Computer Assignment 2

Rainy Probabily Prediction

จัดทำโดย

นายรักษ์พงศ์ ทอหุล 600610769

เสนอ

รศ.ดร.ศันสนีย์ เอื้อพันธ์วิริยะกุล

รายงานนี้เป็นส่วนหนึ่งของวิชา

CPE 261456 (Introduction to Computational Intelligence)

ภาคเรียนที่ 1 ปีการศึกษา 2563

มหาวิทยาลัยเชียงใหม่

สารบัญ

สารบัญ	1
Method	2
1. Inputs	2
2. Fuzzification	2
2.1 Membership	3
3. Inference	4
4. Defuzzification	4
5. Outputs	5
Result	6
ภาคผนวกโปรแกรม	

Method

รูปที่ 1 ระบบคาดเดาโอกาสฝนตกด้วยฟัซซีคอนโทรล

การทำงานของระบบโดยรวม

1. Inputs

ระบบจะรับอินพุต 2 อินพุต คือ ค่าความชื้นในอากาศ และค่าความเร็วลม ซึ่งทั้งค่าความชื้นในอากาศจะมี ค่าอยู่ในช่วงของ $[0\,,100\,]$ โดยเป็นตัวเลขแสดงค่าเปอร์เซ็นเช่นหากอินพุตค่าความชื้นในอากาศเป็น 50 หมายถึงมีความชื้นในอากาศ 50% นั่นเองส่วนค่าความเร็วลมจะมีค่าในช่วง $[0\,,50\,]$ โดยมีหน่วยเป็น กิโลเมตรต่อชั่วโมง

2. Fuzzification

กระบวนการนี้ก็จะนำค่าอินพุตที่ได้จากข้อ 1 มาแปลงค่าจากหน่วยความจริงให้กลายเป็นหน่วยของฟัซซี่ ซึ่งก็คือค่าความเป็นสมาชิก

2.1 Membership

กำหนดค่าความเป็นสมาชิกของอินพุตที่ 1 ใช้ฟังก์ชั่นสามเหลี่ยม ,อินพุตที่ 2 ใช้ฟังก์ชั่นสี่เหลี่ยมคาง หมู และเอาต์พุตใช้ฟังก์ชั่นสามเหลี่ยม ในการกำหนดค่าความเป็นสมาชิกดังรูปต่อไปนี้

รูปที่ 2 ค่าความเป็นสมาชิกของอินพุตความชื้นในอากาศ

รูปที่ 3 ค่าความเป็นสมาชิกของอินพุตความเร็วลม

รูปที่ 4 ค่าความเป็นสมาชิกของเอาต์พุตโอกาสเกิดฝนตก

3. Inference

จะเป็นกระบวนการอนุมานผลลัพธ์จากกฎที่มีอยู่ใน Fuzzy Controller โดยวิธี Mamdani และ ประมวลผลกับฟัซซีอินพุต โดยวิธี Max-min composition ซึ่งกฎมีดังนี้

Rain_Probability	Humidity['low']	Humidity['medium']	Humidity['high']
Wind_Speed['low']	low	low	medium
Wind_Speed['medium']	low	medium	high
Wind_Speed['high']	medium	high	high

-โดยเอาต์พุตจะมีค่าอยู่ในช่วง 0% ถึง 100% ค่า low medium high เป็นดังนี้

Low คือ โอกาสฝนตก 0%

Medium คือ โอกาสฝนตก 50%

High คือ โอกาสฝนตก 100%

4. Defuzzification

เป็นการแปลงจากค่าเอาต์พุตที่เป็นฟัซซี่ให้เป็นค่าปกติโดยเลือกค่าสูงสุด หรือสรุปหาเหตุผลจากหลายๆ เซตมาเพียงค่าเดียว

5. Outputs

เอาต์พุตที่ได้ออกมาก็จะเป็นโอกาสที่จะเกิดฝนตกเป็นเปอร์เซ็นนั่นเอง

Result

เริ่มจากการทดลองใส่ค่าอินพุตเข้าไปในระบบก่อนโดยใส่ค่าอินพุต ความชื้นในอากาศเป็น 45% และค่า ความเร็วลมเป็น 25 กิโลเมตรต่อชั่วโมงจากนั้นระบบฟัซซีฟิเคชั่นจะแปลงค่าความจริงเป็นค่าฟัซซี่โดยความชื้นใน อากาศจะแปลงเป็นค่าความเป็นสมาชิก 'medium' เท่ากับ 0.79 และค่าความเร็วลมจะแปลงเป็นค่าความเป็น สมาชิก 'medium' เท่ากับ 1.0 ดังรูปประกอบต่อไปนี้

รูปที่ 5 ค่าความเป็นสมาชิกของฟัชซี่ความชื้นที่ 45%

รูปที่ 6 ค่าความเป็นสมาชิกของฟัซซี่ความเร็วลมที่ 25 กม/ชม

จากนั้นเป็นการอนุมานผลลัพธ์จากกฎที่มีอยู่ใน Fuzzy Controller โดยวิธี Mamdani ซึ่งค่าอินพุตที่ใส่มา สอดคล้องกับกฎในตารางดังนี้

Rain_Probability	Humidity['low']	Humidity['medium']	Humidity['high']
Wind_Speed['low']	low	low	medium
Wind_Speed['medium']	low	medium	high
Wind_Speed['high']	medium	high	high

จะได้การอนุมานว่าผลลัพธ์มีโอกาสเป็น 'medium' และเมื่อทำการหาค่าความเป็นสมาชิกด้วยวิธี max-min composition จะได้ค่าความเป็นสมาชิก 'medium' เท่ากับ 49.99 ดังนี้

รูปที่ 7 แสดงกระบวนการหาค่าความเป็นสมาชิกของเอาต์พุต

ก็จะได้เอาต์พุตมาดังนี้

รูปที่ 8 แสดงผลลัพธ์ของเอาต์พุต