

Data communication and Networks

Course Code: ECEG3174

Instructor: AMIT GURUNG

Email: amit.gurung@ddn.upes.ac.in

July - Dec, 2024

Experiment- 4

- Quick recap on IP Addressing
- Subnetting and
- Supernetting

Experiment-4

An **IP address is a unique identifier** assigned to each **device connected to a network**, used for communication between devices over an IP-based network

IPv4 Address Structure:

IPv4 addresses are 32 bits long and written in dotted decimal notation like this: 192.168.1.1

IPv4 Addresses

- IPv4 addresses are divided into two parts:
 - Network portion: Identifies the network.
 - Host portion: Identifies the specific device on the network.

IPv4 Classful Addressing

	First byte	Second byte	Third byte	Fourth byte
Class A	0			
Class B	10			
Class C	110			
Class D	1110			
Class E	1111			

a. Binary notation

	First byte	Second byte	Third byte	Fourth byte
Class A	0–127			
Class B	128–191			
Class C	192–223			
Class D	224–239			
Class E	240–255			

b. Dotted-decimal notation

Class	Binary	Dotted-Decimal	CIDR
A	1111111 00000000 00000000 00000000	255 .0.0.0	/8
В	1111111 11111111 00000000 00000000	255.255. 0.0	/16
С	1111111 11111111 11111111 00000000	255.255.255.0	/24

Default masks for classful addressing

IPv4 Usable Addressing

- The **first** address of a subnetwork is reserved as the **network address**, used to identify the entire network.
- ❖ The **last** address is designated as the **broadcast address**, which enables communication with all devices in the subnetwork.
- ❖ The addresses between the network and broadcast addresses are the usable addresses assigned to devices within the subnetwork

IPv4 Addresses for private networks

Range			Total
10.0.0.0	to	10.255.255.255	2^{24}
172.16.0.0	to	172.31.255.255	2^{20}
192.168.0.0	to	192.168.255.255	2^{16}

Purpose:

- These addresses are reserved for use within private networks.
- They are not routable on the public internet, meaning devices with private IP addresses need to use a router or a NAT (Network Address Translation) device to communicate with external networks.

IPv4 Loopback Address

Example:

ping 127.0.0.1 pint localhost

Address Range: 127.0.0.1 to 127.255.255.254

Purpose:

- The loopback address is used to test the local network interface.
- ❖ When a device sends data to this address, it is routed back to itself.
- * This is commonly used for testing software and network configurations on a local machine.

Subnetting

- It is the process of dividing a large network into smaller subnetworks (subnets).
- This helps optimize IP address allocation and improves network performance and security.

Subnetting

- Subnetting involves modifying the subnet mask to borrow bits from the host portion to create more subnets.
- The subnet mask determines which part of the IP address belongs to the network and which part belongs to the host.

Example of Subnetting

- *Consider the IP address 192.168.1.0/24, which has 254 available host addresses (since the default subnet mask is /24, allowing for 8 bits for hosts).
- ❖If we want to create **four subnets**, we need to borrow 2 bits from the host portion.
- **The new subnet mask becomes 255.255.255.192 or /26**

Example of Subnetting

The network is divided as:

Subnet 1:

192.168.1.0/26 (hosts: 192.168.1.1 - 192.168.1.62)

Subnet 2:

192.168.1.64/26 (hosts: 192.168.1.65 - 192.168.1.126)

Subnet 3:

192.168.1.128/26 (hosts: 192.168.1.129 - 192.168.1.190)

Subnet 4:

192.168.1.192/26 (hosts: 192.168.1.193 - 192.168.1.254)

Supernetting

- Supernetting (or route aggregation) is the opposite of subnetting.
- It involves combining multiple contiguous networks into a larger network, which reduces the size of the routing table and improves routing efficiency.

Example of Supernetting

Consider you have four Class C networks:

192.168.0.0/24

192.168.1.0/24

192.168.2.0/24

192.168.3.0/24

To supernet these into a single large network, you can **combine them into a /22** network, using the subnet mask 255.255.252.0.

The network range becomes 192.168.0.0 to 192.168.3.255.

Example of Supernetting

*Benefits of supernetting:

Old routing table:

192.168.0.0/24

192.168.1.0/24

192.168.2.0/24

192.168.3.0/24

New routing table after supernetting:

192.168.0.0 /22