HAFSAOUI

Note: 10.5/20 (score total: 10.5/20)

1

+26/1/20+

I41 - Algorithmique 3 (2020-2021). Contrôle Continu #1

NOM: ATAVI Prénom: Chès	Q Q Q (Q Q Q 0 1 2 [0 2 1 2 [0 1 2 [Q 3 4 5 6 3 4 5 6 3 4 5 6	78
QUESTION 1 Une fonct	ion mathématique défi	nit-elle toujours	un algorithme?	1 1
	X NON	OUI		
QUESTION 2 Sur la ma	chine RAM, une instruc	ction d'adressage	modifie le contenu	:
de la bande de sortie		🔀 d'un reg	istre	
du programme		de la ba	nde d'entrée	
du compteur ordinal		du regis	tre de sélection mén	ioire
QUESTION 3 Une mach en base b et une seule s'il e		_	_	
\mathbf{X} $\bar{T}(n) = \frac{n+1}{2}$	$\prod ar{T}(n) = rac{b^n}{2}$	$oxedsymbol{ ilde{T}}(n) =$	$\frac{n}{2}$ \vec{T}	$(n) = 2^n$
QUESTION 4 & Cochez le	es propositions vraies o	i-dessous :		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$(1) = \Theta(n)$	$n \log(n) =$	$O(n^2)$
	$igotimes \Theta(n) + C$	O(1) = o(n)		
$n + n^8 = \Theta(n^8)$			\times 142 + 1/ n^2	$=\Theta(1)$
QUESTION 5 Quel est appliqué à la suite harmoni	le terme général de la ique de terme général		ans le critère de d'A	lembert
$\frac{1}{n}$	$\frac{n}{2}$ $\left(-1\right)^n$	$\frac{n+1}{n}$	2^{-n}	$\frac{n}{n+1}$
QUESTION 6 Un sim	ulateur RAM décode $\mathcal L$ thme de complexité T			

	QUESTION 7 Quelle est la définition formelle d'un algorithme dans le cours ?	0/1
On apell		-, -
1	d'étare nédeliné à l'orance	
	de algorithme. Tout procede qui réalise une opération en un nombe fini d'étape précléginé à l'orante $\sum_{p=0}^{n} p\binom{n}{p}$ pour $n=6$?	
1/1	□ 384 □ 96 □ 48 □ 192	
	QUESTION 9 \clubsuit Si n désigne la taille des données à traiter, un algorithme dont la fonction de complexité en temps est en $O(n \log n)$ est dit :	
0.5/1		
0.5/1	☐ linéaire ☐ lent ☑ polynomial	
	QUESTION 10 La valeur de vérité de la proposition "La complexité moyenne d'un algorithme est la moyenne des complexités dans le pire des cas et dans le meilleur des cas" est	
0.5/0.5	FAUX VRAI	
	QUESTION 11 Quelle est la valeur de $\Theta(n) - \Theta(n)$?	
0.5/0.5	\square $\Theta(1)$ \bigotimes $\Theta(n)$ \square 0 \square $\Theta(0)$	
	QUESTION 12 Quelle est l'expression de la complexité moyenne en temps $\overline{T}_A(n)$ d'un algorithme A si n désigne la taille des données à traiter, $P(e)$ la probabilité de l'instance e et $\eta(e)$ le nombre d'instructions décodées pour traiter cette instance ?	
1/1		
	QUESTION 13 Dans le cours d'algorithmique, l'acronyme RAM signifie :	
0.5/0.5	Random Access Memory Register Access Memory	
0.5/0.5	Register Addressable Memory Random Addressable Memory	
	QUESTION 14 En supposant que le langage C soit un modèle algorithmique, la fonction suivante définit-elle un algorithme qui calcule le produit de deux nombres entiers?	
	int prod(int a, int b){return a*b;}	
0.5/0.5	OUI NON	

					. 20, 0, 10.		
	QUESTION 15 &	Combien y-a-t-	il de séquences l	oinaires de longu	eur n et de poi q	ls p ?	
0.5/1	(n)	$p \times$: n			2^n	
1.3/1		$\frac{n!}{p!}$				$\frac{n!}{(n-p)!}$	
	QUESTION 16 d'incrémentation d'u			re moyen de c st égale à	hiffres modifiés	s par l'in	struction
/1		$\sum_{n=1}^{\infty} 2^n$	$\sum \frac{b}{b-1}$		\square nb		
	QUESTION 17 🌲 S	Soit $g \in \mathbb{R}_+^{\mathbb{R}_+}$. (Que définit l'ense	emble			
		$\{f \in \mathbb{R}_+^{\mathbb{R}_+} \; \exists c$	$> 0 \; \exists N \in \mathbb{N} \; \forall n$	$n \in \mathbb{N}$ $n \ge N$ $f(x)$	$) \ge cg(x)$?		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
/1	\searrow grand o de g		o(n)		$\triangleright O(g)$		
	🔀 grand omega o	e g	grand omic	eron de g	$\mathbf{X} \Omega(g)$		
	QUESTION 18 So	pit $k \in \mathbb{N} \setminus \{0\}$.	L'écriture en b	ase 6 de l'entier	$6^k - 1$ contient		
/1	k+1 chiffres	$ \boxtimes k$ cl	niffres	k-1 chiff	fres	k-2 chif	ffres
	QUESTION 19 ♣ (fonction f défin	nie sur \mathbb{N} par $f(r)$	$n) := \frac{1}{2}n^2 - 5\log n$	gn + 8. C	ochez les

 $f(n) = \Omega(n)$

 $f(n) = o(n^2)$

 $f(n) = \Theta(n \log n)$

QUESTION 20 Écrire un algorithme sur la machine RAM qui lit les valeurs sur la bande d'entrée et écrit uniquement les valeurs paires sur la bande de sortie. La valeur 0 indique la fin de la lecture.

0 Load #2	8	Write	16		
1 Stone 40	9	STOP	17		
2 Read	10		18		
3 Store 62	11		19		
4 Juns 9	12		20		
5 Mod 40	13		21		
6 Jum 62	14		22	#	
7 Load 42	15		23	1	
vous de fortes les tout.					

f(n) = O(1)

0/1.5

 $f(n) = O(\sqrt{n})$

 $f(n) = o(n^3)$

 $f(n) = \Theta(n^2)$

f(n) = O(n)

1/2

they see with for over .