# **Problem 1: PCA and Feature Selection**

### SVMs and PCA

```
In [1]:
        import numpy as np
        import matplotlib.pyplot as plt
        import math
        import pandas as pd
        import cvxopt
        from tqdm.notebook import trange
        from sklearn.svm import SVC
In [2]: | sonar_train = pd.read_csv('sonar_train.data', header=None)
        sonar test = pd.read csv('sonar test.data', header=None)
        sonar valid = pd.read csv('sonar valid.data', header=None)
        sonar train.loc[sonar train[60] == 2, 60] = -1
         sonar test.loc[sonar test[60] == 2, 60] = -1
        sonar valid.loc[sonar valid[60] == 2, 60] = -1
        def normalize(data, mean, std):
            return (data - mean) / std
        def split_data(data):
            return data.iloc[:, :60].to numpy(), data.iloc[:, 60:].to numpy()
        X, y train = split data(sonar train)
        train mean = X.mean(axis=0)
        train std = X.std(axis=0)
        X train = normalize(X, train mean, train std)
        X, y_validation = split_data(sonar_valid)
        X validation = normalize(X, train mean, train std)
        X, y_test = split_data(sonar_test)
        X test = normalize(X, train mean, train std)
```

Perform PCA on the training data to reduce the dimensionality of the data set (ignoring the class labels for the moment). What are the top six eigenvalues of the data covariance matrix?

```
In [3]: def compute_covariance(norm_data):
    # Covariance matrix has dimensions (p x p)
    # Usually computed with variables as rows and observations as columns (np.
cov)
    return norm_data.T.dot(norm_data)

covariance_mat = compute_covariance(X_train) #np.cov(X_train.T)
```

For each  $k \in \{1, 2, 3, 4, 5, 6\}$ , project the training data into the best k dimensional subspace (with respect to the Frobenius norm) and use the SVM with slack formulation to learn a classifier for each  $c \in \{1, 10, 100, 1000\}$ . Report the error of the learned classifier on the validation set for each k and c pair.

```
In [5]: C = [1, 10, 100, 1000]
In [6]: data = {
            'k': [],
             'c': [],
             'Training Data Error': [],
             'Validation Data Error': []
        for k in range(1,7):
            U = eig_vecs[:,:k]
            X proj = X train.dot(U)
            X_valid_proj = X_validation.dot(U)
            for c in C:
                data['k'].append(k)
                data['c'].append(c)
                clf = SVC(C=c, kernel='linear')
                clf.fit(X_proj, y_train.ravel())
                y pred = clf.predict(X proj)
                data['Training Data Error'].append(1 - np.mean(y_pred == y_train.ravel
        ()))
                valid_pred = clf.predict(X_valid_proj)
                data['Validation Data Error'].append(1 - np.mean(valid_pred == y_valid
        ation.ravel()))
```

```
In [7]: pd.DataFrame(data)
```

## Out[7]:

|    | k | С    | Training Data Error | Validation Data Error |
|----|---|------|---------------------|-----------------------|
| 0  | 1 | 1    | 0.509615            | 0.461538              |
| 1  | 1 | 10   | 0.509615            | 0.461538              |
| 2  | 1 | 100  | 0.509615            | 0.461538              |
| 3  | 1 | 1000 | 0.509615            | 0.461538              |
| 4  | 2 | 1    | 0.432692            | 0.307692              |
| 5  | 2 | 10   | 0.432692            | 0.307692              |
| 6  | 2 | 100  | 0.432692            | 0.307692              |
| 7  | 2 | 1000 | 0.432692            | 0.307692              |
| 8  | 3 | 1    | 0.269231            | 0.211538              |
| 9  | 3 | 10   | 0.269231            | 0.211538              |
| 10 | 3 | 100  | 0.269231            | 0.211538              |
| 11 | 3 | 1000 | 0.278846            | 0.211538              |
| 12 | 4 | 1    | 0.288462            | 0.211538              |
| 13 | 4 | 10   | 0.288462            | 0.211538              |
| 14 | 4 | 100  | 0.288462            | 0.211538              |
| 15 | 4 | 1000 | 0.288462            | 0.211538              |
| 16 | 5 | 1    | 0.269231            | 0.250000              |
| 17 | 5 | 10   | 0.269231            | 0.250000              |
| 18 | 5 | 100  | 0.269231            | 0.250000              |
| 19 | 5 | 1000 | 0.269231            | 0.250000              |
| 20 | 6 | 1    | 0.240385            | 0.269231              |
| 21 | 6 | 10   | 0.240385            | 0.269231              |
| 22 | 6 | 100  | 0.240385            | 0.269231              |
| 23 | 6 | 1000 | 0.240385            | 0.269231              |

