Subject Code: R23xxxx

KALLAM HARANADHAREDDY INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

II B. Tech I Semester (R23)

ADVANCED DATA STRUCTURES AND ALGORITHM ANALYSIS (Common to CSE, CSE-AIML, DS, AIDS) QUESTION BANK

Course Advisor/Moderator: Ch Samsonu

Q. No.			СО	BTL	Total Marks			
UNIT-I Short Answer Questions								
1	Define an Algorithm and its properties CO1 1 2M							
2		ine Big-Oh Notation	CO1	1	2M			
3	Fine	d the time complexity for recursive factorial function	CO1	1	2M			
4	Exp	plain Big-Oh notation order of growths	CO1	1	2M			
5	Exp	olain AVL tree LL rotation	CO1	2	2M			
6	Wri	te time complexities of AVL tree operation	CO1	2	2M			
7	Wri	te AVL tree application	CO1	1	2M			
8	Def	ine B-Tree.	CO1	1	2M			
9	Wri	te B-Tree application.	CO1	1	2M			
10	Explain advantages of AVL tree. CO1 1 2M							
	UNIT-I Long Answer Questions							
1	i	Explain how to calculate time complexity of an algorithm with an example.	CO1	2	5M			
	ii	Explain AVL tree rotations	CO1	2	5M			
2.	i	Explain asymptotic notations used for specifying time complexities	CO1	3	5M			
2.	ii	Construct order m=5, B-tree with the values 10, 50, 30, 90, 70, 100, 5, 20, 160, 200, 55, 25, 35	CO1	3	5M			
3	i	Construct AVL tree with the values 10, 50, 30, 80, 90, 70, 100, 5, 20,	CO1	3	5M			
	ii	Explain AVL tree delete operations	CO1	2	5M			
4	i	Explain different cases to insert a new element in AVL tree	CO1	2	5M			
	ii	Explain how to traverse B-tree with an example.	CO1	2	5M			
5	i	Construct order m=3,B-tree with the values 50,40,90,20,10, 60,90,100,20	CO1	3	5M			
	ii	Explain B-Tree Delete operation with an example.	CO1	2	5M			

Q. No.			СО	BTL	Total Marks			
UNIT-II Short Answer Questions								
1	Define Max Heap tree CO2 1 2M							
2		at is the time complexity of Quick sort for Best, average and rst cases?	CO2	1	2M			
3	Exp	plain how heap tree is represented as an array	CO2	2	2M			
4	List	t out Heap tree applications	CO2	1	2M			
5	Exp	plain weighted graph	CO2	1	2M			
6	Def	fine Graph and types of Graphs.	CO2	1	2M			
7	Def	fine adjacency vertices	CO2	1	2M			
8	Exp	plain Biconnected graph	CO2	1	2M			
9	Wri	ite Control Abstraction of Divide – and – Conquer.	CO2	2	2M			
10	Def	fine Convex Hull with an example.	CO2	2	2M			
		UNIT-II						
	i	Long Answer Questions Explain Heap tree insert operation	CO2	2	5M			
1	ii	Construct Max heap tree with the values 20,60,90,100,30, 80,70	CO2	3	5M			
	i	Explain Heap tree delete Min operation with an example	CO2	2	5M			
2.	ii	Find the DFT for the graph A B C	CO2	2	5M			
3	i	Explain graph representations	CO2	2	5M			
<u> </u>	ii	Find the BFS for the graph	CO2	2	5M			

		A B C			
4	i	Explain the merge sort for the given set: 35,25,15,10,45,75,85,65,55,5,20,18.	CO2	3	5M
	ii	Explain the General method of Divide and conquer technique.	CO2	2	5M
	i	Describe Stressen's matrix multiplication concept with an example and also find its time complexity.	CO2	2	5M
5	ii	Define sorting?find the time complexity of best and avg case of quicksort for the following elements, let n=10, the elements are 26,5,37,3,61,11,59,15,48,19	CO2	3	5M

Q. No.		СО	BTL	Total
	UNIT-III			Marks
	Short Answer Questions			
1	Write Control Abstraction of Greedy method.	CO3	1	2M
2	State the Job – Sequencing Deadline Problem.	CO3	2	2M
3	Define Spanning tree	CO3	1	2M
4	What is knapsack problem?	CO3	1	2M
5	Write any two differences between dynamic programming and divide and conquer.	CO3	1	2M
6	Draw all possible Optimal Binary Search Trees for the identifier set (do, if, stop).	CO3	2	2M
7	Define Principles of optimality	CO3	1	2M
8	Distinguish between Dynamic Programming and Greedy method.	CO3	1	2M

