The Language $D_k = \Sigma^* \mathbf{a} (\Sigma \cup \varepsilon)^{k-1}$ for each $k \ge 1$, over the alphabet $\Sigma = \{\mathbf{a}, \mathbf{b}\}$. Here, D_k is the language consisting of all strings that have at least one a among the last k symbols. The DFA (deterministic finite automata) that recognizes the language D_k .

The construction of M where $M = (Q_k, \sum, \delta_k, q_0, F)$ is as follows:

•
$$Q_k = \{q_0, q_1, q_2, ..., q_k\}$$
 = set of states

•
$$\Sigma = \{a, b\}$$
 = set of alphabets

•
$$q_0 = \{q_0\}$$
 = start state.

•
$$F = \{q_1, q_2...q_k\}$$
 = set of final states

*
$$\delta_{\it k}$$
 = Transition function is given as follows

$$\mathcal{S}_k\left(q,l\right) = \begin{cases} q_1 & i = 0 \land l = a \\ q_0 & i = 0 \land l = b \\ q_1 & i \neq 0 \land l = a \\ q_{(i+1) \bmod k} & i \neq 0 \land l = b \end{cases}$$

In other words,

- ${\it M}$ is in state ${\it q}_0$ if it has not seen and ${\it a}$ within the past ${\it k}$ letters then it will reject.
- It is in state q_i if it saw a from i letters ago.

The complete DFA is as follows:

