Recent Progress in 5G NR NOMA

Shin-Lin Shieh
Department of Communication Engineering
National Taipei University
Dec. 27, 2017

Outline

- 5G Activity in 3GPP
- Candidate Scenarios for NR NOMA
- NOMA timeline in LTE & New Radio
- Candidate NOMA Technologies in NR
- Conclusion and Future Work

5G Timeline in 3GPP

5G Timeline in 3GPP

Overall timeline for NR in TSG-RAN

1. RAN#73, September 2016:

5G NR Requirements TR completion RAN#80, June 2018: Release
 stage 3 freeze for NR, including Standalone.

4. RAN#78/RAN#79: Stage-3

freeze for Non-Standalone higher layers (including components common with standalone). Completion target TBD.

2016

2017

2018

2. CHECKPOINT: RAN#75: March 2017:

- Completion of SI with corresponding performance evaluation and concepts;
- Approval of WID(s);
- Report from RAN1/RAN2/RAN3/RAN4/SA2 on fwd compatibility of NSA and SA NR;
- Reconfirmation of NR timeplan, including completion target for NSA higher layer components (box 4)

3. RAN#78, December 2017:

- Stage 3 freeze of L1/L2 for common aspects of NSA (focused on licensed bands) and SA NR;
- Principles agreed for SA-specific L1/L2 components.

Note: SA: Standalone NSA: Non-Standalone

5G Scenarios and Challenges

Source: IMT-2020

Mainly for Mobile Internet

User experienced data rate: 100 Mbps

- User experienced data rate: 1 Gbps
- Peak data rate: Tens of Gbps
- Traffic volume density: Tens of Tbps/km²

Mainly for IoT (new scenarios)

Low-Latency High-Reliability

- · Air interface latency: 1 ms
- Reliability: nearly 100%

Low-Power Massive-Connections

- Connection density: 10⁶ / km²
- Ultra-low power consumption/Ultra-low cost

5G Scenarios and Challenges

- 5G will not focus only on faster speed
- New application or service type maybe more important

Multiple Access Techniques

- Multiple Access with Orthogonality
 - TDMA, FDMA, CDMA
 - OFDMA

TDMA/FDMA

- 2G Communication system, e.g. GSM
- Orthogonal in time or frequency domain
- Users are scheduled on orthogonal time slots

CDMA

- 3G Communication system, e.g. WCDMA
- Non-orthogonal in time and frequency but orthogonal in code domain
- Users are scheduled on orthogonal sequences

OFDMA

- 4G Communication system, e.g. LTE
- Orthogonal in 2D timefrequency lattice domain
- Users are scheduled on orthogonal time-frequency lattice

Multiple Access Techniques

Downlink and Uplink Non-Orthogonal Multiple Access

Information Theoretic Uplink NOMA Results

CDMA + SIC Receiver

David Tse (2005)

9

NR NOMA Timeline

Nokia

NR NOMA Timeline

Revised Plan (early Dec.)

Use Scenarios

Closer to grant-based

Tend to be more technically challenging

Further away from grant-based

- Tight synchronization time & freq
- Tight power control, equal avg SNR
- No MA signature collision (incl. spreading code, interleaver /scrambling DMRS, preamble)
 - URLLC
 - eMBB small data

"Quasi"connected:

- Asynchronous or synchronous within CP
- Loose power control, un-equal avg. SNR
- Potential MA signature collision
- RRC inactive

"Cold" start:

- Asynchronous (may beyond CP)
- Very loose power control, significant near-far effect
- Potential MA signature collision
- RRC idle

- eMBB small data
- 2-step RACH, small coverage
- mMTC

_Extended coverage

• 2-step RACH, wide coverage

Design Targets & Performance Metrics

RRC connected

- Low latency and small overhead of signaling
- Efficient resource utilization
- High reliability
- Moderate receiver complexity

"Quasi" connected

- Connection density /efficiency
- UE power consumption
- Receiver complexity per cell
- Coverage requirement

"Cold" start

- Connection density /efficiency
- UE power consumption and access latency
- Receiver complexity of system
- Coverage requirement