9	Def	ine i)Feasible solution ii) Optimal solution.	CO3	1	2M
10	Wh	at is travelling sales person problem?	CO3	1	2M
	I.	UNIT-III	I I		
		Long Answer Questions	G02		
1	i	Find an optimal solution to the Knapsack Problem for the instance n=3 the Capacity of Knapsack, M=20. The profits and weights of the objects are (P1,P2,P3)= (25,24,15), (W1, W2, W3)=(18,15,10).	CO3	3	5M
	ii	What is a Spanning tree? Explain Prim's algorithm with suitable example	CO3	2	5M
2	i	Find an optimal sequence to the n=5 Jobs where profits $(P1,P2,P3,P4,P5) = (20,15,10,5,1)$ and deadlines $(d1,d2,d3,d4,d5) = (2,2,1,3,3)$.	CO3	3	5M
2.	ii	Discuss the single – source shortest paths algorithm with suitable example and also find the time complexity.	CO3	2	5M
3		Draw an Optimal Binary Search Tree for n=4 identifiers (a1, a2, a3, a4) = (do, if, read, while) P(1:4)=(3, 3, 1, 1) and Q(0:4)=(2, 3, 1, 1,1).	CO3	3	10M
4	i	Describe the Dynamic 0/1 Knapsack Problem. Find an optimal solution for the dynamic Programming 0/1 knapsack instance for n=3, m=6, profits are (p1, p2, p3) = (1,2,5), weights are (w1,w2,w3)=(2,3,4).	CO3	3	7M
	ii	Distinguish between Dynamic Programming and Greedy method.	CO3	2	3M
5	i	What is a principle of optimality? Solve the travelling sales person problem uses the dynamic programming technique for the given adjacency matrix. A B C D A 0 12 5 7 B 11 0 13 6 C 4 9 0 18 D 10 3 2 0	CO3	3	7M
	ii	What is All – Pair Shortest Path problem (APSP)? algorithms with suitable example.	CO3	2	3M

Q. No.			СО	BTL	Total Marks
		UNIT-IV			
1	Wh	Short Answer Questions at is backtracking?	CO4	1	2M
2		te the Control Abstraction of iterative Backtracking method.	CO4	2	2M
		ine Chromatic number & Give the state space tree for m-	CO4		2M
3		•	004	2	21 V1
		ouring problem.			
4	List	applications of Backtracking	CO4	1	2M
5	Wri	te short notes on Hamiltonian cycle with example.	CO4	2	2M
6	Wh	at is explicit and implicit constraint?	CO4	1	2M
7	Def	ine: i) State Space tree ii) E – Node	CO4	1	2M
8	Cor	nstruct State space tree for 4-Queen problem	CO4	2	2M
9		ine i) Dead Node. ii) Problem state	CO4	1	2M
10		ference between backtrack and brute force techniques.	CO4	1	2M
		UNIT-IV			
	ı	Long Answer Questions		Г	
	i	What is a Backtracking and give the 4 – Queens's solution. Draw the portion of the state Space tree for $n = 4$ queens	CO4	3	5M
1	1	using backtracking algorithm.			JIVI
	ii	Write short notes on General method of backtrack technique	CO4	1	5M
		Give the statement of sum of subsets problem. Find all sum	CO4		
2		of subsets for n=4, $(w1, w2, w3, w4) = (10, 5, 25, 10)$ and		3	103.6
2.		M=25. Draw the portion of the state space tree using fixed – tuple		3	10M
		sized approach.			
		Explain the Graph Coloring problem. and draw the state	CO4	2	
2	i	space tree for m= 3 colors, n=4 vertices graph.		2	7M
3		Discuss the time and space complexity. Distinguish between fixed – tuple sized and variable tuple	CO4	2	
	ii	sized state space tree organization.	004	2	3M
	i	Write the Control Abstraction of iterative Backtracking method	CO4	1	3M
4	ii	Construct State Space tree for 8-Queen Problems	CO4	3	7M
		What is a Hamiltonian Cycle? Explain how to find	CO4		,
5		Hamiltonian path and cycle using Backtracking algorithm.			10 M

Q. No.		СО	BTL	Total Marks			
	UNIT-V			Marks			
Short Answer Questions							
1	Write about branch and bound technique.	CO5	1	2M			
2	Discuss in brief about principle of FIFO branch and bound.	CO5	1	2M			
3	List the Properties of LC-Search.	CO5	1	2M			
4	Compare backtracking and branch & bound.	CO5	2	2M			
5	Distinguish between fixed – tuple sized and variable tuple sized state space tree organization.	CO5	2	2M			
6	Give the statement of 0/1 Knapsack FIFO BB.	CO5	1	2M			
7	Define: i) LC – Search ii) FIFO – BB.	CO5	1	2M			
8	Define Branch and Bound techniques	CO5	1	2M			
9	List out the applications of BB Techniques	CO5	1	2M			
10	Draw the Venn Diagram for NP Hard and NP Complete problem	CO5	2	2M			
	UNIT-V Long Answer Questions						
1	Explain the FIFO BB 0/1 Knapsack problem procedure with the knapsack instance for n=4. m=15, (p1,p2,p3,p4)=(10,10,12,18), (w1,w2,w3,w4) =(2, 4, 6,9). Draw the portion of the state space tree and find optimal solution.	CO5	3	10M			
2.	Explain the General Methods of FIFO, LIFO and LC Search Branch-and-Bound Technique	CO5	2	10M			
3	Explain Travelling sales person problem LCBB procedure with the following instance and draw the portion of the state space tree and find an optimal tour.	CO5	3	10M			
4	Write short notes on i) Classes of NP-hard ii) Classes of NP-complete iii)Distinguish between deterministic and non- deterministic algorithms	CO5	2	10M			

	i	Discuss the Cook's theorem with an Example	CO5	2	5M
5	ii	Explain the satisfiability problem?	CO5	2	5M

Course Advisor BoS Chairman
