

Glotalización inicial de palabra en k'iche' (maya)

Elizabeth Wood, Universidad de Texas en Austin

Introducción

- Muchas descripciones de lenguas mayas afirman que no hay palabras que empiecen por vocal – tienen un cierre glotal inicial (López Ixcoy 1997; Kaufman 2015)
- Otras descripciones localizan los cierres glotales en solo algunas palabras o algunos contextos:
 - En raíces pero no prefijos (Barrett 2007)
 - En palabras monosilábicas acentuadas, en palabras precedidas por una vocal, y en palabras al principio del enunciado (Larsen 1988)
- Estas descripciones se basan en la percepción no hay datos acústicos ni cuantitativos

Propósito del estudio

- Datos: un corpus de narraciones en k'iche'
- Tres preguntas:
 - 1. ¿Dónde se producen cierres glotales totales?
 - 2. ¿Dónde hay otras indicaciones de glotalización (medidas acústicas)?
 - 3. ¿Estos resultados se pueden deber a un segmento inicial cierre glotal en estas palabras?

Resumen

- La familia maya, el k'iche', y la variedad de Chichicastenango
- Métodos:
 - El corpus
 - Las medidas acústicas
 - Factores
 - Análisis estadístico
- Resultados: dos tipos de glotalización

Las lenguas mayas

- 31 idiomas modernos
- México, Guatemala, Belice y Honduras

(Aissen et al. 2017)

K'iche'

• ~1 millón de hablantes (Richards 2003)

• Tierras altas de Guatemala

Variación dialectal (Romero 2016)

Los datos

- Corpus de 2 h 40 min de narraciones espontáneas
- 12 hablantes de Chichicastenango
- Grabados en 2018-2019
- Transcripciones en k'iche' y traducciones en español
- Con el permiso de los hablantes, en el archivo digital AILLA (https://ailla.utexas.org/)

Segmentación

- Se incluyeron en el estudio las vocales iniciales de cada palabra que empieza con una vocal o un cierre glotal en la transcripción ortográfica (total: 2628 vocales)
- Segmentación:
 - Vocales: con referencia a la amplitud y los formantes
 - Cierres glotales: un periodo de al menos 20 ms de silencio, o un ciclo + silencio que todo junto dura al menos 20 ms

Acústica de la glotalización

- Los sonidos glotalizados suelen tener:
 - Más energía en las frecuencias más altas
 - Más variación entre la duración e intensidad de ciclos contiguos
 - Tono menor
 - Intensidad menor

Klatt & Klatt 1990

Medidas acústicas

- Se usó un script en Praat para medir:
 - Spectral tilt: H1-H2, H1-A1, H1-A2, H1-A3 (diferencia entre la amplitud de la F0 y diversas frecuencias harmonicas)
 - Periodicidad: HNR, jitter, shimmer
 - Reducción: intensidad minima, F0 mínimo
- Las medidas se tomaron en cada tercio de la vocal

Factores experimentales

- Cada palabra se clasificó según:
 - Número de sílabas (monosilábico, polisilábico)
 - Acento (sílaba inicial acentuada, sílaba inicial no acentuada)
 - Origen de la palabra (préstamo del español, palabra maya)
 - Tipo de morfema (raíz, prefijo)
 - Contexto anterior (pausa, vocal, consonante glotalizada, consonante simple)
 - Posición en frase entonacional según la existencia de un tono límite en la palabra precedente (inicial, no inicial)
 - Morfema y grabación
- Estos son los factores que diferentes trabajos anteriores afirman afectan la distribución de los cierres glotales

Análisis estadístico

- Análisis en R con modelos lineares de efectos mixtos usando lme4
- Un modelo para cada medida acústica en cada tercio
- 1^a fase: modelos con todos los factores + F1 y F2
 - Resultados: número de sílabas, origen de la palabra y tipo de morfema no dieron efectos significativos y fueron eliminados
- 2º fase:
 - Modelos con los efectos fijos restantes (posición en la frase entonacional, acento, contexto anterior + F1 y F2), todas las posibles interacciones entre estos efectos fijos, y los efectos aleatorios (grabación y morfema)
 - Categorías base: posición media en la frase entonacional, vocal no acentuada, consonante precedente simple

Resultados: cierre glotal total

- Efectos significativos: posición en frase entonacional y acento
- Excluyendo palabras precedidas de una pausa
- Cada columna incluye las categorías base para los demás factores

Resultados: medidas acústicas

- Las siguientes tablas resumen los resultados
- Solo se incluyen los coeficientes de efectos significativos (p < 0,05)
- Efectos que indican mayor glotalización en azul y menor glotalización en blanco

Resultados: consonante glotalizada anterior

- Consonante glotalizada: eyectivas, impolosivas, cierres glotales
- Glotalización en el primer tercio de la vocal

Medida	1er tercio	2º tercio	3er tercio
H1-H2			
H1-A1	-8,198		
H1-A2	-5,107		
H1-A3	-3,516		2,783
HNR			
Jitter			
Shimmer			
Intensidad mínima			
F0 mínimo			

quk' **o**xer 'con nosotros antes'

Resultados: vocal anterior

• Glotalización en toda la vocal, pero el efecto se hace más débil

llegando al final de la vocal

Medida	1er tercio	2º tercio	3er tercio
H1-H2	-2,194	-1,402	
H1-A1	-6,310	-3,748	-1,591
H1-A2	-4,381	-2,234	
H1-A3	-4,657	-3,092	
HNR	1,892	-1,081	-1,001
Jitter		0,013	0,013
Shimmer			
Intensidad mínima	2,160		
F0 mínimo	-14,678	-12,357	

