Prof. Dr. A. Emre HARMANCI Yrd. Doç. Dr. Osman Kaan EROL Araş. Gör. Berk CANBERK Araş. Gör. Yusuf YASLAN

12.11.2009

BİÇİMSEL DİLLER ve OTOMATLAR 1. YIL İÇİ SINAVI

1) (30 Puan)

A(modB) işlemini yerine getirecek bir devre ASM yöntemi ile tasarlanacaktır. Tasarımda bir çıkarma devresi ve gerekli sayıda saklayıcı, F,F ve kapılar kullanılacaktır. A değeri 16 bitlik, B değeri ise 8 bitlik birer giriş saklayıcısına yazılacaktır. C sonucu taşıyan saklayıcı olacaktır. (Devre, bir S butonuna basıldığında giriş bilgilerini kaydedip hesaba başlayacak, hesap sonu bir ışık uyarısı (LED) ile belirtilecektir.

- a) Devrenin ASM diyagramını çizin ve açıklayın.
- b) Denetim makinasını her duruma bir DFF atayarak oluşturun.
- c) Veri makinasını bir çıkarma devresi, saklayıcılar, FF' ler ve gerekli kapılarla, her bir elemanı boyutlandırarak çizin ve devre elemanlarının denetim giriş denklemlerini belirtin.

2) (20 Puan)

Bir kırmızı düğmeye VEYA yeşil düğmeye istenildiği sıra ve adette basmak ile kırmızı düğmeye istenildiği adet daha sonra yeşil düğmeye istenildiği adet basmak aynı anlama gelir mi? (Not: istenildiği adet basma, hiç basmamayı da içerir). Derste gördüğünüz teoremler yardımıyla açıklayınız.

3) (25 Puan)

Aşağıda verilmiş olan küme içi bağıntının simetrik kapanışının geçişli kapanışı ile geçişli kapanışının simetrik kapanışının aynı olabilmesi için aşağıda verilen bağıntı matrisine eklenmesi gereken 1 leri bulunuz.

			1		
9	0	1	0	0	0
Ýc.	0	0	1	0	0
	0	0	0	0	0
1	0	0	1	0	0
e	0	0	0	1	0
			4		

Arka sayfaya geçiniz...

4) (25 Puan)

Aşağıda Mealy modeline göre tasarlanmış olan sonlu durumlu makinasının durum geçiş tablosu verilmiştir. Durum geçiş tablosunu minimal kapalı örtüye göre indirgeyiniz. İndirgediğiniz bu makinayı Moore modeline göre yeniden tasarlayınız.

	.00	01	11	10
S1	-/-	S3/0	S4/0	S2/0
S2	S4/1 `	-/-	-/-	-/-
S3.	S6/L	S6/0	-/-	-/-
S4	-/-	S6/1	S1/1	S5/0
S5/	-/-	-/-	S2/0	-/0
S6	S3/1	-/-	S2/1	S3/0

Sınav süresi: 90 dakika

Başarılar...

I.T.U ELEKTRIK-ELEKTRONIK FAKÜLTESI

Soru	1	2	3	4	5	6	7	8	Topi
Not									

Tarin

Bolum

Ders

No

Adi, Soyadi:
imzasi

c)

I.T.U ELEKTRIK-ELEKTRONİK FAKÜLTESİ

Soru	1	2	3	4	5	6	7	8	Topi
Not									

Tarin I I I Bolum

Ders

No

Adi, Soyadi

imzasi

$$A^*A^* = A^* = (deste glittles teorem)$$
 $\{k, 3^*\} \{h, 3^*\} = \{h\}^* \{h\}^* \{53^*\} \{53^*\} \{53^*\} = \}$
 $\{h, y\}^* \neq \{h\}^* \{53^*\} \{53^*\}$

Ayon anlona gelnos

I.T.U. ELEKTRIK-ELEKTRONIK FAKÜLTESI

Soru	1	2	3	4	5	6	7	8	Top!
Not									

Tarih	:			1.		1						,			
Bolum															
Ders	:		5			ř						٠	1	•	
No	:			•			ं	Ċ.	ŝ	,					
Ad. Savo															

imzası

3

ts(x)=st(x) omas, istenyan

MS(X) = []]]

 $M_{S}+(\alpha)=$ $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

 $t_{S(x)} = AS(x)$ i'ain x^{1} in $A_{x,i}$

st(x)=t(x)

 \Rightarrow +s(q)=s+(q)

al yn balush hale getimeh rom $M_S(q)$ yn elde ethel genelur. Binn rom yap hoa geneler

y had a contract that

My = 1

I.T.U. ELEKTRIK-ELEKTRONIK FAKÜLTESI

Soru	1	2	3	4	5	6	7	8	Topi.
Not									

Goditine reduci

Sys

yon budine grafi

marked bepals witi

B=5,50 B=5355