

LR(1) Parsers Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes, provided this copyright notice is preserved.

LR Parsers — A Roadmap

- Last Lecture
 - Handles, handles, and more handles
- Today
 - Revisit handles (briefly)
 - Skeleton LR(1) parser & its operation
 - Introduce notation & concepts for LR(1) Table Construction
- Monday
 - LR(1) Table construction

Handles

One more time, with less tedium

Consider our example

Sentential Form							
Goal							
Expr							
Expr	_	Term					
Expr	_	Term	*	Factor			
Expr	_	Term	*	<id,y></id,y>			
Expr	_	Factor	*	<id,y></id,y>			
Expr	_	<num,2></num,2>	*	<id,y></id,y>			
Term	_	<num,2></num,2>	*	<id,y></id,y>			
Factor	_	<num,2></num,2>	*	<id,y></id,y>			
<id,x></id,x>	_	<num,2></num,2>	*	<id,y></id,y>			

Unambiguous grammar implies unique rightmost derivation

- At each step, we have one step that leads to x - 2 * y
- Any other choice leads to another distinct expression
- A bottom-up parse reverses the rightmost derivation
- It has a unique reduction at each step
- The key is finding that reduction

Handles

Consider our example

	Sei	ntential F	Reduction		
Goal					
Expr					Goal $ o$ Expr
Expr	_	Term			Expr ightarrow Expr — Term
Expr	_	Term	*	Factor	Term \rightarrow Term * Factor
Expr	_	Term	*	<id,y></id,y>	Factor $\rightarrow id$
Expr	_	Factor	*	<id,y></id,y>	Term \rightarrow Factor
Expr	_	<num,2></num,2>	*	<id,y></id,y>	Factor \rightarrow num
Term	_	<num,2></num,2>	*	<id,y></id,y>	$Expr \rightarrow Term$
Factor	_	<num,2></num,2>	*	<id,y></id,y>	Term \rightarrow Factor
<id,x></id,x>	_	<num,2></num,2>	*	<id,y></id,y>	Factor $\rightarrow id$

Handles

Consider our example

Sentential Form							
Goal							
Expr							
Expr	_	Term					
Expr	_	Term	*	Factor			
Expr	_	Term	*	<id,y></id,y>			
Expr	_	Factor	*	<id,y></id,y>			
Expr	_	<num,2></num,2>	*	<id,y></id,y>			
Term	_	<num,2></num,2>	*	<id,y></id,y>			
Factor	_	<num,2></num,2>	*	<id,y></id,y>			
<id,x></id,x>	_	<num,2></num,2>	*	<id,y></id,y>			

Now, look at the sentential forms in the example

- They have a specific form
- NT * (NT | T)* T*
- Reductions happen in the (NT | T)* portion
 - Track right end of region
 - Search left from there
 - Finite set of rhs strings

We know that each step has a unique reduction

That reduction is the handle

From Handles to Parsers

Consider the sentential forms in the derivation NT^* ($NT \mid T$)* T^*

- They are the upper fringe of partially complete syntax tree
- The suffix consisting of T^* is, at each step, the unread input

So, our shift-reduce parser operates by:

- Keeping the portion NT* (NT | T)* on a stack
 - Leftmost symbol at bottom of stack, rightmost at stack top
- Searching for handles from stack top to stack bottom
- If search fails, shift another terminal onto stack

Bottom-up Parser

A conceptual shift-reduce parser:

```
push INVALID
word \leftarrow NextWord()
repeat until (top of stack = Goal and word = EOF)
   if the top of the stack is a handle A \rightarrow \beta
      then // reduce \beta to A
          pop |\beta| symbols off the stack
          push A onto the stack
      else if (word \neq EOF)
          then // shift
              push word
              word \leftarrow NextWord()
       else // need to shift, but out of input
          report an error
```

What happens on an error?

- It fails to find a handle
- Thus, it keeps shifting
- Eventually, it consumes all input

This parser reads all input before reporting an error, not a desirable property.

Table-driven LR parsers do much better. The handle finder reports errors as soon as possible.