'gran armario'

Resultados: pausa anterior

• Glotalización en el primer tercio de la vocal

Medida	1er tercio	2º tercio	3er tercio
H1-H2		2,427	2,117
H1-A1	-2,557	2,546	2,394
H1-A2		2,656	2,072
H1-A3		3,416	2,445
HNR	-2,875	-2,551	
Jitter	0,029		
Shimmer	0,102	0,069	
Intensidad mínima	-5,423		1,353
F0 mínimo	-9,715		9,378

Resultados: sílaba inicial acentuada

• Glotalización en el primer tercio de la vocal

Medida	1er tercio	2º tercio	3er tercio
H1-H2	-1,622		
H1-A1	-4,045		
H1-A2	-3,409		
H1-A3	-2,783		
HNR	-2,277		2,450
Jitter	0,023		
Shimmer	0,068		
Intensidad mínima	-2,695	1,564	
F0 mínimo			34,437

Resultados: posición inicial de frase entonacional

• Glotalización en toda la vocal (medidas espectrales)

Medida	1er tercio	2º tercio	3er tercio
H1-H2			-2,024
H1-A1	-2,881	-2,854	-1,996
H1-A2			
H1-A3		-1,625	-1,567
HNR	-2,074	-3,040	
Jitter	0,025	0,031	
Shimmer	0,074	0,042	
Intensidad mínima	-1,572	-1,070	
F0 mínimo		-9,179	

uxb'al, **e** k'o... 'su hermano, hay...'

Resumen de los resultados

- Vocales acentuadas o precedidas de pausa o vocal: más glotalización sólo al inicio (igual que precedidas de consonante glotalizada)
- Vocales en posición inicial de frase entonacional: mayor glotalización en toda la vocal

a. re (marcador de enfoque)

Interpretación

- No todas las palabras que empiezan por vocal tienen un cierre glotal inicial
 - Solo se da cuando la silaba inicial es acentuada, o cuando la palabra viene precedida de una pausa o una vocal
- Las palabras que ocurren al inicio de una frase entonacional tiene mayor glotalización como marca prosódica que ayuda a la percepción del límite de la frase
 - Esto contrasta con la aspiración que se da al final de la frase en k'iche' y otras lenguas mayas (Henderson 2012; AnderBois 2008)

Conclusión

- Con un estudio acústico de un corpus de narraciones espontáneas del k'iche' de Chichicastenango, he mostrado que no todas las palabras que empiezan por vocal tienen un cierre glotal o glotalización inicial: solo se da en algunos contextos
- Estos resultados son parecidos a lo que se observa en estudios de varias lenguas (Indo-)europeas como alemán, inglés, holandés, finlandés y maltés, a pesar de ser de otra familia lingüística
- Resalta la importancia de tener datos acústicos: procesos diferentes pueden tener resultados parecidos en la percepción

Gracias/maltyox!

Contacto:

elizabethwood@utexas.edu

https://elizabethawood.github.io/

Gracias/maltyox!

Quiero agradecer a todos los hablantes de k'iche' que han contribuido a este proyecto, entre ellos: Sebastián Mateo Tiniguar, Miguel Ignacio y su familia, Manuel Chicoj, Sonia González, Magdalena Jerónimo, Teresa Jerónimo, Mildred Mejía, Rafaela Sen, Juana Tol, María Xirum, y muchos más

Este material está basado en trabajo apoyado por la National Science Foundation Graduate Research Fellowship Program, bajo la beca nº 000392968. Cualquier opinión, resultado, conclusión o recomendación expresada en este material es de la autora y no necesariamente refleja la perspectiva de la National Science Foundation

Bibliografía

- AnderBois, Scott. 2008. Strong positions and laryngeal features in Yukatek Maya. Proceedings of the 39th meeting of the North East Linguistic Society.
- Aissen, Judith, Nora C. England, and Roberto Zavala. 2017. The Mayan Languages. 1st edition. Routledge Ltd.
- Barrett, Rusty. 2007. The evolutionary phonology of glottal stops in K'ichean. Proceedings of the Annual Meeting of the Berkeley Linguistics Society 33 (1):19–29.
- Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67 (1):1–48.
- Boersma, Paul y David Weenink. 2019. Praat: doing phonetics by computer. https://www.praat.org/
- Henderson, Robert. 2012. Morphological alternations at the intonational phrase edge: The case of K'ichee'. Natural Language & Linguistic Theory 30 (3):741–787.
- Kaufman, Terrence. 2015. Initial glotal stop in Mayan languages. Unpublished manuscript.
- Klatt, Dennis H., y Laura C. Klatt. 1990. Analysis, synthesis, and perception of voice quality variations among female and male talkers. The Journal of the Acoustical Society of America 87 (2): 820-857.
- Larsen, Thomas Walter. 1988. Manifestations of ergativity in Quiché grammar. Ph.D. dissertation, University of California, Berkeley.
- López Ixcoy, Candelaria Dominga. 1997. Gramática K'ichee'. Guatemala: Fundación Cholsamaj.
- R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.
- Richards, Michael. 2003. Atlas lingüístico de Guatemala. Guatemala: Editorial Serviprensa.
- Romero, Sergio. 2016. Bill Gates speaks K'ichee'! The corporatization of linguistic revitalization in Guatemala. Language & Communication 47:154-166.