BUNDESREPUBLIK DEUTSCHLAND

10/532906

REC'D 3 0 JAN 2003

WIPO PCT

BEST AVAILABLE COPY

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 53 335.7

Anmeldetag:

29. Oktober 2001

Anmelder/Inhaber:

MedInnova Gesellschaft für medizinische Innovationen

aus akademischer Forschung mbH, Marburg/DE

Bezeichnung:

Verfahren zum Auffinden von pharmakologisch aktiven

Wirkstoffen, die die Funktion von Nervenzellen beinflus-

sen

IPC:

A 61 K 38/30

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 10. Dezember 2002 **Deutsches Patent- und Markenamt Der Präsident** Im Auftrag

are

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Wehner

A 9161 02/00 EDV-L

Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zum Auffinden von pharmakologisch aktiven Wirkstoffen, welche die Funktion von Nervenzellen beeinflussen, das die folgenden Schritte umfasst: (a) Inkontaktbringen einer Probe enthaltend Insulin-like growth factor binding protein 5 (IGFBP-5) oder einen aktiven Teil davon mit mindestens einem potentiellen Wirkstoff und (b) bestimmen der Aktivität von IGFBP-5 in der Probe.

MedInnova GmbH

29. Oktober 2001 M36251 BÖ/Zw/bec

Verfahren zum Auffinden von pharmakologisch aktiven Wirkstoffen, die die Funktion von Nervenzellen beeinflussen

Die vorliegende Erfindung betrifft ein Verfahren zum Auffinden von pharmakologisch aktiven Wirkstoffen, welche die Funktion von Nervenzellen beeinflussen, das die folgenden Schritte umfasst: (a) Inkontaktbringen einer Probe enthaltend "Insulin-like growth factor binding protein 5" (IGFBP-5) oder einen aktiven Teil davon mit mindestens einem potentiellen Wirkstoff und (b) bestimmen der Aktivität von IGFBP-5 in der Probe.

Neuropathien sind Nervenleiden, die mit Störungen der motorischen und/oder sensiblen Nervenleitung einhergehen. Die Ursache für Neuropathien können toxisch, metabolisch, infektiös oder entzündlich sein, wobei eine entzündliche Komponente bei praktisch allen Fällen der Neuropathie beteiligt ist. Die häufigsten Neuropathien sind motorische Neuropathien, die im Verlauf von Diabetes mellitus entstehen. Ein besonderes Merkmal dieser diabetogenen Neuropathien ist die Degeneration der Motorendplatten, der Verlust der Axone und die Atrophie der Motoneuronen. Obwohl die Ursachen der Neuropathie, d. h. die toxischen, metabolischen, infektiösen oder entzündlichen Ursachen, häufig bekannt sind, sind die molekularen Prozesse, die an der Pathogenese beteiligt sind, weitestgehend ungeklärt. Derzeit beschränken sich daher die therapeutischen Ansätze zur Behandlung der Neuropathie auf die Behebung der Ursachen, was nur in wenigen Fällen erreichbar ist, und auch dann nicht zu einer erfolgreichen Behandlung führt, da der Verlust von Axonen nicht wieder rückgängig gemacht werden kann. Eine Vorraussetzung für eine Zielgerichtete und frühe Bekämpfung einer sich

5

10

15

bildenden Neuropathie ist daher die Kenntnis der Pathogenese der Neuropathie, mit Hilfe derer Wirkstoffe für die Therapie identifiziert und geprüft werden können.

Die Proteine "Insulin-Like Growth" Faktor-1 (IGF-1) und (IGF-2) gehören zu denjenigen Wachstumsfaktoren, die das Überleben von Neuronen und Gliazellen in vitro und in vivo unterstützen. Diese Faktoren fördern die Teilung von neuralen Vorläuferzellen, die Reifung und das Überleben von Motoneuronen und von Schwanschen-Zellen (Arakawa et al. (1990) J. Neurosci. 10: 3507-3515; Syroid et al. (1999) J. Neurosci. 19: 2059-2068).

Untersuchungen an transgenen Mäusen, die entweder mutiertes IGF-1 oder IGF-2 enthielten oder die IGF-1 überexprimierten, deuteten darauf hin, dass IGF die Bildung von Myelin stimuliert (Liu et al. (1993) *Cell* 75: 59-72; Beck et al. (1995) *Neuron* 14: 717-730; Carson et al. (1993) *Neuron* 10: 729-740).

15

20

25

Im Gegensatz zu den meisten Wachstumsfaktoren sind die IGFs in großer Menge im Blutkreislauf vorhanden, aber nur ein sehr kleiner Teil davon liegt in Form von freien IGF vor. Der Großteil bildet mit den sogenannten "Insulin-like growth factor binding Proteins" (IGFBP) und einem weiteren großen Protein das als "Acid labile subunit" (ALS) bezeichnet wird, vor (Blum et al. (1991) in: Modern Concepts in Insulin-Like Growth Factors, Herausgeber Spencer, Elsevier, New York, 381-893). Bisher konnten sechs verschiedene IGFBPs identifiziert werden (Yamanaka et al. (1997) J. Biol. Chem. 272: 30729-30734). Eines dieser Proteine, IGFBP-5, ist ein glykosiertes Protein mit einem Molekulargewicht von etwa 26 kDa, das mit hoher Affinität an IGF-1 und IGF-2 bindet (Drop et al. (1992) Growth Regulation 2: 69-79; WO 97/03470).

IGFBP-5 ist außer in den Nieren in anderen Organen in beträchtlichenmaße im Nervensystem, beispielsweise in Gliazellen und in Purkinjezellen und cerebellären Granulazellen nachzuweisen (Bondy und Li (1993) J. Neurosci. 13: 5092-5104; Stenvers et al. (1994) J. Comp. Neurol. 339: 91-105; Rochier et al. (2001) J. Neurochem. 76: 11-20). Immunhistochemische Untersuchungen zeigen eine Lokalisation des Proteins an der Zellmembran von Purkinjezellen. IGFBP-5 ist des Weiteren immunhistologisch an und in myelinisierten Axonen nachweisbar. Durch seine hohe Affinität zur extrazellulären Matrix kann es in dem extrazellulären Raum zwischen Motoneuronen und Schwanzchen-Zellen akkumulieren (Syroid et al. (1999) J. Neurosci. 19: 2059-2068; Cheng et al. (1996) Brain Res. Dev. Brain Res. 92: 211-218). Nach Hypoxy/Ischaemie oder nach Verletzung des Ischiasnervs ist die Expression von IGFBP-5 in Nervenzellen erhöht (Li et al. (1996) J. Cereb. Blood. Flow Metab. 16: 227-236; Hammerberg et al. (1998) J. Comp. Neurol. 400: 57-72). Es ist jedoch weitgehend unklar, welche physiologische oder pathophysiologische Rolle IGFBP-5 im Nervensystem spielt.

Da IGFs das Wachstum von Nervenzellen fördert wurden Komplexe aus IGF-1 und IGFBP-3 (WO 95/13823 und WO 99/62526), antisense Oligonukleotide, die spezifisch für IGFBPs sind, Antikörper, die spezifisch für IGFBPs sind, und Peptide zur Hemmung der Bindung von IGFBPs (WO 98/32022, WO 98/45427 und WO 99/32620) für die Behandlung einer Reihe von Erkrankungen beschrieben. Diese Erkrankungen schließen auch Erkrankungen des Nervensystems wie beispielsweise der amyotrope Lateralsklerose (WO 99/32620 und WO 99/62536) die zentrale und peripheren Neuropathien (WO 99/32620) oder die Alzheimer Erkrankung bzw. die Huntington Erkrankung (WO 95/13823) ein. Das Ziel dieser Arbeiten bestand jedoch jeweils darin die Menge der freien IGFs in der Zelle zu erhöhen. Aus keiner der genannten Arbeiten ging jedoch hervor, dass IGFBP-5 kausal an der Entstehung von Neuropathien und dem damit einhergehenden Verlust von Axonen und Degeneration von Motoneuronen beteiligt ist. Erst im Rahmen dieser Erfindung konnte überraschend gezeigt werden, dass die erhöhte Bil-