Actual LR(1) Skeleton Parser


```
stack.push(INVALID);
stack.push(s_0);
                                  // initial state
word = scanner.next_word();
loop forever {
     s = stack.top();
     if (ACTION[s,word] == "reduce A \rightarrow \beta") then {
        stack.popnum(2*|\beta|); // pop 2*|\beta| symbols
        s = stack.top();
        stack.push(A);
                           // push A
        stack.push(GOTO[s,A]); // push next state
     else if ( ACTION[s,word] == "shift s;" ) then {
           stack.push(word); stack.push(s_i);
           word \leftarrow scanner.next\_word();
     else if ( ACTION[s,word] == "accept"
                      & word == EOF)
           then break:
     else throw a syntax error;
report success;
```

The skeleton parser

- follows basic scheme for shift-reduce parsing from last slide
- relies on a stack & a scanner
- keeps both symbols & states on the stack
- uses two tables, called ACTION & GOTO
- shifts | words | times
- reduces |derivation| times
- accepts at most once
- detects errors by failure of the other three cases, which is a failure to find a handle

Language of balanced parentheses

- Beyond power of REs
- Exhibits role of context in LR(1) parsing

AC	CTION TABLE			60	GOTO TABLE					A
State	eof	()	State	List	Pair				
0		5 3		0	1	2				
1	acc	53		1		4				
2	R 2	R 2		2						
3		56	5 7	3		5				
4	R 1	R 1		4						
5			58	5						
6		56	S 10	6		9				
7	R 4	R 4		7			0			1 1 - 1
8	R 3	R 3		8			0	Goal		List Dain
9			S 11	9			1 2	List	\rightarrow	List Pair Pair
10			R 4	10			3	Pair	\rightarrow	
11			R 3	11			4	1 uii		()

State	Lookahead	Stack	Handle	Action
_	_(\$ 0	-none-	_
0	(\$ 0	-none-	shift 3
3)	\$0(3	-none-	shift 7
7	eof	\$0(3)7	()	reduce 4
2	eof	\$ 0 Pair 2	Pair	reduce 2
1	eof	\$ 0 <i>List</i> 1	List	accept

Parsing "()"

State	L'ahead	Stack	Handle	Action	3 Pair → (Pair) 4 ()
_		\$ 0	-none-	_	1 44
0	_(\$ O	-none-	shift 3	Parsing
3	(\$0(3	-none-	shift 6	"(()) ()"
6)	\$ 0 (3 (<u>6</u>	-none-	shift 10	
10)	\$ 0 (3 (<u>6</u>) 10	()	reduce 4	Let's look at
5)	\$ 0 (3 Pair 5	-none-	shift 8	how the parser
8	(\$ 0 (3 Pair 5) 8	(Pair)	reduce 3	/ reduces " <u>(</u>)"
2	(\$ 0 Pair 2	Pair	reduce 2	
1	(\$ 0 <i>List</i> 1	-none-	shift 3	5
3)	\$ 0 <i>List</i> 1 <u>(</u> 3	-none-	shift 7	
7	eof	\$ 0 <i>List</i> 1 (3) 7	()	reduce 4	
4	eof	\$ 0 List 1 Pair 4	List Pair	reduce 1	
1	eof	\$ 0 <i>List</i> 1	List	accept	11

Goal

List

List

 \rightarrow List Pair

Pair

State	Lookahead	Stack	Handle	Action
_	_(\$ 0	-none-	_
0	(\$ 0	-none-	shift 3
3)	\$0(3	-none-	shift 7
7	eof	\$0 (3)7	()	reduce4
2	eof	\$ 0 Pair 2	Pair	reduce 2
1	eof	\$ 0 <i>List</i> 1	List	accept

Parsing "()"

Here, peeling () off the stack reveals s_0 . Goto(s_0 , Pair) is s_2 .

