

COVER PAGE

TITLE: MUSICAL INSTRUMENT STRINGS WITH POLYMER TREATED SURFACE

INVENTOR: TODD EVAN SCHLESINGER

ASSIGNEE: Advanced Surface Engineering, Inc.

SERIAL NO.: N/A

FILING DATE: November 26, 2001

RELATED APPLICATIONS:

This application is entitled to, and claims the benefit of, priority from the following United States Provisional Applications:

60/253,211 for "Improved Strings for Musical Instruments" filed 11/27/00
60/265,274 for "Improved Strings for Musical Instruments" filed 1/31/01
60/326,418 for "Musical Strings" filed 10/02/01
60/330,018 for "Vapor Deposited Polymer Coating" filed 10/18/2001

PAPER: NON-PROVISIONAL PATENT APPLICATION

FILED: November 26, 2001

PATENT ATTORNEY:

MAX STUL OPPENHEIMER
(Registration No. 33,203)
P.O. Box 50
Stevenson, MD 21153
USA

(410)494-4237

ATTORNEY DOCKET #: ASE0101

TITLE: MUSICAL INSTRUMENT STRINGS WITH POLYMER TREATED SURFACE
INVENTOR: TODD EVAN SCHLESINGER

NON-PROVISIONAL PATENT APPLICATION

PRIORITY

5 This application is entitled to and claims the benefit of priority from the following United States Provisional Applications:

60/253,211 for "Improved Strings for Musical Instruments" filed 11/27/00

60/265,274 for "Improved Strings for Musical Instruments" filed 1/31/01

10 60/326,418 for "Musical Strings" filed 10/02/01

60/330,018 for "Vapor Deposited Polymer Coating" filed 10/18/2001

FIELD AND BACKGROUND OF THE INVENTION

Field of the Invention

15 The present invention relates in general to polymer vapor surface treatments and coatings, in particular to polymer vapor surface treatments and coatings as applied to musical instrument strings; even more specifically, it relates to polytetrafluoroethylene ("PTFE") polymer vapor surface treatments and coatings applied to musical instrument strings.

20 Background Information

The invention described and claimed herein comprises a vapor phase polymeric surface treatment. One specific application of such a surface treatment is applied to musical

instrument strings. Examples of such strings are guitar, violin, cello, bass, piano and harp strings.

5 Surface coatings, and surface treatments, are well-known in the art. As used herein, surface coating means an attached laminate or jacket, positioned on the substrate, while surface treatment means a modified surface region of the substrate which is in fact part of the substrate.

10 A musical instrument string typically comprises a core of material and optionally additional strands of the same or other material wound around the core. The composition and dimensions of the core and the optional windings are chosen so as to produce the desired tones when the string is caused to vibrate.

15 U.S. Patent 4,945,856 deals with the vapor deposition of parylene polymer in low vacuum. This material has been used in the electronics and medical area, but it has several times higher friction coefficient as does PTFE. The process is performed in a lesser degree of vacuum, which does not offer the same purity as high vacuum processes.

20 The level of adhesion of this coating does not lend itself to applications where surface abrasion (strumming) is an issue as it can fray and delaminate fairly easily from the coated article. There exist stronger binding forces within the coating itself than between the coating and substrate. It is believed that this effect is responsible for the way in which a parylene coating can be peeled from the substrate, whereas the PTFE polymer vapor surface treatment can not.

U.S. Patent 3,767,559 deals with RF sputter deposition of PTFE as an improvement over DC means, which are not applicable to insulators such as PTFE, but does not mention the

use as a coating on musical strings.

U.S. Patent 4,539,228 deals with extending the life of musical instrument strings through the application of PTFE in an oil lubricant. While some of the benefits of applying PTFE to a musical string are gained, the material is not adhered to the surface in the same way that a vapor deposited polymer is condensed and nucleated onto the surface.

U.S. Patent 5,578,775 discloses a musical instrument string having an inner bundle embedded in a mantle of precious metal and an abrasive resistant treatment of short regions of the string (those which are either struck while playing or which contact the instrument) and discloses surface hardening using phosphate coating, vapor plating, flame coating or ion plating.

U.S. Patent 5,883,319 deals with the bonding of a GORETEX(TM) expanded PTFE ("e-PTFE") gauze to the surface of the wound type of musical instrument strings, using an adhesive. The gauze sheet is then covered with a heat shrink or polymer jacket.

