Neural networks

Victor Kitov

v.v.kitov@yandex.ru

Yandex School of Data Analysis

Table of Contents

- Introduction
- Output generation
- Neural network optimization
- Backpropagation algorithm
- 5 Invariances
- 6 Dropout

History

 Neural networks originally appeared as an attempt to model human brain

- Human brain consists of multiple interconnected neuron cells
 - cerebral cortex (the largest part) is estimated to contain 15–33 billion neurons
 - communication is performed by sending electrical and electro-chemical signals
 - signals are transmitted through axons long thin parts of neurons.

Simple model of a neuron

- Neuron get's activated in the half-space, defined by $w_0 + w_1 x^1 + w_2 x^2 + ... + w_D x^D > 0$.
- Each node is called a neuron.
- Each edge is associated a weight.
- Constant feature 1 stands for bias.

Multilayer perceptron architecture¹

Multilayer perceptron:

- Each node has its own weights.
- Nodes&edges form directed acyclic graph.
- Multiple layers of neurons.
- Neurons of two consecutive layers are fully connected.

¹Propose neural networks estimating OR,AND,XOR functions on boolean inputs.

Layers

- Structure of neural network:
 - 1-input layer
 - 2-hidden layers
 - 3-output layer

Continious activations

- Pitfall of I[]: it causes stepwise constant outputs, weight optimization methods become inapliccable.
- We can replace $\mathbb{I}[w^T x + w_0 \ge 0]$ with smooth activation $\varphi(w^T x + w_0)$

Typical activation functions

- sigmoidal: $\sigma(x) = \frac{1}{1+e^{-x}}$
 - 1-layer neural network with sigmoidal activation is equivalent to logistic regression
- hyperbolic tangent: $tangh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$

• ReLu: $\varphi(x) = [x]_+$.

Activation functions

Activation functions are smooth approximations of step functions:

 $\sigma(ax)$ limits to 0/1-step function as $a \to \infty$

tangh(ax) limits to -1/1-step function as $a \to \infty$

Definition details

- Label each neuron with integer j.
- Denote: I_i input to neuron j, O_i output of neuron j
- Output of neuron j: $O_j = \varphi(I_j)$.
- Input to neuron j: $I_j = \sum_{k \in inc(j)} w_{kj} O_k + w_{0j}$,
 - w_{i0} is the bias term
 - inc(j) is a set of neurons with outging edges incoming to neuron j.
 - further we will assume that at each layer there is a vertex with constant output $O_{const} \equiv 1$, so we can simplify notation

$$I_j = \sum_{k \in inc(j)} w_{kj} O_k$$

Table of Contents

- Introduction
- Output generation
- Neural network optimization
- Backpropagation algorithm
- Invariances
- 6 Dropou

Output generation

• Forward propagation is a process of successive calculations of neuron outputs for given features.

Activations at output layer

- Regression: $\varphi(I) = I$
- Classification:
 - binary: $y \in \{+1, -1\}$

$$\varphi(I) = p(y = +1|x) = \frac{1}{1 + e^{-I}}$$

• multiclass: $y \in \{1, 2, ...C\}$

$$\varphi(O_1,...O_C) = p(y = j|x) = \frac{e^{O_j}}{\sum_{k=1}^C e^{O_k}}, j = 1, 2, ...C$$

where $O_1, ... O_C$ are outputs of output layer.

Generalizations

- ullet each neuron j may have custom non-linear transformation $arphi_i$
- weights may be constrained:
 - non-negative
 - equal weights
 - etc.
- layer skips are possible

recurrent networks, RBF-activations.