Baseline: Grant-free OMA

Baseline: Grant-free OMA

Baseline: 4-step RACH

- Enhanced Mobile BroadBand (eMBB)
 - Enhance user experienced data rate
 - User fairness
 - Infrequent small data
- Massive MTC (mMTC)
 - Massive connection
- Ultra Reliable and Low Latency Communication (URLLC)
 - Low latency uplink
 - 2-step random access
 - HARQ and retransmission

- mMTC
- Massive connections with low cost
 & low power consumption
- 10⁶ device/km² => BW*Cell*others
- Traffic characteristic:
 - Periodic traffic
 - Sporadic and infrequent small packets
- Limited knowledge/control of the channels
- Loose open-loop power control

URLLC

Uplink Grant Free Transmission

with NOMA

- NR grant free transmission
- Pre-defined time-frequency resource Per UE
 - Orthogonal MA or
 - Partially overlapped MA
- Repeat K time transmission

- eMBB infrequent small data
- eMBB user experienced data rate
 - Fair scheduling for different SNR users

DL NOMA as an example

		NOMA			
	Water Filling	Round Robin	Fairness		
Near UE Capacity	8	4	0.89	6.8	4.2
Far UE Capacity	0	0.5	0.89	0.5	0.89
Sum Rate	8	4.5	1.78		
Fairness	₿		©		

Usa scena	_	uRLLC	mMTC	eMBB
Requi ment	ire-	Ultra low latency transmission; Ultra high reliability transmission Grant-based eNB Data Arrival Grant-free eNB Data Arrival	Massive connectivity; Highly efficient small packets transmission; Coverage	Large multi-user channel capacity High user density; Uniform user experience ULNOMA Capacity gain! Orthogonal multiple access (e.g. SC-FDMA) Capacity for UE#1
OM	ИA	Connected devices limited by control channel availability; Higher scheduling latency	Limited number of simultaneous connections	Limitation of uplink single user capacity; Heavy CSI dependency for MU-MIMO
NO	MA	Enabling reliable and low latency grant-free transmission; Reductions in latency and signaling overhead	Increase in number of connected devices: supporting overloaded transmission; Enabling grant-free transmission with lower signaling overhead	Achieving uplink multi-user channel capacity; Enabling open-loop MU multiplexing and CoMP
Key n	netric	Capacity and system load with given latency and BLER reliability	Connectivity Density; Coverage	BLER reliability, capacity and system load

- NOMA SID (RP-170829) agreed in RAN#75 Mar. 2017
- Starting point is postponed from 2017/Q3 to 2017/Q4 and again postponed to 2018/Q1
- 4 NOMA workshops were held by ZTE
 - WS #1 in May: Use scenario
 - WS #2 in June: Time plan
 - WS #3 in Aug: Link level simulation parameters for NOMA
 - WS #4 in Oct: Tx and Rx
- Around 51 people from 23 companies/institutes and/or universities participated
- Around 12 companies made presentations

NOMA Workshop #2

 Below is the ZTE's proposed time plan for Rel-15 NOMA SI, after taking into account of companies' feedbacks participating the 2nd NOMA workshop

NOMA Workshop #3

				_
Parameters	mMTC	URLLC	eMBB	Further specified values reported
Carrier Frequency	2 GHz	2 GHz	2 GHz	
Waveform (data part)	CP-OFDM and DFT- s-OFDM	CP-OFDM as starting point	CP-OFDM as starting point	
Numerology (data part)	SCS = 15 kHz, #OS = 14	SCS = 60 kHz #OS = 7	SCS = 15 kHz #OS = 14	
Allocated bandwidth	4 or 6 RB as baseline, single-tone, 1 RB as optional		4 or 6 RB as baseline, and 12 RB as optional	The same for non-orthogonal MA and baseline OFDMA
Target per UE spectral efficiency	[0.1-0.5] for normal coverage, [0.01-0.1] for extended coverage	[0.1-0.5]	[0.1-0.5]	The same total spectral efficiency (per UE SE * number of UEs) for non-orthogonal MA and OFDMA baseline. Company reports the MCS. Without short-term (per TTI) MCS adaptation.
Target BLER for one transmission	10%	0.1%	10%	
Number of UEs multiplexed in the same allocated bandwidth	To be reported by companies.	To be reported by companies	To be reported by companies	For OFDMA baseline, either simulate 1 UE per PRB (FDM for multiple UEs) and increase the MCS (per UE SE) accordingly, or keep the same number of UEs and MCS (resource collision is allowed)

