Section 0, p8 12, 16, 17, 23, 25, 29, 31, 33

12 Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$. For each relation between A and B given as a subset of $A \times B$, decide whether it is a function mapping A into B. If it is a function, decide whether it is one to one and whether it is onto B.

a. $\{(1,4),(2,4),(3,6)\}$

Since no two ordered pairs have the same first term, this **is a function**. Since (1,4) and (2,4) share a second term, this function **is not one to one**. Since 2 does not appear in the relation in the second term, this function **is not onto** B.

b. $\{(1,4),(2,6),(3,4)\}$

Since no two ordered pairs have the same first term, this **is a function**. Since (1,4) and (3,4) share a second term, this function **is not one to one**. Since 2 does not appear in the relation in the second term, this function **is not onto** B.

c. $\{(1,6),(1,2),(1,4)\}$

Since (1,6) and (1,2) share a first term, this is **not** a function.

d. $\{(2,2),(1,6),(3,4)\}$

Since no two ordered pairs have the same first term, this **is a function**. Since no two ordered pairs share the same second term, this function **is one to one**. Since every element of B appears in the range of the function, it **is onto** B.

e. $\{(1,6),(2,6),(3,6)\}$

Since no two ordered pairs have the same first term, this **is a function**. Since (1,6) and (2,6) share a second term, this function **is not one to one**. Since 2 does not appear in the relation in the second term, this function **is not onto** B.

f. $\{(1,2),(2,6),(2,4)\}$

Since (2,6) and (2,4) share a first term, this is **not** a function.

16 List the elements of the power set \mathcal{P} of the given set and give the cardinality of the power set.

a. ∅

 $|\{\emptyset\}| = 1$

b. {*a*}

 $|\{\emptyset, \{a\}\}| = 2$

c. $\{a, b\}$

$$|\{\emptyset, \{a\}, \{b\}, \{a, b\}\}| = 4$$

d. $\{a, b, c\}$

$$|\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, c, b\}\}| = 8$$

17 Let A be a finite set, and let |A| = s. Based on the preceding exercise, make a conjecture about the value of $|\mathcal{P}(A)|$. Then try to prove your conjecture.

Based on the previous exercise, I conjecture that $|\mathcal{P}(A)| = 2^s$.

Proof. We shall conduct a proof through induction.

Base case: Let $A = \emptyset$ and s = 0. $\mathcal{P}(A) = \{\emptyset\}$, and $|\mathcal{P}(A)| = 1 = 2^0$. Thus the base case holds.

Inductive hypothesis: Let |A| = k for some $k \in \mathbb{Z}^{\geq 0}$, and assume that $|\mathcal{P}(A)| = 2^k$.

Inductive case: Consider |A| = k. Let us add an element e to A to create A'. To consider $\mathcal{P}(A')$, start with all of the sets in $\mathcal{P}(A)$, which has a cardinality of 2^k via the inductive hypothesis.

For each of these sets, we have a choice when we add it to $\mathcal{P}(A')$ to include element e or to leave it alone, which are two choices. We will end with the original sets of the $\mathcal{P}(A)$ without e, along with these sets with e, in $\mathcal{P}(A')$. Each of these groups has a cardinality of 2^k , so the cardinality of $\mathcal{P}(A')$ must be

$$2^k + 2^k = 2 \cdot 2^k = 2^{k+1}.$$

Thus, the inductive case holds, and the conjecture is correct.

In Exercises 23 through 27, find the number of different partitions of a set having the given number of elements.

23. 1 element

There is a single partition, $\{\{e\}\}\$

25. 3 elements

There are 5 partitions,

$$\{\{e_1\}, \{e_2\}, \{e_3\}\}, \{\{e_1\}, \{e_2, e_3\}\}, \{\{e_1, e_2\}, \{e_3\}\}, \{\{e_1, e_3\}, \{e_2\}\}, \{\{e_1, e_2, e_3\}\}\}$$

In Exercises 29 through 34, determine whether the given relation is an equivalence relation on the set. Describe the partition arising from each equivalence relation.

29. $n\mathcal{R}m$ in \mathbb{Z} if nm > 0

Consider $0 \in \mathbb{Z}$. We know $0 \cdot 0 \not> 0$, thus 0 is not related to itself. So the relation is not reflexive, and cannot be an equivalence relation.

cannot be an equivalence relation.

31. $x\mathcal{R}y$ in \mathbb{R} if |x|=|y|

A equivalence relation must be reflexive, symmetric, and transitive.

(a) Reflexive: Consider $x \in \mathbb{R}$. We know |x| = |x|, thus \mathcal{R} is reflexive.

- (b) Symmetric: Assume $x\mathcal{R}y$. We know |x| = |y| also implies |y| = |x|, thus $y\mathcal{R}x$. So \mathcal{R} is symmetric.
- (c) Transitive: Assume $x\mathcal{R}y$ and $y\mathcal{R}z$. We |x|=|y| and |y|=|z| which implies |x|=|z|, thus $z\mathcal{R}x$. So \mathcal{R} is transitive.

The partition resulting from this equivalence relation will be sets $\overline{x} = \{x, -x\}$ for each $x \in \mathbb{R}$.

33. $n\mathcal{R}m$ in \mathbb{Z}^+ if n and m have the same number of digits in the usual base ten notation

A equivalence relation must be reflexive, symmetric, and transitive.

- (a) Reflexive: Consider $x \in \mathbb{Z}^+$. We know a number has the same digits as itself, thus \mathcal{R} is reflexive.
- (b) Symmetric: Assume $x\mathcal{R}y$. We know x and y have the same number of digits, implying y and x have the same number of digits, thus $y\mathcal{R}x$. So \mathcal{R} is symmetric.
- (c) Transitive: Assume $x\mathcal{R}y$ and $y\mathcal{R}z$. We know x and y have the same number of digits, and that y and z have the same number of digits, which implies x and z have the same number of digits, thus $z\mathcal{R}x$. So \mathcal{R} is transitive.

The partition resulting from this equivalence relation will be classes where each member has the same number of digits, i.e. all single digit numbers will be in a class, all two digit numbers will be in a class, all three digit numbers will be in a class, etc.