Number of layers selection

- Number of layers usually denotes all layers except input layer (hidden layers+output layer)
- Classification with indicator activations:
 - single layer network selects arbitrary half-spaces
 - 2-layer network selects arbitrary convex polyhedron (by intersection of 1-layer outputs)
 - therefore it can approximate arbitrary convex sets
 - 3-layer network selects (by union of 2-layer outputs) arbitrary finite sets of polyhedra
 - therefore it can approximate all measurable sets

Number of layers selection

- Regression with indicator activations:
 - single layer can approximate arbitrary linear function
 - 2-layer network can model indicator function of arbitrary convex polyhedron
 - 3-layer network can uniformly approximate arbitrary continuous function (as sum weighted sum of indicators convex polyhedra)

Sufficient amount of layers

Any continuous function on a compact space can be uniformly approximated by 2-layer neural network with linear output and wide range of activation functions (excluding polynomial).

- In practice often it is more convenient to use more layers with less total amount of neurons
 - model becomes more interpretable and easy to fit.

Table of Contents

- Introduction
- Output generation
- Neural network optimization
- Backpropagation algorithm
- Invariances
- 6 Dropou

Network optimization: regression

• Single output:

$$\frac{1}{N}\sum_{n=1}^{N}(\widehat{y}_n(x_n|w)-y_n)^2\to\min_{w}$$

Network optimization: regression

• Single output:

$$\frac{1}{N}\sum_{n=1}^{N}(\widehat{y}_n(x_n|w)-y_n)^2\to \min_{w}$$

K outputs

$$\frac{1}{NK}\sum_{n=1}^{N}\sum_{k=1}^{K}(\widehat{y}_{nk}(x_n|w)-y_{nk})^2\to\min_{w}$$

Network optimization: classification

• Two classes, $y \in \{0, 1\}$:

$$\prod_{n=1}^{N} p(y_n = 1 | x_n, w)^{y_n} [1 - p(y_n = 1 | x_n, w)]^{1-y_n} \to \max_{w}$$

Network optimization: classification

• Two classes, $y \in \{0, 1\}$:

$$\prod_{n=1}^{N} p(y_n = 1 | x_n, w)^{y_n} [1 - p(y_n = 1 | x_n, w)]^{1-y_n} \to \max_{w}$$

• C classes, $y_{nc} = \mathbb{I}\{y_n = c\}$:

$$\prod_{n=1}^{N} \prod_{c=1}^{C} p(y_n = c | x_n, w)^{y_{nc}} \to \max_{w}$$

Network optimization: classification

• Two classes, $y \in \{0, 1\}$:

$$\prod_{n=1}^{N} p(y_n = 1 | x_n, w)^{y_n} [1 - p(y_n = 1 | x_n, w)]^{1 - y_n} \to \max_{w}$$

• C classes, $y_{nc} = \mathbb{I}\{y_n = c\}$:

$$\prod_{n=1}^{N} \prod_{c=1}^{C} p(y_n = c | x_n, w)^{y_{nc}} \to \max_{w}$$

 In practice log-likelihood is maximized to avoid numerical underflow.

Neural network optimization

- Denote W the total dimensionality of weights space, $w \in \mathbb{R}^{W}$.
- Let $E(\hat{y}, y)$ denote the loss function of output
- We may optimize neural network using gradient descent:

```
k=0 initialize randomly w^0 # small values for sigmoid and tangh while (stop criteria not met): w^{k+1}:=w^k-\eta\nabla E(w^k) k:=k+1
```

- Standardization of features makes gradient descend converge faster
- Other optimization methods are more efficient (such as conjugate gradients)

Gradient calculation

i-th position

- Denote $\varepsilon_i = (0,...,0, \quad \widehat{\varepsilon} \quad ,0,...0) \in \mathbb{R}^W$
- Direct $\nabla E(w)$ calculation, using

$$\frac{\partial E}{\partial w_i} = \frac{E(w + \varepsilon_i) - E(w)}{\varepsilon} + O(\varepsilon)$$

or better

$$\frac{\partial E}{\partial w_i} = \frac{E(w + \varepsilon_i) - E(w - \varepsilon_i)}{2\varepsilon} + O(\varepsilon^2)$$

has complexity $O(W^2)$ [W forward propagations to evaluate W derivatives]

Backpropagation algorithm needs only O(W) to evaluate all derivatives.

