Chapitre 17

Dimension finie

Définition: Soit E un \mathbb{K} -espace vectoriel. On dit que E est de <u>dimension finie</u> si E a au moins une famille génératrice finie. On dit que E est de <u>dimension infinie</u> sinon.

Théorème (Théorème de la base extraite): Soit E un \mathbb{K} -espace vectoriel non nul de dimension finie. Soit \mathscr{G} une famille génératrice finie de E. Alors, il existe une base \mathscr{B} de \mathscr{E} telle que $\mathscr{B} \subset \mathscr{G}$.

Preuve (par récurrence sur $\#G = \operatorname{Card}(G)$): — Soit E un \mathbb{K} -espace vectoriel non nul engendré par $\mathscr{G} = (u)$.

Si $u = 0_E$, alors $E = \{0_E\}$: une contradiction ξ

Donc $u \neq 0_E$ donc (u) est libre. En effet,

$$\forall \lambda \in \mathbb{K}, \lambda u = 0_E \implies \lambda = 0_{\mathbb{K}}$$

Donc \mathscr{G} est une base de E.

— Soit $n \in \mathbb{N}_*$. Soit E un \mathbb{K} -espace vectoriel. On suppose que si E a une famille génératrice constituée de n vecteurs, alors on peut extraire de cette famille une base de E.

Soit ${\mathscr G}$ une famille génératrice de E avec n+1 vecteurs.

Si \mathscr{G} est libre, alors \mathscr{G} est une base de E.

Si \mathcal{G} n'est pas libre, alors il existe $u \in \mathcal{G}$ tel que $u \in \text{Vect}(\mathcal{G} \setminus \{u\})$ Donc $\mathcal{G} \setminus \{u\}$ engendre E. Or, $\mathcal{G} \setminus \{u\}$ possède n vecteurs. D'après l'hypothèse de récurrence, il existe une base \mathcal{B} de E telle que

$$\mathscr{B} \subset \mathscr{G} \setminus \{u\} \subset \mathscr{G}$$

Corollaire: Tout espace de dimension finie a une base.

Théorème (Théorème de la base incomplète): Soit E un \mathbb{K} -espace vectoriel de dimension finie, \mathscr{G} une famille génératrice finie de E. \mathscr{L} une famille libre de E. Alors, il existe une base \mathscr{B} de E telle que

$$\mathcal{L} \subset \mathcal{B}$$
 et $\mathcal{B} \setminus \mathcal{L} \subset \mathcal{G}$

Preuve (par récurrence sur $\#(\mathcal{G} \setminus \mathcal{L})$): — Avec les notations précédentes,

on suppose que $\mathscr{G} \setminus \mathscr{L} \neq \varnothing$

$$\forall u \in \mathcal{G}, u \in \mathcal{L}$$

Donc $\mathscr{G}\subset\mathscr{L}$ donc \mathscr{L} est génératrice donc \mathscr{L} est une base de E. On pose $\mathscr{B}=\mathscr{L}$ et alors

$$\mathcal{L} \subset \mathcal{B}$$
 et $\mathcal{B} \setminus \mathcal{L} = \emptyset \subset \mathcal{G}$

— Soit $n \in \mathbb{N}$. On suppose que si \mathscr{G} est génératrice et \mathscr{L} libre avec $\#(\mathscr{G} \setminus \mathscr{L}) = n$ alors il existe une base \mathscr{B} de E telle que

$$\mathcal{L} \subset \mathcal{B} \text{ et } \mathcal{B} \setminus \mathcal{L} \subset \mathcal{G}$$

Soient à présent $\mathscr G$ une famille génératrice de E et $\mathscr L$ une famille libre de E telles que $\#(\mathscr G\setminus\mathscr L)=n+1>0$

Si $\mathcal L$ engendre E, alors $\mathcal L$ est une base de E. On pose $\mathcal B=\mathcal L$ et on a bien

$$\mathscr{L} \subset \mathscr{B}$$
 et $\mathscr{B} \setminus \mathscr{L} = \varnothing \subset \mathscr{G}$

On suppose que \mathscr{L} n'engendre pas E. Il existe $u \in \mathscr{G}$ tel que $u \notin \mathscr{L}$ (car sinon, $\mathscr{G} \subset \mathrm{Vect}(\mathscr{L})$ et donc $\underbrace{\mathrm{Vect}(\mathscr{G})}_{=E} \subset \underbrace{\mathrm{Vect}(\mathscr{L})}_{\subset E}$

