COMPARISON OF THE ESTIMATED ITEM PARAMETERS OF SHIBA'S WORD/PHASE COMPREH. (U) TENNESSEE UNIV KNOXVILLE F SANEJIMA 13 DEC 85 RR-84-2 N00014-81-C-0569 F/G 5/10 AD-A164 186 1/4 UNCLASSIFIED NĿ

MICROCOPY RESOLUTION TEST CHART
DARDS-1963-A

COMPARISON OF THE ESTIMATED ITEM PARAMETERS OF SHIBA'S WORD/PHRASE COMPREHENSION TESTS OBTAINED BY LOGIST 5 AND THOSE BY THE TETRACHORIC METHOD

AD-A164 186

FUMIKO SAMEJIMA

UNIVERSITY OF TENNESSEE KNOXVILLE, TENN. 37996-0900

DECEMBER, 1984

Prepared under the contract number N00014-81-C-0569, NR 150-467 with the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

R01-1068-71-001-86

ME FILE COPY

Ë

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
ONR/Research Report 84-2	
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PF" DO COVERED
Comparison of the Estimated Item Parameters of Shiba's Word/Phrase Comprehension Tests	Technical Report
Obtained by LOGIST 5 and Those by the	6. PERFORMING ORG. REPORT NUMBER
Tetrachoric Method	S. CONTRACT OR GRANT NUMBER(s)
. AUTHOR(s)	
Dr. Fumiko Samejima	N00014-81-C-0569
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Personnel and Training Research Programs	
Office of Naval Research	·
Arlington, VA 22217	12. REPORT DATE
11. CONTROLLING OFFICE NAME AND ADDRESS	December 13, 1985
	13. NUMBER OF PAGES
	335
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	13a. DECLASSIFICATION/DOWNGRADING
	337022
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimi in whole or in part is permitted for any purpose government.	
Boveriment.	
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from	ca Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Operating Characteristic Estimation	
Tailored Testing Latent Trait Theory	
accine frace friendly	
20. ABSTRACT (Cantinue on reverse elde if necessary and identify by block number)	
(Please see reverse side)	
	·

Stimulated by Lord's suggestion that LOGIST 5 can be used for equating even when the number of linking items is small, it was tested on Shiba's Word/Phrase Comprehension Test data. Combinations of four tests and two tests, and also a single test with different numbers of examinees, were chosen, for which LOGIST 5 was applied. The resultant estimated item parameters were compared with those obtained by the tetrachoric method. Some consistency was found in the results of certain tests in preference to those of certain other tests. Layword hats; tobles (data); payed storgeral tests.

TABLE OF CONTENTS

3

5.5

8

3

77.75

		Page
I	Introduction	1
II	Three-Parameter Logistic Model and Logist 5	2
III	Empirical Data Based upon Shiba's Word/Phrase Comprehension Tests	5 °
IV	Tetrachoric Method	16
V	Estimated Item Parameters Based upon the Tetrachoric Method	17
VI	Scale Adjustment I	56
VII	Item Parameters Estimated by Logist 5	83
III	Scale Adjustment II	1 59
IX	Comparison of the Estimated Item Characteristic Functions Obtained As the Results of the Logist 5 and Those Obtained by the Tetrachoric Method	190
X	Discussion and Conclusions	288
	References	290
	Appendix	292

Acces	con Fo	r	
NTIS	GRA&I		WZ
DIFC :	IAB		
Unann	อนทรอส		
Justi	ficatio	n	
Ву			
Distr	ibution	1/	
Avai	labilit	y Co	des
	Avail	and/c	or
Dist	Spec	ial	
111		1	

COMPARISON OF THE ESTIMATED ITEM PARAMETERS OF SHIBA'S WORD/PHRASE COMPREHENSION TESTS OBTAINED BY LOGIST 5 AND THOSE BY THE TETRACHORIC METHOD

ABSTRACT

Stimulated by Lord's suggestion that Logist 5 can be used for equating even when the number of linking items is small, it was tested on Shiba's Word/Phrase Comprehension Test data. Combinations of four tests and two tests, and also a single test with different numbers of examinees, were chosen, for which Logist 5 was applied. The resultant estimated item parameters were compared with those obtained by the tetrachoric method. Some consistency was found in the results of certain tests in preference to those of certain other tests.

The research was conducted at the principal investigator's laboratory, 405 Austin Peay Hall, Department of Psychology, University of Tennessee, Knoxville, Tennessee. Those who worked for her as assistants include Paul S. Changas, Lisa Lambert, Richard Strouse, and Alecia P. Long

I. Introduction

K K

Ď

In applying latent trait theory, or item response theory, perhaps two of the most frequently used models for binary test items are Rasch model (Rasch, 1960) and three-parameter logistic model (Birnbaum, 1968). In particular, three-parameter logistic model has become more and more popular in the past decade because of the availability of computer programs for estimating the three item parameters which are represented by Logist 5 (Wingersky, Barton and Lord, 1982).

This computer program, Logist 5, can be used not only for the item parameter estimation in the three-parameter logistic model, but also in the (two-parameter) logistic model, by setting the third parameter equal to zero. It is well known (Birnbaum, 1968) that (two-parameter) logistic model provides us with a good approximation to the normal ogive model if we set the scaling factor D equal to 1.7.

In the present study, using empirical data for which normal ogive model was originally assumed, comparison was made between the estimated item parameters obtained by assuming the normal ogive model and those obtained by Logist 5 assuming the (two-parameter) logistic model. In some cases, item parameter estimation was also made by Logist 5 assuming the three-parameter logistic model, and comparison was extended to those results also.

Empirical data adopted here were taken from the test data provided by the courtesy of Professor Sukeyori Shiba of the University of Tokyo. They are based upon the performance of fifth through ninth

graders in Japan who took separate tests of Shiba's Word/Phrase
Comprehension Tests.*

II. Three-Parameter Logistic Model and Logist 5

Let & be the latent trait, or ability, and $P_g(\theta)$ be the item characteristic function of the multiple-choice test item g, or the conditional probability with which the examinee answers item g correctly, given ability θ . In the three-parameter logistic model, this item characteristic function is given by

(2.1)
$$P_{g}(\theta) = c_{g} + (1-c_{g}) \Psi_{g}(\theta)$$
,

where $\Psi_g(\theta)$ is the item characteristic function in the (two-parameter) logistic model, for which we can write

(2.2)
$$\Psi_{g}(\theta) = [1 + \exp{-Da_{g}(\theta - b_{g})}]^{-1}$$
,

with a_g (> 0) and b_g as the item discrimination and difficulty parameters, respectively, and D as the scaling factor which is usually set equal to 1.7. The third parameter, c_g , in (2.1) is the guessing parameter, which is originally defined as unity divided by the number of alternative answers presented with the multiple-

^{*} The author is obliged to Dr. Hiroyuki Noguchi of Tokyo Gakugei University as well as Professor Shiba for providing her with these data.

choice test item g. The model was originated from the assumption that the examinee either knows the answer to the question, or guesses randomly. Thus $P_g(\theta)$, or the operating characteristic of the binary item score $u_g=1$, given θ , is greater than $\Psi_g(\theta)$, which represents the conditional probability for the "knowledge." The discrepancy between the two functions is also a function of θ , i.e., $[1-\Psi_g(\theta)]$ divided by the number of alternatives.

Lord started calling this third parameter, c_g , pseudoguessing parameter, after he had discovered that for many multiple-choice test items the estimated guessing parameter, c_g , substantially differs from unity divided by the number of alternatives, when the three-parameter logistic model was adopted for those items (Lord, 1968). This fact itself seems to be enough evidence to invalidate the three-parameter logistic model with respect to those specific multiple-choice test items. Researchers who adopt this model claim, however, that there should not be any harm as long as the curve is used as an approximation to the true item characteristic function.

It should be noted that Samejima has pointed out (Samejima, 1973) that, unlike the normal ogive and the logistic models, three-parameter logistic model does not satisfy the unique maximum condition (Samejima, 1969, 1972), which indicates that for some response patterns the likelihood function $L_V(\theta)$, i.e., the operating characteristic of the response pattern, V, may not have a unique maximum. This fact implies that the third parameter, c_g , can be a

real nuisance, in the mathematical aspect of theory.

The item characteristic function in the normal ogive model is given by

(2.3)
$$\phi_g(\theta) = (2\pi)^{-1/2} \int_{-\infty}^{a_g(\theta-b_g)} \exp(-t^2/2) dt$$
,

where a_g (> 0) and b_g are the item discrimination and the item difficulty parameters, respectively. When the same values of parameters a_g and b_g are used in (2.2) with D = 1.7, the curve represented by (2.2) is very close to the one represented by (2.3) for the entire range of θ (Birnbaum, 1968).

Logist 5 is a computer program developed by Lord and others (Wingersky, Barton and Lord, 1982) for the purpose of estimating the item discrimination parameter a_g , the item difficulty parameter b_g and the guessing parameter c_g of each test item g (=1,2,...,n) following the three-parameter logistic model, as well as the individual ability parameter θ_g of each examinee s (=1,2,...,N). The method is based upon the maximum likelihood estimation, with the likelihood function,

(2.4)
$$L(U[\theta,A,B,C) = \prod_{s=1}^{N} \prod_{g=1}^{n} P_{g}(\theta_{s})^{u}gs \{1-P_{g}(\theta_{s})\}^{1-u}gs,$$

where u_{gs} is a binary item score of the examinee s for item g, U is an (nxN) matrix of the binary item scores u_{gs} , 9 is the vector of order N of the individual parameter θ_s , A, B and C

are the vectors of order n of the item parameters $\mathbf{a_g}$, $\mathbf{b_g}$ and $\mathbf{c_g}$, respectively. Those (3n+N) parameters are estimated iteratively through the four sets of likelihood equations, with programming devices for efficiency in their convergence.

Shiba's research on the measurement of word/phrase comprehension has been introduced earlier (Samejima, 1980). The battery of tests used for the construction of Shiba's word/phrase comprehension scale consists of thirteen tests, AP1, AP2, A1, A2, A3, A4, A5, A6, J1, J2, S1, S2 and U. Each of these thirteen tests contains thirty to sixty multiple-choice items, each of which has a set of five alternatives. These tests differ in difficulty, and each is designed for a different age group of subjects, ranging from four years of age to the ages of college students. There are subsets of items included in two tests, which are adjacent to each other in difficulty. For example, items 37 through 56 of Test Jl are also items 1 through 20 of Test J2. There are 480 test items in total, and their participation in different tests are shown in Table 3-1. The number of examinees used for the ability scale construction varies between 219 preschoolers for Test API and 924 second graders of senior high schools for Test Sl.

In the present study, four tests were chosen out of these thirteen tests, i.e., A5, A6, J1 and J2. The examinees who took these four tests in Shiba's original data are as follows.

TABLE 3-1
Distribution of the 480 Test Items of Shiba's Word/Phrase Comprehension Item Pool among Thirteen Different Tests.

								Item
S2	S1	J2	A4	A3	A2	Al	AP2	No.
000000000000000000000000000000000000000					00000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	123456789012345678901234567890123456789012345678901234567890123
			Tests A5 000000000000000000000000000000000000		A3 A4 A5 A6 • • • • • • • • • • • • • • • • • • •	A2 A3 A4 A5 A6 O<	A1 A2 A3 A4 A5 A6 O O O O O O O O O O O O O O O O O O O	API AP2 A1 A2 A3 A4 A5 A6 1
			A5 00000000000000000000000000000000000	A4	A3 A4 A5 ••••••••••••••••••••••••••••••••••••	A2 A3 A4 A5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1 A2 A3 A4 A5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AP1 AP2 A1 A2 A3 A4 A5 1
A6 J1 J2 S1 O O O O O O O O O O O O O O O O O O	A6 J1 J2				A3 ••••••••••••••••••••••••••••••••••••	A2	A1 A2 A3 A4 O O O O O O O O O O O O O O O O O O O	AP1 AP2 A1 A2 A3 A4 1
AP2 A1 A2 A3 A4 A5 A6 J1 J2 S1 0 <t< td=""><td>AP2 A1 A2 A3 A4 A5 A6 J1 J2</td><td>AP2 A1 A2 A3 A4 A5 A6 J1 O O O O O O O O O O O O O O O O O O O</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>000000000000000000012345678901234567890123456789000000000000000000000000000000000000</td><td></td><td></td></t<>	AP2 A1 A2 A3 A4 A5 A6 J1 J2	AP2 A1 A2 A3 A4 A5 A6 J1 O O O O O O O O O O O O O O O O O O O	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000012345678901234567890123456789000000000000000000000000000000000000		

TABLE 3-1 (Continued)

													
Item No.	AP1	AP2	ΑΊ	A2	А3	A4	Test A5	ks A6	JI	J2	S1	S2	U2
64 65 66 67 68 69 70 71 72 73 77 77 78 79 81 82 83 84 85 86 87 89 99 91 97 97 97 97 97 97 97 97 97 97 97 97 97	000000000000000000000000000000000000000		21 22 23 24 25 26 27 28 29 31 33 34 35 36 00 00 00 00 00 00 00 00 00 00 00 00 00	00000000000000011213145167189012222222222331	0000000000000001234567800000003345567	4	000000000000000000000000000000000000000	A6			000000000000000000000000000000000000000		000000000000000000000000000000000000000
100 101 102 103 104 105 106 107 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	000000000000000000000000000000000000000			313340000000000000000000000000000000000	378 389 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			000000000000000000000000000000000000000					

THE PROPERTY OF THE PROPERTY O

ř

TABLE 3-1 (Continued)

[tem							Test	:s					
No.	API	AP2	A٦	A2	A3	A4	A5	A6	Jì	J2	SI	S2	U2
130 131	00	00	0	00	18	0	00	00	0	00	00	00	00
132	0	0	0	٥	20	0	٥	٥	0	0	٥	0	0
.33 .34	0	0	0	0	21 22	0	0	Q.	0	0	0	0	0
15 16	0	о. Ф	0	0	23 24	0	0	0	0	0	0	0	0
7 8	0	0	Ö.	0	25 26	1 2	Ŏ.	ò	0	Ö	ò	ò	ò
•	0	0	0	•	27	3.	0	٥	0	0	0	0	0
	0	0	0	0	2 8 29	· 4	0	0	0	0	0	0	0
	0	0	0	0	30 31	6	0	0	0	0	0	0	0
	0	0	0	ø	32	7 8	0	0	0	0	0	0	0
	0	0	0	0	0	9 10	0	0	0	0	0	0	0
	0	0	0	0	0	11	a.	0	0	0	0	0	0
	0	0	0	0	0	13	O .	0	0	0	0	0	0
	0	0	0	0	0	14	o o	0	0	0	0	0	0
•	0	0	0	0	0	16	0	0	0	0	0	0	0
	0	0	0	0	٥	18	٥.	0	0	0	0	0	0
	0	0	0	0	0	19	0	0	0	0	0	0	0
	0	0	0	o a	0	21 22	0	0	0	0	0	0	0
	0	0	0-	0	0	23	•	_ 0	0	0	Œ	0	0
	0	ф. Ф	0	0	0	24 25	. 0	Ø:	0	0	0	0	0
	0	0	0	0.	.0	26 27	2	0	0	0	0	0	0
	0	0	0	0	0	28	4	0	0	0	0	0	0
	0	0	0	0	0	2 9 30	3	0	0	0	0	0	0
	0	0	0	0	0	31. 32	7	0	0	0	0	0	0
	0	0	0	0	0	33	9	Q .	0	0	0	0	Q
	0	0	0	0	0	34 35	10 11	0	0	0	0	0	0
į	0	0	0	0	0	36 37	12	0	. 0	0	0	0	0
	0	0	0	0	0	38	14	0	0	0	0	0	0
	0	ပ ၇	0	0	0	39 40	15 16	0	0	0	0	0	0
	0	0	0	0	0	0	17 18	0	0	0	0	0	0
	0	0	0	0	0	0	19	0	0	0	0	0	0
	0	0	0	0	0	0	20 21	0	0	0	0	0	0
	00	0	0	0	0	0	22 23	0	0	0	0	0	0
ĺ	0	0	0	0	0	0	24	0	0	0	0	0	0
	00	0	0	0	0	0	25 26	0	0	0	0	0	0
	0	0	0	0	0	0	27 28	0	0	0	0	0	0
	0	o	0	0	0	٥	29	0	0	0	0	0	0
ĺ	0	0	0	0	0	0	30 31	0	0	0	0	0	0
	O	0	0	0	0	0	32 0	0	0	0	0	Ö	0
ļ	()												

Ä

333

5.5

Ď

378 JAG

2

TABLE 3-1 (Continued)

Item							Test	ts				-	
No.	AP1	AP2	Α٦	A2	A3	A4	A5	A6	Jl	J2	S 1	S2	U2
196	0	0	0	0	0	0	0	00	6	0	76	00	00
197	lö	ŏ	ŏ	o.	ŏ	ö	ŏ	ŏ	0	0	0	0	ŏ
199	0	•	0	0	o.	Ò	a	0	0	0	Ó	ō	0
200 201	0	0.	0	0	0	0	0	0	0	0	0	0	0
202	0	0	0	0	٥	G.	ā	0	ŏ	ŏ	ŏ	ŏ	0
203	0	0	Q.	0.	0	0.	0	œ	œ	œ	0	0	Q
204 205	0	•	o.	Ö	9	•	ŏ	ŏ	0	0	0	0	0
206	0	0.	0	•	0	0	0.	0	0	0	•	0	•
207 208	0	0	0	0	0	0	0	0	0	σο	0	0	0
209	0	0	0	O.	0	0	0	ō.	ŏ	Ŏ.	ŏ	ŏ	ŏ
210 211	0	0	O .	0	. 0:	0:	33	Q L	. 0	0	0	0	0
212	0	Ö.	o.	ŏ	ŏ	ŏ	34	2	0	0	0	0	ŏ
213	0	0	0	0	0	•	35	3	0	0	0	0	0
214 215	0	. 0	0	0	0	0.	36. 37	. 4	0	0	Ø. O.	0	0
216	ŏ	·ŏ	ŏ	ŏ	ŏ	ŏ	38	š	ŏ	ŏ	Ŏ.	ŏ	ŏ
217	0	0	Œ	0	0	٥	39	7	0	0	0	0	0
218 219	0	0	0	. 0	٥	0	40 41	8 9	0	0	0	0.	0
220	0	•	0	0	0	0	42	10	0	0	Q	0	0
221 222	0	0	0	0	Q :	Q:	45	11.	0	0	0	0	0
223	ŏ	٥	ŏ	Ŏ	ŏ	0	45	13	ð	ŏ	ŏ	ŏ	0
224 225	0	0	0	Q.	0	0	46:	15	0	0	ō.	0	0
226	6	Ö	ŏ	0	0	Œ.	48	16	0	0	0	0	0
227	0	0	0	Q.	0	0	.a	17	0	0	Ġ.	0	Φ.
228 229	0	0	0	0.	0	0. 0.	O	19	0	0	0	0	0
230	0	Œ	0	O:	0	•	0	20	0	0	Q .	0	Q
231 232	0	0	0	0	0	0	Q.	21 22	0	0	0	0	0
233	ŏ	0	0	0	ă	Ò.	Ğ	23	ŏ	ò	ā.	ă	ŏ
234	0	0	0	0	0	0	0	24 25	0	0	Q	0	0
235 236		0	Ö	ŏ	o.	0	0	25	0	0	0	0	0
237	0	0	0	0	O.	0	0	27	Ó	0	0	0	0
238 239	0	0	0	0	0	o o	0	2 8 29	0	0	0	0	0
240	0	0	0	0	o	0	0	30	Ō	0	0	0	٥
241	0	0	0	0	0	0	0	31	O.	0	0	0	0
242 243	0	0	0	ŏ	0	0	0	32 33 34	0	0	0 0 0	0	ŏ
244	0	0	0	0	0	0	0	34	0	0	0	0	0
245 246	0	0	0	000000	0	ŏ	0	35 36	0	0	ò	0	ŏ
247	0	0	0	0	0	0	0	37 38	0	Ó	0		0
248 249	00	0000	0	0	0	0	00000	38 39	0	0	0	0	0
250	0	o	0	Ŏ	0	ŏ	ŏ	39 40	0	ŏ	ŏ	ŏ	ō
251	0	0	0	0000000000	0 0 0	0	0	41 42	1 2 3 4	0000000	0000000000	000000	0
252 253	0	0	0	ŏ	ŏ	ŏ	0	43	3	0	ŏ	ŏ	ŏ
254 255	0	0	0	0	0	0	0	44	.4	0	0	0	0
256	0	0	0	ŏ	0	0	0	45 46	5	0	Ö	0000	ŏ
257	0	0	0	0	0	0	0	47	7	0	0	0	0
258 259	0	0	0	0	0	000000000000000	0	48 49	8 9	0	000	0	000000000000000000
260	0	0	0	0	0		0	50	10	0		0	Ó
261		0	0	0	. 0	0	0	51	11	. 0	0	0	0

TABLE 3-1 (Continued)

Item No.	_						Test	.s					
	AP1	AP2	Al	A2	A3	A4	A5	A6	Jl	J2	S1	S2	U2
262	0	0	0	0	0	0	0	52 53	12	00	0	0	00
263 264	°	0	Ŏ.	3	ö	Q	ŏ	54	14	ö	ŏ	ŏ	0
245 244	°	0	0	0	0	G	0	55 56	15 16	0	0	0	0
267	Ĭ	0	•	0	O.	0	O:	•	17	0	•	0	0
26 8 26 9	0	a o	0:	0	Q.	0	Q.	ο. α	18	0	0	0	o o
270	0	0	Q.	0	Q :	0	a	0	20	Q.	0	0	0
271. 272.	0	0	0	0	0	.0	Ø	0	21:	0.	0	0	0
273	0	0	0	0	0.	Q:	0	0	23	٠	0	0	٥
274 275	0	0	0	O	0	О. О.	Q.	0.	24 25	0	0	0	0
276	0	0	•	0	0	0	0	0	. 26	0	0	0	0
277 278	0	œ o	0	0	0	0	Q:	0	27 28	0	0	Q O	0
279	0	•	0	٥	0.	Q.	Q :.	· 0:	29	Q.	0	0	0
280 281	0	0	0	0	0	Q:	0	0	30 31	0	0	0	0
282	0	0	•	0	. 0	0	0	0	32	0	0	0	0
283 284	0	0	0	0	0	0	0.	0	33 34	0	0	0	0
285	0	. 0	0	0	•	0	0	0	35	0	0	0	0
284 287	0	0	9	0	0	0	0	0	36. 37	0	0	0	0
288	0	0	0	0	0	. 0.	0	0	38	2	٥	0	0
289 290	0	0	0	0	0 .	0 -	0	0	39 40	3 4	0	0	0
291	0	0	. 0	Q.	Q :	Q:	0	a	41	5	0	0	- Q
292 293	0	0	0	OS O	0	0	0	- 0	42. 43	6 7	0	0	0
294	0	0	0.	0	0	•	0:	a a	44	8	0	0	. 0
295 296	0	0	0	0	0	0	0.	0	45 46	9 10	0	0	0
297	0	0	0	0	0	0	0	0	47	11	0	0	0.
298 299	0	0	0	0	0	ŏ	0	0	48 49	12	0	ŏ	0
300 301	0	0	0	0	0	Q. 0	0	0	50 51	14	0	0	0
302	0	0	0	0	0	0	0	•	52	16	0	0	0
303 304	0	0	0	0	0	0	0.	Ø. 0	53 54	17 18	0	0	0
305	0	0	0	0	0	0	0	0	55	19	0	0	0
306 307	0	0	0	0	0	0	0	0	56 0	20 21	0	0	0
308	0	0	0	o	0	0	0	0	0	22	0	0	0
309 310	0	00000000	0	0 0 0	0	0	0	0	0	23 24	0	00000000	0
311	0	ŏ	ŏ	ŏ	0	å	ŏ	0	0	25	0	ŏ	ō
312 313	0	0	0	0	0	0	0	0	0	28 27	0	0	0
314	0	Ó	0	0	0	0	٥	0	0	28	0	0	0
315 316	0	0	0	0	0	0	0	0	,0	29 30	0	0	0
317	0 0	Ó	0	Ō	0	0	0	0	0	31	0	0	0
318 319 320	8	0	0	0	0	0	0	0	0	32 33	0	0	0
320	0	Ó	0 0 0	0000000	o	0000000000000	0 0 0	0	Q	34	0	0	000000000000
321 322	0	0	0	0	0	o o	0	0	0	35 36	0	0	0
323	0	O	0	0	0	o	`0	0	0	37	٥	0	o
324 325	0	0	0	0	0	0	0	0	0	38 39	0	0	o o
326 327	0	0	3	Ó	0	0	Ô	0	0	40 41	0	0	0

inness received thereese reservation

CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE

TABLE 3-1 (Continued)

Item							Test						
No.	APT	AP2	A1	A2	A3	A4	A5	A6	JI	J2	S 1	S2	U2
328 329	00	0	00	0	00	00	00	00	00	42 43	3	0	00
330	ŏ	ö	ö	ŏ	ŏ	ŏ	0	ŏ	ŏ	44	4	ŏ	ŏ
331 332	00	0	0	0	0	0	0	0	0	45 46	5	0	0
333	O	0	Ŏ.	0	0	0	0	. 0	Ğ	4 次	7	ŏ	0
334 335	, O	0	0	0	0	0	0	0	0	48: 49:	8	0	0
335 336	ŏ	ŏ	Ö	ŏ	ŏ	0	0	0	· ŏ.	50	to	ŏ	Ŏ.
337 338	00	0	0	0	0	0	0	0	0	51 52	11:	Q	0
339	ŏ	0	ö	0	ŏ	0	0	0	•	53	13	0	ø
340 341	0	0	0	0	0	0	0	0	Q.	54. 55	14	0	0
342	0	0	0	ŏ	0	0	0	0	•	56	16	0	0
343 344	0	0	0	0	0	0	0	0	0	57 58	17	0	a o
345	0	0	0	0	0	0	0	ŏ	ŏ	59	19	0	0
346 347	00	0	0	0	0	0	0	0	Q.	60	20	0	0
348	ŏ	0	0	0	ŏ.	0	0	0	0	•	0	ŏ	0
349	0	0	0	0	0	0	0	0	Q Q	0	0	0	0
350 351	0	0	0	ŏ	0	ŏ	0	0	ŏ	ŏ	ŏ	ă.	ŏ
352	0	0	0	0	0	0	0	0	0	Q .	0	0	0
353 354	0	0	0	0	0	Ö	0	ŏ	a a	Q.	0	0.	0
355	0	Ö	:0	0	0	0	0	0 20	0	0	0	0	O "
356 357	0	0	0	0	ŏ	Ö	0	0	0	0	0	0	0 0.
358	0	0	0	0	0	0	•	0	0	0	Œ	0	Q.
359 360	0	0	0	0	0	0	0	0	o a	Œ	0	0	ø
361	0	0	0	0	. 0	0	٠ ٥	0	0	O O	21 22	0	0
362 363	٥	Ö	ŏ	ŏ	ŏ	Ď	0 .	ŏ	ŏ	ò	23	ŏ	0
364	. 0	0	10	0	0	0	0	. 0	0	Œ.	2 4 2 3	0	0
365 366	0	ŏ	0	- O	0	ö	. •	ŏ	0	0	26	Ö	ö
367 368	0	. 0	ô	0	0	O O	0	0	0	0	27 28	0	0
369		ŏ	0	0	0	·Õ	•0	0	0	ŏ	29	Ö	0
370 371	0	0	0	0	0	0	٥. ٥	-0	0	0	30 31	0	0
371 372	ŏ	ö	0	0	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	32	ŏ	٥
373	0	0	0	0	0	0	0	0	0	0	33	0	0
374 375 376	0	ö	ŏ	ö	ŏ	0 0 0	ŏ	ŏ	0	0	34 35 36 37	0	ŏ
376	0	0	0	0	0	0	0	0	0	0	36	0	0
377 378	0	Õ	0	0	. 0	0	Ö	0	0	0	38	0	· ø.
379	0000000	0	0	0	0	0	0	0	0000000000	000000	39 40	0	0
380 381	0	0	Ö	0	0	0	0	ő	0	0	41	0	0
382 383	0	Ó	0	Ó	0	0	0	0	Ó	Ó	42 43	2	0
383 384		0	0	0	0	.Q.	. 0	0	0	0	43 44	1 2 3 4	0
385	Ŏ	ō	ō	ŏ	Ö	ō	ŏ	ō	ō	0	45	5	ō
386 387	0000	00000000000000	00000000000000000	00000000000000	0000000000000	000000000000	00000000000000000	000000000000000	0	0	46 47	6 7	000000000000000000
388	Ŏ	ŏ	ŏ	0	ŏ	ŏ	ŏ	ŏ	ŏ	0	48	8	ŏ
389	00	0	0	0	000	0	0	0	0000	0	49 50	9	o o
390 391	0	0	ŏ	0	0	0	ŏ	0	ŏ	0	51	11	ŏ
392 393	0	0	0	0	0	0	0	0	0	0	52 53	12 13	0

TABLE 3-1 (Continued)

Item							Test	ts.					
No.	AP1	AP2	A1	A2	A3	A4	A5	A6	Jl	J2	S1	S2	U2
394	0	0	Q:	0	0	0	0	Ō	0	0	54	14	0
395	0	0	Ŏ:	a	0	0	0.	Ō.	0	0	55	15	0
396 397		0	0	Q.	0	0	0	O	0	0	56 57	16	0
398	l ŏ	Ŏ.	ō	Œ	Ō.	ā	ŏ	Q.	ō	ō.		18	Ŏ.
399	0	0	Œ	0.	0	0	G	0	0	0	59	19	Q.
400	0	0	Q.	Œ	O -	O.	0.	O:	O .	0	60	20 21	о О
401 402	0	ŏ	o:	Ğ	ă.	ŏ	ŏ	ŏ	•	ŏ	•	22	ŏ
403	0	٥	01	Œ	• 0-	0	•	٥	0-	0	0	23	0
404	0	0	0	0	0	0	0	0	O.	0	0: 0:	2 4 25	0
405 404	0	0	0	0: 0	٥	0	0	ò	0	å	ö	26	Ö
407	Ŏ	ŏ	ō	Ŏ.	Q.	ō	Ŏ	ŏ	ğ	Q.	Ŏ	27	ŏ
408	0	0	0	0.	a	0	0	0.	'0	0	0	29	0
409		0	0	Or Or	0	0	0	0	0	0	0	29 30	0
410 411	1 0	ŏ	ă	Œ	ă	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	31	ŏ
412	0	0	o	0	Q .	0	0	Q -	O-	Q	0	32	0
413	0	0	0	0	0	0	0	0	0	0	0	33	٥
414	0	0 .	0	():	0	o o	0	0	.0	0	0	34 35	0
415 416	1 0	ŏ	ŏ	Õ	٥	ŏ	Ŏ.	ŏ	Ŏ.	ō.	ŏ	36	ŏ.
417	0	0	0	a	. 0	0	0	0	0	٥	0	37	0
418		0	Q.	Q O	0	0	0	0 .	0	0	0	38	o o
419 420	1 0	Ö	•	ŏ	ō.	ď	•	0	ŏ	å	ŏ	40	ŏ
421	0	ŏ	Œ	œ	Ŏ.	Ŏ.	Ō.	0	Ö	ō	ā	41	1
422	0	0	O -	Q	Q.	0	Q.	0	.0	0	0	42	2
423 424	0	0	Q.	Q.	0	o o	O -	0	0	0	. 0	43 44	3 4
425	l ŏ	ŏ	ŏ	· ŏ	Ŏ.	ŏ	ŏ	₸0.	ā.	œ	ŏ	45	5
426	0	0	0	0	0	0	0	O.	0	0.	O.	46	6
427	0	0	o Œ	a	0	0	0	0	Q O	0	0	47 48	7 8
428 429	0	ŏ	Ò	ò	ò	ŏ	0	Ö	ŏ	ŏ	ŏ	49	9
430	0	ō	Ŏ.	ď	ġ.	O.	٥	٥	0	0	0	50	10
431	0	0	0.	a	O.	0	0	0.	0	0	0	51	11
432 433	0	0	0	Q.	0	0	0	0	0	0	O O	52 53	12 13
434	0	ŏ	ā.	ā	ŏ	ŏ	Ō.	ā	0	ŏ	. 0	54	14
435	0	0	0	0	0	0	0	0	0	0	0	55	15
436 437	0	0	0	0	0	0	0	0	0	0	0	56 57	16 17
438	0	Š	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ŏ.	ŏ	ŏ	58	18
439	0	0	0	0	0	0	0	0	0	0	0	59	19
440 441	. 0	0	0	0	0	0	0	0	0	0	0	60	20 21
442	0	ö	0	ŏ	0	a	0	0	ŏ	0	0	ŏ	21 22 23 24 25 26 27 28
443	10	0	0	Q	0	0	0	0	0	0	0	0	23
444	0	0	0	0	0	0	0	0	0	0	0	0	24
445 446	0	0	0	Q.	0	0	Ö	ŏ	Q.	0	ď	ŏ	26
447	0	0	0	Ó	0	0	0	0	0	0	o	o	27
448	0	0	0	. 0	0	0	0	0	0	0	0	0	28
449 450	0	0	O.		0	0	0	000000	0	0	0	000000000	29 30
450	0	ó	0	ŏ	0	0	0	ŏ	0	0	0	0	31
452	10	0	0	0	0	0	0	0	0	9	0	0	32
453	0	0	0	000	0	0	0	0 0 0	0	0	0	0	33 34
454 455	0	0	0	0	0	0	0	0	ő	Ö	Ö	ö	3 4 35
456	0	O	0	0	0	0	0	ŏ	0	0	0	0	36
457	0	9	0	0	0	0	0	0	0	0	0	0	37 79
458 459	0	0	0	0	0	0	0	0	0	0	ი ა	0	38 39

-13-

TABLE 3-1 (Continued)

Item							Test	ts					
No.	API	AP2	A1	A2	A3	A4	A5	A6	Jl	J2	S1	S2	U2
460	0	0	0	•	0	0	0	0	•	0	0	0	40
461	0	0	Q.	0	0	0	0-	0	0	0	0	0	41
462	0	0	0	O.	0	0	0	. 🔾	0	0	0	0	42
463	0	0	O.	0	O ·	0	٥	0	0	0	0	0	43
464	0	0	Φ.	0	0	0	0	0:	0	Ο.	. 0	•	44
465	0	a	0	Q.	0	Q	O.	0	0	0	0	0	45
466	0	σ	O'	٥.	•	0	•	Q.	0	٥.	0	0.	46
467	0	Œ	•	Q.	Q	Q.	0	Œ	Q:	O	α	O :	47
448	0	0	0	0	O.	0:	O	•	0.	0 -	0	Q.	48
469	1 0	Q	0	O-	O .	•	•	•	•	•	Œ	•	49
470	0	0	0	0	Œ	O.	0	Q.	Œ	0	0	Q.	50
471	0	œ	0	•	0	Q.	٥	Œ	• •	Φ.	0:	0	51
472	0	0	0	•	0	Q:	Œ	0	Q.	0	O:	0	52
473		Ò	` 0	0	Œ	O	Q,	0	Œ	0	0	0	53
474	0	0	a.	Q.	a	0	٥	0	.0	0.	0	•	54
475	0	0	0	O.	O.	Q	0	0	.0	0	Q.	0,	55
476	0	0	0	•	Q.	Ø.	a.	0	0	0	0	0	54
477		0	Q	0	0	0	•	0	0	O	0	0	57
478	0	0	0	0	0	0	Q.	0	0	0	O:	0	0
479	0	0	0	0:	0	0	O.	O .	0	0	0.	0	0
480	la	· 0.	Q	0	. 0	0:	0	0	0	Q	0	٥	0

Test A5: 599 fifth graders in elementary schools
Test A6: 412 sixth graders in elementary schools
Test J1: 614 first graders in junior high schools
Test J2: 758 third graders in junior high schools

For convenience, hereafter, we shall call these groups of examinees and their performances A5/0599 Case, A6/0412 Case, J1/0614 Case and J2/0758 Case, respectively. There are also 461 second graders in junior high school who took Test J1 in Shiba's original data. In order to increase the number of examinees, this group of 461 subjects and their performances were added to the J1/0614 Case, to provide us with the J1/1075 Case. This case was further joined by an additional group of 1,184 students of four different junior high schools in Tokyo, to whom Test J1 was adminis: in some other research of Shiba's. We shall call this large: group of examinees and their performances J1/2259 Case. Thus we have six cases in total, with three of them partly overlapping.

When the item parameter estimation was made by Logist 5, in some cases two or more tests and the corresponding samples of examinees were combined, in order to increase the number of test items and hence to improve the accuracy of estimation. Table 3-2 presents the resulting combinations of tests and the numbers of examinees, as well as other additional information. Since there are overlapping test items between two adjacent tests, such as Tests A5 and A6, for example, the Lotal number of items is less than the sum of the numbers of items in the separate tests, when two or more tests are combined. As for the numbers of examinees, in all the combined cases they are the direct sums of the separate cases. Thus when Tests A5 and A6 are

I

Ž

TABLE 3-2

Tests, Numbers of Items, Numbers of Examinees And Other Information for Thirteen Different Cases.

		Original		No. of
Test(s)	No. of Examinees	No. of Items	Excluded Items	Items Included
A5	599	48	3,13,17	45
A6	412			56
J1				55
J2	758	60	2	59
J1	1,074	56	38	55
J1	2,259	56	38	55
A5.A6	1.011	88	•=	88
				96
				168
			38	55
Jī		56	38	55
J1		56	38	55
	2,259	56	38	55
	A5 A6 J1 J2 J1 J1 A5,A6 J1,J2 A5,A6,J1,J2	A5 599 A6 412 J1 614 J2 758 J1 1,074 J1 2,259 A5,A6 1,011 J1,J2 1,833 A5,A6,J1,J2 2,844 J1 1,075 J1 1,075 J1 2,259	A5 599 48 A6 412 56 J1 614 56 J2 758 60 J1 1,074 56 J1 2,259 56 A5,A6 1,011 88 J1,J2 1,833 96 A5,A6,J1,J2 2,844 168 J1 1,075 56 J1 1,075 56 J1 2,259 56	Test(s) No. of Examinees No. of Items Excluded Items A5 599 48 3,13,17 A6 412 56 J1 614 56 38 J2 758 60 2 J1 1,074 56 38 J1 2,259 56 38 A5,A6 1,011 88 J1,J2 1,833 96 A5,A6,J1,J2 2,844 168 J1 1,075 56 38 J1 1,075 56 38 J1 2,259 56 38

combined, the 1,011 examinees are the sum of the two subject groups of 599 and 412 examinees in the A5/0599 and A6/412 Cases; when Tests J1 and J2 are combined, the 1,833 examinees are the sum of the two subject groups of 1,075 and 758 examinees in the J1/1075 and J2/758 Cases; and, when Tests A5, A6, J1 and J2 are combined, the 2,844 subjects are the sum of the four subject groups of 599, 412, 1,075 and 758 examinees in the A5/599, A6/412, J1/1075 and J2/758 Cases.

IV. Tetrachoric Method

It has been observed that, when the group of subjects is an unselected sample from, say, an age group of subjects, in a certain geographical area, normal assumption tends to fit well for the joint distribution of response tendencies (e.g., Samejima, ONR/RR-84-1). Thus we can use the (nxn) tetrachoric correlation matrix based upon the response tendencies behind the n test items and factor analyze the result to confirm the unidimensionality of the underlying latent trait. If it is confirmed, then the estimates of the item discrimination and item difficulty parameters, a_g and b_g , in the normal ogive model will be given by

(4.1)
$$\hat{a}_g = \rho_g (1-\rho_g^2)^{-1/2}$$

and

$$(4.2) \qquad \hat{b}_g = \hat{\gamma}_g \rho_g^{-1} \qquad ,$$

where $\rho_{\mathbf{g}}$ is the factor loading of item \mathbf{g} on the first common

factor and $\hat{\gamma_g}$ is the normal deviate corresponding to the proportion-correct \hat{p}_g of item g , or we can write

(4.3)
$$\hat{y}_g = \phi^{-1}(1-\hat{p}_g)$$

17.

P

with Φ^{-1} representing the inverse function of the standard normal distribution function.

For brevity, we shall call this method for estimating the item parameters a_g and b_g in the normal ogive model <u>Tetrachoric Method</u>. It has been shown (Samejima, ONR/RR-84-1) that this method can be used in selecting Old Test items in the non-parametric estimation of the operating characteristics, with additional procedures for validating the normal assumption and so forth.

V. Estimated Item Parameters Based upon the Tetrachoric Method

In his original research (Shiba, 1978) Shiba used the Tetrachoric Method in estimating the item parameters. Tables 5-1 through 5-4 present the estimated item parameters of each test item of Tests A5, A6, J1 and J2 obtained by Shiba. Those values were based upon the four separate scales of θ , whose origins and units are adjusted to the means and standard deviations of the separate ability distributions of the A5/0599, A6/0412, J1/0614 and J2/0758 Cases, respectively. In these tables and throughout the rest of the paper, in order to avoid confusion, each item number is preceded by the name of the test. Thus item A501 indicates item 1 of Test A5, item A604

 \hat{b}_{g}

-0.042 -0.675

-0.619 0.780 0.346 2.068 0.505 1.015

			_		
Item g	âg	ĥg	_	Item g	âg
A501 A502	0.643 0.467	-1.737 -2.882		A541 A542	0.547 0.436
A503	0.571	1 410		A543 A544	0.555 0.755
A504 A505	0.571 0.664	-1.412 -1.881		A545	0.709
A505 A506	0.437	-1.349		A546	0.218
A507	0.424	-0.077		A547	0.289
A508	0.683	-1.135		A548	0.416
A509	1.061	-1.360			
A510	0.593	-0.020	-		
A511	0.461	-1.481			
A512	0.594	-1.273			
A513	0.777	1 100			
A514	0.777	-1.190 -1.682			
A515 A516	0.450	1.830			
A517		1.630			
A518	0.339	-1.995			
A519	0.639	-1.282			
A520	0.350	-2.636			
A521	0.569	-1.275			
A522	0.444	0.296			
A523	0.075 ▲	7.376▲			
A524	0.392	-1.451			
A525	0.810	-1.398			
A526 A527	0.777 0.076 ▲	0.130 0.925			
A528	0.416	1.015			
A529	0.494	0.429			
A530	0.543	-1.069			
A531	-0.050 ▲	-26.476 ▲			
A532	0.477	1.184			
A533	0.686	-1.096			
A534	0.791	-1.467			
A535	0.520	-0.520			
A536	0.656	-0.146			
A537 A538	0.468 0.930	-0.755 0.103			
A536	0.658	-0.146			
A540	0.378	0.226			
,,5,70	1 3.3,0	J. L.L.			

Ë

K

A640

0.561

0.245

TABLE 5-2 Estimated Item Discrimination Parameter \hat{a}_g And Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test A6 Obtained by the Tetrachoric Method. (Results Provided by the Courtesy of Professor Shiba.)

				10163301 Shipe	• •
Item g	âg	в̂ _g	Item g	âg	в̂д
A601	0.664	-1.862	A641	0.628	0.564
A602	0.517	-2.699	A642	0.673	-0.967
A603	0.776	-1.028	A643	0.707	-0.520
A604	0.581	-1.115	A644	1.132	-0.040
A605	0.596	-0.664	A645	0.472	0.117
A606	1.143	-0.877	A646	0.501	-0.447
A607	0.745	-0.653	A647	0.566	0.792
A608	0.564	-0.204	A648	0.733	-1.590
A609	0.558	-0.431	A649	0.458	-0.432
A610	0.492	-1.132	A650	0.579	0.040
A611	0.660	-0.200	A651	0.611	-0.595
A612	0.794	-0.466	A652	0.281	-0.740
A613	1.085	-0.272	A653	0.572	-0.363
A614	0.519	0.564	A654	0.232	2.918
A615 A616	0.310	0.067	A655	0.838	-0.031
A617	0.570	0.242	A656	0 .498	-1.099
A618	0.818	-1.422			
A619	0.499 0.561	-0.919			
A620	0.925	-0.920			
A621	0.803	-0.206			
A622	0.546	-0.639 -1.524			
A623	0.452	-1.238			
A624	0.552	-2.028			
A625	0.402	-1.607			
A626	0.508	-0.728			
A627	0.325	-0.097			
A628	0.215	-2.900			
A629	0.626	-0.264			
A630	0.631	-0.656			
A631	0.591	-0.491			
A632	0.597	-1.189			
A633	0.383	-0.894			
A634	0.923	-1.504			
A635	0.707	-2.217			
A636	0.635	-1.455			
A637	0.475	-0.816			
A638	0.421	1.341			
A639	0.034	22.634▲			

	<u> </u>		<u> </u>			
Item g	âg	ĥg		Item g	âg	ĥ _g
J101	0.668	0.072		J141	0.549	-0.894
J102	0.599	-0.817		J142	0.400	0.566
J103	0.664	-1.013		J143	0.620	-0.190
J104	0.727	-0.79 9		J144	0.452	-0.510
J105	0.686	-0.301		J145	0.798	-0.401
J106	0.475	-0.815		J146	0.727	-0.051
J107	0.497	0.090		J147	0.267	1.125
J108	0.809	-2.051		J148	0.542	0.231
J109	0.470	-1.011		J149	0.499	-0.224
J110	0.678	-0.517		J150	0.524	-0.237
J111	0.901	-1.329		J151	0.424	0.999
J112	0.521	-0.714		J152	0.309	0.847
J113	0.553	-0.930		J153	0.438	1.696
J114 J115	0.513	0.657		J154	0.100	5.150▲
J115	0.767	-0.279		J155	0.569	1.536
J117	0.406	-1.117		J156	0.630	1.313
J118	0.594	-0.880 -0.959			<u> </u>	
J119	0.659	-0.939				
J120	0.191	2.502				
J121	0.482	-0.967				
J122	0.524	-0.819				
J123	0.552	0.103				
J124	0.560	-1.863				
J125	0.567	-1.541				
J126	0.383	-0.727				
J127	0.531	-1.643				
J128	0.630	-1.144				
J129	0.812	1.174				
J130	0.379	-1.805				
J131	0.905	-0.447				
J132	0.454	0.0				
J133	0.614	-1.873				
J134	0.287	2.244				
J135	0.819	-0.205				
J136	0.371	0.374				
J137	0.580	0.0				
J138						
J139	0.362	1.321				
J140	0.403	0.107				

TABLE 5-4 Estimated Item Discrimination Parameter \hat{a}_g And Difficulty Parameter \hat{b}_g of Each of the 60 Items of Test J2 Obtained by the Tetrachoric Method. (Results Provided by the Courtesy of Professor Shiba.)

THE TRANSPORT OF THE PROPERTY OF THE PROPERTY

Item g	âg	в̂д	 Item g	âg	ĥg
J201 J202 J203 J204 J205 J206 J207 J208 J209 J210 J211 J212 J213 J214 J215 J216 J217 J218 J219 J220 J221 J222 J223 J224 J225 J226 J227 J228 J229 J230 J231 J232 J233 J234 J235 J236 J237 J238	âg 0.607 0.517 0.374 0.526 0.557 0.754 0.415 0.859 0.609 0.681 0.671 0.593 0.596 0.937 0.662 0.515 0.685 1.008 1.174 0.450 0.721 0.462 0.697 0.689 0.688 0.663 0.667 0.689 0.688 0.663 0.667 0.689 0.688 0.663 0.697 0.689 0.688 0.688 0.688 0.688 0.688 0.688 0.688 0.688 0.688	\$\hat{b}g\$ -1.485 0.327 -0.941 -2.126 -0.904 -1.329 -2.009 -0.936 -1.883 -0.906 -1.041 -1.079 -0.899 -0.263 -0.598 0.262 -0.106 -0.310 0.131 0.341 -0.650 -1.551 -0.682 -1.234 -0.653 -0.995 -1.387 -1.098 -1.065 -1.213 -1.309 0.540 0.028 -0.631 -0.533 -1.212 0.709	J241 J242 J243 J244 J245 J246 J247 J248 J250 J251 J252 J253 J254 J255 J256 J257 J258 J259 J260	âg 1.024 0.764 0.411 0.360 0.866 0.278 0.541 0.404 0.743 0.717 0.906 0.591 0.598 0.613 1.146 0.582 0.538 0.454 0.825 0.091 ▲	6 g -1.174 -0.939 -0.789 -0.266 -0.122 0.112 -0.210 -1.762 -0.285 -0.378 -0.938 -0.059 0.019 -0.038 0.066 0.477 -0.317 0.121 0.189 1.773
J239 J 24 0	0.539 0.792	-0.190 0.246			

means item 4 of Test A6, and so forth. We can see in these tables that the estimated item parameters are mostly reasonable with a few exceptions. In these tables, • is attached to each of the estimated discrimination parameters which assume values less than 0.100, and to each of the estimated difficulty parameters which exceed 3.000 in absolute value. Those items which are marked for both estimated parameters are A523, A531 and A639. We must conclude for these items that not only the information provided by them for measuring the ability in question is limited, but their estimated parameters may include substantial error. The closest to this group of items is item J154, whose estimated difficulty parameter exceeds 3.000 in absolute value and whose estimated discrimination parameter is just 0.100. The other group consists of items A527 and J260, whose estimated discrimination parameters are small, but whose estimated difficulty parameters are reasonable. There is less problem for these two items.

For J1/1075* and J1/2259** Cases, we followed the same procedure of Tetrachoric Method independently, and obtained the corresponding results. To start with, Tables 5-5 and 5-6 present the

^{*} There was a mistake in the tape sent to us and one subject's response pattern (Subject No. 231 of the second grader group) was missing. Thus actually 1,074 subjects are involved in the whole process of Tetrachoric Method, as Table 3-2 indicates. In order to avoid confusions, however, we call it J1/1075 Case, instead of J1/1074.

^{**} Since J1/2559 Case was analyzed later, the response pattern of the missing subject had been supplemented, and J1/2559 Case in the Tetrachoric Method consists of exactly 2,259 subjects.