Multiple local optima problem

- Optimization problem for neural nets is **non-convex**.
- Different optima will correspond to:
 - different starting parameter values
 - different training samples
- So we may solve task many times for different conditions and then
 - select best model
 - alternatively: average different obtained models to get ensemble

Table of Contents

- Introduction
- Output generation
- Neural network optimization
- 4 Backpropagation algorithm
- Invariances
- O Dropout

Definitions

- Denote w_{ij} be the weight of edge, connecting i-th and j-th neuron.
- Define $\delta_j = \frac{\partial E}{\partial I_j} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial I_j}$
- Since E depends on w_{ij} through the following functional relationship $E(w_{ij}) \equiv E(O_j(I_j(w_{ij})))$, using the chain rule we obtain:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial I_j} \frac{\partial I_j}{\partial w_{ij}} = \delta_j O_i$$

because $\frac{\partial I_j}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \left(\sum_{k \in inc(j)} w_{kj} O_k \right) = O_i$, where inc(j) is a set of all neurons with outgoing edges to neuron j.

• $\frac{\partial E}{\partial I_i} = \frac{\partial E}{\partial O_i} \frac{\partial O_j}{\partial I_i} = \frac{\partial E}{\partial O_i} \varphi'(I_j)$, where φ is the activation function.

Output layer

- If neuron j belongs to the output node, then error $\frac{\partial E}{\partial O_j}$ is calculated directly.
- For output layer deltas are calculated directly:

$$\delta_{j} = \frac{\partial E}{\partial O_{j}} \frac{\partial O_{j}}{\partial I_{j}} = \frac{\partial E}{\partial O_{j}} \varphi'(I_{j}) \tag{1}$$

- example for training set = {single point x and true vector of outputs $(y_1, ... y_{|OL|})$ }:
 - for $E = \frac{1}{2} \sum_{j \in OL} (O_j y_j)^2$:

$$\frac{\partial E}{\partial O_i} = O_j - y_j$$

• for $\varphi(I) = sigm(I)$:

$$\varphi'(I_i) = \sigma(I_i) (1 - \sigma(I_i)) = O_i (1 - O_i)$$

finally

$$\delta_i = (Q_{i, -} y_i) O_i (1 - O_i)$$

Inner layer

- If neuron j belongs some hidden layer, denote $out(j) = \{k_1, k_2, ... k_m\}$ the set of all neurons, receiving output from neuron j.
- ullet The effect of O_j on E is fully absorbed by $I_{k_1},I_{k_2},...I_{k_m}$, so

$$\frac{\partial E(O_j)}{\partial O_j} = \frac{\partial E(I_{k_1}, I_{k_2}, \dots I_{k_m})}{\partial O_j} = \sum_{k \in out(j)} \left(\frac{\partial E}{\partial I_k} \frac{\partial I_k}{\partial O_j} \right) = \sum_{k \in out(j)} (\delta_k w_{jk})$$

• So for layers other than output layer we have:

$$\delta_{j} = \frac{\partial E}{\partial I_{j}} = \frac{\partial E}{\partial O_{j}} \frac{\partial O_{j}}{\partial I_{j}} = \sum_{k \in out(j)} (\delta_{k} w_{jk}) \varphi'(I_{j})$$
 (2)

• Weight derivatives are calculated using errors and outputs:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial I_j} \frac{\partial I_j}{\partial w_{ij}} = \delta_j O_i \tag{3}$$

Backpropagation

- Backpropagation algorithm:
 - Forward propagate x_n to the neural network, store all inputs l_i and outputs O_i for each neuron.
 - **2** Calculate δ_i for all $i \in \text{output layer using } (1)$.
 - **3** Backpropagate δ_i from final layer backwards layer by layer using (2).
 - **4** Using calculated deltas and outputs calculate $\frac{\partial E}{\partial w_{ij}}$ with (3).
- Algorithm complexity: O(W), where W is total number of edges.
- Updates:
 - batch
 - stochastic
 - using minibatches of objects

Regularization

- Constrain model complexity directly
 - constrain number of neurons
 - constrain number of layers
 - impose constraints on weights
- Take a flexible model
 - use early stopping during iterative evaluation (by controlling validation error)
 - quadratic regularization

$$\tilde{E}(w) = E(w) + \lambda \sum_{i} w_{i}^{2}$$

• Stochastic simplification of model, such as dropout.

