法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

关注 小象学院

第五讲

机器学习(3)

--Robin

目录

- 特征工程
- 模型调优
- 模型评价指标
- 集成学习
- 实战案例4: 动物种类识别

目录

- 特征工程
- 模型调优
- 模型评价指标
- 集成学习
- 实战案例4: 动物种类识别

特征工程

- 数值型特征,如:长度、宽度、像素值等
 - 可直接使用
 - 但是,对于有些模型来说,数值范围归一化(feature normalization)可以 提高模型的性能,如:线性回归,kNN,SVM,神经网络等
 - sklearn.preprocessing.MinMaxScaler() $x'_i = (x_i x_i^{MIN})/(x_i^{MAX} x_i^{MIN})$
- 有序型特征,如:等级(A,B,C);级别(低、中、高)
 - 转换成有序数值即可,如A->1,B->2,C->3
- 类别型特征,如:性别(男、女)

lect05_eg01.ipynb

- 独热编码(One-Hot Encoding), 如男->0 1, 女->1 0
- sklearn.preprocessing.OneHotEncoder()

ID	Gender
1	Male
2	Female
3	Not Specified
4	Not Specified
5	Female

互联网新技

ID	Male	Female	Not Specified
1	1	0	0
2	0	1	0
3	0	0	1
4	0	0	1
5	0	1	0

学院 loop.cn

特征工程

特征范围归一化(feature normalization)

- 注意,在测试集上的scaler和训练集上的scaler要保持一致;不要在训练集和测试集分别使用不同的scaler
- 同理,对于One-Hot Encoding,也是一样,要保证测试集和训练集的encoder—
 致

lect05_eg01.ipynb

目录

- 特征工程
- 模型调优
- 模型评价指标
- 集成学习
- 实战案例4: 动物种类识别

模型调优

参数调整

- 模型参数包括两种
 - 模型自身参数,通过样本学习得到的参数。如:逻辑回归及神经网络中的权重及偏置的学习等
 - 2. 超参数,模型框架的参数,如kmeans中的k,神经网络中的网络层数及每层的节点个数。通常由手工设定
- 如何调整参数
 - 1. 交叉验证 sklearn.model_selection.cross_val_score()
 - 网格搜索(Grid Search)
 sklearn.model_selection.GridSearchCV()

模型调优

调整参数

- 依靠经验
- 依靠实验, 交叉验证 (cross validation)
- 例子:5折交叉验证

模型调优

例子: 10折交叉验证

Final Accuracy = Average(Round 1, Round 2, ...)

模型持久化(model persistence)

- 1. pickle
- 2. joblib

目录

- 特征工程
- 模型调优
- 模型评价指标
- 集成学习
- 实战案例4: 动物种类识别

建模过程

评估模型

- 不同的应用有着不同的目标,不同的评价指标
- 准确率(accuracy)是最常见的一种
- 但是准确率越高,模型就越好么?
- 有些任务更关心的是某个类的准确率,而非整体的准确率

- 真正例(TP), 预测值是1, 真实值是1。被正确分类的正例样本。
- 假正例(FP), 预测值是1, 但真实值是0
- 真反例(TN), 预测值是0, 真实值是0
- 假反例(FN), 预测值是0, 但真实值是1。
- TPR(Recall, 召回率): TP/(TP + FN), 表示检测率
- Precision(精确率): TP/(TP + FP)

lect05_eg03.ipynb

FPR: FP/(TN+FP),在所有实际值是0的样本中,被错误地预测为1的比例。

			Predi	iction	
			Positive	Negative	
	Ground	Positive	True positive (TP)	False negative (FN)	
词	truth	Negative	False positive (FP)	True negative (TN)	

• F1值

• 将召回率和精确率用一个数值表示

$$F_1 = 2 \cdot rac{1}{rac{1}{ ext{recall}} + rac{1}{ ext{precision}}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}.$$

