Содержание

1	Инт	егралы, зависящие от параметра
	1.1	Интегралы, зависящие от параметра. Принцип равномерной сходимости
	1.2	Теорема о коммутировании двух предельных переходов. Предельный переход под знаком интеграла
	1.3	Теорема о непрерывности интеграла, зависящего от параметра
	1.4	Дифференцирование под знаком интеграла. Правило Лейбница
	1.5	Интегрирование под знаком интеграла
	1.6	Непрерывность и дифференцируемость интеграла с переменными пределами интегрирования
	1.7	Равномерная сходимость интегралов. Достаточные признаки равномерной сходимости
	1.8	Предельный переход в несобственном интеграле, зависящем от параметра
	1.9	Дифференцирование по параметру несобственного интеграла
	1.10	Интегрирование по параметру несобственного интеграла
0	TZ	,
2	K pa 2.1	тные интегралы Двоичные разбиения. Двоичные интервалы, полуинтревалы, кубы. Свойства двоичных инервалов,
		двоичные разоиения. двоичные интервалы, полуинтревалы, куоы. Своиства двоичных инервалов, кубов
	2.2	Ступенчатые функции. Интеграл от ступенчатой функции (естественное и индуктивное определе-
	2.2	ния). Теорема о совпадении определений
	2.3	Свойства интеграла от ступенчатой функции (линейность интеграла, положительность, оценка ин-
	2.0	теграла)
	2.4	Теорема о пределе интегралов убывающей последовательности функций, поточечно сходящейся к
		нулю
	2.5	Теорема о пределе интегралов убывающей последовательности ступенчатых функций, поточечно
		сходящейся к нулю
	2.6	Системы с интегрированием. Основной пример. Свойства систем с интегрирование
	2.7	L1 норма. Множество L1*(Σ). L1-норма как интеграл от модуля функции
	2.8	Свойства L1 нормы ("линейность норма функции равной нулю почти всюду и т.д.)
	2.9	Субаддитивность L1-нормы
	2.10	Сходимость в смысле L1
	2.11	Определение понятие интеграла и интегрируемой функции
	2.12	Свойства интеграла и интегрируемых функций
	2.13	Множества меры ноль. Свойства функций совпадающих почти всюду
	2.14	Нормально сходящиеся ряды. Теорема о нормально сходящихся рядах
	2.15	Теоремы Леви для функциональных рядов и последовательностей
	2.16	Огибающие для последовательности интегрируемых функций. Нижний и верхний предел последо-
		вательности
	2.17	Теорема Фату о предельном переходе. Следствие из теоермы Фату
	2.18	Теорема Лебега о предельном переходе
		Лемма о приближении стпенчатой функции с помощью непрерывных финитных
	2.20	Теорема о приближении интегрируемой функции с помощью непрерывных финитных
	2.21 2.22	Измеримые функции. Свойства пространства измеримых функций. Измеримые множества
	$\frac{2.22}{2.23}$	Теорема об интегрируемости измеримой функции
	2.23 2.24	Теорема об интегрируемости предела возрастающей последовательности положительных измеримых
	2.24	функций
	2.25	Обобщенно измеримые функции. Измеримые множества, мера множества. Теорема об измеримости
	2.20	объединения и пересечения измеримых множеств
	2.26	Счетная аддитивность интеграла и меры
	2.27	Измеримые множества в Rn. Внешняя мера множества. Лемма о представлении открытого множе-
		ства как объединения кубов. Теорема об измеримости открытых и замкнутых множеств в Rn
	2.28	Теорема о внешней мере множества
	2.29	Лемма о приближении неотрицательной вещественной функции ступенчатыми функциями. След-
		ствие об измеримости непрерывной почти всюду функции
	2.30	Теорема о совпадении интералов Римана и Лебега
	2.31	Теорема Фубини и следствия из нее
	2.32	Теорема Тонелли и следствия из нее
	2.33	Диффеоморфизмы и их свойства. Теорема о замене переменной в кратном интеграле (формулировка)
	2.34	Лемма о замене переменной при композиции диффеоморфизмов

2.35	Лемма о сведении замены переменной в общем случае к случаю индикатора двоичного куба	7
2.36	Лемма о представлении диффеоморфизма в виде композиции диффеоморфизмов специального вида	7
2.37	Теорема о замене переменной в кратном интеграле	7

1 Интегралы, зависящие от параметра

1.1 Интегралы, зависящие от параметра. Принцип равномерной сходимости

Определение. $X \times Y \subset \mathbb{R}^2, f(x,y)$ определена на $X \times Y,$ пусть y_0 - предельная точка Y

- 1. пусть $\forall x \in X \quad \exists \lim_{y \to y_0} f(x, y) := \phi(x)$
- 2. пусть $\forall \epsilon > 0 \exists \delta(\epsilon)$ такая что $|y-y_0| < \delta |f(x,y)-\phi(x)| < \epsilon$ для $\forall x \implies$ тогда говорят, что f(x,y) равномерно сходится к $\phi(x)$

Теорема 1.1 (Свойства равномерной сходимости). $f: X \times Y \longrightarrow \mathbb{R}, y_0$ - предельная точка Y

- 1. f(x,y) равномерно на X сходится κ $\phi(x)$ тогда и только тогда, если $\forall \epsilon > 0$ $\exists \delta(\epsilon): \forall x \in X \forall y', y'' \in Y$ $|f(x,y') f(x,y'')| < \epsilon$ [Критерий Коши]
- 2. f(x,y) равномерно по X стремится κ $\phi(x)$ тогда и только тогда, если для $\forall \{y_n\}$ так что $y_n \longrightarrow y_0$ последовательность $\{f(x,y_n)\}$ равномерно сходится κ $\phi(x)$ [сходимость по Гейне]
- 3. Если при $\forall y$ функция f(x,y) непрерывна по x (интегрируема) и f(x,y) равномерно сходится κ $\phi(x)$, то $\phi(x)$ непрерывна и интегрируема
- 4. $\exists x_0, y_0$ предельные точки X и Y, f(x,y) равномерно по x сходится x $\phi(x)$, $\exists \forall y \in Y \exists \lim_{x \to x_0} f(x,y) =: \psi(y)$, тогда $\exists \lim_{x \to x_0} \phi(x) = \lim_{y \to y_0} \psi(y) [= \lim_{x \to x_0} \lim_{y \to y_0} f(x,y)]$

Доказательство. 1.
$$\lhd\Rightarrow\lim_{y\to y_0}f(x,y)=:\phi(y)$$

$$|f(x,y')-f(x,y'')|=|f(x,y')-\phi(x)-f(x,y'')+\phi(x)|\leq|f(x,y')-\phi(x)|+|f(x,y'')-\phi(x)|$$
 $\Leftarrow x\in X|f(x,y')-f(x,y'')|<\epsilon$ при $|y_0-y'|<\delta$ \Leftarrow при $\forall x\exists\lim_{y\to y_0}f(x,y)=:\phi(x)$ $|f(x,y')-f(x,y'')|<\epsilon$, $y''\to y_0$ $|f(x,y')-\phi(x)|\leq\epsilon$, $f(x,y)\Rightarrow\phi(x)$

2. Необходимость очевидна

Достаточность:
$$\{y_n\} \to y_0$$
 $\{f(x,y_n)\} \to \phi(x)$, пусть $|y_0-y_n| < \delta = \frac{1}{n} \implies y_n \to y_0$ и $|f(x,y_n)-\phi(x)| > \epsilon$; $f(x,y_n) \nrightarrow \phi(x)$ противоречие