How does it compare to the best classifier (with the same possible c choices) without feature selection?

```
In [8]: data = {
    'c': [],
    'Training Data Error': [],
    'Validation Data Error': []
}
for c in C:
    data['c'].append(c)
    clf = SVC(C=c, kernel='linear', random_state=0)
    clf.fit(X_train, y_train.ravel())
    y_pred = clf.predict(X_train)
    data['Training Data Error'].append(1 - np.mean(y_pred == y_train.ravel()))
    valid_pred = clf.predict(X_validation)
    data['Validation Data Error'].append(1 - np.mean(valid_pred == y_validatio
    n.ravel()))
    pd.DataFrame(data)
```

#### Out[8]:

|   | С    | Training Data Error | Validation Data Error |
|---|------|---------------------|-----------------------|
| 0 | 1    | 0.009615            | 0.211538              |
| 1 | 10   | 0.000000            | 0.230769              |
| 2 | 100  | 0.000000            | 0.230769              |
| 3 | 1000 | 0.000000            | 0.230769              |

What is the error of the best k/c pair on the test data? How does it compare to the best classifier (with the same possible c choices) without feature selection? Explain your observations.

Best k = 3 and c = 1, 10, 100, 1000

```
In [9]: U = eig_vecs[:,:3]
X_proj = X_train.dot(U)
X_test_proj = X_test.dot(U)
res = {
    'c': [],
    'Test data error': []
}
for c in [1, 10, 100, 1000]:
    res['c'].append(c)
    clf = SVC(C=c, kernel='linear', random_state=0)
    clf.fit(X_proj, y_train.ravel())
    res['Test data error'].append(1 - np.mean(clf.predict(X_test_proj) == y_test.ravel()))
pd.DataFrame.from_dict(res)
```

#### Out[9]:

|   | С    | Test data error |
|---|------|-----------------|
| 0 | 1    | 0.192308        |
| 1 | 10   | 0.192308        |
| 2 | 100  | 0.192308        |
| 3 | 1000 | 0.192308        |

```
In [10]:
         # SVM without feature selection
          res = {
              'c': [],
              'Test data error': []
          for c in [1]:
              res['c'].append(c)
              clf = SVC(C=c, kernel='linear', random state=0)
              clf.fit(X train, y train.ravel())
              res['Test data error'].append(1 - np.mean(clf.predict(X_test) == y_test.ra
          vel()))
          pd.DataFrame.from_dict(res)
Out[10]:
             c Test data error
                    0.211538
          0 1
```

SVM on reduced dimension data performs better on test data compared to SVM without any feature selection

If you had to pick a value of k before evaluating the performance on the validation set (e.g., if this was not a supervised learning problem), how might you pick it?

Value of k or the number of components could be picked by heuristics. We can pick the number of components needed to explain at least 85% of the data variance. For this dataset, we can pick k = 14.

```
In [11]: fig = plt.figure(figsize=(10, 5))
    plt.plot(np.cumsum(eig_vals) / np.sum(eig_vals), marker='o')
    plt.xlabel('Number of Components')
    plt.ylabel('Total variance retained')
    plt.axhline(y=0.85, color='r', linestyle='-')
    plt.grid()
```



### **PCA for Feature Selection**

- 1. Compute the top k eigenvalues and eigenvectors of the covariance matrix corresponding to the data matrix omitting the labels (recall that the rows of the data matrix are the input data points).
- 2. Define  $\pi$
- 3. Sample s columns independently from the probability distribution defined by  $\pi$ .

```
In [12]: def select_k_features(features, s, pi):
    sel_features = np.random.choice(features, s, p=pi, replace=False)
    return sel_features
```

### Why does $\pi$ define a probability distribution?

 $\pi$  has values ranging between 0 and 1. Also sum of all values in  $\pi$  = 1.