Parameters	mMTC	URLLC	eMBB	Further specified values reported		
BS antenna configuration	2Rx as baseline 4Rx as optional	2Rx as baseline 4Rx as optional	2Rx as baseline 4Rx as optional			
UE antenna configuration	1Tx					
Propagation channel & UE velocity	TDL-A 30ns and TDL	-C 300ns in TR38.90	1, 3km/h			
Max number of HARQ transmission	1 as baseline			1		
Channel estimation	Realistic channel estimated than the least channel estimated the least channel estimat		so be reported			
MA signature allocation (for data)	Fixed/Random	Fixed/Random	Fixed/Random	Proponents report the detais of random MA signature allocation		
DMRS allocation	Proponents report the details of DMRS, and whether DMRS is randomly NR Rel-15 DMRS ove selected by UE or pre-configured by gNB with potential DMRS collision. the baseline OMA					
Timing/frequency offset	0 as starting point,	0 as starting point	0 as starting point	Non-zero timing and/or frequency offset to be considered later		
Distribution of avg. SNR	Both equal and unequal	Equal	Both equal and unequal	For example, for unequal case, the long term SNR can have [3] values,30% users with x dB, 40% users with y dB, and 30% users with z dB		
Receiver algorithm	Proponents provide of	letails of receiver algo	MMSE-IRC for the baseline OMA			

NOMA Workshop #4

Transmitter/Receiver Techniques

Category	Scheme	Proposed by	Signature	Applicable Receivers
Codebook-	SCMA	Huawei	Codebook	MPA, SIC-MPA
based MA	PDMA	CATT	Couciook	WIFT, SIC-WIFT
	MUSA	ZTE		MMSE-SIC
Sequence- based MA	NCMA	LG	Symbol-level Complex Sequence	MMSE-SIC, ESE-PIC
	NOCA	Nokia, Alcatel-Lucent	0 3 3 4 7 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.11.22 818, 282 118
	GOCA	Media Tek.		MMSE-SIC
	IDMA	Nokia, InterDigital	Bit-level Interleaver	ESE-PIC
Interleaver/s crambler-	IGMA	Samsung	Symbol-level	ESE-PIC, MPA
based MA	RDMA	Media Tek.	Interleaver	MMSE-SIC
	RSMA	Qualcomm	Symbol-level Scrambler	MMSE-SIC
Power-based MA	NOMA	NTT DoCoMo	NO	MMSE-SIC

NR Study Item Report 3GPP TR 38.802

Table 9.1.2-5: Range of SNR gain of non-orthogonal multiple access over OFDMA with realistic channel estimation

