

Fakultät für Mathematik und Naturwissenschaften

Institut für Mathematik, Arbeitsgruppe Diskrete Mathematik und Algebra

Bachelorarbeit

Chromatische Zahl und Spektrum von Graphen

vorgelegt von: Stefan Heyder

Matrikelnummer: 49070

Betreuer: Prof. Dr. Michael Stiebitz

23. September 2014

Inhaltsverzeichnis

1	Einführung		1
	1.1	Graphen und Hypergraphen	1
	1.2	Färbungen von Graphen	2
	1.3	Färbungen von Kantengraphen	6
	1.4	Eigenwerte von symmetrischen Matrizen	7
	1.5	Eigenwerte von Graphen	10
	1.6	Eigenschaften des Graphenspektrums	15
2	Die	Erdős–Faber–Lovász Vermutung	20
	2.1	Die Geschichte der Vermutung	20
	2.2	Krauszzerlegungen von Graphen	21
3	Spektraleigenschaften von Graphen		
	3.1	Krauszzerlegungen und Eigenwerte	28
	3.2	Schranken für $\kappa_d(G)$	36
	3.3	Chromatische Zahl und Eigenwerte	37
	3.4	Graphen mit $\chi \leq \xi_2$	38
	3.5	Hajós und Ore Summe	45
Literatur			48

1 Einführung

Gegenstand dieser Bachelorarbeit ist der Zusammenhang zwischen den Eigenwerten, der chromatischen Zahl und den Krauszzerlegungen eines Graphen. Die dafür benötigten Grundlagen werden wir in Kapitel 1 erarbeiten.

1.1 Graphen und Hypergraphen

Die in dieser Arbeit betrachteten Graphen und Hypergraphen sind endlich und haben weder Mehrfachkanten noch Schlingen. Bei den Bezeichnungen richten wir uns im Wesentlichen nach dem Buch von Diestel [10] beziehungsweise dem Buch von Berge [2]. Mit \mathbb{N} bezeichnen wir die Menge der positiven ganzen Zahlen und setzen $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Für eine Menge V sei die Menge V die Potenzmenge von V und V0 mit V1 mit V2 die Menge der V3 die Menge der V4.

Ein **Hypergraph** H ist ein Tupel von zwei Mengen, V(H) und E(H). Dabei ist V(H) endlich und E(H) eine Teilmenge von $2^{V(H)}$ mit $|e| \geq 2$ für alle $e \in E(H)$. Die Menge V(H) heißt dann **Eckenmenge** von H und ihre Elemente heißen **Ecken** von H. Die Menge E(H) heißt **Kantenmenge** und ihre Elemente heißen **Kanten**. Ein Hypergraph heißt **linear**, falls zwei verschiedene Kanten höchstens eine Ecke gemeinsam haben. Ist $V(H) = \emptyset$, so nennen wir H auch den **leeren Graphen** und schreiben kurz $H = \emptyset$.

Sei H ein Hypergraph. Die **Ordnung** von H ist die Anzahl der Ecken von H, geschrieben |H|. Eine Kante e heißt **Hyperkante**, falls $|e| \geq 3$ ist und heißt **gewöhnliche Kante**, falls |e| = 2 ist. Für eine gewöhnliche Kante $e = \{u, v\}$ schreiben wir auch kurz e = uv oder e = vu. Ist $E(H) \subseteq [V]^p$, so nennen wir H p-uniform. Ein **Graph** ist ein 2-uniformer Hypergraph, also ein Hypergraph in dem jede Kante gewöhnlich ist. Eine Ecke v ist **inzident** mit einer Kante e, falls $v \in e$ gilt. Für eine Ecke v von H sei $E_H(v) = \{e \in E(H) \mid v \in e\}$ die Menge aller mit v inzidenten Kanten. Der **Grad** einer Ecke v ist $d_H(v) = |E_H(v)|$. Der **Minimalgrad** (**Maximalgrad**) sei definiert als der kleinste (größte) Grad einer Ecke von H und wird mit $\delta(H)$ ($\Delta(H)$) bezeichnet. Für $H = \emptyset$ setzen wir $\delta(H) = \Delta(H) = 0$. Ist $\delta(H) = \Delta(H) = r$, so heißt H r-regulär.

Ein **Unterhypergraph** von H ist ein Hypergraph H' mit $V(H') \subseteq V(H)$ und $E(H') \subseteq E(H)$. Wir schreiben dann $H' \subseteq H$. Gilt zusätzlich $H' \neq H$, so ist H' ein **echter Unterhypergraph**. Gibt es eine Menge $X \subseteq V(H)$, sodass V(H') = X und $E(H') = E(H) \cap 2^X$ gilt, so ist H' ein **induzierter Unterhypergraph** und wir schreiben H' = H[X] oder

 $H' \subseteq H$. Ist $X \subseteq V(H)$, so bezeichne $H - X = H[V(H) \setminus X]$. Ist $X = \{v\}$, so schreiben wir dafür auch H - v statt $H - \{v\}$. Ist $F \subseteq 2^{V(H)}$ eine Menge, so sei H - F der Hypergraph mit Eckenmenge V(H) und Kantenmenge $E(H) \setminus F$ und H + F der Hypergraph mit Eckenemenge V(H) und Kantenmenge $E(H) \cup F$. Ist $F = \{e\}$ so schreiben wir $H \pm e$ anstatt $H \pm \{e\}$.

Eine Menge von Ecken $X \subseteq V(H)$ heißt **unabhängige Menge** von H, falls $E(H[X]) = \emptyset$ gilt. Die **Unabhängigkeitszahl** $\alpha(H)$ ist die Mächtigkeit der größten unabhängigen Menge von H. Eine Menge von Ecken $X \subseteq V(H)$ heißt **Clique** von H, falls H[X] alle gewöhnlichen Kanten von $[X]^2$ enthält. Die **Cliquenzahl** $\omega(H)$ ist die Mächtigkeit der größten Clique von H.

Sind H, H' zwei Hypergraphen, so heißt eine bijektive Abbildung $f: V(H) \to V(H')$ Isomorphismus zwischen H und H', falls für alle Teilmengen $\{v_1, v_2, \dots, v_p\}$ von Ecken von V(H) gilt:

$$\{v_1, v_2, \dots, v_p\}$$
 ist Kante von $H \Leftrightarrow \{f(v_1), f(v_2), \dots, f(v_p)\}$ ist Kante von H' .

Zwei Hypergraphen H, H' heißen **isomorph**, falls es einen Isomorphismus zwischen H und H' gibt.

Für einen Graphen G sei \overline{G} der Komplementärgraph von G mit $V(\overline{G}) = V(G)$ und $E(\overline{G}) = [V(G)]^2 \setminus E(G)$. Ein Graph G heißt vollständiger Graph, falls $E(G) = [V(G)]^2$ gilt. Ist G ein vollständiger Graph der Ordnung n, so schreiben wir auch $G = K_n$. Man beachte hierbei, dass alle vollständigen Graphen der Ordnung n isomorph sind. In diesem Sinne bezeichnen wir mit C_n den Kreis der Ordnung n und mit O_n den kantenlosen Graphen der Ordnung n (d.h. das Komplement von K_n). Ein Kreis C_n heißt gerade beziehungsweise ungerade, je nachdem ob seine Ordnung gerade beziehungsweise ungerade ist.

Für einen Hypergraphen H ist $\omega(H)$ die größte Zahl n, sodass H einen vollständigen Graphen der Ordnung n als Untergraphen enthält und $\alpha(H)$ ist die größte Zahl n, sodass H den kantenlosen Graphen der Ordnung n als induzierten Untergraphen enthält.

1.2 Färbungen von Graphen

Das Färbungsproblem für Graphen ist ein klassisches Problem aus der Graphentheorie mit vielfältigen Anwendungen in der kombinatorischen Optimierung und anderen Teilgebieten der Mathematik. Beim Färbungsproblem besteht die Aufgabe darin, die Ecken

eines Graphen so zu färben, dass durch eine Kante verbundene Ecken verschiedene Farben erhalten. Dabei sollen natürlich möglichst wenige Farben verwendet werden.

Seien G ein Graph und C eine Menge. Eine Abbildung $\varphi:V(G)\to C$ heißt **Färbung** von G, falls für alle Kanten vw von G gilt: $\varphi(v)\neq\varphi(w)$. Ist $|C|=k\in\mathbb{N}_0$, so heißt φ auch k-**Färbung**. Besitzt ein Graph G eine k-Färbung, so heißt G k-f**ärbbar**. Die kleinste natürliche Zahl k, für die G eine k-Färbung besitzt, wird **chromatische Zahl** von G genannt und mit $\chi(G)$ bezeichnet. Ist die chromatische Zahl von G gleich k, so wird G auch K-chromatisch genannt.

Die Bestimmung der chromatischen Zahl eines Graphen ist ein NP-schweres Optimierungsproblem, wie im Jahre 1972 von Karp [26] gezeigt wurde. Sei φ eine Färbung von G und H ein Untergraph von G. Dann ist $\varphi|_{V(H)}$ eine Färbung von H. Folglich ist die chromatische Zahl ein monotoner Graphenparameter, d.h.

$$H \subseteq G \Rightarrow \chi(H) \le \chi(G)$$
.

Außerdem ist die chromatische Zahl subadditiv, d.h. sind X,Y zwei Teilmengen von V(G) mit $X \cup Y = V(G)$, so gilt

$$\chi(G) \le \chi(G[X]) + \chi(G[Y]).$$

Ist nämlich $\chi(G[X]) = k$ und $\chi(G[Y]) = \ell$, so erhalten wir eine $(k + \ell)$ -Färbung von G, indem wir zunächst alle Ecken aus X mit k Farben färben und dann die verbleibenden Ecken aus $Y \setminus X$ mit höchstens ℓ neuen Farben färben.

Eine Abbildung $\varphi:V(G)\to C$ ist genau dann eine Färbung von G, wenn für alle $c\in C$ das Urbild $\varphi^{-1}(c)$ eine unabhängige Menge in G ist (d.h. keine zwei Ecken von $\varphi^{-1}(c)$ sind durch eine Kante von G verbunden). Diese Urbilder nennen wir **Farbklassen**. Offensichtlich sind die Farbklassen disjunkt und haben höchstens $\alpha(G)$ Ecken. Daraus folgt, dass jede k-Färbung von G die Ungleichung $|G| \leq k\alpha(G)$ erfüllt und deswegen auch $|G| \leq \chi(G)\alpha(G)$ gilt. Da jede Ecke eine unabhängige Menge ist, gilt $\chi(G) \leq |G|$. Damit gilt

$$\chi(G) \ge |G| \Leftrightarrow \chi(G) = |G| \Leftrightarrow \alpha(G) \le 1 \Leftrightarrow G$$
 ist ein vollständiger Graph.

Insbesondere gilt somit für $n \in \mathbb{N}_0$: $\chi(K_n) = n$. Da χ ein monotoner Graphenparameter ist, ist also

$$\omega(G) \le \chi(G)$$
.

Die chromatische Zahl des Graphen G ist die kleinste Zahl k, für die sich V(G) in k viele unabhängige Mengen (die Farbklassen) zerlegen lässt. Deswegen gilt $\chi(G) = 0$ nur, falls $V(G) = \emptyset$ ist, d.h. falls G der leere Graph ist. Außerdem ist $\chi(G) \leq 1$ genau dann, wenn G keine Kanten hat und $\chi(G) \leq 2$ gilt genau dann, wenn G bipartit ist. Nach dem Satz von König [29] ist G genau dann bipartit, wenn G keinen Kreis ungerader Ordnung als Untergraphen besitzt.

Nach Stockmeyer [38] ist für jedes $k \geq 3$ das Entscheidungsproblem ob ein gegebener Graph k-färbbar ist NP-vollständig. Es ist also nicht zu erwarten, dass sich Graphen mit chromatischer Zahl höchstens k für festes $k \geq 3$ einfach charakterisieren lassen.

Bei der Untersuchung des Färbungsproblems für Graphen erweisen sich die kritischen Graphen als ein nützliches Hilfsmittel. Dies liegt vor allem daran, dass sich Färbungsprobleme für Graphen oft auf entsprechende Färbungsprobleme für kritische Graphen zurückführen lassen. Ein Graph G heißt **k-kritisch**, falls $\chi(G) = k$ ist und $\chi(H) < k$ für alle echten induzierten Untergraphen H von G gilt.

Entfernen wir aus einem Graphen G eine Ecke oder Kante, so bleibt die chromatische Zahl gleich oder verringert sich um den Wert 1, d.h. für $t \in V(G) \cup E(G)$ gilt:

$$\chi(G) - 1 \le \chi(G - t) \le \chi(G). \tag{1.1}$$

Daraus erhalten wir den folgenden bekannten Satz, wonach die (k-1)-färbbaren Graphen durch verbotene k-kritische Untergraphen charakterisiert werden können.

Satz 1.1 Seien G ein Graph und $k \in \mathbb{N}$. Genau dann ist $\chi(G) \geq k$, wenn G einen k-kritischen Graphen H als induzierten Untergraphen enthält.

Beweis: Falls G einen k-kritischen Untergraphen H enthält, so ist $\chi(G) \geq \chi(H) = k$, da χ ein monotoner Graphenparamter ist. Sei also $\chi(G) \geq k$. Da G endliche Ordnung hat, besitzt G einen induzierten Untergraphen G' kleinster Ordnung mit $\chi(G') \geq k$. Dann ist $\chi(H) < k$ für jeden echten induzierten Untergraphen H von G'. Wegen $\chi(G') \geq k \geq 1$ gibt es eine Ecke v in G'. Dann ist G' - v ein echter induzierter Untergraph von G' und somit ist $\chi(G-v) < k$. Aus (1.1) folgt dann $\chi(G') = k$. Folglich ist G' ein k-kritischer Graph.

Gegenüber k-chromatischen Graphen haben k-kritische Graphen eine eingeschränkte Struktur. Ein einfaches Beispiel dafür ist das folgende Resultat.

Lemma 1.2 Ist G ein k-kritischer Graph mit $k \geq 1$, so ist G ein zusammenhängender Graph mit $\delta(G) \geq k - 1$.

Beweis: Ist G nicht zusammenhängend, so ist jede Komponente von G ein echter induzierter Untergraph. Also besitzt jede Komponente eine (k-1)-Färbung. Dann besitzt aber auch G eine (k-1)-Färbung, d.h. $\chi(G) \leq k-1$. Das ist aber unmöglich, da G ein k-kritischer Graph ist. Ist $\delta(G) \leq k-2$, so besitzt G eine Ecke v mit $d_G(v) \leq k-2$. Dann ist G-v ein echter induzierter Untergraph von G und besitzt somit eine (k-1)-Färbung. Unter den Nachbarn von v kommen höchstens k-2 Farben vor und somit können wir eine (k-1)-Färbung von G-v zu einer (k-1)-Färbung von G erweitern. Dann ist aber $\chi(G) \leq k-1$, was unmöglich ist, da G ein k-kritischer Graph ist.

Im Jahr 1968 beschrieben Szekeres und Wilf [39] eine einfache Methode zur Bestimmung von oberen Schranken für die chromatische Zahl. Dazu betrachten wir einen **Graphen-**parameter ρ , d.h. eine Abbilung die jedem Graphen G eine reelle Zahl $\rho(G)$ zuordnet, sodass isomorphe Graphen denselben Wert erhalten. Wir nennen ρ einen **Szekeres-Wilf-**Parameter, falls für alle Graphen G und H folgende Bedingungen erfüllt sind:

(S1) Ist $H \subseteq G$, so gilt $\rho(H) \leq \rho(G)$.

(S2)
$$\rho(H) \ge \delta(H) + 1$$
.

Szekeres und Wilf [39] bewiesen dann folgendes Resultat.

Satz 1.3 (Szekeres, Wilf) Ist ρ ein Szekeres-Wilf-Paramter, so ist ρ eine obere Schranke für die chromatische Zahl, d.h. für alle Graphen G ist $\chi(G) \leq \rho(G)$.

Beweis: Ist $G = \emptyset$, so ist $\chi(G) = 0$ und aus (S2) folgt $\rho(G) \geq \delta(G) + 1 = 1$, d.h. $\chi(G) \leq \rho(G)$. Sei nun $G \neq \emptyset$ und sei $k = \chi(G)$. Dann ist $k \geq 1$ und aus Satz 1.1 folgt, dass es einen k-kritischen induzierten Untergraphen H von G gibt. Wegen Lemma 1.2 ist $\delta(H) \geq k - 1$. Mit Hilfe von (S1) und (S2) erhalten wir dann:

$$\chi(G) = \chi(H) < \delta(H) + 1 < \rho(H) < \rho(G).$$

Was zu zeigen war.

Ein einfaches Beispiel für einen Szekeres-Wilf Paramter ist $\Delta + 1$. Somit gilt für jeden Graphen G die Ungleichung $\chi(G) \leq \Delta(G) + 1$. Brooks [3] bestimmte im Jahr 1941 die Graphen G mit $\chi(G) = \Delta(G) + 1$, er bewies folgendes Resultat:

Satz 1.4 (Brooks) Sei G ein zusammenhängender Graph mit Maximalgrad Δ . Dann gilt

$$\chi(G) \leq \Delta + 1.$$

Die Gleichheit gilt genau dann, wenn G ein vollständiger Graph oder ein ungerader Kreis ist.

