# **Project Report-2: Predictive Maintenance for Industrial Machines**

# **Data Collection**

Successfully collected Data set from Kaggle.(Source: https://www.kaggle.com).

# **Data Loading**

# Step 1: Import and Read Data

Load the dataset into the environment for further analysis.

# **Objective:**

Read the dataset, display its basic structure, and provide an overview of its contents. Apply necessary modifications if required.

# **Data Exploration**

# **Step 2: Analyse Data Characteristics**

Explore the loaded dataset to understand its structure and key attributes.

# **Objective:**

Analyse the distribution of numerical features, calculate the correlation matrix, examine categorical variables, check for missing values, and identify potential outliers.

# **Data Cleaning**

## **Step 3: Handle Missing Values & Outliers**

Clean the dataset by addressing inconsistencies and ensuring data quality.

## **Objective:**

Impute missing values, handle outliers, and remove duplicates to enhance dataset reliability.

# **Data Preparation**

## **Step 4: Feature Encoding & Scaling**

Prepare the data for model training by transforming categorical and numerical features.

# **Objective:**

Convert categorical features to numerical using one-hot encoding and scale numerical features using standardization.

# **Feature Engineering**

# **Step 5: Creating Derived Features**

Engineer new features from existing ones to enhance model performance.

# **Objective:**

Compute rolling averages and standard deviations for selected columns in df\_scaled, then merge these new features with existing ones into df\_final.

# **Data Splitting**

## **Step 6: Partitioning the Dataset**

Divide the dataset into training, validation, and testing sets for model development.

# **Objective:**

Use train\_test\_split to create distinct sets for training, validation, and testing to ensure robust model evaluation.

# **Model Training**

## **Step 7: Training the Model**

Develop a predictive model using logistic regression.

## **Objective:**

Fit a Logistic Regression model on the training dataset to predict machine failures or maintenance needs.

#### **Model Evaluation**

# Step 8: Performance Assessment of the Optimized Logistic Regression Model

# **Objective:**

Evaluate the performance of the best optimized Logistic Regression model using the validation dataset. Compute evaluation metrics such as accuracy, precision, recall, F1-score, and confusion matrix to assess model effectiveness.

# **Code:**

# **Data Loading**

```
import pandas as pd
try:
   df = pd.read csv('industrial machines data.csv')
   display(df.head())
   print(f"Shape of the DataFrame: {df.shape}")
   print(f"Data types of each column:\n{df.dtypes}")
except FileNotFoundError:
   print("Error: 'industrial machines data.csv' not found.")
   df = None # Set df to None to indicate failure
except pd.errors.EmptyDataError:
   print("Error: 'industrial machines data.csv' is empty.")
except pd.errors.ParserError:
   print ("Error: Unable to parse 'industrial machines data.csv'. Check the file format.")
   df = None
except Exception as e:
  print(f"An unexpected error occurred: {e}")
df = None
```

## Output:

| Machine_I<br>D | Machine_Typ<br>e | Temperature_<br>C | Pressure_ba<br>r | Vibration_m_s<br>2 | Humidity_<br>% | RPM       |          |
|----------------|------------------|-------------------|------------------|--------------------|----------------|-----------|----------|
| 0              | 1                | Grinder           | 97.57            | 9.17               | 1.83           | 60.1<br>9 | 372<br>3 |
| 1              | 2                | Lathe             | 82.01            | 3.16               | 2.23           | 81.3<br>9 | 301<br>4 |
| 2              | 3                | Milling           | 95.16            | 2.30               | 4.33           | 69.5<br>2 | 498<br>6 |
| 3              | 4                | Grinder           | 91.59            | 5.41               | 1.93           | 39.7<br>8 | 151<br>3 |
| 4              | 5                | Grinder           | 67.83            | 9.87               | 1.26           | 34.2      | 440      |

```
Shape of the DataFrame: (100, 7)
Data types of each column:
                    int64
Machine ID
Machine Type
                  object
Temperature C
                 float64
Pressure bar
                 float64
Vibration m s2
                 float64
Humidity %
                 float64
RPM
dtype: object
```

# **Data exploration**

```
import matplotlib.pyplot as plt
import seaborn as sns
# Descriptive statistics for numerical features
print(df.describe())
# Distribution of numerical features
df.hist(figsize=(12, 8), bins=20)
plt.suptitle('Distribution of Numerical Features', fontsize=16)
plt.tight layout(rect=[0, 0.03, 1, 0.95])
plt.show()
# Correlation matrix (excluding 'Machine Type')
numerical features = df.select dtypes(include=['number'])
correlation matrix = numerical features.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix of Numerical Features')
plt.show()
\ensuremath{\text{\#}} Unique values and frequencies for categorical features
print(df['Machine Type'].value counts())
# Missing values
print(df.isnull().sum())
print(df.isnull().sum() / len(df) * 100)
# Identify potential outliers in the numerical features using box plots
df.plot(kind='box', subplots=True, layout=(2,4), figsize=(15, 6))
plt.suptitle('Box Plots of Numerical Features', fontsize=16)
plt.tight layout(rect=[0, 0.03, 1, 0.95])
plt.show()
```