Sourc	е	Source 1	Source 3	Source 9	Source 9	Source 4	Source 6	Source 2	Source 5	Source 7	Source 8		Source 11
Multipl	e access scheme	SCMA	PDMA	GOCA	RDMA	LDS-SVE	NCMA	MUSA	IGMA	LSSA	NOMA	NB-IoT MU	LCRS
Receiv	ver type	MPA	MPA	MF-based SIC	MF-based SIC	MPA w/o iterative decoding	MMSE-IRC w/ SIC	MMSE- SIC	Chip-by chip MAP	Iterative MMSE-PIC	MMSE- CWIC	SIC	MMSE- PIC
whethe	er CRC is included	excluded	excluded	excluded	excluded	excluded	excluded	excluded	Excluded	included	excluded	excluded	excluded
MA sig	gnature setting	fixed & random	fixed	fixed	fixed	fixed	fixed	random	Fixed	fixed	fixed	fixed	fixed
# of UEs	SE Range (bits/RE per UE)	Range/valu	e of SNR ga	in (dB)	'	'	'	'	'	'	'	'	
2	(0.2, 1.0]											[-1.3, 3.3]	
	[0.05, 0.1]	[0, 0.4]	0.1[SE = 0.0833]	-	-	-	-1.4		-	-	-		
4	(0.1, 0.2]	[0.8, 1.4]	0.2[SE = 0.2083]	-	-	-	-	[0.6,1]	-	-	0.2		
		[1.6, 2.2]	0.5[SE = 0.3333]	-	-	-	0.3		-	-	-		[0.5, 1.5]
	[0.05, 0.1]	[0, 1.1]	-	-	-	-	-1.7		0	-	_		
6	(0.1, 0.2]	[2.2, 2.4]	-	-	-	-	-	[1.1,2.5]	0.6	-	-		
	(0.2, 1]	[3.1, 4.5]	-	[0.4, 0.8]	[0.2, 0.6]	[0.8,1.2]	1.1		1.7	-	-		
	[0.05, 0.1]	[0.1, 1.8]	0.5[SE = 0.0833]	-	-	-	-1.9		0.4	-	-		
8	(0.1, 0.2]	[2.5, 3.4]	2.2[SE = 0.2083]	[0.1, 0.7]	[-0.1, 0.5]	-	-	[0.5,1]	1.9	-	4.6		
		[2.9, 6.7]	2.9[SE = 0.3333]	[0.5, 1.2]	[0.2, 0.8]	-	1.7		-	-	-		
		[1.0, 2.7]	-	-	-	-	-		-	-	-		
12	(0.1, 0.2]	[5.1, 6.0]	-	[0.6, 1.5]	[0.1, 1.1]	-	-	[0.5,2.2]	-	-	4.6		
	(0.2, 1]	[7.2, 13.2]	-	-	-	-	-		-	- 4.0	-		
18	[0.05, 0.1]	-	-	-	-	-	-		-	4.6 4.2	-		
10	(0.1, 0.2]	-	_	-	_	_	_		_	-	_		
24	[0,1,0.2]							[0.9,1.4]					
26	[0.1, 0.2]							[1.6,1.7]					
Note 1	· SNR is defined as	total receiv	ad SNID par I	DE nor Dv a	ntanna at aN	IR							

Note 1: SNR is defined as total received SNR per RE per Rx antenna at eNB.

Note 2: The empty entries in the table are due to absence of simulation data.

Power Domain NOMA

- Power Domain NOMA
 - Power-domain user multiplexing

Power Domain NOMA

Power Domain NOMA

NTT DoCoMo

Ex: two meter with scheduled data?

Power Control

(c) SIC at BS

Code Spreading NOMA

Code Spreading NOMA

NTT DoCoMo

 Enhance NOMA to mitigate inter-user interference in a cell

 Simple time domain (or frequency domain) code spreading on top of repetition

- ➤ In low traffic load, eNB can configure orthogonal code (e.g., OVSF code) to multiplexed users
- ➤ In high traffic load, eNB can configure nonorthogonal code to some multiplexed users

Interleaver Based NOMA

- Interleave Division Multiple Access(IDMA)
 - User discrimination by different interleaving/scrambling per user
 - High spreading through combination of low code rate and repetition
 - Inter-User Interference is processed
 - Interference statistics are utilized to enhance the LLR estimation
- ESE block is introduced to:
 - Estimate the statistics of the received signal (chip-by-chip processing)
 - Provide improved LLR for decoder

InterDigital

The received from *K* users:

$$r(j) = \sum_{k=1}^{K} h_k x_k(j) + n(j)$$

$$= h_k x_k(j) + \zeta_k(j) , j = 1, 2, ..., J$$

$$\zeta_k(j) = r(j) - h_k x_k(j) = \sum_{k' \neq k} h_{k'} x_{k'}(j) + n(j)$$
28

Sequence Based NOMA

Multi-User Shared Access (MUSA)

ZTE

4 users, 100% user load 8 users, 200% user load 12 users, 300% user load 16 users, 400% user load

Pattern Division Multiple Access (PDMA)

Power

UE₁

 $G^{[4,4]} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

 $G^{[4,8]} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

12 UE

100%: PDMA pattern matrix 4×4 200%: PDMA pattern matrix 4×8

300%: PDMA pattern matrix 4×12

Huawei

Sparse Code Multiple Access (SCMA)