- sklearn.metrics中包含常用的评价指标
 - accuracy_score
 - precision_score
 - recall_score
 - f1_score

lect05_eg03.ipynb

- Precision-Recall Curve (PR曲线)
- x轴:recall, y轴:precision(可交换)
- 右上角是"最理想"的点, precision=1.0, recall=1.0
- sklearn.metrics.precision_recall_curve()

ch 0.8 0.6 Precision 0.4 0.2 0.0 0.2 0.8 0.4 0.6 1.0 Recall

lect05_eg03.ipynb

- Receiver Operating Characteristic Curve (ROC曲线)
- x轴: FPR, y轴: TPR
- 左上角是"最理想"的点, FPR=0.0, TPR=1.0
- sklearn.metrics.roc_curve()

AUC的值就是ROC曲线下的面积

- AUC在0~1之间
- 0.5 < AUC < 1, 优于随机猜测。这个 分类器(模型)妥善设定阈值的话,能 有预测价值。
- AUC = 0.5, 跟随机猜测一样(例: 丢 铜板),模型没有预测价值。
- AUC < 0.5, 比随机猜测还差; 但只要 总是反预测而行, 就优于随机猜测。

- 混淆矩阵(confusion matrix)
- 可用于**多分类**模型的评价
- sklearn.metrics.confusion_matrix()

lect05_eg03.ipynb

- 回归模型中常用的评价指标
- sklearn.metrics.r2_score()
- sklearn.metrics.mean_absolute_error()
- sklearn.metrics.mean_squared_error()
- sklearn.metrics.median_absolute_error()
- 更多模型评价指标请参考:

http://scikit-learn.org/stable/modules/model_evaluation.html

目录

- 特征工程
- 模型调优
- 模型评价指标
- 集成学习
- 实战案例4: 动物种类识别

- Ensemble learning
 - 通过构建并结合多个学习器来完成学习任务
- "同质" (homogeneous)集成:集
 成中包含同种类型的学习器->"基学习器" (base leaner)
- "异质" (heterogeneous)集成:
 集成中包含不同类型的学习器->"
 组件学习器" (component leaner)

- 集成策略
 - 简单平均法

$$H(\boldsymbol{x}) = \frac{1}{T} \sum_{i=1}^{T} h_i(\boldsymbol{x})$$

• 加权平均法

$$H(oldsymbol{x}) = \sum_{i=1}^T w_i h_i(oldsymbol{x}) \qquad w_i \geqslant 0, \ \sum_{i=1}^T w_i = 1$$

- 绝对数投票法,某标记投票过半,则预测为该标记
- 相对数投票法,预测为投票最多的标记

$$H(\boldsymbol{x}) = c_{\underset{j}{\arg\max} \sum_{i=1}^T h_i^j(\boldsymbol{x})}$$

• 加权投票法

$$H(\boldsymbol{x}) = c_{\underset{j}{\operatorname{arg.max}} \sum_{i=1}^{T} w_{i} h_{i}^{j}(\boldsymbol{x})}$$

- 集成策略
 - stacking
 - pip install mlxtend
 - conda install mlxtend

Training set New data training prediction Meta-Classifier lect05_eg03.ipynb Final prediction

Algorithm 19.7 Stacking

Input: Training data $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^m (\mathbf{x}_i \in \mathbb{R}^n, y_i \in \mathcal{Y})$

Output: An ensemble classifier H

- Step 1: Learn first-level classifiers
- 2: **for** $t \leftarrow 1$ to T **do**
- Learn a base classifier h_t based on \mathcal{D}
- 4: end for
- 5: Step 2: Construct new data sets from \mathcal{D}
- 6: **for** $i \leftarrow 1$ to m **do**
- Construct a new data set that contains $\{\mathbf{x}_i', y_i\}$, where $\mathbf{x}_i' = \{h_1(\mathbf{x}_i), h_2(\mathbf{x}_i), \dots, h_T(\mathbf{x}_i)\}$

Classification models

Predictions

- 8: end for
- 9: Step 3: Learn a second-level classifier
- 10: Learn a new classifier h' based on the newly constructed data set

