

Conceptos de Almacenes de Datos

Tema 2

Indice

- Arquitectura de un Data Warehouse
- Herramientas de Microsoft SQL Server
- El Modelo Multidimensional
- Operaciones OLAP

OLAP vs OLTP

- Sistemas OLTP (sistemas de bases de datos tradicionales)
 - Datos detallados
 - No incluya datos históricos
 - Altamente normalizada
 - Bajo rendimiento en consultas complejas
 - Basados en transacciones (operaciones del día a día)
- Sistemas OLAP (almacenes de datos)
 - Centrados en consultas analíticas
 - Gran rendimiento en consultas complejas
 - Respuesta a preguntas de negocio

consulta típica OLAP: cantidad total de ventas por producto

consulta típica OLTP: los pedidos pendientes para el cliente c1

Indice

- Arquitectura de un Data Warehouse
 - Esquema de una arquitectura de DW
 - Fuentes de datos: procesos y herramientas
 - El almacén de datos (DW)
 - Metadatos
 - Servidor del almacén de datos
 - Herramientas de consultas
 - Aplicaciones de DW en el mercado
- Herramientas de Microsoft SQL Server
- El Modelo Multidimensional
- Operaciones OLAP

- Arquitectura de tres capas
 - Servidor del repositorio o base de datos del almacén de datos
 - Casi siempre un SGBD Relacional
 - Servidores OLAP
 - Relational OLAP (ROLAP)
 - Extiende SGBD relacionales para permitir operaciones MD
 - Multidimensional OLAP (MOLAP)

Directamente implementa el modelo MD en vectores

Arquitectura de tres capas (II)

- Clientes → Herramientas
 - Informes y consultas
 - OLAP (On-Line Analytical Processing)
 - Data Mining

- ¿ Por qué Data Warehouse separado ?
 - Rendimiento (Performance)
 - BD operacionales enfocadas y optimizadas a transacciones
 - Consultas OLAP complejas → Ralentización del servidor
 - Funcionalidad
 - Datos no existentes → históricos
 - Datos de distintas fuentes
 - Enfocados a consultas complejas (negocio)

Fuentes de datos: procesos y herramientas

Fuentes de datos

- Fuentes de datos operacionales de la empresa
- Bases de datos externas (públicas o privadas)
- Ficheros planos
- Datos en formato tradicional
- Internet → Cantidad ingente de datos

- Procesos para alimentar de datos el almacén (ETL)
 - Extracción (Extraction)
 - Limpieza (Cleaning) y Transformación (Transformation)
 - Carga (Loading)
 - Refresco

- Procesos para alimentar de datos el almacén (ETL)
 - Extracción (Extraction)
 - Limpieza (Cleaning) y Transformación (Transformation)
 - Carga (Loading)
 - Refresco

- Extracción
 - Procesos que recogen los datos necesarios del almacén

- Limpieza y transformación
 - Fundamental que los datos del almacén sean correctos
 - Decisiones estratégicas
 - Muchas fuentes de datos → alta probabilidad de error y anomalías
 - Longitud de campos inconsistentes
 - Valores incoherentes
 - Universidad de Alicante
 - Univ. Alicante

Fuentes de datos: procesos y herramientas

Herramientas

- Data migration (Migración de datos)
 - Proceso de mover datos de un sistema a otro
 - Se necesitan funciones de preparación de datos para poder ser cargados en el destino
 - Permiten reglas de transformaciones simples
 - Ej. Reemplazar "género" por "sexo"

- Data Scrubbing (Limpieza de datos)
 - Proceso de corregir (o eliminar) registros inexactos en las fuentes de origen
 - Detectar "dirty data" (incorrectos, irrelevantes o incompletos)
 - Utilizan conocimiento específico del dominio
 - Ej. Direcciones postales
 - Asegurar precisión y consistencia con otros conjuntos de datos en el sistema
- Data Auditing tools (Auditoría de datos)
 - Proceso para evaluar la calidad y utilidad de los datos de entrada para el dominio objetivo

Esquema de una arquitectura de DW Fuentes de datos: procesos y herramientas

- Carga (Loading)
 - Una vez que los datos se extraen, limpian y transforman → CARGAR
 - Se puede necesitar más pre-proceso antes de carga
 - Ordenar datos
 - Revisar la integridad
 - Cantidad de datos a cargar
 - Calcular tiempos de carga

Esquema de una arquitectura de DW Fuentes de datos: procesos y herramientas

- Técnicas de carga y refresco
 - Carga total
 - Primera vez
 - Fuentes de datos -> DW
 - Carga incremental (refresco)
 - Sólo datos a partir de la última fecha de carga
 - Cada actualización (bolsa, ...)

