

If
$$x \to +\infty$$
, then $y(x) \to +\infty$

(i)

55. $h(x) = 3^{\frac{1}{2}x}$
 $x = 0 = 10 h(0) = 11$
 $x \to +\infty$, then $h(x) \to +\infty$

(b)

(b)

6.2

1. $y = P(x - e^{-0.18d})$
 $y = 300$
 $y = 300$

Ao
$$a^{1600} = \frac{1}{2}$$
 $a = (\frac{1}{2})^{1600} = 0.9996$

Therefore,

(a) $A(\xi) = A_0 \cdot (0.9996)^{\frac{1}{2}}$

(b) $ab = 0 : A_0 = 1 geam$
 $A(100) = 1 \cdot 0.9996^{100} = 0.9608 \cdot (geam)$

(c) $A(1000) = 1 \cdot 0.9996^{1000} = 0.6703 \cdot (geam)$

(q. $A(\xi) = 10.000$
 $19. \quad A(\xi) = 10.000 \cdot (geaple)$

(a) $19. \quad A(\xi) = 10.000 \cdot (geaple)$

(b) $19. \quad A(\xi) = 10.000 \cdot (geaple)$

(c) $19. \quad A(\xi) = 10.000 \cdot (geaple)$

(d) $19. \quad A(\xi) = 10.000 \cdot (geaple)$

(e) $19. \quad A(\xi) = 10.000 \cdot (geaple)$

(f) $19. \quad A(\xi) = 10.000 \cdot (geaple)$

(g) $19. \quad A(\xi) = 10.000 \cdot (geaple)$