TABLE 5-5

200 m2

(3.33) (3.33)

223

	000==	9338 7085 7697 5425 6767	3370 870 8229 8229	96 60 31 31	1245 1947 1477 1079	644 519 811 226 244	96505
:	1120 1130 1141 1151	25. 25. 367.	2253	35196 13660 12592 20981 21631	312 129 144 330 281	23.25	30066 04769 22951 20420 15927
Case		00000	00000	00000	00000	00000	00000
	00000	25337 24789 35104 18859 32048	883 666 788 788 788 788	22524 22347 2403 18978 3544	2548 2548 2554 331	363 025 773 357 306	31184
J1/1075	2222		2009 2209 2209 220	191919-19	320 3765 3765 0729	2837	2336 2336 225 225
e S		00000	00000	00000	00000	00000	00000
ŧ	100 00 00 00 00 00 00 00 00 00 00 00 00	30272 10170 11196 18293 22554	11906 15638 19098 13516 16038	24811 36420 40914 20189 23038	4053 4053 1057 2096 7139	853 397 782 141 483	26835 15257 20040 19954 18986
11	5555	0.30 0.41 0.18 0.22	~ .0.0.0.0		w 01 25 01 01	2533 2016 3016	25000
Test			00000	00000	00000	00000	00000
, 5	177 177 187 188	7566 0115 2307 3124 0593	2633 2496 314 318	15556 12868 16412 18462 19989	946 711 714 962 977	232 167 853 411 455	749 397 319 218 620
j	55555	00000	0.25	0.0000	23.35	302 241 241 344 224	93222
Tendencies			_		00000	00000	00000
Ten	126 126 147 147	26317 10827 29616 17383 26608	28091 18069 12534 09861 20532	26850 22497 20407 19019 16622	9969 9969 5693 5693 757	9312 29312 83957 3939	2000 501 503 200 200 200 200 200 200 200 200 200 2
n Se	7777	0.00	0.000 2.1.00	00000	00000	0.000	0.27 0.23 0.15 0.15 0.15
esponse		396539	0002500				
ě	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	29904 41056 22179 28907 39184 40676	2080 2785 2387 2753 1781	13228 16242 14852 13274 18369	1568 5373 63304 6065 13372 1442	00000 36300 22380 39351 43003 32183	9312 4364 7441 8331 7384 8373
I te	بردردر	000000	000000	00000	4 6 0 0 0 0 0	0.000	-00000
Fifty-Five		30 37 33 33	24 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	138722	022200	800000000	ಬ್ಇಕ್ರಂ
Ę	1104 1124 1134 1155	333 334 502 502	30305 27568 22486 15517 28241 13424	3174 2618 2660 2660 2375 3694	00000 32413 32421 12542 33730 41511	41568 31609 28829 11593 37501 35953	28443 5104 14858 15990 19660 16586
	,,,,,,	000000	000000	000000	-00000	000000	00000 9099
캶	mmmmaa	9791 5337 7088 6562 2231	29 148 28 28	39 27 50 39 39 39 39 39 39 39 39 39 39 39 39 39	1744 5219 589 260 709	20 20 20 31 31	50 71 33 33 26
x of	01222	2823	31529 26707 11891 30148 14041 04128	000000 22025 38642 18727 14719 08639	317 282 295 392 167	23228 32003 22910 40366 18740 16381	268 281 191 155 085 050
Matrix		00000	000000	-00000	000000	000000	000000
	533222	933 305 205 205 205 670	20000 2497 2062 7355 1944 6023	523 635 635 170	305 405 749 570 514	809 1694 1993 1375 1195	265667
ati	22222	25.00	000-00	22.22.33.10.00.00.00.00.00.00.00.00.00.00.00.00.	888888	3223	28091 25569 20257 18490 27060
Correlation		000000	-00000	00000	00000	000000	000000
	101 111 121 131 142	00000 43044 28498 41732 27917 20212	0935 17005 17005 18193 18193	39791 35062 20870 33368 21874 23761	33850 33496 24170 14746 15548	99904 17107 19810 11186 18904 18615	26317 10290 16951 26897 24516
jor f		0.0000	000000	00.33	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	424240	(44) - (4(4-
etrachoric				200000	00000	00000	000000
و		5	В	F	4	v	vo
		Ē	217	515	70 IT	2010	50 I.C

STATE MASSIES SOLDING MASSIES EXCENT BUTTON MINERA

	38260 0.16603 0.30616 30982 0.31161 0.11346 31408 0.31976 0.16672 15641 0.16495 0.22641 21071 0.20921 0.12110	00000 0.0 0.27627 11513 0.29577 0.09096 38467 0.38065 0.19478 13553 0.21231 0.33403 32300 0.33827 0.21229	0 1.00000 0.16851 22954 0.22336 0.09710 19003 0.08135 0.13728 12973 0.17916 0.13328 20065 0.21071 0.12203	27627 0.16851 1.00000 24232 0.27613 0.07026 30240 0.40160 0.26607 27039 0.23907 0.47275 25461 0.25399 0.06866	49299 0.23214 0.38309 38888 0.36003 0.20238 49329 0.33595 0.26235 13212 0.29698 0.40603 33430 0.30632 0.43459	31901 0.15586 0.14885 22898 0.26138 0.09441 27918 0.18720 0.13179 11048 0.06551 0.17846 14965 0.18757 0.24104	2654 0.13365 0.20979 9228 0.33101 0.16131 5529 0.27674 0.13231 3792 0.15038 0.22889 2247 0.23164 0.25050
(par	0.11978 0.00.33629 0.25184 0.	0.38260 1. 0.18635 0. 0.40184 0. 0.31035 0.	0.16603 0. 0.13657 0. 0.11509 0. 0.05303 0. 0.13237 0.	0.30616 0. 0.24586 0. 0.19251 0. 0.30840 0.	0.29424 0. 0.18871 0. 0.38708 0. 0.40033 0.	0.10439 0.3 0.13193 0.6 0.21514 0.6 0.25671 0.1	0.27734 0.3 0.19161 0.2 0.19574 0.2 0.19518 0.2 0.17571 0.1
(Continu	0.21749 0.15821 0.16091 0.23296 0.24477	0.26835 0.31252 0.21464 0.28623	0.20142 0.13181 0.13910 0.08312 0.10596	0.30066 0.11796 0.24969 0.07856	0.30290 0.22914 0.34872 0.28752 0.22931	0.25569 0.04621 0.12038 0.24680 0.23901	0.28171 0.15725 0.18226 0.21186 0.20407
BLE 5-5	6 0.30232 0 0.29084 0 0.25268 7 0.29201 9 0.37316 3 0.26611	0.44853 0.44862 0.41225 0.41225 0.4178	0.25363 7 0.20073 7 0.23167 0.23167 0 0.21518	0.31644 0.33430 0.25418 0.40160 0.48460	0.47107 0.40822 0.27795 0.66664 0.44083 0.34134	0.24694 0.28159 0.24627 0.19771 0.30341	0.32003 0.26050 0.24314 0.26512 0.30251
TAE	6 0.31946 4 0.21249 4 0.31750 2 0.09937 0 0.24559 7 0.27923	1 0.31191 2 0.31789 2 0.38822 3 0.09428 2 0.52473 3 0.27832	4 0.25248 5 0.18667 8 0.21577 0.019348 0.07630	0.31245 0.22535 0.17675 0.10775 0.28809	0.33496 0.36773 0.39165 0.19446 0.4287 0.35113	0.25405 0.30566 0.26464 0.07637 0.31002	0.28219 0.25795 0.18516 0.02516 0.28232 0.16743
	3 0.3556 9 0.27734 7 0.23634 3 0.34322 1 0.09870 9 0.07357	0.2481 0.3265 0.2665 0.5081 0.1781	0.2252 0.1336 0.1174 0.0 0.1736	0.35196 0.20979 0.28361 0.33105 0.23106	0.35062 0.28153 0.29071 0.49849 0.25324 0.09266	0.32353 0.25967 0.12542 0.31648 0.05547	0.22025 1.00000 0.24109 0.40697 0.16765
	6 0.25633 7 0.23987 3 0.09383 8 0.25931 3 0.23199	2 0.41906 9 0.31901 5 0.37888 3 0.25082 4 0.35370 2 0.17956	7 0.17834 4 0.15585 0 0.15535 0 0.03619 6 0.14281 4 0.06880	8 0.25370 9 0.14885 9 0.30197 0.30468 0.34082	0.34997 0.29991 0.43076 0.26165 0.39801 0.23415	0.22497 1.00000 0.20785 0.25021 0.24174 0.03851	0.26707 0.25967 0.22810 0.20846 0.25837 0.16488
	0.27566 0.29424 0.19877 0.27793 0.20428 0.12033	0.3027 0.4929 0.2795 0.4143 0.1626	0.25337 0.23214 0.16344 0.21000 0.14266 0.09904	0.29338 0.38309 0.21413 0.35462 0.24825 0.08803	0.43044 1.00000 0.30082 0.41930 0.26097 0.18757	0.31305 0.29991 0.16739 0.35070 0.13927 0.18194	0.29421 0.28153 0.24081 0.30175 0.29100
	3107	8010	90 tr	סרונ	111	2112	2113

$\overline{}$
_
eq
aı
w
Š
_
=
_
-
-
·
_
_
_
\sim
•
\sim
00)
_
LC
2
5-5
5
5
5
5
5
5
5
5
5
5

83

See 555

33

88

19.77 KR

0.22535 0.26300 0.24748 0.30927 0.32716	0.33430 0.23641 0.09161 0.16826 0.18044	0.11796 0.04060 0.10930 0.14980 0.14141	0.24586 0.22992 0.28267 0.13800	0.24232 0.08921 0.02964 0.12875 0.21098	0.27613 0.23252 0.06720 0.17648 0.28582	0.07026 1.00000 0.12574 0.13705 0.11600
0.18667 0.22895 0.29481 0.27386 0.18155	0.20073 0.37859 0.36745 0.22415 0.30429	0.13181 0.23529 0.20270 0.14707 0.19294	0.13657 0.18962 0.30674 0.14145	0.22954 0.27544 0.38464 0.25404 0.25404	0.22336 1.00000 0.31360 0.11782 0.19248	0.09710 0.23252 0.11827 0.05089 0.09640
0.31789 0.22405 0.31990 0.20463 0.30502	0.44662 0.31233 0.39831 0.25121 0.24546	0.31252 0.13189 0.21516 0.17758 0.19200	0.18635 0.18826 0.17364 0.12894	0.11513 1.00000 0.28650 0.23352 0.19178	0.29577 0.27544 0.21332 0.15932 0.23773	0.09096 0.08921 0.19324 0.09278 0.08644
0.21249 0.12049 0.17402 0.23146	0.29084 0.14414 0.27478 0.33913 0.34450	0.15821 0.11860 0.24244 0.21302 0.14985	0.11978 1.00000 0.21105 0.19984 0.10234	0.30982 0.18826 0.24064 0.16917 0.25626	0.31161 0.18962 0.29188 0.31133	0.11346 0.11998 0.09082 0.16859 0.10441
0.15104 0.12669 0.23341 0.19414 0.35264	0.24364 0.23207 0.26488 0.30622 0.27163	0.27501 1.00000 0.08019 0.10473 0.13088	0.23397 0.11860 0.15937 0.11122 0.12059	0.15257 0.13189 0.16281 0.19374 0.32409	0.39619 0.23529 0.20337 0.24604 0.18769	0.04769 0.04060 0.14804 0.16257 0.25652
0.31609 0.25201 0.20463 0.31632 0.30765	0.36300 1.00000 0.33131 0.39278 0.40959	0.25139 0.23207 0.26362 0.27696 0.16172 0.19530	0.24167 0.14414 0.11691 0.30891 0.19496 0.19123	0.25397 0.31233 0.30673 0.31104 0.34895	0.33025 0.37859 0.30620 0.33296 0.36530 0.24341	0.13519 0.23641 0.08067 0.16674 0.15007
0.32413 1.00000 0.16640 0.12856 0.34786	0.35373 0.25201 0.34080 0.17634 0.44173 0.43746	0.19969 0.12669 0.24163 0.70992 0.21925	0.15717 0.12049 0.18282 0.0 0.15746 0.21085	0.24053 0.22405 0.23396 0.19595 0.21836	0.32057 0.22895 0.37190 0.10755 0.29063	0.12947 0.26300 0.13704 0.05850 0.27529 0.24404
0.26182 0.25795 0.24000 0.31348 0.19093 0.11674	0.36242 0.26050 0.23220 0.34083 0.25396	0.22497 0.15725 0.13342 0.26611 0.10674 0.15552	0.22868 0.19161 0.11742 0.21720 0.0	0.36420 0.29228 0.21378 0.17289 0.17997 0.08743	0.22347 0.33101 0.25665 0.29082 0.14077 0.04783	0.13660 0.16131 0.16185 0.15040 0.15085 0.12505
0.27568 0.30566 0.25027 0.24225 0.31651 0.27287	0.27853 0.28159 0.28667 0.25818 0.37187	0.18069 0.04621 0.11207 0.08330 0.19660 0.12980	0.19496 0.13193 0.13011 0.10844 0.25571	0.25638 0.22898 0.33980 0.17216 0.26088 0.14186	0.24492 0.26138 0.17217 0.23837 0.19532 0.18978	0.08870 0.09441 0.16036 0.12506 0.14277 0.17493
0.41238 0.36773 0.20900 0.30209 0.24276 0.25815	0.41056 0.40822 0.27262 0.48375 0.31950 0.18849	0.10827 0.22914 0.18672 0.26710 0.11258	0.10115 0.18871 0.12712 0.12704 0.17688	0.30170 0.38888 0.23684 0.30395 0.15902	0.24789 0.36003 0.28653 0.42308 0.22932 0.15998	0.17085 0.20238 0.08053 0.24059 0.20136 0.10345
→	S 117.	9116	711 2	8 8	611.0	J120

121		0.27	0.2087	0	0.2981	0.1695	ed) 0.1	0	0.1634	2
	0.30082 1.00000 0.33018 0.20422 0.06747	0.16739 0.16315 0.16696 0.24092 0.16582	0.24081 0.23029 0.22443 0.16639 0.06697	0.20900 0.26220 0.12711 0.27236 0.23594	0.27262 0.15035 0.31063 0.27273 0.26813	0.18672 0.18275 0.18217 0.13178	0.12712 0.24781 0.28844 0.17717	0.28684 0.28103 0.18951 0.24030	0.28653 0.31836 0.20917 0.19672	0.02000
1122	3.26612 0.43076 0.16315 0.33690 0.26922 0.10887	0.22062 0.20785 1.00000 0.23653 0.23627	0.24935 0.22810 0.31542 0.19648 0.12912	0.23749 0.25027 0.18533 0.18533 0.24162	0.27993 0.28667 0.24764 0.27791 0.25421	0.20257 0.11207 0.16124 0.13804 0.25323	0.23987 0.13011 0.22901 0.15961 0.14632	0.37888 0.33980 0.30502 0.07297 0.23717	0.15538 0.17217 0.25241 0.20442 0.23780	0.30197 0.16036 0.16497 0.24402 0.18704
1123	0.35337 0.23071 0.23029 0.37902 0.14763	0.11891 0.1.542 0.31542 0.17790 0.31843 0.13627	0.38642 0.24109 1.00000 0.25676 0.18704 0.10811	0.29589 0.24000 0.18699 0.12443 0.25148	0.22910 0.23220 0.21319 0.32410 0.29052 0.23526	0.19162 0.13342 0.17147 0.19918 0.05023	0.23634 0.11742 0.25460 0.29377 0.25689	0.26652 0.21378 0.20743 0.17196	0.11748 0.25665 0.23943 0.19042 0.26611	0.2836 0.1618 0.1042 0.1916 0.2740
1124	0.30091 0.39165 0.26220 0.36782 0.13448	0.22486 0.26464 0.18708 0.12931 0.20623	0.26607 0.18516 0.18699 0.25786 0.14264	0.32421 0.16640 1.00000 0.12702 0.31250	0.28829 0.34088 0.24912 0.37952 0.32517	0.14658 0.24163 0.17315 0.17814 0.17498	0.31750 0.18282 0.38256 0.28660 0.21897	0.38822 0.23396 0.29780 0.16791 0.27252	0.21577 0.37190 0.27273 0.14685 0.23735	0.17672 0.13704 0.10787 0.15302 0.10116
521	0.22179 0.27795 0.15035 0.33207 0.15476	0.23874 0.24627 0.24764 0.17050 0.26353	0.34852 0.24314 0.21319 0.24042 0.14157	0.26304 0.20463 0.24912 0.05517 0.30395	0.22380 0.33131 1.00000 0.27483 0.34034	0.27441 0.26362 0.25568 0.05356 0.1559	0.25268 0.11691 0.23704 0.22476 0.21559	0.41225 0.30673 0.32566 0.13477 0.20316	0.23167 0.30620 0.28133 0.05230 0.16642	0.25418 0.08067 0.16237 0.20652 0.07089
126	0.29616 0.34872 0.18275 0.22128 0.22407	0.12534 0.12038 0.16124 0.21350 0.29142 0.12393	0.20407 0.18226 0.17147 0.28181 0.14039 0.06654	0.32498 0.23341 0.17315 0.18210 0.23768 0.31946	0.32957 0.26488 0.25568 0.26683 0.29413	0.23606 0.08019 1.00000 0.12272 0.18948	0.16091 0.15937 0.17831 0.24177 0.29291	0.21464 0.16281 0.32461 0.11369 0.17888	0.13910 0.20337 0.13654 0.15159 0.15677	0.24969 0.14804 0.16979 0.28394 0.13492
127	0.32307 0.38708 0.24781 0.35251 0.11489	0.21914 0.21514 0.22901 0.13214 0.24369	0.36412 0.30674 0.25460 0.24431 0.12298	0.23714 0.17402 0.38256 0.04895 0.26189	0.23853 0.27878 0.23704 0.28346 0.29640	0.21319 0.24244 0.17831 0.21080 0.03146	0.33629 0.21105 1.00000 0.23678 0.30083	0.40184 0.24064 0.36539 0.09069 0.23553	0.11509 0.29188 0.24094 0.11030	0.19251 0.09082 0.11410 0.14501 0.28658

r

323

T)

J128	24.932 01.00	.2909	.4091	0.4105	3LE 5-1	(Cont. 0.200) .3140 .1736		0.1900	. 3024 . 1932	
	0.26103 0.36509 0.22774 0.18978	0.30502 0.22161 0.38867 0.18754	0.20743 0.43798 0.19474 0.24010	0.29780 0.21986 0.35843 0.40386	0.32566 0.30675 0.43961 0.28102	0.20434 0.20434 0.20824	0.36539 0.33729 0.26090	1.00000 0.17290 0.29280	0.33568 0.22646 0.29426	0.17941 0.30753 0.21415	
1129	0.35104 0.33595 0.33595 0.40416 0.33108	0.20666 0.18720 0.25241 0.32244 0.35699	0.27403 0.27674 0.23943 0.43971 0.18811	0.37698 0.29481 0.27273 0.20242 0.37774	0.39773 0.36745 0.28133 0.53346 0.45545	0.23384 0.20270 0.13654 0.17698 0.24371	0.31976 0.30674 0.24094 0.38200 0.23612	0.38065 0.38464 0.33568 0.25604 0.19733	0.08135 0.31360 1.00000 0.31838 0.23116	0.40160 0.11827 0.17791 0.33622 0.18054	
05 11.	0.17697 0.26235 0.21538 0.19959 0.25821 0.08645	0.18698 0.13179 0.16497 0.06047 0.19653	0.12592 0.13231 0.10428 0.29090 0.08775	0.14477 0.24748 0.10787 0.14770 0.25082	0.27811 0.09161 0.16237 0.23993 0.26935	0.22951 0.10930 0.16979 0.10503 0.0	0.16672 0.22992 0.11410 0.07932 0.03772	0.19478 0.02964 0.17941 0.05336 0.19344	0.13728 0.06720 0.17791 0.0	0.26607 0.12574 1.00000 0.36474 0.12169	
ונונ	0.41732 0.41930 0.33018 1.00000 0.33045 0.17739	0.28704 0.35070 0.33690 0.28767 0.37305	0.33368 0.30175 0.37902 0.31298 0.24248 0.08868	0.34746 0.30209 0.36782 0.11669 0.48575	0.41186 0.48375 0.33207 0.31724 0.34742	0.26897 0.26710 0.22128 0.23522 0.24626	0.27793 0.12704 0.35251 0.51563 0.33433	0.41433 0.30395 0.3650° 0.24723 0.29190	0.21000 0.42308 0.40416 0.25680	0.35462 0.24059 0.19959 0.21238 0.21611	
32 11 32	0.25297 0.26165 0.26165 0.28767 0.16188 0.22279	0.17355 0.25021 0.23653 1.00000 0.26005 0.18145	0.16632 0.20846 0.17790 0.29162 0.17745	0.19570 0.24225 0.12931 0.11936 0.19173	0.22375 0.25818 0.17050 0.20570 0.24485	0.18490 0.08330 0.21350 0.14899 0.24092	0.09383 0.10844 0.13214 0.26881 0.21727	0.25082 0.17216 0.22161 0.14693 0.10114	0.03619 0.23837 0.32244 0.14429 0.18894	0.11064 0.12506 0.06047 0.16775 0.24477	
133	0.27088 0.49849 0.22443 0.31298 0.18399 0.06851	0.30148 0.31648 0.19648 0.29162 0.33519 0.20207	0.18727 0.40697 0.25676 1.00000 0.18892 0.0	0.39260 0.31348 0.25786 0.12500 0.33558	0.40366 0.34083 0.24042 0.44739 0.46961	0.15530 0.26611 0.28181 0.23625 0.16295	0.34322 0.21720 0.24431 0.23948 0.14473	0.50813 0.17289 0.43798 0.23528 0.27288	0.0 0.29082 0.43971 0.16927 0.24671	0.33105 0.12040 0.29090 0.48267 0.19285	
3134	0.23282 0.19446 0.12711 0.11669 0.14505	0.15517 0.07637 0.18533 0.11936 0.18624 0.20837	0.23758 0.02516 0.12443 0.12500 0.12101 0.08320	0.12542 0.12856 0.12702 1.00000 0.17388	0.11593 0.17634 0.05517 0.20540 0.19250	0.05990 0.10992 0.18210 0.11002 0.19270	0.09937 0.0 0.04895 0.15179 0.17957	0.09428 0.19595 0.21986 0.15509 0.25859	0.04800 0.10755 0.20242 0.06275 0.14301	0.10775 0.05850 0.14770 0.14796 0.18425	

	0.40160 0.16674 0.23993 0.40200 0.24895	0.07856 0.16257 0.10503 0.10346 0.12616	0.30840 0.16859 0.07932 0.30807 0.22824	0.27039 0.09278 0.05336 0.19714 0.23366	0.23907 0.05089 0.0 0.11785 0.14348	0.47275 0.13705 0.36474 1.00000 0.09747	0.24825 0.20136 0.25821 0.32183 0.22871
	0.21358 0.33296 0.53346 0.21636 0.28531	0.08312 0.24604 0.17698 0.02874 0.15373	0.05303 0.31133 0.38200 0.28991 0.19138	0.12973 0.15932 0.25604 0.16917 0.15829	0.17916 0.11782 0.31838 1.00000 0.21001	0.13328 0.17648 0.33622 0.11785	0.14266 0.22932 0.33108 0.17707 0.23534
	0.48109 0.31104 0.30675 0.27339 0.25031	0.28623 0.19374 0.20434 0.09354 0.16559	0.31035 0.16917 0.33729 0.29200 0.25557	0.13553 0.23352 0.17290 1.00000 0.22342	0.21231 0.25404 0.22646 0.16917 0.20129	0.33403 0.12875 0.30753 0.19714 0.19163	0.18594 0.10940 0.22774 0.13326 0.22037
(par	0.29201 0.30891 0.28346 0.28226 0.24477	0.23296 0.11122 0.21080 0.16214 0.12160	0.21356 0.19984 0.23678 1.00000 0.27690	0.15641 0.12894 0.09069 0.29200 0.20542	0.16495 0.14145 0.11030 0.28991 0.21451	0.22641 0.28267 0.14501 0.30807 0.09708	0.20428 0.17868 0.11489 0.20735 0.18092
(Continu	0.28331 0.27696 0.26683 0.17023 0.19124	0.15893 0.10473 0.12272 1.00000 0.11555	0.30218 0.21302 0.24177 0.16214 0.25700	0.19954 0.17758 0.11369 0.09354 0.14516	0.09121 0.14707 0.15159 0.02874 0.16105	0.20420 0.14980 0.28394 0.10346 0.12547	0.24516 0.11258 0.22407 0.21151 0.30287
3LE 5-5	0.39351 0.39278 0.27483 1.00000 0.50045 0.36839	0.18305 0.30622 0.05356 0.17023 0.21114 0.16850	0.34411 0.33913 0.22476 0.28226 0.42002 0.32348	0.30141 0.25121 0.13477 0.27339 0.21414	0.28357 0.22415 0.05230 0.21636 0.15240	0.31226 0.16826 0.20652 0.40200 0.37306	0.28904 0.31950 0.15476 0.22766 0.27880
TAB	0.36065 0.31632 0.37952 0.20540 0.34856 0.43382	0.25693 0.19414 0.17814 0.11602 0.17436	0.31862 0.29328 0.28660 0.15179 0.35762	0.22096 0.20463 0.16791 0.15509 0.16515	0.07251 0.27386 0.14685 0.06275 0.28476 0.27834	0.33079 0.30927 0.15302 0.14796 0.24177 0.31786	0.25548 0.24276 0.13448 0.14505 0.22830
	0.33274 0.26512 0.32410 0.44739 0.21571 0.19095	0.19019 0.21186 0.19918 0.23625 0.0	0.28462 0.19518 0.29377 0.23948 0.22786	0.20189 0.23792 0.17196 0.23528 0.18021	0.18978 0.15038 0.19042 0.16927 0.64064 0.0	0.20981 0.22889 0.19163 0.48267 0.12499 0.22304	0.21874 0.29100 0.14763 0.18399 0.10904
	0.27531 0.19771 0.27791 0.20570 0.41365 0.26884	0.09861 0.24680 0.13804 0.14899 0.10625 0.17790	0.29579 0.25671 0.15961 0.26881 0.36675 0.16904	0.23516 0.11048 0.07297 0.14693 0.24042 0.24738	0.20962 0.06551 0.20442 0.14429 0.24367 0.10665	0.25229 0.17846 0.24402 0.16775 0.29720 0.33495	0.18193 0.13927 0.26922 0.16188 0.30228 0.21856
	0.28907 0.46664 0.31063 0.31724 0.22766 0.18942	0.17383 0.28752 0.18217 0.23527 0.21151	0.33124 0.40033 0.28844 0.51583 0.20735	0.18293 0.13212 0.24723 0.13326 0.13326	0.18859 0.29698 0.20917 0.25680 0.17707 0.05209	0.25425 0.40603 0.21694 0.21538 0.32183 0.0	0.27917 0.26097 0.20422 0.33045 1.00000 0.16394
	35	36 10	7512	139	140	14.	75

53.5

7.

e Kr

3

3. 3.0

C 3

X

J143 0.32995 0.31944 0.25807 0.30614 0.35195 0.27060 0.25931 0.35370 0.14281 0.30468 0.24092 0.22600 0.31843 0.20523 0.25837 0.2653 0.2653 0.29142 0.22531 0.35370 0.14281 0.30468 0.24092 0.22600 0.31843 0.20623 0.26353 0.29142 0.24369 0.38867 0.35699 0.19532 0.14277 0.371305 0.26005 0.33519 0.18624 0.41365 0.10625 0.38675 0.24042 0.24367 0.29720 0.30228 1.00000 0.21972 0.38730 0.32554 0.23554 0.27404 0.24892 0.28685 0.21422 0.222333 0.25101 0.10722 0.34149 0.35933	0.26562 0.14041 0.14719 0.16709 0.18740 0.08533 0.09870 0.17812 0.17360 0.23106 0.25324 0.05547 0.16765 0.19093 0.25396 0.10674 0.0 0.17997 0.14077 0.15085 0.16639 0.12912 0.18704 0.14264 0.14157 0.14039 0.12298 0.19474 0.18811 0.08775 0.24248 0.17745 0.18892 0.12101 0.21571 0.0 0.22786 0.18021 0.64064 0.12499 0.10904 0.21972 1.00000 0.24170 0.18086 0.11818 0.20396 0.28260 0.21739 0.14854 0.13612 0.20601 0.04427 0.24051 0.15793	0.33467 0.28241 0.20593 0.33730 0.37501 0.29660 0.24559 0.52473 0.19348 0.28809 0.44287 0.31002 0.28232 0.34786 0.44173 0.21925 0.15746 0.21836 0.29063 0.27529 0.27236 0.24162 0.25148 0.31250 0.30395 0.23768 0.26189 0.35843 0.37774 0.16530 0.48575 0.19173 0.33558 0.17388 0.34856 0.17436 0.35762 0.16515 0.28476 0.24177 0.28920 0.36537 0.28920 0.06249 0.31389 0.39920	0.39184 0.24416 0.38369 0.43372 0.43003 0.27384 0.37316 0.41778 0.18594 0.48460 0.44083 0.30341 0.30251 0.30765 0.40959 0.16172 0.19496 0.34895 0.36530 0.15007 0.27273 0.25421 0.29052 0.32517 0.34034 0.29413 0.29640 0.43961 0.45545 0.26935 0.36730 0.34742 0.24485 0.46961 0.19250 0.50045 0.21114 0.42002 0.21414 0.15240 0.37306 0.27880 0.32319 0.18086 0.29924 1.00000 0.26445 0.26241 0.23249 0.32094 0.26630 0.17889 0.26710 0.12202 0.39181 0.32767	0.22931 0.23901 0.20407 0.35264 0.23939 0.15284 0.24477 0.16518 0.10596 0.08262 0.22931 0.23901 0.22931 0.23564 0.27163 0.13088 0.12059 0.32409 0.18769 0.25652 0.13178 0.25323 0.05023 0.17498 0.15559 0.18948 0.03146 0.20824 0.24371 0.0 0.13178 0.25452 0.16295 0.16295 0.19270 0.1976 0.25700 0.14516 0.24371 0.0 0.30287 0.23554 0.11818 0.15748 0.26445 1.00000 0.20298 0.12776 0.14227 0.16507 0.27413 0.19470 0.22060 0.40295 0.36069	0.27728 0.24748 0.17571 0.23146 0.34455 0.09620 0.25184 0.28929 0.13237 0.24220 0.27728 0.24748 0.17571 0.23146 0.34450 0.14985 0.10234 0.25626 0.19785 0.10441 0.17717 0.14632 0.25889 0.21897 0.21559 0.29291 0.30083 0.26090 0.23612 0.03772 0.33433 0.21727 0.14473 0.17957 0.24477 0.12160 0.27690 0.20542 0.21451 0.09708 0.18092 0.27404 0.20396 0.32319 0.26241 0.20298 1.00000 0.20458 0.21693 0.24626 0.15209 0.20964 0.17376 0.33810 0.33199	0.33430 0.14965 0.12247 0.30502 0.24546 0.19200 0.0 0.19178 0.23546 0.25461 0.33430 0.14965 0.12247 0.30502 0.24546 0.19200 0.0 0.19178 0.23773 0.08644 0.24030 0.23777 0.26025 0.27252 0.20316 0.17888 0.23553 0.29280 0.19733 0.19344 0.229190 0.10114 0.27288 0.25859 0.25031 0.16559 0.25557 0.22342 0.20129 0.19163 0.25031 0.15548 0.25557 0.22342 0.20129 0.19163 0.25031 0.15548 0.24030 0.21535 0.11287		0.32999 0.29999 0.293339 0.22333 0.22333 0.22333 0.225333 0.30283 0.30			00.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.27060 0.27060 0.29542 0.23554 0.23554 0.23554 0.10674 0.10674 0.10674 0.10674 0.10674 0.15168 0.17436 0.27384 0.27384 0.27384 0.27384 0.27384 0.26445 1.00000 0.29291 0.29291 0.29291 0.18986 0.18986 0.18986	0.2559 0.2544 0.2544 0.2551 0.2551 0.2551 0.2551 0.2555 0.255 0.2555 0.2	0.3537 0.2489 0.2489 0.2489 0.2489 0.2489 0.1789 0.1789 0.1651 0.	2.2005 2.3005	COCCO COCCO NOTAL STAND CHOCK NOTAL
--	---	---	---	--	---	--	--	---	--	--	---	--	--	--	--	--	-------------------------------------

1150	. 3204 . 3063	0.5	0.235	TA .2063	LE 5	(Contir 0.2253	~ ~:	0.33	0.	
	0.19672 0.29921 0.23534 0.11369	0.23780 0.18894 0.28685 0.21868	0.24671 0.24671 0.21739 0.09721	0.23735 0.23735 0.14301 0.36531 0.28590	0.30429 0.16642 0.28531 0.32094 0.24682	0.19294 0.15677 0.15373 0.14227	0.11314 0.18693 0.19138 0.21693	0.24842 0.29426 0.15829 0.21535		0.19248 0.23116 0.21001 1.00000
rs 10	0.36767 0.43459 0.14877 0.21611 0.22871 0.27145	0.20238 0.24104 0.18704 0.21477 0.21422	0.21631 0.25050 0.27407 0.19285 0.14854 0.09034	0.28149 0.32716 0.10116 0.18425 0.29461 0.36964	0.22244 0.18044 0.07089 0.24895 0.26630	0.15927 0.10141 0.13492 0.12616 0.16507	0.12110 0.13800 0.28658 0.22824 0.24626	0.21229 0.21098 0.21415 0.23366 0.11287		0.12203 0.28582 0.18054 0.14346 0.24536
1152	0.20212 0.18757 0.06747 0.17739 0.16394 1.00000	0.19437 0.16.34 0.10887 0.22279 0.22333	0.23761 0.17049 0.08067 0.06851 0.13612 0.18008	0.15200 0.25815 0.16224 0.17912 0.25577 0.255111	0.08615 0.18849 0.06878 0.18942 0.17889	0.12626 0.18229 0.09721 0.12453 0.27413	0.12033 0.10813 0.18112 0.16311	0.16262 0.15902 0.18978 0.19805 0.15548	00000	.09904 .15998 .21323 .05209
153	0.25670 0.23415 0.16582 0.21370 0.21856	0.06023 0.03851 0.23427 0.18145 0.25101	0.01170 0.16488 0.13627 0.20207 0.20601 0.18219	0.25177 0.27287 0.16067 0.20837 0.28920 0.34618	0.34016 0.30033 0.05966 0.26884 0.26710	0.17371 0.12980 0.12393 0.17790 0.17790	0.23199 0.18436 0.08532 0.16904 0.20964	0.17956 0.14186 0.18754 0.24738 0.24598	00000	. 18978 . 34251 . 10565
4 5 E	0.12231 0.09266 0.06697 0.08868 0.0	0.04128 0.06170 0.09686 0.06210 0.10722	0.08639 0.17977 0.10811 0.0 0.04427 1.00000	0.11713 0.11674 0.10620 0.08320 0.06249	0.16381 0.07258 0.0 0.19095 0.12202	0.05026 0.15552 0.06654 0.0	0.08196 0.08196 0.08784 0.19869 0.17376	0.26073 0.08743 0.24010 0.18187 0.10954	00000	0 04783 15177 0 09721
S S	0.50233 0.35113 0.23594 0.46748 0.29906	0.13424 0.23069 0.25734 0.23397 0.34149	0.36941 0.16743 0.35223 0.36090 0.24051 0.18318	0.41511 0.43397 0.34328 0.22567 0.31389 1.00000	0.35953 0.43746 0.31466 0.43382 0.39181	0.26586 0.21411 0.31946 0.26466 0.40295	0.21923 0.21085 0.30286 0.37773 0.33810	0.27832 0.27590 0.40386 0.24243 0.25488	00000	07630 27007 37115 27834 28590
& &	0.40676 0.34134 0.26813 0.40727 0.27739	0.17818 0.21416 0.31274 0.30002 0.35933	0.29599 0.27629 0.23526 0.21570 0.15793	0.21442 0.29570 0.31917 0.24308 0.39920	0.32183 0.41451 0.13016 0.36839 0.32767	0.18373 0.19530 0.24320 0.16850 0.36069	0.26611 0.19123 0.21967 0.32348 0.33199	0.18057 0.36816 0.28102 0.32714 0.25786	00000	21518 24341 3637 3768 4682

TABLE 5-6

33

P.

45

٠٠<u>٠</u> ز ن

17.5

Tetrachoric Co	1101 1111 1121 1142 1142	1101 1.00000 0.44109 0.26701 0.39523 0.20900 0.22068	1702 0.32878 0.36948 0.22386 0.28004 0.13424 0.17808	03 0.33142 0.31830 0.22921 0.29651 0.17154 0.16324	04 0.27233 0.34721 0.22498 0.35477 0.29254 0.21615	05 0.36527 0.45612 0.26217 0.35614 0.24058 0.15990	06 0.23930 0.29502 0.19895 0.26351 0.20358
Correlation M	J102 J1122 J143 J163	0.32878 0.30687 0.27938 0.15432 0.26363	1.00000 0.21190 0.17091 0.15986 0.25861 0.05059	0.25744 0.23922 0.23554 0.13316 0.22286	0.29398 0.20428 0.21369 0.15407 0.25167 0.19910	0.31323 0.23763 0.21015 0.13377 0.32786 0.24051	0.27692 0.19027 0.13890 0.15887 0.23799 0.20108
Matrix of the	7103 7113 7123 7144 7154	0.33142 0.25598 0.30775 0.29977 0.24065 0.08216	0.25744 0.22886 0.18226 0.32263 0.14061	1.00000 0.21887 0.25229 0.22007 0.15881	0.29043 0.27708 0.26077 0.43199 0.12727	0.22569 0.28128 0.21113 0.41424 0.22472	0.29332 0.24077 0.20067 0.24655 0.11370 0.08912
e Fifty-Five	J104 J124 J134 J155	0.27233 0.25899 0.22350 0.23934 0.33405 0.44011	0.29398 0.16958 0.26193 0.15234 0.23948	0.29043 0.19483 0.25574 0.18540 0.21545	1.00000 0.27711 0.29045 0.12502 0.23514 0.31191	0.39883 0.26241 0.32009 0.10697 0.29897 0.39625	0.31907 0.12964 0.14805 0.05390 0.21841
Item R	J1105 J1155 J146 J146	0.36527 0.35874 0.21587 0.32843 0.36443	0.31323 0.28203 0.18780 0.29703 0.26860	0.22569 0.32117 0.26041 0.30940 0.30422 0.26846	0.39883 0.28433 0.29474 0.37596 0.41563	1.00000 0.30027 0.21887 0.40355 0.43677 0.36754	0.30991 0.21712 0.25926 0.30965 0.26008 0.20874
esponse Tende	71106 1116 1136 147	0.23930 0.13501 0.19550 0.18602 0.19770	0.27692 0.17924 0.18647 0.13125 0.11470	0.29332 0.21294 0.13096 0.17912 0.09800	0.31907 0.13762 0.21978 0.23601 0.18405	0.30991 0.16277 0.22925 0.20881 0.20639	1.00000 0.16374 0.16085 0.17535 0.07512
Tendencies of Te	1107 1117 1127 1137	0.25433 0.16455 0.27860 0.30441 0.30278	0.22315 0.19360 0.17569 0.22780 0.19364	0.27870 0.17885 0.27447 0.19937 0.21892	0.36837 0.19176 0.26971 0.30466 0.19656	0.34336 0.27616 0.27605 0.32481 0.24142	0.21231 0.19719 0.17443 0.24218 0.14409
Test J1 in th	22.22.22.22.22.22.22.22.22.22.22.22.22.	0.28207 0.31979 0.33976 0.16192 0.21787	0.34279 0.31720 0.30612 0.19857 0.20211	0.26929 0.37334 0.34302 0.20954 0.22128	0.31992 0.29315 0.38054 0.19580 0.30094	0.40032 0.26098 0.33256 0.22164 0.24620	0.26363 0.21194 0.19679 0.17377 0.19499
the J1/2259 (999999 9-835	0.25357 0.25637 0.34834 0.22883 0.27089	0.17459 0.22714 0.22842 0.13798 0.27458	0.19894 0.21838 0.26709 0.16755 0.16487	0.24911 0.37348 0.34684 0.15284 0.22374	0.26986 0.32569 0.39452 0.28243 0.31215	0.21671 0.32772 0.20856 0.14348 0.19201
Case.	110 1120 1413 1413	0.20154 0.17382 0.16264 0.24048 0.27333	0.21537 0.15051 0.15818 0.15917 0.20833	0.26395 0.10776 0.12394 0.13751 0.21465	0.30267 0.11671 0.18866 0.33623 0.20047	0.35883 0.14302 0.35486 0.32547 0.21091	0.27603 0.01639 0.22147 0.16832 0.14742

	1107 0.2543 0.3083 0.1774 0.2863 0.1666 0.1474	0.28207 0.42276 0.26281 0.35007 0.22206 0.15689	0.25357 0.29407 0.15980 0.2427 0.088427 0.08805	0.2015 0.34715 0.34715 0.16805 0.23766 0.25913	0.44109 1.00000 0.30293 0.42603 0.22705 0.26151	0.30687 0.3203 0.16608 0.33084 0.33084 0.24092	0.25598 0.25644 0.2414 0.27066 0.20395
	33 0.22315 30 0.14291 41 0.19873 34 0.13519 67 0.21866 47 0.17926	7 0.34279 6 0.23951 1 0.29821 7 0.20079 6 0.32157 9 0.17722	7 0.17459 7 0.14462 0 0.15639 7 0.04003 6 0.09323	4 0.21537 5 0.10876 8 0.23478 6 0.04709 3 0.24541	0.36948 0.33203 0.31310 0.20111 0.32337	0.21190 1.00000 0.20443 0.16503 0.19689	0.22886 0.16712 0.21350 0.12520 0.19295
	0.27870 0.25336 0.16130 0.34570 0.12525 0.10483	0.26929 0.27054 0.25560 0.4225 0.23348 0.21716	0.19894 0.09173 0.17222 0.19625 0.08599	0.26395 0.17541 0.20961 0.28349 0.14203 0.05963	0.31830 0.25644 0.26753 0.47531 0.25778 0.11726	0.23922 0.16712 0.13270 0.30844 0.10543	0.21887 1.00000 0.22188 0.36584 0.16608
TAB	0.36837 0.18064 0.36686 0.06630 0.14786 0.27648	0.31992 0.25802 0.28728 0.11014 0.44349	0.24911 0.14285 0.24806 0.06872 0.11783	0.30267 0.18712 0.23219 0.05018 0.21089	0.34721 0.25944 0.34079 0.17264 0.40524	0.20428 0.18685 0.18413 0.13499 0.27379	0.27708 0.23361 0.21431 0.12794
1E 5-6	0.34336 0.23108 0.23335 0.3735 0.42737	0.40032 0.36545 0.25657 0.41884 0.39355	0.26986 0.17570 0.19831 0.25135 0.21396	0.35883 0.24057 0.19382 0.39802 0.42511	0.45612 0.39185 0.27374 0.44115 0.42631	0.23763 0.23806 0.17685 0.19655 0.25177	0.28128 0.25438 0.19665 0.27203
(Continu	0.21231 0.16250 0.15881 0.22421 0.22039	0.26363 0.27495 0.25432 0.27501 0.14182	0.21671 0.07347 0.09477 0.08832	0.27603 0.07868 0.20060 0.16685 0.03832	0.29502 0.15326 0.28111 0.24768 0.16991	0.19027 0.07220 0.09405 0.14877 0.19275	0.24077 0.12733 0.15859 0.15859
(par	1.00000 0.16042 0.31874 0.24195 0.22579	0.27784 0.25173 0.32762 0.24471 0.32500	0.24037 0.14721 0.20105 0.14591 0.18190	0.28396 0.23930 0.15502 0.19084 0.20739	0.30830 0.21980 0.35573 0.38724 0.34050	0.14291 0.12531 0.19319 0.20481 0.20485	0.25336 0.13086 0.23829 0.15876
	0.27784 0.27873 0.23400 0.18167 0.23125	1.00000 0.14620 0.34936 0.12418 0.27689	0.14605 0.25028 0.15462 0.12897 0.19272	0.24479 0.15953 0.22003 0.28835 0.27424	0.42276 0.38704 0.42995 0.15171 0.32743	0.23951 0.27621 0.23735 0.09837 0.15949	0.27054 0.29373 0.27671 0.17976
	0.2403 0.3643 0.3547 0.1619 0.2328	0.14605 0.24056 0.36361 0.21784 0.29693	1.00000 0.31049 0.17544 0.13597 0.19163	0.19502 0.27441 0.31175 0.18384 0.22393	0.29407 0.35815 0.37403 0.25987 0.28496	0.14462 0.23957 0.15875 0.08667	0.09173 0.28005 0.25009 0.15122
	7 0.28396 7 0.07921 3 0.13672 5 0.24148 2 0.13768	0.24479 0.18819 0.22637 0.33301 0.25023	0.19502 0.09826 0.13319 0.13506 0.13087	1.00000 0.08441 0.23563 0.43748 0.13608	0.34715 0.22610 0.19589 0.33938 0.33624	0.10876 0.07077 0.11378 0.12883 0.17349	0.17541 0.10190 0.08777 0.19860

1

TABLE 5-6 (Continued)

8712 1394 6615 5380 1402	24057 220010 07875 16105 23827	7868 7683 18683 19722	3930 3093 3093 25507 1590	15953 14337 08011 07863 20069	7441 6613 10955 7015 14063	08441 00000 11207 12308 13285
00000	00000	00000	0.000	00000	0000	0-000
4285 8293 9787 4155 7460	17570 32088 32673 18212 27751	07347 18260 23410 09959 15461	14721 21416 24670 16099 18375	25028 30917 37578 22172 23405	31049 00000 34414 15868 22880	09826 16613 15922 09856 13790
0000	00000	00000	00000	00000	0-000	00000
25802 7771 3014 7134 7134	36545 27299 36513 17413 21082	27495 15176 20224 11501 10337	25173 17751 17866 15940 10594	14620 00000 31691 16916 19457	24056 30917 22300 15896 28662	18819 14337 16621 09745 06122
9.000	00000	00000	00000	0-000	00000	00000
8064 8776 1032 2922 8024	13108 18686 11009 19441 10099	16250 19137 12106 18741 18165	16042 00000 15632 18115	27873 17751 29364 13113 30975	6437 1416 2507 6995 3838	7921 9124 3668 4327 2167
00000	00000	00000	0-00	9.000 9.1.91.E	6.0000	00000
2964 7992 6577 1672 2046	21712 16033 20993 29106 20229	16374 00000 07698 06355 05560	19719 09137 09807 07023 10858	21194 15176 12067 19965 25069	2772 8260 1877 7045 4742	1639 2609 0586 3601
00000	0000 0-000	-0000	00000	0.00	0.000	0.00
26241 22788 17029 25131 27564 20630	30027 00000 24404 33462 34045 34037	6277 6033 3678 1932 1932 5846 3721	27616 18686 14152 30148 24075 14728	26098 27299 24996 31477 30880 33100	12569 12088 26573 13959 18464 19952	14302 20010 04695 19574 11525
000000	0-0000	00000	00000	000000	000000	0.000
27711 00000 17193 12639 23806 30724	8433 22788 9486 6821 7591 8895	13762 07992 21735 08052 16033	9176 8776 0339 3099 6711	9315 7771 8322 4208 5302 5707	7348 8293 4858 4381 1882 8325	1671 1394 4658 19463
0-000	000000	-00000	000000	000000	000000	0.000
9483 3361 8617 8086 4987 1722	32117 25438 20813 35140 18755 11608	11294 2733 19411 6734 19599 0984	17885 13086 11486 25244 06333	37334 29373 19321 21984 14844 04572	21838 28005 23759 31096 11599 08792	0776 0190 4348 5776 6400
00000	000000	00000	00000	000000	000000	00000
6958 8685 9305 4648 3034	3203 3806 3216 370 370 1606	7924 7220 3866 5611 1474	9360 2531 3813 1395 22771 8862	1720 7621 6948 7603 7150	22714 23957 20696 17723 21688 14871	15051 17077 16613 12013
0.19 0.19 0.22 0.23	0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	0.00 0.00 0.00 0.00	0.23 0.23 0.23 0.17 0.21	0.070
25899 29944 14379 22843 17281 20080	5874 3261 3261 4083 6324 8383	3501 5326 7948 9817 1712	1980 1980 13514 13875 9004 4225	1979 18704 12924 17381 1846	5637 5815 4679 8984 2872 1557	17382 22610 08931 21911 08885
000000	000000	00000	000000	000000	000000	00000
•	vo.	10		_		
*	ï	9116	:110	8110	9116	3120

0.26701 0.22386 0.22 0.30293 0.16608 0.24 1.00000 0.14822 0.18 0.24744 0.13178 0.24 0.18000 0.24304 0.11	0.27938 0.17091 0.233 0.31310 0.20443 0.213 0.14822 1.00000 0.233 0.28317 0.16255 0.20 0.19407 0.17922 0.119 0.11912 0.18774 0.08	0.30775 0.18226 0.25229 0.26753 0.13270 0.22188 0.18051 0.23010 1.00000 0.32267 0.08987 0.24730 0.13617 0.18347 0.15809 0.12436 0.12239 0.08128	0.22350 0.26193 0.25574 0.34079 0.18413 0.21431 0.23476 0.17548 0.18694 0.25929 0.09877 0.24908 0.06978 0.23359 0.14090 0.14340 0.17997 0.09809	0.21587 0.18780 0.26041 0.27374 0.17685 0.19665 0.19684 0.19285 0.17000 0.28249 0.08750 0.28976 0.09911 0.20644 0.15297 0.09979 0.07949 0.03311	0.19550 0.14647 0.13096 0.28111 0.09405 0.16169 0.15852 0.09777 0.13629 0.18567 0.15703 0.23999 0.16946 0.20932 0.10244 0.10736 0.16118 0.0	0.27860 0.17569 0.27445 0.35573 0.19319 0.23823 0.16705 0.16559 0.19955 0.39992 0.12196 0.30306 0.12685 0.19284 0.15311 0.16340 0.0
0.22386 0.2 0.16608 0.2 0.14822 0.1 0.13178 0.2 0.24304 0.1	0.17091 0. 0.20443 0. 1.00000 0. 0.16255 0. 0.17922 0.	0.18226 0.13270 0.23010 0.08987 0.18347 0.12239	. 26193 0. . 18413 0. . 17548 0. . 09877 0. . 23359 0.	.18780 0.2 .17685 0.1 .19285 0.1 .208750 0.2 .20644 0.1	14647 0.13 09405 0.16 09477 0.13 15703 0.23 20932 0.10	. 17569 0.2 . 19319 0.2 . 16559 0.1 . 12196 0.3 . 19284 0.1
000000	000000	00-000		0-0-0	0.13 0.13 0.23 0.10	. 23 . 23 . 30 . 30 . 70
2921 4144 8051 4492 1680 13879	55 25 25 25 25 25 25 25 25 25 25 25 25 2	229 88 730 730 28	25 8 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 5000-	20002	~~~~~
0.23 0.14 0.23 0.15 0.20	000000	0.0000	00-000	0.29474 0.17029 0.21060 0.10011 0.21972 0.23501	0.21978 0.16577 0.09607 0.12204 0.17712 0.23388	0.26971 0.11032 0.30612 0.06765 0.22816
0.262 0.232 0.196 0.309 0.270 0.251	000000	0.20 0.20 0.20 0.20 0.20	000000	0.21887 0.24404 1.00000 0.33479 0.30816 0.16628	0.22925 0.20993 0.14414 0.22956 0.22958 0.12261	0.27605 0.21009 0.18841 0.31400 0.28276
0.1989 0.1794 0.1585 0.1632 0.0785	00000	0.20067 0.09411 0.13629 0.18694 0.07150	0.14805 0.21735 0.09607 0.13512 0.17852	0.25926 0.13678 0.14414 0.08492 0.06034	0.16085 0.07698 1.00000 0.08941 0.08984	0.17443 0.12106 0.11030 0.18481 0.13533
0.17741 0.13514 0.16705 0.21457 0.23123	0.19873 0.13813 0.16559 0.16127 0.15208	0.16130 0.11486 0.19957 0.22461 0.21101	0.36686 0.10339 0.30612 0.25599 0.21528	0.23335 0.14152 0.18841 0.18027 0.20784	0.15881 0.09807 0.11030 0.18499 0.17516	0.31874 0.15632 1.00000 0.26615 0.23871
0.2628 0.2292 0.2702 0.2086 0.2251	0.29821 0.26948 0.25323 0.08797	0.25 0.19 0.25 0.11 0.19	0.28728 0.18322 0.27290 0.18122 0.22483	0.25657 0.24996 0.23249 0.10161 0.19402	0.25432 0.12067 0.23396 0.05259 0.14479	0.32762 0.29364 0.29571 0.09441
00000	0.020	0.23 0.22 0.22 0.28	0.24806 0.34858 0.32963 0.16942 0.22865	0.19831 0.26573 0.21926 0.11273 0.11619	0.09477 0.11877 0.17336 0.14649 0.18517	0.20105 0.32507 0.24269 0.16295 0.20171
00000	0.23478 0.16613 0.15501 0.17181	0.20961 0.14348 0.10383 0.19223	0.23219 0.14658 0.10086 0.19556 0.16921	0.19382 0.04695 0.11469 0.19822 0.08219	0.20060 0.12609 0.07940 0.25681 0.15224	0.15502 0.13668 0.16406 0.13480 0.18030
	0.22498 0.26217 0.:9895 0.17741 0.26281 0.15980 0. 0.14379 0.23261 0.17948 0.13514 0.22924 0.24679 0. 0.23476 0.19684 0.15852 0.16705 0.27026 0.26302 0. 0.15584 0.30938 0.16325 0.21457 0.20861 0.16478 0. 0.20554 0.27084 0.07858 0.23123 0.22511 0.20477 0.	0.22498 0.26217 0.19895 0.17741 0.26281 0.15980 0.1 0.14379 0.23261 0.17948 0.13514 0.22924 0.24679 0.0 0.23476 0.19684 0.15652 0.16705 0.27026 0.26302 0.1 0.15564 0.27084 0.07858 0.23123 0.22511 0.20477 0.1 0.17564 0.25124 0.07858 0.19873 0.29821 0.15639 0.2 0.19305 0.23216 0.09866 0.13813 0.26948 0.20696 0.1 0.17548 0.19285 0.09777 0.16559 0.25323 0.22688 0.1 0.15549 0.22247 0.12006 0.15208 0.21624 0.18696 0.1	0.22498 0.26217 0.19895 0.17741 0.26281 0.15980 0.194379 0.23261 0.19684 0.15948 0.13514 0.22924 0.24679 0.0 0.153476 0.19684 0.15852 0.16705 0.27026 0.26302 0.15584 0.19584 0.16852 0.16705 0.27026 0.26302 0.15584 0.20554 0.20554 0.20684 0.106758 0.21457 0.20861 0.16478 0.17564 0.255124 0.07858 0.19873 0.22511 0.20477 0.19105 0.19305 0.23216 0.09866 0.13813 0.22644 0.20677 0.15391 0.22247 0.19873 0.29821 0.15639 0.20679 0.17548 0.19285 0.09777 0.16559 0.256948 0.202268 0.19285 0.15391 0.22247 0.12206 0.16127 0.08797 0.14410 0.19365 0.22290 0.171998 0.15208 0.21624 0.18696 0.19685 0.17000 0.171998 0.15208 0.21624 0.18696 0.19689 0.20813 0.20067 0.16130 0.25560 0.17222 0.2018617 0.20813 0.09411 0.11486 0.19376 0.23759 0.19662 0.27783 0.18694 0.17000 0.13629 0.19957 0.25189 0.22196 0.19662 0.27783 0.18694 0.17000 0.13629 0.19957 0.25189 0.22196 0.19662 0.23774 0.26506 0.07150 0.21101 0.19376 0.20994 0.255847 0.21100 0.255847 0.21100 0.255847 0.21100 0.255847 0.21100 0.255847 0.21100 0.255847 0.21100 0.255847 0.20994 0.22100 0.255847 0.21100 0.255847 0.21100 0.255847 0.21100	0.22498 0.26217 0.1948 0.13514 0.26281 0.15980 0.1914379 0.23261 0.17948 0.13514 0.22924 0.24679 0.0014379 0.23261 0.17948 0.13514 0.22924 0.24679 0.0014379 0.2361 0.19684 0.15852 0.16705 0.27026 0.26302 0.10015584 0.20554 0.20634 0.10858 0.23123 0.22511 0.20477 0.10017564 0.25124 0.07858 0.23123 0.22511 0.20477 0.101554 0.17564 0.25124 0.07858 0.13813 0.29821 0.15639 0.20696 0.19305 0.23216 0.09866 0.13813 0.29821 0.15639 0.20696 0.15391 0.22268 0.15391 0.222290 0.17548 0.19285 0.09777 0.16559 0.25524 0.18696 0.15391 0.22268 0.10015539 0.222290 0.17548 0.15208 0.15208 0.21624 0.18696 0.10015639 0.22268 0.1522 0.22631 0.22268 0.1522 0.22631 0.22268 0.1522 0.22631 0.22268 0.1522 0.22631 0.22268 0.1522 0.15231 0.22268 0.15231 0.22268 0.1522 0.15231 0.22268 0.15231 0.22461 0.19321 0.23759 0.100220 0.13629 0.19957 0.25189 0.19359 0.19376 0.23759 0.10025847 0.21624 0.21624 0.18696 0.23759 0.19662 0.27183 0.18659 0.21101 0.19376 0.29049 0.19858 0.19839 0.17193 0.29485 0.21483 0.29485 0.21628 0.22483 0.22483 0.12226 0.16942 0.17852 0.25569 0.16322 0.16942 0.17852 0.25569 0.16322 0.16942 0.17852 0.25569 0.16322 0.16942 0.17852 0.17852 0.22483 0.22483 0.22485 0.16942 0.17852 0.17852 0.21528 0.16942 0.17852 0.178	0.17564 0.26217 0.19895 0.17741 0.26281 0.15980 0.10.1379 0.23261 0.17948 0.15552 0.16705 0.22924 0.24679 0.0.15364 0.19682 0.16705 0.27026 0.24679 0.0.15564 0.23054 0.15655 0.21457 0.20861 0.16478 0.15564 0.25784 0.07858 0.23123 0.22511 0.20477 0.15564 0.25124 0.07858 0.23123 0.22511 0.20477 0.15564 0.25512 0.07858 0.18433 0.22641 0.20477 0.15599 0.25139 0.22047 0.19305 0.23123 0.22247 0.19865 0.16130 0.25549 0.20696 0.19539 0.22247 0.19285 0.09777 0.16559 0.25694 0.20696 0.19549 0.19549 0.22247 0.19285 0.19285 0.17528 0.22247 0.19305 0.16130 0.25560 0.17222 0.20634 0.22247 0.17198 0.15208 0.19529 0.17222 0.20634 0.20634 0.20694 0.20634 0.20634 0.22246 0.19329 0.22196 0.19659 0.22196 0.19659 0.22047 0.11486 0.19321 0.25189 0.22196 0.19659 0.22196 0.19659 0.22196 0.19659 0.25199 0.22199 0.19659 0.25199 0.22199 0.19659 0.25199 0.22199 0.19659 0.19659 0.19659 0.25199 0.22199 0.19659 0.25199 0.22199 0.19659 0.22199 0.19659 0.25199 0.22199 0.19659 0.25199 0.22199 0.19659 0.25199 0.22199 0.19659 0.21029 0.19659 0.21029 0.19659 0.21029 0.19659 0.21029 0.19659 0.21029 0.19659 0.21029 0.19659 0.21029 0.19659 0.21029 0.19659 0.21029 0.19659	0.19399 0.226217 0.19895 0.17741 0.26281 0.15980 0.0.14379 0.22264 0.17948 0.13514 0.22924 0.22924 0.224679 0.224679 0.224679 0.224679 0.22954 0.29284 0.24679 0.15554 0.27084 0.07858 0.21457 0.20861 0.16478 0.17564 0.27084 0.07858 0.21457 0.20811 0.20477 0.17564 0.27084 0.07858 0.13890 0.19873 0.22511 0.20477 0.19190 0.1939 0.21499 0.19190 0.1939 0.21499 0.19190 0.1939 0.25247 0.1928 0.09777 0.16559 0.25312 0.22696 0.19190 0.15539 0.22697 0.17228 0.09777 0.16559 0.25312 0.22696 0.19190 0.15539 0.22697 0.17198 0.15208 0.17228 0.20914 0.18091 0.15208 0.17228 0.19190 0.19884 0.17000 0.18694 0.17000 0.18694 0.22467 0.16130 0.25560 0.17222 0.20914 0.18694 0.17000 0.18694 0.17000 0.18694 0.22787 0.18694 0.17000 0.18694 0.22467 0.19377 0.29199 0.19190 0.19879 0.19190 0.19879 0.19190 0.19891 0.22190 0.19190 0.19891 0.22190 0.19190 0.1

Ç

20 AS

	0.22003 0.16621 0.20944 0.27771 0.20921	0.31175 0.15922 0.09298 0.28912 0.25906	0.23563 0.11207 1.00000 0.33837 0.09405	0.23766 0.21911 0.20916 0.15636 0.22007	0.04709 0.12013 0.05631 0.15659 0.13352	0.28349 0.15776 0.29100 0.45558 0.19620	0.05018 0.09463 0.10049 0.05475 0.15843
	0.15462 0.22300 0.26566 0.19334 0.30003	0.17544 0.34414 1.00000 0.25089 0.23784	0.13319 0.10955 0.09298 0.07600 0.15585	0.22427 0.38984 0.38685 0.24339 0.29311	0.04003 0.17723 0.25385 0.14845 0.13792	0.19625 0.31096 0.37280 0.20965 0.26615	0.06872 0.14381 0.0839 0.09725 0.13311
	0.34936 0.31691 1.00000 0.15540 0.26730	0.36361 0.37578 0.26566 0.24701 0.21873	0.22637 0.08011 0.20944 0.13281 0.16538	0.35007 0.37381 0.34207 0.16901 0.29826	0.20079 0.17603 0.18934 0.12262 0.06750	0.42225 0.21984 0.39398 0.18754 0.29921	0.11014 0.24208 0.22018 0.15572 0.20721
(pa	0.23400 0.17866 0.29571 0.24486	0.35473 0.24670 0.24269 0.37928 0.27218	0.13672 0.23093 0.16406 0.11970 0.06391	0.28634 0.13875 0.39992 0.40561 0.32473	0.13519 0.11395 0.12196 0.21718 0.17611	0.34570 0.25244 0.30306 0.33835 0.21136	0.06630 0.03099 0.06765 0.09519 0.17437
Continued	0.19679 0.20224 0.23396 0.19762 0.16378	0.20856 0.23410 0.17336 0.16772 0.20604	0.22147 0.07683 0.07940 0.09031	0.26351 0.19817 0.18567 0.24167 0.19225	0.15887 0.06611 0.15703 0.10351 0.15917	0.24655 0.16734 0.23999 0.25152 0.10823	9.05390 0.08052 0.12204 0.11377 0.14809
E 5-6	0.33256 0.36513 0.23249 0.29566 0.33929 0.25591	0.39452 0.32673 0.21926 0.47290 0.47198	0.25486 0.07875 0.11469 0.23186 0.22006 0.18932	0.35614 0.44083 0.28249 0.32348 0.34477 0.33690	0.13377 0.20370 0.08750 0.13962 0.20566 0.15306	0.41424 0.35140 0.28976 0.50279 0.45700	0.10697 0.16821 0.10011 0.20581 0.16620
TABL	0.38054 0.23014 0.27290 0.22018 0.33406 0.31683	0.34684 0.19787 0.32963 0.18039 0.27176	0.18866 0.16615 0.10086 0.10049 0.17200	0.35477 0.22843 0.25929 0.17637 0.37320	0.15407 0.14648 0.09877 0.02586 0.15594 0.21810	0.43199 0.28086 0.24908 0.16653 0.27826 0.36121	0.12502 0.12639 0.14339 1.00000 0.18434 0.14986
	0.34302 0.27671 0.25189 0.39398 0.22738	0.26709 0.25009 0.22196 0.37280 0.14219	0.12394 0.08777 0.10383 0.29100 0.14122 0.06860	0.29851 0.27066 0.32267 0.30519 0.22135	0.13316 0.12520 0.08987 0.19126 0.09358 0.04264	0.22007 0.36584 0.24730 1.00000 0.17279 0.07861	0.18540 0.12794 0.10662 0.16653 0.12740
	0.30612 0.23735 0.25323 0.18934 0.29057 0.10892	0.22842 0.15875 0.22268 0.25385 0.30165	0,15818 0,11378 0,15501 0,05631 0,21790 0,19414	0.28004 0.33084 0.28317 0.22419 0.27667 0.12817	0.15986 0.16503 0.16255 1.00000 0.16586 0.11354	0.32263 0.30844 0.20483 0.19126 0.31902 0.18748	0.15234 0.13499 0.15391 0.02586 0.10349
	0.33976 0.42995 0.27026 0.34207 0.20064 0.19437	0.34834 0.37403 0.26302 0.38685 0.26979 0.21095	0.16264 0.19589 0.17480 0.20916 0.24257	0.39523 0.42603 0.24744 1.00000 0.27082 0.24071	0.15432 0.20111 0.13178 0.22419 0.11299	0.29977 0.47531 0.24492 0.30519 0.23681	0.23934 0.15264 0.15584 0.17637 0.12820
	J128	J129	J130	E IT	31 32	J133	\$5. \$5.

