Learning to Do

Supervised Learning: given data, predict labels

Unsupervised Learning: given data, learn about that data

Reinforcement Learning: given data, choose action to maximize expected long-term reward

Episode: sequence of states and actions

$$s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T$$

Transition function:

$$P(s_{t+1}, r_t \mid s_t, a_t)$$

We want to find a policy
$$\pi(s)=p(a|s)$$
 hich maximizes
$$\frac{r_0+r_1+r_2+\cdots+r_T}{r_0+\gamma r_1+\gamma^2 r_2+\cdots+\gamma^T r_T} \gamma OI$$

 $E \left| \mathbf{r}_0 + \gamma \mathbf{r}_1 + \gamma^2 \mathbf{r}_2 + \dots + \gamma^T \mathbf{r}_T \right|$

$$\max_{\pi} E \left[\sum_{i=0}^{T} \gamma^{i} \mathbf{r}_{i} \right]$$

Policy Learning

Value Learning

Find $\pi(s)$

Find Q(s, a)

 $a \sim \pi(s)$

 $a = \arg\max_{a'} Q(s, a')$

$$Q^*(\mathbf{s_t}, a_t) = \max_{\pi} E \left[\sum_{i=t}^{T} \gamma^i \mathbf{r_i} \right]$$

maximum expected future rewards starting at state s_i , choosing action a_i , and then following an optimal policy π^*

$$Q^*(\mathbf{s_t}, a_t) = E\left[\mathbf{r_t} + \gamma \max_{a'} Q^*(\mathbf{s_{t+1}}, a')\right]$$

The max future reward for taking action a_t is the current reward plus the next step's max future reward from taking the best next action a'

$$\widehat{Q_{j+1}}(s_t, a_t) \leftarrow E\left[\frac{r_t}{r_t} + \gamma \max_{a'} \widehat{Q_j}(s_{t+1}, a')\right]$$

$$\widehat{Q_j} \to \widehat{Q_{j+1}} \to \widehat{Q_{j+2}} \to \cdots \to Q^*$$

But... how large is $Q(\cdot)$?

states: ~2⁹⁶•60•60

actions: 3

Q values: ~2¹¹¹

1957 - 2013

:(

ENTER THE DEEP

Mnih et al, 2013

Features for Estimating Q

- Whether the paddle can reach the ball
- # remaining blocks
- How are the blocks spatially arranged?

ENTER THE DEEP

Mnih et al, 2013

Define approximate Q* function

$$\widehat{Q_{\theta}}(s, a|\theta) \sim Q^*(s, a)$$

and choose θ to minimize

$$\min_{\theta} \sum_{e \in E} \sum_{t=0}^{T} \left\| \widehat{Q}(s_t, a_t | \theta) - \left(r_t + \gamma \max_{a'} \widehat{Q}(s_{t+1}, a' | \theta) \right) \right\|$$

1: **function** Q-LEARNING

2: Initialize
$$\theta$$

3: $s = s_0$

6:

7:

5: Choose a from some policy
$$\pi(s)$$
, and store results r, s_{new}

Choose a from some Compute
$$\nabla_a E_a = 1$$

ompute
$$\nabla_{\theta} E_{O} = 1$$

Compute
$$\nabla_{\theta} E_Q = \nabla_{\theta} \left\| \widehat{Q}(s, a|\theta) - \left(r + \gamma \max_{a'} \widehat{Q}(s, a'|\theta_{old}) \right) \right\|$$

$$heta = heta - \eta
abla_{ heta} E_Q$$

$$s = s_{new}$$
 (or s_0 if episode ended)

8:
$$s = s_{new}$$
9: $\theta_{old} = \theta$

$$= s_{new}$$

$$\nabla_{ heta} \| \widehat{Q}(s,$$

y
$$\pi(s)$$
, and $(s,a| heta)-\Big($

$$-\left(r\right)$$

ore results
$$r$$

1: **function** Q-LEARNING

2: Initialize
$$\theta$$

5:

$$s = s_0$$

while not bored yet do

Choose a from some policy
$$\pi(s)$$
, and store results r, s_{new}

Compute
$$\nabla_{\theta} E_Q = \nabla_{\theta} \left\| \widehat{Q}(s, a|\theta) - \left(r + \gamma \max_{a'} \widehat{Q}(s, a'|\theta_{old}) \right) \right\|$$

 $\theta = \theta - \eta \nabla_{\theta} E_Q$

$$s = s_{new}$$
 (or s_0 if episode ended)

9:
$$\theta_{old} = \theta$$

We need to balance exploration and exploitation

ϵ -greedy exploration

With probability $1 - \epsilon$:
Pick $a_{t+1} \sim \operatorname{soft} \max_{a'} \widehat{Q}(s_{t+1}, a')$ With probability ϵ :
Pick a_{t+1} at random

% improvement over professional player Mnih et al, 2013

Try it out!

http://selfdrivingcars.mit.edu/deeptraffic/

(Kudos to Lex Fridman & the 6.S094 team!)

Road Overlay:

The problems with Q-learning

- Restrictive Assumptions
- Handles long horizons poorly
- Requires a simulator

LSTM RNNs!

The problems with Q-learning

- Restrictive Assumptions
- Handles long horizons poorly
- Requires a simulator

The problems with Q-learning

- Restrictive Assumptions
- Handles long horizons poorly
- Requires a simulator

Ξ	

1: **function** ϵ -GREEDY-Q-LEARNING

Initialize θ 2:

 $\epsilon = \text{some tiny number}$ while not bored yet do

p = randf(0,1)5:

if $p < \epsilon$ then

 $\theta = \theta - \eta \nabla_{\theta} E_{Q}$

 $\theta_{old} = \theta$

7: else 8:

9:

10:

11:

12:

13:

Choose random action a and store results r, s_{new}

Choose $a = \arg \max_{a'} Q(s, a')$, and store results r, s_{new}

Compute $\nabla_{\theta} E_Q = \nabla_{\theta} \left\| \widehat{Q}(s, a|\theta) - \left(r + \gamma \max_{a'} \widehat{Q}(s, a'|\theta_{old}) \right) \right\|$

 $s = s_{new}$ (or s_0 if episode ended)

