Streaming Erasure Codes over Multi-hop Relay Network

Elad Domanovitz, Ashish Khisti

Wai-Tian Tan, Xiaoqing Zhu, and John Apostolopoulos

June 21-26, 2020

Motivation: Real-time Interactive Multimedia Streaming

$$\bigcap_{k \neq 0}^{k \neq 0} \left[\begin{array}{c|cccc} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\ \hline p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 \end{array} \right] X_i$$

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{s} \in \mathbb{F}^{1 \times k}, \mathbf{H}_i \in \mathbb{F}^{k \times (n-k)}$$

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \quad \mathbf{s} \in \mathbb{F}^{1 \times k}, \mathbf{H}_i \in \mathbb{F}^{k \times (n-k)}$$

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{s} \in \mathbb{F}^{1 \times k}, \mathbf{H}_i \in \mathbb{F}^{k \times (n-k)}$$

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{s} \in \mathbb{F}^{1 \times k}, \mathbf{H}_i \in \mathbb{F}^{k \times (n-k)}$$

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{s} \in \mathbb{F}^{1 \times k}, \mathbf{H}_i \in \mathbb{F}^{k \times (n-k)}$$

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{s} \in \mathbb{F}^{1 \times k}, \mathbf{H}_i \in \mathbb{F}^{k \times (n-k)}$$

- e.g., random linear codes, strongly-MDS codes [Gabidulin'88, Gluesing-Luerssen'06]
- Can correct 4 erasures

$$\mathbf{p}_i = \mathbf{s}_i \cdot \mathbf{H}_0 + \mathbf{s}_{i-1} \cdot \mathbf{H}_1 + \ldots + \mathbf{s}_{i-M} \cdot \mathbf{H}_M, \qquad \mathbf{s} \in \mathbb{F}^{1 \times k}, \mathbf{H}_i \in \mathbb{F}^{k \times (n-k)}$$

- e.g., random linear codes, strongly-MDS codes [Gabidulin'88, Gluesing-Luerssen'06]
- Can correct 4 erasures

$$\begin{bmatrix} \textbf{p}_4 & \textbf{p}_5 & \textbf{p}_6 & \textbf{p}_7 \end{bmatrix} = \begin{bmatrix} \textbf{s}_0 & \textbf{s}_1 & \textbf{s}_2 & \textbf{s}_3 \end{bmatrix} \underbrace{\begin{bmatrix} \textbf{H}_4 & \textbf{H}_5 & \textbf{H}_6 & \textbf{H}_7 \\ \textbf{H}_3 & \textbf{H}_4 & \textbf{H}_5 & \textbf{H}_6 \\ \textbf{H}_2 & \textbf{H}_3 & \textbf{H}_4 & \textbf{H}_5 \\ \textbf{H}_1 & \textbf{H}_2 & \textbf{H}_3 & \textbf{H}_4 \end{bmatrix}}_{\text{full rank}}$$

Background: Point-to-Point Streaming (n, k, T)-Codes

A point-to-point channel

- A seq. of source messages: $\mathbf{s}_0, \mathbf{s}_1, \dots$ where $\mathbf{s}_i \in \mathbb{F}^k$
- Coding rate $\frac{k}{n}$: Upon receiving \mathbf{s}_i , node \mathbf{s} generates $\mathbf{x}_i \in \mathbb{F}^n$ where \mathbf{x}_i is a function of $\mathbf{s}_0, \mathbf{s}_1, \dots, \mathbf{s}_i$
- A delay constraint T: Node d decodes \mathbf{s}_i through outputting an estimate $\hat{\mathbf{s}}_i$ based on $\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_{i+T}$
- To simplify analysis we assume zero propagation delay