	135 0.39802 959 0.19574 290 0.23186 116 0.37688 508 0.25137	332 0.16685 345 0.10586 772 0.09031 329 0.10692 104 0.13560	91 0.19084 95 0.14327 828 0.11970 826 0.25172 72 0.16864	12897 0.28835 15896 0.09745 14701 0.13281 2863 0.22196 6847 0.20690	3597 0.18384 5868 0.09856 5089 0.07600 0000 0.17290 1136 0.12041	06 0.43748 15 0.12308 12 0.33837 90 1.00000 85 0.14267	00 0.25913 72 0.08885 79 0.24257 26 0.34401 17 0.15088
	0.25 0.33 0.47 0.22 0.22	0.08832 0.27045 0.16772 0.02829 0.16104	0.145 0.269 0.379 0.229 0.207	0.128 0.158 0.247 0.128 0.168	0.135 0.158 0.250 1.000 0.211	0.1350 0.1701 0.2891 0.1729 0.2338	0.08800 0.22872 0.26979 0.13226 0.17817
	0.41884 0.31477 0.29566 0.25644 0.27024	0.27501 0.19965 0.19762 0.07236 0.12272	0.24471 0.13113 0.24486 0.22846	0.12418 0.16916 0.15540 1.00000 0.19612	0.221784 0.22172 0.19334 0.12863 0.12477	0.33301 0.07863 0.27771 0.22196 0.16756	0.22206 0.18901 0.20064 0.11505 0.21504
(par	0.33735 0.30148 0.31400 0.29010 0.27848	0.22421 0.07023 0.18481 0.09972 0.12541	0.24195 0.18115 0.26615 1.00000 0.22648	0.18167 0.15940 0.09441 0.22846 0.12839	0.18195 0.16099 0.16295 0.22926 0.19040	0.24148 0.32507 0.13480 0.25172 0.13520	0.16667 0.19004 0.12685 0.20554 0.19319
(Continu	0.30965 0.21932 0.22956 0.17838	0.17535 0.06355 0.08941 1.00000 0.11429	0.24218 0.08741 0.18499 0.09972 0.17574	0.17377 0.11501 0.05259 0.07236 0.12254	0.14348 0.09959 0.14649 0.02829 0.12060	0.16832 0.08683 0.25681 0.10692 0.11664	0.20358 0.08260 0.16946 0.17301 0.20325
3LE 5-6	0.40355 0.33462 0.33479 1.00000 0.48112 0.36803	0.20881 0.29106 0.08492 0.17836 0.22558	0.32481 0.29441 0.18027 0.29010 0.39447	0.22164 0.17413 0.10161 0.25644 0.19638	0.28243 0.18212 0.11273 0.22116 0.20858	0.32547 0.16105 0.19822 0.37688 0.34323	0.24058 0.26324 0.09911 0.23804 0.27777
TAB	0.37596 0.25131 0.33303 0.20581 0.27905 0.38449	0.23601 0.11672 0.13512 0.11377 0.126516	0.30466 0.22922 0.25599 0.09519 0.28529	0.19580 0.17134 0.18122 0.15572 0.16122	0.15284 0.24155 0.16942 0.09725 0.24907	0.33623 0.25380 0.19556 0.05475 0.22335	0.29254 0.17281 0.06978 0.12820 0.22793
	0.30940 0.27203 0.27183 0.50279 0.20709 0.15914	0.17912 0.15859 0.18694 0.25152 0.03479	0.19937 0.15876 0.22461 0.33835 0.16924	0.20954 0.17976 0.11801 0.18754 0.11794 0.14440	0.16755 0.15122 0.18303 0.20965 0.63435 0.07829	0.13751 0.19860 0.19223 0.45558 0.18929 0.23139	0.17154 0.20395 0.13617 0.23681 0.10648 0.06436
	0.29703 0.19655 0.22247 0.13962 0.33200 0.24021	0.13125 0.14877 0.12006 0.10351 0.10385 0.15578	0.22780 0.20481 0.16127 0.21718 0.31172	0.19857 0.09837 0.08797 0.12262 0.17487	0.13798 0.08667 0.14410 0.14845 0.20887 0.11136	0.15917 0.12883 0.17181 0.15659 0.31472 0.33450	0.13424 0.13857 0.19407 0.11299 0.26053 0.21365
	0.32843 0.44115 0.30938 0.32348 0.23804 0.21813	0.18602 0.24768 0.16325 0.24167 0.17301	0.30441 0.38724 0.21457 0.40554 0.20554 0.17530	0.16192 0.15171 0.20861 0.16901 0.11505	0.22883 0.25987 0.16478 0.24339 0.13226	0.24048 0.33938 0.18777 0.15636 0.34401 0.10738	0.20900 0.22705 0.18000 0.27082 1.00000
	35 11	J136	1137	3139	1140	1141	3142

Z.

£7.

NY KY

143	,	,	•		_	4	(Continu	(pər			
3	0.26363 0.32337 0.24304 0.27667 0.26053 0.19823	3 0.25861 7 0.19689 4 0.17922 7 0.16586 3 1.00000 3 0.18479	000000	22286 19295 18347 31902 25049 15601	0.25167 0.22546 0.23359 0.10349 0.32613	0.32786 0.31606 0.20644 0.33200 0.34481 0.30804	0.23799 0.15879 0.20932 0.10385 0.1781	0.21866 0.22771 0.19284 0.33172 0.24625	0.32157 0.17150 0.29057 0.17487 0.19530	0.09323 0.21688 0.30165 0.20887 0.25801	0.24541 0.18218 0.21790 0.31472 0.20318
4	0.24065 0.25778 0.11680 0.22135 0.10648	5 0. 1406 9 0. 1194 0. 0. 9354 5 0. 09354 3 0. 1493	0000-0	15661 16608 15809 17279 00000	0.12727 0.14987 0.14090 0.12740 0.24204 0.17369	0.22472 0.18755 0.15297 0.20709 0.18547 0.13285	0.11370 0.09599 0.10244 0.03479 0.11842	0.12525 0.06333 0.15311 0.16924 0.17357	0.23348 0.14844 0.22738 0.14794 0.17821	0.08599 0.11599 0.14219 0.63435 0.19224	0.14203 0.16400 0.14122 0.18929 0.14804
1145	0.33405 0.40524 0.20554 0.37320 0.22793	0.23948 0.27379 0.19665 0.15594 0.32613	000000	21545 20729 23374 27826 24204 0	0.23514 0.23806 0.21475 0.18434 1.00000	0.29897 0.37591 0.21972 0.27905 0.28123	0.21841 0.16033 0.17712 0.17977 0.10293	0.14786 0.16711 0.22816 0.28529 0.28257	0.44349 0.25302 0.33406 0.16122 0.30198	0.11783 0.21882 0.27176 0.24907 0.28297	0.21089 0.25024 0.17200 0.22335 0.28311
3146	0.36443 0.42631 0.27084 0.34477 0.27777	0.26860 0.25177 0.22590 0.20566 0.34481	000000	5506 5506 5700 5713	0.41563 0.27564 0.35273 0.16620 0.28123 0.37390	0.43677 0.34045 0.30816 0.48112 1.00000 0.30743	0.26008 0.15846 0.25528 0.22558 0.20066	0.42737 0.24075 0.28276 0.39447 0.26529	0.39355 0.30860 0.33929 0.19638 0.29355	0.21396 0.38464 0.47198 0.20858 0.30091	0.42511 0.11525 0.22006 0.34323 0.27123
1147	0.19770 0.16991 0.07858 0.19225 0.20325 0.19435	0.11470 0.19275 0.17198 0.15917 0.15060	00000	9800 3608 7150 1842 4899	0.18405 0.22046 0.17852 0.14809 0.10293	0.20639 0.20229 0.06034 0.12541 0.20066	0.07512 0.05560 0.08984 0.11429 1.00000	0.22039 0.10858 0.13533 0.17574 0.12864	0.14182 0.25069 0.16378 0.12254 0.07918	0.09231 0.14742 0.20604 0.12060	0.03832 0.13601 0.03235 0.11664 0.13486
3148	0.30278 0.34050 0.23123 0.32473 0.19319 0.18185	0.19364 0.20485 0.15208 0.17611 0.24625 0.14180	000000	21892 0 20758 0 21101 0 21136 0 17357 0	0.19656 0.18024 0.21528 0.17437 0.28257 0.26804	0.24142 0.30099 0.20784 0.27848 0.26529 0,26642	0.14409 0.18165 0.17516 0.12541 0.12864	0.22579 0.14551 0.23871 0.22648 1.00000	0.32500 0.30975 0.23198 0.12839 0.21042	0.18190 0.23638 0.27218 0.19040 0.20456	0.20739 0.12167 0.06391 0.13520 0.24055
J149	0.21787 0.32743 0.22511 0.29826 0.21504 0.15225	0.20211 0.15949 0.21624 0.06750 0.19530	000000	2128 0 7889 0 3376 0 9921 0 7821 0	.30094 .21628 .22483 .20721 .30198	0.24620 0.21082 0.19402 0.27024 0.29355	0.19499 0.10337 0.14479 0.12272 0.07918	0.23125 0.10594 0.24867 0.22475 0.21042	0.27689 0.19457 0.26730 0.19612 1.00000	0.19272 0.28662 0.21873 0.12477 0.21089	0.27424 0.06122 0.16538 0.16756 0.09136

	9693 0.19163 0.22393 3405 0.22860 0.13790 10003 0.23784 0.15585 6847 0.21136 0.23385 1089 1.00000 0.21504	25023 0.13087 0.13608 20069 0.24063 0.13285 20921 0.25906 0.09405 20690 0.12041 0.14267 09136 0.21504 1.00000	689 0.15005 0.10603 846 0.21557 0.12682 1437 0.21095 0.12188 1566 0.07825 0.10738 1225 0.16789 0.20766	7722 0.0 0.32331 0.14871 0.08253 0892 0.27064 0.19414 2065 0.1136 0.33450 1224 0.16944 0.17497	716 0.0 0.05963 1572 0.08792 0.05798 452 0.12969 0.06860 440 0.07829 0.23139 445 0.15504 0.13576	28132 0.12347 0.31022 22707 0.28325 0.14630 11683 0.35584 0.16921 19647 0.21644 0.27829 22000 0.27101 0.31482	1489 0.26572 0.21264 1100 0.29952 0.14222 1591 0.40009 0.18932 1873 0.18541 0.16112 1645 0.26161 0.33449
	282 0.2 375 0.3 771 0.3 772 0.1	3768 0.25 1590 0.26 8030 0.26 6864 0.26 4055 0.09	4747 0.15 4225 0.17 6340 0.19 7530 0.14 8185 0.15	926 0.17 862 0.0 0.10 884 0.22 180 0.21	0483 0.21 6820 0.04 7434 0.17 6520 0.14 3102 0.15	648 0.28 707 0.22 315 0.316 146 0.196 804 0.220	746 0.234 728 0.331 270 0.255 471 0.278 642 0.256
inued)	7201 0.23 7461 0.18 7461 0.20 7504 0.20 7626 0.20	4742 0.13 19722 0.11 5224 0.18 3560 0.16 3486 0.24	1725 0.14 1712 0.14; 0736 0.16; 7446 0.17; 9435 0.18	0108 0.179	34 0.0 34 0.0 0.0 0.1	1864 0.276 262 0.197 3388 0.253 5516 0.291 5530 0.268	0.30 0.29 0.32 0.32
6 (Conti	00000	1091 0.147 38827 0.09 88219 0.155 55137 0.13 3449 0.13	00000	00000	750 0.089 608 0.1096 311 0.0 914 0.0 733 0.1485	0.283 0.283 0.383	4 0.20874 7 0.13721 8 0.12261 3 0.19782 3 0.28648
ABLE 5-6	2374 0.31215 7460 0.2775 2865 0.11615 3311 0.2750 3297 0.30091	000000	0.15990 0.0538 0.09978 0.16818 0.24550	0 0.24051 4 0.23861 7 0.07949 5 0.24021 0 0.27056 6 0.23174	0.15 0.03 0.15 0.16	1 0.39625 4 0.38895 3 0.23501 6 0.38449 7 0.37390 0 0.43811	0.36754 0.34037 0.16628 0.36803 1.00000
	000000	5 0.2004 9 0.21408 8 0.16921 1 0.2831 6 0.31482	4 0.21615 5 0.20080 6 0.14340 6 0.19430 3 0.25394 4 0.22525	7 0.19910 8 0.23034 9 0.17997 8 0.12645 7 0.20950	0.127 0.117 0.098 0.051 0.05	0.31191 0.30724 0.31173 0.14986 0.26637	0.23505 0.20630 0.29452 0.22182 0.26383 0.43811
	8 0.1648 0 0.19746 6 0.20996 2 0.26619 1 0.19224	3 0.21465 9 0.24099 7 0.22978 0.19620 8 0.14804 7 0.13576	3 0.16324 0.17705 0.17436 0.22365 0.09083	0.07617 0.14128 0.12239 0.18234 0.18337	0.13251 0.15630 0.08128 0.07861 0.08145	0.28797 0.15045 0.25847 0.36121 0.17369 0.20438	0.26846 0.23394 0.21100 0.20363 0.13285 0.16377
	9 0.27458 6 0.15550 7 0.18696 1 0.13792 7 0.25801 9 0.16944	0.20833 0.17349 0.19307 0.19352 0.20318 0.17497	0.17808 0.24092 0.11912 0.16686 0.19823	0.05059 0.01806 0.18774 0.11354 0.18479	0.09907 0.03083 0.08175 0.04264 0.15601	0.17276 0.18573 0.20634 0.21810 0.31193	0.20069 0.19613 0.22787 0.15306 0.30804
	0.27089 0.28496 0.20477 0.29311 0.17817 0.16789	0.27333 0.33624 0.17525 0.22007 0.15088 0.20766	0.22068 0.26151 0.09386 0.24071 0.15617	0.15374 0.13547 0.11705 0.12817 0.21365 0.23207	0.08216 0.11726 0.03879 0.06347 0.06436 0.12654	0.44011 0.31467 0.17564 0.38645 0.24658 0.22525	0.35716 0.30765 0.25124 0.33690 0.21961 0.24550
	01 50 0 51 50	1515	1152	153	2	155	156

j

tetrachoric correlation matrices of the fifty-five items of Test Jl in these two cases, respectively. It should be noted that in both tables there are many small positive correlation coefficients observed for item J154. In applying factor analysis for these tetrachoric correlation matrices, the principal factor solution was adopted, with 55 and 42 common factors in communality estimation, respectively, in these two separate cases. These are the maximum numbers of common factors useable without making any estimated communalities exceed unity. Tables 5-7 and 5-8 present the resulting eigenvalues in the J1/1075 and J1/2259 Cases, respectively. We can see from each result that there is only one dominating common factor, since all the other eigenvalues are negligibly small, i.e., the unidimensionality of the latent space is confirmed in each case. The factor loadings of these common factors are given in Tables 5-9 and 5-10. In these tables, all those values which exceed 0.300 are marked by ψ , while those which are negative and whose absolute values exceed the same number are marked by ∇ , except in the first column where all the values except for those of items J120, J134 and J154 in the J1/1075 Case and of items J116, J120, J134 and J154 in the J1/2259 Case do exceed 0.3000. Observation of these two tables reveals that there exist a few minor clusters such as those of items J141 and J153, and of items J140 and J144 in both cases, but overall the results support the unidimensionality of the latent space.

The estimates of the item discrimination and item difficulty parameters were obtained by (4.1) and (4.2), and the results are

TABLE 5-7

Eigenvalues of the Tetrachoric Correlation Matrix in the J1/1075 Case Whose Diagonal Elements Were Replaced by the Estimated Communalities Based upon the Fifty-Five Common Factors, Obtained by the Principal Factor Solution in SPSS Version H, release 9.1.

FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
1	14.07600	25.6	25.6
2	2.00527	3.6	29.2
3	1.85225	3.4	32.6
4	1.68286	3.1	35.7
5 6 7	1.46180	2.7	38.3
7	1.41706 1.34809	2.6	40.9
8	1.29391	2.5 2.4	43.4
ğ İ	1.26612	2.3	45.7 48.0
10	1.21675	2.2	50.2
-11	1.19252	2.2	52.4
12	1.13169	2.1	54.4
13	1.08745	2.0	56.4
14	1.06089	1.9	58.4
15 16	1.00829	1.8	60.2
17	0.98982 0.96252	1.8 1.8	62.0
is	0.95201	1.7	63.7 65.5
19	0.89599	1.6	67.1
20	0.89268	1.6	68.7
21	0.87130	1.6	70.3
22	0.83960	1.5	71.8
23	0.82416	1.5	73.3
24 25	0.79013	1.4	74.8
26	0.76911 0.74202	1.4 1.3	76.2
27	0.72782	1.3	77.5 78.8
28	0.70499	1.3	80.1
29	0.68304	1.ž	81.4
30	0.66735	1.2	82.6
31	0.66201	1.2	83.8
32	0.62523	1.1	84.9
33	0.61147 0.60033	1.1	86.0
35	0.56625	1.1 1.0	87.1 88.1
36	0.54957	1.0	89.1
37	0.52276	1.0	90.1
38	0.50601	0.9	91.0
39	0.48853	0.9	91.9
40	0.45904	0.8	92.7
41	0.43907	0.8	93.5
42	0.42453	0.8	94.3
1:4	0.39065 0.35969	0.7 0.7	95.0
45	0.33716	0.6	95.7 96.3
46	0.32326	0.6	96.9
47	0.30133	0.5	97.4
48	0.27201	0.5 0.5	97.9
49	0.25921	0.5	98.4
50	0.23477	0.4	98.8
51 52	0.19081 0.15292	0.3	99.2
53	0.15292	0.3 0.3	99.4
54	0.09919	0.2	99.7 99.9
55	0.06580	0.1	100.0

U

TABLE 5-8

Eigenvalues of the Tetrachoric Correlation Matrix in the J1/2259 Case Whose Diagonal Elements Were Replaced by the Estimated Communalities Based upon the Forty-Two Common Factors, Obtained by the Principal Factor Solution in BMOP4M Revised in 1982.

FACTOR	VARIANCE EXPLAINED	CUMULATIVE PROPORTION DATA SPACE	ORTION OF VARIANCE IN FACTOR SPACE
1	12.5805	0.3722	0.3748
	1.6690	0.4216	0.4245
3	1.3843	0.4625	0.4658
A	1.2342	0.4990	0.5025
2 3 4 5 6 7	1.0798	0.5310	0.5347
6	0.8874	0.5572	0.5612
7	0.8429	0.5822	0.5863
8	0.8042	0.6059	0.6102
9	0.7240	0.6274	0.6318
10	0.7035	0.6482	0.6528
11	0.6818	0.6683	0.6731
12	0.6767	0.6884	0.6932
13 14	0.6238 0.6085	0.7068 0.7248	0.7118
15	0.6085 0.5866	0.7448 0.7422	0.7299 0.7474
16	0.5413	0.7582	0.7635
17	0.5106	0.7733	0.7788
18	0.4790	0.7875	0.7930
19	0.4694	0.8013	0.8070
20	0.4529	0.8147	0.8205
21	0.4305	0.8275	0.8333
22	0.4174	0.8398	0.8458
23	0.3975	0.8516	0.8576
24	0.3724	0.8626	0.8687
25	0.3646	0.8734	0.8796
26	0.3507	0.8838	0.8900
27	0.3468	0.8940	0.9003
28	0.3305	0.9038	0.9102
29 30	0.3176 0.3063	0.9132 0.9223	0.9197 0.9288
31	0.3063	0.9223	0.9200
32	0.2757	0.9389	0.9456
33	0.2565	0.9465	0.9532
34	0.2354	0.9535	0.9602
35	0.2182	0.9599	0.9667
36	0.2139	0.9663	0.9731
37	0.1903	0.9719	0.9788
38	0.1717	0.9770	0.9839
39	0.1688	0.9820	0.9889
40	0.1459	0.9863	0.9933
41	0.1206	0.9899	0.9969
42 43	0.1055	0.9930	1.0000
43	0.0663	0.9949 0.9965	
45	0.0533 0.0450	0.9965	
46	0.0350	0.9989	
47	0.0237	0.9996	
48	0.0091	0.9999	
49	0.0046	1.0000	
50	-0.0055		
51	-0.0277		
52	-0.0399		
53	-0.0508		
54	-0.0791		
55	-0.0883		

TABLE 5-9

Factor Loading Matrix for the Fifty-Five Items of Test J1 in the J1/1075 Case.

ITEM	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 3	FACTOR 7
J101	0.61043	0.19598	-0.05464	0.07542	0.07286	-0.18941	-0.14135
J102	0.47598	-0.10294	-0.12100	-0.08564	-0.00427	-0.03974	0.10686
J103	0.54035	0.04782	-0.25590	0. 0 2518	0.29484	0.02543	-0.25564
J104	0.57770	-0.11864	0.00231	0.12198	0.07184	-0.03308	0.00607
J105	0.61634	-0.12708	0.11562	-0.04205	-0.03089	0.02378	0.14063
J106	0.44726	-0.15486	-0.07819	0.05233	0.17241	0.00990	0.30015
J107	0.49329	-0.12425	-0.09758	0.01361	0.09995,	0.12483	-0.08452
J108	0.63700	-0.34440 🕁	-0.16968	-0.09753	-0.45234♦	0.05166	-0.05187
J109	0.31339	0.07604	-0.12758	-0.11168	0.37257 ♥	-0.10823	0.18090
J110	0.53911	-0.19497	0.22553	-0.17537	0.28185	0.04353	-0.06265
J111	0.70100	-0.09472	-0.05455	-0.07089	-0.06857	-0.25146	-0.08487
J112	0.43670	-0.01963	-0.24108	0.17325	-0.06594	-0.16625	0.06981
J113	0.48428	-0.08023	-0.07331	0.08558	-0.03805	0.02050	0.19791
J114	0.53419	0.14031	0.12352	0.08886	-0.08975	-0.21592	0.00148
J115	0.63185	0.07652	-0.12490	-0.01808	-0.02749	0.05582	0.05837
J116	0.35899	-0.08805	-0.10085	-0.05841	-0.08215	0.22747	0.07647
J117	0.33359	-0.15038	0.13042	0.08361	0.14209	0.13210	C. 10490
J118	0.48805	0.19061	-0.15250	-0.01070	0.27958	0.15336	-0.07751
J119	0.52329	-0.06907	-0.21062	0.06751	0.06373	0.07083	0.29423
J 120	0.28878	0.13649	0.06027	0.13521	-0.06289	-0.11481	0.10335
J121	0.44657	-0.03185	-0.01931	-0.08235	0.01485	0.02948	0.06723
J 122	0.47122	0.01455	-0.01102	-0.00421	0.05932	-0.12274	-0.07499
J123	0.46670	0.04409	-0.07771	-0.06309	0.06972	-0.0510C	-0.17089
J124	0.49890	-0.05324	-0.23578	-0.01375	-0.04186	0.15332	-0.02585
J125	0.46241	-0.19754	-0.26570	-0.05983	0.16120	0.05038	-0.03056
J126	0.42898	-0.0:245	0.07570	0.02962	0.07486	-0.15596	-0.09084
J 127	0.47687	-0.09154	-0.32314 🕁	0.00752	-0.01546	0.03237	-0.14351
J128	0.61289	-0.05743	-0.05556	0.00133	-0.04110	-0.06901.	-0.23566
J 129	0.62127	-0.03373	0.20749	-0.01614	0.01439	0.30965	0.03696
J130	0.33121	-0.24558	0.27901	0.07706	0.1.497	-0.2290€	0.03468
J131	0.65912	0.08031	-0.16017	-0.06083	-0.01098	0.00190	0.13589
J132	0.39622	0.1.709	0.02072	0.09270	-0.1:175	-0.03400	0.07169
J133	0.59063	-0.39896	0.15478	-0.01710	-0.2:000	-0.09010	-0.08355
J134	0.29280	0.1'472	0.10620	0.07367	0.07350	-0.02260	-0.172 59
J135	0.64151	-0.15051	0.12960	-0.02264	0.0:544	0.19200	-0.0/295
J136	0.34499	-0.04909	-0.12861	0.19779	-0.0.179	-0.09401	0.06426
J137	0.56344	0.07955	0.01312	-0.05585	-0.09771	0.1190	0.04678
J139	0.38553	0.13285	0.13835	-0.00844	0.0.118	0.24991	0.09375
J140	0.38741	0.30171 ♥	0.12788	-0.62076 \	-0.0:057	-0.00316	0.04837
J141	0.49966	-0.33105 +	9.43054 ♦	0.03567	0.06502	-0.0627	-0.09764
J142	0.44664	0.04192	0.18276	0.12073	0.1:081	-0.1572	0.2:457
J143	0.37445	0.02038	0.09103	-0.04597	-0.0:398	0.00341	0.01080
J144	0.36260	0.28799	0.12820	-0.54492 🕁	-0.0(326	-0.07702	1.00933
J145	0.61314	0.03202	-0.06676	-0.13497	-0.2.942	-0.10469	17558
J146	0.65428	-0.15909	0.05045	0.07158	0.1 651	0.04991	- 1.12365
J147	0.40778	0.3 189	0.07136	0.25840	-0.0/069	0.0756).07242
31478	0.45427	0.2 737	-0.11561	-0.03423	-0.01966	0.06491	-1.13935
J149	0.45706	0.0:330	-0.00825	-0.17993	-0.0 596	-0.09089	-1).02823
J150	0.45803	0.01970	-0.03507	-0.09321	-0.0:019	-0.04152	0.00427
J151	0.43711	0.2'778	-0.03726	0.20683	-0.11853	-0.2281	0.01314
J152	0.32579	0.26849	-0.02789	0.20620	-0.1 235	0.07831	0.06023
J153	0.41996	0.07903	0.41016 🖈	0.09334	-0.0:081	0.0738	0.08552
J154	0.21850	0.10422	0.11416	0.18322	-0.21558	0.3204. 💠	-0 16296
J155	0.65222	0.22260	0.13611	0.16775	0.0 086	-0.0122	-0 20694
J156	0.57965	0.32560	0.11026	0.13656	0.0(438	0.0979/	0.02313
	1						

نم

7.

TABLE 5-9 (Continued)

ITEM	FACTOR 8	FACTOR 9	FACTOR 10	FACTOR 11	FACTOR 12	FAOTE	
					PACIOR 12	FACTOR 13	FACTOR 14
J101 J102	0.00763	-0.00051	-0.03522	-0.08039	0.01240	-0.00642	0.04204
J103	-0.15886 -0.03843	0.25598	0.17169	-0.03037	-0.04909	-0.13255	0.04312
J104	0.04746	0.08286	0.02414	-0.11331	-0.05337	-0.01341	0.05923
J105	-0.03021	-0.04592 0.01756	0.05422	-0.04929	0.29107	-0.09222	0.11532
J106	0.06482	0.13181	0.04449 0.01592	0.02040	0.13036	0.07887	-0.07228
J107	0.00889	-0.05946	-0.02294	-0.20103	-0.06081	0.04698	0.06756
J108	0.00554	0.05483	0.07655	0.20386	0.07183	0.03308	0.12526
J109	0.08677	0.20700	0.09128	0.08379 0.12404	-0.15657	0.08641	0.04770
J110	0.06638	-0.04436	-0.05647	-0.06437	0.18789 -0.12554	0.04689	-0.09323
J111	-0.10491	0.09073	-0.06255	0.11389	0.00773	-0.04045	0.12596
J112	-0.16206	-0.03849	0.10444	-0.09824	-0.05507	0.07512 -0.11130	-0.16961
J113	-0.25317	0.03674	-0.04896	0.03438	0.06900	0.12557	-0.04372
J114	-0.06060	0.03956	0.12123	-0.01037	0.07639	-0.00804	0.23286 0.03485
J115	0.13234	-0.22059	0.03884	0.07629	-0.05233	-0.08098	-0.01629
J116 J117	0.12379	0.16273	0.02715	-0.02105	0.05664	0.00486	-0.06743
Jiia	-0.14093 -0.25509	0.08106	-0.07484	-0.07269	-0.06092	0.17381	-0.20435
J119	0.04280	-0.01375 -0.10076	0.02197	0.25815	-0.02638	-0.04137	0.01745
J120	0.10949	-0.14115	-0.13409	-0.00872	0.14772	0.02277	0.03526
J121	0.02439	0.01699	0.08654 -0.08103	0.05337	0.08353	0.20858	0.00575
J122	-0.04886	0.00382	0.07016	0.01370 0.25823	0.03364	-0.01897	-0.05137
J123	0.07169	-0.04059	-0.24170	-0.13459	-0.25539	0.20300	0.12116
J124	0.16440	-0.02170	-0.05092	0.12486	-0.04397 0.15739	0.14286	0.25507
J125	0.06581	-0.07428	0.26553	-0.07083	-0.10840	0.00774	-0.24109
J126	0.05148	-0.06655	0.14437	-0.13544		-0.03932	0.02255
J127	0.01793	0.08644	-0.21217	-0.00592	0.09231 0.02428	8:02915 8:14433	-0.11531 -0.07062
J128	-0.01154	0.02382	0.17210	0.00135	0.10136	0.00574	-0.05203
J129	-0.14557 0.12589	-0.17134	-0.10908	0.06521	-0.14151	-0.10648	-0.05821
J130 J131	0.15480	0.14817 -0.19684	-0.03379	0.02768	-0.07672	0.00240	-0.12932
J132	-0.18168	-0.11359	~0.02219 0.01246	-0.11887	-0.11863	0.05139	0.00596
J133	-0.23030	-0.15042	-0.06192	-0.08165 0.03626	-0.10105	-0.07639	0.01383
J134	0.10290	0.11907	0.02762	0.03626	0.15696	-0.21655	0.00972
J135	-0.02801	0.06623	-0.11528	0.05560	-0.06879	-0.22826	0.00023
J136	0.05517	-0.17266	-0.15034	0.16634	0.00871 0.09668	0.00002	-0.13188
J137	0.03466	-0.08286	0.04912	-0.37338₩	-0.01676	-0.00722 0.00039	0.07486
J139	-0.02054	0.15854	-0.04602	-0.12255	0.10473	-0.17746	-0.02903
J140	-0.21390	-0.06442	0.00918	0.00270	0.05406	0.12442	0.15098 -0.08026
J141	-0.01994	0.07582	0.08357	-0.06801	-0.00579	0.09418	0.01231
J142	0.04651	-0.09349	0.05061	0.04292	-0.13590	0.08597	0.05201
J143	-0.03036 -0.02819	0.05158	0.06652	-0.11766	-0.13964	-0.03690	-0.04010
J144 J	0.19290	-0.02170 0.04428	0.01927	-0.01353	0.16830	0.01198	0.08245
J146	-0.06678	-0.10346	-0.00444 -0.01917	0.04053	-0.15185	-0.08222	-0.06027
J147	-0.13325	-0.10346	0.35280	-0.01683	0.06681	-0.09673	0.02931
J148	0.06002	-0.00689	-0.00751	0.11681 -0.07652	0.04397	0.03586	-0.01138
J149	0.28899	0.16644	0.04992	0.12518	~0.09852	-0.00025	-0.00867
J150	0.02931	0.05994	-0.05824	0.06600	0.02985 -0.06063	-0.17810	0.11637
J151	-0.18556	0.23518	-0.34330 \	-0.10102	0.03946	0.02506	0.08360
J152	-0.00127	0.21780	0.03088	0.02226	-0.03241	-0.00230 -0.13385	-0.00504
J153	0.22570	0.02197	-0.10606	0.18331	0.00466	-0.13385	-0.00239
J154	0.03886	0.24208	0.17636	-0.04213	0.09775	0.28220	0.12340 0.10525
J155 J156	0.16845	-0.19582	-0.04034	-0.14097	0.09644	0.06087	-0.10289
	0.00245	0.02689	-0.11936	0.07491	-0.14164		シャ・リンモロフ

TABLE 5-9 (Continued)

ITEM	FACTOR 15	FACTOR 16	FACTOR 17	FACTOR 18	FACTOR 19	FACTOR 20	FACTOR 21
J101	-0.05062	-0.00199	-0.03897	0.11128	-0.04133	-0.15403	-0.07230
J102	-0.04130	0.19733	-0.03480	-0.01181	-0.02851	-0.01680	- 0.05 333
J103	0.09212	0.18128	0.00089	0.03122	- 0.05555	0.05087	0.11975
J104	-0.03338	-0.04123	0.00203	-0.0 5638	-0.03357	-0.17535	0.13379
J105	-0.14037	-0.07260	-0.13220	-0.01985	0.05232	- 0.15706	-0.00195
J106	9.09626	-0.03889	-0.07096	-0.18814	-0.07029	-0.04105	-0.01104
J107	0.04874	0.12994	-0.12659	0.04178	-0.03517	-0.02776	-0.16051
J108	0.07475	-0.02123	-0.03388	0.00046	-0.06175	-0.10978	-0.00834
J109	-0.06954	-0.11282	0.05947	0.13835	0.00668	-0.07174	0.10184
J110 J111	-0.05644	-0.01973	0.01546	0.03448	~0.17792 ~0.06760	0.04698	-0.08360
J112	-0.13643	-0.05985	0.03280	-0.22197 0.15405	~0.06769	0.10922	-0.03707
J113	-0.07060 0.02623	0.00826 -0.01397	0.15287 -0.08573	0.15405	-0.10458 0.13575	-0.051 89 0.09279	0.00955 -0.05526
J114	0.02023	0.06482	0.17363	0.08671	-0.01497	-0.05057	-0.03283
J115	-0.01829	-0.05299	-0.14863	0.05522	-0.06145	0.04333	0.09697
J116	0.17974	0.02141	-0.03847	-0.14002	0.16599	-0.01286	0.04476
J117	0.08684	0.07699	-0.01552	0.07423	-0.09521	0.08256	0.10204
J118	-0.06923	-0.06666	0.07131	-0.03824	0.05431	0.06267	-0.01881
J119	0.00336	-0.06781	0.09422	-0.14178	-0.05240	0.13538	-0.11237
J120	0.02524	0.04044	0.13721	0.09438	-0.02245	0.25674	0.08544
J121	-0.13012	0.12784	0.00822	0.00235	0.11239	-0.03670	-0.02888
J122	-0.04514	-0.04770	0.09318	-0.16734	0.04943	-0.06330	-0.00108
J123	-0.00037	-0.00868	0.12385	-0.03694	0.13202	0.01290	0.14198
J124	-0.05216	0.05903	0.08787	0.02692	-0.03095	-0.02848	-0.07838
J125	0.23929	-0.24558	0.08867	0.02652	0.11842	0.01677	-0.08608
J126	-0.04459	-0.16033	-0.23322	-0.07250	0.06083	0.16590	-0.00261
J127	0.06165	0.09279	-0.08667	0.05662	-0.02881	0.04726	-0.11826
J128	-0.08070 0.02442	0.02553 0.01840	-0.12028 0.08458	0.02936 0.01980	-0.01885 -0.03647	0.00299 -0.11159	0.08564 0.06874
J130	0.12194	0.11812	0.04375	0.08529	0.08154	-0.00997	-0.12145
J131	-0.11469	0.07279	0.09602	0.04084	0.11319	-0.05137	-0.05448
J132	-0.00066	-0.10102	0.01005	-0.07709	0.00556	0.04812	-0.00063
J133	0.08184	0.00375	0.00334	0.04542	0.16224	0.08663	0.00975
J134	-0.03343	0.04124	-0.03817	-0.16583	0.03641	0.08373	0.03709
J135	0.09273	-0.09860	0.11333	-0.02856	-0.01604	0.03340	0.15555
J136	-0.01615	0.19967	-0.06026	-0.05054	-0.04862	0.04820	0.15351
J137	-0.21065	0.13193	0.08480	-0.13860	-0.06254	0.02249	-0.05117
J139	-0.07393	0.00589	-0.01702	0.06971	0.12448	0.05832	-0.00677
J140	0.08436	0.12097	-0.03622	-0.03775	-0.02965	-0.06160	0.01891
J141	-0.09080	0.02847	0.10199	0.03788	0.02206	0.05770	-0.03335
J142	0.06016	0.16511	-0.19030	-0.03282	0.05640	-0.03019	0.05056
J143	-0.00453	-0.00822	-0.09797	0.02633	0.03900	0.05304	0.12199
J144 J145	0.15265 -0.03540	-0.04143 -0.11393	0.02538 0.04105	0.01929 0.14884	-0.07526 -0.03698	0.07319 0.02298	-0.04784 0.09747
J146	-0.04995	-0.09008	0.04105	-0.00857	-0.15864	-0.02504	-0.04961
J147	0.05158	0.04984	0.01126	-0.11080	0.00411	-0.03457	-0.06979
J148	-0.05122	-0.07585	-0.17177	0.13695	-0.02493	0.11037	-0.10698
J149	-0.03081	0.10462	0.10277	-0.07149	0.08409	0.06196	-0.02294
J150	-0.03142	-0.11115	-0.09363	0.03685	-0.01672	-0.09503	0.12667
J151	0.06003	-0.15763	-0.01095	-0.07677	-0.00225	-0.07024	-0.04579
J152	0.20528	0.05950	0.00459	0.00625	-0.17568	6.07703	0.02788
J153	0.01334	-0.11038	-0.04599	0.02525	-0.16714	-0.01085	-0.09557
J154	-0.12390	-0.04717	0.05091	0.03739	-0.00548	0.00475	0.02204
J155	0.24915	0.01805	0.01818	-0.03320	0.06334	-0.13960	-0.04122
J156	-0.10249	-0.01657	-0.01129	0.07986	0.20171	-0.00543	-0.05941

TABLE 5-9 (Continued)

O

ITEM	FACTOR 22	FACTOR 23	FACTOR 24	FACTOR 25	FACTOR 26	FACTOR 27	FACTOR 2
J101	-0.01051	0.13638	0.06865	-0.02555	0.03706	-0.15833	-0.13576
J102	-0.10832	-0.09979	0.09154	-0.08661	0.11990	-0.10792	-0.06194
J103	0.03894	0.00349	0.01832	-0.03525	0.00479	0.07004	0.03360
J104	-0.13667	-0.02174	-0.09058	0.02778	-0.01904	-0.05733	0.09109
J105	0.04154	-0.09691	-0.0 8 012	0.00673	0.13662	0.07309	0.05648
J106	0.12566	-0.00054	-0.01153	Q.05996	-0.10227	-0.08919	-0.09816
J107	-0.14363	-0.09493	-0.01074	0.01064	-0.07225	-0.00859	0.00935
J108	-0.01158	-0.05849	0.12613	0.05553	0.06422	0.03630	0.00411
J109	0.01313	0.02589	0.04315	0.02256	0.01176	0.02618	0.06765
J110	0.02766	-0.06745	0.00399	-0.07815	-0.05328	0.00849	0.06236
J111	0.02217	-0.02197	-0.04344	-0.09975	-0.01419	0.03435	-0.01988
J112	0.23039	-0.01275	0.03401	0.08553	-0.07301	0.03676	0.04444
J113	0.01333	0.10903	-0.01853	0.02566	-0.05779	-0 .02626	-0.01626
J114	-0.06683	-0.12053	-0.03099	0.08491	0.04048	0.03467	-0.02506
J115	0.07334	-0.01885	0.09031	-0.14512	0.09230	-0.00209	-0.02164
J116	0.08680	0.04077	-0.02773	-0.11105	-0.03640	0.04781	-0.01309
J117	0.01500	-0.09295	-0.05874	0.03064	0.00127	-0.06690	0.00054
J118	0.04463	-0.07044	-0.11299	0.02577	-0.00270	-0.00679	-0.1373
J119	-0.04739	0.04505	0.06891	0.03166	0.00527	0.01479	-0.0323
1120	-0.11067	-0.01120	0.01096	-0.12523	0.07759	0.00113	-0.05842
1121	-0.01629	0.09678	0.02093	0.10019	0.12788	-0.01392	-0.10222
1122	0.05493	-0.02275	-0.04130	-0.04128	0.02771	-0.06855	0.1366
1123	-0.05766	-0.05217	0.02443	0.07085	0.03797	-0.06209	0.0469
1124	-0.01163	0.04290	0.11130	-0.00812	-0.05444	-0.11633	0.09818
1125	-0.02846	0.01437	-0.06876	0.00155	0.06308	0.08749	-0.0472
1126	-0.04099	-0.02683	0.00623	0.17986	0.00074	-0.05391	0.03693
1127	-0.02223	0.06277	-0.11607	0.01581	-0.01516	-0.03723	0.04521
1128	0.02121	0.12316	-0.20181	-0.09431	-0.00087	0.02940	-0.02533
1129	-0.11456	0.15088	-0.11523	0.09026	0.02154	0.03743	-0.04782
1130	0.07788	0.05507	-0.03215	0.03609	0.12788	0.03859	-0.01058
1131	0.03322	0.02983	-0.06818	-0. 09669	0.04899	0.00468	0.06810
1132	0.07270	0.10188	-0.00432	0.07289	0.08460	-0.10283	0.10911
1133	0.05171	-0.00646	0.00479	-0.08481	-0.08257	-0.05082	0.03229
1134	0.01281	0.08262	0.05769	0.04702	0.04036	0.01161	-0.06436
1135	-0.06108	-0.02052	0.18606	0.05265	0.06143	-0.01313	0.00385
1136	0.18575	-0.08353	-0.01956	0.11423	0.03221	0.06933	-0.06477
137	-0.05000	0.00147	-0.04672	-0.02236	-0.02303	0.04391	-0.02132
139	0.09012	-0.14164	0.02192	-0.09285	0.06251	0.04035	0.04870
1140	0.03561	-0.05589	-0.00829	0.05654	-0.05428	0.05801	-0.00143
141	0.03495	0.02721	0.07859	-0.02174	-0.11491	0.00773	-0.03015
142	-0.10193	0.1450 9	0.10046	-0.00 865	-0.05412	0.14777	0.06679
143	-0.09093	-0.03561	-0.05130	0.00893	0.00847	-0.12425	0.01760
144	0.07926	0.14303	0.03803	-0.00281	0.04455	-0.03356	0.02179
145 i	-0.12794	-0.06295	-0.10841	0.00983	-0.15107	0.01884	-0.09089
1146	-0.03521	0.09751	0.07949	-0.00901	0.00794	0.14645	0.01466
147	-0.04800	-0.05604	0.08551	-0.00761	-0.07261	-0.02572	0.00759
148	-0.00024	-0.11075	0.06406	0.12654	0.02167	0.07904	0.02914
149	-0.01438	-0.00217	-0.03369	0.12769	-0.09856	0.02456	0.03106
150	0.05664	0.04410	0.11569	-0.07786	-0.10720	-0.02955	-0.07884
1151	-0.10969	-0.03962	0.01355	-0.08057	0.00473	0.13234	-0.00724
1152	-0.00638	0.08878	-0.08873	-0.01497	0.00832	-0.02570	0.13529
1153	0.08491	-0.04128	-0.11269	-0.00952	0.06168	-0.06595	-0.01928
1154	0.07023	0.09519	0.01443	0.04500	-0.01210	0.05018	-0.03712
1155	0.08746	-0.11461	0.00721	-0.03737	-0.03963	-0.03471	-0.06801
1156	0.02028	-0.00748	0.04518	-0.01220	-0.10221	-0.01166	0.05329

TABLE 5-9 (Continued)

ITEM	FACTOR 29	FACTOR 30	FACTOR 31	FACTOR 32	FACTOR 33	FACTOR 34	FACTOR 35
J101	0.00461	0.06086	-0.06572	-0.01929	-0.03663	-0.03935	-0.02763
J102	0.06101	-0.01381	0.01346	0.04512	-0.00286	0.03731	0.02358
J103	-0.02162	0.01588	-0.05148	0.09074	-0.01254	0.00244	-0.01502
J104	0.10508	-0.05639	-0.02724	0.02173	0.01886	0.10068	-0.02201
J105	-0.10245	-0.03358	0.01751	0.05835	-0.05113	-0.02419	-0.01858
J106	-0.08512	-0.03019	-0.07976	0.01689	-0.00324	-0.03228	-0.03429
J107	-0.11491	0.07982	-0.00961	0.03667	0.09194	-0.00303	-0.04786
J108	0.01454	-0.01378	-0.05306	-0.00043	0.04011	0.00331	0.01647
J109	-0.00435	0.13227	0.00491	-0.00855	0.03521	-0.00775	-0.0060 9
J110	0.00503	-0.00365	-0.04984	-0.02666	-0.08517	0.02102	0.04587
J111	0.00589	0.05212	-0.03010	-0.10435	-0.02282	-0.00314	-0.05238
J112	-0.00065	-0.05064	0.05710	0.02859	-0.03253	-0.00309	-0.05955
J113	-0.00676	-0.07473	-0.03430	-0.05190	-0.02437	0.01946	0.00414
J114	-0.01105	0.09848	-0.03668	-0.05319	-0.05829	-0.06076	0.04062
J115	0.05877	-0.00846	-0.09386	-0.03223	0.00244	-0.00264	-0.03017
J116	-0.01961	0.14298	0.02248	0.01035	-0.05280	0.05404	0.00971
J118	0.06013	-0.04865	0.07224	0.06570	0.02986	-0.01677	0.02016
J119	0.02172	-0.05288	0.06193	-0.05440	-0.01151	0.05113	0.01040
J120	0.02086	0.03051	0.01471	0.08471	-0.05378	-0.03363	0.00610
J121	-0.05933	-0.02822 -0.00834	-0.01813	0.07583	0.00935	-0.01809	0.00381
J122	0.02242		0.01422	-0.03374	-0.02615	0.02609	0.07216
J123	0.02841	-0.05300 0.02884	-0.03571	0.04331	-0.00406	-0.01495	0.01853
J124	-0.08283 0.04423	-0.07269	0.04883 0.05737	0.00295 0.00341	0.00306 0.03013	-0.00010 -0.04410	-0.01044 0.00457
J125	0.08816	-0.07203 -0.00255	0.02396	-0 02773	0.08790	-0.03308	-0.00097
J126	0.00553	-0.02195	-0.06057	-0.00176	-0.02731	0.02646	0.05002
J127	0.06291	-0.01585	0.00755	-0.03104	-0.01960	-0.01691	0.00947
J128	-0.00800	-0.01725	-0.00041	0.04304	-0.00027	-0.07372	0.03053
J129	0.04596	0.04380	-0.04544	0.04093	-0.03237	-0.02835	-0.03644
J130	-0.11572	-0.05758	0.01108	0.00988	0.04222	0.05322	-0.01787
J131	-0.01416	0.01515	0.04825	-0.01506	-0.05945	0.07378	-0.00722
J132	0.01159	0.10496	0.00154	0.07007	0.07079	-0.02244	0.05172
J133	-0.04416	0.04109	0.02650	0.04338	-0.04081	-0.01013	-0.01847
J134	-0.00838	-0.04216	0.04254	0.11739	-0.00471	0.01329	-0.03843
J135	-0.03055	-0.03138	-0.03250	-0.07681	-0.05806	-0.00145	-0.02723
J136	0.04224	0.04869	-0.02769	-0.06331	0.09049	0.02638	0.01605
J137	-0.02759	0.01475	0.02370	-0.04230	0.09492	-0.00032	0.00115
J139	0.04978	-0.05880	-0.03804	-0.03107	0.02684	-0.08328	0.01083
J140	0.00336	0.00613	-0.02468	0.03814	-0.00100	-0.01872	0.01741
J141	0.15411	0.08987	0.00343	0.01420	0.05353	0.04181	0.00347
J142	0.10185	-0.03506	0.06099	-0.04789	-0.03250	-0.04049	-0.02284
J143	-0.06230	0.00911	0.11016	-0.12579	0.04234	-0.03311	-0.06891
J144	0.00871	-0.06270	0.00211	-0.00357	0.06166	0.05557	-0.04795
J145	-0.03124	-0.04256	-0.04491	0.05180	-0.00431	0.04780	0.01581
J146 J147	-0.15596	-0.05650	0.03199	-0.03940	0.04048	0.00625	0.06126
J148	-0.05462	0.00090	0.04398	-0.01643	-0.02097	0.02211	-0.00464
J149	0.04314	0.07890	0.07807	0.04447	-0.06313	0.03702	-0.03347
J150	0.02624	-0.05472	0.00956	-0.01673	-0.02138 0.02183	-0.07300 -0.00946	0.00655
J151	-0.05010	0.01542	0.14525 0.01920	0.01549 0.03695	0.02183	0.00572	0.08977 -0.01139
J152	0.06669 -0.044 8 3	-0.03258 0.02723	-0.01810	-0.07676	-0.02399	0.04356	0.05115
J153	0.04606	0.02723	0.07894	0.01555	0.01015	-0.01645	-0.01739
J154	-0.00280	-0.01587	-0.02509	0.00512	-0.01380	0.01462	-0.02879
J155	0.03604	-0.06401	0.01391	-0.01167	-0.02195	0.00057	0.02771
J156	-0.04575	0.00534	-0.14002	0.01836	0.08296	0.01456	0.01260
	0.04777	0.00734	V. 1400E	0101030	0.000,0	0101770	· · · · · · · · · · · · · · · · · · ·

TABLE 5-9 (Continued)

ITEM	FACTOR 36	FACTOR 37	FACTOR 38	FACTOR 39	FACTOR 40	FACTOR 41	FACTOR 42
J101	0.05383	-0.00447	0.00980	0.01487	0.00900	-0.00646	0.03567
J102	-0.02005	0.02179	0.00368	0.00610	-0.00606	-0.00391	-0.07787
J103	0.03437	-0.02104	-0.00415	-0.00 999	-0.04800	-0.03668	0.02030
J104	-0.02015	-0.00887	0.00556	-0.007 9 1	-0.01130	0.00438	-0.03008
J105	0.05027	-0.00726	-0.00351	- 0.00125	-0.02193	-0.07189	0.01375
J106	-0.01704	0.01468	0.00769	-0.01533	0.00097	0.01841	-0.01339
J107	-0.00368	0.01785	-0.01333	-0.01218	0.00525	0.01583	0.03258
J108	0.01511	0.00717	-0.00121	0.00789	0.01085	-0.01292	0.05650
J109	-0.01854	0.02139	0.00510	0.01405	0.03537	0.03075	0.03192
J110	-0.01156	0.00497	-0.00386	0.00387	-0.00358	0.02987	0.00476
J111	0.04390	0.01384	0.00198	-0.00182	-0.05139	0.02929	-0.00724
J112	-0.01571	-0.01765	-0.00755	-0.01177	0.00590	0.01350	0.02132
J113	0.03470	-0.02642	-0.00208	0.00770	0.01340	0.02070	-0.06764
J114	-0.00079	-0.02737	-0.00052	-0.00559 0.01618	0.01822	-0.03621	-0.05572 0.00164
J115	-0.06229 0.00157	-0.02740 -0.04294	-0.00209 0.01145	-0.00479	-0.01698 0.00882	-0.02595 -0.00082	-0.01892
J117	-0.00563	-0.00781	0.01139	0.02911	-0.00744	0.00727	0.05312
J118	0.00842	0.01214	0.00181	-0.00115	-0.00744	-0.05702	0.00101
J119	-0.04101	0.00614	-0.02323	0.01522	0.00434	-0.03258	-0.00731
J120	0.00853	0.00656	0.01172	-0.01962	0.00506	0.00377	0.00012
J121	-0.04608	-0.02957	-0.01198	-0.01787	-0.03842	0.07374	0.09011
J122	-0.01684	-0.01524	0.00417	-0.00201	0.04088	0.03733	-0.01056
J123	0.01762	-0.01277	-0.00258	0.01582	-0.03192	0.02301	0.00410
J124	0.07575	-0.01404	-0.00319	-0.00410	-0.02170	0.02360	-0.06820
J125	0.03222	-0.00524	-0.00388	0.00510	-0.01174	0.02536	-0.00589
J126	0.04660	0.00605	-0.00141	0.00188	0.01638	-0.00841	0.02731
J127	-0.03724	-0.00802	0.01504	-0.01574	0.04585	-0.05510	0.04665
J128	-0.05759	0.01205	-0.01167	-0.00304	0.01310	0.04717	-0.03038
J129	0.02479	0.02644	0.01001	-0.00157	-0.00426	0.01207	-0.00830
J130	-0.01193	0.01274	0.00237	0.00336	-0.01534	0.01075	-0.03285
J131	0.01360	0.04054	-0.00441	0.00247	0.03891	-0.02196	0.02155
J132	-0.01768	0.01873	0.00422	-0.01665	-0.03221	-0.02576	-0.01941
J133	-0.01112	0.01156	0.00705	0.01516	-0.00175	0.02658	0.02864
J134	0.04452	-0.01570	-0.00831	0.00716	0.07041	0.00717	0.00217
J135	-0.02441	0.00944	-0.00114	-0.01965	0.03373	0.00755	-0.01961
J136	0.02028	0.01569	0.00244	0.00412	0.02048	0.01279	-0.02587
J137	0.01712	-0.01840	0.00945	0.00899	0.02451	0.01510	-0.01212
J139	0.04863	0.01734	0.00346	-0.01567	0.01803	0.02619	0.05179
J140 J141	0.00593	-0.01013	-0.01029	0.00562	0.01657 0.01183	0.01832 -0.05103	-0.03391 0.02378
J142	0.01186	-0.00725	-0.01172 0.00124	-0.01053 -0.00326	-0.01794	-0.00566	-0.00610
J143	0.01848 -0.04686	0.00878 -0.01201	-0.01576	-0.00282	0.01320	-0 .02820	-0.00981
J144	-0.00988	0.00470	0.00546	-0.00686	-0.00758	-0 .02020	0.03026
J145	0.02920	-0.00470	-0.00224	-0.00503	-0.00776	0.00977	0.02139
J146	-0.02261	-0.01963	0.01363	0.00702	0.01619	-0.01753	-0.02323
J147	-0.01535	-0.01184	0.01030	0.00170	-0.01187	0.02886	0.08808
J148	-0.02239	0.01025	0.01470	-0.00592	-0.00914	0.05138	-0.06199
J149	-0.04916	0.01278	0.01470	0.01291	-0.03189	-0.04281	0.01860
J150	0.01847	0.02190	0.00212	-0.01103	-0.01011	-0.02115	-0.01432
J151	-0.02609	-0.00013	-0.00253	0.00128	0.00358	0.01467	0.02631
J152	0.04472	0.01674	-0.01504	0.01010	-0.00543	0.00774	0.02184
J153	0.00812	-0.03518	-0.00012	-0.00200	-0.00948	0.01099	-0.00892
J154	-0.02704	0.02648	-0.00498	0.01243	-0.02276	0.00029	-0.01892
J155	-0.01695	0.02969	-0.00762	0.00192	-0.00099	0.00354	-0.01813
J156	-0.03715	-0.01099	-0.00170	0.00494	-0.01509	-0.02264	-0.03299

TABLE 5-9 (Continued)

TEM	FACTOR 43	FACTOR 44	FACTOR 45	FACTOR 46	FACTOR 47	FACTOR 48	FACTOR L
J101	0.03967	-0.01468	0.04098	-0.09454	0.03327	-0.03316	0.0781
J102	-0.04116	-0.01887	0.05606	-0.03741	0.04166	0.09662	-0.0455
J103	-0.03185	0.01825	-0.09033	-0.03375	-0.01189	0.04329	0.0267
1104	0.04340	-0.00964	-0.01872	0.02991	-0.02790	-0.00075	0.0235
1105	-0.07573	-0.06095	0.04883	0.00955	0.06070	-0.05130	0.0009
1106	0.01135	0.03546	0.02439	0.00028	-0.06139	-0.01301	-0.0890
1107	0.00929	0.06567	-0.03147	-0.00550	0.05928	-0.02305	0.0523
108	0.04796	-0.04527	-0.02204	-0.00543	-0.06320	-0.03656	0.0404
109	-0.05670	0.01173	0.00395	0.04500	-0.04553	0.00482	0.0561
1110	0.02840	-0.12679	-0.04172	0.04508	-0.01719	-0.01967	0.0978
1111	-0.02615	-0.01353	-0.02827	0.04093	-0.05396	0.02832	-0.0090
1112	0.02625	-0.00570	0.03827	0.00360 0.02019	0.08596	0.07878	0.0347
1113	-0.08318	-0.01525 0.02419	-0.08402 -0.08272		-0.04218	-0.00704	0.0538
1114	0.05083 -0.00270	0.02479	-0.00688	0.06995 0.11560	-0.00915 -0.01509	-0.08386	-0.0848
1115	0.06862	-0.02714	0.02758	-0.03430	0.02945	-0.00595	-0.0490
1116	0.00002	0.00235	-0.06264	-0.03430	-0.00311	-0.01107 -0.07324	0.0916 -0.0068
	0.05866	0.05967	0.03641	-0.02768	-0 .00311	-0.08797	
1118	0.03065	-0.03730	0.03041	0.01571	0.03568	-0.04076	0.0451 -0.0032
1120	0.03565	-0.03668	0.04992	0.01480	0.03966	0.07868	0.0908
1121	-0.01741	0.01444	0.00654	0.01740	0.00730	0.00730	0.0354
1122	0.00149	0.04494	0.04470	0.02338	0.10016	-0.03543	0.0512
123	0.00149	-0.00392	0.09064	0.01421	-0.03041	-0.00356	-0.1445
124	0.04768	0.00912	0.00027	0.01104	-0.05361	-0.02614	-0.0163
125	-0.02591	-0.03661	-0.00137	-0.01793	0.03734	0.06656	-0.0345
126	0.06048	0.04526	-0.C2560	-0.00006	0.08225	0.00030	-0.0067
127	-0.04749	-0.01741	0.04506	0.08804	-0.03153	0.06209	-0.0659
128	0.02203	-0.03992	-0.01260	-0.08900	-0.00099	-0.09363	-0.1169
129	0.01425	-0.02932	0.00959	0.11305	0.03481	0.08116	-0.0293
130	0.05634	0.04182	-0.01875	0.08181	-0.01575	-0.02079	-0.0046
1131	0.02279	0.03474	-0.10097	-0.10025	-0.07405	0.06246	-0.0764
132	-0.03436	0.02465	-0.02948	-0.03046	-0.11675	-0.06053	0.1102
133	-0.00828	0.05184	0.01661	0.00295	0.03718	0.01218	0.0031
134	-0.03248	-0.03096	-0.03674	0.07632	-0.09120	-0.02364	0.0042
135	-0.05981	0.02893	-0.06157	-0.13013	0.07908	-0.02942	-0.0289
136	0.00090	-0.08752	0.01253	-0.04172	0.02396	0.01290	-0.0103
137	-0.04886	0.05182	-0.04247	0.04102	0.13360	-0.06758	0.0515
139	0.04992	0.01861	0.03457	0.02546	-0.05084	-0.02219	-0.0174
140	0.01846	0.04993	0.03985	-0.02348	-0.07625	0.13063	0.0250
1141	-0.02777	0.01835	0.08077	-0.00122	-0.03233	-0.02393	-0.0755
142	0.01869	0.03079	0.04107	-0.05189	0.01381	-0.06124	0.0189
143	0.03831	-0.06934	0.01930	0.02828	-0.05182	0.04480	0.1092
144	0.01105	-0.06244	-0.01595	-0.00209	0.07664	-0.10303	-0.0640
145	-0.04011	0.03124	0.04624	-0.03349	-0.05082	-0.08281	0.0123
146	0.00383	0.02570	0.08384	-0.06616	-0.09719	0.05261	0.0019
147	-0.02344	-0.06773	-0.03367	0.01424	-0.06476	0.01499	-0.1187
148	-0.00509	-0.00498	0.04282	0.00967	0.00041	-0.09083	-0.0208
149	-0.02393	0.00388	-0.03481	-0.04348	0.02212	0.04693	0.0664
150	0.01418	-0.00461	-0.07884	0.12076	0.09868	0.04591	-0.0512
1151	0.03486	0.00698	-0.04201	-0.01860	0.00876	0.03999	0.0242
1152	-0.02010	0.03225	0.08706	0.01963 -0.10427	0.06624	-0.01318	-0.0293
1153	-0.02442	0.03352	-0.03887 -0.00507	0.02548	0.00833 -0.00933	0.12481 0.05268	-0.0372 0.0473
1154 1155	0.02488 -0.08756	0.03578 -0.00218	0.03694	0.02548	-0.02128	-0.02036	0.04/3
1156	0.01180	-0.09271	0.03694	-0.03976	0.05506	0.03536	-0.1143
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 0.01100	-0.09211	0.00200	-0.03910	0.02200	0.03230	-9.0090

TABLE 5-9 (Continued)

1101				FACTOR 53		FACTOR 55
	0.03142	0.08503	-0.08541	0.03466	-0.04517	0.07272
, , , ,	0.02207	0.01248	0.07447	-0.05042	0.02570	-0.11835
1103	-0.11117	-0.01416	0.06125	0.11280	-0.13397	-0.03643
1104	-0.04373	0.05862	-0.13490	0.08246	0.08054	0.06797
1105	0.05133	-0.00373	0.02756	-0.02744	-0.00589	0.12547
1106	-0.04144	-0.08182	0.08166	0.00424	0.04386	0.14398
1107	0.04660	0.05344	-0.01937	-0.15265	0.07909	-0.00817
1108	-0.08513	-0.18616	-0.06582	0.08115	0.05689	-0.05921
1109	-0.02641	-0.101 30	0.05861	0.04389	0.01260	-0.08387
J110	0.15721	-0.01742	0.08529	0.02682	0.05081	0.03369
J111	-0.08266	0.07870	-0.09197	-0.05516	0.09025	-0.07117
J112	0.05415	-0.01380	-0.06075	-0.08624	0.10397	-0.10237
J113	-0.01280	-0.06726	-0.07862	-0.08339	-0.05319	-0.01954
J114]	-0.04658	0.04429	0.10699	-0.03441	0.08957	0.01116
J115	0.08594	-0.01741	-0.01366	-0.08415	-0.01917	0.04524 -0.08924
J116	0.04879	-0.00032	-0.01978	-0.11514	-0.00405 0.08848	0.03994
J117	-0.04519	0.09673	-0.03875	-0.12613	0.05083	-0.01314
J118	0.03942	-0.13202	0.01867	0.08638 0.10063	-0.08984	-0.09396
J119	-0.07478	0.07982	-0.08409	-0.00418	0.07287	0.11241
J120	-0.00390	-0.09616	-0.04332 0.05974	-0.01966	0.05165	0.09216
J121	-0.06925 -0.09174	0.00847 0.07934	0.03974	-0.01573	-0.12476	0.01965
J122	0.09639	-0.06017	-0.02170	-0.03848	0.07087	-0.10473
J123	0.05126	-0.06057	0.12736	-0.03040	-0.07459	0.05804
J124	0.04580	0.09325	0.00841	0.03954	0.06247	0.12120
J125	0.01681	-0.04292	0.05232	-0.05936	-0.03985	-0.12571
J126	0.07379	0.06662	0.00998	0.11383	0.05983	-0.04711
J127 J128	0.04017	-0.09433	-0.06346	-0.01769	-0.03369	-0.06096
J129	-0.03058	-0.06256	0.02127	-0.10532	-0.09966	-0.06773
J130	0.08399	0.02617	-0.11058	0.10914	-0.12982	-0.06070
J131	-0.04651	0.01535	0.02312	-0.07293	0.00428	0.07853
J132	0.11942	0.04390	-0.01046	-0.01132	0.03355	-0.04073
J133	-0.04100	-0.00267	0.13904	0.16533	0.03936	0.08781
J134	0.01715	0.02824	0.00784	-0.02108	0.15429	0.05025
J135	0.09387	0.03236	-0.07191	0.04692	-0.00793	0.01305
J136	0.04402	0.07838	0.08740	0.01060	-0.10131	0.05218
J137	0.03037	-0.08230	-0.02050	0.11924	0.00578	-0.03104
J139	-0.04033	0.08924	-0.07873	0.00571	-0.04392	-0.10324
J140	0.06283	0.03732	-0.10699	0.09012	0.00379	0.09505
J141 -	-0.00018	-0.05639	-0.05082	-0.08559	-0.10545	0.09828
J142	0.01883	0.70997	0.06385	0.07754	0.14243	-0.08691
J143	-0.07526	0.02134	0.05948	0.01617	-0.11427	0.03446
J144	-0.05995	0.01750	0.10847	-0.07679	0.00949	-0.06924 -0.12602
J145	0.04148	0.12978	0.07766	0.03365	-0.07629 -0.00694	-0.12602
J146	-0.10470	0.06798	0.02930	-0.10032	-0.15273	-0.02016
J147	0.08991	0.01315	~0.03166	0.05248 0.01679	-0.06427	0.12805
J148	-0.09003 0.02721	-0.01308	-0.05925	-0.10824	-0.05631	0.09493
J149		-0.04232	-0.08614 -0.08504	0.03127	0.00598	0.04182
J150	-0.01912	0.05708	0.10140	-0.06122	-0.10561	0.09237
J151	0.09117 -0.02202	-0.08459 -0.04100	-0.06313	-0.00054	0.02306	0.14314
J152	-0.04012	-0.04100 -0.07298	0.01189	0.10280	0.03694	-0.10717
J153	0.04657	0.13107	0.13752	0.04719	0.05026	0.00714
J154	-0.07563	-0.0400 6	0.00230	-0.06700	0.01859	-0.11677
J155	-0.07563	-0.00912	-0.01794	0.06291	0.14311	0.00796

TOSTOSTE SECRETARIOS DE PROPERSON
TABLE 5-10 Factor Loading Matrix for the Fifty-Five Items of Test J1 in the J1/2259 Case.