U. S. Patent 5,888,591 teaches deposition of PTFE using Chemical Vapor Deposition (CVD), with no specific mention of use for musical strings. The preferred method in the current invention uses Physical Vapor Deposition (PVD) which has been documented to result in a harder, more wear resistant polymeric material, possibly attributed to the higher degree of cross linking of the polymeric material resulting from PVD processing.

A general reference describing deposition techniques and alternatives is "Plasma Deposition and Treatment of Polymers", ed. W.W. Lee, R.d'Agostino, and M.R. Wertheimer, ISBN 1-55899-450-5, published by Materials

Research Society.

Spray type coatings have been applied to musical instrument strings, but can affect the musical quality as they change the mechanical properties of the string due to excessive coating thickness, and the attached laminate being distinct from the substrate, causing
5 deadening of the musical sound. The "Black Maxima" TEFLON (TM) spray coated string had been previously marketed by Maxima, approximately 10 years ago. Applicants believe that this product was discontinued as the coating would become unattached from the string, and degrade musical performance. Also, the high temperature oven baking processes used to cure spray type coatings onto the surface can harm the base metal. Oil
10 based and other wipe-on type coatings are not well adhered to the substrate, and will offer only short term benefits. Still other types of extruded coatings or jacketed coatings can adversely affect sound quality, due to the damping of the sound vibrations and subsequent muffling of the sound.

SUMMARY OF THE INVENTION

15 The invention comprises polymer vapor treatment of musical instrument strings. The performance of musical instrument strings is improved by treating the strings with a polymer vapor, avoiding problems common with spray type polymer coatings, extruded or laminate coatings or wipe-on liquid coatings, including heat damage, imprecise dimensional control, possible flaking, peeling or easy removal of the coating or adverse changes or damping of the musical qualities of the strings.
20

The treatment may be applied either to the core of said strings, to strands wrapped around

the core, or both. The treatment may be applied either before or after wrapping said strands around said core.

5

Among the advantages of the invention, polymer vapor treated strings offer better performance than untreated strings, having lower friction and a smoother sensation while playing. The polymeric treatment provides lessened tarnish and corrosion of the strings from finger perspiration and prevents contaminants from attaching to the surface, which can degrade sound quality.

10

Due to the manner in which the vapor condenses and nucleates onto the surface, and fills and attaches to micro-voids and surface porosity, there is the additional advantage of reduced break-in time needed to achieve the optimum musical properties of the string.

15

This is attributed to the lubricating action of the surface treatment on the string vibrations as the mechanical waves cause a frictional drag within surface metallurgical cracks, which are in motion during the harmonic vibrations. In contrast, other processes rely on mechanical bonding or adhesives to attach the thicker polymer jackets or other macroscopic laminates, which can cause additional deadening of the sound. Therefore, using the disclosed invention, improved sound quality is realized as soon as the strings are installed on the instrument and the polymer vapor surface treatment process will not adversely change the sound quality of the strings as do other coating processes.

20

Another advantage of polymer vapor treatment of musical strings is that both the wound strings and the single strand strings are treated, resulting in consistent performance and surface feel while playing the instrument. Coating of only wound strings can result in uneven feel and sound while playing from treated to untreated strings. Musicians comment that when playing coated strings which have 2 or 3 strings uncoated out of 6

(guitar), there is a distinct difference in feel when playing across from coated to uncoated, and vice versa. Several citations of musician's comments have stated that either a distinct "hitting the brakes" or, conversely, "Van Halen" effect (sliding) was experienced when using coated strings offering only a fraction of the total number of strings in the set with a coating applied, as is offered by competitive processes.

5

Competitive coating processes are not adapted well to coating the higher frequency (treble) strings. Both a difficulty in adhering the thicker coated layer to the treble strings, and also the undesirable effect of damping of the vibration (and deadening of the sound) is evident the most in the high frequency vibration of the treble strings. Therefore, only 3 or 4 out of 6 strings (guitar) are coated in the competitive processes. There also has been some issue with fraying of the adhered type of coatings after time.

10

Vapor deposit is preferable to other methods (such as spray coating) due to the low temperature process and better dimensional control available from vapor processes. The nature of the polymer vapor surface treatment, nucleated onto the surface, does not flake or peel from the substrate as do thicker coatings or laminates.