Table of Contents

- Introduction
- Output generation
- Neural network optimization
- Backpropagation algorithm
- Invariances
- 6 Dropou

Invariance to particular transformations

- It may happen that solution should not depend on certain kinds of transformations in the input space.
- Example: character recognition task
 - translation invariance
 - scale invariance
 - invariance to small rotations
 - invariance to small uniform noise

Invariance to particular transformations

- Approaches to build an invariant model to particular transformation:
 - use only features that are invariant to transformations
 - augment training objects with their transformed copies according to given invariances
 - amount of possible transformations grows exponentially with the number of invariances
 - add regularization term to the target cost function, which penalizes changes in output after invariant transformations
 - see tangent propagation
 - build the invariance properties into the structure of neural network
 - see convolutional neural networks

Augmentation of training samples

- generate a random set of invariant transformations
- 2 apply these transformations to training objects
- obtain new training objects

Table of Contents

- Introduction
- Output generation
- Neural network optimization
- Backpropagation algorithm
- Invariances
- Oropout

Dropout idea

Each neuron is left or removed independently from decisions about other nodes:

- Output layer nodes are never removed.
- Recommended² neuron removal probability 1 p:
 - p = 0.5 for inner layer nodes
 - p = 0.8 for input layer nodes (feature subsampling)

²Removal probabilities can be fine-tuned on cross-validation.

Dropout algorithm

- Dropout forces neurons to rely less on other neurons and to learn something valuable by themselves.
 - neurons learning becomes more robust to information learnt by other neurons.
 - resulting network becomes less overfitted.
- $r_i^{(l)}$ are i.i.d. random variables having Bernoulli(p) distribution.

(a) Standard network

b) Diopout network

Definitions

Define:

- f(x) an activation function.
- y^I vector of outputs at layer I
- \bullet z^I vector of inputs to layer I
- L number of layers in neural network
- $y^{(0)} = x$ input feature vector
- Bernoulli(p) returns a vector of independent Bernoulli random variables with parameter p.

We need to repeat forward propagation recurrently for l=0,1,...L-1.

Usual feed-forward neural network:

$$z_i^{(l+1)} = \left(w_i^{(l+1)}\right)^T y^l + b_i^{(l+1)}$$
$$y_i^{(l+1)} = f(z_i^{(l+1)})$$

Peed-forward network with dropout:

$$\begin{aligned} & \mathbf{r_j^{(l)}} \sim \mathsf{Bernoulli}(\mathbf{p}) \\ & \widetilde{\mathbf{y}}^{\mathbf{l}} = \mathbf{r^{(l)}} * \mathbf{y^{(l)}} \\ & z_i^{(l+1)} = \left(w_i^{(l+1)}\right)^T \widetilde{\mathbf{y}}^l + b_i^{(l+1)} \\ & y_i^{(l+1)} = f(z_i^{(l+1)}) \end{aligned}$$

Neural networks - Victor Kitov

Application of dropout

Learning

- while weights not converge:
 - sample random subnetwork ("thinned network") with dropout
 - apply one step of stochastic gradient descent to thinned network

Comment: due to weights sharing across all thinned networks the number of parameters is the same as in original network.

Prediction

- ullet use full networks with all nodes, but multiply each weight by p
- such scaling approximates average output of randomly sampled thinned network³.

 $^{^3}$ Approximation is precise for networks without non-linearities. With non-linearities - not. We may also use Monte-Carlo sampling in the latter case. $^{37/38}$

Conclusion on neural networks

- Advantages of neural networks:
 - can model accurately complex non-linear relationships
 - easily parallelizable
- Disadvantages of neural networks:
 - hardly interpretable ("black-box" algorithm)
 - optimization requires skill
 - too many parameters
 - may converge slowly
 - may converge to inefficient local minimum far from global one