353	1.00 25.23	A
		MOTA	930		HIS A 1		58.766	62.922	12.333	1.00 26.05	А
	45	ATOM	931		HIS A 1		58.645	62.106	11.301	1.00 26.57	A
	10	ATOM	932		HIS A 1		57.505	62.373	10.690	1.00 25.58	А
		ATOM	933	C	HIS A 1		57.628	65.297	15.910	1.00 23.20	А
		ATOM	934	0	HIS A 1		58.763	65.722	16.121	1.00 23.77	A
		ATOM	935	N	ASP A 1		56.559	65.743	16.560	1.00 23.11	A
	50				ASP A 1		56.663	66.772	17.590	1.00 23.35	A
	30	MOTA	936 937	CA CB	ASP A 1		55.405	67.644	17.591	1.00 24.33	A
		ATOM					55.514	68.827	16.646	1.00 24.33	A
		ATOM	938	CG	ASP A 1		56.367	68.786	15.734	1.00 26.10	A
		ATOM	939		ASP A 1		54.742	69.796	16.812	1.00 26.82	A
	==	ATOM	940		ASP A 1				18.980	1.00 20.32	A
	55	MOTA	941	С	ASP A 1	4 U	56.879	66.164	10.300	1.00 22.12	A

ATOM 943 N LEU A 141 56.674 64.855 ATOM 944 CA LEU A 141 56.850 64.155 ATOM 945 CB LEU A 141 56.191 62.774 5 ATOM 946 CG LEU A 141 54.673 62.622 ATOM 947 CD1 LEU A 141 54.324 61.135 ATOM 948 CD2 LEU A 141 54.144 63.195 ATOM 949 C LEU A 141 58.308 63.959 ATOM 950 O LEU A 141 59.178 63.846 10 ATOM 951 N GLY A 142 59.178 63.846 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 59.918 63.687 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.826 ATOM 956 CA GLU A 143 61.861 60.432	19.094 20.366 20.322 20.389 20.279 21.695 20.747 19.886 22.050 22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 22.14 1.00 21.94 1.00 22.28 1.00 22.07 1.00 22.20 1.00 21.60 1.00 21.60 1.00 22.47 1.00 21.96 1.00 23.34 1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 29.88	A A A A A A A A A A A A A A A A A A A
ATOM 943 N LEU A 141 56.674 64.855 ATOM 944 CA LEU A 141 56.850 64.155 ATOM 945 CB LEU A 141 56.191 62.774 5 ATOM 946 CG LEU A 141 54.673 62.622 ATOM 947 CD1 LEU A 141 54.324 61.135 ATOM 948 CD2 LEU A 141 54.144 63.195 ATOM 949 C LEU A 141 58.308 63.959 ATOM 950 O LEU A 141 59.178 63.846 10 ATOM 951 N GLY A 142 59.178 63.846 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 59.918 63.687 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.826 ATOM 956 CA GLU A 143 61.861 60.432	20.366 20.322 20.389 20.279 21.695 20.747 19.886 22.050 22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 22.28 1.00 22.07 1.00 22.20 1.00 21.62 1.00 21.60 1.00 22.47 1.00 21.96 1.00 23.34 1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A A A A A A A
ATOM 944 CA LEU A 141 56.850 64.155 ATOM 945 CB LEU A 141 56.191 62.774 5 ATOM 946 CG LEU A 141 54.673 62.622 ATOM 947 CD1 LEU A 141 54.324 61.135 ATOM 948 CD2 LEU A 141 54.144 63.195 ATOM 949 C LEU A 141 58.308 63.959 ATOM 950 O LEU A 141 59.178 63.846 10 ATOM 951 N GLY A 142 58.567 63.916 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 59.918 63.687 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	20.366 20.322 20.389 20.279 21.695 20.747 19.886 22.050 22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 22.07 1.00 22.20 1.00 21.62 1.00 21.60 1.00 22.47 1.00 21.96 1.00 23.34 1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A A A A A A
ATOM 945 CB LEU A 141 56.191 62.774 5 ATOM 946 CG LEU A 141 54.673 62.622 ATOM 947 CD1 LEU A 141 54.324 61.135 ATOM 948 CD2 LEU A 141 54.144 63.195 ATOM 949 C LEU A 141 58.308 63.959 ATOM 950 O LEU A 141 59.178 63.846 10 ATOM 951 N GLY A 142 58.567 63.916 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 59.918 63.687 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	20.322 20.389 20.279 21.695 20.747 19.886 22.050 22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 22.07 1.00 22.20 1.00 21.62 1.00 21.60 1.00 22.47 1.00 21.96 1.00 23.34 1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A A A A A A
5 ATOM 946 CG LEU A 141 54.673 62.622 ATOM 947 CD1 LEU A 141 54.324 61.135 ATOM 948 CD2 LEU A 141 54.144 63.195 ATOM 949 C LEU A 141 58.308 63.959 ATOM 950 O LEU A 141 59.178 63.846 10 ATOM 951 N GLY A 142 58.567 63.916 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 59.918 63.687 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.473 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	20.389 20.279 21.695 20.747 19.886 22.050 22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 22.20 1.00 21.62 1.00 21.60 1.00 22.47 1.00 21.96 1.00 23.34 1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A A A A A A
ATOM 947 CD1 LEU A 141 54.324 61.135 ATOM 948 CD2 LEU A 141 54.144 63.195 ATOM 949 C LEU A 141 58.308 63.959 ATOM 950 O LEU A 141 59.178 63.846 ATOM 951 N GLY A 142 58.567 63.916 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 59.918 63.687 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.473 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	20.279 21.695 20.747 19.886 22.050 22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 21.62 1.00 21.60 1.00 22.47 1.00 21.96 1.00 23.34 1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 25.38 1.00 27.58 1.00 29.88	A A A A A A A
ATOM 948 CD2 LEU A 141 54.144 63.195 ATOM 949 C LEU A 141 58.308 63.959 ATOM 950 O LEU A 141 59.178 63.846 10 ATOM 951 N GLY A 142 58.567 63.916 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 59.918 63.687 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.861 60.432	21.695 20.747 19.886 22.050 22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 21.60 1.00 22.47 1.00 21.96 1.00 23.34 1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A A A A
ATOM 949 C LEU A 141 58.308 63.959 ATOM 950 O LEU A 141 59.178 63.846 10 ATOM 951 N GLY A 142 58.567 63.916 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 60.200 62.205 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.473 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	20.747 19.886 22.050 22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 22.47 1.00 21.96 1.00 23.34 1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A A A A
ATOM 950 O LEU A 141 59.178 63.846 10 ATOM 951 N GLY A 142 58.567 63.916 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 60.200 62.205 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.473 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	19.886 22.050 22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 21.96 1.00 23.34 1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A A A
10 ATOM 951 N GLY A 142 58.567 63.916 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 60.200 62.205 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.473 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	22.050 22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 23.34 1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A A A
10 ATOM 951 N GLY A 142 58.567 63.916 ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 60.200 62.205 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.473 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	22.524 22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 24.09 1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A A
ATOM 952 CA GLY A 142 59.918 63.687 ATOM 953 C GLY A 142 60.200 62.205 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.473 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 24.71 1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A
ATOM 953 C GLY A 142 60.200 62.205 ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.473 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	22.356 22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A
ATOM 954 O GLY A 142 59.268 61.410 ATOM 955 N GLU A 143 61.473 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	22.220 22.371 22.196 22.323 21.884 20.455 19.555	1.00 24.43 1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A A
ATOM 955 N GLU A 143 61.473 61.826 15 ATOM 956 CA GLU A 143 61.861 60.432	22.371 22.196 22.323 21.884 20.455 19.555	1.00 25.38 1.00 26.27 1.00 27.58 1.00 29.88	A A
15 ATOM 956 CA GLU A 143 61.861 60.432	22.196 22.323 21.884 20.455 19.555	1.00 26.27 1.00 27.58 1.00 29.88	А
	22.323 21.884 20.455 19.555	1.00 27.58 1.00 29.88	
	21.884 20.455 19.555	1.00 29.88	A
	20.455 19.555		_
111011 300 30 311 11 11	19.555		А
ATOM 959 CD GLU A 143 63.538 58.590		1.00 31.60	A
ATOM 960 OE1 GLU A 143 63.736 59.433		1.00 33.17	A
	20.230	1.00 32.74	A
ATOM 962 C GLU A 143 61.170 59.477	23.166	1.00 26.12	A
No.		1.00 25.94	A
ATOM 964 N ASN A 144 61.067 59.871		1.00 26.24	А
		1.00 26.68	A
ATOM 965 CA ASN A 144 60.421 59.028 11 25 ATOM 966 CB ASN A 144 60.460 59.713		1.00 28.10	A
111011 300 02 1101		1.00 20.10	A
			A
4,8 4		1.00 31.68	
81		1.00 31.00	A
		1.00 25.49	A
3,2 0 111011		1.00 25.02	A
ATOM 972 N LYS A 145 58.249 59.757		1.00 24.88	A
	24.205	1.00 24.21	A
ATOM 974 CB LYS A 145 56.180 60.964	24.072	1.00 24.66	A
	25.410	1.00 26.34	A
35 ATOM 976 CD LYS A 145 54.937 60.805	26.245	1.00 27.93	A
100 111011 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0		1.00 29.60	A
		1.00 31.08	A
		1.00 23.37	A
		1.00 22.99	A
111011 300 0 ==0 11 = 11		1.00 22.74	A
		1.00 21.93	A
		1.00 22.03	A
111011 001 00		1.00 22.74	A
111011 300 05		1.00 23.91	A
45 ATOM 986 CE LYS A 146 59.607 61.537	17.437	1.00 24.86	A
ATOM 987 NZ LYS A 146 60.724 61.791	16.495	1.00 26.86	A
	21.034	1.00 21.31	A
	20.396	1.00 20.71	A
	22.022	1.00 20.89	A
50 ATOM 991 CA LEU A 147 58.612 54.978	22.427	1.00 20.24	А
	23.396	1.00 21.06	A
	22.769	1.00 21.23	A
	23.827	1.00 21.23	A
ATOM 994 CD1 LEU A 147 62.262 54.965			
ATOM 995 CD2 LEU A 147 61.405 54.044	21.668 23.067	1.00 22.53	A
55 ATOM 996 C LEU A 147 57.325 54.455		1.00 20.09	A

		T MOM	007	0	TEH	71	1 4 7	56.907	53.330	22.796	1.00 19.03	А
		ATOM	997	0	LEU				55.260	23.920	1.00 20.05	A
		MOTA	998	N	GLN			56.699			1.00 20.33	
		MOTA	999	CA	GLN			55.448	54.839	24.541		A
		MOTA	1000	CB	GLN			54.951	55.874	25.553	1.00 21.98	A
	5	MOTA	1001	CG	GLN	Α	148	55.697	55.876	26.873	1.00 26.14	A
		MOTA	1002	CD	GLN	Α	148	55.039	56.771	27.910	1.00 28.69	Α
		MOTA	1003	OE1	GLN	Α	148	55.477	56.830	29.061	1.00 30.91	A
		ATOM	1004		GLN			53.980	57.472	27.507	1.00 28.81	A
		ATOM	1005	С	GLN			54.387	54.657	23.459	1.00 18.95	A
	10	ATOM	1006	Ō	GLN			53.566	53.743	23.527	1.00 18.96	A
	10		1007	N	MET			54.410	55.533	22.462	1.00 17.60	A
		MOTA			MET			53.440	55.462	21.376	1.00 16.91	A
		ATOM	1008	CA				53.563	56.690	20.471	1.00 17.32	A
		ATOM	1009	CB	MET			52.539	56.743	19.344	1.00 17.32	A
	15	ATOM	1010	CG	MET						1.00 17.23	A
	15	MOTA	1011	SD	MET			50.830	56.820	19.927		
		MOTA	1012	CE	MET			50.590	58.587	20.083	1.00 18.52	A
		MOTA	1013	С	MET			53.641	54.190	20.558	1.00 16.89	A
		MOTA	1014	0	MET	A	149	52.680	53.502	20.226	1.00 14.92	A
31200		ATOM	1015	N	LYS	А	150	54.892	53.872	20.239	1.00 17.09	A
l _{ius} ii	20	MOTA	1016	CA	LYS	Α	150	55.171	52.675	19.458	1.00 18.24	A
٠,١		MOTA	1017	CB	LYS	Α	150	56.660	52.593	19.106	1.00 19.09	A
		ATOM	1018	CG	LYS	Α	150	57.130	53.715	18.192	1.00 22.02	A
137		MOTA	1019	CD	LYS			58.638	53.704	17.997	1.00 24.66	A
4122		ATOM	1020	CE	LYS			59.093	52.476	17.234	1.00 26.81	A
1942) 1911 1	25	MOTA	1021	NZ	LYS			60.558	52.520	16.961	1.00 29.58	A
14	20	ATOM	1021	C	LYS			54.745	51.422	20.209	1.00 18.20	А
			1023	0	LYS			54.317	50.446	19.597	1.00 18.07	A
137		ATOM			SER			54.843	51.455	21.536	1.00 18.74	A
41		ATOM	1024	N					50.295	22.339	1.00 19.47	A
	20	ATOM	1025	CA	SER			54.474		23.770	1.00 13.47	A
	30	MOTA	1026	CB	SER			55.005	50.440			A
ी हैं कहीं 3 कि की		MOTA	1027	OG	SER			54.283	51.425	24.481	1.00 24.31	
agraga agraga agraga		MOTA	1028	С	SER			52.968	50.029	22.371	1.00 19.31	A
fiel.		MOTA	1029	0	SER			52.547	48.875	22.278	1.00 18.16	A
		ATOM	1030	N	ILE			52.150	51.073	22,499	1.00 18.86	A
j _e t.	35	MOTA	1031	CA	ILE	Α	152	50.710	50.848	22.526	1.00 18.53	А
•		MOTA	1032	CB	ILE	А	152	49.926	52.069	23.075	1.00 18.94	A
		ATOM	1033	CG2	ILE	Α	152	50.259	52.272	24.547	1.00 19.11	A
		ATOM	1034	CG1	ILE	Α	152	50.243	53.328	22.272	1.00 18.05	A
		ATOM	1035	CD1	ILE	Α	152	49.361	54.503	22.647	1.00 19.59	A
	40	ATOM			ILE			50.176	50.464	21.146	1.00 18.93	A
		ATOM	1037	0	ILE			49.071	49.940	21.026	1.00 18.92	A
		ATOM	1038	N	VAL			50.962	50.720	20.105	1.00 18.77	А
		ATOM	1039	CA	VAL			50.561	50.341	18.752	1.00 19.06	A
		ATOM	1040	CB	VAL			51.279	51.193	17.683	1.00 19.26	A
	45	ATOM	1040		VAL			51.069	50.589	16.295	1.00 18.53	A
	40							50.745	52.617	17.716	1.00 18.92	A
		ATOM	1042		VAL			50.743	48.878	18.580	1.00 19.85	A
		ATOM	1043	C			153			18.108	1.00 19.89	A
		MOTA	1044	0	VAL			50.177	48.053			
	=0	MOTA	1045	N			154	52.183	48.564	18.993	1.00 20.46	A
	50	MOTA	1046	CA	LYS			52.696	47.205	18.893	1.00 22.15	A
		ATOM	1047	CB			154	54.143	47.155	19.397	1.00 23.38	A
		ATOM	1048	CG			154	54.885	45.877	19.026	1.00 26.39	A
		MOTA	1049	CD	LYS	A	154	56.375	45.976	19.337	1.00 28.38	A
		ATOM	1050	CE	LYS	Α	154	56.662	45.794	20.822	1.00 30.74	А
	55	ATOM	1051	NZ	LYS	Α	154	55.974	46.793	21.694	1.00 32.22	А

								_0,				
		ATOM	1052	С	LYS A	154		51.836	46.218	19.685	1.00 22.01	A
		ATOM	1053	Ô	LYS A			51.608	45.090	19.236	1.00 22.53	A
		ATOM	1054	N	ASN A			51.349	46.642	20.852	1.00 21.36	A
		ATOM	1054	CA	ASN A			50.529	45.771	21.691	1.00 21.36	A
	_									23.172	1.00 22.78	A
	5	MOTA	1056	CB	ASN A			50.643	46.174			
		MOTA	1057	CG	ASN A			49.845	47.425	23.515	1.00 23.55	A
		MOTA	1058		ASN A			49.106	47.954	22.687	1.00 24.96	A
		MOTA	1059	ND2	ASN A			49.987	47.898	24.753	1.00 22.79	A
		MOTA	1060	С	ASN A	155		49.054	45.709	21.285	1.00 20.96	A
	10	MOTA	1061	0	ASN A	155		48.271	44.991	21.899	1.00 20.84	A
		MOTA	1062	N	GLY A	156		48.672	46.476	20.267	1.00 20.22	A
		ATOM	1063	CA	GLY A			47.298	46.431	19.790	1.00 19.12	A
		ATOM	1064	С	GLY A			46.256	47.367	20.378	1.00 18.60	A
		ATOM	1065	0	GLY A			45.082	47.270	20.011	1.00 18.18	A
	15	ATOM	1066	N	GLN A			46.652	48.266	21.276	1.00 17.29	A
	15			CA	GLN A			45.689	49.195	21.871	1.00 16.05	A
		ATOM	1067					46.242	49.809	23.150	1.00 16.21	A
		ATOM	1068	CB	GLN A						1.00 16.21	A
		MOTA	1069	CG	GLN A			46.297	48.867	24.333		
8.3	20	MOTA	1070	CD	GLN A			46.569	49.621	25.612	1.00 16.60	A
	20	MOTA	1071	OE1			•	45.672	50.249	26.178	1.00 18.00	A
Tribush Tribush		MOTA	1072	NE2				47.813	49.591	26.060	1.00 15.39	A
ilija⊒i astron		MOTA	1073	С	GLN A	157		45.305	50.320	20.917	1.00 15.53	A
M.		ATOM	1074	0	GLN A	157		44.142	50.700	20.832	1.00 15.19	А
		ATOM	1075	N	LEU A	158		46.298	50.881	20.235	1.00 14.97	A
	25	ATOM	1076	CA	LEU A	158		46.048	51.937	19.265	1.00 15.35	A
		MOTA	1077	СВ	LEU A	158		47.045	53.089	19.439	1.00 16.96	A
m		ATOM	1078	CG	LEU A	158		46.943	54.280	18.473	1.00 19.11	A
		ATOM	1079	CD1	LEU A	158		47.454	53.891	17.096	1.00 21.08	A
E)		MOTA	1080		LEU A			45.509	54.763	18.388	1.00 20.07	А
	30	ATOM	1081	C	LEU A			46,229	51.276	17.907	1.00 14.83	A
		ATOM	1082	0	LEU A			47.308	50.773	17.594	1.00 13.42	A
		ATOM	1083	N	GLU A			45.169	51.273	17.107	1.00 13.60	A
in it		ATOM	1084	CA	GLU A			45.227	50.636	15.802	1.00 13.04	А
		ATOM	1085	CB	GLU A			44.271	49.442	15.771	1.00 13.44	A
i ni	35		1085	CG	GLU A			44.212	48.714	14.436	1.00 12.38	A
il (Carr	55	ATOM			GLU A			43.265	47.531	14.476	1.00 13.56	A
		ATOM	1087	CD					46.533	15.152	1.00 13.30	A.
		ATOM	1088	OE1				43.594			1.00 12.09	A
		ATOM	1089		GLU A			42.190	47.603	13.841		
	40	MOTA	1090	С	GLU A			44.888	51.594	14.671	1.00 12.84	A
	40	MOTA	1091	0	GLU A			43.910	52.333	14.739	1.00 12.78	A
		MOTA	1092	N	PHE A			45.709	51.578	13.632	1.00 12.42	A
		ATOM	1093	CA	PHE A			45.467	52.437	12.491	1.00 12.26	A
		MOTA	1094	CB	PHE A			46.782	52.808	11.807	1.00 11.78	A
		ATOM	1095	CG	PHE A	160		47.712	53.586	12.689	1.00 12.41	А
	45	ATOM	1096	CD1	PHE A	160		48.758	52.951	13.354	1.00 12.62	A
		ATOM	1097	CD2	PHE A	160		47.512	54.947	12.897	1.00 12.79	A
		ATOM	1098	CE1	PHE A	160		49.589	53.661	14.216	1.00 12.69	A
		MOTA	1099	CE2	PHE A	160		48.339	55.666	13.760	1.00 13.12	A
		ATOM	1100	CZ	PHE A			49.375	55.020	14.418	1.00 12.71	A
	50	MOTA	1101	С	PHE A			44.546	51.734	11.515	1.00 12.26	A
	20	ATOM	1102	Ö	PHE A			44.719	50.549	11.216	1.00 11.96	А
		ATOM	1102	N	VAL A			43.546	52.470	11.047	1.00 12.03	A
		ATOM	1103	CA	VAL A			42.592	51.945	10.087	1.00 11.93	
				CB	VAL A			41.139	52.092	10.605	1.00 11.85	A
	55	MOTA	1105					40.918	51.135	11.778	1.00 11.73	A
	55	ATOM	1106	CGT	VAL A	TOT		40.910	21.133	11.770	1.00 11.70	11

			4405	~ ~ ~		1.61	40 074	F3 F36	11 050	1.00 11.37	А
		MOTA	1107		VAL A		40.874	53.526	11.059		
		MOTA	1108	С	VAL A		42.807	52.720	8.792	1.00 12.32	A
		MOTA	1109	0	VAL A	161	42.890	53.953	8.802	1.00 12.53	A
		ATOM	1110	N	THR A	162	42.913	51.977	7.690	1.00 12.37	A
	5	ATOM	1111	CA	THR A	162	43.179	52.519	6.358	1.00 12.07	A
	_	ATOM	1112	СВ	THR A		42.266	53.716	5.990	1.00 11.93	A
		ATOM	1113		THR A		40.893	53.308	6.020	1.00 11.88	A
		ATOM	1114		THR A		42.591	54.204	4.576	1.00 11.95	A
							44.640	52.971	6.310	1.00 12.30	A
	10	ATOM	1115	С	THR A				5.565	1.00 12.72	A
	10	MOTA	1116	0	THR A		45.448	52.416			
		MOTA	1117	N	GLY A		44.981	53.973	7.112	1.00 11.76	A
		MOTA	1118	CA	GLY A		46.356	54.444	7.144	1.00 11.74	A
		MOTA	1119	С	GLY A		46.722	55.405	6.032	1.00 12.16	A
		MOTA	1120	0	GLY A	163	47.895	55.554	5.698	1.00 11.80	A
	15	MOTA	1121	N	GLY A	164	45.718	56.049	5.449	1.00 11.89	A
		MOTA	1122	CA	GLY A	164	45.979	57.012	4.397	1.00 11.02	A
		ATOM	1123	С	GLY A	164	46.273	58.376	4.995	1.00 10.65	A
		ATOM	1124	0	GLY A		45.990	58.626	6.169	1.00 10.03	A
		ATOM	1125	N	TRP A		46.849	59.263	4.192	1.00 10.36	A
1027	20	ATOM	1126	CA	TRP A		47.163	60.607	4.662	1.00 10.35	А
4 7 3	20	ATOM	1127	CB	TRP A		47.748	61.432	3.511	1.00 10.07	A
100		ATOM	1128	CG	TRP A		48.536	62.640	3.941	1.00 11.12	A
			1129	CD2			49.723	62.652	4.747	1.00 10.98	A
1,3 B		MOTA			TRP A		50.142	63.999	4.855	1.00 11.20	A
	25	ATOM	1130				50.474	61.657	5.385	1.00 11.20	A
	25	ATOM	1131		TRP A					1.00 10.95	A
		ATOM	1132		TRP A		48.291	63.943	3.605		A
		ATOM	1133	NE1			49.251	64.764	4.151	1.00 11.36	
		MOTA	1134		TRP A		51.282	64.378	5.580	1.00 11.19	A
3) grass	•	MOTA	1135		TRP A		51.611	62.036	6.106	1.00 12.25	A
A COLUMN TO SERVICE SE	30	ATOM	1136		TRP A		52.000	63.384	6.194	1.00 11.49	A
ij		ATOM	1137	С	TRP A		45.852	61.224	5.157	1.00 10.30	A
		MOTA	1138	0	TRP A		45.827	61.956	6.148	1.00 10.10	A
grain.		MOTA	1139	N	VAL A	166	44.761	60.896	4.470	1.00 9.73	A
1		MOTA	1140	CA	VAL A	166	43.430	61.395	4.824	1.00 10.15	A
2 (142) 2 (142) 3 (142)	35	ATOM	1141	CB	VAL A	166	43.021	62.605	3.929	1.00 9.63	A
,		MOTA	1142	CG1	VAL A	166	44.055	63.729	4.045	1.00 9.13	A
		MOTA	1143	CG2	VAL A	166	42.896	62.159	2.463	1.00 9.97	A
		ATOM	1144	С	VAL A		42.400	60.287	4.594	1.00 10.04	A
		ATOM	1145	0	VAL A		42.758	59.151	4.295	1.00 10.65	A
	40	ATOM	1146		MET A		41.127	60.632	4.772	1.00 10.36	A
		MOTA	1147	CA	MET A		40.001	59.734	4.499	1.00 10.42	A
		ATOM	1148	CB	MET A		38.989	59.745	5.645	1.00 10.35	A
		ATOM	1149	CG	MET A		37.730	58,933	5.360	1.00 10.42	А
		ATOM	1150	SD	MET A		36.561	58.990	6.731	1.00 11.54	А
	45		1151	CE	MET A		37.552	58.165	8.029	1.00 10.43	A
	40	ATOM			MET A		39.454	60.498	3.298	1.00 10.44	A
		ATOM	1152	C			38.655	61.425	3.444	1.00 10.44	A
		ATOM	1153	0	MET A					1.00 10.05	A
		ATOM	1154	N	PRO A		39.878	60.111	2.086		
	~ 0	MOTA	1155	CD	PRO A		40.630	58.883	1.758	1.00 9.75	A
	50	ATOM	1156	CA	PRO A		39.445	60.792	0.868	1.00 9.97	A
		MOTA	1157	CB	PRO A		40.371	60.202	-0.189	1.00 9.78	A
		ATOM	1158	CG	PRO A		40.438	58.762	0.240	1.00 9.78	A
		MOTA	1159	С	PRO A		38.004	60.763	0.400	1.00 10.51	A
		MOTA	1160	0	PRO A		37.240	59.844	0.690	1.00 9.40	A
	55	ATOM	1161	N	ASP A	169	37.663	61.809	-0.344	1.00 10.38	А

		ATOM	1162	CA	ASP A 169	36.370	61.915	-0.981	1.00 10.54	A
		MOTA	1163	СВ	ASP A 169	36.276	63.231	-1.755	1.00 9.36	А
		ATOM	1164	CG	ASP A 169	35.158	63.227	-2.776	1.00 9.43	A
		ATOM	1165		ASP A 169	34.069	62.705	-2.462	1.00 8.82	
	5	ATOM	1166		ASP A 169	35.363	63.758	-3.885	1.00 9.69	
	9	ATOM	1167	C	ASP A 169	36.463	60.746	-1.959	1.00 11.05	
			1168		ASP A 169	37.565	60.380	- 2.373	1.00 10.71	
		ATOM		O	GLU A 170	35.332	60.151	-2.322	1.00 11.08	
		MOTA	1169	N			59.027	-3.249	1.00 10.86	
	10	ATOM	1170	CA	GLU A 170	35.369			1.00 10.00	
	10	ATOM	1171	СВ	GLU A 170	34.767	57.779	-2.578		
		ATOM	1172	CG	GLU A 170	35.637	57.256	-1.428	1.00 10.82	
		ATOM	1173	CD	GLU A 170	35.030	56.067	-0.694	1.00 10.92	
		MOTA	1174		GLU A 170	34.242	55.321	-1.311	1.00 9.84	
		MOTA	1175		GLU A 170	35.368	55.869	0.497	1.00 10.95	
	15	MOTA	1176	С	GLU A 170	34.668	59.325	-4.569	1.00 10.67	
		MOTA	1177	0	GLU A 170	34.655	58.491	-5.473	1.00 10.61	
		MOTA	1178	N	ALA A 171	34.116	60.529	-4.690	1.00 10.81	
		MOTA	1179	CA	ALA A 171	33.404	60.914	-5.907	1.00 10.66	
j:==;		ATOM	1180	CB	ALA A 171	32.167	61.722	-5.542	1.00 11.39	
	20	ATOM	1181	С	ALA A 171	34.239	61.697	-6.920	1.00 10.93	
1,12		MOTA	1182	0	ALA A 171	34.284	61.351	-8.102	1.00 11.16	A
		ATOM	1183	N	ASN A 172	34.893	62.753	-6.447	1.00 10.71	A
		ATOM	1184	CA	ASN A 172	35.689	63.633	-7.298	1.00 9.89	A
The way		ATOM	1185	СВ	ASN A 172	35.645	65.048	-6.723	1.00 9.48	A
34 1	25	ATOM	1186	CG	ASN A 172	34.232	65.588	-6.609	1.00 10.62	Α
		ATOM	1187		ASN A 172	33.575	65.848	-7.616	1.00 10.69	A
		ATOM	1188		ASN A 172	33.759	65.758	-5.377	1.00 10.40	A
		ATOM	1189	С	ASN A 172	37.150	63.225	-7.459	1.00 9.84	А
R)		ATOM	1190	0	ASN A 172	37.806	63.593	-8.431	1.00 10.10	
	30	ATOM	1191	N	SER A 173	37.657	62.470	-6.498	1.00 9.67	
	00	ATOM	1192	CA	SER A 173	39.055	62.050	-6.511	1.00 9.66	
		ATOM	1193	CB	SER A 173	39.378	61.359	-5.194	1.00 8.38	
		ATOM	1194	OG	SER A 173	38.460	60.305	-4.959	1.00 9.36	
1 500 1 500		ATOM	1195	C	SER A 173	39.442	61.127	-7.659	1.00 9.64	
Profit Broke	35	ATOM	1196	0	SER A 173	38.672	60.246	-8.050	1.00 8.79	
in the second	55	ATOM	1197	N	HIS A 174	40.639	61.338	-8.203	1.00 9.71	
			1198	CA	HIS A 174	41.126	60.477	-9.271	1.00 9.94	
		MOTA	1199	CB	HIS A 174	42.138		-10.139	1.00 10.93	
		ATOM		CG	HIS A 174	42.130		-11.458	1.00 10.84	
	40	ATOM	1200			41.963		-12.704	1.00 10.04	
	40	ATOM	1201		HIS A 174				1.00 10.41	
		ATOM	1202		HIS A 174	43.054		-11.581		
		ATOM	1203		HIS A 174	43.043		-12.846	1.00 11.26	
		MOTA	1204		HIS A 174	42.387		-13.548	1.00 10.78	
	4 =	MOTA	1205	C	HIS A 174	41.791	59.294		1.00 9.67	
	45	MOTA	1206	0	HIS A 174	42.422	59.477		1.00 8.97	
		ATOM	1207	N	TRP A 175	41.651	58.088		1.00 9.37	
		MOTA	1208	CA	TRP A 175	42.233	56.920		1.00 9.44	
		MOTA	1209	CB	TRP A 175	41.962	55.632		1.00 9.23	
		MOTA	1210	CG	TRP A 175	42.792		-10.506	1.00 9.39	
	50	MOTA	1211		TRP A 175	44.084		-10.588	1.00 9.59	
		MOTA	1212	CE2	TRP A 175	44.480		-11.945	1.00 9.59	
		ATOM	1213	CE3	TRP A 175	44.946		-9.644	1.00 9.58	
		ATOM	1214	CD1	TRP A 175	42.465		-11.777	1.00 9.27	
		ATOM	1215	NE1	TRP A 175	43.475		-12.651	1.00 9.38	
	55	ATOM	1216	CZ2	TRP A 175	45.706	54.348	-12.384	1.00 9.09) A

		ATOM	1217	CZ3	TRP A	175	46.	165	53.737	-10.080	1.00	9.89	A
		MOTA	1218	CH2	TRP A	175	46.	531	53.788	-11.442	1.00	10.05	A
		MOTA	1219	С	TRP A	175		725	57.083	-8.223	1.00	9.46	A
		ATOM	1220	0	TRP A			261	56.583	-7.233	1.00	9.08	Α
	5				ARG A			401	57.788	-9.124	1.00	9.19	А
	5	MOTA	1221	N					58.004	-8.973	1.00	9.28	A
		MOTA	1222	CA	ARG A			831					
		ATOM	1223	CB	ARG A			373		-10.191	1.00	9.85	A
		MOTA	1224	CG	ARG A			429		-11.447		10.18	A
		ATOM	1225	CD	ARG A	176	46.	402		-12.722		10.64	A
	10	ATOM	1226	NE	ARG A	176	47.	500		-12.818		11.19	А
		ATOM	1227	CZ	ARG A	176	47.	662	60.500	-13.844	1.00	10.95	A
		ATOM	1228	NH1	ARG A	176	46.	796	60.486	-14.853	1.00	11.00	A
		ATOM	1229		ARG A		48.	679	61.348	-13.860	1.00	10.96	A
		ATOM	1230	С	ARG A			146	58.758		1.00	9.20	A
	15	ATOM	1231	Ö	ARG A			117	58.435		1.00	9.53	A
	15	ATOM	1232	N	ASN A			326	59.750	- 7.335	1.00	8.80	A
								561	60.511	-6.108	1.00	8.75	A
		ATOM	1233	CA	ASN A			.906	61.894	-6.190	1.00	8.74	A
		MOTA	1234	CB	ASN A								A
	•	MOTA	1235	CG	ASN A			.577	62.784	-7.217		10.06	
	20	MOTA	1236		ASN A			.762	62.622	-7.507		10.31	A
Tolkerin , prote		MOTA	1237	ND2	ASN A			.826	63.734	-7.766		11.06	A
9,1,21		MOTA	1238	С	ASN A			.077	59.759	-4.870	1.00	8.84	A
		ATOM	1239	0	ASN A	177		.578	59.981	-3.763	1.00	8.42	A
11/24		ATOM	1240	N	VAL A	178	44.	.100	58.876	-5.049	1.00	8.65	A
	25	ATOM	1241	CA	VAL A	178	43.	. 623	58.075	-3.928	1.00	8.81	A
and A		ATOM	1242	СВ	VAL A	178	42.	.408	57.198	-4.329	1.00	9.88	A
W.		ATOM	1243		VAL A		42.	.061	56.223	-3.200	1.00	10.00	A
		ATOM	1244		VAL A			.211	58.086	-4.645	1.00	9.98	А
8;		ATOM	1245	C	VAL A			.804	57.173		1.00	8.79	A
	30	ATOM	1246	0	VAL A			.104	56.982	-2.371	1.00	9.06	A
	30		1240	N	LEU A			.481	56.633		1.00	8.48	A
		ATOM						.637	55.771	-4.325	1.00	8.63	A
g _e da		ATOM	1248	CA	LEU A			.104	55.103		1.00	9.00	A
		ATOM	1249	CB	LEU A						1.00	9.81	A
\$ 5225 \$ 5225	0.5	MOTA	1250	CG	LEU A			.406	54.287				
i uža	35	ATOM	1251		LEU A			.243	53.164		1.00	9.86	A
		ATOM	1252		LEU A			.764	53.714	-6.872		10.42	A
		ATOM	1253	С	LEU A			.790	56.575		1.00	8.69	A
		ATOM	1254	0	LEU A			.494	56.104		1.00	9.30	A
		ATOM	1255	N	LEU A	180		.983	57.789		1.00	8.07	А
	40	ATOM	1256	CA	LEU A	180	49	.063	58.643	-3.765	1.00	8.58	A
		MOTA	1257	CB	LEU A	180	49	.064	59.980	-4.521	1.00	8.65	A
		ATOM	1258	CG	LEU A	180	50	.203	60.946	-4.175	1.00	9.33	А
		MOTA	1259	CD1	LEU A		51	.511	60.398	-4.746	1.00	9.58	A
		ATOM	1260		LEU A		49	.913	62.335	-4.735	1.00	9.53	А
	45	ATOM	1261	C	LEU A			.926	58.903		1.00	8.44	A
	10	ATOM	1262	Ö	LEU A			.881	58.708		1.00	9.34	А
			1263	N	GLN A			.743	59.329		1.00	7.79	А
		ATOM			GLN A			.550	59.623		1.00	8.83	A
		ATOM	1264	CA					60.426		1.00	8.07	A
	-0	ATOM	1265	CB	GLN A			.254					
	50	ATOM	1266	CG	GLN A			.935	59.689		1.00	9.20	A
		MOTA	1267	CD	GLN A			.568	58.748		1.00	9.64	A
		ATOM	1268		GLN A			.834	59.035			10.23	A
		MOTA	1269	NE2	GLN A	181		.940	57.627		1.00	8.92	A
		ATOM	1270	С	GLN A	181		.591	58.379		1.00	8.83	А
	55	MOTA	1271	0	GLN A	181	48	.063	58.448	1.607	1.00	9.20	A

		MOTA	1272	N	LEU	A	182	47.110	57.246	-0.035	1.00 8.67	
		ATOM	1273	CA	LEU	Α	182	47.155	56.012	0.743	1.00 8.95	
		ATOM	1274	CB	LEU	Α	182	46.432	54.871	0.011	1.00 8.61	A
		MOTA	1275	CG	LEU	A	182	46.498	53.481	0.664	1.00 8.86	A
	5	ATOM	1276		LEU			45.753	53.482	1.997	1.00 8.49	A
	_	MOTA	1277		LEU			45.889	52.443	-0.283	1.00 9.99	A
		ATOM	1278	C	LEU			48.626	55.642	0.933	1.00 9.47	A
		ATOM	1279	0	LEU			49.058	55.298	2.033	1.00 9.33	
		ATOM	1280	N	THR			49.395	55.737	-0.149	1.00 9.38	
	10	ATOM	1281	CA	THR			50.815	55.407	-0.113	1.00 10.00	
	10	ATOM	1282	CB	THR			51.440	55.484	-1.537	1.00 10.83	
								50.713	54.627	-2.430	1.00 9.77	
		ATOM	1283	OG1	THR					-2.430 -1.506	1.00 11.31	
		ATOM	1284	CG2	THR			52.906	55.045			
	15	MOTA	1285	C	THR			51.570	56.352	0.825	1.00 10.11	
	15	MOTA	1286	0	THR			52.438	55.923	1.595	1.00 9.89	
		ATOM	1287	N	GLU			51.239	57.638	0.772	1.00 10.04	
		MOTA	1288	CA	GLU			51.914	58.613	1.624	1.00 10.88	
		ATOM	1289	CB	GLU			51.370	60.019	1.345	1.00 11.50	
41500		MOTA	1290	CG	GLU			52.226	61.167	1.881	1.00 12.25	
	20	MOTA	1291	CD	GLU			53.620	61.223	1.262	1.00 13.15	
, L		ATOM	1292	OE1	GLU	Α	184	53.768	60.907	0.063	1.00 12.76	
1,2		ATOM	1293	OE2	GLU	Α	184	54.568	61.607	1.977	1.00 13.95	
171		ATOM	1294	С	GLU	Α	184	51.714	58.248	3.099	1.00 10.59	
		MOTA	1295	0	GLU	Α	184	52.664	58.249	3.885	1.00 10.65	A
111	25	ATOM	1296	N	GLY	Α	185	50.479	57.922	3.463	1.00 10.39) A
		ATOM	1297	CA	GLY			50.182	57.557	4.839	1.00 10.33	S A
1 Tab		ATOM	1298	С	GLY			50.768	56.222	5.268	1.00 10.94	. A
		ATOM	1299	0	GLY			51.355	56.110	6.351	1.00 9.76	S A
a;		ATOM	1300	N	GLN			50.622	55.200	4.430	1.00 10.45	a A
100	30	ATOM	1301	CA	GLN			51.144	53.884	4.788	1.00 11.43	8 A
	00	ATOM	1302	CB	GLN			50.560	52.803	3.874	1.00 11.23	
		ATOM	1303	CG	GLN			49.047	52.623	4.010	1.00 12.83	
i d		ATOM	1304	CD	GLN			48.618	51.182	3.793	1.00 13.65	
		ATOM	1305	OE1				49.190	50.479	2.965	1.00 15.97	
1,000	35	ATOM	1305		GLN			47.602	50.741	4.528	1.00 13.28	
grā.	33	ATOM	1300	C	GLN			52.668	53.800	4.781	1.00 11.78	
		ATOM	1307	0	GLN			53.255	53.037	5.548	1.00 11.71	
			1309	N	THR			53.314	54.571	3.916	1.00 11.96	
		ATOM			THR			54.770	54.548	3.875	1.00 11.50	
	40	ATOM	1310	CA				55.300			1.00 11.86	
	4 0	ATOM	1311		THR							
		ATOM	1312		THR			54.843	54.733	1.460	1.00 10.52	
		ATOM	1313		THR			56.829	55.372	2.666	1.00 10.99	
		ATOM	1314	C	THR			55.289	55.130	5.191	1.00 12.09	
	4.5	MOTA	1315	0	THR			56.252	54.627	5.770	1.00 11.42	
	45	ATOM	1316	N	TRP			54.632	56.180	5.674	1.00 12.12	
		MOTA	1317	CA	TRP			55.033	56.792	6.936	1.00 12.70	
		MOTA	1318	CB	TRP			54.184	58.034	7.236	1.00 13.41	
		ATOM	1319	CG	TRP	А	188	54.647	58.790	8.456	1.00 14.39	
		MOTA	1320		TRP			54.293	58.517	9.818	1.00 14.53	
	50	MOTA	1321	CE2	TRP	A	188	55.038	59.403	10.630	1.00 15.63	
		ATOM	1322	CE3	TRP	A	188	53.423	57.606	10.431	1.00 14.76	
		ATOM	1323	CD1	TRP	Α	188	55.562	59.807	8.495	1.00 14.92	
		ATOM	1324	NE1	TRP	A	188	55.804	60.178	9.798	1.00 14.82	2 A
		ATOM	1325	CZ2	TRP	Α	188	54.940	59.402	12.025	1.00 14.74	I A
	55	ATOM	1326		TRP			53.327	57.604	11.824	1.00 15.69) A

		ATOM	1327	CH2	TRP A	188	54.081	58.497	12.602	1.00 15.84	A
		ATOM	1328	С	TRP A	188	54.837	55.763	8.052	1.00 12.21	A
		ATOM	1329	0	TRP A	188	55.725	55.555	8.875	1.00 12.03	A
		ATOM	1330	N	LEU A		53.672	55.116	8.071	1.00 12.09	А
	5	ATOM	1331	CA	LEU A		53.375	54.112	9.091	1.00 12.32	A
		ATOM	1332	CB	LEU A		51.966	53.538	8.896	1.00 11.84	A
		ATOM	1333	CG	LEU A		50.798	54.434	9.314	1.00 11.10	A
		ATOM	1334		LEU A		49.475	53.718	9.013	1.00 10.75	A
		ATOM	1335		LEU A		50.912	54.757	10.806	1.00 10.73	A
	10								9.111		
	10	ATOM	1336	С	LEU A		54.376	52.962		1.00 12.67	A
		MOTA	1337	0	LEU A		54.792	52.513	10.181	1.00 12.84	A
		MOTA	1338	N	LYS A		54.757	52.473	7.936	1.00 12.75	A
		MOTA	1339	CA	LYS A		55.709	51.370	7.882	1.00 15.02	A
	4-	ATOM	1340	СВ	LYS A		55.916	50.886	6.444	1.00 16.33	A
	15	MOTA	1341	CG	LYS A		56.750	49.605	6.350	1.00 18.79	A
		ATOM	1342	CD	LYS A		56.958	49.174	4.906	1.00 21.47	A
		MOTA	1343	CE	LYS A	190	57.529	47.761	4.821	1.00 24.11	A
		ATOM	1344	NZ	LYS A	190	58.713	47.598	5.708	1.00 26.25	A
25000		ATOM	1345	С	LYS A	190	57.052	51.793	8.464	1.00 15.60	A
i pari	20	ATOM	1346	0	LYS A	190	57.654	51.067	9.254	1.00 15.07	A
		MOTA	1347	N	GLN A	191	57.514	52.974	8.075	1.00 16.02	A
		ATOM	1348	CA	GLN A	191	58.794	53.477	8.548	1.00 17.78	А
		MOTA	1349	СВ	GLN A		59.199	54.722	7.750	1.00 19.02	A
		ATOM	1350	CG	GLN A		60.526	55.324	8.202	1.00 23.22	A
13	25	ATOM	1351	CD	GLN A		60.944	56.540	7.390	1.00 24.68	A
ij		ATOM	1352	OE1	GLN A		61.989	57.140	7.651	1.00 27.33	A
€ %±1 2004		ATOM	1353	NE2			60.132	56.909	6.402	1.00 25.58	A
M		ATOM	1354	C	GLN A		58.848	53.800	10.041	1.00 17.91	A
3)		ATOM	1355	0	GLN A		59.810	53.434	10.717	1.00 17.31	A
e i ^{tan} ii V paar	30	ATOM	1356	N	PHE A		57.827	54.474	10.563	1.00 17.35	A
4,5	50	ATOM	1357	CA	PHE A		57.841	54.854	11.974	1.00 17.36	A
 -4		ATOM	1358	CB	PHE A		57.419	56.320	12.116	1.00 16.34	A
d (Male		ATOM	1359	CG	PHE A		58.324	57.279	11.402	1.00 16.29	A
	`OE	ATOM	1360		PHE A		58.020	57.717	10.115	1.00 15.35	A
	35	ATOM	1361		PHE A		59.495	57.726	12.004	1.00 16.10	A
		ATOM	1362		PHE A		58.867	58.585	9.439	1.00 16.22	A
		ATOM	1363	CE2			60.354	58.598	11.334	1.00 17.05	A
		ATOM	1364	CZ	PHE A		60.040	59.029	10.050	1.00 16.60	A
	40	ATOM	1365	С	PHE A		57.045	54.009	12.972	1.00 18.24	A
	40	MOTA	1366	0	PHE A		57.395	53.972	14.154	1.00 18.88	A
		MOTA	1367	N	MET A		55.989	53.340	12.519	1.00 17.95	A
		ATOM	1368	CA	MET A	193	55.170	52.518	13.418	1.00 19.29	A
		ATOM	1369	CB	MET A	193	53.684	52.877	13.282	1.00 20.31	A
		ATOM	1370	CG	MET A	193	53.272	54.222	13.862	1.00 21.04	A
	45	MOTA	1371	SD	MET A	193	53.652	54.404	15.629	1.00 25.98	A
		ATOM	1372	CE	MET A	193	54.978	55.547	15.464	1.00 22.14	A
		ATOM	1373	С	MET A	193	55.336	51.022	13.153	1.00 19.68	A
		ATOM	1374	0	MET A		54.858	50.189	13.928	1.00 18.38	А
		ATOM	1375	N	ASN A		56.001	50.693	12.050	1.00 20.20	A
	50	ATOM	1376	CA	ASN A		56.234	49.306	11.662	1.00 22.12	A
		ATOM	1377	CB	ASN A		57.165	48.627	12.676	1.00 26.86	A
		ATOM	1378	CG	ASN A		57.617	47.247	12.225	1.00 20.00	A
		ATOM	1379		ASN A		57.780	46.999	11.028	1.00 32.75	A
		ATOM	1379		ASN A		57.832	46.357	13.191	1.00 31.83	
	55			C NDZ							A
		MOTA	1381		ASN A	174	54.929	48.517	11.534	1.00 20.58	A

		ATOM	1382	0	ASN A	194	5	4.833	47.373	11.978	1.00	19.15	А
		MOTA	1383	N	VAL A	195	5	3.920	49.139	10.935	1.00	18.58	А
		ATOM	1384	CA	VAL A	195	5	2.634	48.479	10.742	1.00	17.61	A
		ATOM	1385	СВ	VAL A			1.628	48.794	11.888	1.00	17.65	A
	5	ATOM	1386	CG1	VAL A	195	5	2.173	48.301	13.227	1.00	19.15	A
		ATOM	1387	CG2	VAL A	195	5	1.342	50.288	11.941	1.00	18.14	A
		MOTA	1388	С	VAL A	195	5	2.006	48.928	9.428	1.00	16.13	A
		ATOM	1389	0	VAL A	195	5	2.232	50.051	8.975	1.00	15.25	А
		ATOM	1390	N	THR A	196	5	1.229	48.034	8.825	1.00	14.72	A
	10	ATOM	1391	CA	THR A	196	5	0.527	48.309	7.574	1.00	14.36	А
		ATOM	1392	CB	THR A	196	5	1.159	47.554	6.377	1.00	14.11	A
		ATOM	1393	OG1	THR A	196	5	2.516	47.978	6.196	1.00	14.55	A
		MOTA	1394	CG2	THR A	196	5	0.374	47.830	5.105	1.00	15.25	A
		ATOM	1395	С	THR A	196	4	9.093	47.818	7.746	1.00	13.73	A
	15	ATOM	1396	0	THR A	196	4	8.845	46.613	7.787	1.00	13.60	A
		MOTA	1397	N	PRO A	197	4	8.130	48.745	7.859	1.00	13.55	A
		MOTA	1398	CD	PRO A	197	4	8.302	50.207	7.944	1.00	13.01	A
		MOTA	1399	CA	PRO A	197	4	6.722	48.375	8.029	1.00	13.52	A
		ATOM	1400	CB	PRO A	197	4	6.014	49.726	8.085	1.00	13.17	A
	20	ATOM	1401	CG	PRO A	197	4	7.057	50.632	8.681	1.00	12.88	A
		ATOM	1402	С	PRO A	197	4	6.181	47.507	6.898	1.00	13.94	A
		ATOM	1403	0	PRO A	197	4	6.536	47.699	5.733	1.00	13.93	A
		MOTA	1404	N	THR A	198	4	5.335	46.542	7.249	1.00	13.37	A
M		MOTA	1405	CA	THR A	198	4	4.721	45.677	6.250	1.00	13.41	A
	25	ATOM	1406	CB	THR A	198	4	5.065	44.185	6.457	1.00	13.58	A
		ATOM	1407	OG1	THR A	198	4	4.601	43.759	7.740	1.00	13.61	А
1 656 1 656		ATOM	1408	CG2	THR A	198	4	6.567	43.963	6.342	1.00	14.13	A
199		ATOM	1409	С	THR A	198	4	3.210	45.841	6.322		11.99	А
ä) ustana	• •	MOTA	1410	0	THR A			2.473	45.152	5.623		11.91	A
1000	30	MOTA	1411	N	ALA A			2.760	46.757	7.179		11.92	A
Ü		ATOM	1412	CA	ALA A			1.336	47.050	7.332		11.29	A
The strain of th		ATOM	1413	СВ	ALA A			0.856	46.659	8.736		11.40	A
g pale		ATOM	1414	С	ALA A			1.110	48.547	7.092		11.77	A
	0.5	ATOM	1415	0	ALA A			1.807	49.386	7.667		12.44	A
i i	35	ATOM	1416	N	SER A			0.135	48.879	6.252		10.98	A
*		ATOM	1417	CA	SER A			9.844	50.276	5.937		11.61	A
		MOTA	1418	CB	SER A			9.680	50.459	4.426		11.69	A
		ATOM	1419	OG	SER A			9.531	51.830	4.097		12.70	A
	40	ATOM	1420	С	SER A			8.607	50.795	6.658		11.42	A
	40	ATOM	1421	0	SER A			7.635	50.057	6.871		11.38	A
		ATOM	1422	N	TRP A			8.654	52.077	7.008		10.70	A
		ATOM	1423	CA	TRP A			7.592	52.759	7.745		11.31	A
		ATOM	1424	CB	TRP A			8.110	52.997	9.176		11.10	A
	45	ATOM	1425	CG	TRP A			7.296	53.856	10.113		12.37	A
	45	ATOM	1426		TRP A			6.309	53.406	11.051		12.43	A
		ATOM	1427		TRP A			5.917	54.529	11.819		13.19 13.10	A
		ATOM	1428		TRP A			5.722	52.162	11.322		12.79	A
		ATOM	1429		TRP A			7.448	55.199	10.338 11.361			A
	50	ATOM	1430		TRP A			6.627 4.964	55.608 54.444	12.841		12.52 12.77	A A
	30	ATOM	1431					4.772	52.077	12.344		13.70	
		ATOM ATOM	1432 1433		TRP A			4.772	53.215	13.089		13.70	A A
		ATOM	1433	Cnz	TRP A			7.225	54.074	7.040		11.37	A
		ATOM	1434	0	TRP A			7.995	55.031	7.058		12.26	A
	55	ATOM	1435	N	ALA A			6.053	54.102	6.408		11.54	A
		111 01.1	1100	7.4	בזרונו עו	272	J	5.000	V U &	0.100			4 1

		MOTA	1437	CA	ALA A	202	35.578	55.285	5.686	1.00 11.82	A
		ATOM	1438	СВ	ALA A		35.620	55.026	4.180	1.00 12.16	A
		ATOM	1439	C	ALA A		34.152	55.613	6.129	1.00 11.83	A
	_	MOTA	1440	0	ALA A		33.184	55.165	5.519	1.00 11.26	А
	5	MOTA	1441	N	ILE A		34.039	56.420	7.181	1.00 11.80	A
		ATOM	1442	CA	ILE A	203	32.747	56.774	7.762	1.00 11.97	A
		ATOM	1443	CB	ILE A	203	32.830	56.770	9.311	1.00 12.02	A
		ATOM	1444		ILE A		33.134	55.350	9.821	1.00 12.31	А
		ATOM	1445		ILE A		33.914	57.756	9.772	1.00 12.87	A
	10	ATOM	1446		ILE A		33.998	57.941	11.286	1.00 13.55	A
	10										
		ATOM	1447	С	ILE A		32.115	58.101	7.347	1.00 11.95	A
		ATOM	1448	0	ILE A		30.937	58.324	7.633	1.00 11.82	A
		MOTA	1449	N	ASP A		32.861	58.978	6.677	1.00 11.66	А
		ATOM	1450	CA	ASP A	204	32.278	60.269	6.305	1.00 12.21	A
	15	MOTA	1451	CB	ASP A	204	32.986	61.406	7.053	1.00 11.72	A
		ATOM	1452	CG	ASP A	204	32.058	62.589	7.336	1.00 11.97	A
		ATOM	1453		ASP A		32.557	63.712	7.559	1.00 12.03	А
		ATOM	1454		ASP A		30.823	62.401	7.351	1.00 11.68	A
			1455		ASP A			60.651	4.824	1.00 12.19	
	20	MOTA		С			32.162				A
. Edit	20	MOTA	1456	0	ASP A		31.420	61.580	4.496	1.00 12.41	A
		MOTA	1457	N	PRO A		32.888	59.969	3.911	1.00 12.60	А
t fair		MOTA	1458	CD	PRO A		33.888	58.895	4.047	1.00 12.94	A
137		MOTA	1459	CA	PRO A	205	32.739	60.366	2.500	1.00 12.61	A
		MOTA	1460	CB	PRO A	205	33.573	59.323	1.758	1.00 12.97	A
	25	ATOM	1461	CG	PRO A	205	34.666	59.017	2.747	1.00 13.56	A
### ###		ATOM	1462	С	PRO A		31.257	60.328	2.109	1.00 12.65	A
		ATOM	1463	0	PRO A		30.520	59.451	2.557	1.00 13.12	A
iji.		ATOM	1464	N	PHE A		30.828	61.266	1.267	1.00 13.12	A
31											
	20	ATOM	1465	CA	PHE A		29.418	61.367	0.872	1.00 11.65	A
t part.	30	MOTA	1466	CB	PHE A		29.094	62.829	0.542	1.00 10.97	A
200		MOTA	1467	CG	PHE A		29.933	63.823	1.310	1.00 11.31	A
191		ATOM	1468	CD1	PHE A	206	30.170	63.652	2.673	1.00 10.59	А
2:2		MOTA	1469	CD2	PHE A	206	30.497	64.926	0.668	1.00 11.93	A
		ATOM	1470	CE1	PHE A	206	30.957	64.559	3.385	1.00 10.69	Α
g yata	35	ATOM	1471	CE2	PHE A	206	31.286	65.842	1.372	1.00 11.78	A
2,		ATOM	1472	CZ	PHE A	206	31.518	65.656	2.734	1.00 10.49	А
		ATOM	1473	С	PHE A		29.064	60.456	-0.306	1.00 11.76	А
		ATOM	1474	0	PHE A		28.869	60.914	-1.431	1.00 11.63	A
		ATOM	1475	N	GLY A		28.946	59.164	-0.017	1.00 11.94	A
	40										
	40	MOTA	1476				28.677			1.00 11.86	
		ATOM	1477	C	GLY A		29.978	57.409	-1.186	1.00 11.58	A
		MOTA	1478	0	GLY A		31.034	57.942	-0.840	1.00 11.47	A
		MOTA	1479	N	HIS A	208	29.922	56.173	-1.681	1.00 11.57	A
		MOTA	1480	CA	HIS A	208	31.125	55.351	-1.800	1.00 11.22	A
	45	MOTA	1481	CB	HIS A	208	31.074	54.238	-0.753	1.00 11.82	А
		ATOM	1482	CG	HIS A	208	31.157	54.741	0.654	1.00 12.72	A
		MOTA	1483		HIS A		30.195	54.971	1.578	1.00 12.86	А
		ATOM	1484		HIS A		32.349	55.099	1.245	1.00 13.33	A
		ATOM	1485		HIS A		32.118	55.527	2.473	1.00 13.33	A
	50										
	50	ATOM	1486		HIS A		30.819	55.460	2.700	1.00 12.64	A
		ATOM	1487	С	HIS A		31.364	54.757	-3.181	1.00 10.90	A
		ATOM	1488	0	HIS A		30.421	54.409	-3.899	1.00 11.18	А
		MOTA	1489	N	SER A	209	32.638	54.629	-3.536	1.00 10.51	А
		ATOM	1490	CA	SER A	209	33.037	54.107	-4.841	1.00 10.62	A
	55	MOTA	1491	СВ	SER A	209	33.915	55.137	-5.554	1.00 10.69	A

		N TO M	1492	00	SER	71	200	24 404	54.588	-6.735	1 00	11.16	A
		ATOM		OG				34.484					
		MOTA	1493	С	SER			33.795	52.783	-4.783		10.51	A
		MOTA	1494	0	SER			34.600	52.561	-3.875	1.00	9.87	A
		ATOM	1495	N	PRO			33.550	51.890	-5.762		10.42	A
	5	MOTA	1496	CD	PRO			32.556	52.009	-6.845		10.36	A
		MOTA	1497	CA	PRO	Α	210	34.222	50.589	-5.820	1.00	10.49	A
		ATOM	1498	CB	PRO	Α	210	33.452	49.846	-6.910	1.00	10.13	A
		ATOM	1499	CG	PRO	Α	210	33.024	50.951	-7.828	1.00	10.41	A
		ATOM	1500	С	PRO			35.705	50.759	-6.147	1.00	10.64	A
	10	ATOM	1501	Ō	PRO			36.481	49.808	-6.066		10.74	А
		ATOM	1502	N	THR			36.103	51.972	-6.523	1.00	9.89	A
		ATOM	1503	CA	THR			37.514	52.211	-6.792		10.11	A
		ATOM	1503	CB	THR			37.772	53.661	-7.261	1.00	9.96	A
								37.772		-8.578	1.00	9.80	A
	15	ATOM	1505		THR				53.833				
	15	ATOM	1506		THR			39.270	53.961	-7.287	1.00	9.72	A
		MOTA	1507	С	THR			38.309	51.956	-5.504	1.00	9.81	A
		ATOM	1508	0	THR			39.479	51.571	-5.552	1.00	9.54	A
		ATOM	1509	N	MET			37.672	52.156	-4.353		10.26	А
, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		MOTA	1510	CA	MET			38.360	51.942	-3.080		10.69	A
1100	20	ATOM	1511	CB	MET	A	212	37.514	52.455	-1.909		11.51	A
		MOTA	1512	CG	MET			37.207	53.947	-1.963	1.00	13.25	A
J		MOTA	1513	SD	MET	Α	212	38.667	54.999	-2.246	1.00	15.34	A
Ţ.		MOTA	1514	CE	MET	Α	212	39.457	54.946	-0.633	1.00	14.30	A
		ATOM	1515	С	MET	Α	212	38.741	50.471	-2.866	1.00	10.61	A
	25	ATOM	1516	0	MET			39.909	50.159	-2.623	1.00	10.52	A
3 4 F		ATOM	1517	N	PRO			37.767	49.546	-2.935		10.33	A
		ATOM	1518	CD	PRO			36.300	49.654	-3.018		10.77	A
191		ATOM	1519	CA	PRO			38.185	48.152	-2.736		10.25	A
81		ATOM	1520	CB	PRO			36.858	47.377	-2.754		10.19	A
	30	ATOM	1521	CG	PRO			35.918	48.291	-3.533		10.86	A
	30	ATOM	1522	C	PRO			39.166	47.707	-3.824		10.35	A
7.0000 8 8 8			1523		PRO			40.033	46.865	-3.586		10.07	A
, (Mi		ATOM		O N								10.07	A
i com		ATOM	1524	N	TYR			39.032	48.277	-5.021			
1,00	25	ATOM	1525	CA	TYR			39.937	47.944	-6.120		10.18	A
Brain.	35	MOTA	1526	CB	TYR			39.619	48.786	-7.349		10.58	A
		MOTA	1527	CG	TYR			40.546	48.531	-8.519		11.85	A
		ATOM	1528		TYR			40.376	47.416	-9.343		12.70	A
		MOTA	1529		TYR			41.207		-10.446		13.49	A
		MOTA	1530		TYR			41.575	49.420	-8.820		11.15	A
	40	MOTA	1531	CE2	TYR					-9.914			A
		MOTA	1532	CZ	TYR	Α	214	42.220		-10.726	1.00	12.95	A
		MOTA	1533	OH	TYR	A	214	43.022		-11.836	1.00	13.94	A
		MOTA	1534	С	TYR	Α	214	41.384	48.213	-5.705	1.00	10.67	A
		ATOM	1535	0	TYR	Α	214	42.252	47.341	-5.808	1.00	10.14	А
	45	ATOM	1536	N	ILE	Α	215	41.634	49.435	-5.242	1.00	10.04	A
		MOTA	1537	CA	ILE	Α	215	42.965	49.848	-4.809	1.00	10.06	A
		ATOM	1538	CB	ILE	Α	215	43.005	51.384	-4.572	1.00	10.31	A
		MOTA	1539	CG2	ILE			44.348	51.795	-3.971		10.36	A
		ATOM	1540		ILE			42.745	52.119	-5.890		11.37	А
	50	ATOM	1541		ILE			42.716	53.640	-5.753		12.28	A
		ATOM	1542	C	ILE			43.399	49.135	-3.523		10.17	A
		ATOM	1543	0	ILE			44.529	48.659	-3.413		9.97	A
			1544		LEU			42.497	49.061	-2.552		10.00	A
		ATOM		N C7						-1.277	1.00	9.82	A
	==	ATOM	1545	CA	LEU			42.810	48.418				
	55	MOTA	1546	CB	LEU	A	216	41.638	48.595	-0.303	1.00	9.65	A

		ATOM	1547	CG	LEU A	216	41.248	50.040	0.047	1.00 10.00	А
		ATOM	1548	CD1	LEU A		39.930	50.050	0.812	1.00 9.64	A
		ATOM	1549		LEU A		42.361	50.692	0.874	1.00 11.22	A
		ATOM	1550	С	LEU A		43.145	46.929	-1.417	1.00 10.48	A
	5	ATOM	1551	0	LEU A		44.115	46.449	-0.825	1.00 9.64	A
	•	MOTA	1552	N	GLN A		42.344	46.204	-2.195	1.00 10.39	А
		ATOM	1553	CA	GLN A		42.565	44.773	-2.385	1.00 11.31	А
		ATOM	1554	CB	GLN A		41.417	44.187	-3.216	1.00 13.02	A
		ATOM	1555	CG	GLN A		41.367	42.662	-3.309	1.00 13.54	A
	10	ATOM	1556	CD	GLN A		42.291	42.117	-4.371	1.00 14.73	A
	10	ATOM	1557	OE1	GLN A		42.492	42.749	-5.406	1.00 16.14	A
		ATOM	1558	NE2	GLN A		42.849	40.934	-4.131	1.00 14.69	A
		ATOM	1559	C	GLN A		43.922	44.529	-3.050	1.00 11.72	A
		ATOM	1560	0	GLN A		44.561	43.499	-2.824	1.00 11.92	A
	15	ATOM	1561	N	LYS A		44.365	45.491	-3.857	1.00 11.32	A
	10		1562		LYS A		45.655	45.397	-4.537	1.00 11.23	A
		ATOM		CA	LYS A		45.589	46.102	-5.899	1.00 11.09	A
		ATOM	1563	CB	LYS A		44.804	45.324	-6.959	1.00 11.03	A
		ATOM	1564	CG			44.608	46.141	-8.238	1.00 12.02	A
1000	20	MOTA	1565	CD	LYS A					1.00 11.87	A
Repail .	20	ATOM	1566	CE	LYS A		44.232	45.257	-9.421	1.00 12.02	A
		ATOM	1567	NZ	LYS A		43.101	44.326	-9.148		A
		ATOM	1568	C	LYS A		46.762	46.019	-3.679	1.00 11.45 1.00 11.78	A
ij.		ATOM	1569	0	LYS A		47.904	46.154	-4.118		
	25	ATOM	1570	N	SER A		46.412	46.397	-2.453	1.00 10.93	A
	25	ATOM	1571	CA	SER A		47.372	46.993	-1.533	1.00 11.29	A
M.		ATOM	1572	CB	SER A		47.014	48.460	-1.264	1.00 10.87	A
101		ATOM	1573	OG	SER A		47.094	49.223	-2.459	1.00 10.59	A
		ATOM	1574	C	SER A		47.434	46.213	-0.219	1.00 11.22	A
\$440T	30	ATOM	1575	0	SER A		47.748	46.768	0.836	1.00 10.76	A
A STATE	30	ATOM	1576	N	GLY A		47.118	44.922	-0.296	1.00 11.64	A
W.		ATOM	1577	CA	GLY A		47.176	44.066	0.878	1.00 12.01 1.00 12.11	A A
in.		ATOM	1578	C	GLY A		45.984	44.042	1.820	1.00 12.11	A
jar.		ATOM	1579	0	GLY A		45.995	43.298	2.801	1.00 12.08	
	35	MOTA	1580	N	PHE A		44.947	44.825	1.541		A
gal.	33	MOTA	1581	CA	PHE A		43.794	44.844	2.435	1.00 11.98	A
•		ATOM	1582	CB	PHE A		42.909	46.065	2.168	1.00 12.08	A
		ATOM	1583	CG	PHE A		43.466	47.344	2.716	1.00 11.83	A
		ATOM	1584		PHE A		44.586	47.935	2.139	1.00 10.91	A
	40	ATOM	1585		PHE A		42.876	47.955	3.816	1.00 11.28	A
	40	ATOM	1586		PHE A		45.111	49.121	2.651	1.00 10.48	A
		ATOM	1587		PHE A		43.394	49.145	4.338	1.00 10.77	A
		ATOM	1588	CZ	PHE A		44.514	49.727	3.752	1.00 10.54	A
		ATOM	1589	C	PHE A		42.939	43.593	2.363	1.00 12.33	A
	4 -	ATOM	1590	0	PHE A		42.892	42.913	1.341	1.00 12.04	A
	45	ATOM	1591	N	LYS A		42.257	43.305	3.466	1.00 12.92	A
		ATOM	1592	CA	LYS A		41.385	42.147	3.546	1.00 14.09	A
		MOTA	1593	СВ	LYS A		41.966	41.125	4.523	1.00 16.83	A
		ATOM	1594	CG	LYS A		43.173	40.401	3.950	1.00 20.43	A
	50	ATOM	1595	CD	LYS A		43.793	39.446	4.945	1.00 24.43	A
	50	ATOM	1596	CE	LYS A		44.802	38.537	4.250	1.00 25.85	A
		ATOM	1597	NZ	LYS A		45.771	39.315	3.420	1.00 27.78	A
		ATOM	1598	С	LYS A		39.974	42.533	3.966	1.00 13.76	A
		MOTA	1599	0	LYS A		39.043	41.745	3.804	1.00 12.76	A
		ATOM	1600	N	ASN A		39.819	43.747	4.492	1.00 12.50	A
	55	MOTA	1601	CA	ASN A	. 223	38.512	44.224	4.940	1.00 12.54	А

		7) TO M	1602	CD	ASN A	222	38.274	43.836	6.404	1.00 12.58	А
		ATOM	1602	CB							
		ATOM	1603	CG	ASN A		38.364	42.345	6.641	1.00 13.38	A
		ATOM	1604	OD1	ASN A	223	39.396	41.832	7.092	1.00 14.56	A
		MOTA	1605	ND2	ASN A	223	37.286	41.637	6.336	1.00 10.53	Α
	5	ATOM	1606	С	ASN A	223	38.345	45.738	4.826	1.00 11.96	A
		ATOM	1607	0	ASN A	223	39.318	46.485	4.891	1.00 11.78	A
		ATOM	1608	N	MET A		37.101	46.183	4.668	1.00 12.00	A
		ATOM	1609	CA	MET A		36.800	47.609	4.598	1.00 12.07	A
		ATOM	1610	CB	MET A		36.915	48.134	3.165	1.00 12.02	A
	10				MET A			47.631	2.207	1.00 12.35	A
	10	ATOM	1611	CG			35.849				
		ATOM	1612	SD	MET A		36.063	48.400	0.596	1.00 12.43	A
		ATOM	1613	CE	MET A		35.436	50.044	0.920	1.00 12.22	A
		MOTA	1614	С	MET A		35.402	47.892	5.142	1.00 12.41	А
		ATOM	1615	0	MET A		34.516	47.029	5.113	1.00 11.89	A
	15	MOTA	1616	N	LEU A	225	35.221	49.106	5.649	1.00 11.22	A
		ATOM	1617	CA	LEU A	225	33.950	49.530	6.219	1.00 11.40	A
		ATOM	1618	СВ	LEU A	225	34.090	49.648	7.738	1.00 10.91	A
		ATOM	1619	CG	LEU A		32.929	50.260	8.531	1.00 11.65	A
		ATOM	1620		LEU A		32.932	49.685	9.935	1.00 11.52	А
100	20	ATOM	1621		LEU A		33.046	51.798	8.559	1.00 11.31	А
.II		ATOM	1622	C	LEU A		33.525	50.868	5.626	1.00 11.04	A
		ATOM	1623	0	LEU A		34.351	51.762	5.451	1.00 10.88	A
1197 1197 1198 1198 1198 1198		ATOM	1624	N	ILE A		32.237	50.997	5.315	1.00 11.47	A
1,5 B;							31.699	52.232	4.747	1.00 11.47	A
i cont	25	ATOM	1625	CA	ILE A						A
	25	ATOM	1626	CB	ILE A		31.371	52.059	3.242	1.00 11.66	
Ŋ		ATOM	1627	CG2	ILE A		32.645	51.699	2.478	1.00 11.16	A
W.		MOTA	1628		ILE A		30.315	50.968	3.048	1.00 11.34	A
		ATOM	1629		ILE A		29.894	50.771	1.596	1.00 11.84	A
4500	•	ATOM	1630	С	ILE A		30.441	52.632	5.516	1.00 12.31	А
452	30	MOTA	1631	0	ILE A		29.856	51.805	6.222	1.00 12.85	A
		ATOM	1632	N	GLN A		30.020	53.888	5.381	1.00 12.34	A
		MOTA	1633	CA	GLN A	227	28.853	54.367	6.118	1.00 12.23	A
į.		MOTA	1634	CB	GLN A	227	29.334	55.170	7.334	1.00 12.52	A
		ATOM	1635	CG	GLN A	227	28.376	56.253	7.845	1.00 12.98	A
i des	35	ATOM	1636	CD	GLN A	227	27.053	55.713	8.357	1.00 13.37	A
2 /221		ATOM	1637	OE1	GLN A	227	26.951	54.552	8.753	1.00 14.02	A
		ATOM	1638	NE2	GLN A	227	26.034	56.568	8.375	1.00 12.44	A
		ATOM	1639	С	GLN A		27.814	55.187	5.351	1.00 12.86	A
		ATOM	1640	0	GLN A		26.618	54.888	5.408	1.00 12.43	Α
	40	MOTA	1641		ARG A		28.252			1.00 12.28	А
	10	ATOM	1642	CA	ARG A		27.303	57.070	3.941	1.00 12.28	A
		ATOM	1643	CB	ARG A		27.893	58.470	3.726	1.00 12.59	A
		ATOM	1644	CG	ARG A		28.063	59.258	5.022	1.00 12.49	A
										1.00 12.40	A
	45	MOTA	1645	CD	ARG A		28.404	60.729	4.772		
	45	ATOM	1646	NE	ARG A		28.640	61.461	6.022	1.00 12.35	A
		ATOM	1647	CZ	ARG A		27.683	61.920	6.828	1.00 14.14	A
		MOTA	1648		ARG A		26.400	61.736	6.525	1.00 14.04	A
		ATOM	1649		ARG A		28.007	62.554	7.951	1.00 13.35	А
	F 0	MOTA	1650	С	ARG A		26.759	56.523	2.628	1.00 12.67	A
	50	MOTA	1651	0	ARG A		27.323	56.744	1.557	1.00 12.03	А
		ATOM	1652	N	THR A		25.653	55.795	2.735	1.00 12.60	А
		ATOM	1653	CA	THR A	229	24.976	55.240	1.573	1.00 12.10	А
		MOTA	1654	CB	THR A	229	25.136	53.695	1.490	1.00 12.81	A
		ATOM	1655	OG1	THR A	229	24.559	53.075	2.648	1.00 12.19	А
	55	MOTA	1656	CG2	THR A	229	26.617	53.324	1.405	1.00 11.20	A

						22.0				
		MOTA	1657	С	THR A 229	23.506	55.619	1.729	1.00 12.60	A
			1658	0	THR A 229	23.035	55.849	2.848	1.00 13.73	A
		ATOM			HIS A 230	22.796	55.701	0.608	1.00 12.44	A
		MOTA	1659	N		21.380	56.080	0.589	1.00 12.74	A
	_	MOTA	1660	CA	HIS A 230			-0.803	1.00 13.25	A
	5	MOTA	1661	CB	HIS A 230	20.803	55.794		1.00 13.23	A
		MOTA	1662	CG	HIS A 230	19.545	56.546	-1.111		
		MOTA	1663		HIS A 230	19.268	57.462	-2.070	1.00 14.52	A
		MOTA	1664	ND1	HIS A 230	18.382	56.384	-0.389	1.00 13.28	A
		ATOM	1665	CE1	HIS A 230	17.443	57.169	-0.889	1.00 13.41	A
	10	MOTA	1666		HIS A 230	17.954	57.834	-1.910	1.00 12.86	А
	10	ATOM	1667	С	HIS A 230	20.570	55.343	1.656	1.00 12.53	A
		ATOM	1668	0	HIS A 230	20.672	54.125	1.788	1.00 12.07	A
			1669	N	TYR A 231	19.756	56.080	2.413	1.00 12.70	A
		ATOM			TYR A 231	18.958	55.453	3.463	1.00 13.53	A
	1 =	MOTA	1670	CA		18.105	56.499	4.200	1.00 13.42	A
	15	MOTA	1671	CB	TYR A 231		57.268	3.337	1.00 14.84	А
		MOTA	1672	CG	TYR A 231	17.122	56.772	3.088	1.00 14.12	A
		MOTA	1673		TYR A 231	15.840			1.00 14.12	A
		MOTA	1674	CE1		14.934	57.484	2.305		
357%		MOTA	1675		TYR A 231	17.474	58.500	2.776	1.00 14.31	A
Ser.	20	MOTA	1676	CE2	TYR A 231	16.576	59.217	1.992	1.00 14.26	A
		MOTA	1677	CZ	TYR A 231	15.308	58.704	1.761	1.00 14.26	A
4 , ⊒.		MOTA	1678	ОН	TYR A 231	14.421	59.409	0.982	1.00 14.93	A
9,5 8		ATOM	1679	C	TYR A 231	18.081	54.316	2.936	1.00 14.05	A
1		MOTA	1680	0	TYR A 231	17.785	53.368	3.661	1.00 14.36	A
888	25	ATOM	1681	N	SER A 232	17.675	54.399	1.674	1.00 14.47	A
8-8-8 8-8-8	25		1682	CA	SER A 232	16.847	53.348	1.086	1.00 15.06	A
fing.		ATOM		CB	SER A 232	16.235	53.823	-0.233	1.00 15.79	A
ijij.		ATOM	1683			15.246	54.811	-0.004	1.00 17.41	А
E)		MOTA	1684	OG	SER A 232	17.650	52.071	0.854	1.00 14.95	А
	20	MOTA	1685	С	SER A 232		50.966	0.967	1.00 13.88	A
	30	MOTA	1686	0	SER A 232	17.120			1.00 14.34	A
,6±3 3 % 3		MOTA	1687	N	VAL A 233	18.931	52.229	0.529	1.00 14.34	A
		MOTA	1688	CA	VAL A 233	19.807	51.085	0.295		
		MOTA	1689	CB	VAL A 233	21.136	51.534	-0.355	1.00 13.36	A
194		MOTA	1690	CG1	VAL A 233	22.122	50.372	-0.397	1.00 13.01	A
	35	MOTA	1691	CG2	VAL A 233	20.868	52.043	-1.769	1.00 13.28	A
		MOTA	1692	С	VAL A 233	20.091	50.364	1.616	1.00 13.86	A
		ATOM	1693	0	VAL A 233	20.086	49.131	1.679	1.00 13.64	A
		MOTA	1694	N	LYS A 234	20.329	51.137	2.668	1.00 13.48	А
		ATOM	1695		LYS A 234	20.583	50.569	3.987	1.00 14.03	A
	40	ATOM	1696	СВ	LYS A 234	20.800	51.689	5.013	1.00 14.30	A
	10	MOTA	1697	CG	LYS A 234	22.142	52.414	4.890	1.00 14.69	A
			1698	CD	LYS A 234	22.193	53.642	5.799	1.00 13.66	A
		MOTA	1699	CE	LYS A 234	23.563	54.329	5.762	1.00 13.23	A
		ATOM			LYS A 234	24.575	53.699	6.669	1.00 12.68	A
	4.	ATOM	1700	NZ		19.392	49.706	4.405	1.00 14.10	А
	45	MOTA	1701	C	LYS A 234	19.563	48.582	4.877	1.00 13.22	А
		ATOM	1702	0	LYS A 234		50.233	4.218	1.00 15.31	A
		MOTA	1703	N	LYS A 235	18.186		4.584	1.00 16.19	A
		MOTA	1704	CA	LYS A 235	16.973	49.502		1.00 10.13	A
		MOTA	1705	CB	LYS A 235	15.739	50.378	4.359		
	50	MOTA	1706	CG	LYS A 235	14.446	49.778	4.897	1.00 17.88	A
		MOTA	1707	CD	LYS A 235	13.270	50.694	4.617	1.00 18.37	A
		ATOM	1708	CE	LYS A 235	11.979		5.171	1.00 20.00	A
		ATOM	1709	NZ	LYS A 235	10.809		4.811	1.00 20.45	A
		ATOM	1710	С	LYS A 235	16.846	48.212	3.780	1.00 16.38	А
	55	ATOM	1711	0	LYS A 235	16.594	47.143	4.339	1.00 16.89	A
	55	111 011		9						

						217				
		ATOM	1712	N	GLU A 236	17.031	48.314	2.469	1.00 17.01	A
		ATOM	1713	CA	GLU A 236	16.933	47.157	1.583	1.00 17.20	A
					GLU A 236	17.130	47.599	0.129	1.00 19.36	A
		MOTA	1714	CB		16.943	46.487	-0.894	1.00 22.75	A
	_	MOTA	1715	CG	GLU A 236		46.037	-1.033	1.00 24.36	A
	5	MOTA	1716	CD	GLU A 236	15.493		-1.844	1.00 24.30	A
		MOTA	1717	OE1		15.237	45.125			A
		MOTA	1718	OE2		14.610	46.592	-0.341	1.00 25.45	
		MOTA	1719	С	GLU A 236	17.946	46.063	1.931	1.00 16.81	A
		MOTA	1720	0	GLU A 236	17.585	44.895	2.078	1.00 16.28	A
	10	MOTA	1721	N	LEU A 237	19.216	46.433	2.064	1.00 15.97	Α
	10	MOTA	1722	CA	LEU A 237	20.238	45.447	2.387	1.00 15.97	A
		MOTA	1723	СВ	LEU A 237	21.635	46.048	2.220	1.00 15.23	A
		ATOM	1724	CG	LEU A 237	21.976	46.514	0.799	1.00 15.74	A
			1725		LEU A 237	23.356	47.142	0.797	1.00 16.24	А
	15	ATOM			LEU A 237	21.919	45.337	-0.173	1.00 16.31	A
	15	ATOM	1726			20.066	44.898	3.800	1.00 15.86	A
		MOTA	1727	C	LEU A 237		43.719	4.047	1.00 16.07	A
		MOTA	1728	0	LEU A 237	20.324		4.725	1.00 15.71	A
		MOTA	1729	N	ALA A 238	19.624	45.743		1.00 16.72	A
i inter		MOTA	1730	CA	ALA A 238	19.420	45.302	6.099		A
325	20	MOTA	1731	CB	ALA A 238	18.976	46.473	6.968	1.00 14.76	
		MOTA	1732	С	ALA A 238	18.373	44.187	6.149	1.00 17.50	A
gar.		MOTA	1733	0	ALA A 238	18.559	43.177	6.832	1.00 17.31	A
1,21		ATOM	1734	N	GLN A 239	17.279	44.374	5.418	1.00 18.24	A
		MOTA	1735	CA	GLN A 239	16.199	43.391	5.394	1.00 19.52	A
	25	ATOM	1736	СВ	GLN A 239	15.031	43.915	4.550	1.00 20.50	A
		ATOM	1737	CG	GLN A 239	14.442	45.225	5.068	1.00 23.60	A
		MOTA	1738	CD	GLN A 239	13.275	45.728	4.235	1.00 25.24	A
		ATOM	1739	OE1		13.364	45.819	3.009	1.00 27.04	A
ãi.		ATOM	1740	NE2		12.175	46.069	4.900	1.00 27.03	A
	30		1741	C	GLN A 239	16.652	42.028	4.872	1.00 19.61	A
	50	ATOM		0	GLN A 239	16.080	41.000	5.230	1.00 19.90	А
		ATOM	1742		GLN A 240	17.679	42.018	4.029	1.00 19.18	A
1		ATOM	1743	N		18.189	40.768	3.472	1.00 18.91	A
1/25		MOTA	1744	CA	GLN A 240		40.927	1.969	1.00 21.14	А
	٥.	ATOM	1745	CB	GLN A 240	18.421	41.421	1.212	1.00 23.97	A
	35	MOTA	1746	CG	GLN A 240	17.200	40.422	1.230	1.00 25.55	A
		MOTA	1747	CD	GLN A 240	16.065			1.00 28.30	A
		MOTA	1748	OE1		14.910	40.777	0.998	1.00 26.14	A
		ATOM	1749		2 GLN A 240	16.387	39.160	1.494		A
		MOTA	1750	С		19.495	40.350	4.139	1.00 17.92	
	4 0	ATOM	1751	0	GLN A 240	20.113	39.364	3.737	1.00 16.97	A
		ATOM	1752	N	ARG A 241	19.895	41.090	5.171	1.00 16.88	A
		ATOM	1753	CA	ARG A 241	21.149	40.831	5.871	1.00 16.09	A
		ATOM	1754	СВ	ARG A 241	21.084	39.521	6.668	1.00 17.31	A
		MOTA	1755	CG	ARG A 241	20.052	39.549	7.792	1.00 18.25	А
	45	ATOM	1756	CD	ARG A 241	20.258	38.407	8.776	1.00 19.71	A
	10	ATOM	1757	NE	ARG A 241	20.252	37.106	8.114	1.00 21.50	A
		MOTA	1758	CZ	ARG A 241	20.610	35.966	8.700	1.00 23.01	A
			1759		1 ARG A 241	21.004	35.962	9.969	1.00 23.30	А
		ATOM			2 ARG A 241	20.583	34.831	8.014	1.00 23.18	A
	EΩ	ATOM	1760			22.284	40.784	4.853	1.00 15.76	A
	50	ATOM	1761	C	ARG A 241	23.092	39.850	4.824	1.00 14.26	A
		ATOM	1762		ARG A 241		41.807	4.004	1.00 15.05	A
		ATOM	1763		GLN A 242	22.327	41.912	2.979		A
		ATOM	1764	CA	GLN A 242	23.360		1.584	1.00 14.76	A
		ATOM	1765		GLN A 242	22.721				A
	55	ATOM	1766	CG	GLN A 242	21.909	40.704	1.233	1.00 10.00	11

		ATOM	1767	CD	GLN A	242	2.	1.188	40.836	-0.096	1.00	15.32	A
		ATOM	1768		GLN A		20	0.643	41.892	-0.411	1.00	15.92	А
					GLN A			1.170	39.759	-0.878	1.00	15.08	A
		MOTA	1769						43.175	3.198	1.00		А
	_	MOTA	1770		GLN A			4.197		2.242	1.00		A
	5	MOTA	1771		GLN A			4.712	43.753		1.00		A
		ATOM	1772		LEU A			4.323	43.594	4.458			
		MOTA	1773	CA	LEU A	4 243		5.106	44.779	4.808	1.00		A
		MOTA	1774	CB	LEU A	243	2	4.690	45.307	6.185	1.00		A
		MOTA	1775		LEU A	243	2.	3.302	45.958	6.227	1.00		A
	10	ATOM	1776		LEU A			2.895	46.231	7.673	1.00	16.58	A
	10	ATOM	1777		LEU A			3.321	47.258	5.413	1.00	16.24	A
					LEU A			6.598	44.455	4.786	1.00	14.27	A
		MOTA	1778					7.440	45.352	4.712	1.00		А
		MOTA	1779		LEU A				43.168	4.875	1.00		А
		MOTA	1780		GLU A			6.918			1.00		A
	15	MOTA	1781		GLU A			8.302	42.720	4.789	1.00		A
		MOTA	1782	CB		A 244		8.702	41.897	6.017			
		MOTA	1783	CG	GLU A	4 244		8.891	42.777	7.249	1.00		A
		MOTA	1784	CD	GLU I	A 244	2	9.323	42.010	8.476	1.00		A
र्म स्वर्म <u>ः</u>		ATOM	1785	OE1	GLU I	A 244	2	8.806	40.897	8.699		12.89	A
i parti	20	ATOM	1786			A 244	3	0.173	42.532	9.225	1.00	13.62	A
1,5	20	ATOM	1787	C		A 244		8.326	41.893	3.522	1.00	13.46	A
			1788	0		A 244		7.505	40.992	3.344	1.00	13.61	A
		ATOM		N		A 245		9.256	42.215	2.631	1.00	13.16	A
Paralli Paralli		ATOM	1789			A 245		9.330	41.534	1.349		12.82	A
	0.5	MOTA	1790	CA				8.365	42.226	0.379		12.71	А
5 5±2 c/8 ±	25	MOTA	1791	CB		A 245			43.731	0.367		13.34	A
		MOTA	1792	CG		A 245		8.495		-0.396		13.26	A
1971		ATOM	1793			A 245		9.477	44.358			13.80	A
51		MOTA	1794			A 245		7.653	44.518	1.152			A
		MOTA	1795	CE1	PHE	A 245		9.620	45.761	-0.377		14.25	
, Page	30	ATOM	1796	CE2	PHE	A 245		7.785	45.915	1.181		13.45	A
ိုင်းဆို ရက်သ		MOTA	1797	CZ	PHE	A 245	2	8.771	46.536	0.416		13.39	A
		ATOM	1798	С	PHE	A 245	3	0.732	41.529	0.759		12.74	A
		ATOM	1799	0		A 245	3	1.610	42.268	1.202		12.98	A
		ATOM	1800	N		A 246	3	30.934	40.676	-0.239	1.00	12.93	A
	35	ATOM	1801	CA		A 246		32.209	40.590	-0.931	1.00	12.80	A
7	33		1802	CB		A 246		32.480	39.143	-1.352	1.00	14.15	A
		MOTA		CG		A 246		32.798	38.226	-0.162	1.00	15.44	A
		MOTA	1803					32.721	36.755	-0.566		16.21	A
		MOTA	1804			A 246		34.186	38.567	0.356		16.84	А
	40	MOTA	1805			A 246			41.506		1.00		A
	40	MOTA	1806	С		A 246		32.062				12.86	A
		MOTA	1807	0		A 246		31.450	41.142	-3.143			
		MOTA	1808	N		A 247		32.616	42.709	-2.021		12.15	A
		ATOM	1809	CA	TRP	A 247	3	32.528	43.725	-3.064		10.93	A
		ATOM	1810	CB	TRP	A 247	3	32.730	45.109	-2.428		11.30	A
	45	ATOM	1811	CG	TRP	A 247	3	32.227	46.275	-3.234		10.64	A
	10	ATOM	1812			A 247	3	32.231	47.653	-2.835	1.00	10.92	А
		ATOM	1813			A 247		31.620	48.394	-3.875	1.00	10.68	A
		ATOM	1814			A 247		32.690	48.333	-1.699	1.00	10.84	A
			1815			A 247		31.638	46.237	-4.465	1.00	11.11	A
	50	ATOM						31.267	47.509	-4.858		10.24	Α
	50	ATOM	1816			A 247			49.783	-3.809		11.19	A
		ATOM	1817			A 247		31.455	49.705	-1.635		10.19	A
		MOTA	1818			A 247		32.527				10.13	A
		MOTA	1819			A 247		31.914	50.424	-2.684			A A
		MOTA	1820	С		A 247		33.547	43.517	-4.181		11.11	
	55	ATOM	1821	0	TRP	A 247		34.749	43.713	-3.979	1.00	11.48	A

		7.004	1000	N.T.	7 D.C	7\	210	33.062	43.116	-5.355	1.00	10.75	A
		ATOM	1822	N	ARG			33.929	42.905	-6.509		10.77	А
		MOTA	1823	CA	ARG				42.503	-7.123		11.28	A
		MOTA	1824	CB	ARG			33.699		-7.123 -7.812		12.39	A
		MOTA	1825	CG	ARG			32.347	41.360	-8.622		12.96	A
	5	MOTA	1826	CD	ARG			32.287	40.064			13.78	A
		MOTA	1827	NE	ARG			32.307	38.877	-7.771			Ā
		MOTA	1828	CZ	ARG			32.297	37.627	-8.232		15.01	
		MOTA	1829		ARG			32.272	37.396	-9.540		14.24	A
		ATOM	1830	NH2	ARG	A	248	32.303	36.603	-7.387		15.39	A
	10	MOTA	1831	С	ARG	Α	248	33.618	43.973	-7.557		10.84	A
		MOTA	1832	0	ARG	Α	248	32.565	44.613	-7.508		10.46	A
		MOTA	1833	N	GLN	Α	249	34.531	44.154	-8.504		10.83	A
		ATOM	1834	CA	GLN	Α	249	34.351	45.141	-9.560		11.65	A
		MOTA	1835	СВ			249	35.678	45.363	-10.298		11.30	A
	15	ATOM	1836	CG			249	36.810	45.827	-9.377	1.00	11.05	A
	10	ATOM	1837	CD			249	36.444	47.085	-8.598		11.05	A
		ATOM	1838	OE1			249	36.457	47.098	-7.361	1.00	12.77	A
		ATOM	1839	NE2				36.111	48.148	-9.320	1.00	9.23	Α
2400.			1840	C			249	33.256		-10.524	1.00	12.10	A
The first	20	ATOM	1841	0			249	33.049		-10.725	1.00	11.94	A
43	20	MOTA		N			250	32.553		-11.122	1.00	12.93	A
in State .		MOTA	1842	CA			250	31.453		-12.026		13.51	A
		MOTA	1843				250	30.767		-12.572		13.77	A
		ATOM	1844	CB				30.103		-11.428		13.59	A
	05	MOTA	1845	CG2			250	31.785		-13.296		13.49	А
	25	ATOM	1846	CG1			250	31.763		-13.837		14.87	A
		ATOM	1847		ILE			31.782		-13.208		14.67	A
		MOTA	1848	С			250			-13.721		14.61	A
2.		MOTA	1849	0			250	30.896		-13.626		15.25	A
	20	MOTA	1850	N			251	33.043		-14.761		16.73	A
ı,	30	MOTA	1851	CA			251	33.455		-15.625		16.94	A
		MOTA	1852	CB			251	34.444		-14.923		17.70	A
		MOTA	1853	CG			251	35.745		-14.196		17.07	A
		MOTA	1854	CD2			251	36.159		-13.618		17.86	A
		MOTA	1855	CE2			251	37.412		-13.010		17.14	A
i sala	35	ATOM	1856		TRP			35.591				17.86	A
		ATOM	1857		. TRP			36.738		-14.765		17.65	A
		ATOM	1858		TRP			37.740		-13.981		17.71	A
		ATOM	1859		TRP			38.108		-12.830		17.71	A
		ATOM	1860	CZ3	3 TRP	Α	251	36.282	47.842	-13.191			A
	40	MOTA	1861	CH2	TRP					-12.628	1.00	10.43	A
		MOTA	1862	С			251	34.121		-14.344		18.00	A
		ATOM	1863	0			251	34.454		-15.194		18.22	
		MOTA	1864	N			252	34.325		-13.043		18.23	A
		MOTA	1865	CA			252	34.996		-12.499		19.34	A
	45	MOTA	1866	СВ			252	35.549		-11.110		18.94	A
		ATOM	1867	CG	ASE	A	. 252	36.320		-10.484		20.28	A
		ATOM	1868	OD:	l ASE	A	252	36.654		-11.207		20.52	A
		MOTA	1869	OD:	2 ASE	Α	252	36.596	40.161			18.06	A
		ATOM	1870	С	ASE	A	252	34.121		-12.436		19.79	A
	50	ATOM	1871	0			252	33.323		-11.520		19.33	A
		MOTA	1872	N			253	34.292		-13.417		21.32	A
		ATOM	1873	CA			253	33.513		-13.487		22.54	A
		MOTA	1874	СВ			253	33.580		-14.907		24.16	А
		ATOM	1875	CG			253	32.717		-15.085		25.52	A
	55	ATOM	1876				253	33.192	34.684	-15.530	1.00	26.98	A
		111 011	10,0			-							

		7.000.014	1077	MDO	7 (2) 7	0.50	21 420	25 045	11 711	1 00 05 04	7\
		ATOM	1877		ASN A		31.439		-14.744	1.00 25.84	A
		MOTA	1878	С	ASN A		33.980	36.456		1.00 22.75	A
		MOTA	1879	0	ASN A	253	33.162	35.747	-11.903	1.00 23.28	A
		MOTA	1880	N	LYS A	254	35.290	36.355	-12.295	1.00 23.59	A
	5	MOTA	1881	CA	LYS A	254	35.855	35.357	~11.385	1.00 24.65	A
		MOTA	1882	СВ	LYS A		37.324	35.101		1.00 26.71	A
		ATOM	1883	CG	LYS A		37.939	33.877		1.00 28.98	A
		MOTA	1884	CD	LYS A		39.324	33.578		1.00 30.99	A
		ATOM	1885	CE	LYS A		39.916	32.299		1.00 31.41	А
	10	ATOM	1886	NZ	LYS A		40.115	32.383	-9.580	1.00 32.32	A
		MOTA	1887	С	LYS A	254	35.741	35.749	-9.912	1.00 24.07	A
		ATOM	1888	0	LYS A	254	35.532	34.893	-9.048	1.00 23.89	A
		ATOM	1889	N	GLY A	255	35.888	37.040	-9.628	1.00 23.13	A
		ATOM	1890	CA	GLY A		35.788	37.510	-8.257	1.00 22.09	A
	15	MOTA	1891	C	GLY A		37.110	37.715	-7.534	1.00 21.87	A
	10										
		ATOM	1892	0	GLY A		37.128	37.864	-6.313	1.00 21.29	A
		MOTA	1893	N	ASP A		38.216	37.735	-8.270	1.00 21.62	A
		MOTA	1894	CA	ASP A		39.525	37.919	-7.648	1.00 21.86	A
1122		ATOM	1895	CB	ASP A	256	40.647	37.613	-8.645	1.00 25.21	A
	20	MOTA	1896	CG	ASP A	256	40.638	36.171	-9.112	1.00 28.23	A
. 1		MOTA	1897	OD1	ASP A	256	40.472	35.269	-8.260	1.00 30.23	A
		ATOM	1898	OD2	ASP A	256	40.808	35.941		1.00 30.53	А
3,3 8		ATOM	1899	C	ASP A		39.741	39.319	-7.074	1.00 20.26	A
		MOTA	1900	0	ASP A		40.663	39.532	-6.291	1.00 19.39	A
N	25								-7.465		
<u> </u>	2.5	ATOM	1901	N	THR A		38.902	40.274		1.00 17.90	A
		ATOM	1902	CA	THR A		39.037	41.639	-6.958	1.00 16.74	A
		MOTA	1903	СВ	THR A		38.540	42.668	-7.985	1.00 16.55	A
E)		ATOM	1904		THR A		37.135	42.482	-8.200	1.00 16.27	A
		ATOM	1905	CG2	THR A	257	39.283	42.510	-9.303	1.00 16.66	A
J	30	MOTA	1906	С	THR A	257	38.233	41.848	-5.675	1.00 16.22	A
		MOTA	1907	0	THR A	257	38.341	42.894	-5.028	1.00 15.96	A
		MOTA	1908	N	ALA A		37.434	40.847	-5.315	1.00 14.88	A
		ATOM	1909	CA	ALA A		36.578	40.912	-4.137	1.00 14.24	A
		MOTA	1910	CB	ALA A		35.847	39.583	-3.957	1.00 14.17	A
lai.	35	ATOM	1911	C	ALA A		37.267	41.296	-2.831	1.00 13.50	A
	33										
		ATOM	1912	0	ALA A		38.358	40.821	-2.524	1.00 13.51	A
		MOTA	1913	N	LEU A		36.601	42.159	-2.068	1.00 12.70	A
		MOTA	1914	CA	LEU A		37.092	42.610	-0.768	1.00 12.24	A
		MOTA	1915	CB	LEU A	259	37.696	44.016	-0.867	1.00 11.63	A
	40	MOTA	1916	CG	LEU A	259	38.380	44.520	0.408	1.00 11.76	A
		MOTA	1917	CD1	LEU A	259	39.562	43.608	0.743	1.00 11.66	А
		ATOM	1918	CD2	LEU A	259	38.849	45.963	0.220	1.00 12.00	А
		MOTA	1919	С	LEU A		35.901	42.634	0.186	1.00 11.86	А
		ATOM	1920	0	LEU A		34.875	43.245	-0.111	1.00 11.05	A
	45	ATOM	1921	N	PHE A		36.032	41.959	1.324	1.00 11.65	A
	1 0										
		ATOM	1922	CA	PHE A		34.951	41.921	2.303	1.00 11.54	A
		MOTA	1923	CB	PHE A		35.345	41.055	3.501	1.00 11.54	А
		ATOM	1924	CG	PHE A		34.245	40.882	4.503	1.00 12.18	A
		ATOM	1925	CD1	PHE A	260	33.242	39.934	4.301	1.00 12.98	A
	50	MOTA	1926	CD2	PHE A	260	34.195	41.679	5.640	1.00 12.01	A
		ATOM	1927		PHE A		32.209	39.786	5.218	1.00 12.59	A
		MOTA	1928		PHE A		33.167	41.541	6.565	1.00 12.09	А
		ATOM	1929	CZ	PHE A		32.170	40.593	6.355	1.00 12.78	A
		ATOM	1930	C	PHE A		34.627	43.336	2.773	1.00 12.78	
	55										A
	55	MOTA	1931	0	PHE A	∠60	35.507	44.076	3.222	1.00 11.50	A

		ATOM	1932	N	THR	A	261	33.356	43.707	2.680	1.00 11.54	A
		MOTA	1933	CA	THR	A	261	32.931	45.044	3.061	1.00 11.72	A
		MOTA	1934	CB	THR			32.464	45.834	1.822	1.00 12.10	A
		ATOM	1935	OG1	THR	A	261	33.510	45.841	0.842	1.00 12.08	A
	5	MOTA	1936		THR			32.114	47.273	2.195	1.00 12.27	А
		MOTA	1937	С	THR			31.796	45.041	4.075	1.00 11.96	А
		ATOM	1938	0	THR			30.841	44.275	3.954	1.00 11.91	А
		ATOM	1939	N	HIS			31.909	45.918	5.065	1.00 11.38	A
		MOTA	1940	CA	HIS			30.894	46.069	6.095	1.00 11.42	А
	10	MOTA	1941	СВ	HIS			31.522	45.971	7.485	1.00 12.15	A
		MOTA	1942	CG	HIS			30.589	46.339	8.598	1.00 12.10	А
		MOTA	1943		HIS			30.188	47.547	9.065	1.00 12.09	А
		ATOM	1944		HIS			29.950	45.398	9.376	1.00 11.76	А
		MOTA	1945		HIS			29.199	46.010	10.277	1.00 12.27	A
	15	MOTA	1946		HIS			29.327	47.314	10.111	1.00 12.08	А
		MOTA	1947	С	HIS			30.271	47.451	5.945	1.00 11.76	A
		MOTA	1948	0	HIS			30.965	48.463	6.052	1.00 10.18	A
		MOTA	1949	N	MET			28.968	47.491	5.689	1.00 11.17	A
4:25 4:25		MOTA	1950	CA	MET	A	263	28.267	48.759	5.561	1.00 12.18	A
	20	MOTA	1951	СВ	MET	A	263	27.257	48.715	4.410	1.00 11.99	A
		MOTA	1952	CG	MET .	A	263	26.484	50.024	4.207	1.00 12.03	A
Nebal ALS-Re-		ATOM	1953	SD	MET	A	263	25.055	49.848	3.084	1.00 13.44	A
		MOTA	1954	CE	MET	A	263	25.884	49.600	1.504	1.00 12.15	A
1122		MOTA	1955	С	MET	A	263	27.520	48.990	6.868	1.00 12.69	A
W	25	MOTA	1956	0	MET	A	263	26.764	48.122	7.314	1.00 11.94	A
And And		MOTA	1957	N	MET	Α	264	27.740	50.143	7.492	1.00 12.61	A
2/2 4		ATOM	1958	CA	MET .	A	264	27.038	50.454	8.730	1.00 13.99	A
Ę;		MOTA	1959	CB	MET	A	264	27.631	51.712	9.366	1.00 15.28	A
		MOTA	1960	CG	MET .			29.035	51.450	9.916	1.00 17.24	A
	30	ATOM	1961	SD	MET .			29.953	52.918	10.450	1.00 22.77	A
		MOTA	1962	CE	MET	A	264	28.945	53.487	11.811	1.00 21.46	A
ls.		MOTA	1963	С	MET .	A	264	25.573	50.613	8.326	1.00 14.16	А
		ATOM	1964	0	MET .	A	264	25.275	51.066	7.220	1.00 14.15	А
	0-	MOTA	1965	N	PRO			24.640	50.241	9.216	1.00 13.83	A
	35	MOTA	1966	CD	PRO			24.882	49.677	10.559	1.00 13.64	A
		ATOM	1967	CA	PRO .			23.203	50.312	8.938	1.00 14.21	A
		ATOM	1968	СВ	PRO			22.661	49.173	9.787	1.00 14.20	A
		ATOM	1969	CG	PRO			23.456	49.357	11.058	1.00 14.38	A
	40	ATOM	1970	С	PRO .			22.424	51.589	9.194	1.00 14.67	A
	40	MOTA	1971	0	PRO .			21.335	51.770		1.00 14.40	A
		ATOM	1972	N	PHE			22.973	52.482	10.001	1.00 14.07	A
		ATOM	1973	CA	PHE			22.229	53.671	10.359	1.00 14.30	A
		ATOM	1974	СВ	PHE			22.185	53.727	11.889	1.00 12.76	A
	4 E	ATOM	1975	CG	PHE .			21.650	52.451	12.517	1.00 13.20	A
	45	ATOM	1976		PHE .			22.244	51.907	13.655	1.00 12.53	A
		ATOM	1977		PHE.			20.555	51.792	11.957	1.00 12.83	A
		ATOM	1978		PHE.			21.755	50.723	14.224	1.00 13.38	A
		ATOM	1979		PHE			20.055	50.610	12.515	1.00 12.47	A
	50	ATOM	1980	CZ	PHE .			20.655	50.073	13.651	1.00 12.89	A
	50	ATOM	1981	C	PHE .			22.600	55.025	9.743	1.00 14.18	A
		MOTA	1982	0	PHE.			23.519	55.139	8.930	1.00 14.66	A
		MOTA	1983	N	TYR .			21.841	56.038	10.142	1.00 14.48	A
		MOTA	1984	CA	TYR .			21.956	57.413	9.655	1.00 14.39	A
	55	ATOM	1985	CB	TYR .			20.829	58.232	10.294	1.00 15.80	A
	55	ATOM	1986	CG	TYR .	A	26/	20.885	59.729	10.094	1.00 16.29	А

: []

171

igij

Ñ

m

1,13

W.W.

284

Α

		ATOM ATOM	2042 2043		HIS A		20.273 21.112	58.979 59.881	14.333 14.809	1.00 13.45 1.00 16.34	A A
		MOTA	2043	NE2		A 273	24.233	54.876	15.457	1.00 13.37	A
		ATOM	2044	0		A 273	24.233	54.360	14.339	1.00 13.37	A
	5	ATOM	2045	N		A 274	24.895	54.421	16.518	1.00 12.03	A
	9	ATOM	2040	CA		A 274	25.788	53.276	16.395	1.00 13.68	A
		ATOM	2047	CB		A 274	27.274	53.726	16.415	1.00 13.00	A
		ATOM	2049	OG1	THR A		27.480	54.682	17.459	1.00 13.30	A
		ATOM	2050	CG2	THR A		27.656	54.346	15.079	1.00 12.79	A
	10	ATOM	2051	C		A 274	25.586	52.153	17,420	1.00 14.02	A
	10	ATOM	2052	0		A 274	26.143	51.069	17.257	1.00 14.90	A
		ATOM	2053	N	CYS A		24.795	52.390	18.466	1.00 14.38	A
		ATOM	2054	CA		A 275	24.569	51.344	19.471	1.00 14.59	A
		ATOM	2055	C		A 275	23.380	50.457	19.110	1.00 14.87	A
	15	ATOM	2056	Ö	CYS Z		23.303	49.298	19.525	1.00 14.62	А
		ATOM	2057	СВ		A 275	24.331	51.965	20.851	1.00 15.94	А
		ATOM	2058	SG	CYS A		22.592	52.094	21,403	1.00 16.28	A
		MOTA	2059	N		A 276	22.456	51.017	18,337	1.00 14.95	А
g Feet		ATOM	2060	CA	GLY A	A 276	21.266	50.290	17,940	1.00 15.51	A
	20	ATOM	2061	С	GLY A	A 276	20.345	51.178	17.124	1.00 15.57	A
Marie		MOTA	2062	0	GLY A	A 276	20.714	52.312	16.811	1.00 15.76	A
		MOTA	2063	N	PRO A	A 277	19.131	50.704	16,783	1.00 14.99	A
191		MOTA	2064	CD		A 277	18.615	49.379	17.174	1.00 15.17	А
100		ATOM	2065	CA	PRO A	A 277	18.129	51.430	15.993	1.00 15.46	A
	25	MOTA	2066	CB		A 277	17.105	50.343	15.667	1.00 15.74	A
		MOTA	2067	CG		A 277	17.128	49.514	16,907	1.00 14.95	A
ļīT		ATOM	2068	С		A 277	17.462	52.650	16.626	1.00 15.44	A
R)		ATOM	2069	0		A 277	16.880	53.468	15.915	1.00 15.14	A
i ing	20	ATOM	2070	N	ASP A		17.536	52.777	17.948	1.00 15.72	A
777	30	ATOM	2071	CA	ASP A		16.887	53.899	18,628	1.00 16.37	A
19.1		ATOM	2072	CB	ASP A		16.015	53.382	19.778	1.00 16.45	A
j.L		MOTA	2073	CG	ASP A		15.089	54.449	20.333	1.00 17.33	A
J		MOTA	2074		ASP A		15.253	55.635 54.102	19,972 21,134	1.00 17.28 1.00 16.81	A A
jedi.	35	ATOM ATOM	2075 2076	C C	ASP A		14.201 17.865	54.102	19.174	1.00 16.20	A
3,	55	ATOM	2070	0	ASP A		18.482	54.729	20.219	1.00 15.23	A
		ATOM	2077	N		A 279	18.003	56.073	18.480	1.00 15.55	A
		ATOM	2079	CD		A 279	17.320	56.464	17,234	1.00 16.82	A
		ATOM	2080	CA		A 279	18.921	57.126	18.928	1.00 17.09	A
	40	ATOM	2081	CB		A 279	18.850	58.152	17.793	1.00 16.72	A
	10	ATOM	2082	CG	PRO A		17.464	57.968	17.253	1.00 17.23	A
		ATOM	2083	C	PRO A		18.571	57.723	20,291	1.00 17.34	A
		ATOM	2084	0		A 279	19.447	58.221	20.996	1.00 17.37	A
		ATOM	2085	N	LYS A		17.296	57.676	20.667	1.00 17.71	А
	45	ATOM	2086	CA	LYS A		16.887	58.217	21,960	1.00 18.13	A
		MOTA	2087	СВ	LYS A		15.363	58.214	22.097	1.00 19.17	А
		MOTA	2088	CG	LYS A		14.871	58.892	23,370	1.00 21.45	A
		ATOM	2089	CD	LYS A		13.358	58.837	23,491	1.00 23.26	А
		ATOM	2090	CE	LYS A	A 280	12.876	57.413	23,710	1.00 26.06	А
	50	MOTA	2091	NZ	LYS A		13.446	56.812	24.960	1.00 28.16	А
		ATOM	2092	С	LYS A		17.500	57.389	23.081	1.00 17.62	A
		ATOM	2093	0	LYS A		17.784	57.902	24.165	1.00 18.50	А
		ATOM	2094	N	VAL A	A 281	17.702	56.102	22.819	1.00 17.07	А
		ATOM	2095	CA	VAL A		18.299	55.215	23.810	1.00 16.41	А
	55	MOTA	2096	СВ	VAL A		17.845	53.748	23.599	1.00 17.36	A

	MOTA	2097	CG1	VAL	Α	281	18.577	52.827	24.568	1.00 16.56	А
	MOTA	2098	CG2	VAL	A	281	16.334	53.631	23.793	1.00 16.45	A
	MOTA	2099	С	VAL	Α	281	19.824	55.281	23.705	1.00 16.33	A
	ATOM	2100	0	VAL	Α	281	20.522	55.440	24.705	1.00 15.54	A
5	MOTA	2101	N	CYS	Α	282	20.337	55.163	22.484	1.00 15.75	A
	MOTA	2102	CA	CYS	Α	282	21.780	55.198	22.266	1.00 16.11	A
	ATOM	2103	С	CYS	Α	282	22.426	56.483	22.773	1.00 16.13	A
	ATOM	2104	0	CYS	Α	282	23.551	56.463	23.282	1.00 16.09	A
	ATOM	2105	СВ	CYS	Α	282	22.096	55.029	20.780	1.00 15.93	A
10	MOTA	2106	SG	CYS	Α	282	21.730	53.383	20.093	1.00 16.46	A
	MOTA	2107	N			283	21.720	57.600	22.640	1.00 15.64	A
	ATOM	2108	CA	CYS	Α	283	22.271	58.870	23.088	1.00 16.03	A
	ATOM	2109	С	CYS	Α	283	22.575	58.830	24.582	1.00 16.35	A
	ATOM	2110	0			283	23.480	59.514	25.061	1.00 16.19	A
15	MOTA	2111	CB			283	21.309	60.023	22.785	1.00 17.15	А
	ATOM	2112	SG			283	22.169	61.628	22.845	1.00 17.80	А
	MOTA	2113	N			284	21.820	58.019	25.315	1.00 16.07	А
	ATOM	2114	CA	GLN	Α	284	22.013	57.898	26.754	1.00 16.46	А
	ATOM	2115	CB			284	20.823	57.169	27.382	1.00 16.54	А
20	ATOM	2116	CG			284	19.513	57.918	27.223	1.00 17.45	А
	ATOM	2117	CD			284	18.334	57.129	27.737	1.00 17.46	А
	ATOM	2118	OE1				18.291	56.743	28.907	1.00 18.95	A
	ATOM	2119	NE2	GLN			17.367	56.880	26.865	1.00 18.72	А
	MOTA	2120	С			284	23.300	57.168	27.095	1.00 16.25	А
25	ATOM	2121	0			284	23.680	57.077	28.262	1.00 16.37	А
	MOTA	2122	N			285	23.978	56.654	26.075	1.00 15.74	А
	ATOM	2123	CA			285	25.216	55.938	26.309	1.00 15.95	A
	ATOM	2124	CB			285	25.060	54.495	25.821	1.00 16.02	А
	ATOM	2125	CG			285	24.080	53.705	26.652	1.00 16.47	А
30	ATOM	2126	CD1	PHE	Α	285	24.487	53.090	27.832	1.00 16.88	A
	ATOM	2127		PHE			22.732	53.660	26.306	1.00 17.20	A
	ATOM	2128		PHE			23.566	52.444	28.664	1.00 17.28	А
	MOTA	2129	CE2	PHE	Α	285	21.799	53.017	27.129	1.00 18.31	A
	ATOM	2130	CZ	PHE	А	285	22.220	52.409	28.312	1.00 18.03	A
35	ATOM	2131	С	PHE	Α	285	26.439	56.637	25.730	1.00 15.58	А
	ATOM	2132	0	PHE	Α	285	27.481	56.025	25.500	1.00 15.28	A
	MOTA	2133	N	ASP	Α	286	26.282	57.938	25.496	1.00 15.60	A
	ATOM	2134	CA	ASP	Α	286	27.365	58.802	25.039	1.00 15.26	A
	ATOM	2135	CB	ASP	A	286	26.926	59.691	23.875	1.00 15.15	A
40	MOTA	2136	CG	ASP	Α	286	28.043	60.603	23.389	1.00 15.24	A
	ATOM	2137	OD1	ASP	Α	286	29.086	60.683	24.074	1.00 15.09	A
	ATOM	2138	OD2	ASP	Α	286	27.876	61.247	22.331	1.00 14.65	A
	ATOM	2139	С	ASP	Α	286	27.543	59.644	26.296	1.00 15.45	A
	MOTA	2140	0	ASP	Α	286	26.896	60.677	26.468	1.00 15.12	A
45	ATOM	2141	N	PHE	Α	287	28.414	59.189	27.186	1.00 15.64	A
	ATOM	2142	CA	PHE	Α	287	28.606	59.873	28.449	1.00 16.17	A
	MOTA	2143	CB	PHE	Α	287	29.340	58.939	29.411	1.00 15.78	A
	ATOM	2144	CG	PHE	Α	287	28.596	57.652	29.661	1.00 15.58	A
	MOTA	2145	CD1	PHE	Α	287	28.811	56.538	28.856	1.00 14.97	A
50	ATOM	2146	CD2	PHE	Α	287	27.614	57.584	30.646	1.00 15.57	A
	MOTA	2147	CE1	PHE	Α	287	28.056	55.378	29.025	1.00 15.24	А
	MOTA	2148		PHE			26.852	56.428	30.821	1.00 15.22	A
	ATOM	2149	CZ	PHE			27.074	55.323	30.008	1.00 15.06	A
	ATOM	2150	С			287	29.236	61.258	28.424	1.00 17.09	A
55	ATOM	2151	0	PHE			29.471	61.850	29.471	1.00 16.59	A

83

1

Ü

102

ATOM

CZ

ATOM 30.972 63.261 25.912 1.00 17.97 2155 LYS A 288 31.716 64.598 25.846 ATOM CG 1.00 17.53 LYS A 288 32.660 64.693 24.649 MOTA 2156 CD 1.00 16.44 24.686 33.438 66.003 MOTA 2157 LYS A 288 1.00 17.49 CE ATOM 2158 ΝZ LYS A 288 34.386 66.162 23.535 1.00 17.95

287

61.788

63.131

27.232

27.139

1.00 17.81

1.00 17.75

Α

Α

A

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

A

Α

Α

Α

A

A

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

Α

ATOM 2159 LYS A 288 28.900 27.025 С 64.132 1.00 18.16 1.00 17.87 ATOM 2160 LYS A 288 29.121 65.337 26.953 0 10 ARG A 289 27.667 ATOM 2161 63.634 27.027 1.00 19.07 Ν 2162 ARG A 289 ATOM CA 26.507 64.513 26.891 1.00 20.41

MOTA 2163 ARG A 289 25.549 63.961 25.830 1.00 19.03 CB 26.173 ATOM 2164 ARG A 289 63.698 24.468 1.00 17.69 CG 2165 ARG A 289 25.092 63.465 23.431 1.00 17.66 MOTA CD ATOM 2166 NE ARG A 289 25.623 63.059 22.132 1.00 16.20

Α 15 Α MOTA 2167 ARG A 289 25.144 63.492 20.970 1.00 16.63 CZΑ MOTA 2168 NH1 ARG A 289 24.132 64.353 20.949 1.00 15.95 Α MOTA 2169 NH2 ARG A 289 25.660 63.052 19.831 1.00 15.30 Α Α

ATOM 2170 C ARG A 289 25.711 64.769 28.171 1.00 22.16 20 ATOM 2171 0 ARG A 289 24.487 64.884 28.118 1.00 22.14 1.00 24.35 ATOM 2172 Ν MET A 290 26.381 64.881 29.312 MOTA 2173 CA MET A 290 25.653 65.113 30.556 1.00 26.07

1.00 27.03 ATOM 2174 MET A 290 26.232 64.241 31.677 CB 1.00 27.88 MOTA 2175 CG MET A 290 26.008 62.749 31.441 25 ATOM 2176 MET A 290 26.517 61.649 32.787 1.00 29.89 SD

MOTA 2177 CE MET A 290 28.257 61.423 32.409 1.00 28.24 MOTA 2178 C MET A 290 25.566 66.577 30.999 1.00 26.78

ATOM 2179 0 MET A 290 24.848 66.894 31.953 1.00 28.04 ATOM 2180 N GLY A 291 26.280 67.469 30.311 1.00 26.38 30 ATOM 2181 CA GLY A 291 26.213 68.879 30.666 1.00 25.03

2182 GLY A 291 27.500 69.688 30.697 1.00 24.62 MOTA C MOTA 2183 0 GLY A 291 27.636 70.675 29.967 1.00 23.97 SER A 292 MOTA 2184 Ν 28.442 69.282 31.546 1.00 22.93 MOTA 2185 CA SER A 292 29.711 69.989 31.691 1.00 21.82

35 MOTA 2186 CB SER A 292 30.584 69.289 32.734 1.00 22.87 MOTA 2187 SER A 292 30.945 67.989 32.304 1.00 23.87 OG 30.399 30.512 ATOM 2188 С SER A 292 70.161 1.00 20.97 SER A 292 71.032 ATOM 2189 0 31.381 30.321 1.00 19.65

PHE A 293 1.00 19.55 ATOM 2190 30.231 69.333 29.394 N 40 ATOM 2191 CA PHE A 293 30.942 69.418 28.119 1.00 19.27 MOTA 2192 PHE A 293 31.173 68.021 27.530 1.00 19.08 СВ

ATOM 2193 CG PHE A 293 32.119 67.173 28.329 1.00 18.85 2194 CD1 PHE A 293 31.641 29.286 1.00 19.32 **MOTA** 66.288 2195 33.491 1.00 18.76 MOTA CD2 PHE A 293 67.266 28.127

45 MOTA 2196 CE1 PHE A 293 32.517 65.501 30.032 1.00 19.71 2197 34.379 28.866 **ATOM** CE2 PHE A 293 66.487 1.00 19.38 2198 PHE A 293 33.892 65.601 29.821 1.00 19.67

2199 PHE A 293 30.204 70.271 1.00 19.29 ATOM С 27.091 2200 PHE A 293 30.661 70.420 1.00 17.76 ATOM 0 25.954

50 MOTA 2201 N GLY A 294 29.063 70.825 27.489 1.00 19.35 MOTA 2202 CA GLY A 294 28.295 71.652 26.576 1.00 19.35

ATOM 2203 С GLY A 294 27.538 70.859 25.525 1.00 19.82 ATOM 2204 0 GLY A 294 27.101 71.414 24.515 1.00 20.44

ATOM 2205 Ν LEU A 295 27.386 69.558 25.757 1.00 19.26 55 MOTA 2206 CA LEU A 295 26.670 68.694 24.826 1.00 18.91

		MOTA	2207	CB	LEU	Α	295	27.5	76	67.555	24.344	1.00	19.27	A
		MOTA	2208	CG	LEU	Α	295	28.8	49	67.928	23.578	1.00	19.09	A
		ATOM	2209	CD1				29.6		66.677	23.321		19.10	A
		ATOM	2210	CD2				28.4		68.607	22.261		19.06	A
	5													
	5	MOTA	2211	C	LEU			25.4		68.108	25.525		19.05	A
		MOTA	2212	0	LEU			25.4		68.003	26.749		19.27	A
		ATOM	2213	N	SER	Α	296	24.4	45	67.731	24.742	1.00	19.20	A
		MOTA	2214	CA	SER	Α	296	23.2	229	67.149	25.294	1.00	19.84	А
		MOTA	2215	CB	SER	Α	296	22.2	259	68.252	25.732	1.00	19.56	A
	10	ATOM	2216	OG	SER			21.8		69.062	24.637		19.91	A
		ATOM	2217	C	SER			22.5		66.263	24.253		19.90	A
		ATOM	2218	0	SER			23.0		66.184	23.110		19.47	A
		ATOM	2219	N	CYS			21.4		65.597	24,661		20.34	A
	4-	MOTA	2220	CA	CYS			20.7		64.713	23,776		20.55	А
	15	ATOM	2221	С	CYS			19.4	69	65.383	23.268		21.46	A
		MOTA	2222	0	CYS	Α	297	18.5	79	65.721	24.047	1.00	22.22	A
		ATOM	2223	CB	CYS	Α	297	20.3	94	63.415	24.509	1.00	20.17	A
		MOTA	2224	SG	CYS			21.8		62.324	24.724		19.68	A
College		ATOM	2225	N	PRO			19.3		65.583	21.946		21.80	A
ilea itez	20	ATOM	2226	CD	PRO			20.3		65.215	20.909		21.82	A
	20												22.23	
1000		ATOM	2227	CA	PRO			18.1		66.219	21,346			A
5 43 Apr		MOTA	2228	CB	PRO			18.5		66.349	19.875		22.37	A
4.5 E		MOTA	2229	CG	PRO			19.4		65.187	19.664		22.37	A
		MOTA	2230	С	PRO	Α	298	16.8	92	65.441	21.541	1.00	22.49	A
	25	ATOM	2231	0	PRO	Α	298	15.8	05	66.004	21.411	1.00	22.25	A
		ATOM	2232	N	TRP	Α	299	17.0	106	64.153	21.856	1.00	22.24	A
Ŋ		ATOM	2233	CA	TRP			15.8		63.316	22.069		22.85	A
		ATOM	2234	CB	TRP			16.1		61.845	21.781		21.59	A
9i		ATOM	2235	CG	TRP			16.5		61.619	20.329		20.98	A
	30													
	50	ATOM	2236	CD2	TRP			17.8		61.653	19.747			A
Ŋ		ATOM	2237	CE2	TRP			17.6		61.495	18.351		20.88	A
graps 1 pm		MOTA	2238	CE3	TRP			19.1		61.808	20,270		20.11	А
		ATOM	2239	CD1	TRP	Α	299	15.6	60	61.438	19.288	1.00	20.52	A
		ATOM	2240	NE1	TRP	Α	299	16.3	50	61.364	18.098	1.00	21.16	A
3-4	35	MOTA	2241	CZ2	TRP	Α	299	18.7	81	61.488	17,470	1.00	21.31	A
		ATOM	2242	CZ3	TRP	Α	299	20.2	21	61.801	19.394	1.00	21.02	A
		MOTA	2243	CH2	TRP			20.0		61.642	18.008		20.63	A
		ATOM	2244	C	TRP			15.2		63.495	23.483		23.67	A
		ATOM	2245	0	TRP			14.3		62.767	23.903		23.41	A
	40													
	40	ATOM	2246		LYS			15.8		64.470	24.208		24.99	A
		ATOM	2247		LYS			15.3		64.832	25.558		25.96	A
		MOTA	2248	CB	LYS			13.8		65.087	25.543		27.34	Α
		MOTA	2249	CG	LYS	А	300	13.4	16	66.108	24.516	1.00	29.33	А
		ATOM	2250	CD	LYS	Α	300	11.9	14	66.327	24.577	1.00	31.29	А
	45	ATOM	2251	CE	LYS	Α	300	11.4	54	67.255	23.468	1.00	32.58	А
		MOTA	2252	NZ	LYS			12.2		68.536	23.490		34.20	А
		ATOM	2253	C	LYS			15.6		63.912	26.735		25.72	A
		ATOM	2254	0	LYS			15.2		64.187	27.859		25.71	A
	ΕO	ATOM	2255	N	VAL			16.4		62.821	26.493		25.17	A
	50	ATOM	2256	CA	VAL			16.7		61.917	27.576		24.82	A
		MOTA	2257	СВ	VAL			16.2		60.484	27.323		25.15	А
		MOTA	2258	CG1	VAL	A	301	16.5	43	59.615	28.533	1.00	24.99	А
		ATOM	2259	CG2	VAL	Α	301	14.7	60	60.506	27.034	1.00	25.25	Α
		ATOM	2260	С	VAL			18.2		61.906	27.672		24.84	А
	55	ATOM	2261	0	VAL			18.9		61.397	26.785		24.60	А
				~	٠. ٠.٠٠	4.1	J U T	10.0	. ~	J = • J J 1				- 7

	ATOM	2262	N	PRO	A	302	18.834	62.476	28.756	1.00 24.68	A
	ATOM	2263	CD	PRO	A	302	18.109	63.142	29.855	1.00 24.61	A
	ATOM	2264	CA	PRO	Α	302	20.280	62.547	28.976	1.00 24.22	A
	MOTA	2265	CB	PRO	Α	302	20.403	63.655	30.009	1.00 24.42	A
5	MOTA	2266	CG	PRO	Α	302	19.207	63.391	30.875	1.00 24.71	А
	ATOM	2267	С			302	20.904	61.253	29.470	1.00 23.88	A
	MOTA	2268	0			302	20.224	60.390	30.019	1.00 23.34	А
	ATOM	2269	N			303	22.219	61.096	29.264	1.00 23.79	A
	ATOM	2270	CD			303	23.170	61.936	28.513	1.00 23.70	A
10	ATOM	2271	CA			303	22.853	59.867	29.740	1.00 23.66	A
10	ATOM	2272	CB			303	24.212	59.884	29.043	1.00 23.89	A
	ATOM	2273	CG			303	24.507	61.346	28.915	1.00 23.89	A
	ATOM	2274	C			303	22.968	59.964	31.258	1.00 24.48	A
	ATOM	2275	0								
15						303	23.011	61.065	31.815	1.00 23.16	A
13	MOTA	2276	N	ARG			22.997	58.820	31.927	1.00 24.25	A
	MOTA	2277	CA	ARG			23.115	58.801	33.378	1.00 25.17	A
	MOTA	2278	CB	ARG			21.833	58.251	34.013	1.00 26.88	A
	MOTA	2279	CG	ARG			20.700	59.270	34.090	1.00 29.46	A
20	MOTA	2280	CD	ARG			19.390	58.630	34.533	1.00 32.28	Α
20	MOTA	2281	NE	ARG			18.811	57.784	33.491	1.00 34.83	A
	ATOM	2282	CZ	ARG			18.400	58.229	32.304	1.00 36.04	А
	ATOM	2283	NH1				18.501	59.518	32.000	1.00 36.26	A
	ATOM	2284		ARG			17.886	57.386	31.419	1.00 37.33	A
٥.	MOTA	2285	С	ARG			24.305	57.958	33.789	1.00 24.35	А
25	MOTA	2286	0	ARG	A	304	24.503	56.858	33.276	1.00 23.88	А
	ATOM	2287	N	THR	Α	305	25.102	58.487	34.710	1.00 23.66	А
	MOTA	2288	CA	THR	A	305	26.276	57.779	35.194	1.00 23.22	А
	MOTA	2289	CB	THR	А	305	26.918	58.528	36.375	1.00 23.98	A
	ATOM	2290	OG1	THR	Α	305	27.347	59.823	35.934	1.00 25.33	A
30	ATOM	2291	CG2	THR	Α	305	28.106	57.759	36.920	1.00 23.64	A
	ATOM	2292	С	THR	A	305	25.866	56.385	35.643	1.00 22.81	А
	MOTA	2293	0	THR	Α	305	24.868	56.224	36.346	1.00 22.49	A
	ATOM	2294	N	ILE	Α	306	26.628	55.378	35.227	1.00 22.00	А
	MOTA	2295	CA	ILE	Α	306	26.327	54.000	35.597	1.00 21.93	А
35	ATOM	2296	CB	ILE	Α	306	27.073	52.991	34.696	1.00 21.54	A
	MOTA	2297	CG2	ILE	Α	306	26.633	51.565	35.035	1.00 21.28	А
	MOTA	2298	CG1	ILE	Α	306	26.803	53.301	33.220	1.00 20.62	A
	ATOM	2299	CD1				25.337	53.240	32.822	1.00 20.14	A
	ATOM	2300	С	ILE			26.734	53.747	37.046	1.00 22.59	A
40	ATOM	2301	0	ILE			27.800	54.180	37.487	1.00 21.84	A
	ATOM	2302	N	SER			25.875	53.044	37.779		A
	ATOM	2303	CA	SER			26.132		39.178	1.00 24.13	A
	ATOM	2304	СВ	SER			25.371	53.675	40.094	1.00 23.72	A
	ATOM	2305	OG	SER			23.973	53.550	39.900	1.00 23.17	A
45	ATOM	2306	C	SER			25.659	51.292	39.443	1.00 24.92	A
10	ATOM	2307	0	SER			24.927	50.721	38.639	1.00 24.32	A
	ATOM	2308	N	ASP			26.079	50.721	40.567	1.00 24.44	
	ATOM	2309		ASP				49.363	40.367	1.00 20.08	A
		2310	CA				25.669			1.00 27.21	A
50	ATOM		CB	ASP			26.296	48.955	42.257		A
50	ATOM	2311	CG	ASP			27.785	48.707	42.148	1.00 30.44	A.
	ATOM	2312		ASP			28.394	49.166	41.160	1.00 31.50	A
	ATOM	2313		ASP			28.351	48.060	43.055	1.00 32.13	A
	ATOM	2314	С	ASP			24.152	49.325	41.040	1.00 26.58	A
==	ATOM	2315	0	ASP			23.522		40.858	1.00 26.24	А
55	ATOM	2316	N	GLN	A	309	23.582	50.487	41.331	1.00 26.55	A

											_
	MOTA	2317	CA			309	22.147	50.651	41.504	1.00 26.62	A
	MOTA	2318	CB	GLN	Α	309	21.899	51.936	42.306	1.00 28.47	A
	MOTA	2319	CG	GLN	Α	309	20.524	52.551	42.178	1.00 30.34	A
	ATOM	2320	CD	GLN	Α	309	20.373	53.799	43.039	1.00 32.12	A
5	ATOM	2321	OE1	GLN	Α	309	19.548	54.672	42.757	1.00 32.61	A
	MOTA	2322	NE2			309	21.166	53.881	44.102	1.00 32.15	A
	ATOM	2323	С			309	21.331	50.654	40.210	1.00 25.60	A
	ATOM	2324	0			309	20.210	50.148	40.189	1.00 26.28	A
		2325						51.205	39.131	1.00 23.60	A
10	ATOM		N			310	21.881				
10	ATOM	2326	CA			310	21.142	51.251	37.870	1.00 22.29	A
	MOTA	2327	СВ			310	20.991	52.700	37,388	1.00 21.33	A
	ATOM	2328	CG			310	22.324	53.345	37.034	1.00 20.86	A
	MOTA	2329		ASN			23.260	52.670	36.606	1.00 19.45	A
	MOTA	2330	ND2	ASN	Α	310	22.407	54.661	37,195	1.00 20.66	A
15	MOTA	2331	С	ASN	Α	310	21.744	50.429	36.734	1.00 21.87	A
	ATOM	2332	0	ASN	Α	310	21.162	50.356	35.656	1.00 21.72	A
	MOTA	2333	N	VAL	Α	311	22.897	49.811	36.970	1.00 21.87	А
	MOTA	2334	CA	VAL	Α	311	23.572	49.035	35,929	1.00 21.29	A
	MOTA	2335	CB			311	24.907	48.445	36.446	1.00 21.36	A
20	ATOM	2336		VAL	А	311	24.639	47.333	37.448	1.00 21.68	A
	ATOM	2337		VAL			25.746	47.940	35.270	1.00 20.87	A
	ATOM	2338	C			311	22.741	47.912	35,302	1.00 21.68	A
	ATOM	2339	Ö			311	22.857	47.652	34.104	1.00 20.40	A
	ATOM	2340	N			312	21.906	47.247	36.095	1.00 20.96	A
25		2341	CA	ALA			21.083	46.167	35.557	1.00 20.30	Ā
20	ATOM ATOM						20.368				
		2342	СВ			312		45.424	36,692	1.00 21.66	A
	ATOM	2343	С			312	20.065	46.698	34.552	1.00 21.29	A
	ATOM	2344	0			312	19.860	46.103	33.493	1.00 21.31	A
20	MOTA	2345	N			313	19.431	47.821	34.885	1.00 21.28	A
30	MOTA	2346	CA	ALA			18.431	48.434	34.014	1.00 21.25	А
	MOTA	2347	CB			313	17.637	49.478	34.785	1.00 20.73	A
	MOTA	2348	С			313	19.078	49.077	32.789	1.00 21.41	A
	MOTA	2349	0	ALA	Α	313	18.547	49.003	31.679	1.00 20.99	А
	MOTA	2350	N	ARG	Α	314	20.218	49.722	33.000	1.00 21.35	А
35	ATOM	2351	CA	ARG	Α	314	20.934	50.365	31.901	1.00 21.81	A
	ATOM	2352	CB	ARG	Α	314	22.138	51.139	32.444	1.00 21.63	A
	MOTA	2353	CG	ARG	Α	314	21.790	52.300	33.368	1.00 21.97	А
	MOTA	2354	CD	ARG	А	314	21.440	53.566	32.596	1.00 22.71	A
	ATOM	2355	NE	ARG	Α	314	20.076	53.563	32.081	1.00 23.17	A
40	ATOM	2356	CZ	ARG	Α	314	19.589	54.488	31,260	1.00 23.56	A
	ATOM	2357		ARG			20.357	55.490	30.854	1.00 24.71	А
	ATOM	2358		ARG			18.330	54.422	30.855	1.00 23.76	A
	ATOM	2359	С	ARG			21.406	49.299	30.911	1.00 21.67	A
	ATOM	2360	0	ARG			21.304	49.476	29.695	1.00 21.54	A
45	ATOM	2361	N	SER			21.912	48.190	31.441	1.00 21.71	A
10		2362						47.088	30.612	1.00 22.55	
	ATOM		CA	SER			22.399				A
	ATOM	2363	CB	SER			23.062	46.016	31.481	1.00 21.53	A
	MOTA	2364	OG	SER			24.246	46.507	32.082	1.00 21.43	A
50	MOTA	2365	С	SER			21.266	46.461	29.815	1.00 23.17	А
50	MOTA	2366	0	SER			21.424	46.141	28.637	1.00 23.47	A
	MOTA	2367	N	ASP			20.118	46.287	30.459	1.00 23.63	A
	ATOM	2368	CA	ASP	Α	316	18.971	45.694	29.789	1.00 24.11	А
	MOTA	2369	CB	ASP	Α	316	17.790	45.597	30.759	1.00 26.34	А
	ATOM	2370	CG	ASP	A	316	16.723	44.632	30.283	1.00 28.47	A
55	MOTA	2371	OD1	ASP	Α	316	17.060	43.467	29.973	1.00 29.91	А

		ATOM	2372	OD2	ASP A	4 316	15.544	45.037	30.226	1.00 29.93	A
		MOTA	2373	С	ASP A	316	18.604	46.543	28.573	1.00 23.57	А
		MOTA	2374	0	ASP A	316	18.309	46.012	27.502	1.00 23.16	А
		ATOM	2375	N	LEU Z	317	18.635	47.863	28.737	1.00 22.39	A
	5	MOTA	2376	CA	LEU A		18.321	48.769	27.637	1.00 21.62	А
	_	ATOM	2377	СВ	LEU A		18.253	50.217	28.132	1.00 22.62	A
		ATOM	2378	CG		317	16.882	50.779	28.506	1.00 23.63	A
										1.00 23.03	A
		ATOM	2379		LEU A		17.055	52.191	29.061		
	10	MOTA	2380		LEU A		15.978	50.796	27.281	1.00 23.92	A
	10	ATOM	2381	С	LEU A		19.364	48.682	26,529	1.00 20.23	A
		MOTA	2382	0	LEU A		19.024	48.571	25.352	1.00 19.59	A
		MOTA	2383	N	LEU A		20.634	48.735	26.915	1.00 19.08	A
		ATOM	2384	CA	LEU A		21.726	48.690	25.948	1.00 18.36	A
		MOTA	2385	CB	LEU A	318	23.061	48.959	26.647	1.00 17.32	A
	15	MOTA	2386	CG	LEU A	318	24.279	49.101	25.727	1.00 17.28	A
		ATOM	2387	CD1	LEU A	318	24.040	50.232	24.732	1.00 16.94	A
		MOTA	2388	CD2	LEU A	318	25.527	49.370	26.563	1.00 16.17	A
		MOTA	2389	С	LEU A	318	21.797	47.361	25,208	1.00 18.02	A
il test		ATOM	2390	0	LEU A		21.841	47.326	23.977	1.00 17.93	A
7 1925 4 1925	20	ATOM	2391	N		319	21.816	46.265	25,958	1.00 17.30	А
J.		ATOM	2392	CA		319	21.883	44.948	25,343	1.00 17.29	A
P _e ligi North		ATOM	2393	СВ		319	21.822	43.835	26.408	1.00 17.01	A
		ATOM	2394		VAL A		21.644	42.479	25.742	1.00 17.01	A
1 1700 1		MOTA	2395		VAL A		23.103	43.843	27.232	1.00 17.03	A
	25	ATOM	2396	CGZ		A 319	20.743	44.768	24.345	1.00 17.03	A
191	20										
4021 4021		ATOM	2397	0		319	20.925	44.167	23.289	1.00 17.15	A
		ATOM	2398	N	ASP A		19.571	45.301	24.671	1.00 16.74	A
2) 		ATOM	2399	CA	ASP A		18.422	45.186	23.776	1.00 16.82	A
1	20	ATOM	2400	CB	ASP A		17.181	45.794	24.433	1.00 18.14	A
	30	ATOM	2401	CG	ASP A		15.978	45.788	23.521	1.00 17.78	A
		MOTA	2402		ASP A		15.529	46.885	23.129	1.00 18.82	A
Į.d.		MOTA	2403		ASP A		15.482	44.690	23.195	1.00 19.23	A
		ATOM	2404	С	ASP A		18.717	45.878	22.444	1.00 16.65	A
i pari		MOTA	2405	0	ASP A		18.351	45.380	21.379	1.00 15.66	A
25000	35	MOTA	2406	N	GLN A		19.377	47.031	22.508	1.00 16.01	A
		ATOM	2407	CA	GLN A		19.741	47.762	21.297	1.00 15.56	A
		MOTA	2408	CB	GLN A	321	20.367	49.113	21.652	1.00 15.14	A
		MOTA	2409	CG	GLN A	321	19.358	50.150	22.095	1.00 15.99	A
		ATOM	2410	CD	GLN A	321	18.322	50.421	21.027	1.00 16.42	A
	40	MOTA	2411	OE1	GLN A	321	18.652	50.847	19.917	1.00 15.10	A
		MOTA	2412	NE2	GLN A	321	17.060	50.170	21.352	1.00 16.60	A
		ATOM	2413	С	GLN A		20.742	46.937	20.501	1.00 15.56	А
		ATOM	2414	0	GLN A		20.632	46.816	19.280	1.00 15.19	А
		MOTA	2415	N	TRP A		21.722	46.372	21.203	1.00 15.41	А
	45	ATOM	2416	CA	TRP A		22.742	45.550	20.565	1.00 15.95	А
		ATOM	2417	СВ	TRP A		23.751	45.031	21.594	1.00 15.32	A
		ATOM	2418	CG	TRP A		24.698	46.063	22.138	1.00 16.14	A
		ATOM	2419		TRP A		25.591	45.900	23.246	1.00 16.10	A
		ATOM	2420		TRP A		26.331	47.097	23.369	1.00 16.22	A
	50	ATOM	2421		TRP A		25.839	44.856	24.148	1.00 16.22	A
	50										
		MOTA	2422		TRP A		24.922	47.316	21.649	1.00 16.34	A
		MOTA	2423		TRP A		25.904	47.945	22.382	1.00 16.27	A
		MOTA	2424		TRP A		27.303	47.280	24.360	1.00 16.63	A
	EE	ATOM	2425		TRP A		26.807	45.037	25.134	1.00 16.10	A
	55	ATOM	2426	CH2	TRP A	322	27.526	46.240	25.231	1.00 16.78	A

ATOM 2427 C TRP A 322 22.136 44.356 19.834 ATOM 2428 O TRP A 322 22.475 44.088 18.681 ATOM 2429 N LYS A 323 21.249 43.632 20.510 ATOM 2430 CA LYS A 323 20.624 42.466 19.895 5 ATOM 2431 CB LYS A 323 19.824 41.683 20.942 ATOM 2432 CG LYS A 323 20.741 40.900 21.882 ATOM 2433 CD LYS A 323 19.971 40.046 22.879 ATOM 2434 CE LYS A 323 20.935 39.208 23.709 ATOM 2435 NZ LYS A 323 20.935 39.208 23.709 ATOM 2436 C LYS A 323 20.226 38.348 24.692 ATOM 2437 O LYS A 323 19.759 42.833 18.699 ATOM 2438 N LYS A 323 19.619 42.046 17.766 ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 19.183 44.029 18.713 ATOM 2440 CB LYS A 324 19.183 44.029 18.713 ATOM 2441 CG LYS A 324 17.549 45.694 17.943 ATOM 2442 CD LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.273 ATOM 2443 CE LYS A 324 15.589 46.597 19.273 ATOM 2443 CE LYS A 324 14.397 46.197 20.148	1.00 15.91 1.00 16.68 2 1.00 16.48 2 1.00 17.56 3 1.00 19.27 9 1.00 19.50 2 1.00 21.53 9 1.00 16.16 6 1.00 16.35 1.00 16.26 9 1.00 15.66 1.00 17.11 1.00 17.10 8 1.00 17.89 1 1.00 15.66 1.00 15.66 1.00 15.66 1.00 17.11 1.00 17.89 1.00 15.66 1.00 15.66 1.00 15.66 1.00 15.66 1.00 15.66	A A A A A A A A A A A A A A A A A A A
ATOM 2429 N LYS A 323 21.249 43.632 20.510 ATOM 2430 CA LYS A 323 20.624 42.466 19.895 5 ATOM 2431 CB LYS A 323 19.824 41.683 20.942 ATOM 2432 CG LYS A 323 20.741 40.900 21.882 ATOM 2433 CD LYS A 323 19.971 40.046 22.875 ATOM 2434 CE LYS A 323 20.935 39.208 23.705 ATOM 2435 NZ LYS A 323 20.226 38.348 24.692 ATOM 2436 C LYS A 323 19.759 42.833 18.695 ATOM 2437 O LYS A 323 19.619 42.046 17.766 ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 19.183 44.029 18.713 ATOM 2440 CB LYS A 324 18.377 44.460 17.575 ATOM 2441 CG LYS A 324 17.549 45.694 17.945 ATOM 2442 CD LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.275 ATOM 2443 CE LYS A 324 15.589 46.597 19.275 ATOM 2443 CE LYS A 324 14.397 46.197 20.146	1.00 16.68 1.00 16.48 1.00 17.56 1.00 19.27 1.00 19.50 1.00 21.53 1.00 16.16 1.00 16.35 1.00 16.26 1.00 15.66 1.00 17.11 1.00 17.10 1.00 17.89 1.00 15.66 1.00 15.66 1.00 15.66 1.00 17.89 1.00 15.66 1.00 15.66 1.00 15.66 1.00 17.89 1.00 15.66 1.00 15.66 1.00 15.66	A A A A A A A A A A A A A A A A A A A
THOM 2430 CA LYS A 323 20.624 42.466 19.897 THOM 2431 CB LYS A 323 19.824 41.683 20.942 ATOM 2432 CG LYS A 323 20.741 40.900 21.882 ATOM 2433 CD LYS A 323 19.971 40.046 22.879 ATOM 2434 CE LYS A 323 20.935 39.208 23.709 ATOM 2435 NZ LYS A 323 20.226 38.348 24.692 ATOM 2436 C LYS A 323 19.759 42.833 18.699 ATOM 2437 O LYS A 323 19.619 42.046 17.766 ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 19.183 44.029 18.713 ATOM 2440 CB LYS A 324 18.377 44.460 17.579 ATOM 2441 CG LYS A 324 17.549 45.694 17.943 ATOM 2442 CD LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.279 ATOM 2443 CE LYS A 324 15.589 46.597 19.279 ATOM 2443 CE LYS A 324 14.397 46.197 20.148	1.00 16.68 1.00 16.48 1.00 17.56 1.00 19.27 1.00 19.50 1.00 21.53 1.00 16.16 1.00 16.35 1.00 16.26 1.00 15.66 1.00 17.11 1.00 17.10 1.00 17.89 1.00 15.66 1.00 15.66 1.00 15.66 1.00 17.89 1.00 15.66 1.00 15.66 1.00 15.66 1.00 17.89 1.00 15.66 1.00 15.66 1.00 15.66	A A A A A A A A A A A A A A A A
5 ATOM 2431 CB LYS A 323 19.824 41.683 20.942 ATOM 2432 CG LYS A 323 20.741 40.900 21.882 ATOM 2433 CD LYS A 323 19.971 40.046 22.879 ATOM 2434 CE LYS A 323 20.935 39.208 23.709 ATOM 2435 NZ LYS A 323 20.226 38.348 24.692 10 ATOM 2436 C LYS A 323 19.759 42.833 18.699 ATOM 2437 O LYS A 323 19.619 42.046 17.766 ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 19.183 44.029 18.713 ATOM 2440 CB LYS A 324 18.377 44.460 17.579 ATOM 2441 CG LYS A 324 17.549 45.694 17.943 ATOM 2442 CD LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.279 ATOM 2443 CE LYS A 324 14.397 46.197 20.149	2 1.00 16.48 2 1.00 17.56 3 1.00 19.27 3 1.00 19.50 4 1.00 21.53 5 1.00 16.16 6 1.00 16.35 7 1.00 15.66 7 1.00 15.66 8 1.00 17.11 1.00 17.10 1.00 17.89 1 1.00 15.66 1.00 15.66 1.00 15.66 1.00 17.89 1 1.00 15.66 1.00 15.66 1.00 15.66 1.00 17.89 1 1.00 15.66 1.00 15.66 1.00 15.66 1.00 15.66	A A A A A A A A A A A A A A A A
ATOM 2432 CG LYS A 323 20.741 40.900 21.882 ATOM 2433 CD LYS A 323 19.971 40.046 22.879 ATOM 2434 CE LYS A 323 20.935 39.208 23.709 ATOM 2435 NZ LYS A 323 20.226 38.348 24.692 10 ATOM 2436 C LYS A 323 19.759 42.833 18.699 ATOM 2437 O LYS A 323 19.619 42.046 17.766 ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 19.183 44.029 18.713 ATOM 2440 CB LYS A 324 18.377 44.460 17.579 ATOM 2441 CG LYS A 324 17.549 45.694 17.943 ATOM 2442 CD LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.279 ATOM 2443 CE LYS A 324 14.397 46.197 20.149	2 1.00 17.56 9 1.00 19.27 1.00 19.50 2 1.00 21.53 9 1.00 16.16 6 1.00 16.35 1.00 16.26 9 1.00 15.66 1.00 17.11 1.00 17.10 1.00 17.89 1 1.00 15.66 1.00 15.66 1.00 15.66 1.00 17.89 1 1.00 15.66 1.00 15.66 1.00 15.66 1.00 17.89 1 1.00 18.13 1.00 15.66 1.00 15.66 1.00 15.66	A A A A A A A A A A A
ATOM 2433 CD LYS A 323 19.971 40.046 22.879 ATOM 2434 CE LYS A 323 20.935 39.208 23.709 ATOM 2435 NZ LYS A 323 20.226 38.348 24.692 10 ATOM 2436 C LYS A 323 19.759 42.833 18.699 ATOM 2437 O LYS A 323 19.619 42.046 17.766 ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 19.183 44.029 18.713 ATOM 2440 CB LYS A 324 17.549 45.694 17.943 ATOM 2441 CG LYS A 324 17.549 45.694 17.943 ATOM 2442 CD LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.279 ATOM 2443 CE LYS A 324 14.397 46.197 20.149	9 1.00 19.27 9 1.00 19.50 1.00 21.53 9 1.00 16.16 6 1.00 16.35 3 1.00 16.26 9 1.00 15.66 3 1.00 17.11 1.00 17.10 8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.66 1.00 17.89 1 1.00 18.13 1 1.00 15.66 3 1.00 15.66 3 1.00 15.66	A A A A A A A A A A
ATOM 2434 CE LYS A 323 20.935 39.208 23.709 ATOM 2435 NZ LYS A 323 20.226 38.348 24.692 10 ATOM 2436 C LYS A 323 19.759 42.833 18.699 ATOM 2437 O LYS A 323 19.619 42.046 17.766 ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 19.183 44.029 18.713 ATOM 2440 CB LYS A 324 17.549 45.694 17.943 ATOM 2441 CG LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.273 ATOM 2443 CE LYS A 324 14.397 46.197 20.149	9 1.00 19.50 2 1.00 21.53 9 1.00 16.16 6 1.00 16.35 3 1.00 15.66 9 1.00 15.63 1.00 17.11 1.00 17.10 8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.66 3 1.00 15.66 1.00 17.89 1 1.00 18.13 1.00 15.66 3 1.00 15.71 1.00 14.87 1.00 14.73	A A A A A A A A A
ATOM 2435 NZ LYS A 323 20.226 38.348 24.692 10 ATOM 2436 C LYS A 323 19.759 42.833 18.693 ATOM 2437 O LYS A 323 19.619 42.046 17.766 ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 18.377 44.460 17.573 ATOM 2440 CB LYS A 324 17.549 45.694 17.943 ATOM 2441 CG LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.273 ATOM 2443 CE LYS A 324 14.397 46.197 20.146	2 1.00 21.53 9 1.00 16.16 1.00 16.35 3 1.00 16.26 9 1.00 15.66 3 1.00 17.11 1.00 17.10 8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.66 1.00 15.66 1.00 15.71 1.00 14.87 1.00 14.73	A A A A A A A A A
10 ATOM 2436 C LYS A 323 19.759 42.833 18.699 ATOM 2437 O LYS A 323 19.619 42.046 17.766 ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 18.377 44.460 17.579 ATOM 2440 CB LYS A 324 17.549 45.694 17.943 ATOM 2441 CG LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.279 ATOM 2443 CE LYS A 324 14.397 46.197 20.146	9 1.00 16.16 6 1.00 16.35 3 1.00 16.26 9 1.00 15.66 3 1.00 17.11 5 1.00 17.10 8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.11 1.00 14.87 3 1.00 14.73	A A A A A A A A
ATOM 2437 O LYS A 323 19.619 42.046 17.766 ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 18.377 44.460 17.579 ATOM 2440 CB LYS A 324 17.549 45.694 17.943 ATOM 2441 CG LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.279 ATOM 2443 CE LYS A 324 14.397 46.197 20.146	5 1.00 16.35 3 1.00 16.26 9 1.00 15.66 3 1.00 17.11 5 1.00 17.10 8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.11 1.00 14.87 3 1.00 14.73	A A A A A A A
ATOM 2438 N LYS A 324 19.183 44.029 18.713 ATOM 2439 CA LYS A 324 18.377 44.460 17.579 ATOM 2440 CB LYS A 324 17.549 45.694 17.943 ATOM 2441 CG LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.279 ATOM 2443 CE LYS A 324 14.397 46.197 20.146	3 1.00 16.26 9 1.00 15.66 3 1.00 15.63 6 1.00 17.11 5 1.00 17.10 8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.11 1.00 14.87 3 1.00 14.73	A A A A A A A
ATOM 2439 CA LYS A 324 18.377 44.460 17.579 ATOM 2440 CB LYS A 324 17.549 45.694 17.945 15 ATOM 2441 CG LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.279 ATOM 2443 CE LYS A 324 14.397 46.197 20.148	9 1.00 15.66 3 1.00 15.63 6 1.00 17.11 5 1.00 17.10 8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.11 1.00 14.87 3 1.00 14.73	A A A A A A A
ATOM 2440 CB LYS A 324 17.549 45.694 17.943 15 ATOM 2441 CG LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.273 ATOM 2443 CE LYS A 324 14.397 46.197 20.148	3 1.00 15.63 6 1.00 17.11 5 1.00 17.10 8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.11 6 1.00 14.87 3 1.00 14.73	A A A A A A
15 ATOM 2441 CG LYS A 324 16.381 45.363 18.866 ATOM 2442 CD LYS A 324 15.589 46.597 19.275 ATOM 2443 CE LYS A 324 14.397 46.197 20.146	6 1.00 17.11 5 1.00 17.10 8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.11 6 1.00 14.87 3 1.00 14.73	A A A A A
ATOM 2442 CD LYS A 324 15.589 46.597 19.275 ATOM 2443 CE LYS A 324 14.397 46.197 20.145	5 1.00 17.10 8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.11 6 1.00 14.87 3 1.00 14.73	A A A A A
ATOM 2442 CD LYS A 324 15.589 46.597 19.275 ATOM 2443 CE LYS A 324 14.397 46.197 20.146	8 1.00 17.89 1 1.00 18.13 2 1.00 15.66 3 1.00 15.11 6 1.00 14.87 3 1.00 14.73	A A A A
ATOM 2443 CE LYS A 324 14.397 46.197 20.148	1 1.00 18.13 2 1.00 15.66 3 1.00 15.11 6 1.00 14.87 3 1.00 14.73	A A A
	2 1.00 15.66 3 1.00 15.11 6 1.00 14.87 3 1.00 14.73	A A A
ATOM 2444 NZ LYS A 324 13.676 47.384 20.69	3 1.00 15.11 6 1.00 14.87 3 1.00 14.73	A A
	6 1.00 14.87 3 1.00 14.73	A
20 ATOM 2446 O LYS A 324 19.040 44.376 15.27	3 1.00 14.73	
ATOM 2447 N LYS A 325 20.429 45.422 16.69		A
21 201 45 733 15 64	8 1.00 13.74	
32 545 46 579 16 19		A
2450 CC TVC 7 225 23 442 47 177 15.11	8 1.00 13.46	A
25 ATOM 2451 CD LYS A 325 24.584 48.006 15.70 ATOM 2452 CE LYS A 325 25.403 48.663 14.60	7 1.00 12.93	A
ATOM 2452 CE LYS A 325 25.403 48.663 14.60	0 1.00 13.37	A
ATOM 2453 NZ LYS A 325 26.596 49.381 15.12	6 1.00 13.83	A
ATOM 2454 C LYS A 325 21.938 44.422 15.07	4 1.00 15.45	A
AION 2431 0 LIO II 0 L	2 1.00 15.46	A
ATOM 2433 0 HIS M 223 00 000 42 464 15 06		A
30 ATOM 2456 N ALA A 326 22.202 43.464 13.96 ATOM 2457 CA ALA A 326 22.733 42.159 15.57		A
ATOM 2457 OR THE 200 22 077 41 306 16 81		A
ATOM 2450 C NIA 7 326 21 835 41 400 14.58		A
AION 2409 C HIMI II 320		A
Alon 2400 0 mmil il 320		A
JJ RION 2401 N CENT 10 CO1 41 020 12 70		A
AIOM 2402 CA CLO 11 321 14 00		A
ATOM 2405 0B 0B 0B 17 000 40 E72 15 25		A
A10M 2404 CG GEO II 327		A
ATOM 2403 CD GHO 11 32 / 17 TO 12		А
TO ATOM 2400 021 020 11 020 10 004 00 010 15 67		А
ATOM 2407 OE2 OE0 11 000 41 400 12 24		A
ATOM 2400 C CES 11 24		A
ATOM 2409 0 GBS 12 00		A
111011 2170 17 220 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10		A
TO ATOM 21/1 OH 220 H 517 10 66		A
ATOM 2472 CB BB0 11 320 11 35		A
ATOM 2473 CG LEU A 328 19.804 45.322 11.35		A
ATOM 2474 CD1 LEU A 328 20.035 46.811 11.13		A
ATOM 2475 CB2 BB6 H 526		A
50 ATOM 2476 C LEU A 328 21.968 42.337 10.02		A
ATOM 2477 O LEU A 328 22.224 42.542 8.84		
ATOM 2478 N TYR A 329 22.713 41.550 10.80		A
ATOM 2479 CA TYR A 329 23.906 40.874 10.29		A
ATOM 2480 CB TYR A 329 25.164 41.451 10.95		
55 ATOM 2481 CG TYR A 329 25.358 42.921 10.63	35 1.00 14.92	A

		ATOM	2482	CD1	TYR .	A 329)	24.740	43.912	11.404	1.00 14.49) A
		MOTA	2483	CE1	TYR .	4 329)	24.861	45.262	11.075	1.00 14.49) A
		ATOM	2484		TYR			26.107	43.322	9.526	1.00 14.27	
	_	ATOM	2485		TYR .			26.233	44.668	9.188	1.00 14.38	
	5	MOTA	2486	CZ	TYR .			25.608	45.632	9.966	1.00 14.49	
		MOTA	2487	OH	TYR .	A 329)	25.722	46.963	9.632	1.00 14.95	5 A
		ATOM	2488	С	TYR .	A 329)	23.844	39.351	10.451	1.00 15.24	l A
		MOTA	2489	0	TYR .			22.958	38.826	11.131	1.00 15.30	
		ATOM	2490	N	ARG .			24.792	38.649	9.833	1.00 15.25	
	10											
	10	ATOM	2491	CA	ARG .			24.797	37.189	9.841	1.00 15.68	
		MOTA	2492	CB	ARG .			25.167	36.688	8.439	1.00 15.44	
		MOTA	2493	CG	ARG .	A 330	}	24.273	37.268	7.350	1.00 15.40	
		MOTA	2494	CD	ARG .	A 330)	24.497	36.617	5.990	1.00 15.70) A
		MOTA	2495	NE	ARG .	A 330)	23.578	37.185	5.008	1.00 16.37	7 A
	15	MOTA	2496	CZ	ARG .			23.309	36.645	3.823	1.00 17.09	
		ATOM	2497		ARG .			23.889	35.509	3.454	1.00 16.94	
		ATOM	2498		ARG			22.446	37.239	3.007	1.00 16.97	
		MOTA	2499	С	ARG			25.618	36.416	10.876	1.00 16.06	
	•	MOTA	2500	0	ARG .			25.376	35.226	11.071	1.00 16.42	
H	20	MOTA	2501	N	THR .			26.586	37.053	11.528	1.00 16.07	
		MOTA	2502	CA	THR .	A 331		27.382	36.329	12.521	1.00 15.58	3 A
		MOTA	2503	CB	THR .	A 331		28.900	36.578	12.352	1.00 15.84	l A
191		ATOM	2504		THR 2			29.222	37.895	12.813	1.00 14.68	
(mag		ATOM	2505	CG2				29.314	36.436	10.888	1.00 15.90	
	25	ATOM	2506	C	THR			27.005	36.735	13.938	1.00 15.84	
	25											
E GE		ATOM	2507	0	THR A			26.157	37.607	14.141	1.00 15.86	
		ATOM	2508	N	ASN .			27.646	36.100	14.915	1.00 16.04	
23		MOTA	2509	CA	ASN .			27.394	36.403	16.318	1.00 16.70	
		MOTA	2510	CB	ASN .	332		27.380	35.108	17.151	1.00 17.69) A
1945	30	MOTA	2511	CG	ASN A	A 332)	28.749	34.452	17.251	1.00 19.65	5 A
Real R		MOTA	2512	OD1	ASN I	A 332		29.525	34.447	16.295	1.00 19.62	2 A
100		ATOM	2513		ASN I			29.043	33.876	18.416	1.00 20.32	
		ATOM	2514	C	ASN .			28.458	37.373	16.837	1.00 16.36	
		ATOM	2515		ASN A			28.714	37.454	18.041	1.00 16.17	
giran.	35			0								
Ĭ (++++	33	MOTA	2516	И	VAL			29.076	38.106	15.911	1.00 15.18	
		ATOM	2517	CA	VAL I			30.095	39.094	16.253	1.00 14.95	
		MOTA	2518	СВ	VAL I			31.409	38.846	15.476	1.00 15.34	
		MOTA	2519	CG1	VAL A	A 333		32.449	39.892	15.866	1.00 15.33	3 A
		ATOM	2520	CG2	VAL 2	A 333	}	31.926	37.448	15.767	1.00 15.82	. A
	40	MOTA	2521	C	VAL I	A 333	,	29.520	40.453	15.857	1.00 14.77	Α
		ATOM	2522	0	VAL A			29.192	40.674	14.691	1.00 15.06	
		ATOM	2523	N	LEU Z			29.406	41.361	16.823	1.00 13.87	
			2524		LEU A			28.814	42.670	16.568	1.00 13.41	
		ATOM		CA								
	4 =	ATOM	2525	СВ	LEU A			27.608	42.860	17.494	1.00 13.88	
	45	MOTA	2526	CG	LEU A			26.789	44.140	17.337	1.00 13.89	
		ATOM	2527	CD1	LEU A	A 334		26.070	44.123	15.992	1.00 14.77	A
		MOTA	2528	CD2	LEU A	A 334		25.787	44.244	18.479	1.00 13.69) A
		ATOM	2529	C	LEU A	A 334		29.758	43.865	16.720	1.00 13.04	A
		ATOM	2530	0	LEU A			30.475	43.981	17.713	1.00 12.82	
	50	ATOM	2531	N	LEU A			29.735	44.758	15.735	1.00 12.97	
	50		2532					30.579	45.954	15.759	1.00 12.73	
		MOTA		CA	LEU A							
		ATOM	2533	CB	LEU A			31.079	46.285	14.349	1.00 12.26	
		ATOM	2534	CG	LEU A			31.843	47.608	14.216	1.00 12.34	
		MOTA	2535		LEU A			33.151	47.533	14.988	1.00 12.28	
	55	MOTA	2536	CD2	LEU A	335		32.107	47.900	12.749	1.00 12.78	B A

	ATOM	2537	С	LEU	Δ	335	29.795	47.144	16.299	1.00 12.79	A
	ATOM	2538	Ö	LEU			28.723	47.466	15.793	1.00 13.65	
	ATOM	2539	N	ILE			30.337	47.797	17.324	1.00 12.68	A
	MOTA	2540	CA	ILE			29.694	48.961	17.925	1.00 12.47	
5	MOTA	2541	СВ	ILE			29.181	48.659	19.366	1.00 11.61	A
•	MOTA	2542	CG2				28.538	49.904	19.969	1.00 12.59	
	ATOM	2543	CG1				28.157	47.516	19.342	1.00 12.32	
	ATOM	2544	CD1	ILE			26.853	47.851	18.625	1.00 12.32	
	MOTA	2545	C	ILE			30.679	50.127	18.003	1.00 12.15	A
10	ATOM	2546	0	ILE			31.429	50.253	18.965	1.00 12.13	
10	MOTA	2547	N	PRO			30.710	50.981	16.970	1.00 12.42	A
	MOTA	2548	CD	PRO			30.050	50.890	15.657	1.00 12.21	
	ATOM	2549	CA	PRO			31.636	52.118	17.017	1.00 12.00	
	ATOM	2550	CB	PRO			31.406	52.809	15.674	1.00 12.00	
15	ATOM	2551	CG	PRO			30.989	51.687	14.776	1.00 11.02	
10	ATOM	2552	C	PRO			31.255	53.032	18.181	1.00 11.73	
	ATOM	2553	0	PRO			30.079	53.032	18.521	1.00 11.04	A A
	ATOM	2554	N	LEU			32.247	53.678	18.789	1.00 12.03	
	ATOM	2555	CA	LEU			31.991	54.601	19.894	1.00 11.30	
20		2556	CB				32.392	53.982	21.239	1.00 12.19	
20	ATOM			LEU LEU						1.00 11.63	A
	MOTA	2557	CG				32.104	54.867	22.461		A
	MOTA	2558		LEU			30.602	54.924	22.705	1.00 12.80	
	MOTA	2559		LEU			32.820	54.318	23.695	1.00 12.39	
25	MOTA	2560	C	LEU			32.800	55.874	19.670	1.00 12.31	A
25	MOTA	2561	0	LEU			33.941	55.967	20.107	1.00 13.27	A
	ATOM	2562	N	GLY			32.208	56.850	18.987	1.00 12.98	A
	ATOM	2563	CA	GLY			32.922	58.092	18.734	1.00 12.65	A
	ATOM	2564	C	GLY			32.129	59.114	17.943	1.00 13.02	
30	ATOM	2565	0	GLY			30.971	58.888	17.591	1.00 13.12	A
30	ATOM	2566	N	ASP			32.768	60.245	17.660	1.00 12.52	A
	ATOM	2567	CA	ASP			32.141	61.331	16.921	1.00 12.74	A
	ATOM	2568	CB	ASP			31.162	62.075	17.831	1.00 12.87	A
	ATOM	2569	CG	ASP			30.042	62.758	17.065	1.00 13.84	A
35	ATOM	2570		ASP			30.240	63.114	15.881	1.00 14.29	A
33	ATOM	2571 2572		ASP			28.961	62.954	17.662	1.00 13.88	A
	MOTA		С	ASP			33.265	62.273	16.475	1.00 12.96	A
	ATOM	2573	0	ASP			34.445	61.955	16.636	1.00 12.55	A
	ATOM	2574	N	ASP			32.903	63.432	15.935	1.00 12.80	A
40	MOTA	2575	CA	ASP			33.898	64.397	15.466	1.00 13.10	A
40	MOTA	2576	CB	ASP			33.214	65.596	14.801	1.00 12.71	A
	ATOM	2577	CG	ASP			32.535	65.232	13.494	1.00 12.61	A
	ATOM	2578		ASP			32.480	64.029	13.170	1.00 12.74	A
	ATOM	2579		ASP			32.057	66.153	12.796	1.00 12.47	A
45	ATOM	2580	С	ASP			34.809	64.909	16.573	1.00 12.92	A
45	ATOM	2581	0	ASP			34.341	65.381	17.611	1.00 13.34	A
	ATOM	2582	N	PHE			36.113	64.815	16.330	1.00 12.69	A
	MOTA	2583	CA	PHE			37.127	65.274	17.265	1.00 12.79	A
	ATOM	2584	CB	PHE			37.318	66.788	17.123	1.00 12.64	A
50	ATOM	2585	CG	PHE			37.856	67.209	15.779	1.00 12.64	A
50	ATOM	2586		PHE			36.992	67.542	14.737	1.00 13.03	A
	ATOM	2587		PHE			39.230	67.258	15.551	1.00 13.23	A
	MOTA	2588		PHE			37.487	67.920	13.486	1.00 12.67	A
	MOTA	2589		PHE			39.737	67.633	14.306	1.00 13.15	A
er.	ATOM	2590	CZ	PHE			38.863	67.965	13.271	1.00 13.27	A
55	MOTA	2591	С	PHE	A	342	36.831	64.917	18.718	1.00 13.53	A

The first the fi

	MOTA	2592	0	PHE	A :	342	36.970	65.752	19.618	1.00	12.91	А
	MOTA	2593	N	ARG			36.428	63.669	18.937	1.00	13.14	A
	MOTA	2594	CA	ARG			36.133	63.188	20.279	1.00	14.72	A
	ATOM	2595	СВ	ARG			35.127	62.032	20.227	1.00		A
5	ATOM	2596	CG	ARG			33.681	62.469	20.032	1.00		A
_	ATOM	2597	CD	ARG			33.260	63.441	21.137	1.00		А
	MOTA	2598	NE	ARG			31.833	63.745	21.098	1.00		A
	MOTA	2599	CZ	ARG			30.891	63.011	21.682	1.00		A
	MOTA	2600	NH1	ARG			31.216	61.916	22.360	1.00		A
10	ATOM	2601	NH2	ARG			29.619	63.377	21.592	1.00		A
10	ATOM	2602	C	ARG			37.398	62.727	20.994	1.00		A
	ATOM	2603	0	ARG			38.469	62.616	20.399	1.00		A
	ATOM	2604	N	PHE			37.253	62.456	22.287	1.00		A
	ATOM	2605	CA	PHE			38.349	62.006	23.138	1.00		A
15								60.647	22.662	1.00		A
13	MOTA	2606	CB	PHE			38.863			1.00		A
	ATOM	2607	CG	PHE			37.857	59.550	22.817			
	ATOM	2608		PHE			37.093	59.128	21.735	1.00		A
	MOTA	2609		PHE			37.624	58.979	24.067	1.00		A
20	ATOM	2610		PHE			36.110	58.157	21.893	1.00		A
20	MOTA	2611		PHE			36.643	58.006	24.235	1.00		A
	MOTA	2612	CZ	PHE			35.883	57.595	23.144	1.00		A
	ATOM	2613	C	PHE			39.484	63.009	23.223	1.00		A
	MOTA	2614	0	PHE			40.659	62.659	23.087	1.00		A
0-	MOTA	2615	N	LYS			39.110	64.259	23.478	1.00		A
25	MOTA	2616	CA	LYS			40.055	65.358	23.593	1.00		A
	MOTA	2617	CB	LYS			39.408	66.638	23.064	1.00		A
	MOTA	2618	CG	LYS			40.277	67.872	23.144	1.00		A
	ATOM	2619	CD	LYS			39.499	69.088	22.660	1.00		A
20	MOTA	2620	CE	LYS			40.312	70.360	22.774	1.00		A
30	MOTA	2621	ΝZ	LYS			39.503	71.536	22.349	1.00		A
	MOTA	2622	С	LYS			40.500	65.568	25.041	1.00		A
	MOTA	2623	0	LYS			41.691	65.570	25.333	1.00		A
	MOTA	2624	N	GLN			39.539	65.734	25.943	1.00		A
0-	MOTA	2625	CA	GLN			39.835	65.967	27.353	1.00		A
35	MOTA	2626	CB	GLN			38.714	66.797	27.977	1.00		A
	ATOM	2627	CG	GLN			38.454	68.110	27.271	1.00		A
	MOTA	2628	CD	GLN			37.092	68.679	27.605	1.00		А
	MOTA	2629	OE1	GLN			36.791	68.960	28.767	1.00		A
	MOTA	2630	NE2	GLN	Α.	346	36.253	68.847	26.585	1.00	30.40	A
40	MOTA	2631	С	GLN	Α :	346	40.008	64.682	28.158	1.00		A
	MOTA	2632	0	GLN	Α .	346	39.354	63.675	27.887	1.00		A
	MOTA	2633	N	ASN	Α.	347	40.887	64.725	29.156	1.00	22.84	A
	MOTA	2634	CA	ASN	Α.	347	41.121	63.566	30.012	1.00		A
	MOTA	2635	СВ	ASN	Α :	347	42.124	63.903	31.120	1.00	25.05	A
45	ATOM	2636	CG	ASN	Α :	347	43.495	64.219	30.584	1.00	27.25	A
	MOTA	2637	OD1	ASN	Α.	347	44.103	63.404	29.891	1.00	28.96	A
	ATOM	2638	ND2	ASN	Α.	347	43.999	65.410	30.902	1.00	28.82	A
	ATOM	2639	С	ASN	Α .	347	39.804	63.156	30.651	1.00	21.95	A
	MOTA	2640	0	ASN	Α :	347	39.491	61.969	30.759	1.00	21.83	A
50	ATOM	2641	N	THR			39.037	64.154	31.077	1.00	20.97	A
	ATOM	2642	CA	THR			37.752	63.912	31.711	1.00	20.12	Α
	MOTA	2643	СВ	THR			37.073	65.235	32.104	1.00	21.04	A
	ATOM	2644	OG1				37.007	66.100	30.961	1.00		A
	ATOM	2645		THR			37.857	65.921	33.216	1.00		A
55	ATOM	2646	С	THR			36.837	63.129	30.781	1.00		А

296
270

	ATOM	2647	0	THR	Α	348	36.039	62.306	31.233	1.00 18.30	А
	MOTA	2648	N	GLU	A	349	36.960	63.381	29.479	1.00 17.43	A
	MOTA	2649	CA	GLU			36.142	62.674	28.500	1.00 17.07	A
_	ATOM	2650	CB	GLU			36.267	63.306	27.110	1.00 16.61	Α
5	MOTA	2651	CG	GLU			35.463	62.551	26.052	1.00 16.75	A
	MOTA	2652	CD	GLU			35.593	63.135	24.657	1.00 15.83	A
	MOTA	2653	OE1	GLU			35.037	62.529	23.717	1.00 15.90	A
	ATOM	2654	OE2	GLU	A	349	36.242	64.188	24.498	1.00 16.08	A
	ATOM	2655	С	GLU			36.554	61.207	28.423	1.00 16.51	A
10	MOTA	2656	0	GLU			35.700	60.323	28.379	1.00 16.14	А
	MOTA	2657	N	TRP			37.859	60.946	28.394	1.00 16.19	A
	MOTA	2658	CA	TRP			38.334	59.570	28.338	1.00 16.10	A
	MOTA	2659	CB	TRP	A	350	39.864	59.509	28.341	1.00 15.20	A
	MOTA	2660	CG	TRP	Α	350	40.487	59.770	27.003	1.00 15.14	A
15	ATOM	2661	CD2	TRP	A	350	40.782	58.797	25.996	1.00 15.64	A
	ATOM	2662	CE2	TRP	Α	350	41.322	59.490	24.888	1.00 14.56	A
	MOTA	2663	CE3	TRP	Α	350	40.643	57.404	25.920	1.00 15.02	A
	MOTA	2664	CD1	TRP			40.850	60.983	26.481	1.00 15.56	А
	MOTA	2665	NE1	TRP	A	350	41.352	60.821	25.212	1.00 14.85	A
20	ATOM	2666	CZ2	TRP			41.719	58.837	23.718	1.00 14.95	A
	MOTA	2667	CZ3	TRP			41.039	56.754	24.754	1.00 15.06	A
	ATOM	2668	CH2	TRP			41.570	57.471	23.669	1.00 15.38	A
	ATOM	2669	С	TRP			37.798	58.801	29.539	1.00 16.58	A
	ATOM	2670	0	TRP			37.298	57.683	29.404	1.00 15.92	A
25	MOTA	2671	N	ASP			37.901	59.411	30.714	1.00 17.32	А
	MOTA	2672	CA	ASP			37.428	58.774	31.937	1.00 18.70	A
	ATOM	2673	CB	ASP			37.735	59.641	33.162	1.00 19.65	A
	MOTA	2674	CG	ASP			39.210	59.706	33.481	1.00 21.48	А
20	MOTA	2675		ASP			39.918	58.701	33.264	1.00 22.62	A
30	ATOM	2676		ASP			39.656	60.762	33.970	1.00 23.82	A
	ATOM	2677	С	ASP			35.938	58.481	31.931	1.00 18.28	A
	ATOM	2678	0	ASP			35.519	57.360	32.238	1.00 18.60	A
	MOTA	2679	N	VAL			35.134	59.484	31.589	1.00 18.03	А
0.5	MOTA	2680	CA	VAL			33.691	59.309	31.606	1.00 17.92	A
35	ATOM	2681	CB	VAL			32.958	60.655	31.351	1.00 18.50	A
	ATOM	2682	CG1				32.882	60.956	29.862	1.00 18.78	A
	MOTA	2683	CG2	VAL			31.578	60.619	31.986	1.00 19.34	А
	MOTA	2684	С	VAL			33.198	58.236	30.633	1.00 17.67	A
40	ATOM	2685	0	VAL			32.236	57.526	30.927	1.00 16.91	A
40	MOTA	2686	N	GLN			33.850	58.103	29.482	1.00 16.45	A
	ATOM	2687	CA	GLN			33.436	57.080	28.528	1.00 15.95	A
	MOTA	2688	CB	GLN			33.941	57.415	27.114	1.00 16.08	A
	ATOM	2689	CG	GLN			33.384	58.719	26.529	1.00 16.37	A
45	ATOM	2690	CD	GLN			31.939	58.608	26.049	1.00 17.19	A
45	ATOM	2691		GLN			31.114	57.935	26.666	1.00 16.64	A
	MOTA	2692		GLN			31.626	59.291	24.948	1.00 16.97	A
	ATOM	2693	C	GLN			33.960	55.705	28.964	1.00 15.87	A
	ATOM	2694	0	GLN			33.206	54.732	28.994	1.00 16.13	A
ΕO	ATOM	2695	N	ARG			35.242	55.627	29.317	1.00 15.43	A
50	ATOM	2696	CA	ARG			35.837	54.356	29.732	1.00 15.91	A
	ATOM	2697	CB	ARG			37.353	54.498	29.916	1.00 15.77	A
	ATOM	2698	CG	ARG			38.025	53.234	30.454	1.00 16.60	A
	ATOM	2699	CD	ARG			39.527	53.419	30.652	1.00 17.32	A
55	ATOM	2700	NE	ARG			39.844	54.426	31.664	1.00 18.44	A
55	ATOM	2701	CZ	ARG	А	354	39.642	54.276	32.971	1.00 18.97	A

		MOTA	2702	NH1	ARG A	354	39.118	53.153	33.444	1.00 18.45	A
		MOTA	2703	NH2	ARG A	354	39.974	55.248	33.810	1.00 18.25	A
		ATOM	2704	С	ARG A		35.247	53.756	31.006	1.00 16.32	А
		MOTA	2705	0	ARG A		34.881	52.581	31.029	1.00 15.52	A
	5	ATOM	2706	N	VAL A		35.159	54.560	32.064	1.00 16.75	A
	J	MOTA	2707		VAL A		34.639	54.079	33.342	1.00 17.22	A
				CA							
		ATOM	2708	CB	VAL A		34.705	55.184	34.422	1.00 18.19	A
		ATOM	2709		VAL A		34.034	54.706	35.705	1.00 18.85	A
	4.0	MOTA	2710		VAL A		36.162	55.543	34.705	1.00 18.06	A
	10	MOTA	2711	С	VAL A		33.211	53.553	33.258	1.00 17.38	A
		MOTA	2712	0	VAL A	355	32.913	52.457	33.742	1.00 16.87	A
		MOTA	2713	N	ASN A	356	32.324	54.328	32.647	1.00 16.91	A
		MOTA	2714	CA	ASN A	356	30.942	53.899	32.527	1.00 16.67	A
		MOTA	2715	CB	ASN A	356	30.091	55.030	31.957	1.00 16.65	A
	15	MOTA	2716	CG	ASN A	356	29.787	56.091	32.994	1.00 17.54	Α
		MOTA	2717	OD1	ASN A	356	29.078	55.830	33.970	1.00 17.65	A
		MOTA	2718	ND2	ASN A	356	30.335	57.288	32.804	1.00 15.84	A
		MOTA	2719	С	ASN A		30.803	52.630	31.696	1.00 16.96	A
		ATOM	2720	0	ASN A		30.013	51.749	32.035	1.00 16.52	A
	20	ATOM	2721	N	TYR A		31.572	52.519	30.616	1.00 16.22	A
Ü	~0	ATOM	2722	CA	TYR A		31.492	51.316	29.799	1.00 16.78	A
		ATOM	2723	CB	TYR A		32.144	51.539	28.427	1.00 15.91	A
Ę,2 B 4:##.		ATOM	2724	CG	TYR A		31.149	52.056	27.414	1.00 14.97	A
							30.957	53.424	27.222	1.00 14.37	A
19	25	MOTA	2725	CD1							
191	25	ATOM	2726		TYR A		29.976	53.900	26.353	1.00 14.39	A
er H		ATOM	2727		TYR A		30.334	51.172	26.707	1.00 15.07	A
EL.		ATOM	2728	CE2	TYR A		29.347	51.634	25.842	1.00 14.68	A
		ATOM	2729	CZ	TYR A		29.172	52.998	25.670	1.00 14.63	A
igaali issii	20	ATOM	2730	OH	TYR A		28.185	53.451	24.826	1.00 14.20	A
197	30	MOTA	2731	C	TYR A		32.098	50.107	30.507	1.00 16.81	A
ij		ATOM	2732	0	TYR A		31.640	48.979	30.320	1.00 17.35	А
en de		MOTA	2733	N	GLU A		33.118	50.331	31.328	1.00 17.12	A
16/22 2 1907		MOTA	2734	CA	GLU A	358	33.720	49.223	32.067	1.00 17.90	A
n.		MOTA	2735	CB	GLU A		34.941	49.692	32.860	1.00 18.33	Α
	35	MOTA	2736	CG	GLU A	358	36.183	49.960	32.018	1.00 20.36	A
		MOTA	2737	CD	GLU A	358	37.376	50.366	32.867	1.00 21.30	A
		ATOM	2738	OE1	GLU A	358	37.230	50.442	34.106	1.00 23.37	A
		MOTA	2739	OE2	GLU A	358	38.462	50.610	32.302	1.00 22.02	A
		MOTA	2740	С	GLU A	358	32.677	48.647	33.032	1.00 18.18	A
	40	MOTA	2741	0	GLU A	358	32.622	47.436	33.251	1.00 18.62	A
		MOTA	2742	N	ARG A		31.853	49.516	33.610	1.00 18.25	A
		ATOM	2743	CA	ARG A		30.816	49.067	34.540	1.00 19.06	A
		ATOM	2744	СВ	ARG A		30.148	50.262	35.217	1.00 20.23	A
		ATOM	2745	CG	ARG A		31.040	50.962	36.213	1.00 23.21	A
	45	ATOM	2746	CD	ARG A		30.417	52.260	36.691	1.00 25.64	A
	10	ATOM	2747	NE	ARG A		31.326	52.280	37.572	1.00 27.54	A
									37.640	1.00 27.34	A
		ATOM	2748	CZ	ARG A		31.389	54.312		1.00 28.85	A
		ATOM	2749		ARG A		30.592	55.052	36.876		
	EΩ	ATOM	2750		ARG A		32.252	54.896	38.464	1.00 29.94	A
	50	ATOM	2751	C	ARG A		29.768	48.239	33.814	1.00 18.37	A
		ATOM	2752	0	ARG A		29.294	47.224	34.333	1.00 16.91	A
		MOTA	2753	N	LEU A		29.407	48.675	32.611	1.00 17.62	A
		ATOM	2754	CA	LEU A		28.423	47.960	31.811	1.00 18.02	A
		MOTA	2755	СВ	LEU A		28.047	48.782	30.576	1.00 17.79	A
	55	MOTA	2756	CG	LEU A	360	27.214	50.040	30.849	1.00 17.79	A

					_	0.50	07 164	FO 010	20 (02	1.00	17 00	A
	ATOM	2757		LEU .			27.164	50.912	29.602			
	MOTA	2758		LEU .			25.807	49.639	31.282	1.00		A.
	MOTA	2759		LEU .			28.950	46.590	31.392	1.00		A
_	MOTA	2760	0	LEU .			28.222	45.599	31.446	1.00		A
5	MOTA	2761	N	PHE .			30.214	46.536	30.977	1.00		A.
	MOTA	2762	CA	PHE .	Α	361	30.831	45.277	30.562	1.00		A
	MOTA	2763	CB	PHE .	Α	361	32.253	45.518	30.038	1.00		A
	ATOM	2764	CG	PHE .	Α	361	32.313	46.324	28.768	1.00		A
	MOTA	2765	CD1	PHE .	Α	361	33.507	46.927	28.376	1.00		A
10	MOTA	2766	CD2	PHE .	Α	361	31.188	46.481	27.967	1.00	16.11	A
	ATOM	2767		PHE			33.577	47.676	27.204	1.00	15.66	A
	ATOM	2768		PHE			31.247	47.229	26.790	1.00	16.59	A
	MOTA	2769	CZ	PHE			32.442	47.826	26.410	1.00	17.03	Α
	ATOM	2770	C	PHE			30.900	44.265	31.708	1.00	18.81	A
15	ATOM	2771	0	PHE			30.568	43.091	31.528	1.00		A
15	ATOM	2772	N	GLU			31.344	44.711	32.881	1.00		A
		2773	CA	GLU			31.455	43.798	34.016	1.00		A
	MOTA			GLU			31.992	44.516	35.258	1.00		A
	MOTA	2774	CB				32.331	43.551	36.397	1.00		A
20	ATOM	2775	CG			362		44.256	37.683	1.00		A
20	ATOM	2776	CD	GLU			32.723	45.262	37.608	1.00		A
	ATOM	2777		GLU			33.457		38.770	1.00		A
	MOTA	2778		GLU			32.309	43.796		1.00		A
	MOTA	2779	С	GLU			30.105	43.171	34.343	1.00		A
	MOTA	2780	0	GLU			30.010	41.963	34.560			
25	MOTA	2781	N	HIS			29.060	43.990	34.373	1.00		A
	MOTA	2782	CA	HIS			27.730	43.485	34.676	1.00		A
	ATOM	2783	СВ	HIS			26.734	44.636	34.814	1.00		A
	ATOM	2784	CG	HIS			25.352	44.191	35.182	1.00		A
	MOTA	2785		HIS			24.204	44.156	34.463	1.00		A
30	MOTA	2786	ND1	HIS	Α	363	25.043	43.673	36.421	1.00		A
	ATOM	2787	CE1	HIS	Α	363	23.765	43.338	36.450		24.15	A
	MOTA	2788	NE2	HIS	Α	363	23.233	43.620	35.274		24.25	Α
	ATOM	2789	С	HIS	Α	363	27.233	42.531	33.596		19.95	A
	ATOM	2790	0	HIS	Α	363	26.919	41.371	33.868		19.76	Α
35	ATOM	2791	N	ILE	Α	364	27.164	43.029	32.368	1.00	19.34	Α
	ATOM	2792	CA	ILE	Α	364	26.681	42.237	31.248	1.00	19.40	Α
	ATOM	2793	СВ	ILE	Α	364	26.783	43.031	29.929	1.00	18.87	A
	ATOM	2794	CG2	ILE	Α	364	26.359	42.149	28.751	1.00	18.65	A
	ATOM	2795		ILE			25.894	44.277	30.007	1.00	19.23	Α
40	ATOM	2796		ILE			26.025	45.203	28.816	1.00	19.57	Α
10	ATOM	2797	C	ILE			27.400	40.902	31.079		19.15	A
	ATOM	2798	0	ILE			26.755	39.863	30.931		19.49	Α
	ATOM	2799	N	ASN			28.728	40.921	31.112		18.92	Α
	ATOM	2800	CA	ASN			29.491	39.691	30.934		20.01	Α
45		2801	CB	ASN			30.970	40.010	30.701		18.96	А
40	MOTA	2802	CG	ASN			31.189	40.886	29.481		18.43	А
	ATOM						30.294	41.044	28.652		18.38	Α
	ATOM	2803		ASN			32.385	41.452	29.362		17.32	Α
	ATOM	2804		ASN				38.697	32.088		21.35	A
Ε0	MOTA	2805	C	ASN			29.356		31.928		21.12	A
50	MOTA	2806	0	ASN			29.670	37.519			22.96	A
	ATOM	2807	N			366	28.880	39.165	33.239			A
	ATOM	2808	CA			366	28.714	38.291	34.401		24.46	
	ATOM	2809	CB			366	29.198	38.999	35.674		24.61	A n
	MOTA	2810	OG			366	28.384	40.117	35.978		24.98	A
55	MOTA	2811	С	SER	A	366	27.264	37.843	34.577	1.00	25.44	A

and the first first first mile first first first first

the state man man in the state

	ATOM	2812	0	SER A	366	26.956	37.046	35.460	1.00 25.76	A
	ATOM	2813	N	GLN A	367	26.375	38.364	33.736	1.00 26.52	A
	MOTA	2814	CA	GLN A	367	24.961	38.003	33.779	1.00 27.62	A
	MOTA	2815	CB	GLN A	367	24.083	39.251	33.640	1.00 28.64	A
5	MOTA	2816	CG	GLN A	367	24.113	40.174	34.850	1.00 30.61	A
	ATOM	2817	CD	GLN A	367	23.525	39.520	36.088	1.00 32.01	A
	ATOM	2818	OE1	GLN A	367	22.341	39.176	36.119	1.00 32.79	A
	MOTA	2819	NE2	GLN A	367	24.352	39.340	37.113	1.00 32.51	A
	MOTA	2820	С	GLN A	367	24.665	37.033	32.636	1.00 27.49	A
10	MOTA	2821	0	GLN A	A 367	24.335	37.447	31.524	1.00 27.23	A
	ATOM	2822	N	ALA A	368	24.778	35.740	32.926	1.00 27.43	A
	ATOM	2823	CA	ALA A	368	24.551	34.689	31.938	1.00 27.09	A
	MOTA	2824	CB	ALA A	368	24.531	33.327	32.633	1.00 27.33	A
	MOTA	2825	С	ALA A	368	23.291	34.851	31.087	1.00 26.68	A
15	ATOM	2826	0	ALA A	368	23.311	34.568	29.889	1.00 26.56	A
	ATOM	2827	N		369	22.199	35.303	31.697	1.00 26.31	A
	MOTA	2828	CA	HIS A	A 369	20.942	35.464	30.970	1.00 25.66	A
	ATOM	2829	CB	HIS A	369	19.852	35.981	31.916	1.00 27.03	A
	MOTA	2830	CG	HIS A	A 369	20.044	37.401	32.346	1.00 27.87	Α
20	MOTA	2831	CD2	HIS A	A 369	20.642	37.928	33.441	1.00 28.21	A
	ATOM	2832		HIS A		19.610	38.471	31.594	1.00 28.33	A
	ATOM	2833		HIS 2		19.932	39.597	32.207	1.00 28.26	A
	ATOM	2834	NE2		A 369	20.559	39.295	33.330	1.00 28.33	А
	ATOM	2835	С	HIS A	A 369	21.059	36.375	29.744	1.00 25.04	A
25	ATOM	2836	0		A 369	20.210	36.340	28.853	1.00 24.82	A
	ATOM	2837	N	PHE 2	A 370	22.109	37.189	29.697	1.00 24.10	A
	ATOM	2838	CA	PHE I	A 370	22.320	38.080	28.559	1.00 22.85	A
	MOTA	2839	СВ	PHE 2	A 370	23.235	39.247	28.944	1.00 23.57	A
	ATOM	2840	CG	PHE 2	A 370	22.533	40.365	29.669	1.00 23.73	А
30	MOTA	2841	CD1	PHE .	A 370	23.086	40.915	30.819	1.00 24.30	A
	ATOM	2842	CD2	PHE .	A 370	21.338	40.890	29.184	1.00 24.44	A
	ATOM	2843	CE1	PHE .	A 370	22.460	41.973	31.480	1.00 24.01	A
	ATOM	2844	CE2	PHE .	A 370	20.704	41.950	29.839	1.00 24.36	A
	ATOM	2845	CZ	PHE .	A 370	21.270	42.490	30.989	1.00 23.88	А
35	ATOM	2846	С	PHE .	A 370	22.964	37.308	27.414	1.00 21.51	A
	ATOM	2847	0	PHE .	A 370	22.698	37.585	26.244	1.00 20.83	A
	ATOM	2848	N	ASN .	A 371	23.806	36.339	27.768	1.00 19.82	A
	MOTA	2849	CA	ASN .	A 371	24.521	35.528	26.789	1.00 19.02	A
	MOTA	2850	CB	ASN .	A 371	23.538	34.661	26.007	1.00 19.65	A
4 0	ATOM	2851	CG	ASN .	A 371	22.892	33.599	26.877	1.00 20.03	A
	ATOM	2852	OD1	ASN .	A 371	23.573	32.718	27.405	1.00 20.28	А
	MOTA	2853	ND2	ASN.	A 371	21.578	33.682	27.038	1.00 20.15	A
	MOTA	2854	С	ASN.	A 371	25.316	36.430	25.850	1.00 18.66	А
	ATOM	2855	0	ASN .	A 371	25.340	36.229	24.633	1.00 17.96	А
45	MOTA	2856	N	VAL .	A 372	25.969	37.424	26.447	1.00 18.22	A
	ATOM	2857	CA	VAL	A 372	26.777	38.395	25.721	1.00 18.11	A
	MOTA	2858	CB	VAL	A 372	26.094	39.788	25.701	1.00 18.45	A
	ATOM	2859	CG1	VAL	A 372	27.065	40.851	25.163	1.00 17.90	A
	ATOM	2860	CG2	VAL	A 372	24.834	39.739	24.855	1.00 18.52	А
50	ATOM	2861	С	VAL	A 372	28.146	38.564	26.372	1.00 18.05	A
	ATOM	2862	0	VAL	A 372	28.274	38.520	27.594	1.00 17.93	А
	ATOM	2863	N	GLN	A 373	29.162	38.751	25.538	1.00 17.52	A
	ATOM	2864	CA	GLN	A 373	30.528	38.982	25.995	1.00 17.49	A
	ATOM	2865	СВ	GLN	A 373	31.442	37.823	25.579	1.00 18.60	A
55	ATOM	2866	CG	GLN	A 373	32.923	38.011	25.922	1.00 19.99	A

		MOTA	2867	CD	GLN A	373	33.158	38.334	27.394	1.00 20.94	A
		ATOM	2868		GLN A		32.526	37.756	28.279	1.00 21.70	A
			2869		GLN A		34.082	39.252	27.659	1.00 20.60	A
		ATOM					30.935	40.270	25.282	1.00 17.32	A
	_	MOTA	2870	C	GLN A				24.079	1.00 17.16	A
	5	MOTA	2871	0	GLN A		31.179	40.265		1.00 17.10	
		MOTA	2872	N	ALA A		30.984	41.371	26.023		A
		MOTA	2873	CA	ALA A		31.325	42.665	25.445	1.00 16.51	A
		MOTA	2874	CB	ALA A	374	30.217	43.671	25.756	1.00 15.86	A
		MOTA	2875	С	ALA A	374	32.662	43.202	25.940	1.00 16.97	A
	10	ATOM	2876	0	ALA A	374	33.046	42.984	27.087	1.00 16.37	A
		ATOM	2877	N	GLN A		33.364	43.920	25.070	1.00 16.76	A
		ATOM	2878	CA	GLN A		34.650	44.498	25.440	1.00 17.48	А
		ATOM	2879	СВ	GLN A		35.731	43.415	25.509	1.00 19.85	А
		ATOM	2880	CG	GLN A		35.933	42.644	24.205	1.00 23.52	A
	15	ATOM	2881	CD	GLN A		35.066	41.404	24.129	1.00 26.57	A
	13			OE1	GLN A		35.214	40.486	24.939	1.00 27.84	A
		ATOM	2882				34.153	41.370	23.161	1.00 27.24	A
		MOTA	2883	NE2			35.085	45.548	24.431	1.00 16.70	A
		MOTA	2884	C	GLN A				23.335	1.00 15.55	A
	20	MOTA	2885	0	GLN A		34.534	45.632		1.00 15.33	A
	20	ATOM	2886	N	PHE A		36.069	46.356	24.814		
t III		MOTA	2887	CA	PHE A		36.602	47.358	23.904	1.00 14.46	A
100		MOTA	2888	CB	PHE A		37.543	48.320	24.637	1.00 13.95	A
1554F		MOTA	2889	CG	PHE A		36.848	49.228	25.610	1.00 14.70	A
1,000		ATOM	2890		PHE A		37.246	49.273	26.940	1.00 14.81	A
Marin Marin	25	MOTA	2891	CD2	PHE A	. 376	35.798	50.044	25.195	1.00 14.57	A
Series Company		ATOM	2892	CE1	PHE A	376	36.610	50.117	27.848	1.00 15.62	A
i i i i		MOTA	2893	CE2	PHE A	376	35.157	50.894	26.098	1.00 15.64	A
æ;		MOTA	2894	CZ	PHE A	. 376	35.567	50.928	27.428	1.00 14.70	A
		MOTA	2895	С	PHE A	376	37.396	46.567	22.877	1.00 13.69	А
State.	30	MOTA	2896	0	PHE A	376	38.028	45.566	23.214	1.00 13.20	A
ij.		MOTA	2897	N	GLY A	377	37.360	47.005	21.625	1.00 13.56	A
dung Gung		ATOM	2898	CA	GLY A		38.106	46.305	20.598	1.00 13.03	A
		MOTA	2899	С	GLY A		38.537	47.240	19.490	1.00 13.47	A
100		ATOM	2900	0	GLY A		38.226	48.432	19.519	1.00 12.17	A
i di	35	ATOM	2901	N	THR A		39.270	46.704	18.522	1.00 13.13	A
*	00	ATOM	2902	CA	THR A		39.712	47.492	17.384	1.00 14.10	A
		ATOM	2903	CB	THR A		41.226	47.348	17.129	1.00 14.13	A
		ATOM	2904	OG1			41.521	46.003	16.739	1.00 15.02	А
		ATOM	2905		THR F		42.012	47.697	18.385	1.00 15.10	А
	40				THR F			46.973		1.00 13.64	А
	40	ATOM	2906	C			38.278	45.945	16.238	1.00 13.55	А
		ATOM	2907	0	THR A		39.084	47.684	15.054	1.00 12.92	A
		ATOM	2908	N	LEU A		38.409	47.289	13.827	1.00 12.73	A
		MOTA	2909	CA	LEU F				12.742	1.00 12.73	A
	4 -	ATOM	2910	CB	LEU F		38.649	48.342		1.00 12.44	A
	45	ATOM	2911	CG	LEU F		37.870	48.131	11.445	1.00 12.37	A
		ATOM	2912		LEU P		36.372	48.184	11.741		
		MOTA	2913		LEU A		38.270	49.205	10.433	1.00 11.81	A
		MOTA	2914	С	LEU A		38.896	45.924	13.338	1.00 13.00	A
		MOTA	2915	0	LEU A		38.098	45.074	12.934	1.00 12.40	A
	50	MOTA	2916	N	GLN A		40.208	45.714	13.384	1.00 13.46	A
		ATOM	2917	CA	GLN A		40.782	44.450	12.936	1.00 14.77	A
		MOTA	2918	CB	GLN A		42.309	44.516	12.986	1.00 15.81	A
		MOTA	2919	CG	GLN A	380	42.995	43.306	12.376	1.00 19.57	A
		ATOM	2920	CD	GLN A		42.592	43.086	10.930	1.00 21.70	А
	55	ATOM	2921	OE1	GLN A	380	42.669	44.001	10.106	1.00 22.56	A

							301				
		ATOM	2922	NE2	GLN A	380	42.162	41.866	10.612	1.00 22.92	A
		ATOM	2923		GLN A		40.285	43.285	13.791	1.00 14.48	A
		ATOM	2924		GLN A		40.054	42.187	13.280	1.00 13.99	A
			2925		GLU A		40.127	43.522	15.090	1.00 14.50	A
	5	ATOM	2926		GLU A		39.653	42.474	15.985	1.00 15.49	A
	5	ATOM			GLU A		39.648	42.962	17.439	1.00 17.08	A
		ATOM	2927				41.038	43.325	17.957	1.00 21.28	A
		MOTA	2928		GLU A		41.063	43.610	19.448	1.00 22.82	A
		MOTA	2929		GLU A		40.241	44.415	19.921	1.00 22.89	A
	4.0	ATOM	2930		GLU A				20.148	1.00 27.14	A
	10	MOTA	2931		GLU A		41.921	43.032	15.573	1.00 27.14	A
		MOTA	2932		GLU A		38.252	42.041		1.00 14.23	A
		MOTA	2933		GLU A		37.937	40.853	15.571	1.00 13.37	A
		MOTA	2934	N	TYR A		37.413	43.011	15.227		
		MOTA	2935	CA	TYR A		36.058	42.709	14.796	1.00 13.03	A
	15	MOTA	2936	CB	TYR A		35.294	43.993	14.468	1.00 13.08	A
		MOTA	2937	CG	TYR A		33.985	43.722	13.763	1.00 13.27	A
		ATOM	2938		TYR A		32.928	43.096	14.430	1.00 13.48	A
		MOTA	2939		TYR A		31.746	42.766	13.764	1.00 11.84	A
		ATOM	2940	CD2	TYR A	382	33.826	44.020	12.407	1.00 12.53	A
	20	MOTA	2941	CE2	TYR A	382	32.650	43.693	11.732	1.00 12.76	A
1100		ATOM	2942	CZ	TYR A	382	31.615	43.062	12.419	1.00 12.40	A
J		MOTA	2943	ОН	TYR A	382	30.461	42.708	11.749	1.00 12.59	А
8,9 E		MOTA	2944	С	TYR A	382	36.078	41.820	13.554	1.00 13.04	A
A STORE		ATOM	2945	0	TYR A	382	35.451	40.761	13.522	1.00 12.38	A
Ŋ.	25	ATOM	2946	N	PHE A	383	36.791	42.261	12.523	1.00 12.27	A
		ATOM	2947	CA	PHE A	383	36.864	41.496	11.285	1.00 13.24	A
		MOTA	2948	СВ	PHE A	383	37.653	42.281	10.227	1.00 13.43	A
#1		MOTA	2949	CG	PHE A		36.876	43.417	9.605	1.00 12.96	A
		ATOM	2950	CD1	PHE A		37.365	44.717	9.648	1.00 13.91	A
	30	ATOM	2951		PHE A		35.659	43.181	8.968	1.00 14.11	A
1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1		ATOM	2952		PHE A		36.658	45.772	9.064	1.00 13.79	A
		ATOM	2953		PHE A		34.939	44.224	8.379	1.00 14.72	А
1		ATOM	2954	CZ	PHE A		35.441	45.525	8.426	1.00 14.80	A
		MOTA	2955	C	PHE A		37.460	40.095	11.474	1.00 14.00	A
	35	ATOM	2956	0	PHE A		36.984	39.129	10.873	1.00 13.60	A
		ATOM	2957	N	ASP A		38.494	39.976	12.303	1.00 14.72	A
		ATOM	2958	CA	ASP A		39.098	38.662	12.540	1.00 15.43	A
		ATOM	2959	CB	ASP A		40.272	38.759	13.517	1.00 16.51	A
		ATOM	2960	CG	ASP A		41.505	39.384	12.898	1.00 17.75	A
	40	ATOM	2961		ASP A		41.584	39.464	11.652	1.00 18.23	A
	10	ATOM	2962		ASP A		42.405	39.782	13.666	1.00 19.50	A
		ATOM	2963	C	ASP A		38.054	37.710	13.116	1.00 15.26	A
		ATOM	2964	0	ASP A		37.960	36.553	12.704	1.00 15.46	A
		ATOM	2965	N	ALA A		37.265	38.206	14.064	1.00 14.92	A
	45	ATOM	2966	CA	ALA A		36.226	37.398	14.696	1.00 15.13	А
	10	ATOM	2967	CB	ALA A		35.606	38.161	15.866	1.00 14.89	А
			2968	С	ALA A		35.149	37.013	13.688	1.00 15.31	А
		ATOM			ALA A		34.693	35.868	13.657	1.00 15.33	A
		MOTA	2969 2970	O N	VAL A		34.737	37.969	12.863	1.00 15.18	A
	50	ATOM			VAL A		33.722	37.698	11.851	1.00 15.40	А
	50	ATOM	2971	CA	VAL A		33.453	38.941	10.980	1.00 15.05	A
		ATOM	2972	CB CC1			32.561	38.567	9.793	1.00 15.44	A
		ATOM	2973		VAL A			40.022	11.819	1.00 15.00	A
		ATOM	2974		VAL A		32.788	36.548	10.938	1.00 16.11	A
		MOTA	2975	C	VAL A		34.153		10.930	1.00 16.11	A
	55	MOTA	2976	0	VAL A	386	33.387	35.610	10.090	1.00 10.01	Λ

			0077	3.7	HTC :	n -	207	35.382	36.613	10.443	1.00	16.13	A
		MOTA	2977	N	HIS A				35.570	9.557	1.00		А
		MOTA	2978	CA	HIS A			35.869		8.840		16.93	A
		MOTA	2979	CB	HIS A			37.129	36.053				A
		MOTA	2980	CG	HIS A			36.860	37.172	7.881		17.54	
	5	MOTA	2981		HIS A			37.271	38.462	7.874		17.35	A
		ATOM	2982	ND1	HIS I	. A	387	36.022	37.030	6.796		17.71	A
		ATOM	2983	CE1	HIS A	Α.	387	35.926	38.186	6.163		17.77	A
		MOTA	2984	NE2	HIS .	Α.:	387	36.674	39.072	6.798		17.27	A
		MOTA	2985	С	HIS .	Α :	387	36.090	34.243	10.274		17.78	А
	10	ATOM	2986	0	HIS .			36.055	33.181	9.651		16.94	A
	10	ATOM	2987	N	GLN .			36.307	34.300	11.583	1.00	19.02	A
		ATOM	2988	CA	GLN .			36.474	33.077	12.358	1.00	21.11	Α
			2989	CB	GLN .			36.943	33.402	13.780	1.00	23.11	A
		ATOM	2990	CG	GLN			38.439	33.692	13.900		25.90	A
	1 =	MOTA			GLN .			38.804	34.341	15.230		28.63	A
	15	MOTA	2991	CD				38.246	34.000	16.275		30.49	A
		ATOM	2992	OE1				39.754	35.274	15.197		29.72	A
		ATOM	2993		GLN				32.394	12.392		21.50	A
		ATOM	2994	С	GLN			35.105		12.392		21.80	A
171		MOTA	2995	0	GLN			35.005	31.169			21.77	A
	20	MOTA	2996	N	ALA			34.050	33.196	12.506		22.68	A
Tribath FFE		ATOM	2997	CA	ALA			32.686	32.674	12.535			
		MOTA	2998	CB	ALA			31.707	33.781	12.912		22.05	A
m		ATOM	2999	С	ALA	Α	389	32.341	32.109	11.161		23.68	A
1120		ATOM	3000	0	ALA	Α	389	31.684	31.069	11.045		23.65	A
	25	ATOM	3001	N	GLU	Α	390	32.791	32.808	10.124		24.67	A
		ATOM	3002	CA	GLU	А	390	32.564	32.406	8.741		26.15	А
		ATOM	3003	СВ	GLU	Α	390	33.169	33.453	7.796		26.00	А
		MOTA	3004	CG	GLU	Α	390	33.252	33.042	6.328		26.38	A
2.5 2.5000		ATOM	3005	CD	GLU			33.855	34.137	5.456	1.00	26.52	А
1000	30	ATOM	3006		GLU			34.755	34.851	5.944	1.00	25.91	A
N.	50	ATOM	3007	OE2				33.441	34.276	4.285	1.00	26.51	A
		ATOM	3008	C	GLU			33.195	31.042	8.483	1.00	27.33	A
gest.		ATOM	3009	Ö	GLU			32.571	30.157	7.895	1.00	27.52	A
			3010	N	ARG			34.438	30.880	8.926	1.00	28.78	A
graži Vitari	25	ATOM			ARG			35.157	29.626	8.751		30.39	А
n com	35	MOTA	3011	CA	ARG			36.623	29.794	9.160		31.73	A
		ATOM	3012	CB				37.466	30.566	8.153		33.97	A
		ATOM	3013	CG	ARG				30.722	8.640		35.57	A
		ATOM	3014	CD	ARG			38.899	31.640	9.770		38.15	A
	40	MOTA	3015	NE	ARG			38.987		10.499		39.05	A
	40	ATOM	3016	CZ	ARG			40.082				40.21	A
		MOTA	3017		ARG			41.195	31.163	10.221		39.40	A
		ATOM	3018	NH2	ARG			40.065	32.693	11.506			A
		ATOM	3019	С	ARG			34.516	28.505	9.564		30.59	
		MOTA	3020	0	ARG			34.605	27.333	9.198		31.38	A
	45	MOTA	3021	N	ALA	Α	392	33.874	28.867	10.669		30.51	A
		MOTA	3022	CA	ALA	Α	392	33.212	27.882	11.516		30.61	A
		MOTA	3023	CB	ALA	Α	392	32.878	28.494	12.873		30.84	А
		ATOM	3024	С	ALA	Α	392	31.939	27.415	10.819		30.66	A
		ATOM	3025	0	ALA	Α	392	31.261	26.495	11.283		30.52	A
	50	ATOM	3026	N	GLY			31.621	28.065	9.703		30.35	A
	00	ATOM	3027	CA			393	30.442	27.708	8.939		30.05	A
		ATOM	3028	C	GLY			29.130	28.249	9.475		29.86	A
		MOTA	3029	0			393	28.073	27.679	9.208	1.00	29.53	А
			3029	N	GLN			29.175	29.346	10.223		29.75	А
	EE	ATOM					394	27.939	29.902	10.755		29.86	A
	55	ATOM	3031	CA	الانتاف	Α	224	21.757	20.002				

	ATOM	3032	СВ	GLN A	394	28.138	30.415	12.188	1.00 30.87	A
	ATOM	3033		GLN A		28.875	31.732	12.311	1.00 31.79	A
	ATOM	3034		GLN A		28.756	32.326	13.706	1.00 32.39	A
		3034		GLN A		29.228	31.747	14.687	1.00 32.51	A
5	MOTA			GLN A		28.113	33.485	13.800	1.00 31.11	A
3	ATOM	3036		GLN A		27.375	31.015	9.878	1.00 29.23	A
	ATOM	3037		GLN A		26.319	31.567	10.178	1.00 29.43	A
	MOTA	3038				28.067	31.336	8.789	1.00 28.59	A
	MOTA	3039		ALA A		27.596	32.385	7.892	1.00 27.95	A
4.0	MOTA	3040		ALA A		27.824	33.753	8.533	1.00 28.94	А
10	ATOM	3041		ALA A		28.244	32.349	6.511	1.00 27.67	A
	ATOM	3042	С	ALA A			32.013	6.367	1.00 27.22	A
	MOTA	3043	0	ALA A		29.419	32.694	5.500	1.00 27.14	A
	MOTA	3044	N	GLU A		27.454	32.745	4.118	1.00 27.12	A
	MOTA	3045	CA	GLU A		27.917	31.760	3.245	1.00 29.69	A
15	MOTA	3046	СВ	GLU A		27.131	30.582	4.002	1.00 23.03	A
	MOTA	3047	CG	GLU A		26.527		4.604	1.00 34.11	A
	MOTA	3048	CD	GLU A		25.165	30.906	5.413	1.00 38.43	A
	MOTA	3049		GLU A		25.068	31.857		1.00 38.46	A
	MOTA	3050	OE2			24.187	30.204	4.263	1.00 38.40	A
20	MOTA	3051	С	GLU A		27.613	34.173	3.685 3.958	1.00 25.88	A
	MOTA	3052	0	GLU A		26.524	34.680		1.00 23.00	A
	MOTA	3053	N	PHE A		28.557	34.830	3.023	1.00 22.14	A
	MOTA	3054	CA	PHE A		28.328	36.211	2.619	1.00 19.29	A
	MOTA	3055	CB	PHE A		29.530	37.079	2.998	1.00 18.47	A
25	MOTA	3056	CG	PHE A		29.776	37.147	4.476	1.00 17.12	A
	MOTA	3057		PHE A		30.814	36.426	5.056	1.00 17.33	A
	MOTA	3058		PHE A		28.948	37.909	5.293	1.00 15.45	A
	MOTA	3059		PHE A		31.025	36.462	6.438	1.00 15.31	A
	MOTA	3060	CE2	PHE A		29.148	37.953	6.673	1.00 16.34	A
30	MOTA	3061	CZ	PHE A		30.190	37.227	7.245	1.00 13.31	A
	ATOM	3062	С	PHE A		27.999	36.403	1.148	1.00 18.17	A
	ATOM	3063	0	PHE A		28.569	35.749	0.278	1.00 17.72	A
	MOTA	3064	N	PRO A		27.072	37.327	0.857		A
	MOTA	3065	CD	PRO A		26.367	38.194	1.819	1.00 17.16	A A
35	MOTA	3066	CA	PRO A		26.653	37.622	-0.512	1.00 16.50	A
	MOTA	3067	CB	PRO A		25.390	38.446	-0.301	1.00 16.82	A
	ATOM	3068	ÇG	PRO P		25.741	39.246	0.916	1.00 16.85	A
	ATOM	3069	С	PRO F		27.726	38.392	-1.282	1.00 15.76	A
	ATOM	3070	0	PRO F		28.589	39.044	-0.684	1.00 15.25	
4 0	MOTA	3071	N	THR F		27.670				A
	ATOM	3072	CA	THR F		28.603	38.994	-3.481	1.00 13.87	A
	ATOM	3073	СВ	THR A		29.006	38.126	-4.684	1.00 13.66	A
	ATOM	3074	OG1	THR A	399	27.828	37.691	-5.378	1.00 12.89	A
	ATOM	3075	CG2			29.803	36.920	-4.221	1.00 14.64	A
45	ATOM	3076	С	THR A		27.881	40.238	-3.986	1.00 13.35	A
	MOTA	3077	0	THR A	399	26.653	40.254	-4.082	1.00 13.12	A
	MOTA	3078	N	LEU A		28.636	41.280	-4.311	1.00 12.55	A
	MOTA	3079	CA	LEU A	400	28.019	42.517	-4.776	1.00 11.68	A
	MOTA	3080	CB	LEU A		27.612	43.364	-3.559	1.00 11.72	A
50	ATOM	3081	CG	LEU A		26.954	44.740	-3.743	1.00 11.84	A
	ATOM	3082	CD1	LEU A	A 400	26.178	45.085	-2.489	1.00 11.84	A
	ATOM	3083		LEU A		28.002	45.812	-4.032	1.00 11.75	A
	ATOM	3084	С	LEU A	A 400	28.941	43.317	-5.678	1.00 11.82	A
	ATOM	3085	0	LEU A	400	30.160		-5.508	1.00 10.86	A
55	ATOM	3086	N	SER A	A 401	28.354	43.998	-6.660	1.00 11.77	A

											-
		MOTA	3087	CA	SER A	401	29.117	44.857	-7.562	1.00 11.13	A
		ATOM	3088	СВ	SER P			44.188	-8.924	1.00 11.81	A
		ATOM	3089	OG	SER F			44.215	-9.725	1.00 11.97	A
				C	SER F			46.123	-7.739	1.00 11.29	A
	_	ATOM	3090					46.092	-7.564	1.00 11.28	А
	5	MOTA	3091	0	SER F				-8.072	1.00 10.51	A
		MOTA	3092	N	GLY A			47.230		1.00 10.31	A
		MOTA	3093	CA	GLY A			48.492	-8.256		
		MOTA	3094	С	GLY A			49.576	-7.362	1.00 11.67	A
		ATOM	3095	0	GLY A	402	29.852	49.361	-6.715	1.00 12.01	A
	10	ATOM	3096	N	ASP A	403	28.183	50.739	-7.322	1.00 11.30	A
		ATOM	3097	CA	ASP A	403	28.665	51.834	-6.489	1.00 11.42	A
		ATOM	3098	СВ	ASP A			52.983	-7.367	1.00 11.48	A
		MOTA	3099	CG	ASP A			53.737	-8.067	1.00 12.11	A
			3100		ASP A			53.168	-8.236	1.00 13.59	A
	15	MOTA			ASP A			54.900	-8.461	1.00 12.95	A
	15	MOTA	3101					52.333	-5.569	1.00 11.75	А
		MOTA	3102	C	ASP A				-5.570	1.00 11.42	A
		MOTA	3103	0	ASP A			51.797		1.00 11.42	A
		MOTA	3104	N	PHE A			53.355	-4.780		A
2 72 1		MOTA	3105	CA	PHE A			53.913	-3.865	1.00 11.24	A
	20	MOTA	3106	CB	PHE A			53.526	-2.424	1.00 11.12	
Talenti.		MOTA	3107	CG	PHE A	404		52.036	-2.184	1.00 11.08	A
A (Sept.		MOTA	3108	CD1	PHE A	A 404		51.288	-2.207	1.00 10.94	A
\$,3 B		ATOM	3109	CD2	PHE A	404	25.993	51.378	-1.980	1.00 10.57	A
		MOTA	3110	CE1	PHE A	A 404	28.347	49.899	-2.030	1.00 11.95	A
	25	MOTA	3111	CE2	PHE I	A 404	25.949	49.992	-1.802	1.00 10.67	A
		MOTA	3112	CZ	PHE	A 404	4 27.126	49.250	-1.826	1.00 11.36	A
ijĨ.		ATOM	3113	С	PHE .			55.422	-4.003	1.00 11.30	A
		ATOM	3114	0	PHE .			56.178	-3.046	1.00 10.08	А
di.		MOTA	3115	N	PHE .			55.835	-5.228	1.00 11.82	A
i ing	30	MOTA	3116	CA	PHE .			57.230	-5.575	1.00 12.35	Α
4 124	50	MOTA	3117	CB	PHE			57.750	-6.550	1.00 12.94	A
William Things			3118	CG	PHE			57.857	-5.958	1.00 13.35	A
		MOTA		CD1				57.250	-6.585	1.00 13.75	А
		ATOM	3119					58.584	-4.789	1.00 13.48	A
	25	ATOM	3120		PHE.			57.366	-6.057	1.00 12.89	А
g.c.b	35	ATOM	3121		PHE.			58.706	-4.255	1.00 12.99	А
		MOTA	3122		PHE			58.095	-4.891	1.00 12.93	A
		MOTA	3123	CZ	PHE					1.00 12.33	A
		MOTA	3124	С	PHE			57.170	-6.290 -6.972	1.00 12.41	A
		MOTA	3125	0	PHE		5 24.539	56.187		1.00 12.49	A
	40	MOTA	3126	N		A 40		58.192			A
		MOTA	3127	CA		A 40		59.382	-5.364	1.00 12.39	
		MOTA	3128	CB		A 40		60.646	-6.108	1.00 12.21	A
		ATOM	3129	OG1	THR	A 40	6 24.631	60.929	-7.201	1.00 13.40	A
		ATOM	3130	CG2	THR	A 40	6 23.683	61.848	-5.177	1.00 12.11	A
	45	ATOM	3131	С	THR	A 40	6 23.611	59.280	-3.983	1.00 12.64	A
		ATOM	3132	0	THR	A 40	6 22.440	58.915	-3.838	1.00 12.69	A
		MOTA	3133	N		A 40		59.604	-2.971	1.00 12.81	A
		MOTA	3134	CA		A 40		59.559	-1.578	1.00 12.99	A
		ATOM	3135	CB		A 40		59.809	-0.697	1.00 12.23	A
	50	ATOM	3136	CG		A 40		59.972	0.786	1.00 13.17	A
	50	ATOM	3130		TYR				1.555	1.00 12.48	A
			3138		TYR				2.942	1.00 12.87	A
		MOTA			TYR				1.436	1.00 12.63	А
		ATOM	3139					61.290	2.812	1.00 12.47	A
		ATOM	3140		TYR				3.562	1.00 12.24	A
	55	MOTA	3141	CZ	T'YR	A 40	7 24.686	00.226	3.302	1.00 12.24	17

		ATOM	3142	OH	TYR A	407	2	4.637	60.347	4.933	1.00	11.95	A
		ATOM	3143	С	TYR A	407	2	2.890	60.554	-1,211	1.00	13.79	А
		MOTA	3144	0	TYR A	407	2	2.830	61.664	-1.742	1.00	13.92	A
		ATOM	3145	N	ALA A			2.026	60.129	-0.294	1.00	14.16	А
	5	MOTA	3146	CA	ALA A			0.942	60.948	0.234		14.28	А
	Ū	MOTA	3147	CB	ALA A			9.632	60.667	-0.505		14.27	A
		ATOM	3148	С	ALA A			0.839	60.506	1.685		14.52	A
		ATOM	3149	0	ALA A			0.688	59.313	1.956		14.73	A
										2.622			A
	10	ATOM	3150	N	ASP A			0.955	61.444			14.31	
	10	ATOM	3151	CA	ASP A			0.881	61.082	4.031		14.91	A
		MOTA	3152	CB	ASP A			1.835	61.956	4.870		14.46	A
		MOTA	3153	CG	ASP A			1.512	63.441	4.803		14.85	A
		MOTA	3154		ASP A			0.939	63.893	3.791		13.80	A
	4 -	ATOM	3155		ASP A			1.860	64.164	5.768		14.51	A
	15	MOTA	3156	С	ASP A			9.455	61.135	4.573		15.58	А
		MOTA	3157	0	ASP A	409	1	9.159	60.546	5,610	1.00	15.51	A
		MOTA	3158	N	ARG A	410	1	8.573	61.825	3.853	1.00	16.53	A
		MOTA	3159	CA	ARG A	410	1	7.167	61.927	4,240	1.00	17.84	A
		ATOM	3160	CB	ARG A	410	1	7.008	62.732	5.535	1.00	19.59	A
	20	MOTA	3161	CG .	ARG A	410	1	7.450	64.188	5.475	1.00	22.30	A
		MOTA	3162	CD	ARG A	410	1	7.305	64.806	6,861	1.00	25.55	A
Apple Apple		ATOM	3163	NE	ARG A			7.958	66.105	7.004		28.63	A
191		ATOM	3164	CZ	ARG A			7.454	67.258	6.577		30.10	A
i kan		ATOM	3165		ARG A			6.273	67.292	5.967		31.30	A
	25	ATOM	3166		ARG A			8.131	68.383	6.772		29.89	A
		ATOM	3167	С	ARG A			6.320	62.559	3.139		17.93	A
iji.		ATOM	3168	0	ARG A			6.824	63.314	2.305		17.10	A
		ATOM	3169	И	SER A			5.031	62.230	3.150		17.62	A
21 3000		ATOM	3170	CA	SER A			4.061	62.737	2.182		18.15	A
	30	ATOM	3171	CB	SER A			3.513	64.094	2.647		19.65	A
h Ligh	50		3172	OG				4.555	65.020	2.893		22.94	Ā
W.		ATOM			SER A								
i din		ATOM	3173	С	SER A			4.586	62.846	0.754		16.96	A
		ATOM	3174	0	SER A			5.010	61.850	0.162		16.97	A
g _{al} E.	25	ATOM	3175	N	ASP A			4.538	64.053	0.198		15.76	A
ž`.	35	MOTA	3176	CA	ASP A			5.002	64.289	-1.165		15.28	A
		ATOM	3177	СВ	ASP A			3.967	65.119	-1.939		15.42	A
		MOTA	3178	CG	ASP A			3.836	66.545	-1.408		16.05	A
		MOTA	3179		ASP A			4.311	66.820	-0.284		15.81	А
	40	ATOM	3180		ASP A			3.243	67.390	-2.117		15.35	A
	40	MOTA	3181	С	ASP A			6.346	65.014	-1.174		14.37	A
		MOTA	3182	0	ASP A			6.756	65.550	-2.200		14.24	A
		ATOM	3183	N	ASN A	413	1	7.022	65.026	-0.029	1.00	14.32	A
		MOTA	3184	CA	ASN A	413	1	8.315	65.697	0.091	1.00	13.86	A
		MOTA	3185	CB	ASN A	413	1	8.632	66.010	1.557	1.00	14.09	A
	45	ATOM	3186	CG	ASN A	413	1	7.723	67.078	2.155	1.00	14.34	A
		ATOM	3187	OD1	ASN A	413	1	7.958	67.540	3.270	1.00	15.45	A
		MOTA	3188	ND2	ASN A	413		6.685	67.465	1.425	1.00	13.77	A
		ATOM	3189	С	ASN A			9.453	64.857	-0.488	1.00	14.05	A
		MOTA	3190	0	ASN A			0.151	64.161	0.252		13.05	А
	50	ATOM	3191	N	TYR A			9.631	64.926	-1.806		13.36	А
		ATOM	3192	CA	TYR A			0.696	64.186	-2.478		13.34	A
		ATOM	3193	CB	TYR A			0.265	63.760	-3.886		13.11	A
		ATOM	3194	CG	TYR A			9.261	62.627	-3.894		12.95	A
		ATOM	3195		TYR A			7.910	62.856	-3.619		13.47	A
	55								61.802	-3.601		13.47	A
		MOTA	3196	CLI	TYR A	414	1	6.990	01.002	-2.001	1.00	13.24	А