3. $\exists \{y_n\} \to y_0, f_n(x) = f(x, y_n)$

 $f_n(x)$ равномерно сходится к $\phi(x)$ по 2

Далее $\phi(x)$ равномерный предел хороших функий $\implies \phi(x)$ хорошая

Попа дробнее... (для последовательности функций от одной переменной)

$$|s(x_0 + h) - s(x_0)| = |s(x_0 + h) + s_n(x_0 + h) - s_n(x_0) - s_n(x_0 + h) + s_n(x_0) - s(x_0)|$$

$$\leq |s(x_0 + h) - s_n(x_0 + h)| + |s_n(x_0 + h) - s_n(x_0)| + |s_n(x_0) - s(x_0)|$$

Каждое из этих слагаемых меньше $\epsilon/3$ (среднее по причине непрерывности $s_n(x)$, остальные по причине равномерной сходимости)

4. $f(x,y) \Rightarrow \phi(x), \exists \epsilon > 0$, выберем $\delta > 0$ такое что: $|y_0 - y'| < \delta$ и $|y_0 - y''| < \delta \Longrightarrow$ $|f(x,y')-f(x,y'')|<\epsilon$ по к. Коши $x \to x_0 : |\psi(y') - \psi(y'')| \le \epsilon \implies$ для $\psi(y)$ верен критерий Коши \Longrightarrow $\exists \lim_{y \to y_0} \psi(y) = A = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$ $|f(x,y)-\phi(x)|<\epsilon, |\psi(y)-A|<\epsilon$ если $|y-y_0|<\delta$ $|\phi(x)-A| \leq |\phi(x)-f(x,y)|_{<\epsilon} + |f(x,y)-\psi(y)|_{<\epsilon,\text{t.K дельты}} + |\psi(y)-A|_{<\epsilon} \leq 3\epsilon$ при $x \to x_0 \implies \lim_{x \to x_0} \phi(x) = A$

1.2Теорема о коммутировании двух предельных переходов. Предельный переход под знаком интеграла

 $f(x,y):[a,b] imes Y o \mathbb{R},y_0$ - предельная точка Y и $f_y(x)=f(x,y)$ - интегрируема на [a,b] $F(y)=\int_a^b f(x,y)dx$

Теорема 1.2 (О предельном переходе). Если кроме того, что f(x,y) равномерно на [a,b] стремится κ $\phi(x)$ при $y \to y_0, \ mo \ \lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx$

Доказательство. $\triangleleft \phi(x)$ - равномерный предел, непрерывен

 $f_y(x) \Longrightarrow \phi(x)$ - интегрируема, $\exists \epsilon > 0$ $\delta(\epsilon) > 0$ выбрано из определения равномерной сходимости $|\int_a^b f(x,y) dx - \int_a^b \phi(x) dx| = |\int_a^b (f(x,y) - \phi(x)) dx| \le \int_a^b |f(x,y) - \phi(x)| dx \le \epsilon (b-a)$ если $|y-y_0| < \epsilon$ $\lim_{y \to y_0} \int_a^b f(x,y) dx = \int_a^b \phi(x) dx$

1.3 Теорема о непрерывности интеграла, зависящего от параметра

Теорема 1.3 (Непрерывность). f(x,y)-непрерывна, $f:[a,b]\times[c,d]\to\mathbb{R}$ $f(y) = \int_a^b f(x,y) dx$ непрерывна на [c,d]

Доказатель ство.
$$\lhd[a,b] \times [c,d]$$
 компакт $\Longrightarrow f(x,y)$ равномерно непрерывна на компакте $\forall \epsilon > 0: \begin{array}{c} |x-x'| < \delta \\ |y-y'| < \delta \end{array} \Longrightarrow |f(x,y) - f(x',y')| < \epsilon \end{array}$

 $x' = x, y' = y_0$

 $|f(x,y)-f(x,y_0)|<\epsilon$ при $|y-y_0|<\delta(\epsilon)$

 $f(x,y) \rightrightarrows f(x,y_0) = \phi(x)$ равномерный предел не зависит от х

по теореме о предельном переходе: $\lim_{y\to y_0} F(y) = \lim_{y\to y_0} \int_a^b f(x,y) dx = \int_a^b \phi(x) dx = \int_a^b f(x,y_0) dx = F(y_0) \implies F \text{ непрерывна в } y_0 \in [c,d] \implies F$ непрерывна на [c,d]

