24. Since g' is continuous at p and |g'(p)| > 1, by letting $\epsilon = |g'(p)| - 1$ there exists a number $\delta > 0$ such that |g'(x) - g'(p)| < |g'(p)| - 1 whenever $0 < |x - p| < \delta$. Hence, for any x satisfying $0 < |x - p| < \delta$, we have

$$|g'(x)| \ge |g'(p)| - |g'(x) - g'(p)| > |g'(p)| - (|g'(p)| - 1) = 1.$$

If p_0 is chosen so that $0 < |p - p_0| < \delta$, we have by the Mean Value Theorem that

$$|p_1 - p| = |g(p_0) - g(p)| = |g'(\xi)||p_0 - p|,$$

for some ξ between p_0 and p. Thus, $0 < |p - \xi| < \delta$ so $|p_1 - p| = |g'(\xi)||p_0 - p| > |p_0 - p|$.

Exercise Set 2.3, page 71

1. $p_2 = 2.60714$

2. $p_2 = -0.865684$; If $p_0 = 0$, $f'(p_0) = 0$ and p_1 cannot be computed.

3. (a) 2.45454

(b) 2.44444

(c) Part (a) is better.

4. (a) -1.25208

(b) -0.841355

- 5. (a) For $p_0 = 2$, we have $p_5 = 2.69065$.
 - (b) For $p_0 = -3$, we have $p_3 = -2.87939$.
 - (c) For $p_0 = 0$, we have $p_4 = 0.73909$.
 - (d) For $p_0 = 0$, we have $p_3 = 0.96434$.
- 6. (a) For $p_0 = 1$, we have $p_8 = 1.829384$
 - (b) For $p_0 = 1.5$, we have $p_4 = 1.397748$.
 - (c) For $p_0 = 2$, we have $p_4 = 2.370687$; and for $p_0 = 4$, we have $p_4 = 3.722113$.
 - (d) For $p_0 = 1$, we have $p_4 = 1.412391$; and for $p_0 = 4$, we have $p_5 = 3.057104$.
 - (e) For $p_0 = 1$, we have $p_4 = 0.910008$; and for $p_0 = 3$, we have $p_9 = 3.733079$.
 - (f) For $p_0 = 0$, we have $p_4 = 0.588533$; for $p_0 = 3$, we have $p_3 = 3.096364$; and for $p_0 = 6$, we have $p_3 = 6.285049$.
- 7. Using the endpoints of the intervals as p_0 and p_1 , we have:

(a) $p_{11} = 2.69065$

(b) $p_7 = -2.87939$

(c) $p_6 = 0.73909$

(d) $p_5 = 0.96433$

8. Using the endpoints of the intervals as p_0 and p_1 , we have:

(a) $p_7 = 1.829384$

(b) $p_9 = 1.397749$

- (c) $p_6 = 2.370687; p_7 = 3.722113$
- (d) $p_8 = 1.412391; p_7 = 3.057104$
- (e) $p_6 = 0.910008; p_{10} = 3.733079$
- (f) $p_6 = 0.588533; p_5 = 3.096364; p_5 = 6.285049$
- 9. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_{16} = 2.69060$
- (b) $p_6 = -2.87938$
- (c) $p_7 = 0.73908$
- (d) $p_6 = 0.96433$
- 10. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_8 = 1.829383$

- (b) $p_9 = 1.397749$
- (c) $p_6 = 2.370687; p_8 = 3.722112$
- (d) $p_{10} = 1.412392; p_{12} = 3.057099$
- (e) $p_7 = 0.910008; p_{29} = 3.733065$
- (f) $p_9 = 0.588533$; $p_5 = 3.096364$; $p_5 = 6.285049$
- 11. (a) Newton's method with $p_0 = 1.5$ gives $p_3 = 1.51213455$. The Secant method with $p_0 = 1$ and $p_1 = 2$ gives $p_{10} = 1.51213455$. The Method of False Position with $p_0 = 1$ and $p_1 = 2$ gives $p_{17} = 1.51212954$.
 - (b) Newton's method with $p_0 = 0.5$ gives $p_5 = 0.976773017$. The Secant method with $p_0 = 0$ and $p_1 = 1$ gives $p_5 = 10.976773017$. The Method of False Position with $p_0 = 0$ and $p_1 = 1$ gives $p_5 = 0.976772976$.

12. (a)

	Initial Approximation	Result	Initial Approximation	Result
Newton's	$p_0 = 1.5$	$p_4 = 1.41239117$	$p_0 = 3.0$	$p_4 = 3.05710355$
Secant	$p_0 = 1, p_1 = 2$	$p_8 = 1.41239117$	$p_0 = 2, p_1 = 4$	$p_{10} = 3.05710355$
False Position	$p_0 = 1, p_1 = 2$	$p_{13} = 1.41239119$	$p_0 = 2, p_1 = 4$	$p_{19} = 3.05710353$

(b)

	Initial Approximation	Result	Initial Approximation	Result
Newton's	$p_0 = 0.25$	$p_4 = 0.206035120$	$p_0 = 0.75$	$p_4 = 0.681974809$
Secant	$p_0 = 0, p_1 = 0.5$	$p_9 = 0.206035120$	$p_0 = 0.5, p_1 = 1$	$p_8 = 0.681974809$
False Position	$p_0 = 0, p_1 = 0.5$	$p_{12} = 0.206035125$	$p_0 = 0.5, p_1 = 1$	$p_{15} = 0.681974791$

- 13. For $p_0 = 1$, we have $p_5 = 0.589755$. The point has the coordinates (0.589755, 0.347811).
- 14. For $p_0 = 2$, we have $p_2 = 1.866760$. The point is (1.866760, 0.535687).
- 15. The equation of the tangent line is

$$y - f(p_{n-1}) = f'(p_{n-1})(x - p_{n-1}).$$

To complete this problem, set y = 0 and solve for $x = p_n$.

16. Newton's method gives $p_{15}=1.895488$, for $p_0=\frac{\pi}{2}$; and $p_{19}=1.895489$, for $p_0=5\pi$. The sequence does not converge in 200 iterations for $p_0=10\pi$. The results do not indicate the fast convergence usually associated with Newton's method.