Appendix

Game Predictions

Denote: P_j is any player that is not P_i .

Game of 2 firms:

Table 1: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.0	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	1	0.5	[0, 1]	$[\ 0\ ,\ 0.5\]$
$\sum_{i=1}^{n} S_i < K$	2	1.5	$[\ 0 \ , 0 \]$	$[\ 0\ ,0\]$
$\sum_{i=1}^{n} S_i \geq K$	1	0.0	[2, 2]	$[\ 0.5\ ,\ 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	2	0.5	$[\; 2\;, 2\;]$	$[\ 0.5\ ,\ 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	0	0.0	$[\; 2\; , 2\;]$	$[\ 0.5\ ,\ 0.5\]$

 $[\]frac{\sum_{i=1}^{j}}{1}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = 0$, with payoff $V_j(S_j, S_i) = 0$. With 1 other firm choosing 0 and viceversa.

That is: 1 firms choose 0 units, with a payoff of 0. 1 firm chooses 2 units, with a payoff of 1.5.

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^2}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 3 firms:

Table 2: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$Vj(Sj, Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.000	$[\ 0\ , 2\]$	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i < K$			$[\ 0\ , \ 2\]$	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i < K$	2	1.500	[0, 1]	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \geq K$	1	-0.167	[1, 2]	[-0.167, 0.167]
$\sum_{i=1}^{n} S_i \ge K$	2	0.167	[1, 2]	[-0.167, 0.167]
$\sum_{i=1}^{n} S_i \ge K$	0	0.000	[1, 2]	[-0.167 , 0.167]

 $^{^{-1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with vi(Si, S_i) = 1.5, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 1]$, with payoff $V_j(S_j, S_i) = [0, 0.5]$. With 1 other firm choosing 0 and 1 other firm choosing 1 and viceversa.

That is: 1 firms choose 0 units, with a payoff of 0 . 1 firm chooses 2 units, with a payoff of 1.5 . 1 firms choose 1 units, with a payoff of 0.5 .

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^{n} S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 4 firms:

Table 3: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.0	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	1	0.5	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	2	1.5	[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$	1	0.0	[1, 2]	$[\ 0\ ,\ 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	2	0.5	$[\ 1\ , \ 2\]$	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	0	0.0	$[\; 1\;, 2\;]$	$[\ 0\ , 0.5\]$

 $^{^{1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 1 other firm choosing 2; 0 other firms choosing 1, and 2 other firms choosing 0, and viceversa.

That is: 2 firms choose 0 units, with a payoff of 0. 0 firms choose 1 units, with a payoff of 0. 2 firms choose 2 units, with a payoff of 1.5.

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 5 firms:

Table 4: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.0	$[\ 0\ , 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	1	0.5	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	2	1.5	[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n-1} S_i \ge K$	1	-0.1	[1, 2]	[-0.1, 0.3]
$\sum_{i=1}^{n} S_i \ge K$			$[\ 1\ , \ 2\]$	[-0.1, 0.3]
$\sum_{i=1}^{n} S_i \ge K$	0	0.0	$[\; 1\;, 2\;]$	[-0.1, 0.3]

 $^{^{1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 1 other firm choosing 2; 1 other firm choosing 1, and 2 other firms choosing 0, and viceversa.

That is: 2 firms choose 0 units, with a payoff of 0. 1 firms choose 1 units, with a payoff of 0. 2 firms choose 2 units, with a payoff of 1.5.

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

² Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 6 firms:

Table 5: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	$\mathrm{Sj^1}$	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.0	[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i < K$	1	0.5	[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i < K$			[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$	1	0.0	[1, 2]	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	2	0.5	$[\ 1\ ,\ 2\]$	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	0	0.0	$[\; 1\;, 2\;]$	$[\ 0\ , 0.5\]$

 $^{^{-1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 2 other firms choosing 2; 0 other firms choosing 1, and 3 other firms choosing 0, and viceversa.

That is: 3 firms choose 0 units, with a payoff of 0. 0 firms choose 1 units, with a payoff of 0. 3 firms choose 2 units, with a payoff of 1.5.