15

20

The precise dimensional control of vapor deposition also provides minimal deviation in the uniformity of the diameter of the treated wire; this is critical in the world of stringed musical instruments where even minute variations of string diameter along the length of the wire can result in out-of-tune harmonic vibrations of the string, causing diminished sound quality.

The use of PTFE polymer vapor surface treatment of musical instrument strings provides improved surface properties of the strings with no adverse effects to the musical

properties.

Frequent comments from musicians using competitive “coated” strings is that while they enjoy the benefit of improved feel and longer lasting strings, there is a distinct deadening of the sound. The current invention provides the benefits of improved playability, 5 extended life, reduced break-in period, with no deadening of the sound, or even improved sound timbre and tone detected by some musicians.

It is believed that the polymer vapor process provides a method for treatment of the microscopic surface features of the string with PTFE nucleates. This serves to provide a treated surface, rich in polymeric material, with no distinct junction between coating and substrate as exists in competitive products. The equations governing mechanical 10 vibration of 2 separate entities will have an increased damping factor as the 2 entities vibrate out of phase with respect to one another. This effect is more pronounced at higher frequencies. In a polymer vapor treated string surface, the damping factor is minimized due to reduction of out of phase vibration. The disclosed invention thus allows treatment 15 of all the strings, high frequency (treble) and lower frequency (bass) alike, constituting a “set” of strings.

Acoustic measurements of the increased damping present in competitive “laminated” or “coated” products compared to a polymer vapor treated string bear this out.

It is an object of the invention to provide a novel polymeric vapor surface treatment.

20 It is another object of the invention to form a vapor of polymer material in a vacuum environment and condense this vapor onto the surface of both wound and single-stranded

musical instrument strings, resulting in nucleated polymer material on the string surface.

It is another object of the invention to apply to wound and single-stranded musical instrument strings such a surface treatment that does not adversely effect the musical properties of the strings.

5 It is another object of the invention to apply such a treatment to substantially the entire length of a musical instrument string.

A further object of the invention is to provide a polymeric surface treatment comprised of vapor deposited PTFE nucleates applied to musical instrument strings. A base layer of corrosion resistant metal such as gold, titanium, chromate conversion coating or other material may also be used, resulting in further improved mechanical properties and wear resistance and corrosion resistance.

BRIEF DESCRIPTION OF THE DRAWINGS

15 The foregoing and still other objects of this invention will become apparent, along with various advantages and features of novelty residing in the present embodiments, from study of the following drawings, in which:

20 Figure 1 is a schematic diagram of the process of treating musical instrument strings with a PTFE polymer vapor, using the plasma sputter deposition method.

Figures 2, 3, 4, and 5 show alternative methods of polymer vapor deposition used to treat the surface of musical instrument strings. These methods are Ion Beam Sputtering (fig 2), Laser Deposition (fig 3), Plasma Chemical Vapor Deposition (fig 4), and Hot Filament Chemical Vapor Deposition (fig 5).

Figure 6 is a schematic drawing showing a single-strand musical instrument string which has been treated with vapor deposited polymer nucleate.

Figures 7 through 9 show scanning Electron Microscope Photographs depicting the difference between a polymer vapor treated surface and other types of coatings.

Figure 7 shows a polymer vapor treated wire.

Figure 8 shows a spray coated wire.

Figure 9 shows a polymer laminate on a wire.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to the drawings, the invention is a PTFE vapor surface treatment method and composition, illustrated by application to musical instrument strings.

Vapor processes include several types of related methods whereby a vapor phase of PTFE polymer is created in a vacuum chamber and then allowed to condense onto the surface of a musical instrument string, resulting in the surface being treated with PTFE nucleated

material. This treated musical instrument string, with nucleated PTFE polymer vapor condensed onto the surface, has many advantages over untreated strings, or other technologies using attached polymer films or porous structures, or spray type coatings. The surface being treated via exposure to vapor phase polymeric material shows distinct advantages over attached or adhered or laminated outer jackets or layers. One attribute of this effect is realized in the type of mechanical vibrations produced by a vapor polymer treated string versus a coated or jacketed or laminated string. This is evident in the quality of the musical sound produced by the strings, and the underlying microscopic mechanical phenomena resulting in virtually zero sound deadening as is caused by macroscopic laminates and coatings on musical strings. The polymer vapor surface treatment results in a polymer rich surface with no distinct interface between the substrate and the surface coating, as is evident in macroscopic laminates and coatings.

The invention may be implemented by plasma sputter deposition or other vapor deposition process applied to musical instrument strings using the following steps.

