Lecture 3: Ordinary Least Squares

Zhentao Shi

September 13, 2018

Notation: y_i is a scalar, and x_i is a $K \times 1$ vector. Y is an $n \times 1$ vector, and X is an $n \times K$ matrix.

1 Algebra of Least Squares

1.1 OLS estimator

As we have learned from the linear project model, the parameter β

$$y_i = x_i'\beta + e_i$$
$$E[x_ie_i] = 0$$

can be written as $\beta = (E[x_i x_i'])^{-1} E[x_i y_i]$.

While population is something imaginary, in reality we possess a sample of n observations. We thus replace the population mean $E[\cdot]$ by the sample mean, and the resulting estimator is

$$\widehat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i x_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} x_i y_i = (X'X)^{-1} X' y.$$

This is one way to motivate the OLS estimator.

```
In [1]: n = 100
    beta0 = c(1.0, 1.0, 0.0)
    X = cbind(rnorm(n), rpois(n, 3))
    e = rlogis(n) # the error term does not have to be normally distributed

y = cbind(1, X) %*% beta0 + e # generate data
# in reality, we observe y and X but not e and beta0
```

Alternatively, we can derive the OLS estimator from minimizing the sum of squared residuals

$$Q(\beta) = \sum_{i=1}^{n} (y_i - x_i' \beta)^2 = (Y - X\beta)' (Y - X\beta).$$

By the first-order condition

$$\frac{\partial}{\partial\beta}Q\left(\beta\right)=-2X'\left(Y-X\beta\right),$$

the optimality condition gives exactly the same $\hat{\beta}$. Moreover, the second-order condition

$$\frac{\partial^{2}}{\partial\beta\partial\beta'}Q\left(\beta\right)=2X'X$$

shows that $Q(\beta)$ is convex in β . ($Q(\beta)$ is strictly convex in β if X'X is positive definite.)

```
In [2]: reg1 = lm( y \sim X ) # OLS regression
        print(reg1)
        X1 = cbind(1, X)
        bhat = solve(t(X1)%*%X1, t(X1) %*% y)
        print(bhat)
Call:
lm(formula = y ~ X)
Coefficients:
(Intercept)
                      X1
                                    X2
             1.0557 -0.0885
     1.3418
            \lceil , 1 \rceil
[1,] 1.34175327
[2,] 1.05567087
[3,] -0.08849795
```

Here we introduce some definitions and properties in OLS estimation.

- Fitted value: $\widehat{Y} = X\widehat{\beta}$.
- Projector: $P_X = X(X'X)^{-1}X$; Annihilator: $M_X = I_n P_X$.
- $\bullet \ P_X M_X = M_X P_X = 0.$
- If AA = A, we call it an idempotent matrix. Both P_X and M_X are idempotent.
- Residual: $\hat{e} = Y \hat{Y} = Y X\hat{\beta} = M_XY = M_X(X\beta + e) = M_Xe$.
- $X'\widehat{e} = XM_Xe = 0$.
- $\frac{1}{n}\sum_{i=1}^{n} \widehat{e}_i = 0$ if x_i contains a constant.

```
In [3]: yhat = predict( reg1, data = X ) # predicted value from the OLS regression
    matplot( x = X[,1], y = cbind(y, yhat), pch = 1:2, xlab = "x", ylab = "y") # a graph bet

library(repr)
  options(repr.plot.width=6, repr.plot.height=5)
  legend(x = 1.2, y = -2, pch = 1:2, col = 1:2, legend = c("y", "predicted"))
```


Real Data Example

We check the relationship between *health status* and three control variables: *the number of doctor visits, the number of children in the household,* and *access to health care.*

Attaching package: 'Ecfun'

The following object is masked from 'package:base':

sign

doctor	children	access	health
0	1	0.50	0.495
1	3	0.17	0.520
0	4	0.42	-1.227
0	2	0.33	-1.524
11	1	0.67	0.173
3	1	0.25	-0.905

Call:

lm(formula = health ~ doctor + children + access, data = Doctor)

Coefficients:

(Intercept) doctor children access -0.02810 0.12059 0.03323 -0.63320

In [7]: summary(reg)

Call:

lm(formula = health ~ doctor + children + access, data = Doctor)

Residuals:

Min 1Q Median 3Q Max -3.3370 -1.0085 -0.3261 0.6938 6.1266

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.378 on 481 degrees of freedom Multiple R-squared: 0.08221, Adjusted R-squared: 0.07649 F-statistic: 14.36 on 3 and 481 DF, p-value: 5.628e-09