dung von IGFBP-5 in Nervenzellen zu einer Beeinträchtigung der Funktion der Nervenzellen führt. Transgene Mäuse, die in ihren Motoneuronen IGFBP-5 überexprimieren, zeigen einen Verlust ihrer Axone und eine Degeneration ihrer Motoneuronen und entwickeln das klinische Bild einer Neuropathie, das mit den typischen Funktionseinbußen der Nervenzellen einhergeht. Ein weiterer überraschender Befund neben dem Befund aus transgenen Tierexperimenten war, dass in Nervenzellen von Patienten mit Diabetes mellitus erhöhte Mengen der für IGFBP-5 kodierenden mRNA nachgewiesen werden konnten. Diese Erhöhung von IGFBP-5 ist spezifisch für diabetogene Formen der Neuropathie, da sie nicht in Nerven von Patienten mit nicht diabetischen Formen der Neuropathie gefunden wurde. Somit ist der überraschende Befund, der Grundlage der vorliegenden Erfindung ist, dass eine Ursache der diabetogenen Neuropathie die Erhöhung der Konzentration von IGFBP-5 innerhalb oder in der Nachbarschaft der Nervenzellen ist. Dieser Befund ermöglicht nun, die zielgerichtete Suche nach Wirkstoffen, die die Prophylaxe oder Therapie von Neuropathien, vorzugsweise diabetischer Formen der Neuropathie erlauben mit Hilfe von Substanzen, die gezielt die Konzentration und/oder die Aktivität von IGFBP-5 innerhalb der Nervenzellen oder in der Nachbarschaft der Nervenzellen reduzieren.

Gegenstand dieser Erfindung ist somit ein Verfahren zum Auffinden von pharmakologisch aktiven Wirkstoffen, welche die Funktion von Nervenzellen beeinflussen, das die folgenden Schritte umfasst:

- a) Inkontaktbringen einer Probe enthaltend IGFBP-5 oder einen aktiven Teil davon mit mindestens einem potentiellen Wirkstoff; und
- b) Bestimmen der Aktivität von IGFBP-5 in der Probe.

25

Unter "Funktionen" von Nervenzellen werden beispielsweise die Reizleitung sowie alle daran beteiligten biochemischen und/oder elektrochemischen Prozesse

verstanden. Vorzugsweise umfasst der Begriff Funktion jedoch das Überleben von Nervenzellen. Das Überleben von Nervenzellen beispielsweise in einer Zellkulturschale kann durch die Bestimmung der Anzahl der absterbenden Zellen in der Zellkultur erfolgen. Das Absterben von Zellen des Zentralen Nervensystems kann beispielsweise durch Testverfahren, die Apoptose nachweisen, beobachtet werden. Solche Testverfahren sind beispielsweise "Tunnel-Assay" (Gavrielli et al. (1992) J. Cell Biol. 119: 493-501; Gold et al. (1994) Lab. Invest. 71: 219-225), Chromatinfragmentierung (Götz et al. (2000) Hum. Mol. Genet. 9: 2479-2489), Zählung von überlebenden und absterbenden Nervenzellen (Arakawa et al. (1990) J. Neurosci. 10: 3507-3515), die Verwendung von Festsubstanzen zur Quantifizierung des Zelltods in Zellkultur (Uliasz und Aewett (2000) J. Neurosci. Methods 100: 157-163), Quantifizierung der Expression von Zelltod-assoziierten Genen in Nervenzellen, wie beispielsweise Cycline (Timsit et al. (1999) Eur. J. Neurosci. 11: 263-278) und Bestimmung des neuronalen Zelltods nach Zugabe von a-β-Peptid (Iwasaki et al. (1996) Mol. Psych. 1: 65-71) oder nach Induktion von oxidativen Stress (Manev et al. (1995) Exb. Neurol. 133: 198-206).

15

25

30

Das Inkontaktbringen einer Probe mit mindestens einem potentiellen Wirkstoff umfasst jede Form des Mischens der Probe mit dem potentiellen Wirkstoff, wobei sowohl die Probe zu dem potentiellen Wirkstoff hinzugefügt werden kann, als auch der potentielle Wirkstoff zu der Probe. Die Probe und/oder der potentielle Wirkstoff liegt(en) dabei vorzugsweise als Feststoff, Lösung, Suspension, Aufschlämmung oder an eine feste Phase gebunden vor. Wenn es sich bei der Probe mit der (die) potentiellen Wirkstoff(en) in Kontakt gebracht wird (werden), um Zellen handelt, umfasst der Schritt des Inkontaktbringens auch im Stand der Technik bekannte Verfahren, die das Einführen von Substanzen in intakte Zellen erlauben, wie beispielsweise DNA-"Guns" Infektion, Transfektion und/oder Transformation. Diese Verfahren sind besonders bevorzugt, wenn es sich bei dem potentiellen Wirkstoff um nackte DNA, Viren, Viroide, Virosom und/oder Liposomen handelt, wobei die Liposome oder Virosome auch geeignet sind, neben

einem potentiell wirksamen Nukleinsäuremolekül weitere potentielle Wirkstoffe mit der Probe in Kontakt zu bringen. Dem Fachmann sind eine Reihe weiterer Methoden bekannt, die dazu dienen potentielle Wirkstoffe in Zellen einzuführen und die gleichermaßen zum Inkontaktbringen von Probe und potentiellen Wirkstoff geeignet sind.

Eine Probe im Sinne dieser Erfindung ist beispielsweise mindestens eine Zelle, mindestens ein Zellextrakt, mindestens ein Proteingemisch und/oder ein Gemisch, wobei die Zelle, der Zellextrakt, das Proteingemisch oder das Gemisch IGFBP-5 oder einen aktiven Teil davon enthält. Die Zellen umfassen beispielsweise pround eukaryotische Zellen, insbesondere jedoch Zellen, die als Wildtyp-Zellen IGFBP-5 exprimieren. In Zellen, die als Wildtyp-Zellen nicht oder nur in geringem Maße IGFBP-5 exprimieren, kann durch dem Fachmann bekannte Methoden IGFBP-5 exprimiert werden. Solche Methoden umfassen beispielsweise Infektion, Transfektion oder Transformation von Zellen mit Vektoren, die Nukleinsäuren enthalten, die für IGFBP-5 oder einen aktiven Teil davon kodieren. Eine bevorzugte Probe, die in dem erfindungsgemäßen Verfahren verwendet werden kann, ist eine Zelle, die eine erhöhte IGFBP-5 Aktivität im Vergleich zu Wildtyp-Zellen desselben Zell- bzw. Gewebetyps aufweist. Eine solche Zelle kann beispielsweise aus heterozygoten oder homozygoten IGFBP-5 transgenen Mäusen gewonnen werden. Diese Zellen enthalten dann je nach Anzahl der eingeführten Gene beispielsweise zwischen 1 bis ca. 40 zusätzliche Gene, die für IGFBP-5 oder einen aktiven Teil davon kodieren. Im Rahmen dieses erfindungsgemäßen Verfahrens sind Zellen aus heterozygoten oder homozygoten IGFBP-5 transgenen Mäusen bzw. Mäuseembryonen bevorzugt, insbesondere aus diesen gewonnene Neuronen oder noch bevorzugter spinale Motoneuronen. Diese Zellen können beispielsweise mit Hilfe der Panningetechnik (Metzger et al. (1998) J. Neurosci. 18: 1735-1742) isoliert werden.

10

15

20

Des weiteren umfasst der Begriff "Probe" auch Zellextrakte, die beispielsweise aus einer der vorangehend aufgeführten Zellen mit dem Fachmann bekannten Standardverfahren gewonnen werden können, geeignete Verfahren umfassen sind aber nicht beschränkt auf "Freze-thawing", "Sonification" oder "French-Pressing". Gegebenenfalls kann ein solcher Zellextrakt in einem weiteren Schritt aufgearbeitet bzw. aufgereinigt werden. Bevorzugte Schritte umfassen beispielsweise Präzipitations-, Filtrations- und Chromatographische Verfahrensschritte. Geeignete chromatographische Verfahren sind dem Fachmann bekannt und umfassen beispielsweise Anionen- bzw. Kationenaustauschchromatographie, Affinitätschromatographie und/öder Größenausschlusschromatographie. Des weitern kann die Probe auch eine Mischung gereinigter oder rekombinanter Proteine enthaltend IGFBP-5 oder einen aktiven Teil davon und/oder ein Gemisch enthaltend IGFBP-5 oder einen aktiven Teil davon sein, das zusätzlich weiter Komponenten enthält wie beispielsweise Komponenten, die für die Bestimmung der Aktivität von IGFBP-5 verwendet werden können.

