# ARITHMETIC Chapter 12



ESTUDIO DE LOS ENTEROS POSITIVOS II





## MOTIVATING STRATEGY



El estudio de los números primos ha despertado la curiosidad de muchos estudiosos por saber cuál es el más grande número primo. A continuación algunos descubrimientos.

- $\triangleright$  Lucas en 1877 publicó el número  $2^{177} 1$  que tiene 39 cifras.
- Robinson en 1958 publicó los números  $81 \times 2^{324} + 1$ ;  $63 \times 2^{326} + 1$ ;  $35 \times 2^{327} + 1$

Cada uno de ellos son números con 100 cifras.

- La Universidad de Illinois (EE. UU.) en 1963 publicó el número 2<sup>11213</sup> - 1, que tiene 3376 cifras.
- ➤ En 1971, en New York (EE. UU.), se publicó el número primo 2<sup>19937</sup> 1, que tiene 6002 cifras, que fueran calculadas en una computadora.

### HELICO THEORY





## 2

### Suma de divisores

#### **Recordemos:**

Sea 
$$N = a^{\alpha}. b^{\beta}.c^{\theta}...(DC)$$

Donde:  $a \neq b \neq c$ , primos

$$\alpha, \beta, \theta \in \mathbb{Z}^+$$

## 1 Cantidad de

#### En divisores

general:  

$$CD_N = (\alpha + 1)(\beta + 1)(\theta + 1)$$

$$60 = 2^{2} \times 3^{1} \times 5^{1}$$

$$2^{0} \quad 3^{0} \quad 5^{0}$$

$$2^{1} \quad 3^{1} \quad 5^{1}$$

$$2^{2} \quad 3^{1} \quad 5^{1}$$

$$SD_{60} = (1 + 2^1 + 2^2)(1 + 3^1)(1 + 5^1)$$

$$SD_{60} = \left(\frac{2^3 - 1}{2 - 1}\right) \left(\frac{3^2 - 1}{3 - 1}\right) \left(\frac{5^2 - 1}{5 - 1}\right) = 168$$

### En general:

$$SD_{N} = \left(\frac{a^{\alpha+1}-1}{a-1}\right) \left(\frac{b^{\beta+1}-1}{b-1}\right) \left(\frac{c^{\theta+1}-1}{c-1}\right)$$

## HELICO THEORY





## Indicador de Euler o función de Euler $[\phi(N)]$



Números menores a 8



$$\rightarrow \phi(8) = 4 = 2^{3-1}(2-1)$$



Se denomina indicador de un entero positivo, a la cantidad de números menores que el entero positivo que son PESI con él.

#### Números menores a 12

$$12 = 2^2$$
.  $3^1$  PESI con 12

$$\rightarrow \phi(12) = 4 = 2^{2-1}(2-1) 3^{1-1}(3-1)$$

**En general:** 

$$\phi(N) = a^{\alpha-1}(a-1)b^{\beta-1}(b-1)c^{\theta-1}(c-1) \dots$$





## Halle la cantidad de divisores del número 19 600.

$$19600 = 2^4 \times 5^2 \times 7^2$$

#### Resolución:

$$\begin{array}{c|cccc}
19600 & 100 = 2^2 \times 5^2 \\
196 & 2 & & & \\
98 & 2 & & & \\
49 & 7 & & & \\
7 & 7 & & & \\
1 & & & & \\
\end{array}$$

$$CD_{19600} = (4+1)(2+1)(2+1)$$

$$CD_{19600} = 5 \times 3 \times 3$$

$$CD_{19600} = 45$$





## 2

## ¿Cuántos divisores compuestos tiene el número 33 075?

$$33075 = 33 \times 52 \times 72$$

#### Resolución:

$$CD_{total} = CD_{simples} + CD_{compuestos}$$

```
33075 3
11025 3
3675 3
1225 5
245 5
49 7
7 7
```

$$CD_{33075} = (3+1)(2+1)(2+1)$$

$$CD_{33075} = 4 \times 3 \times 3$$

$$CD_{33075} = 36$$

$$CD_{simple} = 4$$

$$CD_{compuestos} = CD_{total} - CD_{simples}$$

$$CD_{compuesto} = 36 - 4$$

$$CD_{compuesto} = 32$$

RPTA: 32



3

#### Del número 3000, halle:

A: cantidad de divisores múltiplos de 20 B: cantidad de divisores múltiplos de 75 Dé como respuesta el valor de A + B.