- Ensemble learning
 - 好的集成,个体学习器应"好而不同":个体学习器要有一定的"准确性",并且还要有"多样性"

i	测试例1	测试例2	测试例3	洌	引试例1	测试例2	测试例3	测	引试例1	测试例2	测试例3
h_1	√	√	×	h_1	√	√	×	h_1	√	×	×
h_2	×	\checkmark	\checkmark	h_2	\checkmark	√	×	h_2	×	\checkmark	×
h_3	\checkmark	×	\checkmark	h_3	\checkmark	\checkmark	×	h_3	×	×	\checkmark
集成	. 🗸	√	√	集成	√	· V	×	集成	×	×	×
	(a) 集品	战提升性	能		(b) 集)	成不起作	用		(c) 集	成起负作	用

- 个体学习器间不存在强依赖关系、可同时生成的并行化方法(Bagging)
- 个体学习器间存在强依赖关系、串行生成的序列化方法(Boosting)

- Boosting
 - 1. 从初始训练集训练出一个基学习器
 - 根据基学习器的表现对训练样本分布进行调整,使得之前基学习器做错的 训练样本在之后得到更多关注
 - 3. 基于调整后的样本分布训练下一个基学习器
 - 4. 直至基学习器数目达到预设值T,最终将得到的T个基学习器进行M权结合
- 代表算法
 - Adaboost, "加性模型" (additive model), 基学习器的线型组合

$$H(oldsymbol{x}) = \sum_{t=1}^T lpha_t h_t(oldsymbol{x})$$

lect05_eg03.ipynb

Adaboost算法

Input:

• A training set $S = ((\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)).$

Initialization:

- Maximum number of iterations T;
- * initialize the weight distribution $\forall i \in \{1,\ldots,m\}, D^{(1)}(i) = \frac{1}{m}.$

for
$$t = 1, \ldots, T$$
 do

- Learn a classifier $f_t: \mathbb{R}^d \to \{-1, +1\}$ using distribution $D^{(t)}$
- Set $\epsilon_t = \sum_{i: f_t(\mathbf{x}_i) \neq y_i} D^{(t)}(i)$
- Choose $a_t = \frac{1}{2} \ln \frac{1 \epsilon_t}{\epsilon_t}$
- · Update the weight distribution over examples

$$\forall i \in \{1, \dots, m\}, D^{(t+1)}(i) = \frac{D^{(t)}(i)e^{-a_t y_i f_t(\mathbf{x}_i)}}{Z^{(t)}}$$

where $Z^{(t)} = \sum_{i=1}^m D^{(t)}(i) e^{-a_t y_i f_t(\mathbf{x}_i)}$ is a normalization factor such that $D^{(t+1)}$ remains a distribution.

 $\textbf{Output} \ : \qquad \text{The voted classifier } \forall \mathbf{x}, F(\mathbf{x}) = \text{sign}\left(\sum_{t=1}^T a_t f_t(\mathbf{x})\right)$

Adaboost算法

Adaboost的正则化:

$$f_k(x) = f_{k-1}(x) + \alpha_k G_k(x)$$

$$f_k(x) = f_{k-1}(x) + \nu \alpha_k G_k(x)$$

- 取值范围0-1
- 较小的值意味着更多的弱学习器的迭代次数

Adaboost例子:

序号	1	2	3	4	5	6	7	8	9	10
х	0	1	2	3	4	5	6	7	8	9
у	1	1	1	-1	-1	-1	1	1	1	-1

以第一次迭代为例:

1.1 个体学习器及样本权重

$$G_1(x)=\left\{egin{array}{ll} 1 & x<2.5,\ -1 & x>2.5. \end{array}
ight.$$

х	0	1	2	3	4	5	6	7	8	9
w	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
у	1	1	1	-1	-1	-1	1	1	1	-1

- 1.2 分类错误率 $e_1 = 0.1 + 0.1 + 0.1 = 0.3$
- 1.3 计算学习器系数,根据 $\alpha_i = \frac{1}{2}log\frac{1-e_i}{e_i}$ 可得 $\alpha_1 = 0.4236$

х	0	1	2	3	4	5	6	7	8	9
w	0.07143	0.07143	0.07143	0.07143	0.07143	0.07143	0.16667	0.16667	0.16667	0.07143
У	1	1	1	-1	-1	-1	1	1	1	-1

$$f_1(x) = \alpha_1 G_1(x) = 0.4236 G_1(x) \quad 0.4236 G_1(x) = \begin{cases} 0.4236 * 1 & x < 2.5, \\ 0.4236 * (-1) & x > 2.5. \end{cases}$$

2. ...