Ein weiteres Beispiel für einen Szekeres-Wilf-Paramter ist die **Färbungszahl** col(G) eines Graphen definiert durch

$$\operatorname{col}(G) = 1 + \max_{H \subseteq G} \delta(H)$$

Auch dieser Paramter ist somit eine obere Schranke für die chromatische Zahl. Es lässt sich auch leicht zeigen, dass für jeden Szekeres-Wilf Paramter ρ die Ungleichung $\operatorname{col}(G) \leq \rho(G)$ für alle Graphen G gilt.

1.3 Färbungen von Kantengraphen

In diesem Abschnitt betrachten wir das Färbungsproblem für die Klasse der Kantengraphen. Der **Kantengraph** L(H) eines Hypergraphen H ist der Graph mit der Eckenmenge V(L(H)) = E(H) und der Kantenmenge

$$E(L(H)) = \{ee' \mid \{e, e'\} \in [E(H)]^2, e \cap e' \neq \emptyset\}.$$

Zwei verschieden Kanten von H, welche eine Ecke gemeinsam haben heißen **adjazent**. Für eine Kante e von H sei $d_H(e) = d_{L(H)}(e)$ der **Kantengrad** von e in H. Dieser ist also die Zahl der Kanten von H, welche mit e adjazent sind. Dann sei $\Delta'(H)$ der **maximale Kantengrad** von H und $\delta'(H)$ der **minimale Kantengrad** von H und wir setzen $\Delta'(H) = \delta'(H) = 0$, falls $E(H) = \emptyset$ ist.

Eine Färbung des Kantengraphen eines Hypergraphen H wird auch Kantenfärbung von H genannt. Eine Kantenfärbung ist somit eine Abbildung, die jeder Kante von H eine Farbe zuordnet, sodass adjazente Kanten verschiedene Farben erhalten. Wir bezeichnen dann mit dem chromatischen Index $\chi'(H)$ die kleinste natürliche Zahl k, sodass L(H) eine k-Färbung besitzt. Also gilt $\chi'(H) = \chi(L(H))$. Ist v eine Ecke von H, so ist $E_H(v)$ eine Clique von L(H) und folglich gilt $\chi'(H) \geq \Delta(H)$. König zeigte in [30], dass diese Schranke für bipartite Graphen scharf ist. Die erste obere Schranke für beliebige Graphen wurde 1964 von Vizing [41] bestimmt.

Satz 1.5 (Vizing) Sei G ein Graph mit Maximalgrad Δ . Dann gilt $\chi'(G) = \Delta$ oder $\chi'(G) = \Delta + 1$.

Satz 1.6 (König) Ist G ein bipartiter Graph, so gilt $\chi'(G) = \Delta(G)$.

1.4 Eigenwerte von symmetrischen Matrizen

Bevor wir uns den Eigenwerten von Graphen zuwenden, wollen wir den Leser an einige bekannte Tatsachen über symmetrische Matrizen erinnern. Es sei $A \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix der Ordnung $n \in \mathbb{N}$. Dann ist

$$Ax = \lambda x \tag{1.2}$$

mit $x \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$ die (reelle) Eigenwertgleichung von A. Für $\lambda \in \mathbb{R}$ ist die Lösungsmenge

$$E_A(\lambda) = \{x \in \mathbb{R}^n \mid Ax = \lambda x\}$$

ein linearer Unterraum von \mathbb{R}^n mit dim $(E_A(\lambda) \geq 0$. Man nennt dann λ einen **Eigenwert** von A, falls dim $(E_A(\lambda)) \geq 1$ ist, die Vektoren aus $E_A(\lambda)$ heißen **Eigenvektoren** von A zum Eigenwert λ und $E_A(\lambda)$ ist der zu λ gehörende **Eigenraum** von A. Die Abbildung p_A mit

$$p_A(\lambda) = \det(A - \lambda I)$$

ist ein Polynom aus $\mathbb{R}[\lambda]$ vom Grade n, welches **charakteristisches Polynom** von A genannt wird (dabei ist $I \in \mathbb{R}^{n \times n}$ die Einheitsmatrix der Ordnung n). Für $\lambda \in \mathbb{R}$ gilt dann

$$\lambda$$
 ist Eigenwert von $A \Leftrightarrow p_A(\lambda) = 0$.

Da A symmetrisch ist, zerfällt p_A in genau n reelle Linearfaktoren, d.h. p_A hat genau n Nullstellen (gezählt mit ihren Vielfachheiten). Für $\lambda \in \mathbb{R}$ sei $m_A(\lambda)$ die Vielfachheit von λ als Nullstelle von p_A . Die Matrix A besitzt somit n reelle Eigenwerte, welche wir monton fallend anordnen können. Im Folgenden bezeichnen wir mit $\lambda_p(A)$ den p-größten Eigenwert von A, das heißt es gilt

$$\lambda_1(A) \ge \lambda_2(A) \ge \cdots \ge \lambda_n(A).$$

Dann ist $\lambda_{max}(A) = \lambda_1(A)$ der größte Eigenwert von A und $\lambda_{min}(A) = \lambda_n(A)$ ist der kleinste Eigenwert von A. Die Folge

$$\operatorname{sp}(A) = (\lambda_1(A), \lambda_2(A), \dots, \lambda_n(A))$$

der Eigenwerte bezeichnet man als das **Spektrum** von A. Diese Bezeichnung geht auf Hilbert zurück. Bekanntlich besitzen zwei symmetrische Matrizen genau dann das gleiche Spektrum, wenn sie zueinander ähnlich sind. Ist λ ein Eigenwert von A so ist dim $E_A(\lambda) =$ $m_A(\lambda)$. Eigenvektoren zu verschiedenen Eigenwerten sind stets orthogonal und \mathbb{R}^n ist die direkte Summe der Eigenräume zu den verschiedenen Eigenwerten. Insbesondere besitzt der \mathbb{R}^n eine Orthonomalbasis aus lauter Eigenvektoren von A.

Eine symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ heißt **positiv semidefinit**, falls $x^T A x \geq 0$ für alle Vektoren $x \in \mathbb{R}^n$ gilt. Gilt zusätzlich noch $x^T A x = 0$ nur für $x = 0 \in \mathbb{R}^n$ (hat also A vollen Rang), so heißt A **positiv definit**. Wir wollen nun an einige Eigenschaften von positiv (semi)definiten Matrizen erinnern.

Satz 1.7 Folgende Aussagen sind für eine symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ äquivalent:

- (a) A ist positiv semidefinit.
- (b) Alle Eigenwerte von A sind nicht negativ.
- (c) $A = UU^T$ für eine Matrix $U \in \mathbb{R}^{n \times m}$.

Für eine Matrix $A \in \mathbb{R}^{n \times n}$ und einen Vektor $x \in \mathbb{R}^n \setminus \{0\}$ ist der **Rayleigh-Quotient** von A an der Stelle x als

$$R_A(x) = \frac{x^T A x}{x^T x}$$

definiert. Die Abbildung R_A wurde zuerst von Rayleigh zur numerischen Berechnung der Eigenwerte von A benutzt. Ist x ein Eigenvektor von A zum Eigenwert λ , so gilt $R_A(x) = \lambda$. Für eine symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ ist

$$\lambda_{min}(A) \le R_A(x) \le \lambda_{max}(A)$$

für alle $x \in \mathbb{R}^n \setminus \{0\}$. Die folgende Charakterisierung für den p-größten Eigenwert von A wurde zuerst in einer Arbeit von Fischer [18] und danach in dem Lehrbuch von Courant und Hilbert [7] erwähnt. In der Literatur wird dieses Resultat daher als Minmax-Prinzip von Courant-Fischer bezeichnet.

Satz 1.8 (Courant-Fischer) Sei $A \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix. Für den p-größten Eigenwert von A mit $1 \le p \le n$ gilt dann:

- (a) $\lambda_p(A) = \max\{\min_{x \in V, x \neq 0} R_A(x) \mid V \subseteq \mathbb{R}^n \text{ linearer Unterraum}, \dim(V) = p\}.$
- (b) $\lambda_p(A) = \min\{\max_{x \in V, x \neq 0} R_A(x) \mid V \subseteq \mathbb{R}^n \text{ linearer Unterraum}, \dim(V) = n p + 1\}.$

Lemma 1.9 Seien $A, B \in \mathbb{R}^{n \times n}$ symmetrisch und A - B positiv semidefinit. Dann ist $\lambda_p(A) \ge \lambda_p(B)$ für alle $1 \le p \le n$.

Beweis: Sei $x \in \mathbb{R}^n \setminus \{0\}$ beliebig. Dann gilt $x^T(A-B)x \ge 0$, da A-B positiv semidefinit ist. Daraus folgt

$$x^T A x > x^T B x$$

und folglich ist $R_A(x) = \frac{x^T A x}{x^T x} \ge \frac{x^T B x}{x^T x} = R_B(x)$. Mit Satz 1.8(a) erhalten wir dann:

$$\lambda_p(A) = \max\{\min_{x \in V, x \neq 0} R_A(x) \mid V \subseteq \mathbb{R}^n \text{ ist linearer Unterraum der Dimension } p\}$$

$$\geq \max\{\min_{x \in V, x \neq 0} R_B(x) \mid V \subseteq \mathbb{R}^n \text{ ist linearer Unterraum der Dimension } p\}$$

$$= \lambda_p(B)$$

für
$$1 \le p \le n$$
.

Oftmals interessiert man sich, wie sich die Eigenwerte einer symmetrischen Matrix verändern, wenn man Zeilen und die korrespondierenden Spalten der Matrix löscht. Die bei diesem Prozess entstehende Matrix ist wieder symmetrisch. Es stellt sich heraus, dass die Eigenwerte der so entstehenden Matrix sich durch die Eigenwerte der ursprünglichen Matrix beschränken lassen. Das folgende Resultat geht auf Cauchy zurück, es scheint schwierig eine Originalquelle zu finden.

Satz 1.10 (Interlacing) Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch und sei $B \in \mathbb{R}^{(n-k) \times (n-k)}$ die symmetrische Matrix, welche aus A durch Löschen von Zeilen und den entsprechenden Spalten entsteht. Dann ist B symmetrisch und es gilt:

$$\lambda_p(A) \ge \lambda_p(B) \ge \lambda_{p+k}(A)$$

$$f\ddot{u}r \ 1 \le p \le n - k$$
.

Beweis: Seien $l_1 < \cdots < l_{n-k}$ die Nummern der Zeilen bzw. Spalten die nicht gelöscht werden. Setze $P = (e_{l_1}, e_{l_2}, \dots, e_{l_{n-k}}) \in \mathbb{R}^{n \times (n-k)}$, wobei e_i der i-te Einheitsvektor des \mathbb{R}^n ist. Dann besitzt P vollen Spaltenrang und es gilt $B = P^T A P$. Seien $V \subseteq \mathbb{R}^{(n-k)}$ ein linearer Unterraum , $x \in V$ beliebig und y = P x. Dann ist y ein Vektor aus dem Bild von V unter P, im $P|_V = \{z \in \mathbb{R}^n \mid z = P x, x \in V\}$ und es gilt $y^T y = x^T P^T P x = x^T x$, da $P^T P = I_{n_k}$ ist. Außerdem ist im $P|_V$ ein linearer Unterraum des \mathbb{R}^n mit dim(im $P|_V$) =

 $\dim(V)$, da P vollen Spaltenrang besitzt. Mit Satz 1.8(a) folgt für $1 \le p \le n - k$:

$$\begin{split} \lambda_p(B) &= \max\{ \min_{x \in V, x \neq 0} \frac{x^T B x}{x^T x} \mid V \subseteq \mathbb{R}^{(n-k)} \text{ ist linearer Unterraum der Dimension } p \} \\ &= \max\{ \min_{x \in V, x \neq 0} \frac{x^T P^T A P x}{x^T x} \mid V \subseteq \mathbb{R}^{(n-k)} \text{ ist linearer Unterraum der Dimension } p \} \\ &= \max\{ \min_{y \in \text{im } P \mid_V, y \neq 0} \frac{y^T A y}{y^T y} \mid V \subseteq \mathbb{R}^{(n-k)} \text{ ist linearer Unterraum der Dimension } p \} \\ &\leq \max\{ \min_{x \in W, x \neq 0} \frac{y^T A y}{y^T y} \mid W \subseteq \mathbb{R}^n \text{ ist linearer Unterraum der Dimension } p \} \\ &= \lambda_p(A). \end{split}$$

Damit ist die erste Ungleichung gezeigt. Die zweite folgt analog bei Betrachtung von -A und -B, da $\lambda_p(-A) = -\lambda_{n-p+1}(A)$ für alle $1 \le p \le n$ ist.

Die folgenden Ungleichungen werden später bei der Betrachtung der Eigenwerte von Graphen hilfreich seien. Die Weyl Ungleichungen wurden von Weyl [42] bewiesen. Die Ky Fan Ungleichungen wurden von Fan [16] bewiesen.

Satz 1.11 (Weyl Ungleichungen) Seien $A, B, C \in \mathbb{R}^{n \times n}$ symmetrische Matrizen mit A = B + C. Dann gilt

$$\lambda_p(B) + \lambda_n(C) \le \lambda_p(A) \le \lambda_p(B) + \lambda_1(C)$$

für alle $1 \le p \le n$.

Satz 1.12 (Ky Fan Ungleichungen) Seien $A, B, C \in \mathbb{R}^{n \times n}$ symmetrische Matrizen mit A = B + C. Für alle $1 \le p \le n$ gilt dann:

$$\sum_{i=1}^{p} \lambda_i(A) \le \sum_{i=1}^{p} \lambda_i(B) + \sum_{i=1}^{p} \lambda_i(C)$$

 $F\ddot{u}r p = n$ qilt Gleichheit.

1.5 Eigenwerte von Graphen

Sei G ein Graph der Ordnung $n \in \mathbb{N}$ mit der Eckenmenge $V(G) = \{v_1, v_2, \dots, v_n\}$. Die **Adjazenzmatrix** von G ist die Matrix $A(G) \in \mathbb{R}^{n \times n}$ mit

$$A(G)_{ij} = \begin{cases} 1 & \text{falls } v_i v_j \in E(G) \\ 0 & \text{falls } v_i v_j \notin E(G). \end{cases}$$

Dann ist A(G) symmetrisch und hat folglich nur reelle Eigenwerte. Damit es Sinn ergibt, von den Eigenwerten eines Graphen zu sprechen, dürfen die Eigenwerte von A(G) nicht von der Nummerierung der Ecken abhängen. Das dem so ist, zeigt das folgende Lemma.

Lemma 1.13 Sei G ein Graph. Dann ist das charakteristische Polynom von A(G) unabhängig von der Nummerierung der Ecken von G.

Beweis: Seien $V(G) = \{v_1, v_2, \dots, v_n\} = \{u_1, u_2, \dots, u_n\}$ zwei Nummerierungen der Ecken. Seien weiterhin $A, B \in \mathbb{R}^{n \times n}$ mit

$$A_{ij} = \begin{cases} 1 & \text{falls } v_i v_j \in E(G) \\ 0 & \text{falls } v_i v_j \notin E(G) \end{cases} \text{ und } B_{ij} = \begin{cases} 1 & \text{falls } u_i u_j \in E(G) \\ 0 & \text{falls } u_i u_j \notin E(G). \end{cases}$$

Dann gibt es eine Permutation $\sigma \in S^n$ sodass $v_{\sigma(i)} = u_i$ ist. Folglich gilt $A_{\sigma(i)\sigma(j)} = B_{ij}$. Dann ist die Matrix $P = (e_{\sigma(1)}, e_{\sigma(2)}, \dots, e_{\sigma(n)}) \in \mathbb{R}^{n \times n}$ regulär und für die Matrix P^TAP gilt:

$$(P^T A P)_{ij} = e_j^T P^T A P e_i = e_{\sigma(j)}^T A e_{\sigma(i)} = A_{\sigma(i)\sigma(j)} = B_{ij}.$$

Also ist $P^TAP = B$. Somit sind A und B ähnlich und besitzen folglich dasselbe charakteristische Polynom.

