DECENTRALIZED DATA SECURITY USING BLOCKCHAIN

(PROJECT PHASE-II)

submitted in partial fulfillment of the requirements for the award of the degree in

BACHELOR OF TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING DATA SCIENCE (ARTIFICIAL INTELLIGENCE)

By

SUJITH KUMAR D (211191101151)

V.V.S SRAVANTH (211191101161)

SURENDER B (211191101153)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

APRIL 2025

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report (Project Phase-II) is the bonafide work of

 Mr. SUJITH KUMAR D
 Reg. No: 211191101151,

 Mr. V.V.S SRAVANTH
 Reg. No: 211191101161,

 Mr. SURENDER B
 Reg. No: 211191101153,

Who carried out the project entitled "DECENTRALIZED DATA SECURITY USING BLOCKCHAIN" under our supervision from December 2024 to April 2025.

Internal Guide

Mrs. S. AMUTHA
Assistant Professor
Dept of CSE

Dr. MGR Educational and Research Institute, Deemed to be University

Project Coordinator

Mr. M. ARUN Assistant Professor Dept of CSE

Dr. MGR Educational and Research Institute, Deemed to be University **Department Head**

Dr. S. GEETHA Professor & HOD Dept of CSE

Dr. MGR Educational and Research Institute, Deemed to be University

Submitted for Viva Voce Examination held on

Internal Examiner

(Name in Capital letters with Signature)

External Examiner

(Name in Capital letters with Signature)

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

DECLARATION FORMAT

We SUJITH KUMAR.D (211191101151), V.V.S SRAVANTH (211191101161), SURENDER.B (211191101153), hereby declare that the Project Report (Project Phase-II) entitled "DECENTRALIZED DATA SECURITY USING BLOCKCHAIN" is done by us under the guidance of S AMUTHA is submitted in partial fulfillment of the requirements for the award of the degree in BACHELOR OF TECHNOLOGY in Computer Science and Engineering specialization in Data Science (Artificial Intelligence).

DATE:			
PLACE:			

1.

2.

3.

SIGNATURE OF THE CANDIDATE(S)

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

ACKNOWLEDGEMENT

We would first like to thank our beloved Founder Chancellor sir **Thiru.Dr.**

A.C.SHANMUGAM, B.A., B.L., President **Er. A.C.S.Arunkumar, B.Tech., M.B.A.,** and Secretary **Thiru A.RAVIKUMAR** for all the encouragement and support extended to us during the tenure of this project and also our years of studies in his wonderful University.

We express my heartfelt thanks to our Vice Chancellor **Prof. Dr. GEETHALAKSHMI** in providing all the support of my Project (Project Phase-II).

We express my heartfelt thanks to our Head of the Department, **Prof. Dr. S.Geetha**, who has been actively involved and very influential from the start till the completion of our project.

Our sincere thanks to our Project Coordinators **Mr. M Arun** and Project guide **Mrs. S. Amutha** for their continuous guidance and encouragement throughout this work, which has made the project a success.

We would also like to thank all the teaching and non teaching staffs of Computer Science and Engineering department, for their constant support and the encouragement given to us while we went about to achieving my project goals.

CONTENT

CHAPTER	R NO. TITLE	PAGE NO.
	Title Page	I
	Declaration	II
	Bonafide Certificate	III
	Acknowledgement	IV
	Content	V
	List of Abbreviations	VII
	List of Figures	VIII
	List of Tables	IX
	Abstract	X.
01	Introduction	01
02	Literature Survey	08
	2.1 Literature Survey Insight and Inspiration	08
	2.2 Overview of Literature Survey	08
	2.3 Research Methodology	28
03	System Analysis	35
	3.1 Aim	35
	3.2 Existing System & Drawbacks	35
	3.3 Proposed System	37
	3.4 Scope	38
	3.5 Core System Features And Functionality	39
	3.6 User Interaction and Experience	41
	3.7 Methodology	44
04	Module And System Design	35
	4.1 Experimental Setup	35
	4.2 Workflow Diagram	35
	4.3 Use Case Diagram	46
	4.4 Class Diagram	47
	4.5 Activity Diagram	48
	4.6 Sequence Diagram	49

		FORM NO. F/ TL / 024 Rev.00 Date 20.03.2020
	4.7 Collaborative Diagram	50
	4.8 Deployment Diagram	51
	4.9 Component Diagram	52
	4.10 ER Diagram	53
	4.11 System Architecture	54
05	Implementation	55
	5.1 Blockchain Network Setup	55
	5.2 Smart Contract Development	56
	5.3 Front-End and Back-End Development	56
	5.4 Cryptographic Integration	57
	5.5 Integration and System Testing	58
	5.6 Deployment	59
	5.7 Monitoring and Maintenance	60
	5.8 Code	61
06	Results	102
	6.1 User Interface	102
07	Conclusion	105
	References	107

