

BlueCore® CSR8675 BGA

Production Information
Performance Specification
Issue 1

Document History

Revision	Date	Change Reason
1	25 SEP 14	Original publication of document. If you have any comments about this document, email comments@csr.com giving the number, title and section with your feedback.

Trademarks, Patents and Licences

Unless otherwise stated, words and logos marked with [™] or [®] are trademarks registered or owned by CSR plc or its affiliates. Bluetooth[®] and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc. and licensed to CSR. Other products, services and names used in this document may have been trademarked by their respective owners.

The publication of this information does not imply that any licence is granted under any patent or other rights owned by CSR plc and its affiliates.

CSR reserves the right to make technical changes to its products as part of its development programme.

While every care has been taken to ensure the accuracy of the contents of this document, CSR cannot accept responsibility for any errors.

CSR's products are not authorised for use in life-support or safety-critical applications.

Refer to www.csrsupport.com for compliance and conformance to standards information.

Contents

1	Intro	duction .		10
	1.1	Conditi	ions	10
2	Radi	o Chara	cteristics: Basic Data Rate	11
	2.1		nitter Performance	
		2.1.1	Temperature 20°C	
		2.1.2	Emissions at 20°C	
		2.1.3	Temperature -40°C	
		2.1.4	Temperature 85°C	
	2.2	Receive	er Performance	
		2.2.1	Temperature 20°C	
		2.2.2	Temperature -40°C	
		2.2.3	Temperature 85°C	
3	Radi		cteristics: Enhanced Data Rate	
	3.1		nitter Performance	
	0.1	3.1.1	Temperature 20°C	
		3.1.2	Temperature -40°C	
		3.1.3	Temperature 85°C	
	3.2		er Performance	
	3.2	3.2.1	Temperature 20°C	
		3.2.1	Temperature -40°C	
4	Dad:	3.2.3	Temperature 85°C	
4			nitter Performance	
	4.1			
		4.1.1	Temperature 20°C	
		4.1.2	Temperature -40°C	
	4.0	4.1.3	Temperature 85°C	
	4.2		rer Performance	
		4.2.1	Temperature 20°C	
		4.2.2	Temperature -40°C	
_		4.2.3	Temperature 85°C	
5			o Performance: Basic Data Rate	
	5.1		nitter Performance	
	5.2		er Performance	
6	Typi		o Performance: Enhanced Data Rate	
	6.1		ni <mark>tter Performance</mark>	
	6.2	Receiv	er Performance	49
7	Typi	cal Radio	o Performance: Bluetooth low energy	52
	7.1	Transm	nitter Performance	52
	7.2	Receiv	er Performance	59
8	Typi	cal Audio	o Performance: ADC	62
	8.1	Amplitu	ude and Left/Right Balance vs Analogue Gain	63
	8.2	Lineari	ty	65
	8.3	Distort	tion (THD+N) vs. Frequency	65
	8.4	Noise F	Floor (Idle Noise) and SNR	68
	8.5	FFT at	1kHz	70
9	Typi	cal Audio	o Performance: DAC	73
	9.1		ude and Left/Right Balance vs Analogue Gain	
	9.2	-	ty and THD+N	
	9.3		ion (THD+N) vs. Frequency	