Für den Graphen G der Ordnung n seien dann $p_G = p_{A(G)}$ das **charakteristische Polynom** von G, $\lambda_p(G) = \lambda_p(A(G))$ der p-**größte Eigenwerte** von G ($1 \le p \le n$), $\operatorname{sp}(G) = \operatorname{sp}(A(G))$ das **Spektrum** von G und $m_G(\lambda) = m_{A(G)}(\lambda)$ die **Vielfachheit** von λ als Nullstelle von p_G (und somit die Vielfachheit von λ als Eigenwert von G). Diese Größen sind nach Lemma 1.13 unabhängig von der Nummerierung der Ecken und somit wohldefiniert. Insbesondere besitzen isomorphe Graphen dasselbe Spektrum. Dies gilt jedoch nicht für die Eigenvektoren. Wir können aber auch eine koordinatenfreie Interpretation für die Eigenvektoren geben. Dazu betrachten wir einen Eigenwert λ von G und einen zugehörigen Eigenvektor x von A(G). Aus der Eigenwertgleichung (1.2) erhalten wir das Gleichungssystem

$$\lambda x_i = \sum_{i=1}^n A(G)_{ij} x_j \tag{1.3}$$

für $1 \leq i \leq n$. Der Vektor $x \in \mathbb{R}^n$ ordnet der Ecke v_i den Wert $x_i = x(v_i)$ zu und die Gleichung (1.3) ist äquivalent zu

$$\lambda \ x(v_i) = \sum_{v_j: v_i v_j \in E(G)} x(v_j). \tag{1.4}$$

Wir betrachten nun den Vektorraum $\mathbb{R}^{V(G)}$ aller Abbildungen $x:V(G)\to\mathbb{R}$. Offenbar ist die Abbildung $x\in\mathbb{R}^{V(G)}$ genau dann ein Eigenvektor von G zum Eigenwert λ , wenn für alle Ecken v von G gilt:

$$\lambda \ x(v) = \sum_{u: uv \in E(G)} x(u) \tag{1.5}$$

d.h. die Summe der Werte x(u) über die Nachbarn u von v ergibt den Wert $\lambda x(v)$. Es sei dann $E_G(\lambda)$ die Menge aller dieser Abbildungen. Dann ist $E_G(\lambda)$ der **Eigenraum** von G zum Eigenwert λ . Es sei $\mathbb{1} \in \mathbb{R}^{V(G)}$ die **Einsabbildung** mit $\mathbb{1}(v) = 1$ für alle $v \in V(G)$. Für eine Ecke v von G gilt dann

$$d_G(v) = \sum_{u:uv \in E(G)} 1 = \sum_{u:uv \in E(G)} 1(u)$$

und aus Gleichung (1.5) folgt somit für $r \in \mathbb{N}$:

$$1 \in E_G(r) \Leftrightarrow G \text{ ist } r\text{-regulär.}$$
 (1.6)

Wir wollen nun die Eigenwerte der vollständigen Graphen, Kreise und der kantenlosen Graphen berechnen.

Beispiel 1.14 Für den vollständigen Graphen K_n mit $n \ge 1$ gelten folgenden Aussagen:

(a)
$$\operatorname{sp}(K_n) = (n-1, \underbrace{-1, -1, \dots, -1}_{n-1 \ mal}).$$

(b)
$$p_{K_n}(\lambda) = (-1)^n (\lambda - (n-1))(\lambda + 1)^{n-1}$$
.

(c)
$$E_{K_n}(n-1) = [1].$$

(d)
$$E_{K_n}(-1) = \{x \in \mathbb{R}^{V(K_n)} \mid x \text{ ist orthogonal zu } 1\}.$$

Beweis: Es sei $J \in \mathbb{R}^{n \times n}$ die Matrix, welche nur 1 als Eintrag besitzt (diese werden wir mit 1-Matrix bezeichnen). Dann gilt $A(K_n) = J - I$, wobei $I \in \mathbb{R}^{n \times n}$ die Einheitsmatrix ist. Da rang(J) = 1, ist also -1 ein Eigenwert von G mit Vielfachheit n-1. Da K_n regulär vom Grad n-1 ist, ist auch n-1 ein Eigenwert von K_n . Damit folgen (a) und (b). Weiterhin gilt (c) wegen Gleichung (1.6). Aus der Orthogonalität der Eigenvektoren folgt nun (d).

Einen Beweis für das folgende Beispiel findet der Leser in [9, 2.1]. Man beachte hierbei, dass die Eigenwerte in diesem Satz nicht der Größe nach geordnet sind.

Beispiel 1.15 Der Kreis C_n der Ordnung $n \geq 3$ hat die Eigenwerte

$$\lambda_p = 2\cos\left(\frac{2\pi p}{n}\right)$$

 $f\ddot{u}r \ 1 \le p \le n$. Insbesondere gilt:

$$sp(C_3) = (2, -1, -1)$$

$$sp(C_4) = (2, 0, 0, -2)$$

$$sp(C_5) = (2, \frac{1}{2}(\sqrt{5} - 1), \frac{1}{2}(\sqrt{5} - 1), \frac{1}{2}(-\sqrt{5} - 1), \frac{1}{2}(-\sqrt{5} - 1))$$

Beispiel 1.16 Für den kantenlosen Graphen O_n der Ordnung $n \in \mathbb{N}$ ist $A(O_n)$ die Null-matrix und somit gilt $p_{O_n}(\lambda) = (-1)^n \lambda^n$ und $\lambda_p(O_n) = 0$ für alle $1 \le p \le n$.

Beispiel 1.17 Ist G die disjunkte Vereinigug der nichtleeren Graphen G_1, G_2, \ldots, G_l mit $l \in \mathbb{N}$, so ist

$$p_G(\lambda) = p_{G_1}(\lambda) \cdot p_{G_2}(\lambda) \cdot \ldots \cdot p_{G_l}(\lambda)$$

 $f\ddot{u}r \ \lambda \in \mathbb{R}$. Das Spektrum von G ergibt sich somit aus der Vereinigung der Spektren von G_1, G_2, \ldots, G_l und $f\ddot{u}r \ \lambda \in \mathbb{R}$ gilt:

$$m_G(\lambda) = m_{G_1}(\lambda) + m_{G_2}(\lambda) + \dots + m_{G_l}(\lambda).$$

Beweis: Wir nummerieren die Ecken von G sodass für $1 \le i \le l-1$ die Ecken von G_i vor den Ecken von G_{i+1} aufgelistet werden. Dann ist

$$A(G) = diag(A(G_1), A(G_2), \dots, A(G_l))$$

und somit ist

$$A(G) - \lambda I = \operatorname{diag}(A(G_1) - \lambda I, A(G_2) - \lambda I, \dots, A(G_l) - \lambda I)$$

wobei I die Einheitsmatrix der passenden Ordnung ist. Dann ist

$$p_G(\lambda) = \det(A(G) - \lambda I)$$

$$= \det(A(G_1) - \lambda I) \cdot \det(A(G_2) - \lambda I) \cdot \dots \cdot \det(A(G_l) - \lambda I)$$

$$= p_{G_1}(\lambda) \cdot p_{G_2}(\lambda) \cdot \dots \cdot p_{G_l}(\lambda).$$

Da die Eigenwerte die Nullstellen des charakteristischen Polynoms sind, gilt dann für alle $\lambda \in \mathbb{R}$:

$$m_G(\lambda) = m_{G_1}(\lambda) + m_{G_2}(\lambda) + \dots + m_{G_l}(\lambda).$$

Was zu zeigen war.

Ist $G = K_n + K_n$ die disjunkte Vereinigung zweier vollständiger Graphen K_n , so gilt folglich für das Spektrum von G:

$$sp(G) = (n-1, n-1, \underbrace{-1, \dots, -1}_{2n-2 \text{ mal}}).$$

Insbesondere ist $\lambda_{max}(G) = n - 1$ ein doppelter Eigenwert von G.

Abbildung 1: Zwei nicht isomorphe Graphen

Wir haben bereits festgestellt, dass isomorphe Graphen dasselbe Spektrum und damit dieselben Eigenwerte besitzen. Die Umkehrung dieser Tatsache gilt hingegen nicht. Dazu betrachten wir die Graphen G und H, wobei $G = K_{1,4}$ ein Stern ist und $H = C_4 + K_1$ die disjunkte Vereinigung von C_4 und K_1 ist (siehe Abbildung 1). Diese sind offenbar nicht isomorph. Wir können die Ecken so nummerieren, dass für die Adjazenzmatrizen gilt:

$$A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ und } A(H) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Eine einfache Rechnung liefert dann

$$p_G(\lambda) = p_H(\lambda) = -\lambda^3(\lambda + 2)(\lambda - 2)$$

und somit

$$sp(G) = sp(H) = (2, 0, 0, 0, -2).$$

Die Graphen G und H haben dasselbe Spektrum, sind aber nicht isomorph. Zwei Graphen heißen **isospektral**, falls sie dasselbe Spektrum besitzen. Isomorphe Graphen sind also stets isospektral, aber nicht umgekehrt.

Die Graphentheorie beschäftigt sich mit der Struktur und den Eigenschaften von Graphen. Eine **Grapheneigenschaft** ist eine Klasse von Graphen, die mit jedem Graphen G auch alle dazu isomorphen Graphen enthält. So ist zum Beispiel Zusammenhang (d.h. die Klasse der zusammenhängenden Graphen) eine Grapheneigenschaft. Eine **Spektraleigenschaft** von **Graphen** ist eine Klasse von Graphen, die mit jedem Graphen G auch

alle dazu isospektralen Graphen enthält. Dann ist jede Spektraleigenschaft von Graphen auch eine Grapheneigenschaft, aber nicht umgekehrt. Wie das obige Beispiel isospektraler Graphen $K_{1,4}$ und $C_4 + K_1$ zeigt, ist Zusammenhang keine Spektraleigenschaft.

1.6 Eigenschaften des Graphenspektrums

In diesem Abschnitt wollen wir einige einfache, aber wichtige Eigenschaften der Spektra von Graphen anführen. Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt **reduzibel**, falls zwei nichtleere disjunkte Teilmengen X, Y von $\{1, \ldots, n\}$ existieren, mit $X \cup Y = \{1, \ldots, n\}$ und

$$A_{ik} = 0 \ i \in X, k \in Y,$$

anderfalls heißt A irreduzibel. Wie man leicht zeigen kann, ist A genau dann reduzibel, wenn man A durch Umordnen der Zeilen und Spalten in folgende Blockform überführen kann:

$$\begin{pmatrix} A_{11} & 0 \\ A_{12} & A_{22} \end{pmatrix}.$$

Ist G ein Graph, so gilt

G ist zusammenhängend $\Leftrightarrow A(G)$ ist irreduzibel.

Anfang des vorherigen Jahrhunderts beschäftigten sich Perron [35] und Frobenius [19] mit dem Spektrum von unzerlegbaren Matrizen mit nicht negativen Elementen, insbesondere mit dem Spektralradius solcher Matrizen, d.h., ihrem betragsmäßig größtem Eigenwert. Die von ihnen erzielten Ergebnisse, welche als Satz von Perron-Frobenius bekannt sind, spielen in vielen Teilgebieten der Mathematik (Analysis, Numerik, Stochastik, Graphentheorie usw.) eine wichtige Rolle. Der folgende Satz ist eine unmittelbare Folgerung aus dem Satz von Perron-Frobenius. Einen Beweis des Satz findet der Leser im Buch von Brouwer und Haemers [4].

Satz 1.18 Für einen zusammenhängenden Graphen G der Ordnung $n \in \mathbb{N}$ gelten folgende Aussagen:

- (a) $\lambda_{max}(G)$ ist ein einfacher Eigenwert mit $\lambda_{max}(G) \leq \Delta(G)$.
- (b) Es gibt einen Eigenvektor x von G zum Eigenwert $\lambda_{max}(G)$ mit x(v) > 0 für alle $v \in V(G)$.

- (c) Ist x ein Eigenvektor von G zum Eigenwert λ mit x(v) > 0 für alle $v \in V(G)$, so ist $\lambda = \lambda_{max}(G)$.
- (d) Für alle Eigenwerte λ von G gilt $|\lambda| \leq \lambda_{max}(G)$.

Korollar 1.19 Für einen r-regulären Graphen G der Ordnung $n \in \mathbb{N}$ gelten folgende Aussagen:

- (a) $\lambda_{max}(G) = r$.
- (b) G ist genau dann zusammenhängend, wenn $\lambda_{max}(G)$ ein einfacher Eigenwert ist.

Beweis: Es seien G_1, G_2, \ldots, G_ℓ die Komponenten von G. Dann ist jede Komponente G_i ein r-regulärer Graph $(1 \le i \le \ell)$. Damit folgt aus (1.6), dass $\mathbbm{1}$ ein Eigenvektor von G_i zum Eigenwert r ist. Aus Satz 1.18(a)(c) folgt dann, dass $\lambda_{max}(G_i) = r$ und $m_{G_i}(r) = 1$ sind. Dann ist $\lambda_{max}(G) = r$ und $m_{G}(r) = \ell$ wegen Beispiel 1.17.

Korollar 1.20 Ist G ein r-regulärer Graph der Ordnung $n \ge 1$, so gelten folgende Aussagen:

(a)
$$\lambda_1(G) = r \text{ und } \lambda_1(\overline{G}) = n - 1 - r.$$

(b)
$$\lambda_i(\overline{G}) = -\lambda_{n-i+1}(G) - 1$$
 für $2 \le i \le n$.

Beweis: Aussage (a) folgt aus Korollar 1.19, da der Komplementargraph eines r-regulären Graphen (n-1-r)-regulär ist. Bekanntlich ist entweder G oder \overline{G} zusammnhängend. Beim Beweis von Aussage (b) können wir also annehmen, dass G zusammenhängend ist. Sonst können wir die Rollen von G und \overline{G} vertauschen. Wir wählen nun für G und \overline{G} dieselbe Nummerierung der Ecken. Dann ist

$$A(G) + A(\overline{G}) = J - I$$

wobei $J \in \mathbb{R}^{n \times n}$ die 1-Matrix ist und $I \in \mathbb{R}^{n \times n}$ die Einheitsmatrix ist. Wir betrachten nun eine Orthonormalbasis $\{x_1, x_2, \dots, x_n\}$ aus lauter Eigenvektoren von G mit den zugehörigen Eigenwerten $\lambda_i = \lambda_i(G)$ für alle $1 \le i \le n$. Da $\lambda_1(G) = r$ und $E_G(r) = [1]$ ist (siehe Korollar 1.19 und 1.6) können wir $x_1 = 1$ wählen. Wir zeigen nun, dass $\{x_1, x_2, \dots, x_n\}$ eine Orthonormalbasis aus lauter Eigenvektoren von \overline{G} ist. Da \overline{G} (n-1-r)-regulär ist,

ist $x_1 = 1$ ein Eigenvektor von \overline{G} (siehe 1.6). Sei nun $2 \le i \le n$. Dann steht x_i orthogonal auf 1. Folglich ist

$$A(G)x_i + A(\overline{G})x_i = Jx_i - Ix_i = -x_i.$$

Wegen $A(G)x_i = \lambda_i x_i$ gilt dann $A(\overline{G})x_i = (-1 - \lambda_i(G))x_i$ und damit die Behauptung.

Lemma 1.21 Sei G ein Graph der Ordnung $n \in \mathbb{N}$ mit m Kanten. Dann gilt:

(a)
$$\lambda_1(G) + \lambda_2(G) + \cdots + \lambda_n(G) = 0$$
.

(b)
$$\lambda_1(G)^2 + \lambda_2(G)^2 + \dots + \lambda_n(G)^2 = 2m$$
.

Beweis: Wir zeigen zunächst (a). Für die Adjazenzmatrix A = A(G) gilt

$$\operatorname{spur}(A) = \sum_{i=1}^{n} a_{ii} = 0.$$

Aus der Linearen Algebra ist bekannt, dass $\sum_{i=1}^{n} \lambda_i(A) = \operatorname{spur}(A) = 0$ ist. Um (b) zu beweisen, betrachten wir $B = A^2$. Die Einträge B_{ij} geben die Anzahl aller Kantenfolgen der Länge 2 zwischen den Ecken v_i und v_j an. Insbesondere gilt $B_{ii} = d_G(v_i)$, da jede Kantenfolge der Länge 2 von v_i nach v_i genau einer Kante entspricht. Daraus folgt:

$$\sum_{i=1}^{n} \lambda_i(G)^2 = \text{spur}(B) = \sum_{i=1}^{n} B_{ii} = \sum_{i=1}^{n} d_G(v_i) = 2m.$$

Somit gilt (b).

Lemma 1.22 Seien H ein induzierter Untergraph von G und k = |G| - |H|. Dann gilt

$$\lambda_p(G) \ge \lambda_p(H) \ge \lambda_{p+k}(G)$$

 $f\ddot{u}r \ 1 \le p \le n - k$.

Beweis: Ist H ein induzierter Untergraph von G, so entsteht A(H) aus A(G) durch Streichen von Spalten und den korrespondierenden Zeilen. Damit folgt die Behauptung aus Satz 1.10.

Korollar 1.23 Sei G ein Graph mit $\omega(G) = p$ und $\alpha(G) = q$. Dann gilt:

$$\lambda_n(G) \geq -1 \text{ und } \lambda_n(G) \geq 0.$$

Beweis: Ist $\omega(G) = p$, so besitzt G einen vollständigen induzierten Untergraphen H der Ordnung p. Dann gilt $\lambda_1(H) = p - 1$ und $\lambda_i(H) = -1$ für $2 \le i \le p$ (siehe Beispiel 1.14). Damit folgt aus Korollar 1.22, dass $\lambda_p(G) \ge \lambda_p(H) \ge -1$ ist. Ist $\alpha(G) = q$, so besitzt G einen kantenlosen induzierten Untergraphen H' der Ordnung q. Dann ist $\lambda_i(H') = 0$ für $1 \le i \le q$. Also folgt aus Korollar 1.22, dass $\lambda_q(G) \ge \lambda_q(H') = 0$ ist.