0	Goal	\rightarrow	List
1	List	\rightarrow	List Pair
2			Pair
3	Pair	\rightarrow	<u>(</u> Pair <u>)</u>
4			()

State	L'ahead	Stack	Handle	Action	3	
_	(\$ 0	-none-	_		
0	_(\$ 0	-none-	shift 3		
3	(\$0(3	-none-	shift 6		
6)	\$0(3(6	-none-	shift 10		
10)	\$ 0 (3 (<u>6</u>) 10	()	reduce 4		
5)	\$ 0 (3 Pair 5	-none-	shift 8		
8	(\$ 0 (3 Pair 5) 8	(Pair)	reduce 3		
2	(He	ere, peeling () off	the stack i	reveals s ₃ ,		
1	(wh	nich represents the		_		
3	J	matched (.				
7	eof Go	oto(s_3 ,Pair) is s_5 , a state in which we xpect a). That path leads to a reduction				
4	eof by	production 3, Pair \rightarrow (Pair).				
1	eof	\$ 0 <i>List</i> 1	List	accept		

Goal → List

List → List Pair

| Pair

Pair → (Pair)

| ()

Parsing "(())()"

State	e L	'ahead	Stack	Handle	Α	ction	
_		(\$ 0 —none— —			-	
0			\$ 0	-none-	sl	hift 3	
3	Her	re, peelii	ng () off the stac	k reveals s	ift 6		
6		•	esents the left con	ntext of a		ft 10	
10	•	•	recognized List.	1 • 1		luce 4	
5		Goto(s_1 , Pair) is s_4 , a state in which we can reduce List Pair to List (on lookahead of					
8		ner (or				luce 3	
2			\$ 0 Pair 2	Pair	re	duce 2	
1		_(\$ 0 <i>List</i> 1	-none-	sl	hift 3	
3)	\$ 0 <i>List</i> 1 (3	-none-	sl	hift 7	
7	eof \$0 List1(3)7 () r		re	duce 1			
4	eof \$ 0 List 1 Pair 4 List Pair reduc		duce 0				
1	eof \$0		\$ 0 <i>List</i> 1	List	accept		

0	Goal	\rightarrow	List
1	List	\rightarrow	List Pair
2			Pair
3	Pair	\rightarrow	(Pair)
4			()

Parsing "(())()"

Three copies of "reduce 4" with different context — produce three distinct behaviors

LR(1) Parsers

How does this LR(1) stuff work?

- Unambiguous grammar ⇒ unique rightmost derivation
- Keep upper fringe on a stack
 - All active handles include top of stack (TOS)
 - Shift inputs until TOS is right end of a handle
- Language of handles is regular (finite)
 - Build a handle-recognizing DFA to control the stack-based recognizer
 - ACTION & GOTO tables encode the DFA
- To match a subterm, invoke the DFA recursively
 - leave old DFA's state on stack and go on
- Final state in DFA ⇒ a reduce action
 - Pop rhs off the stack to reveal invoking state
 - \rightarrow "It would be legal to recognize an x, and we did ..."
 - New state is GOTO[revealed state, lhs]
 - Take a DFA transition on the new NT the lhs we just pushed...

LR(1) Parsers

The Control DFA for the Parentheses Language

Transitions on terminals represent shift actions [ACTION]
Transitions on nonterminals represent reduce actions [GOTO]

The table construction derives this DFA from the grammar

Building LR(1) Tables

How do we generate the ACTION and GOTO tables?

- Use the grammar to build a model of the Control DFA
- Encode actions & transitions in ACTION & GOTO tables
- If construction succeeds, the grammar is LR(1)
 - "Succeeds" means defines each table entry uniquely

The Big Picture

grammar symbol, Tor NT

- Model the state of the parser
- Use two functions goto(s, X) and closure(s)
 - goto() is analogous to move() in the subset construction
 - closure() adds information to round out a state
- Build up the states and transition functions of the DFA
- Use this information to fill in the ACTION and GOTO tables

fixed-point algorithm, like subset construction

LR(k) Items

The LR(1) table construction algorithm represents a valid configuration of an LR(1) parser with a data structure called an LR(1) items

An LR(k) item is a pair [P, δ], where

P is a production $A \rightarrow \beta$ with a • at some position in the *rhs*

 δ is a lookahead string of length $\leq k$ (words or EOF)

