Permutation Closed Testing with Sum-Based Statistics

1 Sum-Based Test Statistics

Given a full model $F = \{1, ..., f\}$ of univariate hypotheses, let $S \subseteq F$ be a subset under test by closed testing with level α . Hence S is rejected if and only if all its supersets $S \cup V$ ($V \subseteq F \setminus S$) are rejected.

Let

$$q_i^{\pi}$$
 $(i = 1, \dots, f, \pi = 1, \dots, B)$

be some test statistics corresponding to the f covariates and B random permutations, where the first permutation is the identity. Assume that the null hypothesis is rejected for high values of g_i (otherwise, it is sufficient to multiply all test statistics by -1), and

$$g_V^{\pi} = \sum_{i \in V} g_i^{\pi} \quad (V \subseteq F, \ \pi = 1, \dots, B).$$

Moreover, define the centered test statistics

$$d_i^{\pi} = g_i^{\pi} - g_i \quad (i = 1, \dots, f, \ \pi = 1, \dots, B),$$

so that the observed values are all $d_i = 0$, and the variability due to g_i is excluded.

For $V \subseteq F$, the vector of its statistics is

$$\mathbf{d_V} = (0, d_V^2, \dots, d_V^B)^\top.$$

Consider the sorted test statistics $d_V^{(1)} \leq d_V^{(2)} \leq \ldots \leq d_V^{(B)}$, and define $k = \lceil (1 - \alpha)B \rceil$. The permutation test rejects V if

$$d_V^{(k)} < 0.$$

Such a test can be slightly conservative, but it can be adapted to be exact by randomizing it.

2 Shortcut

Let s = |S| and m = f - s, and fix a value $v \in \{0, ..., m\}$. We will define a shortcut for the analysis of the supersets $S \cup V$ with $V \in \mathcal{V}_v$ and

$$\mathcal{V}_v = \{ V : V \subseteq F \setminus S, |V| = v \},$$

that does not require all the $\binom{m}{v}$ vectors \mathbf{d}_{V} . It relies on the construction of a lower and an upper critical values, L_{v} and U_{v} , such that

- if $L_v \geq 0$, then at least one superset $S \cup \tilde{V}$ is not rejected, and thus S is not rejected;
- if $U_v < 0$, then all supersets are rejected, and other sizes can be explored.

Notice that if $L_v < 0 \le U_v$, then the outcome is indecisive.

Lower critical value. In order not to reject S, it is sufficient to find a non-rejected superset. We define the lower critical value as $L_v = (d_S + l_v)^{(k)}$, where $\mathbf{l}_v = \mathbf{d}_{\tilde{V}}$ and $\tilde{V} \in \mathcal{V}_v$ is such that $S \cup \tilde{V}$ is likely to be non-rejected.

In particular, \tilde{V} is defined by considering the indices of the v smallest observed statistics not in S. If (i_1, \ldots, i_m) is a permutation of the indices in $F \setminus S$ such that

$$g_{i_1} \le g_{i_2} \le \ldots \le g_{i_m},$$

then $\tilde{V} = \{i_1, \dots, i_v\}$ and

$$l_v^{\pi} = \sum_{h=1}^v d_{i_h}^{\pi} \quad (\pi = 1, \dots, B).$$

Upper critical value. The upper critical value is $U_v = (d_S + u_v)^{(k)}$, where

$$\mathbf{u}_v = (0, u_v^2, \dots, u_v^B)^\top$$

is a vector such that

$$u_v^{\pi} \ge d_V^{\pi} \quad (V \in \mathcal{V}_v, \ \pi = 1, \dots, B).$$

As a consequence,

$$U_v \ge (d_S + d_V)^{(k)} \quad (V \in \mathcal{V}_v).$$

If $U_v < 0$, then all supersets $S \cup V$ with $V \in \mathcal{V}_v$ are rejected.