ITEM	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6	FACTOR 7
J101	0.591	-0.194	0,109	0.055	-0.057	-0.142	-0.015
J102	0.476	-0.103	-0.059	-0.150	-0.079	0.053	0.177
J103	0.497	-0.189	-0.088	-0.049	0.088	-0.054	0.265
J104	0.582	0.078	-0.208	-0.058	0.025	-0.004	-0.051
J105	0.625	0.127	-0.019	-0.028	0.090	0.074	-0.046
J106	0.447	0.052	-0.176	-0.125	0.063	-0.121	0.126
J107	0.507	0.011	-0.199	-0.003	0.231	0.112	-0.108
1108	0.614	0.092	0.066	-0.194	-0.294	0.369 🛡	0.106
J109	0.363	-0.132	-0.187	-0.133	0.218	-0.147	-0.020
1110	0.500	0.387♥	-0.150	-0.061	0.187	-0.283	0.048
1111	0.692	-0.097	0.009	-0.184	-0.126	-0.023	-0.064
1112	0.403	-0.223	-0.038	-0.047	-0.209	-0.080	-0.054
1113	0.456	-0.054	-0.046	-0.039	-0.024	0.084	0.157
1114	0.430	0.067	0.146	0.103	-0.084	-0.051	-0.034
1115	0.579	-0.143	0.050	0.110	-0.146	0.031	-0.075
1116	0.292	-0.045	-0.032	-0.023	0.044	0.208	0.181
1117	0.366	0.224	-0.066	-0.052	0.001	-0.077	0.014
1118	0.507	-0.400�	-0.078	-0.028	0.130	-0.183	0.107
1119	0.550	-0.136	-0.261	-0.002	0.180	-0.022	-0.131
1120	0.283	-0.064	0.170	0.038	-0.150	-0.022	-0.091
1121	0.428	-0.043	-0.045	-0.073	0.010	-0.007	0.118
1122	0.414	-0.070	0.017	0.022	-0.075	-0.129	0.095
1123	0.418	-0.057	0.019	-0.040	-0.015	-0.042	0.023
J124	0.493	-0.072	-0.123	0.023	0.236	0.260	-0.040
1126	0.413	-0.042	-0.134	-0.185	0.050	-0.006	0.010
1120	0.347	0.109	0.052	-0.046	-0.141	-0.028	-0.106
1127	0.468	-0.195	-0.104	-0.125	0.058	0.137	-0.098
1128	0.565	-0.072	0.045	-0.098	-0.155	0.067	0.121
1129	0.609	0.022	-0.054	0.144	0.165	0.095	-0.120
1130	0.334	0.282	-0.023	-0.098	-0.112	-0.192	0.112
1131	0.627	-0.270	0.021	-0.020	-0.058	-0.069	-0.160
J132 J133	0.309	-0.052	0.074	0.084	-0.100	0.052	-0.167
1134	0.638	0.211	-0.139	-0.232	-0.219	0.114	-0.179
1135	0.291	-0.161	0.086	0.136	-0.053	-0.147	0.219
1136	0.651	0.136	-0.108	-0.057	0.088	0.044	0.036
1137	0.348	-0.083	-0.151	0.085	-0.150	-0.045	-0.110
1139	0.512	0.025	0.053	0.048	0.030	0.100	-0.220
1140	0.354	0.113	0.015	0.146	0.167	-0.076	0.201
1141	0.392 0.496	0.007	0.582 ♥	-0.254	0.360♥	-0.025	-0.119
1142	0.496	0.624 ♥ 0.164	0.018 -0.004	-0.065	-0.098	-0.050	-0.032
1143	0.411	0.164	-0.004 0.123	0.095	-0.105 -0.063	-0.207	-0.031
1144	0.361	0.019	0.659♥	0.015 -0.282	-0.063 0.261	0.050	-0.009
1145	0.535	-0.093	0.839 ▼ 0.236	-0.282 -0.072	-0.305 \	-0.032	0.013
1146	0.664	0.136	-0.139	0.003	0.097	-0.095 0.070	0.036
1147	0.318	-0.097	0.099	0.336♥	0.097	0.070	-0.124 -0.129
1148	0.465	-0.164	0.079	0.033	-0.013	0.054	0.057
1149	0.457	0.019	-0.056	-0.059	0.030	-0.076	0.057
1150	0.459	0.012	0.067	-0.006	-0.013	0.031	0.109
1151	0.422	-0.104	0.105	0.221	-0.087	0.002	0.056
J152 🚶	0.369	-0.088	0.031	0.238	-0.146	-0.079	0.038
J153	0.361	0.401	0.097	0.358★	0.017	-0.120.	0.036
1154	0.237	0.183	0.097	0.260	0.076	0.418	0.330
1155	0.597	0.052	0.082	0.391	0.033	0.025	-0.198
J156	0.551	-0.134	0.010	0.337	0.166	-0.041	0.039

Ò

TABLE 5-10 (Continued)

ITEM	FACTOR 8	FACTOR 9	FACTOR 10	FACTOR 11	FACTOR 12	FACTOR 13	FACTOR
J101	-0.081	-0,060	-0.145	-0.161	0.189	-0.118	0.088
J102	-0.087	-0.100	-0.095	0.014	-0.057	-0.061	0.108
J103 L	-0.011	-0.149	0.062	-0.085	0.237	-0.059	-0.014
J104	-0.094	0.107	0.157	0.068	0.057	-0.032	0.009
J105	-0.043	0.006	-0.107	0.053	0.058	0.021	0.07
J106	0.088	-0.163	0.039	0.344	0.120	-0.115	0.22
J107	-0.028	0.065	0.080	-0.021	0.003	0.091	-0.022
J108	0.219	-0.070	-0.009	0.036	0.029	0.232	-0.041
J109	-0.046	0.126	-0.261	-0.015	-0.009	0.107	0.112
Jiió	0.216	-0.045	-0.013	-0.159	0.065	0.088	-0.04
jiii l	-0.048	0.054	-0.176	-0.130	-0.033	0.023	0.01
jiiż l	-0.164	0.038	-0.063	0.109	0.022	-0.093	0.008
jiii l	-0.162	0.017	0.314★	0.051	-0.121	0.098	0.126
J114	-0.120	0.164	0.067	-0.062	0.014	0.019	0.059
Jiis l	0.210	-0.104	0.112	-0.026	0.065	-0.031	0.01
J116	0.123	-0.130	0.056	0.031	-0.032	-0.053	-0.000
J117	-0.096	-0.250	-0.157	0.031	-0.032	0.124	-0.019
Jiia	-0.254	-0.172	0.119	-0.046	-0.055	0.126	-0.166
J119	0.094	0.120	0.068	0.206		0.134	0.100
J120	-0.014	0.089	-0.128		-0.126 -0.106		-0.012
J121		-0.065	-0.001	-0.076	-0.106	0.231	
J122	0.038		0.045	-0.031	-0.101	-0.095	-0.01
J123	-0.028	0.048	0.045	-0.060	0.111	0.276	-0.178
J124	0.063	0.026		-0.056	0.099	0.043	0.069
J125	0.141	0.186	-0.109	-0.174	-0.087	0.031	0.03
	0.034	-0.037	0.092	-0.035	0.086	-0.119	-0.042
J126	0.023	-0.089	0.085	-0.145	0.010	-0.074	-0.003
J127	-0.002	0.126	-0.105	0.061	0.078	0.104	-0.048
J128	-0.104	0.051	0.060	-0.094	0.136	-0.055	-0.056
J129	0.018	-0.224	0.035	-0.062	-0.237	-0.024	-0.183
J130	-0.075	0.104	-0.181	0.149	0.081	0.042	0.01
J131	0.127	0.038	-0.013	0.200	0.111	-0.028	-0.16
J132	-0.084	-0.185	0.065	0.138	-0.068	-0.010	-0.056
J133	-0.228	0.123	0.162	-0.104	-0.112	-0.177	0.140
J134	-0.061	0.132	0.102	-0.168	-0.148	-0.141	-0.078
J135	0.001	-0.081	-0.033	-0.135	-0.111	-0.033	0.029
J136	0.140	0.055	0.219	0.023	0.085	0.168	0.17
J137	-0.005	0.003	-0.172	0.157	-0.046	-0.268	-0.120
J139	-0.023	-0.018	-0.055	0.024	-0.160	-0.118	0.049
J140	-0.040	-0.050	0.103	0.060	-0.015	0.032	0.044
J141	-0.216	-0.021	-0.077	-0.091	0.026	0.088	-0.10
J142	-0.023	-0.052	0.112	0.152	0.022	0.061	-0.174
J143	0.007	-0.084	-0.094	0.073	-0.021	-0.089	-0.04
J144	0.002	0.102	0.114	0.049	0.024	0.008	0.09
J145	0.281	0.023	-0.095	0.049	-0.154	-0.027	-0.03
J146	-0.002	-0.029	0.071	-0.107	-0.039	-0.077	-0.07
J147	-0.233	0.038	0.047	0.074	0.053	0.109	-0.09
J148	0.112	-0.108	-0.030	-0.053	-0.068	0.008	-0.12
J149	0.168	0.401 ♦	0.045	0.053	-0.002	-0.161	-0.23
J150	0.031	0.002	-0.062	0.011	-0.009	0.044	0.04
J151	-0.000	-0.082	-0.093	-0.113	-0.124	0.105	0.30
J152	-0.100	0.140	-0.012	0.153	-0.202	-0.038	0.12
J153	0.213	0.062	0.161	0.045	-0.097	0.013	0.048
J154	-0.189	0.100	-0.062	0.156	0.186	0.024	-0.07
J155 J156	0.064	-0.043	0.004	-0.127	0.358	-0.102	0.13
	0.012	0.013	-0.175	0.018	-0.029	-0.006	0.017

TABLE 5-10 (Continued)

ITEM	FACTOR 15	FACTOR 16	FACTOR 17	FACTOR 18	FACTOR 19	FACTOR 20	FACTOR 21
J101	-0.036	-0.095	-0.035	0.043	-0,132	-0.099	0.036
J102	-0.005	0.178	0.144	-0.146	-0.089	-0.093	-0.078
J103	0.036	0.125	0.044	0.108	0.209	0.014	0.009
J104	-0.063	0.058	0.049	-0.014	-0.062	0.085	-0.028
J105	0.001	-0.020	-0.006	-0.141	-0.133	-0.105	-0.047
J106	-0.088	0.070	-0.016	0.037	-0.126	-0.004	-0.051
J107	0.049	0.028	-0.023	-0.018	-0.037	-0.060	0.053
J108	0.078	-0.012	-0.143	0.049	-0.121	-0.102	-0.105
J109	-0.023	0.052	-0.101	-0.030	-0.147	0.172	-0.074
J110	-0.143	0.081	-0.004	-0.122	0.192	-0.116	0.021
J111	-0.180	0.047	-0.099	-0.160	0.052	-0.063	-0.014
J112	0.011	0.150	-0.208	0.041	0.100	-0.195	0.184
J113	-0.164	-0.151	0.129	0.100	-0.042	-0.018	0.159
J114	-0.134	0.160	-0.025	0.150	-0.096	0.073	-0.099
J115	0.016	0.135	0.168	-0.149	0.066	0.086	0.007 0.056
J116	0.180	0.043 0.033	-0.060 -0.058	0.066 -0.025	-0.050 0.100	0.070	-0.070
J117 J118	0.165 0.054	-0.009	-0.026	-0.116	0.100	0.055 0.032	-0.054
J119	-0.078	-0.009	-0.028	-0.004	0.032	0.032	0.044
J120	-0.022	0.113	0.263	0.059	0.060	0.169	-0.173
J121	0.031	-0.087	0.104	0.008	-0.154	0.012	0.099
J122	-0.080	0.089	-0.010	0.246	-0.067	-0.182	-0.083
J123	-0.130	-0.112	0.056	0.124	0.038	0.030	-0.039
J124	0.124	0.241	0.095	0.066	-0.046	-0.026	0.249
J125	0.010	0.089	-0.122	0.213	-0.016	0.185	-0.007
J126	-0.132	0.002	-0.032	-0.113	-0.204	0.163	0.002
J127	0.087	-0.204	0.017	0.040	0.145	0.003	0.066
J128	0.061	0.043	0.139	-0.107	0.024	0.052	0.072
J129	0.019	-0.080	0.006	0.066	0.010	-0.096	-0.122
J130	0.262	-0.110	0.081	0.096	-0.061	-0.030	0.020
J131	-0.029	-0.105	0.120	0.083	0.081	0.035	0.007
J132	-0.070	0.126	0.017	0.068	0.005	-0.004	-0.019
J133	0.140	-0.102	-0.001	0.034	0.116	-0.041	-0.138
J134	0.160	-0.052	-0.014	-0.045	-0.073	0.015	-0.049
J135	0.096	-0.072	-0.048	0.080	0.057	0.078	-0.157
J136	0.121	-0.071	0.046	-0.206	0.068	-0.095	-0.031
J137 J139	-0.188 -0.012	-0.012 0.048	0.130	0.058 0.025	0.033 0.099	-0.066 - 0.047	-0.027 -0.011
J140	0.012	-0.002	0.176 -0.057	-0.032	-0.009	-0.031	-0.061
J141	-0.024	-0.022	0.015	0.022	0.040	0.139	0.240
J142	0.019	-0.129	0.036	-0.086	-0.092	0.139	0.113
J143	0.028	0.036	0.066	-0.000	-0.020	0.038	0.071
J144 L	0.079	-0.002	-0.010	-0.014	0.065	-0.016	0.061
J145	0.017	0.033	-0.025	0.013	0.041	0.005	0.064
J146	-0.084	-0.012	-0.092	-0.017	-0.003	-0.164	0.005
J147	0.088	0.152	-0.038	-0.054	-0.142	-0.045	0.044
J148	-0.091	-0.109	-0.236	-0.080	0.009	0.200	0.111
J149	-0.056	-0.067	-0.070	-0.068	-0.034	-0.022	-0.123
J150	0.012	-0.027	0.060	-0.127	-0.053	-0.001	0.005
J151	-0.199	-0.186	-0.045	0.089	0.056	-0.039	0.070
J152	0.085	0.114	-0.209	-0.025	0.171	0.073	-0.009
J153	0.022	0.106	-0.073	0.058	-0.038	-0.039	-0.003
J154	-0.183	-0.029	-0.045	-0.123	0.124	0.065	-0.083
J155 J156	0.150 0.098	-0.051 -0.168	-0.066 0.059	0.02 8 0.015	0.036 -0.088	0.085 -0.050	-0.059 -0.006
				11 1117	-((XX	-(1 (15)	-0.000

P

TABLE 5-10 (Continued)

TEM	FACTOR 22	FACTOR 23	FACTOR 24	FACTOR 25	FACTOR 26	FACTOR 27	FACTOR 28
J101	0.189	0.165	-0.023	-0.220 -0.075	0.084	0.012	0.065
J102 J103	0.007	0.041	-0.086	-0.075	-0.098	-0.022	-0.103
1104	-0.151	0.022	0.093	0.041	0.167	-0.032	0.125
1105	-0.145	0.032	0.060	-0.102	0.070	0.087	-0.071
1106	0.030 -0.040	-0.080	-0.038	-0.090	-0.047	0.018	-0.009
1107	-0.083	0.011	0.042	0.028	-0.046	-0.007	0.051
1108	-0.060	-0.005 -0.042	-0.032 0.021	-0.045	0.026	-0.028	0.092
1109	0.071	0.006	-0.019	-0.003	0.130	-0.096	-0.025
J110	-0.027	-0.071	-0.119	0.031 -0.047	0.181	-0.013	0.040
1111	-0.002	0.077	0.012	0.132	-0.088 -0.062	-0.108	-0.043
1112	0.090	-0.097	0.024	0.039	0.024	0.014	0.063
1113	0.095	-0.137	-0.140	-0.106	-0.058	-0.082 0.010	-0.108
1114	-0.096	-0.161	-0.054	-0.061		-0.085	0.155
1115	0.276	-0.113	0.061	0.098	0.090	0.004	-0.078
1116	-0.011	0.130	-0.095	-0.034	-0.025	0.004	0.103 -0.119
117	0.098	-0.032	-0.007	0.019	-0.008	0.194	0.102
1118	-0.058	-0.080	-0.027	-0.050	-0.064	0.053	-0.072
119	0.124	0.092	0.129	0.077	-0.060	0.062	-0.160
121	-0.008	-0.004	0.074	-0.075	-0.075	-0.117	0.014
122	0.023	0.025	-0.004	0.123	0.068	-0.084	-0.045
123	0.137	0.096	-0.043	0.153	-0.077	0.083	0.034
124	0.006	0.100	-0.004	-0.067	0.065	0.032	-0.036
125	0.006 0.080	0.037	-0.018	0.012	-0.040	0.043	-0.004
126	-0.169	-0.117	0.100	-0.023	-0.076	0.002	0.009
127	-0.144	0.071 -0.005	-0.031	0.069	-0.096	-0.029	0.136
128	A A A A A A A A A A		-0.068 -0.009	-0.004	-0.045	0.021	0.151
129	0.006	0.086 0.101 0.018	0.021	0.049	-0.044	0.143	0.022
130	-0.067	0.018	0.021	-0.088	0.067	0.046	-0.044
131	0.035	0.085	-0.116	0.040 -0.099	-0.131	-0.133	-0.006
132	-0.111	0.135	-0.128	0.208	-0.082 0.016	-0.112	-0.109
133	0.125	-0.064	-0.105	0.097	0.014	-0.023	-0.020
134	0.046	0.114	0.144	0.023	-0.024	0.012	-0.011
135	0.040	-0.044	0.071	-0.011	-0.056	-0.052 -0.078	-0.041
136	-0.030	0.074	0.063	0.008	0.174	-0.101	0.022 -0.019
137	-0.012	0.038 -0.084	0.050	0.016	0.070	-0.013	0.075
139 140	-0.044	-0.084	-0.107	0.047	0.130	-0.080	-0.089
141	-0.020	0.005	-0.059	0.029	0.090	0.065	-0.030
142	0.036	0.090	0.002	-0.007	0.164	0.038	-0.088
143	-0.004 -0.016	-0.030 -0.087	0.106	0.006 0.022	0.044	-0.010	-0.030
144	0.031	0.043	0.084 0.114	0.022	-0.086	-0.029	0.050
145	-0.083	-0.165	0.114	0.029	-0.059	-0.078	0.019
146	-0.067	-0.006	0.253	-0.175 -0.081	0.048	0.228	-0.029
147	-0.039	-0.119	0.037	0.006	-0.107	-0.054	0.020
148	0.055	-0.049	-0.145	0.026	-0.005 -0.013	-0.021	0.009
149	-0.030	-0.055	-0.077	0.020	0.034	-0.192	0.002
50	0.008	0.045	-0.066	-0.022	-0.045	0.126 0.066	-0.007
51	-0.131	-0.023	0.115	0.135	-0.053	0.086	-0.038
52	-0.088	0 1/6	-0.064	-Ŏ. 122	-0.007	-0.044	-0.138 0.139
53	0.071	0.114	-0.059	-0.019	-0.044	0.028	0.139
54	0.117	0.114	0.076	-0.032	-0.021	-0.019	-0.030
55	-0.030	-0.065	-0.104	0.039	-0.104	0.091	-0.134
56	-0.021	-0.136	-0.006	0.104	0.060	-0.013	0.104

TABLE 5-10 (Continued)

ITEM	FACTOR 29	FACTOR 30	FACTOR 31	FACTOR 32	FACTOR 33	FACTOR 34	FACTOR 35
J101	-0.057	-0.154	-0.000	0.000	-0.081	-0.077	-0.054
J102	-0.100	-0.034	-0.099	-0.065	-0.142	0.018	0.046
J103	-0.057	-0.002	0.097	-0.062	-0.010	-0.050	-0.060
J104	-0.034	0.103	-0.075	-0.030	-0.082	0.119	0.050 -0.035
J105 J106	0.063 0.150	0.044 -0.087	0.061 -0.004	0.021 -0.048	0.081 0.010	0.045 0.010	0.030
J107	-0.026	-0.016	-0.049	0.053	-0.088	-0.027	-0.011
J108	-0.045	-0.025	-0.094	-0.072	0.040	0.027	-0.037
J109	-0.038	0.154	-0.087	0.074	0.027	-0.059	-0.031
J110	-0.028	0.035	-0.032	-0.079	0.072	-0.058	0.055
J111	0.243	0.011	0.139	-0.068	-0.101	0.054	-0.047
J112	-0.018	-0.020	-0.013	-0.014	0.153	-0.015	-0.053
J113 J114	-0.003 -0.043	-0.031 0.020	0.022 0.221	-0.041 0.032	0.063 -0.031	-0.030 0.004	-0.020 -0.061
J115	-0.043	0.020	-0.026	0.032	-0.047	-0.011	-0.098
Ji 16	0.051	0.114	0.103	-0.048	-0.040	-0.115	-0.053
J117	-0.205	-0.091	0.080	-0.030	0.030	0.155	-0.043
J118	0.124	-0.039	0.006	0.114	-0.027	0.019	-0.017
J119	-0.068	-0.127	0.061	-0.048	0.046	-0.091	-0.026
J120	0.014	-0.135	0.032	-0.015	0.011	-0.066	-0.005
J121	0.010	-0.065	0.135	0.058	0.057 0.012	-0.003	0.046
J122 J123	-0.000 -0.064	0.080 -0.005	-0.038 -0.002	-0.015 0.006	0.012	-0.012 0.059	0.125 0.141
J124	0.010	-0.020	0.060	-0.048	0.013	0.070	0.037
J125	0.099	-0.006	-0.121	0.083	-0.011	0.069	0.046
J126	-0.032	-0.004	-0.064	-0.072	0.179	-0.014	-0.103
J127	-0.007	-0.082	-0.021	-0.041	-0.013	0.034	-0.061
J128	-0.016	0.080	0.019	0.098	0.062	0.008	0.043
J129	0.102	0.053	0.009	-0.039	-0.020	-0.055	-0.052
J130 J131	-0.016	0.065	0.099	0.127	-0.052	0.012	-0.036
J132	0.015 -0.027	0.143 -0.119	-0.044 -0.077	-0.009 0.155	0.060 -0.006	0.101 -0.086	-0.133 -0.005
J133	-0.027	0.057	-0.003	-0.010	-0.054	-0.043	0.035
J134	-0.029	-0.040	-0.027	-0.093	0.137	0.132	0.012
J135	0.073	-0.022	-0.024	-0.074	0.045	-0.018	0.014
J136	0.089	-0.083	0.031	0.079	0.014	0.061	0.092
J137	-0.011	0.013	0.029	-0.036	-0.002	0.100	0.090
J139 J140	-0.016	-0.056	-0.111	0. 020 -0.020	0.019 0.100	0.063	-0.062
J141	-0.040 0.117	0.058 -0.068	0.127 -0.099	0.003	0.009	0.020 -0.004	0.057 -0.027
J142	-0.054	0.098	0.059	-0.168	-0.111	-0.087	0.032
J143	-0.026	0.008	0.015	-0.035	-0.028	-0.105	0.134
J144	0.021	-0.031	-0.149	-0.005	-0.105	-0.020	-0.042
J145	0.100	-0.038	-0 .012	0.083	0.028	-0.049	0.043
J146	-0.168	0.011	0.025	0.195	0.015	-0.050	-0.027
J147 J148	0.006	-0.040	-0.065	-0.117	-0.034	0.047 0.106	-0.004
J 148	-0.096 -0.071	-0.044 -0.137	0.048 -0.017	0.05 8 -0.030	-0.127 -0.073	-0.073	0.127 -0.071
J150	-0.082	0.039	-0.049	0.103	0.078	-0.073	0.024
J151	-0.066	0.110	-0.054	-0.017	-0.092	0.059	-0.077
J152	-0.024	0,106	-0.033	-0.049	0.029	-0.080	0.087
J153	0.063	-0.011	0.033	0.108	-0.059	0.110	-0.080
J154	0.059	0.005	0.024	0.057	0.058	-0.025	0.006
J155 ¦ J156 ¦	-0.002 0.092	-0.081 0.050	0.000 -0.075	-0.047 0.024	0.009 0.049	-0.025 -0.067	0.027 0.069

25.5

TABLE 5-10 (Continued)

TEM	FACTOR 36	FACTOR 37	FACTOR 38	FACTOR 39	FACTOR 40	FACTOR 41	FACTOR 42
101	0.023	0.022	-0.020	-0.062	-0.024	0.040	0.045
102	0.003	-0.133	-0.020	0.034	-0.069	-0.004	-0.023
103	-0.071	0.018	0.018	0.022	-0.055	-0.085	-0.024
104	0.038	0.140	-0.066	0.016	-0.088	0.052	0.055
105	0.030	0.131	-0.011	-0.027	-0.081	-0.075	-0.019
106	-0.145	0.013	-0.026	-0.001	0.085	0.050	-0.005
107	-0.054	-0.031	0.116	-0.044	-0.093	-0.033	0.042
108	0.032	-0.020	-0.040	-0.045	0.017	0.004	-0.025
109	-0.040	0.040	-0.010	0.006	0.107	-0.055	-0.013
1110	0.022	0.020	-0.027	-0.091	0.027	0.037	-0.012
iiii	0.079	-0.035	0.013	-0.028	0.046	-0.035	-0.001
1112	-0.033	0.097	0.004	0.110	-0.067	0.053	-0.011
1113	0.038	-0.013	-0.052	-0.021	0.057	-0.067	-0.044
1114	0.041	-0.097	0.002	-0.034	-0.008	0.095	-0.060
1115	-0.012	-0.057	-0.057	-0.012	-0.003	0.058	0.030
1116		0.021	0.177	-0.012	0.003	0.033	-0.005
1117	0.013		0.034	-0.029 0.019	0.053	-0.021	-0.044
	0.085	0.010		0.019	0.018		
1118	-0.053	-0.050	0.017	0.075	0.005	0.011	-0.008
1119	0.016	-0.010	0.041	-0.112	-0.068	0.030	-0.025
1120	-0.051	0.122	0.026	0.035	-0.018	-0.028	0.015
1121	0.182	0.045	-0.001	0.075	0.006	-0.025	0.108
1122	0.001	0.013	0.060	-0.022	-0.034	-0.019	0.059
1123	-0.019	-0.002	0.035	0.127	0.087	0.025	-0.066
1124	-0.080	-0.026	-0.121	0.073	0.028	-0.041	-0.007
1125	0.136	-0.068	-0.001	-0.057	-0.052	-0.056	0.000
1126	-0.029	-0.000	0.069	0.044	-0.071	-0.030	0.007
J127	-0.021	-0.030	-0.010	-0.035	0.004	0.113	0.070
1128	0.071	0.118	-0.021	-0.097	0.055	0.107	-0.057
1129	0.008	0.080	-0.098	0.004	-0.014	-0.008	-0.091
1130	-0.041	-0.022	-0.071	-0.049	-0.015	-0.030	-0.008
1131	0.016	-0.056	0.017	0.048	0.012	-0.045	-0.008
J132	-0.014	0.001	-0.136	-0.050	0.025	-0.015	0.005
J133	-0.135	0.046	0.056	-0.008	0.011	-0.031	0.006
J134	-0.110	-0.051	-0.021	-0.129	0.008	-0.015	-0.023
J135	0.031	-0.022	-0.050	0.099	0.029	0.112	0.095
J136	0.059	-0.040	0.047	0.030	-0.008	-0.034	-0.026
J137	-0.018	-0.038	0.089	-0.042	0.023	-0.011	-0.017
J139 i	0.056	0.047	0.075	-0.073	0.042	-0.026	0.078
J140	-0.049	-0.087	-0.045	-0.015	-0.054	0.007	0.073
J141	-0.030	- 0.105	0.018	0.019	-0.015	0.012	-0.032
J142	-0.032	0.0u i	-0.064	0.024	0.027	-0.042	0.057
J143	0.037	-0.000	0.064	0.049	-0.050	0.007	-0.052
1144	0.065	0.079	0.020	0.030	0.030	-0.007	-0.063
J145	-0.081	0.006	0.018	-0.060	0.015	-0.048	0.059
1146	0.002	-0.047	0.015	0.010	0.105	-0.018	0.014
J147	0.016	0.023	0.080	-0.017	0.143	0.017	0.023
J148	- 0. 099	0.097	-0.004	-0.030	-0.018	0.006	-0.019
J149	0.041	-0.010	-0.022	0.095	0.006	-0.018	-0.037
J150	-0.042	-0.062	0.064	0.074	0.014	0.025	0.016
J151	-0.011	0.002	0.004	0.017	-0.023	-0.010	0.015
J152	0.119	- 1.053	-0.049	0.004	0.002	-0.032	0.023
J153	-0.052	0.040	0.037	0.075	-0.037	0.044	0.005
J154	-0.044	-0.009	-0.029	0.002	-0.018	-0.028	0.048
J155	0.026	-0.003	-0.037	0.003	0.036	-0.080	0.006
J156	0.017	-0.041	0.005	-0.008	-0.094	0.065	-0.090

AND THE STATE OF T

presented in Tables 5-11 and 5-12, together with the proportion correct \hat{p}_g and the normal deviate $\hat{\gamma}_g$, for each item. Comparison of these two tables reveals that these two sets of results are fairly consistent with each other. It is also observed that the estimation of both the discrimination and difficulty parameters has been substantially ameliorated by the addition of older examinees, i.e., 460 and 461 second graders of junior high schools, respectively, in the J1/1075 and J1/2259 Cases, the fact which is especially conspicuous in the estimated discrimination and difficulty parameters of items J154, J120 and J134 in these tables when they are compared with the corresponding values shown in Table 5-3.

VI. Scale Adjustment I

As was mentioned in the preceding section, the estimated item parameters obtained as the result of the Tetrachoric Method are based upon the ability scale whose origin and unit are set equal to the mean and the standard deviation of the ability distribution of each specific examinee group. The results shown in Tables 5-1 through 5-4, 5-11 and 5-12 in the preceding section, therefore, are not directly comparable with one another. In order to make them comparable, we need some appropriate scale adjustment, or equating, so that all the estimated item characteristic functions be put on the single ability scale.

As we can see in Table 3-1, there are a certain number of test items which belong to the two tests of each pair of adjacent tests.

TABLE 5-11

Estimates of the Item Discrimination And Difficulty Parameters of Each of the 55 Items of Test J1, Together with Its Proportion Correct And Normal Deviate.
J1/1075 Case.

It ém g	Oiscrimination Parameter ag	Difficulty Parameter B _g	Proportion Correct Pg	Normal Deviate Ŷg	
J101	0.771	-0.304	0.57356	-0.18545	
J102	0.541	-1.036	0.68901	-0.49305	
J103	0.642	-1.240	0.74860	-0.67009	
J104	0.708	-1.125	0.74209	-0.64980	
J105	0.783	-0.461	0.61173	-0.28383	
J106	0.500	-0.934	0.66201	-0.41796	
J107	0.567	-0.299	0.55866	-0.14757	
J108 J109	0.826 0.330	-2.102	0.90968	-1.33879	
J110	0.640	-1.317 -0.724	0.66015 0.65177	-0.41287	
J111	0.983	-1.473	0.84916	-0.39010 -1.03284	
J112	0.485	-0.916	0.65549	-0.40019	
J113	0.554	-1,213	0.72160	-0.58760	
J114	0.632	-0.096	0.52048	-0.05136	
J115	0.815	-0.457	0.61359	-0.28869	
J116	0.385	-1.221	0.66946	-0.43842	
J117	0.354	-0.785	0.60335	-0.26203	
J118 J119	0.559	-1.273	0.73277	-0.62121	
J119	0.614	-1.182	0.73184	-0.61839	
J121	0.302	0.983	0.38827	0.28383	
J122	0.534	-0.988 -1.030	0.67039 0.68622	-0.44099	
J123	0.528	-0.045	0.50838	-0.48516 -0.02101	
J 124	0.576	-1.859	0.82309	-0.92721	
J125	0.522	-1.776	0.79423	-0.82119	
J126	0.475	-0.805	0.63501	-0.34515	
J127	0.543	-1.757	0.79888	-0.83763	
J128	0.776	-1.141	0.75791	- 0.69 96 0	
J129	0.793	1.131	0.24115	0.70261	
J130 J131	0.351	-1.988	0.74488	-0.65846	
J132	0.876 0.432	-0.554 -0.248	0.64246 0.53911	-0.36504	
J133	0.732	-1.818	0.93911	-0.09819 -1.07347	
J134	0.306	1.848	0.29423	0.54107	
J135	0.836	-0.356	0.59032	-0.22837	
J136	0.368	0.027	0.49628	0.00932	
J137	0.682	-0.153	0.53445	-0.08646	
J139	0.418	1.071	0.33985	0.41287	
J140 J141	0.420	-0.012	0.50186	-0.00466	
J142	0.577	-1.115	0.71136	-0.55736	
J143	0.702	0.120 -0.435	0.47858 0.59870	0.05372	
J144	0.389	-0.723	0.60335	-0.24998 -0.26203	
J145	0.776	-0.499	0.62011	-0.30577	
J146	0.865	-0.309	0.58007	-0.20207	
J147	0.447	-0.000	0.50000	0.00000	
J148	0.510	0.144	0.47393	0.06539	
J149	0.514	-0.453	0.58194	-0.20686	
J150 J151	0.515	-0.332	0.56052	-0.15229	
J152	0.486 0.345	0.666	0.38547 0.45251	0.29115	
J153	0.463	0.366 1.187	0.45251	0.11932	
J154	0.224	1.890	0.33985	0.49835 0.41287	
J155	0.860	0.744	0.31378	0.41207	
J156	0.711	1.131	0.25605	0.65557	

Ď

TABLE 5-12

Estimates of the Item Discrimination And Difficulty Parameters of Each of the 55 Items of Test J1, Together with Its Proportion Correct And Normal Deviate.

J1/2259 Case.

Item g	Discrimination Parameter ag	Difficulty Parameter B g	Proportion Correct P _g	Normal Deviate \widehat{Y}_g	
J101	0.733	-0.528	0.62240	-0.31179	
J102	0.541	-1.240	0.72244	-0.59011	
J103	0.573	-1.545	0.77866	-0.76768	
J104	0.716	-1.094	0.73794	-0.63701	
J105	0.801	-0.388	0.59584	-0.24259	
J106	0.500	-1.027 -0.089	0. <i>67685</i> 0.51793	-0.45 8 91 -0.04496	
J107 J108	0.588 0.778	-2.249	0.91633	-1.38080	
J109	0.390	-1.156	0.66268	-0.41979	
J110	0.577	-0.617	0.62107	-0.30829	
Jiii	0.959	-1.548	0.85790	-1.07093	
J112	0.440	-1.319	0.70252	-0.53166	
J113	0.512	-1.344	0.72997	-0.61272	
J114	0.476	0.190	0.46746	0.08166	
J115	0.710	-0.514	0.61709	-0.29785 -0.56911	
J116 J117	0.305 0.393	-1.949 -0.913	0.71536 0.63081	-0.33400	
J118	0.588	-1.851	0.82603	-0.93859	
J119	0.659	-1.256	0.75520	-0.69095	
J120	0.295	0.757	0.41523	0.21411	
J121	0.474	-1.189	0.69456	-0.50882	
J122	0.455	-1.321	0.70784	-0.54709	
J123	0.460	-0.142	0.52368	-0.05939	
J124	0.567	-1.594 -1.969	0.78398 0.79194	-0.78571	
J125 J126	0.453 0.370	-0.712	0.79194	-0.81317 -0.24717	
J127	0.530	-1.581	0.77025	-0.73967	
J128	0.685	-1.377	0.78176	-0.77815	
J129	0.768	1.112	0.24923	0.67691	
J130	0.354	-2.115	0.76007	-0.70653	
J131	0.805	-0.781	0.68792	-0.48996	
J132	0.325	-0.131	0.51616	-0.04052	
J133 J134	0.829 0.304	-1.657 1.327	0.85480 0.34971	-1.05724 0.38610	
J135	0.858	-0.515	0.63125	-0.33517	
J136	0.371	-0.030	0.50421	-0.01055	
J137	0.596	0.036	0.49270	0.01830	
J139	0.379	1.296	0.32315	0.45891	
J140	0.426	-0.078	0.51217	-0.03051	
J141	0.571	-0.975	0.68570	-0.48370	
J142 J143	0.451	-0.161 -0.392	0.52634 0.57902	-0.06607 -0.19939	
J144	0.387	-0.688	0.59805	-0.24830	
J145	0.635	-0.767	0.65958	-0.41132	
J146	0.888	-0.236	J.56220	-0.15655	
J147	0.335	0.079	0.49004	0.02497	
J148	0.525	-0.354	0.56529	-0.16440	
J149	0.514	-0.399	0.57238	-0.18244	
J150 J151	0.517 0.465	-0.331 0.607	0.56043 0.39885	-0.15206 0.25632	
J151 J152	0.465	0.807	0.39889	0.06718	
J153	0.387	1.720	0.26737	0.62079	
J 154	0.244	2.041	0.31430	0.48370	
J155	0.744	0.955	0.28420	0.57041	
J156	0.660	1.163	0.26073	0.64110	

To be more specific, for the three pairs of adjacent tests, A5 and A6, A6 and J1, and J1 and J2, there are 16, 16 and 20 such overlapping test items, respectively. Table 6-1 presents the two item numbers, which are expressed in the notation adopted in the present study, of each item which belongs to the two adjacent tests of each pair.

If we can find the best fitted line for the scatter diagram of the estimated difficulty parameters with respect to these overlapping items, then we shall be able to obtain the estimated distance between the means of the two ability distributions, and the ratio of the standard deviations of these two distributions. If we follow a similar procedure for the estimated discrimination parameters with the constraint that the fitted line pass (0,0), then we shall obtain another estimate of the ratio of the standard deviations of the two ability distributions. Since in each scatter diagram both sets of observations include error, it is obvious that a simple linear regression method for fitting a linear relationship between the two sets of estimates is not appropriate. There have been developed many methods (e.g., Deming, 1943) which deal with such a situation, however. In the present study, we shall use an iterative method based upon the dominating principal component obtained for the two sets of observations.

Let $\{\dot{a}_{g1}\}$ and $\{\dot{a}_{g2}\}$ be two sets of estimated item discrimination parameters obtained upon the examinee groups 1 and 2, respectively, where g (=1,2,...,m) indicates an overlapping test item. Since the discrimination parameter, a_g , is proportional to

TABLE 6-1

Three Sets of Overlapping Test Items between Adjacent Tests.

	Tests A5 & A6	Tests	A6 & J1	Tests	J1 & J2
1 2 3 4 5 6 7 8	A533 A601 A534 A602 A535 A603 A536 A604 A537 A605 A538 A606 A539 A607	A641 A642 A643 A644 A645 A646 A647	J101 J102 J103 J104 J105 J106 J107	J137 J138 J139 J140 J141 J142 J143	J201 J202 J203 J204 J205 J206 J207
8 9 10 11 12 13 14 15 16 17 18 19 20	A540 A608 A541 A609 A542 A610 A543 A611 A544 A612 A545 A613 A546 A614 A547 A615 A548 A616	A648 A649 A650 A651 A652 A653 A654 A655 A656	J108 J109 J110 J111 J112 J113 J114 J115 J116	J144 J145 J146 J147 J148 J149 J150 J151 J152 J153 J154 J155 J156	J208 J209 J210 J211 J212 J213 J214 J215 J216 J217 J218 J219 J220

the slope of the item characteristic function at θ = b_g both in the normal ogive and in the logistic models, without considering the error of estimation we can write

(6.1)
$$a_{g2} = (\sigma_2/\sigma_1) a_{g1}$$
,

where σ_1 and σ_2 represent the standard deviations of the ability distributions of the examinee groups 1 and 2, respectively. Thus the second principal component of the two variables degenerates, and the first principal component provides us with the linear relationship between $\{a_{g1}\}$ and $\{a_{g2}\}$. With fallible data, however, this is not the case. It is well known that the first and second principal components of two random variables are their linear combinations which provide us with the maximum and minimum variances, respectively, with the constraint that the total variance stay the same. Thus we can take the first, dominating principal component as the best fitted linear relationship between $\{\hat{a}_{g1}\}$ and $\{\hat{a}_{g2}\}$.

Let A be the (2x2) symmetric matrix of the cross-products of $\hat{a}_{g\,l}$ and $\hat{a}_{g\,2}$. Thus we can write

It is well known that the two eigenvalues, λ_1 and λ_2 , of the matrix A equal the variances of the first and second principal components of $\{\hat{a}_{g1}\}$ and $\{\hat{a}_{g2}\}$, respectively. Let y be the

random vector of the two principal components, y_1 and y_2 , of $\hat{a}_1 = \{\hat{a}_{g1}\}$ and $\hat{a}_2 = \{\hat{a}_{g2}\}$ (g=1,2,...,m). Thus we have

(6.3)
$$y' = \{y_1, y_2\}$$
,

with

(6.4)
$$Var. (y_t) = \lambda_t$$
 $t = 1,2$,

and

(6.5)
$$y = \Gamma \hat{a}$$

where Γ is the (2x2) matrix whose columns are the two eigenvectors corresponding to the two eigenvalues, λ_1 and λ_2 , respectively, and \hat{a}_g is the random vector of order 2 such that

(6.6)
$$\hat{a}' = (\hat{a}_1, \hat{a}_2)$$
.

It is well known that, when Γ is a (2x2) matrix, we can write

(6.7)
$$\Gamma = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix},$$

where α is the angle of the rotated axis specified by the first principal component with the axis representing a_1 . Thus we have

$$\begin{cases} y_1 = \hat{a}_1 \cos \alpha + \hat{a}_2 \sin \alpha \\ y_2 = -\hat{a}_1 \sin \alpha + \hat{a}_2 \cos \alpha \end{cases}$$

Ħ

** ** Let \mathbf{u}_1 be the eigenvector corresponding to the eigenvalue λ_1 . We can write, therefore,

(6.9)
$$u_1' = (u_{11}, u_{12}) = (\cos \alpha, \sin \alpha)$$
.

The estimate of the two standard deviations is given by

(6.10)
$$\hat{\sigma}_2/\hat{\sigma}_1 = \tan \alpha = u_{12}/u_{11}$$
.

Thus all we need is to compute the cross-products of \hat{a}_{g1} and \hat{a}_{g2} and produce the matrix A, to find out the eigenvector u_1 corresponding to its first, dominating eigenvalue, λ_1 , of the matrix A, and take the ratio of the first element of the eigenvector u_1 to its second element.

We notice, however, in the above method that equal weights are put upon the error in \hat{a}_1 and upon the error in \hat{a}_2 , which is not justifiable in the present situation, since the values of \hat{a}_{g1} and \hat{a}_{g2} are not determined on the same ability scale. To be more specific, if the unit of the scale is larger, then the values of the estimated discrimination parameters and their errors will also become larger, and vice versa. In minimizing the sum of the squared discrepancies from the first, dominating principal component, y_1 ,

therefore, the set of \hat{a}_{gi} which is based upon the larger scale unit is more heavily penalized.

To ameliorate this situation, let us consider the following logic. Suppose that the ratio, σ_2/σ_1 , is known, and we define the weight w in such a way that

Ġ

(6.11)
$$w = \sigma_1/\sigma_2$$
,

and we further define

(6.12)
$$a_{gi}^{*}$$

$$\begin{cases} = a_{gi} & i=1 \\ = wa_{g2} & i=2 \end{cases}$$

It is noted that, unlike a_{gl} and a_{g2} , a_{gl}^* and a_{g2}^* are comparable. We further define the (2x2) matrix A* such that

(6.13)
$$A^* = \{ \sum_{g=1}^{m} a_{g1}^* a_{g2}^* \} = \begin{bmatrix} m & m & m \\ \sum_{g=1}^{m} a_{g1}^2 & w \sum_{g=1}^{m} a_{g1}^2 a_{g2} \\ m & w \sum_{g=1}^{m} a_{g1}^2 a_{g2} \end{bmatrix}$$

It is easy to see that the matrix A^* can be obtained directly from the matrix A, which is given by (6.2), by multiplying both its second row and second column by w. The two principal components, y_1^* and y_2^* , of $a_1^* = \{a_{g1}^*\}$ and $a_2^* = \{a_{g2}^*\}$ (g=1,2,...,m) are given by

(6.14)
$$\begin{cases} y_1^* = a_1^* \cos \alpha^* + a_2^* \sin \alpha^* \\ y_2^* = -a_1^* \sin \alpha^* + a_2^* \cos \alpha^* \end{cases}$$

where $\cos\alpha^*$ and $\sin\alpha^*$ are obtained as the two elements of the eigenvector, $u_1^*=(u_{11}^*,u_{12}^*)$, corresponding to the first, dominating eigenvalue, λ_1^* , of the matrix A^* . Thus we can write

(6.15)
$$u_1^* = (u_{11}^*, u_{12}^*) = (\cos \alpha^*, \sin \alpha^*)$$
,

and

aconnective essence essence essence

1933

33

55.5

22.

(6.16)
$$\tan \alpha = u_{12}^*/u_{11}^*$$
.

From this result, we obtain

(6.17)
$$\tan \alpha = (\tan \alpha^*)/w = (u_{12}^*/u_{11}^*) (\sigma_2/\sigma_1)$$
.

Since, in practice, (σ_2/σ_1) is not known, the estimated ratio $(\hat{\sigma}_2/\hat{\sigma}_1)$ obtained by (6.10) can be used as its initial estimate, and the cycle of formulae (6.11) through (6.17) can be repeated, until (u_{12}^*/u_{11}^*) converges to unity.

The situation is somewhat different if we use the sets of estimated difficulty parameters of the overlapping items for the equating purposes. Let $\{b_{gl}\}$ and $\{b_{g2}\}$ (g=1,2,...,m) be the two sets of estimated item difficulty parameters of the m

overlapping test items obtained upon the examinee groups 1 and 2, respectively. Since the difficulty parameter $\,b_g\,$ is the point of $\,^{\theta}\,$ at which the conditional probability for answering the item correctly is $\,0.5$, without considering the error of estimation we can write

(6.18)
$$b_{g2} = (\sigma_1/\sigma_2) b_{g1} + (\mu_1-\mu_2)/\sigma_2$$
,

where μ_1 and μ_2 are the means of the two ability distributions of the examinee groups 1 and 2, respectively. Thus unlike the case of the item discrimination parameter the best fitted line for the scatter diagram of the estimated difficulty parameters does not include the origin, unless $\mu_1 = \mu_2$. For this reason, it will be appropriate to shift the origins of b_{g1} and b_{g2} to their respective means, and follow the same process from there. Thus we must use the covariance matrix B such that

(6.19)
$$B = \{ \sum_{g=1}^{m} [b_{gi} - \frac{1}{m} \sum_{h=1}^{m} \hat{b}_{hi}] [\hat{b}_{gj} - \frac{1}{m} \sum_{h=1}^{m} \hat{b}_{hj}] \}$$

$$i,j = 1,2,$$

instead of the matrix of cross-products as we did for the scatter diagrams of estimated item discrimination parameters. Following the same iterative procedure by defining the matrix B^* and using it in place of A^* , which is obtained by multiplying the second row and the second column of the matrix B by the weight v such that

(6.20) $v = \sigma_2/\sigma_1 = \tan \alpha$,

F.7.3

we obtain the estimate of cot α which equals the ratio, (σ_1/σ_2) . Note that this ratio is given as the slope of the fitted linear relationship between $\{b_{g1}\}$ and $\{b_{g2}\}$, as is obvious from (6.18).

It is indicated in (6.18) that the intercept of the fitted linear relationship between $\{b_{g1}\}$ and $\{b_{g2}\}$ can be used as the estimated distance of μ_1 from μ_2 measured with σ_2 as the unit. If we wish to obtain the estimate of the distance of μ_2 from μ_1 with σ_1 as the unit of measurement, then we can simply multiply this intercept by (-1), and then divide the result by the slope of the fitted line.

Figure 6-1 presents the three scatter diagrams of $\{\hat{a}_{g1}\}$ and $\{\hat{a}_{g2}\}$ for the overlapping test items in the A5/0599 and A6/0412 Cases, in the A6/0412 and J1/0614 Cases, and in the J1/0614 and J2/0758 Cases, together with the three similar scatter diagrams between J1/0614 and J1/1075 Cases, between J1/0614 and J1/2259 Cases, and between J1/1075 and J1/2259 Cases, respectively. Note that in the last three pairs of cases all the 55 items of Test J1 are treated as the overlapping items. In each of these six graphs, the best fitted line obtained by the iterative method described earlier in this section is shown by a thin, solid line. In the process of fitting these lines, however, those dots circled in the graphs were excluded, in order to hold some consistency with the corresponding estimation

Iwo Sets of Estimated Item Discrimination Parameters of the Items Commonly Included by Two Adjacent Tests Which Were Obtained by the Tetrachoric Method. Fitted Linear Relationships Based upon Those Two Sets of Points (Thin Line) and upon Those and the Corresponding Two Sets of Estimated Difficulty Parameters (Thick Line) Are Also Shown. Circled Points Are Not Included in Line Fitting. The Graph on the Left Hand Side Shows 16 Common Items in Tests A5 and A6, Based upon the A5/0599 Case (4g2) and A6/0412 Case (a_{g1}), Respectively, and the Graph on the Right Hand Side Shows 16 Common Items in Tests A6 and Jl Ba<u>s</u>ed upon the A6/0412 Case ($\mathbf{a_{g2}}$) and J1/0614 Case ($\mathbf{a_{g1}}$), Respectively.

.

7

?} ?}

7.

Š

. ; .\$1

33

H. 7.

THE STATE OF THE S

ú

Ì

K D

 19 Common items in Tests J1 and J2 Based upon the J1/0614 Case ($^{}_{\rm 4g1}$) and J2/0758 Case ($^{}_{\rm 4g2}$), Respectively.

55 Common Items in Test Ji Based upon the Ji/0614 Case ($a_{\rm gl}$) and Ji/1075 Case ($a_{\rm g2}$), Respectively.

DESCRIPTION DESCRI

WELLER FLOORING BEINGER BEINGER BEINGER BEINGER

55 Common Items in Test J1 Based upon the J1/0614 Case $\{ a_{\rm g2} \}$, Respectively.

55 Common Items in Test Ji Based upon the J1/1075 Case (a_{g1}), and J1/2259 Case (a_{g2}), Respectively.

parameters. The criterion for this exclusion will be explained in the subsequent paragraph. The slope and intercepts of each of these six fitted linear relationships between the two sets of estimated discrimination parameters are shown in the third and fourth columns of Table 6-2, respectively. We can see that the estimated intercept is close to zero in each case, the result which was expected from theory.

Figure 6-2 presents the corresponding six scatter diagrams of $\{b_{g1}\}$ and $\{b_{g2}\}$. Again in each graph the best fitted line is drawn by a thin, solid line. It is observed in these graphs that some of the estimated difficulty parameters are largely deviated from the rest. Since it is intrinsic in the Tetrachoric Method that those deviated values include large errors, all the dots having, at least, one estimated difficulty parameter outside the range of [-2.0, 2.0] were excluded in the process of fitting the linear relationship. Those excluded dots are circled in Figure 6-2. The same items were also excluded in the process of fitting the line for the scatter diagrams of the estimated item discrimination parameters, and these are represented by the encircled dots in Figure 6-1. The slope and intercept of each of the six fitted relationships between the two sets of estimated difficulty parameters are shown in the sixth and seventh columns of Table 6-2, respectively.

Since, for each pair, we obtained two estimates of the ratio of the standard deviations of the ability distributions of the two examinee groups, the geometric mean of the two estimates was computed,

TABLE 6-2

Slope And Intercept of Each of the Fitted Linear Relationships between the Two Sets of Estimated Item Parameters agon to base of the Common Test Items Based upon the Examinee Groups 1 and 2. ag or bg

Examinee	Examinee	ag	6	Combined	pg	6	Combined	ined
Group 1	Group 2	Slope	Intercept	Slope	Slope	Intercept	Slope	Intercept
A6/0412	A5/0599	0.834	0.004	898.0	1.106	909.0	1.152	0.634
J1/0614	A6/0412	1.014	-0.016	0.901	1.250	0.581	1.110	0.486
J1/0614	J2/0758	1.376	-0.001	1.254	0.875	-1.213	0.797	-1.171
31/0614	31/1075	1.055	-0.002	1.089	0.889	-0.272	0.918	-0.263
J1/0614	J1/2259	1.000	-0.004	1.009	0.983	-0.294	0.992	-0.292
31/1075	J1/2259	0.948	-0.002	0.945	1.061	-0.036	1.058	-0.038

3

1

731 777

X

Ÿ

7

1

Ĺ

Two Sets of Estimated Item Difficulty Parameters of the Items Commonly Included by Two Adjacent Tests Which Were Obtained by the Tetrachoric Method. Fitted Linear Relationships Based upon Those Two Sets of Points (Thin Line) and upon Those and the Corresponding Two Sets of Estimated Discrimination Parameters (Thick Line) Are Also Shown. Circled Points Are Not Included in Line Fitting. 16 Common Items in Tests A5 and A6, Based upon the A5/0599 Case (bg.) and A6/0412 Case (bg.), Respectively.