Wir wollen uns nun noch kurz mit den Eigenwerten von Kantengraphen befassen. Es sei G = L(H) der Kantengraph des Graphs H mit $V(H) = \{v_1, v_2, \dots, v_n\}$ und $E(H) = \{e_1, e_2, \dots, e_m\}$. Wir betrachten die Inzidenzmatrix $B = B(H) \in \mathbb{R}^{n \times m}$ mit

$$B_{ij} = \begin{cases} 1 & \text{falls } v_i \in e_j \\ 0 & \text{falls } v_i \notin e_j. \end{cases}$$

Dann erhalten wir die folgenden Beziehungen:

$$A(G) = B^T B - 2I$$
 und $A(H) = BB^T - D$,

wobei $D = \operatorname{diag}(d_H(v_1), d_H(v_2), \dots, d_H(v_n))$ die Gradmatrix von H ist. Die Matrizen $B^T B$ und BB^T sind dann positiv semidefinit und folglich sind ihre Eigenwerte nicht negativ (siehe Satz 1.7). Für den p-größten Eigenwert von G gilt somit

$$\lambda_p(G) = \lambda_p(B^T B) - 2 \ge -2,$$

also ist insbesondere $\lambda_{min}(G) \geq -2$. Ist der Graph H kreislos und damit ein Wald, so ist rang(B) = m (wie sich leicht durch Induktion nach n zeigen lässt). Dann ist $B^T B$ positiv definit und somit $\lambda_{min}(G) > -2$. Zusammenfassend erhalten wir dann folgendes, wohlbekanntes Resultat (siehe [9, Theorem 6.11]).

Satz 1.24 Ist G = L(H) der Kantengraph eines Graphen H, so ist $\lambda_{min}(G) \ge -2$. Ist H ein Wald, so ist $\lambda_{min}(G) > -2$.

Aus der Linearen Algebra ist bekannt, dass die Matrizen BB^T und B^TB dieselben Eigenwerte mit denselben Vielfachheiten besitzen, mit Ausnahme des Eigenwerts $\lambda=0$. Es gilt dann

$$\lambda^n p_{B^T B}(\lambda) = \lambda^m p_{B B^T}(\lambda).$$

Die Vielfachheit des Eigenwerts $\lambda = 0$ hängt nur von dem Rang der Matrix B ab. Ist H zusammenhängend und $n \geq 2$, so kann der Rang von B nur die Werte n oder n-1 annehmen, je nachdem ob H bipartit ist oder nicht. Dies wurde zuerst von Sachs [37] gezeigt.

Daraus erhält man folgendes Resultat (siehe auch das Buch von Cvetković, Rowlinson und Simić [8, Theorem 2.2.4]).

Satz 1.25 Es sei H ein zusammenhängender Graph mit n Ecken und m Kanten, wobei $n \geq 2$ ist. Für die Vielfachheit des Eigenwertes $\lambda = -2$ von G = L(H) gilt:

$$m_G(-2) = \begin{cases} m - n + 1 & \text{falls } H \text{ bipartit ist} \\ m - n & \text{sonst.} \end{cases}$$

In den 1970er Jahren sind verschiedene Arbeiten erschienen, die sich mit der Charakterisierung der Graphen G mit $\lambda_{min}(G) \geq -2$ befassen. Zur Geschichte dieses Problems siehe [8]. Eine erste Teilcharakterisierung dieser Graphenklasse wurde 1977 von Hoffman [24], eine vollständige Charakterisierung wurde 1978 von Cameron, Goethals, Seidel und Shult [5] gefunden.

2 Die Erdős–Faber–Lovász Vermutung

Der Hauptteil dieser Bachelorarbeit befasst sich mit einer neuen Herangehensweise an die Erdős–Faber–Lovász Vermutung. Wir geben zuerst einen kurzen Überblick über die Vermutung und ihr Geschichte und behandeln dann Krauszzerlegungen von Graphen.

2.1 Die Geschichte der Vermutung

Es bezeichne $\mathcal{EG}(n)$ die Klasse aller Graphen, welche die Vereinigung von n kantendisjunkten vollständigen Graphen der Ordnung n sind. Für einen Graphen $G \in \mathcal{EG}(n)$ gibt es dann Graphen G_1, G_2, \ldots, G_n mit $G = \bigcup_{i=1}^n G_i$, $G_i = K_n$ für $1 \le i \le n$ und $|G_i \cap G_j| \le 1$ für $1 \le i < j \le n$. Dann ist $\omega(G) \ge n$ und somit gilt $\chi(G) \ge n$. Es ergibt sich dann die Frage, ob G eine n-Färbung besitzt.

Abbildung 2: Zwei Graphen aus $\mathcal{EG}(3)$ und $\mathcal{EG}(4)$

Vermutung 2.1 (Erdős–Faber–Lovász) Für jeden Graphen $G \in \mathcal{EG}(n)$ mit $n \in \mathbb{N}$ ist $\chi(G) \leq n$.

Die Vermutung wurde 1972 in Ohio von Erdős, Faber und Lovász aufgestellt, als sie über eine Verallgemeinerung der Vizing-Schranke für lineare Hypergraphen nachdachten (siehe [17] und [11]). Bereits sieben Jahre später bot Erdős [12] schon 500 Dollar für die Lösung des Problems. Diese Vermutung gehörte zu Erdős drei Lieblingsproblemen (siehe [13]). Vermutung 2.1 ist äquivalent zu der folgenden Vermutung über lineare Hypergraphen (siehe Satz 2.7):

Vermutung 2.2 (Erdős–Faber–Lovász) Für jeden linearen Hypergraphen H ist

$$\chi'(H) \leq |H|$$
.

Diese Vermutung ist bis heute ungelöst. Wir wollen aber einige Teilresultate hier anführen. Chung und Lawler [6] bewiesen die folgende obere Schranke für die chromatische Zahl von Graphen aus $\mathcal{EG}(n)$:

Satz 2.3 Für jeden Graphen $G \in \mathcal{EG}(n)$ mit $n \in \mathbb{N}$ ist $\chi(G) \leq \frac{3n}{2} - 2$.

Kahn [25] verbesserte diese obere Schranke. Er bewies, dass die Vermutung asymptotisch wahr ist.

Satz 2.4 Für jeden linearen Hypergraphen H ist $\chi'(H) \leq |H| + o(|H|)$.

Es ist außerdem bekannt, das Vermutung 2.1 für $n \leq 10$ gilt, wie Hindman [22] bewies. Weitere Anmerkungen und Resultate finden sich in der Arbeit von Romero und Sánchez-Arroyo [36].

2.2 Krauszzerlegungen von Graphen

Die Graphen aus $\mathcal{EG}(n)$ lassen sich alle durch n vollständige Graphen der Ordnung n kantendisjunkt überdecken. Im Folgenden wollen wir ein allgemeineres Konzept betrachten, indem wir nicht fordern, dass alle Graphen der Überdeckung dieselbe Ordnung haben. Diese Art der Überdeckung wurde zuerst von Krausz [31] zur Charakterisierung von Kantengraphen verwendet, daher der Name Krauszzerlegung.

Sei G ein Graph und K eine Menge von Untergraphen von G. Man nennt K dann eine Krauszzerlegung von G, falls folgende Bedingungen erfüllt sind:

- (K1) Jeder Graph $K \in \mathcal{K}$ ist ein vollständiger Graph der Ordnung $|K| \geq 2$.
- (K2) Verschiedene Graphen $K, K' \in \mathcal{K}$ sind kantendisjunkt (d.h. $|K \cap K'| \leq 1$).
- (K3) \mathcal{K} ist eine Überdeckung von G, d.h. $G = \bigcup_{K \in \mathcal{K}} K$.

Desweiteren sei für $v \in V(G)$ der **Grad** von v bezüglich \mathcal{K} definiert als

$$d_{\mathcal{K}}(v) = |\{K \in \mathcal{K} \mid v \in V(K)\}|.$$

Der Minimalgrad von K ist

$$\delta(\mathcal{K}) = \min_{v \in V(G)} d_{\mathcal{K}}(v)$$

und der Maximalgrad von K ist

$$\Delta(\mathcal{K}) = \max_{v \in V(G)} d_{\mathcal{K}}(v).$$

Krausz [31] beschäftigte sich mit der Frage, welche Graphen Kantengraphen von Graphen sind. Er bewieß, dass ein Graph genau dann ein Kantengraph eines Graphen ist, wenn er eine Krauszzerlegung mit Maximalgrad höchstens 2 besitzt. Ist G = L(H) der Kantengraph des Graphen H, so ist für jede Ecke $v \in V(H)$ die Kantenmenge $E_H(v)$ eine Clique von G und somit ist $K^v = G[E_H(v)]$ ein vollständiger Graph. Für zwei verschiedene Ecken $u, v \in V(H)$ gilt dann:

$$K^u \cap K^v \neq \varnothing \Leftrightarrow uv \in E(H) \Leftrightarrow |K^u \cap K^v| \leq 1.$$

Sind nun $e, e' \in E(H)$ zwei adjazente Kanten von H und somit ee' eine Kante von G, so gibt es eine Ecke $v \in e \cap e'$ und e, e' gehören zu K^v . Also ist $\mathcal{K} = \{K^v \mid v \in V(H)\}$ eine Krauszzerlegung von G mit $\Delta(\mathcal{K}) \leq 2$.

Für $d \geq 1$ sei $\kappa_d(G)$ die kleinste positive Zahl m derart, dass G eine Krauszzerlegung \mathcal{K} mit $|\mathcal{K}| = m$ und $\delta(\mathcal{K}) \geq d$ besitzt. Existiert keine solche Zahl m, so setzen wir $\kappa_d(G) = \infty$.

Abbildung 3: Eine Krauszzerlegung des K_4

In Abbildung 3 sehen wir eine Krauszzerlegung \mathcal{K} des K_4 (die einzelnen kantendisjunkten Untergraphen sind jeweils mit der selben Farbe markiert). Wir können außerdem erkennen, dass $\delta(\mathcal{K}) = 2$ ist und folglich $\kappa_2(K_4) \leq 4$ ist (wir werden später sehen, dass stets $\kappa_2(K_n) \geq n$ gilt und somit $\kappa_2(K_4) = 4$ ist). In Abbildung 4 sehen wir zwei Krauszzerlegungen des K_5 , beide mit Minimalgrad 2.

Lemma 2.5 Seien G ein Graph und $d \in \mathbb{N}$. Genau dann ist $\kappa_d(G) < \infty$, wenn $\delta(G) \geq d$ ist.

Beweis: Wir zeigen zunächst, dass $\delta(G) \geq d$ ist, falls $p = \kappa_d(G) < \infty$ ist. Sei $v \in V(G)$ mit $d_G(v) = \delta(G)$. Dann existiert eine Krauszzerlegung $\mathcal{K} = \{K^1, \dots, K^p\}$ von G mit

Abbildung 4: Zwei Krauszzerlegungen des K_5

 $\delta(\mathcal{K}) \geq d$. Da alle Graphen der Krauszzerlegung kantendisjunkt sind, gilt

$$d \le \sum_{K \in \mathcal{K}, v \in K} d_K(v) = d_G(v) = \delta(v).$$

Dabei gilt die erste Ungleichung, da v in mindestens d der Graphen aus K vorkommt und in diesen mindestens Grad 1 hat.

Sei nun $\delta(G) \geq d$. Wir müssen zeigen, dass es eine Krauszzerlegung \mathcal{K} mit $d_{\mathcal{K}}(v) \geq d$ für alle $v \in V(G)$ gibt. Für eine Kante $e \in E(G)$ sei K^e der Graph, welcher nur aus e und den beiden mit e inzidenten Ecken besteht. Wir zeigen: $\mathcal{K} = \{K^e \mid e \in E(G)\}$ ist eine Krauszzerlegung von G mit $\delta(\mathcal{K}) \geq d$. (K1) ist erfüllt, da alle Graphen von \mathcal{K} isomorph zu K_2 sind. Sind K, K' zwei verschiedene Graphen aus \mathcal{K} , so sind sie kantendisjunkt, da ihre einzigen Kanten in G verschieden sind. Also ist auch (K2) erfüllt. Da jede Kante von G in einem $K \in \mathcal{K}$ vorkommt, ist auch (K3) erfüllt. Sei nun v eine Ecke von G. Dann ist

$$d_{\mathcal{K}}(v) = d_G(v) \ge \delta(G) \ge d$$

und folglich auch $\delta(\mathcal{K}) \geq d$. Damit ist gezeigt, dass \mathcal{K} eine Krauszzerlegung von G ist mit $\delta(\mathcal{K}) \geq d$. Also ist $\kappa_d(G) \leq |\mathcal{K}| < \infty$.

Beispiel 2.6 Sei G ein dreiecksfreier Graph mit Minimalgrad mindestens d. Dann ist $\kappa_d(G) = |E(G)|$, da G keine Dreiecke enthält und somit jeder Graph einer Krauszzerlegung von G isomorph zu K_2 sein muss.

Wir werden nun einen Zusammenhang zwischen Krauszzerlegungen und der Erdős–Faber–Lovász Vermutung herstellen.

Satz 2.7 Die folgenden Aussagen sind äquivalent:

(a) Für alle $n \in \mathbb{N}$ und alle $G \in \mathcal{EG}(n)$ gilt $\chi(G) \leq n$.

- (b) Für alle linearen Hypergraphen H gilt $\chi'(H) \leq |H|$.
- (c) Für alle Graphen G gilt $\chi(G) \leq \kappa_2(G)$.

Beweis: Wir zeigen zuerst, dass (b) aus (a) folgt. Sei dazu H ein linearer Hypergraph der Ordnung n und G = L(H) sein Kantengraph. Sei $v \in V(H)$ eine Ecke von H. Wir betrachten dann $K^v = G[E_H(v)]$. Dann ist K^v ein vollständiger Graph. Wir zeigen, dass seine Ordnung höchstens n-1 ist. Angenommen, das ist nicht der Fall. Dann ist die

Abbildung 5: Die Beziehung von v und K^v

Ordnung von K^v mindestens n und wir finden mindestens n unterschiedlich Kanten in $E_H(v)$, welche v enthalten. Da H ein linearer Hypergraph ist, ist v die einzige Ecke die zwei Kanten aus $E_H(v)$ gemeinsam haben, d.h. $|e \cap e'| = |\{v\}| = 1$ für alle $\{e, e'\} \in [E_H(v)]^2$. Außerdem ist $|e| \geq 2$ für alle $e \in E(H)$. Dann folgt aber, dass

$$|H| \ge |\bigcup_{e \in E_H(v)} e| = \sum_{e \in E_H(v)} |e \setminus \{v\}| + |\{v\}| \ge n + 1$$

gilt, ein Widerspruch zur Voraussetzung |H|=n. Also ist K^v ein vollständiger Graph der Ordnung höchstens n-1. Wir bezeichnen dann mit $\tilde{K^v}$ den vollständigen Graphen der Ordnung n, der aus K^v entsteht indem wir die nötige Anzahl Ecken und Kanten hinzufügen. Es bezeichne dann \tilde{G} den Graphen, den wir aus G erhalten, indem wir alle Ecken und Kanten die wir so hinzugefügt haben auch zu G hinzufügen. Dann ist G ein induzierter Untergraph von \tilde{G} . Wir zeigen jetzt, dass $\mathcal{K}=\{K^v\mid v\in V(H)\}$ eine Krauszzerlegung von G ist. (K1) ist trivialerweise erfüllt. Um (K2) zu zeigen, nehmen wir an das in G eine Kante $ee'\in E(G)$ exisitert, welche in zwei verschiedenen Graphen K,K' von \mathcal{K} vorkommt.

Dann existieren zwei unterschiedliche Ecken u, v von H für welche $K = K^v$ und $K' = K^w$ gilt. Da $e, e' \in V(K^v) \cap V(K^w)$ gilt, kommen die Ecken v und u von H also sowohl in e als auch in e' vor. Damit ist $|e \cap e'| \geq 2$, ein Widerspruch zur Voraussetzung, dass H ein linearer Hypergraph ist. Damit gilt (K2). Sei $ee' \in V(G)$ eine Kante von G. Da G der Kantengraph von H ist, existiert eine Ecke $v \in V(H)$ mit $v \in e \cap e'$. Also ist $ee' \in K^v \in K$. Damit ist auch (K3) gezeigt. Also ist K eine Krauszzerlegung von G. Insbesondere ist auch $\tilde{K} = \{\tilde{K}^v \mid v \in V(H)\}$ eine Krauszzerlegung von \tilde{G} . Also ist $\tilde{G} \in \mathcal{EG}(n)$. Mit (a) folgt dann

$$\chi'(H) = \chi(G) \le \chi(\tilde{G}) \le n = |H|.$$

Als nächstes zeigen wir, dass (c) aus (b) folgt. Dazu betrachten wir einen beliebigen Graphen G und zeigen, dass $\chi(G) \leq \kappa_2(G)$ gilt. Ist $\kappa_2(G) = \infty$, so ist nichts zu zeigen. Andernfalls ist $\kappa_2(G) = p < \infty$ und es gibt eine Krauszzerlegung $\mathcal{K} = \{K^1, \dots, K^p\}$ von G mit $\delta(\mathcal{K}) \geq 2$. Für $v \in V(G)$ definieren wir e_v als die Menge aller $K \in \mathcal{K}$, welche v enthalten.

