

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408 748-3585 • FAX (510) 489-6372

April 12, 2012

Digital Receiver Technology, Inc. 20250 Century Blvd., Suite 500 Germantown, MD 20874

Dear Steve Hudson,

Enclosed is the EMC Wireless test report for MPE measurements of the Digital Receiver Technology, Inc., DRT9957A as evaluated to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Part 1, Subpart I, Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Part 2, Subpart J, and RSS-102, Issue 4, March 2010.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,

MET LABORATORIES, INC.

Jennifer Warnell

Documentation Department

Reference: (\Digital Receiver Technology, Inc.\EMC31505A-MPE Rev. 2)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

RF Maximum Permissible Exposure (MPE) Report For Controlled and Uncontrolled Environments

for the

Digital Receiver Technology, Inc. DRT9957A

Tested under

the FCC Certification Rules
contained in
Title 47 of the CFR, Part 1 Subpart I & Part 2 Subpart J
&
RSS-102, Issue 4, March 2010

MET Report: EMC31505A-MPE Rev. 2

April 12, 2012

Prepared For:

Digital Receiver Technology, Inc. 20250 Century Blvd., Suite 500 Germantown, MD 20874

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave. Baltimore, MD 21230

RF Maximum Permissible Exposure (MPE) Report For Controlled and Uncontrolled Environments

for the

Digital Receiver Technology, Inc. DRT9957A

Tested under

the FCC Certification Rules
contained in
Title 47 of the CFR, Part 1 Subpart I & Part 2 Subpart J
&
RSS-102, Issue 4, March 2010

Len Knight, Project Engineer Electromagnetic Compatibility Lab Jennifer Warnell
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Parts 1 and 2, and Industry Canada standards RSS-102, Issue 4, March 2010 under normal use and maintenance.

Shawn McMillen, Wireless Manager, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	December 16, 2011	Initial Issue.
1	January 25, 2012	Revised to reflect customer corrections.
2	April 12, 2012	Revised to reflect engineer corrections.

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	
	B. MPE Measurements and Applicable Regulations	
II.	Equipment Configuration	
	A. Overview	4
	B. Test Site	
	C. Description of Test Sample	
	D. Equipment Configuration.	
	E. Support Equipment	
	F. Ports and Cabling Information	
	G. Mode of Operation	
	H. Modifications	
	a) Modifications to EUT	
	b) Modifications to Test Standard	
	I. Disposition of EUT	
III.	MPE Limits	
	A. Limits for Maximum Permissible Exposure (MPE)	
	B. Calculating MPE Distance from Antenna	
IV.	Test Equipment	17
	List of Tables	
Table 1	EUT Summary Table	4
	Equipment Configuration	
	Support Equipment	
	Ports and Cabling Information	
	Test Equipment List	
	List of Figures	
Figure 1	. Block Diagram of Test Configuration	. 5
	List of Photographs	
Photogr	aph 1. Test Setup	16

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
H	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μ H	microhenry
μ F	microfarad
μs	microseconds
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

I. Executive Summary

A. Purpose of Test

An MPE evaluation was performed to determine compliance of the Digital Receiver Technology, Inc. DRT9957A, with the requirements of Part 1 and 2. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the DRT9957A. Digital Receiver Technology, Inc. should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the DRT9957A, has been **permanently** discontinued.

B. MPE Measurements and Applicable Regulations

This test report presents the results of Maximum Permissible Exposure (MPE)¹ measurements performed on the Digital Receiver Technology, Inc. DRT9957A, operating in the frequency ranges 851 - 869 MHz, 869 - 894 MHz, and 1930 – 1990 MHz. The tests were performed in accordance with TCB training material and the following parts of the FCC Rules and Regulations and Industry Canada Radio Standard Specification:

- IEEE Std. C95.1: 2005: "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz 300 GHz"
- IEEE Std. C95.3: 2002: "IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz – 300 GHz"
- FCC OET Bulletin 65, Edition 97-01: "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields"
- FCC Supplement C to OET Bulletin 65, Edition 01-01: "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emission."
- Subpart I, Part 1 of 47 CFR FCC Rules and Regulations, Edition 10-1-11: "Procedures Implementing the National Environmental Policy Act of 1969." Specifically, Paragraph 1.1310: "Radiofrequency Radiation Exposure Limits"
- Subpart J, Part 2 of 47 CFR FCC Rules and Regulations, Edition 10-1-11: "Equipment Authorization Procedures." Specifically, Paragraph 2.1091: "Radiofrequency Radiation Exposure Evaluation: Mobile Devices"
- FCC KDB 447498 D01 Mobile Portable RF Exposure v04: "RF Exposure and Equipment Authorization Policies"
- RSS-102, Issue 4, March 2010: "Spectrum Management and Telecommunications Radio Standards Specification. Radiofrequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands.)"

.

MET Report: EMC31505A-MPE Rev. 2

¹ By definition, maximum permissible exposure (MPE) is rms or peak electric (or magnetic) field strength, or the plane-wave equivalent power densities associated with these fields to which a person may be exposed without harmful effect and with an acceptable safety factor.

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by Digital Receiver Technology, Inc. to perform testing on the DRT9957A, under Digital Receiver Technology, Inc.'s purchase order number 045620.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Digital Receiver Technology, Inc., DRT9957A.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	DRT9957A					
	Primary Power: 13.8 V Vehicu	lar Battery Voltage				
	FCC ID: XLM9957A1					
EUT Specifications:	EUT Frequency Ranges:	851 – 869 MHz	869 – 894 MHz	1930 – 1990 MHz		
	Type of Modulations:	GSM	GMSK	QPSK		
	Applicable FCC Rule Part:	90	22	24		
Analysis:	The results obtained relate only	to the item(s) tested	•			
	Temperature: 15-35° C					
Environmental Test Conditions:	Relative Humidity: 30-60%					
	Barometric Pressure: 860-1060	mbar				
Evaluated by:	Len Knight					
Report Date(s):	April 12, 2012					

Table 1. EUT Summary Table

B. Test Site

All testing was performed at MET Laboratories, Inc., 914 W. Patapsco Ave., Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

C. Description of Test Sample

The DRT9957A is an RF power amplifier used with DRT base stations operating in the cellular, PCS, and TDMA 850MHz bands.

Figure 1. Block Diagram of Test Configuration

D. Equipment Configuration

Name / Description	Model Number
TacTRAM	DRT9957A

Table 2. Equipment Configuration

E. Support Equipment

Name / Description	Manufacturer	Model Number	Serial Number
Base Station	DRT	DRT1183C	
Toughbook PC	Panasonic	CF-19	CF-19KDRAX6M

Table 3. Support Equipment

F. Ports and Cabling Information

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty.	Length (m)	Shielded? (Y/N)	Termination Box ID & Port ID
N/A	AUX RF	Receive antenna	1	5	Y	N/A
N/A	TX	Transmit antenna	1	5	Y	N/A
1	RX E	RX signal to base station	1	2	Y	N/A
2	TX D	TX signal to amplifier	1	2	Y	N/A
3	RS-232 Control/GPIO	Control signals between base station and amplifier	1	2	Y	N/A

Table 4. Ports and Cabling Information

G. Mode of Operation

Operates as a RF power amplifier for DRT mobile base stations in GSM and CDMA in the Cellular and PCS bands, and TDMA in the 850MHz band.

H. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

I. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Digital Receiver Technology, Inc. upon completion of testing.

III.MPE Limits

A. Limits for Maximum Permissible Exposure (MPE)

Requirements:

FCC Guidelines for evaluating exposure to RF Emissions, from the FCC OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields.