El almacén de datos (DW)

El almacén de datos: primera aproximación

Definición según W. Inmon

 "Una colección de datos orientados por tema, integrados, variables en el tiempo y no volátiles que se emplea como apoyo a la toma de decisiones estratégicas"

- Datos orientados por tema
 - Los sistemas OLTP están optimizados para las transacciones
 - NORMALIZAR
 - Muchas transacciones con pocos datos
 - Ej. datos de equipo de futbol en varias tablas (Estadio, ciudad, ...)
 - ¿ Almacén de datos normalizado ? : PROBLEMAS
 - ¿ Directivo es capaz de tener visión de todas las tablas y relaciones ?
 - Pocas transacciones que incluyen muchos datos
 - Operación MAS cara en BD: unión de tablas

- Los datos están orientados por tema
 - En un solo lugar (tabla) datos referentes a un concepto que es el objeto de estudio
 - Ej. Tabla para clientes
 - Ventas
 - Compras
 - Vehículos, etc.

- Integrados
 - Están coherentemente agrupados a partir de datos de las fuentes de datos
 - Para ello: procesos de limpieza y transformación
 - Hay errores difíciles de detectar: iiiii Cuidado !!!!!
 - Datos correctamente integrados → Exhaustivo análisis de datos

- Integrados,.....
 - Problemas de incoherencia: resumir en 4 tipos
 - Descripción
 - J. A. Rodríguez
 - Jose A. Rodriguez
 - Codificación
 - Varón "V", Hembra "H"; en otra BD Varón "H", Hembra "M"
 - Unidades
 - Estatura: 1,70 mts; 170 cm
 - Formato
 - Número de teléfono como cadena de caracteres (965- 90 34 00)
 - Número de teléfono como entero (965903400)

No volátiles

- En sistemas OLTP se pueden modificar datos (ej. tuplas)
 - Unidades de pedido 200; si cliente modifica, se cambia.
- En DW nunca se modifican, se añaden nuevos datos para el análisis
 - Una venta de un producto con una fecha en una provincia (200 uds)
 - Una venta de un producto con otra fecha en una provincia (300 uds)

- Variables en el tiempo
 - No volatibilidad → Dimensión básica: El TIEMPO
 - Datos analizados en función del tiempo
 - Ej. Anterior del pedido
 - ¿ Por qué un cliente ha variado la cantidad de su pedido en una semana ?
 - Etc.

El almacén de datos (DW)

Data Marts

- Es como una vista del almacén de datos
- Se definen para satisfacer las necesidades de un departamento o sección dentro de una empresa

- Resumen: Data warehouse vs. Data Marts
 - Enterprise DW
 - Información sobre "temas" de toda organización
 - Requiere complejo modelado de negocio
 - Puede llevar AÑOS para construir e implementar
 - Data Mart
 - Departamental → sub-temas
 - Ej. Marketing data mart, Clientes, productos, ventas !!!!!
 - Más rápido agregar
 - OJO !!! Integración con DW puede ser compleja

Los metadatos

Los metadatos

- Son datos sobre datos
 - Qué dato se guarda (ej. Clientes, ventas)
 - Dónde se guarda (tabla clientes, ventas)
 - Campos de la tabla
 - Con qué datos de las fuentes se corresponden
 - Procesos de carga → ¿ Cuándo se actualizan ?
 - ¿ Cuándo fue la última actualización?
 - Patrón de dato válido (Ej. Apellido1 Apellido2, Nombre)

- Los metadatos ...
 - Son datos sobre datos ...
 - Reglas de transformación
 - ¿Cuándo se incorporan al almacén de datos?
 - Y muchos más...

- Tipos ...
 - Administrative metadata (Toda la información necesaria para el DW) ...
 - Información de los procesos ETL
 - Seguridad → autorización, control de acceso, etc.

Tipos...