10

15

25

30

Das Bestimmen der Aktivität von IGFBP-5 in der Probe ist durch eine Reihe direkter und indirekter Nachweisverfahren möglich. Die jeweils geeigneten Verfahren hängen von der Natur der Probe ab. In Zellen wird die Aktivität von IGFBP-5 beispielsweise durch die Menge des in der Zelle exprimierten IGFBP-5s bestimmt oder durch die Fähigkeit des in der Zelle vorhandenen IGFBP-5s an IGF-1 oder IGF-2 zu binden. Die Repression der Transkription des für IGFBP-5 kodierenden Gens kann beispielsweise durch die Bestimmung der Menge der IGFBP-5 mRNA erfolgen. Im Stand der Technik bekannte Standardverfahren zur Bestimmung der IGFBP-5-mRNA Menge umfassen beispielsweise "Northern-Blot"-Hybridisierung, RT-PCR, "Primer"-Extension und "RNA-Protection". Des weiteren kann die Bestimmung der IGFBP-5 Aktivität die auf der Induktion oder Repression der Transkription des IGFBP-5-Promotors beruht, auch durch die Kopplung des IGFBP-5-Promotors an geeignete Reporterkonstrukte erfolgen. Beispiele für geeignete Reportergene sind das Chloramphenicol-Transferase-Gen, das

"Green-Fluorescent-Protein" (GFP) und Varianten davon, das Luciferase-Gen und das Rennilla-Gen. Der Nachweis der Expression von IGFBP-5-Protein kann jedoch auch auf Proteinebene erfolgen, wobei in diesem Falle die Menge des Proteins beispielsweise durch gegen IGFBP-5-Proteine gerichtete Antikörper nachgewiesen wird.

Die Änderung der Bindungsfähigkeit von IGFBP-5 an IGF-1 und/oder IGF-2 kann beispielsweise in einem "Two-Hybrid"-System überprüft werden, wobei das Two-Hybrid-System beispielsweise in Hefe oder in höheren eukaryotischen Zellen durchgeführt werden kann. Verglichen wird dann die Interaktionsstärke zwischen IGFBP-5 und IGF-1 und/oder IGF-2 mit oder ohne Zusatz des potentiellen Wirkstoffs.

Handelt es sich bei der Probe beispielsweise um einen Zellextrakt, ein Proteingemisch und/oder ein Gemisch enthaltend IGFBP-5 oder einen aktiven Teil davon, richtet sich die Bestimmung der Aktivität vorzugsweise auf die Bestimmung der Bindungsfähigkeit von IGFBP-5 an IGF-1 und/oder IGF-2. Hierbei kann jeweils entweder die Menge des freien, d.h. ungebundenen IGFBP-5s und/oder die Menge des freien IGF-1s oder IGF-2s bestimmt werden. Eine weitere Möglichkeit besteht in der Immunpräzipitation von IGFBP-5, der Bestimmung des jeweils koimmunpräzipitierten IGF-1s und/oder IGF-2s, wobei die Menge des jeweils präzipierten IGF-1 oder IGF-2 durch immunologische Verfahren aber auch durch radioaktive Markierung, Fluoreszenzmarkierung oder ähnliche Markierungen des IGFs bestimmt werden kann. Verglichen wird dabei die Menge des freien IGFBP-5s bzw. IGFs in der behandelten und unbehandelten Probe.

15

25

Potentielle Wirkstoffe, die die Aktivität von IGFBP-5 in der Probe im Vergleich zur unbehandelten Probe (Kontrolle) verstärken oder hemmen gelten gemäß dieser Erfindung als pharmakologisch aktive Wirkstoffe die die Funktion von Nerven-

zellen beeinflussen. Ein pharmakologisch aktiver Wirkstoff, der die Funktion von Nervenzellen beeinflusst verändert die Aktivität von IGFBP-5 gegenüber der Kontrolle mehr als ca. 10 %, vorzugsweise jedoch um mindestens ca. 50 %, um mindestens 100 % noch bevorzugter um mindestens ca. 500 %. In einer bevorzugten Ausführungsform der Erfindung verringert der potentielle Wirkstoff die Aktivität von IGFBP-5 im Vergleich zu der unbehandelten Probe.

In einer weiteren Ausführungsform kann sich an den Schritt a) eine Inkubationsperiode anschließen, die abhängig von der Probe unterschiedlich lang sein kann. Wenn es sich bei der Probe um Zellen handelt, wird die Aktivität (Schritt b) nach ca. einer Stunde bis 100 Tagen vorzugsweise nach ca. 1 Tag bis ca. 50 Tagen vorzugsweise nach ca. 3 Tagen bis ca. 10 Tagen insbesondere nach 3 Tagen bestimmt. Wenn es sich bei der Probe um einen Zellextrakt, ein Proteingemisch oder ein Gemisch handelt, kann die Aktivität beispielsweise nach einem Zeitraum von ca. 0 Sekunden (Messung der Aktivität unmittelbar beim Inkontaktbringen) bis ca. 20 Tagen bestimmt werden. Vorzugsweise beträgt der Zeitraum für die Inkubation nach dem Inkontaktbringen der Probe mit dem potentiellen Wirkstoff jedoch ca. 5, 10, 20, 30, 40, 50, 60, 90, 120, 150, 180 Minuten (McDonald et al. (1999) Analyt. Biochem. 268: 318-329).

20

25

30

5

10

15

Neben der Aktivität von IGFBP-5 in der Probe beinhaltet das vorliegende Verfahren auch die Bestimmung der Aktivität eines aktiven Teils von IGFBP-5. Ein aktiver Teil von IGFBP-5 enthält im Vergleich zu Wildtyp-IGFBP-5 N- und/oder C-Terminale Deletion und/oder gegebenenfalls interne Deletion ohne dass die Fäligkeit des so deletierten IGFBP-5 Teils in transgenen Mäusen den Verlust der Axone und Degeneration der Motoneuronen auszulösen, verloren geht. Ein funktionell aktiver Teil von IGFBP-5 der in transgenen Mäusen exprimiert wird, hat mindestens ca. 10 %, vorzugsweise mindestens ca. 20 %, bevorzugter mindestens 50 % und am bevorzugtesten mindestens ca. 100 % der Aktivität von Wildtyp IGFBP-5.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens, enthält die Probe mindestens eine Zelle, mindestens einen Zellextrakt, mindestens ein Proteingemisch und/oder ein Gemisch enthaltend IGFBP-5 oder einen aktiven Teil davon. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Zelle eine neuronale Zelle, insbesondere eine sensorische, empathische oder motorisch-neuronale Zelle, eine neuronale Stammzelle, ein Neuron, insbesondere ein cholinerges Neuron des basalen Vorderhirns, eine dopaminerge Nervenzelle des Mittelhirns, eine Körnerzelle, eine Purkinjezelle des Kleinhirns oder des Hypokampus, eine retinale Ganglienzelle oder ein Photorezeptor. Bei Verwendung eines Zellextrakts oder eines Proteingemischs ist dieses vorzugsweise aus einer der voran genannten Zellen hergestellt bzw. isoliert.

10

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens besitzt die Zelle eine erhöhte IGFBP-5 Aktivität im Vergleich zu einer Wildtyp-Zelle wobei diese erhöhte Aktivität beispielsweise die Stimulation der Expression von IGFBP-5 und ??? die Transfektion durch IGFBP-5 enthaltende Vektoren und/oder Insertion von IGFBP-5 kodierenden Genen umfasst.