Background: Max. Achievable Rate for (n, k, T)-Codes

A worst-case periodic erasure pattern

- ullet Zero-error decoding: Every message ${f s}_i$ must be perfectly recovered by time i+T under the (T,N)-erasure model
- ullet (T,N)-capacity ${\rm C}(T,N)$: Max. coding rate k/n of an (n,k,T)-code with zero-error decoding
- We thus have: $C(T,N)=rac{k^*}{n^*}=rac{T-N+1}{T+1}$
 - Converse: Inspect the worst-case periodic erasure pattern
 - \bullet Achievability: Periodically interleave an MDS $(n^{\ast},k^{\ast})\text{-block}$ code

Background: Periodic Interleaving

An MDS
$$(5,3)$$
-code with $\mathbf{G} = \left[egin{array}{ccccc} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 4 \end{array} \right]$ corrects $N=2$ erasures.

Periodically interleaving
$$\Longrightarrow (n,k,T)$$
-code with
$$\begin{cases} n=T+1=5\\ k=T-N+1=3\\ T=4 \end{cases}$$

	i-2	i-1	i	i+1	i+2	i+3	i+4
0	$s_{i-2}[0]$	$s_{i-1}[0]$	$s_i[0]$	$s_{i+1}[0]$	$s_{i+2}[0]$	$s_{i+3}[0]$	$s_{i+4}[0]$
1	$s_{i-2}[1]$	$s_{i-1}[1]$	$s_i[1]$	$s_{i+1}[1]$	$s_{i+2}[1]$	$s_{i+3}[1]$	$s_{i+4}[1]$
2	$s_{i-2}[2]$	$s_{i-1}[2]$	$s_i[2]$	$s_{i+1}[2]$	$s_{i+2}[2]$	$s_{i+3}[2]$	$s_{i+4}[2]$
3		·		$s_{i-2}[0] + s_{i-1}[1] + s_{i}[2]$	$s_{i-1}[0] + s_{i}[1] + s_{i+1}[2]$	$s_i[0] + s_{i+1}[1] + s_{i+2}[2]$	·
4	٠	· · .	٠.	··.	$\begin{array}{c} s_{i-2}[0] \\ +2s_{i-1}[1] \\ +4s_{i}[2] \end{array}$	$s_{i-1}[0] + 2s_{i}[1] + 4s_{i+1}[2]$	$s_i[0] + 2s_{i+1}[1] + 4s_{i+2}[2]$

Fong '19: Streaming (n, m, k, T)-Codes over Three-Node Relay Network

A three-node relay network

- A streaming message: $\mathbf{s}_0, \mathbf{s}_1, \dots$ where $\mathbf{s}_i \in \mathbb{F}^k$
- Upon receiving \mathbf{s}_i , node \mathbf{s} generates $\mathbf{x}_i \in \mathbb{F}^n$ where \mathbf{x}_i is a function of $\mathbf{s}_0, \mathbf{s}_1, \dots, \mathbf{s}_i$
- Re-encoding at relay: Upon receiving $\mathbf{y}_i^{(r)}$, node r generates $\mathbf{x}_i^{(r)} \in \mathbb{F}^m$ where $\mathbf{x}_i^{(r)}$ is a function of $\mathbf{y}_0^{(r)}, \mathbf{y}_1^{(r)}, \dots, \mathbf{y}_i^{(r)}$
- A delay constraint T: Node d decodes s_i through outputting an estimate \hat{s}_i based on y_0, y_1, \dots, y_{i+T}

(N_1, N_2) -Achievable Codes and Capacity

Definition

An (n, m, k, T)-code is said to be (N_1, N_2) -achievable if

$$\hat{\mathbf{s}}_i = \mathbf{s}_i \qquad \forall i \in \mathbb{Z}_+$$

Definition

Wlog, assume $T \geq N_1 + N_2$. The (T, N_1, N_2) -capacity is

$$C_{T,N_1,N_2} \triangleq \max \left\{ \frac{k}{\max\{n,m\}} \,\middle|\, \exists \text{ an } (n,m,k,T) \text{-code that is } (N_1,N_2) \text{-achievable} \right\}$$