Abbildung 6: Die Konstruktion von H

Da K eine Krauszzerlegung ist, gilt $|e_v| = d_K(v) \ge \delta(K) \ge 2$ für alle $v \in V(G)$. Sei H der Hypergraph mit Eckenmenge V(H) = K und Kantenmenge $E(H) = \{e_v \mid v \in V(G)\}$. Wir betrachten $\pi: V(G) \mapsto E(H)$ mit $\pi(v) = e_v$, diese ist offensichtlich surjektiv. Wir zeigen, dass π bijektiv ist. Wäre dem nicht so, so gäbe es zwei unterschiedliche Ecken v, w mit $e_v = e_w$. Da $|e_v| \ge 2$ ist, wäre dann die Kante vw in zwei Graphen von K enthalten, was der Bedingung (K2) widerspräche. Also ist π bijektiv. Wir zeigen nun, dass H ein linearer Hypergraph ist. Seien dazu e_v, e_w zwei unterschiedliche Kanten von

H. Angenommen $|e_v \cap e_w| \geq 2$. Dann existieren mindestens zwei Graphen $K, K' \in \mathcal{K}$ mit $v, w \in K, K'$. Da K, K' aus der Krauszerlegung sind, ist die Kante vw sowohl in K als auch in K' vorhanden. Dies ist aber ein Widerspruch zu Eigenschaft (K2) einer Krauszzerlegung. Folglich ist $|e_v \cap e_w| \leq 1$, also ist H linear. Dann folgt aus der Vorraussetzung (b), dass $\chi'(H) \leq |H| = \kappa_2(G)$ ist. Somit finden wir eine Färbung $\phi : E(H) \mapsto \{1, \dots, p\}$ der Kanten von H. Sei dann $\varphi = \phi \circ \pi$. Wir zeigen, dass φ eine Färbung der Ecken von G ist. Dazu betrachten wir eine Kante $vw \in E(G)$. Dann existiert ein $K \in \mathcal{K}$ mit $vw \in E(K)$. Also ist $e_v \cap e_w \neq \emptyset$ und folglich

$$\varphi(v) = \phi(e_v) \neq \phi(e_w) = \varphi(w).$$

Also ist φ eine p-Färbung von G. Das heißt

$$\chi(G) \leq p = \kappa_2(G).$$

Also folgt (c) aus (b).

Nun zeigen wir, dass (a) aus (c) folgt. Sei $G \in \mathcal{EG}(p)$ mit $p \in \mathbb{N}$. Dann ist G die kantendisjunkte Vereinigung von p vollständigen Graphen der Ordnung p, welche wir mit K^1, \ldots, K^p bezeichnen wollen. Nun entfernen wir wiederholt Ecken aus G, deren aktueller Grad kleiner als p ist solange, bis keine Ecken vom Grad kleiner als p existieren. Den aus diesem Prozess entstehenden (möglicherweise leeren) Graphen nennen wir H. Gelingt es, H mit p Farben zu färben, so können wir diese Färbung schrittweise zu einer Färbung von G erweitern, indem wir die entfernten Ecken in umgekehrter Reihenfolge färben. Dies ist mit p Farben möglich, da jede zu färbende Ecke höchstens p-1 bereits gefärbte Nachbarn besitzt. Somit reicht es zu zeigen, dass $\chi(H) \leq p$ ist. Ist $H = \emptyset$, so gilt dies trivialerweise. Andernfalls gilt nach Konstruktion $\delta(H) \geq p$. Sei $\hat{K}^i = K^i \cap H$ für $1 \leq i \leq n$. Dann ist \hat{K}^i ein vollständiger Graph für alle i. Wähle $\mathcal{K} = \left\{ \hat{K}^i \mid |\hat{K}^i| \geq 2, 1 \leq i \leq n \right\}$. Wir zeigen, dass K eine Krauszzerlegung von H mit $\delta(K) \geq 2$ ist. Die Bedingung (K1) ist offensichtlich erfüllt. Da in G die K^i kantendisjunkt sind und H ein induzierter Untergraph von G ist sind die \hat{K}^i in H ebenfalls kantendisjunkt. Folglich ist die Bedingung (K2) ebenfalls erfüllt. Sei $v \in V(H)$. Dann ist $d_H(v) \geq p$ und somit gilt $d_G(v) \geq d_H(v) \geq p$. Die Ecke v ist in mindestens zwei vollständigen Graphen K und K' aus der Krauszzerlegung K enthalten. Ansonsten wäre v nur in einem vollständigen Graphen $K \in \mathcal{K}$ enthalten und somit wäre $d_H(v) = d_K(v) \le p-1$, was unmöglich ist. Folglich ist $d_K(v) \ge 2$ für alle $v \in V(H)$. Also ist \mathcal{K} eine Krauszzerlegung mit $\delta(\mathcal{K}) \geq 2$ und wegen (c) folgt dann:

$$\chi(H) \le \kappa_2(H) \le |\mathcal{K}| \le p.$$

Also lässt sich H mit p Farben färben und wir können wie oben beschrieben G ebenfalls mit p Farben färben. Also ist $\chi(G) \leq p$.

Aus dem vorhergehenden Satz folgt, dass Vermutung 2.1 und Vermutung 2.2 äquivalent sind. Eine weitere dazu äquivalente Vermutung ist die folgende:

Vermutung 2.8 Für jeden Graphen G ist $\chi(G) \leq \kappa_2(G)$.

Im Zusammenhang mit diesen Vermutungen ist es sinnvoll, die folgenden Extremalfunktionen zu betrachten:

$$f_1(n) = \max\{\chi(G) \mid G \in \bigcup_{p=1}^n \mathcal{EG}(p)\}$$

 $f_2(n) = \max\{\chi'(H) \mid H \text{ ist ein linearer Hypergraph mit } |H| \le n\}$

$$f_3(n) = \max\{\chi(G) \mid G \text{ ist ein Graph mit } \kappa_2(G) \le n\}$$

für $n \geq 3$. Der Beweis von Satz 2.7 lässt sich dann ohne Schwierigkeiten modifizieren, dass man zeigen kann

$$f_1(n) = f_2(n) = f_3(n)$$

für alle $n \geq 3$.

3 Spektraleigenschaften von Graphen

In diesem Kapitel wollen wir die in Abschnitt 1.4 behandelten Themen weiter vertiefen. Insbesondere werden wir einen Zusammenhang zwischen Krauszzerlegungen und den Eigenwerten eines Graphen herstellen. Da spezielle Krauszzerlegungen von Graphen (nämlich diejenigen mit Minimalgrad mindestens 2) in Zusammenhang mit Vermutung 2.1 stehen, werden wir hier eine alternative Herangehensweise an die Erdős-Faber-Lovász Vermutung finden.

3.1 Krauszzerlegungen und Eigenwerte

Satz 3.1 Seien G ein Graph mit $V(G) = \{v_1, \ldots, v_n\}$ und $K = \{K^1, \ldots, K^p\}$ eine Krauszzerlegung von G mit $\delta(K) \geq d \geq 2$. Desweiteren sei $d_i = d_K(v_i)$ für $1 \leq i \leq n$. Dabei
wählen wir die Eckennummerierung so, dass $d_1 \geq d_2 \geq \cdots \geq d_n$ ist. Dann gelten folgende
Aussagen:

(a)
$$\lambda_i(G) \ge -d_{n-i+1} \text{ für } 1 \le i \le n.$$

(b)
$$\lambda_{p+1}(G) \leq -d$$
 falls $p < n$ ist.

Beweis: Zunächst zeigen wir (a). Es sei A = A(G) die Adjazenzmatrix von G und $D = \text{diag}(d_1, \ldots, d_n)$. Definiere $B \in \mathbb{R}^{n \times p}$ als die Inzidenzmatrix von \mathcal{K} , d.h.

$$B_{ij} = \begin{cases} 1 & \text{falls } v_i \in K^j \\ 0 & \text{falls } v_i \notin K^j \end{cases}$$

Nun betrachten wir $M = BB^T$. Die Matrix $M \in \mathbb{R}^{n \times n}$ ist symmetrisch und es gilt

$$M_{ij} = \sum_{k=1}^{p} B_{ik} B_{kj}^{T} = \sum_{k=1}^{p} B_{ik} B_{jk}.$$

Seien $1 \le i < j \le n$. Da B die Inzidenzmatrix von \mathcal{K} ist, gilt

$$B_{ik}B_{jk} = 1 \Leftrightarrow B_{ik} = 1 \text{ und } B_{jk} = 1 \Leftrightarrow v_i, v_j \in K^k.$$

Ist $v_i v_j \in E(G)$, so kommt die Kante $v_i v_j$ in genau einem $K \in \mathcal{K}$ vor, d.h. es gibt genau ein $k \in \{1, \ldots, p\}$ für das B_{ik} und B_{jk} gleich 1 sind. Ist $v_i v_j \notin E(G)$, so kommt die Kante $v_i v_j$ auch nicht in einem der Graphen der Krauszzerlegung vor. Also ist für alle $k \in \{1, \ldots, p\}$ $B_{ik}B_{jk} = 0$. Folglich ist $M_{ij} = 1$ genau dann, wenn $v_i v_j \in E(G)$ gilt. Also ist $M_{ij} = A_{ij}$. Sei nun $1 \le i \le n$. Dann gilt für die Diagonaleinträge M_{ii} der Matrix M:

$$M_{ii} = \sum_{k=1}^{p} B_{ik} B_{ik} = \sum_{k=1}^{p} B_{ik}.$$

Die Gleichung $B_{ik} = 1$ gilt genau dann, wenn $v_i \in K^k$ ist. Folglich ist $M_{ii} = d_K(v_i) = d_i$. Damit gilt M = A + D. Außerdem ist die Matrix $M = BB^T$ nach Satz 1.7 positiv semidefinit. Folglich ist A - (-D) positiv semidefinit und es folgt mit Lemma 1.9, dass

$$\lambda_i(G) = \lambda_i(A) \ge \lambda_i(-D) = -d_{n-i+1}$$

für alle $1 \le i \le n$ gilt. Damit ist (a) gezeigt.

Nun zeigen wir (b). Sei p < n. Da rang $(M) = \text{rang}(B) \le p$ ist, gilt dann $\lambda_{p+1}(M) = 0$. Mit Satz 1.11 folgt dann, dass

$$\lambda_{p+1}(A) + d \le \lambda_{p+1}(A) + d_n = \lambda_{p+1}(A) + \lambda_n(D) \le \lambda_{p+1}(M) = 0$$

gilt. Durch Umstellen erhalten wir die gewünschte Ungleichung.

Wir wollen nun eine Folge von Graphenparametern definieren. Seien dazu $d \in \mathbb{N}$ und G ein Graph. Wir bezeichnen mit $\xi_d(G)$ die Anzahl aller Eigenwerte von G, welche größer als -d sind. Damit ist also

$$\xi_d(G) = |\{i \mid \lambda_i(G) > -d\}|.$$

Dieser ist ein Graphenparamter, da nach Lemma 1.13 isomorphe Graphen dasselbe Spektrum besitzen und somit ξ_d zwei isomorphen Graphen dieselbe natürliche Zahl zuordnet. Insbesondere gilt (falls $G \neq \emptyset$)

$$\xi_d(G) > k \Leftrightarrow \lambda_k(G) > -d \text{ und } \xi_d(G) < k \Leftrightarrow \lambda_k(G) < -d$$

für alle $1 \le k \le n$.

Lemma 3.2 Seien G ein Graph und $d \in \mathbb{N}$. Dann gelten für den Graphenparameter ξ_d folgende Aussagen:

- (a) Ist H ein induzierter Untergraph von G, so gilt $\xi_d(H) \leq \xi_d(G)$.
- (b) Ist $d \geq 2$, so gilt $\omega(G) \leq \xi_d(G)$.
- (c) $\alpha(G) \leq \xi_d(G)$.
- (d) Ist $v \in V(G)$ eine Ecke von G, so gilt $\xi_d(G) \leq \xi_d(G-v) + 1$.
- (e) Ist $d' \in \mathbb{N}$ mit $d \leq d'$, so gilt $\xi_d(G) \leq \xi_{d'}(G)$.

Beweis: Wir zeigen zunächst (a). Sei $\xi_d(H) = l$. Folglich ist $\lambda_l(H) > -d$ und wir erhalten mit Lemma 1.22, dass $\lambda_l(G) \geq \lambda_l(H) > -d$ gilt. Deswegen ist $\xi_d(G) \geq l = \xi_d(H)$. Also gilt (a).

Um (b) und (c) zu zeigen, seien $p = \omega(G)$ und $q = \alpha(G)$. Nach Korollar 1.23 ist dann $\lambda_p(G) \geq -1$ und $\lambda_q(G) \geq 0$ und deswegen $\xi_d(G) \geq p = \omega(G)$ für $d \geq 2$ und $\xi_d(G) \geq q = \alpha(G)$ für alle $d \in \mathbb{N}$.

Für den Beweis von (d) wählen wir eine beliebige Ecke v von G. Dann ist G-v ein induzierter Untergraph von G der Ordnung |G|-1. Sei $l=\xi_d(G-v)$. Ist l=|G|-1, so ist nichts zu zeigen, da $\xi_d(G)$ nach oben durch |G| beschränkt ist. Andernfalls ist l<|G|-1. Dann ist $\lambda_l(G-v)>-d$ und $\lambda_{l+1}(G-v)\leq -d$. Nun folgt mit Lemma 1.22 für k=1, dass

$$\lambda_{l+2}(G) \le \lambda_{l+1}(G-v) \le -d$$

ist. Deswegen ist $\xi_d(G) \leq l+1 = \xi_d(G-v)+1$. Damit ist (d) bewiesen.

Aussage (e) gilt, da die Eigenwerte eines Graphen fallend geordnet sind.

Mit Satz 3.1 erhalten wir einige Aussagen über Krauszzerlegungen und den Parameter ξ_d von G.

Korollar 3.3 Ist G ein Graph der Ordnung n, so gilt

$$\xi_d(G) \ge |\{v \mid v \in V(G), d_G(v) < d\}|$$

 $f\ddot{u}r$ alle $d \in \mathbb{N}$.

Beweis: Es sei $\mathcal{K} = \{G[\{u,v\}] \mid uv \in E(G)\}$ die Krauszzerlegung von G welche nur aus den Kanten von G besteht und

$$l = |\{v \mid v \in V(G), d_G(v) < d\}|.$$

Desweiteren sei $V(G) = \{v_1, v_2, \dots, v_n\}$ eine Nummerierung der Kanten, sodass die Gradfolge $d_i = d_G(v_i)$, für $1 \le i \le n$ fallend in i sind. Es gilt $d_K(v) = d_G(v)$ für alle Ecken v von G. Dann ist $d_{n-l+1} < d$. Nun folgt aus Satz 3.1, dass

$$\lambda_l(G) \ge -d_{n-l+1} > -d$$

gilt. Also ist $\xi_d(G) \geq l$.

Korollar 3.4 Seien G ein Graph und H ein induzierter Untergraph von G. Dann ist $\kappa_d(G) \geq \xi_d(H)$.

Beweis: Angenommen, es gilt $p = \kappa_d(G) < q = \xi_d(H)$. Dann gibt es eine Krauszzerlegung \mathcal{K} von G mit $|\mathcal{K}| = p$ und $\delta(\mathcal{K}) \geq d$. Aus Satz 3.1 folgt, dass $\lambda_q(G) \leq \lambda_{p+1}(G) \leq -d$ gilt, da $p+1 \leq q \leq |G|$ ist und die Eigenwerte eines Graphen fallend geordnet sind. Dann ist aber auch $\xi_d(G) < q$, im Widerspruch zu $\xi_d(G) \geq \xi_d(H) \geq q$ (siehe Lemma 3.2). Folglich ist $\kappa_2(G) \geq q$.

Korollar 3.5 Seien G ein Graph und H ein induzierter Untergraph von G. Ist H Kantengraph eines Waldes, so gilt $\kappa_2(G) \geq |H|$.

Beweis: Ist $\delta(G) \leq 1$, so ist nichts zu zeigen, da dann mit Lemma 2.5 folgt, dass $\kappa_2(G) = \infty$ ist. Sei sonst q = |H|. Da H Kantengraph eines Waldes ist, folgt $\lambda_q(H) > -2$ aus Korollar 1.24. Also ist $\xi_2(H) = |H|$. Dann ist mit Korollar 3.4 $\kappa_2(G) \geq |H|$.

Korollar 3.6 *Ist* G *ein Graph so gilt* $\omega(G) \leq \kappa_2(G)$ *und* $\alpha(G) \leq \kappa_2(G)$.