In einer Ausführungsform des erfindungsgemäßen Verfahrens wird die Aktivität von IGFBP-5 in der Zelle durch die Überlebensrate der Zellen bestimmen. Diese Bestimmung der Aktivität ist von besonderem Interesse in Zellen, die beispielsweise auf Grund der Einführung zusätzlicher IGFBP-5 Gene, erhöhte IGFBP-5 Aktivität besitzen, und die deshalb im Vergleich zur jeweiligen Wildtyp-Zelle eine verringerte Überlebensrate besitzen. Eine Verlängerung der Überlebensrate dieser Zellen nach Inkubation mit mindestens einem potentiellen Wirkstoff dient dabei als indirektes Mittel der Bestimmung der Aktivität von IGFBP-5 in der Probe. Ein pharmakologisch aktiver Wirkstoff verlängert dabei die Überlebensrate der Zellen um mindestens ca. 20%, vorzugsweise um mindestens ca. 50%, noch

bevorzugter um mindestens ca. 100% und noch bevorzugter um mindestens ca. 1000% im Vergleich zu unbehandelten Zellen. Am meisten bevorzugt sind solche Wirkstoffe, die bei Zugabe zu den Zellen zu einem dauerhaften Überleben der Zellen in der Zellkultur führen und/oder in einer IGFBP-5-transgenen Maus den Verlust der Axone und die Degeneration von Motoneuronen verhindern.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die Aktivität von IGFBP-5 in der Probe durch die Menge des IGFBP-5 Proteins, die Menge der dafür kodierenden Nukleinsäuren und/oder die Bindungsaktivität von IGFBP-5 bestimmt.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens weist die Verringerung der Aktivität von IGFBP-5 in der Probe nach Inkontaktbringen mit mindestens einem potentiellen Wirkstoff darauf hin, dass der potentielle Wirkstoff ein pharmakologisch aktiver Wirkstoff ist, welcher die Funktion von Nervenzellen beeinflusst.

15

25

Wenn es sich bei dem potentiellen Wirkstoff um eine Wirkstoffmischung handelt wird in einem weiteren Schritt aus dieser Wirkstoffmischung der pharmakologisch aktive Wirkstoff isoliert.

In einer Ausführungsform des erfindungsgemäßen Verfahrens ist die Probe kompartimentalisiert, beispielsweise auf einer Mikrotiterplatte mit 96, 384 oder 1525 Vertiefungen. Solche Mikrotiterplatten werden bereits routinemäßig in vollautomatischen, massiv parallelen Testverfahren eingesetzt (sogenannte "High troughput screens"), die es erlauben, in kurzer Zeit hunderttausende verschiedene Wirkstoffe zu testen. Grundsätzlich ist jede Kompartimentalisierung geeignet, die es ermöglicht, die Wirkung des mit der Probe in Kontakt gebrachten potentiellen

Wirkstoffs räumlich zu beschränken, so dass die Auswirkungen des jeweilig verwendeten potentiellen Wirkstoffs auf die Aktivität von IGFBP-5 oder eines aktiven Teils davon in der Probe bestimmt werden kann. Die Probe kann kovalent oder nicht-kovalent mit der Oberfläche des Probenträgers, wie beispielsweise eine Mikrotiterplatte, verknüpft sein oder als eine Lösung, Suspension oder Aufschlämmung vorliegen. Neben den im Stand der Technik bekannten verschiedenen Mikrotiterplatten-Formaten, die für die Durchführung des erfindungsgemäßen Verfahrens geeignet sind, sind jedoch auch planare oder beispielsweise durch Vertiefungen oder Kanäle strukturierte Probeträger geeignet. Der Probeträger kann beispielsweise aus Glas, Silizium, Metall oder Kunststoff sein.

10

20

25

30

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens ist mindestens ein potentieller Wirkstoff kovalent oder nicht-kovalent mit einem Probenträger verknüpft, wobei die Oberfläche des Probenträgers vorzugsweise in Form von Vertiefungen, Kanälen oder auch planar strukturiert ist. Die Probe wird dann mit dem immobilisierten potentiellen Wirkstoffen in Kontakt gebracht und die Aktivität von IGFBP-5 in der Probe an der jeweiligen Immobilisierungsstelle des (der) potentiellen Wirkstoffe(e) bestimmt. Beispielsweise kann mit Standardverfahren, die beispielsweise aus WO 89/19977, WO 90/15070, WO 95/35505 und US 5,744,305 bekannt sind, ein Proteinchip hergestellt werden, der an der Oberfläche unterschiedliche Peptidfragmente enthält, deren Einfluss auf die Aktivität von IGFBP-5 getestet werden kann. Gleichermaßen können auch auf einer Oberfläche mit im Stand der Technik bekannten kombinatorisch-chemischen Verfahren eine Vielzahl verschiedener chemischer Substanzen erzeugt werden, deren Wirkung auf die Aktivität von IGFBP-5 durch das erfindungsgemäße Verfahren untersucht werden kann.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird der pharmakologisch aktive Wirkstoff bzw. der isolierte pharmakologisch aktive Wirkstoff in einem weiteren Schritt zu einem Medikament oder Diagnostikum konfektioniert, wobei pharmakologisch aktive Wirkstoffe gegebenenfalls geeignete Hilfs- und Zusatzstoffe zugesetzt werden.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird der pharmakologisch aktive Wirkstoff in weiteren Verfahrungsschritten mit dem Fachmann bekannten Methoden, die beispielsweise Modifikationen mit Halogen, insbesondere mit Fluor oder Chlor und/oder kombinatorische chemische Ansätze umfassen, modifiziert und erneut in dem erfindungsgemäßen Verfahren auf die Beeinflussung der Aktivität von IGFBP-5 hin untersucht, wobei die Aktivität von IGFBP-5 in der Probe, die mit dem modifizierten pharmakologisch aktiven Wirkstoff behandelt wurde, mit der Aktivität von IGFBP-5 in der Probe bei Verwendung des Ausgangswirkstoffs verglichen wird und eine Verbesserung der Wirksamkeit des pharmakologisch aktiven Wirkstoffs insbesondere eine stärkere Verringerung der Aktivität von IGFBP-5 in der Probe im Vergleich zum Ausgangswirkstoff erwünscht ist. Eine solche Verringerung beträgt mindestens ca. 5%, vorzugsweise mindestens ca. 10% noch bevorzugter mindestens ca. 50% gegenüber dem Ausgangswirkstoff. Nachdem für einen modifizierten pharmakologisch aktiven Wirkstoff eine Verbesserung der Verringerung der Aktivität von IGFBP-5 in der Probe festgestellt worden ist, kann mit chemischen Standardverfahren, wie beispielsweise Massenchromatographie, H-NMR-Chromatographie oder IR-Spektroskopie die Struktur des modifizierten Wirkstoffs bestimmt werden.

10

15

20

Ein weiterer Gegenstand der vorliegenden Érfindung ist ein Testsystem zum Auffinden pharmakologisch aktiver Wirkstoffe, welche die Funktion von Zellen des Nervensystems beeinflussen, enthaltend:

- a) mindestens eine Probe enthaltend IGFBP-5 oder einen aktiven Teil davon und
- b) Mindestens ein Mittel zur Bestimmung der Aktivität von IGFBP-5 in der Probe.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung mindestens eines Wirkstoffs zur Prophylaxe und/oder Therapie von Erkrankungen, die mit Zellwachstumsstörungen von Nervenzellen einhergehen, insbesondere der diabetogenen Neuropathie, wobei der verwendete Wirkstoff in dem vorangehend beschriebenen erfindungsgemäßen Verfahren aufgefunden wurde.

Die vorliegende Erfindung zeigt erstmals die Bedeutung von IGFBP-5 für die Pathogenese der diabetogenen Neuropathie. Daher ist ein weiterer Gegenstand der vorliegenden Erfindung die Verwendung mindestens einer Wirksubstanz zur Prophylaxe und/oder Therapie diabetogener Neuropathie, dadurch gekennzeichnet, dass die Wirksubstanz die Aktivität von IGFBP-5 hemmt.