Theorem (Fong '19)

For any $T \geq N_1 + N_2$, we have

$$C_{T,N_1,N_2} = \min\{C(T - N_2, N_1), C(T - N_1, N_2)\}$$
$$= \frac{T - N_1 - N_2 + 1}{T - \min\{N_1, N_2\} + 1}$$

Achievable

- Straightforward extension of point-to-point code = message-wise decode and forward
- For any $T \geq N_1 + N_2$, we have

$$\max_{T_1 + T_2 = T} \min\{C(T_1, N_1), C(T_2, N_2)\} \le C_{T, N_1, N_2}$$

• Special case: If $T = N_1 + N_2$, achieves capacity

An Optimal Symbol-Wise DF Strategy for $N_1 = N_2 = 1$ and T = 3 Achieving Rate 2/3 (Fong '19)

Time i	0	1	2	3	4
a_i	a_0	a_1	a_2	a_3	a_4
b_i	b_0	b_1	b_2	b_3	b_4
$a_{i-2} + b_{i-1}$	0	b_0	$a_0 + b_1$	$a_1 + b_2$	$a_2 + b_3$

Symbols transmitted by node s from time θ to time θ

Time i	0	1	2	3	4	5
b_{i-1}	0	b_0	b_1	b_2	b_3	b_4
a_{i-2}	0	0	a_0	a_1	a_2	a_3
$a_{i-3} + b_{i-3}$	0	0	0	$a_0 + b_0$	$a_1 + b_1$	$a_2 + b_2$

Symbols transmitted by node r from time 0 to time 5

Time i	0	1	2	3	4	5
a_{i-3}	0	0	0	a_0	a_1	a_2
b_{i-3}	0	0	0	b_0	b_1	b_2

Symbols recovered by node d from time 0 to time 5

What do we Have so Far

- The capacity of three-node network is $\frac{T-N_1-N_2+1}{T-\min\{N_1,N_2\}+1}$
- Can be extended to a sliding window model
- Careful modelling results in better streaming capacity:
 - Point-to-point:

$$T = 3, N = 2 \implies C_{3,2} = \frac{2}{4}$$

• Three-node network:

$$T = 3, N_1 = N_2 = 1 \implies C_{3,1,1} = \min\{C_{2,1}, C_{2,1}\} = \frac{2}{3}$$

- \bullet For any T, and any $N_1+N_2=N$, we have $C_{T,N}=\frac{T-N_1-N_2+1}{T+1}\leq \frac{T-N_1-N_2+1}{T-\min\{N_1,N_2\}+1}=C_{T,N_1,N_2}$
- ullet In practice, the number of hops in an internet path $\gg 1$
- Can we generalize these results to any number of relays?

Streaming $(n_1, \ldots, n_{L+1}, k, T)$ -Codes over L-Node Relay Network

L-node relay network

- A streaming message: $\mathbf{s}_0, \mathbf{s}_1, \dots$ where $\mathbf{s}_i \in \mathbb{F}^k$
- Upon receiving \mathbf{s}_i , node s generates $\mathbf{x}_i \in \mathbb{F}^{n_1}$ where \mathbf{x}_i is a function of $\mathbf{s}_0, \mathbf{s}_1, \dots, \mathbf{s}_i$
- Re-encoding at relay r_j : Upon receiving $\mathbf{y}_i^{(\mathbf{r}_j)}$, node r generates $\mathbf{x}_{i}^{r_{j}(\mathbf{r})} \in \mathbb{F}^{n_{j+1}}$ where $\mathbf{x}_{i}^{r_{j}(\mathbf{r})}$ is a function of $\mathbf{y}_{0}^{(\mathbf{r}_{j})}, \mathbf{y}_{1}^{(\mathbf{r}_{j})}, \dots, \mathbf{v}_{i}^{(\mathbf{r}_{j})}$
- A delay constraint T: Node d decodes s_i through outputting an estimate $\hat{\mathbf{s}}_i$ based on $\mathbf{y}_0^{r_{L+1}}, \mathbf{y}_1^{r_{L+1}}, \dots, \mathbf{y}_{i+T}^{r_{L+1}}$