The · in an item indicates the position of the top of the stack

- $[A \rightarrow \cdot \beta \gamma, \underline{a}]$ means that the input seen so far is consistent with the use of $A \rightarrow \beta \gamma$ immediately after the symbol on top of the stack
- $[A \rightarrow \beta \cdot \gamma, \underline{a}]$ means that the input sees so far is consistent with the use of $A \rightarrow \beta \gamma$ at this point in the parse, <u>and</u> that the parser has already recognized β (that is, β is on top of the stack).
- $[A \rightarrow \beta \gamma \cdot \underline{a}]$ means that the parser has seen $\beta \gamma$, <u>and</u> that a lookahead symbol of \underline{a} is consistent with reducing to A.

LR(1) Items

The production $A \rightarrow \beta$, where $\beta = B_1 B_1 B_1$ with lookahead \underline{a} , can give rise to 4 items

$$[A \rightarrow B_1B_2B_3,\underline{a}], [A \rightarrow B_1B_2B_3,\underline{a}], [A \rightarrow B_1B_2B_3,\underline{a}], \& [A \rightarrow B_1B_2B_3,\underline{a}]$$

The set of LR(1) items for a grammar is finite

What's the point of all these lookahead symbols?

- Carry them along to help choose the correct reduction
- Lookaheads are bookkeeping, unless item has · at right end
 - Has no direct use in $[A \rightarrow \beta \cdot \gamma, \underline{a}]$
 - In $[A \rightarrow \beta^{\bullet}, \underline{a}]$, a lookahead of \underline{a} implies a reduction by $A \rightarrow \beta$
 - − For { [$A \rightarrow \beta \cdot ,\underline{a}$],[$B \rightarrow \gamma \cdot \delta ,\underline{b}$] }, $\underline{a} \Rightarrow reduce$ to A; FIRST(δ) $\Rightarrow shift$

⇒ Limited right context is enough to pick the actions

LR(1) Table Construction

High-level overview

- 1 Build the canonical collection of sets of LR(1) Items, I
 - a Begin in an appropriate state, s_0
 - $[S' \rightarrow S, EOF]$, along with any equivalent items
 - Derive equivalent items as closure(s_0)
 - b Repeatedly compute, for each s_k , and each X, $goto(s_k, X)$
 - If the set is not already in the collection, add it
 - Record all the transitions created by goto()

This eventually reaches a fixed point

2 Fill in the table from the collection of sets of LR(1) items

The states of the canonical collection are precisely the states of the Control DFA

The construction traces the DFA's transitions

Computing Closures

Closure(s) adds all the items implied by items already in s

- Any item $[A \rightarrow \beta \bullet B\delta,\underline{a}]$ implies $[B \rightarrow \bullet \tau,x]$ for each production with B on the lhs, and each $x \in FIRST(\delta\underline{a})$
- Since $\beta B\delta$ is valid, any way to derive $\beta B\delta$ is valid, too

The algorithm

```
Closure(s)
while (s is still changing)
\forall items [A \rightarrow \beta \cdot B\delta,\underline{a}] \in s
\forall productions B \rightarrow \tau \in P
\forall \underline{b} \in FIRST(\delta\underline{a}) // \delta \text{ might be } \varepsilon
if [B \rightarrow \cdot \tau,\underline{b}] \notin s
then s \leftarrow s \cup \{[B \rightarrow \cdot \tau,\underline{b}]\}
```

- Classic fixed-point method
- Halts because s ⊂ ITEMs
- Worklist version is faster
- Closure "fills out" a state

Lookaheads are generated here

Initial step builds the item [$Goal \rightarrow \cdot SheepNoise, EOF$] and takes its closure()

Closure([Goal→·SheepNoise,EOF])

Item	Source
$[Goal \rightarrow \bullet SheepNoise, EOF]$	Original item
[SheepNoise \rightarrow • SheepNoise baa, EOF]	1, δ <u>a</u> is <u>EOF</u>
[SheepNoise $\rightarrow \bullet$ baa, EOF]	1, δ <u>a</u> is <u>EOF</u>
[SheepNoise \rightarrow • SheepNoise baa, baa]	2, δ <u>a</u> is <u>baa</u> <u>EOF</u>
[SheepNoise $\rightarrow \bullet$ baa, baa]	2, δ <u>a</u> is <u>baa</u> <u>EOF</u>

Remember, this is the left-recursive SheepNoise; EaC shows the right-recursive version.