Huawei

Sparse Code Multiple Access (SCMA)

Huawei

Non-active

tone

From OFDMA -> LDS -> SCMA

OFDM-CDMA

Overloaded multi-user multiplexing

SCMA

Orthogonal multi-user multiplexing

- Users occupy orthogonal resources for communication
- Easy to implement (single user detection)
- Number of connections limited by the number of physical resource blocks that can be scheduled

Non-orthogonal multiuser multiplexing

- Users occupy the same resource blocks using CDMA
- Non-practically high multi-user joint detection complexity
- Limited number of concurrent users due to limited sequences
- Better coverage due to spreading gain

- Users occupy the same resource blocks in a low density way
- Affordable low multi-user joint detection complexity
- Less collision even for large number of concurrent Users
- Better coverage due to spreading gain

Huawei

SCMA codebook design

Huawei

- SCMA codebook design
 - Shaping gain and coding gain
 - Joint optimization of the sparse spreading pattern design and the mulit-dimensional constellation design
 - Providing good distance properties (Euclidean and/or Product) among the points in the overall multi-dimensional constellation
 - The possibility of having lower number of projection points over each resource element

Huawei

SCMA Receiver

Huawei

SCMA Receiver

Codebook Related Parameters

Related Variables	Typical value	Description
, V	6	6 variable nodes (VN), number of data layers
	4	4 function nodes (FN), number of physical resources
, , ,	-	, , , , , , , ,
d_f	3	Each FN is connected to 3 VNs
d_v	2	Each VN is connected to 2 FNs
· M	4	Number of codeword in each codebook
CB_i	F-by-M matrix	Codebook for one SCMA data layer

Tanner Graph Representation

Edge for passing the inference of the data symbols

Codebook in Storage (V=6, F=4, df=3, dv=2, M=4)

SCMA Codebook index	SCMA codebook for each layer
CB_1	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ -0.1815 - 0.1318i & -0.6351 - 0.4615i & 0.6351 + 0.4615i & 0.1815 + 0.1318i \\ 0 & 0 & 0 & 0 \\ 0.7851 & -0.2243 & 0.2243 & -0.7851 \end{bmatrix}$
CB_2	$\begin{bmatrix} 0.7851 & -0.2243 & 0.2243 & -0.7851 \\ 0 & 0 & 0 & 0 \\ -0.1815 - 0.1318i & -0.6351 - 0.4615i & 0.6351 + 0.4615i & 0.1815 + 0.1318i \\ 0 & 0 & 0 & 0 \end{bmatrix}$
CB_3	$ \begin{bmatrix} -0.6351 + 0.4615i & 0.1815 - 0.1318i & -0.1815 + 0.1318i & 0.6351 - 0.4615i \\ 0.1392 - 0.1759i & 0.4873 - 0.6156i & -0.4873 + 0.6156i & -0.1392 + 0.1759i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $
CB_4	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0.7851 & -0.2243 & 0.2243 & -0.7851 \\ -0.0055 - 0.2242i & -0.0193 - 0.7848i & 0.0193 + 0.7848i & 0.0055 + 0.2242i \end{bmatrix}$
CB_5	$\begin{bmatrix} -0.0055 - 0.2242i & -0.0193 - 0.7848i & 0.0193 + 0.7848i & 0.0055 + 0.2242i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -0.6351 + 0.4615i & 0.1815 - 0.1318i & -0.1815 + 0.1318i & 0.6351 - 0.4615i \end{bmatrix}$
CB_6	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0.7851 & -0.2243 & 0.2243 & -0.7851 \\ 0.1392 - 0.1759i & 0.4873 - 0.6156i & -0.4873 + 0.6156i & -0.1392 + 0.1759i \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Huawei

MPA Receiver

Huawei

MPA Receiver

Iterative message passing along edges

Initial calculation of the conditional probability

- 1. FN updates and message passing to VN
- 2. VN updates and message passing to FN

Output the final guess of the codeword of each data layer at VN node and change the probability to bit LLR for channel decoder

N_iter iterations?