(N_1,\ldots,N_{L+1}) -Achievable Codes and Capacity

Definition

An (n_1,\ldots,n_{L+1},k,T) -code is said to be (N_1,\ldots,N_{L+1}) -achievable if

$$\hat{\mathbf{s}}_i = \mathbf{s}_i \qquad \forall i \in \mathbb{Z}_+$$

Definition

Wlog, assume $T \geq \sum_{l=1}^{L+1} N_l$. The (T, N_1, \dots, N_{L+1}) -capacity is

$$C_{T,N_1,\dots,N_{L+1}} \triangleq \max \left\{ \frac{k}{\max\{n_1,\dots,n_{L+1}\}} \,\middle|\,$$

 \exists an (n_1,\ldots,n_{L+1},k,T) -code that is (N_1,\ldots,N_{L+1}) -achievable $\}$

Theorem (converse)

In an L+1-node network with maximum of N_j erasures in link (r_{j-1},r_j) , when $T \geq \sum_{l=1}^{L+1} N_l$ the streaming rate us upper bounded by

$$R \le \frac{T - \sum_{l=1}^{L+1} N_l + 1}{T - \min_j \sum_{l=1, l \ne j}^{L+1} N_l + 1} = \min_{T - \sum_{l=1, l \ne j}^{L+1} N_l, N_j}$$
$$\triangleq C_{T, N_1, \dots, N_{L+1}}^+$$

Theorem (achievable)

Theorem: In an L+1-node network with maximum of N_j erasures in link (r_{j-1},r_j) , when $T \geq \sum_{l=1}^{L+1} N_l$ the following streaming rate is achievable

$$R \ge \min_{j} \frac{k \cdot |\mathbb{F}|}{n_{j,j+1} \cdot |\mathbb{F}| + n_{\max}\lceil \log\left(n_{\max}\right)\rceil}$$

$$= \frac{T - \sum_{l=1}^{L+1} N_l + 1}{\max_{j} \left\{T - \sum_{l=1, l \ne j}^{L+1} N_l + 1\right\} + \frac{n_{\max}\lceil \log(n_{\max})\rceil}{|\mathbb{F}|}}$$

Achievable Scheme

- Three-node network: $C_{3,1,1}=\frac{2}{3}$, four-node network: $C_{4,1,1,1}\leq \frac{2}{3}$
- Can we extend the three-node scheme which achieves capacity?

- ullet Three-node network: $C_{3,1,1}=rac{2}{3}$, four-node network: $C_{4,1,1,1}\leqrac{2}{3}$
- Can we extend the three-node scheme which achieves capacity?

Time i	0	1	2	3	4
a_i	a_0	a_1	a_2	a_3	a_4
b_i	b_0	b_1	b_2	b_3	b_4
$a_{i-2} + b_{i-1}$	0	b_0	$a_0 + b_1$	$a_1 + b_2$	$a_2 + b_3$

Symbols transmitted by node s from time θ to time θ

Time i	0	1	2	3	4	5
b_{i-1}	0	b_0	b_1	b_2	b_3	b_4
a_{i-2}	0	0	a_0	a_1	a_2	a_3
$a_{i-3} + b_{i-3}$	0	0	0	$a_0 + b_0$	$a_1 + b_1$	$a_2 + b_2$

Symbols transmitted by node \boldsymbol{r} from time $\boldsymbol{0}$ to time $\boldsymbol{5}$