#### Resolución:

$$3000 = 2^3 \times 3 \times 5^3 \dots$$
 (D.C)

#### Hallar A

$$3000 = 2^{2} \times 5^{1} (2^{1} \times 3^{1} \times 5^{2})$$

$$A = CD_{3000_{20}} \circ = (1+1)(1+1)(2+1)$$

$$A = 12$$

#### Hallar B

$$3000 = 5^{2} \times 3^{1} (2^{3} \times 5^{1})$$

$$B = CD_{3000_{75}} = (3+1)(1+1)$$

$$B = 8$$

$$\therefore$$
 A + B = 20







## Calcule la suma de divisores del número 980.

$$SD_{980} = \left(\frac{2^{2+1}-1}{2-1}\right) \left(\frac{5^{1+1}-1}{5-1}\right) \left(\frac{7^{2+1}-1}{7-1}\right)$$

#### Resolución:

$$SD_{980} = 7 \times 6 \times 57$$

$$SD_N = \left(\frac{a^{\alpha+1}-1}{a-1}\right) \left(\frac{b^{\beta+1}-1}{b-1}\right) \left(\frac{c^{\theta+1}-1}{c-1}\right) \quad SD_{980} = 2394$$

$$SD_{980} = 2394$$

$$980 = 98 \times 10$$

$$980 = 2 \times 7^2 \times 2 \times 5$$

$$980 = 2^2 \times 5^1 \times 7^2$$

RPTA:





## Halle el menor número que posee 55 divisores. Dé como respuesta la cifra de mayor orden.

$$a = 3$$
,  $b = 9 \longrightarrow N = 2^4 \times 3^{10} = 944784$   
 $a = 9$ ,  $b = 3 \longrightarrow N = 2^4 \times 3^{10} = 82944$ 

#### Resolución:

Sea el menor número:

$$N = 2a_x 3b$$
 ...D.C

$$CD_{(N)} = (a + 1) (b + 1) = 55$$
4 10
10 4

: Cifra de mayor orden es 8





## Si $686^n$ tiene 96 divisores, halle el valor de n.

#### Resolución:

$$686^n = (2^1.7^3)^n$$

$$686^n - 2n_x 7^{(n)}$$
 ...D.C

$$CD(686^n) = (n+1)(3n+1) = 96$$
  
 $(n+1)(3n+1) = (5+1)(3.5+1)$ 

$$\cdot \cdot n = 5$$





## Si $15^n \times 55^{n+1}$ tiene 500 divisores compuestos, halle el valor de n.

#### Resolución:

$$N = 15^n.55^{n+1}$$

$$N = (3^1.5^1)^n (5^1.11^1)^{n+1}$$

$$N = 3^n x 5^n x 5^{n+1} x 11^{n+1}$$

$$N = 3^n x 5^{2n+1} x 11^{n+1}$$
 ...D.C

$$CD_{totales} = CD_{simples} + CD_{compuestos}$$

$$(n+1)(2n+2)(n+2) = 4 + 500$$

$$(n+1)(2)(n+1)(n+2) = 504$$

$$(2)(n+1)^{2}(n+2) = 504$$

$$(n+1)^{2}(n+2) = 252$$

$$(n+1)^{2}(n+2) = (5+1)^{2}(5+2)$$



8

En el último Concurso Nacional de Matemáticas una de las preguntas de la evaluación; era conocer si al aumentar una cierta cantidad de ceros a un número, este se modificaba en cuánto a su cantidad de divisores siendo la pregunta: ¿Cuántos ceros son necesarios colocar a la derecha del número 9 para que el resultado tenga 239 divisores compuestos?

#### Resolución:

Sea el número:

$$N = 900 ... 000$$
"n"ceros

$$N = 9 x 10^{n}$$
  
=  $3^{2} x (2^{1}.5^{1})^{n}$   
 $N = 2^{n} x 3^{2} x 5^{n}$  ...D.C

$$CD_{totales} = CD_{simples} + CD_{compuestos}$$
  
 $(n+1)(2+1)(n+1) = 4 + 239$ 

$$(3) (n+1)^2 = 243$$

$$(n+1)^2 = 81$$

$$(n+1) = 9$$

$$n = 9$$



