ECEN 5053-002

Developing the Industrial Internet of Things

Week 12 - Lecture

Introduction to SystemC

Dave Sluiter - Spring 2018

Material

SystemC

Learning Outcomes

- Gain an understanding of the types of models that can be created with SystemC
- How we can apply SystemC to model physical systems

Example Physical System

SystemC

- It's a free C++ class library that gives C++ the notion of time
- Available for free from: http://accellera.org/downloads/standards/systemc
- See the file in D2L
 - SystemCinstallationWindows.pdf for instructions on downloading and installing for Windows and Microsoft Visual Studio
- A better choice may be Oracle Vbox and Ubuntu

Vbox download: http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html

SystemC Documentation

- Uses Doxygen (http://www.stack.nl/~dimitri/doxygen/)
- Creates HTML files
- See also: Annex A in the IEEE SystemC 1666-2011.pdf file
 - Introduction to SystemC
- See also Open SystemC Initiative (OSCI): https://sourceforge.net/projects/systemc/

From Annex A

Application

Written by the end user

Methodology- and technology-specific libraries

SystemC verification library, bus models, TLM interfaces

Core language	Predefined channels	Utilities	Data types
Modules Ports Exports	Signal, clock, FIFO, mutex, semaphore	Report handling, tracing	4-valued logic type 4-valued logic vectors Bit vectors
Processes Interfaces Channels			Finite-precision integers Limited-precision integers Fixed-point types
Events			. Med peint types

Programming language C++

Classes provide:

- Hierarchy of modules
- Structural connectivity between modules
- Scheduling and synchronization
- The passing of time
- Separation of computation and communication
- Hardware oriented data types for modeling hardware

Levels of Abstraction

- RTL-like
 - Notion of a clock signal
- Processes
 - no clock, but notion of time passage
- TLM (Transaction Level Modeling)
 - Approximately timed
 - High-level system abstractions

Example System

What is a rotary shaft encoder?

Example of a rack and pinion gear set

Source: http://www.indiamart.com/proddetail/rack-and-pinion-gear-set-18174553830.html
http://www.indiamart.com/proddetail/rack-and-pinion-gear-set-18174553830.html
http://www.rotaryencoder-yumo.com/products/isc25-series-solid-shaft-incremental-rotary-encoder-ID84.html

What is a rotary shaft encoder?

- Outputs a pulse train as the shaft rotates
 - Distance can be measured by counting pulses
- Output is referred to as a quadrature output (quadrature signal pair)
 - Phase tells you which direction shaft is rotating

Source: http://www.learningaboutelectronics.com/Articles/D-flip-flop-circuit-with-NAND-gates.php

Brief Diversion Down Memory Lane

- In my last year of college (1983) I had a co-op job at Challenge Machinery
- I used a rotary shaft encoder on a computerized guillotine paper cutter to measure the **backgauge** position
 - The backgauge is the device that pushes paper into position
 - It was the first paper cutter with a video display
- https://www.youtube.com/watch?v=lfTgUxvfkNw

Paper Cutter Video

There I am

August 1983

Back to the Material

A Look at Some Examples

- Included examples:
 - Pipe example, clock (very RTL like)
 - Process example: simple_fifo, no time
 - Process example: simple_perf, time
- Process example: My baggage_system, time

Model Hierarchy

Design Structure

End