Donc $\mathcal{L} \cup \{u\}$ est libre. On pose $\mathcal{L}' = \mathcal{L} \cup \{u\}$

$$\mathscr{G} \setminus \mathscr{L}' = \mathscr{G} \setminus (\mathscr{L} \cup \{u\}) = (\mathscr{G} \setminus \mathscr{L}) \setminus \{u\}$$

 $\operatorname{donc} \#(\mathscr{G} \setminus \mathscr{L}') = n + 1 - 1 = n$

D'après l'hypothèse de récurrence, il existe ${\mathscr B}$ une base de E telle que

$$\mathcal{L} \subset \mathcal{L}' \subset \mathcal{B} \text{ et } \mathcal{B} \setminus \mathcal{L}' \subset \mathcal{G}$$

$$\mathcal{B} \setminus \mathcal{L} = \underbrace{\mathcal{B} \setminus \mathcal{L}'}_{\subset \mathcal{G}} \cup \underbrace{\{u\}}_{\text{car } u \in \mathcal{G}}$$

On a $\mathscr{B} \setminus \mathscr{L} \subset \mathscr{G}$

Théorème: Soit E un \mathbb{K} -espace vectoriel de dimension finie. Toutes les bases de E ont le même cardinal.

Preuve:

Soit ${\mathscr G}$ une famille génératrice finie de E et ${\mathscr B}\subset{\mathscr G}$ une base de E. On note $n=\#{\mathscr B}$

Soit \mathscr{B}' une base de E. On pose $p = n - \#(\mathscr{B} \cap \mathscr{B}')$. Montrons par récurrence sur p que $\#\mathscr{B} = \#\mathscr{B}'$

— On suppose que p = 0. Alors, $\#(\mathcal{B} \cap \mathcal{B}') = n$ Or, $\mathcal{B}' \cap \mathcal{B} \subset \mathcal{B}$ donc $\mathcal{B} \cap \mathcal{B}' = \mathcal{B}$ donc $\mathcal{B} \subset \mathcal{B}'$ et donc $\mathcal{B} = \mathcal{B}'$

— Soit $p \in \mathbb{N}$. On suppose que si \mathscr{B}' est une base de E telle que $n - \#(\mathscr{B} \cap \mathscr{B}') = p$, alors $\#\mathscr{B}' = n$ Aoit \mathscr{B}' une base de E telle que $n - \#(\mathscr{B} \cap \mathscr{B}') = p + 1 > 0$ Donc $\mathscr{B} \cap \mathscr{B}' \neq \mathscr{B}$. Soit $u \in \mathscr{B}' \setminus \mathscr{B}$. D'après le lemme d'échange, il

Donc $\mathcal{B} \cap \mathcal{B}' \neq \mathcal{B}$. Soit $u \in \mathcal{B}' \setminus \mathcal{B}$. D'après le lemme d'échange, il existe $v \in \mathcal{B} \setminus \mathcal{B}'$ tel que $\mathcal{B}' \setminus \{u\} \cup \{v\}$ est une base de E. On pose $\mathcal{B}'' = \mathcal{B}' \setminus \{u\} \cup \{v\}$

$$\begin{split} \mathscr{B}'' \cap \mathscr{B} &= ((\mathscr{B}' \setminus \{u\}) \cap \mathscr{B}) \cup \{v\} \\ &= (\mathscr{B}' \cap \mathscr{B}) \cup \{v\} \end{split}$$

donc,

$$n - \#(\mathcal{B}'' \cap \mathcal{B}) = n - (\#(\mathcal{B}' \cap \mathcal{B}) + 1)$$
$$= p + 1 - 1$$
$$= p$$

D'après l'hypothèse de récurrence,

$$\#\mathscr{B}'' = n$$

Or,
$$\#\mathscr{B}'' = \#\mathscr{B}'$$

Lemme: Soient \mathcal{B} et \mathcal{B}' deux bases de E telles que $\mathcal{B} \subset \mathcal{B}'$. Alors, $\mathcal{B} = \mathcal{B}'$.

