University of Dayton eCommons

Geology Faculty Publications

Department of Geology

2011

Encyclopedia of Snow, Ice and Glaciers

Vijay P. Singh Texas A & M University - College Station

Pratap Singh

Umesh K. Haritashya University of Dayton, uharitashya1@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/geo_fac_pub

Part of the Geology Commons, Geomorphology Commons, Geophysics and Seismology Commons, Glaciology Commons, Hydrology Commons, Other Environmental Sciences Commons, Paleontology Commons, Sedimentology Commons, Soil Science Commons, Stratigraphy Commons, and the Tectonics and Structure Commons

eCommons Citation

Singh, Vijay P.; Singh, Pratap; and Haritashya, Umesh K., "Encyclopedia of Snow, Ice and Glaciers" (2011). *Geology Faculty Publications*. Paper 7.

http://ecommons.udayton.edu/geo_fac_pub/7

This Book is brought to you for free and open access by the Department of Geology at eCommons. It has been accepted for inclusion in Geology Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.

ENCYCLOPEDIA of SNOW, ICE AND GLACIERS

edited by

VIJAY P. SINGH

Texas A&M University College Station, Texas USA

PRATAP SINGH

New Delhi India

UMESH K. HARITASHYA

University of Dayton Dayton, Ohio USA

Contents

Contributors	XX1	Anabatic Winds: In Relation with Snow/Glacier Basin	39
Preface	xli	Umesh K. Haritashya, Vijay P. Singh and	3)
Acknowledgments	xliii	Pratap Singh	
		Anchor Ice	40
Guide to the Reader	xlv	D. P. Dobhal	
Ablation Depression	1	Andean Glaciers	40
Lasafam Iturrizaga		Mathias Vuille	
Ablatometer	3	Anisotropic Ice Flow	44
Rijan B. Kayastha		Olivier Ĝagliardini	
Acidity of Glacier Ice	3	Antarctica	45
Cunde Xiao		Rasik Ravindra and Arun Chaturvedi	
Active Ice Wedge	4	Anti-Icing	54
Pratima Pandey		Rijan B. Kayastha	
Adfreeze	4	Anti-Syngenetic Ice Wedge	54
Pratima Pandey		Pratima Pandey	
Aerial Photogrammetry for Glacial Monitoring	4	Appalachian Glacier Complex in Maritime Canada	54
Martin Kappas		Rudolph R. Stea	
Alaskan Glaciers	16	Arctic Hydroclimatology	58
Bruce F. Molnia	10	Jessica Ellen Cherry	
Albedo	23	Artificial Ground Freezing	61
Thomas C. Grenfell		Rijan B. Kayastha	-
Alps	35	Artificial Production of Snow	61
Martin Beniston		Carmen de Jong	
Altai-Sayan Glaciers	38	Atmosphere-Snow/Ice Interactions	66
Vladimir Aizen		Timo Vihma	30

viii	CONT	ENTS	
Atmospheric Circulation and Glaciochemical Records Shichang Kang	75	Catastrophic Rock Slope Failures and Mountain Glaciers Kenneth Hewitt, John J. Clague and Philip Deline	113
Automated Glacier Mapping Frank Paul	76	Catchment Glacier D. P. Dobhal	127
Basal Sediment Evacuation by Subglacial Drainage Systems Darrel A. Swift	85	Caucasus Mountains Chris R. Stokes	127
Base Flow/Groundwater Flow Debasmita Misra, Ronald P. Daanen and Anita M. Thompson	90	Characteristics of Snow and Glacier Fed Rivers in Mountainous Regions with Special Reference to Himalayan Basins Akhouri Pramod Krishna	128
Bed (Bottom) Topography Vijay Kumar	93	Chemical Composition of Snow, Ice, and Glaciers <i>Amanda M. Grannas</i>	133
Bed Forms (Fluvial) Vijay Kumar	93	Chemical and Microbe Records in Snow and Ice Liu Yongqin	135
Bed Roughness Vijay Kumar	94	Chemical Processes in Snow and Ice <i>Amanda M. Grannas</i>	138
Bed Strength Vijay Kumar	94	Circulation and Mixing in Ice-Covered Lakes Lars Bengtsson	139
Benchmark Glacier Tobias Bolch	95	Cirque Glaciers Øyvind Paasche	141
Biogeochemistry of Sea Ice David N. Thomas	98	Climate Change and Glaciers Arun B. Shrestha	145
Blue Ice Richard Bintanja	102	Climate Variability and High Altitude Temperature and Precipitation	153
Bottom Melting or Undermelt (Ice Shelf) Ashok Kumar Verma	103	Mathias Vuille Cloudburst	156
Brash Ice Chelamallu Hariprasad	103	Vijay Kumar Cohesion	157
Calving Glaciers Charles R. Warren	105	P. Pradeep Kumar	
Canadian Rockies and Coast Mountains of Canada	106	Cold-Based Glaciers Reginald D. Lorrain and Sean J. Fitzsimons	157
John J. Clague, Brian Menounos and Roger Wheate	100	Condensation Nuclei P. Pradeep Kumar	161
Cascade Mountains, USA Rijan B. Kayastha	111	Confluence of Rivers Anju Chaudhary	161
Cascade System Rijan B. Kayastha	112	Congelation Ice Pratima Pandey	163
Catastrophic Flooding Fiona Tweed	112	Crack Pratima Pandey	163

	CONT	TENTS	ix
Creep Christophe Lambiel, Reynald Delaloye and Isabelle Gärtner-Roer	163	Debris Tobias Bolch	186
Crevasses C. J. van der Veen	165	Debris Thermal Properties and Impact on Ice Ablation Ryohei Suzuki	188
Critical Temperature Pratima Pandey	168	Debris-Covered Glaciers Martin P. Kirkbride	190
Crush Pratima Pandey	168	Deglaciation Vinvent Rinterknecht	192
Crust Pratima Pandey	168	Degree-Days Roger J. Braithwaite	196
Cryoconite Nozomu Takeuchi	168	Depletion of Snow Cover Sanjay K. Jain	200
Cryodessication P. Pradeep Kumar	171	Deposition from Debris-Rich Ice Gulab Singh and Farjana S. Birajdar	201
Cryofront P. Pradeep Kumar	171	Digital Elevation Model Generation Over Glacierized Region	202
Cryogenesis P. Pradeep Kumar	171	Thierry Toutin Digital Image Information Extraction Techniques	
Cryogenic Aquiclude P. Pradeep Kumar	171	for Snow Cover Mapping from Remote Sensing Data Manoj K. Arora, Aparna Shukla and	213
Cryogenic Fabric P. Pradeep Kumar	172	Ravi P. Gupta Direct Surface Runoff	232
Cryolithology P. Pradeep Kumar	172	Lars Bengtsson	
Cryopeg P. Pradeep Kumar	172	Discharge/Streamflow Debasmita Misra, Ronald P. Daanen and Anita M. Thompson	234
Cryosol P. Pradeep Kumar	172	Distributary Channels Anju Chaudhary	236
Cryostatic Pressure Pratima Pandey	173	Diurnal Cycle of Runoff Darrel A. Swift	237
Cryostructure Pratima Pandey	173	Diverging Ice Flow Gulab Singh and Farjana S. Birajdar	239
Cryoturbation <i>P. Pradeep Kumar</i>	173	Drift Glacier/Ice/Snow Gulab Singh and Farjana S. Birajdar	240
Dating Glacial Landforms Jason P. Briner	175	Dry and Wet Snow Line/Zone Ravi P. Gupta	240
Dead Ice D. P. Dobhal	186	Dry Snow <i>Ravi P. Gupta</i>	241

x	CONTE	NTS	
Dye Tracer Investigations of Glacier Hydrology Peter Nienow	242	Forbes Band Gulab Singh	296
Dynamics of Glaciers Hester Jiskoot	245	Formation and Deformation of Basal Ice Simon J. Cook	297
Elongation Ratio Vijay Kumar	257	Frazil Gulab Singh	300
Englacial Conduit D. P. Dobhal	257	Freezing Bottom (Ice Shelf) Gulab Singh	300
Englacial Processes Andrew G. Fountain	258	Freezing Meltwater Gulab Singh and F. S. Birajdar	301
Environmental Isotopes Bhishm Kumar	261	Freezing and Thawing Index Jiang Fengqing and Zhang Yanwei	301
Epigenetic Ice Chelamallu Hariprasad	262	Frequency Analysis of Snow Storms Stanley A. Changnon	302
Epiglacial Morphology Claudio Smiraglia and Guglielmina Diolaiuti	262	Fresh Water Storage Pratima Pandey	303
Equilibrium-Line Altitude (ELA) Jostein Bakke and Atle Nesje	268	Frictional Melting Pratima Pandey	303
Erosion of Hard Rock Bed D. P. Dobhal	277	Frost Alan W. Rempel	303
Erosion Rate Subhajit Sinha	277	Frozen Soil Hydrology Ronald P. Daanen, Debasmita Misra and Anita M. Thompson	306
Estimation of Glacier Volume and Volume Change by Scaling Methods David B. Bahr	278	Frozen Toe (Outer Zone of Glacier Snout) Pratima Pandey	311
Estuary Ice Cover	281	Gelisols Divya Dudeja	313
Fast Ice D. P. Dobhal	289	Geochemistry of Snow and Ice Tandong Yao, Yongqin Liu, Huabiao Zhao and Wusheng Yu	313
Finger Rafting Dominic Vella and John Wettlaufer	289	Geocryology Amit Kumar	324
Firn Rachel W. Obbard, Ian Baker and	290	GIS in Glaciology Jacob Napieralski	325
Rachel W. Lomonaco Fjords	293	Glacial Drainage Characteristics Richard A. Marston	328
Umesh K. Haritashya, Vijay P. Singh and Pratap Singh	<i>293</i>	Glacial Ecosystems Nozomu Takeuchi	330
Foliation Gulab Singh	296	Glacial Erosion Ping Fu and Jonathan Harbor	332

	CON	TENTS	xi
Glacial Erratic D. P. Dobhal	341	Glacier Surging Hester Jiskoot	415
Glacial Geomorphology and Landforms Evolution <i>Alan R. Gillespie</i>	341	Glacier System Rajesh Kumar	428
Glacial Grooves D. P. Dobhal	358	Glacier Toe Rajesh Kumar	429
Glacial Overdeepening Christopher Lloyd	358	Glaciers of the Karakoram Himalaya Kenneth Hewitt	429
Glacial Striations D. P. Dobhal	359	Glacieret Rajesh Kumar	436
Glacial Trough D. P. Dobhal	359	Glacierization Rajesh Kumar	436
Glacial/Interglacial Cycles Michel Crucifix	359	Glacioeustasy Amit Kumar	436
Glaciation During Times of Enhanced/Reduced Atmospheric Carbon Dioxide Andrew B. G. Bush	366	Glaciofluvial Rajesh Kumar	437
Glaciations and Groundwater Flow Systems Jean-Michel Lemieux and Edward A. Sudicky	372	Glaciogenic Deposits Rajesh Kumar	437
Glacier D. P. Dobhal	376	Glaciohydraulic Supercooling Fiona Tweed	438
Glacier Bird of the Andes Douglas R. Hardy and Spencer P. Hardy	377	Glacioisostasy Amit Kumar	439
Glacier Cave Monohar Arora	377	Glaciolacustrine Himali Panthri	440
Glacier Field Studies: Important Things to Notice John F. Shroder	378	Glaciology Peter G. Knight	440
Glacier Hydrology Pratap Singh	379	Glaciomarine Amit Kumar	443
Glacier Lake Outburst Floods Lasafam Iturrizaga	381	Glaciostatic Pressure/Stress Divya Dudeja	443
Glacier Mass Balance Wilfried Haeberli	399	Glaciotectonic Structures, Landforms, and Processes	444
Glacier Motion/Ice Velocity Terry Hughes	408	James S. Aber and Andrzej Ber Global Climate Modeling in Cryospheric	450
Glacier Pothole Rajesh Kumar	414	Assessment Jeffrey Ridley	458
Glacier Sliding Rajesh Kumar	415	Global Outlook of Snowcover, Sea Ice, and Glaciers Mauri Pelto	461

xii	CONT	ENTS	
Global Warming and its Effect on Snow/Ice/Glaciers Stephen J. Déry	468	Horizontal Component of Velocity Rijan B. Kayastha	530
GPS in Glaciology, Applications Matt A. King	471	Hummocks (Peat) Subhajit Sinha	530
GRACE in Glaciology John Wahr	474	Hydrochemical Characteristics of Snow, Ice, and Glaciers Jacob Clement Yde	530
Granulometry Amit Kumar	477	Hydrogen Isotopes Bhishm Kumar	533
Gravel Sheet Amit Kumar	477	Hydrographs Ian C. Willis	534
Gravitational Mass Movement Deposits D. P. Dobhal	477	Hydrologic Cycle and Snow Ronald P. Daanen, Debasmita Misra and	538
Gravity Flow (Mass Flow) Rajesh Kumar	477	Anita M. Thompson Hydrological Response in Glacierized Basins	541
Gray-White Ice Chelamallu Hariprasad	478	Ian C. Willis Hydrology of Jökulhlaups	544
Greenland Glaciers Outside the Ice Sheet <i>Jacob C. Yde</i>	478	Fiona Tweed Hydropower: Hydroelectric Power Generation	
Greenland Ice Sheet Poul Christoffersen	484	from Alpine Glacier Melt Mauri S. Pelto	546
Ground Ice D. P. Dobhal	489	Hypsometry Andrés Rivera, Fiona Cawkwell, Camilo Rada and Claudio Bravo	551
Ground Penetrating Radar Measurements Over Glaciers David C. Nobes	490	Hysteresis Vijay Kumar	554
Heat and Mass Transfer in Sea Ice Daniel J. Pringle	505	Ice Yoshinori Furukawa	557
High Elevation Glacio-Climatology Vladimir Aizen	507	Ice Age Matthias Kuhle	560
Himalaya John F. Shroder	510	Ice Age Cycles: Data, Models, and Uncertainties Donald Rapp	565
Himalayan Glaciers in 2010 and 2035 J. Graham Cogley	520	Ice Age Development Theory Matthias Kuhle	576
Hindu Kush John F. Shroder	523	Ice Apron <i>Mahendra R. Bhutiyani</i>	581
Holocene Glacier Fluctuations Johannes Koch	525	Ice Caps Mahendra R. Bhutiyani	582
Horizontal Component of Ablation Rijan B. Kayastha	529	Ice Caves Mahendra R. Bhutiyani	583