Дифференцирование под знаком интеграла. Правило Лейбница 1.4

Теорема 1.4 (О дифференцируемости интеграла, зависящего от параметра). f(x,y) - определена $\varepsilon[a,b] \times [c,d]$ при $\forall y \in [c,d]$ функция $f_y(x) = f(x,y)$ непрерывна по $x, \exists f_v'(x,y) \exists u$ непрерывна в прямоугольнике, тогда

$$F(y)=\int_a^b f(x,y)dx$$
u $F'(y)=\int_a^b f_y'(x,y)dx$

Доказатель ство. \triangleleft в силу непрерывности f(x,y) по x, определена $F(y)=\int_a^b f(x,y)dx$

$$y_0 \in [c, d], F(y_0) = \int_a^b f(x, y_0) dx$$

$$F(y_0 + \triangle) = \int_0^b f(x, y_0 + \triangle) dx$$

$$g_0 \in [c, a], F(y_0) - J_a f(x, y_0) dx$$

$$F(y_0 + \triangle) = \int_a^b f(x, y_0 + \triangle) dx$$

$$\frac{F(y_0 + \triangle) - F(y_0)}{\triangle} = \int_a^b \frac{f(x, y_0 + \triangle) - f(x, y_0)}{\triangle} dx$$

По теореме Лагранжа, $\exists \theta \in (0,1)$ т.ч $\frac{f(x,y_0+\triangle)-f(x,y_0)}{\triangle} = f_y'(x,y_0+\theta\triangle)$

$$\frac{f(x,y_0+\triangle)-f(x,y_0)}{\triangle} = f'_y(x,y_0+\theta\triangle)$$

т.к F непрерывна \Longrightarrow равномерно непрерывна \Longrightarrow для $\epsilon>0$ $\exists \delta>0 \ \ \begin{vmatrix} x'-x''|<\delta \\ |y'-y''|<\delta \end{vmatrix} \Longrightarrow |f_y'(x',y')-f_y'(x'',y'')|$

```
x'=x''=x,y'=y_0+\triangle\theta,y''=y_0,\text{если}\ \triangle<\delta\\ |\frac{f(x,y_0+\triangle)-f(x,y_0)}{\triangle}-f_y'(x,y_0)|=|f_y'(x,y_0+\theta\triangle)-f_y'(x,y_0)|<\epsilon\text{ т.к }\delta(\epsilon)\\ \text{ неравенство не зависит от точек, т.е}\\ \frac{f(x,y_0+\triangle)-f(x,y_0)}{\triangle}\rightrightarrows f_y'(x,y_0)\text{ равномерно по x}\\ \text{В силу теоремы о предельном переходе, получаем что }\int_a^b\frac{f(x,y_0+\triangle)-f(x,y_0)}{\triangle}dx\to\int_a^bf_y'(x,y_0)dx\\ \frac{F(y_0+\triangle)-F(y_0))}{\triangle}\to F_y'(y_0)
```

1.5 Интегрирование под знаком интеграла

Теорема 1.5 (О интегрируемости F(y)). $\Box f(x,y)$ непрерывна в [a,b]x[c,d], тогда имеет место равенство $\int_c^d (\int_a^b f(x,y)dx)dy = \int_a^b (\int_c^d f(x,y)dy)dx$

По предыдущей теореме $(\int_a^b \phi(x,\eta) dx)'_{\eta} = \int_a^b \phi'_{\eta}(x,\eta) dx = \int_a^b f(x,\eta) dx = F(\eta) \implies$ левая и правая часть могут отличаться лишь на const, но при $\eta = c$ обе части равны $0 \implies C = 0$

1.6 Непрерывность и дифференцируемость интеграла с переменными пределами интегрирования