- Business metadata
 - Información y términos de negocio
 - Políticas de posesión de datos
 - Políticas de permiso de datos por usuarios (seguridad)
- Operational metadata
 - Situación de datos: activos, archivados, eliminados ????
 - Información de monitorización
 - Estadísticas de uso de los DW
 - Informes de error

Servidor del almacén de datos

Esquema de una arquitectura de DW Servidor del almacén de datos

- El servidor es un SGBD que se encarga de
 - Gestionar el repositorio propio del almacén de datos
 - Coordinar los procesos ETL que alimentan el DW
 - Procesan las consultan lanzadas sobre el almacén y devuelven los datos

Generalmente son servidores relacionales

Servidores de consultas: OLAP

Servidores de consultas: OLAP

- El servidor de consultas
 - En la mayoría de las arquitecturas se utiliza un servidor distinto al del almacén de datos
 - Rendimiento y mantenimiento
 - La mayoría de herramientas funcionan con esta arquitectura
 - Dos tecnologías ampliamente utilizadas
 - ROLAP
 - MOLAP

Servidores de consultas: OLAP

Servidores ROLAP

- Utilizan tecnología Relacional (Relational OLAP)
- Utilizan extensiones del SQL estándar para soportar el acceso multidimensional a los datos
- Métodos de implementación adecuados para representar los datos multidimensionales en tecnología relacional
- Ventaja: Basado en un estándar (SQL)
- Algunos de los más extendidos
 - Oracle (Oracle 9i/10g/11g/12c)
 - IBM (DB2 y Business solutions)
 - Adquirió Informix Dynamic Server como servidor del Almacén de Datos
 - Adquirió Redbrick para gestionar procesos ETL
 - Microsoft SQL Server Analysis Server (modo tabular)

Servidores de consultas: OLAP

Servidores MOLAP

- Utilizan tecnología Multidimensional (Multidimensional OLAP)
- Los datos están almacenados directamente en matrices
- Operaciones de consulta están implementadas directamente sobre estas matrices
 - No están basados en SQL estándar
- Ventaja: Suelen ser más rápidos que los ROLAP
- Inconveniente: no basados en un estándar
- Algunos de los más famosos
 - Essabse (Arbor), Accumate (Kenan)
 - Microsoft SQL Server Analysis Server (modo multidimensional)

Herramientas de consulta

Representación

Esquema de una arquitectura de DW

Indice

- Arquitectura de un Data Warehouse
- Herramientas de Microsoft SQL Server
- El Modelo Multidimensional
- Operaciones OLAP

- SQL Server: Plataforma integrada para construir aplicaciones analíticas
- Componentes principales:
 - Analysis Services: Herramienta OLAP capacidades analíticas y de minería de datos
 - Permite definir, consultar, modificar y gestionar bases de datos OLAP
 - MDX (Multi-Dimensional eXpressions) lenguaje para recuperar datos
 - Acceso a datos OLAP mediante herramientas cliente (Excel u otros)
 - Proporciona algoritmos de minería de datos. DMX (Data Mining eXtensions) lenguaje para crear y consultar modelos de minería de datos
 - Integration Services: Servicios ETL
 - Reporting Services: Define, genera, almacena y gestiona informes

Herramientas de SQL Server

- SQL Server 2016:
 - SQL Server Data Tools, plataforma de desarrollo integrada con Microsoft Visual Studio
 - Soporta proyectos de Analysis Services, Reporting Services, e Integration Services
 - SQL Server Management Studio proporciona Gestión integrada de todos los componentes SQL Server

Indice

- Arquitectura de un Data Warehouse
- Herramientas de Microsoft SQL Server
- El Modelo Multidimensional
- Operaciones OLAP

Modelo Multidimensional

Vistas de datos en un espacio n-dimensional: Cubo de datos

Hecho: Ventas

Modelo Multidimensional

Tablas de hechos y dimensiones

Modelo Multidimensional

- Granularidad. Nivel de detalle al que se representan las medidas para cada dimensión del cubo.
 - Por ejemplo: Cifras de Ventas agregadas por Tipo, mes y provincia.
- Las instancias de una dimensión se denominan Miembros.
 - Por ejemplo: Comida, Bebida son miembros de Producto en la granularidad Tipo
- Un cubo contiene varias medidas. P.e. Cantidad indica la cantidad de ventas total.
- Un cubo puede ser disperso (lo normal) o denso.
 - P.e. No todos los clientes han pedido productos de todos los tipos en todos los meses
- Jerarquías. Permite ver los datos en distintas granularidades
 - Define una sucesión de relaciones que van desde los detallados de nivel inferior, a los de nivel más alto
 - El nivel inferior se llama hijo (child) y el nivel más alto se llama el padre
 - La estructura jerárquica de una dimensión se llama el esquema de la dimensión
 - Una instancia de la dimensión comprende todos los miembros de todos los niveles de la dimensión
 - Podemos querer cifras de ventas con una granularidad más fina (un día), o con una granularidad más gruesa (País)