										70
		ATOM	3197	CD2	TYR A 414	19.669	61.316	-4.149	1.00 12.99	A
		MOTA	3198	CE2	TYR A 414	18.761	60.260	-4.129	1.00 12.68	A
		MOTA	3199		TYR A 414	17.425	60.508	-3.857	1.00 13.38	A
		ATOM	3200		TYR A 414	16.531	59.457	-3.848	1.00 12.59	A
	5				TYR A 414	21.940	65.067	-2.554	1.00 12.83	A
	3	MOTA	3201			21.867	66.235	-2.941	1.00 12.53	А
		MOTA	3202	0	TYR A 414		64.490	-2.188	1.00 12.46	A
		MOTA	3203	N	TRP A 415	23.078			1.00 12.74	A
		MOTA	3204	CA	TRP A 415	24.343	65.213	-2.152		
		MOTA	3205	CB	TRP A 415	25.250	64.590	-1.088	1.00 12.36	A
	10	MOTA	3206	CG	TRP A 415	24.676	64.612	0.297	1.00 12.97	A
		MOTA	3207	CD2	TRP A 415	25.388	64.862	1.512	1.00 13.40	А
		MOTA	3208		TRP A 415	24.461	64.742	2.573	1.00 13.64	A
		ATOM	3209		TRP A 415	26.723	65.175	1.810	1.00 13.48	A
					TRP A 415	23.379	64.356	0.658	1.00 12.64	A
	15	MOTA	3210			23.242	64.434	2.024	1.00 13.04	Α
	15	MOTA	3211		TRP A 415		64.923	3.911	1.00 13.72	A
		MOTA	3212			24.827			1.00 13.72	A
		MOTA	3213	CZ3		27.086	65.354	3.135		
		MOTA	3214	CH2	TRP A 415	26.139	65.227	4.174	1.00 13.76	A
		MOTA	3215	С	TRP A 415	25.086	65.255	-3.482	1.00 12.39	A
	20	MOTA	3216	0	TRP A 415	26.224	64.805	-3.566	1.00 12.69	A
i ginali. Izaz		ATOM	3217	N	SER A 416	24.453	65.795	-4.516	1.00 11.73	Α
Ų.		ATOM	3218	CA	SER A 416	25.102	65.878	-5.815	1.00 11.54	A
		ATOM	3219	CB	SER A 416	24.117	65.508	-6.932	1.00 11.23	A
1914					SER A 416	22.849	66.106	-6.727	1.00 10.80	A
IJ	O.F.	ATOM	3220	OG		25.678	67.271	-6.046	1.00 11.26	A
	25	MOTA	3221	С	SER A 416		67.526	-7.063	1.00 11.02	А
i ildi Mari		MOTA	3222	0	SER A 416	26.311		-5.085	1.00 12.11	A
iji.		ATOM	3223	И	GLY A 417	25.468	68.165		1.00 12.11	A
Ęį		MOTA	3224	CA	GLY A 417	25.983	69.518	-5.214		A
		MOTA	3225	С	GLY A 417	27.500	69.582	-5.147	1.00 12.12	
199	30	MOTA	3226	0	GLY A 417	28.130	70.296	-5.930	1.00 12.13	A
Nest BBB		ATOM	3227	N	TYR A 418	28.090	68.818	-4.230	1.00 11.66	А
. 2		MOTA	3228	CA	TYR A 418	29.541	68.813	-4.051	1.00 11.15	А
		ATOM	3229	СВ	TYR A 418	29.904	68.106	-2.738	1.00 10.71	А
		MOTA	3230	CG	TYR A 418	30.049	66.597	-2.808	1.00 11.18	A
	35	ATOM	3231	CD1	TYR A 418	31.302	66.008	-2.993	1.00 10.96	A
	55			CE1		31.456	64.616	-2.990	1.00 10.46	A
		MOTA	3232			28.947	65.758	-2.632	1.00 11.76	А
		MOTA	3233		TYR A 418	29.090	64.360	-2.628	1.00 11.02	A
		MOTA	3234		TYR A 418			-2.805	1.00 10.28	A
		MOTA	3235	CZ	TYR A 418	30.348	63.803			A
	40	ATOM	3236	OH					1.00 11.20	
		ATOM	3237	С	TYR A 418	30.313	68.207	-5.231	1.00 10.98	A
		MOTA	3238	0	TYR A 418	31.545	68.208	-5.250	1.00 10.37	A
		MOTA	3239	N	TYR A 419	29.591	67.683	-6.213	1.00 10.63	А
		ATOM	3240	CA	TYR A 419	30.245	67.144	-7.399	1.00 10.39	A
	45	ATOM	3241	СВ	TYR A 419	29.247	66.380	-8.280	1.00 10.83	A
	10	ATOM	3242	CG	TYR A 419	28.624	65.146	-7.656	1.00 10.85	A
		ATOM	3243		TYR A 419	27.464	64.590	-8.198	1.00 11.08	A
						26.897	63.438	-7.660	1.00 11.16	A
		ATOM	3244		TYR A 419	29.201	64.518	-6.555	1.00 10.49	A
	F0	ATOM	3245		TYR A 419		63.359	-6.008	1.00 10.86	A
	50	MOTA	3246		TYR A 419	28.640			1.00 10.00	A
		MOTA	3247	CZ	TYR A 419	27.489	62.827	-6.568		A
		MOTA	3248	OH	TYR A 419	26.935	61.675	-6.051	1.00 10.77	
		ATOM	3249	С	TYR A 419	30.766	68.351	-8.191	1.00 10.55	A
		ATOM	3250	0	TYR A 419	31.607	68.203	-9.083	1.00 11.05	A
	55	ATOM	3251	N	THR A 420	30.279	69.544	-7.843	1.00 10.27	А

		ATOM	3252	CA	THR A	420	30.663	70.770	-8.548	1.00 9.65	A
		MOTA	3253	CB	THR A	420	29.458	71.312	-9.355	1.00 10.18	A
		MOTA	3254	OG1	THR A	420	28.971	70.285	-10.228	1.00 10.10	А
		ATOM	3255	CG2	THR A	420	29.859	72.532	-10.190	1.00 9.96	A
	5	MOTA	3256	С	THR A	420	31.224	71.918	-7.699	1.00 10.48	Α
		MOTA	3257	0	THR A	420	32.033	72.708	-8.187	1.00 10.35	A
		MOTA	3258	N	SER A	421	30.798	72.009	-6.440	1.00 10.65	A
		MOTA	3259	CA	SER A	421	31.240	73.077	-5.540	1.00 10.83	A
		ATOM	3260	CB	SER A	421	30.851	72.737	-4.099	1.00 9.91	A
	10	ATOM	3261	OG	SER A	421	29.446	72.581	-3.991	1.00 11.04	A
		MOTA	3262	С	SER A	421	32.733	73.390	-5.607	1.00 10.88	A
		ATOM	3263	0	SER A	421	33.571	72.483	-5.612	1.00 10.61	A
		ATOM	3264	N	ARG A	422	33.051	74.685	-5.637	1.00 11.06	A
		MOTA	3265	CA	ARG A	422	34.434	75.158	-5.717	1.00 11.32	A
	15	MOTA	3266	CB	ARG A	422	35.163	74.880	-4.400	1.00 12.09	A
		ATOM	3267	CG	ARG A	422	34.966	75.954	-3.316	1.00 12.90	A
		MOTA	3268	CD	ARG A	422	33.507	76.183	-2.913	1.00 13.25	A
		MOTA	3269	NE	ARG A		33.436	77.150	-1.813	1.00 14.01	А
		MOTA	3270	CZ	ARG A	422	33.503	76.829	-0.524	1.00 14.36	A
	20	MOTA	3271		ARG A		33.619	75.563	-0.153	1.00 14.25	A
1		MOTA	3272	NH2	ARG A	422	33.519	77.783	0.400	1.00 15.13	A
		ATOM	3273	С	ARG A		35.162	74.486	-6.885	1.00 11.33	А
144		MOTA	3274	0	ARG A	422	36.178	73.804	-6.704	1.00 11.04	A
34 B		MOTA	3275	N	PRO A	423	34.660	74.700	-8.112	1.00 11.11	А
Ann Ann	25	ATOM	3276	CD	PRO A		33.538	75.594	-8.455	1.00 10.63	A
1 G		MOTA	3277	CA	PRO A		35.249	74.111	-9.319	1.00 10.85	А
1125 11 11 11 11		MOTA	3278	CB	PRO A		34.251		-10.410	1.00 11.30	A
4)		ATOM	3279	CG	PRO A		33.748	75.829		1.00 12.06	A
100	•	MOTA	3280	С	PRO A		36.678	74.541	-9.644	1.00 10.60	A
	30	MOTA	3281	0	PRO A		37.405		-10.320	1.00 9.70	A
100		MOTA	3282	N	TYR A		37.082	75.717	-9.175	1.00 10.48	А
in.		MOTA	3283	CA	TYR A		38.439	76.192	-9.433	1.00 11.22	A
		MOTA	3284	CB	TYR A		38.658	77.554	-8.769	1.00 12.13	A
2122	0=	MOTA	3285	CG	TYR A		40.028	78.140	-9.029	1.00 12.96	A
2.	35	ATOM	3286	CD1	TYR A		40.274		-10.170	1.00 13.38	A
		ATOM	3287	CE1	TYR A		41.533		-10.421	1.00 14.39	A
		ATOM	3288		TYR A		41.084	77.922	-8.138	1.00 13.80	A
		ATOM	3289		TYR A		42.355	78.450	-8.383	1.00 14.53	A
	40	ATOM	3290	CZ	TYR A		42.568	79.206	-9.526	1.00 14.85	A
	4 0	ATOM	3291	OH	TYR A		43.812	79.745	-9.785	1.00 15.46	A
		ATOM	3292	С	TYR A		39.451	75.196	-8.863	1.00 11.15	A
		ATOM	3293	0	TYR A		40.402	74.787	-9.536	1.00 10.39	A
		ATOM	3294	N	HIS A		39.226	74.794	-7.617	1.00 10.48	A
	45	ATOM	3295	CA	HIS A		40.125	73.872	-6.933	1.00 10.34	A
	43	ATOM	3296	CB	HIS A		39.876	73.985	-5.431	1.00 10.89	A
		ATOM	3297	CG	HIS A		39.851	75.404	-4.959	1.00 11.17	A
		MOTA	3298		HIS A		38.823	76.274	-4.820	1.00 10.14	A
		ATOM	3299		HIS A		41.000	76.127	-4.719	1.00 11.79	A
	50	ATOM	3300		HIS A		40.682	77.382	-4.460	1.00 10.26	A
	50	ATOM	3301		HIS A		39.368	77.499	-4.516	1.00 12.42	A
		ATOM	3302	C	HIS A		39.985	72.437	-7.431 -7.372	1.00 10.16	A A
		ATOM	3303 3304	O N	HIS A		40.941	71.660 72.088	-7.372 -7.923	1.00 9.68 1.00 10.04	A
		ATOM ATOM	3304	N	LYS A LYS A		38.800 38.581	70.752	-7.923 -8.478	1.00 10.04	A A
	55			CA							
		ATOM	3306	CB	LYS A	420	37.106	70.563	-8.869	1.00 10.40	A

	ATOM	3307	CG	LYS	20.	126	36.193	70.161	-7.714	1 00	10.43	А
	ATOM	3308	CD	LYS			34.724	70.107	-8.150		10.31	A
	MOTA	3309	CE	LYS			33.871	69.281	-7.183		10.26	A
	ATOM	3310	NZ	LYS			33.888	69.790	-5.777		10.85	A
5	ATOM	3311	C	LYS			39.470	70.629			10.40	A
O	MOTA	3312	0	LYS			40.073	69.579			10.72	A
	ATOM	3313	N	ARG			39.549		-10.491	1.00	9.88	А
	ATOM	3314	CA	ARG			40.379		-11.691		10.35	A
	ATOM	3315	CB	ARG			40.019		-12.549		11.69	A
10	ATOM	3316	CG	ARG			40.997		-13.671		12.53	A
10	ATOM	3317	CD	ARG			41.271		-14.618		12.72	А
	MOTA	3318	NE	ARG			42.265		-15.613		12.83	А
	ATOM	3319	CZ	ARG			43.039		-16.293		12.73	А
	MOTA	3320		ARG			42.948		-16.103		12.04	А
15	MOTA	3321		ARG			43.928		-17.152		13.32	A
	ATOM	3322	С	ARG			41.849		-11.268		10.25	Α
	ATOM	3323	0	ARG			42.695		-11.852	1.00	9.51	А
	ATOM	3324	N	MET			42.145		-10.230		10.68	A
	ATOM	3325	CA	MET			43.514	72.644	-9.738		11.11	A
20	MOTA	3326	CB	MET			43.571	73.614	-8.556	1.00	12.20	A
	ATOM	3327	CG	MET	Α	428	44.976	73.931	-8.088	1.00	13.51	A
	MOTA	3328	SD	MET	A	428	45.000	75.304	-6.918	1.00	15.32	A
	MOTA	3329	CE	MET			46.751	75.650	-6.870	1.00	14.47	A
	ATOM	3330	С	MET	Α	428	44.019	71.258	-9.321	1.00	10.53	A
25	ATOM	3331	0	MET	A	428	45.199	70.934	-9.502	1.00	9.33	A
	MOTA	3332	N	ASP	Α	429	43.118	70.438	-8.780	1.00	9.95	A
	MOTA	3333	CA	ASP	Α	429	43.475	69.086	-8.352	1.00	9.37	A
	ATOM	3334	CB	ASP	A	429	42.251	68.358	-7.788	1.00	10.10	A
	MOTA	3335	CG	ASP	Α	429	42.535	66.894	-7.467	1.00	10.35	A
30	MOTA	3336	OD1	ASP	A	429	42.230	66.024	-8.318	1.00	10.71	A
	ATOM	3337	OD2	ASP	Α	429	43.069	66.616	-6.372	1.00	9.82	A
	MOTA	3338	C	ASP	A	429	44.063	68.268	-9.496	1.00	9.63	A
	MOTA	3339	0	ASP	A	429	45.084	67.598	-9.332	1.00	8.73	A
	MOTA	3340	N	ARG	A	430	43.417		-10.658	1.00	9.03	А
35	MOTA	3341	CA	ARG			43.876		-11.820	1.00	8.89	А
	MOTA	3342	CB	ARG			42.805		-12.911	1.00	9.00	A
	ATOM	3343	CG	ARG			41.515		-12.507	1.00	9.05	A
	MOTA	3344	CD	ARG			41.750		-12.150	1.00	9.51	A
40	MOTA	3345	NE	ARG			40.505		-12.128	1.00	9.34	A
40	MOTA	3346	CZ	ARG			39.818		-11.029		10.40	A
	ATOM	3347		ARG			40.248		-9.837	1.00		A
	ATOM	3348		ARG			38.683		-11.129		10.19	A
	ATOM	3349	С	ARG			45.201		-12.371	1.00		A
4 =	MOTA	3350	0	ARG			46.020		-12.878	1.00		A
45	MOTA	3351	N	VAL			45.407		-12.282	1.00		A
	ATOM	3352	CA	VAL			46.652		-12.751		10.08	A
	ATOM	3353	CB	VAL			46.580		-12.726		10.23	A
	ATOM	3354		VAL			47.954		-13.037		11.41	A
5 0	ATOM	3355		VAL			45.556		-13.745	1.00		A
50	ATOM	3356	С	VAL			47.790		-11.840	1.00		A
	ATOM	3357	0	VAL			48.822		~12.313	1.00		A
	MOTA	3358	N	LEU			47.595		-10.531 -9.596	1.00		A a
	MOTA	3359	CA	LEU			48.632	69.206				A n
22	ATOM	3360	CB	LEU			48.255			1.00		A A
55	MOTA	3361	CG	LEU	A	432	49.292	69.268	-7.079	1.00	9.92	А

	ATOM	3362	CD1	LEU	Α	432	50.657	69.850	-7.467	1.00	9.96	A
	ATOM	3363		LEU			48.825	69.849	-5.738	1.00	9.99	А
	MOTA	3364	C			432	48.865	67.703	-9.698	1.00	9.62	А
	ATOM	3365	0			432	49.998	67.237	-9.587		10.09	A
5	ATOM	3366	N			433	47.795	66.945	-9.917	1.00	9.73	A
	ATOM	3367	CA			433	47.922		-10.058	1.00	9.45	A
	MOTA	3368	CB			433	46.595		-10.494	1.00	8.69	A
			CG				46.732		-10.924		10.44	A
	ATOM	3369				433			-11.557		11.59	A
10	ATOM	3370	SD	MET			45.195					
10	ATOM	3371	CE			433	45.222		-13.250		10.74	A
	ATOM	3372	С			433	48.972		-11.117	1.00	9.60	A
	MOTA	3373	0			433	49.849		-10.918	1.00	9.52	A.
	MOTA	3374	N			434	48.876		-12.246	1.00	9.61	A
	MOTA	3375	CA	HIS			49.813		-13.342	1.00	9.91	A
15	MOTA	3376	CB	HIS	A	434	49.298	66.325	-14.629	1.00	9.95	A
	MOTA	3377	CG	HIS	Α	434	50.281	66.257	-15.752	1.00	10.58	A
	MOTA	3378	CD2	HIS	Α	434	50.721	65.207	-16.487	1.00	9.53	A
	ATOM	3379	ND1	HIS	Α	434	51.018	67.347	-16.161	1.00	11.20	A
	ATOM	3380	CE1	HIS	A	434	51.871	66.969	-17.098	1.00	9.32	A
20	ATOM	3381		HIS			51.712	65.677	-17.313	1.00	11.60	A
	ATOM	3382	С	HIS			51.214	66.191	-13.048	1.00	10.24	А
	ATOM	3383	0	HIS			52.202		-13.391	1.00	9.05	A
	ATOM	3384	N			435	51.301		-12.434		10.57	А
	ATOM	3385	CA			435	52.599		-12.101		11.66	A
25	ATOM	3386	CB			435	52.436		-11.436		13.23	A
	ATOM	3387	CG			435	52.318		-12.396		16.34	A
	ATOM	3388	CD1			435	51.340		-13.391		17.44	A
	ATOM	3389	CE1			435	51.199		-14.237		18.75	A
	ATOM	3390	CD2	TYR			53.157		-12.270		18.76	A
30	ATOM	3391	CE2	TYR			53.027		-13.105		20.26	A
50	MOTA	3392	CZ			435	52.045		-14.083		20.16	A
	ATOM	3393	OH			435	51.903		-14.884		22.28	A
	ATOM	3394	С			435	53.364		-11.161		11.02	A
							54.578		-11.290		10.53	A
35	ATOM	3395	0			435			-10.215	1.00	9.43	A
33	ATOM	3396	N			436	52.658					
	ATOM	3397	CA			436	53.317	65.490	-9.280	1.00	9.55	A
	ATOM	3398	CB			436	52.341	65.008	-8.175	1.00	8.98	A
	ATOM	3399		VAL			52.921	63.811	-7.440		10.24	A
40	MOTA	3400		VAL			52.094	66.145	-7.185	1.00	8.57	A
40	ATOM	3401	C	VAL			53.885		-10.039		10.04	A
	MOTA	3402	0	VAL			55.043		-9.849	1.00	9.58	A
	MOTA	3403	N			437	53.076		-10.914	1.00	9.63	A
	MOTA	3404	CA			437	53.537		-11.696		10.51	A
	MOTA	3405	CB			437	52.416		-12.607		10.60	A
45	ATOM	3406	CG	ARG	Α	437	52.915		-13.705		11.44	A
	ATOM	3407	CD	ARG	Α	437	51.778	60.538	-14.544	1.00	11.25	A
	ATOM	3408	NE	ARG	Α	437	52.288	59.867	-15.739	1.00	10.78	A
	ATOM	3409	CZ	ARG	Α	437	51.558	59.068	-16.516	1.00	10.87	A
	MOTA	3410	NH1	ARG	Α	437	50.285	58.831	-16.224	1.00	10.01	A
50	MOTA	3411	NH2	ARG	Α	437	52.096	58.519	-17.597	1.00	10.75	A
	ATOM	3412	С			437	54.751	62.935	-12.547	1.00	10.47	A
	MOTA	3413	0	ARG			55.736	62.194	-12.597	1.00	11.91	Α
	ATOM	3414	N			438	54.680		-13.220		10.55	A
	ATOM	3415	CA			438	55.771		-14.086		10.56	А
55	ATOM	3416	CB	ALA			55.345		-14.879		10.46	A

	MOTA	3417	С	ALA	A	438		57.053	64.807	-13.309	1.00	10.58	A
	ATOM	3418	0	ALA	Α	438		58.150	64.467	-13.763	1.00	9.73	A
	ATOM	3419	N	ALA	А	439		56.914	65.418	-12.136	1.00	9.89	A
_	MOTA	3420	CA	ALA	Α	439		58.074	65.738	-11.310	1.00	9.47	A
5	MOTA	3421	CB	ALA	Α	439	:	57.657	66.644	-10.141	1.00	8.79	A
	MOTA	3422	С	ALA	Α	439		58.734	64.463	-10.785	1.00	9.84	А
	MOTA	3423	0	ALA	A	439		59.956	64.320	-10.838	1.00	8.81	A
	ATOM	3424	N	GLU	Α	440		57.927	63.540	-10.270	1.00	9.60	A
	ATOM	3425	CA	GLU	Α	440		58.469	62.283	-9.757	1.00	10.28	A
10	MOTA	3426	CB	GLU	Α	440	:	57.367	61.451	-9.089	1.00	10.51	A
	MOTA	3427	CG	GLU	Α	440		56.796	62.085	-7.833	1.00	11.25	A
	MOTA	3428	CD	GLU	A	440	:	56.134	61.071	-6.918	1.00	11.92	A
	MOTA	3429	OE1	GLU	Α	440		55.012	60.614	-7.222	1.00	12.12	A
	ATOM	3430	OE2	GLU	Α	440	:	56.753	60.718	-5.896	1.00	13.62	A
15	ATOM	3431	С	GLU	Α	440		59.118	61.461	-10.872	1.00	10.35	A
	MOTA	3432	0	GLU	Α	440		60.171	60.851	-10.674	1.00	11.64	A
	ATOM	3433	N	MET	Α	441	!	58.494	61.437	-12.045	1.00	10.26	A
	ATOM	3434	CA	MET	Α	441		59.047	60.666	-13.158	1.00	10.07	A
	ATOM	3435	CB	MET	A	441		58.010	60.511	-14.274	1.00	9.51	A
20	ATOM	3436	CG	MET	A	441	!	58.520	59.763	-15.507	1.00	9.93	A
	ATOM	3437	SD	MET	Α	441		57.250	59.554	-16.783	1.00	10.71	А
	MOTA	3438	CE	MET	Α	441	!	56.191		-16.011	1.00	11.36	А
	MOTA	3439	С	MET				60.325		-13.721		10.23	A
	ATOM	3440	0	MET	A	441		61.322		-13.913	1.00	9.58	А
25	ATOM	3441	N	LEU				60.304		-13.982		10.26	A
	ATOM	3442	CA	LEU				61.483		-14.529	1.00	11.10	A
	MOTA	3443	СВ	LEU	А	442		61.175		-14.846		11.61	A
	MOTA	3444	CG	LEU				60.559	64.982	-16.226		12.48	A
	MOTA	3445	CD1	LEU				59.975		-16.271		12.40	A
30	ATOM	3446		LEU				61.614		-17.305		12.40	A
	MOTA	3447	С	LEU	Α	442		62.697	63.168	-13.616	1.00	11.57	A
	MOTA	3448	0	LEU	Α	442		63.826		-14.089		11.69	А
	MOTA	3449	N	SER				62.474		-12.307		11.46	А
	MOTA	3450	CA	SER				63.590		-11.373	1.00	11.37	A
35	ATOM	3451	СВ	SER	Α	443		63.257		-10.104		11.11	A
	ATOM	3452	OG	SER	Α	443	1	62.166	63.396	-9.405	1.00	10.78	A
	MOTA	3453	С	SER	Α	443		64.003	61.749	-10.999	1.00	11.94	A
	MOTA	3454	0	SER				65.064	61.545	-10.403	1.00	11.73	А
	MOTA	3455	N	ALA	Α	444	4	63.177	60.769	-11.360	1.00	11.28	A
40	MOTA	3456	CA	ALA	Α	444	1	63.458	59.368	-11.043	1.00	11.76	A
	MOTA	3457	CB	ALA				62.204		-11.264		11.73	A
	MOTA	3458	С	ALA				64.618		-11.846	1.00	12.36	А
	MOTA	3459	0	ALA				65.267		-11.402		12.49	A
	MOTA	3460	N	TRP				54.880		-13.021		12.37	А
45	MOTA	3461	CA	TRP				55.948	58.845	-13.881		13.43	A
	MOTA	3462	CB	TRP				65.945		-15.218		12.38	A
	MOTA	3463	CG	TRP				64.666		-15.968	1.00	12.06	A
	MOTA	3464		TRP				64.217		-16.645		11.74	А
	MOTA	3465		TRP				52.938		-17.171		11.42	А
50	MOTA	3466		TRP				54.772		-16.857		12.15	A
	ATOM	3467		TRP				53.671		-16.109		11.63	A
	ATOM	3468		TRP				52.630		-16.829		11.30	A
	ATOM	3469		TRP				52.198		-17.901		11.44	A
	ATOM	3470		TRP				54.037		-17.581		12.95	A
55	MOTA	3471		TRP				52.762		-18.094		12.11	A
					-	-							· ·

		ATOM	3472	С	מקיף	445	67.3	33 58 9 17	-13.252	1.00 14.15	i A
							68.2				
		ATOM	3473	0		445			-13.561	1.00 14.34	
		MOTA	3474	N	HIS A		67.5		-12.375	1.00 14.87	
	_	MOTA	3475	CA		446	68.8		-11.709	1.00 15.74	
	5	MOTA	3476	CB	HIS A	446	69.4	62 61.414	-11.992	1.00 16.67	A
		MOTA	3477	CG	HIS A	446	69.8	75 61.625	-13.413	1.00 18.24	! A
		ATOM	3478	CD2	HIS A	446	71.0	44 61.370	-14.047	1.00 19.05	. A
		MOTA	3479		HIS A		69.0		-14.350	1.00 18.92	
		ATOM	3480		HIS A		69.6		-15.501	1.00 19.41	
	10	ATOM	3481		HIS A		70.9		-15.345	1.00 19.48	
	10	ATOM	3482	C	HIS A		68.7		-10.201	1.00 16.41	
			3483				67.6			1.00 15.41	
		ATOM		0	HIS A						
		ATOM	3484	N	SER A		69.8			1.00 16.74	
	15	MOTA	3485	CA	SER A		69.9			1.00 17.65	
	15	ATOM	3486	CB	SER A		70.9			1.00 18.93	
		MOTA	3487	OG		447	70.9			1.00 20.59	
		MOTA	3488	С	SER A		70.4			1.00 17.81	
		MOTA	3489	0	SER A	447	71.3			1.00 18.00	
		MOTA	3490	N	TRP A	448	69.83	32 61.789	-6.886	1.00 17.24	
122	20	MOTA	3491	CA	TRP A	448	70.2	32 63.165	-6.619	1.00 17.67	A
1200		MOTA	3492	CB	TRP A	448	69.0	20 64.097	-6.707	1.00 16.94	A
		MOTA	3493	CG	TRP A	448	68.3	72 64.127	-8.058	1.00 15.88	a A
E, E B		MOTA	3494	CD2	TRP A	448	68.5	20 65.144	-9.056	1.00 15.36	i A
		MOTA	3495		TRP A		67.7		-10.168	1.00 14.69	
	25	ATOM	3496		TRP A		69.2			1.00 14.92	
and and and		ATOM	3497		TRP A		67.5			1.00 15.27	
1,11		ATOM	3498		TRP A		67.1			1.00 14.78	
		ATOM	3499		TRP A		67.6		-11.332	1.00 14.71	
R) a simb		ATOM	3500		TRP A		69.1		-10.278	1.00 15.23	
	30	ATOM	3501		TRP A		68.3		-11.370	1.00 13.23	
Į.	50										
		ATOM	3502	С	TRP A		70.9			1.00 18.42	
į.		ATOM	3503	0	TRP A		70.58			1.00 17.49	
		ATOM	3504	N	ASP A		71.88			1.00 20.05	
	25	MOTA	3505	CA	ASP A		72.60			1.00 21.64	
	35	ATOM	3506	CB	ASP A		73.75			1.00 23.78	
		ATOM	3507	CG	ASP A		74.63			1.00 26.46	
		MOTA	3508		ASP A		74.18	37 66.658		1.00 27.14	
		MOTA	3509	OD2	ASP A	449	75.7	72 65.402	-3.146	1.00 28.75	
		ATOM	3510	С	ASP A	449	71.60			1.00 21.51	. A
	40	MOTA	3511	0	ASP A	449	70.72	23 66.066	-3.599	1.00 21.20	A
		ATOM	3512	N	GLY A	450	71.74	43 65.109	-1.839	1.00 21.76	i A
		ATOM	3513	CA	GLY A	450	70.83	33 65.708	-0.881	1.00 21.96	, A
		ATOM	3514	С	GLY A		70.70			1.00 22.35	
		ATOM	3515	0	GLY F		69.66			1.00 22.04	
	4 5	ATOM	3516	N	MET A		71.7			1.00 21.87	
		ATOM	3517	CA	MET A		71.79			1.00 22.85	
		ATOM	3518	СВ	MET F		73.15			1.00 25.58	
		ATOM	3519	CG	MET A		74.19			1.00 29.68	
		ATOM	3520	SD	MET P		75.74			1.00 29.00	
	50										
	50	ATOM	3521	CE	MET A		76.63			1.00 33.78	
		ATOM	3522	C	MET A		70.7			1.00 21.28	
		ATOM	3523	0	MET F		70.39			1.00 21.56	
		MOTA	3524	N	ALA A		70.36			1.00 20.19	
		ATOM	3525	CA	ALA A		69.43			1.00 19.23	
	55	ATOM	3526	СВ	ALA A	452	69.45	68.267	-5.724	1.00 19.32	A

	ATOM	3527	С	ALA	А	452	68.017	69.482	-4.077	1.00 18.38	А
	ATOM	3528	0	ALA	A	452	67.146	70.024	-4.760	1.00 17.97	A
	MOTA	3529	N	ARG	Α	453	67.795	69.004	-2.856	1.00 17.50	A
	ATOM	3530	CA	ARG	A	453	66.488	69.096	-2.207	1.00 17.01	A
5	MOTA	3531	CB	ARG	A	453	66.180	70.559	-1.870	1.00 18.00	A
	MOTA	3532	CG	ARG	Α	453	67.249	71.225	-1.012	1.00 19.55	A
	ATOM	3533	CD	ARG	A	453	66.942	72.698	-0.774	1.00 21.42	A
	MOTA	3534	NE	ARG	Α	453	65.716	72.891	-0.005	1.00 22.14	A
	MOTA	3535	CZ	ARG	Α	453	65.172	74.078	0.251	1.00 23.68	A
10	ATOM	3536	NH1	ARG	Α	453	65.745	75.187	-0.202	1.00 24.14	A
	MOTA	3537	NH2	ARG	Α	453	64.054	74.156	0.963	1.00 23.59	A
	MOTA	3538	С	ARG	Α	453	65.360	68.510	-3.058	1.00 16.24	A
	ATOM	3539	0	ARG			64.227	68.987	-3.016	1.00 16.48	A
	MOTA	3540	N	ILE			65.673	67.471	-3.826	1.00 15.16	А
15	ATOM	3541	CA	ILE			64.681	66.830	-4.679	1.00 14.83	A
	ATOM	3542	СВ	ILE			65.349	65.848	-5.667	1.00 15.09	A
	MOTA	3543	CG2	ILE			64.286	65.111	-6.477	1.00 14.91	А
	ATOM	3544	CG1	ILE			66.312	66.611	-6.587	1.00 14.75	А
	ATOM	3545	CD1				65.660	67.697	-7.432	1.00 14.56	A
20	ATOM	3546	C	ILE			63.638	66.077	-3.852	1.00 14.81	A
~~	MOTA	3547	Ö	ILE			62.438	66.309	-4.002	1.00 14.37	A
	ATOM	3548	N	GLU			64.095	65.179	-2.981	1.00 14.40	A
	MOTA	3549	CA	GLU			63.178	64.410	-2.142	1.00 14.75	A
	MOTA	3550	CB	GLU			63.944	63.458	-1.212	1.00 15.34	A
25	ATOM	3551	CG	GLU			64.535	62.225	-1.883	1.00 14.65	A
	MOTA	3552	CD	GLU			65.880	62.484	-2.539	1.00 14.03	A
	MOTA	3553	OE1				66.344	63.646	-2.526	1.00 16.23	A
	ATOM	3554	OE2	GLU			66.473	61.518	-3.068	1.00 14.90	A
	ATOM	3555	C	GLU			62.323	65.349	-1.299	1.00 14.60	A
30	ATOM	3556	0	GLU			61.129	65.116	-1.103	1.00 13.65	A
50	ATOM	3557	N	GLU			62.948	66.411	-0.800	1.00 14.87	A
	ATOM	3558	CA	GLU			62.258	67.394	0.025	1.00 15.38	A
	ATOM	3559	CB	GLU			63.229	68.502	0.432	1.00 13.30	A
	ATOM	3560	CG	GLU			62.669	69.473	1.454	1.00 20.04	A
35	MOTA	3561	CD	GLU			63.543	70.699	1.627	1.00 20.04	A
55	ATOM	3562	OE1	GLU			64.773	70.581	1.457	1.00 21.34	A
	ATOM	3563	OE2				63.002	71.780	1.941	1.00 22.77	A
	ATOM	3564	C	GLU			61.070	68.011	-0.713	1.00 22.33	A
	ATOM	3565	0	GLU			59.940	67.995	-0.713	1.00 14.51	A
4 0	ATOM	3566		ARG			61.333			1.00 14.00	A
40		3567	N								
	ATOM		CA	ARG			60.281	69.196	-2.686	1.00 13.76	A
	ATOM	3568	CB	ARG			60.895	69.878	-3.917	1.00 14.11	A
	ATOM	3569	CG	ARG			61.308	71.340	-3.700	1.00 15.77	A
45	ATOM	3570	CD	ARG			62.227	71.524	-2.493	1.00 18.41	A
40	ATOM	3571	NE	ARG			62.485	72.936	-2.197	1.00 19.24	A
	ATOM	3572	CZ	ARG			63.341	73.709	-2.864	1.00 20.83	A
	MOTA	3573		ARG			64.041	73.217	-3.879	1.00 20.68	A
	ATOM	3574		ARG			63.497	74.982	-2.515	1.00 21.40	A
EO	ATOM	3575	С	ARG			59.186	68.216	-3.110	1.00 12.75	A
50	ATOM	3576	0	ARG			58.004	68.561	-3.105	1.00 11.81	A
	ATOM	3577	N	LEU			59.571	66.996	-3.470	1.00 11.91	A
	ATOM	3578	CA	LEU			58.586	66.002	-3.886	1.00 12.47	A
	ATOM	3579	CB	LEU			59.279	64.788	-4.511	1.00 12.02	A
	ATOM	3580	CG	LEU			59.998	65.089	-5.834	1.00 11.94	Α
55	MOTA	3581	CD1	LEU	A	458	60.693	63.829	-6.341	1.00 11.69	A

The first the time that the time the time that the time the time that the time the time that the time that the time the time that the time the time that the time the time that the time the time the time the time the time that the time th

	ATOM	3582	CD2	LEU A	4 458	58.985	65.601	-6.866	1.00 11.22	A
	ATOM	3583	С	LEU A		57.696	65.559	-2.727	1.00 12.74	A
	ATOM	3584	0	LEU A		56.505	65.318	-2.917	1.00 12.98	А
	ATOM	3585	N	GLU A		58.265	65.451	-1.530	1.00 12.29	A
5	ATOM	3586	CA	GLU A		57.473	65.049	-0.374	1.00 13.18	A
	ATOM	3587	СВ	GLU A		58.365	64.846	0.857	1.00 14.23	А
	ATOM	3588	CG	GLU A		57.595	64.361	2.088	1.00 16.92	А
	ATOM	3589	CD	GLU A		58.497	63.766	3.159	1.00 18.01	A
	ATOM	3590	OE1	GLU A		59.210	64.532	3.834	1.00 19.27	A
10	ATOM	3591	OE2	GLU A		58.497	62.525	3.316	1.00 18.89	A
10	ATOM	3592	C	GLU A		56.428	66.126	-0.096	1.00 12.90	A
	ATOM	3593	Ö	GLU A		55.259	65.824	0.153	1.00 11.83	A
	ATOM	3594	N	GLN A		56.847	67.388	-0.147	1.00 12.61	A
	ATOM	3595	CA	GLN A		55.921	68.490	0.081	1.00 13.10	A
15	MOTA	3596	CB	GLN A		56.653	69.829	-0.041	1.00 15.39	A
10	ATOM	3597	CG	GLN A		55.765	71.037	0.211	1.00 17.90	A
	ATOM	3598	CD	GLN A		56.432	72.346	-0.153	1.00 20.12	A
	MOTA	3599	OE1	GLN A		55.906	73.421	0.135	1.00 23.01	Ā
		3600	NE2	GLN A		57.590	72.265	-0.799	1.00 20.79	A
20	ATOM			GLN A		54.788	68.428	-0.950	1.00 20.79	A
20	MOTA	3601 3602	С	GLN A			68.505	-0.602	1.00 12.41	A
	ATOM		0			53.612				
	ATOM	3603	N	ALA A		55.145	68.278	-2.222 -3.275	1.00 11.44 1.00 10.82	A
	ATOM	3604	CA	ALA A		54.136	68.217			A
25	MOTA	3605	CB	ALA A		54.810	68.096	-4.646 -3.068	1.00 10.93 1.00 10.35	A A
23	ATOM	3606	С	ALA A		53.147	67.069		1.00 10.33	
	ATOM	3607	0	ALA A		51.935	67.270	-3.152		A
	MOTA	3608	N	ARG A		53.659	65.869	-2.801	1.00 10.22	A
	ATOM	3609	CA	ARG A		52.797	64.708	-2.587	1.00 10.59	A
20	ATOM	3610	CB	ARG A		53.630	63.443	-2.331	1.00 9.97	A
30	ATOM	3611	CG	ARG A		54.383	62.883	-3.541	1.00 9.98	A
	ATOM	3612	CD	ARG A		54.835	61.446	-3.254	1.00 10.20	A
	ATOM	3613	NE	ARG A		55.747	61.380	-2.113	1.00 10.56	A
	MOTA	3614	CZ	ARG A		57.066	61.530	-2.202	1.00 11.65	A
25	ATOM	3615	NH1	ARG A		57.635	61.749	-3.383	1.00 11.19	A
35	ATOM	3616		ARG A		57.818	61.469	-1.110	1.00 11.26	A
	ATOM	3617	C	ARG A		51.860	64.925	-1.400	1.00 11.75	A
	ATOM	3618	0	ARG A		50.680	64.581	-1.451	1.00 10.88	A
	ATOM	3619	N	ARG A		52.390	65.498	-0.325	1.00 11.61	A
40	ATOM	3620	CA	ARG A		51.582	65.721	0.863	1.00 11.89	A
40	MOTA		СВ	ARG A		52.498	66.003		1.00 11.99	A
	MOTA	3622	CG	ARG A		53.276	64.751	2.436	1.00 12.82	A
	ATOM	3623	CD	ARG A		54.199	64.923	3.623	1.00 14.07	A
	MOTA	3624	NE	ARG A		54.724	63.620	4.023	1.00 15.02	A
45	MOTA	3625	CZ	ARG F		55.481	63.409	5.094	1.00 15.38	A
45	MOTA	3626		ARG A		55.814	64.422	5.882	1.00 15.01	A
	MOTA	3627		ARG A		55.893	62.180	5.381	1.00 15.17	A
	MOTA	3628	С	ARG A		50.497	66.787	0.730	1.00 11.52	А
	ATOM	3629	0	ARG A		49.401	66.612	1.259	1.00 11.19	A
F0	MOTA	3630	N	GLU A		50.777	67.881	0.024	1.00 11.08	A
50	MOTA	3631	CA	GLU A		49.755	68.913	-0.137	1.00 11.07	A
	MOTA	3632	CB	GLU A		50.361	70.206	-0.686	1.00 12.30	А
	MOTA	3633	CG	GLU A		51.509	70.752	0.158	1.00 14.44	A
	MOTA	3634	CD	GLU A		51.083	71.173	1.560	1.00 15.33	А
	ATOM	3635		GLU A		50.043	70.696	2.058	1.00 16.27	А
55	MOTA	3636	OE2	GLU F	464	51.804	71.981	2.176	1.00 17.15	A

	ATOM	3637	С	GLU A	4 464	48.653	68.409	-1.067	1.00 10.16	A
	ATOM	3638	0	GLU A	464	47.481	68.714	-0.861	1.00 10.20	A
	MOTA	3639	N		A 465	49.022	67.646	-2.094	1.00 10.06	A
	ATOM	3640	CA		A 465	48.017	67.101	-3.005	1.00 10.13	A
5	MOTA	3641	CB		4 4 6 5	48.668	66.476	-4.247	1.00 9.70	А
_	ATOM	3642	CG		4 465	47.695	65.782	-5.215	1.00 9.35	A
	ATOM	3643	CD1	LEU A		46.662	66.790	-5.716	1.00 9.18	A
	ATOM	3644		LEU A		48.459	65.178	-6.389	1.00 8.95	A
	ATOM	3645	C		4 465	47.215	66.033	-2.263	1.00 9.87	A
10	ATOM	3646	0	LEU A		45.994	65.955	-2.400	1.00 9.64	A
10	MOTA	3647	N		466	47.905	65.218	-1.468	1.00 9.22	A
	ATOM	3648	CA		466	47.237	64.161	-0.713	1.00 9.23	A
	ATOM	3649	CB		466	48.261	63.303	0.038	1.00 9.47	A
	ATOM	3650	OG		466	49.045	62.538	-0.864	1.00 9.64	A
15							64.764	0.279	1.00 9.71	A
15	ATOM	3651	C		466	46.252		0.467	1.00 9.34	A
	ATOM	3652	0		466	45.148	64.249			
	ATOM	3653	N	LEU A		46.656	65.861	0.910		A
	ATOM	3654	CA	LEU A		45.795	66.521	1.879		A
20	ATOM	3655	CB	LEU A		46.501	67.744	2.473	1.00 9.34	A
20	ATOM	3656	CG	LEU A		45.771	68.418	3.636	1.00 11.49	A
	ATOM	3657		LEU A		45.861	67.523	4.867	1.00 12.53	A
	ATOM	3658		LEU A		46.389	69.786	3.924	1.00 11.51	A
	ATOM	3659	C	LEU A		44.480	66.957	1.233	1.00 9.10	A
25	ATOM	3660	0	LEU A		43.405	66.769	1.809	1.00 8.58	A
25	ATOM	3661	N		468	44.569	67.521	0.032	1.00 8.59	A
	ATOM	3662	CA		468	43.386	68.005	-0.672	1.00 9.47	A
	ATOM	3663	CB		468	43.792	68.803	-1.918	1.00 9.60	A
	ATOM	3664	CG		468	42.667	69.600	-2.519	1.00 10.53	A
20	MOTA	3665		PHE A		41.953	70.514	-1.744	1.00 10.08	A
30	MOTA	3666		PHE A		42.310	69.434	-3.854	1.00 9.96	A
	ATOM	3667		PHE A		40.898	71.250	-2.291	1.00 9.64	A
	ATOM	3668		PHE A		41.256	70.166	-4.409	1.00 9.46	A
	ATOM	3669	CZ		468	40.549	71.076	-3,622	1.00 8.13	A
2.5	ATOM	3670	С		468	42.405	66.901	-1.060	1.00 9.54	A
35	MOTA	3671	0		468	41.261	67.186	-1.400	1.00 10.30	A
	MOTA	3672	N		469	42.843	65.644	-1.012	1.00 9.36	A
	ATOM	3673	CA		469	41.951	64.536	-1.343	1.00 9.71	A
	ATOM	3674	CB		469	42.743	63.243	-1.555	1.00 9.78	A
40	MOTA	3675	CG		469		63.345	-2.645	1.00 10.20	A
40	ATOM	3676	CD		469	43.265	63.975	-3.917	1.00 9.47	A
	MOTA	3677		GLN A		43.797	64.979	-4.397	1.00 12.79	A
	ATOM	3678		GLN A		42.207	63.394	-4.468	1.00 8.19	A
	ATOM	3679	C		469	40.921	64.325	-0.234	1.00 9.75	A
4.5	MOTA	3680	0	GLN A		39.977	63.545	-0.392	1.00 10.11	A
45	MOTA	3681	N	HIS A		41.111	65.023	0.884	1.00 9.95	A
	MOTA	3682	CA	HIS A		40.200	64.937	2.029	1.00 9.97	A
	MOTA	3683	CB	HIS A		40.571	65.989	3.082	1.00 10.40	A
	ATOM	3684	CG	HIS A		39.592	66.076	4.213	1.00 11.67	A
=0	MOTA	3685		HIS A		38.969	65.109	4.926	1.00 11.04	A
50	ATOM	3686		HIS A		39.127	67.276	4.709	1.00 13.03	A
	ATOM	3687		HIS A		38.258	67.043	5.676	1.00 10.74	A
	MOTA	3688		HIS A		38.144	65.736	5.828	1.00 13.35	A
	MOTA	3689	C	HIS A		38.754	65.165	1.583	1.00 10.37	A
	ATOM	3690	0	HIS A		38.511	65.900	0.622	1.00 9.96	A
55	MOTA	3691	N	HIS A	471	37.797	64.560	2.289	1.00 10.77	A

	7.0014	2600	a n	***	_	471	26 201	64 700	1 000	1 00 11 00	70
	MOTA	3692	CA	HIS			36.391	64.709	1.923	1.00 11.23	A
	MOTA	3693	CB	HIS			35.525	63.621	2.593	1.00 11.19	А
	MOTA	3694	CG	HIS			35.686	63.532	4.078	1.00 10.36	A
_	MOTA	3695		HIS			35.001	64.122	5.086	1.00 10.59	A
5	MOTA	3696	ND1	HIS	Α	471	36.646	62.744	4.678	1.00 10.71	A
	MOTA	3697	CE1	HIS	Α	471	36.545	62.853	5.990	1.00 10.31	А
	MOTA	3698	NE2	HIS	Α	471	35.555	63.683	6.263	1.00 9.96	A
	MOTA	3699	С	HIS	Α	471	35.773	66.099	2.147	1.00 11.46	Α
	MOTA	3700	0	HIS	Α	471	34.555	66.270	2.012	1.00 10.89	A
10	ATOM	3701	N	ASP			36.606	67.080	2.502	1.00 11.51	А
	ATOM	3702	CA	ASP			36.163	68.467	2.651	1.00 11.16	A
	ATOM	3703	CB	ASP			36.184	68.929	4.108	1.00 12.11	A
	ATOM	3704	CG	ASP			35.075	68.316	4.919	1.00 11.49	A
	ATOM	3705	OD1				33.913	68.402	4.475	1.00 12.78	A
15	ATOM	3706		ASP			35.363	67.755	5.991	1.00 12.75	A
15											
	MOTA	3707	С	ASP			37.112	69.337	1.834	1.00 11.58	A
	ATOM	3708	0	ASP			37.043	70.568	1.870	1.00 11.63	A
	ATOM	3709	N	GLY			38.005	68.679	1.103	1.00 10.90	A
20	ATOM	3710	CA	GLY			38.956	69.394	0.275	1.00 10.57	A
20	MOTA	3711	С	GLY			38.445	69.511	-1.145	1.00 10.47	A
	MOTA	3712	0	GLY			37.745	70.464	-1.483	1.00 10.79	A
	MOTA	3713	N	ILE	Α	474	38.783	68.529	-1.976	1.00 10.32	A
	ATOM	3714	CA	ILE	Α	474	38.368	68.518	-3.375	1.00 10.66	A
	MOTA	3715	CB	ILE	Α	474	38.904	67.239	-4.090	1.00 11.01	A
25	MOTA	3716	CG2	ILE	Α	474	38.293	65.985	-3.462	1.00 10.23	A
	MOTA	3717	CG1	ILE	Α	474	38.614	67.314	-5.591	1.00 11.39	A
	ATOM	3718	CD1	ILE	Α	474	39.203	66.158	-6.393	1.00 11.29	A
	ATOM	3719	С	ILE			36.844	68.618	-3.536	1.00 10.82	A
	ATOM	3720	0	ILE			36.344	69.060	-4.573	1.00 10.27	A
30	MOTA	3721	N	THR			36.119	68.220	-2.495	1.00 10.66	A
	ATOM	3722	CA	THR			34.656	68.256	-2.483	1.00 11.04	A
	ATOM	3723	CB	THR			34.108	67.616	-1,205	1.00 10.92	A
	ATOM	3724	OG1				34.649	68.312	-0.075	1.00 10.89	A
	MOTA	3725	CG2				34.493	66.133	-1.123	1.00 10.03	A
35	ATOM	3726	C	THR			34.107	69.684	-2.520	1.00 11.15	A
55	ATOM	3727	0	THR			32.939	69.899	-2.862	1.00 11.13	A
		3728	N	GLY			34.940	70.649	-2.146	1.00 11.97	A
	ATOM										
	ATOM	3729	CA	GLY			34.500	72.034	-2.124	1.00 11.23	A
40	ATOM	3730	C	GLY			33.508	72.291	-0.999	1.00 11.45	A
40	MOTA	3731	0	GLY			32.622	73.137	-1.127	1.00 11.61	A
	ATOM	3732	N	THR			33.656		0.110	1.00 11.28	A
	ATOM	3733	CA	THR				71.728	1.241	1.00 11.26	A
	ATOM	3734	CB	THR			32.089		1.618	1.00 11.46	A
	MOTA	3735		THR			33.106	69.399	1.905	1.00 10.63	А
45	MOTA	3736	CG2	THR	A	477	31.223	69.864	0.468	1.00 11.11	A
	ATOM	3737	C	THR	A	477	33.370	72.333	2.502	1.00 12.05	A
	MOTA	3738	0	THR	Α	477	32.849	72.140	3.601	1.00 12.10	A
	MOTA	3739	N	ALA	Α	478	34.469	73.072	2.354	1.00 12.04	A
	ATOM	3740	CA	ALA	A	478	35.116	73.694	3.512	1.00 12.48	A
50	ATOM	3741	CB	ALA	A	478	36.632	73.485	3.445	1.00 11.99	А
	ATOM	3742	С	ALA			34.800	75.188	3.589	1.00 12.76	А
	MOTA	3743	Ö	ALA			34.332	75.780	2.620	1.00 12.65	A
	ATOM	3744	N	LYS			35.049	75.805	4.740	1.00 13.47	A
	ATOM	3745	CA	LYS			34.783		4.860	1.00 13.72	A
55	ATOM	3746	CB	LYS			34.703	77.699	6.316	1.00 15.72	A
	A I OM	5140	CD	כות	~	セノフ	J4.720	11.099	0.310	1.00 15.00	A

		ATOM	3747	CG	LYS A	479	33.901	77.059	7.254	1.00 17.01	A
		MOTA	3748	CD	LYS A		33.941	77.653	8.660	1.00 18.59	Α
		MOTA	3749	CE	LYS A		33.028	78.861	8.808	1.00 19.93	A
		ATOM	3750	NZ	LYS A		31.570	78.514	8.789	1.00 18.25	A
	5	ATOM	3751	C	LYS A		35.761	77.984	3.963	1.00 13.63	A
	9	ATOM	3752	0	LYS A		36.827	77.471	3.624	1.00 12.30	A
		ATOM	3753	N	THR A		35.390		3.591	1.00 13.88	A
					THR A		36.197	80.038	2.713	1.00 13.85	A
		ATOM	3754	CA	THR A		35.608	81.462	2.643	1.00 14.71	A
	10	MOTA	3755	CB			34.264		2.162	1.00 15.03	A
	10	ATOM	3756	OG1					1.701	1.00 15.64	A
		MOTA	3757		THR A		36.430		3.033	1.00 13.04	A
		MOTA	3758	С	THR A		37.687			1.00 13.75	A
		MOTA	3759	0	THR A		38.516		2.138		A
		MOTA	3760	N	HIS A		38.039		4.290	1.00 13.63	
	15	MOTA	3761	CA	HIS A		39.452		4.628	1.00 13.00	A
		MOTA	3762	CB	HIS A	481	39.633		5.994	1.00 14.49	A
		MOTA	3763	CG	HIS A	481	39.486		7.176	1.00 15.14	A
		MOTA	3764	CD2	HIS A	481	40.412		8.016	1.00 15.70	A
100		MOTA	3765	ND1	HIS A	481	38.264		7.626	1.00 15.87	A
	20	MOTA	3766	CE1	HIS A	481	38.445		8.693	1.00 16.85	А
		ATOM	3767	NE2	HIS A	481	39.739	79.051	8.949	1.00 15.85	A
1,1,2		ATOM	3768	С	HIS A	481	40.205	79.211	4.588	1.00 12.69	A
		MOTA	3769	0	HIS A	481	41.429	79.194	4.445	1.00 11.59	A
		ATOM	3770	N	VAL A		39.474	78.104	4.698	1.00 11.97	A
mental and the second	25	MOTA	3771	CA	VAL A		40.092	76.775	4.644	1.00 12.15	A
ı,		ATOM	3772	СВ	VAL A		39.162	75.704	5.261	1.00 11.50	A
iji.		MOTA	3773		VAL A		39.836		5.235	1.00 9.91	A
		ATOM	3774		VAL A		38.828		6.699	1.00 12.67	A
fil Johnn		ATOM	3775	C	VAL A		40.381		3.176	1.00 12.24	A
	30	MOTA	3776	0	VAL A		41.426		2.844	1.00 12.15	A
t []	50	ATOM	3777	N	VAL A		39.451		2.297	1.00 12.27	A
16 2			3778	CA	VAL A		39.641		0.867	1.00 12.33	A
		MOTA	3779	CB	VAL A		38.426		0.063	1.00 12.56	A
		MOTA		CG1			38.709		-1.432	1.00 13.36	A
i nate	25	MOTA	3780		VAL A		37.187		0.416	1.00 12.27	А
2 (*******	35	ATOM	3781		VAL A		40.892		0.447	1.00 13.46	A
		ATOM	3782	С			41.699		-0.353	1.00 13.10	A
		ATOM	3783	0	VAL A				1.004	1.00 13.68	A
		MOTA	3784	N	VAL A		41.053		0.696	1.00 13.00	A
	40	MOTA	3785	CA	VAL A		42.215		1.375	1.00 14.14	A
	40	MOTA	3786	CB	VAL A		42.125			1.00 14.60	A
		ATOM	3787		VAL A		43.458		1.254	1.00 14.59	A
		MOTA	3788		VAL A		41.016		0.726		A
		MOTA	3789	С	VAL A		43.487		1.144	1.00 14.08	
		MOTA	3790	0	VAL A		44.489		0.430	1.00 14.29	A
	45	ATOM	3791	N	ASP A		43.44		2.320	1.00 13.62	A
		ATOM	3792	CA	ASP A		44.614		2.819	1.00 13.11	A
		MOTA	3793	CB	ASP A	485	44.349		4.213	1.00 13.58	A
		ATOM	3794	CG	ASP A	485	45.59		4.841	1.00 14.32	A
		MOTA	3795		ASP A		45.54		5.317	1.00 13.49	A
	50	MOTA	3796	OD2	ASP A	485	46.63		4.858	1.00 15.48	A
		MOTA	3797	С	ASP A	485	44.98		1.870	1.00 12.92	А
		ATOM	3798	0	ASP A		46.162		1.549	1.00 12.22	A
		ATOM	3799	N	TYR A		43.990	75.426	1.428	1.00 12.46	A
		ATOM	3800	CA	TYR A		44.24		0.512	1.00 11.89	A
	55	ATOM	3801	СВ	TYR A		42.94		0.173	1.00 12.04	A
		111011	J J J Z	Ų <u>L</u>							

							01,				
		MOTA	3802	CG	TYR A	486	42.350	72.740	1.292	1.00 12.07	A
		ATOM	3803		TYR A		40.969	72.713	1.490	1.00 12.29	A
					TYR A		40.385	71.892	2.465	1.00 12.35	A
		ATOM	3804				43.147	71.922	2.104	1.00 12.28	А
	_	MOTA	3805		TYR A				3.086	1.00 12.05	A
	5	MOTA	3806		TYR A		42.569	71.091		1.00 12.03	A
		ATOM	3807	CZ	TYR A		41.185	71.086	3.253		
		MOTA	3808	OH	TYR A		40.587	70.270	4.193	1.00 12.66	A
		MOTA	3809	С	TYR A	486	44.869	74.836	-0.781	1.00 12.53	A
		MOTA	3810	0	TYR A	486	45.795	74.229	-1.317	1.00 11.35	A
	10	MOTA	3811	N	GLU A	487	44.353	75.960	-1.278	1.00 13.10	A
		MOTA	3812	CA	GLU A		44.861	76.552	-2.513	1.00 14.38	A
		ATOM	3813	СВ	GLU A		44.027	77.771	-2.929	1.00 15.28	A
		ATOM	3814	CG	GLU A		44.305	78.207	-4.367	1.00 16.75	A
		ATOM	3815	CD	GLU A		43.592	79.489	-4.773	1.00 18.58	A
	15				GLU A		42.417	79.682	-4.394	1.00 19.25	A
	15	ATOM	3816				44.210	80.299	-5.494	1.00 19.30	А
		MOTA	3817	OE2				76.979	-2.350	1.00 14.58	A
		MOTA	3818	C	GLU A		46.315		-3.223	1.00 14.02	A
		MOTA	3819	0	GLU A		47.145	76.732		1.00 14.02	Ā
		MOTA	3820	И	GLN A		46.617	77.633	-1.232		Ā
11	20	MOTA	3821	CA	GLN A		47.980	78.083	-0.963	1.00 15.97	
		MOTA	3822	СВ	GLN A		48.044	78.836	0.372	1.00 18.36	A
1 (degl) 3 (395)		ATOM	3823	CG	GLN A	488	47.367	80.199	0.341	1.00 23.16	A
(jii		MOTA	3824	CD	GLN A	488	47.381	80.895	1.691	1.00 25.38	A
		MOTA	3825	OE1	GLN A	488	47.039	82.072	1.794	1.00 28.24	A
Sal Sal	25	MOTA	3826	NE2	GLN A	488	47.771	80.169	2.734	1.00 27.66	A
1		MOTA	3827	С	GLN A	488	48.923	76.888	-0.924	1.00 15.05	А
		MOTA	3828	0	GLN A	488	50.023	76.938	-1.474	1.00 14.75	А
41		MOTA	3829	N	ARG A	489	48.490	75.821	-0.259	1.00 13.90	А
		ATOM	3830	CA	ARG A	489	49.290	74.607	-0.160	1.00 13.12	А
्रिक्टी इस्ट्र	30	ATOM	3831	CB	ARG A	489	48.587	73.575	0.731	1.00 13.40	A
1		ATOM	3832	CG	ARG A	489	48.624	73.893	2.230	1.00 14.57	A
4949		ATOM	3833	CD	ARG A		47.686	72.965	3.003	1.00 16.26	А
State of the state		ATOM	3834	NE	ARG A		47.765	73.149	4.453	1.00 16.44	A
100		ATOM	3835	CZ	ARG A		48.672	72.572	5.238	1.00 17.26	A
	35	ATOM	3836				49.590	71.766	4.722	1.00 16.10	A
•	00	ATOM	3837		ARG A		48.661	72.803	6.547	1.00 17.00	А
		ATOM	3838	C	ARG A		49.526	74.009	-1.544	1.00 12.86	A
		ATOM	3839	0	ARG A		50.640	73.596	-1.872	1.00 12.65	A
		ATOM			MET A		48.483	73.956	-2.366	1.00 11.94	А
	40		3841	CA	MET A		48.660	73.400	-3.701	1.00 12.39	A
	40	MOTA	3842	CB	MET A		47.304	73.153	-4.376	1.00 12.12	A
		MOTA			MET A		46.539	71.985	-3.753	1.00 12.55	А
		ATOM	3843	CG			45.194	71.345	-4.782	1.00 14.61	A
		ATOM	3844	SD	MET A		43.883	72.493	-4.346	1.00 14.40	A
	4.	ATOM	3845	CE	MET A			74.304	-4.558	1.00 12.54	A
	45	MOTA	3846	C	MET A		49.543		-5.409	1.00 12.34	A
		MOTA	3847	0	MET A		50.291	73.825		1.00 11.07	A
		MOTA	3848	Ν	GLN A		49.476	75.609	-4.321		
		MOTA	3849	CA	GLN A		50.299	76.540	-5.085	1.00 15.37	A
		MOTA	3850	CB	GLN A		49.959	77.982	-4.711	1.00 17.37	A
	50	MOTA	3851	CG	GLN A		50.646	79.020	-5.577	1.00 21.77	A
		MOTA	3852	CD	GLN A		50.371	78.817	-7.057	1.00 23.84	A
		ATOM	3853	OE1	GLN A	491	51.076	78.066	-7.738	1.00 26.59	A
		MOTA	3854	NE2	GLN A	491	49.334	79.476	-7.559	1.00 25.84	A
		MOTA	3855	С	GLN A	491	51.771	76.257	-4.790	1.00 15.28	А
	55	ATOM	3856	0	GLN A	491	52.610	76.245	-5.696	1.00 14.45	A

		ATOM ATOM	3857 3858	N CA	GLU A	A	492	52.081 53.451	76.022 75.730	-3.519 -3.121	1.00 1.00 1.00	16.41	A A A
		MOTA	3859	CB	GLU A			53.551	75.675	-1.593	1.00		A
		MOTA	3860	CG	GLU A			52.990	76.922	-0.915			A A
	5	MOTA	3861	CD	GLU A			52.969	76.825	0.600	1.00		
		MOTA	3862		GLU I			52.527	75.783	1.134	1.00		A A
		ATOM	3863	OE2	GLU I			53.380	77.801	1.261			
		ATOM	3864	С	GLU .			53.875	74.395	-3.733	1.00		A
		MOTA	3865	0	GLU .			55.023	74.225	-4.143	1.00		A
	10	MOTA	3866	N	ALA .			52.940	73.451	-3.797		13.84	A
		MOTA	3867	CA	ALA .	Α	493	53.223	72.137	-4.374		12.38	A
		MOTA	3868	СВ	ALA .	A	493	52.017	71.213	-4.194		11.33	A
		MOTA	3869	С	ALA .	A	493	53.555	72.290	-5.859		12.51	A
		MOTA	3870	0	ALA .	Α	493	54.492	71.665	-6.366		11.30	A
	15	MOTA	3871	N	LEU	Α	494	52.783	73.118	-6.558		12.26	A
		MOTA	3872	CA	LEU	A	494	53.024	73.341	-7.981		13.51	A
		ATOM	3873	CB	LEU	Α	494	51.970	74.295	-8.563		13.59	A
		ATOM	3874	CG	LEU	Α	494	50.574	73.687	-8.745		14.46	A
\$177E		MOTA	3875		LEU	A	494	49.568	74.768	-9.146		14.29	A
i jedi	20	MOTA	3876	CD2	LEU	Α	494	50.643	72.602	-9.807		14.76	A
		ATOM	3877	С	LEU			54.425	73.904	-8.202		13.48	A
i de la compansa de l		ATOM	3878	0	LEU			55.142	73.456	-9.093		13.66	A
m-		MOTA	3879	N	LYS			54.813	74.875	-7.379		14.20	A
		ATOM	3880	CA	LYS			56.135	75.488	-7.483		14.70	A
And And	25	ATOM	3881	СВ	LYS			56.254	76.665	-6.507		17.34	A
Ann.		ATOM	3882	CG	LYS			55.285	77.807	-6.813		20.77	A
197		ATOM	3883	CD	LYS			55.564	79.047	-5.969		23.82	A
#1		ATOM	3884	CE	LYS			55.371	78.781	-4.484		25.78	A
		ATOM	3885	NZ	LYS			55.661	79.995	-3.662		28.04	A
	30	ATOM	3886	С	LYS			57.222	74.454	-7.197		14.05	A
S.A.B.		ATOM	3887	0	LYS			58.270	74.449	-7.847	1.00	12.58	A
		MOTA	3888	N	ALA			56.966	73.578	-6.228	1.00	12.65	A
		MOTA	3889	CA			496	57.918	72.528	-5.884		12.33	A
21000 21000 11000		ATOM	3890	СВ			496	57.411	71.729	-4.687		12.48	A
1	35	MOTA	3891	C			496	58.099	71.606	-7.089	1.00	12.17	A
	50	ATOM	3892	Ō			496	59.220	71.230	-7.437		11.21	Α
		ATOM	3893	N			497	56.988	71.232	-7.717		11.95	A
		ATOM	3894	CA			497	57.039	70.362	-8.885	1.00	11.78	A
		MOTA	3895	CB			497	55.621	70.008	-9.358		11.55	A
	40	ATOM	3896	SG			497	54.771	68.821	-8.280	1.00	11.22	A
	40	MOTA	3897	C			497	57.816		-10.011	1.00	11.98	A
		ATOM	3898	0			497	58.656		-10.650	1.00	11.59	A
		ATOM	3899	И			498	57.546		-10.250	1.00	12.50	A
		ATOM	3900	CA			498	58.255		-11.305		13.65	A
	45	ATOM	3901	CB			498	57.775		-11.393	1.00	15.53	A
	40		3902	CG			498	58.581		-12.375	1.00	18.75	A
		MOTA	3902	CD			498	58.080		-12.484		20.66	A
		ATOM	3903		GLN			57.903		-11.472		23.47	A
		ATOM			GLN			57.861		-13.712		19.47	A
	50	ATOM	3905 3906	C			498	59.762		-11.054		13.54	A
	30	MOTA					498	60.543		-11.969		13.09	A
		ATOM	3907 3908	N O			499	60.172	73.291	-9.819		12.68	А
		ATOM					499	61.597	73.298			13.24	A
		ATOM	3909	CA			499	61.786	73.636	-7.998		14.75	А
	EE	MOTA	3910	CB			499	63.220	73.501			17.49	A
	55	ATOM	3911	CG	rit i	М	. 477	05.220					

		. 319										
		ATOM	3912	SD	MET A 49		74.502 -8.381	1.00 21.74	A			
		ATOM	3913		MET A 49		76.122 -7.740	1.00 19.60	A			
		MOTA	3914	С	MET A 49		71.950 -9.798	1.00 12.44	A A			
	_	MOTA	3915	0	MET A 49		71.892 -10.430 70.867 -9.352	1.00 11.75 1.00 11.57	A			
	5	MOTA	3916	N	VAL A 50			1.00 11.09	A			
		MOTA	3917		VAL A 50		69.530 -9.593 68.468 -8.837	1.00 10.85	A			
		ATOM	3918	CB	VAL A 50 VAL A 50		67.067 -9.247	1.00 10.52	A			
		MOTA	3919		VAL A 50		68.651 -7.331	1.00 11.06	A			
	10	ATOM ATOM	3920 3921	CGZ	VAL A 50		69.200 -11.083	1.00 11.35	A			
	10	ATOM	3922	0	VAL A 50		68.680 -11.606	1.00 11.29	A			
		ATOM	3923	N	MET A 50			1.00 11.53	Α			
		ATOM	3924	CA	MET A 50			1.00 11.54	A			
		ATOM	3925	СВ	MET A 50			1.00 12.75	A			
	15	ATOM	3926	CG	MET A 50			1.00 13.12	A			
		MOTA	3927	SD	MET A 50		69.365 -13.536	1.00 17.72	A			
		MOTA	3928	CE	MET A 50			1.00 16.00	A			
		ATOM	3929	С	MET A 50			1.00 12.05	A A			
		MOTA	3930	0	MET A 50			1.00 12.43 1.00 11.82	A			
NAME AND ADDRESS OF THE PARTY O	20	MOTA	3931	N	GLN A 50			1.00 11.82	A			
J		MOTA	3932	CA	GLN A 50			1.00 12.11	A			
		MOTA	3933	CB	GLN A 50			1.00 12.25	A			
		ATOM	3934	CG	GLN A 50 GLN A 50			1.00 13.84	A			
191	25	ATOM	3935 3936	CD OF 1	GLN A 50			1.00 13.40	A			
	23	ATOM ATOM	3937		GLN A 50			1.00 13.18	A			
		ATOM	3938	C	GLN A 50			1.00 12.59	A			
16" " E(MOTA	3939	0	GLN A 50			1.00 11.57	A			
		ATOM	3940	N	GLN A 50			1.00 12.09	A			
	30	ATOM	3941	CA	GLN A 50			1.00 13.27	A			
7,64E 88 B		ATOM	3942	CB	GLN A 50			1.00 13.43	A			
1 10		MOTA	3943	CG	GLN A 50			1.00 15.82	A			
\$ (P.M)		MOTA	3944	CD	GLN A 50			1.00 16.04 1.00 16.22	A A			
		MOTA	3945		GLN A 50			1.00 16.22	A			
3	35	ATOM	3946		GLN A 50			1.00 17.27	A			
		ATOM	3947	С	GLN A 50			1.00 12.32	A			
		ATOM	3948	0	GLN A 50		68.632 -13.401		A			
		ATOM	3949	n CA	SER A 50 SER A 50			1.00 12.69	А			
	40	MOTA MOTA	3951	CB	SER A 50			1.00 12.53	A			
	±0	ATOM	3952	OG	SER A 50			1.00 13.33	A			
		ATOM	3953	С	SER A 50			1.00 12.34	A			
		ATOM	3954	0	SER A 50		66.814 -16.143	1.00 12.28	A			
		ATOM	3955	N	VAL A 50			1.00 12.19	A			
	45	MOTA	3956	CA	VAL A 50			1.00 12.76	A			
		ATOM	3957	CB	VAL A 50			1.00 12.70	A			
		ATOM	3958		VAL A 50			1.00 12.02	A			
		ATOM	3959		VAL A 50			1.00 12.78	A A			
		ATOM	3960	С	VAL A 50			1.00 13.11 1.00 13.42	A			
	50	ATOM	3961	0	VAL A 50			1.00 13.42	A			
		ATOM	3962	N	TYR A 5				A			
		ATOM	3963	CA	TYR A 5				A			
		MOTA	3964	CB	TYR A 50				A			
	55	MOTA	3965 3966	CG CD1	TIR A 5				A			
	33	ATOM	2200	CDI	. TIK W 3.	,0.1/2	=					

	ATOM	3967	CF1	TYR A	506	71.722	73.393 -	-18.098	1.00 22.60	Α
	ATOM	3968		TYR A		71.139	72.244 -		1.00 19.62	Α
	ATOM	3969		TYR A		72.394	72.811 -		1.00 22.32	A
		3970	CEZ	TYR A		72.674	73.380 -		1.00 22.77	A
5	MOTA	3970	OH	TYR A		73.914	73.929 -		1.00 27.54	Α
3	ATOM			TYR A		69.561	69.385 -		1.00 14.96	А
	MOTA	3972	C			70.468	69.325 -		1.00 14.30	А
	MOTA	3973	0	TYR A		69.435	68.499		1.00 14.25	A
	MOTA	3974	N	ARG A			67.399		1.00 14.23	A
	MOTA	3975	CA	ARG A		70.384	66.751		1.00 14.62	A
10	MOTA	3976	CB	ARG A		70.197	65.694		1.00 15.49	A
	MOTA	3977	CG	ARG A		71.238			1.00 15.45	A
	MOTA	3978	CD	ARG A		71.041	65.175			A
	MOTA	3979	NE	ARG A		72.055	64.190		1.00 18.67	
	MOTA	3980	CZ	ARG A		72.170	63.649		1.00 18.55	A
15	MOTA	3981	NH1	ARG A	507	71.333	63.996		1.00 18.82	A
	MOTA	3982	NH2	ARG A	507	73.122	62.758		1.00 19.58	A
	MOTA	3983	С	ARG A	507	70.247	66.334		1.00 13.93	A
	MOTA	3984	0	ARG A	507	71.241	65.776		1.00 12.93	A
	ATOM	3985	N	LEU A	508	69.016	66.062		1.00 13.04	A
20	ATOM	3986	CA	LEU A		68.758	65.059	-18.752	1.00 13.40	A
	ATOM	3987	СВ	LEU A		67.274	64.669	-18.738	1.00 12.96	А
	ATOM	3988	CG	LEU A		66.779	63.783	-17.588	1.00 12.57	А
	ATOM	3989	CD1			65.251	63.836	-17.521	1.00 12.21	A
	ATOM	3990	-	LEU A		67.264	62.354		1.00 12.51	A
25	ATOM	3991	C	LEU A		69.139	65.486		1.00 13.63	A
2.3		3992	0	LEU A		69.386	64.637		1.00 13.67	A
	MOTA	3993	И	LEU A		69.188		-20.422	1.00 13.58	A
	ATOM	3994	CA	LEU A		69.494		-21.763	1.00 13.53	A
	ATOM			LEU A		68.302		-22.303	1.00 12.65	A
20	ATOM	3995	CB	LEU A		67.030		-22.577	1.00 12.79	A
30	MOTA	3996	CG			65.914		-23.012	1.00 11.70	A
	MOTA	3997	CD1			67.301		-23.657	1.00 12.41	А
	ATOM	3998		LEU A				-21.916	1.00 14.29	A
	MOTA	3999	C	LEU F		70.766		-22.900	1.00 14.16	A
0.5	ATOM	4000	0	LEU F		70.915		-20.957	1.00 14.27	A
35	MOTA	4001	N	THR F		71.680		-21.015	1.00 14.89	A
	MOTA	4002	CA	THR A		72.938			1.00 14.09	A
	ATOM	4003	СВ	THR A		73.083		-19.803	1.00 13.54	A
	MOTA	4004		THR A		71.994		-19.796	1.00 15.03	A
	MOTA	4005		THR A		74.400		-19.872		
4 0	MOTA	4006	С	THR A		74.100		-21.022	1.00 15.57	A
	ATOM	4007	0	THR A		74.106		-20.252	1.00 14.99	A
	MOTA	4008	N	LYS A	1 511	75.075		-21.900	1.00 16.82	A
	MOTA	4009	CA	LYS A	1 511	76.234		-21.972	1.00 18.12	A
	ATOM	4010	CB	LYS A	A 511	77.309		-22.902	1.00 19.84	A
45	MOTA	4011	CG	LYS A	A 511	78.515		-23.058	1.00 22.03	A
	ATOM	4012	CD	LYS A	A 511	79.563		-23.988	1.00 24.78	A
	ATOM	4013	CE	LYS A	A 511	80.759		-24.094	1.00 26.41	A
	MOTA	4014	NZ	LYS A		81.834		-24.969	1.00 28.84	A
	ATOM	4015	С		A 511	76.789	66.911	-20.564	1.00 17.91	A
50	ATOM	4016	Ö		A 511	77.076		-19.879	1.00 17.65	A
50	ATOM	4017	N		A 512	76.943		-20.110	1.00 18.35	A
	ATOM	4017	CD		A 512	76.675		-20.868	1.00 18.80	A
			CA		A 512	77.455		-18.773	1.00 18.48	А
	ATOM	4019			A 512	77.711		-18.854	1.00 19.18	A
	ATOM	4020	CB			76.629		-19.773	1.00 19.70	А
55	MOTA	4021	CG	rkO .	A 512	10.029	00.019			

		ATOM	4022	С	PRO A		78.685	66.118 -		1.00 18.38	A
		MOTA	4023	0	PRO A	512	78.698	66.633 -		1.00 18.96	A
		MOTA	4024	N	SER A	513	79.714	66.199 -	-19.137	1.00 19.08	А
		ATOM	4025	CA	SER A	513	80.938	66.898 -	-18.754	1.00 18.72	A
	5	MOTA	4026	СВ	SER A		82.086	66.503 -	-19.694	1.00 19.04	A
		MOTA	4027	OG	SER A		81.770	66.768 -		1.00 18.98	А
		ATOM	4028	С	SER A		80.800	68.421 -		1.00 18.92	A
		ATOM	4029	0	SER A		81.720	69.113 -		1.00 18.57	A
		ATOM	4030	N	ILE F		79.651	68.933 -		1.00 18.74	A
	10	ATOM	4031	CA	ILE A		79.383	70.371 -		1.00 19.04	A
	10	ATOM	4032	CB	ILE P		78.787	70.831 -		1.00 20.04	A
		ATOM	4032		ILE A		78.309	72.281 -		1.00 20.04	A
		ATOM	4033		ILE A		79.837	70.686 -		1.00 21.00	A
		ATOM	4034	CD1	ILE A		79.333	71.051 -		1.00 21.00	A
	15	ATOM	4035	CDI	ILE A		78.395	70.729 ~		1.00 22.47	A
	13		4030		ILE A		78.419	71.838 -		1.00 17.84	A
		ATOM		0				69.778 -		1.00 17.64	A
		MOTA	4038	N	TYR A		77.531 76.517	69.963 -		1.00 18.33	A
		ATOM	4039	CA	TYR A			68.619 -			
£ 100	20	ATOM	4040	CB	TYR A		75.828			1.00 18.00	A
Ų	20	ATOM	4041	CG	TYR A		74.789	68.614 -		1.00 17.16	A
		ATOM	4042	CD1	TYR A		73.637	69.398 -		1.00 17.45	A
(71		ATOM	4043				72.658	69.359 -		1.00 16.75	A
		ATOM	4044		TYR A		74.940	67.793 -		1.00 17.50	A
	25	MOTA	4045		TYR A		73.977	67.746 -		1.00 16.69	A
2 % 2	25	MOTA	4046	CZ	TYR A		72.838	68.529 ~		1.00 17.17	A
		MOTA	4047	ОН	TYR A		71.886	68.473 -		1.00 17.04	A
A STATE OF THE PARTY OF THE PAR		ATOM	4048	С	TYR A		77.102	70.529 -		1.00 18.11	A
#2		ATOM	4049	0	TYR A		77.924	69.890 -		1.00 18.22	A
	20	MOTA	4050	N	SER A		76.671	71.737 -		1.00 18.53	A
100	30	ATOM	4051	CA	SER A		77.146	72.414 -		1.00 18.57	A
		MOTA	4052	СВ	SER A		78.162	73.496 -		1.00 18.96	A
		MOTA	4053	OG	SER A		78.760	74.063 -		1.00 20.03	A
		ATOM	4054	С	SER A		75.936	73.047 ~		1.00 19.08	A
	0.5	ATOM	4055	0	SER A		75.689	74.249 -		1.00 18.41	A
jain .	35	ATOM	4056	N	PRO A		75.174	72.240 -		1.00 19.04	A
		ATOM	4057	CD	PRO A		75.364	70.793 -		1.00 19.14	A
		MOTA	4058	CA	PRO A		73.977	72.703 -		1.00 19.54	A
		MOTA	4059	CB	PRO A		73.238	71.402 -		1.00 19.43	A
	40	ATOM	4060	CG	PRO A		74.366	70.484 ~		1.00 19.51	A
	40	MOTA	4061	С	PRO A		74.075	73.562 -		1.00 19.76	A
		ATOM	4062	0	PRO A		74.933	73.362	-9.506	1.00 20.43	A
		ATOM	4063	N	ASP A		73.160	74.523 -		1.00 20.28	A
		MOTA	4064	CA	ASP A		72.983	75.411	-9.157	1.00 20.46	A
		MOTA	4065	СВ	ASP A		72.984	76.879	-9.579	1.00 21.58	А
	45	ATOM	4066	CG	ASP A		72.662	77.813	-8.424	1.00 22.93	А
		ATOM	4067		ASP A		72.006	77.366	-7.456	1.00 22.28	A
		ATOM	4068		ASP A		73.048	78.999	-8.487	1.00 24.17	А
		MOTA	4069	С	ASP A	518	71.562	74.998	-8.784	1.00 20.16	A
		MOTA	4070	0	ASP A	518	70.602	75.422	-9.426	1.00 19.99	A
	50	MOTA	4071	N	PHE A		71.435	74.159	-7.764	1.00 20.05	А
		ATOM	4072	CA	PHE A	519	70.136	73.642	-7.354	1.00 19.70	A
		ATOM	4073	СВ	PHE A	519	70.331	72.607	-6.247	1.00 19.92	A
		MOTA	4074	CG	PHE A	519	71.195	71.445	-6.662	1.00 20.35	A
		MOTA	4075	CD1	PHE A	519	70.936	70.760	-7.848	1.00 20.35	А
	55	ATOM	4076		PHE A		72.275	71.046	-5.882	1.00 20.06	А

						•				
		ATOM	4077	CE1	PHE A 519	71.741	69.694	-8.253	1.00 20.49	A
		ATOM	4078		PHE A 519		69.983	-6.276	1.00 20.68	A
		ATOM	4079	CZ	PHE A 519		69.306	-7.464	1.00 20.65	A
		ATOM	4080	C	PHE A 519		74.656	-6.949	1.00 19.92	A
	5	ATOM	4081	Ō	PHE A 519		74.283	-6.703	1.00 19.71	A
	J	ATOM	4082	N	SER A 520		75.932	-6.901	1.00 20.32	A
		ATOM	4083	CA	SER A 520		76.974	-6.534	1.00 20.88	A
		ATOM	4084	СВ	SER A 520		77.879	-5.452	1.00 21.33	A
		ATOM	4085	OG	SER A 520		78.674	-5.981	1.00 22.27	A
	10	MOTA	4086	C	SER A 520		77.826	-7.753	1.00 21.21	A
	10	MOTA	4087	0	SER A 520			-7.687	1.00 20.94	A
		ATOM	4088	N	PHE A 521		77.558	-8.862	1.00 20.71	А
		ATOM	4089	CA	PHE A 521		78.310	-10.096	1.00 20.88	A
		ATOM	4090	СВ	PHE A 521		78.310	-10.897	1.00 22.15	A
	15	MOTA	4091	CG	PHE A 521			-12.034	1.00 23.36	A
	10	ATOM	4092		PHE A 521			-11.787	1.00 24.36	A
		ATOM	4093		PHE A 521			-13.349	1.00 23.34	A
		ATOM	4094		PHE A 521		L 81.578	-12.837	1.00 24.48	А
117		ATOM	4095		PHE A 52			-14.405	1.00 23.79	A
final Frank	20	MOTA	4096	CZ	PHE A 523			-14.149	1.00 24.57	A
		ATOM	4097	С	PHE A 52			-10.973	1.00 20.45	A
A Second		MOTA	4098	0	PHE A 52			-10.998	1.00 19.90	A
		ATOM	4099	N	SER A 52			-11.693	1.00 20.31	A
		ATOM	4100	CA	SER A 52	2 65.746		-12.588	1.00 19.82	A
	25	ATOM	4101	CB	SER A 52	2 64.569		-12.474	1.00 20.87	A
W.		ATOM	4102	OG	SER A 52			-11.230	1.00 24.21	A
ist.		ATOM	4103	С	SER A 52	2 66.25		-14.023	1.00 18.66	A
21		MOTA	4104	0	SER A 52			-14.686	1.00 18.49	A
		MOTA	4105	N	TYR A 52			-14.495	1.00 17.51	A
	30	MOTA	4106	CA	TYR A 52			-15.854	1.00 16.64	A
100		ATOM	4107	CB	TYR A 52			-16.013	1.00 17.45	A
		MOTA	4108	CG	TYR A 52			-15.213	1.00 19.19	A
		MOTA	4109	CD1				-13.949	1.00 18.97	A A
NAME OF THE PERSON NAME OF THE P		MOTA	4110	CE1				-13.189	1.00 20.14 1.00 19.40	A
į	35	MOTA	4111		TYR A 52			5 -15.701	1.00 19.40	A
		MOTA	4112		TYR A 52			12.700	1.00 19.83	
		MOTA	4113	CZ	TYR A 52			-13.700	1.00 20.28	
		MOTA	4114	OH	TYR A 52			-12.955	1.00 20.00	
		ATOM	4115	С	TYR A 52			2 -16.865) -18.000	1.00 15.44	A
	4 0	ATOM	4116	0	TYR A 52) -16.452	1.00 15.44	
		MOTA	4117	N	PHE A 52			L -17.313	1.00 15.23	
		ATOM	4118	CA	PHE A 52			5 -17.852	1.00 14.27	
		MOTA	4119	СВ	PHE A 52			-18.724	1.00 13.80	
		MOTA	4120	CG	PHE A 52			7 -18.166	1.00 14.22	
	45	MOTA	4121		PHE A 52			7 -20.112	1.00 13.29	
		MOTA	4122		PHE A 52			4 -18.977	1.00 14.06	
		ATOM	4123		L PHE A 52			3 -20.932	1.00 12.89	
		MOTA	4124		2 PHE A 52			4 -20.360	1.00 13.48	
	-0	MOTA	4125	CZ	PHE A 52			3 -16.537	1.00 15.93	
	50	MOTA	4126	С	PHE A 52			0 -15.314	1.00 15.29	
		ATOM	4127	O N	PHE A 52			1 - 17.274		
		ATOM	4128	N	THR A 52			5 -16.708		
		ATOM	4129	CA	THR A 52			7 -17.050		
		ATOM	4130	CB	THR A 52			1 - 16.419		
	55	MOTA	4131	OG.	1 THR A 52	.5 61.03	, , , , , , , , ,	x x0.417	1.00 22.00	

	ATOM	4132	CG2	THR A	525	58.659	80.072	-16.565	1.00 21.52	А
	MOTA	4133	С	THR A	525	59.181		-17.376	1.00 17.50	A
	MOTA	4134		THR A	525	59.190	77.147	-18.596	1.00 16.90	A
	ATOM	4135		LEU A		58.265	76.757	-16.587	1.00 16.82	A
5	ATOM	4136		LEU A		57.184	75.968	-17.159	1.00 17.40	A
Ū	ATOM	4137	СВ	LEU A		56.457	75.166	-16.072	1.00 18.26	A
	MOTA	4138	CG	LEU A		57.000	73.796	-15.667	1.00 18.92	A
	MOTA	4139		LEU A		56.213	73.271	-14.472	1.00 19.91	A
	MOTA	4140		LEU A		56.887	72.833	-16.837	1.00 19.01	A
10	ATOM	4141	C	LEU A		56.184	76.904	-17.832	1.00 17.33	A
10	MOTA	4142	0	LEU A		55.920	78.000	-17.335	1.00 17.26	A
	ATOM	4143	N	ASP A		55.649		-18.971	1.00 16.38	A
	ATOM	4144	CA	ASP A		54.651		-19.674	1.00 17.04	A
		4145	CB	ASP A		55.124		-21.085	1.00 17.59	A
15	ATOM	4145	CG	ASP A		54.133		-21.819	1.00 18.89	A
13	MOTA			ASP A		53.867		-21.329	1.00 18.47	A
	MOTA	4147		ASP A		53.620		-22.879	1.00 18.66	A
	ATOM	4148	C	ASP A		53.409		-19.751	1.00 16.37	A
	ATOM	4149		ASP A		53.434		-20.375	1.00 17.71	A
20	ATOM	4150	0			52.337		-19.094	1.00 16.05	А
20	ATOM	4151	N	ASP A		51.084		-19.078	1.00 14.81	A
	MOTA	4152	CA	ASP A		50.703		-17.638	1.00 14.73	A
	ATOM	4153	CB	ASP A		49.663		-17.561	1.00 14.72	A
	MOTA	4154	CG	ASP A		48.648		-18.288	1.00 13.92	A
25	MOTA	4155		ASP A		49.863		-16.763	1.00 15.10	A
25	ATOM	4156		ASP A		50.009		-19.691	1.00 15.02	A
	ATOM	4157	С			49.667		-19.144	1.00 13.40	A
	ATOM	4158	0	ASP F		49.471		-20.829	1.00 15.55	A
	MOTA	4159	N	SER A		48.462		-21.494	1.00 17.05	A
20	MOTA	4160	CA	SER F		48.464		-22.998	1.00 18.24	A
30	ATOM	4161	CB			47.861		-23.262	1.00 23.59	А
	ATOM	4162	OG	SER A		47.055		-20.938	1.00 16.64	А
	ATOM	4163	C	SER A		46.149		-21.283	1.00 16.93	A
	ATOM	4164	0	ARG A		46.866		-20.070	1.00 15.67	A
25	ATOM	4165	N			45.533		-19.535	1.00 16.21	A
35	MOTA	4166	CA	ARG A		45.033		-20.015	1.00 15.39	A
	ATOM	4167	CB	ARG A		44.928		-21.531	1.00 15.38	A
	MOTA	4168	CG	ARG A				-22.059	1.00 15.32	A
	ATOM	4169	CD	ARG A		44.291 45.035		-21.673	1.00 15.99	A
40	MOTA	4170	NE	ARG A		44.808		-22.178	1.00 17.04	A
40	ATOM	4171	CZ	ARG A		44.808		-23.091	1.00 16.99	A
	MOTA	4172		ARG A				-21.771	1.00 16.09	A
	MOTA	4173		ARG A		45.524		-18.029	1.00 16.59	A
	ATOM	4174	C		A 530	45.349		-17.501	1.00 16.64	A
4 =	ATOM	4175	0		A 530	44.277		-17.337	1.00 15.99	A
45	ATOM	4176	N		A 531	46.388		-15.900	1.00 17.02	A
	ATOM	4177	CA		A 531	46.277			1.00 17.02	A
	MOTA	4178	СВ		A 531	46.519		-15.085	1.00 18.61	A
	MOTA	4179	CG		A 531 ·	46.420		-13.618	1.00 18.01	Ā
	MOTA	4180		TRP A		45.218		-12.845	1.00 19.61	A
50	MOTA	4181		TRP 2		45.583		-11.540		A
	ATOM	4182		TRP		43.866		-13.127	1.00 19.31 1.00 18.69	A A
	MOTA	4183		TRP .		47.440		-12.773		A
	MOTA	4184		TRP		46.944		-11.523	1.00 19.66	A
	ATOM	4185		TRP		44.642		-10.520	1.00 20.36	
55	ATOM	4186	CZ3	TRP	A 531	42.928	75.806	-12.111	1.00 19.92	А

									_
		ATOM	4187	CH2	TRP A 531	43.323	76.207 -10.825	1.00 20.15	A
		ATOM	4188	С	TRP A 531	47.247	77.833 -15.433	1.00 17.11	Α
		ATOM	4189	Ö	TRP A 531	48.445	77.745 -15.691	1.00 16.78	A
					PRO A 532	46.740	78.855 -14.724	1.00 18.18	A
	_	ATOM	4190	N		47.581	79.813 -13.986	1.00 19.11	A
	5	ATOM	4191	CD	PRO A 532			1.00 19.11	A
		MOTA	4192	CA	PRO A 532	45.327	79.028 -14.362		
		MOTA	4193	CB	PRO A 532	45.353	80.248 -13.441	1.00 19.35	A
		ATOM	4194	CG	PRO A 532	46.705	80.142 -12.795	1.00 19.62	А
		MOTA	4195	С	PRO A 532	44.421	79.230 -15.572	1.00 20.08	A
	10	ATOM	4196	0	PRO A 532	43.202	79.077 -15.479	1.00 19.73	Α
	-	ATOM	4197	N	GLY A 533	45.024	79.574 -16.705	1.00 20.53	A
		ATOM	4198	CA	GLY A 533	44.257	79.769 -17.920	1.00 22.81	A
The state of the s			4199	C	GLY A 533	44.068	81.218 -18.320	1.00 24.62	A
		ATOM			GLY A 533	44.043	82.113 -17.472	1.00 24.61	А
	4.5	MOTA	4200	0			81.447 -19.624	1.00 26.45	A
	15	MOTA	4201	N	SER A 534	43.938		1.00 27.99	A
		MOTA	4202	CA	SER A 534	43.739	82.791 -20.153		A
		MOTA	4203	CB	SER A 534	43.665	82.746 -21.682	1.00 29.27	
		MOTA	4204	OG	SER A 534	43.340	84.017 -22.215	1.00 31.07	A
		MOTA	4205	С	SER A 534	42.446	83.369 -19.588	1.00 28.53	A
	20	MOTA	4206	0	SER A 534	41.402	82.714 -19.617	1.00 28.85	A
		MOTA	4207	N	GLY A 535	42.518	84.592 -19.072	1.00 29.09	A
		ATOM	4208	CA	GLY A 535	41.340	85.221 -18.504	1.00 29.80	A
		ATOM	4209	С	GLY A 535	41.207	84.931 -17.019	1.00 30.59	A
		ATOM	4210	0	GLY A 535	40.349	85.496 -16.338	1.00 30.53	A
	25	ATOM	4211	N	VAL A 536	42.055	84.041 -16.516	1.00 31.00	A
Many Many	23		4212	CA	VAL A 536	42.038	83.680 -15.104	1.00 31.98	A
		ATOM				42.135	82.145 -14.918	1.00 32.31	А
		MOTA	4213	CB	VAL A 536		81.791 -13.439	1.00 31.89	A
äį	20	MOTA	4214		VAL A 536	42.095	81.459 -15.658	1.00 31.94	A
The first man man the man		MOTA	4215		VAL A 536	40.997		1.00 31.94	A
	30	MOTA	4216	С	VAL A 536	43.218	84.343 -14.400		A
		MOTA	4217	0	VAL A 536	43.080	84.894 -13.307	1.00 32.38	
		MOTA	4218	N	GLU A 537	44.378	84.295 -15.045	1.00 33.97	A
		MOTA	4219	CA	GLU A 537	45.592	84.881 -14.495	1.00 35.29	A
		ATOM	4220	CB	GLU A 537	46.085	84.034 -13.313	1.00 36.13	A
	35	ATOM	4221	CG	GLU A 537	47.534	84.273 -12.900	1.00 37.68	A
		MOTA	4222	CD	GLU A 537	47.933	83.477 -11.663	1.00 38.87	A
		MOTA	4223	OE1	GLU A 537	49.149	83.273 -11.450	1.00 39.08	A
		ATOM	4224	OE2		47.035	83.062 -10.898	1.00 39.11	A
		ATOM	4225	C	GLU A 537	46.676	84.973 -15.566	1.00 35.63	A
	40	ATOM		0	GLU A 537	47.086	83.959 -16.131	1.00 35.88	A
	-10	ATOM	4227	N	ASP A 538	47.127	86.190 -15.860	1.00 35.94	A
			4227	CA	ASP A 538	48.183	86.371 -16.853	1.00 35.97	А
		ATOM				48.244	87.830 -17.318	1.00 37.57	А
		ATOM	4229	CB	ASP A 538	49.235	88.037 -18.452	1.00 39.01	А
	4 =	ATOM	4230	CG	ASP A 538		87.297 -19.456	1.00 39.65	A
	45	MOTA	4231		ASP A 538	49.150		1.00 40.23	A
		MOTA	4232		ASP A 538	50.094	88.938 -18.344		
		ATOM	4233	С	ASP A 538	49.477	85.981 -16.154	1.00 35.09	A
		ATOM	4234	0	ASP A 538	50.132	86.812 -15.524	1.00 35.01	A
		ATOM	4235	N	SER A 539	49.835	84.705 -16.263	1.00 34.01	А
	50	ATOM	4236	CA	SER A 539	51.026	84.186 -15.603	1.00 32.93	А
		ATOM	4237	СВ	SER A 539	50.633		1.00 32.75	Α
		ATOM	4238	OG	SER A 539	50.056	81.969 -15.443	1.00 33.31	А
		ATOM	4239	C	SER A 539	52.145	83.722 -16.525	1.00 31.91	A
			4240	0	SER A 539	53.321			А
	55	MOTA			ARG A 540	51.792	83.173 -17.683	1.00 30.71	A
	<i>JJ</i>	MOTA	4241	N	ANG A JAN	210172	00.1.0 1000		=

		ATOM	4242	CA	ARG A	540	52.816	82.685 -3		1.00 29.23	A
		ATOM	4243	СВ	ARG A		52.187	81.838 -3	19.708	1.00 29.16	A
		ATOM	4244	CG	ARG A		50.939	82.406 -2	20.335	1.00 27.91	Α
		ATOM	4245	CD	ARG A		50.191	81.319 -2	21.111	1.00 26.65	A
	5	ATOM	4246	NE	ARG A		51.057	80.605 -2		1.00 23.55	A
	3		4247	CZ	ARG F		50.631	80.056 -		1.00 23.62	А
		MOTA			ARG F		49.350	80.140 -		1.00 21.80	А
		MOTA	4248				51.482	79.431 -		1.00 22.12	A
		MOTA	4249		ARG A		53.686	83.795 -		1.00 28.47	A
	10	MOTA	4250	C	ARG A			84.887 -		1.00 28.48	A
	10	MOTA	4251	0	ARG A		53.212	83.499 -		1.00 26.89	A
		MOTA	4252	N	THR A		54.974			1.00 25.79	A
		MOTA	4253	CA	THR A		55.951	84.452 -			A
		MOTA	4254	CB	THR A		57.370	84.068 -		1.00 26.95	
		MOTA	4255	OG1	THR A		57.856	83.001 -		1.00 28.25	A
	15	MOTA	4256	CG2	THR A	4 541	57.362	83.600 -		1.00 26.32	A
		MOTA	4257	С	THR A	4 541	55.969	84.547 -		1.00 24.23	A
		MOTA	4258	0	THR A	A 541	55.591	83.609 -		1.00 24.17	A
		ATOM	4259	N	THR A	A 542	56.411	85.697 -		1.00 22.20	A
		ATOM	4260	CA	THR A	A 542	56.523	85.917 -		1.00 19.97	A
	20	MOTA	4261	СВ	THR A	A 542	56.167	87.371 -	23.609	1.00 20.43	A
P E		ATOM	4262	OG1	THR A		54.789	87.630 -	23.320	1.00 19.24	A
		ATOM	4263	CG2		A 542	56.419	87.594 -	25.098	1.00 19.35	A
		MOTA	4264	C		A 542	57.978	85.679 -	23.581	1.00 19.20	A
			4265	0		A 542	58.884	86.149 -		1.00 18.80	A
	25	MOTA	4265	N		A 543	58.207	84.921 -		1.00 17.47	A
	23	MOTA				A 543	59.567	84.688 -		1.00 17.03	А
		ATOM	4267	CA		A 543	59.649	83.461 -		1.00 16.71	А
4		ATOM	4268	CB			61.033	83.373 -		1.00 16.10	А
		MOTA	4269	CG2			59.335	82.194 -		1.00 16.14	А
3	20	MOTA	4270		ILE A			80.913 -		1.00 15.87	A
3	30	MOTA	4271	CD1		A 543	59.378	85.962 -		1.00 17.36	A
1		ATOM	4272	С		A 543	59.899	86.225 -		1.00 17.50	A
		ATOM	4273	0		A 543	59.317			1.00 10.03	A
		MOTA	4274	N		A 544	60.808	86.763 -			A
		ATOM	4275	CA		A 544	61.189	88.025 -		1.00 17.68	
	35	ATOM	4276	CB		A 544	61.452	89.098 -		1.00 18.33	A
		MOTA	4277	CG2	ILE .	A 544	61.827	90.424 -		1.00 18.51	A
		ATOM	4278	CG1	ILE.	A 544	60.192	89.275 -		1.00 19.26	A
		ATOM	4279	CD1	ILE	A 544	60.307	90.343 -		1.00 21.06	A
		ATOM	4280	С	ILE	A 544	62.412	87.877 -		1.00 17.90	A
	40	ATOM	4281	0	ILE	A 544	63.518	87.601 -		1.00 17.14	A
		MOTA	4282	N	LEU	A 545	62.191	88.053 -		1.00 17.81	А
		ATOM	4283	CA		A 545	63.253	87.941 -	29.118	1.00 18.43	А
		ATOM	4284	СВ		A 545	62.913	86.836 -	30.120	1.00 17.98	А
		ATOM	4285	CG		A 545		85.454 -	29.530	1.00 17.86	A
	45	ATOM	4286			A 545		84.516 -	30.640	1.00 17.14	A
	40	ATOM	4287			A 545	63.837	84.901 -		1.00 17.14	A
		ATOM	4288	C		A 545		89.274 -		1.00 19.23	A
			4289	0		A 545		90.059 -		1.00 18.84	A
		ATOM				A 546		89.526 -		1.00 19.77	А
	EΩ	ATOM	4290	N				90.766 -		1.00 20.96	A
	50	ATOM	4291	CA		A 546		90.848 -		1.00 21.61	A
		MOTA	4292	C		A 546		90.368 -		1.00 20.57	A
		ATOM	4293	0		A 546		90.366 -		1.00 23.26	A
		MOTA	4294	N		A 547				1.00 25.20	A
		ATOM	4295	CA		A 547		91.599 -			A
	55	MOTA	4296	СВ	GLU	A 547	67.702	92.459 -	-34.624	1.00 27.57	A

	ATOM	4297	CG	GLU A	547	66.673	92.001	-35.642	1.00 31.94	A
	ATOM	4298	CD	GLU A		66.538	92.977	-36.800	1.00 34.18	A
	ATOM	4299				67.521	93.141	-37.558	1.00 35.72	A
	ATOM	4300	OE2	GLU A		65.452	93.584	-36.946	1.00 35.67	A
5	ATOM	4301	C	GLU A		68.771	92.241	-32.397	1.00 24.63	А
5	ATOM	4302	0	GLU A		69.950		-32.372	1.00 24.67	A
		4303	N	ASP A		68.286		-31.605	1.00 23.96	A
	MOTA			ASP A		69.138		-30.660	1.00 23.90	A
	ATOM	4304	CA	ASP A		68.716		-30.582	1.00 24.37	А
10	MOTA	4305	CB			68.902		-31.894	1.00 25.10	А
10	MOTA	4306	CG	ASP A				-32.403	1.00 25.66	A
	MOTA	4307		ASP A		70.041		-32.417	1.00 26.21	A
	MOTA	4308		ASP A		67.910		-32.417 -29.250	1.00 23.40	A
	ATOM	4309	С	ASP A		69.166			1.00 23.40	A
	MOTA	4310	0	ASP A		69.753		-28.349		
15	MOTA	4311	N	ILE A	. 549	68.556		-29.046	1.00 22.05	A
	MOTA	4312	CA	ILE A	. 549	68.546		-27.707	1.00 21.36	A
	MOTA	4313	CB	ILE A	549	67.220		-26.966	1.00 21.60	A
	MOTA	4314	CG2	ILE A	549	66.031		-27.727	1.00 21.55	A
	ATOM	4315	CG1	ILE P	549	67.244		-25.545	1.00 23.19	A
20	MOTA	4316	CD1	ILE P	549	68.321		-24.664	1.00 24.78	A
_0	ATOM	4317	C	ILE F		68.766	90.057	-27.654	1.00 20.15	A
	ATOM	4318	0	ILE P		69.594	89.577	-26.883	1.00 19.89	A
	ATOM	4319	N	LEU F		68.038	89.311	-28.477	1.00 19.54	A
	ATOM	4320	CA	LEU F		68.156		-28.483	1.00 19.00	A
25	ATOM	4321	CB	LEU F		67.484		-27.231	1.00 19.06	A
20		4321	CG	LEU F		67.584		-27.011	1.00 18.75	A
	MOTA		CD1			69.034		-26.760	1.00 18.02	А
	MOTA	4323				66.722		-25.827	1.00 17.92	А
	ATOM	4324	CD2			67.488		-29.729	1.00 18.70	A
20	ATOM	4325	C	LEU A		66.286		-29.930	1.00 19.34	A
30	ATOM	4326	0	LEU A				-30.582	1.00 18.21	A
	ATOM	4327	N	PRO A		68.260 69.734		-30.610	1.00 18.48	A
	ATOM	4328	CD	PRO A		67.687		-31.804	1.00 17.94	A
	MOTA	4329	CA		A 551			-32.709	1.00 18.38	A
	MOTA	4330	СВ	PRO A		68.907			1.00 19.26	A
35	MOTA	4331	CG		4 551	69.995		-31.741	1.00 13.20	A
	MOTA	4332	С		A 551	66.886		-31.679		A
	MOTA	4333	0		4 551	65.933		-32.431	1.00 18.20	
	MOTA	4334	N		A 552	67.253		-30.743	1.00 16.28	A
	MOTA	4335	CA	SER A	A 552	66.539		-30.604	1.00 15.64	A
40	MOTA	4336	CB	SER A	A 552	67.260		-31.393	1.00 15.46	A
	MOTA	4337	OG	SER A	A 552	68.562		-30.881	1.00 16.20	A
	MOTA	4338	С	SER A	A 552	66.361		-29.164	1.00 14.77	A
	ATOM	4339	0		A 552	66.983		-28.246	1.00 14.68	A
	MOTA	4340	N		A 553	65.509	81.132	-28.988	1.00 14.88	A
45	MOTA	4341	CA		A 553	65.204	80.590	-27.672	1.00 14.72	A
10	MOTA	4342	СВ		A 553	63.999	81.333	-27.082	1.00 15.55	A
	ATOM	4343	CG		A 553	63.458	80.742	-25.780	1.00 16.12	А
	ATOM	4344	CD		A 553	64.486	80.803	-24.659	1.00 16.06	A
	ATOM	4344	CE		A 553	64.815		-24.273	1.00 17.14	A
50	ATOM	4345	NZ		A 553	65.918		-23.265	1.00 15.93	A
50			C		A 553	64.898		-27.734	1.00 15.05	A
	ATOM	4347			A 553	64.156		-28.602	1.00 13.66	А
	ATOM	4348	0			65.473		-26.806	1.00 15.49	А
	ATOM	4349	N		A 554	65.231		-26.747	1.00 15.75	A
	MOTA	4350	CA		A 554			-26.189	1.00 17.73	A
55	MOTA	4351	СВ	HIS	A 554	66.446	10.133	~20.10J	1.00 1/./5	* *

		ATOM	4352	CG	HIS A	554	67.584	76.035 -27.152	1.00 19.69	A
		ATOM	4353	CD2	HIS A	554	68.188	76.955 -27.939	1.00 20.84	A
		MOTA	4354	ND1	HIS A	554	68.259	74.851 -27.359	1.00 21.35	А
		MOTA	4355	CE1	HIS A	554	69.231	75.047 -28.230	1.00 20.38	A
	5	MOTA	4356	NE2	HIS A	554	69.211	76.316 -28.597	1.00 21.79	A
		MOTA	4357	C	HIS A	554	64.040	76.598 -25.851	1.00 15.45	A
		ATOM	4358	0	HIS A	554	63.872	77.221 -24.802	1.00 15.13	А
		MOTA	4359	N	VAL A	555	.63.223	75.641 -26.280	1.00 14.33	A
		MOTA	4360	CA	VAL A	555	62.062	75.193 -25.523	1.00 14.09	А
	10	ATOM	4361	СВ	VAL A	555	60.725	75.652 -26.153	1.00 13.60	A
		MOTA	4362		VAL A	555	60.610	77.170 -26.086	1.00 15.20	А
		MOTA	4363		VAL A		60.616	75.158 -27.584	1.00 13.42	А
		ATOM	4364	С	VAL A		62.110	73.670 -25.528	1.00 13.62	A
		MOTA	4365	Ó	VAL A		62.595	73.061 -26.487	1.00 14.40	A
	15	ATOM	4366	N	VAL A		61.606	73.058 -24.463	1.00 12.29	А
		ATOM	4367	CA	VAL A		61.618	71.606 -24.346	1.00 11.85	A
		ATOM	4368	СВ	VAL A		62.659	71.151 -23.288	1.00 11.87	A
		ATOM	4369		VAL A		62.602	69.634 -23.110	1.00 10.24	A
		ATOM	4370		VAL A		64.056	71.590 -23.704	1.00 11.21	A
Ţ	20	ATOM	4371	С	VAL A		60.259	71.052 -23.929	1.00 11.36	A
J		ATOM	4372	0	VAL A		59.624	71.583 -23.022	1.00 10.98	A
i juji		ATOM	4373	N	MET A		59.819	69.985 -24.590	1.00 11.49	A
		ATOM	4374	CA	MET A		58.553	69.343 -24.241	1.00 11.87	A
		ATOM	4375	CB	MET A		57.681	69.128 -25.486	1.00 11.62	A
14	25	ATOM	4376	CG	MET A		56.648	70.219 -25.752	1.00 12.29	A
nii ji		ATOM	4377	SD	MET A		57.365	71.858 -25.911	1.00 12.86	A
197		MOTA	4378	CE	MET A		58.354	71.664 -27.421	1.00 12.75	A
91		ATOM	4379	C	MET A		58.805	67.992 -23.572	1.00 11.62	A
		MOTA	4380	0	MET A		59.714	67.255 -23.958	1.00 11.99	A
	30	MOTA	4381	N	HIS A		58.002	67.675 -22.562	1.00 11.19	A
		ATOM	4382	CA	HIS A		58.114	66.397 -21.864	1.00 10.78	A
		ATOM	4383	СВ	HIS A		58.316	66.610 -20.363	1.00 10.37	A
- 		ATOM	4384	CG	HIS A		58.227	65.348 -19.558	1.00 11.12	A
		ATOM	4385		HIS A		58.984	64.226 -19.570	1.00 10.73	A
i (ch	35	MOTA	4386		HIS A		57.259	65.146 -18.596	1.00 10.46	A
		ATOM	4387		HIS A		57.426	63.955 -18.051	1.00 10.44	A
		ATOM	4388		HIS A		58.466	63.377 -18.623	1.00 11.40	A
		ATOM	4389	С	HIS A		56.828	65.611 -22.086	1.00 10.70	A
		ATOM	4390	0	HIS A		55.738	66.191 -22.090	1.00 11.40	A
	40	ATOM	4391	N	ASN A		56.962	64.299 -22.280	1.00 9.85	A
		ATOM	4392	CA	ASN A		55.820	63.413 -22.494	1.00 10.04	A
		ATOM	4393	CB	ASN A		55.880	62.807 -23.902	1.00 10.29	A
		MOTA	4394	CG	ASN A		54.865	61.692 -24.102	1.00 10.99	A
		ATOM	4395		ASN A		53.762	61.738 -23.557	1.00 10.85	A
	45	ATOM	4396		ASN A		55.229	60.692 -24.901	1.00 11.25	A
		ATOM	4397	С	ASN A		55.835	62.307 -21.439	1.00 9.59	A
		ATOM	4398	Ō	ASN A		56.575	61.332 -21.555	1.00 9.79	A
		ATOM	4399	N	THR A		55.012	62.455 -20.409	1.00 9.86	A
		ATOM	4400	CA	THR A		54.989	61.472 -19.331	1.00 10.97	A
	50	ATOM	4401	СВ	THR A		54.244	62.042 -18.102	1.00 11.06	A
	-0	ATOM	4402		THR A		54.560	61.255 -16.949	1.00 10.92	A
		ATOM	4403		THR A		52.737	62.039 -18.336	1.00 10.32	A
		ATOM	4404	C	THR A		54.391	60.111 -19.717	1.00 10.12	A
		ATOM	4405	0	THR A		54.603	59.112 -19.017	1.00 11.04	A
	55	ATOM	4406	N	LEU A		53.667	60.069 -20.834	1.00 10.95	A
	20	011	1100		A	O O 1	33.007	20.007 20.004	1.00 10.00	11

													_
		ATOM	4407	CA	LEU	A	561	53.043		-21.306		11.48	A
		MOTA	4408	СВ	LEU	Α	561	51.918		-22.295		12.27	A
		MOTA	4409	CG	LEU	Α	561	50.793	60.046	-21.747		12.97	A
		MOTA	4410		LEU			49.728	60.265	-22.818		12.43	A
	5	ATOM	4411		LEU			50.176	59.389	-20.511	1.00	13.32	A
	9	ATOM	4412	C	LEU			54.070	57.892	-21.957	1.00	11.68	Α
		ATOM	4413	0	LEU			54.992		-22.641	1.00	11.40	A
		MOTA	4414	N	PRO			53.912		-21.759	1.00	11.32	A
				CD	PRO			52.919		-20.867	1.00	10.81	A
	10	ATOM	4415		PRO			54.824		-22.312		11.80	A
	10	ATOM	4416	CA	PRO			54.605		-21.389		10.79	А
		ATOM	4417	СВ						-21.113		10.79	А
		MOTA	4418	CG	PRO			53.137		-23.788		12.65	A
		MOTA	4419	С	PRO			54.689		-24.158		13.27	A
		MOTA	4420	0			562	54.855				12.72	A
	15	MOTA	4421	N			563	54.382		-24.628		13.06	A
		MOTA	4422	CA	HIS			54.294		-26.066			A
		MOTA	4423	CB			563	52.900		-26.495		12.83	
		MOTA	4424	CG			563	51.757		-26.069		13.57	A
		MOTA	4425	CD2	HIS	A	563	51.235		-26.622		13.78	A
न्द्रद्रवी . सम्बद्ध	20	MOTA	4426	ND1	HIS	A	563	50.971		-24.972		13.58	A
		MOTA	4427	CE1	HIS	Α	563	50.013		-24.871		13.87	A
# E		MOTA	4428	NE2	HIS	Α	563	50.151		-25.860		14.57	А
iji i		ATOM	4429	С			563	54.628	57.248	-26.786		13.25	A
		ATOM	4430	0			563	54.463	58.332	-26.225		13.58	A
	25	ATOM	4431	N			564	55.133	57.142	-28.009		13.21	A
	20	ATOM	4432	CA			564	55.458	58.336	-28.772	1.00	13.90	A
		ATOM	4433	СВ			564	55.932	57.978	-30.181	1.00	14.45	A
		ATOM	4434	CG			564	57.363	57.568	-30.235	1.00	14.66	A
RI Home		ATOM	4435		TRP			58.487	58.433	-30.411	1.00	15.15	A
	30	ATOM	4436	CE2			564	59.646		-30.351	1.00	15.51	A
	30		4437	CE3			564	58.628		-30.613	1.00	15.70	A
M.		MOTA	4437		TRP			57.864		-30.081	1.00	15.38	A
10 mm		ATOM			TRP			59.238		-30.148		15.68	A
		ATOM	4439		TRP			60.934		-30.484		15.36	A
les.	25	MOTA	4440				564	59.911		-30.747		15.81	A
g para.	35	ATOM	4441	CZ3	TRP			61.046		-30.682		16.52	A
		ATOM	4442					54.190		-28.866		13.86	A
		MOTA	4443	С			564	53.104		-29.046		13.89	A
		MOTA	4444	0			564	54.317		-28.738		14.17	A
	40	MOTA	4445	N			565			-28.821		14.31	A
	40	MOTA	4446	CA			565	53.135		-27.419		14.39	A
		MOTA	4447	СВ			565	52.560				15.52	A
		ATOM	4448	CG			565	51.352		-27.424		15.96	A
		MOTA	4449	CD			565	50.536		-26.128			A
		ATOM	4450	ΝE			565	51.334		-24.940		15.97	A
	45	ATOM	4451	CZ			565	50.831		-23.796		15.92	
		ATOM	4452				. 565	49.525		-23.685		15.90	A
		ATOM	4453	NH2	2 ARG	; A	. 565	51.631		-22.762		14.90	A
		MOTA	4454	С	ARG	A	. 565	53.385		-29.525		14.40	A
		MOTA	4455	0			565	54.436		-29.361		13.99	A
	50	ATOM	4456	N	GLU	JA	566	52.413		-30.339		14.96	A
		MOTA	4457	CA	GLU	A	566	52.463		-31.044		15.90	A
		ATOM	4458	СВ	GLU	A	566	52.236		-32.546		17.55	A
		ATOM	4459	CG			566	53.338		-33.277		18.99	A
		ATOM	4460	CD			566	53.140		-34.783		20.96	А
	55	ATOM	4461				566	52.003	63.171	-35.238	1.00	21.39	A
						- '							

								327					
		ATOM	4462	OE2	GLU Z	5.	66	54.119	63.688	-35.507	1.00	21.79	А
		ATOM	4463	C	GLU I			51.325		-30.456		16.15	A
			4464	0	GLU Z			50.262		-30.137		16.46	Α
		MOTA			GLO A			51.555		-30.294		15.49	А
	5	ATOM	4465	N	GLN A			50.547		-29.744		15.72	A
	3	ATOM	4466	CA	GLN A			50.471		-28.216		17.10	A
		ATOM	4467	CB				49.471		-27.571		17.38	A
		ATOM	4468	CG	GLN .			49.793		-26.119		18.82	A
		ATOM	4469	CD	GLN .					-25.238		17.65	A
	10	MOTA	4470	OE1				49.683		-25.868		19.30	A
	10	MOTA	4471	NE2	GLN .			50.198		-30.090		15.02	A
		MOTA	4472	С	GLN .			50.944		-30.090		14.23	A
		MOTA	4473	0	GLN .			52.130				14.23	A
		MOTA	4474	N	LEU .			49.966		-30.429			A
		MOTA	4475	CA	LEU .			50.278		-30.735		13.72	A
	15	MOTA	4476	CB	LEU .			49.096		-31.410		15.18	
		MOTA	4477	CG	LEU			48.672		-32.821		14.75	A
		MOTA	4478		LEU			47.656		-33.352		15.08	A
		MOTA	4479	CD2	LEU			49.885		-33.742		15.38	A
å *** 3		ATOM	4480	C	LEU			50.585		-29.413		13.98	A
	20	MOTA	4481	0	LEU			49.939		-28.398		12.88	A
V places		MOTA	4482	N	VAL			51.589		-29.427		13.42	A
1,44		MOTA	4483	CA	VAL	A 5	69	51.969		-28.246		14.61	A
1,00		MOTA	4484	CB	VAL	A 5	69	53.335		-27.681		14.13	A
		ATOM	4485	CG1	VAL	A 5	69	53.202		-27.095		14.34	A
	25	ATOM	4486	CG2	VAL	A 5	69	54.389		-28.781		14.63	A
		ATOM	4487	С	VAL	A 5	69	52.070		-28.676		14.28	A
1971		MOTA	4488	0	VAL	A 5	69	52.362		-29.833		14.20	A
51		ATOM	4489	N	ASP	A 5	570	51.804		-27.762		14.70	A
		ATOM	4490	CA	ASP	A 5	570	51.894		-28.107		15.22	A
	30	MOTA	4491	CB	ASP	A 5	570	50.491		-28.263		18.14	A
9,5 <u>2,5</u> 200 2		ATOM	4492	CG	ASP	A 5	570	49.738		-26.948		20.68	A
		MOTA	4493	OD1	ASP	A 5	570	49.536		-26.288		23.52	A
i side		ATOM	4494	OD2	ASP	A 5	570	49.343		-26.577		23.31	A
		MOTA	4495	С	ASP	A 5	570	52.699		-27.075		14.70	А
2	35	MOTA	4496	0	ASP	A 5	570	52.799		-25.915		13.72	A
		ATOM	4497	N	PHE	A 5	571	53.304		-27.520		13.84	A
		ATOM	4498	CA	PHE	A 5	571	54.096		-26.651		14.16	A
		ATOM	4499	CB	PHE	A 5	571	55.602		-26.833		13.63	A
		ATOM	4500	CG	PHE	A 5	571	56.069	78.181	-26.470			A
	40	ATOM	4501		PHE			56.017	77.148	-27.398	1.00	13.24	A
		ATOM	4502		PHE			56.576	77.922	-25.201	1.00	13.50	А
		ATOM	4503		PHE			56.468	75.869	-27.066	1.00	13.34	А
		MOTA	4504		PHE			57.027	76.645	-24.860		13.94	A
		ATOM	4505	CZ	PHE			56.972	75.620	-25.797	1.00	13.21	A
	45	MOTA	4506	C	PHE			53.815	81.226	-27.040	1.00	14.55	A
	10	ATOM	4507	Ō	PHE			53.459	81.502	-28.185	1.00	14.25	A
		ATOM	4508	N	TYR			53.973	82.141	-26.089	1.00	14.89	A
		ATOM	4509	CA	TYR			53.792	83.560	-26.376	1.00	15.36	A
		ATOM	4510	СВ	TYR			53.373		-25.122	1.00	16.02	A
	50	ATOM	4511	CG	TYR			51.938		-24.681	1.00	18.23	A
	50	ATOM	4512		TYR			51.021		-25.468		18.10	А
		ATOM	4513		TYR			49.692		-25.072		19.65	А
		ATOM	4514		TYR			51.489		-23.479		19.53	A
		ATOM	4515		2 TYR			50.162		-23.075		20.24	A
	55		4516	CZ	TYR			49.270		-23.876		20.05	A
	55	ATOM	4710	CZ	111	Λ,	J 1 4	17.210	00.071		•		

ATOM 4517 OH TYR A 572 47.956 83.742 -23.482 ATOM 4518 C TYR A 572 55.149 84.084 -26.832 ATOM 4519 O TYR A 572 56.165 83.783 -26.206 ATOM 4520 N VAL A 573 55.166 84.857 -27.916 5 ATOM 4521 CA VAL A 573 56.405 85.436 -28.439 ATOM 4522 CB VAL A 573 56.841 84.759 -29.763 ATOM 4523 CG1 VAL A 573 56.841 84.759 -29.763 ATOM 4524 CG2 VAL A 573 55.690 84.765 -30.754 ATOM 4525 C VAL A 573 55.690 84.765 -30.754 ATOM 4526 O VAL A 573 56.213 86.938 -28.683 ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.298 87.704 -28.602 ATOM 4529 CB SER A 574 57.233 89.156 -28.783 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.088 88.968 -32.584 ATOM 4534 CA SER A 575 57.088 88.968 -32.584 ATOM 4535 CB SER A 575 58.496 89.096 -33.166	1.00 20.96 1.00 15.16 1.00 15.39 1.00 15.22 1.00 14.74 1.00 15.15 1.00 14.52 1.00 14.39 1.00 15.63 1.00 15.28 1.00 16.43 1.00 17.10 1.00 16.27 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97 1.00 20.29	A A A A A A A A A A A A A A A A A A A
ATOM 4519 O TYR A 572 56.165 83.783 -26.206 ATOM 4520 N VAL A 573 55.166 84.857 -27.916 5 ATOM 4521 CA VAL A 573 56.405 85.436 -28.439 ATOM 4522 CB VAL A 573 56.841 84.759 -29.763 ATOM 4523 CG1 VAL A 573 56.841 84.759 -29.763 ATOM 4524 CG2 VAL A 573 55.690 84.765 -30.754 ATOM 4525 C VAL A 573 55.690 84.765 -30.754 ATOM 4525 C VAL A 573 56.213 86.938 -28.683 ATOM 4526 O VAL A 573 56.213 86.938 -28.683 ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.298 87.704 -28.602 ATOM 4529 CB SER A 574 57.233 89.156 -28.783 ATOM 4529 CB SER A 574 58.410 89.824 -28.067 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.088 88.968 -32.584	1.00 15.39 1.00 15.22 1.00 14.74 1.00 15.15 1.00 14.52 1.00 14.39 1.00 15.63 1.00 15.28 1.00 16.43 1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.87	A A A A A A A A A A A A A A A A A A A
ATOM 4520 N VAL A 573 55.166 84.857 -27.916 ATOM 4521 CA VAL A 573 56.405 85.436 -28.439 ATOM 4522 CB VAL A 573 56.841 84.759 -29.763 ATOM 4523 CG1 VAL A 573 57.300 83.327 -29.493 ATOM 4524 CG2 VAL A 573 55.690 84.765 -30.754 ATOM 4525 C VAL A 573 56.213 86.938 -28.683 ATOM 4526 O VAL A 573 56.213 86.938 -28.683 ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.298 87.704 -28.602 ATOM 4529 CB SER A 574 57.233 89.156 -28.783 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 ATOM 4531 C SER A 574 59.639 89.471 -28.675 ATOM 4533 N SER A 574 57.258 90.808 -30.525 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 15.22 1.00 14.74 1.00 15.15 1.00 14.52 1.00 14.39 1.00 15.63 1.00 15.28 1.00 16.43 1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.88	A A A A A A A A A A A A A A A A A A A
ATOM 4520 N VAL A 573 55.166 84.857 -27.916 ATOM 4521 CA VAL A 573 56.405 85.436 -28.439 ATOM 4522 CB VAL A 573 56.841 84.759 -29.763 ATOM 4523 CG1 VAL A 573 57.300 83.327 -29.493 ATOM 4524 CG2 VAL A 573 55.690 84.765 -30.754 ATOM 4525 C VAL A 573 56.213 86.938 -28.683 ATOM 4526 O VAL A 573 56.213 86.938 -28.683 ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.298 87.704 -28.602 ATOM 4529 CB SER A 574 57.233 89.156 -28.783 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 ATOM 4531 C SER A 574 59.639 89.471 -28.675 ATOM 4533 N SER A 574 57.258 90.808 -30.525 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 14.74 1.00 15.15 1.00 14.52 1.00 14.39 1.00 15.63 1.00 15.28 1.00 16.43 1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A A A A A A A A A A A A A A A
5 ATOM 4521 CA VAL A 573 56.405 85.436 -28.439 ATOM 4522 CB VAL A 573 56.841 84.759 -29.763 ATOM 4523 CG1 VAL A 573 57.300 83.327 -29.493 ATOM 4524 CG2 VAL A 573 55.690 84.765 -30.754 ATOM 4525 C VAL A 573 56.213 86.938 -28.683 ATOM 4526 O VAL A 573 56.213 86.938 -28.683 ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.233 89.156 -28.783 ATOM 4529 CB SER A 574 57.233 89.156 -28.783 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.088 88.968 -32.584	1.00 15.15 1.00 14.52 1.00 14.39 1.00 15.63 1.00 15.28 1.00 16.43 1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A A A A A A A A A A A A A A A
ATOM 4522 CB VAL A 573 56.841 84.759 -29.763 ATOM 4523 CG1 VAL A 573 57.300 83.327 -29.493 ATOM 4524 CG2 VAL A 573 55.690 84.765 -30.754 ATOM 4525 C VAL A 573 56.213 86.938 -28.683 10 ATOM 4526 O VAL A 573 55.102 87.390 -28.943 ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.233 89.156 -28.783 ATOM 4529 CB SER A 574 58.410 89.824 -28.067 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 ATOM 4531 C SER A 574 59.639 89.471 -28.675 ATOM 4532 O SER A 574 57.206 89.609 -30.241 ATOM 4533 N SER A 575 57.258 90.808 -30.525 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 14.52 1.00 14.39 1.00 15.63 1.00 15.28 1.00 16.43 1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A A A A A A
ATOM 4523 CG1 VAL A 573 57.300 83.327 -29.493 ATOM 4524 CG2 VAL A 573 55.690 84.765 -30.754 ATOM 4525 C VAL A 573 56.213 86.938 -28.683 10 ATOM 4526 O VAL A 573 55.102 87.390 -28.943 ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.233 89.156 -28.783 ATOM 4529 CB SER A 574 58.410 89.824 -28.067 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.088 88.968 -32.584	1.00 14.39 1.00 15.63 1.00 15.28 1.00 16.43 1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A A A A A
ATOM 4524 CG2 VAL A 573 55.690 84.765 -30.754 ATOM 4525 C VAL A 573 56.213 86.938 -28.683 10 ATOM 4526 O VAL A 573 55.102 87.390 -28.943 ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.233 89.156 -28.783 ATOM 4529 CB SER A 574 58.410 89.824 -28.067 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 15 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 14.39 1.00 15.63 1.00 15.28 1.00 16.43 1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A A A A
ATOM 4525 C VAL A 573 56.213 86.938 -28.683 10 ATOM 4526 O VAL A 573 55.102 87.390 -28.943 ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.233 89.156 -28.783 ATOM 4529 CB SER A 574 58.410 89.824 -28.067 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 15 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 15.63 1.00 15.28 1.00 16.43 1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A A A A
10 ATOM 4526 O VAL A 573 55.102 87.390 -28.943 ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.233 89.156 -28.783 ATOM 4529 CB SER A 574 58.410 89.824 -28.067 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 15 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 15.28 1.00 16.43 1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A A A
ATOM 4527 N SER A 574 57.298 87.704 -28.602 ATOM 4528 CA SER A 574 57.233 89.156 -28.783 ATOM 4529 CB SER A 574 58.410 89.824 -28.067 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 15 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 16.43 1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A A A
ATOM 4528 CA SER A 574 57.233 89.156 -28.783 ATOM 4529 CB SER A 574 58.410 89.824 -28.067 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 15 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 17.10 1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A A
ATOM 4529 CB SER A 574 58.410 89.824 -28.067 ATOM 4530 OG SER A 574 59.639 89.471 -28.675 15 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 16.27 1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A
ATOM 4530 OG SER A 574 59.639 89.471 -28.675 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 15.14 1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A A
15 ATOM 4531 C SER A 574 57.206 89.609 -30.241 ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 18.36 1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A A
ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 18.70 1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A
ATOM 4532 O SER A 574 57.258 90.808 -30.525 ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 18.80 1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A A
ATOM 4533 N SER A 575 57.138 88.655 -31.162 ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 19.82 1.00 20.11 1.00 19.88 1.00 19.97	A A
ATOM 4534 CA SER A 575 57.088 88.968 -32.584	1.00 20.11 1.00 19.88 1.00 19.97	А
4535 GD GDD 7 575 50 496 89 096 -33 166	1.00 19.88 1.00 19.97	
ATOM 4535 CB SER A 575 58.496 89.096 -33.166	1.00 19.97	А
20 430 00 101 -34 502		
20 ATOM 4537 C CER 7 575 56 345 87 885 -33.343	1.00 20.29	A
ATOM 4557 C BERT 1. 55 400 06 700 20 007		A
A1011 4050 0 DHK 11 0.0	1.00 20.08	A
00 040 04 000	1.00 20.22	А
	1.00 19.56	A
25 ATOM 4541 CA PRO A 576 54.856 87.290 -35.1/9 ATOM 4542 CB PRO A 576 53.800 88.146 -35.866	1.00 20.22	A
111011 1012 00 1110	1.00 20.64	A
#1011 4313 CO 1110 11 51 705 06 600 26 177	1.00 20.04	A
711011 1311 3 1711	1.00 19.27	A
ATOM 4545 O PRO A 576 55.448 85.566 -36.741 30 ATOM 4546 N PHE A 577 56.961 87.187 -36.380	1.00 19.27	A
30 ATOM 4546 N PHE A 577 56.961 87.187 -36.380	1.00 18.98	A
ATOM 4547 CA THE A 57.	1.00 10.38	A
Alon 1040 CD IND II OV		
ATOM 4549 CG PHE A 577 57.805 88.800 -38.658	1.00 21.35	A
ATOM 4550 CD1 PHE A 577 58.050 90.166 -38.554	1.00 22.43	A
35 ATOM 4551 CD2 PHE A 577 56.711 88.369 -39.404	1.00 21.36	A
ATOM 4552 CE1 PHE A 577 57.216 91.091 -39.183		A
ATOM 4553 CE2 PHE A 577 55.870 89.286 -40.038		A
ATOM 4554 CZ PHE A 577 56.125 90.650 -39.925		А
ATOM 4555 C PHE A 577 58.907 85.689 -36.643		A
40 ATOM 4556 O PHE A 577 60.089 85.993 -36.463	1.00 18.03	A
ATOM 4557 N VAL A 578 58.387 84.521 -36.280	1.00 18.09	A
ATOM 4558 CA VAL A 578 59.170 83.495 -35.607	1.00 18.08	A
ATOM 4559 CB VAL A 578 58.705 83.330 -34.135	1.00 17.94	A
11011 1303 02 112 12 150 100 00 000 23 435		A
77.01. 1300 301 112 17 17 17 17 17 17 17 17 17 17 17 17 17		A
10 11011 1001 002 112 11 11 11 11 11 11 11 11 11 11 11 1		A
A1011 1302 0 111 100 36 706		A
MIOIT 1000 0 112 01 122 26 129		Α
711011 1001 11 0001100 27 001		A
711011		A
60 207 00 500 29 060		A
ATOM 4567 OG SER A 579 62.307 80.502 -38.069		A
ATOM 4568 C SER A 579 60.627 79.065 -36.110		
ATOM 4569 O SER A 579 61.420 79.363 -35.218		A
ATOM 4570 N VAL A 580 60.173 77.832 -36.292		A
55 ATOM 4571 CA VAL A 580 60.558 76.732 -35.423	1.00 16.12	А

		7.004	4570	CD	VAL	7\	500	59.304	76 030	-34.851	1.00	16.04	А
		MOTA	4572	CB				59.706		-33.825		15.88	А
		MOTA	4573		VAL			58.374		-34.231		14.55	А
		MOTA	4574		VAL					-36.148		16.46	A
		MOTA	4575	C	VAL			61.400				16.12	A
	5	MOTA	4576	O	VAL			61.194		-37.331			
		ATOM	4577	N	THR			62.348		-35.416		16.83	A
		MOTA	4578	CA	THR			63.231		-35.926		17.81	A
		MOTA	4579	CB	THR	Α	581	64.600		-36.369		17.60	A
		MOTA	4580	OG1	THR	Α	581	65.180		-35.289		17.59	A
	10	MOTA	4581	CG2	THR	Α	581	64.450		-37.592		17.67	A
		MOTA	4582	С	THR	Α	581	63.491		-34.780		18.67	А
		ATOM	4583	0	THR	Α	581	63.366		-33.611		17.83	А
		ATOM	4584	N	ASP			63.830	71.839	-35.105	1.00	19.42	Α
		ATOM	4585	CA	ASP			64.150	70.870	-34.063	1.00	20.83	A
	15	ATOM	4586	СВ	ASP			63.734		-34.475	1.00	20.66	A
	10	ATOM	4587	CG	ASP			64.403		-35.751	1.00	20.65	A
		ATOM	4588		ASP			63.887		-36.337	1.00	21.09	A
		ATOM	4589		ASP			65.434		-36.164		18.90	A
				C	ASP			65.658		-33.842		22.10	A
The first first	20	MOTA	4590		ASP			66.294		-34.460		21.76	А
	20	MOTA	4591	0	LEU			66.252		-32.981		23.97	A
		ATOM	4592	N				67.682		-32.759		25.53	A
13.1		MOTA	4593	CA	LEU			68.141		-31.482		27.13	A
100		MOTA	4594	CB	LEU					-30.953		27.21	A
1	0.5	MOTA	4595	CG	LEU			69.400		-30.536		27.75	A
14.	25	MOTA	4596		LEU			69.045				28.89	A
		ATOM	4597		LEU			69.984		-29.789		25.69	A
m		ATOM	4598	С	LEU			68.566		-33.926		26.03	A
ži.		MOTA	4599	0	LEU			69.760		-33.934			
		MOTA	4600	N	ALA			67.987		-34.909		25.08	A
1 2	30	MOTA	4601	CA	ALA			68.746		-36.085		24.31	A
2 77 2 1 1 2 1 2 1		MOTA	4602	CB	ALA			68.185		-36.648		24.53	A
2 - ·		ATOM	4603	С	ALA			68.630		-37.114		24.07	A
indi indi		MOTA	4604	0	ALA			69.059		-38.263		23.07	A
		MOTA	4605	N			585	68.039		-36.678		23.90	A
i den	35	ATOM	4606	CA	ASN	Α	585	67.838		-37.517		24.16	A
		ATOM	4607	CB	ASN	Α	585	69.160		-38.148		26.50	A
		MOTA	4608	CG	ASN	Α	585	69.451		-37.906		28.18	A
		MOTA	4609	OD1	ASN	Α	585	68.570		-38.038		28.37	A
		ATOM	4610	ND2	ASN	Α	585	70.695		-37.555		29.91	A
	40	ATOM	4611	С	ASN	Α	585	66.805		-38.614		23.60	A
		ATOM	4612	0			585	66.774		-39.604		23.48	A
		ATOM	4613	N	ASN	Α	586	65.970		-38.451		21.95	А
		ATOM	4614	CA	ASN	А	586	64.931		-39.435		21.75	А
		ATOM	4615	СВ			586	64.356	69.280	-39.281		22.27	A
	45	ATOM	4616	CG			586	65.392	68.199	-39.440	1.00	23.42	А
	10	ATOM	4617		ASN			66.173	68.203	-40.391	1.00	23.15	A
		ATOM	4618		ASN			65.393	67.244	-38.511	1.00	22.98	A
		ATOM	4619	C			586	63.797		-39.190	1.00	21.19	A
		ATOM	4620	0			586	63.369		-38.053	1.00	20.23	A
	50			N			587	63.296		-40.250		20.95	A
	JU	MOTA	4621 4622	CD			587	63.704		-41.666		21.61	A
		ATOM		CA			587	62.197		-40.042		20.35	А
		ATOM	4623				587	62.034		-41.417		21.29	А
		ATOM	4624	CB				62.488		-42.360		21.88	A
		MOTA	4625	CG			587			-39.583		19.89	A
	55	ATOM	4626	С	PRO	А	587	60.943	12.323	-23.303	1.00	17.07	7-7

	ATOM	4627	0	PRO A	587	60.72		-39.937	1.00		А
	ATOM	4628	N	VAL A		60.13	73.195	-38.773	1.00		A
	MOTA	4629	CA	VAL A	588	58.89		-38.258	1.00		A
	ATOM	4630	CB	VAL A	588	58.95		-36.721	1.00		A
5	ATOM	4631	CG1	VAL A	588	57.62		-36.202	1.00		A
	MOTA	4632	CG2	VAL A	588	60.07	79 71.499	-36.338	1.00		A
	MOTA	4633	С	VAL A	588	57.77	73.582	-38.617	1.00		A
	ATOM	4634	0	VAL A	588	57.87	71 74.774	-38.325	1.00		A
	ATOM	4635	N	GLU A	589	56.72	73.079	-39.259	1.00		A
10	MOTA	4636	CA	GLU A	589	55.62	23 73.947	-39.646	1.00		A
	ATOM	4637	СВ	GLU A		54.5	71 73.176	-40.441	1.00	20.53	A
	ATOM	4638	CG	GLU A		53.66	74.093	-41.248	1.00	24.87	A
	ATOM	4639	CD	GLU A		52.45	73.389	-41.801	1.00		A
	ATOM	4640	OE1	GLU A		52.58	35 72.232	-42.254	1.00		A
15	ATOM	4641	OE2	GLU A		51.35	73.999	-41.792	1.00		A
10	MOTA	4642	C	GLU A		54.9	78 74.556	-38.410	1.00	17.96	A
	ATOM	4643	Ō	GLU A		54.70	73.860	-37.434	1.00	16.94	A
	MOTA	4644	N	ALA A		54.73		-38.464	1.00	16.87	A
	ATOM	4645	CA	ALA A		54.13		-37.342	1.00	16.73	A
20	ATOM	4646	CB	ALA A		55.20		-36.589	1.00	17.08	A
20	ATOM	4647	C	ALA A		53.0		-37.805	1.00	16.62	A
	ATOM	4648	0	ALA A		52.9		-38.985	1.00	16.45	A
	ATOM	4649	N	GLN A		52.2		-36.860	1.00	16.54	A
	ATOM	4650	CA	GLN A		51.1		-37.125	1.00	16.07	A
25	ATOM	4651	CB	GLN A		49.7		-37.076	1.00	16.36	A
25	ATOM	4652	CG	GLN A		48.5		-37.142	1.00	15.76	A
	ATOM	4653	CD	GLN A		47.2		-36.876	1.00		A
	ATOM	4654	OE1			46.9		-37.430		15.89	A
	ATOM	4655	NE2			46.4		-36.030		14.94	A
30	MOTA	4656	C	GLN A		51.1		-36.038	1.00	16.10	A
30	ATOM	4657	0	GLN A		51.3		-34.857		16.16	А
	ATOM	4658	N	VAL A		50.9		-36.429		15.49	А
	ATOM	4659	CA	VAL A		50.9		-35.449		15.45	A
	ATOM	4660	CB	VAL A		51.9		-35.785	1.00	15.57	A
35	ATOM	4661	CG1			51.7		-34.869	1.00	15.47	A
55	MOTA	4662		VAL A		53.3		-35.599	1.00	15.57	A
	ATOM	4663	C	VAL A		49.5		-35.412	1.00	15.66	A
	MOTA	4664	0	VAL A		48.9		-36.450		16.23	A
	ATOM	4665	N	SER A		49.0		-34.205	1.00	15.93	A
40	MOTA	4666	CA	SER A		47.7		-34.001	1.00	16.58	A
40	ATOM	4667	CB	SER A		46.7		3 -33.434		16.33	A
	ATOM	4668	OG	SER A		46.5		3 -34.328		17.88	A
	ATOM	4669	C	SER A		47.8		-33.003		16.55	A
	ATOM	4670	0	SER A		48.8		-32.296		17.21	A
45		4671	N	PRO P		46.8		-32.931		16.44	A
40	MOTA	4672	CD	PRO F		45.7		-33.863		16.46	A
	MOTA	4673	CA	PRO F		46.9		-31.983		16.18	A
	ATOM			PRO P		45.8		3 -32.453		16.54	А
	ATOM	4674 4675	CB CG	PRO P		45.6		2 -33.898		16.24	A
50	ATOM	4675	C	PRO P		46.6		-30.561		16.50	A
50	ATOM	4676	0	PRO P		46.2		30.350		16.26	А
	ATOM	4677		VAL A		46.9		7 -29.587		15.96	A
	ATOM	4678	N	VAL A		46.6		1 - 28.199		16.67	А
	ATOM		CA CB	VAL A		47.7		5 -27.241		16.47	А
55	ATOM	4680		VAL A		47.3		25.792		16.20	A
55	MOTA	4681	(G1	VAL A	1 222	41.0	. 10 07.000				- -

The first term that the contract of the contra

						333				
	ATOM	4682	CG2	VAL A	595	49.071		-27.516	1.00 17.31	А
	ATOM	4683	С	VAL A		45.382		-27.895	1.00 16.73	A
	ATOM	4684	0	VAL A	595	45.386	88.794	-27.765	1.00 17.05	A
	MOTA	4685	N	TRP A	596	44.277		-27.809	1.00 16.70	A
5	ATOM	4686	CA	TRP A	596	42.979		-27.541	1.00 17.84	A
	MOTA	4687	CB	TRP A	596	41.890		-28.400	1.00 17.13	A
	MOTA	4688	CG	TRP A	596	42.053		-29.878	1.00 17.49	A
	ATOM	4689	CD2	TRP A	596	41.740		-30.649	1.00 17.58	A
	ATOM	4690	CE2	TRP A	596	42.029		-31.999	1.00 17.37	A
10	ATOM	4691	CE3	TRP A	596	41.243		-30.329	1.00 18.00	A
	ATOM	4692	CD1	TRP A	596	42.509		-30.766	1.00 17.26	A
	ATOM	4693	NE1	TRP A	596	42.494		-32.042	1.00 17.27	A
	ATOM	4694		TRP A		41.837		-33.031	1.00 18.13	A
	ATOM	4695	CZ3	TRP A	596	41.050	90.305	-31.359	1.00 18.36	A
15	ATOM	4696		TRP A		41.348	89.974	-32.692	1.00 18.70	A
	ATOM	4697	С	TRP A		42.569		-26.077	1.00 18.84	A
	ATOM	4698	0	TRP A		42.689		-25.466	1.00 17.93	A
	ATOM	4699	N	SER A	597	42.084		-25.519	1.00 19.67	A
	MOTA	4700	CA	SER A		41.620		-24.137	1.00 21.40	A
20	ATOM	4701	СВ	SER A	597	42.561		-23.261	1.00 21.75	A
	ATOM	4702	OG	SER A	597	42.699		-23.774	1.00 24.13	A
	ATOM	4703	С	SER A	597	40.221	89.055	-24.127	1.00 21.80	A
	ATOM	4704	0	SER A		39.973	90.082	-24.764	1.00 22.44	A
	ATOM	4705	N	TRP A		39.306		-23.414	1.00 22.12	A
25	ATOM	4706	CA	TRP A		37.934	88.888	-23.343	1.00 23.28	A
	ATOM	4707	СВ	TRP A	598	36.967	87.704	-23.289	1.00 21.46	A
	ATOM	4708	CG	TRP A	598	36.940		-24.570	1.00 19.87	А
	MOTA	4709	CD2	TRP A	. 598	35.925		-25.577	1.00 19.13	A
	MOTA	4710	CE2	TRP A	. 598	36.334		-26.627	1.00 18.71	A
30	ATOM	4711	CE3	TRP A	598	34.708		-25.698	1.00 19.08	A
	MOTA	4712	CD1	TRP A	598	37.898		-25.033	1.00 19.36	A
	ATOM	4713	NE1	TRP A	598	37.540		-26.269	1.00 18.19	A
	MOTA	4714	CZ2	TRP A	598	35.569		-27.782	1.00 18.54	A
	ATOM	4715	CZ3	TRP A		33.947		-26.849	1.00 18.32	A
35	ATOM	4716	CH2			34.382		-27.876	1.00 18.60	A
	MOTA	4717	С	TRP A		37.718		-22.149	1.00 25.15	A
	MOTA	4718	0	TRP A		38.204		-21.051	1.00 25.24	A
	MOTA	4719	N	HIS F		36.982		-22.374	1.00 27.74	A
	ATOM	4720	CA	HIS F		36.728		-21.319	1.00 30.86	A
40	MOTA	4721	CB	HIS F		37.605		-21.542	1.00 32.48	A
	MOTA	4722	CG	HIS A		39.068		-21.604	1.00 34.54	A
	MOTA	4723		HIS A		39.934		-22.645	1.00 35.10	A
	MOTA	4724		HIS A		39.793		-20.500	1.00 35.25	A
	ATOM	4725		HIS A		41.042		-20.859	1.00 35.53	A n
45	MOTA	4726	NE2	HIS A		41.154		-22.156	1.00 35.52	A
	MOTA	4727	С	HIS A		35.271		-21.242	1.00 32.18	A
	MOTA	4728	0	HIS A		34.606		-22.264	1.00 31.64	A
	ATOM	4729	N	HIS A		34.779		-20.019	1.00 34.30	A
	ATOM	4730	CA	HIS A		33.407		-19.803	1.00 36.52	A
50	MOTA	4731	СВ	HIS A		32.895		-18.449	1.00 38.40	A A
	ATOM	4732	CG	HIS A		31.437		-18.225	1.00 40.80	A A
	MOTA	4733		HIS A		30.432		-17.852	1.00 41.76	
	MOTA	4734		HIS A		30.868		-18.384	1.00 41.71	A A
	MOTA	4735		HIS A		29.575		-18.120	1.00 42.34	A
55	ATOM	4736	NE2	HIS	4 600	29.285	92.537	-17.794	1.00 42.76	A

											1 00 00 00	70
	MOTA	4737	С	HIS				33.452		-19.820	1.00 36.92	A
	ATOM	4738	0	HIS	А	600	3	33.792		-18.820	1.00 37.27	A
	ATOM	4739	N	ASP	Α	601	3	33.128		-20.969	1.00 37.29	A
	MOTA	4740	CA	ASP	Α	601		33.150		-21.125	1.00 37.97	A
5	MOTA	4741	СВ	ASP	Α	601	3	32.959	96.763	-22.597	1.00 38.10	A
_	ATOM	4742	CG	ASP	Α	601		33.355	98.194	-22.895	1.00 38.67	A
	ATOM	4743	OD1	ASP				32.854	99.111	-22.211	1.00 38.47	A
	ATOM	4744		ASP				34.167	98.403	-23.819	1.00 39.33	A
	ATOM	4745	C	ASP				32.062		-20.280	1.00 38.23	А
10	ATOM	4746	0	ASP				30.881		-20.619	1.00 37.93	А
10		4747	N	THR				32.474		-19.181	1.00 38.57	А
	ATOM			THR				31.548		-18.278	1.00 39.06	A
	MOTA	4748	CA					32.284		-17.040	1.00 39.91	A
	MOTA	4749	CB	THR						-16.337	1.00 41.22	A
4-	MOTA	4750	OG1	THR				32.925		-16.103	1.00 40.79	A
15	MOTA	4751	CG2	THR				31.302			1.00 40.79	A
	MOTA	4752	С	THR				30.826		-18.965		
	ATOM	4753	0	THR				29.726		-18.565	1.00 38.57	A
	MOTA	4754	N	LEU					100.063		1.00 37.19	A
	MOTA	4755	CA	LEU	Α	603			101.184		1.00 36.14	A
20	ATOM	4756	CB	LEU	Α	603			102.006		1.00 37.37	A
	ATOM	4757	CG	LEU	Α	603			102.778		1.00 38.24	A
	ATOM	4758	CD1	LEU	Α	603			103.719		1.00 38.55	A
	ATOM	4759	CD2	LEU	Α	603		33.775	101.811	-19.677	1.00 38.91	A
	ATOM	4760	C	LEU				29.840	100.766	-21.780	1.00 34.77	A
25	ATOM	4761	0	LEU					101.207		1.00 34.31	A
20	ATOM	4762	N	THR				30.255		-22.717	1.00 32.64	A
	ATOM	4763	CA			604		29.364		-23.778	1.00 30.71	A
	ATOM	4764	CB			604		30.162		-25.002	1.00 30.78	А
		4765	OG1	THR				30.970		-24.632	1.00 30.69	A
30	MOTA MOTA	4766	CG2	THR					100.102		1.00 30.88	А
30			CGZ			604		28.459		-23.329	1.00 29.37	А
	ATOM	4767						27.567		-24.065	1.00 28.33	A
	ATOM	4768	0			604		28.693		-22.121	1.00 28.18	A
	MOTA	4769	N			605				-21.582	1.00 27.68	A
0.5	ATOM	4770	CA			605		27.897		-21.302	1.00 27.00	A
35	MOTA	4771	CB			605		26.457		-21.341 -20.344	1.00 28.53	A
	MOTA	4772	CG			605		26.335			1.00 29.48	A
	MOTA	4773	CD			605		26.807		-18.959		
	MOTA	4774	CE			605		26.707		-17.972	1.00 29.77	A
	MOTA	4775	NZ	LYS	A	605		27.095		-16.595	1.00 30.78	A
40	MOTA	4776	С			605		27.898		-22.511	1.00 27.31	A
	ATOM	4777	0	LYS	A	605		26.866		-22.710	1.00 26.97	A
	ATOM	4778	N	THR	Α	606		29.058		-23.085	1.00 26.32	A
	ATOM	4779	CA	THR	Α	606		29.202		-23.980	1.00 25.60	A
	ATOM	4780	CB	THR	Α	606		29.343	94.497	-25.457	1.00 26.18	A
45	ATOM	4781		THR	Α	606		30.502	95.331	-25.602	1.00 26.47	A
	ATOM	4782	CG2	THR	Α	606		28.109	95.259	-25.912	1.00 26.21	A
	ATOM	4783	С			606		30.457	93.289	-23.604	1.00 24.69	А
	ATOM	4784	0			606		31.376		-23.002	1.00 24.74	A
	ATOM	4785	N			607		30.484		-23.944	1.00 24.05	A
50	ATOM	4786	CA			607		31.644		-23.664	1.00 22.70	A
50	ATOM	4787	CB			607		31.224		-23.069	1.00 22.67	А
				ILE				32.460		-22.758	1.00 22.01	A
	ATOM	4788		ILE				30.404		-21.794	1.00 22.63	A
	ATOM	4789						29.720		-21.269	1.00 22.99	A
E	ATOM	4790		ILE						-25.007	1.00 22.58	A
55	MOTA	4791	С	TPE	А	607		32.333	50.934	-23.007	1.00 22.50	

		ATOM	4792	0	ILE A	607	31.809	90.258 -25.87		A
		ATOM	4793	N	HIS A	608	33.502	91.564 -25.18	6 1.00 22.73	А
		MOTA	4794	CA	HIS A		34.219	91.438 -26.44	9 1.00 23.11	A
		ATOM	4795	СВ	HIS A		33.964	92.669 -27.32	1 1.00 24.32	A
	5	ATOM	4796	CG	HIS A		34.488	93.942 -26.73		А
	0	ATOM	4797		HIS A		35.450	94.791 -27.17		А
			4798		HIS A		34.011	94.474 -25.56		A
		MOTA			HIS A		34.656	95.597 -25.29		A
		ATOM	4799				35.535	95.811 -26.25		A
	10	MOTA	4800		HIS A			91.225 -26.27		A
	10	ATOM	4801	C	HIS A		35.718			A
		MOTA	4802	0	HIS A		36.291	91.545 -25.22		A
		ATOM	4803	N	PRO A		36.378	90.684 -27.30		
		MOTA	4804	CD	PRO A		35.781	90.110 -28.53		A
		MOTA	4805	CA	PRO A		37.814	90.419 -27.26		A
	15	MOTA	4806	CB	PRO A		37.950	89.193 -28.14		A
		MOTA	4807	CG	PRO A		36.992	89.524 -29.25		A
		MOTA	4808	С	PRO A		38.708	91.555 -27.73		A
		MOTA	4809	0	PRO A	609	38.364	92.296 -28.65		A
3 (45%)		MOTA	4810	N	GLN A	610	39.859	91.678 -27.08		A
	20	ATOM	4811	CA	GLN A	610	40.851	92.682 -27.43	4 1.00 22.66	A
till-		ATOM	4812	CB	GLN A	610	41.132	93.622 -26.25		A
4		MOTA	4813	CG	GLN A	610	39.950	94.484 -25.83	0 1.00 28.22	A
		ATOM	4814	CD	GLN A		40.335	95.514 -24.77	8 1.00 30.69	A
		ATOM	4815	OE1			40.844	95.169 -23.70	8 1.00 32.27	A
P.	25	ATOM	4816	NE2			40.097	96.787 -25.07	9 1.00 31.93	А
	20	ATOM	4817	C	GLN A		42.115	91.908 -27.78		A
ij1		ATOM	4818	Ö	GLN A		42.467	90.949 -27.09		A
		ATOM	4819	N	GLY A		42.786	92.314 -28.85		A
31		ATOM	4820	CA	GLY A		43.999	91.630 -29.25		А
10.4	30	ATOM	4821	C	GLY A		45.250	92.379 -28.84		А
i, Li	30		4822	0	GLY A		45.275	93.612 -28.84		А
		MOTA			SER A		46.292	91.635 -28.48		A
More and Ar Ann.		ATOM	4823	N	SER A		47.557	92.240 -28.08		A
		MOTA	4824	CA			48.436	91.213 -27.37		A
	25	MOTA	4825	CB	SER A		49.741	91.726 -27.17		A
	35	ATOM	4826	OG	SER A			92.766 -29.30		A
		ATOM	4827	С	SER A		48.303	92.191 -30.39		A
		ATOM	4828	0	SER A		48.214	93.859 -29.12		A
		ATOM	4829	N	THR A		49.042	94.444 -30.21		A
	40	MOTA	4830	CA	THR A		49.816			A
	40	ATOM	4831	СВ	THR A		49.543	95.956 -30.36		
		MOTA	4832		THR P		49.906	96.624 -29.14		A
		MOTA	4833		THR F		48.069	96.209 -30.65		A
		MOTA	4834	С	THR F		51.315	94.252 -29.98		A
		ATOM	4835	0	THR F		52.137	94.754 -30.75		A
	45	MOTA	4836	N	THR F	614	51.664	93.516 -28.92		A
		ATOM	4837	CA	THR F	614	53.065	93.267 -28.58		A
		ATOM	4838	CB	THR F	614	53.473	94.063 -27.33		A
		ATOM	4839	OG1	THR F	614	52.581	93.747 -26.25		A
		ATOM	4840	CG2	THR F	614	53.423	95.559 -27.63		A
	50	ATOM	4841	С	THR A		53.373	91.794 -28.30	2 1.00 26.34	A
		ATOM	4842	0	THR A		54.538	91.399 -28.22	20 1.00 26.24	A
		ATOM	4843	N	LYS A		52.327	90.990 -28.15	1.00 25.09	А
		ATOM	4844	CA	LYS A		52.472	89.571 -27.85		A
		ATOM	4845	CB	LYS A		51.954	89.321 -26.43		A
	55	ATOM	4846	CG	LYS A		51.857	87.870 -26.03		А
		MI OF	4040	CG	11.0 F	. 013	51.05,	2.12.3 23.0.		

		ATOM	4847	CD	LYS A	615	51.015	87.725 -24.744	1.00 27.93	A
		ATOM	4848	CE	LYS A		51.588	88.525 -23.584	1.00 27.89	A
							50.778	88.352 -22.342	1.00 27.53	A
		ATOM	4849	NZ	LYS A				1.00 27.33	A
	_	ATOM	4850	С	LYS A		51.685	88.728 -28.856		
	5	MOTA	4851	0	LYS A		50.591	89.115 -29.270	1.00 22.28	A
		MOTA	4852	N	TYR A	616	52.245	87.584 -29.247	1.00 21.79	Α
		ATOM	4853	CA	TYR A	616	51.587	86.691 -30.203	1.00 21.06	A
		ATOM	4854	СВ	TYR A		52.142	86.919 -31.612	1.00 21.55	A
					TYR A		52.149	88.375 -32.006	1.00 22.85	А
	10	MOTA	4855	CG					1.00 23.03	A
	10	MOTA	4856	CD1	TYR A		53.238	89.189 -31.703		
		MOTA	4857	CE1	TYR A	616	53.219	90.549 -31.980	1.00 24.34	A
		ATOM	4858	CD2	TYR A	616	51.033	88.958 -32.608	1.00 23.49	A
		ATOM	4859	CE2	TYR A	616	51.001	90.323 -32.889	1.00 24.46	A
		ATOM	4860	CZ	TYR A		52.096	91.109 -32.571	1.00 24.68	А
	15	ATOM	4861	OH	TYR A		52.071	92.459 -32.834	1.00 26.72	Α
	13				TYR A		51.763	85.225 -29.818	1.00 20.41	A
		MOTA	4862	С					1.00 19.70	A
		ATOM	4863	0	TYR A		52.678	84.882 -29.074		
		MOTA	4864	И	ARG A		50.877	84.369 -30.325	1.00 19.68	A
16531		ATOM	4865	CA	ARG A	617	50.935	82.933 -30.040	1.00 19.19	A
f and	20	MOTA	4866	СВ	ARG A	617	49.532	82.362 -29.785	1.00 19.61	A
۱I		MOTA	4867	CG	ARG A		48.874	82.714 -28.463	1.00 20.82	A
		ATOM	4868	CD	ARG A		47.484	82.072 -28.372	1.00 20.39	A
1956					ARG A		47.535	80.608 -28.387	1.00 20.23	A
Strain Alban		MOTA	4869	NE				79.838 -29.242	1.00 20.25	A
		MOTA	4870	CZ	ARG A		46.866			
on de la company	25	ATOM	4871		ARG A		46.089	80.382 -30.168	1.00 20.60	A
na na		ATOM	4872	NH2	ARG A	617	46.972	78.518 -29.173	1.00 19.63	A
iji		MOTA	4873	С	ARG A	617	51.528	82.154 -31.208	1.00 18.48	A
		ATOM	4874	0	ARG A	617	51.040	82.269 -32.331	1.00 19.11	A
2 }		ATOM	4875	N	ILE A		52.578	81.372 -30.960	1.00 17.34	A
	30	ATOM	4876	CA	ILE A		53.132	80.547 -32.026	1.00 15.98	A
1471 1 1 B	50						54.666	80.704 -32.193	1.00 15.88	A
		ATOM	4877	СВ	ILE A				1.00 15.00	A
3 %		MOTA	4878	CG2			55.399	80.260 -30.938		
		MOTA	4879	CG1			55.116	79.898 -33.418	1.00 16.57	A
		MOTA	4880	CD1	ILE A	618	56.481	80.267 -33.950	1.00 16.76	A
5,25;	35	MOTA	4881	С	ILE A	618	52.771	79.113 -31.666	1.00 15.58	A
r		ATOM	4882	0	ILE A	618	52.940	78.687 -30.526	1.00 15.88	A
		ATOM	4883	N	ILE A		52.246	78.384 -32.643	1.00 15.22	A
			4884	CA	ILE A		51.802	77.014 -32.439	1.00 15.30	А
		ATOM					50.287	76.916 -32.675	1.00 16.02	A
	40	MOTA	4885	CB	ILE A					
	40	MOTA	4886		ILE A		49.788	75.529 -32.309		A
		ATOM	4887	CG1	ILE A	619	49.568	78.006 -31.874	1.00 16.94	A
		ATOM	4888	CD1	ILE A	619	48.223	78.411 -32.464	1.00 18.02	A
		ATOM	4889	С	ILE A	619	52.484	76.047 -33.399	1.00 15.21	A
		ATOM	4890	0	ILE A		52.638	76.344 -34.581	1.00 14.85	A
	45	ATOM	4891	N	PHE A		52.880	74.885 -32.891	1.00 14.42	A
	40			CA	PHE A		53.513	73.883 -33.736	1.00 14.06	A
		ATOM	4892						1.00 13.22	A
		ATOM	4893	СВ	PHE A		54.991	74.225 -33.971		
		MOTA	4894	CG	PHE A		55.856	74.111 -32.747	1.00 13.06	A
		ATOM	4895		PHE A		56.459	72.898 -32.416		A
	50	MOTA	4896	CD2	PHE A	620	56.093	75.219 -31.941	1.00 12.76	A
		MOTA	4897		PHE A		57.292	72.791 -31.299	1.00 12.66	A
		ATOM	4898		PHE A		56.925	75.125 -30.822		A
		ATOM	4899	CZ	PHE A		57.525	73.904 -30.503		A
							53.366	72.492 -33.137		A
		ATOM	4900	C	PHE A					
	55	MOTA	4901	0	PHE A	620	53.085	72.342 -31.951	1.00 14.92	А

		7 m () (4000	NT	LYS	7\	621	53.544	71 476	-33.970	1.00	15.26	A
		ATOM	4902	N				53.410		-33.525		16.30	A
		MOTA	4903	CA	LYS							17.42	A
		MOTA	4904	СВ	LYS			52.949		-34.697			
		MOTA	4905	CG	LYS			52.734		-34.335		19.29	A
	5	ATOM	4906	CD	LYS	A	621	51.896		-35.388		20.90	A
		MOTA	4907	CE	LYS	Α	621	52.568	67.041	-36.747		22.97	A
		MOTA	4908	NZ	LYS	Α	621	51.720	66.378	-37.784	1.00	25.48	A
		ATOM	4909	С	LYS			54.697	69.547	-32.935	1.00	15.54	A
		ATOM	4910	0	LYS			55.717		-33.617	1.00	15.67	A
	10		4911	N	ALA			54.652		-31.658	1.00	15.03	A
	10	ATOM						55.821		-31.006		15.03	A
		ATOM	4912	CA	ALA					-29.564		14.73	A
		ATOM	4913	СВ	ALA			55.934					A
		ATOM	4914	С	ALA			55.682		-31.017		15.03	
		MOTA	4915	0	ALA			54.585		-30.851		15.48	A
	15	ATOM	4916	N	ARG	Α	623	56.795		-31.237		15.27	A
		MOTA	4917	CA	ARG	Α	623	56.811	64.936	-31.256	1.00	14.94	A
		MOTA	4918	CB	ARG	Α	623	57.245	64.427	-32.636	1.00	16.29	A
		ATOM	4919	CG	ARG			57.267	62.912	-32.755	1.00	18.27	A
		ATOM	4920	CD	ARG			57.285		-34.216	1.00	20.74	A
	20		4921	NE	ARG			57.525		-34.338		22.01	A
4.73	20	ATOM						58.723		-34.232		23.12	A
		ATOM	4922	CZ	ARG					-34.009		24.09	A
(1000) (1000)		MOTA	4923		ARG			59.796				24.41	A
		MOTA	4924		ARG			58.847		-34.333			
1 :122. 1 122.		MOTA	4925	С	ARG			57.804		-30.176		14.36	A
	25	MOTA	4926	0	ARG	Α	623	58.992		-30.255		13.60	A
N.		MOTA	4927	N	VAL	Α	624	57.308		-29.162		13.85	A
M		ATOM	4928	CA	VAL	Α	624	58.131		-28.021		13.51	А
		ATOM	4929	СВ	VAL	Α	624	57.581	64.122	-26.747	1.00	13.54	A
R)		ATOM	4930	CG1	VAL	Α	624	58.635	64.120	-25.645	1.00	13.13	A
	30	ATOM	4931		VAL			57.128	65.544	-27.075	1.00	14.31	A
	00	ATOM	4932	C	VAL			58.200		-27.775	1.00	12.85	А
			4933	0	VAL			57.204		-27.906		12.59	A
		MOTA						59.384		-27.396		13.31	А
		ATOM	4934	N	PRO					-27.305		13.68	A
i page	~=	ATOM	4935	CD			625	60.665				12.93	A
East.	35	ATOM	4936	CA			625	59.574		-27.128			A
		ATOM	4937	CB			625	61.074		-26.850		13.69	
		ATOM	4938	CG			625	61.660		-27.599		14.65	A
		MOTA	4939	С			625	58.758		-25.917		12.52	A
		ATOM	4940	0	PRO	Α	625	58.333		-25.099		10.81	A
	40	MOTA	4941	N	PRO	Α	626	58.537	58.230	-25.787			A
		MOTA	4942	CD		Α	626	59.072	57.125	-26.600	1.00	11.95	A
		ATOM	4943	CA			626	57.773	57.725	-24.643	1.00	12.15	A
		ATOM	4944	СВ			626	57.838	56.207	-24.818	1.00	12.36	A
			4945	CG			626	58.103		-26.296		12.88	A
	45	ATOM					626	58.526		-23.384		12.11	А
	43	MOTA	4946	С				59.747		-23.325		12.43	A
		MOTA	4947	0			626			-23.323		11.82	A
		MOTA	4948	N			627	57.812					
		ATOM	4949	CA			627	58.444		-21.146		11.98	A
		MOTA	4950	CB			627	58.725		-20.268		12.88	A
	50	MOTA	4951	CG	MET	Α	627	57.458		-19.813		13.06	A
		ATOM	4952	SD	MET	Α	627	57.753		-19.152		15.42	А
		ATOM	4953	CE			627	58.563	55.905	-17.601		15.23	А
		ATOM	4954	С			627	59.745	59.877	-21.434	1.00	11.93	A
		ATOM	4955	Ö			627			-20.736	1.00	11.21	A
	55	ATOM	4956	N			628	59.716		-22.453		11.85	Α
	55	ALOM	4900	14	ندب	Λ	020	55.7.40					

							0.0	•			
		ATOM	4957	CA	GLY A	628	60.917	61.460	-22.830	1.00 11.48	А
		ATOM	4958	С	GLY A		60.822		-23.040	1.00 11.99	А
		ATOM	4959	0	GLY A		59.846		-22.646	1.00 11.25	А
			4960	N	LEU A		61.854		-23.678	1.00 11.91	A
	5	ATOM					61.943		-23.941	1.00 12.42	A
	3	MOTA	4961	CA	LEU A				-22.996	1.00 12.70	A
		MOTA	4962	СВ	LEU A		62.964				
		MOTA	4963	CG	LEU A		62.725		-21.500	1.00 13.60	A
		ATOM	4964		LEU A		63.990		-20.726	1.00 14.03	A
		MOTA	4965	CD2	LEU A	629	61.566		-21.047	1.00 13.10	A
	10	MOTA	4966	С	LEU A	629	62.372		-25.378	1.00 12.55	A
		ATOM	4967	0	LEU A	629	63.074		-25.996	1.00 12.86	A
		ATOM	4968	N	ALA A	630	61.947	66.369	-25.899	1.00 13.11	A
		ATOM	4969	CA	ALA A		62.307	66.788	-27.250	1.00 13.46	A
		ATOM	4970	СВ	ALA A		61.203		-28.240	1.00 13.44	A
	15	ATOM	4971	C	ALA A		62.534		-27.218	1.00 13.75	A
	10	ATOM	4972	0	ALA A		61.705		-26.697	1.00 13.55	A
					THR A		63.660		-27.779	1.00 13.65	A
		ATOM	4973	N O7	THR A		64.035		-27.796	1.00 13.96	A
		MOTA	4974	CA					-27.460	1.00 13.30	A
	00	ATOM	4975	CB	THR A		65.534		-26.253	1.00 14.42	A
	20	ATOM	4976		THR A		65.822			1.00 13.43	A
1 122		MOTA	4977		THR A		65.910		-27.280		
e desp		MOTA	4978	С	THR A		63.782		-29.141	1.00 14.26	A
8,6 ii 4,200.		MOTA	4979	0	THR A		64.048		-30.191	1.00 14.41	A
2 300 2 300		MOTA	4980	N	TYR A		63.264		-29.097	1.00 13.91	A
AND HELD	25	ATOM	4981	CA	TYR A		63.023		-30.306	1.00 13.94	A
101		MOTA	4982	CB	TYR A		61.526		-30.614	1.00 13.86	A
191		MOTA	4983	CG	TYR A		60.869		-30.964	1.00 14.19	A
41		MOTA	4984	CD1	TYR A	632	60.486		-29.967	1.00 14.07	A
g Paris		ATOM	4985	CE1	TYR A	632	59.911		-30.286	1.00 14.45	A
A COLUMN TO THE PARTY OF THE PA	30	MOTA	4986	CD2	TYR A	632	60.658		-32.294	1.00 14.41	A
1,44		ATOM	4987	CE2	TYR A	632	60.083	70.032	-32.626	1.00 14.34	A
		ATOM	4988	CZ	TYR A	632	59.715	69.157	-31.615	1.00 14.95	A
i di		ATOM	4989	ОН	TYR A	632	59.163	67.936	-31.929	1.00 14.79	A
A state		ATOM	4990	С	TYR A	632	63.618	74.214	-30.122	1.00 14.02	A
5,25	35	ATOM	4991	0	TYR A		63.963	74.607	-29.007	1.00 13.93	A
ä.	00	ATOM	4992	N	VAL A		63.739		-31.219	1.00 13.56	Α
		ATOM	4993	CA	VAL A		64.295		-31.175	1.00 14.28	A
		ATOM	4994	CB	VAL A		65.691		-31.847	1.00 14.34	A
		ATOM	4995		VAL A		66.245		-31.817	1.00 14.97	A
	40	ATOM	4996		VAL A		66.639		-31.138	1.00 15.01	А
	40				VAL A		63.375		-31.894	1.00 14.46	А
		ATOM	4997	С	VAL A		62.889		-32.990	1.00 14.06	A
		ATOM	4998	0					-31.260	1.00 14.84	A
		MOTA	4999	N	LEU A		63.121			1.00 15.74	A
	4 =	MOTA	5000	CA	LEU A		62.284		-31.860		
	45	MOTA	5001	СВ	LEU A		61.260		-30.855	1.00 16.60	A
		ATOM	5002	CG	LEU A		60.337		-30.188	1.00 18.43	A
		MOTA	5003		LEU A		59.245		-29.430	1.00 18.47	A
		MOTA	5004	CD2	LEU A		59.723		-31.224	1.00 18.25	A
		ATOM	5005	С	LEU A		63.225		-32.266	1.00 16.10	A
	50	MOTA	5006	0	LEU A	634	63.980		-31.440	1.00 15.57	A
		MOTA	5007	N	THR A		63.180		-33.539	1.00 16.37	A
		ATOM	5008	CA	THR A	635	64.056		-34.054	1.00 16.51	А
		ATOM	5009	CB	THR A		65.024		-35.095	1.00 16.04	A
		ATOM	5010		THR A		65.704	80.297	-34.529	1.00 15.93	A
	55	ATOM	5011		THR A		66.044		-35.528	1.00 15.17	A
					- -	•					

	ATOM	5012	С	THR F	4 635	63.260	83.132	-34.708	1.00 17.49	А
	ATOM	5013	0	THR A	4 635	62.313	82.883	-35.453	1.00 17.17	A
	ATOM	5014	N	ILE A	636	63.656	84.370	-34.434	1.00 18.82	A
	MOTA	5015	CA	ILE A	4 636	62.970	85.524	-35.003	1.00 20.25	А
5	ATOM	5016	CB		4 636	63.010	86.730		1.00 20.80	Α
	ATOM	5017	CG2	ILE A	4 636	64.445	87.193	-33.837	1.00 20.78	A
	ATOM	5018	CG1	ILE A	4 636	62.156	87.881	-34.568	1.00 20.89	A
	ATOM	5019	CD1	ILE A	4 636	62.027	89.054	-33.608	1.00 22.07	A
	MOTA	5020	С	ILE A	4 636	63.628	85.922	-36.320	1.00 21.26	A
10	ATOM	5021	0		4 636	64.806	85.647	-36.541	1.00 21.01	A
	ATOM	5022	N	SER A		62.854	86.548	-37.200	1.00 23.08	A
	ATOM	5023	CA	SER A	4 637	63.370	87.011	-38.484	1.00 24.95	A
	MOTA	5024	CB	SER A	4 637	63.007	86.033	-39.608	1.00 25.80	A
	ATOM	5025	OG	SER A	A 637	61.607	85.875		1.00 28.22	А
15	MOTA	5026	С	SER A	A 637	62.765	88.386	-38.755	1.00 25.93	A
	ATOM	5027	0		A 637	61.821	88.792	-38.081	1.00 25.09	A
	ATOM	5028	N		A 638	63.310	89.105	-39.729	1.00 27.88	A
	ATOM	5029	CA		A 638	62.805	90.437	-40.042	1.00 30.30	A
	MOTA	5030	СВ		A 638	63.804	91.193	-40.928	1.00 32.47	A
20	ATOM	5031	CG		A 638	64.112	90.463	-42.221	1.00 35.12	A
	ATOM	5032		ASP A		63.169	90.178	-42.989	1.00 36.91	A
	ATOM	5033		ASP A		65.304	90.178	-42.476	1.00 37.58	A
	ATOM	5034	С		A 638	61.438	90.398	-40.717	1.00 30.50	A
	MOTA	5035	Ō		A 638	60.624	91.306	-40.536	1.00 31.30	A
25	ATOM	5036	N		A 639	61.181	89.339	-41.479	1.00 30.26	A
	ATOM	5037	CA		A 639	59.913	89.202	-42.184	1.00 30.17	A
	ATOM	5038	СВ		A 639	60.112	89.497	-43.672	1.00 30.34	A
	MOTA	5039	OG		A 639	61.072	88.619	-44.232	1.00 30.45	A
	ATOM	5040	С	SER I	A 639	59.313	87.812	-42.016	1.00 29.83	A
30	ATOM	5041	0	SER I	A 639	59.906		-41.383	1.00 29.34	A
	ATOM	5042	N	LYS A	A 640	58.135	87.609	-42.598	1.00 29.49	A
	MOTA	5043	CA	LYS 2	A 640	57.448	86.328	-42.506	1.00 29.38	А
	ATOM	5044	CB	LYS .	A 640	56.160	86.354	-43.334	1.00 30.45	A
	ATOM	5045	CG	LYS .	A 640	55.128	87.348	-42.825	1.00 32.56	A
35	ATOM	5046	CD	LYS .	A 640	53.757	87.126	-43.449	1.00 34.03	A
	ATOM	5047	CE	LYS .	A 640	53.763	87.376	-44.945	1.00 34.65	A
	ATOM	5048	ΝZ	LYS .	A 640	52.396		-45.510	1.00 35.65	A
	MOTA	5049	С	LYS .	A 640	58.303		-42.934	1.00 28.37	A
	ATOM	5050	0	LYS .	A 640	58.718		-44.088	1.00 28.39	A
40	MOTA	5051	N	PRO .	A 641	58.581		-41.996	1.00 27.43	A
	ATOM	5052	CD	PRO .	A 641	58.213		-40.571	1.00 27.24	А
	MOTA	5053	CA	PRO .	A 641	59.387		-42.288	1.00 26.57	A
	ATOM	5054	CB	PRO .	A 641	59.674		-40.901	1.00 27.13	A
	ATOM	5055	CG	PRO	A 641	58.461		-40.132	1.00 27.56	A
45	ATOM	5056	С	PRO	A 641	58.630	82.056	-43.187	1.00 25.67	A
	ATOM	5057	0	PRO	A 641	57.400		-43.176	1.00 24.50	A
	ATOM	5058	N	GLU	A 642	59.382		-43.958	1.00 25.02	A
	MOTA	5059	CA	GLU	A 642	58.813		-44.891	1.00 24.72	A
	ATOM	5060	CB		A 642	59.945		-45.658	1.00 26.15	A
50	ATOM	5061	CG	GLU	A 642	59.484		-46.562	1.00 27.49	A
	MOTA	5062	CD	GLU	A 642	60.635		-47.278	1.00 29.77	A
	ATOM	5063	OE1	GLU	A 642	60.378		-47.977	1.00 30.73	A
	ATOM	5064	OE2	GLU	A 642	61.791		-47.144	1.00 30.00	A
	ATOM	5065	С		A 642	57.885		-44.303	1.00 24.21	A
55	MOTA	5066	0	GLU	A 642	56.865	78.921	-44.903	1.00 24.08	А

													_
		ATOM	5067	N	HIS A	A 1	643	58.223	78.728 -43			23.20	A
		MOTA	5068	CA	HIS A	4	643	57.416	77.665 -42	2.538	1.00	22.09	А
		MOTA	5069	СВ	HIS A			58.345	76.582 -43	1.992	1.00	23.02	A
		MOTA	5070	CG	HIS A			59.256	76.004 -43	3.029	1.00	24.08	A
	5	MOTA	5071		HIS A			60.556	76.255 -43		1.00	24.46	A
	J				HIS A			58.831	75.083 -43			25.14	Α
		MOTA	5072									25.08	A
		ATOM	5073		HIS A			59.830	74.789 -4				
		MOTA	5074		HIS A			60.888	75.487 -4			24.83	A
		ATOM	5075	С	HIS A			56.420	78.078 -43			21.26	A
	10	ATOM	5076	0	HIS A	£.	643	55.944	77.238 -40			20.11	A
		ATOM	5077	N	THR A	Ą	644	56.101	79.365 -43	1.411		20.08	А
		ATOM	5078	CA	THR A	Į	644	55.146	79.865 -40	0.435	1.00	20.00	A
		ATOM	5079	СВ	THR A			55.805	80.877 -3	9.475	1.00	20.19	A
		ATOM	5080	OG1	THR A			56.886	80.236 -3	8.782	1.00	19.60	A
	15	MOTA	5081	CG2	THR A			54.791	81.395 -3		1.00	19.41	A
	10	ATOM	5082	C	THR A			53.986	80.542 -4		1.00	20.34	A
		ATOM	5083	0	THR A			54.200	81.413 -4			20.31	A
			5084	N	SER A			52.765	80.121 -4			19.47	А
		ATOM						51.576	80.702 -4			18.89	A
2125 2125	20	ATOM	5085	CA	SER A			50.636	79.604 -4			19.65	A
4 1 2	20	MOTA	5086	CB	SER A				78.821 -4			18.59	A
		MOTA	5087	OG	SER A			50.103				18.42	A
a gray.		MOTA	5088	С	SER A			50.859	81.556 -4				A
		ATOM	5089	О	SER A			51.124	81.445 -3			17.35	
i real		MOTA	5090	N	TYR .			49.951	82.408 -4			17.29	A
And the	25	MOTA	5091	CA	TYR :			49.211	83.278 -3			16.80	A
		MOTA	5092	CB	TYR .	A	646	49.590	84.737 -4			17.06	A
ijħ		MOTA	5093	CG	TYR	Α	646	51.069	84.965 -4			17.26	A
		MOTA	5094	CD1	TYR :	A	646	51.980	84.670 -4			17.65	A
E)		MOTA	5095	CE1	TYR .	A	646	53.352	84.771 -4	0.843		17.99	A
	30	MOTA	5096	CD2	TYR .	Α	646	51.567	85.374 -3	8.811		17.57	A
1,53		ATOM	5097					52.935	85.478 -3	8.584		17.55	A
And the		ATOM	5098	CZ	TYR			53.820	85.173 -3	9.602	1.00	17.60	A
1 st. 22		MOTA	5099	ОН	TYR .			55.174	85.253 -3		1.00	18.18	А
152		MOTA	5100	C	TYR			47.712	83.081 -4		1.00	16.23	A
la.	35	ATOM	5100	0	TYR			47.158	83.071 -4			16.02	A
1	33				ALA			47.150	82.916 -3			15.52	A
		ATOM	5102	N	ALA			45.627	82.699 -3			15.34	A
		MOTA	5103	CA					82.251 -3			16.44	A
		ATOM	5104	CB	ALA			45.219	83.939 -3			15.45	A
	40	MOTA	5105	С	ALA			44.837				15.26	A
	40	MOTA	5106	0	ALA			45.273	85.066 -3				
		ATOM	5107	N	SER			43.669	83.722 -3			16.15	A
		ATOM	5108	CA	SER			42.802	84.829 -4			16.33	A
		ATOM	5109	CB	SER			41.952	84.479 -4			17.26	A
		ATOM	5110	OG	SER	Α	648	41.126	83.360 -4			18.74	A
	45	MOTA	5111	С	SER	A	648	41.914	84.985 -3			16.21	A
		MOTA	5112	0	SER	Α	648	41.754	84.037 -3	8.230		16.15	А
		MOTA	5113	N	ASN	A	649	41.348	86.171 -3	8.815		15.76	A
		ATOM	5114	CA	ASN			40.481	86.413 -3	7.669	1.00	15.87	A
		ATOM	5115	CB	ASN			41.216	87.235 -3		1.00	15.87	A
	50	ATOM	5116	CG	ASN			42.396	86.491 -3		1.00	15.98	A
	50	ATOM	5117		ASN			42.250	85.747 -3			15.07	A
		ATOM	5118		ASN			43.573	86.684 -3			15.26	А
			5119	C	ASN			39.236	87.156 -3			16.17	А
		ATOM						39.321	88.131 -3			15.97	A
		ATOM	5120	0	ASN				86.686 -3			16.93	A
	55	MOTA	5121	N	LEU	А	65U	38.083	00.000 -3	7.000	1.00	10.93	Λ

		ATOM	5122	CA	LEU A	650	36.804	87.288 -38.020	1.00 17.30	А
		ATOM	5123	СВ	LEU A		36.025	86.353 -38.946	1.00 16.88	A
		MOTA	5124	CG	LEU A		34.612	86.785 -39.340	1.00 17.13	A
		ATOM	5125		LEU A		34.670	88.040 -40.202	1.00 17.16	Α
	5		5126		LEU A		33.933	85.649 -40.091	1.00 16.83	A
	5	ATOM					35.985	87.567 -36.768	1.00 18.02	A
		MOTA	5127	С	LEU A			86.648 -36.025	1.00 17.29	A
		MOTA	5128	0	LEU A		35.627		1.00 17.29	A
		MOTA	5129	N	LEU A		35.687	88.842 -36.540		
		MOTA	5130	CA	LEU A		34.911	89.255 -35.380	1.00 19.22	A
	10	ATOM	5131	CB	LEU A	651	35.512	90.534 -34.783	1.00 20.86	A
		ATOM	5132	CG	LEU A	651	35.142	90.917 -33.345	1.00 21.95	A
		ATOM	5133	CD1	LEU A	651	33.696	91.353 -33.262	1.00 23.51	A
		ATOM	5134	CD2	LEU A	651	35.403	89.734 -32.429	1.00 22.19	A
		ATOM	5135	C	LEU A		33.473	89.500 -35.825	1.00 19.82	A
	15	ATOM	5136	0	LEU A		33.191	90.449 -36.558	1.00 19.72	A
	10	ATOM	5137	N	LEU A		32.565	88.639 -35.378	1.00 19.69	A
		MOTA	5137	CA	LEU A		31.166	88.757 -35.755	1.00 19.98	A
			5130	CB	LEU A		30.586	87.375 -36.052	1.00 19.30	A
		MOTA			LEU A		31.315	86.605 -37.156	1.00 19.06	A
	20	ATOM	5140	CG			30.723	85.206 -37.283	1.00 18.94	A
٠.D	20	MOTA	5141		LEU A			87.368 -38.477	1.00 18.77	A
		ATOM	5142		LEU A		31.207		1.00 21.51	A
		MOTA	5143	С	LEU A		30.320	89.449 -34.700	1.00 20.61	A
1,00		MOTA	5144	0	LEU A		30.212	88.988 -33.560		
7		MOTA	5145	N	ARG A		29.726	90.570 -35.094	1.00 22.71	A
	25	MOTA	5146	CA	ARG A		28.865	91.332 -34.207	1.00 24.81	A
		ATOM	5147	CB	ARG A		29.582	91.658 -32.901	1.00 25.37	A
TI)		ATOM	5148	CG	ARG A		30.646	92.727 -33.008	1.00 27.04	A
ąį.		ATOM	5149	CD	ARG A		30.498	93.677 -31.839	1.00 29.21	A
		ATOM	5150	NE	ARG A	653	31.775	94.064 -31.261	1.00 30.48	A
	30	ATOM	5151	CZ	ARG A	653	31.897	94.765 -30.141	1.00 31.74	A
1,1,5		ATOM	5152	NH1	ARG A	653	30.814	95.156 -29.482	1.00 32.11	A
(free)		ATOM	5153	NH2	ARG A	653	33.100	95.072 -29.678	1.00 32.44	A
i sila		ATOM	5154	С	ARG A	653	28.435	92.626 -34.868	1.00 25.66	А
		ATOM	5155	0	ARG A	653	29.062	93.087 -35.821	1.00 24.91	A
	35	MOTA	5156	N	LYS A		27.360	93.207 -34.354	1.00 27.38	A
Ē.	•••	ATOM	5157	CA	LYS A		26.858	94.463 -34.879	1.00 29.48	A
		ATOM	5158	СВ	LYS A		25.366	94.605 -34.568	1.00 30.53	А
		MOTA	5159	CG	LYS A		24.503	93.495 -35.159	1.00 32.00	A
		ATOM	5160	CD	LYS A		23.402	94.053 -36.050	1.00 33.77	A
	40	MOTA	5161	CE	LYS A			94.797 -37.244		A
	40		5162	NZ	LYS A		22.917	95.372 -38.117	1.00 36.17	A
		ATOM			LYS A		27.645	95.580 -34.204	1.00 29.80	A
		ATOM	5163	С			28.156	95.405 -33.097	1.00 30.41	A
		ATOM	5164	0	LYS A			96.718 -34.878	1.00 30.31	A
	4.5	ATOM	5165	N	ASN A		27.751	97.865 -34.337	1.00 30.31	A
	45	ATOM	5166	CA	ASN A		28.470		1.00 30.50	A
		MOTA	5167	СВ	ASN A		27.714	98.427 -33.134		A
		MOTA	5168	CG	ASN A		26.223	98.526 -33.384	1.00 34.87	
		MOTA	5169		ASN A		25.784	99.111 -34.379	1.00 36.57	A
		ATOM	5170	ND2	ASN A		25.432	97.951 -32.482	1.00 35.70	A
	50	ATOM	5171	С	ASN A		29.892	97.499 -33.920	1.00 29.09	A
		MOTA	5172	0	ASN A	655	30.272	97.657 -32.760	1.00 28.95	A
		MOTA	5173	N	PRO A	656	30.699	97.000 -34.867	1.00 28.12	A
		ATOM	5174	CD	PRO A	656	30.370	96.630 -36.257	1.00 27.68	A
		ATOM	5175	CA	PRO A		32.076	96.627 -34.544	1.00 27.59	А
	55	ATOM	5176	СВ	PRO A		32.417	95.634 -35.643	1.00 27.64	A
				-						

		M O M	E177	CC	PRO I	7\	656	31.728	96 247	-36.827	1.00	27.46	A
		ATOM	5177	CG				33.008		-34.570		27.27	А
		ATOM	5178	С	PRO J					-35.180		26.04	A
		MOTA	5179	0	PRO .			32.700					
		MOTA	5180	N	THR .			34.143		-33.893		26.93	A
	5	MOTA	5181	CA	THR .			35.152		-33.864		27.12	A
		MOTA	5182	CB	THR .	A	657	35.302		-32.455		27.52	A
		MOTA	5183	OG1	THR .	Α	657	35.484	98.324	-31.489	1.00	27.21	A
		MOTA	5184	CG2	THR .	Α	657	34.067	100.186	-32.099	1.00	27.48	A
		ATOM	5185	С	THR .			36.462		-34.280	1.00	27.11	A
	10	ATOM	5186	0	THR			36.618		-34.158	1.00	27.18	А
	10		5187	N	SER .			37.395		-34.779		26.83	A
		ATOM						38.682		-35.229		26.73	A
		ATOM	5188	CA	SER .			39.576		-35.671		26.98	A
		MOTA	5189	CB	SER .				100.401			27.98	A
	4-	MOTA	5190	OG	SER .							26.39	A
	15	ATOM	5191	С	SER			39.401		-34.159		25.68	A
		MOTA	5192	0	SER			39.191		-32.961			
		MOTA	5193	N	LEU			40.246		-34.616		25.99	A
		MOTA	5194	CA	LEU	A	659	41.023		-33.739		25.88	A
्रे (क्य <u>ू</u>		ATOM	5195	CB	LEU	Α	659	40.381		-33.649		26.05	A
	20	ATOM	5196	CG	LEU	Α	659	39.071		-32.868		25.86	А
1,4		ATOM	5197	CD1	LEU	Α	659	38.453	92.874	-33.107		26.79	A
, M		ATOM	5198	CD2	LEU	Α	659	39.342	94.466	-31.392	1.00	25.65	A
177		ATOM	5199	С	LEU			42.437	95.640	-34.294	1.00	25.93	A
		ATOM	5200	0	LEU			42.758	94.663	-34.974	1.00	26.37	A
III.	25	ATOM	5201	N	PRO			43.297		-34.030	1.00	25.74	A
888	20	ATOM	5202	CD	PRO			43.052		-33.256		25.96	А
191		ATOM	5202	CA	PRO			44.679		-34.520		25.77	A
iji		ATOM	5204	CB	PRO			45.195		-34.209		25.89	А
31					PRO			44.463		- 32.952		25.60	A
ing.	20	ATOM	5205	CG	PRO			45.461		-33.793		25.59	A
	30	MOTA	5206	С				45.154		-32.649		25.45	A
		ATOM	5207	0	PRO					-34.453		26.17	A
		MOTA	5208	N	LEU			46.469				26.47	A
į.		MOTA	5209	CA	LEU			47.256		-33.846			A
Syland Syland		MOTA	5210	CB	LEU			46.827		-34.439		26.01	
i sa	35	MOTA	5211	CG	LEU			45.373		-34.197		25.85	A
		ATOM	5212		LEU			45.053		-34.990		25.80	A
		MOTA	5213	CD2	LEU	Α	661	45.148		-32.707		25.90	A
		MOTA	5214	С	LEU	Α	661	48.764		-34.013		26.80	A
		MOTA	5215	0	LEU	Α	661	49.495		-34.217		26.97	A
	40	MOTA	5216	N	GLY	Α	662	49.228	95.287	-33.925	1.00	27.05	A
		ATOM	5217	CA	GLY			50.649	95.549	-34.066	1.00	27.15	A
		ATOM	5218	С	GLY			51.246	95.016	-35.356	1.00	27.55	A
		ATOM	5219	0	GLY			50.791		-36.447	1.00	27.88	A
		ATOM	5220	N	GLN			52.260		-35.228		27.70	A
	45	ATOM	5221	CA	GLN			52.948		-36.383		27.75	A
	40				GLN			54.338		-35.972		29.23	А
		ATOM	5222	CB				55.162		-35.205		31.06	A
		ATOM	5223	CG	GLN			56.475		-34.733		31.96	A
		ATOM	5224	CD	GLN					-35.544		32.29	A
	Ε0	MOTA	5225		GLN			57.324				31.97	A
	50	MOTA	5226		GLN			56.647		-33.418			A
		ATOM	5227	C	GLN			52.227		-37.063		26.71	
		ATOM	5228	0	GLN			52.634		-38.140		26.75	A
		ATOM	5229	N	TYR			51.168		-36.445		26.28	A
		ATOM	5230	CA	TYR			50.438		-37.020		25.87	A
	55	MOTA	5231	CB	TYR	A	664	49.138	90.557	-36.251	1.00	24.54	A

										_
		MOTA	5232	CG	TYR A	664	48.551	89.181 -36.475	1.00 22.88	A
		ATOM	5233	CD1	TYR A		49.145	88.047 -35.915	1.00 22.04	A
		ATOM	5234	CE1			48.608	86.775 -36.124	1.00 21.08	A
							47.407	89.010 -37.254	1.00 21.95	А
	_	MOTA	5235		TYR A			87.748 -37.472	1.00 20.70	A
	5	MOTA	5236	CE2	TYR A		46.866			
		MOTA	5237	CZ	TYR A	664	47.469	86.634 -36.904	1.00 21.25	A
		MOTA	5238	ОН	TYR A	664	46.923	85.387 -37.114	1.00 19.20	А
		ATOM	5239	С	TYR A	664	50.146	91.023 -38.507	1.00 26.39	A
		ATOM	5240	0	TYR A		49.503	92.002 -38.884	1.00 26.43	A
	10		5241		PRO A		50.618	90.104 -39.367	1.00 27.21	А
	10	ATOM		N			51.335	88.902 -38.908	1.00 26.98	A
		ATOM	5242	CD	PRO P				1.00 27.74	A
		MOTA	5243	CA	PRO A		50.490	90.087 -40.830		
		MOTA	5244	CB	PRO P		51.064	88.722 -41.209	1.00 27.97	A
		MOTA	5245	CG	PRO P	665	52.074	88.481 -40.153	1.00 27.69	А
	15	MOTA	5246	С	PRO P	665	49.111	90.302 -41.455	1.00 28.39	A
		ATOM	5247	0	PRO F		48.996	90.999 -42.463	1.00 28.61	A
		MOTA	5248	N	GLU A		48.071	89.703 -40.881	1.00 28.52	A
					GLU F		46.738	89.842 -41.461	1.00 28.27	А
		MOTA	5249	CA					1.00 30.04	A
1 500	• •	MOTA	5250	CB	GLU A		46.116	88.464 -41.709		
	20	MOTA	5251	CG	GLU A	666	44.880	88.533 -42.593	1.00 33.21	A
4,1,4		MOTA	5252	CD	GLU A	666	44.407	87.178 -43.071	1.00 34.36	A
		MOTA	5253	OE1	GLU A	666	45.226	86.434 -43.652	1.00 36.02	A
171		MOTA	5254	OE2	GLU A	666	43.214	86.863 -42.876	1.00 34.72	A
1000		ATOM	5255	C	GLU A		45.770	90.691 -40.651	1.00 27.30	A
1	25		5256	0	GLU F		45.712	90.595 -39.425	1.00 26.86	A
345	23	ATOM						91.515 -41.361	1.00 25.51	A
		ATOM	5257	N	ASP A		45.003		1.00 23.31	A
101		ATOM	5258	CA	ASP A		44.024	92.403 -40.741		
#1		ATOM	5259	CB	ASP A		43.629	93.518 -41.715	1.00 25.91	A
		ATOM	5260	CG	ASP A	4 667	44.821	94.302 -42.220	1.00 27.61	A
	30	MOTA	5261	OD1	ASP A	667	45.584	94.826 -41.382	1.00 28.24	A
4,53		ATOM	5262	OD2	ASP A	667	44.993	94.393 -43.454	1.00 28.96	А
		ATOM	5263	С	ASP A		42.765	91.654 -40.324	1.00 22.12	A
i de		ATOM	5264	Õ	ASP A		42.275	90.789 -41.047	1.00 21.74	A
			5265	N	VAL A		42.239	91.999 -39.159	1.00 20.90	A
	25	ATOM					41.025	91.372 -38.662	1.00 20.03	A
E szin	35	ATOM	5266	CA	VAL A					A
		MOTA	5267	CB	VAL A		40.715	91.827 -37.221	1.00 19.83	
		MOTA	5268		VAL A		39.392	91.228 -36.754	1.00 19.61	A
		ATOM	5269	CG2	VAL A	4 668	41.851	91.408 -36.291	1.00 19.72	A
		ATOM	5270	С	VAL A	4 668	39.863	91.769 -39.565	1.00 20.16	A
	40	ATOM	5271	0	VAL A		39.808	92.901 -40.053	1.00 19.96	A
	10	ATOM	5272	N	LYS A			90.831 -39.792	1.00 19.66	A
			5273		LYS A			91.067 -40.623	1.00 20.28	A
		ATOM		CA				89.935 -41.641	1.00 21.78	A
		ATOM	5274	CB	LYS A				1.00 25.50	A
		ATOM	5275	CG	LYS A			89.805 -42.586		
	45	ATOM	5276	CD	LYS A	4 669		88.405 -43.182	1.00 28.10	А
		ATOM	5277	CE	LYS A	A 669	40.207	88.254 -43.992	1.00 29.47	A
		MOTA	5278	ΝZ	LYS A	A 669	40.464	86.846 -44.414	1.00 29.99	A
		ATOM	5279	С	LYS A			91.131 -39.713	1.00 19.68	A
		ATOM	5280	0	LYS			90.538 -38.631	1.00 18.99	A
	50							91.851 -40.142	1.00 18.45	А
	50	ATOM	5281	N		A 670		91.984 -39.341	1.00 18.50	A
		MOTA	5282	CA		A 670				
		MOTA	5283	CB		A 670		93.421 -38.824	1.00 18.47	A
		MOTA	5284	CG	PHE	A 670		93.907 -38.045	1.00 18.53	A
		MOTA	5285	CD1	PHE	A 670	36.476	94.382 -38.701	1.00 18.06	A
	55	ATOM	5286		PHE .			93.859 -36.655	1.00 18.27	A

	ATOM	5287	CE1	PHE .	Α	670	37.593	94.800	-37.981	1.00 18.42	A
	ATOM	5288		PHE			36.457	94.275	-35.928	1.00 19.20	A
	ATOM	5289	CZ	PHE			37.583	94.745	-36.593	1.00 18.35	A
	ATOM	5290	C	PHE			33.049	91.600	-40.121	1.00 18.27	A
5	ATOM	5291	0	PHE			33.090		-41.339	1.00 18.35	A
9	ATOM	5292	N	GLY			31.937		-39.410	1.00 18.50	А
		5293	CA	GLY .			30.687		-40.059	1.00 18.15	A
	ATOM						29.565		-39.062	1.00 18.46	A
	ATOM	5294	C	GLY			29.804		-37.858	1.00 17.12	A
10	ATOM	5295	0	GLY			28.332		-39.553	1.00 17.12	A
10	ATOM	5296	N	ASP					-39.555	1.00 10.03	A
	ATOM	5297	CA	ASP			27.196				A
	MOTA	5298	CB	ASP			25.873		-39.376	1.00 21.20	
	MOTA	5299	CG	ASP			25.692		-39.673	1.00 22.59	A
	MOTA	5300		ASP			26.358		-39.024	1.00 24.13	A
15	MOTA	5301	OD2	ASP			24.861		-40.547	1.00 23.78	A
	MOTA	5302	С	ASP	A	672	27.189		-38.263	1.00 19.65	A
	MOTA	5303	0	ASP	Α	672	27.695		-38.987	1.00 18.43	A
	MOTA	5304	N	PRO	Α	673	26.618		-37.091	1.00 19.89	A
	ATOM	5305	CD	PRO	Α	673	26.012		-36.111	1.00 20.15	A
20	MOTA	5306	CA	PRO	Α	673	26.557	87.480	-36.619	1.00 20.31	A
	ATOM	5307	СВ	PRO	Α	673	25.659	87.580	-35.392	1.00 20.38	A
	ATOM	5308	CG	PRO	Α	673	25.978	88.940	-34.859	1.00 20.50	A
	ATOM	5309	С	PRO			25.950	86.592	-37.705	1.00 20.50	A
	MOTA	5310	0	PRO			25.009		-38.392	1.00 19.86	A
25	ATOM	5311	N	ARG			26.499	85.396	-37.870	1.00 20.93	A
20	ATOM	5312	CA	ARG			25.997	-	-38.871	1.00 21.72	А
	ATOM	5313	CB	ARG			26.445		-40.276	1.00 21.99	A
	ATOM	5314	CG	ARG			27.941		-40.537	1.00 22.77	
	ATOM	5315	CD	ARG			28.221		-42.033	1.00 24.81	
30	ATOM	5316	NE	ARG			29.603		-42.369	1.00 26.31	
30			CZ	ARG			30.609		-42.367	1.00 27.19	
	ATOM	5317		ARG			30.399		-42.046	1.00 28.25	A
	MOTA	5318					31.828		-42.701	1.00 27.77	A
	MOTA	5319		ARG					-38.575	1.00 21.85	
9.5	MOTA	5320	С	ARG			26.516		-30.373 -37.859	1.00 21.35	
35	MOTA	5321	0	ARG			27.503			1.00 22.23	
	MOTA	5322	N	GLU			25.850		-39.120		
	MOTA	5323	CA	GLU			26.294		-38.897	1.00 22.85 1.00 24.28	
	ATOM	5324	CB	GLU			25.243		-39.378		
40	ATOM	5325	CG	GLU			23.886		-38.724	1.00 25.01	
40	ATOM	5326	CD	GLU			23.065		-38.738	1.00 27.02	
	ATOM	5327		GLU			23.076		-39.769	1.00 26.65	
	MOTA	5328	OE2	GLU			22.403		-37.716	1.00 27.89	
	MOTA	5329	С	GLU	Α	675	27.593		-39.655	1.00 23.14	
	MOTA	5330	Ο	GLU	Α	675	27.812		-40.710	1.00 23.14	
45	MOTA	5331	N	ILE			28.467		-39.106	1.00 22.54	
	MOTA	5332	CA	ILE	Α	676	29.740	79.375	-39.752	1.00 22.87	
	MOTA	5333	CB	ILE	А	676	30.892	80.167	-39.105	1.00 24.28	
	ATOM	5334	CG2	ILE	Α	676	30.575	81.657	-39.112	1.00 25.64	
	ATOM	5335		ILE			31.117	79.680	-37.677	1.00 24.43	
50	ATOM	5336	CD1	ILE	Α	676	32.453	80.090	-37.106	1.00 26.48	A
	ATOM	5337	C			676	30.086		-39.664	1.00 22.36	A
	ATOM	5338	Ö			676	29.569		-38.814	1.00 22.01	
	ATOM	5339	N	SER			30.971		-40.555	1.00 21.98	
	ATOM	5340	CA			677	31.428		-40.606	1.00 22.60	
55	ATOM	5341	CB			677	30.861		-41.845	1.00 22.88	
	AT OF	2241		۱۱۰۱	7.7	J , ,	55.551				

	MOTA	5342	OG	SER	А	677	31.340	74.077	-41.939	1.00 25.66	A
	ATOM	5343	С	SER			32.949	76.128	-40.673	1.00 22.27	A
	ATOM	5344	0	SER	Α	677	33.528	77.004	-41.313	1.00 22.32	A
	MOTA	5345	N	LEU	Α	678	33.594	75.178	-40.004	1.00 21.75	A
5	MOTA	5346	CA	LEU	A	678	35.050	75.113	-39.997	1.00 21.96	A
	ATOM	5347	CB	LEU	Α	678	35.613	75.741	-38.718	1.00 22.31	А
	ATOM	5348	CG	LEU	Α	678	35.622	77.264	-38.562	1.00 22.76	A
	MOTA	5349	CD1	LEU			36.046	77.627	-37.146	1.00 22.99	A
	ATOM	5350					36.579	77.875	-39.567	1.00 23.14	A
10	ATOM	5351	С	LEU			35.551	73.681	-40.091	1.00 22.13	A
	MOTA	5352	0	LEU			34.892	72.748	-39.624	1.00 21.03	A
	ATOM	5353	N	ARG	Α	679	36.723	73.524	-40.695	1.00 22.18	A
	ATOM	5354	CA	ARG			37.347	72.218	-40.834	1.00 23.61	A
	ATOM	5355	СВ	ARG			36.904	71.530	-42.127	1.00 24.89	A
15	ATOM	5356	CG	ARG			37.397	70.095	-42.210	1.00 27.40	A
	ATOM	5357	CD	ARG			37.123	69.453	-43.555	1.00 29.86	A
	ATOM	5358	NE	ARG			37.544	68.055	-43.546	1.00 32.30	A
	MOTA	5359	CZ	ARG			37.557	67.266	-44.615	1.00 33.42	A
	ATOM	5360	NH1	ARG	Α	679	37.172	67.736	-45.795	1.00 34.22	A
20	ATOM	5361	NH2	ARG			37.958	66.007	-44.502	1.00 34.11	A
	ATOM	5362	С	ARG	А	679	38.866	72.346	-40.837	1.00 23.38	A
	ATOM	5363	0	ARG			39.440	73.049	-41.672	1.00 23.17	A
	ATOM	5364	N	VAL	Α	680	39.514	71.672	-39.893	1.00 22.77	A
	ATOM	5365	CA	VAL			40.967	71.692	-39.809	1.00 22.34	A
25	MOTA	5366	СВ	VAL	Α	680	41.439	71.950	-38.366	1.00 22.26	A
	MOTA	5367	CG1	VAL	Α	680	42.954	71.866	-38.292	1.00 21.52	A
	MOTA	5368	CG2	VAL	Α	680	40.960	73.325	-37.906	1.00 21.17	A
	ATOM	5369	С	VAL	Α	680	41.500	70.342	-40.281	1.00 23.12	A
	ATOM	5370	0	VAL	Α	680	41.005	69.293	-39.866	1.00 22.47	A
30	ATOM	5371	N	GLY	Α	681	42.505	70.377	-41.152	1.00 24.09	А
	ATOM	5372	CA	GLY	Α	681	43.078		-41.673	1.00 25.82	А
	ATOM	5373	С	GLY	Α	681	42.009		-42.298	1.00 27.00	А
	ATOM	5374	0	GLY	Α	681	41.084	68.773	-42.939	1.00 26.66	А
·	ATOM	5375	N	ASN	Α	682	42.130	66.962	-42.113	1.00 28.40	A
35	ATOM	5376	CA	ASN	Α	682	41.152		-42.654	1.00 30.08	A
	MOTA	5377	CB	ASN	Α	682	41.848	64.786	-43.220	1.00 32.01	A
	ATOM	5378	CG	ASN	Α	682	42.620		-44.491	1.00 34.27	A
	ATOM	5379	OD1	ASN	Α	682	43.168		-45.116	1.00 36.87	А
	MOTA	5380	ND2	ASN	А	682	42.666		-44.882	1.00 35.56	A
4 0	MOTA	5381	С	ASN	A	682	40.186		-41.556	1.00 29.67	А
	MOTA	5382	0			682	39.448		-41.702	1.00 30.68	A
	ATOM	5383	N			683	40.199		-40.456	1.00 28.63	A
	MOTA	5384	CA	GLY	Α	683	39.329		-39.336	1.00 27.13	A
	MOTA	5385	С			683	37.867		-39.622	1.00 25.71	A
45	ATOM	5386	0			683	37.476		-40.782	1.00 25.68	A
	ATOM	5387	N	PRO	Α	684	37.027		-38.578	1.00 24.04	A
	ATOM	5388	CD	PRO	Α	684	37.354		-37.150	1.00 24.02	A
	MOTA	5389	CA	PRO	Α	684	35.597		-38.759	1.00 23.26	A
	MOTA	5390	СВ			684	35.014		-37.394	1.00 23.35	A
50	ATOM	5391	CG			684	36.104		-36.462	1.00 24.03	A
	ATOM	5392	С			684	35.298		-39.159	1.00 22.03	A
	MOTA	5393	0			684	36.136		-39.004	1.00 21.92	A
	MOTA	5394	N			685	34.103		-39.694	1.00 21.27	A
	ATOM	5395	CA			685	33.661		-40.091	1.00 20.07	A
55	ATOM	5396	СВ	THR	A	685	33.047	69.649	-41.506	1.00 19.84	А

	ATOM	5397	OG1	THR	Α	685	34.051	69.284	-42.458	1.00 19.	.96	A
	ATOM	5398		THR			32.495		-41.855	1.00 19.	.80	A
	ATOM	5399	С	THR			32.596		-39.078	1.00 19	. 41	A
	MOTA	5400	0	THR			31.600		-38.918	1.00 19		Α
5	ATOM	5401	N	LEU			32.811		-38.388	1.00 18		А
9	ATOM	5402	CA	LEU			31.872		-37.375	1.00 18		А
	ATOM	5403	CB	LEU			32.606		-36.061	1.00 18		А
	ATOM	5404	CG	LEU			33.539		-35.466	1.00 20		A
	ATOM	5405		LEU			33.969		-34.072	1.00 19		A
10	ATOM	5406		LEU			32.849		-35.393	1.00 20		A
10		5407	CDZ	LEU			31.109		-37.807	1.00 18		A
	ATOM ATOM	5408	0	LEU			31.679		-38.397	1.00 17		A
	ATOM	5409	N	ALA			29.815		- 37.505	1.00 17		A
		5410	CA	ALA			28.956		-37.841	1.00 18		A
15	ATOM	5411	CB	ALA			27.759		-38.658	1.00 18		A
13	ATOM	5412	C	ALA			28.483		-36.552	1.00 18		A
	ATOM	5413	0	ALA			28.116		-35.596	1.00 18		A
	ATOM	5414	N	PHE			28.488		-36.536	1.00 17		A
	ATOM ATOM	5414	CA	PHE			28.073		-35.365	1.00 16		A
20		5415	CB	PHE			29.242		-34.830	1.00 16		A
20	ATOM ATOM	5417	CG	PHE			30.477		-34.526	1.00 15		A
	ATOM	5418		PHE			31.286		-35.552	1.00 14		A
	ATOM	5419		PHE			30.837		-33.208	1.00 15		A
	ATOM	5420		PHE			32.437		-35.271	1.00 14		A
25	ATOM	5421		PHE			31.986		-32.915	1.00 14		A
23	ATOM	5421	CZ	PHE			32.788		-33.948	1.00 14		A
	ATOM	5423	C ₂	PHE			26.921		-35.689	1.00 17		A
	ATOM	5424	0	PHE			26.760		-36.830	1.00 18		A
	ATOM	5425	N	SER			26.129		-34.674	1.00 17		А
30	MOTA	5426	CA	SER			25.006		-34.837	1.00 18		A
00	ATOM	5427	СВ	SER			24.012		-33.689	1.00 17		А
	ATOM	5428	OG			689	24.564		-32.473	1.00 17	.73	Α
	ATOM	5429	C			689	25.574		-34.815	1.00 18	.53	А
	ATOM	5430	0			689	26.765	80.525	-34.561	1.00 17	.93	A
35	ATOM	5431	N	GLU			24.729	81.326	-35.077	1.00 19	.26	А
-	ATOM	5432	CA	GLU			25.188	82.709	-35.077	1.00 20	.14	A
	ATOM	5433	СВ	GLU			24.130	83.629	-35.697	1.00 22	.21	A
	ATOM	5434	CG	GLU	Α	690	22.856	83.773	-34.890	1.00 24	.08	A
	ATOM	5435	CD	GLU	Α	690	21.919	84.806	-35.489	1.00 26	.32	A
40	ATOM	5436	OE1	GLU	Α	690	21.439	84.588	-36.623	1.00 26	.83	A
	ATOM	5437		GLU			21.670	85.838	-34.829	1.00 28	.62	A
	MOTA	5438	С			690	25.539	83.188	-33.669	1.00 19	.89	А
	MOTA	5439	0	GLU	Α	690	26.028	84.304	-33.490	1.00 19	.45	A
	ATOM	5440	N			691	25.279	82.347	-32.672	1.00 19		А
45	ATOM	5441	CA	GLN	Α	691	25.611	82.677	-31.289	1.00 20	.01	A
	ATOM	5442	СВ	GLN	Α	691	24.519	82.182	-30.340	1.00 22	.21	A
	ATOM	5443	CG	GLN	Α	691	23.204	82.921	-30.479	1.00 25		А
	MOTA	5444	CD	GLN	Α	691	22.014	81.998	-30.363	1.00 27		A
	ATOM	5445	OE1	GLN	Α	691	21.813	81.345	-29.336	1.00 28		А
50	ATOM	5446	NE2	GLN	Α	691	21.215	81.934	-31.423	1.00 29	.19	A
	MOTA	5447	С	GLN	Α	691	26.948		-30.925	1.00 19		A
	MOTA	5448	0	GLN	Α	691	27.359		-29.766	1.00 19		А
	ATOM	5449	N	GLY	A	692	27.615		-31.925	1.00 18		А
	ATOM	5450	CA	GLY	Α	692	28.907	80.828	-31.702	1.00 17		A
55	ATOM	5451	С	GLY	Α	692	28.877	79.489	-30.986	1.00 17	.67	A

		n m \triangle N4	EAEO	0	GLY A	602	29.878	79.067 -30.409	1.00 18.07	А
		ATOM	5452	0						A
		MOTA	5453	N	LEU A		27.735	78.813 -31.024	1.00 17.63	
		MOTA	5454	CA	LEU A		27.601	77.515 -30.368	1.00 17.63	А
		ATOM	5455	CB	LEU A	693	26.369	77.518 -29.462	1.00 19.17	A
	5	MOTA	5456	CG	LEU A	693	26.470	78.433 -28.239	1.00 20.12	A
	_	ATOM	5457		LEU A		25.076	78.780 -27.735	1.00 22.01	А
			5458		LEU A		27.290	77.755 -27.158	1.00 20.87	A
		ATOM							1.00 20.07	A
		ATOM	5459	С	LEU A		27.503	76.373 -31.367		
		ATOM	5460	0	LEU A		26.901	76.511 -32.435	1.00 16.57	А
	10	MOTA	5461	N	LEU A	694	28.095	75.238 -31.008	1.00 17.12	Α
		ATOM	5462	CA	LEU A	694	28.085	74.060 -31.866	1.00 17.42	А
		MOTA	5463	CB	LEU A	694	28.785	72.893 -31.164	1.00 17.16	A
		ATOM	5464	CG	LEU A		28.960	71.618 -31.993	1.00 16.87	A
		ATOM	5465		LEU A		29.935	71.876 -33.132	1.00 16.72	A
	15						29.480	70.495 -31.097	1.00 16.91	A
	13	MOTA	5466		LEU A					
		ATOM	5467	С	LEU A		26.658	73.659 -32.223	1.00 17.52	A
		MOTA	5468	0	LEU A	694	25.764	73.707 -31.380	1.00 16.45	A
		ATOM	5469	N	LYS A	695	26.458	73.264 - 33.478	1.00 18.82	A
1000		MOTA	5470	CA	LYS A	695	25.147	72.847 -33.961	1.00 20.55	A
100	20	ATOM	5471	СВ	LYS A		24.614	73.868 -34.971	1.00 22.63	A
ij.		ATOM	5472	CG	LYS A		23.347	73.447 -35.697	1.00 26.75	А
J			5473	CD	LYS A		22.670	74.641 -36.378	1.00 29.24	A
1000		ATOM						75.631 -35.345	1.00 20.24	A
		ATOM	5474	CE	LYS A		22.138			
		MOTA	5475	NZ	LYS A		21.443	76.797 -35.961	1.00 32.11	A
	25	MOTA	5476	С	LYS A		25.197	71.466 -34.602	1.00 20.01	А
114		ATOM	5477	0	LYS A	695	24.230	70.710 -34.527	1.00 20.35	A
197		ATOM	5478	N	SER A	696	26.323	71.136 -35.230	1.00 19.98	A
fil s		ATOM	5479	CA	SER A	696	26.470	69.838 -35.882	1.00 19.65	A
R)		ATOM	5480	CB	SER A		25.755	69.844 -37.238	1.00 19.79	A
	30	MOTA	5481	OG	SER A		26.472	70.618 -38.188	1.00 19.06	А
	50						27.926	69.450 -36.095	1.00 19.73	A
		ATOM	5482	С	SER A					
		MOTA	5483	0	SER A		28.813	70.308 -36.131	1.00 19.51	A
į (cž		MOTA	5484	N	ILE A		28.157	68.148 -36.243	1.00 18.94	A
100		ATOM	5485	CA	ILE A	697	29.488	67.599 -36.476	1.00 19.29	А
3.5	35	MOTA	5486	CB	ILE A	697	30.004	66.795 -35.257	1.00 18.22	А
2-		ATOM	5487	CG2	ILE A	697	31.349	66.159 -35.584	1.00 17.95	A
		ATOM	5488		ILE A		30.130	67.701 -34.032	1.00 17.15	A
		ATOM	5489		ILE A		30.598	66.968 -32.782	1.00 16.28	А
		ATOM	5490	C	ILE A		29.435	66.633 -37.660	1.00 20.96	A
	40		5491				28.591			A
	40	ATOM								
		MOTA	5492	N	GLN A		30.325	66.825 -38.627	1.00 22.27	A
		ATOM	5493	CA	GLN A		30.396	65.943 -39.786	1.00 23.77	A
		ATOM	5494	СВ	GLN A	698	30.292	66.730 -41.096	1.00 24.36	А
		ATOM	5495	CG	GLN A	698	29.972	65.833 -42.291	1.00 25.87	A
	45	ATOM	5496	CD	GLN A	698	30.216	66.504 -43.631	1.00 27.18	A
		ATOM	5497		GLN A		29.671	66.083 -44.654	1.00 28.35	A
		ATOM	5498		GLN A		31.046	67.538 -43.635	1.00 27.17	Α
							31.743	65.235 -39.725	1.00 24.33	A
		ATOM	5499	С	GLN A				1.00 24.33	
	EΛ	ATOM	5500	0	GLN A		32.788	65.850 -39.951		A
	50	MOTA	5501	N	LEU A		31.719	63.940 -39.423	1.00 25.41	A
		ATOM	5502	CA	LEU A		32.944	63.160 -39.301	1.00 26.65	A
		MOTA	5503	CB	LEU A	699	32.615	61.743 -38.821	1.00 26.18	A
		MOTA	5504	CG	LEU A	699	31.898	61.659 -37.467	1.00 25.56	A
		MOTA	5505		LEU A		31.704	60.203 -37.076	1.00 24.95	А
	55	ATOM	5506		LEU A		32.713	62.387 -36.410	1.00 25.37	A
		VION	5500	UD2	ui∪ A	0))	56.115	02.001 00.410	1.00 20.07	

		ATOM	5507	С	LEU A	699	33.785	63.095 -40.569	1.00 28.22	А
		MOTA	5508	0	LEU A	699	35.008	63.219 -40.514	1.00 28.15	A
		ATOM	5509	N	THR A	700	33.137	62.895 -41.711	1.00 30.08	A
		MOTA	5510	CA	THR A	700	33.853	62.820 -42.979	1.00 32.39	A
	5	MOTA	5511	CB	THR A		33.986	61.360 -43.462	1.00 32.28	A
		MOTA	5512	OG1	THR A	700	32.682	60.798 -43.660	1.00 32.31	A
		ATOM	5513	CG2	THR A	700	34.740	60.531 -42.438	1.00 31.92	A
		ATOM	5514	С	THR A		33.123	63.625 -44.045	1.00 33.91	A
		ATOM	5515	0	THR A		31.955	63.968 -43.878	1.00 33.85	А
	10	ATOM	5516	N	GLN A	701	33.816	63.927 -45.137	1.00 36.39	A
		MOTA	5517	CA	GLN A	701	33.222	64.698 -46.224	1.00 38.80	A
		MOTA	5518	СВ	GLN A	701	34.245	64.908 -47.342	1.00 39.86	A
		ATOM	5519	CG	GLN A	701	35.569	65.462 -46.860	1.00 41.67	A
		ATOM	5520	CD	GLN A	701	36.454	65.926 -47.998	1.00 42.85	A
	15	ATOM	5521	OE1	GLN A	701	36.088	66.830 -48.753	1.00 43.40	A
		MOTA	5522	NE2	GLN A	701	37.628	65.313 -48.129	1.00 43.29	A
		ATOM	5523	С	GLN A	701	31.997	63.987 -46.782	1.00 39.49	А
		ATOM	5524	0	GLN A	701	31.102	64.617 -47.343	1.00 40.50	A
4,000		ATOM	5525	N	ASP A	702	31.962	62.669 -46.615	1.00 40.44	A
inter-	20	ATOM	5526	CA	ASP A	702	30.854	61.856 -47.101	1.00 41.22	A
A Second		MOTA	5527	CB	ASP A	702	31.325	60.416 -47.314	1.00 42.70	A
		ATOM	5528	CG	ASP A	702	32.717	60.341 -47.909	1.00 43.88	А
		ATOM	5529	OD1	ASP F	702	32.906	60.804 -49.056	1.00 44.15	А
		MOTA	5530	OD2	ASP A	702	33.624	59.822 -47.221	1.00 44.63	Α
101	25	ATOM	5531	С	ASP F	702	29.698	61.859 -46.105	1.00 40.87	A
		MOTA	5532	0	ASP F		28.556	62.159 -46.457	1.00 41.18	А
iji i		MOTA	5533	N	SER F	703	30.014	61.520 -44.859	1.00 39.98	A
8 <u>1</u>		ATOM	5534	CA	SER A		29.029	61.452 -43.786	1.00 38.58	A
		MOTA	5 535	CB	SER F	703	29.739	61.217 -42.450	1.00 38.76	А
	30	ATOM	5536	OG	SER F		30.659	62.258 -42.172	1.00 37.91	A
ija≓ sa s		ATOM	5537	С	SER A		28.147	62.693 -43.683	1.00 37.58	A
		ATOM	5538	0	SER A		28.471	63.751 -44.224	1.00 37.44	A
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		MOTA	5539	N	PRO P		27.009	62.572 -42.983	1.00 36.57	A
for:	٥-	ATOM	5540	CD	PRO P		26.426	61.309 -42.488	1.00 36.72	A
i sein	35	MOTA	5541	CA	PRO P		26.068	63.677 -42.798	1.00 35.60	A
		MOTA	5542	CB	PRO A		24.751	62.956 -42.571	1.00 36.25	A
		ATOM	5543	CG	PRO A		25.184	61.784 -41.753	1.00 36.32	A
		ATOM	5544	С	PRO F		26.434	64.571 -41.616	1.00 34.44	A A
	40	MOTA	5545	0	PRO P		27.327	64.250 -40.832	1.00 33.95	
	40	ATOM	5546	N	HIS F		25.730	65.693 -41.502	1.00 32.79	A
		MOTA	5547	CA	HIS A		25.946	66.640 -40.416	1.00 30.84	A
		ATOM	5548	CB	HIS A		25.500	68.041 -40.839	1.00 31.81	A
		ATOM	5549	CG	HIS A		26.333	68.634 -41.932	1.00 33.35	A
	4 ==	ATOM	5550		HIS A		26.029	68.952 -43.212	1.00 34.15	A A
	45	ATOM	5551		HIS A		27.664	68.951 -41.764	1.00 33.69	A
		ATOM	5552		HIS A		28.145	69.437 -42.894	1.00 33.97	A
		ATOM	5553		HIS A		27.173	69.448 -43.789	1.00 34.80	
		MOTA	5554	С	HIS A		25.136	66.186 -39.209	1.00 28.81	A
	Ε0	ATOM	5555	0	HIS A		23.952	66.491 -39.096	1.00 28.15	A
	50	ATOM	5556	N	VAL A		25.781	65.452 -38.310	1.00 26.49	A
		ATOM	5557	CA	VAL A		25.109	64.950 -37.120	1.00 24.60	A
		ATOM	5558	CB	VAL A		25.994	63.920 -36.384	1.00 23.73	A
		ATOM	5559		VAL A		25.276	63.404 -35.148	1.00 23.27	A
		ATOM	5560		VAL A		26.335	62.774 -37.320	1.00 23.50	A
	55	MOTA	5561	С	VAL A	106	24.757	66.075 -36.154	1.00 23.78	A

							0 27			
		ATOM	5562	0	VAL A	706	25.622	66.845 -35.745	1.00 23.66	A
		ATOM	5563	N	PRO A		23.473	66.187 -35.780	1.00 23.08	A
		ATOM	5564	CD	PRO A	707	22.320	65.469 -36.351	1.00 23.24	A
		ATOM	5565	CA	PRO A		23.025	67.229 -34.853	1.00 22.31	A
	5	ATOM	5566	СВ	PRO A		21.507	67.042 -34.831	1.00 22.67	A
	9	ATOM	5567	CG	PRO A		21.213	66.478 -36.188	1.00 22.98	A
		ATOM	5568	C	PRO A		23.635	67.086 -33.456	1.00 21.45	A
		ATOM	5569	0	PRO A		23.396	66.099 -32.761	1.00 21.52	A
		ATOM	5570	N	VAL A		24.433	68.073 -33.063	1.00 20.14	A
	10				VAL A		25.070	68.102 -31.748	1.00 20.14	A
	10	ATOM	5571	CA			26.532	67.600 -31.807	1.00 18.48	A
		ATOM	5572	CB	VAL A			67.679 -30.422	1.00 18.48	A
		ATOM	5573		VAL A		27.171		1.00 17.73	A
		ATOM	5574		VAL A		26.569	66.170 -32.319	1.00 17.97	A
	15	ATOM	5575	C	VAL A		25.046	69.571 -31.349		
	15	MOTA	5576	0	VAL A		25.819	70.374 -31.863	1.00 18.79	A
		MOTA	5577	N	HIS A		24.142	69.922 -30.445	1.00 19.13	A
		MOTA	5578	CA	HIS A		24.001	71.310 -30.030	1.00 19.46	A
		MOTA	5579	CB	HIS A		22.541	71.758 -30.180	1.00 21.51	A
5 E	20	MOTA	5580	CG	HIS A		22.012	71.661 -31.577	1.00 24.16	A
: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	20	MOTA	5581		HIS A		21.797	70.590 -32.378	1.00 25.73	A
		MOTA	5582		HIS A		21.600	72.764 -32.295	1.00 26.33	A
A STORES		MOTA	5583		HIS A		21.152	72.377 -33.477	1.00 26.24	A
M		ATOM	5584	NE2	HIS A		21.261	71.062 -33.552	1.00 25.69	A
		MOTA	5585	С	HIS A		24.441	71.580 -28.602	1.00 18.62	A
	25	MOTA	5586	0	HIS A		24.065	70.857 -27.679	1.00 18.91	A
agus Maria		MOTA	5587	N	PHE A		25.244	72.626 -28.435	1.00 17.43	A
		MOTA	5588	CA	PHE A		25.705	73.045 -27.120	1.00 16.63	A
ā!		MOTA	5589	CB	PHE A		27.123	73.623 -27.195	1.00 16.26	A
		MOTA	5590	CG	PHE A		28.204	72.681 -26.716	1.00 16.17	A
	30	MOTA	5591		PHE A		29.374	72.517 -27.451	1.00 16.64	A
177		MOTA	5592		PHE A		28.069	71.994 -25.512	1.00 16.37	A
17		MOTA	5593		PHE A		30.398	71.682 -26.994	1.00 16.33	A
graž:		MOTA	5594	CE2	PHE A		29.086	71.157 -25.046	1.00 16.04	A
		MOTA	5595	CZ	PHE A		30.251	71.003 -25.790	1.00 16.18	A
ina.	35	MOTA	5596	С	PHE A		24.730	74.130 -26.678	1.00 17.27	A
		MOTA	5597	0	PHE A		24.296	74.963 -27.487	1.00 16.24	A
		MOTA	5598	N	LYS A		24.380	74.114 -25.399	1.00 16.58	A
		MOTA	5599	CA	LYS A	711	23.453	75.089 -24.854	1.00 18.02	A
		MOTA	5600	CB	LYS A	711	22.016	74.577 -25.000	1.00 19.78	A
	40	MOTA	5601	CG	LYS A	711	20.960	75.492 -24.411	1.00 22.47	A
		ATOM	5602	CD	LYS A	711	19.566	74.874 -24.524	1.00 24.01	A
		ATOM	5603	CE	LYS A	711	19.132	74.717 -25.973	1.00 24.28	А
		ATOM	5604	NZ	LYS A	711	17.796	74.059 -26.070	1.00 26.13	A
		ATOM	5605	С	LYS A	711	23.776	75.309 -23.384	1.00 17.48	A
	45	ATOM	5606	0	LYS A	711	24.155	74.372 -22.681	1.00 17.60	A
		ATOM	5607	N	PHE A	712	23.636	76.546 -22.926	1.00 16.29	A
		ATOM	5608	CA	PHE A	712	23.898	76.862 -21.532	1.00 15.83	A
		ATOM	5609	CB	PHE A	712	24.890	78.028 -21.413	1.00 15.72	A
		MOTA	5610	CG	PHE A	712	26.312	77.644 -21.718	1.00 15.16	A
	50	ATOM	5611	CD1	PHE A	712	26.800	77.689 -23.020	1.00 14.61	A
		ATOM	5612	CD2	PHE A	712	27.149	77.191 -20.703	1.00 14.74	A
		ATOM	5613	CE1	PHE A	712	28.103	77.286 -23.308	1.00 14.86	A
		ATOM	5614		PHE A		28.453	76.785 -20.977	1.00 14.53	А
		ATOM	5615	CZ	PHE A		28.932	76.831 -22.282	1.00 14.63	A
	55	ATOM	5616	С	PHE A		22.590	77.209 -20.845	1.00 15.49	A

							000					
		ATOM	5617	0	PHE A 7	712	21.801	78.000	-21.361	1.00 1	5.25	A
		ATOM	5618	N	LEU A 7		22.347	76.594		1.00 1	5.13	A
		ATOM	5619	CA	LEU A 7		21.122	76.853		1.00 1	5.92	A
		ATOM	5620	CB	LEU A 7		20.165	75.654		1.00 1		A
	5	ATOM	5621	CG	LEU A 7		19.731	75.215		1.00 1		А
	J	ATOM	5622		LEU A 7		20.687	74.147		1.00 1		A
							18.310	74.655		1.00 1		A
		ATOM	5623		LEU A 7			77.150		1.00 1		A
		MOTA	5624	С	LEU A 7		21.452					A
	10	ATOM	5625	0	LEU A 7		22.615	77.106		1.00 1		
	10	MOTA	5626	N	LYS A 7		20.432	77.469		1.00 1		A
		MOTA	5627	CA	LYS A 7		20.648	77.766		1.00 1		A
		MOTA	5628	CB	LYS A 7		20.707	79.282		1.00 2		A
		MOTA	5629	CG	LYS A 7		19.521	80.049		1.00 2		A
		MOTA	5630	CD	LYS A 7		19.545	81.517		1.00 2		A
	15	MOTA	5631	CE	LYS A 7	714	20.797	82.237		1.00 2		А
		MOTA	5632	NZ	LYS A 7	714	20.843	83.662	-15.245	1.00 2		A
		MOTA	5633	С	LYS A 7	714	19.585	77.162	-14.405	1.00 1		A
		MOTA	5634	0	LYS A 7	714	18.399	77.120	-14.752	1.00 1		A
A17832		ATOM	5635	N	TYR A 7	715	20.034	76.668	-13.255	1.00 1	7.22	A
	20	MOTA	5636	CA	TYR A 7	715	19.153	76.093	-12.253	1.00 1	6.49	A
J		MOTA	5637	CB	TYR A		19.738	74.804	-11.658	1.00 1	5.95	A
		ATOM	5638	CG	TYR A		19.644	73.582	-12.540	1.00 1	4.81	A
į,		ATOM	5639		TYR A		20.718	73.182	-13.334	1.00 1	5.39	A
		ATOM	5640		TYR A		20.634		-14.142	1.00 1	4.36	A
₹(22 7 8∰ #	25	ATOM	5641		TYR A		18.479		-12.572	1.00 1		А
		MOTA	5642		TYR A		18.383		-13.372	1.00 1	4.23	А
		ATOM	5643	CZ	TYR A		19.459		-14.151	1.00 1		A
		ATOM	5644	OH	TYR A		19.356		-14.936	1.00 1		A
31		ATOM	5645	C	TYR A		19.068		-11.145	1.00 1		A
2,540	30	ATOM	5646	0	TYR A		20.021		-10.916	1.00 1		A
	50	ATOM	5647	N	GLY A		17.936		-10.455	1.00 1		A
		ATOM	5648	CA	GLY A		17.783	78.116	-9.368	1.00 1		A
2 Agr			5649	CA	GLY A		17.785	77.390	-8.040	1.00 1		A
		MOTA			GLY A		18.003	76.200	-7.943	1.00 1		A
	35	ATOM	5650	0			17.253	78.108	-7.012	1.00 1		A
	33	ATOM	5651	N	VAL A				-5.683	1.00 1		A
		MOTA	5652	CA	VAL A		17.099	77.536		1.00 1		A
		ATOM	5653	CB	VAL A		18.017	78.246	-4.671	1.00 1		
		ATOM	5654		VAL A		17.805	77.675	-3.284	1.00 2		A
	40	MOTA	5655		VAL A		19.478	78.078	-5.094			A
	40	MOTA	5656	С	VAL A		15.643	77.684	-5.253	1.00 1		A
		MOTA	5657	0	VAL A		14.963	78.622	-5.664	1.00 1		A
		MOTA	5658	N	ARG A		15.165	76.754	-4.435	1.00 1		A
		MOTA	5659	CA	ARG A		13.781	76.791	-3.976	1.00 2		A
		MOTA	5660	СВ	ARG A		13.408	75.451	-3.335	1.00 2		A
	45	MOTA	5661	CG	ARG A		13.489	74.288	-4.302	1.00 2		A
		MOTA	5662	CD	ARG A		13.385	72.943	-3.604	1.00 1		A
		MOTA	5663	NE	ARG A	718	13.656	71.860	-4.544	1.00 1		А
		MOTA	5664	CZ	ARG A	718	13.681	70.569	-4.228	1.00 1		A
		MOTA	5665	NH1	ARG A	718	13.449	70.180	-2.980	1.00 1		А
	50	ATOM	5666	NH2	ARG A	718	13.944	69.668	-5.164	1.00 1	9.58	A
		MOTA	5667	С	ARG A		13.524	77.924	-2.992	1.00 2		A
		ATOM	5668	0	ARG A		14.349	78.214	-2.130	1.00 2	22.82	А
		ATOM	5669	N	SER A		12.371	78.567	-3.132	1.00 2		A
		ATOM	5670	CA	SER A		12.001	79.666	-2.250	1.00 2		А
	55	ATOM	5671	CB	SER A		11.035	80.614	-2.964	1.00 2		А
	00	*** ***	J J , 1	C D				- · · - •		-		

		ATOM	5672	OG	SER A	719	9.875	79.922	-3.389	1.00 29.06	A
		MOTA	5673	С	SER A		11.346	79.111	-0.990	1.00 29.36	A
		ATOM	5674	0	SER A		11.204	79.812	0.009	1.00 29.63	А
		ATOM	5675	N	HIS A		10.952	77.841	-1.049	1.00 31.11	A
	5						10.332	77.173	0.077	1.00 32.47	A
	3	MOTA	5676	CA	HIS A						A
		ATOM	5677	CB	HIS A		8.848	76.867	-0.252	1.00 34.68	
		MOTA	5678	CG	HIS A		8.066	78.062	-0.697	1.00 37.29	A
		MOTA	5679		HIS A		7.384	78.304	-1.842	1.00 38.42	A
		MOTA	5680	ND1	HIS A	720	7.922	79.190	0.081	1.00 38.37	A
	10	MOTA	5681	CE1	HIS A	720	7.185	80.077	-0.565	1.00 38.97	A
		MOTA	5682	NE2	HIS A	720	6.846	79.564	-1.734	1.00 39.06	A
		ATOM	5683	С	HIS A		11.026	75.865	0.403	1.00 31.94	А
		ATOM	5684	0	HIS A		11.453	75.142	-0.497	1.00 32.28	A
		ATOM	5685	N	GLY A		11.153	75.569	1.692	1.00 30.87	А
	15	ATOM	5686	CA	GLY A		11.798	74.335	2.105	1.00 29.22	А
	10	MOTA	5687	C	GLY A		13.315	74.357	2.100	1.00 27.82	A
					GLY A		13.935	75.412	2.210	1.00 27.64	A
		ATOM	5688	0				73.412	1.966	1.00 26.07	A
		MOTA	5689	N	ASP A		13.906			1.00 24.10	A
i ser	20	MOTA	5690	CA	ASP A		15.356	73.002	1.960		
Taren Maria	20	MOTA	5691	СВ	ASP A		15.692	71.509	1.918	1.00 23.11	A
÷Ľİ		MOTA	5692	CG	ASP A		15.151	70.755	3.125	1.00 22.96	A
		MOTA	5693		ASP A		15.073	69.509	3.069	1.00 21.33	A
		MOTA	5694	OD2	ASP A		14.814	71.412	4.134	1.00 22.49	A
1902		MOTA	5695	С	ASP A		16.029	73.717	0.795	1.00 23.18	A
Con Contract	25	MOTA	5696	0	ASP A	722	15.590	73.611	-0.348	1.00 22.51	A
With the same		ATOM	5697	N	ARG A	723	17.101	74.444	1.096	1.00 22.44	A
2 44F		MOTA	5698	CA	ARG A	723	17.844	75.179	0.080	1.00 22.26	A
i ii		ATOM	5699	CB	ARG A		18.173	76.595	0.567	1.00 24.76	A
5 ,}		ATOM	5700	CG	ARG A		17.039	77.606	0.440	1.00 29.74	A
	30	ATOM	5701	CD	ARG A		15.975	77.422	1.506	1.00 33.28	A
		ATOM	5702	NE	ARG A		14.938	78.450	1.411	1.00 36.56	A
ij.		ATOM	5703	CZ	ARG A		13.960	78.617	2.297	1.00 38.09	
3 cm		ATOM	5704		ARG A		13.874	77.822	3.358	1.00 39.31	
					ARG A		13.067	79.584	2.126	1.00 39.06	
100	25	ATOM	5705				19.144	74.486	-0.310	1.00 20.66	
	35	ATOM	5706	C	ARG A				0.506	1.00 20.00	
		ATOM	5707	0	ARG A		19.776	73.811		1.00 19.49	
		ATOM	5708	N	SER A		19.537	74.665	-1.567		
		MOTA	5709	CA	SER A		20.771	74.087	-2.075	1.00 17.82	
	40	ATOM	5710	CB	SER A		20.882	74.309	-3.586	1.00 16.97	
	4 0	MOTA	5711	OG	SER A		19.807		-4.279		
		ATOM	5712	С	SER A		21.947	74.763	-1.381	1.00 17.22	
		MOTA	5713	0	SER A	724	21.888	75.952	-1.053	1.00 17.26	
		ATOM	5714	N	GLY A	725	23.013	73.999	-1.164	1.00 16.49	
		ATOM	5715	CA	GLY A	725	24.207	74.530	-0.526	1.00 14.92	A
	45	ATOM	5716	С	GLY A	725	25.428	73.840	-1.110	1.00 14.29	A
		ATOM	5717	0	GLY A	725	25.351	73.275	-2.201	1.00 14.17	A
		ATOM	5718	N	ALA A		26.548	73.871	-0.392	1.00 13.42	A
		ATOM	5719	CA	ALA A		27.778	73.241	-0.869	1.00 12.82	A
		ATOM	5720	СВ	ALA A		28.916	73.496	0.126	1.00 12.13	
	50	ATOM	5721	C	ALA A		27.624	71.736	-1.104	1.00 12.97	
	50	ATOM	5722	0	ALA A		28.265	71.171	-1.994	1.00 13.34	
					TYR A		26.777	71.088	-0.309	1.00 13.31	
		ATOM	5723	N				69.647	-0.440	1.00 12.54	
		MOTA	5724	CA	TYR A		26.574		0.930	1.00 12.34	
	EE	ATOM	5725	CB	TYR A		26.372	68.993			
	55	ATOM	5726	CG	TYR A	121	27.389	69.346	1.980	1.00 11.70	A

								07 000	70 474	2.785	1 00	11.79	А
		MOTA	5727		TYR A			27.230	70.474				
		MOTA	5728	CE1	TYR A	Α. 7	727	28.162	70.785	3.776		12.23	А
		MOTA	5729	CD2	TYR A	Α 7	727	28.506	68.539	2.185	1.00	10.95	А
		MOTA	5730	CE2	TYR A	A 7	727	29.441	68.840	3.165	1.00	10.75	А
	5	ATOM	5731	CZ	TYR			29.265	69.959	3.959	1.00	11.16	A
	9				TYR A			30.175	70.230	4.950		11.14	A
		MOTA	5732	ОН								12.80	A
		MOTA	5733	C	TYR 2			25.368	69.272	-1.287			
		MOTA	5734	0	TYR I			25.465	68.461	-2.210		12.13	A
		MOTA	5735	N	LEU 2	A T	728	24.227	69.864	-0.948		13.19	A
	10	MOTA	5736	CA	LEU Z	A T	728	22.965	69.563	-1.608	1.00	13.62	A
		ATOM	5737	СВ	LEU .			21.815	69.751	-0.611	1.00	13.85	A
		ATOM	5738	CG	LEU .			21.981	69.108	0.769	1.00	12.94	A
								20.719	69.334	1.599		12.74	A
		MOTA	5739		LEU .							13.66	A
		MOTA	5740		LEU .			22.260	67.627	0.608			
	15	MOTA	5741	С	LEU .			22.616	70.325	-2.879		14.23	A
		ATOM	5742	0	LEU .	A ~	728	22.853	71.527	-2.992		14.66	A
		MOTA	5743	N	PHE .	A î	729	22.038	69.592	-3.828		14.78	A
		MOTA	5744	CA	PHE .	A ·	729	21.569	70.148	-5.089	1.00	15.09	A
		ATOM	5745	СВ	PHE .			22.097	69.338	-6.278	1.00	14.90	A
	20	MOTA	5746	CG	PHE			21.636	69.848	-7.624	1.00	14.75	A
Į.	20				PHE .			21.579	68.992	-8.719		14.83	A
ij		ATOM	5747							-7.801		14.81	A
್ಯಕ್ಕಿತ್ ಎಚಿತಾ.		MOTA	5748		PHE			21.280	71.186				
Į.		MOTA	5749		PHE			21.174	69.456	-9.973		14.77	A
A COMP		MOTA	5750	CE2	PHE			20.875	71.661	-9.051		14.05	A
W.	25	ATOM	5751	CZ	PHE	A ´	729	20.821	70.797	-10.137	1.00	14.66	A
		ATOM	5752	С	PHE	Α.	729	20.047	70.000	-4.997	1.00	15.61	A
		ATOM	5753	0	PHE			19.519	68.893	-5.089	1.00	15.12	A
		ATOM	5754	N	LEU			19.353	71.116	-4.794	1.00	15.87	A
¥!			5755	CA	LEU			17.899	71.115	-4.673		16.28	А
	30	ATOM						17.504	71.461	-3.238		15.75	A
	30	ATOM	5756	CB	LEU					-2.186		16.05	A
3 G E		MOTA	5757	CG	LEU			17.891	70.417				
firm firm		MOTA	5758		LEU			17.851	71.032	-0.800		16.81	A
1.4		ATOM	5759	CD2	LEU			16.947	69.228	-2.281		15.75	A
San San San San San San San San San San		MOTA	5760	C	LEU	A	730	17.325	72.146	-5.631		16.38	A
100	35	MOTA	5761	0	LEU	A ·	730	16.851	73.203	-5.212	1.00	16.56	A
3,		MOTA	5762	N	PRO	A	731	17.353	71.843	-6.937	1.00	16.67	A
		ATOM	5763	CD	PRO			17.697	70.533	-7.522	1.00	16.03	A
		ATOM	5764	CA	PRO			16.843	72.752	-7.964		16.82	А
				CB	PRO			17.196	72.031	-9.257		16.40	А
	40	ATOM	5765							-8.872			A
	40	MOTA	5766		PRO			17.024					
		MOTA	5767	С	PRO			15.356	73.060	-7.873		17.55	A
		MOTA	5768	0	PRO	Α	731	14.557	72.231	-7.429		16.89	A
		ATOM	5769	N	ASN	Α	732	14.997	74.268	-8.294		18.54	А
		MOTA	5770	CA	ASN	Α	732	13.604	74.686	-8.298		19.97	A
	45	ATOM	5771	СВ	ASN	Α	732	13.494	76.193	-8.029	1.00	21.38	A
		ATOM	5772	CG	ASN			14.176	77.033	-9.092	1.00	22.50	A
		ATOM	5773		ASN			15.257	76.694	-9.569		23.48	A
								13.551	78.148	-9.457		23.21	A
		MOTA	5774		ASN							19.85	A
	50	MOTA	5775	С	ASN			13.051	74.335	-9.673			
	50	MOTA	5776	0	ASN			12.525		-10.389		20.43	A
		MOTA	5777	N	GLY	Α	733	13.198		-10.038		19.15	A
		ATOM	5778	CA	GLY	Α	733	12.711	72.584	-11.319		19.07	A
		ATOM	5779	С	GLY	Α	733	13.785	72.480	-12.384	1.00	19.05	A
		ATOM	5780	0	GLY			14.950		-12.126	1.00	18.33	A
	55	ATOM	5781	N	PRO			13.424		-13.596		18.74	А
		121 011	5,01	41	1 110						-		

												_
		ATOM	5782	CD	PRO A	734	12.079	71.580	-14.004	1.00	19.27	A
		ATOM	5783	CA	PRO A	734	14.372	71.878	-14.704	1.00	18.72	Α
		ATOM	5784	CB	PRO A		13.488		-15.864	1 00	18.91	А
		MOTA	5785	CG	PRO A		12.381		-15.187		19.56	A
	5	MOTA	5786	С	PRO A	734	15.040	73.216	-14.994	1.00	18.56	A
		ATOM	5787	0	PRO A	734	14.472	74.272	-14.716	1.00	17.70	A
		ATOM	5788	N	ALA A		16.236	73 163	-15.569	1.00	18.32	A
									-15.885		18.62	A
		MOTA	5789	CA	ALA A		16.990					
		MOTA	5790	CB	ALA A		18.389		-16.359		17.27	A
	10	ATOM	5791	С	ALA A	735	16.298	75.230	-16.939	1.00	19.06	A
		MOTA	5792	0	ALA A		15.526	74.731	-17.756	1.00	19.40	A
		MOTA	5793	N	SER A		16.585		-16.902	1.00	19.80	A
							16.024		-17.846		20.40	A
		MOTA	5794	CA	SER A							
		ATOM	5795	CB	SER A	736	15.392		-17.097		20.65	A
	15	ATOM	5796	OG	SER A	736	14.423		-16.164	1.00	23.95	A
		MOTA	5797	С	SER A	736	17.168	78.000	-18.716	1.00	20.53	A
		ATOM	5798	0	SER A		18.277	78,210	-18.229	1.00	19.37	A
		ATOM	5799	N	PRO A		16.911		-20.013		21.05	A
											21.76	A
2:22		MOTA	5800	CD	PRO A		15.647		-20.737			
	20	ATOM	5801	CA	PRO A	737	17.955	78.705	-20.919	1.00	22.31	A
ij.		ATOM	5802	СВ	PRO A	737	17.227	78.812	-22.261	1.00	22.46	A
Ţ		ATOM	5803	CG	PRO A		16.133	77.790	-22.147	1.00	22.19	A
			5804	C	PRO A		18.539		-20.489		22.95	А
9,3 8.		ATOM									22.83	A
		MOTA	5805	0	PRO A		17.816		-20.015			
	25	MOTA	5806	N	VAL A	738	19.851		-20.641		24.07	A
		ATOM	5807	CA	VAL A	738	20.498	81.466	-20.301	1.00	24.73	А
		MOTA	5808	СВ	VAL A	738	22.040	81.312	-20.194	1.00	25.09	А
		ATOM	5809		VAL A		22.700		-20.102	1.00	24.86	A
21							22.403		-18.973		24.29	A
	20	MOTA	5810		VAL A							
7,7237 1976	30	ATOM	5811	С	VAL A		20.183		-21.441		25.95	A
150		MOTA	5812	0	VAL A	738	20.322	82.083	-22.610		25.41	A
		ATOM	5813	N	GLU A	739	19.741	83.644	-21.102	1.00	26.97	A
i ai		ATOM	5814	CA	GLU A	739	19.428	84.650	-22.114	1.00	28.25	A
		ATOM	5815	СВ	GLU A		18.665		-21.488	1.00	30.01	A
	35				GLU A		17.303		-20.940		33.60	A
gasta.	55	MOTA	5816	CG								
		ATOM	5817	CD	GLU A		16.353		-22.022		35.66	A
		ATOM	5818	OE1	GLU A	739	15.220		-21.681		37.20	A
		ATOM	5819	OE2	GLU A	739	16.734	84.983	-23.213	1.00	37.11	A
		ATOM	5820	С	GLU A	739	20.755	85.130	-22.681	1.00	27.58	Α
	40	ATOM	5821	Ō	GLU A		21.543		-21.981	1 00	27 38	А
	40								-23.952		27.14	A
		MOTA	5822	N	LEU A		20.989					
		ATOM	5823	CA	LEU A		22.244		-24.610		26.75	A
		ATOM	5824	CB	LEU A	740	22.579	84.100	-25.645	1.00	26.88	A
		MOTA	5825	CG	LEU A	740	22.553	82.653	-25.153	1.00	26.56	A
	45	ATOM	5826		LEU A		22.920	81.733	-26.304	1.00	26.17	А
	10	ATOM	5827		LEU A		23.520		-23.985		26.74	А
											26.81	A
		ATOM	5828	С	LEU A		22.323		-25.282			
		ATOM	5829	0	LEU A	740	23.419		-25.475		26.49	A
		ATOM	5830	N	GLY A	741	21.177	87.100	-25.642	1.00	26.45	A
	50	ATOM	5831	CA	GLY A		21.192	88.383	-26.318	1.00	26.66	A
		ATOM	5832	C	GLY A		21.866		-27.666		26.47	A
									-28.352		27.08	A
		ATOM	5833	0	GLY A		21.623					
		ATOM	5834	N	GLN A		22.713		-28.050		26.64	A
		MOTA	5835	CA	GLN A	742	23.431	89.070	-29.319		26.29	A
	55	ATOM	5836	CB	GLN A	742	23.055	90.256	-30.214	1.00	28.36	A

							001			
		ATOM	5837	CG	GLN A	742	21.562	90.324 -30.534	1.00 31.41	Α
		ATOM	5838	CD	GLN A		21.193	91.499 -31.424	1.00 33.06	A
		ATOM	5839	OE1			21.654	91.603 -32.562	1.00 35.27	A
		ATOM	5840	NE2			20.353	92.389 -30.908	1.00 34.23	A
	5	MOTA	5841	C	GLN A		24.924	89.088 -28.996	1.00 24.83	A
	9	ATOM	5842	0	GLN A		25.595	90.106 -29.149	1.00 24.03	A
								87.942 -28.545	1.00 23.14	
		ATOM	5843	N	PRO A		25.460			A
		MOTA	5844	CD	PRO A		24.758	86.644 -28.504	1.00 22.94	A
	10	MOTA	5845	CA	PRO A		26.869	87.778 -28.175	1.00 21.91	A
	10	MOTA	5846	СВ	PRO A		26.910	86.355 -27.629	1.00 22.16	A
		MOTA	5847	CG	PRO A		25.902	85.654 -28.484	1.00 22.68	A
		MOTA	5848	С	PRO A		27.886	87.995 -29.289	1.00 20.81	A
		MOTA	5849	0	PRO A	743	27.612	87.742 -30.462	1.00 20.15	A
		MOTA	5850	N	VAL A	744	29.068	88.469 -28.903	1.00 19.08	Α
	15	MOTA	5851	CA	VAL A	744	30.146	88.704 -29.849	1.00 17.97	A
		MOTA	5852	CB	VAL A	744	31.143	89.751 -29.314	1.00 17.62	A
		MOTA	5853	CG1	VAL A	744	32.305	89.900 -30.280	1.00 16.50	A
		MOTA	5854	CG2	VAL A	744	30.435	91.090 -29.124	1.00 18.66	A
2152		MOTA	5855	С	VAL A	744	30.875	87.385 -30.078	1.00 17.11	A
1,25	20	MOTA	5856	0	VAL A		31.257	86.704 -29.125	1.00 16.81	A
		MOTA	5857	N	VAL A		31.054	87.028 -31.344	1.00 15.64	A
ı,I		ATOM	5858	CA	VAL A		31.719	85.784 -31.712	1.00 14.94	A
iji.		ATOM	5859	СВ	VAL A		30.820	84.932 -32.634	1.00 13.94	A
2 STEEL		ATOM	5860		VAL A		31.534	83.643 -33.011	1.00 14.63	A
	25	MOTA	5861		VAL A		29.501	84.635 -31.943	1.00 14.28	A
3 Ag7	20	ATOM	5862	C	VAL A		33.033	86.033 -32.436	1.00 14.70	A
		ATOM	5863	0	VAL A		33.090	86.826 -33.375	1.00 14.70	A
		ATOM	5864	N	LEU A		34.089	85.351 -31.999	1.00 14.53	A
7 }		ATOM	5865	CA	LEU A		35.402	85.494 -32.619	1.00 14.33	A
	30			CB			36.460	85.856 -31.573	1.00 14.40	A
15	50	ATOM	5866		LEU A					
II.		ATOM	5867	CG	LEU A		37.910	85.863 -32.082	1.00 14.37	A
		ATOM	5868		LEU A		38.105	86.957 -33.125	1.00 15.10	A
		ATOM	5869		LEU A		38.853	86.084 -30.908	1.00 15.27	A
	25	MOTA	5870	С	LEU A		35.815	84.204 -33.315	1.00 14.39	A
į.L	35	ATOM	5871	0	LEU A		35.920	83.152 -32.683	1.00 13.94	A
		ATOM	5872	N	VAL A		36.066	84.298 -34.615	1.00 14.21	A
		MOTA	5873	CA	VAL A		36.467	83.135 -35.396	1.00 15.07	A
		ATOM	5874	CB	VAL A		35.556	82.952 -36.639	1.00 14.86	A
	40	MOTA			VAL A			81.703 -37.414		A
	40	MOTA	5876	CG2	VAL A		34.098	82.851 -36.205	1.00 14.92	A
		MOTA	5877	С	VAL A	747	37.909	83.263 -35.861	1.00 15.47	A
		MOTA	5878	0	VAL A	747	38.272	84.217 -36.553	1.00 16.02	A
		MOTA	5879	N	THR A	748	38.736	82.305 -35.465	1.00 15.28	A
		MOTA	5880	CA	THR A	748	40.134	82.299 -35.861	1.00 16.46	A
	45	MOTA	5881	CB	THR A	748	41.065	82.284 -34.627	1.00 16.60	A
		MOTA	5882	OG1	THR A	748	40.862	83.485 -33.869	1.00 16.45	A
		ATOM	5883	CG2	THR A	748	42.531	82.197 -35.056	1.00 16.62	A
		MOTA	5884	С	THR A	748	40.361	81.048 -36.696	1.00 17.60	A
		MOTA	5885	0	THR A		40.133	79.931 -36.228	1.00 17.28	A
	50	ATOM	5886	N	LYS A		40.796	81.236 -37.938	1.00 18.35	A
		ATOM	5887	CA	LYS A		41.031	80.112 -38.829	1.00 19.29	A
		ATOM	5888	CB	LYS A		40.192	80.263 -40.099	1.00 21.29	A
		ATOM	5889	CG	LYS A		40.406	79.139 -41.100	1.00 23.49	A
		ATOM	5890	CD	LYS A		39.530	79.306 -42.328	1.00 26.20	A
	55									
	<i>JJ</i>	MOTA	5891	CE	LYS A	149	39.772	78.172 -43.314	1.00 27.68	A

							000					
		ATOM	5892	NZ	LYS A	749	38.949	78.318	-44.543	1.00	30.91	A
		MOTA	5893	С	LYS A	749	42.498	79.971	-39.202	1.00	19.15	A
		MOTA	5894	0	LYS A		43.095	80.878	-39.791	1.00	18.79	A
		ATOM	5895	N	GLY A		43.069		-38.862	1.00		А
	5	ATOM	5896	CA	GLY A		44.465		-39.164	1.00		A
	Ü	ATOM	5897	C	GLY A		44.660		-39.774	1.00		A
		MOTA	5898	0	GLY A		43.759		-39.732	1.00		A
		MOTA	5899	N	LYS A		45.839		-40.346	1.00		A
		ATOM	5900	CA	LYS A		46.161		-40.977	1.00		A
	10										22.12	A
	10	ATOM	5901	CB	LYS A		47.461		-41.777			
		ATOM	5902	CG	LYS A		47.381		-42.990		26.04	A
		ATOM	5903	CD	LYS A		46.556		-44.111	1.00		A
		ATOM	5904	CE	LYS A		46.615		-45.385		29.97	A
	1 -	MOTA	5905	NZ	LYS A		45.821		-46.492	1.00		A
	15	ATOM	5906	С	LYS A		46.315		-39.949	1.00		A
		ATOM	5907	0	LYS A		45.995		-40.227	1.00		A
		ATOM	5908	N	LEU A		46.805		-38.764	1.00		A
		ATOM	5909	CA	LEU A		47.018		-37.709		17.62	A
; (*** <u>*</u>		MOTA	5910	CB	LEU A		48.396		-37.073	1.00		A
1722	20	MOTA	5911	CG	LEU A		49.624		-37.989	1.00		A
		MOTA	5912		LEU A		50.882	74.300	-37.146	1.00	19.24	A
		ATOM	5913	CD2	LEU A	752	49.674	72.806	-38.753	1.00	19.87	A
		ATOM	5914	С	LEU A	752	45.957	73.995	-36.615	1.00	16.94	A
		ATOM	5915	0	LEU A	752	45.637	72.970	-36.010	1.00	16.36	A
14	25	ATOM	5916	N	GLU A	753	45.415	75.180	-36.361	1.00	15.88	A
		ATOM	5917	CA	GLU A	753	44.409	75.339	-35.322	1.00	16.00	A
		ATOM	5918	СВ	GLU A	753	45.089	75.654	-33.986	1.00	16.54	A
		ATOM	5919	CG	GLU A	753	44.133	75.776	-32.803	1.00	19.19	A
E)		ATOM	5920	CD	GLU A	753	44.826	76.245	-31.535	1.00	20.56	A
1100	30	ATOM	5921	OE1	GLU A	753	45.182	77.438	-31.454	1.00	21.29	A
1,1		ATOM	5922	OE2	GLU A	753	45.022	75.419	-30.619	1.00	22.13	A
		ATOM	5923	С	GLU A	753	43.418	76.451	-35.648	1.00	16.08	А
1,45		ATOM	5924	0	GLU A	753	43.807	77.550	-36.049	1.00	15.51	A
		ATOM	5925	N	SER A		42.137	76.155	-35.474	1.00	15.21	A
	35	ATOM	5926	CA	SER A		41.086		-35.710	1.00	14.74	А
5.44		MOTA	5927	СВ	SER A		40.266		-36.945	1.00	15.36	A
		ATOM	5928	OG	SER A		41.069		-38.111		15.30	A
		MOTA	5929	С	SER A		40.205		-34.477		15.07	А
		ATOM	5930	0	SER A		40.272	76.124	-33.707	1.00	15.07	А
	40	ATOM	5931	N	SER A		39.383		-34.277	1.00		A
		ATOM	5932	CA	SER A		38.510		-33.115	1.00		A
		ATOM	5933	СВ	SER A		39.316		-31.848	1.00		A
		ATOM	5934	OG	SER A		39.812		-31.867	1.00		A
		ATOM	5935	C	SER A		37.378		-33.230	1.00		A
	45	ATOM	5936	Ö	SER A		37.424		-34.038	1.00		A
	10	ATOM	5937	N	VAL A		36.354		-32.419	1.00		A
		ATOM	5938	CA	VAL A		35.208		-32.360	1.00		A
			5939						-32.913	1.00		A
		ATOM		CB	VAL A		33.937 32.736		-32.701	1.00		A
	50	ATOM	5940		VAL A							
	50	ATOM	5941 5942		VAL A		34.122		-34.391	1.00		A
		ATOM	5942	С	VAL A		35.019		-30.879	1.00		A
		ATOM	5943	0	VAL A		34.833		-30.078	1.00		A
		ATOM	5944	N	SER A		35.085		-30.522	1.00		A
	55	MOTA	5945	CA	SER A		34.936		-29.136	1.00		A
	55	MOTA	5946	CB	SER A	757	36.245	82.408	-28.642	1.00	14.45	A

	ATOM	5947	OG	SER A 75	37.343	81.536	-28.866	1.00 17.98	A
	MOTA	5948	С	SER A 75	33.815	82.806	-29.029	1.00 13.90	A
	MOTA	5949	0	SER A 75	33.703	83.688	-29.872	1.00 14.57	А
	MOTA	5950	N	VAL A 75	32.985	82.690	-27.997	1.00 13.86	A
5	MOTA	5951	CA	VAL A 75	31.883	83.633	-27.820	1.00 14.32	A
	ATOM	5952	CB	VAL A 75	30.539	83.031	-28.334	1.00 14.99	A
	MOTA	5953	CG1	VAL A 75	30.255	81.697	-27.652	1.00 15.26	A
	ATOM	5954	CG2	VAL A 75	38 29.400	84.010	-28.089	1.00 14.66	A
	MOTA	5955	С	VAL A 75	31.737	84.071	-26.366	1.00 14.81	A
10	ATOM	5956	0	VAL A 75	31.849	83.259	-25.439	1.00 14.83	A
	ATOM	5957	N	GLY A 75	31.514	85.369	-26.176	1.00 14.65	A
	ATOM	5958	CA	GLY A 75	31.352	85.915	-24.843	1.00 15.14	A
	MOTA	5959	С	GLY A 75	59 29.902	85.865	-24.406	1.00 16.00	A
	ATOM	5960	0	GLY A 75	59 29.102	86.744	-24.738	1.00 15.45	A
15	ATOM	5961	N	LEU A 76	29.560	84.822	-23.663	1.00 15.97	A
	ATOM	5962	CA	LEU A 76	50 28.205	84.640	-23.168	1.00 17.13	A
	ATOM	5963	CB	LEU A 76		83.157	-23.228	1.00 17.83	A
	MOTA	5964	CG	LEU A 76		82.466	-24.585	1.00 17.97	A
	MOTA	5965		LEU A 76		80.971	-24.427	1.00 18.75	A
20	ATOM	5966		LEU A 76		83.061	-25.575	1.00 19.05	A
	ATOM	5967	C	LEU A 76			-21.726	1.00 17.20	A
	ATOM	5968	0	LEU A 76			-21.076	1.00 17.55	A
	ATOM	5969	N	PRO A 76			-21.203	1.00 17.67	A
	ATOM	5970	CD	PRO A 76			-21.859	1.00 17.96	А
25	ATOM	5971	CA	PRO A 76			-19.811	1.00 18.19	A
	ATOM	5972	CB	PRO A 76			-19.600	1.00 18.69	A
	ATOM	5973	CG	PRO A 76			-20.969	1.00 18.84	A
	ATOM	5974	C	PRO A 76			-18.889	1.00 18.29	A
	ATOM	5975	0	PRO A 76			-18.892	1.00 18.07	A
30	ATOM	5976	N	SER A 76			-18.127	1.00 17.62	A
00	ATOM	5977	CA	SER A 76			-17.182	1.00 17.31	A
	ATOM	5978	CB	SER A 76			-16.379	1.00 17.41	A
	ATOM	5979	OG	SER A 76			-15.623	1.00 18.47	A
	ATOM	5980	C	SER A 76			-17.808	1.00 17.10	A
35	ATOM	5981	0	SER A 76			-17.087	1.00 17.23	A
00	ATOM	5982	N	VAL A 76			-19.134	1.00 16.20	A
	ATOM	5983	CA	VAL A 76			-19.782	1.00 16.03	A
	ATOM	5984	CB	VAL A 76			-19.995	1.00 15.77	А
	ATOM	5985		VAL A 76			-20.606	1.00 15.66	A
40	ATOM	5986		VAL A 76			-18.680	1.00 16.14	А
10	ATOM	5987	C	VAL A 76			-21.140	1.00 15.81	A
	ATOM	5988	0	VAL A 76			-22.031	1.00 16.03	A
	ATOM	5989	N	VAL A 76			-21.288	1.00 14.86	A
	ATOM	5990	CA	VAL A 76			-22.580	1.00 14.90	A
45	ATOM	5991	CB	VAL A 76			-22.464	1.00 15.02	A
10	ATOM	5992		VAL A 76			-23.838	1.00 15.39	A
	ATOM	5993		VAL A 76			-21.888	1.00 14.57	A
	ATOM	5994	C	VAL A 76			-23.041	1.00 15.18	A
	ATOM	5995	0	VAL A 76			-22.518	1.00 14.33	A
50	ATOM	5996	N	HIS A 76			-23.982	1.00 14.66	A
50	ATOM	5997	CA	HIS A 76			-24.524	1.00 14.00	A
	ATOM	5998	CB	HIS A 76			-24.895	1.00 14.40	A
		5999	CG	HIS A 76			-25.359	1.00 14.33	A
	ATOM ATOM	6000		HIS A 76			-23.339 -24.754	1.00 13.83	A
55							-24.734	1.00 14.01	A
	MOTA	6001	MDT	HIS A 76	30.014	11.431	20.303	1.00 10.70	А

		MOTA	6002		HIS A		30.562	76.124 -26.722	1.00 15.67	А
		ATOM	6003	NE2	HIS A		31.048	75.575 -25.623	1.00 17.15	A
		MOTA	6004	С	HIS A		33.684	79.424 -25.752	1.00 14.53	A
	_	MOTA	6005	0	HIS A		33.570	80.235 -26.670	1.00 13.37	A
	5	ATOM	6006	N	GLN A		34.567	78.431 -25.775	1.00 14.08	A
		MOTA	6007	CA	GLN A	766	35.490	78.280 -26.892	1.00 15.14	A
		MOTA	6008	CB	GLN A		36.898	78.699 -26.460	1.00 16.53	A
		ATOM	6009	CG	GLN A	766	36.955	79.975 -25.632	1.00 20.12	A
		ATOM	6010	CD	GLN A		38.142	79.989 -24.678	1.00 23.07	A
	10	ATOM	6011	OE1			39.288	79.816 -25.096	1.00 24.43	A
		ATOM	6012	NE2			37.868	80.191 -23.386	1.00 22.97	A
		ATOM	6013	С	GLN A		35.557	76.859 -27.435	1.00 14.87	A
		ATOM	6014	0	GLN A		35.689	75.900 -26.671	1.00 14.51	Α
	a ==	ATOM	6015	N	THR A		35.464	76.732 -28.756	1.00 13.43	A
	15	ATOM	6016	CA	THR A		35.564	75.433 -29.411	1.00 13.83	A
		ATOM	6017	CB	THR A		34.340	75.141 -30.303	1.00 13.86	A
		ATOM	6018	OG1	THR A		33.150	75.212 -29.513	1.00 14.60	A
		ATOM	6019	CG2	THR A		34.444	73.741 -30.906	1.00 14.49	A
2 (144)	•	ATOM	6020	С	THR A		36.828	75.495 -30.262	1.00 14.12	A
A PERMIT	20	MOTA	6021	0	THR A		36.919	76.284 -31.207	1.00 14.35	A
		ATOM	6022	N	ILE A		37.808	74.668 -29.913	1.00 14.54	A
		ATOM	6023	CA	ILE A		39.088	74.651 -30.612	1.00 15.59	A
		ATOM	6024	CB	ILE A		40.243	74.766 -29.599	1.00 15.69	A
Sept.	0-	ATOM	6025	CG2	ILE A		41.561	74.972 -30.327	1.00 17.18	A
W. 4.7	25	ATOM	6026	CG1			39.970	75.931 -28.648	1.00 17.37	A
Ŋ.		ATOM	6027	CD1	ILE A		40.946	76.027 -27.489	1.00 18.23	A
150		ATOM	6028	С	ILE A		39.274	73.391 -31.448	1.00 15.73	A
8)		ATOM	6029	0	ILE A		39.008	72.279 -30.984	1.00 15.43	A
	30	ATOM	6030	N	MET A		39.736	73.570 -32.681	1.00 16.42	A
t par	30	MOTA	6031	CA	MET A		39.938	72.449 -33.595	1.00 17.29	A
i i		MOTA	6032	CB	MET A		39.030	72.612 -34.816 72.608 -34.478	1.00 18.73	A
		ATOM	6033 6034	CG SD	MET A		37.549 36.524	73.303 -35.794	1.00 19.51 1.00 22.39	A A
		ATOM ATOM	6034	CE	MET A		36.428	74.985 -35.246	1.00 22.33	A
	35	ATOM	6036	CE	MET A		41.384	72.320 -34.050	1.00 22.33	A
	33	ATOM	6037	0	MET A		42.004	73.302 -34.468	1.00 17.03	A
		ATOM	6038	N	ARG A		41.914	71.101 -33.977	1.00 10.33	A
		ATOM	6039	CA	ARG A		43.289	70.849 -34.378	1.00 18.83	A
		ATOM	6040	CB	ARG A		44.161	70.653 -33.137	1.00 10.03	Ā
	40	ATOM	6041	CG	ARG A		44.144	71.853 -32.207	1.00 22.50	A
	10	ATOM	6042	CD	ARG A		44.964	71.617 -30.951	1.00 24.80	A
		ATOM	6043	NE	ARG A		44.861	72.752 -30.040	1.00 27.76	A
		ATOM	6044	CZ	ARG A		45.414	72.799 -28.833	1.00 29.18	A
		ATOM	6045		ARG A		46.118	71.769 -28.379	1.00 29.75	A
	45	ATOM	6046		ARG A		45.262	73.880 -28.078	1.00 30.25	A
		ATOM	6047	С	ARG A		43.424	69.645 -35.305	1.00 18.94	A
		ATOM	6048	0	ARG A		44.527	69.147 -35.528	1.00 19.08	А
		ATOM	6049	N	GLY A		42.302	69.177 -35.839	1.00 19.13	А
		MOTA	6050	CA	GLY A		42.346	68.045 -36.747	1.00 20.15	A
	50	MOTA	6051	С	GLY A		41.608	66.810 -36.274	1.00 20.51	A
		MOTA	6052	0	GLY A		41.376	65.886 -37.057	1.00 22.20	A
		MOTA	6053	N	GLY A		41.250	66.777 -34.995	1.00 20.11	A
		MOTA	6054	CA	GLY A		40.530	65.631 -34.468	1.00 19.12	А
		ATOM	6055	С	GLY A		39.341	66.092 -33.651	1.00 18.40	А
	55	ATOM	6056	0	GLY A		38.737	67.125 -33.957	1.00 17.47	А

		ATOM	6057	N	ALA A 773	38.994	65.334 -32.617	1.00 17.19	A
		ATOM	6058	CA	ALA A 773	37.880	65.721 -31.770	1.00 16.28	A
		ATOM	6059	СВ	ALA A 773	37.730	64.744 -30.609	1.00 16.74	A
		ATOM	6060	C	ALA A 773	38.208	67.118 -31.249	1.00 15.85	A
	5	MOTA	6061	Ō	ALA A 773	39.344	67.396 -30.858	1.00 15.72	A
		MOTA	6062	N	PRO A 774	37.220	68.021 -31.252	1.00 14.95	A
		MOTA	6063	CD	PRO A 774	35.834	67.870 -31.729	1.00 14.54	A
		ATOM	6064	CA	PRO A 774	37.465	69.382 -30.769	1.00 14.51	A
							70.128 -31.190	1.00 14.31	
	10	ATOM	6065	CB	PRO A 774	36.203	69.068 -31.100		A
	10	ATOM	6066	CG	PRO A 774	35.147		1.00 15.90	A
		ATOM	6067	C	PRO A 774	37.696	69.461 -29.264	1.00 14.10	A
		ATOM	6068	0	PRO A 774	37.293	68.574 -28.509	1.00 13.79	A
		ATOM	6069	N	GLU A 775	38.366	70.528 -28.842	1.00 13.81	A
		ATOM	6070	CA	GLU A 775	38.613	70.768 -27.432	1.00 13.78	A
	15	MOTA	6071	CB	GLU A 775	40.059	71.216 -27.187	1.00 14.79	A
		MOTA	6072	CG	GLU A 775	40.363	71.499 -25.712	1.00 17.46	A
		MOTA	6073	CD	GLU A 775	41.780	71.993 -25.473	1.00 19.38	A
		MOTA	6074	OE1	GLU A 775	42.685	71.613 -26.246	1.00 21.30	A
2 (122)		MOTA	6075	OE2	GLU A 775	41.993	72.746 -24.496	1.00 20.86	A
	20	ATOM	6076	С	GLU A 775	37.664	71.902 -27.074	1.00 13.37	A
1,1		MOTA	6077	0	GLU A 775	37.471	72.828 -27.863	1.00 13.38	A
		MOTA	6078	N	ILE A 776	37.051	71.818 -25.904	1.00 13.11	A
M		MOTA	6079	CA	ILE A 776	36.138	72.863 -25.469	1.00 13.46	A
		ATOM	6080	СВ	ILE A 776	34.744	72.301 -25.117	1.00 14.14	A
7	25	ATOM	6081		ILE A 776	33.790	73.451 -24.809	1.00 14.86	A
		ATOM	6082		ILE A 776	34.217	71.423 -26.256	1.00 14.67	A
		ATOM	6083		ILE A 776	34.074	72.134 -27.589	1.00 15.09	A
		ATOM	6084	C	ILE A 776	36.717	73.489 -24.211	1.00 13.09	A
21		ATOM	6085	Ö	ILE A 776	37.173	72.777 -23.313	1.00 12.40	A
	30	ATOM	6086	N	ARG A 777	36.715	74.817 -24.155	1.00 13.21	A
	00	MOTA	6087	CA	ARG A 777	37.210	75.527 -22.981	1.00 13.21	A
200		ATOM	6088	CB	ARG A 777	38.529	76.246 -23.285	1.00 12.03	A
		ATOM	6089	CG	ARG A 777	39.679	75.327 -23.657	1.00 13.71	A
		ATOM	6090	CD	ARG A 777	40.982	76.107 -23.811	1.00 13.37	A
	35	ATOM	6091	NE	ARG A 777	42.053	75.272 -24.350	1.00 14.70	A
2.110	33		6092	CZ	ARG A 777			1.00 14.70	
		ATOM				43.222	75.739 -24.782		A
		ATOM	6093		ARG A 777	43.477	77.042 -24.737	1.00 17.89	A
		ATOM	6094		ARG A 777	44.133	74.906 -25.272	1.00 16.86	A
	40	ATOM	6095	C	ARG A 777	36.165	76.552 -22.567	1.00 12.89	A
	40	ATOM	6096	0	ARG A 777	35.654	77.303 -23.404	1.00 12.83	A
		ATOM	6097	N	ASN A 778	35.834	76.560 -21.281	1.00 12.52	A
		MOTA	6098	CA	ASN A 778	34.867	77.503 -20.740	1.00 12.48	A
		MOTA	6099	CB	ASN A 778	33.681	76.786 -20.080	1.00 13.02	A
	4.55	MOTA	6100	CG	ASN A 778	32.744	76.134 -21.080	1.00 12.77	А
	45	MOTA	6101		ASN A 778	32.722	76.494 -22.259	1.00 12.70	A
		MOTA	6102	ND2	ASN A 778	31.944	75.180 -20.604	1.00 11.18	А
		ATOM	6103	С	ASN A 778	35.519	78.371 -19.677	1.00 13.06	A
		MOTA	6104	0	ASN A 778	35.991	77.856 -18.661	1.00 12.54	A
		ATOM	6105	N	LEU A 779	35.557	79.680 -19.907	1.00 12.87	A
	50	MOTA	6106	CA	LEU A 779	36.100	80.590 -18.905	1.00 13.87	A
		MOTA	6107	СВ	LEU A 779	36.749	81.814 -19.562	1.00 15.11	A
		MOTA	6108	CG	LEU A 779	37.244	82.906 -18.603	1.00 16.41	А
		MOTA	6109		LEU A 779	38.237	82.328 -17.610	1.00 17.15	A
		ATOM	6110		LEU A 779	37.882	84.031 -19.403	1.00 17.46	A
	55	MOTA	6111	С	LEU A 779	34.857	80.992 -18.121	1.00 13.84	A
	-								• •

		ATOM	6112	0	LEU A	779	34.120	81.894	-18.519	1.00 14.16	А
		ATOM	6113	N	VAL A		34.627	80.298	-17.012	1.00 14.09	А
		ATOM	6114	CA	VAL A		33.450		-16.181	1.00 14.38	A
		ATOM	6115	CB	VAL A		32.975		-15.578	1.00 13.50	A
	5	ATOM	6116		VAL A		31.658				
	9								-14.830	1.00 14.96	A
		ATOM	6117		VAL A		32.813		-16.681	1.00 12.78	A
		ATOM	6118	С	VAL A		33.612		-15.046	1.00 14.62	A
		MOTA	6119	0	VAL A		34.436		-14.156	1.00 14.42	A
		ATOM	6120	N	ASP A	781	32.810	82.577	-15.096	1.00 15.08	A
	10	MOTA	6121	CA	ASP A	781	32.824	83.616	-14.069	1.00 15.19	A
		ATOM	6122	CB	ASP A	781	33.503	84.886	-14.582	1.00 16.51	A
		ATOM	6123	CG	ASP A		33.578		-13.522	1.00 17.79	А
		ATOM	6124		ASP A		34.045	87.088	-13.847	1.00 19.59	А
		ATOM	6125		ASP A		33.174		-12.366	1.00 17.43	A
	15	ATOM	6126	C	ASP A		31.371		-13.738	1.00 15.21	A
	10	ATOM	6127	0	ASP A		30.736		-14.363	1.00 14.21	A
		ATOM	6128	N	ILE A		30.750		-12.758	1.00 14.21	
											A
		ATOM	6129	CA	ILE A		29.467		-12.344	1.00 16.76	A
1,000	20	ATOM	6130	CB	ILE A		29.075		-11.416	1.00 16.22	A
finali ins	20	MOTA	6131		ILE A		29.673		-10.025	1.00 15.94	А
1,5		MOTA	6132		ILE A		27.555		-11.348	1.00 16.35	A
		MOTA	6133	CD1	ILE A		27.095		-10.765	1.00 14.49	A
(Fi		MOTA	6134	С	ILE A	782	29.203	84.673	-11.664	1.00 18.22	A
		MOTA	6135	0	ILE A	782	28.070	84.988	-11.311	1.00 19.23	A
	25	MOTA	6136	N	GLY A	783	30.257	85.466	-11.493	1.00 19.97	A
3 % P		MOTA	6137	CA	GLY A	783	30.117	86.784	-10.890	1.00 22.08	A
		ATOM	6138	С	GLY A		29.283	86.844		1.00 23.38	А
M		ATOM	6139	O	GLY A		29.552	86.123	-8.663	1.00 23.43	A
3;		ATOM	6140	N	SER A		28.266	87.702	-9.616	1.00 24.74	A
\$	30	ATOM	6141	CA	SER A		27.412	87.840	-8.439	1.00 26.45	A
J	00	ATOM	6142	CB	SER A		27.329	89.311	-8.014	1.00 27.09	A
II.		ATOM	6143	OG	SER A		26.712	90.107	-9.012	1.00 27.03	A
		ATOM	6144	C	SER A		26.002	87.274	-8.628	1.00 23.22	
											A
	35	ATOM	6145	0	SER A		25.067	87.676	-7.933	1.00 27.56	A
in in	55	ATOM	6146	N	LEU A		25.853	86.339	-9.563	1.00 26.95	A
		ATOM	6147	CA	LEU A		24.558	85.712	-9.820	1.00 26.92	A
		MOTA	6148	CB	LEU A		24.587		-11.152	1.00 27.50	A
		ATOM	6149	CG	LEU A		24.491		-12.461	1.00 28.53	A
	4.0	ATOM	6150		LEU A		25.503		-12.478	1.00 29.75	A
	40	ATOM	6151	CD2	LEU A	785	24.729	84.802	-13.629	1.00 28.80	A
		MOTA	6152	С	LEU A	785	24.230	84.739	-8.691	1.00 26.47	A
		ATOM	6153	0	LEU A	785	24.457	83.531	-8.810	1.00 26.29	A
		MOTA	6154	N	ASP A	786	23.688	85.265	-7.598	1.00 25.45	А
		ATOM	6155	CA	ASP A			84.438	-6.446	1.00 24.78	A
	45	MOTA	6156	СВ	ASP A		22.884	85.315	-5.281	1.00 26.58	А
		MOTA	6157	CG	ASP A			86.409	-4.947	1.00 28.38	A
		ATOM	6158		ASP A		25.073	86.102	-4.770	1.00 27.73	A
		ATOM	6159		ASP A		23.449	87.581	-4.863		A
			6160					83.383			
	50	ATOM		C	ASP A		22.284		-6.731		A
	50	ATOM	6161	0	ASP A		21.401	83.573	-7.572		A
		ATOM	6162	N	ASN A		22.380	82.274	-6.006	1.00 21.19	A
		ATOM	6163	CA	ASN A			81.161	-6.135		А
		ATOM	6164	CB	ASN A			81.522	-5.495		A
		ATOM	6165	CG	ASN A			81.835	-4.020		A
	55	ATOM	6166	OD1	ASN A	787	20.912	81.103	-3.283	1.00 24.06	А

	ATOM	6167	ND2	ASN A		19.629	82.922	-3.580	1.00 24.91	А
	MOTA	6168	С	ASN A		21.261	80.749		1.00 19.69	A
	MOTA	6169	О	ASN A		20.141	80.599	-8.070	1.00 19.17	A
_	ATOM	6170	N	THR A		22.381	80.556	-8.265	1.00 18.19	A
5	ATOM	6171	CA	THR A		22.365	80.155	-9.658	1.00 17.22	A
	MOTA	6172	CB	THR A		22.704		-10.579	1.00 18.00	A
	ATOM	6173	OG1	THR A	788	21.749	82.399	-10.370	1.00 18.28	A
	ATOM	6174	CG2	THR A	788	22.669	80.926	-12.044	1.00 18.47	A
	MOTA	6175	С	THR A	788	23.398	79.058	-9.886	1.00 15.98	A
10	MOTA	6176	0	THR A	788	24.492	79.096	-9.322	1.00 15.00	A
	ATOM	6177	N	GLU A	789	23.030	78.074	-10.695	1.00 14.52	A
	ATOM	6178	CA	GLU A	789	23.937	76.990	-11.045	1.00 14.59	A
	ATOM	6179	CB	GLU A	789	23.469	75.661	-10.433	1.00 14.05	А
	ATOM	6180	CG	GLU A	789	23.440	75.701	-8.906	1.00 14.04	А
15	ATOM	6181	CD	GLU A	789	23.457	74.328	-8.256	1.00 14.08	A
	ATOM	6182	OE1			24.222	73.453	-8.724	1.00 13.65	A
	MOTA	6183	OE2	GLU A		22.719	74.136	-7.262	1.00 13.58	А
	ATOM	6184	С	GLU F		23.928		-12.565	1.00 14.52	A
	ATOM	6185	0	GLU F		22.884		-13.186	1.00 14.93	A
20	ATOM	6186	N	ILE F		25.094		-13.160	1.00 13.89	A
	ATOM	6187	CA	ILE F		25.228		-14.608	1.00 13.95	A
	ATOM	6188	CB	ILE A		26.320		-15.056	1.00 14.54	A
	ATOM	6189	CG2	ILE F		26.396		-16.576	1.00 15.34	A
	ATOM	6190	CG1	ILE P		26.012		-14.508	1.00 16.25	A
25	ATOM	6191	CD1	ILE A		27.135		-14.712	1.00 18.66	A
	ATOM	6192	C	ILE A		25.574		-15.134	1.00 14.00	A
	ATOM	6193	Ō	ILE A		26.532		-14.680	1.00 13.91	A
	ATOM	6194	N	VAL A		24.791		-16.094	1.00 13.84	A
	ATOM	6195	CA	VAL A		25.024		-16.668	1.00 13.77	A
30	ATOM	6196	CB	VAL A		23.811		-16.417	1.00 14.65	A
	ATOM	6197		VAL A		22.581		-17.164	1.00 14.60	A
	ATOM	6198		VAL A		24.143		-16.854	1.00 13.66	A
	ATOM	6199	C	VAL A		25.274		-18.167	1.00 14.13	A
	ATOM	6200	0	VAL A		24.707		-18.853	1.00 14.13	A
35	ATOM	6201	N	MET A		26.153		-18.664	1.00 13.29	A
00	ATOM	6202	CA	MET A		26.438		-20.092	1.00 13.25	A
	ATOM	6203	СВ	MET A		27.941		-20.365	1.00 14.34	A
	ATOM	6204	CG	MET A		28.273		-21.841	1.00 14.06	Ā
	ATOM	6205	SD	MET A		30.043		-22.209	1.00 14.00	A
40	ATOM		CE	MET A		30.667		-21.346	1.00 15.89	A
10	ATOM	6207	C	MET A		25.803		-20.564	1.00 13.89	
	ATOM	6208	0	MET A		26.139		-20.067	1.00 13.88	A A
	ATOM	6209	N	ARG A		24.884		-20.007		A
	ATOM	6210	CA	ARG A				-22.022	1.00 14.28	A
45	ATOM	6211	CB			24.184			1.00 14.14	A
10	ATOM	6212		ARG A		22.674		-21.766	1.00 14.51	A
	ATOM	6213	CG CD	ARG A		21.804		-22.242	1.00 14.54	A
		6213		ARG A		20.322		-21.946	1.00 15.61	A
	MOTA		NE			20.062		-20.511	1.00 16.05	A
50	MOTA	6215	CZ	ARG A		18.974		-19.982	1.00 16.93	A
50	MOTA	6216		ARG A		18.031		-20.768	1.00 16.82	A
	MOTA	6217		ARG A		18.830		-18.662	1.00 17.05	A
	ATOM	6218	С	ARG A		24.423		-23.503	1.00 14.27	A
	MOTA	6219	0	ARG A		24.637		-24.285	1.00 14.21	A
55	MOTA	6220	N	LEU A		24.396		-23.873	1.00 14.02	A
55	ATOM	6221	CA	LEU A	194	24.556	68.837	-25.257	1.00 14.74	А

							00.	•				
		ATOM	6222	СВ	LEU A	794	25.730	67.857 -	-25.391	1.00	15.15	A
		ATOM	6223	CG	LEU A	794	27.138	68.460 -	-25.460	1.00	15.18	A
		ATOM	6224	CD1	LEU A	794	28.176	67.441 -	-25.009	1.00	16.00	А
		ATOM	6225		LEU A		27.414	68.917 -		1.00		A
	5	ATOM	6226	С	LEU A		23.253	68.147 -		1.00		A
	•	ATOM	6227	0	LEU A		22.765	67.270 -		1.00		A
		ATOM	6228	N	GLU A		22.680	68.561 -		1.00		A
		ATOM	6229	CA	GLU A		21.437	67.966 -		1.00		A
		ATOM	6230	CB	GLU A		20.368	69.054 -		1.00		A
	10	ATOM	6231	CG	GLU A		20.156	69.921 -		1.00		
	10											A
		ATOM	6232 6233	CD	GLU A		19.114	71.015 -		1.00		A
		MOTA		OE1			19.073	71.623 -		1.00		A
		ATOM	6234	OE2			18.348	71.281 -		1.00		A
	15	ATOM	6235	C	GLU A		21.710	67.244 -		1.00		A
	15	ATOM	6236	0	GLU A		22.263	67.829 -		1.00		A
		MOTA	6237	N	THR A		21.337	65.967 -		1.00		A
		MOTA	6238	CA	THR A		21.553	65.181 -		1.00		A
		MOTA	6239	CB	THR A		22.744	64.211 -		1.00		A
5 1754E	20	MOTA	6240	OG1			22.345	63.091 -		1.00		A
	20	MOTA	6241	CG2			23.935	64.910 -		1.00		A
		MOTA	6242	С	THR A		20.333	64.329 -		1.00		A
		MOTA	6243	0	THR A		19.332	64.347 -		1.00		Α
(F		MOTA	6244	N	HIS A		20.443	63.577 -	-31.312	1.00	19.17	A
		MOTA	6245	CA	HIS A		19.377	62.691 -		1.00	20.27	A
	25	MOTA	6246	CB	HIS A		19.235	62.775 -		1.00		A
(July		MOTA	6247	CG	HIS A		18.600	64.043 -		1.00	22.65	А
		MOTA	6248	CD2	HIS A	797	17.956	65.025 -	33.097	1.00	22.75	A
		MOTA	6249	ND1	HIS A	797	18.574	64.407 -	35.099	1.00	23.52	A
2) 2)		ATOM	6250	CE1	HIS A	797	17.941	65.560 -	35.223	1.00	23.34	A
	30	ATOM	6251	NE2	HIS A	797	17.556	65.956 -	34.023	1.00	22.42	A
ŧ.LJ.		MOTA	6252	С	HIS A		19.677	61.251 -	31.368	1.00	20.49	A
		ATOM	6253	0	HIS A	797	18.952	60.332 -	$\cdot 31.743$	1.00	21.41	A
i i i i i i i i i i i i i i i i i i i		ATOM	6254	N	ILE A		20.749	61.059 -	30.605	1.00	19.36	A
And with		MOTA	6255	CA	ILE A	798	21.132	59.724 -	30.157	1.00	18.76	А
E 352	35	MOTA	6256	CB	ILE A	798	22.422	59.778 -	29.302	1.00	18.71	A
2,		ATOM	6257	CG2	ILE A	798	22.770	58.384 -	28.786	1.00	17.92	A
		ATOM	6258	CG1	ILE A	798	23.570	60.333 -	30.154	1.00	18.53	A
		ATOM	6259	CD1	ILE A	798	24.874	60.555 -	29.395	1.00	17.95	A
		ATOM	6260	С	ILE A	798	19.997	59.105 -	29.349	1.00	18.42	A
	40	ATOM	6261	0	ILE A	798	19.477	59.719 -	28.418	1.00	17.56	A
		ATOM	6262	N	ASP A	799	19.609	57.888 -	29.723	1.00	18.81	A
		ATOM	6263	CA	ASP A	799	18.522	57.182 -	29.056	1.00	18.57	A
		ATOM	6264	CB	ASP A	799	17.872	56.196 -	30.031	1.00	20.01	A
		ATOM	6265	CG	ASP A	799	16.543	55.678 -	29.530	1.00	21.36	A
	45	ATOM	6266	OD1	ASP A	799	16.070	54.651 -		1.00		А
		ATOM	6267		ASP A		15.968	56.302 -		1.00		А
		ATOM	6268	С	ASP A		19.024	56.429 -		1.00		A
		ATOM	6269	0	ASP A		18.977	55.199 -		1.00		A
		ATOM	6270	N	SER A		19.493	57.175 -		1.00		A
	50	ATOM	6271	CA	SER A		20.023	56.584 -		1.00		A
		ATOM	6272	СВ	SER A		21.013	57.556 -		1.00		A
		ATOM	6273	OG	SER A		20.383	58.792 -		1.00		A
		ATOM	6274	C	SER A		18.947	56.193 -		1.00		A
		MOTA	6275	0	SER A		19.195	55.375 -		1.00		A
	55	ATOM	6276	N	GLY A		17.760	56.780 -		1.00		
	55	AION	02/0	T.4	сы А	001	17.700	50.700 -	24./19	1.00 .	10.12	A

	ATOM	6277	CA	GLY	A 8	01	16.684	56.458	-23.798	1.00 1	6.49	A
	ATOM	6278	С	GLY	A 8	01	16.937	56.957	-22.387	1.00 1		А
	MOTA	6279	0	GLY			17.034		-22.162	1.00 1		A
	ATOM	6280	N	ASP			17.042		-21.433	1.00 1		A
5	ATOM	6281	CA	ASP			17.290		-20.042	1.00 1		A
9	ATOM	6282	CB	ASP			16.203		-19.125	1.00 1		A
	ATOM	6283	CG	ASP			16.093		-19.229	1.00 1		A
	ATOM	6284		ASP			15.201		-18.559	1.00 1		A
10	ATOM	6285		ASP			16.884		-19.967	1.00 1		A
10	MOTA	6286	С	ASP			18.672	55.947	-19.571	1.00 1		A
	ATOM	6287	0	ASP	8 A	02	18.969	55.979	-18.378	1.00 1	4.86	A
	ATOM	6288	N	ILE	8 A	03	19.514	55.542	-20.517	1.00 1	4.31	A
	ATOM	6289	CA	ILE	8 A	03	20.862	55.069	-20.207	1.00 1	4.43	A
	ATOM	6290	CB	ILE	8 A	03	21.166	53.753	-20.968	1.00 1	4.45	А
15	ATOM	6291		ILE			22.583		-20.656	1.00 1		A
	ATOM	6292		ILE			20.139		-20.593	1.00 1		A
	MOTA	6293	CD1	ILE			20.150		-19.127	1.00 1		A
	MOTA	6294	C	ILE			21.981		-20.540	1.00 1		
												A
20	ATOM	6295	0	ILE			21.923		-21.533	1.00 1		A
20	ATOM	6296	N	PHE			22.998		-19.686	1.00 1		A
	ATOM	6297	CA	PHE			24.166		-19.915	1.00 1		A
	ATOM	6298	СВ	PHE			23.886		-19.614	1.00 1		А
	ATOM	6299	CG	PHE.			23.523	58.726	-18.184	1.00 1	2.47	А
	ATOM	6300	CD1	PHE	8 A	04	24.455	59.316	-17.327	1.00 1	2.56	Α
25	ATOM	6301	CD2	PHE .	A 8	04	22.231	58.500	-17.714	1.00 1	2.59	A
	ATOM	6302	CE1	PHE	8 A	04	24.100	59.682	-16.025	1.00 1	2.22	А
	ATOM	6303	CE2	PHE	A 8	04	21.866	58.859	-16.416	1.00 1	2.70	A
	ATOM	6304	CZ	PHE .			22.804		-15.569	1.00 1		А
	ATOM	6305	С	PHE .			25.304		-19.074	1.00 1		A
30	ATOM	6306	0	PHE			25.084		-18.196	1.00 1		A
	ATOM	6307	N	TYR			26.523		-19.366	1.00 1		A
	ATOM	6308	CA	TYR .			27.674		-18.633	1.00 1:		
												A
	ATOM	6309	CB	TYR .			28.549		-19.552	1.00 13		A
25	MOTA	6310	CG	TYR .			27.851		-20.112	1.00 1		A
35	MOTA	6311	CD1	TYR .			26.860		-21.090	1.00 1		A
	MOTA	6312	CE1	TYR .			26.225		-21.615	1.00 1		A
	ATOM	6313	CD2				28.190	52.941	-19.667	1.00 1		A
	ATOM	6314		TYR .			27.560	51.803	-20.183	1.00 1	4.39	A
	MOTA	6315	CZ	TYR .	8 A	05	26.583	51.941	-21.156	1.00 1	4.54	А
40	ATOM	6316	OH	TYR .	8 A	05	25.973	50.820	-21.675	1.00 1	4.20	A
	ATOM	6317	С	TYR .	8 A	05	28.509	57.431	-18.050	1.00 12	2.21	А
	MOTA	6318	0	TYR .			28.649	58.494	-18.657	1.00 1		A
	ATOM	6319	N	THR .			29.045		-16.858	1.00 1		А
	ATOM	6320	CA	THR .			29.898		-16.180	1.00 1		A
45	ATOM	6321	CB	THR			29.140		-15.055	1.00 1		A
10	ATOM	6322		THR A			28.769		-14.032	1.00 12		
		6323		THR Z					-15.614			A
	ATOM						27.877			1.00 10		A
	ATOM	6324	С	THR I			31.058		-15.605	1.00 1		A
EO	MOTA	6325	0	THR A			30.934		-15.407	1.00 11		А
50	ATOM	6326	N	ASP I			32.189		-15.352	1.00 10		A
	ATOM	6327	CA	ASP A	9 8 C	07	33.327	57.262	-14.822	1.00 10).94	A
	ATOM	6328	СВ	ASP A	8 (07	34.630	57.740	-15.470	1.00 10).56	A
	MOTA	6329	CG	ASP A	8 A	07	35.086	59.091	-14.953	1.00 10	0.21	А
	MOTA	6330	OD1	ASP Z	8 A	07	36.235		-14.480	1.00 13		A
55	ATOM	6331		ASP A			34.308		-15.026	1.00 13		A
	·-				- '							••

		ATOM	6332	С	ASP	Α	807	33.438	57.385	-13.314	1.00	10.70	A
		ATOM	6333	0	ASP	A	807	32.855	58.278	-12.699	1.00	9.93	A
		MOTA	6334	N	LEU			34.182		-12.729		10.38	A
	_	MOTA	6335	CA	LEU	A	808	34.418		-11.299		10.47	A
	5	ATOM	6336	CB	LEU			33.963		-10.676		10.91	A
		MOTA	6337	CG	LEU			32.445		-10.532		10.80	A
		ATOM	6338		LEU			32.126		-10.277		12.22	A
		MOTA	6339		LEU			31.917	55.782	-9.391		11.26	A
	10	ATOM	6340	C	LEU			35.910		-11.087		10.25	A
	10	ATOM	6341	0	LEU			36.722		-11.462		10.25	A
		ATOM	6342	N	ASN			36.261		-10.527	1.00	9.42	A
		ATOM	6343	CA	ASN			37.647		-10.219	1.00	9.53	A
		ATOM	6344	CB	ASN			38.121	57.262	-9.073	1.00	8.78	A
	15	ATOM	6345	CG	ASN			37.128	57.226	-7.933	1.00	8.98 11.42	A
	15	ATOM	6346		ASN ASN			37.110 36.272	58.114 56.215	-7.075 -7.934	1.00	7.45	A A
		ATOM ATOM	6347 6348	C	ASN			38.623		-11.386	1.00	9.64	A
		ATOM	6349	0	ASN			39.807		-11.177	1.00	9.79	A
		ATOM	6350	N	GLY			38.133		-12.604		10.08	A
,	20	ATOM	6351	CA	GLY			38.997		-13.774		10.96	A
•	20	ATOM	6352	C	GLY			39.586		-13.984		12.28	A
		ATOM	6353	0	GLY			40.611		-14.659		13.07	A
		ATOM	6354	N	LEU			38.923		-13.419		11.50	A
		ATOM	6355	CA	LEU			39.384		-13.501		11.55	A
,	25	ATOM	6356	CB	LEU			39.490		-12.085		11.82	A
		ATOM	6357	CG	LEU			39.816		-11.968		13.81	A
		ATOM	6358		LEU			41.218		-12.510		14.31	A
		ATOM	6359		LEU			39.706		-10.515		13.02	A
		ATOM	6360	C	LEU			38.511		-14.344		11.64	A
	30	ATOM	6361	Ö	LEU			39.022		-15.086		12.98	A
	-	ATOM	6362	N	GLN			37.197		-14.235		10.70	A
		ATOM	6363	CA	GLN			36.261		-14.942	1.00	11.31	А
		ATOM	6364	СВ	GLN			35.885		-14.031	1.00	12.03	A
		ATOM	6365	CG	GLN			35.287	52.098	-12.693	1.00	12.84	A
(35	MOTA	6366	CD	GLN			34.982	50.970	-11.722	1.00	14.63	A
		ATOM	6367	OE1	GLN	Α	812	33.988	50.258	-11.867	1.00	15.09	A
		ATOM	6368	NE2	GLN	Α	812	35.843	50.804	-10.723	1.00	14.88	A
		MOTA	6369	С	GLN	Α	812	34.995	53.534	-15.292	1.00	11.14	A
		MOTA	6370	0	GLN	Α	812	34.692		-14.670		11.87	A
4	4 0	MOTA	6371	N	PHE	Α	813	34.259	53.037	-16.282	1.00	10.54	А
		ATOM	6372	CA	PHE			32.999		-16.666		10.98	A
		ATOM	6373	CB	PHE			32.957		-18.170		11.42	A
		ATOM	6374	CG	PHE	А	813	33.707		-18.544		11.91	A
		MOTA	6375	CD1	PHE	A	813	35.098		-18.578		11.51	A
2	45	MOTA	6376		PHE			33.025		-18.795		12.99	А
		ATOM	6377		PHE			35.803		-18.851		11.25	A
		MOTA	6378		PHE			33.722		-19.070		12.39	A
		MOTA	6379	CZ	PHE			35.114		-19.096		11.92	A
1	-0	MOTA	6380	С	PHE			31.876		-16.261		11.59	A
;	50	MOTA	6381	0	PHE			31.889		-16.573		11.72	A
		ATOM	6382	N	ILE			30.914		-15.539		11.18	A
		ATOM	6383	CA	ILE			29.799		-15.037		11.06	A
		ATOM	6384	CB	ILE			29.722		-13.494		11.10	A
		ATOM	6385		ILE			29.416		-13.103		11.45	A
,	55	MOTA	6386	CG1	ILE	А	814	28.669	51.664	-12.931	1.00	11.83	А

		ATOM	6387	CD1	ILE A	Α	814	28.662	51.592	-11.402	1.00	11.69	A
		MOTA	6388	С	ILE :			28.487	52.933	-15.681	1.00	11.26	A
		ATOM	6389	0	ILE			28.261		-15.923	1.00	10.34	А
			6390	N	LYS			27.629		-15.967		11.46	A
	=	ATOM						26.343		-16.593		11.88	A
	5	ATOM	6391	CA	LYS .					-17.135		12.12	A
		MOTA	6392	СВ	LYS .			25.751					A
		MOTA	6393	CG	LYS .			24.392		-17.815		14.24	
		MOTA	6394	CD	LYS .			23.997		-18.420		16.46	A
		ATOM	6395	CE	LYS .	Α	815	22.678		-19.164		19.21	А
	10	MOTA	6396	NZ	LYS .	A	815	22.321		-19.780		20.77	A
		MOTA	6397	С	LYS .	Α	815	25.384	52.879	-15.603		11.66	A
		ATOM	6398	0	LYS .			25.252	52.423	-14.468	1.00	12.12	А
		ATOM	6399	N	ARG			24.733	53.953	-16.043	1.00	11.64	A
		ATOM	6400	CA	ARG			23.768	54.689	-15.232	1.00	11.48	A
	15	ATOM	6401	СВ	ARG			24.129		-15.165	1.00	11.74	А
	10	ATOM	6402	CG	ARG			25.517		-14.641		12.05	A
					ARG			25.687		-13.245		12.44	А
		ATOM	6403	CD				26.852		-12.560		11.57	A
		MOTA	6404	NE	ARG					-11.339		12.04	A
	20	MOTA	6405	CZ	ARG			27.222				10.85	A
	20	ATOM	6406		ARG			26.517		-10.691			A
. 145		MOTA	6407		ARG			28.281		-10.764		10.30	
194		MOTA	6408	С	ARG			22.400		-15.884		11.32	A
4,8 E		MOTA	6409	0	ARG			22.300		-17.105		10.94	A
		MOTA	6410	N	ARG			21.351		-15.073		11.27	A
	25	MOTA	6411	CA	ARG	Α	817	20.000		-15.615		12.22	A
Man.		MOTA	6412	CB	ARG	Α	817	19.293		-15.334		12.89	A
		MOTA	6413	CG	ARG	Α	817	17.827		-15.802		13.67	A
g) .		ATOM	6414	CD	ARG	Α	817	17.111		-15.632		14.62	A
		MOTA	6415	NE	ARG	Α	817	17.626	50.837	-16.532	1.00	15.59	A
	30	MOTA	6416	CZ	ARG	Α	817	18.366	49.804	-16.144	1.00	16.50	A
		MOTA	6417	NH1	ARG	Α	817	18.682	49.654	-14.864	1.00	17.15	Α
man.		ATOM	6418		ARG			18.793	48.919	-17.035	1.00	16.79	A
in in the second		ATOM	6419	С	ARG			19.213		-14.981	1.00	12.55	A
100		ATOM	6420	0	ARG			19.037		-13.764	1.00	12.99	А
	35	ATOM	6421	N	ARG			18.778		-15.805		12.88	A
7,000	55		6422	CA	ARG			17.983		-15.319		13.50	A
		MOTA			ARG			17.625		-16.469		13.33	A
		ATOM	6423	CB				16.925		-16.019		14.76	A
		MOTA	6424	CG	ARG					-17.186		15.79	A
	40	MOTA	6425	CD	ARG			16.277		-17.180		18.26	A
	40	MOTA	6426	NE	ARG			14.988				18.39	A
		MOTA	6427	CZ	ARG			14.714		-18.707			
		ATOM	6428		ARG			15.638		-19.659		16.54	A
		MOTA	6429	NH2	ARG			13.508		-18.920		19.11	A
		ATOM	6430	С	ARG	A	818	16.705		-14.754		13.51	A
	45	ATOM	6431	0	ARG			16.060		-15.421		14.71	A
		ATOM	6432	N	LEU	Α	819	16.350		-13.532		13.42	A
		ATOM	6433	CA	LEU	Α	819	15.146	57.007	-12.884		14.74	А
		ATOM	6434	CB	LEU	Α	819	15.511	56.302	-11.571		14.98	A
		MOTA	6435	CG	LEU	Α	819	16.430	55.080	-11.695	1.00	15.76	А
	50	ATOM	6436		LEU			16.851	54.606	-10.312		15.83	A
		ATOM	6437		LEU			15.714	53.972	-12.456	1.00	15.44	A
		ATOM	6438	C	LEU			14.180		-12.604	1.00	15.35	A
		ATOM	6439	0	LEU			14.431		-11.745	1.00	15.18	A
		ATOM	6440	N			820	13.068		-13.329		16.48	A
	55	ATOM	6441	CA			820	12.100		-13.138		17.08	А
		ATON	0441		1 10 L	7.7	020		0 0		_	_	

					707		000	1 1	111	E 0	271	-14.306	1 00	18.98	A
		MOTA	6442	CB	ASP A				.111					20.10	A
		MOTA	6443	CG	ASP A				.798			-15.635			
		ATOM	6444	OD1	ASP A	A	820		.762			-15.650		21.45	A
		MOTA	6445	OD2	ASP A	A	820	11	377			-16.665		22.62	A
	5	MOTA	6446	С	ASP A	A :	820	11	375	59.	106	-11.805		17.02	A
	•	ATOM	6447	0	ASP A			10	.710	60.	042	-11.360	1.00	16.56	A
		ATOM	6448	N	LYS A				.516			-11.157	1.00	16.60	A
		ATOM	6449	CA	LYS 2).875	57.		-9.862	1.00	16.60	A
					LYS).794		265	-9.505		17.21	А
	10	MOTA	6450	CB					2.139		579	-9.317		17.29	A
	10	MOTA	6451	CG	LYS						073	-9.157		16.45	A
		MOTA	6452	CD	LYS				1.970					16.98	A
		MOTA	6453	CE	LYS .				3.320	53.		-9.053		15.59	A
		MOTA	6454	ΝZ	LYS .				3.184	51.		-9.114			A
		MOTA	6455	С	LYS .				L.667		516	-8.798		16.66	
	15	MOTA	6456	0	LYS .				L.233		638	-7.655		16.84	A
		MOTA	6457	N	LEU .	Α	822	12	2.831		030	-9.187		15.85	A
		MOTA	6458	CA	LEU .	Α	822	13	3.667		804	-8.274		15.43	A
		ATOM	6459	СВ	LEU.	Α	822	15	5.088	59.	235	-8.234		14.68	A
4 (24)		ATOM	6460	CG	LEU	Α	822	15	5.220	57.	795	-7.723		14.77	A
	20	ATOM	6461		LEU			16	6.684	57.	370	-7.747		14.13	A
ij		ATOM	6462		LEU			14	4.657	57.	704	-6.308	1.00	13.61	А
		ATOM	6463	C	LEU				3.712	61.	257	-8.742	1.00	15.52	A
1971			6464	0	LEU				3.538		538	-9.928	1.00	15.57	A
		ATOM			PRO				3.940		202	-7.815		15.92	A
	25	MOTA	6465	И	PRO				4.103		039	-6.360		15.59	A
162	25	ATOM	6466	CD					3.999		617	-8.200		15.73	A
		MOTA	6467	CA	PRO				4.021		342	-6.857		15.56	A
₩.		MOTA	6468	CB	PRO						362	-5.955		16.99	A
E('		ATOM	6469	CG	PRO				4.721			-9.070		15.83	A
	•	MOTA	6470	С	PRO				5.221		927			16.38	A
T.	30	ATOM	6471	0	PRO				6.194		176			15.04	A
9 (9 (9)		ATOM	6472	N	LEU				5.157		043				
www.		MOTA	6473	CA	LEU				6.227			-10.687		14.32	A
3,1051		MOTA	6474	CB	LEU				5.976			-11.132		14.06	A
		ATOM	6475	CG	LEU	Α	824	1	6.746			-12.343		13.30	A
in in	35	MOTA	6476	CD1	LEU	А	824	1	5.995			-12.939		13.69	A
		MOTA	6477	CD2	LEU	Α	824	1	8.165			-11.931		12.50	A
		ATOM	6478	С	LEU			1	7.638	65.	.333	-10.101		14.34	A
		ATOM	6479	0	LEU	Α	824	1	8.513	64.	717	-10.713	1.00	13.76	A
		ATOM	6480	N	GLN				7.850	65.	903	-8.917		13.89	A
	40	ATOM		CA	GLN				9.164	65.	876	-8.273	1.00	14.21	A
	40		6482	CB	GLN				9.124		650	-6.952	1.00	13.86	A
		ATOM	6483	CG	GLN				8.152		.091			14.09	A
		ATOM			GLN				6.755		678			13.72	A
		ATOM	6484	CD OF1					6.340		.096			14.70	А
	4 =	ATOM	6485		GLN						. 697			12.85	A
	45	ATOM	6486		GLN				6.019					14.39	A
		MOTA	6487	С	GLN				9.711		.473			13.92	A
		ATOM	6488	0	GLN				0.928		.283			13.71	A
		MOTA	6489	Ñ	ALA.				8.819		.494				
		ATOM	6490	CA	ALA				9.241		.120			13.79	A
	50	MOTA	6491	CB	ALA				8.052		.283			14.08	A
		MOTA	6492	С	ALA	Α	826		9.842		.510			13.92	A
		ATOM	6493	0	ALA	Α	826	2	0.633		.563			14.14	A
		ATOM	6494	N	ASN			1	9.465			-10.058		13.45	A
		ATOM	6495	CA	ASN			1	9.974			-11.321		12.85	A
	55	ATOM	6496	СВ			827		8.910	61	.690	-12.412	1.00	14.30	A
		111 011	5.55												

		MOTA	6497	CG	ASN A	827	17.765	60.704 -12.234	1.00 15.77	A
		ATOM	6498	OD1	ASN A	827	17.962	59.491 -12.318	1.00 15.57	A
		MOTA	6499		ASN A		16.567	61.218 -11.972	1.00 16.77	А
		MOTA	6500	С	ASN A		21.290	62.200 -11.726	1.00 12.33	A
	5	ATOM	6501	0	ASN A		21.813	61.956 -12.812	1.00 11.17	A
	0	ATOM	6502	N	TYR A		21.820	63.046 -10.846	1.00 12.25	A
		ATOM	6503	CA	TYR A		23.109	63.677 -11.098	1.00 12.12	A
		ATOM	6504	CB	TYR A		23.200	65.057 -10.438	1.00 12.01	А
				CG	TYR A		23.230	66.205 -11.434	1.00 12.71	А
	10	ATOM	6505				22.160	66.432 -12.297	1.00 11.49	A
	10	ATOM	6506		TYR A			67.472 -13.230	1.00 12.16	A
		MOTA	6507		TYR A		22.191		1.00 12.10	A
		MOTA	6508		TYR A		24.338	67.051 -11.522	1.00 11.55	A
		MOTA	6509		TYR F		24.380	68.092 -12.450		A
		MOTA	6510	CZ	TYR F		23.306	68.297 -13.300	1.00 11.81	
	15	MOTA	6511	OH	TYR F		23.356	69.311 -14.231	1.00 12.90	A
		MOTA	6512	С	TYR F		24.151	62.747 -10.485	1.00 11.84	A
		ATOM	6513	0	TYR A		23.953	62.220 -9.387	1.00 11.86	A
		MOTA	6514	N	TYR A		25.246	62.540 -11.208	1.00 11.25	A
1000		ATOM	6515	CA	TYR A		26.330	61.674 -10.759	1.00 11.17	A
्री श्रेष्ट्री ्राष्ट्री	20	MOTA	6516	CB	TYR A	829	26.365	60.376 -11.576	1.00 11.21	A
		MOTA	6517	CG	TYR A	829	25.203	59.451 -11.315	1.00 11.79	А
		MOTA	6518	CD1	TYR A	829	24.042	59.516 -12.087	1.00 11.45	А
M		MOTA	6519	CE1	TYR A	829	22.945	58.691 -11.809	1.00 12.46	A
		ATOM	6520	CD2	TYR A	829	25.248	58.540 -10.261	1.00 11.44	A
160	25	ATOM	6521	CE2	TYR A	829	24.165	57.718 -9.973	1.00 12.38	A
W.		ATOM	6522	CZ		829	23.017	57.797 -10.745	1.00 12.11	A
		ATOM	6523	ОН	TYR A		21.944	56.993 -10.433	1.00 12.60	A
		ATOM	6524	C		829	27.676	62.365 -10.916	1.00 10.97	A
8: ave.		ATOM	6525	Ö		829	27.799	63.357 -11.630	1.00 10.60	A
J	30	ATOM	6526	N	PRO A		28.708	61.846 -10.239	1.00 10.67	A
١,Q	00	MOTA	6527	CD		830	28.721	60.751 -9.255	1.00 10.48	A
		MOTA	6528	CA		830	30.030	62.464 -10.363	1.00 10.76	A
j.z		ATOM	6529	CB		830	30.889	61.657 -9.386	1.00 11.38	A
		ATOM	6530	CG		4 830	29.906	61.114 -8.396	1.00 11.76	А
	35	ATOM	6531	C		4 830	30.534	62.284 -11.796	1.00 10.70	A
3	55	ATOM	6532	0		4 830	30.331	61.230 -12.400	1.00 10.23	А
			6533	N		4 831	31.179	63.309 -12.348	1.00 10.28	А
		MOTA		CA		4 831	31.765	63.194 -13.680	1.00 10.20	A
		ATOM	6534	CB		A 831	31.182	64.207 -14.704	1.00 10.32	A
	40	MOTA	6535		ILE A			63.865 -16.095	1.00 10.76	A
	40	ATOM	6536				31.702 29.648	64.174 -14.698	1.00 10.68	A
		ATOM	6537		ILE A			62.797 -15.006	1.00 10.20	A
		ATOM	6538		ILE A		29.035	63.524 -13.458	1.00 10.20	A
		ATOM	6539	С		A 831	33.240		1.00 10.32	A
	4	MOTA	6540	0		A 831	33.725	64.578 -13.870	1.00 10.57	A
	45	MOTA	6541	N		A 832	33.974	62.622 -12.786		
		MOTA	6542	CD		¥ 832	33.527	61.378 -12.135	1.00 11.09	A
		MOTA	6543	CA		A 832	35.393	62.875 -12.525	1.00 10.76	A
		ATOM	6544	СВ		4 832	35.807	61.697 -11.632	1.00 10.28	A
		MOTA	6545	CG		A 832	34.817	60.615 -11.981	1.00 11.64	A
	50	MOTA	6546	С	PRO .	A 832	36.286	63.046 -13.744	1.00 10.48	A
		MOTA	6547	0		A 832	37.273	63.773 -13.678	1.00 11.05	A
		MOTA	6548	N	SER .	A 833	35.954	62.395 -14.856	1.00 10.53	A
		ATOM	6549	CA	SER .	A 833	36.783	62.546 -16.049	1.00 10.75	A
		ATOM	6550	СВ	SER .	A 833	37.996	61.609 -15.981	1.00 11.44	А
	55	ATOM	6551	OG		A 833	37.643	60.273 -16.285	1.00 13.55	A

	ATOM	6552	С	SER	Α	833	36.051	62.330	-17.371	1.00 10	.87	A
	ATOM	6553	0	SER			36.581	62.672	-18.425	1.00 10	.60	A
	MOTA	6554	N	GLY			34.845		-17.327	1.00 10	.57	A
	ATOM	6555	CA	GLY			34.120	61.548	-18.569	1.00 10	.76	A
5	ATOM	6556	C	GLY			32.723		-18.454	1.00 10		А
J	ATOM	6557	0	GLY			32.341		-17.430	1.00 10	.04	А
	ATOM	6558	N	MET			31.959		-19.532	1.00 11		А
	ATOM	6559	CA			835	30.591		-19.588	1.00 11		A
		6560	CB			835	29.642		-18.952	1.00 12		A
10	MOTA	6561	CG	MET			29.507		-19.744	1.00 11		A
10	MOTA			MET			28.685		-18.832	1.00 13		A
	ATOM	6562	SD	MET			27.082		-18.510	1.00 13		A
	ATOM	6563	CE				30.216		-21.056	1.00 12		A
	ATOM	6564	C	MET					-21.030	1.00 11		A
16	ATOM	6565	0	MET			30.779		-21.343	1.00 11		A
15	ATOM	6566	N	PHE			29.277		-21.310	1.00 11		A
	ATOM	6567	CA	PHE			28.855			1.00 12		A
	MOTA	6568	CB	PHE			29.915		-23.481	1.00 11		A
	MOTA	6569	CG	PHE			30.074		-23.058			
20	ATOM	6570	CD1	PHE			29.200		-23.525	1.00 14		A
20	MOTA	6571	CD2	PHE			31.144		-22.253		.26	A
	ATOM	6572	CE1	PHE			29.392		-23.202		.21	A
	MOTA	6573	CE2	PHE			31.347		-21.921	1.00 15		A
	ATOM	6574	CZ	PHE			30.468		-22.398	1.00 15		A
	MOTA	6575	С	PHE			27.488		-22.820	1.00 12		A
25	MOTA	6576	0	PHE			26.971		-21.869	1.00 11		A
	MOTA	6577	N	ILE			26.887		-23.993	1.00 11		A
	MOTA	6578	CA	ILE			25.593		-24.303	1.00 12		A
	ATOM	6579	СВ	ILE			24.466		-24.403	1.00 11		A
	ATOM	6580	CG2	ILE			24.032		-23.007	1.00 11		A
30	MOTA	6581	CG1	ILE			24.920		-25.270	1.00 11		A
	MOTA	6582	CD1	ILE			23.771		-25.698	1.00 10		A
	MOTA	6583	С	ILE			25.758		-25.660	1.00 12		A
	MOTA	6584	0	ILE			26.612		-26.457	1.00 11		A
	MOTA	6585	N	GLU			24.955		-25.928		.26	A
35	ATOM	6586	CA	GLU			25.063		-27.203		.21	A
	MOTA	6587	CB	GLU			26.232		-27.153		.34	A
	MOTA	6588	CG			838	25.978		-26.166	1.00 15		A
	ATOM	6589	CD			838	27.091		-26.120	1.00 16		A
4.0	MOTA	6590	OE1	GLU			26.937		-25.382	1.00 18		A
40	MOTA	6591		GLU			28.114		-26.812	1.00 17		A
	ATOM	6592	C			838	23.807		-27.538	1.00 14		A
	MOTA	6593	0			838	22.977		-26.671	1.00 13		A
	MOTA	6594	N			839	23.655		-28.816	1.00 14		A
	ATOM	6595	CA			839	22.561		-29.240	1.00 15		A
4 5	MOTA	6596	CB			839	21.494		-30.085	1.00 15		A
	MOTA	6597	CG			839	22.061		-31.260	1.00 15		A
	ATOM	6598	OD1	ASP	A	839	23.091		-31.838	1.00 15		A
	MOTA	6599	OD2	ASP			21.434		-31.618	1.00 17		A
	ATOM	6600	С			839	23.267		-30.028	1.00 16		A
50	MOTA	6601	0			839	24.471		-29.859	1.00 15		A
	ATOM	6602	N			840	22.545		-30.882	1.00 16		A
	MOTA	6603	CA			840	23.160		-31.645	1.00 17		A
	MOTA	6604	CB			840	22.083		-32.418	1.00 18		A
	MOTA	6605	С	ALA	Α	840	24.258		-32.603	1.00 17		А
55	MOTA	6606	0	ALA	A	840	25.200	50.749	-32.871	1.00 17	.52	A

	n m OM	6607	NT	ASN A	0.4	1 24.164	52 733	-33.096	1.00 16.94	А
	ATOM	6607 6608		ASN F				-34.076	1.00 17.30	A
	ATOM	6609		ASN A				-35.377	1.00 18.50	A
	ATOM ATOM	6610		ASN A				-35.900	1.00 20.17	A
5	ATOM	6611		ASN A				-36.126	1.00 21.04	A
5	ATOM	6612		ASN A				-36.092	1.00 19.98	A
	ATOM	6613		ASN A		=		-33.725	1.00 16.82	A
	ATOM	6614	0	ASN A				-34.254	1.00 16.18	A
	ATOM	6615	N	THR A				-32.850	1.00 16.36	A
10	ATOM	6616	CA	THR A				-32.517	1.00 16.16	А
10	ATOM	6617	CB	THR A				-33.075	1.00 16.66	A
	ATOM	6618	OG1	THR A				-34.444	1.00 17.07	A
	ATOM	6619		THR A				-32.999	1.00 16.18	A
	ATOM	6620	C	THR A				-31.031	1.00 15.76	A
15	ATOM	6621	0	THR A				-30.190	1.00 16.36	A
15	ATOM	6622	N	ARG A				-30.718	1.00 14.94	A
	ATOM	6623	CA	ARG A			57.573	-29.335	1.00 13.57	A
	ATOM	6624	CB	ARG A		_		-28.775	1.00 13.32	A
	ATOM	6625	CG	ARG A			56.928	-27.375	1.00 12.73	A
20	MOTA	6626	CD	ARG I			56.075	-26.924	1.00 12.83	A
20	ATOM	6627	NE	ARG 2			54.696	-26.606	1.00 12.99	A
	MOTA	6628	CZ	ARG			53.820	-26.029	1.00 14.10	A
	ATOM	6629		ARG .			54.180	-25.705	1.00 13.39	A
	ATOM	6630		ARG .			52.581	-25.772	1.00 13.79	A
25	ATOM	6631	C	ARG .			58.954	-29.266	1.00 12.96	A
	ATOM	6632	0	ARG .			59.368	-30.177	1.00 12.57	A
	ATOM	6633	N	LEU .				-28.185	1.00 12.37	A
	ATOM	6634	CA	LEU .	A 84	28.969		-27.967	1.00 12.14	A
	ATOM	6635	CB	LEU .	A 84	27.890		-27.967	1.00 11.38	A
30	ATOM	6636	CG	LEU .	A 84	28.458		-27.823	1.00 11.36	A
	MOTA	6637	CD1	LEU	A 84			-29.005	1.00 11.45	A
	MOTA	6638	CD2	LEU	A 84	27.334		-27.757	1.00 11.60	A
	ATOM	6639	С	LEU	A 84			-26.598	1.00 11.63	A
	MOTA	6640	0	LEU				-25.601	1.00 11.42	A
35	ATOM	6641	N	THR	A 84			-26.553	1.00 11.41	A
	MOTA	6642	CA	THR				-25.295	1.00 11.95	A
	ATOM	6643	CB	THR				-25.357	1.00 12.35	A
	MOTA	6644	OG1					-25.721	1.00 13.45 1.00 12.11	A A
	ATOM	6645	CG2					-24.003	1.00 12.11	A
40	ATOM	6646	С	THR				-24.965	1.00 11.33	A
	MOTA	6647	0	THR				-25.808	1.00 11.72	A
	MOTA	6648	N	LEU				-23.732	1.00 11.76	A
	ATOM	6649	CA	LEU				-23.290	1.00 10.76	A
4=	ATOM	6650	СВ	LEU				-22.730 -22.148	1.00 10.70	A
45	MOTA	6651	CG	LEU					1.00 12.01	A
	MOTA	6652		LEU				-23.263 -21.471	1.00 12.00	A
	MOTA	6653		LEU				-22.196	1.00 10.28	A
	ATOM	6654	C	LEU				-21.161	1.00 10.20	A
Ε0	ATOM	6655	0	LEU				-22.443	1.00 10.60	A
50	ATOM	6656	N	LEU				-21.474	1.00 10.37	A
	ATOM	6657	CA	LEU LEU				-22.175	1.00 10.15	А
	MOTA	6658	CB	LEU				-22.922	1.00 9.45	A
	ATOM	6659	CG CD1	LEU				-22.070	1.00 8.42	A
EE	MOTA	6660 6661						-24.268	1.00 9.43	A
55	MOTA	6661	CDZ	LEU	нδ	41 20.402	02.510	21.200	2.00 3,10	

		n m∩m	6662	С	LEU	Δ	847	36.213	65.350	-20.774	1.00	11.19	A
		ATOM	6663	0	LEU			36.141		-21.401		10.50	A
		MOTA		N	THR			36.557		-19.487	1.00	9.84	A
		MOTA	6664	CA	THR			36.826		-18.722		10.43	A
	5	MOTA	6665	CB	THR			35.864		-17.535		11.02	A
	3	MOTA	6666 6667					36.281		-16.485		12.33	A
		ATOM			THR			34.448		-17.953		11.23	А
		ATOM	6668		THR			38.233		-18.147		10.77	A
		ATOM	6669	C O	THR			38.909		-17.958		10.97	А
	10	MOTA	6670		GLY			38.659		-17.869		10.37	А
	10	ATOM	6671	N	GLY			39.968		-17.289		10.72	А
		ATOM	6672	CA	GLY			39.792		-15.828		10.76	A
		ATOM	6673	С	GLY			40.719		-15.167		10.54	А
		ATOM	6674	0	GLI			38.580		-15.328		10.62	А
	1 🗉	ATOM	6675	N				38.250		-13.942		10.79	A
	15	ATOM	6676	CA	GLN GLN			38.049		-13.758		10.45	A
		ATOM	6677	CB				36.893		-14.578		10.58	A
		ATOM	6678	CG	GLN			37.197		-16.060		11.77	A
		MOTA	6679	CD CE1	GLN			38.292		-16.453		12.48	A
	20	ATOM	6680		GLN			36.220		-16.898		10.17	A
1	20	ATOM	6681		GLN			36.220		-13.552		11.10	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ATOM	6682	C	GLN			36.101		-14.394		10.49	A
M		ATOM	6683	0	GLN			36.838		-12.270		10.84	A
		MOTA	6684	N	PRO			37.835		-11.185		10.05	A
2 - FT. 10-17-17-17-17-17-17-17-17-17-17-17-17-17-	O.F.	ATOM	6685	CD	PRO			35.624		-11.839		10.83	A
5 % 5	25	ATOM	6686	CA	PRO			36.051		-10.534		10.06	A
	•	ATOM	6687	CB			851	37.021	67.017			10.19	А
		ATOM	6688	CG			851	34.484		-11.637		11.55	A
B:		MOTA	6689	C			851	34.668		-11.021		10.88	A
2/222 2/222	20	ATOM	6690	0			851 852	33.316		-12.171		11.38	A
	30	ATOM	6691	N			852	32.122		-12.075		11.58	A
		MOTA	6692	CA			852	32.015		-13.305		11.68	A
i ingi		ATOM	6693 6694	CB CG			852	33.136		-13.523		11.56	А
		MOTA	6695		LEU			33.028		-14.916		12.15	A
in a	35	MOTA			LEU			33.038		-12.458		11.06	A
7	33	MOTA	6696	CDZ			852	30.902		-12.012		11.91	A
		ATOM	6697				852	31.016		-12.247		12.75	А
		ATOM	6698 6699	О О			853	29.739		-11.694		11.21	A
		MOTA	6700	CA			853	28.537		-11.624		11.60	А
	40	ATOM	6701	CA			853	27.792		-12.949			А
	40	ATOM	6702	0			853	27.819		-13.682	1.00	11.22	A
		ATOM	6702	N			854	27.116		-13.265		11.53	А
		MOTA MOTA	6704	CA			854	26.398		-14.528		12.12	A
			6704	C			854	25.351		-14.623		12.05	A
	45	ATOM	6706	0			854	25.157		-13.684		11.99	A
	43	ATOM		N			855	24.680		-15.770		12.94	А
		MOTA	6707	CA			855	23.634		-15.976		13.86	А
		MOTA	6708				855	22.441		-15.065		14.27	A
		MOTA	6709	CB			855	21.402		-15.195		14.40	A
	50	MOTA	6710	OG C			855	23.162		-17.423		14.27	A
	50	MOTA	6711	С			855	23.716		-18.279		13.52	A
		MOTA	6712	O N				22.143		-17.675		14.72	A
		MOTA	6713	N			856 856	21.492		-18.978		14.69	A
		ATOM	6714	CA			856	21.432		-19.665		15.13	A
	==	MOTA	6715	CB				21.175		-20.915		15.73	A
	55	MOTA	6716	OG	SER	А	856	21.173	01.550	20.713	1.00	100	

						370			
		MOTA	6717	С	SER A 856	20.025	62.750 -18.560	1.00 15.42 1.00 14.82	A A
		MOTA	6718	0	SER A 856	19.469	61.702 -18.216	1.00 14.82	A
		MOTA	6719	N	LEU A 857	19.404	63.926 -18.570 64.041 -18.121	1.00 14.83	A
	_	ATOM	6720	CA	LEU A 857	18.023	65.444 -17.555	1.00 15.79	A
	5	ATOM	6721	CB	LEU A 857	17.787	65.766 -16.335	1.00 15.73	A
		ATOM	6722	CG	LEU A 857	18.656 18.423	67.199 -15.903	1.00 15.75	A
		ATOM	6723		LEU A 857	18.325	64.802 -15.193	1.00 16.82	A
		ATOM	6724	CD2 C	LEU A 857 LEU A 857	16.959	63.698 -19.153	1.00 15.01	A
	10	ATOM	6725 6726		LEU A 857	15.774	63.648 -18.831	1.00 16.21	A
	10	MOTA MOTA	6727	O N	ALA A 858	17.386	63.455 -20.384	1.00 14.17	A
		ATOM	6728	CA	ALA A 858	16.476	63.095 -21.463	1.00 15.27	A
		ATOM	6729	CB	ALA A 858	15.840	64.353 -22.080	1.00 14.55	A
		ATOM	6730	С	ALA A 858	17.287	62.348 -22.508	1.00 15.22	A
	15	MOTA	6731	Ö	ALA A 858	18.491	62.561 -22.631	1.00 15.05	А
	10	MOTA	6732	N	SER A 859	16.628	61.461 -23.247	1.00 15.43	A
		MOTA	6733	CA	SER A 859	17.300	60.690 -24.280	1.00 15.40	A
		ATOM	6734	СВ	SER A 859	16.272	59.883 -25.085	1.00 15.64	A
21/200		ATOM	6735	OG	SER A 859	16.898	59.143 -26.118	1.00 15.79	Α
	20	ATOM	6736	С	SER A 859	18.067	61.626 -25.208	1.00 15.90	А
ų.		ATOM	6737	0	SER A 859	17.551	62.673 -25.612	1.00 16.40	A
ų.		ATOM	6738	N	GLY A 860	19.300	61.249 -25.531	1.00 15.03	A
		MOTA	6739	CA	GLY A 860	20.128	62.051 -26.416	1.00 14.88	A
		MOTA	6740	С	GLY A 860	20.837	63.235 -25.778	1.00 14.74	A
	25	MOTA	6741	0	GLY A 860	21.556	63.971 -26.461	1.00 14.83	A
Amile Amile		MOTA	6742	N	GLU A 861	20.657	63.427 -24.477	1.00 14.40	A
(M		MOTA	6743	CA	GLU A 861	21.296	64.553 -23.802	1.00 14.66	A
21		MOTA	6744	СВ	GLU A 861	20.274	65.343 -22.982	1.00 15.09	A
	20	MOTA	6745	CG	GLU A 861	19.167	66.015 -23.771	1.00 15.73 1.00 16.26	A A
	30	MOTA	6746	CD	GLU A 861	18.274	66.866 -22.881	1.00 16.20	A
		ATOM	6747		GLU A 861	18.499	66.896 -21.648 67.507 -23.410	1.00 16.77	A
		MOTA	6748		GLU A 861	17.349 22.441	64.196 -22.864	1.00 14.50	A
1122		ATOM	6749	С	GLU A 861 GLU A 861	22.521	63.086 -22.338	1.00 13.85	A
ist lak	35	ATOM	6750 6751	O N	LEU A 862	23.321	65.171 -22.668	1.00 14.08	A
E 14000	33	ATOM ATOM	6752	N CA	LEU A 862	24.443	65.069 -21.740	1.00 14.26	A
		ATOM	6753	CB	LEU A 862	25.767	64.772 -22.452	1.00 13.73	А
		ATOM	6754	CG	LEU A 862	26.100	63.391 -23.028	1.00 13.69	A
		ATOM	6755		LEU A 862	27.463	63.459 -23.706	1.00 12.07	А
	40	MOTA	6756		LEU A 862	26.113	62.342 -21.933	1.00 13.40	A
		ATOM	6757	С	LEU A 862	24.516	66.467 -21.156	1.00 14.16	A
		MOTA	6758	Ō	LEU A 862	24.308	67.449 -21.870	1.00 14.09	A
		ATOM	6759	N	GLU A 863	24.773	66.574 -19.862	1.00 13.64	A
		ATOM	6760	CA	GLU A 863	24.902	67.893 -19.272	1.00 13.16	A
	45	MOTA	6761	CB	GLU A 863	23.535	68.453 -18.860	1.00 13.14	A
		MOTA	6762	CG	GLU A 863	23.007	68.027 -17.508	1.00 12.61	A
		MOTA	6763	CD	GLU A 863	21.683	68.701 -17.191	1.00 13.43	A
		MOTA	6764		GLU A 863	21.529	69.210 -16.061	1.00 14.53	A
	= 0	MOTA	6765		GLU A 863	20.792	68.719 -18.071	1.00 14.31	A
	50	ATOM	6766	C	GLU A 863	25.851	67.819 -18.094	1.00 12.83	A
		ATOM	6767	0	GLU A 863	25.918	66.807 -17.394	1.00 11.84	A A
		ATOM	6768	N	ILE A 864	26.600	68.894 -17.891 68.942 -16.814	1.00 12.45 1.00 12.34	A A
		ATOM	6769	CA	ILE A 864	27.574	68.477 -17.355	1.00 12.34	A
		ATOM	6770	CB	ILE A 864	28.953	69.390 -18.497	1.00 13.29	A
	55	MOTA	6771	CG2	ILE A 864	29.406	09.330 -10.437	1.00 10.00	4.4

	ATOM	6772	CG1	ILE A	Δ	864	29.979	68.411	-16.226	1.00 12.87	A
	ATOM	6773		ILE .			31.255	67.696	-16.632	1.00 15.03	A
	ATOM	6774		ILE .			27.626	70.363	-16.245	1.00 12.28	А
	ATOM	6775		ILE .			27.749	71.339	-16.989	1.00 12.71	A
5	ATOM	6776		MET .			27.506	70.466	-14.925	1.00 12.05	A
9	ATOM	6777		MET .			27.504	71.751	-14.229	1.00 12.26	A
	ATOM	6778		MET .			27.077		-12.773	1.00 12.43	A
	ATOM	6779		MET			26.485		-12.127	1.00 11.69	A
	ATOM	6780		MET			24.884		-12.872	1.00 13.86	A
10	ATOM	6781		MET			23.850		-12.046	1.00 12.21	A
10	ATOM	6782		MET			28.872	72.436	-14.273	1.00 12.23	A
	MOTA	6783		MET			29.903	71.792	-14.082	1.00 11.54	A
	ATOM	6784		GLN			28.869	73.748	-14.501	1.00 12.20	A
	ATOM	6785	CA	GLN			30.106	74.520	-14.592	1.00 12.17	A
15	ATOM	6786	СВ	GLN			29.973	75.568	-15.694	1.00 12.07	A
10	ATOM	6787	CG	GLN			29.638	74.959	-17.037	1.00 13.16	A
	ATOM	6788	CD	GLN			30.648	73.908	-17.455	1.00 13.74	A
	ATOM	6789		GLN			31.806	74.221	-17.750	1.00 13.62	A
	ATOM	6790		GLN			30.219	72.648	-17.468	1.00 12.85	A
20	ATOM	6791	C	GLN			30.501	75.186	-13.279	1.00 12.32	A
	ATOM	6792	0	GLN			31.672		-12.910	1.00 12.03	A
	ATOM	6793	N	ASP	Α	867	29.523		-12.595	1.00 12.35	A
	ATOM	6794	CA	ASP	Α	867	29.759		-11.303	1.00 12.58	A
	ATOM	6795	CB	ASP			30.532		-11.450	1.00 12.46	A
25	ATOM	6796	CG	ASP	Α	867	31.204		-10.147	1.00 12.23	A
	ATOM	6797	OD1	ASP	Α	867	31.032	77.471	-9.115	1.00 11.85	A
	ATOM	6798	OD2	ASP	Α	867	31.912		-10.157	1.00 12.76	A
	ATOM	6799	С	ASP	A	867	28.409		-10.664	1.00 13.58	A
	ATOM	6800	0	ASP	Α	867	27.371		-11.334	1.00 12.90	A
30	MOTA	6801	N	ARG	A	868	28.427	76.923	-9.363	1.00 13.40	A
	MOTA	6802	CA			868	27.210	77.183	-8.618	1.00 14.19	A
	MOTA	6803	CB	ARG	A	868	26.683	75.872	-8.023	1.00 13.52	A
	MOTA	6804	CG			868	27.697	75.114	-7.172	1.00 13.57	A
	MOTA	6805	CD			868	27.390	73.611	-7.182	1.00 13.30	A A
35	MOTA	6806	NE			868	26.035	73.331	-6.723	1.00 12.07 1.00 12.96	A
	MOTA	6807	CZ			868	25.714	73.036		1.00 12.90	A
	ATOM	6808		ARG			26.655	72.970		1.00 11.71	A
	ATOM	6809		ARG			24.445	72.822		1.00 11.83	A
40	MOTA	6810	C			868	27.513	78.189		1.00 14.32	A
40	MOTA	6811	0			868	28.536	79.167		1.00 14.46	A
	MOTA	6812	N			869	26.627 26.777	80.213		1.00 14.99	A
	MOTA	6813	CA			869		81.578		1.00 15.61	A
	MOTA	6814	CB			869	26.938 27.263	82.745		1.00 16.25	A
4.5	MOTA	6815	CG			. 869	27.203	84.039		1.00 18.29	A
45	MOTA	6816	CD			. 869	27.492	85.202		1.00 19.10	A
	ATOM	6817	NE			. 869	28.805	85.495		1.00 19.20	А
	ATOM	6818	CZ			869	29.870	84.718		1.00 19.53	A
	ATOM	6819		ARG			29.870	86.569		1.00 19.46	A
50	ATOM	6820		ARG			25.497	80.164		1.00 15.62	A
50	ATOM	6821	C			869	24.416	80.479			A
	ATOM	6822	O			869	25.629	79.749			A
	ATOM	6823	N			870 870	24.490	79.609			А
	ATOM	6824	CA			870	24.396	78.153			А
E E	MOTA	6825	CB			870	24.330	77.209			A
55	ATOM	6826	CG	пEО	r	2 0 / 0	74.477	, , , , , , ,			

		ATOM	6827	CD1	LEU .	A	870	24.773	75.815	-3.688	1.00 20.54	A
		ATOM	6828		LEU			23.056	77.244	-4.818	1.00 20.32	A
		ATOM	6829	C	LEU			24.583	80.530	-2.148	1.00 18.52	А
		ATOM	6830	0	LEU			25.576	80.523	-1.419	1.00 18.31	A
	5	ATOM	6831	N	ALA			23.529	81.308	-1.926	1.00 19.42	A
	5				ALA			23.496	82.259	-0.823	1.00 21.24	А
		ATOM	6832	CA					83.341	-1.109	1.00 20.93	A
		MOTA	6833	СВ	ALA			22.452			1.00 22.09	A
		MOTA	6834	C	ALA			23.244	81.658	0.556	1.00 22.09	A A
		MOTA	6835	0	ALA			23.668	82.223	1.563		
	10	MOTA	6836	N	SER			22.567	80.518	0.617	1.00 21.91	A
		MOTA	6837	CA	SER	A	872	22.272	79.922	1.914	1.00 21.65	A
		MOTA	6838	CB	SER	Α	872	20.769	79.658	2.034	1.00 23.19	А
		ATOM	6839	OG	SER	Α	872	20.338	78.730	1.055	1.00 26.58	A
		MOTA	6840	С	SER	Α	872	23.036	78.646	2.239	1.00 20.75	A
	15	ATOM	6841	0	SER	Α	872	23.617	78.005	1.364	1.00 19.55	A
		ATOM	6842	N	ASP			23.031	78.301	3.522	1.00 19.61	A
		MOTA	6843	CA	ASP			23.689	77.104	4.029	1.00 19.17	A
		ATOM	6844	CB	ASP			24.112	77.329	5.482	1.00 19.04	A
a change		ATOM	6845	CG	ASP			24.577	76.059	6.156	1.00 19.71	A
	20				ASP			23.811	75.502	6.971	1.00 19.93	А
	20	MOTA	6846					25.706	75.612	5.863	1.00 20.20	A
ı,Ö		MOTA	6847		ASP			22.696	75.948	3.945	1.00 18.75	A
112		MOTA	6848	C	ASP						1.00 18.42	A
3,945 3,945		ATOM	6849	0	ASP			21.498	76.154	4.135	1.00 13.42	A
100		MOTA	6850	N	ASP			23.183	74.742	3.660		
100	25	MOTA	6851	CA	ASP			22.299	73.585	3.551	1.00 17.33	A
Army Comp		MOTA	6852	CB	ASP			22.635	72.762	2.297	1.00 16.01	A
		MOTA	6853	CG	ASP			24.122	72.502	2.138	1.00 16.32	A
81		MOTA	6854	OD1	ASP	Α	874	24.901	72.857	3.052	1.00 15.05	A
		MOTA	6855	OD2	ASP	A	874	24.506	71.936	1.091	1.00 16.01	A
J	30	MOTA	6856	С	ASP	Α	874	22.248	72.681	4.788	1.00 17.97	A
i ini		MOTA	6857	0	ASP	Α	874	22.029	71.476	4.685	1.00 18.00	
		ATOM	6858	N	GLU	Α	875	22.460	73.284	5.953	1.00 18.50	
i de la constant de l		ATOM	6859	CA	GLU	Α	875	22.382	72.597	7.238	1.00 19.21	A
		ATOM	6860	СВ	GLU			20.910	72.346	7.585	1.00 21.54	A
la.	35	ATOM	6861	CG	GLU			20.038	73.592	7.559	1.00 25.14	A
3.	00	ATOM	6862	CD	GLU			18.589	73.289	7.885	1.00 27.52	A
		ATOM	6863		GLU			18.310	72.853	9.020	1.00 30.03	
		ATOM	6864		GLU			17.727	73.479	7.003	1.00 30.33	
				C	GLU			23.150	71.295	7.451	1.00 18.48	
	40	ATOM	6865					22.627	70.367		1.00 17.86	
	40	ATOM	6866	0	GLU				71.208	6.956	1.00 17.24	A
		MOTA	6867	N	ARG			24.380		7.180	1.00 16.73	
		ATOM	6868	CA	ARG			25.161	69.997	5.848	1.00 16.73	
		ATOM	6869	СВ	ARG			25.517	69.320		1.00 15.41	
		ATOM	6870	CG			876	24.312	68.684	5.133		
	45	MOTA	6871	CD			876	23.606	67.656	6.027	1.00 15.04	
		MOTA	6872	NE			876	22.518	66.949	5.348	1.00 14.38	
		MOTA	6873	CZ			876	21.355	67.497	4.999	1.00 14.98	
		MOTA	6874		ARG			21.107	68.776	5.259	1.00 12.60	
		MOTA	6875	NH2	ARG	A	876	20.435	66.759	4.389	1.00 14.55	
	50	MOTA	6876	С	ARG	Α	876	26.420	70.301	7.995	1.00 16.61	
	-	MOTA	6877	0			876	27.312	69.460	8.120	1.00 16.38	
		ATOM	6878	N			877	26.483	71.511	8.552	1.00 16.19	
		ATOM	6879	CA			877	27.619	71.887	9.375	1.00 16.15	A
		ATOM	6880	C.			877	28.605	72.908	8.829	1.00 15.84	А
	55	ATOM	6881	0			877	29.426	73.435	9.586	1.00 16.37	
		MION	0001	\circ	TILL	7.7	0,7	22.120		- ,		

	7 m 0 M	C000	NT.	LEU A	070	28.537	73.198	7.534	1.00 16.26	А
	ATOM	6882		LEU A		29.460	74.157	6.931	1.00 16.37	A
	MOTA	6883		LEU A		29.297	74.159	5.410	1.00 15.68	A
	ATOM	6884	CB CG	LEU A		30.187	75.111	4.605	1.00 15.99	А
=	ATOM	6885		LEU A		31.649	74.925	4.994	1.00 15.30	А
5	MOTA	6886				29.992	74.846	3.123	1.00 14.75	A
	MOTA	6887		LEU A		29.332	75.569	7.490	1.00 17.09	A
	MOTA	6888	С	LEU A		30.240	76.308	7.672	1.00 16.41	A
	MOTA	6889		LEU A		28.023	75.942	7.756	1.00 17.19	A
10	MOTA	6890	N	GLY A		27.757	77.257	8.315	1.00 18.15	A
10	ATOM	6891	CA	GLY A		27.737	78.419	7.342	1.00 18.91	A
	MOTA	6892	C	GLY A			79.574	7.760	1.00 19.29	A
	ATOM	6893	0	GLY A		27.929		6.047	1.00 13.25	A
	ATOM	6894	N	GLN A		27.798	78.122	5.028	1.00 18.43	A
	ATOM	6895	CA	GLN A		27.838	79.162	4.910	1.00 18.45	Ā
15	MOTA	6896	СВ	GLN A		29.244	79.774		1.00 18.43	A
	MOTA	6897	CG	GLN A		30.361	78.774	4.586		
	MOTA	6898	CD	GLN A		31.589	79.432	3.963	1.00 18.32 1.00 20.47	A A
	MOTA	6899	OE1	GLN A		31.611	79.730	2.764		A
	ATOM	6900		GLN A		32.609	79.670	4.776	1.00 16.53	
20	MOTA	6901	С	GLN A		27.424	78.615	3.670	1.00 18.38	A
	MOTA	6902	0	GLN A	880	27.389	77.399	3.455	1.00 18.09	A
	MOTA	6903	N	GLY A		27.095	79.527	2.763	1.00 18.10	A
	ATOM	6904	CA	GLY A	881	26.730	79.129	1.421	1.00 17.08	A
	MOTA	6905	С	GLY A		28.014	79.145	0.613	1.00 16.83	A
25	MOTA	6906	0	GLY A		29.110	79.108	1.175	1.00 16.96	A
	ATOM	6907	N	VAL A		27.887	79.203	-0.705	1.00 15.89	A
	ATOM	6908	CA	VAL A		29.045	79.236	-1.578	1.00 15.83	A
	MOTA	6909	CB	VAL A		29.014	78.059	-2.570	1.00 15.45	A
	MOTA	6910		VAL A		30.229	78.105	-3.476	1.00 15.71	A
30	MOTA	6911	CG2	VAL A		28.974	76.746	-1.800	1.00 15.61	A
	MOTA	6912	С	VAL A	882	28.998	80.558	-2.330	1.00 15.96	A
	MOTA	6913	0	VAL A		28.308	80.684	-3.338	1.00 15.41	A
	ATOM	6914	N	LEU A		29.727	81.542	-1.815	1.00 16.91	A
	MOTA	6915	CA	LEU A		29.761	82.872	-2.415	1.00 17.79	A
35	ATOM	6916	CB	LEU A	883	29.092	83.874	-1.467	1.00 18.67	A
	MOTA	6917	CG	LEU A	883	27.586	83.717	-1.225	1.00 19.39	A
	MOTA	6918	CD1	LEU A	883	27.161	84.532	-0.011	1.00 20.65	A
	ATOM	6919	CD2	LEU A	883	26.829	84.178	-2.453	1.00 20.59	A
	ATOM	6920	С	LEU A	883	31.184	83.331	-2.726	1.00 17.96	A
40	ATOM	6921	0	LEU A	883	31.420	84.518		1.00 19.51	A
	ATOM	6922	N	ASP A	884	32.126	82.393	-2.745	1.00 17.04	A
	MOTA	6923	CA	ASP A		33.521	82.716	-3.016	1.00 16.75	A
	MOTA	6924	СВ	ASP F		34.422	82.110	-1.934	1.00 17.01	A
	ATOM	6925	CG	ASP A	884	34.187	80.623	-1.738	1.00 17.63	A
4 5	ATOM	6926	OD1	ASP A		34.839	80.044	-0.842	1.00 17.95	A
	ATOM	6927		ASP A		33.358	80.035	-2.471	1.00 16.72	A
	ATOM	6928	С	ASP A		33.996	82.269	-4.395	1.00 16.25	A
	ATOM	6929	0	ASP A		35.171	81.958	-4.590	1.00 16.24	A
	ATOM	6930	N	ASN A		33.073	82.252	-5.350	1.00 15.54	A
50	ATOM	6931	CA	ASN A		33.380	81.857	-6.719	1.00 15.55	Α
90	ATOM	6932	СВ	ASN A		32.129	81.978	-7.584	1.00 15.27	A
	ATOM	6933	CG	ASN A		30.959	81.217	-7.014	1.00 16.04	A
	MOTA	6934		ASN A		30.708	80.069	-7.383	1.00 17.31	A
	ATOM	6935		ASN A		30.244	81.846	-6.089	1.00 14.69	A
55	ATOM	6936	C	ASN A		34.464	82.737	-7.316	1.00 15.81	A
	AT OF	0,550	_	22014 E						

The first two controls are the first two control

	ATOM	6937	0	ASN	Α	885	34.593	83.910	-6.964	1.00	15.21	А
	MOTA	6938	N	LYS	Α	886	35.234	82.163	-8.231	1.00	15.55	A
	ATOM	6939	CA	LYS	А	886	36.291	82.891	-8.911	1.00	16.47	A
	ATOM	6940	CB	LYS	Α	886	37.616	82.746	-8.154	1.00	18.07	A
5	MOTA	6941	CG	LYS	Α	886	38.108	81.316	-8.023	1.00	18.63	А
	ATOM	6942	CD	LYS			39.241	81.199	-7.009	1.00	20.71	А
	ATOM	6943	CE	LYS			40.446	82.032			20.48	А
	ATOM	6944	NZ	LYS			41.570	81.853			21.54	А
	ATOM	6945	C	LYS			36.402		-10.311		15.79	A
10	ATOM	6946	0	LYS			36.057		-10.535		16.23	A
10	ATOM	6947	N	PRO			36.870		-11.280		15.53	A
	ATOM	6948	CD	PRO			37.247		-11.189		15.01	A
	ATOM	6949	CA	PRO			37.003		-12.652		14.09	A
	ATOM	6950	CB	PRO			37.711		-13.363		15.12	A
15	ATOM	6951	CG	PRO			37.711		-12.629		15.47	A
13	ATOM	6952	C				37.793		-12.740		13.98	A
				PRO							14.06	
	ATOM	6953	0	PRO			38.849		-12.125			A
	ATOM	6954	N GT	LAV			37.261		-13.497		12.52	A
20	ATOM	6955	CA	VAL			37.927		-13.687		12.09	A
20	ATOM	6956	CB	VAL			37.300		-12.802		12.98	A
	ATOM	6957		VAL			35.794		-13.026		13.02	A
	ATOM	6958		VAL			37.959		-13.117		12.38	A
	MOTA	6959	С	VAL			37.833		-15.155		12.38	A
0.5	MOTA	6960	0	VAL			36.821		-15.815		12.49	A
25	ATOM	6961	N	LEU			38.898		-15.670		11.73	A
	MOTA	6962	CA	LEU			38.918		-17.056		11.82	А
	MOTA	6963	CB	LEU			40.252		-17.726		12.37	А
	ATOM	6964	CG	LEU			40.314		-19.208		12.93	A
20	ATOM	6965		LEU			39.392		-20.017		13.51	A
30	ATOM	6966	CD2	LEU			41.745		-19.728		14.04	А
	MOTA	6967	С	LEU	A	889	38.712	76.129	-17.114		11.67	A
	MOTA	6968	0	LEU	A	889	39.629		-16.818	1.00	11.61	A
	MOTA	6969	N	\mathtt{HIS}			37.503	75.708	-17.475	1.00	11.59	A
	MOTA	6970	CA	HIS	Α	890	37.195	74.286	-17.595	1.00	11.80	A
35	ATOM	6971	CB	HIS	Α	890	35.699	74.024	-17.405	1.00	11.62	A
	ATOM	6972	CG	HIS	А	890	35.227	74.185	-15.995	1.00	12.11	A
	ATOM	6973	CD2	HIS	Α	890	34.057	74.648	-15.495	1.00	11.32	A
	ATOM	6974	ND1	HIS	Α	890	35.981	73.797	-14.909	1.00	12.14	A
	ATOM	6975	CE1	HIS	А	890	35.296		-13.800	1.00	12.02	A
40	ATOM	6976	NE2	HIS	Α	890	34.125	74.530	-14.128	1.00	12.08	A
	ATOM	6977	С	HIS			37.582	73.832	-18.991	1.00	11.45	A
	ATOM	6978	0	HIS	A	890	37.374	74.565	-19.957	1.00	11.89	А
	ATOM	6979	N	ILE	Α	891	38.129	72.625	-19.105	1.00	11.16	A
	ATOM	6980	CA	ILE			38.527		-20.409	1.00	10.51	А
45	ATOM	6981	СВ	ILE			40.065		-20.529	1.00	9.62	A
	ATOM	6982		ILE			40.674		-20.275		10.29	А
	ATOM	6983		ILE			40.626		-19.515	1.00	9.60	А
	ATOM	6984				891 .	42.118		-19.709	1.00	9.63	A
	ATOM	6985	C	ILE			37.910		-20.685		10.45	A
50	ATOM	6986	0	ILE			37.677		-19.764		11.02	A
-0	ATOM	6987	N	TYR			37.644		-21.959	1.00	9.88	A
	ATOM	6988	CA	TYR			37.034		-22.374		10.43	A
	ATOM	6989	CB	TYR			35.499		-22.415		10.43	A
	ATOM	6990	CG	TYR			34.838		-21.247		10.62	A
55	ATOM	6991		TYR			34.830		-21.142	1.00	9.84	A
55	MIOM	U J J L	CDI	111/	M	U フム	24.010	11.000	71.147	1.00	J. U4	п

		7 M O M	(000	CE 1	TYR	71.	002	34.193	72 021	-20.056	1.00	10.41	A
		ATOM	6992					34.234		-20.241		10.00	A
		ATOM	6993		TYR			33.620		-19.159		11.35	A
		MOTA	6994		TYR			33.601		-19.068		10.30	A
		MOTA	6995	CZ	TYR					-17.986		10.40	A
	5	MOTA	6996	ОН	TYR			32.989				10.21	A
		MOTA	6997	С	TYR			37.446		-23.781		9.47	A
		MOTA	6998	0	TYR			38.067		-24.505	1.00		
		ATOM	6999	N	ARG			37.082		-24.151		11.39	A
		ATOM	7000	CA	ARG			37.275		-25.507		11.89	A
	10	ATOM	7001	CB	ARG			38.353		-25.595		11.65	A
		MOTA	7002	CG	ARG	Α	893	39.800		-25.503		12.03	A
		ATOM	7003	CD	ARG	Α	893	40.146		-26.559		12.81	A
		ATOM	7004	NE	ARG	A	893	40.179		-27.929		13.22	A
		ATOM	7005	CZ	ARG	Α	893	41.094		-28.402		13.50	A
	15	ATOM	7006	NH1	ARG	Α	893	42.072		-27.620		13.17	А
		MOTA	7007	NH2	ARG	Α	893	41.037		-29.666		13.35	A
		MOTA	7008	С	ARG	Α	893	35.901	66.470	-25.809		12.56	A
		MOTA	7009	0	ARG	Α	893	35.315		-24.951		12.29	A
21.000g		ATOM	7010	N	LEU	Α	894	35.371		-26.999		12.89	A
1,000	20	ATOM	7011	CA	LEU	Α	894	34.061		-27.387		13.29	A
4,14		ATOM	7012	СВ	LEU			33.136	67.373	3 -27.812		14.11	A
		ATOM	7013	CG	LEU	Α	894	31.689	66.956	-28.119		13.84	A
175		ATOM	7014		LEU			31.050	66.397	7 -26.859		15.01	A
		ATOM	7015		LEU			30.885	68.139	-28.631	1.00	14.69	A
	25	ATOM	7016	C	LEU			34.254	65.245	-28.541	1.00	13.05	A
	20	ATOM	7017	Ö	LEU			34.643	65.635	5 -29.642	1.00	13.01	A
		ATOM	7018	N	VAL			33.976	63.972	2 -28.278	1.00	13.11	A
		ATOM	7019	CA	VAL			34.166	62.92	7 -29.273	1.00	14.21	A
2 (1000).		ATOM	7020	СВ	VAL			35.048	61.789	9 -28.711	1.00	14.02	A
	30	ATOM	7021		VAL			35.395	60.802	2 -29.822	1.00	13.83	A
i Li	00	ATOM	7022		VAL			36.304	62.36	L -28.072	1.00	14.27	A
		ATOM	7023	C	VAL			32.884	62.283	1 -29.788	1.00	14.24	A
333		ATOM	7024	0	VAL			32.204	61.57	3 -29.047	1.00	14.21	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ATOM	7025	N			896	32.565		5 -31.056	1.00	14.43	А
i ala	35	ATOM	7026	CA			896	31.397	61.91	2 -31.690	1.00	15.16	A
5.	00	ATOM	7027	СВ			896	30.692		6 -32.632	1.00	16.09	A
		ATOM	7028	CG			896	29.533		5 -33.441	1.00	16.60	A
		ATOM	7029		LEU			28.388		1 -32.507	1.00	16.94	A
		ATOM	7020		LEU			29.055		3 -34.489	1.00	17.67	A
	40	ATOM	7030	C	LEU			31.967		6 -32.498	1.00	15.44	A
	40			0			896	32.934		4 -33.240		15.11	A
		ATOM	7032 7033	N			897	31.382		0 -32.348		15.78	A
		MOTA	7033	CA			897	31.882		9 -33.052		16.64	A
		MOTA	7034	CB			897	32.838		1 -32.157		17.33	А
	45	MOTA		CG			897	34.005		7 -31.591		18.67	А
	45	ATOM	7036				897	34.770		6 -30.583		18.78	А
		ATOM	7037	CD OF1	GLU GLU			34.189		5 -29.530		20.08	Α
		ATOM	7038					35.941		0 - 30.850		20.18	A
		ATOM	7039		GLU			30.789		6 -33.455		16.86	A
	E0	ATOM	7040	С			897 007	29.731		6 -32.834		16.37	A
	50	ATOM	7041	0			897	31.070		0 -34.491		17.54	A
		ATOM	7042	N			898			3 - 34.491		18.69	A
		MOTA	7043	CA			898	30.149		3 -34.933 7 -36.438		19.99	A
		ATOM	7044	CB			898	30.296		6 -37.323		21.82	A
		MOTA	7045	CG			898	29.903		6 -37.323 2 -37.034		24.25	A
	55	ATOM	7046	CD	LYS	A	898	28.480	56.98	Z -31.U34	1.00	24.43	А

								0.0					
		MOTA	7047	CE	LYS .	8 A	98	27.461		-37.177	1.00		A
		MOTA	7048	NZ	LYS .	A 8	398	26.080		-36.892	1.00		A
		MOTA	7049	С	LYS .	8 A	398	30.619	54.359	-34.145	1.00		A
		ATOM	7050	0	LYS .	8 A	398	31.815		-34.095	1.00		A
	5	ATOM	7051	N	VAL .	A 8	399	29.691		-33.517	1.00		A
		ATOM	7052	CA	VAL .	A 8	399	30.062		-32.720	1.00		A
		ATOM	7053	СВ	VAL .	A 8	399	29.804	52.759	-31.219	1.00		A
		ATOM	7054	CG1	VAL.	A 8	399	30.749	53.847	-30.719	1.00		A
		ATOM	7055	CG2	VAL	A 8	399	28.354	53.189	-31.009	1.00		A
	10	MOTA	7056	С	VAL			29.329	51.204	-33.117	1.00		A
		MOTA	7057	0	VAL			29.343	50.225	-32.375		16.80	A
		ATOM	7058	N	ASN	A 9	900	28.696	51.204	-34.286	1.00	18.17	A
		ATOM	7059	CA	ASN			27.960	50.022	-34.727	1.00	19.54	А
		MOTA	7060	СВ	ASN			27.149	50.336	-35.993	1.00	21.01	A
	15	ATOM	7061	CG	ASN			27.997	50.923	-37.096	1.00		A
	10	ATOM	7062		ASN			28.594	51.989	-36.935	1.00	24.04	A
		ATOM	7063		ASN			28.058	50.231	-38.230	1.00	23.54	A
		ATOM	7064	С	ASN			28.858	48.813	-34.979	1.00	19.41	A
		ATOM	7065	Ö	ASN			28.390	47.676	-34.950	1.00	19.92	А
	20	ATOM	7066	N	ASN			30.142	49.048	-35.226	1.00	18.98	A
	20	ATOM	7067	CA	ASN			31.067		-35.478	1.00	19.29	A
1		ATOM	7068	CB	ASN			32.053	48.310	-36.589	1.00	20.87	A
		MOTA	7069	CG	ASN			31.401		-37.948	1.00	23.08	A
		ATOM	7070		ASN			30.649		-38.315	1.00	24.77	A
	25	ATOM	7071		ASN			31.695	49.407	-38.712	1.00	24.33	A
	20	ATOM	7072	C	ASN			31.855	47.535	-34.243	1.00	18.73	A
ì		ATOM	7073	Ō	ASN			32.631	46.583	-34.288	1.00	18.51	A
•		ATOM	7074	N	CYS			31.660	48.251	-33.142	1.00	17.77	A
		ATOM	7075	CA	CYS			32.382	47.944	-31.913	1.00	17.80	A
	30	ATOM	7076	C	CYS			31.806	46.754	-31.162	1.00	17.57	A
ì	00	ATOM	7077	0	CYS			30.591	46.581	-31.087	1.00	18.35	A
		ATOM	7078	CB	CYS			32.370		-30.963	1.00	18.11	А
ā.		ATOM	7079	SG	CYS			33.114	50.689	-31.563	1.00	18.40	A
		MOTA	7080	N	VAL			32.688		-30.596	1.00	17.18	A
:	35	ATOM	7081	CA	VAL			32.258		-29.809	1.00	16.95	A
	00	ATOM	7082	СВ	VAL			33.354		-29.739	1.00	16.42	A
		ATOM	7083		VAL			32.911		-28.820	1.00	16.29	A
		ATOM	7084		VAL			33.643		-31.134	1.00	16.61	A
		ATOM	7085	C	VAL			31.993		-28.411	1.00	17.40	A
	40	ATOM	7086	0	VAL			32.924		-27.659	1.00	17.19	A
	40	ATOM	7087	N	ARG			30.721		-28.076	1.00	17.57	A
		ATOM	7088	CA	ARG			30.339		-26.781	1.00	19.09	A
		ATOM	7089	CB	ARG			29.312		-26.985	1.00	19.60	A
		ATOM	7090	CG	ARG			29.902		-27.636		20.55	A
	45	ATOM	7091	CD	ARG			28.834		-27.962		22.04	A
	40	ATOM	7092	NE	ARG			28.034		-29.123		22.98	A
		ATOM	7093	CZ	ARG			27.079		-29.649		24.10	A
			7093		ARG			26.807		-29.114		23.36	А
		MOTA	7094		ARG			26.402		-30.713		23.49	A
	EΩ	MOTA						29.778		-25.826		18.91	A
	50	ATOM	7096	C	ARG ARG			29.445		-26.233		19.16	A
		MOTA	7097	O N	PRO			29.684		-24.531		18.86	A
		ATOM	7098	N				30.225		-23.885		18.98	A
		ATOM	7099	CD	PRO			29.152		-23.530		18.75	A
		ATOM	7100	CA	PRO					-23.330		18.15	A
	55	ATOM	7101	CB	PRO	А	905	29.356	40.1//	-22.211	1.00	10.10	11

		ATOM	7102	CG	PRO A	905	30.531	46.064	-22.503	1.00 18.29	A
		ATOM	7103	С	PRO A	905	27.677	44.182	-23.811	1.00 19.11	А
		ATOM	7104	0	PRO A		27.020	45.011	-24.447	1.00 18.48	A
		ATOM	7105	N	SER A		27.156	43.052	-23.339	1.00 19.65	A
	5	ATOM	7106	CA	SER A		25.747	42.741	-23.548	1.00 20.62	A
	3	ATOM	7107	CB	SER A		25.405		-23.011	1.00 21.91	A
		ATOM	7108	OG	SER A		25.224		-21.605	1.00 23.95	A
			7100	C	SER A		24.911		-22.809	1.00 20.80	A
		MOTA		0	SER A		25.427		-21.988	1.00 19.32	A
	10	ATOM	7110		LYS A		23.615		-23.095	1.00 21.12	A
	10	ATOM	7111	N			22.692		-22.474	1.00 22.75	A
		ATOM	7112	CA	LYS A				-23.063	1.00 25.21	A
		ATOM	7113	CB	LYS A		21.291		-24.541	1.00 23.21	A
		MOTA	7114	CG	LYS A		21.187			1.00 20.17	A
		MOTA	7115	CD	LYS A		19.869	,	-25.156	1.00 30.78	A
	15	MOTA	7116	CE	LYS A		18.652		-24.398		A
		MOTA	7117	ΝZ	LYS A		18.558		-24.413	1.00 34.30	
		MOTA	7118	С	LYS A		22.631		-20.952	1.00 21.68	A
		MOTA	7119	0	LYS A		22.243		-20.272	1.00 22.39	A
		MOTA	7120	N	LEU A		23.023		-20.417	1.00 20.87	A
	20	MOTA	7121	CA	LEU A		22.972		-18.974	1.00 20.13	A
, (m)		MOTA	7122	CB	LEU A		22.543		-18.686	1.00 21.33	A
4600		MOTA	7123	CG	LEU A	908	21.169		-19.238	1.00 22.83	A
1,00		MOTA	7124	CD1	LEU A	908	20.891		-18.905	1.00 22.96	A
		MOTA	7125	CD2	LEU A	908	20.081		-18.650	1.00 23.40	A
	25	MOTA	7126	С	LEU A	908	24.271		-18.226	1.00 18.65	A
ii.		MOTA	7127	0	LEU A	908	24.307		-16.996	1.00 18.58	A
		MOTA	7128	N	HIS A	909	25.330	43.864	-18.962	1.00 17.27	A
B(ATOM	7129	CA	HIS A	909	26.618	44.178	-18.345	1.00 16.78	A
		ATOM	7130	CB	HIS A	909	27.719	44.152	-19.409	1.00 16.00	А
	30	ATOM	7131	CG	HIS A	909	29.093	43.939	-18.857	1.00 16.16	A
t dealt		ATOM	7132	CD2	HIS A		29.923	42.871	-18.927	1.00 15.42	A
il.		ATOM	7133		HIS A		29.764	44.899	-18.129	1.00 15.64	A
i edi		ATOM	7134		HIS A		30.948	44.432	-17.776	1.00 16.06	A
district the second		ATOM	7135		HIS A		31.070	43.203	-18.249	1.00 16.03	A
3,22	35	ATOM	7136	С	HIS A		26.535	45.561	-17.688	1.00 15.94	A
	00	ATOM	7137	0	HIS A		26.027	46.509	-18.286	1.00 15.96	A
		ATOM	7138	N	PRO A		27.028	45.689	-16.445	1.00 15.17	A
		ATOM	7139	CD	PRO A		27.462	44.595	-15.561	1.00 15.87	A
		ATOM	7140	CA	PRO A		27.004	46.958	-15.706	1.00 14.56	A
	40	MOTA	7141	СВ	PRO A		27.193	46.525	-14.246	1.00 14.78	A
	10	MOTA	7142	CG	PRO A		26.902	45.041	-14.247	1.00 15.77	A
		ATOM	7143	C	PRO A		28.076		-16.108	1.00 13.94	A
		ATOM	7144	0	PRO A		28.051		-15.642	1.00 14.38	A
		ATOM	7145	N	ALA A		29.016		-16.952	1.00 13.17	A
	45	ATOM	7146	CA	ALA A		30.095		-17.354	1.00 13.46	A
	40	ATOM	7147	CB	ALA A		31.445		-17.086	1.00 13.95	А
		ATOM	7148	CD	ALA A		30.049		-18.797	1.00 12.94	А
					ALA A		29.284		-19.621	1.00 12.72	А
		ATOM	7149	O N	GLY A		30.898		-19.081	1.00 13.06	A
	50	ATOM	7150	N			31.019		-20.415	1.00 13.02	A
	50	MOTA	7151	CA	GLY A		32.493		-20.413	1.00 13.32	A
		ATOM	7152	С	GLY A				-19.630	1.00 13.32	A
		MOTA	7153	0	GLY A		33.223		-21.865	1.00 13.24	A
		ATOM	7154	N	TYR A		32.941		-21.863 -22.148	1.00 12.99	A
		ATOM	7155	CA	TYR A		34.348			1.00 13.02	A
	55	MOTA	7156	CB	TYR A	913	35.067	49.804	-22.546	1.00 13.32	Λ.

		ATOM	7157	CG	TYR A	913	35.020	48.754 -21.462	1.00 13.68	А
		ATOM	7158		TYR A		34.023	47.782 -21.451	1.00 14.79	A
		ATOM	7159		TYR A		33.927	46.864 -20.409	1.00 14.26	А
		ATOM	7160		TYR A		35.929	48.780 -20.406	1.00 13.81	A
	5	ATOM	7161		TYR A		35.842	47.868 -19.358	1.00 14.11	А
	9	ATOM	7162	CZ	TYR A		34.835	46.916 -19.367	1.00 14.91	A
		ATOM	7163	OH	TYR A		34.717	46.030 -18.322	1.00 15.05	A
		ATOM	7164	C	TYR A		34.536	52.135 -23.243	1.00 12.69	A
		ATOM	7165	0	TYR A		33.729	52.235 -24.164	1.00 12.95	A
	10	ATOM	7166	N	LEU A		35.614	52.904 -23.130	1.00 12.39	А
	10	ATOM	7167	CA	LEU A		35.934	53.934 -24.110	1.00 11.88	Α
		ATOM	7168	CB	LEU A		36.920	54.953 -23.523	1.00 10.80	А
		ATOM	7169	CG	LEU A		36.488	55.845 -22.354	1.00 11.21	А
			7170		LEU A		37.606	56.837 -22.050	1.00 10.84	Α
	15	ATOM	7170		LEU A		35.199	56.589 -22.701	1.00 11.02	А
	15	ATOM	7172	C	LEU A		36.563	53.342 -25.361	1.00 12.53	А
		ATOM	7173	0	LEU A		37.001	52.185 -25.380	1.00 11.85	A
		MOTA	7173	N	THR A		36.594	54.162 -26.406	1.00 12.37	A
		ATOM	7175	CA	THR A		37.207	53.810 -27.674	1.00 12.90	A
	20	ATOM			THR A		36.520	54.514 -28.850	1.00 13.18	A
1,0	20	ATOM	7176	CB OC1	THR A		36.487	55.923 -28.588	1.00 14.07	A
		ATOM	7177	OG1	THR A		35.107	53.998 -29.050	1.00 13.81	A
		ATOM	7178				38.609	54.390 -27.571	1.00 13.07	A
		ATOM	7179	C	THR A		38.890	55.184 -26.674	1.00 13.07	A
ëga≓ Bë ë	25	ATOM	7180	0			39.479	54.004 -28.494	1.00 13.02	A
	25	ATOM	7181	N	SER A		40.846	54.504 -28.517	1.00 13.02	A
Maria Maria		MOTA	7182	CA	SER A		41.584	53.933 -29.727	1.00 14.65	A
		ATOM	7183	CB	SER A		42.822	54.591 -29.917	1.00 14.03	A
Ri		ATOM	7184	OG	SER A		40.883	56.031 -28.580	1.00 13.17	A
	30	ATOM	7185	C	SER A		41.628	56.672 -27.842	1.00 11.89	A
	30	ATOM	7186	O	ALA A		40.074	56.611 -29.463	1.00 12.45	A
144		MOTA	7187	N	ALA A		40.074	58.065 -29.620	1.00 12.29	A
i izi		MOTA	7188	CA	ALA A		39.113	58.451 -30.764	1.00 13.11	A
4.750 4.750 4.750		ATOM	7189	CB C	ALA A		39.609	58.771 -28.343	1.00 12.12	A
E.	25	ATOM	7190 7191	_	ALA A		40.201	59.779 -27.951	1.00 11.03	A
100	35	ATOM		O N	ALA A		38.569	58.248 -27.702	1.00 11.73	A
		ATOM	7192	N	ALA A		38.060	58.851 -26.474	1.00 11.66	A
		ATOM	7193	CA	ALA A		36.761	58.174 -26.062	1.00 11.10	A
		MOTA	7194 7195	CB C	ALA A		39.089	58.747 -25.353	1.00 11.78	A
	40	MOTA			ALA A		39.261	59.675 -24.555		A
	40	MOTA	7196				39.773	57.612 -25.289	1.00 10.86	A
		ATOM	7197	N	HIS A		40.785	57.409 -24.262		A
		MOTA	7198	CA	HIS A		41.281	55.959 -24.287	1.00 11.67	A
		ATOM	7199	CB	HIS A		42.386	55.683 -23.315	1.00 13.50	A
	45	ATOM	7200	CG	HIS A		42.420	55.735 -21.963	1.00 13.61	A
	45	MOTA	7201		HIS A		43.658	55.331 -23.716	1.00 13.89	A
		ATOM	7202		HIS A		43.638	55.180 -22.654	1.00 13.39	A
		ATOM	7203		HIS A			55.420 -21.577	1.00 14.91	A
		ATOM	7204		HIS A		43.701	58.376 -24.473		A
	ΕO	ATOM	7205	C	HIS A		41.952	59.037 -23.532		Ā
	50	ATOM	7206	0	HIS P		42.399	58.473 -25.706		A
		ATOM	7207	N	LYS A		42.440	59.378 -25.979		A
		ATOM	7208	CA	LYS F		43.547	59.215 -27.421		A
		ATOM	7209	CB	LYS F		44.042			A
		MOTA	7210	CG	LYS F		44.909			A
	55	MOTA	7211	CD	LYS F	920	45.591	57.946 -28.978	1.00 13.37	А

		MOTA	7212	CE	LYS	Α	920	46.543	56.769	-29.089	1.00 1	15.56	A
		ATOM	7213	NZ	LYS			47.665	56.868	-28.111	1.00 1	L6.03	A
		ATOM	7214	C	LYS			43.145	60.823	-25.712	1.00 1	11.83	A
		ATOM	7215	0	LYS			43.962	61.623	-25.251	1.00	11.38	A
	5	ATOM	7216	N	ALA			41.886		-25.989	1.00	11.22	Α
	5	ATOM	7217	CA	ALA			41.399		-25.757	1.00	11.42	A
			7217	CB	ALA			39.972		-26.297	1.00		A
		ATOM			ALA			41.443		-24.256	1.00		A
		ATOM	7219	C				41.443		-23.841	1.00		A
	10	MOTA	7220	0	ALA			41.085		-23.439	1.00		A
	10	ATOM	7221	N	SER					-21.992	1.00		A
		MOTA	7222	CA	SER			41.120			1.00		A
		MOTA	7223	CB	SER			40.574		-21.263	1.00	9.29	A
		MOTA	7224	OG	SER			40.661		-19.855			
		MOTA	7225	С	SER			42.560		-21.547	1.00		A
	15	MOTA	7226	0	SER			42.824		-20.709	1.00		A
		ATOM	7227	N	GLN			43.493		-22.113	1.00		A
		MOTA	7228	CA	GLN			44.897		-21.755	1.00		A
		MOTA	7229	CB	GLN	Α	923	45.740		-22.404	1.00		A
:		ATOM	7230	CG	GLN	Α	923	45.413		-21.923	1.00		A
	20	MOTA	7231	CD	GLN	Α	923	46.344		-22.518	1.00		A
		MOTA	7232	OE1	GLN	Α	923	46.500	58.031	-23.738	1.00		A
		ATOM	7233		GLN			46.973	57.294	-21.659	1.00	11.02	A
		ATOM	7234	С	GLN			45.433	63.023	-22.157	1.00	11.58	Α
		ATOM	7235	0	GLN			46.312	63.566	-21.486	1.00	11.23	A
	25	ATOM	7236	N	SER			44.902		-23.241	1.00	11.01	A
	20	ATOM	7237	CA	SER			45.343		-23.704	1.00	12.31	А
		ATOM	7238	CB	SER			44.727		-25.069	1.00	13.21	A
			7239	OG	SER			43.363		-24.936	1.00		A
		MOTA		C	SER			44.948		-22.702	1.00		A
	20	MOTA	7240		SER			45.590		-22.625	1.00		А
	30	ATOM	7241	0	LEU			43.886		-21.944	1.00		A
		ATOM	7242	N	LEU			43.408		-20.950		11.62	A
		ATOM	7243	CA	LEU			41.892		-20.759		12.13	A
		ATOM	7244	CB						-21.977		11.95	A
	0.5	MOTA	7245	CG	LEU			41.000		-21.645		11.65	A
	35	ATOM	7246		LEU			39.552		-22.387	1.00		A
		MOTA	7247	CD2				41.101		-19.593		11.32	A
		ATOM	7248	С	LEU			44.092				11.10	A
		ATOM	7249	0	LEU			44.483		-18.962		10.58	A
		MOTA	7250	N	LEU			44.240		-19.148			
	40	MOTA	7251	CA	LEU			44.837		-17.843			A
		MOTA	7252	CB	LEU			44.268		-17.257		10.32	A
		ATOM	7253	CG	LEU			42.756		-17.008		11.66	A
		ATOM	7254	CD1	LEU	Α	926	42.337		-16.410		11.49	A
		MOTA	7255	CD2	LEU			42.385		-16.070		12.14	A
	45	MOTA	7256	С	LEU	Α	926	46.356		-17.808		11.34	A
		MOTA	7257	0	LEU	Α	926	46.962		-16.795		11.49	A
		MOTA	7258	N	ASP	Α	927	46.975		-18.897		10.72	A
		MOTA	7259	CA			927	48.430		-18.928		11.43	A
		ATOM	7260	СВ			927	48.847	62.968	-18.666		10.70	A
	50	ATOM	7261	CG			927	48.500		-17.260		11.69	A
		ATOM	7262		ASP			49.209	62.924	-16.315		10.68	А
		MOTA	7263		ASP			47.509		-17.098	1.00	11.79	A
		MOTA	7264	C			927	49.022		-20.238	1.00	10.90	A
		ATOM	7265	0			927	49.586		-21.015		10.70	A
	55	ATOM	7266	N			928	48.900		-20.493		11.75	A
	55	MION	1200	TA	1 110	~ \	220	10.500					

	ATOM	7267	CD	PRO P	928	48.353	67.244 -19.583	1.00 11.72	А
	ATOM	7268	CA	PRO F		49.418	66.837 -21.714	1.00 11.93	A
	ATOM	7269	CB	PRO F		48.776	68.218 -21.688	1.00 12.47	A
	ATOM	7270	CG	PRO F		48.823	68.550 -20.232	1.00 12.47	A
5	MOTA	7271	C	PRO F		50.932	66.928 -21.666	1.00 12.77	A
9		7271		PRO P		51.550	66.661 -20.632	1.00 11.93	
	MOTA	7273	0					1.00 12.15	A
	ATOM		N	LEU A		51.531	67.305 -22.790		A
	ATOM	7274	CA	LEU A		52.972	67.475 -22.829	1.00 11.78	A
10	ATOM	7275	CB	LEU P		53.441	67.845 -24.238	1.00 11.20	A
10	ATOM	7276	CG	LEU F		53.239	66.863 -25.387	1.00 10.78	A
	ATOM	7277		LEU A		53.803	67.478 -26.667	1.00 10.05	A
	ATOM	7278		LEU A		53.945	65.545 -25.076	1.00 10.07	A
	ATOM	7279	C	LEU A		53.282	68.645 -21.904	1.00 11.69	A
15	MOTA	7280	0	LEU P		52.479	69.568 -21.778	1.00 12.26	A
15	ATOM	7281	N	ASP A		54.433	68.598 -21.245	1.00 11.94	A
	ATOM	7282	CA	ASP A		54.852	69.694 -20.381	1.00 12.26	A
	MOTA	7283	CB	ASP A		55.596	69.151 -19.167	1.00 11.95	A
	ATOM	7284	CG	ASP A		54.766	68.167 -18.392	1.00 12.69	A
20	MOTA	7285		ASP F		53.734	68.594 -17.835	1.00 12.39	A
20	MOTA	7286		ASP A		55.134	66.973 -18.357	1.00 11.41	A
	MOTA	7287	С	ASP A		55.778	70.558 -21.227	1.00 12.84	A
	MOTA	7288	0	ASP F		56.532	70.039 -22.052	1.00 13.10	A
	MOTA	7289	N	LYS A		55.723	71.870 -21.025	1.00 12.78	A
25	ATOM	7290	CA	LYS A		56.542	72.789 -21.807	1.00 13.16	A
25	ATOM	7291	CB	LYS A		55.630	73.733 -22.600	1.00 13.75	A
	MOTA	7292	CG	LYS A		54.632	73.015 -23.505	1.00 13.74	A
	ATOM	7293	CD	LYS A		53.724	74.003 -24.235	1.00 15.47	A
	MOTA	7294	CE	LYS A		52.865	74.794 -23.260	1.00 16.58	A
20	ATOM	7295	ΝZ	LYS A		51.992	75.781 -23.944	1.00 16.56	A
30	ATOM	7296	С	LYS A		57.512	73.605 -20.964	1.00 13.32	A
	ATOM	7297	0	LYS A		57.118	74.237 -19.985	1.00 13.84	A
	ATOM	7298	N	PHE A		58.780	73.606 -21.371	1.00 13.15	A
	ATOM	7299	CA	PHE A		59.822	74.337 -20.659	1.00 12.96	A
25	MOTA	7300	CB	PHE A		60.893	73.374 -20.136	1.00 12.56	A
35	ATOM	7301	CG	PHE A		60.359	72.279 -19.260	1.00 13.12	A
	ATOM	7302	CD1			59.737	71.165 -19.814	1.00 13.77	A
	ATOM	7303		PHE A		60.501	72.351 -17.877	1.00 14.17	A
	ATOM	7304		PHE A		59.266	70.129 -19.002	1.00 14.15	A
40	ATOM	7305		PHE A		60.035	71.327 -17.056	1.00 14.64 1.00 14.94	A
40	ATOM	7306	CZ			59.416	70.213 -17.619		A
	MOTA	7307	C	PHE A		60.509	75.378 -21.544	1.00 12.75	A
	ATOM	7308	0	PHE A		60.875	75.090 -22.678	1.00 12.07	A
	ATOM	7309	N	ILE A		60.674	76.589 -21.018	1.00 12.97	A
45	ATOM	7310	CA	ILE A		61.343	77.668 -21.750	1.00 12.57	A
40	ATOM	7311	CB	ILE A		60.542	78.986 -21.685	1.00 12.77	A
	ATOM	7312		ILE A		61.264	80.066 -22.486	1.00 11.64	A
	MOTA	7313		ILE A		59.118	78.771 -22.204	1.00 12.09	A
	ATOM	7314		ILE A		58.212	79.983 -22.024	1.00 12.14	A
50	ATOM	7315	C	ILE A		62.696	77.921 -21.084	1.00 13.11	A
30	MOTA	7316	0	ILE A		62.749	78.206 -19.888	1.00 13.09	A
	ATOM	7317	N	PHE A		63.786	77.816 -21.842	1.00 13.10	A
	ATOM	7318	CA	PHE A		65.107	78.047 -21.265	1.00 14.56	A
	MOTA	7319	CB	PHE A		66.205	77.743 -22.286	1.00 14.68	A
55	ATOM	7320	CG CD1	PHE A		67.580	77.722 -21.690	1.00 15.61	A
55	MOTA	7321	CDI	PHE A	. 934	67.960	76.697 -20.828	1.00 15.02	А

	ATOM	7322	CD3	סנום	7\	024	68.481	70 75/	-21.952	1 00	15.60	А
	ATOM	7323		PHE PHE			69.220		5 -20.227		16.49	A
	ATOM	7324	CE2	PHE			69.742		1 -21.360		16.52	A
	ATOM	7324	CZ	PHE			70.113		21.300		16.83	A
5	ATOM	7326	C	PHE			65.202		5 -20.808		15.07	A
0	ATOM	7327	0	PHE			64.926		2 -21.581		14.45	A
	ATOM	7328	N	ALA			65.597		1 -19.554		16.05	A
	ATOM	7329	CA	ALA			65.682		7 -18.978		17.74	A
	ATOM	7330	CB	ALA			65.734		7 -17.458		18.05	A
10		7331		ALA					5 - 19.468		19.42	
10	ATOM ATOM		C				66.825					A
		7332	O N	ALA			66.605		3 -19.805		20.11	A
	MOTA	7333	N	GLU			68.038		1 -19.500		19.30	A
	ATOM	7334	CA	GLU			69.213		3 -19.927		20.81	A
15	ATOM	7335	CB	GLU			70.488		9 -19.485		21.98	A
15	ATOM	7336	CG	GLU			70.651		9 -17.975		24.47	A
	ATOM	7337	CD	GLU			71.765		3 -17.592		26.26	A
	ATOM	7338		GLU			71.580		7 -17.761		26.72	A
	ATOM	7339	OE2	GLU			72.829		7 -17.131		27.77	A
20	ATOM	7340	C	GLU			69.252) -21.437		20.69	A
20	MOTA	7341	0	GLU			68.439		-22.180		20.44	A
	MOTA	7342	N	ASN			70.204		-21.889		20.78	A
	ATOM	7343	CA	ASN			70.318		-23.311		21.36	A
	MOTA	7344	СВ	ASN			71.173		-23.544		22.75	A
25	MOTA	7345	CG	ASN			70.505		5 -23.033		24.01	A
25	ATOM	7346		ASN			69.288		2 -23.152		23.86	A
	ATOM	7347		ASN			71.298) -22.477		25.45	A
	MOTA	7348	С	ASN			70.888		5 -24.101		21.20	A
	MOTA	7349	0	ASN			70.477		-25.236		21.22	A
20	MOTA	7350	N	GLU			71.827		-23.507		21.16	A
30	ATOM	7351	CA	GLU			72.426		2 -24.189		22.06	A
	MOTA	7352	СВ	GLU			73.828		-24.700		23.73	A
	ATOM	7353	CG	GLU			74.576		-25.276		26.61	A
	ATOM	7354	CD	GLU			75.794		2 -26.085		29.03	A
25	MOTA	7355	OE1	GLU			76.633		-25.569		30.78	A
- 35	ATOM	7356	OE2	GLU			75.913		2 -27.238		30.10	A
	ATOM	7357	С	GLU			72.501		-23.327		21.20	A
	MOTA	7358	0	GLU			72.890		3 -22.159		21.04	A
	MOTA	7359	N	TRP			72.122		3 -23.923		21.05	A
40	ATOM	7360	CA	TRP			72.140) -23.240		20.83	A
40	MOTA	7361	СВ	TRP			70.826		5 -23.509		19.37	A
	MOTA	7362	CG	TRP					3 -22.853		17.33	A
	ATOM	7363		TRP					3 -23.011		16.09	A
	ATOM	7364		TRP			69.929		-22.225		16.09	A
45	ATOM	7365		TRP			68.432		-23.743		15.61	А
45	ATOM	7366		TRP			71.596		2 -22.000		17.03	A
	MOTA	7367		TRP			71.137		-21.618		16.57	A
	ATOM	7368		TRP			69.079		-22.150		15.03	А
	ATOM	7369		TRP			67.585		-23.669		15.11	A
	MOTA	7370	CH2	TRP			67.915	71.543	3 -22.876		14.62	A
50	ATOM	7371	С	TRP			73.329	75.971	-23.764		21.47	A
	ATOM	7372	0	TRP			73.244		2 -24.799		21.83	A
	ATOM	7373	N	ILE			74.442		-23.047		22.34	A
	MOTA	7374	CA	ILE			75.652		-23.449		23.09	А
	MOTA	7375	СВ	ILE			76.883		-22.715		23.89	A
55	ATOM	7376	CG2	ILE	A	940	78.139	75.154	-23.108	1.00	24.48	А

The first live time that the first first in the same time time that the first

							00 2				
		ATOM	7377	CG1	ILE A	940	77.034	77.399	-23.064	1.00 24.81	A
		ATOM	7378		ILE A		78.176	78.092	-22.348	1.00 25.61	A
		ATOM	7379	C	ILE A		75.548	73.836		1.00 22.56	A
		ATOM	7380	0	ILE A		75.178	73.418		1.00 23.32	A
	5	ATOM	7381	N	GLY A		75.865	73.032		1.00 22.27	A
	9		7382	CA	GLY A		75.806	71.589		1.00 21.71	A
		ATOM			GLY A		74.420	71.002		1.00 21.38	A
		MOTA	7383	С			74.192	69.822		1.00 20.47	А
		MOTA	7384	0	GLY A		73.497	71.819		1.00 20.82	A
	10	MOTA	7385	N	ALA A		72.127		-24.990	1.00 20.86	A
	10	MOTA	7386	CA	ALA A			72.534		1.00 20.40	A
		MOTA	7387	СВ	ALA A		71.307		-25.920	1.00 20.40	A
		MOTA	7388	С	ALA A		72.023		-25.920 -26.904	1.00 20.70	A
		MOTA	7389	0	ALA A		72.756			1.00 20.76	A
		MOTA	7390	Ν	GLN A		71.101		-25.600	1.00 20.30	A
	15	ATOM	7391	CA	GLN A		70.868		-26.409	1.00 20.90	A A
		MOTA	7392	CB	GLN A		71.085		-25.575		
		MOTA	7393	CG	GLN A		72.449		-24.900	1.00 24.32	A
		MOTA	7394	CD	GLN A	943	72.713		-24.187	1.00 26.18	A
2:32	7. 7.	MOTA	7395	OE1	GLN A		71.852		-23.469	1.00 27.65	A
	20	ATOM	7396	NE2	GLN A	943	73.912		-24.373	1.00 26.08	A
7: imi	ř	ATOM	7397	С	GLN A	943	69.437		-26.936	1.00 20.33	A
1,55		MOTA	7398	0	GLN A	943	68.570		-26.325	1.00 19.79	A
1,11		ATOM	7399	N	GLY A	944	69.184		-28.061	1.00 19.43	A
300	į.	ATOM	7400	CA	GLY A	944	67.862		-28.656	1.00 19.33	А
man Mali	25	ATOM	7401	С	GLY A		66.799		-28.246	1.00 19.13	A
90	ļ	ATOM	7402	0	GLY A	944	65.624		-28.546	1.00 18.88	A
	È	ATOM	7403	N	GLN A	945	67.179		-27.557	1.00 18.55	A
8		ATOM	7404	CA	GLN A	945	66.181		-27.185	1.00 18.84	А
41 41 41		ATOM	7405	СВ	GLN A		65.800	63.702	-28.438	1.00 20.33	A
	30	ATOM	7406	CG	GLN A		64.869		-28.233	1.00 22.92	A
i de la companya de l		ATOM	7407	CD	GLN A		64.602	61.784	-29.534	1.00 24.47	A
19	.	ATOM	7408	OE1			63.852	62.257	-30.393	1.00 25.99	A
	=	ATOM	7409	NE2			65.231		-29.693	1.00 25.24	A
4		ATOM	7410	С	GLN A		66.631	63.539	-26.085	1.00 18.08	A
1.5	35	ATOM	7411	Ō	GLN A		67.823	63.289	-25.907	1.00 17.45	A
	00	ATOM	7412	N	PHE A		65.653	63.023	-25.348	1.00 16.69	A
		ATOM	7413	CA	PHE A		65.890	62.056	-24.288	1.00 16.10	А
		MOTA	7414	CB	PHE A		65.869	62.717	-22.906	1.00 16.05	А
		ATOM	7415	CG	PHE A		65.756	61.730	-21.774	1.00 16.43	A
	40	ATOM	7416		PHE A		66.783		-21.518	1.00 16.58	A
	10	ATOM	7417		PHE A		64.595		-21.008	1.00 16.91	A
		ATOM	7418		PHE A		66.657		-20.514	1.00 17.50	A
		ATOM	7419		PHE A		64.454		-20.003	1.00 17.48	A
			7420	CZ	PHE A		65.489		-19.755	1.00 17.10	A
	45	MOTA	7420	C	PHE A		64.793		-24.345	1.00 15.93	A
	43	MOTA	7421	0	PHE A		63.613		-24.472	1.00 15.13	A
		MOTA	7423	N	GLY A		65.189		-24.256	1.00 16.02	A
		ATOM			GLY A		64.226		-24.275	1.00 15.95	А
		ATOM	7424	CA	GLY A		63.868		-25.635	1.00 16.90	А
	Ε0	ATOM	7425	C			62.901		-25.758	1.00 16.77	А
	50	ATOM	7426	0	GLY A		64.634		-26.661	1.00 17.57	A
		ATOM	7427	N	GLY F		64.347		-27.987	1.00 18.79	A
		ATOM	7428	CA	GLY F				-28.010	1.00 19.63	A
		ATOM	7429	С	GLY A		64.376		-28.879	1.00 20.35	A
		MOTA	7430	0	GLY F		63.774			1.00 20.59	A
	55	ATOM	7431	N	ASP A	949	65.070	33.831	-27.043	1.00 20.33	ra.

		ATOM	7432	CA	ASP A		65.182	54.381 -26.961	1.00 21.92	А
		MOTA	7433	CB	ASP A		66.603	53.991 -26.538	1.00 23.50	A
		MOTA	7434	CG	ASP A		66.942	54.453 -25.134	1.00 25.82	А
	_	ATOM	7435		ASP A		66.489	55.550 -24.737	1.00 26.87	Α
	5	MOTA	7436		ASP A		67.673	53.726 -24.429	1.00 28.01	Α
		MOTA	7437	С	ASP A		64.164	53.755 -26.007	1.00 21.81	А
		ATOM	7438	0	ASP A		64.149	52.535 -25.829	1.00 22.12	А
		ATOM	7439	N	HIS A		63.320	54.579 -25.387	1.00 20.91	Α
		MOTA	7440	CA	HIS A		62.304	54.051 -24.476	1.00 20.31	A
	10	ATOM	7441	CB	HIS A		61.564	55.173 -23.741	1.00 19.60	Α
		ATOM	7442	CG	HIS A		62.390	55.898 -22.725	1.00 18.82	А
		MOTA	7443		HIS A		62.137	57.027 -22.023	1.00 17.61	A
		ATOM	7444		HIS A		63.626	55.457 -22.308	1.00 19.62	А
		MOTA	7445		HIS A		64.101	56.285 -21.394	1.00 18.39	А
	15	MOTA	7446		HIS A		63.216	57.245 -21.203	1.00 19.83	А
		ATOM	7447	С	HIS A		61.279	53.276 -25.294	1.00 20.04	A
		MOTA	7448	0	HIS A		60.911	53.693 -26.389	1.00 20.31	A
		MOTA	7449	N	PRO A		60.806	52.133 -24.776	1.00 20.23	А
	•	ATOM	7450	CD	PRO A		61.345	51.371 -23.634	1.00 20.95	A
	20	MOTA	7451	CA	PRO A		59.813	51.343 -25.507	1.00 19.76	Α
١,D		ATOM	7452	СВ	PRO A		59.683	50.081 -24.655	1.00 20.56	A
iji		ATOM	7453	CG	PRO A		61.048	49.953 -24.038	1.00 20.81	A
		ATOM	7454	С	PRO A		58.488	52.100 -25.622	1.00 19.07	A
ru Iu	05	MOTA	7455	0	PRO A		58.066	52.771 -24.679	1.00 18.22	A
	25	ATOM	7456	N	SER A		57.842	52.003 -26.780	1.00 18.29	A
		ATOM	7457	CA	SER A		56.561	52.670 -26.996	1.00 18.67	A
		ATOM	7458	CB	SER A		56.487	53.235 -28.418	1.00 18.74	A
11725		MOTA	7459	OG	SER A		55.403	54.137 -28.564	1.00 18.56	A
	20	ATOM	7460	C	SER A		55.493	51.605 -26.791	1.00 19.01	A
100	30	ATOM	7461	0	SER A		55.198	50.824 -27.701	1.00 19.67	A
		ATOM	7462	N	ALA A		54.920	51.581 -25.589	1.00 18.23	A
g szőz		ATOM	7463	CA	ALA A		53.916	50.591 -25.214	1.00 17.70	A
1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		MOTA	7464	CB	ALA A		53.744	50.589 -23.699	1.00 16.83	A
ĵ.£	35	MOTA	7465 7466	С	ALA A		52.553	50.731 -25.874	1.00 17.59 1.00 16.84	A A
	33	ATOM		0	ALA A		52.178	51.804 -26.349 49.625 -25.874	1.00 10.04	
		ATOM	7467	N C7	ARG A		51.813	49.625 -25.874 49.572 -26.443		A
		MOTA MOTA	7468	CA	ARG A		50.476	48.202 -26.170	1.00 18.11 1.00 21.07	A A
			7469	CB	ARG A		49.859 48.514	47.967 -26.832	1.00 25.46	
	40	ATOM ATOM	7470 7471	CG CD	ARG A		48.386	46.508 -27.244	1.00 29.24	A A
	10	ATOM	7472	NE	ARG A		46.998	46.084 -27.381	1.00 23.24	Ā
		ATOM	7473	CZ	ARG A		46.192	45.838 -26.355	1.00 32.45	A
		ATOM	7474		ARG A		46.641	45.975 -25.116	1.00 35.54	A
		ATOM	7475		ARG A		44.940	45.450 -26.565	1.00 35.55	A
	45	ATOM	7476	C	ARG A		49.641	50.689 -25.821	1.00 33.33	A
	10	ATOM	7477	0	ARG A		49.743	50.962 -24.620	1.00 17.03	A
		MOTA	7478	N	GLU A		48.809	51.319 -26.646	1.00 16.23	A
		ATOM	7479	CA	GLU A		47.995	52.460 -26.226	1.00 16.38	A
		ATOM	7480	CB	GLU A		47.110	52.917 -27.389	1.00 10.30	A
	50	ATOM	7481	CG	GLU A		45.917	52.024 -27.646	1.00 19.34	A
		ATOM	7482	CD	GLU A		45.092	52.493 -28.823	1.00 20.46	A
		ATOM	7483		GLU A		44.961	53.721 -29.014	1.00 22.05	A
		MOTA	7484		GLU A		44.564	51.632 -29.551	1.00 21.62	A
		ATOM	7485	C	GLU A		47.136	52.326 -24.971	1.00 15.39	A
	55	ATOM	7486	0	GLU A		46.846	53.328 -24.324	1.00 14.75	A
		111011	, 300	J	OLO M	J J J	10.010	22.320 24.324	1.00 11.,0	11

									04 617	1 00	15 10	77.
	ATOM	7487		ASP I			46.722		-24.617		15.12 15.34	A A
	ATOM	7488		ASP A			45.892		-23.425		15.33	A
	MOTA	7489	CB	ASP A			44.895		-23.595		16.25	A
	MOTA	7490	CG	ASP .			45.572		-23.883		16.76	A
Þ	MOTA	7491		ASP A			46.815		-24.002		16.70	A
	MOTA	7492	OD2	ASP .			44.847		-23.995			A
	MOTA	7493	С	ASP .			46.714		-22.152		14.55	A
	MOTA	7494	0	ASP .			46.161		-21.067		15.14	A
	MOTA	7495	N	LEU .			48.035		-22.279		14.22	
)	MOTA	7496	CA	LEU .			48.907		-21.119		13.40	A
	ATOM	7497	CB	LEU .			50.043		-21.421		14.46	A
	ATOM	7498	CG	LEU .			50.898		-20.228		16.61	A
	ATOM	7499		LEU			50.032		-19.227		17.21	A
	ATOM	7500	CD2	LEU			52.040		-20.711		16.91	A
5	ATOM	7501	С	LEU			49.500		-20.724		12.80	A
	MOTA	7502	0	LEU	Α	957	49.850		-21.582		12.44	A
	MOTA	7503	N	ASP	Α	958	49.607		-19.421		11.71	A
	MOTA	7504	CA	ASP	Α	958	50.186		-18.936		11.33	A
	MOTA	7505	CB	ASP	Α	958	49.078		-18.566		11.55	A
0	ATOM	7506	CG	ASP			49.623		-18.216		11.50	A
	MOTA	7507	OD1	ASP	Α	958	50.712		-18.710		10.43	A
	MOTA	7508	OD2	ASP	А	958	48.952		-17.458		11.83	A
	MOTA	7509	С	ASP	Α	958	51.060		-17.718		11.04	A
	MOTA	7510	0	ASP	Α	958	50.828		-16.972		11.67	A
5	ATOM	7511	N	VAL	Α	959	52.095		-17.558		10.57	A
	ATÔM	7512	CA	VAL	А	959	52.967		-16.392		10.41	A
	MOTA	7513	CB	VAL	Α	959	54.442		-16.747			A
	AT:OM	7514	CG1	VAL	A	959	55.281		-15.461		11.36	A
	ATOM	7515	CG2	VAL	Α	959	55.003		-17.605		11.45	A
)	ATOM	7516	С	VAL	Α	959	52.401		-15.539		10.64	A
	MOTA	7517	0	VAL	Α	959	52.819		-15.655		10.64	A
	ATOM	7518	N	SER	Α	960	51.413		-14.715		10.31	A
	ATOM	7519	CA	SER	A	960	50.737		-13.854		10.37	A
	ATOM	7520	CB	SER	Α	960	49.642		-13.048	1.00		A
5	ATOM	7521	OG	SER	Α	960	48.815		-13.899		10.39	A
	ATOM	7522	С	SER	А	960	51.687		-12.899		10.61	A
	MOTA	7523	0	SER	Α	960	51.541		-12.624		10.54	A
	ATOM	7524	N	VAL	Α	961	52.649		-12.386		10.80	A
	ATOM	7525	CA	VAL	Α	961	53.624	56.267	-11.449		11.36	A
\mathbf{c}	MOTA	7526	СВ	VAL	Α	961	53.239	55.948			11.55	A
	MOTA	7527	CG1	VAL	Α	961	54.337	56.447			12.60	A
	MOTA	7528	CG2	VAL	Α	961	51.898	56.591			10.23	A
	ATOM	7529	С	VAL	Α	961	55.008		-11.680		11.90	A
	ATOM	7530	0			961	55.159		-11.935		11.41	A
5	ATOM	7531	N			962	56.008		-11.615		11.23	A
	ATOM	7532	CA			962	57.402		-11.705		11.17	A
	MOTA	7533	СВ			962	58.056		-13.017		11.57	A
	ATOM	7534	CG			962	59.531		-13.042		13.15	A
	MOTA	7535	SD			962	60.354		-14.597		12.96	A
)	ATOM	7536	CE			962	62.025		-14.249		13.82	A
	ATOM	7537	C			962	58.006		-10.555		11.31	A
	ATOM	7538	Ö			962	57.985		-10.561		11.39	A
	ATOM	7539	N			963	58.524		-9.559		11.55	A
	ATOM	7540	CA			963	59.078		-8.387		11.46	A
5	ATOM	7541	СВ			963	58.004			1.00	12.00	А
_	111011			- 32								

	ATOM	7542	CG	ARG	Α	963	58.487	57.451	-5.911	1.00 1	2.06	А
	ATOM	7543	CD	ARG	Α	963	57.365	57.332	-4.865	1.00 1	2.84	A
	MOTA	7544	NE	ARG	Α	963	56.177	58.061	-5.303	1.00 1	1.77	A
	ATOM	7545	CZ	ARG	A	963	54.932	57.600	-5.231	1.00 1	1.37	A
5	ATOM	7546	NHl	ARG	Α	963	54.681	56.400	-4.719	1.00 1	0.90	A
	ATOM	7547	NH2	ARG	Α	963	53.938	58.326	-5.723	1.00	9.67	A
	ATOM	7548	С	ARG			60.304	56.203	-7.846	1.00 1	1.53	A
	ATOM	7549	0	ARG			60.241	55.021	-7.522	1.00 1		A
	ATOM	7550	N	ARG			61.423	56.920	-7.756	1.00 1		А
10	ATOM	7551	CA	ARG			62.629	56.323	-7.191	1.00 1		А
	ATOM	7552	СВ	ARG			63.861	57.200	-7.444	1.00 1		А
	ATOM	7553	CG	ARG			65.153	56.591	-6.891	1.00 1		A
	ATOM	7554	CD	ARG			66.387	57.332	-7.390	1.00 1		A
	ATOM	7555	NE	ARG			66.594	57.155	-8.827	1.00 1		A
15	ATOM	7556	CZ	ARG			67.474	56.317	-9.367	1.00 1		A
10	ATOM	7557	NH1				68.246	55.561	-8.595	1.00 1		A
	ATOM	7558	NH2				67.597	56.245		1.00 1		A
	ATOM	7559	C	ARG			62.314	56.255	-5.702	1.00 1		A
	ATOM	7560	0	ARG			61.874	57.243	-5.109	1.00 1		A
20	ATOM	7561	N	LEU			62.531	55.089	-5.104	1.00 1:		A
20	ATOM	7562	CA	LEU		-	62.205	54.871	-3.104	1.00 1		A
	ATOM	7563	CB	LEU			61.550	53.494	-3.547	1.00 1		A
	ATOM	7564	CG	LEU			60.338	53.224	-4.448	1.00 1		A
		7565		LEU			59.993	51.743	-4.424	1.00 1		A
25	MOTA MOTA	7566		LEU			59.151	54.071	-3.986	1.00 1:		A
25		7567		LEU			63.382	54.071	-2.732	1.00 1.		A
	ATOM	7568	C	LEU			63.197	54.895	-1.517	1.00 1:		A
	ATOM		O				64.583	55.160	-3.271	1.00 1		A
	ATOM	7569 7570	N CA	THR THR			65.779	55.252	-2.444	1.00 1.		A
30	ATOM	7571	CB	THR			66.766	54.113	-2.774	1.00 1		A
50	ATOM	7572	OG1				66.992	54.075	-4.189	1.00 1		A
	ATOM	7573	CG2				66.214	52.770	-2.315	1.00 1		A
	ATOM	7574		THR				56.566		1.00 1		A
	ATOM		C	THR			66.527 66.504	57.166	-2.619 -3.695	1.00 1		A
35	ATOM	7575	0	THR					-1.553	1.00 1		A
33	ATOM	7576	N	LYS			67.187	57.005 58.221	-1.603	1.00 1		A
	ATOM	7577	CA	LYS			67.984			1.00 1		A
	ATOM	7578	CB	LYS			68.095 66.756	58.847	-0.213 0.317	1.00 1		A
	ATOM	7579	CG	LYS				59.361	1.576	1.00 2		A
40	ATOM	7580	CD	LYS			66.940	60.188				_
40	ATOM	7581	CE	LYS			65.629	60.790	2.045	1.00 2		A
	ATOM	7582	NZ	LYS			65.838	61.623	3.264	1.00 2		A
	ATOM	7583	C	LYS			69.362	57.835	-2.151	1.00 1		A
	ATOM	7584	0	LYS			69.672	56.649	-2.267	1.00 1		A
4=	ATOM	7585	N	SER			70.181	58.828	-2.484	1.00 1		A
45	ATOM	7586	CA	SER			71.495	58.576	-3.074	1.00 1		A
	ATOM	7587	CB	SER			72.170	59.903	-3.443	1.00 1		A
	MOTA	7588	OG	SER			72.503	60.649	-2.287	1.00 2		A
	ATOM	7589	C	SER			72.480	57.732	-2.263	1.00 2		A
F0	MOTA	7590	0	SER			73.350	57.084	-2.841	1.00 2		A
50	ATOM	7591	N	SER			72.348	57.726	-0.942	1.00 2		A
	ATOM	7592	CA	SER			73.271	56.961	-0.100	1.00 2		A
	MOTA	7593	CB	SER			73.197	57.456	1.346	1.00 2		A
	MOTA	7594	OG	SER			71.899	57.264	1.880	1.00 2.		A
	ATOM	7595	С	SER			73.054	55.447	-0.125	1.00 2		A
55	ATOM	7596	0	SER	A	969	73.905	54.688	0.346	1.00 2	1.39	А

		7.004	7507		~ ~ ~ ~	070	71 006	F.F. 0.00	0 676	1 00 01 45	70
		ATOM	7597	N	ALA A		71.926	55.008	-0.676	1.00 21.45	A
		MOTA	7598	CA	ALA A		71.613	53.580	-0.741	1.00 21.30	A
		MOTA	7599	CB	ALA A	970	70.122	53.385	-1.012	1.00 21.26	А
		ATOM	7600	С	ALA A	970	72.429	52.823	-1.786	1.00 21.32	A
	5	MOTA	7601	0	ALA A	970	72.369	53.132	-2.979	1.00 21.38	Α
		MOTA	7602	N	LYS A	971	73.186	51.825	-1.334	1.00 21.84	A
		ATOM	7603	CA	LYS A		74.003	51.011	-2.232	1.00 21.84	A
		ATOM	7604	СВ	LYS A		74.683	49.874	-1.464	1.00 23.71	A
		ATOM	7605	CG	LYS A		76.011	50.243	-0.817	1.00 26.65	A
	10	ATOM	7606	CD	LYS A		76.600	49.058	-0.056	1.00 27.50	A
	10				LYS A					1.00 27.30	
		MOTA	7607	CE			76.656	47.801	-0.922		A
		ATOM	7608	NZ	LYS A		77.431	47.996	-2.177	1.00 29.71	A
		ATOM	7609	С	LYS A		73.144	50.415	-3.335	1.00 21.02	A
	15	MOTA	7610	0	LYS A		73.519	50.434	-4.506	1.00 20.93	A
	15	ATOM	7611	N	THR A		71.997	49.862	-2.953	1.00 19.58	A
		MOTA	7612	CA	THR A		71.087	49.279	-3.923	1.00 18.21	A
		MOTA	7613	CB	THR A	972	70.526	47.917	-3.436	1.00 18.71	А
		MOTA	7614	OG1	THR A	972	71.604	46.985	-3.270	1.00 18.53	А
		MOTA	7615	CG2	THR A	972	69.545	47.345	-4.454	1.00 18.65	А
1 7	20	MOTA	7616	С	THR A	972	69.936	50.252	-4.157	1.00 17.31	Α
		MOTA	7617	0	THR A	972	69.116	50.492	-3.266	1.00 16.03	A
Tributi Listania		ATOM	7618	N	GLN A	973	69.895	50.830	-5,352	1.00 16.37	A
		MOTA	7619	CA	GLN A		68.842	51.772	-5.699	1.00 16.12	A
1,00		ATOM	7620	СВ	GLN A		69.288	52.673	-6.854	1.00 15.55	A
94	25	ATOM	7621	CG	GLN A		70.386	53.651	-6.475	1.00 15.07	A
191		ATOM	7622	CD	GLN A		69.945	54.648	-5.422	1.00 15.76	A
		ATOM	7623	OE1	GLN A		70.600	54.812	-4.389	1.00 17.45	A
		ATOM	7624				68.835	55.329	-5.680	1.00 14.14	A
41		MOTA	7625	C	GLN A		67.572	51.030	-6.086	1.00 15.69	A
	30	ATOM	7626	0	GLN A		67.623	49.947	-6.670	1.00 15.05	A
	50	ATOM	7627		ARG A		66.432	51.621	-5.752	1.00 15.66	A
ių.		MOTA	7627	N CA				51.021	-6.067		A
ğədə					ARG A		65.150			1.00 15.61	
		ATOM	7629	CB	ARG A		64.501	50.477	-4.793	1.00 16.37	A
gerge etem	25	ATOM	7630	CG	ARG A		65.322	49.406	-4.075	1.00 18.08	A
3	35	ATOM	7631	CD	ARG A		64.715	49.070	-2.711	1.00 19.28	A
		ATOM	7632	NE	ARG A		63.449	48.345	-2.819	1.00 21.95	A
		MOTA	7633	CZ	ARG A		62.324	48.706	-2.208	1.00 22.67	A
		MOTA	7634		ARG A		62.297	49.790	-1.443	1.00 23.60	A
	40	ATOM	7635		ARG A		61.225	47.978	-2.353	1.00 22.90	A
	40	ATOM	7636	С	ARG A		64.226	52.034	-6.727	1.00 14.98	А
		MOTA	7637	0	ARG A		64.137	53.191	-6.296	1.00 14.44	А
		ATOM	7638	N	VAL A		63.547	51.594	-7.780	1.00 14.27	А
		MOTA	7639	CA	VAL A		62.615	52.449	-8.500	1.00 13.77	А
		MOTA	7640	CB	VAL A	975	63.149	52.808	-9,908	1.00 14.20	А
	4 5	ATOM	7641	CG1	VAL A	975	62.161	53.726	-10.628	1.00 13.31	А
		MOTA	7642	CG2	VAL A	975	64.502	53.493	-9.783	1.00 13.27	A
		MOTA	7643	С	VAL A	975	61.295	51.706	-8.624	1.00 13.49	A
		ATOM	7644	0	VAL A	975	61.251	50.561	-9,084	1.00 13.35	А
		MOTA	7645	N	GLY A	976	60.220	52.360	-8.196	1.00 13.11	A
	50	MOTA	7646	CA	GLY A		58.911	51.741	-8,252	1.00 11.84	А
		ATOM	7647	С	GLY A		58.063	52.232	-9.406	1.00 11.62	А
		ATOM	7648	0	GLY A		58.130	53.404	-9.800	1.00 11.25	A
		ATOM	7649	N	TYR A		57.263	51.324	-9.949	1.00 11.21	A
		ATOM	7650	CA	TYR A		56.381	51.637		1.00 11.69	A
	55	ATOM	7651	CB	TYR A		56.870	50.992		1.00 11.03	A
		ATOM	100T	CD	TIK H	311	20.010	JU. JJZ	-12,302	T.OO TI.44	A

								E1 250	10 707	1 00	12.42	А
		MOTA	7652	CG	TYR A		58.265		-12.787			
		MOTA	7653	CD1	TYR A		59.372		-12.286		12.45	A
		MOTA	7654	CE1	TYR A	977	60.669		-12.691		12.91	A
		ATOM	7655	CD2	TYR A	977	58.482	52.390	-13.700		12.69	A
	5	ATOM	7656	CE2	TYR A		59.764	52.735	-14.108		12.73	A
	J	ATOM	7657	CZ	TYR A		60.853	52.047	-13.604	1.00	13.25	A
			7658	OH	TYR A		62.124		-14.009	1.00	12.80	A
		ATOM			TYR A		54.981		-10.823	1.00	11.50	A
		MOTA	7659	C			54.805		-10.347		11.45	A
	40	MOTA	7660	0	TYR A				-11.157		11.25	А
	10	MOTA	7661	N	VAL A		53.985		-11.058		11.69	A
		MOTA	7662	CA	VAL A		52.607				12.09	A
		MOTA	7663	CB	VAL A		51.729		-10.250		11.83	A
		MOTA	7664		VAL A		50.267		-10.360			
		MOTA	7665	CG2	VAL A		52.160	52.438	-8.784		11.63	A
	15	MOTA	7666	С	VAL A	978	52.148		-12.512		12.55	A
		MOTA	7667	0	VAL A	978	52.174		-13.209		11.76	A
		MOTA	7668	N	LEU A	979	51.775		-12.968		12.63	A
		MOTA	7669	CA	LEU A	979	51.330		-14.337		14.77	A
31000		ATOM	7670	СВ	LEU A		52.064	48.855	-14.957		16.74	Α
	20	ATOM	7671	CG	LEU A		53.380	49.107	-15.694		19.88	A
	20	ATOM	7672		LEU A		53.085	49.751	-17.036	1.00	20.58	A
Ţ,			7673		LEU A		54.293		-14.851	1.00	21.07	A
		MOTA		CDZ	LEU A		49.841		-14.406		14.34	A
i can		ATOM	7674		LEU A		49.334		-13.760		14.54	A
345 E	25	MOTA	7675	0			49.140		-15.196		13.95	A
Ame don	25	MOTA	7676	N	HIS A		47.713		- 15.347		13.39	A
3 35F		ATOM	7677	CA	HIS A		46.922		-14.823		13.91	A
M		ATOM	7678	CB	HIS A				-14.999		14.48	A
24.5		MOTA	7679	CG	HIS A		45.444		-14.315		13.79	A
	• •	MOTA	7680		HIS A		44.542		-16.042		15.45	A
	30	MOTA	7681		HIS A		44.752		-15.993		14.19	A
30 5		MOTA	7682		HIS A		43.488				15.58	A
i del indi		ATOM	7683	NE2	HIS A		43.334		-14.955		13.58	A
		MOTA	7684	С	HIS A		47.337		-16.798			A
		MOTA	7685	0	HIS A		47.783		-17.689		13.07	
	35	MOTA	7686	N	ARG A	981	46.521		-17.026		13.43	A
		MOTA	7687	CA	ARG A	981	46.053		-18.367		14.40	A
		ATOM	7688	CB	ARG A	981	46.438		-18.777		16.66	A
		MOTA	7689	CG	ARG A	981	46.067		-20.213		20.47	A
		MOTA	7690	CD	ARG A	981	46.616		-20.602		22.48	A
	40	ATOM	7691	NE	ARG A	981	46.190		-21.939		25.91	A
	-	ATOM	7692	CZ	ARG A		46.447	44.124	-22.475		27.69	A
		ATOM	7693		ARG A		47.129	43.217	-21.787	1.00	27.99	A
		ATOM	7694		ARG A		46.017	43.836	-23.698	1.00	28.19	A
			7695	C	ARG A		44.541		-18.351	1.00	13.60	Α
	45	ATOM	7696	0	ARG A		43.850		-17.592	1.00	14.15	A
	43	MOTA			THR A		44.031		-19.170		13.91	A
		ATOM	7697	N	THR A		42.597		-19.252		13.49	A
		ATOM	7698	CA			42.303		-19.691		13.43	A
		MOTA	7699	CB	THR A		40.900		-19.587		13.78	A
	-0	ATOM	7700		L THR A				-21.128		13.65	A
	50	MOTA	7701		2 THR A		42.764		-21.120 -20.293		14.08	A
		MOTA	7702	С	THR A		42.074				13.64	A
		MOTA	7703	0	THR P		42.817		-20.743		13.64	A
		MOTA	7704	N	ASN A		40.798		-20.652			
		ATOM	7705	CA	ASN A		40.236		-21.670		13.69	A
	55	ATOM	7706	CB	ASN A	983	39.218	47.366	-21.084	1.00	13.01	A

	ATOM	7707	ÇG	ASN	A	983	38.721	46.370	-22.119	1.00	13.68	A
	MOTA	7708	OD1	ASN	Α	983	39.472	45.510	-22.573	1.00	13.48	А
	MOTA	7709		ASN			37.456	46.497	-22.513	1.00	13.45	А
	ATOM	7710	C	ASN			39.542		-22.704		14.04	A
5	MOTA	7711	0	ASN			38.623		-22.378		13.01	A
J		7712	N	LEU			39.994		-23.949		14.70	A
	MOTA											A
	ATOM	7713	CA	LEU			39.425		-25.040		16.23	
	MOTA	7714	CB	LEU			40.536		-25.831		16.53	A
	MOTA	7715	CG	LEU			41.501		-25.003		17.01	A
10	MOTA	7716	CD1	LEU	A	984	42.580		-25.919		17.22	A
	MOTA	7717	CD2	LEU	Α	984	40.735	52.542	-24.297	1.00	17.01	A
	MOTA	7718	С	LEU	Α	984	38.640	48.976	-25.961	1.00	17.29	A
	ATOM	7719	0	LEU	Α	984	39.058	47.854	-26.237	1.00	17.30	A
	MOTA	7720	N	MET	Α	985	37.500	49.458	-26.438		18.60	A
15	MOTA	7721	CA	MET			36.673		-27.328		20.77	A
	ATOM	7722	СВ	MET			35.347		-27.614		21.25	A
	MOTA	7723	CG	MET			34.437		-26.421		21.90	A
	MOTA	7724	SD	MET			32.759		-26.972		24.87	A
		7724					32.739		-27.747		22.32	A
20	ATOM		CE	MET								
20	MOTA	7726	C	MET			37.352		-28.653		22.12	A
	MOTA	7727	0	MET			38.039		-29.220		22.17	A
	MOTA	7728	N	GLN			37.158		-29.142		23.89	A
	MOTA	7729	CA	GLN			37.712		-30.425		25.08	A
	MOTA	7730	CB	GLN			38.079		-30.414		27.59	A
25	MOTA	7731	CG	GLN	Α	986	37.124	44.382	-29.638		30.79	A
	MOTA	7732	CD	GLN	Α	986	37.779	43.086	-29.186	1.00	32.59	A
	MOTA	7733	OE1	GLN	Α	986	37.146	42.246	-28.543	1.00	33.26	A
	MOTA	7734	NE2	GLN	A	986	39.059	42.923	-29.516	1.00	33.73	A
	MOTA	7735	С	GLN	Α	986	36.617	47.063	-31.435	1.00	24.80	A
30	MOTA	7736	0	GLN			35.529	46.483	-31.386	1.00	24.42	A
	ATOM	7737	N	CYS			36.899		-32.330		23.92	A
	ATOM	7738	CA	CYS			35.922		-33.327		24.36	A
	MOTA	7739	С	CYS			36.386		-34.761		26.38	A
	MOTA	7740	Ö	CYS			35.896		-35.689		26.19	A
35	ATOM	7741	СВ	CYS			35.583		-33.138		22.23	A
55	ATOM	7742	SG	CYS			35.117		-31.445		20.59	A
				GLY			37.338		-34.942		28.36	A
	MOTA	7743	N						-36.280		31.14	A
	ATOM	7744	CA	GLY			37.814					
40	ATOM	7745	С	GLY			39.096		-36.730		33.50	A
40	ATOM	7746	0	GLY			39.502		-37.882		33.42	A
	MOTA	7747	N	THR			39.733		-35.844		35.82	А
	MOTA	7748	CA	THR			40.981		-36.192		38.40	A
	MOTA	7749	CB	THR	A	989	41.153		-35.414		38.55	A
	MOTA	7750	OG1	THR	Α	989	40.093		-35.759		39.22	A
45	ATOM	7751	CG2	THR	А	989	42.486	51.026	-35.755	1.00	38.94	A
	MOTA	7752	С	THR	A	989	42.158	48.140	-35.880	1.00	40.35	A
	MOTA	7753	0	THR	Α	989	42.344	47.718	-34.738	1.00	40.39	A
	ATOM	7754	N	PRO			42.969	47.816	-36.901	1.00	42.23	A
	ATOM	7755	CD	PRO			42.821	48.277	-38.295		42.52	A
50	MOTA	7756	CA	PRO			44.139		-36.768		43.92	А
-0	ATOM	7757	CB	PRO			44.879		-38.079		43.82	A
	MOTA	7758	CG	PRO			43.749		-39.047		43.19	A
		7759	C	PRO			45.011		-35.542		45.81	A
	ATOM											A
55	ATOM	7760	0	PRO			45.322		-34.781		46.16	
55	ATOM	7761	N	GLU	Α	991	45.406	48.479	-35.353	1.00	47.49	A

	ATOM	7762	CA	GLU Z	A 9	991	46.240	48.856	-34.211	1.00	49.39	A
	ATOM	7763	СВ	GLU I			45.384	48.904	-32.942	1.00	50.54	А
	ATOM	7764	CG	GLU			44.254	49.927	-33.000		52.51	А
	ATOM	7765	CD	GLU A			43.249		-31.872		53.74	А
5	MOTA	7766	OE1				43.668		-30.695		54.22	A
0	MOTA	7767	OE2				42.037		-32.163		54.31	A
	ATOM	7768	C	GLU I			47.386		-34.034		49.78	A
	ATOM	7769	Ö	GLU			47.270		-33.280		49.97	A
	MOTA	7770	N	GLU			48.495		-34.725		50.30	A
10	ATOM	7771	CA	GLU A			49.640		-34.666		50.80	A
10	ATOM	7772	CB	GLU A			49.945		-36.073		51.80	A
				GLU A			49.343		-36.751		53.22	Ā
	ATOM	7773 7774	CG	GLU A			49.063		-38.204		54.07	A
	ATOM	7775	CD OE1				50.053		-38.467		54.55	A
15	ATOM	7776	OE2				48.299		-39.083		54.47	Ā
13	ATOM						50.913		-34.077		50.44	A
	ATOM	7777	C	GLU Z			50.869		-33.264		50.69	A
	ATOM	7778	0	GLU A			52.042		-34.518		49.81	A
	ATOM	7779	N	HIS								A
20	ATOM	7780	CA	HIS			53.391		-34.116		48.87 49.88	A
20	ATOM	7781	CB	HIS			54.081		-35.277		51.14	
	ATOM	7782	CG	HIS A			53.335		-35.779			A
	ATOM	7783		HIS			52.287		-35.264		51.72	A
	ATOM	7784		HIS			53.669		-36.954		51.70	A
OF.	ATOM	7785		HIS			52.860		-37.141		51.91	A
25	ATOM	7786		HIS .			52.012		-36.130		52.16	A
	ATOM	7787	С	HIS			53.594		-32.815		47.56	A
	ATOM	7788	0	HIS .			53.594		-32.802		47.73	A
	ATOM	7789	N	THR			53.783		-31.725		45.51	A
20	ATOM	7790	CA	THR .			54.036		-30.406		42.92	A
30	ATOM	7791	CB	THR I			52.744		-29.568		43.20	A
	ATOM	7792	OG1	THR			52.156		-29.359		43.29	A
	ATOM	7793	CG2				51.747		-30.277		42.99	A
	ATOM	7794	С	THR			55.006		-29.667		41.17	A
25	ATOM	7795	0	THR			54.929		-29.788		41.12	A
35	ATOM	7796	N	GLN .			55.920		-28.905		38.56	A
	ATOM	7797	CA	GLN A			56.913		-28.171		35.93	A
	ATOM	7798	CB	GLN .			58.205		-28.040		36.57	A
	ATOM	7799	CG	GLN .			58.663		-29.320		37.34	A
40	ATOM	7800	CD	GLN A			59.782		-29.072		38.00	A
40	MOTA	7801	OE1				60.896		-28.706		38.62	A
	ATOM	7802		GLN .			59.488		-29.255		36.97	A
	ATOM	7803	С	GLN .			56.442		-26.777		33.93	A
	MOTA	7804	0	GLN .			55.653		-26.154		33.07	A
4 =	MOTA	7805	N	LYS			56.938		-26.289		31.39	A
45	ATOM	7806	CA	LYS .			56.590		-24.954		29.57	A
	MOTA	7807	CB	LYS I			57.060		-24.736		30.91	A
	MOTA	7808	CG	LYS			56.341		-25.602		32.81	A
	ATOM	7809	CD	LYS .			54.854		-25.265		34.20	A
	MOTA	7810	CE	LYS .			54.150		-26.067		34.76	A
50	MOTA	7811	NZ	LYS I			54.719		-25.779		35.51	A
	ATOM	7812	С	LYS I			57.299		-23.981		27.27	A
	ATOM	7813	0	LYS 3			58.473		-24.167		26.17	A
	MOTA	7814	N	LEU A			56.585		-22.954		25.15	A
	ATOM	7815	CA	LEU .	- 1	1	57.181		-21.968		23.54	A
55	ATOM	7816	CB	LEU I	A 9	997	56.211	48.595	-21.592	1.00	23.51	A

	ATOM	7817	CG	LEU	A 997	56.692	49.527 -20.469	1.00 23.27	A
	MOTA	7818			A 997	57.965	50.247 -20.895	1.00 23.38	А
	MOTA	7819			A 997	55.599	50.530 -20.132	1.00 22.41	A
	ATOM	7820	С	LEU	A 997	57.573	46.705 -20.716	1.00 22.50	A
5	MOTA	7821	0	LEU	A 997	56.723	46.139 -20.032	1.00 22.25	A
	MOTA	7822	N	ASP	A 998	58.871	46.683 -20.433	1.00 21.36	A
	MOTA	7823	CA	ASP	A 998	59.398	46.018 -19.249	1.00 21.23	A
	MOTA	7824	СВ		A 998	60.477	45.001 -19.635	1.00 21.93	A
	MOTA	7825	CG		A 998	61.146	44.373 -18.426	1.00 22.40	A
10	ATOM	7826	OD1	ASP	A 998	62.161	43.667 -18.611	1.00 22.65	A
	MOTA	7827	OD2	ASP	A 998	60.658	44.581 -17.292	1.00 22.00	A
	MOTA	7828	C	ASP	A 998	60.009	47.121 -18.396	1.00 20.26	A
	ATOM	7829	0	ASP	A 998	61.182	47.459 -18.553	1.00 19.78	A
	MOTA	7830	N	VAL	A 999	59.210	47.689 -17.500	1.00 19.60	A
15	MOTA	7831	CA	VAL	A 999	59.687	48.774 -16.655	1.00 18.89	A
	ATOM	7832	CB	VAL	A 999	58.575	49.289 -15.701	1.00 18.56	A
	MOTA	7833	CG1	VAL	A 999	57.399	49.796 -16.515	1.00 18.40	A
	MOTA	7834	CG2	VAL	A 999	58.136	48.191 -14.743	1.00 17.96	A
	ATOM	7835	С	VAL	A 999	60.918	48.419 -15.829	1.00 19.06	A
20	MOTA	7836	0	VAL	A 999	61.682	49.303 -15.441	1.00 18.30	A
	MOTA	7837	N	CYS	A1000	61.130	47.136 -15.563	1.00 19.10	A
	ATOM	7838	CA	CYS	A1000	62.291	46.767 -14.772	1.00 20.40	A
	MOTA	7839	С	CYS	A1000	63.615	46.972 -15.502	1.00 19.66	A
	MOTA	7840	0	CYS	A1000	64.669	46.995 -14.877	1.00 19.22	A
25	ATOM	7841	CB	CYS	A1000	62.157	45.333 -14.258	1.00 21.94	A
	MOTA	7842	SG	CYS	A1000	61.388	45.277 -12.599	1.00 25.12	A
	MOTA	7843	N	HIS	A1001	63.566	47.136 -16.821	1.00 20.20	A
	MOTA	7844	CA	HIS	A1001	64.793	47.372 -17.577	1.00 20.55	A
	MOTA	7845	CB	HIS	A1001	64.928	46.373 -18.729	1.00 20.76	A
30	MOTA	7846	CG	HIS	A1001	65.456	45.039 -18.305	1.00 20.70	Α
	MOTA	7847	CD2	HIS	A1001	66.715	44.542 -18.298	1.00 20.88	A
	MOTA	7848	ND1	HIS	A1001	64.656	44.060 -17.756	1.00 20.78	A
	MOTA	7849			A1001	65.399	43.019 -17.427	1.00 20.46	A
_0.	MOTA	7850			A1001	66.653	43.285 -17.745	1.00 21.10	A
35	MOTA	7851	С		A1001	64.903	48.800 -18.109	1.00 20.63	A
	ATOM	7852	0		A1001	65.752	49.092 -18.953	1.00 21.06	A
	MOTA	7853	N		A1002	64.048	49.693 -17.617	1.00 20.58	А
	MOTA	7854	CA		A1002	64.087	51.088 -18.048	1.00 20.34	A
4.0	MOTA	7855	CB		A1002	62.875	51.855 -17.518	1.00 20.22	A
40	MOTA	7856	CG		A1002	61.592	51.670 -18.332	1.00 19.58	A
	MOTA	7857			A1002	60.440	52.384 -17.647	1.00 18.77	A
	ATOM	7858			A1002	61.801	52.212 -19.741	1.00 19.29	A
	MOTA	7859	С		A1002	65.371	51.737 -17.557	1.00 21.19	A
4 =	MOTA	7860	0		A1002	65.920	52.622 -18.212	1.00 21.36	A
45	ATOM	7861	N		A1003	65.840	51.298 -16.393	1.00 21.04	A
	MOTA	7862	CA		A1003	67.087	51.802 -15.835	1.00 21.46	A
	MOTA	7863	СВ		A1003	66.902	52.223 -14.377	1.00 22.21	A
	ATOM	7864	CG		A1003	66.045	53.476 -14.175	1.00 23.70	A
50	MOTA	7865			A1003	65.966	53.806 -12.703	1.00 24.51	A
50	MOTA	7866			A1003	66.650	54.644 -14.938	1.00 25.02	A
	MOTA	7867	С		A1003	68.111	50.677 -15.944	1.00 21.41	A
	MOTA	7868	O N		A1003	67.774	49.503 -15.789	1.00 20.58	A A
	MOTA	7869	N		A1004	69.376	51.021 -16.220	1.00 21.54	A
==	ATOM	7870	CD		A1004	69.907	52.386 -16.399	1.00 21.59	A
55	MOTA	7871	CA	FKO	A1004	70.445	50.029 -16.360	1.00 21.82	A

							391	l			
		ATOM	7872	СВ	PRO	A1004	71.565	50.837	-17.005	1.00 22.03	А
		ATOM	7873	CG		A1004	71.412		-16.331	1.00 21.74	A
		ATOM	7874	С		A1004	70.901	49.362	-15.070	1.00 22.14	A
		ATOM	7875	0		A1004	70.577		-13.964	1.00 21.00	A
	5	ATOM	7876	N		A1005	71.649	48.274	-15.235	1.00 22.33	A
		MOTA	7877	CA	ASN	A1005	72.208	47.531	-14.114	1.00 22.54	A
		ATOM	7878	CB	ASN	A1005	73.152	48.442	-13.333	1.00 24.42	A
		MOTA	7879	CG	ASN	A1005	74.150	49.147	-14.230	1.00 26.07	A
		MOTA	7880	OD1	ASN	A1005	74.346	50.361	-14.126	1.00 27.74	A
	10	ATOM	7881	ND2	ASN	A1005	74.790	48.392	-15.115	1.00 25.81	A
		ATOM	7882	С	ASN	A1005	71.165	46.949	-13.167	1.00 22.28	А
		MOTA	7883	0	ASN	A1005	71.360	46.950	-11.952	1.00 22.03	A
		ATOM	7884	N	VAL	A1006	70.065	46.448	-13.714	1.00 22.19	A
		MOTA	7885	CA	VAL	A1006	69.022	45.869	-12.877	1.00 22.43	A
	15	MOTA	7886	CB	VAL	A1006	67.735	45.579	-13.690	1.00 21.96	A
		ATOM	7887			A1006	68.026		-14.810	1.00 21.98	Α
		MOTA	7888	CG2		A1006	66.649	45.035	-12.768	1.00 21.52	A
		MOTA	7889	C		A1006	69.537		-12.239	1.00 22.76	A
1444E	•	MOTA	7890	0		A1006	70.095		-12.920	1.00 23.29	A
	20	MOTA	7891	N		A1007	69.361		-10.927	1.00 22.95	A
The state of the s		MOTA	7892	CA		A1007	69.813		-10.181	1.00 23.43	A
197		MOTA	7893	CB		A1007	70.578	43.737		1.00 23.72	A
		ATOM	7894	С		A1007	68.640	42.398	-9.793	1.00 23.92	А
	25	MOTA	7895	0		A1007	68.816	41.207	-9.533	1.00 23.84	A
	25	MOTA	7896	N		A1008	67.445	42.975	-9.736	1.00 23.57	A
8 %A 28%		MOTA	7897	CA		A1008	66.251	42.204	-9.413	1.00 24.00	A
		ATOM	7898	CB		A1008	66.236	41.782	-7.938	1.00 26.17	A
ii) Norm		ATOM	7899	CG		A1008	66.171	42.910	-6.933	1.00 29.81	A
	30	MOTA	7900	CD		A1008	66.045	42.358	-5.513	1.00 33.34	A
, D	30	ATOM	7901	NE		A1008	67.188	41.524	-5.140	1.00 35.30 1.00 36.73	A A
		MOTA MOTA	7902 7903	CZ		A1008 A1008	68.436 68.718	41.969 43.249	-5.011 -5.222	1.00 36.73	A A
i sa		ATOM	7903			A1008	69.409	41.129	-3.222 -4.676	1.00 30.38	A
		ATOM	7905	C		A1008	64.983	42.973	-9.748	1.00 37.44	A
i cele	35	ATOM	7906	0		A1008	64.981	44.206	-9.811	1.00 23.14	A
4	00	ATOM	7907	N		A1009	63.910	42.225	-9.979	1.00 22.25	A
		ATOM	7908	CA		A1009	62.617		-10.322	1.00 21.69	A
		ATOM	7909	C		A1009	61.572	42.099	-9.472	1.00 20.98	A
		ATOM		0		A1009				1.00 19.71	A
	40	MOTA	7911	СВ		A1009	62.322		-11.799	1.00 23.19	A
		ATOM	7912	SG		A1009	60.805		-12.416	1.00 25.61	A
		ATOM	7913	N	GLU	A1010	60.759	42.881	-8.771	1.00 19.93	A
		MOTA	7914	CA	GLU	A1010	59.743	42.307	-7.905	1.00 19.15	А
		MOTA	7915	CB	GLU	A1010	60.178	42.459	-6.444	1.00 20.68	А
	45	ATOM	7916	CG	GLU	A1010	61.488	41.748	-6.110	1.00 23.17	A
		MOTA	7917	CD	GLU	A1010	62.113	42.241	-4.819	1.00 24.63	A
		MOTA	7918			A1010	62.533	43.419	-4.773	1.00 25.13	A
		MOTA	7919	OE2	GLU	A1010	62.183	41.452	-3.849	1.00 25.95	A
		MOTA	7920	С		A1010	58.372	42.943	-8.091	1.00 18.57	A
	50	MOTA	7921	0		A1010	58.258	44.148	-8.334	1.00 17.62	A
		ATOM	7922	N		A1011	57.333	42.122	-7.995	1.00 17.73	A
		ATOM	7923	CA		A1011	55.970	42.623	-8.087	1.00 17.39	A
		ATOM	7924	CB		A1011	55.009	41.537	-8.571	1.00 19.53	A
		MOTA	7925	CG		A1011	53.590	42.048	-8.816	1.00 23.41	A
	55	MOTA	7926	CD	ARG	A1011	52.581	40.910	-8.808	1.00 27.12	А

	ATOM	7927	NE	ARG	A1011	52.897	39.879	-9.790	1.00 31.70	A
	ATOM	7928	CZ	ARG	A1011	52.840		-11.107	1.00 33.53	A
	ATOM	7929	NH1	ARG	A1011	52.477		-11.607	1.00 35.13	A
	MOTA	7930	NH2	ARG	A1011	53.145		-11.925	1.00 34.20	A
5	MOTA	7931	С	ARG	A1011	55.654	42.980	-6.637	1.00 16.18	A
	MOTA	7932	0	ARG	A1011	55.992	42.226	-5.722	1.00 15.62	A
	MOTA	7933	N	THR	A1012	55.021	44.126	-6.423	1.00 14.81	A
	MOTA	7934	CA	THR	A1012	54.702	44.562	-5.071	1.00 13.76	A
	ATOM	7935	CB	THR	A1012	55.600	45.742	-4.635	1.00 14.36	A
10	ATOM	7936	OG1	THR	A1012	55.252	46.904	-5.404	1.00 13.90	A
	MOTA	7937	CG2	THR	A1012	57.072	45.422	-4.858	1.00 12.72	A
	ATOM	7938	С	THR	A1012	53.268	45.060	-4.984	1.00 13.68	A
	MOTA	7939	0	THR	A1012	52.568	45.170	-5.989	1.00 13.39	A
	ATOM	7940	N	THR	A1013	52.838	45.355	-3.764	1.00 12.69	A
15	MOTA	7941	CA	THR	A1013	51.518	45.915	-3.552	1.00 12.46	A
	MOTA	7942	CB		A1013	51.225	46.036	-2.046	1.00 12.35	A
	MOTA	7943	OG1	\mathtt{THR}	A1013	52.406	46.482	-1.367	1.00 11.61	A
	MOTA	7944	CG2	THR	A1013	50.807	44.676	-1.472	1.00 12.82	A
	MOTA	7945	С	THR	A1013	51.611	47.303		1.00 12.06	A
20	ATOM	7946	0	THR	A1013	52.716	47.809		1.00 11.69	A
	ATOM	7947	N	LEU	A1014	50.473	47.920		1.00 12.08	A
	MOTA	7948	CA	LEU	A1014	50.479	49.228		1.00 11.50	A
	MOTA	7949	CB		A1014	49.051	49.659		1.00 11.09	A
	ATOM	7950	CG		A1014	48.261	48.712		1.00 10.82	A
25	MOTA	7951	CD1		A1014	46.957	49.394		1.00 10.20	A
	ATOM	7952	CD2		A1014	49.076	48.353		1.00 10.52	A
	MOTA	7953	С		A1014	51.172	50.340		1.00 11.34	A A
	MOTA	7954	0		A1014	51.532	51.368		1.00 11.68	
	MOTA	7955	N		A1015	51.360	50.133		1.00 11.33	A A
30	MOTA	7956	CA		A1015	52.019	51.106		1.00 11.07 1.00 11.10	A
	ATOM	7957	CB		A1015	51.500	51.004		1.00 11.10	A
	MOTA	7958	OG1		A1015	51.640	49.648		1.00 11.40	A
	MOTA	7959	CG2		A1015	50.032	51.427		1.00 10.07	A
	MOTA	7960	С		A1015	53.528	50.866		1.00 11.04	A
35	MOTA	7961	0		A1015	54.262	51.636		1.00 11.39	A
	MOTA	7962	N		A1016	53.972	49.794		1.00 12.27	A
	ATOM	7963	CA		A1016	55.388	49.408		1.00 12.27	A
	MOTA	7964	СВ		A1016	56.271			1.00 12.20	A
40	MOTA	7965	CG		A1016	55.966			1.00 12.08	A
40	MOTA	7966			A1016	55.835			1.00 12.00	A
	MOTA	7967			A1016	55.823			1.00 11.87	A
	ATOM	7968			A1016	55.561			1.00 11.94	A
	ATOM	7969			A1016	55.549			1.00 11.93	A
45	MOTA	7970	CZ		A1016	55.417			1.00 13.14	A
45	MOTA	7971	С		A1016	55.881			1.00 13.11	A
	MOTA	7972	0		A1016	57.067			1.00 13.12	A
	MOTA	7973	N		A1017	54.976			1.00 13.12	A
	MOTA	7974	CA		A1017	55.369 54.374			1.00 12.73	A
- 0	MOTA	7975	CB		A1017				1.00 12.87	A
50	ATOM	7976	CG		A1017	54.334			1.00 12.49	A
	ATOM	7977			J A1017	53.323 55.720			1.00 12.43	A
	ATOM	7978			J A1017				1.00 14.53	A
	ATOM	7979	C		J A1017	55.595 56.271			1.00 14.93	A
	ATOM	7980	0		J A1017	55.042			1.00 15.38	A
55	MOTA	7981	N	GFt	N A1018	JJ.U42	. 30.04	0.10,	1.00 10.00	

and time time that was the time that

The Court for the court of the

		ATOM	7982	CA	CTN	A1018	55.246	44.513	0.310	1.00 17.15	5 A
								43.841	0.892	1.00 17.13	
		MOTA	7983	CB		A1018	53.994				
		ATOM	7984	CG		A1018	54.187	42.336	1.128	1.00 21.17	
	_	ATOM	7985	CD		A1018	52.903	41.592	1.466	1.00 23.14	
	5	MOTA	7986	OE1		A1018	52.917	40.373	1.668	1.00 25.29	
		ATOM	7987			A1018	51.789	42.313	1.522	1.00 22.60	
		ATOM	7988	С		A1018	55.608	43.822	-1.003	1.00 17.88	
		ATOM	7989	0		A1018	54.975	44.054	-2.033	1.00 16.69	
	4.0	MOTA	7990	N		A1019	56.628	42.971	-0.963	1.00 18.6	
	10	ATOM	7991	CA		A1019	57.036	42.238	-2.154	1.00 20.53	
		MOTA	7992	CB		A1019	58.498	41.798	-2.043	1.00 21.0	
		ATOM	7993	CG		A1019	59.446	42.971	-1.879	1.00 22.32	
		ATOM	7994			A1019	59.313	43.991	-2.561	1.00 22.36	
		ATOM	7995			A1019	60.419	42.830	-0.982	1.00 22.05	
	15	MOTA	7996	С		A1019	56.127	41.022	-2.285	1.00 21.52	
		ATOM	7997	0		A1019	55.948	40.267	-1.330	1.00 22.3	
		MOTA	7998	N		A1020	55.548	40.838	-3.466	1.00 22.00	
. , 1000		MOTA	7999	CA		A1020	54.639	39.725	-3.705	1.00 23.36	
(<u></u>	•	ATOM	8000	CB		A1020	53.345	40.233	-4.347	1.00 23.29	
ı,Ç	20	MOTA	8001	CG		A1020	52.546	41.316	-3.618	1.00 23.35	
ı,Li		MOTA	8002			A1020	51.427	41.815	-4.524	1.00 23.69	
177		ATOM	8003			A1020	51.983	40.763	-2.320	1.00 23.10	
		MOTA	8004	С		A1020	55.238	38.648	-4.600	1.00 24.39	
		MOTA	8005	0		A1020	54.876	37.474	-4.491	1.00 24.00	
	25	ATOM	8006	N		A1021	56.145	39.044	-5.488	1.00 25.74	
4 T.A		ATOM	8007	CA		A1021	56.759	38.093	-6.412	1.00 27.4	
ijĪ		MOTA	8008	CB		A1021	55.919	37.969	-7.684	1.00 28.95	
2)		ATOM	8009	CG		A1021	54.604	37.243	-7.551	1.00 31.78	
	20	MOTA	8010	CD		A1021	53.917	37.088	-8.897	1.00 33.30	
	30	MOTA	8011	OE1		A1021	54.587	36.643	-9.856	1.00 33.68	
		ATOM	8012			A1021	52.712	37.408	-8.998	1.00 35.00	
i section		ATOM	8013	С		A1021	58.174	38.440	-6.847	1.00 27.78	
		MOTA	8014	0		A1021	58.484	39.599	-7.125	1.00 27.14	
į sies	25	MOTA	8015	N		A1022	59.024	37.420	-6.915	1.00 28.63	
2 .	35	MOTA	8016	CA		A1022	60.394	37.587	-7.377	1.00 29.85	
		MOTA	8017	CB		A1022	61.343	36.652	-6.624	1.00 31.3	
		MOTA	8018	CG		A1022	62.782	36.825	-6.999	1.00 32.90	
		MOTA	8019			A1022	63.692	35.944	-7.480	1.00 33.73	
	40	ATOM	8020			A1022	63.438	38.034	-6.897	1.00 33.99	
	40	MOTA	8021			A1022	64.688	37.890	-7.299	1.00 34.23	
		MOTA	8022			A1022	64.868	36.631	-7.659	1.00 34.14	
		MOTA	8023	С		A1022	60.298	37.186	-8.847	1.00 29.97	
		MOTA	8024	0		A1022	60.054	36.022	-9.169	1.00 29.65	
	4 =	ATOM	8025	N		A1023	60.477	38.159	-9.732	1.00 29.90	
	45	ATOM	8026	CA		A1023	60.354		-11.165	1.00 30.60	
		MOTA	8027	CB		A1023	59.901		-11.837	1.00 30.00	
		MOTA	8028	CG		A1023	58.644		-11.194	1.00 29.45	
		ATOM	8029			A1023	58.367		-11.757	1.00 30.04	
	Ε0	ATOM	8030			A1023	57.466		-11.432	1.00 29.83	
	50	ATOM	8031	С		A1023	61.603		-11.854	1.00 31.31	
		ATOM	8032	0		A1023	62.656		-11.836	1.00 30.70	
		ATOM	8033	N		A1024	61.470		-12.470	1.00 32.74	
		MOTA	8034	CA		A1024	62.583		-13.179	1.00 33.94	
	==	ATOM	8035	CB		A1024	62.202		-13.646	1.00 36.13	
	55	MOTA	8036	CG	ASP	A1024	62.346	33.163	-12.547	1.00 38.17	A A

												70
		ATOM	8037	OD1	ASP	A1024	62.074		-12.818	1.00		A
		MOTA	8038	OD2	ASP	A1024	62.737		-11.417	1.00		A
		MOTA	8039	С	ASP	A1024	63.001	36.454	-14.373		33.60	A
		ATOM	8040	0	ASP	A1024	62.179	37.150	-14.973		33.92	A
	5	ATOM	8041	N	GLY	A1025	64.284	36.393	-14.712		33.05	Α
		ATOM	8042	CA	GLY	A1025	64.788	37.165	-15.832		32.63	A
		ATOM	8043	C		A1025	64.714	38.650	-15.547		32.42	Α
		MOTA	8044	Ö		A1025	65.062	39.474	-16.394	1.00	32.65	A
		MOTA	8045	N		A1026	64.262	38.990	-14.344	1.00	31.91	A
	10	ATOM	8046	CA		A1026	64.135		-13.932	1.00	31.78	A
	10		8047	CB		A1026	65.515		-13.860	1.00	32.40	A
		ATOM	8048	CG		A1026	66.511		-13.002	1.00	33.57	A
		MOTA		SD		A1026	68.098		-12.885		35.28	A
		MOTA	8049			A1026	68.895		-14.379		34.34	А
	4 F	MOTA	8050	CE			63.254		-14.920		31.27	A
	15	MOTA	8051	C		A1026	63.496		-15.221		30.28	A
		MOTA	8052	0		A1026			-15.422		30.91	A
		MOTA	8053	N		A1027	62.228		-16.377		31.71	A
		MOTA	8054	CA		A1027	61.316		-17.650		31.61	A
		MOTA	8055	СВ		A1027	61.178		-18.589		32.07	A
	20	MOTA	8056	CG1		A1027	60.155				31.52	A
		MOTA	8057			A1027	62.524		-18.340		31.69	A
		MOTA	8058	С		A1027	59.929		-15.788		31.57	A
41 325		ATOM	8059	0		A1027	59.295		-15.320		31.73	A
र्वे,=±3° २० ह		MOTA	8060	N		A1028	59.463		-15.814		32.08	A
10	25	MOTA	8061	CA		A1028	58.140		-15.300		32.15	A
34		MOTA	8062	CB		A1028	58.114		-14.754		31.91	A
H		MOTA	8063	С		A1028	57.145		-16.441			A
R(MOTA	8064	0		A1028	57.116		-17.361		32.68	A
		MOTA	8065	N		A1029	56.323		-16.405		31.39	A
	30	MOTA	8066	CD		A1029	56.223		-15.348		31.43	
		MOTA	8067	CA		A1029	55.327		-17.454		31.08	A
		ATOM	8068	CB		A1029	54.819		-17.132		31.27	A
Section 1		MOTA	8069	CG		A1029	54.878		-15.639		31.48	A
		ATOM	8070	С		A1029	54.217		-17.398		30.48	A
i tayı	35	MOTA	8071	0		A1029	53.919		-16.334		30.65	A
		MOTA	8072	N	GLU	A1030	53.612		-18.545		29.57	A
		ATOM	8073	CA	GLU	A1030	52.539		-18.595		28.77	A
		ATOM	8074	CB	GLU	A1030	52.224		-20.047		29.04	A
		MOTA	8075	CG	GLU	A1030	53.447		-20.861		28.71	A
	40	MOTA	8076	CD	GLU	A1030	53.086		-22.253		28.71	A
		ATOM	8077	OE1	GLU	A1030	52.176		-22.867		29.16	A
		ATOM	8078	OE2	GLU	A1030	53.716		-22.738		27.83	A
		MOTA	8079	С	GLU	A1030	51.300		-17.914		27.90	A
		MOTA	8080	0	GLU	A1030	51.190		-17.717		28.78	A
	45	ATOM	8081	N	VAL	A1031	50.366		-17.558		26.52	A
		ATOM	8082	CA	VAI	A1031	49.153		-16.883		24.32	A
		MOTA	8083	СВ	VAI	A1031	48.745		-15.791		25.20	A
		ATOM	8084	CG1	VAI	A1031	49.850		-14.752		25.47	A
		ATOM	8085			A1031	48.466		-16.408		24.31	A
	50	ATOM	8086	C		A1031	47.977	43.388	-17.826	1.00	22.92	A
		ATOM	8087	0		A1031	48.032	43.752	-18.998		22.93	A
		MOTA	8088	N		S A1032	46.917	42.790	-17.295		21.33	A
		ATOM	8089	CA		A1032	45.703		-18.051	1.00	20.05	A
		ATOM	8090	C		A1032	44.804		-18.132		18.10	A
	55	ATOM	8091	0		A1032	44.982		-17.381	1.00	17.38	A
		HIOH	0001	~	J+L							

	ATOM	8092	СВ		A1032	44.923		-17.380	1.00 20.75	A
	MOTA	8093	SG	CYS	A1032	45.684	39.722	-17.453	1.00 22.84	A
	MOTA	8094	N	PRO	A1033	43.820	43.727	-19.049	1.00 16.57	A
	MOTA	8095	CD	PRO	A1033	43.568	42.726	-20.104	1.00 16.27	A
5	MOTA	8096	CA	PRO	A1033	42,906	44.865	-19.183	1.00 16.00	A
	MOTA	8097	CB	PRO	A1033	41.941	44.404	-20.275	1.00 15.70	A
	ATOM	8098	CG	PRO	A1033	42.811	43.529	-21.138	1.00 16.00	A
	MOTA	8099	С	PRO	A1033	42,192	45.116	-17.853	1.00 15.35	A
	ATOM	8100	0		A1033	41.725		-17.206	1.00 14.40	A
10	ATOM	8101	N		A1034	42.119		-17.462	1.00 15.28	A
	ATOM	8102	CA		A1034	41.482		-16.221	1.00 15.94	A
	ATOM	8103	CB		A1034	40.041		-16.143	1.00 15.40	A
	MOTA	8104	CG		A1034	39.132		-17.223	1.00 15.40	A
	ATOM	8105	SD		A1034	39.209		-17.336	1.00 16.96	A
15	ATOM	8106	CE							
10					A1034	38.245		-15.883	1.00 17.76	A
	MOTA	8107	С		A1034	42.246		-14.972	1.00 16.88	A
	ATOM	8108	0		A1034	41.726		-13.860	1.00 17.93	A
	ATOM	8109	N		A1035	43.477		-15.161	1.00 16.50	A
20	ATOM	8110	CA		A1035	44.318		-14.044	1.00 17.13	A
20	MOTA	8111	CB		A1035	44.989		-14.342	1.00 19.35	A
	MOTA	8112	CG		A1035	46.198		-13.453	1.00 23.20	A
	MOTA	8113	CD		A1035	46.687		-13.550	1.00 25.99	A
	MOTA	8114	OE1		A1035	46.973		-14.674	1.00 26.11	A
	MOTA	8115	OE2	GLU	A1035	46.794	41.766	-12.488	1.00 28.07	A
25	MOTA	8116	С	GLU	A1035	45.386	46.570	-13.765	1.00 16.00	A
	MOTA	8117	O	GLU	A1035	45.777	47.328	-14.652	1.00 14.36	A
	ATOM	8118	N	THR	A1036	45.839	46.620	-12.518	1.00 15.22	A
	ATOM	8119	CA	THR	A1036	46.881	47.554	-12.116	1.00 14.15	A
	ATOM	8120	CB	THR	A1036	46.323	48.705	-11.253	1.00 13.96	A
30	ATOM	8121	OG1	THR	A1036	45.285	49.383	-11.967	1.00 13.25	A
	ATOM	8122	CG2	THR	A1036	47.427	49.701	-10.914	1.00 13.39	A
	MOTA	8123	С	THR	A1036	47.877	46.768	-11.279	1.00 13.98	A
	MOTA	8124	0	THR	A1036	47.487	46.031	-10.375	1.00 13.86	A
	MOTA	8125	N		A1037	49.159		-11.584	1.00 13.57	A
35	ATOM	8126	CA		A1037	50.186	46.213	-10.832	1.00 14.07	A
	ATOM	8127	CB		A1037	50.706		-11.626	1.00 14.55	A
	ATOM	8128	C		A1037	51.320		-10.526	1.00 14.09	A
	ATOM	8129	Ō		A1037	51.442		-11.149	1.00 14.87	A
	ATOM	8130	N		A1038	52.134	46.810	-9.544	1.00 13.48	A
40	ATOM	8131	CA		A1038	53.268	47.633	-9.164	1.00 13.29	A
	ATOM	8132	CB		A1038	53.066	48.207	-7.774	1.00 12.35	A
	ATOM	8133	C		A1038	54.512	46.766	-9.193	1.00 13.30	A
	ATOM	8134	0		A1038	54.468	45.590	-8.823	1.00 13.16	
	ATOM	8135	N		A1030	55.612	47.347	-9.655	1.00 13.10	A n
45	ATOM	8136			A1039	56.879				A
40			CA				46.642	-9.722	1.00 14.56	A
	ATOM	8137	CB		A1039	57.218		-11.160	1.00 14.67	A
	ATOM	8138	CG		A1039	56.188		-11.836	1.00 16.22	A
	ATOM	8139			A1039	55.247		-12.707	1.00 17.34	A
50	ATOM	8140			A1039	54.306		-13.349	1.00 18.80	A
50	MOTA	8141			A1039	56.162		-11.616	1.00 17.38	A
	ATOM	8142			A1039	55.223		-12.253	1.00 18.40	А
	ATOM	8143	CZ		A1039	54.301		-13.118	1.00 19.04	A
	MOTA	8144	OH		A1039	53.377		~13.758	1.00 21.01	A
	MOTA	8145	C		A1039	57.979	47.546	-9.204	1.00 14.90	A
55	MOTA	8146	0	TYR	A1039	57.925	48.767	-9.362	1.00 14.95	A

The first for the first

		7 0 0 0 0	01.5			21010	F0 055	40 000	0 500	1 00	25 10	-
		ATOM	8147	N	VAL	A1040	58.977	46.936	-8.580	1.00	15.13	A
		MOTA	8148	CA	VAL	A1040	60.115	47.674	-8.064	1.00	15.16	A
		MOTA	8149	CB	VAI.	A1040	60.176	47.631	-6.521	1.00	15.50	A
		ATOM	8150			A1040	61.472	48.281	-6.029		15.65	A
	5						58.975	48.363	-5.937			A
	J	ATOM	8151			A1040					14.36	
		MOTA	8152	С		A1040	61.357	47.010	-8.635		16.26	A
		ATOM	8153	0	VAL	A1040	61.538	45.795	-8.510	1.00	16.39	A
		MOTA	8154	N	SER	A1041	62.197	47.802	-9.291	1.00	16.31	A
		MOTA	8155	CA	SER	A1041	63.430	47.283	-9.860	1.00	17.09	A
	10	ATOM	8156	CB	SER	A1041	63.615	47.784	-11.299	1.00	16.94	A
		ATOM	8157	OG		A1041	63.690		-11.352		16.34	А
		ATOM	8158	C		A1041	64.585	47.755	-8.987		17.15	A
		ATOM	8159	0		A1041	64.618	48.910	-8.566		16.29	A
	4-	MOTA	8160	N		A1042	65.520	46.851	-8.706		17.84	А
	15	MOTA	8161	CA	SER	A1042	66.690	47.171	-7.890		18.46	A
		ATOM	8162	CB	SER	A1042	66.896	46.108	-6.810	1.00	18.36	A
		MOTA	8163	OG	SER	A1042	65.761	46.045	-5.961	1.00	19.21	A
		MOTA	8164	С	SER	A1042	67.905	47.240	-8.802	1.00	18.79	A
		ATOM	8165	0		A1042	68.056	46.419	-9.707		18.69	A
4122	20	ATOM	8166	N		A1043	68.766	48.223	-8.563		19.78	A
	40								-9.397		20.82	A
Ţ,		ATOM	8167	CA		A1043	69.946	48.420				
191		ATOM	8168	CB		A1043	69.749		-10.234		19.47	A
i Paris Liveri		MOTA	8169	CG		A1043	68.444		-10.966		18.50	A
		MOTA	8170	CD2	HIS	A1043	67.209		-10.569	1.00	17.78	A
8 % 8	25	ATOM	8171	ND1	HIS	A1043	68.292	49.189	-12.236	1.00	17.74	A
		MOTA	8172	CE1	HIS	A1043	67.021	49.254	-12.587	1.00	17.63	A
		MOTA	8173	NE2	HIS	A1043	66.342	49.797	-11.593	1.00	18.16	A
Ä!		ATOM	8174	С		A1043	71.215	48.521	-8.565		22.62	А
		ATOM	8175	Ö		A1043	71.266	49.246	-7.573		22.60	A
Sar Establi	30	ATOM	8176	N		A1044	72.240	47.790	-8.987		24.94	A
	30											
		ATOM	8177	CA		A1044	73.509	47.767	-8.275		27.40	A
jak		MOTA	8178	CB		A1044	74.217	46.432	-8.532		28.13	A
		MOTA	8179	OG		A1044	74.193	46.096	-9.911		29.65	A
		MOTA	8180	С		A1044	74.434	48.923	-8.632		28.23	A
2,522	35	MOTA	8181	0	SER	A1044	74.039	49.786	-9.448	1.00	28.56	A
		ATOM	8182	TXO	SER	A1044	75.552	48.944	-8.077	1.00	29.86	A
		MOTA	8183	OH2	TAW	W 1	41.979	63.654	-7.156	1.00	8.05	W
		MOTA	8184		WAT		53.601		-19.784	1.00	11.44	W
		ATOM	8185		WAT		39.162		-19.188	1.00	9.94	W
	40	ATOM	8186		WAT		52.119	54.293	-4.860	1.00	9.88	M
	1 0											
		ATOM	8187		TAW		56.136	53.559	-0.657		10.79	W
		ATOM	8188		WAT		31.383		~24.059		10.96	W
		MOTA	8189		WAT		49.858	48.630	1.284		12.86	M
		ATOM	8190		WAT		36.992	57.884	13.375	1.00	9.63	W
	45	ATOM	8191	OH2	WAT	W 9	26.755	69.172	-9.245	1.00	11.38	W
		ATOM	8192	OH2	WAT	W 10	39.324	64.859	-14.901	1.00	12.67	W
		MOTA	8193	OH2	WAT	W 11	34.198	58.783	-8.711	1.00	11.93	W
		ATOM	8194		WAT		60.950	59.827	-8.309		11.38	W
		ATOM	8195		WAT		36.628	72.825	0.199		11.49	M
	50	ATOM	8196		WAT		31.708	47.175	-8.092		10.89	W
	50											
		ATOM	8197		TAW		30.142	55.929	17.238		10.75	W
		MOTA	8198		TAW		26.117		-13.740		10.75	М
		ATOM	8199		TAW		37.632		-21.150		12.30	M
		ATOM	8200	OH2	WAT	W 18	33.010	62.954	0.153		10.82	M
	55	ATOM	8201	OH2	WAT	W 19	24.689	53.037	-11.753	1.00	11.02	W

		71 (12 (23.4	0000	0110 1	m	0.0	CO 105	C1 F1F	7 501	1 00 10 40	7.7
		ATOM	8202	OH2 W		20	63.105	61.515	-7.581	1.00 10.48	W
		MOTA	8203	OH2 WA		21	41.285	59.153	13.532	1.00 12.85	W
		MOTA	8204	OH2 W	W TA	22	47.287	55.959	-15.370	1.00 14.81	W
		ATOM	8205	OH2 W	W T	23	56.380	55.892	-2.106	1.00 8.54	W
	5	ATOM	8206	OH2 W	W TA	24	67.351	60.850	-5.664	1.00 14.58	M
		MOTA	8207	OH2 WA	W T	25	26.262	48.939	-10.894	1.00 13.65	W
		ATOM	8208	OH2 WA	T W	26	65.620	60.396	-7.599	1.00 14.15	M
		MOTA	8209	OH2 WA		27	32.469	60.318	-1.870	1.00 10.93	W
		MOTA	8210	OH2 WA		28	20.127	54.851	16.211	1.00 17.01	W
	10	ATOM	8211	OH2 WA		29	23.824		-23.371	1.00 12.86	W
		ATOM	8212		W T	30	39.335	57.550	14.798	1.00 11.81	W
		ATOM	8213	OH2 WA		31	20.371		-21.881	1.00 12.24	W
		ATOM	8214	OH2 W		32	28.075	61.166	19.435	1.00 13.45	W
		ATOM	8215	OH2 WA		33	34.058		-26.256	1.00 11.49	W
	15	MOTA	8216	OH2 WA		34	26.341	40.112	7.993	1.00 15.36	M
	13						63.796		-14.022	1.00 13.30	M
		ATOM	8217	OH2 W		35				1.00 12.39	W
		ATOM	8218	OH2 W		36	37.486	57.200	1.752		
		ATOM	8219	OH2 W		37	24.088	42.135	6.847	1.00 14.18	W
	20	ATOM	8220	OH2 W		38	31.966	65.565	18.975	1.00 15.73	W
ij	20	MOTA	8221	OH2 WA		39	51.492	56.797	-5.607	1.00 8.86	M
ij		MOTA	8222	OH2 WA		40	20.056	56.197	7.115	1.00 13.43	M
		ATOM	8223	OH2 WA		41	28.261	43.988	13.133	1.00 11.93	W
		MOTA	8224	OH2 W		42	30.237		-11.794	1.00 11.17	W
N		MOTA	8225	OH2 WA		43	64.887	59.396	-3.618	1.00 16.12	M
848 8 845	25	MOTA	8226	OH2 W	W T	44	46.340		-15.581	1.00 15.57	W
		MOTA	8227	OH2 W	W T	45	60.698	58.457	-2.874	1.00 13.59	W
1,7 5		MOTA	8228	OH2 W	W T	46	60.499	62.267	-1.276	1.00 14.53	W
33		ATOM	8229	OH2 W	W TA	47	53.593	60.068	-9.458	1.00 12.82	W
		MOTA	8230	OH2 WA	W TA	48	18.566	51.203	-12.450	1.00 15.00	W
ij.	30	MOTA	8231	OH2 WA	W TA	49	28.876	42.922	-11.951	1.00 16.11	W
		ATOM	8232	OH2 W	W T	50	34.497	79.288	-9.194	1.00 12.70	W
		MOTA	8233	OH2 W	W TA	51	21.521	58.048	-7.816	1.00 13.55	W
		MOTA	8234	OH2 WA	T W	52	36.974	72.026	-4.632	1.00 11.46	W
		ATOM	8235	OH2 W	W TA	53	55.633	59.600	-11.527	1.00 12.06	W
į.	35	ATOM	8236	OH2 WA	W T	54	36.685	44.992	-5.521	1.00 12.94	W
		ATOM	8237	OH2 WA	W T	55	51.282	53.464	-24.055	1.00 15.04	W
		ATOM	8238	OH2 W	W TA	56	35.178	50.782	-17.540	1.00 18.13	W
		MOTA	8239	OH2 WA	W T	57	60.506	54.958	-0.396	1.00 15.58	W
		ATOM	8240	OH2 WA	W T	58	42.909	56.986	6.187	1.00 11.90	W
	40	ATOM	8241	OH2 W	W TA	59	47.858		-25.679	1.00 15.94	W
		ATOM	8242	OH2 W		60	37.848	73.645	-2.364	1.00 13.96	W
		ATOM	8243	OH2 WA		61	19.391	55.464	11.518	1.00 14.93	W
		ATOM	8244	OH2 W		62	25.911	39.813	5.195	1.00 11.56	W
		ATOM	8245	OH2 W		63	23.258	54.236	-3.647	1.00 15.92	W
	45	ATOM	8246	OH2 W		64	34.294	52.614	-1.083	1.00 12.31	W
	10	ATOM	8247	OH2 WA		65	50.997	44.377	-7.959	1.00 13.40	M
		MOTA	8248	OH2 WA		66	37.875	59.168	11.062	1.00 12.70	M
		ATOM	8249	OH2 WA		67	16.619	49.176	24.039	1.00 17.09	W
		MOTA	8250	OH2 WA		68	19.392	53.623	8.170	1.00 14.32	W
	50						11.769	51.733	14.377	1.00 15.40	W
	50	ATOM	8251	OH2 WA		69 70		56.383	10.249	1.00 13.40	W
		MOTA	8252	OH2 WA		70 71	17.139	65.707	-3.476		W
		ATOM	8253	OH2 WA		71	67.983			1.00 14.66	
		MOTA	8254	OH2 WA		72	22.822		-24.440	1.00 18.17	M
	EE	ATOM	8255	OH2 WA		73	52.061	50.772	6.360	1.00 11.54	W
	55	MOTA	8256	OH2 WA	T W	74	17.596	52.950	6.333	1.00 13.94	W

									1 00 15 47	W
		ATOM	8257	OH2	WAT W	75	68.801	58.401 -5.067	1.00 15.47	
		MOTA	8258	OH2	WAT W	76	33.510	48.227 -10.155	1.00 10.97	W
		MOTA	8259	OH2	WAT W	77	26.793	41.647 -13.173	1.00 13.87	W
		ATOM	8260		WAT W	78	26.744	61.077 -3.285	1.00 11.60	W
	5	ATOM	8261		WAT W	79	49.480	62.451 -8.644	1.00 9.33	W
	9		8262		W TAW	80	41.021	52.499 -16.991	1.00 13.50	W
		ATOM					31.434	76.936 -6.264	1.00 15.03	W
		ATOM	8263		W TAW	81		68.423 -24.915	1.00 14.16	W
		MOTA	8264		WAT W	82	43.379		1.00 13.97	W
		MOTA	8265		W TAW	83	32.764	81.302 -11.715	1.00 13.09	W
	10	MOTA	8266		WAT W	84	20.523	66.419 -19.639		
		ATOM	8267	OH2	WAT W	85	40.401	62.934 6.179	1.00 12.03	W
		ATOM	8268	OH2	WAT W	86	42.119	47.453 -24.559	1.00 17.53	M
		ATOM	8269	OH2	WAT W	87	44.524	42.002 -0.591	1.00 19.33	W
		MOTA	8270	OH2	W TAW	88	38.626	55.309 -31.696	1.00 13.53	M
	15	ATOM	8271	OH2	WAT W	89	22.307	54.475 -11.945	1.00 12.50	M
		ATOM	8272		WAT W	90	48.303	89.462 -30.628	1.00 20.34	W
		ATOM	8273		WAT W	91	36.707	51.821 3.758	1.00 11.30	W
		ATOM	8274	OH2		92	38.733	62.443 8.416	1.00 13.40	M
221000		ATOM	8275		WAT W	93	47.443	46.140 3.623	1.00 9.98	W
	20	ATOM	8276		WAT W	94	33.576	57.296 -35.875	1.00 16.19	W
ı, Çi	20		8277		W TAW		32.312	77.752 -29.560	1.00 14.95	W
Ę		MOTA			WAT W		39.250	39.226 17.190	1.00 18.72	W
167		MOTA	8278		W TAW		35.930	53.330 1.320	1.00 9.48	W
		MOTA	8279				14.447	60.154 5.058	1.00 17.17	W
	0-	MOTA	8280		WAT W		21.655	57.292 5.020	1.00 11.98	W
5 5 45 5	25	MOTA	8281		WAT W			48.234 11.162	1.00 12.84	W
		MOTA	8282		WAT W		43.040	73.018 5.559	1.00 14.30	W
(Th		MOTA	8283		WAT W		26.080	48.649 -21.557	1.00 22.43	M
Bi		MOTA	8284		WAT W		27.431		1.00 13.70	W
		MOTA	8285		WAT W		33.294		1.00 13.70	W
	30	MOTA	8286		WAT W		49.992	59.656 -11.582	1.00 14.63	W
12.1		ATOM	8287		WAT W		25.582	51.390 -9.530	1.00 14.03	W
i te		MOTA	8288		WAT W		40.201	56.515 5.849		W
		ATOM	8289		WAT W		14.015	59.894 -3.431	1.00 15.09	
1,122		MOTA	8290	OH2	WAT W		19.701	53.654 -11.750	1.00 14.70	W
i cata	35	MOTA	8291	OH2	WATW	109	26.513	63.805 17.151	1.00 21.71	W
		MOTA	8292	OH2	WAT W	110	19.778	57.568 -11.786	1.00 15.33	W
		MOTA	8293	OH2	V TAW	1 111	47.187	48.533 11.420	1.00 22.52	W
		ATOM	8294	ОН2	WAT V	1112	67.813	81.789 -25.634	1.00 15.49	W
		MOTA	8295	OH2	WAT V	1 113	22.910	51.833 -8.728	1.00 17.22	W
	40	MOTA	8296		WAT V		46.597	70.553 -36.714	1.00 16.13	W
		ATOM	8297		WAT V		20.543	57.579 -5.285	1.00 11.86	M
		ATOM	8298		WAT V		18.154	60.637 24.428	1.00 23.17	W
		ATOM	8299		WAT V		41.280	68.626 -32.512	1.00 16.76	W
		MOTA	8300		WAT V		38.328	40.122 1.665	1.00 12.98	W
	45	ATOM	8301		WAT W		23.855	58.244 6.312	1.00 12.38	W
	40		8302		WAT W		18.101	59.927 -20.092	1.00 23.40	W
		ATOM			TAW S		41.276	77.738 -14.102	1.00 15.70	W
		ATOM	8303		TAW S		52.842	59.201 -1.699	1.00 21.35	W
		ATOM	8304				47.942	49.607 13.775	1.00 12.65	M
	F0	ATOM	8305		TAW S		35.232	43.720 28.641	1.00 15.37	W
	50	MOTA	8306		TAW S			60.738 -6.298	1.00 12.21	W
		MOTA	8307		TAW S		59.499	72.740 -19.148	1.00 13.77	W
		ATOM	8308		TAW S		53.661		1.00 20.47	W
		MOTA	8309		Z WAT		39.796		1.00 20.47	W
		MOTA	8310		2 WAT		33.113		1.00 19.85	W
	55	ATOM	8311	OH2	2 WAT	W 129	14.324	64.079 -16.361	1.00 16.40	VV

		MOTA	8312	OH2	WAT	W	130	47.511	43.081	-2.434	1.00	16.15	W
		MOTA	8313	OH2	WAT	W	131	46.904	56.002	-25.485	1.00	17.18	W
		MOTA	8314	OH2	WAT	W	132	32.138	58.794	-28.468	1.00	18.35	W
		ATOM	8315		WAT			49.264	50.050	28.230		22.47	W
	5	ATOM	8316		WAT			26.292	37.411	29.332		24.20	W
	J	ATOM	8317		WAT			51.883	46.667	1.206		12.72	W
		ATOM	8318		WAT			41.713		-16.022		14.58	W
		ATOM	8319		WAT			13.817	54.250	4.446		20.80	W
	10	MOTA	8320		TAW			67.797		-25.331		15.35	W
	10	MOTA	8321		WAT			42.168	75.429	-16.021	1.00	16.13	W
		MOTA	8322	OH2	WAT	W	140	23.119	56.194	30.804	1.00	18.52	M
		ATOM	8323	OH2	TAW	W	141	56.988	61.152	1.554	1.00	17.70	M
		MOTA	8324	OH2	TAW	W	142	20.075	74.547	-6.879	1.00	14.89	W
		MOTA	8325		WAT			13.378	53.661	1.806	1.00	17.64	W
	15	ATOM	8326		WAT			34.280	34.507	16.087	1.00	20.88	W
		ATOM	8327		WAT			33.932		-32.236		16.75	W
		ATOM	8328		WAT			14.061	49.293	15.438		16.25	W
		ATOM	8329		WAT			30.384		-12.407		20.29	W
3122										14.038			W
(mail	20	ATOM	8330		WAT			18.403	55.006			14.99	
4.5	20	MOTA	8331		TAW			15.636	60.472	15.465		21.47	M
J		MOTA	8332		WAT			16.791	74.875	-3.047		20.80	M
		MOTA	8333		TAW			56.518		-17.443		19.10	M
Brand Alt. n		MOTA	8334		WAT			45.628	60.100	-18.241		16.63	W
		MOTA	8335	OH2	WAT	W	153	28.171		-35.426	1.00	18.35	M
Marie Marie	25	MOTA	8336	OH2	WAT	W	154	73.029	65.246	-7.720	1.00	18.19	W
The state of the s		MOTA	8337	OH2	TAW	W	155	73.770	66.211	-17.640	1.00	18.74	W
M		ATOM	8338	OH2	WAT	W	156	59.259	50.047	-0.667	1.00	17.63	W
81		MOTA	8339	OH2	WAT	W	157	23.044	78.525	-24.838	1.00	20.25	M
		ATOM	8340		WAT			14.298		-16.068		18.13	W
Total Page	30	ATOM	8341		WAT			43.558	73.338	5.809		12.80	W
		ATOM	8342		WAT			11.895		-12.525		18.10	W
(III)		ATOM	8343		WAT			63.550	44.738	-6.929		16.10	W
i in										-24.121			W
A COLUMN		ATOM	8344		WAT			24.753				17.61	
	25	ATOM	8345		TAW			35.486		-27.380		17.74	W
\$1	35	MOTA	8346		TAW			28.688		-24.414		21.74	W
		ATOM	8347		WAT			54.813		-23.474		17.16	W
		MOTA	8348		WAT			23.604	63.804	7.820		20.53	M
		ATOM	8349	OH2	WAT	W	167	49.744	57.760	-7.648		12.03	M
		MOTA	8350	OH2	WAT	W	168	46.061	71.148	0.115	1.00	20.51	W
	40	MOTA	8351	OH2	WAT	W	169	24.323	55.822	-1.895	1.00	14.21	W
		ATOM	8352	OH2	TAW	W	170	28.647	41.366	-21.778	1.00	15.50	M
		ATOM	8353	ОН2	WAT	W	171	37.052	45.730			15.23	M
		MOTA	8354		WAT			41.487		-17.622		17.68	M
		ATOM	8355		TAW			40.305		-31.970		17.43	W
	45	ATOM	8356		WAT			49.313		-28.687		16.29	W
	10	ATOM	8357		WAT			64.386		-10.440		28.13	W
												21.55	W
		ATOM	8358		WAT			19.168	72.621	2.908			
		ATOM	8359		TAW			17.064		-16.407		15.86	W
	F 0	MOTA	8360		WAT			9.518	52.618	16.850		29.64	W
	50	ATOM	8361		WAT			53.879		-36.735		13.71	W
		ATOM	8362		WAT			50.889		-23.486		16.09	M
		ATOM	8363	OH2	WAT	M	181	49.384	44.309	4.445	1.00	15.10	W
		ATOM	8364	OH2	WAT	W	182	59.367	68.444	2.370	1.00	21.67	W
		ATOM	8365	OH2	WAT	W	183	25.439	53.900	11.086	1.00	15.64	W
	55	ATOM	8366		WAT			69.086	61.568	-2.411		16.23	W
						. ,							

					EO 241	77.603 -38.440	1.00 18.02	W
		MOTA	8367	OH2 WAT W 185	58.341	46.220 9.936	1.00 17.37	W
		MOTA	8368	OH2 WAT W 186	44.390		1.00 17.57	W
		MOTA	8369	OH2 WAT W 187	46.547	57.491 -18.779	1.00 15.30	W
		MOTA	8370	OH2 WAT W 188	33.493	83.726 -10.384		
	5	MOTA	8371	OH2 WAT W 189	47.052	68.688 -30.395	1.00 20.70	W
		MOTA	8372	OH2 WAT W 190	44.386	56.163 -15.436	1.00 17.54	W
		MOTA	8373	OH2 WAT W 191	13.141	67.021 - 4.770	1.00 16.21	W
		MOTA	8374	OH2 WAT W 192	24.512	39.271 -11.474	1.00 19.84	M
		ATOM	8375	OH2 WAT W 193	41.591	61.284 -29.731	1.00 17.96	W
	10	ATOM	8376	OH2 WAT W 194	27.187	41.479 13.299	1.00 18.70	W
	10	MOTA	8377	OH2 WAT W 195	42.003	88.025 -40.833	1.00 20.34	W
		ATOM	8378	OH2 WAT W 196	69.850	70.102 -12.637	1.00 18.95	M
		ATOM	8379	OH2 WAT W 197	64.133	78.095 -35.174	1.00 15.70	M
		MOTA	8380	OH2 WAT W 198	20.411	65.476 7.641	1.00 22.81	W
	15	ATOM	8381	OH2 WAT W 199	11.382	61.518 -18.592	1.00 24.08	M
	10	ATOM	8382	OH2 WAT W 200	24.515	70.804 -8.824	1.00 12.95	W
			8383	OH2 WAT W 200	25.028	40.143 14.192	1.00 15.50	M
		MOTA	8384	OH2 WAT W 201	22.728	63.442 -33.182	1.00 19.12	M
		MOTA		OH2 WAT W 202	41.675	43.431 7.944	1.00 16.39	W
	20	MOTA	8385	OH2 WAT W 203	21.035	51.916 47.273	1.00 21.06	W
Ţ,	20	MOTA	8386	OH2 WAT W 204	41.323	50.434 33.218	1.00 21.10	W
		MOTA	8387		45.961	52.944 -19.253	1.00 20.91	W
		MOTA	8388	OH2 WAT W 206	51.427	76.534 -40.959	1.00 29.19	W
		MOTA	8389	OH2 WAT W 207	25.701	86.532 -31.930	1.00 16.19	W
Roof Strik	0=	MOTA	8390	OH2 WAT W 208		56.457 5.406	1.00 18.11	W
Man a	25	MOTA	8391	OH2 WAT W 209	12.460	56.988 -34.123	1.00 19.06	W
10 H		ATOM	8392	OH2 WAT W 210	22.528	72.929 -42.044	1.00 28.46	W
100		MOTA	8393	OH2 WAT W 211	43.856	58.887 -16.004	1.00 20.40	W
#1		MOTA	8394	OH2 WAT W 212	44.594		1.00 14.07	W
		MOTA	8395	OH2 WAT W 213	31.327	81.894 0.496 56.524 -30.250	1.00 22.59	W
e Para	30	ATOM	8396	OH2 WAT W 214	51.990		1.00 26.14	W
		MOTA	8397	OH2 WAT W 215	17.291	70.212 -23.398 47.140 29.767	1.00 20.14	W
		MOTA	8398	OH2 WAT W 216	37.674		1.00 20.75	W
}.i		MOTA	8399	OH2 WAT W 217	49.763	55.189 -28.946	1.00 20.73	W
		MOTA	8400	OH2 WAT W 218	36.224	79.442 -5.010	1.00 20.29	W
i.i.	35	MOTA	8401	OH2 WAT W 219	62.253	62.767 25.731	1.00 16.31	W
		ATOM	8402	OH2 WAT W 220	11.367	53.252 6.826		W
		MOTA	8403	OH2 WAT W 221	13.918	60.924 -22.492	1.00 17.57	W
		MOTA	8404	OH2 WAT W 222	50.826	62.132 26.293	1.00 18.66	W
		MOTA	8405	OH2 WAT W 223	68.567	79.132 -18.104	1.00 23.07	
	40	MOTA	8406	OH2 WAT W 224	84.246	68.535 -17.436	1.00 18.57	W
		MOTA	8407	OH2 WAT W 225	21.706	40.481 -8.839	1.00 39.04	W
		MOTA	8408	OH2 WAT W 226	52.774	69.943 18.294	1.00 29.32	W
		ATOM	8409	OH2 WAT W 227	42.710	53.366 35.547	1.00 23.23	W
		ATOM	8410	OH2 WAT W 228	70.573	52.241 -12.697	1.00 18.76	M
	45	MOTA	8411	OH2 WAT W 229	34.677	70.519 13.163	1.00 15.62	W
		ATOM	8412	OH2 WAT W 230	27.183	46.437 13.610	1.00 17.02	W
		ATOM	8413	OH2 WAT W 231	14.461	49.789 19.876	1.00 21.18	M
		ATOM	8414	OH2 WAT W 232	49.677	73.603 -21.812	1.00 20.74	M
		ATOM	8415	OH2 WAT W 233	48.689	44.397 -6.207	1.00 23.27	M
	50	ATOM	8416	OH2 WAT W 234	61.411	77.066 -39.605	1.00 20.10	W
		ATOM	8417	OH2 WAT W 235	22.867	78.771 -30.351	1.00 27.37	M
		ATOM	8418	OH2 WAT W 236	43.608	88.812 -38.512	1.00 22.55	M
		ATOM	8419		35.757	77.729 -7.317	1.00 14.57	M
		ATOM	8420		24.900	68.466 21.787	1.00 17.96	W
	55	ATOM	8421	OH2 WAT W 239	68.063	49.283 -1.100	1.00 22.72	W
		L7 7 OF-1	0-12-1					

		ATOM	8422	OH2 WAT	W 240	54.299	48.026 15.5	91 1.00 25.88	W
		ATOM	8423	OH2 WAT		55.049	50.600 16.6		W
		ATOM		OH2 WAT		39.361	48.842 -32.7		W
			8424	OH2 WAT		22.699	45.380 -13.4		W
	5	MOTA	8425	OH2 WAT		67.040	55.442 0.9		M
	3	ATOM	8426	OH2 WAT		47.931	44.056 -8.6		W
		ATOM	8427			26.926	87.957 -23.6		W
		MOTA	8428	OH2 WAT		18.939	48.658 37.7		W
		MOTA	8429	OH2 WAT			67.735 -22.8		W
	4.0	ATOM	8430	OH2 WAT		83.613	59.956 -19.0		W
	10	MOTA	8431	OH2 WAT		43.080	79.280 -40.3		W
		MOTA	8432	OH2 WAT		47.447	57.762 -6.8		M
		MOTA	8433	OH2 WAT		8.610	90.452 -23.4		W
		MOTA	8434	OH2 WAT		54.864	36.704 -19.6		W
		MOTA	8435	OH2 WAT		27.829			W
	15	MOTA	8436	OH2 WAT		72.041	58.809 -11.2		W
		MOTA	8437	OH2 WAT		34.317	67.941 12.4		M
		MOTA	8438	OH2 WAT		11.689	59.501 -4.9		M
		MOTA	8439	OH2 WAT		23.547	46.199 -15.8		W
		MOTA	8440	OH2 WAT		50.148	70.938 -17.6		W
	20	MOTA	8441	OH2 WAT		45.026	90.336 -25.3		W
1,13		MOTA	8442	OH2 WAT		16.051	72.410 -19.1		M
		MOTA	8443	OH2 WAT		20.057	52.682 -24.3		M
iga a gang		MOTA	8444	OH2 WAT		59.525	76.638 -8.9		
10 x		ATOM	8445	OH2 WAT		67.003	60.112 -27.2		W
100	25	MOTA	8446	OH2 WAT		38.567	51.573 -29.9		W
		ATOM	8447	OH2 WAT		40.324	83.008 -10.7		W
		ATOM	8448	OH2 WAT		42.243	48.804 31.2		W
81		MOTA	8449	OH2 WAT		24.084	53.092 -6.1		W
Same Stand		MOTA	8450	OH2 WAT		53.144	47.239 -24.9		W.
172	30	MOTA	8451		W 269	32.591	89.326 -43.0		M
		ATOM	8452	OH2 WAT		35.918	36.131 -4.6		W
		MOTA	8453	OH2 WAT		70.097	83.236 -29.8		W
ğuda usun		MOTA	8454	OH2 WAT		49.672	82.609 -43.7		W
		MOTA	8455	OH2 WAT		68.303	79.781 -34.8		W
i saga	35	MOTA	8456	OH2 WAT	W 274	29.275	46.925 37.0		W
		ATOM	8457	OH2 WAT		18.487	70.059 4.3		W
		ATOM	8458	OH2 WAT			68.374 -7.9		
		ATOM	8459	OH2 WAT		50.303	72.617 9.3		
		MOTA	8460	OH2 WAT		39.685	75.893 -40.1		
	40	ATOM	8461	OH2 WAT	W 279	28.798			
		ATOM	8462	OH2 WAT	W 280	11.686		375 1.00 22.13	
		MOTA	8463	OH2 WAT	W 281		79.065 -17.3		
		ATOM	8464	OH2 WAT	W 282	18.551	65.160 -27.0		
		ATOM	8465	OH2 WAT	W 283	44.655	79.479 -33.		
	45	ATOM	8466	OH2 WAT	W 284	36.141		293 1.00 20.52	
		MOTA	8467	OH2 WAT	W 285	16.704	60.781 -28.		
		MOTA	8468	OH2 WAT	W 286	29.546	87.479 -17.		
		ATOM	8469	OH2 WAT			55.123 -6.3		
		ATOM	8470	OH2 WAT			61.790 -25.		
	50	MOTA	8471	OH2 WAT			82.357 -10.		
		ATOM	8472	OH2 WAT			50.828 18.		
		ATOM	8473	OH2 WAT			42.588 12.		
		ATOM	8474	OH2 WAT			45.284 30.		
		ATOM	8475	OH2 WAT			75.427 -11.	773 1.00 28.82	
	55	ATOM	8476	OH2 WAT			46.933 -20.		W
	55	411 011	01.0						

		MOTA	8477	OH2	WAT	W	295	56.985	65.097	24.144	1.00 25.1	.1 W
		MOTA	8478	OH2	WAT	W	296	38.666	94.400	-42.035	1.00 24.6	52 W
		MOTA	8479	OH2	WAT	M	297	34.710	59.743	-34.933	1.00 22.6	52 W
		ATOM	8480	OH2	WAT	W	298	32.944		- 17.505	1.00 26.1	
	5	MOTA	8481	OH2	WAT	W	299	20.657	42.768	-7.509	1.00 21.9	
		MOTA	8482		WAT			19.155	76.985	4.910	1.00 38.1	
		MOTA	8483		WAT			43.373	80.840	4.965	1.00 24.7	
		MOTA	8484		TAW			32.881	85.482	-5.464	1.00 21.3	
	4.0	MOTA	8485		TAW			31.104	33.601	2.777	1.00 24.2	
	10	MOTA	8486		WAT			21.396	78.741	-1.313	1.00 21.9	
		MOTA	8487		TAW			55.254	59.216	4.036	1.00 21.4	
		MOTA	8488		TAW			13.447		-19.982	1.00 20.7	
		ATOM	8489		WAT			16.955		-19.284	1.00 29.6	
	15	MOTA	8490		WAT			14.307		-12.146	1.00 18.2	
	15	MOTA	8491		WAT		309	53.317		-21.280	1.00 26.8	
		ATOM	8492		WAT			70.858	49.588	-0.140	1.00 24.5	
		ATOM	8493		WAT			57.961	42.561	1.493	1.00 26.8	
		ATOM	8494	-	TAW			74.694		-14.248	1.00 29.1	
	20	ATOM	8495		WAT			24.860 56.992		-16.897 -35.378	1.00 20.5	
	20	MOTA	8496 8497		TAW TAW		314	48.877		-29.576	1.00 23.7	
		ATOM ATOM	8498		WAT			66.517	71.811		1.00 27.2	
į		ATOM	8499		WAT			28.748		-38.371	1.00 26.1	
		ATOM	8500				318	32.645		-10.052	1.00 16.1	
	25	ATOM	8501		WAT			13.378	51.128	-1.741	1.00 26.1	
	20	ATOM	8502		WAT			39.215	49.398	30.134	1.00 22.8	
		ATOM	8503		TAW			67.798		-23.988	1.00 20.4	
		ATOM	8504		WAT			20.725		-34.517	1.00 19.3	
		ATOM	8505		WAT			37.620		-42.374	1.00 22.1	
	30	ATOM	8506		WAT			31.748		-35.453	1.00 25.1	
		MOTA	8507		WAT			13.024	71.443	-0.523	1.00 29.8	36 W
		MOTA	8508	OH2	TAW	W	326	36.937	41.116	-24.855	1.00 27.4	16 W
		MOTA	8509	OH2	WAT	W	327	19.245	42.686	-2.510	1.00 29.6	66 W
		MOTA	8510	OH2	WAT	W	328	49.929	44.230	7.118	1.00 23.6	50 M
	35	MOTA	8511	OH2	WAT	W	329	37.331	45.560	-25.526	1.00 26.0	
		MOTA	8512		WAT		330	75.334	74.276	-19.598	1.00 24.0	
		MOTA	8513		TAW		331	50.302		-31.180	1.00 20.2	
		MOTA	8514		TAW			42.966		-31.510	1.00 28.6	
	40	ATOM	8515		WAT			13.218	68.993	0.963	1.00 23.4	
	40	MOTA	8516		TAW			40.987		-31.356	1.00 27.2	
		MOTA	8517		WAT			26.940	52.514	22.434	1.00 28.7	
		ATOM	8518		WAT			12.531	66.524	-9.404	1.00 21.8	
		ATOM	8519		WAT			42.599		-15.832	1.00 27.0	
	45	ATOM	8520		TAW			48.048	48.441	16.333	1.00 19.4	
	45	ATOM	8521		WAT			11.378	46.854	17.807	1.00 30.0	
		MOTA	8522		WAT			16.441		-19.971	1.00 21.8	
		MOTA	8523		WAT WAT			5.169 56.366	52.976	-6.017 -25.691	1.00 34.2	
		ATOM ATOM	8524 8525		WAT			39.138		-27.276	1.00 22.2	
	50	ATOM	8526		WAT			60.932	57.026	15.691	1.00 21.0	
	20	ATOM	8527		WAT			13.476	51.603	21.683	1.00 33.1	
		ATOM	8528		WAT			43.478		-37.697	1.00 26.3	
		ATOM	8529		WAT			28.012	35.395	-6.915	1.00 24.5	
		ATOM	8530		WAT			80.215		-21.465	1.00 25.6	
	55	ATOM	8531		WAT			51.571	45.254	9.731	1.00 32.9	
	-			,				-				

	ATOM	8532	OH2	WAT	W	350	21.425	46.768	-17.469	1.00	30.25	W
	MOTA	8533	OH2	WAT	W	351	47.390	72.020	-20.194	1.00	22.19	W
	ATOM	8534	ОН2	WAT	M	352	21.553	86.243	-30.890	1.00	31.55	W
	ATOM	8535	OH2	WAT	M	353	33.014	67.065	21.351	1.00	20.88	W
5	ATOM	8536	OH2	WAT	W	354	14.654	62.181	-14.551	1.00	20.03	W
	MOTA	8537	OH2	TAW	W	355	50.342	73.852	-25.133	1.00	24.70	W
	MOTA	8538	OH2	WAT	W	356	41.982	79.510	-23.663	1.00	24.72	W
	ATOM	8539	OH2	WAT	W	357	39.987	45.435	25.472	1.00	27.22	M
	ATOM	8540	OH2	TAW	W	358	50.966	76.620	14.400	1.00	25.22	W
10	MOTA	8541	OH2	WAT	W	359	38.560	45.243	-33.596	1.00	23.12	W
	MOTA	8542	OH2	WAT	W	360	61.497	54.297	-28.826	1.00	32.75	W
	MOTA	8543	OH2	WAT	W	361	53.745	46.872	23.471	1.00	27.63	M
	MOTA	8544	OH2	WAT	W	362	57.002	43.240	-20.162	1.00	26.84	W
	ATOM	8545	OH2	WAT	W	363	67.620	54.903	-18.283	1.00	25.83	W
15	ATOM	8546	OH2	WAT	W	364	42.433	80.253	-31.603	1.00	35.61	W
	MOTA	8547	OH2	WAT	W	365	29.079	62.396	-39.782	1.00	28.70	W
	MOTA	8548	OH2	WAT	M	366	26.835	61.857	10.737	1.00	29.62	W
	MOTA	8549	OH2	WAT	W	367	45.820	45.105	22.830	1.00	32.71	M
	MOTA	8550		WAT		368	35.144	51.275	35.780	1.00	30.60	W
20	ATOM	8551	ОН2	WAT	M	369	57.657	62.439	7.864	1.00	30.02	M
	ATOM	8552	OH2	WAT	W	370	25.335	33.634	13.186	1.00	24.09	W
	MOTA	8553	OH2	WAT	W	371	27.668	59.493	8.703	1.00	24.24	W
	MOTA	8554		WAT		372	42.896	94.777	-30.168	1.00	42.53	M
	MOTA	8555	ОН2	WAT	W	373	13.858	58.126	-1.438	1.00	27.82	W
25	ATOM	8556	ОН2	WAT	W	374	49.215	76.579	5.508	1.00	27.65	W
	ATOM	8557	OH2	WAT	W	375	27.926	67.675	28.190	1.00	26.72	W
	MOTA	8558	OH2	WAT	W	376	41.928	39.313	16.708	1.00	34.69	W
	MOTA	8559	OH2	WAT	M	377	58.774	46.538	-1.484	1.00	18.42	M
	MOTA	8560	OH2	WAT	W	378	73.332	76.951	-18.539	1.00	31.21	M
30	MOTA	8561	OH2	WAT	W	379	19.667	39.457	17.556	1.00	20.16	W
	MOTA	8562	OH2	WAT	W	380	39.703	59.128	-18.068	1.00	17.51	M
	MOTA	8563	OH2	WAT	W	381	28.065	47.264	-31.490	1.00	27.85	W
	MOTA	8564	OH2	\mathtt{WAT}	W	382	68.593	47.077	-16.564	1.00	25.08	W
.0.	MOTA	8565	OH2	WAT	W	383	66.499	62.814	-13.279	1.00	22.18	M
35	MOTA	8566	OH2	WAT	W	384	26.536	75.252	2.031		20.08	W
	ATOM	8567	OH2	WAT	M	385	39.980	39.135	9.175	1.00	29.93	W
	MOTA	8568	OH2	TAW	W	386	21.531	47.191	39.117	1.00	28.17	W
	MOTA	8569	OH2	WAT	W	387	42.190	75.026	-41.376		29.68	M
	MOTA	8570	OH2	TAW	M	388	14.674	55.669	27.161		33.37	M
40	MOTA	8571	OH2	WAT	W	389	28.615	59.877	-39.093	1.00	28.02	W
	ATOM	8572	OH2	WAT	M	390	39.193		22.527	1.00	29.86	W
	ATOM	8573	OH2	WAT	W	391	16.422	52.881	-22.476	1.00	34.66	W
	MOTA	8574	OH2	TAW	W	392	27.247	35.033	29.275	1.00	28.11	W
	MOTA	8575	OH2	TAW	W	393	17.206	80.910	-7.468	1.00	30.36	W
45	MOTA	8576	OH2	WAT	M	394	48.207	41.926	3.615	1.00	28.31	M
	ATOM	8577		WAT			73.428	51.496	-11.339	1.00	36.34	W
	MOTA	8578		WAT			58.697		-22.198	1.00	22.68	W
	MOTA	8579		TAW			47.595	79.692	-18.600		24.41	M
=0	MOTA	8580		WAT			40.846		-37.242		26.13	W
50	MOTA	8581		TAW			61.087		15.193		28.95	M
	MOTA	8582		WAT			59.255		-15.381		33.77	M
	MOTA	8583		WAT			21.106		17.584		37.08	M
	MOTA	8584		WAT			46.149		-43.888		30.85	W
~ -	MOTA	8585		TAW			21.596		-19.077		33.24	W
55	MOTA	8586	OH2	WAT	W	404	20.559	68.440	22.185	1.00	27.53	W

	ATOM	8587	OH2	WAT	W	405	45.436	70.103	-18.246	1.00 28.94	W
	MOTA	8588	OH2	TAW	W	406	17.493	70.844	6.619	1.00 35.50	W
	MOTA	8589	OH2	WAT	W	407	51.184	52.976	-28.552	1.00 26.56	W
	ATOM	8590	OH2	WAT	W	408	19.132	83.539	-25.709	1.00 32.11	W
5	ATOM	8591		WAT			40.020		-21.792	1.00 26.97	M
•	ATOM	8592		WAT		410	22.565	66.347	29.045	1.00 35.45	W
	ATOM	8593		WAT		411	24.909		-36.350	1.00 33.36	W
	MOTA	8594		WAT		412	58.513	34.945	-5.934	1.00 33.30	W
	MOTA	8595		WAT			50.569		-15.684	1.00 31.42	M
10											
10	ATOM	8596		WAT			17.529	68.704	24.307	1.00 44.71	W
	MOTA	8597		TAW			56.496		-29.377	1.00 26.99	W
	MOTA	8598		TAW			52.554	73.396	4.320	1.00 35.30	W
	ATOM	8599		WAT		417	21.928	36.838	0.097	1.00 26.39	M
	MOTA	8600		WAT		418	40.066		-28.061	1.00 30.33	W
15	MOTA	8601		WAT		419	10.502	77.343	-5.022	1.00 32.53	W
	MOTA	8602	OH2	WAT	W	420	26.186	64.608	8.450	1.00 14.74	M
	MOTA	8603	OH2	TAW	W	421	72.878	64.115	-21.052	1.00 28.29	M
	MOTA	8604	OH2	WAT	M	422	79.844	74.115	-17.720	1.00 34.35	W
	ATOM	8605	OH2	WAT	W	423	66.750	74.589	-4.406	1.00 29.82	W
20	MOTA	8606	OH2	WAT	W	424	48.124	64.413	-28.378	1.00 28.57	W
	MOTA	8607		WAT		425	42.583	39.574	-1.485	1.00 33.08	W
	ATOM	8608		TAW		426	63.043		-31.856	1.00 31.53	W
	ATOM	8609		WAT			24.135		-14.640	1.00 26.73	W
	ATOM	8610		WAT			27.597	50.981	13.326	1.00 22.07	W
25	ATOM	8611		WAT		429	38.642		-39.756	1.00 27.77	W
2.0	MOTA	8612		WAT		430	76.638		-26.811	1.00 31.44	W
	MOTA	8613		WAT		431	28.844	72.533	22.350	1.00 24.75	W
	ATOM	8614		WAT			20.733		-35.819	1.00 32.46	W
	MOTA	8615		WAT			24.102	57.306	38.832	1.00 32.40	M
30										1.00 52.79	W
30	MOTA	8616		TAW			38.103		-10.508		
	MOTA	8617		WAT			23.463		-40.699	1.00 25.30	M
	MOTA	8618		WAT			17.159		-26.028	1.00 32.43	W
	MOTA	8619		TAW			66.940		-22.088	1.00 39.61	W
25	MOTA	8620		TAW			52.706		-28.075	1.00 53.96	M
35	MOTA	8621		TAW		439	20.674	68.515	8.679	1.00 31.64	W
	ATOM	8622		WAT		440	61.511		-30.897	1.00 35.45	M
	MOTA	8623		WAT		441	9.843	60.222	6.745	1.00 31.89	W
	MOTA	8624		WAT		442	31.554		-19.875	1.00 28.33	W
	ATOM	8625		WAT			28.136		-41.587	1.00 32.96	W
40	MOTA	8626		WAT			44.810		-30.419	1.00 22.80	W
	MOTA	8627	OH2	WAT	M	445	59.422	67.339	-34.536	1.00 27.17	W
	ATOM	8628	OH2	WAT	W	446	70.306	56.764	-12.670	1.00 30.28	M
	MOTA	8629	OH2	WAT	W	447	46.148	46.108	16.196	1.00 38.72	W
	MOTA	8630	OH2	WAT	W	448	46.024	83.007	-25.271	1.00 30.80	W
45	ATOM	8631	OH2	WAT	W	449	56.891	87.883	-19.945	1.00 30.66	W
	ATOM	8632	OH2	WAT	W	450	73.703	74.266	-5.840	1.00 24.67	W
	MOTA	8633		WAT			19.765	43.348	33.805	1.00 26.93	W
	ATOM	8634		WAT			79.355	51.266	-0.720	1.00 22.05	W
	MOTA	8635		WAT			65.936	45.515	-3.341	1.00 33.03	W
50	ATOM	8636		WAT			48.270	78.072	-9.661	1.00 26.82	W
	ATOM	8637		WAT			30.106	34.247	-1.347	1.00 31.61	W
	ATOM	8638		WAT			16.244		-24.092	1.00 37.53	M
	ATOM	8639		WAT			17.587	39.584	35.892	1.00 43.47	W
								31.274			W
55	ATOM	8640		TAW			22.585		29.286	1.00 34.35	
55	MOTA	8641	OH2	WAT	W	459	33.432	84.505	-18.281	1.00 18.32	M

And the Research and the State of the State

	MOTA	8642	OH2	WAT	W	460	41.293	95.068	-39.456	1.00	30.13	W
	MOTA	8643	OH2	TAW	M	461	44.216		-27.693		29.54	W
	MOTA	8644	OH2	WAT	M	462	30.848	57.443	4.499		24.35	W
_	MOTA	8645	OH2	WAT	W	463	65.858	66.382	-0.390	1.00	23.54	W
5	MOTA	8646	OH2	WAT	M	464	46.496	68.686	26.430		34.50	M
	MOTA	8647	OH2	TAW	M	465	70.058	61.949	-20.503	1.00	32.36	M
	ATOM	8648	OH2	WAT	W	466	23.603		-25.989		36.74	W
	ATOM	8649	OH2	WAT	W	467	25.313	71.229	22.334		35.00	W
	ATOM	8650		WAT		468	13.930	69.551	26.567		25.16	M
10	ATOM	8651		TAW		469	62.150	80.957	-19.141	1.00	29.07	W
	ATOM	8652	OH2	WAT	M	470	27.702	47.846	45.920	1.00	36.32	W
	MOTA	8653		WAT		471	24.849	34.267	0.227	1.00	38.79	W
	MOTA	8654	OH2	WAT	M	472	57.544	69.087	13.346		41.68	W
	MOTA	8655	OH2	TAW	W	473	7.918	47.992	11.814	1.00	26.20	W
15	MOTA	8656	OH2	TAW	W	474	71.374	59.946	0.845	1.00	32.73	W
	MOTA	8657	OH2	WAT	W	475	67.611	88.261	-23.317	1.00	26.99	M
	ATOM	8658	OH2	WAT	W	476	12.265		-13.600		38.45	W
	ATOM	8659	OH2	WAT	W	477	28.053	52.171	42.293	1.00	30.60	W
	ATOM	8660		WAT		478	22.099	62.997	33.586		29.07	M
20	ATOM	8661	OH2	WAT	M	479	59.364		-26.345	1.00	55.26	W
	ATOM	8662	OH2	TAW	W	480	34.109		-10.585	1.00	34.81	W
	MOTA	8663		TAW			30.244	36.564	29.055		26.04	W
	MOTA	8664		WAT		482	8.622	49.766	5.623		39.99	M
~~	MOTA	8665		TAW			41.947	67.496	29.311		29.88	M
25	MOTA	8666		WAT			72.522		-27.187		34.08	W
	ATOM	8667		WAT			8.810	44.612	12.806		30.32	W
	MOTA	8668		WAT			71.081		-15.424		37.75	M
	MOTA	8669		WAT			41.603		-24.389		26.97	W
20	ATOM	8670		TAW		488	39.942	66.979	31.389		33.16	W
30	ATOM	8671		TAW		489	53.330	52.741	26.220		30.83	W
	ATOM	8672		TAW			26.012		-26.984		30.08	W
	MOTA	8673		TAW			19.614		-27.178		30.06	W
	MOTA	8674		TAW			71.069		-34.992		35.85	W
25	MOTA	8675		TAW			47.995		-25.770		28.47	W
35	ATOM	8676	OH2	WAT			44.647		-35.193		43.57	W
	ATOM	8677		WAT			17.869	53.128	35.601		33.86	W
	ATOM	8678		WAT		496	83.555		-20.339		26.44	W
	ATOM	8679		WAT			43.886		-42.675		33.33	W
40	ATOM	8680		WAT			22.649 45.787	62.755	16.163		30.46 26.37	W
40	ATOM	8681		TAW				79.442			36.66	W
	ATOM	8682		TAW			26.612	88.201	-4.086			W
	ATOM	8683		WAT			38.568		-22.285		35.38	
	ATOM	8684 8685		WAT			36.970	29.325 65.690	12.903 27.143		40.61 29.98	W W
45	ATOM			TAW			20.373					
43	ATOM	8686		WAT			6.788	59.476	2.793		39.82	W
	ATOM	8687		WAT			61.162		-12.985		26.24	W
	ATOM ATOM	8688 8689		TAW TAW			28.083	49.302	38.517 -25.689		29.75	W W
							29.143		-2.825			
50	ATOM ATOM	8690 8691		TAW TAW			19.441 43.421	67.572 41.867	-2.625 -7.636		31.10 25.84	W W
50												
	ATOM ATOM	8692 8693		TAW TAW			48.778 26.304	81.967	-22.650 -3.669		24.48 59.92	W W
	ATOM	8693 8694		WAT			35.823		-16.238		34.57	M
	ATOM	8694 8695		WAT			58.609		22.182		21.16	W
55	ATOM	8696		WAT			53.978	45.768	4.798		38.64	W
	AION	0070	OnZ	WHI	٧V	J 1 4	22.210	40.768	4.130	1.00	20.04	VV

		ATOM	8697	OH2 WAT W	515	46.49		-42.683	1.00		M
		ATOM	8698		516	71.70		-19.901	1.00		M
		MOTA	8699	OH2 WAT W	517	61.08	84 67.579	-36.593	1.00		M
		ATOM	8700	OH2 WAT W		38.33	36 31.513	16.723	1.00	46.16	W
	5	ATOM	8701	OH2 WAT W		58.3		7 -12.173	1.00	32.99	W
	J	ATOM	8702	OH2 WAT W		21.0		-23.638	1.00	26.06	M
		ATOM	8703	OH2 WAT W		51.2		3 -20.158	1.00	20.05	W
			8704	OH2 WAT W		32.0			1.00	29.42	W
		MOTA		OH2 WAT W		21.5			1.00		W
	10	ATOM	8705	OH2 WAT W		21.9			1.00		W
	10	MOTA	8706			31.6			1.00		W
		MOTA	8707	OH2 WAT W		17.3		5 -17.144	1.00		W
		ATOM	8708	OH2 WAT W					1.00		W
		ATOM	8709	OH2 WAT W		51.9		4 -35.965	1.00		W
		MOTA	8710	OH2 WAT W		22.0				19.22	W
	15	MOTA	8711	OH2 WAT W		25.5					W
		MOTA	8712	OH2 WAT W		21.6				34.53	
		MOTA	8713	OH2 WAT W		48.6		5 -37.235		43.59	W
		MOTA	8714	OH2 WAT W		39.8				31.28	W
£ (122)		MOTA	8715	OH2 WAT W	533	39.6		0 -28.089		44.71	W
Town	20	MOTA	8716	OH2 WAT W	534	36.6		5 -15.806		33.87	M
		MOTA	8717	OH2 WAT W	535	34.9	81 45.88	33.336		17.58	W
		ATOM	8718	OH2 WAT W	536	55.7	52 78.07	1 -1.645		36.67	W
		ATOM	8719		537	69.9	64 62.21	6 -0.087		33.47	W
		ATOM	8720		538	46.1	13 74.50	0 22.679		31.71	M
	25	ATOM	8721	OH2 WAT W		48.4		1 -23.200	1.00	33.97	W
100	20	ATOM	8722	OH2 WAT W		60.4		2 -28.586	1.00	34.39	W
		ATOM	8723	OH2 WAT W		37.6		2 35.379	1.00	36.29	W
		ATOM	8724	OH2 WAT W		29.2		5 -37.460	1.00	56.13	W
\$}		ATOM	8725	OH2 WAT W		61.2		5 -31.707	1.00	49.40	W
	30	ATOM	8726	OH2 WAT W		61.9		6 -38.096		31.08	W
	50		8727	OH2 WAT W		62.9		3 -20.920	1.00	27.15	W
		ATOM	8728	OH2 WAT W		53.4				34.54	W
2 2		MOTA		OH2 WAT W		30.8				36.45	M
		ATOM	8729			29.4				34.56	W
	2.5	MOTA	8730			78.6		7 -12.205		28.49	W
2 3454	35	ATOM	8731	OH2 WAT W		31.4		0 -45.559		34.20	W
		ATOM	8732	OH2 WAT W		73.4		0 -21.336		27.02	W
		MOTA	8733	OH2 WAT W				3 -23.894		41.40	W
		MOTA	8734	OH2 WAT W		47.3				29.83	W
	4.0	ATOM	8735	OH2 WAT V		20.4				34.09	W
	40	MOTA	8736	OH2 WAT V		35.0		6 -32.227		36.08	W
		MOTA	8737	OH2 WAT V		17.1				40.07	W
		MOTA	8738	OH2 WAT V		20.6		5 -33.668			M
		MOTA	8739	OH2 WAT V		49.0		6 -24.040		33.71	M
		MOTA	8740	OH2 WAT W		43.7				34.59	
	45	ATOM	8741	OH2 WAT W		21.2				32.08	W
		ATOM	8742	OH2 WAT W	7 560	65.0		7 -24.210		29.80	W
		MOTA	8743	OH2 WAT W	V 561	46.9		6 -21.422		33.60	W
		MOTA	8744	OH2 WAT W	V 562	71.4		5 -27.114		40.61	W
		ATOM	8745	OH2 WAT W	V 563	20.0				30.97	M
	50	ATOM	8746	OH2 WAT W		59.3		0 -45.689		37.04	M
	-	ATOM	8747	OH2 WAT V		51.8				49.22	M
		ATOM	8748	OH2 WAT V		56.2		37 -15.027		37.82	W
		ATOM	8749	OH2 WAT		28.9		34 -39.462	1.00	28.91	W
		ATOM	8750	OH2 WAT		45.3		7 -43.261		42.35	W
	55	ATOM	8751	OH2 WAT		29.		9 -42.805	1.00	41.68	W
		111 013	0,01		~ ~ ~						

		ATOM	8752	OH2 V	WAT W	7 570	28.533	90.869	-42.604	1.00	31.64	W
		MOTA	8753	OH2 V	VAT V	7 571	19.677	84.860	-28.486	1.00	44.44	M
		MOTA	8754	OH2 V	VAT V	7 572	37.852	97.435	-30.634	1.00	44.72	W
		ATOM	8755	OH2 V	VAT V	7 573	40.615	44.612	-31.597	1.00	42.55	M
	5	MOTA	8756	OH2 V	V TAN	I 574	21.022	41.654	35.102	1.00	36.46	Ŵ
		MOTA	8757	OH2 V	VAT V	7 575	39.353	30.564	13.190	1.00	48.83	W
		ATOM	8758	OH2 V			62.189	85.929	-23.040	1.00	32.28	M
		ATOM	8759	OH2 V			31.076	68.489	14.056		15.60	M
		MOTA	8760	OH2 V			28.012	67.450	33.693		40.99	W
	10	ATOM	8761	OH2 V			14.920	63.590			25.17	W
		ATOM	8762	OH2 V			29.779	72.346	12.292		14.98	M
		MOTA	8763	OH2 V			61.161	93.203		1.00	45.25	W
		ATOM	8764	OH2 V			59.322	62.288	25.727		29.38	W
		MOTA	8765	OH2 V			51.208	79.524	-1.693		29.35	M
	15	MOTA	8766	OH2 V			21.375	60.546	26.774		52.30	M
		ATOM	8767	OH2 V			59.422	91.535			27.02	W
		ATOM	8768	OH2 V			24.246	60.834	35.994		32.50	W
		MOTA	8769	OH2 V			11.430		0.147		40.24	W
4:55		ATOM	8770	OH2 V			55.140	80.683			24.62	W
	20	ATOM	8771	OH2 V			16.965	74.567			38.99	W
hief		ATOM	8772	OH2 V			40.708	40.703			30.96	M
Ū		ATOM	8773	OH2 V			28.184	68.576			47.34	M
		ATOM	8774	OH2 V			40.001	35.508			23.27	W
		ATOM	8775	OH2 V			19.051	80.665			31.12	W
14	25	MOTA	8776	OH2 V			64.968	80.063			41.14	W
11		ATOM	8 7 77	OH2 V			72.984	43.604			34.73	M
i i		ATOM	8778	OH2 V			12.889	74.876			37.16	W
ñ;		ATOM	8779	OH2 V			57.083	75.724			31.22	W
		ATOM	8780	OH2 V			20.946	58.561	37.844		38.60	W
ur.	30	ATOM	8781	OH2 V			50.726		2.133		40.85	W
		MOTA	8782	OH2 V			28.394	45.572		1.00	44.08	M
14.		MOTA	8783	OH2 V			23.052	36.982	13.354	1.00	27.57	W
gala Jama		ATOM	8784	OH2 W			33.276	39.668			45.50	W
		MOTA	8785	OH2 V			33.717	49.409		1.00	49.24	M
į.	35	MOTA	8786	OH2 V			29.452	88.986		1.00	14.64	M
		ATOM	8787	OH2 V			37.094	33.825	5.788	1.00	36.96	W
		ATOM	8788	OH2 V			71.840	62.869		1.00	33.45	W
		MOTA	8789	OH2 V			34.316	70.286	-44.856	1.00	35.57	W
		ATOM	8790	OH2 V	VAT V	608	64.261	77.372	0.343	1.00	41.73	W
	40	ATOM	8791	OH2 V	VAT V	609	35.766	55.966	8.537	1.00	61.84	W
		ATOM	8792	OH2 V			30.712		39.606	1.00	41.26	W
		ATOM	8793	OH2 V			54.267	58.059	-13.818	1.00	54.40	W
		MOTA	8794	OH2 W			21.028	54.609	46.901	1.00	38.62	W
		MOTA	8795	OH2 W	V TAV	613	14.508	50.708	0.979	1.00	32.56	W
	45	ATOM	8796	OH2 V			25.322	91.719	-32.996	1.00	42.32	M
		MOTA	8797	OH2 V	VAT V	615	73.153	71.399	-29.195	1.00	42.43	W
		MOTA	8798	OH2 W	V TAV	616	55.707	38.604	0.984	1.00	44.24	W
		ATOM	8799	OH2 V			37.463	84.235		1.00	42.83	W
		MOTA	8800	OH2 V			45.682	55.261			45.85	W
	50	MOTA	8801	OH2 W			67.043	81.358		1.00	31.78	W
		ATOM	8802	OH2 V			40.544	89.334			47.91	W
		MOTA	8803	OH2 V			43.777	56.722			27.63	W
		ATOM	8804	OH2 W			56.281	50.279			48.83	W
		ATOM	8805	OH2 V			63.571		26.026		41.71	W
	55	ATOM	8806	OH2 W			62.158		-20.935		38.60	W
							_					

	ATOM	8807	OH2	TAW	[n]	625	62.877	59.693	-22.146	1.00	60.99	W
	ATOM	8808				626	39.812	77.874	13.633		45.54	W
	ATOM	8809		WAT			26.711		-27.596		30.68	W
	ATOM	8810		WAT		628	13.505	70.317	-9.667		32.85	W
5	ATOM	8811		WAT		629	60.642		-41.474		27.69	W
	ATOM	8812			W	630	39.181	43.469			39.36	W
	ATOM	8813				631	11.991	71.039			33.17	W
	ATOM	8814		WAT	W		36.447		-38.362		30.08	W
	ATOM	8815		WAT		633	75.969		-25.278		45.04	W
10	ATOM	8816		WAT		634	37.698	80.761	-0.575		24.24	W
10	ATOM	8817		WAT		635	47.369	53.715	35.730		45.08	M
	ATOM	8818		WAT	W	636	48.732		-33.807		34.63	M
	ATOM	8819		WAT		637	63.265		-45.725		38.33	W
	ATOM	8820		WAT	W	638	60.032	71.956			44.76	W
15	ATOM	8821				639	40.988		-29.350		45.67	W
15	ATOM	8822				640	55.258		-12.634		60.28	W
	ATOM	8823		TAW			75.283		-22.829		44.58	W
	ATOM	8824		WAT		642	63.431	52.143	-0.405		29.19	W
	ATOM	8825		WAT			37.172	36.738	19.246		53.77	W
20	MOTA	8826		TAW		644	57.876	36.061	-2.371		48.71	W
20	ATOM	8827			W	645	23.212		-36.113		40.06	W
		8828		WAT		646	18.060		-29.825		43.44	M
	ATOM ATOM	8829		WAT		647	30.795	40.421	38.172		47.17	W
	ATOM	8830		TAW				50.327	23.213		31.47	W
25	ATOM	8831		TAW		648 649	27.612 30.574	47.809	40.324		45.57	W
20		8832		TAW	W	650		52.951			35.35	Ŵ
	ATOM ATOM	8833	OH2	WAT	W	651	59.939 44.795	40.676	13.160		33.50	W
	ATOM	8834		TAW	W	652	34.039	47.923	36.038		38.29	M
						653		82.334	3.179		31.70	W
30	ATOM ATOM	8835 8836		WAT WAT		654	27.160 58.512		-42.108		40.35	W
30	ATOM	8837		WAT		655	49.129		-37.841		44.78	M
	ATOM	8838		TAW		656	53.318		-16.915		25.96	M
	ATOM	8839	OH2	TAW		657	57.576		-15.538		50.70	W
	ATOM	8840			W	658	28.417		-29.609		36.13	M
35	ATOM	8841		WAT		659	49.113		-38.284		45.00	M
00	ATOM	8842	OH2			660	35.586		-43.101		33.39	W
	ATOM	8843	OH2	TAW		661	9.841	58.788	17.855		42.14	W
	ATOM	8844		WAT		662	61.026	45.578	-3.773		34.99	M
	ATOM	8845	OH2	WAT		663	65.493	78.967	-5.769		29.19	W
40	ATOM	8846		WAT			7.025	58.334	14.662		44.10	W
10	ATOM	8847		WAT			49.654	50.855	32.514		30.08	M
	ATOM	8848		WAT			18.545	62.489	22.933		60.50	M
	ATOM	8849		WAT			30.379	34.204	21.118		44.65	W
	ATOM	8850		WAT			17.488		-14.303		32.55	W
45	ATOM	8851		WAT			28.754	55.348	39.968		33.20	M
10	ATOM	8852		WAT			50.808	60.080	-8.922		11.10	W
	ATOM	8853		WAT			43.864		-28.667		10.75	M
	MOTA	8854		WAT			38.132		-31.368		15.05	W
	ATOM	8855		WAT			32.332	39.227	-4.953		11.43	W
50	ATOM	8856		WAT			60.350		-18.141		13.21	M
50	ATOM	8857		TAW			63.171	58.710	-10.141 -1.441		12.30	W
	ATOM	8858		TAW			60.719	61.106	-3.556		11.61	M
	ATOM	8859		WAT			46.645	74.659	7.750		13.33	W
	ATOM	8860		WAT			54.976	57.679	-0.489		13.83	W
55	ATOM	8861		WAT			30.171		-29.268		12.68	W
55	AIOM	0001	OnZ	WAI	W	019	20.11	13.103	-23.208	1.00	12.00	VV

		ATOM	8862	OH2	WAT W	680	58.910	56.848	-1.463		12.78	M
		MOTA	8863	OH2	WAT W	681	58.707	52.780	-0.068	1.00	16.81	W
		MOTA	8864	OH2	WAT W	682	63.035	61.198	-4.943	1.00	15.69	M
		ATOM	8865	OH2	WAT W	683	27.871	48.752	12.133	1.00	14.85	W
	5	MOTA	8866	OH2	WAT W	684	66.593	56.371	-20.257	1.00	17.09	W
		MOTA	8867	OH2	WAT W	685	19.823	46.911	-14.372	1.00	18.34	W
		ATOM	8868	OH2	WAT W	686	38.651	69.400	-38.144	1.00	18.58	W
		MOTA	8869	OH2	W TAW	687	33.756	60.443	23.244	1.00	16.84	W
		MOTA	8870	OH2	WAT W	688	39.615	55.787	3.023		13.33	W
	10	ATOM	8871	OH2	WAT W	689	24.685	61.650	9.133	1.00	15.12	W
		MOTA	8872	OH2	WAT W	690	16.852	57.351	13.005	1.00	17.76	W
		MOTA	8873	OH2	W TAW	691	39.357	69.360	-35.452	1.00	16.14	W
		ATOM	8874	OH2	WAT W	692	49.896	67.829	4.102	1.00	22.12	W
		MOTA	8875	OH2	W TAW	693	27.767	53.520	20.006	1.00	16.13	M
	15	MOTA	8876	OH2	WAT W	694	29.589	83.211	2.374	1.00	17.47	W
		ATOM	8877	OH2	WAT W	695	28.136	91.131	-25.283	1.00	18.51	M
		MOTA	8878		W TAW		46.056	77.858	9.469		18.58	W
		MOTA	8879	OH2	W TAW	697	12.598	49.461	17.773		23.12	W
		MOTA	8880	OH2	WAT W	698	81.171		-11.423		23.28	W
	20	MOTA	8881		W TAW		41.447	44.917	-6.984		18.12	W
		MOTA	8882		W TAW		45.659		-27.584		23.36	W
igh igh		ATOM	8883		W TAW		14.273	50.690	24.204		20.19	W
And Start		MOTA	8884		WAT W		67.431	46.612	-1.390		27.25	M
14-m2	~	ATOM	8885		WAT W		9.075	50.498	8.166		25.31	M
	25	ATOM	8886		W TAW		48.417	40.958	-1.139		23.15	M
fig sam		MOTA	8887		W TAW		17.999	74.642	3.920		32.70	W
1,3 E		MOTA	8888		W TAW		44.829		-18.432		22.53	W
ŧi.		ATOM	8889		WAT W		83.508		~15.459		23.10	M
	20	ATOM	8890		WAT W		48.839		-36.856		22.09	W
ij.	30	MOTA	8891		WAT W		51.752		-38.057		23.90	W
Q.		MOTA	8892		W TAW		29.658	72.517	34.348		30.12	W
ļ.±		ATOM	8893		WAT W		37.525		-32.546		23.53	W
		ATOM	8894		WAT W		57.377	49.104	21.315		21.68	M
1,1252	25	ATOM	8895		WAT W		42.963		-31.428		23.43	W
	35	MOTA	8896		WAT W		31.988	34.471	-3.304		25.07 24.72	W
		ATOM	8897		WAT W		37.084	59.237	-33.588 14.600		28.80	W W
		ATOM ATOM	8898 8899		WAT W		61.591 40.198		-19.000		23.02	W
		ATOM	8900		WAI W		47.473		-44.201		50.29	W
	40	MOTA	8901		WAT W		61.734		-10.423		16.92	W
	10	MOTA	8902		WAT W		79.475		-11.448		40.12	W
		ATOM	8903		WAT W		37.556		-18.478		21.63	W
		ATOM	8904		WAT W		25.699		13.033		19.81	M
		ATOM	8905		W TAW		69.562		-28.574		28.25	W
	45	ATOM	8906		WAT W		72.923		-10.029		26.74	W
	10	ATOM	8907		WAT W		42.712	56.570	2.479		32.14	W
		ATOM	8908		WAT W		56.019		-36.093		21.69	W
		ATOM	8909		WAT W		17.870		28.045		31.05	W
		ATOM	8910		WAT W		11.744		-16.973		25.14	W
	50	ATOM	8911		WAT W		35.294		-17.918		29.79	W
	• 0	ATOM	8912		WAT W		9.739		-20.395		28.25	W
		ATOM	8913		W TAW		11.654	48.520	-2.460		33.38	W
		ATOM	8914		W TAW		40.614	57.118	31.023		26.07	M
		ATOM	8915		WAT W		39.777	53.158	36.413		33.49	M
	55	ATOM	8916		WAT W		49.845	47.366	28.829		26.70	W
							-3.0.10					• • • • • • • • • • • • • • • • • • • •

		7 CM	8917	OH2 WAT W 735	24.110	34.457 15.334	1.00 29.67	W
		ATOM		OH2 WAT W 736	59.490	51.073 24.831	1.00 29.86	W
		MOTA	8918	OH2 WAT W 737	38.054	83.336 -1.120	1.00 28.89	W
		MOTA	8919		13.039	51.650 -12.216	1.00 30.21	W
	_	MOTA	8920	OH2 WAT W 738	48.500	50.823 35.082	1.00 34.12	W
	5	MOTA	8921	OH2 WAT W 739		41.707 -5.554	1.00 31.61	W
		MOTA	8922	OH2 WAT W 740	47.989	40.959 -11.330	1.00 33.16	W
		MOTA	8923	OH2 WAT W 741	22.205		1.00 33.10	W
		MOTA	8924	OH2 WAT W 742	16.134		1.00 23.31	W
		MOTA	8925	OH2 WAT W 743	22.480	68.170 20.286	1.00 29.07	W
	10	MOTA	8926	OH2 WAT W 744	72.049	47.322 -17.960	1.00 23.51	W
		MOTA	8927	OH2 WAT W 745	40.857	85.387 -11.973	1.00 23.31	W
		MOTA	8928	OH2 WAT W 746	56.744	46.789 15.703	1.00 28.20	M
		MOTA	8929	OH2 WAT W 747	51.904	64.105 24.543		W
		MOTA	8930	OH2 WAT W 748	56.575	58.583 1.344	1.00 31.09	
	15	ATOM	8931	OH2 WAT W 749	57.373	58.561 5.484	1.00 29.43	W
		MOTA	8932	OH2 WAT W 750	75.104	64.410 -16.417	1.00 31.68	W
		MOTA	8933	OH2 WAT W 751	14.670	70.784 -23.138	1.00 25.91	W.
		MOTA	8934	OH2 WAT W 752	12.911	52.355 -15.033	1.00 28.96	W
A PORT		MOTA	8935	OH2 WAT W 753	12.990	62.108 -25.006	1.00 33.01	M
	20	MOTA	8936	OH2 WAT W 754	23.345	87.363 -32.635	1.00 32.61	W
, (444), (444),		ATOM	8937	OH2 WAT W 755	66.469	81.830 -14.265	1.00 24.46	W
ने हेर्नुहर्ति संस्थित		MOTA	8938	OH2 WAT W 756	47.252	61.569 -28.848	1.00 30.46	M
131		MOTA	8939	OH2 WAT W 757	52.546	71.147 5.890	1.00 33.46	M
1		MOTA	8940	OH2 WAT W 758	41.001	56.046 -33.215	1.00 27.40	W
To the second	25	MOTA	8941	OH2 WAT W 759	39.617	39.925 19.990	1.00 31.20	W
And Turk		ATOM	8942	OH2 WAT W 760	44.781	55.360 36.095	1.00 36.29	W
iji i		MOTA	8943	OH2 WAT W 761	13.955	62.545 14.561	1.00 24.95	M
E;		ATOM	8944	OH2 WAT W 762	39.940	39.555 -0.351	1.00 33.58	W
i (est.		ATOM	8945	OH2 WAT W 763	32.665	69.642 22.088	1.00 26.34	W
1 122 122 1022	30	MOTA	8946	OH2 WAT W 764	42.575	43.594 -11.934	1.00 31.73	W
f,ded 848 ¥	-	MOTA	8947	OH2 WAT W 765	26.998	41.795 -27.476	1.00 34.79	W
A Am		ATOM	8948	OH2 WAT W 766	19.705	41.788 -5.040	1.00 30.18	W
j, sala		ATOM	8949	OH2 WAT W 767	13.729	60.851 7.587	1.00 31.12	W
		ATOM	8950	OH2 WAT W 768	46.594	45.832 11.529	1.00 30.71	W
	35	ATOM	8951	OH2 WAT W 769	43.004	68.714 -30.001	1.00 34.08	W
		ATOM	8952	OH2 WAT W 770	24.346	54.101 -8.362	1.00 40.20	M
		ATOM	8953	OH2 WAT W 771	47.715	70.196 -16.599	1.00 29.28	M
		ATOM	8954	OH2 WAT W 772	58.821	93.877 -27.444	1.00 33.88	M
		ATOM	8955	OH2 WAT W 773	31.148	79.112 -42.939	1.00 36.00	M
	40	ATOM	8956	OH2 WAT W 774	22.053	42.741 -13.266	1.00 29.08	W
		ATOM	8957	OH2 WAT W 775	52.877	92.345 -23.218	1.00 28.25	W
		ATOM	8958	OH2 WAT W 776	60.172	51.088 20.144	1.00 37.24	W
		MOTA	8959	OH2 WAT W 777	60.950	56.059 1.983	1.00 32.34	M
		ATOM	8960	OH2 WAT W 778	19.502	58.697 -36.820	1.00 28.69	W
	45	ATOM	8961	OH2 WAT W 779	30.076	50.066 12.361	1.00 66.40	W
	10	ATOM	8962	OH2 WAT W 780	26.320	66.838 19.785	1.00 20.83	W
		ATOM	8963	OH2 WAT W 781	12.032	41.651 19.833	1.00 27.28	W
		ATOM	8964	OH2 WAT W 782	69.452	77.231 -34.140	1.00 32.70	M
		ATOM	8965	OH2 WAT W 783	16.602	43.039 -2.678	1.00 24.99	M
	50	ATOM	8966	OH2 WAT W 784	35.764	60.018 -37.747	1.00 36.97	M
	50	MOTA	8967	OH2 WAT W 785	33.876	66.348 -42.439	1.00 39.91	M
		ATOM	8968	OH2 WAT W 786	57.127	36.355 -14.326	1.00 37.67	W
		ATOM	8969		37.130	37.609 2.903	1.00 39.84	W
		ATOM	8970		51.220	66.924 8.375	1.00 31.06	W
	55	ATOM	8971		10.804	51.718 21.423	1.00 33.84	M
	55	AIOM	09/1	OHE MUT M 100	10.001			

		7 CD C 1.4	0030	0110	m	700	20 070	07 460	15 071	1 00 00 10	7.7
		ATOM	8972	OH2 WA			30.270		-15.061	1.00 26.18	W
		ATOM	8973	OH2 WA		791	41.988		-17.332	1.00 31.54	W
		ATOM	8974	OH2 WA			48.606	76.258	8.357	1.00 38.63	W
	_	ATOM	8975	OH2 WA			29.552	75.900	10.796	1.00 22.83	M
	5	MOTA	8976	OH2 WA		794	42.986		-37.052	1.00 36.49	M
		MOTA	8977			795	23.446	66.228	9.839	1.00 36.96	W
		MOTA	8978	OH2 WA		796	64.807	79.091	-1.652	1.00 32.76	W
		ATOM	8979	OH2 WA	T W	797	43.476	40.507	-22.892	1.00 31.16	M
		MOTA	8980	OH2 WA		798	59.402	49.107	2.170	1.00 36.25	M
	10	ATOM	8981	OH2 WA	T W	799	68.966	41.741	-17.222	1.00 33.61	M
		ATOM	8982	OH2 WA	T W	800	24.793	71.941	-39.851	1.00 21.86	M
		MOTA	8983	OH2 WA	W T.	801	23.767	48.580	-24.246	1.00 34.92	M
		MOTA	8984	OH2 WA	T W	802	46.980	68.168	-24.735	1.00 26.18	W
		ATOM	8985	OH2 WA	T W	803	53.458	53.195	-29.972	1.00 28.69	M
	15	ATOM	8986	OH2 WA	T W	804	24.862	34.453	35.634	1.00 36.72	W
		ATOM	8987	OH2 WA	T W	805	13.428	52.674	25,889	1.00 33.75	W
		MOTA	8988	OH2 WA	T W	806	51.562	44.638	2.845	1.00 28.99	W
		MOTA	8989	OH2 WA	T W	807	21.377	55.670	39.671	1.00 40.73	W
		ATOM	8990	OH2 WA	T W	808	64.134	70.734	-5.183	1.00 21.34	W
	20	MOTA	8991	OH2 WA	T W	809	46.972	89.853	-23.163	1.00 38.24	W
Fig.		MOTA	8992	OH2 WA	T W	810	8.000	53.174	-7.596	1.00 25.72	W
Will Brit		MOTA	8993	OH2 WA	T W	811	22.177	80.927	-42.182	1.00 30.13	W
21 22		ATOM	8994	OH2 WA	T W	812	63.779	65.758	-30.505	1.00 44.49	W
		MOTA	8995	OH2 WA			18.366	48.706	-19.763	1.00 34.11	W
	25	MOTA	8996	OH2 WA	T W	814	59.401	76.927	-4.247	1.00 31.82	W
ii.		MOTA	8997	OH2 WA	T W	815	21.046	84.135	-12.381	1.00 30.70	M
		ATOM	8998	OH2 WA	T W	816	55.643	67.386	13.253	1.00 42.99	W
31		MOTA	8999	OH2 WA	T W	817	19.135	52.415	-31.528	1.00 43.38	W
112		ATOM	9000	OH2 WA	T W	818	67.337	85.739	-35.938	1.00 31.07	W
	30	MOTA	9001	OH2 WA	T W	819	29.637	75.151	22.301	1.00 26.35	W
141		ATOM	9002	OH2 WA	T W	820	32.750	84.350	0.358	1.00 22.00	W
1000 Marie		ATOM	9003	OH2 WA	T W	821	45.598	65.481	-28.648	1.00 31.79	W
51246		MOTA	9004	OH2 WA	T W	822	12.768	62.241	-2.419	1.00 31.35	W
		ATOM	9005	OH2 WA	T W	823	25.799	63.445	13.810	1.00 32.36	W
	35	ATOM	9006	OH2 WA	T W	824	28.556	34.999	32.201	1.00 37.91	W
		ATOM	9007	OH2 WA	T W	825	36.020	68.674	23.466	1.00 35.59	W
		MOTA	9008	OH2 WA	T W	826	31.938	33.896	17.286	1.00 39.46	M
		ATOM	9009	OH2 WA	T W	827	41.647	84.318	-2.417	1.00 41.96	W
		ATOM	9010	OH2 WA	T W	828	40.024	100.332	-31.852	1.00 43.82	W
	40	MOTA	9011	OH2 WA	T W	829	28.695	63.602	10.619	1.00 15.02	W
		MOTA	9012	OH2 WA	T W	830	54.701	82.602	-44.566	1.00 41.37	W
		ATOM	9013	OH2 WA	T W	831	69.916	53.723	-10.485	1.00 30.03	W
		ATOM	9014	OH2 WA	T W	832	36.974	79.509	-2.521	1.00 47.01	W
		ATOM	9015	OH2 WA	T W	833	12.230	64.667	-12.621	1.00 35.16	W
	45	MOTA	9016	OH2 WA	T W	834	39.082	50.367	36.260	1.00 40.49	W
		ATOM	9017	OH2 WA	T W	835	27.965	44.799	38.117	1.00 30.19	W
		MOTA	9018	OH2 WA	T W	836	27.787	38.780	-22.542	1.00 37.36	W
		ATOM	9019	OH2 WA			72.305		-31.273	1.00 33.36	W
		MOTA	9020	OH2 WA			76.326		-11.653	1.00 33.77	W
	50	ATOM	9021	OH2 WA			21.477		-38.808	1.00 37.70	W
		MOTA	9022	OH2 WA			23.074		-30.020	1.00 36.46	W
		ATOM	9023	OH2 WA			20.982	31.706	31.644	1.00 41.44	W
		ATOM	9024	OH2 WA			29.441		-28.737	1.00 51.18	W
		ATOM	9025	OH2 WA			42.659		-27.313	1.00 40.92	W
	55	MOTA	9026	OH2 WA			55.868	51.887	27.288	1.00 31.92	W
							30.000				

		ATOM	9027	OH2 WAT	W 8	345	31.328	58.787	-40.674	1.00		W
		ATOM	9028	OH2 WAT			18.450	43.148	27.316	1.00	29.94	M
		ATOM	9029	OH2 WAT			62.202	81.791	-43.971	1.00	45.83	W
		ATOM	9030	OH2 WAT			7.623	54.625	17.516	1.00	32.61	M
	5		9031	OH2 WAT			18.083	41.899	25.153	1.00	37.23	W
	3	ATOM		OH2 WAT			27.414	82.738	5.782		42.08	W
		MOTA	9032				38.762	53.294	1.928		35.13	W
		ATOM	9033	OH2 WAT				67.467	2.674		46.11	W
		MOTA	9034	OH2 WAT			11.930				31.50	W
		MOTA	9035	OH2 WAT			4.368	56.741	-6.545			M
	10	MOTA	9036	OH2 WAT			22.233	77.054	8.620		23.51	
		MOTA	9037	OH2 WAT	M 8	855	25.877		-42.821		39.96	W
		MOTA	9038	OH2 WAT	W 8	856	10.521		-12.058		35.57	W
		MOTA	9039	OH2 WAT	W 8	857	44.573		-44.611		40.66	W
		MOTA	9040	OH2 WAT	W 8	858	37.290	40.005	26.383		42.44	M
	15	MOTA	9041	OH2 WAT	W 8	859	23.430		-38.011		37.56	M
		ATOM	9042	OH2 WAT			70.109	62.809	-24.295	1.00	41.47	W
		ATOM	9043	OH2 WAT			23.013	64.466	18.350		31.90	W
		ATOM	9044	OH2 WAT			67.076	38.608	-9.606	1.00	27.89	W
James.		MOTA	9045	OH2 WAT			65.523		-41.037	1.00	41.58	W
	20	ATOM	9046	OH2 WAT			13.958	43.645		1.00	43.91	M
	20		9047	OH2 WAT			13.521	48.352		1.00	37.81	W
		ATOM		OH2 WAT			55.482		-38.014		38.32	W
i,Ti		ATOM	9048				26.983		-23.958		34.58	W
		MOTA	9049	OH2 WAT			69.691		-33.929		31.58	W
रेशकारी इ.स. इ.	٥.	MOTA	9050	OH2 WAT				62.282			41.22	W
in the same	25	MOTA	9051	OH2 WAT			12.125				41.46	W
100		MOTA	9052	OH2 WAT			30.789	29.802			43.26	M
ė ji i		MOTA	9053	OH2 WAT			19.363	36.418			26.30	W
#1		MOTA	9054	OH2 WAT			27.591		-14.741		37.46	W
		MOTA	9055	OH2 WAT			66.334	50.435				W
1,2	30	MOTA	9056	OH2 WAT			28.581	64.849			19.58	
		MOTA	9057	OH2 WAT	M	875	52.012	60.259			32.70	W
		MOTA	9058	OH2 WAT			52.497	72.590			37.71	W
10 to 10 to		MOTA	9059	OH2 WAT			47.030		-26.288		33.47	W
100		MOTA	9060	OH2 WAT	W	878	65.356		-4.607		35.86	W
i de	35	ATOM	9061	OH2 WAT	W	879	48.561		-26.150		35.66	W
		MOTA	9062	OH2 WAT	W	880	59.811		-38.775		39.50	M
		ATOM	9063	OH2 WAT	W	881	22.852		-16.949		40.06	W
		ATOM	9064	OH2 WAT		882	25.845	76.358	-38.701		38.63	W
		ATOM	9065	OH2 WAT			20.344	74.115	-29.032		47.88	W
	40	ATOM	9066	OH2 WAT			59.348	55.599	27.039	1.00	38.54	W
	10	ATOM	9067	OH2 WAT			44.363		-15.598	1.00	46.87	W
		ATOM	9068	OH2 WAT			63.961		-40.514	1.00	35.09	W
		ATOM	9069	OH2 WAT			14.182	58.399		1.00	20.35	M
			9070	OH2 WAT			14.005	57.801		1.00	16.96	W
	45	MOTA		OH2 WAT			24.482	63.758			40.41	W
	45	ATOM	9071	OH2 WAT			28.177	39.811			14.10	W
		ATOM	9072				28.968		-35.705		23.63	W
		MOTA	9073	OH2 WAT					-15.108		23.12	W
		MOTA	9074	OH2 WAT			12.332		-13.707		21.97	W
		MOTA	9075	OH2 WAT			81.492	58.066			25.28	W
	50	MOTA	9076	OH2 WAT			58.926				21.20	W
		ATOM	9077	OH2 WAT			49.226	68.465			24.55	W
		ATOM	9078	OH2 WAT			68.450		-28.527			
		MOTA	9079	OH2 WAT			26.056	32.722			26.11	W W
		ATOM	9080	OH2 WAT			32.819	69.547			29.62	M
	55	ATOM	9081	OH2 WAT	W	899	28.018	102.798	-19.150	1.00	27.36	M

		ATOM	9082	OH2	WAT V	900	71.696	73.995	-29.144	1.00	33.51	W
		MOTA	9083	OH2	WAT V	901	79.298	50.626	-8.882	1.00	32.39	W
		ATOM	9084	OH2	WAT W	902	37.121	83.790	-3.946	1.00	25.44	W
		ATOM	9085		WAT V		59.411	52.085	2.463		28.12	W
	5	ATOM	9086		WAT W		19.832		-18.505		31.53	W
	Ū	ATOM	9087		WAT V		43.802		-21.515		30.31	W
		ATOM	9088		WAT V		57.911	52.910	26.179		36.06	W
		ATOM	9089		WAT V		16.938		-36.365		30.40	W
		ATOM	9090		WAT V		46.724	42.921	9.610		32.35	M
	10	ATOM	9091		WAT V		27.272	72.059	33.936		39.20	W
	10						7.389		-10.032		24.47	W
		ATOM	9092		WAT V							W
		MOTA	9093		WAT V		24.568	52.451	43.481		47.08 33.76	
		ATOM	9094		WAT		49.865		-30.511			W
	15	ATOM	9095		WAT V		42.658		-29.502		35.03	W
	15	MOTA	9096		WAT V		27.537		-12.482		31.40	W
		ATOM	9097		WAT		56.678		-43.614		35.75	W
		ATOM	9098		WAT V		14.006	44.947	26.811		37.06	W
		MOTA	9099		WAT W		69.590		-36.011		33.87	W
	20	ATOM	9100		WAT W		57.990		-25.101		32.28	W
Ų	20	MOTA	9101		WAT V		64.754	70.419	-8.091		53.24	W
		MOTA	9102		WAT V		46.084	39.866	-0.054		29.17	W
132		ATOM	9103		WAT W		37.055	37.381	24.919		36.57	M
		MOTA	9104		WAT V		52.320	68.585	4.797		34.76	M
842 B		MOTA	9105	OH2	WAT W	923	17.923	51.020	38.034	1.00	35.67	W
	25	ATOM	9106	OH2	V TAW	1 924	15.320		-13.699	1.00	35.62	W
i Li		MOTA	9107		WAT V		20.069		-12.317	1.00	37.80	M
131		MOTA	9108	OH2	WAT V	1 926	49.621	45.620	30.973	1.00	30.61	M
R		MOTA	9109		WAT W		46.954		-17.610	1.00	31.84	M
		MOTA	9110	OH2	WAT W	1 928	70.522	78.290	-25.994	1.00	38.39	W
	30	MOTA	9111	OH2	WAT W	7 929	58.551	52.895	4.627	1.00	29.74	W
117		MOTA	9112	OH2	WAT V	930	35.513	55.491	-34.759	1.00	41.24	W
i de la constante de la consta		ATOM	9113	OH2	WAT V	931	41.558	82.881	-28.845	1.00	40.90	W
		MOTA	9114	OH2	WAT W	932	48.127	66.178	26.914	1.00	36.07	W
Respir		MOTA	9115	OH2	WAT W	933	27.690	67.682	11.659	1.00	24.50	W
ja4	35	MOTA	9116	OH2	WAT V	934	39.804	82.006	-21.936	1.00	34.34	W
		MOTA	9117	OH2	WAT W	7 935	22.224	65.770	32.279	1.00	31.60	W
		MOTA	9118	OH2	WAT V	936	58.814	48.750	18,909	1.00	33.30	W
		MOTA	9119	OH2	WAT W	937	31.849	80.994	7.175	1.00	45.53	W
		ATOM	9120	он2	WAT V	938	50.363	44.965	-24.802	1.00	36.04	W
	40	MOTA	9121	OH2	WAT W	1 939	62.526	60.736	0.451	1.00	35.47	W
		MOTA	9122	OH2	WAT W	940	67.854		-35,151	1.00	39.71	W
		ATOM	9123	OH2	WAT V	941	23.138	39.427	~15.567	1.00	39.15	W
		ATOM	9124	OH2	WAT W	942	35.976	94.035	-29.929	1.00	35.78	W
		ATOM	9125	OH2	WAT W	943	73.983	80.173	-11.072	1.00	35.65	W
	45	ATOM	9126		WAT V		41.088	81.781	-3.482		41.37	W
		MOTA	9127		WAT W		13.020	63.025	12.074		43.97	W
		MOTA	9128		WAT W		56.714	76.086	0.096	1.00	33.32	W
		ATOM	9129		WAT V		74.317	52.113	1.536		36.02	W
		ATOM	9130		WAT W		22.014		-34.827		31.87	M
	50	ATOM	9131		WAT W		77.383		-15.067		27.69	W
		ATOM	9132		WAT V		17.693	41.868	32.102		47.71	W
		ATOM	9133		WAT W		10.258		-15.051		35.09	W
		MOTA	9134		WAT W		45.905	79.926	4.885		35.52	W
		ATOM	9135		WAT V		14.632	46.962	32,202		28.79	W
	55	ATOM	9136		WAT W		34.451	77.305	12.190		30.17	W
		ATOM	9130	OUS	AALT A	, 204	74.471	11.505	12,170	1.00	JU.11	**

		ATOM	9137	OH2	WAT	W	955	47.52	21 4	10.270	5.969	1.00	34.52	W
		MOTA	9138	OH2	TAW	M	956	18.76	56 3	39.515	-2.957	1.00	38.68	W
		MOTA	9139	OH2	WAT	M	957	25.88	36	59.107	-38.846	1.00	37.93	W
		ATOM	9140	OH2	WAT	W	958	10.64	10 5	57.926	-20.969	1.00	40.59	W
	5	MOTA	9141	OH2	WAT	W	959	8.88	31 5	56.896	16.376	1.00	46.16	W
		MOTA	9142	OH2	TAW	W	960	78.13	30 7	72.254	-10.221	1.00	30.28	W
		ATOM	9143	OH2	WAT	M	961	23.88	34 8	32.876	-3.966	1.00	52.89	W
		MOTA	9144	OH2	WAT	M	962	44.48	3 4	10.961	7.504	1.00	44.52	M
		MOTA	9145	OH2	WAT	M	963	35.40	3 6	52.493	33.962	1.00	31.32	M
	10	ATOM	9146	OH2	WAT	W	964	27.26	52	90.077	-31.713	1.00	39.79	W
		MOTA	9147	OH2	WAT	W	965	74.76	59 7	77.373	-20.732	1.00	39.11	W
		MOTA	9148	OH2	WAT	W	966	49.10	0 4	12.041	8.300	1.00	33.85	W
		ATOM	9149	OH2	WAT	M	967	44.90)2 9	92.910	-25.044	1.00	36.65	M
		MOTA	9150	OH2	$\mathtt{T}\mathtt{A}\mathtt{W}$	M	968	52.47	6 4	19.145	25.620	1.00	35.34	W
	15	MOTA	9151	OH2	WAT	W	969	9.64	9 5	3.663	-12.194	1.00	30.57	W
		ATOM	9152	OH2	WAT	W	970	58.73	33 5	51.116	14.538	1.00	47.36	M
		MOTA	9153	OH2	WAT	W	971	51.88	34 5	0.452	27.694	1.00	38.68	M
		ATOM	9154	OH2	WAT	M	972	25.02	0.5	39.138	-25.139	1.00	38.86	M
412.00 1.002		ATOM	9155	OH2	TAW	W	973	7.52	21 5	58.222	0.201	1.00	37.34	W
	20	MOTA	9156	OH2	TAW	W	974	11.52		8.491	19.987		37.19	W
i i ii		MOTA	9157	OH2	TAW	M	975	18.59			-37.781	1.00	25.28	M
J		ATOM	9158	OH2	WAT	M	976	46.00		50.113	-31.315	1.00	37.62	M
garage garage		ATOM	9159	OH2	WAT	M	977	5.36	58 5	57.731	6.783	1.00	33.43	W
िक्स्मी कार्ज स		ATOM	9160	OH2	WAT	W	978	13.34	2 6	66.496	-11.623	1.00	59.42	M
	25	MOTA	9161		WAT			47.20		31.657	-17.119		33.31	M
100		ATOM	9162	OH2	WAT	M	981	29.41		55.677	12,426	1.00	21.92	M
		MOTA	9163		WAT			28.55		59.915	12.822		31.51	M
2)		MOTA	9164		WAT		983	33.31		58.983	16.916		38.02	W
S		MOTA	9165	C1	NAG		1	58.32		15.027	12.880		46.25	С
J	30	MOTA	9166	C2	NAG		1	59.55		14.726	13.744		48.64	С
25.3		ATOM	9167	N2	NAG		1	60.61		15.671	13.441		50.02	С
		MOTA	9168	C7	NAG		1	60.81		16.715	14.237		51.53	С
		ATOM	9169	07	NAG		1	60.26		17.803	14.068		53.37	С
iya:	0-	MOTA	9170	C8	NAG		1	61.78		16.528	15.397		51.81	С
2000	35	MOTA	9171	C3	NAG		1	60.04		13.300	13.495		49.65	С
		ATOM	9172	03	NAG		1	61.10		12.997	14.395		50.85	C
		MOTA	9173	C4	NAG		1	58.90		12.304	13.689		49.25	C
		MOTA	9174	04	NAG		1	59.34		10.999	13.344		50.57	C
	40	ATOM	9175	C5	NAG		1	57.71		12.702	12.810		49.13	C
	4 0	ATOM	9176	05	NAG		1	57.29		14.050	13.123		47.36	C
		ATOM	9177	C6	NAG		1	56.51		11.797	13.024		48.96	C
		ATOM	9178	06	NAG	С	1	55.51		12.038	12.052		50.02	С
		MOTA	9179	C1	SWA		1	31.06		66.873	6.079	1.00	9.68	
	45	ATOM	9180	01	SWA		1	31.59		58.032	5.416		11.09	
	45	ATOM	9181	C3	SWA		1	31.29		57.013	7.615		10.48	
		ATOM	9182	N4	SWA		1	30.73		55.836	8.320		10.85	
		ATOM	9183	C5	SWA		1	29.27		55.603	8.133		10.14	
		ATOM	9184	C6	SWA		1	28.97		55.471	6.610	1.00	9.14	
	ΕO	ATOM	9185	C2	SWA		1	29.53		56.700	5.827	1.00	9.59	
	50	ATOM	9186	C9	SWA		1	31.26		55.873	9,682		11.70	
		ATOM	9187	C8	SWA		1	32.68		6.486	9.558		11.30	
		ATOM	9188		SWA		1	33.68		55.511	9.836		11.34	
		ATOM	9189	C7	SWA		1	32.76		57.083	8.112		10.44	
	5E	ATOM	9190		SWA		1	33.67		56.300	7.314		10.67	3.4
	55	MOTA	9191	C1	MPD	M	1	14.79) / (51.266	10.322	1.00	23.09	М

	ATOM ATOM	9192 9193	C2 O2	MPD MPD		L I	16.264 16.876	61.479 60.330	10.614 9.851	1.00		M M
	ATOM	9194	CM	MPD	M :	L	17.075	62.611	10.000	1.00	24.36	М
5	ATOM ATOM	9195 9196	C3 C4	MPD MPD	•	<u>l</u>	16.492 17.813	61.271	12.125 12.649	1.00		M M
Ü	ATOM	9197	04	MPD		L	17.580	59.936	13.627	1.00		М
	ATOM	9198	C5	MPD	M :	l	18.337	62.222	13.387	1.00	22.61	М
	ATOM END	9199	ZN	ZN	Z :	L	34.561	64.335	8.062	1.00	15.34	Z
	CHM17											

Table 3

Structural Results: Active Site

From initial analysis of the crystal structure, based on the location of residues known to be involved in catalysis, the active site of the enzyme is located within a region composed of the following residues:

GLY	60	VAL	61	TRP	62	LYS	63	GLN	64	GLY	65
ILE	68	VAL	83	PHE	84	VAL	85	VAL	86	PRO	87
HIS	88	SER	89	HIS	90	ASN	91	ASP	92	TRP	95
ILE	110	met	124	PHE	126	ILE	127	TRP	128	ala	129
GLU	130	VAL	161	MET	167	TRP	201	ALA	202	ILE	203
ASP	204	PRO	205	PHE	206	GLY	207	HIS	208	LEU	225
ILE	226	GLN	227	ARG	228	thr	229	TYR	231	LYS	234
LEU	243	HIS	262	MET	263	MET	264	PRO	265	PHE	266
TYR	267	SER	268	TYR	269	ASP	270	ILE	271	PRO	272
HIS	273	THR	274	CYS	275	GLY	276	PRO	277	ASP	278
PRO	279	LYS	280	val	281	CYS	282	CYS	283	GLN	284
PHE	285	ASP	286	PHE	287	LYS	288	ARG	289	met	290
phe	293	gly	294	leu	295	ser	296	CYS	297	PRO	298
TRP	299	lys	300	VAL	301	PRO	302	PRO	303	leu	317
LEU	318	GLN	321	trp	322	LYS	324	LYS	325	ala	326
LEU	328	tyr	329	LEU	334	LEU	335	ile	336	PRO	337
LEU	338	GLY	339	ASP	340	ASP	341	PHE	342	ARG	343
phe	344	lys	345	GLU	349	val	352	GLN	353	arg	354
TYR	357	LEU	360	PHE	361	PHE	376	GLY	377	LEU	379
TYR	407	ALA	408	ASP	409	ARG	410	trp	415	HIS	471
ASP	472	TYR	727	ASP	874	glu	875	ARG	876	GLY	877
LEU	878										

10

Residues in lower case are not identical in the human Golgi ManII sequence, though many of those are conservative substitutions. In this sphere of 15Å around the catalytic center, there are only 21 non-identities among 121 residues, indicating that the human active site will be essentially identical to that observed for the *Drosophila* structure.

15

The numbering system in this and the accompanying Figures corresponds to the protein expressed in the system described herein, not to full length ManII.

Table 4
Intermolecular Interactions at an Active Site of a Mannosidase II Swainsonine Complex.

No. of Atomic Interaction	Swainsonine Atomic Contact	Enzyme Atomic Contact	Distance Between Atomic Contacts	Atomic Interaction Property
1	O1	His 471 NE2	3.3	HB
2	N	Asp 204 OD1	2.9	НВ
3	O2	Asp 341 OD2	3.4	НВ
4	O2	His 90 NE2	3.1	HB
5	O2	Asp 92 OD1	2.9	HB
6	O8	Asp 472 OD1	2.53	НВ
7	Ring	Phe 206 ring	3.55	VW
8	O8	Tyr 727 OH	2.6	HB
9	ring	Trp 95	3.7	VW

HB: hydrogen bond interaction

5 VW Van der Waals

M

Table 5

Crystallographic Refinement Statistics for the Native Drosophila Gogli Mannosidase II

```
>>> input coordinates: dgm12 ann lbi.pdb
5
    >>> molecular structure file: dgm12gen.mtf
    >>> parameter file 1 : CNS TOPPAR:protein_rep.param
    >>> parameter file 2 : CNS_TOPPAR:water_rep.param
    >>> parameter file 3 : CNS_TOPPAR:ion.param
    >>> parameter file 4 : trs.par
10
    >>> parameter file 5
                        : mpdnew2.par
    >>> parameter file 6 : cis_peptide.param
    >>> parameter file 7 : CNS_TOPPAR:carbohydrate.param
    >>> reflection file= ../semetHiR.cv
15
    >>> spacegroup: P2(1)2(1)2(1)
    >>> cell dimensions: a= 68.865 b= 109.718 c= 138.599 alpha= 90 beta= 90
    gamma= 90
    >>> current wa= 0.311868 for target= mlf
    >>> ncs= none
    >>> initial B-factor correction applied to fobs :
20
                0.587 B22= -0.754 B33=
                                         0.167
    >>>
          B11 =
                             0.000 B23=
                                         0.000
                0.000 B13=
    >>>
          B12 =
     >>> B-factor correction applied to coordinate array B:
     >>> B-correction resolution: 6.0 - 1.4
    >>> bulk solvent: density level= 0.359928 \text{ e/A}^3, B-factor= 43.085 \text{ A}^2
25
     30
     resolution range: 500.0 - 1.4 A
      R-values:
                                                   r = 0.2348 free r = 0.2361
      initial
      after B-factor and/or bulk solvent correction r= 0.1931 free_r= 0.2105
      Monitor for target "mlf" is R-value :
35
        working set= 0.1931 test set= 0.2105
                    luzzati coordinate error (5.0 - 1.4 A ):
     cross-validated luzzati coordinate error (5.0 - 1.4 A ):
                                                             0.18 A
                     sigmaa coordinate error (5.0 - 1.4 A ):
                                                             0.08 A
40
      cross-validated sigmaa coordinate error (5.0 - 1.4 A ):
                                                             0.10 A
     rmsd bonds= 0.004763 with 2 bond violations > 0.05
     rmsd angles= 1.32400 with 32 angle violations > 8.0
     rmsd dihedrals= 24.22585 with 4 angle violations > 60.0
45
     rmsd improper= 0.80790 with 38 angle violations > 3.0
     ======= B-factors
     ___________
50
     average B-factor= 15.7963
     minimum B-factor= 4.5681
     maximum B-factor= 57.2481
     B rmsd for bonded mainchain atoms= 0.660
```

```
B rmsd for bonded sidechain atoms= 1.229
        B rmsd for angle mainchain atoms= 1.131
        B rmsd for angle sidechain atoms= 1.777
        current rweight= 0.22677665
    5
        ======= diffraction data
        reflections with |Fobs|/sigma F < 0.0 rejected
   10
        reflections with |Fobs| > 10000 * rms(Fobs) rejected
        theoretical total number of refl. in resol. range:
                                                           206243 ( 100.0 % )
        number of unobserved reflections (no entry or |F|=0): 59797 ( 29.0 % )
        number of reflections rejected:
                                                               0 (
                                                                    0.0 %)
        total number of reflections used:
                                                           146446 ( 71.0 % )
   15
                                                           139067 ( 67.4 % )
        number of reflections in working set:
        number of reflections in test set:
                                                            7379 ( 3.6 % )
        =====> completeness
20
         Test set (test = 1):
         #bin | resolution range | #refl |
               3.02 500.01
                            1113
                                           0.0521
            1
            2
               2.39
                     3.02
                                 1042
                                          0.0501
    25
            3
               2.09
                     2.39
                                 1048
                                           0.0508
1.90
                     2.09
                                1000
                                           0.0485
5
               1.76
                      1.90
                                 989
                                           0.0482
            6
               1.66
                       1.76
                                 822
                                           0.0401
21
               1.58
                                 584
            7
                       1.66
                                           0.0285
   30
                                 419
Ų
            8
               1.51
                       1.58
                                           0.0205
            9
               1.45
                       1.51
                                 265
                                           0.0130
n.
           10
               1.40
                       1.45
                                  97
                                           0.0048
į sim
1
         Working set:
į sežs
   35
         #bin | resolution range | #refl |
               3.02 500.01
                                20201
                                          0.9460
            1
               2.39
                       3.02
            2
                                19732
                                          0.9491
               2.09
                       2.39
                                19506
                                           0.9447
            3
   40
               1.90
                      2.09
                                19199
                                           0.9316
            5
               1.76
                      1.90
                                18521
                                           0.9019
               1.66
                      1.76
            6
                                15253
                                          0.7434
               1.58
            7
                      1.66
                                11380
                                           0.5551
            8
              1.51
                      1.58
                                8211
                                           0.4018
   45
            9
              1.45
                       1.51
                                 5065
                                           0.2477
               1.40
                                 1999
                                           0.0980
           10
                       1.45
        ======== R-values
   50
        =====> R-values with |Fobs|/sigma cutoff= 0.0
         Test set (test = 1):
   55
```

0.9352

0.9411

0.9319

3971

3941

20 1.90 1.93

21 1.87 1.90

22

1.84 1.87

31

i in

		23	1.81	1.84	3946	0.9360
		24	1.79	1.81	3860	0.9480
		25	1.76	1.79	3792	0.9213
		25 26	1.74	1.76	3632	0.9184
	5	27	1.72	1.74	3458	0.9382
	3		1.72	1.72	3191	0.9414
		28		1.70	2994	0.9275
		29	1.68	1.68	2800	0.9268
		30	1.66		2678	0.9303
	10	31	1.64	1.66	2506	0.9388
	10	32	1.62	1.64		0.9506
		33	1.61	1.62	2366	0.9402
		34	1.59	1.61	2249	0.9402
		35	1.58	1.59	2165	0.9365
		36	1.56	1.58	2006	
	15	37	1.55	1.56	1874	0.9184
		38	1.53	1.55	1700	0.9072
		39	1.52	1.53	1595	0.9358
		40	1.51	1.52	1455	0.9398
102		41	1.50	1.51	1336	0.9433
, P)	20	42	1.48	1.50	1147	0.9541
int.		43	1.47	1.48	1077	0.9419
7,52,7 21985		44	1.46	1.47	962	0.9331
1,812 1,822		45	1.45	1.46	808	0.9242
		46	1.44	1.45	696	0.9038
200	25	47	1.43	1.44	570	0.9371
		48	1.42	1.43	408	0.9387
1911		49	1.41	1.42	288	0.8914
81		50	1.40	1.41	134	0.8194
1						
1 12	30	======		=======	===== non-t	rans peptides
			==	=		
# LJ						
grade orașe		cis-pe	otide:	segid=A	resid=406 res	sname=THR
1945 1945 1946				current	dihedral valu	ie= -0.010
202	35					
		cis-pe	ptide:	segid=A	resid=532 res	sname=PRO
		-	_	current	dihedral valu	1e = -0.435
	40	=====	=====	======	=======================================	
		=====	=====	==	=======================================	=

no atoms have zero occupancy

Table 6

Crystallographic Refinement Statistics for the Drosophila Golgi Mannosidase II Associated with Swainsonine

```
5
     >>> input coordinates: swainsonine3 ann 1bi.pdb
     >>> molecular structure file: swainsoninegen3.mtf
10
    >>> parameter file 1 : CNS TOPPAR:protein rep.param
    >>> parameter file 2 : CNS TOPPAR:water rep.param
    >>> parameter file 3 : CNS TOPPAR:ion.param
    >>> parameter file 4 : swa.par
    >>> parameter file 5 : ../zntrmp/mpdnew2.par
    >>> parameter file 6 : cis_peptide.param
>>> parameter file 7 : CNS_TOPPAR:carbohydrate.param
15
    >>> reflection file= dgm2native_rejmerge.cv
    >>> spacegroup: P2(1)2(1)2(1)
    >>> cell dimensions: a= 68.902 b= 110.015 c= 138.472 alpha= 90 beta= 90
20
    gamma= 90
    >>> current wa= 0.632464 for target= mlf
    >>> ncs= none
    >>> initial B-factor correction applied to fobs :
                0.551 B22= -0.116 B33= -0.435
         B11 =
         B12= 0.000 B13= 0.000 B23= 0.000
25
    >>>
    >>> B-factor correction applied to coordinate array B:
    >>> B-correction resolution: 6.0 - 1.87
    >>> bulk solvent: density level= 0.354131 \text{ e/A}^3, B-factor= 42.2797 \text{ A}^2
30
    _______
    resolution range: 500.0 - 1.87 A
      R-values:
35
      initial
                                                    r = 0.2078 free r = 0.2371
      after B-factor and/or bulk solvent correction r= 0.1810 free_r= 0.2090
      Monitor for target "mlf" is R-value :
        working set= 0.1810 test set= 0.2090
40
                    luzzati coordinate error (5.0 - 1.87 A ):
     cross-validated luzzati coordinate error (5.0 - 1.87 A ):
                                                              0.22 A
                     sigmaa coordinate error (5.0 - 1.87 A):
                                                              0.12 A
     cross-validated sigmaa coordinate error (5.0 - 1.87 A):
                                                               0.14 A
45
     rmsd bonds= 0.005230 with 2 bond violations > 0.05
     rmsd angles= 1.31525 with 34 angle violations > 8.0
     rmsd dihedrals= 24.18605 with 4 angle violations > 60.0
    rmsd improper= 0.78741 with 34 angle violations > 3.0
50
     ======= B-factors
    average B-factor= 19.441
```

```
minimum B-factor= 8.18268
       maximum B-factor= 64.5527
       B rmsd for bonded mainchain atoms= 0.699
       B rmsd for bonded sidechain atoms= 1.141
       B rmsd for angle mainchain atoms= 1.167
    5
       B rmsd for angle sidechain atoms= 1.747
                        0.18691688
       current rweight=
       ======= diffraction data
   10
       ______
       reflections with |Fobs|/sigma F < 0.0 rejected
       reflections with |Fobs| > 10000 * rms(Fobs) rejected
                                                          87643 (100.0%)
       theoretical total number of refl. in resol. range:
       number of unobserved reflections (no entry or |F|=0):
                                                          2814 (
                                                                   3.2 % )
   15
                                                                   0.0 %)
                                                              0 (
       number of reflections rejected:
                                                          84829 (
                                                                 96.8 % )
       total number of reflections used:
                                                          80543 ( 91.9 % )
       number of reflections in working set:
                                                           4286 (
                                                                   4.9 %)
       number of reflections in test set:
20
        =====> completeness
        Test set (test = 1):
   25
        #bin | resolution range | #refl |
                                         0.0493
ig j
               4.03
                    500.01
                               452
                                         0.0550
ijn.
               3.20
                      4.03
                                 488
           2
                                         0.0453
               2.79
                      3.20
                                398
           3
                                         0.0496
               2.54
                      2.79
                                 433
           4
0.0527
   30
           5
               2.36
                    2.54
                                 460
                                 433
                                          0.0497
           6
              2.22
                     2.36
417
                                          0.0480
           7
                     2.22
              2.11
į, i
                                          0.0464
           8
              2.01
                      2.11
                                402
0.0470
               1.94
                     2.01
                                 406
           9
                                 397
                                          0.0457
   35
                     1.94
           10
              1.87
         Working set:
         #bin | resolution range | #refl |
                                          0.9298
   40
                                8521
               4.03 500.01
            1
                                         0.9385
                      4.03
                                8330
            2
               3.20
                                         0.9391
               2.79
                       3.20
                                8244
            3
                                          0.9315
                      2.79
                                8134
            4
               2.54
                                          0.9234
                                8056
            5
               2.36
                      2.54
   45
                                 8022
                                          0.9215
            6
               2.22
                     2.36
                      2.22
                                7985
                                          0.9196
            7
               2.11
                      2.11
                                7940
                                          0.9158
            8
               2.01
                                          0.9077
                       2.01
                                 7835
            9
               1.94
                      1.94
                                 7476
                                          0.8615
               1.87
           10
   50
```

=====> R-values with |Fobs|/sigma cutoff= 0.0 55

£;

```
Test set (test = 1):
         #bin | resolution range | #refl |
    5
                                    452
                                             0.2028
                4.03 500.01
                                    488
                                             0.1836
                        4.03
            2
                3.20
                                    398
                                             0.2059
                        3.20
                2.79
            3
                                             0.2246
                        2.79
                                    433
                2.54
                                             0.2203
                                    460
            5
                2.36
                        2.54
                                             0.2125
   10
                        2.36
                                    433
            6
                2.22
                                   417
                                             0.2304
                        2.22
            7
                2.11
                                   402
                                             0.2066
                2.01
                        2.11
            8
                        2.01
                                    406
                                             0.2154
                1.94
            9
                                    397
                                             0.2693
                        1.94
           10
                1.87
   15
         Working set:
         #bin | resolution range | #refl |
                                             0.1673
                4.03
                     500.01
                                   8521
                                             0.1704
                                   8330
   20
                3.20
                        4.03
            2
                                             0.1861
                        3.20
                                   8244
            3
                2.79
0.1857
                                   8134
                2.54
                        2.79
            4
                                             0.1830
            5
                2.36
                        2.54
                                   8056
8022
                                             0.1827
            6
                2.22
                        2.36
                                             0.1894
   25
                                   7985
            7
                2.11
                        2.22
And And
                                             0.1826
            8
                2.01
                        2.11
                                   7940
                                             0.1920
            9
                1.94
                        2.01
                                   7835
                                             0.2320
                                   7476
           10
                1.87
                        1.94
äi
30
         sigmaa calculated using cross-validated data (test set)
number of bins for sigmaa calculation= 50
    35
j.i.
          #bin | resolution range | #refl |
                                             0.9682
                                   1778
                6.89 500.01
            1
                                             0.9324
                                   1834
                5.47
                        6.89
             2
                                             0.9330
                                   1793
                4.78
                        5.47
             3
                                             0.9551
                                   1797
    40
                4.34
                        4.78
             4
                                             0.9634
                                   1771
             5
                4.03
                        4.34
                                             0.9700
             6
                3.79
                        4.03
                                   1778
                                   1751
                                             0.9563
             7
                        3.79
                 3.60
                                             0.9651
                                   1749
                        3.60
             8
                 3.44
                                             0.9515
    45
                        3.44
                                   1775
             9
                 3.31
                                             0.9589
            10
                 3.20
                        3.31
                                   1765
                                             0.9433
                 3.10
                        3.20
                                   1714
            11
                                             0.9571
            12
                 3.01
                        3.10
                                   1746
                                             0.9545
            13
                 2.93
                        3.01
                                   1737
    50
                 2.86
                        2.93
                                   1721
                                             0.9457
            14
                                             0.9391
                 2.79
                         2.86
                                   1724
            15
                                             0.9327
                 2.73
                        2.79
                                   1727
            16
                                             0.9429
                 2.68
                        2.73
                                   1708
            17
                                              0.9267
                         2.68
                                   1726
                 2.63
            18
                                              0.9416
    55
                                   1737
                 2.58
                        2.63
            19
```

						425
		20 21 22	2.54 2.50 2.46	2.58 2.54 2.50 2.46	1669 1705 1713 1721	0.9385 0.9257 0.9444 0.9384
	5	23 24 25 26	2.42 2.39 2.36 2.33	2.40 2.42 2.39 2.36 2.33	1665 1712 1699 1675	0.9456 0.9398 0.9427 0.9341
	10	27 28 29 30 31	2.30 2.27 2.24 2.22 2.19	2.33 2.30 2.27 2.24 2.22	1723 1653 1705 1711	0.9324 0.9570 0.9355 0.9093
	15	32 33 34 35 36	2.17 2.15 2.13 2.11 2.09	2.19 2.17 2.15 2.13 2.11	1650 1659 1707 1675 1655	0.9188 0.9341 0.9520 0.9298 0.9446
	20	37 38 39 40 41	2.07 2.05 2.03 2.01 2.00	2.09 2.07 2.05 2.03 2.01	1691 1685 1631 1680 1646	0.9407 0.9234 0.9412 0.9613 0.9423
	25	42 43 44 45 46	1.98 1.97 1.95 1.94 1.92	2.00 1.98 1.97 1.95	1669 1626 1693 1607 1634	0.9395 0.9240 0.9373 0.9534 0.9255
	30	47 48 49 50	1.91 1.90 1.88 1.87	1.92 1.91 1.90 1.88	1652 1616 1597 1374	0.9181 0.9194 0.9026 0.8987
He had the line	35	cis-per	====== ====== otide:	segid=A	resid=406 res	rans peptides name=THR ne= 0.298
	40	cis-pe	otide:	segid=A	resid=532 res dihedral valu	name=PRO
	45				======================================	

no atoms have zero occupancy

Known Activities α-mannosidase (EC 3.2.1.24) (EC 3.2.1.114).

Mechanism Retaining

Catalytic Asp

Nucleophile/Base

Catalytic Proton Donor Not known

3D Structure Status Not available

Relevant Links InterPro; PFAM

Statistics CAZy(48); GenBank/GenPept (108); Swissprot (31)

				000
Protein	Organism	EC#	GenBank / GenPept	SwissProt PDB / 3D
α-mannosidase (MLJ15.11)	Arabidopsis thaliana	n.d.	AB026648 BAB01735.1	
unidiffusidase (NED 10.11)	Arabicopais tialaria	, reminus en Esta la la la la la la la la la la la la la	X98130 CAA66821.1	Q96239
			Y11767 CAA72432.1	
ORF F2G14_70	Arabidopsis thaliana	n.d.	AL391146 CAC01814.1	Q9LFR0
			T51440	
ORF K2A18.23	Arabidopsis thaliana	n.d. 🔍	AB011474 BAB10420.1	
ORF MAC12.5	Arabidopsis thaliana	n.d.	AB005230 BAB11126.1	
α-mannosidase	Aspergīlius nidularis	n.d.	AF016850 AAB70514.1	O13344
α-mannosidase (lysosomal)	* Bos taurus * 🗽 🐪 💮	3.2.1.24	L31373 AAB67726.1	4
	The second secon		U97686 AAC48763.1	002848
			U97687 AAC48763.1 U97688 AAC48763.1	O19138
		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	U97689 AAC48763.1	
`		, 1	U97690 AAC48763.1	
			U97691 AAC48763.1	
			U97692 AAC48763.1 U97693 AAC48763.1	
			U97694 AAC48763.1	
ORE F48C1.1	Caenorhabditis elegans	n.d.	Ú97015 AAB52345.1	
ORF F55D10.1	Caenorhabditis elegans	n.d.	U40948 AAA81731.1	Q20829
ORF F58H1.1	Caenorhabditis elegans	a nid.	Z75954 CAB00104.1	Q21010
α-mannosidase	Canavalia ensiformis	3.2.1.24	Salahar Caracal a cara sana a sana a sana a sana a sana a sana a sana a sana a sana a sana a sana a sana a san	
α-mannosidase	Dictyostelium discoldeum	3.2.1.114	M82822 AAA33224 1	P34098
α-mannosidase (α-Man-lib)	Drosophila melanogaster	3.2.1.114	ALLON AND AND AND AND AND AND AND AND AND AN	North and a
,			AB018079 BAA75817.1	
α-mannosidase 2 (α-Man-II)	Drosophila melanogaster	3,2,1,114	AE003682 AAF54375.1	Q24451
(CG18474)			AE003682 AAF54376.1	
			AJ132715 CAA10755.1	
ORF BcDNA.GH02419	Drosophila mélanogaster	n.đ.	X77652 CAA54732.1 AF145601 AAD38576.1	, *
OKT 600KA, G1 1024 19	Drosoprilia malanogaster	n.u.	AE003628 AAF52958.1	
ORF CG5322	- Drosophila melanogaşter	n.d.	AE003628 AAF52957.1	· ·
ORF CG9463	Drosophila melanogaster	n.d	AE003622 AAF52708.1	,
ORF CG9465	Drosophila melanogaster	n.d.	AE003622 AAF52709.1	
ORF CG9466	Drosophila melanogaster	n.d.	AE003622 AAF52710.1	
ORF CG9468	Drosophila melanogaster	n.d. n.d.	AE003622 AAF52710.1 AE003622 AAF52711.1	
0141,000400	ωι φούρτικα (ποιαιτύ χα ο ίσι	11,0,	FILLVOGVAA PAPIENALI LEL	

Committee Felis catus Section	ORF YbgB	Escherichia coli K12	n.d.	D90713 BAA35398.1
C. mannosidase Homo saplens	ØRF YbgG	Escherichia coli K12 / MG1655	n.d.,	
	α-mannosidase (lysosomal)	Felis catus	3.2.1.24	
c. mannosidase (lysosomial) Homo sapiens n.d U37248 AAC00568 1 Q1338 1 O00754 J C. mannosidase (lysosomial) Homo sapiens 3.2 1.24 J U05577 AAC0812 1. Q16680 100885 AACC139.2 1 Q16680 ACC139.2 1 Q16680 AACC139.2 1 Q16680 AACC139.2 1 Q16680 AACC139.2 2 Q16680 AACC139.2 Q16680 AACC139.2 Q16680 AACC139.2 Q16680 AACC139	α-mannosidase	Homo saplens	3.2,1,114	U31520 AAC50302.1 Q16706 Q63998 BAA10017.1 Q16767
C. manhosidase (lysosomal)	α-mannosidase	Homo sapiens	n.d.	7 4 7
U60865 AACS102.1 015330	c-mannosidase (lysosomal)		32124	
U60886 AAC51362.1 U60887 AAC51362.1 U60887 AAC51362.1 U60889 AAC51362.1 U60889 AAC51362.1 U60889 AAC51362.1 U60889 AAC51362.1 U60889 AAC51362.1 U60889 AAC51362.1 U60889 AAC51362.1 U60889 AAC51362.1 U60887 AAC51362.1 U608				
U60887 AAC51362.1 U60880 AAC51362.1 U60880 AAC51362.1 U60880 AAC51362.1 U60880 AAC51362.1 U60880 AAC51362.1 U60880 AAC51362.1 U60880 AAC51362.1 U60880 AAC51362.1 U60880 AAC51362.1 U60880 AAC51362.1 U60880 AAC51362.1 U60887 AAC51362.1 U60887 AAC51362.1 U60880 AAC51362.1 U60887 AAC51362.1 U60880 AAC51362.1 U60887 AAC51362.1 U60880 AAC51362.1 U60887 AAC51362.1 U60887 AAC51362.1 U60880 AAC51362.1 U60887 AAC51362.1 U60880 AAC51362.1 U60887 AAC51362.1 U60887 AAC51362.1 U60880 AAC51362.1 U6080 AAC51362.1 U60880 AAC51362.				
1,06988 AAC51362.1				U60886 AAC51362.1
UBORSD AAC51362.1				
U68891 AAC51362.1 U69892 AAC51362.1 U69892 AAC51362.1 U69893 AAC51362.1 U69893 AAC51362.1 U69895 AAC51362.1 U69895 AAC51362.1 U69895 AAC51362.1 U69897 AAC51362.1 U69897 AAC51362.1 U69897 AAC51362.1 U69897 AAC51362.1 U698999 U69899 U6				
Luciles AACS13623 Luciles AACS13624 Luciles AACS13621 Luciles AACS1661 Luciles AACS13621 Luciles AACS13621 Luciles AACS1661 Luciles AACS1661 AECIdentic AACS1661 A				
December December				
U60895 AAC51362.1 U60897 AAC51362.1 U60897 AAC51362.1 U60897 AAC51362.1 U60898 AAC51362.1 U60897 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60897 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC50810.1 U60808 AAC50810.1 U60898 AAC50810.1 U60808 AAC50810.1 U60808 AAC50810.1 U60808 AAC50810.1 U60808 AAC50810.1 U60808 AAC50810.1 U60808 AAC50				U60893 AAC51362 1
UseB8F AAC51382.1 U6089F AAC51362.1 U6089R AAC51362.1 U608P AAC51362.1 U608P AAC51362.1 U608P AAC51362.1 U608P AAC51362.1 U608P AAC51362.1 U608P AAC51362.1 U608P AAC51362.1 U				
U60897 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC51362.1 U60898 AAC58560.1 AF044181 AAC78560.1 AF044181 A				
C.mannosidase (lysosomal) Homo saplens 3.2.1.24 U68382 AAC50811.1 Q93093				U60897 AAC51362.1
C-mannosidase (lysosomal) Homo sapiens 3.2.1.24 U68382 AAC50811.1 Q93093 C-mannosidase 2 Homo sapiens 3.2.1144 1.28621 AAA92022.1 P49641 D5549 BAA09510.1 Q13754 C.mannosidase 6ABB Homo sapiens n.d. AF044414 AAC00190.1 ORF DKFzp434D175 Homo sapiens n.d. AB023152 BAA76779.1 C.mannosidase ORF KIAA0935 Homo sapiens n.d. AB023152 BAA76779.1 C.mannosidase (lysosomal) ORF RIAA0935 Homo sapiens n.d. AB008456 BAA24266.1 O54782 Ormannosidase (lysosomal) Mus musculus 3.2.1.24 UB7240 AAC09470.1 099159 U29947 AAC33369.1 Q64443 Q7470.4 Q7470.1 Q7470.1 Q7470.1 Ormannosidase (lysosomal) Mus musculus 3.2.1.24 UB7240 AAC78560.1 Q75037 AF044174 AAC78560.1 AF044176 AAC78560.1 AF044178 AAC78560.1 AF044178 AAC78560.1 AF044184 AAC78560.1 AF044184 AAC78560.1 AF044184 AAC78560.1 AF044184 AAC78560.1 AF044185 AAC78560.1 AF044184 AAC78560.1 AF044184 AAC78560.1<				
α-mannosidase 2 Homo sapiens 32 1144 £28621 AAA92022 1 P49641 D55549 BAA095101 C13754 α-mannosidase 6A8B Homo sapiens n.d. AF044414 AAC09190.1 C13754 ORF DKF2p434D175 Homo sapiens n.d. AL 136876 CAB68810.1 T46931 α-mannosidase Mus musculus 3.2.1.24 AB0034152 BAA76779.1 C054782 α-mannosidase (lysosomal) Mus musculus 3.2.1.24 UB7240 AAC09470.1 O09159 U29947 AAC73369.1 α-mannosidase (lysosomal) Mus musculus 3.2.1.24 NM 01076 46754622 O55037 AE044174 AAC78560.1 α-mannosidase (lysosomal) Mus musculus 3.2.1.24 NM 01074 66754622 O55037 AE044174 AAC78560.1 α-mannosidase (lysosomal) Mus musculus 3.2.1.24 NM 01074 6754622 O55037 AE044174 AAC78560.1 α-mannosidase (lysosomal) AF044176 AAC78560.1 AF044176 AAC78560.1 AF044176 AAC78560.1 α-mannosidase (lysosomal) AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 α-mannosidase (lysosomal) AF044186 AAC78560.1 AF044186 AAC78560.1 AF044186 AAC78560.1 α-mannosidase (lysosomal) <t< td=""><td>α-mannosidase ((vsosomal)</td><td>Homo saniens</td><td>3.2.1.24</td><td></td></t<>	α-mannosidase ((vsosomal)	Homo saniens	3.2.1.24	
D55649 BAA09510.1 Q13754		the form from the second of the second		
ORF DKF2p434D175				- C. (1988)
ORF KIAA0935 Homo sapiens n.d. AB023152 BAA76779.1 α-mannosidase (lysosomal) Mus musculus 3.2.1.24 UB7240 AAC09470.1 009159 U29947 AAC53369.1 Q64443 α-mannosidase (lysosomal) Mus musculus 3.2.1.24 NM_010764 6754622 055037 AF044174 AAC78560.1 AF044176 AAC78560.1 AF044179 AAC78560.1 AF044179 AAC78560.1 AF044181 AAC78560.1 AF044182 AAC78560.1 AF044183 AAC78560.1 AF044183 AAC78560.1 AF044184 AAC78560.1 AF044185 AAC78560.1 AF044186 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044188 AAC78560.1 AF044188 AAC78560.1 AF044189 AAC78560.1 AF044181 AAC7	2 2 2 9000000	19. 4		•
α-mannosidase Mus musculus 321.24 AB006458 BAA24266.1 O54782 α-mannosidase (lysosomal) Mus musculus 32.1.24 U87240 AAC09470.1 009159 Q64443 α-mannosidase (lysosomal) Mus musculus 3.2.1.24 NM_ 010764 6754622 055037 ΑΕ044175 AAC78560.1 AF044175 AAC78560.1 AF044176 AAC78560.1 ΑΕ044176 AAC78560.1 AF044179 AAC78560.1 AF044179 AAC78560.1 ΑΕ044179 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 ΑΕ044181 AAC78560.1 AF044183 AAC78560.1 AF044185 AAC78560.1 ΑΕ044185 AAC78560.1 AF044186 AAC78560.1 AF044186 AAC78560.1 ΑΕ044189 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 ΑΕ044191 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 ΑΕ044191 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 ΑΕ044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 ΑΕ044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 ΑΕ044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 ΑΕ044192 AAC78560.1 AF044192 AAC78560.1 AF044192				- / 注意 清雪 T46931 「
α-mannosidase (lysosomal) Mus musculus 3.2.1.24 U87240 AAC09470.1 Q09159 Q64443 α-mannosidase (lysosomal) Müs musculus 3.2.1.24 NM 010764 6754622 Q55037 ΑΕΘ44176 AAC78560.1 ΑΕΘ44176 AAC78560.1 ΑΕΘ44176 AAC78560.1 ΑΕΘ44176 AAC78560.1 ΑΕΘ44178 AAC78560.1 ΑΕΘ44178 AAC78560.1 ΑΕΘ44180 AAC78560.1 ΑΕΘ44180 AAC78560.1 ΑΕΘ44181 AAC78560.1 ΑΕΘ44181 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44182 AAC78560.1 ΑΕΘ44183 AAC78560.1 ΑΕΘ44183 AAC78560.1 ΑΕΘ44189 AAC	1.1967975			
U29947 AAC53369.1 Q64443 C-mannosidase (Ivsosomal) Mus musculus 3.2.1.24 NM_010764 6754622 Q55037 AF044174 AAC78560.1 AF044175 AAC78560.1 AF044177 AAC78560.1 AF044177 AAC78560.1 AF044178 AAC78560.1 AF044180 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044183 AAC78560.1 AF044184 AAC78560.1 AF044184 AAC78560.1 AF044184 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044187 AAC78560.1 AF044188 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1	descriptions and high orders are also and also are		7 7	77 June 1990, 7 to 27
AF044174 AAC78560.1 AF044175 AAC78560.1 AF044177 AAC78560.1 AF044177 AAC78560.1 AF044177 AAC78560.1 AF044178 AAC78560.1 AF044178 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044183 AAC78560.1 AF044183 AAC78560.1 AF044184 AAC78560.1 AF044185 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044180 AAC78560.1 AF044				U29947 AAC53369.1 Q64443
AF044175 AAC78560.1 AF044176 AAC78560.1 AF044178 AAC78560.1 AF044178 AAC78560.1 AF044178 AAC78560.1 AF044180 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044183 AAC78560.1 AF044183 AAC78560.1 AF044183 AAC78560.1 AF044186 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044188 AAC78560.1 AF044189 AAC78560.1 AF044190 AAC78560.1 AF0441	α-mannosidase (lysosomal)	Mus musculus	3.2.1.24	
AF044177 AAC78560.1 AF044178 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044183 AAC78560.1 AF044183 AAC78560.1 AF044184 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044187 AAC78560.1 AF044188 AAC78560.1 AF044189 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044191 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF0441				
AF044178 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044181 AAC78560.1 AF044182 AAC78560.1 AF044183 AAC78560.1 AF044185 AAC78560.1 AF044185 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044187 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044193 AAC78560.1 AF044				
AF044179 AAC78560.1 AF044181 AAC78560.1 AF044182 AAC78560.1 AF044183 AAC78560.1 AF044183 AAC78560.1 AF044184 AAC78560.1 AF044185 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044190 AAC78560.1				s Z'S and a second and be decreased Stable in 12.1.5 to the second second
AF044181 AAC78560.1 AF044182 AAC78560.1 AF044183 AAC78560.1 AF044183 AAC78560.1 AF044185 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044				AF044179 AAC78560,1
AF044182 AAC78560.1 AF044183 AAC78560.1 AF044184 AAC78560.1 AF044185 AAC78560.1 AF044187 AAC78560.1 AF044187 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044193 AAC78560.1 AF0441				
AF044184 AAC78560.1 AF044185 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044189 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044190 AAC78560.1 AF044192 AAC78560.1				AF044182 AAC78560.1
AF044185 AAC78560.1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AF044186 AAC78560.1 AF044187 AAC78560.1 AF044188 AAC78560.1 AF044189 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044193 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044				
AF044188 AAC78560.1 AF044189 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044				AF044186 AAC78560.1
AF044199 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044192 AAC78560.1 AF044192 AAC78560.1 α-mannosidase 2 Mus musculus 3.2.1.114 X61172 CAA43480.1 P27046 α-mannosidase llx Mus musculus n.d. AF107018 AAD20813.1 ORF Rv0648 Mycobacterium tuberculosis n.d. Z92772 CAB07105.1 P96937 H37Rv				
AF044191 AAC78560.1 AF044192 AAC78560.1 α-mannosidase 2 Mus musculus 3.2.1.114 X61172 CAA43480.1 P27046 α-mannosidase llx Mus musculus n.d.				
AF044192 AAC78560.1 C.mannosidase 2 Mus musculus 3.2.1.114 X61172 CAA43480.1 P27046 C.mannosidase llx Mus musculus n.d.				
α-mannosidase 2 Mus musculus 3.2.1.114 X61172 CAA43480.1 P27046 α-mannosidase llx Mus musculus n.d. AF107018 AAD20813.1 ORF Rv0648 Mycobacterium tuberculosis n.d. Z92772 CAB07105.1 P96937 H37Rv				
ORF Rv0648 Mycobacterium tuberculosis n.d. Z92772 CAB07105.1 P96937 H37Rv	α-mannosidase 2	Mus musculus	3.2.1.114	•
H37Rv	α-mannosidase llx	Mus musculus	n.d. 🔞	ÄF107018 AAD20813.1
OPE DUIDAGE DIFFERENCE DIFFERENCE DE LA ADRIGACIÓN DE ADRIGACIÓN DE LA ADR	ORF Rv0648		n.đ.	Z92772 CAB07105.1 P96937
ONE LEMON LANCONCER HORRORUM H.G. WEODOOD BAASAAS 1. COOPE	ORF PH0835	Pyrococcus horikoshii	n.đ.	AP000003 BAA29929.1 O58565
α-mannosidase 1 Rattus norvegicus 3.2.1 24 M57547 AAA41565.1 P21139	α-mannosidase 1	Rattus norvegicus	3.2.1 24	M57547 AAA41565.1 P21139

α-mannosidase 2	Rattus norvegicus	3.2.1.114	M24353 AAA66457.1	P28494
α-mannosidase	Saccharomyces cerevisiae	3.2.1.24	M27809 AAA34423.1 M29146 AAA34423.1 Z48618 CAA88536.1	P22855
ORF SPAC513.05	Schizosaccharomyces pombe	n.d. ್ರೆಪಿ	Z72678 CAA96868.1 AL122032 CAB58728.1	ξ j.
α-mannosidase II	Spodoptera frugiperda	n.d.	AF005034 AAB62719.1	O18497
ORF SCM11.03c STAR	Streptomyces coelicolor A3(2)	(n.d.)))	AL133278 CAB61914.1	
α-mannosidase	Sus scrofa	3.2.1.24	D28521 BAA05877.1	Q28949
ORF sir0323 (Ams1)	Synechocystis sp.	n.d.	D63999 BAA10023.1	Q55528
ORF TM1231	Thermotoga maritima	n.d.	AE001779 AAD36306.1	Q9X0V8
ORF TM1851	.Thermotoga maritima 🙆 🎉 🤫	n.d.	AE001822 AAD36913.1	Q9X2G6
α-mannosidase 1	Zea mays	3.2.1	D30744 BAA06405.1	Q43249

Table 8

		ATOM	1	N	CYS A	31	44.192	36.201 -18.860	1.00	0.00	N
		MOTA	2	CA	CYS A	31	43.432	37.453 -18.569	1.00	0.00	С
	5	ATOM	3	С	CYS A	31	41.925	37.255 -18.672	1.00	0.00	C
		ATOM	4	0	CYS A	31	41.437	36.646 -19.622	1.00	0.00	0
		MOTA	5	CB	CYS A	31	43.821	38.563 -19.546	1.00	0.00	C
		ATOM	6	SG	CYS A	31	45.504	39.239 -19.408	1.00	0.00	S
		ATOM	7	N	GLN A	32	41.194	37.780 -17.693	1.00	0.00	N
	10	ATOM	8	CA	GLN A	32	39.739	37.692 -17.702	1.00	0.00	C
		MOTA	9	С	GLN A	32	39.199	38.594 -18.800	1.00	0.00	C
		MOTA	10	0	GLN A	32	39.785	39.630 -19.113	1.00	0.00	0
		MOTA	11	CB	GLN A	32	39.146	38.164 -16.373	1.00	0.00	C
		MOTA	12	CG	GLN A	32	39.160	37.145 -15.258	1.00	0.00	С
	15	ATOM	13	CD	GLN A	32	38.246	37.549 -14.118	1.00	0.00	C
		ATOM	14	OE1	GLN A	32	37.027	37.630 -14.285	1.00	0.00	0
		MOTA	15	NE2	GLN A	32	38.829	37.814 -12.955	1.00	0.00	N
		ATOM	16	N	ASP A	33	38.079	38.196 -19.384	1.00	0.00	N
		MOTA	17	CA	ASP A	33	37.449	38.989 -20.427	1.00	0.00	C
.::22.	20	ATOM	18	С	ASP A	33	36.549	39.962 -19.668	1.00	0.00	С
	_~	ATOM	19	0	ASP A	33	35.610	39.545 -18.998	1.00	0.00	0
ij.		ATOM	20	CB	ASP A	33	36.638	38.070 -21.344	1.00	0.00	C
1 11		ATOM	21	CG	ASP A	33	36.037	38.801 -22.524	1.00	0.00	С
445		ATOM	22	OD1	ASP A	33	35.788	38.143 -23.557	1.00	0.00	0
M	25	MOTA	23		ASP A	33	35.802	40.024 -22.416	1.00	0.00	0
Asal		ATOM	24	N	VAL A	34	36.844	41.255 -19.757	1.00	0.00	N
M		MOTA	25	CA	VAL A	34	36.065	42.254 -19.031	1.00	0.00	C
147		ATOM	26	C	VAL A	34	34.893	42.824 -19.820	1.00	0.00	С
		ATOM	27	Ó	VAL A	34	34.211	43.735 -19.354	1.00	0.00	0
	30	ATOM	28	СВ	VAL A	34	36.969	43.425 -18.568	1.00	0.00	С
S;		ATOM	29		VAL A	34	38.134	42.887 -17.755	1.00	0.00	C
		ATOM	30		VAL A	34	37.491	44.203 -19.774	1.00	0.00	C
1,122		MOTA	31	N	VAL A	35	34.639	42.272 -21.001	1.00	0.00	N
141		ATOM	32	CA	VAL A	35	33.557	42.772 -21.836	1.00	0.00	С
fit the	35	ATOM	33	C	VAL A	35	32.381	41.825 -22.061	1.00	0.00	С
g see	0.0	ATOM	34	0	VAL A	35	31.224	42.211 -21.898	1.00	0.00	0
Fresh (c		ATOM	35	CB	VAL A	35	34.092	43.170 -23.236	1.00	0.00	С
3,2		MOTA	36		VAL A	35	32.946	43.675 -24.118	1.00	0.00	С
•		MOTA	37	CG2	VAL A	35	35.181	44.222 -23.098	1.00	0.00	С
	40	MOTA	38	N	GLN A	36	32.688	40.584 -22.417	1.00	0.00	N
		ATOM	39	CA	GLN A	36	31.668	39.594 -22.768	1.00	0.00	C
		ATOM	40	С	GLN A	36	31.067	38.670 -21.719	1.00	0.00	C
		ATOM	41	0	GLN A	36	30.128	37.936 -22.022	1.00	0.00	0
		ATOM	42	CB	GLN A	36	32.208	38.745 -23.915	1.00	0.00	С
	45	MOTA	43	CG	GLN A	36	32.967	39.567 -24.944	1.00	0.00	C
		MOTA	44	CD	GLN A	36	33.436	38.744 -26.118	1.00	0.00	С
		ATOM	45		GLN A	36	32.665	38.450 -27.029	1.00	0.00	0
		ATOM	46		GLN A	36	34.705	38.357 -26.100	1.00	0.00	N
		ATOM	47	N	ASP A	37	31.592	38.681 -20.501	1.00	0.00	N
	50	ATOM	48	CA	ASP A	37	31.055	37.814 -19.457	1.00	0.00	С
	•	ATOM	49	С	ASP A	37	30.419	38.615 -18.328	1.00	0.00	С
		ATOM	50	0	ASP A		31.123	39.192 -17.501	1.00	0.00	0
		MOTA	51	CB	ASP A		32.155	36.919 -18.869	1.00	0.00	С
		MOTA	52	CG	ASP A		32.746	35.967 -19.890	1.00	0.00	C
	55	ATOM	53		ASP A		31.969	35.306 -20.608	1.00	0.00	0
		ATOM	54		ASP A		33.989	35.872 -19.964	1.00	0.00	0
		ATOM	55	N	VAL A		29.091	38.641 -18.294	1.00	0.00	N
		ATOM	56	CA	VAL A		28.365	39.359 -17.252	1.00	0.00	С
		ATOM	57	C	VAL A		28.525	38.640 -15.914	1.00	0.00	С
	60	ATOM	58	Ö	VAL A		28.035	37.522 -15.734	1.00	0.00	0
	50	111 011	33	-							

		ATOM	59	СВ	VAL A	38	26.8	63 39.454	-17.582	1.00	0.00	C
		ATOM	60		VAL A	38	26.1		-16.470	1.00	0.00	С
		ATOM	61		VAL A	38	26.6		-18.920	1.00	0.00	С
					PRO A	39	29.2		-14.957	1.00	0.00	N
	_	ATOM	62	N		39	29.4		-13.645	1.00	0.00	С
	5	MOTA	63	CA	PRO A		28.1		-12.969	1.00	0.00	C
		MOTA	64	C	PRO A	39			-13.076	1.00	0.00	0
		MOTA	65	0	PRO A	39	27.1		-12.863	1.00	0.00	c
		MOTA	66	CB	PRO A	39	30.1				0.00	Č
	4.0	MOTA	67	CG	PRO A	39	30.9		-13.925	1.00		C
	10	MOTA	68	CD	PRO A	39	29.9		-15.041	1.00	0.00	N
		MOTA	69	N	ASN A	40	28.1		-12.278	1.00	0.00	
		MOTA	70	CA	ASN A	40	26.9		-11.561	1.00	0.00	C
		MOTA	71	С	ASN A	40	27.1	28 37.021	-10.091	1.00	0.00	С
		MOTA	72	0	ASN A	40	27.9		-9.390	1.00	0.00	0
	15	MOTA	73	CB	ASN A	40	26.7	52 35.164	-11.707	1.00	0.00	С
		MOTA	74	CG	ASN A	40	25.5	82 34.652	-10.891	1.00	0.00	C
		ATOM	75		ASN A	40	24.4	65 35.162	-10.999	1.00	0.00	0
		ATOM	76		ASN A	40	25.8		-10.068	1.00	0.00	N
		ATOM	77	N	VAL A	41	26.4		-9.627	1.00	0.00	N
	20	MOTA	78	CA	VAL A	41	26.5		-8.233	1.00	0.00	C
	20	MOTA	79	C	VAL A	41	25.1		-7.549	1.00	0.00	С
			80	0	VAL A	41	24.1		-8.204	1.00	0.00	0
		MOTA		CB	VAL A	41	27.1		-8.120	1.00	0.00	С
Table 1		MOTA	81		VAL A	41	28.5		-8.604	1.00	0.00	C
	2E	MOTA	82				26.3		-8.941	1.00	0.00	С
(3)	25	MOTA	83		VAL A	41	25.1		-6.228	1.00	0.00	N
1,000		ATOM	84	N	ASP A	42	23.1		-5.462	1.00	0.00	C
		MOTA	85	CA	ASP A	42			-5.488	1.00	0.00	C
242		MOTA	86	С	ASP A	42	23.2		-5.528	1.00	0.00	0
	20	MOTA	87	0	ASP A	42	22.0			1.00	0.00	C
1000	30	MOTA	88	CB	ASP A	42	24.2		-4.016		0.00	C
B:		ATOM	89	CG	ASP A	42	24.7		-3.909	1.00	0.00	0
		ATOM	90		ASP A	42	24.0		-4.416	1.00		0
		ATOM	91	OD2	ASP A	42	25.8		-3.319	1.00	0.00	N
M.		MOTA	92	N	VAL A	43	24.0		-5.455	1.00	0.00	C
	35	MOTA	93	CA	VAL A	43	23.5		-5.480	1.00	0.00	c
		MOTA	94	С	VAL A	43	24.3		-6.517	1.00	0.00	
		ATOM	95	0	VAL A	43	25.5		-6.466	1.00	0.00	0
1 (120) 1 (120)		ATOM	96	CB	VAL A	43	23.7		-4.111	1.00	0.00	С
		ATOM	97	CG1	VAL A	43	23.1		-4.164	1.00	0.00	C
	40	MOTA	98	CG2	VAL A	43	23.0	63 41.963	-3.017	1.00	0.00	C
		MOTA	99	N	GLN A	44	23.5	576 43.479	-7.468	1.00	0.00	И
		ATOM	100	CA	GLN A	44	24.1	170 44.328	-8.493	1.00	0.00	С
		MOTA	101	С	GLN A	44	23.4	110 45.642	-8.320	1.00	0.00	С
		ATOM	102	0	GLN A	44	22.2	207 45.717	-8.577	1.00	0.00	0
	45	ATOM	103	CB	GLN A	44	23.9	956 43.723	-9.884	1.00	0.00	С
		ATOM	104	CG	GLN A		25.0	020 44.138	-10.893	1.00	0.00	С
		ATOM	105	CD	GLN A		25.2		-11.011	1.00	0.00	C
		ATOM	106		GLN A		24.1		-11.294	1.00	0.00	0
		ATOM	107		GLN A		26.3		-10.790	1.00	0.00	N
	50	MOTA	108	N	MET A		24.			1.00	0.00	N
	50	ATOM	109	CA	MET A		23.4			1.00	0.00	C
		ATOM	110	C	MET A		22.5			1.00	0.00	C
			111	0	MET A		21.			1.00	0.00	0
		ATOM					24.			1.00	0.00	С
	55	ATOM	112	CB	MET A		25.			1.00	0.00	C
	55	ATOM	113	CG	MET A					1.00	0.00	S
		MOTA	114	SD	MET A		23.1			1.00	0.00	C
		MOTA	115	CE	MET A		23.			1.00	0.00	N
		MOTA	116	N	LEU A		22.			1.00	0.00	C
	(0	ATOM	117	CA	LEU A		22.		-10.949	1.00	0.00	C
	60	MOTA	118	С	LEU A		20.		-11.009			0
		MOTA	119	0	LEU A	46	19.	689 48.870	-11.150	1.00	0.00	U

0.00 0.00	C C C C N C C C C C C C C C C N C C C C
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	сс и с с о с с с с о о с с с о с с о и с с о с с с и
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	с n с с о с с с с о о с с с с и
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	и с с о с с с о о о с с о с о о и с с о с с о и
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	с с о с с с о о о с с с о о о о о о о о
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	с о с с с о о о о о о о о о о о о о о и
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	с о с с с о о о о о о о о о о о о о о и
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	о с с с о о о о о о о о о
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	С С С О О И С С О С О С И
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	С С О О И С С О С С С С О И
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	С 0 0 0 0 0 0 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 N C C C C C C N
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	и с о с с с п
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	с с с г
0.00 0.00 0.00 0.00 0.00 0.00 0.00	С С С П
0.00 0.00 0.00 0.00 0.00 0.00 0.00	0 C C N
0.00 0.00 0.00 0.00 0.00 0.00	C C C N
0.00 0.00 0.00 0.00 0.00	С С С И
0.00 0.00 0.00 0.00	C C N
0.00 0.00 0.00 0.00	C N
0.00 0.00 0.00	N
0.00	
0.00	
	С
0.00	С
	0
0.00	С
0.00	С
0.00	С
0.00	Ç
0.00	С
0.00	С
0.00	С
0.00	0
0.00	N
	С
	С
	0
	C
	C
	0
	0
	N
	C
	Č
	Ö
	C
	И
	C
0.00	N
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

									10-				
		ATOM	181	CA	SER A	53	1	0.762	51.903	-4.696	1.00	0.00	С
					SER A			1.154	53.233	-4.054	1.00	0.00	С
		ATOM	182	С				0.522	54.260	-4.301	1.00	0.00	0
		MOTA	183	0	SER A		1				1.00	0.00	C
		MOTA	184	CB	SER A			9.476	51.380	-4.049		0.00	Ö
	5	MOTA	185	OG	SER A	. 53		8.986	50.248	-4.749	1.00		N
		MOTA	186	N	PHE A	54		.2.189	53.202	-3.220	1.00	0.00	
		MOTA	187	CA	PHE A	54	1	2.689	54.396	-2.542	1.00	0.00	С
		ATOM	188	С	PHE A	54	1	1.648	55.183	-1.749	1.00	0.00	С
		ATOM	189	0	PHE A	54	1	1.735	56.409	-1.656	1.00	0.00	0
	10	ATOM	190	СВ	PHE A	54	1	13.356	55.342	-3.549	1.00	0.00	С
	10	ATOM	191	CG	PHE A			14.604	54.786	-4.178	1.00	0.00	С
		ATOM	192		PHE A			14.528	53.915	-5.262	1.00	0.00	С
		ATOM	193		PHE A			L5.855	55.131	-3.681	1.00	0.00	С
		ATOM	194		PHE A			L5.682	53.394	-5.843	1.00	0.00	С
	15		195		PHE A			L7.019	54.617	-4.250	1.00	0.00	С
	10	MOTA			PHE A			16.935	53.746	-5.334	1.00	0.00	С
		MOTA	196	CZ				10.668	54.498	-1.170	1.00	0.00	N
		MOTA	197	N	LYS A			9.657	55.203	-0.390	1.00	0.00	С
		MOTA	198	CA	LYS A		-		55.646	0.934	1.00	0.00	С
	20	ATOM	199	С	LYS A			10.267	54.863	1.617	1.00	0.00	Ō
	20	ATOM	200	0	LYS A		_	10.922			1.00	0.00	Ċ
		MOTA	201	CB	LYS P			8.442	54.305	-0.139	1.00	0.00	C
7 (18)2 ⁷		MOTA	202	CG	LYS F			7.755	53.841	-1.410		0.00	C
i Li		MOTA	203	CD	LYS P			7.334	55.014	-2.285	1.00		C
J		MOTA	204	CE	LYS F			6.694	54.526	-3.578	1.00	0.00	N
	25	ATOM	205	NZ	LYS F			6.200	55.652	-4.420	1.00	0.00	
		ATOM	206	N	ASP F	4 56		10.048	56.907	1.286	1.00	0.00	N
1:22 1:22		ATOM	207	CA	ASP A	A 56		10.584	57.476	2.515	1.00	0.00	С
		MOTA	208	С	ASP A	A 56		9.524	57.491	3.618	1.00	0.00	C
W.		ATOM	209	0	ASP A	A 56		8.964	58.535	3.942	1.00	0.00	0
m	30	ATOM	210	CB	ASP A	A 56	:	11.093	58.895	2.224	1.00	0.00	С
		ATOM	211	CG	ASP A			11.696	59.569	3.438	1.00	0.00	С
6 ?		ATOM	212		ASP A			12.224	58.863	4.320	1.00	0.00	0
		ATOM	213		ASP A			11.654	60.815	3.502	1.00	0.00	0
And And		MOTA	214	N	ILE A			9.250	56.327	4.198	1.00	0.00	N
888	35	MOTA	215	CA	ILE A			8.247	56.245	5.252	1.00	0.00	С
24,2	50	MOTA	216	C	ILE A			8.873	56.247	6.640	1.00	0.00	С
		ATOM	217	Ö	ILE A			10.031	55.868	6.814	1.00	0.00	0
		ATOM	218	CB	ILE A			7.371	54.976	5.110	1.00	0.00	С
žah:		ATOM	219		ILE A			8.178	53.733	5.479	1.00	0.00	С
ž.	40		220		ILE A			6.855	54.854	3.679	1.00	0.00	С
	40	MOTA			ILE A			7.348	52.469	5.538	1.00	0.00	С
		MOTA	221		ASP A			8.091	56.683	7.622	1.00	0.00	N
		ATOM	222	N				8.527	56.744	9.013	1.00	0.00	С
		ATOM	223	CA	ASP A			8.552	55.333	9.595	1.00	0.00	С
	4 🗉	MOTA	224	C	ASP A			7.504	54.718	9.787	1.00	0.00	0
	45	ATOM	225	0	ASP A			7.562	57.627	9.809	1.00	0.00	С
		ATOM	226	CB	ASP A				57.808	11.257	1.00	0.00	C
		ATOM	227	CG	ASP :			7.981		11.938	1.00	0.00	Ō
		MOTA	228		ASP .			7.386	58.671	11.723	1.00	0.00	0
		MOTA	229		ASP .			8.892	57.094			0.00	N
	50	MOTA	230	N	GLY .			9.749	54.825	9.876	1.00		C
		MOTA	231	CA	GLY			9.871	53.482	10.418	1.00	0.00	C
		MOTA	232	С	GLY .	A 59		9.835	53.393	11.933	1.00	0.00	
		ATOM	233	0	GLY	A 59		10.035	52.318	12.497	1.00	0.00	0
		ATOM	234	N	GLY	A 60		9.576	54.516	12.595	1.00	0.00	N
	55	ATOM	235	CA	GLY	A 60		9.527	54.525	14.048	1.00	0.00	C
		MOTA	236	С	GLY	A 60		10.794	55.129	14.623	1.00	0.00	C
		MOTA	237	0	GLY			11.352	56.059	14.041	1.00	0.00	0
		ATOM	238	N	VAL			11.261	54.611	15.756	1.00	0.00	N
		MOTA	239	CA	VAL			12.481	55.143	16.353	1.00	0.00	С
	60	ATOM	240	C	VAL			13.608	55.074	15.323	1.00	0.00	С
	00	ATOM	241	Ö	VAL			14.432	55.985	15.240	1.00	0.00	0
		AION	~ 1 1	~	41111	01							

									100				
		ATOM	242	СВ	VAL A	61	12.	861	54.396	17.657	1.00	0.00	С
		ATOM	243		VAL A	61	11.		54.694	18.731	1.00	0.00	С
		ATOM	244		VAL A	61	12.		52.900	17.413	1.00	0.00	С
			245	N N	TRP A	62	13.		53.995	14.545	1.00	0.00	N
	5	ATOM	245	CA	TRP A	62	14.		53.904	13.477	1.00	0.00	С
	5	ATOM				62	13.		54.516	12.326	1.00	0.00	С
		MOTA	247	C	TRP A		13.		53.816	11.552	1.00	0.00	0
		MOTA	248	0	TRP A	62			52.450	13.165	1.00	0.00	С
		MOTA	249	CB	TRP A	62	15.			11.998	1.00	0.00	C
	40	MOTA	250	CG	TRP A	62	15.		52.328	11.388	1.00	0.00	Ċ
	10	MOTA	251		TRP A	62		663	53.346		1.00	0.00	C
		MOTA	252		TRP A	62	16.		51.131	11.290		0.00	N
		MOTA	253		TRP A	62	17.		52.859	10.343	1.00		C
		MOTA	254		TRP A	62		230	51.503	10.260	1.00	0.00	C
		MOTA	255		TRP A	62		978	49.781	11.423	1.00	0.00	C
	15	MOTA	256		TRP A	62		776	50.573	9.368	1.00	0.00	
		MOTA	257	CZ3	TRP A	62		520	48.855	10.537	1.00	0.00	С
		MOTA	258	CH2	TRP A	62		412	49.257	9.520	1.00	0.00	C
		MOTA	259	N	LYS A	63	13.	909	55.841	12.245	1.00	0.00	N
		ATOM	260	CA	LYS A	63	13.	164	56.598	11.245	1.00	0.00	С
	20	MOTA	261	С	LYS A	63	13.	183	56.106	9.802	1.00	0.00	С
£1225		MOTA	262	0	LYS A	63	12.	177	56.219	9.094	1.00	0.00	0
1,000		ATOM	263	CB	LYS A	63	13.	595	58.067	11.290	1.00	0.00	C
\L		ATOM	264	CG	LYS A	63	13.	127	58.819	12.543	1.00	0.00	С
		ATOM	265	CD	LYS A	63	11.	605	58.967	12.572	1.00	0.00	C
171	25	ATOM	266	CE	LYS A	63	11.	120	59.794	13.759	1.00	0.00	С
2,000 2,010 2,010		ATOM	267	NZ	LYS A	63	11.	458	59.205	15.096	1.00	0.00	N
		ATOM	268	N	GLN A	64	14.	305	55.556	9.358	1.00	0.00	N
111		ATOM	269	CA	GLN A	64	14.	401	55.101	7.976	1.00	0.00	С
		ATOM	270	C	GLN A	64	14.	460	53.584	7.816	1.00	0.00	С
m	30	ATOM	271	0	GLN A	64		836	53.071	6.758	1.00	0.00	0
	00	ATOM	272	СВ	GLN A	64		612	55.766	7.320	1.00	0.00	С
71		ATOM	273	CG	GLN A	64		512	57.283	7.347	1.00	0.00	С
		ATOM	274	CD	GLN A	64	16.	853	57.968	7.160	1.00	0.00	С
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ATOM	275		GLN A	64		819	57.669	7.868	1.00	0.00	0
ĮĮ.	35	ATOM	276		GLN A	64		917	58.896	6.210	1.00	0.00	N
1 -	00	MOTA	277	N	GLY A	65		.071	52.878	8.873	1.00	0.00	N
		ATOM	278	CA	GLY A	65		.060	51.428	8.843	1.00	0.00	С
		ATOM	279	C	GLY A	65		.713	50.880	9.283	1.00	0.00	С
Ē,4 5.		ATOM	280	0	GLY A	65	11.	. 680	51.204	8.692	1.00	0.00	0
*	40	ATOM	281	N	TRP A	66		.723	50.053	10.323	1.00	0.00	N
	10	MOTA	282	CA	TRP A	66		.497	49.453	10.849	1.00	0.00	С
		MOTA	283	C	TRP A	66		.768	49.023	12.285	1.00	0.00	С
		MOTA	284	0	TRP A			.907	49.101	12.745	1.00	0.00	0
		ATOM	285	СВ	TRP A			.104	48.234	10.005	1.00	0.00	С
	45	ATOM	286	CG	TRP A			.026	47.046	10.174	1.00	0.00	С
	10	ATOM	287		TRP A			.895	46.027	11.075	1.00	0.00	С
		ATOM	288		TRP A			.225	46.775	9.437	1.00	0.00	С
		ATOM	289		TRP A			.934	45.137	10.944	1.00	0.00	N
		ATOM	290		TRP A			.767	45.571	9.947	1.00	0.00	С
	50		291		TRP A			.896	47.432	8.395	1.00	0.00	C
	50	MOTA	292		TRP A			.950	45.009	9.450	1.00	0.00	С
		ATOM			TRP A			.073	46.874	7.901	1.00	0.00	С
		ATOM	293					.588	45.672	8.431	1.00	0.00	С
		ATOM	294		TRP A			.732	48.581	12.996	1.00	0.00	N
	==	MOTA	295	N	ASN A			.908	48.128	14.375	1.00	0.00	С
	55	MOTA	296	CA	ASN A				46.739	14.363	1.00	0.00	C
		MOTA	297	С	ASN A			.532	45.746	14.070	1.00	0.00	0
		MOTA	298		ASN A			.861	48.080	15.120	1.00	0.00	Ċ
		ATOM	299	CB	ASN A			.568	49.458	15.390	1.00	0.00	Ċ
	(0	ATOM	300	CG	ASN A			.998		15.663	1.00	0.00	0
	60	ATOM	301		ASN A			.736	50.406		1.00	0.00	N
		MOTA	302	ND2	ASN A	67	7	.676	49.572	15.337	1.00	0.00	41

								101				
		ATOM	303	N	ILE A	68	12.818	46.669	14.684	1.00	0.00	N
			304	CA	ILE A	68	13.524	45.397	14.683	1.00	0.00	C
		ATOM				68	13.074	44.490	15.822	1.00	0.00	С
		MOTA	305	С	ILE A		12.961	44.922	16.968	1.00	0.00	0
	_	ATOM	306	0	ILE A	68			14.799	1.00	0.00	С
	5	ATOM	307	CB	ILE A	68	15.046	45.608			0.00	C
		ATOM	308		ILE A	68	15.540	46.496	13.651	1.00		C
		MOTA	309	CG2	ILE A	68	15.757	44.265	14.772	1.00	0.00	
		ATOM	310	CD1	ILE A	68	16.994	46.917	13.781	1.00	0.00	C
		MOTA	311	N	LYS A	69	12.820	43.229	15.489	1.00	0.00	N
	10	MOTA	312	CA	LYS A	69	12.402	42.239	16.474	1.00	0.00	С
	.	ATOM	313	С	LYS A	69	13.403		16.443	1.00	0.00	С
		ATOM	314	0	LYS A	69	13.979		15.399	1.00	0.00	0
			315	CB	LYS A	69	10.993		16.151	1.00	0.00	С
		ATOM				69	9.909		16.298	1.00	0.00	С
	4 E	MOTA	316	CG	LYS A		8.531		15.885	1.00	0.00	С
	15	MOTA	317	CD	LYS A	69			14.402	1.00	0.00	C
		MOTA	318	CE	LYS A	69	8.478				0.00	N
		MOTA	319	NZ	LYS A	69	7.079		13.933	1.00		N
		ATOM	320	N	TYR A	70	13.622		17.590	1.00	0.00	
		ATOM	321	CA	TYR A	70	14.556		17.658	1.00	0.00	C
	20	ATOM	322	С	TYR A	70	14.071		18.641	1.00	0.00	C
.5 -\$*****		MOTA	323	0	TYR A	70	13.309	38.584	19.563	1.00	0.00	0
1 (72%)		MOTA	324	СВ	TYR A	70	15.952	39.840	18.063	1.00	0.00	С
4, <u>[</u>		MOTA	325	CG	TYR A	70	16.034		19.449	1.00	0.00	С
, in			326		TYR A	70	16.268		20.569	1.00	0.00	С
J	25	ATOM			TYR A	70	15.859		19.645	1.00	0.00	С
() i	25	ATOM	327				16.326		21.846	1.00	0.00	С
		ATOM	328		TYR A	70			20.914	1.00	0.00	C
		MOTA	329		TYR A	70	15.912		22.010	1.00	0.00	C
8 %		MOTA	330	CZ	TYR A	70	16.145			1.00	0.00	0
:L	••	MOTA	331	OH	TYR A	70	16.181		23.268			N
	30	MOTA	332	N	ASP A	71	14.507		18.423	1.00	0.00	C
		MOTA	333	CA	ASP A	71	14.141		19.293	1.00	0.00	
# (******		ATOM	334	С	ASP A	71	15.173		20.413	1.00	0.00	C
i pari		ATOM	335	0	ASP A	71	16.334	35.555	20.179	1.00	0.00	0
ı, 🛅		MOTA	336	CB	ASP A	71	14.12	34.644	18.494	1.00	0.00	С
ig ji	35	MOTA	337	CG	ASP A	71	13.869	33.427	19.361	1.00	0.00	С
	-	MOTA	338		ASP A	71	13.393	33.590	20.503	1.00	0.00	0
ja		ATOM	339		ASP A	71	14.142		18.890	1.00	0.00	0
1,00			340	N	PRO A	72	14.762		21.649	1.00	0.00	N
g.s.		MOTA			PRO A	72	15.688		22.785	1.00	0.00	С
3,	40	ATOM	341	CA		72	16.43		22.951	1.00	0.00	С
	40	ATOM	342	C	PRO A				23.486	1.00	0.00	0
		ATOM	343	0	PRO A	72	17.54			1.00	0.00	C
		MOTA	344	CB	PRO A	72	14.78		23.978		0.00	Č
		MOTA	345	CG	PRO A	72	13.44		23.541	1.00		
		MOTA	346	CD	PRO A	72	13.38		22.103	1.00	0.00	C
	45	ATOM	347	N	LEU A	73	15.84		22.475	1.00	0.00	N
		MOTA	348	CA	LEU A	73	16.46		22.591	1.00	0.00	С
		MOTA	349	С	LEU A	73	17.53	4 32.200	21.533	1.00	0.00	C
		MOTA	350		LEU A	73	18.18	1 31.155	21.537	1.00	0.00	0
		MOTA	351		LEU A		15.40	5 31.353	22.523	1.00	0.00	С
	50	ATOM	352		LEU A		14.41		23.687	1.00	0.00	С
	50		353		1 LEU A		13.40		23.488	1.00	0.00	С
		ATOM			2 LEU A		15.16		25.001	1.00	0.00	С
		ATOM	354				17.72		20.630	1.00	0.00	N
		MOTA	355		LYS A		18.72		19.581	1.00	0.00	С
		MOTA	356						20.190	1.00	0.00	C
	55	MOTA	357		LYS A		20.11					Ö
		MOTA	358		LYS A		20.91		19.710	1.00	0.00	C
		ATOM	359	CB			18.72			1.00	0.00	
		MOTA	360	CG	LYS A	. 74	19.67			1.00	0.00	C
		MOTA	361	CD	LYS A	74	19.50	4 35.299		1.00	0.00	C
	60	ATOM	362				20.36	9 35.138	15.303	1.00	0.00	C
	50	MOTA	363				20.18		14.350	1.00	0.00	N
		111 011	500									

		ATOM ATOM	364 365	N CA	TYR TYR		75 75	20.395	33.562 33.466	21.250 21.919	1.00	0.00	N C
		ATOM	366	C	TYR		75	21.537	32.733	23.247	1.00	0.00	C
		ATOM	367	0	TYR		75	20.536	32.892	23.247	1.00	0.00	0
	5	MOTA	368	CB	TYR		75	22.270	34.865	22.138	1.00	0.00	Č
	0	MOTA	369	CG	TYR		75	22.564	35.588	20.841	1.00	0.00	C
		MOTA	370		TYR		75	21.688	36.549	20.333	1.00	0.00	Č
		ATOM	371		TYR		75	23.689	35.261	20.087	1.00	0.00	C
		ATOM	372		TYR		75	21.926	37.164	19.100	1.00	0.00	C
	10	ATOM	373		TYR		75	23.934	35.865	18.856	1.00	0.00	C
	10	MOTA	374	CZ	TYR		75	23.049	36.812	18.368	1.00	0.00	C
		MOTA	375	OH	TYR		75	23.288	37.383	17.137	1.00	0.00	0
		ATOM	376	N N	ASN		76	22.532	31.916	23.579	1.00	0.00	И
		ATOM	377	CA	ASN		76	22.523	31.153	24.822	1.00	0.00	C
	15	ATOM	378	C	ASN		76	23.951	30.797	25.225	1.00	0.00	C
	10	ATOM	379	0	ASN		76	24.907	31.191	24.560	1.00	0.00	0
		ATOM	380	CB	ASN		76	21.699	29.873	24.662	1.00	0.00	C
		ATOM	381	CG	ASN		76	22.393	28.837	23.806	1.00	0.00	C
		MOTA	382		ASN		76	22.669	29.070	22.633	1.00	0.00	o
	20	ATOM	383		ASN		76	22.681	27.680	24.393	1.00	0.00	N
	20	ATOM	384	N	ALA		77	24.086	30.042	26.312	1.00	0.00	N
ind.		MOTA	385	CA	ALA		77	25.396	29.645	26.818	1.00	0.00	C
Ţ		ATOM	386	C	ALA		77	26.311	29.029	25.761	1.00	0.00	C
		ATOM	387	0	ALA		77	27.532	29.175	25.830	1.00	0.00	ő
1000	25	ATOM	388	CB	ALA		77	25.226	28.673	27.981	1.00	0.00	C
2,3 3	20	ATOM	389	N	HIS		78	25.725	28.348	24.784	1.00	0.00	N
		ATOM	390	CA	HIS		78	26.512	27.701	23.738	1.00	0.00	C
		ATOM	391	C	HIS		78	26.693	28.573	22.501	1.00	0.00	C
		ATOM	392	0	HIS		78	27.455	28.229	21.597	1.00	0.00	0
: :	30	ATOM	393	CB	HIS		78	25.854	26.376	23.343	1.00	0.00	C
	50	ATOM	394	CG	HIS		78	25.590	25.467	24.502	1.00	0.00	C
25		ATOM	395		HIS		78	26.591	25.016	25.336	1.00	0.00	N
		ATOM	396		HIS		78	24.438	24.936	24.974	1.00	0.00	C
Q.		ATOM	397		HIS		78	26.066	24.246	26.273	1.00	0.00	C
17	35	ATOM	398		HIS		78	24.761	24.181	26.076	1.00	0.00	N
i ter	00	ATOM	399	N	HIS		79	25.996	29.703	22.468	1.00	0.00	N
ğ səğə		ATOM	400	CA	HIS		79	26.075	30.618	21.336	1.00	0.00	C
		ATOM	401	C	HIS		79	25.850	32.051	21.821	1.00	0.00	C
i di		MOTA	402	0	HIS		79	24.728	32.551	21.816	1.00	0.00	Ö
	40	ATOM	403	CB	HIS		79	25.024	30.222	20.293	1.00	0.00	С
		MOTA	404	CG	HIS		79	25.102	31.005	19.020	1.00	0.00	C
		MOTA	405		HIS		79	24.295	32.092	18.763	1.00	0.00	И
		ATOM	406		HIS		79	25.902	30.865	17.937	1.00	0.00	C
		ATOM	407	CE1	HIS	Α	79	24.595	32.588	17.575	1.00	0.00	С
	45	MOTA	408	NE2	HIS	Α	79	25.567	31.862	17.054	1.00	0.00	N
		MOTA	409	N	LYS		80	26.932	32.699	22.244	1.00	0.00	N
		MOTA	410	CA	LYS		80	26.869	34.063	22.758	1.00	0.00	С
		MOTA	411	С	LYS		80	27.123	35.126	21.695	1.00	0.00	C
		MOTA	412	0	LYS		80	27.749	34.859	20.667	1.00	0.00	0
	50	MOTA	413	CB	LYS	Α	80	27.900	34.256	23.872	1.00	0.00	C
		MOTA	414	CG	LYS	А	80	27.779	33.296	25.048	1.00	0.00	C
		ATOM	415	CD	LYS	А	80	28.847	33.614	26.085	1.00	0.00	С
		MOTA	416	CE	LYS	Α	80	28.795	32.656	27.266	1.00	0.00	C
		MOTA	417	NZ	LYS		80	29.862	32.967	28.268	1.00	0.00	N
	55	ATOM	418	N	LEU	Α	81	26.633	36.334	21.963	1.00	0.00	N
		ATOM	419	CA	LEU		81	26.823	37.470	21.069	1.00	0.00	C
		ATOM	420	С	LEU	А	81	28.096	38.173	21.528	1.00	0.00	C
		MOTA	421	0	LEU		81	28.169	38.662	22.656	1.00	0.00	0
		MOTA	422	CB	LEU		81	25.637	38.439	21.167	1.00	0.00	C
	60	ATOM	423	CG	LEU		81	25.716	39.700	20.296	1.00	0.00	С
		ATOM	424	CD1	LEU	Α	81	25.677	39.308	18.820	1.00	0.00	С

		ATOM	425	CD2	LEU A	81	24.561	40.635	20.625	1.00	0.00	С
		ATOM	426		LYS A	82	29.104	38.193	20.663	1.00	0.00	N
				N			30.376	38.840	20.973	1.00	0.00	С
		MOTA	427	CA	LYS A	82			20.512	1.00	0.00	C
	_	MOTA	428	C	LYS A	82	30.281	40.287		1.00	0.00	0
	5	MOTA	429	0	LYS A	82	30.109	40.553	19.323			C
		MOTA	430	CB	LYS A	82	31.519	38.128	20.243	1.00	0.00	
		MOTA	431	CG	LYS A	82	31.750	36.697	20.717	1.00	0.00	С
		MOTA	432	CD	LYS A	82	32.635	35.903	19.758	1.00	0.00	С
		ATOM	433	CE	LYS A	82	34.048	36.457	19.683	1.00	0.00	С
	10	ATOM	434	NZ	LYS A	82	34.871	35.692	18.703	1.00	0.00	N
		ATOM	435	N	VAL A	83	30.395	41.220	21.453	1.00	0.00	N
		MOTA	436	CA	VAL A	83	30.291	42.634	21.125	1.00	0.00	С
		ATOM	437	C	VAL A	83	31.620	43.372	21.232	1.00	0.00	С
		MOTA	438	0	VAL A	83	32.304	43.299	22.253	1.00	0.00	0
	15		439	CB	VAL A	83	29.261	43.342	22.046	1.00	0.00	С
	15	ATOM				83	29.131	44.810	21.662	1.00	0.00	С
		MOTA	440		VAL A			42.651	21.941	1.00	0.00	С
		ATOM	441		VAL A	83	27.903	44.084	20.168	1.00	0.00	N
		MOTA	442	N	PHE A	84	31.978			1.00	0.00	C
	•	MOTA	443	CA	PHE A	84	33.208	44.868	20.147		0.00	C
	20	MOTA	444	С	PHE A	84	32.880	46.356	20.069	1.00		0
d plant		MOTA	445	0	PHE A	84	32.350	46.823	19.062	1.00	0.00	
Spell ma		MOTA	446	CB	PHE A	84	34.082	44.492	18.946	1.00	0.00	С
		MOTA	447	CG	PHE A	84	34.769	43.166	19.083	1.00	0.00	С
1 1 1		MOTA	448	CD1	PHE A	84	34.331	42.061	18.361	1.00	0.00	С
395	25	MOTA	449	CD2	PHE A	84	35.862	43.023	19.934	1.00	0.00	С
न्द्रक्षाः स्टब्स्		MOTA	450		PHE A	84	34.976	40.826	18.482	1.00	0.00	С
		ATOM	451		PHE A	84	36.515	41.798	20.063	1.00	0.00	С
and Til		ATOM	452	CZ	PHE A		36.072	40.697	19.337	1.00	0.00	С
		MOTA	453	N	VAL A		33.185	47.084	21.141	1.00	0.00	N
	30	ATOM	454	CA	VAL A		32.958	48.527	21.204	1.00	0.00	С
4,9 a	50		455	C	VAL A		34.271	49.163	20.770	1.00	0.00	С
縣		MOTA	456		VAL A		35.285	49.045	21.458	1.00	0.00	0
		MOTA		0			32.601	48.977	22.639	1.00	0.00	С
		MOTA	457	CB	VAL A			50.495	22.688	1.00	0.00	Ċ
e de la	25	ATOM	458		VAL A		32.411		23.086	1.00	0.00	Ċ
	35	ATOM	459		VAL A		31.325	48.272		1.00	0.00	N
3:22:		MOTA	460	N	VAL A		34.242	49.839	19.627		0.00	C
		MOTA	461	CA	VAL A		35.442	50.443	19.064	1.00	0.00	C
		MOTA	462	С	VAL A		35.510	51.968	19.176	1.00		
ž		MOTA	463	0	VAL A		34.875	52.686	18.403	1.00	0.00	0
	40	MOTA	464	CB	VAL A	. 86	35.577	50.032	17.576	1.00	0.00	С
		MOTA	465	CG1	VAL A	. 86	36.906	50.518	17.007	1.00	0.00	C
		ATOM	466	CG2	VAL A	. 86	35.451	48.512	17.445	1.00	0.00	С
		ATOM	467	N	PRO P	87	36.296	52.477	20.139	1.00	0.00	N
		MOTA	468	CA	PRO A	87	36.451	53.923	20.348	1.00	0.00	С
	45	ATOM	469	С	PRO P		37.147	54.566	19.148	1.00	0.00	С
		ATOM	470	0	PRO F		38.123	54.017	18.626	1.00	0.00	0
		ATOM	471	СВ	PRO F		37.309	54.003	21.613	1.00	0.00	С
		ATOM	472	CG	PRO F		37.009	52.698	22.318	1.00	0.00	С
		ATOM	473	CD	PRO F		37.018	51.724	21.177	1.00	0.00	С
	50						36.649	55.722	18.715	1.00	0.00	N
	50	MOTA	474	N	HIS A			56.421	17.576	1.00	0.00	С
		MOTA	475	CA	HIS F		37.237	57.929	17.662	1.00	0.00	C
		ATOM	476	С	HIS A		37.019		18.452	1.00	0.00	Ö
		MOTA	477	0	HIS A		36.206	58.414				C
		MOTA	478	CB	HIS A		36.662	55.876	16.258	1.00	0.00	
	55	MOTA	479	CG	HIS A		35.211	56.184	16.053	1.00	0.00	C
		ATOM	480		HIS A		34.774	57.311	15.390	1.00	0.00	N
		MOTA	481	CD2	HIS A	88	34.097	55.513	16.430	1.00	0.00	C
		MOTA	482		HIS A		33.454	57.321	15.367	1.00	0.00	С
		ATOM	483		HIS		33.018	56.241	15.990	1.00	0.00	N
	60	ATOM	484	N	SER A		37.757	58.664	16.841	1.00	0.00	N
	23	ATOM	485	CA	SER A		37.676	60.115	16.827	1.00	0.00	С
		111 011	100	023	J-11 1							

		MOTA	486	С	SER A	. 89	37.857	60.572	15.387	1.00	0.00	(С
		MOTA	487	Ö	SER A		38.933	60.414	14.809	1.00	0.00	(0
					SER A		38.779	60.694	17.724	1.00	0.00	(С
		ATOM	488	CB			38.743	62.109	17.760	1.00	0.00	(0
	_	MOTA	489	OG	SER A			61.123	14.809	1.00	0.00		N
	5	MOTA	490	N	HIS A		36.797			1.00	0.00		C
		ATOM	491	CA	HIS A		36.839	61.587	13.428				C
		ATOM	492	С	HIS A		37.494	62.965	13.354	1.00	0.00		
		MOTA	493	0	HIS A	90	36.918	63.966	13.794	1.00	0.00		0
		ATOM	494	CB	HIS A	90	35.419	61.634	12.856	1.00	0.00		С
	10	ATOM	495	CG	HIS A	90	35.370	61.921	11.390	1.00	0.00		С
	10	ATOM	496		HIS A		35.986	61.118	10.455	1.00	0.00		N
		MOTA	497		HIS A		34.794	62.931	10.698	1.00	0.00	4	С
					HIS A		35.793		9.250	1.00	0.00		С
		ATOM	498				35.072		9.370	1.00	0.00		N
	1 F	MOTA	499		HIS A		38.705		12.802	1.00	0.00		N
	15	ATOM	500	N	ASN A				12.675	1.00	0.00		С
		MOTA	501	CA	ASN A		39.467				0.00		Ċ
		MOTA	502	С	ASN A		39.630		11.223	1.00			0
		MOTA	503	0	ASN A	91	40.326		10.446	1.00	0.00		
		ATOM	504	CB	ASN A	91	40.857		13.300	1.00	0.00		C
	20	ATOM	505	CG	ASN A	91	40.812	63.944	14.807	1.00	0.00		С
		ATOM	506	OD1	ASN A	91	40.207	63.013	15.344	1.00	0.00		0
1122		ATOM	507		ASN A		41.456	64.872	15.500	1.00	0.00		N
		ATOM	508	N	ASP A		38.996		10.871	1.00	0.00		N
(ca)		MOTA	509	CA	ASP F		39.064		9.515	1.00	0.00		C
R. Land	25		510	C	ASP F		40.293		9.280	1.00	0.00		С
ijī.	23	MOTA					40.522		10.002	1.00	0.00		0
1		MOTA	511	0	ASP A				9.224	1.00	0.00		C
865.8		ATOM	512	CB	ASP A		37.828		9.378	1.00	0.00		C
		MOTA	513	CG	ASP A		36.556				0.00		0
		MOTA	514		ASP A		36.330		8.556	1.00			0
M	30	MOTA	515	OD2	ASP A		35.799		10.327	1.00	0.00		
		MOTA	516	N	PRO A	A 93	41.114	66.812	8.281	1.00	0.00		N
81		ATOM	517	CA	PRO A	A 93	42.311	67.605	7.983	1.00	0.00		C
1020		ATOM	518	С	PRO A	A 93	41.825	68.880	7.288	1.00	0.00		С
		ATOM	519	0	PRO A		42.162	69.148	6.133	1.00	0.00		0
14#1 1818	35	ATOM	520	СВ	PRO A		43.104		7.043	1.00	0.00		С
9 4 5	55	ATOM	521	CG	PRO A		42.681		7.468	1.00	0.00		С
i i i i i i i i i i i i i i i i i i i			522	CD	PRO I		41.191		7.633	1.00	0.00		С
		ATOM			GLY A		41.007		8.008	1.00	0.00		N
5 = 1		MOTA	523	N			40.447		7,480	1.00	0.00		С
i in	40	ATOM	524	CA	GLY A				7.157	1.00	0.00		С
	40	MOTA	525	С	GLY A		38.966			1.00	0.00		Ō
		MOTA	526	0	GLY A		38.529		6.631		0.00		N
		MOTA	527	N	TRP A		38.193		7.507	1.00			C
		MOTA	528	CA	TRP A	A 95	36.757		7.233	1.00	0.00		
		MOTA	529	С	TRP	A 95	36.243		7.623	1.00	0.00		C
	45	ATOM	530	0	TRP	A 95	36.126	5 74.071	6.771	1.00	0.00		0
		ATOM	531	CB	TRP		35.966	5 70.740	7.997	1.00	0.00		С
		ATOM	532	CG	TRP		34.484	4 70.809	7.673	1.00	0.00		С
		ATOM	533		TRP		33.929		6.467	1.00	0.00		С
					TRP .		33.383		8.552	1.00	0.00		С
	EΩ	ATOM	534				32.55		6.539	1.00	0.00		N
	50	ATOM	535		TRP .				7.805	1.00	0.00		С
		MOTA	536		TRP		32.19			1.00	0.00		С
		ATOM	537		TRP		33.28				0.00		Ċ
		ATOM	538	CZ2	TRP		30.92			1.00			
		ATOM	539	CZ3	3 TRP	A 95	32.01		10.445	1.00	0.00		C
	55	ATOM	540	CH2	TRP	A 95	30.85	4 70.112		1.00	0.00		С
		ATOM	541	N	ILE		35.92	9 73.385	8.903	1.00	0.00		N
		ATOM	542	CA	ILE		35.46			1.00	0.00		С
		ATOM	543	C	ILE		36.65			1.00	0.00		С
					ILE		36.55			1.00	0.00		0
	60	ATOM	544	O			34.32			1.00	0.00		С
	nu	ATOM	545		ILE		34.74			1.00	0.00		C
	00	MOTA	546		ILE	A 96							

								100				
		ATOM	547	CG2	ILE A	96	33.073	74.039	9.716	1.00	0.00	С
		MOTA	548	CD1	ILE A	96	33.731	73.670	12.689	1.00	0.00	C
		MOTA	549	N	GLN A		37.763	74.739	10.096	1.00	0.00	N C
		MOTA	550	CA	GLN A	97	39.023	75.290	10.575	1.00	0.00	C
	5	MOTA	551	С	GLN A		40.065	74.682	9.640	1.00	0.00	0
		MOTA	552	0	GLN A		39.793	73.680	8.981	1.00	0.00	C
		ATOM	553	CB	GLN A		39.322	74.857	12.016	1.00	0.00	C
		ATOM	554	CG	GLN A		38.430	75.493	13.081 14.494	1.00	0.00	Č
	10	MOTA	555	CD	GLN A		38.920	75.205	14.454	1.00	0.00	Ö
	10	MOTA	556		GLN A		40.053 38.069	75.539 74.580	15.303	1.00	0.00	N
		MOTA	557		GLN A		41.245	75.280	9.566	1.00	0.00	N
		ATOM	558	N	THR A		42.290	74.739	8.707	1.00	0.00	С
		ATOM	559	CA C	THR A		42.230	73.549	9.407	1.00	0.00	С
	15	ATOM	560 561	0	THR A		42.706	73.310	10.597	1.00	0.00	0
	15	MOTA MOTA	562	CB	THR A		43.398	75.760	8.450	1.00	0.00	С
		MOTA	563		THR A		44.036	76.068	9.692	1.00	0.00	0
		ATOM	564		THR A		42.836	77.039	7.834	1.00	0.00	C
		MOTA	565	N	PHE A		43.753	72.809	8.666	1.00	0.00	N
	20	ATOM	566	CA	PHE A		44.461	71.664	9.223	1.00	0.00	C
		ATOM	567	С	PHE A		45.209	72.088	10.488	1.00	0.00	С
		ATOM	568	0	PHE A		45.049	71.481	11.543	1.00	0.00	0
		ATOM	569	CB	PHE A	99	45.471	71.119	8.208	1.00	0.00	C
		MOTA	570	CG	PHE A	99	46.348	70.015	8.749	1.00	0.00	C
	25	ATOM	571	CD1	PHE A	99	45.937	68.685	8.690	1.00	0.00	C C
		ATOM	572	CD2	PHE A		47.589	70.307	9.315	1.00	0.00	C
		MOTA	573		PHE P		46.748	67.659	9.185	1.00	0.00	C
		MOTA	574		PHE P		48.408	69.290	9.813	1.00	0.00	C
	20	MOTA	575	CZ	PHE F		47.985	67.962	9.746 10.372	$1.00 \\ 1.00$	0.00	N
	30	ATOM	576	N	GLU F		46.028	73.131	11.504	1.00	0.00	C
		ATOM	577	CA	GLU F		46.820	73.615 74.134	12.667	1.00	0.00	C
		MOTA	578	С	GLU A		45.975	73.937	13.829	1.00	0.00	Ō
		MOTA	579	0	GLU A		46.332 47.789	74.707	11.037	1.00	0.00	C
	35	ATOM	580	CB	GLU A		48.843	75.111	12.066	1.00	0.00	С
	33	ATOM	581	CG CD	GLU A		49.755	73.964	12.474	1.00	0.00	С
+		MOTA	582 583	OE1			49.930	73.016	11.674	1.00	0.00	0
		ATOM ATOM	584		GLU A		50.313	74.020	13.593	1.00	0.00	0
		ATOM	585	N		A 101	44.862	74.798	12.364	1.00	0.00	N
	40	ATOM	586	CA	GLU A		43.990	75.314	13.419	1.00	0.00	С
	10	ATOM	587	С		A 101	43.417	74.144	14.223	1.00	0.00	С
		ATOM	588	0		A 101	43.409	74.170	15.455	1.00	0.00	0
		ATOM	589	CB	GLU A	A 101	42.850	76.149	12.821	1.00	0.00	C
		ATOM	590	CG		A 101	43.310	77.447	12.156	1.00	0.00	C
	45	MOTA	591	CD	GLU Z	A 101	42.156	78.271	11.599	1.00	0.00	С
		MOTA	592		L GLU Z		41.224	77.680		1.00	0.00	0
		MOTA	593	OE2	GLU A		42.191	79.513		1.00	0.00	O N
		MOTA	594	N		A 102	42.932	73.120		1.00	0.00	C
		MOTA	595	CA		A 102	42.386	71.947		1.00	0.00	C
	50	ATOM	596	С		A 102	43.482	71.246		1.00	0.00	0
		ATOM	597	0		A 102	43.257	70.790		1.00	0.00	C
		MOTA	598	CB		A 102	41.821	70.935		1.00	0.00	Ċ
		MOTA	599			A 102	40.409	71.175		1.00	0.00	C
		ATOM	600		1 TYR		39.355	71.348		1.00	0.00	c
	55	MOTA	601		2 TYR		40.110	71.130		1.00	0.00	C
		MOTA	602		1 TYR		38.033	71.459		1.00	0.00	C
		ATOM	603		2 TYR		38.810	71.239		1.00	0.00	c
		ATOM	604			A 102	37.775	71.401 71.491		1.00	0.00	Ö
	60	ATOM	605			A 102	36.493 44.664				0.00	N
	60	ATOM	606			A 103	44.664	70.470			0.00	C
		ATOM	607	CA	TYR	A 103	45.764	10.470	13.000	1.00	2.00	

To the first to the first that the control of the c

							10,				
		ATOM	608	С	TYR A 103	46.086	71.147	16.405	1.00	0.00	С
		ATOM	609	0	TYR A 103	46.216	70.488	17.434	1.00	0.00	0
		ATOM	610	СВ	TYR A 103	47.024	70.466	14.216	1.00	0.00	C
			611	CG	TYR A 103	48.190	69.808	14.915	1.00	0.00	C
	5	MOTA		CD1		48.194	68.433	15.158	1.00	0.00	С
	9	MOTA	612		TYR A 103	49.262	70.565	15.392	1.00	0.00	С
		ATOM	613			49.233	67.830	15.861	1.00	0.00	С
		MOTA	614		TYR A 103		69.972	16.098	1.00	0.00	C
		ATOM	615		TYR A 103	50.305	68.605	16.330	1.00	0.00	C
	10	MOTA	616	CZ	TYR A 103	50.284	68.014	17.037	1.00	0.00	Ö
	10	MOTA	617	OH	TYR A 103	51.305		16.372	1.00	0.00	N
		MOTA	618	N	GLN A 104	46.212	72.468	17.568	1.00	0.00	C
		MOTA	619	CA	GLN A 104	46.544	73.231		1.00	0.00	C
		MOTA	620	С	GLN A 104	45.438	73.258	18.611	1.00	0.00	0
	4 -	ATOM	621	0	GLN A 104	45.705	73.155	19.806			C
	15	ATOM	622	CB	GLN A 104	46.906	74.675	17.190	1.00	0.00	c
		MOTA	623	CG	GLN A 104	48.224	74.829	16.440	1.00		c
		MOTA	624	CD	GLN A 104	49.410	74.290	17.225	1.00	0.00	0
		MOTA	625	OE1	GLN A 104	49.459	74.399	18.454	1.00	0.00	N
		MOTA	626	NE2		50.378	73.714	16.518	1.00	0.00	
	20	MOTA	627	N	HIS A 105	44.197	73.389	18.161	1.00	0.00	N
		MOTA	628	CA	HIS A 105	43.067	73.477	19.077	1.00	0.00	C
September 1992		ATOM	629	С	HIS A 105	42.492	72.152	19.566	1.00	0.00	C
		MOTA	630	0	HIS A 105	42.010	72.070	20.694	1.00	0.00	0
ı,C		ATOM	631	CB	HIS A 105	41.935	74.279	18.426	1.00	0.00	C
(71	25	MOTA	632	CG	HIS A 105	42.367	75.595	17.856	1.00	0.00	C
		MOTA	633	ND1	HIS A 105	41.509	76.421	17.162	1.00	0.00	N
(co ≓ na a		ATOM	634	CD2	HIS A 105	43.566	76.226	17.872	1.00	0.00	C
		MOTA	635	CE1	HIS A 105	42.161	77.503	16.774	1.00	0.00	С
Man Man		ATOM	636	NE2	HIS A 105	43.410	77.409	17.192	1.00	0.00	N
iji i	30	ATOM	637	N	ASP A 106	42.549	71.115	18.733	1.00	0.00	N
		ATOM	638	CA	ASP A 106	41.951	69.837	19.104	1.00	0.00	C
Ri.		MOTA	639	С	ASP A 106	42.786	68.568	18.974	1.00	0.00	С
		ATOM	640	0	ASP A 106	43.052	67.887	19.961	1.00	0.00	0
1		ATOM	641	CB	ASP A 106	40.662	69.641	18.296	1.00	0.00	C
14	35	ATOM	642	CG	ASP A 106	39.644	70.735	18.545	1.00	0.00	C
	-	ATOM	643	OD1	ASP A 106	38.958	70.682	19.585	1.00	0.00	0
		ATOM	644	OD2	ASP A 106	39.539	71.654	17.705	1.00	0.00	0
		MOTA	645	N	THR A 107	43.188	68.252	17.749	1.00	0.00	N
in.		MOTA	646	CA	THR A 107	43.928	67.027	17.469	1.00	0.00	С
	40	MOTA	647	С	THR A 107	45.179	66.710	18.286	1.00	0.00	С
		ATOM	648	0	THR A 107	45.365	65.565	18.702	1.00	0.00	0
		ATOM	649	CB	THR A 107	44.287	66.947	15.981	1.00	0.00	С
		ATOM	650		THR A 107	43.103	67.152	15.199	1.00	0.00	0
		ATOM	651		THR A 107	44.868	65.570	15.648	1.00	0.00	С
	45	MOTA	652	N	LYS A 108	46.048	67.687	18.517	1.00	0.00	N
	10	MOTA	653	CA	LYS A 108	47.249	67.367	19.280	1.00	0.00	C
		MOTA	654	С	LYS A 108	46.887	66.969	20.707	1.00	0.00	C
		ATOM	655	0	LYS A 108	47.585	66.176	21.331	1.00	0.00	0
		ATOM	656	СВ	LYS A 108	48.247	68.537	19.273	1.00	0.00	C
	50	ATOM	657	CG	LYS A 108	47.856	69.754	20.088	1.00	0.00	C
	50	ATOM	658	CD	LYS A 108	48.942	70.826	19.973	1.00	0.00	С
		ATOM	659	CE	LYS A 108	48.713	71.978	20.937	1.00	0.00	С
		MOTA	660	NZ	LYS A 108	49.823	72.978	20.873	1.00	0.00	N
		ATOM	661	N	HIS A 109	45.786	67.510	21.216	1.00	0.00	N
	55	MOTA	662	CA	HIS A 109	45.343	67.184	22.567	1.00	0.00	С
		ATOM	663	C	HIS A 109	44.701	65.802	22.575	1.00	0.00	С
		ATOM	664	0	HIS A 109	44.871	65.029	23.518	1.00	0.00	0
				CB	HIS A 109	44.352	68.236	23.055	1.00	0.00	C
		ATOM	665 666	CG	HIS A 109	44.923	69.617	23.085	1.00	0.00	C
	60	ATOM	666 667		HIS A 109	45.939	69.982	23.944	1.00	0.00	N
	00	MOTA			2 HIS A 109	44.652	70.711	22.335	1.00	0.00	С
		MOTA	668	CDA	. UTO W 103	44.002	, , , , , , ,	000			

		ATOM	669	CE.1	HIS A 109	4	6.268	71.243	23.721	1.00	0.00	С
		ATOM	670		HIS A 109		5.502	71.707	22.749	1.00	0.00	N
			671	N	ILE A 110		3.966	65.496	21.513	1.00	0.00	N
		ATOM	672	CA	ILE A 110	_	3.319	64.198	21.382	1.00	0.00	С
	5	ATOM	673	C	ILE A 110		4.378	63.099	21.355	1.00	0.00	С
	5	MOTA	674	0	ILE A 110		4.257	62.084	22.040	1.00	0.00	0
		ATOM	675	ĊB	ILE A 110		2.492	64.123	20.078	1.00	0.00	С
		ATOM			ILE A 110		1.302	65.086	20.167	1.00	0.00	С
		MOTA	676				2.043	62.688	19.826	1.00	0.00	С
	10	MOTA	677		ILE A 110 ILE A 110		0.511	65.224	18.870	1.00	0.00	С
	10	MOTA	678		LEU A 111		5.422	63.305	20.562	1.00	0.00	N
		ATOM	679	N	LEU A 111		6.481	62.313	20.456	1.00	0.00	С
		ATOM	680	CA			7.341	62.244	21.708	1.00	0.00	С
		ATOM	681	C	LEU A 111 LEU A 111		7.783	61.163	22.105	1.00	0.00	0
	15	ATOM	682		LEU A 111		7.348	62.597	19.222	1.00	0.00	С
	15	MOTA	683	CB	LEU A 111		6.620	62.277	17.911	1.00	0.00	С
		MOTA	684	CG CD1	LEU A 111		7.442	62.742	16.715	1.00	0.00	С
		MOTA	685		LEU A 111		6.352	60.774	17.845	1.00	0.00	C
		ATOM	686		SER A 112		7.573	63.390	22.337	1.00	0.00	N
	20	MOTA	687	N	SER A 112 SER A 112		8.381	63.412	23.549	1.00	0.00	С
	20	ATOM	688	CA C	SER A 112		7.666	62.672	24.679	1.00	0.00	С
		ATOM	689		SER A 112		8.272	61.870	25.395	1.00	0.00	0
: 17		ATOM	690	0	SER A 112 SER A 112		8.670	64.853	23.971	1.00	0.00	С
, (mm)		ATOM	691	CB	SER A 112		9.509	64.872	25.113	1.00	0.00	0
	25	ATOM	692	OG	ASN A 113		16.373	62.933	24.838	1.00	0.00	N
177	25	ATOM	693	N	ASN A 113		15.625	62.265	25.891	1.00	0.00	С
		MOTA	694	CA	ASN A 113		15.330	60.802	25.556	1.00	0.00	С
		MOTA	695	С	ASN A 113		15.143	59.982	26.457	1.00	0.00	0
		MOTA	696	O	ASN A 113		14.352	63.052	26.209	1.00	0.00	С
169	30	ATOM	697 698	CB CG	ASN A 113		14.666	64.403	26.833	1.00	0.00	С
M	30	MOTA	699		ASN A 113		15.664	64.541	27.538	1.00	0.00	0
¥)		MOTA	700		ASN A 113		13.829	65.397	26.582	1.00	0.00	N
		MOTA MOTA	701	N	ALA A 114		15.310	60.467	24.268	1.00	0.00	N
		ATOM	701	CA	ALA A 114		15.081	59.080	23.866	1.00	0.00	С
	35	ATOM	703	C	ALA A 114		16.296	58.269	24.305	1.00	0.00	С
3 55	33	ATOM	703	0	ALA A 114		46.160	57.174	24.853	1.00	0.00	0
i sain		ATOM	705	CB	ALA A 114		44.903	58.978	22.349	1.00	0.00	С
\$ 17 m		ATOM	706	N	LEU A 115		47.487	58.814	24.064	1.00	0.00	N
5:-2		ATOM	707	CA	LEU A 115		48.725	58.143	24.445	1.00	0.00	С
#	40	ATOM	708	C	LEU A 115		48.744	57.892	25.953	1.00	0.00	С
	10	ATOM	709	0	LEU A 115		49.029	56.782	26.408	1.00	0.00	0
		MOTA	710	СВ	LEU A 115		49.942	58.995	24.046	1.00	0.00	С
		ATOM	711	CG	LEU A 115	١	51.322	58.485	24.481	1.00	0.00	С
		ATOM	712		LEU A 115		51.544	57.075	23.953	1.00	0.00	С
	45	MOTA	713		LEU A 115		52.408	59.419	23.978	1.00	0.00	С
	10	MOTA	714	N	ARG A 116		48.421	58.925	26.721	1.00	0.00	N
		ATOM	715	CA	ARG A 116		48.412	58.813	28.173	1.00	0.00	C
		ATOM	716	С	ARG A 116		47.380	57.811	28.677	1.00	0.00	C
		ATOM	717	0	ARG A 116		47.704	56.900	29.442	1.00	0.00	0
	50	ATOM	718	CB	ARG A 116		48.152	60.185		1.00	0.00	С
		MOTA	719	CG	ARG A 116		49.268	61.180		1.00	0.00	С
		ATOM	720	CD	ARG A 116		48.932	62.575	29.033	1.00	0.00	С
		MOTA	721	NE	ARG A 116		50.033	63.508	28.802	1.00	0.00	N
		ATOM	722	CZ	ARG A 116		49.984	64.808		1.00	0.00	С
	55	ATOM	723		L ARG A 116		48.882	65.338		1.00	0.00	N
		ATOM	724	NH	2 ARG A 116		51.039	65.579		1.00	0.00	N
		ATOM	725	N	HIS A 117		46.138	57.971		1.00	0.00	N
		MOTA	726	CA	HIS A 117		45.070	57.085		1.00	0.00	С
		ATOM	727	С	HIS A 117		45.204			1.00	0.00	С
	60	ATOM	728	0	HIS A 117		44.892			1.00	0.00	0
		ATOM	729		HIS A 117		43.726	57.651	28.230	1.00	0.00	С

		» mon	720	CC	HIS A 11	. 7	43.233	58.737	29.130	1.00	0.00	С
		ATOM	730				42.625	58.474	30.339	1.00	0.00	N
		MOTA	731		HIS A 11					1.00	0.00	C
		MOTA	732		HIS A 11		43.355	60.083	29.054			C
		ATOM	733	CE1	HIS A 11	17	42.399	59.612	30.973	1.00	0.00	
	5	MOTA	734	NE2	HIS A 11		42.834	60.604	30.216	1.00	0.00	N
		MOTA	735	N	LEU A 11	L8	45.662	55.366	27.044	1.00	0.00	N
		MOTA	736	CA	LEU A 11	18	45.839	53.986	26.606	1.00	0.00	С
		ATOM	737	С	LEU A 11	18	47.012	53.379	27.368	1.00	0.00	С
		ATOM	738	Ō	LEU A 11		46.987	52.208	27.747	1.00	0.00	0
	10	ATOM	739	CB	LEU A 11		46.099	53.924	25.095	1.00	0.00	С
	10		740	CG	LEU A 11		44.915	54.378	24.230	1.00	0.00	С
		ATOM			LEU A 11		45.301	54.355	22.759	1.00	0.00	С
		MOTA	741				43.722	53.470	24.484	1.00	0.00	С
		MOTA	742		LEU A 11				27.589	1.00	0.00	N
	a ==	MOTA	743	N	HIS A 11		48.047	54.180		1.00	0.00	C
	15	MOTA	744	CA	HIS A 11		49.210	53.707	28.321			C
		ATOM	745	С	HIS A 1		48.791	53.245	29.717	1.00	0.00	0
		MOTA	746	0	HIS A 1	19	49.170	52.160	30.159	1.00	0.00	
		ATOM	747	CB	HIS A 1	19	50.257	54.826	28.422	1.00	0.00	C
		ATOM	748	CG	HIS A 13	19	51.418	54.493	29.307	1.00	0.00	С
	20	ATOM	749	ND1	HIS A 1	19	51.416	54.745	30.662	1.00	0.00	N
1.25%		ATOM	750		HIS A 1		52.603	53.897	29.036	1.00	0.00	С
\$		ATOM	751		HIS A 1		52.551	54.319	31.189	1.00	0.00	С
17		ATOM	752		HIS A 1		53.289	53.799	30.224	1.00	0.00	N
		MOTA	753	N	ASP A 1		47.984	54.060	30.391	1.00	0.00	N
A (SEE	25	ATOM	754	CA	ASP A 1		47.527	53.762	31.750	1.00	0.00	С
Ŋ,	25				ASP A 1		46.370	52.775	31.895	1.00	0.00	С
		ATOM	755	С			46.126	52.274	32.993	1.00	0.00	0
		MOTA	756	0	ASP A 1		47.147	55.057	32.469	1.00	0.00	С
161		MOTA	757	CB	ASP A 1				32.653	1.00	0.00	Ċ
	20	MOTA	758	CG	ASP A 1		48.324	55.989		1.00	0.00	0
	30	MOTA	759		ASP A 1		49.475	55.505	32.673		0.00	Ö
E:		MOTA	760	OD2	ASP A 1		48.094	57.207	32.793	1.00		N
		ATOM	761	N	ASN A 1		45.656	52.501	30.807	1.00	0.00	
		MOTA	762	CA	ASN A 1		44.523	51.574	30.849	1.00	0.00	С
		ATOM	763	С	ASN A 1	21	44.681	50.515	29.758	1.00	0.00	С
al.	35	MOTA	764	0	ASN A 1	21	44.105	50.630	28.674	1.00	0.00	0
3.2.		MOTA	765	CB	ASN A 1	21	43.210	52.343	30.661	1.00	0.00	С
1500		ATOM	766	CG	ASN A 1	21	43.007	53.423	31.719	1.00	0.00	С
4,700		ATOM	767		ASN A 1	21	43.448	54.567	31.558	1.00	0.00	0
		ATOM	768		ASN A 1		42.348	53.059	32.813	1.00	0.00	N
7	40	MOTA	769	N	PRO A 1		45.454	49.452	30.046	1.00	0.00	N
	10	MOTA	770	CA	PRO A 1		45.732	48.346	29.122	1.00	0.00	С
		ATOM	771	C	PRO A 1		44.580	47.753	28.311	1.00	0.00	С
			772	Ö	PRO A 1		44.798	47.303	27.184	1.00	0.00	0
		MOTA	773	CB	PRO A 1		46.426	47.311	30.017	1.00	0.00	C
	4 5	ATOM					45.937	47.647	31.399	1.00	0.00	С
	45	ATOM	774	CG	PRO A 1		45.974	49.145	31.389	1.00	0.00	C
		MOTA	775	CD	PRO A 1				28.858	1.00	0.00	N
		MOTA	776	N	GLU A 1		43.366	47.753			0.00	Ç
		MOTA	777	CA	GLU A 1		42.224	47.192	28.135	1.00		C
		MOTA	778	С	GLU A 1		41.503	48.170	27.215	1.00	0.00	0
	50	ATOM	779	0	GLU A 1	.23	40.678	47.759	26.398	1.00	0.00	
		ATOM	780	CB	GLU A 1	.23	41.204	46.591	29.105	1.00	0.00	C
		MOTA	781	CG	GLU A 1	.23	41.476	45.145	29.477	1.00	0.00	С
		ATOM	782	CD	GLU A 1	.23	42.676	44.989	30.375	1.00	0.00	С
		MOTA	783	OE1	GLU A 1	.23	42.678	45.605	31.463	1.00	0.00	0
	55	ATOM	784	OE2	GLU A 1	.23	43.613	44.249	29.999	1.00	0.00	0
		ATOM	785	N	MET A 1		41.798	49.458	27.352	1.00	0.00	N
		ATOM	786	CA	MET A 1		41.165	50.464	26.506	1.00	0.00	С
			787	C	MET A 1		41.742	50.354	25.092	1.00	0.00	С
		MOTA	788	0	MET A 1		42.918	50.024	24.919	1.00	0.00	0
	60	MOTA			MEI A I		41.418	51.864	27.068	1.00	0.00	С
	60	MOTA	789	CB				52.963	26.354	1.00	0.00	С
		MOTA	790	CG	MET A 1	L Z 4	40.644	JZ.903	20.554	1.00	0.00	J

		MOTA	791	SD	MET A 124	38.864	52.639	26.329	1.00	0.00	S
		ATOM	792	CE	MET A 124	38.255	54.154	25.577	1.00	0.00	С
			793	N	LYS A 125	40.908	50.624	24.090	1.00	0.00	N
		ATOM			LYS A 125	41.322	50.546	22.691	1.00	0.00	С
	_	ATOM	794	CA		40.980	51.842	21.954	1.00	0.00	С
	5	MOTA	795	C	LYS A 125			22.434	1.00	0.00	Ō
		MOTA	796	0	LYS A 125	40.178	52.646			0.00	C
		MOTA	797	CB	LYS A 125	40.623	49.360	22.018	1.00		C
		MOTA	798	CG	LYS A 125	40.950	48.006	22.643	1.00	0.00	
		MOTA	799	CD	LYS A 125	42.347	47.539	22.267	1.00	0.00	С
	10	MOTA	800	CE	LYS A 125	42.747	46.273	23.022	1.00	0.00	С
		MOTA	801	NZ	LYS A 125	41.818	45.136	22.781	1.00	0.00	N
		ATOM	802	N	PHE A 126	41.569	52.039	20.778	1.00	0.00	N
		ATOM	803	CA	PHE A 126	41.324	53.264	20.016	1.00	0.00	С
		ATOM	804	C	PHE A 126	41.824	53.081	18.582	1.00	0.00	С
	15	ATOM	805	Ö	PHE A 126	42.900	52.529	18.366	1.00	0.00	0
	15			СВ	PHE A 126	42.077	54.418	20.698	1.00	0.00	С
		MOTA	806			41.706	55.797	20.203	1.00	0.00	С
		MOTA	807	CG	PHE A 126		56.230	20.214	1.00	0.00	C
		MOTA	808		PHE A 126	40.384			1.00	0.00	Č
	••	MOTA	809		PHE A 126	42.699	56.689	19.802	1.00	0.00	C
	20	ATOM	810		PHE A 126	40.054	57.536	19.838			C
211002		MOTA	811	CE2	PHE A 126	42.384	57.997	19.423	1.00	0.00	C
1100		ATOM	812	CZ	PHE A 126	41.057	58.422	19.442	1.00	0.00	
		MOTA	813	N	ILE A 127	41.042	53.526	17.602	1.00	0.00	N
		ATOM	814	CA	ILE A 127	41.471	53.418	16.210	1.00	0.00	C
499	25	ATOM	815	С	ILE A 127	41.733	54.811	15.640	1.00	0.00	С
167 F		ATOM	816	0	ILE A 127	41.067	55.782	16.021	1.00	0.00	0
fresh fresh		ATOM	817	СВ	ILE A 127	40.427	52.687	15.338	1.00	0.00	С
dring from		ATOM	818	CG1		39.089	53.433	15.363	1.00	0.00	С
		ATOM	819		ILE A 127	40.258	51.260	15.840	1.00	0.00	С
	30	ATOM	820		ILE A 127	38.066	52.870	14.392	1.00	0.00	С
9,8 4	50	ATOM	821	N	TRP A 128	42.713	54.910	14.745	1.00	0.00	N
31			822		TRP A 128	43.061	56.193	14.135	1.00	0.00	С
i sui		ATOM		CA	TRP A 128	43.178	56.076	12.617	1.00	0.00	С
1 200		ATOM	823	C		43.820	55.161	12.105	1.00	0.00	0
1	25	ATOM	824	0	TRP A 128	44.372	56.719	14.716	1.00	0.00	C
	35	ATOM	825	CB	TRP A 128		58.146	14.356	1.00	0.00	C
		MOTA	826	CG	TRP A 128	44.611		13.309	1.00	0.00	C
1,000		MOTA	827		TRP A 128	45.351	58.621		1.00	0.00	Ċ
		MOTA	828		TRP A 128	44.053	59.290	15.006	1.00	0.00	N
ğ şadir	4.0	MOTA	829	NE1		45.287	59.995	13.269		0.00	C
	40	ATOM	830		TRP A 128	44.495	60.431	14.300	1.00		C
		ATOM	831		TRP A 128	43.216	59.464	16.120	1.00	0.00	
		ATOM	832	CZ2	TRP A 128	44.130	61.731	14.670	1.00	0.00	C
		MOTA	833	CZ3	TRP A 128	42.852	60.758	16.486	1.00	0.00	C
		MOTA	834	CH2	TRP A 128	43.311	61.873	15.761	1.00	0.00	С
	45	MOTA	835	N	ALA A 129	42.582	57.027	11.900	1.00	0.00	N
		MOTA	836	CA	ALA A 129	42.587	56.974	10.439	1.00	0.00	С
		ATOM	837	С	ALA A 129	43.438	57.984	9.672	1.00	0.00	С
		ATOM	838	0	ALA A 129	44.069	57.625	8.681	1.00	0.00	0
		ATOM	839	СВ	ALA A 129	41.150	57.054	9.933	1.00	0.00	С
	50	ATOM	840	N	GLU A 130	43.454	59.234	10.123	1.00	0.00	N
	50			CA	GLU A 130	44.180	60.299	9.427	1.00	0.00	С
		MOTA	841			45.665	60.421	9.757	1.00	0.00	С
		ATOM	842	С	GLU A 130		61.041	10.752	1.00	0.00	0
		ATOM	843	0	GLU A 130	46.045			1.00	0.00	C
		MOTA	844	CB	GLU A 130	43.492	61.641	9.688	1.00	0.00	Ċ
	55	MOTA	845	CG	GLU A 130	42.001	61.660	9.373			C
		MOTA	846	CD	GLU A 130	41.151	61.055	10.480	1.00	0.00	0
		ATOM	847		L GLU A 130	41.701	60.758	11.563	1.00	0.00	
		MOTA	848	OE2	2 GLU A 130	39.930	60.888	10.269	1.00	0.00	0
		MOTA	849	N	ILE A 131	46.509		8.890	1.00	0.00	N
	60	MOTA	850		ILE A 131	47.945	59.908	9.128	1.00	0.00	С
		MOTA	851		ILE A 131	48.564	61.304	9.007	1.00	0.00	С
				-	-						

							110				
	ATOM	852	0	TLE A	A 131	49.593	61.574	9.632	1.00	0.00	0
	ATOM	853	СВ		A 131	48.676	58.906	8.207	1.00	0.00	С
	ATOM	854		ILE A		48.061	57.512	8.393	1.00	0.00	С
	ATOM	855			A 131	50.161	58.851	8.553	1.00	0.00	С
5	ATOM	856	CD1	ILE A	A 131	47.933	57.084	9.857	1.00	0.00	C
	MOTA	857	N	SER A	A 132	47.946	62.191	8.227	1.00	0.00	N
	MOTA	858	CA		A 132	48.462	63.553	8.088	1.00	0.00	С
	MOTA	859	С		A 132	48.604	64.160	9.488	1.00	0.00	C O
	MOTA	860	0		A 132'	49.626	64.771	9.813	1.00	0.00	C
10	ATOM	861	CB		A 132	47.516	64.416	7.234	1.00	0.00	0
	MOTA	862	OG		A 132	46.188	64.403	7.740	1.00	0.00	N
	MOTA	863	N		A 133	47.575	63.980	10.312	1.00	0.00	C
	MOTA	864	CA		A 133	47.588	64.482 63.692	12.565	1.00	0.00	C
15	MOTA	865	C		A 133	48.554	64.278	13.339	1.00	0.00	Ö
15	MOTA	866	0		A 133	49.316	64.396	12.305	1.00	0.00	Ċ
	MOTA	867	CB		A 133	46.192 45.288	65.570	12.003	1.00	0.00	Ċ
	MOTA	868	CG CD1		A 133 A 133	44.019	65.372	11.460	1.00	0.00	C
	ATOM	869			A 133	45.695	66.877	12.281	1.00	0.00	С
20	MOTA MOTA	870 871			A 133	43.172	66.447	11.200	1.00	0.00	С
20	ATOM	872			A 133	44.858	67.959	12.027	1.00	0.00	С
	ATOM	873	CZ		A 133	43.600	67.738	11.488	1.00	0.00	С
	MOTA	874	OH		A 133	42.769	68.808	11.250	1.00	0.00	0
	ATOM	875	N		A 134	48.526	62.366	12.452	1.00	0.00	N
25	ATOM	876	CA		A 134	49.397	61.541	13.284	1.00	0.00	C
	ATOM	877	C		A 134	50.876	61.830	13.058	1.00	0.00	С
	ATOM	878	0	PHE	A 134	51.655	61.898	14.012	1.00	0.00	0
	MOTA	879	CB	PHE	A 134	49.143	60.050	13.054	1.00	0.00	C
	MOTA	880	CG	PHE	A 134	49.662	59.182	14.167	1.00	0.00	C
30	MOTA	881			A 134	48.923	59.015	15.335	1.00	0.00	C C
	ATOM	882			A 134	50.920	58.594	14.082	1.00	0.00	C
ata Marini	ATOM	883			A 134	49.431	58.279	16.406	1.00	0.00	C
	MOTA	884			A 134	51.438	57.859	15.145	$1.00 \\ 1.00$	0.00	C
25	MOTA	885	CZ		A 134	50.691	57.701	16.312 11.796	1.00	0.00	N
35	MOTA	886	N		A 135	51.264 52.656	61.991 62.270	11.469	1.00	0.00	C
	MOTA	887	CA		A 135	53.070	63.619	12.060	1.00	0.00	Ċ
	ATOM	888	С		A 135 A 135	54.171	63.759	12.598	1.00	0.00	0
	ATOM	889	O CB		A 135	52.845	62.265	9.957	1.00	0.00	С
40	ATOM ATOM	890 891	N		A 136	52.181	64.602	11.958	1.00	0.00	N
1 0	ATOM	892	CA		A 136	52.417	65.945	12.489	1.00	0.00	С
	ATOM	893	C		A 136	52.660	65.867	13.998	1.00	0.00	С
	ATOM	894	0		A 136	53.548	66.527	14.540	1.00	0.00	0
	ATOM	895	CB		A 136	51.195	66.829	12.213	1.00	0.00	С
45	ATOM	896	CG		A 136	51.232	68.221	12.856	1.00	0.00	С
	ATOM	897	CD		A 136	51.964	69.245	11.990	1.00	0.00	С
	ATOM	898	NE		A 136	51.880	70.593	12.559	1.00	0.00	N
	ATOM	899	CZ	ARG	A 136	52.508	70.966	13.668	1.00	0.00	С
	ATOM	900	NH1	ARG	A 136	53.269	70.095	14.318	1.00	0.00	N
50	MOTA	901	NH2	ARG	A 136	52.367	72.198	14.139	1.00	0.00	N
	ATOM	902	N	PHE	A 137	51.858	65.044	14.665	1.00	0.00	N
	MOTA	903	CA	PHE	A 137	51.946	64.856	16.109	1.00	0.00	С
	ATOM	904	С		A 137	53.217	64.115	16.520	1.00	0.00	C
	ATOM	905	0		A 137	54.007	64.599	17.336	1.00	0.00	0
55	MOTA	906	CB		A 137	50.729	64.065	16.587	1.00	0.00	C
	MOTA	907	CG		A 137	50.707	63.817	18.063	1.00	0.00	С
	MOTA	908			A 137	50.395	64.844	18.948	1.00	0.00	С
	MOTA	909			A 137	50.998	62.555	18.572	1.00	0.00	C
	MOTA	910			A 137	50.369	64.619	20.319	1.00	0.00	C
60	MOTA	911			A 137	50.975	62.319	19.947	1.00	0.00	C
	ATOM	912	CZ	PHE	A 137	50.659	63.356	20.819	1.00	0.00	C

		T COM	010	3.7	011D B	1 2 0	5 3 A	00 00 000	15 042	1 00	0 00	NT.
		ATOM	913	N	TYR A		53.40		15.943	1.00	0.00	N
		ATOM	914	CA	TYR A		54.5		16.241	1.00	0.00	С
		MOTA	915	С	TYR A	138	55.89	97 62.793	16.136	1.00	0.00	C
		MOTA	916	0	TYR A	138	56.73	38 62.665	17.028	1.00	0.00	0
	5	MOTA	917	CB	TYR A	138	54.54		15.320	1.00	0.00	C
	-	ATOM	918	CG	TYR A		55.5		15.706	1.00	0.00	С
		ATOM	919		TYR A		55.32		16.734	1.00	0.00	Č
												C
		ATOM	920		TYR A		56.80		15.043	1.00	0.00	С
	10	MOTA	921		TYR A		56.20		17.091	1.00	0.00	C
	10	MOTA	922	CE2	TYR A	138	57.74	18 58.789	15.395	1.00	0.00	C
		MOTA	923	CZ	TYR A	138	57.46	58 57.900	16.416	1.00	0.00	С
		MOTA	924	OH	TYR A	138	58.38	33 56.930	16.757	1.00	0.00	0
		ATOM	925	N	HIS A		56.13		15.047	1.00	0.00	N
		ATOM	926	CA	HIS A		57.39		14.871	1.00	0.00	C
	15	MOTA	927	C	HIS A		57.62		15.911	1.00	0.00	C
	10											
		MOTA	928	0	HIS A		58.76		16.119	1.00	0.00	0
		MOTA	929	CB	HIS A		57.49		13.460	1.00	0.00	С
		ATOM	930	CG	HIS A		57.67		12.395	1.00	0.00	С
	•	ATOM	931	ND1	HIS A	139	58.77	78 62.935	12.335	1.00	0.00	N
	20	MOTA	932	CD2	HIS A	139	56.88	30 63.398	11.355	1.00	0.00	C
		MOTA	933	CE1	HIS A	139	58.66	62.118	11.302	1.00	0.00	C
1122		MOTA	934	NE2	HIS A	139	57.53	19 62.378	10.691	1.00	0.00	N
175		ATOM	935	N	ASP A		56.56	60 65.751	16.563	1.00	0.00	N
1000		ATOM	936	CA	ASP A		56.66		17.594	1.00	0.00	С
M	25	ATOM	937	С	ASP A		56.88		18.983	1.00	0.00	C
11/2 to 21/24/2019		ATOM	938	Ö	ASP A		57.23		19.929	1.00	0.00	Ö
		MOTA	939	CB	ASP A		55.40		17.596	1.00	0.00	C
N									16.652	1.00	0.00	C
		ATOM	940	CG	ASP A		55.51					
	20	ATOM	941		ASP A		56.36		15.739	1.00	0.00	0
ą,a a	30	ATOM	942		ASP A		54.73		16.819	1.00	0.00	0
#1		MOTA	943	N	LEU A		56.6		19.097	1.00	0.00	N
		MOTA	944	CA	LEU A	141	56.84		20.368	1.00	0.00	С
		ATOM	945	С	LEU A		58.30		20.751	1.00	0.00	С
Police ners n		MOTA	946	0	LEU A	141	59.17	76 63.851	19.892	1.00	0.00	0
191	35	ATOM	947	CB	LEU A	141	56.18	38 62.779	20.321	1.00	0.00	C
i ei		ATOM	948	CG	LEU A	141	54.67	70 62.624	20.382	1.00	0.00	C
		MOTA	949	CD1	LEU A	141	54.32	24 61.135	20.287	1.00	0.00	C
		ATOM	950	CD2	LEU A	141	54.13	32 63.209	21.679	1.00	0.00	С
}. 4 -		ATOM	951	N	GLY A		. 58.56		22.054	1.00	0.00	N
	40	ATOM	952	CA	GLY A		59.91		22.528	1.00	0.00	C
	10	MOTA	953	C	GLY A		60.19		22.351	1.00	0.00	Č
		ATOM	954		GLY A		59.26		22.206	1.00	0.00	0
				0								
		ATOM	955	N	GLU A		61.46		22.370	1.00	0.00	N
	45	MOTA	956	CA	GLU A		61.85		22.188	1.00	0.00	С
	45	ATOM	957	С	GLU A		61.16		23.159	1.00	0.00	C
		ATOM	958	0	GLU A		60.74		22.767	1.00	0.00	0
		ATOM	959	CB	GLU A		63.37		22.308	1.00	0.00	С
		ATOM	960	CG	GLU A	143	63.91		21.867	1.00	0.00	С
		ATOM	961	CD	GLU A	143	63.51	9 58.582	20.441	1.00	0.00	С
	50	ATOM	962	OE1	GLU A	143	63.71	13 59.422	19.537	1.00	0.00	0
		ATOM	963	OE2	GLU A	143	63.01	17 57.460	20.224	1.00	0.00	0
		ATOM	964	N	ASN A	144	61.05		24.421	1.00	0.00	N
		ATOM	965	CA	ASN A		60.41		25.423	1.00	0.00	С
		ATOM	966	С	ASN A		58.97		25.026	1.00	0.00	c
	55	ATOM	967	Ö	ASN A		58.53		25.082	1.00	0.00	0
	50	ATOM	968						26.797	1.00	0.00	C
				CB	ASN A		60.45		27.859		0.00	C
		ATOM	969	CG	ASN A		59.67			1.00		
		ATOM	970		ASN A		58.44		27.845	1.00	0.00	0
	40	ATOM	971		ASN A		60.39		28.786	1.00	0.00	N
	60	MOTA	972	N	LYS A		58.24		24.614	1.00	0.00	N
		MOTA	973	CA	LYS A	145	56.84	17 59.590	24.210	1.00	0.00	C

		MOTA	974	С	LYS A 145	56.698	58.798	22.912	1.00	0.00	C
		MOTA	975	0	LYS A 145	55.735	58.046	22.752	1.00	0.00	0
					LYS A 145	56.168	60.958	24.078	1.00	0.00	С
		ATOM	976	CB	LYS A 145	55.887	61.635	25.417	1.00	0.00	С
	_	ATOM	977	CG		54.925	60.800	26.252	1.00	0.00	С
	5	MOTA	978	CD	LYS A 145	-		27.613	1.00	0.00	C
		MOTA	979	CE	LYS A 145	54.648	61.430		1.00	0.00	N
		MOTA	980	NZ	LYS A 145	55.860	61.462	28.478			N
		MOTA	981	N	LYS A 146	57.640	58.966	21.986	1.00	0.00	
		MOTA	982	CA	LYS A 146	57.589	58.225	20.728	1.00	0.00	С
	10	MOTA	983	С	LYS A 146	57.650	56.734	21.036	1.00	0.00	C
		MOTA	984	0	LYS A 146	56.967	55.935	20.401	1.00	0.00	0
		ATOM	985	СВ	LYS A 146	58.761	58.602	19.810	1.00	0.00	С
		ATOM	986	CG	LYS A 146	58.624	59.956	19.127	1.00	0.00	С
		ATOM	987	CD	LYS A 146	59.760	60.201	18.141	1.00	0.00	С
	15	ATOM	988	CE	LYS A 146	59.594	61.542	17.439	1.00	0.00	С
	10	MOTA	989	NZ	LYS A 146	60.713	61.808	16.502	1.00	0.00	N
			990	N	LEU A 147	58.470	56.369	22.019	1.00	0.00	N
		MOTA		CA	LEU A 147	58.618	54.976	22.423	1.00	0.00	С
		MOTA	991			57.332	54.452	23.064	1.00	0.00	С
	20	MOTA	992	С	LEU A 147	56.913	53.328	22.792	1.00	0.00	0
	20	MOTA	993	0	LEU A 147		54.828	23.394	1.00	0.00	C
414		MOTA	994	CB	LEU A 147	59.795		22.765	1.00	0.00	Ċ
2000 10 10000		MOTA	995	CG	LEU A 147	61.174	55.065		1.00	0.00	C
		MOTA	996		LEU A 147	62.267	54.955	23.819		0.00	C
Ų		MOTA	997	CD2	LEU A 147	61.404	54.043	21.659	1.00		N
177	25	MOTA	998	N	GLN A 148	56.707	55.258	23.917	1.00	0.00	
324		MOTA	999	CA	GLN A 148	55.456	54.838	24.541	1.00	0.00	С
		MOTA	1000	С	GLN A 148	54.393	54.655	23.461	1.00	0.00	C
1 L		MOTA	1001	0	GLN A 148	53.578	53.734	23.525	1.00	0.00	0
W. 4m		ATOM	1002	СВ	GLN A 148	54.961	55.874	25.552	1.00	0.00	С
111	30	MOTA	1003	CG	GLN A 148	55.689	55.857	26.884	1.00	0.00	С
	00	ATOM	1004	CD	GLN A 148	55.020	56.743	27.922	1.00	0.00	С
\$!		ATOM	1005		GLN A 148	55.426	56.768	29.086	1.00	0.00	0
		ATOM	1006		GLN A 148	53.990	57.477	27.505	1.00	0.00	N
J		ATOM	1007	N	MET A 149	54.407	55.537	22.468	1.00	0.00	N
101	35		1007	CA	MET A 149	53.434	55.467	21.385	1.00	0.00	С
	55	ATOM		C	MET A 149	53.634	54.196	20.565	1.00	0.00	С
i più		ATOM	1009		MET A 149	52.673	53.508	20.232	1.00	0.00	0
3,222		MOTA	1010	0	MET A 149	53.554	56.697	20.481	1.00	0.00	С
		MOTA	1011	CB		52.533	56.747	19.352	1.00	0.00	С
2 2000	40	MOTA	1012	CG	MET A 149		56.818	19.930	1.00	0.00	S
	40	MOTA	1013	SD	MET A 149	50.823		20.073	1.00	0.00	Č
		MOTA	1014	CE	MET A 149	50.571	58.585	20.073	1.00	0.00	N
		ATOM	1015	N	LYS A 150	54.885	53.879		1.00	0.00	C
		ATOM	1016	CA	LYS A 150	55.161	52.682	19.462		0.00	C
		MOTA	1017	С	LYS A 150	54.741	51.429	20.215	1.00	0.00	Ö
	45	MOTA	1018	0	LYS A 150	54.314	50.450	19.606	1.00		c
		MOTA	1019	CB	LYS A 150	56.650	52.601	19.104	1.00	0.00	C
		MOTA	1020	CG	LYS A 150	57.115	53.724	18.190	1.00	0.00	
		MOTA	1021	CD	LYS A 150	58.623	53.714	17.990	1.00	0.00	C
		ATOM	1022	CE	LYS A 150	59.076	52.493	17.214	1.00	0.00	С
	50	ATOM	1023	NZ	LYS A 150	60.543	52.537	16.948	1.00	0.00	N
		ATOM	1024	N	SER A 151	54.839	51.464	21.542	1.00	0.00	N
		ATOM	1025	CA	SER A 151	54.474	50.305	22.346	1.00	0.00	С
		ATOM	1026	С	SER A 151	52.969	50.036	22.373	1.00	0.00	С
		ATOM	1027	Ö	SER A 151	52.548	48.883	22.271	1.00	0.00	0
	55	ATOM	1027	СВ	SER A 151	55.002	50.454	23.778	1.00	0.00	С
	55		1029		SER A 151	54.275		24.486	1.00	0.00	0
		ATOM	1029		ILE A 152	52.150		22.505	1.00	0.00	N
		MOTA			ILE A 152	50.710	50.854	22.528	1.00	0.00	С
		ATOM	1031			50.178		21.147	1.00	0.00	С
	60	MOTA	1032		ILE A 152	49.072		21.026	1.00	0.00	Ō
	60	MOTA	1033		ILE A 152			23.075	1.00	0.00	Ċ
		MOTA	1034	CB	ILE A 152	49.924	JZ.U/4	20.010	1.00	3.00	-

		ATOM	1035	CC1	ILE A	152	50.245	53.334	22.274	1.00	0.00	С
					ILE A			52.274	24.549	1.00	0.00	C
		MOTA	1036				50.249			1.00	0.00	C
		MOTA	1037		ILE A		49.359	54.507	22.645			
	=	ATOM	1038	N	VAL A		50.965	50.723	20.106	1.00	0.00	N
	5	ATOM	1039	CA	VAL A		50.562	50.343	18.753	1.00	0.00	C
		MOTA	1040	С	VAL A		50.959	48.881	18.580	1.00	0.00	C
		MOTA	1041	0	VAL A		50.178	48.057	18.103	1.00	0.00	0
		ATOM	1042	CB	VAL A		51.280	51.195	17.682	1.00	0.00	С
	40	MOTA	1043		VAL A		51.068	50.590	16.295	1.00	0.00	С
	10	MOTA	1044	CG2	VAL A		50.746	52.618	17.715	1.00	0.00	С
		MOTA	1045	N	LYS A	154	52.181	48.564	18.998	1.00	0.00	N
		MOTA	1046	CA	LYS A	154	52.692	47.203	18.897	1.00	0.00	С
		ATOM	1047	C	LYS A	154	51.832	46.218	19.692	1.00	0.00	С
		MOTA	1048	0	LYS A		51.604	45.088	19.244	1.00	0.00	0
	15	MOTA	1049	CB	LYS A	154	54.141	47.153	19.395	1.00	0.00	С
		ATOM	1050	CG	LYS A	154	54.883	45.879	19.009	1.00	0.00	С
		MOTA	1051	CD	LYS A	154	56.371	45.971	19.327	1.00	0.00	C
		ATOM	1052	CE	LYS A	154	56.650	45.772	20.811	1.00	0.00	C
	• •	MOTA	1053	NZ	LYS A	154	55.949	46.755	21.689	1.00	0.00	N
	20	MOTA	1054	N	ASN A	155	51.344	46.643	20.857	1.00	0.00	N
11700		MOTA	1055	CA	ASN A	155	50.524	45.773	21.697	1.00	0.00	С
7:20°		MOTA	1056	С	ASN A	155	49.050	45.705	21.292	1.00	0.00	C
9,5,3		ATOM	1057	0	ASN A	155	48.269	44.985	21.908	1.00	0.00	0
		MOTA	1058	CB	ASN A	155	50.637	46.177	23.178	1.00	0.00	C
	25	MOTA	1059	CG	ASN A	155	49.837	47.427	23.519	1.00	0.00	С
		MOTA	1060	OD1	ASN A	155	49.102	47.957	22.688	1.00	0.00	0
		ATOM	1061	ND2	ASN A	155	49.973	47.898	24.757	1.00	0.00	N
8 5. A		ATOM	1062	N	GLY A	156	48.665	46.467	20.272	1.00	0.00	N
		ATOM	1063	CA	GLY A	156	47.291	46.417	19.798	1.00	0.00	С
331	30	MOTA	1064	С	GLY A	156	46.253	47.362	20.380	1.00	0.00	С
9)		ATOM	1065	0	GLY A	156	45.080	47.277	20.006	1.00	0.00	0
		MOTA	1066	N	GLN A	157	46.652	48.259	21.279	1.00	0.00	N
i Pare		MOTA	1067	CA	GLN A		45.695	49.195	21.872	1.00	0.00	C
ij		MOTA	1068	С	GLN A	157	45.308	50.318	20.916	1.00	0.00	С
141	35	ATOM	1069	0	GLN A	157	44.143	50.692	20.829	1.00	0.00	0
g.		MOTA	1070	CB	GLN A	157	46.254	49.811	23.147	1.00	0.00	С
		MOTA	1071	CG	GLN A	157	46.313	48.867	24.328	1.00	0.00	С
		ATOM	1072	CD	GLN A	157	46.577	49.619	25.611	1.00	0.00	C
ină:		MOTA	1073	OE1	GLN A	157	45.676	50.244	26.173	1.00	0.00	0
	40	ATOM	1074	NE2	GLN A	157	47.818	49.589	26.065	1.00	0.00	N
		MOTA	1075	N	LEU A	158	46.299	50.884	20.236	1.00	0.00	N
		ATOM	1076	CA	LEU A	158	46.047	51.938	19.266	1.00	0.00	C
		MOTA	1077	C	LEU A	158	46.230	51.277	17.909	1.00	0.00	С
		MOTA	1078	0	LEU A	158	47.308	50.772	17.598	1.00	0.00	0
	45	ATOM	1079	CB	LEU A	158	47.042	53.093	19.440	1.00	0.00	C
		MOTA	1080	CG	LEU A	158	46.941	54.281	18.471	1.00	0.00	С
		ATOM	1081	CD1	LEU A	158	47.444	53.885	17.092	1.00	0.00	C
		MOTA	1082	CD2	LEU A	158	45.508	54.766	18.392	1.00	0.00	C
		MOTA	1083	N	GLU A	159	45.171	51.274	17.107	1.00	0.00	N
	50	MOTA	1084	CA	GLU A	159	45.230	50.638	15.801	1.00	0.00	C
		MOTA	1085	С	GLU A	159	44.890	51.595	14.670	1.00	0.00	С
		ATOM	1086	0	GLU A	159	43.912	52.336	14.739	1.00	0.00	0
		MOTA	1087	CB	GLU A		44.277	49.442	15.771	1.00	0.00	С
		MOTA	1088	CG	GLU A		44.210	48.721	14.434	1.00	0.00	C
	55	MOTA	1089	CD	GLU A		43.268	47.534	14.476	1.00	0.00	C
		MOTA	1090		GLU A		43.603	46.536	15.148	1.00	0.00	0
		ATOM	1091		GLU A		42.191	47.604	13.844	1.00	0.00	0
		ATOM	1092	N	PHE A		45.709	51.577	13.629	1.00	0.00	N
		MOTA	1093	CA	PHE A		45.466	52.437	12.488	1.00	0.00	С
	60	MOTA	1094	С	PHE A		44.548	51.735	11.509	1.00	0.00	С
		ATOM	1095	0	PHE A		44.727	50.552	11.202	1.00	0.00	0
				-								_

			1006	O.D.	DITE 3 160	46.781	52.812	11.808	1.00	0.00	С
		ATOM	1096	CB	PHE A 160	47.707	53.593	12.692	1.00	0.00	С
		MOTA	1097	CG	PHE A 160			13.367	1.00	0.00	С
		ATOM	1098		PHE A 160	48.747	52.959			0.00	C
	_	ATOM	1099		PHE A 160	47.508	54.956	12.892	1.00		C
	5	MOTA	1100		PHE A 160	49.574	53.671	14.231	1.00	0.00	
		MOTA	1101	CE2	PHE A 160	48.331	55.677	13.757	1.00	0.00	C
		MOTA	1102	CZ	PHE A 160	49.362	55.032	14.425	1.00	0.00	С
		MOTA	1103	N	VAL A 161	43.543	52.468	11.048	1.00	0.00	N
		ATOM	1104	CA	VAL A 161	42.591	51.942	10.087	1.00	0.00	С
	10	ATOM	1105	C	VAL A 161	42.805	52.718	8.791	1.00	0.00	С
	10		1105	0	VAL A 161	42.882	53.952	8.800	1.00	0.00	0
		ATOM	1107		VAL A 161	41.138	52.085	10.605	1.00	0.00	С
		MOTA		CB		40.919	51.127	11.776	1.00	0.00	С
		MOTA	1108		VAL A 161		53.519	11.058	1.00	0.00	С
		MOTA	1109		VAL A 161	40.870			1.00	0.00	N
	15	MOTA	1110	N	THR A 162	42.914	51.976	7.690			C
		MOTA	1111	CA	THR A 162	43.179	52.519	6.358	1.00	0.00	C
		ATOM	1112	С	THR A 162	44.641	52.973	6.314	1.00	0.00	
		MOTA	1113	0	THR A 162	45.451	52.417	5.572	1.00	0.00	0
		MOTA	1114	CB	THR A 162	42.268	53.717	5.993	1.00	0.00	С
	20	ATOM	1115		THR A 162	40.894	53.310	6.017	1.00	0.00	0
	2	ATOM	1116		THR A 162	42.598	54.212	4.583	1.00	0.00	С
		ATOM	1117	N	GLY A 163	44.978	53.978	7.113	1.00	0.00	N
. 127			1118	CA	GLY A 163	46.351	54.451	7.147	1.00	0.00	С
		ATOM		C	GLY A 163	46.721	55.412	6.034	1.00	0.00	C
1,42	25	MOTA	1119			47.895	55.562	5.705	1.00	0.00	0
igi	25	MOTA	1120	0	GLY A 163	47.833	56.053	5.446	1.00	0.00	N
		MOTA	1121	N	GLY A 164		57.014	4.393	1.00	0.00	С
263		MOTA	1122	CA	GLY A 164	45.980			1.00	0.00	Ċ
		MOTA	1123	С	GLY A 164	46.271	58.380	4.989		0.00	0
E.		MOTA	1124	0	GLY A 164	45.987	58.630	6.163	1.00		N
137	30	ATOM	1125	N	TRP A 165	46.847	59.267	4.186	1.00	0.00	C
		MOTA	1126	CA	TRP A 165	47.158	60.612	4.656	1.00	0.00	
R;		ATOM	1127	С	TRP A 165	45.848	61.228	5.155	1.00	0.00	С
100		MOTA	1128	0	TRP A 165	45.825	61.957	6.150	1.00	0.00	0
4 12		ATOM	1129	CB	TRP A 165	47.739	61.440	3.507	1.00	0.00	C
gad.	35	ATOM	1130	CG	TRP A 165	48.530	62.645	3.938	1.00	0.00	С
275		ATOM	1131		TRP A 165	48.290	63.948	3.600	1.00	0.00	С
		ATOM	1132		TRP A 165	49.717	62.654	4.745	1.00	0.00	С
		MOTA	1133		TRP A 165	49.253	64.766	4.145	1.00	0.00	N
		MOTA	1134		TRP A 165	50.141	64.000	4.851	1.00	0.00	С
2,	40		1135		TRP A 165	50.464	61.657	5.385	1.00	0.00	C
	40	MOTA			TRP A 165	51.282	64.375	5.575	1.00	0.00	С
		ATOM	1136		TRP A 165	51.602	62.033	6.107	1.00	0.00	С
		MOTA	1137			51.995	63.380	6.193	1.00	0.00	С
		MOTA	1138		TRP A 165			4.467	1.00	0.00	N
	4	MOTA	1139			44.756	60.904		1.00	0.00	C
	45	MOTA	1140	CA	VAL A 166	43.425	61.402	4.822	1.00	0.00	c
		MOTA	1141	С	VAL A 166	42.395	60.293	4.591			Ö
		MOTA	1142	0	VAL A 166	42.755	59.158	4.290	1.00	0.00	C
		MOTA	1143	CB	VAL A 166	43.015	62.614	3.930	1.00	0.00	
		ATOM	1144	CG1	. VAL A 166	44.058	63.731	4.035	1.00	0.00	C
	50	ATOM	1145	CG2	YAL A 166	42.873	62.167	2.465	1.00	0.00	С
		MOTA	1146	N	MET A 167	41.122	60.635	4.773	1.00	0.00	N
		ATOM	1147	CA	MET A 167	39.997	59.736	4.499	1.00	0.00	С
		ATOM	1148	С	MET A 167	39.453	60.495	3.296	1.00	0.00	С
		ATOM	1149	Ö	MET A 167	38.657	61.426		1.00	0.00	0
	55		1150	CB	MET A 167	38.981	59.749		1.00	0.00	С
	55	ATOM				37.730	58.923		1.00	0.00	С
		ATOM	1151	CG	MET A 167	36.561	58.986		1.00	0.00	s
		ATOM	1152	SD	MET A 167		58.164		1.00	0.00	С
		MOTA	1153	CE	MET A 167	37.551			1.00	0.00	N
		ATOM	1154	N	PRO A 168	39.877	60.103		1.00	0.00	C
	60	MOTA	1155		PRO A 168	39.448	60.779			0.00	C
		MOTA	1156	С	PRO A 168	38.006	60.758	0.399	1.00	0.00	Ç

	7.000	1167	_	DDA	A 168		37.234	59.849	0.701	1.00	0.00	0
	ATOM	1157	O		A 168		40.367	60.175	-0.193	1.00	0.00	C
	MOTA	1158	CB		A 168		40.431	58.739	0.248	1.00	0.00	С
	ATOM	1159	CG				40.431	58.872	1.763	1.00	0.00	С
-	MOTA	1160	CD		A 168			61.800	-0.353	1.00	0.00	N
5	MOTA	1161	N		A 169		37.672	61.911	-0.987	1.00	0.00	C
	ATOM	1162	CA		A 169		36.378			1.00	0.00	Ċ
	MOTA	1163	С		A 169		36.468	60.745	-1.965		0.00	Ö
	MOTA	1164	0		A 169		37.569	60.379	-2.382	1.00		c
	MOTA	1165	СВ		A 169		36.285	63.228	-1.758	1.00	0.00	C
10	ATOM	1166	CG	ASP	A 169		35.167	63.227	-2.780	1.00	0.00	0
	MOTA	1167			A 169		34.076	62.709	-2.465	1.00	0.00	
	MOTA	1168	OD2	ASP	A 169		35.374	63.756	-3.890	1.00	0.00	0
	MOTA	1169	N	GLU	A 170		35.336	60.152	-2.324	1.00	0.00	N
	ATOM	1170	CA	GLU	A 170		35.367	59.028	-3.250	1.00	0.00	C
15	ATOM	1171	C		A 170		34.658	59.327	-4.566	1.00	0.00	С
	ATOM	1172	0		A 170		34.630	58.489	-5.467	1.00	0.00	0
	ATOM	1173	CB		A 170		34.768	57.782	-2.575	1.00	0.00	C
	ATOM	1174	CG		A 170		35.635	57.268	-1.417	1.00	0.00	С
	ATOM	1175	CD		A 170		35.037	56.070	-0.687	1.00	0.00	C
20	ATOM	1176			A 170		34.240	55.330	-1.301	1.00	0.00	0
20	ATOM	1177			A 170		35.387	55.860	0.499	1.00	0.00	0
		1178	N		A 171		34.112	60.533	-4.687	1.00	0.00	N
	ATOM	1179	CA		A 171		33.397	60.918	-5.901	1.00	0.00	С
	ATOM				A 171		34.233	61.694	-6.920	1.00	0.00	C
25	ATOM	1180	С				34.279	61.342	-8.099	1.00	0.00	0
25	MOTA	1181	0		A 171		32.164	61.733	-5.533	1.00	0.00	С
	MOTA	1182	CB		A 171		34.888	62.752	-6.452	1.00	0.00	N
	ATOM	1183	N		A 172		35.685	63.629	-7.305	1.00	0.00	C
	MOTA	1184	CA		A 172		37.145	63.220	-7.465	1.00	0.00	C
20	MOTA	1185	С		A 172			63.594	-8.432	1.00	0.00	0
30	MOTA	1186	0		A 172		37.806 35.643	65.045	-6.733	1.00	0.00	C
	MOTA	1187	CB		A 172		34.231	65.585	-6.613	1.00	0.00	С
	MOTA	1188	CG		A 172		33.572	65.854	-7.617	1.00	0.00	0
	MOTA	1189			A 172			65.746	-5.379	1.00	0.00	N
25	MOTA	1190			A 172		33.760	62.455	-6.508	1.00	0.00	N
35	MOTA	1191	N		A 173		37.643		-6.510	1.00	0.00	С
	MOTA	1192	CA		A 173		39.040	62.031	-7.660	1.00	0.00	Č
	MOTA	1193	С		A 173		39.432	61.111		1.00	0.00	Ō
	MOTA	1194	0		A 173		38.671	60.220	-8.040	1.00	0.00	Č
4.0	MOTA	1195	CB		A 173		39.349	61.327	-5.193 -5.115	1.00	0.00	0
40	ATOM	1196	ОG		A 173		40.734	61.020			0.00	N
	MOTA	1197	N		A 174		40.623	61.335	-8.215	1.00	0.00	C
	MOTA	1198	CA		A 174		41.116	60.474	-9.282	1.00		C
	MOTA	1199	С		A 174		41.786	59.293	-8.576	1.00	0.00	0
	MOTA	1200	0		A 174		42.429	59.480	-7.545	1.00	0.00	C
45	ATOM	1201	CB	HIS	A 174		42.127		-10.152	1.00	0.00	C
	MOTA	1202	CG	HIS	A 174		42.377		-11.466	1.00	0.00	
	ATOM	1203	ND:	L HIS	A 174		43.060		-11.576	1.00	0.00	И
	MOTA	1204	CD2	2 HIS	A 174		41.972		-12.717	1.00	0.00	C
	MOTA	1205	CE:	L HIS	A 174	l	43.060		-12.840	1.00	0.00	C
50	MOTA	1206	NE	2 HIS	A 174	Į	42.406		-13.552	1.00	0.00	N
	MOTA	1207	N	TRP	A 175	·	41.642	58.085		1.00	0.00	N
	ATOM	1208	CA	TRP	A 175	; >	42.230			1.00	0.00	C
	MOTA	1209	С	TRP	A 175	5	43.722	57.085	-8.224	1.00	0.00	C
	MOTA	1210	0	TRP	A 175	5	44.254	56.588		1.00	0.00	0
55	ATOM	1211	CB		A 175		41.964			1.00	0.00	C
- -	ATOM	1212	ÇG		A 175		42.795		-10.501	1.00	0.00	
	MOTA	1213			A 175		42.468		-11.774	1.00	0.00	C
	ATOM	1214			A 175		44.088	54.834	-10.583	1.00	0.00	C
	ATOM	1215			A 175		43.479		-12.646	1.00	0.00	
60	ATOM	1216			A 175		44.485		-11.939		0.00	
00	MOTA	1217			A 175		44.951			1.00	0.00	С
	ATOM		0.0									

							11 /				
		ATOM	1218	CZ2 1	TRP A 175	45.711	54.348	-12.378	1.00	0.00	С
		MOTA	1219		TRP A 175	46.170	53.739		1.00	0.00	С
			1220		TRP A 175	46.537	53.789		1.00	0.00	С
		MOTA MOTA	1221		ARG A 176	44.399	57.787	-9.126	1.00	0.00	N
	5		1222		ARG A 176	45.830	58.000	-8.974	1.00	0.00	С
	5	MOTA			ARG A 176	46.145	58.754	-7.679	1.00	0.00	С
		ATOM	1223		ARG A 176	47.118	58.433	-6.987	1.00	0.00	0
		ATOM	1224			46.374	58.756		1.00	0.00	С
		ATOM	1225		ARG A 176	46.436	57.886		1.00	0.00	С
	10	ATOM	1226		ARG A 176	46.407	58.704		1.00	0.00	С
	10	MOTA	1227		ARG A 176		59.663		1.00	0.00	N
		MOTA	1228		ARG A 176	47.504 47.662		-13.845	1.00	0.00	C
		MOTA	1229		ARG A 176			-14.852	1.00	0.00	N
		MOTA	1230		ARG A 176	46.794		-13.861	1.00	0.00	N
	4 =	MOTA	1231		ARG A 176	48.677		-7.341	1.00	0.00	N
	15	MOTA	1232		ASN A 177	45.325		-6.116	1.00	0.00	C
		MOTA	1233		ASN A 177	45.557	60.511		1.00	0.00	Č
		MOTA	1234		ASN A 177	45.077		-4.877 -3.773	1.00	0.00	Õ
		MOTA	1235		ASN A 177	45.587			1.00	0.00	Ċ
	•	MOTA	1236		ASN A 177	44.894		-6.200	1.00	0.00	C
	20	MOTA	1237		ASN A 177	45.567		-7.220	1.00	0.00	0
		ATOM	1238		ASN A 177	46.750		-7.515	1.00	0.00	N
indi stant		ATOM	1239		ASN A 177	44.821		-7.758		0.00	N
1,64		MOTA	1240		VAL A 178	44.095		-5.055 -3.935	1.00	0.00	C
		MOTA	1241		VAL A 178	43.618		-3.558	1.00	0.00	C
M	25	MOTA	1242		VAL A 178	44.797					0
		MOTA	1243		VAL A 178	45.095		-2.378	1.00	0.00	C
		MOTA	1244		VAL A 178	42.404		-4.336	$1.00 \\ 1.00$	0.00	C
# %#		MOTA	1245		VAL A 178	42.074		-3.215		0.00	C
	• •	MOTA	1246		VAL A 178	41.199		-4.631	1.00	0.00	N
M	30	MOTA	1247		LEU A 179	45.476		-4.570	1.00	0.00	C
A)		MOTA	1248		LEU A 179	46.629		-4.326	1.00	0.00	C
1000		MOTA	1249		LEU A 179	47.783		-3.739	1.00	0.00	0
रे शब्द सम्बद्ध		MOTA	1250		LEU A 179	48.484		-2.839	$1.00 \\ 1.00$	0.00	Ċ
1,12		ATOM	1251		LEU A 179	47.098		-5.622	1.00	0.00	C
	35	MOTA	1252		LEU A 179	48.400		-5.498	1.00	0.00	Ċ
g.s.ā.		ATOM	1253		LEU A 179	48.236		-4.463	1.00	0.00	C
		ATOM	1254		LEU A 179	48.759		-6.860 -4.250	1.00	0.00	N
		MOTA	1255		LEU A 180	47.980		-3.763	1.00	0.00	C
i na	40	MOTA	1256		LEU A 180	49.060		-2.261	1.00	0.00	C
	40	MOTA	1257		LEU A 180	48.922		-1.499	1.00	0.00	Ö
		MOTA	1258		LEU A 180	49.876		-4.521	1.00	0.00	Ċ
		MOTA	1259		LEU A 180	49.066		-4.169	1.00	0.00	Č
		MOTA	1260		LEU A 180	50.209		-4.738	1.00	0.00	C
	4 =	MOTA	1261		LEU A 180	51.515		-4.737 -4.727	1.00	0.00	Ċ
	45	MOTA	1262		LEU A 180	49.928		-1.825	1.00	0.00	N
		MOTA	1263		GLN A 181			-0.409	1.00	0.00	C
		MOTA	1264		GLN A 181			0.476	1.00	0.00	Ċ
		MOTA	1265	С	GLN A 181			1.605	1.00	0.00	Ö
	-0	ATOM	1266	0	GLN A 181			-0.186	1.00	0.00	Ċ
	50	MOTA	1267	CB	GLN A 181			-0.186	1.00	0.00	Ċ
		MOTA	1268	CG	GLN A 181				1.00	0.00	c
		MOTA	1269	CD	GLN A 181			0.714	1.00	0.00	Ö
		ATOM	1270		GLN A 181			1.887	1.00	0.00	N
		MOTA	1271		GLN A 181			0.377		0.00	N
	55	MOTA	1272	N	LEU A 182				1.00	0.00	C
		ATOM	1273	CA	LEU A 182			0.750	1.00	0.00	C
		ATOM	1274	С	LEU A 182			0.939		0.00	0
		ATOM	1275	0	LEU A 182				1.00	0.00	C
		MOTA	1276	CB	LEU A 182				1.00		C
	60	MOTA	1277	CG	LEU A 182				1.00	0.00	C
		MOTA	1278	CD1	LEU A 182	45.75	53.491	2.011	1.00	0.00	C

		ATOM	1279	CD2	LEU A	182	45.891	52.437	-0.261	1.00	0.00	С
		MOTA	1280	N	THR A		49.389		-0.145	1.00	0.00	N
		MOTA	1281	CA	THR A		50.810		-0.113	1.00	0.00	С
		MOTA	1282	C	THR A		51.569		0.825	1.00	0.00	č
	5	ATOM	1283		THR A		52.437		1.592	1.00	0.00	0
	9			0								
		ATOM	1284	CB	THR A		51.431		-1.539	1.00	0.00	C
		MOTA	1285		THR A		50.708		-2.430	1.00	0.00	0
		MOTA	1286	CG2	THR A	183	52.899		-1.513	1.00	0.00	С
	4.0	MOTA	1287	N	GLU A	184	51.238	57.636	0.775	1.00	0.00	N
	10	MOTA	1288	CA	GLU A	184	51.916	58.611	1.625	1.00	0.00	C
		ATOM	1289	C	GLU A	184	51.715	58.250	3.100	1.00	0.00	C
		ATOM	1290	0	GLU A	184	52.663	58.257	3.888	1.00	0.00	0
		ATOM	1291	CB	GLU A	184	51.376		1.342	1.00	0.00	C
		MOTA	1292	CG	GLU A		52.229		1.883	1.00	0.00	C
	15	MOTA	1293	CD	GLU A		53.624		1.269	1.00	0.00	С
		ATOM	1294		GLU A		53.778		0.070	1.00	0.00	0
		MOTA	1295		GLU A		54.567		1.988	1.00	0.00	ō
		ATOM	1296	N	GLY A		50.479		3.463	1.00	0.00	N
		ATOM	1297	CA			50.182		4.840	1.00	0.00	C
	20				GLY A				5.271	1.00	0.00	c
1.000	20	MOTA	1298	С	GLY A		50.766					
in the second se		MOTA	1299	0	GLY A		51.350		6.356	1.00	0.00	0
, I		MOTA	1300	N	GLN A		50.623		4.432	1.00	0.00	N
Ü,		ATOM	1301	CA	GLN A		51.142		4.788	1.00	0.00	С
A planti	05	MOTA	1302	С	GLN A	186	52.666		4.781	1.00	0.00	С
10	25	MOTA	1303	0	GLN A	186	53.254	53.043	5.551	1.00	0.00	0
		MOTA	1304	CB	GLN A	186	50.559	52.808	3.870	1.00	0.00	С
		MOTA	1305	CG	GLN A	186	49.045	52.631	4.004	1.00	0.00	С
5 (2) F		ATOM	1306	CD	GLN A	186	48.614	51.190	3.797	1.00	0.00	C
N		ATOM	1307	OE1	GLN A	186	49.190	50.476	2.981	1.00	0.00	0
i ji s	30	ATOM	1308	NE2	GLN A	186	47.592	50.758	4.531	1.00	0.00	N
g;		ATOM	1309	N	THR A		53.312		3.916	1.00	0.00	И
d same		ATOM	1310	CA	THR A		54.768		3.873	1.00	0.00	С
Read .		ATOM	1311	C	THR A		55.289		5.188	1.00	0.00	C
C.		ATOM	1312	0	THR A		56.255		5.765	1.00	0.00	0
100	35	ATOM	1313	CB	THR A		55.297		2.673	1.00	0.00	c
i ala	00	ATOM	1314		THR A		54.837		1.460	1.00	0.00	o
21700			1314		THR A		56.827		2.664	1.00	0.00	C
		MOTA							5.675	1.00	0.00	N
2.4		ATOM	1316	N	TRP A		54.631					
*	40	ATOM	1317	CA	TRP A		55.034	56.790	6.937	1.00	0.00	C
	40	ATOM	1318	C	TRP A		54.838		8.052	1.00	0.00	C
		MOTA	1319	0	TRP A		55.727		8.875	1.00	0.00	0
		MOTA	1320	CB	TRP A		54.189		7.239	1.00	0.00	C
		MOTA	1321	CG	TRP A		54.655		8.461	1.00	0.00	С
	4-	MOTA	1322		TRP A		55.574	59.798	8.503	1.00	0.00	C
	45	ATOM	1323	CD2	TRP A	188	54.297	58.513	9.823	1.00	0.00	С
		MOTA	1324	NE1	TRP A	188	55.815	60.168	9.808	1.00	0.00	N
		MOTA	1325	CE2	TRP A	188	55.044	59.395	10.637	1.00	0.00	C
		MOTA	1326	CE3	TRP A	188	53.422	57.605	10.434	1.00	0.00	С
		MOTA	1327	CZ2	TRP A	188	54.942	59.394	12.032	1.00	0.00	С
	50	ATOM	1328	CZ3	TRP A	188	53.322	57.603	11.826	1.00	0.00	С
		ATOM	1329		TRP A		54.079		12.607	1.00	0.00	С
		MOTA	1330	N	LEU A		53.672		8.071	1.00	0.00	N
		MOTA	1331	CA	LEU A		53.375		9.094	1.00	0.00	C
		MOTA	1332	C	LEU A		54.375		9.114	1.00	0.00	c
	55	ATOM	1333	0	LEU A		54.793		10.185	1.00	0.00	0
		MOTA	1334	CB	LEU A		51.965		8.901	1.00	0.00	C
		MOTA	1335	CG	LEU A		50.798		9.325	1.00	0.00	С
		ATOM	1336		LEU A		49.476		9.014	1.00	0.00	С
	60	MOTA	1337		LEU A		50.908		10.821	1.00	0.00	C
	60	MOTA	1338	N	LYS A		54.753		7.939	1.00	0.00	N
		MOTA	1339	CA	LYS A	190	55.704	51.365	7.885	1.00	0.00	C

											_
	ATOM	1340	С	LYS A		57.047	51.789	8.466	1.00	0.00	С
	MOTA	1341	0	LYS A	190	57.646	51.066	9.261	1.00	0.00	0
	MOTA	1342	CB	LYS A	190	55.913	50.883	6.446	1.00	0.00	C
	ATOM	1343	CG	LYS A	190	56.747	49.601	6.350	1.00	0.00	C
5	ATOM	1344	CD	LYS A		56.968	49.178	4.906	1.00	0.00	C
_	ATOM	1345	CE	LYS A		57.527	47.761	4.815	1.00	0.00	C
	MOTA	1346	NZ	LYS A		58.685	47.571	5.732	1.00	0.00	N
	ATOM	1347	N	GLN A	191	57.511	52.967	8.071	1.00	0.00	N
	MOTA	1348	CA	GLN A	191	58.791	53.471	8.542	1.00	0.00	С
10	MOTA	1349	С	GLN A	191	58.847	53.796	10.034	1.00	0.00	С
	ATOM	1350	0	GLN A		59.810	53.431	10.710	1.00	0.00	0
				GLN A			54.715	7.741		0.00	C
	MOTA	1351	CB			59.196			1.00		
	ATOM	1352	CG	GLN A		60.522	55.317	8.190	1.00	0.00	C
	MOTA	1353	CD	GLN A	191	60.941	56.526	7.371	1.00	0.00	С
15	MOTA	1354	OE1	GLN A	191	61.982	57.132	7.635	1.00	0.00	0
	MOTA	1355	NE2	GLN A	191	60.135	56.883	6.373	1.00	0.00	N
	MOTA	1356	N	PHE A		57.826	54.471	10.556	1.00	0.00	N
	ATOM	1357	CA	PHE A		57.842	54.853	11.967	1.00	0.00	C
20	MOTA	1358	C	PHE A		57.044	54.008	12.965	1.00	0.00	C
20	MOTA	1359	0	PHE A		57.394	53.969	14.146	1.00	0.00	0
	MOTA	1360	CB	PHE A	192	57.422	56.319	12.110	1.00	0.00	C
	MOTA	1361	CG	PHE A	192	58.327	57.278	11.395	1.00	0.00	C
	ATOM	1362	CD1	PHE A		58.024	57.716	10.108	1.00	0.00	C
	ATOM	1363		PHE A		59.497	57.727	11.997	1.00	0.00	C
25		1364		PHE A		58.870	58.587	9.432	1.00	0.00	C
20	MOTA										
	MOTA	1365	CE2			60.355	58.601	11.329	1.00	0.00	C
	MOTA	1366	cz	PHE A		60.041	59.032	10.044	1.00	0.00	C
	ATOM	1367	N	MET A	193	55.985	53.343	12.512	1.00	0.00	N
	MOTA	1368	CA	MET A	193	55.165	52.521	13.410	1.00	0.00	C
30	MOTA	1369	С	MET A	193	55.333	51.025	13.145	1.00	0.00	С
	ATOM	1370	0	MET A		54.859	50.190	13.920	1.00	0.00	0
	ATOM	1371	CB	MET A		53.679	52.880	13.274	1.00	0.00	Ĉ
											C
	MOTA	1372	CG	MET A		53.268	54.222	13.862	1.00	0.00	
0-	MOTA	1373	SD	MET A		53.639	54.388	15.631	1.00	0.00	S
35	MOTA	1374	CE	MET A	193	54.987	55.512	15.487	1.00	0.00	C
	MOTA	1375	N	ASN A	194	55.997	50.698	12.041	1.00	0.00	N
	MOTA	1376	CA	ASN A	194	56.234	49.312	11.654	1.00	0.00	C
	ATOM	1377	С	ASN A		54.932	48.521	11.530	1.00	0.00	C
	MOTA	1378	0	ASN A		54.839	47.377	11.975	1.00	0.00	0
40											Č
40	ATOM	1379	CB	ASN A		57.168	48.640	12.669	1.00	0.00	
	MOTA	1380	CG	ASN A		57.626	47.263	12.223	1.00	0.00	C
	MOTA	1381	OD1	ASN A	194	57.761	47.001	11.026	1.00	0.00	0
	MOTA	1382	ND2	ASN A	194	57.880	46.389	13.194	1.00	0.00	N
	MOTA	1383	N	VAL A	195	53.920	49.140	10.932	1.00	0.00	N
45	ATOM	1384	CA	VAL A		52.633	48.478	10.741	1.00	0.00	C
10	MOTA	1385	C	VAL A		52.002	48.928	9.428	1.00	0.00	Č
	MOTA	1386	0	VAL A		52.223	50.052	8.979	1.00	0.00	0
	ATOM	1387	CB	VAL A		51.631	48.789	11.891	1.00	0.00	С
	MOTA	1388	CG1	VAL A	195	52.186	48.303	13.228	1.00	0.00	С
50	ATOM	1389	CG2	VAL A	195	51.334	50.282	11.941	1.00	0.00	С
	MOTA	1390	N	THR A		51.230	48.032	8.821	1.00	0.00	N
	ATOM	1391	CA	THR A		50.528	48.308	7.570	1.00	0.00	C
	MOTA	1392	С	THR A		49.094	47.815	7.740	1.00	0.00	С
	ATOM	1393	0	THR A		48.847	46.611	7.778	1.00	0.00	0
55	ATOM	1394	CB	THR A	196	51.159	47.554	6.373	1.00	0.00	С
	MOTA	1395	OG1	THR A	196	52.518	47.973	6.195	1.00	0.00	0
	MOTA	1396		THR A		50.377	47.837	5.099	1.00	0.00	С
	MOTA	1397	N	PRO A		48.130	48.743	7.852	1.00	0.00	N
									1.00	0.00	C
60	MOTA	1398	CA	PRO A		46.722	48.371	8.020			
60	MOTA	1399	С	PRO A		46.182	47.503	6.889	1.00	0.00	C
	MOTA	1400	0	PRO A	197	46.539	47.693	5.724	1.00	0.00	0

	ATOM	1401	СВ	PRO 3	A 197	46.013	49.722	8.078	1.00	0.00	C
						47.055	50.625	8.681	1.00	0.00	С
	ATOM	1402	CG		A 197					0.00	Č
	MOTA	1403	CD	PRO I	A 197	48.302	50.203	7.946	1.00		
	MOTA	1404	N	THR A	A 198	45.333	46.541	7.240	1.00	0.00	N
5	ATOM	1405	CA		A 198	44.717	45.674	6.244	1.00	0.00	С
•		1406	C		A 198	43.206	45.838	6.323	1.00	0.00	С
	MOTA							5.634	1.00	0.00	0
	MOTA	1407	0		A 198	42.465	45.141				C
	ATOM	1408	CB	THR .	A 198	45.064	44.185	6.454	1.00	0.00	
	ATOM	1409	OG1	THR.	A 198	44.607	43.763	7.741	1.00	0.00	0
10					A 198	46.567	43.964	6.330	1.00	0.00	C
10	MOTA	1410				42.760	46.761	7.175	1.00	0.00	N
	MOTA	1411	N		A 199						C
	ATOM	1412	CA	ALA .	A 199	41.337	47.054	7.332	1.00	0.00	
	ATOM	1413	С	ALA .	A 199	41.113	48.551	7.090	1.00	0.00	С
	MOTA	1414	Ō		A 199	41.811	49.389	7.665	1.00	0.00	0
15						40.862	46.664	8.738	1.00	0.00	С
15	MOTA	1415	CB		A 199					0.00	N
	MOTA	1416	N	SER	A 200	40.140	48.882	6.248	1.00		
	MOTA	1417	CA	SER	A 200	39.850	50.280	5.931	1.00	0.00	С
	ATOM	1418	С		A 200	38.615	50.799	6.658	1.00	0.00	С
			Ö		A 200	37.648	50.059	6.881	1.00	0.00	0
20	MOTA	1419						4.421	1.00	0.00	С
20	MOTA	1420	CB		A 200	39.676	50.458				Ö
	MOTA	1421	OG	SER	A 200	39.526	51.827	4.088	1.00	0.00	
	MOTA	1422	N	TRP	A 201	38.658	52.083	7.003	1.00	0.00	N
	ATOM	1423	CA		A 201	37.596	52.760	7.743	1.00	0.00	С
			C		A 201	37.226	54.077	7.043	1.00	0.00	С
0.5	MOTA	1424						7.063	1.00	0.00	0
25	MOTA	1425	0		A 201	37.994	55.036				C
	ATOM	1426	CB	TRP	A 201	38.112	52.994	9.176	1.00	0.00	
	ATOM	1427	CG	TRP	A 201	37.299	53.854	10.114	1.00	0.00	С
	ATOM	1428	CD1	TRP	A 201	37.455	55.195	10.339	1.00	0.00	С
	MOTA	1429	-		A 201	36.311	53.406	11.051	1.00	0.00	C
20							55.606	11.363	1.00	0.00	N
30	MOTA	1430			A 201	36.635				0.00	C
	MOTA	1431			A 201	35.921	54.529	11.819	1.00		
	ATOM	1432	CE3	TRP	A 201	35.719	52.163	11.320	1.00	0.00	C
	ATOM	1433			A 201	34.968	54.446	12.840	1.00	0.00	С
		1434	CZ3		A 201	34.769	52.080	12.340	1.00	0.00	С
2 -	ATOM						53.219	13.087	1.00	0.00	С
35	MOTA	1435			A 201	34.404					N
	MOTA	1436	N	ALA	A 202	36.055	54.104	6.410	1.00	0.00	
	MOTA	1437	CA	ALA	A 202	35.580	55.290	5.691	1.00	0.00	С
	ATOM	1438	С		A 202	34.155	55.616	6.137	1.00	0.00	С
		1439	0		A 202	33.186	55.168	5.527	1.00	0.00	0
40	ATOM					35.619	55.034	4.185	1.00	0.00	С
40	MOTA	1440	CB		A 202						N
	MOTA	1441	N		A 203	34.042	56.420	7.190	1.00	0.00	
	ATOM	1442	CA	ILE	A 203	32.749	56.772	7.770	1.00	0.00	C
	ATOM	1443	С		A 203	32.117	58.098	7.354	1.00	0.00	С
		1444	Ö		A 203	30.941	58.323	7.642	1.00	0.00	0
4 =	MOTA						56.768	9.321	1.00	0.00	С
45	MOTA	1445	CB		A 203	32.830					C
	MOTA	1446	CG1	ILE	A 203	33.902	57.764	9.786	1.00	0.00	
	MOTA	1447	CG2	ILE	A 203	33.146	55.351	9.830	1.00	0.00	C
	ATOM	1448			A 203	33.977	57.955	11.299	1.00	0.00	С
			N		A 204	32.861	58.973	6.679	1.00	0.00	N
Ε0	ATOM	1449						6.307	1.00	0.00	С
50	ATOM	1450	CA		A 204	32.276	60.262				C
	ATOM	1451	С	ASP	A 204	32.157	60.645	4.827	1.00	0.00	
	MOTA	1452	0	ASP	A 204	31.416	61.575	4.503	1.00	0.00	0
	MOTA	1453	CB	ASP	A 204	32.981	61.400	7.056	1.00	0.00	C
					A 204	32.053		7.330	1.00	0.00	С
	MOTA	1454	CG					7.548	1.00	0.00	0
55	ATOM	1455			A 204	32.553					
	ATOM	1456	OD2	ASP	A 204	30.819	62.398	7.344	1.00	0.00	0
	ATOM	1457	N		A 205	32.882	59.965	3.911	1.00	0.00	И
	ATOM	1458	CA		A 205	32.733		2.501	1.00	0.00	C
						31.252		2.107	1.00	0.00	C
(0	MOTA	1459	С		A 205					0.00	Õ
60	MOTA	1460	0		A 205	30.514		2.552	1.00		
	MOTA	1461	CB	PRO	A 205	33.569	59.321	1.759	1.00	0.00	С

		ATOM	1462	CG	PRO A	205	34.661	59.016	2.749	1.00	0.00	C
			1463	CD	PRO A		33.882		4.046	1.00	0.00	С
		MOTA			PHE A		30.826		1.266	1.00	0.00	N
		ATOM	1464	N			29.418		0.866	1.00	0.00	С
	-	MOTA	1465	CA	PHE A				-0.311	1.00	0.00	Ċ
	5	ATOM	1466	С	PHE A		29.066		-1.438	1.00	0.00	Ö
		MOTA	1467	0	PHE A		28.873				0.00	C
		MOTA	1468	CB	PHE A		29.099		0.533	1.00		C
		ATOM	1469	CG	PHE A		29.935		1.306	1.00	0.00	
		MOTA	1470	CD1	PHE A	206	30.173		2.668	1.00	0.00	C
	10	MOTA	1471	CD2	PHE A	206	30.494		0.669	1.00	0.00	C
		MOTA	1472	CE1	PHE A	206	30.958	64.549	3.383	1.00	0.00	С
		MOTA	1473	CE2	PHE A	206	31.280	65.844	1.377	1.00	0.00	С
		MOTA	1474	CZ	PHE A		31.514	65.652	2.738	1.00	0.00	С
		ATOM	1475	N	GLY A		28.947	59.165	-0.023	1.00	0.00	N
	15	ATOM	1476	CA	GLY A		28.678	58.183	-1.058	1.00	0.00	С
	10	ATOM	1477	C	GLY A		29.978		-1.190	1.00	0.00	С
		ATOM	1478	ō	GLY A		31.035		-0.844	1.00	0.00	0
		ATOM	1479	N	HIS A		29.920		-1.687	1.00	0.00	N
			1480	CA	HIS A		31.122		-1.806	1.00	0.00	С
	20	MOTA		C	HIS A		31.361		-3.187	1.00	0.00	С
	20	MOTA	1481		HIS A		30.419		-3.909	1.00	0.00	0
r Ti		MOTA	1482	0			31.070		-0.760	1.00	0.00	С
The state of the s		MOTA	1483	CB	HIS A				0.648	1.00	0.00	C
		MOTA	1484	CG	HIS A		31.16		1.236	1.00	0.00	N
ųI	0=	ATOM	1485		HIS A		32.357		1.575	1.00	0.00	C
in in	25	MOTA	1486		HIS A		30.203				0.00	C
		MOTA	1487		HIS A		32.133		2.466	1.00		
ili saalii oo ka		MOTA	1488	NE2	HIS A		30.834		2.696	1.00	0.00	N
		MOTA	1489	N	SER A	209	32.63		-3.537	1.00	0.00	N
		MOTA	1490	CA	SER A	209	33.03		-4.841	1.00	0.00	С
	30	MOTA	1491	С	SER A	209	33.793		-4.782	1.00	0.00	C
		ATOM	1492	0	SER A	209	34.595		-3.872	1.00	0.00	0
81		ATOM	1493	CB	SER A	209	33.91		-5.551	1.00	0.00	С
		MOTA	1494	OG	SER A	209	34.48	4 54.592	-6.734	1.00	0.00	0
H.		MOTA	1495	N	PRO A	210	33.55	2 51.893	-5.764	1.00	0.00	N
Ting.	35	MOTA	1496	CA	PRO A		34.22	4 50.593	-5.819	1.00	0.00	С
		ATOM	1497	С	PRO A		35.70	4 50.764	-6.148	1.00	0.00	С
f _i .i.		ATOM	1498	0	PRO A		36.47	9 49.812	-6.074	1.00	0.00	0
4 422 3 422		ATOM	1499	СВ	PRO A	210	33.45	1 49.847	-6.907	1.00	0.00	С
g prins		ATOM	1500	CG	PRO A		33.03	1 50.950	-7.830	1.00	0.00	С
ä, .	40	MOTA	1501	CD	PRO A		32.56		-6.853	1.00	0.00	С
	10	ATOM	1502	N	THR A		36.10		-6.518	1.00	0.00	N
		ATOM	1503	CA	THR A		37.51		-6.789	1.00	0.00	С
		ATOM	1504	C	THR A		38.30		-5.503	1.00	0.00	С
		MOTA	1505	0	THR A		39.48		-5.553	1.00	0.00	0
	45	ATOM	1506	СВ	THR A		37.76		-7.260	1.00	0.00	C
	40		1507		THR A		37.23			1.00	0.00	0
		MOTA	1508		THR A		39.26		-7.280	1.00	0.00	С
		ATOM			MET A		37.67			1.00	0.00	N
		ATOM	1509	N	MET P		38.36			1.00	0.00	С
	50	ATOM	1510	CA			38.74			1.00	0.00	С
	50	MOTA	1511	C	MET A		39.91			1.00	0.00	0
		ATOM	1512	0	MET A					1.00	0.00	C
		MOTA	1513	CB	MET A		37.51			1.00	0.00	Ċ
		MOTA	1514	CG	MET F		37.20			1.00	0.00	S
		ATOM	1515	SD	MET A		38.66				0.00	C
	55	ATOM	1516	CE	MET F		39.45			1.00	0.00	N
		ATOM	1517	N	PRO A		37.76			1.00		C
		MOTA	1518	CA	PRO A		38.18			1.00	0.00	
		ATOM	1519	С	PRO A		39.17			1.00	0.00	С
		MOTA	1520	0	PRO A		40.03			1.00	0.00	0
	60	MOTA	1521	CB	PRO A		36.86			1.00	0.00	С
		MOTA	1522	CG	PRO A	A 213	35.92	2 48.287	-3.530	1.00	0.00	С

			1500	an.	DDO 1 010	26 202	49.649	-3.011	1.00	0.00	С
		ATOM	1523	CD	PRO A 213	36.302				0.00	N
		ATOM	1524	N	TYR A 214	39.038	48.274	-5.018	1.00		
		MOTA	1525	CA	TYR A 214	39.944	47.943	-6.117	1.00	0.00	C
		ATOM	1526	С	TYR A 214	41.390	48.211	-5.698	1.00	0.00	С
	5	ATOM	1527	0	TYR A 214	42.257	47.337	-5.793	1.00	0.00	0
		MOTA	1528	CB	TYR A 214	39.628	48.788	-7.346	1.00	0.00	С
		ATOM	1529	CG	TYR A 214	40.553	48.531	-8.517	1.00	0.00	С
		MOTA	1530		TYR A 214	40.385	47.413	-9.335	1.00	0.00	С
						41.579	49.422	-8.823	1.00	0.00	С
	10	MOTA	1531		TYR A 214			-10.439	1.00	0.00	c
	10	MOTA	1532		TYR A 214	41.215					C
		MOTA	1533	CE2	TYR A 214	42.412	49.215	-9.918	1.00	0.00	C
		ATOM	1534	CZ	TYR A 214	42.224		-10.725	1.00	0.00	
		MOTA	1535	OH	TYR A 214	43,026		-11.834	1.00	0.00	0
		MOTA	1536	N	ILE A 215	41.640	49.435	-5.241	1.00	0.00	N
	15	MOTA	1537	CA	ILE A 215	42.969	49.848	-4.804	1.00	0.00	С
		MOTA	1538	С	ILE A 215	43.399	49.135	-3.516	1.00	0.00	С
		MOTA	1539	0	ILE A 215	44.529	48.660	-3.403	1.00	0.00	0
		ATOM	1540	CB	ILE A 215	43.008	51.384	-4.567	1.00	0.00	С
		ATOM	1541		ILE A 215	42.745	52.118	-5.885	1.00	0.00	С
	20	MOTA	1542		ILE A 215	44.352	51.797	-3.972	1.00	0.00	С
	20		1542		ILE A 215	42.721	53.637	-5.749	1.00	0.00	С
		MOTA				42.494	49.062	-2.548	1.00	0.00	N
ipati ma		MOTA	1544	N	LEU A 216			-1.273	1.00	0.00	C
		ATOM	1545	CA	LEU A 216	42.803	48.419			0.00	C
ı,I	^ =	MOTA	1546	С	LEU A 216	43.141	46.932	-1.412	1.00		0
M	25	ATOM	1547	0	LEU A 216	44.108	46.452	-0.817	1.00	0.00	
31 222		MOTA	1548	CB	LEU A 216	41.630	48.594	-0.300	1.00	0.00	C
		ATOM	1549	CG	LEU A 216	41.247	50.039	0.061	1.00	0.00	C
24		MOTA	1550	CD1	LEU A 216	39.929	50.049	0.827	1.00	0.00	C
		ATOM	1551	CD2	LEU A 216	42.365	50.678	0.891	1.00	0.00	C
4429	30	MOTA	1552	N	GLN A 217	42.347	46.207	-2.197	1.00	0.00	N
M		ATOM	1553	CA	GLN A 217	42.568	44.776	-2.388	1.00	0.00	С
£}		MOTA	1554	С	GLN A 217	43.925	44.525	-3.051	1.00	0.00	С
1		ATOM	1555	0	GLN A 217	44.556	43.490	-2.826	1.00	0.00	0
1		ATOM	1556	СВ	GLN A 217	41.418	44.191	-3.218	1.00	0.00	С
Tales non n	35	ATOM	1557	CG	GLN A 217	41.365	42.669	-3.307	1.00	0.00	С
and and	00	ATOM	1558	CD	GLN A 217	42.293	42.120	-4.364	1.00	0.00	С
ş.i.			1559		GLN A 217	42.498	42.747	-5.401	1.00	0.00	0
		MOTA	1560		GLN A 217	42.849	40.938	-4.115	1.00	0.00	N
		MOTA				44.376	45.485	-3.856	1.00	0.00	N
g (1000a	40	MOTA	1561	N	LYS A 218		45.386	-4.537	1.00	0.00	C
	40	MOTA	1562	CA	LYS A 218	45.666			1.00	0.00	C
		MOTA	1563	С	LYS A 218	46.763	46.022	-3.681			
		ATOM	1564	0	LYS A 218	47.906	46.170	-4.114	1.00	0.00	0
		MOTA	1565	CB	LYS A 218	45.598	46.082	-5.904	1.00	0.00	С
		ATOM	1566	CG		44.800	45.307	-6.956	1.00	0.00	C
	45	ATOM	1567	CD	LYS A 218	44.608	46.122	-8.238	1.00	0.00	С
		ATOM	1568	CE	LYS A 218	44.225	45.238	-9.419	1.00	0.00	С
		ATOM	1569	NZ	LYS A 218	43.094	44.308	-9.142	1.00	0.00	N
		ATOM	1570	N	SER A 219	46.401	46.396	-2.460	1.00	0.00	N
		ATOM	1571	CA	SER A 219	47.343	47.014	-1.541	1.00	0.00	C
	50	ATOM	1572	С	SER A 219	47.419	46.231	-0.227	1.00	0.00	C
	00	ATOM	1573	Ö	SER A 219	47.749	46.782	0.827	1.00	0.00	0
		ATOM	1574	CB	SER A 219	46.934	48.469	-1.288	1.00	0.00	C
					SER A 219	47.797	49.081	-0.345	1.00	0.00	0
		MOTA	1575	OG			44.940	-0.305	1.00	0.00	N
	==	MOTA	1576	N	GLY A 220	47.102			1.00	0.00	C
	55	MOTA	1577	CA	GLY A 220	47.173	44.079	0.865	1.00	0.00	C
		MOTA	1578	C	GLY A 220	45.984	44.045	1.810			0
		MOTA	1579	0	GLY A 220	45.997	43.291	2.784	1.00	0.00	
		MOTA	1580	N	PHE A 221	44.948	44.831	1.539	1.00	0.00	N
		ATOM	1581	CA	PHE A 221	43.795	44.848	2.433	1.00	0.00	C
	60	MOTA	1582	С	PHE A 221	42.940	43.596	2.363	1.00	0.00	C
		MOTA	1583	0	PHE A 221	42.891	42.918	1.340	1.00	0.00	0

	ATOM	1584	CB	PHE A	221	42.9		46.070	2.164	1.00	0.00	C
	ATOM	1585	CG	PHE A	221	43.4	169	47.350	2.709	1.00	0.00	С
	ATOM	1586	CD1	PHE A	221	44.5	87	47.941	2.127	1.00	0.00	C
	MOTA	1587	CD2	PHE A	221	42.8	383	47.961	3.813	1.00	0.00	С
5	ATOM	1588		PHE A		45.1	.15	49.126	2.637	1.00	0.00	С
•	MOTA	1589		PHE A		43.4		49.150	4.334	1.00	0.00	С
	MOTA	1590	CZ	PHE A		44.5		49.732	3.743	1.00	0.00	С
			N	LYS A		42.2		43.305	3.468	1.00	0.00	N
	MOTA	1591				41.3		42.147	3.550	1.00	0.00	C
10	MOTA	1592	CA	LYS A					3.970	1.00	0.00	C
10	MOTA	1593	С	LYS A		39.9		42.530			0.00	Õ
	ATOM	1594	0	LYS A		39.0		41.741	3.810	1.00		C
	MOTA	1595	CB	LYS A		41.9		41.124	4.525	1.00	0.00	
	ATOM	1596	CG	LYS A		43.1		40.390	3.943	1.00	0.00	C
	MOTA	1597	CD	LYS A	222	43.8	312	39.451	4.940	1.00	0.00	С
15	ATOM	1598	CE	LYS A	222	44.8	310	38.535	4.239	1.00	0.00	С
	ATOM	1599	NZ	LYS A		45.7	750	39.298	3.363	1.00	0.00	N
	ATOM	1600	N	ASN A		39.8	319	43.746	4.493	1.00	0.00	N
	ATOM	1601	CA	ASN A		38.5		44.222	4.940	1.00	0.00	С
	MOTA	1602	C	ASN A		38.3		45.738	4.828	1.00	0.00	С
20		1603		ASN A		39.3		46.483	4.892	1.00	0.00	0
20	ATOM		0			38.2		43.832	6.404	1.00	0.00	С
	ATOM	1604	CB	ASN A					6.640	1.00	0.00	C
	MOTA	1605	CG	ASN A		38.3		42.340			0.00	o
	MOTA	1606		ASN A		39.3		41.826	7.096	1.00		N
	ATOM	1607	ND2	ASN A		37.2		41.631	6.330	1.00	0.00	
25	MOTA	1608	N	MET A	224	37.3		46.186	4.670	1.00	0.00	N
	MOTA	1609	CA	MET A	224	36.8	307	47.614	4.599	1.00	0.00	C
	MOTA	1610	С	MET A	224	35.4	408	47.896	5.141	1.00	0.00	C
	MOTA	1611	0	MET A	224	34.5	522	47.035	5.108	1.00	0.00	0
	ATOM	1612	СВ	MET A	224	36.9	922	48.137	3.166	1.00	0.00	С
30	ATOM	1613	CG	MET A		35.8	850	47.637	2.214	1.00	0.00	С
00	ATOM	1614	SD	MET A		36.0		48.407	0.602	1.00	0.00	S
	ATOM	1615	CE	MET A		35.		50.048	0.921	1.00	0.00	С
			N	LEU A		35.2		49.110	5.649	1.00	0.00	N
	ATOM	1616		LEU A		33.		49.534	6.219	1.00	0.00	С
25	MOTA	1617	CA					50.873	5.628	1.00	0.00	Ċ
35	MOTA	1618	C	LEU A		33.		51.769	5.456	1.00	0.00	0
	ATOM	1619	0	LEU A		34.				1.00	0.00	C
	MOTA	1620	CB	LEU A		34.		49.651	7.739			C
	MOTA	1621	CG	LEU A		32.		50.271	8.531	1.00	0.00	
	MOTA	1622		LEU A		32.	940	49.699	9.937	1.00	0.00	C
40	ATOM	1623	CD2	LEU A	. 225	33.		51.808	8.553	1.00	0.00	C
	MOTA	1624	N	ILE A	226	32.	239	50.999	5.317	1.00	0.00	N
	MOTA	1625	CA	ILE A	226	31.	697	52.231	4.749	1.00	0.00	C
	ATOM	1626	С	ILE A	226	30.	439	52.632	5.518	1.00	0.00	C
	ATOM	1627	0	ILE A	226	29.	857	51.808	6.228	1.00	0.00	0
4 5	ATOM	1628	CB	ILE A		31.		52.058	3.244	1.00	0.00	С
10	ATOM	1629		ILE A		30.		50.972	3.049	1.00	0.00	C
		1630		ILE A		32.		51.695	2.479	1.00	0.00	C
	ATOM			ILE A		29.		50.776	1.595	1.00	0.00	C
	MOTA	1631				30.		53.886	5.377	1.00	0.00	N
Ε0	MOTA	1632	N	GLN A						1.00	0.00	C
50	MOTA	1633	CA	GLN A		28.		54.367	6.115			C
	MOTA	1634	С	GLN A		27.		55.189	5.351	1.00	0.00	
	MOTA	1635	0	GLN A		26.		54.893	5.409	1.00	0.00	0
	ATOM	1636	CB	GLN F	227	29.		55.171	7.330	1.00	0.00	C
	ATOM	1637	CG	GLN F	227	28.	377	56.258	7.841	1.00	0.00	C
55	ATOM	1638	CD	GLN F	227	27.	056	55.721	8.361	1.00	0.00	C
	ATOM	1639		GLN F		26.		54.563	8.765	1.00	0.00	0
	ATOM	1640		GLN A		26.		56.577	8.376	1.00	0.00	N
	ATOM	1641	N	ARG F		28.		56.227	4.646	1.00	0.00	N
		1642	CA	ARG F			298	57.072	3.944	1.00	0.00	С
60	MOTA		CA	ARG A			756	56.523	2.632	1.00	0.00	Ċ
00	MOTA	1643					318	56.746	1.560	1.00	0.00	0
	MOTA	1644	0	ARG A	1 440	۷1.	210	50.740	1.000		3.00	Ť

								0 701	1 00	0 00	C
		MOTA	1645	CB	ARG A 228	27.887	58.472	3.731	1.00	0.00	С
		ATOM	1646	CG	ARG A 228	28.057	59.260	5.029	1.00	0.00	C
		ATOM	1647	CD	ARG A 228	28.403	60.729	4.778	1.00	0.00	C
						28.639	61.461	6.027	1.00	0.00	N
	_	MOTA	1648	NE	ARG A 228						C
	5	ATOM	1649	CZ	ARG A 228	27.683	61.924	6.831	1.00	0.00	
		ATOM	1650	NH1	ARG A 228	26.401	61.743	6.526	1.00	0.00	N
		MOTA	1651	NH2	ARG A 228	28.007	62.560	7.953	1.00	0.00	N
		ATOM	1652	N	THR A 229	25.652	55.791	2.739	1.00	0.00	N
								1.579	1.00	0.00	С
		ATOM	1653	CA	THR A 229	24.977	55.233				
	10	MOTA	1654	С	THR A 229	23.509	55.617	1.731	1.00	0.00	С
		MOTA	1655	0	THR A 229	23.038	55.854	2.849	1.00	0.00	0
		MOTA	1656	CB	THR A 229	25.130	53.688	1.504	1.00	0.00	С
						24.551	53.078	2.665	1.00	0.00	0
		ATOM	1657	OG1	THR A 229				1.00	0.00	C
		MOTA	1658	CG2	THR A 229	26.609	53.310	1.419			
	15	MOTA	1659	N	HIS A 230	22.798	55.694	0.611	1.00	0.00	N
		MOTA	1660	CA	HIS A 230	21.383	56.077	0.594	1.00	0.00	С
		MOTA	1661	С	HIS A 230	20.573	55.338	1.661	1.00	0.00	С
			1662	Ö	HIS A 230	20.679	54.120	1.797	1.00	0.00	0
		MOTA						-0.799	1.00	0.00	C
	•	ATOM	1663	CB	HIS A 230	20.804	55.798				
	20	MOTA	1664	CG	HIS A 230	19.543	56.549	-1.099	1.00	0.00	C
		ATOM	1665	ND1	HIS A 230	18.378	56.370	-0.385	1.00	0.00	N
		ATOM	1666		HIS A 230	19.265	57.476	-2.047	1.00	0.00	С
. 8%		ATOM	1667		HIS A 230	17.436	57.155	-0.879	1.00	0.00	С
							57.837	-1.888	1.00	0.00	N
4,54	0=	ATOM	1668		HIS A 230	17.948					N
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	ATOM	1669	N	TYR A 231	19.756	56.074	2.415	1.00	0.00	
age a		ATOM	1670	CA	TYR A 231	18.958	55.448	3.466	1.00	0.00	C
gran. Supple		MOTA	1671	С	TYR A 231	18.081	54.310	2.940	1.00	0.00	С
High High		MOTA	1672	Ō	TYR A 231	17.788	53.361	3.666	1.00	0.00	0
12 PM							56.497	4.200	1.00	0.00	С
nj.	00	ATOM	1673	CB	TYR A 231	18.105					C
	30	ATOM	1674	CG	TYR A 231	17.122	57.265	3.336	1.00	0.00	
dia -		ATOM	1675	CD1	TYR A 231	15.842	56.767	3.085	1.00	0.00	C
81		ATOM	1676	CD2	TYR A 231	17.473	58.497	2.777	1.00	0.00	С
d GPAGE		ATOM	1677	CE1		14.935	57.477	2.301	1.00	0.00	С
1,000			1678		TYR A 231	16.574	59.214	1.992	1.00	0.00	С
ą II	25	ATOM						1.758	1.00	0.00	C
ij.	35	MOTA	1679	CZ	TYR A 231	15.308	58.698				
i sain		MOTA	1680	OH	TYR A 231	14.420	59.401	0.980	1.00	0.00	0
		ATOM	1681	N	SER A 232	17.673	54.395	1.679	1.00	0.00	N
		MOTA	1682	CA	SER A 232	16.846	53.345	1.089	1.00	0.00	С
i casa		ATOM	1683	С	SER A 232	17.649	52.069	0.857	1.00	0.00	С
5	40		1684	Ö	SER A 232	17.119	50.964	0.970	1.00	0.00	0
	40	ATOM						-0.233	1.00	0.00	C
		MOTA	1685	CB	SER A 232	16.238	53.821				
		ATOM	1686	OG	SER A 232	15.249	54.809	-0.007	1.00	0.00	0
		ATOM	1687	N	VAL A 233	18.930	52.227	0.533	1.00	0.00	N
		MOTA	1688	CA	VAL A 233	19.807	51.085	0.298	1.00	0.00	С
	45	ATOM	1689	С	VAL A 233	20.094	50.365	1.618	1.00	0.00	C
	10					20.097	49.132	1.680	1.00	0.00	0
		MOTA	1690	0	VAL A 233				1.00	0.00	C
		MOTA	1691	CB	VAL A 233	21.134	51.537	-0.354			
		ATOM	1692	CG1	VAL A 233	22.119	50.375	-0.405	1.00	0.00	С
		MOTA	1693	CG2	VAL A 233	20.860	52.054	-1.763	1.00	0.00	C
	50	MOTA	1694	N	LYS A 234	20.327	51.140	2.670	1.00	0.00	N
	00				LYS A 234	20.582	50.573	3.988	1.00	0.00	С
		MOTA	1695	CA					1.00	0.00	Č
		MOTA	1696	С	LYS A 234	19.394	49.707	4.407			
		MOTA	1697	0	LYS A 234	19.567	48.587	4.884	1.00	0.00	0
		MOTA	1698	CB	LYS A 234	20.799	51.695	5.013	1.00	0.00	C
	55	ATOM	1699	CG	LYS A 234	22.143	52.414	4.889	1.00	0.00	С
	55	ATOM	1700	CD	LYS A 234	22.200	53.646	5.791	1.00	0.00	C
							54.324	5.751	1.00	0.00	Č
		MOTA	1701	CE	LYS A 234	23.575					N
		ATOM	1702	ΝZ	LYS A 234	24.576	53.708	6.681	1.00	0.00	
		ATOM	1703	N	LYS A 235	18.186	50.229	4.213	1.00	0.00	N
	60	ATOM	1704	CA	LYS A 235	16.974	49.497	4.578	1.00	0.00	C
		ATOM	1705	С	LYS A 235	16.845	48.206	3.777	1.00	0.00	С
		111 011	1.00	9			· · · · · ·				

		MOTA	1706	0	LYS A 23	35	16.	595	47.138	4.337	1.00	0.00	0
		MOTA	1707	СВ	LYS A 23			739	50.373	4.351	1.00	0.00	C
					LYS A 23		14.		49.774	4.890	1.00	0.00	C
		ATOM	1708	CG			13.		50.689	4.608	1.00	0.00	Ċ
	E	ATOM	1709	CD	LYS A 23				50.108	5.154	1.00	0.00	C
	5	ATOM	1710	CE	LYS A 23		11.				1.00	0.00	N
		MOTA	1711	NZ	LYS A 23			807	50.957	4.792			
		MOTA	1712	N	GLU A 23			025	48.307	2.464	1.00	0.00	N
		MOTA	1713	CA	GLU A 23			926	47.149	1.580	1.00	0.00	C
		ATOM	1714	С	GLU A 23	36		941	46.058	1.928	1.00	0.00	С
	10	ATOM	1715	0	GLU A 23	36	17.	584	44.888	2.073	1.00	0.00	0
		ATOM	1716	СВ	GLU A 23	36	17.	121	47.587	0.125	1.00	0.00	C
		ATOM	1717	CG	GLU A 23		16.	922	46.474	-0.897	1.00	0.00	С
		ATOM	1718	CD	GLU A 23		15.	468	46.035	-1.029	1.00	0.00	С
		ATOM	1719		GLU A 23			200	45.126	-1.840	1.00	0.00	0
	15	ATOM	1720		GLU A 23			594	46.596	-0.332	1.00	0.00	0
	10	MOTA	1721	N	LEU A 23			210	46.432	2.063	1.00	0.00	N
					LEU A 23			236	45.450	2.387	1.00	0.00	С
		MOTA	1722	CA	LEU A Z	31 27			44.897	3.800	1.00	0.00	Ċ
		MOTA	1723	С	LEU A 23			065		4.043	1.00	0.00	0
	20	MOTA	1724	0	LEU A 23			318	43.717				C
	20	MOTA	1725	CB	LEU A 23			632	46.056	2.220	1.00	0.00	C
4:70%		MOTA	1726	CG	LEU A 23			974	46.530	0.802	1.00	0.00	
		MOTA	1727		LEU A 23			357	47.152	0.803	1.00	0.00	C
		ATOM	1728	CD2	LEU A 23			912	45.359	-0.178	1.00	0.00	С
		ATOM	1729	N	ALA A 23	38	19.	630	45.742	4.729	1.00	0.00	N
497h	25	ATOM	1730	CA	ALA A 23	38	19.	428	45.297	6.102	1.00	0.00	С
4,8 8		MOTA	1731	С	ALA A 2	38	18.	379	44.184	6.150	1.00	0.00	С
Section 1		MOTA	1732	0	ALA A 2			564	43.172	6.833	1.00	0.00	0
		ATOM	1733	СВ	ALA A 2			988	46.465	6.976	1.00	0.00	С
Will.		MOTA	1734	N	GLN A 2			286	44.374	5.420	1.00	0.00	N
5 742	30	MOTA	1735	CA	GLN A 2			203	43.394	5.393	1.00	0.00	С
	50	MOTA	1736	C	GLN A 2			652	42.029	4.871	1.00	0.00	С
81			1737	0	GLN A 2			079	41.002	5.229	1.00	0.00	0
		MOTA	1737	CB	GLN A 2			037	43.922	4.548	1.00	0.00	Ċ
ಕ್ಕೆ ಕ್ಷಮ್ಮಾರ್ ಕಿನಮ್ಮ		ATOM						452	45.234	5.069	1.00	0.00	Ċ
1,000	25	ATOM	1739	CG	GLN A 2			274	45.734	4.248	1.00	0.00	Ċ
and Tuni	35	MOTA	1740	CD	GLN A 2					3.021	1.00	0.00	0
) 		ATOM	1741		GLN A 2			349	45.823			0.00	И
		MOTA	1742	NE2				181	46.072	4.926	1.00		N N
		ATOM	1743	N	GLN A 2			679	42.017	4.028	1.00	0.00	
3.22.	40	MOTA	1744	CA	GLN A 2			.187	40.766	3.472	1.00	0.00	C
	40	MOTA	1745	С	GLN A 2			.494	40.349	4.138	1.00	0.00	С
		MOTA	1746	0	GLN A 2			.113	39.364	3.735	1.00	0.00	0
		MOTA	1747	CB	GLN A 2	40	18.	.416	40.921	1.968	1.00	0.00	C
		MOTA	1748	CG	GLN A 2	40	17.	.193	41.409	1.212	1.00	0.00	С
		MOTA	1749	CD	GLN A 2	40	16.	.058	40.409	1.242	1.00	0.00	С
	45	ATOM	1750	OE1	GLN A 2	40	14.	.902	40.762	1.011	1.00	0.00	0
		MOTA	1751		GLN A 2		16.	. 382	39.149	1.514	1.00	0.00	N
		ATOM	1752	N	ARG A 2		19.	.894	41.088	5.170	1.00	0.00	N
		ATOM	1753	CA	ARG A 2			.148	40.831	5.871	1.00	0.00	С
		ATOM	1754	C	ARG A 2			.282	40.786	4.852	1.00	0.00	С
	50	ATOM	1755	0	ARG A 2			.090	39.853	4.821	1.00	0.00	0
	50		1756		ARG A 2			.085	39.519	6.665	1.00	0.00	С
		ATOM		CB	ARG A 2			.051	39.539	7.786	1.00	0.00	C
		ATOM	1757	CG				.262	38.400	8.770	1.00	0.00	C
		MOTA	1758	CD	ARG A 2						1.00	0.00	N
		MOTA	1759	NE	ARG A 2			.254	37.096	8.113	1.00	0.00	C
	55	ATOM	1760	CZ	ARG A 2			.626	35.960	8.699			N
		MOTA	1761		ARG A 2			.038	35.964	9.962	1.00	0.00	
		MOTA	1762		ARG A 2			.595	34.821	8.019	1.00	0.00	N
		ATOM	1763	N	GLN A 2			.324	41.810	4.006	1.00	0.00	N
		MOTA	1764	CA	GLN A 2			.355	41.916	2.980	1.00	0.00	C
	60	ATOM	1765	С	GLN A 2	42		.195	43.177	3.199	1.00	0.00	C
		MOTA	1766	0	GLN A 2	42	24	.716	43.751	2.245	1.00	0.00	0

		ATOM	1767	СВ	GLN A 242	22.713	41.952	1.586	1.00	0.00	С
		ATOM	1768	CG	GLN A 242	21.904	40.708	1.238	1.00	0.00	С
				CD	GLN A 242	21.185	40.834	-0.093	1.00	0.00	С
		MOTA	1769					-0.410	1.00	0.00	ō
	_	MOTA	1770		GLN A 242	20.633	41.885	-			
	5	ATOM	1771	NE2	GLN A 242	21.179	39.756	-0.873	1.00	0.00	N
		ATOM	1772	N	LEU A 243	24.320	43.596	4.460	1.00	0.00	N
		MOTA	1773	CA	LEU A 243	25.106	44.779	4.810	1.00	0.00	С
		ATOM	1774	С	LEU A 243	26.598	44.454	4.787	1.00	0.00	С
		ATOM	1775	0	LEU A 243	27.441	45.351	4.712	1.00	0.00	0
	10	ATOM	1776	СВ	LEU A 243	24.691	45.310	6.186	1.00	0.00	C
	10		1777	CG	LEU A 243	23.302	45.958	6.224	1.00	0.00	С
		ATOM					46.244	7.667	1.00	0.00	C
		ATOM	1778		LEU A 243	22.897				0.00	C
		ATOM	1779		LEU A 243	23.319	47.251	5.397	1.00		N
	4-	ATOM	1780	N	GLU A 244	26.918	43.167	4.875	1.00	0.00	
	15	ATOM	1781	CA	GLU A 244	28.302	42.720	4.788	1.00	0.00	С
		MOTA	1782	С	GLU A 244	28.326	41.894	3.521	1.00	0.00	C
		MOTA	1783	0	GLU A 244	27.502	40.995	3.340	1.00	0.00	0
		MOTA	1784	CB	GLU A 244	28.703	41.897	6.016	1.00	0.00	C
		MOTA	1785	CG	GLU A 244	28.890	42.775	7.251	1.00	0.00	C
	20	MOTA	1786	CD	GLU A 244	29.325	42.005	8.476	1.00	0.00	C
		MOTA	1787		GLU A 244	28.809	40.891	8.697	1.00	0.00	0
11.00		MOTA	1788		GLU A 244	30.175	42.526	9.227	1.00	0.00	0
. 75			1789	N	PHE A 245	29.259	42.214	2.631	1.00	0.00	N
ij		MOTA					41.533	1.349	1.00	0.00	C
1	25	ATOM	1790	CA	PHE A 245	29.333			1.00	0.00	C
100	25	MOTA	1791	C	PHE A 245	30.734	41.530	0.758			
		MOTA	1792	0	PHE A 245	31.611	42.272	1.198	1.00	0.00	0
Strange Strange		ATOM	1793	CB	PHE A 245	28.368	42.225	0.377	1.00	0.00	C
ijij		MOTA	1794	CG	PHE A 245	28.491	43.730	0.370	1.00	0.00	C
		MOTA	1795	CD1	PHE A 245	29.473	44.364	-0.388	1.00	0.00	C
M	30	MOTA	1796	CD2	PHE A 245	27.643	44.511	1.155	1.00	0.00	С
		MOTA	1797	CE1	PHE A 245	29.610	45.767	-0.363	1.00	0.00	С
X ;		MOTA	1798	CE2	PHE A 245	27.770	45.907	1.190	1.00	0.00	C
		MOTA	1799	CZ	PHE A 245	28.755	46.534	0.429	1.00	0.00	C
		MOTA	1800	N	LEU A 246	30.936	40.676	-0.238	1.00	0.00	N
38.9	35	MOTA	1801	CA	LEU A 246	32.211	40.590	-0.931	1.00	0.00	С
14.		MOTA	1802	C	LEU A 246	32.062	41.504	-2.141	1.00	0.00	С
g palla		ATOM	1803	Ö	LEU A 246	31.450	41.138	-3.144	1.00	0.00	0
		ATOM	1804	CB	LEU A 246	32.481	39.143	-1.351	1.00	0.00	C
į.				CG	LEU A 246	32.796	38.222	-0.162	1.00	0.00	C
37	40	ATOM	1805			32.737	36.755	-0.577	1.00	0.00	Č
	40	ATOM	1806		LEU A 246			0.374	1.00	0.00	C
		ATOM	1807		LEU A 246	34.176	38.572				N
		MOTA	1808	N	TRP A 247	32.616	42.707	-2.022	1.00	0.00	
		MOTA	1809	CA	TRP A 247	32.528	43.724	-3.065	1.00	0.00	С
		MOTA	1810	С	TRP A 247	33.547	43.514	-4.182	1.00	0.00	C
	45	ATOM	1811	0	TRP A 247	34.751	43.703	-3.977	1.00	0.00	0
		MOTA	1812	CB	TRP A 247	32.732	45.107	-2.429	1.00	0.00	C
		MOTA	1813	CG	TRP A 247	32.228	46.274	-3.234	1.00	0.00	С
		MOTA	1814	CD1	TRP A 247	31.636	46.236	-4.465	1.00	0.00	С
		MOTA	1815		TRP A 247	32.233	47.651	-2.835	1.00	0.00	С
	50	MOTA	1816		TRP A 247	31.266	47.507	-4.857	1.00	0.00	N
	• •	ATOM	1817		TRP A 247	31.621	48.392	-3.874	1.00	0.00	С
		ATOM	1818		TRP A 247	32.694	48.331	-1.700	1.00	0.00	С
		ATOM	1819		TRP A 247	31.458	49.782	-3.809	1.00	0.00	С
					TRP A 247	32.533	49.713	-1.636	1.00	0.00	C
	55	ATOM	1820		TRP A 247	31.919	50.422	-2.685	1.00	0.00	C
	55	MOTA	1821					-5.358	1.00	0.00	N
		MOTA	1822	N	ARG A 248	33.062	43.119			0.00	C
		ATOM	1823	CA	ARG A 248	33.929	42.908	-6.511	1.00		
		MOTA	1824	С	ARG A 248	33.619	43.976	-7.558	1.00	0.00	C
	(0	MOTA	1825	0	ARG A 248	32.567	44.618	-7.509	1.00	0.00	0
	60	MOTA	1826	CB	ARG A 248	33.700	41.521	-7.126	1.00	0.00	C
		MOTA	1827	CG	ARG A 248	32.350	41.366	-7.822	1.00	0.00	С

		ATOM	1828	CD	ARG A 248	32.291	40.067 -8.632	1.00	0.00	С
		ATOM	1829	NE	ARG A 248	32.307	38.880 -7.780	1.00	0.00	N
		ATOM	1830	CZ	ARG A 248	32.301	37.630 -8.242	1.00	0.00	С
		ATOM	1831		ARG A 248	32.283	37.400 -9.549	1.00	0.00	N
	5				ARG A 248	32.302	36.607 -7.396	1.00	0.00	N
	3	MOTA	1832			34.532	44.156 -8.506	1.00	0.00	N
		MOTA	1833	N	GLN A 249				0.00	C
		MOTA	1834	CA	GLN A 249	34.353	45.143 -9.562	1.00		C
		MOTA	1835	С	GLN A 249	33.258	44.690 -10.526	1.00	0.00	
		MOTA	1836	0	GLN A 249	33.052	43.492 -10.729	1.00	0.00	0
	10	ATOM	1837	CB	GLN A 249	35.681	45.364 -10.297	1.00	0.00	С
		ATOM	1838	CG	GLN A 249	36.810	45.825 -9.372	1.00	0.00	С
		ATOM	1839	CD	GLN A 249	36.443	47.082 -8.593	1.00	0.00	C
		ATOM	1840		GLN A 249	36.462	47.096 -7.356	1.00	0.00	0
		ATOM	1841		GLN A 249	36.103	48.144 -9.314	1.00	0.00	N
	15	ATOM	1842	N	ILE A 250	32.554	45.649 -11.122	1.00	0.00	N
	10		1843	CA	ILE A 250	31.456	45.322 -12.029	1.00	0.00	C
		ATOM		CA	ILE A 250	31.785	44.404 -13.208	1.00	0.00	С
		ATOM	1844			30.900	43.716 -13.721	1.00	0.00	Ō
		MOTA	1845	0	ILE A 250		46.604 -12.577	1.00	0.00	C
	20	MOTA	1846	CB	ILE A 250	30.772				c
	20	MOTA	1847		ILE A 250	31.792	47.486 -13.298	1.00	0.00	C
3174		MOTA	1848		ILE A 250	30.106	47.367 -11.436	1.00	0.00	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		MOTA	1849	CD1	ILE A 250	31.199	48.778 -13.850	1.00	0.00	C
		MOTA	1850	N	TRP A 251	33.047	44.373 -13.625	1.00	0.00	N
4 7		MOTA	1851	CA	TRP A 251	33.457	43.541 -14.759	1.00	0.00	C
\$ (\$400) (\$100)	25	ATOM	1852	С	TRP A 251	34.122	42.228 -14.339	1.00	0.00	С
5,5.0		ATOM	1853	0	TRP A 251	34.455	41.395 -15.187	1.00	0.00	0
		ATOM	1854	СВ	TRP A 251	34.445	44.316 -15.625	1.00	0.00	С
gred H		ATOM	1855	CG	TRP A 251	35.745	44.505 -14.922	1.00	0.00	C
Will.		MOTA	1856	CD1		36.736	43.576 -14.760	1.00	0.00	С
3 345	30	MOTA	1857		TRP A 251	36.158	45.662 -14.196	1.00	0.00	C
	50	MOTA	1858		TRP A 251	37.736	44.082 -13.973	1.00	0.00	N
3)			1859		TRP A 251	37.407	45.362 -13.610	1.00	0.00	С
		MOTA			TRP A 251	35.590	46.921 -13.975		0.00	C
1000		MOTA	1860			38.102	46.279 -12.821		0.00	C
1,73	25	MOTA	1861		TRP A 251		47.834 -13.191	1.00	0.00	Č
100 m	35	MOTA	1862		TRP A 251	36.278		1.00	0.00	C
s de		MOTA	1863		TRP A 251	37.523	47.506 -12.621		0.00	И
		MOTA	1864	N	ASP A 252	34.324	42.058 -13.037	1.00		C
i, e		ATOM	1865	CA	ASP A 252	34.992	40.880 -12.490		0.00	
242		MOTA	1866	С	ASP A 252	34.118	39.626 -12.430		0.00	C
	40	MOTA	1867	0	ASP A 252	33.322	39.448 -11.513		0.00	0
		ATOM	1868	CB	ASP A 252	35.539	41.225 -11.098		0.00	C
		MOTA	1869	CG	ASP A 252	36.312	40.084 -10.471		0.00	С
		ATOM	1870	OD1	ASP A 252	36.635	39.111 -11.191	1.00	0.00	0
		MOTA	1871	OD2	ASP A 252	36.601	40.167 -9.258	1.00	0.00	0
	45	ATOM	1872	N	ASN A 253	34.287	38.750 -13.415	1.00	0.00	N
	10	ATOM	1873	CA	ASN A 253	33.508	37.520 -13.489	1.00	0.00	С
		ATOM	1874	C	ASN A 253	33.975	36.456 -12.495		0.00	С
		ATOM	1875	Ö	ASN A 253	33.158	35.745 -11.909		0.00	0
			1876	CB	ASN A 253	33.579	36.958 -14.910		0.00	С
	50	MOTA		CG	ASN A 253	32.722	35.728 -15.091		0.00	С
	50	ATOM	1877			33.196	34.695 -15.561		0.00	0
		MOTA	1878		ASN A 253		35.832 -14.726		0.00	N
		MOTA	1879		ASN A 253	31.449				
		MOTA	1880	N	LYS A 254	35.286	36.357 -12.299		0.00	N
		ATOM	1881	CA	LYS A 254	35.851	35.358 -11.390		0.00	С
	55	MOTA	1882	С	LYS A 254	35.733	35.750 -9.918		0.00	C
		ATOM	1883	0	LYS A 254	35.510	34.895 -9.056		0.00	0
		MOTA	1884	CB	LYS A 254	37.321	35.106 -11.747		0.00	С
		ATOM	1885	CG	LYS A 254	37.939	33.885 -11.071	1.00	0.00	С
		ATOM	1886	CD	LYS A 254	39.321	33.584 -11.647		0.00	С
	60	MOTA	1887	CE	LYS A 254	39.916	32.308 -11.058		0.00	C
	30	MOTA	1888	NZ	LYS A 254	40.119	32.400 -9.584		0.00	N

		ATOM	1889	N	GLY A	255	35.891	37.039	-9.632	1.00	0.00	N
		ATOM	1890	CA	GLY A		35.788	37.509	-8.262	1.00	0.00	С
			1891	C	GLY A		37.108	37.716	-7.535	1.00	0.00	С
		MOTA					37.122	37.710	-6.315	1.00	0.00	0
	_	MOTA	1892	0	GLY A					1.00	0.00	N
	5	ATOM	1893	N	ASP A		38.216	37.737	-8.270		0.00	C
		MOTA	1894	CA	ASP A		39.525	37.923	-7.647	1.00		C
		MOTA	1895	С	ASP A		39.742	39.323	-7.075	1.00	0.00	
		MOTA	1896	0	ASP A		40.667	39.537	-6.296	1.00	0.00	0
		MOTA	1897	CB	ASP A	256	40.648	37.616	-8.644	1.00	0.00	С
	10	MOTA	1898	CG	ASP A	256	40.647	36.171	-9.100	1.00	0.00	С
		ATOM	1899	OD1	ASP A	256	40.503	35.273	-8.240	1.00	0.00	0
		ATOM	1900	OD2	ASP A	256	40.801	35.934	-10.317	1.00	0.00	0
		ATOM	1901	N	THR A		38.900	40.276	-7.460	1.00	0.00	N
		ATOM	1902	CA	THR A		39.037	41.641	-6.954	1.00	0.00	С
	15	ATOM	1903	C	THR A		38.231	41.850	-5.672	1.00	0.00	С
	10	ATOM	1904	Õ	THR A		38.333	42.898	-5.027	1.00	0.00	0
		ATOM	1905	CB	THR A		38.545	42.670	-7.982	1.00	0.00	С
							37.141	42.487	-8.200	1.00	0.00	Ō
		MOTA	1906		THR A			42.506	-9.299	1.00	0.00	Č
	20	MOTA	1907		THR A		39.290	40.845	-5.311	1.00	0.00	N
	20	MOTA	1908	N	ALA A		37.437		-4.135	1.00	0.00	Ċ
		MOTA	1909	CA	ALA A		36.579	40.907		1.00	0.00	c
Trans		MOTA	1910	С	ALA A		37.266	41.290	-2.828		0.00	0
ı, Di		ATOM	1911	0	ALA A		38.355	40.813	-2.519	1.00		C
	~ =	MOTA	1912	CB	ALA A		35.852	39.576	-3.956	1.00	0.00	
	25	MOTA	1913	N	LEU A		36.600	42.154	-2.066	1.00	0.00	N
3000		ATOM	1914	CA	LEU A	259	37.091	42.605	-0.767	1.00	0.00	С
		MOTA	1915	С	LEU A	259	35.900	42.632	0.187	1.00	0.00	C
M.		ATOM	1916	0	LEU A	259	34.874	43.245	-0.110	1.00	0.00	0
		ATOM	1917	CB	LEU A	259	37.700	44.009	-0.866	1.00	0.00	С
(M	30	MOTA	1918	CG	LEU A	259	38.382	44.511	0.410	1.00	0.00	С
n _g a n		ATOM	1919	CD1	LEU A	259	39.566	43.601	0.743	1.00	0.00	С
#1		ATOM	1920	CD2	LEU A	259	38.849	45.957	0.226	1.00	0.00	С
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		MOTA	1921	N	PHE A		36.030	41.957	1.326	1.00	0.00	N
		MOTA	1922	CA	PHE A		34.948	41.921	2.304	1.00	0.00	С
243	35	ATOM	1923	С	PHE A		34.625	43.336	2.774	1.00	0.00	С
1 12.4 s	00	ATOM	1924	Ō	PHE A		35.505	44.075	3.225	1.00	0.00	0
Ēpiā.		ATOM	1925	СВ	PHE A		35.342	41.053	3.501	1.00	0.00	С
		ATOM	1926	CG	PHE A		34.242	40.879	4.503	1.00	0.00	С
g:::å:		ATOM	1927		PHE A		33.245	39.925	4.304	1.00	0.00	С
3	40	ATOM	1928		PHE A		34.187	41.681	5.636	1.00	0.00	С
	40	ATOM	1929		PHE A		32.211	39.775	5,220	1.00	0.00	С
		ATOM	1930		PHE A		33.158	41.542	6.560	1.00	0.00	С
			1931	CZ	PHE A		32.166	40.588	6.353	1.00	0.00	C
		ATOM	1931	N N	THR A		33.355	43.708	2.680	1.00	0.00	N
	15	ATOM						45.046	3.062	1.00	0.00	C
	45	MOTA	1933	CA	THR A		32.931		4.074	1.00	0.00	C
		MOTA	1934	С	THR A		31.795	45.042	3.952	1.00	0.00	Ö
		MOTA	1935	0	THR A		30.841	44.277		1.00	0.00	Č
		MOTA	1936	CB	THR A		32.463	45.837	1.824		0.00	0
	F0	MOTA	1937		THR A		33.507	45.842	0.841	1.00		C
	50	MOTA	1938		THR A		32.117	47.277	2.198	1.00	0.00	
		MOTA	1939	N	HIS A		31.908	45.919	5.066	1.00	0.00	N
		ATOM	1940	CA	HIS A		30.893	46.069	6.096	1.00	0.00	C
		MOTA	1941	С	HIS A		30.269	47.450	5.946	1.00	0.00	С
		MOTA	1942	0	HIS A	262	30.961	48.462	6.059	1.00	0.00	0
	55	MOTA	1943	CB	HIS A		31.521	45.971	7.487	1.00	0.00	С
		ATOM	1944	CG	HIS A	262	30.584	46.329	8.600	1.00	0.00	С
		ATOM	1945	ND1	HIS A		29.955	45.381	9.378	1.00	0.00	N
		ATOM	1946		HIS A		30.172	47.532	9.069	1.00	0.00	С
		ATOM	1947		HIS A		29.200	45.984	10.280	1.00	0.00	C
	60	MOTA	1948		HIS A		29.314	47.289	10.115	1.00	0.00	N
		ATOM	1949	N	MET A		28.968	47.491	5.684	1.00	0.00	N
		011										

		ATOM	1950	CA	MET A	A 263	28.269	48.760	5.556	1.00	0.00	С
		ATOM	1951	C		A 263	27.521	48.991	6.863	1.00	0.00	С
		MOTA	1952	Ō		A 263	26.763	48.125	7.308	1.00	0.00	0
		ATOM	1953	CB		A 263	27.259	48.717	4.404	1.00	0.00	С
	5					A 263	26.485	50.025	4.205	1.00	0.00	Ċ
	5	ATOM	1954	CG					3.084	1.00	0.00	S
		MOTA	1955	SD		A 263	25.054	49.854			0.00	C
		MOTA	1956	CE		A 263	25.878	49.605	1.504	1.00		
		MOTA	1957	N		A 264	27.745	50.141	7.490	1.00	0.00	N
		MOTA	1958	CA	MET .	A 264	27.043	50.451	8.728	1.00	0.00	C
	10	MOTA	1959	С	MET .	A 264	25.579	50.606	8.322	1.00	0.00	C
		MOTA	1960	0	MET .	A 264	25.280	51.049	7.213	1.00	0.00	0
		MOTA	1961	СВ		A 264	27.635	51.710	9.364	1.00	0.00	C
		MOTA	1962	CG		A 264	29.037	51.446	9.918	1.00	0.00	C
		ATOM	1963	SD		A 264	29.959	52.912	10.446	1.00	0.00	S
	15	ATOM	1964	CE		A 264	28.964	53.477	11.815	1.00	0.00	С
	10					A 265	24.646	50.244	9.214	1.00	0.00	N
		MOTA	1965	N					8.928	1.00	0.00	C
		ATOM	1966	CA		A 265	23.211	50.315			0.00	C
		MOTA	1967	С		A 265	22.429	51.590	9.187	1.00		
	•	MOTA	1968	0		A 265	21.340	51.770	8.634	1.00	0.00	0
	20	MOTA	1969	CB		A 265	22.664	49.172	9.767	1.00	0.00	C
J. 12000.		MOTA	1970	CG	PRO .	A 265	23.451	49.352	11.044	1.00	0.00	C
		ATOM	1971	CD	PRO .	A 265	24.879	49.679	10.558	1.00	0.00	С
1 100		MOTA	1972	N	PHE	A 266	22.974	52.480	10.000	1.00	0.00	N
. 120		ATOM	1973	CA		A 266	22.229	53.668	10.362	1.00	0.00	C
	25	ATOM	1974	Ċ		A 266	22.601	55.022	9.747	1.00	0.00	С
Ą) i		ATOM	1975	0		A 266	23.522	55.139	8.937	1.00	0.00	0
		MOTA	1976	СВ		A 266	22.188	53.722	11.892	1.00	0.00	С
M.		ATOM	1977	CG		A 266	21.653	52.446	12.521	1.00	0.00	C
5 tor						A 266	22.244	51.906	13.661	1.00	0.00	C
	30	ATOM	1978					51.785	11.959	1.00	0.00	Č
M	30	ATOM	1979			A 266	20.559			1.00	0.00	Č
81		MOTA	1980			A 266	21.752	50.724	14.234		0.00	C
		ATOM	1981	CE2		A 266	20.058	50.604	12.522	1.00		C
Ţ		MOTA	1982	CZ		A 266	20.655	50.072	13.660	1.00	0.00	
1,5	~=	ATOM	1983	N		A 267	21.838	56.034	10.145	1.00	0.00	N
M	35	MOTA	1984	CA		A 267	21.953	57.410	9.659	1.00	0.00	C
a rec		ATOM	1985	С		A 267	23.291	58.117	9.865	1.00	0.00	C
10 (1920) 10 10 (1920)		MOTA	1986	0	TYR	A 267	23.696	58.941	9.040	1.00	0.00	0
		MOTA	1987	CB	TYR	A 267	20.828	58.229	10.301	1.00	0.00	С
i de la composição de l		ATOM	1988	CG		A 267	20.881	59.726	10.097	1.00	0.00	С
•	40	MOTA	1989	CD1		A 267	20.521	60.304	8.882	1.00	0.00	С
		MOTA	1990	CD2		A 267	21.244	60.570	11.147	1.00	0.00	С
		ATOM	1991	CE1		A 267	20.513	61.698	8.719	1.00	0.00	С
		ATOM	1992			A 267	21.243	61.954	10.995	1.00	0.00	С
						A 267	20.875	62.510	9.785	1.00	0.00	C
	45	ATOM	1993	CZ			20.857	63.879	9.651	1.00	0.00	0
	40	ATOM	1994	OH		A 267			10.956	1.00	0.00	N
		MOTA	1995	N		A 268	23.976	57.803				C
		ATOM	1996	CA		A 268	25.245	58.459	11.243	1.00	0.00	
		MOTA	1997	С		A 268	26.227	57.552	11.973	1.00	0.00	C
		ATOM	1998	0	SER	A 268	25.868	56.461	12.425	1.00	0.00	0
	50	ATOM	1999	CB	SER	A 268	24.977	59.717	12.077	1.00	0.00	C
		ATOM	2000	OG	SER	A 268	26.170	60.276	12.592	1.00	0.00	0
		ATOM	2001	N	TYR	A 269	27.474	58.007	12.076	1.00	0.00	N
		ATOM	2002	CA		A 269	28.500	57.252	12.778	1.00	0.00	C
		MOTA	2003	С		A 269	28.622	57.740	14.221	1.00	0.00	С
	55	MOTA	2003	0		A 269	29.445	57.228	14.978	1.00	0.00	0
	55						29.857	57.386	12.069	1.00	0.00	C
		ATOM	2005	CB		A 269		58.815	11.846	1.00	0.00	C
		ATOM	2006	CG CD1		A 269	30.306			1.00	0.00	C
		MOTA	2007			A 269	30.721	59.618	12.911			
	(0	MOTA	2008			A 269	30.287	59.374	10.567	1.00	0.00	C
	60	MOTA	2009			A 269	31.104	60.950	12.708	1.00	0.00	C
		MOTA	2010	CE2	TYR	A 269	30.665	60.701	10.352	1.00	0.00	С

		ATOM	2011	CZ	TYR A	269	31.068	61.482	11.422	1.00	0.00	C
					TYR A		31.402	62.800	11.205	1.00	0.00	0
		MOTA	2012									
		MOTA	2013	N	ASP A	270	27.817	58.731	14.605	1.00	0.00	N
		ATOM	2014	CA	ASP A	270	27.893	59.225	15.980	1.00	0.00	С
	5				ASP A		27.310	58.186	16.933	1.00	0.00	С
	J	ATOM	2015									Ō
		ATOM	2016	0	ASP A	270	26.658	57.236	16.501	1.00	0.00	
		MOTA	2017	CB	ASP A	270	27.196	60.591	16.144	1.00	0.00	С
			2018	CG	ASP A		25.702	60.554	15.860	1.00	0.00	С
		MOTA										0
		MOTA	2019	OD1	ASP A	270	25.104	59.457	15.796	1.00	0.00	
	10	MOTA	2020	OD2	ASP A	270	25.120	61.655	15.721	1.00	0.00	0
	•	ATOM	2021	N	ILE A		27.553	58.351	18.226	1.00	0.00	N
											0.00	С
		MOTA	2022	CA	ILE A		27.080	57.366	19.187	1.00		
		MOTA	2023	С	ILE A	271	25.567	57.124	19.164	1.00	0.00	С
		ATOM	2024	0	ILE A		25.124	55.979	19.239	1.00	0.00	0
	1 =									1.00	0.00	C
	15	MOTA	2025	CB	ILE A		27.585	57.718	20.606			
		ATOM	2026	CG1	ILE A	271	29.119	57.658	20.612	1.00	0.00	С
		ATOM	2027		ILE A		27.045	56.718	21.628	1.00	0.00	С
								58.225	21.863	1.00	0.00	С
		MOTA	2028	CDI	ILE A		29.776					
		MOTA	2029	N	PRO A	272	24.755	58.187	19.043	1.00	0.00	N
	20	MOTA	2030	CA	PRO A	272	23.306	57.961	19.013	1.00	0.00	С
	20							57.025	17.881	1.00	0.00	С
i tang		MOTA	2031	С	PRO A		22.861					
		ATOM	2032	0	PRO A	272	21.816	56.387	17.979	1.00	0.00	0
a Li		MOTA	2033	CB	PRO A	272	22.740	59.369	18.856	1.00	0.00	С
ing.			2034		PRO A		23.741	60.208	19.599	1.00	0.00	С
المال	O.F.	MOTA		CG								C
497	25	MOTA	2035	CD	PRO A	272	25.059	59.627	19.135	1.00	0.00	
9(3 E		MOTA	2036	N	HIS A	273	23.653	56.937	16.812	1.00	0.00	N
(120) (120)		MOTA	2037	CA	HIS A		23.301	56.075	15.682	1.00	0.00	C
									15.459	1.00	0.00	C
g Auf		MOTA	2038	С	HIS A		24.229	54.880				
i di		ATOM	2039	0	HIS A	273	24.338	54.373	14.338	1.00	0.00	0
2 (1520) 2 (1520)	30	ATOM	2040	CB	HIS A	273	23.217	56.901	14.391	1.00	0.00	С
	00						22.162	57.964	14.428	1.00	0.00	C
** 1		MOTA	2041	CG	HIS A							
E (ATOM	2042	ND1	HIS A	273	22.362	59.193	15.019	1.00	0.00	N
		MOTA	2043	CD2	HIS A	273	20.879	57.962	13.993	1.00	0.00	C
. 75		MOTA	2044		HIS A		21.249	59.901	14.949	1.00	0.00	С
	2 =									1.00	0.00	N
il.	35	MOTA	2045	NE2	HIS A		20.333	59.176	14.330			
		ATOM	2046	N	THR A	274	24.887	54.419	16.520	1.00	0.00	N
ii coin		MOTA	2047	CA	THR A		25.783	53.276	16.394	1.00	0.00	С
							25.588	52.156	17.423	1.00	0.00	C
		MOTA	2048	С	THR A							
ğarin.		MOTA	2049	0	THR A	274	26.159	51.078	17.268	1.00	0.00	0
	4 0	ATOM	2050	CB	THR A	274	27.269	53.727	16.409	1.00	0.00	С
			2051		THR A		27.480	54.679	17.456	1.00	0.00	0
		MOTA									0.00	C
		ATOM	2052	CG2	THR A		27.646	54.350	15.074	1.00		
		ATOM	2053	N	CYS A	275	24.786	52.388	18.462	1.00	0.00	N
		MOTA	2054	CA	CYS A	275	24.564	51.344	19.468	1.00	0.00	С
	45						23.375	50.457	19.108	1.00	0.00	С
	45	ATOM	2055	С	CYS A							
		MOTA	2056	0	CYS A	275	23.299	49.296	19.521	1.00	0.00	0
		MOTA	2057	CB	CYS A	275	24.327	51.967	20.848	1.00	0.00	C
			2058	SG	CYS A		22.589	52.094	21.403	1.00	0.00	S
		MOTA										N
		MOTA	2059	N	GLY A		22.450	51.016	18.338	1.00	0.00	
	50	ATOM	2060	CA	GLY A	276	21.260	50.288	17.941	1.00	0.00	C
		MOTA	2061	С	GLY A		20.342	51.180	17.126	1.00	0.00	C
								52.314	16.817	1.00	0.00	0
		ATOM	2062	0	GLY A		20.715					
		ATOM	2063	N	PRO A	. 277	19.130	50.709	16.778	1.00	0.00	N
		MOTA	2064	CA	PRO A	277	18.130	51.438	15.988	1.00	0.00	С
	55							52.657	16.624	1.00	0.00	С
	55	MOTA	2065	С	PRO A		17.466					
		MOTA	2066	0	PRO A	. 277	16.883	53.477	15.916	1.00	0.00	0
		MOTA	2067	CB	PRO A	277	17.103	50.356	15.662	1.00	0.00	C
		ATOM	2068	CG	PRO A		17.124	49.525	16.904	1.00	0.00	С
											0.00	C
		MOTA	2069	CD	PRO A		18.610	49.384	17.165	1.00		
	60	MOTA	2070	N	ASP A	. 278	17.543	52.782	17.946	1.00	0.00	N
		ATOM	2071	CA	ASP A		16.896	53.903	18.630	1.00	0.00	C
		F11 Ol-1	2011	O2 1	1101 1	0	_0.000				•	

				_			15.055	E 4 . 0 4 0	10 175	1 00	0 00	~
		MOTA	2072	С	ASP A		17.872 18.487	54.940 54.739	19.175 20.221	1.00	0.00	C 0
		MOTA	2073 2074	O CB	ASP A		16.027	53.383	19.781	1.00	0.00	Ċ
		MOTA MOTA	2074	CG	ASP A		15.096	54.448	20.335	1.00	0.00	C
	5	ATOM	2076		ASP A		15.253	55.634	19.970	1.00	0.00	0
		ATOM	2077		ASP A		14.209	54.098	21.138	1.00	0.00	0
		MOTA	2078	N	PRO A		18.011	56.077	18.478	1.00	0.00	N
		ATOM	2079	CA	PRO A	279	18.927	57.132	18.925	1.00	0.00	C
	4.0	MOTA	2080	С	PRO A		18.575	57.727	20.289	1.00	0.00	C
	10	MOTA	2081	0	PRO A		19.450	58.222	20.997	1.00	0.00	0 C
		MOTA	2082	СВ	PRO A		18.851	58.159	17.792	1.00	0.00	C
		ATOM	2083	CG	PRO A		17.461 17.323	57.974 56.470	17.260 17.235	1.00	0.00	C
		MOTA MOTA	2084 2085	CD N	PRO A LYS A		17.299	57.678	20.662	1.00	0.00	N
	15	ATOM	2085	CA	LYS A		16.886	58.217	21.954	1.00	0.00	C
	10	MOTA	2087	C	LYS A		17.499	57.389	23.077	1.00	0.00	C
		MOTA	2088	0	LYS A		17.776	57.901	24.163	1.00	0.00	0
		MOTA	2089	CB	LYS A		15.361	58.211	22.084	1.00	0.00	C
		MOTA	2090	CG	LYS A		14.861	58.895	23.350	1.00	0.00	C
	20	MOTA	2091	CD	LYS A		13.348	58.830	23.464	1.00	0.00	С
6.1950. 1.1000.		MOTA	2092	CE	LYS A		12.876	57.405	23.700	1.00	0.00	C N
final page		ATOM	2093	NZ	LYS A		13.443 17.708	56.828	24.961 22.813	1.00	0.00	N
		MOTA	2094	N	VAL A		18.306	56.104 55.217	23.804	1.00	0.00	C
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	ATOM ATOM	2095 2096	CA C	VAL A		19.831	55.282	23.699	1.00	0.00	Č
ijŢ.	20	MOTA	2090	0	VAL A		20.530	55.439	24.699	1.00	0.00	0
		MOTA	2098	СВ	VAL A		17.850	53.751	23.594	1.00	0.00	С
		ATOM	2099		VAL A		18.589	52.829	24.555	1.00	0.00	С
and And		ATOM	2100	CG2	VAL A	281	16.341	53.636	23.801	1.00	0.00	С
137	30	MOTA	2101	N	CYS A		20.344	55.166	22.478	1.00	0.00	N
¥:		ATOM	2102	CA	CYS A		21.786	55.201	22.261	1.00	0.00	C
		ATOM	2103	С	CYS A		22.430	56.486	22.768	1.00	0.00	C 0
₹essF . :=n		ATOM	2104	0	CYS A		23.555	56.468 55.031	23.277 20.775	1.00	0.00	C
	35	ATOM ATOM	2105 2106	CB SG	CYS A		22.100 21.727	53.385	20.773	1.00	0.00	S
	55	ATOM	2100	N	CYS A		21.721	57.603	22.638	1.00	0.00	N
il all		ATOM	2108	CA	CYS A		22.271	58.873	23.086	1.00	0.00	С
		ATOM	2109	C	CYS A		22.577	58.834	24.579	1.00	0.00	C
		MOTA	2110	0	CYS A		23.485	59.515	25.055	1.00	0.00	0
	40	MOTA	2111	CB	CYS A		21.307	60.025	22.785	1.00	0.00	C
		ATOM	2112	SG	CYS A		22.167	61.630	22.843	1.00	0.00	S
		MOTA	2113	N	GLN A		21.821	58.025	25.314	$1.00 \\ 1.00$	0.00	n C
		ATOM	2114	CA	GLN A		22.015 23.300	57.904 57.173	26.752 27.093	1.00	0.00	C
	45	MOTA MOTA	2115 2116	С 0	GLN A		23.300	57.080	28.261	1.00	0.00	ō
	40	ATOM	2117	CB	GLN A		20.824	57.180	27.381	1.00	0.00	C
		ATOM	2118	CG	GLN A		19.513		27.217	1.00	0.00	С
		ATOM	2119	CD	GLN A		18.333		27.732	1.00	0.00	С
		MOTA	2120		GLN A		18.284		28.905	1.00	0.00	0
	50	MOTA	2121	NE2	GLN A	284	17.372		26.855	1.00	0.00	N
		ATOM	2122	N	PHE A		23.978		26.074	1.00	0.00	N
		MOTA	2123	CA	PHE A		25.215		26.309	1.00	0.00	C
		MOTA	2124	С	PHE A		26.439		25.730	1.00	0.00	C 0
	EE	MOTA	2125	0	PHE A		27.480 25.061		25.500 25.820	$1.00 \\ 1.00$	0.00	C
	55	ATOM ATOM	2126 2127	CB CG	PHE A		24.076		26.645	1.00	0.00	C
		ATOM	2127		PHE A		24.474		27.833	1.00	0.00	C
		ATOM	2129		PHE A		22.732		26.285	1.00	0.00	C
		ATOM	2130		PHE A		23.549		28.657	1.00	0.00	С
	60	ATOM	2131		PHE A		21.795	53.006	27.101	1.00	0.00	C
		ATOM	2132	CZ	PHE A		22.208	52.407	28.291	1.00	0.00	С

			0400			000	06 000	57.942	25.498	1.00	0.00	N	
		ATOM	2133	N	ASP A		26.283				0.00	C	
		MOTA	2134	CA	ASP A		27.367	58.806	25.041	1.00			
		MOTA	2135	С	ASP A	286	27.545	59.652	26.296	1.00	0.00	C	
		ATOM	2136	0	ASP A	286	26.904	60.688	26.462	1.00	0.00	0	
	5	MOTA	2137	CB	ASP A	286	26.930	59.693	23.874	1.00	0.00	C	
		MOTA	2138	CG	ASP A	286	28.047	60.605	23.391	1.00	0.00	C	
		ATOM	2139		ASP A		29.087	60.686	24.079	1.00	0.00	0	
		MOTA	2140		ASP A		27.884	61.248	22.331	1.00	0.00	0	
		ATOM	2141		PHE A		28.409	59.194	27.191	1.00	0.00	N	
	10			N				59.879	28.454	1.00	0.00	C	
	10	MOTA	2142	CA	PHE A		28.601			1.00	0.00	C	
		MOTA	2143	C	PHE A		29.236	61.263	28.424			0	
		MOTA	2144	0	PHE A		29.478	61.855	29.469	1.00	0.00		
		MOTA	2145	CB	PHE A		29.331	58.946	29.419	1.00	0.00	C	
		MOTA	2146	CG	PHE A	287	28.591	57.654	29.657	1.00	0.00	C	
	15	ATOM	2147	CD1	PHE A	287	28.815	56.544	28.847	1.00	0.00	C	
		MOTA	2148	CD2	PHE A	287	27.605	57.575	30.638	1.00	0.00	C	
		ATOM	2149	CE1	PHE A	287	28.066	55.379	29.007	1.00	0.00	C	
		ATOM	2150		PHE A		26.849	56.414	30.805	1.00	0.00	C	
		ATOM	2151	CZ	PHE A		27.080	55.313	29.986	1.00	0.00	C	;
	20	ATOM	2152	N	LYS A		29.490	61.791	27.230	1.00	0.00	N	
	20	ATOM	2153	CA	LYS A		30.052	63.133	27.133	1.00	0.00	C	
1125					LYS A		28.900	64.136	27.025	1.00	0.00	С	
11175		ATOM	2154	С				65.341	26.963	1.00	0.00	0	
i,Ľ		MOTA	2155	0	LYS A		29.122			1.00		C	
J	0-	MOTA	2156	CB	LYS A		30.964	63.262	25.901		0.00	C	
111	25	MOTA	2157	CG	LYS A		31.708	64.601	25.832	1.00	0.00		
		MOTA	2158	CD	LYS A		32.650	64.698	24.634	1.00	0.00	C	
11 (12 m		MOTA	2159	CE	LYS A	288	33.439	66.003	24.683	1.00	0.00	C	
191		ATOM	2160	NZ	LYS A	288	34.384	66.172	23.531	1.00	0.00	N	
en en en en en en en en en en en en en e		MOTA	2161	N	ARG A	289	27.666	63.638	27.022	1.00	0.00	N	
M	30	MOTA	2162	CA	ARG A	289	26.507	64.517	26.890	1.00	0.00	C	:
d ² a z		ATOM	2163	С	ARG A	289	25.711	64.768	28.172	1.00	0.00	C	:
8)		ATOM	2164	0	ARG A		24.487	64.873	28.121	1.00	0.00	0)
112		ATOM	2165	CB	ARG A		25.548	63.968	25.828	1.00	0.00	С	;
		ATOM	2166	CG	ARG A		26.170	63.712	24.461	1.00	0.00	С	;
Taka Kala	35	ATOM	2167	CD	ARG A		25.088	63.468	23.427	1.00	0.00	С	:
1 T	33		2168		ARG A		25.617	63.061	22.127	1.00	0.00	N	
i rein		MOTA		NE	ARG A		25.139	63.493	20.965	1.00	0.00	C	
1 12 H		MOTA	2169	CZ			24.128	64.355	20.942	1.00	0.00	N	
		ATOM	2170		ARG A					1.00	0.00	N	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	40	MOTA	2171		ARG A		25.656	63.052	19.826			N	
	40	MOTA	2172	N	MET A		26.382	64.885	29.313	1.00	0.00		
		MOTA	2173	CA	MET A		25.652	65.113	30.557	1.00	0.00	C	
		MOTA	2174	С	MET A		25.566	66.574	31.008	1.00	0.00	C	
		ATOM	2175	0	MET A	290	24.856	66.884	31.970	1.00	0.00	0	
		MOTA	2176	CB	MET A	290	26.226	64.236	31.676	1.00	0.00	С	
	45	ATOM	2177	CG	MET A	290	26.001	62.746	31.437	1.00	0.00	C	;
		ATOM	2178	SD	MET A		26.499	61.651	32.789	1.00	0.00	S	3
		ATOM	2179	CE	MET A		28.245	61.429	32.430	1.00	0.00	C	2
		ATOM	2180	N	GLY A		26.275	67.470	30.320	1.00	0.00	N	1
		ATOM	2181	CA	GLY A		26.209	68.878	30.684	1.00	0.00	C	
	50		2182	C	GLY A		27.497	69.686	30.712	1.00	0.00	C	
	50	ATOM					27.628	70.676	29.987	1.00	0.00	0	
		MOTA	2183	0	GLY A					1.00	0.00	N	
		ATOM	2184	N	SER A		28.444	69.274	31.551			C	
		MOTA	2185	CA	SER A		29.714	69.981	31.693	1.00	0.00		
		MOTA	2186	С	SER A		30.514	70.153	30.400	1.00	0.00	C	
	55	MOTA	2187	0	SER A		31.384	71.023	30.324	1.00	0.00	C	
		MOTA	2188	CB	SER A	292	30.588	69.284	32.736	1.00	0.00	C	
		MOTA	2189	OG	SER A	292	30.964	67.989	32.302	1.00	0.00	С	
		ATOM	2190	N	PHE A		30.231	69.329	29.393	1.00	0.00	N	
		ATOM	2191	CA	PHE A		30.944	69.418	28.119	1.00	0.00	C	7
	60	MOTA	2192	С	PHE A		30.206	70.273	27.093	1.00	0.00	C	2
		ATOM	2193	Ö	PHE A		30.664	70.428	25.957	1.00	0.00	C)
		ALON	2 +) J	_			55.551		,		•		

		ATOM	2194	СВ	PHE A	293	31.178	68.023	27.525	1.00	0.00	C
				CG	PHE A		32.115	67.171	28.329	1.00	0.00	C
		ATOM	2195						29.285	1.00	0.00	C
		ATOM	2196		PHE A		31.628	66.289				
		MOTA	2197	CD2	PHE A	293	33.489	67.254	28.132	1.00	0.00	C
	5	ATOM	2198	CE1	PHE A	293	32.496	65.498	30.035	1.00	0.00	С
	•		2199	CE2			34.369	66.470	28.875	1.00	0.00	C
		MOTA						65.589	29.829	1.00	0.00	С
		MOTA	2200	CZ	PHE A		33.871					N
		MOTA	2201	N	GLY A	294	29.064	70.823	27.492	1.00	0.00	
		MOTA	2202	CA	GLY A	294	28.294	71.652	26.582	1.00	0.00	С
	10	MOTA	2203	C	GLY A		27.536	70.859	25.532	1.00	0.00	C
	10				GLY A		27.094	71.414	24.524	1.00	0.00	0
		MOTA	2204	0					25.762	1.00	0.00	N
		MOTA	2205	N	LEU A		27.387	69.558				
		MOTA	2206	CA	LEU A	295	26.670	68.692	24.833	1.00	0.00	С
		ATOM	2207	С	LEU A	295	25.448	68.107	25.530	1.00	0.00	С
	15	ATOM	2208	0	LEU A		25.416	67.999	26.753	1.00	0.00	0
	10						27.577	67.554	24.351	1.00	0.00	С
		MOTA	2209	CB	LEU P					1.00	0.00	Ċ
		MOTA	2210	CG	LEU F		28.842	67.930	23.573			
		MOTA	2211	CD1	LEU P	295	29.680	66.683	23.325	1.00	0.00	C
		MOTA	2212	CD2	LEU F	295	28.458	68.592	22.251	1.00	0.00	С
	20	MOTA	2213	N	SER A		24.444	67.733	24.746	1.00	0.00	N
	20						23.226	67.152	25.297	1.00	0.00	С
3:45%		MOTA	2214	CA	SER F						0.00	Ċ
iliane.		MOTA	2215	С	SER A		22.563	66.263	24.257	1.00		
		ATOM	2216	0	SER F	A 296	23.024	66.175	23.116	1.00	0.00	0
. 7		ATOM	2217	CB	SER A	296	22.255	68.256	25.729	1.00	0.00	С
	25	ATOM	2218	OG	SER A		21.872	69.065	24.630	1.00	0.00	0
() I	20						21.483	65.602	24.661	1.00	0.00	N
A CONTRACT		MOTA	2219	N	CYS A							C
150 E		MOTA	2220	CA	CYS A		20.739	64.719	23.775	1.00	0.00	
		MOTA	2221	С	CYS A	A 297	19.468	65.391	23.266	1.00	0.00	C
igij.		MOTA	2222	0	CYS A	A 297	18.582	65.737	24.045	1.00	0.00	0
i ilian	30	ATOM	2223	СВ	CYS A		20.391	63.420	24.506	1.00	0.00	C
M	50				CYS A		21.829	62.331	24.719	1.00	0.00	S
21		ATOM	2224	SG					21.943	1.00	0.00	N
		ATOM	2225	N	PRO A		19.364	65.582				C
		MOTA	2226	CA	PRO A	A 298	18.188	66.220	21.347	1.00	0.00	
		MOTA	2227	С	PRO A	A 298	16.889	65.440	21.539	1.00	0.00	С
16.8	35	ATOM	2228	0	PRO A	A 298	15.801	66.000	21.407	1.00	0.00	0
Ų	50		2229	CB		A 298	18.578		19.876	1.00	0.00	С
į.		MOTA							19.659	1.00	0.00	С
		ATOM	2230	CG		A 298	19.481					C
fied.		MOTA	2231	CD	PRO I	A 298	20.337		20.903	1.00	0.00	
ļ, d		ATOM	2232	N	TRP A	A 299	17.005	64.152	21.853	1.00	0.00	N
	40	ATOM	2233	CA	TRP A	A 299	15.828	63.313	22.065	1.00	0.00	С
	10	ATOM	2234	C		A 299	15.265	63.491	23.480	1.00	0.00	C
						A 299	14.368		23.903	1.00	0.00	0
		MOTA	2235	0					21.775	1.00	0.00	С
		ATOM	2236	CB		A 299	16.174					c
		MOTA	2237	CG		A 299	16.534		20.324	1.00	0.00	
	45	MOTA	2238	CD1	TRP 3	A 299	15.666	61.438	19.282	1.00	0.00	С
		MOTA	2239		TRP .		17.850	61.656	19.745	1.00	0.00	С
		ATOM	2240		TRP		16.357		18.093	1.00	0.00	N
							17.697		18.348	1.00	0.00	C
		MOTA	2241		TRP .							C
		ATOM	2242		TRP .		19.140		20.270	1.00	0.00	
	50	ATOM	2243	CZ2	TRP .	A 299	18.789	61.494	17.469	1.00	0.00	C
		ATOM	2244	CZ3	TRP .	A 299	20.226	61.806	19.396	1.00	0.00	C
		ATOM	2245		TRP .		20.041	61.649	18.009	1.00	0.00	C
						A 300	15.815		24.202	1.00	0.00	N
		MOTA	2246	N					25.553	1.00	0.00	С
		MOTA	2247	CA		A 300	15.368					
	55	MOTA	2248	С	LYS .	A 300	15.689		26.730	1.00	0.00	C
		MOTA	2249	0	LYS .	A 300	15.274	64.190	27.853	1.00	0.00	0
		ATOM	2250	CB		A 300	13.861	65.089	25.539	1.00	0.00	C
						A 300	13.424		24.526	1.00	0.00	C
		ATOM	2251	CG					24.569	1.00	0.00	Ċ
	<i>(</i>)	ATOM	2252	CD		A 300	11.918					C
	60	ATOM	2253	CE		A 300	11.460		23.479	1.00	0.00	
		MOTA	2254	NZ	LYS	A 300	12.177	68.571	23.564	1.00	0.00	N

	ATOM	2255 2256	N CA	VAL A		16.403 16.765	62.820 61.917	26.490 27.575	1.00	0.00	N C
	ATOM			VAL A		18.287	61.901	27.673	1.00	0.00	С
	ATOM	2257 2258	С	VAL A		18.971	61.383	26.790	1.00	0.00	0
5	ATOM		0	VAL A		16.247	60.485	27.325	1.00	0.00	C
3	ATOM	2259	CB CC1	VAL A		16.525	59.618	28.538	1.00	0.00	С
	MOTA	2260				14.754	60.515	27.028	1.00	0.00	С
	MOTA	2261		VAL A		18.836	62.477	28.752	1.00	0.00	N
	MOTA	2262	N	PRO A		20.281	62.546	28.976	1.00	0.00	C
10	MOTA	2263	CA	PRO A		20.281	61.253	29.467	1.00	0.00	C
10	MOTA	2264	C	PRO A		20.228	60.389	30.019	1.00	0.00	Ō
	ATOM	2265	0	PRO A			63.653	30.010	1.00	0.00	Č
-	MOTA	2266	CB	PRO A		20.403	63.392	30.872	1.00	0.00	C
	MOTA	2267	CG	PRO A		19.204	63.148	29.848	1.00	0.00	Ċ
1 F	MOTA	2268	CD	PRO P		18.109		29.255	1.00	0.00	N
15	MOTA	2269	N	PRO A		22.221	61.095		1.00	0.00	Ċ
	ATOM	2270	CA	PRO P		22.857	59.866	29.729 31.247	1.00	0.00	c
	MOTA	2271	С	PRO P		22.971	59.963		1.00	0.00	0
	MOTA	2272	0	PRO P		23.018	61.064	31.803	1.00	0.00	Ċ
20	MOTA	2273	CB	PRO F		24.216	59.887	29.032		0.00	c
20	MOTA	2274	CG	PRO F		24.506	61.350	28.897	1.00	0.00	C
	ATOM	2275	CD	PRO F		23.167	61.932	28.494	1.00	0.00	N
	MOTA	2276	N	ARG A		22.993	58.819	31.918	1.00		C
	MOTA	2277	CA	ARG A		23.111	58.800	33.369	1.00	0.00	C
	MOTA	2278	С	ARG A		24.302	57.959	33.783	1.00		0
25	MOTA	2279	0	ARG A		24.507	56.862	33.266	1.00	0.00	C
	MOTA	2280	CB	ARG A		21.829	58.248	34.004	1.00	0.00	C
	ATOM	2281	CG	ARG A		20.698	59.268	34.084	1.00	0.00	C
	MOTA	2282	CD	ARG A		19.388	58.628	34.528	1.00	0.00	N
	ATOM	2283	NE	ARG A		18.807	57.784	33.486	1.00	0.00	C
30	MOTA	2284	CZ	ARG A		18.401	58.230	32.299	1.00	0.00	N
	ATOM	2285		ARG A		18.508	59.518	31.993	1.00	0.00	N
	MOTA	2286	NH2	ARG A		17.884	57.389	31.413	1.00	0.00	N
	MOTA	2287	N		A 305	25.093	58.485	34.712	1.00	0.00	C
0.5	MOTA	2288	CA		305	26.268	57.780	35.198	1.00	0.00	C
35	MOTA	2289	С		A 305	25.862	56.384	35.646	1.00	0.00	0
	MOTA	2290	0		A 305	24.863	56.219	36.348	1.00	0.00	C
	MOTA	2291	CB		A 305	26.906	58.530	36.380	1.00	0.00	0
	MOTA	2292		THR A		27.329	59.828	35.942	1.00	0.00	C
40	MOTA	2293		THR A		28.099	57.766	36.924	1.00	0.00	N
40	MOTA	2294	N		A 306	26.628	55.380	35.231	1.00	0.00	C
	MOTA	2295	CA		A 306	26.331	54.001	35.599	1.00	0.00	C
	ATOM	2296	С		A 306	26.739	53.742	37.046 37.487	1.00	0.00	0
	ATOM	2297	0		A 306	27.808	54.168	34.694	1.00	0.00	C
	ATOM	2298	CB		A 306	27.079				0.00	C
45	MOTA	2299		L ILE		26.813	53.315	33.219	1.00	0.00	C
	MOTA	2300		2 ILE		26.639	51.569	35.023	1.00	0.00	C
	ATOM	2301		L ILE .		25.349	53.255	32.815		0.00	Ŋ
	MOTA	2302	N		A 307	25.876	53.045	37.780	1.00		C
	MOTA	2303	CA		A 307	26.134	52.713	39.178	1.00	0.00	C
50	ATOM	2304	С		A 307	25.659	51.290	39.441	1.00	0.00	0
	ATOM	2305	0		A 307	24.931	50.720	38.634	1.00	0.00	C
	MOTA	2306	СВ		A 307	25.379	53.673	40.097	1.00	0.00	0
	MOTA	2307	OG		A 307	23.980	53.548	39.909	1.00	0.00	
	MOTA	2308	N		A 308	26.073	50.718	40.568	1.00	0.00	N
55	MOTA	2309	CA		A 308	25.661	49.361	40.923	1.00	0.00	C
	MOTA	2310	С		A 308	24.145		41.039	1.00	0.00	С
	MOTA	2311	0		A 308	23.515		40.851	1.00	0.00	0
	MOTA	2312	CB		A 308	26.287		42.259	1.00	0.00	С
	ATOM	2313	CG		A 308	27.775			1.00	0.00	С
60	ATOM	2314		1 ASP		28.380		41.150	1.00	0.00	0
	MOTA	2315	OD:	2 ASP	A 308	28.345	48.083	43.076	1.00	0.00	0

								10,				
	ATOM	2316	N	GLN A	309	2	3.574	50.483	41.336	1.00	0.00	N
	ATOM	2317	CA	GLN A		2	2.140	50.646	41.508	1.00	0.00	С
	ATOM	2318	С	GLN A		2	1.326	50.648	40.213	1.00	0.00	С
	ATOM	2319	0	GLN A	A 309	2	0.203	50.144	40.191	1.00	0.00	0
5	ATOM	2320	CB	GLN A			21.891	51.932	42.309	1.00	0.00	С
	MOTA	2321	CG	GLN A	A 309		20.521	52.557	42.168	1.00	0.00	С
	MOTA	2322	CD		A 309		20.372	53.806	43.027	1.00	0.00	C 0
	MOTA	2323	OE1				9.547	54.680	42.743	1.00	0.00	N
	MOTA	2324	NE2				21.166	53.890	44.089	1.00	0.00	N
10		2325	N		A 310		21.879	51.195	39.133 37.871	1.00	0.00	C
	MOTA	2326	CA		A 310		21.144	51.239 50.415	36.736	1.00	0.00	Ċ
	MOTA	2327	С		A 310		21.748	50.335	35.660	1.00	0.00	0
	MOTA	2328	O		A 310		20.994	52.687	37.387	1.00	0.00	С
15	ATOM	2329	CB CG		A 310 A 310		22.328	53.335	37.044	1.00	0.00	С
13		2330 2331		ASN A			23.268	52.663	36.620	1.00	0.00	0
	ATOM ATOM	2331		ASN			22.408	54.650	37.211	1.00	0.00	N
	ATOM	2333	N		A 311		22.906	49.806	36.972	1.00	0.00	N
	MOTA	2334	CA		A 311		23.582	49.028	35.931	1.00	0.00	С
20	MOTA	2335	C		A 311	2	22.748	47.908	35.302	1.00	0.00	С
	ATOM	2336	0		A 311	2	22.863	47.649	34.104	1.00	0.00	0
	ATOM	2337	CB		A 311		24.913	48.433	36.453	1.00	0.00	C
	ATOM	2338	CG1	VAL	A 311	2	24.639	47.316	37.448	1.00	0.00	C
	ATOM	2339	CG2	VAL			25.756	47.933	35.278	1.00	0.00	C
25	MOTA	2340	N		A 312		21.910	47.244	36.095	1.00	0.00	N C
	MOTA	2341	CA		A 312		21.083	46.167	35.557	1.00	0.00	C
	MOTA	2342	С		A 312		20.067	46.703	34.550	$1.00 \\ 1.00$	0.00	0
	ATOM	2343	0		A 312		19.868	46.114	33.486 36.693	1.00	0.00	C
20	ATOM	2344	CB		A 312		20.363	45.429 47.823	34.887	1.00	0.00	N
30		2345	N		A 313		18.431	48.439	34.015	1.00	0.00	C
	MOTA	2346	CA		A 313		19.079	49.081	32.790	1.00	0.00	С
	MOTA	2347 2348	C O		A 313 A 313		18.541	49.017	31.682	1.00	0.00	0
	ATOM ATOM	2349	СВ		A 313		17.641	49.484	34.787	1.00	0.00	С
35		2350	N		A 314		20.226	49.716	32.996	1.00	0.00	N
	ATOM	2351	CA		A 314		20.941	50.358	31.896	1.00	0.00	С
	ATOM	2352	С		A 314		21.411	49.291	30.907	1.00	0.00	C
	MOTA	2353	0	ARG	A 314		21.307	49.464	29.691	1.00	0.00	0
	MOTA	2354	CB	ARG	A 314		22.147	51.130	32.435	1.00	0.00	C
40) ATOM	2355	CG		A 314		21.805	52.288	33.365	1.00	0.00	C C
	MOTA	2356	CD		A 314		21.451	53.557	32.599	1.00	0.00	N
	MOTA	2357	NE		A 314		20.085	53.557	32.090	1.00	0.00	C
	MOTA	2358	CZ		A 314		19.594	54.486	31.276 30.871	1.00	0.00	N
4.0	MOTA	2359			A 314		20.361	55.489 54.422	30.875	1.00	0.00	N
45		2360			A 314		18.334 21.919	48.184	31.439	1.00	0.00	N
	MOTA	2361	N CA		A 315 A 315		22.404	47.081	30.611	1.00	0.00	С
	MOTA	2362 2363	CA		A 315		21.270	46.457	29.815	1.00	0.00	С
	MOTA MOTA	2364	0		A 315		21.425	46.141	28.636	1.00	0.00	0
50		2365	CB		A 315		23.063	46.008	31.483	1.00	0.00	С
٥,	MOTA	2366	OG		A 315		24.249	46.498	32.083	1.00	0.00	0
	ATOM	2367	N		A 316		20.121	46.283	30.460	1.00	0.00	N
	ATOM	2368	CA		A 316		18.974	45.692		1.00	0.00	С
	ATOM	2369	С		A 316		18.605	46.540	28.573	1.00	0.00	С
5	5 ATOM	2370	0	ASP	A 316		18.311	46.009		1.00	0.00	0
	ATOM	2371	CB		A 316		17.793	45.593		1.00	0.00	C C
	ATOM	2372	CG		A 316		16.715	44.647		1.00	0.00	0
	ATOM	2373			A 316		17.040	43.482		1.00	0.00	0
	MOTA	2374			A 316		15.542	45.068		1.00	0.00	N
6		2375			A 317		18.633	47.861		1.00	0.00	C
	MOTA	2376	CA	LEU	A 317		18.318	48.766	27.638	1.00	0.00	C

Marie Adulta recent serves are alone for

									1 00	0 00	C
		MOTA	2377	С	LEU A 317	19.362	48.680	26.531	1.00	0.00	С
		ATOM	2378	0	LEU A 317	19.024	48.567	25.353	1.00	0.00	0
						18.246	50.214	28.133	1.00	0.00	С
		MOTA	2379	CB	LEU A 317						C
		ATOM	2380	CG	LEU A 317	16.879	50.764	28.537	1.00	0.00	
	5	ATOM	2381	CD1	LEU A 317	17.049	52.176	29.092	1.00	0.00	С
	•		2382		LEU A 317	15.952	50.777	27.330	1.00	0.00	С
		ATOM					48.738	26.918	1.00	0.00	N
		MOTA	2383	N	LEU A 318	20.632					
		MOTA	2384	CA	LEU A 318	21.725	48.693	25.952	1.00	0.00	C
		MOTA	2385	С	LEU A 318'	21.791	47.364	25.212	1.00	0.00	С
	10		2386	Ō	LEU A 318	21.826	47.329	23.981	1.00	0.00	0
	10	MOTA							1.00	0.00	С
		MOTA	2387	CB	LEU A 318	23.061	48.957	26.653			
		MOTA	2388	CG	LEU A 318	24.279	49.102	25.734	1.00	0.00	С
		MOTA	2389	CD1	LEU A 318	24.038	50.236	24.743	1.00	0.00	С
			2390		LEU A 318	25.528	49.371	26.569	1.00	0.00	С
	15	MOTA					46.268	25.962	1.00	0.00	N
	15	MOTA	2391	N	VAL A 319	21.815					C
		MOTA	2392	CA	VAL A 319	21.879	44.950	25.349	1.00	0.00	
		MOTA	2393	С	VAL A 319	20.740	44.769	24.351	1.00	0.00	С
		MOTA	2394	Ō	VAL A 319	20.922	44.165	23.297	1.00	0.00	0
							43.839	26.417	1.00	0.00	С
	••	MOTA	2395	CB	VAL A 319	21.820					C
	20	MOTA	2396	CG1	VAL A 319	21.629	42.483	25.755	1.00	0.00	
		ATOM	2397	CG2	VAL A 319	23.107	43.842	27.230	1.00	0.00	С
		ATOM	2398	N	ASP A 320	19.567	45.304	24.675	1.00	0.00	N
. ==						18.420	45.187	23.779	1.00	0.00	С
₹,೬,#		MOTA	2399	CA	ASP A 320				1.00	0.00	C
		ATOM	2400	С	ASP A 320	18.716	45.878	22.446			
4649	25	MOTA	2401	0	ASP A 320	18.350	45.378	21.382	1.00	0.00	0
4,8 %		MOTA	2402	CB	ASP A 320	17.179	45.794	24.435	1.00	0.00	C
			2403	CG	ASP A 320	15.976	45.789	23.522	1.00	0.00	С
848.8		MOTA						23.133	1.00	0.00	0
		MOTA	2404		ASP A 320	15.527	46.886				
(L)		ATOM	2405	OD2	ASP A 320	15.481	44.692	23.191	1.00	0.00	0
465%	30	ATOM	2406	N	GLN A 321	19.376	47.031	22.509	1.00	0.00	N
		ATOM	2407	CA	GLN A 321	19.741	47.761	21.298	1.00	0.00	С
E †						20.740	46.935	20.501	1.00	0.00	C
		MOTA	2408	С	GLN A 321				1.00	0.00	0
1,000		MOTA	2409	0	GLN A 321	20.630	46.816	19.279			
Į.		MOTA	2410	CB	GLN A 321	20.371	49.109	21.654	1.00	0.00	С
ESI II	35	MOTA	2411	CG	GLN A 321	19.366	50.146	22.102	1.00	0.00	С
	00		2412	CD	GLN A 321	18.323	50.413	21.040	1.00	0.00	C
		ATOM				18.645	50.834	19.926	1.00	0.00	0
2:100		MOTA	2413	OE1						0.00	N
		ATOM	2414	NE2	GLN A 321	17.062	50.164	21.375	1.00		
		MOTA	2415	N	TRP A 322	21.718	46.368	21.203	1.00	0.00	N
**	40	MOTA	2416	CA	TRP A 322	22.738	45.544	20.568	1.00	0.00	С
	10		2417	C	TRP A 322	22.133	44.351	19.837	1.00	0.00	С
		MOTA					44.081	18.685	1.00	0.00	0
		MOTA	2418	0	TRP A 322	22.476					c
		MOTA	2419	CB	TRP A 322	23.744	45.027	21.600	1.00	0.00	
		ATOM	2420	CG	TRP A 322	24.688	46.060	22.143	1.00	0.00	С
	45	ATOM	2421	CD1	TRP A 322	24.907	47.315	21.656	1.00	0.00	С
	10				TRP A 322	25.583	45.898	23.249	1.00	0.00	С
		ATOM	2422					22.390	1.00	0.00	N
		ATOM	2423		TRP A 322	25.887	47.945				
		MOTA	2424	CE2	TRP A 322	26.319	47.097	23.373	1.00	0.00	С
		MOTA	2425	CE3	TRP A 322	25.837	44.853	24.148	1.00	0.00	С
	50	ATOM	2426		TRP A 322	27.292	47.281	24.363	1.00	0.00	C
	50						45.034	25.132	1.00	0.00	C
		MOTA	2427		TRP A 322	26.805					C
		MOTA	2428	CH2	TRP A 322	27.520	46.240	25.230	1.00	0.00	
		ATOM	2429	N	LYS A 323	21.246	43.627	20.512	1.00	0.00	N
		ATOM	2430	CA	LYS A 323	20.621	42.461	19.899	1.00	0.00	C
	==					19.759	42.830	18.699	1.00	0.00	C
	55	ATOM	2431	С	LYS A 323						0
		MOTA	2432	0	LYS A 323	19.625	42.046	17.763	1.00	0.00	
		MOTA	2433	CB	LYS A 323	19.817	41.680	20.943	1.00	0.00	С
		ATOM	2434	CG	LYS A 323	20.730	40.891	21.882	1.00	0.00	С
						19.956	40.047	22.883	1.00	0.00	C
	(0	MOTA	2435	CD	LYS A 323			23.710	1.00	0.00	C
	60	MOTA	2436	CE	LYS A 323	20.914	39.198				
		ATOM	2437	NZ	LYS A 323	20.199	38.349	24.700	1.00	0.00	N

							. —		10 ====	1 00	0.00	.,
		MOTA	2438	N	LYS A 32		19.181	44.024	18.716	1.00	0.00	N
		ATOM	2439	CA	LYS A 32		18.376	44.457	17.581	1.00	0.00	C
		ATOM	2440	С	LYS A 32		19.313	44.754	16.415	1.00	0.00	C
	_	ATOM	2441	0	LYS A 32		19.041	44.373	15.276	1.00	0.00	0
	5	ATOM	2442	CB	LYS A 32		17.551	45.693	17.945	1.00	0.00	C
		MOTA	2443	CG	LYS A 32		16.374	45.365	18.855	1.00	0.00	C
		ATOM	2444	CD	LYS A 32		15.586	46.600	19.267	1.00	0.00	C C
		MOTA	2445	CE	LYS A 32		14.390	46.201	20.135	1.00	0.00	N
	4.0	MOTA	2446	ΝZ	LYS A 32		13.676	47.386	20.693	1.00	0.00	
	10	MOTA	2447	N	LYS A 32		20.430	45.417	16.700	1.00	0.00	N
		ATOM	2448	CA	LYS A 32		21.392	45.728	15.646	1.00	0.00	С
		MOTA	2449	С	LYS A 32		21.941	44.418	15.076	1.00	0.00	C
		ATOM	2450	0	LYS A 32		22.101	44.276	13.863	1.00	0.00	0
	4-	MOTA	2451	CB	LYS A 32		22.545	46.576	16.200	1.00	0.00	C C
	15	MOTA	2452	CG	LYS A 32		23.439	47.172	15.117	1.00	0.00	C
		MOTA	2453	CD	LYS A 3		24.583	47.999	15.701	1.00	0.00	C
		MOTA	2454	CE	LYS A 3		25.399	48.653	14.588	1.00	0.00	N
		MOTA	2455	NZ	LYS A 3		26.594	49.372	15.107	1.00	0.00	N
	20	MOTA	2456	N	ALA A 3		22.212	43.461 42.157	15.961 15.566	$1.00 \\ 1.00$	0.00	C
	20	MOTA	2457	CA	ALA A 3		22.746		14.587	1.00	0.00	c
		MOTA	2458	C	ALA A 3		21.847	41.398	13.831	1.00	0.00	o
1100P 100A		MOTA	2459	0	ALA A 3		22.321 22.993	41.302	16.805	1.00	0.00	c
R. Land		ATOM	2460	CB	ALA A 3		20.554	41.697	14.604	1.00	0.00	N
	25	ATOM	2461	N	GLU A 3		19.610	41.037	13.708	1.00	0.00	C
3,3 8	23	MOTA	2462	CA	GLU A 3:		19.823	41.409	12.248	1.00	0.00	C
		ATOM	2463	С	GLU A 3		19.823	40.705	11.345	1.00	0.00	Ō
Anna Anna		MOTA	2464	0	GLU A 3		18.173	41.375	14.099	1.00	0.00	C
1911		MOTA MOTA	2465 2466	CB CG	GLU A 3		17.644	40.575	15.262	1.00	0.00	С
3 1 <u>14</u> 7 4 572	30	ATOM	2460	CD	GLU A 3		17.587	39.091	14.952	1.00	0.00	С
	50	MOTA	2468		GLU A 3		16.900	38.710	13.981	1.00	0.00	0
33		ATOM	2469		GLU A 3		18.231	38.310	15.676	1.00	0.00	0
		ATOM	2470	N	LEU A 3		20.510	42.523	12.020	1.00	0.00	N
		ATOM	2471	CA	LEU A 3		20.750	42.989	10.663	1.00	0.00	С
191	35	MOTA	2472	C	LEU A 3		21.969	42.334	10.022	1.00	0.00	С
	00	ATOM	2473	0	LEU A 3		22.225	42.539	8.836	1.00	0.00	0
i sin		ATOM	2474	CB	LEU A 3		20.910	44.515	10.654	1.00	0.00	С
		MOTA	2475	CG	LEU A 3		19.804	45.321	11.345	1.00	0.00	C
g.,		ATOM	2476	CD1	LEU A 3	28	20.034	46.810	11.114	1.00	0.00	С
	40	MOTA	2477	CD2	LEU A 3	28	18.436	44.902	10.813	1.00	0.00	C
		MOTA	2478	N	TYR A 3	29	22.713	41.549	10.800	1.00	0.00	N
		ATOM	2479	CA	TYR A 3	29	23.906	40.872	10.291	1.00	0.00	C
		MOTA	2480	С	TYR A 3		23.843	39.349	10.449	1.00	0.00	C
		MOTA	2481	0	TYR A 3		22.952	38.823	11.121	1.00	0.00	0
	45	MOTA	2482	CB	TYR A 3		25.163	41.451	10.956	1.00	0.00	C
		ATOM	2483	CG	TYR A 3		25.356	42.922	10.639	1.00	0.00	C
		ATOM	2484		TYR A 3		24.736	43.912	11.407	1.00	0.00	C C
		ATOM	2485		TYR A 3		26.106	43.323	9.530	1.00	0.00	C
	-0	ATOM	2486		TYR A 3		24.857	45.263	11.077	1.00	0.00	C
	50	ATOM	2487		TYR A 3		26.231	44.670	9.192	1.00	0.00	C
		MOTA	2488	CZ	TYR A 3		25.604	45.634	9.969	1.00	0.00	0
		ATOM	2489	OH	TYR A 3		25.717	46.965	9.634	1.00	0.00	N
		MOTA	2490	N	ARG A 3		24.795	38.648	9.837	1.00	0.00	C
	EE	MOTA	2491	CA	ARG A 3		24.799	37.188	9.845 10.878	1.00	0.00	Č
	55	ATOM	2492	С	ARG A 3		25.619	36.414		1.00	0.00	0
		ATOM	2493	0	ARG A 3		25.375	35.225	11.076 8.442	1.00	0.00	C
		ATOM	2494	CB	ARG A 3		25.169	36.689	7.356	1.00	0.00	C
		ATOM	2495	CG	ARG A 3		24.273 24.492	37.270 36.623	5.994	1.00	0.00	C
	60	MOTA	2496	CD	ARG A 3		23.565	37.189	5.020	1.00	0.00	N
	OU	MOTA	2497	NE C7	ARG A 3		23.295	36.657	3.831	1.00	0.00	C
		ATOM	2498	CZ	ARG A 3	,50	23.233	50.057	3.031	~.00	3.00	ŭ

	ATOM	2499	NH1	ARG A	4 330	23.885	35.530	3.450	1.00	0.00	N
	MOTA	2500		ARG A		22.425		3.024	1.00	0.00	N
	MOTA	2501	N		A 331	26.590		11.528	1.00	0.00	N
	MOTA	2502	CA		A 331	27.386		12.520	1.00	0.00	C
5		2502			A 331	27.006		13.937	1.00	0.00	С
3	MOTA		C						1.00	0.00	Ō
	MOTA	2504	0		A 331	26.151			1.00	0.00	Č
	MOTA	2505	СВ		A 331	28.902					Ö
	MOTA	2506		THR		29.218			1.00	0.00	
	MOTA	2507	CG2	THR .	A 331	29.318		10.887	1.00	0.00	C
10	ATOM	2508	N	ASN .	A 332	27.651			1.00	0.00	N
	MOTA	2509	CA	ASN .	A 332	27.398	36.403	16.316	1.00	0.00	С
	ATOM	2510	С	ASN .	A 332	28.462	37.373	16.835	1.00	0.00	С
	ATOM	2511	0		A 332	28.720	37.454	18.038	1.00	0.00	0
	ATOM	2512	CB		A 332	27.379	35.109	17.150	1.00	0.00	С
15	ATOM	2513	CG		A 332	28.746		17.254	1.00	0.00	С
10	ATOM	2514			A 332	29.527	_		1.00	0.00	0
		2515			A 332	29.033			1.00	0.00	N
	ATOM					29.079			1.00	0.00	N
	ATOM	2516	N		A 333	30.098			1.00	0.00	C
20	MOTA	2517	CA		A 333				1.00	0.00	Ċ
20	MOTA	2518	С		A 333	29.524			1.00	0.00	Ō
	ATOM	2519	0		A 333	29.201					C
	MOTA	2520	CB		A 333	31.413			1.00	0.00	
	MOTA	2521			A 333	32.45			1.00	0.00	C
	ATOM	2522	CG2	VAL	A 333	31.925			1.00	0.00	C
25	MOTA	2523	N	LEU	A 334	29.40	41.361		1.00	0.00	N
	MOTA	2524	CA	LEU	A 334	28.81			1.00	0.00	C
	MOTA	2525	С	LEU	A 334	29.75	43.866	16.719	1.00	0.00	C
	MOTA	2526	0	LEU	A 334	30.46	43.988	17.715	1.00	0.00	0
	ATOM	2527	СВ		A 334	27.60	42.859	17.488	1.00	0.00	C
30	ATOM	2528	CG		A 334	26.79		17.332	1.00	0.00	С
00	ATOM	2529			A 334	26.07			1.00	0.00	С
	ATOM	2530			A 334	25.79			1.00	0.00	С
		2531	N N		A 335	29.74	_		1.00	0.00	N
	MOTA				A 335	30.58			1.00	0.00	С
35	ATOM	2532	CA		A 335				1.00	0.00	С
33	ATOM	2533	C						1.00	0.00	0
	MOTA	2534	0		A 335				1.00	0.00	C
	MOTA	2535	CB		A 335				1.00	0.00	C
	ATOM	2536	CG		A 335					0.00	C
40	MOTA	2537			A 335				1.00		C
4 0	MOTA	2538	CD2		A 335				1.00	0.00	N
	ATOM	2539	N		A 336				1.00	0.00	
	MOTA	2540	CA		A 336				1.00	0.00	C
	MOTA	2541	С		A 336				1.00	0.00	C
	MOTA	2542	0	ILE	A 336	31.43	6 50.244		1.00	0.00	0
45	MOTA	2543	CB	ILE	A 336	29.18	3 48.652		1.00	0.00	C
	ATOM	2544	CG1	ILE	A 336	28.16	0 47.507	19.331	1.00	0.00	C
	MOTA	2545	CG2	ILE	A 336	28.53	7 49.895	19.965	1.00	0.00	C
	MOTA	2546			A 336		1 47.848	18.628	1.00	0.00	С
	ATOM	2547	N		A 337			16.974	1.00	0.00	N
50	ATOM	2548	CA		A 337				1.00	0.00	C
50	ATOM	2549	C		A 337				1.00	0.00	С
		2550	Ö		A 337				1.00	0.00	0
	ATOM				A 337				1.00	0.00	C
	ATOM	2551	CB						1.00	0.00	C
==	ATOM	2552	CG		A 337				1.00	0.00	C
55	MOTA	2553	CD		A 337					0.00	N
	MOTA	2554	N		A 338				1.00	0.00	C
	MOTA	2555	CA		A 338				1.00		C
	MOTA	2556	С		A 338				1.00	0.00	
	MOTA	2557	0		A 338				1.00	0.00	0
60	ATOM	2558	CB		A 338				1.00	0.00	
	MOTA	2559	CG	LEU	A 338	32.10	8 54.86	5 22.461	1.00	0.00	С

	λ ITCM	2560	CD1	LEU A	338	30.606	54.919	22.707	1.00	0.00	C
	ATOM	2561		LEU A		32.827	54.315	23.693	1.00	0.00	С
	ATOM	2562	N N	GLY A		32.211	56.849	18.983	1.00	0.00	N
	ATOM	2562	CA	GLY A		32.924	58.091	18.731	1.00	0.00	С
5	ATOM	2564	CA	GLY A		32.131	59.114	17.943	1.00	0.00	С
5	ATOM			GLY A		30.970	58.889	17.596	1.00	0.00	0
	MOTA	2565	O N	ASP A		32.769	60.244	17.658	1.00	0.00	N
	ATOM	2566	N			32.141	61.329	16.919	1.00	0.00	С
	MOTA	2567	CA	ASP A		33.265	62.270	16.472	1.00	0.00	C
10	MOTA	2568	C	ASP A			61.949	16.626	1.00	0.00	0
10	MOTA	2569	0	ASP A		34.445	62.076	17.831	1.00	0.00	Č
	MOTA	2570	CB	ASP A		31.165	62.759	17.068	1.00	0.00	C
	MOTA	2571	CG	ASP A		30.043 30.242	63.118	15.886	1.00	0.00	Ö
	MOTA	2572		ASP A			62.952	17.664	1.00	0.00	0
4 F	MOTA	2573		ASP A		28.961	63.432	15.938	1.00	0.00	N
15	ATOM	2574	N	ASP A		32.902	64.396	15.468	1.00	0.00	C
	MOTA	2575	CA	ASP A		33.896	64.396	16.574	1.00	0.00	Ċ
	MOTA	2576	C	ASP A		34.810	65.379	17.612	1.00	0.00	0
	MOTA	2577	0	ASP A		34.343	65.593	14.803	1.00	0.00	Ċ
20	MOTA	2578	CB	ASP A		33.211		13.494	1.00	0.00	Ċ
20	MOTA	2579	CG	ASP F		32.537	65.230	13.454	1.00	0.00	0
	MOTA	2580		ASP F		32.491	64.027	12.799	1.00	0.00	Ö
	MOTA	2581		ASP F		32.053	66.150	16.330	1.00	0.00	N
	ATOM	2582	N	PHE P		36.113	64.813		1.00	0.00	C
25	ATOM	2583	CA	PHE F		37.128	65.274	17.264 18.717	1.00	0.00	c
25	MOTA	2584	С	PHE A		36.835	64.915	19.619	1.00	0.00	Ö
	MOTA	2585	0	PHE A		36.977	65.748	17.125	1.00	0.00	C
	MOTA	2586	CB	PHE A		37.314	66.788 67.213	15.781	1.00	0.00	Č
	ATOM	2587	CG	PHE A		37.850	67.554	14.743	1.00	0.00	C
20	ATOM	2588		PHE A		36.986	67.354	15.549	1.00	0.00	C
30	ATOM	2589		PHE A		39.223	67.234	13.492	1.00	0.00	Č
	ATOM	2590		PHE A		37.478	67.628	14.303	1.00	0.00	C
	ATOM	2591		PHE A		39.728 38.853	67.969	13.272	1.00	0.00	č
	ATOM	2592	CZ	PHE A		36.432	63.667	18.936	1.00	0.00	N
25	MOTA	2593	N	ARG A		36.138	63.187	20.278	1.00	0.00	C
35	ATOM	2594	CA	ARG A		37.402	62.725	20.993	1.00	0.00	Č
	ATOM	2595	С	ARG A		38.473	62.616	20.389	1.00	0.00	0
	ATOM	2596	0	ARG A		35.131	62.033	20.226	1.00	0.00	Ċ
	MOTA	2597	CB	ARG A		33.686	62.471	20.031	1.00	0.00	C
40	ATOM	2598	CG	ARG A	A 343	33.263	63.432	21.143	1.00	0.00	C
40	ATOM	2599	CD		A 343	31.836	63.740	21.103	1.00	0.00	N
	ATOM	2600	NE		A 343	30.892	63.005	21.682	1.00	0.00	С
	MOTA	2601 2602	CZ NU1	ARG		31.213	61.907	22.356	1.00	0.00	N
	MOTA			ARG A		29.621	63.374	21.591	1.00	0.00	N
45	MOTA				A 344	37.256	62.451	22.285	1.00	0.00	N
40	MOTA	2604	N			38.351	61.999	23.136	1.00	0.00	C
	ATOM	2605 2606	CA C		A 344 A 344	39.486	63.003	23.223	1.00	0.00	С
	ATOM	2607			A 344	40.661	62.653	23.089	1.00	0.00	0
	MOTA		O CB		A 344	38.864	60.640	22.660	1.00	0.00	C
50	MOTA	2608 2609	CG		A 344	37.858	59.544	22.816	1.00	0.00	С
50	MOTA	2610		PHE		37.086	59.128	21.737	1.00	0.00	C
	ATOM	2611		PHE		37.633	58.968	24.064	1.00	0.00	C
	ATOM	2612		PHE .		36.103	58.158	21.896	1.00	0.00	С
	MOTA	2613		PHE		36.650	57.996	24.234	1.00	0.00	С
55	MOTA				A 344	35.883	57.591	23.147	1.00	0.00	C
55	ATOM	2614	CZ			39.111	64.253	23.475	1.00	0.00	N
	MOTA	2615	N CA		A 345 A 345	40.055	65.352	23.591	1.00	0.00	C
	MOTA	2616			A 345	40.501	65.568	25.038	1.00	0.00	C
	ATOM	2617	С			41.691	65.581	25.328	1.00	0.00	0
60	MOTA	2618	0		A 345	39.411		23.056	1.00	0.00	C
60	MOTA	2619	CB		A 345 A 345	40.278	67.865	23.145	1.00	0.00	C
	MOTA	2620	CG	ьIS	A 343	40.276	07.005	20.110		03	-

								60 000	00 (50	1 00	0.00	С
	MOTA	2621	CD	LYS F	345	39	.504	69.083	22.658	1.00		
	MOTA	2622	CE	LYS A	345	40	.313	70.355	22.801	1.00	0.00	С
		2623	NZ	LYS F		30	.506	71.537	22.388	1.00	0.00	N
	MOTA										0.00	N
	MOTA	2624	N	GLN A	346		.540	65.728	25.941	1.00		
5	MOTA	2625	CA	GLN A	346	39	.839	65.965	27.350	1.00	0.00	С
_	ATOM	2626	С	GLN A	346	4.0	800.0	64.681	28.158	1.00	0.00	C
								63.676	27.889	1.00	0.00	0
	MOTA	2627	0	GLN A			352					
	ATOM	2628	CB	GLN A	346	38	3.722	66.800	27.973	1.00	0.00	C
	ATOM	2629	CG	GLN A	346	38	3.457	68.107	27.258	1.00	0.00	C
10								68.683	27.604	1.00	0.00	С
10	MOTA	2630	CD	GLN A			7.101					Ö
	MOTA	2631	OE1	GLN A	A 346	36	5.814	68.969	28.768	1.00	0.00	
	MOTA	2632	NE2	GLN A	346	36	5.252	68.850	26.593	1.00	0.00	N
				ASN A			.887	64.724	29.156	1.00	0.00	N
	MOTA	2633	N							1.00	0.00	С
	MOTA	2634	CA	ASN A	1 347		1.120	63.566	30.012			
15	MOTA	2635	С	ASN A	347	39	804	63.156	30.655	1.00	0.00	С
	MOTA	2636	0	ASN A	347	30	.493	61.968	30.765	1.00	0.00	0
								63.900	31.117	1.00	0.00	C
	ATOM	2637	CB	ASN A			2.127					
	MOTA	2638	CG	ASN A	A 347	4.3	3.499	64.205	30.577	1.00	0.00	C
	MOTA	2639	OD1	ASN A	347	4.4	1.098	63.384	29.882	1.00	0.00	0
20							1.014	65.391	30.893	1.00	0.00	N
20	MOTA	2640		ASN A								N
	MOTA	2641	N	THR A	A 348	39	9.036	64.153	31.079	1.00	0.00	
	MOTA	2642	CA	THR A	A 348	37	7.751	63.910	31.716	1.00	0.00	C
		2643	С		A 348		5.837	63.127	30.785	1.00	0.00	С
	MOTA								31.237	1.00	0.00	0
	MOTA	2644	0		A 348		5.042	62.300				
25	MOTA	2645	CB	THR A	A 348	31	7.070	65.234	32.110	1.00	0.00	С
	MOTA	2646	OG1	THR A	348	36	5.994	66.095	30.965	1.00	0.00	0
							7.860	65.925	33.215	1.00	0.00	С
	MOTA	2647		THR Z							0.00	N
	ATOM	2648	N	GLU A	A 349		6.957	63.383	29.484	1.00		
	MOTA	2649	CA	GLU A	A 349	3 (6.141	62.675	28.504	1.00	0.00	C
30	ATOM	2650	С	GLU	A 349	3 (6.553	61.209	28.426	1.00	0.00	С
00		2651	Ō		A 349		5.701	60.324	28.382	1.00	0.00	0
	MOTA									1.00	0.00	C
	MOTA	2652	CB		A 349		6.266	63.308	27.113			
	MOTA	2653	ÇG	GLU .	A 349	3	5.466	62.548	26.054	1.00	0.00	C
	ATOM	2654	CD		A 349	3	5.592	63.132	24.659	1.00	0.00	C
25							5.039	62.523	23.718	1.00	0.00	0
35	MOTA	2655		GLU .								0
	MOTA	2656	OE2	GLU .	A 349	3	6.237	64.188	24.499	1.00	0.00	
	MOTA	2657	N	TRP	A 350	3.	7.859	60.950	28.396	1.00	0.00	N
	ATOM	2658	CA		A 350	3:	8.334	59.575	28.339	1.00	0.00	С
									29.539	1.00	0.00	С
	ATOM	2659	С		A 350		7.800	58.804				
40	MOTA	2660	0	TRP	A 350	3.	7.307	57.683	29.405	1.00	0.00	0
	ATOM	2661	CB	TRP	A 350	3	9.865	59.515	28.342	1.00	0.00	С
		2662	CG		A 350		0.489	59.775	27.004	1.00	0.00	C
	MOTA								26.485	1.00	0.00	C
	ATOM	2663		TRP			0.855	60.987				
	ATOM	2664	CD2	TRP	A 350	4	0.786	58.802	25.998	1.00	0.00	C
45	ATOM	2665	NE.1	TRP	A 350		1.361	60.825	25.217	1.00	0.00	N
10							1.329	59.495	24.892	1.00	0.00	С
	ATOM	2666		TRP							0.00	C
	MOTA	2667		TRP		4	0.643	57.409	25.920	1.00		
	ATOM	2668	CZ2	TRP	A 350	4	1.729	58.842	23.722	1.00	0.00	С
	ATOM	2669		TRP		Δ	1.042	56.759	24.754	1.00	0.00	C
Ε0									23.672	1.00	0.00	C
50	MOTA	2670	CH2	TRP			1.578	57.477				
	MOTA	2671	N	ASP	A 351	3	7.897	59.416	30.714	1.00	0.00	N
	ATOM	2672	CA	ASP	A 351	3	7.427	58.778	31.937	1.00	0.00	C
							5.936	58.483	31.935	1.00	0.00	С
	ATOM	2673	С		A 351							0
	MOTA	2674	0		A 351		5.519	57.362	32.245	1.00	0.00	
55	ATOM	2675	CB	ASP	A 351	3	7.737	59.641	33.163	1.00	0.00	С
	ATOM	2676	CG		A 351		9.211	59.698	33.484	1.00	0.00	C
									33.255	1.00	0.00	0
	ATOM	2677			A 351		9.917	58.694				
	MOTA	2678	OD2	2 ASP	A 351	3	9.658	60.746	33.987	1.00	0.00	0
	MOTA	2679	N	VAL	A 352	3	5.131	59.484	31.593	1.00	0.00	N
60			CA		A 352		3.688	59.306	31.613	1.00	0.00	С
UU	ATOM	2680							30.637	1.00	0.00	С
	ATOM	2681	С	VAL	A 352	3	3.197	58.234	50.657	1.00	0.00	

							170				
	ATOM	2682	0	VAL A	352	32.238	57.520	30.930	1.00	0.00	0
	ATOM	2683	СВ	VAL A		32.951	60.650	31.362	1.00	0.00	С
	MOTA	2684	CG1	VAL A		32.874	60.957	29.875	1.00	0.00	С
	MOTA	2685	CG2	VAL A	352	31.570	60.606	31.997	1.00	0.00	С
5	MOTA	2686	N	GLN A	353	33.848	58.106	29.484	1.00	0.00	N
	MOTA	2687	CA	GLN A	353	33.436	57.084	28.527	1.00	0.00	С
	MOTA	2688	С	GLN A	353	33.959	55.709	28.960	1.00	0.00	C
	MOTA	2689	0	GLN A		33,206	54.735	28.981	1.00	0.00	0
	MOTA	2690	CB	GLN A	353	33.942	57.422	27.114	1.00	0.00	C
10	ATOM	2691	ÇG	GLN A	353	33.383	58.725	26.528	1.00	0.00	C
	MOTA	2692	CD	GLN A	353	31.939	58.612	26.048	1.00	0.00	C
	ATOM	2693	OE1	GLN A		31.114	57.942	26.669	1.00	0.00	0
	MOTA	2694	NE2	GLN A	353	31.626	59.289	24.943	1.00	0.00	N
	MOTA	2695	N	ARG A	354	35.239	55.631	29.320	1.00	0.00	N
15	MOTA	2696	CA	ARG A		35.834	54.359	29.734	1.00	0.00	C
	MOTA	2697	С	ARG A		35.243	53.759	31.008	1.00	0.00	C
	MOTA	2698	0	ARG A		34.879	52.583	31.030	1.00	0.00	0
	MOTA	2699	CB	ARG A		37.351	54.501	29.922	1.00	0.00	C
••	MOTA	2700	CG	ARG A		38.018	53.237	30.465	1.00	0.00	C
20	ATOM	2701	CD	ARG A		39.522	53.414	30.657	1.00	0.00	N
	MOTA	2702	NE	ARG A		39.847	54.424	31.664	1.00	0.00	C
	MOTA	2703	CZ	ARG A		39.646	54.280	32.972	1.00	0.00	N
	MOTA	2704		ARG A		39.117	53.161	33.449	1.00	0.00	N
25	MOTA	2705		ARG A		39.983	55.254	33.806	1.00	0.00	N
25	MOTA	2706	N	VAL A		35.155	54.563 54.082	32.065 33.343	1.00	0.00	c
	ATOM	2707	CA	VAL A		34.634	53.555	33.256	1.00	0.00	c
	MOTA	2708	С	VAL A		33.207 32.910	52.458	33.738	1.00	0.00	Ō
	ATOM	2709	0	VAL A		34.696	55.187	34.423	1.00	0.00	c
30	MOTA	2710 2711	CB CC1	VAL A		34.025	54.705	35.705	1.00	0.00	C
30	ATOM			VAL A		36.151	55.549	34.709	1.00	0.00	С
	MOTA	2712 2713	N	ASN A		32.321	54.331	32.647	1.00	0.00	N
	MOTA MOTA	2713	CA	ASN A		30.940	53.901	32.525	1.00	0.00	С
	ATOM	2715	C	ASN A		30.803	52.631	31.696	1.00	0.00	C
35	MOTA	2716	Ö	ASN A		30.020	51.746	32.042	1.00	0.00	0
30	MOTA	2717	CB	ASN A		30.091	55.033	31.953	1.00	0.00	С
	ATOM	2718	CG	ASN A		29.785	56.094	32.990	1.00	0.00	С
	ATOM	2719		ASN A		29.072	55.834	33.962	1.00	0.00	0
	ATOM	2720		ASN A		30.338	57.290	32.803	1.00	0.00	N
40	ATOM	2721	N	TYR A		31.568	52.522	30.613	1.00	0.00	N
	MOTA	2722	CA	TYR A		31.490	51.317	29.797	1.00	0.00	C
	ATOM	2723	С	TYR A	357	32.099	50.109	30.507	1.00	0.00	C
	MOTA	2724	0	TYR A	357	31.646	48.980	30.318	1.00	0.00	0
	MOTA	2725	CB	TYR A	357	32.144	51.538	28.427	1.00	0.00	С
45	MOTA	2726	CG	TYR A	357	31.150	52.056	27.413	1.00	0.00	С
	MOTA	2727	CD1	TYR A	357	30.957	53.425	27.225	1.00	0.00	C
	ATOM	2728		YYR A		30.339	51.172	26.701	1.00	0.00	С
	MOTA	2729		TYR A		29.978	53.901	26.355	1.00	0.00	C
	ATOM	2730	CE2	YYR A		29.355	51.635	25.835	1.00	0.00	C
50	MOTA	2731	CZ	TYR A		29.177	52.999	25.666	1.00	0.00	C
	MOTA	2732	OH	TYR A		28.192	53.452	24.820	1.00	0.00	0
	MOTA	2733	N	GLU A		33.115	50.339	31.330	1.00	0.00	N C
	MOTA	2734	CA	GLU A		33.719	49.235	32.072	1.00	0.00	C
	MOTA	2735	С	GLU A		32.679	48.654	33.037	1.00	0.00	0
55	MOTA	2736	0	GLU A		32.625	47.443	33.252	1.00	0.00	C
	MOTA	2737	CB	GLU A		34.938	49.712	32.863	1.00	0.00	C
	MOTA	2738	CG	GLU A		36.196	49.918	32.026	1.00	0.00	C
	ATOM	2739	CD	GLU A		37.382	50.357	32.867	1.00	0.00	0
60	ATOM	2740		L GLU A		37.246	50.416	34.108 32.293	1.00	0.00	0
60	ATOM	2741		2 GLU A		38.453 31.853	50.640 49.521	32.293	1.00	0.00	N
	ATOM	2742	N	ARG A	202	21.023	¬ ノ • J ← ⊥	55.017	1.00	3.00	• • • • • • • • • • • • • • • • • • • •

	MOTA	2743	CA	ARG A		30.816	49.068	34.545	1.00	0.00	C C
	MOTA	2744	С	ARG A		29.770	48.240	33.816	1.00	0.00	0
	MOTA	2745	0	ARG A		29.298	47.222	34.331	1.00	0.00	c
_	MOTA	2746	CB	ARG A		30.145	50.263	35.222	1.00	0.00	C
5	MOTA	2747	CG	ARG A		31.033	50.954	36.227	1.00	0.00	C
	MOTA	2748	CD	ARG A		30.421	52.258	36.699	1.00	0.00	
	MOTA	2749	NE	ARG A		31.337	52.979	37.576	1.00	0.00	N
	MOTA	2750	CZ	ARG A		31.406	54.303	37.650	1.00	0.00	С
	MOTA	2751		ARG A		30.608	55.050	36.895	1.00	0.00	N
10	MOTA	2752	NH2	ARG A		32.278	54.880	38.471	1.00	0.00	N
	MOTA	2753	N	LEU A	360	29.412	48.679	32.613	1.00	0.00	N
	MOTA	2754	CA	LEU A	360	28.429	47.965	31.810	1.00	0.00	С
	ATOM	2755	C	LEU A	360	28.953	46.595	31.389	1.00	0.00	C
	ATOM	2756	0	LEU A	360	28.221	45.606	31.441	1.00	0.00	0
15	MOTA	2757	CB	LEU A	360	28.058	48.789	30.576	1.00	0.00	C
	MOTA	2758	CG	LEU A	360	27.224	50.045	30.849	1.00	0.00	С
	MOTA	2759	CD1	LEU A	360	27.168	50.914	29.600	1.00	0.00	С
	ATOM	2760	CD2	LEU A	360	25.818	49.640	31.287	1.00	0.00	С
	MOTA	2761	N	PHE A	361	30.217	46.537	30.975	1.00	0.00	N
20	MOTA	2762	CA	PHE A	361	30.830	45.276	30.559	1.00	0.00	С
	MOTA	2763	C	PHE A	361	30.896	44.266	31.706	1.00	0.00	С
	ATOM	2764	0	PHE A	361	30.557	43.094	31.530	1.00	0.00	0
	ATOM	2765	CB	PHE A	361	32.252	45.513	30.035	1.00	0.00	C
	ATOM	2766	CG	PHE A		32.316	46.321	28.766	1.00	0.00	С
25	ATOM	2767	CD1	PHE A		33.510	46.923	28.376	1.00	0.00	С
	ATOM	2768		PHE A		31.191	46.482	27.963	1.00	0.00	С
	ATOM	2769		PHE A		33.584	47.674	27.206	1.00	0.00	С
	ATOM	2770		PHE A		31.253	47.232	26.787	1.00	0.00	С
	ATOM	2771	CZ	PHE A	361	32.451	47.828	26.410	1.00	0.00	С
30	MOTA	2772	N	GLU A		31.346	44.712	32.876	1.00	0.00	N
	MOTA	2773	CA	GLU A	362	31.456	43.803	34.013	1.00	0.00	C
	MOTA	2774	С	GLU A		30.106	43.174	34.341	1.00	0.00	С
	MOTA	2775	0	GLU A	362	30.012	41.966	34.554	1.00	0.00	0
	MOTA	2776	СВ	GLU A	362	31.991	44.526	35.252	1.00	0.00	С
35	MOTA	2777	CG	GLU A	362	32.334	43.567	36.393	1.00	0.00	C
	ATOM	2778	CD	GLU A	362	32.739	44.280	37.669	1.00	0.00	С
	ATOM	2779	OE1	GLU A		33.486	45.274	37.581	1.00	0.00	0
	MOTA	2780		GLU A		32.321	43.836	38.761	1.00	0.00	0
	ATOM	2781	N	HIS A	363	29.062	43.994	34.375	1.00	0.00	N
40	ATOM	2782	CA	HIS A	363	27.731	43.489	34.679	1.00	0.00	С
	MOTA	2783	С	HIS A	363	27.232	42.536	33.598	1.00	0.00	С
	MOTA	2784	0	HIS A	363	26.919	41.376	33.869	1.00	0.00	0
	MOTA	2785	CB	HIS A	363	26.735	44.641	34.817	1.00	0.00	С
	ATOM	2786	CG	HIS A	363	25.354	44.197	35.187	1.00	0.00	С
45	ATOM	2787	ND1	HIS A	363	25.047	43.680	36.428	1.00	0.00	N
	MOTA	2788		HIS A		24.205	44.159	34.469	1.00	0.00	С
	ATOM	2789		HIS A		23.769	43.343	36.458	1.00	0.00	С
	ATOM	2790		HIS A		23.236	43.624	35.283	1.00	0.00	N
	MOTA	2791	N	ILE A		27.159	43.037	32.371	1.00	0.00	N
50	ATOM	2792	CA	ILE A		26.677	42.245	31.250	1.00	0.00	С
	ATOM	2793	С	ILE A		27.396	40.910	31.084	1.00	0.00	С
	ATOM	2794	0	ILE A		26.751	39.871	30.935	1.00	0.00	0
	ATOM	2795	СВ	ILE A		26.782	43.039	29.931	1.00	0.00	С
	ATOM	2796		ILE A		25.893	44.286	30.006	1.00	0.00	С
55	ATOM	2797		ILE A		26.360	42.157	28.753	1.00	0.00	С
	ATOM	2798		ILE A		26.022	45.206	28.813	1.00	0.00	C
	ATOM	2799	N	ASN A		28.724	40.929	31.119	1.00	0.00	N
	ATOM	2800	CA	ASN A		29.489	39.699	30.943	1.00	0.00	С
	ATOM	2801	C	ASN A		29.351	38.702	32.094	1.00	0.00	С
60	MOTA	2802	Ó	ASN A		29.660	37.523	31.929	1.00	0.00	0
~~	MOTA	2803	СВ	ASN A		30.968	40.020	30.714	1.00	0.00	C
	,,,,	2000	22								

			0004	00	7017 7	265	21 100	9 40.887	29.488	1.00	0.00	С
		ATOM	2804		ASN A		31.189		28.658	1.00	0.00	Ö
		MOTA	2805		ASN A		30.295			1.00	0.00	N
		MOTA	2806		ASN A		32.385		29.366			N
	-	MOTA	2807	N	SER A		28.87		33.247	1.00	0.00	
	5	ATOM	2808	CA	SER A		28.710		34.407	1.00	0.00	C
		MOTA	2809	C	SER A		27.26		34.581	1.00	0.00	C
		MOTA	2810	0	SER A	366	26.95	7 37.032	35.458	1.00	0.00	0
		MOTA	2811	CB	SER A	366	29.18	7 39.001	35.682	1.00	0.00	C
		ATOM	2812	OG	SER A	366	28.37	5 40.123	35.976	1.00	0.00	0
	10	ATOM	2813	N	GLN A	367	26.370	38.361	33.745	1.00	0.00	N
		ATOM	2814	CA	GLN A	367	24.95	37.997	33.786	1.00	0.00	С
		ATOM	2815	С	GLN A		24.66	37.028	32.642	1.00	0.00	С
		ATOM	2816	0	GLN A		24.32		31.532	1.00	0.00	0
		ATOM	2817		GLN A		24.07	7 39.244	33.646	1.00	0.00	С
	15	ATOM	2818	CG	GLN A		24.10		34.852	1.00	0.00	С
	10	MOTA	2819	CD	GLN A		23.51		36.092	1.00	0.00	C
		MOTA	2820		GLN A		22.33		36.121	1.00	0.00	0
		ATOM	2821		GLN A		24.34		37.122	1.00	0.00	N
		ATOM	2822	N	ALA A		24.78		32.928	1.00	0.00	N
	20	MOTA	2823		ALA A		24.55		31.937	1.00	0.00	С
	20		2824	C	ALA A		23.29		31.087	1.00	0.00	Ċ
		MOTA	2825		ALA A		23.23		29.888	1.00	0.00	0
		MOTA		0			24.53		32.629	1.00	0.00	c
1,21		ATOM	2826		ALA A		22.20		31.699	1.00	0.00	N
D	25	ATOM	2827	N			20.94		30.973	1.00	0.00	C
199	23	MOTA	2828	CA	HIS A				29.748	1.00	0.00	C
		ATOM	2829	С	HIS A		21.06 20.22		28.852	1.00	0.00	Ö
9,655 9,63		ATOM	2830	0	HIS A				31.920	1.00	0.00	Č
		ATOM	2831	CB	HIS A		19.85		32.344	1.00	0.00	C
14	20	ATOM	2832	CG	HIS A		20.04		31.589	1.00	0.00	И
	30	ATOM	2833		HIS A		19.59		33.435	1.00	0.00	C
		MOTA	2834		HIS A		20.63				0.00	C
R) 2045		MOTA	2835		HIS A		19.90		32.198	1.00	0.00	N
		MOTA	2836		HIS A		20.54		33.319 29.707	1.00	0.00	N
	25	MOTA	2837	N	PHE A		22.10		28.569	1.00	0.00	C
	35	MOTA	2838	CA	PHE A		22.31		27.422	1.00	0.00	C
in.		ATOM	2839	С	PHE A		22.95			1.00	0.00	Ö
g stage		ATOM	2840	0	PHE A		22.68		26.254	1.00	0.00	C
i sui		ATOM	2841	CB	PHE A		23.23		28.952		0.00	C
ĝs ŭ	40	MOTA	2842	CG	PHE A		22.53		29.675	$1.00 \\ 1.00$	0.00	C
	40	MOTA	2843		PHE P		23.08		30.829			C
		MOTA	2844		PHE F		21.34		29.188	1.00	0.00	C
		ATOM	2845		PHE P		22.46		31.490	1.00	0.00	c
		ATOM	2846		PHE P		20.71		29.842	1.00	0.00	C
	4 =	MOTA	2847		PHE P		21.27		30.995	1.00	0.00	
	45	MOTA	2848	N	ASN F		23.79		27.773	1.00	0.00	И С
		MOTA	2849	CA	ASN A		24.50		26.791	1.00	0.00	C
		MOTA	2850	С	ASN A		25.30		25.854	1.00	0.00	
		MOTA	2851	0	ASN F		25.32		24.637	1.00	0.00	0
		MOTA	2852	CB	ASN A		23.51		26.007	1.00	0.00	C
	50	MOTA	2853	CG	ASN A		22.86		26.875	1.00	0.00	C
		MOTA	2854		ASN A		23.54		27.405	1.00	0.00	0
		ATOM	2855	ND2	ASN A		21.55		27.031	1.00	0.00	N
		MOTA	2856	N	VAL A	372	25.96		26.451	1.00	0.00	N
		ATOM	2857	CA	VAL A		26.77		25.725	1.00	0.00	C
	55	MOTA	2858	C	VAL A		28.14		26.374	1.00	0.00	С
		MOTA	2859	0	VAL A		28.27		27.597	1.00	0.00	0
		MOTA	2860	СВ	VAL A		26.09		25.702	1.00	0.00	C
		MOTA	2861		VAL A		27.06		25.161	1.00	0.00	C
		MOTA	2862	CG2	VAL A	372	24.83		24.858	1.00	0.00	C
	60	MOTA	2863	N	GLN A	373	29.15		25.539	1.00	0.00	N
		MOTA	2864	CA	GLN A	373	30.52	3 38.980	25.997	1.00	0.00	С

			_		0.70	20 022	10 007	25 204	1 00	0.00	C
	MOTA	2865	С	GLN A		30.933	40.267	25.284	1.00	0.00	C
	MOTA	2866	0	GLN A	373	31.176	40.262	24.081	1.00	0.00	0
	ATOM	2867	CB	GLN A		31.438	37.822	25.583	1.00	0.00	С
	ATOM	2868	CG	GLN A		32.919	38.014	25.925	1.00	0.00	С
E							38.334	27.398	1.00	0.00	Ċ
5	MOTA	2869	CD	GLN A		33.155					
	MOTA	2870	OE1	GLN A	373	32.519	37.757	28.281	1.00	0.00	0
	MOTA	2871	NE2	GLN A	373	34.082	39.248	27.665	1.00	0.00	N
	ATOM	2872	N	ALA A		30.985	41.369	26.025	1.00	0.00	N
							42.660	25.444	1.00	0.00	С
10	ATOM	2873	CA	ALA A		31.329					
10	MOTA	2874	С	ALA A		32.665	43.201	25.939	1.00	0.00	C
	MOTA	2875	0	ALA A	374	33.048	42.987	27.087	1.00	0.00	0
	ATOM	2876	CB	ALA A	374	30.221	43.668	25.747	1.00	0.00	С
		2877	N	GLN A		33.369	43.917	25.068	1.00	0.00	N
	ATOM							25.437	1.00	0.00	C
1 -	MOTA	2878	CA	GLN A		34.653	44.500				
15	ATOM	2879	С	GLN A	375	35.084	45.552	24.429	1.00	0.00	C
	MOTA	2880	0	GLN A	375	34.526	45.641	23.336	1.00	0.00	0
	MOTA	2881	CB	GLN A	375	35.739	43.421	25.506	1.00	0.00	С
				GLN A		35.930	42.638	24.209	1.00	0.00	С
	ATOM	2882	CG								č
••	MOTA	2883	CD	GLN A		35.048	41.409	24.145	1.00	0.00	
20	MOTA	2884	OE1	GLN A	375	35.186	40.494	24.962	1.00	0.00	0
	MOTA	2885	NE2	GLN A	375	34.131	41.379	23.180	1.00	0.00	N
	MOTA	2886	N	PHE A		36.070	46.359	24.810	1.00	0.00	N
				PHE A		36.600	47.362	23.900	1.00	0.00	С
	MOTA	2887	CA								c
	MOTA	2888	С	PHE A		37.395	46.571	22.874	1.00	0.00	
25	MOTA	2889	0	PHE A	376	38.023	45.567	23.212	1.00	0.00	0
	MOTA	2890	CB	PHE A	376	37.540	48.327	24.630	1.00	0.00	С
	ATOM	2891	CG	PHE A		36.846	49.231	25.606	1.00	0.00	С
		2892		PHE A		37.245	49.273	26.936	1.00	0.00	С
	MOTA									0.00	Ċ
20	MOTA	2893		PHE A		35.797	50.049	25.194	1.00		
30	ATOM	2894	CE1	PHE A	376	36.611	50.114	27.846	1.00	0.00	C
	ATOM	2895	CE2	PHE A	376	35.156	50.896	26.100	1.00	0.00	С
	ATOM	2896	CZ	PHE A		35.567	50.926	27.429	1.00	0.00	С
		2897	N	GLY A		37.366	47.011	21.622	1.00	0.00	N
	MOTA									0.00	C
~=	MOTA	2898	CA	GLY A		38.115	46.309	20.598	1.00		
35	MOTA	2899	С	GLY A	377	38.540	47.242	19.486	1.00	0.00	С
	ATOM	2900	0	GLY A	377	38.222	48.431	19.510	1.00	0.00	0
	MOTA	2901	N	THR A		39.277	46.706	18.521	1.00	0.00	N
		2902	CA	THR A		39.716	47.493	17.380	1.00	0.00	С
	MOTA									0.00	Ċ
40	ATOM	2903	С	THR A		38.965	46.972	16.164	1.00		
4 0	MOTA	2904	0	THR A	378	38.287	45.940	16.235	1.00	0.00	0
	MOTA	2905	CB	THR A	378	41.229	47.347	17.123	1.00	0.00	С
	ATOM	2906	OG1			41.521	46.002	16.731	1.00	0.00	0
	ATOM	2907		THR A		42.017	47.693	18.379	1.00	0.00	С
						39.082	47.684	15.052	1.00	0.00	N
4 ==	ATOM	2908	N	LEU A							
45	ATOM	2909	CA	LEU A		38.408	47.287	13.825	1.00	0.00	С
	ATOM	2910	С	LEU A	. 379	38.898	45.923	13.337	1.00	0.00	С
	ATOM	2911	0	LEU A		38.102	45.072	12.931	1.00	0.00	0
	ATOM	2912	СB	LEU A		38.645	48.338	12.739	1.00	0.00	C
						37.862		11.447	1.00	0.00	C
Ε0	ATOM	2913	CG	LEU A							
50	ATOM	2914		LEU A		36.364	48.180	11.746	1.00	0.00	C
	ATOM	2915	CD2	LEU A	. 379	38.261	49.198	10.432	1.00	0.00	C
	ATOM	2916	N	GLN A	380	40.211	45.714	13.383	1.00	0.00	N
	ATOM	2917	CA	GLN A		40.783		12.936	1.00	0.00	C
						40.287		13.794	1.00	0.00	C
EE	ATOM	2918	C	GLN A							
55	MOTA	2919	0	GLN A		40.051	42.189	13.287	1.00	0.00	0
	MOTA	2920	CB	GLN A	380	42.311	44.512	12.982	1.00	0.00	С
	MOTA	2921	CG	GLN A	380	42.989	43.294	12.377	1.00	0.00	С
	ATOM	2922	CD	GLN A		42.587		10.931	1.00	0.00	C
						42.667		10.104	1.00	0.00	0
(0	MOTA	2923		GLN A							
60	MOTA	2924		GLN A		42.156		10.616	1.00	0.00	N
	MOTA	2925	N	GLU A	381	40.133	43.527	15.094	1.00	0.00	N

		ATOM	2926	CA	GLU	A 381	39.659	42.481	15.990	1.00	0.00	C
							38.258	42.049	15.576	1.00	0.00	C
		ATOM	2927	С		A 381						
		MOTA	2928	0	GLU	A 381	37.941	40.862	15.576	1.00	0.00	0
		ATOM	2929	CB	GLU	A 381	39.653	42.969	17.444	1.00	0.00	С
	5	ATOM	2930			A 381	41.045	43.317	17.967	1.00	0.00	С
	9			CG								
		ATOM	2931	CD	GLU	A 381	41.068	43.599	19.460	1.00	0.00	С
		MOTA	2932	OE 1	GLU	A 381	40.251	44.411	19.931	1.00	0.00	0
		ATOM	2933	OE2		A 381	41.919	43.012	20.161	1.00	0.00	0
		MOTA	2934	N	TYR	A 382	37.420	43.019	15.225	1.00	0.00	N
	10	MOTA	2935	CA	TYR	A 382	36.065	42.716	14.794	1.00	0.00	С
		ATOM	2936	С		A 382	36.081	41.821	13.554	1.00	0.00	С
		MOTA	2937	0	TYR	A 382	35.454	40.762	13.530	1.00	0.00	0
		ATOM	2938	CB	TYR	A 382	35.300	43.999	14.464	1.00	0.00	С
		ATOM	2939	CG		A 382	33.991	43.723	13.760	1.00	0.00	С
	1 🗆											
	15	MOTA	2940	CD1	TYR	A 382	32.937	43.095	14.429	1.00	0.00	С
		MOTA	2941	CD2	TYR	A 382	33.830	44.020	12.405	1.00	0.00	С
		MOTA	2942	CE1	ጥV₽	A 382	31.754	42.762	13.764	1.00	0.00	С
		MOTA	2943	CE2	TYR	A 382	32.654	43.691	11.731	1.00	0.00	С
		MOTA	2944	CZ	TYR	A 382	31.622	43.058	12.418	1.00	0.00	С
	20	ATOM	2945	OH	TYR	A 382	30.469	42.701	11.750	1.00	0.00	0
, ; ; ;		MOTA	2946	N		A 383	36.791	42.257	12.519	1.00	0.00	N
		MOTA	2947	CA	PHE	A 383	36.859	41.488	11.282	1.00	0.00	С
1, 1772		MOTA	2948	С	PHE	A 383	37.454	40.088	11.470	1.00	0.00	С
			2949				36.976	39.122	10.870	1.00	0.00	0
1,11	25	MOTA		0		A 383						
	25	MOTA	2950	CB	PHE	A 383	37.648	42.269	10.220	1.00	0.00	С
1,3 8		MOTA	2951	CG	PHE	A 383	36.872	43.407	9.599	1.00	0.00	С
		ATOM	2952			A 383	37.365	44.705	9.641	1.00	0.00	С
11144												
		MOTA	2953			A 383	35.655	43.173	8.962	1.00	0.00	С
		MOTA	2954	CE1	PHE	A 383	36.662	45.762	9.057	1.00	0.00	С
3 450	30	ATOM	2955	CE2	PHE	A 383	34.938	44.218	8.372	1.00	0.00	С
137	00					A 383	35.444	45.518	8.419	1.00	0.00	C
		MOTA	2956	CZ								
#1		MOTA	2957	N	ASP	A 384	38.490	39.968	12.297	1.00	0.00	N
1		MOTA	2958	CA	ASP	A 384	39.094	38.655	12.535	1.00	0.00	С
. 1941		ATOM	2959	С		A 384	38.050	37.702	13.109	1.00	0.00	С
n Min	35											
	33	MOTA	2960	0		A 384	37.958	36.545	12.699	1.00	0.00	0
		MOTA	2961	CB	ASP	A 384	40.266	38.753	13.514	1.00	0.00	С
il cells		ATOM	2962	CG	ASP	A 384	41.499	39.382	12.897	1.00	0.00	С
		ATOM	2963			A 384	41.577	39.469	11.652	1.00	0.00	0
		MOTA	2964	OD2		A 384	42.400	39.775	13.667	1.00	0.00	0
,	40	ATOM	2965	N	ALA	A 385	37.261	38.198	14.057	1.00	0.00	N
		ATOM	2966	CA	AT.A	A 385	36.223	37.391	14.691	1.00	0.00	С
												C
		MOTA	2967	С		A 385	35.143	37.007	13.684	1.00	0.00	
		MOTA	2968	0	ALA	A 385	34.686	35.863	13.652	1.00	0.00	0
		MOTA	2969	CB	ALA	A 385	35.605	38.155	15.862	1.00	0.00	С
	45	MOTA	2970	N	772\T.	A 386	34.731	37.965	12.862	1.00	0.00	N
	10											
		MOTA	2971	CA		A 386	33.715	37.695	11.851	1.00	0.00	С
		MOTA	2972	С	VAL	A 386	34.149	36.546	10.939	1.00	0.00	С
		MOTA	2973	0	VAT.	A 386	33.385	35.608	10.689	1.00	0.00	0
						A 386		38.938	10.982	1.00	0.00	C
	EΩ	ATOM	2974	СВ			33.447					
	50	ATOM	2975	CG1	VAL	A 386	32.555	38.564	9.794	1.00	0.00	С
		MOTA	2976	CG2	VAL	A 386	32.782	40.018	11.823	1.00	0.00	С
		MOTA	2977	N		A 387	35.379	36.612	10.447	1.00	0.00	N
		MOTA	2978	CA		A 387	35.867	35.570	9.562	1.00	0.00	С
		ATOM	2979	С	HIS	A 387	36.092	34.244	10.280	1.00	0.00	С
	55	ATOM	2980	0	HTS	A 387	36.062	33.181	9.657	1.00	0.00	0
	55								8.843			
		MOTA	2981	CB		A 387	37.125	36.055		1.00	0.00	С
		MOTA	2982	CG	HIS	A 387	36.852	37.170	7.882	1.00	0.00	С
		MOTA	2983	ND1	HIS	A 387	36.009	37.024	6.800	1.00	0.00	N
			2984			A 387	37.263	38.461	7.867	1.00	0.00	С
	60	ATOM										
	60	MOTA	2985			A 387	35.912	38.177	6.162	1.00	0.00	С
		MOTA	2986	NE2	HIS	A 387	36.663	39.065	6.790	1.00	0.00	N

ATOM 2989 C GLN 3 388 35.304 34.303 11.590 1.00 0.00 C C ATOM 2989 C GLN 3 388 35.105 32.397 12.401 1.00 0.00 C C ATOM 2999 C GLN 3 388 35.105 32.397 12.401 1.00 0.00 C C ATOM 2999 C GLN 3 388 35.007 31.173 12.317 1.00 0.00 C C ATOM 2999 C GLN 3 388 35.007 31.173 13.789 1.00 0.00 C C ATOM 2999 C GLN 3 388 38.442 33.684 31.910 1.00 0.00 C C ATOM 2999 C GLN 3 388 38.442 33.684 31.910 1.00 0.00 C C ATOM 2999 C GLN 3 388 38.446 34.342 15.235 1.00 0.00 C C ATOM 2999 C GLN 3 388 38.446 34.342 15.235 1.00 0.00 C C ATOM 2999 NB2 GLN 3 388 38.248 34.024 15.235 1.00 0.00 C C ATOM 2999 NB2 GLN 3 388 39.783 35.256 15.194 1.00 0.00 C C ATOM 2999 NB2 GLN 3 388 39.783 35.256 15.194 1.00 0.00 C C ATOM 2999 C ALA 3 389 32.486 32.674 12.508 1.00 0.00 C C ATOM 2999 C ALA 3 389 32.486 32.674 12.508 1.00 0.00 C C ATOM 2999 C ALA 3 389 32.486 32.674 12.598 1.00 0.00 C C ATOM 2999 C ALA 3 389 32.486 32.404 11.050 1.00 0.00 C C ATOM 2999 C ALA 3 389 32.486 32.674 12.598 1.00 0.00 C C ATOM 2999 C ALA 3 389 32.486 32.674 12.506 1.00 0.00 C C ATOM 3000 C GLA 3 390 32.686 32.898 8 1.00 1.00 0.00 C C ATOM 3000 C GLA 3 390 32.686 32.898 8 1.00 0.00 C C ATOM 3000 C GLA 3 390 32.696 32.898 8 1.00 0.00 C C ATOM 3000 C GLA 3 30 33.197 31.033 8.497 1.00 0.00 C C ATOM 3000 C GLA 3 30 30 32.593 32.898 8 1.481 1.00 0.00 C C ATOM 3000 C GLA 3 30 30 32.593 32.898 8 1.481 1.00 0.00 C C ATOM 3000 C GLA 3 30 30 32.593 32.898 8 1.481 1.00 0.00 C C ATOM 3000 C GLA 3 30 30 32.593 32.484 8 1.481 1.00 0.00 C C ATOM 3000 C GLA 3 30 30 32.593 32.447 32.500 1.00 0.00 C C ATOM 3000 C GLA 3 30 30 32.593 32.447 32.500 1.00 0.00 C C ATOM 3001 C GLA 3 30 30 32.593 32.447 32.500 1.00 0.00 C C ATOM 3001 C GLA 3 30 30 32.593 32.447 32.500 0.00 C C ATOM 3001 C GLA 3 30 30 32.593 32.447 32.500 0.00 C C ATOM 3001 C GLA 3 30 30 32.593 32.447 32.500 0.00 C C ATOM 3001 C GLA 3 30 30 32.447 32.500 0.00 C C ATOM 3001 C GLA 3 30 30 32.447 32.400 0.00 C C ATOM 3001 C GLA 3 30 30 32.447 32.400 0.00 C C ATOM 3001 C GLA 3 30 30 32.447 32.400 0.00 C C ATOM 3001 C C ARGA 3 31 33 33.4												
ATOM 2999 C GIN A 388 35.105 32.397 12.401 1.00 0.00 C C ATOM 2991 CB GIN A 388 35.943 33.411 13.789 1.00 0.00 C C ATOM 2992 CB GIN A 388 38.442 33.684 3.910 1.00 0.00 C C ATOM 2993 CD GIN A 388 38.442 33.684 3.910 1.00 0.00 C C ATOM 2994 CE GIN A 388 38.816 34.422 15.235 1.00 0.00 C C ATOM 2995 CD GIN A 388 38.816 34.422 15.235 1.00 0.00 C C ATOM 2995 NE2 GIN A 388 39.783 35.256 15.194 1.00 0.00 N ATOM 2995 CA AIA A 389 39.783 35.256 15.194 1.00 0.00 C ATOM 2995 CA AIA A 389 32.686 22.674 12.536 1.00 0.00 C C ATOM 2995 CA AIA A 389 32.686 22.674 12.536 1.00 0.00 C C ATOM 2995 CA AIA A 389 31.688 31.064 11.605 1.00 0.00 C C ATOM 2995 CA AIA A 389 31.688 31.064 11.605 1.00 0.00 C C ATOM 2995 CA AIA A 389 31.688 31.684 31.6		MOTA	2987	N	GLN A	388	36.304	34.303				
ATCM		ATOM	2988	CA	GLN A	388	36.474			1.00		
S		MOTA	2989	C	GLN A	388	35.105	32.397		1.00	0.00	
ATOM 2992 CG GLIN A 388 38.442 33.684 13.910 1.00 0.00 C ATOM 2994 OEI GLIN A 388 38.248 34.024 16.281 1.00 0.00 C ATOM 2995 NP2 GLIN A 388 38.248 34.024 16.281 1.00 0.00 N ATOM 2995 NP2 GLIN A 389 33.7873 35.256 15.194 1.00 0.00 N ATOM 2997 CA ALA A 389 32.686 32.674 12.536 1.00 0.00 N ATOM 2999 CA ALA A 389 32.686 32.674 12.536 1.00 0.00 C ATOM 2999 CA ALA A 389 32.686 32.674 12.536 1.00 0.00 C ATOM 2999 OA ALA A 389 31.688 31.684 11.655 1.00 0.00 C ATOM 3000 CA ALA A 389 31.688 31.684 11.655 1.00 0.00 C ATOM 3000 CA ALA A 389 31.688 31.684 11.655 1.00 0.00 C ATOM 3001 N GLIU A 390 32.595 32.388 8.743 1.00 0.00 C ATOM 3002 CA GLIU A 390 32.595 32.388 8.743 1.00 0.00 C ATOM 3003 CA GLIU A 390 33.159 31.033 8.487 1.00 0.00 C ATOM 3004 CA GLIU A 390 33.159 33.445 7.798 1.00 0.00 C ATOM 3005 CB GLIU A 390 33.555 33.036 6.331 1.00 0.00 C ATOM 3005 CB GLIU A 390 33.555 33.036 6.331 1.00 0.00 C ATOM 3006 CB GLIU A 390 33.455 33.445 7.798 1.00 0.00 C ATOM 3008 CB GLIU A 390 33.457 34.487 7.998 1.00 0.00 C ATOM 3009 CE GLIU A 390 33.447 34.275 4.292 1.00 0.00 C ATOM 3009 CE GLIU A 390 33.447 34.275 4.292 1.00 0.00 C ATOM 3010 CA ATOM 3010 CA ATOM 3010 CA ATOM 3011 CA ARG 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3012 CA ARG 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3013 CA ARG 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CC ARG 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CC ARG 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3016 CC ARG 391 31.636 31.636 1.00 0.00 C ATOM 3016 CC	_			0								
ATCM 2993 CD GLN A 388 38.816 34.342 15.235 1.00 0.00 C C ATCM 2995 OPE1 GLN A 388 39.783 35.256 15.194 1.00 0.00 N ATCM 2995 NAL	5											
ATCM 2994 OSI GLIN A 388 38-248 34.024 16.281 1.00 0.00 O. N												
National Color												
ATOM 2995 N ALA A 389												
ATOM 2997 CA ALA A 389 32.686 32.674 12.536 1.00 0.00 C ATOM 2999 O ALA A 389 31.688 31.064 11.050 1.00 0.00 C ATOM 2999 O ALA A 389 31.688 31.064 11.050 1.00 0.00 C ATOM 3000 CB ALA A 389 31.705 33.780 12.911 1.00 0.00 C ATOM 3002 CA GLU A 390 32.565 32.398 8.443 1.00 0.00 C ATOM 3002 CA GLU A 390 32.565 32.398 8.443 1.00 0.00 C ATOM 3004 O GLU A 390 33.197 31.033 8.487 1.00 0.00 C ATOM 3006 CG GLU A 390 33.186 33.445 7.798 1.00 0.00 C ATOM 3006 CG GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3009 GU GLU A 390 33.859 34.133 5.646 1.00 0.00 C ATOM 3009 GU GLU A 390 33.859 34.133 5.646 1.00 0.00 C ATOM 3009 GU GLU A 390 33.467 34.275 34.847 5.956 1.00 0.00 C ATOM 3009 GU GLU A 390 33.467 34.275 34.847 5.956 1.00 0.00 C ATOM 3010 A ARG A 391 34.473 34.275 4.292 1.00 0.00 C ATOM 3011 CA ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3012 C ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3013 O ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CG ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CG ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3017 NE ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3010 CD ATOM 3020 C	10											
ATOM 2999 C	10											
ATOM 2999 O ALIA A 389 31.688 31.064 11.050 1.00 0.00 O ATOM 3000 CB ALIA A 389 31.705 33.780 12.911 1.00 0.00 C C ATOM 3001 N GLU A 390 32.792 32.803 10.125 1.00 0.00 N ATOM 3002 CA GLU A 390 32.795 32.803 10.125 1.00 0.00 C ATOM 3004 O GLU A 390 32.565 32.398 8.743 1.00 0.00 C ATOM 3005 CB GLU A 390 33.197 31.033 8.447 1.00 0.00 C ATOM 3006 CB GLU A 390 33.197 31.193 8.447 1.00 0.00 C ATOM 3006 CB GLU A 390 33.168 33.445 7.798 1.00 0.00 C ATOM 3006 CD GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3007 CD GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3008 OEI GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3009 OEZ GLU A 390 34.757 34.847 5.956 1.00 0.00 C ATOM 3010 N ARG A 391 34.443 30.876 8.921 1.00 0.00 C ATOM 3011 CA ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3013 O ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CG ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CG ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CG ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3016 CD ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3016 CD ARG A 391 38.993 31.636 9.785 1.00 0.00 C ATOM 3016 CD ARG A 391 38.993 31.636 9.785 1.00 0.00 C ATOM 3015 CG ARG A 391 38.993 31.636 9.785 1.00 0.00 C ATOM 3016 CD ARG A 391 38.993 31.636 9.785 1.00 0.00 C ATOM 3012 CD ARG A 391 40.066 32.688 11.524 1.00 0.00 C ATOM 3020 CR ARG A 391 40.066 32.688 11.524 1.00 0.00 C ATOM 3022 CR ALA A 392 33.297 28.6971 10.660												
ATOM 3000 CB ALA A 399 31.705 33.780 12.911 1.00 0.00 C ATOM 3001 N GLU A 390 32.792 32.803 10.125 1.00 0.00 C ATOM 3003 C GLU A 390 32.565 32.398 8.743 1.00 0.00 C ATOM 3004 O GLU A 390 33.197 31.033 8.487 1.00 0.00 C ATOM 3005 CB GLU A 390 33.196 33.147 7.790 1.00 0.00 C ATOM 3005 CB GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3006 CC GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3008 OEI GLU A 390 33.455 34.457 5.956 1.00 0.00 C ATOM 3008 OEI GLU A 390 33.457 34.275 4.292 1.00 0.00 C ATOM 3010 OEZ GLU A 390 33.447 34.275 4.292 1.00 0.00 C ATOM 3011 CA ARG A 391 34.443 30.876 8.921 1.00 0.00 C ATOM 3011 CA ARG A 391 34.519 28.504 9.560 1.00 0.00 C ATOM 3012 C ARG A 391 34.519 28.504 9.560 1.00 0.00 C ATOM 3011 O ARG A 391 34.519 28.504 9.560 1.00 0.00 C ATOM 3015 CG ARG A 391 34.519 28.504 9.560 1.00 0.00 C ATOM 3015 CG ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3016 CD ARG A 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3017 NE ARG A 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3017 NE ARG A 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3019 NH1 ARG A 391 34.611 27.330 9.201 1.00 0.00 C ATOM 3019 NH1 ARG A 391 34.908 30.719 8.652 1.00 0.00 C ATOM 3010 NE ARG A 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3020 C ALA A 392 33.809 33.809 33.809 30.719 8.652 1.00 0.00 C ATOM 3020 C ALA A 392 33.809 33.809 33.809 33.809 30.719 8.652 1.00 0.00 C ATOM 3002 C ALA A 392 33.809 33.809 33.809 33.809 33.809 33.809 33.809 33.809												
Target T												
ATOM 3002 CA GUU A 390 32.565 32.398 8.743 1.00 0.00 C ATOM 3004 O GUU A 390 33.197 31.033 8.487 1.00 0.00 C C ATOM 3005 CB GUU A 390 33.168 33.445 7.798 1.00 0.00 C C ATOM 3006 CG GUU A 390 33.168 33.445 7.798 1.00 0.00 C ATOM 3006 CG GUU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3007 CD GUU A 390 33.859 34.133 5.464 1.00 0.00 C ATOM 3009 OE2 GUU A 390 33.447 34.275 4.292 1.00 0.00 C ATOM 3010 N ARG A 391 34.475 34.487 5.956 1.00 0.00 C ATOM 3011 CA ARG A 391 34.443 30.876 8.921 1.00 0.00 C ATOM 3011 CA ARG A 391 34.519 28.504 9.550 1.00 0.00 C ATOM 3012 C ARG A 391 34.519 28.504 9.550 1.00 0.00 C ATOM 3014 CB ARG A 391 34.519 28.504 9.550 1.00 0.00 C ATOM 3015 CG ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3016 CG ARG A 391 34.612 27.473 30.950 0.00 0.00 C ATOM 3016 CG ARG A 391 38.993 31.656 8.159 1.00 0.00 C C ATOM 3016 CD ARG A 391 38.993 31.656 8.159 1.00 0.00 C ATOM 3016 CD ARG A 391 38.993 31.656 8.159 1.00 0.00 C ATOM 3019 NHL ARG A 391 40.066 31.827 10.515 1.00 0.00 C ATOM 3021 N ALA A 392 33.870 27.491 11.515 1.00 0.00 C ATOM 3022 CA ALA A 392 33.870 27.491 11.516 1.00 0.00 C ATOM 3022 CA ALA A 392 33.870 27.491 11.516 1.00 0.00 C ATOM 3025 CR ALA A 392 33.870 27.491 11.516 1.00 0.00 C ATOM 3025 CR ALA A 392 33.870 27.491 11.516 1.00 0.00 C ATOM 3025 CR ALA A 392 33.870 27.491 11.516 1.00 0.00 C ATOM 3026 CR ALA A 392 33.870 27.491 1.286 1.286 1.00 0.00 C ATOM 3026 CR ALA A 392 33.870 27.491 1.516 1.00 0.00 C ATOM 3033 CR GLN A 394	15											
ATOM 3003 C GLU A 390 33.197 31.033 8.487 1.00 0.00 C ATOM 3004 O GLU A 390 32.569 30.144 7.910 1.00 0.00 C ATOM 3005 CB GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3006 CD GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3008 OE1 GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3008 OE2 GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3009 OE2 GLU A 390 34.757 34.847 5.956 1.00 0.00 O O ATOM 3011 CA ARG A 391 34.443 30.876 8.921 1.00 0.00 C ATOM 3011 CA ARG A 391 34.443 30.876 8.921 1.00 0.00 C ATOM 3012 C ARG A 391 34.519 28.504 9.560 1.00 0.00 C ATOM 3013 O ARG A 391 34.519 28.504 9.560 1.00 0.00 C ATOM 3013 O ARG A 391 34.519 28.504 9.560 1.00 0.00 C ATOM 3016 CD ARG A 391 37.475 30.565 8.159 1.00 0.00 C ATOM 3016 CD ARG A 391 37.475 30.565 8.159 1.00 0.00 C ATOM 3016 CD ARG A 391 38.993 31.636 9.785 1.00 0.00 C ATOM 3016 CD ARG A 391 38.993 31.636 9.785 1.00 0.00 C ATOM 3018 CZ ARG A 391 40.086 31.827 10.515 1.00 0.00 C ATOM 3012 CA ARG A 391 40.086 31.827 10.515 1.00 0.00 C ATOM 3020 NH2 ARG A 391 40.086 31.827 10.515 1.00 0.00 C ATOM 3020 NH2 ARG A 391 40.086 31.827 10.515 1.00 0.00 C ATOM 3022 CA ALA A 392 33.870 28.871 10.660 1.00 0.00 C ATOM 3022 CA ALA A 392 33.870 28.871 10.660 1.00 0.00 C ATOM 3023 C ALA A 392 33.204 27.891 11.510 1.00 0.00 C ATOM 3025 CB ALA A 392 33.870 28.5871 10.660 1.00 0.00 C ATOM 3026 C GLI A 394 29.170 29.338 10.255 1.00 0.00 C ATOM 3033 CR GLI A 394 29.170 29.338 10.255 1.00 0.00 C ATOM 3033 C GLI A 394	13											
ATOM 3005 CB GLU A 390 33.168 33.144 7.910 1.00 0.00 C ATOM 3005 CB GLU A 390 33.168 33.445 7.798 1.00 0.00 C ATOM 3006 CG GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3007 CD GLU A 390 33.859 34.133 5.464 1.00 0.00 C ATOM 3008 OB1 GLU A 390 33.859 34.133 5.464 1.00 0.00 C ATOM 3009 OB2 GLU A 390 33.4575 34.847 5.956 1.00 0.00 C ATOM 3009 OB2 GLU A 390 33.4575 34.847 5.956 1.00 0.00 C ATOM 3010 N ARGA 391 34.443 30.876 8.921 1.00 0.00 C ATOM 3010 N ARGA 391 34.443 30.876 8.921 1.00 0.00 C ATOM 3010 CA ARGA 391 35.163 29.622 8.746 1.00 0.00 C ATOM 3012 C ARGA 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3012 C ARGA 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CG ARGA 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CG ARGA 391 36.628 29.790 9.160 1.00 0.00 C ATOM 3016 CD ARGA 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3017 NE ARGA 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3017 NE ARGA 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3019 NH1 ARGA 391 41.201 31.62 10.238 1.00 0.00 N ATOM 3019 NH1 ARGA 391 41.201 31.62 10.238 1.00 0.00 N ATOM 3020 NH2 ARGA 391 40.086 31.827 10.515 1.00 0.00 C ATOM 3020 NH2 ARGA 391 41.201 31.162 10.238 1.00 0.00 N ATOM 3022 CA ALA A 392 33.870 28.871 10.660 1.00 0.00 C ATOM 3022 CA ALA A 392 33.870 28.871 10.600 1.00 0.00 C ATOM 3022 CA ALA A 392 33.870 28.871 10.600 1.00 0.00 C ATOM 3022 CA ALA A 392 33.870 28.871 10.600 1.00 0.00 C ATOM 3022 CA ALA A 392 33.870 28.871 10.600 1.00 0.00 C ATOM 3022 CA ALA A 392 33.870 28.871 10.600 1.00 0.00 C ATOM 3022 CA ALA A 392 33.870 28.871 10.600 1.00 0.00 C ATOM 3022 C GA ALA A 392 33.870 28.871 10.600 1.00 0.00 C ATOM 3023 C GLU A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3024 C GLU A 393 31.632 C 3.688 11.525 1.00 0.00 C C ATOM 3025 C GLU A 393 30.432 27.701 8.935 1.00 0.00 C C ATOM 3030 N GLU A 394 29.273 29.897 10.760 1.00 0.00 C ATOM 3030 C GLU A 394 29.292 31.255 26.500 11.281 1.00 0.00 C C ATOM 3030 C GLU A 394 29.292 31.255 26.500 11.281 1.00 0.00 C C ATOM 3031 CA GLU A 394 29.292 31.746 1.4689 1.00 0.00 C C ATOM 3031 CA GLU A 394 29.292 31.746 1.												
20 ATOM 3006 CB GUU A 390 33.168 33.445 7.798 1.00 0.00 C ATOM 3006 CG GUU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3007 CD GUU A 390 33.859 34.133 5.464 1.00 0.00 C ATOM 3008 OE1 GUU A 390 34.757 34.847 5.956 1.00 0.00 C ATOM 3008 OE2 GUU A 390 34.757 34.847 5.956 1.00 0.00 C ATOM 3010 N ARG A 391 34.443 30.876 8.921 1.00 0.00 C ATOM 3011 CA ARG A 391 35.163 29.622 8.746 1.00 0.00 C ATOM 3011 CA ARG A 391 35.163 29.622 8.746 1.00 0.00 C ATOM 3012 C ARG A 391 35.163 29.622 8.746 1.00 0.00 C ATOM 3013 O ARG A 391 34.519 28.504 9.560 1.00 0.00 C ATOM 3013 C ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3014 CB ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CG ARG A 391 37.475 30.565 8.159 1.00 0.00 C ATOM 3017 NE ARG A 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3017 NE ARG A 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3018 CZ ARG A 391 38.908 31.636 9.785 1.00 0.00 C ATOM 3018 CZ ARG A 391 40.086 31.827 10.515 1.00 0.00 C ATOM 3010 NH1 ARG A 391 41.201 31.162 10.238 1.00 0.00 C ATOM 3020 NH2 ARG A 391 40.086 31.827 10.515 1.00 0.00 C ATOM 3020 C ALA A 392 33.870 28.871 10.660 1.00 0.00 N ATOM 3023 C ALA A 392 33.870 28.871 10.660 1.00 0.00 N ATOM 3023 C ALA A 392 33.870 28.871 10.660 1.00 0.00 C ATOM 3024 O ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3029 C GLIY A 393 31.612 28.804 9.943 1.00 0.00 C ATOM 3020 C GLIY A 393 31.612 28.804 9.943 1.00 0.00 C ATOM 3020 C GLIY A 393 31.612 28.804 9.943 1.00 0.00 C ATOM 3020 C GLIY A 393 31.612 28.804 9.943 1.00 0.00 C ATOM 3020 C GLIY A 393 31.612 28.804 9.943 1.00 0.00 C ATOM 3020 C GLIY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3020 C GLIY A 393 30.432 27.701 8.935 1.00 0.00 C C ATOM 3020 C GLIY A 393 31.612 28.804 9.945 1.00 0.00 C C ATOM 3020 C GLIY A 393 30.432 27.701 8.935 1.00 0.00 C C ATOM 3020 C GLIY A 393 30.432 27.701 8.935 1.00 0.00 C C ATOM 3020 C GLIY A 393 30.432 27.701 8.935 1.00 0.00 C C ATOM 3030 C GLIY A 393 30.432 27.701 8.935 1.00 0.00 C C ATOM 3030 C GLIY A 394 29.29 31.404 1.004 1.00 0.00 C C ATOM 3030 C GLIY A 394 29.29 31.746 1.566 1.00												
20 ATOM 3006 CG GLU A 390 33.255 33.036 6.331 1.00 0.00 C ATOM 3007 CD GLU A 390 33.457 34.817 5.956 1.00 0.00 C ATOM 3009 OE1 GLU A 390 34.757 34.847 5.956 1.00 0.00 O O O O O O O O O O O O O O O O												
ATOM 3007 CD GLU A 390 33.859 34.133 5.464 1.00 0.00 C ATOM 3008 OE1 GLU A 390 34.757 34.847 5.956 1.00 0.00 O.00 O ATOM 3008 OE2 GLU A 390 33.447 34.275 4.292 1.00 0.00 O O O O O O O O O O O O O O O O	20											
ATOM 3008 OE1 GLU A 390 34.757 34.847 5.956 1.00 0.00 O O ATOM 3009 OE2 GLU A 390 33.447 34.275 4.292 1.00 0.00 O O O O O O O O O	20											
ATOM 3010 OB2 GLU A 390 33.447 34.275 4.292 1.00 0.00 C ATOM 3011 CA ARG A 391 35.163 29.622 8.746 1.00 0.00 C ATOM 3011 CA ARG A 391 35.163 29.622 8.746 1.00 0.00 C ATOM 3013 O ARG A 391 34.519 28.504 9.560 1.00 0.00 C ATOM 3014 CB ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CC ARG A 391 34.611 27.330 9.200 1.00 0.00 C ATOM 3015 CC ARG A 391 36.628 29.790 9.160 1.00 0.00 C ATOM 3015 CC ARG A 391 37.475 30.565 8.159 1.00 0.00 C ATOM 3016 CD ARG A 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3017 NE ARG A 391 38.908 30.719 8.652 1.00 0.00 C ATOM 3018 CZ ARG A 391 40.086 31.827 10.515 1.00 0.00 C ATOM 3019 NH1 ARG A 391 41.201 31.162 10.238 1.00 0.00 NN ATOM 3020 NH2 ARG A 391 40.066 32.688 11.524 1.00 0.00 NN ATOM 3021 N ALA A 392 33.870 28.871 10.660 1.00 0.00 NN ATOM 3022 CA ALA A 392 33.870 28.871 10.660 1.00 0.00 C ATOM 3023 C ALA A 392 31.932 27.419 10.814 1.00 0.00 C ATOM 3024 C ALA A 392 31.932 27.419 10.814 1.00 0.00 C ATOM 3026 N GLY A 393 31.612 88.683 1.00 0.00 NN ATOM 3026 N GLY A 393 31.612 88.683 1.00 0.00 C ATOM 3026 C ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3026 C GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3027 CA GLY A 393 31.612 88.664 9.695 1.00 0.00 NN ATOM 3029 C GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 NN ATOM 3030 C GLY A 393 28.663 27.676 9.206 1.00 0.00 C ATOM 3030 C GLN A 394 29.170 29.338 10.225 1.00 0.00 C ATOM 3030 C GLN A 394 29.170 29.338 10.225 1.00 0.00 C ATOM 3030 C GLN A 394 27.937 31.012 9.883 1.00 0.00 C C ATOM 3030 C GLN A 394 27.937 31.012 9.883 1.00 0.00 C C ATOM 3035 C G GLN A 394 27.937 31.012 9.883 1.00 0.00 C C ATOM 3035 C G GLN A 394 28.877 31.728 12.312 1.00 0.00 C C ATOM 3035 C G GLN A 394 28.877 31.728 12.312 1.00 0.00 C C ATOM 3036 C G GLN A 394 28.877 31.328 12.312 1.00 0.00 C C ATOM 3030 N GLN A 394 28.877 31.333 8.795 1.00 0.00 C C ATOM 3034 C G GLN A 394 28.877 31.333 8.795 1.00 0.00 C C ATOM 3034 C G GLN A 394 28.877 31.333 8.795 1.00 0.00 C C ATOM 3034 C G GLN A 394 28.877 31.333 8.795 1.0												
ATOM 3010 N ARG A 391 34.443 30.876 8.921 1.00 0.00 N												
25 ATOM 3011 CA ARG A 391 35.163 29.622 8.746 1.00 0.00 C ATOM 3012 C ARG A 391 34.519 28.504 9.500 1.00 0.00 C ATOM 3013 O ARG A 391 36.628 29.790 9.160 1.00 0.00 C ATOM 3015 CG ARG A 391 36.628 29.790 9.160 1.00 0.00 C ATOM 3016 CD ARG A 391 37.475 30.565 8.159 1.00 0.00 C ATOM 3017 NE ARG A 391 38.998 30.719 8.652 1.00 0.00 C ATOM 3017 NE ARG A 391 38.998 30.719 8.652 1.00 0.00 C ATOM 3018 CZ ARG A 391 38.993 31.636 9.785 1.00 0.00 N ATOM 3019 NHI ARG A 391 40.086 31.827 10.515 1.00 0.00 N ATOM 3020 NH2 ARG A 391 40.086 32.688 11.524 1.00 0.00 N ATOM 3021 N ALA A 392 33.870 28.871 10.660 1.00 0.00 N ATOM 3022 CA ALA A 392 33.870 28.871 10.660 1.00 0.00 C ATOM 3024 C ALA A 392 31.932 27.419 10.814 1.00 0.00 C ATOM 3025 CB ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3025 CB ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3027 CA GLY A 393 31.612 28.064 9.695 1.00 0.00 C ATOM 3028 C GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3028 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3028 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3030 N GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3030 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3030 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C C ATOM 3030 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C C ATOM 3030 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C C ATOM 3030 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C C ATOM 3030 C GLY A 394 27.977 31.012 9.883 1.00 0.00 C C ATOM 3030 C GLN A 394 27.977 31.012 9.883 1.00 0.00 C C ATOM 3030 C GLN A 394 27.977 31.012 9.883 1.00 0.00 C C ATOM 3030 C GLN A 394 27.977 31.012 9.883 1.00 0.00 C C ATOM 3030 C GLN A 394 27.937 29.897 10.760 1.00 0.00 C C ATOM 3030 C GLN A 394 27.937 31.012 9.883 1.00 0.00 C C ATOM 3034 C B GLN A 394 28.877 31.28 12.312 1.00 0.00 C C ATOM 3030 C G GLN A 394 28.877 31.28 12.312 1.00 0.00 C C ATOM 3030 C G GLN A 394 28.877 31.28 12.312 1.00 0.00 C C ATOM 3030 C G GLN A 394 28.877 31.28 12.312 1.00 0.00 C C ATOM 3030 C G GLN A 394 28.875 32.324 13.707 1.00 0.00 C C ATOM 3040 C A ALA A 395 28.251 32.3												
ATOM 3012 C ARG A 391 34.519 28.504 9.560 1.00 0.00 0.00 C ATOM 3013 O ARG A 391 34.611 27.330 9.200 1.00 0.00 0.00 C ATOM 3014 CB ARG A 391 36.628 29.790 9.100 1.00 0.00 C C ATOM 3015 CG ARG A 391 37.475 30.565 8.159 1.00 0.00 C C ATOM 3016 CD ARG A 391 38.908 30.719 8.652 1.00 0.00 C C ATOM 3017 NE ARG A 391 38.908 30.719 8.652 1.00 0.00 C C ATOM 3018 CZ ARG A 391 40.086 31.827 10.515 1.00 0.00 C C ATOM 3019 NH1 ARG A 391 41.201 31.162 10.238 1.00 0.00 C C ATOM 3020 NH2 ARG A 391 40.086 31.827 10.515 1.00 0.00 N ATOM 3020 NH2 ARG A 391 40.086 32.688 11.524 1.00 0.00 N ATOM 3020 NH2 ARG A 391 40.086 32.688 11.524 1.00 0.00 N ATOM 3022 CA ALA A 392 33.870 28.871 10.660 1.00 0.00 N ATOM 3022 CA ALA A 392 33.204 27.891 11.510 1.00 0.00 C C ATOM 3022 C ALA A 392 31.932 27.419 10.814 1.00 0.00 C C ATOM 3023 C ALA A 392 31.932 27.419 10.814 1.00 0.00 C C ATOM 3025 CB ALA A 392 31.255 26.500 11.281 1.00 0.00 C C ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 C C ATOM 3026 C GLY A 393 39.432 27.701 8.935 1.00 0.00 C C ATOM 3020 C GLY A 393 39.432 27.701 8.935 1.00 0.00 C C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 C C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 C C ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C C ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C C ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C C ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C C ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C C ATOM 3033 C GLN A 394 28.877 31.746 12.312 1.00 0.00 C C ATOM 3033 C GLN A 394 28.877 31.746 12.312 1.00 0.00 C C ATOM 3033 C GLN A 394 28.877 31.746 12.312 1.00 0.00 C C ATOM 3033 C GLN A 394 28.877 31.746 14.689 1.00 0.00 C C ATOM 3034 C B GLN A 394 28.877 31.746 14.689 1.00 0.00 C C ATOM 3034 C B GLN A 394 28.877 31.746 14.689 1.00 0.00 C C ATOM 3034 C B GLN A 394 28.114 33.483 13.799 1.00 0.00 C C ATOM 3040 C A ALA A 395 27.606 32.383 7.898 1.00 0.00 0.00 C C ATOM 3040 C A ALA A 395 27.606 32.383 7.598 1.00 0.00 0.00 C C ATOM 3040 C A ALA A 395 27.606 32	25											
ATOM 3013 O ARG A 391 34.611 27.330 9.200 1.00 0.00 0.00 C ATOM 3014 CB ARG A 391 36.628 29.790 9.160 1.00 0.00 C C C ATOM 3015 CG ARG A 391 37.475 30.565 81.59 1.00 0.00 C C ATOM 3017 NE ARG A 391 38.998 30.719 8.652 1.00 0.00 C C ATOM 3017 NE ARG A 391 38.998 30.719 8.652 1.00 0.00 N ATOM 3018 CZ ARG A 391 40.086 31.827 10.515 1.00 0.00 N ATOM 3019 NH1 ARG A 391 41.201 31.162 10.238 1.00 0.00 N ATOM 3020 NH2 ARG A 391 40.086 31.827 10.515 1.00 0.00 N ATOM 3021 N ALA A 392 33.870 28.871 10.660 1.00 0.00 N ATOM 3022 CA ALA A 392 33.870 28.871 10.660 1.00 0.00 N ATOM 3023 C ALA A 392 33.870 28.871 10.660 1.00 0.00 C C ATOM 3025 CB ALA A 392 31.932 27.419 10.814 1.00 0.00 C C ATOM 3025 CB ALA A 392 31.932 27.419 10.814 1.00 0.00 C C ATOM 3025 CB ALA A 392 31.832 27.419 10.814 1.00 0.00 C C ATOM 3025 CB ALA A 392 31.252 28.508 12.863 1.00 0.00 C C ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 N ATOM 3027 CA GLY A 393 31.612 28.064 9.695 1.00 0.00 C C ATOM 3028 C GLY A 393 30.432 27.701 8.935 1.00 0.00 C C ATOM 3029 O GLY A 393 30.432 27.701 8.935 1.00 0.00 C C ATOM 3029 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C C ATOM 3025 CB GLN A 394 29.100 29.838 10.25 1.00 0.00 C C ATOM 3030 N GLN A 394 29.100 29.838 10.25 1.00 0.00 C C ATOM 3030 N GLN A 394 29.120 28.243 9.473 1.00 0.00 C C ATOM 3030 N GLN A 394 29.120 28.243 9.473 1.00 0.00 C C ATOM 3030 C GLN A 394 29.120 28.243 9.473 1.00 0.00 C C ATOM 3035 CG GLN A 394 29.120 28.243 9.473 1.00 0.00 C C ATOM 3035 CG GLN A 394 29.120 28.243 9.473 1.00 0.00 C C ATOM 3035 CG GLN A 394 29.29 31.746 14.689 1.00 0.00 C C ATOM 3035 CG GLN A 394 28.757 31.012 9.883 1.00 0.00 C C ATOM 3037 OEI GLN A 394 28.877 31.728 12.312 1.00 0.00 C C ATOM 3038 NE2 GLN A 394 28.877 31.728 12.312 1.00 0.00 C C ATOM 3030 N GLN A 394 28.877 31.728 12.312 1.00 0.00 C C ATOM 3030 N GLN A 394 28.877 31.728 12.312 1.00 0.00 C C ATOM 3040 C A ALA A 395 28.650 32.383 7.898 1.00 0.00 C C ATOM 3040 C A ALA A 395 29.421 31.995 6.569 1.00 0.00 C C ATOM 3044 N GLU A 396 27.463 32.750 8.550 1.00 0.00 C	20											
ATOM 3014 CB ARG A 391 36.628 29.790 9.160 1.00 0.00 CC ATOM 3015 CG ARG A 391 37.475 30.565 8.159 1.00 0.00 CC ATOM 3016 CD ARG A 391 38.908 30.719 8.652 1.00 0.00 CC ATOM 3017 NE ARG A 391 40.086 31.827 10.515 1.00 0.00 CC ATOM 3019 NH1 ARG A 391 40.086 31.827 10.515 1.00 0.00 CC ATOM 3019 NH1 ARG A 391 40.086 31.827 10.515 1.00 0.00 CC ATOM 3020 NH2 ARG A 391 40.086 32.688 11.524 1.00 0.00 NN ATOM 3020 NH2 ARG A 391 40.086 32.688 11.524 1.00 0.00 NN ATOM 3020 NH2 ARG A 391 40.086 32.688 11.524 1.00 0.00 NN ATOM 3022 CA ALA A 392 33.870 28.871 10.660 1.00 0.00 NN ATOM 3022 CA ALA A 392 31.932 27.419 10.814 1.00 0.00 CC ATOM 3024 O ALA A 392 31.932 27.419 10.814 1.00 0.00 CC ATOM 3025 CB ALA A 392 31.255 26.500 11.281 1.00 0.00 CC ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 CC ATOM 3026 C GLY A 393 30.432 27.701 8.935 1.00 0.00 CC ATOM 3028 C GLY A 393 30.432 27.701 8.935 1.00 0.00 CC ATOM 3029 O GLY A 393 29.122 28.043 9.473 1.00 0.00 C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 C ATOM 3033 CA GLN A 394 29.170 29.338 10.225 1.00 0.00 C ATOM 3033 CA GLN A 394 29.170 29.338 10.225 1.00 0.00 C ATOM 3033 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3033 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3033 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3033 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3033 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3033 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3033 CA GLN A 394 28.757 32.324 13.707 1.00 0.00 C C ATOM 3036 CD GLN A 394 28.757 32.324 13.707 1.00 0.00 C C ATOM 3037 CB GLN A 394 28.757 32.324 13.707 1.00 0.00 C C ATOM 3038 NEZ GLN A 394 28.757 32.324 13.707 1.00 0.00 C C ATOM 3034 CB GLN A 394 28.757 32.324 13.707 1.00 0.00 C C ATOM 3037 CB GLN A 394 28.757 32.324 13.707 1.00 0.00 C C ATOM 3039 N ALA A 395 28.251 32.344 6.517 1.00 0.00 C C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C C ATOM 3040 CA ALA A 395 29.229 31.746 14.689 1.00 0.00 C C ATOM 3045 CA GLN A 394 28.114 33.483 13.799 1.00 0.00 C C ATOM											0.00	
ATOM 3015 CG ARG A 391 37.475 30.565 8.159 1.00 0.00 CC ATOM 3016 CD ARG A 391 38.908 30.719 8.652 1.00 0.00 CC ATOM 3017 NE ARG A 391 38.993 31.636 9.785 1.00 0.00 CC ATOM 3018 CZ ARG A 391 40.086 31.827 10.515 1.00 0.00 NM ATOM 3019 NHI ARG A 391 41.201 31.162 10.238 1.00 0.00 NM ATOM 3020 NH2 ARG A 391 41.201 31.162 10.238 1.00 0.00 NM ATOM 3021 N ALA A 392 33.870 28.871 10.660 1.00 0.00 NM ATOM 3021 CA ALA A 392 33.870 28.871 10.660 1.00 0.00 CC ATOM 3023 C ALA A 392 31.255 26.500 11.281 1.00 0.00 CC ATOM 3024 O ALA A 392 31.255 26.500 11.281 1.00 0.00 CC ATOM 3025 CB ALA A 392 31.255 26.500 11.281 1.00 0.00 CC ATOM 3025 CB ALA A 392 31.255 26.500 11.281 1.00 0.00 CC ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 CC ATOM 3028 C GLY A 393 30.432 27.701 8.935 1.00 0.00 CC ATOM 3029 O GLY A 393 29.122 28.243 9.473 1.00 0.00 CC ATOM 3029 O GLY A 393 29.122 28.243 9.473 1.00 0.00 CC ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 CC ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 CC ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C CATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C CATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C CATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C CATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C CATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C CATOM 3035 C GLN A 394 28.140 30.410 12.191 1.00 0.00 C CATOM 3035 C GLN A 394 28.140 30.410 12.191 1.00 0.00 C CATOM 3035 C GLN A 394 28.140 30.410 12.191 1.00 0.00 C CATOM 3035 C GLN A 394 28.877 31.728 12.312 1.00 0.00 C CATOM 3036 C D GLN A 394 28.140 30.410 12.191 1.00 0.00 C CATOM 3036 C D GLN A 394 28.140 30.410 12.191 1.00 0.00 C CATOM 3036 C D GLN A 394 28.140 30.410 12.191 1.00 0.00 C CATOM 3036 C D GLN A 394 28.140 30.410 12.191 1.00 0.00 C CATOM 3036 C D GLN A 394 28.140 30.410 12.191 1.00 0.00 C CATOM 3036 C D GLN A 394 28.141 33.483 13.799 1.00 0.00 C CATOM 3036 C D GLN A 394 28.141 33.483 13.799 1.00 0.00 C CATOM 3036 C D GLN A 394 28.141 33.483 13.799 1.00 0.00 C CATOM 3040 C A ALA												С
30									8.159			
ATOM 3017 NE ARG A 391 38.993 31.636 9.785 1.00 0.00 N ATOM 3018 CZ ARG A 391 40.086 31.827 10.515 1.00 0.00 N ATOM 3020 NH2 ARG A 391 40.086 31.827 10.515 1.00 0.00 N ATOM 3020 NH2 ARG A 391 40.066 32.688 11.524 1.00 0.00 N ATOM 3021 N ALA A 392 33.870 28.871 10.660 1.00 0.00 N ATOM 3022 CA ALA A 392 33.870 28.871 10.660 1.00 0.00 C ATOM 3023 C ALA A 392 31.932 27.419 10.814 1.00 0.00 C ATOM 3025 CB ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3025 CB ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 C ATOM 3027 CA GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3028 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3029 O GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 C ATOM 3031 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3032 C GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3033 C GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3033 C GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3033 C GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3033 C GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3035 CG GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3036 CD GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3037 OEI GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NEZ GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 CA ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 CA ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 CA ALA A 395 28.072 31.333 8.750 8.538 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3046 C GLU A 396 27.463 32.700 5.509 1.00 0.00 C	30										0.00	
ATOM 3018 CZ ARG A 391 40.086 31.827 10.515 1.00 0.00 C ATOM 3019 NH1 ARG A 391 41.201 31.162 10.238 1.00 0.00 N ATOM 3020 NH2 ARG A 391 40.066 32.688 11.524 1.00 0.00 N ATOM 3021 N ALA A 392 33.870 28.871 10.660 1.00 0.00 N ATOM 3022 CA ALA A 392 31.204 27.891 11.510 1.00 0.00 C ATOM 3023 C ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3024 O ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3025 CB ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 C ATOM 3027 CA GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3028 C GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3028 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3029 O GLY A 393 28.063 27.676 9.206 1.00 0.00 C ATOM 3031 CA GLN A 394 29.170 29.338 10.225 1.00 0.00 N ATOM 3031 CA GLN A 394 29.170 29.338 10.225 1.00 0.00 C ATOM 3033 C GLN A 394 27.937 39.897 10.760 1.00 0.00 C ATOM 3033 C GLN A 394 27.937 31.012 9.883 1.00 0.00 C ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3035 C GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3035 C GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3035 C GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 C GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 C DEI GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3034 C B GLN A 394 28.877 31.333 8.795 1.00 0.00 C ATOM 3034 C B GLN A 394 28.877 31.333 8.795 1.00 0.00 C ATOM 3040 C A ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 C A ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 C A ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 C A ALA A 395 28.072 31.333 8.795 1.00 0.00 C C ATOM 3040 C A ALA A 395 28.072 31.333 8.795 1.00 0.00 C C ATOM 3044 C A ALA A 395 28.072 31.333 8.795 1.00 0.00 C C ATOM 3044 C A ALA A 395 28.251 32.344 6.517 1.00 0.00 C C ATOM 3044 C A ALA A 395 28.251 32.344 6.517 1.00 0.00 C C ATOM 3044 N GLU A 396 27.614 34.180 3.6									9.785	1.00	0.00	N
ATOM 3019 NH1 ARG A 391 41.201 31.162 10.238 1.00 0.00 N ATOM 3020 NH2 ARG A 391 40.066 32.688 11.524 1.00 0.00 N ATOM 3021 N ALA A 392 33.870 28.871 10.660 1.00 0.00 N ATOM 3022 CA ALA A 392 33.204 27.891 11.510 1.00 0.00 C ATOM 3023 C ALA A 392 31.932 27.419 10.814 1.00 0.00 C ATOM 3025 CB ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 C ATOM 3027 CA GLY A 393 31.612 28.064 9.695 1.00 0.00 C ATOM 3028 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3029 O GLY A 393 28.063 27.676 9.206 1.00 0.00 C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 C ATOM 3031 CA GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3034 CB GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3035 CG GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3036 CD GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3037 CEI GLN A 394 28.7757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.7757 32.324 13.707 1.00 0.00 C ATOM 3037 CEI GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 CA ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3043 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 C ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 C ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3045 CB GLU A 396 27.640 33.750 8.538 1.00 0.00 C ATOM 3045 CB GLU A 396 27.614 34.180 3.696 1.00 0.00 C									10.515	1.00	0.00	С
ATOM 3020									10.238	1.00	0.00	N
ATOM 3021 N ALA A 392 33.870 28.871 10.660 1.00 0.00 N ATOM 3022 CA ALA A 392 33.204 27.891 11.510 1.00 0.00 C ATOM 3023 C ALA A 392 31.932 27.419 10.814 1.00 0.00 C ATOM 3024 O ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3025 CB ALA A 392 32.870 28.508 12.863 1.00 0.00 C ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 N ATOM 3027 CA GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3028 C GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3029 O GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 N 45 ATOM 3031 CA GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3032 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 O GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3036 CD GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 28.757 31.728 12.312 1.00 0.00 C ATOM 3037 CEI GLN A 394 28.757 31.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.757 31.333 8.795 1.00 0.00 N ATOM 3039 N ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3041 C ALA A 395 27.606 32.383 7.898 1.00 0.00 C ATOM 3044 N GLU A 396 27.840 33.750 8.538 1.00 0.00 C ATOM 3044 N GLU A 396 27.840 33.750 8.538 1.00 0.00 C ATOM 3045 CA GLU A 396 27.841 33.755 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C				NH2	ARG A	A 391	40.066	32.688	11.524	1.00	0.00	N
ATOM 3023 C ALA A 392 31.932 27.419 10.814 1.00 0.00 C ATOM 3024 O ALA A 392 31.255 26.500 11.281 1.00 0.00 O ATOM 3025 CB ALA A 392 32.870 28.508 12.863 1.00 0.00 C ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 N ATOM 3027 CA GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3029 O GLY A 393 229.122 28.243 9.473 1.00 0.00 C ATOM 3029 O GLY A 393 28.063 27.676 9.206 1.00 0.00 C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 N ATOM 3031 CA GLN A 394 29.170 29.338 10.225 1.00 0.00 C ATOM 3033 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 O GLN A 394 26.321 31.566 10.180 1.00 0.00 C ATOM 3033 C GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 0E1 GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.141 33.483 13.797 1.00 0.00 C ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3030 N GLN A 394 28.114 33.483 13.799 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 N GLU A 396 27.840 33.750 8.538 1.00 0.00 C ATOM 3044 N GLU A 396 27.840 33.750 5.509 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.840 33.750 5.509 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.463 32.700 5.509 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.461 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.614 34.180 3.696 1.00 0.00 C C	35	ATOM	3021				33.870	28.871	10.660	1.00	0.00	N
ATOM 3024 O ALA A 392 31.255 26.500 11.281 1.00 0.00 C ATOM 3025 CB ALA A 392 32.870 28.508 12.863 1.00 0.00 C ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 N ATOM 3027 CA GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3029 O GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3029 O GLY A 393 28.663 27.676 9.206 1.00 0.00 C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 N ATOM 3031 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3032 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 O GLN A 394 26.321 31.566 10.180 1.00 0.00 C ATOM 3034 CB GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 OEI GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 OEI GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 OEI GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 OEI GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 OEI GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3038 NEZ GLN A 394 28.144 33.483 13.799 1.00 0.00 C ATOM 3039 N ALLA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3039 N ALLA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 CA ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 N GLU A 396 27.606 32.383 7.898 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.750 8.538 1.00 0.00 C C ATOM 3044 N GLU A 396 27.921 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C C		MOTA	3022	CA	ALA A	A 392	33.204	27.891	11.510	1.00	0.00	
ATOM 3025 CB ALA A 392 32.870 28.508 12.863 1.00 0.00 C ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 N ATOM 3027 CA GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3028 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3029 O GLY A 393 28.063 27.676 9.206 1.00 0.00 C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 N ATOM 3031 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3032 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 O GLN A 394 26.321 31.566 10.180 1.00 0.00 C ATOM 3034 CB GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 OE1 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 C ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 CA ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3041 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C		ATOM	3023	С	ALA A	A 392	31.932	27.419	10.814	1.00	0.00	С
40 ATOM 3026 N GLY A 393 31.612 28.064 9.695 1.00 0.00 N ATOM 3027 CA GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3028 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 N ATOM 3031 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3032 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 O GLN A 394 26.321 31.566 10.180 1.00 0.00 C ATOM 3034 CB GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 OE1 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.975 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 28.072 31.333 8.795 1.00 0.00 C 55 ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3045 CA GLU A 396 27.840 33.750 8.538 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 CC ATOM 3046 C GLU A 396 27.463 32.752 4.126 1.00 0.00 CC		ATOM	3024	0	ALA A	A 392	31.255	26.500	11.281	1.00	0.00	
ATOM 3027 CA GLY A 393 30.432 27.701 8.935 1.00 0.00 C ATOM 3028 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3029 O GLY A 393 28.063 27.676 9.206 1.00 0.00 O ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 N ATOM 3031 CA GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 O GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 O GLN A 394 26.321 31.566 10.180 1.00 0.00 C ATOM 3035 CG GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 OE1 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 29.229 31.746 14.689 1.00 0.00 C ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3040 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3043 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C	4.0	ATOM	3025	CB					12.863	1.00		
ATOM 3028 C GLY A 393 29.122 28.243 9.473 1.00 0.00 C ATOM 3029 O GLY A 393 28.063 27.676 9.206 1.00 0.00 O O O O O O O O O O O O O O O O	40	MOTA		N								
ATOM 3029 O GLY A 393 28.063 27.676 9.206 1.00 0.00 O ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 N ATOM 3031 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3033 O GLN A 394 26.321 31.566 10.180 1.00 0.00 C ATOM 3035 CG GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3036 CD GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 OE1 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.144 33.483 13.799 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3041 C ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3041 C ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3042 O ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3043 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3043 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.463 32.700 5.509 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C C C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C C C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C C C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C C C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C C C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C C C ATOM 3046 C GLU A 396 27.463 32.752 4.126 1.00 0.00 C C C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C C C C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C C C C C C C C C C C C C C C C		MOTA		CA								
ATOM 3030 N GLN A 394 29.170 29.338 10.225 1.00 0.00 N ATOM 3031 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3032 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 O GLN A 394 26.321 31.566 10.180 1.00 0.00 C ATOM 3034 CB GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3037 OE1 GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3038 NE2 GLN A 394 29.229 31.746 14.689 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 CA ALA A 395 28.072 31.333 8.795 1.00 0.00 C ATOM 3040 CA ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3043 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3043 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 N ATOM 3045 CA GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3045 CA GLU A 396 27.614 34.180 3.696 1.00 0.00 C				С								
45 ATOM 3031 CA GLN A 394 27.937 29.897 10.760 1.00 0.00 C ATOM 3032 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 O GLN A 394 26.321 31.566 10.180 1.00 0.00 O ATOM 3034 CB GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3037 OE1 GLN A 394 29.229 31.746 14.689 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 27.606 32.383 7.898 1.00 0.00 C ATOM 3041 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3043 CB ALA A 395 27.840 33.750 8.538 1.00 0.00 C ATOM 3044 N GLU A 396 27.840 33.750 8.538 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C				0								
ATOM 3032 C GLN A 394 27.377 31.012 9.883 1.00 0.00 C ATOM 3033 O GLN A 394 26.321 31.566 10.180 1.00 0.00 O ATOM 3034 CB GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3037 OE1 GLN A 394 29.229 31.746 14.689 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 27.606 32.383 7.898 1.00 0.00 C ATOM 3041 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3043 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.752 4.126 1.00 0.00 C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C	45											
ATOM 3033 O GLN A 394 26.321 31.566 10.180 1.00 0.00 C ATOM 3034 CB GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3037 OE1 GLN A 394 29.229 31.746 14.689 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 27.606 32.383 7.898 1.00 0.00 C ATOM 3040 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3043 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C	45											
ATOM 3034 CB GLN A 394 28.140 30.410 12.191 1.00 0.00 C ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3037 OE1 GLN A 394 29.229 31.746 14.689 1.00 0.00 O ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 27.606 32.383 7.898 1.00 0.00 C ATOM 3041 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3043 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 N GLU A 396 27.840 33.750 8.538 1.00 0.00 C ATOM 3045 CA GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C												
50 ATOM 3035 CG GLN A 394 28.877 31.728 12.312 1.00 0.00 C ATOM 3036 CD GLN A 394 29.229 31.746 14.689 1.00 0.00 C ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3040 CA ALA A 395 27.606 32.383 7.898 1.00 0.00 C ATOM 3042 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 C ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3043 CB ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C C ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C C C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C C C C C C C C C C C C C C C C												
50 ATOM 3036 CD GLN A 394 28.757 32.324 13.707 1.00 0.00 C ATOM 3037 OE1 GLN A 394 29.229 31.746 14.689 1.00 0.00 O ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 27.606 32.383 7.898 1.00 0.00 C 55 ATOM 3041 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3043 CB ALA A 395 27.840 33.750 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>												
ATOM 3037 OE1 GLN A 394 29.229 31.746 14.689 1.00 0.00 0.00 ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 27.606 32.383 7.898 1.00 0.00 C ATOM 3041 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 C ATOM 3043 CB ALA A 395 27.840 33.750 8.538 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 N ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C	EΩ											
ATOM 3038 NE2 GLN A 394 28.114 33.483 13.799 1.00 0.00 N ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 27.606 32.383 7.898 1.00 0.00 C ATOM 3041 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 O ATOM 3043 CB ALA A 395 27.840 33.750 8.538 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 N ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C	50											
ATOM 3039 N ALA A 395 28.072 31.333 8.795 1.00 0.00 N ATOM 3040 CA ALA A 395 27.606 32.383 7.898 1.00 0.00 C ATOM 3041 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 O ATOM 3043 CB ALA A 395 27.840 33.750 8.538 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 N ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C												
ATOM 3040 CA ALA A 395 27.606 32.383 7.898 1.00 0.00 C ATOM 3041 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 O ATOM 3043 CB ALA A 395 27.840 33.750 8.538 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 N ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C												
55 ATOM 3041 C ALA A 395 28.251 32.344 6.517 1.00 0.00 C ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 O ATOM 3043 CB ALA A 395 27.840 33.750 8.538 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 N ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C												
ATOM 3042 O ALA A 395 29.421 31.995 6.369 1.00 0.00 O ATOM 3043 CB ALA A 395 27.840 33.750 8.538 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 N ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C	55											
ATOM 3043 CB ALA A 395 27.840 33.750 8.538 1.00 0.00 C ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 N ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C	55											
ATOM 3044 N GLU A 396 27.463 32.700 5.509 1.00 0.00 N ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C												
ATOM 3045 CA GLU A 396 27.921 32.752 4.126 1.00 0.00 C ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C												
60 ATOM 3046 C GLU A 396 27.614 34.180 3.696 1.00 0.00 C												
	60											
A1011 3047 O GEO A 330 20.320 34.000 3.300 1.00 0.00 O	00											
		ALOM	3047	0	GTO 1	טפנ ב	20.320	24.000	5.900	1.00	0.00	0

	ATOM	3048	СВ	GLU A	396	27.135	31.766	3.256	1.00	0.00	C	:
	ATOM	3049	CG	GLU A	396	26.450	30.641	4.026	1.00	0.00	C	
	ATOM	3050	CD	GLU A		25.095	31.053	4.591	1.00	0.00	C	
	ATOM	3051		GLU A		25.037	32.008	5.400	1.00	0.00	Ö	
5	MOTA	3052		GLU A		24.083	30.417	4.221	1.00	0.00	0	
•	ATOM	3053	N	PHE A		28.553	34.835	3.025	1.00	0.00	И	
	ATOM	3054	CA	PHE A		28.321	36.215	2.620	1.00	0.00	C	
	ATOM	3055	C	PHE A		27.997	36.401					
	ATOM	3056	Ö					1.147	1.00	0.00	C	
10				PHE A		28.569	35.744	0.281	1.00	0.00	0	
10	ATOM	3057	CB	PHE A		29.520	37.087	2.999	1.00	0.00	C	
	ATOM	3058	CG	PHE A		29.773	37.145	4.477	1.00	0.00	С	
	MOTA	3059		PHE A		30.811	36.417	5.047	1.00	0.00	C	
	MOTA	3060		PHE A		28.952	37.905	5.303	1.00	0.00	C	
1 F	ATOM	3061		PHE A		31.030	36.444	6.429	1.00	0.00	C	
15	MOTA	3062	CE2	PHE A		29.160	37.940	6.682	1.00	0.00	С	
	ATOM	3063	CZ	PHE A	397	30.201	37.206	7.245	1.00	0.00	С	
	MOTA	3064	N	PRO A	398	27.070	37.322	0.849	1.00	0.00	N	
	MOTA	3065	CA	PRO A	398	26.654	37.611	-0.522	1.00	0.00	С	
	MOTA	3066	С	PRO A	398	27.725	38.385	-1.291	1.00	0.00	С	
20	MOTA	3067	0	PRO A	398	28.587	39.037	-0.692	1.00	0.00	0	
	ATOM	3068	CB	PRO A	398	25.386	38.428	-0.318	1.00	0.00	С	
	ATOM	3069	CG	PRO A	398	25.728	39.233	0.898	1.00	0.00	С	
	ATOM	3070	CD	PRO A	398	26.358	38.190	1.806	1.00	0.00	C	
	ATOM	3071	N	THR A	399	27.666	38.294	-2.616	1.00	0.00	N	
25	ATOM	3072	CA	THR A	399	28.598	38.994	-3.490	1.00	0.00	C	
	ATOM	3073	С	THR A	399	27.876	40.240	-3.990	1.00	0.00	Č	
	ATOM	3074	0	THR A	399	26.647	40.260	-4.077	1.00	0.00	0	
	MOTA	3075	СВ	THR A		29.000	38.127	-4.694	1.00	0.00	C	
	MOTA	3076		THR A		27.821	37.692	-5.387	1.00	0.00	Ō	
30	MOTA	3077		THR A		29.798	36.923	-4.231	1.00	0.00	c	
	MOTA	3078	N	LEU A		28.632	41.280	-4.318	1.00	0.00	N	
	MOTA	3079	CA	LEU A		28.017	42.519	-4.779	1.00	0.00	C	
	ATOM	3080	С	LEU A		28.941	43.319	-5.680	1.00	0.00	C	
	ATOM	3081	Ö	LEU A		30.160	43.292	-5.511	1.00	0.00	0	
35	ATOM	3082	СВ	LEU A		27.615	43.364	-3.560	1.00	0.00	C	
00	ATOM	3083	CG	LEU A		26.959	44.742	-3.738	1.00	0.00	C	
	ATOM	3084		LEU A		26.173	45.078	-2.487			C	
	ATOM	3085		LEU A		28.008	45.816	-4.013	1.00	0.00	C	
	ATOM	3086	N N	SER A		28.354			1.00			
40	ATOM	3087	CA	SER A			44.003	-6.659	1.00	0.00	N	
40	ATOM	3088				29.115	44.862	-7.562	1.00	0.00	C	
	ATOM	3089	С О	SER A		28.278	46.126	-7.742	1.00	0.00	С	
				SER A		27.057	46.092	-7.574	1.00	0.00	0	
	ATOM	3090	CB	SER A		29.352	44.191	-8.922	1.00	0.00	С	
45	MOTA	3091	OG	SER A		28.184		-9.721		0.00	0	
43	ATOM	3092	N	GLY A		28.937	47.234	-8.073	1.00	0.00	N	
	MOTA	3093	CA	GLY A		28.238	48.495	-8.259	1.00	0.00	С	
	ATOM	3094	С	GLY A		28.819	49.577	-7.364	1.00	0.00	C	
	MOTA	3095	0	GLY A		29.842	49.360	-6.715	1.00	0.00	0	
EΩ	ATOM	3096	N	ASP A		28.178	50.741	-7.325	1.00	0.00	N	
50	ATOM	3097	CA	ASP A		28.661	51.833	-6.489	1.00	0.00	C	
	ATOM	3098	С	ASP A		27.554	52.332	-5.568	1.00	0.00	С	
	ATOM	3099	0	ASP A		26.442	51.795	-5.567	1.00	0.00	0	
	ATOM	3100	CB	ASP A		29.179	52.983	-7.364	1.00	0.00	С	
	ATOM	3101	CG	ASP A	403	28.065	53.735	-8.070	1.00	0.00	С	
55	ATOM	3102	OD1	ASP A	403	26.966	53.170	-8.232	1.00	0.00	0	
	ATOM	3103	OD2	ASP A		28.294	54.893	-8.475	1.00	0.00	0	
	MOTA	3104	N	PHE A	404	27.862	53.355	-4.780	1.00	0.00	N	
	MOTA	3105	CA	PHE A		26.886	53.913	-3.863	1.00	0.00	С	
	MOTA	3106	С	PHE A		26.735	55.422	-4.002	1.00	0.00	C	
60	MOTA	3107	0	PHE A	404	26.906	56.178	-3.046	1.00	0.00	0	
	MOTA	3108	CB	PHE A	404	27.234	53.526	-2.421	1.00	0.00	Ċ	

		ATOM	3109	CG	PHE A	404	27.2	07 52.036	-2.182	1.00	0.00	С
		MOTA	3110		PHE A		28.3			1.00	0.00	c
		ATOM	3111		PHE A		25.9		-1.976	1.00	0.00	
												С
	5	ATOM	3112		PHE A		28.3			1.00	0.00	C
	,	MOTA	3113		PHE A		25.9			1.00	0.00	С
		ATOM	3114	CZ	PHE A		27.1			1.00	0.00	C
		ATOM	3115	N	PHE A	405	26.4	21 55.834	-5.228	1.00	0.00	N
		ATOM	3116	CA	PHE A	405	26.1	72 57.229	-5.575	1.00	0.00	C
		ATOM	3117	С	PHE A	405	24.8	18 57.168	-6.290	1.00	0.00	С
	10	ATOM	3118	0	PHE A	405	24.5		-6.975	1.00	0.00	0
		ATOM	3119	СВ	PHE A		27.2			1.00	0.00	C
		ATOM	3120	CG	PHE A		28.6		-5.955	1.00	0.00	C
		ATOM	3121		PHE A		29.7		-6.584	1.00	0.00	C
		ATOM	3122		PHE A							
	15		3123				28.8		-4.786	1.00	0.00	С
	10	ATOM			PHE A		30.9		-6.055	1.00	0.00	C
		ATOM	3124		PHE A		30.1		-4.251	1.00	0.00	C
		MOTA	3125	CZ	PHE A		31.1		-4.888	1.00	0.00	C
		MOTA	3126	N	THR A		23.9		-6.153	1.00	0.00	N
	•	MOTA	3127	CA	THR A	406	24.2	52 59.380	-5.363	1.00	0.00	C
	20	MOTA	3128	С	THR A	406	23.6	10 59.282	-3.982	1.00	0.00	C
		MOTA	3129	0	THR A	406	22.4	40 58.917	-3.834	1.00	0.00	0
A HEEF		ATOM	3130	CB	THR A	406	23.7	46 60.643	-6.110	1.00	0.00	С
		ATOM	3131	OG1	THR A		24.6		-7.200	1.00	0.00	Ō
figuri can.		ATOM	3132		THR A		23.6		-5.180	1.00	0.00	C
1 1	25	ATOM	3133	N	TYR A		24.4		-2.971	1.00	0.00	N
ĮŢ.		ATOM	3134	CA	TYR A		23.9		-1.577			
Party.		ATOM	3135	CA	TYR A		22.8			1.00	0.00	C
HaseP man a									-1.209	1.00	0.00	C
in.		ATOM	3136	0	TYR A		22.8		-1.742	1.00	0.00	0
	30	ATOM	3137	CB	TYR A		25.2		-0.696	1.00	0.00	C
	30	MOTA	3138	CG	TYR A		24.9		0.786	1.00	0.00	С
ត្ត _្ រូវ ប		MOTA	3139		TYR A		24.4		1.554	1.00	0.00	C
21		MOTA	3140	CD2	TYR A	407	25.2	77 61.163	1.437	1.00	0.00	С
		MOTA	3141	CE1	TYR A	407	24.3	21 59.037	2.941	1.00	0.00	С
Ü		MOTA	3142	CE2	TYR A	407	25.1	51 61.293	2.813	1.00	0.00	С
್ಯಕ್ಕಪ್ರ ಜನಕ ಜ	35	MOTA	3143	CZ	TYR A	407	24.6	81 60.229	3.562	1.00	0.00	C
iù.		ATOM	3144	OH	TYR A	407	24.6		4.932	1.00	0.00	0
i ain		ATOM	3145	N	ALA A		22.0		-0.291	1.00	0.00	N
4776		ATOM	3146	CA	ALA A		20.9		0.239	1.00	0.00	C
		ATOM	3147	C	ALA A		20.8		1.689	1.00	0.00	C
	40	ATOM	3148	0	ALA A		20.6		1.956	1.00	0.00	0
	10	ATOM	3149	СВ	ALA A		19.6		-0.502	1.00	0.00	C
		ATOM	3150									
				N	ASP A		20.9		2.626	1.00	0.00	N
		ATOM	3151	CA	ASP A		20.8		4.035	1.00	0.00	C
	45	MOTA	3152	С	ASP A		19.4		4.575	1.00	0.00	С
	45	MOTA	3153	0	ASP A		19.1		5.613	1.00	0.00	0
		MOTA	3154	CB	ASP A		21.83		4.877	1.00	0.00	C
		MOTA	3155	CG	ASP A	409	21.5	13 63.444	4.808	1.00	0.00	C
		MOTA	3156	OD1	ASP A	409	20.93	28 63.893	3.802	1.00	0.00	0
		MOTA	3157	OD2	ASP A	409	21.8	75 64.169	5.765	1.00	0.00	0
	50	ATOM	3158	N	ARG A	410	18.5	74 61.824	3.853	1.00	0.00	N
		ATOM	3159	CA	ARG A		17.10		4.238	1.00	0.00	C
		ATOM	3160	С	ARG A		16.32		3.137	1.00	0.00	C
		ATOM	3161	0	ARG A		16.82		2.306	1.00	0.00	0
		ATOM	3162	СВ	ARG A							
	55						17.00		5.533	1.00	0.00	C
	55	ATOM	3163	CG	ARG A		17.45		5.473	1.00	0.00	C
		ATOM	3164	CD	ARG A		17.3		6.863	1.00	0.00	C
		MOTA	3165	NE	ARG A		17.95		7.001	1.00	0.00	N
		MOTA	3166	CZ	ARG A		17.4		6.578	1.00	0.00	C
		MOTA	3167	NH1	ARG A	410	16.29	55 67.277	5.977	1.00	0.00	N
	60	MOTA	3168	NH2	ARG A	410	18.10	08 68.386	6.768	1.00	0.00	N
		MOTA	3169	N	SER A	411	15.03	31 62.230	3.146	1.00	0.00	N

		MOTA	3170	CA	SER A	411	14.062	62.737	2.179	1.00	0.00	С
		ATOM	3171	C	SER A		14.587	62.849	0.751	1.00	0.00	Č
		MOTA	3172	Ö	SER A		15.017	61.855	0.160	1.00	0.00	Ö
		ATOM	3173	СВ	SER A		13.512	64.094	2.645	1.00	0.00	C
	5	ATOM	3174	OG	SER A		14.555	65.012	2.916	1.00	0.00	0
	0	ATOM	3174	N	ASP A							
							14.534	64.055	0.195	1.00	0.00	N
		ATOM	3176	CA	ASP A		15.000	64.292	-1.166	1.00	0.00	С
		ATOM	3177	С	ASP A		16.345	65.016	-1.175	1.00	0.00	С
	10	ATOM	3178	0	ASP A		16.756	65.551	-2.200	1.00	0.00	0
	10	MOTA	3179	CB	ASP A		13.966	65.122	-1.941	1.00	0.00	С
		MOTA	3180	CG	ASP A	412	13.832	66.548	-1.410	1.00	0.00	С
		MOTA	3181	OD1	ASP A	412	14.316	66.826	-0.291	1.00	0.00	0
		ATOM	3182	OD2	ASP A	412	13.228	67.389	-2.114	1.00	0.00	0
		ATOM	3183	N	ASN A	413	17.022	65.027	-0.030	1.00	0.00	N
	15	MOTA	3184	CA	ASN A		18.316	65.699	0.088	1.00	0.00	C
		ATOM	3185	C	ASN A		19.452	64.858	-0.492	1.00	0.00	C
		MOTA	3186	Õ	ASN A		20.149	64.160	0.248	1.00	0.00	Ö
		ATOM	3187	СВ	ASN A		18.637	66.012	1.553	1.00	0.00	C
		ATOM	3188	CG	ASN A							
	20	ATOM	3189				17.727	67.076	2.156	1.00	0.00	С
	20				ASN A		17.963	67.536	3.272	1.00	0.00	0
\$550		MOTA	3190		ASN A		16.687	67.464	1.429	1.00	0.00	N
5 Table		MOTA	3191	N	TYR A		19.631	64.928	-1.809	1.00	0.00	N
		ATOM	3192	CA	TYR A		20.696	64.187	-2.483	1.00	0.00	С
, F	25	ATOM	3193	С	TYR A		21.940	65.067	-2.556	1.00	0.00	С
i ji	25	ATOM	3194	0	TYR A	414	21.869	66.235	-2.942	1.00	0.00	0
		MOTA	3195	CB	TYR A	414	20.264	63.763	-3.891	1.00	0.00	С
1000		ATOM	3196	CG	TYR A	414	19.261	62.630	-3.900	1.00	0.00	С
		ATOM	3197	CD1	TYR A	414	17.909	62.859	-3.628	1.00	0.00	С
# %# ### #		ATOM	3198	CD2	TYR A	414	19.668	61.319	-4.152	1.00	0.00	С
	30	ATOM	3199	CE1	TYR A	414	16.989	61.806	-3.609	1.00	0.00	С
(F)		ATOM	3200		TYR A		18.760	60.262	-4.132	1.00	0.00	C
21		ATOM	3201	CZ	TYR A		17.423	60.511	-3.861	1.00	0.00	C
		ATOM	3202	ОН	TYR A		16.528	59.462	-3.852	1.00	0.00	0
		ATOM	3203	N	TRP A		23.078	64.488	-2.190	1.00	0.00	N
J.	35	ATOM	3204	CA	TRP A		24.343	65.211	-2.153	1.00	0.00	C
	50	ATOM	3204	C								
					TRP A		25.086	65.255	-3.482	1.00	0.00	С
		MOTA	3206	0	TRP A		26.225	64.807	-3.568	1.00	0.00	0
\$ (120) 4 (120)		MOTA	3207	CB	TRP A		25.251	64.586	-1.092	1.00	0.00	С
9,44	40	ATOM	3208	CG	TRP A		24.680	64.608	0.294	1.00	0.00	С
¥	40	MOTA	3209		TRP A		23.384	64.351	0.658	1.00	0.00	С
		MOTA	3210	CD2			25.394	64.860	1.507	1.00	0.00	С
		MOTA	3211	NE1			23.251	64.428	2.023	1.00	0.00	N
		ATOM	3212	CE2	TRP A	415	24.470	64.738	2.570	1.00	0.00	С
		MOTA	3213		TRP A		26.729	65.175	1.802	1.00	0.00	С
	45	ATOM	3214	CZ2	TRP A	415	24.837	64.920	3.907	1.00	0.00	С
		ATOM	3215	CZ3	TRP A	415	27.095	65.355	3.128	1.00	0.00	С
		MOTA	3216		TRP A		26.150	65.226	4.167	1.00	0.00	С
		ATOM	3217	N	SER A		24.452	65.796	-4.516	1.00	0.00	N
		MOTA	3218	CA	SER A		25.100	65.881	-5.814	1.00	0.00	C
	50	MOTA	3219	С	SER A		25.676	67.274	-6.048	1.00	0.00	C
	• •	MOTA	3220	0	SER A		26.310	67.528	-7.065	1.00	0.00	0
		ATOM	3221	СВ	SER A		24.115	65.510	-6.931	1.00	0.00	C
		ATOM										
			3222	OG N	SER A		22.842	66.097	-6.719	1.00	0.00	0
	55	ATOM	3223	N	GLY A		25.465	68.171	-5.089	1.00	0.00	N
	55	ATOM	3224	CA	GLY A		25.979	69.524	-5.223	1.00	0.00	С
		ATOM	3225	С	GLY A		27.495	69.591	-5.153	1.00	0.00	С
		ATOM	3226	0	GLY A		28.126	70.313	-5.928	1.00	0.00	0
		MOTA	3227	N	TYR A		28.084	68.821	-4.241	1.00	0.00	N
		ATOM	3228	CA	TYR A	418	29.534	68.815	-4.057	1.00	0.00	С
	60	ATOM	3229	С	TYR A	418	30.308	68.208	-5.234	1.00	0.00	С
		MOTA	3230	0	TYR A	418	31.539	68.209	-5.250	1.00	0.00	0

	ATOM	3231	СВ	TYR A	418	29.894	68.109	-2.743	1.00	0.00	С
	ATOM	3232	CG	TYR A	418	30.042	66.601	-2.814	1.00	0.00	C
	ATOM	3233	CD1	TYR A	418	31.295	66.014	-2.998	1.00	0.00	C
	ATOM	3234	CD2	TYR A	418	28.941	65.760	-2.636	1.00	0.00	C
5	MOTA	3235	CE1	TYR A	418	31.452	64.622	-2.993	1.00	0.00	С
	ATOM	3236		TYR A		29.087	64.363	-2.631	1.00	0.00	C
	ATOM	3237	CZ	TYR A		30.346	63.808	-2.807	1.00	0.00	C
	ATOM	3238	OH	TYR A		30.509	62.440	-2.778	1.00	0.00	0
	ATOM	3239	N	TYR A		29.588	67.682	-6.218	1.00	0.00	N
10	ATOM	3240	CA	TYR A		30.247	67.143	-7.400	1.00	0.00	C
10	MOTA	3240	C	TYR A		30.767	68.352	-8.190	1.00	0.00	C
		3242		TYR A		31.607	68.207	-9.082	1.00	0.00	Ő
	ATOM	3242	0			29.255	66.377	-8.286	1.00	0.00	C
	MOTA		CB	TYR A		28.627	65.145	-7.665	1.00	0.00	c
15	MOTA	3244	CG	TYR A						0.00	C
15	MOTA	3245		TYR A		27.472	64.589	-8.213	1.00		C
	MOTA	3246		TYR A		29.197	64.518	-6.557	1.00	0.00	
	MOTA	3247		TYR A		26.900	63.439	-7.677	1.00	0.00	C
	MOTA	3248	CE2			28.633	63.362	-6.012	1.00	0.00	C
20	MOTA	3249	CZ	TYR A		27.485	62.829	-6.580	1.00	0.00	C
20	MOTA	3250	OH	TYR A		26.927	61.678	-6.064	1.00	0.00	0
	MOTA	3251	N	THR A		30.279	69.544	-7.840	1.00	0.00	N
	MOTA	3252	CA	THR A	420	30.661	70.770	-8.546	1.00	0.00	C
	MOTA	3253	С	THR A	420	31.221	71.919	-7.697	1.00	0.00	С
	MOTA	3254	0	THR A	420	32.026	72.712	-8.187	1.00	0.00	0
25	ATOM	3255	CB	THR A	420	29.455	71.310	-9.354	1.00	0.00	С
	MOTA	3256	OG1	THR A	420	28.971	70.281	-10.227	1.00	0.00	0
	MOTA	3257	CG2	THR A	420	29.854	72.529	-10.190	1.00	0.00	С
	ATOM	3258	N	SER A	421	30.800	72.008	-6.436	1.00	0.00	N
	ATOM	3259	CA	SER A	421	31.242	73.076	-5.536	1.00	0.00	С
30	ATOM	3260	С	SER A	421	32.735	73.389	-5.606	1.00	0.00	C
	ATOM	3261	0	SER A	421	33.572	72.482	-5.614	1.00	0.00	0
	ATOM	3262	CB	SER A		30.857	72.735	-4.094	1.00	0.00	С
	ATOM	3263	OG	SER A		29.453	72.577	-3.981	1.00	0.00	0
	ATOM	3264	N	ARG A		33.053	74.684	-5.635	1.00	0.00	N
35	ATOM	3265	CA	ARG A		34.435	75.157	-5.717	1.00	0.00	С
-	ATOM	3266	C	ARG A		35.159	74.483	-6.885	1.00	0.00	C
	ATOM	3267	Ö	ARG A		36.171	73.796	-6.706	1.00	0.00	0
	ATOM	3268	СВ	ARG A		35.165	74.882	-4.399	1.00	0.00	С
	ATOM	3269	CG	ARG A		34.962	75.955	-3.314	1.00	0.00	C
40	ATOM	3270	CD	ARG A		33.503	76.181	-2.910	1.00	0.00	С
10	ATOM	3271	NE	ARG A		33.428	77.149	-1.812	1.00	0.00	N
	MOTA	3272	CZ	ARG A		33.509	76.833	-0.522	1.00	0.00	C
	MOTA	3273		ARG A		33.643	75.570	-0.148	1.00	0.00	N
	ATOM	3274		ARG A		33.518	77.790	0.400	1.00	0.00	N
45		3275		PRO A		34.657	74.698	-8.111	1.00	0.00	N
43	ATOM	3275	N			35.246	74.107	-9.316	1.00	0.00	C
	MOTA		CA	PRO A		36.676	74.537	-9.638	1.00	0.00	C
	ATOM	3277	С	PRO A						0.00	0
	ATOM	3278	0	PRO A		37.406		-10.309	1.00		
EΩ	ATOM	3279	CB	PRO A		34.249		-10.409	1.00	0.00	C
50	ATOM	3280	CG	PRO A		33.751	75.827	-9.945	1.00	0.00	С
	MOTA	3281	CD	PRO A		33.540	75.596	-8.457	1.00	0.00	C
	MOTA	3282	N	TYR A		37.077	75.717	-9.175	1.00	0.00	N
	MOTA	3283	CA	TYR A		38.434	76.193	-9.433	1.00	0.00	C
	MOTA	3284	С	TYR A		39.447	75.199	-8.863	1.00	0.00	С
55	MOTA	3285	0	TYR A	424	40.399	74.793	-9.536	1.00	0.00	0
	MOTA	3286	CB	TYR A	424	38.654	77.556	-8.770	1.00	0.00	С
	MOTA	3287	CG	TYR A	424	40.023	78.142	-9.032	1.00	0.00	С
	MOTA	3288	CD1	TYR A	424	40.264		-10.171	1.00	0.00	С
	MOTA	3289	CD2	TYR A	424	41.082	77.922	-8.146	1.00	0.00	С
60	MOTA	3290	CE1	TYR A	424	41.522	79.439	-10.425	1.00	0.00	С
	ATOM	3291	CE2	TYR A	424	42.351	78.452	-8.393	1.00	0.00	С

	MOTA	3292	CZ	TYR A		42.561	79.212	-9.536	1.00	0.00	С
	MOTA	3293	OH	TYR A		43.801	79.754	-9.797	1.00	0.00	O N
	MOTA	3294	N	HIS A		39.223	74.798	-7.617 -6.933	1.00	0.00	C
_	MOTA	3295	CA	HIS A		40.121	73.876	-6.933 -7.433	1.00	0.00	C
5	MOTA	3296	С	HIS A		39.983	72.441	-7.435 -7.375	1.00	0.00	Ö
	ATOM	3297	0	HIS A		40.940 39.872	73.988	-5.432	1.00	0.00	Ċ
	MOTA	3298	CB	HIS A		39.848	75.407	-4.958	1.00	0.00	C
	ATOM	3299	CG	HIS A		40.997	76.127	-4.708	1.00	0.00	N
10	ATOM	3300		HIS A		38.821	76.281	-4.824	1.00	0.00	C
10	ATOM	3301		HIS A		40.681	77.382	-4.446	1.00	0.00	C
	ATOM ATOM	3302 3303		HIS A		39.367	77.503	-4.511	1.00	0.00	N
		3304	NEZ N	LYS A		38.799	72.091	-7.925	1.00	0.00	N
	MOTA MOTA	3304	CA	LYS A		38.581	70.755	-8.480	1.00	0.00	С
15	ATOM	3306	C	LYS A		39.470	70.629	-9.719	1.00	0.00	С
15	MOTA	3307	0	LYS A		40.072	69.577	-9.968	1.00	0.00	0
	ATOM	3307	CB	LYS A		37.107	70.563	-8.870	1.00	0.00	С
	ATOM	3309	CG	LYS A		36.195	70.152	-7.716	1.00	0.00	С
	ATOM	3310	CD	LYS A		34.725	70.105	-8.148	1.00	0.00	С
20	ATOM	3311	CE	LYS A		33.869	69.286	-7.178	1.00	0.00	C
20	ATOM	3312	NZ	LYS A		33.884	69.803	-5.776	1.00	0.00	N
	MOTA	3313	N	ARG A		39.551		-10.494	1.00	0.00	N
	ATOM	3314	CA	ARG A		40.382		-11.694	1.00	0.00	С
	ATOM	3315	C	ARG A		41.850		-11.269	1.00	0.00	С
25	MOTA	3316	Ō	ARG A		42.695	71.093	-11.852	1.00	0.00	0
	MOTA	3317	CB	ARG F		40.024	72.955	-12.555	1.00	0.00	С
	MOTA	3318	CG	ARG F		41.003	73.283	-13.676	1.00	0.00	С
	ATOM	3319	CD	ARG A		41.277		-14.624	1.00	0.00	С
	MOTA	3320	NE	ARG A	427	42.272	72.510	-15.617	1.00	0.00	N
30	MOTA	3321	CZ	ARG A	427	43.045	71.672	-16.298	1.00	0.00	С
	MOTA	3322		ARG A		42.951	70.361	-16.110	1.00	0.00	N
	ATOM	3323	NH2	ARG A		43.936		-17.155	1.00	0.00	N
	MOTA	3324	N	MET A		42.145		-10.233	1.00	0.00	И
	MOTA	3325	CA	MET A		43.514	72.641	-9.739	1.00	0.00	C
35	MOTA	3326	С	MET A		44.018	71.255	-9.321	1.00	0.00	С
	MOTA	3327	0	MET A		45.196	70.928	-9.507	1.00	0.00	0 C
	ATOM	3328	CB	MET A		43.570	73.610	-8.555	1.00	0.00	C
	ATOM	3329	CG	MET A		44.976	73.929	-8.088	1.00	0.00	S
40	MOTA	3330	SD	MET A		45.002	75.301	-6.918	1.00	0.00	C
40	MOTA	3331	CE	MET A		46.758	75.634	-6.852 -8.775	1.00	0.00	N
	ATOM	3332	N	ASP A		43.117	70.438 69.085	-8.348	1.00	0.00	C
	ATOM	3333	CA	ASP A		43.473 44.061	68.268	-9.492	1.00	0.00	C
	ATOM	3334	С	ASP A		45.083	67.600	-9.328	1.00	0.00	Ö
45	ATOM	3335	O	ASP A		42.247	68.356	-7.785	1.00	0.00	C
43	ATOM	3336 3337	CB CG	ASP A		42.531	66.893	-7.463	1.00	0.00	C
	ATOM ATOM	3338		ASP A		42.221	66.022	-8.309	1.00	0.00	0
	ATOM	3339		ASP A		43.071	66.617	-6.370	1.00	0.00	0
	ATOM	3340	N		4 430	43.415		-10.653	1.00	0.00	N
50	ATOM	3341	CA		4 430	43.874		-11.817	1.00	0.00	C
00	MOTA	3342	C		A 430	45.199		-12.368	1.00	0.00	С
	ATOM	3343	0		430	46.017		-12.877	1.00	0.00	0
	ATOM	3344	CB		A 430	42.803	67.606	-12.907	1.00	0.00	C
	ATOM	3345	CG		4 4 3 0	41.512		-12.504	1.00	0.00	C
55	ATOM	3346	CD		A 430	41.748	65.447	-12.150	1.00	0.00	C
-	ATOM	3347	NE		A 430	40.503		-12.126	1.00	0.00	N
	ATOM	3348	CZ		A 430	39.819	64.378	-11.027	1.00	0.00	С
	ATOM	3349		ARG A		40.252	64.760		1.00	0.00	N
	ATOM	3350	NH2	ARG A	A 430	38.683		-11.126	1.00	0.00	N
60	MOTA	3351	N	VAL I	431	45.407		-12.278	1.00	0.00	N
	ATOM	3352	CA	VAL	A 431	46.651	69.989	-12.748	1.00	0.00	С

	ATOM	3353	C	VAL A		47.789	69.514 -11.840	1.00	0.00	С
	ATOM	3354	0	VAL A		48.817	69.038 -12.315	1.00	0.00	0
	ATOM	3355	CB	VAL A		46.579	71.536 -12.721	1.00	0.00	C
_	ATOM	3356	CG1	VAL A	431	47.951	72.135 -13.040	1.00	0.00	С
5	ATOM	3357	CG2	VAL A	431	45.550	72.024 -13.735	1.00	0.00	С
	ATOM	3358	N	LEU A	432	47.599	69.630 -10.530	1.00	0.00	N
	ATOM	3359	CA	LEU A	432	48.635	69.205 -9.595	1.00	0.00	С
	ATOM	3360	С	LEU A		48.864	67.703 -9.699	1.00	0.00	С
	ATOM	3361	0	LEU A	432	49.996	67.234 -9.588	1.00	0.00	0
10	ATOM	3362	СВ	LEU A		48.258	69.586 -8.160	1.00	0.00	C
20	ATOM	3363	CG	LEU A		49.291	69.259 -7.078	1.00	0.00	С
	ATOM	3364		LEU A		50.658	69.838 -7.461	1.00	0.00	С
						48.823	69.839 -5.736	1.00	0.00	C
	MOTA	3365		LEU A			66.946 -9.918	1.00	0.00	N
15	MOTA	3366	N	MET A		47.792		1.00	0.00	C
15	MOTA	3367	CA	MET A		47.919	65.497 -10.062		0.00	C
	MOTA	3368	С	MET A		48.970	65.194 -11.120	1.00		
	MOTA	3369	0	MET A		49.852	64.351 -10.920	1.00	0.00	0
	MOTA	3370	CB	MET A		46.594	64.873 -10.502	1.00	0.00	C
	MOTA	3371	CG	MET A		46.728	63.412 -10.918	1.00	0.00	C
20	MOTA	3372	SD	MET A	433	45.192	62.708 -11.557	1.00	0.00	S
	MOTA	3373	CE	MET A	433	45.225	63.322 -13.248	1.00	0.00	C
	MOTA	3374	N	HIS A	434	48.869	65.886 -12.250	1.00	0.00	N
	ATOM	3375	CA	HIS A	434	49.806	65.680 -13.346	1.00	0.00	С
	ATOM	3376	С	HIS A	434	51.207	66.194 -13.049	1.00	0.00	C
25	ATOM	3377	0	HIS A		52.196	65.539 -13.386	1.00	0.00	0
	ATOM	3378	CB	HIS A		49.293	66.333 -14.631	1.00	0.00	С
	ATOM	3379	CG	HIS A		50.274	66.259 -15.755	1.00	0.00	C
	ATOM	3380		HIS A		51.015	67.345 -16.167	1.00	0.00	N
	ATOM	3381		HIS A		50.712	65.205 -16.484	1.00	0.00	С
30	ATOM	3382		HIS A		51.869	66.961 -17.099	1.00	0.00	С
30		3383		HIS A		51.707	65.668 -17.310	1.00	0.00	N
	MOTA					51.294	67.372 -12.435	1.00	0.00	N
	ATOM	3384	N	TYR A		52.593	67.943 -12.100	1.00	0.00	c
	ATOM	3385	CA	TYR A			67.019 -11.162	1.00	0.00	c
25	ATOM	3386	С	TYR A		53.359		1.00	0.00	Ö
35	MOTA	3387	0	TYR A		54.573	66.871 -11.292	1.00	0.00	C
	ATOM	3388	CB	TYR A		52.432	69.315 -11.435			C
	ATOM	3389	CG	TYR A		52.316	70.482 -12.393	1.00	0.00	C
	ATOM	3390		TYR A		51.335	70.513 -13.384	1.00	0.00	
40	MOTA	3391		TYR A		53.160	71.587 -12.267	1.00	0.00	C
40	MOTA	3392	CE1			51.193	71.624 -14.226	1.00	0.00	C
	ATOM	3393		TYR A		53.028	72.697 -13.097	1.00	0.00	C
	ATOM	3394	CZ	TYR A		52.043	72.711 -14.072	1.00	0.00	C
	MOTA	3395	OH	TYR A	435	51.898	73.830 -14.866	1.00	0.00	0
	ATOM	3396	N	VAL A	436	52.656	66.400 -10.215	1.00	0.00	N
45	MOTA	3397	CA	VAL A	436	53.317	65.490 -9.282	1.00	0.00	C
	ATOM	3398	С	VAL A	436	53.886	64.293 -10.038	1.00	0.00	С
	ATOM	3399	0	VAL A	436	55.042	63.912 -9.841	1.00	0.00	0
	ATOM	3400	СВ	VAL A	436	52.345	65.011 -8.173	1.00	0.00	С
	ATOM	3401		VAL A		52.927	63.816 -7.437	1.00	0.00	С
50	MOTA	3402		VAL A		52.098	66.149 -7.186	1.00	0.00	С
	ATOM	3403	N	ARG A		53.079	63.708 -10.916	1.00	0.00	N
	ATOM	3404	CA	ARG A		53.540	62.566 -11.696	1.00	0.00	С
		3405	C	ARG A		54.754	62.934 -12.546	1.00	0.00	С
	MOTA MOTA	3406		ARG A		55.739	62.194 -12.594	1.00	0.00	0
55			0			52.420	62.048 -12.606	1.00	0.00	C
33	ATOM	3407	CB	ARG A					0.00	Č
	ATOM	3408	CG	ARG A		52.918	61.115 -13.703	1.00		C
	ATOM	3409	CD	ARG A		51.782	60.539 -14.543	1.00	0.00	N
	ATOM	3410	NE	ARG A		52.290	59.871 -15.741	1.00	0.00	
(0	ATOM	3411	CZ	ARG A		51.563	59.066 -16.513	1.00	0.00	C
60	MOTA	3412		ARG A		50.293	58.819 -16.213	1.00	0.00	N
	ATOM	3413	NH2	ARG A	437	52.099	58.518 -17.595	1.00	0.00	N

		ATOM	3414	N	ALA A	438	54.681	64.077 -13.221	1.00	0.00	N
			3415					64.522 -14.086	1.00	0.00	C
		ATOM		CA	ALA A		55.772				
		MOTA	3416	C	ALA A	. 438	57.053	64.806 -13.308	1.00	0.00	C
		MOTA	3417	0	ALA A	438	58.149	64.467 -13.760	1.00	0.00	0
	5	ATOM	3418	CB	ALA A		55.345	65.762 -14.878	1.00	0.00	С
										0.00	
		ATOM	3419	N	ALA A		56.914	65.418 -12.136	1.00		N
		ATOM	3420	CA	ALA A	439	58.074	65.737 -11.311	1.00	0.00	С
		ATOM	3421	С	ALA A	439	58.733	64.462 -10.786	1.00	0.00	C
		MOTA	3422	0	ALA A	439	59.954	64.318 -10.837	1.00	0.00	0
	10	ATOM	3423	СВ	ALA A		57.660	66.644 -10.143	1.00	0.00	C
	10										
		MOTA	3424	N	GLU A	440	57.925	63.538 -10.274	1.00	0.00	N
		ATOM	3425	CA	GLU A	440	58.468	62.282 -9.761	1.00	0.00	С
		ATOM	3426	С	GLU A	440	59.121	61.460 -10.875	1.00	0.00	С
		ATOM	3427	0	GLU A		60.177	60.855 -10.676	1.00	0.00	0
	15										C
	13	ATOM	3428	CB	GLU A		57.366	61.449 -9.094	1.00	0.00	
		ATOM	3429	CG	GLU A	440	56.798	62.084 -7.836	1.00	0.00	С
		MOTA	3430	CD	GLU A	440	56.139	61.070 -6.918	1.00	0.00	C
		ATOM	3431	OE1	GLU A	440	55.013	60.619 -7.215	1.00	0.00	0
		ATOM	3432		GLU A		56.765	60.712 -5.903	1.00	0.00	0
	20										
	20	ATOM	3433	N	MET A		58.497	61.433 -12.048	1.00	0.00	N
		ATOM	3434	CA	MET A	441	59.050	60.662 -13.160	1.00	0.00	С
		ATOM	3435	C	MET A	441	60.327	61.279 -13.723	1.00	0.00	C
Prij.		ATOM	3436	0	MET A	441	61.326	60.583 -13.915	1.00	0.00	0
		ATOM	3437	CB	MET A		58.013	60.508 -14.275	1.00	0.00	C
	25										C
H	25	ATOM	3438	CG	MET A		58.521	59.759 -15.507	1.00	0.00	
l _i a a		MOTA	3439	SD	MET A	441	57.249	59.561 -16.783	1.00	0.00	S
		MOTA	3440	CE	MET A	441	56.178	58.340 -16.009	1.00	0.00	С
N.		MOTA	3441	N	LEU A	442	60.305	62.583 -13.984	1.00	0.00	N
1 122		ATOM	3442	CA	LEU A		61.483	63.250 -14.531	1.00	0.00	С
N.	30										
m	50	MOTA	3443	С	LEU A		62.698	63.167 -13.620	1.00	0.00	C
7. "		MOTA	3444	0	LEU A	442	63.827	63.032 -14.095	1.00	0.00	0
B		MOTA	3445	CB	LEU A	442	61.173	64.718 -14.844	1.00	0.00	С
		MOTA	3446	CG	LEU A	442	60.550	64.989 -16.219	1.00	0.00	С
1222		ATOM	3447		LEU A		59.972	66.398 -16.256	1.00	0.00	С
	35	ATOM	3448		LEU A		61.598	64.811 -17.305	1.00	0.00	C
T.	55										
		MOTA	3449	N	SER A		62.477	63.228 -12.310	1.00	0.00	N
		MOTA	3450	CA	SER A	443	63.594	63.173 -11.377	1.00	0.00	С
		ATOM	3451	C	SER A	443	64.002	61.750 -10.998	1.00	0.00	С
i.		MOTA	3452	0	SER A	443	65.058	61.546 -10.393	1.00	0.00	0
inage	40	ATOM	3453	CB	SER A		63.263	63.971 -10.110	1.00	0.00	C
	10										
		ATOM	3454	OG	SER A		62.172	63.400 -9.410	1.00	0.00	0
		MOTA	3455	N	ALA A	444	63.178	60.770 -11.364	1.00	0.00	N
		ATOM	3456	CA	ALA A	444	63.458	59.370 -11.041	1.00	0.00	C
		MOTA	3457	С	ALA A	444	64.616	58.781 -11.845	1.00	0.00	C
	45	ATOM	3458	0	ALA A	444	65.262	57.832 -11.403	1.00	0.00	0
		MOTA	3459	CB	ALA A		62.203	58.522 -11.254	1.00	0.00	C
		MOTA	3460	N	TRP A		64.878	59.345 -13.020	1.00	0.00	N
		MOTA	3461	CA	TRP A	445	65.947	58.844 -13.881	1.00	0.00	С
		MOTA	3462	С	TRP A	445	67.332	58.915 -13.252	1.00	0.00	C
	50	MOTA	3463	0	TRP A	445	68.198	58.093 -13.560	1.00	0.00	0
		ATOM	3464	СВ	TRP A		65.943	59.593 -15.218	1.00	0.00	C
		MOTA	3465	CG	TRP A		64.664	59.428 -15.968	1.00	0.00	C
		MOTA	3466		TRP A		63.670	60.354 -16.109	1.00	0.00	C
		ATOM	3467	CD2	TRP A	445	64.213	58.248 -16.644	1.00	0.00	C
	55	MOTA	3468	NE1	TRP A	445	62.628	59.823 -16.829	1.00	0.00	N
		ATOM	3469		TRP A		62.934	58.532 -17.170	1.00	0.00	С
		ATOM	3470		TRP A			56.976 -16.856	1.00	0.00	C
							64.766				
		MOTA	3471		TRP A		62.193	57.588 -17.898	1.00	0.00	С
		MOTA	3472	CZ3	TRP A	445	64.030	56.036 -17.578	1.00	0.00	C
	60	MOTA	3473	CH2	TRP A	445	62.755	56.351 -18.091	1.00	0.00	С
		ATOM	3474	N	HIS A		67.545	59.895 -12.379	1.00	0.00	N
					**			20000			

													_
		ATOM	3475	CA	HIS.			68.834		-11.714	1.00	0.00	C
		MOTA	3476	С	HIS .			68.713		-10.206	1.00	0.00	С
		MOTA	3477	0	HIS .			67.626	60.069	-9.640	1.00	0.00	0
		MOTA	3478	CB	HIS.			69.467		-11.997	1.00	0.00	C
	5	MOTA	3479	CG	HIS .			69.879		-13.418	1.00	0.00	C
		ATOM	3480		HIS .			69.050		-14.354	1.00	0.00	N C
		MOTA	3481		HIS .			71.048		-14.053	$1.00 \\ 1.00$	0.00	C
		ATOM	3482		HIS .			69.691		-15.505	1.00	0.00	N
	10	ATOM	3483		HIS .			70.905		-15.350		0.00	N N
	10	ATOM	3484	N	SER .			69.856	59.712	-9.568 -8.122	1.00	0.00	C
		MOTA	3485	CA	SER .			69.944	59.672 61.099	-7.855	1.00	0.00	C
		MOTA	3486	С	SER .			70.427	61.587	-7.855 -8.551	1.00	0.00	0
		MOTA	3487	0	SER .			71.319 70.993	58.649	-7.680	1.00	0.00	C
	15	MOTA	3488	CB OG	SER .			70.993	58.509	-6.273	1.00	0.00	Ö
	15	MOTA MOTA	3489 3490	N	TRP .			69.834	61.784	-6.883	1.00	0.00	Ŋ
		ATOM	3491	CA	TRP			70.231	63.161	-6.617	1.00	0.00	C
		MOTA	3492	C	TRP .			70.231	63.388	-5.281	1.00	0.00	C
		MOTA	3493	0	TRP .			70.587	62.751	-4.284	1.00	0.00	Ō
	20	ATOM	3494	СВ	TRP .			69.017	64.090	-6.706	1.00	0.00	C
	20	MOTA	3495	CG	TRP			68.374	64.123	-8.059	1.00	0.00	C
		MOTA	3496	CD1				67.544	63.184	-8.594	1.00	0.00	Č
7,122		MOTA	3497	CD2				68.520	65.144	-9.052	1.00	0.00	C
		ATOM	3498		TRP			67.163	63.554	-9.860	1.00	0.00	N
44.0	25	ATOM	3499		TRP			67.747		-10.167	1.00	0.00	C
ĮŢĨ	. —-	ATOM	3500		TRP			69.232	66.353	-9.108	1.00	0.00	С
		ATOM	3501	CZ2	TRP .	A 448	3	67.664	65.528	-11.327	1.00	0.00	С
121		ATOM	3502	CZ3	TRP .	A 448	3	69.149	67.124	-10.262	1.00	0.00	C
	• •	ATOM	3503	CH2	TRP .			68.369		-11.358	1.00	0.00	С
100	30	ATOM	3504	N	ASP .			71.873	64.312	-5.277	1.00	0.00	И
		MOTA	3505	CA	ASP			72.598	64.661	-4.062	1.00	0.00	C
31		ATOM	3506	C	ASP.			71.600	65.348	-3.135	1.00	0.00	С
		MOTA	3507	0	ASP.			70.718	66.072	-3.594	1.00	0.00	0
ı,	25	MOTA	3508	CB	ASP.			73.754	65.610	-4.393	1.00	0.00	C
14	35	MOTA	3509	CG	ASP			74.627	65.915	-3.187 -2.297	$1.00 \\ 1.00$	0.00	C 0
		MOTA	3510		ASP			74.188 75.756	66.678 65.381	-3.128	1.00	0.00	0
		ATOM ATOM	3511 3512		ASP .			71.737	65.113	-1.835	1.00	0.00	N
में अवर्धी स		ATOM	3512	N CA	GLY			70.828	65.713	-0.876	1.00	0.00	C
	40	ATOM	3514	C	GLY			70.704	67.221	-0.991	1.00	0.00	C
	10	ATOM	3515	Ö	GLY			69.661	67.788	-0.664	1.00	0.00	Ō
		ATOM	3516	N	MET			71.764	67.875	-1.454	1.00	0.00	N
		MOTA	3517	CA	MET .			71.752	69.327	-1.593	1.00	0.00	C
		ATOM	3518	C	MET			70.770	69.822	-2.650	1.00	0.00	С
	45	ATOM	3519	0	MET			70.391	70.992	-2.647	1.00	0.00	0
		ATOM	3520	CB	MET			73.153	69.842	-1.937	1.00	0.00	C
		ATOM	3521	CG	MET			74.196	69.602	-0.862	1.00	0.00	C
		MOTA	3522	SD	MET			75.755	70.439	-1.246	1.00	0.00	S
		MOTA	3523	CE	MET			76.604	69.173	-2.220	1.00	0.00	С
	50	ATOM	3524	N	ALA	A 45	2	70.367	68.937	-3.557	1.00	0.00	N
		ATOM	3525	CA	ALA	A 45	2	69.436	69.308	-4.618	1.00	0.00	C
		MOTA	3526	С	ALA			68.020	69.480	-4.080	1.00	0.00	С
		MOTA	3527	0	ALA			67.151	70.027	-4.762	1.00	0.00	0
		MOTA	3528	CB	ALA			69.451	68.253	-5.719	1.00	0.00	С
	55	MOTA	3529	N	ARG			67.797	69.002	-2.859	1.00	0.00	И
		MOTA	3530	CA	ARG			66.490	69.099	-2.211	1.00	0.00	C
		MOTA	3531	C	ARG			65.363	68.513	-3.062	1.00	0.00	C
		MOTA	3532	0	ARG			64.230	68.994	-3.023	1.00	0.00	0
	60	ATOM	3533	CB	ARG			66.186	70.564	-1.878	1.00	0.00	C
	60	MOTA	3534	CG	ARG			67.256	71.230 72.701	-1.023 -0.782	1.00	0.00	C
		MOTA	3535	CD	ARG	A 45.)	66.948	12.701	-0.102	1.00	0.00	C

	MOTA	3536	NE	ARG A		65.72			1.00	0.00	N
	ATOM	3537	CZ	ARG A		65.18			1.00	0.00	C
	ATOM	3538		ARG A		65.75			1.00	0.00	N
_	ATOM	3539		ARG A		64.07			1.00	0.00	N
5	MOTA	3540	N	ILE A		65.67			1.00	0.00	N
	MOTA	3541	CA	ILE A		64.68			1.00	0.00	C
	ATOM	3542	С	ILE A		63.63			1.00	0.00	C
	MOTA	3543	0	ILE A		62.43			1.00	0.00	0
4.0	MOTA	3544	CB	ILE A		65.35			1.00	0.00	С
10	MOTA	3545		ILE A		66.31			1.00	0.00	С
	ATOM	3546		ILE A		64.28			1.00	0.00	С
	MOTA	3547	CD1	ILE A		65.67			1.00	0.00	С
	MOTA	3548	N	GLU A		64.09			1.00	0.00	N
	ATOM	3549	CA	GLU A		63.17			1.00	0.00	C
15	MOTA	3550	С	GLU A		62.32			1.00	0.00	С
	ATOM	3551	0	GLU A		61.13			1.00	0.00	0
	MOTA	3552	CB	GLU A	455	63.94			1.00	0.00	С
	ATOM	3553	CG	GLU A		64.53	3 62.22		1.00	0.00	C
	ATOM	3554	CD	GLU A	455	65.88	1 62.47		1.00	0.00	C
20	ATOM	3555		GLU A		66.34			1.00	0.00	0
	ATOM	3556	OE2	GLU A	455	66.47			1.00	0.00	0
	MOTA	3557	N	GLU A	456	62.94	8 66.40	8 -0.799	1.00	0.00	N
	ATOM	3558	CA	GLU A		62.25			1.00	0.00	С
	MOTA	3559	С	GLU A		61.07	0 68.00		1.00	0.00	С
25	ATOM	3560	0	GLU A	456	59.93	8 67.98		1.00	0.00	0
	ATOM	3561	CB	GLU A	456	63.22			1.00	0.00	С
	MOTA	3562	CG	GLU A	456	62.66			1.00	0.00	С
	MOTA	3563	CD	GLU A	456	63.53			1.00	0.00	C
•	MOTA	3564		GLU A		64.76			1.00	0.00	0
30	MOTA	3565	OE2	GLU A		62.99			1.00	0.00	0
	MOTA	3566	N	ARG A	457	61.33			1.00	0.00	N
	MOTA	3567	CA	ARG A	457	60.28		2 -2.685	1.00	0.00	С
	MOTA	3568	С	ARG A		59.18			1.00	0.00	С
0-	ATOM	3569	0	ARG A		58.00			1.00	0.00	0
35	MOTA	3570	CB	ARG A		60.89			1.00	0.00	С
	MOTA	3571	CG	ARG A		61.30			1.00	0.00	C
	ATOM	3572	CD	ARG A		62.23			1.00	0.00	C
	MOTA	3573	NE	ARG A		62.49			1.00	0.00	N
40	MOTA	3574	CZ	ARG A		63.34			1.00	0.00	C
40	MOTA	3575		ARG A		64.04			1.00	0.00	N
	MOTA	3576		ARG A		63.50			1.00	0.00	N
	MOTA	3577	N	LEU A		59.57			1.00	0.00	N
	MOTA	3578	CA	LEU A		58.59			1.00	0.00	C
4 🗁	MOTA	3579	C	LEU A		57.69				0.00	C
45	MOTA	3580	0	LEU A		56.50			1.00	0.00	0
	MOTA	3581	CB	LEU A		59.28				0.00	C
	MOTA	3582	CG	LEU A		60.00				0.00	C
	MOTA	3583		LEU A		60.68			1.00	0.00	C
Ε0	MOTA	3584		LEU A		58.98			1.00	0.00	C
50	MOTA	3585	N	GLU A		58.26			1.00	0.00	N
	ATOM	3586	CA	GLU A		57.47				0.00	C
	MOTA	3587	С	GLU A		56.42			1.00	0.00	C
	MOTA	3588	0	GLU A		55.26			1.00	0.00	0
	MOTA	3589	CB	GLU A		58.36				0.00	C
55	MOTA	3590	CG	GLU A		57.59				0.00	С
	MOTA	3591	CD	GLU A		58.49			1.00	0.00	C
	MOTA	3592		GLU A		59.21			1.00	0.00	0
	MOTA	3593		GLU A		58.50				0.00	0
60	MOTA	3594	N		460	56.84				0.00	N
60	MOTA	3595	CA	GLN A		55.92				0.00	C
	MOTA	3596	C	GLN A	4 460	54.78	68.43	2 -0.949	1.00	0.00	С

		ATOM	3597	0	GLN			53.612	68.514	-0.598	1.00	0.00	0
		MOTA	3598	CB	GLN			56.660	69.829	-0.045	1.00	0.00	C
		ATOM	3599	CG	GLN			55.777	71.040	0.210	1.00	0.00	C
	5	ATOM	3600	CD	GLN .			56.444	72.346	-0.167	$1.00 \\ 1.00$	0.00	C 0
	3	ATOM	3601		GLN			55.924	73.423 72.261	0.127 -0.830	1.00	0.00	N
		ATOM	3602		GLN .			57.592 55.141	68.279	-2.222	1.00	0.00	N
		MOTA MOTA	3603 3604	N CA	ALA ALA			54.130	68.220	-3.273	1.00	0.00	C
		ATOM	3605	C	ALA			53.140	67.071	-3.069	1.00	0.00	c
	10	ATOM	3606	0	ALA			51.929	67.271	-3.161	1.00	0.00	0
	10	ATOM	3607	СВ	ALA			54.802	68.103	-4.645	1.00	0.00	Ċ
		MOTA	3608	N	ARG			53.653	65.872	-2.800	1.00	0.00	N
		ATOM	3609	CA	ARG			52.793	64.709	-2.589	1.00	0.00	С
		ATOM	3610	С	ARG	Α	462	51.856	64.925	-1.402	1.00	0.00	С
	15	ATOM	3611	0	ARG	Α	462	50.674	64.585	-1.453	1.00	0.00	0
		ATOM	3612	CB	ARG	A	462	53.628	63.444	-2.332	1.00	0.00	C
		MOTA	3613	CG	ARG	A	462	54.381	62.881	-3.541	1.00	0.00	С
		MOTA	3614	CD	ARG			54.829	61.444	-3.251	1.00	0.00	C
	20	MOTA	3615	NE	ARG			55.740	61.374	-2.109	1.00	0.00	N
	20	MOTA	3616	CZ	ARG			57.059	61.524	-2.195	1.00	0.00	C
		MOTA	3617		ARG			57.631	61.746 61.459	-3.374 -1.102	1.00	0.00	N N
विश्वस्त्रहें सम्ब		MOTA	3618		ARG			57.810	65.494	-0.327	1.00	0.00	N
i de la la la la la la la la la la la la la		MOTA MOTA	3619 3620	N CA	ARG ARG			52.389 51.584	65.717	0.863	1.00	0.00	C
	25	MOTA	3621	CA	ARG			50.499	66.784	0.729	1.00	0.00	Č
171	20	ATOM	3622	0	ARG			49.402	66.609	1.255	1.00	0.00	Ō
		ATOM	3623	СВ	ARG			52.503	66.000	2.054	1.00	0.00	С
		ATOM	3624	CG	ARG			53.280	64.748	2.436	1.00	0.00	С
		ATOM	3625	CD	ARG			54.193	64.919	3.631	1.00	0.00	С
M	30	MOTA	3626	NE	ARG	Α	463	54.722	63.619	4.032	1.00	0.00	N
		ATOM	3627	CZ	ARG	Α	463	55.484	63.411	5.100	1.00	0.00	С
2) 14791		MOTA	3628		ARG			55.817	64.426	5.885	1.00	0.00	N
		ATOM	3629		ARG			55.900	62.184	5.388	1.00	0.00	N
Will first	25	ATOM	3630	N	GLU			50.780	67.879	0.025	1.00	0.00	N
	35	ATOM	3631	CA	GLU			49.760	68.912	-0.139	1.00	0.00	C
		ATOM	3632 3633	C	GLU GLU			48.655 47.483	68.409 68.718	-1.067 -0.861	$1.00 \\ 1.00$	0.00	0
e serie		ATOM ATOM	3634	O CB	GLU			50.368	70.203	-0.691	1.00	0.00	C
i kali		ATOM	3635	CG	GLU			51.515	70.747	0.153	1.00	0.00	C
8 (40	ATOM	3636	CD	GLU			51.087	71.173	1.552	1.00	0.00	C
		ATOM	3637	OE1	GLU			50.050	70.691	2.054	1.00	0.00	0
		MOTA	3638		GLU			51.804	71.989	2.163	1.00	0.00	0
		MOTA	3639	N	LEU	A	465	49.022	67.644	-2.092	1.00	0.00	N
		MOTA	3640	CA	LEU	A	465	48.016	67.098	-3.003	1.00	0.00	С
	45	MOTA	3641	С	LEU			47.212	66.032	-2.262	1.00	0.00	С
		MOTA	3642	0	LEU			45.991	65.956	-2.398	1.00	0.00	0
		MOTA	3643	CB	LEU			48.669	66.473	-4.244	1.00	0.00	С
		MOTA	3644	CG	LEU			47.699	65.779	-5.215	1.00	0.00	C
	50	ATOM	3645		LEU			46.661	66.785	-5.708	1.00	0.00	C C
	50	MOTA	3646		LEU SER			48.464 47.902	65.186 65.214	-6.393 -1.468	1.00	0.00	N
		MOTA MOTA	3647 3648	N CA	SER			47.234	64.157	-0.712	1.00	0.00	C
		ATOM	3649	C	SER			46.247	64.759	0.277	1.00	0.00	Č
		ATOM	3650	Ô	SER			45.140	64.247	0.459	1.00	0.00	0
	55	ATOM	3651	CB	SER			48.257	63.301	0.043	1.00	0.00	С
		ATOM	3652	OG	SER			49.052	62.542	-0.854	1.00	0.00	0
		ATOM	3653	N	LEU			46.653	65.852	0.914	1.00	0.00	N
		MOTA	3654	CA	LEU	A	467	45.791	66.512	1.883	1.00	0.00	С
		ATOM	3655	C	LEU			44.478	66.949	1.238	1.00	0.00	C
	60	MOTA	3656	0	LEU			43.402	66.757	1.810	1.00	0.00	0
		ATOM	3657	CB	LEU	Α	467	46.500	67.735	2.477	1.00	0.00	С

	7) TOM	2650	CC	T ETT 7	167	45.	768 6	8.414	3.635	1.00	0.00	C
	ATOM	3658	CG	LEU A								
	ATOM	3659	CD1	LEU A	4 467	45.	862 6	7.528	4.870	1.00	0.00	С
	MOTA	3660	CD2	LEU A	467	46.	382 6	9.786	3.914	1.00	0.00	С
											0.00	N
_	ATOM	3661	N	PHE A				57.521	0.040	1.00		
5	MOTA	3662	CA	PHE A	468	43.	389 6	8.009	-0.664	1.00	0.00	С
_								6.905	-1.057	1.00	0.00	С
	MOTA	3663	С	PHE A								
	ATOM	3664	0	PHE A	468	41.	270 6	57.190	-1.406	1.00	0.00	0
	ATOM	3665	CB	PHE A	168	43.	797 6	8.809	-1.908	1.00	0.00	С
	ATOM	3666	CG	PHE A	468	42.	672 6	9.607	-2.511	1.00	0.00	С
10	MOTA	3667	CD1	PHE A			955 7	0.518	-1.736	1.00	0.00	С
10												C
	ATOM	3668	CD2	PHE A	4 468	42.	318 6	9.443	-3.847	1.00	0.00	
	MOTA	3669	CE1	PHE A	468	40.	901 7	1.254	-2.284	1.00	0.00	С
								0.173	-4.402	1.00	0.00	С
	MOTA	3670		PHE A								
	MOTA	3671	CZ	PHE A	4 468	40.	554 7	1.081	-3.617	1.00	0.00	С
15	MOTA	3672	N	GLN A	160	42.	219 6	5.648	-1.003	1.00	0.00	N
10												
	MOTA	3673	CA	GLN A	4 469	41.	959 6	4.540	-1.337	1.00	0.00	С
	MOTA	3674	С	GLN A	469	40.	929 6	4.328	-0.229	1.00	0.00	С
											0.00	0
	ATOM	3675	0	GLN A	4 469	39.		3.544	-0.387	1.00		
	MOTA	3676	CB	GLN A	469	42.	753 6	3.248	-1.548	1.00	0.00	С
20								3.349	-2.645	1.00	0.00	С
20	MOTA	3677	CG	GLN A								
	MOTA	3678	CD	GLN A	4 469	43.	261 6	3.986	-3.912	1.00	0.00	С
	MOTA	3679	OF 1	GLN A	160	43.	797 6	4.987	-4.395	1.00	0.00	0
	MOTA	3680	NEZ	GLN A	4 465	42.	193 6	3.414	-4.453	1.00	0.00	N
	MOTA	3681	N	HIS A	470	41.	112ϵ	55.030	0.887	1.00	0.00	N
25								54.941	2.029	1.00	0.00	C
23	MOTA	3682	CA	HIS A								
	ATOM	3683	С	HIS A	470	38.	752 6	55.169	1.583	1.00	0.00	C
	MOTA	3684	0	HIS A	470	38.	509 6	55.904	0.621	1.00	0.00	0
												C
	MOTA	3685	CB	HIS A	4 470	40.	569 t	55.988	3.087	1.00	0.00	
	MOTA	3686	CG	HIS A	470	39.	589 6	66.071	4.217	1.00	0.00	С
30								57.270	4.715	1.00	0.00	N
30	MOTA	3687		HIS A								
	ATOM	3688	CD2	HIS A	A 470	38.	967 6	55.102	4.928	1.00	0.00	С
	MOTA	3689		HIS A			251 6	57.033	5.681	1.00	0.00	C
	ATOM	3690	NE2	HIS A	4 470	38.	140 6	55.725	5.830	1.00	0.00	N
	MOTA	3691	N	HIS A	471	37.	796 6	54.566	2.292	1.00	0.00	N
35								54.715	1.928	1.00	0.00	C
33	MOTA	3692	CA	HIS A								
	MOTA	3693	С	HIS A	A 471	35.	769 6	66.104	2.151	1.00	0.00	C
	ATOM	3694	0	HIS A			551 6	56.274	2.017	1.00	0.00	0
												C
	MOTA	3695	CB	HIS A	A 471	35.	525	53.626	2.600	1.00	0.00	
	MOTA	3696	CG	HIS A	471	35.	692 6	53.533	4.084	1.00	0.00	С
40								52.743	4.678	1.00	0.00	N
40	ATOM	3697		HIS A								
	ATOM	3698	CD2	HIS A	A 471	35.	010 (54.121	5.096	1.00	0.00	C
	ATOM	3699	CF1	HIS A	471	36.	556 6	52.848	5.992	1.00	0.00	С
												N
	ATOM	3700	NE2	HIS A	4 4/1	35.	568 6	63.678	6.270	1.00	0.00	
	ATOM	3701	N	ASP 2	A 472	36.	603	57.085	2.505	1.00	0.00	N
45				ASP I				58.473	2.654	1.00	0.00	С
45	ATOM	3702	CA									
	ATOM	3703	С	ASP A	A 472	37.	108	59.343	1.835	1.00	0.00	С
	ATOM	3704	0	ASP I	472	37	035	70.574	1.867	1.00	0.00	0
	ATOM	3705	CB	ASP I	4 4 / 2	36.	183	58.934	4.111	1.00	0.00	С
	ATOM	3706	CG	ASP :	A 472	35.	075	58.320	4.922	1.00	0.00	C
50								58.411	4.480	1.00	0.00	0
50	MOTA	3707		ASP I								
	ATOM	3708	OD2	ASP .	A 472	35.	363 6	67.755	5.993	1.00	0.00	0
	ATOM	3709	N	GLY :			002	68.685	1.104	1.00	0.00	N
	ATOM	3710	CA	GLY .	A = 473	38.	952	59.400	0.275	1.00	0.00	C
	ATOM	3711	С	GLY .	A 473	38.	444	59.513	-1.147	1.00	0.00	C
55								70.468	-1.490	1.00	0.00	0
	MOTA	3712	0	GLY								
	MOTA	3713	N	ILE .	A 474	38.	779	68.526	-1.971	1.00	0.00	N
	ATOM	3714	CA	ILE .				58.511	-3.370	1.00	0.00	C
												C
	MOTA	3715	С	ILE .	A 474			68.613	-3.530	1.00	0.00	
	ATOM	3716	0	ILE .	A 474	36.	345	69.057	-4.566	1.00	0.00	0
60								67.230	-4.082	1.00	0.00	С
UU	MOTA	3717	CB	ILE .								
	MOTA	3718	CG1	ILE .	A 474	38.	613	67.307	-5.584	1.00	0.00	С

	ATOM	3719		ILE A		38.277	65.980	-3.457	1.00	0.00	C
	MOTA	3720	CD1	ILE A		39.204	66.157	-6.386	1.00	0.00	C
	MOTA	3721	N	THR A		36.118	68.214	-2.490	1.00	0.00	N
- -	MOTA	3722	CA	THR A		34.656	68.252	-2.480	1.00	0.00	C
5	MOTA	3723	С	THR A		34.109	69.681	-2.518	1.00	0.00	C
	MOTA	3724	0	THR A		32.942	69.898	-2.861	1.00	0.00	0
	MOTA	3725	CB	THR A		34.102	67.611	-1.205	1.00	0.00	C
	MOTA	3726	OG1	THR A	475	34.637	68.306	-0.072	1.00	0.00	0
	MOTA	3727	CG2	THR A	475	34.484	66.130	-1.124	1.00	0.00	С
10	ATOM	3728	N	GLY A	476	34.944	70.645	-2.144	1.00	0.00	И
	MOTA	3729	CA	GLY A	476	34.506	72.030	-2.124	1.00	0.00	C
	MOTA	3730	С	GLY A	476	33.510	72.287	-1.002	1.00	0.00	С
	MOTA	3731	0	GLY A	476	32.618	73.126	-1.136	1.00	0.00	0
	ATOM	3732	N	THR A	477	33.660	71.572	0.110	1.00	0.00	N
15	MOTA	3733	CA	THR A	477	32.750	71.731	1.237	1.00	0.00	C
	ATOM	3734	С	THR A	477	33.371	72.333	2.499	1.00	0.00	С
	MOTA	3735	0	THR A	477	32.853	72.135	3.598	1.00	0.00	0
	MOTA	3736	CB	THR A		32.088	70.375	1.613	1.00	0.00	C
	ATOM	3737	OG1	THR A	477	33.102	69.404	1.907	1.00	0.00	0
20	ATOM	3738	CG2	THR A		31.224	69.871	0.461	1.00	0.00	C
	ATOM	3739	N	ALA A		34.469	73.075	2.351	1.00	0.00	N
	ATOM	3740	CA	ALA A		35.117	73.695	3.508	1.00	0.00	С
	ATOM	3741	C	ALA A		34.800	75.188	3.586	1.00	0.00	С
	ATOM	3742	0	ALA A		34.330	75.780	2.617	1.00	0.00	0
25	ATOM	3743	СВ	ALA A		36.634	73.486	3.439	1.00	0.00	C
	ATOM	3744	N	LYS A		35.049	75.805	4.737	1.00	0.00	N
	MOTA	3745	CA	LYS A		34.783	77.235	4.858	1.00	0.00	C
	ATOM	3746	C	LYS A		35.761	77.985	3.960	1.00	0.00	С
	MOTA	3747	Ö	LYS A		36.826	77.471	3.621	1.00	0.00	0
30	ATOM	3748	СВ	LYS A		34.923	77.698	6.314	1.00	0.00	С
00	ATOM	3749	CG	LYS A		33.900	77.052	7.251	1.00	0.00	С
	ATOM	3750	CD	LYS A		33.934	77.645	8.658	1.00	0.00	С
	ATOM	3751	CE	LYS A		33.032	78.863	8.800	1.00	0.00	С
	ATOM	3752	NZ	LYS A		31.571	78.531	8.775	1.00	0.00	N
35	MOTA	3753	N	THR A		35.391	79.204	3.589	1.00	0.00	N
	ATOM	3754	CA	THR A		36.199	80.040	2.712	1.00	0.00	С
	ATOM	3755	C	THR A		37.690	80.143	3.032	1.00	0.00	С
	ATOM	3756	Ö	THR A		38.520	79.985	2.137	1.00	0.00	0
	ATOM	3757	СВ	THR A		35.612	81.464	2.643	1.00	0.00	С
40	ATOM	3758		THR A		34.266	81.390	2.164	1.00	0.00	0
10	ATOM	3759		THR A		36.433	82.353	1.701	1.00	0.00	С
	ATOM	3760	N	HIS A		38.042	80.400	4.290	1.00	0.00	N
	ATOM	3761	CA	HIS A		39.454	80.536	4.628	1.00	0.00	С
	ATOM	3762	C	HIS A		40.207	79.209	4.586		0.00	С
45	ATOM	3763	Ö	HIS A		41.431	79.192	4.444	1.00	0.00	0
10	ATOM	3764	СВ	HIS A		39.635	81.226	5.993	1.00	0.00	C
	ATOM	3765	CG	HIS A		39.481	80.320	7.176	1.00	0.00	С
	ATOM	3766		HIS A		38.258	79.860	7.614	1.00	0.00	N
	ATOM	3767		HIS A		40.402	79.806	8.025	1.00	0.00	С
50	ATOM	3768		HIS A		38.432	79.103	8.682	1.00	0.00	С
50	ATOM	3769		HIS A		39.724	79.053	8.952	1.00	0.00	N
	ATOM	3770	N	VAL A		39.475	78.103	4.694	1.00	0.00	N
	ATOM	3771	CA	VAL A		40.090	76.774	4.640	1.00	0.00	C
	ATOM	3772	CA	VAL A		40.382	76.450	3.172	1.00	0.00	C
55		3773	0	VAL A		41.427	75.894	2.840	1.00	0.00	Ō
	ATOM ATOM	3774		VAL A		39.157	75.705	5.255	1.00	0.00	C
	ATOM	3774		VAL A		39.137	74.327	5.231	1.00	0.00	C
				VAL A		38.819	76.096	6.693	1.00	0.00	C
	ATOM	3776 3777		VAL A		39.452	76.808	2.292	1.00	0.00	N
60	ATOM	3777 3778	N CA			39.432	76.592	0.862	1.00	0.00	C
00	ATOM			VAL A		40.898	77.365	0.446	1.00	0.00	C
	MOTA	3779	С	VAL A	400	40.070	11.303	0.440	1.00	0.00	C

		MOTA	3780	0	VAL A	483	41	.707	76.888	-0.353	1.00	0.00	0
		ATOM	3781	CB	VAL A			.432	77,112	0.057	1.00	0.00	С
		ATOM	3782		VAL A			.716	77.030	-1.437	1.00	0.00	Ċ
			3783		VAL A			.191	76.285	0.411	1.00	0.00	c
	5	MOTA						.059	78.560	1.003	1.00	0.00	N
	5	MOTA	3784	N	VAL A				79.379	0.698	1.00	0.00	C
		MOTA	3785	CA	VAL A			.224	78.670	1.147	1.00	0.00	c
		ATOM	3786	С	VAL A			.495				0.00	0
		MOTA	3787	0	VAL A			.498	78.678	0.434	1.00		C
	10	MOTA	3788	CB	VAL A			.131	80.759	1.377	1.00	0.00	
	10	MOTA	3789		VAL A			.461	81.500	1.252	1.00	0.00	C
		MOTA	3790	CG2	VAL A			.018	81.568	0.730	1.00	0.00	C
		MOTA	3791	N	ASP A	485	43	.454	78.047	2.323	1.00	0.00	N
		MOTA	3792	CA	ASP A	485	44	.621	77.326	2.822	1.00	0.00	С
		MOTA	3793	С	ASP A	485	44	.993	76.185	1.870	1.00	0.00	С
	15	MOTA	3794	0	ASP A	485	46	.166	75.996	1.541	1.00	0.00	0
		ATOM	3795	CB	ASP A	485	44	.354	76.751	4.215	1.00	0.00	C
		ATOM	3796	CG	ASP A			.600	76.156	4.843	1.00	0.00	C
		ATOM	3797		ASP A			.549	75.002	5.314	1.00	0.00	0
		ATOM	3798		ASP A			.640	76.850	4.866	1.00	0.00	0
	20	ATOM	3799	N	TYR A			.996	75.418	1.434	1.00	0.00	N
	20	ATOM	3800	CA	TYR A			.251	74.307	0.515	1.00	0.00	С
188		MOTA	3801	C	TYR A			.872	74.832	-0.777	1.00	0.00	Ċ
्रेडस्क्री स्टब्स			3802		TYR A			.799	74.228	-1.314	1.00	0.00	Ō
T.		MOTA		O				.951	73.571	0.174	1.00	0.00	c
	25	MOTA	3803	CB	TYR A						1.00	0.00	Č
:47	25	MOTA	3804	CG	TYR A			.351	72.736	1.291			C
स्थान स्थान		MOTA	3805		TYR A			.971	72.715	1.492	1.00	0.00	
		MOTA	3806		TYR A			.148	71.917	2.101	1.00	0.00	C
		MOTA	3807		TYR A			.387	71.897	2.469	1.00	0.00	C
	20	MOTA	3808		TYR A			.569	71.090	3.086	1.00	0.00	C
ign	30	MOTA	3809	CZ	TYR A			.186	71.090	3.257	1.00	0.00	C
		MOTA	3810	OH	TYR A			.590	70.278	4.200	1.00	0.00	0
4)		MOTA	3811	N	GLU A			.357	75.958	-1.270	1.00	0.00	N
		MOTA	3812	CA	GLU A	487		.865	76.552	-2.505	1.00	0.00	C
		ATOM	3813	С	GLU A	487	46	.320	76.979	-2.341	1.00	0.00	С
	35	MOTA	3814	0	GLU A	487	47	.149	76.727	-3.213	1.00	0.00	0
		MOTA	3815	CB	GLU A	487	44	.030	77.772	-2.920	1.00	0.00	C
i.i.		MOTA	3816	CG	GLU A	487	44	.302	78.202	-4.361	1.00	0.00	C
2,000 <u>2</u>		ATOM	3817	CD	GLU A	487	43	.595	79.487	-4.766	1.00	0.00	C
2,42		ATOM	3818	OE1	GLU A	487	42	.428	79.694	-4.372	1.00	0.00	0
A landa	40	ATOM	3819	OE2	GLU A	487	44	.210	80.286	-5.502	1.00	0.00	0
		ATOM	3820	N	GLN A	488	46	.622	77.636	-1.226	1.00	0.00	N
		ATOM	3821	CA	GLN A	488		.986	78.084	-0.957	1.00	0.00	С
		MOTA	3822	С	GLN A			.929	76.888	-0.920	1.00	0.00	C
		MOTA	3823	0	GLN A	488	50	.028	76.937	-1.472	1.00	0.00	0
	45	ATOM	3824	СВ	GLN A			.051	78.833	0.380	1.00	0.00	C
	10	ATOM	3825	CG	GLN A			.360	80.189	0.363	1.00	0.00	C
		MOTA	3826	CD	GLN A			.390	80.884	1.713	1.00	0.00	С
		MOTA	3827		GLN A			.028	82.054	1.825	1.00	0.00	0
		ATOM	3828		GLN A			.818	80.165	2.746	1.00	0.00	И
	50	ATOM	3829	N	ARG A			.497	75.822	-0.253	1.00	0.00	N
	00	MOTA	3830	CA	ARG F			.295	74.606	-0.155	1.00	0.00	C
			3831	C	ARG F			.530	74.010	-1.540	1.00	0.00	Č
		ATOM						.643	73.593	-1.867	1.00	0.00	0
		ATOM	3832	0	ARG F							0.00	c
	==	ATOM	3833	CB	ARG A			.591	73.574	0.735	1.00		C
	55	ATOM	3834	CG	ARG F			.625	73.891	2.233	1.00	0.00	
		ATOM	3835	CD	ARG F			.696	72.954	3.006	1.00	0.00	C
		ATOM	3836	NE	ARG F			.770	73.139	4.455	1.00	0.00	N
		MOTA	3837	CZ	ARG A			.680	72.571	5.244	1.00	0.00	C
		MOTA	3838		ARG A			.606	71.771	4.730	1.00	0.00	N
	60	MOTA	3839	NH2	ARG A			.665	72.806	6.552	1.00	0.00	N
		ATOM	3840	N	MET A	490	48	.487	73.962	-2.363	1.00	0.00	N

		MOTA	3841	CA	MET A	490	48.662	73.406	-3.699	1.00	0.00		3
		ATOM	3842	C	MET A		49.544		-4.558	1.00	0.00		2
					MET A		50.285		-5.414	1.00	0.00)
		MOTA	3843	0					-4.373	1.00	0.00	(
	_	MOTA	3844	CB	MET A		47.305						2
	5	MOTA	3845	CG	MET A		46.539		-3.748	1.00	0.00		
		MOTA	3846	SD	MET A	490	45.205		-4.786	1.00	0.00		3
		MOTA	3847	CE	MET A	490	43.887	72.488	-4.381	1.00	0.00		C
		MOTA	3848	N	GLN A	491	49.482	75.613	-4.319	1.00	0.00		V
		MOTA	3849	CA	GLN A		50.303	76.543	-5.084	1.00	0.00	(C
	10	MOTA	3850	C	GLN A		51.775		-4.790	1.00	0.00		С
	10						52.619		-5.694	1.00	0.00		C
		MOTA	3851	0	GLN A								2
		MOTA	3852	CB	GLN A		49.960		-4.713	1.00	0.00		
		ATOM	3853	CG	GLN A		50.638		-5.585	1.00	0.00		C
		MOTA	3854	CD	GLN A	491	50.355	78.817	-7.062	1.00	0.00		С
	15	MOTA	3855	OE1	GLN A	491	51.044	1 78.050	-7.741	1.00	0.00		С
		ATOM	3856	NE2	GLN A	491	49.329	79.493	-7.564	1.00	0.00	1	N
		MOTA	3857	N	GLU F		52.083		-3.520	1.00	0.00	1	N
			3858	CA	GLU F		53.453		-3.123	1.00	0.00	(С
		ATOM			GLU F		53.874		-3.737	1.00	0.00		С
	20	ATOM	3859	С					-4.154	1.00	0.00		0
	20	MOTA	3860	0	GLU F		55.019						С
:.		MOTA	3861	CB	GLU A		53.55		-1.595	1.00	0.00		
ķ		MOTA	3862	CG	GLU A	492	52.993		-0.916	1.00	0.00		С
Ė		MOTA	3863	CD	GLU A	492	52.973	3 76.826	0.599	1.00	0.00		С
		MOTA	3864	OE1	GLU A	492	52.545	75.780	1.135	1.00	0.00		0
	25	ATOM	3865		GLU A		53.372	2 77.810	1.259	1.00	0.00	(0
		ATOM	3866	N	ALA A		52.939	73.448	-3.798	1.00	0.00	1	N
		ATOM	3867	CA	ALA A		53.21		-4.376	1.00	0.00	(С
9			3868	C	ALA A		53.55		-5.861	1.00	0.00		С
,		ATOM							-6.365	1.00	0.00		0
	20	MOTA	3869	0	ALA A		54.49		-4.199	1.00	0.00		C
•	30	MOTA	3870	CB	ALA A		52.010						N
•		MOTA	3871	N	LEU A		52.78		-6.562	1.00	0.00		
		MOTA	3872	CA	LEU A	494	53.02		-7.986	1.00	0.00		C
		MOTA	3873	С	LEU A	494	54.42	5 73.900	-8.208	1.00	0.00		С
1		MOTA	3874	0	LEU A	494	55.14	2 73.453	-9.098	1.00	0.00		0
	35	MOTA	3875	CB	LEU A	494	51.97	1 74.287	-8.573	1.00	0.00		С
ĺ	•	MOTA	3876	CG	LEU A		50.57	4 73.683	-8.752	1.00	0.00	1	C
		ATOM	3877		LEU A		49.56			1.00	0.00		С
:			3878		LEU A		50.63		-9.818	1.00	0.00		С
		ATOM			LYS A		54.81		-7.385	1.00	0.00		N
=	40	MOTA	3879	N						1.00	0.00		C
	40	ATOM	3880	CA	LYS A		56.13						С
		MOTA	3881	С	LYS A		57.22		-7.200	1.00	0.00		
		ATOM	3882	0	LYS A		58.26		-7.850	1.00	0.00		0
		MOTA	3883	CB	LYS A	4 495	56.25			1.00	0.00		С
		MOTA	3884	CG	LYS A	A 495	55.28	4 77.803	-6.812	1.00	0.00		С
	4 5	ATOM	3885	CD	LYS A	495	55.56	3 79.039	-5.960	1.00	0.00		С
		MOTA	3886	CE		A 495	55.36	4 78.767	-4.477	1.00	0.00		С
		MOTA	3887	NZ		A 495			-3.647	1.00	0.00		N
		MOTA	3888	N		A 496				1.00	0.00		N
						A 496				1.00	0.00		С
	50	ATOM	3889	CA						1.00	0.00		Ċ
	30	MOTA	3890	C		A 496					0.00		Ö
		MOTA	3891	0		A 496				1.00			
		ATOM	3892	CB		A 496				1.00	0.00		С
		ATOM	3893	N		A 497				1.00	0.00		N
		ATOM	3894	CA	CYS	A 497	57.04	5 70.362	-8.886	1.00	0.00		С
	55	ATOM	3895	С	CYS	A 497	57.82	1 71.035	-10.011	1.00	0.00		С
		ATOM	3896	0		A 497		9 70.405	-10.653	1.00	0.00		0
		ATOM	3897	СВ		A 497				1.00	0.00		С
		ATOM	3898	SG		A 497			-8.281	1.00	0.00		S
			3899			A 498			-10.248	1.00	0.00		N
	60	MOTA		N					-11.302	1.00	0.00		C
	UU	ATOM	3900	CA		A 498							C
		MOTA	3901	С	GLN .	A 498	59.76	0 /3.01/	-11.055	1.00	0.00		_

											_
		MOTA	3902	0	GLN A		60.545	72.760 -11.971	1.00	0.00	0
		MOTA	3903	CB	GLN A		57.780	74.492 -11.385	1.00	0.00	C
		MOTA	3904	CG	GLN A		58.583	75.337 -12.367	1.00	0.00	C C
	-	MOTA	3905	CD	GLN A		58.076	76.764 -12.475	1.00	0.00	0
	5	ATOM	3906	OE1			57.891	77.449 -11.464	1.00	0.00	И
		MOTA	3907		GLN A		57.859	77.225 -13.704	$1.00 \\ 1.00$	0.00	N
		ATOM	3908	N	MET A		60.178	73.292 -9.820 73.297 -9.484	1.00	0.00	C
		ATOM	3909	CA	MET A		61.603		1.00	0.00	C
	10	ATOM	3910	C	MET A		62.252 63.304	71.947 -9.800 71.887 -10.435	1.00	0.00	0
	10	MOTA	3911	0	MET A		61.793	73.633 -8.000	1.00	0.00	c
		ATOM	3912 3913	CB	MET A		63.226	73.497 -7.485	1.00	0.00	Č
		ATOM	3913	CG			64.443	74.506 -8.376	1.00	0.00	S
		MOTA	3914	SD CE	MET A		64.443	76.121 -7.718	1.00	0.00	c
	15	ATOM ATOM	3916	N	VAL A		61.623	70.865 -9.351	1.00	0.00	N
	10	ATOM	3917	CA	VAL A		62.153	69.528 -9.595	1.00	0.00	C
		MOTA	3918	C	VAL A		62.167	69.199 -11.085	1.00	0.00	С
		ATOM	3919	Ö	VAL A		63.152	68.682 -11.609	1.00	0.00	0
		ATOM	3920	СВ	VAL A		61.321	68.466 -8.837	1.00	0.00	С
	20	MOTA	3921		VAL A		61.744	67.065 -9.250	1.00	0.00	С
		ATOM	3922		VAL A		61.513	68.647 -7.332	1.00	0.00	С
		MOTA	3923	N	MET A		61.072	69.508 -11.767	1.00	0.00	N
		ATOM	3924	CA	MET A		60.975	69.229 -13.194	1.00	0.00	С
L III		ATOM	3925	C	MET A		62.047	69.947 -14.007	1.00	0.00	С
	25	MOTA	3926	0	MET A	501	62.746	69.318 -14.806		0.00	0
Stand		ATOM	3927	CB	MET F	501	59.585	69.612 -13.705	1.00	0.00	С
1,225 1,525 1,525		MOTA	3928	CG	MET A		58.475	68.709 -13.191	1.00	0.00	C
		ATOM	3929	SD	MET A		56.838	69.371 -13.539		0.00	S
	20	MOTA	3930	CE	MET F		56.676	68.974 -15.250		0.00	C
1974	30	MOTA	3931	N	GLN F		62.186	71.256 -13.802		0.00	N C
7)		MOTA	3932	CA	GLN F		63.171	72.028 -14.555		0.00	C
i see		MOTA	3933	C	GLN A		64.610	71.604 -14.253 71.561 -15.159		0.00	0
1 Aug.		MOTA	3934	O	GLN A		65.447	73.530 -14.317	1.00	0.00	Č
Ţ	35	ATOM	3935	CB	GLN A		62.967 63.208	74.016 -12.900		0.00	C
Series Series	33	MOTA	3936 3937	CG CD	GLN A		64.597	74.611 -12.726		0.00	c
		ATOM ATOM	3938	OE1			65.348	74.753 -13.697		0.00	Ō
i ii		ATOM	3939		GLN A		64.938	74.974 -11.494	1.00	0.00	N
i di		ATOM	3940	N	GLN A		64.905	71.287 -12.995		0.00	N
2	40	ATOM	3941	CA	GLN A		66.253	70.825 -12.650		0.00	С
		ATOM	3942	С	GLN A		66.510	69.504 -13.381		0.00	C
		ATOM	3943	0	GLN A		67.595	69.277 -13.914	1.00	0.00	0
		ATOM	3944	CB	GLN A	503	66.389	70.594 -11.141	1.00	0.00	С
		MOTA	3945	CG	GLN A	503	66.593	71.853 -10.301		0.00	С
	45	ATOM	3946	CD	GLN A	503	67.940	72.511 -10.549		0.00	С
		MOTA	3947	OE1	GLN A	503	68.935	71.833 -10.818		0.00	0
		ATOM	3948	NE2	GLN A	\$ 503	67.982	73.835 -10.442		0.00	N
		MOTA	3949	N	SER A		65.503	68.632 -13.398		0.00	N
		MOTA	3950	CA	SER A		65.625	67.338 -14.067		0.00	C
	50	MOTA	3951	С	SER A		65.855	67.486 -15.567		0.00	С
		ATOM	3952	0	SER A		66.715	66.812 -16.138		0.00	0
		MOTA	3953	CB	SER A		64.369	66.490 -13.829		0.00	С
		MOTA	3954	OG	SER A		64.235	66.150 -12.460		0.00	O
	==	ATOM	3955	N	VAL A		65.087	68.361 -16.206		0.00	N C
	55	ATOM	3956	CA	VAL		65.233	68.575 -17.643 69.040 -17.974		0.00	C
		ATOM	3957	С	VAL A		66.647			0.00	0
		ATOM	3958	0	VAL		67.269 64.224	68.555 -18.921 69.623 -18.165		0.00	C
		ATOM	3959 3960	CB CG1	VAL A		64.224 64.569	70.018 -19.605		0.00	C
	60	ATOM ATOM	3960 3961		VAL A		62.805	69.051 -18.105		0.00	c
	00	ATOM	3962	N N		A 506	67.160	69.977 -17.187		0.00	N
		*** 021	0,002				3.1230				

	MOTA	3963	CA	TYR A	506	68.501	70.490 -17.425	1.00	0.00	С
	MOTA	3964	С	TYR A		69.557	69.378 -17.364	1.00	0.00	С
	ATOM	3965	0	TYR A	506	70.458	69.313 -18.206	1.00	0.00	0
	ATOM	3966	CB	TYR A	506	68.827	71.584 -16.407	1.00	0.00	C
5	ATOM	3967	CG	TYR A	506	70.168	72.230 -16.641	1.00	0.00	С
	ATOM	3968	CD1			70.475	72.804 -17.875	1.00	0.00	C
	ATOM	3969	CD2	TYR A	506	71.138	72.252 -15.641	1.00	0.00	C
	ATOM	3970		TYR A		71.717	73.382 -18.109	1.00	0.00	C
	ATOM	3971		TYR A		72.388	72.826 -15.868	1.00	0.00	С
10	ATOM	3972	CZ	TYR A		72.667	73.387 -17.106	1.00	0.00	С
~~	ATOM	3973	ОН	TYR A		73.900	73.948 -17.349	1.00	0.00	0
	ATOM	3974	N	ARG A		69.435	68.498 -16.378	1.00	0.00	N
	ATOM	3975	CA	ARG A		70.383	67.397 -16.214	1.00	0.00	С
	ATOM	3976	C	ARG A		70.247	66.332 -17.310	1.00	0.00	C
15	ATOM	3977	Ō	ARG A		71.241	65.774 -17.775	1.00	0.00	0
10	ATOM	3978	СВ	ARG A		70.196	66.750 -14.837	1.00	0.00	С
	MOTA	3979	CG	ARG A		71.242	65.699 -14.490	1.00	0.00	C
	MOTA	3980	CD	ARG A		71.042	65.179 -13.074	1.00	0.00	С
	MOTA	3981	NE	ARG A		72.059	64.198 -12.700	1.00	0.00	N
20	MOTA	3982	CZ	ARG A		72.170	63.659 -11.489	1.00	0.00	С
20	MOTA	3983		ARG A		71.327	64.004 -10.524	1.00	0.00	N
	MOTA	3984		ARG A		73.124	62.772 -11.242	1.00	0.00	N
	ATOM	3985	N	LEU A		69.016	66.061 -17.725	1.00	0.00	N
	MOTA	3986	CA	LEU A		68.760	65.056 -18.752	1.00	0.00	С
25	ATOM	3987	C	LEU A		69.143	65.484 -20.172	1.00	0.00	С
20	ATOM	3988	0	LEU A		69.398	64.634 -21.029	1.00	0.00	0
	ATOM	3989	СВ	LEU A		67.277	64.664 -18.739	1.00	0.00	С
	ATOM	3990	CG	LEU A		66.779	63.779 -17.590	1.00	0.00	С
	ATOM	3991		LEU A		65.251	63.830 -17.527	1.00	0.00	С
30	ATOM	3992		LEU A		67.265	62.350 -17.791	1.00	0.00	С
00	ATOM	3993	N	LEU A		69.186	66.788 -20.424	1.00	0.00	N
	ATOM	3994	CA	LEU A		69.493	67.277 -21.765	1.00	0.00	С
	MOTA	3995	C	LEU A		70.764	68.106 -21.916	1.00	0.00	С
	ATOM	3996	Ö	LEU A		70.912	68.842 -22.897	1.00	0.00	0
35	MOTA	3997	СВ	LEU A		68.302	68.073 -22.304	1.00	0.00	С
	ATOM	3998	CG	LEU A		67.026	67.270 -22.573	1.00	0.00	C
	MOTA	3999		LEU A		65.915	68.213 -23.013	1.00	0.00	С
	ATOM	4000		LEU A		67.292	66.218 -23.646	1.00	0.00	C
	ATOM	4001	N	THR A		71.679	67.988 -20.960	1.00	0.00	N
40	ATOM	4002	CA	THR A		72.936	68.728 -21.017	1.00	0.00	C
	ATOM	4003	С	THR A		74.098	67.740 -21.024	1.00	0.00	С
	ATOM	4004	0	THR A		74.104	66.782 -20.251	1.00	0.00	0
	MOTA	4005	CB	THR A		73.082	69.672 -19.803	1.00	0.00	C
	ATOM	4006		THR A		71.994	70.604 -19.794	1.00	0.00	0
45	ATOM	4007		THR A		74.400	70.447 -19.870	1.00	0.00	С
	ATOM	4008	N	LYS A		75.073	67.961 -21.902	1.00	0.00	N
	ATOM	4009	CA	LYS A		76.231	67.068 -21.971	1.00	0.00	С
	MOTA	4010	С	LYS A		76.783	66.906 -20.562	1.00	0.00	С
	ATOM	4011	0	LYS A		77.065	67.890 -19.875	1.00	0.00	0
50	ATOM	4012	CB	LYS A		77.309	67.641 -22.900	1.00	0.00	C
	ATOM	4013	CG	LYS A		78.522	66.738 -23.040	1.00	0.00	С
	ATOM	4014	CD	LYS A		79.568	67.314 -23.977	1.00	0.00	С
	ATOM	4015	CE	LYS A		80.772	66.384 -24.062	1.00	0.00	С
	ATOM	4016	NZ	LYS A	511	81.836	66.903 -24.963	1.00	0.00	N
55	ATOM	4017	N	PRO A		76.940	65.653 -20.107	1.00	0.00	N
	ATOM	4018	CA	PRO A		77.450	65.348 -18.768	1.00	0.00	С
	ATOM	4019	C	PRO A		78.682	66.121 -18.299	1.00	0.00	С
	ATOM	4020	Õ	PRO A		78.699	66.639 -17.184	1.00	0.00	0
	ATOM	4021	СВ	PRO A		77.698	63.843 -18.834	1.00	0.00	С
60	ATOM	4022	CG	PRO A		76.615	63.379 -19.750	1.00	0.00	С
	ATOM	4023	CD	PRO A		76.668	64.412 -20.855	1.00	0.00	С

And the first the first transfer of the firs

ATOM 4024 N SER A 513 79.709 66.198 -19.139 1.00 0.00 N C ATOM 4025 C SER A 513 80.800 66.396 -18.759 1.00 0.00 C C ATOM 4027 O SER A 513 80.800 66.359 -18.279 1.00 0.00 C C ATOM 4028 CB SER A 513 81.726 68.111 -18.279 1.00 0.00 C C ATOM 4028 CB SER A 513 81.726 68.111 -18.279 1.00 0.00 C C ATOM 4029 O SER A 513 81.760 66.759 -21.056 1.00 0.00 C C ATOM 4029 CB SER A 513 81.760 66.759 -21.056 1.00 0.00 C C ATOM 4021 CB SER A 513 81.760 66.759 -21.056 1.00 0.00 C C ATOM 4022 C SER A 513 81.760 66.759 -21.056 1.00 0.00 C C ATOM 4023 C SER A 513 81.760 70.359 -19.127 1.00 0.00 C C ATOM 4023 C SER A 514 79.840 70.359 -19.127 1.00 0.00 C C ATOM 4023 C SER A 514 79.840 70.359 -19.127 1.00 0.00 C C ATOM 4023 C SER A 514 79.849 70.639 -21.599 1.00 0.00 C C ATOM 4023 C SER A 514 79.849 70.639 -21.599 1.00 0.00 C C ATOM 4033 C SE SER A 514 79.849 70.639 -21.599 1.00 0.00 C C ATOM 4035 C SE SER A 515 79.525 69.775 -17.671 1.00 0.00 C C ATOM 4036 C SE SER A 515 79.525 69.775 -17.671 1.00 0.00 C C ATOM 4038 N TER A 515 79.525 69.775 -17.671 1.00 0.00 C C ATOM 4030 C SE SER A 515 79.525 69.883 -14.681 1.00 0.00 C C ATOM 4040 C TER A 515 77.525 69.775 -17.671 1.00 0.00 C C ATOM 4040 C TER A 515 77.525 69.785 -17.559 1.00 0.00 C C ATOM 4040 C TER A 515 71.999 70.524 -15.330 1.00 0.00 C C ATOM 4040 C TER A 515 71.999 70.524 -15.330 1.00 0.00 C C ATOM 4040 C TER A 515 71.999 70.524 -15.330 1.00 0.00 C C ATOM 4040 C TER A 515 71.999 68.88 -14.4681 1.00 0.00 C C ATOM 4040 C TER A 515 71.999 70.684 1.633 1.00 0.00 C C ATOM 4040 C TER A 515 71.999 70.684 1.633 1.00 0.00 C C ATOM 4040 C TER A 515 71.999 70.684 1.133 1.00 0.00 C C ATOM 4040 C TER A 515 71.999 70.684 1.13 1.00 0.00 C C ATOM 4040 C TER A 515 71.999 70.524 -15.330 1.00 0.00 C C ATOM 4040 C TER A 515 71.891 69.883 -14.4881 1.00 0.00 C C ATOM 4040 C TER A 515 71.891 69.883 -14.4881 1.00 0.00 C C ATOM 4040 C C TER A 515 71.891 69.883 -14.4881 1.00 0.00 C C ATOM 4040 C C TER A 515 71.891 69.883 -14.4881 1.00 0.00 C C ATOM 4040 C C TER A 515 71.891 69.899 1.10 0.00 0.00 C C AT												
ATOM 4022 C SER A 513 80.800 68.418 - 18.279 1.00 0.00 C C ATOM 4022 CS SER A 513 81.724 69.111 - 18.279 1.00 0.00 C C ATOM 4028 CS SER A 513 81.760 66.759 - 19.701 1.00 0.00 C C ATOM 4028 CS SER A 513 81.760 66.759 - 19.501 1.00 0.00 C C ATOM 4028 CS SER A 513 81.760 66.759 - 19.105 1.00 0.00 C C ATOM 4030 N LE A 514 79.647 68.931 - 19.151 1.00 0.00 C C ATOM 4032 C LIE A 514 78.380 70.389 - 19.127 1.00 0.00 C C ATOM 4033 C LIE A 514 78.380 70.389 - 19.127 1.00 0.00 C C ATOM 4033 C LIE A 514 78.412 71.836 17.481 1.00 0.00 C C ATOM 4034 C LIE A 514 78.490 70.831 - 20.492 1.00 0.00 C C ATOM 4035 CG1 LE A 514 78.490 70.831 - 20.492 1.00 0.00 C C ATOM 4036 CG2 LE A 514 78.390 70.381 - 20.492 1.00 0.00 C C ATOM 4039 CA TYR A 515 77.525 69.775 - 17.671 1.00 0.00 C C ATOM 4039 CA TYR A 515 77.525 69.775 - 17.671 1.00 0.00 C C ATOM 4040 C TYR A 515 77.925 69.375 - 17.671 1.00 0.00 C C ATOM 4041 C TYR A 515 77.925 69.375 - 17.671 1.00 0.00 C C ATOM 4042 C TYR A 515 78.817 79.849 70.562 - 16.630 1.00 0.00 C C ATOM 4042 C TYR A 515 77.925 69.397 - 15.330 1.00 0.00 C C ATOM 4042 C TYR A 515 77.925 69.397 - 15.330 1.00 0.00 C C ATOM 4042 C TYR A 515 78.817 79.686 61.8 - 15.276 1.00 0.00 C C ATOM 4044 C TYR A 515 73.695 69.397 - 15.395 1.00 0.00 C C ATOM 4045 C TYR A 515 73.595 69.397 - 15.395 1.00 0.00 C C ATOM 4045 C TYR A 515 73.595 69.397 - 15.395 1.00 0.00 C C ATOM 4045 C TYR A 515 73.595 69.397 - 15.395 1.00 0.00 C C ATOM 4046 C TYR A 515 73.595 69.397 - 15.395 1.00 0.00 C C ATOM 4046 C TYR A 515 73.595 69.397		ATOM	4024	N	SER A	513	79.709	66.198	-19.139	1.00		
APOM 4027 O SER A 513 281,724 69,111 -18,279 1.00 0.00 O C		MOTA	4025	CA	SER A	513						
ATOM 4028 CB SER A 513 SE 2.081 G6.499 - 19.701 1.00 0.00 C		ATOM	4026	C								
NTON 4029 OG SER 5.513 81.760 66.759 -21.056 1.00 0.00 N	_	MOTA		0								
NTCH	5											
ATOM 4031 CA LLE A 514 79.380 70.369 -19.127 1.00 0.00 C C ATOM 4033 C LLE A 514 78.481 77.1836 -17.481 1.00 0.00 C ATOM 4034 CB LLE A 514 78.481 77.1836 -17.481 1.00 0.00 C ATOM 4035 CGI LLE A 514 78.491 70.697 -21.589 1.00 0.00 C ATOM 4036 CGI LLE A 514 79.849 70.697 -21.589 1.00 0.00 C ATOM 4036 CGI LLE A 514 79.849 70.697 -21.589 1.00 0.00 C ATOM 4037 CDI LLE A 514 79.354 71.076 -22.974 1.00 0.00 C C ATOM 4038 N TYR A 515 77.525 69.775 -17.671 1.00 0.00 C ATOM 4038 N TYR A 515 77.525 69.775 -17.671 1.00 0.00 C ATOM 4040 C TYR A 515 77.099 70.524 -15.330 1.00 0.00 C ATOM 4040 C TYR A 515 77.995 69.883 -14.681 1.00 0.00 C ATOM 4042 CB TYR A 515 77.595 69.883 -14.681 1.00 0.00 C ATOM 4042 CB TYR A 515 77.595 69.883 -14.681 1.00 0.00 C ATOM 4044 CDI TYR A 515 74.779 68.618 -15.276 1.00 0.00 C ATOM 4045 CDI TYR A 515 74.779 68.618 -15.276 1.00 0.00 C ATOM 4046 CEI TYR A 515 74.797 68.618 -15.276 1.00 0.00 C ATOM 4046 CEI TYR A 515 74.698 67.802 -14.157 1.00 0.00 C ATOM 4047 CEI TYR A 515 74.898 67.802 -14.157 1.00 0.00 C ATOM 4049 CEI TYR A 515 74.898 67.802 -14.157 1.00 0.00 C ATOM 4049 CEI TYR A 515 74.898 67.802 -14.157 1.00 0.00 C ATOM 4049 CEI TYR A 515 74.893 67.802 -14.157 1.00 0.00 C ATOM 4040 CEI TYR A 515 74.893 67.802 -14.157 1.00 0.00 C ATOM 4040 CEI TYR A 515 74.893 67.802 -14.157 1.00 0.00 C ATOM 4040 CEI TYR A 515 74.893 67.802 -14.157 1.00 0.00 C ATOM 4040 CEI TYR A 515 74.893 67.802 -14.157 1.00 0.00 C ATOM 4040 CEI TYR A 515 74.893 67.802 -14.157 1.00 0.00 C ATOM												
ATOM 4032 C ILE A 514 78-389 70-727 - 18.014 1.00 0.00 C ATOM 4033 C ILE A 514 78-482 71-386 17-781 1.00 0.00 C ATOM 4035 CG1 ILE A 514 78-482 71-386 17-782 1.00 0.00 C ATOM 4035 CG2 ILE A 514 78-802 72-276 -20-401 1.00 0.00 C ATOM 4036 CG2 ILE A 514 79-354 71.076 -22-974 1.00 0.00 C ATOM 4037 CD1 ILE A 514 79-354 71.076 -22-974 1.00 0.00 C ATOM 4038 TYR A 515 77-525 69-775 -17-671 1.00 0.00 C ATOM 4040 C TYR A 515 77-925 69-775 -17-671 1.00 0.00 C ATOM 4040 C TYR A 515 77-925 69-883 -14-681 1.00 0.00 C ATOM 4041 O TYR A 515 77-925 69-883 -14-681 1.00 0.00 C ATOM 4042 CD1 TYR A 515 74-796 68-681 -15-276 1.00 0.00 C ATOM 4045 CD2 TYR A 515 74-936 67-802 -14-157 1.00 0.00 C ATOM 4045 CD2 TYR A 515 74-936 67-802 -14-157 1.00 0.00 C ATOM 4046 CE1 TYR A 515 74-936 67-802 -14-157 1.00 0.00 C ATOM 4047 CE2 TYR A 515 73-974 67-754 -13-157 1.00 0.00 C ATOM 4048 CZ TYR A 515 73-974 67-754 -13-157 1.00 0.00 C ATOM 4040 CE2 TYR A 515 73-974 67-754 -13-157 1.00 0.00 C ATOM 4040 CE2 TYR A 515 73-974 67-754 -13-157 1.00 0.00 C ATOM 4040 CE2 TYR A 515 73-974 67-754 -13-157 1.00 0.00 C ATOM 4040 CE2 TYR A 515 73-974 67-754 -13-157 1.00 0.00 C ATOM 4040 CE2 TYR A 515 73-974 67-754 -13-157 1.00 0.00 C ATOM 4050 C SER A 516 75-931 73-974 67-754 -13-157 1.00 0.00 C ATOM 4050 C SER A 516 75-931 73-974 73-700 -10-164 1.00 0.00 C ATOM 4050 C SER A 516 75-931 73-974 73-700 -11-64 1.00 0.00 C ATOM 4050 C SER A 516 73-974 73-977 73-975 73-975 1.00 0.00 C ATOM 4050 CE SER A 516 73-97												
ATOM												
ATOM 4034 CB ILE A 514 78.790 70.831 -20.492 1.00 0.00 CC ATOM 4035 CG1 ILE A 514 79.849 70.697 -21.589 1.00 0.00 CC ATOM 4036 CG2 ILE A 514 79.849 70.697 -21.589 1.00 0.00 CC ATOM 4036 CG2 ILE A 514 79.354 71.076 -22.974 1.00 0.00 CC ATOM 4038 TYR A 515 77.525 69.775 -17.671 1.00 0.00 CC ATOM 4039 CA TYR A 515 76.511 69.962 -16.630 1.00 0.00 CC ATOM 4040 C TYR A 515 77.925 69.785 -17.671 1.00 0.00 CC ATOM 4041 O TYR A 515 77.925 69.883 -14.681 1.00 0.00 CC ATOM 4041 O TYR A 515 77.925 69.883 -14.681 1.00 0.00 CC ATOM 4043 CG TYR A 515 77.925 69.883 -14.681 1.00 0.00 CC ATOM 4043 CG TYR A 515 74.799 70.524 -15.330 1.00 0.00 CC ATOM 4043 CG TYR A 515 74.799 68.618 -15.276 1.00 0.00 CC ATOM 4044 CD1 TYR A 515 74.936 67.802 -14.157 1.00 0.00 CC ATOM 4046 CE1 TYR A 515 74.936 67.802 -14.157 1.00 0.00 CC ATOM 4046 CE1 TYR A 515 74.936 67.802 -14.157 1.00 0.00 CC ATOM 4046 CE1 TYR A 515 74.648 69.359 -14.368 1.00 0.00 CC ATOM 4049 CT2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4049 CT2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4049 CT2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4049 CT2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4040 CT2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4040 CT2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4040 CT2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4040 CT2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4050 N SER A 516 76.665 71.722 -14.599 1.00 0.00 CC ATOM 4050 N SER A 516 75.667 71.722 -14.959 1.00 0.00 CC ATOM 4050 CT ATOM 4050 N SER A 516 75.931 73.040 -13.062 1.00 0.00 CC ATOM 4050 CT ATOM 4050 N SER A 516 75.931 73.040 -13.062 1.00 0.00 CC ATOM 4050 CT ATOM 4050 N SER A 516 75.931 73.967 79.2700 -11.614 1.00 0.00 CC ATOM 4050 CT ATOM 4050 N SER A 516 75.931 73.967 79.2700 -11.614 1.00 0.00 CC ATOM 4050 N SER A 516 75.655 71.722 -10.1614 1.00 0.00 CC ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 4050 CT ATOM 405	10											
ATOM 4035 CG1 ILE A 514 79.849 70.697 -21.589 1.00 0.00 CC ATOM 4036 CG2 ILE A 514 78.302 72.276 -20.401 1.00 0.00 CC CC CCC CCC CCC CCC CCC CCC C	10											
ATOM 4036 CG2 ILE A 514 78.302 72.276-20.401 1.00 0.00 C ATOM 4037 CD1 ILE A 514 79.354 71.076-22.974 1.00 0.00 C.00 C ATOM 4038 N TYR A 515 77.525 69.775-17.671 1.00 0.00 N ATOM 4039 CA TYR A 515 77.525 69.775-17.671 1.00 0.00 N ATOM 4040 C TYR A 515 77.995 69.883-14.681 1.00 0.00 C ATOM 4040 C TYR A 515 77.995 69.883-14.681 1.00 0.00 C ATOM 4041 O TYR A 515 77.995 69.883-14.681 1.00 0.00 C ATOM 4042 CB TYR A 515 77.995 69.883-14.681 1.00 0.00 C ATOM 4042 CB TYR A 515 77.995 69.883-14.681 1.00 0.00 C ATOM 4042 CB TYR A 515 74.779 68.618-15.276 1.00 0.00 C ATOM 4045 CD2 TYR A 515 74.779 68.618-15.276 1.00 0.00 C ATOM 4045 CD2 TYR A 515 74.579 68.618-15.276 1.00 0.00 C ATOM 4045 CD2 TYR A 515 74.936 67.802-14.157 1.00 0.00 C ATOM 4046 CEL TYR A 515 72.648 69.397-15.369 1.00 0.00 C ATOM 4047 CE2 TYR A 515 72.648 69.359-14.368 1.00 0.00 C ATOM 4047 CE2 TYR A 515 72.648 69.359-14.368 1.00 0.00 C ATOM 4047 CE2 TYR A 515 72.832 68.533-13.265 1.00 0.00 C ATOM 4040 OH TYR A 515 72.832 68.533-13.265 1.00 0.00 C ATOM 4050 N SER A 516 76.665 71.728-14.995 1.00 0.00 C ATOM 4050 N SER A 516 76.665 71.728-14.995 1.00 0.00 C ATOM 4051 CA SER A 516 75.931 73.040-13.062 1.00 0.00 C ATOM 4052 C SER A 516 75.931 73.040-13.062 1.00 0.00 C ATOM 4053 O SER A 516 75.931 73.040-13.062 1.00 0.00 C ATOM 4055 O SER A 516 75.931 73.040-13.362 1.00 0.00 C ATOM 4055 O SER A 516 75.931 73.040-13.362 1.00 0.00 C ATOM 4055 O SER A 516 75.685 74.243-13.1318 1.00 0.00 C ATOM 4056 C PRO A 517 74.917 73.967 72.700-11.614 1.00 0.00 C ATOM 4056 C PRO A 517 74.917 73.967 72.700-11.614 1.00 0.00 C ATOM 4050 O SER A 516 75.685 74.243-13.1318 1.00 0.00 C ATOM 4050 O SER A 518 73.946 74.944 12.969 1.00 0.00 C ATOM 4066 C B PRO A 517 74.917 73.967 72.700-11.614 1.00 0.00 C ATOM 4060 C PRO A 517 74.917 73.967 72.700-11.614 1.00 0.00 C ATOM 4060 C PRO A 517 74.917 73.967 72.700-11.614 1.00 0.00 C ATOM 4060 C B PRO A 517 74.917 73.996 71.331 1.00 0.00 C C ATOM 4060 C B PRO A 517 74.917 73.967 74.748 1.00 0.00 C C ATOM 4060 C B PRO A 517 74.916 74.919 98.789												
ATOM 4037 CDI LE A 514 79.354 71.076 -22.974 1.00 0.00 C ATOM 4038 N TYR A 515 77.525 69.775 -17.671 1.00 0.00 C ATOM 4040 C TYR A 515 77.595 69.775 -17.671 1.00 0.00 C ATOM 4040 C TYR A 515 77.595 69.883 -14.630 1.00 0.00 C ATOM 4041 O TYR A 515 77.997 70.524 -15.330 1.00 0.00 C ATOM 4042 CB TYR A 515 77.997 70.524 -15.330 1.00 0.00 C ATOM 4042 CG TYR A 515 77.925 69.883 -14.681 1.00 0.00 C ATOM 4043 CG TYR A 515 77.925 69.883 -14.681 1.00 0.00 C ATOM 4044 CDI TYR A 515 73.625 69.397 -15.369 1.00 0.00 C ATOM 4045 CD2 TYR A 515 73.625 69.397 -15.369 1.00 0.00 C ATOM 4046 CEI TYR A 515 73.974 67.754 -13.157 1.00 0.00 C ATOM 4047 CE2 TYR A 515 73.974 67.754 -13.157 1.00 0.00 C ATOM 4049 CT TYR A 515 73.974 67.754 -13.157 1.00 0.00 C ATOM 4049 OH TYR A 515 71.881 68.475 -12.270 1.00 0.00 C ATOM 4050 N SER A 516 77.141 72.404 -13.745 1.00 0.00 C ATOM 4051 CA SER A 516 77.141 72.404 -13.745 1.00 0.00 C ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4055 O SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4056 O SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4056 O SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4056 O SER A 516 75.685 74.243 -13.188 1.00 0.00 O C ATOM 4056 O SER A 516 75.685 74.243 -13.188 1.00 0.00 O C ATOM 4056 O SER A 516 75.855 77.00 -11.614 1.00 0.00 O C ATOM 4056 O SER A 516 74.566 74.257 75.951 70.00 1.00 0.00 O O O O O O O O O												
15 ATOM 4039 N TYR A 515 77.525 69.775-17.671 1.00 0.00 C ATOM 4040 C TYR A 515 76.511 69.962 -16.630 1.00 0.00 C ATOM 4040 C TYR A 515 77.995 70.524 -15.330 1.00 0.00 C ATOM 4041 O TYR A 515 77.995 69.883 -14.681 1.00 0.00 C ATOM 4041 C TYR A 515 77.995 69.883 -14.681 1.00 0.00 C ATOM 4042 CB TYR A 515 77.995 69.883 -14.681 1.00 0.00 C ATOM 4043 CG TYR A 515 74.779 68.618 -15.276 1.00 0.00 C ATOM 4044 CD1 TYR A 515 74.779 68.618 -15.276 1.00 0.00 C ATOM 4045 CD2 TYR A 515 74.779 68.618 -15.276 1.00 0.00 C ATOM 4045 CD2 TYR A 515 74.936 67.802 -14.157 1.00 0.00 C ATOM 4045 CD2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 C ATOM 4046 CE1 TYR A 515 72.648 69.359 -14.368 1.00 0.00 C ATOM 4040 CP2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 C ATOM 4040 CP2 TYR A 515 72.832 68.533 -13.265 1.00 0.00 C ATOM 4040 CP2 TYR A 515 72.832 68.533 -13.265 1.00 0.00 C ATOM 4050 N SER A 516 76.665 71.28 -14.959 1.00 0.00 C ATOM 4050 N SER A 516 76.665 71.728 -14.959 1.00 0.00 C ATOM 4050 N SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4050 C SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4050 C SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4055 C SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4055 C SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4055 C SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4055 C SER A 516 74.666 72.236 -12.310 1.00 0.00 C ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 C ATOM 4056 N PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4056 C PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4060 C B PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4060 C B PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4060 C B PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4060 C B PRO A 517 74.064 73.562 -10.365 1.00 0.00 C C ATOM 4060 C B PRO A 517 74.064 73.562 -10.365 1.00 0.00 C C ATOM 4060 C B PRO A 517 74.064 73.562 -10.365 1.00 0.00 C C ATOM 4060 C B PRO A 517 74.064 74.917 73.360 -9.503 1.00 0.00 C C ATOM 4060 C C ASP A 518 73.553 74.899 -14.300 1.00 0.00 C C ATOM 4060 C C ASP A 518 73.553 74.9												
ATOM 4039 CA TYR A 515 76.511 69.962 -16.630 1.00 0.00 C ATOM 4041 O TYR A 515 77.099 70.524 -15.330 1.00 0.00 C O ATOM 4041 O TYR A 515 77.999 70.524 -15.330 1.00 0.00 C O ATOM 4041 O TYR A 515 77.995 69.883 -14.681 1.00 0.00 C O ATOM 4042 CB TYR A 515 75.817 68.621 -16.373 1.00 0.00 C O ATOM 4044 CD1 TYR A 515 75.817 68.621 -16.373 1.00 0.00 C ATOM 4044 CD1 TYR A 515 73.625 69.397 -15.369 1.00 0.00 C ATOM 4046 CEI TYR A 515 73.625 69.397 -15.369 1.00 0.00 C ATOM 4046 CEI TYR A 515 72.648 69.359 -14.368 1.00 0.00 C ATOM 4046 CEI TYR A 515 72.648 69.359 -14.368 1.00 0.00 C ATOM 4047 CE2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 C ATOM 4049 OH TYR A 515 72.832 68.533 -13.265 1.00 0.00 C ATOM 4049 OH TYR A 515 71.881 68.475 -12.270 1.00 0.00 C ATOM 4049 OH TYR A 515 71.881 68.475 -12.270 1.00 0.00 C ATOM 4051 CA SER A 516 75.657 1.881 68.475 -12.270 1.00 0.00 C ATOM 4051 CA SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4053 O SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4054 CB SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4055 O SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4055 O SER A 516 75.931 73.485 -14.121 1.00 0.00 C ATOM 4055 O SER A 516 75.931 73.485 -14.121 1.00 0.00 C ATOM 4055 O SER A 516 75.931 73.485 -14.121 1.00 0.00 C ATOM 4055 O SER A 516 75.931 73.360 -95.035 1.00 0.00 C ATOM 4055 O SER A 516 75.931 73.360 -95.035 1.00 0.00 C ATOM 4055 O PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4056 C PRO A 517 74.564 73.975 72.00 -11.614 1.00 0.00 C ATOM 4056 C PRO A 517 74.564 73.975 72.00 -11.614 1.00 0.00 C ATOM 4056 C PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4066 CB PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4066 CB PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4066 CB PRO A 517 74.566 74.499 -98.789 1.00 0.00 C ATOM 4066 CB PRO A 517 74.566 74.499 -98.789 1.00 0.00 C ATOM 4066 CB PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4066 CB PRO A 517 74.356 70.483 -10.991 1.00 0.00 C C ATOM 4067 CB ASP A 518 71.560 74.999 -8.789 1.00 0.00 C C ATOM 4067 CB ASP A 518 71.560	15											
ATOM 4040 C TYR A 515 77.099 70.524 -15.330 1.00 0.00 C ATOM 4041 C TYR A 515 77.995 69.883 -14.681 1.00 0.00 C ATOM 4042 CB TYR A 515 77.817 68.621 -16.373 1.00 0.00 C ATOM 4043 CG TYR A 515 74.779 68.618 -15.276 1.00 0.00 C ATOM 4043 CG TYR A 515 74.779 68.618 -15.276 1.00 0.00 C ATOM 4045 CD2 TYR A 515 73.625 69.397 -15.369 1.00 0.00 C ATOM 4046 CEI TYR A 515 72.648 69.397 -15.369 1.00 0.00 C ATOM 4046 CEI TYR A 515 72.648 69.359 -14.368 1.00 0.00 C ATOM 4046 CEI TYR A 515 72.648 69.359 -14.368 1.00 0.00 C ATOM 4047 CE2 TYR A 515 72.638 66.531 -13.275 1.00 0.00 C ATOM 4049 ON TYR A 515 72.832 68.533 -13.265 1.00 0.00 C ATOM 4049 ON TYR A 515 72.832 68.533 -13.265 1.00 0.00 C ATOM 4050 N SER A 516 76.665 71.728 -14.959 1.00 0.00 N ATOM 4051 CA SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4052 C SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4055 OG SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4059 O PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4050 O PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4050 O PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4050 O PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 C B PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 O B PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 O B PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 O B PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 O B PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 O B PRO A 517 74.917 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 O B PRO A 517 74.917 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 O B PRO A 517 74.917 74.917 73.360	13											
ATOM 4041 O TYR A 515 77.925 69.883 -14.681 1.00 0.00 C ATOM 4042 CB TYR A 515 75.817 68.621 -16.373 1.00 0.00 C ATOM 4043 CG TYR A 515 74.779 68.618 -15.276 1.00 0.00 C ATOM 4044 CD1 TYR A 515 73.625 69.397 -15.369 1.00 0.00 C ATOM 4046 CD1 TYR A 515 74.936 67.802 -14.157 1.00 0.00 C ATOM 4046 CD2 TYR A 515 72.648 69.397 -15.369 1.00 0.00 C ATOM 4046 CD2 TYR A 515 72.648 69.397 -15.369 1.00 0.00 C ATOM 4047 CD2 TYR A 515 72.648 69.397 -14.368 1.00 0.00 C ATOM 4047 CD2 TYR A 515 72.648 69.397 -14.368 1.00 0.00 C ATOM 4049 OH TYR A 515 72.832 68.533 -13.265 1.00 0.00 C ATOM 4049 OH TYR A 515 72.832 68.533 -13.265 1.00 0.00 C ATOM 4051 CA SER A 516 76.655 71.728 -14.959 1.00 0.00 C ATOM 4053 O SER A 516 75.931 73.040 -13.746 1.00 0.00 C ATOM 4053 O SER A 516 75.695 74.243 -13.188 1.00 0.00 C ATOM 4053 O SER A 516 75.695 74.243 -13.188 1.00 0.00 C ATOM 4055 OG SER A 516 78.165 73.485 -14.212 1.00 0.00 C ATOM 4055 OG SER A 516 78.166 72.236 -12.310 1.00 0.00 C ATOM 4055 OG SER A 516 78.166 72.236 -12.310 1.00 0.00 C ATOM 4055 OG SER A 516 78.166 72.236 -12.310 1.00 0.00 C ATOM 4055 OG SER A 516 78.765 74.044 -12.969 1.00 0.00 C ATOM 4055 OG SER A 516 78.765 74.044 -12.969 1.00 0.00 C ATOM 4055 OG SER A 516 78.166 72.236 -12.310 1.00 0.00 C ATOM 4056 C PRO A 517 75.166 72.236 -12.310 1.00 0.00 C ATOM 4056 C PRO A 517 75.166 72.236 -12.310 1.00 0.00 C ATOM 4058 C PRO A 517 75.166 72.236 -12.310 1.00 0.00 C ATOM 4056 C PRO A 517 74.947 73.360 -9.503 1.00 0.00 C ATOM 4066 C B PRO A 517 74.947 73.360 -9.503 1.00 0.00 C ATOM 4066 C B PRO A 517 74.947 73.360 -9.503 1.00 0.00 C ATOM 4066 C B PRO A 517 74.947 73.360 -9.503 1.00 0.00 C ATOM 4066 C B PRO A 517 74.947 73.360 -9.503 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4067 C B PRO A 517 74.947 73.360 -9.503 1.00 0.00 C ATOM 4067 C B PRO A 517 74.947 75.457 1.00 0.00 C ATOM 4067 C B PRO A 518 77.464 73.158 -9.164 1.00 0.00 C ATOM 4067 C B PRO A 519 74.949 -9.889 1.00 0.00 C C ATOM 4067 C B												
20 ATOM 4043 CB TYR A 515 75.817 68.621 -16.373 1.00 0.00 CC ATOM 4044 CD1 TYR A 515 74.779 68.618 -15.276 1.00 0.00 CC ATOM 4044 CD1 TYR A 515 73.625 69.397 -15.369 1.00 0.00 CC ATOM 4046 CD2 TYR A 515 72.632 69.397 -15.369 1.00 0.00 CC ATOM 4047 CD2 TYR A 515 72.632 69.397 -15.369 1.00 0.00 CC ATOM 4047 CD2 TYR A 515 72.632 69.397 -14.368 1.00 0.00 CC ATOM 4047 CD2 TYR A 515 72.632 69.359 -14.368 1.00 0.00 CC ATOM 4047 CD2 TYR A 515 72.632 69.359 -14.368 1.00 0.00 CC ATOM 4049 OH TYR A 515 72.632 69.359 -14.365 1.00 0.00 CC ATOM 4049 OH TYR A 515 72.832 68.533 -13.265 1.00 0.00 CC ATOM 4050 N SER A 516 76.665 71.728 -14.959 1.00 0.00 CC ATOM 4051 CA SER A 516 76.665 71.728 -14.959 1.00 0.00 CC ATOM 4051 CA SER A 516 75.635 71.22470 1.00 0.00 CC ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 CC ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 CC ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 CC ATOM 4054 CB SER A 516 78.766 74.044 -12.969 1.00 0.00 CC ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 CC ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 CC ATOM 4057 CA PRO A 517 75.166 72.236 -12.310 1.00 0.00 CC ATOM 4057 CA PRO A 517 73.967 72.700 -11.614 1.00 0.00 CC ATOM 4059 O PRO A 517 73.967 72.700 -11.614 1.00 0.00 CC ATOM 4060 CB PRO A 517 74.964 73.562 -10.365 1.00 0.00 CC ATOM 4060 CB PRO A 517 74.954 74.954 73.562 -10.365 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.356 70.483 -10.991 1.00 0.00 CC ATOM 4066 CC ASP A 518 70.597 75.313 -9.950 1.00 0.00 CC ATOM 4066 CC ASP A 518 70.597 75.413 -9.434 1.00 0.00 CC ATOM 4066 CC ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4066 CC ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4066 CC ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4066 CC ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4066 CC ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4067 CB ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4067 CC ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4067 CC ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4067 CC ASP A 5												
20											0.00	С
ATOM 4044 CD1 TYR A 515 73.625 69.397 -15.369 1.00 0.00 CC ATOM 4046 CE1 TYR A 515 72.648 69.359 -14.4567 1.00 0.00 CC ATOM 4046 CE1 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4047 CE2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4047 CE2 TYR A 515 72.632 66.533 -13.265 1.00 0.00 CC ATOM 4049 OH TYR A 515 72.832 66.533 -13.265 1.00 0.00 CC ATOM 4050 N SER A 516 76.665 71.728 -14.959 1.00 0.00 CC ATOM 4051 CA SER A 516 75.665 71.728 -14.959 1.00 0.00 CC ATOM 4051 CA SER A 516 75.931 73.040 -13.766 1.00 0.00 CC ATOM 4053 O SER A 516 75.685 74.243 -13.158 1.00 0.00 CC ATOM 4054 CB SER A 516 75.685 74.243 -13.188 1.00 0.00 CC ATOM 4054 CB SER A 516 78.159 73.485 -14.121 1.00 0.00 CC ATOM 4055 OS SER A 516 78.766 74.044 -12.969 1.00 0.00 CC ATOM 4055 OS SER A 516 78.766 74.044 -12.969 1.00 0.00 CC ATOM 4055 OS SER A 516 78.366 74.044 -12.969 1.00 0.00 CC ATOM 4055 OS SER A 516 78.366 74.044 -12.969 1.00 0.00 CC ATOM 4055 OS SER A 516 78.366 74.044 -12.969 1.00 0.00 CC ATOM 4059 O PRO A 517 73.967 72.700 -11.614 1.00 0.00 CC ATOM 4059 O PRO A 517 73.967 72.700 -11.614 1.00 0.00 CC ATOM 4060 CB PRO A 517 73.967 72.700 -11.614 1.00 0.00 CC ATOM 4060 CB PRO A 517 73.360 -9.503 1.00 0.00 CC ATOM 4060 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4061 CG PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4061 CG PRO A 517 75.355 70.788 -12.102 1.00 0.00 CC ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 CC ATOM 4064 CA ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4064 CA ASP A 518 71.535 70.788 -12.102 1.00 0.00 CC ATOM 4066 CB ASP A 518 71.575 70.788 -12.102 1.00 0.00 CC ATOM 4067 CB ASP A 518 71.5160 74.999 -8.789 1.00 0.00 CC ATOM 4067 CB ASP A 518 71.5160 74.999 -8.789 1.00 0.00 CC ATOM 4067 CB ASP A 518 71.4166 77.764 1.00 0.00 CC ATOM 4067 CB ASP A 518 71.817 74.356 70.483 -10.991 1.00 0.00 CC ATOM 4067 CB ASP A 518 72.969 76.885 -9.586 1.00 0.00 CC ATOM 4070 CD ASP A 518 72.969 76.885 -9.586 1.00 0.00 CC ATOM 4070 CD ASP A 518 72.997 77.5477 1.00 0.00 CC ATOM 4070 CD ASP A 518 72.997 77.5	20									1.00	0.00	C
ATOM 4045 CD2 TYR A 515 74.936 67.802 -14.157 1.00 0.00 CC ATOM 4046 CE1 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4047 CE2 TYR A 515 72.648 69.359 -14.368 1.00 0.00 CC ATOM 4049 OH TYR A 515 73.974 67.754 -13.157 1.00 0.00 CC ATOM 4049 OH TYR A 515 71.881 68.475 -12.270 1.00 0.00 CC ATOM 4050 N SER A 516 76.665 71.728 -14.959 1.00 0.00 N ATOM 4051 CA SER A 516 75.931 73.040 -13.062 1.00 0.00 CC ATOM 4052 C SER A 516 75.931 73.040 -13.062 1.00 0.00 CC ATOM 4052 C SER A 516 75.931 73.040 -13.062 1.00 0.00 CC ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 CC ATOM 4054 CB SER A 516 78.159 73.485 -14.121 1.00 0.00 CC ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 CC ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 CC ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 CC ATOM 4056 C PRO A 517 73.967 72.700 -11.614 1.00 0.00 CC ATOM 4056 C PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4056 C PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4061 CG PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4066 CB PRO A 517 74.917 74.917 73.940 -9.509 1.00 0.00 CC ATOM 4067 CB ASP A 518 70.597 75.413 -9.434 1.00 0.00 CC ATOM 4067 CB ASP A 518 70.597 75.413 -9.434 1.00 0.00 CC ATOM 4067 CB ASP A 518 70.918 79.911 -9.4666 1.00 0.00 CC ATOM 4067 CB PRE A 519 70.414 73.52										1.00	0.00	
ATOM 4046 CEI TYR A 515 72.648 69.359 -14.368 1.00 0.00 C C ATOM 4047 CE2 TYR A 515 73.974 67.754 -13.157 1.00 0.00 C C ATOM 4049 0H TYR A 515 72.832 68.533 -13.265 1.00 0.00 C C ATOM 4049 0H TYR A 515 71.881 68.475 -12.270 1.00 0.00 N C ATOM 4050 N SER A 516 76.665 71.728 -14.959 1.00 0.00 N C ATOM 4051 CA SER A 516 75.685 71.728 -14.959 1.00 0.00 C C ATOM 4051 CA SER A 516 75.931 73.040 -13.062 1.00 0.00 C C ATOM 4052 C SER A 516 75.931 73.040 -13.062 1.00 0.00 C C ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 C C ATOM 4055 OG SER A 516 75.685 74.243 -13.188 1.00 0.00 C C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C C ATOM 4055 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 N A ATOM 4055 C PRO A 517 75.166 72.236 -12.310 1.00 0.00 C C ATOM 4058 C PRO A 517 73.967 72.700 -11.614 1.00 0.00 C C ATOM 4059 O PRO A 517 74.917 73.360 -9.503 1.00 0.00 C C ATOM 4050 C PRO A 517 74.917 73.360 -9.503 1.00 0.00 C C ATOM 4060 C PRO A 517 74.917 73.360 -9.503 1.00 0.00 C C ATOM 4060 C PRO A 517 74.917 73.360 -9.503 1.00 0.00 C C ATOM 4060 C PRO A 517 74.917 73.360 -9.503 1.00 0.00 C C ATOM 4061 CG PRO A 517 74.917 73.296 71.399 -11.323 1.00 0.00 C C ATOM 4062 CD PRO A 517 74.917 73.296 71.399 -11.323 1.00 0.00 C C ATOM 4063 N ASP A 518 73.153 74.528 -10.303 1.00 0.00 C C ATOM 4066 C ASP A 518 73.153 74.528 -10.303 1.00 0.00 C C ATOM 4066 C ASP A 518 73.153 74.528 -10.303 1.00 0.00 C C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C C ATOM 4067 CB ASP A 518 72.978 75.418 -9.164 1.00 0.00 C C ATOM 4069 OD1 ASP A 518 72.978 75.418 -9.164 1.00 0.00 C C ATOM 4067 CB ASP A 518 72.978 75.418 -9.164 1.00 0.00 C C ATOM 4067 CB ASP A 518 72.978 75.418 -9.164 1.00 0.00 C C ATOM 4067 CB PRO A 517 74.999 76.885 -9.586 1.00 0.00 C C ATOM 4070 CC APPER A 519 70.414 73.644 -7.352 1.00 0.00 C C ATOM 4070 CC APPER A 519 70.414 73.644 -7.352 1.00 0.00 C C ATOM 4070 CC APPER A 519 70.448 70.664 1.00 0.00 C C ATOM 4070 CC APPER A 519 70.448 70.765 -7.851 1.00 0.00				CD2	TYR A	515	74.936	67.802	-14.157	1.00	0.00	
25 ATOM 4049 CZ TYR A 515 72.832 68.533 -13.265 1.00 0.00 C ATOM 4050 N SER A 516 76.665 71.728 -14.959 1.00 0.00 N N ATOM 4050 N SER A 516 76.665 71.728 -14.959 1.00 0.00 N N ATOM 4051 CA SER A 516 75.685 71.728 -14.959 1.00 0.00 C ATOM 4051 CA SER A 516 75.931 73.040 -13.746 1.00 0.00 C ATOM 4053 O SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4054 CB SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4055 OG SER A 516 78.159 73.485 -14.121 1.00 0.00 C ATOM 4055 OG SER A 516 78.159 73.485 -14.121 1.00 0.00 C ATOM 4055 OG SER A 516 78.159 73.485 -14.121 1.00 0.00 N ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 N ATOM 4057 CA PRO A 517 73.967 72.700 -11.614 1.00 0.00 C ATOM 4059 O PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4060 CB PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4061 CG PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 C ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.413 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.413 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 72.657 77.819 -8.426 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 C ATOM 4071 N PHE A 519 70.441 73.7464 -6.947 1.00 0.00 C ATOM 4071 N PHE A 519 70.441 73.7464 -6.947 1.00 0.00 C ATOM 4070 C PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 C PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 C PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 C PHE A 519 70.341 72.2608 -6.246 1.00 0.00 C ATOM 4070 C PHE A 519 70.341 72.2608 -6.246 1.00 0.00 C ATOM 4080 C PHE A 519 70.341 72.2608 -6.246 1.00 0.00 C ATOM 4081 CZ PHE A 519 70.341 72.2608 -6.246 1.00 0.00 C ATOM 4081 CZ PHE A 519 70.341 72.2608 -6.246 1.00 0.00 C ATOM 4081 CZ PHE							72.648	69.359	-14.368	1.00	0.00	
ATOM 4049 OH TYR A 515 71.881 68.475 -12.270 1.00 0.00 O ATOM 4050 N SER A 516 76.665 71.728 -14.855 1.00 0.00 N C ATOM 4051 CA SER A 516 75.685 71.728 -14.855 1.00 0.00 C ATOM 4052 C SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4054 CB SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4055 OG SER A 516 78.159 73.485 -14.121 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4056 C PRO A 517 75.166 72.236 -12.310 1.00 0.00 C ATOM 4057 CA PRO A 517 73.967 72.700 -11.614 1.00 0.00 C ATOM 4058 C PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4061 CG PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4062 CD PRO A 517 75.555 70.788 -12.102 1.00 0.00 C ATOM 4063 N ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4063 N ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 CB ASP A 518 72.967 75.413 -9.434 1.00 0.00 C ATOM 4066 CB ASP A 518 72.967 75.413 -9.434 1.00 0.00 C ATOM 4066 CB ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 72.967 76.885 -9.586 1.00 0.00 C ATOM 4067 CB ASP A 518 72.967 76.885 -9.586 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.7457 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.967 77.4654 -7.352 1.00 0.00 C ATOM 4070 CP ATOM 4071 N PHE A 519 71.437 74.166 -7.7457 1.00 0.00 C ATOM 4075 CB PHE A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4075 CB PHE A 519 71.437 74.166 -7.7457 1.00 0.00 C ATOM 4075 CP PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4075 CP PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CP PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CP PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CP PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4080 CP PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM		MOTA	4047	CE2	TYR A	515	73.974	67.754	-13.157	1.00		
ATOM 4050 N SER A 516 76.665 71.728 -14.959 1.00 0.00 N ATOM 4051 CA SER A 516 77.141 72.404 -13.746 1.00 0.00 C ATOM 4052 C SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4053 O SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4054 CB SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4055 OG SER A 516 78.159 73.485 -14.121 1.00 0.00 C ATOM 4055 OG SER A 516 78.159 73.485 -14.121 1.00 0.00 C ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 C ATOM 4057 CA PRO A 517 75.166 72.236 -12.310 1.00 0.00 C ATOM 4057 CA PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4059 O PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4060 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4061 CG PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4061 CG PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4064 CA ASP A 518 73.155 70.788 -12.102 1.00 0.00 C ATOM 4064 CA ASP A 518 73.155 70.788 -12.102 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 72.959 75.413 -9.434 1.00 0.00 C ATOM 4066 C ASP A 518 72.959 75.413 -9.434 1.00 0.00 C ATOM 4066 C ASP A 518 72.959 75.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 72.959 75.413 -9.434 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.959 76.413 -9.434 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.00 71.448 6.6664 1.00 0.00 C ATOM 4070 C PHE A 519 71.270 71.448 6.6664 1.00 0.00 C ATOM 4070 C PHE A 5	25	MOTA	4048	CZ	TYR A	515	72.832					
ATOM 4051 CA SER A 516 77.141 72.404 -13.746 1.00 0.00 CC ATOM 4052 C SER A 516 75.931 73.040 -13.062 1.00 0.00 CC ATOM 4053 O SER A 516 75.931 73.040 -13.062 1.00 0.00 CC ATOM 4053 O SER A 516 75.931 73.040 -13.062 1.00 0.00 CC ATOM 4054 CB SER A 516 78.159 73.485 -14.121 1.00 0.00 CC ATOM 4055 OG SER A 516 78.159 73.485 -14.121 1.00 0.00 CC ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 CC ATOM 4057 CA PRO A 517 75.166 72.236 -12.310 1.00 0.00 CC ATOM 4058 C PRO A 517 73.967 72.700 -11.614 1.00 0.00 CC ATOM 4059 O PRO A 517 74.064 73.562 -10.365 1.00 0.00 CC ATOM 4058 C PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4060 CB PRO A 517 74.917 73.260 -9.503 1.00 0.00 CC ATOM 4060 CB PRO A 517 74.356 70.483 -10.991 1.00 0.00 CC ATOM 4060 CB PRO A 517 74.356 70.483 -10.991 1.00 0.00 CC ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 CC ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 CC ATOM 4066 C ASP A 518 73.153 74.999 -8.789 1.00 0.00 CC ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 CC ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 CC ATOM 4067 CB ASP A 518 72.978 75.418 -9.164 1.00 0.00 CC ATOM 4067 CB ASP A 518 72.978 75.418 -9.434 1.00 0.00 CC ATOM 4069 OD1 ASP A 518 72.969 76.885 -9.586 1.00 0.00 CC ATOM 4069 OD1 ASP A 518 72.969 76.885 -9.586 1.00 0.00 CC ATOM 4069 OD1 ASP A 518 72.969 76.885 -9.586 1.00 0.00 CC ATOM 4070 OD2 ASP A 518 72.969 74.4654 -6.947 1.00 0.00 CC ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 CC ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 CC ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 CC ATOM 4070 CC PHE A 519 70.414 73.644 -7.352 1.00 0.00 CC ATOM 4070 CC PHE A 519 70.414 73.654 -7.641 1.00 0.00 CC ATOM 4070 CC PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4070 CD PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4070 CD PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4070 CD PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4080 CC PHE A 519 71.207 71.448 -6.644 1.00 0.00 CC ATOM 4080 CC PHE A 519 71.207 71.448 -6		MOTA	4049	OH	TYR A	515	71.881					
ATOM 4052 C SER A 516 75.931 73.040 -13.062 1.00 0.00 C ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 O ATOM 4054 CB SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 N ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 N ATOM 4057 CA PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4059 O PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4050 C PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4061 CG PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4060 CB PRO A 517 75.355 70.788 -12.102 1.00 0.00 C ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 73.959 75.418 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 73.959 75.418 -9.164 1.00 0.00 C ATOM 4067 CB ASP A 518 73.557 75.418 -9.164 1.00 0.00 C ATOM 4067 CB ASP A 518 73.557 75.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 73.557 75.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 73.557 75.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 73.557 75.413 -9.434 1.00 0.00 C ATOM 4070 OD2 ASP A 518 73.657 77.819 -8.426 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 C ATOM 4070 CP HE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CP HE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CP HE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CP HE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CP HE A 519 71.437 74.166 -7.765 -7.851 1.00 0.00 C ATOM 4070 CP HE A 519 71.437 74.166 -7.765 -7.851 1.00 0.00 C ATOM 4070 CP HE A 519 71.437 74.166 -7.765 -7.851 1.00 0.00 C C ATOM 4070 CP HE A 519 71.437 74.536 69.931 74.469 -0.00 0.00 C C A		MOTA		N								
30 ATOM 4053 O SER A 516 75.685 74.243 -13.188 1.00 0.00 C ATOM 4054 CB SER A 516 78.159 73.485 -14.121 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 C ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 N ATOM 4057 CA PRO A 517 73.967 72.700 -11.614 1.00 0.00 C ATOM 4058 C PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4059 O PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4061 CG PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4061 CG PRO A 517 75.355 70.483 -10.991 1.00 0.00 C ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.413 -9.434 1.00 0.00 C ATOM 4066 C ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4067 CB ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4067 CB ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4067 CB ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 C ATOM 4072 CA PHE A 519 71.437 74.166 -7.764 1.00 0.00 C ATOM 4074 O PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4075 CB PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CE PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CE PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CE PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4080 CE2 PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4080 CE2 PHE A 519 71.309 69.987 -6.280 1.00 0.00 C C ATOM 4080 CE2 PHE A 519 71.309 69.987 -6.280 1.00 0.00 C C ATOM 4080 CA SE		MOTA										
ATOM 4054 CB SER A 516 78.159 73.485 -14.121 1.00 0.00 C ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 N ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 C ATOM 4057 CA PRO A 517 73.967 72.700 -11.614 1.00 0.00 C ATOM 4059 O PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4059 O PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 CB PRO A 517 74.917 73.366 -12.310 1.00 0.00 C ATOM 4061 CG PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 C ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 71.560 74.999 -8.789 1.00 0.00 C ATOM 4066 C ASP A 518 71.560 74.999 -8.789 1.00 0.00 C ATOM 4066 C ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4068 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4060 CD ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4070 CD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 C ATOM 4071 N PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4071 N PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4071 C CA PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD PHE A 519 69.077 74.554 -6.947 1.00 0.00 C ATOM 4070 CD PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CD2 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CD2 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CD2 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CD2 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4080 CE2 PHE A 519 70.948 70.968 69.987 -6.280 1.00 0.00 C C ATOM 4080 CE2 PHE A 519 72.832 69.311 -7.469 1.00 0.00 C C ATOM 408	20											
ATOM 4055 OG SER A 516 78.766 74.044 -12.969 1.00 0.00 0.00 ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 N ATOM 4057 CA PRO A 517 73.967 72.700 -11.614 1.00 0.00 C ATOM 4058 C PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4059 O PRO A 517 74.94 73.562 -10.365 1.00 0.00 C ATOM 4060 CB PRO A 517 74.94 77.399 -11.323 1.00 0.00 C ATOM 4061 CG PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 C ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4065 C ASP A 518 71.560 74.999 -8.789 1.00 0.00 C ATOM 4066 C ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4066 C ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4068 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.003 77.372 -7.457 1.00 0.00 C ATOM 4070 CD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 C ATOM 4070 CD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 C ATOM 4070 CD2 ASP A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 ASP A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 ASP A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 ASP A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 ASP A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 ASP A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 ASP A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 ASP A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 ASP A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 PHE A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 PHE A 519 70.414 73.644 -7.352 1.00 0.00 C ATOM 4070 CD2 PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD2 PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD2 PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD2 PHE A 519 71.546 69.700 -8.257 1.00 0.00 C ATOM 4070 CD2 PHE A 519 71.546 69.700 -8.257 1.00 0.00 C ATOM 4080 CD2 PHE A 519 71.546 69.700 -8.257 1.00 0.00 C ATOM 4080 CD2 PHE A 519 71.546 69.700 -8.257 1.00 0.00 C C ATO	30											
ATOM 4056 N PRO A 517 75.166 72.236 -12.310 1.00 0.00 N ATOM 4057 CA PRO A 517 73.967 72.700 -11.614 1.00 0.00 CC ATOM 4058 C PRO A 517 74.064 73.562 -10.365 1.00 0.00 CC ATOM 4060 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4061 CG PRO A 517 74.917 73.360 -9.503 1.00 0.00 CC ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 CC ATOM 4063 N ASP A 518 73.153 74.528 -10.303 1.00 0.00 CC ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 CC ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 CC ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 CC ATOM 4066 C ASP A 518 70.597 75.413 -9.434 1.00 0.00 CC ATOM 4068 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 CC ATOM 4069 OD1 ASP A 518 72.969 76.885 -9.586 1.00 0.00 CC ATOM 4069 OD2 ASP A 518 72.003 77.372 -7.457 1.00 0.00 CC ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 CC ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 CC ATOM 4073 C PHE A 519 70.341 73.644 -7.352 1.00 0.00 CC ATOM 4073 C PHE A 519 70.341 73.644 -7.352 1.00 0.00 CC ATOM 4074 O PHE A 519 70.341 73.644 -7.352 1.00 0.00 CC ATOM 4075 CB PHE A 519 70.341 73.644 -7.352 1.00 0.00 CC ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4077 CDI PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4078 CD2 PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4078 CD2 PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4078 CD2 PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4078 CD2 PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4078 CD2 PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4078 CD2 PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4078 CD2 PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4080 CE2 PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4080 CE2 PHE A 519 73.988 69.987 -6.280 1.00 0.00 CC ATOM 4080 CE2 PHE A 519 73.988 69.987 -6.28												
ATOM 4057 CA PRO A 517 73.967 72.700 -11.614 1.00 0.00 C ATOM 4059 O PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 CB PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4061 CG PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4061 CG PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 C ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4064 CA ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 71.560 74.999 -8.789 1.00 0.00 C ATOM 4066 C ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4066 C ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4068 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 C ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 C ATOM 4072 CA PHE A 519 70.441 73.644 -7.352 1.00 0.00 C ATOM 4073 C PHE A 519 70.341 73.644 -7.352 1.00 0.00 C ATOM 4074 O PHE A 519 70.341 73.644 -7.352 1.00 0.00 C ATOM 4074 O PHE A 519 70.341 73.644 -7.352 1.00 0.00 C ATOM 4074 C PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CD PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CD PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4080 CS2 PHE A 519 72.837 71.049 -5.884 1.00 0.00 C C ATOM 4080 CS2 PHE A 519 72.8												
35 ATOM 4058 C PRO A 517 74.064 73.562 -10.365 1.00 0.00 C ATOM 4059 O PRO A 517 74.917 73.360 -9.503 1.00 0.00 O ATOM 4060 CB PRO A 517 73.229 71.399 -11.323 1.00 0.00 C ATOM 4061 CG PRO A 517 74.356 70.483 -10.991 1.00 0.00 C ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 C ATOM 4064 CA ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4066 O ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4066 C ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4068 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4068 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 C ATOM 4070 OD2 ASP A 518 72.003 77.372 -7.457 1.00 0.00 C ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 C ATOM 4071 N PHE A 519 70.447 74.166 -7.764 1.00 0.00 C ATOM 4072 CA PHE A 519 70.447 74.166 -7.764 1.00 0.00 C ATOM 4073 C PHE A 519 70.447 74.166 -7.764 1.00 0.00 C ATOM 4073 C PHE A 519 70.447 74.279 -6.698 1.00 0.00 C ATOM 4074 O PHE A 519 67.931 74.279 -6.698 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4070 CD PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CD PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4070 CD PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4080 CE2 PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4080 CE2 PHE A 519 71.207 71.449 -5.884 1.00 0.00 C ATOM 4080 CE2 PHE A 519 71.207 71.409 -5.884 1.00 0.00 C C ATOM 4080 CE2 PHE A 519												
ATOM 4059 O PRO A 517 74.917 73.360 -9.503 1.00 0.00 C ATOM 4060 CB PRO A 517 73.229 71.399 -11.323 1.00 0.00 C ATOM 4061 CG PRO A 517 74.956 70.483 -10.991 1.00 0.00 C ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 C ATOM 4063 N ASP A 518 73.153 74.528 -10.303 1.00 0.00 N ATOM 4064 CA ASP A 518 73.153 74.528 -10.303 1.00 0.00 C ATOM 4066 C ASP A 518 71.560 74.999 -8.789 1.00 0.00 C ATOM 4066 C ASP A 518 70.597 75.413 -9.164 1.00 0.00 C ATOM 4066 C ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4066 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4069 OD2 ASP A 518 72.003 77.372 -7.457 1.00 0.00 C ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 C ATOM 4072 CA PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4074 O PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4079 CD1 PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4079 CD1 PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4079 CD1 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CD1 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4080 CD2 PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4080 CD2 PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4080 N SER A 520 69.439 75.931 -6.535 1.00 0.00 C C ATOM 4080 CASER A 520 69.439 75.931 -6.535 1.00 0.00 C C	35											
ATOM 4060 CB PRO A 517 73.229 71.399 -11.323 1.00 0.00 CC ATOM 4061 CG PRO A 517 74.356 70.483 -10.991 1.00 0.00 CC ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 CC ATOM 4063 N ASP A 518 73.153 74.528 -10.303 1.00 0.00 N ATOM 4064 CA ASP A 518 72.978 75.418 -9.164 1.00 0.00 CC ATOM 4066 O ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4066 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 CC ATOM 4066 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 CC ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 CC ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 CC ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 CC ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 N ATOM 4071 N PHE A 519 70.141 73.644 -7.352 1.00 0.00 CC ATOM 4073 C PHE A 519 70.141 73.644 -7.352 1.00 0.00 CC ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 CC ATOM 4074 O PHE A 519 67.931 74.279 -6.698 1.00 0.00 CC ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4076 CD PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4076 CD PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4079 CE1 PHE A 519 72.287 71.049 -5.884 1.00 0.00 CC ATOM 4079 CE1 PHE A 519 72.287 71.049 -5.884 1.00 0.00 CC ATOM 4082 N SER A 520 69.439 75.931 -6.595 1.00 0.00 CC ATOM 4082 N SER A 520 69.439 75.931 -6.595 1.00 0.00 CC ATOM 4082 N SER A 520 69.439 75.931 -6.595 1.00 0.00 CC ATOM 4082 N SER A 520 69.439 75.931 -6.535 1.00 0.00 CC ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 CC	55											
ATOM 4061 CG PRO A 517 74.356 70.483 -10.991 1.00 0.00 CC ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 CC ATOM 4063 N ASP A 518 73.153 74.528 -10.303 1.00 0.00 N ATOM 4064 CA ASP A 518 72.978 75.418 -9.164 1.00 0.00 CC ATOM 4065 C ASP A 518 71.560 74.999 -8.789 1.00 0.00 CC ATOM 4066 O ASP A 518 70.597 75.413 -9.434 1.00 0.00 CC ATOM 4066 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 CC ATOM 4069 OD1 ASP A 518 72.657 77.819 -8.426 1.00 0.00 CC ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 CC ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 N ATOM 4072 CA PHE A 519 70.141 73.644 -7.352 1.00 0.00 CC ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 CC ATOM 4074 O PHE A 519 69.077 74.654 -6.947 1.00 0.00 CC ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 CC ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4079 CE1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4079 CE1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4079 CE1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 CC ATOM 4079 CE1 PHE A 519 71.207 71.448 -6.664 1.00 0.00 CC ATOM 4079 CE1 PHE A 519 72.287 71.049 -5.884 1.00 0.00 CC ATOM 4079 CE1 PHE A 519 72.287 71.049 -5.884 1.00 0.00 CC ATOM 4080 CE2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 CC ATOM 4080 CE2 PHE A 519 73.098 69.9311 -7.469 1.00 0.00 CC ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 CC ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 N												
ATOM 4062 CD PRO A 517 75.355 70.788 -12.102 1.00 0.00 C ATOM 4063 N ASP A 518 73.153 74.528 -10.303 1.00 0.00 N ATOM 4064 CA ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4065 C ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4066 O ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4066 CG ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 C ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 C ATOM 4072 CA PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4073 C PHE A 519 67.931 74.279 -6.698 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4079 CE1 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4080 CE2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.931 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 C												
## ATOM ## 4063 N ASP A 518											0.00	
ATOM 4064 CA ASP A 518 72.978 75.418 -9.164 1.00 0.00 C ATOM 4065 C ASP A 518 71.560 74.999 -8.789 1.00 0.00 C ATOM 4066 O ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4068 CG ASP A 518 72.967 77.819 -8.426 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 C ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 C ATOM 4071 N PHE A 519 70.141 73.644 -7.352 1.00 0.00 N ATOM 4072 CA PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4070 CE PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4070 CE PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4070 CE PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 C	40									1.00	0.00	
ATOM 4065 C ASP A 518 71.560 74.999 -8.789 1.00 0.00 C ATOM 4066 O ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4068 CG ASP A 518 72.657 77.819 -8.426 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 C ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 C ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 N ATOM 4072 CA PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4075 CB PHE A 519 67.931 74.279 -6.698 1.00 0.00 C ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4077 CD1 PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 C										1.00	0.00	
ATOM 4066 O ASP A 518 70.597 75.413 -9.434 1.00 0.00 C ATOM 4067 CB ASP A 518 72.969 76.885 -9.586 1.00 0.00 C ATOM 4068 CG ASP A 518 72.657 77.819 -8.426 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 O ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 O ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 N ATOM 4072 CA PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4075 CB PHE A 519 67.931 72.608 -6.246 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4077 CD1 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 C ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C							71.560	74.999	-8.789	1.00	0.00	С
45 ATOM 4068 CG ASP A 518 72.657 77.819 -8.426 1.00 0.00 C ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 O ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 O ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 N ATOM 4072 CA PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4074 O PHE A 519 67.931 74.279 -6.698 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 C C ATOM 4082 N SER A 520 68.483 76.973 -6.535 1.00 0.00 C C			4066	0	ASP A	A 518	70.597	75.413	-9.434	1.00	0.00	0
ATOM 4069 OD1 ASP A 518 72.003 77.372 -7.457 1.00 0.00 OATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 OATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 NATOM 4072 CA PHE A 519 70.141 73.644 -7.352 1.00 0.00 CATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 CATOM 4074 OATOM 4074 OATOM 4075 CB PHE A 519 67.931 74.279 -6.698 1.00 0.00 CATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 CATOM 4076 CG PHE A 519 71.207 71.448 -6.664 1.00 0.00 CATOM 4077 CD1 PHE A 519 71.207 71.448 -6.664 1.00 0.00 CATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 CATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 CATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 CATOM 4080 CE2 PHE A 519 71.754 69.700 -8.257 1.00 0.00 CATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 CATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 CATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 CATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 CATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 CATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 CATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 CATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00		ATOM	4067	CB	ASP A	A 518	72.969	76.885	-9.586			
ATOM 4070 OD2 ASP A 518 73.051 79.001 -8.487 1.00 0.00 O ATOM 4071 N PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4075 CB PHE A 519 67.931 74.279 -6.698 1.00 0.00 C ATOM 4076 CG PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4077 CD1 PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 68.483 76.973 -6.535 1.00 0.00 C C ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C C	45	MOTA		CG	ASP A	1 518	72.657					
ATOM 4071 N PHE A 519 71.437 74.166 -7.764 1.00 0.00 N ATOM 4072 CA PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4074 O PHE A 519 67.931 74.279 -6.698 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 C ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C		ATOM	4069	OD1	ASP A	1 518						
ATOM 4072 CA PHE A 519 70.141 73.644 -7.352 1.00 0.00 C ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4074 O PHE A 519 67.931 74.279 -6.698 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 C ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C		MOTA	4070	OD2								
50 ATOM 4073 C PHE A 519 69.077 74.654 -6.947 1.00 0.00 C ATOM 4074 O PHE A 519 67.931 74.279 -6.698 1.00 0.00 O ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 C ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C				N								
ATOM 4074 O PHE A 519 67.931 74.279 -6.698 1.00 0.00 C ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 N ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C	50											
ATOM 4075 CB PHE A 519 70.341 72.608 -6.246 1.00 0.00 C ATOM 4076 CG PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 N ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C	50											
ATOM 4076 CG PHE A 519 71.207 71.448 -6.664 1.00 0.00 C ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 N ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C												
ATOM 4077 CD1 PHE A 519 70.948 70.765 -7.851 1.00 0.00 C ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 N ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C												
55 ATOM 4078 CD2 PHE A 519 72.287 71.049 -5.884 1.00 0.00 C ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 N ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C												
ATOM 4079 CE1 PHE A 519 71.754 69.700 -8.257 1.00 0.00 C ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 N ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C	55											
ATOM 4080 CE2 PHE A 519 73.098 69.987 -6.280 1.00 0.00 C ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 N ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C	55											
ATOM 4081 CZ PHE A 519 72.832 69.311 -7.469 1.00 0.00 C ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 N ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C												
ATOM 4082 N SER A 520 69.439 75.931 -6.902 1.00 0.00 N 60 ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C												
60 ATOM 4083 CA SER A 520 68.483 76.973 -6.535 1.00 0.00 C												
00 111011 1000 011 0211 11 021	60											
***************************************	00											
		111 011	1001	~	221		30.100					

										_
	ATOM	4085	0	SER A	520	67.260	78.688 -7.691	1.00	0.00	0
	MOTA	4086	СВ	SER A		69.073	77.879 -5.453	1.00	0.00	С
							78.665 -5.978	1.00	0.00	0
	MOTA	4087	OG	SER A		70.132				
	ATOM	4088	N	PHE A	521	68.822	77.565 -8.860	1.00	0.00	N
5	ATOM	4089	CA	PHE A	521	68.629	78.317 -10.095	1.00	0.00	С
	MOTA	4090	С	PHE A	521	67.500	77.774 -10.970	1.00	0.00	С
	MOTA	4091	Ō	PHE A		67.237	76.574 -10.990	1.00	0.00	0
							78.319 -10.895	1.00	0.00	С
	MOTA	4092	CB	PHE A		69.936				C
	MOTA	4093	CG	PHE A	521	69.952	79.299 -12.034	1.00	0.00	
10	MOTA	4094	CD1	PHE A	521	70.084	80.664 -11.790	1.00	0.00	C
	MOTA	4095		PHE A		69.812	78.862 -13.348	1.00	0.00	C
						70.075	81.583 -12.842	1.00	0.00	C
	MOTA	4096		PHE A						Ċ
	MOTA	4097	CE2	PHE A		69.801	79.768 -14.406	1.00	0.00	
	ATOM	4098	CZ	PHE A	521	69.932	81.133 -14.152	1.00	0.00	С
15	ATOM	4099	N	SER A	522	66.837	78.671 -11.697	1.00	0.00	N
10	ATOM	4100	CA	SER A		65.753	78.280 -12.590	1.00	0.00	С
							78.252 -14.027	1.00	0.00	C
	MOTA	4101	С	SER A		66.264				
	MOTA	4102	0	SER A	522	66.320	79.286 -14.692	1.00	0.00	0
	MOTA	4103	CB	SER A	522	64.580	79.261 -12.477	1.00	0.00	С
20		4104	OG	SER A		63.927	79.133 -11.224	1.00	0.00	0
20						66.645	77.070 -14.497	1.00	0.00	N
	MOTA	4105	N	TYR A						C
	MOTA	4106	CA	TYR A		67.149	76.919 -15.857	1.00	0.00	
	MOTA	4107	C	TYR A	523	66.025	77.000 -16.868	1.00	0.00	C
	MOTA	4108	0	TYR A	523	66.228	77.440 -18.002	1.00	0.00	0
25	7 COM	4109	СВ	TYR A		67.885	75.586 -16.013	1.00	0.00	С
20								1.00	0.00	C
	ATOM	4110	CG	TYR A		69.160	75.523 -15.211			
	MOTA	4111	CD1	TYR A	523	69.188	74.932 -13.949	1.00	0.00	C
	ATOM	4112	CD2	TYR A	523	70.335	76.106 -15.695	1.00	0.00	С
	ATOM	4113	CE1	TYR A	523	70.358	74.926 -13.187	1.00	0.00	С
30	D TO M			TYR A		71.498	76.108 -14.945	1.00	0.00	С
50		4114						1.00	0.00	C
	MOTA	4115	CZ	TYR A		71.506	75.519 -13.693			
	MOTA	4116	OH	TYR A	523	72.660	75.542 -12.944	1.00	0.00	0
	MOTA	4117	N	PHE A	524	64.840	76.559 -16.456	1.00	0.00	N
	MOTA	4118	CA	PHE A	524	63.665	76.603 -17.316	1.00	0.00	С
35	TITOM	4119	C	PHE A		62.464	77.104 -16.539	1.00	0.00	C
55									0.00	0
	MOTA	4120	0	PHE A		62.401	76.986 -15.315			
	MOTA	4121	СВ	PHE A	524	63.293		1.00	0.00	С
	ATOM	4122	CG	PHE A	524	64.335	74.593 -18.726	1.00	0.00	С
	ATOM	4123		PHE A		65.402	73.902 -18.165	1.00	0.00	С
40				PHE A		64.226			0.00	С
40		4124							0.00	Ċ
	MOTA	4125		PHE A		66.348				
	ATOM	4126	CE2	PHE A	524	65.166	74.031 -20.931	1.00	0.00	С
	ATOM	4127	CZ	PHE A	524	66.230	73.338 -20.355	1.00	0.00	С
	ATOM	4128	N	THR A		61.509	77.656 -17.275	1.00	0.00	И
45				THR A		60.265		1.00	0.00	С
45		4129	CA						0.00	C
	MOTA	4130	С	THR A		59.180				
	ATOM	4131	0	THR A	525	59.191	77.145 -18.598	1.00	0.00	0
	MOTA	4132	CB	THR A	525	60.028	79.623 -17.042	1.00	0.00	С
	ATOM	4133		THR A		61.030		1.00	0.00	0
50						58.659			0.00	C
50		4134		THR A						
	MOTA	4135	N	LEU A		58.262			0.00	N
	ATOM	4136	CA	LEU A	526	57.180	75.972 -17.164	1.00	0.00	С
	MOTA	4137	С	LEU A	526	56.183	76.911 -17.838	1.00	0.00	С
	ATOM	4138	Ö	LEU A		55.925			0.00	0
	ATOM								0.00	C
55		4139	CB	LEU A		56.452				
	MOTA	4140	CG	LEU A		57.008			0.00	C
	ATOM	4141	CD1	LEU A	526	56.224	73.280 -14.470	1.00	0.00	С
	ATOM	4142		LEU A		56.907		1.00	0.00	С
			N	ASP A		55.642			0.00	N
60	ATOM	4143							0.00	C
60		4144	CA	ASP A		54.646				
	MOTA	4145	С	ASP A	527	53.404	76.400 -19.756	1.00	0.00	С

	ATOM	4146	0	ASP A	527	53.425	75.350 -20.389	1.00	0.00	0
	MOTA	4147	CB	ASP A		55.121	77.635 -21.086	1.00	0.00	C
	MOTA	4148	CG	ASP A		54.134	78.528 -21.818	1.00	0.00	C
_	MOTA	4149		ASP A		53.867	79.646 -21.324	1.00	0.00	0
5	MOTA	4150		ASP A		53.622	78.110 -22.881	1.00	0.00	0
	MOTA	4151	N	ASP A		52.337	76.824 -19.089	1.00	0.00	N C
	MOTA	4152	CA	ASP A		51.084	76.075 -19.076	1.00	0.00	C
	MOTA	4153	C	ASP A		50.010	76.962 -19.688	1.00 1.00	0.00	0
10	MOTA	4154	0	ASP A		49.667	78.007 -19.139 75.713 -17.637	1.00	0.00	c
10	MOTA	4155	CB	ASP A		50.704 49.666	74.605 -17.564	1.00	0.00	C
	MOTA	4156 4157	CG	ASP A		48.653	74.670 -18.294	1.00	0.00	Ö
	MOTA MOTA	4157		ASP A		49.865	73.667 -16.766	1.00	0.00	Ō
	ATOM	4159	N	SER A		49.474	76.548 -20.827	1.00	0.00	N
15	ATOM	4160	CA	SER P		48.465	77.358 -21.491	1.00	0.00	С
10	ATOM	4161	C	SER A		47.059	77.161 -20.935	1.00	0.00	C
	MOTA	4162	Ō	SER F		46.154	77.916 -21.277	1.00	0.00	0
	ATOM `	4163	СВ	SER F		48.469	77.071 -22.995	1.00	0.00	C
	ATOM	4164	OG	SER F		47.890	75.810 -23.261	1.00	0.00	0
20	ATOM	4165	N	ARG F	530	46.869	76.167 -20.071	1.00	0.00	N
	MOTA	4166	CA	ARG F	530	45.536	75.925 -19.536	1.00	0.00	С
	MOTA	4167	С	ARG A	530	45.351	76.074 -18.030	1.00	0.00	C
	MOTA	4168	0	ARG A		44.280	75.778 -17.502	1.00	0.00	0
	MOTA	4169	CB	ARG A		45.036	74.560 -20.015	1.00	0.00	С
25	MOTA	4170	CG	ARG A		44.929	74.517 -21.531	1.00	0.00	С
	ATOM	4171	CD	ARG A		44.292	73.244 -22.057	1.00	0.00	C N
	MOTA	4172	NE	ARG A		45.038	72.051 -21.670 70.843 -22.178	1.00	0.00	n C
	ATOM	4173	CZ	ARG A		44.816	70.678 -23.093	1.00	0.00	N
30	MOTA	4174		ARG A		43.869 45.535	69.801 -21.771	1.00	0.00	N
30	ATOM	4175 4176		ARG A		46.389	76.531 -17.337	1.00	0.00	N
	MOTA MOTA	4177	N CA	TRP A		46.277	76.764 -15.901	1.00	0.00	C
	ATOM	4178	C	TRP A		47.246	77.837 -15.433	1.00	0.00	C
	ATOM	4179	0	TRP A		48.444	77.753 -15.695	1.00	0.00	0
35	ATOM	4180	CB	TRP A		46.519	75.493 -15.085	1.00	0.00	C
	MOTA	4181	CG	TRP A		46.418	75.781 -13.618	1.00	0.00	С
	MOTA	4182	CD1			47.438	76.128 -12.773	1.00	0.00	С
	MOTA	4183	CD2	TRP A	3 531	45.215	75.860 -12.846	1.00	0.00	C
	MOTA	4184	NE1			46.941	76.422 -11.524	1.00	0.00	N
40	ATOM	4185	CE2			45.580	76.265 -11.542	1.00	0.00	C
	ATOM	4186	CE3			43.864	75.631 -13.130	1.00	0.00	C
	ATOM	4187		TRP A		44.638	76.446 -10.522	1.00	0.00	C C
	ATOM	4188		TRP A		42.925	75.813 -12.114	1.00	0.00	C
4 =	MOTA	4189		TRP A		43.319	76.216 -10.828 78.857 -14.722	$1.00 \\ 1.00$	0.00	N
45	ATOM	4190	N		A 532 A 532	46.738 45.325	79.023 -14.358	1.00	0.00	C
	ATOM	4191 4192	CA C		A 532 A 532	44.419	79.228 -15.567	1.00	0.00	C
	ATOM ATOM	4192	0		A 532	43.200	79.075 -15.473	1.00	0.00	0
	MOTA	4194	СВ		A 532	45.348	80.240 -13.433	1.00	0.00	C
50	ATOM	4195	CG		A 532	46.700	80.135 -12.787	1.00	0.00	C
00	ATOM	4196	CD		A 532	47.576	79.816 -13.980	1.00	0.00	C
	ATOM	4197	N		A 533	45.022	79.572 -16.700	1.00	0.00	N
	ATOM	4198	CA		A 533	44.255	79.771 -17.914	1.00	0.00	C
	ATOM	4199	C		A 533	44.067	81.220 -18.313	1.00	0.00	C
55	ATOM	4200	0		A 533	44.049	82.116 -17.466	1.00	0.00	0
	MOTA	4201	N	SER A	A 534	43.933	81.449 -19.616	1.00	0.00	N
	ATOM	4202	CA		A 534	43.734	82.792 -20.147	1.00	0.00	C
	ATOM	4203	С		A 534	42.442	83.369 -19.578	1.00	0.00	С
(0	ATOM	4204	0		A 534	41.400	82.711 -19.598	1.00	0.00	0
60	ATOM	4205	CB		A 534	43.655	82.744 -21.675	1.00	0.00	C 0
	MOTA	4206	OG	SER .	A 534	43.324	84.013 -22.208	1.00	0.00	O

The first program was an army and the second program and the second

	ATOM	4207	N	GLY	A 535	42.514	84.595 -19.069	1.00	0.00	N
	ATOM	4208	CA		A 535	41.337	85.223 -18.498	1.00	0.00	C
							84.928 -17.014	1.00	0.00	Ċ
	MOTA	4209	С		A 535	41.207				
	MOTA	4210	0	GLY .	A 535	40.351	85.491 -16.330	1.00	0.00	0
5	MOTA	4211	N	VAL .	A 536	42.056	84.035 -16.516	1.00	0.00	N
•	MOTA	4212	CA		A 536	42.040	83.669 -15.105	1.00	0.00	С
									0.00	C
	MOTA	4213	С	VAL .	A 536	43.218	84.336 -14.400	1.00		
	MOTA	4214	0	VAL .	A 536	43.078	84.885 -13.307	1.00	0.00	0
	ATOM	4215	CB		A 536	42.147	82.134 -14.925	1.00	0.00	С
10						42.091	81.774 -13.448	1.00	0.00	С
10	ATOM	4216			A 536					
	MOTA	4217	CG2	VAL .	A 536	41.022	81.443 -15.682	1.00	0.00	С
	ATOM	4218	N	GLU	A 537	44.378	84.292 -15.046	1.00	0.00	N
	ATOM	4219	CA		A 537	45.590	84.883 -14.495	1.00	0.00	С
							84.972 -15.565	1.00	0.00	C
4 	ATOM	4220	С		A 537	46.675				
15	ATOM	4221	0	GLU .	A 537	47.086	83.956 -16.126	1.00	0.00	0
	ATOM	4222	CB	GLU	A 537	46.083	84.040 -13.310	1.00	0.00	С
		4223	CG		A 537	47.529	84.290 -12.893	1.00	0.00	С
	MOTA								0.00	C
	MOTA	4224	CD		A 537	47.936	83.485 -11.665	1.00		
	MOTA	4225	OE1	GLU	A 537	49.153	83.284 -11.457	1.00	0.00	0
20	MOTA	4226	OE2	GLU	A 537	47.042	83.058 -10.902	1.00	0.00	0
		4227	N		A 538	47.126	86.188 -15.863	1.00	0.00	N
	MOTA							1.00	0.00	C
	MOTA	4228	CA		A 538	48.182	86.365 -16.855			
	MOTA	4229	C	ASP	A 538	49.474	85.975 -16.153	1.00	0.00	C
	ATOM	4230	0	ASP	A 538	50.127	86.806 -15.521	1.00	0.00	0
25		4231			A 538	48.247	87.822 -17.326	1.00	0.00	C
25	ATOM		CB					1.00	0.00	C
	MOTA	4232	CG		A 538	49.236	88.022 -18.463			
	ATOM	4233	OD1	ASP	A 538	49.147	87.282 -19.466	1.00	0.00	0
	MOTA	4234	OD2	ASP	A 538	50.100	88.919 -18.357	1.00	0.00	0
	ATOM	4235	N		A 539	49.832	84.700 -16.261	1.00	0.00	N
20								1.00	0.00	C
30	MOTA	4236	ÇA		A 539	51.021	84.179 -15.598			
	MOTA	4237	С	SER	A 539	52.142	83.720 -16.521	1.00	0.00	C
	MOTA	4238	0	SER	A 539	53.318	83.855 -16.183	1.00	0.00	0
		4239	CB		A 539		83.013 -14.690	1.00	0.00	C
	MOTA								0.00	0
	MOTA	4240	OG	SER	A 539		81.962 -15.450	1.00		
35	MOTA	4241	N	ARG	A 540	51.790	83.166 -17.676	1.00	0.00	N
	ATOM	4242	CA	ARG	A 540	52.814	82.682 -18.591	1.00	0.00	С
		4243	C		A 540	53.684	83.795 -19.160	1.00	0.00	C
	ATOM						84.890 -19.469	1.00	0.00	0
	MOTA	4244	0		A 540	53.211				
	MOTA	4245	CB	ARG	A 540	52.184	81.839 -19.706	1.00	0.00	С
40	MOTA	4246	CG	ARG	A 540	50.945	82.418 -20.342	1.00	0.00	С
	ATOM	4247	CD		A 540		81.336 -21.119	1.00	0.00	C
							80.613 -22.053	1.00	0.00	N
	MOTA	4248	NE		A 540					C
	MOTA	4249	CZ	ARG	A 540	50.624	80.055 -23.181	1.00	0.00	
	ATOM	4250	NH1	ARG	A 540	49.342	80.137 -23.515	1.00	0.00	N
45	MOTA	4251			A 540	51.474	79.423 -23.978	1.00	0.00	N
10							83.497 -19.280	1.00	0.00	N
	MOTA	4252	N		A 541					
	MOTA	4253	CA	THR	A 541	55.945	84.453 -19.773	1.00	0.00	С
	ATOM	4254	С	THR	A 541	55.965	84.548 -21.289	1.00	0.00	C
	ATOM	4255	0		A 541		83.610 -21.992	1.00	0.00	0
50							84.077 -19.317	1.00	0.00	C
50	ATOM	4256	CB		A 541	57.366				
	MOTA	4257	OG1	THR	A 541	57.867	83.026 -20.151	1.00	0.00	0
	MOTA	4258	CG2	THR	A 541	57.356	83.592 -17.874	1.00	0.00	C
	ATOM	4259	N		A 542		85.699 -21.783	1.00	0.00	N
							85.919 -23.213	1.00	0.00	C
	MOTA	4260	CA		A 542					
55	MOTA	4261	С		A 542		85.685 -23.579	1.00	0.00	С
	MOTA	4262	0	THR	A 542	58.879	86.159 -22.889	1.00	0.00	0
	ATOM	4263	СВ		A 542		87.373 -23.610	1.00	0.00	C
							87.629 -23.322	1.00	0.00	0
	MOTA	4264			A 542					
	MOTA	4265	CG2		A 542		87.593 -25.099	1.00	0.00	C
60	ATOM	4266	N	ILE	A 543	58.204		1.00	0.00	N
-	ATOM	4267	CA		A 543		84.693 -25.092	1.00	0.00	C
	011	1201	~				·			

	MOTA	4268	С	ILE A	543	5.9	3.896	85.966	-25.866	1.00	0.00	С
	MOTA	4269	Ö	ILE A			3.314		-26.921	1.00	0.00	0
	MOTA	4270	СВ	ILE A			0.647		-26.017	1.00	0.00	С
	ATOM	4271		ILE A			9.334		-25.208	1.00	0.00	C
5	MOTA	4272		ILE A			1.031		-26.659	1.00	0.00	C
Ü	MOTA	4273		ILE A			3.377		-26.014	1.00	0.00	С
	ATOM	4274	N	ILE A			0.803		-25.318	1.00	0.00	N
	ATOM	4275	CA	ILE A			1.184		-25.937	1.00	0.00	С
	ATOM	4276	C	ILE A			2.405		-26.835	1.00	0.00	С
10	ATOM	4277	0	ILE A			3.512		-26.371	1.00	0.00	0
10		4277	СВ	ILE A			1.448		-24.857	1.00	0.00	С
	MOTA	4279		ILE A			0.187		-24.007	1.00	0.00	C
	ATOM			ILE A			1.833		-25.508	1.00	0.00	C
	ATOM	4280							-22.939	1.00	0.00	Č
15	ATOM	4281		ILE A			0.306		-28.132	1.00	0.00	Ŋ
15	MOTA	4282	N	LEU A			2.183			1.00	0.00	C
	MOTA	4283	CA	LEU A			3.245		-29.121		0.00	Č
	MOTA	4284	С	LEU A			3.407		-29.850	1.00	0.00	0
	MOTA	4285	0	LEU A			2.465		-29.937	1.00		C
20	MOTA	4286	CB	LEU A			2.902		-30.124	1.00	0.00	C
20	MOTA	4287	CG	LEU A			2.592		-29.537	1.00	0.00	
	ATOM	4288		LEU A			2.141		-30.649	1.00	0.00	C
	MOTA	4289	CD2	LEU A			3.828		-28.829	1.00	0.00	C
	ATOM	4290	N	GLY P			4.604		-30.368	1.00	0.00	N
	MOTA	4291	CA	GLY A	546		4.852		-31.083	1.00	0.00	C
25	MOTA	4292	С	GLY F	546	6	6.276		-31.597	1.00	0.00	C
	MOTA	4293	0	GLY F	546	6	7.201		-30.949	1.00	0.00	0
	MOTA	4294	N	GLU F	547	6	6.454		-32.761	1.00	0.00	N
	MOTA	4295	CA	GLU F	547	6	7.777	91.600	-33.364	1.00	0.00	C
	MOTA	4296	С	GLU F	547	6	8.770		-32.401	1.00	0.00	С
30	ATOM	4297	0	GLU F	547	6	9.947	91.881	-32.373	1.00	0.00	0
	ATOM	4298	CB	GLU A	547	6	7.696	92.459	-34.628	1.00	0.00	C
	ATOM	4299	CG	GLU F	547	6	6.676	91.990	-35.651	1.00	0.00	С
	ATOM	4300	CD	GLU F	547	6	6.538	92.962	-36.812	1.00	0.00	C
	MOTA	4301		GLU A	547	6	7.527	93.141	-37.558	1.00	0.00	0
35	ATOM	4302		GLU A			5.444	93.551	-36.972	1.00	0.00	0
	MOTA	4303	N	ASP A		6	8.287	93.193	-31.611	1.00	0.00	N
	ATOM	4304	CA	ASP A		6	9.140	93.901	-30.667	1.00	0.00	C
	MOTA	4305	С	ASP A		6	9.165	93.319	-29.256	1.00	0.00	C
	ATOM	4306	Ō	ASP A		6	9.748	93.923	-28.353	1.00	0.00	0
4 0	ATOM	4307	СВ	ASP A			8.720	95.372	-30.590	1.00	0.00	С
10	ATOM	4308	CG	ASP A			8.921		-31.900	1.00	0.00	С
	ATOM	4309		ASP A			0.067		-32.390	1.00	0.00	0
	ATOM	4310		ASP A			7.933		-32.439	1.00	0.00	0
	ATOM	4311		ILE A			8.556		-29.055	1.00	0.00	N
45	ATOM	4312	CA	ILE A		_	8.541		-27.716	1.00	0.00	С
40	ATOM	4312	C		A 549		8.763		-27.658	1.00	0.00	С
	ATOM	4313	0		A 549		9.592		-26.885	1.00	0.00	0
		4314	CB		A 549		7.213		-26.980	1.00	0.00	С
	MOTA	4316		ILE A			7.234		-25.557	1.00	0.00	С
50	MOTA			ILE A			6.027		-27.743	1.00	0.00	C
50	MOTA	4317					8.310		-24.678	1.00	0.00	C
	MOTA	4318		ILE A			8.034		-28.477	1.00	0.00	N
	ATOM	4319	N		550				-28.478	1.00	0.00	C
	MOTA	4320	CA		A 550		8.152				0.00	Č
==	ATOM	4321	С		A 550		7.488		-29.724	$1.00 \\ 1.00$	0.00	0
55	ATOM	4322	0		A 550		6.284		-29.923			C
	MOTA	4323	CB		A 550		7.479		-27.226	1.00	0.00	С
	MOTA	4324	CG		A 550		7.571		-27.006	1.00	0.00	
	MOTA	4325		LEU A			9.021		-26.764	1.00	0.00	С
	MOTA	4326	CD2	LEU A			6.715		-25.817	1.00	0.00	C
60	MOTA	4327	N		A 551		8.265		-30.578	1.00	0.00	N
	MOTA	4328	CA	PRO .	A 551	6	7.694	86.028	-31.799	1.00	0.00	С

	MOTA	4329	С	PRO A	551	66.889	84.732 -31.671	1.00	0.00	С
	MOTA	4330	0	PRO A		65.930	84.529 -32.415	1.00	0.00	0
	ATOM	4331	СВ	PRO A		68.916	85.867 -32.700	1.00	0.00	C
	ATOM	4332	CG	PRO A		70.002	85.563 -31.730		0.00	С
5	ATOM	4333	CD	PRO A		69.739	86.541 -30.606		0.00	С
9	ATOM	4334	N	SER A		67.261	83.859 -30.740		0.00	N
		4334	CA	SER A		66.543	82.594 -30.601		0.00	С
	MOTA	4333	CA	SER A		66.366	82.135 -29.161		0.00	С
	MOTA					66.993	82.659 -28.243		0.00	0
10	ATOM	4337	0	SER A			81.496 -31.392		0.00	Ċ
10	MOTA	4338	CB	SER A		67.258			0.00	Ö
	MOTA	4339	OG	SER A		68.563	81.285 -30.886		0.00	N
	MOTA	4340	N	LYS A		65.508	81.135 -28.985			C
	MOTA	4341	CA	LYS A		65.204	80.589 -27.670		0.00	
	ATOM	4342	С	LYS A		64.897	79.092 -27.735		0.00	C
15	MOTA	4343	0	LYS A	553	64.152	78.633 -28.602		0.00	0
	ATOM	4344	CB	LYS A		63.999	81.332 -27.078		0.00	C
	MOTA	4345	CG	LYS A	553	63.465	80.740 -25.773	3 1.00	0.00	С
	ATOM	4346	CD	LYS A	553	64.499	80.803 -24.656	1.00	0.00	С
	ATOM	4347	CE	LYS A	553	64.818	82.244 -24.264		0.00	С
20	MOTA	4348	NZ	LYS A	553	65.931	82.304 -23.268	3 1.00	0.00	N
	ATOM	4349	N	HIS A		65.477	78.334 -26.812	1.00	0.00	N
	MOTA	4350	CA	HIS A	554	65.238	76.898 -26.752	2 1.00	0.00	С
	ATOM	4351	C	HIS A		64.046	76.596 -25.857		0.00	С
	ATOM	4352	Ö	HIS A		63.878	77.220 -24.808	3 1.00	0.00	0
25	MOTA	4353	СВ	HIS A		66.454	76.157 -26.186		0.00	С
20	ATOM	4354	CG	HIS A		67.597	76.039 -27.143		0.00	C
		4355		HIS A		68.249	74.847 -27.375		0.00	N
	ATOM	4356		HIS A		68.225	76.965 -27.90		0.00	С
	ATOM	4350		HIS A		69.230	75.045 -28.23		0.00	С
30	ATOM					69.238	76.321 -28.572		0.00	И
30	ATOM	4358		HIS A		63.227	75.640 -26.28		0.00	N
	MOTA	4359	N	VAL A			75.192 -25.530		0.00	C
	MOTA	4360	CA	VAL A		62.066	73.669 -25.53		0.00	č
	MOTA	4361	C	VAL A		62.113			0.00	0
0.5	ATOM	4362	0	VAL A		62.600	73.059 -26.49		0.00	c
35	MOTA	4363	CB	VAL A		60.729	75.651 -26.160			C
	ATOM	4364		VAL A		60.615	77.168 -26.09		0.00	C
	ATOM	4365	CG2	VAL A		60.620	75.156 -27.59		0.00	И
	MOTA	4366	N	VAL A		61.607	73.059 -24.46		0.00	C C
4.0	MOTA	4367	CA	VAL A		61.619	71.607 -24.34		0.00	
4 0	MOTA	4368	C	VAL A		60.260	71.052 -23.92		0.00	С
	MOTA	4369	0	VAL A		59.629	71.579 -23.01		0.00	0
	MOTA	4370	CB	VAL A		62.662	71.155 -23.28		0.00	С
	MOTA	4371		VAL A		62.607	69.638 -23.10		0.00	С
	MOTA	4372	CG2	VAL A		64.059	71.595 -23.70		0.00	C
45	MOTA	4373	N	MET A	557	59.817	69.988 -24.59		0.00	N
	MOTA	4374	CA	MET A	557	58.551	69.343 -24.24		0.00	C
	ATOM	4375	С	MET A	557	58.803	67.991 -23.57		0.00	C
	ATOM	4376	0	MET A	557	59.709	67.253 -23.96		0.00	0
	ATOM	4377	CB	MET A	557	57.683	69.127 -25.49	2 1.00	0.00	C
50	ATOM	4378	CG	MET A	557	56.649	70.216 -25.76	0 1.00	0.00	С
	MOTA	4379	SD	MET A	557	57.362	71.859 -25.90	8 1.00	0.00	S
	ATOM	4380	CE	MET A	557	58.355	71.676 -27.41	8 1.00	0.00	C
	ATOM	4381	N	HIS A		58.002	67.675 -22.56	4 1.00	0.00	N
	MOTA	4382	CA	HIS A		58.114	66.397 -21.86	6 1.00	0.00	C
55	ATOM	4383	C	HIS A		56.828	65.609 -22.08		0.00	С
	MOTA	4384	0	HIS A		55.737	66.187 -22.08		0.00	0
	ATOM	4385	СВ	HIS A		58.319	66.611 -20.36		0.00	C
	ATOM	4386	CG	HIS A		58.230	65.350 -19.55		0.00	C
	ATOM	4387		HIS A		57.261	65.146 -18.59		0.00	N
60	ATOM	4388		HIS A		58.990	64.229 -19.57		0.00	С
UU						57.429	63.955 -18.05		0.00	C
	ATOM	4389	CEI	HIS A	. 550	31.423	03.700 10.00			

	ATOM	4390	NE2	HIS A	558	58.471	63.378 -18.624	1.00	0.00	N
	ATOM	4391	N	ASN A		56.963	64.299 -22.286	1.00	0.00	N
	ATOM	4392	CA	ASN A		55.820	63.414 -22.497	1.00	0.00	C
	MOTA	4393	С	ASN A		55.835	62.309 -21.440	1.00	0.00	С
5		4394	0	ASN A		56.575	61.333 -21.554	1.00	0.00	0
Ī	MOTA	4395	CB	ASN A		55.878	62.807 -23.904	1.00	0.00	С
	MOTA	4396	CG	ASN A		54.865	61.691 -24.102	1.00	0.00	С
	ATOM	4397		ASN A		53.762	61.735 -23.558	1.00	0.00	0
		4398		ASN A		55.233	60.690 -24.899	1.00	0.00	N
10	MOTA (4399		THR A		55.010	62.459 -20.411	1.00	0.00	N
1(N	THR A		54.986	61.478 -19.331	1.00	0.00	C
	ATOM	4400	CA			54.388	60.116 -19.714	1.00	0.00	C
	ATOM	4401	C	THR A		54.599	59.119 -19.010	1.00	0.00	Ö
	ATOM	4402	0	THR A			62.050 -18.106	1.00	0.00	C
11	ATOM	4403	CB	THR A		54.241		1.00	0.00	Ö
15		4404		THR A		54.558	61.265 -16.951		0.00	C
	MOTA	4405		THR A		52.733	62.046 -18.340	1.00	0.00	N
	· MOTA	4406	N	LEU A		53.666	60.070 -20.832	1.00		C
	MOTA	4407	CA	LEU A		53.043	58.827 -21.301	1.00	0.00	C
~	MOTA	4408	С	LEU A		54.070	57.891 -21.953	1.00	0.00	
20		4409	0	LEU A		54.996	58.343 -22.631	1.00	0.00	0
	MOTA	4410	CB	LEU A		51.917	59.149 -22.291	1.00	0.00	С
	MOTA	4411	CG	LEU A		50.794	60.044 -21.742	1.00	0.00	C
	MOTA	4412		LEU A		49.725	60.258 -22.811	1.00	0.00	C
	MOTA	4413	CD2	LEU A	561	50.180	59.391 -20.502	1.00	0.00	C
25	5 ATOM	4414	N	PRO A	562	53.908	56.568 -21.758	1.00	0.00	N
	MOTA	4415	CA	PRO A	562	54.821	55.562 -22.312	1.00	0.00	С
	MOTA	4416	С	PRO A	562	54.688	55.193 -23.789	1.00	0.00	С
	MOTA	4417	0	PRO A	562	54.857	54.030 -24.159	1.00	0.00	0
	MOTA	4418	CB	PRO A	562	54.604	54.367 -21.390	1.00	0.00	С
30	0 atom	4419	CG	PRO A	562	53.138	54.455 -21.110	1.00	0.00	С
	ATOM	4420	CD	PRO A	562	52.921	55.938 -20.861	1.00	0.00	C
	MOTA	4421	N	HIS A	563	54.380	56.175 -24.629	1.00	0.00	N
	MOTA	4422	CA	HIS A		54.293	55.949 -26.068	1.00	0.00	С
	ATOM	4423	С	HIS A		54.628	57.246 -26.787	1.00	0.00	С
3		4424	0	HIS A		54.464	58.329 -26.226	1.00	0.00	0
٠.	ATOM	4425	CB	HIS A		52.900	55.440 -26.497	1.00	0.00	С
	ATOM	4426	CG	HIS A		51.756	56.310 -26.072	1.00	0.00	С
	ATOM	4427		HIS A		50.972	56.026 -24.974	1.00	0.00	N
	ATOM	4428		HIS A		51.232	57.430 -26.627	1.00	0.00	С
4		4429		HIS A		50.013	56.930 -24.873	1.00	0.00	С
	ATOM	4430		HIS A		50.150	57.793 -25.863	1.00	0.00	N
	ATOM	4431	N	TRP A		55.134	57.140 -28.010	1.00	0.00	N
	ATOM	4432	CA	TRP A		55.460	58.335 -28.772	1.00	0.00	С
		4433				54.192				С
4	ATOM			TRP A		53.106	58.612 -29.049	1.00	0.00	0
-11		4434	O	TRP A		55.935		1.00	0.00	C
	ATOM	4435	CB			57.368	57.567 -30.238	1.00	0.00	Ċ
	ATOM	4436	CG	TRP A			56.309 -30.089	1.00	0.00	C
	ATOM	4437		TRP A		57.868		1.00	0.00	C
E	ATOM	4438		TRP A		58.493	58.433 -30.410	1.00	0.00	И
5		4439		TRP A		59.242	56.335 -30.155			C
	ATOM	4440		TRP A		59.651	57.628 -30.351	1.00	0.00	C
	ATOM	4441		TRP A		58.636	59.815 -30.606	1.00	0.00	
	MOTA	4442		TRP A		60.940	58.157 -30.483	1.00	0.00	C
_	_ ATOM	4443		TRP A		59.920	60.343 -30.737	1.00	0.00	C
5		4444	CH2	TRP A		61.054	59.513 -30.675	1.00	0.00	C
	MOTA	4445	N	ARG A		54.318	60.470 -28.735	1.00	0.00	N
	MOTA	4446	CA	ARG A		53.135	61.308 -28.818	1.00	0.00	C
	MOTA	4447	С	ARG A		53.384	62.625 -29.520	1.00	0.00	C
	MOTA	4448	0	ARG A		54.430	63.254 -29.349	1.00	0.00	0
6	MOTA $$	4449	CB	ARG A		52.558	61.574 -27.417	1.00	0.00	C
	ATOM	4450	CG	ARG A	565	51.349	62.515 -27.423	1.00	0.00	С

		ATOM	4451	CD	ARG A	565	50.530	62.470 -	-26.130	1.00	0.00	С
		ATOM	4452		ARG A		51.325	62.757 -	-24.941	1.00	0.00	N
		ATOM	4453		ARG A		50.820	63.218 -	-23.799	1.00	0.00	С
		MOTA	4454	NH1	ARG A	565	49.514	63.454 -	-23.691	1.00	0.00	N
	5	MOTA	4455		ARG A		51.618	63.440 -	-22.764	1.00	0.00	N
		ATOM	4456		GLU A		52.415	63.015	-30.340	1.00	0.00	N
		ATOM	4457		GLU A		52.466	64.282	-31.044	1.00	0.00	C
		ATOM	4458		GLU A		51.327	65.098		1.00	0.00	С
		ATOM	4459		GLU A		50.261	64.560 -		1.00	0.00	0
	10	ATOM	4460		GLU A		52.237	64.107		1.00	0.00	С
	10	ATOM	4461		GLU A		53.336	63.372		1.00	0.00	С
		ATOM	4462		GLU A		53.134	63.414		1.00	0.00	C
		ATOM	4463		GLU A		51.995	63.172		1.00	0.00	0
		ATOM	4464		GLU A		54.112	63.687		1.00	0.00	0
	15	ATOM	4465		GLN A		51.560	66.392		1.00	0.00	N
	10	ATOM	4466		GLN A		50.551	67.284		1.00	0.00	С
			4467		GLN A		50.946	68.707		1.00	0.00	С
		MOTA			GLN A		52.131	69.053		1.00	0.00	0
		ATOM	4468		GLN A		50.472	67.148		1.00	0.00	C
	20	MOTA	4469				49.464	68.103		1.00	0.00	C
	20	ATOM	4470	CG	GLN A		49.787	68.434		1.00	0.00	C
		ATOM	4471	CD OF1			49.685	67.586		1.00	0.00	0
i		ATOM	4472		GLN A		50.186	69.679		1.00	0.00	N
		ATOM	4473		GLN A		49.966	69.533		1.00	0.00	N
	25	ATOM	4474	N	LEU A			70.920		1.00	0.00	C
Tin a	25	MOTA	4475	CA	LEU A		50.273	70.920		1.00	0.00	Č
		MOTA	4476	C	LEU A		50.583	71.353		1.00	0.00	o
2		MOTA	4477	0	LEU A		49.939	71.619		1.00	0.00	Č
		ATOM	4478	CB	LEU A		49.086			1.00	0.00	Č
	20	ATOM	4479	CG	LEU A		48.664	71.207		1.00	0.00	C
	30	ATOM	4480		LEU A		47.653	72.223			0.00	Č
		ATOM	4481		LEU A		49.881	71.170		1.00 1.00	0.00	N
:		ATOM	4482	N	VAL A		51.585	72.485			0.00	C
		ATOM	4483	CA	VAL A		51.966	73.246		1.00	0.00	C
,	٥٦	ATOM	4484	С	VAL A		52.069	74.705		1.00	0.00	Ö
	35	MOTA	4485	0	VAL A		52.361		-29.836	1.00	0.00	C
;		ATOM	4486	CB	VAL A		53.331	72.778		1.00	0.00	C
		ATOM	4487		VAL A		53.198		-27.099	1.00	0.00	C
•		ATOM	4488		VAL A		54.385		-28.781	1.00	0.00	N
:	40	ATOM	4489	N	ASP A		51.804		-27.764	1.00	0.00	C
	40	ATOM	4490	CA	ASP A		51.894		-28.108		0.00	C
		ATOM	4491	С	ASP A		52.699		-27.077	1.00	0.00	Ö
		MOTA	4492	0	ASP A		52.802		-25.917	1.00	0.00	C
		MOTA	4493	CB	ASP A		50.491		-28.263	1.00	0.00	
	4 177	MOTA	4494	CG	ASP A		49.738		-26.949	1.00		C 0
	4 5	MOTA	4495		ASP A		49.552		-26.282	1.00	0.00	0
		MOTA	4496		ASP A		49.325		-26.586	1.00	0.00	И
		ATOM	4497	N	PHE A		53.303		-27.522	1.00	0.00	C
		MOTA	4498	CA	PHE A		54.097		-26.656	1.00	0.00	C
		MOTA	4499	С	PHE A		53.817		-27.043	1.00	0.00	
	50	ATOM	4500	0	PHE A		53.464		-28.187	1.00	0.00	0
		MOTA	4501	CB	PHE A		55.602		-26.841	1.00	0.00	C
		MOTA	4502	CG	PHE A		56.070		-26.475	1.00	0.00	C
		MOTA	4503		PHE A		56.026		-27.403	1.00	0.00	C
		MOTA	4504		PHE A		56.568		-25.202	1.00	0.00	C
	55	MOTA	4505		PHE P		56.477		-27.068	1.00	0.00	С
		MOTA	4506	CE2	PHE P		57.020		-24.858	1.00	0.00	C
		MOTA	4507	CZ	PHE P	571	56.972		-25.795	1.00	0.00	C
		ATOM	4508	N	TYR A	572	53.975		-26.091	1.00	0.00	N
		ATOM	4509	CA	TYR A	572	53.794		-26.376	1.00	0.00	C
	60	MOTA	4510	С	TYR A	572	55.150		-26.833	1.00	0.00	C
		MOTA	4511	0	TYR A	572	56.167	83.773	-26.214	1.00	0.00	0

		ATOM	4512	СВ	TYR A	572	53.376	84.336 -25.122	1.00	0.00	С
		ATOM	4513	CG	TYR A	572	51.940	84.150 -24.683	1.00	0.00	C
		ATOM	4514	CD1	TYR A	572	51.027	83.448 -25.468	1.00	0.00	C
		MOTA	4515	CD2	TYR A	572	51.488	84.706 -23.485	1.00	0.00	C
	5	MOTA	4516	CE1	TYR A	572	49.698	83.304 -25.073		0.00	С
		MOTA	4517	CE2	TYR A	572	50.161	84.570 -23.082		0.00	C
		MOTA	4518	CZ	TYR A	572	49.273	83.869 -23.880	1.00	0.00	С
		MOTA	4519	OH	TYR A	572	47.960	83.734 -23.487	1.00	0.00	0
		MOTA	4520	N	VAL A	573	55.167	84.864 -27.911	1.00	0.00	N
	10	MOTA	4521	CA	VAL A	573	56.406	85.443 -28.433	1.00	0.00	С
		MOTA	4522	С	VAL A	573	56.215	86.943 -28.684	1.00	0.00	С
		MOTA	4523	0	VAL A	573	55.105	87.393 -28.950	1.00	0.00	0
		ATOM	4524	CB	VAL A	573	56.848	84.757 -29.751	1.00	0.00	С
		ATOM	4525	CG1	VAL A	573	57.301	83.327 -29.469	1.00	0.00	С
	15	ATOM	4526	CG2	VAL A	573	55.703	84.759 -30.750	1.00	0.00	С
		ATOM	4527	N	SER A	574	57.299	87.709 -28.599		0.00	N
		MOTA	4528	CA	SER A	574	57.234	89.160 -28.783	1.00	0.00	С
		ATOM	4529	С	SER A	574	57.206	89.611 -30.242	1.00	0.00	С
		MOTA	4530	0	SER A	574	57.254	90.809 -30.528	1.00	0.00	0
	20	MOTA	4531	CB	SER A	574	58.413	89.828 -28.070	1.00	0.00	С
1 - 10-00		MOTA	4532	OG	SER A	574	59.641	89.470 -28.675	1.00	0.00	0
		MOTA	4533	N	SER A	575	57.140	88.655 -31.160	1.00	0.00	N
		ATOM	4534	CA	SER A	575	57.090	88.967 -32.582	1.00	0.00	С
		MOTA	4535	С	SER A	575	56.345	87.885 -33.340	1.00	0.00	С
State State	25	MOTA	4536	0	SER A	575	56.420	86.708 -32.992		0.00	0
iga E adama		MOTA	4537	CB	SER A	575	58.496	89.093 -33.165		0.00	С
i car		MOTA	4538	OG	SER A	575	58.437	89.188 -34.581		0.00	0
egil.		MOTA	4539	N	PRO A	576	55.601	88.272 -34.385		0.00	N
		MOTA	4540	CA	PRO A	576	54.855	87.291 -35.176		0.00	C
į.	30	ATOM	4541	С	PRO A	576	55.781	86.604 -36.177		0.00	C
		ATOM	4542	0	PRO A		55.441	85.571 -36.745		0.00	0
R).		ATOM	4543	CB	PRO A		53.796	88.148 -35.859		0.00	C
		MOTA	4544	CG	PRO A		54.547	89.428 -36.118		0.00	C
1		MOTA	4545	CD	PRO P	576	55.277	89.649 -34.805		0.00	C
100	35	ATOM	4546	N	PHE A		56.960	87.187 -36.379		0.00	N
		MOTA	4547	CA	PHE P		57.936	86.652 -37.321		0.00	C
State Control		MOTA	4548	С	PHE P		58.905	85.689 -36.641		0.00	C
		MOTA	4549	0	PHE P		60.086	85.993 -36.459		0.00	0
	40	ATOM	4550	CB	PHE F		58.701	87.806 -37.967		0.00	C
	4 0	MOTA	4551	CG	PHE P		57.812	88.798 -38.663		0.00	C
		MOTA	4552		PHE F		58.065	90.163 -38.573		0.00	C C
		MOTA	4553		PHE F		56.716	88.368 -39.406		0.00	C
		ATOM	4554		PHE A		57.237	91.088 -39.208		0.00	
	45	ATOM	4555		PHE A		55.881	89.284 -40.049		0.00	C C
	45	ATOM	4556	CZ	PHE A		56.144	90.647 -39.948		0.00	N
		ATOM	4557	N	VAL A		58.384	84.521 -36.278		0.00	C
		ATOM	4558	CA	VAL A		59.166	83.496 -35.603 82.160 -36.322		0.00	C
		MOTA	4559	С	VAL A		59.023	81.804 -36.779		0.00	0
	E0	MOTA	4560	0	VAL A		57.937			0.00	C
	50	ATOM	4561	CB	VAL		58.700	83.332 -34.133		0.00	C
		MOTA	4562		VAL A		59.511	82.245 -33.435 84.659 -33.395		0.00	C
		ATOM	4563		VAL A		58.839			0.00	N
		ATOM	4564	N	SER A		60.126	81.428 -36.427 80.126 -37.082		0.00	C
	==	MOTA	4565	CA	SER A		60.115			0.00	c
	55	ATOM	4566	С	SER A		60.629	79.072 -36.110 79.371 -35.21		0.00	0
		ATOM	4567	0	SER A		61.422			0.00	C
		ATOM	4568	CB	SER A		60.976	80.152 -38.351		0.00	0
		ATOM	4569	OG	SER A		62.318	80.497 -38.063		0.00	N
	60	ATOM	4570	N	VAL A		60.174	77.839 -36.292 76.739 -35.422		0.00	C
	60	ATOM	4571	CA	VAL		60.556			0.00	C
		ATOM	4572	С	VAL A	7 280	61.396	75.690 -36.14	1.00	0.00	

	ATOM	4573	0	VAL A	580		61.190	75.418 -	-37.327	1.00	0.00	0
	MOTA	4574	СВ	VAL A			59.298	76.042 -		1.00	0.00	С
	MOTA	4575		VAL A			59.695	74.989 -	-33.819	1.00	0.00	C
	ATOM	4576	CG2	VAL A	580		58.369	77.073 -		1.00	0.00	С
5	MOTA	4577	N	THR A			62.342	75.111 -	-35.412	1.00	0.00	N
_	MOTA	4578	CA	THR A			63.223	74.062 -	-35.921	1.00	0.00	C
	ATOM	4579	С	THR A			63.488	73.087 -	-34.776	1.00	0.00	С
	ATOM	4580	0	THR A			63.370	73.461 -	-33.607	1.00	0.00	0
	ATOM	4581	CB	THR A		•	64.591	74.626 -	-36.372	1.00	0.00	С
10	ATOM	4582		THR A			65.173	75.380 -	-35.301	1.00	0.00	0
	MOTA	4583		THR A			64.438	75.519 -	-37.604	1.00	0.00	C
	ATOM	4584	N	ASP A			63.824	71.839 -	-35.101	1.00	0.00	N
	ATOM	4585	CA	ASP A			64.148	70.871 -		1.00	0.00	C
	MOTA	4586	С	ASP A			65.656	70.994 -	-33.839	1.00	0.00	C
15	MOTA	4587	0	ASP A			66.293	71.836 -		1.00	0.00	0
10	ATOM	4588	СВ	ASP A			63.732	69.447 -		1.00	0.00	C
	ATOM	4589	CG	ASP A			64.401	68.963 -		1.00	0.00	С
	ATOM	4590		ASP A			63.888	67.980 -	-36.324	1.00	0.00	0
	ATOM	4591		ASP A			65.428	69.536 -	-36.161	1.00	0.00	0
20	ATOM	4592	N	LEU A			66.250	70.184		1.00	0.00	N
	ATOM	4593	CA	LEU A			67,681	70.357 -		1.00	0.00	C
	ATOM	4594	С	LEU A			68.566	69.930	-33.916	1.00	0.00	С
	ATOM	4595	0	LEU A			69.761	70.219 -	-33.922	1.00	0.00	0
	ATOM	4596	CB	LEU A			68.141	69.660	-31.470	1.00	0.00	С
25	ATOM	4597	CG	LEU A			69.404	70.352	-30.945	1.00	0.00	С
	ATOM	4598		LEU A			69.062	71.782	-30.548	1.00	0.00	С
	MOTA	4599		LEU A			69.976	69.605	-29.768	1.00	0.00	С
	MOTA	4600	N	ALA A			67.985	69.248	-34.900	1.00	0.00	N
	ATOM	4601	CA	ALA A	584		68.743	68.827		1.00	0.00	С
30	ATOM	4602	C	ALA A			68.633	69.945	-37.107	1.00	0.00	С
	ATOM	4603	0	ALA A	584		69.061	69.806	-38.255	1.00	0.00	0
	ATOM	4604	CB	ALA A			68.176	67.531	-36.636	1.00	0.00	С
	ATOM	4605	N	ASN A			68.049	71.057	-36.673	1.00	0.00	N
	MOTA	4606	CA	ASN A	585		67.854	72.227		1.00	0.00	C
35	ATOM	4607	C	ASN A	585		66.819	71.991		1.00	0.00	C
	MOTA	4608	0	ASN A	585		66.787	72.720		1.00	0.00	0
	ATOM	4609	CB	ASN A	585		69.178	72.663		1.00	0.00	C
	MOTA	4610	CG	ASN A	585		69.481	74.127		1.00	0.00	C
	MOTA	4611		ASN A		•	68.607	74.988		1.00	0.00	0
40	MOTA	4612	ND2	ASN A			70.726	74.420		1.00	0.00	N
	ATOM	4613	N	ASN A			65.983	70.970		1.00	0.00	И
	MOTA	4614	CA	ASN A			64.941	70.691		1.00	0.00	C
	MOTA	4615	С	ASN A			63.801	71.669		1.00	0.00	C
	MOTA	4616	0	ASN A			63.364	71.850	-38.048		0.00	0
45		4617	CB	ASN A			64.372	69.279		1.00	0.00	C C
	MOTA	4618	CG	ASN A			65.411	68.201		1.00	0.00	
	ATOM	4619		ASN A			66.196	68.216		1.00	0.00	O N
	MOTA	4620		ASN A			65.411		-38.513	1.00		N
	MOTA	4621	N	PRO A			63.302	72.313		1.00	0.00	C
50		4622	CA	PRO A			62.197	73.254		1.00		C
	MOTA	4623	С	PRO A			60.944	72.515		1.00	0.00	0
	ATOM	4624	0	PRO A			60.730		-39.933	1.00	0.00	c
	ATOM	4625	CB	PRO A			62.034		-41.423	1.00		C
	MOTA	4626	CG	PRO A			62.496		-42.358	1.00	0.00	C
55		4627	CD	PRO A			63.716		-41.658	1.00	0.00	И
	ATOM	4628	N	VAL A			60.129		-38.781	1.00	0.00	C
	ATOM	4629	CA	VAL A			58.895		-38.266	1.00	0.00	C
	ATOM	4630	C	VAL A			57.776		-38.621	1.00	0.00	0
70	MOTA	4631	0	VAL A			57.871		-38.325 -36.738	1.00 1.00	0.00	c
60		4632	CB	VAL A			58.953		-36.728			C
	MOTA	4633	CG1	VAL A	. 588		57.620	11.93/	-36.208	1.00	0.00	C

