

	UZUPEŁNIA ZDAJĄCY	
KOD	PESEL .	miejsce na naklejkę
		dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

DATA: 5 maja 2015 r.

GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem
 i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1_**1**P-152

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Wskaż rysunek, na którym przedstawiono przedział, będący zbiorem wszystkich rozwiązań nierówności $-4 \le x - 1 \le 4$.

$$\begin{array}{c} \mathbf{B.} \\ -3 \\ \end{array}$$

C.
$$\xrightarrow{-3}$$
 $\xrightarrow{5}$ \xrightarrow{x}

Zadanie 2. (0-1)

Dane są liczby $a = -\frac{1}{27}$, $b = \log_{\frac{1}{4}} 64$, $c = \log_{\frac{1}{3}} 27$. Iloczyn *abc* jest równy

B.
$$-\frac{1}{3}$$

C.
$$\frac{1}{3}$$

Zadanie 3. (0–1)

Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 4% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19%. Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa

A.
$$1000 \cdot \left(1 - \frac{81}{100} \cdot \frac{4}{100}\right)$$

B.
$$1000 \cdot \left(1 + \frac{19}{100} \cdot \frac{4}{100}\right)$$

C.
$$1000 \cdot \left(1 + \frac{81}{100} \cdot \frac{4}{100}\right)$$

D.
$$1000 \cdot \left(1 - \frac{19}{100} \cdot \frac{4}{100}\right)$$

Zadanie 4. (0–1)

Równość $\frac{m}{5-\sqrt{5}} = \frac{5+\sqrt{5}}{5}$ zachodzi dla

A.
$$m = 5$$

B.
$$m = 4$$

C.
$$m = 1$$

D.
$$m = -5$$

Strona 3 z 24

Zadanie 5. (0-1)

Układ równań $\begin{cases} x - y = 3 \\ 2x + 0, 5y = 4 \end{cases}$ opisuje w układzie współrzędnych na płaszczyźnie

- A. zbiór pusty.
- **B.** dokładnie jeden punkt.
- C. dokładnie dwa różne punkty.
- **D.** zbiór nieskończony.

Zadanie 6. (0-1)

Suma wszystkich pierwiastków równania (x+3)(x+7)(x-11) = 0 jest równa

- **A.** −1
- **B.** 21
- **C.** 1
- **D.** −21

Zadanie 7. (0–1)

Równanie
$$\frac{x-1}{x+1} = x-1$$

- **A.** ma dokładnie jedno rozwiązanie: x = 1.
- **B.** ma dokładnie jedno rozwiązanie: x = 0.
- C. ma dokładnie jedno rozwiązanie: x = -1.
- **D.** ma dokładnie dwa rozwiązania: x = 0, x = 1.

Zadanie 8. (0-1)

Na rysunku przedstawiono wykres funkcji f.

Zbiorem wartości funkcji f jest

- **A.** (-2, 2)
- **B.** (-2, 2)
- C. $\langle -2, 2 \rangle$
- **D.** (-2,2)

Zadanie 9. (0-1)

Na wykresie funkcji liniowej określonej wzorem f(x) = (m-1)x + 3 leży punkt S = (5, -2). Zatem

- **A.** m = -1
- **B.** m = 0
- **C.** m = 1
- **D.** m = 2

Strona 5 z 24

Zadanie 10. (0-1)

Funkcja liniowa f określona wzorem f(x) = 2x + b ma takie samo miejsce zerowe, jakie ma funkcja liniowa g(x) = -3x + 4. Stąd wynika, że

A.
$$b = 4$$

B.
$$b = -\frac{3}{2}$$
 C. $b = -\frac{8}{3}$ **D.** $b = \frac{4}{3}$

C.
$$b = -\frac{8}{3}$$

D.
$$b = \frac{4}{3}$$

Zadanie 11. (0-1)

Funkcja kwadratowa określona jest wzorem $f(x) = x^2 + x + c$. Jeżeli f(3) = 4, to

A.
$$f(1) = -6$$

B.
$$f(1) = 0$$

C.
$$f(1) = 6$$

D.
$$f(1) = 18$$

Zadanie 12. (0-1)

Ile liczb całkowitych x spełnia nierówność $\frac{2}{7} < \frac{x}{14} < \frac{4}{3}$?