9.4 N	loise Floor (Idle Noise) and SNR	95
9.5 F	FT at 1kHz	107
10 Digital	Microphone	119
11 Docum	nent References	121
Terms and D	Definitions	122
List of I	Figures	
Figure 5.1	Maximum Transmit Power vs Temperature (20 DH5 Packets)	30
Figure 5.2	Firmware Controlled Transmit Power vs Temperature (20 DH5 Packets)	30
Figure 5.3	Transmit Power Variation and Mean vs Channel (20 DH5 Packets)	
Figure 5.4	-20dB Bandwidth vs Temperature (DH5 Packets)	
Figure 5.5	Adjacent Channel Transmit Power Variation and Mean vs Channel (DH1 Packets) at -40°C	
Figure 5.6	Adjacent Channel Transmit Power Variation and Mean vs Channel (DH1 Packets) at 20°C	
Figure 5.7	Adjacent Channel Transmit Power Variation and Mean vs Channel (DH1 Packets) at 85°C	33
Figure 5.8	Frequency Deviation Δf _{1avq} vs Temperature (10 DH5 Packets)	33
Figure 5.9	Frequency Deviation Δf _{2max} vs Temperature (10 DH5 Packets)	
Figure 5.10	Modulation Ratio (Δf _{2avq} /Δf _{1avq}) vs Temperature (20 DH5 Packets)	
Figure 5.11	ICFT vs Temperature	
Figure 5.12	Carrier Frequency Drift for 10 DH1 Packets vs Temperature	
Figure 5.13	Carrier Frequency Drift for 10 DH3 Packets vs Temperature	
Figure 5.14	Carrier Frequency Drift for 10 DH5 Packets vs Temperature	
Figure 5.15	Carrier Frequency Drift Rate vs Temperature (10 Packets, All Packet Types)	
Figure 5.16	Spectrum (Loopback DH1 Packets with TPN9 Payload)	
Figure 5.17	DH5 Burst Power vs Time	38
Figure 5.18	Receive Sensitivity vs Temperature (595 DH5 Packets, Dirty Tx. ON, Hopping OFF)	38
Figure 5.19	Receive Sensitivity Variation and Mean vs Channel	
Figure 5.20	Carrier to Interferer Ratio and Mean vs Channel (DH1 Packets), 20°C	39
Figure 6.1	π/4DQPSK Relative Transmit Power vs Temperature (10 2-DH5 Packets)	
Figure 6.2	8DPSK Relative Transmit Power vs Temperature (10 3-DH5 Packets)	
Figure 6.3	π /4DQPSK Absolute Block Frequency Error, $ω_0$ vs Temperature (200 2-DH5 Blocks)	
Figure 6.4	π /4DQPSK Absolute Initial Frequency Error, ω_i vs Temperature (200 2-DH5 Blocks)	41
Figure 6.5	π /4DQPSK Absolute Total Frequency Error, (ω_{o} + ω_{i}) vs Temperature (200 2-DH5 Blocks)	42
Figure 6.6	8DPSK Absolute Block Frequency Error, ω _o vs Temperature (200 3-DH5 Blocks)	42
Figure 6.7	8DPSK Absolute Initial Frequency Error, ω _i vs Temperature (200 3-DH5 Blocks)	43
Figure 6.8	8DPSK Absolute Total Frequency Error, (ω _o +ω _i) vs Temperature (200 3-DH5 Blocks)	
Figure 6.9	π/4DQPSK RMS DEVM vs Temperature (200 2-DH5 Blocks)	44
Figure 6.10	π/4DQPSK Peak DEVM vs Temperature (200 2-DH5 Blocks)	
Figure 6.11	8DPSK RMS DEVM vs Temperature (200 3-DH5 Blocks)	
Figure 6.12	8DPSK Peak DEVM vs Temperature (200 3-DH5 Blocks)	
Figure 6.13	Adjacent Channel Transmit Power Variation and Mean vs Channel (2-DH5 Packets) at 20°C	46
Figure 6.14	Adjacent Channel Transmit Power Variation and Mean vs Channel (3-DH5 Packets) at 20°C	
Figure 6.15	Adjacent Channel Transmit Power Variation and Mean vs Channel (2-DH5 Packets) at -40°C	47
Figure 6.16	Adjacent Channel Transmit Power Variation and Mean vs Channel (3-DH5 Packets) at -40°C	47
Figure 6.17	Adjacent Channel Transmit Power Variation and Mean vs Channel (2-DH5 Packets) at 85°C	
Figure 6.18	Adjacent Channel Transmit Power Variation and Mean vs Channel (3-DH5 Packets) at 85°C	48
Figure 6.19	π/4DQPSK Receive Sensitivity Variation vs Channel (2-DH5 Loopback, 16Mbits, Dirty Tx. ON, Hopping OFF)	∆ 0
Figure 6.20	π/4DQPSK Receive Sensitivity vs Temperature (2-DH5 Loopback, 16Mbits, Dirty Tx. ON, Hopp	
ga. 5 0.20	OFF)	-

