

Menschen Lernen Maschinelles Lernen

Image-Text Matching: PicMe

Seamless Analytics GmbH

Über das Projekt

- Automatische Verknüpfung von Bild- und Textmaterial
 - Es sollen auf Basis eines textuellen Inputs passende Bilder in einer Ordnerstruktur (Dateisystem) gefunden werden

ID	path	text_word	class	conf		ID	ID path	ID path class
1	/email1.txt	cabrio	car	0.9		1	1 /bulldog.jpg	1 /bulldog.jpg dog
2	/email1.txt	bulldog	dog	0.7	-	 2	2 /cabrio.jpg	2 /cabrio.jpg car
3	/email1.txt	bulldog	animal	0.9		3	3 /IMGo1.jpg	3 /IMGo1.jpg food
4	/email2.txt	pitbull	dog	0.8	_	4	4 /blume.jpg	4 /blume.jpg flower

- Bildklassifizierung mit Modellen, die über ImageNet trainiert wurden
 - Google Colab (Online Python Notebooks)
 - Download von Bildern
 - Klassifizierung der Bilder
 - Speicherung der Ergebnisse in DB
 - ImageNet Baum-Suche

Zweite Projekthälfte

Erweiterung der Bildklassifizierung

- Evaluation weiterer Modelle
- Manueller Modellvergleich → Gewichtung der Modelle

Text Stemming von Emails

- Download von .eml Files
- Stemming von Betreff und Email-Body (NLTK Bibliothek)
- Schreiben der Ergebnisse in eine separate DB-Tabelle

Finden von Bildern und Emails über Suchbegriff

Automatisches Zusammenführen von Bildern und Mail-Inhalt

Modellvergleich

- Aufteilung der Bilder auf die Projektmitglieder
 - Jeder für ¼ der Bilder und jeweils alle 8 Netze zuständig
 - Top-1 und Top-5 Accuracy festlegen (Klasse stimmt / stimmt nicht)

Modellvergleich

- Gewichtung festlegen (im Laufe des Projekts verworfen)
 - Aufsummieren der Accuracies → Bestimmung des "besten" Modells

Gewichtung

	VGG 16	VGG 19	MobileNet V2	ResNet50	DenseNet201	InceptionV3	Kception	InceptionResnet
Top-1	0,394366197	46,5%	47,9%	46,5%	50,7%	50,7%	50,7%	54,9%
Top-5	0,563380282	59,2%	63,4%	59,2%	64,8%	63,4%	62,0%	64,8%

Ergebnisspeicherung und Suche

I	D	Path	From	То	Subject	Body
1	1	/tmp/0/07/email1.eml	ml2-sender@web.de	ml2-receiver@web.de	Shopping List	Hi, please don't forget to buy

ID	EmailID	StemmingWord
1	1	shop
2	1	butter

ID	ImageID	StemmingWord
1	1	shop
2	2	bird

10	Pa	ath	Model	PredictionClass	Probability
1	/tr	mp/1/12/image.jpg	VGG16	shop	0.827

Ergebnisspeicherung und Suche

(1) Finde Bilder anhand eines Suchworts:

SELECT DISTINCT *
FROM image_list
WHERE PredictionClass = <Suchwort>;

(2) Finde Emails anhand eines Suchworts:

SELECT DISTINCT a.*

FROM email_list a, email_stemming b

WHERE a.ID = b.emailID

AND b.StemmingWord = <Stem(Suchwort)>;

ID	Path From			То		Subject		Body		
1 /tmp/0/07/email1.eml r		ml2-se	-sender@web.de		ml2-receiver@web.de		Shopping	List	Hi, please don't forget to buy	
_										
ID	EmailID	Stemmin	gWord							
1	1	shop			ID	ImageID	Stemmi	ngWord		
2	1	butter			1	1	shop			
				:	2	2	bird			
					_					
		10	D Pati	'n		Model		Predict	ionClas	ss Probability
		1)/1/12/image.jp		VGG16		shop		0.827

(3) Finde Bild-Email Beziehungen:

SELECT DISTINCT a.*, b.*

FROM image_list a, email_list b, image_stemming c, email_stemming d

WHERE image_list.ID = image_stemming.imageID

AND email_list.ID = email_stemming.EmailID

AND image_stemming.StemmingWord = email_stemming.StemmingWord;

Finaler Stand

===============

Das Stemming-Wort shop (abgeleitet vom Wort shop) matcht für folgende Image / Mail Kombination:

* From: ML2 Sender <<u>ml2-sender@web.de</u>>

* To: ml2-receiver@web.de

* Subject: Shopping List - Butter, Cheese and Bananas

* Body: Hi,

please don't forget to buy the things. Thank you :-)

Regards

/tmp/image_classification/1/18/PetrolStation.jpg

Aktueller Stand

Bildklassifizierung

- 71 zusammengetragene Bilder
- 8 Netze, deren Top-5 Vorhersagen verwertet werden
- 71 x 8 x 5 = 2.840 Ergebniszeilen in DB
 - Erweiterung durch ImageNet Tree Search auf rund 10.000 Einträge

Text-Stemming (NLTK)

- Untersuchung von .eml Files (exportierte Emails)
- Speicherung der Stemming-Wörter in DB

Automatischer Abgleich von Bildern und Text

Finden von Bildern und Emails mit passendem Inhalt

Mögliche Erweiterungen

- Evaluierung: Bildklassifizierung vs. Objekterkennung
 - Größerer Suchraum
- Größere Test-Datenbasis schaffen
 - Bing-Image Search (REST API auf RapidAPI)
- Neue DB-Struktur
- Alternative Text-Stemming Algorithmen pr

 üfen

Erfahrungen

- Google Colab: Cloudinstanzen mit Python Notebooks
- Python Programmierung allgemein
- ML-Modelle zur Bildklassifizierung
 - Inkl. Bildvorbereitung
 - Verschiedene Datensätze und Modelle
- Text Stemming mit Natural Language Toolkit

Arbeitsaufwand: ca. 30 Stunden pro Person ~120 Stunden insgesamt

Github Repository (https://github.com/ml2-picme/PicMe)