Beweis: Aus Lemma 3.2 und Lemma 3.4 folgt

$$\omega(G) \le \xi_2(G) \le \kappa_2(G)$$

$$\alpha(G) \le \xi_2(G) \le \kappa_2(G)$$

und damit die Behauptung.

Der folgende Korollar wurde bereits von Klotz [27] gezeigt. Wir erhalten über die Krauszzerlegung und Korollar 3.5 jedoch einen eleganten Beweis.

Korollar 3.7 (Klotz) *Es sei* $n \ge 3$. *Dann gilt* $\kappa_2(K_n) = n$.

Beweis: Um zu sehen, dass $\kappa_2(K_n) \leq n$ ist, wählen wir eine Ecke v von K_n . Sei

$$\mathcal{K} = \{K_n - v\} \cup \{K_n[u, v] \mid u \in V(K_n), u \neq v\}.$$

Dann besteht K aus einem K_{n-1} und n-1 vollständigen Graphen der Ordnung 2. Außerdem ist |K| = n und K ist eine Krauszzerlegung von K_n . Jede Ecke von K_n kommt in mindestens zwei Graphen aus K vor. Also ist auch $\delta(K) \geq 2$. Damit ist $\kappa_2(K_n) \leq n$. Es bleibt also zu zeigen, dass $\kappa_2(K_n) \geq n$ ist. Dafür geben wir mehrere Beweise an. Mit Hilfe von Korollar 3.5 folgt die Behauptung, da K_n der Kantengraph von $K_{1,n}$ ist. Einen zweiten Beweise erhalten wir mit Korollar 3.6, da $n = \omega(K_n) \leq \kappa_2(K_n)$ ist.

Um die Erdős–Faber–Lovász Vermutung zu beweisen, genügt es zu zeigen, dass jeder Graph G die Ungleichung

$$\chi(G) \leq \xi_2(G)$$

erfüllt. Dann gilt mit Korollar 3.4

$$\chi(G) \leq \kappa_2(G)$$
,

woraus mit Satz 3.11 dann Vermutung 2.1 folgt. Wir gelangen also zur folgenden Vermutung.

Vermutung 3.8 *Ist* G *ein Graph so gilt* $\chi(G) \leq \xi_2(G)$.

Eine Möglichkeit dies zu zeigen, wäre zu beweisen, dass ξ_2 ein Szekeres-Wilf-Paramter ist. Die Eigenschaft (S1) ist nach Lemma 3.2 erfüllt. Mit Hilfe von Maple gelang es jedoch einen Graphen G zu finden, für welchen $\xi_2(G) < \delta(G) + 1$ ist.

Es ist jedoch möglich, die chromatische Zahl durch eine Funktion von ξ_2 nach oben zu beschränken, wie der folgende Satz zeigt. Dazu benötigen wir einen weiteren Parameter, β , welcher für einen Graphen G wie folgt definiert ist:

$$\beta(G) = \max\{|H| \mid H \le G, \lambda_{min}(H) > -2\}.$$

Eine dominierende Menge in G ist eine Menge von Ecken X von G derart, dass jede Ecke in $V(G) \setminus X$ einen Nachbarn in X besitzt. Die Dominierungszahl $\gamma(G)$ ist die kleinste natürliche Zahl k, sodass G eine dominierende Menge der Mächtigkeit k besitzt. Sei H ein induzierter Untergraph der Ordnung $\beta(G)$ von G dessen Eigenwerte alle größer als -2 sind. Ist dann V(H) keine dominierende Menge von G, so finden wir eine Ecke $v \in V(G) \setminus V(H)$ welche mit keiner Ecke von H benachbart ist. Dann ist $H' = G[V(H) \cup \{v\}]$ ein induzierter Untergraph von G. Für diesen gilt $\lambda_{min}(H') = \min\{\lambda_{min}(H), 0\} > -2$ und $|H'| > \beta(G)$ wegen Beispiel 1.17, was unmöglich ist. Also ist V(H) eine dominierende Menge und wir finden $\gamma(G) \leq \beta(G)$.

Satz 3.9 Es existiert eine Funktion $f: \mathbb{N}^2 \to \mathbb{N}$, sodass für alle Graphen G mit $\beta(G) \leq p$ und $\omega(G) \leq q$ gilt $\chi(G) \leq f(p,q)$.

Beweis: Es sei $f: \mathbb{N}^2 \to \mathbb{N}$ die wie folgt rekursiv definierte Funktion:

$$f(p,q) = \begin{cases} 1 & \text{falls } q = 1\\ 1 + p \cdot f(p, q - 1) & \text{falls } q \ge 2. \end{cases}$$

Wir behaupten nun, dass für alle Graphen G mit $\beta(G) \leq p$ und $\omega(G) \leq q$ gilt $\chi(G) \leq f(p,q)$.

Wir beweisen die Aussage durch Induktion nach q. Für q=1 gilt dann $\omega(G) \leq 1$ und deswegen ist $\chi(G) \leq 1 = f(p,1)$. Somit gilt die Aussage für q=1. Sei nun $q \geq 2$ und G ein Graph mit $\beta(G) \leq p$ und $\omega(G) \leq q$. Ist $\omega(G) \leq q-1$, so folgt die Behauptung aus der Induktionsvoraussetzung und der Tatsache, dass $f(p,q-1) \leq f(p,q)$ ist. Andernfalls ist $\omega(G) = q$. Dann hat G einen induzierten Untergraphen H der Ordnung $l = \beta(G)$ für den $\lambda_{min}(H) > -2$ ist. Für $v \in V(H)$ sei $N_v = \{u \in V(G) \mid uv \in E(G)\}$, die Menge der Nachbarn von v in G. Dann ist $\omega(G[N_v]) \leq \omega(G) - 1$, da sonst $G[N_v \cup \{v\}]$ einen vollständiger Graphen der Ordnung q+1 enthält, was nicht möglich ist, da $\omega(G) \leq q$ ist. Außerdem gilt $\beta(G[N_v]) \leq \beta(G)$, da jeder induzierte Untergraph von $G[N_v]$ wieder ein induzierter Untergraph von G ist. Wegen der Induktionsvorraussetzung folgt dann, dass $\chi(G[N_v]) \leq f(p,q-1)$ ist. Wir setzen

$$N = V(G) \setminus \bigcup_{v \in V(H)} N_v$$

und zeigen, dass G[N] kantenlos ist. Wäre dem nicht so, so existiert eine Kante $uv \in E(G[N])$. Dann kommen beide Ecken nach Definition von N nicht in V(H) vor. Also gilt $u, v \notin V(H)$ und weder u noch v ist mit einer Ecke aus H benachbart. Wir betrachten den Graphen

$$H' = G[V(H) \cup \{u, v\}].$$

Dieser ist ebenfalls ein induzierter Untergraph von G mit |H'| > |H|. Da er die disjunkte Vereinigung von H und einem vollständigen Graphen der Ordnung 2 ist, ist das Spektrum von H' die Vereinigung des Spektrums von H und (1, -1) (siehe Beispiel 1.17). Insbesondere ist

$$\lambda_{min}(H') = \min\{\lambda_{min}(H), 1, -1\} > -2.$$

Dies ist ein Widerspruch zur Wahl von H. Also ist G[N] kantenlos und folglich gilt $\chi(G[N]) \leq 1$. Wegen der Subadditivität der chromatischen Zahl und $|H| \leq \beta(G) \leq p$ gilt dann

$$\chi(G) \le \chi(G[N]) + \sum_{v \in V(H)} \chi(G[N_v]) \le 1 + |H|f(p, q - 1) \le 1 + p \cdot f(p, q - 1) = f(p, q).$$

Mit dieser Vorarbeit können wir nun den folgenden Satz beweisen.

Korollar 3.10 Es gibt eine Funktion $g: \mathbb{N} \to \mathbb{N}$ welche

$$\chi(G) \le g(\xi_2(G))$$

für alle Graphen G erfüllt.

Beweis: Wir zeigen, dass für alle Graphen G die Ungleichung $\beta(G) \leq \xi_2(G)$ erfüllt ist. Dann folgt die Behauptung, indem wir $g(\xi_2(G)) = f(\xi_2(G), \xi_2(G))$ setzen, wobei f die Funktion aus Satz 3.9 ist. Sei also $\beta(G) = l \in \mathbb{N}$. Dann existiert ein induzierter Untergraph H von G mit |H| = l und $\lambda_{min}(H) = \lambda_l(H) > -2$. Folglich ist mit Lemma 1.22 $\lambda_l(G) \geq \lambda_l(H) > -2$, was $\xi_2(G) \geq l = \beta(G)$ impliziert.

Da $\beta(G)$ eine untere Schranke für $\xi_2(G)$ ist, folgt aus den Vorbemerkungen dieses Satzes, dass die Dominierungszahl $\gamma(G)$ ebenfalls eine untere Schranke für $\xi_2(G)$ ist.

Satz 3.11 Für $d \in \mathbb{N}$ gelten folgende Aussagen:

- (a) Ist G ein Graph mit $\chi(G) \leq \xi_d(G)$, so gilt $\chi(G) \leq \kappa_d(G)$.
- (b) Gilt $\chi(G) \leq \xi_d(G)$ für alle Graphen G, so ist $\chi'(H) \leq |H|$ für jeden linearen Hypergraphen H mit $|e| \geq d$ für alle $e \in E(H)$.

Beweis: Aussage (a) folgt aus Korollar 3.4. Wir zeigen nun (b) durch Widerspruch. Angenommen die Behauptung gilt nicht. Dann gibt es einen linearen Hypergraphen minimaler Ordnung mit $|e| \geq d$ für alle $e \in E(H)$, für welchen $\chi'(H) > |H|$ ist. Wir machen eine Fallunterscheidung bezüglich dem kleinsten Kantengrad.

Fall $1:\delta'(H) < d$. Dann besitzt H eine Kante e vom Grad kleiner als d. Da $|e| \ge d$ ist und H ein linearer Hypergraph ist, gibt es eine Ecke v von H, welche nur in e vorkommt. Für H' = H - v gilt dann $V(H') = V(H) \setminus \{v\}$ und $E(H') = E(H) \setminus \{e\}$. Auf Grund der Wahl von H ist $\chi'(H') \le |H'| = |H| - 1$. Also können die Kanten von H mit |H| Farben gefärbt werden, indem wir e mit einer neuen Farbe färben. Dann ist $\chi'(H') \le |H|$, ein Widerspruch zur Wahl von H.

Fall 2: $\delta'(H) \geq d$. Sei G = L(H) der Kantengraph von H. Dann ist $\delta(G) \geq d$. Sei $K^v = G[E_H(v)]$ für alle $v \in V(G)$. Sei $\mathcal{K} = \{K^v \mid v \in V(H)\}$. Dann ist \mathcal{K} eine Krauszzerlegung von G mit $\delta_G(\mathcal{K}) \geq d$. Damit gilt

$$\chi'(H) = \chi(G) \le \kappa_d(G) \le |\mathcal{K}| = |H|.$$

Wobei die erste Ungleichung wegen der Vorraussetzung von (b) gilt.

Satz 3.12 Sei G ein Graph mit n Ecken und m Kanten. Ist $\xi_d(G) \leq k$ mit $k, d \in \mathbb{N}$, so ist

$$2m \ge \frac{d^2n(n-k)}{k}. (3.1)$$

Beweis: Es bezeichne $\lambda = (\lambda_1(G), \lambda_2(G), \dots, \lambda_k(G)) \in \mathbb{R}^k$ den Vektor der ersten k Eigenwerte von G. Dann ist $\lambda_i(G) \leq -d$ für $i \geq k+1$, da $\xi_d(G) \leq k$ ist. Wegen Lemma 1.21(a) gilt dann

$$\sum_{i=1}^{k} \lambda_i(G) = -\sum_{i=k+1}^{n} \lambda_i(G) \ge d(n-k).$$

Außerdem folgt folgende Ungleichung aus Lemma 1.21(b):

$$\sum_{i=1}^{k} \lambda_i(G)^2 = 2m - \sum_{i=k+1}^{n} \lambda_i(G)^2 \le 2m - (n-k)d^2.$$

Aus einer Abschätzung der 1- und 2-Norm auf \mathbb{R}^k folgt außerdem

$$\|\lambda\|_2 \ge \frac{1}{\sqrt{k}} \|\lambda\|_1.$$

Damit erhalten wir folgende Ungleichung:

$$2m - (n - k)d^2 \ge \|\lambda\|_2^2$$

$$\ge \frac{1}{k} \|\lambda\|_1^2$$

$$\ge \frac{1}{k} (\sum_{i=1}^k \lambda_i(G))^2$$

$$\ge \frac{d^2}{k} (n^2 - 2nk + k^2)$$

Diese Ungleichung können wir nach 2m umstellen:

$$2m \ge d^2 \frac{n^2 - 2nk + k^2 + nk - k^2}{k} = d^2 \frac{n^2 - nk}{k} = \frac{d^2 n(n-k)}{k}$$

Damit ist die Behauptung gezeigt.

Damit erhalten wir folgende Aussage über einen Graphen G: Besitzt G nur eine geringe Anzahl von Eigenwerten, die größer als -d sind, so muss G viele Kanten besitzen. Besitzt ein Graph G der Ordnung n zum Beispiel nur einen Eigenwert, welcher größer als -1 ist, so muss G ein vollständiger Graph sein. Dies erhalten wir, da $\binom{n}{2}$ eine obere Schranke für

die Zahl der Kanten m eines Graphen ist. Setzen wir in Gleichung (3.1) dann d = 1, k = 1, so erhalten wir

$$n(n-1) \ge 2m \ge n(n-1).$$

Deswegen muss G alle möglichen Kanten enthalten.

3.2 Schranken für $\kappa_d(G)$

Wir wollen nun zwei Schranken für $\kappa_d(G)$ angeben. Das folgende Lemma folgt sofort aus Lemma 2.5.

Lemma 3.13 *Ist* $\delta(G) \geq d$, so ist $\kappa_d(G) \leq |E(G)|$.

Satz 3.14 Sei G ein Graph der Ordnung n und $d \in \mathbb{N}$. Dann gilt:

$$\kappa_d(G) \ge \frac{nd}{\lambda_1(G) + d}.$$

Beweis: Ist $\kappa_d(G) = \infty$, so ist nichts zu zeigen. Sei sonst $V(G) = \{v_1, v_2, \dots, v_n\}$ eine Nummerierung der Ecken von G.

Fall 1: $\kappa_d(G) \ge n$. Da $\lambda_1(G) \ge 0$ erhalten wir $\lambda_1(G) + d \ge d$ und somit $1 \ge \frac{d}{\lambda_1(G) + d}$. Daraus folgt

$$\kappa_d(G) \ge n \ge \frac{nd}{\lambda_1(G) + d}.$$

Fall $2: \kappa_d(G) < n$. Sei \mathcal{K} eine Krauszzerlegung von G mit $|\mathcal{K}| = \kappa_d(G)$ und $\delta_G(\mathcal{K}) \geq d$. Seien $d_i = d_{\mathcal{K}}(v_i)$. Wir können annehmen, dass die d_i fallend geordnet sind. Sei $B \in \mathbb{R}^{n \times p}$ die Adjanzenzmatrix von \mathcal{K} und $M = BB^T = A + D$, wobei A = A(G) und $D = \operatorname{diag}(d_1, \ldots, d_n)$ ist. Dann ist M positiv semidefinit und $\operatorname{rang}(M) \leq p = \kappa_d(G) < n$. Deswegen ist $\lambda_{p+1}(M) = \cdots = \lambda_n(M) = 0$. Mit Satz 1.12 und Lemma 1.21(a) folgt dann:

$$\sum_{i=1}^{n} \lambda_i(D) = \sum_{i=1}^{n} \lambda_i(A) + \sum_{i=1}^{n} \lambda_i(D)$$
$$= \sum_{i=1}^{n} \lambda_i(M) = \sum_{i=1}^{p} \lambda_i(M)$$
$$\leq \sum_{i=1}^{p} \lambda_i(A) + \sum_{i=1}^{p} \lambda_i(D).$$

Daraus folgt

$$\sum_{i=p+1}^{n} \lambda_i(D) \le \sum_{i=1}^{p} \lambda_i(A)$$

und wir erhalten

$$(n-p)d \le (n-p)\lambda_n(D) \le \sum_{i=n+1}^n \lambda_i(D) \le \sum_{i=1}^p \lambda_i(A) \le p\lambda_1(A).$$

Durch Umstellen nach p erhalten wir die gewünschte Ungleichung.

3.3 Chromatische Zahl und Eigenwerte

Es ist nicht viel über den Zusammenhang der chromatischen Zahl eines Graphen und seinen Eigenwerten bekannt. Wir wollen hier auf zwei Sätze verweisen, die Schranken für die chromatische Zahl eines Graphen in Abhängigkeit des größten bzw. kleinsten Eigenwerts angeben. Die folgende Abschätzung der chromatischen Zahl nach oben durch den maximalen Eigenwert plus 1 stammt von Wilf [43].