	CONT	TENTS	xiii
Ice Core Nancy A. N. Bertler	584	International Polar Year 2007–2008 Ian Allison	647
Ice Covered Lakes Lars Bengtsson	589	Interstitial Ice P. Pradeep Kumar	649
Ice Dams Mahendra R. Bhutiyani	590	Intrusive Ice Chelamallu Hariprasad	649
Ice Sheet Alastair G. C. Graham	592	Inventory of Glaciers Frank Paul	650
Ice Sheet Mass Balance Eric Rignot	608	Inverse Methods in Glaciology G. Hilmar Gudmundsson	653
Ice Shelf Adrian Jenkins	613	Inversion Layers Mahendra R. Bhutiyani	656
Ice-Cored Moraines Sven Lukas	616	Inverted Cup Depth Hoar Crystals Mahendra R. Bhutiyani	656
Ice-Dammed Lakes Fiona Tweed	619	Irreducible Water Mahendra R. Bhutiyani	657
Ice-Marginal Deposition Mahendra R. Bhutiyani	621	Isotope Analysis Tandong Yao, Wusheng Yu, Huabiao Zhao and	657
Ice-Marginal Processes Matthew R. Bennett	623	Yongqin Liu Isotopic Characteristics of Ice, Snow, and Glaciers	665
Ice-Volcano Interactions Hugh Tuffen	625	Bhism Kumar Isotopic Fractionation of Freezing Water	668
Icefall Mahendra R. Bhutiyani	628	Martyn Tranter Isotopic Signatures	669
Iceland Glaciers Oddur Sigurðsson	630	Bhishm Kumar	
ICESat Data in Glaciological Studies Thomas A. Neumann, H. J. Zwally and	636	Kame and Kettle Topography Amit Kumar	671
Bob E. Schutz Icicle	640	Katabatic Wind: In Relation With Snow and Glaciers Amit Kumar	671
P. Pradeep Kumar		Kilimanjaro	672
Icing P. Pradeep Kumar	640	Douglas R. Hardy	
Impacts of Snow and Glaciers on Runoff Sarah Boon	640	Kunlun Mountains Jingshi Liu	679
Interception of Snow Manmohan Kumar Goel	646	Lake Ellsworth John Woodward, Martin J. Siegert, Andy M. Smith and Neil Ross	683
Interflow Manmohan Kumar Goel	647	Lake Ice Rajesh Kumar	686

xiv	CONT	ENTS	
Lake Vostok Malte Thoma	687	Marginal Channel (Lateral Meltwater Channel) Amit Kumar	724
Laminated Sediments Rajesh Kumar	690	Marginal Ice Zones Rajesh Kumar	724
Landforms of Glacial Deposition John F. Shroder	690	Marine Glaciers Rajesh Kumar	725
Landforms of Glacial Erosion John F. Shroder	692	Marine Ice Sheet Rajesh Kumar	725
Landforms of Glacial Transportation John F. Shroder	693	Mechanical Weathering Rajesh Kumar	725
Landscapes of Glacial Erosion Martin P. Kirkbride	694	Median Elevation of Glaciers D. P. Dobhal	726
Last Glacial Maximum Glaciation (LGM/LGP) in High Asia (Tibet and Surrounding Mountains)	697	Mediterranean Glaciers and Glaciation <i>Philip D. Hughes</i>	726
Matthias Kuhle Latent Heat of Condensation	702	Melt Runoff Modeling Pratap Singh	730
Prem Datt Latent Heat of Fusion/Freezing Prem Datt	703	Melting Processes Luke Copland	733
Latent Heat of Sublimation Prem Datt	703	Meltwater Channels Cliff Atkins	735
Latent Heat of Vaporization/Condensation	703	Meltwater Conduit D. P. Dobhal	738
Prem Datt Lateroglacial	704	Meltwater Erosion Rajesh Kumar	738
Lasafam Iturrizaga Lateroglacial Landform Systems	704	Meltwater Pressure Rajesh Kumar	739
Lasafam Iturrizaga Laurentide Ice Sheet	708	Meltwater Storage Pratap Singh	739
John T. Andrews Layering of Snow	713	Microorganisms Associated with Glaciers Vanya I. Miteva	741
Rajesh Kumar LIDAR in Glaciology	713	Monitoring and Warning Systems Markus Konz	744
Michael N. Demuth		Monsoonal Records Observed from Snow/Ice/Glacier	746
Little Ice Age Rajesh Kumar	722	Shichang Kang Moraine	747
Lobe Rajesh Kumar	722	Anders Schomacker Moulins	756
Mapping of Internal Glacial Layers David A. Braaten	723	Umesh K. Haritashya, Vijay P. Singh and Pratap Singh	730

	CON	TENTS	xv
Mount Everest Rijan B. Kayastha	756	Palaeo-Channel Vijay Kumar	803
Mount Kenya William C. Mahaney	758	Palaeo-Ice Stream Chris R. Stokes	803
Mountain Geomorphology David R. Butler	761	Palaeoclimate and Past Glaciations Philip D. Hughes	808
Natural Hazards Associated with Glaciers and Permafrost	763	Palaeohydrology Vijay Kumar	812
Andreas Kääb Negative Temperature Gradient (in Ice)	775	Pamirs Vladimir Aizen	813
Rajesh Kumar Neoglaciation	775	Pancake Ice Chelamallu Hariprasad	815
Rajesh Kumar Network of Stakes	775	Papua Ian Allison	815
Pratap Singh New Zealand Glaciers	775	Paraglacial Landscape Transformations Lasafam Iturrizaga	817
Wendy Lawson Niche Glacier	779	Patagonia Stephan Harrison	824
D. P. Dobhal Normalized-Difference Snow Index (NDSI) Dorothy K. Hall and George A. Riggs	779	Paternoster Lakes Umesh K. Haritashya, Vijay P. Singh and Pratap Singh	826
Novaya Zemlya Chris R. Stokes	781	Peak Flood Glacier Discharge Monohar Arora	827
Nye (N) Channels D. P. Dobhal	781	Percolation Zone Prem Datt	827
Ogives Divya Dudeja	783	Perennially Frozen Ground Monohar Arora	827
Optical Remote Sensing of Alpine Glaciers Duncan J. Quincey and Michael P. Bishop	783	Periglacial H. M. French	827
Orographic Precipitation Justin R. Minder and Gerard H. Roe	794	Permacrete Ashok Kumar Verma	841
Outlet Glacier Monohar Arora	799	Permafrost Yuri Shur, M. Torre Jorgenson and M. Z. Kanevskiy	841
Overburden Pressure Prem Datt	799	Permafrost on Asteroids William C. Mahaney	848
Oxygen Isotopes Bhishm Kumar	799	Permafrost and Climate Interactions Sharon L. Smith and Margo M. Burgess	852
Palaeo Glaciofluvial Sediment Systems Norm R. Catto	801	Permafrost Modeling Daniel Riseborough	858

xvi	CON	TENTS	
Permanent/Perpetual Snow Line Monohar Arora	859	Rating Curve Ian C. Willis	918
Physical Properties of Snow Florent Domine	859	Recession Coefficient Manmohan Kumar Goel	922
Piedmont Glaciers Monohar Arora	863	Recession of Discharge Manoj K. Jain	922
Pingo Himali Panthri	863	Reconstruction of the Last Glaciations in the Whole of Asia <i>Matthias Kuhle</i>	924
Plastic Deformation A. K. Singh	864	Recrystallization of Ice	932
Plastic Flow A. K. Singh	864	Ashok Kumar Verma Refreezing of Meltwater	932
Pleistocene Epoch Amit Kumar	865	Ashok Kumar Verma Regelation	933
Plucking Amit Kumar	865	Ashok Kumar Verma Remobilization (of Debris)	933
Polythermal Glaciers Neil F. Glasser	865	Renoj J. Thayyen	
Precipitation	867	Resedimentation Subhajit Sinha	933
Donna F. Tucker Proglacial Lakes	870	Retreat/Advance of Glaciers Luke Copland	934
Brenda L. Hall Quaternary Glaciation	873	Rime Ice Renoj J. Thayyen	939
Jürgen Ehlers and Philip Gibbard		River Ice Hydrology <i>Hung Tao Shen</i>	939
Radar Application in Snow, Ice, and Glaciers G. Venkataraman and Gulab Singh	883	Roche Moutonnees Himali Panthri	942
Radiative Transfer Modeling Jie Cheng and Shunlin Liang	903	Rock Glaciers John R. Giardino, Netra R. Regmi and	943
Radioactive Fallout Bhishm Kumar	913	John D. Vitek	0.40
Radioactive Isotopes Bhishm Kumar	913	Rocky Mountains Eric M. Leonard	948
Radioactivity Bhishm Kumar	914	Röthlisberger (R)-Channels Renoj J. Thayyen	952
Rain-Induced Snowmelt	915	Runoff Coefficient Manmohan Kumar Goel	952
Delphis F. Levia and Daniel J. Leathers Ram Resistance Prem Datt	917	Runoff Generation Anita M. Thompson, Debasmita Misra and Ronald P. Daanen	953

	CON	TENTS	xv
Runoff Observations Anita M. Thompson, Debasmita Misra and Ronald P. Daanen	955	Serac Markus Konz	102
Runout Distance A. K. Singh	957	Siberia Kazuyoshi Suzuki	102
Salinity C. K. Jain	959	Slush and Sleet of Snow A. K. Singh	103
Saltation C. K. Jain	959	Snow A. K. Singh	103
Scandinavian Glaciers Juha P. Lunkka	960	Snow Bed/Snow Bed Vegetation <i>Nadine Konz</i>	103
Sea Ice <i>Matti Leppäranta</i>	964	Snow Course A. K. Singh	103
Sea-Level Anny Cazenave	969	Snow Cover and Snowmelt in Forest Regions <i>Tobias Jonas and Richard Essery</i>	103
Seasonal Frost Chelamallu Hariprasad	974	Snow Cover Changes in the Alps Christoph Marty	103
Seasonal Snow Cover Amit Kumar	974	Snow Crystal Structure Kenneth G. Libbrecht	103
Sediment Budgets Helen E. Reid and Gary J. Brierley	975	Snow Deformation <i>Jerome B. Johnson</i>	104
Sediment Core and Glacial Environment Reconstruction Jostein Bakke and Øyvind Paasche	979	Snow Density Steven Fassnacht	104
Sediment Entrainment, Transport, and Deposition <i>Michael J. Hambrey and Neil F. Glasser</i>	984	Snow Depth Gavin Gong	104
Sediment Flux Source-To-Sink Achim A. Beylich	1003	Snow Drift <i>Richard Bintanja</i>	104
Sediment Gravity Flow George Postma	1005	Snow Gauge A. K. Singh	104
Sediment Routing Subhajit Sinha	1010	Snow Grains <i>Thomas H. Painter</i>	105
Sediment Transfer Modeling Richard Hodgkins	1010	Snow Hydrology Sarah Boon and Katie Burles	105
Sediment Yield Kelly MacGregor	1014	Snow Layer A. K. Singh	105
SEM Analysis of Glacial Sediments William C. Mahaney	1016	Snow Load A. K. Singh	106
Septa of Englacial Debris Subhajit Sinha	1027	Snow Metamorphism <i>A. K. Singh</i>	106

