Ruffini's rule

To calculate the quotient of two polynomials the procedure used needs many intermediate calculations. A rule that can help us to simplify them is Ruffini's rule. This rule will only be valid when the divisor is a polynomial, such as x-a, with a being a real number.

We will use an example to explain the methodology:

```
Do the division \dfrac{p(x)}{q(x)} , where p(x)=x^4-3x^2+x+5 and q(x)=x+2 .
```

1) Complete and arrange the dividend polynomial.

Write the dividing polynomial as x-a, if necessary

$$p(x) = x^4 + 0x^3 - 3x^2 + x + 5$$

 $q(x) = x - (-2)$

Notice that in this example the value of a=-2. 2) We write down the elements in a table like the following one.

	1	0	-3	1	5
-2					
		f.1. 1		1. 10 (-)	

In the left cell, we write the value of $\boldsymbol{a}.$

the second coefficient:

	1	0	-3	1	5
-2		$1\cdot (-2)=-2$			
	1				

-3 1

-2		$1\cdot (-2)=-2$	$(-2) \cdot (-2) = 4$	$1 \cdot (-2) = -2$	$(-1) \cdot (-2) = 2$
	1	0 + (-2) = -2	(-3) + 4 = 1	1 + (-2) = -1	5 + 2 = 7

coefficients, arranged, for the polynomial quotient. And so, in our case:

 $\text{quotient: } x^3-2x^2+x-1$

As we can see, the relation od degrees is satisfied:

quotient:
$$x^3 - 2x^2 + x - 1$$

 $3 = \mathsf{degree}(x^3 - 2x^2 + x - 1) = \mathsf{degree}(x^4 - 3x^2 + x + 5) - \mathsf{degree}(x + 2) = 4 - 1 = 3$

$$\mathsf{degree}(7) = 0 < 1 = \mathsf{degree}(x+2)$$

1) $p(x) = x^5 + 2x^4 - 3x^3 + x^2 + 0x - 1$

1)
$$p(x) = x^5 + 2x^4 - 3x^5 + x^2 + 0x - 1$$

 $a(x) = x - 1$

Do the division $\dfrac{p(x)}{q(x)}$, where $p(x)=x^5+2x^4-3x^3+x^2-1$ and q(x)=x-1.

q(x) = x-1

$$a=1$$
.

2)

3)	3)					8:
	1	2	-3	1	0	-1

1		1		
	1	3		
4)				

	1	2	-3	1	0	-1
1		1	3	0	1	1
	1	3	0	1	1	0

remainder: 0 And it is satisfied that:

 $\operatorname{egree}(x-1) = 5-1 = 4$