FIGURE 6-2 (Continued)

16 Common Items in Tests A6 and J1 Based upon the A6/0412 Case ($\mathbf{b_{g2}}$) and J1/0614 Case ($\mathbf{b_{g1}}$), Respectively.

Contract Status

Control - Control of

PRODUCTION OF PRODUCTION

STATE SERVICE PROCESSES AND SERVICES AND SERVICES SERVICES

No.

S.

, v

773

3

×

3.5.5.

19 Common Items in Tests J1 and J2 Based upon the J1/O614 Case ($\mathbf{b_{g1}}$) and J2/O758 Case ($\mathbf{b_{g2}}$), Respectively.

FIGURE 6-2 (Continued)

55 Common Items in Test Ji Based upon the Ji/O614 Case (${
m b_{gl}}$) and Ji/1075 Case (${
m b_{g2}}$), Respectively.

? :}

733

(2) (1)

U

-

10.00

7.1.5

FIGURE 6-2 (Continued)

55 Common Items in Test Ji Based upon the Ji/O614 Case ($\mathbf{b_{g1}}$) and Ji/2259 Case ($\mathbf{b_{g2}}$), Respectively.

FIGURE 6-2 (Continued)

55 Common Items in Test Ji Based upon the J1/1075 Case (${f b_{g1}}$) and J1/2259 Case (${f b_{g2}}$), Respectively.

and used as the ultimate estimate of the ratio. The resulting linear function is shown by a thick, solid line in each graph of Figures 6-1 and 6-2. Note that, in Figure 6-2, not only the slope of the line is different from the one for the dotted line, but its intercept was also changed accordingly. Table 6-2 presents the slope thus obtained for each pair of sets of estimated discrimination parameters in its fifth column, and the slope and intercept of each of the six combined linear relationships for the estimated difficulty parameters in the eight and ninth columns. Main intermediate results in the process of obtaining these values are shown in Appendix as Table A-1.

In order to put all the six ability distributions on a single ability scale, the following procedure was taken. First, we must pick up one examinee group who has taken a specific test, and decide to use the mean and standard deviation of its ability distribution as the origin and unit of the single ability scale. Let us call this specific examinee group as Subject Set 1. We can write

$$(6.21) \qquad \frac{\mu_{k} - \mu_{1}}{\sigma_{1}} = \sum_{u=1}^{k-1} \left[\frac{\mu_{u+1} - \mu_{u}}{\sigma_{u}} \quad \prod_{s=1}^{u} \frac{\sigma_{s}}{\sigma_{s-1}} \right]$$

with $\beta_{\Omega} \equiv 1$, and

(6.22)
$$\sigma_{k}/\sigma_{1} = \frac{k-1}{s=1} (\sigma_{s+1}/\sigma_{s})$$

for Subject Set k (>1) . (6.21) and (6.22) indicate that the indirect comparisons of the mean and standard deviation of any examinee group with those of Subject Set 1 are possible through (k-2) other examinee groups. For example, if we choose J2/0758 Case as Subject Set 1, k = 4 for the A5/0599 Case, since this examinee group can indirectly be compared with Subject Set 1 through two more examinee groups, i.e., A6/0412 and J1/0614 Cases. Since both the estimate of the ratio of the standard deviations of the ability distributions of two examinee groups, who took two adjacent tests, and the estimate of the distance between their means measured by the standard deviation of either one of the two examinee groups are available, (6.21) and (6.22) will provide us with the estimated mean and standard deviation of the ability distribution of every examinee group which are based upon the single ability scale with its origin and unit set equal to the mean and standard deviation of the ability distribution of Subject Set 1.

In the present study, our choice of Subject Set 1 is J1/0614 Case. Table 6-3 presents in its first six rows the estimates of the mean and the standard deviation of the ability distribution thus obtained for each of the six examinee groups. In these five cases other than J1/0614, k=3 in the A5/0599 Case, and k=2 otherwise. Since J1/1075 and J2/2259 Cases are directly compared using this result and k=3, we obtained another set of estimates of the mean and the standard deviation for each case. These results are shown in the seventh and eighth rows of Table 6-3. We can see that they are reasonably close to the corresponding results obtained by the direct

TABLE 6-3

Estimated Mean and Standard Deviation of Each of the Six Ability Distributions on the Ability Scale, Which Uses the Mean and the Standard Deviation of the J1/0614 Case As Its Origin and Unit, Respectively, and Those of Each of the Three Ability Distributions of the Combined Examinee Groups. Those Estimates Obtained Indirectly for the J1/1075 and J1/2259 Cases Are Also Shown.

Examinee Group	Mean	S.D.
A5/0599	-0.9335053873988D 00	0.7821682606788D 00
A6/0412	-0.4377494503856D 00	0.9007008047842D 00
J1/0614	0.0000000000000000000000000000000000000	0.10000000000000 01
J2/07 5 8	0.1468885831893D 01	0.1253937346912D 01
J1/1075	0.2865059655582D 00	0.1089166526997D 01
J1/2259	0.2945629608377D 00	0.10085439035760 01
J1/1075(2259)	0.2566381868855D 00	0.1066889245353D 01
J1/2259(1075)	0.3252226313344D 00	0.1029602899800D 01
A5-A6	-0.7314762617317D 00	0.8674202978083D 00
J1-J2	0.7754551956083D 00	0.1298071512414D 01
A5-A6-J1-J2	0.2397633167859D 00	0.13688532961810 01

comparisons with the J1/0614 Case, or with k = 2.

Since in using Logist 5 we produced three combined examinee groups, i.e., the combinations of A5/0599 and A6/0412 Cases, of the J1/1075 and J2/0758 Cases and of the A5/0599, A6/0412, J1/1075 and J2/0758 Cases, it is necessary to estimate the mean and the standard deviation of the ability distribution of each of these three combined examinee groups. We can write for the density function $f(\theta)$, the mean $E(\theta)$ and the variance Var. (θ) of any combined distribution

(6.23)
$$f(\theta) = \sum_{i=1}^{M} p_i f_i(\theta) ,$$

(6.24)
$$E(\theta) = \sum_{i=1}^{M} p_i \int_{-\infty}^{\infty} f_i(\theta) d\theta = \sum_{i=1}^{n} p_i E_i(\theta)$$

and

(6.25)
$$\operatorname{Var.}(\theta) = \sum_{i=1}^{M} p_{i} \int_{-\infty}^{\infty} \theta^{2} f_{i}(\theta) d\theta - [E(\theta)]^{2},$$

$$= \sum_{i=1}^{M} p_{i} \operatorname{Var.}_{i}(\theta) + \sum_{i=1}^{M} p_{i} [E_{i}(\theta)]^{2} - [E(\theta)]^{2},$$

where M is the number of original distributions involved, $p_{\bf i}$ is the probability assigned to the original population i , $f_{\bf i}(\theta)$ is the density function for population i , and $E_{\bf i}(\theta)$ and Var. $_{\bf i}(\theta)$ are the mean and the variance of the ability distribution of the

population i, respectively. Using the estimated mean and standard deviation of the ability distribution of each examinee group involved and the proportion of the examinees of such a group i to those of the combined group as the estimate of p_i , we can obtain the estimated mean and standard deviation of each combined examinee group Through (6.24) and (6.25). These results are also shown in the last three rows of Table 6-3. The estimated ability distribution of each of the original and the combined examinee groups is also presented in Figure 6-3.

Tables 6-4 through 6-9 present the estimated item discrimination and difficulty parameters of each item of Tests A5, A6, J1 and J2, which were obtained by the Tetrachoric Method used for the A5/0599, A6/0412, J1/0614 and J2/0758 Cases, and then readjusted to this single ability scale, together with the two additional sets of estimated item parameters of the 55 items of Test J1 obtained upon the J1/1075 and J1/2259 Cases. In these tables, all the estimated item discrimination parameters and difficulty parameters which are less than 0.100 and exceed 3.000 in absolute value, respectively, are marked with •.

VII. Item Parameters Estimated by Logist 5

As was mentioned in Section 3, in using Logist 5 we combined two or more examinee groups, who took different tests having some overlapping items, in order to provide us with the larger samples of examinees in the effort of increasing the accuracy of estimation.

There are three such cases, and they are described in Table 3-2 of Section 3. For brevity, hereafter we shall call them Case A5-A6, Case J1-J2 and Case A5-A6-J1-J2, respectively, indicating the tests

FIGURE 6-3

And of the J1/2259 Case (Short Dashed Line), Together with Those (Dotted Lines) of the Combined Examinee Groups, A5-A6, J1-J2 And A5-A6-J1-J2. Estimated Ability Distributions (Solid Lines) of the A5/0599, A6/0412, 11/0614 And J2/0758 Cases, Those of the J1/1075 Case (Long Dashed Line)

四

77

0

88

SI SI

TABLE 6-4 Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 48 Items of Test A5, Based upon the Tetrachoric Method Applied for the A5/0599 Case. After the Scale Adjustment Was Made.

ĥg

-0.966 -1.461 -1.418 -0.323 -0.663 0.684 -0.539 -0.140

Item	âg	ъ̂g	Item	âg
A501	0.822	-2.292	A541	0.699
A502	0.597	-3.188●	A542	0.557
A503			A543	0.710
A504	0.730	-2.038	A544	0.965
A505	0.849	-2.405	A545	0.906
A506	0.559	-1.989	A546	0.279
A507	0.542	-0.994	A547	0.369
A508	0.873	-1.821	A54 8	0.532
A509	1.356	-1.997		
A510	0.758	-0.949		
A511	0.589	-2.092		
A512	0.759	-1.929		
A513				
A514	0.993	-1.864		
A515	0.575	-2.249		
A516	0.486	0.498		
A517				
A518	0.433	-2.494		
A519	0.817	-1.936		
A520	0.447	-2.995		
A521	0.727	-1.931		
A522 A523	0.568 0.096 ●	-0.702		
A523 A524	0.501	4.836 ● -2.068		
A524 A525	1.036	-2.027		
A526	0.993	-0.832		
A527	0.097	-0.210		
A528	0.532	-0.140		
A529	0.632	-0.598		
A530	0.694	-1.770		
A531	-0.064	-21.642 ●		
A532	0.610	-0.007		
A533	0.877	-1.791		
A534	1.011	-2.081		
A535	0.665	-1.340		
A536	0.839	-1.048		
A537	0.598	-1.524		
A538	1.189	-0.853		
A539	0.841	-1.048		
A540	0.483	-0.757		
	1			

TABLE 6-5 Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test A6, Based upon the Tetrachoric Method Applied for the A6/0412 Case. After the Scale Adjustment Was Made.

I tem	âg	р̂д	I tem	âg	в̂д
A601	0.737	-2.115	A641	0.697	0.070
A602	0.574	-2.869	A642	0.747	-1.309
A603	0.862	-1.364	A643	0.785	-0.906
A604	0.645	-1.442	A644	1.257	-0.474
A605	0.662	-1.036	A645	0.524	-0.332
A606	1.269	-1.228	A646	0.556	-0.840
A607	0.827	-1.026	A647	0.628	0.276
A608	0.626	-0.621	A648	0.814	-1.870
A609	0.620	-0.826	A649	0.508	-0.827
A610	0.546	-1.457	A650	0.643	-0.402
A611	0.733	-0.618	A651	0.678	-0.974
A612	0.882	-0.857	A652	0.312	-1.104
A613	1.205	-0.683	A653	0.635	-0.765
A614	0.576	0.070	A654	0.258	2.190
A615	0.344	-0.377	A655	0.930	-0.466
A616	0.633	-0.220	A656	0.553	-1.428
A617	0.908	-1.719		0.000	1.420
A618	0.554	-1.265			
A619	0.623	-1.266			
A620	1.027	-0.623			
A621	0.892	-1.013			
A622	0.606	-1.810			
A623	0.502	-1.553			
A624	0.613	-2.264			
A625	0.446	-1.885			
A626	0.564	-1.093			
A627	0.361	~(·.525			
A628	0.239	-3.050●			
A629	0.695	-0.676			
A630	0.701	-1.029			
A631	0.656	-0.880			
A632	0.663	-1.509			
A633	0.425	-1.243			
A634	1.025	-1.792			
A635	0.785	-2.435			
A636	0.705	-1.748			
A637	0.527	-1.173			
A638	0.467	0.770			
A639	0.038 ●	19.949 ●			
A640	0.623	-0.217			

TABLE 6-6 Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test J1, Based upon the Tetrachoric Method Applied for the J1/0614 Case. After the Scale Adjustment Was Made.

Item	âg	ĥg	Item	âg	ĥg
J101	0.668	0.072	J141	0.549	-0.894
J102	0.599	-0.817	J142	0.400	0.566
J103	0.664	-1.013	J143	0.620	-0.190
J104	0.727	-0.799	J144	0.452	-0.510
J105	0.686	-0.301	J145	0.798	-0.401
J106	0.475	-0.815	J146	0.727	-0.051
J107	0.497	0.090	J147	0.267	1.125
J108	0.809	-2.051	J148	0.542	0.231
J109	0.470	-1.011	J149	0.499	-0.224
J110	0.678	-0.517	J150	0.524	-0.237
J111	0.901	-1.329	J151	0.424	0.999
J112	0.521	-0.714	J152	0.309	0.847
J113	0.553	-0.930	J153	0.438	1.696
J114	0.513	0.657	J154	0.100	5.150€
J115	0.767	-0.279	J155	0.569	1.536
J116	0.406	-1.117	J156	0.630	1.313
J117	0.390	-0.880			
J118	0.594	-0.959			
J119	0.659	-0.926			
J120	0.191	2.502			
J121	0.482	-0.967			
J122 J123	0.524	-0.819 0.103			
J124	0.560	-1.863			
J125	0.567	-1.541			
J126	0.383	-0.727			
J127	0.531	-1.643			
J128	0.630	-1.144			
J129	0.812	1.174			
J130	0.379	-1.805			
J131	0.905	-0.447			
J132	0.454	0.000			
J133	0.614	-1.873			
J134	0.287	2.244			
J135	0.819	-0.205			
J136	0.371	0.374			
J137	0.580	0.000			
J138					
J139	0.362	1.321			
J140	0.403	0.107			

 Ξ

TABLE 6-7 Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 60 Items of Test J2, Based upon the Tetrachoric Method Applied for the J2/0758 Case. After the Scale Adjustment Was Made.

J241 J242 J243 J244 J245	0.817 0.609 0.328 0.287	-0.003 0.291 0.480
J242 J243 J244 J245	0.609 0.328 0.287	0.291
J247 J248 J249 J250 J251 J252 J253 J254 J255 J256 J257 J258 J259 J260	0.691 0.222 0.431 0.322 0.593 0.572 0.723 0.471 0.477 0.489 0.914 0.464 0.429 0.362 0.658 0.073	1.135 1.316 1.609 1.206 -0.741 1.112 0.995 0.293 1.395 1.493 1.421 1.552 2.067 1.071 1.621 1.706 3.692 ●
	J248 J249 J250 J251 J252 J253 J254 J255 J256 J257 J258 J259	J247 J248 J249 J250 J250 J251 J252 J252 J252 J253 J252 J253 J254 J255 J255 J255 J256 J256 J257 J258 J259 J259 J258 J259 J259 J259 J259 J259 J250

TABLE 6-8 Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test Jl, Based upon the Tetrachoric Method Applied for the J1/1075 Case. After the Scale Adjustment Was Made.

			·		
Item	âg	ĥg	Item	âg	ĥg
J101	0.708	-0.044	J141	0.530	-0.928
J102	0.497	-0.842	J142	0.458	0.417
J103	0.590	-1.064	J143	0.644	-0.187
J104	0.650	-0.939	J144	0.357	-0.501
J1∪5	0.719	-0.215	J145	0.713	-0.257
J106	0.459	-0.731	J146	0.794	-0.050
J107	0.521	-0.039	J147	0.410	0.287
J108	0.759	-2.003	J148	0.468	0.443
J109	0.303	-1.148	J149	0.472	-0.206
J110	0.588	-0.502	J150	0.473	-0.076
J111	0.902	-1.318	J151	0.446	1.012
J112	0.446	-0.712	J152	0.316	0.685
J113	0.508	-1.035	J153	0.425	1.579
J114	0.580	0.182	J154	0.206	2.345
J115	0.748	-0.211	J155	0.790	1.097
J116	0.353	-1.044	J156	0.653	1.518
J117	0.325	-0.569			
J118	0.513	-1.100		<u> </u>	
J119	0.564	-1.001			
J120	0.277	1.357			
J121	0.458	-0.789			
J122	0.491	-0.835			
J123	0.484	0.237			
J124	0.529	-1.738			
J125	U.479	-1.648			
J126	0.436	-0.590			
J127	0.498	-1.627			
J128	0.712	-0.957			
J129	0.728	1.518			
J130	0.322	-1.879			
J131	0.805	-0.317			
J132	0.396	0.017			
J133	0.672	-1.693			
J134	0.281	2.299			
J135	0.768	-0.101			
J136	0.337	0.316			
J137	0.626	0.119			
J138		1 453			
J139	0.384	1.453			
J140	0.386	0.273			
	1				

ů.

77

TABLE 6-9 Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test J1, Based upon the Tetrachoric Method Applied for the J1/2259 Case. After the Scale Adjustment Was Made.

	,				
Item	âg	ĥg	Item	âg	ĥg
J101	0.726	-0.238	J141	0.566	-0.689
J102	0.537	-0.956	J142	0.447	0.132
J103	0.568	-1.263	J143	0.586	-0.100
J104	0.710	-0.809	J144	0.384	-0.399
J105	0.794	-0.097	J145	0.630	-0.479
J106	0.495	-0.741	J146	0.880	0.057
J107	0.583	0.205	J147	0.333	0.374
J108	0.771	-1.974	J148	0.521	-0.062
J109	0.386	-0.872	J149	0.509	-0.108
J110	0.572	-0.327	J150	0.512	-0.040
J111	0.950	-1.266	J151	0.462	0.907
J112	0.437	-1.036	J152	0.394	0.478
J113	0.508	-1.061	J153	0.384	2.029
J114	0.472	0.486	J154	0.242	2.353
J115	0.704	-0.224	J155	0.738	1.258
J116	0.303	-1.671	J156	0.655	1.468
J117	0.390	-0.626	·		
J118	0.583	-1.573			
J119	0.653	-0.972			
J120	0.293	1.058			
J121 J122	0.470 0.451	-0.904 -1.038			
J123	0.451	0.151			
J124	0.430	-1.313			
J125	0.450	-1.691			
J126	0.367	-0.424			
J127	0.525	-1.299			
J128	0.679	-1.094			
J129	0.761	1.416			
J130	0.351	-1.839			
J131	0.798	-0.494			
J132	0.322	0.162			
J133	0.822	-1.377			
J134	0.302	1.633			
J135	0.850	-0.225			
J136	0.368	0.264			
J137	0.591	0.331			
J138	0.225	1 600			
J139	0.375	1.602			
J140	0.422	0.216			

HEART PROTECTION, TERRESEAST TRAVESTOR TRAVESTOR METALES NECESSARIA PERSONAL PROTECTION
involved. The numbers of subjects in these three cases are 1,011, 1,833 and 2,844, respectively, as are shown in Table 3-2. In addition to these three cases, because of their larger sample sizes, J1/1075 and J1/2259 Cases were also analyzed alone, by assuming, separately, three-parameter logistic model as well as (two-parameter) logistic model. We shall call these four additional cases Case J1/1075: cg-Zero, Case J1/1075: cg-Free, Case J1/2259: cg-Zero, and Case J1/2259: cg-Free, respectively, depending upon whether the adopted model is two-parameter or three-parameter logistic model in each case.

Tables 7-1 and 7-2 present the estimated item discrimination parameter \hat{a}_g and the estimated item difficulty parameters \hat{b}_g of each item of Tests A5 and A6, respectively, which were obtained upon the Case A5-A6. In Logist 5, the resulting estimates of item parameters and individual parameters are adjusted to the scale of ability whose origin and unit are set equal to the mean and the standard deviation of the estimated individual parameters of the sample of subjects in question, excluding those which fall outside the interval, [-3, 3], after the last iteration. In Case A5-A6, one examinee was excluded because of his too low value of ability estimate, and seven examinees were excluded because of their too high values of ability estimate, to leave us 1,003 xaminees in this process of standardization. Since the percentage of those examinees who were excluded is only 0.79 and negligibly small, hereafter, we shall treat the distribution of 9 for the 1,003 examinees as if it were of the whole group of examinees. The same applies for Cases

COMPARISON OF THE ESTIMATED ITEM PARAMETERS OF SHIBA'S MORD/PHASE COMPREM. (U) TENNESSEE UNIV KNOXVILLE F SAMEJIMA 13 DEC 85 RR-84-2 N00014-81-C-0569 F/G 5/10 AD-R164 186 2/4 UNCLASSIFIED NŁ

MICROCOPY RESOLUTION TEST CHART
DARDS-1963-A

TABLE 7-1 Estimated Item Discrimination Parameter \hat{a}_g And Item Difficulty Parameter \hat{b}_g of Each of the 48 Items of Test A5, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599 and A6/0412 Cases, Assuming the Logistic Model.

Item	âg	ĥg	_	Item	âg	ĥ _g
A501 A502 A503 A504 A505 A506 A507 A508 A509 A510 A511 A512 A513 A514 A515 A516 A517 A518 A516 A517 A518 A519 A520 A521 A522 A523 A524	0.800 0.557 0.636 0.668 0.842 0.500 0.533 0.823 1.533 0.688 0.518 0.738 1.102 0.963 0.512 0.456 1.896 0.400 0.753 0.391 0.687 0.436 0.089	bg -1.717 -2.729 -2.873 -1.462 -1.809 -1.444 -0.306 -1.238 -1.352 -0.293 -1.575 -1.321 -2.196 -1.268 -1.700 1.216 -1.742 -1.903 -1.361 -2.574 -1.331 0.020 5.596 ▲		A541 A542 A543 A544 A545 A546 A547 A548	âg 0.564 0.479 0.520 0.861 0.953 0.344 0.307 0.506	6g -0.237 -0.829 -0.477 0.196 0.017 1.077 0.297 0.591
A525 A526 A527 A528 A529 A530 A531 A532 A533 A534 A535 A536 A537 A538 A539 A540	1.075 0.944 0.094 ▲ 0.457 0.574 0.673 0.031 ▲ 0.548 0.848 0.877 0.678 0.711 0.515 1.263 0.761 0.453	-1.397 -0.175 0.290 0.607 0.108 -1.134 41.264 0.747 -1.208 -1.568 -0.694 -0.484 -0.723 -0.313 -0.371 -0.016		iten same thro resp over A5 a	ns A533 throug	Table 7-2, e they are between Tests

TABLE 7-2 Estimated Item Discrimination Parameter \hat{a}_g And Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test A6. Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599 and A6/0412 Cases, Assuming the Logistic Model.

Item	â _g	ĥg		Item	âg	ĥ _g
A601	0.848	-1.208	•	A641	0.628	0.907
A602	0.877	-1.568		A642	0.658	-0.618
A603	0.678	-0.694		A643	0.731	-0.162
A604	0.711	-0.484		A644	1.147	0.280
A605	0.515	-0.723		A645	0.487	0.481
A606	1.263	-0.313		A646	0.497	-0.070
A607	0.761	-0.371		A647	0.536	1.185
A608	0.453	-0.016		A648	0.873	-1.038
A609	0.564	-0.237		A649	0.440	-0.070
A610	0.479	-0.829		A650	0.546	0.390
A611	0.520	-0.477		A651	0.617	-0.263
A612	0.861	0.196		A652	0.273	-0.381
A613	0.953	0.017		A653	0.544	-0.043
A614	0.344	1.077		A654	0.243	3.015▲
A615	0.307	0.297		A655	0.857	0.301
A616	0.506	0.591		A6 56	0.499	-0.736
A617	0.995	-0.923				
A618	0.510	-0.532				
A619	0.603	-0.517				
A620	0.912	0.118				
A621	0.881	0.264				
A622	0.628	-1.018				
A520	0.459	-0.818				
Λ624	0.608	-1.541				
A625	0.408	-1.190				
4628	0.522	-0.337		Nata. The		
1.5	0.337	©.276				m parameters for igh A616 re the
A628	0.242	-2.154		san	ne as those	for items A533
A629	0.653	0.088		thr	rough A548 in spectively, si	
A630	0.638	-0.330			rlapping items	
A631	0.593	-0.140		A5	and A6 and t	he results are
A632	0.645	-0.779		of	Case A5-A6.	
A633	0.399	-0.491				
A634	1.183	-0.996				
A635	0 946	-1.538				
A636	0.718	-0.973				
A637	0.483	-0.433				
A638	0.455	1.587				
A639	0.056 🛦	13.295▲				
A640	0.536	0.600				

J1-J2 and A5-A6-J1-J2, as we shall see later in this section.

It is interesting to note that the two items, A531 and A639, whose estimated item parameters by the Tetrachoric Method assume the most extreme values as are shown in Tables 5-1 and 5-2, are also the two items who have the most extreme sets of estimated item parameters in Tables 7-1 and 7-2. For convenience, the estimated item discrimination parameters which is less than 0.100 and the estimated item difficulty parameters which exceed 3.000 are marked with in these tables, and also in Tables 7-3 through 7-9 and in Table 7-11, which will be presented later in this Section. These marks reveal a strong consistency in extreme parameter estimates between the results of the Tetrachoric Method and those of Logist 5. We notice, moreover, that the whole configurations of the estimated discrimination parameters and of the estimated diffuculty parameters are very similar to those obtained by the Tetrachoric Method.

The corresponding results of Tests J1 and J2 obtained upon the Case J1-J2 are shown in Tables 7-3 and 7-4, respectively. In this case, those who were excluded in the process of standardization because of their too low and too high values of ability estimate number one and twelve, respectively, to make the number of remaining examinees 1,820. It is noted, again, that the percentage of those who were excluded is negligibly small, i.e., 0.71.

We can see in these two tables that item J138 in Table 7-3 and item J202 in Table 7-4 are the only marked items, whose estimated discrimination parameters are less than 0.100 and whose estimated

TABLE 7-3 Estimated Item Discrimination Parameter \hat{a}_g And Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test J1, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining J1/1075 and J2/0758 Cases, Assuming the Logistic Model.

ACTION TO DESCRIPTION OF THE PROPERTY OF THE P

	·		_			
Item	âg	ĥg	_	Item	âg	ĥg
J101	0.970	-0.617	_	J141	0.687	-1.267
J102	0.642	-1.215		J142	0.606	-0.292
J103	0.867	-1.316		J143	0.858	-0.728
J104	0.903	-1.266		J144	0.496	-1.016
J105	0.951	-0.752		J145	0.863	-0.679
J106	0.611	-1.111		J146	0.983	-0.721
J107	0.630	-0.617		J147	0.664	-0.382
J108	1.381	-1.862		J148	0.707	-0.352
J109	0.406	-1.387		J149	0.599	-0.672
J110	0.784	-0.956		J150	0.588	-0.553
J111	1.527	-1.482		J151	0.719	0.120
J112	0.577	-1.119		J152	0.553	-0.156
J113	0.708	-1.322		J153	0.536	0.696
J114	0.773	-0.442		J154	0.473	0.458
J115	1.021	-0.748		J155	1.103	0.209
J116	0.448	-1.372		J156	1.025	0.552
J117	0.423	-0.979				
J118	0.734	-1.354				
J119	0.777	-1.311				
J120	0.388	0.387				
J121	0.619	-1.145				
J122 J123	0.648	-1.202				
J123	0.609 0.820	-0.399 -1.738				
J125	0.677	-1.743				
J126	0.580	-1.743				
J127	0.748	-1.674		Note: The	estimated item	parameters for
J128	1.063	-1.256		iten	ns J137 through	ph J156 are the
J129	0.843	0.685		same thro	e as those fl ough J220 in	or items J201 Table 7-4.
J130	0.463	-1.839		resp	ectively, sin	ce they are
J131	1.095	-0.827		over	·lapping items	between Tasts
J132	0.517	-0.554		Case	nd J2 and the J1-J2.	results are of
J133	1.070	-1.724				
J134	0.383	1.076				
J135	1.025	-0.667				
J136	0.415	-0.317				
J137	0.796	-0.579				
J138	0.010	145.324 ▲				
J139	0.495	0.643				
J140	0.417	-0.347				
	l .					

TABLE 7-4
Estimated Item Discrimination Parameter \hat{a}_g And Item Difficulty Parameter \hat{b}_g of Each of the 60 Items of Test J2, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining J1/1075 and J2/0758 Cases, Assuming the Logistic Model.

	· · · · · · · · · · · · · · · · · · ·		 		
Item	âg	ĥg	I tem	âg	ъ̂д
J201	0.796	-0.579	J241	1.300	-0.592
J202	0.010	145.324▲	J242	0.878	-0.389
J203	0.495	0.643	J243	0.428	-0.249
J204	0.417	-0.347	J244	0.315	0.146
J205	0.687	-1.267	J245	0.892	0.342
J206	0.606	-0.292	J246	0.285	0.611
J207	0.858	-0.728	J247	0.546	0.271
J208	0.496	-1.016	J 24 8	0.435	-1.121
J209	0.863	-0.679	J249	0.747	0.182
J210	0.983	-0.721	J250	0.765	0.102
J211	0.664	-0.382	J251	1.046	-0.399
J212	0.707	-0.352	J252	0.561	0.430
J213	0.599	-0.672	J253	0.617	0.482
J214 J215	0.588 0.719	-0.553 0.120	J254	0.615	0.445
J215 J216	0.719	-0.156	J255	1.179	0.505
J217	0.536	0.696	J256	0.548	0.975
J218	0.473	0.458	J257 J258	0.573 0.442	0.190 0.585
J219	1.103	0.209	J259	0.442	0.659
J220	1.025	0.552	J260	0.126	1.664
J221	0.466	0.805	0200	0.120	1.00
J222	0.764	-0.143			
J223	0.506	-0.922			
J224	0.747	-0.153			
J225	0.810	-0.617			
J226	0.727	-0.131	Note: The	actimated ite	m parameters for
J227	0.731	-0.442	i ter	ns J210 through	gh J220 are the
J228	0.791	-0.742	* -		for items J137 Table 7-3,
J229 J230	0.756 0.665	-0.493 -0.480	rest	pectively, si	nce they are
J230	1.701	-0.592		rlapping items	
J232	1.089	-0.689	J1 of (and J2 and th Case J1-J2.	ne results are
J233	0.332	1.041			
J234	0.385	0.506			
J235	1.110	-0.127			
J236	1.012	-0.035			
J237	0.294	-0.634			
J238	0.858	1.215			
J239	0.550	0.278			
J240	0.673	0.732			

difficulty parameters are greater than 3.000. As we can see in the notes attached to these two tables, they are a single item overlapping in Test Jl and J2, and also it is the item which has been discarded by Shiba (cf. Tables 5-3 and 5-4). Again we notice that the whole configurations of the two estimated item parameters in Tables 7-3 and 7-4 are very similar to those obtained by the Tetrachoric Method, which are shown in Tables 5-3 and 5-4, respectively.

Tables 7-5 through 7-8 present the resulting item parameter estimates of each item of Tests A5, A6, Jl and J2, respectively, which were obtained upon the Case A5-A6-Jl-J2. Again, some subjects were excluded in the process of standardization, and those who were excluded because of thier too low ability estimates and of their too high ones number one and thirteen, respectively. Thus we had 2,830 subjects in the standardization process of this case. The percentage of those examinees who were excluded is, again, negligibly small, i.e., 0.49.

It is noted that, in general, the estimated discrimination parameters of the items of Tests A5 and A6 in Tables 7-5 and 7-6 are larger than the corresponding values shown in Tables 7-1 and 7-2, even in the extreme cases such as items A531, A639, A523 and A527. This is an expected result, for the distribution of the individual ability estimates in Case A5-A6-J1-J2 is likely to have a larger standard deviation than the one in Case A5-A6, and, therefore, the scale unit in Case A5-A6-J1-J2 is larger than that in Case A5-A6. The true comparison of these two sets of results will be possible after a

TABLE 7-5 Estimated Item Discrimination Parameter \hat{a}_g And Item Difficulty Parameter \hat{b}_g of Each of the 48 Items of Test A5, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 And J2/0758 Cases, Assuming the Logistic Model.

	- • • • • • • • • • • • • • • • • • • •						
I tem	âg	ĥ _g	Item	âg	ъ̂д		
A501	1.017	-2.059	A541	0.737	-0.897		
A502	0.708	-2.858	A542	0.624	-1.353		
A503	0.808	-2.969	A543	0.679	-1.082		
A504	0.852	-1.857	A544	1.117	-0.563		
A505	1.077	-2.127	A545	1.236	-0.701		
A506	0.636	-1.845	A546	0.446	0.114		
A507	0.679	-0.950	A547	0.400	-0.489		
A508	1.049	-1.681	A548	0.660	-0.263		
A509	1.951	-1.772	-	<u> </u>			
A510	0.877	-0.940					
A511	0.659	-1.948					
A512	0.939	-1.748					
A513 A514	1.404 1.226	-2.434					
A515	0.651	-1.706 -2.046					
A516	0.580	0.246					
A517	2.405	-2.080					
A518	0.510	-2.205					
A519	0.961	-1.777					
A520	0.498	-2.733					
A521	0.874	-1.755					
A522	0.555	-0.694					
A523	0.112	3.754▲					
A524	0.596	-1.853					
A525	1.371	-1.806					
A526	1.200	-0.847	N.A. The		_		
A527	0.122	-0.488	Note: The	estimated item ms A533 through	n parameters for		
A528	0.580	-0.232	samo	e as those fo	or items A601		
A529 A530	0.730 0.853	-0.625	thre	ough A616 ir pectively, sir	n Table 7-6, nce they are		
A530	0.036▲	-1.603	ove	rlapping items	between Tests		
A531	0.697	34.662 ▲ -0.123	A5	and A6 and th	e results are		
A533	1.095	-1.649	01 (Case A5-A6-J1-J	12.		
A534	1.133	-1.927					
A535	0.877	-1.250					
A536	0.926	-1.087					
A537	0.668	-1.273					
A538	1.631	-0.955					
A539	0.985	-1.001					
A540	0.590	-0.728					

TABLE 7-6 Estimated Item Discrimination Parameter \hat{a}_g And Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test A6, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 And J2/0758 Cases, Assuming the Logistic Model.

A601 A602 A603 A604 A605 A606 A607	1.095 1.133 0.877 0.926 0.668	-1.649 -1.927 -1.250	A641 A642	1.032 0.659	-0.140
A603 A604 A605 A606	0.877 0.926	-1.250		0 659	
A604 A605 A606	0.926			1 0.033	-0.911
A605 A606		1 007	A643	0.968	-0.796
A606	0.668	-1.087	A644	1.199	-0.610
		-1.273	A645	0.910	-0.325
A607	1.631	-0.955	A646	0.659	-0.658
	0.985	-1.001	A647	0.754	-0.066
A608	0.590	-0.728	A648	1.346	-1.391
A609	0.737	-0.897	A649	0.495	-0.788
A610	0.624	-1.353	A650	0.842	-0.457
A611	0.679	-1.082	A651	1.343	-0.948
A612	1.117	-0.563	A652	0.541	-0.741
A613	1.236 0.446	-0.701 0.114	A653 A654	0.790 0.753	-0.767 0.132
A614 A615	0.400	-0.489	A655	1.093	-0.336
A616	0.660	-0.263	A656	0.475	-1.055
A617	1.330	-1.405	A030	0.4/3	-1.055
A618	0.672	-1.120		<u> </u>	
A619	0.808	-1.100			
A620	1.236	-0.625			
A621	1.161	-0.914			
A622	0.833	-1.481			
A623	0.610	-1.330			
A624	0.811	-1.870			
A625	0.544	-1.607			
A626	0.697	-0.967	Hada. The		
A627	0.452	-0.508	Note: The		m parameters fo gh A616 are the
A628	0.323	-2.327	sam	e as those fo	or items A533
A629	0.860	-0.650		ough A548 i: pectively si:	n Table 7-5, nce they are
A630	0.854	-0.960		rlapping items	
A631	0.792	-0.819			results are of
A632	0.862	-1.297	Cas est		2. Also The parameters for
A633	0.533	-1.082	i te	ms A641 through	n A656 are the
A634	1.568	-1.462			or J101 through , respectively,
A635	1.264	-1.865			, respectively, erlapping items
A636	0.955	-1.446		ween Tests A6 a	
A637	0.644	-1.039 0.468			
A638 A639	0.611 0.079▲	0.468 8.694 △			
A640	0.709	-0.264			

TABLE 7-7 Estimated Item Discrimination Parameter \hat{a}_g And Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test Jl, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, Jl/1075 And J2/0758 Cases, Assuming the Logistic Model.

					
I tem	âg	ĥg	Item	âg	ĥg
J101 J102 J103 J104 J105 J106 J107 J108 J109 J110 J111 J112 J113 J114 J115 J116	1.032 0.659 0.968 1.199 0.910 0.659 0.754 1.346 0.495 0.842 1.343 0.541 0.790 0.753 1.093 0.475	-0.140 -0.911 -0.796 -0.610 -0.325 -0.658 -0.066 -1.391 -0.788 -0.457 -0.948 -0.741 -0.767 0.132 -0.336 -1.055	J141 J142 J143 J144 J145 J146 J147 J148 J149 J150 J151 J152 J153 J154 J155 J156	0.779 0.687 0.973 0.563 0.979 1.118 0.753 0.802 0.682 0.667 0.816 0.628 0.609 0.536 1.254 1.167	-0.725 0.134 -0.250 -0.504 -0.206 -0.242 0.055 0.082 -0.200 -0.096 0.498 0.255 1.004 0.795 0.576 0.877
J117 J118 J119 J120 J121 J122 J123 J124 J125 J126 J127 J128 J129 J130 J131 J132 J133 J134 J135 J136 J137 J138 J139 J140	0.478 0.830 0.880 0.437 0.701 0.731 0.692 0.928 0.768 0.656 0.848 1.200 0.956 0.522 1.237 0.584 1.204 0.433 1.161 0.469 0.902 0.010 \$\infty\$	-0.472 -0.804 -0.764 0.738 -0.618 -0.670 0.041 -1.143 -1.146 -0.494 -1.085 -0.718 0.999 -1.235 -0.337 -0.096 -1.135 1.344 -0.196 0.114 -0.119 145.711 • 0.958 0.085	Note: The iter same three responses over the J2017-8 are	estimated items J101 through A656 pectively, sincluding items	m parameters for ugh J116 are the for items A641 in Table 7-6, nce they are so between Tests results are of Also the rameters for gh J156 are so for items 20 in Table, since they

THE STATE OF THE S

TABLE 7-8 Estimated Item Discrimination Parameter \hat{a}_g And Item Difficulty Parameter \hat{b}_g of Each of the 60 Items of Test J2, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 And J2/0758 Cases, Assuming the Logistic Model.

			_			
Item	â _g	р̂д		Item	âg	рада (
J201 J202 J203 J204 J205 J206 J207 J208 J209 J210 J211 J212 J213 J214 J215 J216 J217 J218 J219 J220	0.902 0.010 ▲ 0.562 0.472 0.779 0.687 0.973 0.563 0.979 1.118 0.753 0.802 0.682 0.667 0.816 0.628 0.609 0.536 1.254 1.167	-0.119 145.711 0.958 0.085 -0.725 0.134 -0.250 -0.504 -0.206 -0.242 0.055 0.082 -0.200 -0.096 0.498 0.255 1.004 0.795 0.576 0.877		J241 J242 J243 J244 J245 J246 J247 J248 J250 J251 J252 J253 J254 J255 J255 J256 J257 J258 J259 J260	1.487 1.001 0.487 0.358 1.016 0.324 0.623 0.496 0.872 1.194 0.640 0.703 0.702 1.341 0.624 0.653 0.504 0.960 0.142	-0.128 0.049 0.171 0.518 0.690 0.927 0.629 -0.593 0.550 0.480 0.041 0.767 0.814 0.781 0.834 1.246 0.557 0.904 0.969 1.863
J221 J222 J223 J224 J225 J226 J227 J228 J229 J230 J231 J232 J233 J234 J235 J236 J237 J238 J239 J239 J239	0.531 0.870 0.578 0.851 0.925 0.831 0.833 0.902 0.863 0.757 1.938 1.242 0.380 0.440 1.268 1.153 0.336 0.977 0.626 0.767	1.097 0.265 -0.418 0.256 -0.149 0.276 0.003 -0.260 -0.042 -0.031 -0.129 -0.213 1.303 0.834 0.279 0.360 -0.163 1.457 0.634 1.033		Note: The item same thro resp over J1	estimated item s J210 throu as those f ugh J156 in	parameters for gh J220 are the or items J137 Table 7-7, ce they are between Tests e results are

suitable scale adjustment, which is to be done later. We also notice that there are more negative values in the estimated difficulty parameters in Tables 7-5 and 7-6 than in those in Tables 7-1 and 7-2. Again this is an expected result, for the mean of the distribution of the individual ability estimates in Case A5-A6-J1-J2 is likely to be higher than that in Case A5-A6, and, therefore, the origin of the scale in the former is shifted to the positive direction.

Comparison of the results in Tables 7-7 and 7-8 with those in Tables 7-3 and 7-4 reveals the same tendency for the estimated discrimination parameters of the items of Tests Jl and J2 as we observed for the items of Tests A5 and A6, and also the reversed tendency for the estimated difficulty parameters. Again they are no surprise, for the origin of the scale used for Case A5-A6-J1-J2 is expected to be shifted to the negative direction compared with that in Case J1-J2, and the unit is expected to be larger in the former case than in the latter.

The estimated item parameters of each item of Test Jl which were obtained upon the Cases Jl/1075: c_g -Zero and Jl/1075: c_g -Free are presented in Tables 7-9 and 7-10, respectively. Since in the latter three-parameter logistic model is assumed, there is an additional column of the estimated guessing parameter c_g in Table 7-10. The corresponding sets of results for Cases Jl/2259: c_g -Zero and Jl/2259: c_g -Free are shown in Tables 7-11 and 7-12, respectively. In these cases, item Jl38 is excluded, since it was discarded in Shiba's recearch and also it provided as with meaningless

TABLE 7-9 Estimated Item Discrimination Parameter \hat{a}_g And Item Difficulty Parameter \hat{b}_g of Each of the 55 Items of Test J1 Which Were Obtained by Logist 5 Based upon the J1/1075 Case, Assuming the Logistic Model.

Item	âg	ĥg	Item	âg	ĥg
J101	0.842	-0.309	J141	0.645	-1.025
J102	0.560	-0.994	J142	0.506	0.106
J103	0.757	-1.110	J143	0.749	-0.430
J104	0.788	-1.052	J144	0.397	-0.693
J105	0.832	-0.463	J145	0.822	-0.504
J106	0.535	-0.873	J146	0.915	-0.325
J107	0.550	-0.307	J147	0.499	-0.013
J108	1.214	-1.729	J148	0.536	0.112
J109	0.356	-1.184	J149	0.538	-0.436
J110	0.691	-0.693	J150	0.532	-0.333
J111	1.338	-1.298	J151	0.493	0.611
J112	0.501	-0.886	J152	0.390	0.298
J11?	0.615	-1.120	J153	0.503	1.092
J114	0.674	-0.107	J154	0.248	1.613
J115	0.895	-0.458	J155	0.921	0.695
J116	0.388	-1.178	J156	0.788	1.047
J117	0.369	-0.723			
J118	0.637	-1.157			
J119	0.676	-1.105			
J120	0.338	0.846			
J121	0.543	-0.911			
J122	0.566	-0.978			
J123	0.531	-0.058 -1.591			
J124 J125	0.717	-1.591			
0125	0.507	-0.751			
J12)	0.652	-1.520			
0128	0.930	-1.040			
J129	0.734	1.188			
J130	0.406	-1.702			
J131	0.957	-0.549			
J132	0.448	-0.236			
J133	0.945	-1.567			
J134	0.330	1.651			
J135	0.898	-0.366			
J136	0.362	0.037			
J137	0.695	-0.173			
J138					
J139	0.456	0.945			
J140	0.420	-0.012			

TABLE 7-10 Estimated Item Discrimination Parameter \hat{a}_g , Item Difficulty Parameter \hat{b}_g And Guessing Parameter c_g of Each of the 55 Items of Test J1 Which Were Obtained by Logist 5 Based upon the J1/1075 Case, Assuming the Three-Parameter Logistic Model.

Item	âg	ĥg	ĉ _g	Item	âg	ĥg	ĉ _g
J101	1.104	0.006	0.146	J141	0.667	-0.762	0.143
J102	0.588	-0.706	0.143	J142	1.024	0.687	0.143
J103	0.786	-0.872	0.143	J143	1.102	0.018	0.201
J104	0.854	-0.795	0.143	J144	0.451	-0.238	0.143
J105	1.034	-0.167	0.137	J145	0.903	-0.287	0.103
J106	0.599	-0.512	0.143	J146	1.053	-0.130	0.087
J107	0.678	0.054	0.143	J147	1.727	0.779	0.338
J108	1.012	-1.855	0.143	J148	0.895	0.613	0.207
J109	0.382	-0.726	0.143	J149	0.639	-0.063	0.143
J110	0.781	-0.382	0.143	J150	0.629	0.041	0.143
J111	1.286	-1.201	0.143	J151	0.889	0.980	0.181
J112	0.538	-0.541	0.143	J152	1.391	1.086	0.331
J113	0.634	-0.857	0.143	J153	1.250	1.212	0.167
J114	1.285	0.411	0.234	J154	0.764	1.895	0.249
J115	1.185	-0.100	0.173	J155	1.768	0.771	0.089
J116	0.421	-0.753	0.143	J156	1.592	1.030	0.086
J117	0.411	-0.245	0.143	5233		2.000	
J118	0.640	-0.916	0.143				
J119	0.707	-0.851	0.143				
J120	1.205	1.310	0.278				
J121	0.584	-0.580	0.143				
J122	0.601	-0.665	0.143				
J123	0.697	0.311	0.143				
J124	0.679	-1.479	0.143				
J125	0.584	-1.415	0.143				
J126	0.568	-0.375	0.143				
J127	0.635	-1.364	0.143				
J128	0.964	-0.831	0.143				
J129	0.900	1.110	0.018				
J130	0.403	-1.402	0.143				
J131	1.327	-0.167	0.191				
J132	0.555	0.193	0.143				
J133	0.909	-1.471	0.143				
J134	0.702	1.715	0.162				
J135	0.922	-0.266	0.041				
J136	0.453	0.515	0.143 0.131				
J137 J138	0.897	0.130	0.131				
J139	1.335	1.197	0.213				
J140	0.660	0.623	0.218				

hand massesse.

SATURDAL DESIGNATION DESIGNATION - PROPERTY

12.5

TABLE 7-11 Estimated Item Discrimination Parameter \hat{a}_g And Item Difficulty Parameter \hat{b}_g of Each of the 55 Items of Test J1 Which Were Obtained by Logist 5 Based upon the J1/2259 Case, Assuming the Logistic Model.

		~			
Item	âg	ĥg	Item	âg	ĥg
J101	0.771	-0.509	J141	0.588	-0.945
J102	0.554	-1.192	J142	0.467	-0.157
J103	0.627	-1.428	J143	0.622	-0.379
J104	0.775	-1.034	J144	0.380	-0.685
J105	0.855	-0.377	J145	0.656	-0.752
J106	0.517	-0.972	J146	0.936	0.243
J107	0.594	-0.083	J147	0.366	0.068
J108	0.987	-1.986	J148	0.525	-0.355
J109	0.389	-1.109	J149	0.505	-0.393
J110	0.596	-0.592	J150	0.542	-0.324
J111	1.165	-1.422	J151	0.474	0.558
J112	0.442	-1.283	J152	0.403	0.151
J113	0.532	-1.287	J153	0.436	1.525
J114	0.492	0.175	J154	0.257	1.822
J115	0.752	-0.502	J155	0.799	0.916
J116	0.305	-1.876	J156	0.744	1.077
J117	0.400	-0.861			
J118	0.665	-1.693			
J110	0.710	-1.189			
J120 J121	0.296	0.715 -1.096			
J121	0.476	-1.245			
J123	0.465	-0.144			
J124	0.626	-1.465			
J125	0.493	-1.807			
J126	0.378	-0.664			
J127	0.579	-1.462			
J123	0.763	-1.285			
J129	0.763	1.130			
J130	0.392	-1.883			
J131	0.869	-0.753			
J132	0.335	-0.108			
J133	0.968	-1.526			
J134	0.301	1.275			
J135	0.925	-0.502			
J136	0.366	-0.015			
J137	0.611	0.025			
J138	0.401	1 170			
J139	0.401	1.179			
J140	0.419	-0.075			

TABLE 7-12

Estimated Item Discrimination Parameter \hat{a}_g , Item Difficulty Parameter \hat{b}_g And Guessing Parameter c_g of Each of the 55 Items of Test J1 Which Here Obtained by Logist 5 Based upon the J1/2259 Case, Assuming the Three-Parameter Logistic Model.

		 					
Item	âg	б̂д	ĉg ──	Item	âg	ĥ _g	ĉ _g
J101	0.957	-0.195	0.151	J141	0.628	-0.646	0.146
J102	0.576	-0.924	0.146	J142	0.854	0.557	0.267
J103	0.644	-1.198	0.146	J143	0.915	0.114	0.209
J104	0.849	-0.781	0.146	J144	0.426	-0.226	0.146
J105	1.034	-0.154	0.109	J145	0.727	-0.455	0.146
J106	0.570	-0.627	0.146	J146	1.154	-0.041	0.101
J107	0.733	0.170	0.109	J147	1.571	1.025	0.373
J108	0.857	-2.097	0.146	J148	0.638	0.022	0.146
J109	0.424	-0.682	0.146	J149	0.600	-0.015	0.146
J110	0.712	-0.240	0.146	J150	0.660	0.043	0.146
J111	1.123	-1.342	0.146	J151	0.817	0.944	0.182
J112	0.461	-0.946	0.146	J152	1.026	0.949	0.308
J113	0.556	-0.998	0.146	J153	1.323	1.375	0.156
J114	1.004	0.743	0.245	J154	0.677	1.945	0.212
J115	0.955	-0.140	0.172	J155	1.505	0.920	0.085
J116	0.324	-1.385	0.146	J156	1.589	1.043	0.095
J117	0.444	-0.426	0.146	0130	1.303	1.0.0	0,030
J118	0.635	-1.581	0.146		<u> </u>		
J119	0.749	-0.948	0.146				
J120	0.571	1.361	0.229				
J121	0.535	-0.777	0.146				
J122	0.497	-0.923	0.146				
J123	0.582	0.257	0.146				
J124	0.625	-1.261	0.146				
J125	0.491	-1.588	0.146				
J126	0.433	-0.190	0.146				
J127	0.580	-1.252	0.146				
J128	0.772	-1.103	0.146				
J129	0.884	1.063	0.013				
J130	0.388	-1.597	0.146				
J131	1.063	-0.418	0.178				
J132	0.413	0.415	0.146				
J133	0.968	-1.401	0.146				
J134	0.460	1.620	0.146				
J135	1.011	-0.342	0.085				
J136	0.460	0.459	0.146				
J137	0.769	0.269	0.108				
J138							
J139	1.005	1.355	0.193				
J140	0.531	0.358	0.146				
		······································					

item parameter estimates in Cases J1-J2 and A5-A6-J1-J2, as was observed earlier in this section.

Observation of Tables 7-9 and 7-11 reveals that the estimated item discrimination parameters obtained by Logist 5 in Cases J1/1075: c_g -Zero and J1/2259: c_g -Zero tend to be greater than their counterparts obtained by the Tetrachoric Method, which are shown in Tables 5-11 and 5-12, respectively, while the estimated item difficulty parameters by Logist 5 in these two cases tend to be larger in absolute value. This fact indicates that the standard deviation of the estimated individual parameters may be larger than that of θ itself for the J1/1075 and J1/2259 Cases.

Comparison of Table 7-10 with Table 7-9, and of Table 7-12 with Table 7-11, reveals that the estimated discrimination parameters when three-parameter logistic model is assumed are, in general, larger than those when (two-parameter) logistic model is assumed, and the same is true with the estimated difficulty parameters. This is especially true when the estimated guessing parameter assumes a large value in Cases J1/1075: cg-Free and J1/2259: cg-Free, as we can see in items J114, J120, J139, J140, J142, J143, J147, J148, J152 and J154 in Case J1/1075, and in items J114, J120, J142, J143, J147, J152 and J154 in Case J1/2259. It is also noted that, except for these items, all the other items have estimated guessing parameters which are less than the chance level, i.e., 0.2.

Enhancement of both the estimated discrimination and the estimated difficulty parameters when three-parameter logistic model is

assumed appeared to have a good reason. This topic has been more systematically investigated, and discussed in a separate paper (Samejima, ONR/RR-84-3). As a conclusion, the meaning of discrimination and difficulty parameters must seriously be reconsidered in the three-parameter logistic model.

Figure 7-1 presents five scatter diagrams, in which the estimated item discrimination parameters of the items of Test A5, A6, J1 or J2 obtained by Logist 5 in Case A5-A6 or in Case J1-J2 are plotted against those obtained by the Tetrachoric Method. In the third graph, the diagram consists of only sixteen items which overlap Tests A6 and J1, while in the other four it consists of all the items in each of the four tests except for those whose estimates are extremely deviated. The corresponding five graphs for the estimated difficulty parameters are shown in Figure 7-2. We can see in these two figures that there is a substantial consistency in the estimated item parameters obtained by Logist 5 based upon two examinee groups, i.e., Case A5-A6 or Case J1-J2, and those obtained by the Tetrachoric Method.

Figures 7-3 and 7-4 present similar graphs as those of Figures 7-1 and 7-2 excluding the third graph of sixteen items, using the results of Case A5-A6-J1-J2 instead of those of Case A5-A6 or Case J1-J2. We can see that, again, there exists a substantial consistency in each pair of estimated item parameters.

Figures 7-5 shows eight scatter diagrams of the estimated item discrimination parameters of Test Jl. They consist of four pairs, in

the state of the second

Z

į

•

4<u>x</u>

وسية

FIGURE 7-1

Ones, i.e., before Any Scale Adjustment. The Best Fitted Linear Relationship is Drawn by a Thin, Solid Line And the One Based upon Both Parameters Are Shown by a Thick, Solid Line. The Graph on the Left Hand Side is for the 44 Items of Test A5 Excluding Item A531 Based upon the A5/0599 Case on the Abscissa and upon the Case A5-A6 on the Ordinate, While the Graph on the Right Hand Side is for the 56 Items of Test A6 Based upon the A6/0412 Case on the Abscissa and upon the Case A5-A6 on the Ordinate. Estimated Item Discrimination Parameters Obt<mark>ained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method. In Using</mark> Logist 5, Guessing Parameter c_o Is Set Equal to Zero, i.e., Logistic Model Is Assumed. Both Sets of Estimates Are the Original

FIGURE 7-1 (Continued)

For the 16 Items Overlapping in Tests A6 And J1 Based upon the J1/0614 Case on the Abscissa And upon the Case A5-A6 on the Ordinate.

İ

X X

For the 55 Items of Test J1 Based upon the J1/0614 Case on the Abscissa And upon the Case J1-J2 on the Ordinate.

For the 59 Items of Test J2 Based upon the J2/0758 Case on the Abscissa And upon the Case J1-J2 on the Ordinate.

FIGURE 7-2

Estimated Item Difficulty Parameters Obtained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method. In Using Logist 5, Guessing Parameter $c_{\rm g}$ is Set Equal to Zero, 1.e., Logistic Model Is Assumed. Both Sets of Estimates Are the Original Ones, i.e., before Any Scale Adjustment. The Best Fitted Linear Relationship Is Drawn by a Solid, Thin Line And the One Based upon Both Parameters Are Shown by a Thick, Solid Line. For the 43 Items of Test A5 Excluding Items A523 and A531 Based upon the A5/0599 Case on the Abscissa And upon the Case A5-A6 on the Ordinate. È

. .

Q

X

T

...

Í

1

FIGURE 7-2 (Continued,

For the 55 Items of Test A6 Excluding Item A639 Based upon the A6/0412 Case on the Abscissa And upon the Case A5-A6 on the Ordinate.

For the 16 Items Overlapping in Tests A6 and Jl Based upon the Jl/0614 Case on the Abscissa And upon the Case A5-A6 on the Ordinate.

ì

C

6

FIGURE 7-2 (Continued)

For the 55 Items of lest J1 Based upon the J1/0614 Case on the Abscissa And upon the Case J1-J2 on the Ordinate.

For the 59 Items of Test J2 Based upon the J2/0758 Case on the Abscissa And upon the Case J1-J2 on the Ordinate.

Ľ.

J

j.

П

Ones, i.e., before Any Scale Adjustment. The Best Fitted Linear Relationship is Drawn by a Thin, Solid Line And the One Based upon Both Parameters Are Shown by a Thick, Solid Line. The Graph on the Left Hand Side is for the 44 Items of Test A5 Excluding Item A531 Based upon the A5/0599 Case on the Abscissa And upon the Case A5-A6-Ji-J2 on the Ordinate, While the Graph on the Right Hand Side is for the 56 Items of Test A6 Based upon the A6/0412 Case on the Abscissa and upon the Case A5-A6-Ji-J2 on the Ordinate. Estimated Item Discrimination Parameters Obtained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method. In Using Logist 5, Guessing Parameter cg is Set Equal to Zero, i.e., Logistic Model is Assumed. Both Sets of Estimates Are the Original

For the 55 items of Test Ji Based upon the Ji/O614 Case on the Abscissa And upon the Case A5-A6-Ji-J2 on the Ordinate.

For the 59 Items of Test J2 Based upon the J2/0756 Case on the Abscissa And upon the Case A5-A1-J2 on the Ordinate.

Ĺ

ľ

. S. S.

4-

Estimated item Difficulty Parameters Obtained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method. In Using Logist 5, Guessing Parameter cg is Set Equal to Zero, i.e., Logistic Model is Assumed. Both Sets of Estimates Are the Original Ones, 1.e., before Any Scale Adjustment. For the 44 Items of Test AS Excluding Item A531 Based upon the A5/0599 Case on the Abscissa And upon the Case A5-A6-JI-J2 on the Ordinate.

For the 55 Items of Test A6 Excluding Item A639 Based upon the A6/0412 Case on the Abscissa And upon the Case A5-A6-J1-J2 on the Ordinate.

Ü

() **4**

[.

55.8

FIGURE 7-4 (Continued)

For the 55 Items of Test J1 Based upon the J1/0614 Case on the Abscissa And upon the Case A5-A6-J1-J2 on the Ordinate.

FIGURE 7-4 (Continued)

For the 59 Items of Test J2 Based upon the J2/0758 Case on the Abscissa And upon the Case A5-A6-J1-J2 on the Ordinate.

teers This is an analysis and the common transfers to the common terror of the common terror

O

. .

Tetrachoric Method. In Using Logist 5, Logistic Model is Assumed in the Graph on the Left Hand Side And Three-Parameter Logistic Model is Assumed in the Graph on the Right Hand Side. Both Sets of Estimates in Each Graph are the Original One, i.e., before Any Scale Adjustment. The Best Fitted Linear Relationship When the Logistic Model is Assumed is Drawn by a Thin, Solid Line And the One Based upon Both Parameters Are Shown by a Thick, Solid Line. JI/1075 Case. Estimated Item Discrimination Parameters of the 55 Items of Test Ji Obtained by Logist 5 Plotted against Those Obtained by the

FIGURE 7-5 (Continued) J1/0614 Case on the Abscissa And J1/1075 Case on the Ordinate.

Ċ

SS SS

2.7.

7

25.55

4.4.

公

×.

75

7

3333

Ú

FIGURE 7-5 (Continued): 31/2259 Case.

ASSESSED MACCACAM BANDADAN KANDADA

J1/0614 Case on the Abscissa And J1/2259 Case on the Ordinate.

each of which the Logist 5 results of " c_{σ} -Zero" and " c_{σ} -Free" are compared. The first two pairs concern with Case J1/1075 and the last two with Case J1/2259. In the first pair, these results are plotted against those of J1/1075 Case of the Tetrachoric Method, and in the second they are plotted against the results of J1/0614 Case of the Tetrachoric Method. In the third pair, the results of Case J1/2259: c_g -Zero and c_g -Free are plotted against those of J1/2259 Case of the Tetrachoric Method, and and in the fourth pair, they are plotted against the results of J1/0614 Case of the Tetrachoric Method. We can see a substantial consistency between the two sets of estimated item discrimination parameters in the first graph of each of the four pairs, i.e., when (two-parameter) logistic model is assumed in using Logist 5, whereas there exists little consistency in the second graph of each pair, i.e., when three-parameter logistic model is assumed. We notice that the greatest consistency is observed in the first graph of the first pair of scatter diagrams and in the first pair of the third pair. They are Case Jl/1075: c_g -Zero of Logist 5 against J1/1075 Case of the Tetrachoric Method and Case J1/2259: c_{σ} -Zero against Jl/2259 Case, i.e., the only two situations which concern the same examinee group both in using Logist 5 and in using Tetrachoric Method, and no guessing parameter is assumed in using Logist 5. This fact suggests that these two methods provide us with consistent results when the item parameter configurations are such as those of Test Jl, if the sample size is 1,000 or above. The corresponding eight scatter diagrams for the estimated item difficulty parameters are

presented as Figure 7-6. We can see a similar tendency as we have observed for the estimated discrimination parameters, although inconsistency between the two sets of estimates is less conspicuous when three-parameter logistic model is assumed in using Logist 5.

Figure 7-7 presents four graphs which clarify how estimated item parameters differ when three-parameter logistic model is assumed in comparison with those when (two-parameter) logistic model is assumed. The first two graphs concern with the group of 1,075 examinees and the last two with the group of 2,259 examinees, and in each pair the first graph concerns with the adoption of the (twoparameter) logistic model and the second with the three-parameter logistic model. In each graph, the estimated item difficulty parameters of the items of Test Jl are taken on the abscissa, and the estimated discrimination parameters are taken on the ordinate. Both the results of the Tetrachoric Method and those of Logist 5 are plotted in each of the four graphs, to make the total number of points 110. To avoid confusion, there are five different symbols, i.e., , ϕ , ϕ and ϕ and ϕ in these graphs, and an arrow is drawn for each item from the point indicating the result of the Tetrachoric Method to that of Logist 5.

Comparison of the first graph of Figure 7-7 with the second, and of the third graph with the fourth, excloses how radically the two estimated parameters of these items of Test J1 are enhanced because of the existence of the guessing parameter $c_{\rm g}$ when three-parameter logistic model is assumed in using Logist 5. These tendencies are

F

Ç

\$

FIGURE 7-6

Estimated Item Difficulty Parameters of the 55 Items of Test JI Obtained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method. Both Sets of Estimates in Each Graph Are the Original One, i.e., before Any Scale Adjustment. The Best Fitted Linear Relationship When the Logistic Model Is Assumed Is Drawn by a Thin, Solid Line And the One Based Jupon Both Parameters Are Shown by a Thick, Solid Line. Logistic Model Is Assumed in Using Logist 5. JI/1075 Case.

Three-Parameter Logistic Model Is Assumed in Using Logist 5. J1/1075 Case.

r

1.66

Logistic Model Is Assumed in Using Logist 5. J1/0614 Case on the Abscissa And J1/1075 Case on the Ordinate.

STATE OF THE PROPERTY OF THE P

FIGURE 7-6 (Continued)

Three-Parameter Logistic Model is Assumed in Using Logist 5. JI/0614 Case on the Abscissa And JI/1075 Case on

T

त्र

H

-

Ĺ

Logistic Model Is Assumed in Using Logist 5. J1/2259 Case.

Three-Parameter Logistic Model Is Assumed in Using Logist.5. ${\tt J1/2259}$ Case.

500

553

PAG 255

Logistic Model is Assumed in Using Logist 5. J1/0614 Case on the Abscissa And J1/2259 Case on the Ordinate.

PRESENTAL DESCRIPTION DESCRIPTION DESCRIPTION

Three-Parameter Logistic Model Is Assumed in Using Logist 5. JI/0614 Case on the Abscissa And JI/2259 Casa on the Ordinate.

r

2

>

٠. .

The 1995 C.L.

FIGURE 7-7

Estimated Item Discrimination Parameter åg Plotted against Estimated Difficulty Parameter $\hat{\mathbf{b}}_{g}$, Which Were Obtained by the Tetrachoric Method Applied for the J1/1075 Case, And Those Which Were Obtained by Logist 5 Based upon the J1/1075 Case, Assuming (Two-Parameter) Logistic Model, for Each of the 55 Items of Test J1. For Each Item, an Arrow is Drawn from the Tetrachoric Method Result to the Logist 5 Result.

FIGURE 7-7 (Continued)

Estimated Item Discrimination Parameter âg Plotted against Estimated Difficulty Parameter bg , Which Were Obtained by the Tetrachoric Method Applied for the J1/1075 Case, And Those Which Were Obtained by Logist 5 Based upon the J1/1075 Case, Assuming Three-Parameter Logistic Model, for Each of the 55 Items of Test J1. For Each Item, an Arrow Is Drawn from the Tetrachoric Method Result to the Logist 5 Result.

THE PROPERTY SERVENCE - TENTONIA SECTION OF THE PROPERTY

 \times

, 4

,

•

Received Description Technology Description Description Description

i.

N.

FIGURE 7-7 (Continued)

Estimated Item Discrimination Parameter åg Plotted against Estimated Difficulty Parameter $\hat{\mathbf{b}}_{\mathbf{g}}$, Which Were Obtained by the Tetrachoric Method Applied for the J1/2259 Case. And Those Which Were Obtained by Logist 5 Based upon the J1/2259 Case. Assuming (Two-Parameter) Logistic Model, for Each of the 55 Items of Test J1. For Each Item, an Arrow Is Drawn from the Tetrachoric Method Result to the Logist 5 Result.

FIGURE 7-7 (Continued)

Estimated Item Discrimination Parameter âg Plotted against Estimated Difficulty Parameter \hat{b}_g , Which Were Obtained by the Tetrachoric Method Applied for the J1/2259 Case, And Those Which Were Obtained by Logist 5 Based upon the 31/2259 Case, Assuming Three-Parameter Logistic Model, for Each of the 55 Items of Test 31. For Each Item, an Arrow Is Drawn from the Tetrachoric Method Result to the Logist 5 Result. similarly observed in both pairs, where the examinee groups of 1,075 individuals and of 2,259 examinees are involved, respectively.

We assume, tentatively, that the mean and the standard deviation of the distribution of the maximum likelihood estimate θ equals those of & for each examinee group. We recall that, in the preceding section, we obtained the estimated mean and the standard deviation of the distribution of θ for each of the three combined groups, and they are presented at the bottom of Table 6-3. Thus using the estimated mean and standard deviation of θ for each of the three combined examinee groups, and for each of J1/1075 and J1/2259 Cases, which are presented in Table 6-3 in the preceeding section, the scale adjustment was made in the same way as we did for the results of the Tetrachoric Method. The resulting "rescaled" estimated item parameters are shown in Tables 7-13 through 7-24, for each item of Tests A5, A6, Jl and J2, which were originally obtained by Logist 5 in Cases A5-A6, J1-J2, A5-A6-J1-J2, J1/1075: c_g -Zero, J1/1075: c_g -Free, J1/2259: c_g -Zero, and J1/2259: c_g -Free, respectively. Again in these tables, for convenience, extreme values of a_g and b_g in Tables 7-13 through 7-21 and in Table 7-23 are marked with • in the same way as we did in Tables 6-4 through 6-9. Note that these marks indicate extreme deviation with respect to the origin and unit of the single scale, which are set equal to the mean and standard deviation of the ability distribution of the J1/0614 Case, respectively, while those marks in each of Tables 7-1 through 7-9 and in Table 7-11 do with respect to the origin and unit which are set equal to the mean and

b

TABLE 7-13

Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 48 Items of Test A5, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599 and A6/0412 Cases, Assuming the Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of $\hat{\theta}$ Are the Same As Those of θ .

Item	âg	ĥg	_	Item	âg	ĥ _g
A501 A502 A503 A504 A505 A506 A507 A508 A509 A510 A511 A512 A513 A514 A515 A516 A517 A518 A516 A517 A518 A520 A521 A522 A523 A524 A525 A526	0.922 0.643 0.733 0.770 0.971 0.576 0.614 0.948 1.768 0.793 0.597 0.851 1.271 1.111 0.590 0.526 2.186 0.462 0.868 0.451 0.792 0.503 0.103 0.541 1.239 1.088	-2.221 -3.099 -3.224 -1.999 -2.301 -1.984 -0.997 -1.805 -1.904 -0.986 -2.097 -1.877 -2.636 -1.831 -2.206 0.323 -2.243 -2.382 -1.912 -2.965 -1.886 -0.714 4.123 -1.993 -1.943 -0.883		A541 A542 A543 A544 A545 A546 A547 A548	ag 0.650 0.552 0.600 0.993 1.099 0.397 0.354 0.583	\$\hat{\text{b}}\text{g}\$ -0.937 -1.451 -1.145 -0.561 -0.717 0.203 -0.474 -0.219
A527 A528 A529 A530 A531 A532 A533 A534 A535 A536 A537 A538 A539 A540	0.109 0.526 0.661 0.775 0.036	-0.480 -0.205 -0.638 -1.715 35.061 ● -0.084 -1.779 -2.091 -1.333 -1.151 -1.359 -1.003 -1.053 -0.745		item same thro respo over A5 a	s A533 througi	n A548 are the or items A601 Table 7-14, e they are petween Tests

TABLE 7-14

Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test A6, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599 and A6/0412 Cases, Assuming the Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of \hat{b} Are the Same As Those of θ .

STREET PROPERTIES. PROPERTIES - CONTROL MANAGER PROPERTIES.

I tem	âg	ĥg	 Item	âg	ĥg
A601	0.978	-1.779	 A641	0.724	0.056
A602	1.011	-2.091	A642	0.758	-1.267
A603	0.781	-1.333	A643	0.843	-0.872
A604	0.819	-1.151	A644	1.322	-0.489
A605	0.594	-1.359	A645	0.561	-0.315
A606	1.456	-1.003	A646	0.573	-0.792
A607	0.877	-1.053	A647	0.618	0.296
A608	0.523	-0.745	A648	1.007	-1.675
A609	0.650	-0.937	A649	0.508	-0.793
A610	0.552	-1.451	A650	0.629	-0.393
A611	0.600	-1.145	A651	0.711	-0.959
A612	0.993	-0.561	A652	0.314	-1.062
A613	1.099	-0.717	A653	0.627	-0.768
A614	0.397	0.203	A654	0.280	1.884
A615	0.354	-0.474	A655	0.988	-0.470
A616	0.583	-0.219	A656	0.575	-1.370
A617	1.147	-1.532		L	
A618	0.588	-1.193			
A619	0.696	-1.180			
A620	1.051	-0.629			
A621	1.016	-0.960			
A622	0.724	-1.614			
A623	0.529	-1.441			
A624	0.701	-2.068			
A625	0.470	-1.764			
A626	0.602	-1.024			
A627	0.388	-0.492	Note: The item		parameters for
A628	0.279	-2.600	same	as those f	h A616 are the or items A533
A629	0.752	-0.655		ugh A548 in	Table 7-13,
A630	0.736	-1.017		ectively, sin lapping items	ce they are
A631	0.684	-0.853	A5	and A6 and th	petween lests e results are
A632	0.744	-1.407	of C	ase A5-A6.	
A633	0.460	-1.157			
A634	1.363	-1.595			
A635	1.090	-2.065			
A636	0.828	-1.576			
A637	0.556	-1.107			
A638	0.525	0.646			
A639	0.064●	10.800●			
A640	0.618	-0.211			

TABLE 7-15

Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test Jl, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining J1/1075 and J2/0758 Cases, Assuming the Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of $\hat{\theta}$ Are the Same As Those of θ .

						
Item	â _g	βg	_	Item	âg	
J101	0.747	-0.025		J141	0.529	-0.869
J102	0.495	-0.802		J142	0.467	0.396
J103	0.668	-0.933		J143	0.661	-0.170
J104	0.696	-0.868		J144	0.382	-0.544
J105	0.733	-0.201		J145	0.665	-0.105
J106	0.471	-0.666		J146	0.757	-0.160
J107	0.485	-0.025		J147	0.512	0.279
J108	1.064	-1.641		J148	0.545	0.319
J109	0.313	-1.025		J149	0.462	-0.097
J110	0.604	-0.465		J150	0.453	0.057
J111	1.176	-1.148		J151	0.554	0.932
J112	0.445	-0.677		J152	0.426	0.574
J113	0.545	-0.940		J153	0.413	1.680
J114	0.596	0.202		J154	0.364	1.370
J115	0.787	-0.195		J155	0.850	1.046
J116	0.345	-1.005		J156	0.789	1.492
J117	0.326	-0.495				
J118	0.565	-0.982				
J119	0.598	-0.926				
J120	0.299	1.278				
J121	0.477	-0.711				
J122	0.499	-0.784				
J123	0.469	0.258				
J124	0.632	-1.481				
J125	0.522	-1.487				
J126	0.447	-0.528		Note: The	estimated item	parameters for
J127	0.577	-1.397				h J156 are the
J128	0.819	-0.855		same		for items J201
J129	0.650	1.665			ough J220 in pectively, sir	Table 7-16, ace they are
J130	0.357	-1.611 -0.298		ovei	lapping items	between Tests
J131	0.843 0.398	0.057			ind J2 and the 31-J2.	results are of
J132		-1.463		Case	. J1-42.	
J133 J134	0.824 0.295	2.172				
J134 J135	0.790	-0.091				
J135 J136	0.790	0.364				
J136 J137	0.613	0.024				
J137 J138	0.008	189.417●				
J136	0.381	1.611				
J140	0.321	0.325				
0170	0.561	0.363				

TABLE 7-16

Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 60 Items of Test J2, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining J1/1075 and J2/0758 Cases, Assuming the Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of θ Are the Same As Those of θ .

27112 Believe Control Control

Item	âg	$\hat{\mathfrak{b}}_{g}$		Item	âg	ĥg
J201 J202 J203 J204 J205 J206 J207 J208 J210 J211 J212 J213 J214 J215 J216 J217 J218 J219 J220	0.613 0.008 0.381 0.321 0.529 0.467 0.661 0.382 0.665 0.757 0.512 0.545 0.462 0.453 0.554 0.426 0.413 0.364 0.850 0.789	0.024 189.417 ● 1.611 0.325 -0.869 0.396 -0.170 -0.544 -0.105 -0.160 0.279 0.319 -0.097 0.057 0.932 0.574 1.680 1.370 1.046 1.492		J241 J242 J243 J244 J245 J246 J247 J250 J251 J252 J253 J254 J255 J255 J256 J257 J258 J259 J260	1.001 0.677 0.330 0.243 0.687 0.220 0.421 0.335 0.576 0.589 0.806 0.432 0.475 0.474 0.908 0.475 0.474 0.908 0.422 0.441 0.340 0.649 0.097	0.006 0.270 0.452 0.965 1.219 1.569 1.127 -0.679 1.012 0.908 0.258 1.333 1.402 1.353 1.402 1.353 1.431 2.041 1.022 1.535 1.632 2.936
J221 J222 J223 J224 J225 J226 J227 J228 J229 J230 J231 J232 J233 J234 J235 J236 J237 J238 J239 J240	0.359 0.589 0.390 0.575 0.624 0.560 0.563 0.609 0.583 0.512 1.310 0.839 0.256 0.297 0.855 0.780 0.226 0.661 0.424 0.519	1.821 0.590 -0.421 0.576 -0.025 0.606 0.202 -0.188 0.135 0.153 0.007 -0.118 2.127 1.432 0.611 0.730 -0.048 2.353 1.136 1.726	-	fter sam thr res ove J1	ms J210 through e as those in ough J156 in	Table 7-15, nce they are between Tests

TABLE 7-17

Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 48 Items of Test A5, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 and J2/0758 Cases, Assuming the Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of \hat{a} Are the Same As Those of a.

Item	âg	b̂g	_	Item	âg	ĥg
A501 A502 A503 A504 A505 A506 A507 A508 A509	0.743 0.517 0.590 0.622 0.787 0.465 0.496 0.767	-2.579 -3.672 -3.824 -2.302 -2.672 -2.285 -1.051 -2.051 -2.186		A541 A542 A543 A544 A545 A546 A547	0.539 0.456 0.496 0.816 0.903 0.326 0.292 0.482	-0.988 -1.613 -1.241 -0.531 -0.720 0.396 -0.429 -0.120
A510 A511 A512 A513 A514 A515 A516 A517 A518 A519 A520 A521 A523 A524 A525 A528 A528 A528 A529 A531 A532 A533 A533 A533 A533 A533 A533 A533	0.641 0.481 0.686 1.025 0.895 0.475 0.423 1.757 0.372 0.702 0.364 0.639 0.406 0.082 0.435 1.001 0.877 0.089 0.424 0.534 0.623 0.026 0.510 0.828 0.641 0.677 0.488 1.192 0.720	-1.047 -2.426 -2.153 -3.093 -2.096 -2.561 0.577 -2.607 -2.778 -2.193 -3.501 -2.163 -0.710 5.379 -2.297 -2.233 -0.920 -0.428 -0.078 -0.616 -1.954 47.687 0.071 -2.018 -2.398 -1.472 -1.248 -1.503 -1.067 -1.130		item same thro resp over A5	ns A533 through as those fo ough A616 in	e results are

TABLE 7-18

Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test A6. Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 and J2/0758 Cases, Assuming the Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of $\hat{\theta}$ Are the Same As Those of θ .

Item	âg	$\hat{\mathfrak{b}}_{g}$	Item	âg	β̂g
A601	0.800	-2.018	A641	0.754	0.049
1602	0.828	-2.398	A642	0.482	-1.007
603	0.641	-1.472	A643	0.707	-0.850
604	0.677	-1.248	A644	0.876	-0.595
605	0.488	-1.503	A645	0.665	-0.206
1606	1.192	-1.067	A646	0.481	-0.661
\607	0.720	-1.130	A647	0.551	0.149
809/	0.431	-0.757	A648	0.984	-1.664
1609	0.539	-0.988	A649	0.362	-0.839
A610	0.456	-1.613	A650	0.615	-0.385
4611	0.496	-1.241	A651	0.981	-1.057
4612	0.816	-0.531	A652	0.395	-0.775
A613	0.903	-0.720	A653	0.577	-0.810
A614	0.326	0.396	A654	0.550	0.421
A615	0.292	-0.429	A655	0.799	-0.220
4616	0.482	-0.120	A656	0.347	-1.205
4617	0.972	-1.683		<u> </u>	
4618	0.491	-1.293			
4619	0.591	-1.266			
A620	0.903	-0.615			
A621	0.848	-1.011			
A622	0.609	-1.787			
A623	0.446	-1.581			
A624	0.592	-2.319			
A625	0.398	-1.960			
A626	0.509	-1.084			
A627	0.330	-0.456		estimated item ms A601 through	
A628	0.236	-2.945	sam		for items A5
A629	0.629	-0.650		ough A548 ii	
A630	0.624	-1.075			nce they a s between Tes
A631	0.579	-0.881	A5		results are
A632	0.630	-1.535	Case	e A5-A6-J1 <i>-</i> J2	2. Also T
A633	0.390	-1.242	est [.] i ter	imated item ms A641 throug	parameters f ph A656 are t
A634	1.146	-1.762	same	e as those	for J101 throw
A635	0.923	-2.313	J110	5 in Table 7-19	, respectively
A636	0.698	-1.739		e they are ove ween Tests A6 a	
A637	0.470	-1.183	300		
A638	0.446	0.881			

12.140

-0.122

0.058

0.518

A639

A640

U

TABLE 7-19

Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test J1. Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 and J2/0758 Cases, Assuming the Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of $\hat{\theta}$ Are the Same As Those of θ .

Item	âg	ĥg	 Item	âg	ĥ _g
J101	0.754	0.049	 J141	0.569	-0.753
J102	0.482	-1.007	J142	0.502	0.423
J103	0.707	-0.850	J143	0.711	-0.103
J104	0.876	-0.595	J144	0.412	-0.450
J105	0.665	-0.206	J145	0.716	-0.042
J106	0.481	-0.661	J146	0.817	-0.092
J107	0.551	0.149	J147	0.550	0.314
J108	0.984	-1.664	J148	0.586	0.352
J109	0.362	-0.839	J149	0.498	-0.033
J110	0.615	-0.385	J150	0.488	0.108
J111	0.981	-1.057	J151	0.596	0.921
J112	0.395	-0.775	J152	0.459	0.588
J113	0.577	-0.810	J153	0.445	1.614
J114	0.550	0.421	J154	0.392	1.328
J115	0.799	-0.220	J155	0.916	1.028
J116	0.347	-1.205	J156	0.853	1.440
J117	0.349	-0.406	· · · · · · · · · · · · · · · · · · ·	L	
J118	0.606	-0.861			
J119	0.643	-0.807			
J120	0.319	1.250			
J121	0.512	-0.606			
J122	0.534	-0.677 0.296			
J123	0.505 0.678	-1.325			
J124	0.561	-1.329			
J125	0.381	-0.437			
J126 J127	0.480	-1.246	Note: The	estimated ite	m parameters for
J127	0.877	-0.743	ite		ugh J116 are the
J129	0.698	1.607		ne as those rough A656 f	for items A641 n Table 7+18,
J130	0.382	-1.451	res	spectively, si	nce they are
J131	0.903	-0.222			s between Tests
J132	0.426	0.108		and J1 and the se A5-A6-J1-J2.	results are of Also the
J133	0.880	-1.314	est	imated item p	arameters for
J134	0.317	2.079	i te	ems J137 thro same as th	ougn J156 are lose for items
J135	0.848	-0.028	J20)l through J2	20 in Table
J136	0.343	0.396	7-2	20, respectivel e overlapping i	y, since they
J137	0.659	0.077		e overlapping i sts J1 and J2.	rema nerween
J138	0.007 ●	199.696 ●			
J139	0.410	1.551			
J140	0.345	0.356			

TABLE 7-20

Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 60 Items of Test J2. Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 and J2/0758 Cases, Assuming the Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of $\hat{\theta}$ Are the Same As Those of θ .

Item	âg	β̂g	I ten	n âg	βg
J201 J202 J203 J204 J205 J206 J207 J208 J209 J210 J211 J212 J213	0.659 0.007 ● 0.410 0.345 0.569 0.502 0.711 0.412 0.716 0.817 0.550 0.586 0.498	0.077 199.696 ● 1.551 0.356 -0.753 0.423 -0.103 -0.450 -0.042 -0.092 0.314 0.352 -0.033	J241 J242 J243 J244 J245 J247 J248 J250 J251 J252 J253	0.731 0.356 0.262 0.742 0.237 7 0.455 0.362 0.620 0.637 0.872 0.468 0.514	0.065 0.307 0.473 0.949 1.184 1.509 1.100 -0.572 0.993 0.897 0.296 1.290 1.354
J214 J215 J216 J217 J218 J219 J220 J221	0.488 0.596 0.459 0.445 0.392 0.916 0.853 0.388 0.635	0.108 0.921 0.588 1.614 1.328 1.028 1.440 1.741 0.602	J254 J259 J250 J250 J250 J260	5 0.980 6 0.456 7 0.477 8 0.368 9 0.701	1.309 1.381 1.945 1.002 1.477 1.566 2.789
J222 J223 J224 J225 J226 J227 J228 J229 J230 J231 J232 J233 J234 J235 J236 J237 J238 J239 J240	0.422 0.622 0.676 0.607 0.608 0.659 0.631 0.553 1.416 0.908 0.277 0.322 0.926 0.842 0.245 0.714 0.457 0.560	-0.332 0.590 0.036 0.618 0.243 -0.117 0.183 0.198 0.064 -0.052 2.023 1.381 0.622 0.732 0.016 2.234 1.108 1.653	Note:	same as those through J156 in respectively, st overlapping items	ough J220 are the for items J137 in Table 7-19, ince they are the between Tests the results are

TABLE 7-21 Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 55 Items of Test J1, Which Were Obtained by Logist 5 Based upon the J1/1075 Case, Assuming the Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of θ Are the Same As Those of θ .

Item	âg	ĥg	I tem	âg	
J101	0.773	-0.051	J141	0.592	-0.830
J102	0.514	-0.796	J142	0.465	0.402
J103	0.695	-0.923	J143	0.687	-0.182
J104	0.723	-0.860	J144	0.364	-0.468
J105	0.764	-0.218	J145	0.754	-0.262
J106	0.491	-0.664	J146	0.840	-0.067
J107	0.505	-0.048	J147	0.458	0.272
J108	1.114	-1.596	J148	0.492	0.408
J109	0.327	-1.004	J149	0.494	-0.189
J110	0.634	-0.468	J150	0.488	-0.077
J111	1.228	-1.127	J151	0.452	0.952
J112	0.460	-0.679	J152	0.358	0.611
J113	0.564	-0.933	J153	0.462	1.476
J114	0.619	0.170	J154	0.228	2.044
J115	0.822	-0.212	J155	0.845	1.043
J116	0.357	-0.997	J156	0.723	1.427
J117	0.339	-0.501		Ì	
J118	0.585	-0.974			
J119	0.621	-0.917			
J120	0.310	1.208			
J121	0.498	-0.705			
J122	0.519	-0.779			
J123	0.488	0.224			
J124	0.659	-1.446			
J125	0.546	-1.448			
J126	0.465	-0.532			
J127	0.599	-1.369			
J128	0.854	-0.847			
J129	0.674	1.581			
J130	0.373	-1.567			
J131	0.879	-0.312			
J132	0.412	0.030			
J133	0.868	-1.420			
J134	0.303	2.084			
J135	0.824	-0.113			
J136	0.333	0.327			
J137	0.638	0.098			
J138	. 0.410	1 215			
J139	0.418	1.315			
J140	0.386	0.273			

TABLE 7-22

Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 55 Items of Test J1, Which Were Obtained by Logist 5 Based upon the J1/1075 Case. Assuming the Three-Parameter Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of \hat{a} Are the Same As Those of a.

Legact Toocesses, Lacococa Transposses

Item	âg	ĥg	ĉ _g	I tem	âg	ĥg	ĉg
J101	1.013	0.293	0.146	J141	0.612	-0.543	0.143
J102	0.540	-0.483	0.143	J142	0.940	1.035	0.245
J103	0.722	-0.663	0.143	J143	1.012	0.306	0.201
J104	0.784	-0.579	0.143	J144	0.414	0.028	0.143
J105	0.949	0.105	0.137	J145	0.829	-0.026	0.103
J106	0.550	-0.271	0.143	J146	0.966	0.145	0.087
J107	0.623	0.346	0.143	J147	1.586	1.135	0.338
J108	0.930	-1.734	0.143	J148	0.821	0.954	0.207
J109	0.351	-0.504	0.143	J149	0.587	0.218	0.143
J110	0.717	-0.130	0.143	J150	0.577	0.332	0.143
J111	1.181	-1.022	0.143	J151	0.816	1.354	0.181
J112	0.494	-0.302	0.143	J152	1.277	1.470	0.331
J113	0.582	-0.646	0.143	J153	1.148	1.607	0.167
J114	1.180	0.734	0.234	J154	0.702	2.350	0.249
J115	1.088	0.178	0.173	J155	1.623	1.126	0.089
J116	0.387	-0.533	0.143	J156	1.462	1.409	0.086
J117	0.377	0.019	0.143	0.200	11,02	21.03	******
J118	0.588	-0.711	0.143		L		
J119	0.649	-0.640	0.143				
J120	1.107	1.714	0.278				
J121	0.536	-0.345	0.143				
J122	0.552	-0.438	0.143				
J123	0.640	0.625	0.143				
J124	0.624	-1.324	0.143				
J125	0.537	-1.255	0.143				
J126	0.522	-0.122	0.143				
J127	0.583	-1.199	0.143				
J128	0.886	-0.619	0.143				
J129	0.827	1.496	0.018				
J130	0.370	-1.240	0.143				
J131	1.218	0.105	0.191				
J132	0.509	0.497	0.143				
J133	0.835	-1.316	0.143				
J134	0.645	2.154	0.162				
J135	0.847	-0.003	0.041				
J136	0.416	0.848	0.143				
J137	0.824	0.429	0.131				
J138							
J139	1.225	1.590	0.213				
J140	0.606	0.965	0.218				

TABLE 7-23
Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 55 Items of Test J1, Which Were Obtained by Logist 5 Based upon the J1/2259 Case, Assuming the Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of $\hat{\theta}$ Are the Same As Those of θ .

tem	âg	ĥ _g	Item	âg	ĥg
1101	0.764	-0.219	J141	0.583	-0.658
1102	0.549	-0.908	J142	0.463	0.136
1103	0.622	-1.146	J143	0.617	-0.087
1104	0.769	-0.748	J144	0.376	-0.397
1105	0.848	-0.085	J145	0.651	-0.464
106	0.513	-0.686	J146	0.928	0.049
1107	0.589	0.211	J147	0.362	0.363
1108	0.978	-1.708	J148	0.521	-0.063
1109	0.386	-0.824	J149	0.500	-0.102
1110	0.591	-0.302	J150	0.537	-0.032 0.857
1111	1.155	-1.140	J151	0.470	0.657
1112	0.439	-0.999	J152	0.400	1.833
1113	0.528	-1.003 0.471	J153 J154	0.254	2.132
1114	0.488	-0.212	J155	0.792	1.218
1115	0.748	-1.598	J156	0.738	1.381
)116)117	0.303	-0.574	0150	0.750	1.001
)118	0.660	-1.413			
J119	0.704	-0.904			
1120	0.293	1.015			
J121	0.502	-0.811			
J122	0.472	-0.961			
J123	0.461	0.150			
J124	0.621	-1.183			
J125	0.489	-1.527			
J126	0.375	-0.375			
J127	0.574	-1.180			
J128	0.757	-1.002			
J129	0.757	1.434			
J130	0.389	-1.605			
J131	0.862	-0.465			
J132	0.332	0.186			
J133	0.960	-1.245 1.581			
J134 J135	0.298	-0.212			
J136	0.362	0.280			
J137	0.606	0.320			
J138		~			
J139	0.397	1.484			

TABLE 7-24

and between the contract and the contract of the contract and contract

Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 55 Items of Test Jl, Which Were Obtained by Logist 5 Based upon the J1/2259 Case, Assuming the Three-Parameter Logistic Model. After the Scale Adjustment Assuming That the Mean and Standard Deviation of \hat{a} Are the Same As Those of a.

	•						
I tem	âg	ĥg	ĉ _g	Item	âg	ĥg	ĉ _g
J101	0.949	0.098	0.151	J141	0.623	-0.357	0.146
J102	0.571	-0.637	0.146	J142	0.847	0.857	0.267
J103	0.639	-0.913	0.146	J143	0.908	0.410	0.209
J104	0.842	-0.493	0.146	J144	0.422	0.067	0.146
J105	1.026	0.139	0.109	J145	0.721	-0.164	0.146
J106	0.565	-0.337	0.146	J146	1.144	0.253	0.101
J107	0.726	0.466	0.109	J147	1.558	1.328	0.373
J108	0.849	-1.821	0.146	J148	0.632	0.316	0.146
J109	0.421	-0.393	0.146	J149	0.594	0.280	0.146
J110	0.706	0.053	0.146	J150	0.654	0.338	0.146
J111	1.114	-1.059	0.146	J151	0.810	1.247	0.182
J112	0.457	-0.660	0.146	J152	1.018	1.252	0.308
J113	0.551	-0.712	0.146	J153	1.311	1.682	0.156
J114	0.996	1.044	0.245	J154	0.671	2.256	0.212
J115	0.946	0.154	0.172	J155	1.492	1.223	0.085
J116	0.321	-1.102	0.146	J156	1.575	1.346	0.095
J117	0.441	-0.135	0.146				
J118	0.629	-1.300	0.146				-
J119	0.743	-0.662	0.146				
J120	0.566	1.667	0.229				
J121	0.531	-0.490	0.146				
J122	0.492	-0.636	0.146				
J123	0.577	0.554	0.146				
J124	0.620	-0.977	0.146				
J125	0.487	-1.307	0.146				
J126	0.430	0.102	0.146				
J127	0.575	-0.968	0.146				
J128	0.765	-0.818	0.146				
J129	0.877	1.367	0.013				
J130	0.385	-1.316	0.146				
J131	1.054	-0.127	0.178				
J132	0.409	0.713	0.146				
J133	0.960	-1.119	0.146				
J134	0.456	1.928	0.146 0.085				
J135 J136	0.456	-0.051 0.758	0.146				
J136 J137	0.450	0.756	0.146				
J137	0.702	0.500	0.100				
J136	0.997	1.661	0.193				
J140	0.527	0.656	0.146				
VZ TV		0.000	31140				
	J						

standard deviation of each, separate distribution of $\hat{\theta}$, respectively.

Close observation of the first and third graph of Figure 7-7 suggests that this assumption of equality of the mean and standard deviation of the distribution of θ and those of the distribution of in each examinee group may not be appropriate. We can see in these two graphs that those item parameter estimates obtained by Logist 5 assuming (two-parameter) logistic model tend to be higher in discrimination indices and tend to be regressed to center in difficulty indices compared with the corresponding estimates obtained by the Tetrachoric Method. This fact suggests that the distribution of $\hat{\theta}$ obtained by Logist 5 has a larger standard deviation than that of θ for these two examinee groups.

If the assumption that the mean and the standard deviation of the distribution of the maximum likelihood estimate $\hat{\theta}$ equal those of the distribution of θ in each combined examinee group, then the line specified by

(7.1)
$$\hat{\sigma}_{\mathbf{u}} \hat{\mathbf{a}}_{(\mathbf{L})} = \hat{\sigma}_{\mathbf{c}} \hat{\mathbf{a}}_{(\mathbf{T})},$$

where $\hat{\sigma}_{c}$ and $\hat{\sigma}_{u}$ are the estimated standard deviations of the distribution of θ of a specified combined group and of an uncombined group which is a part of the combined group, respectively, and $\hat{a}_{(T)}$ and $\hat{a}_{(L)}$ represent the axes of estimated item discrimination parameters by Tetrachoric Method and by Logist 5, respectively, will

fit the corresponding scatter diagram of the two sets of unadjusted estimated discrimination parameters. The corresponding formula for the scatter diagram of the two sets of estimated difficulty parameters before any scale adjustment is

(7.2)
$$\hat{\sigma}_{c} \hat{b}_{(L)} + \hat{\mu}_{c} = \hat{\sigma}_{u} \hat{b}_{(T)} + \hat{\mu}_{u}$$

Ì

Y

が

7

where $\hat{\sigma}_{c}$ and $\hat{\sigma}_{u}$ are as described earlier, $\hat{\mu}_{c}$ and $\hat{\mu}_{u}$ are the estimated means of the combined group and of the uncombined group, respectively, and $\hat{b}_{(T)}$ and $\hat{b}_{(L)}$ represent the axes of estimated item difficulty parameters by Tetrachoric Method and by Logist 5, respectively.

The linear relationship specified by (7.1) for the estimated discrimination parameters is drawn by a long dashed line in each graph of Figure 7-1, which includes the two combined groups, i.e., Cases A5-A6 and J1-J2. We can see that the line does not fit to the scatter diagram very well in each of the first three graphs of Figure 7-1, while it does a little better in the other two. The corresponding linear relationship specified by (7.2) for the estimated difficulty parameters is also shown by a long dashed line in each graph of Figure 7-2. The fit of these lines to the corresponding scatter diagrams appears to be fairly good this time, but not to the extent to make us feel unnecessary to search for better linear relationships for these scatter diagrams of estimated difficulty parameters.

Corresponding two sets of linear relationships for the scatter

diagrams of the "unadjusted" item discrimination and difficulty parameters were obtained with respect to Case A5-A6-J1-J2 by using formulae (7.1) and (7.2), and they are shown by long dashed lines in Figures 7-3 and 7-4. We can see that, in these cases, too, the linear relationships do not fit the corresponding scatter diagrams very well.

The same procedure was taken for each of the scatter diagrams of the estimated item discrimination parameters, and of the estimated difficulty parameters, which concern with Case J1/1075: c_{σ} -Zero and with Case J1/2259: c_g -Zero. These resulting linear relationships are drawn by long dashed lines in the corresponding graphs of Figures 7-5 and 7-6. In these results, there is a systematic tendency that for the scatter diagrams of estimated item discrimination parameters these long dashed lines are too steep, and for those of estimated item difficulty parameters the lines are too flat. This fact indicates that both standard deviations of the distribution of θ in Case J1/1075: c_g -Zero and in Case J1/2259: c_g -Zero are larger than the standard deviations of the corresponding distributions of θ . Note that this finding is consistent with the observation made earlier for the first and the third graphs of Figure 7-7. For comparison, the same linear relationship obtained for c_g -Zero is also shown by a long dashed line in the corresponding graph for c_g -Free for each of Cases J1/1075 and J1/2259. We can see that these lines are much farther apart from the corresponding scatter diagrams.

Since the linear relationships specified by (7.1) and (7.2) failed in fitting the corresponding scatter diagrams in many cases,

the iterative method of finding the best fitted lines for both the estimated item discrimination and difficulty parameters, which was introduced and applied for the overlapping test items in Section 6, was also adopted for the present results. Table 7-25 presents the slope and intercept of each of the resulting linear relationships. As before, certain items were excluded in the process of obtaining the best fitted linear relationships since one, or both, of the two estimated difficulty parameters exceeds 2.0 in absolute value. There are 5 items of Test A5 excluded from the first scatter diagrams of Figures 7-1 and 7-2, 6 items of Test A6 from the second scatter diagrams of these two figures, 2 items of Test J1 from the third ones, 4 items of Test J1 from the fourth ones, and 2 items of Test J2 from the fifth ones; there are 9 items of Test A5 excluded from the first scatter diagrams of Figures 7-3 and 7-4, 6 items of Test A6 from the second scatter diagrams of these two figures, 4 items of Test Jl from the third ones, and 2 items of Test J2 from the fourth ones; and there is I item of Test Jl excluded from the first scatter diagrams of Figures 7-5 and 7-6, 4 items of Test Jl from the third scatter diagrams of these two figures, 3 items of Test Jl from the fifth ones, and 4 items of Test J1 from the seventh ones. These items are circled in the scatter diagrams of Figures 7-1 through 7-6, unless they are not seen in these figures because of their too extremely deviated estimate values. The linear relationship thus obtained is drawn by a thin, solid line in each graph of Figures 7-1 through 7-4, and in each graph of Figures 7-5 and 7-6 where (two-parameter) logistic model is

TABLE 7-25

Slope And Intercept of Each of the Fitted Linear Relationship between the Two Sets of Estimated Discrimination Parameters, And Also Those of Estimated Difficulty Parameters, of the Common Test Items, Which Were Obtained by the Tetrachoric Method (Examinee Group 1) And by Logist 5 (Examinee Group 2), before Any Scale Adjustment.

Examinee Group 1	Examinee Group 2	a _g		Combined	bg		Combined	
		Slope	Intercept	Slope	Slope	Intercept	Slope	Intercept
A5/0599	A5-A6	1.222	-0.013	1.214	0.829	-0.267	0.823	-0.270
A6/0412	A5-A6	1.034	-0.008	1.048	0.941	0.331	0.954	0.338
J1/0614	A5-A6	1.012*	-0.018*	0.897*	1.257*	0.937*	1.115*	0.841+
J1/0614	J1-J2	1.339	-0.009	1.377	0.707	-0.572	0.726	-0.566
J2/0758	J1-J2	1.083	-0.012	1.121	0.861	0.446	0.892	0.462
A5/0599	A5-A6-J1-J2	1.567	-0.018	1.555	0.648	-0.921	0.643	-0.923
A6/0412	A5-A6-J1-J2	1.387	-0.009	1.427	0.681	-0.470	0.701	-0.458
J1/0614	A5-A6-J1-J2	1.479	-0.006	1.522	0.638	-0.118	0.657	-0.112
J2/0758	A5-A6-J1-J2	1.234	-0.014	1.277	0.757	0.783	0.783	0.796
J1/1075	J1/1075	1.102	-0.006	1.107	0.899	-0.015	0.903	-0.013
J1/0614	J1/1075	1.162	-0.009	1.202	0.804	-0.256	0.832	-0.247
J1/2259	J1/2259	1.068	-0.005	1.069	0.935	-0.007	0.936	-0.007
J1/0614	J1/2259	1.069	-0.00"	1.081	0.915	-0.284	0.925	-0.281

^{*} This is based on only 14 items while all the other results are based on at least 36 items.

assumed in using Logist 5. As before, the two sets of results obtained for the scatter diagram of the estimated item discrimination parameters and for that of the estimated item difficulty parameters were combined in each case, and the result is shown by a thick, solid line in each graph. Again, in the last two figures, for comparison, the same pair of solid lines are drawn in each corresponding graph for the results of the three-parameter logistic model.

VIII. Scale Adjustment II

For the purpose of better visualizing the discrepancies in the mean and standard deviation between the distribution of 9 and that θ for each examinee group, the rescaled item parameters of the items of Tests A5, A6, Jl and J2, which were obtained originally by Logist 5 and shown in Tables 7-13 through 7-24, were plotted against the corresponding rescaled item parameters obtained originally by Tetrachoric Method, which are shown in Tables 6-4 through 6-9. They were paired, arranged and categorized in the same way as we did for the unadjusted parameter estimates in Figures 7-1 through 7-6, and presented as Figures 8-1 through 8-6. We notice that, if the mean and the standard deviation of the distribution of θ are the same as those of the distribution of θ in each examinee group, then the line passing through the origin, (0,0), and converging the abscissa with the angle of 45 degrees will be the best fitting linear relationship in each graph of these figures, except for the situations which concern three-parameter logistic model assumed in using Logist 5.

Estimated Item Discrimination Parameters Obtained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method, Which Are Adjusted to the Single Ability Scale by Scale Adjustment I. In Using Logist 5, Guessing Parameter cg is Set Equal to Zero, i.e., Logistic Model is Assumed. The Best Fitted Linear Relationship is Drawn by a Thin, Solid Line And the One Based upon Both Parameters Are Shown by a Thick, Solid Line. The Graph on the Left Hand Side is for the 44 Items of Test A5 Excluding Item A531 Based upon the A5/0599 Case on the Abscissa and upon the Case A5-A6 on the Ordinate, While the Graph on the Right Hand Side is for the 56 Items of Test A6 Based upon the A6/0412 Case on the Abscissa and upon the Case A5-A6 on the Ordinate.

been Trivings, and one and the second for the statement processes. The second of the s

1

Š

Š.

√.

FIGURE 8-1 (Continued)
For the 16 Items Overlapping in Tests A6 And J1 Based upon the J1/0614 Case on the Abscissa And upon the Case A5-A6 on the Ordinate.

For the 55 Items of Test JI Based upon the JI/0614 Case on the Abscissa And upon the Case JI-J2 on the Ordinate.

For the 59 Items of Test J2 Based upon the J2/0758 Case on the Abscfssa And upon the Case J1-J2 on the Ordinate.

17

など

- T

· .

気以

Ŋ

--

3

\$\

(

3

65.53 65.53

XX

FIGURE 8-2

Estimated litem Difficulty Parameters Obtained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method, Which Are Adjusted to the Single Ability Scale by Scale Adjustment I. In Using Logist 5, Guessing Parameter cg Is Set Equal to Zero, 1.e., Logistic Model Is Assumed. The Best Fitted Linear Relationship is Drawn by a Solid, Thin Line And the One Based upon Both Parameters Are Shown by a Thick, Solid Line. For the 43 Items of Test A5 Excluding Items A523 And A531 Based upon the A5/0599 Case on the Abscissa And upon the Case A5-A6 on the Ordinate.

FIGURE 8-2 (Continued)

for the 55 Items of Test A6 Excluding Item A639 Based upon the A6/0412 Case on the Abscissa And upon the Case A5-A6 on the Ordinate.

E S

<u>.</u>

ä

7

3

H

34 37.75

<u>__</u>

77

33

{

3,

è

**

3

N N

7

234 825

333

Ŋ

176

.

K

For the 16 Items Overlapping in Tests A6 And J1 Based upon the J1/0614 Case on the Abscissa And upon the Case A5-A6 on the Ordinate.

inger errein besein provide beseine beseine beseine beseine beseine beseine beseine besite

FIGURE 8-2 (Continued)

For the 55 Items of Test J1 Based upon the J1/0614 Case on the Abscissa And upon the Case J1-J2 on the Ordinate.

. . .

;

777

متعثنا

1

S

33

7

1

7

*

CONTRACTOR DESCRIPTION OF THE PROPERTY OF

For the 59 Items of Test J2 Based upon the J2/0758 Case on the Abscissa And upon the Case Ji-J2 on the Ordinate.

ESTIMATED BY LOGIST

Estimated Item Discrimination Parameters Obtained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method, Which Are Adjusted to the Single Ability Scale by Scale Adjustment I. In Using Logist 5, Guessing Parameter cg Is Set Equal to Zero, i.e., Logistic Model Is Assumed. The Best Fitted Linear Relationship Is Drawn by a Thin, Solid Line And the One Based upon Both Parameters Are Shown by a Thick, Solid Line. The Graph on the Left Hand Side Is for the 44 Items of Test A5 Excluding Item A531 Based upon the A5/0599 Case on the Abscissa And upon the Case A5-A6-JI-J2 on the Ordinate, While the Graph on the Right Hand Side Is for the 56 Items of Test A6 Based upon the A6/0412 Case on the Abscissa and upon the Case A5-A6-JI-J2 on the Ordinate.

7

: }

* > .

į,

For the 55 Items of Test J1 Based upon the J1/0614 Case on the Abscissa And upon the Case A5-A6-J1-J2 on the Ordinate.

For the 59 Items of Test J2 Based upon the J2/0758 Case on the Abscissa And upon the Case A5-A6-J1-J2 on the Ordinate.

FIGURE 8-4

Estimated Item Difficulty Parameters Obtained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method, Which Are Adjusted to the Single Ability Scale by Scale Adjustment I. In Using Logist 5, Guessing Parameter cg is Set Equal to Zero, i.e., Logistic Model is Assumed. For the 43 Items of Test A5 Excluding Items A523 and A531 Based upon the A5/0599 Case on the Abrahase. Abserssa And upon the Case A5-A6-J1-J2 on the Ordinate.

7

.

E

For the 55 Items of Test A6 Excluding Item A639 Based upon the A6/0412 Case on the Abscissa And upon the Case A5-A6-J1-J2 on the Ordinate.

For the 55 Items of Test J1 Based upon the J1/0614 Case on the Abscissa And upon the Case A5-A6-J1-J2 on the Ordinate.

X

:3

C

5

的

Z

_

For the 59 Items of Test J2 Based upon the J2/0758 Case on the Abscissa And upon the Case A5-A6-J1-J2 on the Ordinate.

Estimated Item Discrimination Parameters of the 55 Items of Test Ji Obtained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method, Which Are Adjusted to the Single Ability Scale by Scale Adjustment I. In Using Logist 5, Logistic Model Is Assumed in the Graph on the Left Hand Side And Three-Parameter Logistic Model Is Assumed in the Graph on the Right Hand Side. The Best Fitted Linear Relationship When the Logistic Model Is Assumed Is Drawn by a Thin, Solid Line And the One Based upon Both Parameters Are Shown by a Thick, Solid Line. JI/1075 Case.

Ϋ́.

,

1

. .

Č

31/0614 Case on the Abscissa And 31/1075 Case on the Ordinate.

FIGURE 8-5 (Continued): J1/2259 Case.

ĵ.

Š

12.6

ζ. (γ.

はい

U

;}

it L

JI/0614 Case on the Abscissa And JI/2259 Case on the Ordinate.

FIGURE 8-6

Estimated Item Difficulty Parameters of the 55 Items of Test Ji Obtained by Logist 5 Plotted against Those Obtained by the Tetrachoric Method, Which Are Adjusted to the Single Ability Scale by Scale Adjustment I. The Best Fitted Linear Relationship When the Logistic Model Is Assumed Is Drawn by a Thin, Solid Line And the One Based upon Both Parameters Are Shown by a Thick, Solid Line. Logistic Model Is Assumed in Using Logist 5. JI/1075 Case.

9773

177

55.5

S SS

53

Ø.

8

12

S

Three-Parameter Logistic Model Is Assumed in Using Logist 5. J1/1075 Case.

Logistic Model is Assumed in Using Logist 5. J1/0614 Case on the Abscissa And J1/1075 Case on the Ordinate.

31

112

S. Y.

7

7....

7

.

~1

THE THE WALLESS THE SET STATES OF THE SECONDS - PARKS

3

孩

記れ

E535

17.77

-t -X

STREET, MARKAGE AND STREET, WASHING BOOKED BOOKED BOOKED

Three-Parameter Logistic Model Is Assumed in Using Logist 5. JI/O614 Case on the Abscissa And JI/1075 Case on

SECURIO CONTRACA DECENDA DE PORTO DE SECURIO
FIGURE 8-6 (Continued)

Logistic Model Is Assumed in Using Logist 5. J1/2259 Case.

٠ ند

₩ X

7

Ŋ

E-2-3

350

3 12

E

E

3

K.-

٠ ٠ ٠

Ċ

Three-Parameter Logistic Model Is Assumed in Using Logist 5. J1/2259 Case.

PASSAGE EXCESS

THE PARTY OF THE PROPERTY OF THE PROPERTY OF

STATES ST

Logistic Model is Assumed in Using Logist 5. J1/0614 Case on the Abscissa And J1/2259 Case on the Ordinate.

3

<u>₩</u>

N.

13 13 14

N. S.

22

S S

7

N.

\$50 (B) \$50

-

The season

d

N.

K

8

To a copy of the state of the stripping to selection that every a second to the selection of the selection o

Three-Parameter Logistic Model Is Assumed in Using Logist 5. J1/O614 Case on the Abscissa And J1/2259 Case on the Ordinate.

This line is drawn by a long dashed line in each graph of Figures 8-1 through 8-6. We can see that most of these long dashed lines do not pass through the respective scatter diagrams as we expect best fitted linear relationships do.

For the sake of comparison, the best fitted linear iterative relationship for each scatter diagram of Figures 8-1 through 8-6 was obtained by the same iterative method that was described in Section 6, and also the results for and for b, were combined. In so doing, all the items whose rescaled estimated difficulty parameters exceed 2.0 were excluded. Table 8-1 presents the slopes and intercepts of the best fitted linear relationships thus obtained. The resulting linear relationships are shown in each graph of Figures 8-1 through 8-6 by thin and thick solid lines, the former of which indicates the direct result obtained for the specific parameter and the latter indicates the combined result. The circled plots in these figures indicate that these items were excluded in the process of using the iterative method for obtaining the respective best fitted linear relationships. As we can see in these graphs and Table 8-1, best fitted linear relationship is substantially different from the the corresponding long dashed line in most cases.

Thus we shall throw away the assumption that the mean and the standard deviation of the distribution of $\hat{\theta}$ are the same as those of the distribution of θ , and go back to Table 7-25, which is presented at the end of the preceding section. Table 8-2 presents the direct estimates of the mean and the standard deviation of the distribution

TABLE 8-1

Slope And Intercept of Each of the Fitted Linear Relationship between the Two Sets of Estimated Discrimination Parameters, And Also Those of Estimated Difficulty Parameters, of the Common Test Items, Which Were Obtained by the Tetrachoric Method (Examinee Group 1) And by Logist 5 (Examinee Group 2), after Scale Adjustment I.

Examinee	Examinee Examinee Group 1 Group 2		âg		Combined \hat{b}_g		Comb1	
Group 1			Intercept	Slope	Slope	Intercept	\$1 ope	Intercept
A5/0599	A5-A6	1.106	-0.016	1.120	0.882	-0.149	0.893	-0.138
A6/0412	A5-A6	1.068	-0.009	1.078	0.919	-0.040	0.928	-0.032
J1/0614	A5-A6	1.146*	-0.028*	0.881*	1.476*	0.380*	1.135*	0.180*
J1/0614	J1-J2	1.032	-0.007	1.061	0.917	0.033	0.943	0.041
J2/0758	J1-J2	1.055	-0.009	1.097	0.876	0.062	0.912	0.039
A5/0599	A5-A6-J1-J2	0.87 8	-0.007	0.926	1.025	-0.044	1.080	-0.005
A6/0412	A5-A6-J1-J2	0.908	-0.007	0.933	1.044	0.055	1.072	0.081
J1/0614	A5-A6-J1-J2	1.080	-0.004	1.112	0.873	0.079	0.899	0.087
J2/0758	A5-A6-J1-J2	1.139	-0.010	1.185	0.811	0.113	0.844	0.093
J1/1075	J1/1075	1.102	-0.006	1.105	0.903	0.016	0.905	0.016
J1/0614	J1/1075	1.067	-0.008	1.104	0.876	0.008	0.906	0.017
J1/2259	J1/2259	1.075	-0.007	1.075	0.931	0.016	0.931	0.016
J1/0614	J1/2259	1.060	-9.009	1.072	0.923	0.008	0.933	0.012

esast deceses. Therease therease busines because the exercise because because because because because by

^{*} This is based on only 15 items while all the other results are based on at least 24 items.

COMPARISON OF THE ESTIMATED ITEM PARAMETERS OF SHIBA'S MORD/PHASE COMPREH (U) TENNESSEE UNIV KNOXVILLE F SAMEJIMA 13 DEC 85 RR-84-2 N00014-81-C-0569/G 5/10 AD-A164 186 3/4 UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART
DARDS-1963-A

TABLE 8-2

Estimated Mean And Standard Deviation of the Distribution of $\hat{\theta}$ for Each Examinee Group Shown As Examinee Group 2, for Which Logist 5 Was Used. Examinee Group 1 Indicates the Group upon Which Tetrachoric Method Was Applied And Whose Result Was Paired with the Result of Examinee Group 2.

Examinee Examinee Group 1 Group 2	Mean	S.D.
A5/0599 A5-A6	-0.6769062928917D 00	0.9498435120987D 00
A6/0412 A5-A6	-0.7567180593797D 00	0.9441285727625D 00
J1/0614 A5-A6	-0.7540791085704D 00*	0.8971611496158D 00*
Weighted Average	-0.7094309692449D 00	0.9475145753959D 00
J1/0614 J1-J2	0.7790302264265D 00	0.1376714237914D 01
J2/0758 J1-J2	0.8197747749259D 00	0.1406229808384D 01
Weighted Average	0.8015406985566D 00	0.1393020945214D 01
A5/0599 A5-A6-J1-J2	0.1883270334869D 00	0.1216020629981D 01
A6/0412 A5-A6-J1-J2	0.1514122790061D 00	0.1285118299006D 01
J1/0614 A5-A6-J1-J2	0.1704262695468D 00	0.1522456056989D 01
J2/0758 A5-A6-J1-J2	0.1938391161783D 00	0.1601146033909D 01
Weighted Average	0.1790858294478D 00	0.1429425853648D 01
J1/1075 J1/1075	0.3017500674956D 00	0.1205953781811D 01
J1/0614 J1/1075	0.2970263355266D 00	0.1202006556190D 01
Weighted Average	0.3000328552819D 00	0.1204518851952D 01
J1/2259 J1/2259	0.3018676309476D 00	0.1077806694358D 01
J1/0614 J1/2259	0.3031684135164D 00	0.1080768213593D 01
Weighted Average	0.3021456262477D 00	0.1078439612148D 01

^{*} This is based on only 14 items while all the other results are based on at least 36 items. This result was excluded from the computation of the weighted average.

