Projet Transversal

2012 UM2

Table des matières

Chapitre 1

Propriétés générales

1.1 Coloration des sommets

1.1.1 Exercice 1

Considérons H un sous-graphe de G, il paraît évident qu'une coloration de G est aussi une coloration de H. De plus, par le théroème de Brooks, si le degré maximal du sous graphe H est inférieur à $\chi(G)$, alors $\chi(H) \leq \Delta \leq \chi(G)$.

D'où, la propriété suivante :

Propriété 1.1.1 Si H est un sous-graphe de G alors $\chi(H) \leq \chi(G)$.

1.1.2 Exercice 2

Chaque composante connexe de G peut être vue comme un sous-graphe de ce dernier. Donc d'après la propriété ??, on a : $\chi(G) \ge \max\{\chi(C), C \text{ composante connexe de } G\}$. Appelons $C_1, C_2, C_3, \ldots, C_k$ les composantes connexes de G. Pour $1 \le i \le k$, appelons c_i la coloration de la composante C_i avec les couleurs $1, 2, \ldots, \chi(C_i)$ et c définie pour tout v sommet de G par $c(v) = c_i(v)$ si $v \in C_i$, dans la mesure où il n'existe aucune arête entre deux composantes connexes de G, c est une coloration de G, ce qui implique $\chi(G) \le \max\{\chi(C_i)\}$. On en déduit donc la propriété suivante :

Propriété 1.1.2 $\chi(G) = \max\{\chi(C), C \text{ composante connexe de } G\}$

1.1.3 Exercice 3

Deux sommets de même couleur ne sont relié entre eux par aucune arête 1 . Ainsi tous les nœuds de la même couleur n'ont aucun entre eux et forment donc un stable. Ainsi, un graphe k-coloriable peut être divisé en k sous-ensembles des sommets formant des stables et donc on en déduit la propriété suivante :

Propriété 1.1.3 Rechercher un k-stable est équivalent à montrer l'existence d'un graphe k-coloriable.

1.1.4 Exercice 4

Un graphe biparti étant un graphe 2-stable, on en déduit par la propriété ?? :

Propriété 1.1.4 Un graphe est biparti si et seulement si il est 2-coloriable.

Réalisé avec LATEX