Tutorial 11

Introduction

This tutorial focuses on pathfinding and shortest path algorithms in a graph.

Example 01 demonstrates the implementation of FindMyCoffee game, that is introduced in the lecture.

Example 02 shows the implementation of three algorithms to deal with the shortest path problem in a graph. They are Dijkstra algorithm, Bellman ford algorithm and Floyd Warshall algorithm.

Examples

1. Example 01 – FindMyCoffee game implementation

This example implements game FindMyCoffee introduced in the lecture. The following notations must be taken into account:

- A matrix map of the size NxM is used to represent the map. Each cell of the matrix contains a character:
- o map[i][j] == 'Y' your position is the cell [i][j]
- o map[i][j] == 'C' cell [i][j] has a cup of coffee
- o map[i][j] == 'X' cell [i][j] contains solid wall, you could not go through this wall.
- o map[i][j] == G' cell [i][j] does not have solid wall
- Class GVertex represents a vertex of the graph. Actually a vertex is a cell in the map.
- Class ArrayQueue implements a queue of vertices. This queue is used in BFS algorithm for pathfinding.
- Class FindMyCoffee implements the game.

2. Example 02 – Shortest path algorithms

Given a directed weighted graph $G=\{V,E\}$ with the weighted matrix w=NxN (N=|V|).

	VO	V1	V2	V3	V4	V5	V6	V7
VO	0	15	9	14	∞	∞	∞	∞
V1	∞	0	∞	∞	20	∞	∞	44
V2	∞	∞	0	∞	∞	∞	24	∞
V3	∞	5	∞	0	30	∞	18	∞
V4	∞	∞	∞	∞	0	11	∞	16
V5	∞	∞	∞	∞	∞	0	6	6
V6	∞	∞	∞	∞	2	∞	0	19
V7	∞	∞	∞	∞	∞	∞	∞	0

This example demonstrates the implementation of Dijkstra algorithm, Bellman-Ford algorithm and Floyd-Warshall algorithm on G. Please refer to class *ShortestPath* in the tutorial example code.