Show Microstructure
Snow Pellet
Snow Pillow 1062 A. K. Singh Subglacial Borehole Instrumentation Philip R. Porter Snow Pit 1063 A. K. Singh Subglacial Drainage System Bryn Hubbard Snow Ripening 1064 A. K. Singh Subglacial Lakes, Antarctic John C. Priscu Snow Skating 1064 Ashok Kumar Verma Subglacial Processes Scan Fitzsimons and Reginald Lorrain Snow Skiing 1066 Ashok Kumar Verma Subglacial Volcanism 1105 Snow Storm 1067 A. K. Singh Subglacial Weathering 1106 Snow and Vegetation Interaction 1067 Christopher A. Hiemstra and Glen E. Liston Subglacial Weathering 1106 Snow Water Equivalent 1070 A. K. Singh 1106 Snow Water Equivalent 1071 Nozomu Naito 1107 Amit Kumar Super Cooling Clouds 1108 Solifluction 1071 Pradeep Kumar 1108 Solifluction Indicated Meltwaters 1074 Supercooled Water 1108 Solute in Glacial Meltwaters 10
Snow Pit 1063 Subglacial Drainage System 1095 A. K. Singh Subglacial Lakes, Antarctic 1099 Snow Ripening 1064 Subglacial Lakes, Antarctic 1099 Snow Skating 1064 Subglacial Processes 1101 Snow Sking 1066 Subglacial Volcanism 1105 Snow Storm 1067 Hugh Tuffen 1106 Snow and Vegetation Interaction 1067 Markus Konz 1106 Snow Water Equivalent 1070 A. K. Singh 1106 Snow Water Equivalent 1070 Summer Accumulation Type Glaciers 1107 Snowboard 1071 Nozomu Naito 1108 Solifluction 1071 P. Pradeep Kumar 1108 Solituction Glacial Meltwaters 1074 Simon Cook 1108 Solutes in Glacial Meltwaters 1074 Supra-Glacial Debris Entrainments 1112 Solutes in Glacier Ice 1077 D. P. Dobhal 112 Renoj Thayyen Surface Energy Balance 1112
Snow Ripening A. K. Singh Subglacial Lakes, Antarctic John C. Priscu Subglacial Processes Subglacial Processes Subglacial Processes Subglacial Processes Subglacial Volcanism Ashok Kumar Verma Subglacial Volcanism Hugh Tuffen Subglacial Weathering Markus Konz Subglacial Weathering Subglacial Weathering Subglacial Weathering Markus Konz Subglacial Weathering Subglacial Weathering Markus Konz Subglacial Weathering Subglacial Weathering Markus Konz Subglacial Weathering Markus Konz Subglacial Weathering Markus Konz Subglacial Weathering Markus Konz Subglacial Volcanism Hugh Tuffen Subglacial Weathering Markus Konz Subglacial Volcanism Hugh Tuffen Subglacial Volcanism Hu
Snow Skating Ashok Kumar Verma Subglacial Processes Sean Fitzsimons and Reginald Lorrain Snow Skiing Ashok Kumar Verma Subglacial Volcanism Hugh Tuffen Subglacial Weathering A. K. Singh Subglacial Weathering Markus Konz Christopher A. Hiemstra and Glen E. Liston Snow Water Equivalent Michael Durand Submer Accumulation Type Glaciers Nozomu Naito Summer Accumulation Type Glaciers 1107 Snowboard Amit Kumar Super Cooling Clouds Solifluction Stephen J. Walsh and Daniel J. Weiss Supercooled Water Supercooled Water Supercooled Water Simon Cook Supra-Glacial Debris Entrainments Surface Energy Balance 1112 Surface Energy Balance 1112
Snow Skiing Ashok Kumar Verma Subglacial Volcanism Hugh Tuffen Snow Storm A. K. Singh Subglacial Weathering Markus Konz Sublimation from Snow and Ice A. K. Singh Summer Accumulation Type Glaciers A. K. Singh Summer Accumulation Type Glaciers Nozomu Naito Super Cooling Clouds Solifluction Stephen J. Walsh and Daniel J. Weiss Solute in Glacial Meltwaters Martyn Tranter Super-Glacial Debris Entrainments Super-Glacier Ice Renoj Thayyen Suparaclacial Meltwaters Suparaclacial Meltwaters Martyn Tranter Suparaclacial Meltwaters Suparaclacial Debris Entrainments Surface Energy Balance Subglacial Volcanism Hugh Tuffen Subglacial Volcanism Hugh Tuffen Subglacial Volcanism Hugh Tuffen Subglacial Volcanism 1105 Subglacial Volcanism 1105 Markus Konz Sublimation from Snow and Ice A. K. Singh Submarkus Konz Sublimation from Snow and Ice 1106 A. K. Singh Subglacial Volcanism Markus Konz Sublimation from Snow and Ice 1106 A. K. Singh Submarkus Konz Sublimation from Snow and Ice 1106 A. K. Singh Subglacial Volcanism Markus Konz Subglacial Volcanism Markus Konz Sublimation from Snow and Ice 1106 A. K. Singh Submarkus Konz Submar
Snow Storm A. K. Singh Subglacial Weathering Markus Konz Sublimation from Snow and Ice A. K. Singh Subglacial Weathering Markus Konz Sublimation from Snow and Ice A. K. Singh Summer Accumulation Type Glaciers Nozomu Natto Super Cooling Clouds Solifluction Stephen J. Walsh and Daniel J. Weiss Solute in Glacial Meltwaters Martyn Tranter Super-Golacial Debris Entrainments Solutes in Glacier Ice Renoj Thayyen Subglacial Volcanish Markus Tuffen Subglacial Weathering Markus Konz Sublimation from Snow and Ice 1106 A. K. Singh Sublimation from Snow and Ice 1107 Sublimation from Snow and Ice 1108 Subglacial Weathering Markus Konz Sublimation from Snow and Ice 1108 Subglacial Weathering Markus Konz Sublimation from Snow and Ice 1108 Subglacial Volcanish Markus Konz Sublimation from Snow and Ice 1108 Subglacial Volcanish Markus Konz Sublimation from Snow and Ice 1108 Subglacial Volcanish Markus Konz Sublimation from Snow and Ice 1108 Subglacial Volcanish Markus Konz Sublimation from Snow and Ice 1106 A. K. Singh Supprediction Supprediction Subglacial Volcanish Markus Konz Sublimation from Snow and Ice 1106 A. K. Singh Supprediction Suppredi
Snow and Vegetation Interaction Christopher A. Hiemstra and Glen E. Liston Snow Water Equivalent Michael Durand Snowboard Amit Kumar Solifluction Stephen J. Walsh and Daniel J. Weiss Solute in Glacial Meltwaters Martyn Tranter Subgractian Weathering Markus Konz Sublimation from Snow and Ice A. K. Singh Summer Accumulation Type Glaciers Nozomu Naito Super Cooling Clouds Super Cooling Clouds Super Cooling Clouds Supercooled Water Supercooled Water Supercooled Water Simon Cook Supercooled Water Simon Cook Supra-Glacial Debris Entrainments
Snow Water Equivalent Michael Durand Snowboard Amit Kumar Solifluction Stephen J. Walsh and Daniel J. Weiss Solute in Glacial Meltwaters Martyn Tranter Solutes in Glacier Ice Renoj Thayyen Summer Accumulation Type Glaciers Summer Accumulation Type Glaciers 1107 Nozomu Naito Super Cooling Clouds 1108 Supercooled Water Supercooled Water Supercooled Water Supra-Glacial Debris Entrainments 1112 Surface Energy Balance 1112
Michael DurandSummer Accumulation Type Glaciers1107Snowboard1071Nozomu NaitoAmit KumarSuper Cooling Clouds1108Solifluction1071P. Pradeep KumarStephen J. Walsh and Daniel J. WeissSupercooled Water1108Solute in Glacial Meltwaters1074Simon CookMartyn TranterSupra-Glacial Debris Entrainments1112Solutes in Glacier Ice1077D. P. DobhalRenoj ThayyenSurface Energy Balance1112
Amit Kumar Super Cooling Clouds P. Pradeep Kumar Stephen J. Walsh and Daniel J. Weiss Solute in Glacial Meltwaters Martyn Tranter Solutes in Glacier Ice Renoj Thayyen Supercooled Water Supercooled Water Supercooled Water Supercooled Water Supercooled Water Supercooled Water 1108 Supercooled Water Supercooled Water 1108 Supercooled Water 110
Stephen J. Walsh and Daniel J. Weiss Solute in Glacial Meltwaters Martyn Tranter Solutes in Glacier Ice Renoj Thayyen Supra-Glacial Debris Entrainments Supra-Glacial Debris Entrainments 1112 Supra-Glacial Debris Entrainments Supra-Glacial Debris Entrainments 1112
Martyn Tranter Supra-Glacial Debris Entrainments Supra-Glacial Debris Entrainments 1112 Solutes in Glacier Ice Renoj Thayyen Surface Energy Balance 1112
Renoj Thayyen Surface Energy Balance 1112
Specific Melt Rate Pratap Singh Michiel Van den Broeke, Xavier Fettweis and Thomas Mölg
Stable Isotopes Bhishm Kumar Surface Temperature of Snow and Ice Dorothy K. Hall
Stage-Discharge Relationship Amit Kumar 1079 Suspended Sediment Concentration Veerle Vanacker
Stationary Glacier 1081 Suspended Sediment Dynamics 1126 Renoj Thayyen 1081 Suspended Sediment Dynamics 1126
Stratigraphy of Snowpacks Peter W. Nienow and Fay Campbell Suspended Sediment Load Amit Kumar 1132

CONTENTS	xix
----------	-----

	CON	IENIS	XIX
Synthetic Aperture Radar (SAR) Interferometry for Glacier Movement Studies <i>Y. S. Rao</i>	1133	Topographic Normalization of Multispectral Satellite Imagery Michael P. Bishop and Jeffrey D. Colby	1187
Talik Tingjun Zhang	1143	Transformations of Snow at the Earth's Surface and its Climatic and Environmental Consequences	1197
Tarn Himali Panthri	1144	Florent Domine	1177
Temperate Glaciers Andrew Fountain	1145	Transient Snowline Markus Konz	1204
Temperature Lapse Rates in Glacierized Basins Shawn J. Marshall and Mira Losic	1145	Tree-Ring Indicators of Glacier Fluctuations Dan J. Smith and Lynn Koehler	1205
Temperature Profile of Snowpack Charles Fierz	1151	Tributary Glaciers Hester Jiskoot	1209
Terminus Amit Kumar	1154	Urban Snow Lars Bengtsson and Annette Semádeni-Davies	1211
Terraces Amit Kumar	1155	U-Shape Valley Amit Kumar	1217
Thaw Weakening	1155	Vein Ice Chelamallu Hariprasad	1219
Divya Dudeja Thermal Infrared Sensors	1156	V-Shaped Valley Amit Kumar	1219
Anju Chaudhary Thermal Regime of Ice-Covered Lakes	1157	Water Balance in the Glacierized Region Heidi Escher-Vetter	1221
Thermokarst Debasmita Misra, Ronald P. Daanen and Anita M. Thompson	1158	Westerlies and their Effects on Maritime Ice Caps and Glaciers Robert D. McCulloch	1224
Thinning of Arctic Sea Ice	1166	WGMS (World Glacier Monitoring Service) Wilfried Haeberli	1227
Ron Lindsay Thinning of Glaciers Etienne Berthier	1169	Winter Accumulation Glacier Amit Kumar	1227
Tibetan Plateau	1172	Year-Round Ablation Pattern Rijan B. Kayastha	1229
Tandong Yao, Yongqin Liu, Huabiao Zhao and Wusheng Yu		Younger Dryas Sven Lukas	1229
Tidewater Glaciers Andreas Vieli	1175	List of Articles	1233
Tien Shan Glaciers Vladimir Aizen	1179	Author Index	1239
Till Jan A. Piotrowski	1181	Subject Index	1241

Contributors

James S. Aber Emporia State University Emporia, KS 66801-5087 USA jaber@emporia.edu

Vladimir Aizen College of Science, Mines Building University of Idaho Moscow, ID 83844-3025 USA aizen@uidaho.edu

Ian Allison
Australian Antarctic Division and Antarctic Climate and Ecosystems CRC
Private Bag 80
Hobart, Tasmania 7001
Australia
ian.allison@utas.edu.au

John T. Andrews
Institute of Arctic and Alpine Research
and Department of Geological Sciences
University of Colorado
Boulder, CO 80309
USA
andrewsj@colorado.edu

Manoj K. Arora Department of Civil Engineering Indian Institute of Technology Roorkee Roorkee 247667 India manojfce@iitr.ernet.in Monohar Arora National Institute of Hydrology (NIH) Roorkee 247667, UA India arora@nih.ernet.in

Cliff Atkins
School of Geography, Environment and Earth Sciences
Victoria University of Wellington
P.O. Box 600
Wellington 6140
New Zealand
Cliff.Atkins@vuw.ac.nz