 Dimensiones: Producto, Almacén, Tiempo. Caminos de jerarquía por los que agregar

Esquema de las dimensiones producto, almacen, y tiempo

Medidas (atributos del hecho)

- Atómicos
 - Ej. Cantidad vendida, precio, etc.
- Derivados
 - Utilizan una fórmula para calcularlos
 - Ej. Precio_total = precio * cantidad_vendida

Indice

- Arquitectura de un Data Warehouse
- Herramientas de Microsoft SQL Server
- El Modelo Multidimensional
- Operaciones OLAP

Sobre jerarquías (I)

 Jerarquías de las dimensiones Product, Time and Customer

Sobre jerarquías (II)

Miembros de una jerarquía Producto -> Categoría

Roll-up

 Agregar valores de medidas a lo largo de jerarquías de clasificación

grupo

familia_O

tipo

marca

Roll-up

ROLLUP(Sales, Customer -> Country, SUM(Quantity)

Custon	Lyon Paris	erlin	öln /- 33 12 /- 10	20/.	23 24	28/14 7/25/14 33/25
er)	Q1	21	10	18	35	35 14 23 17
Suart	Q2	27	14	11	30	30 12 20 18
Time (Quarter)	Q3	26	12	35	32	32 10 33
Ė	Q4	14	20	47	31	31
		Р	roduc	e S	eafoo	od
	Payarages Candinsants					

Beverages Condiments Product (Category)

Beverages Condiments Product (Category)

Original cube

Roll-up to the Country level ROLLUP(CubeName, (Dimension -> Level)*, AggFunction(Measure)*)

Roll-up extendido: las dimensiones no indicadas se hace un roll-up hacia "all"

¿Qué hace?

ROLLUP*(Sales, Customer -> Country, SUM(Quantity))

Drill-down

Desagregar valores de medidas a lo largo de jerarquías de

clasificación

Ventas			Producto.Grupo = "alimentación"				
			Con	nida	Bebida		
			Cong.	Fresca	Refresco	Alcohol	
Almacén.	Alicante	Albatera	100	200	300	400	
Comunidad=	Ancante	Elche	500	600	700	800	
"Comunidad	X 7-1	Burjasot	900	1000	1100	1200	
Valenciana"		Cullera	1300	1400	1500	1600	

grupo

tipo

Drill-down

DRILLDOWN(Sales, Time -> Month)

Original cube

Köln	8	6	9	5		
Berlin	70	8	71	8	5	
Lyon	4	7	8	6		
Jan	7	2	6	20	10	3
Feb	8	4	8	8	9	1
Dec	4	4	16	7	1	1
Dec	4	4	16	7		
Produce	Seafood					
Beverages	Condiments					
Product (Category)						

Drill-down to the Month level

DRILLDOWN(CubeName, (Dimension -> Level)*)

Slice-dice

- Definir restricciones sobre niveles de jerarquías
 - Ej. Analizar datos donde el año sea 1999, la ciudad "Alicante" y el tipo de Producto sea "Comida"

Ventas'			Producto.Grupo = "Alimentación"			
			Comida			
			Congelada	Fresca		
Comunidad =		Albatera	100	200		
"Comunidad Valenciana"	Elche	500	600			

SLICE(Sales, Customer, City = 'Paris')

Time (Quarter)

Slice-dice (cont.)

SLICE(CubeName, Dimension, Level = Value)

Seafood Condiments Beverages Paris Customer (City) Lyon 12 13 14 11 Berlin 33 28 35 Köln 25 24 23 Q2 Q3 Q4

Time (Quarter)

Q1	21	10	18		35	
Q2	27	14	11		30	
Q3	26	12	35	5	32	
Q4	14	20	47	7	31	
'	Produce Seafood					
Beverages Condiments						
Product (Category)						

Slice on City='Paris'

DICE(CubeName, condición_booleana)

Pivot

DICE(Sales, (Customer.City = 'Paris' OR Customer.City = 'Lyon') AND (Time.Quarter = 'Q1' OR Time.Quarter = 'Q2'))

Beverages Condiments

Product (Category)

Dice on City='Paris' or 'Lyon' and Quarter='Q1' or 'Q2'

PIVOT(CubeName, (Dimension -> Axis)*)

- Pivoting
 - Reorientar la vista multidimensional de los datos, es decir, cambiar la distribución de filas/columnas
 - Algunos autores consideran también el intercambio de medidas y hechos como pivoting (kimball, 1996) (Inmon,