Huawei

MPA Receiver

	,
Parameters	Description of the parameters
y_n, n=1,, F	Received signal as input to the MPA decoder on resource n
m_k, k=1,, V	Codeword selected by layer k, m_k = 1,, M
No_n, n=1,, F	Noise power estimation on physical resource n
C _k,n(m_k)	The constellation symbol of VN node k on physical resource n when using codeword m_k
H _n = {h_n,k}	Channel gain of user k on physical resource n
Ap_k, k=1,, V	A prior probability of codeword k, assuming equal probability 1/M
LLR_k,b	logarithm of the likelihood ratio of layer k bit b
N_iter	Number of iterations in the MPA

Step 1: Initial calculation of the conditional probability

- For each function node FN, calculate the f_n() function, which is the set of all possible residual signals given the known or estimated channel h_n,k and the assumed transmitted codeword C_k,n(m_k)
- When d_f = 3, as in the example, for each FN node n, there are M*M*M combinations of transmitted signals, so there are in total F*M*M*M values to store for f() function calculation

$$\begin{split} &\mathbf{f_n}\big(\mathbf{y_n}, m_1, m_2, m_3, \mathbf{N_{0,n}}, \mathbf{H_n}\big) = \frac{-1}{\mathbf{N_{0,n}}} \left\| \mathbf{y_n} - \left(h_{n,1} \mathbf{C_{1,n}}(m_1) + h_{n,2} \mathbf{C_{2,n}}(m_2) + h_{n,3} \mathbf{C_{3,n}}(m_3) \right) \right\|^2 \\ &m_1 = 1, \dots, M \qquad m_2 = 1, \dots, M \qquad m_3 = 1, \dots, M \qquad n = 1, \dots, \mathrm{F} \end{split}$$

 Phi_n() function is actually the conditional probability for given codeword combination, for Gaussian noise case, it is the exponential operation over f_n function, so the storage needed is the same

$$P(yn|x1, x2, x3) ---- \phi_n(y_n, m_1, m_2, m_3, N_{0,n}, H_n) = \exp(f_n(y_n, m_1, m_2, m_3, N_{0,n}, H_n))$$

To prepare for the iterations, we assign the a prior probability for each codeword, which is assumed to be equal

$$P(x1), P(x2), P(x3) ---- I_{v_1 \to g}^{init}(m_1) = I_{v_2 \to g}^{init}(m_2) = I_{v_3 \to g}^{init}(m_2) = \frac{1}{M}$$

Huawei

MPA Receiver

Parameters	Description of the parameters
у_n, n=1,, F	Received signal as input to the MPA decoder on resource n
m_k, k=1,, V	Codeword selected by layer k, m_k = 1,, M
No_n, n=1,, F	Noise power estimation on physical resource n
C_k,n(m_k)	The constellation symbol of VN node k on physical resource n when using codeword m_k
H _n = {h_n,k}	Channel gain of user k on physical resource n
Ap_k, k=1,, V	A prior probability of codeword k, assuming equal probability 1/M
LLR_k,b	logarithm of the likelihood ratio of layer k bit b
N_iter	Number of iterations in the MPA

Step 2: Iterative message passing along edges

[FN update]: message passing from FN to its neighboring VNs

- FN node g passes updates obtained from extrinsic information to its neighboring VN nodes (g to v1, information from v2 and v3 are extrinsic)
- The message passed to v1 contains the guess of what signal at g may be given all possibilities of v1

$$\mathbf{I}_{g \to v_1}(m_1) = \sum_{m_2=1}^{M} \sum_{m_3=1}^{M} \phi_{\mathbf{n}}(\mathbf{y}_{\mathbf{n}}, m_1, m_2, m_3, \mathbf{N}_{0,\mathbf{n}}, \mathbf{H}_{\mathbf{n}}) \ \left(\mathbf{I}_{v_2 \to g}(m_2) \mathbf{I}_{v_3 \to g}(m_2)\right) \ m_1 = 1, \dots, M$$

$$\mathbf{I}_{g \to v_2}(m_2) = \sum_{m_1 = 1}^{M} \sum_{m_2 = 1}^{M} \phi_n(\mathbf{y}_n, m_1, m_2, m_3, \mathbf{N}_{0,n}, \mathbf{H}_n) \left(\mathbf{I}_{v_1 \to g}(m_1) \mathbf{I}_{v_3 \to g}(m_2) \right) m_2 = 1, \dots, M$$