For each $\pi = 1, ..., B$, the element u_v^{π} is defined by considering the v highest centered statistics not in S. If $(j_1(\pi), ..., j_m(\pi))$ is a permutation of the indices in $F \setminus S$ such that

$$d_{j_1(\pi)}^{\pi} \ge d_{j_2(\pi)}^{\pi} \ge \dots d_{j_m(\pi)}^{\pi},$$

then

$$u_v^{\pi} = \sum_{h=1}^{v} d_{j_h(\pi)}^{\pi}.$$

Testing. The values v = 0, ..., m are checked in sequence.

- As soon as a non-rejection is found (there exists v^* such that $L_{v^*} \geq 0$), the analysis stops and S is not rejected.
- If all values lead to rejection $(U_v < 0 \text{ for all } v)$, then S is rejected.
- If some values $v \in \{1, ..., m-1\}$ lead to indecisive outcomes $(L_v < 0 \le U_v)$, the Branch and Bound method is applied. Notice that an indecisive outcome cannot occur for v = 0 or v = m, since

$$L_0 = U_0 = d_S^{(k)}$$
 $L_m = U_m = d_F^{(k)}$.

Early stop. Assume that there exists $w \in \{1, ..., m\}$ such that all the elements of \mathbf{u}_w are smaller than those of \mathbf{u}_{w-1} :

$$u_w^{\pi} = u_{w-1}^{\pi} + d_{i_w(\pi)}^{\pi} \le u_{w-1}^{\pi} \quad (\pi = 1, \dots, B)$$

or, equivalently,

$$d_{j_w(\pi)}^{\pi} \le 0 \quad (\pi = 1, \dots, B).$$

Then the upper critical value is non-increasing for $v \geq w$:

$$d_{j_{m}(\pi)}^{\pi} \leq \ldots \leq d_{j_{w}(\pi)}^{\pi} \leq 0 \quad (\pi = 1, \ldots, B)$$

$$u_{m}^{\pi} \leq \ldots \leq u_{w}^{\pi} \leq u_{w-1}^{\pi} \quad (\pi = 1, \ldots, B)$$

$$U_{m} \leq \ldots \leq U_{w} \leq U_{w-1}.$$

In this case, it is sufficient to stop the analysis as soon as we find a value $v^* \ge w - 1$ such that $U_{v^*} < 0$. All the supersets with $v \ge v^*$ are automatically rejected.

3 Branch and Bound

Assume that some values $v \in \{1, ..., m-1\}$ lead to an indecisive outcome.

For a fixed index $e \in F \setminus S$, the total space $\mathbb{S} = \{V : V \subseteq F \setminus S\}$ is partitioned into two disjoint subspaces, according to the inclusion of e:

$$\mathbb{S}_{-e} = \{ V : V \subseteq F \setminus (S \cup \{e\}) \}$$

$$\mathbb{S}_{+e} = \{ V : \{e\} \subseteq V \subseteq F \setminus S \}.$$

The shortcut is applied to each subspace, in order to evaluate the indecisive values v:

- if S is not rejected in at least one subspace, it is not rejected in the total space;
- if S is rejected in both subspaces, it is rejected in the total space;
- if there is an indecisive outcome in at least one subspace, the procedure is iterated by partitioning the indecisive subspace(s).

For any choice of e, U_v does not increase in the subspaces (since it is defined by taking the maximum statistics over smaller subsets). However, the choice of e and the order in which the subspaces are explored influence L_v , and thus the efficiency of the algorithm. We wish to begin with the subspaces that are more likely to lead to a non-rejection, i.e. where L_v is more likely to be high.

We will evaluate the efficiency in four different scenarios, employing the order of the observed statistics in $F \setminus S$. The scenarios differ by the index e used for branching:

- highest statistic $e = i_m (L_v \text{ does not vary in } \mathbb{S}_{-e});$
- lowest statistic $e = i_1$ (L_v does not vary in \mathbb{S}_{+e}).

Moreover, they differ by the branch that is explored first:

- \mathbb{S}_{-e} , removal;
- \mathbb{S}_{+e} , keeping.

