Measure Theory Axler Notes

Lance Remigio

August 15, 2025

Contents

1	Section 2A		
	1.1	Basics/Definitions	
	1.2	Good Properties of Outer Measure	
	1.3	Outer Measure of Closed Bounded Interval	
	1.4	Outer Measure is Not Additive	
2	Sect	tion 2B	
	2.1	Nonexistence of Extension of Length to All Subsets of \mathbb{R}	
	2.2	σ -Algebra	
	2.3	Borel Subsets of $\mathbb R$	
	2.4	Measurable Functions	
3	Section 2C		
	3.1	Definition of Measures	
	3.2	Properties of Measures	
4	Section 2D		
	4.1	Additivity of Outer Measure on Borel Sets	
	4.2	Lebesgue Measurable Sets	
5	Section 2E		
	5.1	Pointwise and Uniform Convergence	
	5.2	Egorov's Theorem	
	5.3	Approximation by Simple Functions	
	5.4	Luzin's Theorem	
	5.5	Lebesgue Measurable Functions	

1 Section 2A

1.1 Basics/Definitions

Definition (Length of Open Interval; $\ell(I)$). The length $\ell(I)$ of an open interval I is defined by

$$\ell(I) = \begin{cases} b-a & \text{if } I = (a,b) \text{ for some } a,b \in \mathbb{R} \text{ with } a < b \\ 0 & \text{if } I = \emptyset \\ \infty & \text{if } I = (-\infty,a) \text{ or } I = (a,\infty) \text{ for some } a \in \mathbb{R} \\ \infty & \text{if } I = (-\infty,\infty) \end{cases}$$

Definition (Outer Measure; |A|). The outer measure |A| of a set $A \subseteq \mathbb{R}$ is defined by

$$|A| = \inf \Big\{ \sum_{k=1}^{\infty} \ell(I_k) : I_1, I_2, \dots \text{ are open intervals such that } A \subset \bigcup_{k=1}^{\infty} I_k \Big\}.$$

1.2 Good Properties of Outer Measure

Proposition (Countable Sets Have Outer Measure 0). Every countable subset of \mathbb{R} has outer measure 0.

Proposition (Outer Measure Preserves Order). Suppose A and B are subsets of \mathbb{R} with $A \subset B$. Then $|A| \leq |B|$.

Proof.

Definition (Translation; t + A). If $t \in \mathbb{R}$ and $A \subset \mathbb{R}$, then the **translation** t + A is defined by $t + A = \{t + a : a \in A\}.$

Proposition (Outer Measure is Translation Invariant). Suppose $t \in \mathbb{R}$ and $A \subset \mathbb{R}$. Then |t + A| = |A|.

Proposition (Countable Subaddivity of Outer Measure). Suppose A_1, A_2, \ldots is a sequence of subsets of \mathbb{R} . Then

$$\Big|\bigcup_{k=1}^{\infty}A_k\Big|\leq \sum_{k=1}^{\infty}|A_k|.$$

Proof.

Definition (Open Cover). Suppose $A \subseteq \mathbb{R}$.

- A collection $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ of open subsets of \mathbb{R} is called an **open cover** of A if A is contained in the union of all the sets in $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$.
- An open $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ of A is said to have a **finite subcover** if A is contained in the union of some finite list of sets in $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$.

Proposition (Heine-Borel Theorem). Every open cover of a closed bounded subset of \mathbb{R} has a finite subcover.

1.3 Outer Measure of Closed Bounded Interval

Proposition (Outer Measure of a Closed Interval). Suppose $a, b \in \mathbb{R}$, with a < b. Then |[a, b]| = b - a.

Proposition (Nontrivial Intervals are Uncountable). Every interval in \mathbb{R} that contains at least two distinct elements is uncountable.

1.4 Outer Measure is Not Additive

Proposition (Nonadditivity of Outer Measure). There exist disjoint subsets A and B of \mathbb{R} such that $|A \cup B| \neq |A| + |B|.$

2 Section 2B

2.1 Nonexistence of Extension of Length to All Subsets of $\mathbb R$

Proposition (Nonexistence of Extension of Length to All Subsets of \mathbb{R}). There does not exist a function μ with all the following properties:

- (a) μ is a function from the set of subsets of \mathbb{R} to $[0,\infty]$,
- (b) $\mu(I) = \ell(I)$ for every open interval I of \mathbb{R} ,
- (c) $\mu\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k)$ for every disjoint sequence A_1, A_2, \ldots of subsets of \mathbb{R} ,
- (d) $\mu(t+A) = \mu(A)$ for every $A \subseteq \mathbb{R}$ and every $t \in \mathbb{R}$.