David B. Bahr Department of Physics and Computational Science Regis University 3333 Regis Blvd Denver, CO 80221-1099 USA dbahr@regis.edu

Ian Baker Thayer School of Engineering Dartmouth College Hanover, NH 03755 USA Ian.Baker@Dartmouth.edu

Jostein Bakke
Department of Geography/Bjerknes Centre for Climate
Research
University of Bergen
Fosswinckelsgate 6
5020 Bergen
Norway
Jostein.Bakke@geog.uib.no

xxii CONTRIBUTORS

Lars Bengtsson

Department of Water Resources Engineering

Lund University P.O. Box 118 22100 Lund Sweden

Lars.Bengtsson@tvrl.lth.se

Martin Beniston

Interdisciplinary Institute for Environmental Dynamics

University of Geneva 7 route de Drize 1227 Carouge, Geneva Switzerland

martin.beniston@unige.ch

Matthew R. Bennett

The School of Applied Sciences

Bournemouth University Talbot Campos

Fern Barrow Dorset BH12 5BB

UK

MBennett@bournemouth.ac.uk

Andrzej Ber

Polish Geological Institute – Polish Research Institute

Warszawa Poland andrzej.ber@pgi.gov.pl

Etienne Berthier LEGOS/CNRS/UPS

14 av. Ed. Belin 31400 Toulouse

France

etienne.berthier@legos.obs-mip.fr

Nancy A. N. Bertler

Joint Antarctic Research Institute

Victoria University of Wellington and GNS Science

P.O. Box 600 Wellington 6140 New Zealand

Nancy.Bertler@vuw.ac.nz

Achim A. Beylich

Quaternary Geology and Climate Group Geological Survey of Norway (NGU)

Leiv Eirikssons vei 39 7491 Trondheim

Norway and

Department of Geography

Norwegian University of Science and Technology

(NTNU) Dragvoll

7491 Trondheim

Norway

achim.beylich@NGU.NO

Mahendra R. Bhutiyani

Hazard Assessment and Forecasting Division Snow and Avalanche Study Establishment Plot No. 1, Sector 37 A, Him Parisar

Chandigarh 160036

India

mahendra_bhutiyani@yahoo.co.in

Richard Bintanja

Royal Netherlands Meteorological Institute (KNMI)

Wilhelminalaan 10 3732 De Bilt The Netherlands R.Bintanja@knmi.nl

Farjana S. Birajdar

Centre of Studies in Resources Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra

India

Michael P. Bishop

Department of Geography and Geology

University of Nebraska-Omaha

6001 Dodge Street Omaha, NE 68182

USA

mpbishop@mail.unomaha.edu

Tobias Bolch

Department of Geography University of Zürich-Irchel Winterthurerstr. 190

8057 Zürich Switzerland

tobias.bolch@geo.uzh.ch

Sarah Boon

Department of Geography University of Lethbridge 4401 University Dr Lethbridge, AB T1K 3M4

Canada

sarah.boon@uleth.ca

David A. Braaten

Center for Remote Sensing of Ice Sheets

Department of Geography University of Kansas Lawrence, KS 66045

USA

braaten@ku.edu

CONTRIBUTORS xxiii

Roger J. Braithwaite
Geography Programme, School of Environment and
Development
University of Manchester
Oxford Road
Manchester M13 9PL
UK
r.braithwaite@manchester.ac.uk

Claudio Bravo Centro de Estudios Científicos, CECS Arturo Prat 514 Valdivia Chile cbravo@cecs.cl

Gary J. Brierley School of Environment The University of Auckland 10 Symonds Street Private Bag 92019, Auckland 1142 New Zealand g.brierley@auckland.ac.nz

Jason P. Briner
Department of Geological Sciences
University at Buffalo
Buffalo, NY 14260
USA
jbriner@buffalo.edu

Margo M. Burgess Geological Survey of Canada Natural Resources Canada 601 Booth Street Ottawa, ON K1A 0E8 Canada Margo.Burgess@nrcan-rncan.gc.ca

Paolo Burlando Institute of Environmental Engineering ETH Zurich 8093 Zurich Switzerland paolo.burlando@ifu.baug.ethz.ch

Katie Burles Department of Geography University of Lethbridge 4401 University Dr Lethbridge, AB T1K 3M4 Canada Andrew B. G. Bush Department of Earth and Atmospheric Science University of Alberta 1-26 Earth Sciences Building Edmonton, AB T6G 2E3 Canada andrew.bush@ualberta.ca

David R. Butler Mountain GeoDynamics Research Group Department of Geography Texas State University-San Marcos San Marcos, TX 78666-4616 USA db25@txstate.edu

Fay Campbell Department of Geographical and Earth Sciences University of Glasgow Glasgow G12 8QQ UK

Norm R. Catto Department of Geography Memorial University of Newfoundland St. John's, NL A1B 3X9 Canada ncatto@mun.ca

Fiona Cawkwell
Department of Geography
University College Cork
Cork
Ireland
f.cawkwell@ucc.ie

Anny Cazenave
Laboratoire d'Etudes en Géophysique et Océanographie
Spatiales (LEGOS)
LEGOS-CNES, Observatoire Midi-Pyrénées
18 Av. E. Belin
31400 Toulouse
France
Anny.Cazenave@legos.obs-mip.fr
anny.cazenave@gmail.com

Stanley A. Changnon University of Illinois Urbana, IL 61853 USA schangno@illinois.edu **xxiv** CONTRIBUTORS

Arun Chaturvedi Antartic Division Geological Survey of India NH 5P Faridabad 121001 India arun.daak@gmail.com

Anju Chaudhary Water Resources System Division National Institute of Hydrology Roorkee 247667 India anju@nih.ernet.in

Jie Cheng College of Global Change and Earth System Science Beijing Normal University 19 Xinjiekouwai Street Beijing 100875 China brucechan2003@126.com

Jessica Ellen Cherry
International Arctic Research Center and Institute of
Northern Engineering
University of Alaska Fairbanks
930 Koyukuk Dr.
Fairbanks, AK 99775-7335
USA
jcherry@iarc.uaf.edu

Poul Christoffersen Scott Polar Research Institute University of Cambridge Lensfield Road Cambridge CB2 1ER UK pc350@cam.ac.uk

John J. Clague
Department of Earth Sciences
Centre for Natural Hazard Research
Simon Fraser University
8888 University Drive
Burnaby, BC V5A 1S6
Canada
jclague@sfu.ca

J. Graham Cogley Department of Geography Trent University Peterborough ON, K9J 7B8 Canada gcogley@trentu.ca Jeffrey D. Colby Department of Geography and Planning Appalachian State University Boone, NC 28608 USA colbyj@appstate.edu

Simon J. Cook
Centre for Glaciology
Institute of Geography and Earth Sciences
Aberystwyth University
H5, Llandinam
Ceredigion, Wales SY23 3DB
UK
smc@aber.ac.uk
basalice@gmail.com

Luke Copland
Department of Geography
University of Ottawa
Ottawa, ON K1N 6N5
Canada
luke.copland@uottawa.ca

Michel Crucifix
Georges Lemaitre Centre for Earth and Climate Research
Université catholique de Louvain
2 chemin du Cyclotron
1348 Louvain-la-Neuve
Belgium
michel.crucifix@uclouvain.be

Ronald P. Daanen Geophysical Institute University of Alaska Fairbanks 903 Koyukuk Dr. Fairbanks, AK 99775-7320 USA rdaanen@alaska.edu

Prem Datt
Research and Design Center (RDC)
Snow and Avalanche Study Establishment
Plot No-1, Sector 37-A
Himparishar 160036, Chandigarh
India
datt_prem@rediffmail.com

Carmen de Jong
The Mountain Institute
University of Savoy
73376 Pôle Montagne, Le Bourget du Lac
France
carmen.dejong@institut-montagne.org

CONTRIBUTORS xxv

Reynald Delaloye Department of Geosciences Geography University of Fribourg Ch. du Musee 4 1700 Fribourg Switzerland reynald.delaloye@unifr.ch

Philip Deline EDYTEM Lab Université de Savoie, CNRS 73376 Le Bourget du Lac France pdeli@univ-savoie.fr

Michael N. Demuth Glaciology Section, Geological Survey of Canada Earth Sciences Sector Program on Climate Change Geoscience Natural Resources Canada 601 Booth Street Ottawa, ON K1A 0E8 Canada Mike.Demuth@NRCan-RNCan.GC.CA

Stephen J. Déry Environmental Science and Engineering Program University of Northern British Columbia 3333 University Way Prince George, BC V2N 4Z9 Canada sdery@unbc.ca

Guglielmina Diolaiuti Department of Earth Sciences "A. Desio" University of Milano Via Mangiagalli 34 20133 Milano Italy guglielmina.diolaiuti@unimi.it

D. P. Dobhal Wadia Institute of Himalayan Geology 33, General Mahadev Singh Road Dehradun 248001, Uttarakhand India dpdobhal@rediffmail.com

Florent Domine
Laboratoire de Glaciologie et Géophysique de l'Environnement
CNRS
BP 96, 54 rue Molière
38402 Saint Martin d'Hères
France
florent@lgge.obs.ujf-grenoble.fr

Divya Dudeja Department of Geology DBS (P.G.) College Dehradun 248001, Uttarakhand India divyadudeja@yahoo.co.in

Michael Durand Byrd Polar Research Center Ohio State University 108 Scott Hall, 1090 Carmack Road Columbus, OH 43210 USA durand.8@osu.edu

Jürgen Ehlers Geologisches Landesamt Billstrasse 84 20539 Hamburg Germany juergen.ehlers@bsu.hamburg.de

Heidi Escher-Vetter Commission for Glaciology Bavarian Academy of Sciences and Humanities Alfons-Goppel-Strasse 11 80539 Munich Germany Heidi.Escher@kfg.badw.de

Richard Essery School of GeoSciences University of Edinburgh Edinburgh EH9 3JW UK richard.essery@ed.ac.uk

Steven Fassnacht Snow Hydrology, Watershed Science Program Colorado State University Natural Resources Building Room 335 Fort Collins, CO 80523 USA srf@warnercnr.colostate.edu

Jiang Fengqing
Xinjiang Institute of Ecology and Geography, CAS
Chinese Academy of Sciences
40-3 South Beijing Road
Urumqi, Xinjiang 830011
China
jiangfengqing@gmail.com
jiangfq@ms.xjb.ac.cn

xxvi CONTRIBUTORS

Xavier Fettweis

Institute for Marine and Atmospheric Research

Utrecht University Princetonplein 5 3584 CC Utrecht Netherlands and

Department of Geography University of Liège Allée du 6 Août, 2 4000 Liège Belgium

xavier.fettweis@ulg.ac.be

Charles Fierz

WSL Institute for Snow and Avalanche Research SLF

7260 Davos Dorf Switzerland fierz@slf.ch

Sean J. Fitzsimons
Department of Geography
University of Otago
P.O. Box 56
Dunedin 9054
New Zealand
sjf@geography.otago.ac.nz

Andrew G. Fountain Department of Geology Portland State University P.O. Box 751 Portland, OR 97207-0751 USA andrew@pdx.edu

Hugh M. French University of Ottawa (retired) 10945 Marti Lane North Saanich, British Columbia V8L 5S5 Canada hmfrench@shaw.ca

Ping Fu
Department of Earth and Atmospheric Sciences
Purdue University
550 Stadium Mall Dr
West Lafayette, IN 47907
USA
pfu@purdue.edu

Yoshinori Furukawa

Research Group for Phase Transition Dynamics of Ice

Institute of Low Temperature Science

Hokkaido University

N19 W8

Sapporo 060-0819

Japan

frkw@lowtem.hokudai.ac.jp

Olivier Gagliardini

Laboratoire de Glaciologie et Géophysique de

l'Environnement du CNRS/UJF

54, rue Molière BP 96 38402 Grenoble

France

gagliardini@lgge.obs.ujf-grenoble.fr

Isabelle Gärtner-Roer

Glaciology, Geomorphodynamics and Geochronology

Department of Geography University of Zürich Winterthurerstrasse 190

8057 Zürich Switzerland

isabelle.roer@geo.uzh.ch

John R. Giardino

Department of Geology and Geophysics

Texas A&M University

College Station, TX 77843-3115

USA

rickg@tamu.edu

Philip Gibbard

Quaternary Palaeoenvironments Group, Cambridge

Quaternary

Department of Geography University of Cambridge Downing Street Cambridge CB2 3EN

UK

plg1@cam.ac.uk

Alan R. Gillespie

Department of Earth and Space Sciences

Quaternary Research Center University of Washington Seattle, WA 98195-1310

USA

arg3@u.washington.edu

Neil F. Glasser

Centre for Glaciology, Institute of Geography & Earth

Sciences

Aberystwyth University

Aberystwyth, Ceredigion, Wales SY23 3DB

ΙΙΚ

nfg@aber.ac.uk

CONTRIBUTORS xxvii

Manmohan Kumar Goel Water Resources System National Institute of Hydrology Roorkee 247667, Uttarakhand India goel_m_k@yahoo.com mkg@nih.ernet.in

