

Projekt "Uruchomienie unikatowego kierunku studiów Informatyka Stosowana odpowiedzią na zapotrzebowanie rynku pracy" (POKL.04.01.01-00-011/09-00) jest współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Analiza matematyczna i algebra liniowa

Materiały pomocnicze dla studentów – do wykładów

Opracował (-li): 1. Prof. dr hab. Edward Smaga

- 2. dr Anna Gryglaszewska
- 3. mgr Marta Kornafel
- 4. mgr Fryderyk Falniowski
- 5. mgr Paweł Prysak

1. Organizacja zajęć

Temat 1: Macierze liczbowe i wyznaczniki

- 1. Podstawowe definicje
- 2. Rodzaje macierzy:
 - a) prostokątna zerowa, transponowana
 - b) kwadratowa: główna przekątna, macierz trójkątna górna (dolna), przekątniowa (diagonalna), jednostkowa, symetryczna, skośnie symetryczna
- 3. Działania na macierzach:
 - a) dodawanie
 - b) mnożenie przez liczbę
 - c) odejmowanie
 - d) mnożenie macierzy przez macierz
- 4. Własności działań na macierzach
- 5. Definicja rekurencyjna wyznacznika
- 6. Schematy obliczania wyznaczników 2 i 3 stopnia
- 7. Własności wyznaczników
- 8. Obliczanie wyznaczników stopnia wyższego
- 9. Definicja macierzy odwrotnej
- 10. Wyznaczanie macierzy odwrotnej metodą dopełnień algebraicznych
- 11. Wyznaczanie macierzy odwrotnej metodą operacji elementarnych
- 12. Równania macierzowe

Temat 2: Układy równań liniowych

- 1. Rząd macierzy
- 2. Podstawowe definicje, zapis macierzowy
- 3. Rodzaje układów równań:
 - a) jednorodne, niejednorodne
 - b) oznaczone, nieoznaczone, sprzeczne, równoważne
- 4. Układ Cramera rozwiązywanie za pomocą macierzy odwrotnej
- 5. Układ Cramera rozwiązywanie za pomocą wzorów Cramera
- 6. Układ dowolny:
 - a) twierdzenie Kroneckera-Capellego
 - b) wyznaczanie równoważnego układu bazowego
 - c) (*) rozwiązywanie metodą operacji elementarnych

Temat 3: Rachunek różniczkowy funkcji wielu zmiennych

- 1. Definicja funkcji wielu zmiennych oraz dziedzina
- 2. Pochodne cząstkowe

Materiały pomocnicze dla prowadzących wykład Analiza matematyczna i algebra liniowa

- 3. Interpretacja ekonomiczna pochodnych cząstkowych
- 4. (*) Pochodna i różniczka funkcji
- 5. Ekstrema lokalne definicja i twierdzenia
- 6. Metoda najmniejszych kwadratów
- 7. Ekstrema warunkowe definicja i twierdzenia

Temat 4: Rachunek całkowy funkcji jednej zmiennej

- 1. Funkcja pierwotna i definicja całki nieoznaczonej
- 2. Reguly całkowania
- 3. Wzory rachunku całkowego
- 4. Całka oznaczona Riemanna pojedyncza podstawowe definicje
- 5. Własności całki funkcji ciągłej
- 6. Całka niewłaściwa:
 - a) w przedziale nieograniczonym
 - b) z funkcji nieograniczonej
- 7. Zastosowania ekonomiczne całki oznaczonej
- 8. Zastosowania geometryczne całki oznaczonej

Temat 5: Równania różniczkowe

- 1. Równanie różniczkowe zwyczajne definicja i podstawowe pojęcia
- 2. Równania różniczkowe o zmiennych rozdzielonych
- 3. Równania różniczkowe liniowe rzędu pierwszego

Temat 6: Liczby zespolone

- 1. Uwagi historyczne
- 2. Konstrukcja ciała liczb zespolonych. Podstawowe pojęcia
- 3. Postacie liczby zespolonej:
 - a) algebraiczna
 - b) trygonometryczna
 - c) wykładnicza
- 4. Potęgowanie i pierwiastkowanie liczb zespolonych
- 5. Rozwiązywanie równań kwadratowych w ciele liczb zespolonych

(*) Dodatek: Przestrzeń wektorowa. Przestrzeń Euklidesa. Całka Riemanna wielokrotna.