Теорема 1.6. $\Box f(x,y)$ определена и непрерывна в прямоугольнике $[a,b] \times [c,d]$ $x = \alpha(y); x = \beta(y)$ непрерывны и не выходят за пределы прямоугольника Тогда $F(y) = \int_{\alpha(y)}^{\beta(y)} f(x,y) dx$ непрерывен

Доказатель ство. $\forall y_0 \in [c,d]$ $F(y) = \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx + \int_{\beta(y_0)}^{\beta(y)} f(x,y) dx - \int_{\alpha(y_0)}^{\alpha(y)} f(x,y) dx$ т.к $\beta(y_0), \alpha(y_0) = C$, to $\int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx \stackrel{\text{def}}{=} \widetilde{F}(y) \to \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y_0) dx = \widetilde{F}(y_0)$ $|\int_{\beta(y_0)}^{\beta(y)} f(x,y) dx| \leq \int_{\beta(y_0)}^{\beta(y)} |f(x,y)| dx \leq M|\beta(y) - \beta(y_0)| \to 0, \text{ где } M \leq |f(x,y)|, \text{ при } y \to y_0$ при $y \to y_0$ $F(y) \to \widetilde{F}(y)$ $F(y) \to \widetilde{F}(y) \to \widetilde{F}(y_0)$

Теорема 1.7. $\Box f(x,y)$ определена в $[a,b] \times [c,d]$ имеет в ней непрерывную производную $f'_y(x,y)$ $\alpha'(y)$ и $\beta'(y)$ - непрерывны, тогда $F'_y(y) = \int_{\alpha(y_0)}^{\beta(y_0)} f'_y(x,y) dx + \beta'(y) f(\beta(y),y) - \alpha'(y) f(\alpha(y),y)$

Доказатель ство. $F(y) = \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx + \int_{\beta(y_0)}^{\beta(y)} f(x,y) dx - \int_{\alpha(y_0)}^{\alpha(y)} f(x,y) dx$ ($\int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx$), f(x,y) dx т.к пределы постоянные $\frac{\int_{\beta(y_0)}^{\beta(y)} f(x,y) dx - 0}{y - y_0} = \frac{f(\widetilde{x},y)(\beta(y) - \beta(y_0))}{y - y_0} [\widetilde{x} \text{ между } \beta(y) \text{ и } \beta(y_0)]$ при $y \to y_0 \frac{\int_{\beta(y_0)}^{\beta(y)} f(x,y) dx}{y - y_0} \to f(\beta(y_0),y_0)\beta'(y_0)$, т.е ($\int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx$), f(x,y) dx), f(x,y) dx, аналогично со вторым интегралом

1.7 Равномерная сходимость интегралов. Достаточные признаки равномерной сходимости

 $\int_a^\omega F(x)dx$ - несобственный, если $\omega=\pm\infty$ или f(x) не ограничена в окрестности ω $\Box f(x,y)$ определена на множестве $[a,\omega)\times Y$ Для всех $y\in Y$ функция $f_y(x)=f(x,y)$ несобственно интегрируема на $[a,\omega)$, тогда $F(y)=\int_a^\omega f(x,y)dx=\lim_{b\to\omega}\int_a^b f(x,y)$

Определение. $f(b,y)=\int_a^b f(x,y)dx$, тогда сходимость F(y) равносильна существованию предела $\lim_{b\to\infty}F(b,y)=$ $F(y) = F(\omega, y)$

Определение. $\mathrm{F}(\mathrm{y})$ называется равномерно сходящейся относительно у на Y, если $\forall \epsilon \ \exists \delta(\epsilon): \forall y \in Y \ \forall b \in \mathcal{S}$ $(a,\omega)|b-\omega| < \delta \implies |F(b,y)-F(y)| < \epsilon$ $F(b,y) \rightrightarrows_{b\to\omega} F(y)$

