Homework 6 Advanced Algebra I

Homework 6

ALECK ZHAO

October 27, 2016

Section 2.6: Cosets and Lagrange's Theorem

4. If $K \subseteq H \subseteq G$ are finite groups, show that $|G:K| = |G:H| \cdot |H:K|$.

Proof. For finite groups, we have |G:K| = |G|/|K| and similarly for the other two, so we have

$$\frac{|G|}{|K|} = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|}$$

as desired.

15. If H and K are subgroups of a group and |H| is prime, show that either $H \subseteq K$ or $H \cap K = \{1\}$.

Proof. Let |H| = p where p is a prime. Thus, H must be a cyclic group, and is the only one of order p. We have $H \cap K$ is a subgroup of H, so $|H \cap K|$ divides |H|, so either $|H \cap K| = p$ or $|H \cap K| = 1$. In the first case, $H \cap K = H$, so $H \subseteq K$, and in the second case, $H \cap K = \{1\}$, as desired.

27. Is $D_5 \times C_3 \cong D_3 \times C_5$? Prove your answer.

Solution. The element $(\theta, g) \in D_3 \times C_5$ has order lcm(2, 5) = 10, but there is no element of order 10 in $D_5 \times C_3$. The maximum order of any element in D_5 is 5, and elements in C_3 have order 3, except the identity. Thus, the orders of elements in $D_5 \times C_3$ are 5 and 15, but none have order 10.

Section 2.8: Normal Subgroups

4. If $D_4 = \{1, a, a^2, a^3, b, ba, ba^2, ba^3\}$, $K = \{1, b\}$ and $H = \{1, a^2, b, ba^2\}$ show that $K \subseteq H \subseteq D_4$, but $K \not\supseteq D_4$.

Proof. Since |H:K|=2, by section 2.8 theorem 4, K is normal in H. Similarly, $|D_4:H|=2$, so H is normal in D_4 . However, we have $aK=\{a,ab\}\neq\{a,ba\}=Ka$ since $ab\neq ba$.

11. Let p and q be distinct primes. If G is a group of order pq that has a unique subgroup of order p and a unique subgroup of order q, show that G is cyclic.

Homework 6 Advanced Algebra I

Proof. Let H and K be the subgroups with order p and q. Then H and K are both cyclic and normal because they are the only ones with these orders. The intersection $H \cap K = \{1\}$ because it is a subgroup of both H and K, thus its order must divide both primes p and q, so the only possible order is 1. Thus, by Corollary 2 of Theorem 6, $G \cong H \times K$, so $G = C_p \times C_q$. This is a cyclic group of order pq, as desired.

16. Show that $\operatorname{Inn} G \subseteq \operatorname{Aut} G$ for any group G.

Proof. Let $\varphi \in \operatorname{Aut} G$ be an isomorphism and $\sigma_a \in \operatorname{Inn} G$ be an inner automorphism. Then consider for some $g \in G$,

$$(\varphi \sigma_a \varphi^{-1})(g) = \varphi(\sigma_a(\varphi^{-1}(g)))$$

$$= \varphi(a\varphi^{-1}(g)a^{-1})$$

$$= \varphi(a)\varphi(\varphi^{-1}(g))\varphi(a^{-1})$$

$$= \varphi(a)g\varphi(a^{-1})$$

$$= \varphi(a)g(\varphi(a))^{-1}$$

$$= \sigma_{\varphi(a)}(g)$$

so $\varphi \sigma_a \varphi^{-1} \in \operatorname{Inn} G$, so by part 2 of the Normality test, $\operatorname{Inn} G \subseteq \operatorname{Aut} G$ as desired.

25. If X is a nonempty subset of a group G, define the **normalizer** N(X) of X by

$$N(X) = \{ a \in G \mid aXa^{-1} = X \}.$$

(a) Show that N(X) is a subgroup of G.

Proof. Clearly $1_G X 1_G^{-1} = X$, so $1_G \in N(X)$. Then if $a, b \in N(X)$, we have

$$aXa^{-1} = X$$
$$bXb^{-1} = X$$
$$\implies a(bXb^{-1})a^{-1} = X$$
$$\implies (ab)X(ba)^{-1} = X$$

so $ab \in N(X)$. Then if $a \in N(X)$, we have

$$aXa^{-1} = X$$
$$aX = Xa$$
$$X = a^{-1}Xa$$

so $a^{-1} \in N(X)$ as well. Thus, N(X) is a subgroup of G, as desired.

(b) If H is a subgroup of G, show that $H \subseteq N(H)$.