Zadanie 13. (0-1)

W rosnącym ciągu geometrycznym (a_n) , określonym dla $n \ge 1$, spełniony jest warunek $a_4 = 3a_1$. Iloraz q tego ciągu jest równy

A.
$$q = \frac{1}{3}$$

B.
$$q = \frac{1}{\sqrt[3]{3}}$$
 C. $q = \sqrt[3]{3}$

C.
$$q = \sqrt[3]{3}$$

D.
$$q = 3$$

Zadanie 14. (0-1)

Tangens kata α zaznaczonego na rysunku jest równy

B.
$$-\frac{4}{5}$$

D.
$$-\frac{5}{4}$$

$$P = (-4, 5)$$

Zadanie 15. (0-1)

Jeżeli $0^{\circ} < \alpha < 90^{\circ}$ oraz $tg\alpha = 2\sin\alpha$, to

A.
$$\cos \alpha = \frac{1}{2}$$

A.
$$\cos \alpha = \frac{1}{2}$$
 B. $\cos \alpha = \frac{\sqrt{2}}{2}$ **C.** $\cos \alpha = \frac{\sqrt{3}}{2}$

C.
$$\cos \alpha = \frac{\sqrt{3}}{2}$$

$$\mathbf{D.} \quad \cos \alpha = 1$$

Zadanie 16. (0–1)

Miara kata wpisanego w okrąg jest o 20° mniejsza od miary kata środkowego opartego na tym samym łuku. Wynika stąd, że miara kata wpisanego jest równa

Zadanie 17. (0-1)

Pole rombu o obwodzie 8 jest równe 1. Kąt ostry tego rombu ma miarę α . Wtedy

A.
$$14^{\circ} < \alpha < 15^{\circ}$$

B.
$$29^{\circ} < \alpha < 30^{\circ}$$

A.
$$14^{\circ} < \alpha < 15^{\circ}$$
 B. $29^{\circ} < \alpha < 30^{\circ}$ **C.** $60^{\circ} < \alpha < 61^{\circ}$

D.
$$75^{\circ} < \alpha < 76^{\circ}$$

Zadanie 18. (0-1)

Prosta l o równaniu $y = m^2x + 3$ jest równoległa do prostej k o równaniu y = (4m - 4)x - 3. Zatem

$$\mathbf{A.} \quad m=2$$

B.
$$m = -2$$

C.
$$m = -2 - 2\sqrt{2}$$
 D. $m = 2 + 2\sqrt{2}$

D.
$$m = 2 + 2\sqrt{2}$$

Zadanie 19. (0-1)

Proste o równaniach: $y = 2mx - m^2 - 1$ oraz $y = 4m^2x + m^2 + 1$ są prostopadłe dla

A.
$$m = -\frac{1}{2}$$

B.
$$m = \frac{1}{2}$$
 C. $m = 1$

C.
$$m = 1$$

D.
$$m = 2$$

Zadanie 20. (0-1)

Dane są punkty M = (-2, 1) i N = (-1, 3). Punkt K jest środkiem odcinka MN. Obrazem punktu K w symetrii względem początku układu współrzędnych jest punkt

A.
$$K' = \left(2, -\frac{3}{2}\right)$$
 B. $K' = \left(2, \frac{3}{2}\right)$ **C.** $K' = \left(\frac{3}{2}, 2\right)$ **D.** $K' = \left(\frac{3}{2}, -2\right)$

B.
$$K' = \left(2, \frac{3}{2}\right)$$

C.
$$K' = \left(\frac{3}{2}, 2\right)$$

D.
$$K' = \left(\frac{3}{2}, -2\right)$$

Zadanie 21. (0-1)

W graniastosłupie prawidłowym czworokątnym EFGHIJKL wierzchołki E, G, L połączono odcinkami (tak jak na rysunku).

Wskaż kat między wysokością OL trójkata EGL i płaszczyzną podstawy tego graniastosłupa.