Again, using the UCI Sonar data set, for each  $k \in \{1, ..., 10\}$  and each  $s \in \{1, ..., 20\}$ , report the average test error of the SVM with slack classifier over 100 experiments. For each experiment use only the s selected features (note that there may be some duplicates, so only include each feature once).

```
In [13]: data = {
              'k': [],
             's': [],
              'Average test error': []
         }
         datapoints, features = X_train.shape
         for k in trange(1,11):
             V = eig_vecs[:k]
             pi = np.sum(V^{**2}, axis=0) / k
             for s in trange(1,21):
                 error = []
                 for _ in range(100):
                      sel_features = select_k_features(features, s, pi)
                      clf = SVC(C=1, kernel='linear', random_state=0)
                      clf.fit(X_train[:,sel_features], y_train.ravel())
                      y_pred = clf.predict(X_test[:,sel_features])
                      error.append(1 - np.mean(y_pred==y_test.ravel()))
                 mean_error = np.mean(error)
                 data['k'].append(k)
                 data['s'].append(s)
                  data['Average test error'].append(mean_error)
         res = pd.DataFrame.from_dict(data)
```

In [16]: pd.set\_option("display.max\_rows", None, "display.max\_columns", None)
res

## Out[16]:

|    | k | s  | Average test error |
|----|---|----|--------------------|
| 0  | 1 | 1  | 0.460769           |
| 1  | 1 | 2  | 0.401154           |
| 2  | 1 | 3  | 0.378269           |
| 3  | 1 | 4  | 0.367692           |
| 4  | 1 | 5  | 0.350192           |
| 5  | 1 | 6  | 0.320769           |
| 6  | 1 | 7  | 0.318846           |
| 7  | 1 | 8  | 0.318077           |
| 8  | 1 | 9  | 0.305192           |
| 9  | 1 | 10 | 0.302115           |
| 10 | 1 | 11 | 0.291731           |
| 11 | 1 | 12 | 0.285962           |
| 12 | 1 | 13 | 0.292308           |
| 13 | 1 | 14 | 0.286154           |
| 14 | 1 | 15 | 0.285385           |
| 15 | 1 | 16 | 0.283654           |
| 16 | 1 | 17 | 0.281731           |
| 17 | 1 | 18 | 0.267115           |
| 18 | 1 | 19 | 0.268269           |
| 19 | 1 | 20 | 0.268269           |
| 20 | 2 | 1  | 0.435962           |
| 21 | 2 | 2  | 0.389038           |
| 22 | 2 | 3  | 0.342885           |
| 23 | 2 | 4  | 0.343269           |
| 24 | 2 | 5  | 0.311154           |
| 25 | 2 | 6  | 0.299808           |
| 26 | 2 | 7  | 0.296731           |
| 27 | 2 | 8  | 0.297308           |
| 28 | 2 | 9  | 0.280962           |
| 29 | 2 | 10 | 0.265385           |
| 30 | 2 | 11 | 0.267885           |
| 31 | 2 | 12 | 0.266731           |
| 32 | 2 | 13 | 0.258269           |
| 33 | 2 | 14 | 0.252500           |
| 34 | 2 | 15 | 0.259423           |

|    | k | s  | Average test error |
|----|---|----|--------------------|
| 35 | 2 | 16 | 0.252885           |
| 36 | 2 | 17 | 0.240192           |
| 37 | 2 | 18 | 0.247500           |
| 38 | 2 | 19 | 0.247692           |
| 39 | 2 | 20 | 0.239423           |
| 40 | 3 | 1  | 0.428077           |
| 41 | 3 | 2  | 0.364231           |
| 42 | 3 | 3  | 0.347885           |
| 43 | 3 | 4  | 0.320769           |
| 44 | 3 | 5  | 0.293654           |
| 45 | 3 | 6  | 0.294423           |
| 46 | 3 | 7  | 0.282885           |
| 47 | 3 | 8  | 0.280769           |
| 48 | 3 | 9  | 0.265577           |
| 49 | 3 | 10 | 0.271154           |
| 50 | 3 | 11 | 0.264231           |
| 51 | 3 | 12 | 0.252692           |
| 52 | 3 | 13 | 0.258269           |
| 53 | 3 | 14 | 0.256731           |
| 54 | 3 | 15 | 0.248077           |
| 55 | 3 | 16 | 0.247692           |
| 56 | 3 | 17 | 0.247692           |
| 57 | 3 | 18 | 0.259423           |
| 58 | 3 | 19 | 0.242500           |
| 59 | 3 | 20 | 0.253077           |
| 60 | 4 | 1  | 0.430385           |
| 61 | 4 | 2  | 0.376346           |
| 62 | 4 | 3  | 0.331923           |
| 63 | 4 | 4  | 0.323077           |
| 64 | 4 | 5  | 0.305192           |
| 65 | 4 | 6  | 0.281346           |
| 66 | 4 | 7  | 0.281731           |
| 67 | 4 | 8  | 0.280385           |
| 68 | 4 | 9  | 0.273654           |
| 69 | 4 | 10 | 0.257308           |
| 70 | 4 | 11 | 0.256346           |