Preuve:

On suppose $\mathscr{B}' \neq \mathscr{B}$. Soit $u \in \mathscr{B}' \setminus \mathscr{B}$ $u \in E = \operatorname{Vect}(\mathscr{B})$ donc $\mathscr{B} \cup \{u\}$ n'est pas libre. Donc $\mathscr{B} \cup \{u\} \subset \mathscr{B}'$ et \mathscr{B}' est libre donc $\mathscr{B} \cup \{u\}$ est libre : une contradiction $\frac{1}{2}$

Lemme (Lemme d'échange): Soient \mathcal{B}_1 et \mathcal{B}_2 deux bases de E et $u \in \mathcal{B}_1 \setminus \mathcal{B}_2$. Alors, il existe $v \in \mathcal{B}_2$ tel que $(\mathcal{B}_1 \setminus \{u\}) \cup \{v\}$ soit une base de E.

Preuve (1^{nde} méthode):

On suppose que pout tout $v \in \mathcal{B}_2$, $(\mathcal{B}_1 \setminus \{u\}) \cup \{v\}$ n'est pas une base de E Soit $v \in \mathcal{B}_2$.

— Supposons $(\mathscr{B}_1 \setminus \{u\}) \cup \{v\}$ non libre. $\mathscr{B}_1 \setminus \{u\}$ est libre. Donc $v \in \text{Vect}(\mathscr{B}_1 \setminus \{u\})$

— Supposons $(\mathcal{B}_1 \setminus \{u\}) \cup \{v\}$ non génératrice. Comme \mathcal{B}_1 engendre $E, u \notin \text{Vect}(\mathcal{B}_1 \setminus \{v\})$. On suppose que $\mathcal{B}_1 \neq \mathcal{B}_2$. $\forall v \in \mathcal{B}_2 \setminus \mathcal{B}_1, \text{Vect}(\mathcal{B}_1 \setminus \{v\}) = \text{Vect}(\mathcal{B}_1) = E \ni u \text{ donc}, (\mathcal{B}_1 \setminus \{u\}) \cup \{v\}$ engendre E et donc

$$v \in \operatorname{Vect}(\mathscr{B}_1 \setminus \{u\})$$

On a aussi

$$\forall v \in \mathcal{B}_1 \setminus \{u\}, v \in \text{Vect}(\mathcal{B}_1 \setminus \{u\})$$

Comme $u \notin \mathcal{B}_2$, on a

$$\forall v \in \mathscr{B}_2, v \in \text{Vect}(\mathscr{B}_1 \setminus \{u\})$$

docn

$$E = \operatorname{Vect}(\mathscr{B}_2) \subset \operatorname{Vect}(\mathscr{B}_1 \setminus \{u\})$$

donc $\mathcal{B}_1 \setminus \{u\}$ engendre E donc $\mathcal{B}_1 \setminus \{u\}$ est une base de E. Or, $\mathcal{B}_1 \setminus \{u\} \subset \mathcal{B}_1$, donc $\mathcal{B}_1 \setminus \{u\} = \mathcal{B}_1$

Preuve (2^{nde} méthode):

On suppose que pout tout $v \in \mathcal{B}_2$, $(\mathcal{B}_1 \setminus \{u\}) \cup \{v\}$ n'est pas une base de E

- Comme $u \in \mathcal{B}_1 \setminus \mathcal{B}_2$, nécéssairement $\mathcal{B}_1 \neq \mathcal{B}_2$ donc $\mathcal{B}_2 \not\subset \mathcal{B}_1$, donc $\mathcal{B}_2 \setminus \mathcal{B}_1 \neq \emptyset$
- Soit $v \in \mathcal{B}_2 \setminus \mathcal{B}_1$. Il existe $(\lambda_w)_{w \in \mathcal{B}_1}$ une famille de scalaires presque nulle telle que

$$v = \sum_{w \in \mathcal{B}_1} \lambda_w w - \lambda_u u + + \sum_{w \in \mathcal{B}_1 \setminus \{u\}} \lambda_w w$$

Si $\lambda_u \neq 0_E$, alors

$$u = \lambda_u^{-1} \left(v - \sum_{w \in \mathcal{B}_1 \setminus \{u\}} \lambda_w w \right)$$