Satz 3.15 (Wilf) Ist G ein zusammenhängender Graph, so gilt:

$$\chi(G) \le \lambda_1(G) + 1.$$

Gleichheit tritt nur auf, falls G ein vollständiger Graph oder ein ungerader Kreis ist.

Beweis: Wir zeigen, dass λ_1+1 ein Szekeres-Wilf Parameter ist. Dann folgt die Behauptung wegen Satz 1.3. Sei dazu $|G|=n\in\mathbb{N}$ und $V(G)=\{v_1,v_2,\ldots,v_n\}$ eine Nummerierung der Ecken. Wir beweisen zunächst (S1). Sei H ein induzierter Untergraph von G. Dann ist wegen Lemma 1.22 $\lambda_1(H) \leq \lambda_1(G)$ und folglich auch $\lambda_1(H)+1 \leq \lambda_1(G)+1$. Wir zeigen nun (S2). Für den Rayleigh-Quotienten des Vektors $x\in\mathbb{R}^n$, dessen Komponenten alle gleich 1 sind, gilt dann:

$$R_{A(G)}(x) = \frac{x^T A(G)x}{x^T x} = \frac{x^T (d_G(v_1), d_G(v_2), \dots, d_G(v_n))^T}{n} = \frac{1}{n} \sum_{i=1}^n d_G(v_i).$$

Also ist dieser gleich dem durchschnittlichen Eckengrad. Folglich gilt $R_{A(G)}(x) \geq \delta(G)$. Außerdem folgt aus Satz 1.8, dass $\lambda_1(G) = \lambda_1(A(G)) \geq R_{A(G)}(x)$ ist. Somit ist $\lambda_1(G) + 1 \geq \delta(G) + 1$. Damit haben wir (S2) gezeigt. Also ist $\lambda_1 + 1$ ein Szekeres-Wilf Parameter und wegen Satz 1.3 gilt $\chi(G) \leq \lambda_1(G) + 1$. Sei nun G ein Graph mit $\chi(G) = \lambda_1(G) + 1$. Wir müssen zeigen, dass G ein ungerader Kreis oder ein vollständiger Graph ist. Wegen Satz

1.1 gibt es dann einen k-kritischen induziereten Untergraphen H von G. Wegen Lemma 1.2 ist dann $\delta(H) \geq k-1$. Somit gilt

$$k-1 = \lambda_1(G) \ge \lambda_1(H) \ge \delta(H) \ge k-1$$

also

$$\lambda_1(G) = \lambda_1(H) = \delta(H).$$

Da G zusammenhängend ist, kann man mit Satz 1.18 zeigen, dass gilt: G = H und G ist regulär. Also gilt $\chi(G) = \Delta(G) + 1$. Dann folgt aus dem Satz von Brooks 1.4, dass G ein vollständiger Graph oder ein ungerader Kreis ist.

Eine untere Schranke für die chromatische Zahl geht auf Hoffman [23] zurück (man beachte hierbei, dass $\lambda_{min}(G)$ negativ ist):

Satz 3.16 Ist G ein Graph, so gilt:

$$\chi(G) \ge 1 - \frac{\lambda_{max}(G)}{\lambda_{min}(G)}.$$

3.4 Graphen mit $\chi \leq \xi_2$

Wir haben bereits gesehen, dass Vermutung 3.8 die Erdős-Faber-Lovász Vermutung impliziert. Im folgenden Abschnitt wollen wir deswegen Graphen untersuchen, deren chromatische Zahl durch die Anzahl der Eigenwerte, die größer als -2 sind, beschränkt ist.

Bemerkung 3.17 Es genügt Vermutung 3.8 für k-kritische Graphen zu zeigen.

Beweis: Gelte Vermutung 3.8 für kritische Graphen. Sei G ein Graph mit $\chi(G)=k$. Dann enthält G nach Satz 1.1 einen k-kritischen Untergraphen H. Für diesen gilt nach Vorraussetzung

$$k = \chi(H) \le \xi_2(H).$$

Dann ist aber auch

$$\chi(G) = k \le \xi_2(H) \le \xi_2(G),$$

da H ein induzierter Untergraph von G ist (siehe Lemma 3.2). Damit gilt Vermutung 3.8 auch für G.

Wir haben bereits in Satz 1.24 gesehen, dass alle Eigenwerte eines Kantengraphen durch -2 nach unten beschränkt sind. Außerdem haben wir in Satz 1.25 die Vielfachheit des Eigenwerts -2 eines Kantengraphs bestimmt. Damit lässt sich nun leicht beweisen, dass Kantengraphen Vermutung 3.8 erfüllen.

Satz 3.18 Sei G = L(H) der Kantengraph eines Graphen H mit $E(H) \neq \emptyset$. Dann gilt

$$\chi(G) \le \xi_2(G)$$
.

Beweis: Wir können annehmen, dass H zusammenhängend ist. Sonst betrachten wir die Komponenten H_1, H_2, \ldots, H_ℓ von H (welche wenigstens eine Kante enthalten). Dann sind $G_i = L(H_i)$ ($1 \le i \le \ell$) die Komponenten von G. Und es gilt $\chi(G) = \max_{1 \le i \le \ell} \chi(G_i)$ sowie $\xi_2(G) = \xi_2(G_1) + \xi_2(G_2) + \cdots + \xi_2(G_\ell)$ (siehe Beispiel 1.17).

Sei also H ein zusammenhängender Graph mit n Ecken, m Kanten und G = L(H). Da $E(H) \neq \emptyset$ ist, gilt $n \geq 2$ und wegen Satz 1.24 ist dann $\xi_2(G) = |G| - m_G(-2) = m - m_G(-2)$. Ist H bipartit, so folgt aus Satz 1.6, dass $\chi(G) = \Delta(H)$ ist. Desweiteren ist dann $m_G(-2) = m - n + 1$ (siehe Satz 1.25). Deswegen ist $\xi_2(G) = m - (m - n + 1) = n - 1$ und es gilt

$$\chi(G) = \Delta(H) < n - 1 = \xi_2(G).$$

Ist G nicht bipartit, so ist nach dem Satz von Vizing $1.5 \chi(G) \leq \Delta(H) + 1$. Aus Satz 1.25 folgt dann $m_G(-2) = m - n$. Folglich ist $\xi_2(G) = m - (m - n) = n$. Damit gilt

$$\chi(G) \le \Delta(H) + 1 \le n = \xi_2(G).$$

Was zu zeigen war.

Satz 3.19 Sei G ein Graph. Ist $\chi(G) \leq 3$, so gilt $\chi(G) \leq \xi_2(G)$.

Beweis: Sei n = |G|. Wir machen eine Fallunterscheidung bezüglich $k = \chi(G)$.

Fall 1: k = 0. Dann ist $G = \emptyset$, der leere Graph. Also ist $\chi(G) = 0 = \xi_2(G)$.

Fall 2: k = 1. Dann ist $n \ge 1$ und G enthält keine Kanten. Also ist G ein kantenloser Graph der Ordnung n und mit Lemma 3.2 folgt

$$\chi(G) = 1 \le n = \alpha(G) = \xi_2(G).$$

Fall 3: k=2. Dann ist G bipartit und G besitzt mindestens eine Kante. Also ist $\omega(G)=2$ und es folgt aus Lemma 3.2 dass

$$\chi(G) = 2 = \omega(G) \le \xi_2(G)$$

gilt.

Fall 4: k = 3. Dann ist G nicht bipartit. Deswegen besitzt G nach dem Satz von König einen ungeraden Kreis als Untergraphen. Es sei C ein ungerader Kreis von G minimaler Ordnung. Dann ist $|C| = p \geq 3$. Wir zeigen, dass C ein induzierter Untergraph von G ist. Angenommen, das ist nicht der Fall. Dann exisiteren zwei Ecken $u, v \in V(C)$ mit $uv \in E(G) \setminus E(C)$. Dann besteht C + uv aus zwei Kreisen C_1 und C_2 welche nur die Kante uv gemeinsam haben. Außerdem ist die Ordnung dieser Kreise kleiner als die Ordnung von C. Ist sowohl C_1 , als auch C_2 von gerader Ordnung, so muss auch C von gerader Ordnung sein, da $|C| = |C_1| + |C_2| - 2$ gilt (die einzigen Ecken die C_1 und C_2 gemeinsam haben sind u und v). Also ist einer der beiden Kreise ein ungerader Kreis kleinerer Ordnung als C. Das steht aber im Widerspruch zur Wahl von C. Also ist C ein induzierter Untergraph von C. Außerdem ist C = L(C) und C = L(C)

$$\chi(G) = 3 = \chi(C) \le \xi_2(C) \le \xi_2(G)$$

ist.

Seien p, r zwei natürliche Zahlen mit $p \geq 2r - 1$. Der Kneser Graph $K_{p:r}$ geht auf Kneser [28] zurück und ist der Graph mit Eckenmenge

$$V(K_{p:r}) = [\{1, 2, \dots, p\}]^r$$

und Kantenmenge

$$E(K_{p:r}) = \{XY \mid X, Y \in V(K_{p:r}), X \cap Y = \varnothing\}.$$

 $K_{p:1}$ ist ein vollständiger Graph der Ordnung p und $K_{2r-1:r}$ ist ein kantenloser Graph der Ordnung $\binom{2r-1}{r}$. Der Graph $K_{5:2}$ ist auch als der Petersen Graph bekannt (siehe Abbildung 7).

Kneser gibt in [28] eine obere Schranke für die chromatische Zahl der Kneser Graphen an. Später zeigte Lovász [32] dass diese Schranke immer angenommen wird.

Satz 3.20 (Lovász) *Ist*
$$p \ge 2r - 1$$
, *so gilt* $\chi(K_{p:r}) = p - 2r + 2$.

Abbildung 7: Der Petersen Graph $K_{5:2}$

Der folgende Satz ist als Satz von Erdős-Ko-Rado [14] bekannt und gibt die Unabhängigkeitszahl eines Kneser Graphen an.

Satz 3.21 (Erdős-Ko-Rado) Ist $p \ge 2r$ und $r \ge 2$, so gilt: $\alpha(K_{p:r}) = \binom{p-1}{r-1}$.

Mit den beiden vorangegangenen Sätzen können wir nun beweisen, dass Kneser Graphen die Vermutung 3.8 erfüllen.

Satz 3.22 Es sei $G = K_{p:r}$ ein Kneser Graph mit $p \ge 2r - 1$ und $r \ge 1$. Dann ist $\chi(G) \le \xi_2(G)$.

Beweis: Sei $\chi(G) = k$. Wir machen eine Fallunterscheidung bezüglich r.

Fall 1: r=1. Dann ist $G=K_{p:1}$ ein vollständiger Graph der Ordnung p. Die Eigenwerte des K_p sind nach Beispiel 1.14 alle größer als -2. Folglich ist $\chi(G) \leq \xi_2(G)$.

Fall 2: $p > 2r \ge 4$. Sei $q = \alpha(G)$. Dann ist nach Satz 3.21 $q = \binom{p-1}{r-1}$ und folglich $q \ge p-1$. Nach Satz 3.20 ist $\chi(G) = p-2r+2 < p-2$. Folglich ist $q > \chi(G)$. Dann gilt

$$\chi(G) < q = \alpha(G) \le \xi_2(G)$$

wegen Lemma 3.2.

Fall 3: p = 2r. Die Ecken von G sind alle r-elementigen Teilmengen von $\{1, \ldots, p\}$. Da p = 2r ist für ein $w \in V(G)$ die einzige benachbarte Ecke ihr Komplement in $\{1, \ldots, p\}$.

Also hat jede Ecke von G den Grad 1 und jede Komponente von G ist ein vollständiger Graph der Ordnung 2. Nach Beispiel 1.14 und Beispiel 1.17 ist dann

$$\operatorname{sp}(G) = (\underbrace{1, 1, \dots, 1}_{\stackrel{|G|}{2} \operatorname{mal}}, \underbrace{-1, -1, \dots, -1}_{\stackrel{|G|}{2} \operatorname{mal}}).$$

Daraus folgt dann $\chi(G) \leq |G| = \xi_2(G)$.

Fall 4: p = 2r + 1. Dann ist G ein kantenloser Graph. Deswegen ist $\chi(G) = 1$ und $\chi(G) = 1 \le |G| = \alpha(G) = \xi_2(G)$ (siehe Lemma 3.2).

Eine weitere Klasse die Vermutung 3.8 erfüllt, ist die Klasse der perfekten Graphen.

Satz 3.23 Sei G ein perfekter Graph. Dann gilt $\chi(G) \leq \xi_2(G)$.

Beweis: Da G ein perfekter Graph ist, gilt $\chi(G) = \omega(G)$. Mit Lemma 3.2 folgt dann $\xi_2(G) \ge \omega(G) = \chi(G)$.

Planare Graphen sind nach dem Vierfarbensatz [1] mit 4 Farben färbbar. Der nachfolgende Satz garantiert, dass alle planaren Graphen der Ordnung mindestens 7 mindestens 4 Eigenwerte besitzen, die größer als −2 sind.

Satz 3.24 Sei G ein planarer Graph mit $|G| \geq 7$. Dann gilt $\xi_2(G) \geq 4$.

Beweis: Den Beweis führen wir indirekt. Angenommen, es gibt einen planaren Graphen G mit $|G| \ge 7$ und $\xi_2(G) \le 3$. Sei n die Ordnung von G. Aus Satz 3.12 (für d = 2, k = 3) folgt, dass für die Zahl m der Kanten von G gilt:

$$2m \ge \frac{4n(n-3)}{3}.$$

Da G ein planarer Graph ist, gilt zusätzlich

$$m < 3n - 6$$
.

Wir erhalten nun durch Umstellen die quadratische Ungleichung

$$-2n^2 + 15n - 18 > 0.$$

Lösen dieser Ungleichung ergibt $\frac{3}{2} \le n \le 6$, ein Widerspruch zur Vorrausetzung $n \ge 7$.

Aus dem vorhergehenden Satz erhalten wir sofort, dass jeder planare Graph die Vermutung 3.8 erfüllt.

Korollar 3.25 Sei G ein planarer Graph. Dann gilt $\chi(G) \leq \xi_2(G)$.

Beweis: Wir machen eine Fallunterscheidung bezüglich der chromatischen Zahl $\chi(G) = k$. Auf Grund des 4-Farbensatzes reicht es dann die Fälle $k \leq 4$ zu betrachten.

Fall 1: $k \leq 3$. Dann folgt $\chi(G) \leq \xi_2(G)$ aus Satz 3.19.

Fall 2: k = 4. G enthält nach Satz 1.1 einen 4-kritischen Untergraphen G'. Ist $|G'| \ge 7$, so ist wegen Satz 3.24 $\xi_2(G') \ge 4$. Mit Lemma 3.2 folgt dann $\xi_2(G) \ge \xi_2(G') \ge 4 = \chi(G)$. Ist $|G'| \le 6$, so folgt aus einem Resultat von Gallai [20], dass $G' = K_4$ ist oder G' den Kreis C_5 als induzierten Untergraphen enthält. Nun folgt aus Lemma 3.2, Beispiel 1.14 und Beispiel 1.15:

$$\xi_2(G) \ge \xi_2(G') \ge 4 = \chi(G).$$

Was zu zeigen war.

Nordhaus und Gaddum [33] zeigten, dass ein Graph G der Ordnung n und sein Komplement \overline{G} stets die Ungleichung $\chi(G) + \chi(\overline{G}) \leq n + 1$ erfüllen. Außerdem bewies Finck [15], dass Gleichheit in dieser Ungleichung genau dann gilt, wenn G von einem der beiden Graphentypen F_1 oder F_2 ist. Diese sind wie folgt definiert: Seien n, p zwei natürliche Zahlen.

Ein Graph G gehört zum Typ $F_1(n,p)$, falls G aus einer unabhängigen Menge O der Ordnung p und einem vollständigen Graphen K der Ordnung n-p+1 besteht und es genau eine Ecke gibt, welche sowohl in O als auch in K vorkommt. Zwischen O und K dürfen Kanten verlaufen.

Ein Graph G gehört zum Typ $F_2(n,p)$, falls G aus einem Kreis $C=C_5$, einem vollständigen Graphen $K=K_{n-p-5}$ und einer unabhängigen Menge $O=O_p$ besteht. Seien $v \in V(C), w \in V(K), u \in V(O)$ beliebig. Dann ist $vw \in E(G), vu \notin E(G)$ und uw kann, muss aber nicht zu E(G) gehören.

Satz 3.26 Sei G ein Graph der Ordnung n. Dann gilt $\xi_2(G) + \xi_2(\overline{G}) \geq n$.

