Convex Optimization Examples

Jaime Tenorio

April 2023

Convex Optimization

A convex optimization problem can be stated as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$ (1)
 $a_i^T x = b_i$, $i = 1, ..., p$,

where the function $f_0(x)$ and the inequality constraints $f_i(x)$ are convex, and the equality constraint must be affine.

The feasible set is convex because it is the intersection of of the domain of the constraints, which are convex.

$$D = \bigcap_{i}^{m} \mathbf{dom} f_{i} \tag{2}$$

Suppose we have a convex optimization problem where the objective function f_0 is differentiable. Let X be the feasible set of the problem. Then $x \in X$ is optimal if and only if:

$$\nabla f_0(x)^T (y - x) \ge 0 \quad \forall y \in X$$
 (3)

Geometrically, this means that the gradient of the objective function at x points in the direction of the feasible set, in other words, it is a supporting hyperplane to X.

Unconstrained Problems

Suppose we have no constraint inequalities f_i and the objective function f_0 is differentiable. Then $x \in X$ is optimal if and only if:

$$\nabla f_0(x) = 0 \tag{4}$$

Take as an example the unconstrained quadratic optimization:

minimize
$$f_0(x) = \frac{1}{2}x^T P x + q^T x + r$$
 (5)

where $P \in \mathbf{S}_{+}^{n}$. The optimality condition gives:

$$\nabla f_0(x) = Px + q = 0 \tag{6}$$

We can visualize this in two dimensions in the following figure:

Equality Constraints

If we have only equality constraints

minimize
$$f_0(x)$$

subject to $Ax = b$ (7)

the feasible set is affine. The optimality condition for $x \in X$ is

$$\exists \nu \in \mathbb{R}^p \quad s.t. \quad \nabla f_0(x) + A^T \nu = 0 \quad \text{and} \quad Ax = b$$
 (8)

which is the Lagrange multiplier optimality condition, also known as the Karush-Kuhn-Tucker (KKT) condition.

We can visualize this in two dimensions in the following figure:

Nonnegative Orthant

If we consider a problem like

minimize
$$f_0(x)$$

subject to $x \succeq 0$ (9)

where the only constraint is the nonnegativity of x. The feasible set is the nonnegative orthant. The optimality condition for $x \succeq 0, x \in X$ is

$$\begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$
 (10)

We can visualize this in two dimensions in the following figure:

Equivalent Problems

We can obtain **equivalent** convex problems using transformations that preserve convexity.

Original		Equivalent	
minimize	$f_0(x)$	minimize (over z)	$f_0(Fz+x_0)$
subject to	$f_i(x) \leq 0$	subject to	$f_i(Fz+x_0)$
	Ax = b	$Ax + b \iff x = Fz + x_0$	
minimize	$f_0(A_0x+b_0)$	minimize (over x, y_i)	$f_0(y_0)$
subject to	$f_i(A_ix+b_i)\leq 0$	subject to	$f_i(y_i) \leq 0$
			$y_i = A_i x + b_i$
minimize	$f_0(x)$	minimize (over x, s)	$f_0(x)$
subject to	$a_i^T x \leq b_i$	subject to	$a_i^T x + s_i = b_i$
	•		$s_i \geq 0$
minimize	$f_0(x)$	minimize (over x, t)	t
subject to	$f_i(x) \leq 0$	subject to	$f_0(x)-t\leq 0$
	$a_i^{\dagger} x = b_i$		$f_i(x) \leq 0$
	,		Ax' = b
minimize	$f_0(x_1, x_2)$	minimize	$\tilde{f}_0(x_1)$
subject to	$f_i(x_1) \leq 0$	subject to	$f_i(x_1) \leq 0$
		$ ilde{f_0}(x_1) = \inf_{x_2} f_0(x_1, x_2)$	

In the table we can see equivalent problems for the following transformations:

- 1. Eliminating equality constraints
- 2. Introducing equality constraints
- 3. Introducing slack variables for linear inequality constraints
- 4. Epigraph form of the standard convex problem
- 5. Minimizing over some variables

Neural Network Training

Training a neural network can be posed as a convex optimization problem.

minimize
$$L(y; \hat{y})$$
 (11)

where $L(y; \hat{y})$ is the loss function, y is the ground truth, and \hat{y} is the prediction. The prediction is given by the neural network, which is a function of the weights W and the input x. If we consider a network of one layer, the prediction is given by

$$\hat{y} = \sigma(Wx) \tag{12}$$

where σ is the activation function. For this problem to be convex we need the loss function to be convex. We can consider the following loss functions:

- ► Mean squared error (MSE): $L(y; \hat{y}) = \frac{1}{2}(y \hat{y})^2$
- **Cross-entropy loss**: $L(y; \hat{y}) = -y \log(\hat{y}) (1-y) \log(1-\hat{y})$
- ▶ Hinge loss: $L(y; \hat{y}) = \max(0, 1 y\hat{y})$

For example, YOLO is a convolutional neural network for object detection. It is trained using the following loss function

$$L = \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{i=0}^{B} \mathbf{1}_{ij}^{\text{obj}} \left[(x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2} \right]$$

$$+ \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{i=0}^{B} \mathbf{1}_{ij}^{\text{obj}} \left[(\sqrt{w_{i}} - \sqrt{\hat{w}_{i}})^{2} + (\sqrt{h_{i}} - \sqrt{\hat{h}_{i}})^{2} \right]$$

$$+ \sum_{i=0}^{S^{2}} \sum_{i=0}^{B} \mathbf{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^{2}} \sum_{i=0}^{B} \mathbf{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbf{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_{i}(c) - \hat{p}_{i}(c))^{2}$$

$$(13)$$

where $\hat{x}, \hat{y}, \hat{w}, \hat{h}, \hat{c}$ are the output from the convolutional neural network. This is a modified mean squared error loss function, which is convex.

Usually, the optimization of a neural network is not a convex problem.