$$\in \text{Vect}(\mathcal{B}_1 \setminus \{u\} \cup v)$$

 $\begin{array}{l} \operatorname{donc} \ \mathscr{B}_1 \subset \operatorname{Vect}(\mathscr{B}_1 \setminus \{u\} \cup \{v\}) \\ \operatorname{et} \ \operatorname{donc} \ E \subset \operatorname{Vect}(\mathscr{B}_1 \setminus \{u\} \cup \{v\}) \\ \operatorname{et} \ \operatorname{donc} \ \mathscr{B}_1 \setminus \{u\} \cup \{v\} \ \operatorname{engendre} \ E \\ \operatorname{donc} \ \mathscr{B}_1 \setminus \{u\} \cup \{v\} \ \operatorname{n'est} \ \operatorname{pas} \ \operatorname{libre} \\ \operatorname{donc} \ v \in \operatorname{Vect}(\mathscr{B}_1 \setminus \{u\}) \ (\operatorname{car} \ \mathscr{B}_1 \setminus \{u\} \ \operatorname{est} \ \operatorname{libre} \\ \operatorname{donc} \ \lambda_u = 0_{\mathbb{K}} \ \ \sharp \end{array}$

Donc, $\lambda_u = 0_{\mathbb{K}}$, docn $v \in \text{Vect}(\mathscr{B}_1 \setminus \{u\})$

On vient de prouver que

$$\mathscr{B}_2 \setminus \mathscr{B}_1 \subset \operatorname{Vect}(\mathscr{B}_1 \setminus \{u\})$$

 $\mathscr{B}_1 \setminus \{u\} \subset \operatorname{Vect}(\mathscr{B}_1 \setminus \{u\})$

Comme $u \notin \mathcal{B}_2$,

$$\mathscr{B}_2 \subset \operatorname{Vect}(\mathscr{B}_1 \setminus \{u\})$$

donc

$$E = \operatorname{Vect}(\mathscr{B}_2) \subset \operatorname{Vect}(\mathscr{B}_1 \setminus \{u\})$$

donc $\mathscr{B}_1 \setminus \{u\}$ engendre E. Donc, $\mathscr{B}_1 \setminus \{u\}$ est une base de E. Or, $\mathscr{B}_1 \setminus \{u\} \subset \mathscr{B}_1$, donc $\mathscr{B}_1 \setminus \{u\} = \mathscr{B}_1$

Définition: Soit E un \mathbb{K} -espace vectoriel de dimension finie. Le cardinal commun à toutes les bases de E est appelé <u>dimension</u> de E est notée $\dim(E)$ ou $\dim_{\mathbb{K}}(E)$

C'est donc aussi le nombre de coordonnées de n'importe quel vecteur dans n'importe quelle base.

Exemple: 1. $\dim_{\mathbb{R}}(\mathbb{C}) = 2$ et $\dim_{\mathbb{C}}(\mathbb{C}) = 1$

- 2. $\dim_{\mathbb{K}}(\mathbb{K}^n) = n$
- 3. $\dim_{\mathbb{K}}(\mathscr{M}_{n,p}(\mathbb{K})) = np$

Corollaire: Soit E un \mathbb{K} -espace vectoriel de dimension finie, \mathscr{L} une famille libre de E, \mathscr{G} une famille génératrice de E. On note $n=\dim(E)$

- 1. $\#\mathscr{G} \geqslant n$ et $(\#\mathscr{G} = n \implies \mathscr{G}$ est une base de E)
- 2. $\#\mathscr{L} \leqslant n$ et $(\#\mathscr{L} = n \implies \mathscr{L}$ est une base de E)

Corollaire: $\mathbb{R}^{\mathbb{R}}$ est de dimension infinie. $\forall i \in \mathbb{N}, e_i : x \mapsto x^i$ $(e_i)_{i \in \mathbb{N}}$ est libre dans $\mathbb{R}^{\mathbb{R}}$

Proposition: Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Alors $E \times F$ est de dimension finie et $\dim(E \times F) = \dim(E) + \dim(F)$

Preuve:

Soit (e_1, \ldots, e_n) une base de $E, (f_1, \ldots, f_p)$ une base de F. On pose

$$\begin{cases}
 u_1 &= (e_1, 0_F) \\
 u_2 &= (e_2, 0_F) \\
 &\vdots \\
 u_n &= (e_n, 0_F) \\
 u_{n+1} &= (0_E, f_1) \\
 u_{n+2} &= (0_E, f_2) \\
 &\vdots \\
 u_{n+p} &= (0_E, f_p)
\end{cases}$$

Soit $(x, y) \in E \times F$.