1.2 Goodness of Fit

The so-called R-square is the most popular measure of goodness-of-fit in the linear regression. R-square is well defined only when a constant is included in the regressors. Let $M_i = I_n - \frac{1}{n}\iota\iota'$, where ι is an $n \times 1$ vector of 1's. M_i is the *demeaner*, in the sense that $M_i(z_1, \ldots, z_n)' = (z_1 - \overline{z}, \ldots, z_n - \overline{z})'$, where $\overline{z} = \frac{1}{n} \sum_{i=1}^n z_i$. For any X, we can decompose $Y = P_X Y + M_X Y = \widehat{Y} + \widehat{e}$. The total variation is

$$Y'M_{\iota}Y = \left(\widehat{Y} + \widehat{e}\right)'M_{\iota}\left(\widehat{Y} + \widehat{e}\right) = \widehat{Y}'M_{\iota}\widehat{Y} + 2\widehat{Y}'M_{\iota}\widehat{e} + \widehat{e}'M_{\iota}\widehat{e} = \widehat{Y}'M_{\iota}\widehat{Y} + \widehat{e}'\widehat{e}$$

where the last equality follows by $M_i \hat{e} = \hat{e}$ as $\frac{1}{n} \sum_{i=1}^n \hat{e}_i = 0$, and $\hat{Y}' \hat{e} = Y' P_X M_X e = 0$. R-square is defined as $\hat{Y}' M_i \hat{Y} / Y' M_i Y$.

1.3 Frish-Waugh-Lovell Theorem

This theorem a formula for the estimate of a subvector.

If
$$Y = X_1\beta_1 + X_2\beta_2 + e$$
, then $\hat{\beta}_1 = (X_1'M_{X_2}X_1)^{-1}X_1'M_{X_2}Y$.

```
In [8]: X2 = X1[,1:2]
        PX2 = X2 %*% solve( t(X2) %*% X2) %*% t(X2)
        MX2 = diag(rep(1,n)) - PX2

X3 = X1[,3]
        bhat3 = solve(t(X3)%*% MX2 %*% X3, t(X3) %*% MX2 %*% y)
        print(bhat3)

[,1]
[1,] -0.08849795
```

2 Statistical Properties of Least Squares

To talk about the statistical properties in finite sample, we impose the following assumptions.

- 1. The data $(y_i, x_i)_{i=1}^n$ is a random sample from the same data generating process $y_i = x_i'\beta + e_i$.
- 2. $e_i|x_i \sim N(0, \sigma^2)$.

2.1 Maximum Likelihood Estimation

Under the normality assumption, $y_i|x_i \sim N(x_i'\beta, \gamma)$, where $\gamma = \sigma^2$. The *conditional* likelihood of observing a sample $(y_i, x_i)_{i=1}^n$ is

$$\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\gamma}} \exp\left(-\frac{1}{2\gamma} \left(y_i - x_i'\beta\right)^2\right),\,$$

and the (conditional) log-likelihood function is

$$L(\beta, \gamma) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \gamma - \frac{1}{2\gamma} \sum_{i=1}^{n} (y_i - x_i' \beta)^2.$$

Therefore, the maximum likelihood estimator (MLE) coincides with the OLS estimator, and $\hat{\gamma}_{\text{MLE}} = \hat{e}'\hat{e}/n$.

2.2 Finite Sample Distribution

We can show the finite-sample exact distribution of $\widehat{\beta}$. *Finite sample distribution* means that the distribution holds for any n; it is in contrast to *asymptotic distribution*, which holds only when n is arbitrarily large.

Since

$$\hat{\beta} = (X'X)^{-1} X'y = (X'X)^{-1} X' (X'\beta + e) = \beta + (X'X)^{-1} X'e,$$

we have the estimator $\widehat{\beta}|X \sim N\left(\beta, \sigma^2\left(X'X\right)^{-1}\right)$, and

$$\widehat{\beta}_{k}|X \sim N\left(\beta_{k}, \sigma^{2}\eta_{k}'\left(X'X\right)^{-1}\eta_{k}\right) \sim N\left(\beta_{k}, \sigma^{2}\left(X'X\right)_{kk}^{-1}\right),$$

where $\eta_k = (1 \, \{l=k\})_{l=1,\dots,K}$ is the selector of the k-th element.

In reality, σ^2 is an unknown parameter, and

$$s^2 = \hat{e}'\hat{e}/\left(n - K\right) = e'M_Xe/\left(n - K\right)$$

is an unbiased estimator of σ^2 . Consider the *T*-statistic

$$T_{k} = \frac{\widehat{\beta}_{k} - \beta_{k}}{\sqrt{s^{2} \left[\left(X'X \right)^{-1} \right]_{kk}}} = \frac{\left(\widehat{\beta}_{k} - \beta_{k} \right) / \sqrt{\sigma^{2} \left[\left(X'X \right)^{-1} \right]_{kk}}}{\sqrt{\frac{e'}{\sigma} M_{X} \frac{e}{\sigma} / \left(n - K \right)}}.$$

The numerator follows a standard normal, and the denominator follows $\frac{1}{n-K}\chi^2(n-K)$. Moreover, the numerator and the denominator are independent. As a result, $T_k \sim t (n-K)$.