Temat 7: Przestrzeń wektorowa (nad ciałem liczb rzeczywistych)

- 1. Podstawowe definicje
- 2. Wektory liniowo zależne i liniowo niezależne
- 3. Baza i wymiar przestrzeni wektorowej

4. Współrzędne wektora przy zadanej bazie

Temat 8: Przestrzeń Euklidesa

- 1. Iloczyn skalarny:
 - a) definicja aksjomatyczna
 - b) standardowy iloczyn skalarny w Rⁿ
- 2. Norma wektora:
 - a) nierówność Schwarza-Buniakowskiego
 - b) nierówność Cauchy-Minkowskiego
 - c) miara kąta między wektorami
 - d) bazy ortogonalne i ortonormalne

Temat 9: Całka Riemanna wielokrotna

- 1. Całka wielokrotna w kostce
- 2. Całka po zbiorze normalnym
- 3. Niektóre zastosowania geometryczne całki wielokrotnej

2. Literatura:

<u>Literatura podstawowa:</u>

- 1) Cewe A., Nahorska H., Pancer I. [2005], "Tablice matematyczne", wydanie II, Wydawnictwo Podkowa, Gdańsk.
- 2) Gryglaszewska A., Kosiorowska M., Paszek B. [2009], "Ćwiczenia z matematyki, część 1", wydanie 6, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków.
- 3) Gryglaszewska A., Kosiorowska M., Paszek B. [2008], "Ćwiczenia z matematyki, część 2", wydanie 3, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków.
- 4) Gurgul H., Suder M. [2009], "Matematyka dla kierunków ekonomicznych. Przykłady i zadania wraz z repetytorium ze szkoły średniej", Wydawnictwo Wolters Kluwer Polska Sp. z o. o., Kraków.
- 5) Krysicki W., Włodarski L. [2008], "Analiza matematyczna w zadaniach część I", wydanie 29, Wydawnictwo Naukowe PWN, Warszawa.
- 6) Krysicki W., Włodarski L. [2008], "Analiza matematyczna w zadaniach część II", wydanie 27, Wydawnictwo Naukowe PWN, Warszawa.

Literatura uzupełniająca:

- 1) Jurlewicz T., Skoczylas Z. [2005], "Algebra liniowa 2. Przykłady i zadania", wydanie 5, Oficyna Wydawnicza GiS.
- 2) Stankiewicz W., "Zadania z matematyki dla wyższych uczelni technicznych"

3. Zasady oceniania.

Kurs matematyki dla kierunku studiów Informatyka Stosowana realizowany jest w dwóch semestrach w ramach przedmiotów: "Wprowadzenie do matematyki" (zajęcia wyrównawcze) w pierwszym semestrze oraz "Analiza matematyczna i algebra liniowa" w drugim. Przedmiot kończy się egzaminem obejmującym całość omawianych zagadnień. Celem egzaminu jest sprawdzenie umiejętności rozwiązywania przez studentów typowych zadań. Zadania egzaminacyjne nie zawierają pytań testowych i nie sprawdzają wiedzy typowo teoretycznej.

Forma przeprowadzenia egzaminu:

- 1. W pierwszym semestrze student zalicza ćwiczenia na podstawie trzech kolokwiów punktowanych po 20pkt. każde. Jest też również możliwość zbierania dodatkowych punktów z aktywności (trzy plusy = 1pkt.). Maksymalna liczba punktów (60pkt.) stanowi 40% końcowego egzaminu. Pierwszy semestr nie kończy się egzaminem tylko zaliczeniem i ilość zdobytych punktów procentowo przenosi się na egzamin końcowy po drugim semestrze.
- 2. W drugim semestrze student musi uzyskać zaliczenie z ćwiczeń by móc przystąpić do egzaminu. Punkty z tego egzaminu stanowią 60% końcowego egzaminu.