Time i	0	1	2	3	4	5
a_{i-3}	0	0	0	a_0	a_1	a_2
b_{i-3}	0	0	0	b_0	b_1	b_2

Symbols recovered by node d from time 0 to time 5

- Destination \Longrightarrow relay r_2 . Note: all delays are "reset" at r_2
- Can achieve rate 2/3 for $N_1 = N_2 = N_3 = 1$ and T = 5

Another Strategy for Achieving $C_{3,1,1}$

Time i	0	1	2	3	4
a_i	a_0	a_1	a_2	a_3	a_4
b_i	b_0	b_1	b_2	b_3	b_4
$a_{i-2} + b_{i-1}$	0	b_0	$a_0 + b_1$	$a_1 + b_2$	$a_2 + b_3$

Symbols transmitted by node \boldsymbol{s} from time $\boldsymbol{0}$ to time 4

Time i	0	1	2	3	4	5
a_{i-1}	0	a_0	a_1	a_2	a_3	a_4
b_{i-1}	0	b_0	b_1	b_2	b_3	b_4
$a_{i-3} + b_{i-2}$	0	0	b_0	$a_0 + b_1$	$a_1 + b_2$	$a_2 + b_3$

Symbols transmitted by node r from time 0 to time 5

Time i	0	1	2	3	4	5
a_{i-3}	0	0	0	a_0	a_1	a_2
b_{i-3}	0	0	0	b_0	b_1	b_2

Symbols recovered by node d from time 0 to time 5

• Too good to be true... what happens if there are erasures?

Another Strategy for Achieving $C_{3,1,1}$

Time i	0	1	2	3	4
a_i	a_0	a_1	a_2	a ₃	a_4
b_i	b_0	b_1	b_2	b_3	b_4
$a_{i-2} + b_{i-1}$	ф	b_0	$a_0 + b_1$	$a_1 + b_2$	$a_2 + b_3$

Symbols transmitted by node s from time θ to time θ

Time i	0	1	2	3	4	5
a_{i-1}	0	a_0	a_1	a_2	a_3	a_4
b_{i-1}	0	b_0	b_1	b_2	b_3	b_4
$a_{i-3} + b_{i-2}$	0	0	b_0	$a_0 + b_1$	$a_1 + b_2$	$a_2 + b_3$

Symbols transmitted by node ${\bf r}$ from time ${\bf 0}$ to time ${\bf 5}$

Time i	0	1	2	3	4	5
a_{i-3}	0	0	0	a_0	a_1	a_2
b_{i-3}	0	0	0	b_0	b_1	b ₂

Symbols recovered by node d from time 0 to time 5

• Too good to be true... what happens if there are erasures?

Time i	0	1	2	3	4
a_i	a_0	a_1	a_2	a_3	a_4
b_i	b_0	b_1	b_2	b_3	b_4
$a_{i-2} + b_{i-1}$	ф	b_0	$a_0 + b_1$	$a_1 + b_2$	$a_2 + b_3$

Symbols transmitted by node \boldsymbol{s} from time $\boldsymbol{0}$ to time 4

Time i	0	1	2	3	4	5
a_{i-1}	0	b_1	a_1	a_2	a_3	a_4
b_{i-1}	0	b_0	a_0	b_2	b_3	b_4
$a_{i-3} + b_{i-2}$	0	0	b_0	$a_0 + b_1$	$a_1 + b_2$	$a_2 + b_3$

Symbols transmitted by node \boldsymbol{r} from time $\boldsymbol{0}$ to time $\boldsymbol{5}$

Time i	0	1	2	3	4	5
a_{i-3}	0	0	0	a_0	a_1	a_2
b_{i-3}	0	0	0	b_0	b_1	b_2

Symbols recovered by node d from time 0 to time 5

- Too good to be true... what happens if there are erasures?
- **Key observation:** per hop (per diagonal), there are always "enough" symbols to send (not necessarily in the right order...)

