Appunti Elettrotecnica

Stefano Giulianelli

Semestre I, 2022/2023

Contents

1	Leg	${f gi}$	3
	1.1	Convenzioni	3
		1.1.1 Convenzione degli utilizzatori	3
		1.1.2 Convenzione dei generatori	3
	1.2	Potenza	3
	1.3	Legge di Ohm	3
	1.4	KVL: Legge di Kirchhoff per le tensioni	3
	1.5	KCL: Legge di Kirchoff per le correnti	3
	1.6	Partitore di tensione	3
	1.7	Partitore di corrente	3
	1.8	Teorema di Millman	4
	1.0		-
2	Cor	nponenti	4
	2.1	Generatori di tensioni	4
		2.1.1 in serie	4
		2.1.2 in parallelo	4
	2.2	Generatori di corrente	4
		2.2.1 in serie	4
		2.2.2 in parallelo	4
	2.3	Resistori	5
		2.3.1 in serie	5
		2.3.2 in parallelo	5
	2.4	Amplificatore operazionale	5
		2.4.1 Amplificatore operazionale invertente	5
		2.4.2 Amplificatore operazionale non invertente	5
			_

2.4.3	Sommatore	5
2.4.4	Amplificatore differenziale	-
2.4.5	Amplificatori operazionale in cascata	F

1 Leggi

1.1 Convenzioni

1.1.1 Convenzione degli utilizzatori

La corrente entra nel positivo ed esce nel negativo.

1.1.2 Convenzione dei generatori

La corrente entra nel negativo ed esce nel positivo.

1.2 Potenza

$$P = V * I$$

1.3 Legge di Ohm

$$V=I*R,\,I=\tfrac{V}{R},\,R=\tfrac{V}{I}$$

1.4 KVL: Legge di Kirchhoff per le tensioni

In una maglia (percorso chiuso), la somma delle tensioni è uguale a 0.

1.5 KCL: Legge di Kirchoff per le correnti

In un nodo, la somma delle correnti entranti sottratta la somma delle correnti uscenti è uguale a 0.

1.6 Partitore di tensione

$$V_i = V \frac{R_i}{R_{eq}}$$

1.7 Partitore di corrente

$$I_1 = I \frac{R_2 \|R_3\| R_4}{R_1 + R_2 \|R_3\| R_4}$$

1.8 Teorema di Millman

Due soli nodi devono essere presenti, ogni ramo deve contenere:

- un resistore
- un generatore di tensione e un resistore
- un generatore di corrente

Può contenere generatori dipendenti, che per la risoluzioni vengono considerati come indipendenti.

siderati come indipendenti.
$$v = \frac{\sum_{k=1}^{n} G_k v_k + A}{\sum_{k=1}^{n} G_k} = \frac{v_1 G_1 + v_2 G_2 + v_3 G_3 + \dots + v_n G_n + A}{G_1 + G_2 + G_3 + \dots + G_n}$$

2 Componenti

2.1 Generatori di tensioni

Se spento si sostituisce con un cortocircuito.

2.1.1 ... in serie

$$V_{eq} = V_1 + V_2 + V_3 + \dots + V_n$$

2.1.2 ... in parallelo

Non ha senso avere dei generatori di tensione in parallelo.

2.2 Generatori di corrente

Se spento si sostituisce con un circuito aperto.

2.2.1 ... in serie

Non ha senso avere dei generatori di corrente in serie.

2.2.2 ... in parallelo

$$I_{eq} = I_1 + I_2 + I_3 + \dots + I_n$$

2.3 Resistori

2.3.1 ... in serie

$$R_{eq} = R_1 + R_2 + R_3 + \dots + R_n$$

2.3.2 ... in parallelo

$$\begin{array}{l} R_{eq} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots + \frac{1}{R_n} \\ R_{eq} = \frac{R_1 R_2}{R_1 + R_2} \end{array}$$

2.4 Amplificatore operazionale

2.4.1 Amplificatore operazionale invertente

Identificato dalla presenza di un generatore all'ingresso negativo. $v_-=v_+=0$

2.4.2 Amplificatore operazionale non invertente

Identificato dalla presenza di un generatore (V_s) all'ingresso positivo. $v_- = v_+ = v_s$

2.4.3 Sommatore

$$v_o = -R_o \left(\frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_3}{R_3} \right)$$

2.4.4 Amplificatore differenziale

$$v_u = \left(1 + \frac{R_2}{R_1}\right) \frac{R_4}{R_3 + R_4} v_{s2} - \frac{R_2}{R_1} v_{s1}$$

2.4.5 Amplificatori operazionale in cascata

$$\frac{v_o}{v_{in}} = \left(-\frac{R_2}{R_1}\right) \left(-\frac{R_4}{R_3}\right)$$