Ĭ.

for each of the three examinee groups, A5/0599, A6/0412 and J2/0758 Cases, and also of the two examinee groups, J1/1075 and J1/2259, which was obtained from the combined linear relationship in each case. Since there are more than one way of obtaining these two values in each case, all of these results are presented in Table 8-2. In this table, Examinee Group 1 indicates the group of examinees upon which the item parameters were estimated by Tetrachoric Method, and Examinee Group 2 means the group of individuals upon which they were estimated by Logist 5. Thus the mean and the standard deviation of the distribution of θ of Case J1-J2, for example, can be estimated in two ways, i.e., through the scatter diagrams of the estimated parameters of the items of Test Jl, and through those of the items of Test J2. Since the mean and the standard deviation of the distribution of θ for each of J1/0614 Case and J2/0758 Case were already estimated and are shown in Table 6-3, from the slope and the intercept of the combined linear relationship shown in Table 7-25 and by using the method described in Section 6, we can obtain the estimates of the mean and the standard deviation of the distribution of θ of Case J1-J2 in each case. In the same table, the weighted averages of the estimated mean and standard deviation of the distribution of θ are also given for each examinee group. The weight adopted here is the number of the examinees in Examinee Group 1. We can see in these results that most estimates for the same group of examinees are close to each other. One exception is seen in Case A5-A6-J1-J2, however, for which the four estimates of the standard

deviation of the distribution of $\,^{\,\theta}\,$ are substantially different from one another.

The estimated item discrimination and difficulty parameters of each of the items of Tests A5, A6, J1 and J2, which are shown in Tables 7-1 through 7-12, were transformed through (6.1) and (6.18) by setting μ_1 = 0 and σ_1 = 1 and by using the results shown in Table 8-2 as μ_2 and σ_2 . In so doing, each separate set of the estimated mean and standard deviation were used, not their weighted averages. These results are shown in Tables 8-3 through 8-14. As was expected, the two sets of the parameter estimates of Test J1 obtained upon Case J1/1075: c_g -Zero and upon Case J1/2259: c_g -Zero, which are shown in Tables 8-11 and 8-13, respectively, are very close to each other. Note that they are also close to the corresponding two sets of results obtained by Tetrachoric Method, which are shown as Tables 6-8 and 6-9.

IX. Comparison of the Estimated Item Characteristic Functions

Obtained As the Results of the Logist 5 and Those Obtained by the Tetrachoric Method

Figures 9-1 through 9-4 present five estimated item
characteristic functions for each of the items of Tests A5, A6, J1 and
J2. In each graph, the result based upon the estimated item
parameters obtained by Tetrachoric Method, which are shown in Tables
6-4 through 6-7, is drawn by a solid line, and all the other four
curves of different lengths of dashes concern with those based upon
the estimated item parameters by Logist 5. Note that the first

Si P

}

3.4.5

医分子 公园

CONTRACTOR OF THE PROPERTY OF

TABLE 8-3 Readjusted Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 48 Items of Test A5, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599 and A6/0412 Cases, Assuming the Logistic Model.

Item	âg	ĥg	Item	âg	ĥg
A501	0.842	-2.308	A541	0.594	-0.902
A502	0.587	-3.269●	A542	0.505	-1.465
A503	0.669	-3.406●	A543	0.548	-1.130
A504	0.703	-2.065	A544	0.907	-0.491
A505	0.887	-2.395	A54 5	1.003	-0.661
A506	0.526	-2.049	A546	0.363	0.346
A507	0.561	-0.968	A547	0.324	-0.395
A508	0.866	-1.852	A548	0.533	-0.116
A509	1.614	-1.961		<u> </u>	
A510	0.724	-0.955			
A511	0.545	-2.172			
A512	0.777	-1.931			
A513	1.160	-2.763			
A514	1.014	-1.881			
A515	0.539	-2.291			
A516	0.480	0.478			
A517	1.997	-2.332			
A518	0.422	-2.484			
A519	0.793	-1.969			
A520	0.412	-3.122●			
A521	0.723	-1.941			
A522	0.460	-0.658			
A523	0.094●	4.638●			
A524	0.494	-2.058			
A525	1.132	-2.004			
A526	0.994	-0.843			
A527	0.099●	-0.402			
A528	0.481	-0.100			
A529	0.604	-0.574			
A530	0.708	-1.754			
A531	0.033	38.517●			
A532	0.577	0.032			
A533	0.893	-1.824 -2.166			
A534	0.923				
A535 A536	0.714 0.748	-1.336			
A536 A537	0.748	-1.136 -1.364			
A537 A538	1.330	-1.364			
A539	0.801	-0.974			
A540	0.477	-0.692			
M340	1 0.4//	-0.092			

TABLE 8-4 Readjusted Estimated Item Discrimination Parameter a_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test A6. Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599 and A6/0412 Cases, Assuming the Logistic Model.

Item	âg	ĥg	Item	\hat{a}_g	в̂д
A601	0.899	-1.897	A641	0.666	0.100
A602	0.929	-2.237	A642	0.697	-1.340
A603	0.718	-1.412	A643	0.774	-0.910
A604	0.753	-1.213	A644	1.215	-0.493
A605	0.546	-1.439	A645	0.515	-0.303
A606	1.338	-1.052	A646	0.526	-0.823
A607	0.806	-1.107	A647	0.568	0.362
A608	0.480	-0.771	A648	0.925	-1.784
A609	0.597	-0.980	A649	0.466	-0.823
A610	0.508	-1.540	A650	0.578	-0.389
A611	0.551	-1.207	A651	0.653	-1.005
A612	0.912	-0.572	A652	0.289	-1.116
A613	1.009	-0.741	A653	0.576	-0.797
A614	0.365	0.260	A654	0.257	2.090
A615	0.326	-0.476	A655	0.907	-0.472
A616	0.536	-0.199	A656	0.529	-1.452
A617	1.054	-1.628		J	
A618	0.540	-1.259			
A619	0.639	-1.244			
A620	0.966	-0.646			
A621	0.933	-1.006			
A622	0.665	-1.718			
A623	0.486	-1.529			
A624	0.644	-2.211			
A625	0.432	-1.881			
A626	0.553	-1.075			
A627	0.356	-0. 4 96			
A628	0.256	-2.790			
A629	0.691	-0.673			
A630	0.676	-1.068			
A631	0.629	-0.889 -1.492			
A632 A633	0.683	-1.492			
	1.253	-1.697			
A634 A635	1.233	-2.208			
A636	0.761	-1.676			
A637	0.511	-1.165			
A638	0.482	0.742			
A639	0.059	11.795●			
A640	0.568	-0.190			
70 4 0	0.300	-0.130			

TABLE 8-5 Readjusted Estimated Item Discrimination Parameter \hat{b}_g of Each of the 56 Items of Test J1, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining J1/1075 and J2/0758 Cases, Assuming the Logistic Model.

		,			<u></u>
Item	âg	$\hat{\mathfrak{b}}_{\mathbf{g}}$	Item	âg	ĥg
J101	0.704	-0.070	J141	0.499	-0.965
J102	0.466	-0.894	J142	0.440	0.377
J103	0.630	-1.033	J143	0.623	-0.224
J104	0.656	-0.964	J144	0.360	-0.620
J105	0.691	-0.256	J145°	0.627	-0.155
J106	0.444	-0.750	J146	0.714	-0.213
J107	0.458	-0.070	J147	0.483	0.253
J108	1.003	-1.784	J148	0.514	0.295
J109	0.295	-1.131	J149	0.435	-0.147
J110	0.569	-0.537	J150	0.427	0.017
J111	1.109	-1.261	J151	0.522	0.945
J112	0.419	-0.761	J152	0.402	0.565
J113	0.514	-1.040	J153	0.389	1.738
J114	0.562	0.171	J154	0.343	1.409
J115	0.742	-0.250	J155	0.801	1.066
J116	0.325	-1.109	J156	0.744	1.538
J117	0.307	-0.569		L	
J118	0.533	-1.085			
J119	0.564	-1.026			
J120	0.282	1.312			
J121	0.450	-0.797			
J122	0.471	-0.875			
J123	0.442	0.230			
J124	0.596	-1.614			
J125	0.492	-1.621			
J126	0.422	-0.603			
J127	0.544	-1.525			
J128	0.772	-0.950			
J129	0.613	1.722			
J130	0.336	-1.752			
J131	0.795	-0.359			
J132	0.376	0.017			
J133	0.777	-1.595			
J134	0.278	2.260			
J135	0.745	-0.140			
J136	0.302	0.343			
J137	0.578	-0.018			
J138	0.007	20 0.849 ●			
J139	0.360	1.665			
J140	0.303	0.301			

TABLE 8-6 Readjusted Estimated Item Discrimination Parameter \bar{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 60 Items of Test J2. Which Mere Obtained by Logist 5 Based upon the Examinee Group Combining J1/1075 and J2/0758 Cases, Assuming the Logistic Model.

Item	âg	\hat{b}_{g}	Item	âg	ĥ _g
J201	0.566	0.005	J241	0.924	-0.013
J202	0.007	205.179	J242	0.624	0.272
J203	0.352	1.724	J243	0.305	0.469
J204	0.297	0.332	J244	0.224	1.025
J205	0.488	-0.962	J245	0.634	1.300
J206	0.431	0.409	J246	0.203	1.680
J207	0.610	-0.205	J247 (0.388	1.201
J208	0.353	-0.609	J248	0.309	-0.756
J209	0.614	-0.134	J249	0.531	1.076
J210	0.699	-0.193	J250	0.544	0.963
J211	0.472	0.282	J251	0.744	0.259
J212	0.503	0.325	J252	0.399	1.424
J213	0.426	-0.126	J253	0.439	1.498
J214	0.418	0.042	J254	0.438	1.446
J215	0.511	0.989	J255	0.838	1.530
J216	0.393	0.601	J256	0.389	2.191
J217	0.381	1.799	J257	0.407	1.087
J218	0.336	1.463	J258	0.314	1.643
J219	0.784	1.113	J259	0.599	1.747
J220	0.729	1.595	J260	0.089●	3.160●
J221	0.331	1.952		<u> </u>	
J222	0.543	0.619			
J223	0.360	-0.477			
J224	0.531	0.604			
J225	0.576	-0.047			
J226	0.517	0.636			
J227	0.520	0.199			
J228	0.562	-0.224			
J229	0.538	0.126			
J230	0.473	0.145			
J231	1.209	-0.013			
J232	0.774	-0.148			
J233	0.236	2.283 1.531			
J234	0.274				
J235	0.790	0.641 0.771			
J236	0.720				
J237	0.209	-0.072			
J238	0.610	2.529 1.211			
J239	0.391	1.849			
J240	0.479	1.049			

TABLE 8-7

Readjusted Estimated Item Discrimination Parameter a_g and Item Difficulty Parameter \hat{b}_g of Each of the 48 Items of Test A5, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 and J2/0758 Cases, Assuming the Logistic Model.

Item

A541

A542

A543

A544

A545

A546 A547

A548

ag

0.606

0.513

0.558

0.919

1.016 0.367

0.329

0.543

ĥg

-0.902

-1.457

-1.127

-0.497 -0.664

0.327

-0.406

-0.132

Item	$\hat{\mathbf{a}}_{\mathbf{g}}$	ĥg
A501 A502 A503 A504 A505 A506 A507 A508 A509 A511 A512 A513 A514 A515 A516 A517 A518 A519 A520 A521 A522 A523 A524 A525	âg 0.837 0.582 0.664 0.700 0.886 0.523 0.558 0.863 1.604 0.721 0.542 0.772 1.154 1.008 0.535 0.477 1.978 0.419 0.790 0.409 0.719 0.409 0.719 0.457 0.092 0.490 1.127 0.987	bg -2.316 -3.287 -3.422 -2.070 -2.399 -2.055 -0.967 -1.856 -1.967 -0.955 -2.180 -1.937 -2.772 -1.886 -2.300 0.488 -2.340 -2.492 -1.973 -3.135 -1.946 -0.656 4.754 -2.065 -2.008 -0.842
A526 A527 A528 A529 A530 A531 A532 A533 A534 A535 A536 A537 A538 A539 A540	0.987 0.100 0.477 0.601 0.701 0.030 0.574 0.900 0.932 0.721 0.762 0.549 1.341 0.810 0.485	-0.842 -0.405 -0.094 -0.572 -1.761 42.338 0.038 -1.817 -2.155 -1.332 -1.133 -1.360 -0.972 -1.029 -0.697

TABLE 8-8 Readjusted Estimated Item Discrimination Parameter \hat{b}_g of Each of the 56 Items of Test A6, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 and J2/0758 Cases, Assuming the Logistic Model.

		•		•		
Item	âg	ĥg	_	Item	\hat{a}_g	ĥg
A601	0.852	-1.968	_	A641	0.803	-0.028
A602	0.882	-2.325		A642	0.513	-1.019
A603	0.682	-1.456		A643	0.753	-0.872
A604	0.721	-1.245		A644	0.933	-0.633
A605	0.520	-1.485		A645	0.708	-0.267
A606	1.269	-1.075		A646	0.513	-0.694
A607	0.766	-1.135		A647	0.587	0.066
A608	0.459	-0.784		A648	1.048	-1.636
A609	0.574	-1.001		A649	0.385	-0.861
A610	0.485	-1.588		A650	0.655	-0.436
A611	0.528	-1.239		A651	1.045	-1.066
A612	0.869	-0.573		A652	0.421	-0.801
A613	0.961	-0.749		A653	0.615	-0.834
A614	0.347	0.298		A654	0.586	0.321
A615	0.312	-0.477		A655	0.851	-0.281
A616	0.514	-0.187		A656	0.369	-1.205
A617	1.035	-1.654	-			
A618	0.523	-1.288				
A619	0.629	-1.262				
A620	0.962	-0.651				
A621	0.904	-1.023				
A622	0.648	-1.751				
A623	0.475	-1.558				
A624	0.631	-2.251				
A625	0.423	-1.914				
A626	0.542	-1.091				
A627	0.352	-0.502				
A628	0.252	-2.839				
A629	0.670	-0.683				
A630	0.664	-1.083				
A631	0.617	-0.901				
A632	0.671	-1.515				
A633	0.415	-1.239				
A634	1.220	-1.728				
A635	0.983	-2.245				
A636	0.743	-1.706				
A637	0.501	-1.184				
A638	0.475	0.753 11.324⊕				
A639	0.061	0.100				

A640

0.552

-0.188

ř

U

TABLE 8-9

Readjusted Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test Jl, Which Here Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 and J2/0758 Cases, Assuming the Logistic Model.

 $\hat{b}_{\boldsymbol{\mathsf{g}}}$

-0.934 0.375 -0.210 -0.597 -0.143 -0.198 0.253 0.295 -0.133 0.024 0.928 0.558 1.699 1.380

1.047 1.505

			_		
Item	âg	ĥg		Item	âg
J101	0.678	-0.042		J141	0.512
J102	0.433	-1.217		J142	0.451
J103	0.636	-1.042		J143	0.639
J104	0.787	-0.758		J144	0.370
J105	0.598	-0.325		J145	0.643
J106	0.433	-0.832		J146	0.735
J107	0.495	0.069		J147	0.494
J108	0.884	-1.947		J148	0.527
J109	0.325	-1.029		J149	0.448
J110	0.553	-0.525		J150	0.438
J111	0.882	-1.272		J151	0.536
J112	0.356	-0.958		J152	0.413
J113	0.519	-0.997		J153	0.400
J114	0.495	0.372		J154	0.352
J115	0.718	-0.341		J155	0.824
J116	0.312	-1.436		J156	0.767
J117	0.314	-0.548			ļ <u>. </u>
J118	0.545	-1.053			•
J119	0.578	-0.993			
J120	0.287	1.294			
J121	0.461	-0.771			
J122	0.480	-0.850			
J123	0.454	0.233			
J124	0.609	-1.570			
J125	0.504	-1.574			
J126	0.431	-0.582			
J127	0.557	-1.482			
J128	0.789	-0.922			
J129	0.628	1.691			
J130	0.343	-1.710			
J131	0.812	-0.343			
J132	0.383	0.024			
J133	0.791	-1.558			
J134	0.285	2.216			
J135	0.763	-0.128			
J136	0.308	0.344			
J137	0.593	-0.010			
J138	0.007	222.009			
J139	0.369	1.629			
J140	0.310	0.300			

TABLE 8-10

Readjusted Estimated Item Discrimination Parameter $\hat{\mathbf{a}}_{\mathbf{q}}$ and Item Difficulty Parameter bg of Each of the 60 Items of Test J2, Which Were Obtained by Logist 5 Based upon the Examinee Group Combining A5/0599, A6/0412, J1/1075 and J2/0758 Cases, Assuming the Logistic Model.

		GIE L	ogracie moder.		
Item	âg	ĥg	Item	âg	ĥg
J201 J202 J203 J204 J205 J206 J207 J208 J210 J211 J212 J213 J214 J215 J216 J217 J218 J219 J220 J221 J223 J224 J225 J226 J227 J228 J229 J230 J231 J232 J233 J234 J235 J236 J237 J238 J237 J238 J237 J238 J238 J239 J239 J239 J239 J239 J239 J239 J239	0.563 0.006 0.351 0.295 0.487 0.429 0.608 0.352 0.612 0.698 0.470 0.501 0.426 0.417 0.510 0.392 0.381 0.335 0.783 0.729 0.332 0.543 0.729 0.361 0.532 0.578 0.519 0.520 0.563 0.539 0.473 1.210 0.776 0.237 0.275 0.792 0.720 0.210 0.610 0.391	0.004 233.498 1.728 0.330 -0.967 0.409 -0.207 -0.613 -0.136 -0.194 0.281 0.325 -0.126 0.040 0.991 0.601 1.801 1.466 1.116 1.598 1.950 0.617 -0.475 0.604 -0.045 0.636 0.198 -0.223 0.127 0.145 -0.012 -0.147 2.280 1.529 0.641 0.770 -0.068 2.526 1.209	J241 J242 J243 J244 J245 J246 J247 J249 J250 J251 J252 J253 J254 J255 J256 J257 J258 J259 J260	0.929 0.625 0.304 0.224 0.635 0.202 0.389 0.310 0.530 0.545 0.746 0.400 0.439 0.438 0.838 0.390 0.408 0.315 0.600 0.088 ■	-0.011 0.272 0.467 1.023 1.299 1.679 1.200 -0.756 1.075 0.962 0.259 1.422 1.497 1.444 1.529 2.188 1.086 1.641 1.746 3.176 ◆
1240	0.470	1 047			

1.847

J240

0.479

TABLE 8-11 Readjusted Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test J1, Which Were Obtained by Logist 5 Based upon the J1/1075 Case, Assuming the Logistic Model.

				J	
Item	\hat{a}_g	в̂д	Item	âg	в̂д
J101	0.698	-0.071	J141	0.535	-0.934
J102	0.464	-0.897	J142	0.420	0.430
J103	0.628	-1.037	J143	0.621	-0.217
J104 J105	0.653	-0.967	J144	0.329	-0.534
J105 J106	0.690	-0.257	J145	0.681	-0.306
J107	0.456	-0.750 -0.069	J146 J147	0.758	-0.090
J108	1.006	-1.783	J147 J148	0.413	0.286
J109	0.295	-1.127	J149	0.444	0.436 -0.225
J110	0.573	-0.534	J150	0.441	-0.100
J111	1.109	-1.264	J151	0.409	1.039
J112	0.416	-0.767	J152	0.323	0.661
J113	0.510	-1.049	J153	0.417	1.619
J114	0.559	0.172	J154	0.206	2.247
J115	0.742	-0.251	J155	0.763	1.139
J116	0.322	-1.119	J156	0.653	1.564
J117	0.306	-0.570		L	
J118	0.528	-1.094			
J119	0.561	-1 031			
J120 J121	0.280	1.322			
J122	0.450 0.469	-0.796			
J123	0.469	-0.878 0.232			
J124	0.595	-1.617			
J125	0.493	-1.619			
J126	0.420	-0.604			
J127	0.541	-1.532			
J128	0.771	-0.953			
J129	0.609	1.735			
J130	0.337	-1.750			
J131	0.794	-0.361			
J132	0.372	0.017			
J133	0.784	-1.588			
J134 J135	0.274 0.744	2.292			
J136	0.744	-0.140 0.347			
J137	0.576	0.347			
313/	0.0/0	0.034			

J138 J139

J140

0.378

0.348

1.441

0.287

	,			-			
Item	$\hat{\mathbf{a}}_{\mathbf{g}}$	ĥg	ĉ _g	Item	âg	ĥ _g	ĉ _g
J101	0.915	0.309	0.146	J141	0.553	-0.617	0.143
J102	0.488	-0.550	0.143	J142	0.849	1.130	0.245
J103	0.652	-0.750	0.143	J143	0.914	0.323	0.201
J104	0.708	-0.657	0.143	J144	0.374	0.015	0.143
J105	0.857	0.100	0.137	Ú145	0.749	-0.045	0.103
J106	0.497	-0.316	0.143	, J146	0.873	0.145	0.087
J107	0.563	0.367	0.143	J147	1.432	1.241	0.338
J108	0.839	-1.935	0.143	J148	0.742	1.041	0.207
J109	0.317	-0.574	0.143	J149	0.530	0.226	0.143
J110	0.648	-0.159	0.143	J150	0.521	0.352	0.143
J111	1.066	-1.147	0.143	J151	0.737	1.483	0.181
J112	0.446	-0.350	0.143	J152	1.154	1.612	0.331
J113	0.525	-0.731	0.143	J153	1.037	1.764	0.167
J114	1.066	0.797	0.234	J154	0.634	2.587	0.249
J115	0.982	0.182	0.173	J155	1.466	1.232	0.089
J116	0.349	-0.606	0.143	J156	1.320	1.544	0.086
J117	0.341	0.006	0.143		L		
J118	0.531	-0.803	0.143				
J119	0.586	-0.724	0.143				
J120	1.000	1.882	0.278				
J121	0.484	-0.398	0.143				
J122	0.499	-0.500	0.143				
J123	0.578	0.676	0.143				
J124	0.563	-1.482	0.143				
J125	0.485	-1.405	0.143				
J126	0.471	-0.151	0.143				
J127 J128	0.527 0.800	-1.343 -0.700	0.143 0.143				
J128	0.747	1.641	0.143				
J130	0.334	-1.388	0.143				
J131	1.100	0.101	0.191				
J132	0.460	0.535	0.143				
J133	0.754	-1.472	0.143				
J134	0.582	2.370	0.162				
J135	0.765	-0.019	0.041				
J136	0.375	0.923	0.143				
J137	0.744	0.459	0.131				
J138			~				
J139	1.107	1.745	0.213				
J140	0.547	1.053	0.218				
	l						

TABLE 8-13 $\begin{array}{c} \text{Readjusted Estimated Item Discrimination Parameter } \hat{a}_g \quad \text{and Item Difficulty Parameter} \\ \hat{b}_g \quad \text{of Each of the 56 Items of Test J1, Which Were Obtained by Logist 5 Based upon the J1/2259 Case, Assuming the Logistic Model.} \\ \end{array}$

		······· <u>-</u>			
Item	âg	ĥg	Item	âg	\hat{b}_{g}
J101	0.715	-0.247	J141	0.545	-0.716
J102	0.514	-0.983	J142	0.433	0.132
J103	0.582	-1.238	J143	0.577	-0.106
J104	0.719	-0.812	J144	0.352	-0.437
J105	0.793	-0.104	J145	0.609	-0.508
J106	0.480	-0.746	J146	0.868	0.039
J107 J108	0.551	0.212	J147	0.339	0.375
J109	0.915	-1.839	J148	0.487	-0.080
J110	0.553	-0.893 -0.336	J149	0.468	-0.122
J111	1.080	-1.231	J150 J151	0.503	-0.047
J112	0.410	-1.081	J151 J152	0.440	0.903
J113	0.494	-1.085	J153	0.374	0.465 1.946
J114	0.456	0.490	J154	0.238	2.266
J115	0.698	-0.240	J155	0.741	1.289
J116	0.283	-1.721	J156	0.690	1.463
J117	0.372	-0.626			1.700
J118	0.617	-1.523			
J119	0.659	-0.979			
J120	0.274	1.072			
J121	0.469	-0.879			
J122	0.442	-1.040			
J123	0.431	0.147			
J124 J125	0.581	-1.278			
J125	0.457	-1.645			
J127	0.537	-0.414 -1.274			
J128	0.708	-1.083			
J129	0.708	1.519			
J130	0.364	-1.728			
J131	0.806	-0.509			
J132	0.310	0.186			
J133	0.898	-1.343			
J134	0.279	1.676			
J135	0.858	-0.240			
J136	0.339	0.286			
J137	0.567	0.329			
J138 J139	0 272	1 570			
J139 J140	0.372 0.389	1.573			
0140	0.389	0.221			

TABLE 8-14 Readjusted Estimated Item Discrimination Parameter \hat{a}_g and Item Difficulty Parameter \hat{b}_g of Each of the 56 Items of Test J1, Which Were Obtained by Logist 5 Based upon the J1/2259 Case, Assuming the Three-Parameter Logistic Model.

Item	âg	ĥg	ĉ _g	Item	âg	β̂g	ĉ _g	
J101	0.888	0.092	0.151	J141	0.583	-0.395	0.146	
J102	0.534	-0.694	0.146	J142	0.793	0.903	0.267	
J103	0.598	-0.989	0.146	J143	0.849	0.425	0.209	
J104	0.788	-0.540	0.146	J144	0.395	0.059	0.146	
J105	0.960	0.136	0.109	J145	0.674	-0.189	0.146	
J106	0.529	-0.374	0.146	J146	1.070	0.258	0.101	
J107	0.680	0.485	0.109	J147	1.458	1.407	0.373	
J108	0.795	-1.959	0.146	J148	0.592	0.325	0.146	
J109	0.394	-0.433	0.146	J149	0.556	0.286	0.146	
J110	0.661	0.044	0.146	J150	0.612	0.348	0.146	
J111	1.042	-1.144	0.146	J151	0.758	1.320	0.182	
J112	0.427	-0.718	0.146	J152	0.952	1.325	0.308	
J113	0.516	-0.774	0.146	J153	1.227	1.784	0.156	
J114	0.932	1.103	0.245	J154	0.628	2.398	0.212	
J115	0.886	0.151	0.172	J155	1.396	1.294	0.085	
J116	0.301	-1.191	0.146	J156	1.474	1.426	0.095	
J117	0.412	-0.157	0.146					
J118	0.589	-1.402	0.146					
J119	0.695	-0.720	0.146					
J120	0.530	1.769	0.229					
J121	0.497	-0.536	0.146					
J122	0.461	-0.692	0.146					
J123	0.540	0.579	0.146					
J124	0.580	-1.057	0.146					
J125	0.456	-1.409	0.146					
J126	0.402	0.097	0.146					
J127	0.538	-1.047	0.146					
J128	0.716	-0.887	0.146					
J129	0.821	1.448	0.013					
J130	0.360	-1.419	0.146					
J131	0.987	-0.149	0.178					
J132	0.383	0.749	0.146					
J133	0.898	-1.208	0.146					
J134	0.427	2.048	0.146					
J135	0.938	-0.067	0.085					
J136	0.426	0.797	0.146					
J137	0.713	0.592	0.108					
J138								
J139	0.933	1.762	0.193					
J140	0.493	0.688	0.146					
			_					

.....

7

於

Ä

-

\. .

È

FIGURE 9-1

Estimated Item Characteristic Function in the Normal Ogive Model Obtained by the Tetrachoric Method (Solid Line), Four Estimated Item Characteristic Functions Following the Logistic Model Obtained by Using LOGIST 5, Two of Which Are the Results of the A5-A6 Case Based upon the First Scale Adjustment (Long Dashed Line) and the Second Scale Adjustment (Short Dashed Line), And the Other Two of Which Are the Results of the A5-A6-J1-J2 Case Based upon the First Scale Adjustment (Dashed Line of Medium Length) and the Second Scale Adjustment (Dotted Line) for Each Item of Test A5.

FIGURE 9-1 (Continued)

FIGURE 9-1 (Continued)

FIGURE 9-1 (Continued)

THE STATE OF THE S

1

时以

d

۲. ۲.

FIGURE 9-1 (Continued)

FIGURE 9-1 (Continued)

Ù

1.42

FIGURE 9-1 (Continued)

FIGURE 9-1 (Continued)

É

V

....

FIGURE 9-1 (Continued)

FIGURE 9-1 (Continued)

Ĭ

£ 5.55

7.00 m

, <u>1</u>

K

FIGURE 9-1 (Continued)

PROPERTY OF THE PROPERTY OF THE SERVE OF THE

\{\bar{\chi}{\chi}\}

CONTRACTOR CONTRACTOR STREETS AND A CONTRACTOR CONTRACT

FIGURE 9-2

Estimated ltem Characteristic Function in the Normal Ogive Model Obtained by the Tetrachoric Method (Solid Line), Four Estimated Item Characteristic Functions Following the Logistic Model Obtained by Using LOGIST 5, Two of Which Are the Results of the A5-A6 Case Based upon the First Scale Adjustment (Long Dashed Line) and the Second Scale Adjustment (Short Dashed Line), And the Other Two of Which Are the Results of the A5-A6-J1-J2 Case Based upon the First Scale Adjustment (Dashed Line of Medium Length) and the Second Scale Adjustment (Dashed Line of Test A6.

FIGURE 9-2 (Continued)

H

1

Ŋ

V.

X.

. . . .

33%

Š

χ; Υ

FIGURE 9-2 (Continued)

FIGURE 9-2 (Continued)

C

K

Š

3

Ž.

¥,7,4

Š

FIGURE 9-2 (Continued)

FIGURE 9-2 (Continued)

N

 $\frac{2}{2}$

3

ί.

FIGURE 9-2 (Continued)

FIGURE 9-2 (Continued)

ر. ب

O

L,

ر با من الم

FIGURE 9-2 (Continued)

FIGURE 9-2 (Continued)

H

 \mathbf{Z}^{*}

3.4

FIGURE 9-2 (Continued)

a servere sersessa basissea basissea besiden

FIGURE 9-2 (Continued)

į.

Ç

اره درو درو

U

FIGURE 9-2 (Continued)

FIGURE 9-2 (Continued)

ن

C

7

FIGURE 9-3

Estimated Item Characteristic Function in the Normal Ogive Model Obtained by the Tetrachoric Method (Solid Line), Four Estimated item Characteristic Functions Following the Logistic Model Obtained by Using LOGIST 5, Two of Which Are the Results of the J1-J2 Case Based upon the First Scale Adjustment (Long Dashed Line) and the Second Scale Adjustment (Short Dashed Line), And the Other Two of Which Are the Results of the A5-A6-J1-J2 Case Based upon the First Scale Adjustment (Dashed Line of Medium Length) and the Second Scale Adjustment (Dotted Line), for Each Item of Test J1.

FIGURE 9-3 (Continued)

i.

FIGURE 9-3 (Continued)

FIGURE 9-3 (Continued)

(), (), (),

8

E

-

XX

FIGURE 9-3 (Continued)

FIGURE 9-3 (Continued)

iğ M

: :

E

**

N.

Ĭ

33.7

.

H

₹ }}

¥.;

Ü

FIGURE 9-3 (Continued)

FIGURE 9-3 (Continued)

13.5

ļ

4

長が、数分

FIGURE 9-3 (Continued)

General Beneficial Beneficial Beneficial

FIGURE 9-3 (Continued)

4.7.4

2

ζ.

E

P

1

FIGURE 9-3 (Continued)

अक्टक्स्स १०००० व वर्षात्रस्य १०००० व १००

FIGURE 9-3 (Continued)

B

FIGURE 9-3 (Continued)

FIGURE 9-3 (Continued)

Ş

 E_{ij}

₹ }

83

d

FIGURE 9-4

Estimated Item Characteristic Function in the Normal Ogive Model Obtained by the Tetrachoric Method (Solid Line), Four Estimated Item Characteristic Functions Following the Logistic Model Obtained by Using LOGIST 5, Two of Which Are the Results of the JI-J2 Case Based upon the First Scale Adjustment (Long Dashed Line) and the Second Scale Adjustment (Short Dashed Line), And the Other Two of Which Are the Results of the A5-A6-JI-J2 Case Based upon the First Scale Adjustment (Dashed Line of Medium Length) and the Second Scale Adjustment (Dashed Line of Medium Length) and

FIGURE 9-4 (Continued)

H

なる

1

8

X

Ĉ.

FIGURE 9-4 (Continued)

FIGURE 9-4 (Continued)

F

公区

FIGURE 9-4 (Continued)

FIGURE 9-4 (Continued)

H

8

3

B

Z.

紹

Ž

FIGURE 9-4 (Continued)

JOHNSON STREETS OF BEINGHOUS BOLDS

FIGURE 9-4 (Continued)

\$

TO TO

U

?

٠ (١)

.

FIGURE 9-4 (Continued)

FIGURE 9-4 (Continued)

E

I

ţ.

1

N. N.

Y.

FIGURE 9-4 (Continued)

FIGURE 9-4 (Continued)

Ç

FIGURE 9-4 (Continued)

FIGURE 9-4 (Continued)

DONAL PRODUCTION REPORTS STREET

Y

\$

77

FIGURE 9-4 (Continued)

estimated item characteristic function is in the normal ogive model, and the other four are in the (two-parameter) logistic model. We notice that there are basically two sets of estimated item parameters which were obtained by Logist 5, i.e., one based upon either Case A5-A6 or Case J1-J2 and the other upon Case A5-A6-J1-J2. For brevity, hereafter, we shall call the former approach Method A and the latter Method B. In each of these two cases the estimated item parameters were adjusted twice, i.e., first on the assumption that the mean and the standard deviation of the distribution of θ are the same as those of the distribution of θ , and, secondly, without this assumption. These adjusted estimated item parameters in the first situation are given in Tables 7-13 through 7-20, and those in the second situation are shown in Tables 8-3 through 8-10, respectively, for the items of Tests A5, A6, J1 and J2. In each graph of Figures 9-1 through 9-4, the results based upon Method A and upon the first and the second scale adjustments are drawn by a long dashed line and a short dashed line, respectively, and those based upon Method B and upor, the first and the second adjustments are shown by a dashed line of medium length and dotted line, respectively.

From these results, we can say the following.

- (1) For many items, the two Logist 5 results based upon the second scale adjustment are close to each other, while those based upon the first scale adjustment are substantially different from each other.
- (2) In addition to the above, the two Logist 5 results based upon

the second scale adjustment also tend to be closer to the result of Tetrachoric Method.

These two findings seem to justify the second scale adjustment, and also to support the consistency in the results of the two methods, i.e., Tetrachoric Method and Logist 5.

X

Figures 9-5 and 9-6 present the results of J1/1075 and J1/2259 Cases for each item of Test Jl. Again in each of these graphs a solid curve represents the estimated item characteristic function in the normal ogive model, whose item parameters were originally obtained by Tetrachoric Method and then adjusted, and presented in Tables 6-8 and 6-9. The other four curves are based upon the estimated item parameters obtained by Logist 5, with two of them by assuming (twoparameter) logistic model and the other two by assuming threeparameter logistic model. The results in the (two-parameter) logistic model with the first and the second scale adjustments, whose estimated item parameters are shown in Tables 7-21 or 7-23 and in Table 8-11 or 8-13, are drawn by a long dashed line and a short dashed line. respectively; the results obtained by assuming three-parameter logistic model with the first and second scale adjustments, whose estimated item parameters are presented in Table 7-22 or 7-24, and in Table 8-12 or 8-14, are shown by a dashed line of medium length and a dotted line, respectively.

From these results we can find the following.

(3) For many items the logistic curve obtained with the second scale adjustment, which is shown by a short dashed line, is very

FIGURE 9-5

Istimated litem Characteristic function of the Normal Ogive Model Obtained by the letrachoric Method (Solid Line). Two Estimated Item Characteristic Functions Following the Logistic Model Obtained by Using LOGIST 5, Which Are Based upon the First Scale Adjustment (Long Dashed Line) and the example Adjustment (Short Dashed Line), And Iwo Estimated Item Characteristic Functions Following the Three-Parameter objects Model Obtained by Using LOGIST 5, Which Are Based upon the First Scale Adjustment (Dashed Line of Medium Length) and the Second Scale Adjustment (Datted Line), for Each Item of Test J1. Results of the J1/1075 Case.

1

N. N.

7

N

FIGURE 9-5 (Continued)

FIGURE 9-5 (Continued)

3

3

Ÿ

E

7

Ž

3

FIGURE 9-5 (Continued)

ones copores sections between between bosesses between between

SECOND PROCESSOR OF SECOND PROCESSOR SECOND SECOND SECOND SECOND SECONDS SECONDS SECONDS SECONDS SECONDS SECONDS

FIGURE 9-5 (Continued)

ھد

}; };

. I

j.

<u>...</u>

 $\overline{\Lambda}^{\bullet}$

1

888

٠<u>.</u>

7.

H

Ĺ

FIGURE 9-5 (Continued)

FIGURE 9-5 (Continued)

3

で含

X

**

Ž

FIGURE 9-5 (Continued)

FIGURE 9-5 (Continued)

Ü

\$

FIGURE 9-5 (Continued)

FIGURE 9-5 (Continued)

COUNTY SOURCE SOURCE STATES

E

500

3

S

-: }

ار د د

FIGURE 9-5 (Continued)

FIGURE 9-5 (Continued)

ESSEA PROCESSOO SESSESSO SOMESIES

E

1

FIGURE 9-5 (Continued)

7.7.3.**8**7.7.7.3

FICTION O. 6

Estimated Item Characteristic Function in the 'ormal Ogive Model Obtained by the Tetrachoric Method (Solid Line). Two Estimated Item Characteristic Functions Following the Logistic Model Obtained by Using LOGIST 5, Which Are Based upon the First Scale Adjustment (Long Dashed Line) and the Second Scale Adjustment (Short Dashed Line), And Two Estimated Item Characteristic Functions Following the Three-Parameter Logistic Model Obtained by Using LOGIST 5, Which Are Based upon the First Scale Adjustment (Dashed Line of Medium Length) and the Second Scale Adjustment (Dotted Line), for Each Item of Test Jl. Results of the Jl/2259 Case.

Ŋ

33

A

Ì

77

22.2

FIGURE 9-6 (Continued)

FIGURE 9-6 (Continued)

Ž

... इट

; ; ; ;

<u>-</u>

<u>.</u>

·\;

X

6

3

U

が次

FIGURE 9-6 (Continued)

FIGURE 9-6 (Continued)

CATACA KAPATA KASAKA DARA

Í

7

FIGURE 9-6 (Continued)

FIGURE 9-6 (Continued)

i,

FIGURE 9-6 (Continued)

FIGURE 9-6 (Continued)

CONTRACTOR STANDARD STANDARDS

r

Signal Control

FIGURE 9-6 (Continued)

AD-R164 186 COMPARISON OF THE ESTIMATED ITEM PARAMETERS OF SHIBR'S 4/4 MORD/PHASE COMPREM. (U) TENNESSEE UNIV KNOXVILLE F SAMEJIMA 13 DEC 85 RR-84-2 N00014-81-C-0569 UNCLASSIFIED F/G 5/10 NL

MICROCOPY RESOLUTION TEST CHART

DARDS 1963 A

FIGURE 9-6 (Continued)

H

17.

İ

7

Ļ

**

<u>X</u>

Ď

FIGURE 9-6 (Continued)

FIGURE 9-6 (Continued)

3

X

25.

3.3

FIGURE 9-6 (Continued)

close to the normal ogive curve, which is drawn by a solid line.

(4) For certain items, the three-parameter logistic curves are drastically different from the other three curves, whereas for many other items they are close to the other three for the range of θ , $(-1.0, \infty)$.

X. Discussion and Conclusions

Data based upon Shiba's Word/Phrase Comprehension Tests A5, A6, J1 and J2 were analyzed, and the item discrimination and the item difficulty parameters of each item of these tests were estimated by two methods, i.e., Tetrachoric Method and Logist 5. Scale adjustment, or equating, was made in the effort of putting all the estimated item characteristic functions on a single scale of θ . In this process, it was found out that the mean and the standard deviation of the distribution of the maximum likelihood estimate $\hat{\theta}$ seem to be somewhat different from those of the distribution of θ , and a certain systematic tendency has been observed. Further investigation of this tendency will be done in separate paper.

It has been observed by using simulated data (Samejima, ONR/RR-84-3) that the estimated item characteristic functions obtained by Logist 5 by assuming three-parameter logistic model can be drastically different from the true item characteristic function, when the latter follows normal ogive model. This is caused from the fact that in Logist 5 the maximum likelihood estimate $\hat{\theta}$ is treated as if it were $|\hat{\theta}|$ itself in estimating the item parameters, and especially

on the lower side of θ the maximum likelihood estimate contains a substantial amount of error (Samejima, 1973; Lord, 1980). More detailed observation and discussion of this problem will be made, again, in a separate paper.

REFERENCES

- [1] Birnbaum, A. Some latent trait models and their use in inferring an examinees's ability. In F.M. Lord and M.R. Novick; Statistical theories of mental test scores. Addison-Wesley, 1968, Chapters 17-20.
- [2] Deming, W.E. Statistical adjustment of Data. New York: John Wiley & Sons, Inc., 1943.
- [3] Lord, F. M. An analysis of the verbal scholastic aptitude test using Birnbaum's three-parameter logistic model.

 Educational and Psychological Measurement, 1968, 28, 989-1020.
- Lord, F. M. Applications of item response theory to practical testing problems. Hillsdale, N.J.:

 Lawrence Erlbaum, 1980.
- [5] Rasch, G. <u>Probabilistic models for some intelligence and attainment tests</u>. Copenhagen: Danmarks Paedogogishe Institut, 1960.
- [6] Samejima, F. Estimation of ability using a response pattern of graded scores. <u>Psychometrika Monograph</u>, No. 17, 1969.
- [7] Samejima, F. A general model for free-response data. Psychometrika Monograph, No. 18, 1972.
- [8] Samejima, F. A comment on Birnbaum's three-parameter logistic model in the latent trait theory. Psychometrika, 1973, 38, 2, 221-233.
- [9] Samejima, F. Research on the multiple-choice test item in Japan: Toward the validation of mathematical models. ONR-Tokyo, Scientific Monogram 3, April 1980.
- [10] Samejima, F. Plausibility functions of Iowa vocabulary test items estimated by the Simple Sum Procedure of the Conditional P.D.F. Approach. Office of Naval Research Report, 84-1, 1984.
- Samejima, F. Results of item parameter estimation using Logist 5 on simulated data. Office of Naval Research Report, 84-3, 1984.

[12] Shiba, S. Construction of a scale for acquisition of word meanings. Bulletin of Faculty of Education, University of Tokyo, 17, 1978. (in Japanese)

L

[13] Wingersky, M. S., M. A. Barton, and F. M. Lord. Logist

<u>User's Guide. Princeton: Educational Testing</u>

Service, 1982.

APPENDIX

TABLE A-1

عا

Intermediate Results for DN aining the Best Fitted Linear Relationships between the Two Sets of Estimated Item Discrimination Parameters of the diversaping Test Items And between Those of Estimated Difficulty Parameters, Which Were Obtained by Setrachers hard Nethod. For 14 Overlapping Items of Tests A5 And A6, A5/0599 and A6/0412 Cases.

1171E: SHIBA'S DATA A5-0599 VS A0-1141, (1851 1)

ITEM DISCRIMINATION PARAMETERS

STANDARD	0.21297298D 00 0.16536955D 00
VARIANCE	0.453574900-01 0.27347087D-01
MEAN OF	0.50950771D 00
SQUARES	0.35412264D 00
SUM OF	0.71331080D 01
SQUARES	0.49577170D 01
MEAN OF	0.68128571D 00
PARAMETERS	0.57164286D 00
SUM OF	0.95380000D 01
PARAMETERS	0.80030000D 01
TEST	- 2

PRODUCT MOMENT CORRELATION MATRIX

0.10000000000000 01 0.84092301237450 00 0.84092301237450 00 0.1000000000000000 01

COVARIANCE MATRIX

1 0.45357489795920-01 0.29616673469390-01 2 0.29616673469390-01 0.27347086734690-01

CROSS PRODUCT MATRIX

0.50950771428570 00 0.41906878571430 00 0.41906878571430 00 0.35412264285710 00

THE FOLLOWING 2 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER FOR ONE OR BOTH TESTS IS OUTSIDE OF THE INTERVAL FROM -2.00000 (BGMIN) TO 2.00000 (BGMAX) : NOTE :

ITEMS 2 14

THUS THE RESULTING NUMBER OF ITEMS IS 14

TABLE A-1 (Continued): A5/0599 And A6/0412 Cases.

ITERATION o

WEIGHT ASSIGNED TO TEST 2 PARAMETERS = 1.199495253067

WEIGHTED CROSS-PRODUCT MATRIX

0.5095077142857D 00 0.5026710191729D 00 0.5026710191729D 00 0.5095077143710D 00

RESULTANT ELGENVALUES AND ELGENVECTORS (COMPLEX TYPE)

ECTOR	(IMAGINARY PART)	0.00000000000000 0.0000000000000000000	0.0000000000000000000000000000000000000
EIGENVECTOR	(REAL PART)	-0.7071067812165D 00 0.00000000000000 00 0.7071067811565D 00 0.000000000000000 00	-0.7071067811565D 00 0.00000000000000 00 -0.7071067812165D 00 0.00000000000000 00
ALOE	(IMAGINARY PART)	5951555150-02 0.000000000000000 00	0.0000000000000000000000000000000000000
LIGHANIO	(REAL PART)	0.68366951555150-02	0.10121787335010 01 0.000000000000000000000000000000
		-	2

IMSE SUBROUTINE LEGRE ERROF PARAMETER (LER) = (

SUM OF EIGENVALUES = 1.019015428657

SUM OF DIAGONALS OF CROSS-PREDUCT MATRIX = 1.019015428657

0.00000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS =

0.10000000000850 01 RATIO OF SECOND ELEMENT TO FIRST ELEMENT OF ELGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT =

0.83368399960560 00 ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 TO THAT OF POPULATION TAKING TEST 1 =

(THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE ELGENVECTOR BY THE ASSIGNED WEIGHT)

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER DIAGRAM OF TEST PARAMETERS = 0.3665857982987D-02

TABLE A-1 (Continued): A5/0599 And A6/0412 Cases.

THE RESERVE AND ASSOCIATION OF THE PROPERTY OF

WEIGHT, RATIO OF S.D. OF ABILITY AND INTERCEPT FOR EACH ITERATION

INTERCEPT	0.005053723411 0.003646958619 0.003666115025 0.003665854488 0.003665858031
S.D. RATIO (SLOPE)	0.831646872746 0.83371740337 0.835683622317 0.833684004736 0.833683999535
WEIGHT	1,0000000000000 1,202433427902 1,199455341237 1,199495795805 1,199495245584 1,199495253067
ITERATION	የህድ መንግ

TABLE A-1 (Continued): A5/0599 And A6/0412 Cases.

ITEM DIFFICULTY PARAMETERS

STANDARD	0.53650755D 00
DEVIATION	0.59311380D 00
VARIANCE	0.28784035D 00 0.35178398D 00
MEAN OF	0.664748640 00
SQUARES	0.35713386D 00
SUM OF	0.93064810D 01
SQUARES	0.49998740D 01
MEAN OF	-0.61392857D 00
PARAMETERS	-0.73142857D-01
SUM OF	-0.85950000D 01
PARAMETERS	-0.10240000D 01
TEST	- 2

PRODUCT MOMENT CORRELATION MATRIX

0.100000000000000 01 0.7401978051847D 00 0.7401978051847D 00 0.10000000000000 01

- 0

COVARIANCE MATRIX

1 0.287840352040. 00 0.2355383673469D 00 2 0.2355383673469D 00 0.351783979591BD 00

CROSS PRODUCT MATRIX

1 0.6647486428571D 00 0.2804428571429D 00 2 0.2804428571429D 00 0.3571338571429D 00

FOLLOWING 2 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER ONE OR BOTH TESTS IS OUTSIDE OF THE INTERVAL FROM -2,00000 (BGMIN) TO 2,00000 (BGMAX) THE FOR •• NOTE

ITEMS 2 14

THUS THE RESULTING NUMBER OF 1TE 4S IS 14

ITERATION 22

TABLE A-1 (Continued): A5/0599 And A6/0412 Cases.

E

() ()

17.7

7.

. .

.

N

*

SCHOOL DECERSOR DEPOSITION OF THE PROPERTY DESCRIPTION OF

0.904560896885 WEIGHT ASSIGNED TO TEST 2 PARAMETERS =

WEIGHTED COVARIANCE MATRIX

0.2130587968182D 0.2878403520246D 0.2878403520408D 00 0.2130587968182D 00 - ~

RESULTANT EIGENVALUES AND EIGENVECTORS (COMPLEX TYPE)

EIGENVECTOR	(IMAGINARY PART)	0.7071067812000B 00 0.00000000000000	0.0000000000000000000000000000000000000	0.000000000000000000000000000000000000
EIGEN	(REAL PART)	0. 70710678120000 00	-0. 7071067811731D 00	0.70710678120000 00 0.00000000000000 00
ALUE	(IMAGINARY PART)	0.5008991488509D 00 0.000000000000D 00	0.7478155521452D-01 0.000000000000 00	
EIGENVALUE	(REAL PART)	0.50089914885090 00	0.74781555214520-01	

0 IMSL SUBROUTINE IEGRF ERROR PARANETER (IER) =

0.575680704065 SUM OF EIGENVALUES =

0.575680704065 SUM OF DIAGONALS OF COVARIANCE MATRIX =

0.0000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS = RATIO OF SECOND ELEMENT TO FIRST ELEMENT OF EIGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT = 0.99999999619D 00

ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 1 TO THAT OF POPULATION TAKING TEST 2 =

0.11055087649770 01

(THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT)

0.6055605596413D 00 ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER DIAGRAM OF TEST PARAMETERS OVER TEST I PARAMETERS =

ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 OF THAT OF POPULATION TAKING TEST 1 AS ORIGIN AND UNIT = -0.5477664029682D 00 ESTIMATE OF MEAN OF USING MEAN AND S.D.

TABLE A-1 (Continued): A5/0599 And A6/0412 Cases.

WEIGHT, RATIO OF S.D. OF ABILITY, INTERCEPT AND MEAN DISTANCE FOR EACH ITERATION

MEAN DISTANCE	-0.550043315967 -0.546948668774 -0.548051023717 -0.547666213577 -0.54775408426 -0.547775408426 -0.547766936262 -0.5477664883550 -0.547766402084 -0.547766402084 -0.547766402926 -0.547766402926 -0.547766402926 -0.547766402926 -0.547766402926 -0.547766402926 -0.547766402926 -0.547766402926 -0.547766402926 -0.54776640292
INTERCEPT	0.6297274507118 0.597274507118 0.608492864828 0.60592116088 0.605944073275 0.60554497331 0.6055649267 0.60556030308 0.60556030308 0.60556050308 0.60556050308 0.60556050803 0.60556050803 0.605560559803 0.605560559803
S.D. RATIO (SLOPE)	1.194909832698 1.092011995305 1.10285061966 1.106096058781 1.105302704599 1.105581099284 1.105581099284 1.10550837364 1.10550837364 1.10550837364 1.105508781649 1.105508761640 1.105508761640 1.105508761649 1.10550876428
WEIGHT	1.000000000000000000000000000000000000
ITERATION	-0m450-800-000-000-00-00-00-00-00-00-00-00-00

WHEN SCATTER DIAGRAM OF DIFFICULTY PARAMETERS IS SOLELY USED

٦.	s.0. of POP. $2 = 0.90456089691950 00$	0.6055605596413D 00
-	# 8	
90	POP.	ii -
OF.	96	RCEF
S.D. OF POP. $1 = 1$.	S.0.	INTERCEPT =
	00	10
0.	MEAN OF POP. 2 = -0.5477664029682D 00	0.11055087649770 01
"	# ⊘	
MEAN OF POP. $1 = 0$.	POP.	
1 OF	1 OF	۱۱ نیا
MEAN	MEAN	SLOPE =

WHEN TWO SCATTER DIAGRAMS ARE BOTH CONSIDERED TO ESTIMATE S.D. RATIO

٦.	S.D. OF POP. 2 = 0.86839964672420 00	0.63382262095750 00
"	II Ol	
S.D. OF POP. $1 = 1.$	OF POP. 8	NTERCEPT =
S.D.	s. D.	I N
	MEAN OF POP. 2 = -0.5 04113401253D 00	0.11515435361730 01
0 =	0- 11	0
<u>.</u>		
P0	POP	
<u>0</u>	0 <i>F</i>	11 144
MEAN OF POP. $1 = 0$.	MEAN	SLOPE =

74 777 777

TABLE A-1 (Continued):

X

8

は込む

<u>.</u>

THE RESPONSE OF THE PROPERTY OF THE PARTY OF

For 14 Overlapping Items of Tests A6 and J1, A6/0412 And J1/0614 Cases.

TITLE: SHIBA'S DATA A6-0412 VS. J1-0614(TEST 1)

ITEM DISCRIMINATION PARAMETERS

0.13170034D 00 0.19222101D 00 STANDARD DEVIATION 0.17344980D-01 0.36948918D-01 VARIANCE 88 0.395745710 MEAN OF SQUARES <u>5</u>5 0.55404400D 0.56974460D SUM OF SQUARES 0.61514286D 00 0.60828571D 00 MEAN OF PARAMETERS 0.86120000D 01 0.85160000D 01 SUM OF PARAMETERS TEST - 0

PRODUCT MOMENT CORRELATION MATRIX

0.10000000000000 01 0.5235044981970D 00 0.5235044981970D 00 0.10000000000000D 01

COVARIANCE MATRIX

1 0.17344979591840-01 0.13252816326530-01 0.13252816326530-01 0.36948918367350-01

CROSS PRODUCT MATRIX

0.3957457142857D 00 0.3874354285714D 00 0.3874354285714D 00 0.4069604285714D 00

THE FOLLOWING 2 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER FOR ONE OR BOTH TESTS IS OUTSIDE OF THE INTERVAL FROM -2.000000 (BGMIN) TO 2.00000 (BGMAX) : NOTE:

THUS THE RESULTING NUMBER OF ITEMS IS 14

TABLE A-1 (Continued): A6/0412 And J1/0614 Cases.

ITERATION 7

WEIGHT ASSIGNED TO TEST 2 PARAMETERS = 0.986125113863

WEIGHTED CROSS-PRODUCT MATRIX

0.3957457142857D 00 0.3820598061144D 00 0.3820598061144D 00 0.3957457143091D 00

RESULTANT EIGENVALUES AND EIGENVECTORS (COMPLEX TYPE)

E I GENYECT ON	(IMAGINARY PART)	0.0000000000000000000000000000000000000	-0.7071067811757D 00 0.0000000000000 00 -0.7071067811974D 00 0.00000000000000 00
	(REAL PART)	-0.7071067811974D 00 0.7071067811757D 00	-0.7071067811757D 00 -0.7071067811974D 00
VALUE	(IMAGINARY PART)	8301D-01 0.0000000000000 00	0.7778055204118D 00 0.0negaaaannaaa
EIGENVALUE	(REAL PART)	0.13685908183010-01	0.77780552041180 00
		-	c

IMSL SUBROUTINE LEGRE ERROR PARAMETER (LER) =

SUM OF EIGENVALUES = 0.7.1491428595

SUM OF DIAGONALS OF CROSS-PRODUCT MATRIX = 0.791491428595

0.00000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS = 0.100000000000310 01 RATIO OF SECOND ELEMENT TO FIRST ELEMENT OF EIGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT =

0.10140701073050 01 ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 TO THAT OF POPULATION TAKING TEST 1 =

(THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT)

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER
DIAGRAM OF TEST PARAMETERS OVER TEST 1 PARAMETERS = -0.1551226886493D-01

TABLE A-1 (Continued): A6/0412 And J1/0614 Cases.

HARRA PARTERIO. POLICIO PERCOLO POLICIO PARTERIO PARTERIO PARTERIO POLICIO POLICIO POLICIO PERCOLO POLICIO PERCOLO PER

\. \.

335

大党

WEIGHT, RATIO OF S.D. OF ABILITY AND INTERCEPT FOR EACH ITERATION

WEIGHT

ITERATION

INTERCEPT	-0.015824535085 -0.015501085958 -0.015512669455 -0.015512254515 -0.015512268846 -0.015512268846
S.D. RATIO (SLOPE)	1.014577739339 1.014051927940 1.014070758520 1.0140701083976 1.014070107274 1.014070107305
WEIGHT	1.000000000000 0.985631717735 0.986142792541 0.986124480564 0.986125133518 0.986125113863
ERATION	しのられるひし

Cases.
31/0614
2 And J
A6/0412
(ontinued):
(C A-1
TABLE

ITEM DIFFICULTY PARAMETERS

STANDARD	0.41719572D 00
DEVIATION	0.52149088D 00
VARIANCE	0.17405227D 00 0.27195274D 00
MEAN OF	0.63257471D 00
SQUARES	0.34259479D 00
SUM OF	0.88560460D 01
SQUARES	0.47963270D 01
MEAN OF	-0.67714286D 00
PARAMETERS	-0.26578571D 00
SUM OF	-0.948000000 01
PARAMETERS	-0.37210000D 01
TEST	-8

PRODUCT MOMENT CORRELATION MATRIX

0.10000000000000 01 0.8467453429595D 00 0.8467453429595D 00 0.10000000000000 01

COVARIANCE MATRIX

0.1740522653061D 00 0.1842211020408D 00 0.1842211020408D 00 0.2719527397959D 00

CROSS PRODUCT MATRIX

0.6325747142857£ 00 0.3641960000000 00 0.36419600000000 00 0.36419600000000 00 0.3425947857143D 00

THE FOLLOWING 2 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER FOR ONE OR BOTH TESTS IS OUTSIDE OF THE INTERVAL FROM -2.00000 (BGMIN) TO 2.00000 (BGMAX) : NOTE:

THUS THE RESULTING NUMBER OF ITEMS IS 14

1

TABLE A-1 (Continued): A6/0412 And J1/0614 Cases.

ちゃちゅう 一種のことになること

CANADA ON THE SECOND STATES

2

Ţ.

77

() () () () () () () ()

<u>.</u>

. . .

