Programação Linear - método simplex

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

11 de março de 2015

Programação Linear - método simplex

antes

• Existe sempre um vértice que é uma solução óptima do problema.

Guião

- O algoritmo Simplex explora uma sequência de vértices admissíveis.
- Em cada vértice, é necessário avaliar se o vértice actual é o óptimo, e se não for, decidir qual o vértice adjacente seguinte.
- A operação básica do algoritmo é o *pivô* (a mudança de um vértice para um vértice adjacente).
- A operação algébrica para efectuar o pivô é a eliminação de Gauss.

depois

• Há situações particulares que serão analisadas depois.

Conteúdo

- Algoritmo simplex
- o coluna pivô: teste de optimalidade
- linha pivô: vértice admissível adjacente
- Resolução do Exemplo
- Implementação algébrica de um pivô
- Referência à eliminação de Gauss

Algoritmo simplex

 Como há sempre um vértice admissível que é uma solução óptima, interessa apenas analisar vértices admissíveis:

Algoritmo Simplex (informal)

- seleccionar um vértice admissível inicial
- enquanto (existir um vértice admissível adjacente melhor)
 mudar para vértice admissível adjacente melhor

Operações básicas do algoritmo:

- teste de optimalidade: existe algum vértice admissível adjacente ao vértice actual com melhor valor de função objectivo?
- pivô: mudança de uma solução básica do sistema de equações (vértice) para uma solução básica adjacente:
 - há uma variável não-básica que entra na base (passa a ser básica)
 - há uma variável básica que sai da base (passa a ser não-básica)

Um vértice é admissível se todas as coordenadas forem não-negativas.

Eliminação de Gauss: pivô e elemento pivô

- O pivô envolve resolver o sistema de equações em ordem ao novo conjunto de variáveis básicas, usando *eliminação de Gauss*.
- Na inversão de matrizes ou na resolução de sistemas de equações, há regras para seleccionar o elemento pivô (cruzamento da coluna pivô com a linha pivô).

No método simplex, a selecção do elemento pivô visa:

- coluna pivô (variável não-básica que entra na base): atingir a solução óptima mais rapidamente;
- linha pivô (variável básica que sai da base): passar apenas por vértices admissíveis.

Coluna pivô: teste de optimalidade do vértice a

Coluna pivô: variação da função objectivo

 Para ver como varia o valor da função objectivo ao longo de uma aresta, vamos ver como variam os valores das variáveis não-básicas.

Quando caminhamos ao longo de uma aresta,

- há uma única variável não-básica que aumenta de valor;
- as restantes variáveis não-básicas permanecem nulas (elas são nulas nos dois vértices nas extremidades da aresta, e em toda a aresta).

Exemplo 1: Ao longo da aresta \overline{ab} , x_1 aumenta e x_2 permanece nula. Exemplo 2: Ao longo da aresta \overline{ae} , x_2 aumenta e x_1 permanece nula.

- Este resultado é válido para qualquer dimensão (por exemplo, no espaço a 3 dimensões, há uma variável não-básica que aumenta e as outras 2 mantêm-se iguais a 0).
- A coluna pivô é a coluna da **única** variável não-básica que aumenta.

Coluna pivô: teste de optimalidade no quadro simplex

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> 3	
$\overline{s_1}$	0	3	2	1	0	0	120
s 2	0	1	2	0	1	0	80
s 3	0	1	2 2 0	0	0	1	30
Z	1	-12	-10	0	0	0	0

• A equação da função objectivo no quadro simplex está expressa em termos das variáveis não-básicas x_1 e x_2 :

$$z - 12x_1 - 10x_2 = 0.$$

- Aresta \overline{ab} : quando x_1 aumenta (mantendo $x_2 = 0$), o valor da função objectivo z aumenta: $\partial z/\partial x_1 = 12$.
- Aresta \overline{ae} : quando x_2 aumenta (mantendo $x_1 = 0$), o valor da função objectivo z aumenta: $\partial z/\partial x_2 = 10$.
- O vértice a não é o vértice óptimo.