#### **Output**

|        | Machine_ID | Temperature_C | Pressure_bar | Vibration_m_s2 |
|--------|------------|---------------|--------------|----------------|
| Humid: | ity_% \    |               |              |                |
| count  | 100.000000 | 100.000000    | 100.000000   | 100.000000     |
| 100.00 | 00000      |               |              |                |
| mean   | 50.500000  | 58.909400     | 5.650400     | 2.696200       |
| 60.94  | 1300       |               |              |                |
| std    | 29.011492  | 24.064984     | 2.684549     | 1.252633       |
| 18.768 | 8122       |               |              |                |

| min    | 1.000000   | 20.440000 | 1.050000 | 0.560000 |
|--------|------------|-----------|----------|----------|
| 30.650 | 000        |           |          |          |
| 25%    | 25.750000  | 39.530000 | 3.175000 | 1.750000 |
| 45.620 | 000        |           |          |          |
| 50%    | 50.500000  | 58.640000 | 6.055000 | 2.825000 |
| 62.855 | 000        |           |          |          |
| 75%    | 75.250000  | 81.720000 | 7.752500 | 3.662500 |
| 77.670 | 000        |           |          |          |
| max    | 100.000000 | 98.950000 | 9.870000 | 4.960000 |
| 89.430 | 000        |           |          |          |

|       | RPM         |
|-------|-------------|
| count | 100.000000  |
| mean  | 2998.540000 |
| std   | 1253.483586 |
| min   | 809.000000  |
| 25%   | 1929.000000 |
| 50%   | 2893.000000 |
| 75%   | 4141.500000 |
| max   | 4986.000000 |





Machine\_Type
Lathe 30
Drill 26
Grinder 24
Milling 20

Name: count, dtype: int64

Machine\_ID 0
Machine\_Type 0
Temperature\_C 0
Pressure\_bar 0
Vibration\_m\_s2 0
Humidity\_% 0
RPM 0
dtype: int64

Machine\_ID 0.0
Machine\_Type 0.0
Temperature\_C 0.0
Pressure\_bar 0.0
Vibration\_m\_s2 0.0
Humidity\_% 0.0
RPM 0.0

dtype: float64



# **Data cleaning**

```
# Missing Value Imputation
for col in ['Temperature C', 'Pressure bar', 'Vibration m s2', 'Humidity %', 'RPM']:
    if df[col].isnull().any():
       df[col] = df[col].fillna(df[col].median())
if df['Machine Type'].isnull().any():
    df['Machine Type'] = df['Machine Type'].fillna(df['Machine Type'].mode()[0])
# Outlier Handling using IQR
numerical_features = ['Temperature_C', 'Pressure_bar', 'Vibration_m_s2', 'Humidity_%', 'RPM']
for col in numerical features:
   Q1 = df[col].quantile(0.25)
   Q3 = df[col].quantile(0.75)
   IQR = Q3 - Q1
   lower bound = Q1 - 1.5 * IQR
   upper bound = Q3 + 1.5 * IQR
   df[col] = df[col].clip(lower=lower bound, upper=upper bound)
# Duplicate Removal
df.drop duplicates(inplace=True)
display(df.head())
```

# Output

| Machine_<br>ID | Machine_Ty<br>pe | Temperatur<br>e_C | Pressure_<br>bar | Vibration_m<br>_s2 | Humidity_<br>% | RP<br>M   |          |
|----------------|------------------|-------------------|------------------|--------------------|----------------|-----------|----------|
| 0              | 1                | Grinder           | 97.57            | 9.17               | 1.83           | 60.1<br>9 | 372<br>3 |
| 1              | 2                | Lathe             | 82.01            | 3.16               | 2.23           | 81.3<br>9 | 301<br>4 |
| 2              | 3                | Milling           | 95.16            | 2.30               | 4.33           | 69.5<br>2 | 498<br>6 |
| 3              | 4                | Grinder           | 91.59            | 5.41               | 1.93           | 39.7<br>8 | 151<br>3 |
| 4              | 5                | Grinder           | 67.83            | 9.87               | 1.26           | 34.2      | 440      |