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 7 firms:

Table 6: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$Vj(Sj, Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.000	$[\ 0\ , 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	1	0.500	$[\ 0\ , \ 2\]$	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i < K$	2	1.500	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$	1	-0.071	[1, 2]	[-0.071, 0.357]
$\sum_{i=1}^{n} S_i \ge K$		0.357	$[\ 1\ , \ 2\]$	[-0.071, 0.357]
$\sum_{i=1}^{n} S_i \ge K$	0	0.000	$[\ 1\ ,\ 2\]$	[-0.071 , 0.357]

 $^{^{-1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 2 other firms choosing 2; 1 other firm choosing 1, and 3 other firms choosing 0, and viceversa.

That is: 3 firms choose 0 units, with a payoff of 0. 1 firms choose 1 units, with a payoff of 0. 3 firms choose 2 units, with a payoff of 1.5.

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 8 firms:

Table 7: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.0	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n-1} S_i < K$	1	0.5	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	2	1.5	[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$			[1, 2]	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	2	0.5	$[\ 1\ , \ 2\]$	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	0	0.0	$[\; 1\;, 2\;]$	$[\ 0\ , 0.5\]$

 $^{^{1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 3 other firms choosing 2; 0 other firms choosing 1, and 4 other firms choosing 0, and viceversa.

That is: 4 firms choose 0 units, with a payoff of 0 . 0 firms choose 1 units, with a payoff of 0 . 4 firms choose 2 units, with a payoff of 1.5 .

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 9 firms:

Table 8: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	$\mathrm{Sj^1}$	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$			$[\ 0\ , 2\]$	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i < K$	1	0.500	$[\ 0\ , 2\]$	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i < K$		1.500	$[\ 0\ , \ 2\]$	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$	1	-0.056	[1, 2]	[-0.056, 0.389]
$\sum_{i=1}^{n} S_i \ge K$	2	0.389	[1, 2]	[-0.056, 0.389]
$\sum_{i=1}^{n} S_i \ge K$	0	0.000	$[\ 1\ , \ 2\]$	[-0.056, 0.389]

 $^{^{1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 3 other firms choosing 2; 1 other firm choosing 1, and 4 other firms choosing 0, and viceversa.

That is: 4 firms choose 0 units, with a payoff of 0 . 1 firms choose 1 units, with a payoff of 0 . 4 firms choose 2 units, with a payoff of 1.5 .

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 10 firms:

Table 9: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.0	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	1	0.5	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	2	1.5	[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$	1	0.0	[1, 2]	$[\ 0\ ,\ 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	2	0.5	$[\ 1\ , \ 2\]$	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	0	0.0	$[\; 1\;, 2\;]$	$[\ 0\ , 0.5\]$

 $^{^{-1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 4 other firms choosing 2; 0 other firms choosing 1, and 5 other firms choosing 0, and viceversa.

That is: 5 firms choose 0 units, with a payoff of 0 . 0 firms choose 1 units, with a payoff of 0 . 5 firms choose 2 units, with a payoff of 1.5 .

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 11 firms:

Table 10: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.000	$[\ 0\ , 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n-1} S_i < K$	1	0.500	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	2	1.500	[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$	1	-0.045	[1, 2]	[-0.045, 0.409]
$\sum_{i=1}^{n} S_i \ge K$	2	0.409	$[\ 1\ , \ 2\]$	[-0.045, 0.409]
$\sum_{i=1}^{n} S_i \ge K$	0	0.000	$[\; 1\;, 2\;]$	[-0.045 , 0.409]

 $^{^{1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 4 other firms choosing 2; 1 other firm choosing 1, and 5 other firms choosing 0, and viceversa.

That is: 5 firms choose 0 units, with a payoff of 0 . 1 firms choose 1 units, with a payoff of 0 . 5 firms choose 2 units, with a payoff of 1.5 .