|     | k | s  | Average test error |
|-----|---|----|--------------------|
| 71  | 4 | 12 | 0.258654           |
| 72  | 4 | 13 | 0.263077           |
| 73  | 4 | 14 | 0.255385           |
| 74  | 4 | 15 | 0.258654           |
| 75  | 4 | 16 | 0.247692           |
| 76  | 4 | 17 | 0.250385           |
| 77  | 4 | 18 | 0.245769           |
| 78  | 4 | 19 | 0.250962           |
| 79  | 4 | 20 | 0.247115           |
| 80  | 5 | 1  | 0.434615           |
| 81  | 5 | 2  | 0.365577           |
| 82  | 5 | 3  | 0.345577           |
| 83  | 5 | 4  | 0.302115           |
| 84  | 5 | 5  | 0.295192           |
| 85  | 5 | 6  | 0.286731           |
| 86  | 5 | 7  | 0.283077           |
| 87  | 5 | 8  | 0.271538           |
| 88  | 5 | 9  | 0.266923           |
| 89  | 5 | 10 | 0.273269           |
| 90  | 5 | 11 | 0.265000           |
| 91  | 5 | 12 | 0.258269           |
| 92  | 5 | 13 | 0.255385           |
| 93  | 5 | 14 | 0.261538           |
| 94  | 5 | 15 | 0.250769           |
| 95  | 5 | 16 | 0.254808           |
| 96  | 5 | 17 | 0.240962           |
| 97  | 5 | 18 | 0.246731           |
| 98  | 5 | 19 | 0.242308           |
| 99  | 5 | 20 | 0.242500           |
| 100 | 6 | 1  | 0.427692           |
| 101 | 6 | 2  | 0.372308           |
| 102 | 6 | 3  | 0.341923           |
| 103 | 6 | 4  | 0.317500           |
| 104 | 6 | 5  | 0.294231           |
| 105 | 6 | 6  | 0.282308           |
| 106 | 6 | 7  | 0.282115           |

| k s Average test error   |
|--------------------------|
| <b>107</b> 6 8 0.267500  |
| <b>108</b> 6 9 0.270385  |
| <b>109</b> 6 10 0.265385 |
| <b>110</b> 6 11 0.260000 |
| <b>111</b> 6 12 0.255577 |
| <b>112</b> 6 13 0.248462 |
| <b>113</b> 6 14 0.248654 |
| <b>114</b> 6 15 0.244231 |
| <b>115</b> 6 16 0.252308 |
| <b>116</b> 6 17 0.252115 |
| <b>117</b> 6 18 0.239231 |
| <b>118</b> 6 19 0.239038 |
| <b>119</b> 6 20 0.242885 |
| <b>120</b> 7 1 0.430577  |
| <b>121</b> 7 2 0.352885  |
| <b>122</b> 7 3 0.344808  |
| <b>123</b> 7 4 0.313654  |
| <b>124</b> 7 5 0.289423  |
| <b>125</b> 7 6 0.282885  |
| <b>126</b> 7 7 0.274038  |
| <b>127</b> 7 8 0.265577  |
| <b>128</b> 7 9 0.260385  |
| <b>129</b> 7 10 0.254808 |
| <b>130</b> 7 11 0.258654 |
| <b>131</b> 7 12 0.259038 |
| <b>132</b> 7 13 0.259038 |
| <b>133</b> 7 14 0.242885 |
| <b>134</b> 7 15 0.250192 |
| <b>135</b> 7 16 0.242500 |
| <b>136</b> 7 17 0.243846 |
| <b>137</b> 7 18 0.241538 |
| <b>138</b> 7 19 0.244615 |
| <b>139</b> 7 20 0.245192 |
| <b>140</b> 8 1 0.428269  |
| <b>141</b> 8 2 0.384038  |
| <b>142</b> 8 3 0.336731  |