1. Cleaning the parts to be treated, for example by ultrasonic cleaning in detergent and then in acetone; optionally, immediately before the process begins, the parts may also be treated in a vacuum chamber by applying RF power directly to the substrate holder in order to plasma etch the parts and remove any residual contamination. This plasma cleaning also increases adhesion of the surface treatment.

2. The pressure in the vessel (3) is reduced to a base pressure of about 10-5 Torr or less. This may be accomplished using a mechanical vacuum pump (8), then a cryogenic pump (9).

5 Additional pumping and removal of process contaminants during deposition may be achieved through the use of an optional cryogenic trap (20) using liquid nitrogen.

10 14 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050 2052 2054 2056 2058 2060 2062 2064 2066 2068 2070 2072 2074 2076 2078 2080 2082 2084 2086 2088 2090 2092 2094 2096 2098 2100 2102 2104 2106 2108 2110 2112 2114 2116 2118 2120 2122 2124 2126 2128 2130 2132 2134 2136 2138 2140 2142 2144 2146 2148 2150 2152 2154 2156 2158 2160 2162 2164 2166 2168 2170 2172 2174 2176 2178 2180 2182 2184 2186 2188 2190 2192 2194 2196 2198 2200 2202 2204 2206 2208 2210 2212 2214 2216 2218 2220 2222 2224 2226 2228 2230 2232 2234 2236 2238 2240 2242 2244 2246 2248 2250 2252 2254 2256 2258 2260 2262 2264 2266 2268 2270 2272 2274 2276 2278 2280 2282 2284 2286 2288 2290 2292 2294 2296 2298 2300 2302 2304 2306 2308 2310 2312 2314 2316 2318 2320 2322 2324 2326 2328 2330 2332 2334 2336 2338 2340 2342 2344 2346 2348 2350 2352 2354 2356 2358 2360 2362 2364 2366 2368 2370 2372 2374 2376 2378 2380 2382 2384 2386 2388 2390 2392 2394 2396 2398 2400 2402 2404 2406 2408 2410 2412 2414 2416 2418 2420 2422 2424 2426 2428 2430 2432 2434 2436 2438 2440 2442 2444 2446 2448 2450 2452 2454 2456 2458 2460 2462 2464 2466 2468 2470 2472 2474 2476 2478 2480 2482 2484 2486 2488 2490 2492 2494 2496 2498 2500 2502 2504 2506 2508 2510 2512 2514 2516 2518 2520 2522 2524 2526 2528 2530 2532 2534 2536 2538 2540 2542 2544 2546 2548 2550 2552 2554 2556 2558 2560 2562 2564 2566 2568 2570 2572 2574 2576 2578 2580 2582 2584 2586 2588 2590 2592 2594 2596 2598 2600 2602 2604 2606 2608 2610 2612 2614 2616 2618 2620 2622 2624 2626 2628 2630 2632 2634 2636 2638 2640 2642 2644 2646 2648 2650 2652 2654 2656 2658 2660 2662 2664 2666 2668 2670 2672 2674 2676 2678 2680 2682 2684 2686 2688 2690 2692 2694 2696 2698 2700 2702 2704 2706 2708 2710 2712 2714 2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778 2780 2782 2784 2786 2788 2790 2792 2794 2796 2798 2800 2802 2804 2806 2808 2810 2812 2814 2816 2818 2820 2822 2824 2826 2828 2830 2832 2834 2836 2838 2840 2842 2844 2846 2848 2850 2852 2854 2856 2858 2860 2862 2864 2866 2868 2870 2872 2874 2876 2878 2880 2882 2884 2886 2888 2890 2892 2894 2896 2898 2900 2902 2904 2906 2908 2910 2912 2914 2916 2918 2920 2922 2924 2926 2928 2930 2932 2934 2936 2938 2940 2942 2944 2946 2948 2950 2952 2954 2956 2958 2960 2962 2964 2966 2968 2970 2972 2974 2976 2978 2980 2982 2984 2986 2988 2990 2992 2994 2996 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 322210 322211 322212 322213 322214 322215 322216 322217 322218 322219 322220 322221 322222 322223 322224 322225 322226 322227 322228 322229 3222210 3222211 3222212 3222213 3222214 3222215 3222216 3222217 3222218 3222219 3222220 3222221 3222222 3222223 3222224 3222225 3222226 3222227 3222228 3222229 32222210 32222211 32222212 32222213 32222214 32222215 32222216 32222217 32222218 32222219 32222220 32222221 32222222 32222223 32222224 32222225 32222226 32222227 32222228 32222229 322222210 322222211 322222212 322222213 322222214 322222215 322222216 322222217 322222218 322222219 322222220 322222221 322222222 322222223 322222224 322222225 322222226 322222227 322222228 322222229 3222222210 3222222211 3222222212 3222222213 3222222214 3222222215 3222222216 3222222217 3222222218 3222222219 3222222220 3222222221 3222222222 3222222223 3222222224 3222222225 3222222226 3222222227 3222222228 3222222229 32222222210 32222222211 32222222212 32222222213 32222222214 32222222215 32222222216 32222222217 32222222218 32222222219 32222222220 32222222221 32222222222 32222222223 32222222224 32222222225 32222222226 32222222227 32222222228 32222222229 322222222210 322222222211 322222222212 322222222213 322222222214 322222222215 322222222216 322222222217 322222222218 322222222219 