

Санкт-Петербургский государственный университет Кафедра системного программирования

Single, Multiple source BFS-parents c SPLA и Apache Giraph

Ахмедов Давид

Санкт-Петербург 2025

Определение (BFS-parents)

Пусть G=(V,E) — ориентированный или неориентированный граф, $S\subseteq V$ — множество стартовых вершин. Алгоритм «поиска в ширину» строит массив

$$\mathit{parent} \colon V \ \longrightarrow \ V \cup \{\bot\},$$

где для каждой вершины v:

$$parent[v] = egin{cases} oldsymbol{\perp}, & v \in S \$$
или $v \$ недостижима из $S \$ $u, \quad u -$ родитель вершины $v \$

- 1: **Input:** A (adjacency matrix), s (sources)
- 2: Output: p (parent vector)
- 3: $x \leftarrow [1, 2, ..., n]$
- 4: $w \leftarrow s$
- 5: $p \leftarrow \mathbf{0}_n$
- 6: **for** isUpdates **do**
- 7: $u \leftarrow \overline{p}$
- 8: $p\langle u \rangle \leftarrow w \cdot A$
- 9: $w\langle u\rangle \leftarrow p\odot x$
- 10: end for
- 11: return p

BFS - PARENTS

Рис.: Иллюстрация алгоритма¹

¹GraphBLAS: A linear algebraic approach for high-performance graph algorithms – источник

BFS - PARENTS

 $\mathrm{sel1st}(\underline{x},y) = \underline{x}$

	1	2	3	4	(5)	6	(
w		2		4			

 $\mathbf{p}\langle\overline{\mathbf{p}}\rangle=\mathbf{w}$ min. sel1st \mathbf{A}

	1	2	8	4	6	6	7
\boldsymbol{w}^{\prime}			3		5		7

BFS – PARENTS

2 3 4 5 6 7

2

€ 4

6 6

BFS - PARENTS

 $p\langle \overline{p}\rangle = w \text{ min. sel1st } A$

Экспериментальный набор данных

Таблица: Статистика графов SNAP²

Граф (название в SNAP K.K.C)	Вершин	Ребер	K.C.	Средн. степ. в К.К.С	Макс. степ. в К.К.С	Крупнейшая К.С.
Twitch gamers network (large_twitch_edges)	168.1K	6.8M	1	80.86	35.2K	168.1K (100%)
Gemsec Facebook dataset (gemsec_facebook_artist_edges)	134.8K	1.4M	8	32.43	1.4K	50.5K (37.4 %)
Gemsec Deezer dataset (gemsec_deezer_HR_edges)	143.9K	846.9K	3	18.25	420	54.5K (37.9%)
Twitch social networks (musae twitch DE edges)	34.1K	429.1K	6	32.24	4.2K	9.4K (27.5%)
Github developer network (musae_git_edges)	37.7K	289.0K	1	15.33	9.5K	37.7K (100%)
Facebook page-page network (musae_facebook_edges)	22.5K	171.0K	1	15.22	709	22.5K (100%)
Facebook social circles (facebook_combined)	4.0K	88.2K	1	43.69	1.0K	4.0K (100%)
LastFM Asia social network (lastfm_asia_edges)	7.6K	27.8K	1	7.29	216	7.6K (100%)

²http://snap.stanford.edu/data - Stanford Large Network Dataset Collection

Эксперимент

RQ:

- (ms) Какой из алгоритмов лучше масштабируется при увеличении числа стартовых вершин? Выбор 3, 30, 100 стартовых вершин (вершины выбираются случайно с фиксированным сидом, из К.К.С.).
- (ss) Сравнение алгоритмов с использованием SPLA vs SuiteSparse:GraphBLAS: время выполнения
- Сравнение алгоритмов с использованием SPLA vs SuiteSparse:GraphBLAS: потребление памяти (мониторинг пикового потребления за все итерации)

Ход эксперимента: Метод подынтервалов для сбора статистики (N вершин, M запусков), IQR для борьбы с выбросами

Характеристики тестового оборудования

- AMD Ryzen 5 5500U 2.1MHz
 - 6 ядер
 - ▶ все ядра равнозначны
 - без гипертрединга
- RAM 16 GB @ 3200 MHz
 - ▶ без свопа
- Ubuntu 22.04.5 x86_64