		4604	000		F00	co o:	7.4	71 400	-36.347	1.00	0.00	С
	MOTA	4634		VAL A		60.0				1.00	0.00	N
	MOTA	4635	N	GLU A		56.7			-39.264		0.00	C
	ATOM	4636	CA	GLU A		55.6			-39.649	1.00		C
	MOTA	4637	С	GLU A		54.9			-38.412	1.00	0.00	0
5	MOTA	4638	0	GLU A		54.7			-37.435	1.00	0.00	
	MOTA	4639	CB	GLU A		54.5	-		-40.441	1.00	0.00	C
	MOTA	4640	CG	GLU A		53.6			-41.253	1.00	0.00	C
	ATOM	4641	CD	GLU A	589	52.4			-41.799	1.00	0.00	C
	MOTA	4642	OE1	GLU A	589	52.5			-42.248	1.00	0.00	0
10	MOTA	4643	OE2	GLU A	589	51.3	51	73.998	-41.787	1.00	0.00	0
	ATOM	4644	N	ALA A	590	54.7	32	75.861	-38.464	1.00	0.00	N
	MOTA	4645	CA	ALA A	590	54.1	33	76.568	-37.342	1.00	0.00	C
	MOTA	4646	С	ALA A		53.0	39	77.519	-37.805	1.00	0.00	C
	ATOM	4647	Ō	ALA A		52.9		77.852	-38.985	1.00	0.00	0
15	MOTA	4648	СВ	ALA A		55.2			-36.591	1.00	0.00	C
10	MOTA	4649	N	GLN A		52.2			-36.860	1.00	0.00	N
	ATOM	4650	CA	GLN A		51.1			-37.125	1.00	0.00	С
	ATOM	4651	C	GLN A		51.1			-36.035	1.00	0.00	C
		4652	0	GLN A		51.3			-34.855	1.00	0.00	0
20	MOTA			GLN A		49.7			-37.079	1.00	0.00	С
20	MOTA	4653	CB			48.5			-37.149	1.00	0.00	C
	ATOM	4654	CG	GLN A		47.2			-36.881	1.00	0.00	Č
	MOTA	4655	CD	GLN A					-37.437	1.00	0.00	Ö
	MOTA	4656		GLN A		46.9				1.00	0.00	N
0=	MOTA	4657		GLN A		46.4			-36.034			N
25	MOTA	4658	N	VAL A		50.9			-36.425	1.00	0.00	C
	MOTA	4659	CA	VAL A		50.9			-35.446	1.00	0.00	
	MOTA	4660	С	VAL A		49.5			-35.410	1.00	0.00	C
	MOTA	4661	0	VAL A		48.9			-36.447	1.00	0.00	0
	MOTA	4662	CB	VAL A		51.9			-35.782	1.00	0.00	С
30	MOTA	4663		VAL A		51.7			-34.861	1.00	0.00	C
	MOTA	4664	CG2	VAL A	592	53.3			-35.609	1.00	0.00	C
	ATOM	4665	N	SER A	593	49.0	57		-34.203	1.00	0.00	N
	MOTA	4666	CA	SER A	593	47.7	29		-34.002	1.00	0.00	C
	MOTA	4667	С	SER A	593	47.8	67		-33.003	1.00	0.00	C
35	MOTA	4668	0	SER A	593	48.8	73		-32.296	1.00	0.00	0
	ATOM	4669	CB	SER A	593	46.7	68	82.586	-33.436	1.00	0.00	C
	ATOM	4670	OG	SER A	593	46.6	01	81.492	-34.326	1.00	0.00	0
	ATOM	4671	N	PRO A	594	46.8	62	85.660	-32.932	1.00	0.00	N
	ATOM	4672	CA	PRO A	594	46.9	40	86.773	-31.983	1.00	0.00	C
40	ATOM	4673	С	PRO A	594	46.6	74	86.288	-30.563	1.00	0.00	C
	ATOM	4674	0	PRO A	594	46.2	36	85.153	-30.354	1.00	0.00	0
	ATOM	4675	CB	PRO A		45.8	32	87.716	-32.453	1.00	0.00	С
	ATOM	4676	CG	PRO A		45.6		87.340	-33.899	1.00	0.00	C
	ATOM	4677	CD	PRO A		45.7	139	85.842	-33.866	1.00	0.00	C
45	ATOM	4678	N	VAL A		46.9		87.146	-29.589	1.00	0.00	N
10	MOTA	4679	CA	VAL A		46.6			-28.201	1.00	0.00	С
	ATOM	4680	C	VAL A		45.3			-27.896		0.00	С
	ATOM	4681	0	VAL A		45.3			-27.762		0.00	0
		4682	CB	VAL A		47.7			-27.244		0.00	C
50	MOTA	4683		VAL A		47.3			-25.795		0.00	C
50	MOTA			VAL A		49.0			-27.518		0.00	C
	ATOM	4684		TRP A		44.2			-27.812		0.00	N
	ATOM	4685	N						-27.543		0.00	C
	ATOM	4686	CA	TRP A		42.9			-26.079		0.00	C
	ATOM	4687	C	TRP A		42.5			-25.466		0.00	Ö
55	ATOM	4688	0	TRP A		42.6			-28.400		0.00	c
	MOTA	4689	CB	TRP A		41.8					0.00	C
	MOTA	4690	CG	TRP A		42.0			-29.879			C
	MOTA	4691		TRP A		42.5			-30.764		0.00	C
60	MOTA	4692		TRP A		41.7			-30.652		0.00	И
60	MOTA	4693		TRP A		42.4			-32.041		0.00	
	ATOM	4694	CE2	TRP A	. 596	42.0)33	87.808	-32.000	1.00	0.00	С

		7000	4.005	05.5	mnn -		41 040	00 202	20 225	1 00	0 00	^
		MOTA	4695		TRP A		41.242		-30.335	1.00	0.00	C C
		ATOM	4696		TRP A		41.845		-33.034	1.00	0.00	
		MOTA	4697		TRP A		41.054		-31.366	1.00	0.00	C
	5	ATOM	4698		TRP A		41.356		-32.699	1.00	0.00	C
	3	MOTA	4699	N	SER A		42.079		-25.524	1.00	0.00	N
		ATOM	4700	CA	SER A		41.618		-24.142	1.00	0.00	C
		ATOM	4701	С	SER A		40.221		-24.128	1.00	0.00	C
		MOTA	4702	0	SER A		39.975		-24.758	1.00	0.00	0
	10	MOTA	4703	CB	SER A		42.563		-23.267	1.00	0.00	С
	10	MOTA	4704	OG	SER A		42.711		-23.785	1.00	0.00	0
		ATOM	4705	N	TRP A		39.305		-23.420	1.00	0.00	N
		ATOM	4706	CA	TRP A		37.933		-23.344	1.00	0.00	C
		MOTA	4707	C	TRP A		37.721		-22.148	1.00	0.00	C
	15	MOTA	4708	0	TRP A		38.207		-21.050	1.00	0.00	0
	15	MOTA	4709	CB	TRP A		36.968		-23.289	1.00	0.00	C
		MOTA	4710	CG	TRP A		36.941		-24.571	1.00	0.00	C
		ATOM	4711	CD1			37.903		-25.040	1.00	0.00	C
		MOTA	4712		TRP A		35.923		-25.575	1.00	0.00	C
	20	MOTA	4713		TRP A		37.544		-26.277	1.00	0.00	N
	20	MOTA	4714		TRP A		36.334		-26.629 -25.688	1.00	0.00	C
172		ATOM	4715		TRP A		34.701 35.566		-27.782	1.00	0.00	C
		ATOM	4716		TRP A		33.938		-26.838	1.00 1.00	0.00	C
المالية المالية		ATOM	4717 4718	CH2			34.375		-27.869	1.00	0.00	c
	25	ATOM ATOM	4710		HIS A		36.988		-22.368	1.00	0.00	N
2	20	ATOM	4720	N CA	HIS A		36.737		-21.311	1.00	0.00	C
Į.		ATOM	4721	C	HIS A		35.281		-21.237	1.00	0.00	c
101		ATOM	4722	0	HIS A		34.620		-22.261	1.00	0.00	0
5 fb#5 4740000		ATOM	4723	CB	HIS A		37.618		-21.530	1.00	0.00	c
ijĦ	30	MOTA	4724	CG	HIS A		39.080		-21.595	1.00	0.00	c
£i	00	ATOM	4725		HIS A		39.807		-20.492	1.00	0.00	N
A COUNTY		ATOM	4726		HIS A		39.942		-22.639	1.00	0.00	C
. PE		ATOM	4727		HIS A		41.054		-20.854	1.00	0.00	C
		ATOM	4728		HIS A		41.162		-22.152	1.00	0.00	N
2 14	35	MOTA	4729	N	HIS A		34.785		-20.015	1.00	0.00	N
		MOTA	4730	CA	HIS A		33.413		-19.800	1.00	0.00	C
		MOTA	4731	С	HIS A		33.458	94.366	-19.818	1.00	0.00	С
ļ,i.		MOTA	4732	0	HIS A	4 600	33.805	94.997	-18.820	1.00	0.00	0
"		ATOM	4733	CB	HIS A	4 600	32.901	92.352	-18.446	1.00	0.00	С
	40	MOTA	4734	CG	HIS A	4 600	31.441	92.602	-18.225	1.00	0.00	C
		MOTA	4735	ND1	HIS A	4 600	30.866	93.845	-18.386	1.00	0.00	N
		MOTA	4736	CD2	HIS A	4 600	30.440	91.770	-17.853	1.00	0.00	С
		MOTA	4737	CE1	HIS A	600	29.573	93.768	-18.123	1.00	0.00	С
	4 ==	MOTA	4738	NE2	HIS A		29.289		-17.797	1.00	0.00	И
	45	MOTA	4739	N	ASP A		33.126		-20.965	1.00	0.00	N
		ATOM	4740	CA	ASP A		33.146		-21.123	1.00	0.00	С
		ATOM	4741	С	ASP A		32.061		-20.278	1.00	0.00	C
		MOTA	4742	0	ASP A		30.879		-20.615	1.00	0.00	0
	F0	MOTA	4743	CB	ASP A		32.953		-22.595	1.00	0.00	С
	50	MOTA	4744	CG	ASP A		33.347		-22.896	1.00	0.00	C
		ATOM	4745		ASP A		32.849		-22.211	1.00	0.00	0
		ATOM	4746		ASP A		34.155		-23.824	1.00	0.00	0
		ATOM	4747	N	THR A		32.475		-19.180	1.00	0.00	N
	55	ATOM	4748	CA	THR A		31.550		-18.276	1.00	0.00	C
	55	ATOM	4749	С	THR A		30.828		-18.964	1.00	0.00	C
		ATOM	4750	0	THR A		29.728		-18.561	1.00	0.00	0
		ATOM	4751	CB	THR A		32.288		-17.040	1.00	0.00	C
		ATOM	4752		THR A		32.931		-16.337	1.00	0.00	0
	60	MOTA	4753		THR A		31.307		-16.101	1.00	0.00	C
	60	ATOM	4754	N	LEU A			100.062		1.00	0.00	N
		ATOM	4755	CA	LEU A	1 603	30.868	101.183	-20.735	1.00	0.00	С

	ATOM	4756	C	LEU A	603	29.841	100.767	-21.784	1.00	0.00	С
	ATOM	4757	0	LEU A	603	28.697	101.217	-21.752	1.00	0.00	0
	MOTA	4758	CB	LEU A			102.008		1.00	0.00	C
	ATOM	4759	CG	LEU A			102.781		1.00	0.00	C
5	MOTA	4760		LEU A			103.721		1.00	0.00	c
9				LEU A							
	ATOM	4761					101.815		1.00	0.00	C
	MOTA	4762	N	THR A		30.253		-22.714	1.00	0.00	N
	ATOM	4763	CA	THR A		29.363		-23.776	1.00	0.00	С
40	MOTA	4764	C	THR A	604	28.457		-23.328	1.00	0.00	C
10	ATOM	4765	0	THR A	604	27.566	97.895	-24.066	1.00	0.00	0
	MOTA	4766	CB	THR A	604	30.162	98.980	-24.999	1.00	0.00	C
	ATOM	4767	OG1	THR A	604	30.974	97.858	-24.630	1.00	0.00	0
	MOTA	4768		THR A			100.100		1.00	0.00	C
	ATOM	4769	N	LYS A		28.689		-22.120	1.00	0.00	N
15	ATOM	4770	CA	LYS A		27.892		-21.582	1.00	0.00	C
10											
	MOTA	4771	C	LYS A		27.894		-22.511	1.00	0.00	C
	MOTA	4772	0	LYS A		26.865		-22.703	1.00	0.00	0
	MOTA	4773	CB	LYS A	605	26.452		-21.343	1.00	0.00	С
• •	ATOM	4774	CG	LYS A	605	26.328	98.317	-20.345	1.00	0.00	C
20	MOTA	4775	CD	LYS A	605	26.799	97.897	-18.959	1.00	0.00	C
Russell Inter-	ATOM	4776	CE	LYS A	605	26.693	99.051	-17.972	1.00	0.00	С
i de	MOTA	4777	NZ	LYS A	605	27.086	98.649	-16.595	1.00	0.00	N
	MOTA	4778	N	THR A		29.053		-23.090	1.00	0.00	N
A	MOTA	4779	CA	THR A		29.198		-23.986	1.00	0.00	C
25		4780	C	THR A		30.454		-23.607	1.00	0.00	C
inal 20	ATOM										
W.	MOTA	4781	0	THR A		31.371		-23.004	1.00	0.00	0
raj	ATOM	4782	CB	THR A		29.340		-25.461	1.00	0.00	С
R Ball	MOTA	4783		THR A		30.503	95.325	-25.606	1.00	0.00	0
	ATOM	4784	CG2	THR A	606	28.109	95.264	-25.915	1.00	0.00	C
30	MOTA	4785	N	ILE A	607	30.484	92.006	-23.947	1.00	0.00	N
	ATOM	4786	CA	ILE A	607	31.645	91.173	-23.666	1.00	0.00	C
	ATOM	4787	C	ILE A		32.333	90.955	-25.009	1.00	0.00	С
	ATOM	4788	Ō	ILE A		31.806		-25.880	1.00	0.00	0
The state of the s	MOTA	4789	СВ	ILE A		31.226		-23.069	1.00	0.00	C
35											
	ATOM	4790		ILE A		30.416		-21.787	1.00	0.00	C
	MOTA	4791		ILE A		32.461		-22.769	1.00	0.00	C
A	ATOM	4792		ILE A		29.720		-21.267	1.00	0.00	С
¥	MOTA	4793	N	HIS A		33.505		-25.186	1.00	0.00	N
	ATOM	4794	CA	HIS A	608	34.221		-26.449	1.00	0.00	C
40	MOTA	4795	С	HIS A	608	35.720	91.224	-26.272	1.00	0.00	C
	ATOM	4796	0	HIS A	608	36.291	91.545	-25.227	1.00	0.00	0
	MOTA	4797	CB	HIS A	608	33.965	92.665	-27.321	1.00	0.00	C
	MOTA	4798	CG	HIS A	608	34.490	93.938	-26.738	1.00	0.00	С
	MOTA	4799		HIS A		34.011		-25.562	1.00	0.00	N
45	ATOM	4800		HIS A		35.455		-27.171	1.00	0.00	C
10	ATOM	4801		HIS A		34.657		-25.295	1.00	0.00	č
		4802		HIS A		35.538		-26.256	1.00	0.00	N
	MOTA										
	ATOM	4803	N	PRO A		36.380		-27.307	1.00	0.00	N
EΩ	MOTA	4804	CA	PRO A		37.818		-27.259	1.00	0.00	C
50	MOTA	4805	С	PRO A		38.709		-27.733	1.00	0.00	C
	MOTA	4806	0	PRO A		38.363		-28.654	1.00	0.00	0
	MOTA	4807	CB	PRO A	609	37.958	89.196	-28.141	1.00	0.00	C
	MOTA	4808	CG	PRO A	609	36.996	89.518	-29.251	1.00	0.00	C
	ATOM	4809	CD	PRO A	609	35.784	90.098	-28.524	1.00	0.00	C
55	MOTA	4810	N	GLN A		39.862		-27.085	1.00	0.00	И
	ATOM	4811	CA	GLN A		40.854		-27.438	1.00	0.00	C
	MOTA	4812	C	GLN A		42.117		-27.788	1.00	0.00	C
		4813									
	ATOM		0	GLN A		42.469		-27.103	1.00	0.00	0
<i>4</i> 0	MOTA	4814	CB	GLN A		41.138		-26.259	1.00	0.00	C
60	ATOM	4815	CG	GLN A		39.957		-25.829	1.00	0.00	C
	MOTA	4816	CD	GLN A	610	40.344	95.515	-24.773	1.00	0.00	С

	MOTA	4817	OE1	GLN	A 61	40.839	95.165	-23.699	1.00	0.00	0
	MOTA	4818		GLN		40.122		-25.077	1.00	0.00	N
	MOTA	4819	N	GLY		42.787		-28.859	1.00	0.00	N
	MOTA	4820	CA	GLY	A 61	44.000	91.634	-29.262	1.00	0.00	C
5	ATOM	4821	С	GLY		45.252	92 383	-28.852	1.00	0.00	С
9											
	ATOM	4822	0	GLY	A 61	45.276	93.615	~28.848	1.00	0.00	0
	ATOM	4823	N	SER	A 61	46.294	91.639	-28.496	1.00	0.00	N
	MOTA	4824	CA	SER		47.559		-28.093	1.00	0.00	С
	MOTA	4825	С	SER .	A 61	48.306	92.772	-29.311	1.00	0.00	C
10	ATOM	4826	0	SER	A 61	48.214	92 201	-30.396	1.00	0.00	0
10											
	MOTA	4827	CB	SER	A 61	48.437	91.215	-27.379	1.00	0.00	С
	ATOM	4828	OG	SER	A 61	49.742	91.729	-27.169	1.00	0.00	0
	ATOM	4829	N	THR		49.047		-29.126	1.00	0.00	N
	ATOM	4830	CA	THR .	A 61	49.822	94.450	-30.214	1.00	0.00	C
15	ATOM	4831	С	THR .	A 61	51.321	94.258	-29.975	1.00	0.00	C
		4832	0	THR .		52,145		-30.741	1.00	0.00	0
	ATOM										
	MOTA	4833	CB	THR .	A 61	49.550	95.962	-30.358	1.00	0.00	C
	ATOM	4834	OG1	THR	A 61	49.909	96,628	-29.141	1.00	0.00	0
								-30.661	1.00	0.00	C
20	ATOM	4835		THR .		48.076					
∵∠U	ATOM	4836	N	THR .	A 61	51.665	93.522	-28.919	1.00	0.00	N
_20	ATOM	4837	CA	THR .	A 61	53,065	93.272	-28.570	1.00	0.00	С
J.J.											
. 345	ATOM	4838	С	THR .	e pr	53.371		-28.288	1.00	0.00	С
البيارة	MOTA	4839	0	THR .	A 61	54.535	91.405	-28.190	1.00	0.00	0
M	ATOM	4840	CB	THR .	Δ 61	53.469	94.067	-27.318	1.00	0.00	C
つち											
25	MOTA	4841		THR		52.573		-26.244	1.00	0.00	0
	ATOM	4842	CG2	THR .	A 61	53,421	95.562	-27.592	1.00	0.00	C
1.55	ATOM	4843	N	LYS .	A 61	52.324	90 993	-28.158	1.00	0.00	N
Apply Apply											
445	ATOM	4844	CA	LYS .		52,468		-27.856	1.00	0.00	С
W.	MOTA	4845	С	LYS .	A 61	51.682	88.728	-28.858	1.00	0.00	С
30	MOTA	4846	0	LYS .	Δ 61	50.582	89.108	-29.265	1.00	0.00	0
	ATOM	4847	CB	LYS .	н рт	51.952		-26.435	1.00	0.00	C
. 2000	ATOM	4848	CG	LYS .	A 61.	51.865	87.874	-26.015	1.00	0.00	C
1 II	ATOM	4849	CD	LYS	A 61	51.022	87.725	-24.746	1.00	0.00	C
198											
	ATOM	4850	CE	LYS .	A PT	51.586		-23.586	1.00	0.00	С
35	MOTA	4851	NZ	LYS .	A 61.	50.784	88.342	-22.340	1.00	0.00	N
1725	ATOM	4852	N	TYR .	A 61	52.248	87.589	-29.257	1.00	0.00	N
125											
riages	MOTA	4853	CA	TYR .		51.589		-30.211	1.00	0.00	С
	ATOM	4854	С	TYR .	A 61	51.764	85.230	-29.823	1.00	0.00	C
	ATOM	4855	0	TYR .	A 61	52.678	84.888	-29.078	1.00	0.00	0
40								-31.621	1.00	0.00	
40	ATOM	4856	СВ	TYR .		52.145					С
	ATOM	4857	CG	TYR .	A 61	52,153	88.376	-32.015	1.00	0.00	C
	MOTA	4858	CD1	TYR .	A 61	53.238	89.192	-31.700	1.00	0.00	C
	ATOM	4859		TYR		51.041		-32.624	1.00	0.00	C
	MOTA	4860	CE1	TYR .	A 61	53.217	90.552	-31.973	1.00	0.00	C
45	MOTA	4861	CE2	TYR .	A 61	51.008	90.323	-32.901	1.00	0.00	С
	ATOM	4862				52.099		-32.570			C
	MOTA	4863	OH	TYR .	A 61	52.072	92.463	-32.826	1.00	0.00	0
	ATOM	4864	N	ARG .	A 61	50.876	84.373	-30.326	1.00	0.00	N
		4865						-30.038	1.00		
Ε0	MOTA		CA	ARG .		50.933				0.00	C
50	MOTA	4866	С	ARG .	A 61	51.527	82.156	-31.204	1.00	0.00	C
	ATOM	4867	0	ARG .	A 61	51.039	82.267	-32.328	1.00	0.00	0
										0.00	
	MOTA	4868	CB	ARG .		49.529		-29.786	1.00		C
	ATOM	4869	CG	ARG .	A 61	48.870	82.713	-28.464	1.00	0.00	C
	ATOM	4870	CD	ARG .		47.479	82.073	-28.383	1.00	0.00	C
55											
55	MOTA	4871	NE	ARG A		47.529		-28.395	1.00	0.00	N
	MOTA	4872	CZ	ARG .	A 61	46.860	79.838	-29.248	1.00	0.00	C
	AI OU					16 001			1 00		
		4873	NH1	ARG	4 61°	40.001		-30-114	1.00	0.00	IM
	MOTA	4873		ARG A		46.081		-30.174	1.00	0.00	N
	ATOM ATOM	4874	NH2	ARG A	A 61	46.967	78.518	-29.177	1.00	0.00	N
	MOTA				A 61		78.518				
60	ATOM ATOM ATOM	4874 4875	NH2 N	ARG	A 61 A 61	46.967 52.577	78.518 81.375	-29.177 -30.954	1.00 1.00	0.00	N
60	ATOM ATOM	4874	NH2	ARG A	A 61 A 61 A 61	46.967	78.518 81.375 80.547	-29.177	1.00	0.00	N

								ma can an -:-			_
		ATOM	4878	0	ILE A		52.944	78.683 -30.519	1.00	0.00	0
		ATOM	4879	CB	ILE A		54.664	80.704 -32.188	1.00	0.00	С
		ATOM	4880		ILE A		55.113	79.892 -33.409	1.00	0.00	C
	_	MOTA	4881		ILE A		55.399	80.266 -30.932	1.00	0.00	С
	5	ATOM	4882	CD1	ILE A	618	56.471	80.272 -33.954	1.00	0.00	С
		MOTA	4883	N	ILE A	619	52.242	78.385 -32.636	1.00	0.00	N
		MOTA	4884	CA	ILE A	619	51.798	77.015 -32.435	1.00	0.00	С
		MOTA	4885	С	ILE A	619	52.481	76.048 -33.395	1.00	0.00	C
		ATOM	4886	0	ILE A	619	52.639	76.348 -34.577	1.00	0.00	0
	10	MOTA	4887	CB	ILE A	619	50.283	76.918 -32.673	1.00	0.00	C
		ATOM	4888	CG1	ILE A	619	49.564	77.999 -31.860	1.00	0.00	C
		ATOM	4889	CG2	ILE A	619	49.785	75.526 -32.320	1.00	0.00	C
		ATOM	4890	CD1	ILE A	619	48.230	78.428 -32.458	1.00	0.00	С
		MOTA	4891	N	PHE A	620	52.876	74.884 -32.890	1.00	0.00	N
	15	MOTA	4892	CA	PHE A		53.509	73.883 -33.735	1.00	0.00	С
		MOTA	4893	С	PHE A		53.364	72.491 -33.137	1.00	0.00	С
		MOTA	4894	0	PHE A		53.086	72.341 -31.951	1.00	0.00	0
		MOTA	4895	CB	PHE A		54.987	74.227 -33.971	1.00	0.00	С
		MOTA	4896	CG	PHE A		55.854	74.113 -32.749	1.00	0.00	С
	20	ATOM	4897		PHE A		56.454	72.899 -32.417	1.00	0.00	С
		ATOM	4898		PHE A		56.097	75.222 -31.946	1.00	0.00	С
117		ATOM	4899		PHE A		57.289	72.791 -31.303	1.00	0.00	С
(22). h i ii		ATOM	4900		PHE A		56.931	75.127 -30.829	1.00	0.00	С
Control of the Contro		ATOM	4901	CZ	PHE A		57.528	73.906 -30.510	1.00	0.00	С
3,5 B	25	ATOM	4902	N	LYS A		53.539	71.475 -33.971	1.00	0.00	N
		MOTA	4903	CA	LYS A		53.406	70.098 -33.526	1.00	0.00	С
28.1		ATOM	4904	C	LYS A		54.693	69.547 -32.935	1.00	0.00	С
IU		ATOM	4905	0	LYS A		55.716	69.474 -33.613	1.00	0.00	0
		ATOM	4906	СВ	LYS A		52.946	69.220 -34.698	1.00	0.00	C
	30	ATOM	4907	CG	LYS A		52.735	67.753 -34.337	1.00	0.00	С
E)		ATOM	4908	CD	LYS A		51.891	67.034 -35.387	1.00	0.00	C
		MOTA	4909	CE	LYS A		52.554	67.047 -36.750	1.00	0.00	С
, ja		ATOM	4910	NZ	LYS A		51.698	66.394 -37.786	1.00	0.00	N
		MOTA	4911	N	ALA A		54.645	69.171 -31.660	1.00	0.00	N
	35	MOTA	4912	CA	ALA A		55.815	68.601 -31.007	1.00	0.00	C
g Name a street		MOTA	4913	С	ALA A		55.676	67.080 -31.018	1.00	0.00	С
See See See See See See See See See See		ATOM	4914	0	ALA A		54.578	66.550 -30.856	1.00	0.00	0
grain.		MOTA	4915	CB	ALA A		55.928	69.113 -29.564	1.00	0.00	С
		ATOM	4916	N	ARG A	623	56.789	66.389 -31.237	1.00	0.00	N
	40	ATOM	4917	CA	ARG A	623	56.809	64.931 -31.257	1.00	0.00	С
		MOTA	4918	С	ARG A	623	57.802	64.529 -30.174	1.00	0.00	С
		MOTA	4919	0	ARG A	623	58.988	64.854 -30.250	1.00	0.00	0
		MOTA	4920	CB	ARG A	623	57.247	64.423 -32.636	1.00	0.00	С
		MOTA	4921	CG	ARG A	623	57.277	62.907 -32.753	1.00	0.00	С
	45	MOTA	4922	CD	ARG A	623	57.293	62.460 -34.214	1.00	0.00	С
		MOTA	4923	NE	ARG A		57.529	61.025 -34.334	1.00	0.00	N
		ATOM	4924	CZ	ARG A		58.725	60.456 -34.234	1.00	0.00	C
		ATOM	4925	NH1	ARG A	623	59.802	61.201 -34.019	1.00	0.00	N
		MOTA	4926	NH2	ARG A	623	58.845	59.139 -34.333	1.00	0.00	N
	50	MOTA	4927	N	VAL A	624	57.309	63.822 -29.164	1.00	0.00	N
		MOTA	4928	CA	VAL A	624	58.133	63.445 -28.022	1.00	0.00	С
		ATOM	4929	С	VAL A	624	58.204	61.941 -27.775	1.00	0.00	С
		ATOM	4930	0	VAL A	624	57.208	61.240 -27.908	1.00	0.00	0
		MOTA	4931	CB	VAL A	624	57.582	64.122 -26.749	1.00	0.00	С
	55	ATOM	4932	CG1	VAL A	624	58.634	64.116 -25.643	1.00	0.00	С
		ATOM	4933		VAL A		57.131	65.543 -27.077	1.00	0.00	С
		ATOM	4934	N	PRO A		59.388	61.435 -27.393	1.00	0.00	N
		ATOM	4935	CA	PRO A		59.579	60.007 -27.123	1.00	0.00	C
		ATOM	4936	С	PRO A		58.762	59.551 -25.914	1.00	0.00	С
	60	MOTA	4937	0	PRO A		58.336	60.367 -25.097	1.00	0.00	0
		ATOM	4938	СВ	PRO A		61.079	59.903 -26.843	1.00	0.00	С

		MOTA	4939	ÇG	PRO I	A 625	61.664	61.071	-27.591	1.00	0.00	С
		MOTA	4940	CD	PRO I	A 625	60.667	62.158	-27.296	1.00	0.00	C
		ATOM	4941	N	PRO I	A 626	58.542	58.233	-25.782	1.00	0.00	N
		MOTA	4942	CA	PRO A	A 626	57.777	57.728	-24.639	1.00	0.00	C
	5	ATOM	4943	С		A 626	58.528	58.166	-23.378	1.00	0.00	С
	_	ATOM	4944	0		A 626	59.748	58,027	-23.317	1.00	0.00	0
		ATOM	4945	СВ		A 626	57.840		-24.814	1.00	0.00	C
		ATOM	4946	CG		A 626	58.102		-26.293	1.00	0.00	C
		ATOM	4947	CD		A 626	59.072		-26.599	1.00	0.00	C
	10	ATOM	4948	N	MET A		57.813		-22.387	1.00	0.00	N
	10	ATOM	4949	CA	MET A		58.444		-21.140	1.00	0.00	C
				CA	MET A		59.744		-21.427	1.00	0.00	C
		ATOM	4950							1.00	0.00	0
		ATOM	4951	0		A 627	60.747		-20.726			
	15	ATOM	4952	CB	MET A		58.727		-20.268	1.00	0.00	C
	15	MOTA	4953	CG		A 627	57.460		-19.822	1.00	0.00	C
		ATOM	4954	SD	MET A		57.760		-19.145	1.00	0.00	S
		MOTA	4955	CE	MET A		58.542		-17.584	1.00	0.00	C
		MOTA	4956	N	GLY A		59.716		-22.449	1.00	0.00	N
	00	MOTA	4957	CA	GLY A		60.916		-22.828	1.00	0.00	C
1075	20	MOTA	4958	C	GLY A		60.818		-23.043	1.00	0.00	C
*:t=	i i	MOTA	4959	0	GLY A		59.837		-22.660	1.00	0.00	0
1		ATOM	4960	N		A 629	61.855		-23.673	1.00	0.00	N
		MOTA	4961	CA	LEU A	4 629	61.943		-23.939	1.00	0.00	C
		MOTA	4962	С	LEU A	4 629	62.367	65.222	-25.376	1.00	0.00	C
4000	25	ATOM	4963	0	LEU Z	A 629	63.060	64.416	-25.999	1.00	0.00	0
(e≠	:	MOTA	4964	CB	LEU Z	4 629	62.967	65.569	-22.996	1.00	0.00	C
		MOTA	4965	CG	LEU A	A 629	62.727	65.359	-21.500	1.00	0.00	C
W.		ATOM	4966	CD1	LEU A	A 629	63.989	65.688	-20.720	1.00	0.00	C
ijī.		ATOM	4967	CD2	LEU A	4 629	61.562	66.231	-21.051	1.00	0.00	C
41	30	ATOM	4968	N	ALA A	A 630	61.948	66.373	-25.893	1.00	0.00	Ŋ
		ATOM	4969	CA	ALA A	A 630	62.306	66.792	-27.245	1.00	0.00	C
		ATOM	4970	С	ALA Z	4 630	62.533	68.297	-27.216	1.00	0.00	C
J		ATOM	4971	0	ALA A	A 630	61.705	69.054	-26.694	1.00	0.00	0
Manual Manual Manual		ATOM	4972	CB	ALA A	A 630	61.200	66.438	-28.232	1.00	0.00	C
į.Ł	35	ATOM	4973	N	THR I	A 631	63.657	68.723	-27.782	1.00	0.00	N
		ATOM	4974	CA	THR A	A 631	64.033	70.135	-27.802	1.00	0.00	C
		ATOM	4975	С	THR A	A 631	63.782	70.816	-29.148	1.00	0.00	C
g:A		ATOM	4976	0	THR A	4 631	64.047	70.238	-30.199	1.00	0.00	0
		MOTA	4977	CB	THR A		65.532	70.285	-27.462	1.00	0.00	C
	4 0	ATOM	4978	OG1	THR A		65.813		-26.244	1.00	0.00	0
		ATOM	4979		THR A		65.912		-27.297	1.00	0.00	С
		ATOM	4980	N	TYR A		63.267		-29.103	1.00	0.00	N
		ATOM	4981	CA	TYR A		63.025		-30.311	1.00	0.00	C
		ATOM	4982	C	TYR A		63.620		-30.124	1.00	0.00	C
	45	ATOM	4983	ō		4 632	63.964		-29.008	1.00	0.00	0
		ATOM	4984	CB	TYR A		61.527		-30.615	1.00	0.00	c
		ATOM	4985	CG	TYR A		60.869		-30.965	1.00	0.00	C
		ATOM	4986		TYR A		60.488		-29.968	1.00	0.00	Č
		ATOM	4987		TYR A		60.656		-32.296	1.00	0.00	c
	50	ATOM	4988		TYR A		59.913		-30.286	1.00	0.00	C
	50	ATOM	4989		TYR A		60.081		-32.627	1.00	0.00	c
		ATOM	4990	CZ	TYR A		59.715		-31.615	1.00	0.00	c
		ATOM		OH			59.164		-31.929	1.00	0.00	0
			4991		TYR A				-31.219	1.00		
	55	MOTA	4992	N	VAL A		63.742				0.00	И
	33	ATOM	4993	CA	VAL A		64.299		-31.171	1.00	0.00	C
		ATOM	4994	С	VAL		63.381		-31.893	1.00	0.00	С
		ATOM	4995	0	VAL A		62.901		-32.992	1.00	0.00	0
		ATOM	4996	CB	VAL A		65.698		-31.838	1.00	0.00	С
	60	ATOM	4997		VAL		66.253		-31.808	1.00	0.00	С
	60	ATOM	4998		VAL A		66.644		-31.126	1.00	0.00	С
		ATOM	4999	N	LEU A	4 634	63.122	78.424	-31.259	1.00	0.00	N

		ATOM	5000	CA	LEU A	634	62.285	79.460 -31.86	0 1.00	0.00	C
			5001		LEU A		63.227	80.586 -32.26		0.00	C
		MOTA		C							
		ATOM	5002	0	LEU A		63.986	81.092 -31.44		0.00	0
		ATOM	5003	CB	LEU A	634	61.258	79.987 -30.85	7 1.00	0.00	С
	5	ATOM	5004	CG	LEU A	634	60.331	78.963 -30.19	5 1.00	0.00	С
	-	MOTA	5005		LEU A		59.227	79.711 -29.45		0.00	C
		MOTA	5006	CD2	LEU A		59.732	78.032 -31.23	2 1.00	0.00	C
		MOTA	5007	N	THR A	635	63.177	80.970 -33.53	7 1.00	0.00	N
		ATOM	5008	CA	THR A	635	64.052	82.013 -34.05	3 1.00	0.00	С
	10	ATOM	5009	C	THR A		63.256	83.135 -34.70		0.00	C
	10										
		MOTA	5010	0	THR A		62.308	82.884 -35.45		0.00	0
		MOTA	5011	CB	THR A	635	65.021	81.427 -35.09	3 1.00	0.00	C
		MOTA	5012	OG1	THR A	635	65.704	80.303 -34.52	2 1.00	0.00	0
		ATOM	5013		THR A		66.038	82.473 -35.53		0.00	С
	15							84.374 -34.43			
	10	MOTA	5014	N	ILE A		63.651			0.00	N
		MOTA	5015	CA	ILE A		62.964	85.525 -35.00		0.00	C
		MOTA	5016	C	ILE A	636	63.622	85.921 -36.32	3 1.00	0.00	C
		MOTA	5017	0	ILE A	636	64.797	85.637 -36.54	9 1.00	0.00	0
		ATOM	5018	CB	ILE A		63.003	86.734 -34.03		0.00	C
	20										
	20	ATOM	5019		ILE A		62.149	87.884 -34.58		0.00	C
22		MOTA	5020		ILE A		64.437	87.198 -33.84		0.00	C
		MOTA	5021	CD1	ILE A	636	62.018	89.059 -33.62	5 1.00	0.00	C
		MOTA	5022	N	SER A	637	62.851	86.554 -37.20	0 1.00	0.00	N
4479		ATOM	5023	CA	SER A		63.367	87.015 -38.48		0.00	C
4,8 8	25										
7	25	ATOM	5024	С	SER A		62,768	88.392 -38.75		0.00	C
Marie Marie Marie		MOTA	5025	0	SER A		61.829	88.805 -38.08	1 1.00	0.00	0
3.25		MOTA	5026	CB	SER A	637	63.001	86.037 -39.60	7 1.00	0.00	C
House House		ATOM	5027	OG	SER A	637	61.600	85.878 -39.72	1 1.00	0.00	0
ijî.		ATOM	5028	N	ASP A		63.313	89.104 -39.73		0.00	N
ene e	30							90.437 -40.05			
#1	50	MOTA	5029	CA	ASP A		62.814			0.00	C
\$ 12 E		MOTA	5030	С	ASP A		61.445	90.401 -40.72	4 1.00	0.00	C
d Spine		MOTA	5031	0	ASP A	638	60.641	91.319 -40.55	7 1.00	0.00	0
F. Co. C. C.		ATOM	5032	CB	ASP A	638	63.814	91.184 -40.94	6 1.00	0.00	С
5 S S		ATOM	5033	CG	ASP A		64.097	90.456 -42.24	7 1.00	0.00	C
1 Tar	35	ATOM	5034		ASP A		63.141	90.188 -43.00		0.00	0
	55										
		MOTA	5035		ASP A		65,281	90.154 -42.51		0.00	0
E s		ATOM	5036	N	SER A	639	61.177	89.333 -41.46	8 1.00	0.00	N
i de la companya de l		MOTA	5037	CA	SER A	639	59.906	89.197 -42.17	0 1.00	0.00	C
		ATOM	5038	С	SER A	639	59.308	87.806 -42.00	9 1.00	0.00	C
	40	ATOM	5039	0	SER A		59,907	86.930 -41.39		0.00	0
	10						60.101	89.501 -43.65		0.00	
		MOTA	5040	CB	SER A						С
		MOTA	5041	OG	SER A		61.062	88.629 -44.22		0.00	0
		MOTA	5042	N	LYS A	640	58.124	87.609 -42.58	1 1.00	0.00	N
		ATOM	5043	CA	LYS A	640	57.435	86.329 -42.49	6 1.00	0.00	C
	45	ATOM	5044	С	LYS A	640	58.293	85.145 -42.92	9 1.00	0.00	С
		ATOM	5045	Ö	LYS A		58.708	85.052 -44.08		0.00	0
		MOTA	5046	$^{\mathrm{CB}}$	LYS A		56.150	86.359 -43.32		0.00	C
		MOTA	5047	CG	LYS A	640	55.125	87.366 -42.83	2 1.00	0.00	С
		ATOM	5048	CD	LYS A	640	53.752	87.146 -43.45	4 1.00	0.00	C
	50	MOTA	5049	CE	LYS A		53.760	87.376 -44.95	3 1.00	0.00	С
	00		5050		LYS A		52.393	87.210 -45.51		0.00	N
		MOTA		NZ							
		MOTA	5051	N	PRO A	641	58.573	84.222 -41.99		0.00	N
		MOTA	5052	CA	PRO A	641	59.382	83.038 -42.29	1 1.00	0.00	C
		ATOM	5053	С	PRO A	641	58.627	82.057 -43.18	6 1.00	0.00	C
	55	ATOM	5054	0	PRO A		57.397	81.998 -43.17		0.00	0
					PRO A			82.470 -40.90			
		MOTA	5055	CB			59.677			0.00	C
		MOTA	5056	CG	PRO A		58.464	82.841 -40.13		0.00	С
		MOTA	5057	CD	PRO A	641	58,206	84.263 -40.56	9 1.00	0.00	C
		MOTA	5058	N	GLU A		59.379	81.284 -43.95	9 1.00	0.00	N
	60	ATOM	5059	CA	GLU A		58.810	80.318 -44.88		0.00	С
		ATOM	5060	C	GLU A		57.877	79.260 -44.29		0.00	c
		MION	2000	$\overline{}$	опо н	012	31.011	10.200 -44.29	0 1.00	0.00	C

		ATOM	5061	0	GLU A	642	56.848	78.940	-44.892	1.00	0.00	0
			5062		GLU A		59.943	79.614		1.00	0.00	С
		MOTA			GLU A		59.481	78.483		1.00	0.00	С
		ATOM	5063		GLU A		60.631	77.788		1.00	0.00	C
	=	MOTA	5064				60.372	76.790		1.00	0.00	0
	5	ATOM	5065		GLU A			78.236		1.00	0.00	0
		MOTA	5066		GLU A		61.790			1.00	0.00	И
		MOTA	5067	N	HIS A		58.220	78.722			0.00	C
		MOTA	5068		HIS A		57.409	77.663		1.00		C
		MOTA	5069	С	HIS A	643	56.417	78.079		1.00	0.00	
	10	MOTA	5070		HIS A		55.942	77.240		1.00	0.00	0
		MOTA	5071	CB	HIS A	643	58.333	76.575		1.00	0.00	C
		ATOM	5072	CG	HIS A	643	59.246	76.001	-43.034	1.00	0.00	С
		ATOM	5073	ND1	HIS A		58.823	75.079	-43.967	1.00	0.00	N
		ATOM	5074		HIS A		60.545	76.254	-43.317	1.00	0.00	С
	15	ATOM	5075		HIS A		59.823	74.789	-44.781	1.00	0.00	C
	10	ATOM	5076		HIS A		60.879	75.489	-44.408	1.00	0.00	N
		MOTA	5077	N	THR A		56.102	79.367		1.00	0.00	N
			5078	CA	THR A		55.149	79.868		1.00	0.00	С
		MOTA		C	THR A		53.990		-41.153	1.00	0.00	С
	20	MOTA	5079		THR A		54.205		-41.993	1.00	0.00	0
	20	ATOM	5080	O CD			55.810		-39.468	1.00	0.00	C
120		ATOM	5081	CB	THR A		56.890		-38.773	1.00	0.00	0
Tylendi Sees.		MOTA	5082		THR A				-38.446	1.00	0.00	Ċ
		MOTA	5083		THR A		54.795		-40.848	1.00	0.00	N
	~ =	MOTA	5084	N	SER A		52.768			1.00	0.00	C
	25	MOTA	5085	CA	SER A		51.580		-41.462		0.00	c
		MOTA	5086	С	SER A		50.860		-40.424	1.00	0.00	Õ
1 FE		MOTA	5087	0	SER A		51.122		-39.221	1.00		C
Į.		MOTA	5088	CB	SER F		50.642		-41.983	1.00	0.00	0
		MOTA	5089	OG	SER A		50.111		-40.927	1.00	0.00	
	30	MOTA	5090	N	TYR F	646	49.953		-40.887	1.00	0.00	И
P.) 4 (148)		MOTA	5091	CA	TYR A	646	49.213		-39.983	1.00	0.00	C
		MOTA	5092	С	TYR F	646	47.712		-40.098	1.00	0.00	C
1.3		MOTA	5093	0	TYR A	646	47.155		-41.194	1.00	0.00	0
		ATOM	5094	CB	TYR A	646	49.593		-40.243	1.00	0.00	C
ind:	35	ATOM	5095	CG	TYR A	646	51.072		-40.046	1.00	0.00	C
		ATOM	5096	CD1	TYR A	4 646	51.983	84.665	-41.061	1.00	0.00	С
		ATOM	5097	CD2	TYR A	4 646	51.571	85.368	-38.812	1.00	0.00	С
		ATOM	5098	CE1	TYR A	4 646	53.355	84.767	-40.846	1.00	0.00	C
		MOTA	5099	CE2			52.938	85.472	-38.586	1.00	0.00	С
	40	ATOM	5100	CZ	TYR A		53.823	85.169	-39.604	1.00	0.00	С
	10	ATOM	5101	OH	TYR A		55.177	85.251	-39.374	1.00	0.00	0
		ATOM	5102	N	ALA A		47.066		-38.951	1.00	0.00	N
		ATOM	5103	CA	ALA A		45.630		-38.904	1.00	0.00	C
		ATOM	5104	C.		A 647	44.842	83.937	-39.288	1.00	0.00	С
	45		5104	0		A 647	45.283		-39.072	1.00	0.00	0
	40	ATOM	5106	СВ		A 647	45.222		-37.505	1.00	0.00	С
		ATOM				4 648	43.674		-39.873	1.00	0.00	N
		ATOM	5107	N		A 648	42.808		-40.229	1.00	0.00	C
		MOTA	5108	CA			41.916		-39.005	1.00	0.00	С
	=0	ATOM	5109	С		A 648	41.749		-38.235	1.00	0.00	0
	50	MOTA	5110	0		A 648	41.743		-41.458	1.00	0.00	C
		MOTA	5111	CB		A 648			-41.195	1.00	0.00	0
		MOTA	5112	OG		A 648	41.118		-38.812	1.00	0.00	И
		ATOM	5113	N		A 649	41.351	86.1/1	-30.012	1.00	0.00	C
		MOTA	5114	CA		A 649	40.481		-37.668		0.00	C
	55	MOTA	5115	С		A 649	39.236		-38.125	1.00		
		ATOM	5116	0		A 649	39.321		-38.878	1.00	0.00	0
		ATOM	5117	CB		A 649	41.216		-36.602	1.00	0.00	C
		ATOM	5118	CG		A 649	42.398		-36.000	1.00	0.00	C
		MOTA	5119	OD1	ASN	A 649	42.253		-35.031	1.00	0.00	0
	60	MOTA	5120		ASN		43.575		-36.581	1.00	0.00	N
		MOTA	5121	N	LEU	A 650	38.083	86.689	-37.660	1.00	0.00	N

		n marc	E100	~*	T 17:17 -	650	36 000	07 201 20 012	1 00	0.00	^
		MOTA	5122	CA	LEU A		36.803 35.982	87.291 -38.013 87.568 -36.763	$1.00 \\ 1.00$	0.00	C C
		MOTA	5123	C	LEU A						
		MOTA	5124	0	LEU A		35.622	86.647 -36.022	1.00	0.00	0
	5	ATOM	5125	CB	LEU A		36.027	86.356 -38.941 86.784 -39.335	1.00	0.00	C
	5	MOTA	5126	CG	LEU A		34.612		1.00	0.00	C
		ATOM	5127		LEU A		34.666	88.039 -40.200	1.00	0.00	
		ATOM	5128		LEU A		33.935	85.646 -40.082	1.00	0.00	C
		ATOM	5129	N	LEU A		35.683	88.843 -36.533	1.00	0.00	И
	10	ATOM	5130	CA	LEU A		34.905	89.254 -35.373	1.00	0.00	C
	10	ATOM	5131	С	LEU A		33.467	89.502 -35.817	1.00	0.00	С
		MOTA	5132	0	LEU A		33.185	90.456 -36.544	1.00	0.00	0
		MOTA	5133	CB	LEU A		35.508	90.530 -34.772	1.00	0.00	C
		MOTA	5134	CG	LEU A		35.144	90.909 -33.330	1.00	0.00	C
	15	MOTA	5135		LEU A		33.701	91.351 -33.240	1.00	0.00	C
	15	ATOM	5136		LEU A		35.404	89.721 -32.421	1.00	0.00	C
		MOTA	5137	N	LEU A		32.558	88.640 -35.376	1.00	0.00	N
		ATOM	5138	CA	LEU A		31.159	88.760 -35.750	1.00	0.00	C
		MOTA	5139	C	LEU A		30.315	89.452 -34.695	1.00	0.00	C
	20	ATOM	5140	0	LEU A		30.211	88.992 -33.553	1.00	0.00	0
	20	MOTA	5141	CB	LEU A		30.577	87.378 -36.048	1.00	0.00	C
: 7		ATOM	5142	CG	LEU A		31.305	86.607 -37.150	1.00	0.00	C
. 7		ATOM	5143		LEU A		30.711	85.211 -37.279	1.00	0.00	C
% ⊟		MOTA	5144		LEU A		31.202 29.718	87.372 -38.472	1.00	0.00	C N
J	25	ATOM	5145	N C7	ARG A			90.571 -35.088 91.332 -34.198	$1.00 \\ 1.00$	0.00	C
	23	MOTA	5146	CA	ARG A		28.859				c
		MOTA	5147	С	ARG A		28.429 29.052	92.626 -34.861 93.084 -35.817	1.00	0.00	0
ng n		ATOM	5148 5149	0	ARG A		29.032	91.662 -32.896	1.00	0.00	C
345		ATOM ATOM	5150	CB CG	ARG A		30.650	92.725 -33.015	1.00	0.00	Ċ
	30	ATOM	5151	CD	ARG A		30.507	93.692 -31.860	1.00	0.00	c
#1	50	ATOM	5152	NE	ARG A		31.785	94.047 -31.264	1.00	0.00	N
i dest		ATOM	5153	CZ	ARG A		31.909	94.744 -30.140	1.00	0.00	C
A Just		ATOM	5154		ARG A		30.827	95.157 -29.493	1.00	0.00	N
IÜ		ATOM	5155		ARG A		33.113	95.022 -29.662	1.00	0.00	N
	35	MOTA	5156	N	LYS A		27.357	93.210 -34.343	1.00	0.00	N
	00	MOTA	5157	CA	LYS A		26.856	94.466 -34.869	1.00	0.00	C
1000		ATOM	5158	C	LYS A		27.641	95.583 -34.191	1.00	0.00	Ċ
ĵ.		MOTA	5159	0	LYS A		28.143	95.409 -33.079	1.00	0.00	0
		ATOM	5160	CB	LYS A		25.364	94.609 -34.562	1.00	0.00	С
	40	MOTA	5161	CG	LYS A		24.502	93.497 -35.154	1.00	0.00	С
		ATOM	5162	CD	LYS A		23.395	94.057 -36.038	1.00	0.00	C
		ATOM	5163	CE	LYS A		23.968	94.808 -37.232	1.00	0.00	C
		ATOM	5164	NZ	LYS A		22.898	95.390 -38.094	1.00	0.00	N
		ATOM	5165	N	ASN A	655	27.757	96.719 -34.867	1.00	0.00	N
	45	MOTA	5166	CA	ASN A	655	28.474	97.865 -34.322	1.00	0.00	C
		MOTA	5167	С	ASN A		29.898	97.502 -33.912	1.00	0.00	C
		MOTA	5168	0	ASN A	655	30.283	97.665 -32.754	1.00	0.00	0
		MOTA	5169	CB	ASN A		27.720	98.421 -33.115	1.00	0.00	C
		MOTA	5170	CG	ASN A	655	26.229	98.523 -33.363	1.00	0.00	C
	50	ATOM	5171	OD1	ASN A	655	25.790	99.109 -34.357	1.00	0.00	0
		MOTA	5172	ND2	ASN A	655	25.438	97.949 -32.460	1.00	0.00	N
		ATOM	5173	N	PRO A	656	30.701	97.002 -34.860	1.00	0.00	N
		ATOM	5174	CA	PRO A	656	32.080	96.631 -34.543	1.00	0.00	C
		ATOM	5175	С	PRO A	656	33.011	97.837 -34.570	1.00	0.00	C
	55	MOTA	5176	0	PRO A	656	32.703	98.858 -35.185	1.00	0.00	0
		MOTA	5177	CB	PRO A	656	32.419	95.638 -35.643	1.00	0.00	C
		ATOM	5178	CG	PRO A	656	31.722	96.248 -36.824	1.00	0.00	С
		MOTA	5179	CD	PRO A	656	30.366	96.626 -36.247	1.00	0.00	C
		MOTA	5180	N	THR A	657	34.144	97.709 -33.890	1.00	0.00	N
	60	ATOM	5181	CA	THR A		35.152	98.758 -33.862	1.00	0.00	С
		ATOM	5182	С	THR A	657	36.462	98.098 -34.278	1.00	0.00	С

	ATOM	5183	0	THR .				-34.146	1.00	0.00	0
	MOTA	5184	CB	THR .	A 657	35.300	99.380	-32.453	1.00	0.00	С
	ATOM	5185	OG1	THR .	A 657	35.484	98.342	-31.483	1.00	0.00	0
	MOTA	5186	CG2	THR .	A 657	34.064	100.200	-32.100	1.00	0.00	С
5	ATOM	5187	N	SER .	A 658	37.392	98.895	-34.788	1.00	0.00	N
	MOTA	5188	CA	SER .	A 658	38.676	98.379	-35.240	1.00	0.00	С
	MOTA	5189	С	SER .	A 658	39.399	97.561	-34.172	1.00	0.00	С
	ATOM	5190	0	SER .				-32.973	1.00	0.00	0
	ATOM	5191	CB	SER .				-35.697	1.00	0.00	С
10	ATOM	5192	OG	SER .			100.410		1.00	0.00	0
10	ATOM	5193	N	LEU				-34.631	1.00	0.00	N
	ATOM	5194	CA	LEU				-33.753	1.00	0.00	C
	ATOM	5195	C	LEU A				-34.309	1.00	0.00	Ċ
		5196		LEU A				-34.999	1.00	0.00	ō
15	ATOM		0					-33.660	1.00	0.00	c
19	MOTA	5197	CB	LEU							C
	ATOM	5198	CG	LEU				-32.876	1.00	0.00	
	MOTA	5199		LEU .				-33.115	1.00	0.00	C
	ATOM	5200		LEU I				-31.401	1.00	0.00	C
20	MOTA	5201	N	PRO .				-34.035	1.00	0.00	N
_ 20	MOTA	5202	CA	PRO I				-34.524	1.00	0.00	C
. Ph	MOTA	5203	C	PRO A				-33.795	1.00	0.00	C
	MOTA	5204	0	PRO I				-32.648	1.00	0.00	0
New York	MOTA	5205	CB	PRO I				-34.211	1.00	0.00	C
25	ATOM	5206	CG	PRO I				-32.954	1.00	0.00	С
25	MOTA	5207	CD	PRO I				-33.260	1.00	0.00	С
	MOTA	5208	N	LEU 1				-34.457	1.00	0.00	N
in and a	ATOM	5209	CA	LEU I				-33.848	1.00	0.00	С
5 Eg.	MOTA	5210	С	LEU .				-34.012	1.00	0.00	C
m ao	MOTA	5211	0	LEU /	4 661			-34.227	1.00	0.00	0
ii 30	ATOM	5212	CB	LEU .			92.522	-34.435	1.00	0.00	С
	MOTA	5213	CG	LEU A	4 661	45.370	92.120	-34.193	1.00	0.00	С
j J	MOTA	5214	CD1	LEU Z	4 661	45.041	90.862	-34.987	1.00	0.00	C
	ATOM	5215	CD2	LEU I	4 661	45.144	91.895	-32.704	1.00	0.00	С
IJ	MOTA	5216	N	GLY 3	A 662	49.240	95.279	-33.907	1.00	0.00	N
35	ATOM	5217	CA	GLY 2	A 662	50.662	95.534	-34.046	1.00	0.00	С
	MOTA	5218	C	GLY Z	A 662	51.253	95.010	-35.341	1.00	0.00	С
erii.	ATOM	5219	0	GLY 2	A 662	50.788	95.351	-36.427	1.00	0.00	0
Sala	MOTA	5220	N	GLN A	A 663	52,272	94.163	-35.225	1.00	0.00	N
	ATOM	5221	CA	GLN I	4 663	52,953	93.599	-36.388	1.00	0.00	С
4 0	MOTA	5222	С	GLN A	A 663	52.231	92.438	-37.065	1.00	0.00	С
	ATOM	5223	0	GLN I	A 663	52,638	92.003	-38.141	1.00	0.00	0
	MOTA	5224	CB	GLN A	A 663	54.350	93.123	-35.991	1.00	0.00	С
	ATOM	5225	CG	GLN I	A 663	55.169	94.131	-35.214	1.00	0.00	С
	MOTA	5226	CD	GLN A	A 663	56,480	93.541	-34.738	1.00	0.00	С
45	ATOM	5227	OE1	GLN A	A 663	57.337	93.174	-35.546	1.00	0.00	0
	MOTA	5228	NE2	GLN A	A 663	56.640	93.435	-33.423	1.00	0.00	N
	ATOM	5229	N	TYR	A 664	51.173	91.929	-36.444	1.00	0.00	N
	ATOM	5230	CA	TYR A	A 664	50.444	90.800	-37.016	1.00	0.00	С
	ATOM	5231	С	TYR A			91.025	-38.503	1.00	0.00	С
50	ATOM	5232	0	TYR A				-38.883	1.00	0.00	0
	ATOM	5233	CB	TYR I				-36.247	1.00	0.00	С
	ATOM	5234	CG	TYR A				-36.471	1.00	0.00	С
	ATOM	5235		TYR				-35.906	1.00	0.00	С
	ATOM	5236		TYR				-37.253	1.00	0.00	Č
55	ATOM	5237		TYR				-36.114	1.00	0.00	C
	ATOM	5238		TYR A				-37.469	1.00	0.00	c
	ATOM	5239	CZ	TYR A				-36.896	1.00	0.00	c
	ATOM	5240	OH	TYR A				-37.105	1.00	0.00	0
	ATOM	5241		PRO 2				-39.361	1.00	0.00	N
60		5241	N CA	PRO A				-40.824	1.00	0.00	C
00	ATOM		CA	PRO A				-41.447	1.00	0.00	C
	MOTA	5243	С	rkO A	- 003	49,109	20.233	-41.44/	1.00	0.00	C

	ATOM	5244	0	PRO	A 665	48.993	91.004 -42.449	1.00	0.00	0
	MOTA	5245	CB	PRO	A 665	51.056	88.713 -41.201	1.00	0.00	С
	MOTA	5246	CG	PRO	A 665	52.066	88.471 -40.145	1.00	0.00	С
	ATOM	5247	CD	PRO	A 665	51.331	88.897 -38.900	1.00	0.00	С
5	ATOM	5248	N	GLU	A 666	48.069	89.695 -40.878	1.00	0.00	N
	MOTA	5249	CA	GLU .	A 666	46.736	89.837 -41.455	1.00	0.00	С
	ATOM	5250	С	GLU	A 666	45.768	90.685 -40.646	1.00	0.00	С
	MOTA	5251	0	GLU .	A 666	45.704	90.584 -39.421	1.00	0.00	0
	ATOM	5252	CB	GLU .	A 666	46.112	88.460 -41.706	1.00	0.00	С
10	ATOM	5253	CG		A 666	44.867	88.537 -42.578	1.00	0.00	С
	MOTA	5254	CD		A 666	44.401	87.187 -43.078	1.00	0.00	Ċ
	ATOM	5255		GLU .		45,226	86.454 -43.664	1.00	0.00	Ö
	ATOM	5256		GLU .		43,208	86.866 -42.895	1.00	0.00	Ō
	ATOM	5257	N		A 667	45.007	91.515 -41.356	1.00	0.00	N
15	MOTA	5258	CA		A 667	44.028	92.403 -40.736	1.00	0.00	C
10	ATOM	5259	C		A 667	42.768	91.654 -40.320	1.00	0.00	c
	MOTA	5260	Õ		A 667	42.281	90.786 -41.042	1.00	0.00	Ö
	ATOM	5261	CB		A 667	43.633	93.518 -41.710	1.00	0.00	c
		5262	CG		A 667	44.824	94.305 -42.208	1.00	0.00	C
_ 20	MOTA					45.590				
(A)	ATOM	5263		ASP .			94.819 -41.366	1.00	0.00	0
(MOTA	5264		ASP .		44.991	94.411 -43.441	1.00	0.00	0
	ATOM	5265	N		A 668	42.240	92.002 -39.157	1.00	0.00	N
	MOTA	5266	CA		A 668	41.024	91.375 -38.661	1.00	0.00	С
25	ATOM	5267	C		A 668	39.862	91.771 -39.564	1.00	0.00	C
<u> </u>	MOTA	5268	0		A 668	39.807	92.902 -40.054	1.00	0.00	0
16.0	ATOM	5269	CB		A 668	40.714	91.830 -37.222	1.00	0.00	C
E field spin	MOTA	5270		VAL .		39.391	91.232 -36.756	1.00	0.00	С
	ATOM	5271		VAL .		41.850	91.410 -36.291	1.00	0.00	С
30	MOTA	5272	N		A 669	38.947	90.833 -39.789	1.00	0.00	N
30	ATOM	5273	CA		A 669	37.769	91.067 -40.621	1.00	0.00	С
	MOTA	5274	С		A 669	36.545	91.132 -39.712	1.00	0.00	С
35	MOTA	5275	0		A 669	36.541	90.542 -38.629	1.00	0.00	0
44	MOTA	5276	CB		A 669	37.615	89.931 -41.636	1.00	0.00	С
M or	MOTA	5277	CG		A 669	38,809	89.796 -42.574	1.00	0.00	С
35	MOTA	5278	CD	LYS .	A 669	38.917	88.397 -43.173	1.00	0.00	С
	MOTA	5279	CE	LYS .	A 669	40.205	88.245 -43.982	1.00	0.00	C
2 Table	ATOM	5280	NZ		A 669	40.454	86.840 -44.416	1.00	0.00	N
12000	MOTA	5281	N		A 670	35.511	91.851 -40.146	1.00	0.00	N
40	ATOM	5282	CA	PHE	A 670	34.299	91.985 -39.348	1.00	0.00	С
40	MOTA	5283	C		A 670	33.047	91.602 -40.129	1.00	0.00	С
	ATOM	5284	0	PHE A	A 670	33.088	91.433 -41.347	1.00	0.00	0
	MOTA	5285	CB		A 670	34.156	93.422 -38.831	1.00	0.00	С
	MOTA	5286	CG		A 670	35.342	93.906 -38.053	1.00	0.00	C
4	MOTA	5287		PHE .		36.470	94.389 -38.709	1.00	0.00	C
45	ATOM	5288	CD2	PHE	A 670	35.350	93.845 -36.663	1.00	0.00	С
	MOTA	5289	CE1	PHE A	A 670	37.589	94.801 -37.991	1.00	0.00	C
	ATOM	5290	CE2	PHE .	A 670	36.464	94.254 -35.938	1.00	0.00	C
	ATOM	5291	CZ	PHE .	A 670	37.586	94.733 -36.604	1.00	0.00	С
	MOTA	5292	N	GLY 2	A 671	31.935	91.463 -39.417	1.00	0.00	N
50	ATOM	5293	CA	GLY A	A 671	30.684	91.109 -40.064	1.00	0.00	C
	MOTA	5294	C	GLY A	A 671	29.565	90.909 -39.065	1.00	0.00	C
	ATOM	5295	0	GLY Z	A 671	29.808	90.815 -37.861	1.00	0.00	0
	ATOM	5296	N		A 672	28.331	90.854 -39.554	1.00	0.00	N
	MOTA	5297	CA		A 672	27.197	90.638 -38.671	1.00	0.00	C
55	ATOM	5298	С		A 672	27.188	89.169 -38.265	1.00	0.00	Č
-	ATOM	5299	Ŏ		A 672	27.696	88.315 -38.990	1.00	0.00	Ō
	ATOM	5300	СВ		A 672	25.873	90.954 -39.373	1.00	0.00	Ċ
	MOTA	5301	CG		A 672	25.705	92.427 -39.684	1.00	0.00	č
	ATOM	5302		ASP A		26.368	93.262 -39.036	1.00	0.00	Ö
60	MOTA	5302		ASP I		24.885	92.749 -40.570	1.00	0.00	0
50	ATOM	5304	N		A 673	26.615	88.860 -37.095	1.00	0.00	N
	111 OL1	2204	7.4	1110 1	. 0,0	20.013	50.000 57.095	1.00	0.00	19

		MOTA	5305	CA	PRO	A 673	26.553	87.474	-36.625	1.00	0.00	С
		ATOM	5306	С	PRO	A 673	25.942	86.587	-37.711	1.00	0.00	С
		ATOM	5307	0	PRO	A 673	25.003	86.990	-38.398	1.00	0.00	0
	_	MOTA	5308	CB		A 673		87.573	-35.396	1.00	0.00	С
	5	MOTA	5309	CG	PRO	A 673	25.978	88.931	-34.862	1.00	0.00	С
		MOTA	5310	CD	PRO	A 673	26.010	89.777	-36.112	1.00	0.00	С
		MOTA	5311	N	ARG	A 674	26.488	85.389	-37.875	1.00	0.00	N
		MOTA	5312	CA	ARG	A 674	25.984	84.457	-38.876	1.00	0.00	С
		ATOM	5313	С	ARG	A 674	26.505	83.060	-38.581	1.00	0.00	С
1	.0	ATOM	5314	0	ARG	A 674	27.494	82.901	-37.867	1.00	0.00	0
		MOTA	5315	CB	ARG	A 674	26.428	84.876	-40.280	1.00	0.00	С
		ATOM	5316	CG	ARG	A 674	27.925	84.753	-40.542	1.00	0.00	С
		ATOM	5317	CD	ARG	A 674	28.206	84.818	-42.036	1.00	0.00	С
		MOTA	5318	NE	ARG	A 674	29.585	84.475	-42.371	1.00	0.00	N
1	.5	MOTA	5319	CZ	ARG	A 674	30.601		-42.359	1.00	0.00	C
		MOTA	5320	NH1	ARG	A 674	30.406	86.601	-42.027	1.00	0.00	N
		MOTA	5321	NH2	ARG	A 674	31.816	84.915	-42.691	1.00	0.00	N
		MOTA	5322	N	GLU	A 675	25.841	82.047	-39.125	1.00	0.00	N
		MOTA	5323	CA	GLU	A 675	26.286	80.682	-38.903	1.00	0.00	С
2	20	ATOM	5324	С	GLU	A 675	27.589	80.477	-39.654	1.00	0.00	C
		ATOM	5325	0	GLU	A 675	27.811	81.080	-40.708	1.00	0.00	0
		MOTA	5326	CB	GLU	A 675	25.238	79.679	-39.388	1.00	0.00	С
		ATOM	5327	CG	GLU	A 675	23.878	79.856	-38.740	1.00	0.00	С
105		ATOM	5328	CD	GLU	A 675	23.065	78.578	-38.738	1.00	0.00	С
2	25	MOTA	5329	OE1	GLU	A 675	23.073	77.863	-39.763	1.00	0.00	0
<u> </u>		MOTA	5330	OE2	GLU	A 675	22.412	78.296	-37.709	1.00	0.00	0
		MOTA	5331	N	ILE	A 676	28.462	79.642	-39.103	1.00	0.00	N
1		MOTA	5332	CA	ILE	A 676	29.739	79.376	-39.743	1.00	0.00	С
4 (10m)		MOTA	5333	С	ILE	A 676	30.089	77.902	-39.660	1.00	0.00	С
J	0	MOTA	5334	0	ILE	A 676	29.577	77.173	-38.809	1.00	0.00	0
li His		MOTA	5335	CB	ILE	A 676	30.886	80.171	-39.087	1.00	0.00	С
steell.		ATOM	5336	CG1	ILE	A 676	31.114	79.672	-37.662	1.00	0.00	С
Ü		MOTA	5337	CG2	ILE	A 676	30.557	81.657	-39.076	1.00	0.00	С
§ §		MOTA	5338	CD1	ILE	A 676	32.429	80.119	-37.071	1.00	0.00	С
3	5	ATOM	5339	N	SER	A 677	30.970	77.480	-40.555	1.00	0.00	N
		ATOM	5340	CA	SER	A 677	31.427	76.103	-40.610	1.00	0.00	С
		MOTA	5341	С	SER	A 677	32.948	76.133	-40.674	1.00	0.00	C
ente.		MOTA	5342	0	SER	A 677	33.528	77.013	-41.308	1.00	0.00	0
	0	MOTA	5343	CB		A 677	30.862		-41.853	1.00	0.00	C
4	.0	MOTA	5344	OG		A 677	31.334		-41.948	1.00	0.00	0
		ATOM	5345	N		A 678	33.593		-40.012	1.00	0.00	N
		MOTA	5346	CA		A 678	35.049		-40.003	1.00	0.00	С
		MOTA	5347	С		A 678	35.549		-40.098	1.00	0.00	C
4	=	ATOM	5348	0		A 678	34.884		-39.642	1.00	0.00	0
4	.5	ATOM	5349				35.609		-38.721		0.00	C
		ATOM	5350	CG		A 678	35.617		-38.558	1.00	0.00	С
		ATOM	5351			A 678			-37.136	1.00	0.00	C
		ATOM	5352			A 678	36.583		-39.551	1.00	0.00	C
Ε.	0	ATOM	5353	N		A 679	36.728		-40.690	1.00	0.00	N
)	U	ATOM	5354	CA		A 679			-40.828	1.00	0.00	C
		MOTA	5355	C		A 679			-40.839	1.00	0.00	C
		MOTA	5356	0		A 679	39.442		-41.678	1.00	0.00	0
		ATOM	5357	CB		A 679	36.904		-42.114	1.00	0.00	C
_	5	MOTA	5358	CG		A 679	37.394		-42.189	1.00	0.00	C
9	J	MOTA	5359	CD		A 679	37.126		-43.533	1.00	0.00	C
		ATOM	5360	NE C7		A 679			-43.514	1.00	0.00	N
		ATOM	5361	CZ		A 679			-44.580 -45.767	1.00	0.00	C
		ATOM	5362			A 679	37.203 37.972		-45.767 -44.458	1.00	0.00	N
6	0	MOTA	5363 5364			A 679			-44.458	1.00	0.00	N N
U	U	MOTA	5364 5365	N CA		A 680 A 680	40.978		-39.822	1.00	0.00	C
		ATOM	2202	CH	νML.	2 000	40.770	71.001	57.022	1.00	0.00	C

		MOM (E266	C	VAL A 6	9.0	41.509	70 345	-40.291	1.00	0.00	С
		ATOM	5366	C			41.008		-39.876	1.00	0.00	0
		MOTA	5367	0	VAL A 6				-38.384	1.00	0.00	Ċ
		MOTA	5368		VAL A 6		41.459		-38.318	1.00	0.00	Č
	_	MOTA	5369		VAL A 6		42.976					C
	5	MOTA	5370		VAL A 6		40.980		-37.928	1.00	0.00	
		MOTA	5371	N	GLY A 6		42.515		-41.160	1.00	0.00	N
		MOTA	5372	CA	GLY A 6	81	43.086		-41.677	1.00	0.00	C
		MOTA	5373	С	GLY A 6	81	42.016		-42.298	1.00	0.00	С
		MOTA	5374	0	GLY A 6	81	41.088		-42.937	1.00	0.00	0
	10	ATOM	5375	N	ASN A 6		42.142	66.954	-42.112	1.00	0.00	N
		ATOM	5376	CA	ASN A 6		41.165	66.013	-42.649	1.00	0.00	C
		ATOM	5377	C	ASN A 6		40.206		-41.546	1.00	0.00	C
			5378		ASN A 6		39.487		-41.677	1.00	0.00	0
		ATOM		0			41.863	-	-43.216	1.00	0.00	C
	15	MOTA	5379	CB	ASN A 6				-44.480	1.00	0.00	Ċ
	15	MOTA	5380	CG	ASN A 6		42.643			1.00	0.00	Ö
		MOTA	5381		ASN A 6		43.187		-45.108			N
		MOTA	5382	ND2	ASN A 6		42.702		-44.861	1.00	0.00	
		MOTA	5383	N	GLY A 6		40.205		-40.457	1.00	0.00	N
		MOTA	5384	CA	GLY A 6		39.338		-39.334	1.00	0.00	C
31225	20	MOTA	5385	С	GLY A 6	883	37.875		-39.620	1.00	0.00	С
		ATOM	5386	0	GLY A 6	83	37.484		-40.780	1.00	0.00	0
4,2		MOTA	5387	N	PRO A 6	84	37.035		-38.577	1.00	0.00	N
. 7		ATOM	5388	CA	PRO A 6	84	35.605	66.664	-38.763	1.00	0.00	С
\$ 6345 Assista		ATOM	5389	С	PRO A 6		35.305		-39.162	1.00	0.00	С
8,8 B	25	MOTA	5390	Ö	PRO A 6		36.141		-39.005	1.00	0.00	0
	20	ATOM	5391	СВ	PRO A 6		35.018		-37.400	1.00	0.00	С
		ATOM	5392	CG	PRO A 6		36.104		-36.464	1.00	0.00	С
					PRO A 6		37.358		-37.147	1.00	0.00	С
		ATOM	5393	CD			34.109		-39.695	1.00	0.00	N
M	20	ATOM	5394	N	THR A 6				-40.090	1.00	0.00	C
3)	30	MOTA	5395	CA	THR A 6		33.668		-39.075	1.00	0.00	Č
		ATOM	5396	С	THR A 6		32.606				0.00	Ö
रेशक्ती स्थान		MOTA	5397	0	THR A 6		31.611		-38.908	1.00		C
Ü		MOTA	5398	CB	THR A 6		33.050		-41.504	1.00	0.00	
		MOTA	5399		THR A 6		34.052		-42.458	1.00	0.00	0
ļ.	35	MOTA	5400	CG2	THR A 6	585	32.500		-41.853	1.00	0.00	C
		MOTA	5401	N	LEU A 6	586	32.824		-38.390	1.00	0.00	N
4 1222) 5 1222)		MOTA	5402	CA	LEU A 6	686	31.886		-37.376	1.00	0.00	С
10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×		MOTA	5403	С	LEU A 6	586	31.119	72.858	-37.813	1.00	0.00	C
		ATOM	5404	0	LEU A 6	586	31.684	73.772	-38.414	1.00	0.00	0
	40	ATOM	5405	CB	LEU A 6		32.622	71.920	-36.066	1.00	0.00	С
		ATOM	5406	CG	LEU A 6		33.544	70.858	-35.460	1.00	0.00	C
		ATOM	5407		LEU A 6		33.962		-34.063	1.00	0.00	C
		ATOM	5408		LEU A 6		32.847		-35.390	1.00	0.00	C
		ATOM	5409	N	ALA A		29.828		-37.502	1.00	0.00	N
	45		5410	CA	ALA A		28.964	73 997	-37.841	1.00	0.00	С
	40	MOTA					28.488		-36.553	1.00	0.00	С
		MOTA	5411	C	ALA A		28.122		-35.597	1.00	0.00	Ō
		MOTA	5412	0	ALA A 6				-38.657	1.00	0.00	C
		MOTA	5413	CB	ALA A 6		27.769			1.00	0.00	N
	F 0	MOTA	5414	N	PHE A 6		28.491		-36.536			C
	50	MOTA	5415	CA	PHE A 6		28.074		-35.367	1.00	0.00	
		MOTA	5416	С	PHE A 6		26.922		-35.689	1.00	0.00	С
		MOTA	5417	0	PHE A		26.763		-36.829	1.00	0.00	0
		ATOM	5418	CB	PHE A		29.242		-34.828	1.00	0.00	C
		MOTA	5419	CG	PHE A	688	30.478	76.775	-34.529	1.00	0.00	С
	55	MOTA	5420	CD1	PHE A	688	31.288		-35.558	1.00	0.00	C
		ATOM	5421	CD2	PHE A	688	30.837	76.501	-33.213	1.00	0.00	С
		ATOM	5422		PHE A		32.441		-35.282	1.00	0.00	С
		ATOM	5423		PHE A		31.987		-32.925	1.00	0.00	C
		ATOM	5424	CZ	PHE A		32.792		-33.961	1.00	0.00	C
	60		5425	N	SER A		26.130		-34.673	1.00	0.00	N
	ou	MOTA					25.007		-34.834	1.00	0.00	C
		ATOM	5426	CA	SER A	007	23.007	.0.917	51.054	00	J.00	Ŭ

							510			
	ATOM	5427	С	SER A	689	25.576	80.335 -34.		0.00	С
	MOTA	5428	0	SER A	689	26.767	80.527 -34.		0.00	0
	MOTA	5429	CB	SER A	689	24.016	78.744 -33.		0.00	C
_	MOTA	5430	OG	SER A		24.568	79.221 -32.		0.00	0
5	MOTA	5431	N	GLU A		24.731	81.326 -35.		0.00	N C
	ATOM	5432	CA	GLU A		25.187	82.710 -35.		0.00	C
	ATOM	5433	C	GLU A		25.540	83.190 -33.		0.00	0
	ATOM	5434	0	GLU A		26.025	84.308 -33.		0.00	C
10	MOTA	5435	CB	GLU A		24.126	83.628 -35. 83.776 -34.		0.00	Ċ
10	MOTA	5436	CG	GLU A		22.857	84.811 -35.		0.00	C
	MOTA	5437	CD CD1	GLU A		21.918 21.437	84.597 -36.		0.00	0
	MOTA	5438		GLU A		21.670	85.841 -34.		0.00	Ō
	MOTA	5439		GLU A		25.287	82.347 -32.		0.00	N
15	MOTA	5440	N C7	GLN A		25.619	82.678 -31.		0.00	C
15	ATOM	5441 5442	CA C	GLN A		26.954	82.023 -30.		0.00	С
	MOTA	5442	0	GLN A		27.361	82.025 -29.		0.00	0
	ATOM ATOM	5444	CB	GLN A		24.525	82.188 -30.		0.00	C
	ATOM	5445	CG	GLN A		23.212	82.931 -30.		0.00	С
20	MOTA	5446	CD	GLN A		22.019	82.012 -30.		0.00	C
20	ATOM	5447		GLN A		21.820	81.356 -29.	346 1.00	0.00	0
	MOTA	5448		GLN A		21.215	81.954 -31.	429 1.00	0.00	N
	ATOM	5449	N	GLY A		27.623	81.457 -31.	927 1.00	0.00	N
	ATOM	5450	CA	GLY A	692	28.913	80.826 -31.	701 1.00	0.00	С
25	ATOM	5451	С	GLY A		28.879	79.488 -30.	984 1.00	0.00	С
	ATOM	5452	0	GLY A	692	29.877	79.068 -30.	399 1.00	0.00	0
	ATOM	5453	N	LEU A	693	27.738	78.811 -31.		0.00	N
	ATOM	5454	CA	LEU A	693	27.599	77.515 -30.		0.00	C
	ATOM	5455	C	LEU A	693	27.504	76.373 -31.		0.00	С
30	MOTA	5456	0	LEU A	693	26.909	76.513 -32		0.00	0
	MOTA	5457	CB	LEU A		26.363	77.519 -29.		0.00	C C
	MOTA	5458	CG	LEU A		26.458	78.426 -28.		0.00	C
	ATOM	5459		LEU A		25.062	78.762 -27.			C
0.5	MOTA	5460		LEU A		27.278	77.743 -27.			И
35	MOTA	5461	N	LEU A		28.090	75.236 -31. 74.058 -31.			C
	MOTA	5462	CA	LEU A		28.083	73.654 -32			C
	MOTA	5463	С	LEU A		26.657 25.765	73.697 -31			Ō
	MOTA	5464	O	LEU A		28.783	72.893 -31			Ċ
40	ATOM	5465 5466	CB CG	LEU A		28.965	71.617 -31			С
40	ATOM ATOM	5467		LEU A		29.942	71.878 -33			С
	ATOM	5468		LEU A		29.488	70.498 -31		0.00	С
	ATOM	5469	N	LYS F		26.457	73.265 -33	.478 1.00	0.00	N
	ATOM	5470	CA	LYS F		25.146	72.847 -33	.960 1.00	0.00	C
45	ATOM	5471	С	LYS F		25.196	71.465 -34	.599 1.00		С
	MOTA	5472	0	LYS F		24.229	70.710 -34	.524 1.00		0
	ATOM	5473	CB	LYS A	4 695	24.611	73.867 -34			C
	MOTA	5474	CG	LYS A	4 695	23.343	73.447 -35			C
	ATOM	5475	CD	LYS F		22.666	74.640 -36			C
50	MOTA	5476	CE	LYS A		22.146	75.636 -35			C
	MOTA	5477	NZ	LYS A		21.441	76.797 -35			N
	ATOM	5478	N		4 696	26.323	71.134 -35			N C
	MOTA	5479	CA	SER A		26.471	69.836 -35			C
p= p=	MOTA	5480	C		A 696	27.928	69.449 -36			0
55	MOTA	5481	0		A 696	28.814	70.306 -36			C
	MOTA	5482	CB		4 696	25.753	69.839 -37			
	MOTA	5483	OG		A 696	26.466	70.610 -38 68.146 -36			
	ATOM	5484	N		A 697	28.159	67.598 -36			
60	ATOM	5485	CA		A 697	29.490	66.634 -37			
60	ATOM	5486	С		A 697	29.441	65.731 -37			
	ATOM	5487	0	ILE A	A 697	28.601	00.731 -37	.507 1.00	. 0.00	Ŭ

	ATOM	5488	CB	ILE	Α	697	30.003	66.793	-35.248	1.00	0.00		С
	ATOM	5489		ILE			30.124	67 696	-34.020	1.00	0.00		С
													C
	ATOM	5490	CG2	ILE	A	697	31.349		-35.573	1.00	0.00		
	ATOM	5491	CD1	ILE .	A	697	30.600	66.963	-32.774	1.00	0.00	!	С
5	MOTA	5492	N	GLN .	Δ	698	30.330	66.831	-38.620	1.00	0.00		N
J													
	ATOM	5493	CA	GLN	A	698	30.404		-39.779	1.00	0.00		С
	MOTA	5494	С	GLN .	Α	698	31.751	65.240	-39.717	1.00	0.00		С
	ATOM	5495	0	GLN	7\	698	32.796	65 856	-39.939	1.00	0.00		0
	ATOM	5496	CB	GLN	А	698	30.302	66.135	-41.090	1.00	0.00		С
10	MOTA	5497	CG	GLN	Α	698	29.993	65.836	-42.286	1.00	0.00		С
	ATOM	5498	CD	GLN			30.220		-43.624	1.00	0.00		C
	MOTA	5499	OE1	GLN .	A	698	29.673	66.092	-44.645	1.00	0.00		0
	ATOM	5500	NE2	GLN	Α	698	31.038	67.557	-43.629	1.00	0.00	•	Ν
				LEU			31.725		-39.419	1.00	0.00		N
4.5	MOTA	5501	N										
15	ATOM	5502	CA	LEU	A	699	32.949	63.162	-39.295	1.00	0.00		С
	ATOM	5503	С	LEU	Α	699	33.788	63.092	-40.564	1.00	0.00		C
							35.012		-40.510	1.00	0.00		0
	MOTA	5504	0	LEU									
	ATOM	5505	CB	LEU	A	699	32.618	61.746	-38.814	1.00	0.00		С
	ATOM	5506	CG	LEU	Α	699	31.900	61.656	-37.462	1.00	0.00		С
? 0									-37.080	1.00	0.00		С
20	ATOM	5507		LEU			31.706						
20	ATOM	5508	CD2	LEU	Α	699	32.714	62.377	-36.399	1.00	0.00		С
1.55	ATOM	5509	N	THR	Δ	700	33.138	62.891	-41.704	1.00	0.00		N
J										1.00			C
10700	ATOM	5510	CA	THR			33.853		-42.973		0.00		
(31)	MOTA	5511	С	THR	А	700	33.128	63.618	-44.040	1.00	0.00		С
25	ATOM	5512	0	THR	Δ	700	31.962	63.969	-43.875	1.00	0.00		0
to the second													Ċ
	MOTA	5513	CB	THR	A	100	33.976		-43.454	1.00	0.00		
2812	ATOM	5514	OG1	THR	Α	700	32.669	60.792	-43.647	1.00	0.00		0
Anna Anna Panta Anna Panta Anna	ATOM	5515	CG2	THR	Δ	700	34.730	60.518	-42.431	1.00	0.00		С
Way.													
95 b	MOTA	5516	N	GLN			33.824		-45.132	1.00	0.00		N
30	ATOM	5517	CA	GLN	Α	701	33.237	64.689	-46.221	1.00	0.00		С
	MOTA	5518	С	GLN	Δ	701	32.010	63.982	-46.783	1.00	0.00		С
goring Louis													
	ATOM	5519	0	GLN	А	10T	31.122		-47.350	1.00	0.00		0
T STATE	MOTA	5520	CB	GLN	Α	701	34.263	64.897	-47.336	1.00	0.00		С
	ATOM	5521	CG	GLN	Δ	701	35.585	65.458	-46.852	1.00	0.00		С
35											0.00		Ċ
33	ATOM	5522	CD	GLN			36.471		-47.990	1.00			
1	ATOM	5523	OE1	GLN	Α	701	36.103	66.821	-48.749	1.00	0.00		0
- sail,	ATOM	5524	NF.2	GLN	А	701	37.648	65.313	-48.114	1.00	0.00		N
rain .											0.00		N
	MOTA	5525	N	ASP			31.968		-46.613	1.00			
	ATOM	5526	CA	ASP	Α	702	30.858	61.857	-47.104	1.00	0.00		С
4 0	MOTA	5527	С	ASP	А	702	29.703	61.853	-46.107	1.00	0.00		С
							28.558		-46.459	1.00	0.00		0
	ATOM	5528	0	ASP									
	MOTA	5529	CB	ASP	A	702	31.327	60.418	-47.327	1.00	0.00		С
	ATOM	5530	CG	ASP	Α	702	32.718	60.344	-47.923	1.00	0.00		С
				ASP			32.907		-49.067	1.00	0.00		0
. ~	ATOM	5531											
45	MOTA	5532	OD2	ASP	Α	702	33.625	59.816	-47.241	1.00	0.00		0
	ATOM	5533	N	SER	Α	703	30.022	61.520	-44.860	1.00	0.00		N
		5534		SER			29.037		-43.788	1.00	0.00		С
	MOTA		CA										
	MOTA	5535	С	SER	Α	703	28.156	62,691	-43.688	1.00	0.00		С
	MOTA	5536	0	SER	А	703	28.481	63,747	-44.229	1.00	0.00		0
50		5537	СВ	SER			29.747		-42.452	1.00	0.00		С
50	MOTA												
	ATOM	5538	QG	SER	Α	703	30.677	62.249	-42.182	1.00	0.00		0
	MOTA	5539	N	PRO	Α	704	27.016	62,571	-42.989	1.00	0.00		N
	ATOM	5540	CA	PRO			26.075		-42.807	1.00	0.00		C
	MOTA	5541	C	PRO	А	704	26.439	64.570	-41.625	1.00	0.00		С
55	MOTA	5542	0	PRO	Α	704	27.338	64.253	-40.845	1.00	0.00		0
-											0.00		C
	ATOM	5543	CB	PRO			24.757		-42.583	1.00			
	MOTA	5544	CG	PRO	Α	704	25.187	61,782	-41.767	1.00	0.00		С
	ATOM	5545	CD	PRO	A	704	26.429	61.308	-42.500	1.00	0.00		С
													N
(0	MOTA	5546	N	HIS			25.726		-41.504	1.00	0.00		
60	ATOM	5547	CA	HIS	Α	705	25.941	66.633	-40.417	1.00	0.00		С
	MOTA	5548	С	HIS	А	705	25.131	66.183	-39.209	1.00	0.00		С
					• •								

	ATOM	5549	0	HTS	A 705	23.948	66,493	-39.093	1.00	0.00	0
	ATOM	5550	СВ		A 705			-40.843	1.00	0.00	C
	ATOM	5551	CG		A 705	26.334		-41.935	1.00	0.00	C
E-	MOTA	5552			A 705	27.668		-41.767	1.00	0.00	N
5	ATOM	5553			A 705	26.032		-43.215	1.00	0.00	C
	ATOM	5554	CE1	HIS	A 705	28.150	69.420	-42.896	1.00	0.00	C
	MOTA	5555	NE2	HIS	A 705	27.178	69.437	-43,791	1.00	0.00	N
	MOTA	5556	N	VAL	A 706	25.775	65.446	-38.312	1.00	0.00	N
	ATOM	5557	CA		A 706	25.106		-37,119	1.00	0.00	C
10								-36.153			
10	ATOM	5558	C		A 706	24.757			1.00	0.00	C
	MOTA	5559	0		A 706	25.624		~35.747	1.00	0.00	0
	MOTA	5560	CB	VAL	A 706	25.993		-36.385	1.00	0.00	C
	ATOM	5561			A 706	25.277	63.399	-35.150	1.00	0.00	C
	ATOM	5562	CG2	VAL	A 706	26.336	62.774	-37,322	1.00	0.00	C
15	MOTA	5563	N	PRO	A 707	23.473	66.187	-35.778	1.00	0.00	N
	MOTA	5564	CA		A 707	23.024		-34.852	1.00	0.00	C
	ATOM	5565	С		A 707	23.628		-33.453	1.00	0.00	Ċ
	ATOM	5566	0		A 707	23.377		-32.753	1.00	0.00	0
20	ATOM	5567	CB		A 707	21.506		-34.834	1.00	0.00	C
20	MOTA	5568	CG		A 707	21.214		-36.190	1.00	0.00	C
1 (10)	ATOM	5569	CD	PRO	A 707	22.320	65.466	-36.346	1.00	0.00	C
	MOTA	5570	N	VAL	A 708	24.434	68.069	-33.063	1.00	0.00	N
J J	MOTA	5571	CA	VAL	A 708	25.068	68.098	-31.746	1.00	0.00	C
197	ATOM	5572	С		A 708	25.046		-31.350	1.00	0.00	C
25	ATOM	5573	0		A 708	25.821		-31.865	1.00	0.00	0
Second Second								~31.802	1.00	0.00	
	ATOM	5574	CB		A 708	26.529					C
M.	MOTA	5575			A 708	27.164		-30.415	1.00	0.00	C
i in	MOTA	5576	CG2		A 708	26.561		-32.317	1.00	0.00	C
M 00	ATOM	5577	N	HIS	A 709	24.141	69.922	-30.447	1.00	0.00	N
[*] 30	MOTA	5578	CA	HIS	A 709	23.999	71.310	-30.034	1.00	0.00	C
	MOTA	5579	С	HIS	A 709	24.441	71.582	-28.606	1.00	0.00	C
	MOTA	5580	0	HIS	A 709	24.063	70.864	-27.681	1.00	0.00	0
đ	ATOM	5581	CB		A 709	22.539		-30.183	1.00	0.00	C
W	ATOM	5582	CG		A 709	22.007		-31.578	1.00	0.00	č
35		5583			A 709			-32.316			N
	MOTA					21.637			1.00	0.00	
Mari	ATOM	5584			A 709	21.754		-32.362	1.00	0.00	C
e a la companya di managana di managana di managana di managana di managana di managana di managana di managan Managana di managana di man	ATOM	5585			A 709	21.177		-33.491	1.00	0.00	C
	ATOM	5586	NE2	HIS	A 709	21.237		-33.545	1.00	0.00	N
	MOTA	5587	N	PHE	A 710	25.247	72.626	-28.441	1.00	0.00	N
40	MOTA	5588	CA	PHE	A 710	25.708	73.044	-27.125	1.00	0.00	C
	ATOM	5589	С	PHE	A 710	24.733	74.129	-26.682	1.00	0.00	C
	ATOM	5590	0		A 710	24.297		-27.491	1.00	0.00	0
	ATOM	5591	CB		A 710	27.127		-27.198	1.00	0.00	Ċ
	ATOM	5592	CG		A 710	28.206		-26.719	1.00	0.00	C
45					A 710	29.372		-27.460		0.00	
43	ATOM	5593							1.00		C
	ATOM	5594			A 710	28.075		-25.511	1.00	0.00	C
	ATOM	5595			A 710	30.393		-27.004	1.00	0.00	C
	MOTA	5596	CE2		A 710	29.090		-25.046	1.00	0.00	C
	MOTA	5597	CZ	PHE	A 710	30.249	70.992	-25.794	1.00	0.00	C
50	ATOM	5598	N	LYS	A 711	24.386	74.114	-25.403	1.00	0.00	N
	MOTA	5599	CA	LYS	A 711	23.460	75.090	-24.854	1.00	0.00	C
	MOTA	5600	С		A 711	23.782	75.306	-23.385	1.00	0.00	C
	ATOM	5601	0		A 711	24.162		-22.683	1.00	0.00	Ō
	MOTA	5602	CB		A 711	22.022		-25.003	1.00	0.00	c
55											
55	MOTA	5603	CG		A 711	20.971		-24.386	1.00	0.00	C
	MOTA	5604	CD		A 711	19.576		-24.505	1.00	0.00	C
	MOTA	5605	CE		A 711	19.139		-25.956	1.00	0.00	C
	MOTA	5606	NZ		A 711	17.802		-26.064	1.00	0.00	N
	MOTA	5607	N	PHE	A 712	23.638	76.543	-22.924	1.00	0.00	N
60	ATOM	5608	CA	PHE	A 712	23.899	76.859	-21.530	1.00	0.00	C
	ATOM	5609	С		A 712	22.590		-20.843	1.00	0.00	С
				_			_				_

	MOTA	5610	0	PHE A	712	21.80	3 78.000	-21.361	1.00	0.00	0
	ATOM	5611	CB	PHE A	712	24.89	0 78.025	-21.412	1.00	0.00	C
	ATOM	5612	CG	PHE A	712	26.31	0 77.643	3 -21.723	1.00	0.00	С
	ATOM	5613	CDl	PHE A	712	26.79	2 77.687	7 -23.028	1.00	0.00	С
5	MOTA	5614	CD2	PHE A	712	27.15	3 77.194	-20.712	1.00	0.00	C
	ATOM	5615	CEI	PHE A	712	28.09	5 77.287	7 -23.321	1.00	0.00	С
	ATOM	5616	CE2	PHE A	712	28.45	7 76.791	-20.992	1.00	0.00	C
	MOTA	5617	CZ	PHE A	712	28.92	9 76.836	-22.298	1.00	0.00	C
	MOTA	5618	N	LEU A	713	22.34	6 76.594	-19.690	1.00	0.00	N
10	MOTA	5619	CA	LEU A	713	21.12	2 76.856	5 -18.945	1.00	0.00	C
	MOTA	5620	С	LEU A	713	21.45	2 77.152	2 -17.492	1.00	0.00	С
	MOTA	5621	0	LEU A		22.61		3 -17.087	1.00	0.00	0
	MOTA	5622	CB	LEU A		20.16		7 -19.033	1.00	0.00	С
	MOTA	5623	CG	LEU A		19.73		2 -20.434	1.00	0.00	С
15	MOTA	5624		LEU A		20.69		3 -20.956	1.00	0.00	C
	MOTA	5625		LEU A		18.31		-20.385	1.00	0.00	С
	MOTA	5626	N	LYS A		20.43		5 -16.706	1.00	0.00	N
	ATOM	5627	CA	LYS A		20.65		3 -15.304	1.00	0.00	С
	MOTA	5628	C	LYS A		19.58		-14.402	1.00	0.00	C
20	MOTA	5629	ŏ	LYS I		18.40		3 -14.748	1.00	0.00	0
	ATOM	5630	CB	LYS A		20.71		-15.082	1.00	0.00	C
1	MOTA	5631	CG	LYS A		19.51		3 -15.625	1.00	0.00	Ċ
a Pa	MOTA	5632	CD	LYS A		19.54		-15.191	1.00	0.00	Č
1925 3125	MOTA	5633	CE	LYS A		20.78		3 -15.699	1.00	0.00	Ċ
20 25	MOTA	5634	NZ	LYS A		20.82		15.245	1.00	0.00	N
	ATOM	5635	N		715	20.03		-13.251	1.00	0.00	N
1000	ATOM	5636	CA		715	19.15		9 -12.249	1.00	0.00	C
Ŋ	ATOM	5637	C		715	19.06		1 -11.140	1.00	0.00	Č
1 7m	MOTA	5638	0		A 715	20.01		5 -10.912	1.00	0.00	Ö
30	ATOM	5639	CB		A 715	19.74		-11.654	1.00	0.00	Ċ
# 50	MOTA	5640	CG		A 715	19.64		7 -12.537	1.00	0.00	Ċ
1 122 1 1 122 1	ATOM	5641		TYR 2		20.72		-13.324	1.00	0.00	Ċ
	ATOM	5642		TYR A		18.47		5 -12.576	1.00	0.00	Ç
7.000F		5643		TYR A		20.63		7 -14.130	1.00	0.00	Ċ
35	ATOM ATOM	5644		TYR A		18.38		-13.376	1.00	0.00	č
30	ATOM	5645	CZ		A 715	19.46		-14.148	1.00	0.00	Č
	ATOM	5646	OH		A 715	19.36) -14.932	1.00	0.00	0
	ATOM	5647	N		A 716	17.93) -10.449	1.00	0.00	N
2	ATOM	5648	CA		A 716	17.77			1.00	0.00	C
40	ATOM	5649	C		A 716	17.68			1.00	0.00	Č
10	ATOM	5650	Ö		A 716	18.00			1.00	0.00	Ö
	ATOM	5651	N		A 717	17.24			1.00	0.00	N
	ATOM	5652	CA	VAL A		17.09			1.00	0.00	C
	ATOM	5653	C		A 717	15.64			1.00	0.00	C
45	ATOM	5654	0		A 717	14.96			1.00	0.00	Õ
30		5655		VAL A		18.01			1.00	0.00	Č
	ATOM	5656	CB	VAL A		17.79			1.00	0.00	C
	MOTA	5657		VAL		19.47			1.00	0.00	C
	MOTA	5658	N CGZ		A 718	15.16			1.00	0.00	N
50	ATOM ATOM	5659	CA		A 718	13.77			1.00	0.00	C
50		5660	C		A 718	13.52			1.00	0.00	C
	MOTA					14.35			1.00	0.00	Ö
	MOTA	5661	0		A 718						Ċ
	MOTA	5662	CB		A 718	13.40			1.00	0.00	
55	MOTA	5663	CG		718	13.49			1.00	0.00	C
55	MOTA	5664	CD		718	13.38			1.00		
	MOTA	5665	NE		A 718	13.65			1.00	0.00	N
	MOTA	5666	CZ		A 718	13.68			1.00	0.00	C
	MOTA	5667		ARG A		13.45			1.00	0.00	N
60	MOTA	5668		ARG A		13.94			1.00	0.00	N
60	MOTA	5669	N		A 719	12.37			1.00	0.00	N
	MOTA	5670	CA	SER I	A 719	12.00	6 79.668	3 -2.249	1.00	0.00	С

	ATOM	5671	С	SER A	719	11.347	79.114	-0.991	1.00	0.00	C
	MOTA	5672	0	SER A	719	11.191	79.819	0.003	1.00	0.00	0
	ATOM	5673	CB	SER A		11.044	80.618	-2.965	1.00	0.00	C
	ATOM	5674	OG	SER A		9.886	79.927	-3.397	1.00	0.00	0
5											
5	MOTA	5675	N	HIS A		10.965	77.841	-1.048	1.00	0.00	N
	ATOM	5676	CA	HIS A		10.320	77.174	0.077	1.00	0.00	C
	MOTA	5677	С	HIS A		11.030	75.865	0.407	1.00	0.00	C
	MOTA	5678	0	HIS A	720	11.457	75.139	-0.489	1.00	0.00	0
	ATOM	5679	СВ	HIS A		8.857	76.872	-0.256	1.00	0.00	С
10	ATOM	5680	CG	HIS A		8.080	78.069	-0.705	1.00	0.00	C
10											
	MOTA	5681		HIS A		7.945	79.202	0.068	1.00	0.00	N
	ATOM	5682		HIS A		7.398	78.310	-1.850	1.00	0.00	C
	MOTA	5683		HIS A		7.213	80.090	-0.581	1.00	0.00	C
	MOTA	5684	NE2	HIS A	720	6.868	79.574	-1.748	1.00	0.00	N
15	ATOM	5685	N	GLY A	721	11.154	75.571	1.697	1.00	0.00	N
	ATOM	5686	CA	GLY A		11.794	74.337	2.114	1.00	0.00	С
	MOTA	5687	C	GLY A		13.311	74.356	2.111	1.00	0.00	C
								2.237			0
	ATOM	5688	0	GLY A		13.934	75.409		1.00	0.00	
20	MOTA	5689	N	ASP A		13.899	73.173	1.957	1.00	0.00	Ŋ
<u>, </u>	MOTA	5690	CA	ASP A		15.348	72.999	1.950	1.00	0.00	С
Q	ATOM	5691	С	ASP A	722	16.022	73.715	0.785	1.00	0.00	С
	MOTA	5692	0	ASP A	722	15.582	73.611	-0.358	1.00	0.00	0
Ţ	ATOM	5693	CB	ASP A	722	15.681	71.505	1.904	1.00	0.00	C
i glasgr	ATOM	5694	CG	ASP A		15.137	70.750	3.109	1.00	0.00	C
25	MOTA	5695		ASP A		15.062	69.503	3.053	1.00	0.00	0
5 25											
W.	MOTA	5696		ASP A		14.792	71.406	4.116	1.00	0.00	0
3 4gF	ATOM	5697	N	ARG A		17.096	74.439	1.088	1.00	0.00	N
W.	MOTA	5698	CA	ARG A	723	17.840	75.175	0.072	1.00	0.00	С
\$15T	MOTA	5699	С	ARG A	723	19.143	74.485	-0.312	1.00	0.00	C
.30	ATOM	5700	0	ARG A	723	19.777	73.819	0.510	1.00	0.00	0
11	ATOM	5701	CB	ARG A		18.163	76.594	0.557	1.00	0.00	C
	MOTA	5702	CG	ARG A		17.024	77.600	0.426	1.00	0.00	C
1.	ATOM	5703	CD	ARG A		15.961	77.418	1.494	1.00	0.00	C
non e											
35	ATOM	5704	NE	ARG A		14.923	78.446	1.399	1.00	0.00	N
35	MOTA	5705	CZ	ARG A		13.945	78.612	2.286	1.00	0.00	С
3,000	ATOM	5706		ARG A		13.860	77.817	3.346	1.00	0.00	N
No.	MOTA	5707	NH2	ARG A	723	13.052	79.580	2.116	1.00	0.00	N
la de	MOTA	5708	N	SER A	724	19.536	74.657	-1.570	1.00	0.00	N
	MOTA	5709	CA	SER A	724	20.772	74.081	-2.075	1.00	0.00	С
40	ATOM	5710	С	SER A	724	21.948	74.758	-1.383	1.00	0.00	С
	MOTA	5711	Ō	SER A		21.888	75.948	-1.056	1.00	0.00	0
	ATOM	5712	СВ	SER A		20.882	74.300	-3.586	1.00	0.00	Č
						19.801	73.699	-4.277	1.00	0.00	
	ATOM	5713	OG	SER A							0
4 ==	MOTA	5714	N	GLY A		23.015	73.996	-1.166	1.00	0.00	Ŋ
45	ATOM	5715	CA	GLY A	725	24.209	74.528	-0.527	1.00	0.00	С
	MOTA	5716	С	GLY A	725	25.431	73.840	-1.110	1.00	0.00	C
	MOTA	5717	0	GLY A	725	25.356	73.275	-2.202	1.00	0.00	0
	ATOM	5718	N	ALA A	726	26.550	73.871	-0.391	1.00	0.00	N
	ATOM	5719	CA	ALA A		27.780	73,243	-0.867	1.00	0.00	С
50	ATOM	5720	С	ALA A		27.626	71.737	-1.104	1.00	0.00	С
00	MOTA	5721	Ö	ALA A		28.261	71,175	-2.000	1.00	0.00	0
	ATOM	5722	CB	ALA A		28.917	73.496	0.131	1.00	0.00	C
	MOTA	5723	N	TYR A		26.785	71.088	-0.304	1.00	0.00	N
	MOTA	5724	CA	TYR A		26.581	69.646	-0.436	1.00	0.00	С
55	ATOM	5725	С	TYR A	727	25.375	69.273	-1.286	1.00	0.00	C
	ATOM	5726	0	TYR A		25.474	68,466	-2.213	1.00	0.00	0
	ATOM	5727	СВ	TYR A		26.377	68.994	0.935	1.00	0.00	C
	ATOM	5728	CG	TYR A		27.394	69.345	1.985	1.00	0.00	c
<i>6</i> 0	MOTA	5729		TYR A		27.235	70.472	2.793	1.00	0.00	С
60	MOTA	5730		TYR A		28.514	68.541	2.186	1.00	0.00	C
	MOTA	5731	CE1	TYR A	727	28.168	70.783	3.783	1.00	0.00	С

		ATOM	5732	CE2	TYR A	727	29.450	68.842	3.165	1.00	0.00	С
		ATOM	5733	CZ	TYR A		29,274	69.959	3.962	1.00	0.00	C
		MOTA	5734	OH	TYR A	121	30.185	70.230	4.951	1.00	0.00	0
		MOTA	5735	N	LEU A	728	24.234	69.864	-0.946	1.00	0.00	N
	5	ATOM	5736	CA	LEU A		22.971	69.565	-1.608	1.00	0.00	С
	9											
		MOTA	5737	С	LEU A	728	22.621	70.324	-2.881	1.00	0.00	C
		ATOM	5738	0	LEU A	728	22.860	71.525	-2.999	1.00	0.00	0
		ATOM	5739	CB	LEU A	728	21.821	69.753	-0.611	1.00	0.00	C
	40	MOTA	5740	CG	LEU A		21.986	69.104	0.766	1.00	0.00	C
	10	MOTA	5741	CD1	LEU A	728	20.725	69.327	1.599	1.00	0.00	С
		MOTA	5742	CD2	LEU A	728	22.265	67.623	0.598	1.00	0.00	С
			5743		PHE A		22.041	69.590	-3.828	1.00	0.00	N
		ATOM		N								
		MOTA	5744	CA	PHE A	729	21.571	70.146	-5.089	1.00	0.00	C
		ATOM	5745	С	PHE A	729	20.050	70.000	-4.996	1.00	0.00	C
	15	ATOM	5746	0	PHE A		19.521	68.892	-5.082	1.00	0.00	0
									-6.279	1.00	0.00	Č
		MOTA	5747	CB	PHE A		22.097	69.335				
		MOTA	5748	CG	PHE A		21.637	69.848	-7.624	1.00	0.00	C
		ATOM	5749	CD1	PHE A	729	21.579	68.995	-8.721	1.00	0.00	С
		ATOM	5750		PHE A		21.283	71.187	-7.797	1.00	0.00	C
	20											
3110	20	ATOM	5751		PHE A		21.173	69.463	-9.974	1.00	0.00	C
(specif		MOTA	5752	CE2	PHE A	729	20.877	71.666	-9.045	1.00	0.00	С
1		MOTA	5753	CZ	PHE A	729	20.822	70.804	-10.134	1.00	0.00	С
77		ATOM	5754	N	LEU A		19.356	71.117	-4.802	1.00	0.00	N
					LEU A				-4.680	1.00	0.00	c
işi.	25	ATOM	5755	CA			17.901	71.115				
53540g	25	MOTA	5756	С	LEU A	730	17.326	72.146	-5.636	1.00	0.00	С
1		ATOM	5757	0	LEU A	730	16.852	73.201	-5.215	1.00	0.00	0
		ATOM	5758	CB	LEU A		17.506	71.459	-3.245	1.00	0.00	С
251		ATOM	5759	CG	LEU A		17.893	70.418	-2.192	1.00	0.00	C
W												
	20	MOTA	5760		LEU A		17.864	71.040	-0.809	1.00	0.00	C
44	30	MOTA	5761	CD2	LEU A	730	16.942	69.232	-2.277	1.00	0.00	С
Ri		ATOM	5762	N	PRO A	7.31	17.355	71.845	-6.942	1.00	0.00	N
\$** *			5763		PRO A			72.754	-7.968	1.00	0.00	C
figreeff from		ATOM		CA			16.844					
		MOTA	5764	С	PRO A		15.358	73.063	-7.877	1.00	0.00	C
191		ATOM	5765	0	PRO A	731	14.559	72.233	-7.434	1.00	0.00	0
123	35	ATOM	5766	CB	PRO A	731	17.198	72.036	-9.262	1.00	0.00	С
ļ _{pi} k.		ATOM	5767	CG	PRO A		17.026	70.593	-8.879	1.00	0.00	C
4 fitzig		MOTA	5768	CD	PRO A		17.699	70.535	-7.528	1.00	0.00	С
la.		MOTA	5769	N	ASN A	732	14.998	74.271	-8.297	1.00	0.00	N
		MOTA	5770	CA	ASN A	732	13.605	74.687	-8.300	1.00	0.00	C
	40	MOTA	5771	С	ASN A	732	13.053	74.332	-9.674	1.00	0.00	C
	-0				ASN A							
		ATOM	5772	0			12.525		-10.392	1.00	0.00	0
		ATOM	5773	CB	ASN A	732	13.493	76.194	-8.034	1.00	0.00	С
		ATOM	5774	CG	ASN A	732	14.176	77.033	-9.096	1.00	0.00	С
		ATOM	5775	001	ASN A	732	15.263	76.700	-9.563	1.00	0.00	0
	45		5776		ASN A		13.544	78.140	-9.473	1.00	0.00	N
	TU	MOTA										
		MOTA	5777	N	GLY A		13.204		-10.035	1.00	0.00	N
		MOTA	5778	CA	GLY A	733	12.718	72.577	-11.315	1.00	0.00	C
		ATOM	5779	C	GLY A		13.788	72.479	-12.384	1.00	0.00	С
			5780	Ō			14.952		-12.133	1.00	0.00	0
	EΩ	ATOM			GLY A							
	50	MOTA	5781	N	PRO A	134	13.424		-13.594	1.00	0.00	N
		ATOM	5782	CA	PRO A	734	14.363	71.880	-14.710	1.00	0.00	C
		MOTA	5783	С	PRO A	734	15.038	73.216	-14.995	1.00	0.00	С
		ATOM	5784	Ō	PRO A		14.477		-14.709	1.00	0.00	0
		MOTA	5785	CB	PRO A		13.469		-15.867	1.00	0.00	C
	55	MOTA	5786	CG	PRO A	734	12.373	70.695	-15.187	1.00	0.00	C
		ATOM	5787	CD	PRO A	734	12.078		-13.991	1.00	0.00	С
		MOTA	5788	N	ALA A		16.234		-15.570	1.00	0.00	N
		MOTA	5789	CA	ALA A		16.992		-15.883	1.00	0.00	С
		ATOM	5790	С	ALA A	735	16.302	75.227	-16.938	1.00	0.00	С
	60	MOTA	5791	0	ALA A	735	15.535	74.728	-17.759	1.00	0.00	0
		MOTA	5792	CB	ALA A		18.391		-16.355	1.00	0.00	C
		Ma Oh	3134	~	ישרע ע	, 55	10.001	, , , , , , , ,	10.000	1.00	J.00	C

		MOTA	5793	N	SER A	736	16.585	76.526	-16.896	1.00	0.00	N
		MOTA	5794	CA	SER A		16.025	77.487	-17.839	1.00	0.00	С
		MOTA	5795	C	SER A	736	17.169		-18.709	1.00	0.00	С
	_	MOTA	5796	0	SER A	736	18.277		-18.222	1.00	0.00	0
	5	MOTA	5797	CB	SER A		15.392		-17.090	1.00	0.00	С
		ATOM	5798	OG	SER A	736	14.416	78.216	-16.165	1.00	0.00	0
		MOTA	5799	N	PRO A	737	16.912	78.213	-20.007	1.00	0.00	N
		MOTA	5800	CA	PRO A	737	17.957	78.701	-20.913	1.00	0.00	С
		ATOM	5801	C	PRO A	737	18.540	80.043	-20.481	1.00	0.00	С
	10	MOTA	5802	0	PRO A	737	17.818	80.915	-20.001	1.00	0.00	0
		ATOM	5803	CB	PRO A	737	17.231	78.808	-22.255	1.00	0.00	С
		ATOM	5804	CG	PRO A	737	16.131	77.793	-22.141	1.00	0.00	С
		MOTA	5805	CD	PRO A	737	15.647	78.009	-20.731	1.00	0.00	C
		MOTA	5806	N	VAL A	738	19.851	80.203	-20.639	1.00	0.00	Ν
	15	MOTA	5807	CA	VAL A	738	20.496	81.465	-20.297	1.00	0.00	C
		MOTA	5808	C	VAL A	738	20.181	82.434	-21.438	1.00	0.00	С
		MOTA	5809	0	VAL A	738	20.315	82.078	-22.607	1.00	0.00	0
		MOTA	5810	CB	VAL A	738	22.038	81.312	-20.188	1.00	0.00	С
		MOTA	5811	CG1	VAL A	738	22.697	82.689	-20.098	1.00	0.00	C
4125	20	MOTA	5812	CG2	VAL A	738	22.400	80.481	-18.964	1.00	0.00	С
€a <u>≓</u>		MOTA	5813	N	GLU A	739	19.742	83.643	-21.100	1.00	0.00	И
·I		MOTA	5814	CA	GLU A	739	19.429	84.648	-22.113	1.00	0.00	С
		MOTA	5815	С	GLU A	739	20.755	85.126	-22.684	1.00	0.00	С
		MOTA	5816	0	GLU A	739	21.545	85.761	-21.988	1.00	0.00	0
	25	MOTA	5817	CB	GLU A	739	18.670	85.818	-21.487	1.00	0.00	С
रेक्ट्स स्थाप		ATOM	5818	CG	GLU A	739	17.304	85.436	-20.946	1.00	0.00	С
		MOTA	5819	CD	GLU A		16.357	84.965	-22.035	1.00	0.00	С
		MOTA	5820	OE1	GLU A	739	15.224	84.555	-21.701	1.00	0.00	0
	•	MOTA	5821	OE2	GLU A	739	16.741		-23.224	1.00	0.00	0
5)	30	MOTA	5822	N	LEU A		20.986		-23.956	1.00	0.00	N
		ATOM	5823	CA	LEU A	740	22.239		-24.618	1.00	0.00	C
		MOTA	5824	С	LEU A	740	22.318	86.525	-25.288	1.00	0.00	С
		ATOM	5825	0	LEU A	740	23.413	87.052	-25.483	1.00	0.00	0
	~ =	ATOM	5826	CB	LEU A		22.570	84.091	-25.655	1.00	0.00	С
William St.	35	ATOM	5827	CG	LEU A		22.540		-25.163	1.00	0.00	С
		ATOM	5828	CD1	LEU A	740	22.919		-26.310	1.00	0.00	С
		MOTA	5829		LEU A		23.496		-23.985	1.00	0.00	С
land.		ATOM	5830	N	GLY A		21.172		-25.645	1.00	0.00	N
	40	ATOM	5831.	CA	GLY A		21.187		-26.319	1.00	0.00	С
	40	ATOM	5832	C	GLY A		21.861		-27.667	1.00	0.00	C
		ATOM	5833	0	GLY A		21.617		-28.356	1.00	0.00	0
		ATOM	5834	N	GLN A		22.708		-28.048	1.00	0.00	N
		MOTA	5835	CA	GLN A		23.427		-29.317	1.00	0.00	С
	15	MOTA	5836	C	GLN A		24.920		-28.991	1.00	0.00	C
	45	ATOM	5837	0	GLN A		25.588		-29.137	1.00	0.00	0
		ATOM	5838	CB	GLN A		23.050		-30.210	1.00	0.00	C
		ATOM	5839	CG	GLN A		21.556		-30.530	1.00	0.00	С
		MOTA	5840	CD	GLN A		21.187		-31.429	1.00	0.00	C
	50	ATOM	5841		GLN A		21.650		-32.568	1.00	0.00	0
	50	ATOM	5842		GLN A		20.344		-30.921	1.00	0.00	N
		ATOM	5843	N	PRO A		25.458		-28.545	1.00	0.00	N
		ATOM	5844	CA	PRO A		26.868		-28.175	1.00	0.00	С
		MOTA	5845	С	PRO A		27.887		-29.289	1.00	0.00	С
	55	MOTA	5846	0	PRO A		27.612		-30.461	1.00	0.00	0
	<i>JJ</i>	MOTA	5847	CB	PRO A		26.912		-27.616	1.00	0.00	С
		ATOM	5848	CG	PRO A		25.904		-28.464	1.00	0.00	C
		ATOM	5849	CD	PRO A		24.758		-28.496	1.00	0.00	C
		ATOM	5850 5051	N CD	VAL A		29.068		-28.902	1.00	0.00	N
	60	ATOM	5851	CA	VAL A		30.149		-29.845 -30.076	1.00	0.00	C
	UU	ATOM	5852	С	VAL A		30.876		-30.076	1.00	0.00	С
		ATOM	5853	0	VAL A	144	31.255	86.703	-29.124	1.00	0.00	0

	MOTA	5854	CB	VAL	A ´	744	31.150	89.748	-29.305	1.00	0.00	C
	ATOM	5855	CG1	VAL	Α .	744	32.314	89.895	-30.272	1.00	0.00	C
	MOTA	5856	CG2	VAL	Α .	744	30.448	91.089	-29.109	1.00	0.00	C
	MOTA	5857	N	VAL			31.055		-31.343	1.00	0.00	N
5												
5	MOTA	5858	CA	VAL			31.717		-31.711	1.00	0.00	C
	MOTA	5859	С	VAL			33.033		-32.432	1.00	0.00	C
	ATOM	5860	0	VAL	A '	745	33.091	86.832	-33.367	1.00	0.00	0
	MOTA	5861	CB	VAL	A '	745	30.822	84.939	-32.641	1.00	0.00	C
	ATOM	5862	CG1	VAL	Α .	745	31.536	83,652	-33.021	1.00	0.00	C
10	ATOM	5863		VAL			29.500		-31.960	1.00	0.00	Ċ
10										1.00		
	MOTA	5864	N	LEU			34.088		-31.997		0.00	N
	MOTA	5865	CA	LEU			35.400	85.496	-32.617	1.00	0.00	C
	ATOM	5866	С	LEU	A T	746	35.813	84.206	-33.313	1.00	0.00	C
	ATOM	5867	0	LEU	A i	746	35.915	83.153	-32.682	1.00	0.00	0
15	ATOM	5868	CB	LEU	Α :	746	36.458	85.861	-31.572	1.00	0.00	C
	ATOM	5869	CG	LEU			37.909		-32.079	1.00	0.00	Ċ
				LEU			38.102		-33.119			Ċ
	ATOM	5870								1.00	0.00	
	ATOM	5871		LEU			38.850		-30.903	1.00	0.00	C
	MOTA	5872	N	VAL	A :	747	36.067	84.301	-34.612	1.00	0.00	N
20	MOTA	5873	CA	VAL	A	747	36.468	83.140	-35.394	1.00	0.00	C
20	ATOM	5874	С	VAL	Α -	747	37.912	83.266	-35.857	1.00	0.00	C
25	ATOM	5875	0	VAL			38.277		-36.544	1.00	0.00	0
1000	ATOM	5876	CB	VAL			35.558		-36.639	1.00	0.00	c
Tribula June												
111 2 5	MOTA	5877		VAL			35.974		-37.415	1.00	0.00	C
25	MOTA	5878	CG2	VAL			34.100		-36.207	1.00	0.00	С
18 B	ATOM	5879	N	THR	A ´	748	38.737	82.304	-35.464	1.00	0.00	N
	MOTA	5880	CA	THR	Α :	748	40.136	82.295	-35.859	1.00	0.00	C
The state of the s	ATOM	5881	С	THR			40.358		-36.697	1.00	0.00	С
M 00	ATOM	5882	0	THR			40.121		-36.232	1.00	0.00	0
30												c
_# 30	MOTA	5883	CB	THR			41.067		-34.624	1.00	0.00	
	MOTA	5884		THR			40.874		-33.865	1.00	0.00	0
Renalisation of the second	MOTA	5885	CG2	THR	Α .	748	42.532	82.173	-35.054	1.00	0.00	C
	ATOM	5886	N	LYS	A .	749	40.802	81.232	~37.935	1.00	0.00	N
	ATOM	5887	CA	LYS	Α .	749	41.034	80.108	-38.828	1.00	0.00	С
35	MOTA	5888	С	LYS			42.500		-39.202	1.00	0.00	C
states OO		5889		LYS			43.097		-39.790	1.00	0.00	ō
	MOTA		0									
saids	ATOM	5890	CB	LYS			40.192		-40.096	1.00	0.00	С
5-2000	ATOM	5891	CG	LYS	Α :	749	40.408	79.145	-41.104	1.00	0.00	C
	MOTA	5892	CD	LYS	A :	749	39.527	79.315	-42.329	1.00	0.00	С
40	MOTA	5893	CE	LYS	A	749	39.778	78.195	-43.328	1.00	0.00	C
	ATOM	5894	NZ	LYS	Α 7	749	38.938	78.336	-44.547	1.00	0.00	N
	ATOM	5895	N	GLY			43.072		-38.861	1.00	0.00	Ñ
		5896	CA	GLY			44.468		-39.164	1.00	0.00	Ċ
	MOTA											
4 =	MOTA	5897	С	GLY			44.667		-39.778	1.00	0.00	C
4 5	MOTA	5898	0	GLY			43.767		-39.742	1.00	0.00	0
	ATOM	5899	N	LYS	A 7	751	45.848	76.984	-40.347	1.00	0.00	N
	MOTA	5900	CA	LYS	A 7	751	46.173	75.714	-40.979	1.00	0.00	C
	MOTA	5901	С	LYS	A 7	751	46.322	74.594	-39.953	1.00	0.00	С
	ATOM	5902	0	LYS			46.006		-40.238	1.00	0.00	0
50		5903		LYS			47.476		-41.774	1.00	0.00	c
50	ATOM		CB									
	MOTA	5904	CG	LYS			47.397		-42.993	1.00	0.00	С
	ATOM	5905	CD	LYS	A 7	751	46.565	76.128	-44.106	1.00	0.00	С
	ATOM	5906	CE	LYS	A 7	751	46.628	76.955	-45.387	1.00	0.00	С
	ATOM	5907	NZ	LYS	A 7	751	45.820	76.342	-46.483	1.00	0.00	Ñ
55	MOTA	5908	N	LEU			46.802		-38.763	1.00	0.00	N
50	MOTA	5909		LEU			47.011		-37.709	1.00	0.00	c
			CA									
	ATOM	5910	С	LEU			45.951		-36.615	1.00	0.00	С
	ATOM	5911	0	LEU			45.630	72.972	-36.010	1.00	0.00	0
	MOTA	5912	CB	LEU	A 7	752	48.390	74.152	-37.072	1.00	0.00	С
60	ATOM	5913	CG	LEU	A 7	752	49.622	74.116	-37.983	1.00	0.00	С
	ATOM	5914		LEU			50.878		-37.136	1.00	0.00	Ċ
				~	'							J

		ATOM	5915	CD2	LEU A	752	49.669	72.798 -38.	749 1.00	0.00	С
		ATOM	5916	N	GLU A		45.410	75.182 -36.			N
		ATOM	5917	CA	GLU A		44.405	75.341 -35.			C
		ATOM	5918	C	GLU A		43.414	76.452 -35.			C
	5	ATOM	5919		GLU A		43.414	77.555 -36.			0
	J			0							
		MOTA	5920	CB	GLU A		45.086	75.656 -33.			C
		MOTA	5921	CG	GLU A		44.131	75.781 -32.			C
		ATOM	5922	CD	GLU A		44.827	76.254 -31.			C
	4.0	ATOM	5923	OE1	GLU A	753	45.166	77.451 -31.	449 1.00	0.00	0
	10	ATOM	5924	OE2	GLU A	753	45.040	75.425 -30.	624 1.00	0.00	0
		MOTA	5925	N	SER A	754	42.132	76.151 -35.	483 1.00	0.00	N
		MOTA	5926	CA	SER A	754	41.080	77.127 -35.	717 1.00	0.00	C
		ATOM	5927	С	SER A	754	40.201	77.081 -34.	481 1.00	0.00	C
		ATOM	5928	0	SER A		40.272	76.124 -33.			0
	15	MOTA	5929	CB	SER A		40.258	76.753 -36.	951 1.00		C
		MOTA	5930	OG	SER A		41.062	76.784 -38.			Ō
		ATOM	5931	N	SER A		39.378	78.102 -34.			N
		ATOM	5932	CA	SER A		38.507	78.109 -33.			C
		ATOM	5933	C	SER A		37.377	79.114 -33.			C
	20		5934								
100	20	MOTA		0	SER A		37.423	80.046 -34.			0
		MOTA	5935	CB	SER A		39.317	78.407 -31.			C
Tribali Trans		MOTA	5936	OG	SER A		39.813	79.734 -31.			0
		MOTA	5937	N	VAL A		36.353	78.897 -32.			N
	O.F.	ATOM	5938	CA	VAL A		35.205	79.783 -32.			C
2200	25	MOTA	5939	С	VAL A		35.018	80.082 -30.		0.00	C
देशकरी अस्त्र स		MOTA	5940	0	VAL A	756	34.830	79.167 -30.	074 1.00	0.00	0
141		MOTA	5941	CB	VAL A	756	33.934	79.114 -32.	905 1.00	0.00	C
		MOTA	5942	CG1	VAL A	756	32.733	80.032 -32.	691 1.00	0.00	C
M		MOTA	5943	CG2	VAL A	756	34.115	78.790 -34.	384 1.00	0.00	C
	30	MOTA	5944	N	SER A	757	35.085	81.361 -30.	524 1.00	0.00	N
Fil.		MOTA	5945	CA	SER A	757	34.937	81.789 -29.	139 1.00	0.00	С
		MOTA	5946	С	SER A	757	33.814	82.810 -29.	032 1.00	0.00	С
ı,Ü		MOTA	5947	0	SER A		33.704	83.696 -29.			0
Ü		ATOM	5948	CB	SER A		36.244	82.416 -28.			Ċ
1 343 2 ·	35	ATOM	5949	OG	SER A		37.342	81.544 -28.			0
i esta		ATOM	5950	N	VAL A		32.982	82.690 -28.			N
		MOTA	5951	CA	VAL A		31.878	83.630 -27.			C
lant:		ATOM	5952	C	VAL A		31.737	84.071 -26.			C
		ATOM	5953	0	VAL A		31.854	83.260 -25.			0
	40	ATOM	5954	CB	VAL A		30.536	83.021 -28.			C
	10	MOTA	5955		VAL A		30.260	81.691 -27.			C
			5956		VAL A		29.393	83.997 -28.			
		ATOM									C
		ATOM	5957	N	GLY A		31.513	85.369 -26.			N
	45	ATOM	5958	CA	GLY A		31.354	85.915 -24.		0.00	С
	45	ATOM	5959	С	GLY A		29.905	85.866 -24.			C
		MOTA	5960	0	GLY A		29.104	86.743 -24.			0
		MOTA	5961	N	LEU A		29.565	84.824 -23.			N
		ATOM	5962	CA	LEU A		28.210	84.643 -23.			С
	F 0	ATOM	5963	С	LEU A		28.151	85.121 -21.			С
	50	MOTA	5964	0	LEU A		29.184	85.281 -21.		0.00	0
		MOTA	5965	CB	LEU A		27.832	83.160 -23.		0.00	С
		MOTA	5966	CG	LEU A	760	27.973	82.467 -24.	582 1.00	0.00	С
		ATOM	5967	CD1	LEU A	760	27.737	80.973 -24.	424 1.00	0.00	C
		ATOM	5968	CD2	LEU A	760	26.981	83.068 -25.	570 1.00	0.00	С
	55	MOTA	5969	N	PRO A	761	26.942	85.365 -21.	200 1.00	0.00	N
		MOTA	5970	CA	PRO A		26.864	85.818 -19.		0.00	С
		ATOM	5971	С	PRO A		27.431	84.736 -18.			C
		ATOM	5972	Ö	PRO A		26.947	83.601 -18.		0.00	0
		ATOM	5973	СВ	PRO A		25.366	86.030 -19.		0.00	C
	60	ATOM	5974	CG	PRO A		24.892	86.421 -20.		0.00	C
		ATOM	5975	CD	PRO A		25.626	85.446 -21.		0.00	C
		111 011	55.5	J	LIO A		23.020	JJ. 130 41.		0.00	C

	MOTA	5976	N	SER	A 762	28.46	6 85.0	93	-18.126	1.00	0.00	N
	ATOM	5977	CA		A 762				-17.179	1.00	0.00	C
	ATOM	5978	C		A 762				-17.805	1.00	0.00	C
_	ATOM	5979	0		A 762				-17.083	1.00	0.00	0
5	ATOM	5980	CB		A 762				-16.378	1.00	0.00	С
	ATOM	5981	OG	SER	A 762	27.23	3 84.2	232	-15.625	1.00	0.00	0
	MOTA	5982	N	VAL .	A 763	30.13	2 83.1	124	-19.131	1.00	0.00	N
	ATOM	5983	CA	VAL .	A 763	31.01	0 82.3	L57	-19.778	1.00	0.00	С
	ATOM	5984	С		A 763				-21.138	1.00	0.00	С
10	ATOM	5985	0	VAL .					-22.029	1.00	0.00	o
10												
	ATOM	5986	СВ	VAL .					-19.988	1.00	0.00	С
	MOTA	5987		VAL .					-20.609	1.00	0.00	С
	ATOM	5988	CG2	VAL .	A 763	3 29.72	9 80.2	880	-18.669	1.00	0.00	С
	MOTA	5989	N	VAL .	A 764	32.87	6 82.4	176	-21.287	1.00	0.00	N
15	ATOM	5990	CA	VAL .	A 764	33.48	7 82.7	725	-22.581	1.00	0.00	С
	ATOM	5991	С	VAL .					-23.043	1.00	0.00	С
	ATOM	5992	0	VAL					-22.520	1.00	0.00	Ö
	MOTA	5993	CB	VAL .					-22.469	1.00	0.00	С
20	MOTA	5994		VAL .					-23.845	1.00	0.00	С
20	MOTA	5995	CG2	VAL .	4 764	34.69			-21.895	1.00	0.00	С
free f	ATOM	5996	N	HIS .	A 765	32.81	3 80.8	375	-23.986	1.00	0.00	N
	MOTA	5997	CA	HIS .	A 765	32.78	6 79.5	317	-24.528	1.00	0.00	С
. Pa	ATOM	5998	С	HIS .	4 765	33.68	5 79.4	125	-25.753	1.00	0.00	С
19 44	MOTA	5999	Ō	HIS.					-26.670	1.00	0.00	Ō
25	MOTA	6000	СВ	HIS					-24.900	1.00	0.00	C
												C
	ATOM	6001	CG	HIS.					~25.364	1.00	0.00	
8 5g	MOTA	6002		HIS.					-26.597	1.00	0.00	N
	ATOM	6003	CD2	HIS.	A 765			572	-24.755	1.00	0.00	С
250	MOTA	6004	CE1	HIS.	A 765	30.5€	4 76.1	126	-26.728	1.00	0.00	С
30	ATOM	6005	NE2	HIS .	A 765	31.03	9 75.5	577	-25.624	1.00	0.00	N
24	MOTA	6006	N	GLN .	A 766	34.56	2 78.4	127	-25.778	1.00	0.00	N
	ATOM	6007	CA	GLN .					-26.892	1.00	0.00	C
. 17	MOTA	6008	C	GLN .					-27.433	1.00	0.00	C
the second												
25	ATOM	6009	0	GLN .					-26.667	1.00	0.00	0
35	MOTA	6010	CB	GLN .					-26.460	1.00	0.00	С
	ATOM	6011	CG	GLN .					~25.632	1.00	0.00	С
energy Trans	MOTA	6012	CD	GLN .	a 766	38.13	4 79.9	95	-24.683	1.00	0.00	С
	ATOM	6013	OEI	GLN .	A 766	39.28	0 79.8	326	-25.105	1.00	0.00	0
	MOTA	6014	NE2	GLN .	4 766	37.86	4 80.2	201	-23.390	1.00	0.00	N
40	MOTA	6015	N	THR .					-28.754	1.00	0.00	N
	ATOM	6016	CA	THR					-29.408	1.00	0.00	С
	ATOM	6017	C	THR .					-30.262	1.00	0.00	Ċ
				THR .								0
	ATOM	6018	0						~31.209	1.00	0.00	
45	MOTA	6019	CB	THR .					-30.299	1.00	0.00	С
45	ATOM	6020		THR .					-29.510			0
	ATOM	6021	CG2	THR .	A 767	34.43			-30.884	1.00	0.00	С
	ATOM	6022	N	ILE .	A 768	37.81	5 74.6	563	-29.912	1.00	0.00	N
	MOTA	6023	CA	ILE .	4 768	39.09	3 74.6	547	-30.614	1.00	0.00	С
	ATOM	6024	С	ILE .			5 73.3	386	-31.449	1.00	0.00	С
50	MOTA	6025	0	ILE .					-30.984	1.00	0.00	Ō
00		6026		ILE .					-29.605	1.00	0.00	C
	ATOM		CB									
	MOTA	6027		ILE .					-28.645	1.00	0.00	С
	ATOM	6028		ILE .					-30.337	1.00	0.00	С
	ATOM	6029	CD1	ILE .	768	40.95	9 76.0	800	-27.490	1.00	0.00	C
55	MOTA	6030	N	MET .	A 769	39.73	6 73.5	664	-32.683	1.00	0.00	N
	ATOM	6031	CA	MET .	A 769	39.93	6 72.4	142	-33.597	1.00	0.00	C
	MOTA	6032	C	MET					-34.052	1.00	0.00	Č
	ATOM	6033	Õ	MET .					-34.475	1.00	0.00	0
40	MOTA	6034	CB	MET .					-34.817	1.00	0.00	С
60	ATOM	6035	CG	MET .					-34.478	1.00	0.00	C
	MOTA	6036	SD	MET .	769	36.52	3 73.3	314	-35.787	1.00	0.00	S

		MOTA	6037	CE	MET A	769	36.440	74.995	-35,226	1.00	0.00	С	
		MOTA	6038	N	ARG A		41.913	71.095	-33.976	1.00	0.00	И	
		ATOM	6039	CA	ARG A	770	43.288	70.841	-34.377	1.00	0.00	С	
		MOTA	6040	С	ARG A	770	43.419	69.640	-35.309	1.00	0.00	С	
	5	MOTA	6041	0	ARG A	770	44.521	69.142	-35.537	1.00	0.00	0	j
		MOTA	6042	CB	ARG A	770	44.157	70.639	-33.135	1.00	0.00	C	
		ATOM	6043	CG	ARG A	770	44.138	71.835	-32.200	1.00	0.00	С	
		MOTA	6044	CD	ARG A	770	44.962	71.604	-30.946	1.00	0.00	С	
		MOTA	6045	NE	ARG A		44.858	72.743	-30.040	1.00	0.00	N	
	10	MOTA	6046	CZ	ARG A	770	45.423	72.803	-28.838	1.00	0.00	С	
		ATOM	6047		ARG A		46.140		-28.385	1.00	0.00	N	
		ATOM	6048		ARG A		45.269	73.887	-28,089	1.00	0.00	N	
		ATOM	6049	N	GLY A		42.295	69.176	-35,842	1.00	0.00	N	
		ATOM	6050	CA	GLY A		42.335	68.047	-36.754	1.00	0.00	C	
	15	ATOM	6051	С	GLY A	771	41,602	66.809	-36.278	1.00	0.00	C	
		ATOM	6052	0	GLY A	771	41.377	65.880	-37.057	1.00	0.00	0	
		ATOM	6053	N	GLY A	772	41.243	66.779	-35.000	1.00	0.00	N	
		ATOM	6054	CA	GLY A		40.528	65.633	-34.469	1.00	0.00	С	
		MOTA	6055	С	GLY A	772	39.339		-33.653	1.00	0.00	С	
a state.	20	MOTA	6056	0	GLY A	772	38.727	67.118	-33.963	1.00	0.00	0	,
i and		MOTA	6057	N	ALA A	773	38.999	65.337	-32.613	1.00	0.00	N	
i, In		MOTA	6058	CA	ALA A	773	37.885	65.720	-31.765	1.00	0.00	С	,
		MOTA	6059	С	ALA A	773	38.207	67.119	-31.245	1.00	0.00	С	
100		MOTA	6060	0	ALA A	773	39.340	67.399	-30.848	1.00	0.00	0	
Stands Signs	25	MOTA	6061	CB	ALA A	773	37.740	64.742	-30.603	1.00	0.00	С	
		MOTA	6062	N	PRO A	774	37.217	68.021	-31.256	1.00	0.00	N	
William William		MOTA	6063	CA	PRO A	774	37.457	69.383	-30.774	1.00	0.00	С	
		MOTA	6064	C	PRO A	774	37.691	69.460	-29.270	1.00	0.00	С	
M		MOTA	6065	0	PRO A	774	37.290	68.571	-28.517	1.00	0.00	0	
	30	MOTA	6066	CB	PRO A	774	36.189	70.122	-31.192	1.00	0.00	С	
91		MOTA	6067	CG	PRO A	774	35.139	69.055	-31.102	1.00	0.00	C	
i con		ATOM	6068	CD	PRO A	774	35.832	67.863	-31.734	1.00	0.00	C	
		MOTA	6069	N	GLU A		38.362		-28.847	1.00	0.00	N	
		ATOM	6070	CA	GLU A		38.611		-27.436	1.00	0.00	C	
g.a.	35	ATOM	6071	С	GLU A		37.663		-27.075	1.00	0.00	С	
1,22		MOTA	6072	0	GLU A		37.465		-27.864	1.00	0.00	0	
		MOTA	6073	CB	GLU A		40.057		-27.191	1.00	0.00	С	
ļsk		MOTA	6074	CG	GLU A		40.368		-25.716	1.00	0.00	C	
	40	ATOM	6075	CD	GLU A		41.784		-25.481	1.00	0.00	C	
	40	MOTA	6076		GLU A		42.687		-26.259	1.00	0.00	0	
		MOTA	6077		GLU A		41.998		-24.505	1.00	0.00	0	
		MOTA	6078	N	ILE A		37.054		-25.902	1.00	0.00	N	
		MOTA	6079	CA	ILE A		36.141		-25.465	1.00	0.00	C	
	15	MOTA	6080	С	ILE A		36.720		-24.207	1.00	0.00	C	
	45	MOTA	6081	O	ILE A		37.174		-23.308 -25.110	1.00	0.00	0	
		ATOM	6082	CB CC1	ILE A		34.749		-25.110 -26.249	1.00		C	
		ATOM	6083		ILE A		34.221 33.793		-26.249 -24.799	1.00	0.00	C	
		ATOM	6084 6085		ILE A		34.067		-27.579	1.00	0.00	C	
	50	ATOM ATOM	6086	N N	ARG A		36.720		-27.373	1.00	0.00	N	
	50	ATOM	6087	CA	ARG A		37.214		-22.981	1.00	0.00	C	
		ATOM	6088	CA	ARG A		36.171		-22.568	1.00	0.00	C	
		ATOM	6089	0	ARG A		35.670		-23.405	1.00	0.00	0	
		ATOM	6090	CB	ARG A		38.536		-23.281	1.00	0.00	c	
	55	ATOM	6091	CG	ARG A		39.685		-23.653	1.00	0.00	C	
	00	ATOM	6092	CD	ARG A		40.989		-23.806	1.00	0.00	c	
		ATOM	6092	NE	ARG A		42.059		-24.350	1.00	0.00	N	
		ATOM	6094	CZ	ARG A		43.229		-24.779	1.00	0.00	C	
		ATOM	6095		ARG A		43.487		-24.779	1.00	0.00	И	
	60	ATOM	6096		ARG A		44.139		-25.274	1.00	0.00	N	
		ATOM	6097	N	ASN A		35.830		-21.284	1.00	0.00	N	
		171 OLI	0091	7.4	TON A	, , 0	22.020	, 0.001	~ * * ~ 0 7	2.00	0.00	14	

		ATOM	6098	CA	ASN A	778	34.865	77 508	-20.745	1.00	0.00	С
		ATOM	6099	C	ASN A		35.516		-19.680	1.00	0.00	Č
		ATOM	6100	0	ASN A		35.985		-18.663	1.00	0.00	ő
			6101	CB	ASN A		33.673		-20.088	1.00	0.00	C
	5	ATOM ATOM	6101	CG	ASN A		32.742		-21.089	1.00	0.00	C
	J		6103		ASN A		32.721		-22.267	1.00	0.00	0
		ATOM			ASN A		31.946		-20.615	1.00	0.00	N
		MOTA	6104				35.561		-19.911	1.00	0.00	N
		ATOM	6105	N	LEU A		36.104		-18.907	1.00	0.00	C
	10	ATOM	6106	CA			34.859		-18.123	1.00	0.00	C
	10	MOTA	6107	C	LEU A		34.039		-18.524	1.00	0.00	0
		MOTA	6108	0			36.753		-18.524 -19.561	1.00	0.00	C
		ATOM	6109	CB	LEU A				-19.561 -18.596	1.00	0.00	C
		MOTA	6110	CG	LEU A		37.246 38.246		-17.611	1.00	0.00	C
	15	ATOM	6111		LEU A		37.878		-19.390	1.00	0.00	c
	15	MOTA	6112				34.632		-17.011	1.00	0.00	N
		MOTA	6113	N C7	VAL A		33.454		-16.182	1.00	0.00	C
		MOTA	6114	CA C	VAL A		33.615		-15.045	1.00	0.00	c
		ATOM	6115 6116		VAL A		34.436		-14.152	1.00	0.00	0
	20	ATOM	6117	O CB	VAL A		32.974		-14.132	1.00	0.00	C
2 425h 3 435h	20	ATOM	6118		VAL A		31.659		-14.835	1.00	0.00	C
7,620 ³		ATOM	6119		VAL A		32.809		-16.692	1.00	0.00	C
.		MOTA	6120	N N	ASP A		32.815		-15.095	1.00	0.00	N
ŧ.□		ATOM ATOM	6121	CA	ASP A		32.827		-14.066	1.00	0.00	C
	25		6122	C	ASP A		31.375		-13.735	1.00	0.00	c
	20	MOTA	6123	0	ASP A		30.738		-14.361	1.00	0.00	0
		MOTA MOTA	6124	CB	ASP A		33.507		-14.575	1.00	0.00	c
5 4 ₂ 4 5 8 9		ATOM	6125	CG	ASP A		33.572		-13.514	1.00	0.00	C
141		ATOM	6126		ASP I		34.037		-13.835	1.00	0.00	0
M	30	ATOM	6127		ASP A		33.164		-12.360	1.00	0.00	0
£t.	50	ATOM	6128	N		782	30.856		-12.755	1.00	0.00	N
		MOTA	6129	CA	ILE A		29.472		-12.339	1.00	0.00	C
. (44)7 g (154),		MOTA	6130	C		782	29.208		-11.659	1.00	0.00	c
in in		ATOM	6131	Ö		782	28.075		-11.308	1.00	0.00	0
	35	ATOM	6132	CB	ILE A		29.083		-11.411	1.00	0.00	С
3,-1		ATOM	6133	CG1			27.563		-11.347	1.00	0.00	C
1,42		MOTA	6134	CG2	ILE A		29.677		-10.018	1.00	0.00	С
Series Series		MOTA	6135	CD1	ILE A	782	27.107	80.678	-10.769	1.00	0.00	C
311,		ATOM	6136	N	GLY A	783	30.263	85.460	-11.483	1.00	0.00	N
	40	ATOM	6137	CA	GLY A	A 783	30.123	86.777	-10.877	1.00	0.00	C
		ATOM	6138	C	GLY A	A 783	29.285	86.839	-9.613	1.00	0.00	C
		MOTA	6139	0	GLY A	783	29.548	86.114	-8.652	1.00	0.00	0
		MOTA	6140	N	SER A		28.274	87.703	-9.606	1.00	0.00	N
		ATOM	6141	CA	SER A	784	27.417	87.844	-8.431	1.00	0.00	C
	45	MOTA	6142	C		784	26.009	87.272	-8.614	1.00	0.00	C
		ATOM	6143	0		784	25.078	87.659	-7.904	1.00	0.00	0
		MOTA	6144	CB		784	27.330	89.317	-8.012	1.00	0.00	С
		MOTA	6145	OG	SER A		26.717	90.108	-9.016	1.00	0.00	0
	50	MOTA	6146	N	LEU A		25.856	86.349	-9.560	1.00	0.00	N
	50	ATOM	6147	CA	LEU A		24.562	85.718	-9.814	1.00	0.00	C
		MOTA	6148	С	LEU A		24.236	84.743	-8.685	1.00	0.00	C
		MOTA	6149	0	LEU A		24.466	83.536	-8.806	1.00	0.00	0
		MOTA	6150	CB	LEU A		24.588		-11.147	1.00	0.00	C
	==	ATOM	6151	CG.	LEU A		24.509		-12.453	1.00	0.00	C
	55	ATOM	6152		LEU A		25.549		-12.471	1.00	0.00	C
		ATOM	6153		LEU I		24.720		-13.625	1.00	0.00	C
		ATOM	6154	N	ASP A		23.691	85.267	-7.593 6.442	1.00	0.00	N
		ATOM	6155	CA	ASP A		23.352	84.439	-6.442 -6.729	1.00	0.00	C
	60	ATOM	6156	С		786	22.287	83.385 83.577	-6.729 -7.569	1.00	0.00	0
	oo	ATOM	6157 6150	O CB		786	21.405			1.00	0.00	C
		ATOM	6158	CB	ASP I	A 786	22.885	85.314	-5.276	1.00	0.00	C

		ATOM	6159	CG	ASP A	786	23.874	86.407	-4.937	1.00	0.00	С
		ATOM	6160		ASP A		25.072	86.098	-4.756	1.00	0.00	0
			6161		ASP A		23.449	87.578	-4.852	1.00	0.00	0
		ATOM			ASI A		22.382	82.274	-6.006	1.00	0.00	N
	5	MOTA	6162	N Cr			21.451	81.162	-6.139	1.00	0.00	C
	5	ATOM	6163	CA	ASN A			80.754	-7.588	1.00	0.00	C
		ATOM	6164	C	ASN A		21.260		-8.076	1.00	0.00	Ō
		ATOM	6165	0	ASN A		20.140	80.615		1.00	0.00	Č
		MOTA	6166	CB	ASN A		20.113	81.525	-5.496			C
	40	ATOM	6167	CG	ASN A		20.255	81.836	-4.021	1.00	0.00	0
	10	MOTA	6168		ASN A		20.920	81.103	-3.286	1.00	0.00	
		MOTA	6169	ND2	ASN A		19.636	82.923	-3.578	1.00	0.00	N
		MOTA	6170	N	THR A	788	22.380	80.553	-8.267	1.00	0.00	N
		ATOM	6171	CA	THR A	788	22.365	80.153	-9.661	1.00	0.00	C
		ATOM	6172	С	THR A	788	23.397	79.056	-9.891	1.00	0.00	C
	15	MOTA	6173	0	THR A		24.492	79.091	-9.328	1.00	0.00	0
		MOTA	6174	CB	THR A	788	22.699		-10.579	1.00	0.00	C
		MOTA	6175	OG1	THR A	788	21.741		-10.368	1.00	0.00	0
		MOTA	6176	CG2	THR A	788	22.665	80.929	-12.045	1.00	0.00	С
		MOTA	6177	N	GLU A	789	23.027	78.072	-10.699	1.00	0.00	N
	20	MOTA	6178	CA	GLU A	789	23.934		-11.048	1.00	0.00	С
		MOTA	6179	С	GLU A	. 789	23.926	76.936	-12.568	1.00	0.00	С
		ATOM	6180	0	GLU A		22.882	76.735	-13.189	1.00	0.00	0
		ATOM	6181	CB	GLU A		23.466	75.661	-10.435	1.00	0.00	С
Tribull's		ATOM	6182	CG	GLU A		23.437	75.702	-8.908	1.00	0.00	С
ij	25	ATOM	6183	CD	GLU A		23.458	74.330	-8.257	1.00	0.00	С
3 4 5		MOTA	6184		GLU A		24.228	73.457	-8.724	1.00	0.00	0
		ATOM	6185		GLU A		22.720	74.135	-7.264	1.00	0.00	0
		ATOM	6186	N	ILE A		25.093		-13.162	1.00	0.00	N
3 % 3		MOTA	6187	CA	ILE A		25.225		-14.610	1.00	0.00	С
	30	MOTA	6188	C	ILE P		25.573		-15.134	1.00	0.00	С
1,52	50	ATOM	6189	Ö	ILE F		26.529		-14.677	1.00	0.00	0
ŭ)		ATOM	6190	СВ	ILE F		26.315		-15.059	1.00	0.00	C
		ATOM	6191		ILE F		26.005		-14.509	1.00	0.00	С
i deal		ATOM	6192		ILE P		26.389		-16.579	1.00	0.00	С
	35	MOTA	6193		ILE A		27.126		-14.712	1.00	0.00	С
fing.	55	ATOM	6194	N	VAL A		24.794		-16.099	1.00	0.00	N
		ATOM	6195	CA	VAL A		25.030		-16.672	1.00	0.00	C
		ATOM	6196	C	VAL A		25.280		-18.171	1.00	0.00	С
1200		ATOM	6197	0	VAL A		24.712		-18.859	1.00	0.00	0
i ala	40	ATOM	6198	CB	VAL A		23.820		-16.423	1.00	0.00	С
	1 0		6199		VAL A		22.588		-17.159	1.00	0.00	С
		ATOM	6200		VAL A		24.152		-16.875	1.00	0.00	С
		ATOM	6200	N N	MET A		26.161		-18.665	1.00	0.00	N
		ATOM ATOM			MET A		26.445		-20.093	1.00	0.00	С
	45		6202	CA	MET A		25.810		-20.561	1.00	0.00	С
	40	ATOM	6203	С	MET A		26.145		-20.061	1.00	0.00	0
		MOTA	6204	O	MET A		27.947		-20.367	1.00	0.00	C
		MOTA	6205	CB			28.275		-21.849	1.00	0.00	C
		MOTA	6206	CG	MET A		30.047		-22.215	1.00	0.00	S
	EΩ	ATOM	6207	SD	MET A		30.643		-21.365	1.00	0.00	C
	50	ATOM	6208	CE	MET A		24.891		-21.515	1.00	0.00	N
		ATOM	6209	N	ARG A				-22.017	1.00	0.00	C
		ATOM	6210	CA	ARG A		24.189		-23.500	1.00	0.00	c
		MOTA	6211	C	ARG A		24.423		-24.284	1.00	0.00	0
	==	MOTA	6212	0		A 793	24.630			1.00	0.00	c
	55	MOTA	6213	CB	ARG A		22.681		-21.755		0.00	c
		MOTA	6214	CG		A 793	21.806		-22.230	1.00	0.00	C
		MOTA	6215	CD		A 793	20.324		-21.934	1.00	0.00	N
		ATOM	6216	NE		793	20.062		-20.499		0.00	C
	(0	MOTA	6217	CZ		A 793	18.972		-19.971	1.00	0.00	N
	60	MOTA	6218		ARG A		18.030		-20.759	1.00	0.00	N N
		ATOM	6219	NH2	ARG A	A 193	18.826	10.151	-18.652	1.00	0.00	1.4

		ATOM	6220	N	LEU A	794	24.399	69.257	-23.870	1.00	0.00	N
		ATOM	6221	CA	LEU A		24.554	68.837		1.00	0.00	C
		ATOM	6222	C	LEU A		23.252	68.146		1.00	0.00	C
		MOTA	6223	0	LEU A		22.764		-24.940	1.00	0.00	0
	5		6224	CB	LEU A		25.730	67.861		1.00	0.00	C
	9	MOTA			LEU A		27.137		-25.469	1.00	0.00	Ċ
		ATOM	6225	CG					-25.012	1.00	0.00	Č
		MOTA	6226		LEU A		28.178		-26.894	1.00	0.00	Č
		MOTA	6227		LEU A		27.413			1.00	0.00	N
	10	MOTA	6228	N	GLU A		22.680		-26.787			C
	10	ATOM	6229	CA	GLU A		21.439		-27.276	1.00	0.00	C
		MOTA	6230	С	GLU A		21.711		-28.599	1.00	0.00	
		ATOM	6231	0	GLU A		22.264		-29.528	1.00	0.00	0
		MOTA	6232	CB	GLU A		20.369		-27.466	1.00	0.00	С
		MOTA	6233	CG	GLU A	795	20.155		-26.229	1.00	0.00	С
	15	ATOM	6234	CD	GLU A	795	19.116		-26.426	1.00	0.00	C
		MOTA	6235	OE1	GLU A	795	19.075	71.614	-27.520	1.00	0.00	0
		MOTA	6236	OE2	GLU A	795	18.351		-25.477	1.00	0.00	0
		MOTA	6237	N	THR A	796	21.338		-28.677	1.00	0.00	N
		MOTA	6238	CA	THR A	796	21.554	65.182	-29.888	1.00	0.00	C
	20	MOTA	6239	C	THR A	796	20.334	64.330	-30.225	1.00	0.00	С
		ATOM	6240	0	THR A	796	19.333	64.350	-29.514	1.00	0.00	0
		MOTA	6241	CB	THR A		22.746	64.212	-29.744	1.00	0.00	С
. 17		ATOM	6242	OG1	THR A		22.350	63.095	-28.933	1.00	0.00	0
300) (100)		ATOM	6243		THR A		23.940	64.915	-29.102	1.00	0.00	С
	25	ATOM	6244	N	HIS A		20.444	63.577	-31.316	1.00	0.00	N
4,11		ATOM	6245	CA	HIS A		19.377	62.691	-31.771	1.00	0.00	C
1,22		MOTA	6246	С	HIS A		19.678	61.252	-31.369	1.00	0.00	C
		ATOM	6247	Ö	HIS A		18.953	60.332	-31.743	1.00	0.00	0
g 'Sar' g (6 8		ATOM	6248	СВ	HIS A		19.233	62.773	-33.293	1.00	0.00	С
	30	MOTA	6249	CG	HIS A		18.600		-33.771	1.00	0.00	C
(Ti		MOTA	6250		HIS A		18.581		-35.100	1.00	0.00	И
٩)		ATOM	6251		HIS A		17.951	65.022	-33.099	1.00	0.00	С
		ATOM	6252		HIS A		17.948		-35.224	1.00	0.00	C
i seed		ATOM	6253		HIS A		17.556		-34.025	1.00	0.00	N
	35	ATOM	6254	N	ILE A		20.751		-30.607	1.00	0.00	N
	00	ATOM	6255	CA	ILE A		21.133		-30.159	1.00	0.00	C
g sala		ATOM	6256	C	ILE A		19.995		-29.354	1.00	0.00	C
		ATOM	6257	Ö	ILE A		19.467		-28.429	1.00	0.00	0
1 per 1		ATOM	6258	СВ	ILE A		22.422		-29.301	1.00	0.00	C
i Scut	40	ATOM	6259		ILE A		23.571		-30.151	1.00	0.00	C
	10	ATOM	6260		ILE A		22.772	58.386	-28.789	1.00	0.00	С
		MOTA	6261		ILE A		24.880		-29.396	1.00	0.00	С
		MOTA	6262	N	ASP A		19.613		-29.726	1.00	0.00	N
		ATOM	6263	CA	ASP F		18.525		-29.062	1.00	0.00	C
	45	ATOM	6264	C	ASP A		19.025		-27.829	1.00	0.00	C
	10	ATOM	6265	Ö	ASP F		18.975		-27.773	1.00	0.00	0
		ATOM	6266	CB	ASP A		17.881		-30.037	1.00	0.00	С
		ATOM	6267	CG	ASP A		16.554		-29.537	1.00	0.00	C
		ATOM	6268		ASP A		16.082		-30.066	1.00	0.00	0
	50	ATOM	6269		ASP F		15.979		-28.618	1.00	0.00	0
	50	ATOM	6270	N	SER A		19.495		-26.838	1.00	0.00	N
		ATOM	6271	CA	SER F		20.023		-25.612	1.00	0.00	C
		ATOM	6272	C	SER F		18.949		-24.599	1.00	0.00	C
		ATOM	6273	0	SER F		19.200		-23.713	1.00	0.00	0
	55	ATOM	6274	CB	SER F		21.010		-24.960	1.00	0.00	C
	55		6274	OG	SER F		20.379		-24.680	1.00	0.00	Ō
		ATOM	6276		GLY A		17.758		-24.721	1.00	0.00	N
		ATOM	6277	N CA	GLI F		16.685		-23.798	1.00	0.00	C
		ATOM			GLI A		16.003		-22.389	1.00	0.00	C
	60	ATOM	6278	С	GLY F		17.035		-22.166	1.00	0.00	Ö
	00	ATOM	6279	O N			17.039		-21.433	1.00	0.00	N
		ATOM	6280	N	ASP A	1 002	11.039	20.023	~1.70	1.00	5.00	14

		ATOM	6281	CA	ASP A	A 802	1	7.288	56.403	-20.043	1.00	0.00	С
		ATOM	6282	C		A 802		8.671	55.948	-19.575	1.00	0.00	С
		MOTA	6283	0		A 802		8.971	55.981	-18.383	1.00	0.00	0
		ATOM	6284	СВ	ASP A			6.202		-19.124	1.00	0.00	С
	5	ATOM	6285	CG		A 802		6.090		-19.230	1.00	0.00	С
	J	ATOM	6286		ASP A			5.193		-18.566	1.00	0.00	0
			6287		ASP A			6.887		-19.963	1.00	0.00	0
		ATOM				A 803		9.511		-20.522	1.00	0.00	N
		ATOM	6288	N				0.858		-20.210	1.00	0.00	C
	10	ATOM	6289	CA		803				-20.542	1.00	0.00	Ċ
	10	ATOM	6290	C		803		1.979				0.00	Ö
		ATOM	6291	0		803		1.925		-21.539	1.00	0.00	C
		ATOM	6292	CB		A 803		1.162		-20.968	1.00		C
		MOTA	6293		ILE A			0.142		-20.580	1.00	0.00	C
	4	MOTA	6294	CG2		803 A		2.583		-20.665	1.00	0.00	
	15	MOTA	6295	CD1		E08 A		0.164		-19.111	1.00	0.00	C
		MOTA	6296	N		A 804		2.995		-19.686	1.00	0.00	N
		MOTA	6297	CA	PHE :	A 804		4.162		-19.915	1.00	0.00	C
		MOTA	6298	С	PHE .	A 804	2	5.302		-19.074	1.00	0.00	C
		MOTA	6299	0	PHE .	A 804	2	5.082		-18.196	1.00	0.00	0
	20	MOTA	6300	CB	PHE .	A 804	2	3.879	58.421	-19.615	1.00	0.00	С
		MOTA	6301	CG	PHE .	A 804	2	3.519	58.728	-18.185	1.00	0.00	C
		ATOM	6302	CD1	PHE .	A 804	2	4.453	59.317	-17.330	1.00	0.00	C
		ATOM	6303	CD2	PHE .	A 804	2	2.229	58.500	-17.711	1.00	0.00	C
ida.		ATOM	6304	CE1	PHE .	A 804	2	4.103	59.682	-16.027	1.00	0.00	C
	25	ATOM	6305		PHE			1.867	58.857	-16.411	1.00	0.00	С
		ATOM	6306	CZ		A 804	2	2.808	59.452	-15.567	1.00	0.00	C
4.00F		ATOM	6307	N		A 805		6.522	56.805	-19.367	1.00	0.00	N
		ATOM	6308	CA		A 805		7.673	56.305	-18.632	1.00	0.00	С
RAP RAP		ATOM	6309	С		A 805		8.508		-18.048	1.00	0.00	С
	30	ATOM	6310	Ö		A 805		8.648		-18.654	1.00	0.00	0
1971	00	ATOM	6311	СВ		A 805		8.549		-19.548	1.00	0.00	С
31		ATOM	6312	CG		A 805		7.851		-20.108	1.00	0.00	С
		ATOM	6313		TYR			6.859		-21.086	1.00	0.00	С
		ATOM	6314	CD2		A 805		8.187		-19.663	1.00	0.00	С
	35	ATOM	6315		TYR			6.223		-21.610	1.00	0.00	С
		ATOM	6316			A 805		7.555		-20.179	1.00	0.00	С
E (155)		ATOM	6317	CEZ		A 805		6.578		-21.150	1.00	0.00	С
			6318	OH		A 805		5.964		-21.667	1.00	0.00	0
4 422 4 426 4 426		MOTA	6319	N		A 806		9.046		-16.858	1.00	0.00	N
	40	MOTA	6320	CA		A 806		9.902		-16.182	1.00	0.00	C
	40	MOTA		CA		A 806		1.062		-15.608	1.00	0.00	C
		MOTA	6321	0		A 806		0.941		-15.415	1.00	0.00	0
		ATOM	6322			A 806		9.144		-15.057	1.00	0.00	Č
		ATOM	6323	CB OC1				8.760		-14.038	1.00	0.00	0
	45	ATOM	6324			A 806		7.890		-15.620	1.00	0.00	C
	43	ATOM	6325			A 806		2.192		-15.352	1.00	0.00	N
		ATOM	6326	N		A 807				-14.823	1.00	0.00	C
		ATOM	6327	CA		A 807		3.331		-13.315	1.00	0.00	C
		ATOM	6328	C		A 807		3.445		-12.702	1.00	0.00	Ö
	EΩ	MOTA	6329	0		A 807		2.869		-15.473	1.00	0.00	C
	50	MOTA	6330	CB		A 807		4.633				0.00	Č
		ATOM	6331	CG		A 807		5.089		-14.958	1.00	0.00	0
		MOTA	6332			A 807		6.236		-14.478			0
		MOTA	6333			A 807		34.313		-15.038	1.00	0.00	И
		MOTA	6334	N		A 808		34.181		-12.729	1.00	0.00	C
	55	MOTA	6335	CA		808 A		34.417		-11.299	1.00	0.00	
		ATOM	6336	С		808 A		35.910		-11.086	1.00	0.00	С
		ATOM	6337	0		A 808		36.722		-11.461	1.00	0.00	0
		ATOM	6338	CB		A 808		3.960		-10.674	1.00	0.00	C
		ATOM	6339	CG		A 808		32.442		-10.518	1.00	0.00	C
	60	ATOM	6340			A 808		32.120		-10.264	1.00	0.00	C
		MOTA	6341	CD2	LEU	808 A	3	31.928	55.788	-9.372	1.00	0.00	С

		ATOM	6342	N	ASN A	809	36.259	57.804	-10.527	1.00	0.00	N
		ATOM	6343	CA	ASN A	809	37.643	58.149	-10.217	1.00	0.00	С
		ATOM	6344	C	ASN A		38.620		-11.382	1.00	0.00	С
												Ō
	_	MOTA	6345	0	ASN A		39.803		-11.170	1.00	0.00	
	5	ATOM	6346	CB	ASN A	809	38.122	57.266	-9.069	1.00	0.00	С
		MOTA	6347	CG	ASN A	809	37.132	57.230	-7.927	1.00	0.00	С
		ATOM	6348	OD1	ASN A	809	37.117	58.117	-7.065	1.00	0.00	0
							36.274	56.220	-7.929	1.00	0.00	N
		ATOM	6349		ASN A							
		ATOM	6350	N	GLY A		38.134		-12.601	1.00	0.00	N
	10	MOTA	6351	CA	GLY A	810	38.999	58.182	-13.770	1.00	0.00	C
		ATOM	6352	С	GLY A	810	39.588	56.797	-13.976	1.00	0.00	С
		ATOM	6353	0	GLY A		40.618		-14.645	1.00	0.00	0
							38.920		-13.418	1.00	0.00	N
		MOTA	6354	N	LEU A							C
	4-	MOTA	6355	CA	LEU A		39.381		-13.499	1.00	0.00	
	15	MOTA	6356	С	LEU A	811	38.510		-14.345	1.00	0.00	C
		MOTA	6357	0	LEU A	811	39.022	52.647	-15.085	1.00	0.00	0
		MOTA	6358	CB	LEU A	811	39.485	53.835	-12.084	1.00	0.00	С
		ATOM	6359	CG	LEU A		39.808		-11.975	1.00	0.00	С
									-12.523	1.00	0.00	C
	00	ATOM	6360		LEU A		41.209					
	20	MOTA	6361	CD2	LEU A		39.700		-10.524	1.00	0.00	С
		MOTA	6362	N	GLN A	812	37.196	53.651	-14.238	1.00	0.00	N
		ATOM	6363	CA	GLN A	812	36.261	52.785	-14.947	1.00	0.00	C
1887 1 (200)		ATOM	6364	С	GLN A	812	34.993	53.540	-15.291	1.00	0.00	C
, inter-		ATOM	6365	Ö	GLN A		34.687		-14.664	1.00	0.00	0
4,123	25									1.00	0.00	č
4 1577	23	ATOM	6366	CB	GLN A		35.888		-14.039			
ijħ		ATOM	6367	CG	GLN A	812	35.288		-12.701	1.00	0.00	C
Sale Sale		MOTA	6368	CD	GLN A	812	34.982	50.963	-11.733	1.00	0.00	С
T.		ATOM	6369	OE1	GLN A	812	33.991	50.248	-11.883	1.00	0.00	0
		MOTA	6370	NE2	GLN A	812	35.841	50.795	-10.733	1.00	0.00	N
High High	30	ATOM	6371	N	PHE A		34.258		-16.284	1.00	0.00	N
(Fi	50						32.996		-16.667	1.00	0.00	C
		ATOM	6372	CA	PHE A							c
21		MOTA	6373	С	PHE A		31.874		-16.261	1.00	0.00	
		MOTA	6374	0	PHE A	813	31.888		-16.576	1.00	0.00	0
		MOTA	6375	CB	PHE A	813	32.953	53.956	-18.170	1.00	0.00	С
Harry T.	35	MOTA	6376	CG	PHE A	813	33.703	55.199	-18.548	1.00	0.00	С
942		MOTA	6377	CD1	PHE A		35.093	55,204	-18.581	1.00	0.00	C
		ATOM	6378		PHE A		33.020		-18.801	1.00	0.00	С
					PHE A		35.798		-18.856	1.00	0.00	c
		MOTA	6379									c
	40	MOTA	6380		PHE A		33.718		-19.077	1.00	0.00	
*	40	ATOM	6381	CZ	PHE A		35.110		-19.102	1.00	0.00	C
		ATOM	6382	N	ILE A	814	30.912	53.269	-15.536	1.00	0.00	N
		ATOM	6383	CA	ILE A	814	29.798	52.490	-15.034	1.00	0.00	С
		ATOM	6384	С	ILE A		28.485		-15.679	1.00	0.00	C
		ATOM	6385				28.260		-15.924	1.00	0.00	0
	45								-13.491	1.00	0.00	Ċ
	40	MOTA	6386	CB	ILE A		29.721					
		ATOM	6387		ILE A		28.672		-12.926	1.00	0.00	C
		MOTA	6388	CG2	ILE A	814	29.409		-13.101	1.00	0.00	C
		MOTA	6389	CD1	ILE A	814	28.665	51.582	-11.396	1.00	0.00	С
		ATOM	6390	N	LYS A	815	27.625	51.958	-15.963	1.00	0.00	N
	50	ATOM	6391	CA	LYS A		26.341		-16.592	1.00	0.00	С
	00						25.380		-15.600	1.00	0.00	C
		MOTA	6392	C	LYS A							0
		ATOM	6393	0	LYS A		25.247		-14.467	1.00	0.00	
		MOTA	6394	CB	LYS A	. 815	25.748		-17.140	1.00	0.00	С
		MOTA	6395	CG	LYS A	815	24.388	51.055	-17.816	1.00	0.00	C
	55	MOTA	6396	CD	LYS A	815	23.990		-18.418	1.00	0.00	C
		MOTA	6397	CE	LYS A		22.669		-19.161	1.00	0.00	C
							22.303		-19.762	1.00	0.00	Ŋ
		ATOM	6398	NZ	LYS A							N
		ATOM	6399	N	ARG A		24.731		-16.039	1.00	0.00	
	(0	ATOM	6400	CA	ARG A		23.766		-15.226	1.00	0.00	C
	60	ATOM	6401	С	ARG P	816	22.400		-15.881	1.00	0.00	С
		ATOM	6402	0	ARG A	816	22.302	54.510	-17.102	1.00	0.00	0

		ATOM	6403	СВ	ARG A	816	24.127	56.177	-15.155	1.00	0.00	С
		MOTA	6404	CG	ARG A	816	25.517	56.489	-14.635	1.00	0.00	С
		MOTA	6405	CD	ARG A	816	25.690	55.935	-13.240	1.00	0.00	С
		ATOM	6406	NE	ARG A	816	26.856	56.490	-12.557	1.00	0.00	N
	5	MOTA	6407	CZ	ARG A		27.229	56.123	-11.337	1.00	0.00	С
	•	ATOM	6408		ARG A		26.527	55.204		1.00	0.00	N
		ATOM	6409		ARG A		28.287	56.679		1.00	0.00	N
		ATOM	6410	N	ARG A		21.349	54.581		1.00	0.00	N
		ATOM	6411		ARG A		19.999	54.549		1.00	0.00	С
	10	ATOM	6412	C	ARG A		19.210	55.684		1.00	0.00	c
	10						19.032	55.718		1.00	0.00	Ō
		MOTA	6413	0	ARG A			53.718		1.00	0.00	C
		ATOM	6414	CB	ARG A		19.293	53.206		1.00	0.00	c
		ATOM	6415	CG	ARG A		17.826				0.00	C
	15	MOTA	6416	CD	ARG A		17.112	51.862		1.00	0.00	И
	15	ATOM	6417	NE	ARG A		17.629	50.832		1.00		
		MOTA	6418	CZ	ARG A		18.366	49.799		1.00	0.00	C N
		MOTA	6419		ARG A		18.677	49.650		1.00	0.00	
		MOTA	6420		ARG A		18.794	48.912		1.00	0.00	N
	20	MOTA	6421	N	ARG A		18.777	56.635		1.00	0.00	N
	20	ATOM	6422	CA	ARG A		17.983	57.751		1.00	0.00	C
21721.		MOTA	6423	C	ARG A		16.706	57.142		1.00	0.00	C
		MOTA	6424	0	ARG A		16.061	56.327		1.00	0.00	0
J		MOTA	6425	CB	ARG A		17.620	58.699		1.00	0.00	C
. 1	0=	MOTA	6426	CG	ARG A		16.915	59.973		1.00	0.00	C
695	25	MOTA	6427	CD	ARG A		16.267	60.712		1.00	0.00	C
11 222 5'0 K		MOTA	6428	NE	ARG A		14.977	60.124		1.00	0.00	И
		MOTA	6429	CZ	ARG A		14.699	59.550		1.00	0.00	C
W.		MOTA	6430		ARG A		15.620	59.477		1.00	0.00	N
	20	MOTA	6431	NH2	ARG A		13.492	59.042		1.00	0.00	N
	30	MOTA	6432	N	LEU A		16.350	57.523		1.00	0.00	N
		ATOM	6433	CA	LEU A		15.147	57.006		1.00	0.00	C
5)		ATOM	6434	С	LEU A		14.178	58.149		1.00	0.00	C
		ATOM	6435	0	LEU A		14.429		-11.749	1.00	0.00	0
1,44	0.5	ATOM	6436	CB	LEU A		15.509	56.304		1.00	0.00	C
ing.	35	ATOM	6437	CG	LEU A		16.428		-11.680	1.00	0.00	C
5 ·***		MOTA	6438		LEU A		16.842	54.608		1.00	0.00	C
		MOTA	6439	CD2	LEU A		15.715		-12.443	1.00	0.00	С
		ATOM	6440	N	ASP A		13.066		-13.328	1.00	0.00	N
gradie gradie	40	ATOM	6441	CA	ASP A		12.095		-13.140	1.00	0.00	C
-	40	ATOM	6442	С	ASP A		11.374		-11.805	1.00	0.00	C
		MOTA	6443	0	ASP A		10.713		-11.359	1.00	0.00	0
		MOTA	6444	CB	ASP A		11.104		-14.307	1.00	0.00	C
		MOTA	6445	CG	ASP A		11.786		-15.638	1.00	0.00	C
	45	MOTA	6446		ASP A		12.746		-15.654	1.00	0.00	0
	45	MOTA	6447	OD2	ASP A		11.365		-16.669	1.00	0.00	0
		MOTA	6448	N	LYS A		11.514		-11.154	1.00	0.00	И
		MOTA	6449	CA	LYS A		10.876	57.755	-9.857	1.00	0.00	C
		MOTA	6450	С	LYS A		11.670	58.516	-8.795	1.00	0.00	C
		MOTA	6451	0	LYS A		11.237	58.638	-7.652	1.00	0.00	0
	50	MOTA	6452	CB	LYS A		10.795	56.266	-9.498	1.00	0.00	C
		MOTA	6453	CG	LYS A		12.140	55.579	-9.313	1.00	0.00	C
		MOTA	6454	CD	LYS A		11.969	54.074	-9.144	1.00	0.00	С
		MOTA	6455	CE	LYS A		13.320	53.372	-9.062	1.00	0.00	C
		MOTA	6456	NZ	LYS A	821	13.179	51.886	-9.108	1.00	0.00	N
	55	ATOM	6457	N	LEU A		12.833	59.030	-9.185	1.00	0.00	N
		MOTA	6458	CA	LEU A		13.671	59.803	-8.273	1.00	0.00	C
		MOTA	6459	С	LEU A	822	13.718	61.258	-8.737	1.00	0.00	С
		MOTA	6460	0	LEU A		13.550	61.541	-9.923	1.00	0.00	0
		MOTA	6461	CB	LEU A		15.091	59.232	-8.234	1.00	0.00	С
	60	MOTA	6462	CG	LEU A		15.220	57.794	-7.717	1.00	0.00	C
		MOTA	6463	CD1	LEU A	822	16.682	57.360	-7.749	1.00	0.00	С

		MOTA	6464	CD2	LEU A 822	14.665	57.713 -6.2	98 1.00	0.00	С
		ATOM	6465	N	PRO A 823		62.201 -7.8	07 1.00	0.00	N
										C
		MOTA	6466	CA	PRO A 823		63.615 -8.1		0.00	
		MOTA	6467	С	PRO A 823	15.217	63.928 -9.0	66 1.00	0.00	С
	5	MOTA	6468	0	PRO A 823		63.175 -9.0	90 1.00	0.00	0
	9									C
		MOTA	6469	CB	PRO A 823		64.340 -6.8		0.00	
		ATOM	6470	CG	PRO A 823	3 14.727	63.362 -5.9	49 1.00	0.00	С
		ATOM	6471	CD	PRO A 823		62.037 -6.3	53 1.00	0.00	C
									0.00	N
	4.0	MOTA	6472	N	LEU A 82		65.046 -9.7			
	10	MOTA	6473	CA	LEU A 82	16.219	65.466 -10.6	82 1.00	0.00	C
		ATOM	6474	С	LEU A 82	17.632	65.338 -10.1	00 1.00	0.00	C
									0.00	0
		ATOM	6475	0	LEU A 82		64.730 -10.7			
		MOTA	6476	CB	LEU A 82	15.968	66.914 -11.1	.26 1.00	0.00	C
		ATOM	6477	CG	LEU A 82	16.744	67.449 -12.3	33 1.00	0.00	C
	15				LEU A 82		68.650 -12.9	23 1.00	0.00	C
	10	MOTA	6478							
		MOTA	6479	CD2	LEU A 82		67.826 -11.9		0.00	С
		ATOM	6480	N	GLN A 82	17.844	65.902 -8.9	1.00	0.00	N
		ATOM	6481	CA	GLN A 82		65.874 -8.2	71 1.00	0.00	C
									0.00	C
		MOTA	6482	С	GLN A 82					
	20	MOTA	6483	0	GLN A 82	20.928	64.285 -7.9	07 1.00	0.00	0
		MOTA	6484	CB	GLN A 82	5 19.123	66.651 -6.9	51 1.00	0.00	С
1000			6485	CG	GLN A 82		66.095 -5.9	18 1.00	0.00	С
(car		MOTA							0.00	Č
		MOTA	6486	CD	GLN A 82		66.679 -6.0			
		ATOM	6487	OE1	GLN A 82	16.340	67.104 -7.1	18 1.00	0.00	0
, terrin	25	MOTA	6488	NE2	GLN A 82	16.013	66.685 -4.9	39 1.00	0.00	N
M							63.491 -7.8		0.00	N
: (200) : (200)		MOTA	6489	N	ALA A 82					
		MOTA	6490	CA	ALA A 82	5 19.244	62.117 -7.6	540 1.00	0.00	С
ij.		MOTA	6491	С	ALA A 82	19.845	61.505 -8.9	02 1.00	0.00	C
2 1527 2 1527 2 1527		ATOM	6492	0	ALA A 82		60.558 -8.8	37 1.00	0.00	0
	20									Č
177	30	ATOM	6493	CB	ALA A 82		61.280 -7.1		0.00	
48.5		ATOM	6494	N	ASN A 82	7 19.468	62.048 -10.0	1.00	0.00	N
35		ATOM	6495	CA	ASN A 82	7 19.975	61.541 -11.3	322 1.00	0.00	С
		ATOM	6496	C	ASN A 82		62.199 -11.7		0.00	C
र्र्स:स्ट										0
		ATOM	6497	0	ASN A 82		61.952 -12.8		0.00	
5 N E	35	MOTA	6498	CB	ASN A 82	7 18.910	61.696 -12.4	112 1.00	0.00	С
9 1.3		ATOM	6499	CG	ASN A 82		60.710 -12.2	236 1.00	0.00	C
					ASN A 82		59.498 -12.3		0.00	0
		ATOM	6500							
\$ 1.000 1.00		MOTA	6501	ND2	ASN A 82		61.224 -11.9		0.00	N
god.		MOTA	6502	N	TYR A 82	3 21.820	63.046 -10.8	348 1.00	0.00	N
20.00	40	ATOM	6503	CA	TYR A 82		63.677 -11.1	1.00	0.00	C
	10						62.746 -10.4		0.00	С
		MOTA	6504	С	TYR A 82					
		MOTA	6505	0	TYR A 82	3 23.953	62.223 -9.3		0.00	0
		MOTA	6506	CB	TYR A 82	3 23.199	65.058 -10.4	142 1.00	0.00	С
		MOTA	6507	CG	TYR A 82		66.206 -11.4	137 1.00	0.00	С
	4 =								0.00	C
	45	MOTA	6508		TYR A 82		66.432 -12.3			
		MOTA	6509	CD2	TYR A 82	3 24.335	67.054 -11.5	524 1.00	0.00	C
		ATOM	6510	CE 1	TYR A 82	3 22.188	67.474 -13.2	233 1.00	0.00	С
							68.096 -12.4		0.00	С
		MOTA	6511		TYR A 82					
		MOTA	6512	CZ	TYR A 82		68.300 -13.3		0.00	С
	50	ATOM	6513	OH	TYR A 82	8 23.352	69.314 -14.2	230 1.00	0.00	0
		ATOM	6514	N	TYR A 82		62.536 -11.2	210 1.00	0.00	N
							61.670 -10.3		0.00	C
		MOTA	6515	CA	TYR A 82					
		ATOM	6516	С	TYR A 82	9 27.674	62.365 -10.9	911 1.00	0.00	C
		ATOM	6517	0	TYR A 82	9 27.793	63.362 -11.6	519 1.00	0.00	0
	55	MOTA	6518	CB	TYR A 82		60.372 -11.5		0.00	C
										C
		MOTA	6519	CG	TYR A 82		59.448 -11.3		0.00	
		ATOM	6520	CD1	TYR A 82	9 24.039	59.520 -12.0		0.00	C
		ATOM	6521	CD2	TYR A 82	9 25.245	58.530 -10.2	273 1.00	0.00	C
									0.00	C
	60	MOTA	6522		TYR A 82					
	60	MOTA	6523		TYR A 82		57.710 -9.9		0.00	C
		ATOM	6524	CZ	TYR A 82	9 23.011	57.797 -10.	755 1.00	0.00	C

	ATOM	6525	ОН	TYR A	829	21.935	56.997 -10.4	140 1.00	0.00	0
	ATOM	6526	N	PRO A		28.709	61.844 -10.2	238 1.00	0.00	N
	ATOM	6527	CA	PRO A	830	30.028	62.468 -10.3	361 1.00	0.00	C
	ATOM	6528	С	PRO A		30.532		793 1.00	0.00	С
5	ATOM	6529	0	PRO A		30.314		396 1.00	0.00	0
	ATOM	6530	CB	PRO A		30.890		383 1.00	0.00	С
	ATOM	6531	CG	PRO A		29.910			0.00	С
	ATOM	6532	CD	PRO A		28.725			0.00	С
	ATOM	6533	N	ILE A		31.180			0.00	N
10	MOTA	6534	CA	ILE A		31.764			0.00	C
10	ATOM	6535	C	ILE A		33.240			0.00	C
	MOTA	6536	Ô	ILE A		33.726			0.00	0
	ATOM	6537	CB	ILE A		31.182			0.00	Ċ
	ATOM	6538		ILE A		29.648			0.00	C
15	MOTA	6539		ILE A		31.711			0.00	Č
10	ATOM	6540		ILE A		29.037			0.00	Č
	ATOM	6541	N	PRO A		33.972			0.00	N
	MOTA	6542	CA	PRO A		35.392			0.00	C
	ATOM	6543	C	PRO A		36.283			0.00	Č
20	ATOM	6544	0	PRO A		37.271			0.00	0
20	ATOM	6545	CB	PRO A		35.805			0.00	Č
	ATOM	6546	CG	PRO A		34.813			0.00	Č
	ATOM	6547	CD	PRO A		33.525			0.00	Č
	ATOM	6548	N	SER A		35.952			0.00	N
25	ATOM	6549	CA	SER A		36.780			0.00	C
20	ATOM	6550	CA	SER A		36.050			0.00	C
	ATOM	6551	0	SER A		36.580			0.00	o
	ATOM	6552	CB	SER A		37.997			0.00	C
	ATOM	6553	OG	SER A		37.652			0.00	Ō
30	ATOM	6554	N	GLY A		34.844			0.00	N
00	ATOM	6555	CA	GLY A		34.122			0.00	C
	ATOM	6556	C	GLY A		32.723			0.00	Č
	ATOM	6557	Ö	GLY A		32.341			0.00	Ō
	ATOM	6558	N	MET A		31.960			0.00	Ñ
35	ATOM	6559	CA	MET A		30.591			0.00	C
00	ATOM	6560	C	MET A		30.216			0.00	C
	ATOM	6561	0	MET A		30.786			0.00	0
	ATOM	6562	CB	MET A		29.643			0.00	С
	ATOM	6563	CG	MET A		29.514			0.00	С
40	ATOM	6564	SD	MET A		28.686			0.00	S
	MOTA	6565	CE	MET A		27.089			0.00	С
	MOTA	6566	N	PHE A		29.271		317 1.00	0.00	N
	MOTA	6567	CA	PHE A		28.848			0.00	C
	ATOM	6568	С	PHE A		27.483	58.672 -22.8	318 1.00	0.00	С
45	MOTA	6569	0	PHE A		26.968	58.083 -21.8	367 1.00	0.00	0
	ATOM	6570	СВ	PHE A		29.909			0.00	C
	ATOM	6571	CG	PHE A		30.067		057 1.00	0.00	С
	ATOM	6572		PHE A		29.195			0.00	C
	ATOM	6573		PHE A		31.134			0.00	C
50	MOTA	6574		PHE A		29.385			0.00	С
	ATOM	6575		PHE A		31.336			0.00	С
	MOTA	6576	CZ	PHE A		30.459		395 1.00	0.00	С
	MOTA	6577	N	ILE A		26.883			0.00	N
	ATOM	6578	CA	ILE A		25.592			0.00	C
55	MOTA	6579	С	ILE A		25.758			0.00	С
-	ATOM	6580	0	ILE A		26.611			0.00	0
	ATOM	6581	СB	ILE A		24.464			0.00	C
	ATOM	6582		ILE A		24.918			0.00	C
	ATOM	6583		ILE A		24.026			0.00	С
60	ATOM	6584		ILE A		23.768			0.00	C
-	ATOM	6585	N	GLU A		24.955			0.00	И

		A TOOM	6586	CA	GLU A	030	25.063	55.886	-27 205	1.00	0.00	С
		ATOM								1.00	0.00	Č
		ATOM	6587	С	GLU A		23.806	55.099				
		MOTA	6588	0	GLU A	838	22.977	54.828		1.00	0.00	0
	_	MOTA	6589	CB	GLU A	838	26.233	54.898	-27.155	1.00	0.00	С
	5	ATOM	6590	CG	GLU A	838	25.979	53.750	-26.165	1.00	0.00	С
		ATOM	6591	CD	GLU A	838	27.094	52.717	-26.117	1.00	0.00	С
		ATOM	6592		GLU A		26.943	51.721	-25.377	1.00	0.00	0
		ATOM	6593		GLU A		28.116	52.887		1.00	0.00	0
		ATOM	6594	N	ASP A		23.653	54.773		1.00	0.00	N
	10									1.00	0.00	c
	10	MOTA	6595	CA	ASP A		22.558	53.914				
		MOTA	6596	С	ASP A		23.263	52.824		1.00	0.00	C
		MOTA	6597	0	ASP A	839	24.467	52.624		1.00	0.00	0
		ATOM	6598	CB	ASP A	839	21.489	54.635	-30.083	1.00	0.00	С
		ATOM	6599	CG	ASP A	839	22.055	55.412	-31.255	1.00	0.00	C
	15	MOTA	6600	OD1	ASP A	839	23.085	55.010	-31.835	1.00	0.00	0
		MOTA	6601	OD2	ASP A	839	21.428	56.433	-31.608	1.00	0.00	0
		ATOM	6602	N	ALA A		22.542	52.116	-30.887	1.00	0.00	N
		ATOM	6603	CA	ALA A		23.160	51.045		1.00	0.00	С
		ATOM	6604	C	ALA A		24.259	51.502		1.00	0.00	С
	20	ATOM	6605	0	ALA A		25.201	50.751		1.00	0.00	0
	20	ATOM	6606	СВ	ALA A		22.085	50.281		1.00	0.00	C
12							24.167	52.737		1.00	0.00	N
i saari ann		ATOM	6607	N	ASN A					1.00	0.00	C
		MOTA	6608	CA	ASN A		25.140	53.219				c
	25	MOTA	6609	С	ASN A		26.023	54.406		1.00	0.00	
197	25	MOTA	6610	0	ASN A		27.131	54.527		1.00	0.00	0
4,6 3		MOTA	6611	CB	ASN A		24.413	53.556		1.00	0.00	C
		MOTA	6612	CG	ASN A		23.606	52.397		1.00	0.00	C
		MOTA	6613	OD1	ASN A	841	24.143	51.316		1.00	0.00	0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		MOTA	6614	ND2	ASN A	841	22.308	52.610		1.00	0.00	N
5 (\$24) 2 Jan	30	MOTA	6615	N	THR A	842	25.540	55.281		1.00	0.00	N
		ATOM	6616	CA	THR A	842	26.290	56.485	-32.513	1.00	0.00	С
Ŗŧ.		ATOM	6617	С	THR A	842	26.538	56.707	-31.027	1.00	0.00	C
15 AMERICAN		ATOM	6618	0	THR A	842	25.701	56.384	-30.187	1.00	0.00	0
100		MOTA	6619	CB	THR A	842	25.551	57.727	-33.069	1.00	0.00	C
	35	ATOM	6620		THR A		25.196	57.494		1.00	0.00	0
		ATOM	6621		THR A		26.430	58.968		1.00	0.00	С
1		ATOM	6622	N	ARG A		27.698	57.272		1.00	0.00	N
		ATOM	6623	CA	ARG A		28.052	57.575		1.00	0.00	С
			6624	C	ARG A		28.682	58.955		1.00	0.00	C
	40	ATOM					29.399	59.368		1.00	0.00	Ö
	40	ATOM	6625	0	ARG A					1.00	0.00	C
		ATOM	6626	CB	ARG A		29.050	56.557				
		MOTA	6627	CG	ARG A		29.576	56.934		1.00	0.00	C
		ATOM	6628	CD	ARG A		30.763	56.082		1.00	0.00	C
	4 =	ATOM	6629	NE	ARG A		30.391	54.703		1.00	0.00	N
	45	ATOM	6630	CZ	ARG A		31.211	53.823		1.00	0.00	C
		MOTA	6631		ARG A		32.449	54.178		1.00	0.00	N
		ATOM	6632	NH2	ARG A	843	30.800	52.586	-25.777	1.00	0.00	N
		MOTA	6633	N	LEU A	844	28.397	59.667	-28.182	1.00	0.00	N
		MOTA	6634	CA	LEU A	844	28.971	60.986	-27.965	1.00	0.00	C
	50	ATOM	6635	С	LEU A	844	29.623	60.924	-26.595	1.00	0.00	C
		ATOM	6636	0	LEU A	844	28.956	60.630	-25.598	1.00	0.00	0
		ATOM	6637	CB	LEU A	844	27.894	62.074		1.00	0.00	С
		MOTA	6638	CG	LEU A		28.464	63.490	-27.833	1.00	0.00	С
		ATOM	6639		LEU A		29.378	63.776		1.00	0.00	C
	55	MOTA	6640		LEU A		27.338	64.513		1.00	0.00	C
	00	ATOM	6641	N	THR A		30.925	61.187		1.00	0.00	N
		ATOM	6642	CA	THR A		31.660	61.149		1.00	0.00	C
		ATOM	6643	CA	THR A		32.245	62.516		1.00	0.00	C
			6644		THR A		32.869	63.155		1.00	0.00	0
	60	MOTA		O CB				60.140		1.00	0.00	C
	OU	MOTA	6645	CB	THR A		32.827	58.846		1.00	0.00	0
		MOTA	6646	UGI	THR A	845	32.325	J0.840	-23.710	1.00	0.00	O

		ATOM	6647	CG2	THR A	845	33.	535	60.051	-23.999	1.00	0.00	С
		ATOM	6648	N	LEU A				62.960	-23.727	1.00	0.00	N
		ATOM	6649	CA	LEU A					-23.288	1.00	0.00	С
		ATOM	6650	C	LEU A					-22.194	1.00	0.00	C
	5									-21.158	1.00	0.00	Ö
	J	ATOM	6651	0	LEU A					-22.732	1.00	0.00	C
		MOTA	6652	CB	LEU A								C
		ATOM	6653	CG	LEU A					-22.161	1.00	0.00	
		ATOM	6654		LEU A					-23.280	1.00	0.00	С
	10	MOTA	6655		LEU A					-21.488	1.00	0.00	C
	10	MOTA	6656	N	LEU A					-22.441	1.00	0.00	N
		MOTA	6657	CA	LEU A					-21.472	1.00	0.00	C
		MOTA	6658	С	LEU A					-20.773	1.00	0.00	C
		MOTA	6659	O	LEU A					-21.400	1.00	0.00	0
	4	MOTA	6660	CB	LEU A					-22.172	1.00	0.00	C
	15	MOTA	6661	CG	LEU A					-22.916	1.00	0.00	C
		MOTA	6662	CD1	LEU A	847	36.			-22.060	1.00	0.00	С
		MOTA	6663	CD2	LEU A	847	36.	.471	62.316	-24.262	1.00	0.00	С
		MOTA	6664	N	THR A	848	36.			-19.485	1.00	0.00	N
		MOTA	6665	CA	THR A	848	36.	.829	66.506	-18.720	1.00	0.00	С
	20	MOTA	6666	С	THR A	848	38.	.236	66.591	-18.144	1.00	0.00	C
		MOTA	6667	0	THR A	848	38.			-17.958	1.00	0.00	0
		MOTA	6668	CB	THR A	848	35.	.864	66.640	-17.533	1.00	0.00	C
		MOTA	6669	OG1	THR A	848	36.	.274	65.750	-16.486	1.00	0.00	0
, FR		ATOM	6670	CG2	THR A	848	34.	.448	66.297	-17.956	1.00	0.00	С
J M	25	ATOM	6671	N	GLY A	849	38.	.661	67.820	-17.862	1.00	0.00	N
ĮĮŲ.		ATOM	6672	CA	GLY A	849	39.	.969	68.042	-17.280	1.00	0.00	С
		ATOM	6673	С	GLY A	849	39.	.790	68.414	-15.820	1.00	0.00	C
IJ.		ATOM	6674	0	GLY A	849	40	.715	68.890	-15.159	1.00	0.00	0
84 B		ATOM	6675	N	GLN A		38	.579	68.197	-15.321	1.00	0.00	N
	30	ATOM	6676	CA	GLN A		38			-13.936	1.00	0.00	С
iji.		ATOM	6677	С	GLN A		36	.964	67.769	-13.548	1.00	0.00	C
8)		ATOM	6678	0	GLN A				67.548	-14.388	1.00	0.00	0
\$ 1500 \$		ATOM	6679	CB	GLN A		38.	.048	70.010	-13.753	1.00	0.00	С
/ [adf		ATOM	6680	CG	GLN A		36	.894	70.622	-14.571	1.00	0.00	С
ų. L	35	MOTA	6681	CD	GLN A		37.	.199	70.719	-16.053	1.00	0.00	С
Party.		MOTA	6682	OE1	GLN A		38	.296	71.125	-16.447	1.00	0.00	0
ž,		ATOM	6683		GLN A					-16.890	1.00	0.00	N
		ATOM	6684	N	PRO A				67.375	-12.269	1.00	0.00	N
182		ATOM	6685	CA	PRO A		35	.623	66.677	-11.838	1.00	0.00	С
il Sens	40	ATOM	6686	С	PRO A		34	.485	67.674	-11.637	1.00	0.00	С
		ATOM	6687	0	PRO A		34	.672	68.731	-11.019	1.00	0.00	0
		MOTA	6688	CB	PRO A	851			66.010	-10.532	1.00	0.00	С
		ATOM	6689	CG	PRO A				67.011		1.00	0.00	С
		ATOM	6690	CD	PRO A				67.418	-11.188	1.00	0.00	С
	45	MOTA	6691	N	LEU A	852	33	.318	67.331	-12.173	1.00	0.00	N
		ATOM	6692	CA	LEU A				68.168	-12.079	1.00	0.00	C
		ATOM	6693	С	LEU A				67.250	-12.016	1.00	0.00	С
		ATOM	6694	0	LEU A					-12.253	1.00	0.00	0
		ATOM	6695	СВ	LEU A					-13.311	1.00	0.00	C
	50	ATOM	6696	CG	LEU A					-13.532	1.00	0.00	C
	00	ATOM	6697		LEU A					-14.928	1.00	0.00	С
		ATOM	6698		LEU A					-12.470	1.00	0.00	С
		ATOM	6699	N	GLY A					-11.696	1.00	0.00	N
		ATOM	6700	CA	GLY A					-11.626	1.00	0.00	С
	55	ATOM	6701	C	GLY A					-12.952	1.00	0.00	C
		ATOM	6702	0	GLY A					-13.688	1.00	0.00	0
		ATOM	6702	N	GLY A					-13.265	1.00	0.00	N
		ATOM	6703	CA	GLY A					-14.527	1.00	0.00	C
		ATOM	6704	CA	GLY A					-14.621	1.00	0.00	C
	60	ATOM	6706	0	GLY A					-13.678	1.00	0.00	Ö
	00			N						-15.772	1.00	0.00	N
		MOTA	6707	ĪA	SER A	000	24	. 000	04.002	10.112	1.00	0.00	14

		ATOM	6708	CA	SER A	855	23.637	63.687 -15.979	1.00	0.00	С
		ATOM	6709	C	SER A		23.168	63.677 -17.427	1.00	0.00	С
		ATOM	6710	0	SER A		23.727	64.364 -18.284	1.00	0.00	Ö
							22.442	64.006 -15.070	1.00	0.00	C
	5	ATOM	6711	CB	SER A						0
	3	MOTA	6712	OG	SER A		21.404	63.046 -15.198	1.00	0.00	
		ATOM	6713	N	SER A		22.144	62.866 -17.678	1.00	0.00	N
		ATOM	6714	CA	SER A		21.494	62.755 -18.980	1.00	0.00	С
		MOTA	6715	С	SER A		20.027	62.753 -18.564	1.00	0.00	С
	4.0	MOTA	6716	0	SER A		19.470	61.704 -18.224	1.00	0.00	0
	10	ATOM	6717	CB	SER A	856	21.840	61.434 -19.668	1.00	0.00	С
		ATOM	6718	OG	SER A	856	21.180	61.335 -20.920	1.00	0.00	0
		MOTA	6719	N	LEU A	857	19.408	63.930 -18.569	1.00	0.00	N
		ATOM	6720	CA	LEU A	857	18.026	64.045 -18.121	1.00	0.00	С
		ATOM	6721	С	LEU A	857	16.964	63.699 -19.155	1.00	0.00	C
	15	ATOM	6722	0	LEU A	857	15.780	63.644 -18.833	1.00	0.00	0
		ATOM	6723	СВ	LEU A		17.787	65.449 -17.558	1.00	0.00	С
		ATOM	6724	CG	LEU A		18.652	65.779 -16.338	1.00	0.00	Č
		MOTA	6725		LEU A		18.408	67.212 -15.909	1.00	0.00	c
		MOTA	6726		LEU A		18.327	64.815 -15.194	1.00	0.00	c
	20	ATOM	6727	N N	ALA A		17.392	63.459 -20.386	1.00	0.00	N
	20				ALA A			63.097 -21.466	1.00	0.00	C
3 (1255).		ATOM	6728	CA			16.483				C
		ATOM	6729	C	ALA A		17.293	62.348 -22.510	1.00	0.00	
4		ATOM	6730	0	ALA A		18.498	62.560 -22.634	1.00	0.00	0
1	25	ATOM	6731	CB	ALA A		15.849	64.355 -22.085	1.00	0.00	C
	25	ATOM	6732	N	SER A		16.633	61.461 -23.247	1.00	0.00	N
file is		MOTA	6733	CA	SER A		17.302	60.686 -24.280	1.00	0.00	С
		ATOM	6734	С	SER A		18.071	61.620 -25.209	1.00	0.00	С
		ATOM	6735	0	SER A		17.558	62.668 -25.612	1.00	0.00	0
W.	20	ATOM	6736	CB	SER A		16.272	59.882 -25.084	1.00	0.00	С
2450:	30	ATOM	6737	OG	SER A		16.896	59.140 -26.117	1.00	0.00	0
154		ATOM	6738	N	GLY A	860	19.303	61.240 -25.534	1.00	0.00	N
21		ATOM	6739	CA	GLY A	860	20.131	62.041 -26.420	1.00	0.00	С
		MOTA	6740	С	GLY A	860	20.837	63.227 -25.781	1.00	0.00	С
		ATOM	6741	0	GLY A	860	21.551	63.969 -26.463	1.00	0.00	0
್ಯಾಪ್ಕ್ ಪ್ರತಿಕ್ಕಾಗ	35	ATOM	6742	N	GLU A	861	20.660	63.412 -24.479	1.00	0.00	N
		ATOM	6743	CA	GLU A	861	21.292	64.538 -23.798	1.00	0.00	С
		ATOM	6744	С	GLU A	861	22.442	64.188 -22.863	1.00	0.00	С
		ATOM	6745	0	GLU A	861	22.530	63.078 -22.338	1.00	0.00	0
		ATOM	6746	CB	GLU A		20.261	65.316 -22.978	1.00	0.00	C
1.4	40	ATOM	6747	CG	GLU A		19.194	66.041 -23.775	1.00	0.00	С
		ATOM	6748	CD	GLU A		18.285	66.871 -22.882	1.00	0.00	С
		ATOM	6749		GLU A		18.523	66.920 -21.652	1.00	0.00	Ō
		ATOM	6750		GLU A		17.335	67.480 -23.407	1.00	0.00	Ö
		ATOM	6751	N	LEU A		23.316	65.168 -22.669	1.00	0.00	N
	45	ATOM	6752	CA	LEU A		24.442	65.071 -21.745	1.00	0.00	C
	10	ATOM	6753	C	LEU A		24.518	66.469 -21.160	1.00	0.00	Ċ
									1.00		
		ATOM	6754	0	LEU A		24.315	67.452 -21.873		0.00	0
		ATOM	6755	CB	LEU A		25.765	64.773 -22.459	1.00	0.00	C
	50	ATOM	6756	CG	LEU A		26.099	63.390 -23.029	1.00	0.00	C
	50	ATOM	6757		LEU A		27.461	63.457 -23.706	1.00	0.00	C
		MOTA	6758		LEU A		26.114	62.345 -21.929	1.00	0.00	С
		MOTA	6759	И	GLU A		24.774	66.575 -19.865	1.00	0.00	N
		ATOM	6760	CA	GLU A		24.904	67.893 -19.273	1.00	0.00	С
		MOTA	6761	С	GLU A		25.852	67.818 -18.093	1.00	0.00	С
	55	ATOM	6762	0	GLU A	863	25.915	66.806 -17.392	1.00	0.00	0
		ATOM	6763	CB	GLU A	863	23.536	68.452 -18.862	1.00	0.00	С
		ATOM	6764	CG	GLU A	863	23.017	68.039 -17.503	1.00	0.00	С
		ATOM	6765	CD	GLU A	863	21.689	68.706 -17.187	1.00	0.00	С
		ATOM	6766	OE1	GLU A		21.534	69.221 -16.061	1.00	0.00	0
	60	ATOM	6767		GLU A		20.796	68.712 -18.066	1.00	0.00	0
		MOTA	6768	N	ILE A		26.603	68.891 -17.889	1.00	0.00	N

		ATOM	6769	CA	ILE A	864	27.575	68.939	-16.811	1.00	0.00	С
		ATOM	6770	C	ILE A		27.625		-16.241	1.00	0.00	С
		ATOM	6771	0	ILE A		27.744		-16.985	1.00	0.00	0
		ATOM	6772	СВ	ILE A		28.955		-17.350	1.00	0.00	C
	5	ATOM	6773		ILE A		29.982		-16.222	1.00	0.00	Ċ
	J	MOTA	6774		ILE A		29.402		-18.499	1.00	0.00	C
		ATOM	6775		ILE A		31.263		-16.629	1.00	0.00	Č
		ATOM	6776		MET A		27.510		-14.920	1.00	0.00	N
			6777	N	MET A		27.510		-14.227	1.00	0.00	C
	10	ATOM	6778	CA C			28.875		-14.272	1.00	0.00	Č
	10	MOTA			MET A		29.907		-14.272	1.00	0.00	Ö
		MOTA	6779	0	MET A		27.080		-14.004 -12.770	1.00	0.00	C
		ATOM	6780	CB	MET A				-12.770	1.00	0.00	Č
		MOTA	6781	CG	MET A		26.489		-12.129	1.00	0.00	s
	15	MOTA	6782	SD	MET A		24.888		-12.056	1.00	0.00	C
	10	ATOM	6783	CE	MET A		23.854		-14.498	1.00	0.00	N
		ATOM	6784	N	GLN A		28.870		-14.490	1.00	0.00	C
		ATOM	6785	CA	GLN A		30.106		-13.277	1.00	0.00	C
		MOTA	6786	С	GLN A		30.503		-12.909	1.00	0.00	0
	20	ATOM	6787	O	GLN A		31.675 29.970		-15.692	1.00	0.00	c
	20	ATOM	6788	CB	GLN A		29.633		-17.037	1.00	0.00	Č
2500		ATOM	6789	CG	GLN A		30.642		-17.453	1.00	0.00	C
		ATOM	6790	CD OF 1	GLN A		31.800		-17.751	1.00	0.00	0
Ę		ATOM	6791						-17.463	1.00	0.00	N
	25	ATOM	6792		GLN A		30.210		-17.403 -12.591	1.00	0.00	N
The state of	20	ATOM	6793	N	ASP A		29.526		-11.301	1.00	0.00	C
278 E		ATOM	6794	CA	ASP A		29.761			1.00	0.00	C
		ATOM	6795	C	ASP A		28.409 27.372		-10.664 -11.336	1.00	0.00	0
THE		ATOM	6796	O CD			30.531		-11.453	1.00	0.00	c
400	30	ATOM	6797	CB	ASP A		31.201		-10.152	1.00	0.00	C
i in	30	MOTA	6798	CG	ASP A		31.201		-9.114	1.00	0.00	0
		ATOM	6799		ASP A		31.022		-10.170	1.00	0.00	0
E {		ATOM	6800		ASP A		28.425		-9.363	1.00	0.00	N
		MOTA	6801 6802	N CA	ARG A		27.206		-8.620	1.00	0.00	C
	35	ATOM			ARG A		27.200		-7.522	1.00	0.00	C
18.3	33	ATOM	6803 6804	C 0	ARG A		28.539		-6.848	1.00	0.00	0
2 1122		ATOM ATOM	6805	CB	ARG A		26.679		-8.022	1.00	0.00	C
S STORE		ATOM	6806	CG	ARG A		27.691		-7.166	1.00	0.00	C
		ATOM	6807	CD	ARG A		27.391		-7.180	1.00	0.00	c
2000	40	ATOM	6808	NE	ARG A		26.037		-6.722	1.00	0.00	N
	10	ATOM	6809	CZ	ARG A		25.715		-5.466	1.00	0.00	C
		ATOM	6810		ARG A		26.655		-4.530	1.00	0.00	N
		ATOM	6811		ARG A		24.448		-5.142	1.00	0.00	N
		ATOM	6812	N	ARG A		26.625		-7.362	1.00	0.00	N
	45	ATOM	6813	CA	ARG A		26.776		-6.352	1.00	0.00	С
		ATOM	6814	С	ARG A		25.497		-5.519	1.00	0.00	С
		ATOM	6815	Ö	ARG A		24.416		-6.013	1.00	0.00	0
		ATOM	6816	CB	ARG A		26.938		-7.038	1.00	0.00	С
		ATOM	6817	CG	ARG A		27.263		-6.107	1.00	0.00	C
	50	ATOM	6818	CD	ARG A		27.510		-6.898	1.00	0.00	С
	•	ATOM	6819	NE	ARG A		27.690		-6.032	1.00	0.00	N
		ATOM	6820	CZ	ARG A		28.813		-5.383	1.00	0.00	C
		ATOM	6821		ARG A		29.879		-5.495	1.00	0.00	N
		ATOM	6822		ARG A		28.867		-4.609	1.00	0.00	N
	55	ATOM	6823	N	LEU A		25.631		-4.262	1.00	0.00	N
		ATOM	6824	CA	LEU A		24.493		-3.358	1.00	0.00	С
		ATOM	6825	C	LEU A		24.591		-2.142	1.00	0.00	С
		ATOM	6826	0	LEU A		25.586		-1.417	1.00	0.00	0
		ATOM	6827	СВ	LEU A		24.392		-2.911	1.00	0.00	C
	60	ATOM	6828	CG	LEU A		24.393		-4.116	1.00	0.00	C
	- 0	ATOM	6829		LEU A		24.766		-3.678	1.00	0.00	C
												_

		ATOM	6830	CD2	LEU A	870	23.029	77.237	-4.795	1.00	0.00	С
		MOTA	6831	N	ALA A	871	23.537	81.311	-1.916	1.00	0.00	N
		MOTA	6832	CA	ALA A	871	23.509	82.261	-0.811	1.00	0.00	С
		MOTA	6833	С	ALA A	871	23.249	81.660	0.567	1.00	0.00	С
	5	MOTA	6834	0	ALA A	871	23.665	82.226	1.578	1.00	0.00	0
		MOTA	6835	CB	ALA A	871	22.476	83.352	-1.099	1.00	0.00	C
		MOTA	6836	N	SER A	872	22.573	80.519	0.624	1.00	0.00	N
		MOTA	6837	CA	SER A	872	22.272	79.924	1.920	1.00	0.00	С
		MOTA	6838	С	SER A	872	23.032	78.644	2.244	1.00	0.00	С
	10	MOTA	6839	0	SER A	872	23.603	77.996	1.367	1.00	0.00	0
		MOTA	6840	CB	SER A	872	20.768	79.667	2.037	1.00	0.00	С
		MOTA	6841	OG	SER A	872	20.331	78.753	1.049	1.00	0.00	0
		MOTA	6842	N	ASP A		23.034	78.304	3.528	1.00	0.00	N
		MOTA	6843	CA	ASP A	873	23.690	77.105	4.034	1.00	0.00	С
	15	MOTA	6844	С	ASP A	873	22.696	75.950	3.952	1.00	0.00	С
		ATOM	6845	0	ASP A	873	21.498	76.154	4.143	1.00	0.00	0
		ATOM	6846	CB	ASP A	873	24.114	77.330	5.487	1.00	0.00	С
		ATOM	6847	CG	ASP A	873	24.577	76.060	6.161	1.00	0.00	С
	•	ATOM	6848		ASP A		23.809	75.503	6.972	1.00	0.00	0
	20	ATOM	6849	OD2	ASP A		25.707	75.613	5.869	1.00	0.00	0
		ATOM	6850	N	ASP A		23.183	74.743	3.666	1.00	0.00	N
		ATOM	6851	CA	ASP A		22.299	73.587	3.559	1.00	0.00	C
		ATOM	6852	С	ASP A		22.250	72.685	4.796	1.00	0.00	C
, in the second	0.5	ATOM	6853	0	ASP A		22.034	71.479	4.695	1.00	0.00	0
1,000 1,000	25	ATOM	6854	CB	ASP A		22.634	72.763	2.305	1.00	0.00	C
5,8 5		ATOM	6855	CG	ASP A		24.121	72.503	2.146	1.00	0.00	С
		ATOM	6856		ASP A		24.902	72.863	3.056	1.00	0.00	0
		ATOM	6857		ASP A		24.505	71.932	1.101	1.00	0.00	0
Will street	20	MOTA	6858	N	GLU A		22.458	73.289	5.961	1.00	0.00	N
m	30	MOTA	6859	CA	GLU A		22.382	72.602	7.247	1.00	0.00	C
		MOTA	6860	С	GLU A		23.153	71.300	7.458	1.00	0.00	
F)		ATOM	6861	0	GLU A		22.632	70.374 72.352	8.081 7.595	1.00 1.00	0.00	0 C
Ü.		ATOM	6862	CB	GLU A		20.911		7.577	1.00	0.00	C
	35	MOTA	6863	CG	GLU A		20.041 18.589	73.600 73.296	7.895	1.00	0.00	C
	33	MOTA	6864	CD OF 1	GLU A GLU A		18.305	72.852	9.026	1.00	0.00	Ö
i si		MOTA	6865 6866		GLU A		17.731	73.494	7.010	1.00	0.00	Ö
		MOTA MOTA	6867	N N	ARG A		24.380	71.213	6.959	1.00	0.00	N
A VANDA		ATOM	6868	CA	ARG A		25.163	70.002	7.180	1.00	0.00	C
1.1	40	ATOM	6869	C	ARG A		26.423	70.305	7.993	1.00	0.00	Ċ
	10	ATOM	6870	0	ARG A		27.317	69.465	8.112	1.00	0.00	0
		ATOM	6871	CB	ARG A		25.518	69.326	5.847	1.00	0.00	C
		ATOM	6872	CG	ARG A		24.314	68.689	5.130	1.00	0.00	C
		ATOM	6873	CD	ARG A		23.608	67.662	6.024	1.00	0.00	С
	45	ATOM	6874	NE	ARG A		22.519	66.956	5.346	1.00	0.00	N
		ATOM	6875	CZ	ARG A		21.357	67.507	4.996	1.00	0.00	С
		MOTA	6876		ARG A		21.111	68.786	5.254	1.00	0.00	N
		ATOM	6877		ARG A		20.434	66.770	4.388	1.00	0.00	N
		ATOM	6878	N	GLY A		26.486	71.512	8.554	1.00	0.00	N
	50	MOTA	6879	CA	GLY A		27.624	71.886	9.376	1.00	0.00	C
		MOTA	6880	С	GLY A		28.606	72.910	8.831	1.00	0.00	C
		ATOM	6881	0	GLY A		29.417	73.448	9.591	1.00	0.00	0
		ATOM	6882	N	LEU A		28.545	73.193	7.534	1.00	0.00	N
		ATOM	6883	CA	LEU A		29.465	74.155	6.931	1.00	0.00	С
	55	ATOM	6884	С	LEU A		29.274	75.567	7.490	1.00	0.00	C
		ATOM	6885	0	LEU A		30.242	76.307	7.671	1.00	0.00	0
		ATOM	6886	CB	LEU A		29.302	74.157	5.409	1.00	0.00	C
		ATOM	6887	CG	LEU A		30.187	75.112	4.601	1.00	0.00	С
		ATOM	6888		LEU A		31.649	74.944	4.999	1.00	0.00	С
	60	MOTA	6889		LEU A		30.003	74.835	3.120	1.00	0.00	С
		ATOM	6890	N	GLY A		28.026	75.938	7.756	1.00	0.00	N

		ATOM	6891	CA	GLY 7	A 879	27.75	3 77.253	8.315	1.00	0.00	C
									7.343	1.00	0.00	C
		MOTA	6892	С	GLY A							
		MOTA	6893	0	GLY A	879			7.762	1.00	0.00	0
		ATOM	6894	N	GLN A	880	27.80	78.119	6.048	1.00	0.00	N
	5	ATOM	6895	CA	GLN A	088 4	27.84	79.160	5.029	1.00	0.00	С
	•		6896	C	GLN A				3.672	1.00	0.00	С
		ATOM										
		MOTA	6897	0	GLN A	4 880			3.457	1.00	0.00	0
		ATOM	6898	CB	GLN A	088 F	29.24	3 79.772	4.907	1.00	0.00	С
		ATOM	6899	CG	GLN A	088	30.36	4 78.772	4.582	1.00	0.00	С
	10	ATOM	6900	CD	GLN A				3.966	1.00	0.00	С
	10											ō
		MOTA	6901		GLN A				2.767	1.00	0.00	
		MOTA	6902	NE2	GLN A	880	32.60	79.671	4.783	1.00	0.00	N
		ATOM	6903	N	GLY A	A 881	27.09	6 79.527	2.765	1.00	0.00	N
		ATOM	6904	CA	GLY Z				1.423	1.00	0.00	С
	15								0.615	1.00	0.00	C
	13	MOTA	6905	C	GLY A							
		ATOM	6906	0		881			1.179	1.00	0.00	0
		MOTA	6907	N	VAL A	A 882	27.88	79.199	-0.703	1.00	0.00	N
		MOTA	6908	CA	VAL A	A 882	29.04	79.234	-1.575	1.00	0.00	С
		ATOM	6909	С	VAL A				-2.328	1.00	0.00	С
	20										0.00	0
	20	ATOM	6910	0	VAL A				-3.340	1.00		
		MOTA	6911	CB	VAL A	A 882	29.01	3 78.060	-2.570	1.00	0.00	C
		MOTA	6912	CG1	VAL A	A 882	30.23	78.117	-3.480	1.00	0.00	С
inter-		ATOM	6913		VAL A				-1.804	1.00	0.00	С
									-1.812	1.00	0.00	N
J	0.5	MOTA	6914	N		A 883						
7 (see.	25	MOTA	6915	CA	LEU A	A 883			-2.410	1.00	0.00	C
1,3 1		ATOM	6916	С	LEU Z	883 A	31.18	4 83.330	-2.720	1.00	0.00	C
1500		ATOM	6917	0	LEU	A 883	31.42	1 84.517	-2.942	1.00	0.00	0
8/8 E		ATOM	6918	СВ		A 883			-1.461	1.00	0.00	С
									-1.219	1.00	0.00	C
ding.	00	ATOM	6919	CG		A 883						
4:500	30	ATOM	6920	CD1	LEU J	A 883	27.16	2 84.533	-0.003	1.00	0.00	C
M.		ATOM	6921	CD2	LEU A	A 883	26.83	2 84.189	-2.448	1.00	0.00	С
Ei		ATOM	6922	N	ASP	A 884			-2.747	1.00	0.00	N
		ATOM	6923	CA	ASP I				-3.019	1.00	0.00	С
Sec.												C
	0.5	MOTA	6924	С		A 884			-4.398	1.00	0.00	
3 63 32	35	ATOM	6925	0	ASP A	A 884	35.16	7 81.949	-4.594	1.00	0.00	0
		MOTA	6926	CB	ASP I	A 884	34.42	2 82.106	-1.938	1.00	0.00	C
3-4		ATOM	6927	CG		A 884		1 80.621	-1.738	1.00	0.00	С
a steur.			6928		ASP I				-0.847	1.00	0.00	0
4 + 2 C.		MOTA										
į.	40	ATOM	6929	OD2	ASP I				-2.465	1.00	0.00	0
2	40	MOTA	6930	N	ASN .	A 885	33.07	0 82.256	-5.353	1.00	0.00	N
		ATOM	6931	CA	ASN A	A 885	33.37	3 81.862	-6.723	1.00	0.00	C
		MOTA	6932	С		A 885			-7.318	1.00	0.00	С
			6933			A 885			-6.966	1.00	0.00	0
		MOTA		0								C
	4	MOTA	6934	CB		A 885			-7.586	1.00	0.00	
	45	ATOM	6935	CG	ASN .	A 885	30.95	0 81.227	-7.019	1.00	0.00	C
		ATOM	6936	OD1	ASN .	A 885	30.70	5 80.077	-7.385	1.00	0.00	0
		ATOM	6937		ASN .				-6.098	1.00	0.00	N
										1.00	0.00	N
		ATOM	6938	N		A 886						
		MOTA	6939	CA	LYS .	A 886				1.00	0.00	С
	50	MOTA	6940	С	LYS .	A 886	36.39	9 82.306	-10.310	1.00	0.00	С
		MOTA	6941	0		A 886		9 81.146	-10.534	1.00	0.00	0
		ATOM	6942	CB		A 886				1.00	0.00	C
											0.00	c
		MOTA	6943	CG		A 886				1.00		
		MOTA	6944	CD		A 886				1.00	0.00	С
	55	MOTA	6945	CE	LYS .	A 886	40.44	0 82.042	-7.405	1.00	0.00	C
		ATOM	6946	NZ		A 886				1.00	0.00	N
		ATOM	6947			A 887			-11.279	1.00	0.00	N
				N								
		ATOM	6948	CA		A 887			-12.651	1.00	0.00	C
		MOTA	6949	С	PRO .	A 887			-12.741	1.00	0.00	С
	60	ATOM	6950	0	PRO .	A 887	38.85	0 81.161	-12.129	1.00	0.00	0
		ATOM	6951	CB		A 887			-13.366	1.00	0.00	С
			2201									

	MOTA	6952	CG	PRO A	A 887	37.185	84.967 -12.627	1.00	0.00	С
	MOTA	6953	CD	PRO I	A 887	37.259	84.524 -11.189	1.00	0.00	C
	MOTA	6954	N	VAL A	888	37.260	80.350 -13.496	1.00	0.00	N
	ATOM	6955	CA	VAL A	888	37.929	79.073 -13.688	1.00	0.00	С
5	MOTA	6956	С	VAL A	888 A	37.830	78.679 -15.156	1.00	0.00	C
	MOTA	6957	0	VAL A	888 F	36.814	78.933 -15.811	1.00	0.00	0
	MOTA	6958	CB	VAL A	888 F	37.307	77.955 -12.803	1.00	0.00	C
	MOTA	6959	CG1	VAL A	888	35.799	77.878 -13.020	1.00	0.00	C
	MOTA	6960	CG2	VAL A	888 F	37.964	76.609 -13.122	1.00	0.00	С
10	MOTA	6961	N	LEU A	¥ 889	38.897	78.081 -15.675	1.00	0.00	N
	ATOM	6962	CA	LEU A	889	38.914	77.640 -17.061	1.00	0.00	С
	MOTA	6963	С	LEU A	A 889	38.709	76.131 -17.117	1.00	0.00	С
	MOTA	6964	0	LEU A	889	39.626	75.368 -16.817	1.00		0
	MOTA	6965	CB	LEU A	889	40.248	77.984 -17.734	1.00	0.00	С
15	MOTA	6966	CG	LEU A	889	40.306	77.575 -19.215	1.00	0.00	С
	ATOM	6967	CD1	LEU A	889	39.375	78.476 -20.023	1.00	0.00	С
	MOTA	6968	CD2				77.677 -19.740	1.00	0.00	C
	MOTA	6969	N				75.708 -17.480	1.00	0.00	N
20	MOTA	6970	CA							С
20										C
										0
										C
										C
25										N
23										C
										C
										N
										N
30										C C
50										0
										C
										C
										C
35										Č
00										N
										C
										Ċ
							69.572 -24.503	1.00	0.00	0
40			CB				69.316 -22.407	1.00	0.00	С
		6992	CG				70.000 -21.240	1.00	0.00	С
	MOTA	6993	CD1	TYR A	A 892	34.813	71.395 -21.139	1.00	0.00	С
•	MOTA	6994	CD2	TYR A	A 892	34.237	69.252 -20.233	1.00	0.00	С
	MOTA	6995	CE1	TYR A	A 892	34.194	72.024 -20.054	1.00	0.00	C
45	MOTA	6996	CE2	TYR A	A 892	33.623	69.863 -19.152	1.00	0.00	C
	MOTA	6997	CZ	TYR A	A 892	33.602	71.246 -19.064	1.00	0.00	С
	MOTA		OH							0
	MOTA		N							N
F 0										С
50										C
										0
										C
										C
55										C
33										N
										C
										N
										N
60										N C
	AIOM	1011	CA							
00	MOTA	7012	С	LEU A	1 2 2 4	34.253	65.245 -28.541	1.00	0.00	С
	5 10 15 20 25 30 35 40 45 50 55	10 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 6953 ATOM 6954 ATOM 6955 ATOM 6955 ATOM 6956 ATOM 6957 ATOM 6958 ATOM 6959 ATOM 6960 ATOM 6961 ATOM 6961 ATOM 6963 ATOM 6964 ATOM 6965 ATOM 6966 ATOM 6967 ATOM 6967 ATOM 6970 ATOM 6971 ATOM 6971 ATOM 6971 ATOM 6973 ATOM 6973 ATOM 6974 ATOM 6975 ATOM 6976 ATOM 6977 ATOM 6980 ATOM 6978 ATOM 6980 ATOM 6981 ATOM 6981 ATOM 6981 ATOM 6983 ATOM 6983 ATOM 6984 ATOM 6985 ATOM 6988 ATOM 6989 ATOM 6989 ATOM 6989 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6999 ATOM 6990 ATOM 6990 ATOM 7000	ATOM 6953 CD ATOM 6954 N ATOM 6955 CA ATOM 6956 C ATOM 6957 O ATOM 6958 CB ATOM 6959 CG1 ATOM 6960 CG2 ATOM 6960 CG2 ATOM 6961 N ATOM 6962 CA ATOM 6963 C ATOM 6965 CB ATOM 6965 CB ATOM 6966 CG ATOM 6966 CG ATOM 6967 CD1 ATOM 6968 CD2 ATOM 6970 CA ATOM 6970 CA ATOM 6971 C ATOM 6971 C ATOM 6972 O ATOM 6973 CB ATOM 6974 CG ATOM 6975 ND1 ATOM 6976 CD2 ATOM 6977 CE1 ATOM 6978 NE2 ATOM 6978 NE2 ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CA ATOM 6980 CCA ATOM 6990 CCB ATOM 69	ATOM 6953 CD PRO ATOM 6954 N VAL ATOM 6955 CA VAL ATOM 6956 C VAL ATOM 6957 O VAL ATOM 6958 CB VAL ATOM 6959 CG1 VAL ATOM 6959 CG1 VAL ATOM 6959 CG1 VAL ATOM 6960 CG2 VAL ATOM 6961 N LEU ATOM 6963 C LEU ATOM 6963 C LEU ATOM 6965 CB LEU ATOM 6966 CG LEU ATOM 6966 CG LEU ATOM 6967 CD1 LEU ATOM 6968 CD2 LEU ATOM 6969 N HIS ATOM 6969 N HIS ATOM 6970 CA HIS ATOM 6971 C HIS ATOM 6971 C HIS ATOM 6971 CB HIS ATOM 6974 CG HIS ATOM 6976 CD2 HIS ATOM 6977 CE1 HIS ATOM 6977 CE1 HIS ATOM 6978 NE2 HIS ATOM 6978 NE2 HIS ATOM 6979 N LLE ATOM 6979 N LLE ATOM 6980 CA LLE ATOM 6980 CA LLE ATOM 6980 CA LLE ATOM 6981 C LLE ATOM 6981 C LLE ATOM 6981 C LLE ATOM 6980 CD1 LLE ATOM 6990 CD1 TYR ATOM 6990 CD2 TYR ATOM 6990 CD3 TYR	ATOM	ATOM 6953 CD PRO A 887 37.259 ATOM 6954 N VAL A 888 37.260 ATOM 6955 C VAL A 888 37.260 ATOM 6955 C VAL A 888 37.830 ATOM 6956 C VAL A 888 37.830 ATOM 6957 O VAL A 888 37.307 ATOM 6959 CG1 VAL A 888 37.307 ATOM 6959 CG1 VAL A 888 37.909 ATOM 6960 CG2 VAL A 888 37.909 ATOM 6961 N LEU A 889 38.897 ATOM 6962 CA LEU A 889 38.709 ATOM 6963 C LEU A 889 38.709 ATOM 6964 O LEU A 889 38.709 ATOM 6966 CG LEU A 889 40.248 ATOM 6966 CG LEU A 889 40.306 ATOM 6966 CD LEU A 889 39.375 ATOM 6967 CD1 LEU A 889 39.375 ATOM 6968 CD2 LEU A 889 41.734 ATOM 6969 N HIS A 890 37.502 ATOM 6970 CA HIS A 890 37.502 ATOM 6971 C HIS A 890 37.5504 ATOM 6972 O HIS A 890 37.5504 ATOM 6973 CB HIS A 890 37.584 ATOM 6974 CG HIS A 890 35.227 ATOM 6976 CD2 HIS A 890 35.227 ATOM 6977 CE1 HIS A 890 35.225 ATOM 6976 CD2 HIS A 890 35.225 ATOM 6977 CE1 HIS A 890 35.225 ATOM 6978 ND1 HIS A 890 35.225 ATOM 6979 N LILE A 891 38.530 ATOM 6980 CA ILE A 891 38.530 ATOM 6981 C ILE A 891 37.913 ATOM 6983 CB ILE A 891 37.913 ATOM 6984 CG1 ILE A 891 37.913 ATOM 6984 CG1 ILE A 891 40.632 ATOM 6986 CD1 LE A 891 40.637 ATOM 6987 N TYR A 892 37.681 ATOM 6980 CA ILE A 891 40.677 ATOM 6980 CA ILE A 891 40.677 ATOM 6980 CA ILE A 891 37.913 ATOM 6980 CT TYR A 892 37.681 ATOM 6980 CT TYR A 892 37.681 ATOM 6980 CT TYR A 892 37.645 ATOM 6980 CT TYR A 892 37.645 ATOM 6990 C TYR A 892 34.237 ATOM 6990 CT TYR A 892 34.237 ATOM 6990 CT TYR A 892 34.841 ATOM 6990 CT TYR A 892 34.237 ATOM 6990 CT TYR A 892 34.237 ATOM 6990 CT TYR A 892 34.237 ATOM 6990 CT TYR A 892 34.237 ATOM 6990 CT TYR A 892 34.237 ATOM 6990 CT TYR A 892 33.602 ATOM 6990 CT TYR A 892 33.602 ATOM 6990 CT TYR A 892 33.602 ATOM 6990 CT TYR A 892 33.602 ATOM 6990 CT TYR A 892 33.602 ATOM 6990 CT TYR A 892 33.602 ATOM 6990 CT TYR A 892 33.602 ATOM 6990 CT TYR A 892 33.602 ATOM 6990 CT TYR A 892 33.602 ATOM 7000 CA ARG A 893 35.900 ATOM 7000 CA ARG A 893 35.900 ATOM 7000 CA ARG A 893 35.900 ATOM 7000 CA ARG A 893 35.900 ATOM 7000 CA ARG A 893 35.900 ATOM 7000 CA ARG A 893 39.799 ATOM 7000 CA ARG A 893 39.799 ATOM 7	ATOM 6954 N	ATOM 6954 N VAL A 888 37.260 80.350 -13.496 1.00 ATOM 6955 CA VAL A 888 37.260 80.350 -13.496 1.00 ATOM 6956 C VAL A 888 37.290 79.073 -13.688 1.00 ATOM 6957 O VAL A 888 37.830 78.679 -15.156 1.00 ATOM 6958 CB VAL A 888 37.830 78.679 -15.156 1.00 ATOM 6958 CB VAL A 888 37.307 77.955 -12.803 1.00 ATOM 6950 CG1 VAL A 888 37.307 77.955 -12.803 1.00 ATOM 6960 CG2 VAL A 888 37.990 77.9878 -13.000 1.00 ATOM 6961 N LEU A 889 38.799 77.878 -13.000 1.00 ATOM 6961 N LEU A 889 38.997 78.081 -15.675 1.00 ATOM 6962 CA LEU A 889 38.997 78.081 -15.675 1.00 ATOM 6963 C LEU A 889 38.914 77.640 -17.061 1.00 ATOM 6966 CB LEU A 889 38.907 76.131 -17.117 1.00 ATOM 6966 N LEU A 889 38.907 76.131 -17.117 1.00 ATOM 6967 CD LEU A 889 38.907 76.131 -17.117 1.00 ATOM 6968 CD LEU A 889 39.626 75.368 -16.817 1.00 ATOM 6967 CD1 LEU A 889 39.375 78.476 -20.023 1.00 ATOM 6968 N HIS A 890 37.502 77.984 -17.734 1.00 ATOM 6970 CA HIS A 890 37.502 77.98 -17.480 1.00 ATOM 6971 C HIS A 890 37.502 77.08 -17.480 1.00 ATOM 6972 O HIS A 890 37.502 77.08 -17.480 1.00 ATOM 6973 CB HIS A 890 37.594 74.285 -17.599 1.00 ATOM 6975 ND1 HIS A 890 37.594 74.285 -17.599 1.00 ATOM 6977 CEI HIS A 890 37.594 74.285 -17.599 1.00 ATOM 6977 CEI HIS A 890 37.375 74.562 -19.959 1.00 ATOM 6978 NEZ HIS A 890 35.227 74.182 -16.001 1.00 ATOM 6978 NEZ HIS A 890 35.227 74.182 -16.001 1.00 ATOM 6978 NEZ HIS A 890 35.227 74.162 -15.03 1.00 ATOM 6978 NEZ HIS A 890 35.227 74.016 -13.806 1.00 ATOM 6978 NEZ HIS A 890 35.995 74.016 -13.806 1.00 ATOM 6978 NEZ HIS A 890 35.995 74.016 -13.806 1.00 ATOM 6980 C TILE A 891 38.134 72.625 -19.107 1.00 ATOM 6996 CD HIS A 891 38.134 72.625 -19.107 1.00 ATOM 6997 N TILE A 891 37.681 69.959 -19.760 1.00 ATOM 6998 CD TYR A 892 37.645 74.016 -13.806 1.00 ATOM 6998 C TYR A 892 37.645 74.016 -13.806 1.00 ATOM 6999 C CTYR A 892 37.645 74.016 -19.531 1.00 ATOM 6990 C TYR A 892 37.645 70.666 -21.957 1.00 ATOM 6990 C TYR A 892 37.645 70.67 -25.730 1.00 ATOM 6990 C C TYR A 892 37.646 70.074 71.90 -21.240 1.00 ATOM 6990 C A RAG A 893 37.000 66.469 -25.88	ATOM