LIST OF ABBREVIATIONS

DDoS Distributed Denial of Service

DPR General Data Protection Regulation

Pow Proof of Work

DLF Distributed Ledger Technology

P2P Peer-to-Peer

PKI Public Key Infrastructure

UI User Interface

API Application Programming Interface

AES Advanced Encryption Standard

SHA Secure Hash Algorithm

TPS Transaction Per Second

NIST National Institute of Standards and Technology

PKC Public Key Cryptography

NFT Non-Fungible Token

Pos Point of Sale(dependent if related to blockchain payment)

LIST OF FIGURES

Figure .No	Figure Name	Page.No	
4.2	Workflow Diagram	45	
4.3	Use Case Diagram	46	
4.4	Class Diagram	47	
4.5	Activity Diagram	48	
4.6	Sequence Diagram	49	
4.7	Collaboration Diagram	50	
4.8	Deployment Diagram	51	
4.9	Component Diagram	52	
4.10	ER Diagram	53	
4.11	System Architecture	54	
6.1	Home Page	95	
6.2	Admin Login Page	95	
6.3	Admin Welcome Page	96	
6.4	Document adding page	96	
6.5	Hash code added Document	97	
6.6	View page of Document	97	

LIST OF TABLES

Table.No	Table Name	Page.No	
5.1	Test Cases	59	
5.2	Test cases Model Building	59	

ABSTRACT

In the real world many types of Legal documents exist and the government is managing all these documents in a single centralized server. These servers will be managed by Admin and can be bribed to alter any legal document and there will be no direct way to detect such alteration. Another most important issue is cyberattack where attackers can hack centralized server and may crash or steal data and in such situations all data will be lost. To overcome from above issue we are planning to migrate legal or criminal documents management to Blockchain technology which has inbuilt support for data security, verification and decentralized storage.

In an increasingly interconnected world, data security has become a paramount concern, with centralized systems often falling victim to breaches, unauthorized access, and manipulation. To address these challenges, decentralized data security solutions powered by blockchain technology have emerged as a promising alternative. Blockchain's inherent characteristics transparency, immutability, and decentralization—provide a robust foundation for secure data storage, access control, and transfer without relying on a central authority. This paper explores the potential of blockchain in securing sensitive data, focusing on its ability to enhance confidentiality, integrity, and availability while reducing vulnerabilities associated with traditional centralized systems. Key mechanisms such as cryptographic encryption, smart contracts, and consensus protocols are discussed as they contribute to a secure, tamper-proof, and verifiable data ecosystem. Additionally, we examine various use cases across industries such as healthcare, finance, and supply chain management, where blockchain-driven decentralized security models are already being implemented. The challenges and limitations of blockchain in data security, including scalability, energy consumption, and regulatory concerns, are also addressed, along with potential solutions for overcoming these barriers. Overall, the paper demonstrates that blockchain technology holds significant promise in transforming data security paradigms, offering a decentralized, transparent, and more resilient approach to safeguarding sensitive information in the digital age.

Keywords: Blockchain technology, Decentralized storage, Data security, Transparency, Immutability, Smart contracts, Cryptographic encryption, Consensus protocols, Tamper-proof.

MAJOR DESIGN CONSTRAINTS AND DESIGN STANDARDS TABLE

Student Group	SUJITH KUNAR.D	V.V.S. SRAVANTH	SURENDER.B	
	211191101151	211191101161	211191101153	
Project Title	DECENTRALIZED DATA SECURITY USING BLOCKCHAIN			
Program Concentration Area	Blockchain Technology, Cybersecurity, Data Privacy			
Constraints Example	Economic, Environmental, Sustainability, Ethical.			
Economic	Yes			
Environmental	Yes			
Sustainability	Yes			
Implementable	Yes			
Ethical	Yes			
Health and Safety	Yes			
Social	Yes			
Political	Yes			
Other	Implementable			
Standards				
1	ISO/IEC 27001: Information security management.			
2	ISO/TC 307: Standards specific to blockchain and distributed ledger technologies.			
3	GDPR Compliance : For data privacy and protection, especially in the legal sector.			
Prerequisite Courses for the Major Design	Blockchain Fundamentals, Cryptography and Network Security, Data Privacy and Cybersecurity			
Experiences				