$$\mathbf{I}_{g \to v_3}(m_3) = \sum_{m_1 = 1}^{M} \sum_{m_2 = 1}^{M} \phi_{\mathbf{n}}(\mathbf{y}_{\mathbf{n}}, m_1, m_2, m_3, \mathbf{N}_{0,\mathbf{n}}, \mathbf{H}_{\mathbf{n}}) \ \left(\mathbf{I}_{v_1 \to g}\left(m_1\right) \mathbf{I}_{v_2 \to g}\left(m_2\right)\right) \ m_3 = 1, \dots, M$$

[VN update]: message passing from VN to its neighboring FNs

- VN node v passes updates obtained from extrinsic information to its neighboring FN nodes (v to g1, information from g2 is extrinsic)
- In the dv=2 case, it is actually a "guess" swap at VN node

$$\mathbf{I}_{v \to g_1}(m) = \text{normalize} \left(ap_v(m) \mathbf{I}_{g_2 \to v}(m) \right) \quad m = 1, \dots, M$$

$$\mathbf{I}_{v \to a_{\tau}}(m) = \text{normalize} \left(ap_{v}(m) \mathbf{I}_{a_{\tau} \to v}(m) \right) \quad m = 1, ..., M$$

=10

Huawei

MPA Receiver

Parameters	Description of the parameters
у_n, n=1,, F	Received signal as input to the MPA decoder on resource n
m_k, k=1,, V	Codeword selected by layer k, m_k = 1,, M
No_n, n=1,, F	Noise power estimation on physical resource n
C_k,n(m_k)	The constellation symbol of VN node k on physical resource n when using codeword m_k
H _n = {h_n,k}	Channel gain of user k on physical resource n
Ap_k, k=1,, V	A prior probability of codeword k, assuming equal probability 1/M
LLR_k,b	logarithm of the likelihood ratio of layer k bit b
N_iter	Number of iterations in the MPA

Step 3: LLR output at variable node after N_iter iterations

- After N_iter iterations, we shall output the guess at each VN node (for each data layer) as the detection results
- The guess at VN node v for codeword m is a chain product of all guesses from all its neighboring FN nodes and the a prior probability

$$\mathbf{Q}_v(m) = ap_v(m) \mathbf{I}_{a, \to v}(m) \mathbf{I}_{a, \to v}(m)$$
 $m = 1, ..., M$

After getting the probability guess of codeword at each layer, we then need to calculate the Log-Likelihood-Rate (LLR) for each coded bit, so that they can serve as the input for the turbo decoder (or any other channel decoder) directly after MPA

$$LLR_x = \log\left(\frac{P(b_x = 0)}{P(b_x = 1)}\right)$$

$$LLR_{x} = \log \left(\frac{\sum_{\mathbf{m}: \mathbf{b}_{\mathbf{m}, \mathbf{x}} = 0} \mathbf{Q}_{\mathbf{v}}(\mathbf{m})}{\sum_{\mathbf{m}: \mathbf{b}_{\mathbf{m}, \mathbf{x}} = 1} \mathbf{Q}_{\mathbf{v}}(\mathbf{m})} \right) = \log \left(\sum_{\mathbf{m}: \mathbf{b}_{\mathbf{m}, \mathbf{x}} = 0} \mathbf{Q}_{\mathbf{v}}(\mathbf{m}) \right) - \log \left(\sum_{\mathbf{m}: \mathbf{b}_{\mathbf{m}, \mathbf{x}} = 1} \mathbf{Q}_{\mathbf{v}}(\mathbf{m}) \right)$$

Huawei

SIC-MPA Receiver

Huawei

MMSE-MPA Receiver

- NOMA is a promising technique for 5G new radio
- 4 NOMA workshops and email discussions virtually the study already
- Many uplink NOMA technologies are competing and hopefully candidate technologies can be reduced
- Performance under practical system design is under investigation
- Receiver implementation complexity may be high
- UE scheduling and resource allocation might have different considerations after NOMA is introduced

Thank you for your attention! Comment & Question?