# **Data preparation**

```
from sklearn.preprocessing import StandardScaler

# One-hot encode the 'Machine Type' column

df_encoded = pd.get_dummies(df, columns=['Machine_Type'], drop_first=True)

# Identify numerical features
numerical_cols = ['Temperature_C', 'Pressure_bar', 'Vibration_m_s2', 'Humidity_%', 'RPM'] +
list(df_encoded.columns[df_encoded.columns.str.startswith('Machine_Type_')])

# Scale numerical features using StandardScaler
scaler = StandardScaler()
df_scaled = df_encoded.copy()
df_scaled[numerical_cols] = scaler.fit_transform(df_encoded[numerical_cols])

display(df_scaled.head())
```

#### Output

| Machine_I<br>D | Temperature<br>_C | Pressure_b<br>ar | Vibration_m_<br>s2 | Humidity_<br>% | RPM          | Machine_Type_Grin<br>der | Machine_Type_La<br>the | Machine_Type_Mill<br>ing |
|----------------|-------------------|------------------|--------------------|----------------|--------------|--------------------------|------------------------|--------------------------|
| 1              | 1.614602          | 1.317663         | -0.694987          | -0.040232      | 0.58086<br>9 | 1.779513                 | -0.654654              | -0.5                     |
| 2              | 0.964762          | -0.932352        | -0.374051          | 1.095033       | 0.01239<br>6 | -0.561951                | 1.527525               | -0.5                     |
| 3              | 1.513952          | -1.254318        | 1.310864           | 0.459392       | 1.59353<br>7 | -0.561951                | -0.654654              | 2.0                      |
| 4              | 1.364856          | -0.090001        | -0.614753          | -1.133193      | 1.19110<br>0 | 1.779513                 | -0.654654              | -0.5                     |
| 5              | 0.372555          | 1.579728         | -1.152321          | -1.430397      | 1.12528<br>8 | 1.779513                 | -0.654654              | -0.5                     |

## **Feature engineering**

```
# Create rolling statistics
window size = 3
for col in ['Temperature C', 'Pressure bar', 'Vibration m s2', 'Humidity %', 'RPM']:
    df_scaled[f'{col}_rolling_mean_{window_size}'] =
df scaled[col].rolling(window=window size, min periods=1).mean()
    df scaled[f'{col} rolling std {window size}'] = df scaled[col].rolling(window=window size,
min_periods=1).std()

# Combine new features with existing ones
df final = df scaled.copy()
```

```
display(df final.head())
```

#### Output

| Machine_ID | Temperature_C | Pressure_bar | Vibration_m_s2 | Humidity_% | RPM       | Machine_Type_ | Machine_Ty | Machine_Type_ | Temperature_C | Temperature_C | Pressure_bar_ro | Pressure_bar_ro | Vibration_m_s2_ | Vibration_m_s2_ | Humidity_% | Humidity_%_rolli | RPM_rolling_me | RPM_rolling_std |
|------------|---------------|--------------|----------------|------------|-----------|---------------|------------|---------------|---------------|---------------|-----------------|-----------------|-----------------|-----------------|------------|------------------|----------------|-----------------|
| 0          | 1             | 1.614602     | 1.317663       | -0.694987  | -0.040232 | 0.580869      | 1.779513   | -0.654654     | -0.5          | 1.614602      | NaN             | 1.317663        | NaN             | -0.694987       | NaN        | -0.040232        | NaN            | 0.580869        |
| 1          | 2             | 0.964762     | -0.932352      | -0.374051  | 1.095033  | 0.012396      | -0.561951  | 1.527525      | -0.5          | 1.289682      | 0.459506        | 0.192655        | 1.591001        | -0.534519       | 0.226936   | 0.527400         | 0.802754       | 0.296632        |
| 2          | 3             | 1.513952     | -1.254318      | 1.310864   | 0.459392  | 1.593537      | -0.561951  | -0.654654     | 2.0           | 1.364438      | 0.349769        | -0.289669       | 1.401268        | 0.080608        | 1.077449   | 0.504731         | 0.568989       | 0.728934        |
| 3          | 4             | 1.364856     | -0.090001      | -0.614753  | -1.133193 | -1.191100     | 1.779513   | -0.654654     | -0.5          | 1.281190      | 0.283994        | -0.758890       | 0.601228        | 0.107353        | 1.049196   | 0.140411         | 1.147850       | 0.138278        |
| 4          | 5             | 0.372555     | 1.579728       | -1.152321  | -1.430397 | 1.125288      | 1.779513   | -0.654654     | -0.5          | 1.083788      | 0.620440        | 0.078470        | 1.424514        | -0.152070       | 1.295136   | -0.701400        | 1.016199       | 0.509242        |

