Roll No. Total Pages : 3

013501

December 2023 B.Tech. (ME) - Vth SEMESTER Heat and Mass Transfer (PCC-ME-501-21)

Time: 3 Hours] [Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. Use of heat and mass transfer data book and scientific calculator is allowed.

PART-A

- (a) What are the main factors influencing the value of the convective heat transfer coefficient? (1.5)
 - (b) What is the emissivity function and geometric view factor function? (1.5)
 - (c) What is the use of finite difference technique in heat transfer analysis? (1.5)
 - (d) In practical problems, the selection of a large number of nodes may be unnecessary. Why? (1.5)

- (e) What is fin efficiency? (1.5)
- (f) What is the relationship between temperature and thermal conductivity in gases? (1.5)
- (g) How is the Nusselt number calculated? (1.5)
- (h) Define irradiation and radiosity. (1.5)
- (i) Why is a counterflow heat exchanger more effective than a parallel-flow heat exchanger? (1.5)
- (j) What is meant by subcooled and saturated boiling? (1.5)

PART-B

2. Derive an expression for the temperature distribution in a hollow cylinder with heat sources that vary according to the linear relation

$$q = a + br$$

with q_i the generation rate per unit volume at $r = r_i$. The inside and outside temperatures are $T = T_i$ at $r = r_i$ and $T = T_o$ at $r = r_o$. (15)

- 3. What is meant by a hydrodynamic boundary layer?

 Define Reynolds number. Why Reynolds number is important to calculate heat transfer by convection?

 Derive the expression for calculating the boundary-layer thickness. (15)
- 4. What is the effectiveness-NTU method? Derive expression to calculate heat exchanger effectiveness by using this method. (15)

- 5. What is the view factor? What is its importance in heat transfer analysis? Consider a diffuse circular disk of diameter D and area A_j and a plane diffuse surface of area A_i<<A_j. The surfaces are parallel, and A_i is located at a distance of L from the centre of A_j. Obtain an expression for the view factor F_{ij}.
- 6. (a) What is the difference between an ordinary differential equation and a partial differential equation? How partial differential equation problem can be converted into an ordinary differential equation problem? In heat transfer analysis, discuss the uses of these equations. (10)
 - (b) Explain the construction and working of a heat pipe with suitable diagrams. (5)
- 7. Write short notes on the following:
 - (i) Wein's displacement law.
 - (ii) Pool boiling curve.
 - (iii) Approximate solution by the use of Heisler charts.
 - (iv) Thermocouple error in temperature measurement.
 - (v) Expression for calculating Friction coefficient (C_f) in convection heat transfer. (3×5=15)