SheepNoise baa

22

baa

```
So, S<sub>0</sub> is
{ [Goal→• SheepNoise, EOF], [SheepNoise→• SheepNoise <u>baa, EOF],</u>
    [SheepNoise→• <u>baa, EOF</u>], [SheepNoise→• SheepNoise <u>baa, baa],</u>
    [SheepNoise→• <u>baa, baa</u>] }

O Goal → SheepNoise
```

SheepNoise

Comp 412, Fall 2010

Computing Gotos

Goto(s,x) computes the state that the parser would reach if it recognized an x while in state s

- Goto({ [$A \rightarrow \beta \bullet X \delta, \underline{a}$]}, X) produces [$A \rightarrow \beta X \bullet \delta, \underline{a}$] (obviously)
- It finds all such items & uses closure() to fill out the state

The algorithm

```
Goto(s, X)

new \leftarrow \emptyset
\forall items [A \rightarrow \beta \cdot X \delta, \underline{a}] \in s

new \leftarrow new \cup {[A \rightarrow \beta X \cdot \delta, \underline{a}]}

return closure(new)
```

- Not a fixed-point method!
- Straightforward computation
- Uses closure()
- Goto() moves us forward

Comp 412, Fall 2010


```
S<sub>0</sub> is { [Goal→• SheepNoise, <u>EOF</u>], [SheepNoise→• SheepNoise <u>baa, EOF</u>], [SheepNoise→• <u>baa, EOF</u>], [SheepNoise→• SheepNoise <u>baa, baa</u>], [SheepNoise→• <u>baa, baa</u>] }
```

 $Goto(S_0, \underline{baa})$

Loop produces

Item	Source
[SheepNoise → baa •, EOF]	Item 3 in s_0
[SheepNoise \rightarrow baa •, baa]	Item 5 in s_0

Closure adds nothing since • is at end of rhs in each item

In the construction, this produces s₂ {[SheepNoise→baa•, {EOF,baa}]} ✓

New, but *obvious*, notation for two distinct items
[SheepNoise→baa •, EOF] &

'SheepNoise→baa•, baa]

O Goal → SheepNoise
 1 SheepNoise → SheepNoise baa
 2 | baa 24

Building the Canonical Collection

Start from s_0 = closure([$S' \rightarrow S, EOF$]) Repeatedly construct new states, until all are found

The algorithm

```
s_0 \leftarrow closure([S' \rightarrow S, EOF])

S \leftarrow \{s_0\}

k \leftarrow 1

while (S is still changing)

\forall s_j \in S \text{ and } \forall x \in (T \cup NT)

s_k \leftarrow goto(s_j, x)

record s_j \rightarrow s_k \text{ on } x

if s_k \notin S \text{ then}

S \leftarrow S \cup \{s_k\}

k \leftarrow k + 1
```

- Fixed-point computation
- Loop adds to S
- $S \subseteq 2^{\text{ITEMS}}$, so S is finite
- Worklist version is faster

Starts with S_0

```
S<sub>0</sub>: { [Goal→·SheepNoise, <u>EOF</u>], [SheepNoise→·SheepNoise <u>baa</u>, <u>EOF</u>], [SheepNoise→·SheepNoise <u>baa</u>, <u>baa</u>], [SheepNoise→·baa, <u>baa</u>]}
```

Iteration 1 computes

```
S_1 = Goto(S_0, SheepNoise) =
{ [Goal \rightarrow SheepNoise \cdot, EOF], [SheepNoise \rightarrow SheepNoise \rightarrow She
```

 $S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}], [SheepNoise \rightarrow \underline{baa} \cdot, \underline{baa}] \}$

Nothing more to compute, since \cdot is at the end of every item in S_3 .