In einer bevorzugten Ausführungsform wird dabei eine der folgenden Wirksubstanzen verwendet:

IGF-1,

10

- IGF-2,
- eine Mutante von IGF-1 und/oder IGF-2 mit erhöhter Bindungsaffinität zu
 IGFBP-5 (Luthi et al., Eur. J. Biochem., 205, 483-480 (1992); Lowman et al.,
 Biochemistry, 37, 8870-8878, (1998)),
 - ein aktives Fragment von IGF-1 und/oder IGF-2.
 - eine Substanz, welche an die Heparin-bindende Domäne des IGFBP-5 bindet (Song et al., J. Mol. Endocrinol., 24, 43-51 (2000)),
- eine Substanz, welche die Expression und/oder Freisetzung von IGF-1 und/oder IGF-2 stimuliert,
 - eine Nukleotidsequenz, die für IGF-1 und/oder IGF-2 kodiert,
 - eine Nukleotidsequenz, die für eine Mutante von IGF-1 und/oder eine Mutante von IGF-2 mit erhöhter Bindungsaffinität zu IGFBP-5 kodiert,
- eine Nukleotidsequenz, die f
 ür ein aktives Fragment von IGF-1 und/oder ein aktives Fragment von IGF-2 kodiert,

und/oder

eine Nukleotidsequenz, die für einen IGFBP-5 bindenden Antikörper oder Antikörperfragment kodiert.

In einer bevorzugten Ausführungsform der Erfindung wird eine Wirksubstanz verwendet, die die Expression und/oder Freisetzung von IGF-1 und/oder IGF-2 stimuliert. Bevorzugte Wirksubstanz, die die Expression und/oder Freisetzung von IGF-1 und/oder IGF-2 stimulieren sind:

10

- Antiprogestine, z.B. Tamoxifen (Quin et al., Endocinology, 140, 2501,2508 (1999))
- Antioestrogene, z.B. Mifepriston (Bitar, et al, Surgery, 127, 687-695 (2000))
- das osteogene Protein-1 (OP-1),
- 15 das "bone morphogenic protein-2" (BMP-2),
 - der "basic fibroblast growth factor" (bFGF),
 - der "transforming growth factor β -1" (TGF β -1),
 - der "platelet derived growth factor BB" (PDGFBB),
 - Interleukin-1 Rezeptor Antagonisten, z.B. IL-RA (Benbassat et al., Horm. Metab. Res. 31, 209-215 (1999))
 - Antagonisten des Retinsäure-α-Rezeptors (Han et al., J. Biol. Chem., 272, 13711-13716 (1997)), und/oder
 - Inhibitoren des Prostaglandins-2 (McCarthy et al., J. Biol. Chem., 22, 6666-6671 (1996)).

25

Die folgenden Beispiel sollen die Erfindung nur näher beschreiben, ohne sie zu beschränken.

Beispiele

1) Auslösung einer Neuropathie in Mäusen durch Überexpression von IGFBP-5

a) <u>Isolierung des IGFBP-5 Klones</u>

Eine Lambda-ZAPII cDNA Bibliothek aus dem Hirn einer Maus wurde mit einer 873 bp IGFBP-5-cDNA Probe geprüft. Diese Probe wurde mit Hilfe der PCR (Primer: Hinreaktion 5'-GCC CCG AGG TAA AGC CAG ACT-3' (SEQ ID NO. 1), Rückreaktion 5'-GGA TAG GGG GAG GAA GGG AGG-3' (SEQ ID NO. 2)) hergestellt und enthielt die gesamte kodierende Sequenz und 48 bp der 5'-nichttranslatierten Region.

Klone, von denen mit Hilfe der o.a Primer eine cDNA in kompletter Länge amplifiziert werden konnten, wurden mit Hilfe der Plaque-Technik gereinigt und nachfolgend vermehrt. Die cDNA wurde in die EcoRI-Schnittstelle des Polylinkers eines pBS II SK Vektors mit Hilfe des Exassist/SOLR Systems (Fa. Stratagene, La Jolla Ca.) gemäß der Anleitung des Herstellers eingefügt. Die Identität der Klone wurde durch DNA-Sequenzierung bestätigt.

20

25

10

15

b) Herstellung von NFL-IGFBP-5 transgenen Mäusen

Ein 1,8 kb EcoRI-Fragment, welches die IGFBP-5 cDNA enthielt, wurde aus dem pBSII SK-Vektor unter Verwendung der Polylinker Eco RV-Schnittstelle und einer Nse I-Schnittstelle in der 3'UTR isoliert und die PolyA-Region vom pMC-Cre (Gu et al. (1993) *Cell* 73: 1155-1164) wurden NSE-BP5 isoliert und mit den stumpfen Enden in den pKS-NFL-Vektor zwischen den Xho I/C1a I-Schnittstellen eingefügt.

Aus diesem NFL-IGFBP-5 DNA-Konstrukt wurde mit Hilfe des Restriktionsenzyms Sma I ein Fragment mit 8 kB, das den menschlichen Neurofilament-Leichtketten (NFL)-Promotor, die cDNA für IGFBP-5 der Maus, das poly A-Signal von pMC-Cre und die Exons 2-4 des NFL Genes (in der stromabwärts gelegenen Region) enthielt, hergestellt.

Das Fragment wurde zweimal über Gel und nachfolgend über Nucleotrap-Harz (Fa. Machery und Nagel, Düren, D) gereinigt, mit Butanol extrahiert, nachfolgend entsalzt und schließlich mit Hilfe von Elutip (Fa. Schleicher und Schüll, Dassel,D) gereinigt. Die eluierte DNA wurde mit Phenol/Chloroform und Chloroform extrahiert und nachfolgend mit Ethanol präzipitiert.

Für die Mikroinjektion wurde die DNA in steriler Pufferlösung (5 mM Tris-HCL, pH 7.4; 0,1 mM EDTA) suspendiert (Konzentration ca. 500 Kopien/pl) und diese Suspension in befruchtete Oozyten der Maus injiziert.

Neun Zuchttiere, die den Vektor integriert hatten, konnten in der genomischen DNA der Tiere mit Hilfe von PCR und Southern Blot Analyse identifiziert werden. Für die PCR-Reaktion zur Bestimmung des Genotyps wurden folgende Primer benutzt: Hinreaktion: NFL-SEQ 5'-TCG CAG GCT GCG TCA GGA G-3' (SEQ ID NO. 3); Rückreaktion: BP5 PCR 5'- CTT GCA GGT AGA GCA GGT GCT CTC-3' (SEQ ID NO. 4). Es wurden 45 Zyklen von 45 s bei 94°C, von 45 s bei 53°C und 30 s bei 72°C durchgeführt.

25

20

Für Southern Blots wurde die DNA-Probe mit Xho 1 verdaut und mit einer radioaktiv markierten IGFBP-5 PCR-Probe getestet.

c) Charakterisierung von NFL-IGFBP-5 transgenen Mäusen

5

10

Verschiedene Gewebe unter Einschluss von Rückenmark, Kleinhirn und Hippokampus von erwachsenen IGFBP-5 transgenen Mäusen und nicht transgenen Kontrollmäusen wurde in 1 ml TRIZOL Reagenz (Fa. Life Technologies) homogenisiert und aus dem Homogenat wurde die Gesamt-RNA nach Angabe des Herstellers gereinigt.

Für jede RT-PCR Reaktion wurde 1 μg der Gesamt-RNA vorgelegt. Der erste DNA-Strang wurde mit Oligo-(dT) Primer synthetisiert (Fa. Life Technologies). Die Primer zur Amplifizierung von IGFBP-5 waren: 5'-Primer: 5'-CTT TCG TGC ACT GTG AAC C-3' (SEQ ID NO. 5); 3'-Primer: 5'-CTC AAC GTT ACT GCT GTC G-3' (SEQ ID NO. 6).

Zur Kontrolle wurde folgende Primer zur Amplifizierung von ß-Actin verwendet: 5'-Primer: 5'-GTC GGC CGC CCT AGG CAC CAG-3' (SEQ ID NO. 7); 3'-Primer: 5'-CTC TTT AAT GTC ACG CAC GAT TTC-3' (SEQ ID NO. 8). Jeweils 32 Zyklen wurden bei 94°C für 30 s, bei 52°C für 30 s und bei 72°C für 1 min durchgeführt.