$$\left\{ \exists (x_1, \dots, x_n) \in \mathbb{K}^n, x = \sum_{i=1}^n x_i e_i \exists (y_1, \dots, y_n) \in \mathbb{K}^n, x = \sum_{j=1}^p y_j f_j \right\}$$

$$(x,y) = \left(\sum_{i=1}^{n} x_i e_i, \sum_{i=1}^{p} y_j f_j\right)$$
$$= \sum_{i=1}^{n} x_i (e_i + 0_F) + \sum_{j=1}^{p} y_j (0_E, f_j)$$
$$= \sum_{i=1}^{n} x_i u_i + \sum_{j=1}^{p} y_j u_{n+j}$$

Donc, $E \times F = \text{Vect}(u_1, \dots, u_{n+p})$ donc $E \times F$ est de dimension finie. Soit $(\lambda_1, \dots, \lambda_{n+p}) \in \mathbb{K}^{n+p}$ tel que

$$(*): \sum_{k=1}^{n+p} \lambda_k u_k = 0_{E \times F} = (0_E, 0_F)$$

$$(*) \iff \sum_{k=1}^{n} \lambda_{k}(e_{k}, 0_{F}) + \sum_{k=n+1}^{p} \lambda_{k}(0_{E}, f_{k-n}) = (0_{E}, 0_{F})$$

$$\iff \begin{cases} \sum_{k=1}^{n} \lambda_{k} e_{k} = 0_{E} \\ \sum_{k=n+1}^{p} \lambda_{k} f_{k-n} = 0_{F} \end{cases}$$

$$\iff \begin{cases} \forall k \in [\![1, n]\!], \lambda_{k} = 0_{\mathbb{K}} & (\operatorname{car}(e_{1}, \dots, e_{n}) \text{ est libre}) \\ \forall k \in [\![n+1, n+p]\!], \lambda_{k} = 0_{\mathbb{K}} & (\operatorname{car}(f_{1}, \dots, f_{n}) \text{ est libre}) \end{cases}$$

Donc (u_1, \ldots, u_{n+p}) est une base de $E \times F$. Donc, $\dim(E \times F) = n + p = \dim(E) + \dim(F)$

Remarque (Convention):

$$\dim\left(\left\{0_E\right\}\right) = 0$$

Théorème: Soit E un \mathbb{K} -espace vectoriel de dimension finie, F un sous-espace vectoriel de E. Alors, F est de dimension finie et $\dim(F) \leq \dim(E)$ Si $\dim(F) = \dim(E)$, alors F = E

Preuve:

On considère

 $A = \{k \in \mathbb{N} \mid \text{il existe une famille libre de } F \text{ à } k \text{ éléments} \}$

On suppose $F \neq \{0_E\}$.

- Soit $u \in F \setminus \{0_E\}$. (u) est libre donc $1 \in A$ et donc $A \neq \emptyset$
- Soit $\mathscr L$ une famille libre de F. Alors, $\mathscr L$ est une famille libre de E donc $\#\mathscr L\leqslant \dim(E)$

Donc A est majorée par $\dim(E)$

On en déduit que A a un plus grand élément p.

— Soit \mathcal{L} une famille libre de F avec p éléments. Si \mathcal{L} n'engendre pas F, alors il existe $u \in F$ tel que $u \notin \operatorname{Vect}(\mathcal{L})$ et donc $\mathcal{L} \cup \{u\}$ est une famille libre de F, donc $p+1 \in A$ en contradiction avec la maximalité de p.

Donc \mathscr{L} est une base de F donc F est de dimension finie et $\dim(F) = p \leq \dim(E)$

Soit $\mathcal B$ une base de F. Alors, $\mathcal B$ est aussi une famille de libre de E. Donc $\#\mathcal B\leqslant \dim(E)$ donc $\dim(F)=\dim(E)$

Si $\dim(F) = \dim(E)$, alors $\mathscr B$ est une base de E, et donc $F = \mathrm{Vect}(\mathscr B) = E$

Proposition (Formule de Grassmann): Soit E un \mathbb{K} -espace vectoriel de dimension finie, F et G deux sous-espace vectoriels de E. Alors,

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

Preuve:

Soit (e_1,\ldots,e_p) une base de $F\cap G$. (e_1,\ldots,e_p) est une famille libre de F. On complète (e_1,\ldots,e_p) en une base $(e_1,\ldots,e_p,u_1,\ldots,u_q)$ de F. De même, on complète (e_1,\ldots,e_p) en une base $(e_1,\ldots,e_p,v_1,\ldots,v_r)$ de G.

