

Séquence thématique : ST7 Optimisation

Démonstrations

Orthogonal Matching Pursuit

Identification de réponses impulsionnelles

On considère un ensemble de vecteurs $\{g_k\}$ tels que $\|g_k\|=1$ et un vecteur f à modéliser sous la forme d'une combinaison linéaire de quelques vecteurs g_k . On construit itérativement une base orthonormale $\{u_l\}$ (avec $\|u_l\|=1$) du sous-espace généré par les vecteurs g_k déjà sélectionné.

Orthogonal Matching Pursuit

- Initialisation
- On recherche le vecteur g_{γ_0} tel que $|\langle f, g_{\gamma_0} \rangle| = \max |\langle f, g_k \rangle|$. Dans le contexte des signaux sismiques, on peut utiliser pour cela la transformation de Radon (*slant-stack*) en s'alignant sur les instants de tir de chaque source.
- Le vecteur $u_0=g_{\gamma_0}$ constitue le premier vecteur u_0 de la base orthonormale évoquée ci-dessus.
- On initialise un vecteur résidu r avec $r = f \langle f, g_{\gamma_0} \rangle g_{\gamma_0}$.
- On initialise n=1 où n est le nombre de vecteurs dans la base orthonormale.

Orthogonal Matching Pursuit

- Tant que la norme du résidu ||r|| est supérieure à un seuil
- On recherche le vecteur g_{γ_n} tel que $|\langle r, g_{\gamma_n} \rangle| = \max |\langle r, g_k \rangle|$. Dans le contexte des signaux sismiques, on peut utiliser pour cela la transformation de Radon (*slant-stack*) en s'alignant sur les instants de tir de chaque source.
- On calcule la projection orthogonale g_{proj} du vecteur $\langle r, g_{\gamma_n} \rangle g_{\gamma_n}$ sur le sous-espace dont la base est $\{u_k\}_{0 \le k < n}$, qui vaut

$$g_{proj} = \sum_{0 \le k < n} \left\langle \left\langle r, g_{\gamma_n} \right\rangle g_{\gamma_n}, u_k \right\rangle u_k$$

- On calcule le vecteur orthogonal $g_{orth} = \langle r, g_{\gamma_n} \rangle g_{\gamma_n} g_{proj}$.
- On rajoute le vecteur $u_n = g_{orth} / ||g_{orth}||$ à la base orthonormale $\{u_k\}_{0 \le k < n}$.
- On met à jour le résidu $r=r-\frac{g_{orth}}{\langle u_n,g_{\gamma_n}\rangle^2}$
- -n = n + 1

- Post-traitement
- Construction de la matrice M de changement de base, telle que $M(i,j) = \langle u_i, g_{\gamma_j} \rangle$
- Calcul du vecteur m tel que $m(i) = \langle u_i, f \rangle$.
- Résolution du système Mx=m pour obtenir dans x les coefficients de la combinaison linéaire des g_{γ_n} qui est l'approximation de f.

Orthogonal Matching Pursuit

1 capteur (signal \vec{d})

 N_s sources (matrice L)

modèle (vecteur \overrightarrow{m} avec les N_s réponses impulsionnelles)

$$\vec{m} = \begin{pmatrix} \vec{h}_1 \\ \vec{h}_2 \\ \vdots \\ \vec{h}_{N_S} \end{pmatrix} \qquad L = \begin{bmatrix} L_1 & L_2 & \dots & L_{N_S} \end{bmatrix} \qquad \vec{d} = L\vec{m} + \vec{b}$$

$$\|\vec{d} - L\vec{m}_{est}\|^2 + \lambda \|\vec{m}_{est}\|^2 \qquad \qquad L^t \vec{d} = (L^t L + \lambda I) \vec{m}_{est}$$

 $N_s = 64$ (nombre de sources)

$$\dim \vec{m} = N_s \times \dim \vec{h}_k = 64 \times 3000 = 192000$$

Sources impulsionnelles (256 impulsions avec retard aléatoire).

Résolution directe impossible!
Utilisation de méthodes itératives (gradient conjugué)