Beweis: Seien $\xi_2(G) = l$, A = A(G) die Adjazenzmatrix von G und $\overline{A} = A(\overline{G}) = J - I - A$ die Adjazenzmatrix von \overline{G} . Ist l = n, so ist nichts zu zeigen. Wir betrachten also den Fall l < n. Dann ist $\lambda_{l+1}(A) \le -2$. Zeigen wir $\xi_2(\overline{G}) \ge n - l$, so ist die Behauptung bewiesen. Nach Satz 1.8 ist

$$\lambda_{n-l}(\overline{A}) = \max\{\min_{x \in V, x \neq 0} R_{\overline{A}}(x) \mid V \subseteq \mathbb{R}^n \text{ linearer Unterraum}, \dim(V) = n - l\}.$$

Ist also V ein linearer Unterraum des \mathbb{R}^n der Dimension n-l, so gilt

$$\lambda_{n-l}(\overline{A}) \ge \min_{x \in V, x \ne 0} R_{\overline{A}(x)}.$$

Außerdem folgt aus Satz 1.8, dass es einen linearen Unterraum V des \mathbb{R}^n der Dimension n-l gibt mit $\max_{x\in V} R_A(x) = \lambda_{l+1}(A) \leq -2$. Insbesondere ist also $R_A(x) \leq -2$ für alle $x\in V$. Wir betrachten den Rayleigh Quotienten von \overline{A} auf diesem Unterraum. Da J positiv semidefinit ist, gilt für alle $x\in V$ mit $x\neq 0$

$$R_{\overline{A}}(x) = R_J(x) - R_I(x) - R_A(x) \ge R_J(x) - 1 + 2 = R_J(x) + 1 \ge 1.$$

Dann ist
$$\lambda_{n-l}(\overline{A}) \ge \min_{x \in V} R_{\overline{A}}(x) \ge 1$$
. Also ist $\xi_2(\overline{G}) \ge n - l$.

Satz 3.27 Sei G ein Graph. Dann gilt $\chi(G) + \chi(\overline{G}) \leq \xi_2(G) + \xi_2(\overline{G})$.

Beweis: Gilt $\chi(G) + \chi(\overline{G}) \leq n$, so ist nach Satz 3.26 nichts mehr zu zeigen. Andernfalls ist G entweder vom Typ F_1 oder F_2 .

Fall 1: G ist vom Typ $F_1(n, p)$. Dann ist $\omega(G) = n - p + 1$ und $\omega(\overline{G}) = p$. Dann folgt mit Lemma 3.2, dass gilt

$$\xi_2(G) + \xi_2(\overline{G}) \ge \omega(G) + \omega(\overline{G}) = n + 1 = \chi(G) + \chi(\overline{G}).$$

Fall 2: G ist vom Typ $F_2(n,p)$. Es sei C der Kreis der Ordnung 5 in G, K der vollständige Graph der Ordnung n-p-5 in G und O der kantelose Graph der Ordnung p in G. Wir betrachten den induzierten Untergraphen $H=G[V(C)\cup V(O)]$. Dann ist H die disjunkte Vereinigung eines kantenlosen Graphen und eines C_5 . Es gilt |H|=p+5 und aus Beispiel 1.15, Beispiel 1.16 sowie Beispiel 1.17 folgt, dass $\xi_2(H)=|H|$ ist. Für $\tilde{H}=\overline{G}[V(C)\cup V(K)]$ gilt dann nach dem selben Argument

$$\xi_2(\tilde{H}) = |\tilde{H}| = |V(C)| + |V(K)| = n - p.$$

Dann gilt

$$\xi_2(G) + \xi_2(\overline{G}) \ge \xi_2(H) + \xi_2(\overline{H}) = p + 5 + n - p = n + 5 > n + 1 = \chi(G) + \chi(\overline{G}).$$

Damit ist alles gezeigt.

Korollar 3.28 Für jeden Graphen G gilt $\chi(G) \leq \xi_2(G)$ oder $\chi(\overline{G}) \leq \xi_2(\overline{G})$.

3.5 Hajós und Ore Summe

Hajós [21] bewies 1971, dass jeder Graph mit chromatischer Zahl wenigstens k einen Untergraphen enthält, welcher aus vollständigen Graphen K_k durch wiederholte Anwendung zweier einfacher Konstruktionen gebildet werden kann. Ore [34] bewies ein ähnliches Resultat, wobei er die beiden Konstruktionen zu einer Konstruktion zusammenfasste. Uruquaht [40] zeigte 1997, dass durch beide Methoden diesselbe Graphenklasse erzeugt wird.

Sei G ein Graph, und seien u, v zwei verschiedene unabhängige Ecken von G. Wir erhalten dann einen neuen Graphen G' indem wir zu G-u-v eine neue Ecke w hinzufügen und diese mit allen Nachbarn von u und v in G durch eine Kante verbinden. Man sagt dann, dass G' aus G durch Identifizierung der unabhängigen Ecken u, v entsteht (siehe Abbildung 8).

Abbildung 8: Identifizierung von u und v.

Seien G_1, G_2 zwei nichtleere disjunkte Graphen und $x_1y_1 \in E(G_1)$ sowie $x_2y_2 \in E(G_2)$ zwei beliebige Kanten. Die **Hajós Summe** von G_1 und G_2 (bezüglich x_1y_1 und x_2y_2) ist derjenige Graph, der entsteht wenn wir G_1 und G_2 vereinigen, die Kanten x_1y_1 und x_2y_2 entfernen, die Kante y_1y_2 hinzufügen und die Ecken x_1 und x_2 identifizieren. In Abbildung 9 sehen wir die Hajós Summe zweier Dreiecke.

Abbildung 9: Hajós Summe von G_1 und G_2

Wir betrachten nun im folgenden für $k \in \mathbb{N}$ die Graphenklasse \mathcal{H}_k der k-Hajós konstruierbaren Graphen. Diese ist die kleinste Klasse von Graphen, welche K_k enthält und abgeschlossen ist bezüglich der Isomorphie von Graphen, der Haós Summe von Graphen und der Identifikation zweier unabhängiger Ecken. Somit gehört K_k zu \mathcal{H}_k . Weiterhin gehört mit jedem Graphen aus \mathcal{H}_k auch jeder dazu isomorphe Graph zu \mathcal{H}_k , mit je zwei disjunkten Graphen aus \mathcal{H}_k gehört auch ihre Hajós Summe zu \mathcal{H}_k , und mit jedem Graphen aus \mathcal{H}_k gehört auch jeder Graph zu \mathcal{H}_k , welcher aus G durch die Identifizierung zweier unabhängiger Ecken gebildet werden kann.

Eine weitere, der Hájos Summe ähnliche Konstruktion ist die **Ore Summe**. Seien G_1 und G_2 zwei disjunkte Graphen, x_1y_1 eine Kante von G_1 und x_2y_2 eine Kante von G_2 . Desweiteren seien v_1, v_2, \ldots, v_r unterschiedliche Ecken von $G_1 - x_1$ und u_1, u_2, \ldots, u_r unterschiedliche Ecken von $G_2 - x_2$. Wir konstruieren nun die Ore Summe von G_1 und G_2 aus der Hájos Summe von G_1 und G_2 , indem wir zusätzlich die Ecken v_i mit u_i identifizieren (für $1 \le i \le r$). Der so entstandene Graph ist dann die Ore Summe von G_1 und G_2 .

Für $k \in \mathbb{N}$ sei \mathcal{O}_k die Klasse der **Ore** k-konstruierbaren Graphen. Dies ist die kleinste Klasse von Graphen, welche K_k enthält und abgeschlossen ist bezüglich der Isomorphie von Graphen und der Ore Summe von Graphen. Der folgende Satz wurde 1997 von Uruquhart [40] bewiesen. Dieser Satz verschärft frühere Resultate von Hajós [21] und Ore [34].

Satz 3.29 (Uruquhart) Sei $k \in \mathbb{N}$ und $k \geq 3$. Dann sind die Klassen \mathcal{H}_k und \mathcal{O}_k identisch und ein Graph G gehört genau dann zu dieser Klasse, wenn $\chi(G) \geq k$ ist.

Eine Folgerung aus diesem Satz ist, dass Vermutung 3.8 zur folgenden Vermutung äquivalent ist.

Vermutung 3.30 Für jeden Graphen G aus \mathcal{H}_k mit $k \geq 4$ gilt $\xi_2(G) \geq k$.

Es sei S_k die Klasse aller Graphen mit $\xi_2(G) \geq k$. Vermutung 3.30 ist dann äquivalent zu der Aussage, dass $\mathcal{H}_k \subseteq S_k$ ist für alle $k \geq 3$. Aus Beispiel 1.14 wissen wir, dass K_k zu S_k gehört. Natürlich ist die Klasse S_k abgeschlossen bezüglich der Isomorphie von Graphen. Wir können zeigen, dass die Klasse S_k ($k \geq 4$) abgeschlossen ist bezüglich der Hajós Summe von Graphen. Leider ist es bisher nicht gelungen zu zeigen, dass die Klasse S_k auch bezüglich der Identifizierung unabhängiger Ecken abgeschlossen ist.

Satz 3.31 Seien G_1 und G_2 Graphen und G die Hajós Summe von G_1 und G_2 . Dann gilt:

$$\xi_d(G) \ge \xi_d(G_1) + \xi_d(G_2) - 4.$$

Beweis: Seien $x_1y_1 \in E(G_1)$ und $x_2y_2 \in E(G_2)$ die Kanten welche bei der Hájos Summe verwendet werden, $k_1 = \xi_2(G_1)$ und $k_2 = \xi_2(G_2)$. Wir setzen

$$H_i = G[V(G_i) \setminus \{x_i, y_i\}]$$

für i = 1, 2. Dann ist für i = 1, 2 der Graph H_i sowohl ein induzierter Untergraph von G_i als auch von G. Desweiteren gilt $|H_i| = |G_i| - 2$ für i = 1, 2. Also folgt aus Lemma 1.22, dass

$$\lambda_{k_i-2}(H_i) \ge \lambda_{k_i}(G_i) > -d$$

für i=1,2 gilt. Wir betrachten nun den Graphen H, welcher die disjunkte Vereinigung von H_1 und H_2 ist. Dann ist H ebenfalls ein induzierter Untergraph von G. Das Spektrum von H ist nach Beispiel 1.17 die Vereinigung der Spektra von H_1 und H_2 . Also gilt $\xi_d(H) \ge (k_1-2)+(k_2-2)=k_1+k_2-4$, da H_i (i=1,2) mindestens k_i-2 Eigenwerte besitzt, die größer als -d sind. Deswegen gilt auch $\xi_d(G) \ge k_1+k_2-4=\xi_d(G_1)+\xi_d(G_2)-4$.

Korollar 3.32 Für $k \geq 4$ ist die Klasse S_k abgeschlossen bezüglich der Hajós Summe von Graphen.

Literatur

- [1] APPEL, K. und Haken, W., Every map is four colorable. *Bulletin of the American Mathematical Society* 82 (1976) 711–712.
- [2] Berge, C., Hypergraphs, Elsevier Science Publishers B.V., North Holland 1984.
- [3] BROOKS, R. L., On colouring the nodes of a network. *Proc. Cambridge Philos. Soc.* **37** (1941) 194–197.
- [4] Brouwer, A. E. und Haemers, W. H., Spectra of Graphs Springer 2012.
- [5] CAMERON, P. J., GOETHALS, J. -M., SEIDEL, J. J. und SHULT, E. E., Line graphs, root systems, and elliptic geometry. *J. Algebra* **43** (1978) 305–327.
- [6] CHUNG, W. und LAWLER, E., Edge coloring of hypergraphs and a conjecture of Erdős, Faber, Lovász. Combinatorica 8 (1988) 293–295.
- [7] COURANT, R. und HILBERT, D., Methoden der Mathematischen Physik I. Springer 1924.
- [8] CVETKOVIĆ; D. M., ROWLINSON, P. und SIMIĆ, S., An Introduction to the Theory of Graph Spectra VEB Deutscher Verlag der Wissenschaften 1979, Academic Press 1980.
- [9] CVETKOVIĆ; D. M., DOOB, M. und SACHS, H., Spectra of Graphs: Theory and Application. VEB Deutscher Verlag der Wissenschaften 1979, Academic Press 1980.
- [10] Diestel, R., Graphentheorie, Springer 2010.
- [11] ERDÓS, P., Problems and results in graph theory and combinatorial analysis. Congr. Numer. XV (1976) 169–192.
- [12] ERDŐS, P., Problems and results in graph theory and combinatorial analysis. *Graph Theory and Related Topics*, pp. 153–163. Academic Press 1979.
- [13] ERDŐS, P., On combinatorial problems which I would most like to see solved. *Combinatorica* 1 (1981) 25–42.
- [14] ERDŐS, P., KO, C. und RADO, R., Intersection theorems for systems of finite sets.

 Quart. J. Math. Oxford Ser. 12 (1961) 313–320.

- [15] FINCK, H.J., Über die chromatische Zahl eines Graphen und seines Komplements. Wiss. Z. Tech. Hochsch. Ilmenau 12 (1966) 243–246.
- [16] FAN, KY, On a theorem of Weyl concerning eigenvalues of linear transformations I. Proc. Nat. Acad. Sci. USA 35 (1949) 652–655.
- [17] FABER, V. und LOVÁSZ, L., Problem 18, Hypergraph Seminar, Ohio State Univ., 1972. Lcture Notes in Mathematics, vol. 411, p. 284. Springer 1974.
- [18] FISCHER, E., Über quadratische Formen mit reellen Koeffizienten. Monatsh. Phys. 16 (1905) 234–249.
- [19] FROBENIUS, G., Über Matrizen aus nicht negativen Elementen. Sitzber. Akad. Wiss., Phys.-math. Klasse, Berlin (1912) 456–477.
- [20] GALLAI, T., Kritische Graphen II. Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963) 373–395.
- [21] HAJÓS, GY., Über eine Konstruktion nicht n-färbbarer Graphen. Wiss. Z. Martin Luther Univ. Halle-Wittenberg, Math.-Natur. Reihe 10 (1961) 116–117.
- [22] HINDMAN, N., On a Conjecture of Erdős, Faber and Lovász about n colorings. Cand. J. Math. 33 (1981) 563–570.
- [23] HOFFMAN, A., On eigenvalues and colorings. *Graph Theory and its Applications*, pp. 79–91. Academic Press 1970.
- [24] HOFFMAN, A., On graphs whose least eigenvalue exceeds $-1 \sqrt{2}$. Lin. Alg. Appl. 16 (1977) 153–165.
- [25] Kahn, J., Coloring nearly-disjoint hypergraphs with n + o(n) colors. J. Combin. Theory Ser. A 59 (1992) 31–39.
- [26] KARP, R. M., Reducibility among combinatorial problems. Complexity and Computer Computation, pp. 85–103. Plenum Press 1972.
- [27] Klotz, W., Clique Covers and Coloring Problems of Graphs. Journal of Combinatorical Theory 46 (1989) 338–345.
- [28] KNESER, M., Aufgabe 360. Jahresber. Deutsch. Math.-Verein. 58 (2. Abteilung)(1955) 27.

- [29] KÖNIG, D., Über Graphen und ihre Anwendungen auf Determinantentheorie und Mengenlehre. Math. Ann. 77 (1916) 453–465.
- [30] KÖNIG, D., Theorie der Endlichen und Unendlichen Graphen. Akademische Verlagsgesellschaft M.B.H., Leipzig 1936. Reprinted by Chealsea 1950 and by B. G. Teubner 1986. English translation published by Birkhäuser 1990.
- [31] Krausz, J., Démonstration nouvelle d'un théorème de Whitney sur les résaux (Hungarian with French summary). *Mat. Fiz. Lapok* **50** (1943) 75–85.
- [32] LOVÁSZ, L., Kneser's conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25 (1978) 319–325.
- [33] NORDHAUS, E. A. und GADDUM, J. W., On complementary graphs. Amer. Math. Monthly 63 (1956) 175–177.
- [34] Ore, O, The Four Colour Problem. Academic Press, 1967.
- [35] Perron, O., Zur Theorie der Matrizen. Math. Ann. 64 (1907) 248–263.
- [36] ROMERO, D. und SÁNCHEZ-ARROYO, A., Advances on the Erdős-Faber-Lovász conjecture. Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, pp. 285–298. Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press 2007.
- [37] SACHS, H., Über Teiler, Faktoren und charakteristische Polynome von Graphen II. Wiss. Z. Techn. Hochsch. Ilmenau 13 (1967), 405–412.
- [38] STOCKMEYER, L., Planar 3-colorability is polynomial complete. ACM SIGACT News 5 (1973) 19–25.
- [39] SZEKERES, G. und WILF, H. S., An inequality for the chromatic number of a graph. J. Combin. Theory Ser. B 4 (1968) 1–3.
- [40] URQUHART, A., The graph constructions of Hajós and Ore. *J. Graph Theory* **26** (1997) 211–215.
- [41] VIZING, V. G., On an estimate of the chromatic class of a p-graph (in Russian). Diskret. Analiz 3 (1964) 25–30.

- [42] WEYL, H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichtungen. *Math. Ann.* **71** (1912) 441–479.
- [43] Wilf, H. S., The eigenvalues of a graph and its chromatic number. *J. London Math. Soc.* **42** (1967) 330–332.

Hiermit versichere ich, dass ich diese Bachelorarbeit selbst-Erklärung: ständig verfasst und nur die angegebene Literatur verwendet habe. Die Arbeit wurde bisher keiner Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht. Ilmenau, 23. September 2014 Stefan Heyder