- Während in Rückenmark transgener Tiere im Vergleich zu den Kontrollmäusen eine erhöhte Expression von IGFBP-5 mRNA nachgewiesen werden konnte, war in den anderen getesteten Organen kein eindeutiger Unterschied in der Expression von IGFBP-5 RNA zwischen transgenen und Kontrolltieren nachweisbar.
- Für die SDS-PAGE Liganden Western-Blot Analyse wurden zwei transgene und zwei Wildtyp Kontrollmäuse mit gleichem genetischem Hintergrund getötet und von allen Organen einschließlich dem Nervensystem (Ischias Nerv, Kleinhirn, Rückenmark Hirnrinde, Hippocampus und Seh-Nerv) Gewebeproben entnommen.

Diese wurden homogenisiert, in Puffer lysiert und zentrifugiert. Die löslichen Proteine wurden auf einem 12%igen denaturierenden Polyacrylamid-Gel elektrophoretisch getrennt. Die aufgetrennten Proteine wurden in einer Elektroblotting Apparatur auf Nitrozellulosemembran überführt (Electroblotting Apparat , Fa.Biometra GmbH, Göttingen, D).

5

15

20

.25

Die Membranen wurden mit Jod-markiertem IGF-2 unter Verwendung der von Hossenlopp et al. (1986) *Anal Biochem* 154: 138-143 beschriebenen Technik getestet. An IGFBP-5 gebundenes radioaktives Jod wurde autoradiographiert.

Die Ergebnisse zeigten eine verstärkte Expression von IGFBP-5 im Rückenmark und im Ischiasnerv transgener Tiere.

d) Diagnose der Neuropathie in IGFBP-5 überexprimierenden, transgenen Mäusen

An den transgenen wie auch an den wildtyp-Kontrollmäusen wurde die Muskel-kraft der Vordergliedmaßen (Methode wie beschrieben von Masu et al. (1993) Nature 365: 27-32) bestimmt. Obwohl kein Unterschied im Körpergewicht beider Tiere bestand, wurde bei den transgenen Mäusen eine starke Reduktion in der Greifstärke der Vordergliedmaße festgestellt.

Zur Analyse dieser klinischen Symptome wurden histomorphologische Untersuchungen durchgeführt. Sie bestanden in der morphometrischen Untersuchung des Ischias-Nerven, des Bauchfellnerven und der Ganglien des Vorderhornes des Rückenmarkes. Für diese Untersuchungen wurden Proben der entsprechenden Gewebe nach Fixation in Osmiumtetroxid in Epoxyd-Harz eingebettet und Semidünnschnitte hergestellt. Gewebeschnitte wurden unter dem Lichtmikroskop analysiert und mit Hilfe der Quantimed 500 Software (Fa. Leica GmbH, Bensheim,

D) morphometrisch ausgewertet. Hierbei wurde die Anzahl der intakten myelinisierten Nervenfasern in den quergeschnittenen Nerven gezählt. Die Anzahl degenerierter Fasern wurde an Hand der Wallerschen Degeneration bestimmt.

Während zwischen transgenen und Kontrollmäusen keine Unterschiede in der Myelinisierung der motorischen Nerven (Ischiasnerv und Bauchfellnerven), der Vaskularisierung und dem endoneurialem Bindegewebe festgestellt wurden, wiesen die motorischen Nerven der transgenen, IGFBP-5 exprimierenden Mäuse erhebliche Verluste an Axonen und degenerierte Fasern auf.

10

15

Zusätzlich wurde die Cholinesterase-Aktivität an den neuromuskulären Endplatten in Muskelproben (Zwerchfell-, Gluteus- und Sternocleidomastoides-Muskulatur) histochemisch mit Hilfe der kombinierten Acetylcholinesterase-Silber Färbung (Namba (1971) Exp. Neurol. 33: 322-328; Gurney et al. (1992) J. Neurosci. 12: 3241-3247) bestimmt.

.

20

Des weiteren erfolgte in Proben des Gastrocnemius-Muskels eine quantitative Bestimmung der Acetylcholinesteraseaktivität. Hierzu wurden die Muskelproben mit Zugabe von 0,5% Triton X-100 für die Bestimmung der gesamten (löslichen wie auch membrangebundenen) Enzymaktivität und ohne Zugabe von Triton X-100 für die Bestimmung der löslichen Acetylcholinesteraseaktivität homogenisiert. Die Bestimmung der jeweiligen Enzymaktivität erfolgte nach Zentrifugation der Homogenate (15 min, 15.000 g, 4°C) in den jeweiligen Überständen nach der Methode von Ellmann (Schegg et al. (1990) Neurosci. Lett. 118: 197-200)

25

Während die histomorphologische Untersuchung dieser Muskelproben in Bezug auf motorische Endplatten und des Verhältnisses von Axonen zu Endplatten bei Jungtieren keine Unterschiede zwischen transgenen und Kontrolltieren ergab, waren in älteren, 6 Monate alten transgenen Mäusen in der Gluteusmuskulatur ein vermehrtes terminales Ausknospen der Axone festzustellen. Parallel hierzu war die freie Cholinesterase-Aktivität erhöht und die membrangebundene vermindert.

Um zu klären, ob der Verlust von Axonen in den transgenen Mäusen das Ergebnis oder die Ursache des Absterbens von motoneuralen Zellen ist, wurde die Anzahl der Motoneurone in dem facialem Nucleus wie auch im lumbaren Abschnitt des Rückenmarkes bei transgenen und Kontrollmäusen unterschiedlichen Alters gezählt.

10

Während bei Jungtieren keine Unterschiede nachweisbar waren, zeigten etwa 5-6 Monate alte transgene Mäuse eine deutliche Verminderung der Motoneurone und eine Zunahme von degenerierten Motoneuronen sowohl im facialem Nucleus als auch im ventrolateralen Horn des Rückenmarkes.

15

Nach Durchschneiden des Facialisnerven bei neugeborenen und 3-Wochen alten, transgenen Mäusen konnte 1 Woche später keine Verminderung der Motoneurone festgestellt werden. Dies legt die Schlussfolgerung nahe, dass die Degeneration der Motoneurone bei Mäusen, die transgen für IGFBP-5 sind, die Ursache für den Verlust der Axone darstellt.

20

2) Charakterisierung von Nerven von Patienten mit Diabetes mellitus

Von Gesunden wie auch von Patienten mit diabetischer Neuropathie wurden aus Nerven-Biopsieproben die Proteine nach Standardverfahren (Fa. Life Technologies, Karlsruhe, D) isoliert und diese auf einem 12%igem SDS-PAGE-Gel aufge-

tragen. Die separierte Proteinproben wurden auf eine Nitrozellulosemembran überführt, anschließend wurden diese Membranen für eine Stunde durch Inkubation in einer Puffer-Lösung, die Pferdeserum und fettfreies Trockenmilchpulver enthielt, blockiert.

Nachfolgend erfolgte der Nachweis des IGFBP-5 mit Hilfe eines IGFBP-5spezifischen Kaninchen-Antikörpers (Fa. Santa Cruz, Göttingen, D, dessen spezifische Bindung durch einen Peroxydase-gekoppelten anti-Kaninchen-Antikörper
nachgewiesen wurde. Die Peroxydase wurde mit dem ECL-Reagenz (Fa. Amersham, Braunschweig, D) entsprechend den Anweisungen des Herstellers nachgewiesen. Zur Kontrolle erfolgten die gleichen Reaktionsschritte mit einem anti-ßActin-Antikörper aus der Maus und einem Peroxydase-gekoppelten anti-MausAntikörper.

Die Ergebnisse zeigen, dass bei Patienten mit diabetischer Neuropathie das IGFBP-5 in den Nervenbiopsien in deutlich größerer Menge anzutreffen ist, als in Gesunden.

3) Isolierung und Zucht von Nervenzellen, welche IGFBP-5 überexprimieren, zur Testung von Wirkstoffen

Von Embryonen im Alter von 12,5 Tagen, die entweder normal oder aber für *IGFBP-5* transgen waren, wurden spinale Motoneurone mit Hilfe der Panningtechnik (Metzger et al. (1998) *J. Neurosci.* 18: 1735-1742) unter Verwendung eines monoklonalen anti-p75-Antikörpers aus der Ratte (Chemicon, Hofheim, Deutschland) isoliert. Hierzu wurden die ventrolateralen Teile des lumbalen Rükkenmarks mechanisch zerkleinert, in Hepespuffer-Lösung (enthaltend 10 µM 2-

Mercaptoethanol) übertragen und mit Trypsin (0,05%, 10 min) inkubiert. Die Einzelzellsuspension im Überstand wurde in eine mit dem anti p75-Antikörper beschichteten Kulturschale überführt und bei Raumtemperatur für 30 min. inkubiert.