2.3 Mean and Variance

Now we relax the normality assumption and statistical independence. Instead, we assume a regression model $y_i = x_i'\beta + e_i$ and

$$E[e_i|x_i] = 0$$

$$E[e_i^2|x_i] = \sigma^2.$$

where the first condition is the *mean independence* assumption, and the second condition is the *homoskedasticity* assumption.

Example (Heteroskedasticity) If $e_i = x_i u_i$, where x_i is a scalar random variable, u_i is independent of x_i , $E[u_i] = 0$ and $E[u_i^2] = \sigma^2$. Then $E[e_i|x_i] = 0$ but $E[e_i^2|x_i] = \sigma_i^2 x_i^2$ is a function of x_i . We say e_i^2 is a heteroskedastic error.

```
In [9]: n = 100
    X = rnorm(n)

e1 = rnorm(n)
    plot( y = e1, x = X, main = "homoskedastic")

e2 = X * rnorm(n) # the source of heteroskedasticity
    plot( y = e2, x = X, main = "heteroskedastic")
```

homoskedastic

heteroskedastic

These assumptions are about the first and second moment of e_i conditional on x_i . Unlike the normality assumption, they do not restrict the entire distribution of e_i .

• Unbiasedness:

$$E\left[\widehat{\beta}|X\right] = E\left[\left(X'X\right)^{-1}XY|X\right] = E\left[\left(X'X\right)^{-1}X\left(X'\beta + e\right)|X\right] = \beta.$$

Unbiasedness does not rely on homoskedasticity.

• Variance:

$$\operatorname{var}\left(\widehat{\beta}|X\right) = E\left[\left(\widehat{\beta} - E\widehat{\beta}\right)\left(\widehat{\beta} - E\widehat{\beta}\right)'|X\right]$$

$$= E\left[\left(\widehat{\beta} - \beta\right)\left(\widehat{\beta} - \beta\right)'|X\right]$$

$$= E\left[\left(X'X\right)^{-1}X'ee'X\left(X'X\right)^{-1}|X\right]$$

$$= \left(X'X\right)^{-1}X'E\left[ee'|X\right]X\left(X'X\right)^{-1}$$

$$= \left(X'X\right)^{-1}X'\left(\sigma^{2}I_{n}\right)X\left(X'X\right)^{-1}$$

$$= \sigma^{2}\left(X'X\right)^{-1}.$$

2.4 Gauss-Markov Theorem

Gauss-Markov theorem justifies the OLS estimator as the efficient estimator among all linear unbiased ones. *Efficient* here means that it enjoys the smallest variance in a family of estimators.

There are numerous linearly unbiased estimators. For example, $(Z'X)^{-1}Z'y$ for $z_i=x_i^2$ is unbiased because $E\left[(Z'X)^{-1}Z'y\right]=E\left[(Z'X)^{-1}Z'(X\beta+e)\right]=\beta$.

Let $\tilde{\beta} = A'y$ be a generic linear estimator, where A is any $n \times K$ functions of X. As

$$E[A'y|X] = E[A'(X\beta + e)|X] = A'X\beta.$$

So the linearity and unbiasedness of $\tilde{\beta}$ implies $A'X = I_n$. Moreover, the variance

$$\operatorname{var}\left(A'y|X\right) = E\left[\left(A'y - \beta\right)\left(A'y - \beta\right)'|X\right] = E\left[A'ee'A|X\right] = \sigma^2A'A.$$

Let $C = A - X (X'X)^{-1}$.

$$A'A - (X'X)^{-1} = (C + X(X'X)^{-1})'(C + X(X'X)^{-1}) - (X'X)^{-1}$$

= $C'C + (X'X)^{-1}X'C + C'X(X'X)^{-1}$
= $C'C$,

where the last equality follows as

$$(X'X)^{-1}X'C = (X'X)^{-1}X'(A - X(X'X)^{-1}) = (X'X)^{-1} - (X'X)^{-1} = 0.$$

Therefore $A'A - (X'X)^{-1}$ is a positive semi-definite matrix. The variance of any $\tilde{\beta}$ is no smaller than the OLS estimator $\hat{\beta}$.

Homoskedasticity is a restrictive assumption. Under homoskedasticity, var $(\hat{\beta}) = \sigma^2 (X'X)^{-1}$. Popular estimator of σ^2 is the sample mean of the residuals $\hat{\sigma}^2 = \frac{1}{n}\hat{e}'\hat{e}$ or the unbiased one $s^2 = \frac{1}{n-K}\hat{e}'\hat{e}$. Under heteroskedasticity, Gauss-Markov theorem does not apply.