2.2 σ -Algebra

Definition (σ -Algebra). Suppose X is a set and S is a set of subsets of X. Then S is called a σ -algebra on X if the following three conditions are satisfied:

- $\emptyset \in \mathcal{S}$:
- if $E \in S$, then $X \setminus E \in S$;
- if E_1, E_2, \ldots is a sequence of elements of S, then $\bigcup_{k=1}^{\infty} E_k \in S$.

Proposition (σ -algebras are Closed Under Countable Intersection). Suppose S is a σ -algebra on a set X. Then

- (a) $X \in \mathcal{S}$;
- (b) if $D, E \in \mathcal{S}$, then $D \cup E \in \mathcal{S}$ and $D \cap E \in \mathcal{S}$ and $D \setminus E \in \mathcal{S}$;
- (c) if E_1, E_2, \ldots is a sequence of elements of \mathcal{S} , then $\bigcap_{k=1}^{\infty} E_k \in \mathcal{S}$.

Definition (Measureable Space; Measurable Set). • A measurable space is an ordered pair (X, S), where X is a set and S is a σ -algebra on X.

• An element of S is called an S-measurable set, or just a measurable set if S is clear from the context.

2.3 Borel Subsets of \mathbb{R}

Proposition (Smallest σ -algebra containing a collection of subsets). Suppose X is a set and \mathcal{A} is a set of subsets of X. Then the intersection of all σ -algebra on X that contain \mathcal{A} is a σ -algebra on X.

Definition (Borel Set). The smallest σ -algebra on \mathbb{R} containing all open susbets of \mathbb{R} is called the collection of **Borel subsets of** \mathbb{R} . An element of this σ -algebra is called a **Borel set**.

Definition (Inverse Image; $f^{-1}(A)$). If $f: X \to Y$ is a function and $A \subset Y$, then the set $f^{-1}(A)$ is defined by

$$f^{-1}(A) = \{ x \in X : f(x) \in A \}.$$

Proposition (Algebra of Inverse Images). Suppose $f: X \to Y$ is a function. Then

- (a) $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$ for every $A \subset Y$;
- (b) $f^{-1}(\bigcup_{A\in\mathcal{A}}A)=\bigcup_{A\in\mathcal{A}}f^{-1}(A)$ for every \mathcal{A} of subsets of Y;
- (c) $f^{-1}(\bigcup_{A\in\mathcal{A}} A) = \bigcap_{A\in\mathcal{A}} f^{-1}(A)$ for every \mathcal{A} of subsets of Y.

Proposition (Inverse Image of a Composition). Suppose $f: X \to Y$ and $g: Y \to W$ are functions. Then

$$(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A)) \ \forall A \subset W.$$

2.4 Measurable Functions

Proposition (Condition for Measurable Function). Suppose (X, \mathcal{S}) is a measurable space and $f: X \to \mathbb{R}$ is a function such that

$$f^{-1}((a,\infty)) \in \mathcal{S} \ \forall a \in \mathbb{R}.$$

Then f is an S-measurable function.

Definition (Borel Measurable Function). Suppose $X \subset \mathbb{R}$. A function $f: X \to \mathbb{R}$ is called **Borel** measurable if $f^{-1}(B)$ is a Borel set for every $B \subset \mathbb{R}$.

Proposition (Every Continuous Function is Borel Measurable). Every continuous real-valued function defined on a Borel subset of \mathbb{R} is a Borel measurable function.

Definition (Increasing Function). Suppose $X \subset \mathbb{R}$ and $f: X \to \mathbb{R}$ is a function.

- f is called **increasing** if $f(x) \le f(y)$ for all $x, y \in X$ with x < y.
- f is called **strictly increasing** if f(x) < f(y) for all $x, y \in X$ with x < y.

Proposition (Every Increasing Function is Borel Measurable). Every increasing function defined on a Borel subset of \mathbb{R} is a Borel measurable function.

Proposition (Composition of Measurable Functions). Suppose (X, S) is a measurable space and $f: X \to \mathbb{R}$ is an S-measurable function. Suppose g is a real-valued Borel measurable function defined on a subset of \mathbb{R} that includes the range of f. Then $g \circ f: X \to \mathbb{R}$ is an S-measurable function.

Proposition (Algebraic Operations with Measurable Functions). Suppose (X, \mathcal{S}) is a measurable space and $f, g: X \to \mathbb{R}$ are \mathcal{S} -measurable. Then

- (a) f + g, f g, and fg are S-measurable functions;
- (b) if $g(x) \neq 0$ for all $x \in X$, then $\frac{f}{g}$ is an S-measurable function.

Proposition (Limit of S-measurable Functions). Suppose (X, S) is a measurable space and f_1, f_2, \ldots is a sequence of S-measurable functions from X to \mathbb{R} . Suppose $\lim_{k\to\infty} f_k(x)$ exists for each $x\in X$.

Define $f: X \to \mathbb{R}$ by

$$f(x) = \lim_{k \to \infty} f_k(x).$$

Then f is an S-measurable function.

Definition (Borel Subsets). A subset of $[-\infty, \infty]$ is called a **Borel set** if its intersection with \mathbb{R} is a Borel set.

Definition (Measurable Function). Suppose (X, \mathcal{S}) is a measurable space. A function $f: X \to [-\infty, \infty]$ is called \mathcal{S} -measurable if $f^{-1}(B) \in \mathcal{S}$ for every Borel set $B \subset [-\infty, \infty]$.

Proposition (Condition for Measurable Function). Suppose (X, S) is a measurable space and $f: X \to [-\infty, \infty]$ is a function such that

$$f^{-1}((a,\infty]) \in \mathcal{S} \ \forall a \in \mathbb{R}.$$

Then f is an S-measurable function.

Proposition (Infimum and Supremum of a Sequence of S-measurable Functions). Suppose (X, S) is a measurable space and f_1, f_2, \ldots is a sequence of S-measurable functions from X to $[-\infty, \infty]$. Define $g, h: X \to [-\infty, \infty]$ by

$$g(x) = \inf_{k \in \mathbb{Z}^+} f_k(x)$$
 and $h(x) = \sup_{k \in \mathbb{Z}^+} f_k(x)$.

Then g and h are S-measurable functions.

3 Section 2C

3.1 Definition of Measures

Definition (Measure). Suppose X is a set and S is a σ -algebra on X. A **measure** on (X, S) is a function $\mu : S \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and

$$\mu\Big(\bigcup_{k=1}^{\infty} E_k\Big) = \sum_{k=1}^{\infty} \mu(E_k)$$

for every disjoint sequence E_1, E_2, \ldots of sets in S.

Definition (Measure Space). A Measure Space is an ordered triple (X, \mathcal{S}, μ) , where X is a set, \mathcal{S} is a σ -algebra on X, and μ is a measure on (X, \mathcal{S}) .

3.2 Properties of Measures

Proposition (Measure Preserves Order; Measure of a Set Difference). Suppose (X, \mathcal{S}, μ) is a measure space and $D, E \in \mathcal{S}$ are such that $D \subset E$. Then

- (a) $\mu(D) \le \mu(E)$;
- (b) $\mu(E \setminus D) = \mu(E) \mu(D)$ provided that $\mu(D) < \infty$.

Proposition (Countable Subadditivity). Suppose (X, \mathcal{S}, μ) is a measure space and $E_1, E_2, \dots \in \mathcal{S}$. Then

$$\mu\Big(\bigcup_{k=1}^{\infty} E_k\Big) \le \sum_{k=1}^{\infty} \mu(E_k).$$

Proposition (Measure of an Increasing Union). Suppose (X, \mathcal{S}, μ) is a measure space and $E_1 \subset E_2 \subset \cdots$ is an increasing sequence of sets in \mathcal{S} . Then

$$\mu\Big(\bigcup_{k=1}^{\infty} E_k\Big) = \lim_{k \to \infty} \mu(E_k).$$

Proposition (Measure of a Decreasing Intersection). Suppose (X, \mathcal{S}, μ) is a measure space and $E_1 \supset E_2 \supset \cdots$ is a decreasing sequence of sets in \mathcal{S} , with $\mu(E_1) < \infty$. Then

$$\mu\Big(\bigcap_{k=1}^{\infty} E_k\Big) = \lim_{k \to \infty} \mu(E_k).$$

Proposition (Measure of Union). Suppose (X, \mathcal{S}, μ) is a measure space and $D, E \in \mathcal{S}$ with $\mu(D \cap E) < \infty$. Then

$$\mu(D \cup E) = \mu(D) + \mu(E) - \mu(D \cap E).$$

4 Section 2D

4.1 Additivity of Outer Measure on Borel Sets

Proposition (Additivity of Outer Measure if One of the Sets is Open). Suppose A and G are disjoint subsets of $\mathbb R$ and G is open. Then

$$|A \cup G| = |A| + |G|.$$

Proposition (Additivity of Outer Measure if One of the Sets is Closed). Suppose A and F are disjoint subsets of \mathbb{R} and F is closed. Then

$$|A \cup F| = |A| + |F|.$$

Proposition (Approximation of Borel Sets from Below by Closed Sets). Suppose $B \subset \mathbb{R}$ is a Borel set. Then for every $\varepsilon > 0$, there exists a closed set $F \subset B$ such that $|B \setminus F| < \varepsilon$.

Proposition (Additivity of Outer Measure if One of the Sets is a Borel Set). Suppose A and B are disjoint subsets of \mathbb{R} and B is a Borel set. Then

$$|A \cup B| = |A| + |B|.$$

Proposition (Existence of a subset of $\mathbb R$ is not a Borel set). There exists a set $B \subset \mathbb R$ such that $|B| < \infty$ and B is not a Borel set.

Proposition (Outer Measure is a Measure on Borel Sets). Outer measure is a measure on $(\mathbb{R}, \mathcal{B})$, where \mathcal{B} is the σ -algebra on Borel subsets of \mathbb{R} .

Definition (Lebesuge Measure). Lebesgue Measure is the measure on $(\mathbb{R}, \mathcal{B})$, where \mathcal{B} is the σ -algebra of Borel subsets of \mathbb{R} , that assigns to each Borel set its outer measure.

4.2 Lebesgue Measurable Sets

Definition (Lebesgue Measurable Set). A set $A \subset \mathbb{R}$ is called **Lebesgue Measurable** if there exists a Borel set $B \subset A$ such that $|A \setminus B| = 0$.

Proposition (Equivalence for being a Lebesgue measurable set). Suppose $A \subset \mathbb{R}$. Then the following are equivalent:

- (a) A is Lebesgue measurable.
- (b) For each $\varepsilon > 0$, there exists a closed set $F \subset A$ with $|A \setminus F < \varepsilon|$.
- (c) There exist closed sets F_1, F_2, \ldots contained in A such that

$$\left| A \setminus \bigcup_{k=1}^{\infty} F_k \right| = 0.$$

- (d) There exists a Borel set $B \subset A$ such that $|A \setminus B| = 0$.
- (e) For each $\varepsilon > 0$, there exists an open set $G \supset A$ such that $|G \setminus A| < \varepsilon$.
- (f) There exist open sets G_1, G_2, \ldots containing A such that

$$\left| \left(\bigcup_{k=1}^{\infty} G_k \right) \setminus A \right| = 0.$$

(g) There exists a Borel set $B \supset A$ such that $|B \setminus A| = 0$.

Proposition (Outer Measure is a measure on Lebesgue Measurable sets). (a) The set \mathcal{L} of Lebesgue measurable subsets of \mathbb{R} is a σ -algebra on \mathbb{R} .

(b) Outer measure is a measure on $(\mathbb{R}, \mathcal{L})$.

Definition (Lebesgue Measure). Lebesgue Measure is the measure on $(\mathbb{R}, \mathcal{L})$, where \mathcal{L} is the σ -algebra of Lebesgue measurable subsets of \mathbb{R} , that assigns to each Lebesgue measurable set its outer measure.

5 Section 2E

5.1 Pointwise and Uniform Convergence

Definition (Pointwise Convergence; Uniform Convergence). Suppose X is a set, f_1, f_2, \ldots is a sequence of functions from X to \mathbb{R} , and f is a function from X to \mathbb{R} .