- Drill-across
 - Dados dos cubos se construye un nuevo cubo con las medidas de ambos en cada celda
 - Consultar medidas de varios hechos en el mismo cubo
 - Ej. Que en la tabla MD analizáramos el ratio de ventas respecto de compras.
 - · 1000 / 400
 - OJO: será necesario tener nombres de cubos diferentes y medidas diferentes -> uso de RENAME

Operaciones OLAP: Drill-across y Rename

RENAME(CubeName, (SchemaElement -> NewName)*)

DRILLACROSS(CubeName1, CubeName2, [Condition])

RENAME(Sales, Sales -> Sales2012, Quantity -> Quantity2012) Sales2011-2012 <- DRILLACROSS(Sales2011, Sales2012)

Operaciones OLAP: AddMeasure, DropMeasure

 Es posible calcular nuevas medidas a partir de las existentes con ADDMEASURE

```
ADDMEASURE(CubeName, (NewMeasure = Expression)*)
```

- Estas medidas se agregarán a las existentes en el hecho
- Si queremos borrar alguna medida que no nos interese utilizaremos DROPMEASURE

DROPMEASURE(CubeName, Measure*)

Operaciones OLAP: AddMeasure, DropMeasure

 Podemos añadir el porcentaje de cambio en las ventas entre los años 2011 y 2012:

ADDMEASURE(Sales2011-2012, PercChange = (Quantity2011-Quantity2012)/Quantity2012)

Si queremos borrar las medidas anteriores:

DROPMEASURE(Sales2011-2012, Quantity2011, Quantity2012)

Percentage change

Operaciones OLAP: Funciones de agregación

- Las funciones de agregación en OLAP pueden ser:
 - Acumulativo: calcular el valor de la medida de una celda partir de otras celdas; algunos ejemplos son SUM, COUNT y AVG
 - Filtrado: Filtra los miembros de una dimensión que aparecen en el resultado; algunos ejemplos son MIN y MAX
 - Las funciones de filtrado no sólo calculan el valor agregado, sino también los miembros de la dimensión que pertenecen al resultado (e.g. el valor máximo y el elemento que proporciona ese máximo)
- Para agregar medidas de un cubo en la granularidad actual sin realizar un roll-up:

AggFunction(CubeName, Measure) [BY Dimension*]

Ejemplo: Total de ventas por trimestre y ciudad:

SUM(Sales, Quantity) BY Time, Customer

Operaciones OLAP: Funciones de agregación

- Agregación:
- Ejemplo "Cantidad **total** global": produce una sola celda cuyas coordenadas para las tres o n dimensiones son iguales a all SUM(Sales, Quantity)
- Agregación sin cambiar granularidad:
- Máximas de ventas por trimestre y ciudad

MAX(Sales, Quantity) BY Time, Customer

- produciendo un cubo en el que sólo las celdas que contienen el máximo por trimestre y ciudad tendrán valores, los demás serán null
- Los dos primeros máximos de ventas por producto y de ciudad

MAX(Sales, Quantity, 2) BY Time, Customer

Promedio de una ventana de tres meses para las ventas:

ADDMEASURE(Sales, MovAvg = AVG(Quantity) OVER Time 2 CELLS PRECEDING)

Suma de año hasta la fecha:

ADDMEASURE(Sales, YTDQuantity = SUM(Quantity) OVER Time ALL CELLS PRECEDING)

 La ventana contiene la celda actual y todas los anteriores (indicado por ALL CELLS PRECEDING)

Operaciones OLAP: Funciones de agregación

Beverages Condiments
Product (Category)

Maximum sales by quarter and city

Three-months moving average

Top two sales by quarter and city

Product (Category)

Year-to-date sum

Operaciones OLAP: Porcentajes e índices

- Para calcular porcentajes es necesario indicar el tipo de ordenación, utilizando la operación TOPPERCENT
- "Mostrar las ventas por ciudad y categoría ordenadas por trimestre hasta que se cubra el el 70% del total de ventas"

TOPPERCENT(Sales, Quantity,70) BY City, Category ORDER BY Quarter ASC

Operaciones OLAP: Porcentajes e índices

- Para calcular porcentajes es necesario indicar el tipo de ordenación, utilizando la operación TOPPERCENT
- "Mostrar las ventas por ciudad y categoría ordenadas por cantidad hasta que se cubra el el 70% del total de ventas"

TOPPERCENT(Sales, Quantity,70) BY City, Category ORDER BY Quantity DESC

Operaciones OLAP: Porcentajes e índices

- La operación RANK permite generar un índice o ranking tras especificar el orden de las celdas
- "Mostrar el ranking de trimestres (referidas a las ventas) por ciudad y categoría y ordenadas descendentemente por cantidad"

RANK(Sales, Time) BY City, Category ORDER BY Quantity DESC

Operaciones OLAP: Unión y Diferencia

- La operación **Union** fusiona dos cubos que tienen el mismo esquema, pero instancias inconexas.
- Ejemplo: Si SalesSpain es un cubo con el mismo esquema que el cubo original, pero que contiene sólo las ventas a clientes españoles, que pueden llevar a cabo:

UNION(Sales, SalesSpain)

- Difference elimina las celdas en un cubo que pertenecen a otro; los dos cubos deben tener el mismo esquema
- Ejemplo: Dados los cubos TopTwoSales y la original, calcular un cubo con todas las medidas de ventas excepto las dos primeras ventas por trimestre y ciudad

DIFFERENCE(Sales, TopTwoSales)

Resumen Operaciones OLAP

Operator	Purpose
Add measure	Adds a new measure to a cube computed from other measures or dimensions.
Aggregation opera-	Aggregates the cells of a cube, possibly after performing a grouping of cells.
tors	
Dice	Keeps the cells that satisfy a Boolean condition over dimension levels, attributes, and
	measures.
Difference	Removes the cells of a cube that are in another cube. Both cubes must have the same
	schema.
Drill-across	Merges two cubes that have the same schema and instances using a join condition.
Drill-down	Disaggregates measures along a dimension hierarchy to obtain data at a finer granular-
	ity. It is the opposite of the roll-up operation.
Drill-through	Shows data in the operational systems from which the cube was derived. This operation
	does not formally belong to the OLAP algebra since the result is not a cube.
Drop measure	Removes one or several measures from a cube.
Pivot	Rotates the axes of a cube to provide an alternative presentation of its data.
Recursive roll-up	Performs an iteration of roll-ups over a recursive hierarchy until the top level is reached.
Rename	Renames one or several schema elements of a cube.
Roll-up	Aggregates measures along a dimension hierarchy to obtain data at a coarser granular-
	ity. It is the opposite of the drill-down operation.
Roll-up*	Shorthand notation for a sequence of roll-up operations.
Slice	Removes a dimension by fixing a single value in a level of the dimension.
Sort	Orders the members of a dimension according to an expression.
Union	Combines the cells of two cubes that have the same schema but disjoint members.

- Un almacén de datos de un proveedor de teléfono consiste en 5 dimensiones, a saber: cliente emisor, cliente receptor, tiempo, tipo de llamada y programa de llamada. También incluye tres medidas: número de llamadas, duración y cuantía. Define las operaciones OLAP que hacen las siguientes consultas:
- 1. Cuantía total percibida por cada programa de llamadas en 2012.
- 2. La duración total de las llamadas realizadas por los clientes de Bruselas en 2012.
- Número total de llamadas realizadas por los clientes de fin de semana desde Bruselas a los clientes en Amberes en 2012.
- 4. Duración total de las llamadas internacionales iniciadas por los clientes en Bélgica en 2012.
- 5. Total recaudado por los clientes en Bruselas que están inscritos en el programa corporativo en 2012.

Ejercicio II

- Un almacén de datos de una compañía de trenes contiene información acerca de los trayectos de tren entre estaciones. Se compone de seis dimensiones, a saber: la estación de partida, la estación de llegada, el viaje, el tren, la hora de llegada y la hora de salida, y tres medidas, a saber, el número de pasajeros, la duración y el número de kilómetros. Define las operaciones OLAP que se lleva a cabo con el fin de responder a las consultas. Proponer jerarquías de dimensión cuando sea necesario.
- 1. Número total de kilómetros realizados por los trenes "Alstom" durante el año 2012 partiendo de estaciones de Francia o Bélgica.
- 2. Duración total de viajes internacionales durante el año 2012, es decir, viajes partiendo de una estación situada en un país y llegando a una estación ubicado en otro país.
- 3. Número total de viajes con origen o destino París durante Julio de 2012.
- 4. Duración media de los trayectos de trenes en Bélgica en 2012.
- 5. Para cada viaje, el número promedio de pasajeros por trayecto, es decir, tomar todos los trayectos de cada viaje, y el promedio del número de pasajeros.