Gavin Gong

Department of Earth and Environmental Engineering Henry Krumb School of Mines Columbia University 500 West. 120th Street, MC4711 New York, NY 10027 USA gg2138@columbia.edu

Alastair G. C. Graham Ice Sheets Programme, British Antarctic Survey High Cross, Madingley Road Cambridge CB3 0ET UK alah@bas.ac.uk

Amanda M. Grannas Department of Chemistry Villanova University 800 Lancaster Ave Villanova, PA 19085 USA amanda.grannas@villanova.edu

Thomas C. Grenfell
Department of Atmospheric Sciences
University of Washington
Seattle, WA 98195-1640
USA
tcg@atmos.washington.edu

G. Hilmar Gudmundsson British Antarctic Survey High Cross Madingley Road Cambridge CB3 0ET UK ghg@bas.ac.uk

Ravi P. Gupta
Department of Earth Sciences
Indian Institute of Technology Roorkee
Roorkee 247667, UA
India
rpgupta.iitr@gmail.com
rpgesfes@iitr.ernet.in

Wilfried Haeberli Glaciology, Geomorphodynamics & Geochronology Geography Department University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland wilfried.haeberli@geo.uzh.ch

Brenda L. Hall
Department of Earth Sciences and
Climate Change Institute
Bryand Global Sciences Center
University of Maine
Orono, ME 04469
USA
BrendaH@maine.edu

Dorothy K. Hall Crysopheric Sciences Branch Code 614.1, NASA/Goddard Space Flight Center Greenbelt, MD 20771 USA dorothy.k.hall@nasa.gov

Michael J. Hambrey Centre for Glaciology Institute of Geography & Earth Sciences Aberystwyth University Aberystwyth, Ceredigion, Wales SY23 3DB UK mjh@aber.ac.uk

Jonathan Harbor Department of Earth and Atmospheric Sciences Purdue University 550 Stadium Mall Dr West Lafayette, IN 47907 USA jharbor@purdue.edu

Douglas R. Hardy
Climate System Research Center and
Department of Geosciences
University of Massachusetts
Morrill Science Center
611 North Pleasant Street
Amherst, MA 01003-9297
USA
dhardy@geo.umass.edu
doug.hardy@valley.net

Spencer P. Hardy Hanover High School 41 Lebanon St Hanover, NH 03755 USA xxviii CONTRIBUTORS

Chelamallu Hariprasad Centre for Studies in Resource Engineering Indian Institute of Technology, Bombay Powai, Mumbai 400076, Maharashtra

India

chariprasad@iitb.ac.in

Umesh K. Haritashya Department of Geology University of Dayton 300 College Park Dayton, OH 45469-2364 USA ukharit@yahoo.com

Umesh.Haritashya@notes.udayton.edu

Stephan Harrison School of Geography, Archaeology and Earth Resources University of Exeter Cornwall Campus Penryn, Cornwall TR10 9EZ

UK

stephan.harrison@exeter.ac.uk

Kenneth Hewitt Cold Regions Research Centre Wilfrid Laurier University 75 University Avenue West Waterloo, ON N2L 3C5 Canada khewitt@wlu.ca

Christopher A. Hiemstra Cold Regions Research and Engineering Laboratory (CRREL)

U.S. Army Corps of Engineers, ERDC

P.O. Box 35170

Fort Wainwright, AK 99703-0170

USA

Christopher.A.Hiemstra@usace.army.mil

Richard Hodgkins Department of Geography Loughborough University Leicestershire LE11 3TU UK

r.hodgkins@lboro.ac.uk

Brvn Hubbard Centre for Glaciology Institute of Geography and Earth Sciences Aberystwyth University Llandinam Building Aberystwyth, Ceredigion, Wales SY23 3DB byh@aber.ac.uk

Philip D. Hughes

Geography, School of Environment and Development

The University of Manchester Arthur Lewis Building Manchester M13 9PL

philip.hughes@manchester.ac.uk

Terry Hughes Department of Earth Science University of Maine Orono, ME 04469-5790 **USA** and Climate Change Institute

University of Maine Orono, ME 04469-5790

USA

terry.hughes@maine.edu

Lasafam Iturrizaga Department of Geography/High Mountain Geomorphology Institute of Geography University of Göttingen Goldschmidtstr. 5 37077 Göttingen

Germany

liturri@gwdg.de

C. K. Jain

National Institute of Hydrology Centre for Flood Management Studies G. S. Road, Sapta Sahid Path, Mathura Nagar Dispur, Guwahati 781006, Assam India ckj_1959@yahoo.co.in

Manoj K. Jain

Department of Hydrology Indian Institute of Technology Roorkee 247667, Uttarakhand

India

jain.mkj@gmail.com

Sanjay K. Jain

National Institute of Hydrology Roorkee, 247667 Uttarakhand

India

Sjain@nih.ernet.in

CONTRIBUTORS xxix

Adrian Jenkins British Antarctic Survey Natural Environment Research Council High Cross, Madingley Road Cambridge CB3 0ET UK ajen@bas.ac.uk a.jenkins@bas.ac.uk

Hester Jiskoot Department of Geography University of Lethbridge 4401 University Drive W Lethbridge, AB T1K 3M4 Canada hester.jiskoot@uleth.ca

Jerome B. Johnson Institute of Northern Engineering University of Alaska Fairbanks P.O. Box 755910 Fairbanks, AK 99775-5910 USA jerome.b.johnson@alaska.edu

Tobias Jonas Snow Hydrology Research Group WSL Institute for Snow and Avalanche Research SLF 7260 Davos Switzerland jonas@slf.ch

M. Torre Jorgenson Alaska Ecoscience Fairbanks, AK 99709 USA tjorgenson@abrinc.com

Andreas Kääb Department of Geosciences University of Oslo Sem Sælands vei 1, 1047 Blindern, 0316 Oslo Norway kaeaeb@geo.uio.no

M. Z. Kanevskiy
Department of Civil and Environmental Engineering
University of Alaska Fairbanks
245 Duckering Building, P.O. Box 755900
Fairbanks, AK 99775-59000
USA
mkanevskiy@alaska.edu

Shichang Kang
Key Laboratory of Tibetan Environmental Changes and
Land Surface Processes
Institute of Tibetan Plateau Research
Chinese Academy of Sciences
No.18, Shuangqing Rd., P.O. Box 2871
Haidian District, Beijing 100085
China
and
State Key Laboratory of Cryospheric Sciences
Chinese Academy of Sciences
Lanzhou 730000
China
Shichang.Kang@itpcas.ac.cn

Martin Kappas Cartography, GIS and Remote Sensing Section Institute of Geography Georg-August University Göttingen Goldschmidtstr. 5 37077 Göttingen Germany mkappas@gwdg.de

Rijan B. Kayastha Himalayan Cryosphere, Climate and Disaster Research Center (HiCCDRC) Kathmandu University Dhulikhel, Kavre P.O. Box 6250, Kathmandu Nepal rijan@ku.edu.np

Matt A. King School of Civil Engineering and Geosciences Newcastle University Cassie Building Newcastle upon Tyne NE1 7RU UK m.a.king@ncl.ac.uk

Martin P. Kirkbride Geography, School of the Environment University of Dundee Perth Road Dundee DD1 4HN, Scotland UK m.p.kirkbride@dundee.ac.uk

Peter G. Knight School of Physical and Geographical Sciences Keele University William Smith Building Staffordshire ST5 5BG UK p.g.knight@esci.keele.ac.uk xxx CONTRIBUTORS

Johannes Koch Department of Earth Sciences Simon Fraser University Burnaby, BC V5A 1S6 Canada ikoch@sfu.ca

Lynn Koehler University of Victoria Tree-Ring Laboratory Department of Geography University of Victoria Victoria, British Columbia V8W 3R4 Canada lynn.koehler@gmail.com

Markus Konz
Institute of Environmental Engineering
Hydrology and Water Resources Management
ETH Zürich
Wolfgang-Pauli-Str. 15
8093 Zurich
Switzerland
markus.konz@ifu.baug.ethz.ch

Nadine Konz Institute of Environmental Geosciences University of Basel 4003 Basel Switzerland nadine.konz@unibas.ch

Akhouri Pramod Krishna
Department of Remote Sensing
Birla Institute of Technology (BIT)
Deemed University
P.O. Mesra
Ranchi 835215, Jharkhand
India
apkrishna@ewca.eastwestcenter.org
apkrishna@bitmesra.ac.in

Matthias Kuhle
Department of Geography and High Mountain
Geomorphology
Geographical Institute
University of Göttingen
Goldschmidtstr. 5
37077 Göttingen
Germany
mkuhle@gwdg.de

Amit Kumar
Department of Geology
Centre of Advanced Study in Geology
Punjab University
Sector-14
Chandigarh 160014, Punjab
India
amithydrocoin@gmail.com
amitwalia@wihg.res.in

Bhishm Kumar Hydrological Investigations Division National Institute of Hydrology Roorkee 247667, Uttarakhand India bk@nih.ernet.in bhishm_nih@yahoo.co.in

Rajesh Kumar School of Engineering and Technology Sharda University 32–34, Knowledge Park-III Greater Noida 201306, NCR India and Remote Sensing Division Birla Institute of Technology, Extension Centre Jaipur 27, Malviya Industrial Area Jaipur 302017, Rajasthan India rajeshbhu@yahoo.com

Vijay Kumar National Institute of Hydrology Roorkee 247667, Uttarakhand India vijay@nih.ernet.in vk_nih@yahoo.com

Christophe Lambiel Institute of Geography University of Lausanne Bâtiment Anthropole 1015 Lausanne Switzerland christophe.lambiel@unil.ch

Wendy Lawson
Department of Geography
University of Canterbury
Private Bag 4800
Christchurch 8140
New Zealand
wendy.lawson@canterbury.ac.nz

CONTRIBUTORS xxxi

Daniel J. Leathers Department of Geography University of Delaware Newark, DE 19716-2541 USA leathers@udel.edu

Jean-Michel Lemieux
Département de géologie et de génie géologique
Université Laval
1065 avenue de la Médecine
Québec, QC G1V 0A6
Canada
jmlemieux@ggl.ulaval.ca

Eric M. Leonard
Department of Geology
Colorado College
14E Cache la Poudre
Colorado Springs, CO 80903
USA
eleonard@coloradocollege.edu

Matti Leppäranta Department of Physics University of Helsinki P.O. Box 64, (Gustaf Hällströmin katu 2a) 00014 Helsinki Finland matti.lepparanta@helsinki.fi

Delphis F. Levia Department of Geography University of Delaware Newark, DE 19716-2541 USA dlevia@udel.edu

Shunlin Liang Department of Geography University of Maryland 2181 LeFrak Hall College Park, MD 20742 USA sliang@umd.edu

Kenneth G. Libbrecht Department of Physics Caltech 264-33 Caltech Pasadena, CA 91125 USA kgl@caltech.edu Ron Lindsay Polar Science Center Applied Physics Laboratory University of Washington 1013 NE 40th Street Seattle, WA 98105-6698 USA lindsay@apl.washington.edu

Glen E. Liston Cooperative Institute for Research in the Atmosphere Colorado State University 1375 Campus Delivery Fort Collins, CO 80523-1375 USA liston@cira.colostate.edu

Jingshi Liu Institute of Tibetan Plateau Research Chinese Academy of Sciences 18 Shuangqing Rd. Haidian District, Beijing 100085 China jsliu@itpcas.ac.cn

Yongqin Liu
Laboratory of Tibetan Environment Changes and Land
Surface Processes (TEL)
Institute of Tibetan Plateau Research
Chinese Academy of Sciences
No. 18 Shuangqing Rd, P.O. Box 2871
Haidian District, Beijing 100085
China
yqliu@itpcas.ac.cn

Christopher Lloyd Department of Geography University of Sheffield Sheffield S10 2TN UK ggp08ctl@sheffield.ac.uk

Rachel W. Lomonaco Thayer School of Engineering Dartmouth College Hanover, NH 03755 USA

Reginald D. Lorrain Département des Sciences de la Terre et de l'Environnement Université Libre de Bruxelles Bruxelles Belgium rlorrain@ulb.ac.be xxxii CONTRIBUTORS

Mira Losic Department of Geography University of Calgary Earth Sciences 356, 2500 University Dr NW Calgary, AB T2N 1N4 Canada mlosic@ucalgary.ca

Sven Lukas Department of Geography Queen Mary University of London Mile End Road London E1 4NS UK S.Lukas@qmul.ac.uk

Juha P. Lunkka Institute of Geosciences University of Oulu P.O. Box 3000 90014 Oulu Finland juha.pekka.lunkka@oulu.fi

Kelly MacGregor Geology Department Macalester College 1600 Grand Avenue Saint Paul, MN 55105 USA macgregor@macalester.edu