• The sequence f_1, f_2, \ldots converges pointwise on X to f if

$$\lim_{k \to \infty} f_k(x) = f(x)$$

for each $x \in X$. That is, for each $x \in X$ and every $\varepsilon > 0$, there exists an $n \in \mathbb{Z}^+$ such that $|f_k(x) - f(x)| < \varepsilon$ for all $k \ge n$.

• The sequence f_1, f_2, \ldots converges uniformly on X to f if for every $\varepsilon > 0$, there exists an $n \in \mathbb{Z}^+$ such that

$$|f_k(x) - f(x)| < \varepsilon \ \forall k \ge n \text{ and } \forall x \in X.$$

Proposition (Uniform Limit of Continuous Functions is Continuous). Suppose $B \subset \mathbb{R}$ and f_1, f_2, \ldots is a sequence of functions from B to \mathbb{R} that converges uniformly on B to a function $f: B \to \mathbb{R}$. Suppose $b \in B$ and f_k is continuous at b for each $k \in \mathbb{Z}^+$. Then f is continuous at b.

5.2 Egorov's Theorem

Proposition (Egorov's Theorem). Suppose (X, \mathcal{S}, μ) is a measure space with $\mu(x) < \infty$. Suppose f_1, f_2, \ldots is a sequence of \mathcal{S} -measurable functions from $X \to \mathbb{R}$ that converges pointwise on X to a function $f: X \to \mathbb{R}$. Then for every $\varepsilon > 0$, there exists a set $E \in \mathcal{S}$ such that $\mu(X \setminus E) < \varepsilon$ and f_1, f_2, \ldots converges uniformly to f on E.

5.3 Approximation by Simple Functions

Definition (Simple Function). A function is called **simple** if it takes on only finitely many values.

Proposition (Approximation by Simple Functions). Suppose (X, S) is a measure space and $f: X \to [-\infty, \infty]$ is S- measurable. Then there exists a sequence f_1, f_2, \ldots of functions from X to $\mathbb R$ such that

- (a) each f_k is a simple S-measurable function;
- (b) $|f_k(x)| \le |f_{k+1}(x)| \le |f(x)|$ for all $k \in \mathbb{Z}^+$ and all $x \in X$;
- (c) $\lim_{k \to \infty} f_k(x) = f(x)$ for every $x \in X$;
- (d) f_1, f_2, \ldots converges uniformly on X to f if f is bounded.

5.4 Luzin's Theorem

Proposition (Luzin's Theorem). Suppose $g: \mathbb{R} \to \mathbb{R}$ is a Borel measurable function. Then for every $\varepsilon > 0$, there exists a closed set $F \subseteq \mathbb{R}$ such that $|\mathbb{R} \setminus F| < \varepsilon$ and $g|_F$ is a continuous function on F.

Proposition (Continuous Extensions of Continuous Functions). • Every continuous function on a closed subset of \mathbb{R} can be extended to a continuous function on all of \mathbb{R} .

• More precisely, if $F \subset \mathbb{R}$ is closed and $g: F \to \mathbb{R}$ is continuous, then there exists a continuous function $h: \mathbb{R} \to \mathbb{R}$ such that $h|_F = g$.

Proposition (Luzin's theorem; Second Version). Suppose $E \subseteq \mathbb{R}$ and $g: E \to \mathbb{R}$ is a Borel measurable function. Then for every $\varepsilon > 0$, there exists a closed set $F \subseteq E$ and continuous function $h: \mathbb{R} \to \mathbb{R}$ such that $|E \setminus F| < \varepsilon$ and $h|_F = g|_F$.

5.5 Lebesgue Measurable Functions

Definition (Lebesgue Measurable Functions). A function $f: A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$, is called **Lebesgue Measurable** if $f^{-1}(B)$ is a Lebesgue measurable set for every Borel set $B \subseteq \mathbb{R}$.

Proposition (Every Lebsegue Measurable Function is Almost Borel Measurable). Suppose $f: \mathbb{R} \to \mathbb{R}$ is a Lebesgue measurable function. Then there exists a Borel measurable function $g: \mathbb{R} \to \mathbb{R}$ such that

$$|\{x \in \mathbb{R} : g(x) \neq f(x)\}| = 0.$$