- Gradient Boosted (-ing) Decision Tree
- 传统Boosting:

从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注,然后基于调整后的样本分布来训练下一个基学习器; 直至基学习器数目达到预设的*T*值,最终将这*T*个基学习器进行加权结合。

Gradient Boost是一个框架,可以套入不同的模型,与传统Boosting的区别是,每一次的计算是为了减少上一次的残差,而为了消除残差,可以在残差减少的梯度方向上建立新的模型。

- Gradient Boosted (-ing) Decision Tree
- 构造一系列决策树,每棵树尝试去纠正之前的错误
- 每棵树学习的是之前所有树的结论和残差,拟合得到一个当前的树。整个迭代过程生成的树的累加就是GBDT。
- 学习率决定新的树去纠正错误的程度
 - 高学习率: 生成复杂的树
 - 低学习率: 生成简单的树

样本集合D = (X, Y)

- GBDT
- 关键参数
 - 1. n_estimators: 包含的决策树(弱分类器)的个数
 - 2. learning_rate: 学习率,控制从上一次迭代中纠错的强度
 - 3. max_depth: 通常不会设的过大, 比如在大多数应用中设置为3-5

优点	缺点
• 在多数任务中都能取得不错的效果	• 结果不容易解释
• 不需要过多的使用特征归一化和参数调	• 需要注意对学习率的调参
整	• 训练会需要大量的计算
• 可以使用不同类型的特征	• 由于计算量的问题,不太适用于文本分
	类或者其他高维稀疏的特征

• Bagging,基于自助采样法(bootsrap sampling)

给定包含m个样本的数据集,先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得下次采样时该样本仍有可能被选中,这样经过m次随机采样操作,得到包含m个样本的采样集,初始训练集中有的样本在采样集中多次出现,有的则未出现。(初始训练集中约有63.2%的样本出现在样本集中。)

样本在m次采样中始终不被采到的概率是 $\left(1-\frac{1}{m}\right)^m$,取极限 $\lim_{m\to\infty}\left(1-\frac{1}{m}\right)^m\mapsto \frac{1}{e}\approx 0.368$

基于此,采样出T个含m个训练样本的采样集,然后基于每个采样集训练出一个基学 习器。

- 随机森林在构建Bagging采样的基础上,进一步在决策树的训练过程中引入随机属性选择。对基决策树的每个结点,先从该结点的属性集合(d个属性)中随机选择一个包含k个属性的子集,然后再从子集中选择最优属性进行划分。
 - k=d, 基决策树的构建与传统决策树相同
 - k=1, 随机选择一个属性用于划分;通常 $k = \log_2 d$
- k对应于sklearn中的参数max_features
- max_features会影响随机森林的学习过程
- max_features=1,构造出的是完全不同的森林,其中的树较复杂
- max_features=接近特征的个数,构造出相似的森林,其中的树较简单

- 随机森林
- 关键参数
 - 1. n_estimators: 包含决策树的个数
 - 2. max_features: 对于模型效果有很大影响。森林中决策树的差异性
 - 通常选择sklearn中默认的即可,个别情况需要人为调整
 - 3. max_depth: 每棵决策树的深度
 - 4. random_state: 如果需要复现实验结果,需要设置相同的random_state

	优点	缺点
•	应用广泛,在多数任务中都能取得不错的效果	结果不容易解释 对于高维数据,可能没有线性模型快速很准
•	不需要过多的使用特征归一化和参数调整 可以使用不同类型的特征	确

目录

- 特征工程
- 模型调优
- 模型评价指标
- 集成学习
- 实战案例4: 动物种类识别

实战案例 4

项目名称: 动物种类识别

• 请参考相应的配套代码及案例讲解文档

问答互动

在所报课的课程页面,

- 1、点击"全部问题"显示本课程所有学员提问的问题。
- 2、点击"提问"即可向该课程的老师和助教提问问题。

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象学院

