where the expectation exists.

Theorem 9.8. If m_Y exists, then for $k \in \mathbb{N}$, we have

$$m_Y^{(k)}(0) = \mu_k.$$

Example 9.9. Let $Y \sim b(n = 1, p)$, i.e., let Y model a Bernoulli trial with the probability of success denoted by p. Find m_Y .

$$\rightarrow : m_{Y}(t) = \mathbb{E}[e^{tY}] = e^{t\cdot 0}(1-p) + e^{t\cdot 1} \cdot p$$

$$= 1-p + pe^{t} \quad t \in \mathbb{R}$$

Proposition 9.10. Let Y_1 and Y_2 be independent random variables with m.g.f.s denoted by m_{Y_1} and m_{Y_2} . Define $Y = Y_1 + Y_2$. Then, for every t for which both m_{Y_1} and m_{Y_2} are well defined, we have

$$m_Y(t) =$$

Proof. By definition:

$$m_Y(t) = \mathbf{E}[\mathbf{e^{tY}}]$$

Using $Y = Y_1 + Y_2$, we can substitute $Y_1 + Y_2$ for Y in the expression above. So,

$$m_Y(t) = \mathbb{E}\left[e^{t(Y_1+Y_2)}\right]$$

$$= \mathbb{E}\left[e^{tY_1+tY_2}\right]$$

One of the properties of the exponential function is that $e^{A+B}=e^A\times e^B$. Thus, the above becomes:

$$m_Y(t) = \mathbb{E}\left[e^{tY_1} \cdot e^{tY_2}\right]$$

Recall that Y_1 and Y_2 are assumed to be independent random variables. With this in mind, we get:

$$m_Y(t) = \mathbb{E}\left[\mathbf{e}^{\mathbf{t} \mathbf{Y_2}}\right] \cdot \mathbb{E}\left[\mathbf{e}^{\mathbf{t} \mathbf{Y_2}}\right]$$

Finally, using the definition of a m.g.f., we have

$$m_Y(t) = m_Y(t) \cdot m_Y(t)$$

Example 9.11. Let $Y \sim b(n, p)$. What is the moment generating function of Y?

$$Y = I_{1} + I_{2} + \dots + I_{n} \quad \text{w/} \quad I_{j}, j = 1 \dots n, \text{ and } B(p) \text{ and } \text{ independent}$$

$$m_{Y}(t) = m_{I}(t) \cdot m_{I}(t) \cdots m_{I}(t) = (m_{I}(t))^{n} = (1 - p + pe^{t})^{n}$$

$$\text{Example 9.12. Let } N \sim Poisson(\lambda). \text{ What is the moment generating function } m_{N} \text{ of } N > 1$$

$$\Rightarrow : m_{N}(t) = \mathbb{E}\left[e^{t \cdot N}\right] = \sum_{n=0}^{\infty} e^{t \cdot n} P_{N}(n) = \sum_{n=0}^{\infty} (e^{t \cdot \lambda})^{n} = e^{-\lambda} e^{t \cdot \lambda} \frac{\lambda^{n}}{n!}$$

$$= e^{-\lambda} \sum_{n=0}^{\infty} \frac{e^{t \cdot n} \lambda^{n}}{n!} = e^{-\lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} \sum_{n=0}^{\infty} \frac{(e^{t \cdot \lambda})^{n}}{n!} = e^{-\lambda} e^{t \cdot \lambda} e^{-\lambda} e^{t \cdot \lambda} = e^{-\lambda} e^$$

 $m_{z}(t) = \mathbb{E}\left[e^{t \cdot z}\right] = \int e^{t \cdot z} \varphi(z) dz = \int e^{t \cdot z} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz = e^{t^{2}/2}$ $= \int \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2} + t \cdot z} - \frac{t^{2}}{2} dz = e^{t^{2}/2} \int \frac{1}{\sqrt{2\pi}} e^{-\frac{(z - t)^{2}}{2}} dz = e^{-\frac{(z - t)^{2}}{2}} \int \frac{1}{\sqrt{2\pi}} e^{-\frac{(z - t)^{2}}{2}} dz = e^{-\frac{(z - t)^{2}}{2}} \int \frac{1}{\sqrt{2\pi}} e^{-\frac{(z - t)^{2}}{2}} dz = e^{-\frac{(z - t)^{2}}{2}} \int \frac{1}{\sqrt{2\pi}} e^{-\frac{(z - t)^{2}}{2}} dz = e^{-\frac{(z - t)^{2}}{2}} \int \frac{1}{\sqrt{2\pi}} e^{-\frac{(z - t)^{2}}{2}} dz = e^{-\frac{(z - t)^{2}}{2}} \int \frac{1}{\sqrt{2\pi}} e^{-\frac{(z - t)^{2}}{2}} dz = e^{-\frac{(z - t)^{2}}{2}} \int \frac{1}{\sqrt{2\pi}} e^{-\frac{(z - t)^{2}}{2}} dz = e^{-\frac{(z - t)^{2$

Example 9.14. Let the random variable Y have the $mgf m_Y$. Define X = aY + b for some constants a and b. Express the $mgf m_X$ of X in terms of m_Y , a and b.

$$\rightarrow: m_{\chi}(t) = \mathbb{E}[e^{t\chi}] = \mathbb{E}[e^{t(\alpha Y + b)}]$$

$$= \mathbb{E}[e^{t\alpha Y} \cdot e^{tb}] = e^{tb} \mathbb{E}[e^{t\alpha Y}] = e^{tb} m_{\chi}(t\alpha)$$

Example 9.15. Let $X \sim N(\mu, \sigma^2)$. What is the moment generating function m_X of X?

Problem 9.2. A random variable Y is said to be lognormal if there exists a normally distributed random variable $X \sim N(\mu, \sigma^2)$ such that $Y \stackrel{(d)}{=} e^X$. Express the mean and the variance of the lognormal r.v. Y in terms of the parameters μ and σ .

Proposition 9.16. 1. If m_Y exists for a certain probability distribution, then it is unique.

2. If m_{Y_1} and m_{Y_2} are equal on an interval, then $Y_1 \stackrel{(d)}{=} Y_2$.

Corollary 9.17. Let Y_1 and Y_2 be independent and normally distributed. Define $Y = Y_1 + Y_2$. Then, the distribution of Y is ...

Corollary 9.18. Let N_1 and N_2 be independent and Poisson distributed. Define $N=N_1+N_2$. Then, the distribution of N is ...

$$\longrightarrow : m_{N}(t) = m_{N_{1}}(t) \cdot m_{N_{2}}(t) = e^{\lambda_{1}(e^{t}-1)} \cdot e^{\lambda_{2}(e^{t}-1)}$$

$$= e^{(\lambda_{1}+\lambda_{2})(e^{t}-1)}$$

$$= e^{(\lambda_{1}+\lambda_{2})(e^{t}-1)}$$
Proof.

Nn Phisson $(\lambda = \lambda_1 + \lambda_2)$