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
	General Population	ı/Uncontrolled Ex	posure	
	General Population Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Tim E ² , H ² or S (minutes)
(B) Limits for C Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	E ² , H ² or S (minutes)
(B) Limits for C Frequency Range (MHz) 0.3-1.34	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	E ² , H ² or S (minutes)
(B) Limits for C Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	E ² , H ² or S (minutes)
(B) Limits for C Frequency Range (MHz) 0.3-1.34 1.34-30	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m) 1.63 2.19/f	Power Density (S) (mW/cm²) (100)* (180/f²)*	E ² , H ² or S (minutes)

Procedures:

Prior to radiated testing, the radio was connected to a power meter in order to see if any channel was significantly stronger than the rest for each band. For the purposes of testing, the channel with the highest power from each band was used.

B. Calculating MPE Distance from Antenna

MPE Limit Calculation: EUT's operating frequencies @ 852.5 MHz; highest conducted power = 31.16 dBm therefore, **Limit for Uncontrolled Exposure: 0.568 mW/cm**²

EUT maximum antenna gain = 3 dBi.

Equation from page 18 of OET 65, Edition 97-01

$$S = PG / 4\pi R^2$$
 or $R = \sqrt{PG / 4\pi S}$

where, $S = Power Density (0.568 \text{ mW/cm}^2)$

P = Power Input to antenna (1307 mW)

G = Antenna Gain (2 numeric)

$$R = (1307*2/4*3.14*0.568)^{1/2} = 19.14 \text{ cm}$$
To nearest 20 cm

MPE Limit Calculation: EUT's operating frequencies @ 881.6 MHz; highest conducted power = 38.10 dBm therefore, **Limit for Uncontrolled Exposure: 0.588 mW/cm**²

EUT maximum antenna gain = 3 dBi.

Equation from page 18 of OET 65, Edition 97-01

$$S = PG / 4\pi R^2$$
 or $R = \sqrt{PG / 4\pi S}$

where, $S = Power Density (0.588 \text{ mW/cm}^2)$

P = Power Input to antenna (6458 mW)

G = Antenna Gain (2 numeric)

 $R = (6458*2/4*3.14*0.588)^{1/2} = 41.81 \text{ cm}$

MPE Limit Calculation: EUT's operating frequencies @ $\underline{1989.8 \text{ MHz}}$; highest conducted power = 37.30 dBm therefore, Limit for Uncontrolled Exposure: 1 mW/cm²

EUT maximum antenna gain = 4 dBi.

Equation from page 18 of OET 65, Edition 97-01

$$S = PG / 4\pi R^2$$
 or $R = \sqrt{PG / 4\pi S}$

where, $S = Power Density (1 mW/cm^2)$

P = Power Input to antenna (5371 mW)

G = Antenna Gain (2.52 numeric)

$$R = (5371*2/4*3.14*1.0)^{1/2} = 32.82 \text{ cm}$$

Test Procedures:

- 1. The test setup was as described in the EUT Configuration section of this test report. The base station and amplifier were on the outside of the chamber while the antenna was on the inside.
- 2. The antenna under test was mounted to a 30x30cm ground plane and placed on an 80cm test table.
- 3. The EUT was set to transmit continuously at the selected frequency and modulation at maximum RF power. The distance between the field intensity probe and the EUT's antenna was equal to the calculated distance R applicable either for controlled or uncontrolled environments.
- 4. Field intensity measurements were taken at different heights of the probe from the ground (0.1 to 2 meters) in 10cm increments, while rotating versus azimuth (from 0° to 360°).
- 5. Each maximized peak field intensity measurement was recorded.
- 6. Average values of power density were calculated for the imaginary whole human body (0.1–2.0 m), for the lower part of the body (0.1–0.9 m) and for the upper part of the body (1.0–2.0 m). The results of calculations are shown in the following tables.

Test Results: The EUT was compliant with this requirement.