Preliminary simulations suggest that removing the highest statistic could lead to the smallest number of iterations in most cases.

4 Example

Considering f=5 predictors and B=10 permutations, we simulate a $B\times f$ matrix of global test statistics:

		${f G}$		
(1)	(2)	(3)	(4)	(5)
28.42	16.68	9.36	6.12	9.40
0.10	0.06	1.37	0.08	0.56
0.69	3.07	4.33	0.83	0.36
1.07	30.31	1.11	8.55	0.26
0.22	7.45	2.87	0.48	1.02
1.83	0.04	2.85	0.04	0.02
17.68	1.82	6.00	1.52	1.06
1.77	26.12	0.29	0.26	4.07
2.71	0.37	8.47	5.83	4.42
1.14	0.03	24.06	8.84	2.41

Assume that we want to test $S = \{5\}$ with significance level $\alpha = 0.20$.

Table 1: Supersets of $S = \{5\}$ by size. The sets in bold are used to define the lower critical value L_v .

Shortcut. We define

- **D**, matrix of the centered test statistics in $F \setminus S$, where the indices appear in the order (4,3,2,1) (since $g_4 \leq g_3 \leq g_2 \leq g_1$);
- R, matrix obtained from **D** by sorting the elements within each row in decreasing order;
- **Dsum** and **Rsum**, matrices of the cumulative sums of d_S with **D** and **R**, respectively.

Let $k = \lceil (1-\alpha)B \rceil = 8$. The lower and upper critical values, L_v and U_v , are the k-th ordered statistics of

$$\mathbf{d}_S + \mathbf{l}_v = \mathbf{Dsum}_{v+1}$$
 $\mathbf{d}_S + \mathbf{u}_v = \mathbf{Rsum}_{v+1}$.

The first column of **R** having no positive elements has index w=3. We start by computing both bounds for v=0,1,2. No non-rejection is found, but the values v=1,2 lead to an indecisive outcome.

We proceed by examining $v \leq 3$, until we find either a rejection or a negative U_v . Since U_v becomes negative for v = 3, the supersets with v = 3, 4 are automatically rejected.

\mathbf{d}_S	D				${f R}$					
(5)	(4)	(3)	(2)	(1)						
0.00	0.00	0.00	0.00	0.00	0.00 (1) 0.00 (2) 0.00 (3) 0.00 (4)					
-8.84	-6.03	-7.99	-16.62	-28.32	-6.03 (4) $-7.99 (3)$ $-16.62 (2)$ $-28.32 (1)$					
-9.04	-5.29	-5.02	-13.61	-27.72	-5.02(3) $-5.29(4)$ $-13.61(2)$ $-27.72(1)$					
-9.14	2.43	-8.25	13.63	-27.34	13.63 (2) $2.43 (4)$ $-8.25 (3)$ $-27.34 (1)$					
-8.38	-5.63	-6.49	-9.23	-28.19	-5.63 (4) -6.49 (3) -9.23 (2) -28.19 (1)					
-9.38	-6.08	-6.51	-16.64	-26.59	-6.08 (4) $-6.51 (3)$ $-16.64 (2)$ $-26.59 (1)$					
-8.34	-4.59	-3.36	-14.86	-10.74	-3.36 (3) $-4.59 (4)$ $-10.74 (1)$ $-14.86 (2)$					
-5.33	-5.85	-9.07	9.44	-26.65	9.44(2) $-5.85(4)$ $-9.07(3)$ $-26.65(1)$					
-4.98	-0.28	-0.89	-16.31	-25.71	-0.28 (4) -0.89 (3) -16.31 (2) -25.71 (1)					
-6.99	2.72	14.70	-16.65	-27.27	14.70 (3) $2.72 (4)$ $-16.65 (2)$ $-27.27 (1)$					