|     | k | s  | Average test error |
|-----|---|----|--------------------|
| 143 | 8 | 4  | 0.330000           |
| 144 | 8 | 5  | 0.301346           |
| 145 | 8 | 6  | 0.289038           |
| 146 | 8 | 7  | 0.269615           |
| 147 | 8 | 8  | 0.280385           |
| 148 | 8 | 9  | 0.274231           |
| 149 | 8 | 10 | 0.256731           |
| 150 | 8 | 11 | 0.258269           |
| 151 | 8 | 12 | 0.253846           |
| 152 | 8 | 13 | 0.262500           |
| 153 | 8 | 14 | 0.251346           |
| 154 | 8 | 15 | 0.245769           |
| 155 | 8 | 16 | 0.246154           |
| 156 | 8 | 17 | 0.248462           |
| 157 | 8 | 18 | 0.245192           |
| 158 | 8 | 19 | 0.236538           |
| 159 | 8 | 20 | 0.241154           |
| 160 | 9 | 1  | 0.415577           |
| 161 | 9 | 2  | 0.373846           |
| 162 | 9 | 3  | 0.336154           |
| 163 | 9 | 4  | 0.318462           |
| 164 | 9 | 5  | 0.297500           |
| 165 | 9 | 6  | 0.289615           |
| 166 | 9 | 7  | 0.287692           |
| 167 | 9 | 8  | 0.268846           |
| 168 | 9 | 9  | 0.275192           |
| 169 | 9 | 10 | 0.276731           |
| 170 | 9 | 11 | 0.251731           |
| 171 | 9 | 12 | 0.247115           |
| 172 | 9 | 13 | 0.261731           |
| 173 | 9 | 14 | 0.251346           |
| 174 | 9 | 15 | 0.248846           |
| 175 | 9 | 16 | 0.250192           |
| 176 | 9 | 17 | 0.234038           |
| 177 | 9 | 18 | 0.245769           |
| 178 | 9 | 19 | 0.247308           |
|     |   |    |                    |

| 181<br>182<br>183<br>184<br>185<br>186<br>187 | 9<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 20<br>1<br>2<br>3<br>4<br>5<br>6 | 0.252308<br>0.431731<br>0.366154<br>0.333269<br>0.310000<br>0.300192<br>0.286154 |                                            |
|-----------------------------------------------|---------------------------------------------|----------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|
| 181<br>182<br>183<br>184<br>185<br>186<br>187 | 10<br>10<br>10<br>10<br>10<br>10            | 2<br>3<br>4<br>5<br>6            | 0.366154<br>0.333269<br>0.310000<br>0.300192                                     |                                            |
| 182<br>183<br>184<br>185<br>186<br>187        | 10<br>10<br>10<br>10<br>10                  | 3<br>4<br>5<br>6                 | 0.333269<br>0.310000<br>0.300192                                                 |                                            |
| 183<br>184<br>185<br>186<br>187<br>188        | 10<br>10<br>10<br>10                        | 4<br>5<br>6                      | 0.310000<br>0.300192                                                             |                                            |
| 184<br>185<br>186<br>187<br>188               | 10<br>10<br>10                              | 5<br>6                           | 0.300192                                                                         |                                            |
| 185<br>186<br>187<br>188                      | 10<br>10                                    | 6                                |                                                                                  |                                            |
| 186<br>187<br>188                             | 10                                          |                                  | 0.286154                                                                         |                                            |
| 187<br>188                                    |                                             | 7                                |                                                                                  |                                            |
| 188                                           | 10                                          | 1                                | 0.285769                                                                         |                                            |
|                                               |                                             | 8                                | 0.266923                                                                         |                                            |
| 190                                           | 10                                          | 9                                | 0.262115                                                                         |                                            |
| 109                                           | 10                                          | 10                               | 0.256731                                                                         |                                            |
| 190                                           | 10                                          | 11                               | 0.256731                                                                         |                                            |
| 191                                           | 10                                          | 12                               | 0.264423                                                                         |                                            |
| 192                                           | 10                                          | 13                               | 0.257885                                                                         |                                            |
| 193                                           | 10                                          | 14                               | 0.242308                                                                         |                                            |
| 194                                           | 10                                          | 15                               | 0.247692                                                                         |                                            |
| 195                                           | 10                                          | 16                               | 0.242115                                                                         |                                            |
| 196                                           | 10                                          | 17                               | 0.244038                                                                         |                                            |
| 197                                           | 10                                          | 18                               | 0.235385                                                                         |                                            |
| 198                                           | 10                                          | 19                               | 0.231154                                                                         |                                            |
| 199                                           | 10                                          | 20                               | 0.231731                                                                         |                                            |
| res.l                                         | .oc[ı                                       | res                              | ['Average test                                                                   | error'] == res['Average test error'].min() |

Does this provide a reasonable alternative to SVM with slack formulation without feature selection on this data set? What are the pros and cons of this approach?

SVM with feature selection (k = 7, s = 20, c = 1) gives lowest average test error of 23% whereas SVM without feature selection (c = 1) gives lowest test error of 21%. There is not much improvement with feature selection.

#### Pros:

· Training individual models is computationally faster as number of features is less

### Cons:

· Choosing k and s is difficult. Grid search like above takes long time

s Average test error

0.231154

**198** 10 19