11. Turing Machines

DFAs, NFAs, and **regular expressions** appear in many instances.

- pattern matching (text editors, IDEs)
- finite control (watches, circuits, microwaves)
- time-critical applications (agent-based computing)

So do CFGs and PDAs.

- compiles for all programming languages
- document markup (XML, LaTeX, HTML are all CFGs?)
- natural language processing and modeling

11.1 Basic Notions

Input is stored on an indefinite-length tape; following the input are blanks.

We use an automaton with two stacks to represent Turing Machines.

· read, write, head

Turing Machines vs. Automata

- TMs can scan the tape forward and backward
- TM's tape is infinite (left end exists, right side doesn't)
- TMs can write on the tape

DEF: A Turing Machine is a tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$.

- $\bullet \quad Q \to \mathsf{set} \; \mathsf{of} \; \mathsf{states}$
- Σ \rightarrow input alphabet $\left(\underline{}_{space} \notin \epsilon \right)$
- $\Gamma \rightarrow$ tape alphabet $(\Sigma \geq \Gamma)$
- $q_0 \rightarrow$ start state

11. Turing Machines

- $q_{accept} \rightarrow$ accept state
- $q_{reject} \rightarrow \text{reject state}$

$$q \in Q$$
, $q_{accept}
eq q_{reject}$

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

current state x symbol in current cell \rightarrow new state x symbol to write in current cell x head movement

- can't move left from leftmost cell (will stay put)
- on entering q_{accept} or q_{reject} , TM halts (terminates))
- possibilities on an input w:
 - \circ halts (reach q_{accept} or q_{reject} eventually)
 - runs forever (never reach accept or reject state, implicitly reject)

DEF: The language recognized by TM M is $L(M) = \{w : M \text{ halts in state } q_{accept} \}$ when started on $w\}$.

DEF: A language is Turing-recognizable if some TM recognizes it.

11.2 Equality Problem

Example

 $L\{w\#w:w\in\{0,1\}^*\}$

We know this language is not context-free?

0110011#0110011

X110011 # X110011

XX10011#XX10011

...

XXXXXXX#XXXXXXX

11. Turing Machines 2

•
$$Q = \{q_0, q_{accept}, q_{reject}\}$$

•
$$\Sigma=\{0,1,\#\}$$

•
$$\Gamma = \{0, 1, \#, __, X\}$$

We simplify the diagram; missing transitions go to q_{reject} .

11.3 Powers of 2

Example

$$L = \{0^{2^n} : n \geq 0\}$$

Erase every other 0 (recursively).

•
$$\Sigma = \{0\}$$

•
$$\Gamma = \{0, \frac{}{space}, X\}$$

11.4 Divisibility

Example

$$L = \{a^n b^{kn} : n, k \ge 1\}$$

TM Sketch

1. Dot start cell.

$$(a
ightarrow\dot{a},b
ightarrow\dot{b})$$

- 2. Scan input to ensure it has form a^+b^+ . Reject otherwise.
- 3. Return head to left end.
- 4. Shuffle between a's and b's , crossing off one of each. If b's are gone and a's remain, reject.

(Cross off a, \dot{a}, b, \dot{b})

5. Restore crossed-off a's . If no b's, accept. Else, go to Step 4.

(Restore crossed-off a, \dot{a})

11.5 Distinctness

Example

$$L = \{\#w_1 \# w_2 \# w_3 ... \# w_k : k \geq 0, w_{1:k} \in \{0,1\}^*\}$$

TM Sketch

- 1. If current symbol $\notin \{\frac{\cdot}{space}, \#\}$, reject. If $\frac{\cdot}{space}$, accept. If #, dot it ($\# \to \#$).
- 2. Scan right for next # and dot it. If none found, accept.
- 3. Compare the two dotted strings by shuttling (?). If equal, reject.
- 4. Move rightmost dot to next # and go to Step 3. If no # found, remove rightmost dot.
- 5. Put head immediately after the last dotted string (possibly on a blank). Go to Step 1.

11. Turing Machines 6