	Dsum				Rsum					
0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00
-8.84	-14.87	-22.86	-39.48	-67.80		-8.84	-14.87	-22.86	-39.48	-67.80
-9.04	-14.33	-19.35	-32.97	-60.69		-9.04	-14.07	-19.35	-32.97	-60.69
-9.14	-6.71	-14.97	-1.33	-28.68		-9.14	4.49	6.92	-1.33	-28.68
-8.38	-14.02	-20.51	-29.74	-57.94		-8.38	-14.02	-20.51	-29.74	-57.94
-9.38	-15.46	-21.96	-38.61	-65.20		-9.38	-15.46	-21.96	-38.61	-65.20
-8.34	-12.93	-16.29	-31.15	-41.89		-8.34	-11.69	-16.29	-27.03	-41.89
-5.33	-11.18	-20.26	-10.81	-37.46		-5.33	4.11	-1.74	-10.81	-37.46
-4.98	-5.26	-6.16	-22.47	-48.18		-4.98	-5.26	-6.16	-22.47	-48.18
-6.99	-4.27	10.43	-6.22	-33.49		-6.99	7.71	10.43	-6.22	-33.49

Figure 1: Upper (red) and lower (blue) critical values by additional superset size v. The bounds for v=4 have not been computed in the analysis.

\overline{v}	0	1	2	3	4
					(-33.49) (-33.49)
rej	Т	?	?	Τ	Τ

Branch and Bound (removal of the highest statistic). The index of the highest test statistic, e = 1, determines the branching rule. We start by studying U_v for the indecisive sizes in the subspace \mathbb{S}_{-1} (since L_v does not vary). As shown in figure 2, the outcome is still indecisive for both sizes v = 1, 2.

Then we remove the second highest statistic (e = 2). In $\mathbb{S}_{-1,-2}$, where we examine only U_v , the null hypothesis is rejected.

Finally, we analyze both bounds in $\mathbb{S}_{-1,+2}$, where a non-rejection is found for v=0. In conclusion, the null hypothesis is not rejected after 3 steps.

Figure 2: Branch and Bound procedure, carried out by removing the highest test statistic.

5 True Discovery Proportion

Assume that S is rejected by closed testing. The true discoveries can be estimated by analysing the subsets

$$\mathcal{Z}_z = \{ Z \subseteq S : |Z| = s - z \}$$

for z = 0, ..., s-1. Indeed, if all elements of \mathcal{Z}_z are rejected by closed testing, then $TD \ge z+1$. The highest bound corresponds to the maximum z value such that the condition is true.

 $\mathcal{Z}_0 = \{S\}$ has already been rejected. The supersets of $Z \in \mathcal{Z}_1$ are

- S and its supersets (already rejected by the local tests);
- supersets with the form $Z \cup V$, with $V \subseteq F \setminus S$.

Analogously, consider \mathcal{Z}_z , after rejecting all the elements of $\mathcal{Z}_0, \ldots, \mathcal{Z}_{z-1}$. In order to reject $Z \in \mathcal{Z}_z$, the only supersets that need to be studied have the form $Z \cup V$, with $V \subseteq F \setminus S$. We will define bounds $L_{z,v}$ and $U_{z,v}$ for the critical values of such sets.

Lower critical value. Let $\mathbf{l}_{0,v} = \mathbf{l}_v$ as defined in section 2. Let (x_1, \dots, x_s) be a permutation of the indices in S such that

$$g_{x_1} \leq g_{x_2} \leq \ldots \leq g_{x_s}$$
.

For $z=1,\ldots,s,$ the lower critical value is $L_{z,v}=(d_S+l_{z,v})^{(k)},$ where

$$l_{z,v}^{\pi} = l_{z-1,v}^{\pi} - d_{x_{s-z+1}}^{\pi}.$$

Notice that

$$d_S^{\pi} + l_{z,v}^{\pi} = \sum_{h=1}^{z} d_{x_h}^{\pi} + \sum_{h=1}^{v} d_{i_h}^{\pi}$$

is the test statistic corresponding to the set $\tilde{Z} \cup \tilde{V} = \{x_1, \dots, x_z\} \cup \{i_1, \dots, i_v\}$, likely to be rejected.