Coluna pivô: selecção

 Regra de Dantzig: seleccionar a variável não-básica com maior variação da função objectivo por unidade de incremento da variável não-básica ao longo da aresta, ou seja:

A coluna pivô (variável não-básica a entrar na base) é:

- a coluna com o coeficiente mais negativo da linha da função objectivo (em problemas de maximização).
- Esta escolha visa atingir a solução óptima mais rapidamente.
- Em caso de empate, a escolha é arbitrária (ou desempata-se seleccionando a aresta que conduz ao vértice adjacente com melhor valor da função objectivo).
- (há outras regras como: Devex rule, partial pricing, nested pricing).

Linha pivô: pivô do vértice $a \rightarrow$ vértice b

Linha pivô: caminhar até ao vértice adjacente admissível

• no vértice adjacente admissível, todas as variáveis são não-negativas (exemplo: $x_1, x_2, s_1, s_2, s_3 \ge 0$).

Quando caminhamos ao longo da aresta,

- há uma única variável não-básica que aumenta de valor;
- as restantes variáveis não-básicas permanecem nulas;
- cada variável básica pode aumentar, diminuir ou manter o valor.

Identificação da variável básica que sai da base

- É a variável básica que, <u>ao decrescer</u>, atinge primeiro o valor zero quando se caminha ao longo da aresta.
- O elemento pivô tem sempre valor **positivo**, porque ...

Linha pivô: variação das variáveis básicas

Quando a variável não-básica da coluna pivô aumenta de uma unidade:

a variação da variável básica é dada pelo coeficiente da linha respectiva.

	Z	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	
<i>s</i> ₁	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
5 3	0	1	2 2 0	0	0	1	30
Z	1	-12	-10	0	0	0	0

- Exemplo: como varia a variável básica s_1 quando x_1 aumenta?
- Da equação da restrição $3x_1 + 2x_2 + s_1 = 120$: quando x_1 aumenta 1 unidade (e x_2 se mantém = 0), s_1 diminui 3 unidades.

Nota: se o coeficiente for:

- positivo, a variável básica decresce;
- nulo, a variável básica mantém o valor;
- negativo, a variável básica aumenta;

Linha pivô: menor razão positiva

razão (lado direito/coluna pivô) positiva (coef. da coluna pivô >0):

• valor da variável que entra na base que torna a variável básica nula.

	z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃		
s_1	0	3	2	1	0	0	120	120/3 = 40
<i>s</i> ₂	0	1	2	0	1	0	80	$120/3 = 40 \\ 80/1 = 80$
<i>s</i> ₃	0	1	0	0	0	1	30	30/1 = 30
Z	1	-12	-10	0	0	0	0	•

Quando a variável que entra na base atinge a menor razão positiva:

há uma variável básica que atinge 0 e as outras são não-negativas
 (≥0): atinge-se o vértice admissível adjacente.

exemplo: a menor razão positiva é 30

- Coluna pivô: coluna de x_1 (entra na base e vai ter valor 30).
- Linha pivô: linha de s_3 (atinge o valor 0, e torna-se não-básica).

Linha pivô: identificação

Dada uma coluna pivô,

A linha pivô (variável básica que sai da base):

- é a linha com menor razão (lado direito/coluna pivô)
 positiva (coeficiente da coluna pivô >0)
- (em caso de empate, há degenerescência) [veremos depois]
- Se não existir coeficiente da coluna pivô > 0, solução óptima é ilimitada $_{[veremos\ depois]}$

Algoritmo simplex:

- Selecção de um vértice admissível inicial
 - Se n\u00e3o existir, problema \u00e9 imposs\u00edvel [veremos depois]
- Repetir
 - Selecção da coluna pivô:
 - Coeficiente mais negativo da linha da função objectivo
 - (em caso de empate, escolha arbitrária)
 - Se não existir coef.<0, solução óptima.
 - Selecção da linha pivô:
 - Menor razão (lado direito/coluna pivô) positiva (coef.col.>0)
 - (em caso de empate, há degenerescência) [veremos depois]
 - Se não existir coef.col.>0, solução óptima é ilimitada [veremos depois]
 - Fazer eliminação de Gauss
- Enquanto (solução não for óptima)

Um dado vértice e n vértices adjacentes formam um simplex. É o poliedro mais simples no espaço a n dimensões.

Resolução do Exemplo

Vértice a

Vértice $a \rightarrow \text{vértice } b$

Vértice b

Vértice $b \rightarrow \text{vértice } c$

Vértice c

53

-1.5

-3

15

20

30

510

Vértice $c \rightarrow \text{vértice } d$

Vértice d : solução óptima

Caracterização algébrica da solução óptima

- Solução é óptima se aumentar qualquer variável não-básica (são todas iguais a 0 e apenas podem aumentar) piora a função objectivo.
- Exemplo: $z + 3.5 s_1 + 1.5 s_2 = 540$
- quando s_1 aumenta, mantendo-se $s_2 = 0$, a f.o. diminui:

$$\partial z/\partial s_1 = -3.5$$

• quando s_2 aumenta, mantendo-se $s_1 = 0$, a f.o. diminui:

$$\partial z/\partial s_2 = -1.5$$

• (se s_1 e s_2 aumentarem ambas, também diminui.)

Referência ao método de eliminação de Gauss

Elemento pivô: (cruzamento linha pivô e coluna pivô).

	z	<i>x</i> ₁	<i>X</i> 2	<i>s</i> ₁	s 2	5 3	
s_1	0	3	2	1	0	0	120
s ₂	0	1	2	0	1	0	80
<i>s</i> ₃	0	3 1 1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0

- A variável x_1 entra na base e a variável s_3 sai da base:
 - Novas variáveis básicas: s₁, s₂, x₁
 - Novas variáveis não-básicas: x₂,s₃
- Pretende-se que a coluna da variável x_1 , que entra na base, faça parte da matriz identidade:

	Z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>5</i> 3	
<i>s</i> ₁	0	0		1	0		
<i>s</i> ₂	0	0		0	1		
<i>x</i> ₁	0 0 0	1		0	0		
Z	1	0		0	0		

Nota: para uma explicação mais detalhada do Método da Eliminação de Gauss, ver o tutorial,

em particular, a partir da pág.22, onde se apresentam os cálculos necessários a efectuar o pivô realizado nos diapositivos seguintes

É necessário eliminar coeficiente de x_1 da primeira linha

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	
s_1	0	3	2	1	0	0	120 80
<i>s</i> ₂	0	1	2	0	1	0	80
<i>s</i> ₃	0	3 1 1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0

- Usando a equação da linha pivô: $x_1 + s_3 = 30 \Leftrightarrow x_1 = 30 s_3$, substituindo na primeira linha: $3x_1 + 2x_2 + s_1 = 120 \Leftrightarrow 3(30 s_3) + 2x_2 + s_1 = 120 \Leftrightarrow 2x_2 + s_1 3s_3 = 30$
- É equivalente a somar à 1.ª linha a linha pivô multiplicada por -3:

Linha 1	0	3	2	1	0	0	120
$-3 \times LinhaPivô$	0	-3	0	0	0	-3	-90
Resultado	0	0	2	1	0	-3	30

• Quadro seguinte:

	z		<i>x</i> ₂				
<i>s</i> ₁	0	0	2	1	0	-3	30
x_1	0	1	0	0	0	1	30
					4	A 4 (5)	

Conclusão

- O resultado que estabelece que existe um vértice que é uma solução óptima do problema permite que o algoritmo simplex restrinja a procura apenas aos vértices admissíveis.
- As decisões (selecção da coluna e da linha pivô) garantem que se muda de um vértice admissível (do problema primal) para outro vértice admissível mais próximo da solução óptima.
- A mudança de base faz-se usando eliminação de Gauss.

Resultados de aprendizagem

- Resolver problemas de programação linear de maximização pelo método simplex (primal).
 - seleccionar a variável a entrar na base;
 - seleccionar a variável a sair da base;
 - utilizar o método de eliminação de Gauss para mudar para uma base adjacente;
 - identificar como variam as variáveis (básicas e não-básicas) na mudança de base;
 - reconhecer quando uma solução é óptima;
 - reconhecer quando há soluções óptimas alternativas.

Apêndices

1. Mudança de base: direcção e aumento máximo

O que significa $x_B = B^{-1}b - \theta B^{-1}N_j$?

- A solução básica $B^{-1}b$ é o vértice x_{v_actual} .
- O vector $B^{-1}N_i$ indica uma direcção d.
- O vector θd , $\theta \ge 0$, é um múltiplo escalar do vector d.

ou seja, na mudança de base

- partindo do vértice x_{v_actual}, ao longo da direcção d∈ IRⁿ, percorremos os pontos x = x_{v_actual} + θ d, que devem pertencer ao domínio, i.e., A(x_{v_actual} + θ d) = b.
- Como $Ax_{v_actual} = b$, d deve ser uma direcção tal que Ad = 0.
- Quando $\theta = \theta_{max}$, atingimos o vértice adjacente $x_{v_{adj}}$:

$$x_{v_adj} = x_{v_actual} + \theta_{max} d$$

• Quando só uma variável aumenta, d é a direcção de uma aresta.

