Premier University Department of Computer Science & Engineering

4th Semester Special Retake Exam, 2020

Course Title: Algorithms Design & Analysis

Course Code: CSE - 225

Total Marks: 35 Time: 2 Hours

Answer each question.

Q.1	a.	Find an optimal solution to the fractional knapsack problem, where the knapsack capacity is $M=10$.								3		
				It	em		Weig	ht	Profi	t		
					1		3		12			
					2		4		8			
					3		6		15			
					4		8		17			
	b.	Given the directed graph G in Fig. 1, find a shortest path from source 0 to each of the vertices using Dijkstra algorithm.							4			
		Fig. 1: A directed graph G										
Q.2	a.	Suppose A,B,C,D,E,F,G and H are 8 items and suppose they are assigned weights as follows:									1.5+1.5	
		Data items: Weight:			C 10	D 5	E 12	F 10	G 8	H 7		

		Now constru	act the Tree by	using Huffma	n Algorithm and	d encoding the	each node.					
	b.	Now construct the Tree by using Huffman Algorithm and encoding the each node. Solve the following instance of the 0/1 knapsack problem using dynamic programming approach. Assume that the knapsack capacity is 5.										
		Item Weight Benefit										
		1 2 \$4										
		2 3 \$5										
			3	4	\$6							
			4	6	\$10							
Q.3	a.	Apply Floyd-Warshall algorithm to find all-pairs shortest-paths of the graph <i>F</i> given in Fig. 2.										
		-2										
		4										
		3										
		$\begin{pmatrix} 2 \\ \\ \\ \end{pmatrix}$										
		-1 2										
		Fig. 2: A weighted graph F										
	b.	What is the advantage of Bellman-Ford Algorithm over Dijkstra's Algorithm?										