 $\it 3ameuanue. \ \ \, \supset \, - \{b_n\}$ - последовательность сходится к ω согласно свойствам равномерной сходимости

$$F(b,y) \rightrightarrows F(y) \leftrightarrow F(b_n,y) \rightrightarrows F(y)$$

$$a_n y \stackrel{\mathrm{def}}{=} \int_{b_n}^{b_{n+1}} f(x,y) dx, b_1 = a, b_j \geq a$$
 Тогда $F(y) = \sum_{n=1}^{\infty} a_n(y)$

Тогда
$$F(y) = \sum_{n=1}^{\infty} a_n(y)$$

Равномерная сходимость F(y) равносильна равномерной сходимости ряда

Теорема 1.8 (Признаки равномерной сходимости интеграла). 1. (Вейерштрасса) f(x,y) определена на $[a,\omega) \times$ Y,ω - особая точка f(x,y) и f(x,y) интегрируема на $[a,b]\subset [a,\omega)$ Если $\exists \phi(x)|f(x,y)|\leq \phi(x)$ $\forall x\in [a,\omega) \forall y\in Y$ $u \int_a^\omega \phi(x) dx$ сходится, то $\int_a^\omega f(x,y) dx = F(y)$

- 2. (Дирихле) $F(y) = \int_a^\omega f(x,y)g(x,y)dx, g(x,y)$ монотонно по $x \to \omega$ равномерно по y стремится κ 0 u для \forall отрезка $[a,b] \subset [a,\omega)$
 - $|\int_a^b f(x,y)dx| \leq L$, тогда F(y) сходится равномерно
- 3. (Абель) $F(y) = \int_a^\omega f(x,y)g(x,y)dx$

Если $\int_{a}^{\omega} f(x,y)dx$ сходится равномерно g(x,y) монотонно по x равномерно по y сходится κ своему пределу

Доказательство. 1. очевидно Для F(y) используем критерий Коши

- 2. $\int_{b'}^{b''} f(x,y)g(x,y)dx = g(b',y) \int_{b'}^{\xi} f(x,y)dx + g(b'',y) \int_{\xi}^{b''} f(x,y)dx, \xi \in (b',b'')$ $g(b,y) \to 0$ равномерно по у $\implies \exists B$ такое что $\forall b',b'' > B$ $|g(b',y)| < \frac{\epsilon}{2L} \quad |g(b'',y)| < \frac{\epsilon}{2L} \implies F(y)$ сходится равномерно
- 3. $\int_a^\omega f(x,y)dx$ сходится равномерно $\forall \epsilon > 0 \exists \delta \quad \forall b',b'' > B | \int_{b'}^{b''} f(x,y)dx | \widetilde{\epsilon}$ т.к g(x, y) равномерно сходится к G(y)|q(x,y)| < M при х близком к ω

$$\widetilde{\epsilon}=rac{\epsilon}{2M},\,|\int_{b'}^{b''}f(x,y)g(x,y)dx|\leq Mrac{\epsilon}{2M}+Mrac{\epsilon}{2M}=\epsilon\implies F(y)$$
 сходится равномерно

1.8 Предельный переход в несобственном интеграле, зависящем от параметра

Теорема 1.9 (О предельном переходе). $\Box f(x,y)$ определена на $[a,\omega) \times Y$ для $\forall y \in Y$, интегрируема на $[a,b] \subset [a,\omega]$ равномерно относительно у сходится к функции $\phi(x)$ при $y \to y_0$ если $F(y) = \int_a^\omega f(x,y) dx$ сходится равномерно относительно $y \in Y \lim_{y \to y_0} \int_a^\omega f(x,y) dx = \int_a^\omega \phi(x) dx = \int_a^\omega \lim_{y \to y_0} f(x,y) dx$