322222222220 322222222221 322222222222 322222222223 322222222224 322222222225 322222222226 322222222227 322222222228 322222222229 3222222222210 3222222222211 3222222222212 3222222222213 3222222222214 3222222222215 3222222222216 3222222222217 3222222222218 3222222222219 3222222222220 3222222222221 3222222222222 3222222222223 3222222222224 3222222222225 3222222222226 3222222222227 3222222222228 3222222222229 32222222222210 32222222222211 32222222222212 32222222222213 32222222222214 32222222222215 32222222222216 32222222222217 32222222222218 32222222222219 32222222222220 32222222222221 32222222222222 32222222222223 32222222222224 32222222222225 32222222222226 32222222222227 32222222222228 32222222222229 322222222222210 322222222222211 322222222222212 322222222222213 322222222222214 322222222222215 322222222222216 322222222222217 322222222222218 322222222222219 322222222222220 322222222222221 322222222222222 322222222222223 322222222222224 322222222222225 322222222222226 322222222222227 322222222222228 322222222222229 3222222222222210 3222222222222211 3222222222222212 3222222222222213 3222222222222214 3222222222222215 3222222222222216 3222222222222217 3222222222222218 3222222222222219 3222222222222220 3222222222222221 3222222222222222 3222222222222223 3222222222222224 3222222222222225 3222222222222226 3222222222222227 3222222222222228 3222222222222229 32222222222222210 32222222222222211 32222222222222212 32222222222222213 32222222222222214 32222222222222215 32222222222222216 32222222222222217 32222222222222218 32222222222222219 32222222222222220 32222222222222221 32222222222222222 32222222222222223 32222222222222224 32222222222222225 32222222222222226 32222222222222227 32222222222222228 32222222222222229 322222222222222210 322222222222222211 322222222222222212 322222222222222213 322222222222222214 322222222222222215 322222222222222216 322222222222222217 322222222222222218 322222222222222219 322222222222222220 322222222222222221 322222222222222222 322222222222222223 322222222222222224 322222222222222225 322222222222222226 322222222222222227 322222222222222228 322222222222222229 3222222222222222210 3222222222222222211 3222222222222222212 3222222222222222213 3222222222222222214 3222222222222222215 3222222222222222216 3222222222222222217 3222222222222222218 3222222222222222219 3222222222222222220 3222222222222222221 3222222222222222222 3222222222222222223 3222222222222222224 3222222222222222225 3222222222222222226 3222222222222222227 3222222222222222228 3222222222222222229 32222222222222222210 32222222222222222211 32222222222222222212 32222222222222222213 32222222222222222214 32222222222222222215 32222222222222222216 32222222222222222217 32222222222222222218 32222222222222222219 32222222222222222220 32222222222222222221 32222222222222222222 32222222222222222223 32222222222222222224 32222222222222222225 32222222222222222226 32222222222222222227 32222222222222222228 32222222222222222229 322222222222222222210 322222222222222222211 322222222222222222212 322222222222222222213 322222222222222222214 322222222222222222215 322222222222222222216 322222222222222222217 322222222222222222218 322222222222222222219 322222222222222222220 322222222222222222221 322222222222222222222 322222222222222222223 322222222222222222224 322222222222222222225 322222222222222222226 322222222222222222227 322222222222222222228 322222222222222222229 3222222222222222222210 3222222222222222222211 3222222222222222222212 3222222222222222222213 3222222222222222222214 3222222222222222222215 3222222222222222222216 3222222222222222222217 3222222222222222222218 3222222222222222222219 3222222222222222222220 3222222222222222222221 3222222222222222222222 3222222222222222222223 3222222222222222222224 3222222222222222222225 3222222222222222222226 3222222222222222222227 3222222222222222222228 3222222222222222222229 32222222222222222222210 32222222222222222222211 32222222222222222222212 32222222222222222222213 32222222222222222222214 32222222222222222222215 32222222222222222222216 32222222222222222222217 32222222222222222222218 32222222222222222222219 32222222222222222222220 3222222222222222222221 32222222222222222222222 32222222222222222222223 32222222222222222222224 32222222222222222222225 32222222222222222222226 32222222222222222222227 32222222222222222222228 32222222222222222222229 322222222222222222222210 322222222222222222222211 322222222222222222222212 322222222222