A.
$$\triangleleft HOL$$

Strona 9 z 24

Zadanie 22. (0-1)

Przekrojem osiowym stożka jest trójkąt równoboczny o boku długości 6. Objętość tego stożka jest równa

A.
$$27\pi\sqrt{3}$$

B.
$$9\pi\sqrt{3}$$

C.
$$18\pi$$

D.
$$6\pi$$

Zadanie 23. (0-1)

Każda krawędź graniastosłupa prawidłowego trójkątnego ma długość równą 8. Pole powierzchni całkowitej tego graniastosłupa jest równe

A.
$$\frac{8^2}{3} \left(\frac{\sqrt{3}}{2} + 3 \right)$$

B.
$$8^2 \cdot \sqrt{3}$$

C.
$$\frac{8^2\sqrt{6}}{3}$$

D.
$$8^2 \left(\frac{\sqrt{3}}{2} + 3 \right)$$

Zadanie 24. (0-1)

Średnia arytmetyczna zestawu danych:

jest taka sama jak średnia arytmetyczna zestawu danych:

Wynika stad, że

$$\mathbf{A.} \quad x = 0$$

B.
$$x = 3$$

C.
$$x = 5$$

D.
$$x = 6$$

Zadanie 25. (0-1)

W każdym z trzech pojemników znajduje się para kul, z których jedna jest czerwona, a druga – niebieska. Z każdego pojemnika losujemy jedną kulę. Niech p oznacza prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie z trzech wylosowanych kul będą czerwone. Wtedy

A.
$$p = \frac{1}{4}$$

B.
$$p = \frac{3}{8}$$
 C. $p = \frac{1}{2}$ **D.** $p = \frac{2}{3}$

C.
$$p = \frac{1}{2}$$

D.
$$p = \frac{2}{3}$$

Zadanie 26. (0-2)

Rozwiąż nierówność $2x^2 - 4x > (x+3)(x-2)$.

Zadanie 27. (0-2)

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność $4x^2 - 8xy + 5y^2 \ge 0$.

Wypełnia egzaminator	Nr zadania	26.	27.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 28. (0-2)

Dany jest kwadrat ABCD. Przekątne AC i BD przecinają się w punkcie E. Punkty K i M są środkami odcinków – odpowiednio – AE i EC. Punkty L i N leżą na przekątnej BD tak, że $|BL| = \frac{1}{3}|BE|$ i $|DN| = \frac{1}{3}|DE|$ (zobacz rysunek). Wykaż, że stosunek pola czworokąta KLMN do pola kwadratu ABCD jest równy 1:3.

Zadanie 29. (0-2)

Oblicz najmniejszą i największą wartość funkcji kwadratowej $f(x) = x^2 - 6x + 3$ w przedziale $\langle 0, 4 \rangle$.

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. (0-2)

W układzie współrzędnych są dane punkty A = (-43, -12), B = (50, 19). Prosta AB przecina oś Ox w punkcie P. Oblicz pierwszą współrzędną punktu P.

Zadanie 31. (0-2)

Jeżeli do licznika i do mianownika nieskracalnego dodatniego ułamka dodamy połowę jego licznika, to otrzymamy $\frac{4}{7}$, a jeżeli do licznika i do mianownika dodamy 1, to otrzymamy $\frac{1}{2}$.

Wyznacz ten ułamek.

Odpowiedź:

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. (0-4)

Wysokość graniastosłupa prawidłowego czworokątnego jest równa 16. Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy $\frac{3}{5}$. Oblicz pole powierzchni całkowitej tego graniastosłupa.

Strona 18 z 24 MMA_1P

	Nr zadania	32.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 33. (0–4)

Wśród 115 osób przeprowadzono badania ankietowe, związane z zakupami w pewnym kiosku. W poniższej tabeli przedstawiono informacje o tym, ile osób kupiło bilety tramwajowe ulgowe oraz ile osób kupiło bilety tramwajowe normalne.

Rodzaj kupionych biletów	Liczba osób
ulgowe	76
normalne	41

Uwaga! 27 osób spośród ankietowanych kupiło oba rodzaje biletów.

Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że osoba losowo wybrana spośród ankietowanych nie kupiła żadnego biletu. Wynik przedstaw w formie nieskracalnego ułamka.

Strona 20 z 24 MMA_1P

	Nr zadania	33.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 34. (0–5)

W nieskończonym ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, suma jedenastu początkowych wyrazów tego ciągu jest równa 187. Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu, jest równa 12. Wyrazy a_1 , a_3 , a_k ciągu (a_n) , w podanej kolejności, tworzą nowy ciąg – trzywyrazowy ciąg geometryczny (b_n) . Oblicz k.

Strona 22 z 24 MMA_1P

	Nr zadania	34.
Wypełnia egzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	