Correction

Partie I

1. Montrons que $\mathbb{Z}[\sqrt{2}]$ est un sous-anneau de $(\mathbb{R},+,\times)$.

Bien entendu, $\mathbb{Z}\left[\sqrt{2}\right] \subset \mathbb{R}$.

 $1 = a + b\sqrt{2}$ avec $a = 1 \in \mathbb{Z}$ et $b = 0 \in \mathbb{Z}$ donc $1 \in \mathbb{Z}\left[\sqrt{2}\right]$.

Soit $x = a + b\sqrt{2}$ et $x' = a' + b'\sqrt{2} \in \mathbb{Z}\left[\sqrt{2}\right]$.

$$x - x' = (a - a') + (b - b')\sqrt{2} \in \mathbb{Z}[\sqrt{2}] \text{ car } a - a', b - b' \in \mathbb{Z}.$$

$$xx' = (aa' + 2bb') + \sqrt{2}(ab' + a'b) \in \mathbb{Z}\left[\sqrt{2}\right] \operatorname{car}\ aa' + 2bb', ab' + a'b \in \mathbb{Z}\ .$$

Donc $\,\mathbb{Z}\big[\sqrt{2}\,\big]\,$ est un sous anneau de $\,(\mathbb{R},+,\!\times)\,.$

2.a Soit $x \in \mathbb{Z}\left[\sqrt{2}\right]$.

L'existence du couple (a,b) découle de la définition de $\mathbb{Z}\left[\sqrt{2}\right]$.

Etudions l'unicité :

Soit $(a,b) \in \mathbb{Z}^2$ et $(a',b') \in \mathbb{Z}^2$ deux couples solutions.

On a
$$x = a + b\sqrt{2} = a' + b'\sqrt{2}$$
 donc $a - a' = (b' - b)\sqrt{2}$.

Si
$$b \neq b'$$
 alors $\sqrt{2} = \frac{a - a'}{b' - b} \in \mathbb{Q}$ ce qui est faux.

Donc
$$b = b'$$
 puis $a - a' = (b' - b)\sqrt{2} = 0$ donc $a = a'$.

2.b Notons $\varphi: \mathbb{Z}\Big[\sqrt{2}\Big] \to \mathbb{Z}\Big[\sqrt{2}\Big]$ l'application définie par $\varphi(x) = \overline{x}$.

$$\varphi(1) = \varphi(1 + 0.\sqrt{2}) = 1 - 0.\sqrt{2} = 1.$$

Soit
$$x = a + b\sqrt{2}$$
 et $x' = a' + b'\sqrt{2} \in \mathbb{Z}\left[\sqrt{2}\right]$.

$$\varphi(x+x') = \varphi((a+a') + (b+b')\sqrt{2}) = (a+a') - (b+b')\sqrt{2}$$
$$= (a-b\sqrt{2}) + (a'-b'\sqrt{2}) = \varphi(x) + \varphi(x')$$

$$\varphi(xx') = \varphi((aa' + 2bb') + (ab' + a'b)\sqrt{2}) = (aa' + 2bb') - (ab' + a'b)\sqrt{2}$$

et
$$\varphi(x)\varphi(x') = (a - b\sqrt{2})(a' - b'\sqrt{2}) = (aa + 2bb') - (ab' + a'b)\sqrt{2}$$

donc
$$\varphi(xx') = \varphi(x)\varphi(x')$$
.

Ainsi φ est un morphisme de l'anneau $\mathbb{Z}\left[\sqrt{2}\right]$ dans lui-même.

On constate $\overline{\overline{x}} = x$, il s'ensuit que φ est involutive et donc bijective, c'est donc un automorphisme de $\mathbb{Z}\left[\sqrt{2}\right]$.

3.a Pour $x = a + b\sqrt{2} \in \mathbb{Z}\left[\sqrt{2}\right]$, $N(x) = a^2 - 2b^2 \in \mathbb{Z}$ car $a, b \in \mathbb{Z}$.

Pour
$$x, x' \in \mathbb{Z}\left[\sqrt{2}\right]$$
, $N(xx') = xx'\overline{xx'} = xx'\overline{x}\overline{x'} = x\overline{x}x'\overline{x'} = N(x)N(x')$.