On pose $\mathscr{B}=(e_1,\ldots,e_p,u_1,\ldots,u_q,v_1,\ldots,v_r).$ Montrons que \mathscr{B} est une base de F+G

— Soit $u \in F + G$

On pose
$$u = v + w$$
 avec
$$\begin{cases} v \in F \\ w \in G \end{cases}$$

On pose
$$v = \sum_{i=1}^{p} \lambda_i e_i + \sum_{i=1}^{q} \mu_i u_i$$
 avec $(\lambda_1, \dots, \lambda_p, \mu_1, \dots, \lambda_q) \in \mathbb{K}^{p+q}$

On pose aussi
$$w=\sum_{i=1}^p \lambda_i' e_i + \sum_{i=1}^r \nu_j v_j$$
 avec $(\lambda_1',\ldots,\lambda_p',\nu_1,\ldots,\nu_r) \in$

 \mathbb{K}^{p+r}

D'où,

$$u = \sum_{i=1}^{p} (\lambda_i + \lambda_i') e_i + \sum_{j=1}^{q} \mu_j u_j + \sum_{k=1}^{r} \nu_k v_k \in \text{Vect}(\mathscr{B})$$

— Soient $(\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_q, \nu_1, \ldots, \nu_r) \in \mathbb{K}^{p+q+r}$. On suppose

(*)
$$\sum_{i=1}^{p} \lambda_i e_i + \sum_{j=1}^{q} \mu_j u_j + \sum_{k=1}^{r} \nu_k v_k = 0_E$$

D'où,

$$\underbrace{\sum_{i=1}^{p} \lambda_i e_i + \sum_{j=1}^{q} \mu_j u_j}_{\in F} = \underbrace{-\sum_{k=1}^{r} \nu_j v_k}_{\in G}$$

Donc,

$$f = \sum_{i=1}^{p} \lambda_i e_i + \sum_{j=1}^{q} \mu_j u_j \in F \cap G$$

Comme (e_1, \ldots, e_p) est une base de $F \cap G$, $\exists!(\lambda'_1, \ldots, \lambda'_p) \in \mathbb{K}^p$ tel que

$$f = \sum_{i=1}^{p} \lambda_{i}' e_{i} = \sum_{i=1}^{p} \lambda_{i}' e_{i} + \sum_{i=1}^{q} 0_{\mathbb{K}} u_{j}$$

Comme $(e_1, \ldots, e_p, u_1, \ldots, u_q)$ est une base de F,

$$\forall k \in [1, q], \mu_i = 0_{\mathbb{K}}$$

De même,

$$\forall k \in [1, r], \nu_k = 0_{\mathbb{K}}$$

On remplace dans (*) pour trouver

$$\sum_{i=1}^{p} \lambda_i e_i = 0_E$$

Comme (e_1, \ldots, e_p) est libre,

$$\forall i \in [1, p], \lambda_i = 0_{\mathbb{K}}$$

Donc \mathcal{B} est libre.

Donc,

$$\dim(F+G) = p+q+r$$

$$= (p+q)+(p+r)-p$$

$$= \dim(F) + \dim(G) - \dim(F \cap G)$$

Corollaire: Avec les hypothèse précédentes,

$$E = F \oplus G \iff \begin{cases} F \cap G = \{0_E\} \\ \dim(E) = \dim(F) + \dim(G) \end{cases}$$

Preuve: " \Longrightarrow " On suppose $E = F \oplus G$ Comme la somme est directe, $F \cap G = \{0_E\}$

$$\dim(E) = \dim(F)$$

$$= \dim(F) + \dim(G) - \dim(F \cap G)$$

$$= \dim(F) + \dim(G)$$

" \Leftarrow " On suppose $F \cap G = \{0_E\}$ et $\dim(E) = \dim(F) + \dim(G)$. On sait déjà que $F + G = F \oplus G$

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G) = \dim(E)$$

Donc F + G = E

Proposition: Soit F un \mathbb{K} -espace vectoriel de dimension finie n. Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base de F. L'application

$$f: \mathbb{K}^n \longrightarrow F$$

$$f: \mathbb{K}^n \longrightarrow F$$

$$(\lambda_1, \dots, \lambda_n) \longmapsto \sum_{i=1}^n \lambda_i e_i$$

est bijective. Si \mathbb{K} est infini, \mathbb{K}^n aussi et donc Faussi.

Si $\#\mathbb{K} = p \in \mathbb{N}_*$,

$$\#\mathbb{K}^n = p^n$$

$$\parallel$$

$$\#F$$