Nachfolgend wurden die einzelnen Kulturschalen gewaschen, anschließend die anhaftenden Zellen von der Kulturplatte durch 0,8% Kochsalzlösung, die 35 mM KCl und 1 µM 2-Mercaptoethanol enthielt, abgelöst.

Die so gewonnen Zellen wurden in einer Dichte von 2000 Zellen/cm² in Kulturplatten (Greiner, Nürtingen, Deutschland), die mit Polyornithin und Laminin vorbeschichtet waren, ausgesät. Die Zellen wurden bei 37°C in Neurobasalmedium (Life Technologies, ergänzt mit B27-Supplement, 10% Pferdeserum, 500 μM Glutamat und 50 μg/ml Apotransferrin) und in einer 5% CO₂ Atmosphäre gehalten. 50% des Zellkulturmediums wurden am 1. Tag und nachfolgenden jedem 2. Tag ersetzt.

10

15

25

Die Analyse der mRNA, die für IGFBP-5 kodiert, wurde mit Hilfe der RT-PCR durchgeführt. RNA wurde mittels Trizol-Reagenz (Life-Technologies, Karlsruhe) isoliert und je 10 ng Gesamt-RNA wurde pro RT-PCR Reaktion eingesetzt. Die RT-PCR wurde wie im Beispiel 1c) bereits beschrieben durchgeführt.

Von Embryonen im Alter von 12,5 Tagen, die hinsichtlich des IGFBP-5-Gens normal oder transgen waren, wurden des weiteren sensorische Neuronen isoliert. Hierzu wurden dorsale Wurzelganglien isoliert, in PBS aufgenommen und anschließend mit Trypsin (0,05% in Hepespuffer) für 30 min. inkubiert. Die Trypsinverdauung wurde durch Zugabe von L15-Medium, das 10% Pferdeserum enthielt, gestoppt und nachfolgend wurden die Zellen in Kulturplatten ausplattiert und für 3-4 Stunden inkubiert. Zellen im Überstand wurden zentrifugiert (10 min

bei 400 g) und das Zellsediment wurde genauso wie bereits für spinale Motoneurone beschrieben im Neurobasalmedium gehalten.

Neurale Stammzellen wurden aus dem Gehirn von normalen Mäusembryonen, oder von Mäuseembryonen, die transgen für IGFBP-5 sind, isoliert. Der Bereich des Vorderhirns wurde unter einem Präparationsmikroskop entnommen, in weiter entwickelten Embryonen auch der Bereich des Hippocampus und der periventrikulären Zone. Diese Gehirnareale wurden dann in 200 µl HBSS (Hanks balanced salt solution (HBSS, Fa. Life Technologies (Karlsruhe), transferiert, mit 0,1% Trypsin (Endkonzentration in HBSS) für 10 min bei 37°C, inkubiert, die Reaktion mit 0,1% Trypsin-Inhibitor (Trypsin-Inhibitor aus egg yolk sack (Sigma, Deisenhofen), Stammlösung: 1% in HBSS/25 mM HEPES) Endkonzentration in HBSS abgestoppt. Dann wurden die Zellen zehnmal mit einer 200 µl Pipette trituriert und in Medium [(Neurobasal-Medium (Life Technologies), B27 Supplement (Life Technologies Stock 50x, EK 1x) Glutamax II (Life Technologies Stock 100x, EK 1x), basicFGF (20ng/ml), EGF (20 ng/ml)l] in ein Volumen von 5 ml überführt. Die dissoziierten Zellen wurden in Kulturschalen (50 ml Sarstedt,) kultiviert (Brutschrank, 37°C, 5% CO₂ feuchtigkeitsgesättigte Atmosphäre) und das Medium alle zwei Tage gewechselt. Die Zellen wachsen als Embroidbodies und attachieren nicht, daher wurden die Zellen zum Mediumwechsel in ein Falcon-Röhrchen überführt und 5 min bei 400 g zentrifugiert. Der Überstand wurde abgesaugt und das Zellsediment trituriert und in frisches Medium aufgenommen. Spätestens nach 3 Passagen bildeten sich große Embroidbodies, die trypsiniert (s.o.) und in niedriger Zelldichte (max. 10.000 Zellen/Platte) auf 10 cm Schalen (Sarstedt) plattiert werden können. Einzelzellen wurden dann gepickt und zunächst in 96 "well"-Platten, später in 24 und schließlich 12-"well"-Platten expandiert. Diese Einzelzellklone neuraler Stammzellen können dann auf ihre Differenzierungskapazität hin untersucht werden und anschließend in erfindungsgemäßen Testverfahren eingesetzt werden.

25

Um reproduzierbare Ergebnisse zu erhalten, wurden die Zellen auch als Linien etabliert und für spätere Experimente eingefroren und gelagert.

Das Einfrieren der neuralen Stammzellen erfolgte nach Standardprotokoll, d.h. nach der Zentrifugation wurden die Zellen in Medium mit 10 % DMSO aufgenommen und mit 1°C/min zunächst auf -86°C abgekühlt (im MrFrosti), um dann im flüssigen N₂ bei -186°C gelagert zu werden.

4) Verfahren zum Auffinden von Nervenzell-schützenden Substanzen

Nervenzellen, die beispielsweise mit der oben angeführten Methode gewonnen sind, können für die Suche nach Substanzen benutzt werden, welche in Nervenzellen die Expression oder die Funktion von IGFBP-5 inhibieren.

15

Hierzu werden IGFBP-5 überexprimierende und normale motorische Neuronen und sensorische Neuronen wie oben beschrieben gewonnen, in Zellkulturen ausgesät und mit der Prüfsubstanz versetzt. Substanzen, welche die Funktion oder die Expression von IGFBP-5 inhibieren, sind in der Lage, das Absterben von IGFBP-5 überexprimierender Neuronen zu verhindern, ohne das Überleben von normalen Neuronen zu beeinträchtigen.

Patentansprüche

- 1. Verfahren zum Auffinden von pharmakologisch aktiven Wirkstoffen, welche die Funktion von Nervenzellen beeinflussen, das die folgenden Schritte umfasst:
 - a) Inkontaktbringen einer Probe enthaltend Insulin-like growth factor binding protein 5 (IGFBP-5) oder einen aktiven Teil davon mit mindestens einem potentiellen Wirkstoff; und
 - b) Bestimmen der Aktivität von IGFBP-5 in der Probe.
- Verfahren nach Anspruch 1, wobei die Probe mindestens eine Zelle, mindestens einen Zellextrakt, mindestens ein Proteingemisch und/oder ein Gemisch enthaltend IGFBP-5 oder einen aktiven Teil davon, enthält.
- Verfahren nach Anspruch 2, wobei die Zelle eine neuronale Zelle, insbesondere eine sensorische, sympathische oder motorische neuronale Zelle, eine neuronale Stammzelle, ein Neuron, insbesondere ein cholinerges Neuron des basalen Vorderhirns, eine dopaminerge Nervenzelle des Mittelhirns, eine Körnerzelle, eine Purkinje-Zelle des Kleinhirns oder des Hippocampus, eine retinale Ganglienzelle oder ein Photorezeptor ist.
- Verfahren nach einem der Ansprüche 2 oder 3, wobei die Zelle eine erhöhte IGFBP-5 Aktivität hat.
 - 5. Verfahren nach einem der Ansprüche 2 bis 4, wobei die Aktivität von IGFBP-5 in der Zelle durch die Überlebensrate der Zelle bestimmt wird.