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 12 firms:

Table 11: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.0	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n-1} S_i < K$	1	0.5	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	2	1.5	[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$			[1, 2]	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	2	0.5	$[\ 1\ , \ 2\]$	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	0	0.0	$[\; 1\;, 2\;]$	$[\ 0\ , 0.5\]$

 $^{^{1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 5 other firms choosing 2; 0 other firms choosing 1, and 6 other firms choosing 0, and viceversa.

That is: 6 firms choose 0 units, with a payoff of 0 . 0 firms choose 1 units, with a payoff of 0 . 6 firms choose 2 units, with a payoff of 1.5 .

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 13 firms:

Table 12: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.000	$[\ 0\ , 2\]$	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n-1} S_i < K$	1	0.500	$[\ 0\ , 2\]$	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i < K$	2	1.500	[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$	1	-0.038	[1, 2]	[-0.038, 0.423]
$\sum_{i=1}^{n} S_i \ge K$	2	0.423	[1, 2]	[-0.038, 0.423]
$\sum_{i=1}^{n} S_i \ge K$	0	0.000	$[\ 1\ ,\ 2\]$	[-0.038 , 0.423]

 $^{^{1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 5 other firms choosing 2; 1 other firm choosing 1, and 6 other firms choosing 0, and viceversa.

That is: 6 firms choose 0 units, with a payoff of 0 . 1 firms choose 1 units, with a payoff of 0 . 6 firms choose 2 units, with a payoff of 1.5 .

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 14 firms:

Table 13: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	Sj^1	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$			$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$			[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i < K$			[0, 2]	$[\ 0\ ,\ 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$	1	0.0	[1, 2]	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	2	0.5	$[\ 1\ , \ 2\]$	$[\ 0\ , 0.5\]$
$\sum_{i=1}^{n} S_i \ge K$	0	0.0	$[\; 1\;, 2\;]$	$[\ 0\ , 0.5\]$

 $^{^{1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 6 other firms choosing 2; 0 other firms choosing 1, and 7 other firms choosing 0, and viceversa.

That is: 7 firms choose 0 units, with a payoff of 0 . 0 firms choose 1 units, with a payoff of 0 . 7 firms choose 2 units, with a payoff of 1.5 .

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.

Game of 15 firms:

Table 14: Game Payoffs

Scenarios	Si	Vi(Si, Sj)	$\mathrm{Sj^1}$	$ m Vj(Sj,Si)^2$
$\sum_{i=1}^{n} S_i < K$	0	0.000	$[\ 0\ , 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$	1	0.500	$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i < K$			$[\ 0\ , \ 2\]$	$[\ 0\ , 1.5\]$
$\sum_{i=1}^{n} S_i \geq K$	1	-0.033	[1, 2]	[-0.033, 0.433]
$\sum_{i=1}^{n-1} S_i \ge K$	2	0.433	$[\ 1\ , \ 2\]$	[-0.033, 0.433]
$\sum_{i=1}^{n} S_i \ge K$	0	0.000	$[\ 1\ , \ 2\]$	[-0.033 , 0.433]

 $^{^{1}}$ Sj = Range of values that Player j can choose.

— Pareto Equilibrium — Pareto Optimality is reached when: $S_i = 2$ with $V_i(S_i, S_j) = 1.5$, if $\sum_{i=1}^n S_i < K$ & $S_j = [0, 2]$, with payoff $V_j(S_j, S_i) = [0, 1.5]$. With 6 other firms choosing 2; 1 other firm choosing 1, and 7 other firms choosing 0, and viceversa.

That is: 7 firms choose 0 units, with a payoff of 0 . 1 firms choose 1 units, with a payoff of 0 . 7 firms choose 2 units, with a payoff of 1.5 .

- Nash Equilibrium There are 2 Nash Equilibriums .
- (1) Nash Equilibrium 1 , for $\sum_{i=1}^n S_i < K$: 3 firms choose 1 units, each with a payoff of 0.5 .
- (2) Nash Equilibrium 2 , for $\sum_{i=1}^n S_i \geq K$: 3 firms choose 2 units, each with a payoff of 0.1666667 .

 $^{^{2}}$ Vj(Sj, Si) = Range of payoffs for Player j, for their possible strategies.