Egzamin uznaje się za zdany jeśli student uzyskał co najmniej 50% maksymalnej liczby punktów łącznie z obu semestrów.

Przykładowe zestawy egzaminacyjne

I semestr

Zestaw 1

1) Wyznaczyć i narysować zbiory $A \times B$ oraz B^2 jeśli:

$$A = \left\{ x \in \mathbf{R} : \arccos(x-1) < \frac{\pi}{2} \right\}, \qquad B = \left\{ x \in \mathbf{R} : x \le \lim_{x \to 0^+} \left(\frac{1}{x} \right)^x \right\}.$$

- 2) Dana jest relacja $S \subset \mathbb{R}^2$, $xSy \Leftrightarrow y = |x| + 1$. Narysować wykres relacji S oraz sprawdzić, czy $S \subset \mathbb{R}^2$ jest:
 - a) zwrotna,
 - b) odwzorowaniem,
 - c) iniekcją?
- **3)** Zbadać zbieżność szeregu $\sum_{n=0}^{\infty} \left(\frac{2n}{2n-3} \right)^{3n+5}.$
- **4)** Wyznaczyć przedziały wypukłości i wklęsłości oraz punkty przegięcia wykresu funkcji $f(x) = x \cdot \ln(x + e)$.

Zestaw 2

- 1) Wyznaczyć dziedzinę funkcji $f(x) = \sqrt{\frac{\pi}{6} \arccos\left(\frac{1}{2}\log_{0,1}x\right)}$.
- **2)** Zbadać, czy relacja $S \subset X \times X$, gdzie X jest zbiorem wszystkich podzbiorów zbioru $A \neq \emptyset$ jest relacją równoważności, gdy $BSC \Leftrightarrow B \cap C \neq \emptyset$.
- 3) Wyznaczyć przedziały monotoniczności i ekstrema lokalne funkcji $f(x) = \ln(x+e) x^2$.
- 4) Dla jakich wartości parametrów $a, b \in \mathbf{R}$ funkcja

$$f(x) = \begin{cases} 1 - 2x & \text{dla } x < 0 \\ a - \frac{1}{4}x^2 & \text{dla } x \in [0, 4] \\ 2b - \frac{1}{2}x & \text{dla } x > 4 \end{cases}$$

jest ciągła w R?

II semestr

Zestaw 1

1) Rozwiązać równanie macierzowe (za pomocą macierzy odwrotnej):

$$X^{\mathsf{T}} \cdot \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} - \begin{bmatrix} 1 & -2 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 5 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}^2.$$

- **2)** W zależności od wartości parametru $a \in \mathbf{R}$ zbadać liniową zależność wektorów x = (2, -1, a), y = (-4, 2, -3) w przestrzeni wektorowej $(\mathbf{R}^3, \mathbf{R}, +, \cdot)$.
- 3) Wyznaczyć ekstrema funkcji $f(x,y) = 2x^3 + y^2 3xy + 1$. Obliczyć $f'_x(1,3)$ oraz podać interpretację.
- 4) Zbadać zbieżność całki $\int_{1}^{0} \frac{x^{2}}{\sqrt[5]{x^{3}+1}} dx$.

Zestaw 2

1) Za pomocą macierzy odwrotnej, rozwiązać równanie macierzowe:

$$(2I - 3X)^{T} \cdot \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix}^{T} = \begin{bmatrix} 3 & -1 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}^{T} \cdot \begin{bmatrix} 0 & -2 \\ 1 & 3 \\ 2 & 1 \end{bmatrix}.$$

2) W zależności od wartości parametru $k \in \mathbf{R}$ określić liczbę rozwiązań układu równań:

$$\begin{cases} 2x + ky = 2\\ x + 3y + kz = 3\\ -x + 2y + z = 1. \end{cases}$$

- 3) Wyznaczyć ekstrema funkcji f(x,y) = x + 2y przy warunku $x^2 + y^2 = 5$.
- 4) Obliczyć pole obszaru ograniczonego krzywymi: $y = 2^x$, y = 1 x, y = 4.