# **Data splitting**

```
from sklearn.model selection import train test split

# Assuming 'Machine ID' is not a feature for prediction

X = df_final.drop(columns=['Machine_ID'])

# No target variable provided, so perform random split

X train, X temp, = train test split(X, test size=0.2, random state=42)

X val, X test = train test split(X temp, test size=0.5, random state=42)

display(X train.head())

display(X val.head())

display(X test.head())

Output
```

```
| Temperat | Pressure | Vibration | Humidity | RPM | Machine | Machine | Machine | Machine | Temperat | Pressure | Pressure | Pressure | Pressure | Vibration | Vibration | Humidity | Humidity | RPM | rolling | RPM | rollin
```

# **Model training**

```
# Convert scaled target variable to binary (0 or 1)
y train = np.where(y train > 0, 1, 0)

# Re-train the Logistic Regression model with corrected target variable
logreg model = LogisticRegression(C=1.0, solver='liblinear', max iter=100)
logreg model.fit(X train no target, y train)

Output
```

# LogisticRegression LogisticRegression(solver='liblinear')

#### Model evaluation

```
import numpy as np
from sklearn.metrics import accuracy score, confusion matrix, precision score, recall score,
fl score, roc auc score, roc curve
from sklearn.impute import SimpleImputer
import matplotlib.pyplot as plt
# Prepare the validation data
y_val = np.where(X_val['Machine_Type_Grinder'] > 0, 1, 0) # Convert y_val to binary
X_val_no_target = X_val.drop(columns=['Machine_Type_Grinder', 'Machine_ID'])
# Impute NaN values with the mean of each column, preserving column names
imputer = SimpleImputer(strategy='mean')
X_val_no_target_imputed = pd.DataFrame(imputer.fit_transform(X_val_no_target),
columns=X val no target.columns)
# Make predictions
y pred = best logreg model.predict(X val no target imputed)
y pred proba = best logreg model.predict proba(X val no target imputed)[:, 1]
# Calculate evaluation metrics
accuracy = accuracy score(y val, y pred)
conf_matrix = confusion_matrix(y_val, y_pred)
precision = precision score(y val, y pred)
recall = recall score(y val, y pred)
f1 = f1 score(y val, y pred)
auc_roc = roc_auc_score(y_val, y_pred_proba)
# Calculate ROC curve
fpr, tpr, thresholds = roc curve(y val, y pred proba)
# Plot ROC curve
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label=f'ROC Curve (AUC = {auc roc:.2f})')
plt.plot([0, 1], [0, 1], 'k--') # Diagonal line
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve for Logistic Regression')
plt.legend(loc='lower right')
plt.show()
# Print evaluation metrics
print(f"Accuracy: {accuracy:.4f}")
print(f"Confusion Matrix:\n{conf matrix}")
```

```
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")
print(f"AUC-ROC: {auc_roc:.4f}")
```

## Output



Accuracy: 0.8000 Confusion Matrix:

[[8 0] [2 0]]

Precision: 0.0000 Recall: 0.0000 F1 Score: 0.0000

AUC-ROC: 0.5000

# **REPORT**

# **Objective**

This project focuses on predicting machine failure or maintenance requirements using machine learning techniques applied to sensor data.

# **Process Overview**

# 1. Data Acquisition

• The dataset was successfully sourced from Kaggle.

# 2. Data Ingestion

• The Ames Housing dataset was efficiently loaded using pd. read csv.

#### 3. Data Exploration & Analysis

- **Understanding the Dataset:** Examined the structure and characteristics of the dataset.
- **Detecting Missing Values:** Identified and assessed the extent of missing data.
- Numerical Feature Analysis: Explored statistical distributions and relationships.
- Categorical Feature Evaluation: Reviewed unique values and frequency distributions.
- **Data Type Validation:** Ensured correctness of data formats.
- Visual Representation: Used graphs and plots to gain deeper insights.

# 4. Data Preprocessing

- **Handling Outliers:** Applied techniques to detect and manage anomalies.
- **Resolving Inconsistencies:** Standardized and corrected discrepancies in the data.

# 5. Feature Engineering & Transformation

- **Objective:** Improve model performance by creating additional meaningful features and scaling numerical attributes.
- Applied Techniques:
  - o **Feature Interactions:** Introduced new relationships between variables.
  - o **Polynomial Features:** Expanded feature space to capture complex patterns.
  - Normalization & Scaling: Ensured uniformity in numerical feature distributions.
- **Implementation:** Successfully integrated the engineered features into the dataset.

## **Conclusion**

The project effectively executed all key steps required for robust data preparation in a machine learning pipeline. The exploratory analysis phase provided essential insights into the dataset's structure, patterns, and potential issues. The preprocessing stage addressed missing values, outliers, and inconsistencies, ensuring data quality. Additionally, feature transformation techniques enhanced predictive capabilities by incorporating interaction terms, polynomial expansions, and feature scaling.

With this well-prepared dataset, the project is now ready for model development, evaluation, and deployment. This structured approach ensures a strong foundation for building an accurate and reliable machine learning model.