

X-Class HiPerFET™ **Power MOSFET**

IXFT30N85XHV IXFH30N85X

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratin		
V _{DSS}	$T_{_{\rm J}} = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	850	V	
$\mathbf{V}_{\mathtt{DGR}}$	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	850	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _C = 25°C	30	A	
I _{DM}	$\rm T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $\rm T_{_{\rm JM}}$	60	Α	
I _A	T _c = 25°C	15	A	
E _{AS}	$T_{c} = 25^{\circ}C$	1	J	
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	50	V/ns	
P _D	T _c = 25°C	695	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in	
Weight	TO-268HV TO-247	4 6	g g	

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Charac Min.	cteristic ' Typ.	Values Max	
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	850			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 2.5 \text{mA}$	3.5		5.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			220	mΩ

850V **30A** $220m\Omega$

TO-268HV (IXFT)

G = Gate= Drain S = SourceTab = Drain

Features

- International Standard Packages
- High Voltage Package
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol Test Conditions Cha		Chai	racteristic Values		
$(T_{J} = 25^{\circ}C, L)$	Inless Otherwise Specified)	Min.	Тур.	Max	
g _{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	11	18	S	
R_{Gi}	Gate Input Resistance		0.9	Ω	
C _{iss}			2460	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2540	pF	
C _{rss}			30	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $\int_{GS} V_{GS} = 0V$		104	pF	
$C_{o(tr)}$	Time related $\int_{DS}^{GS} V_{DS} = 0.8 \cdot V_{DSS}$		390	pF	
t _{d(on)}	Pooletive Switching Times		27	ns	
t, (Resistive Switching Times		30	ns	
t _{d(off)}	$V_{gs} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		70	ns	
t,	$R_{\rm G} = 3\Omega$ (External)		14	ns	
Q _{g(on)}			68	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		14	nC	
Q _{gd}			40	nC	
R _{thJC}				0.18 °C/W	
R _{thcs}	TO-247		0.21	°C/W	

Source-Drain Diode

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			30	Α
I _{SM}	Repetitive, pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			150	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	٧
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 15A$, -di/dt = 100A/ μ s $V_R = 100V$		160 1.7 21.0		ns µC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 15A Value vs.

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 15A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages vs. Junction Temperature

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

SYM	INCHES MILLIMET		METER	
STM	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
Α1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
Ь	.045	.057	1.15	1.45
C C2	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.465	.476	11.80	12.10
D2	.295	.307	7.50	7.80
D3	.114	.126	2.90	3.20
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215	BSC	5.45 BSC	
(e2)	.374	.386	9.50	9.80
Н	.736	.752	18.70	19.10
L	.067	.079	1.70	2.00
L2	.039	.0 4 5	1.00	1.15
L3	.010	BSC	0.25 BSC	
L4	.150	.161	3.80	4 .10

SYM	INCHES		MILLIMETER	
21M	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
A1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
b	.045	.055	1.14	1.40
b2	.075	.087	1.91	2.20
b4	.115	.126	2.92	3.20
C	.024	.031	0.61	0.80
	.819	.840	20.80	21.34
D1	.650	.690	16.51	17.53
D2	.035	.050	0.89	1.27
Ε	.620	.635	15.75	16.13
E1	.545	.565	13.84	14.35
е	.215	BSC	5.45	BSC
J		.010		0.25
K		.025		0.64
L	.780	.810	19.81	20.57
L1	.150	.170	3.81	4.32
ØΡ	.140	.144	3.55	3.65
øP1	.275	.290	6.99	7.37
Q	.220	.244	5.59	6.20
R	.170	.190	4.32	4.83
S	.242	BSC	6.15	BSC