}

1

ITERATION 14

0.800005772627 WEIGHT ASSIGNED TO TEST 2 PARAMETERS =

WEIGHTED COVARIANCE MATRIX

0.14737794507230 0.17405226530610 00 0.1473779450723D 00 - 0

RESULTANT EIGENVALUES AND EIGENVECTORS (COMPLEX TYPE)

EIGENVECTOR	(!MAGIMARY PART)	0.7071067812069D 00 0.000000000000D 00 0.7071067811662D 00 0.0000000000000D 00	0.0000000000000000000000000000000000000
EIGEN	(REAL PART)	0.7071067812069D 00 0.7071067811662D 00	-0.7071067811662D 00 0.7071067812069D 00
ALUE	(IMAGINARY PART)	0.00000000000000000000	0.0000000000000000000000000000000000000
EIGENVALUE	(REAL PART)	0.3214302103699D 00 0.000000000000D 00	0.2667432022530D-01 0.0000000000000 00
		-	~

IMSL SUBROUTINE IEGRF ERROR PARAMETER (IER) = SUM OF EIGENVALUES =

0.348104530595

0.348104530595 SUM OF DIAGONALS OF COVARIANCE MATRIX =

0.000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS ≈ RATIO OF SECOND ELEMENT TO FIRST ELEMENT OF EIGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT = 0.9999999999930 00

0.12499909802640 01 ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 1 TO THAT OF POPULATION TAKING TEST 2 =

(THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT)

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER DIAGRAM OF TEST PARAMETERS OVER TEST 1 PARAMETERS = 0.5806367494928D

8

ESTIMATE OF MEAN OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 USING MEAN AND S.D. OF THAT OF POPULATION TAKING TEST 1 AS ORIGIN AND UNIT = -0.4645127514203D 00

TABLE A-1 (Continued): A6/0412 And J1/0614 Cases.

WEIGHI, RATIO OF S.D. OF ABILITY, INTERCEPT AND MEAN DISTANCE FOR EACH ITERATION

	MEAN DISTANCE	-0.472757503814 -0.462986379339 -0.46478482495 -0.46452768582 -0.46451119342 -0.464513046815 -0.464512761099 -0.464512761099 -0.464512751739 -0.464512751739 -0.464512751739
FOR EACH LIERALION	INTERCEPT	0.614780799059 0.574603984897 0.581733230616 0.580438446319 0.580642645878 0.580637925284 0.58063658620 0.580636782280 0.580636782280 0.580636742528 0.580636749272 0.580636749572
AND MEAN DISTANCE	S.D. RATIO (SLOPE)	1. 300414682155 1. 241081834236 1. 251610256184 1. 249698127475 1. 250043991803 1. 249992716808 1. 24999065975 1. 249990982138 1. 249990982138 1. 249990982138
THE STATE OF THE S	WE I GHT	1.000000000000 0.768985473420 0.805748639948 0.798970761912 0.800193245084 0.799971846237 0.800004661270 0.800005973828 0.800005772882 0.800005772882
	ITERATION	- GW 3 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

WHEN SCATTER DIAGRAM OF DIFFICULTY PARAMETERS IS SOLELY USED

0.80000577267290 00	0.58063674949280 00
0	
S.D. OF POP.	INTERCEPT =
-0.46451275142030 00	0.12499909802640 01
# 2	
POP.	
1 OF	SLOPE =
	MEAN OF POP. 2 = -0.4645127514203D 00 S.D. OF POP. 2 = 0.8000057726729D 00

WHEN TWO SCATTER DIAGRAMS ARE BOTH CONSIDERED TO ESTIMATE S.D. RATIO

MEAN OF POP. 1 = 0. MEAN OF POP. 20.4377494503856D 00 S.D. OF POP. 2 = 0.9007008047842D 00 SLOPE = 0.4860098359637D 00		00	00
P. 1 = 0. P. 20.4377494503856D 00 0.'1102465931950 01	<u>.</u>	0.90070080478420	0.48600983596370
P. 1 = 0. P. 20.4377494503856D 00 0.'1102465931950 01	11	11 Q1	
P. 1 = 0. P. 20.4377494503856D 00 0.'1102465931950 01	نَّه	٠.	11
P. 1 = 0. P. 20.4377494503856D 00 0.'1102465931950 01	2	2	PT
P. 1 = 0. P. 20.4377494503856D 00 0.'1102465931950 01	ō	ō	RCE
P. 1 = 0. P. 20.4377494503856D 00 0.'1102465931950 01	s.D	S.D.	ENI
MEAN OF POP. MEAN OF POP. SLOPE =			0.1102465931950 01
MEAN OF MEAN OF SLOPE =	P 0P.	POP.	
MEAN MEAN SLOP	0.	OF	11 14
	MEAN	MEAN	81.0P

TABLE A-1 (Continued):

11

, 1

Ú

*

Č

For 16 Overlapping Items of Tests J2 and J1, J2/0758 And J1/0614 Cases.

TITLE: SHIBA'S DAIM J2-0758 VS. J1-0614(TEST 1)

ITEM DISCRIMINATION PARAMETERS

STANDARD	0.14218144D 00
DEVIATION	0.19995683D 00
VARIANCE	0.20215563D-01 0.39982734D-01
MEAN OF	0.27599862D 00
SQUARES	0.52248662D 00
SUM OF	0.44159780D 01
SQUARES	0.83597860D 01
MEAN OF	0.50575000D 00
PARAMETERS	0.69462500D 00
SUM OF	0.80920000D 01
PARAMETERS	0.11114000D 02
TEST	- 2

PRODUCT MOMENT CORRELATION MATRIX

0.100000000000000 01 0.3997593573121D 00

- ~

COVARIANCE MATRIX

0.1136521875000D-01 0.3998273437500D-01 0.2021556250000D-01 0.11365218753000-01

CROSS PRODUCT MATRIX

0.3626718125000D 00 0.5224866250000D 00 0.2759986250000D 00 0.3626718125000D 00

THE FOLLOWING 3 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER FOR ONE OR BOTH TESTS IS OUTSIDE OF THE INTERVAL FROM -2.00000 (BGMIN) TO 2.00000 (BGMAX) NOTE:

9 THUS THE RESULTING NUMBER OF ITEMS IS

TABLE A-1 (Continued): J2/0758 And J1/0614 Cases.

ITERATION 9

WEIGHT ASSIGNED TO TEST 2 PARAMETERS = 0.726801592904

WEIGHTED CROSS-PRODUCT MATRIX

1 0.27599862500000 00 0.26359045102640 0C 2 0.2635904510264D 00 0.2759986250041D 0C

RESULTANT EIGENVALUES AND EIGENVECTORS (COMPLEX TYPE)

EIGENVECTOR	(IMAGINARY PART)	0.0000000000000000 0.000000000000000	0.000000000000000 0.000000000000000000
EIGEN	(REAL PART)	-0,7071067811893D 00 0,7071067811838D 00	-0.7071067811838D 00 -0.7071067811893D 00
ALUE	(IMAGINARY PART)	975646-01 0.0000000000000 00	0.0000000000000000000000000000000000000
EIGENVALUE	(REAL PART)	0.12408173975640-01	0.53958907662850 00 0.00000000000000 00
		-	8

IMSL SUBROUTINE IEGRF ERROR PARAMETER (IER) =

SUM OF EIGENVALUES = 0.551397250004

SUM OF DIAGONALS OF CROSS-PROUGCT MATRIX = 0.551997250004

0.000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS = RATIO OF SECOND ELEMENT TO FIRST FLEMENT OF EIGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT =

0.13758913158300 01 H ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 TO THAT OF POPULATION TAKING TEST 1

(THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT)

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER DIAGRAM OF TEST PARAMETERS = -0.1232032980777D-02

TABLE A-1 (Continued): J2/0758 And J1/0614 Cases.

essa Prosessa. Seessa Lossessa Sassaan Prosessa Prosessa Persona Seessa Persona Persona Prosessa Prosessa Prosessa

1

777

222

7

WEIGHT, RATIO OF S.D. OF ABILITY AND INTERCEPT FOR EACH ITERATION

INTERCEPT	-0.011394361494 -0.000757311876 -0.001254387834 -0.001232080673 -0.001232030649 -0.001232033090 -0.001232032975
S.D. RATIO (SLOPE)	1.395984896675 1.374952668070 1.375935517220 1.375891413775 1.375891311218 1.375891316046 1.375891315819 1.375891315819
WEIGHT	1.000000000000 0.716340128308 0.727297763205 0.726802692004 0.726801591160 0.726801595334 0.726801595334
ITERATION	

TABLE A-1 (Continued): J2/0758 And J1/0614 Cases.

HIEM DIFFICULTY PARAMETERS

STANDARD	0.69432205D 00
DEVIATION	0.60756593D 00
VARIANCE	0,482083110 00 0,369136360 00
MEAN OF	0.773548120 00
SQUARES	0.918032120 00
SUM OF	0.123767700 02
SQUARES	0.146885140 02
MEAN OF	0.539875000 00
PARAMETERS	-0.74087500D 00
SUM OF	0.86380000D 01
PARAMETERS	-0.11854000D 02
16.51	- 0

PRODUCT MOMENT CORRELATION MATRIX

0.10000000000000 01 0.8162276245961D 00 0.8162276245961D 00 0.10000000000000 01

COVARIANCE MATRIX

1 0.48208310937 ID 00 0.3443227031250D 00 2 0.344322703125.7 00 0.3691363593750D 00

CROSS PRODUCT MATRIX

0.7735481250000D 00 -0.5565718750000D-01 -0.5565718750000D-01 0.9180321250000D 00

THE FOLLOWING 3 HEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER FOR ONE OR BOTH TESTS IS OUTSIDE OF THE INTERVAL FROM -2.00000 (BGMIN) TO 2.00000 (BGMAX) : NOTE

ITEMS 4 7 17

THUS THE RESULTING NUMBER OF LIEMS IS 16

1

TABLE A-1 (Continued): J2/0758 And J1/0614 Cases.

Sections of Bostons

100

7

٠ ١ ١

ITERATION 16

WEIGHT ASSIGNED TO TEST 2 PARAMETERS = 1.142792931346

WEIGHTED COVARIANCE MATRIX

0.4820831093750D 00 0.3934895512332D 00 0.3934895512332D 00 0.4820831093997D 00

RESULTANT EIGENVALUES AND EIGENVECTORS (COMPLEX TYPE)

EIGENVECTOR	(IMAGINARY PART)	0.0000000000000000 0.00000000000000000	0.0000000000000000000000000000000000000
EIGEN	(REAL PART)	-0.7071067811976D 00 0.7071067811754D 00	-0.7071067811754D 00 -0.7071067811976D 00
ALUE	(IMAGINARY PART)	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
E IGENVALUE	(REAL PART)	0.88593558154200-01	0.8755726606205D 00 0.0000000000000D 00
		-	α

IMSL SUBROUTINE LEGRE ERROR PARAMETER (LER) = 0

SUM OF EIGENVALUES = 0.964166218775

SUM OF DIAGONALS OF COVARIANCE MATRIX = 0.964166218775

0.00000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS = RATIO OF SECOND ELEMENT TO FIRST ELEMENT OF EIGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT = 0.100000000031D 01

0.87504916472810 00 ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 1 TO THAT OF POPULATION TAKING TEST 2 =

(THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT)

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER DIAGRAM OF TEST PARAMETERS OVER TEST I PARAMETERS = -0,1213292167808D 01 ESTIMATE OF MEAN OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 USING MEAN AND S.D. OF THAT OF POPULATION TAKING TEST 1 AS ORIGIN AND UNIT = 0.1386541712984D 01

TABLE A-1 (Continued): J2/0758 And J1/0614 Cases.

WEIGHT, MATIO OF S.D. OF ABILITY, INTERCEPT AND MEAN DISTANCE FOR EACH ITERATION

MEAN	1.412161808802 1.380880248055 1.387821604051 1.386253814361 1.386506546418 1.386506546418 1.386544999394 1.386541879583 1.3865418721434 1.3865417711434 1.3865417711434 1.3865417711434 1.3865417711434 1.38654177114893 1.3865417711893
INTERCEPT	-1.199416716539 -1.216472377723 -1.212579101077 -1.213455962109 -1.213290334087 -1.213292580665 -1.213292168733 -1.213292168666 -1.213292167566 -1.213292167566 -1.213292167566 -1.213292167593
S.D. RATIO (SLOPE)	0.849347935243 0.880939805924 0.873728365042 0.875346815659 0.87504250755 0.875049250755 0.875049250755 0.875049929455 0.875049166688 0.875049164281 0.875049164281 0.875049164281
WEIGHT	1.00000000000 1.177373792890 1.135151338690 1.144520471133 1.142880440584 1.142773229666 1.142797367159 1.142792931596 1.142792980690 1.142792928750 1.142792931894 1.142792931186
HERATION	

WHEN SCATTER DIAGRAM OF DIFFICULTY PARAMETERS IS SOLELY USED

S.D. OF POP. 1 = 1.	S.D. OF POP. 2 = 0.1142792931310D 01	-0.1213292167808D 01
P0P.	POP.	II I
0F	OF	CEP
. D.	o.s	INTERCEPT =
0.	MEAN OF POP. 2 = 0.1386541712984D 01	0.8750491647281D 00
11	= 2	
POP.	P0P.	
0F	OF	# W
MEAN OF PUP. 1 = 0.	MEAN	SLOPE =

WHEN TWO SCATTER DIAGRAMS ARE BOTH CONSIDERED TO ESTIMATE S.D. RATIO

S.D. Of POP. 1 = 1.	S.D. OF POP. 2 = 0.1253937346912D 01	= -0.1171418839634D 01
0F P	OF P	INTERCEPT =
ď	9.	TER(
	MEAN OF POP, 2 = 0.1468885831893D 01	0. '974880104358D 00
0 =	0 =	0
-	8	
MEAN OF POP, 1 = 0.	POP.	
90	OF	St.OPE =
MEAN	EAN	1.0 P

F.

(); (4)

_ च

5.50 TO 10.00

557

Š

TABLE A-1 (Continued):

COLUMN TO THE PROPERTY OF THE

RESISTANCE STATES

SEA TO DESCRIPTION OF THE PROPERTY OF

THE PROPERTY OF THE PROPERTY O

For 51 Overlapping items of Test J1, J1/1075 And J1/0614 Cases.

TITLE: SHIBA'S DATA J1-1074 VS. J1-0614(TEST 1)

ITEM DISCRIMINATION PARAMETERS

STANDARD	0.14594736D 00
DEVIATION	0.16227723D 00
VARIANCE	0.213006310-01
MEAN OF	0.332358350 00
SQUARES	0.369601300 00
SUM OF	0.16950276D 02
SQUARES	0.18849666D 02
MEAN OF	0.55772549D 00
PARAMETERS	0.58589026D 00
SUM OF	0.28444000D 02
PARAMETERS	0.29880403D 02
1631	~ 0

PRODUCT MOMENT CORRELATION MATRIX

0.8918349193782D 00 0.100000000000000 01 0.100000000000000 01 0.8918349193782D 00

COVARIANCE MATRIX

0.21122157751330-01 0.21300630526720-01 - 0

CROSS PRODUCT MATRIX

0.3478880912473D 00 0.3696012975106D 00 0.3323583529412D 00 0.3478880912473D 00

THE FOLLOWING 4 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER FOR ONE OR BOTH TESTS IS OUTSIDE OF THE INTERVAL FROM -2.00000 (BGMIN) TO 2.00000 (BGMAX) : NOTE:

5 THUS THE RESULTING NUMBER OF ITEMS IS

********* O

TABLE A-1 (Continued): J1/1075 And J1/0614 Cases.

I LERA ! I ON

0.948279922320 WEIGHT ASSIGNED TO TEST 2 PARAMETERS =

WEIGHTED CROSS-PRODUCT MATRIX

0.3298952921442D 0.3323583529404D 0.3323583529412D 00 0.3298952921442D 00

RESULTANT EIGENVALUES AND EIGENVECTORS (COMPLEX TYPE)

EIGENVECTOR	(IMAGINARY PART)	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
EIGE	(REAL PART)	0.7071067811870D 00 0.7071067811861D 00	-0.7071067811861D 00 0.7071067811870D 00
EIGENVALUE	(IMAGINARY PART)	0.0000000000000000000000000000000000000	0.2463060796568D-02 0.00000000000000 00
EIGEN	(REAL PART)	0.66225364508500 00	0.24630607965680-02

IMSL SUBROUTINE IEGRF ERROR PAR METER (IER)

0.664716705882 SUM OF EIGENVALUES

0.664716705882 SUM OF DIAGONALS OF CROSS-PRODUCT MATRIX =

0.000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS =

0.999999999988D 00 RATIO OF SECOND ELEMENT TO FIRST ELEMENT OF EIGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT =

0.10545409392960 01 ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 TO THAT OF POPULATION TAKING TEST 1 =

(THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT)

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCAT'ER DIAGRAM OF TEST PARAMETERS OVER TEST 1 PARAMETERS = -0.2254100442144D-02

TABLE A-1 (Continued): J1/1075 And J1/0614 Cases.

227 002

) 3

S S

F333

188 355 **18**8

П

-

\$\$\$\ \$

Č

17.1

WEIGHT, RATIO OF S.D. OF ABILITY AND INTERCEPT FOR EACH ITERATION

INTERCEPT	-0.002487122084 -0.002252361006 -0.002254113429 -0.002254100145 -0.002254100443
S.D. RATIO (SLOPE)	1.054958746346 1.054537820491 1.054540962581 1.054540939122 1.054540939297
WEIGHT	1.0000000000000 0.947904364473 0.948282726867 0.948279901382 0.948279922478 0.948279922478
ITERATION	しのちゃんの

TABLE A-1 (Continued): J1/1075 And J1/0614 Cases.

ITEM DIFFICULTY PARAMETERS

STANDARD	0.896006130 00
DEVIATION	0.796500140 00
VARIANCE	0.802826990 00 0.63441247D 00
MEAN OF	0.89804159D 00
SQUARES	0.93291928D 00
SUM OF SQUARES	0.45800121D 02 0.47576863D 02
MEAN OF	-0.30856863D 00
PARAMETERS	-0.54635777D 00
SUM OF	-0.157370000 02
PARAMETERS	-0.278642460 02
TEST	- 2

PRODUCT MOMENT CORRELATION MATRIX

0.10000000000000 01 0.9762090248589D 00 0.9762090248589D 00 0.10000000000000 01

- 0

COVARIANCE MATRIX

0.8028269903883D 0 0.6966901266655D 00 0.6966901266655D 00 0.6344124693203D 00

CROSS PRODUCT MATRIX

1 0.6980415882353D 00 0.8652789933303D 00 2 0.8652789933303D 00 0.9329192803139D 00

THE FOLLOWING 4 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER FOR ONE OR BOTH TESTS IS GUTSIDE OF THE INTERVAL FROM -2.00000 (BGMIN) TO 2.00000 (BGMAX) : NOTE:

THUS THE RESULTING NUMBER OF ITEMS IS 51

3

띡

********* 0

TABLE A-1 (Continued): 31/1075 And 31/0614 Cases.

が

U

ITERATION 7

WEIGHT ASSIGNED TO TEST 2 PARAMETERS = 1.124929037174

WEIGHTED COVARIANCE MATRIX

0.8028269903883D 00 0.7837269533981D 00 0.7837269533981D 00 0.8028269903489D 00

RESULTANT EIGENVALUES AND EIGENVECTORS (COMPLEX TYPE)

	_	86	88
EIGENVECTOR	(IMAGINARY PART)	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
EIGEN	(REAL PART)	0.7071067811954D 00 0.0000000000000 00 0.7071067811777D 00 0.000000000000000000000000000000	-0.7071067811777D 00 0.0000000000000 00 0.7071067811954D 00 0.000000000000000 00
VALUE	(IMAGINARY PART)	1586553943767D 01 0.0000000000000 00	0.1910003697046D-01 0.000000000000000 00
EIGENVALUE	(REAL PART)	0.15865539437670 01	0.19100036970460-01
			۵

0.0000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS = 1.605653980737 0 IMSL SUBROUTINE IEGRF ERROR PARAMETER (IER) SUM OF DIAGONALS OF COVARIANCE MATRIX = 1.605653980737 SUM OF EIGENVALUES =

0.9999999997490 00 RATIO OF SECOND ELEMENT TO FIRST ELEMENT OF EIGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT =

0.88894496179720 00 (THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT) ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 1 TO THAT OF POPULATION TAKING TEST 2 =

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER DIAGRAM OF TEST PARAMETERS OVER TEST 1 PARAMETERS = -0.2720572415696D 00

0.30604509082270 00 ESTIMATE OF MEAN OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 USING MEAN AND S.D. OF THAT OF POPULATION TAKING TEST 1 AS ORIGIN AND UNIT =

TABLE A-1 (Continued): 31/1075 And 31/0614 Cases.

WEIGHT, RATIO OF S.D. OF ABILITY, INTERCEPT AND MEAN DISTANCE FOR EACH ITERATION

MEAN DISTANCE	0.307802484262 0.306002324497 0.306046133108 0.306045065421 0.306045090807 0.306045090823
INTERCEPT	-0.272839325507 -0.272038153740 -0.272057706738 -0.272057230233 -0.272057241846 -0.272057241563
S.D. RATIO (SLOPE)	0.886410407510 0.889006821065 0.888943454293 0.888944996537 0.888944961820 0.888944961797
WEIGHT	1.0000000000000 1.128145598841 1.124850761889 1.124930944900 1.124928990709 1.12492903314
ITERATION	ON Z M O

WHEN SCATTL' DIAGRAM OF DIFFICULTY PARAMETERS IS SOLELY USED

	s.b. of POP. $2 = 0.11249290372020$ 01	-0.2720572415696D 00
S.D. OF POP. $1 = 1$.	S.D. OF POP. 2 =	INTERCEPT =
0.	MEAN OF PUP. 2 = 0.3060450908227D 00	0.8889449617972D 00
MEAN OF POP, 1 = 0.	MEAN OF PUP. 2 =	SLOPE =

WHEN TWO SCATTER DIAGRAMS ARE BOTH CONSIDERED TO ESTIMATE S.D. RATIO

-	S.D. Of POP. $2 = 0.10891665269970 01$	-0.2630506524545D 00
S.D. OF POP. 1 = 1.	11 Ci	
POP	P0P	<u> </u>
90	0 F	RCEF
s.D.	s.D.	INTERCEPT =
MEAN OF POP. $1 = 0$.	MEAN OF POP. $2 = 0.2865059655820 00$	0.91813324704050 00
H —	 2	
POP.	P0P.	
0F	0F	اا نيا
MEAN	MEAN	SLOPE =

5

in Car

17.23

.

4

TABLE A-1 (Continued):

Į.

}

Į)

<u>``</u>

U

S

, }

4

THE CONTRACTOR STATE OF THE STA

for 50 dierlapping Items of Test Jl, J1/2259 And Alfo614 Cases

7111.1 SHEEN'S DATA (1614(1881))

THE DISCRIMINATION PARAMETERS

0.14517235D 00 0.15966754D 00 STANDARD DEVIATION 0.21075010D-01 0.25493724D-01 VARIANCE 88 0.336132700 MEAN OF SQUARES 0.168066350 02 0.168182990 02 SUM OF SQUARES 000 MEAN OF PARAMETERS 0.56130000D 0.55755919D 02 0.28065000D 0.278779600 SUM OF PARAMETERS TEST

PRODUCT MOMENT CORRELATION MATRIX

0.100000000000000 01 0.87668806322150 00 0.87668806322150 00 0.100000000000000 01

-0

COVARIANCE MATRIX

1 0.21075010000000-01 0.2032102568093D-01 2 0.20321025687930-01 0.2549372362347D-01

CROSS PRODUCT MATRIX

1 0.33613270000000 00 0.3332790007617D 00 2 0.3332790007617D 00 0.3363659774213D 00

ن

FOLLOWING 5 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER ONE OR BOTH TESTS IS OUTSIDE OF THE INTERVAL FROM -2.00000 (BGMIN) TO 2.00000 (BGMAX) ; THE FOR •• NOTE

THUS THE RESULTING NUMBER OF ITEMS IS 50

TABLE A-1 (Continued): J1/2259 And J1/0614 Cases.

ITERATION 5

0.999653178539	
GHT ASSIGNED TO TEST 2 PARAMETERS =	
~	
TEST	
5	
ASSIGNED	
WEIGHT	
WE	

WEIGHTED CROSS-PRODUCT MATRIX

1 0.33613270000000 00 0.3331634124516D 00 2 0.3331634124516D 00 0.3361327000015D 00

RESULTANT EIGENVALUES AND EIGENVECTORS (COMPLEX TYPE)

	EIGENVALUE	ALUE	EIGEN	EIGENVECTOR
	(REAL PART)	(IMAGINARY PART)	(REAL PART)	(IMAGINARY PART)
-	0.29692875491340-02	0491340-02 0.0000000000000 00	-0.7071067811873D 00 0.7071067811858D 00	-0.7071067811873D 00 0.0000000000000 00 0.7071067811858D 00 0.00000000000000 00
~	0.66929611245230 00	124523D 00 0.000000000000D 00	-0.7071067811858D 00 0.00000000000000 00 -0.7071067811873D 00 0.00000000000000 00	0.0000000000000000000000000000000000000

IMSL SUBROUTINE LEGRF ERROR PARAMETER (IER) = 0

SUM OF EIGENVALUES = 0.672265400001

SUM OF DIAGONALS OF CROSS-PRODUCT MATRIX = 0.672265400001

0.0000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS = 0.10003469417900 01 ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 TO THAT OF POPULATION TAKING TEST 1 =

(THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT)

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER DIAGRAM OF TEST PARAMETERS OVER TEST I PARAMETERS = -0.3935545338146D-02

TABLE A-1 (Continued): J1/2259 And J1/0514 Cases.

E.

Ç

がる。

22.

WEIGHT, RATIO OF S.D. OF ABILITY AND INTERCEPT FOR EACH ITERATION

INTERCEPT	-0.003937281230 -0.003935529867 -0.003935545476 -0.003935545338
S.D. RATIO (SLOPE)	1.000350034417 1.000346914228 1.000346942036 1.000346941788 1.000346941790
WEIGHT	1.000000000000 0.999650088064 0.999653206080 0.999653178291 0.999653178539
FERATION	ーのきせい

TABLE A-1 (Continued): J1/2259 And J1/0614 Cases.

ITEM DIFFICULTY PARAMETERS

STANDARD	0.87931887D 00
DEVIATION	0.86478356D 00
VARIANCE	0.77320167D 00 0.74785060D 00
MEAN OF	0.850841920 00
SQUARES	0.107086900 01
SUM OF	0.42542096D 02
SQUARES	0.53543449D 02
MEAN OF	-0.27864000D 00
PARAMETERS	-0.56834706D 00
SUM OF	-0.13932000D 02
PARAMETERS	-0.28417353D 02
TEST	- 2

PRODUCT MOMENT CORRELATION MATRIX

0.100000000000000 01 0.9522353454024D 00 0.9522353454024D 00 0.100000000000000 01

COVARIANCE MATRIX

1 0.77320167040000 0 0.72409927570670 00 2 0.72409927570670 00 0.74785060113390 00

CROSS PRODUCT MATRIX

1 0.8508419200000D 00 0.8824635000518D 00 2 0.8824635000518D 00 0.1070868979895D 01

THE FOLLOWING 5 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER FOR ONE OR BOTH TESTS IS QUISIDE OF THE INTERVAL FROM -2.00000 (BGMIN) TO 2.00000 (BGMAX) NOTE:

THUS THE RESULTING NUMBER OF ITEM: IS 50

TABLE A-1 (Continued): J1/2259 And J1/0614 Cases.

G

. . .

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

ITERATION 8

WEIGHT ASSIGNED TO TEST 2 PARAMETERS = 1.016808032255

WEIGHTED COVARIANCE MATRIX

1 0.7732016704000D 00 0.7362699596889D 00 2 0.7362699596889D 00 0.7732016704206D 00

RESULTANT EIGENVALUES AND EIGENVECTORS (COMPLEX TYPE)

EIGENVECTOR	(IMAGINARY PART)	0.0000000000000000000000000000000000000	0.0000000000000 0.00000000000000000000
EIGEN	(REAL PART)	-0.7071067811915D 00 0.7071067811816D 00	-0.7071067811816D 00 -0.7071067811915D 00
ALUE	(IMAGINARY PART)).3693171072144D-01 0.00000000000000 00	630099B 01 0.000000000000 00
EIGENVALUE	(REAL PART)	0.3693171072144D-01	0.1509471630099D 01
		-	N

IMSL SUBROUTINE LEGRF ERROR PARAMETER (LER) = 0 SUM OF EIGENVALUES = 1.546403340821 SUM OF DIACONALS OF COVARIANCE MATRIX = 1.546403340821

0.00000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS ≈

0.1000000000014D 01 RATIO OF SECOND ELEMENT TO FIRST ELEMENT OF EIGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT =

0.9834698077630D 00 ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 1 TO THAT OF POPULATION TAKING TEST 2 =

(THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT)

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER DIAGRAM OF TEST PARAMETERS OVER TEST 1 PARAMETERS = -0.2943130311382D 00

0.29925985405450 00 ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 OF THAT OF POPULATION TAKING TEST 1 AS ORIGIN AND UNIT = ESTIMATE OF MEAN OF USING MEAN AND S.D.

TABLE A-1 (Continued): J1/2259 And J1/0614 Cases.

WEIGHT, RATIO OF S.D. OF ABILITY, INTERCEPT AND MEAN DISTANCE FOR EACH ITERATION

MEAN DISTANCE	0.299743186050 0.299235620500 0.299259193080 0.299259493080 0.299259853113 0.29925985302
INTERCEPT	-0.294542030557 -0.294301539360 -0.294313607560 -0.29431303259 -0.294313031666 -0.294313031142 -0.294313031142
S.D. RATIO (SLOPE)	0.982647960869 0.983511050148 0.983467739067 0.98346981529 0.983469802557 0.983469807749 0.983469807763
WEIGHT	1.000000000000 1.017658449233 1.016765393586 1.016810171068 1.016808031623 1.016808031972
ITERATION	こころからなって

WHEN SCATTLE DIAGRAM OF DIFFICULTY PARAMETERS IS SOLELY USED

	0	8
<u>.</u> :	S.D. OF POP. 2 = 0.1016808032241D 01	-0.2943130311382D 00
S.D. OF POP. 1 = 1.	и	•
_	~	
Š.	90P	INTERCEPT =
٦ -	<u> </u>	CEP
		TER
S.	Š.	Z
	90	00
MEAN OF POP. $1 = 0$.	MEAN OF PUP, 2 = 0.29925985405450 00	0.98346980776300 00
"	II 2	
POP.	POP.	
OF	96	0
X	¥	SLOPE =
Ĭ	Ĩ	ន

WHEN TWO SCATTER DIAGRAMS ARE BOTH CONSIDERED TO ESTIMATE S.D. RATIO

MEAN OF POP. 1 = 0.	11			
MEAN OF POP.	8	945629608377D 00	S.D. OF POP. 2 = 0.10085439035760 01	0 01
SLOPE =)	0.9915284763056D 00	INTERCEPT = -0.2920675637355D 00	00 Q

TABLE A-1 (Continued):

Ö

T

STATE SOLDENS STATE STATE OF S

For 52 Overlapping Items of Test Jl, JI/2259 And JI/1075 Cases.

TITLE: SHIBA'S DATA J1-2259 VS. J1-1074(TEST 1)

ITEM DISCRIMINATION PARAMETERS

STANDARD	0.16668731D 00
DEVIATION	0.16423963D 00
VARIANCE	0.27784660D-01 0.26974657D-01
MEAN OF	0.363676950 00
SQUARES	0.326882230 00
SUM OF	0.18911201D 02
SQUARES	0.16997876D 02
MEAN OF	0.57956215D 00
PARAMETERS	0.54763817D 00
SUM OF	0.301372320 02
PARAMETERS	0.284771850 02
1831	- 0

PRODUCT MOMENT CORRELATION MATRIX

200 0.100000000000000 0.94528276555650

COVARIANCE MATRIX

0.25878687981420-01 0.26974657422190-01 0.2778466027838D-01 0.2587868798142D-01

CROSS PRODUCT MAIRIX

0.3432690474184D 00 0.3268822277158D 00 0.3636769492423D 00 0.3432690474184D 00

THE FOLLOWING 3 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER FOR ONE OR BOTH TESTS IS OUTSIDE OF THE INTERVAL FROM -2.00000 (BGMIN) TO 2.00000 (BGMAX) : I TEMS NOTE :

THUS THE RESULTING NUMBER OF ITEMS IS

30

(Continued): 32/2259 And 31/1075 Cases. TABLE A-1

ITERATION

				ECTOR	(IMAGINARY PAKI)	0.00000000000000000 0.0000000000000000	0.0000000000000000 0.00000000000000000
				EIGENVECTOR	(REAL PART)	0.7071067811938D 00 0.7071067811793D 00	-0.7071067811793D 00 0.7071067811938D 00
IERS = 1.054780842012		0.36207361487270 00 0.36367694922740 00	ECTORS (COMPLEX TYPE)	A. 19F	(IMAGINARY PART)	00.00000000000000000000000000000000000	0.0000000000000000000000000000000000000
IGNED TO TEST 2 PARAMETERS =	WEIGHTED CROSS-PRODUCT MATRIX	0.3636769492423D 00 0.3620736148727D 00	OCCULTANT ELCENVALUES AND FIGENVECTORS (COMPLEX TYPE)	HI WANTED THE STREET	(REAL PART)	0.72575056410750 00	0,16033343621590-02
WEIGHT ASSIGNED TO	WEIGHTED CI	-0	TANT HERE	RESULIANI			8

RATIO OF SECOND ELEMENT TO FIRST ELEMENT OF EIGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT = 0.999999999794D 00 0.00000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS = 0.727353898470 IMSL SUBROUTINE IEGRF ERROR PARAMETER (IER) = SUM OF DIAGONALS OF CROSS-PRODUCT MATRIX = 0.727353898470 SUM OF EIGENVALUES =

0.94806424249410 00 (THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT) ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 1 =

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER DIAGRAM OF TEST PARAMETERS OVER TEST 1 PARAMETERS = -0.1623978764064D-02

֓֞֞֞֞֜֜֞֜֜֜֞֜֜֜֜֞֓֓֓֓֓֓֓֡֓֜֜֡֓֓֡֓֡֓֡֓֜֜֜֡֓֓֡֓֡֓֜֜֡֓֡֓֡֓֡֓֡֓֡֓֡

X

TABLE A-1 (Continued): J2/2259 And J1/1075 Cases.

serve brodomost products - manager

F

尼

E

]; };

777

î.

and concessed bethe sum despectation of the second sections and second of the second o

WEIGHT, RATIO OF S.D. OF ABILITY AND INTERCEPT FOR EACH ITERATION

WEIGHT

I TERAT I ON

INTERCEPT	-0.001694351708 -0.001824552647 -0.001823976222 -0.001823978775 -0.001823978764
S.D. RATIO (SLOPE)	0.947840578724 -0 0.948065233039 -0 0.948064238108 -0 0.948064242514 -0
WEIGHT	1.0000000000000 1.055029740704 1.054779739991 1.054780846914 1.054780842012
ITERATION	このもろ

TABLE A-1 (Continued): J2/2259 And J1/1075 Cases.

ITEM DIFFICULTY PARAMETERS

STANDARD	0.852532790 00
DEVIATION	0.904477810 00
VARIANCE	0.726812150 00 0.81808010D 00
MEAN OF	0.92322101D 00
SQUARES	0.10745437D 01
SUA OF	0.48007492D 02 0.55876272D 02
MEAN OF	-0.44318039D 00
PARAMETERS	-0.50642234D 00
SUM OF	-0.23045380D 02
PARAMETERS	-0.26333962D 02
TEST	-0

PRODUCT MOMENT CORRELATION MATRIX

0.10000000000000 01 0.96555024801050 00 0.96555024801050 00 0.10000000000000 01

- ~

COVARIANCE MATRIX

- 0

0.7268121517680D 00 0.7445328837562D 00 0.7445328837562D 00 0.8180801004390D 00

CROSS PRODUCT MATRIX

1 0.9232210079976D 00 0.9689693328117D 00 2 0.9689693328117D 00 0.1074543686815D 01

THE FOLLOWING 3 ITEMS HAVE BEEN EXCLUDED FROM ALL COMPUTATIONS BECAUSE THE DIFFICULTY PARAMETER FOR ONE OR BOTH TESTS IS OUTSIDE OF THE INTERVAL FROM -2.00000 (BGMIN) TO 2.00000 (BGMAX) NOTE:

THUS THE RESULTING NUMBER OF ITEMS 1S 52

3

ITERATION 8

TABLE A-1 (Continued): J2/2259 And J1/1075 Cases.

Ü

S

水

d

不仍

S.

\$3 \$4

*

1

S

WEIGHT ASSIGNED TO TEST 2 PARAMETERS = 0.942569050615

WEIGHTED COVARIANCE MATRIX

0.7268121517680D 00 0.7017736533936D 00 0.7017736533936D 00 0.7268121517617D 00

RESULTANT EIGENVALUES AND EIGENVECTORS (COMPLEX TYPE)

88 88 (IMAGINARY PART) **EIGENVECTOR** 0.7071067811881D 00 0.7071067811850D 00 -0.7071067811850D 00 0.7071067811881D 00 (IMAGINARY PART) EIGENVALUE 0.14285858051580 01 0.25038498371220-01 (REAL PART)

IMSL SUBROUTINE IEGRF ERROR PARAMETER (IER) = 0

SUM OF EIGENVALUES = 1.453624303530

SUM OF DIAGONALS OF COVARIANCE MATRIX = 1.453624303530

0.000000000000 ABSOLUTE DIFFERENCE BETWEEN THE SUM OF THE EIGENVALUES AND THE SUM OF THE DIAGONALS = RATIO OF SECOND ELEMENT TO FIRST ELEMENT OF EIGENVECTOR GIVEN BY MAJOR PRINCIPAL COMPONENT = 0.999999999955D 00

ESTIMATE OF RATIO OF STANDARD DEVIATION OF ABILITY DISTRIBUTION OF RATIO OF POPULATION TAKING TEST 2 = 0.1060930230356D 01

(THIS SLOPE IS COMPUTED BY DIVIDING THE RATIO OF THE SECOND ELEMENT TO THE FIRST ELEMENT OF THE EIGENVECTOR BY THE ASSIGNED WEIGHT)

ESTIMATE OF INTERCEPT OF FITTED LINE FOR SCATTER DIAGRAM OF TEST PARAMETERS OVER TEST 1 PARAMETERS = -0.3623886888928D-01

0.34157636244480-01 ESTIMATE OF MEAN OF ABILITY DISTRIBUTION OF POPULATION TAKING TEST 2 USING MEAN AND S.D. OF THAT OF POPULATION TAKING TEST 1 AS ORIGIN AND UNIT = produced indicated, proposity browing produced progress produced produced process.

TABLE A-1 (Continued): J2/2259 And J1/1075 Cases.

WEIGHT, RATIO OF S.D. OF ABILITY, INTERCEPT AND MEAN DISTANCE FOR EACH ITERATION

MEAN	0.033152621598 0.034193533137 0.034156355533 0.034157681939 0.034157634614 0.034157636303 0.034157636242
INTERCEPT	-0.03546829150 -0.036274225085 -0.036237607371 -0.036238913899 -0.036238867283 -0.036238868887
S.D. RATIO (SLOPE)	1.063168686223 1.060933076869 1.060930128796 1.060930233980 1.060930233980 1.060930233980
WEIGHT	1,000000000000 0,940584512089 0,942565521680 0,942569140849 0,942569047400 0,942569050734 0,942569050615
ITERATION	-002500 -002500 -002500 -00250

WHEN SCATT, & DIAGRAM OF DIFFICULTY PARAMETERS IS SOLELY USED

- "	S.D. Of POP. $2 = 0.94256905061910 00$	-0.36238868889280-01
S.D. OF POP. 1 = 1.	S.D. OF POP. 2	INTERCEPT =
0.	MEAN OF POP. 2 = 0.34157636244480-01	0.10609302303560 01
MEAN OF POP. 1 = 0.	ii 2	
<u>ج</u>		
) L	P C	16
ō	ō	, FE
MEA	MEAI	SLOPE =

WHEN TWO SCATTER DIAGRAMS ARE BOTH CONSIDERED TO ESTIMATE S.D. RATIO

.	s.0. of $POP.$ $2 = 0.94531265355620$ 00	-0.3760349333103D-01
S.D. OF POP. 1 = 1.	S.D. OF POP. 2	INTERCEPT =
0.	MEAN OF POP. $2 = 0.3554705806374D-01$	0.10578510678320 01
II	ii 8	
POP.	POP.	
MEAN OF POP. $1 = 0$.	MEAN OF	SLOPE =

Ä

223

4

7

11.12

CANCEL STATES

7.7

5.53

8

3

Y

S

S

言

im.

A POSSEZIONAN PROSESTA MIRECENSCO APPROPRIATE A PROSESSE A SECURIOR DESCUESSE A PROSESSE
DISTRIBUTION LIST

e e e	1 Mr. John H. Wolfe War, Personnal 840 Conter	COLOR OF THE COLOR	THE TOTAL PLANT CONTRACT OF THE PARTY OF THE		San Drego, CA 92:50				ent Center			ch	6				1.181							at er			Control of the Contro					hodl	rative					nter				d 3 L A S		
4.67	Spres sand. Tr	San Diego, CA 9152	1 Dr. Mary Schratz	Mavy Personnel SED Center	San Diego, CA 92152	print.	Report Streets	Code 79	Maval Training Equipment Center	Orlando, FL 32813	1 Sr. Bichard Snow	Office of Mayal Research	Branch Office, London	COMOC ON THE CONTRACT	TREO IN TAROL BAR DIL		Mavy Personnel RtD Center	San Diego, CA 92152		LEACEL COLONIA STATE STA	San Drego, CA 92152		1 Br. Frank Vicino	Mary Personnel Rad Center	San Diego, LA 92152	The Political Manager	•		Arlington, VA 22217		1 Dr. Ronald Weitzean	Maval Postgraduate School	Department of Administrative	Section at the section of the sectio	OAPON HO AVERTANDE	CONTRACTOR OF THE PROPERTY OF	•	Navy Personnel ASD Center	San Diego, CA 92152		L DR. MARTIX F. ELUKOFF	MANY PERSONNEL AS U CENTER CAN DIEGO CA GOIGO	7017, 67 108318 660	
,	Mary Disk Mosham	Arithmaton Bare	1427 (4 U.S. 1	,		Chief of Naval Education and Training Chief O(A)	Nava State Co	Fensacola, FL 22509	•	Dr. Leonard Progher	Mayy Personnel RUB Lenter San Diego, CA 92161	1 Dr. Carill Lang	Nary Fersone: R&D Center	sen Diego, EA YZinz	1 Dr. William L. Maloy (02)	Chief of Mayal Education and Training	Maval Air Station	Pensacola, FL 32508	1 Dr. Lages McPride	Mavy Personnel R&D Center	San Diego, CA 92152		Manager Call 44	THE LOSS IN	TOTAL MATERIAL CONTRACTOR	1 ts. Kathleen Mcreno	Navy Personnel RtD Center (Code 62)	San Dregc, CA 92152		1 Library, Code P201L	Mavy Personnel RtD Center	San Diego, CA 92152	Tachoire D. canton	May Derested Diff. Center	San Diego, CA 92152		6 Fersonnel & Training Research Program	Code 442PT	Office of Mayal Research	Arlington, VA 2221/		I DF. LAT. NESS	Building 90	Great Lakes MTC, IL 60088
- · · · · · · · · · · · · · · · · · · ·	Code (1):	Construction of the Constr	Section 1. The section of the sectio	. I'm Nich Webs	では、「中国の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	Lighter Differs, Far East APS San Francisco, D4 96601		1 Lt. Plesander Bory	Applied Psychology	Measurement Division	NAME PERSONAL FL 32508	. Pr. Robert Breaux	A THE STATE OF THE	Code W-0955 Orlando F: 32813		1 Dr. Kobert Carroll	NAVOF 115	Washington , DC 20170	i Dr. Stanley Collyer	25fice of Maya! Technology	800 M. Duincy Street	Arlington, VA 22217		Legarative Legaran	CONTINUE OF SEVER APPEAR OF	Code 270	Arlington, Va 22217		1 Dr. John Ellis	Mavy Personnel R&D Center	San Diego, CA 92252		L DW. FP! TEUENICU		San Diedo, CA 92152		I Mr. Paul Foley	Mavy Personnel R&D Center	San Diego, CA 92152	•	The Refrection Markey	Navy Personnel Mai Lenter (Lode 62) Can Dianc Ed 92152		

Ċ,

公

**

X

N.E

1

1

rivate Sector	2 - A - 1 - A	ייי בשנים איי בשנים איי	University of illinois	152 Endingering Resperch Laboratory	TOTAL MANAGE CANADA		Orbana, It 61801	i Dr. Gusan Dabertson	FSYCHOLOGY DEPARTMENT	CONTRACT LC APPROACHES	SHOW BY CONTRACT			1 ERIC Facility Transitions	4833 Rusby Avenue	Sethesda, MD 20014		The Board of Charles of Co.		Performance Metrics, inc.	5825 Callaghan	Suite 225	San Antonio, IX 78228		1 Dr. Leonard Feldt	Transmitted Total Total		Catton of Art	JOHN CITY, IN DECTA		1 Univ. Prof. Dr. Serbard '13cher	Liebiggasse 3/5	A 1010 Vienna	AUSTRIA		1 Professor Donald Fitzgerald	University of New England	THE WATER WATER SERVICES	AL POTENTIAL TA	אבין הארוים א	•			Department of Computer Schence	Eugene, DR 97403		1 Dr. John R. Srederissen	Balt Beranek & Mewnan	50 Youlton Street	Company of the control		Daniel Sagara Grégord	いたを使いてはしています。 ひょうかいしょう こうごう		SECOND OF COLLECTION	サンド・ウェル・・・コル・ルンで見て		
or, wate Sector		1 Dr. Norman Cliff	Deat, of Psychology	HILLIAN ST. AL. ST. AL.		University Fark	Los Angeles, CA 40007	1 Or. Hans Croebad	Potoni despesation		University of Leyden	Boerheavelaan 2	2004 EX Leyden	The METHER ANDS				prox enumer of	Athenton, CP 44205		: C18/McGraw-Hill Library	2500 Sarden Road				TOTAL TOTAL	University of littinguis	Department of Educational Psychology	Urbana, IL 61801		1 Dr. Dattprasad Divos	Syracuse University	Department of Psychology	Syracuse, NY 13210		1 De Cassonel Doochin			CALVETSITY OF ILLIAMS	Champaign, IL 61820		1 Dr. Mei-Ki Dong	Ball Foundation	800 Roosevelt Road	Building C. Suite 206	Slen Ellyn, 1L 60137		1 Dr. Eritz Draspon	Department of Pakingshook	William William St.	Total Sales of the		Champaign, 1. 618:0		1 Dr. Stephen Denbar	Lindquist Center for Measurement	University of Iowa	lowa City, IA 52242
Drivate Sector		The Francis B Anderson		のコースト、そのの、これにものでしての問題と	Studyestraede &				一種の物質 一種情報で こうせい	Edicational Testing Service	Frinceton, NO 08450		STATE OF THE STATE		מניים בי בסתיקורם	le: Avi. University	Tel Aviv, Remat Aviv 69975	[srae.		のようでは、このなどの説と、人は、マ		これとのことのではある。 というこう ひこうにゅうさん こうしん かんしゅう かんしゅう かんしゅう かんしゅう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう しゅうしゅう しゅうしゅう しゅうしゅう				1 Dr. R. Darrell Bock	Department of Education	University of Chicago	Chicago, 1L 60637	•	Mr. Arnold Bohrer	Sertion of Paychological Research	Thesay Davide Charact		CA3	Juga Brussels	#6:01 us		1 Dr. Kobert Brennan	American College Testing Programs	P. D. Box 168	loss Dity, 39 52243		Sieco Brysn	ACCO OF Brack	1000 LE 1000 D	בינונבסחבי של פינונ	A department of the second of	I Dr. Erfest K. Gastre	y stokely	University of Tennessee	Knoxville, TM 37916		1 Dr. John B. Carroll	409 Elliott Rd.	Chapel Mill, MC 27514		
Cutital Agenties		THE PARTY OF THE P		A COLOR OF THE PARTY OF THE PAR	SE CONTRACTOR	William Control of the Control of th	A PARTY OF TAXABLE PROPERTY.	 A CONTRACTOR OF THE CONTRACTOR	Personne: File center	Define of Fersone, Management	1900 E Street Wa	のではなが、 これ 一般の本をはてはなるので			かんでき こと の信仰のたい こんだい	U. S. Coast Guard Institute	P. O. Substatto: 18	Objectors Dity. Of 77:59			THE PARTY OF THE P	いかれらいこと、はみていていちのコーボーアとの音楽に	Mational Science Foundation	Mashington, BC 20050																																		

Private Sector

Dr. Robert Elaser Learning Research & Development Center University of Pittsburgh 3979 O'Hara Street PITSBURGH, PA 15240

Dr. Marvin D. Block 217 Stone Hall Cornell University Ithaca, NY 14853 John Woelns University Johns Woelns University Department of Psychology Charles & 74th Street Baltisore, MD 21218

University of South Carolina Columbia, SC 27208

College of Education

i Cr. Jases G. Breeno University of California, Berkeley Oppartment of Education

Berteley , CA

i Dipi. Pad. Michael W. Habon Universitat Dusseldorf Erziebungsaissenshaftliches Inst. [I Universitatsstr.] D-4000 Ousseldorf I WEST GEPRARY

i Dr. Bon Hambleton School of Education University of Massachusetts Amberst, MA 01002 i Frof. Litz F. Wornke
Universitat Dusseldorf
Erzebungaussenschaftliches Inst. if
Universitatestr. i
Dusseldorf i
MEST SERGAMY

i Dr. Paul Horst 577 S Street, #184 Chula Vista, CA 90010 1 Dr. Llová Humbhreys Departsent of Psychology University of Illinois 503 East Daniel Street Champaign, Il 61820

Private Sector

Dr. Steven Hunka Department of Education University of Alberta Edmonton, Alberta CAMADA 2122 Ccollidge St. Lansing, MI 48906 Dr. Muynh Muynh

Dr. Jack Hunter

1 Dr. Jouglas H. Jones Advanced Statistical Technologies Corporation 10 Trafalgar Court Lawrenceville, NJ 08148

1 Professor John A. Keats
Department of Fsychology
The University of Newcastle
N.S.W. 2708
M.STRALS

1 Dr. William Koch Umiversity of Texas-bustin Measurement and Evaluation Center Austin, TX 78703

i Dr. Thomas Leonard University of Wisconsin Departeent of Statistics 1210 West Dayton Street Madison, WI 55705 Dr. Alan Lesgold Learning 9&D Center University of Pittsburgh 1939 O'Hara Street Pittsburgh, PA 15260 Dr. Michael Lewine Department of Educational Psychology 210 Education Bldg. University of Illinois Chappaign, 11 61801

vate Sector

1 Dr. Charles Lewis Faculteit Sociale Wetenschappen Rijisuniversiteit Broningen Dude Boteringestraat 23 97126C Groningen Metherlands

College of Education University of Illinois Urbana, IL 61801 Dr. Robert Lockman Center for Naval Analysis 200 Morth Beauregard St. Alexandria, VA 22311 1 Dr. Frederic M. Lord Educational Testing Service Princeton, NJ 08541 i Dr. James Lumsden Department of Psychology University of Western Australia Nedlands M.A. 6009 AUSTRALIA

1 Br. Sary Marco Stop 31-E Educational Testing Service Princeton, NJ 08451 1 Mr. Robert Ackinley University of Toledo Debt of Educational Psychology Toledo, CH 43606 . Dr. Barbara Means Muman Resources Researth Organization 360 North Washington Alexandria, VA 22314

Educational Testing Service Princeton, NJ 08541

Jr. Robert Mislevy

1 or, M. Alan Micewander University of Oklahoma Department of Psychology Oilahoma City, OK 73369

Private Sector

W ----

(

N.

i Br. Mekvin A. Novici TSS Lindquist Center for Messureert University of Iowa Iowa City, IK 51242

i Dr. James Olson WiChT. Inc. 1975 South State Street Jrem, UT 34057 i Mayne M. Patience Paerican Council on Education SED Testing Service, Suite 25 One Dugort Cirle, NW Washington, 3C 20036

: Dr. James Paulson Dept. of Psychology Portland State Univedratty P.O. Box 751 Portland. OR 97207 1 Dr. James A. Paulson Portland State University P.G. Bcx 751 Portland, 29 97207

i Cr. Mark D. Rectase ACT P. O. Box 168 Icma City, IA 52243 1 Dr. Lawrence Ridner 403 Ela Avenue Takoma Park, MD 20012 1 pr. 1. Ayan Decartment of Education University of South Carolina Columbia, SC 29208

FROF, CUNIKO SEMECINA DEPT, OF PSYCHOLGEY CHIVERSITY OF TENNESSEE MADIVILLE, IN 37916 Enant J. Schaudt
Jeoarteent of Psychology
3140. 35
Secree Washington University
Washington, DC 20052

Department of Educational Psychology Davision of Esvihological Studies Educational Testing Service Lindourst Center for Measuresent Assessment Systems Corporation Union Carbide Corporation Department of Statistics repartment of Psychology Department of Psychology University of 11110015 University of Missouri University of Illinois 2233 University Avenue Dr. V. R. R. Sapuluri lowa City , IA 52242 360 North Mashington University of Mansas Alexandria, VA 22314 1 Dr. Maurice Tatsuoka . Dr. Robert Tsutakawa 603 E. Danzel Street Champaign, It 61820 Dak Ridge, 1N 37830 Princeton, NJ 08540 Champaign, 11, 51820 Cambaign, 10 6:820 University of towa St. Paul, 38 55114 229 Education 81dg Lawrence, KS 55044 Mr. Gary Thosasson 1 Or. Ledyard Tucker 1 Dr. Ming-Hei Wang Columbia, MG 62201 :319 S. Sixth St. Dr. Howard Mainer 1 Dr. Brian Maters Muclear Division Br. Sand Thisser Dr. David Vale orgusta Sector P. O. Box Y Surte 310 . E Manpower Research and Advisory Services Computer Based Education Research Lab University of Missouri-Columbia Department of Statistics Laboratory of Psychometric and Psychological & Quantitative 200 North Beauregard Street Educational Testing Service 200 Yorth Beauregard Street University of Massachusetts University of Illinous Separtment of Mathematics 1 Dr. Haribaran Swaminathan Center for Maval Analysis Center for Mayal Analysis Saithsomian Institution 1-4-24 Kugenuma-Kasgan : 3r. -. dallace Sinasko 301 Worth Pitt Street Callege of Coucation Stevandria, 4A 22311 Alexandria, 48 22310 Alexandria, VA 22311 Dr. 133Jo Shigeasu Evaluation Research School of Education i Or. Kikumi Tatsuoka Coma City, 12 52342 Princeton, MJ 08541 Jul +81515 01 70#8 Columbia, MO 65201 Sr. Paul Speckean Cr. Feter Stolaff Or. Mulliam Stout Asherst, 48 01003 Jr. Milliam Sims orbana, il 6190; Program Birector 1 Martha Stocking Poundatt uns 10115 - to. Lower Schoer Furusama 251

Private Sector

University of Minnesota Mynneapolis, 4N 55455 Dr. Savid J. Meiss M660 Elliott Hall 75 E. River foad

University of Southern California Department of Psychology Los Angeles, CA 70007 1 Sr. Rand R. Haltex

1 German Military Representative ATTM: Molfgang Wildegrube 4000 Brandywine Street, NW Streitkraefteant Washington , DC 20016 2~5200 Bann 2

Department of Educational Psychology University of Illinois Dr. Bruce Williams Urbana, Il 51801

Ms. Marsiyn Wingersky Educational Testing Service Princeton, NJ 08541

Memorial Sloan-Kettering Cancer Center Biostatistics Laboratory New York, NY 10021 1275 York Avenue 1 Dr. Seorge Wong

Del Monte Pesearch Park CIB/AcSraw Hill 1 Dr. Wendy Yen

152 Engineering Research Laboratory

Jrbans. IL 61801

Monterey, CA 97940

TVOS NOR	
NON GOVT	
11. 图 图 图 11.	

A STATE STATES OF THE CONTRACT OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES

7. 7. 7.

公公

K

Bowling Green State University Department of Psychology Bowling Green, OH 43403 Dr. Robert Guion

Department of Information Systems University of Pittsburgh Dr. Miel Timm Planning

Dr. William W. Turnbull Educational Testing Service Princeton, NJ 08542

Pittsburgh, PA 15260

et des Sciences de l'Education 1201 Geneva SWITZERLAND Faculte de Psychologie Universite de Geneve 3 fl. de l'Universite Dr. P. Mengal

Dr. Wim J. van der Linden Vakgroep Onderwisjskunde Postbus 217 7500 EA Endschede THE NETHERLANDS

University Duesseldorf D-4000 Duesseldorf Dr. Lutz Hornke WEST GERMANY

Dr. Wolfgang Buchtala 8346 Simbach Inn Industriestrasse l Postfach 1306 WEST GERMANY

Educational Testing Service Princeton, NJ 08542 Dr. Albert Beaton

Faculty of Education University of Tokyo Dr. Sukeyori Shiba Tokyo, JAPAN 113 Hongo, Bunkyoku

1208-7 Kamoi, Midoriku Yokohama 216, JAPAN fr. Hiroyuki Noguchi

C & C Systems Research Laboratories Nippon Electric Co., Ltd. Kanagawaken 213, JAPAN Miyamaeku, Kawasaki Dr. Takahiro Sato 4-1-1 Miyazaki

Dr. Chang-I Bonnie Chen Graduate School of Psychology National Chengihi University Taipei, Taiwan R.O.C.

600 Mountain Ave. Murray Hill, NJ 07974 Dr. Douglas Carroll Bell Laboratories

Department of Psychology Vanderbilt University Nashville, TN 37240 Dr. Bruce Bloxom

Woodland Hills, CA 91634 Perceptronics, Inc. 6271 Variel Ave. Dr. J. Uhlaner

Montreal, Quebec H3A 1B1 1205 Dr. Penfield Ave. Dept. of Psychology McG111 University Yoshio Takane CANADA

Kohokuku, Yokohama 223 Mr. Fultmorf Susumu 1-21-36 H1yosh1 JAPAN

7-2-12 Honcho, Tanashi-shi Toky 188, JAPAN Mr. Kenji Goto Ina Nyuhaim #208

Mr. Tadashi Shibayama Chiba-ken, 270-01 Ono-kohpo #201 901 Hiregasaki Nagareyama-shi JAPAN

NAVY

Office of Naval Research 206 O'Keefe Building Atlanta, GA 30332 Mr. Michael Karp

ARMY

U.S. Army Research Institute for the Behavioral & Social Sciences Or. Randall M. Chambers Fort Sill Field Unit Fort Sill, OK 73503 P.O. Box 3066

FILMED 3-86 DTIC