Packet 3: Point Estimation

Maximum Likelihood Estimator

Likelihood function (R. A. Fisher, 1922) of a model $f(x \mid \theta)$ is the joint probability density or mass function of the observed data $x = \{x_1, x_2, \dots, x_n\}$, viewed as a function of θ . For example, if $X = \{X_1, X_2, \dots, X_n\}$ are continuous r.v.s,

$$L(\theta) = f(x \mid \theta) = f(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta), \text{ if independent.}$$

If the data are discrete r.v.s,

$$L(\theta) = P(X = x \mid \theta) = P(X_1 = x_1, \dots, X_n = x_n \mid \theta) = \prod_{i=1}^n P(X_i = x_i \mid \theta),$$
 if independent.

In this discrete case, the likelihood function is the "probability" that we observe the data $\{X=x\}$ under θ . For example, let's say $L(0.8)\gg L(0.2)$. It means that the probability of observing the current data $P(X=x\mid\theta)$ is much higher when $\theta=0.8$. So, the data seem to support $\theta=0.8$ much more than $\theta=0.2$; the data themselves speak about θ ! In general, $L(\theta)$ indicates how likely the observed data are as a function of θ , and maximizing the likelihood function determines the parameters that are most likely to produce the observed data.

Example: We want to know the number of ducks living at Penn State Duck Pond (Hintz Alumni Garden) in this summer, and we count the number of ducks in 3 consecutive days x = (12, 13, 17). Assume the number of observed ducks follows a uniform distribution, Uniform $[0, \theta]$, where θ is the total number of ducks. The p.d.f. of Uniform $[0, \theta]$ is given by

$$f(x \mid \theta) = \frac{1}{\theta} I_{\{0 \le x \le \theta\}}. \qquad \text{means} \quad f(x \mid \theta) = 0 \quad \text{if } x < \theta$$

Which θ most likely generate those three observations?

A:
$$\theta = 30$$
, B: $\theta = 20$ /C: $\theta = 10$.

$$A = \lfloor (\theta = 30) = P(X_1 = 12 | \theta = 30) P(X_2 = 13 | \theta = 30) P(X_3 = 17 | \theta = 30)$$

$$= \frac{1}{30} \times \frac{1}{30} \times \frac{1}{30}$$

$$B = \lfloor (\theta = 20) = \frac{1}{20} \times \frac{1}{20} \times \frac{1}{20}$$

$$C = \lfloor (\theta = 10) = 0 \times 0 \times 0 = 0$$

$$\times \lfloor (\theta = 16) = \frac{1}{16} \times \frac{1}{16} \times 0_1 = 0 \iff X \sim U(0, 16) \text{ pmf.} = 0$$

$$\pm \lfloor (\theta = 16) = \frac{1}{16} \times \frac{1}{16} \times 0_1 = 0 \iff X \text{ is out of support}$$

$$= \frac{1}{17} \times \frac{1}{17} \times \frac{1}{17} \times \frac{1}{17} \implies \hat{\theta} = 17 \text{ MLE}$$

Maximum likelihood estimator: A widely used method of obtaining a point estimate for a parameter θ is to find the maximum likelihood estimate (MLE). As the name suggests, the MLE is defined as some value maximizing $L(\theta)$ in the parameter space Ω .

In practice, we obtain the MLE by maximizing $\ell(\theta) = \log(L(\theta))$ instead of maximizing $L(\theta)$ for a few reasons.

- 1. Since $L(\theta)$ involves a product when the data are independent, it is mathematically more convenient to work with the (natural) logarithm of the likelihood function.
- 2. The logarithmic function is strictly increasing, preserving the maximizing value, i.e., $P \not\vdash v$ the value of θ that maximizes $\ell(\theta)$ also maximizes $L(\theta)$.
- 3. When an analytic solution is not available, we need to find a numerical solution and it is computationally more stable to find the value of θ that maximizes $\ell(\theta)$.

Example: If we knew there were 10 ducks and observed 8 of them on a random day. We assume that $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} \text{Bernoulli}(\theta)$ for some $\theta \in [0, 1]$, where X_i is 1 if we observe duck i and 0 otherwise. We want to find the most likely value of θ that maximizes the probability of observing these data. O is the prob of observing a duck

Write down the likelihood function and log-likelihood function.

What is the MLE of θ ?

Sol 0 pmf.
$$P(X_i=1) = \theta$$
 $P(X_i=0) = (1-\theta)$ $A_i=0,1$

likelihood $L(\theta) = \prod_{i=1}^{10} P(X_i=A_i) = \theta^8 (1-\theta)^2$

low likelihood low $L(\theta) = L(\theta) = \log \theta^8 + \log (1-\theta)^2$
 $= 8 \log \theta + 2 \log (1-\theta)$

2 * $L(\theta)$ based on a standard prob. distn is $\log - \cos \theta$ it is maximized at $\frac{\partial L(\theta)}{\partial (\theta)} = 0$
 $\frac{\partial L(\theta)}{\partial (\theta)} = 0$

solve equation 8 (1-6) - 20

multiply G(1-B) on both sides 8-80-26=0 $\theta=0.8$ Proportion

Example: The lifetime of a particular type of light bulb can be modeled by an exponential distribution, and its p.d.f. is

$$f(x \mid \theta) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right) \text{ for } x > 0.$$

Suppose the average lifetime θ is unknown, and we want to estimate it. We independently observe the lifetime of n such light bulbs, x_1, x_2, \ldots, x_n . What is the MLE of the expected lifetime θ ?

Sol
$$\mathfrak{I}(\theta) = \prod_{i=1}^{n} \int (\lambda_{i} | \theta) = \prod_{i=1}^{n} \frac{1}{\theta} \exp\left(-\frac{\lambda_{i}}{\theta}\right)$$

$$= \theta^{-n} \exp\left(-\frac{\lambda_{i}}{\theta}\right)$$

$$\mathcal{L}(\theta) = \lim_{t \to 1} L(\theta) = -n \lim_{t \to 0} \theta - \frac{\lambda_{i}}{\theta}$$

$$\mathcal{L}'(\theta) = -\frac{n}{\theta} - \left(-\frac{\frac{n}{\lambda_{i}}}{\theta^{2}}\right) = \frac{n}{\theta} + \frac{\lambda_{i}}{\theta^{2}}$$

$$\mathcal{L}'(\theta) = -\frac{n}{\theta} + \frac{\lambda_{i}}{\theta^{2}} = 0$$

$$\mathcal{L}'(\theta) = -\frac{n}{\theta} + \frac{\lambda_{i}}{\theta^{2}} = 0$$