Upper critical value. Let $\mathbf{u}_{0,v} = \mathbf{u}_v$ as defined in section 2. For each $\pi = 1, \dots, B$, let $(y_1(\pi), \dots, y_s(\pi))$ be a permutation of the indices in S such that

$$d_{y_1(\pi)}^{\pi} \ge d_{y_2(\pi)}^{\pi} \ge \dots d_{y_s(\pi)}^{\pi}.$$

Then $U_{z,v} = (d_S + u_{z,v})^{(k)}$ with

$$u_{z,v}^{\pi} = u_{z-1,v}^{\pi} - d_{y_{s-z+1}(\pi)}^{\pi}.$$

Notice that

$$d_S^{\pi} + u_{z,v}^{\pi} = \sum_{h=1}^{z} d_{y_h(\pi)}^{\pi} + \sum_{h=1}^{v} d_{j_h(\pi)}^{\pi}.$$

6 Example 2

Considering f = 7 predictors and B = 10 permutations, we simulate a $B \times f$ matrix of global test statistics:

			\mathbf{G}			
(1)	(2)	(3)	(4)	(5)	(6)	(7)
-9.45	8.26	7.91	0.76	35.34	16.42	13.72
5.86	0.57	0.37	29.85	0.98	0.44	0.00
0.02	2.03	3.33	1.42	0.00	2.40	0.15
4.07	33.21	1.24	0.28	0.41	7.93	3.97
0.52	24.95	13.23	0.06	1.48	0.96	2.81
0.28	0.34	0.56	0.25	11.41	3.19	5.41
5.55	2.79	1.01	6.44	3.71	1.73	2.07
0.14	5.84	4.76	1.12	0.92	0.10	0.09
22.72	10.99	7.75	18.32	18.87	0.09	0.06
7.92	0.49	3.18	3.05	20.55	14.36	4.97

After rejecting $S = \{5, 6, 7\}$ with significance level $\alpha = 0.20$, we want to estimate the TDP. We examine the subsets of size s - z, with z = 1, 2.

We define

- **Ds** and **D**, matrices of the centered test statistics in S and $F \setminus S$, respectively;
- **Rs** and **R**, matrices obtained from **Ds** and **D** by sorting the elements within each row in decreasing order;
- **Dsum** and **Rsum**, matrices of the cumulative sums of d_S with **D** and **R**, respectively.

Let $k = \lceil (1 - \alpha)B \rceil = 8$. The lower and upper critical values $L_{z,v}$ and $U_{z,v}$ are the k-th ordered statistics of $\mathbf{Dsum}(\mathbf{z})_{v+1}$ and $\mathbf{Rsum}(\mathbf{z})_{v+1}$, where

$$\begin{aligned} \mathbf{Dsum}(\mathbf{1}) &= \mathbf{Dsum} - \mathbf{Ds}_s & \mathbf{Rsum}(\mathbf{1}) &= \mathbf{Rsum} - \mathbf{Rs}_s \\ \mathbf{Dsum}(\mathbf{2}) &= \mathbf{Dsum}(\mathbf{1}) - \mathbf{Ds}_{s-1} & \mathbf{Rsum}(\mathbf{2}) &= \mathbf{Rsum}(\mathbf{1}) - \mathbf{Rs}_{s-1} \end{aligned}$$

The first column of **R** having no positive elements has index w = 4. Hence we compute both bounds for v < 4 and we examine v = 2 only if $U_{z,3} \ge 0$.

- z = 1: no non-rejection, but values v = 2, 3 lead to an indecisive outcome. The Branch and Bound method is needed.
- z=2: a non-rejection is found for v=1, hence not all subsets of size s-2 can be rejected.

In conclusion, the true discoveries are $1 \leq TD \leq 2$.