Iteration 2 computes

$$S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa}, \underline{EOF}], [SheepNoise \rightarrow SheepNoise \underline{baa}, \underline{baa}] \}$$

O Goal → SheepNoise
 1 SheepNoise → SheepNoise baa
 2 | baa 27


```
    S<sub>0</sub>: { [Goal→· SheepNoise, EOF], [SheepNoise→· SheepNoise baa, EOF], [SheepNoise→· baa, EOF], [SheepNoise→· SheepNoise baa, baa], [SheepNoise→· baa, baa]}
    S<sub>1</sub> = Goto(S<sub>0</sub>, SheepNoise) = { [Goal→ SheepNoise·, EOF], [SheepNoise→ SheepNoise· baa, EOF], [SheepNoise→ SheepNoise→ baa, baa]}
    S<sub>2</sub> = Goto(S<sub>0</sub>, baa) = { [SheepNoise→ baa·, EOF], [SheepNoise→ baa·, baa]}
    S<sub>3</sub> = Goto(S<sub>1</sub>, baa) = { [SheepNoise→ SheepNoise baa·, EOF], [SheepNoise→ SheepNoise baa·, baa]}
```

```
    O Goal → SheepNoise
    1 SheepNoise → SheepNoise baa
    2 | baa 28
```

Filling in the ACTION and GOTO Tables

The algorithm

x is the state number

```
\forall \ set \ S_x \in S \\ \forall \ item \ i \in S_x \\ if \ i \ is \ [A \rightarrow \beta \bullet \underline{a} \delta, \underline{b} \ ] \ and \ goto(S_{x,\underline{a}}) = S_k \ , \ \underline{a} \in T \\ then \ ACTION[x,\underline{a}] \leftarrow "shift \ k" \\ else \ if \ i \ is \ [S' \rightarrow S \bullet, \underline{EOF}] \\ then \ ACTION[x \ , \underline{EOF}] \leftarrow "accept" \\ else \ if \ i \ is \ [A \rightarrow \beta \bullet, \underline{a}] \\ then \ ACTION[x,\underline{a}] \leftarrow "reduce \ A \rightarrow \beta" \\ \forall \ n \in NT \\ if \ goto(S_x \ , n) = S_k \\ then \ GOTO[x,n] \leftarrow k
```

Many items generate no table entry

 \rightarrow Closure() instantiates FIRST(X) directly for $[A \rightarrow \beta \cdot X \delta, \underline{a}]$


```
S_0: { [Goal \rightarrow · SheepNoise, EOF], [SheepNoise \rightarrow · SheepNoise baa, EOF],
        [SheepNoise \rightarrow [ \bullet baa, EOF], [SheepNoise \rightarrow \bullet SheepNoise baa, baa],
        [SheepNoise\rightarrow | baa, baa]}
                                                         • before T \Rightarrow shift(k)
S_1 = Goto(S_0, SheepNoise) =
    { [Goal \rightarrow SheepNoise \cdot, EOF], [SheepNoise \rightarrow SheepNoise \stackrel{\cdot}{\triangleright} baa, EOF],
        [SheepNoise → SheepNoise · baa, baa] }
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}],
                                                                                 so, ACTION[s_0,baa] is
                                                                                 "shift S_2" (clause 1)
                                   [SheepNoise → baa ·, baa]}
                                                                                   (items define same entry)
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}], \}
                                 [SheepNoise → SheepNoise baa ·, baa]}
```



```
S<sub>0</sub>: { [Goal→· SheepNoise, EOF], [SheepNoise→· SheepNoise baa, EOF], [SheepNoise→· baa, EOF], [SheepNoise→· SheepNoise baa, baa], [SheepNoise→· baa, baa]}

S<sub>1</sub> = Goto(S<sub>0</sub>, SheepNoise) = { [Goal→ SheepNoise ·, EOF], [SheepNoise→ SheepNoise · baa, baa]}

S<sub>2</sub> = Goto(S<sub>0</sub>, baa) = { [SheepNoise→ baa ·, EOF], [SheepNoise→ baa ·, baa]}

S<sub>3</sub> = Goto(S<sub>1</sub>, baa) = { [SheepNoise→ SheepNoise baa ·, EOF], [SheepNoise→ SheepNoise baa ·, baa]}
```



```
S_0: { [Goal \rightarrow · SheepNoise, EOF], [SheepNoise \rightarrow · SheepNoise baa, EOF],
        [SheepNoise \rightarrow \cdot baa, EOF], [SheepNoise \rightarrow \cdot SheepNoise baa, baa],
        [SheepNoise→·baa, baa]}
S_1 = Goto(S_0, SheepNoise) =
    \{[Goal \rightarrow SheepNoise \cdot, EOF], [SheepNoise \rightarrow SheepNoise \cdot baa, EOF], \}
        [SheepNoise → SheepNoise · baa, baa]}
                                                                            so, ACTION[S1,EOF]
                                                                             is "accept" (clause 2)
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}],
                                 [SheepNoise → baa ·, baa]}
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}], \}
                               [SheepNoise → SheepNoise baa ·, baa]}
```



```
S_0: { [Goal \rightarrow · SheepNoise, EOF], [SheepNoise \rightarrow · SheepNoise baa, EOF],
        [SheepNoise \rightarrow \cdot baa, EOF], [SheepNoise \rightarrow \cdot SheepNoise baa, baa],
        [SheepNoise → · baa, baa]}
S_1 = Goto(S_0, SheepNoise) =
    { [Goal \rightarrow SheepNoise \cdot, EOF], [SheepNoise \rightarrow SheepNoise \cdot baa, EOF],
        [SheepNoise → SheepNoise · baa, baa] }
                                                                              so, ACTION[S2,EOF] is
                                                                              "reduce 3" (clause 3)
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}], \}
                                  [SheepNoise→ <u>baa</u> ·, <u>baa]</u>}
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}], \}
                                [SheepNoise → SheepNoise baa ·, baa]}
```



```
S_0: { [Goal \rightarrow · SheepNoise, EOF], [SheepNoise \rightarrow · SheepNoise baa, EOF],
         [SheepNoise \rightarrow \cdot \underline{baa}, EOF], [SheepNoise \rightarrow \cdot SheepNoise \underline{baa}, \underline{baa}],
         [SheepNoise→ · baa, baa]}
ACTION[S_3, EOF] is |e| =
"reduce 2" (clause 3) | \cdot |, EOF], [SheepNoise \rightarrow SheepNoise \cdot | \underline{baa}|, EOF],
         [SheepNoise \rightarrow SheepNoise \cdot baa, baa]}
                                                                                         ACTION[S_2,baa] is
                                                                                          'reduce 3" (clause 3)
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot \underline{FOF}],
                                     [SheepNoise→ baa ·, baa]}
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}], \}
                                 [SheepNoise→SheepNoise <u>baa</u> ·, <u>baa]</u>}
 ACTION[S_3,baa] is
 "reduce 2", as well
                                                                          ACTION[S_2, EOF] is
                                                                          "reduce 2" (clause 3)
```


The GOTO Table records Goto transitions on NTs

```
S_0: \{ [\textit{Goal} \rightarrow \cdot \textit{SheepNoise}, \underline{EOF}], [\textit{SheepNoise} \rightarrow \cdot \textit{SheepNoise} \underline{\text{baa}}, \underline{EOF}], \\ [\textit{SheepNoise} \rightarrow \cdot \underline{\text{baa}}, \underline{EOF}], [\textit{SheepNoise} \rightarrow \cdot \textit{SheepNoise} \underline{\text{baa}}, \underline{\text{baa}}], \\ [\textit{SheepNoise} \rightarrow \cdot \underline{\text{baa}}, \underline{\text{baa}}] \}
S_1 = Goto(S_0, SheepNoise) = \\ \{ [\textit{Goal} \rightarrow \textit{SheepNoise} \cdot \cdot , \underline{\text{EOF}}], [\textit{SheepNoise} \rightarrow \textit{SheepNoise} \cdot \underline{\text{baa}}, \underline{\text{EOF}}], \\ [\textit{SheepNoise} \rightarrow \textit{SheepNoise} \cdot \underline{\text{baa}}, \underline{\text{baa}}] \}
S_2 = Goto(S_0, \underline{\text{baa}}) = \{ [\textit{SheepNoise} \rightarrow \underline{\text{baa}} \cdot , \underline{\text{EOF}}], \\ [\textit{SheepNoise} \rightarrow \underline{\text{baa}} \cdot , \underline{\text{baa}}] \}
S_3 = Goto(S_1, \underline{\text{baa}}) = \{ [\textit{SheepNoise} \rightarrow \textit{SheepNoise} \underline{\text{baa}} \cdot , \underline{\text{EOF}}], \\ [\textit{SheepNoise} \rightarrow \textit{SheepNoise} \underline{\text{baa}} \cdot , \underline{\text{baa}}] \}
```