William C. Mahaney Quaternary Surveys 26 Thornhill Ave Thornhill, ON L4J 1J4 Canada arkose@rogers.com bmahaney@yorku.ca

Shawn J. Marshall
Department of Geography
University of Calgary
Earth Sciences 356, 2500 University Dr NW
Calgary, AB T2N 1N4
Canada
shawn.marshall@ucalgary.ca

Richard A. Marston
Department of Geography
Kansas State University
118 Seaton Hall
Manhattan, KS 66506-2904
USA
Rmarston@ksu.edu
Rmarston@k-state.edu

Christoph Marty WSL Institute for Snow and Avalanche Research SLF Flüelastr. 11 7260 Davos Switzerland marty@slf.ch

Robert D. McCulloch School of Biological and Environmental Science University of Stirling Stirling FK9 4LA, Scotland UK robert.mcculloch@stir.ac.uk

Brian Menounos Geography Program and Natural Resources and Environmental Studies Institute University of Northern British Columbia 3333 University Way Prince George, BC V2N 4Z9 Canada

Justin R. Minder
Department of Atmospheric Science
University of Washington
Box 351640
Seattle, WA 98195-1640
USA
juminder@atmos.washington.edu

Debasmita Misra
Department of Mining and Geological Engineering
College of Engineering and Mines
University of Alaska Fairbanks
P.O. Box 755800
Fairbanks, AK 99775-5800
USA
debu.misra@alaska.edu

Vanya I. Miteva
Department of Biochemistry and Molecular Biology
The Pennsylvania State University
211 South Frear
University Park, PA 16802
USA
vim1@psu.edu

Thomas Mölg Center for Climate & Cryosphere University of Innsbruck 6020 Innsbruck Austria CONTRIBUTORS xxxiii

Peter Molnar

Institute of Environmental Engineering

ETH Zurich 8093 Zurich Switzerland

molnar@ifu.baug.ethz.ch

Bruce F. Molnia

U.S. Geological Survey

562 National Center, 12201 Sunrise Valley Drive, 12201

Reston, VA 20192

USA

bmolnia@usgs.gov

Brian Morse

Department of Civil and Water Engineering

Laval University 1065, ave de la Médecine Quebec, QC G1V 0A6

Canada

Nozomu Naito

Department of Global Environment Studies

Hiroshima Institute of Technology

Miyake 2-1-1, Saeki-ku Hiroshima 731-5193

Japan

naito@cc.it-hiroshima.ac.jp

Jacob Napieralski

Department of Natural Sciences University of Michigan-Dearborn

Dearborn, MI 48128

USA

jnapiera@umd.umich.edu

Atle Nesje

Department of Earth Science\Bjerknes Centre for

Climate Research University of Bergen Allégaten 41 5007 Bergen Norway

atle.nesje@geo.uib.no

Thomas A. Neumann

NASA Goddard Space Flight Center

Greenbelt, MD 20771

USA

thomas.neumann@nasa.gov

Peter W. Nienow School of Geosciences University of Edinburgh Drummond Street Edinburgh EH8 9XP

IJΚ

pnienow@geo.ed.ac.uk

David C. Nobes

Department of Geological Sciences

University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand

david.nobes@canterbury.ac.nz

Rachel W. Obbard

Thayer School of Engineering

Dartmouth College Hanover, NH 03755

USA

Rachel.w.obbard@dartmouth.edu

Øyvind Paasche

Bjerknes Centre for Climate Research

University of Bergen

Allégaten 55 5007 Bergen Norway and

Department of Research Management

University of Bergen Professor Keysers gt. 8 5020 Bergen

Norway

oyvind.paasche@uni.no

Thomas H. Painter

Jet Propulsion Laboratory/Caltech

4800 Oak Grove Drive Pasadena, CA 91109

USA

Thomas.Painter@jpl.nasa.gov

Pratima Pandey

Centre of Studies in Resources Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra

India

pratimapandey@iitb.ac.in

Himali Panthri Department of Geology D.B.S (P.G) College

Dehradun 248001, Uttarakhand

India

himali.geo@gmail.co

Frank Paul

Department of Geography University of Zurich Winterthurerstrasse 190

8057 Zurich Switzerland

frank.paul@geo.uzh.ch

xxxiv CONTRIBUTORS

Francesca Pellicciotti

Institute of Environmental Engineering

ETH Zurich 8093 Zurich Switzerland

francesca.pellicciotti@ifu.baug.ethz.ch

Mauri S. Pelto

Department of Environmental Science

Nichols College Dudley, MA 01571

USA

mauri.pelto@nichols.edu

Christine Pielmeier

WSL Institute for Snow and Avalanche Research SLF

Warning and Prevention

Flüelastrasse 11 7260 Davos Dorf Switzerland pielmeier@slf.ch

Jan A. Piotrowski

Department of Earth Sciences

University of Aarhus Høegh-Guldbergs Gade 2 8000 Aarhus C

8000 Aarhus Denmark and

Department of Geography University of Sheffield Sheffield S10 2TN

UK

jan.piotrowski@geo.au.dk

Philip R. Porter

Division of Geography and Environmental Sciences

School of Life Sciences
University of Hertfordshire
Hatfield, Hertfordshire AL10 9AB

UK

p.r.porter@herts.ac.uk

George Postma

Faculty of Geosciences EUROTANK Laboratories

P.O. Box 80.021 3508 TA Utrecht The Netherlands gpostma@geo.uu.nl

P. Pradeep Kumar

Department of Atmospheric and Space Sciences

Pune University

Pune 411007, Maharashtra

India

ppk@physics.unipune.ac.in

Daniel J. Pringle

Arctic Region Supercomputing Center and Geophysical

Institute

University of Alaska Fairbanks, AK 99775

USA

danielpringle75@gmail.com

John C. Priscu

Department of Land Resources and Environmental

Sciences

Montana State University Bozeman, MT 59717

USA

jpriscu@montana.edu

Duncan J. Quincey

Institute of Geography and Earth Sciences

Penglais Campus Aberystwyth University Aberystwyth, Wales SY23 3DB UK

Camilo Rada

Centro de Estudios Científicos, CECS

Arturo Prat 514 Valdivia Chile

Y. S. Rao

Centre of Studies in Resources Engineering

Indian Institute of Technology Powai, Mumbai 400076

India

ysrao@iitb.ac.in

Donald Rapp

Independent Contractor 1445 Indiana Avenue South Pasadena, CA 91030

USA

drdrapp@earthlink.net

Rasik Ravindra

National Centre for Antarctic and Ocean Research

Headland Sada, Vasco-Da-Gama

Goa 403804

India

rasik@ncaor.org

Netra R. Regmi

Department of Geology and Geophysics

Texas A&M University

College Station, TX 77843-3115

LISA

netraregmi@neo.tamu.edu

CONTRIBUTORS xxxv

Helen E. Reid School of Environment The University of Auckland 10 Symonds Street Private Bag 92019, Auckland 1142 New Zealand h.reid@auckland.ac.nz

Alan W. Rempel Department of Geological Sciences University of Oregon Eugene, OR 97403-1272 USA rempel@uoregon.edu

Jeffrey Ridley Met Office, Hadley Centre FitzRoy Road Exeter EX1 3PB UK

George A. Riggs SSAI 10210 Greenbelt Road, Suite 600 Lanham, MD 20706 USA george.a.riggs@nasa.gov

Eric Rignot
Department of Earth System Science
University of California Irvine
Irvine, CA 92697
USA
and
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91214
USA
erignot@uci.edu

Vinvent Rinterknecht School of Geography and Geosciences University of St Andrews North Street St Andrews KY16 9AL, Scotland UK vr10@st-andrews.ac.uk

Daniel Riseborough Geological Survey of Canada 601 Booth Street Ottawa, ON K1A 0E4 Canada drisebor@nrcan.gc.ca Andrés Rivera
Centro de Estudios Científicos, CECS
Arturo Prat 514
Valdivia
Chile
and
Universidad de Chile
Marcoleta 250
Santiago
Chile
and

Centro de Ingeniería de la Innovación, CIN Arturo Prat 514 Valdivia Chile arivera@cecs.cl

Gerard H. Roe
Department of Atmospheric Science
University of Washington
Box 351640
Seattle, WA 98195-1640
USA
and
Department of Earth and Space Sciences
University of Washington
2206 N41 St
Seattle, WA 98103
USA
gerard@ess.washington.edu

Neil Ross School of Geosciences University of Edinburgh Geography Building Drummond Street Edinburgh EH8 9XP UK neil.ross@ed.ac.uk

Anders Schomacker

anders@hi.is

Institute of Earth Sciences
University of Iceland
Askja, Sturlugata 7
101 Reykjavík
Iceland
and
Department of Geology
Norwegian University of Science and Technology
7491 Trondheim
Norway

xxxvi CONTRIBUTORS

Bob E. Schutz Center for Space Research University of Texas at Austin Austin, TX 78759

USA

schutz@csr.utexas.edu

Annette Semádeni-Davies
Department of Water Resources Engineering
Lund University
22100 Lund
Sweden
annette.davies@tvrl.lth.se

Hung Tao Shen
Department of Civil and Environmental Engineering
Clarkson University
P.O. Box 5710
Potsdam, NY 13699-5710
USA
htshen@clarkson.edu

Arun B. Shrestha International Centre for Integrated Mountain Development (ICIMOD) Khumaltar, Lalitpur, GP.O. Box 3226 Kathmandu Nepal abshrestha@icimod.org

John F. Shroder Department of Geography and Geology University of Nebraska at Omaha 6001 Dodge Street Omaha, NE 68182 USA jshroder@mail.unomaha.edu

Aparna Shukla Uttarakhand Space Application Centre Dehradun India aparna.shukla22@gmail.com

Yuri Shur Department of Civil and Environmental Engineering University of Alaska Fairbanks 245 Duckering Building, P.O. Box 755900 Fairbanks, AK 99775-59000 USA yshur@alaska.edu Martin J. Siegert School of GeoSciences University of Edinburgh Grant Institute West Mains Road Edinburgh EH9 3JW UK m.j.siegert@ed.ac.uk

Oddur Sigurðsson Veðurstofu Íslands Icelandic Meteorological Office Bústaðavegi 9 150 Reykjavík Iceland oddur@vedur.is

A. K. Singh DIAT (Deemed University) Girinagar Pune 411025, Maharashtra India draksingh@hotmail.com aksingh@diat.ac.in

Gulab Singh Centre of Studies in Resources Engineering Indian Institute of Technology Bombay Powai Mumbai 400076, Maharashtra India gskaliar@iitb.ac.in

Pratap Singh
Integrated Natural Resources Management (INRM)
Consultants Pvt. Ltd
An Incubatee Company of IIT Delhi
New Delhi
India
and
Hydro Tasmanier Consulting
Nehru Place
New Delhi 110019
India
pratap_singh_1@yahoo.com
pratapsingh.iitd@gmail.com

Vijay P. Singh
Department of Biological and Agricultural Engineering
Texas A&M University
Scoates Hall
2117 TAMU
College Station, TX 77843-2117
USA
vsingh@tamu.edu

CONTRIBUTORS xxxvii

Subhajit Sinha
DBS College
Dehradun, Uttarakhand
India
sinha_subho@rediffmail.com

Claudio Smiraglia
Department of Earth Sciences "A. Desio"
University of Milano
Via Mangiagalli 34
20133 Milano
Italy
claudio.smiraglia@unimi.it

Andy M. Smith British Antarctic Survey, High Cross Madingley Road Cambridge CB3 0ET UK amsm@bas.ac.uk

Dan J. Smith University of Victoria Tree-Ring Laboratory Department of Geography University of Victoria Victoria, British Columbia V8W 3R4 Canada

Sharon L. Smith Geological Survey of Canada Natural Resources Canada 601 Booth Street Ottawa, ON K1A 0E8 Canada Sharon.Smith@nrcan-rncan.gc.ca

Rudolph R. Stea Stea Surficial Geology Services 851 Herring Cove Road Halifax, Nova Scotia B3R 1Z1 Canada ralphstea@eastlink.ca

Chris R. Stokes
Department of Geography
Durham University
Science Site, South Road
Durham DH1 3LE
UK
c.r.stokes@durham.ac.uk

Tim Stott
Physical Geography and Outdoor Education
Liverpool John Moores University
I. M. Marsh Campus, Barkhill Road
Liverpool L17 6BD
UK
t.a.stott@ljmu.ac.uk

Edward A. Sudicky
Department of Earth and Environmental Sciences
University of Waterloo
Waterloo, ON N2L 3G1
Canada
sudicky@sciborg.uwaterloo.ca

Kazuyoshi Suzuki Research Institute for Global Change Japan Agency for Marine-Earth Science and Technology 3173-25 Showa-machi Yokohama 236-0001 Japan skazu@jamstec.go.jp