- 3.b Soit $x \in \mathbb{Z}[\sqrt{2}]$.
 - Si x est inversible alors $xx^{-1} = 1$ et donc $N(x)N(x^{-1}) = 1$.

Or
$$N(x), N(x^{-1}) \in \mathbb{Z}$$
 donc $N(x), N(x^{-1}) \in \{1, -1\}$.

Inversement, supposons $N(x) \in \{1, -1\}$.

Si N(x) = 1 alors $x\overline{x} = 1$ et donc x est inversible d'inverse \overline{x} .

Si N(x) = -1 alors $x\overline{x} = -1$ et donc x est inversible d'inverse $-\overline{x}$.

Dans les deux cas x est inversible

3.c H est le groupe des inversibles de l'anneau $(\mathbb{Z}[\sqrt{2}],+,\times)$

Partie II

1.a Sachant que $0 \notin H$, on a $(a,b) \neq (0,0)$.

Si $a \ge 0$ et $b \ge 0$, puisqu'au moins l'un des deux est non nul, $x = a + b\sqrt{2} \ge 1$.

- 1.b Même principe.
- 1.c Si $ab \le 0$ alors $x^{-1} = \pm \overline{x} = \pm (a b\sqrt{2})$ est formé de deux coefficients de même signe, compte tenu de 1.a et 1.b, on a $|x^{-1}| \ge 1$ et donc $|x| \le 1$.
- 2.a Soit $x = a + b\sqrt{2} \in H^+$.

On a x > 1, donc, de par la question 1., $a \ge 0$ et $b \ge 0$.

Puisque $N(x) = a^2 - 2b^2 = 1$:

+ on ne peut pas avoir a = 0,

+ on ne peut pas avoir b = 0 sans que a = 1 ce qui donne x = 1 ce qui est exclu.

Par suite a > 0 et b > 0.

2.b $u = 1 + \sqrt{2} \in H^+ \text{ car } u > 1 \text{ et } N(u) = a^2 - 2b^2 = -1.$

De plus, grâce à 2.a, $\forall x \in H^+$, $x = a + b\sqrt{2}$ avec $a, b \in \mathbb{N}^*$ donc $x \ge u$.

Ainsi u est le plus petit élément de H^+ .

- 3.a Pour $n = E\left(\frac{\ln x}{\ln u}\right) \in \mathbb{N}$, on a $u^n \le x < u^{n+1}$.
- 3.b Comme $u \in H$ et que H est un sous groupe, $u^{n+1} \in H$.

De plus $x \in H$ donc $\frac{u^{n+1}}{x} \in H$.

Puisque $\frac{u^{n+1}}{x} > 1$ on a $\frac{u^{n+1}}{x} \in H^+$. Or $\frac{u^{n+1}}{x} = u \cdot \frac{u^n}{x} \le u$ et u est le plus petit élément de H^+ donc

$$\frac{u^{n+1}}{x} = u \text{ puis } x = u^n.$$

3.c Puisque $u \in H, \forall n \in \mathbb{Z}, u^n \in H$.

De plus $-1 \in H$ donc $\forall n \in \mathbb{Z}, -u^n \in H$.

Ainsi
$$\{\pm u^n / n \in \mathbb{Z}\} \subset H$$
.

Inversement.

Soit $x \in H$. Assurément $x \neq 0$.

Si x > 1 alors $x \in H^+$ donc $\exists n \in \mathbb{N}$ tel que $x = u^n$.

Si x = 1 alors $x = u^0$.

Si 0 < x < 1 alors $\frac{1}{x} \in H^+$ et donc $\exists n \in \mathbb{N}, \frac{1}{x} = u^n$ d'où $x = u^{-n}$.

Si x < 0 alors $y = -x = (-1) \times x \in H$ et y > 0 donc $\exists n \in \mathbb{Z}$ tel que $y = u^n$ puis $x = -u^n$.

Dans tous les cas $x \in \{\pm u^n / n \in \mathbb{Z}\}$.

Finalement $H = \{\pm u^n / n \in \mathbb{Z}\}$.