Algorithms and data structures 4: Matricies-2

Boris Kirikov

15.10.2015

Outline

- Revision
- Understanding matricies
- ▶ Gauss algo

Revision

- What is matrix?
- ▶ Operations:
 - ► Sum
 - ► Multiply by scalar
 - Multiplication
 - Transpose

Understanding matricies

- ▶ Mapping $I \times J \rightarrow R$
- ► Table with numbers
- Graph

Understanding matricies

- ▶ Mapping $I \times J \rightarrow R$
- ► Table with numbers
- Graph
- System of linear equations
- Linear operator
- Bilinear form
- Automata and Markov chain

Understanding matrisies: linear space

- V_R linear space over R scalars
- Has operations: sum, multiply by scalar
- Linear closure:

$$< v^{(1)}, \dots, v^{(n)} > = \{\alpha_1 v^{(1)} 1 + \dots + \alpha_n v^{(n)}, \alpha_i \in R\} \subset V_R$$

- ▶ Basis minimal $\langle v_1, \dots, v_n \rangle = V_R$
- dim V = n if $< v_1, ..., v_n >= V_R$

Understanding matrisies: linear space

- V_R linear space over R scalars
- Has operations: sum, multiply by scalar
- ▶ Linear closure: $< v^{(1)}, ..., v^{(n)} >= \{\alpha_1 v^{(1)} 1 + ... + \alpha_n v^{(n)}, \alpha_i \in R\} \subset V_R$
- ▶ Basis minimal $\langle v_1, \dots, v_n \rangle = V_R$
- ightharpoonup dim V = n if $\langle v_1, \dots, v_n \rangle = V_R$

Ex: $R = \mathbb{R}$, $V = \mathbb{R}^n$. Vectors are $v = (v_1, \dots, v_n)$. Standard basis:

$$e_1 = (1, 0, \dots, 0)$$
 $e_2 = (0, 1, \dots, 0)$
 $e_n = (0, \dots, 0, 1)$
 $e_i^{(j)} = \delta_{ii}$

Understanding matricies: linear mapping

Def: $f: X_R \to Y_R$ is linear, iff $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$.

Th: Let L(X, Y) be a set of all linear mappings $X_R \to Y_R$, $n = \dim X$, $m = \dim Y$. Than L(X, Y) = M(n, m, R) (up to isomorphism).

But what means linear mapping in linear space?

Understanding matricies: system of linear equations

Kelly's definition of multiplication lets us to write system of linear equations in matrix form:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ + \dots + = \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$Ax = b$$

How do we solve such systems?

Gauss algo: step 1

► Staircase form

Gauss algo: step 1

- Staircase form
- What operations we performed?

Gauss algo: step 2

- Eliminating variables
- What operations we performed?

Gauss algo and matricies: LU-decomposition

- Step 1 of Gauss algo gives (under some constraints) triangular matrix
- Operations performed during this step also can be represented with triangular matrix
- ▶ This is A = LU, L matrix of operations, U simplified A

EOF

We were not very fast, so other material will be on the next lecture.