Only 1 transition in the entire GOTO table

Remember, we recorded these so we don't need to recompute them.

ACTION & GOTO Tables

Here are the tables for the augmented left-recursive SheepNoise grammar

The tables

ACTION TABLE			
State	EOF	<u>baa</u>	
0	_	shift 2	
1	accept	shift 3	
2	reduce 2	reduce 2	
3	reduce 1	reduce 1	

GOTO TABLE		
State	SheepNoise	
0	1	
1	0	
2	0	
3	0	

Remember, this is the left-recursive SheepNoise; EaC shows the rightrecursive version.

The grammar

O Goal → SheepNoise
 1 SheepNoise → SheepNoise baa
 2 | baa

What can go wrong?

What if set s contains $[A \rightarrow \beta \cdot \underline{a}\gamma, \underline{b}]$ and $[B \rightarrow \beta \cdot ,\underline{a}]$?

- First item generates "shift", second generates "reduce"
- Both define ACTION[s,a] cannot do both actions
- This is a fundamental ambiguity, called a shift/reduce error
- Modify the grammar to eliminate it

(if-then-else)

Shifting will often resolve it correctly

What is set s contains $[A \rightarrow \gamma^{\bullet}, \underline{a}]$ and $[B \rightarrow \gamma^{\bullet}, \underline{a}]$?

- Each generates "reduce", but with a different production
- Both define ACTION[s,a] cannot do both reductions
- This is a fundamental ambiguity, called a reduce/reduce conflict
- Modify the grammar to eliminate it (PL/I's overloading of (...))

In either case, the grammar is not LR(1)

Shrinking the Tables

Three options:

- Combine terminals such as <u>number</u> & <u>identifier</u>, + & -, * & /
 - Directly removes a column, may remove a row
 - For expression grammar, 198 (vs. 384) table entries
- Combine rows or columns
 - Implement identical rows once & remap states
 - Requires extra indirection on each lookup
 - Use separate mapping for ACTION & for GOTO
- Use another construction algorithm
 - Both LALR(1) and SLR(1) produce smaller tables
 - Implementations are readily available

left-recursive expression grammar with precedence, see § 3.7.2 in EAC

classic space-time tradeoff

Is handle recognizing DFA minimal?

LR(k) versus LL(k)

Finding Reductions

 $LR(k) \Rightarrow$ Each reduction in the parse is detectable with

- → the complete left context,
- → the reducible phrase, itself, and
- \rightarrow the k terminal symbols to its right

generalizations of LR(1) and LL(1) to longer lookaheads

 $LL(k) \Rightarrow$ Parser must select the reduction based on

- → The complete left context
- \rightarrow The next k terminals

Thus, LR(k) examines more context

"... in practice, programming languages do not actually seem to fall in the gap between LL(1) languages and deterministic languages" J.J. Horning, "LR Grammars and Analysers", in Compiler Construction, An Advanced Course, Springer-Verlag, 1976

Summary

	Advantages	Disadvantages
Top-down recursive descent	Fast Good locality Simplicity Good error detection	Hand-coded High maintenance Right associativity
LR(1)	Fast Deterministic langs. Automatable Left associativity	Large working sets Poor error messages Large table sizes