- 6. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Aktivität von IGFBP-5 in der Probe durch die Menge des IGFBP-5 Proteins, die Menge der für IGFBP-5 kodierenden Nukleinsäuren und/oder die Bindungsaktivität von IGFBP-5 bestimmt wird.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Verringerung der Aktivität von IGFBP-5 in der Probe nach Inkontaktbringen mit mindestens einem potentiellen Wirkstoff darauf hinweist, dass der potentielle Wirkstoff ein pharmakologisch aktiver Wirkstoff ist, welcher die Funktion von Nervenzellen beeinflusst.
- 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei in einem weiteren Schritt der pharmakologisch aktive Wirkstoff isoliert wird.
- 9. Verfahren nach einem der Ansprüche 1 bis 8, wobei in einem weiteren Schritt der pharmakologische Wirkstoff, gegebenenfalls mit geeigneten Hilfs- und Zusatzstoffen, als Arzneimittel formuliert wird.
- 20 10. Testsystem zum Auffinden pharmakologisch aktiver Wirkstoffe, welche die Funktion von Zellen des Nervensystems beeinflussen, enthaltend:

- a) mindestens eine Probe enthaltend IGFBP-5 oder einen aktiven Teil davon und
- b) mindestens ein Mittel zur Bestimmung der Aktivität von IGFBP-5 in der Probe.
- Verwendung mindestens eines Wirkstoffs zur Prophylaxe und/oder Therapie von Erkrankungen, die mit Zellwachstumsstörungen von Nervenzellen einhergehen, dadurch gekennzeichnet, das der Wirkstoff in einem Verfahren nach einem der Ansprüche 1 bis 8 aufgefunden wird.

- 12. Verwendung mindestens einer Wirksubstanz zur Prophylaxe und/oder Therapie diabetogener Neuropathie, dadurch gekennzeichnet, dass die Wirksubstanz die Aktivität von IGFBP-5 hemmt.
- Verwendung nach Anspruch 12, dadurch charakterisiert, dass die Wirksubstanz:
 - IGF-1,
 - IGF-2,
 - eine Mutante von IGF-1 und/oder IGF-2 mit erhöhter Bindungsaffinität zu IGFBP-5,
 - ein aktives Fragment von IGF-1 und/oder IGF-2,
 - eine Substanz, welche an die Heparin-bindende Domäne des IGFBP-5 bindet,
 - eine Substanz, welche die Expression und/oder Freisetzung von IGF-1 und/oder IGF-2 stimuliert,
 - eine Nukleotidsequenz, die für IGF-1 und/oder IGF-2 kodiert,
 - eine Nukleotidsequenz, die für eine Mutante von IGF-1 und/oder eine Mutante von IGF-2 mit erhöhter Bindungsaffinität zu IGFBP-5 kodiert,
 - eine Nukleotidsequenz, die für ein aktives Fragment von IGF-1 und/oder ein aktives Fragment von IGF-2 kodiert, und/oder
 - eine Nukleotidsequenz, die für einen IGFBP-5 bindenden Antikörper oder Antikörperfragment kodiert, ist.
- 14. Verwendung eine Wirksubstanz, welche die Expression und/oder Freiset20 zung von IGF-1 und/oder IGF-2 stimuliert nach Anspruch 13, dadurch gekennzeichnet, dass die Wirksubstanz:

10

15

วก

ein Antiprogestin,
ein Antioestrogen,
das osteogene Protein-1 (OP-1),
das bone morphogenic Protein-2 (BMP-2),
der basische Fibroblast growth factor (bFGF),
der transforming growth factor β-1 (TGSβ-1),
der platelet derived growth factor BB (PDGFBB),
ein Interleukin-1 Rezeptor Antagonist,
ein Antagonist des Retinsäure-α-Rezeptors, und/oder
ein Inhibitor des Prostaglandins-2 ist.

Sequenzprotokoll

- <110> MedInnova Gesellschaft für Medizinische Innovation aus akademischer Forschung mbH
- <120> Verfahren zum Auffinden von pharmakologisch aktiven Wirkstoffen, die die Funktion von Nervenzellen beeinflussen.
- <130> M36251
- <160 8
- <170> WORD6.0, PC-DOS/MS-DOS
- <210> 1
- <211> 21
- <212> DNA
- <213> natural
- <400> 1

gccccgaggt aaagccagac t

21

- <210> 2
- <211> 21
- <212> DNA
- <213> natural
- <400> 2

ggataggggg aggaagggag g

21

- <210> 3
- <211> 18
- <212> DNA
- <213> natural
- <400> 3

tcgcaggctg cgtcagga

- <210> 4
- <211> 24

<pre><400> 4 cttqcaggta gagcaggtgc tctc</pre>	<213>	natural	
<pre>cttqcaggta gagcaggtgc tetc <210> 5 <211> 19 <212> DNA <213> natural <400> 5 ctttcgtgca ctgtgaacc</pre>	<400>	4	•
<pre> <210> 5 <211> 19 <212> DNA <213> natural <400> 5 ctttcgtgca ctgtgaacc</pre>	· cttgcaq	ggta gagcaggtgc tctc	24
<pre><211> 19 <212> DNA <213> natural <400> 5 ctttcgtgca ctgtgaacc</pre>			
<pre><211> 19 <212> DNA <213> natural <400> 5 ctttcgtgca ctgtgaacc</pre>			•
<pre><212> DNA <213> natural <400> 5 ctttcgtgca ctgtgaacc</pre>			
<pre><213> natural' <400> 5 ctttcgtgca ctgtgaacc</pre>			
<pre><400> 5 ctttcgtgca ctgtgaacc</pre>			
<pre>ctttcgtgca ctgtgaacc</pre>	, 1213,		
<pre>ctttcgtgca ctgtgaacc</pre>			
<pre>ctttcgtgca ctgtgaace <210> 6 <211> 19 <212> DNA <213> natural <400> 6 ctcaacgtta ctgctgtcg <210> 7 <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural </pre>	. <400>	5	
<pre>ctttcgtgca ctgtgaace <210> 6 <211> 19 <212> DNA <213> natural <400> 6 ctcaacgtta ctgctgtcg <210> 7 <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural </pre>	•		
<pre><210> 6 <211> 19 <212> DNA <213> natural <400> 6 ctcaacgtta ctgctgtcg <210> 7 <211> 19 <212> DNA <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural </pre>		etetenace	19
<pre><211> 19 <212> DNA <213> natural <400> 6 ctcaacgtta ctgctgtcg <210> 7 <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>	ctttcg	rgca ctgtgaacc	• •
<pre><211> 19 <212> DNA <213> natural <400> 6 ctcaacgtta ctgctgtcg <210> 7 <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>			
<pre><211> 19 <212> DNA <213> natural <400> 6 ctcaacgtta ctgctgtcg <210> 7 <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>	<210>	6	
<pre><213> natural <400> 6 ctcaacgtta ctgctgtcg</pre>		19	
<pre><400> 6 ctcaacgtta ctgctgtcg</pre>		DNA	
<pre>ctcaacgtta ctgctgtcg <210> 7 <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>	<213>	natural	
<pre>ctcaacgtta ctgctgtcg <210> 7 <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>	•		
<pre>ctcaacgtta ctgctgtcg <210> 7 <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>	<100>	6	
<pre><210> 7 <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>	/400 /	•	
<pre><210> 7 <211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>			10
<pre><211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>	ctcaac	egtta ctgctgtcg	. 19.
<pre><211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>	• • •		
<pre><211> 19 <212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>	101.05	7	
<pre><212> DNA <213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>			
<pre><213> natural <400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>		·	
<pre><400> 7 gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural</pre>			
gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural			. :
gtcggccgcc ctaggcacca g <210> 8 <211> 24 <212> DNA <213> natural			
<210> 8 <211> 24 <212> DNA <213> natural	<400>	7	
<210> 8 <211> 24 <212> DNA <213> natural	•		٠.
<210> 8 <211> 24 <212> DNA <213> natural	atcaa	ccacc ctaggcacca g	21
<211> 24 <212> DNA <213> natural	90099		
<211> 24 <212> DNA <213> natural	• •		
<212> DNA <213> natural			
<213> natural			
<400> 8	<213>	natural .	
<400> 8		•	•
	<400>	8	
2		·	24
ctctttaatg tcacgcacga tttc	ctctt	taatg tcacgcacga tite	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

BLACK BURDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.