Przykładowe zestawy egzaminacyjne (egzamin z całości materiału)

Zestaw 1

- **1)** Sprawdzić, czy relacja $S \subset \mathbf{R} \times \mathbf{R}$, $xSy \Leftrightarrow (x-y) \cdot (x+y) \ge 0$ jest porządkiem całkowitym (zupełnym).
- 2) Zbadać zbieżność szeregu $\sum_{n=1}^{\infty} \left(\frac{2n-1}{2n+1}\right)^{n^2}$.
- 3) Wyznaczyć dziedzinę funkcji $f(x) = \sqrt{\pi \frac{3}{2} \arccos(4^{-x} 1)}$.
- 4) Wyznaczyć przedziały monotoniczności i ekstrema lokalne funkcji $f(x) = x^{\frac{1}{x}}$.
- 5) Rozwiązać układ równań liniowych (wykorzystując tw. Kroneckera Capelliego):

$$\begin{cases} 3x - 2y + 5z = 1 \\ -x + 3y - 2z = -2 \\ 2x + y + 3z = -1. \end{cases}$$

- 6) Wyznaczyć ekstrema funkcji $f(x,y) = \frac{1}{4} \ln x + \frac{3}{4} \ln y$ przy warunku 2x + 3y = 16.
- **7)** Zbadać zbieżność całki $\int_{1}^{+\infty} x \cdot e^{-x} dx$.
- 8) Sprawdzić, czy wektory x = (-1, 1, 0), y = (0, 1, -1), z = (1, 0, -1) są bazą przestrzeni wektorowej (\mathbb{R}^3 , \mathbb{R} , +, \cdot).

Zestaw 2

1) Wyznaczyć i narysować zbiór $A \times B$, gdy

$$A = \left\{ x \in \mathbf{R} : \arccos |x - 2| \le \frac{\pi}{3} \right\}, \qquad B = \left\{ x \in \mathbf{R} : (x^2 + 1)^{5 - x} < 1 \right\}.$$

- **2)** Sprawdzić, czy odwzorowanie $f: \mathbf{R} \setminus \{2\} \to \mathbf{R} \setminus \{1\}$, $f(x) = \frac{x}{x-2}$ jest bijekcją. Jeśli tak, wyznaczyć funkcję f^{-1} .
- 3) Dla jakich argumentów funkcja $f(x) = x \cdot e^{\frac{1}{x}}$ jest jednocześnie rosnąca i wklęsła?
- 4) Wyznaczyć wszystkie asymptoty wykresu funkcji $f(x) = x 3 \operatorname{arcctg} x$.
- **5)** Wyznaczyć ekstrema lokalne funkcji $f(x,y) = x^2 6xy + y^3 + 6x + 6y$.
- **6)** W przestrzeni (\mathbf{R}^3 , \mathbf{R} , +, ·) dane są wektory: x = (1, 1, 0), y = (0, 1, 1), z = (1, 0, 1). Sprawdzić na podstawie definicji, czy układ wektorów {-y + x, -z + x + y, -2x + z} generuje przestrzeń (\mathbf{R}^3 , \mathbf{R} , +, ·).
- 7) Obliczyć pole obszaru ograniczonego krzywymi: $y = \ln x$, y = 1 x, y = 1.
- 8) Za pomocą macierzy odwrotnej, rozwiązać równanie macierzowe:

$$\left(X \cdot \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}\right)^{\mathsf{T}} - \begin{bmatrix} 2 & -1 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 3 & -4 \end{bmatrix} + 6I = \begin{bmatrix} -4 & 0 \\ 1 & -2 \end{bmatrix}.$$