Proof. We must show that for all $n \in N(H)$, it holds that $nHn^{-1} = H$. However, by the way N(H) is defined, N(H) consists exactly of all elements $g \in G$ such that $gHg^{-1} = H$. Thus, for all $n \in N(H)$, it olds that $nHn^{-1} = H$, so $H \subseteq N(H)$, as desired.

(c) If H is a subgroup of G, show that N(H) is the largest subgroup of G in which H is normal. That is, if $H \leq K$, and K if a subgroup of G, then $K \subseteq N(H)$.

Proof. By the normality test, if $k \in K$ since H is normal in K, we have $kHk^{-1} = H$. The normalizer of H is defined as all $g \in G$ such that $gHg^{-1} = H$. Thus, if $k \in K$, it must be that $k \in N(H)$, so $K \subseteq N(H)$, as desired.

Homework 6 Advanced Algebra I

Section 2.10: The Isomorphism Theorem

7. If $\alpha: G \to G_1$ is a group homomorphism and both $\alpha(G)$ and ker α are finitely generated, show that G is finitely generated.

Proof. Let $\alpha(G) = \langle X \rangle = \langle x_1, x_2, \dots, x_n \rangle$ and $\ker \alpha = \langle Y \rangle = \langle y_1, \dots, y_m \rangle$ where $x_1, \dots, x_n \in \alpha(G)$ and $y_1, \dots, y_m \in G$. Then since x_i are in the image, let $x_i = \alpha(z_i)$ for some $z_i \in G$. Thus, for some $g \in G$, its image $\alpha(g) \in G$, so we can write it as

$$\alpha(g) = x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$$

$$= \alpha(z_1)^{k_1} \alpha(z_2)^{k_2} \cdots \alpha(z_n)^{k_n}$$

$$= \alpha \left(z_1^{k_1} z_2^{k_2} \cdots z_n^{k_n} \right)$$

since α is a homomorphism. Let $h = z_1^{k_1} \cdots z_n^{k_n}$, so

$$\begin{split} \alpha(gh^{-1}) &= \alpha(g)\alpha(h^{-1}) = \alpha(g)\alpha(h)^{-1} \\ &= \alpha(z_1^{k_1} \cdots z_n^{k_n})\alpha(z_1^{k_1} \cdots z_n^{k_n}) = 1 \\ \Longrightarrow gh^{-1} &\in \ker \alpha \\ \Longrightarrow gh^{-1} &= y_1^{j_1}y_2^{j_2} \cdots y_m^{j_m} \\ \Longrightarrow g &= y_1^{j_1} \cdots y_m^{j_m} h \\ &= y_1^{j_1} \cdots y_m^{j_m} z_1^{k_1} \cdots z_n^{k_n} \end{split}$$

thus any $g \in G$ is in the set $\langle y_1, \dots, y_m, z_1, \dots, z_n \rangle$ which is finite. Thus, G is finitely generated, as desired.

9. If $K = \{\varepsilon, (12)(34), (13)(24), (14)(23)\}$, is there a group homomorphism $\alpha: S_4 \to A_4$ with $\ker \alpha = K$?

Solution. If such a group homomorphism exists, then $\alpha(S_4) \cong S_4/K$ by the isomorphism theorem. We have $|S_4/K| = 4!/4 = 6$, and the only groups of order 6 are C_6 and S_3 . Clearly this quotient group is not cyclic, so it must be isomorphic to S_3 . Thus, $\alpha(S_4) \cong S_3$ is a subgroup of A_4 . However, $\sigma^2 = (312) \in S_3$ but $\sigma^2 \notin A_4$, so this is a contradiction, so no such homomorphism exists.

21. Show that $\mathbb{C}^*/\mathbb{C}^0 \cong \mathbb{R}^+$ where $\mathbb{C}^0 = \{ z \mid |z| = 1 \}$ is the circle group.

Proof. Define the homomorphism $\varphi: \mathbb{C}^* \to \mathbb{R}^+$ where $\varphi(z) = |z|$. This is indeed a homomorphism because $\varphi(z_1 z_2) = |z_1 z_2| = |z_1| |z_2| = \varphi(z_1) \varphi(z_2)$.

Then the kernel of φ is the set $\{z \mid \varphi(z) = 1\}$ which is exactly \mathbb{C}^0 . Finally, $\varphi''(\mathbb{C}^*) = \mathbb{R}^+$ since invertible elements in \mathbb{C} are all except 0, whose magnitudes are all positive.

Thus, by the first Isomorphism Theorem, since \mathbb{C}^0 is the kernel of a homomorphism, $\mathbb{C}^*/\mathbb{C}^0 \cong \mathbb{R}^+$, as desired.