- Denote $\tilde{\mathbf{s}}_i = [s_i[0] \ s_{i+1}[1] \ \cdots \ s_{i+k-1}[k-1]]$
- Sender: Encode $\tilde{\mathbf{s}}_i$ using an $(n_1,k)=(T-\sum_{l=2}^{L+1}N_l+1,T-\sum_{l=1}^{L+1}N_l+1)$ MDS block code and transmit it over the diagonal starting at time i
- Relay r_1 :
 - Start transmitting $\tilde{\mathbf{s}}_i$ at time $i+N_1$.
 - Until time $i+T-\sum_{l=2}^{L+1}N_l-1=i+n_1-2$ forward any received symbols at the order they were received
 - At time $i+T-\sum_{l=2}^{L+1}N_l=i+n_1-1$ decode $\tilde{\mathbf{s}}_i$ and encode it such that the combination of forwarded and encoded symbols results in an $(n_2,k)=(T-\sum_{l=1,l\neq 2}^{L+1}N_l+1,T-\sum_{l=1}^{L+1}N_l+1)$ MDS block code
- ullet Relay r_i generalize the coding scheme of r_1

Summary of the Suggested Strategy

- Transmission is no longer "state-independent" (i.e., is not independent of the erasure pattern on previous links)
- However, this scheme can be easily extended to any number of relays
- Challenges:
 - The order of symbols in each code may depend on erasure patterns in previous hops
 - Can we guarantee that an MDS code can be generated from any combination of k-1 received symbols from previous node?
- Suggested solutions:
 - Add a header that will indicate the order of symbols
 - Proposition described next

Bounding the Size of the Header

Proposition

All block codes used by nodes $j \in [0, ..., L]$ can be generated by puncturing the MDS code associated with rate $C_{T,N_1,\dots,N_{I+1}}^+$

- All codes can be viewed as sub-codes of the (n_{max}, k) MDS code.
- Worst case: the header consists of $n_{\rm max}$ elements, each one chosen from $[1, \ldots, n_{\max}]$
- Repetitions are allowed per packet
- The size of the header is upper bounded by $n_{\text{max}} \lceil \log(n_{\text{max}}) \rceil$

Achieving Rate 2/3 for $N_1 = N_2 = N_3 = 1$ and T = 4

Time i	0	1	2	3	4
a_i	a_0	a_1	a_2	<i>a</i> ₃	a_4
b_i	b_0	b_1	b_2	b_3	b_4
$a_{i-2} + b_{i-1}$	0	b_0	$a_0 + b_1$	$a_1 + b_2$	$a_2 + b_3$

Symbols transmitted by node \boldsymbol{s} from time $\boldsymbol{0}$ to time $\boldsymbol{4}$

Time i	0	1	2	3	4	5
Header	123	223	113	123	123	123
a_{i-1}	0	b_1	a_1	a_2	a_3	a_4
b_{i-1}	0	b_0	a_0	b_2	b_3	b_4
$a_{i-3} + b_{i-2}$	0	0	b_0	$a_0 + b_1$	$a_1 + b_2$	$a_2 + b_3$

Symbols transmitted by node r_1 from time 0 to time 5

Time i	0	1	2	3	4	5
Header	123	123	223	213	113	123
a_{i-1}	0	0	b_1	b_2	a_2	a_3
b_{i-1}	0	0	b_0	a_0	a_1	b_3
$a_{i-3} + b_{i-2}$	0	0	0	b_0	$a_0 + b_1$	$a_1 + b_2$

Symbols transmitted by node r_2 from time 0 to time 5

Summary and Future work

Summary

- For a general setting with any number of relays we showed
 - Upper bound
 - A symbol-wise DF scheme which depends on the erasure pattern
- The gap of the achievable scheme from the upper bound vanishes as $|\mathbb{F}|$ increases.

Future work

- Can we find a scheme which achieves the upper bound without the need for a header?
- Can we extend this analysis to relay setting with burst losses?
- Implement these codes in real-life setups