	$\mathbf{D}\mathbf{s}$		\mathbf{D}						
(7)	(6)	(5)	(4)	(3)	(2)	(1)			
0.00	0.00	0.00	0.00	0.00	0.00	0.00			
-13.72	-15.98	-34.36	29.08	-7.54	-7.68	-3.58			
-13.58	-14.02	-35.34	0.65	-4.58	-6.23	-9.42			
-9.75	-8.49	-34.93	-0.49	-6.67	24.95	-5.37			
-10.91	-15.47	-33.86	-0.70	5.32	16.69	-8.92			
-8.32	-13.23	-23.92	-0.52	-7.34	-7.92	-9.16			
-11.66	-14.69	-31.62	5.68	-6.89	-5.47	-3.89			
-13.64	-16.33	-34.42	0.35	-3.14	-2.41	-9.30			
-13.66	-16.33	-16.46	17.56	-0.16	2.73	13.27			
-8.75	-2.06	-14.79	2.29	-4.73	-7.77	-1.53			

	${f Rs}$		R					
0.00(5)	0.00 (6)	0.00 (7)	0.00(1)	0.00(2)	0.00(3)	0.00 (4)		
-13.72(7)	-15.98(6)	-34.36(5)	29.08(4)	-3.58(1)	-7.54(3)	-7.68(2)		
-13.58 (7)	-14.02(6)	-35.34(5)	0.65(4)	-4.58(3)	-6.23(2)	-9.42(1)		
-8.49(6)	-9.75(7)	-34.93(5)	24.95(2)	-0.49(4)	-5.37(1)	-6.67(3)		
-10.91 (7)	-15.47(6)	-33.86(5)	16.69(2)	5.32(3)	-0.70(4)	-8.92(1)		
-8.32(7)	-13.23 (6)	-23.92(5)	-0.52(4)	-7.34(3)	-7.92(2)	-9.16(1)		
-11.66(7)	-14.69 (6)	-31.62(5)	5.68(4)	-3.89(1)	-5.47(2)	-6.89(3)		
-13.64(7)	-16.33 (6)	-34.42(5)	0.35(4)	-2.41(2)	-3.14(3)	-9.30(1)		
-13.66 (7)	-16.33 (6)	-16.46 (5)	17.56(4)	13.27(1)	2.73(2)	-0.16(3)		
-2.06(6)	-8.75(7)	-14.79(5)	2.29(4)	-1.53 (1)	-4.73(3)	-7.77(2)		

	Dsum					Rsum						
0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00		
-64.06	-34.97	-42.51	-50.20	-53.78		-64.06	-34.97	-38.56	-46.10	-53.78		
-62.93	-62.28	-66.86	-73.09	-82.51		-62.93	-62.28	-66.86	-73.09	-82.51		
-53.17	-53.66	-60.33	-35.37	-40.75		-53.17	-28.22	-28.71	-34.08	-40.75		
-60.24	-60.93	-55.62	-38.92	-47.84		-60.24	-43.54	-38.22	-38.92	-47.84		
-45.47	-45.99	-53.33	-61.25	-70.41		-45.47	-45.99	-53.33	-61.25	-70.41		
-57.97	-52.29	-59.18	-64.65	-68.54		-57.97	-52.29	-56.18	-61.65	-68.54		
-64.39	-64.03	-67.18	-69.59	-78.89		-64.39	-64.03	-66.44	-69.59	-78.89		
-46.45	-28.90	-29.05	-26.32	-13.05		-46.45	-28.90	-15.63	-12.90	-13.05		
-25.60	-23.32	-28.05	-35.82	-37.35		-25.60	-23.32	-24.85	-29.58	-37.35		

Figure 3: Upper (red) and lower (blue) critical values by additional superset size v for the subsets of size s-z.

Branch and Bound (removal of the highest statistic not in S). The method is applied to examine z = 1 and v = 2, 3. The index of the highest test statistic, e = 1, determines the branching rule. We start by studying the subspace \mathbb{S}_{-1} .

As shown in figure 4, after 4 steps the subsets of size s-1 are not rejected. Hence the true discoveries are TD=1.

Figure 4: Branch and Bound procedure for the subsets of size s-1, carried out by removing the highest test statistic not in S.