 \mathcal{A} оказательство. $F(b,y)=\int_a^b f(x,y)dx$ это несобственный интеграл и для него верна теорема о о предельном

$$\lim_{b\to \omega} F(b,y) = \int_{-\infty}^{\omega} f(x,y)dx$$
 - равномерно

 $\lim_{y\to y_0} F(b,y) = \int_a^b \phi(x)\,dx$ $\lim_{b\to\omega} F(b,y) = \int_a^\omega f(x,y)dx$ - равномерно F(b,y) - для этой функции верны условии о перемене предельных переходов \Longrightarrow

$$\lim_{y\to y_0} \lim_{b\to\omega} \int_a^b f(x,y)dx = \lim_{y\to y_0} \int_a^\omega f(x,y)dx$$

Следствие: Если f(x,y) монотонно по у $\lim_{y\to y_0} f(x,y) = \phi(x)$ - непрерывны, тогда $\int_a^\omega \phi(x) dx \rightrightarrows \int_a^\omega f(x,y) dx$ сходится равномерно $\lim_{y \to y_0} F(y) = \int_a^\omega \phi(x) dx$

Доказательство. $f(x,y) \to \phi(x)$ $y \to y_0$ $\forall \epsilon > 0 \exists \delta: |y-y_0| < \delta \Longrightarrow |f(x,y)-\phi(x)| < \epsilon$ $\exists f(x,y)$ возрастает по у, тогда $F(b,y) = \int_a^b f(x,y) dx$ возрастает по у но $f(x,y) \le \phi(x) \Longrightarrow F(b,y) \le \int_a^b \phi(x) dx \le \int_a^\omega \phi(x) dx \Longrightarrow \lim_{b \to \omega} F(b,y) = \int_a^\omega f(x,y) dy$ - сходится Равномерность по Вейерштрассу

- 1.9 Дифференцирование по параметру несобственного интеграла
- 1.10 Интегрирование по параметру несобственного интеграла
- 2 Кратные интегралы
- 2.1 Двоичные разбиения. Двоичные интервалы, полуинтревалы, кубы. Свойства двоичных инервалов, кубов
- 2.2 Ступенчатые функции. Интеграл от ступенчатой функции (естественное и индуктивное определения). Теорема о совпадении определений
- 2.3 Свойства интеграла от ступенчатой функции (линейность интеграла, положительность, оценка интеграла)
- 2.4 Теорема о пределе интегралов убывающей последовательности функций, поточечно сходящейся к нулю
- 2.5 Теорема о пределе интегралов убывающей последовательности ступенчатых функций, поточечно сходящейся к нулю
- 2.6 Системы с интегрированием. Основной пример. Свойства систем с интегрирование
- 2.7 L1 норма. Множество L1*(Σ). L1-норма как интеграл от модуля функции
- 2.8 Свойства L1 нормы ("линейность норма функции равной нулю почти всюду и т.д.)
- 2.9 Субаддитивность L1-нормы
- 2.10 Сходимость в смысле L1
- 2.11 Определение понятие интеграла и интегрируемой функции
- 2.12 Свойства интеграла и интегрируемых функций
- 2.13 Множества меры ноль. Свойства функций совпадающих почти всюду
- 2.14 Нормально сходящиеся ряды. Теорема о нормально сходящихся рядах
- 2.15 Теоремы Леви для функциональных рядов и последовательностей
- 2.16 Огибающие для последовательности интегрируемых функций. Нижний и верхний предел последовательности
- 2.17 Теорема Фату о предельном переходе. Следствие из теоермы Фату
- 2.18 Теорема Лебега о предельном переходе
- 2.19 Лемма о приближении стпенчатой функции с помощью непрерывных финитных
- 2.20 Теорема о приближении интегрируемой функции с помощью непрерывных финитных
- 2.21 Измеримые функции. Свойства пространства измеримых функций. Измеримые множества
- 2.22 Теорема об интегрируемости измеримой функции
- 2.23 Теорема об измеримости предела измеримых функций
- 2.24 Теорема об интегрируемости предела возрастающей последовательности положительных измеримых функций
- 2.25 Обобщенно измеримые функции. Измеримые множества, мера множества. Теорема об измеримости объединения и пересечения измеримых множеств
- 2.26 Счетная алдитивность интеграда и меры