material is condensed and nucleated on the surface. It has been found preferable to run the deposition process in cycles (e.g., three minutes with plasma on followed by three minutes with plasma off) so as to allow parts adequate time to cool to a desired 5 temperature range and avoid overheating. The surface treated layer, normally in the range of about 0.1 to 10 microns, is normally achieved in a total of between three and thirty cycles.

6. Schematic diagrams of alternative methods used to form a vapor of PTFE polymer show ion beam sputtering, laser deposition, or flowing of a precursor fluorocarbon gas into the vessel in the presence of a heating filament or RF energy.

7. In all of the above processes a vapor phase of polymer material is created, and then allowed to nucleate onto the surface of the musical string resulting in polymer material condensed and nucleated on the surface.

The above process may be altered to use polymers other than PTFE. Polymers including polyimide, polyethylene, and acrylics have been successfully vapor deposited.

In all of the described vapor deposition methods, a vapor of 20 polymer is created in a vacuum environment. This vapor is then allowed to condense and nucleate on the surface of a musical instrument string. The result is a musical instrument string which

has a polymer condensed and nucleated on the surface.

The differences among the five outlined processes is the means by which the vapor phase of polymer material is formed. In the plasma sputter deposition process (fig 1), RF plasma is configured so as to have ions and energetic particles contained in the plasma accelerated into a polymer source material so as to eject microscopic polymer particles into a vacuum environment, forming a vapor of polymer material.

In Ion beam sputtering (fig 2) the ejected polymer particles are formed by an ion beam being directed toward the surface of the polymer source material. In Laser deposition (fig 3) a pulsed beam of laser light is incident on the surface of the polymer source material, causing polymer particulate to be ablated off into a vapor phase. In the Plasma chemical vapor deposition (fig 4) and the Hot filament chemical vapor deposition method (fig 5) a precursor gas containing the desired elements to be used to form the vapor phase is admitted into the vacuum vessel in a controlled manner. A source of electromagnetic energy (Plasma CVD) or thermal energy (hot filament CVD) is used to excite the gas precursor which causes the gas molecules to react and form polymer vapors which are then allowed to condense and nucleate on the surface of the musical instrument string.

Other variations of the process can also be implemented to form a

vapor phase of polymer material in a vacuum chamber, and subsequently allow the vapor to condense and nucleate on the surface of the musical instrument string. A general reference describing deposition techniques and alternatives is "Plasma Deposition and Treatment of Polymers", ed. W.W. Lee, R.d'Agostino, and M.R. Wertheimer, ISBN 1-55899-450-5, published by Materials Research Society.

Additional improvement to the effects of the PTFE polymer vapor surface treatment on the strings can be gained through the use of a chemical conversion layer, such as a

chromate conversion process. This process reacts a thin layer of the metal surface of the string to form a chromate compound. In and of itself this layer has increased tarnish resistance. By using it in conjunction with the PTFE polymer vapor surface treatment, a synergistic enhancement to the performance of the musical strings is gained. This is believed to be due to the microscopic roughening caused by the chromate to allow the vapor deposited nucleates to "key" into the surface, further extending the longevity of the PTFE polymer vapor surface treatment.

Further variation in tailoring the properties of PTFE polymer vapor surface treatments include the following. The control of deposition parameters including cooling of the substrate below 0 deg C, along with high plasma density, and oblique angle of the source with respect to the substrate can be advantageously used to control porosity (pore size and pore fraction) of the nucleated polymeric material. This porosity can be utilized to house an additional material, such as a low friction liquid lubricant, or other substance. The result is an adhered layer of a liquid lubricant on the surface of the string, which provides a lowered coefficient of friction if desired. Such a liquid lubricant, if used alone, would

not have the same amount of binding to the surface, and would mainly be held on by surface tension alone. The nucleated polymer vapor material has chemical and physical binding to the surface.

5 The control over porosity may also be used to modify the mechanical properties of the porous PTFE bulk material, created through an entirely different mechanical stretching process, has been the subject of a great deal of interest. GORETEX (TM) has done much work in the field of mechanically expanded "e-PTFE". Porous PTFE vapor surface treatments are expected to also have a great many new applications.

10 Higher substrate temperatures, above 0 deg C, and normal (perpendicular) angle of source with respect to substrate is favorable for a more featureless structure of the surface , with little porosity.

15 The current invention may be used to treat the winding wire or core wire prior to the winding wire being wrapped around the core wire. Alternatively, the wrapped string may be treated as a unit, for simplified processing.

20 While benefits may be produced by treating certain pre-selected portions of a musical instrument string (for example, those portions which are plucked, strummed or struck while playing, or those portions which are in contact with the instrument), in the preferred embodiment, substantially the entire length of the string is treated. Treating substantially the entire length produces additional benefits in uniformity, predictability and persistence of tone qualities.

EXPERIMENTAL SETUP AND RESULTS

The above steps were carried out using the following equipment in a setup as in Figure 1 (all components not specified below were standard, off the shelf, laboratory components):

- 5 1. component to be treated (e.g., a musical instrument string)
3. vacuum vessel
8. mechanical vacuum pump (Welch model no. 1398 or equivalent)
9. cryogenic vacuum pump (CT Instruments model no. CT-10 or equivalent)
- 10 10. RF power supply (ERA, Inc. model no. 7910 or equivalent)
11. cathode assembly (Aireco-Temescal Cathode Assembly model no. HRC-817 or equivalent)
12. PTFE material (pure, virgin PTFE)
13. In the alternate methods, an ion source (Commonwealth Scientific brand, cold cathode type or Kaufman type, or equivalent), or a laser (an excimer laser, a Nd-YAG laser or other common types of commercially available lasers are suitable), or variable voltage electric heating filament or RF energy (item 10) is suitable as input energy source.
- 15 Referring to the scanning electron microscope images of Figures 7-9, some of the advantages over prior art techniques may be seen. Figure 7 shows a polymer vapor treated wire, treated using the technique of the invention. As can be seen, the surface is smooth and well-adhered compared to Figures 8 and 9. Figure 8 shows a spray coated
- 20

wire, and Figure 9 shows a polymer laminate on a wire. It can be seen that the spray coated wire of Figure 8 and the polymer laminated wire of Figure 9 exhibit coating delamination and flaking, and the spray coated wire of Figure 8 also shows heat damage characteristic of high temperature bake out of spray coatings.

5 In order to test the benefits of the invention, the following experiment was carried out. Samples of musical instrument strings (Martin Guitar Phosphor Bronze Acoustic Guitar Strings) were obtained, and half of them were treated as follows: An immersion cleaning in acetone was performed to remove any residual oils. The strings were placed in a vacuum deposition system, 10 and treated with PTFE polymer vapor on one side. The parts were rotated 180 degrees, and then the opposite sides were treated.

The treated and untreated samples were submitted to an independent testing laboratory, which conducted tests for corrosion resistance using a humidity test and a hydrogen sulfide vapor test.

15 The humidity test consisted of exposing treated and untreated strings to a relative humidity of 90% at 45 degrees C, for varying times up to 14 days. The hydrogen sulfide vapor test consisted of exposing the strings to a vapor of hydrogen sulfide gas, for periods of up to 48 hours.

It was concluded that the treated wound strings were noticeably less tarnished and 20 corroded than the wound untreated strings. The treated strings remained a bright bronze color, while the untreated strings became discolored from the hydrogen sulfide gas. The untreated single-strand strings developed spots from the humidity exposure, where the

treated strings did not.

5

While illustrated with respect to plasma sputter vapor deposition of PTFE, the invention may be applied using any similarly vaporizable polymer with the same techniques, modified in a manner which would be known to one skilled in the art.⁶

10

Therefore, while specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles and that various modifications, alternate constructions, and equivalents will occur to those skilled in the art given the benefit of this disclosure.

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000