

موارد استفاده شبکه

برای طراحی یک شبکه خوب، در ابتدا باید بدانیم که کجا استفاده میشود.

مثالهایی از کاربردهای شبکه

- در محل کار
- ارسال ایمیل، اشتراک گذاری فایل، پرینت و ...
 - در خانه
- فیلم و آهنگ، اخبار، تماس تلفنی، ویدئو و پیام رسانی، تجارت الکترونیکی (e-commerce)
 - در موبایل
 - تماس و پیام متنی، بازی ها، ویدئوها، نقشه ها، دسترسی به اطلاعات و ...

مثالهایی از استفاده شبکه

- ایمیل، اشتراک گذاری فایل، پرینت و ...
 - خانه

• فیلم و آهنگ، اخبار، ایجاد شبکهها چیست؟

با توجه به این کاربردها، علت e-commerce) جارت الكترونيكي

• موبایل

• تماس و پیام، بازی ها، ویدئوها، نقشه ها، دسترسی به اطلاعات

برای ارتباطات کاربران (User Communication)

- از تلفن به بعد:
- تماسهای تلفنی روی بستر شبکه IP ستر شبکه
 - ويدئوكنفرانس Video conferencing
 - پیام رسانی بلادرنگ Instant messaging
 - شبکه های اجتماعی Social networking

بنابراین شبکه ارتباطات از راه دور را فراهم میکند. حال چه متریکی برای بهینهسازی این استفادهها نیاز داریم؟ تاخیر کم باعث ارتباط بهتر خواهد شد.

برای به اشتراکگذاری منابع (Resource Sharing)

- بسیاری از کاربران ممکن است بخواهند به منبع یکسانی دسترسی پیدا کنند.
 - برای مثال: پرینتر، فهرست جستجو (search index)، ماشینها در فضای ابری machines in the cloud
- اشتراک گذاری منابع از نظر هزینه خیلی به صرفه تر از اختصاص منبع اختصاصی برای هر کاربر است.
- حتى زمانى كه لينكها با روش تسهيم آمارى (statistical multiplexing) به اشتراك گذاشته شده باشند.

تسهیم آماری (Statistical Multiplexing)

- به اشتراکگذاری پهنای باند شبکه بین کاربران بر اساس آمار تقاضای آنها
 - تسهیم (Multiplexing) فقط به معنای به اشتراک گذاری (sharing)
- روش یاد شده مفید است زیرا ترافیک کاربران به صورت انفجاری (bursty) بوده و در اکثر مواقع استفادهای نمی کنند.
 - سوال کلیدی:
 - این روش چقدر می تواند مفید باشد؟

تسهیم آماری (Statistical Multiplexing) تسهیم

• مثال: کاربران در یک شبکه ISP

- شبکه شامل پهنای باند ۱۰۰ مگا بیت بر ثانیه (Mbps) است.
- هر کاربر برای مشاهده ویدئوها از ۵ مگا بیت بر ثانیه استفاده می کند.
 - اما هر کاربر فقط ۵۰ درصد زمانها فعال است.

• شبکه ISP یادشده، چه تعداد کاربر را می تواند پوشش دهد؟ - با پهنای باند اختصاصی برای هر کاربر:
$$\frac{100}{5} = 20$$

$$\frac{1}{2} \times \frac{1}{2} \times \dots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{20} < \frac{1}{10000000}$$

 $\frac{1}{2} \times \frac{1}{2} \times ... \times \frac{1}{2} = \left(\frac{1}{2}\right)^{20} < \frac{1}{1000000}$:با در نظر گرفتن کاربران مستقل)

(۳) (Statistical Multiplexing) تسهیم آماری

Binomial Calculator

- با وجود ۳۰ کاربر، هنوز احتمال خیلی کمی وجود دارد که به پهنای باند بیش از ۱۰۰ مگابیت بر ثانیه نیاز باشد (احتمال ۲ درصد)
 - احتمالات دو جمله ای (Binomial Probabilities)
- می تواند کاربران بیشتری را با سایز شبکه یکسان یوشش دهد.
 - گین تسهیم آماری ۳۰/۲۰ و یا ۱.۵X است
- اما ممکن است بدشانس باشیم؛ در این صورت، کاربران سرویس با کیفیت کاهش یافتهای خواهند داشت.

تسهیم آماری (Statistical Multiplexing) تسهیم

توزیع دوجملهای:

یک آزمایش دوجملهای بایستی دارای ویژگیهای زیر باشد:

- آزمایش دارای تعداد n آزمون یکسان و عیناً مشابه باشد.
 - آزمونها مستقل باشند.
- نتیجه هر آزمون فقط به یکی از این دو صورت باشد: موفقیت یا شکست.
- احتمال موفقیت آزمونی را اگر با p نشان دهیم، از آزمون به آزمون یکسان بوده و متغیر نباشد. احتمال شکست را با q نشان داده و برابر است با q=1-p

تابع جرم احتمال:

$$\Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

برای تحویل محتوا (Content Delivery)

- برخی از محتواها به کابران زیادی تحویل داده می شوند. - ویدئوها (حجیم)، آهنگها، برنامهها، ارتقاء نرم افزارها، صفحات وب و ...
- معیار سنجشی (متریک) که ما میخواهیم در چنین مواردی بهینهسازی کنیم چیست؟
 - به صرفه تر از ارسال کپی جداگانه به هر یک از کاربران است.
 - √ استفاده از کیی تکرار در شبکه

(۲) (Content Delivery) برای تحویل محتوا

• در مثال زیر، ارسال محتوا از یک منبع به ۴ کاربر، نیاز به ۴×۳ =۱۲ پرش شبکه (network) دارد. (hops

برای تحویل محتوا (Content Delivery) (۲)

• اما ارسال محتوا با استفاده از کپی تکرارها، تنها ۲+۲ = ۶ پرش شبکه نیاز دارد.

برای ارتباطات کامپیوتری

- برقراری ارتباط با کامپیوترهای دیگر
- برای مثال: تجارت الکترونیکی (e-commerce) و رزرواسیون (reservations)
- فراهم کردن قابلیت پردازش خود کار اطلاعات در میان بخشهای (parties) مختلف

برای اتصال کامپیوترها به جهان فیزیکی

- برای جمع آوری داده سنسورها و برای اثر گذاری در جهان
- برای مثال: وب کمها، موقعیت بر روی موبایلها، قفل و یا باز کردن دربها از طریق شبکه و ...
 - این یک کاربرد ارزشمند و نوظهور است.

مانیتور سلامتی و به اشتراک گذاری دادههای ذخیرهشده از طریق شبکه

جمع بندى علت ايجاد شبكهها

- برای ارتباطات کاربران
- برای به اشتراکگذاری منابع
 - برای تسهیم آماری
 - برای تحویل محتوا
 - برای ارتباطات کامپیوتری
- برای اتصال کامپیوترها به جهان فیزیکی

(Connectivity) اتصال

ارزش اتصال (Connectivity) یک شبکه

Bob Metcalfe

© 2009 IEEE

- قانون Metcalfe سال ۱۹۸۰
- N^2 ارزش اتصال یک شبکه با N گره، متناسب است با $\sqrt{}$
- ✓ شبکههای بزرگ به طور نسبی با ارزشتر (گرانتر) از شبکههای کوچک میباشند.

ارزش اتصال (Connectivity) یک شبکه (۲)

• مثال: هر دو شبکه زیر شامل ۱۲ گره هستند، اما شبکه سمت چپ دارای اتصالات بیشتری است.

Full Mesh: 12×11=132 connections

$$(6 \times 5 = 30) + (6 \times 5 = 30) = 60$$
 connections