Test Engineer: Len Knight

Test Date: 08/24/11

Part 90

	General Population	n / Uncontrolled Environment at	20
	Raw	Corrected V/m	PD mW/cm2
10	4.096	4.01408	0.004274
20	4.483	4.39334	0.00512
30	5.751	5.63598	0.008426
40	5.735	5.6203	0.008379
50	7.019	6.87862	0.012551
60	6.942	6.80316	0.012277
70	8.739	8.56422	0.019455
80	17.95	17.591	0.08208
90	26.68	26.1464	0.181335
100	27.77	27.2146	0.196455
110	21.31	20.8838	0.115685
120	17.54	17.1892	0.078374
130	14.45	14.161	0.053192
140	11.31	11.0838	0.032586
150	9.16	8.9768	0.021375
160	7.617	7.46466	0.01478
170	5.757	5.64186	0.008443
180	5.137	5.03426	0.006722
190	4.141	4.05818	0.004368
200	3.981	3.90138	0.004037

Uncontrolled Environment 19.14 cm	3 dBi BMLPVDB800/1900S
Part of the Body/Averaging Points	Averaged Power Density
Whole Body (0.1 m to 2.0 m)	0.04
Lower Body (0.1 m to 0.9 m)	0.04
Upper Body (1.0 m to 2.0 m)	0.05

Part 22

	General Population	n / Uncontrolled Environment at 4	1.8
	Raw	Corrected V/m	PD mW/cm2
10	9.242	9.05716	0.021759
20	7.616	7.46368	0.014776
30	8.372	8.20456	0.017855
40	6.858	6.72084	0.011981
50	7.279	7.13342	0.013498
60	8.414	8.24572	0.018035
70	10.95	10.731	0.030545
80	16.59	16.2582	0.070114
90	25.42	24.9116	0.164612
100	31.72	31.0856	0.256317
110	32.76	32.1048	0.2734
120	30.38	29.7724	0.235118
130	27.38	26.8324	0.190976
140	25.27	24.7646	0.162675
150	22.08	21.6384	0.124196
160	20.08	19.6784	0.102716
170	16.55	16.219	0.069776
180	14.29	14.0042	0.052021
190	12.39	12.1422	0.039107
200	12.05	11.809	0.03699

Uncontrolled Environment 41.8 cm	3 dBi BMLPVDB800/1900S
Part of the Body/Averaging Points	Averaged Power Density
Whole Body (0.1 m to 2.0 m)	0.10
Lower Body (0.1 m to 0.9 m)	0.04
Upper Body (1.0 m to 2.0 m)	0.14

Part 24

General Population / Uncontrolled Environment at 32.82						
	Raw	Corrected V/m	PD mW/cm2			
10	5.25	6.09	0.009838			
20	5.41	6.2756	0.010446			
30	7.52	8.7232	0.020184			
40	8.38	9.7208	0.025065			
50	10.24	11.8784	0.037426			
60	12.01	13.9316	0.051483			
70	16.06	18.6296	0.092059			
80	18.08	20.9728	0.116673			
90	24.65	28.594	0.216874			
100	23.44	27.1904	0.196106			
110	17.68	20.5088	0.111568			
120	13.59	15.7644	0.065919			
130	10.75	12.47	0.041247			
140	6.86	7.9576	0.016797			
150	6.3	7.308	0.014166			
160	2.77	3.2132	0.002739			
170	2.63	3.0508	0.002469			
180	2.96	3.4336	0.003127			
190	4.43	5.1388	0.007005			
200	2.37	2.7492	0.002005			

Uncontrolled Environment 32.82 cm	3 dBi BMLPVDB800/1900S		
Part of the Body/Averaging Points	Averaged Power Density		
Whole Body (0.1 m to 2.0 m)	0.05		
Lower Body (0.1 m to 0.9 m)	0.06		
Upper Body (1.0 m to 2.0 m)	0.04		

Photograph 1. Test Setup

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ANSI/NCSL Z540-1-1994 and ANSI/ISO/IEC 17025:2000.

MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1T4768	FIELD PROBE	NARDA	EP183 / OR03	SEE NOTE	
1T4148	SHIELD ROOM #2 SEMI- ANECHOIC	RANTEC	20	SEE NOTE	
1T4216	ISOTROPIC ELECTRIC FIELD PROBE	HOLADAY	HI-4422	09/01/2010	09/01/2011

Table 5. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

End of Report