Ryohei Suzuki Graduate School of Environmental Studies Nagoya University c/o Hydrospheric Atmospheric Research Center Furo-cho Chikusa-ku Nagoya 464-8601 Japan cryosuzuki@nagoya-u.jp

Darrel A. Swift Department of Geography University of Sheffield Sheffield S10 2TN UK D.A.Swift@sheffield.ac.uk

Nozomu Takeuchi Department of Earth Sciences Graduate School of Science Chiba University 1-33 Yayoicho, Inage-ku, Chiba-city Chiba 263-8522 Japan ntakeuch@faculty.chiba-u.jp

Renoj J. Thayyen Western Himalayan Regional Centre National Institute of Hydrology Jammu (J&K) 180003 India renojthayyen@gmail.com

Malte Thoma Bavarian Academy and Sciences, Commission for Glaciology Alfons-Goppel-Str. 11 80539 Munich Germany and xxxviii CONTRIBUTORS

Alfred Wegener Institute for Polar and Marine Research Bussestrasse 24 27570 Bremerhaven Germany Malte.Thoma@awi.de

David N. Thomas School of Ocean Sciences, College of Natural Sciences Bangor University Menai Bridge, Anglesey LL59 5AB UK d.thomas@bangor.ac.uk

Anita M. Thompson Department of Biological Systems Engineering University of Wisconsin-Madison 230 Ag. Eng. Building, 460 Henry Mall Madison, WI 53706 USA amthompson2@wisc.edu

Thierry Toutin
Canada Centre for Remote Sensing
Natural Resources Canada
Ottawa, ON K1A 0Y7
Canada
thierry.toutin@ccrs.nrcan.gc.ca

Martyn Tranter Bristol Glaciology Centre School of Geographical Sciences University of Bristol University Road Bristol BS8 1SS UK m.tranter@bristol.ac.uk

Donna F. Tucker Department of Geography University of Kansas 1475 Jayhawk Blvd., Room 213 Lawrence, KS 66045-7613 USA dtucker@ku.edu

Hugh Tuffen
Lancaster Environment Centre
Lancaster University
Lancaster LA1 4YQ
UK
h.tuffen@lancaster.ac.uk

Fiona Tweed
Department of Geography
Staffordshire University
College Road
Stoke-on-Trent, Staffordshire ST4 2DE
UK
f.s.tweed@staffs.ac.uk

Michiel Van den Broeke
Institute for Marine and Atmospheric Research
Utrecht University
Princetonplein 5
3584 CC Utrecht
Netherlands
m.r.vandenbroeke@uu.nl

C. J. van der Veen
Department of Geography and
Center for Remote Sensing of Ice Sheets
University of Kansas
203 Lindley Hall
1475 Jayhawk Blvd
Lawrence, KS 66045-7613
USA
cjvdv@ku.edu

Veerle Vanacker TECLIM, Earth and Life Institute University of Louvain Place L. Pasteur, 3 1348 Louvain-la-Neuve, BW Belgium veerle.vanacker@uclouvain.be

Dominic Vella
Department of Applied Mathematics and Theoretical
Physics
Institute of Theoretical Geophysics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WA
UK
d.vella@damtp.cam.ac.uk

G. Venkataraman Centre of Studies of Resources Engineering Indian Institute of Technology Bombay Mumbai 400076 India gv@iitb.ac.in CONTRIBUTORS xxxix

Ashok Kumar Verma
Department of Geography and Environmental Studies
Cold Regions Research Center
Wilfrid Laurier University
75 University Ave. West
Waterloo, ON N2L 3C5
Canada
ashokpph@gmail.com
verm3620@wlu.ca

Andreas Vieli Department of Geography Durham University Durham DH1 3LE UK Andreas.Vieli@durham.ac.uk

Timo Vihma Finnish Meteorological Institute Erik Palménin aukio 1, P.O. Box 503 00101 Helsinki Finland timo.vihma@fmi.fi

John D. Vitek
Department of Geology and Geophysics
Texas A&M University
College Station, TX 77843-3115
USA
ivitek@neo.tamu.edu

Mathias Vuille
Department of Atmospheric and Environmental Sciences
University at Albany
State University of New York
1400 Washington Avenue
Albany, NY 12222
USA
mathias@atmos.albany.edu

John Wahr Department of Physics and CIRES University of Colorado Boulder, CO 80309-0390 USA wahr@lemond.colorado.edu

Stephen J. Walsh Department of Geography University of North Carolina Chapel Hill, NC 27599-3220 USA swalsh@email.unc.edu Charles R. Warren School of Geography and Geosciences University of St. Andrews Irvine Building St. Andrews, Fife KY16 9AL, Scotland UK charles.warren@st-andrews.ac.uk

Daniel J. Weiss Department of Geography University of North Carolina Chapel Hill, NC 27599-3220 USA

John Wettlaufer Yale University New Haven, CT 06520-8109 USA john.wettlaufer@yale.edu

Roger Wheate Geography Program and Natural Resources and Environmental Studies Institute University of Northern British Columbia 3333 University Way Prince George, BC V2N 4Z9 Canada wheate@unbc.ca

Ian C. Willis
Department of Geography
Scott Polar Research Institute
University of Cambridge
Lensfield Road
Cambridge CB2 1ER
UK
iw102@cam.ac.uk

John Woodward
Division of Geography
School of Applied Sciences
Northumbria University
Ellison Place
Newcastle upon Tyne NE1 8ST
UK
john.woodward@unn.ac.uk

Cunde Xiao State Key Laboratory of Cryospheric Sciences Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences Lanzhou, Gansu 730000 China cdxiao@ns.lzb.ac.cn cdxiao@cams.cma.gov.cn xl CONTRIBUTORS

Zhang Yanwei

Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences 40-3 South Beijing Road Urumqi, Xinjiang 830011

China

Tandong Yao

Laboratory of Tibetan Environment Changes and Land

Surface Processes (TEL)

Institute of Tibetan Plateau Research

Chinese Academy of Sciences

No. 18 Shuangqing Rd, P.O. Box 2871

Haidian District, Beijing 100085

China

tdyao@itpcas.ac.cn

Jacob C. Yde

Center for Geomicrobiology

University of Aarhus

Ny Munkegade building 1540

8000 Århus C

Denmark

and

Bjerknes Centre for Climate Research

University of Bergen

Allégaten 55

5007 Bergen

Norway

yde@phys.au.dk

Wusheng Yu

Laboratory of Tibetan Environment Changes and Land

Surface Processes (TEL)

Institute of Tibetan Plateau Research

Chinese Academy of Sciences

No. 18 Shuangqing Rd, P.O. Box 2871

Haidian District, Beijing 100085

China

Tingjun Zhang

National Snow and Ice Data Center

Cooperative Institute for Research in Environmental

Sciences

University of Colorado at Boulder

Boulder, CO 80309-0449

USA

tzhang@nsidc.org

Huabiao Zhao

Laboratory of Tibetan Environment Changes and Land

Surface Processes (TEL)

Institute of Tibetan Plateau Research

Chinese Academy of Sciences

No. 18 Shuangqing Rd, P.O. Box 2871

Haidian District, Beijing 100085

China

H. J. Zwally

NASA Goddard Space Flight Center

Greenbelt, MD 20771

USA

zwally@icesat2.gsfc.nasa.gov

Preface

Snow, ice and glaciers (SIG) are the components constituting what is called cryosphere. They exist at all latitudes and contain the majority of the earth's fresh water. Due to their dominant prevalence, they influence weather, climate, ecosystems, vegetation, and life and human activities in a variety of ways. Indeed they shape human civilization. Owing to looming climate change and global warming, temperature changes now seem inevitable and are changing the landscape of snow, ice and glaciers, or even the existence thereof. In fact, the changes occurring in SIG can be construed as major indicators of climate change. The nature of cryosphere is highly interdisciplinary and calls for an updated interdisciplinary account of its dynamics. Recent decades have witnessed increasing attention to SIG and scientific communities have started working collectively to develop the basic foundation upon which the broad understanding of cryosphere rests. However, there is still a long way to go.

Discussions on climate change and global warming now seem to be occupying the center stage in public debates, professional forums, news media, and political dialog. As a result, the general public has become much more aware of what is happening to our climate. Since both climate change and climate variability have been found to be closely linked with the cryosphere, it is important for scientists and professionals in the field of earth, environmental, oceanic and atmospheric sciences to develop a better understanding of this sphere from conceptual, theoretical, technical and applied viewpoints. This is especially important for snow, ice and glacier covered areas, since they are rarely stable and are continuously changing in their thickness, areal extent, and flow speeds. Recent advances in field-based studies and quantitative and numerical modeling have provided answers to several key questions but have also highlighted the urgent need for cryospheric studies in many areas, for example, contribution of snow, ice and glacier melt to the sea level rise; importance of snow and glacier to water resources; and so on.

The objective of this Encyclopedia is to present the current state of scientific understanding of various aspects of earth's cryosphere – snow, glaciers, ice caps, ice sheets, ice shelves, sea ice, river and lake ice, and permafrost and their related interdisciplinary connections under one umbrella. Therefore, every effort has been made to provide a comprehensive coverage of cryosphere by including a broad array of topics, such as the atmospheric processes responsible for snow formation; snowfall observations; snow cover and snow surveys; transformation of snow to ice and changes in their properties; classification of ice and glaciers and their worldwide distribution; glaciation and ice ages; glacier dynamics; glacier surface and subsurface characteristics; geomorphic processes and landscape formation; hydrology and sedimentary systems; hydrochemical and isotopic properties; permafrost modeling; hazards caused by cryospheric changes; trends of glacier retreat on a global scale along with the impact of climate change; and many more quantitative estimates of various glacier parameters, such as degree-day, mass balance, extent and volume, and downwasting. Also included are articles on GPS application, and satellite image application in glaciology; GPR analysis; and sea level rise.

For purposes of the Encyclopedia 463 articles were selected. Literature on snow, ice and glaciers has grown too large to be fully treated in a single volume; therefore, the selection of articles included some subjectivity but was reviewed by many experts who have long been at the forefront of research in the field of cryosphere. We truly understand that given the scope of this subject it is almost impossible to include each and every topic in this type of reference book, but we have tried our best to avoid any glaring omissions or miss something which could significantly hamper the quality of the Encyclopedia. Therefore, we have made the contents of the Encyclopedia exhaustive, but we understand that we might have missed certain topics. We are also aware of some partial omissions. As it frequently happens, willing contributors

xlii PREFACE

cannot unfortunately be always found for all the suggested topics. It may be noted that if the reader does not see an entry for the particular topic that interests him or her, then he or she should look in the index because that topic may have been covered under a different heading and perhaps in more than one article. In making the list exhaustive, it is possible that there might be a little bit of repetition here and there, but we do not want readers to read two articles to understand one.

The material presented in the articles consists of established information on a particular topic and represents easily accessible digested knowledge. The level of material is such that a graduate student can benefit from the presentation which is not necessarily from his or her area of expertise. An effort has been made such that each article stands on its own, without an assumption that a reader will be seeing any other portion of the Encyclopedia. Although entries are presented in alphabetical order, they have been organized under major compilation headings which should become particularly obvious when the reader uses the cross-references with each entry. This is not an exhaustive list but hopefully it gives a structure to the Encyclopedia's contents. Of equal value are the many references given with the entries.

This Encyclopedia of Snow, Ice and Glaciers is supposed to provide clear explanations of current topics, and is not structured as a student textbook, but it is rather for quick access to particular terms and concepts in self-contained entries. We hope that this volume will also tempt the casual reader to browse through and become curious about the different facets and foci of cryosphere.

The contributors represent varying backgrounds and many of them represent WHO'S WHO in the cryosphere. It is hoped that the Encyclopedia will serve as a reference to scholars and students. The Encyclopedia will also be a valuable resource for geologists, geographers, climatologists, hydrologists, and water resources engineers; as well as to those who are engaged in the practice of agricultural and civil engineering, earth sciences, environmental sciences and engineering, ecosystems management, and other relevant fields.

The encyclopedia is comprised of articles under three categories: A, B, and C. Tables 1, 2 and 3 provide a list of major headings of articles included in the encyclopedia for a quick reference (see List of Articles, pages 1233–1237). 64 articles in category A represent major divisions and review topics. These also serve to coordinate the widely scattered entries of categories B and C. 182 Category B articles constitute building block items, inspired by textbook subheads, but also the cookbook items. 217 articles in category C are mini-entries dealing with materials, fancy terms, or outdated concepts. All these categorical entries on different topics are compiled in an alphabetical order, with their length being related to their relative importance.