		3.00.01	7012	0	T 1777 -	001	24 640	CE COO	20 642	1 00	0 00	^
		ATOM	7013	0	LEU A		34.640		-29.643	1.00	0.00	0
		ATOM	7014	CB	LEU A		33.136		-27.810	1.00	0.00	С
		MOTA	7015	CG	LEU A		31.687		-28.108	1.00	0.00	C
	5	ATOM	7016		LEU A		31.055		-26.844	1.00	0.00	С
	3	ATOM	7017		LEU A		30.880		-28.613	1.00	0.00	C
		ATOM	7018	N	VAL A		33.975		-28.276	1.00	0.00	N
		MOTA	7019	CA	VAL A		34.163		-29.272	1.00	0.00	С
		MOTA	7020	С	VAL A		32.881		-29.788	1.00	0.00	С
	10	MOTA	7021	0	VAL A		32.201		-29.048	1.00	0.00	0
	10	ATOM	7022	CB	VAL A		35.044		-28.708	1.00	0.00	C
		MOTA	7023		VAL A		35.391		-29.817	1.00	0.00	C
		ATOM	7024		VAL A		36.300		-28.070	1.00	0.00	C
		ATOM	7025	N	LEU A		32.563		-31.056	1.00	0.00	N
	15	ATOM	7026	CA	LEU A		31.395		-31.692	1.00	0.00	C
	15	MOTA	7027	С	LEU A		31.964		-32.498	1.00	0.00	C
		ATOM	7028	0	LEU A		32.930		-33.243	1.00	0.00	0
		ATOM	7029	CB	LEU A		30.695		-32.636	1.00	0.00	С
		MOTA	7030	CG	LEU A		29.534		-33.447	1.00	0.00	C C
	20	MOTA MOTA	7031 7032		LEU A		28.388 29.058		-32.515 -34.491	1.00	0.00	C
ayes.	20	ATOM	7032	N N	GLU A		31.380		-34.491	1.00	0.00	N
lasi.		ATOM	7033	CA	GLU A		31.878		-33.044	1.00	0.00	C
L.		ATOM	7035	C	GLU A		30.786		-33.449	1.00	0.00	c
		ATOM	7036	0	GLU A		29.726		-32.830	1.00	0.00	Õ
	25	ATOM	7037	CB	GLU A		32.833		-32.148	1.00	0.00	C
	20	MOTA	7038	CG	GLU A		34.008		-31.593	1.00	0.00	Č
ी(क र्ड) 515 5		ATOM	7039	CD	GLU A		34.773		-30.587	1.00	0.00	c
50. 10.		ATOM	7040		GLU A		34.193		-29.534	1.00	0.00	0
M.		ATOM	7041		GLU A		35.944		-30.855	1.00	0.00	Ō
197	30	ATOM	7042	N	LYS A		31.070		-34.482	1.00	0.00	N
33		ATOM	7043	CA	LYS A		30.151		-34.927	1.00	0.00	С
		ATOM	7044	С	LYS A		30.618	54.362	÷34.132	1.00	0.00	C
i jage		ATOM	7045	0	LYS A	898	31.815	54.084	-34.066	1.00	0.00	0
		MOTA	7046	CB	LYS A	898	30.302	55.323	-36.428	1.00	0.00	С
ing.	35	MOTA	7047	CG	LYS A	898	29.917	56.500	-37.319	1.00	0.00	С
		MOTA	7048	CD	LYS A	898	28.496	56.984	-37.035	1.00	0.00	C
		MOTA	7049	CE	LYS A	898	27.471	55.865	-37.182	1.00	0.00	С
		MOTA	7050	NZ	LYS A		26.095	56.347	-36.886	1.00	0.00	N
3 (100	40	MOTA	7051	N	VAL A		29.688		-33.517	1.00	0.00	N
	40	ATOM	7052	CA	VAL A		30.057		-32.717	1.00	0.00	С
		ATOM	7053	С	VAL A		29.325		-33.115	1.00	0.00	C
		MOTA	7054	0	VAL A		29.343		-32.375	1.00	0.00	0
		MOTA	7055	CB	VAL A		29.794		-31.217	1.00	0.00	C
	4 =	ATOM	7056		VAL A		30.736		-30.716	1.00	0.00	C
	45	ATOM	7057		VAL A		28.342		-31.013	1.00	0.00	C
		MOTA	7058	N	ASN A		28.691		-34.283	1.00	0.00	N
		ATOM	7059	CA	ASN A		27.955		-34.728	1.00	0.00	C
		ATOM	7060	C	ASN A		28.853		-34.983 -34.962	1.00	0.00	С
	50	ATOM ATOM	7061 7062	O CB	ASN A		28.384		-34.962 -35.993	1.00	0.00	0 C
	50	ATOM	7062	CG	ASN A		27.146 27.997		-37.095	1.00	0.00	C
		ATOM	7064		ASN A		28.598		-36.931	1.00	0.00	0
		ATOM	7065		ASN A		28.056		-38.230	1.00	0.00	N
		ATOM	7065	NDZ N	ASN A		30.138		-35.225	1.00	0.00	N
	55	ATOM	7067	CA	ASN A		31.063		-35.480	1.00	0.00	C
	00	ATOM	7068	C	ASN A		31.850		-34.244	1.00	0.00	C
		ATOM	7069	0	ASN A		32.622		-34.290	1.00	0.00	Ö
		ATOM	7070	CB	ASN A		32.051		-36.588	1.00	0.00	Č
		ATOM	7071	CG	ASN A		31.402		-37.949	1.00	0.00	Č
	60	ATOM	7072		ASN A		30.636		-38.316	1.00	0.00	Ö
		ATOM	7073		ASN A		31.713		-38.714	1.00	0.00	N
		112 011				~ ~ ~	01.713		202721			21

		ATOM	7074	N	CYS A	902	31	. 657	48 253	-33.143	1.00	0.00	N
			7075		CYS A					-31.915	1.00	0.00	C
		ATOM		CA									
		ATOM	7076	С	CYS A					-31.161	1.00	0.00	С
		ATOM	7077	0	CYS A	902	30.	. 588	46.583	-31.080	1.00	0.00	0
	5	ATOM	7078	CB	CYS A	902	32.	.371	49.139	-30.965	1.00	0.00	C
		MOTA	7079	SG	CYS A	902	33.	.115	50.688	-31.564	1.00	0.00	S
		ATOM	7080	N	VAL A					-30.599	1.00	0.00	N
												0.00	C
		ATOM	7081	CA	VAL A					-29.808	1.00		
	40	MOTA	7082	С	VAL A					-28.411	1.00	0.00	C
	10	ATOM	7083	0	VAL A	903	32.	.920	45.631	-27.656	1.00	0.00	0
		MOTA	7084	CB	VAL A	903	33.	361	43.721	-29.734	1.00	0.00	C
		MOTA	7085	CGI	VAL A	903	32.	925	42,593	-28.805	1.00	0.00	С
		ATOM	7086		VAL A					-31.126	1.00	0.00	С
		ATOM	7087	N	ARG A					-28.079	1.00	0.00	N
	15												C
	15	MOTA	7088	CA	ARG A					-26.784	1.00	0.00	
		MOTA	7089	С	ARG A		29.			-25.831	1.00	0.00	С
		MOTA	7090	0	ARG A	904	29.	.446	43.890	-26.239	1.00	0.00	0
		MOTA	7091	CB	ARG A	904	29.	.306	47.169	-26.986	1.00	0.00	C
		ATOM	7092	CG	ARG A	904			48.416	-27.629	1.00	0.00	C
	20	ATOM	7093	CD	ARG A					-27.952	1.00	0.00	C
2 (335)	20				ARG A					-29.118	1.00	0.00	N
4 1992		ATOM	7094	NE									
		MOTA	7095	CZ	ARG A					-29.645	1.00	0.00	C
1		MOTA	7096	NH1	ARG A	904	26.	.796	51.019	-29.106	1.00	0.00	N
1,000 4,000 1,000		ATOM	7097	NH2	ARG A	904	26.	.401	49.428	-30.714	1.00	0.00	Ŋ
17	25	ATOM	7098	N	PRO A	905	29.	. 678	45.350	-24.537	1.00	0.00	N
		ATOM	7099	CA	PRO A	905	29.	.145	44.423	-23.535	1.00	0.00	C
59 E		ATOM	7100	C	PRO A					-23.815	1.00	0.00	C
a Mi		ATOM	7101	0	PRO A					-24.450	1.00	0.00	Ō
											1.00	0.00	C
igi.	20	ATOM	7102	CB	PRO A					-22.223			
	30	ATOM	7103	CG	PRO A			.529		-22.510	1.00	0.00	С
91		MOTA	7104	CD	PRO A	905	30.	.220	46.559	-23.891	1.00	0.00	C
		ATOM	7105	N	SER A	906	27.	.148	43.049	-23.344	1.00	0.00	N
Ü		ATOM	7106	CA	SER A	906	25.	.740	42.738	-23.550	1.00	0.00	С
445		MOTA	7107	C	SER A		24.	. 908	43.772	-22.807	1.00	0.00	C
William William	35	ATOM	7108	0	SER A			.427		-21.985	1.00	0.00	0
		MOTA	7109	CB	SER A			.399		-23.014	1.00	0.00	C
										-21.607	1.00	0.00	Ö
		MOTA	7110	OG	SER A								
jed:		MOTA	7111	N	LYS A					-23.092	1.00	0.00	N
**	4.0	MOTA	7112	CA	LYS A					-22.469	1.00	0.00	C
	40	ATOM	7113	C	LYS A	907	22.	. 632	44.605	-20.947	1.00	0.00	C
		MOTA	7114	0	LYS A	907	22.	.245	45.550	-20.265	1.00	0.00	0
		MOTA	7115	CB	LYS A	907	21.	.289	44.526	-23.056	1.00	0.00	С
		ATOM	7116	CG	LYS A					-24.538	1.00	0.00	C
		ATOM	7117	CD	LYS A			.871		-25.152	1.00	0.00	C
	45		7118								1.00		C
	40	MOTA		CE	LYS A								
		MOTA	7119	NZ	LYS A					-24.456	1.00	0.00	И
		ATOM	7120	N	LEU A	908				-20.414	1.00	0.00	N
		MOTA	7121	CA	LEU A	908	22.	.976	43.233	-18.971	1.00	0.00	C
		MOTA	7122	С	LEU A	908	24.	.275	43.546	-18.223	1.00	0.00	C
	50	MOTA	7123	0	LEU A		24.			-16.994	1.00	0.00	0
	- 0	ATOM	7124	СВ	LEU A					-18.683	1.00	0.00	C
					LEU A					-19.229	1.00	0.00	C
		ATOM	7125	CG									
		ATOM	7126		LEU A					-18.895	1.00	0.00	C
		ATOM	7127	CD2	LEU A					-18.634	1.00	0.00	С
	55	ATOM	7128	N	HIS A	909	25.	.336	43.857	-18.959	1.00	0.00	И
		ATOM	7129	CA	HIS A	909	26.	. 623	44.172	-18.343	1.00	0.00	C
		ATOM	7130	C	HIS A	909	26.	.538	45.556	-17.687	1.00	0.00	С
		ATOM	7131	0	HIS A					-18.287	1.00	0.00	0
		MOTA	7132	CB	HIS A			.723		-19.408	1.00	0.00	c
	60									-18.859	1.00	0.00	C
	UU	ATOM	7133	CG	HIS A								
		MOTA	7134	ND1	HIS A	909	29.	.772	44.889	-18.130	1.00	0.00	N

		MOTA	7135	CD2	HIS A	909	29.927	42.863	-18.933	1.00	0.00	С
		ATOM	7136	CE1	HIS A	909	30.956	44.420	-17.781	1.00	0.00	С
		MOTA	7137	NE2	HIS A	909	31.076	43.193	-18.257	1.00	0.00	N
		MOTA	7138	N	PRO A	910	27.030	45.687	-16.444	1.00	0.00	N
	5	MOTA	7139	CA	PRO A	910	27.000	46,958	-15.710	1.00	0.00	С
		ATOM	7140	С	PRO A	910	28.073	47,968	-16.111	1.00	0.00	С
		ATOM	7141	0	PRO A		28.051		-15.644	1.00	0.00	0
		ATOM	7142	СВ	PRO A		27.184		-14.248	1.00	0.00	C
		MOTA	7143	CG	PRO A		26.897		-14.246	1.00	0.00	C
	10	ATOM	7144	CD	PRO A		27.464		-15.556	1.00	0.00	C
		ATOM	7145	N	ALA A		29.013		-16.956	1.00	0.00	N
		ATOM	7146	CA	ALA A		30.093		-17.358	1.00	0.00	C
		ATOM	7147	C	ALA A		30.048		-18.801	1.00	0.00	C
		ATOM	7148	0	ALA A		29.282		-19.624	1.00	0.00	0
	15	ATOM	7149	CB	ALA A		31.442		-17.091	1.00	0.00	C
	10	ATOM	7150	И	GLY A		30.897		-19.086		0.00	
				CA					-20.420	1.00		N C
		MOTA	7151 7152	C	GLY A		31.020 32.492		-20.420	1.00	0.00	C
		ATOM	7153							1.00	0.00	
	20	ATOM	7154	0	GLY A		33.220		-19.633	1.00	0.00	0
g care,		MOTA	7155	N	TYR A		32.941		-21.868	1.00	0.00	N C
1		MOTA		CA	TYR A		34.346		-22.150	1.00	0.00	
Ţ		ATOM	7156	C	TYR A		34.533		-23.247	1.00	0.00	C
		MOTA	7157	0	TYR A		33.729		-24.173	1.00	0.00	0
9	25	ATOM	7158	CB	TYR A		35.074		-22.542	1.00	0.00	С
सुरुष व सम्बद्धाः	23	MOTA	7159	CG	TYR A		35.025		-21.459	1.00	0.00	C
		ATOM	7160		TYR A		34.031		-21.453	1.00	0.00	С
man grand		MOTA	7161		TYR A		35.931		-20.400	1.00	0.00	С
April.		ATOM	7162		TYR A		33.934		-20.415	1.00	0.00	С
191	30	ATOM	7163		TYR A		35.844		-19.356	1.00	0.00	C
	50	ATOM	7164	CZ	TYR A		34.841		-19.370	1.00	0.00	C
#1		ATOM	7165	OH	TYR A		34.724		-18.328	1.00	0.00	0
		MOTA	7166	N	LEU A		35.608		-23.132	1.00	0.00	N
		MOTA	7167	CA	LEU A		35.930		-24.112	1.00	0.00	C
ių.	35	ATOM	7168	C	LEU A		36.561		-25.362	1.00	0.00	С
	33	MOTA	7169	0	LEU A		37.007		-25.378	1.00	0.00	0
		ATOM	7170	CB	LEU A		36.916		-23.525	1.00	0.00	С
i see Tage		MOTA	7171	CG	LEU A		36.485		-22.357	1.00	0.00	С
lesik 1		ATOM	7172		LEU A		37.599		-22.060	1.00	0.00	C
	40	ATOM	7173		LEU A		35.190		-22.701	1.00	0.00	C
	40	ATOM	7174	N	THR A		36.587		-26.409	1.00	0.00	N
		MOTA	7175	CA	THR A		37.200		-27.677	1.00	0.00	C
		ATOM	7176	С	THR A		38.606		-27.573	1.00	0.00	С
		ATOM	7177 7178	0	THR A		38.893		-26.670	1.00	0.00	0
	45	MOTA		CB	THR A		36.514		-28.852	1.00	0.00	C
	40	ATOM	7179		THR A				-28.593		0.00	0
		ATOM	7180		THR A		35.097		-29.047	1.00	0.00	C
		ATOM	7181	N	SER A		39.474		-28.501	1.00	0.00	И
		ATOM	7182	CA	SER A		40.841		-28.521	1.00	0.00	С
	50	ATOM	7183	C	SER A		40.879		-28.585	1.00	0.00	С
	50	ATOM	7184	0	SER A		41.628		-27.851	1.00	0.00	0
		ATOM	7185	CB	SER A		41.584		-29.728	1.00	0.00	C
		ATOM	7186	OG	SER A		42.821		-29.915	1.00	0.00	0
		MOTA	7187	N	ALA A		40.065		-29.463	1.00	0.00	N
	55	ATOM	7188	CA	ALA A		40.035		-29.619	1.00	0.00	C
	55	ATOM	7189	С	ALA A		39.606		-28.341	1.00	0.00	C
		ATOM	7190	0	ALA A		40.203		-27.948	1.00	0.00	0
		ATOM	7191		ALA A		39.100		-30.759	1.00	0.00	C
		ATOM	7192	N	ALA A		38.566		-27.698	1.00	0.00	N
	60	ATOM	7193	CA	ALA A		38.061		-26.469	1.00	0.00	C
	60	ATOM	7194	C	ALA A		39.092		-25.349	1.00	0.00	С
		ATOM	7195	0	ALA A	918	39.267	59.678	-24.553	1.00	0.00	0

		ATOM	7196	CB	ALA A	918	36.762	58.176	-26.054	1.00	0.00	C
		ATOM	7197	N	HIS A		39.774		-25.286	1.00	0.00	N
		ATOM	7198	CA	HIS A		40.788		-24.261	1.00	0.00	C
			7199	C	HIS A		41.955		-24.471	1.00	0.00	C
	5	MOTA										0
	9	ATOM	7200	0	HIS A		42.406		-23.530	1.00	0.00	
		ATOM	7201	CB	HIS A		41.282		-24.285	1.00	0.00	C
		MOTA	7202	ÇG	HIS A		42.389		-23.315	1.00	0.00	C
		MOTA	7203		HIS A		43.662	55.340	-23.718	1.00	0.00	N
		MOTA	7204	CD2	HIS A	919	42.422	55.729	-21.963	1.00	0.00	C
	10	ATOM	7205	CE1	HIS A	919	44.433	55.190	-22.656	1.00	0.00	С
		MOTA	7206	NE2	HIS A	919	43.705	55.421	-21.578	1.00	0.00	N
		MOTA	7207	N	LYS A	920	42.438	58.474	-25.704	1.00	0.00	N
		ATOM	7208	CA	LYS A		43.545		-25.978	1.00	0.00	C
		ATOM	7209	С	LYS A		43.142		-25.712	1.00	0.00	С
	15	MOTA	7210	0	LYS A		43.961		-25.257	1.00	0.00	0
	10	MOTA	7211	CB	LYS A		44.041		-27.420	1.00	0.00	Č
		MOTA	7212	CG	LYS A		44.916		-27.614	1.00	0.00	C
							45.588		-28.980	1.00	0.00	c
		ATOM	7213	CD	LYS A							
	20	MOTA	7214	CE	LYS A		46.543		-29.094	1.00	0.00	C
	20	ATOM	7215	NZ	LYS A		47.662		-28.112	1.00	0.00	N
facility (MOTA	7216	N	ALA A		41.882		-25.985	1.00	0.00	N
		MOTA	7217	CA	ALA A		41.392		-25.755	1.00	0.00	C
		MOTA	7218	C	ALA A		41.437		-24.254	1.00	0.00	С
(M		MOTA	7219	0	ALA A	921	41.793	63.915	-23.840	1.00	0.00	0
9 ₆ 2 =	25	ATOM	7220	CB	ALA A	921	39.964	62.658	-26.295	1.00	0.00	C
		MOTA	7221	N	SER A	922	41.084	61.823	-23.435	1.00	0.00	N
dui,		ATOM	7222	CA	SER A	922	41.119	62.014	-21.989	1.00	0.00	C
161		ATOM	7223	С	SER A	922	42.558	62.256	-21.541	1.00	0.00	С
		ATOM	7224	0	SER A		42.820	63.112	-20.700	1.00	0.00	0
100	30	MOTA	7225	CB	SER A		40.571		-21.261	1.00	0.00	С
8\$		MOTA	7226	OG	SER A		40.656		-19.853	1.00	0.00	0
1922		MOTA	7227	N	GLN A		43.492		-22.108	1.00	0.00	N
, (FE)		ATOM	7228	CA	GLN A		44.896		-21.748	1.00	0.00	C
Ų.		ATOM	7229	C	GLN A		45.434		-22.152	1.00	0.00	C
	35		7230						-21.483	1.00	0.00	0
gain.	33	MOTA		O	GLN A		46.315					C
100		MOTA	7231	CB	GLN A		45.739		-22.398	1.00	0.00	C
में शक्ता स		ATOM	7232	CG	GLN A		45.409		-21.921	1.00	0.00	
		MOTA	7233	CD	GLN A		46.343		-22.517	1.00	0.00	С
	10	MOTA	7234	OE1			46.494		-23.737	1.00	0.00	0
	40	MOTA	7235		GLN A		46.980		-21.658	1.00	0.00	N
		ATOM	7236	N	SER A		44.901		-23.236	1.00	0.00	И
		ATOM	7237	CA	SER A		45.344		-23.703	1.00	0.00	С
		MOTA	7238	C	SER A		44.952		-22.703	1.00	0.00	С
		ATOM	7239	0	SER A	924	45.596	67.026	-22.628	1.00	0.00	0
	45	ATOM	7240	CB	SER A	924	44.728	65.227	-25.067	1.00	0.00	С
		MOTA	7241	QG	SER A	924	43.364	65.602	-24.936	1.00	0.00	0
		MOTA	7242	N	LEU A	925	43.889	65.728	-21.944	1.00	0.00	N
		MOTA	7243	CA	LEU A	925	43.413	66.686	-20.951	1.00	0.00	С
		ATOM	7244	С	LEU A	925	44.095	66.525	-19.592	1.00	0.00	С
	50	MOTA	7245	0	LEU A		44.482		-18.959	1.00	0.00	0
		MOTA	7246	СВ	LEU A		41.897		-20.761	1.00	0.00	С
		MOTA	7247	CG	LEU A		41.003		-21.978	1.00	0.00	C
		ATOM	7248		LEU A		39.558		-21.647	1.00	0.00	Č
		ATOM	7249		LEU A		41.097		-22.385	1.00	0.00	c
	55						44.242			1.00		N
	55	MOTA	7250	N	LEU A				-19.146		0.00	
		ATOM	7251	CA	LEU A		44.838		-17.840	1.00	0.00	С
		ATOM	7252	C	LEU A		46.357		-17.804	1.00	0.00	С
		ATOM	7253	0	LEU A		46.962		-16.790	1.00	0.00	0
	(0	MOTA	7254	CB	LEU A		44.270		-17.252	1.00	0.00	С
	60	MOTA	7255	CG	LEU A		42.757		-17.007	1.00	0.00	C
		ATOM	7256	CD1	LEU A	926	42.344	62.384	-16.408	1.00	0.00	С

		ATOM	7257	CD2	LEU A	926	42.376	64.868 -16	.072	1.00	0.00	C
		ATOM	7258	N	ASP A		46.976	64.522 -18		1.00	0.00	N
		MOTA	7259	CA	ASP A		48.431	64.416 -18		1.00	0.00	C
	_	ATOM	7260	C	ASP A	927	49.021	64.910 -20	.233	1.00	0.00	C
	5	MOTA	7261	0	ASP A	927	49.584	64.140 -21	.009	1.00	0.00	0
		ATOM	7262	CB	ASP A		48.846	62.968 -18		1.00	0.00	С
		MOTA	7263	CG	ASP A		48.501	62.517 -17		1.00	0.00	C
		MOTA	7264	OD1	ASP A	927	49.213	62.918 -16	.315	1.00	0.00	0
		ATOM	7265	OD2	ASP A	927	47.510	61.779 -17	.097	1.00	0.00	0
	10	ATOM	7266	N	PRO A	928	48.901	66.221 -20	488	1.00	0.00	N
		ATOM	7267	CA	PRO A		49.419	66.837 -21		1.00	0.00	c
		ATOM	7268	С	PRO A		50.933	66.933 -21		1.00	0.00	С
		MOTA	7269	0	PRO A	928	51.550	66.675 -20	.622	1.00	0.00	0
		ATOM	7270	CB	PRO A	928	48.775	68.217 -21	.686	1.00	0.00	C
	15	ATOM	7271	CG	PRO A	928	48.824	68.553 -20	231	1.00	0.00	C
	~~	ATOM	7272	CD	PRO A		48.356	67.247 -19		1.00	0.00	c
		MOTA	7273	N	LEU A		51.531	67.302 -22		1.00	0.00	N
		MOTA	7274	CA	LEU A	929	52.972	67.476 -22	.827	1.00	0.00	C
		ATOM	7275	С	LEU A	929	53.279	68.648 -21	.902	1.00	0.00	C
	20	MOTA	7276	0	LEU A	929	52.476	69.571 -21	. 777	1.00	0.00	0
2,722	20						53.437	67.849 -24				
. (100)		ATOM	7277	CB	LEU A					1.00	0.00	C
		MOTA	7278	CG	LEU A		53.238	66.866 -25		1.00	0.00	C
		MOTA	7279	CD1	LEU A	929	53.804	67.483 -26	.665	1.00	0.00	C
Ñ		MOTA	7280	CD2	LEU A	929	53.945	65.551 -25	.074	1.00	0.00	С
3,3 5	25	ATOM	7281	N	ASP A		54.431	68.601 -21		1.00	0.00	N
	20											
		MOTA	7282	CA	ASP A		54.851	69.695 -20		1.00	0.00	C
i in		ATOM	7283	С	ASP A	930	55.776	70.560 -21	.226	1.00	0.00	С
A STATE		MOTA	7284	0	ASP A	930	56.530	70.040 -22	.051	1.00	0.00	0
137		ATOM	7285	CB	ASP A	930	55.595	69.151 -19	.167	1.00	0.00	C
55 5	30	MOTA	7286	CG	ASP A		54.765	68.166 -18		1.00	0.00	Ċ
ät.	00											
d Charles		ATOM	7287		ASP A		53.736	68.594 -17		1.00	0.00	0
Total T		MOTA	7288	OD2	ASP A	930	55.130	66.972 -18	.362	1.00	0.00	0
1,S		ATOM	7289	N	LYS A	931	55.721	71.871 -21	.024	1.00	0.00	N
		MOTA	7290	CA	LYS A	931	56.540	72.791 -21	.807	1.00	0.00	C
\$ 7±37	35	ATOM	7291	С	LYS A		57.511	73.605 -20		1.00	0.00	С
2.237	•	MOTA	7292	ō	LYS A		57.118	74.237 -19		1.00	0.00	0
a feeter		ATOM	7293	CB	LYS A		55.628	73.735 -22		1.00	0.00	C
i produ		MOTA	7294	CG	LYS A	931	54.629	73.017 -23	.506	1.00	0.00	C
		ATOM	7295	CD	LYS A	931	53.721	74.004 -24	.239	1.00	0.00	C
	40	MOTA	7296	CE	LYS A	931	52.860	74.794 -23	.266	1.00	0.00	С
		ATOM	7297	NZ	LYS A		51.982	75.779 -23	948	1.00	0.00	N
					PHE A			73.605 -21				
		ATOM	7298	N			58.779			1.00	0.00	N
		ATOM	7299	CA	PHE A		59.824	74.335 -20	. 663	1.00	0.00	С
		MOTA	7300	С	PHE A	932	60.511	75.376 -21	.548	1.00	0.00	С
	45	ATOM	7301	0	PHE A	932	60.877	75.088 -22	.682	1.00	0.00	0
		MOTA	7302	CB	PHE A	932	60.893	73.369 -20	. 141	1.00	0.00	С
		ATOM	7303	CG	PHE A		60.359	72 274 -19		1.00	0.00	C
		ATOM	7304		PHE A		59.740	71.158 -19		1.00	0.00	C
		ATOM	7305	CD2	PHE A	932	60.498	72.346 -17.	.882	1.00	0.00	С
	50	ATOM	7306	CE1	PHE A	932	59.269	70.123 -19	.009	1.00	0.00	C
		MOTA	7307	CE2	PHE A	932	60.033	71.321 -17	. 062	1.00	0.00	С
		ATOM	7308	CZ	PHE A		59.417	70.206 -17		1.00	0.00	c
		MOTA	7309	N	ILE A		60.677	76.586 -21.		1.00	0.00	N
		ATOM	7310	CA	ILE A	933	61.345	77.666 -21	.750	1.00	0.00	C
	55	MOTA	7311	С	ILE A	933	62.697	77.920 -21.	.083	1.00	0.00	С
		ATOM	7312	0	ILE A		62.750	78.202 -19		1.00	0.00	0
		MOTA	7313	CB	ILE A		60.540	78.982 -21		1.00	0.00	C
		ATOM	7314		ILE A		59.119	78.764 -22		1.00	0.00	C
	/ 0	MOTA	7315		ILE A		61.262	80.066 -22		1.00	0.00	С
	60	MOTA	7316	CD1	ILE A	933	58.211	79.978 -22	.038	1.00	0.00	С
		MOTA	7317	N	PHE A	934	63.788	77.817 -21.	.841	1.00	0.00	N
									-		-	

		MOTA	7318	CA	PHE F	934	6.5	5.109	78.048	-21.264	1.00	0.00	С
		ATOM	7319	С	PHE F			5.204		-20.807	1.00	0.00	С
		MOTA	7320	Ō	PHE F			1.931		-21.578	1.00	0.00	0
		ATOM	7321	CB	PHE F			5.206		-22.286	1.00	0.00	С
	5	ATOM	7322	CG	PHE A			7.583		-21.692	1.00	0.00	Ċ
	•	ATOM	7323		PHE P			7.965		-20.831	1.00	0.00	Ċ
		MOTA	7323		PHE F			3.480		-21.953	1.00	0.00	C
													C
		ATOM	7325		PHE A			9.225		-20.230	1.00	0.00	
	10	MOTA	7326		PHE F			9.741		-21.362	1.00	0.00	C
	10	MOTA	7327	CZ	PHE F			0.115		-20.496	1.00	0.00	С
		ATOM	7328	N	ALA A			5.599		-19.552	1.00	0.00	N
		MOTA	7329	CA	ALA A	935	65	5.685	81.055	-18.974	1.00	0.00	С
		MOTA	7330	С	ALA A	935	66	5.829	81.945	-19.461	1.00	0.00	С
		ATOM	7331	0	ALA A	935	66	5.609	83.111	-19.799	1.00	0.00	0
	15	MOTA	7332	CB	ALA A	935	65	5.736	80.952	-17.455	1.00	0.00	С
		ATOM	7333	N	GLU F	936	68	3.043	81.404	-19.490	1.00	0.00	N
		ATOM	7334	CA	GLU A	936	69	3.217	82.164	-19.916	1.00	0.00	С
		ATOM	7335	С	GLU F		69	9.257	82.388	-21.426	1.00	0.00	С
		ATOM	7336	0	GLU A			3.447		-22.168	1.00	0.00	0
	20	MOTA	7337	CB	GLU F			0.493		-19.474	1.00	0.00	С
		ATOM	7338	CG	GLU F			0.652		-17.966	1.00	0.00	Ċ
199		ATOM	7339	CD	GLU A			1.755		-17.587	1.00	0.00	Č
7 (100)		ATOM	7340		GLU F			L.554		-17.755	1.00	0.00	õ
		ATOM	7341		GLU F			2.827		-17.132	1.00	0.00	0
	25	ATOM	7342	N	ASN A			2.02		-21.879	1.00	0.00	N
San .	20							0.320		-23.302			C
2 KE		MOTA	7343	CA	ASN F						1.00	0.00	
Manual Control		MOTA	7344	C	ASN A			0.888		-24.093	1.00	0.00	C
dul.		MOTA	7345	0	ASN A			0.475		-25.228	1.00	0.00	0
191	20	ATOM	7346	CB	ASN A			1.175		-23.537	1.00	0.00	C
33	30	ATOM	7347	CG	ASN A			0.507		-23.030	1.00	0.00	C
		ATOM	7348		ASN F			289		-23.136	1.00	0.00	0
7 122		ATOM	7349		ASN A			1.303		-22.491	1.00	0.00	N
1 100		ATOM	7350	N	GLU A			1.830		-23.501	1.00	0.00	N
M.	0.5	ATOM	7351	CA	GLU F	938		2.429		-24.185	1.00	0.00	С
	35	MOTA	7352	С	GLU A		72	2.505		-23.324	1.00	0.00	С
		ATOM	7353	0	GLU A		72	2.896	79.234	-22.157	1.00	0.00	0
		MOTA	7354	CB	GLU F	938	73	3.830	80.797	-24.697	1.00	0.00	С
i sala		ATOM	7355	CG	GLU A	938	74	1.579	79.600	-25.272	1.00	0.00	С
		MOTA	7356	CD	GLU A	938	75	5.803	79.992	-26.073	1.00	0,00	С
	40	MOTA	7357	OE1	GLU A	938	76	5.643	80.756	-25.551	1.00	0.00	0
		ATOM	7358	OE2	GLU A	938	75	5.926	79.527	-27.227	1.00	0.00	0
		ATOM	7359	N	TRP A	939	72	2.128	78.060	-23.921	1.00	0.00	N
		MOTA	7360	CA	TRP A	939	72	2.147	76.771	-23.240	1.00	0.00	С
		ATOM	7361	С	TRP P	939	73	3.332	75.968	-23.767	1.00	0.00	С
	45	ATOM	7362	0	TRP A	939	73	3.240	75.302	-24.796	1.00	0.00	0
		MOTA	7363	CB	TRP F			0.830		-23.506	1.00	0.00	С
		ATOM	7364	CG	TRP F			.711		-22.854	1.00	0.00	С
		MOTA	7365		TRP F			1.603		-22.004	1.00	0.00	С
		ATOM	7366		TRP F			0.631		-23.012	1.00	0.00	С
	50	MOTA	7367		TRP A			.144		-21.624	1.00	0.00	N
	•	ATOM	7368		TRP F			9.936		-22.229	1.00	0.00	С
		ATOM	7369		TRP A			3.435		-23.742	1.00	0.00	С
		ATOM	7370		TRP P			9.085		-22.154	1.00	0.00	C
			7370		TRP P			7.588		-23.668	1.00	0.00	С
	55	MOTA			TRP P								
		ATOM	7372					7.920		-22.878	1.00	0.00	C
		MOTA	7373	N	ILE A			1.452		-23.059	1.00	0.00	N
		ATOM	7374	CA	ILE A			5.659		-23.466	1.00	0.00	C
		ATOM	7375	C	ILE A			5.550		-23.190	1.00	0.00	C
	60	ATOM	7376	0	ILE P			5.172		-22.095	1.00	0.00	0
	60	MOTA	7377	CB	ILE A			5.897		-22.741	1.00	0.00	C
		ATOM	7378	CG1	ILE P	. 940	71	7.062	77.390	-23.108	1.00	0.00	С

		ATOM	7379	CG2	ILE A	940	78.144	75.135 -2	3.127	1.00	0.00	С	
		ATOM	7380		ILE A		78.216	78.080 -2		1.00	0.00	C	
		ATOM	7381	N	GLY A		75.872	73.029 -2		1.00	0.00	И	
		ATOM	7382	CA	GLY A		75.808	71.586 -2		1.00	0.00	C	
	5	ATOM	7383	C	GLY A		74.421	71.000 -2		1.00	0.00	Č	
	J										0.00	0	
		ATOM	7384	0	GLY A		74.192	69.823 -2		1.00			
		MOTA	7385	N	ALA A		73.500	71.815 -2		1.00	0.00	N	
		ATOM	7386	CA	ALA A		72.129	71.375 -2		1.00	0.00	С	
	10	MOTA	7387	C	ALA A		72.022	70.166 -2		1.00	0.00	С	
	10	ATOM	7388	0	ALA A		72.756	70.057 -2		1.00	0.00	0	
		MOTA	7389	CB	ALA A		71.310	72.532 -2		1.00	0.00	С	
		MOTA	7390	N	GLN A	943	71.098	69.264 -2	5.603	1.00	0.00	N	
		ATOM	7391	CA	GLN A	943	70.862	68.070 -2	6.410	1.00	0.00	C	
		ATOM	7392	С	GLN A	943	69.431	68.132 -2	6.938	1.00	0.00	C	
	15	ATOM	7393	0	GLN A	943	68.564	68.759 -2	6.328	1.00	0.00	0	
		MOTA	7394	CB	GLN A	943	71.081	66.807 -2	5.573	1.00	0.00	С	
		MOTA	7395	CG	GLN A	943	72.451	66.766 -2	4.909	1.00	0.00	С	
		MOTA	7396	CD	GLN A		72.715	65.465 -2	4.176	1.00	0.00	С	
		MOTA	7397	OE1	GLN A		71.863	64.974 -2	3.432	1.00	0.00	0	
	20	ATOM	7398		GLN A		73.906	64.905 -2		1.00	0.00	N	
4		ATOM	7399	N	GLY A		69.178	67.475 -2		1.00	0.00	N	
		ATOM	7400	CA	GLY A		67.857	67.544 -2		1.00	0.00	C	
1,5		ATOM	7401	C	GLY A		66.794	66.553 -2		1.00	0.00	C	
i,D		MOTA	7402	Õ	GLY A		65.619	66.765 -2		1.00	0.00	o	
	25	ATOM	7403	N	GLN A		67.175	65.480 -2		1.00	0.00	Ŋ	
Herand Ab	20	ATOM	7404	CA	GLN A		66.180	64.488 -2		1.00	0.00	C	
		ATOM	7405	C	GLN A		66.628	63.536 -2		1.00	0.00	C	
14		ATOM	7405	0	GLN A		67.820	63.280 -2		1.00	0.00	0	
Billing.												C	
	30	ATOM	7407	CB	GLN A		65.800	63.694 -21		1.00	0.00		
	. 50	MOTA	7408	CG	GLN A		64.874	62.512 -2		1.00	0.00	C	
21		ATOM	7409	CD	GLN A		64.618	61.765 -2		1.00	0.00	C	
		MOTA	7410		GLN A		63.877	62.233 -3		1.00	0.00	0	
b		MOTA	7411		GLN A		65.244	60.606 -2		1.00	0.00	N	
14	25	MOTA	7412	N	PHE A		65.649	63.026 -2		1.00	0.00	И	
	35	ATOM	7413	CA	PHE A		65.886	62.060 -2		1.00	0.00	C	
g seën		ATOM	7414	С	PHE A		64.790	61.007 -2		1.00	0.00	С	
A North		ATOM	7415	0	PHE A		63.610	61.339 -2		1.00	0.00	0	
i.e.fo		MOTA	7416	CB	PHE A		65.864	62.720 -2		1.00	0.00	С	
\$	40	MOTA	7417	CG	PHE A		65.751	61.731 -2		1.00	0.00	C	
	40	ATOM	7418		PHE A		66.778	60.828 -2		1.00	0.00	С	
		ATOM	7419		PHE A		64.588	61.658 -2		1.00	0.00	C	
		MOTA	7420		PHE A		66.652	59.854 -21		1.00	0.00	C	
		MOTA	7421		PHE A	946	64.447	60.691 -20		1.00	0.00	С	
	4 ==	MOTA	7422	CZ	PHE A		65.482	59.784 -1		1.00	0.00	С	
	4 5	ATOM	7423	N	GLY A		65.185	59.741 -2		1.00	0.00	N	
		ATOM	7424	CA	GLY A	947	64.222	58.657 -2	4.279	1.00	0.00	C	
		MOTA	7425	С	GLY A	947	63.867	58.092 -2	5.638	1.00	0.00	C	
		ATOM	7426	0	GLY A	947	62.903	57.339 -2	5.758	1.00	0.00	0	
		MOTA	7427	N	GLY A	948	64.632	58.447 -2	6.665	1.00	0.00	N	
	50	MOTA	7428	CA	GLY A	948	64.347	57.929 -2	7.989	1.00	0.00	C	
		ATOM	7429	С	GLY A	948	64.381	56.413 -28	8.006	1.00	0.00	C	
		ATOM	7430	0	GLY A		63.780	55.779 -28	8.872	1.00	0.00	0	
		MOTA	7431	N	ASP A	949	65.078	55.829 -2	7.037	1.00	0.00	N	
		MOTA	7432	CA	ASP A		65.195	54.379 -2		1.00	0.00	С	
	55	MOTA	7433	С	ASP A		64.172	53.754 -2		1.00	0.00	C	
		ATOM	7434	0	ASP A		64.158	52.535 -2		1.00	0.00	0	
		ATOM	7435	CB	ASP A		66.615	53.999 -2		1.00	0.00	C	
		MOTA	7436	CG	ASP A		66.936	54.467 -25		1.00	0.00	Č	
		MOTA	7437		ASP A		66.490	55.571 -2		1.00	0.00	0	
	60	ATOM	7437		ASP A		67.646	53.736 -2		1.00	0.00	0	
	00	ATOM	7439	N	HIS A		63.321	54.578 -25		1.00	0.00	И	
		ATOM	1432	14	H CLII	230	03.321	J4.J10 -2	J.J00	1.00	0.00	1/4	

			_				. –				
		MOTA	7440	CA	HIS A		62.299	54.054 -24.482	1.00	0.00	C
		MOTA	7441	C	HIS A		61.272	53.277 -25.297	1.00	0.00	С
		MOTA	7442	0	HIS A		60.897	53.696 -26.388	1.00	0.00	0
		MOTA	7443	CB	HIS A		61.562	55.180 -23.750	1.00	0.00	С
	5	MOTA	7444	CG	HIS A		62.387	55.898 -22.728	1.00	0.00	С
		MOTA	7445		HIS A		63.627	55.460 -22.320	1.00	0.00	N
		MOTA	7446		HIS A		62.131	57.020 -22.015	1.00	0.00	С
		MOTA	7447		HIS A		64.101	56.282 -21.400	1.00	0.00	С
	10	MOTA	7448	NE2	HIS A		63.211	57.237 -21.197	1.00	0.00	N
	10	MOTA	7449	N	PRO P		60.806	52.132 -24.779	1.00	0.00	N
		MOTA	7450	CA	PRO A		59.812	51.339 -25.506	1.00	0.00	С
		MOTA	7451	С	PRO A		58.485	52.094 -25.625	1.00	0.00	С
		ATOM	7452	0	PRO P		58.062	52.770 -24.685	1.00	0.00	0
	4 E	MOTA	7453	CB	PRO A		59.682	50.080 -24.648	1.00	0.00	C
	15	MOTA	7454	CG	PRO I		61.045	49.955 -24.029	1.00	0.00	C
		MOTA	7455	CD	PRO A		61.345	51.375 -23.634	1.00	0.00	С
		MOTA	7456	N	SER A		57.841	51.994 -26.783	1.00	0.00	N
		MOTA	7457	CA	SER A		56.560	52.660 -27.001	1.00	0.00	С
	20	MOTA	7458	С	SER F		55.488	51.599 -26.794	1.00	0.00	С
	20	ATOM	7459	0	SER A		55.184	50.823 -27.704	1.00	0.00	0
1,520 1,000		ATOM	7460	CB	SER A		56.487	53.225 -28.423	1.00	0.00	C
J.		ATOM	7461	OG	SER A		55.404	54.129 -28.568	1.00	0.00	0
, 194		ATOM	7462	N	ALA A		54.921	51.575 -25.589	1.00	0.00	N
The state of the s	25	ATOM	7463	CA	ALA A		53.913	50.590 -25.212	1.00	0.00	C
4,8 B	23	MOTA	7464	C	ALA A		52.550	50.732 -25.872	1.00	0.00	C
		MOTA	7465	0	ALA A		52.175	51.807 -26.342	1.00	0.00	0 C
10 m		MOTA	7466	CB	ALA A		53.741 51.811	50.592 -23.697 49.625 -25.876	1.00	0.00	N
and The		MOTA MOTA	7467 7468	N CA	ARG A		50.473	49.573 -26.447	1.00	0.00	C
(T	30	ATOM	7469	C	ARG A		49.639	50.690 -25.825	1.00	0.00	C
	50	ATOM	7470	0	ARG A		49.742	50.963 -24.625	1.00	0.00	0
E)		ATOM	7470	CB	ARG A		49.854	48.203 -26.173	1.00	0.00	C
Section 1		ATOM	7472	CG	ARG A		48.507	47.969 -26.831	1.00	0.00	c
1		ATOM	7473	CD	ARG A		48.382	46.513 -27.253	1.00	0.00	Č
House Trust	35	MOTA	7474	NE	ARG A		46.995	46.082 -27.379	1.00	0.00	N
juli.	-	ATOM	7475	CZ	ARG F		46.197	45.837 -26.346	1.00	0.00	C
		ATOM	7476		ARG A		46.655	45.981 -25.111	1.00	0.00	N
1000 E		MOTA	7477		ARG A		44.946	45.442 -26.545	1.00	0.00	N
į.		ATOM	7478	N	GLU A		48.805	51.320 -26.648	1.00	0.00	N
	40	ATOM	7479	CA	GLU A		47.993	52.460 -26.225	1.00	0.00	С
		ATOM	7480	С	GLU A	955	47.134	52.324 -24.968	1.00	0.00	С
		MOTA	7481	0	GLU A	955	46.846	53.324 -24.319	1.00	0.00	0
		MOTA	7482	CB	GLU A	955	47.108	52.922 -27.385	1.00	0.00	C
		MOTA	7483	CG	GLU F	955	45.917	52.029 -27.646	1.00	0.00	C
	45	MOTA	7484	CD	GLU F	955	45.090	52.504 -28.820	1.00	0.00	С
		MOTA	7485	OE1	GLU F	955	44.949	53.734 -28.996	1.00	0.00	0
		MOTA	7486	OE2	GLU A	955	44.574	51.648 -29.560	1.00	0.00	0
		ATOM	7487	N	ASP A		46.719	51.112 -24.618	1.00	0.00	N
	50	MOTA	7488	CA	ASP F		45.889	50.954 -23.426	1.00	0.00	С
	50	ATOM	7489	С	ASP A		46.712	50.774 -22.152	1.00	0.00	C
		MOTA	7490	0	ASP A		46.160	50.585 -21.068	1.00	0.00	0
		MOTA	7491	CB	ASP F		44.895	49.789 -23.596	1.00	0.00	С
		MOTA	7492	CG	ASP A		45.574	48.459 -23.883	1.00	0.00	C
	==	ATOM	7493		ASP A		46.818	48.417 -23.988	1.00	0.00	0
	55	MOTA	7494		ASP A		44.848	47.445 -24.006	1.00	0.00	0
		ATOM	7495	N	LEU A		48.033	50.849 -22.280	1.00	0.00	N
		ATOM	7496	CA	LEU A		48.907	50.701 -21.121	1.00	0.00	C
		ATOM	7497	С	LEU A		49.501	52.049 -20.728	1.00	0.00	C
	60	ATOM	7498	0	LEU A		49.847	52.858 -21.588	1.00	0.00	0
	60	MOTA	7499	CB	LEU A		50.042	49.718 -21.426	1.00	0.00	C C
		MOTA	7500	CG	LEU A	3 95/	50.902	49.265 -20.240	1.00	0.00	C

	MOTA	7501	CD1	LEU A	957	50.042	48.498 -19.238	1.00	0.00	C
	MOTA	7502	CD2	LEU A	957	52.037	48.377 -20.736	1.00	0.00	С
	MOTA	7503	N	ASP A	958	49.614	52.289 -19.427	1.00	0.00	N
	MOTA	7504	CA	ASP A	958	50.192	53.535 -18.942	1.00	0.00	С
5	ATOM	7505	С	ASP A	958	51.058	53.276 -17.719	1.00	0.00	С
	MOTA	7506	0	ASP A		50.813	52.333 -16.965	1.00	0.00	0
	ATOM	7507	CB	ASP A		49.083	54.537 -18.583	1.00	0.00	C
	MOTA	7508	CG	ASP A		49.628	55.918 -18.229	1.00	0.00	С
	ATOM	7509		ASP A		50.713	56.272 -18.732	1.00	0.00	0
10	ATOM	7510		ASP A		48.962	56.652 -17.463	1.00	0.00	0
	ATOM	7511	N	VAL A		52.101	54.083 -17.561	1.00	0.00	N
	ATOM	7512	CA	VAL A		52.967	54.006 -16.390	1.00	0.00	C
	ATOM	7513	C	VAL A		52.402	55.141 -15.539	1.00	0.00	Č
	ATOM	7514	0	VAL A		52.820	56.294 -15.658	1.00	0.00	Ö
15	ATOM	7515	СВ	VAL A		54.445	54.299 -16.738	1.00	0.00	Č
10	ATOM	7516		VAL A		55.279	54.442 -15.447	1.00	0.00	C
	ATOM	7517		VAL A		55.005	53.168 -17.593	1.00	0.00	Č
	ATOM	7518	N	SER A		51.416	54.804 -14.713	1.00	0.00	Ŋ
	MOTA	7519	CA	SER A		50.740	55.773 -13.852	1.00	0.00	C
20	ATOM	7520	C	SER A		51.688	56.483 -12.898	1.00	0.00	C
		7521	0	SER A		51.542	57.682 -12.624	1.00	0.00	Ö
	MOTA	7522	CB	SER A		49.646	55.066 -13.046	1.00	0.00	C
i, 🗓	MOTA	7523		SER A		48.818	54.290 -13.898	1.00	0.00	0
1.0	ATOM	7523	OG			52.650	55.729 -12.383	1.00	0.00	N
25	MOTA	7524	N	VAL A		53.624	56.267 -11.446	1.00	0.00	C
167 ZV	ATOM		CA				55.683 -11.677	1.00	0.00	C
1/2= 1/2= 1/2= 1/2= 1/2= 1/2= 1/2= 1/2=	MOTA	7526	C	VAL A		55.009	54.481 -11.924	1.00	0.00	0
141	MOTA	7527	0			55.161				C
	MOTA	7528	CB CC1	VAL A		53.240	55.948 -9.969 56.448 -9.018	1.00	0.00	C
30	MOTA	7529 7530		VAL A		54.339 51.899	56.448 -9.018 56.589 -9.613	1.00	0.00	C
	MOTA	7531		MET A		56.006	56.560 -11.622	1.00	0.00	N
E), Johnson	MOTA	7532	n CA	MET A		57.401	56.171 -11.712	1.00	0.00	C
A Marie	ATOM	7533	C	MET A			56.955 -10.560	1.00	0.00	C
.II	ATOM	7534	0	MET A		58.003 57.976	58.188 -10.559	1.00	0.00	0
J 35	MOTA MOTA	7535	CB	MET A		58.056	56.601 -13.021	1.00	0.00	C
 	ATOM	7536	CG	MET A		59.529	56.213 -13.047	1.00	0.00	Č
	ATOM	7537	SD	MET A		60.355	56.541 -14.598	1.00	0.00	S
	ATOM	7538	CE	MET A		62.029	55.938 -14.241	1.00	0.00	c
į.	ATOM	7539	N	ARG A		58.528	56.246 -9.568	1.00	0.00	Ŋ
40	ATOM	7540	CA	ARG A		59.081	56.906 -8.393	1.00	0.00	C
10	ATOM	7541	C	ARG A		60.306	56.201 -7.847	1.00	0.00	c
	ATOM	7542	0	ARG A		60.242	55.020 -7.519	1.00	0.00	ō
	ATOM	7543	CB	ARG A		58.005	56.965 -7.294	1.00	0.00	C
	ATOM	7544	CG	ARG A		58.486	57.450 -5.919	1.00	0.00	C
45	ATOM	7545	CD	ARG A		57.362	57.330 -4.876	1.00	0.00	C
10	ATOM	7546	NE	ARG A		56.174	58.055 -5.321	1.00	0.00	И
	MOTA	7547	CZ	ARG A		54.929	57.597 -5.238	1.00	0.00	C
	ATOM	7548		ARG A		54.679	56.405 -4.707	1.00	0.00	И
	ATOM	7549		ARG A		53.935	58.317 -5.738	1.00	0.00	N
50	ATOM	7550	N	ARG A		61.423	56.918 -7.755	1.00	0.00	N
50	ATOM	7551	CA	ARG A		62.628	56.322 -7.186	1.00	0.00	C
	ATOM	7552	C	ARG A		62.316	56.255 -5.695	1.00	0.00	Č
	ATOM	7553	0	ARG A		61.881	57.245 -5.100	1.00	0.00	Ö
	MOTA	7554	CB	ARG A		63.860	57.197 -7.442	1.00	0.00	C
55	MOTA	7555	CG	ARG A		65.152	56.585 -6.894	1.00	0.00	C
33	ATOM	7556	CD	ARG A		66.386	57.327 -7.393	1.00	0.00	Č
	ATOM	7557	NE	ARG A		66.594	57.152 -8.830	1.00	0.00	N
	ATOM	7558	CZ	ARG A		67.472	56.313 -9.371	1.00	0.00	C
	ATOM	7559		ARG A		68.242	55.554 -8.600	1.00	0.00	N
60		7560				67.596	56.243 -10.690	1.00	0.00	N
00	ATOM			ARG A						N
	ATOM	7561	N	LEU A	COK	62.528	55.088 -5.098	1.00	0.00	Į.V

									0		0	_
		MOTA	7562	CA	LEU A		62.204	54.869	-3.691	1.00	0.00	C
		MOTA	7563	С	LEU A		63.382	54.975	-2.728	1.00	0.00	C
		MOTA	7564	0	LEU A		63.199	54.897	-1.514	1.00	0.00	0
	_	MOTA	7565	CB	LEU A		61.552	53.491	-3.540	1.00	0.00	С
	5	MOTA	7566	CG	LEU A		60.339	53.218	-4.440	1.00	0.00	C
		MOTA	7567		LEU A		59.998	51.737	-4.413	1.00	0.00	С
		MOTA	7568		LEU A		59.151	54.063	-3.981	1.00	0.00	С
		MOTA	7569	N	THR A		64.582	55.160	-3.270	1.00	0.00	N
	4.0	MOTA	7570	CA	THR A	966	65.780	55.255	-2.445	1.00	0.00	С
	10	MOTA	7571	С	THR A		66.526	56.568	-2.622	1.00	0.00	С
		MOTA	7572	0	THR A		66.500	57.170	-3.698	1.00	0.00	0
		MOTA	7573	CB	THR A		66.767	54.115	-2.776	1.00	0.00	С
		MOTA	7574	OG1	THR A		66.988	54.074	-4.191	1.00	0.00	0
	4	MOTA	7575	CG2	THR A		66.218	52.773	-2.311	1.00	0.00	С
	15	MOTA	7576	N	LYS A		67.190	57.006	-1.558	1.00	0.00	N
		ATOM	7577	CA	LYS A		67.987	58.223	-1.608	1.00	0.00	C
		MOTA	7578	С	LYS A		69.364	57.836	-2.157	1.00	0.00	С
		MOTA	7579	0	LYS A		69.675	56.650	-2.275	1.00	0.00	0
	00	MOTA	7580	CB	LYS A		68.098	58.849	-0.217	1.00	0.00	С
	20	MOTA	7581	CG	LYS A		66.760	59.367	0.313	1.00	0.00	С
		MOTA	7582	CD	LYS A		66.947	60.187	1.577	1.00	0.00	C
113		MOTA	7583	CE	LYS A		65.638	60.793	2.048	1.00	0.00	C
		MOTA	7584	NZ	LYS A		65.850	61.621	3.269	1.00	0.00	N
6°376	25	ATOM	7585	N	SER A		70.185	58.829	-2.488	1.00	0.00	И
8,3 E 317700	25	MOTA	7586	CA	SER A		71.499	58.577	-3.078	1.00	0.00	C
		ATOM	7587	C	SER A		72.484	57.730	-2.270	1.00	0.00	C
		MOTA	7588	0	SER A		73.349	57.079	-2.850	1.00	0.00	0
Part Part		ATOM	7589	CB	SER A		72.175	59.904	-3.447	1.00	0.00	С
i i i	30	ATOM	7590	OG	SER A		72.506	60.651	-2.291	1.00	0.00	0
	30	ATOM	7591	N	SER A		72.355	57.725	-0.948	1.00	0.00	N C
ā) Jemm		ATOM	7592	CA	SER A		73.279	56.957	-0.109	1.00	0.00	
		ATOM	7593	C	SER A		73.058	55.444	-0.131	1.00	0.00	С
		ATOM	7594	0	SER A		73.910	54.684	0.334	1.00	0.00	0 C
14	35	ATOM	7595	CB	SER A		73.215	57.454	1.337	1.00	0.00	0
Es.E.	33	ATOM	7596	OG N	SER A		71.918	57.274 55.005	1.878 -0.675	1.00	0.00	и
		ATOM	7597 7598	N	ALA A		71.926 71.612	53.578	-0.738	1.00	0.00	C
4.10mg		MOTA MOTA	7599	CA C	ALA A		72.428	52.823	-1.785	1.00	0.00	C
ğı.		MOTA	7600	0	ALA A		72.368	53.135	-2.978	1.00	0.00	Ō
	40	MOTA	7601	CB	ALA A		70.121	53.385	-1.009	1.00	0.00	C
	10	ATOM	7602	N	LYS A		73.186	51.825	-1.335	1.00	0.00	Ŋ
		ATOM	7603	CA	LYS A		74.002	51.014	-2.236	1.00	0.00	C
		ATOM	7604	C	LYS A		73.142	50.415	-3.337	1.00	0.00	Č
		ATOM	7605	0	LYS A		73.517	50.429	-4.507	1.00	0.00	0
	45	ATOM	7606	СВ	LYS A		74.688	49.880	-1.470	1.00	0.00	С
	10	ATOM	7607	CG	LYS A		76.025	50,250	-0.843	1.00	0.00	С
		ATOM	7608	CD	LYS A		76.622	49.070	-0.082	1.00	0.00	С
		ATOM	7609	CE	LYS A		76.665	47.808	-0.941	1.00	0.00	С
		ATOM	7610	NZ	LYS A		77.418	47.998	-2.210	1.00	0.00	N
	50	ATOM	7611	N	THR A		71.993	49,868	-2.953	1.00	0.00	N
	-	ATOM	7612	CA	THR A		71.083	49,283	-3.922	1.00	0.00	С
		ATOM	7613	C	THR A		69.931	50.255	-4.156	1.00	0.00	С
		ATOM	7614	Ō	THR A		69.110	50.493	-3.267	1.00	0.00	0
		MOTA	7615	CB	THR A		70.523	47.921	-3.432	1.00	0.00	С
	55	ATOM	7616		THR A		71.603	46.991	-3.271	1.00	0.00	0
		ATOM	7617		THR A		69.538	47.349	-4.446	1.00	0.00	С
		ATOM	7618	N	GLN A		69.890	50.833	-5.351	1.00	0.00	N
		ATOM	7619	CA	GLN A		68.836	51.774	-5.697	1.00	0.00	C
		ATOM	7620	С	GLN A		67.568	51,029	-6.081	1.00	0.00	C
	60	ATOM	7621	0	GLN A		67.621	49.944	-6.662	1.00	0.00	0
		ATOM	7622	CB	GLN A		69.278	52.674	-6.854	1.00	0.00	С
						-						

		ATOM	7623	CG	GLN A	973	70.3	79 53,652	2 -6.481	1.00	0.00	C
		MOTA	7624	CD	GLN A		69.9			1.00	0.00	С
		MOTA	7625	OE1	GLN A	973	70.6	07 54.812	2 -4.397	1.00	0.00	0
		ATOM	7626	MES	GLN A	973	68.83	36 55.334	-5.678	1.00	0.00	N
	5											
	J	ATOM	7627	N	ARG A		66.4			1.00	0.00	N
		ATOM	7628	CA	ARG A	974	65.1	45 51.015	-6.063	1.00	0.00	C
		MOTA	7629	С	ARG A	974	64.2	20 52.030	-6.722	1.00	0.00	C
											0.00	0
		MOTA	7630	0	ARG A		64.1			1.00		
		ATOM	7631	CB	ARG A	974	64.4	97 50,472	2 -4.788	1.00	0.00	С
	10	MOTA	7632	CG	ARG A	974	65.3	22 49.406	5 -4.067	1.00	0.00	C
										1.00	0.00	С
		MOTA	7633	CD	ARG A		64.7					
		ATOM	7634	NE	ARG A	974	63.4	52 48.345		1.00	0.00	N
		MOTA	7635	CZ	ARG A	974	62.3	21 48.718	3 -2.211	1.00	0.00	С
		ATOM	7636		ARG A		62.2			1.00	0.00	N
	15											
	15	ATOM	7637	NH2	ARG A	974	61.2			1.00	0.00	N
		ATOM	7638	N	VAL A	975	63.5	44 51.593	3 -7.778	1.00	0.00	N
		MOTA	7639	CA	VAL A	975	62.6	13 52.450	-8.496	1.00	0.00	С
										1.00	0.00	c
		MOTA	7640	С	VAL A		61.2					
		MOTA	7641	0	VAL A	975	61.2	46 50.564	9.079	1.00	0.00	0
	20	MOTA	7642	CB	VAL A	975	63.1	48 52.810	9.903	1.00	0.00	С
i kralj i rasil		ATOM	7643		VAL A		62.1		3 -10.624	1.00	0.00	С
y territy												
		ATOM	7644	CGZ	VAL A		64.4			1.00	0.00	C
. 34		ATOM	7645	N	GLY A	976	60.2	17 52.365	-8.192	1.00	0.00	N
		ATOM	7646	CA	GLY A	976	58.9	06 51.748	8 -8.249	1.00	0.00	C
Ţ.	25		7647	C	GLY A		58.0			1.00	0.00	С
9 12mm	20	ATOM										
		MOTA	7648	0	GLY A		58.1			1.00	0.00	0
		MOTA	7649	N	TYR A	977	57.2	61 51.328	3 -9.947	1.00	0.00	N
2,212		MOTA	7650	CA.	TYR A	977	56.3	80 51.637	7 -11.062	1.00	0.00	C
19		ATOM	7651	C	TYR A		54.9		-10.823	1.00	0.00	С
10 H	30											
	30	MOTA	7652	0	TYR A		54.8		1 -10.344	1.00	0.00	0
31		MOTA	7653	CB	TYR A	977	56.8	71 50,989	9 -12.360	1.00	0.00	C
2 2		ATOM	7654	CG	TYR A	977	58.2	64 51.359	9 -12.787	1.00	0.00	C
T STATE		ATOM	7655	CD1			59.3		7 -12.287	1.00	0.00	C
												C
THE PERSON NAMED IN	25	MOTA	7656		TYR A		58.4		3 -13.702	1.00	0.00	
	35	MOTA	7657	CE1	TYR A	977	60.6	68 51,014	1 -12.695	1.00	0.00	C
į siši		MOTA	7658	CE2	TYR A	977	59.7	59 52.734	4 - 14.112	1.00	0.00	C
		ATOM	7659	CZ	TYR A	977	60.8	49 52.048	3 -13.609	1.00	0.00	С
			7660		TYR A		62.1		7 -14.016	1.00	0.00	0
g.d.		ATOM		OH								
	40	MOTA	7661	N	VAL A		53.9		1 -11.160	1.00	0.00	N
	40	MOTA	7662	CA	VAL A	978	52.6	06 51.484	4 -11.061	1.00	0.00	C
		ATOM	7663	С	VAL A	978	52.1	45 51.449	-12.514	1.00	0.00	C
			7664	0	VAL A		52.1		3 -13.209	1.00	0.00	0
		ATOM										
		MOTA	7665	CB	VAL A		51.7		1 - 10.253	1.00	0.00	С
		MOTA	7666	CG1	VAL A	978	50.2	65 52.036	5 -10.369	1.00	0.00	C
	4 5	ATOM	7667	CG2	VAL A	978	52.1	56 52,438	3 -8.786	1.00	0.00	C
										1.00	0.00	N
		MOTA	7668	N	LEU A		51.7		3 -12.972			
		MOTA	7669	CA	LEU A	979	51.3	27 50,050	-14.341	1.00	0.00	C
		ATOM	7670	С	LEU A	979	49.8	38 49,788	3 - 14.410	1.00	0.00	C
		ATOM	7671	Ö	LEU A		49.3		5 -13.764	1.00	0.00	0
	EO											
	50	ATOM	7672	CB	LEU A		52.0		9 -14.963	1.00	0.00	C
		ATOM	7673	CG	LEU A	979	53.3	83 49.114	1 -15.689	1.00	0.00	C
		MOTA	7674	CD1	LEU A	979	53.0	99 49 751	3 -17.036	1.00	0.00	С
										1.00	0.00	C
		MOTA	7675		LEU A		54.2		-14.840			
		MOTA	7676	N	HIS A	980	49.1	37 50.589	9 -15.201	1.00	0.00	N
	55	MOTA	7677	CA	HIS A	980	47.7	10 50.391	L -15.351	1.00	0.00	C
		MOTA	7678	С	HIS A		47.3		-16.801	1.00	0.00	C
							47.7		-17.693	1.00	0.00	o
		MOTA	7679	0	HIS A							
		ATOM	7680	CB	HIS A		46.9		L -14.830	1.00	0.00	C
		MOTA	7681	CG	HIS A	980	45.4	41 51.436	5 -15.001	1.00	0.00	С
	60	MOTA	7682	ND1	HIS A	980	44.7	44 52.01	7 -16.039	1.00	0.00	N
•	- ~	ATOM	7683		HIS A		44.5		L -14.316	1.00	0.00	C
		AIOM	1003	UDZ	HTD W	200	44.0		74.010	1.00	0.00	C

		ATOM	7684	CE1	HIS F	000	43.480	51.634 -15.987	1.00	0.00	С
		ATOM	7685	NE2	HIS F	980	43.332	50.828 -14.951	1.00	0.00	N
		ATOM	7686	N	ARG A	981	46.519	49.133 -17.029	1.00	0.00	N
		ATOM	7687	CA	ARG A		46.051	48.831 -18.370	1.00	0.00	С
	5										
	9	ATOM	7688	С	ARG F	, A8T	44.539	48.974 -18.352	1.00	0.00	C
		ATOM	7689	0	ARG F	981	43.848	48.296 -17.593	1.00	0.00	0
		ATOM	7690	CB	ARG F		46.438	47.413 -18.779	1.00	0.00	С
		ATOM	7691	CG	ARG A	981	46.065	47.071 -20.214	1.00	0.00	C
		MOTA	7692	CD	ARG F	981	46.612	45.714 -20.606	1.00	0.00	C
	10	ATOM	7693	NE	ARG A		46.188	45.321 -21.944	1.00	0.00	N
	10										
		ATOM	7694	CZ	ARG A	. 98T	46.440	44.131 -22.485	1.00	0.00	С
		ATOM	7695	NH1	ARG A	981	47.116	43.217 -21.798	1.00	0.00	N
		ATOM	7696		ARG A		46.011	43.850 -23.709	1.00	0.00	N
		MOTA	7697	N	THR P	982	44.029	49.883 -19.170	1.00	0.00	И
	15	MOTA	7698	CA	THR F	982	42.595	50.108 -19.253	1.00	0.00	C
		ATOM	7699	C	THR A	982	42.070	49.120 -20.293	1.00	0.00	С
		MOTA	7700	0	THR P		42.813	48.248 -20.744	1.00	0.00	0
		MOTA	7701	CB	THR F	982	42.301	51.560 -19.698	1.00	0.00	C
		MOTA	7702	OG1	THR A	982	40.898	51.824 -19.601	1.00	0.00	0
	20										
.947900	20	ATOM	7703	CGZ	THR P		42.769	51.787 -21.134	1.00	0.00	С
9192F		ATOM	7704	N	ASN A	983	40.795	49.232 -20.652	1.00	0.00	N
ij		ATOM	7705	CA	ASN A	983	40.232	48.351 -21.668	1.00	0.00	C
4											C
i, II		ATOM	7706	С	ASN A		39.540	49.217 -22.704	1.00	0.00	
2 2575		ATOM	7707	0	ASN A	983	38.621	49.963 -22.378	1.00	0.00	0
	25	ATOM	7708	CB	ASN A	983	39.212	47.374 -21.080	1.00	0.00	С
			7709	CG	ASN A		38.715	46.375 -22.114	1.00	0.00	C
1,000		ATOM									
		ATOM	7710	OD1	ASN A	983	39.467	45.514 -22.565	1.00	0.00	0
14		ATOM	7711	ND2	ASN A	983	37.450	46.499 -22.506	1.00	0.00	N
145		ATOM	7712	N	LEU A		39.993	49.116 -23.947	1.00	0.00	N
	30										
	30	ATOM	7713	CA	LEU A		39.424	49.894 -25.038	1.00	0.00	C
#1		MOTA	7714	С	LEU A	. 984	38.640	48.978 -25.958	1.00	0.00	C
		MOTA	7715	0	LEU A	984	39.061	47.857 -26.231	1.00	0.00	0
1 Sec.		MOTA	7716	СВ	LEU A		40.535	50.579 -25.829	1.00	0.00	C
Ţ											
West.	0.5	MOTA	7717	CG	LEU A		41.504	51.430 -25.003	1.00	0.00	C
3 42	35	ATOM	7718	CD1	LEU A	984	42.577	51.997 -25.922	1.00	0.00	C
j.		ATOM	7719	CD2	LEU A	984	40.742	52.545 -24.289	1.00	0.00	С
		MOTA	7720	N	MET A		37.499	49.456 -26.435	1.00	0.00	N
j.L		MOTA	7721	CA	MET A	. 985	36.674	48.652 -27.324	1.00	0.00	C
£		ATOM	7722	С	MET A	985	37.356	48.361 -28.648	1.00	0.00	C
	40	MOTA	7723	0	MET A		38.050	49.210 -29.210	1.00	0.00	0
	10										
		MOTA	7724	CB	MET A		35.347	49.349 -27.612	1.00	0.00	C
		MOTA	7725	CG	MET A	985	34.437	49.487 -26.419	1.00	0.00	C
		MOTA	7726	SD	MET A	985	32.757	49.769 -26.967	1.00	0.00	S
		ATOM	7727	CE	MET A		32.914	51.378 -27.737	1.00	0.00	C
	45										
	45	MOTA	7728	И	GLN A	. 986	37.155	47.148 -29.142	1.00	0.00	N
		MOTA	7729	CA	GLN A	986	37.711	46.760 -30.424	1.00	0.00	C
		MOTA	7730	С	GLN A		36.615	47.068 -31.434	1.00	0.00	C
		ATOM	7731	0	GLN A		35.524	46.496 -31.379	1.00	0.00	0
		MOTA	7732	CB	GLN A	. 986	38.077	45.273 -30.416	1.00	0.00	C
	50	ATOM	7733	CG	GLN A		37.120	44.382 -29.645	1.00	0.00	C
	00										
		ATOM	7734	CD	GLN A		37.776	43.088 -29.190	1.00	0.00	С
		ATOM	7735	OE1	GLN A	. 986	37.140	42.244 -28.554	1.00	0.00	0
		ATOM	7736	NE2	GLN A	986	39.058	42.930 -29.509	1.00	0.00	N
					CYS A			48.001 -32.335			
		ATOM	7737	N			36.900		1.00	0.00	N
	55	ATOM	7738	CA	CYS A	. 987	35.922	48.410 -33.331	1.00	0.00	C
		ATOM	7739	C	CYS A	987	36.382	48.177 -34.767	1.00	0.00	С
		ATOM	7740	0	CYS A		35.880	48.819 -35.693	1.00	0.00	0
		MOTA	7741	CB	CYS A		35.583	49.886 -33.143	1.00	0.00	C
		MOTA	7742	SG	CYS A	. 987	35.118	50.371 -31.449	1.00	0.00	S
	60	ATOM	7743	N	GLY A		37.340	47.274 -34.951	1.00	0.00	N
		ATOM	7744	CA	GLY A		37.811	46.972 -36.291	1.00	0.00	C
		AT OM	1144	$\cup H$	ULL P	. 200	31.011	10.012 -30.63T	1.00	0.00	C

		ATOM	7745	С	GLY A	988	39.100	47.636	-36.732	1.00	0.00	С
		MOTA	7746	0	GLY A	988	39.528	47.451	-37.872	1.00	0.00	0
		MOTA	7747	N	THR A	989	39.719	48.412	-35.849	1.00	0.00	N
		MOTA	7748	CA	THR A	. 989	40.972	49.077	-36.187	1.00	0.00	С
	5	ATOM	7749	С	THR A	989	42.145	48.151	-35.880	1.00	0.00	С
		ATOM	7750	0	THR A	989	42.332	47.724	-34.739	1.00	0.00	0
		MOTA	7751	CB	THR A		41.148		-35.395	1.00	0.00	C
		MOTA	7752		THR A		40.102		-35.747	1.00	0.00	0
		ATOM	7753		THR A		42.493		-35.713	1.00	0.00	Ċ
	10	MOTA	7754	N	PRO A		42.950		-36.905	1.00	0.00	N
		ATOM	7755	CA	PRO A		44.115		-36.777	1.00	0.00	С
		ATOM	7756	C	PRO A		44.996		-35.555	1.00	0.00	C
		ATOM	7757	Ö	PRO A		45.331		-34.816	1.00	0.00	0
		ATOM	7758	CB	PRO A		44.851		-38.092	1.00	0.00	C
	15	ATOM	7759	CG	PRO A		43.719		-39.054	1.00	0.00	C
	10	ATOM	7760	CD	PRO A		42.799		-38.297	1.00	0.00	C
		ATOM	7761	N	GLU A		45.370		-35.346	1.00	0.00	И
		MOTA	7762	CA	GLU A		46.212		-34.206	1.00	0.00	C
	20	MOTA	7763	С	GLU A		47.358		-34.040	1.00	0.00	C
EQU.	20	ATOM	7764	0	GLU A		47.252		-33.276	1.00	0.00	0
inië Inc.		ATOM	7765	CB	GLU A		45.366		-32.930	1.00	0.00	C
_5		MOTA	7766	CG	GLU A		44.289		-32.936	1.00	0.00	С
7		MOTA	7767	CD	GLU A		43.310		-31.781	1.00	0.00	С
and then they then the think then the	25	ATOM	7768		GLU A		43.767		-30.626	1.00	0.00	0
=	25	ATOM	7769		GLU A		42.084		-32.029	1.00	0.00	0
ing) ing)		MOTA	7770	N	GLU A		48.458		-34.747	1.00	0.00	N
#		ATOM	7771	CA	GLU A		49.600		-34.695	1.00	0.00	С
ĺ		ATOM	7772	С	GLU A		50.908		-34.220	1.00	0.00	С
Ē	20	ATOM	7773	0	GLU A		50.939		-33.704	1.00	0.00	0
	30	MOTA	7774	CB	GLU A		49.825		-36.078	1.00	0.00	С
<u>.</u>		MOTA	7775	CG	GLU A		48.602		-36.669	1.00	0.00	С
Į.		ATOM	7776	CD	GLU A		48.828		-38.101	1.00	0.00	C
		MOTA	7777	OE1			49.733		-38.330	1.00	0.00	0
Ē	٥.	MOTA	7778	OE2	GLU A		48.102	45.906	-38.999	1.00	0.00	0
	35	MOTA	7779	N	HIS A	993	51.986	47.055	-34.422	1.00	0.00	N
•		ATOM	7780	CA	HIS A	993	53.350	47.436	-34.064	1.00	0.00	С
		ATOM	7781	C	HIS A	993	53.557		-32.810	1.00	0.00	С
		MOTA	7782	0	HIS A	993	53.522	49.515	-32.857	1.00	0.00	0
	40	MOTA	7783	CB	HIS A	993	54.043	48.114	-35.257	1.00	0.00	С
	40	ATOM	7784	CG	HIS A	993	53.288		-35.828	1.00	0.00	С
		ATOM	7785		HIS A		52.085	49.133	-36.485	1.00	0.00	N
		ATOM	7786	.CD2	HIS A	993	53.574	50.599	-35.851	1.00	0.00	С
		MOTA	7787	CE1	HIS A	993	51.663	50.318	-36.889	1.00	0.00	С
		ATOM	7788	NE2	HIS A	993	52,549		-36.517	1.00	0.00	Ν
	45	ATOM	7789	N	THR A	994	53.781	47.598	-31.691	1.00	0.00	N
		MOTA	7790	CA	THR A	994	54.044	48.237	-30.404	1.00	0.00	С
		MOTA	7791	C	THR A	994	55.011	47.331	-29.644	1.00	0.00	С
		ATOM	7792	0	THR A	994	54.918	46.104	-29.726	1.00	0.00	0
		MOTA	7793	CB	THR A	994	52,760	48.422	-29.564	1.00	0.00	С
	50	ATOM	7794	OG1	THR A	994	52.154	47.147	-29.321	1.00	0.00	0
		MOTA	7795	CG2	THR A	994	51.775	49.328	-30.290	1.00	0.00	С
		ATOM	7796	N	GLN A	995	55,938	47.935	-28.911	1.00	0.00	N
		ATOM	7797	CA	GLN A	995	56.930	47.175	-28.164	1.00	0.00	С
		MOTA	7798	C	GLN A		56.453		-26.770	1.00	0.00	С
	55	ATOM	7799	0	GLN A		55.673		-26.147	1.00	0.00	0
		ATOM	7800	СВ	GLN A		58.215		-28.033	1.00	0.00	Ċ
		ATOM	7801	CG	GLN A		58.670		-29.315	1.00	0.00	C
		ATOM	7802	CD	GLN A		59.787		-29.072	1.00	0.00	C
		ATOM	7803		GLN A		60.900		-28.700	1.00	0.00	0
	60	ATOM	7804		GLN A		59.493		-29.266	1.00	0.00	N
		ATOM	7805	N	LYS A		56.933		-26.284	1.00	0.00	N
		011	. 505	.,	-14 A	220		10.000	20.201	2.00	0.00	

The first fi

		MOTA	7806	CA	LYS	A 996		56.578	45.214	-24.950	1.00	0.00	С
		MOTA	7807	С	LYS	A 996		57.287		-23.979	1.00	0.00	С
		ATOM	7808	0	LYS	A 996		58.456	46.480	-24.174	1.00	0.00	0
	_	MOTA	7809	CB	LYS	A 996		57.047	43.773	-24.726	1.00	0.00	С
	5	MOTA	7810	CG	LYS	A 996		56.326		-25.586	1.00	0.00	С
		ATOM	7811	CD	LYS	A 996		54.839	42.691	-25.249	1.00	0.00	С
		MOTA	7812	CE	LYS	A 996		54.130	41.618	-26.058	1.00	0.00	С
		ATOM	7813	NZ	LYS	A 996		54.698	40.267	-25.786	1.00	0.00	N
		ATOM	7814	N	LEU	A 997		56.577	46.583	-22.946	1.00	0.00	N
	10	MOTA	7815	CA		A 997		57.173	47.472	-21.962	1.00	0.00	С
		MOTA	7816	С	LEU	A 997		57.565	46.708	-20.710	1.00	0.00	С
		ATOM	7817	0	LEU	A 997		56.713	46.147	-20.023	1.00	0.00	0
		MOTA	7818	CB		A 997		56.203		-21.588	1.00	0.00	С
		MOTA	7819	CG	LEU	A 997		56.677		-20.463	1.00	0.00	С
	15	ATOM	7820			A 997		57.946		-20.885	1.00	0.00	С
		MOTA	7821			A 997		55.576		-20.128	1.00	0.00	С
		ATOM	7822	N		A 998		58.863		-20.432	1.00	0.00	N
		ATOM	7823	CA		A 998		59.390		-19.247	1.00	0.00	С
		ATOM	7824	C		A 998		60.001		-18.396	1.00	0.00	C
	20	ATOM	7825	0		A 998		61.173		-18.555	1.00	0.00	Õ
1	20	ATOM	7826	CB		A 998		60.468		-19.633	1.00	0.00	C
er B		ATOM	7827	CG		A 998		61.140		-18.423	1.00	0.00	C
# L		ATOM	7828			A 998	-	62.150		-18.609	1.00	0.00	0
2		ATOM	7829			A 998		60.658		-17.288	1.00	0.00	Õ
	25	ATOM	7830	N		A 999		59.203		-17.497	1.00	0.00	И
,	20	ATOM	7831	CA		A 999		59.681		-16.652	1.00	0.00	C
				CA		A 999				-15.831	1.00	0.00	С
		ATOM	7832	0				60.915 61.680		-15.447	1.00	0.00	0
		ATOM	7833			A 999							С
	30	ATOM	7834	CB		A 999		58.572		-15.693	1.00	0.00	С
	50	ATOM	7835			A 999		57.392		-16.502	1.00	0.00	
		ATOM	7836			A 999		58.139		-14.735	1.00	0.00	C
		ATOM	7837	N		A1000		61.126		-15.563	1.00	0.00	N
		ATOM	7838	CA		A1000		62.289		-14.774	1.00	0.00	C
	25	ATOM	7839	C		A1000		63.614		-15.503	1.00	0.00	С
	35	MOTA	7840	0		A1000		64.668		-14.878	1.00	0.00	0
		ATOM	7841	CB		A1000		62.156		-14.260	1.00	0.00	C
		ATOM	7842	SG		A1000		61.384		-12.604	1.00	0.00	S
		ATOM	7843	N		A1001		63.564		-16.821	1.00	0.00	N
	40	ATOM	7844	CA		A1001		64.791		-17.577	1.00	0.00	C
	4 0	ATOM	7845	C		A1001		64.900		-18.109	1.00	0.00	С
		MOTA	7846	0		A1001		65.747		-18.955	1.00	0.00	0
		ATOM	7847	CB		A1001		64.925		-18.729	1.00	0.00	С
		ATOM	7848	CG		A1001		65.448		-18.304	1.00	0.00	С
	4 -	MOTA	7849			A1001		64.643		-17.761	1.00	0.00	N
	45	ATOM				A1001				-18.293			С
		MOTA	7851			A1001		65.382		-17.433	1.00	0.00	С
		MOTA	7852			A1001		66.638		-17.744	1.00	0.00	N
		ATOM	7853	N		A1002		64.047		-17.614	1.00	0.00	N
	50	MOTA	7854	CA	LEU	A1002		64.086		-18.045	1.00	0.00	С
	50	MOTA	7855	C		A1002		65.368		-17.551	1.00	0.00	С
		ATOM	7856	0	LEU	A1002		65.914		-18.202	1.00	0.00	0
		ATOM	7857	CB	LEU	A1002		62.871	51.855	-17.519	1.00	0.00	С
		MOTA	7858	CG	LEU	A1002		61.593	51.676	-18.339	1.00	0.00	С
		ATOM	7859	CD1	LEU	A1002		60.439	52.392	-17.658	1.00	0.00	С
	55	ATOM	7860	CD2	LEU	A1002		61.810	52.221	-19.745	1.00	0.00	С
		MOTA	7861	N	LEU	A1003		65.837	51.297	-16.388	1.00	0.00	N
		ATOM	7862	CA	LEU	A1003		67.083	51.801	-15.827	1.00	0.00	С
		ATOM	7863	С	LEU	A1003		68.108	50.676	-15.939	1.00	0.00	С
		ATOM	7864	0	LEU	A1003		67.772	49.502	-15.785	1.00	0.00	0
	60	ATOM	7865	CB	LEU	A1003		66.897	52.217	-14.368	1.00	0.00	С
		ATOM	7866	CG		A1003		66.049	53.477	-14.167	1.00	0.00	С

The first first first first full and the state of the first

		ATOM	7867	CD1	LEU	A1003	65.967	53.807	-12.694	1.00	0.00	С
		MOTA	7868	CD2	LEU	A1003	66.667	54.639	-14.926	1.00	0.00	С
		MOTA	7869	N	PRO	A1004	69.373		-16.214	1.00	0.00	N
	_	ATOM	7870	CA		A1004	70.442		-16.357	1.00	0.00	C
	5	MOTA	7871	C	PRO	A1004	70.900		-15.068	1.00	0.00	С
		MOTA	7872	0		A1004	70.573		-13.962	1.00	0.00	0
		MOTA	7873	CB		A1004	71.560		-17.002	1.00	0.00	С
		MOTA	7874	CG		A1004	71.410		-16.320	1.00	0.00	С
	10	MOTA	7875	CD		A1004	69.906		-16.384	1.00	0.00	С
	10	MOTA	7876	N		A1005	71.653		-15.234	1.00	0.00	N
		MOTA	7877	CA		A1005	72.214		-14.115	1.00	0.00	C
		ATOM	7878	С		A1005	71.172		-13.170	1.00	0.00	C
		ATOM	7879	0		A1005	71.366		-11.956	1.00	0.00	0
	15	ATOM	7880	CB		A1005	73.154		-13.331	1.00	0.00	C
	15	ATOM	7881	CG		A1005	74.155		-14.226	1.00	0.00	C
		MOTA	7882			A1005	74.340		-14.132	1.00	0.00	0
		ATOM	7883			A1005	74.808		-15.098	1.00	0.00	N
		MOTA	7884 7885	N CA		A1006 A1006	70.073 69.029		-13.720 -12.885	1.00	0.00	С
	20	MOTA MOTA	7886	CA		A1006	69.545		-12.245	1.00	0.00	C
1022	20	MOTA	7887	0		A1006	70.105		-12.923	1.00	0.00	ŏ
		ATOM	7888	CB		A1006	67.745		-13.701	1.00	0.00	C
R, ingli		ATOM	7889			A1006	68.040		-14.822	1.00	0.00	C
1,4		ATOM	7890			A1006	66.660		-12.782	1.00	0.00	C
M	25	ATOM	7891	N		A1007	69.363		-10.933	1.00	0.00	N
100		ATOM	7892	CA		A1007	69.815		-10.184	1.00	0.00	С
Mr. Marie		MOTA	7893	С		A1007	68.642	42.398	-9.790	1.00	0.00	С
final t		ATOM	7894	0	ALA	A1007	68.819	41.208	-9.522	1.00	0.00	0
		MOTA	7895	CB	ALA	A1007	70.584	43.739	-8.941	1.00	0.00	С
	30	ATOM	7896	N	ARG	A1008	67.446	42.974	-9.739	1.00	0.00	N
#i		ATOM	7897	CA	ARG	A1008	66.252	42.204	-9.412	1.00	0.00	С
		MOTA	7898	С	ARG	A1008	64.983	42.973	-9.747	1.00	0.00	С
1		ATOM	7899	0	ARG	A1008	64.980	44.205	-9.807	1.00	0.00	0
ari.	0.5	MOTA	7900	CB		A1008	66.240	41.784	-7.936	1.00	0.00	С
	35	MOTA	7901	CG		A1008	66.187	42.913	-6.931	1.00	0.00	С
		ATOM	7902	CD		A1008	66.059	42.362	-5.511	1.00	0.00	C
		MOTA	7903	NE		A1008	67.201	41.527	-5.135	1.00	0.00	N
į mā.		MOTA	7904	CZ		A1008	68.451	41.970	-5.012	1.00	0.00	C
	40	ATOM	7905			A1008	68.735	43.248	-5.232 -4.673	1.00	0.00	N N
	40	MOTA MOTA	7906 7907	NAZ N		A1008 A1009	69.422 63.911	42.225	-9.980	1.00	0.00	N
		ATOM	7908	CA		A1009	62.618		-10.323	1.00	0.00	C
		ATOM	7909	C		A1009	61.573	42.098	-9.473	1.00	0.00	C
		ATOM	7910	Ö		A1009	61.503	40.867	-9.454	1.00	0.00	Ö
	45	ATOM	7911	CB		A1009	62.323		-11.800	1.00	0.00	Ċ
		ATOM	7912	SG		A1009	60.805		-12.418	1.00	0.00	S
		ATOM	7913	N		A1010	60.757	42.879	-8.774	1.00	0.00	N
		ATOM	7914	CA		A1010	59.741	42.304	-7.909	1.00	0.00	С
		MOTA	7915	С		A1010	58.370	42.940	-8.094	1.00	0.00	С
	50	ATOM	7916	0	GLU	A1010	58.255	44.144	-8.343	1.00	0.00	0
		ATOM	7917	CB	GLU	A1010	60.177	42.454	-6.448	1.00	0.00	С
		MOTA	7918	CG	GLU	A1010	61.490	41.749	~6.118	1.00	0.00	С
		ATOM	7919	CD		A1010	62.115	42.239	-4.826	1.00	0.00	С
	~~	MOTA	7920			A1010	62.535	43.417	-4.778	1.00	0.00	0
	55	ATOM	7921			A1010	62.187	41.449	-3.858	1.00	0.00	0
		ATOM	7922	N		A1011	57.331	42.119	-7.990	1.00	0.00	N
		MOTA	7923	CA		A1011	55.968	42.619	-8.082	1.00	0.00	C
		MOTA	7924	С		A1011	55.648	42.973	-6.634 -5.720	1.00	0.00	C
	60	MOTA	7925	O		A1011	55.974 55.009	42.213 41.535	-5.720 -8.574	1.00	0.00	0
	00	ATOM ATOM	7926 7927	CB CG		A1011 A1011	55.009 53.594	42.048	-8.837	1.00	0.00	C
		A I OF	1221	CG	W///	WIGHT	23.224	14.040	0.007	4.00	0.00	_

		MOTA	7928	CD	ARG	A1011	52.583	40.913	-8.851	1.00	0.00	(2
		ATOM	7929	NE	ARG	A1011	52.917	39.880	-9.826	1.00	0.00	ì	N.
		ATOM	7930	CZ		A1011	52.897		-11.144	1.00	0.00	(2
		MOTA	7931			A1011	52.556		-11.654	1.00	0.00	1	N.
	5	MOTA	7932			A1011	53.215		-11.953	1.00	0.00		V
	•	ATOM	7933	N		A1012	55.027	44.125	-6.419	1.00	0.00		N.
			7934			A1012		44.560	-5.068	1.00	0.00		3
		ATOM		CA			54.704						
		ATOM	7935	C		A1012	53.271	45.056	-4.984	1.00	0.00		2
	10	ATOM	7936	0		A1012	52.569	45.156	-5.990	1.00	0.00)
	10	MOTA	7937	CB		A1012	55.600	45.741	-4.630	1.00	0.00		2
		MOTA	7938			A1012	55,243	46.907	-5.389	1.00	0.00)
		MOTA	7939	CG2		A1012	57.072	45.429	-4.865	1.00	0.00	(C
		MOTA	7940	N	THR	A1013	52.842	45.362	-3.767	1.00	0.00		Ŋ.
		ATOM	7941	CA	THR	A1013	51.521	45.921	-3.557	1.00	0.00	(2
	15	MOTA	7942	С	THR	A1013	51.618	47.310	-4.206	1.00	0.00	(C
		MOTA	7943	0	THR	A1013	52.724	47.817	-4.421	1.00	0.00	()
		ATOM	7944	CB	THR	A1013	51,225	46.037	-2.050	1.00	0.00	(2
		ATOM	7945			A1013	52,407	46.479	-1.366	1.00	0.00	(C
		ATOM	7946			A1013	50.807	44.674	-1.481	1.00	0.00		C
	20	MOTA	7947	N		A1014	50.482	47.924	-4.521	1.00	0.00		Ŋ
á Pota		ATOM	7948	CA		A1014	50.487	49.233	-5.179	1.00	0.00		3
(una		ATOM	7949	C		A1014	51,176	50.344	-4.403	1.00	0.00		
1		MOTA	7950	0		A1014	51.532	51.376	-4.977	1.00	0.00		5
						A1014		49.663	-5.512		0.00		2
M	25	MOTA	7951	CB			49.059			1.00			
Stant.	2.5	ATOM	7952	CG		A1014	48.272	48.715	-6.417	1.00	0.00		2
		ATOM	7953			A1014	46.969	49.396	-6.821	1.00	0.00		2
mmy Spring Turny		MOTA	7954			A1014	49.094	48.355	-7.652	1.00	0.00		2
(int)		MOTA	7955	N		A1015	51.365	50.131	-3.104	1.00	0.00		V
	20	ATOM	7956	CA		A1015	52.021	51.104	-2.235	1.00	0.00		C
	30	ATOM	7957	С	THR	A1015	53.529	50.863	-2.184	1.00	0.00		С
¥}		MOTA	7958	0	THR	A1015	54.264	51.630	-1.550	1.00	0.00)
		MOTA	7959	CB		A1015	51.499	51.001	-0.795	1.00	0.00	(2
ı,U		ATOM	7960	OG1	THR	A1015	51.618	49.642	-0.353	1.00	0.00)
36.1		ATOM	7961	CG2	THR	A1015	50.042	51.449	-0.708	1.00	0.00	(С
Maria American	35	MOTA	7962	N	PHE	A1016	53.972	49.792	-2.844	1.00	0.00	1	V.
		MOTA	7963	CA	PHE	A1016	55.387	49.406	-2.891	1.00	0.00	(C
		MOTA	7964	С	PHE	A1016	55,884	48.877	-1.547	1.00	0.00	(2
		ATOM	7965	0	PHE	A1016	57.071	48.584	-1.394	1.00	0.00	(C
3 1000		MOTA	7966	CB		A1016	56.270	50.602	-3.283	1.00	0.00	(2
	40	MOTA	7967	CG		A1016	55.967	51.177	-4.638	1.00	0.00	(
		ATOM	7968			A1016	55.825	52.553	-4.800	1.00	0.00		2
		ATOM	7969			A1016	55.837	50.355	-5.750	1.00	0.00		2
		ATOM	7970			A1016	55.556	53.101	-6.052	1.00	0.00	(
		ATOM	7971			A1016	55,568	50.896	-7.010	1.00	0.00		2
	45	ATOM	7972	CZ		A1016	55.427	52.269	-7.158	1.00	0.00	(
	T O		7973		TEU	A1017	54.982	48.734	-0.580		0.00		Ŋ
		ATOM		N				48.292	0.754	1.00	0.00		2
		MOTA	7974	CA		A1017	55.378						
		ATOM	7975	С		A1017	55.600	46.800	0.987	1.00	0.00		2
	EΩ	ATOM	7976	0		A1017	56,282	46.425	1.941	1.00	0.00		0
	50	ATOM	7977	CB		A1017	54.388	48.849	1.785	1.00	0.00		2
		MOTA	7978	CG		A1017	54.346	50.388	1.783	1.00	0.00		2
		MOTA	7979			A1017	53.334	50.891	2.800	1.00	0.00		2
		ATOM	7980	CD2	_	A1017	55.733	50.947	2.097	1.00	0.00		2
	 -	ATOM	7981	N		A1018	55.039	45.945	0.139	1.00	0.00		N.
	55	MOTA	7982	CA	GLN	A1018	55.241	44.508	0.308	1.00	0.00	(2
		MOTA	7983	С	GLN	A1018	55.602	43.819	-1.005	1.00	0.00	(C
		MOTA	7984	0		A1018	54.967	44.049	-2.034	1.00	0.00	()
		ATOM	7985	CB		A1018	53.989	43.837	0.890	1.00	0.00	(С
		MOTA	7986	CG		A1018	54.178	42.329	1.116	1.00	0.00		2
	60	ATOM	7987	CD		A1018	52.897	41.591	1.474	1.00	0.00		2
		ATOM	7988			A1018	52.911	40.375	1.688	1.00	0.00)
			, , , 0 0	<u></u>	٧٠ندب	111010	02,711		2.000	1.00	0.00		-

the first the first was the first than the first than the first that the first than the first th

	MOTA	7989	พระว	GLN A1018	51.784	42.315	1.534	1.00	0.00	N
	ATOM	7990	N	ASN A1019		42.969	-0.967	1.00	0.00	N
	ATOM	7991	CA	ASN A1019		42.237	-2.158	1.00	0.00	C
	ATOM	7992	C	ASN A1019		41.021	-2.288	1.00	0.00	č
5	ATOM	7993	Ö	ASN A1019		40.266	-1.333	1.00	0.00	Õ
9	ATOM	7994	CB	ASN A1019		41.795	-2.046	1.00	0.00	č
	ATOM	7995	CG	ASN A1019		42.967	-1.889	1.00	0.00	C
		7996		ASN A1019		43.980	-2.583	1.00	0.00	0
	ATOM					42.833	-0.985	1.00	0.00	N
10	ATOM	7997		ASN A1019			-3.468		0.00	
10	MOTA	7998	N	LEU A1020		40.837		1.00		N C
	ATOM	7999	CA	LEU A1020		39.724	-3.706	1.00	0.00	
	ATOM	8000	С	LEU A1020		38.645	-4.597	1.00	0.00	C
	MOTA	8001	0	LEU A1020		37.470	-4.480	1.00	0.00	0
1=	ATOM	8002	CB	LEU A1020		40.230	-4.351	1.00	0.00	C
15	MOTA	8003	CG	LEU A1020		41.316	-3.629	1.00	0.00	C
	ATOM	8004		LEU A1020		41.807	-4.540	1.00	0.00	C
	MOTA	8005		LEU A1020		40.771	-2.327	1.00	0.00	C
	ATOM	8006	N	GLU A1021		39.040	-5.492	1.00	0.00	N
00	MOTA	8007	CA	GLU A1021		38.088	-6.414	1.00	0.00	C
20	MOTA	8008	С	GLU A1021		38.439	-6.848	1.00	0.00	C
	MOTA	8009	0	GLU A1021		39.599	-7.125	1.00	0.00	0
	MOTA	8010	CB	GLU A1021		37.959	-7.686	1.00	0.00	C
	ATOM	8011	CG	GLU A1021		37.250	-7.547	1.00	0.00	C
~=	MOTA	8012	CD	GLU A1021	53.900	37.083	-8.893	1.00	0.00	С
25	MOTA	8013	OE1	GLU A1021	54.566	36.609	-9.842	1.00	0.00	0
	MOTA	8014	OE2	GLU A1021	52.701	37.421	-9.005	1.00	0.00	0
	ATOM	8015	N	HIS A1022	59.017	37.420	-6.917	1.00	0.00	N
	MOTA	8016	CA	HIS A1022	60.388	37.590	-7.379	1.00	0.00	C
	MOTA	8017	С	HIS A1022	60.300	37.187	-8.848	1.00	0.00	C
30	MOTA	8018	0	HIS A1022	60.066	36.020	-9.170	1.00	0.00	0
	MOTA	8019	CB	HIS A1022	61.338	36.660	-6.622	1.00	0.00	C
	MOTA	8020	CG	HIS A1022	62.776	36.828	-7.005	1.00	0.00	С
	MOTA	8021	ND1	HIS A1022	63.436	38.034	-6.906	1.00	0.00	N
	MOTA	8022	CD2	HIS A1022	63.679	35.945	-7.494	1.00	0.00	C
35	MOTA	8023	CE1	HIS A1022	64.683	37.887	-7.317	1.00	0.00	C
	ATOM	8024	NE2	HIS A1022	64.857	36.628	-7.679	1.00	0.00	N
	MOTA	8025	N	LEU A1023	60.474	38.160	-9.733	1.00	0.00	N
	MOTA	8026	CA	LEU A1023	60.357	37.928	-11.166	1.00	0.00	C
	ATOM	8027	С	LEU A1023	61.607	37.393	-11.851	1.00	0.00	C
40	MOTA	8028	0	LEU A1023	62.663	38.024	-11.828	1.00	0.00	0
	ATOM	8029	CB	LEU A1023	59.911	39.225	-11.841	1.00	0.00	C
	ATOM	8030	CG	LEU A1023	58.658	39.827	-11.195	1.00	0.00	C
	MOTA	8031	CD1	LEU A1023	58.383	41.203	-11.767	1.00	0.00	C
	MOTA	8032	CD2	LEU A1023	57.477	38.896	-11,420	1.00	0.00	C
45	ATOM	8033	N	ASP A1024	61.473	36.224	-12.469	1.00	0.00	N
	ATOM	8034	CA	ASP A1024	62.587	35.603	-13.174	1.00	0.00	C
	MOTA	8035	С	ASP A1024	63.002	36.444	-14.371	1.00	0.00	C
	ATOM	8036	0	ASP A1024	62.179	37.137	-14.972	1.00	0.00	0
	ATOM	8037	CB	ASP A1024	62.207	34.194	-13.638	1.00	0.00	C
50	MOTA	8038	CG	ASP A1024	62.364	33.154	-12.540	1.00	0.00	С
	ATOM	8039	OD1	ASP A1024		31.964	-12.807	1.00	0.00	0
	ATOM	8040		ASP A1024			-11.413	1.00	0.00	0
	ATOM	8041	N	GLY A1025			-14.711	1.00	0.00	N
	ATOM	8042	CA	GLY A1025			-15.833	1.00	0.00	С
55	ATOM	8043	C	GLY A1025			-15.551	1.00	0.00	Ċ
	MOTA	8044	0	GLY A1025			-16.401	1.00	0.00	Ö
	ATOM	8045	N	MET A1026			-14.345	1.00	0.00	N
	MOTA	8046	CA	MET A1026			-13.935	1.00	0.00	C
	ATOM	8047	C	MET A1026			-14.921	1.00	0.00	C
60	ATOM	8048	0	MET A1026			-15.220	1.00	0.00	ő
00	ATOM	8049	СВ	MET A1026			-13.867	1.00	0.00	č
	1.1	0047			00.010		10.007	1.00	0.00	C

The first first state and the same and the s

		MOTA	8050	CG	MET	A1026	66.51	9 40.268	-13.015	1.00	0.00	С
		ATOM	8051	SD	MET	A1026	68.10	41.110	-12.896	1.00	0.00	S
		MOTA	8052	CE	MET	A1026	68.90	40.531	-14.390	1.00	0.00	С
		MOTA	8053	N	VAL	A1027	62.23	1 40.447	-15.425	1.00	0.00	N
	5	ATOM	8054	CA	VAL	A1027	61.318	3 41.058	-16.380	1.00	0.00	С
		ATOM	8055	С	VAL	A1027	59.932	41.268	-15.791	1.00	0.00	С
		ATOM	8056	0		A1027	59.299		-15.311	1.00	0.00	0
		MOTA	8057	CB		A1027	61.17		-17.651	1.00	0.00	С
		ATOM	8058			A1027	60.15		-18.590	1.00	0.00	Č
	10	ATOM	8059			A1027	62.522		-18.343	1.00	0.00	c
	10	ATOM	8060	N		A1028	59.46		-15.833	1.00	0.00	N
		ATOM	8061	CA		A1028	58.142		-15.322	1.00	0.00	C
			8062									c
		ATOM		C		A1028	57.14		-16.463	1.00	0.00	
	15	MOTA	8063	0		A1028	57.12		-17.390	1.00	0.00	0
	13	MOTA	8064	CB		A1028	58.118		-14.782	1.00	0.00	C
		MOTA	8065	N		A1029	56.31		-16.419	1.00	0.00	N
		ATOM	8066	CA		A1029	55.322		~17.466	1.00	0.00	С
		ATOM	8067	С		A1029	54.213		-17.411	1.00	0.00	С
	20	MOTA	8068	0		A1029	53.91		-16.347	1.00	0.00	0
:	20	MOTA	8069	CB		A1029	54.814		-17.142	1.00	0.00	С
		ATOM	8070	CG		A1029	54.879		-15.649	1.00	0.00	С
		ATOM	8071	CD		A1029	56.22	40.614	-15.363	1.00	0.00	С
		MOTA	8072	N	GLU	A1030	53.608		-18.557	1.00	0.00	N
	~=	MOTA	8073	CA	GLU	A1030	52.53	43.726	-18.607	1.00	0.00	C
	25	ATOM	8074	С	GLU	A1030	51.298	3 43.154	-17.924	1.00	0.00	С
		ATOM	8075	0	GLU	A1030	51.187	7 41.940	-17.728	1.00	0.00	0
		MOTA	8076	CB	GLU	A1030	52.223	44.095	-20.059	1.00	0.00	С
		MOTA	8077	CG		A1030	53.444	44.504	-20.871	1.00	0.00	С
		ATOM	8078	CD	GLU	A1030	53.085	44.988	-22.264	1.00	0.00	С
	30	ATOM	8079	OE1	GLU	A1030	52.163	3 44.407	-22.872	1.00	0.00	0
		MOTA	8080	OE2	GLU	A1030	53.728	45.940	-22.755	1.00	0.00	0
		ATOM	8081	N	VAL	A1031	50.366	44.029	-17.564	1.00	0.00	N
		ATOM	8082	CA	VAL	A1031	49.159	43.599	-16.885	1.00	0.00	С
		ATOM	8083	C	VAL	A1031	47.976	43.392	-17.825	1.00	0.00	С
	35	ATOM	8084	0	VAL	A1031	48.024	43.762	-18.995	1.00	0.00	0
		ATOM	8085	CB	VAL	A1031	48.752	44.609	-15.791	1.00	0.00	С
		ATOM	8086	CG1	VAL	A1031	49.863	3 44.713	-14.758	1.00	0.00	С
		ATOM	8087	CG2	VAL	A1031	48.471	45.965	-16.406	1.00	0.00	С
		MOTA	8088	N	CYS	A1032	46.921	42.786	-17.291	1.00	0.00	N
	40	ATOM	8089	CA	CYS	A1032	45.705	42.505	-18.044	1.00	0.00	С
		ATOM	8090	С		A1032	44.805		-18.126	1.00	0.00	С
		ATOM	8091	0		A1032	44.983		-17.377	1.00	0.00	0
		ATOM	8092	CB		A1032	44.92		-17.370	1.00	0.00	C
		ATOM	8093	SG		A1032	45.687		-17.446	1.00	0.00	S
	45	ATOM		N	PRO	A1033		43.720			0.00	N
		ATOM	8095	CA		A1033	42.907		-19.181	1.00	0.00	С
		MOTA	8096	C		A1033	42.190		-17.852	1.00	0.00	C
		ATOM	8097	0		A1033	41.719		-17.205	1.00	0.00	0
		ATOM	8098	CB		A1033	41.944		-20.272	1.00	0.00	С
	50	ATOM	8099	CG		A1033	42.818		-21.135	1.00	0.00	C
	00	ATOM	8100	CD		A1033	43.575		-20.100	1.00	0.00	C
		ATOM	8101	N		A1034	42.118		-17.464	1.00	0.00	N
		ATOM	8102	CA		A1034	41.479		-16.225	1.00	0.00	C
		ATOM	8103	CA		A1034	42.244		-16.223 -14.974	1.00	0.00	C
	55	ATOM	8104	0		A1034						
		ATOM	8105				41.728		-13.861	1.00	0.00	0
				CB		A1034	40.039		-16.146	1.00		C
		ATOM	8106	CG		A1034	39.127		-17.219	1.00	0.00	C
		ATOM	8107	SD		A1034	39.213		-17.324	1.00	0.00	S
	60	MOTA	8108	CE		A1034	38.245		-15.870	1.00	0.00	C
	OU	MOTA	8109	И		A1035	43.473		-15.163	1.00	0.00	N
		ATOM	8110	CA	GPA	A1035	44.312	45.516	-14.045	1.00	0.00	C

		ATOM	8111	С	GLU	A1035	45.381	46.568	-13.765	1.00	0.00	(С
		ATOM	8112	0	GLU	A1035	45.774	47.325	-14.652	1.00	0.00		0
		ATOM	8113	CB		A1035	44.984		-14.337	1.00	0.00		C
		ATOM	8114	CG		A1035	46.199		-13.451	1.00	0.00		C
	5	ATOM	8115	CD		A1035	46.687		-13.531	1.00	0.00		C
	9												
		MOTA	8116	OE1		A1035	46.956		-14.651	1.00	0.00		0
		MOTA	8117			A1035	46.812		-12.459	1.00	0.00		0
		MOTA	8118	N		A1036	45.833	46.618	-12.518	1.00	0.00		N
		ATOM	8119	CA	THR	A1036	46.876	47.550	-12.116	1.00	0.00		С
	10	ATOM	8120	С	THR	A1036	47.871	46.764	-11.279	1.00	0.00	(С
		MOTA	8121	0	THR	A1036	47.482	46.020	~10.380	1.00	0.00	(0
		ATOM	8122	СВ		A1036	46.320		-11.252	1.00	0.00		С
		ATOM	8123			A1036	45.273		-11.960	1.00	0.00		0
		ATOM	8124			A1036	47.421		-10.926	1.00	0.00		С
	15	ATOM	8125	N		A1037	49.154		-11.579		0.00		N
	13									1.00			
		MOTA	8126	CA		A1037	50.181		~10.825	1.00	0.00		C
		ATOM	8127	С		A1037	51.314		-10.521	1.00	0.00		С
		ATOM	8128	0		A1037	51.432		-11.142	1.00	0.00		0
	••	MOTA	8129	CB	ALA	A1037	50.702		-11.616	1.00	0.00		С
	20	ATOM	8130	N	ALA	A1038	52.132	46.815	-9.544	1.00	0.00	1	N
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ATOM	8131	CA	ALA	A1038	53.269	47.636	-9.166	1.00	0.00	(С
T T		ATOM	8132	С	ALA	A1038	54.512	46.766	-9.194	1.00	0.00		С
Total Control		MOTA	8133	0		A1038	54.467	45.589		1.00	0.00		0
4		MOTA	8134	CB		A1038	53.068	48.213	-7.776	1.00	0.00		C
177	25	ATOM	8135	N		A1039	55.613	47.347	-9.655	1.00	0.00		N
	20	ATOM	8136	CA		A1039	56.879	46.640	-9.720	1.00	0.00		
1:100 3:41 B													C
And and		ATOM	8137	C		A1039	57.977	47.547	-9.204	1.00	0.00		C
Contraction of the contraction o		ATOM	8138	0		A1039	57.920	48.768	-9.362	1.00	0.00		С
Ħ	20	MOTA	8139	CB		A1039	57.219		-11.156	1.00	0.00		С
	30	ATOM	8140	CG		A1039	56.189		-11.834	1.00	0.00		С
E¢.		MOTA	8141			A1039	55.253	45.912	-12.708	1.00	0.00		С
		MOTA	8142	CD2	TYR	A1039	56.160	43.988	-11.613	1.00	0.00		С
		ATOM	8143	CE1	TYR	A1039	54.314	45.111	-13.354	1.00	0.00	(С
Property EAST PT		ATOM	8144	CE2	TYR	A1039	55.223	43.177	-12.253	1.00	0.00		С
12 11 12 12 12 12 12 12 12 12 12 12 12 1	35	MOTA	8145	CZ		A1039	54.306		-13.123	1.00	0.00		С
i nain		ATOM	8146	ОН		A1039	53.385		-13.768	1.00	0.00		o C
i carri		ATOM	8147	N		A1040	58.978	46.940	-8.583	1.00	0.00		N
		ATOM	8148	CA		A1040	60.115	47.678	-8.067	1.00	0.00		C
ğ.a		ATOM	8149							1.00			
	40			C		A1040	61.359	47.015	-8.637		0.00		C
	40	MOTA	8150	0		A1040	61.542	45.801	-8.510	1.00	0.00		0
		ATOM	8151	CB		A1040	60.175	47.635	-6.524	1.00	0.00		C
		ATOM	8152			A1040	61.463	48.299	-6.030	1.00	0.00		2
		ATOM	8153	CG2	VAL	A1040	58.966	48.352	-5.939	1.00	0.00	(2
		ATOM	8154	N		A1041	62.197	47.808	-9.294	1.00	0.00	1	V
	45	MOTA	8155	CA	SER	A1041	63.431	47.288	-9.862	1.00	0.00	(2
		ATOM	8156	С	SER	A1041	64.585	47.760	-8.987	1.00	0.00	(С
		MOTA	8157	0		A1041	64.615	48.915	-8.564	1.00	0.00		C
		MOTA	8158	CB		A1041	63.618		-11.301	1.00	0.00		2
		ATOM	8159	OG		A1041	63.698		-11.355	1.00	0.00		2
	50	ATOM	8160			A1042	65.521				0.00		
	50			N				46.856	-8.707	1.00			V.
		MOTA	8161	CA		A1042	66.690	47.175		1.00	0.00		2
		ATOM	8162	C		A1042	67.906	47.240		1.00	0.00		2
		MOTA	8163	0		A1042	68.058	46.417	-9.704	1.00	0.00		C
	~-	ATOM	8164	CB	SER	A1042	66.895	46.111	-6.809	1.00	0.00	(C
	55	MOTA	8165	OG	SER	A1042	65.761	46.048	-5.958	1.00	0.00	(С
		MOTA	8166	N	HIS	A1043	68.768	48.223		1.00	0.00	1	V
		ATOM	8167	CA		A1043	69.947	48.416		1.00	0.00		2
		ATOM	8168	C		A1043	71.217	48.516		1.00	0.00		2
		MOTA	8169	0		A1043	71.268		-7.577	1.00	0.00		5
	60	ATOM	8170	CB		A1043	69.751		-10.242	1.00	0.00		2
	00			CG									
		MOTA	8171	CG	ш12	A1043	68.444	45.700	-10.971	1.00	0.00	,	2

	ATOM	8172	ND1 HI	s A	1043	68.287	49.175	-12.236	1.00	0.00	N
	MOTA	8173	CD2 HI	S A	1043	67.212	50.095	-10.574	1.00	0.00	С
	ATOM	8174	CE1 HI	SA	1043	67.015	49.242	-12.585	1.00	0.00	С
	MOTA	8175	NE2 HI	S A	1043	66.340	49.795	-11.593	1.00	0.00	N
5	ATOM	8176			1044	72.242	47.788	-8.995	1.00	0.00	N
	ATOM	8177			1044	73.511	47.763		1.00	0.00	С
	ATOM	8178			1044	74.440	48.914	-8.643	1.00	0.00	C
	MOTA	8179			1044	74.055	49.766		1.00	0.00	Ö
	ATOM	8180			1044	74.215	46.425	-8.533	1.00	0.00	С
10											
10	ATOM	8181			1044	74.201	46.089		1.00	0.00	0
	ATOM	8182	OXT SE			75.551	48.943		1.00	0.00	0
	ATOM	8183	OH2 WA			41.976	63.654	-7.154	1.00	0.00	0
	MOTA	8184	OH2 WA			53.602		-19.781	1.00	0.00	0
4 =	ATOM	8185	OH2 WA			39.163		-19.191	1.00	0.00	0
15	MOTA	8186	OH2 WA	T W	4	52.126	54.294	-4.852	1.00	0.00	0
	MOTA	8187	OH2 WA	T W	5	56.134	53.565	-0.644	1.00	0.00	0
	MOTA	8188	OH2 WA	T W	6	31.389	50.074	-24.074	1.00	0.00	0
	MOTA	8189	OH2 WA	T W	7	49.834	48.640	1.272	1.00	0.00	0
	MOTA	8190	OH2 WA	T W	8	36.988	57.887	13.369	1.00	0.00	0
20	MOTA	8191	OH2 WA	T W	9	26.754	69.185	-9.245	1.00	0.00	0
	MOTA	8192	OH2 WA			39.317		-14.914	1.00	0.00	0
	ATOM	8193	OH2 WA			34.207	58.774	-8.708	1.00	0.00	0
	ATOM	8194	OH2 WA			60.950	59.834	-8.299	1.00	0.00	0
	ATOM	8195	OH2 WA			36.632	72.830		1.00	0.00	0
25	ATOM	8196	OH2 WA			31.706	47.180		1.00	0.00	0
20	ATOM	8197	OH2 WA			30.145	55.933	17.234	1.00	0.00	0
	ATOM	8198	OH2 WA			26.118		-13.748	1.00	0.00	0
	MOTA	8199	OH2 WA			37.626		-21.143	1.00	0.00	0
30	ATOM	8200	OH2 WA			33.009	62.953	0.156	1.00	0.00	0
30	ATOM	8201	OH2 WA			24.690		-11.756	1.00	0.00	0
	MOTA	8202	OH2 WA			63.104	61.520		1.00	0.00	0
	MOTA	8203	OH2 WA			41.281	59.157	13.525	1.00	0.00	0
	ATOM	8204	OH2 WA			47.275		-15.370	1.00	0.00	0
٥.	ATOM	8205	OH2 WA	T W	23	56.384	55.894	-2.113	1.00	0.00	0
35	ATOM	8206	OH2 WA	T W	24	67.346	60.849	-5.662	1.00	0.00	0
	MOTA	8207	OH2 WA	T W	25	26.262	48.932	-10.899	1.00	0.00	0
	MOTA	8208	OH2 WA	T W	26	65.624	60.393	-7.594	1.00	0.00	0
	ATOM	8209	OH2 WA	T W	27	32.468	60.313	-1.882	1.00	0.00	0
	MOTA	8210	OH2 WA	T W	28	20.134	54.845	16.209	1.00	0.00	0
40	MOTA	8211	OH2 WA	T W	29	23.817	55.676	-23.389	1.00	0.00	0
	MOTA	8212	OH2 WA	T W	30	39.332	57.560	14.798	1.00	0.00	0
	ATOM	8213	OH2 WA	T W	31	20.347	58.955	-21.877	1.00	0.00	0
	MOTA	8214	OH2 WA			28.078	61.165	19.428	1.00	0.00	0
	MOTA	8215	OH2 WA			34.054		-26.253	1.00	0.00	0
45	ATOM	8216	OH2 WA			26.331	40.115		1.00	0.00	0
	ATOM	8217	OH2 WA			63.797		-14.009	1.00	0.00	Ö
	ATOM	8218	OH2 WA			37.488	57.200	1.740	1.00	0.00	0
	ATOM	8219	OH2 WA			24.086	42.128	6.854	1.00	0.00	0
	MOTA	8220	OH2 WA			31.954	65.565	18.957	1.00	0.00	0
50	ATOM	8221	OH2 WA			51.497	56.794	-5.609	1.00	0.00	0
	ATOM	8222	OH2 WA			20.046	56.194	7.116	1.00	0.00	0
	MOTA	8223	OH2 WA			28.269	43.982	13.133	1.00	0.00	0
	ATOM	8224	OH2 WA			30.246		-11.781	1.00	0.00	0
55	ATOM	8225	OH2 WA			64.887	59.403	-3.625	1.00	0.00	0
55	ATOM	8226	OH2 WA			46.354		-15.580	1.00	0.00	0
	MOTA	8227	OH2 WA			60.700	58.458	-2.886	1.00	0.00	0
	MOTA	8228	OH2 WA			60.504	62.266	-1.281	1.00	0.00	0
	MOTA	8229	OH2 WA			53.603	60.069		1.00	0.00	0
	ATOM	8230	OH2 WA			18.568		-12.453	1.00	0.00	0
60	MOTA	8231	OH2 WA	r w	49	28.872	42.920	-11.945	1.00	0.00	0
	MOTA	8232	OH2 WA	r w	50	34.483	79.286	-9.190	1.00	0.00	0

		ATOM	8233	OH2	WAT	W	51	21.525	58.04	47	-7.813	1.00	0.00	0
		ATOM	8234	OH2	TAW	W	52	36.981	72.03	16	-4.631	1.00	0.00	0
		MOTA	8235	OH2	WAT	W	53	55.632	59.59	94	-11.514	1.00	0.00	0
	_	MOTA	8236	OH2	WAT	W	54	36.682	44.99	97	-5.525	1.00	0.00	0
	5	ATOM	8237	OH2	TAW	W	55	51.278	53.46	62	-24.046	1.00	0.00	0
		ATOM	8238	OH2	TAW	W	56	35.166	50.7	74	-17.551	1.00	0.00	0
		ATOM	8239	OH2	TAW	M	57	60.494	54.99	59	-0.396	1.00	0.00	0
		ATOM	8240	OH2	WAT	W	58	42.906	56.98	35	6.186	1.00	0.00	0
		ATOM	8241	0Н2	WAT	W	59	47.856	59.46	60	-25.676	1.00	0.00	0
	10	MOTA	8242	OH2			60	37,848	73.64	49	-2.352	1.00	0.00	0
		ATOM	8243	OH2	TAW	W	61	19.399	55.46	66	11.527	1.00	0.00	0
		ATOM	8244	OH2			62	25,912	39.80		5.188	1.00	0.00	0
		ATOM	8245	OH2	TAW	W	63	23,250	54.23		-3.650	1.00	0.00	0
		MOTA	8246	OH2			64	34.293	52.60		-1.080	1.00	0.00	0
	15	MOTA	8247	OH2			65	50.998	44.37		-7.959	1.00	0.00	0
		ATOM	8248	OH2			66	37.880	59.16		11.059	1.00	0.00	Ō
		ATOM	8249	OH2			67	16.629	49.15		24.044	1.00	0.00	Ō
		ATOM	8250	OH2			68	19.390	53.62		8.177	1.00	0.00	Ō
		ATOM	8251	OH2			69	11.772	51.72		14.383	1.00	0.00	ō
	20	ATOM	8252	OH2			70	17.140	56.37		10.222	1.00	0.00	ō
1		ATOM	8253	OH2			71	67.975	65.71		-3.480	1.00	0.00	Õ
		ATOM	8254	OH2			72	22.819			-24.432	1.00	0.00	0
		ATOM	8255	OH2			73	52.054	50.76		6.351	1.00	0.00	Ö
		ATOM	8256	OH2			74	17.599	52.92		6.337	1.00	0.00	ō
	25	ATOM	8257	OH2			75	68.798	58.39		-5.079	1.00	0.00	ō
		MOTA	8258	OH2			76	33.507			-10.151	1.00	0.00	Ö
		ATOM	8259	OH2			77	26.790			-13.180	1.00	0.00	Ö
		ATOM	8260	OH2			78	26.742	61.08		-3.287	1.00	0.00	Ō
		ATOM	8261	OH2			79	49.479	62.45		-8.645	1.00	0.00	Ö
	30	ATOM	8262	OH2			80	41.025			-17.001	1.00	0.00	Õ
		ATOM	8263	OH2			81	31.432	76.93		-6.261	1.00	0.00	Ö
		ATOM	8264	OH2			82	43.372			-24.901	1.00	0.00	ŏ
		ATOM	8265	OH2			83	32.759			-11.722	1.00	0.00	Ö
		ATOM	8266	OH2			84	20.528			-19.640	1.00	0.00	Ō
	35	ATOM	8267	OH2			85	40.399	62.93		6.179	1.00	0.00	Ö
	0.0	ATOM	8268	OH2			86	42.121			-24.562	1.00	0.00	Ö
		ATOM	8269	OH2			87	44.531	42.00		-0.591	1.00	0.00	ŏ
		ATOM	8270	OH2			88	38.621			-31.696	1.00	0.00	Ö
		ATOM	8271	OH2			89	22,298			-11.948	1.00	0.00	ŏ
	40	ATOM	8272	OH2			90	48.309			-30.626	1.00	0.00	ŏ
	10	ATOM	8273	OH2			91	36.699	51.82		3.762	1.00	0.00	Õ
		MOTA	8274	OH2			92	38.737	62.44		8.410	1.00	0.00	ŏ
		ATOM	8275	OH2			93	47.441	46.14		3.627	1.00	0.00	Ö
		ATOM	8276	OH2			94	33.595			-35.878	1.00	0.00	Õ
	45	ATOM	8277				95				-29.564	1.00	0.00	Õ
		ATOM	8278	OH2			96	39.241	39.23		17.199	1.00	0.00	Ö
		MOTA	8279	OH2			97	35.924	53,32		1.328	1.00	0.00	Ō
		ATOM	8280	OH2			98	14.453	60.15		5.057	1.00	0.00	Ō
		ATOM	8281	OH2			99	21.658	57.28		5.019	1.00	0.00	ŏ
	50	ATOM	8282	OH2				43.041	48.24		11.159	1.00	0.00	Ö
	00	ATOM	8283	OH2				26.081	73.00		5.562	1.00	0.00	Ö
		ATOM	8284	OH2				27.438			-21,564	1.00	0.00	Ö
		MOTA	8285	OH2				33.310	78.86		-4.982	1.00	0.00	Ö
		ATOM	8286	OH2				49.995			-11.589	1.00	0.00	0
	55	MOTA	8287	OH2				25.585	51.37		-9.520	1.00	0.00	0
		ATOM	8288	OH2				40.204	56.51		5.844	1.00	0.00	Ö
		ATOM	8289	OH2				14.014	59.88		-3.434	1.00	0.00	Ö
		MOTA	8290	OH2				19.703			-11.754	1.00	0.00	Ö
		ATOM	8291	OH2				26.515	63.82		17.139	1.00	0.00	ŏ
	60	ATOM	8292	OH2				19.778			-11.797	1.00	0.00	Ö
		ATOM	8293	OH2				47.187	48.53		11.419	1.00	0.00	0
		111 011	020	V112				1 . 1		_			0.00	~

The first state was some time that the state of the state

	ATOM	8294	OH2 WAT	W 112	67.806	81.793 -25.640	1.00	0.00	O
	MOTA	8295	OH2 WAT			51.819 -8.744	1.00	0.00	0
	ATOM	8296	OH2 WAT	W 114	46.600	70.560 -36.706	1.00	0.00	0
_	MOTA	8297	OH2 WAT	W 115	20.546	57.585 -5.285	1.00	0.00	0
5	MOTA	8298	OH2 WAT	W 116	18.164	60.620 24.435	1.00	0.00	0
	ATOM	8299	OH2 WAT	W 117	41.283	68.622 -32.525	1.00	0.00	0
	ATOM	8300	OH2 WAT	W 118	38.310	40.108 1.670	1.00	0.00	0
	ATOM	8301	OH2 WAT	W 119	23.864	58.245 6.322	1.00	0.00	0
	ATOM	8302	OH2 WAT	W 120	18.116	59.931 -20.090	1.00	0.00	0
10	ATOM	8303	OH2 WAT			77.741 -14.097	1.00	0.00	0
	ATOM	8304	OH2 WAT			59.194 -1.694	1.00	0.00	0
	MOTA	8305	OH2 WAT			49.601 13.774	1.00	0.00	0
	MOTA	8306	OH2 WAT			43.723 28.642	1.00	0.00	0
	MOTA	8307	OH2 WAT			60.742 -6.299	1.00	0.00	Ö
15	ATOM	8308	OH2 WAT			72.733 -19.141	1.00	0.00	0
	ATOM	8309	OH2 WAT			54.101 -20.844	1.00	0.00	0
	ATOM	8310	OH2 WAT			36.777 -4.396	1.00	0.00	0
		8311	OH2 WAT			64.081 -16.354	1.00	0.00	0
	MOTA								0
20	ATOM	8312	OH2 WAT			43.079 -2.432	1.00	0.00	
20	MOTA	8313	OH2 WAT			55.986 -25.481	1.00	0.00	0
	ATOM	8314	OH2 WAT			58.803 -28.456	1.00	0.00	0
	MOTA	8315	OH2 WAT			50.063 28.217	1.00	0.00	0
	MOTA	8316	OH2 WAT			37.406 29.348	1.00	0.00	0
0.5	MOTA	8317	OH2 WAT			46.658 1.206	1.00	0.00	0
25	ATOM	8318	OH2 WAT			58.872 -16.019	1.00	0.00	0
	MOTA	8319	OH2 WAT			54.259 4.434	1.00	0.00	0
	ATOM	8320	OH2 WAT			79.172 -25.325	1.00	0.00	0
	ATOM	8321	OH2 WAT			75.423 -16.044	1.00	0.00	0
20	ATOM	8322	OH2 WAT			56.190 30.804	1.00	0.00	0
30	ATOM	8323	OH2 WAT		56.986	61.143 1.570	1.00	0.00	0
	ATOM	8324	OH2 WAT	W 142	20.070	74.557 -6.868	1.00	0.00	0
	ATOM	8325	OH2 WAT	W 143	13.368	53.676 1.802	1.00	0.00	0
	ATOM	8326	OH2 WAT	W 144	34.263	34.517 16.103	1.00	0.00	0
25	ATOM	8327	OH2 WAT			64.719 -32.234	1.00	0.00	0
35	ATOM	8328	OH2 WAT	W 146	14.059	49.309 15.412	1.00	0.00	0
	ATOM	8329	OH2 WAT	W 147	30.401	35.321 -12.383	1.00	0.00	0
	ATOM	8330	OH2 WAT	W 148	18.402	55.023 14.030	1.00	0.00	0
	MOTA	8331	OH2 WAT	W 149	15.633	60.472 15.485	1.00	0.00	0
	MOTA	8332	OH2 WAT	W 150	16.788	74.865 -3.021	1.00	0.00	0
40	MOTA	8333	OH2 WAT	W 151	56.517	46.305 -17.438	1.00	0.00	0
	MOTA	8334	OH2 WAT	W 152	45.631	60.108 -18.238	1.00	0.00	0
	MOTA	8335	OH2 WAT	W 153	28.185	84.769 -35.431	1.00	0.00	0
	MOTA	8336	OH2 WAT	W 154	73.024	65.247 -7.728	1.00	0.00	0
	MOTA	8337	OH2 WAT	W 155	73.780	66.204 -17.660	1.00	0.00	0
45	ATOM	8338	OH2 WAT	W 156	59.268	50.053 -0.663	1.00	0.00	0
	MOTA	8339	OH2 WAT			78.515 -24.846	1.00	0.00	0
	MOTA	8340	OH2 WAT			54.490 -16.078	1.00	0.00	0
	MOTA	8341	OH2 WAT			73.335 5.822	1.00	0.00	0
	ATOM	8342	OH2 WAT			55.196 -12.500	1.00	0.00	0
50	ATOM	8343	OH2 WAT			44.759 -6.927	1.00	0.00	0
00	ATOM	8344	OH2 WAT			51.137 -24.137	1.00	0.00	0
	ATOM	8345	OH2 WAT			45.434 -27.391	1.00	0.00	0
	ATOM	8346	OH2 WAT			49.870 -24.430	1.00	0.00	0
	ATOM	8347	OH2 WAT			81.194 -23.475	1.00	0.00	0
55	ATOM	8348	OH2 WAT			63.813 7.819	1.00	0.00	0
			OH2 WAT						0
	MOTA MOTA	83 49 8350	OH2 WAT			57.750 -7.642 71.136 0.115	1.00 1.00	0.00	0
								0.00	
	MOTA	8351	OH2 WAT			55.824 -1.913	1.00		0
60	ATOM	8352	OH2 WAT			41.362 -21.793	1.00	0.00	0
OU	ATOM	8353	OH2 WAT			45.715 27.462	1.00	0.00	0
	MOTA	8354	OH2 WAT	w 172	41.481	41.357 -17.624	1.00	0.00	0

The first state was the state of the state o

	ATOM	8355	OH2 V	W TAW	173	40.307	62.729 -31.958	1.00	0.00	0
	MOTA	8356	OH2 V	W TAW	174	49.315	59.394 -28.703	1.00	0.00	0
	ATOM	8357	OH2 V	W TAW	175	64.406	39.380 -10.443	1.00	0.00	0
_	ATOM	8358	OH2 V	W TAW	176	19.161	72.628 2.904	1.00	0.00	0
5	MOTA	8359	OH2 V	W TAW	177	17.057	70.449 -16.414	1.00	0.00	0
	MOTA	8360	OH2 V	W TAW	178	9.539	52.641 16.836	1.00	0.00	0
	ATOM	8361	OH2 V	W TAW	179	53.885	71.468 -36.741	1.00	0.00	0
	MOTA	8362	OH2 V	W TAW	180	50.902	71.060 -23.481	1.00	0.00	0
	ATOM	8363	OH2 V	W TAW	181	49.374	44.299 4.432	1.00	0.00	0
10	MOTA	8364	OH2 V	W TAW	182	59.359	68.451 2.377	1.00	0.00	0
	MOTA	8365		WAT W		25.436	53.879 11.076	1.00	0.00	0
	MOTA	8366		W TAW		69.087	61.577 -2.401	1.00	0.00	0
	MOTA	8367	OH2 V	W TAW	185	58.340	77.598 -38.439	1.00	0.00	0
	MOTA	8368	OH2 V	WAT W	186	44.378	46.203 9.940	1.00	0.00	0
15	MOTA	8369		W TAW		46.546	57.482 -18.766	1.00	0.00	0
	MOTA	8370		W TAW		33.489	83.732 -10.371	1.00	0.00	0
	MOTA	8371		W TAW		47.049	68.676 -30.437	1.00	0.00	0
	ATOM	8372		W TAW		44.368	56.164 -15.428	1.00	0.00	0
	ATOM	8373		W TAW		13.141	67.038 -4.766	1.00	0.00	0
20	MOTA	8374		W TAW		24.521	39.279 -11.477	1.00	0.00	0
	ATOM	8375		W TAW		41.586	61.285 -29.726	1.00	0.00	0
	MOTA	8376		W TAW		27.184	41.484 13.312	1.00	0.00	0
	MOTA	8377		W TAW		41.986	88.026 -40.822	1.00	0.00	0
	ATOM	8378		W TAW		69.847	70.116 -12.640	1.00	0.00	0
25	ATOM	8379		W TAW		64.131	78.076 -35.187	1.00	0.00	0
	MOTA	8380	OH2 V			20.419	65.482 7.650	1.00	0.00	0
	ATOM	8381		W TAW		11.387	61.513 -18.591	1.00	0.00	0
	ATOM	8382		W TAW		24.508	70.807 -8.820	1.00	0.00	0
	ATOM	8383		W TAW		25.021	40.148 14.199	1.00	0.00	0
30	ATOM	8384		W TAW		22.730	63.440 -33.177	1.00	0.00	0
0.0	ATOM	8385		W TAW		41.675	43.444 7.942	1.00	0.00	0
	ATOM	8386		W TAW		21.031	51.927 47.241	1.00	0.00	0
	ATOM	8387		W TAW		41.315	50.431 33.202	1.00	0.00	0
	ATOM	8388		W TAW		45.964	52.942 -19.262	1.00	0.00	0
35	ATOM	8389	OH2 V			51.437	76.535 -40.973	1.00	0.00	0
	ATOM	8390		W TAW		25.691	86.538 -31.936	1.00	0.00	0
	ATOM	8391		WAT W		12.475	56.456 5.405	1.00	0.00	0
	ATOM	8392		W TAW		22.531	56.979 -34.126	1.00	0.00	0
	MOTA	8393		W TAW		43.855	72.890 -42.023	1.00	0.00	0
40	MOTA	8394		W TAW		44.587	58.897 -15.991	1.00	0.00	0
	ATOM	8395	OH2 V		213	31.317	81.888 0.492	1.00	0.00	0
	MOTA	8396	OH2 V	W TAW		51.998	56.511 -30.251	1.00	0.00	0
	MOTA	8397		W TAW		17.284	70.213 -23.398	1.00	0.00	0
	ATOM	8398	OH2 V	W TAW	216	37.672	47.143 29.765	1.00	0.00	0
45	MOTA	8399	OH2 V	W TAW	217	49.760	55.193 -28.929	1.00	0.00	0
	MOTA	8400		W TAW		36.216	79.446 -5.014	1.00	0.00	0
	MOTA	8401		W TAW		62.263	62.760 25.718	1.00	0.00	0
	MOTA	8402		W TAW		11.371	53.253 6.833	1.00	0.00	0
	MOTA	8403	OH2 V	W TAW	221	13.906	60.932 -22.496	1.00	0.00	0
50	MOTA	8404	OH2 V	W TAW	222	50.825	62.146 26.284	1.00	0.00	0
	ATOM	8405	OH2 V	W TAW	223	68.567	79.131 -18.097	1.00	0.00	0
	MOTA	8406	OH2 V	W TAW	224	84.222	68.534 -17.389	1.00	0.00	0
	ATOM	8407		W TAW		21.708	40.465 -8.858	1.00	0.00	0
	ATOM	8408		W TAW		52.787	69.944 18.315	1.00	0.00	0
55	ATOM	8409		W TAW		42.689	53.369 35.556	1.00	0.00	0
	ATOM	8410	OH2 V	W TAW	228	70.589	52.247 -12.696	1.00	0.00	0
	ATOM	8411		W TAW		34.684	70.515 13.167	1.00	0.00	0
	ATOM	8412		W TAW		27.167	46.423 13.589	1.00	0.00	0
	ATOM	8413		W TAW		14.456	49.790 19.863	1.00	0.00	0
60	ATOM	8414		WAT W		49.685	73.595 -21.805	1.00	0.00	0
•	ATOM	8415		W TAW		48.689	44.406 -6.194	1.00	0.00	0

		ATOM	8416	OH2 WAT W	234	61.410	77.073 -39.603	1.00	0.00	0
		ATOM	8417	OH2 WAT W		22.884	78.730 -30.339	1.00	0.00	0
		ATOM	8418	OH2 WAT W	236	43.601	88.814 -38.504	1.00	0.00	0
		ATOM	8419	OH2 WAT W	237	35.756	77.733 -7.320	1.00	0.00	0
	5									
	9	ATOM	8420	OH2 WAT W		24.910	68.451 21.795	1.00	0.00	0
		MOTA	8421	OH2 WAT W	239	68.065	49.290 -1.106	1.00	0.00	0
		ATOM	8422	OH2 WAT W	240	54.306	48.006 15.594	1.00	0.00	0
		MOTA	8423	OH2 WAT W	241	55.035	50.552 16.701	1.00	0.00	0
		MOTA	8424	OH2 WAT W	242	39.346	48.853 -32.773	1.00	0.00	0
	10	ATOM	8425	OH2 WAT W		22.715	45.375 -13.470	1.00	0.00	
	10									0
		ATOM	8426	OH2 WAT W		67.041	55.438 0.923	1.00	0.00	0
		ATOM	8427	OH2 WAT W	245	47.938	44.041 -8.649	1.00	0.00	0
		MOTA	8428	OH2 WAT W		26.916	87.947 -23.675	1.00	0.00	0
		MOTA	8429	OH2 WAT W	247	18.920	48.654 37.727	1.00	0.00	0
	15	MOTA	8430	OH2 WAT W	248	83.609	67.735 -22.899	1.00	0.00	0
		ATOM	8431	OH2 WAT W		43.071	59.942 -19.005	1.00	0.00	0
		ATOM	8432	OH2 WAT W	250	47.458	79.272 -40.359	1.00	0.00	0
		ATOM	8433	OH2 WAT W	251	8.628	57.772 -6.846	1.00	0.00	0
	20	ATOM	8434	OH2 WAT W		54.854	90.442 -23.490	1.00	0.00	0
	20	MOTA	8435	OH2 WAT W	253	27.822	36.723 -19.686	1.00	0.00	0
		MOTA	8436	OH2 WAT W	254	72.038	58.835 -11.191	1.00	0.00	0
		MOTA	8437	OH2 WAT W		34.312	67.938 12.419	1.00	0.00	0
ì		ATOM	8438	OH2 WAT W	256	11.701	59.520 -4.996	1.00	0.00	0
		MOTA	8439	OH2 WAT W	257	23.555	46.185 -15.867	1.00	0.00	0
	25									
	23	MOTA	8440	OH2 WAT W		50.165	70.949 -17.614	1.00	0.00	0
2		MOTA	8441	OH2 WAT W	259	45.014	90.349 -25.370	1.00	0.00	0
		MOTA	8442	OH2 WAT W	260	16.031	72.424 -19.154	1.00	0.00	0
:										
•		MOTA	8443	OH2 WAT W		20.063	52.665 -24.366	1.00	0.00	0
		ATOM	8444	OH2 WAT W	262	59.526	76.634 -8.922	1.00	0.00	0
	30	ATOM	8445	OH2 WAT W	263	66.985	60.106 -27.206	1.00	0.00	0
3										
		MOTA	8446	OH2 WAT W		38.574	51.579 -29.892	1.00	0.00	0
		ATOM	8447	OH2 WAT W	265	40.352	83.002 -10.718	1.00	0.00	0
		MOTA	8448	OH2 WAT W	266	42.228	48.810 31.272	1.00	0.00	0
i i	25	ATOM	8449	OH2 WAT W		24.087	53.097 -6.112	1.00	0.00	0
:	35	ATOM	8450	OH2 WAT W	268	53.151	47.236 -24.936	1.00	0.00	0
		MOTA	8451	OH2 WAT W	269	32.606	89.327 -43.042	1.00	0.00	0
:		ATOM	8452	OH2 WAT W						
						35.917		1.00	0.00	0
į.		ATOM	8453	OH2 WAT W	271	70.120	83.240 -29.810	1.00	0.00	0
		ATOM	8454	OH2 WAT W	272	49.674	82.612 -43.733	1.00	0.00	0
	40	ATOM	8455	OH2 WAT W		68.294	79.794 -34.772		0.00	
	10							1.00		0
		MOTA	8456	OH2 WAT W		29.285	46.894 37.041	1.00	0.00	0
		ATOM	8457	OH2 WAT W	275	18.501	70.060 4.192	1.00	0.00	0
		ATOM	8458	OH2 WAT W		14.130	68.377 -7.929	1.00	0.00	0
		MOTA	8459	OH2 WAT W	277	50.292	72.625 9.115	1.00	0.00	0
	45	ATOM	8460	OH2 WAT W	278	39.681	75.872 -40.189	1.00	0.00	0
		ATOM	8461	OH2 WAT W		28.800	65.267 19.692	1.00	0.00	
										0
		MOTA	8462	OH2 WAT W	280	11.698	58.801 7.877	1.00	0.00	0
		ATOM	8463	OH2 WAT W	281	52.681	79.071 -17.318	1.00	0.00	0
		ATOM	8464	OH2 WAT W		18.546	65.169 -27.072	1.00	0.00	Ō
	50									
	50	ATOM	8465	OH2 WAT W		44.658	79.503 -33.162	1.00	0.00	0
		ATOM	8466	OH2 WAT W	284	36.159	81.248 6.301	1.00	0.00	0
		ATOM	8467	OH2 WAT W		16.711	60.781 -28.274	1.00	0.00	0
		MOTA	8468	OH2 WAT W	286	29.549	87.473 -17.991	1.00	0.00	0
		ATOM	8469	OH2 WAT W	287	8.872	55.103 -6.123	1.00	0.00	0
	55	ATOM	8470	OH2 WAT W		46.662	61.781 -25.948	1.00		
									0.00	0
		ATOM	8471	OH2 WAT W	289	42.935	82.350 -10.022	1.00	0.00	0
		MOTA	8472	OH2 WAT W	290	10.298	50.821 18.871	1.00	0.00	0
		ATOM	8473	OH2 WAT W		12.804	42.604 12.655	1.00	0.00	Õ
	<i>(</i> 0	MOTA	8474	OH2 WAT W		35.970	45.285 30.862	1.00	0.00	0
	60	ATOM	8475	OH2 WAT W	293	15.720	75.427 -11.770	1.00	0.00	0
		ATOM	8476	OH2 WAT W		25.251	46.933 -20.830	1.00	0.00	0
		111 011	0110	OTTE MUT M	4 J 7	20.201	10.555 20.050	1.00	0.00	U

train, rouse passe same anne, er se general

to the total the total

		MOTA	8477	OH2	TAW	N 29	5	56.981	65.103	24.147	1.00	0.00	0	
		MOTA	8478	OH2	WAT	W 29	6	38.675	94.386	-42.056	1.00	0.00	0	
		ATOM	8479	OH2	WAT	N 29	7	34.701	59.742	-34.921	1.00	0.00	0	
		MOTA	8480		WAT			32.942	41,340	-17.487	1.00	0.00	0	
	5	ATOM	8481		WAT			20.659	42.773	-7.510	1.00	0.00	0	
	•	ATOM	8482		WAT			19.164	76.984	4.901	1.00	0.00	0	
		MOTA	8483		WAT			43.374	80.845	4.959	1.00	0.00	0	
					WAT			32.892	85.489	-5.433	1.00	0.00	0	
		ATOM	8484											
	10	ATOM	8485		TAW			31.125	33.618	2.743	1.00	0.00	0	
	10	ATOM	8486		TAW			21.401	78.735	-1.300	1.00	0.00	0	
		MOTA	8487		TAW			55.248	59.205	4.018	1.00	0.00	0	
		MOTA	8488	OH2	WAT	W 30	б	13.472	62.549	-19.950	1.00	0.00	0	
		ATOM	8489	OH2	WAT	M 30.	7	16.942	51.046	-19.243	1.00	0.00	0	
		MOTA	8490	OH2	WAT	W 30	3	14.306	63.006	-12.128	1.00	0.00	0	
	15	ATOM	8491	OH2	WAT	W 30	9	53.329	87.016	-21.261	1.00	0.00	0	,
		ATOM	8492	OH2	WAT	W 31	3	70.847	49.607	-0.120	1.00	0.00	0	,
		ATOM	8493		WAT			57.958	42.552	1.480	1.00	0.00	0	
		ATOM	8494		WAT			74.685		-14.216	1.00	0.00	0	
		ATOM	8495		WAT			24.865		-16.893	1.00	0.00	0	
	20	ATOM	8496		WAT			57.004		-35.397	1.00	0.00	0	
	20	ATOM	8497		WAT			48.910		-29.603	1.00	0.00	o	
										-6.758	1.00	0.00	0	
		ATOM	8498		WAT			66.516						
144000		MOTA	8499		TAW			28.750		-38.397	1.00	0.00	0	
	25	MOTA	8500		WAT			32.641		-10.056	1.00	0.00	0	
Ţ	25	MOTA	8501		WAT			13.390	51.126	-1.727	1.00	0.00	0	
		MOTA	8502		TAW			39.218	49.401	30.125	1.00	0.00	0	
		MOTA	8503	OH2	TAW	N 32	1	67.809		-23.999	1.00	0.00	0	
9 442		ATOM	8504	OH2	WAT	N 32:	2	20.711	59.173	-34.513	1.00	0.00	0	
IU.		MOTA	8505	OH2	TAW	N 32	3	37.626	75.871	-42.367	1.00	0.00	0	1
	30	ATOM	8506	OH2	WAT	W 32	4	31.743	51.398	-35.443	1.00	0.00	0	1
		ATOM	8507	OH2	TAW	W 32.	5	12.990	71.425	-0.518	1.00	0.00	0	ı
es Laces		MOTA	8508	OH2	TAW	N 32	б	36.948	41.131	-24.831	1.00	0.00	O)
F _{see} F		ATOM	8509	OH2	WAT	W 32	7	19.231	42.667	-2.519	1.00	0.00	0	,
den den den		MOTA	8510		WAT			49.940	44.205	7.115	1.00	0.00	0	ł
188	35	ATOM	8511		WAT			37.339		-25.533	1.00	0.00	0	,
9 T43" 8 . s.		ATOM	8512		TAW			75.324		-19.611	1.00	0.00	0	
g calls		ATOM	8513		WAT			50.283		-31.172	1.00	0.00	0	
1 (22)		MOTA	8514		WAT			42.968		-31.533	1.00	0.00	0	
j ješa		ATOM	8515		WAT			13.231	68.986	0.966	1.00	0.00	O	
a .	40	ATOM	8516		WAT			40.964		-31.335	1.00	0.00	0	
	10		8517		WAT				52.485	22.429	1.00	0.00	0	
		MOTA						26.935	66.558			0.00	0	
		MOTA	8518		WAT			12.535		-9.411	1.00			
		ATOM	8519		TAW			42.574		-15.819	1.00	0.00	0	
	4 =	MOTA	8520		WAT			48.063	48.452	16.338	1.00	0.00	0	
	45	ATOM	8521		TAW			11.396	46.881	17.803	1.00	0.00	0	
		MOTA	8522		TAW			16.456		-19.966	1.00	0.00	0	
		MOTA	8523		TAW			5.127	52.960	-5.987	1.00	0.00	0	
		MOTA	8524		WAT			56.366		-25.674	1.00	0.00	0	
		ATOM	8525	OH2	TAW	N 34	3	39.144	83.533	-27.276	1.00	0.00	0	
	50	ATOM	8526	OH2	TAW	N 34	4	60.906	57.044	15.729	1.00	0.00	0	l .
		MOTA	8527	OH2	TAW	W 34	5	13.476	51.618	21.701	1.00	0.00	0	1
		ATOM	8528	OH2	WAT	W 34	6	43.475	94.139	-37.674	1.00	0.00	0	t
		ATOM	8529	OH2	WAT	W 34	7	28.005	35.390	-6.921	1.00	0.00	0	ļ
		ATOM	8530		WAT			80.217		-21.456	1.00	0.00	О	,
	55	ATOM	8531		WAT			51.582	45.241	9.734	1.00	0.00	0	
		ATOM	8532		TAW			21.442		-17.471	1.00	0.00	0	
		ATOM	8533		WAT			47.375		-20.206	1.00	0.00	O	
		ATOM	8534		WAT			21.529		-30.867	1.00	0.00	Ö	
		ATOM	8535		WAT			33.020	67.074	21.359	1.00	0.00	O	
	60									-14.529	1.00	0.00	0	
	00	ATOM	8536		TAW			14.661						
		MOTA	8537	UH2	TAW	N 35	כ	50.340	13.832	-25.135	1.00	0.00	0	

		ATOM	8538	OH2 WAT	W 356	41.981	79.529 -23.664	1.00	0.00	0
		MOTA	8539	OH2 WAT	W 357	39.972	45.436 25.468	1.00	0.00	0
		ATOM	8540	OH2 WAT	W 358	50.969	76.614 14.421	1.00	0.00	0
		ATOM	8541	OH2 WAT		38.542	45.259 -33.621	1.00	0.00	0
	5	ATOM	8542	OH2 WAT		61.488	54.293 -28.837	1.00	0.00	0
		ATOM	8543	OH2 WAT	W 361	53.752	46.861 23.465	1.00	0.00	0
		MOTA	8544	OH2 WAT		57.003	43.245 -20.158	1.00	0.00	0
		ATOM	8545	OH2 WAT		67.626	54.901 -18.285	1.00	0.00	0
		ATOM	8546	OH2 WAT		42.418	80.223 -31.622	1.00	0.00	0
	10	ATOM	8547	OH2 WAT		29.083	62.415 -39.783	1.00	0.00	0
		ATOM	8548	OH2 WAT		26.860	61.813 10.730	1.00	0.00	0
		ATOM	8549	OH2 WAT		45.805	45.098 22.818	1.00	0.00	0
		MOTA	8550	OH2 WAT		35.137	51.286 35.769	1.00	0.00	0
		ATOM	8551	OH2 WAT		57.651	62.471 7.869	1.00	0.00	0
	15	ATOM	8552	OH2 WAT		25.333	33.637 13.177	1.00	0.00	0
	10	ATOM	8553	OH2 WAT		27.654	59.510 8.691	1.00	0.00	Ō
		MOTA	8554	OH2 WAT		42.826	94.774 -30.165	1.00	0.00	0
		ATOM	8555	OH2 WAT		13.853	58.151 -1.424	1.00	0.00	Ō
		ATOM	8556	OH2 WAT		49.192	76.578 5.501	1.00	0.00	O
	20	ATOM	8557	OH2 WAT		27.925	67.696 28.209	1.00	0.00	Ō
1 07000		ATOM	8558	OH2 WAT		41.952	39.320 16.716	1.00	0.00	Ō
		MOTA	8559	OH2 WAT		58.773	46.532 -1.499	1.00	0.00	Ō
ij		ATOM	8560	OH2 WAT		73.326	76.954 -18.532	1.00	0.00	Ö
in it		ATOM	8561	OH2 WAT		19.656	39.469 17.560	1.00	0.00	Ö
1000	25	ATOM	8562	OH2 WAT		39.710	59.119 -18.070	1.00	0.00	Ō
110m	20	ATOM	8563	OH2 WAT		28.056	47.248 -31.460	1.00	0.00	0
		ATOM	8564	OH2 WAT		68.576	47.066 -16.559	1.00	0.00	Ö
the state of the s		ATOM	8565	OH2 WAT		66.502	62.821 -13.285	1.00	0.00	ō
anne Gmir Gmir		ATOM	8566	OH2 WAT		26.551	75.251 2.041	1.00	0.00	Ō
	30	MOTA	8567	OH2 WAT		39.989	39.143 9.181	1.00	0.00	0
fig H		ATOM	8568	OH2 WAT		21.546	47.172 39.121	1.00	0.00	0
E1-		ATOM	8569	OH2 WAT		42.166	75.026 -41.390	1.00	0.00	ō
CI.		ATOM	8570	OH2 WAT		14.668	55.649 27.168	1.00	0.00	0
J.		MOTA	8571	OH2 WAT		28.635	59.881 -39.092	1.00	0.00	0
191	35	ATOM	8572	OH2 WAT		39.198	43.093 22.518	1.00	0.00	0
i ter	00	ATOM	8573	OH2 WAT		16.373	52.883 -22.472	1.00	0.00	0
		ATOM	8574	OH2 WAT		27.249	35.030 29.245	1.00	0.00	0
1,000		ATOM	8575	OH2 WAT		17.213	80.907 -7.458	1.00	0.00	0
i sain		MOTA	8576	OH2 WAT		48.192	41.940 3.626	1.00	0.00	0
	40	ATOM	8577	OH2 WAT		73.444	51.506 -11.329	1.00	0.00	0
		ATOM	8578	OH2 WAT		58.713	53.858 -22.201	1.00	0.00	0
		MOTA	8579	OH2 WAT		47.585	79.681 -18.583	1.00	0.00	0
		MOTA	8580	OH2 WAT		40.821	96.690 -37.270	1.00	0.00	0
		ATOM	8581	OH2 WAT		61.090	63.873 15.190	1.00	0.00	0
	45	ATOM	8582	OH2 WAT			37.758 -15.399	1.00	0.00	0
		ATOM	8583	OH2 WAT		21.130	30.440 17.589	1.00	0.00	0
		ATOM	8584	OH2 WAT		46.166	97.283 -43.899	1.00	0.00	0
		ATOM	8585	OH2 WAT		21.601	86.388 -19.084	1.00	0.00	0
		ATOM	8586	OH2 WAT		20.559	68.460 22.165	1.00	0.00	0
	50	ATOM	8587	OH2 WAT	W 405	45.429	70.094 -18.226	1.00	0.00	0
		ATOM	8588	OH2 WAT		17.460	70.834 6.628	1.00	0.00	0
		ATOM	8589	OH2 WAT		51.178	52.977 -28.541	1.00	0.00	0
		ATOM	8590	OH2 WAT		19.143	83.560 -25.728	1.00	0.00	0
		ATOM	8591	OH2 WAT		40.017	86.342 -21.820	1.00	0.00	0
	55	ATOM	8592	OH2 WAT		22.588	66.313 29.105	1.00	0.00	0
		ATOM	8593	OH2 WAT		24.924	59.432 -36.321	1.00	0.00	0
		ATOM	8594	OH2 WAT		58.534	34.944 -5.958	1.00	0.00	0
		ATOM	8595	OH2 WAT		50.571	79.325 -15.679	1.00	0.00	0
		ATOM	8596	OH2 WAT		17.547	68.712 24.284	1.00	0.00	0
	60	ATOM	8597	OH2 WAT		56.497	93.003 -29.406	1.00	0.00	0
		ATOM	8598	OH2 WAT		52.563	73.376 4.325	1.00	0.00	0
		111 011	0000	11111		52.555	11020			ŭ

							26 227 0 122	1 00	0.00	0	
		MOTA	8599	OH2 WAT W	417	21.955	36.827 0.123	1.00			
		ATOM	8600	OH2 WAT W		40.057	79.947 -28.024	1.00	0.00	0	
		ATOM	8601	OH2 WAT W	419	10.491	77.324 -5.020	1.00	0.00	0	
		ATOM	8602	OH2 WAT W		26.174	64.613 8.454	1.00	0.00	0	
	5	ATOM	8603	OH2 WAT W		72.887	64.089 -21.074	1.00	0.00	0	
	0	ATOM	8604	OH2 WAT W		79.850	74.111 -17.731	1.00	0.00	0	
				OH2 WAT W		66.746	74.578 -4.415	1.00	0.00	0	
		ATOM	8605				64.471 -28.375	1.00	0.00	0	
		ATOM	8606	OH2 WAT W		48.121			0.00	Ö	
		MOTA	8607	OH2 WAT W		42.562	39.570 -1.498	1.00		0	
	10	MOTA	8608	OH2 WAT W		63.060	67.958 -31.848	1.00	0.00		
		MOTA	8609	OH2 WAT W	427	24.133	42.119 -14.621	1.00	0.00	0	
		ATOM	8610	OH2 WAT W	428	27.601	50.987 13.315	1.00	0.00	0	
		MOTA	8611	OH2 WAT W		38.651	83.736 -39.775	1.00	0.00	0	
		ATOM	8612	OH2 WAT W		76.639	74.331 -26.800	1.00	0.00	0)
	15	ATOM	8613	OH2 WAT W		28.832	72.523 22.366	1.00	0.00	0)
	10	ATOM	8614	OH2 WAT W		20.710	55.297 -35.830	1.00	0.00	0)
			8615	OH2 WAT W		24.127	57.300 38.838	1.00	0.00	0)
		ATOM		OH2 WAT W		38.116	49.320 -10.479	1.00	0.00	C)
		ATOM	8616			23.431	82.846 -40.701	1.00	0.00	C)
	20	MOTA	8617	OH2 WAT W			67.203 -26.037	1.00	0.00	C	
	20	MOTA	8618	OH2 WAT W		17.153	84.509 -22.081	1.00	0.00	C	
4:122		ATOM	8619	OH2 WAT W		66.929			0.00	C	
i parali		ATOM	8620	OH2 WAT W		52.699	65.054 -28.059	1.00		C	
		ATOM	8621	OH2 WAT W		20.671	68.507 8.683	1.00	0.00		
		MOTA	8622	OH2 WAT W	440	61.541	63.964 -30.852	1.00	0.00	C	
J	25	MOTA	8623	OH2 WAT W	441	9.820	60.220 6.782	1.00	0.00	C	
aga n agan		ATOM	8624	OH2 WAT W	442	31.578	86.047 -19.897	1.00	0.00	C	
		ATOM	8625	OH2 WAT W	443	28.116	88.069 -41.601	1.00	0.00	C	
II.		ATOM	8626	OH2 WAT W	444	44.813	82.813 -30.442	1.00	0.00	C	
William William		ATOM	8627	OH2 WAT W	445	59.411	67.316 -34.553	1.00	0.00)
2 (20)	30	ATOM	8628	OH2 WAT W		70.281	56.737 -12.641	1.00	0.00	C)
i i	50	MOTA	8629	OH2 WAT W		46.133	46.111 16.197	1.00	0.00)
51.		ATOM	8630	OH2 WAT W		46.022	82.991 -25.291	1.00	0.00	()
100				OH2 WAT W		56.919	87.865 -19.906	1.00	0.00)
1111		MOTA	8631	OH2 WAT W		73.671	74.275 -5.837	1.00	0.00)
ij	25	ATOM	8632				43.342 33.818	1.00	0.00	()
M.	35	ATOM	8633	OH2 WAT W		19.780	51.263 -0.742	1.00	0.00	(
jud.		MOTA	8634	OH2 WAT W		79.363		1.00	0.00	(
		ATOM	8635	OH2 WAT W		65.997			0.00))
1,125		ATOM	8636	OH2 WAT W		48.283	78.082 -9.662	1.00)
		ATOM	8637	OH2 WAT W		30.091	34.272 -1.319	1.00	0.00		5
	40	MOTA	8638	OH2 WAT W		16.243	75.141 -24.079	1.00	0.00		
		MOTA	8639	OH2 WAT W		17.563	39.586 35.890	1.00	0.00		C
		MOTA	8640	OH2 WAT W	1 458	22.610	31.267 29.293	1.00	0.00		C
		MOTA	8641	OH2 WAT W	1 459	33.437	84.502 -18.287	1.00	0.00		0
		ATOM	8642	OH2 WAT W	460	41.281	95.077 -39.430	1.00	0.00		0
	45	ATOM	8643	OH2 WAT W	461	44.192	83.798 -27.708	1.00	0.00		0
		ATOM	8644	OH2 WAT W		30.849	57.457 4.483	1.00	0.00	(0
		ATOM	8645	OH2 WAT W		65.863	66.367 -0.404	1.00	0.00	(0
		MOTA	8646	OH2 WAT W		46.505	68.680 26.433	1.00	0.00	(0
		MOTA	8647	OH2 WAT W		70.068	61.945 -20.523	1.00	0.00	(0
	50	ATOM	8648	OH2 WAT V		23.627	91.160 -25.962	1.00	0.00	(0
	50		8649	OH2 WAT V		25.303	71.234 22.351	1.00	0.00	(0
		MOTA				13.916	69.555 26.531	1.00	0.00	(0
		ATOM	8650	OH2 WAT V		62.187	80.969 -19.167	1.00	0.00		0
		MOTA	8651	OH2 WAT V				1.00	0.00		0
		MOTA	8652	OH2 WAT V		27.688		1.00	0.00		0
	55	ATOM	8653	OH2 WAT V		24.867	34.296 0.230				0
		ATOM	8654	OH2 WAT V		57.552	69.077 13.347	1.00	0.00		0
		MOTA	8655	OH2 WAT V		7.919	48.004 11.809	1.00	0.00		
		MOTA	8656			71.345	59.933 0.846	1.00	0.00		0
		MOTA	8657	OH2 WAT W		67.625	88.259 -23.332	1.00	0.00		0
	60	ATOM	8658	OH2 WAT V		12.293	75.293 -13.586	1.00	0.00		0
		ATOM	8659			28.034	52.152 42.304	1.00	0.00		0

						<i>5,</i> 2			
		ATOM	8660	OH2 WAT W 478	22.101	62.991 33.579	1.00	0.00	0
			8661	OH2 WAT W 479	59.350	67.017 -26.349	1.00	0.00	0
		ATOM			34.153	87.410 -10.585		0.00	0
		ATOM	8662	OH2 WAT W 480	30.242	36.569 29.051		0.00	0
	E.	ATOM	8663	OH2 WAT W 481		49.745 5.592		0.00	0
	5	MOTA	8664	OH2 WAT W 482	8.630			0.00	0
		MOTA	8665	OH2 WAT W 483	41.971	67.468 29.311			0
		MOTA	8666	OH2 WAT W 484	72.488	75.946 -27.178		0.00	
		MOTA	8667	OH2 WAT W 485	8.808	44.630 12.847		0.00	0
		MOTA	8668	OH2 WAT W 486	71.066	43.252 -15.447		0.00	0
	10	MOTA	8669	OH2 WAT W 487	41.610	44.823 -24.420		0.00	0
		MOTA	8670	OH2 WAT W 488	39.942	66.977 31.394	1.00	0.00	0
		ATOM	8671	OH2 WAT W 489	53.306	52.736 26.224	1.00	0.00	0
		ATOM	8672	OH2 WAT W 490	26.040	44.611 -27.019	1.00	0.00	0
		ATOM	8673	OH2 WAT W 491	19.640	52.648 -27.164	1.00	0.00	0
	15	ATOM	8674	OH2 WAT W 492	71.088	95.502 -34.983	1.00	0.00	0
	13		8675	OH2 WAT W 492	48.006	64.627 -25.755	1.00	0.00	0
		MOTA			44.643	64.544 -35.180	1.00	0.00	0
		MOTA	8676	OH2 WAT W 494	17.848	53.127 35.582	1.00	0.00	0
		MOTA	8677	OH2 WAT W 495		70.263 -20.332	1.00	0.00	Ō
	20	MOTA	8678	OH2 WAT W 496	83.559		1.00	0.00	Ō
	20	MOTA	8679	OH2 WAT W 497	43.889	79.656 -42.656		0.00	0
2 (2003)		MOTA	8680	OH2 WAT W 498	22.659	62.756 16.175	1.00		0
		ATOM	8681	OH2 WAT W 499	45.784	79.442 -8.085	1.00	0.00	
		ATOM	8682	OH2 WAT W 500	26.627	88.208 -4.106	1.00	0.00	0
1 1		MOTA	8683	OH2 WAT W 501	38.549	42.119 -22.265	1.00	0.00	0
5 (1240) 1 (1200)	25	MOTA	8684	OH2 WAT W 502	36.969	29.333 12.945	1.00	0.00	0
f3 2		MOTA	8685	OH2 WAT W 503	20.361	65.667 27.146	1.00	0.00	0
		MOTA	8686	OH2 WAT W 504	6.748	59.445 2.879	1.00	0.00	0
Q.		ATOM	8687	OH2 WAT W 505	61.176	77.604 -12.987	1.00	0.00	0
		ATOM	8688	OH2 WAT W 506	28.054	49.328 38.513	1.00	0.00	0
li Teath	30	ATOM	8689	OH2 WAT W 507	29.119	41.162 -25.731	1.00	0.00	0
M	00	ATOM	8690	OH2 WAT W 508	19.438	67.582 -2.809	1.00	0.00	0
Sign			8691	OH2 WAT W 509	43.444	41.879 -7.624	1.00	0.00	0
		MOTA		OH2 WAT W 510	48.772	55.128 -22.658	1.00	0.00	0
4 (122)		ATOM	8692	OH2 WAT W 510	26.320	81.968 -3.668	1.00	0.00	0
Į.	25	MOTA	8693		35.820	38.968 -16.233	1.00	0.00	0
141	35	MOTA	8694	OH2 WAT W 512		51.285 22.212	1.00	0.00	Ö
i principal		MOTA	8695	OH2 WAT W 513	58.609	45.745 4.789	1.00	0.00	Ö
445		ATOM	8696	OH2 WAT W 514	54.001	80.472 -42.691	1.00	0.00	Ö
		ATOM	8697	OH2 WAT W 515	46.519			0.00	Ö
5 .4	4.0	ATOM	8698	OH2 WAT W 516	71.771	84.685 -19.911	1.00		0
	40	MOTA	8699	OH2 WAT W 517	61.087	67.591 -36.581	1.00	0.00	
		MOTA	8700	OH2 WAT W 518	38.313	31.520 16.740	1.00	0.00	0
		MOTA	8701	OH2 WAT W 519	58.354	34.922 -12.186	1.00	0.00	0
		MOTA	8702	OH2 WAT W 520	21.065	79.730 -23.655	1.00	0.00	0
		MOTA	8703	OH2 WAT W 521	51.271	71.537 -20.143	1.00	0.00	0
	45	ATOM	8704	OH2 WAT W 522	32.007	85.367 -8.663	1.00	0.00	0
		ATOM	8705	OH2 WAT W 523	21.559	29.241 27.796	1.00	0.00	0
		ATOM	8706	OH2 WAT W 524	21.899	87.695 -6.948	1.00	0.00	0
		ATOM	8707	OH2 WAT W 525	31.622	57.574 37.384	1.00	0.00	0
		MOTA	8708	OH2 WAT W 526	17.396	81.625 -17.128	1.00	0.00	0
	50	ATOM	8709	OH2 WAT W 527	51.982	59.266 6.190	1.00	0.00	0
	50		8710	OH2 WAT W 528	22.034	80.360 -35.984	1.00	0.00	0
		ATOM	8711	OH2 WAT W 529	25.516	74.205 8.628	1.00	0.00	0
		ATOM		OH2 WAT W 529	21.692		1.00	0.00	0
		MOTA	8712				1.00	0.00	0
	E =	ATOM	8713	OH2 WAT W 531	48.615		1.00	0.00	Ö
	55	MOTA	8714	OH2 WAT W 532	39.879		1.00	0.00	0
		MOTA	8715	OH2 WAT W 533	39.730				0
		ATOM	8716	OH2 WAT W 534	36.679		1.00	0.00	
		MOTA	8717	OH2 WAT W 535	34.980		1.00	0.00	0
		MOTA	8718	OH2 WAT W 536			1.00	0.00	0
	60	MOTA	8719	OH2 WAT W 537			1.00	0.00	0
		ATOM	8720	OH2 WAT W 538		74.493 22.711	1.00	0.00	0
		0							

						0,2			
		ATOM	8721	OH2 WAT W 539	48.479	46.074 -23.173	1.00	0.00	0
		MOTA	8722	OH2 WAT W 540	60.426	92.218 -28.568	1.00	0.00	0
		MOTA	8723	OH2 WAT W 541	37.691	62.372 35.386	1.00	0.00	0
		ATOM	8724	OH2 WAT W 542	29.219	63.275 -37.448	1.00	0.00	0
	5	MOTA	8725	OH2 WAT W 543	61.269	48.104 -31.683	1.00	0.00	0
	Ū	MOTA	8726	OH2 WAT W 544	61.987	83.540 -38.118	1.00	0.00	0
		ATOM	8727	OH2 WAT W 545	62.916	42.910 -20.939	1.00	0.00	0
		ATOM	8728	OH2 WAT W 546	53.462	44.400 22.714	1.00	0.00	0
		ATOM	8729	OH2 WAT W 547	30.820	34.783 -9.453	1.00	0.00	0
	10	ATOM	8730	OH2 WAT W 548	29.478	31.624 21.760	1.00	0.00	0
		ATOM	8731	OH2 WAT W 549	78.634	69.005 -12.213	1.00	0.00	0
		ATOM	8732	OH2 WAT W 550	31.453	69.262 -45.544	1.00	0.00	0
		ATOM	8733	OH2 WAT W 551	73.440	82.530 -21.355	1.00	0.00	0
		MOTA	8734	OH2 WAT W 552	47.357	71.312 -23.900	1.00	0.00	0
	15	MOTA	8735	OH2 WAT W 553	20.487	38.004 12.047	1.00	0.00	0
		ATOM	8736	OH2 WAT W 554	35.053	95.226 -32.231	1.00	0.00	0
		MOTA	8737	OH2 WAT W 555	17.080	41.539 9.158	1.00	0.00	0
		MOTA	8738	OH2 WAT W 556	20.621	80.362 -33.678	1.00	0.00	0
		ATOM	8739	OH2 WAT W 557	49.081	92.026 -24.071	1.00	0.00	0
	20	ATOM	8740	OH2 WAT W 558	43.730	44.890 19.299	1.00	0.00	0
		ATOM	8741	OH2 WAT W 559	21.202	35.666 -5.127	1.00	0.00	0
		MOTA	8742	OH2 WAT W 560	65.011	88.072 -24.218	1.00	0.00	0
13		MOTA	8743	OH2 WAT W 561	46.925	53.987 -21.419	1.00	0.00	0
. =		MOTA	8744	OH2 WAT W 562	71.377	63.278 -27.101	1.00	0.00	0
DLY	25	MOTA	8745	OH2 WAT W 563	20.022	35.601 25.719	1.00	0.00	0
1,000		MOTA	8746	OH2 WAT W 564	59.362	87.224 -45.669	1.00	0.00	0
182		MOTA	8747	OH2 WAT W 565	51.846	34.237 -7.781	1.00	0.00	0
		MOTA	8748	OH2 WAT W 566	56.174	79.375 -15.045	1.00	0.00	0
	• •	MOTA	8749	OH2 WAT W 567	28.897	70.037 -39.456	1.00	0.00	0
M	30	ATOM	8750	OH2 WAT W 568	45.132	83.415 -43.264	1.00	0.00	0
		MOTA	8751	OH2 WAT W 569	29.704	81.723 -42.811	1.00	0.00	0
Eş .		ATOM	8752	OH2 WAT W 570	28.566	90.812 -42.631	1.00	0.00	0
		ATOM	8753	OH2 WAT W 571	19.650	84.825 -28.456	1.00	0.00	0
Hall tony	25	ATOM	8754	OH2 WAT W 572	37.818	97.411 -30.646	1.00	0.00	0
	35	MOTA	8755	OH2 WAT W 573	40.603	44.569 -31.615	1.00	0.00	0
		MOTA	8756	OH2 WAT W 574	21.065	41.634 35.090	1.00	0.00	0
4.55		MOTA	8757	OH2 WAT W 575	39.341	30.547 13.180 85.898 -23.043	1.00	0.00	Ö
		MOTA	8758	OH2 WAT W 576	62.232 31.093	68.494 14.062	1.00	0.00	0
	40	ATOM	8759	OH2 WAT W 577 OH2 WAT W 578	28.012	67.466 33.703	1.00	0.00	Ö
	40	ATOM	8760 8761	OH2 WAT W 578	14.919	63.617 -25.796	1.00	0.00	Ō
		ATOM ATOM	8762	OH2 WAT W 579	29.777	72.345 12.305	1.00	0.00	0
		ATOM	8763	OH2 WAT W 581	61.150	93.195 -38.571	1.00	0.00	0
		ATOM	8764	OH2 WAT W 581	59.323	62.309 25.744	1.00	0.00	0
	45	ATOM	8765	OH2 WAT W 583	51.213	79.510 -1.669	1.00	0.00	0
	10	ATOM	8766	OH2 WAT W 584	21.364	60.549 26.762	1.00	0.00	0
		ATOM	8767	OH2 WAT W 585	59.433	91.512 -35.102	1.00	0.00	0
		ATOM	8768	OH2 WAT W 586	24.269	60.848 35.990	1.00	0.00	0
		ATOM	8769	OH2 WAT W 587	11.450	62.002 0.100	1.00	0.00	0
	50	ATOM	8770	OH2 WAT W 588	55.171	80.702 -19.348	1.00	0.00	0
	•	MOTA	8771	OH2 WAT W 589	16.962	74.562 -28.650	1.00	0.00	0
		MOTA	8772	OH2 WAT W 590	40.725	40.685 -21.417	1.00	0.00	0
		ATOM	8773	OH2 WAT W 591	28.192	68.552 -46.100	1.00	0.00	0
		ATOM	8774	OH2 WAT W 592	40.020	35.502 11.339	1.00	0.00	0
	55	ATOM	8775	OH2 WAT W 593	19.044	80.664 -11.850	1.00	0.00	0
		ATOM	8776	OH2 WAT W 594	64.962	80.057 -8.837	1.00	0.00	0
		ATOM	8777	OH2 WAT W 595	72.971	43.614 -12.173	1.00	0.00	0
		MOTA	8778	OH2 WAT W 596	12.870	74.892 -19.225	1.00	0.00	0
		MOTA	8779	OH2 WAT W 597	57.091	75.709 -2.819	1.00	0.00	0
	60	MOTA	8780	OH2 WAT W 598	20.941	58.551 37.845	1.00	0.00	0
		MOTA	8781	OH2 WAT W 599	50.724	77.524 2.143	1.00	0.00	0

		MOTA	8782	OH2 WAT W	600	28.397	45.580 40.744	1.00	0.00	0
		ATOM	8783	OH2 WAT W		23.038	36.989 13.347	1.00	0.00	0
		MOTA	8784	OH2 WAT W		33.273	39.694 -19.124	1.00	0.00	0
		MOTA	8785	OH2 WAT W		33.739	49.423 -15.040	1.00	0.00	0
	5	ATOM	8786	OH2 WAT W		29.464	88.981 -26.114	1.00	0.00	0
	9			OH2 WAT W		37.103	33.836 5.763	1.00	0.00	O
		ATOM	8787				62.856 -18.090	1.00	0.00	0
		MOTA	8788	OH2 WAT W		71.868			0.00	Ö
		ATOM	8789	OH2 WAT W		34.298	70.277 -44.850	1.00		
	10	ATOM	8790	OH2 WAT W		64.246	77.356 0.371	1.00	0.00	0
	10	MOTA	8791	OH2 WAT W		35.765	55.988 8.553	1.00	0.00	0
		ATOM	8792	OH2 WAT W	610	30.746	51.320 39.591	1.00	0.00	0
		MOTA	8793	OH2 WAT W	611	54.247	58.047 -13.809	1.00	0.00	0
		ATOM	8794	OH2 WAT W	612	21.033	54.593 46.942	1.00	0.00	0
		MOTA	8795	OH2 WAT W	613	14.544	50.681 0.941	1.00	0.00	0
	15	MOTA	8796	OH2 WAT W	614	25.361	91.705 -32.972	1.00	0.00	0
		ATOM	8797	OH2 WAT W	615	73.166	71.394 -29.179	1.00	0.00	0
		ATOM	8798	OH2 WAT W		55.692	38.636 0.977	1.00	0.00	0
		ATOM	8799	OH2 WAT W		37.473	84.217 4.454	1.00	0.00	0
		ATOM	8800	OH2 WAT W		45.668	55.250 10.276	1.00	0.00	0
	20	ATOM	8801	OH2 WAT W		67.054	81.349 -11.203	1.00	0.00	0
	20	ATOM	8802	OH2 WAT W		40.531	89.320 -19.530	1.00	0.00	0
1			8803	OH2 WAT W		43.788	56.725 33.520	1.00	0.00	0
199		ATOM		OH2 WAT W		56.284	50.275 -30.442	1.00	0.00	Ō
A. Land		ATOM	8804				57.533 26.047	1.00	0.00	Ö
i, I	25	MOTA	8805	OH2 WAT W		63.547	48.417 -20.968	1.00	0.00	Ö
100	25	MOTA	8806	OH2 WAT W		62.152		1.00	0.00	0
the time that the first		ATOM	8807	OH2 WAT W		62.865	59.678 -22.138			0
केल्याकी सर्वाद		MOTA	8808	OH2 WAT W		39.807	77.878 13.615	1.00	0.00	
10		MOTA	8809	OH2 WAT W		26.705	92.002 -27.583	1.00	0.00	0
and fant	20	MOTA	8810	OH2 WAT W		13.511	70.306 -9.673	1.00	0.00	0
171	30	ATOM	8811	OH2 WAT W		60.650	79.062 -41.480	1.00	0.00	0
		MOTA	8812	OH2 WAT W		39.200	43.459 26.617	1.00	0.00	0
25		MOTA	8813	OH2 WAT W		12.021	71.041 2.447	1.00	0.00	0
		MOTA	8814	OH2 WAT W	632	36.432	62.728 -38.343	1.00	0.00	0
		MOTA	8815	OH2 WAT W	633	76.004	83.239 -25.233	1.00	0.00	0
598	35	MOTA	8816	OH2 WAT W	634	37.691	80.755 -0.580	1.00	0.00	0
E LF		MOTA	8817	OH2 WAT W	7 635	47.388	53.701 35.727	1.00	0.00	0
l-A		ATOM	8818	OH2 WAT W	636	48.724	97.982 -33.771	1.00	0.00	0
		ATOM	8819	OH2 WAT W	637	63.284	75.071 -45.697	1.00	0.00	0
		ATOM	8820	OH2 WAT W	638	60.036	71.911 0.281	1.00	0.00	0
#	40	ATOM	8821	OH2 WAT W	1 639	40.994	48.115 -29.333	1.00	0.00	0
		ATOM	8822	OH2 WAT W	640	55.304	40.303 -12.656	1.00	0.00	0
		ATOM	8823		641	75.278	84.083 -22.808	1.00	0.00	0
		ATOM	8824	OH2 WAT V		63.429	52.129 -0.436	1.00	0.00	0
		MOTA	8825	OH2 WAT V		37.171	36.676 19.220	1.00	0.00	0
	45	ATOM	8826	OH2 WAT V		57.798	36.026 -2.366	1.00	0.00	0
	10	MOTA	8827	OH2 WAT V		23.216	48.896 -36.160	1.00	0.00	0
			8828	OH2 WAT V		18.051	71.467 -29.826	1.00	0.00	0
		MOTA		OH2 WAT V		30.822	40.388 38.149	1.00	0.00	0
		MOTA	8829	OH2 WAT V		27.605	50.308 23.225	1.00	0.00	0
	50	ATOM	8830				47.814 40.348	1.00	0.00	Ö
	50	ATOM	8831	OH2 WAT V		30.597	52.971 -30.664	1.00	0.00	Ö
		ATOM	8832	OH2 WAT V		59.960			0.00	0
		ATOM	8833	OH2 WAT V		44.799	40.674 13.217	1.00		0
		ATOM	8834	OH2 WAT V		34.017	47.888 36.072	1.00	0.00	
		MOTA	8835	OH2 WAT V		27.187	82.319 3.172	1.00	0.00	0
	55	ATOM	8836	OH2 WAT W		58.515	92.353 -42.111	1.00	0.00	0
		ATOM	8837	OH2 WAT W		49.126	52.288 -37.796	1.00	0.00	0
		ATOM	8838	OH2 WAT W		53.313	71.104 -16.923	1.00	0.00	0
		ATOM	8839	OH2 WAT W	₹ 657	57.589	62.825 -15.540	1.00	0.00	0
		ATOM	8840	OH2 WAT W	√ 658	28.352	44.446 -29.609	1.00	0.00	0
	60	MOTA	8841	OH2 WAT W		49.081	49.407 -38.302	1.00	0.00	0
		ATOM	8842	OH2 WAT W		35.575	77.711 -43.096	1.00	0.00	0
				•	•					

		MOTA	8843	OH2 WAT W	V 661	9.831	58.785 17.833	1.00	0.00	0
		ATOM	8844	OH2 WAT W		61.038	45.561 -3.765	1.00	0.00	0
		ATOM	8845	OH2 WAT W		65.482	78.986 -5.781	1.00	0.00	0
		ATOM	8846	OH2 WAT W	V 664	7.036	58.315 14.701	1.00	0.00	0
	5	ATOM	8847	OH2 WAT W	V 665	49.623	50.858 32.493	1.00	0.00	0
		ATOM	8848	OH2 WAT V	v 666	18.541	62.487 22.934	1.00	0.00	0
		ATOM	8849	OH2 WAT W	V 667	30.423	34.190 21.123	1.00	0.00	0
		ATOM	8850	OH2 WAT W	v 668	17.479	45.675 -14.263	1.00	0.00	0
		ATOM	8851	OH2 WAT W	V 669	28.774	55.333 39.968	1.00	0.00	0
	10	MOTA	8852	OH2 WAT W	√ 670	50.805	60.075 -8.931	1.00	0.00	0
		ATOM	8853	OH2 WAT V	V 671	43.865	63.225 -28.668	1.00	0.00	0
		ATOM	8854	OH2 WAT W	√ 672	38.137	82.016 -31.368	1.00	0.00	0
		MOTA	8855	OH2 WAT W	v 673	32.333	39.224 -4.953	1.00	0.00	0
		MOTA	8856	OH2 WAT W	√ 674	60.357	61.090 -18.144	1.00	0.00	0
	15	MOTA	8857	OH2 WAT V	√ 675	63.176	58.695 -1.449	1.00	0.00	0
		MOTA	8858	OH2 WAT V	√ 676	60.718	61.111 -3.563	1.00	0.00	0
		MOTA	8859	OH2 WAT V	√ 677	46.652	74.662 7.739	1.00	0.00	0
		MOTA	8860	OH2 WAT V	√ 678	54.971	57.680 -0.492	1.00	0.00	0
		MOTA	8861	OH2 WAT	v 679	30.170	75.107 -29.270	1.00	0.00	0
	20	MOTA	8862	OH2 WAT	√ 680	58.915	56.852 -1.451	1.00	0.00	0
		MOTA	8863	OH2 WAT V		58.699	52.771 -0.065	1.00	0.00	0
		MOTA	8864	OH2 WAT V		63.032	61.194 -4.945	1.00	0.00	0
Ţ		MOTA	8865	OH2 WAT V		27.869	48.760 12.114	1.00	0.00	0
	~-	MOTA	8866	OH2 WAT V		66.585	56.380 -20.256	1.00	0.00	0
J	25	ATOM	8867	OH2 WAT I		19.828	46.907 -14.377	1.00	0.00	0
8,3 E		ATOM	8868	OH2 WAT		38.637	69.412 -38.139	1.00	0.00	0
d same		MOTA	8869	OH2 WAT		33.760	60.433 23.248	1.00	0.00	0
14		ATOM	8870	OH2 WAT		39.618	55.795 3.003	1.00	0.00	0
denil Gradi	20	MOTA	8871	OH2 WAT		24.685	61.653 9.124	1.00	0.00	0
	30	MOTA	8872	OH2 WAT		16.854	57.352 13.005	1.00	0.00	0
		MOTA	8873	OH2 WAT		39.367	69.367 -35.449	1.00	0.00	0
9)		ATOM	8874	OH2 WAT		49.897	67.815 4.117	1.00	0.00	0
		ATOM	8875	OH2 WAT		27.764	53.504 20.003	1.00	0.00	0
	2=	MOTA	8876	OH2 WAT		29.601	83.195 2.383	1.00		0
181	35	ATOM	8877	OH2 WAT		28.124	91.130 -25.262	1.00	0.00	0
		ATOM	8878	OH2 WAT		46.063	77.857 9.463 49.439 17.771	1.00	0.00	0
		MOTA	8879	OH2 WAT		12.616 81.174	68.674 -11.422	1.00	0.00	Ö
		ATOM	8880	OH2 WAT		41.447	44.919 -6.967	1.00	0.00	0
ğazir İ	40	ATOM ATOM	8881 8882	OH2 WAT		45.661	67.945 -27.578	1.00	0.00	Ö
	40	ATOM	8883	OH2 WAT		14.270	50.705 24.207	1.00	0.00	Ō
		ATOM	8884	OH2 WAT		67.411	46.627 -1.397	1.00	0.00	Ō
		ATOM	8885	OH2 WAT		9.073	50.490 8.141	1.00	0.00	Ō
		ATOM	8886	OH2 WAT		48.445	40.966 -1.167	1.00	0.00	0
	45	ATOM	8887	OH2 WAT		17.965	74.633 3.936	1.00	0.00	0
	10	ATOM	8888	OH2 WAT		44.849	55.258 -18.439	1.00	0.00	0
		ATOM	8889	OH2 WAT		83.509	66.541 -15.446	1.00	0.00	0
		ATOM	8890	OH2 WAT		48.836	69.219 -36.853	1.00	0.00	0
		ATOM	8891	OH2 WAT		51.740	70.392 -38.053	1.00	0.00	0
	50	ATOM	8892	OH2 WAT		29.670	72.514 34.334	1.00	0.00	0
		ATOM	8893	OH2 WAT		37.551	61.588 -32.581	1.00	0.00	0
		ATOM	8894	OH2 WAT	W 712	57.368	49.094 21.323	1.00	0.00	0
		ATOM	8895	OH2 WAT		42.954	59.615 -31.428	1.00	0.00	0
		ATOM	8896	OH2 WAT		32.002	34.493 -3.286	1.00	0.00	0
	55	ATOM	8897	OH2 WAT		37.059	59.240 -33.582	1.00	0.00	0
		ATOM	8898	OH2 WAT	W 716	61.585	59.248 14.620	1.00	0.00	0
		ATOM	8899	OH2 WAT		40.232	56.409 -18.976	1.00	0.00	0
		ATOM	8900	OH2 WAT		47.491	87.686 -44.193	1.00	0.00	0
		ATOM	8901	OH2 WAT		61.744	76.681 -10.413	1.00	0.00	0
	60	ATOM	8902	OH2 WAT		79.481	50.956 -11.440	1.00	0.00	0
		ATOM	8903	OH2 WAT	W 721	37.564	51.745 -18.481	1.00	0.00	0

		ATOM	8904	OH2 WAT	W 722	25.700	52.288 13.042	1.00	0.00	0
		MOTA	8905	OH2 WAT	W 723	69.556	64.080 -28.582	1.00	0.00	0
		ATOM	8906	OH2 WAT	W 724	72.922	66.794 -10.027	1.00	0.00	0
		ATOM	8907	OH2 WAT	W 725	42.702	56.558 2.475	1.00	0.00	0
	5	ATOM	8908	OH2 WAT		56.024	65.323 -36.107	1.00	0.00	0
	•	ATOM	8909	OH2 WAT		17.862	66.380 28.012	1.00	0.00	0
		ATOM	8910	OH2 WAT		11.723	63.777 -16.969	1.00	0.00	0
		ATOM	8911	OH2 WAT		35.297	86.417 -17.891	1.00	0.00	Ō
			8912	OH2 WAT		9.747	60.412 -20.401	1.00	0.00	Ō
	10	MOTA				11.666	48.540 -2.453	1.00	0.00	Ő
	10	ATOM	8913	OH2 WAT					0.00	0
		MOTA	8914	OH2 WAT		40.620		1.00		
		MOTA	8915	OH2 WAT		39.781	53.162 36.395	1.00	0.00	0
		ATOM	8916	OH2 WAT		49.828	47.378 28.831	1.00	0.00	0
	4-	ATOM	8917	OH2 WAT		24.121	34.445 15.342	1.00	0.00	0
	15	MOTA	8918	OH2 WAT		59.484	51.068 24.851	1.00	0.00	0
		MOTA	8919	OH2 WAT		38.048	83.338 -1.088	1.00	0.00	0
		MOTA	8920	OH2 WAT	W 738	13.039	51.659 -12.221	1.00	0.00	0
		MOTA	8921	OH2 WAT	W 739	48.491	50.816 35.090	1.00	0.00	0
		MOTA	8922	OH2 WAT	W 740	48.024	41.657 -5.539	1.00	0.00	0
	20	ATOM	8923	OH2 WAT	W 741	22.233	40.924 -11.345	1.00	0.00	0
		ATOM	8924	OH2 WAT	W 742	16.130	36.463 16.265	1.00	0.00	0
112		ATOM	8925	OH2 WAT	W 743	22.459	68.166 20.245	1.00	0.00	0
. F		MOTA	8926	OH2 WAT	W 744	72.044	47.327 -17.973	1.00	0.00	0
* Aud		ATOM	8927	OH2 WAT	W 745	40.850	85.379 -11.971	1.00	0.00	0
	25	ATOM	8928	OH2 WAT		56.754	46.779 15.696	1.00	0.00	0
		ATOM	8929	OH2 WAT		51.912	64.114 24.561	1.00	0.00	0
		ATOM	8930	OH2 WAT		56.583	58.561 1.343	1.00	0.00	0
1000		ATOM	8931	OH2 WAT		57.375	58.590 5.505	1.00	0.00	0
		ATOM	8932	OH2 WAT		75.112	64.404 -16.409	1.00	0.00	0
gang.	30	MOTA	8933	OH2 WAT		14.677	70.800 -23.130	1.00	0.00	0
171	50	ATOM	8934	OH2 WAT		12.928	52.332 -15.040	1.00	0.00	Ō
			8935	OH2 WAT		12.990	62.106 -25.014	1.00	0.00	Ō
81 3825		ATOM	8936	OH2 WAT		23.320	87.353 -32.623	1.00	0.00	Ö
1620		ATOM	8937	OH2 WAT		66.467	81.834 -14.275	1.00	0.00	Ö
Hing Hing	35	ATOM					61.563 -28.821	1.00	0.00	0
	55	ATOM	8938		W 756	47.246 52.548	71.145 5.916	1.00	0.00	0
		ATOM	8939	OH2 WAT			56.024 -33.206	1.00	0.00	0
4425		ATOM	8940	OH2 WAT		40.996		1.00	0.00	Ö
		ATOM	8941	OH2 WAT		39.620			0.00	0
int.	40	ATOM	8942	OH2 WAT		44.780	55.346 36.103	1.00	0.00	0
	40	MOTA	8943	OH2 WAT		13.957	62.533 14.560	1.00		
		MOTA	8944	OH2 WAT		39.951	39.546 -0.340	1.00	0.00	0
		MOTA	8945	OH2 WAT		32.665	69.632 22.105	1.00	0.00	0
		MOTA	8946	OH2 WAT		42.544	43.608 -11.932	1.00	0.00	0
	45	MOTA	8947	OH2 WAT		26.986	41.823 -27.491	1.00	0.00	0
	45	MOTA	8948	OH2 WAT		19.699	41.810 -5.043	1.00	0.00	0
		MOTA	8949	OH2 WAT		13.702	60.846 7.536	1.00	0.00	0
		MOTA	8950	OH2 WAT		46.607	45.815 11.519	1.00	0.00	0
		MOTA	8951	OH2 WAT		43.014	68.693 -30.021	1.00	0.00	0
	50	MOTA	8952	OH2 WAT		24.369	54.092 -8.366	1.00	0.00	0
	50	MOTA	8953	OH2 WAT		47.715	70.197 -16.593	1.00	0.00	0
		ATOM	8954	OH2 WAT		58.809	93.869 -27.437	1.00	0.00	0
		MOTA	8955	OH2 WAT		31.147	79.134 -42.936	1.00	0.00	0
		MOTA	8956	OH2 WAT	W 774	22.049	42.744 - 13.274	1.00	0.00	0
		MOTA	8957	OH2 WAT	W 775	52.881	92.375 -23.179	1.00	0.00	0
	55	MOTA	8958	OH2 WAT	W 776	60.191	51.118 20.150	1.00	0.00	0
		MOTA	8959	OH2 WAT	W 777	60.990	56.042 1.994	1.00	0.00	0
		MOTA	8960	OH2 WAT	W 778	19.496	58.666 -36.837	1.00	0.00	0
		MOTA	8961	OH2 WAT		30.066	50.044 12.371	1.00	0.00	0
		MOTA	8962	OH2 WAT		26.332	66.843 19.829	1.00	0.00	0
	60	ATOM	8963	OH2 WAT		12.053	41.630 19.820	1.00	0.00	0
	~ ~	MOTA	8964	OH2 WAT		69.448	77.276 -34.137	1.00	0.00	0
		111 013	0001	J112 ***********************************	, 02	33.110				-

		MOTA	8965	OH2 WAT W	783	16.598	43.024 -2.692	1.00	0.00	0
		ATOM	8966	OH2 WAT W	784	35.778	59.983 -37.738	1.00	0.00	0
		ATOM	8967	OH2 WAT W	785	33.877	66.335 -42.421	1.00	0.00	0
		ATOM	8968	OH2 WAT W	786	57.155	36.347 -14.319	1.00	0.00	0
	5	ATOM	8969	OH2 WAT W	787	37.130	37.634 2.914	1.00	0.00	0
		MOTA	8970	OH2 WAT W	788	51.229	66.915 8.358	1.00	0.00	0
		ATOM	8971	OH2 WAT W	789	10.809	51.683 21.412	1.00	0.00	0
		ATOM	8972	OH2 WAT W	790	30.272	87.456 -15.075	1.00	0.00	0
		MOTA	8973	OH2 WAT W	791	42.000	55.040 -17.314	1.00	0.00	0
	10	MOTA	8974	OH2 WAT W	792	48.599	76.287 8.352	1.00	0.00	0
		ATOM	8975	OH2 WAT W	793	29.556	75.889 10.811	1.00	0.00	0
		MOTA	8976	OH2 WAT W	794	42.983	98.265 -37.032	1.00	0.00	0
		MOTA	8977	OH2 WAT W	795	23.457	66.161 9.814	1.00	0.00	0
		MOTA	8978	OH2 WAT W	796	64.821	79.071 -1.641	1.00	0.00	0
	15	MOTA	8979	OH2 WAT W	797	43.476	40.517 -22.898	1.00	0.00	0
		MOTA	8980	OH2 WAT W	798	59.380	49.094 2.175	1.00	0.00	0
		MOTA	8981	OH2 WAT W	799	68.965	41.765 -17.204	1.00	0.00	0
		ATOM	8982	OH2 WAT W	800	24.786	71.958 -39.859	1.00	0.00	0
		ATOM	8983	OH2 WAT W	801	23.791	48.577 -24.248	1.00	0.00	0
	20	MOTA	8984	OH2 WAT W	802	46.992	68.200 -24.723	1.00	0.00	0
		MOTA	8985	OH2 WAT W	803	53.469	53.184 -29.954	1.00	0.00	0
		MOTA	8986	OH2 WAT W	804	24.847	34.448 35.644	1.00	0.00	0
15		MOTA	8987	OH2 WAT W	805	13.398	52.665 25.851	1.00	0.00	0
		MOTA	8988	OH2 WAT W	806	51.565	44.643 2.883	1.00	0.00	0
1 69%	25	MOTA	8989	OH2 WAT W	807	21.403	55.666 39.696		0.00	0
1,3 8		MOTA	8990	OH2 WAT W		64.124	70.731 -5.187	1.00	0.00	0
		MOTA	8991	OH2 WAT W		46.964	89.865 -23.190		0.00	0
Man Man		MOTA	8992	OH2 WAT W		8.004	53.162 -7.590		0.00	0
M.	20	MOTA	8993	OH2 WAT W		22.178	80.917 -42.185		0.00	0
will this	30	MOTA	8994		812	63.791	65.738 -30.505		0.00	0
₹8° °		MOTA	8995	OH2 WAT W		18.344	48.705 -19.772		0.00	0
ä (ATOM	8996	OH2 WAT W		59.393	76.939 -4.266		0.00	0
		ATOM	8997		815	21.046	84.137 -12.343		0.00	0
Com Com	0.5	MOTA	8998	OH2 WAT W		55.637	67.379 13.249		0.00	0
141	35	MOTA	8999	OH2 WAT W		19.129	52.421 -31.535		0.00	0
		ATOM	9000	OH2 WAT W		67.310	85.719 -35.909		0.00	0
		MOTA	9001	OH2 WAT W		29.648	75.153 22.302 84.320 0.358		0.00	0
		ATOM	9002	OH2 WAT W		32.734	84.320 0.358 65.480 -28.642		0.00	Ö
ğ.::	40	ATOM	9003	OH2 WAT W		45.616 12.769	62.208 -2.408		0.00	Ö
	40	ATOM	9004	OH2 WAT W		25.815	63.461 13.819		0.00	Ö
		MOTA	9005		824	28.537	35.024 32.178		0.00	Ö
		MOTA	9006 9007	OH2 WAT W		36.003	68.685 23.484		0.00	Ö
		ATOM	9007	OH2 WAT W		31.941	33.882 17.234		0.00	0
	45	ATOM	9008	OH2 WAT W		41.632	84.306 -2.386		0.00	Ō
	40	MOTA MOTA	9010	OH2 WAT W			100.327 -31.898		0.00	0
		ATOM	9010	OH2 WAT W		28.679	63.614 10.610		0.00	Ō
		ATOM	9012	OH2 WAT W		54.710	82.573 -44.566		0.00	0
		ATOM	9013	OH2 WAT W		69.910	53.740 -10.499		0.00	0
	50	ATOM	9014	OH2 WAT W		36.929	79.493 -2.515		0.00	0
	50	ATOM	9015	OH2 WAT W		12.241	64.675 -12.654		0.00	0
		ATOM	9016	OH2 WAT W		39.116	50.345 36.275		0.00	0
		ATOM	9017	OH2 WAT W		27.945	44.812 38.120		0.00	0
		ATOM	9018	OH2 WAT W		27.807	38.775 -22.548		0.00	0
	55	MOTA	9019	OH2 WAT W		72.318	95.802 -31.265		0.00	0
	•	MOTA	9020	OH2 WAT W		76.337	47.098 -11.656	1.00	0.00	0
		ATOM	9021	OH2 WAT W		21.476	49.083 -38.816		0.00	0
		MOTA	9022	OH2 WAT W		23.077	75.197 -30.035		0.00	0
		MOTA	9023	OH2 WAT W		21.007	31.697 31.656		0.00	0
	60	ATOM	9024	OH2 WAT W		29.486	42.250 -28.768		0.00	0
		ATOM	9025	OH2 WAT W		42.674	47.359 -27.307		0.00	0
						· -				

								077				
		ATOM	9026	OH2	WAT W	844	55.875	51.903	27.280	1.00	0.00	0
		ATOM	9027		WAT W		31.320	58.788 -		1.00	0.00	0
		ATOM	9028		WAT W		18.413	43.157	27.335	1.00	0.00	0
			9029		WAT W		62.202	81.779 -		1.00	0.00	0
	5	ATOM	9030		WAT W		7.598	54.603	17.501	1.00	0.00	0
	9	MOTA					18.093	41.894	25.173	1.00	0.00	0
		MOTA	9031		WAT W			82.732	5.773	1.00	0.00	0
		MOTA	9032		W TAW		27.410			1.00	0.00	0
		MOTA	9033		W TAW		38.754	53.282	1.951			0
	10	MOTA	9034		W TAW		11.935	67.433	2.649	1.00	0.00	
	10	MOTA	9035		W TAW		4.365	56.736	-6.558	1.00	0.00	0
		MOTA	9036		W TAW		22.251	77.051	8.631	1.00	0.00	0
		MOTA	9037	OH2	WAT W	855	25.871	88.232 -		1.00	0.00	0
		MOTA	9038	OH2	W TAW	856	10.526	62.685 -		1.00	0.00	0
		ATOM	9039	OH2	WAT W	857	44.547	72.288 -	-44.586	1.00	0.00	0
	15	ATOM	9040	OH2	WAT W	858	37.290	40.031	26.372	1.00	0.00	0
		MOTA	9041	OH2	WAT W	859	23.413	89.021 -	-37.997	1.00	0.00	0
		ATOM	9042	OH2	WAT W	860	70.125	62.786 -	-24.288	1.00	0.00	0
		MOTA	9043		WAT W		23.006	64.510	18.349	1.00	0.00	0
		ATOM	9044		WAT W		67.072	38.620	-9.608	1.00	0.00	0
	20	ATOM	9045		WAT W		65.525	87.848	-41.036	1.00	0.00	0
		ATOM	9046		W TAW		13.974	43.632	28.969	1.00	0.00	0
		ATOM	9047		W TAW		13.517	48.343	1.249	1.00	0.00	0
, 1425 , 1425		ATOM	9048		WAT W		55.479	69.588		1.00	0.00	0
			9049		WAT W		26.978	47.633		1.00	0.00	0
	25	ATOM ATOM	9050		WAT W		69.691	82.317		1.00	0.00	Ō
1979.	25						12.132	62.283	22.698	1.00	0.00	Ö
		MOTA	9051		W TAW			29.810	5.462	1.00	0.00	0
949 B		ATOM	9052		W TAW		30.805	36.440	22.388	1.00	0.00	0
i i		MOTA	9053		W TAW		19.362				0.00	0
agu,	20	MOTA	9054		WAT W		27.607	86.561		1.00		0
	30	MOTA	9055		WAT W		66.284	50.407	0.526	1.00	0.00	
		MOTA	9056		WAT W		28.556	64.834	14.855	1.00	0.00	0
21		ATOM	9057		WAT W		52.010	60.249	28.130	1.00	0.00	0
		ATOM	9058		WAT W		52.467	72.620	18.424	1.00	0.00	0
		MOTA	9059		WAT W		47.028	75.056		1.00	0.00	0
15 8	35	MOTA	9060		WAT W		65.388	81.563	-4.616	1.00	0.00	0
3 -		MOTA	9061	OH2	WAT W		48.555	72.298		1.00	0.00	0
j.l		MOTA	9062	OH2	WAT W	880	59.805	68.884	-38.756	1.00	0.00	0
i tani		MOTA	9063	OH2	WAT W	881	22.839	85.133		1.00	0.00	0
:		MOTA	9064	OH2	WAT W	882	25.891	76.368		1.00	0.00	0
\$	40	MOTA	9065	OH2	WAT W	883	20.306	74.098	-29.005	1.00	0.00	0
		MOTA	9066	OH2	WAT W	884	59.313	55.625	27.048	1.00	0.00	0
		MOTA	9067	OH2	WAT W	885	44.374	87.552	-15.607	1.00	0.00	0
		ATOM	9068	OH2	W TAW	886	63.968	77.026	-40.510	1.00	0.00	0
		ATOM	9069	OH2	WAT W	887	14.193	58.389	16.309	1.00	0.00	0
	45	ATOM	9070	OH2	WAT W	888	13.991	57.800	18.963	1.00	0.00	0
		ATOM	9071	OH2	WAT W	889	24.433	63.725	11.590	1.00	0.00	0
		ATOM	9072		WAT W		28.173	39.815	11.264	1.00	0.00	0
		ATOM	9073		WAT W		28.969	82.087	-35.700	1.00	0.00	0
		ATOM	9074		WAT W		12.334	55.892		1.00	0.00	0
	50	MOTA	9075		WAT W		81.492	67.210		1.00	0.00	0
	50	ATOM	9076		WAT W		58.943	58.063	0.989	1.00	0.00	0
		ATOM	9077		WAT W		49.240	68.478	6.745	1.00	0.00	0
		ATOM	9078		WAT W		68.453	79.691		1.00	0.00	0
			9079		WAT W		26.063	32.733	28.695	1.00	0.00	Ö
	55	MOTA					32.825	69.554	24.592	1.00	0.00	Ö
	55	MOTA	9080		WAT W			102.786		1.00	0.00	0
		ATOM	9081		WAT W			73.979		1.00	0.00	0
		ATOM	9082		WAT W		71.706		-8.873	1.00	0.00	0
		MOTA	9083		WAT W		79.308	50.637			0.00	0
	(0	MOTA	9084		WAT W		37.119	83.812	-3.965	1.00		0
	60	ATOM	9085		WAT W		59.380	52.104	2.479	1.00	0.00	
		ATOM	9086	OH2	WAT W	904	19.831	84.498	-18.520	1.00	0.00	0

		ATOM	9087	OH2	TAW	ΝĪ	905	43.800	79.352	-21.525	1.00	0.00	0
		MOTA	9088	OH2	WAT V	Ñ	906	57.934	52.938	26.177	1.00	0.00	0
		MOTA	9089	OH2	WAT V	N	907	16.972		-36.393	1.00	0.00	0
		MOTA	9090	OH2	WAT W	Ñ	908	46.716	42.927	9.598	1.00	0.00	0
	5	MOTA	9091	OH2	WAT	N	909	27.293	72.028	33.949	1.00	0.00	0
		MOTA	9092	OH2	WAT	N	910	7.399		-10.010	1.00	0.00	0
		ATOM	9093		WAT		911	24.567	52.467	43.509	1.00	0.00	0
		ATOM	9094		WAT		912	49.872		-30.505	1.00	0.00	0
		ATOM	9095		WAT			42.648		-29.498	1.00	0.00	0
	10	ATOM	9096		WAT		914	27.560		-12.451	1.00	0.00	0
		MOTA	9097		WAT		915	56.665		-43.623	1.00	0.00	0
		MOTA	9098		WAT			13.988	44.952	26.828	1.00	$0.00 \\ 0.00$	0
		MOTA	9099		TAW			69.599		-36.023	1.00 1.00	0.00	Ö
	15	MOTA	9100		TAW		918	58.001	70.415	-25.084 -8.067	1.00	0.00	Ö
	15	MOTA	9101	OH2			919	64.750	39.915	-0.024	1.00	0.00	Ö
		ATOM	9102		WAT			46.080 37.037	37.401	24.945	1.00	0.00	Ō
		ATOM	9103		WAT			52.328	68.609	4.799	1.00	0.00	0
		ATOM	9104		WAT			17.944	51.019	38.085	1.00	0.00	0
	20	MOTA MOTA	9105 9106		WAT		924	15.329		-13.725	1.00	0.00	0
	20	ATOM	9107		WAT		925	20.080		-12.345	1.00	0.00	0
		ATOM	9108	OH2				49.590	45.658	30.987	1.00	0.00	0
t Mar		ATOM	9109	OH2				46.966		-17.619	1.00	0.00	0
Tagi ING		ATOM	9110		WAT		928	70.530		-25.996	1.00	0.00	0
	25	ATOM	9111	OH2			929	58.528	52.925	4.642	1.00	0.00	0
131		ATOM	9112		WAT	W	930	35.511		-34.790	1.00	0.00	0
		ATOM	9113	OH2	WAT	M	931	41.566	82.880	-28.827	1.00	0.00	0
14		MOTA	9114		WAT			48.139	66.187	26.918	1.00	0.00	0
400g		MOTA	9115	OH2	TAW	W	933	27.688	67.687	11.673	1.00	0.00	0
	30	ATOM	9116				934	39.791		-21.883	1.00	0.00	0
		MOTA	9117				935	22.231	65.784	32.283	1.00	0.00	0
B)		ATOM	9118		WAT			58.785	48.756	18.929	1.00 1.00	0.00	0
		MOTA	9119		TAW			31.846	80.989	7.175 -24.797	1.00	0.00	Õ
	25	ATOM	9120		WAT		938	50.357	60.777	0.439	1.00	0.00	Ö
	35	ATOM	9121		$ extstyle{WAT}$			62.512		-35.094	1.00	0.00	Ö
		MOTA	9122 9123		WAT		941	23.146		-15.577	1.00	0.00	0
1,455 1,455 1,455		MOTA MOTA	9123		WAT			35.988		-29.930	1.00	0.00	0
i sani E sain		ATOM	9125		WAT		943	74.007		-11.042	1.00	0.00	0
gam.	40	ATOM	9126		WAT		944	41.099	81.809	-3.455	1.00	0.00	0
		ATOM	9127				945	13.012	62.985	12.102	1.00	0.00	0
		ATOM	9128	OH2	WAT	W	946	56.731	76.091	0.096	1.00	0.00	0
		ATOM	9129		WAT		947	74.305	52.098	1.514	1.00	0.00	0
		MOTA	9130		WAT			22.012		-34.863	1.00	0.00	0
	45	MOTA	9131		WAT			77.405		-15.062	1.00	0.00	0
		MOTA	9132		TAW			17.698	41.847	32.112	1.00	0.00	0
		MOTA	9133		TAW			10.249		-15.024	1.00	0.00	0
		MOTA	9134		TAW			45.901	79.927		1.00	0.00	0
	F0	MOTA	9135		TAW			14.666	46.936		1.00	0.00	0
	50	ATOM	9136		WAT			34.450	77.326		1.00	0.00	0
		MOTA	9137		TAW			47.528 18.746	40.258 39.516		1.00	0.00	0
		ATOM	9138		WAT			25.892		-38.859	1.00	0.00	Ō
		MOTA	9139		TAW !			10.667		-20.958	1.00	0.00	0
	55	MOTA MOTA	9140 9141		TAW !			8.868	56.882		1.00	0.00	0
	55	ATOM	9141		WAT			78.132		-10.244	1.00	0.00	0
		MOTA	9143		WAT			23.897	82.874		1.00	0.00	0
		ATOM	9144		WAT			44.484	40.987		1.00	0.00	0
		ATOM	9145		WAT			35.423	62.467		1.00	0.00	0
	60	ATOM	9146		WAT			27.265		-31.712	1.00	0.00	0
		MOTA	9147		YAW ?			74.755	77.389	-20.721	1.00	0.00	0

		ATOM	9148	OH2	WAT	w 96	6	49.089	42.037	8.287	1.00	0.00	0
		ATOM	9149	OH2	WAT	w 96	7	44.887	92.912	-25.033	1.00	0.00	0
		ATOM	9150		WAT			52.465	49.136	25.639	1.00	0.00	0
		ATOM	9151		WAT			9.657		-12.165	1.00	0.00	0
	5	ATOM	9152		WAT			58.698	51.115	14.502	1.00	0.00	0
	•	ATOM	9153		WAT			51.871	50.475	27.678	1.00	0.00	0
		ATOM	9154		WAT			25.018		-25.145	1.00	0.00	0
		ATOM	9155		WAT			7.496	58.258	0.195	1.00	0.00	0
		ATOM	9156		WAT			11.522	58.486	19.993	1.00	0.00	0
	10	ATOM	9157		WAT			18.602		-37.788	1.00	0.00	0
	10		9158		WAT			46.005		-31.276	1.00	0.00	0
		MOTA			WAT			5.372	57.741	6.747	1.00	0.00	Ō
		ATOM	9159		WAT			13.334		-11.620	1.00	0.00	Ö
		MOTA	9160							-17.119	1.00	0.00	Ö
	15	MOTA	9161		WAT			47.210	65.681	12.431	1.00	0.00	0
	15	MOTA	9162		TAW			29.419			1.00	0.00	0
		MOTA	9163		WAT			28.576	69.917	12.812 16.903	1.00	0.00	Ö
		MOTA	9164		WAT			33.300	68.977	9.398	1.00	0.00	0
		MOTA	9165		WAT			26.458	67.157		1.00	0.00	Ö
	20	ATOM	9166		WAT			32.012	71.165	13.558		0.00	0
	20	MOTA	9167		WAT			25.611	66.324	17.380	1.00		C
31222		MOTA	9168	C1	NAG		1	58.306	45.038	12.884	1.00	0.00	C
State of the last		MOTA	9169	C2	NAG		1	59.529	44.683	13.738	1.00	0.00	И
		MOTA	9170	N2	NAG		1	60.626	45.582	13.432	1.00	0.00	
FA FA	0=	MOTA	9171	C7	NAG	-	1	60.821	46.670	14.171	1.00	0.00	С
200	25	MOTA	9172	07	NAG	С	1	60.320	47.760	13.899	1.00	0.00	0
digram		MOTA	9173	C8	NAG		1	61.708	46.528	15.397	1.00	0.00	C
		MOTA	9174	С3	NAG		1	59.957	43.237	13.482	1.00	0.00	C
		MOTA	9175	03	NAG		1	61.007	42.887	14.371	1.00	0.00	0
M.	•	MOTA	9176	C4	NAG		1	58.775	42.293	13.686	1.00	0.00	C
ř,ii	30	ATOM	9177	04	NAG		1	59.153	40.971	13.331	1.00	0.00	0
		MOTA	9178	C5	NAG		1	57.593	42.746	12.824	1.00	0.00	C
20 ·		MOTA	9179	05	NAG		1	57.240	44.112	13.139	1.00	0.00	0
		MOTA	9180	C6	NAG		1	56.355	41.902	13.057	1.00	0.00	С
ij	0.5	MOTA	9181	06	NAG		1	56.115	41.030	11.963	1.00	0.00	0
	35	MOTA	9182	C1	SWA		1	31.083	66.852	6.104	1.00	0.00	С
į, ž		MOTA	9183	01	SWA		1	31.616	67.993	5.412	1.00	0.00	0
14207 E 6000		MOTA	9184	C3	SWA		1	31.290	67.004	7.648	1.00	0.00	C
4 hath 3 h		MOTA	9185	N4	SWA		1	30.728	65.809	8.307	1.00	0.00	N
3:1261	40	MOTA	9186	C5	SWA		1	29.253	65.674	8.135	1.00	0.00	C
	40	MOTA	9187	C6	SWA		1	28.949	65.502	6.622	1.00	0.00	C C
		MOTA	9188	C2	SWA		1	29.552	66.691	5.818	1.00	0.00	C
		MOTA	9189	C9	SWA		1	31.281	65.713	9.651	1.00	0.00	
		MOTA	9190	C8	SWA		1	32.647	66.446	9.597	1.00	0.00	C
		MOTA	9191		SWA		1	33.714	65.532	9.832	1.00	0.00	0
	45	ATOM	9192	C7	SWA		1	32.754	67.081	8.161	1.00	0.00	С
		ATOM	9193		SWA		1	33.638	66.311	7.317	1.00	0.00	0
		MOTA	9194	C1	MPD		1	14.801	61.371	10.217	1.00	0.00	С
		ATOM	9195	C2	MPD		1	16.246	61.411	10.589	1.00	0.00	С
	_ ^	ATOM	9196	02	MPD	M	1	16.899	60.292	9.952	1.00	0.00	0
	50	MOTA	9197	CM	MPD	M	1	16.897	62.682	10.105	1.00	0.00	С
		MOTA	9198	C3	MPD		1	16.386	61.237	12.121	1.00	0.00	С
		ATOM	9199	C4	MPD		1	17.772	60.909	12.678	1.00	0.00	С
		MOTA	9200	04	MPD	M	1	17.676	59.909	13.666	1.00	0.00	0
		MOTA	9201	C5	MPD		1	18.376	62.135	13.353	1.00	0.00	С
	55	ATOM	9202	ZN	ZN1	Z	1	34.563	64.336	8.063	1.00	0.00	Zn

Table 9 Data Collection Statistics

	MAD (Se-	Met) of dGM	1II		Native dGM	II
	inflection	peak	Remote	High	DMNJ	swainsonine
				resolution	complex	complex
Wavelength (Å)	0.9790	0.9786	0.9770	1.0	1.0	1.54189
Effective						
resolution (Å)	2.14	2.14	2.14	1.76	1.69	1.87
Maximum						
resolution (Å)	1.70	1.70	1.70	1.4	1.5	1.87
Highest resolution						
shell	2.31-2.14	2.31-2.14	2.31-2.14	1.90-1.76	1.75-1.69	1.91-1.87
Temperature (K)	100	100	100	100	100	100
# unique reflections						
overall	59212	59092	59218	104565	114653	87386
shell	11288	11297	11296	19882	10722	5601
completeness (%)						
overall	99.7	99.8	99.8	97.0	97.8	99.7
shell	96.2	96.3	96.2	94.9	92.6	96.9
R _{merge} *						
overall	0.050	0.054	0.057	0.056	0.086	0.078
shell	0.086	0.093	0.105	0.127	0.186	0.452

^{*} $R_{\text{merge}} = \sum_{h} \sum_{i} |I_i - \langle I \rangle| / \sum_{i} I_i$, where $\langle I \rangle$ is the average of equivalent reflections and the sum is extended over all observations, i, for all unique reflections, h.

Table 10. Refinement Statistics

	dGMII	dGMII-swainsonine	dGMII-DMNJ
		complex	complex
Resolution (Å)	500-1.40	500-1.87	500-1.5
R _{cryst} (%)	19.30	18.10	19.69
R _{free} (%)	21.05	20.90	21.56
Atoms (#)	9194	9202	9199
Residues (#)	1014	1014	1014
Water molecules (#)	981	985	983
r.m.s.d .Bonds (Å)	0.005	0.005	0.006
r.m.s.d. Angles (°)	1.32	1.31	1.33
r.m.s.d. Improper dihedrals (°)	0.81	0.78	0.80
Average B-factors (Å ²)	15.8	19.4	15.8
Crossvalidated			
σ _A coordinate error (Å)	0.10	0.14	0.11

 $R_{cryst}=\Sigma||F_o|-|F_c||/\Sigma|F_o|$, where F_o and F_c are the observed and calculated structure factors, respectively. For R_{free} , the sum is extended over a subset of reflections (~10%) excluded from all stages of refinement.

20

REFERENCES

Alberts, I.L., Nadassy, K., and Wodak, S.J. (1998). Analysis of zinc binding sites in protein crystal structures. Protein Sci. 7, 1700-1716.

5

Altmann F, Marz L. (1995). Processing of asparagine-linked oligosaccharides in insect cells: evidence for alpha-mannosidase II. Glycoconj. J. 12, 150-155.

Boraston, A., Chiu, P., Warren, R.A.J., and Kilburn, D.G. (2000). Specificity and affinity of substrate binding by a family 17 carbohydrate-binding module from Clostridium cellulovorans Cellulase 5A. Biochemistry 39, 11129-11136.

Braun, C., Brayer, G.D., and Withers, S.G. (1995). Mechanism-based inhibition of yeast alpha-glucosidase and human pancreatic alpha-amylase by a new class of inhibitors. 2-Deoxy-2,2-difluoro-alpha-glycosidases. J. Biol. Chem. 270, 26778-26781.

Brünger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.S., Kuszewski J., Nilges M., Pannu N.S., Read R.J., Rice L.M., Simonson T., Warren G.L. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol. Crystallogr. 54, 905-921.

Cowtan, K. (1994). 'dm': an automated procedure for phase improvement by density modification. CCP4 ESF-EACBM Newslett. Protein Crystallogr. 31, 34-38.

Coutinho, P.M. and Henrissat, B. (1999). Carbohydrate-Active Enzymes server at URL: http://afmb.cnrs-mrs.fr/~pedro/CAZY/db.html

Davies, G., and Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure 3, 853-859.

20

- Dennis, J.W., and Laferte, S. (1985). Recognition of asparagine-linked oligosaccharides on murine tumor cells by natural killer cells. Cancer Res. 45, 6034-6040.
- Dennis, J.W., Granovsky, M., and Warren, C.E. (1999a) Protein glycosylation in development and disease. Bioessays 21, 412-421.
 - Dennis, J.W., Granovsky, M., and Warren, C.E. (1999b) Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21-34.
- Goss, P.E., Baker, M.A., Carver, J.P., and Dennis, J.W. (1995). Inhibitors of carbohydrate processing, A new class of anticancer agents. Clin. Cancer Res. 1, 935-944.
 - Goss, P.E., Reid, C.L., Bailey, D., and Dennis, J.W. (1997). Phase IB clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin. Cancer Res. 3, 1077-1086.
 - Harpaz, N. and Schachter, H. (1980). Control of Glycoprotein Synthesis. V. Processing of asparagine-linked oligosaccharides by Golgi alpha-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine:alpha-D-mannoside beta-2-N-acetylglucosaminyltransferase I. J. Biol. Chem. 255, 4894-4902.
 - Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem. J. 280, 309-316.
- Herscovics, A. (1999). Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim. Biophys. Acta 1473, 96-107.
 - Howard, S., He, S., and Withers, S.G. (1998). Identification of the active site nucleophile in Jack-bean alpha-mannosidase using 5-fluoro-beta-L-gulosyl fluoride. J. Biol. Chem. 273, 2067-2072.

Jones, TA, Zou, J.Y., Cowan, S.W., and Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110-119.

5

Kausal, G.P., Szumilo, T., Pastuszak, I., and Elbein, A.D. (1990). Purification to homogeneity and properties of mannosidase II from mung bean seedlings. Biochemistry 29, 2168-2176.

Kiyohara, T., Dennis, J.W., and Roder, J.C. (1987). Double restriction in NK cell recognition is linked to transmethylation and can be triggered by asparagine-linked oligosaccharides on tumor cells. Cell. Immunol. 106, 223-233.

Kornfeld R., and Kornfeld S. (1985). Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631-664.

15

30

Kraulis, P. (1991). Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystalogr. 24, 946-950.

Merritt, E.A., and Bacon, D.J. (1997). Raster3D: photorealistic molecular graphics. Methods 20 Enzymol. 277, 505-524.

Moremen K.W., Trimble R.B., Herscovics A. (1994). Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology. 4, 113-125.

Moremen, K.W. and Touster O. (1985). Biosynthesis and modification of Golgi mannosidase II in HeLa and 3T3 cells. J. Biol. Chem. 260, 6654-6662.

Moremen, K.W. and Touster O. (1986). Topology of mannosidase II in rat liver Golgi membranes and release of the catalytic domain by selective proteolysis. J. Biol. Chem. 261, 10945-10951.

Nicholls A., Sharp K.A., Honig B. (1991). Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11 281-296.

- Rabouille, C., Kuntz, D.A., Lockyer, A., Watson, R., Signorelli, T., Rose, D.R., van den Heuvel, M., and Roberts, D.B. (1999) The Drosophila GMII gene encodes a Golgi amannosidase II. J. Cell Sci. 112, 3319-3330.
- Ren, J., Castellino, F.J., and Bretthauer, R.K. (1997). Purification and properties of mannosidase II from Golgi-like membranes of baculovirus-infected *Spodoptera frugiperda* (IPLB-SF-21AE) cells. Biochem. J. 324, 951-956.
 - Schmidt, A., Schlacher, A., Steiner, W., Schwab, H., and Kratky, C. (1998). Structure of xylanase from *Penicillium simplicissimum*. Protein Sci. 7(10), 2081-8
 - Snaith, S.M. (1975) Characterization of jack-bean alpha-D-mannosidase as a zinc metalloenzyme. Biochem. J. 147, 83-90.
- Terwilliger T.C., Kim, S.H., and Eisenberg J. (1987). Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallogr. A, 43, 1-5. Vallée, F., Lipari, F., Yip, P., Sleno, B., Herscovics, A., and Howell, P.L. (2000). Crystal structure of a class I □1,2-mannosidase involved in *N*-glycan processing and endoplasmatic reticulum quality control. EMBO J. 19, 581-588.
- Wallace A.C., Laskowski R.A., Thornton J.M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127-134.
 - White, A., and Rose, D.R. (1997). Mechanism of catalysis by retaining b-glycosyl hydrolases. Curr. Opin. Struct. Biol. 7, 645-651.