1. $B^{-1}N_i$ indica a direcção d: Ad = 0

 A coluna N_j da variável não-básica j e as colunas da variáveis básicas são um conjunto de vectores linearmente dependentes:

$$N_j - B \left(B^{-1} N_j \right) = 0$$

- Exemplo: vértice c (base x_2, s_2 e x_1) e var não-básica s_3 aumenta:
- quando a variável não-básica s_3 aumenta de θ unidades, a variável básica x_2 aumenta de 1.5θ unidades, s_2 decresce de 2θ unidades, e x_1 decresce de θ unidades.

$$\theta \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 1.5 \theta \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} - 2 \theta \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 1 \theta \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 3 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} -1.5 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

1. Exemplo: aresta vértice $c \rightarrow d$ (s_3 aumenta)

• quando a variável não-básica s_3 aumenta de θ unidades, a variável básica x_2 aumenta de 1.5θ unidades, s_2 decresce de 2θ unidades, e x_1 decresce de θ unidades.

$$x = \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 30 \\ 15 \\ 0 \\ 20 \\ 0 \end{pmatrix} + \theta \cdot \begin{pmatrix} -1 \\ 1.5 \\ 0 \\ -2 \\ 1 \end{pmatrix}$$

- Exercício: verificar que $Ax_{v_actual} = b$ e Ad = 0.
- Quando $\theta = \theta_{max} = 10$, atingimos o vértice adjacente x_{v_adj} :

$$x_{vertice_d} = x_{vertice_c} + \theta_{max} d$$

2. Mudança de base: como variam as variáveis básicas quando a variável não-básica aumenta θ unidades?

• O sistema de equações das restrições é $Bx_B + Nx_N = b$.

Num pivô, do conjunto de variáveis não-básicas \mathcal{N} ,

- uma variável não-básica x_j , $j \in \mathcal{N}$, aumenta θ unidades, $\theta \in \mathbb{R}_+$,
- as restantes variáveis não-básicas $x_i, i \in \mathcal{N} \setminus \{j\}$, mantêm-se nulas.
- Assim, no pivô, o sistema de equações é $Bx_B + N_j x_j = b$, ou

$$Bx_B = b - \theta N_j$$

• Pré-multiplicando por B^{-1} , o sistema de equações que descreve a mudança de base é expresso noutra base:

$$x_B = B^{-1}b - \theta B^{-1}N_i$$

2. Exemplo: vértice $a \rightarrow$ vértice b (aumenta x_1)

2. Exemplo: vértice $c \rightarrow$ vértice d (aumenta s_3)

3. Caracterização geométrica da solução óptima

- Solução é óptima se o gradiente da função objectivo estiver contido no cone (combinação não-negativa) gerado pelos vectores simétricos dos gradientes das restrições activas no vértice óptimo.
- O gradiente da restrição $a^i x \le b_i$ (ou seja, $a^i x + s_i = b_i$) é:

$$\partial s_i/\partial x = -a^i$$

Exemplo:

restrição
$$3x_1 + 2x_2 + s_1 = 120$$
 \rightarrow $\partial s_1/\partial x = (-3, -2)^t$.
restrição $1x_1 + 2x_2 + s_2 = 80$ \rightarrow $\partial s_2/\partial x = (-1, -2)^t$.

• Gradiente da função objectivo, \vec{c} , é uma combinação não-negativa dos vectores simétricos dos gradientes das restrições activas ($s_1 = 0$ e $s_2 = 0$)

$$\vec{c} = \begin{pmatrix} 12\\10 \end{pmatrix} = 3.5 \begin{pmatrix} 3\\2 \end{pmatrix} + 1.5 \begin{pmatrix} 1\\2 \end{pmatrix}$$

• os coeficientes 3.5 e 1.5 são os mesmos do quadro simplex.

3. Solução óptima: gradiente \vec{c} está contido no cone

3. Solução em que o gradiente \vec{c} não está contido no cone

Fim