March 2011

Vijay P. Singh Pratap Singh Umesh K. Haritashya (Editors-in-Chief)

Acknowledgments

This Encyclopedia is a result of the collective contributions of the authors who were gracious, generous and willing to write different articles. These authors, representing five continents, have synthesized the body of knowledge in their particular area, and therefore the quality of the Encyclopedia is a reflection of the quality of their efforts. We are grateful to these authors. Any drawbacks are editors', not authors'. The preparation of this Encyclopedia was greatly aided by the assistance we received from our International Advisory Board members:

Richard Armstrong, NSIDC, Boulder, Colorado, USA; Michael P. Bishop, University of Nebraska-Omaha, USA; Helgi Björnsson, Institute of Earth Sciences, Iceland; Wilfried Haeberli, WGMS, University of Zurich, Iceland; Johannes Oerlemans, University of Utrecht, Netherlands; John F. Shroder, University of Nebraska-Omaha, USA; Martyn Tranter, University of Bristol, UK;

We wish to express our deep gratitude to them for their invaluable support and encouragement.

All category A articles and major category B articles were peer reviewed. Reviewers of these articles are

gratefully acknowledged for their constructive reviews. Their efforts have greatly enhanced the quality of contributions contained in the Encyclopedia. Special thanks goes to Tom Allen, Andrew Bush, Etienne Berthier, Poul Christoffersen, Graham Cogley, Luke Copland, Moritz Dick, Thomas Grenfell, William Harrison, Robert Hellstrom, Kenneth Jezek, Richard Lindzen, Frederick Nelson, Mauri Pelto, Donald Rapp, and Cornelis Vanderveen.

We would also like to acknowledge the constant support and help we received from Petra van Steenbergen, Senior Publishing Editor, Earth Sciences and Geography, Dr. Sylvia Blago, Associate Editor MRW and Simone Giesler, Editorial Assistant, Springer.

Our families (V.P. Singh: wife Anita, son Vinay, daughter-in-law Sonali, and daughter Arti; P. Singh: wife Anju, sons Arpit and Aman; and U.K. Haritashya: wife Namrata and daughter Vanshika) allowed us to work during holidays, weekends and in night away from them. They provided support and help whenever we needed. Without their patience and love, this volume might not have been completed, and we are much grateful to them.

Guide to the Reader

For the beginners, it is good to start with a general article, then track the list of cross-references provided at the end of the article to locate similar or relevant articles. For example, if one wants to learn about hydrological aspects of snow and glaciers, then one should go to Glacier Hydrology and Snow Hydrology, then Melt Runoff Modeling, then Impacts of Snow and Glaciers on Runoff, then Hydrochemical Characteristics of Snow, Ice and Glaciers, then Hydropower: Hydroelectric Power Generation from Alpine Glacier Melt, or several other specific Snow or Glacier Hydrology related articles. The list of cross-references provided at the end of the article is not exhaustive, otherwise it would lead to a long listing, rather it is a guide for the reader to find other relevant articles, which are further cross-referenced.

Experts or other readers with background in cryosphere may directly search for specific topics. For example, Ice Age Cycles: Data, Models, and Uncertainties, or Basal Sediment Evacuation by Subglacial Drainage Systems. If one does not find the topic one is looking for, it is possible that it may have been covered under a different heading. Therefore, one should go to the index that would lead to the articles that may cover the topic of interest. If a reader is looking for more explanation than what is already described under any particular topic, then most articles provide important and landmark bibliographic references that relate to both general and research articles. Some articles provide older references which allow readers to find the historical aspect of the topic.

FJORDS 293

As depth increases, firn porosity decreases and air mixing becomes more restricted (Schwander et al., 1997; Bender et al., 1997). Seasonal layering can also affect the rate of air movement through firn (Albert, 1996) and may produce impermeable layers in the non-diffusive zone. These prevent air from equilibrating with that in the diffusive zone (Sowers et al., 1992; Schwander et al., 1997). While air may mix locally, within the summer layer for example, impermeable winter layers impede its vertical diffusion (Fain et al., 2008).

Firn measurements

Borehole logging is used to measure firn properties in situ. These include temperature, density, and vertical strain. Unlike snow, which must be sampled at depth by digging a large snow pit and sampling from the sides, firn has enough cohesion (Cohesion) to permit the extraction of intact cores that are used to measure density, porosity and permeability, grain size, and anisotropy.

Because firn is compressible, seasonal layers thin with depth. It is also porous and subject to the migration of chemical species deposited with the snow (Chemical Composition of Snow, Ice, and Glaciers). Both of these aspects can complicate age-depth calculations. Where annual layers cannot be distinguished optically or from the geochemical record, a density profile produced from a borehole log of vertical strain or measurements of mass, length, and diameter of core sections can reveal seasonal layering.

Summary

A transitional state between fallen snow and meteoric ice, firn is a complex material where vast morphological and chemical changes are taking place.

Bibliography

Albert, M., 1996. Modeling heat, mass and species transport in polar firn. Annals of Glaciology, 23, 138–143.

Albert, M. R., 2002. Effects of snow and firn ventilation of sublimation rates. *Annals of Glaciology*, **35**, 52–56.

Albert, M. R., and Shultz, E. F., 2002. Snow and firn properties and air-snow transport processes at Summit, Greenland. *Atmospheric Environment*, **36**(15/16), 2789–2798.

Bender, M., Sowers, T., and Brook, E., 1997. Gases in ice cores. *Proceedings of the National Academy of Science*, **94**, 8343–8349.

Bender, M. L., Floch, G., Chappellaz, J., Suwa, M., Barnola, J.-M., Blunier, T., Dreyfus, G., Jouzel, J., and Parrenin, F., 2006. Gas age-ice age differences and the chronology of the Vostok ice core, 0–100 ka. *Journal of Geophysical Research*, 111(D21), 115–125.

Colbeck, S. C., 1983. Theory of metamorphism of dry snow. *Journal of Geophysical Research*, 88, 5475–5482.

Colbeck, S. C., 1989. Air movements in snow due to wind pumping. Journal of Glaciology, 35, 209–213.

Craig, H., Horibe, Y., and Sowers, T., 1988. Gravitation separation of gasses and isotopes in polar ice caps. *Science*, **242**, 1675–1678.

Domine, F., Lauzier, T., Cabanes, A., Legagneux, L., Kuhs, W. F., Techmer, K., and Heinrichs, T., 2003. Snow metamorphism as revealed by scanning electron microscopy. *Microscopy Research* and *Technique*, 62, 33–48.

Fain, X., Ferrari, C. P., Dommergue, A., Albert, M., Battle, M., Arnaud, L., Barnola, J. M., Cairns, W., Barbante, C., and Boutron, C., 2008. Mercury in the snow and firn at Summit Station, central Greenland and implications for the study of past atmospheric mercury levels. *Atmospheric Chemistry and Physics*, 8, 3441–3457.

Hawley, R., Waddington, E. D., Morse, D. L., Dunbar, N. W., and Zielinski, G. A., 2002. Dating firn cores by vertical strain measurements. *Journal of Glaciology*, 48(162).

Schwander, J., Sowers, T., Barnola, J. M., Blunier, T., Fuchs, A., and Malaize, B., 1997. Age scale of air in the summit ice: implications for glacial-interglacial temperature change. *Journal of Geophysical Research*, 102, 19483–19493.

Sowers, T., Bender, M., Raynard, D., and Korotkevich, Y. S., 1992. $\delta^{15}N$ of N_2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age-gas age differences. *Journal of Geophysical Research*, **97**(D14), 15,683–15,697.

Spencer, M. K., Alley, R. B., Fitzpatrick, J. J., 2006. Developing a bubble number-density paleoclimatic indicator for glacier ice. *Journal of Glaciology*, **52**(178), 358–364.

Swinkels, F. B., and Ashby, M. F., 1980. A second report on sintering diagrams. *Metallurgica*, **29**, 259–281.

Cross-references

Antarctica

Chemical and Microbe Records in Snow and Ice Chemical Composition of Snow, Ice, and Glaciers

Cohesion

Geochemistry of Snow and Ice

Glacier

Ice

Isotopic Characteristics of Ice, Snow, and Glaciers

Layering of Snow

Overburden Pressure

Snow Grains

Stratigraphy of Snowpacks

Temperate Glaciers

FJORDS

Umesh K. Haritashya¹, Vijay P. Singh², Pratap Singh³
¹Department of Geology, University of Dayton, Dayton, OH, USA

²Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA ³Tahal Consulting Engineers Ltd, New Delhi, India

Synonyms

Fiord

Definition

Fjords are long, narrow, and over-deepened features with steep sides and are carved into bedrock by the glacial activity and flooded by melting water (Figure 1).

294 FJORDS

Fjords, Figure 1 Fjord as seen in Milford Sound, New Zealand. Photo courtesy Dr. Luke Copland.

Fjords are erosional landforms that represent the movement of a glacier within a confined channel along the valley bottom. The movement of a glacier and formation of fjords is entirely controlled by topography. They are common in the polar regions, but can also be found in subpolar and temperate regions (Table 1). Fjords have existed for millions of years and they range from a few kilometers to several tens of kilometers wide and several kilometers long. Because of their location and relationship with the sea level on one side and tectonically active high mountains on the other side, they are an important feature. They also possess unique characteristics of oceanic processes and ice-ocean interface (Straneo et al., 2010), and therefore, they are appropriately termed as one of the complex and dynamic landsystems that provide information about glacial, fluvial, and oceanographic features.

Most fjords are a Palimpsest feature which makes them an extremely important feature, because they can provide information about the successive glaciations through floor sediments. However, these sediments need to be carefully analyzed, since they may have been buried by younger glacimarine sediments. Fjords act as natural sediment traps and typically have high sediment accumulation rates, providing the potential for high-resolution palaeoclimatic and palaeoenvironmental studies on decadal to centennial timescales and presenting a unique opportunity to study land-ocean interactions. Cowan et al. (2010) used the fjord sediment to identify two prominent glacial erosion surfaces associated with Last Glacial Maximum advance and Little Ice Age advance. Fjords comprise several rock basins, but many of them are deepest at the beginning and become gradually shallower toward the sea. This could be related to the erosive power of glaciers, which becomes lesser and lesser toward the end of the feature.

Sediment deposition in fjords can be related to retreating glaciers by depositional zones moving in the upward direction and hiatuses in retreat by push moraines or morainal banks. Powell and Molnia (1989) has shown various depositional system models associated with retreating glaciers, and he (Powell, 2003) has discussed such models in various types of environment from polar to temperate. Sediment deposition can also be related to advancing glaciers in the form of increasing till thickness from head of a fjord toward the sea limit.

Fjords also provide critical information about marine limits and relate to with the isostaic uplift of deglaciated outer coasts.

Bibliography

Cowan, E. A., et al., 2010. Fjords as temporary sediment traps: history of glacial erosion and deposition in Muir Inlet, Glacier Bay National Park, southeastern Alaska. *GSA Bulletin*, **122**(7-8), 1067–1080, doi:10.1130/B26595.1.

Powell, R. D., 2003. Subaquatic landsystems: fjords. In Evans, D. J. A. (ed.), *Glacial Landsystems*. London: Arnold, pp. 313–347.

Powell, R. D., and Molnia, B. F., 1989. Glacimarine sedimentary processes, facies and morphology of the South-southeast Alaska shelf and fjords. *Marine Geology*, 85, 359–390.

Straneo, F., et al., 2010. Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. *Nature Geoscience*, 3, 182–186, doi:10.1038/ngeo764.

Cross-references

Sediment Core and Glacial Environment Reconstruction

FJORDS 295

Fjords, Table 1 Some of the major local controls on modern fjord landsystems (Adopted from Powell, 2003)

						Sedin	Sediment contribution	ıtributi	on							
	Closical	[00000+01				Glacial		Glacifl	Glacifluvial Marine	Marine			Terrestrial	ial		, in
Climatic zone	Glaciai flow velocity	Gracial internal flow ice Bed velocity condition condition	Bed condition	Subglacial water free	En-/ En-/ Sea Glacier terminus Sub- supra Sub- supra icebergs ice	Sub-	En-/ supra	-qnS	En-/ supra i	cebergs	Sea ice l	Mass biogenic Fluvial flow	Fluvial	Mass flow	Wind	Wind Modern examples
Temperate Fast	Fast	Temperate	Temperate Deforming Conduit	Conduit	Tidewater cliff	2	2	5	1	61		1	3	3	1	Alaska, British
Subpolar Fast	Fast	Slightly cold	un, iocai now Deforming Conduit till flow	Llow Conduit flow	Tidewater cliff	8	-	3		_	7	1	8		-	Svalbard, Chile Canadian and
	Moderate Cold		Mostly frozen, local till	None to minor conduit	Short floating tongue or tidewater cliff	2		2		_	,	2			-	Aussian Arcuc Antarctic Peninsula
Polar	Fast	Cold	Deforming till	\dashv	Floating tongue	κ		κ	V-1	~	_	1	2			Greenland, Ellesmere Island, Baffin
	Moderate	Very cold	Moderate Very cold Deforming None	None	Floating tongue	ϵ	1				_	_	-	-	ж	Antarctica
	Slow	Very cold Mostly frozen, some ti	Mostly frozen, some till	None	Floating tongue or tidewater cliff	-	-			_	_	_		П	ю	(Mackay) Antarctica (Ferrar and Blue)