Figure 6.21	8DPSK Receive Sensitivity Variation vs Channel (3-DH5 Loopback, 16Mbits, Dirty Tx. ON, Hoppin OFF)	
Figure 6.22	8DPSK Receive Sensitivity vs Temperature (3-DH5 Loopback, 16Mbits, Dirty Tx. ON, Hopping OFF)	50
Figure 6.23	π/4DQPSK Receive C/I at 20°C	51
Figure 6.24	8DPSK Receive C/I at 20°C	51
Figure 7.1	Transmit Power vs. Temperature	52
Figure 7.2	Transmit Power Variation and Mean vs. Channel at -40°C	52
Figure 7.3	Transmit Power Variation and Mean vs. Channel at 20°C	53
Figure 7.4	Transmit Power Variation and Mean vs. Channel at 85°C	53
Figure 7.5	In-band Spurious Emissions vs. Frequency at -40°C	54
Figure 7.6	In-band Spurious Emissions vs. Frequency at 20°C	54
Figure 7.7	In-band Spurious Emissions vs. Frequency at 85°C	
Figure 7.8	Frequency Deviation Δf _{1avg} vs. Temperature	55
Figure 7.9	Frequency Deviation Δf _{2max} vs. Temperature	56
Figure 7.10	Modulation Ratio (Δf _{2avg} /Δf _{1avg}) vs. Temperature	56
Figure 7.11	Initial Carrier Frequency Offset vs. Temperature	57
Figure 7.12	Carrier Frequency Drift vs. Temperature	57
Figure 7.13	Carrier Frequency Drift Rate vs. Temperature	58
Figure 7.14	Spectrum	
Figure 7.15	Receive Sensitivity vs. Temperature	
Figure 7.16	Receive Sensitivity Variation and Mean vs. Channel at -40°C	59
Figure 7.17	Receive Sensitivity Variation and Mean vs. Channel at 20°C	
Figure 7.18	Receive Sensitivity Variation and Mean vs. Channel at 85°C	
Figure 7.19	Carrier to Interferer Ratio and Mean vs. Frequency at 20°C	
Figure 8.1	Amplitude vs. Analogue Gain at F _s = 48kHz and Input = 30mV	63
Figure 8.2	THD+N vs. Analogue Gain at F _s = 48kHz and Input = 30mV,	
	Signal Starts Clipping above Analogue Gain 9	
Figure 8.3	Amplitude vs. Analogue Gain at F _s = 48kHz and Input = 300mV	64
Figure 8.4	THD+N vs. Analogue Gain at F _s = 48kHz and Input = 300mV,	
	Signal Starts Clipping above Analogue Gain 2	
Figure 8.5	Amplitude vs. Input Level at F _s = 48kHz	
Figure 8.6	Amplitude vs. Input Frequency at F _s = 8kHz	
Figure 8.7	Amplitude vs. Input Frequency at F _s = 48kHz	
Figure 8.8	THD+N vs. Input Frequency at F _s = 8kHz	66
Figure 8.9	THD+N vs. Input Frequency at F _s = 48kHz	67
Figure 8.10	Phase vs. Input Frequency at F _s = 8kHz	67
Figure 8.11	Phase vs. Input Frequency at F _s = 48kHz	68
Figure 8.12	Noise Floor at F _s = 48kHz, Bluetooth Inquiry Off, A-Weighting	68
Figure 8.13	SNR at F _s = 48kHz, Bluetooth Inquiry Off, A-Weighting	69
Figure 8.14	Noise Floor at F _s = 48kHz, Bluetooth Inquiry On, A-Weighting	
Figure 8.15	SNR at F _s = 48kHz, Bluetooth Inquiry On, A-Weighting	
Figure 8.16	1 KHz FFT at F _s = 48kHz, Bluetooth Inquiry Off, Left Channel	
Figure 8.17	1 KHz FFT at F _s = 48kHz, Bluetooth Inquiry Off, Right Channel	
_		
Figure 8.18	1 KHz FFT at F _s = 48kHz, Bluetooth Inquiry On, Left Channel	
Figure 8.19	1 KHz FFT at F _s = 48kHz, Bluetooth Inquiry On, Right Channel	
Figure 9.1	Amplitude vs. Analogue Gain: F_s = 48kHz, Load = 100k Ω	
Figure 9.2	THD+N vs. Analogue Gain: F _s = 48kHz, Load = 100kΩ	
Figure 9.3	Amplitude vs. Analogue Gain: F_s = 48kHz, Load = 32 Ω	75

Figure 9.4	THD+N vs. Analogue Gain: F_s = 48kHz, Load = 32 Ω	
Figure 9.5	Amplitude vs. Analogue Gain: $F_s = 48kHz$, Load = 16Ω	
Figure 9.6	THD+N vs. Analogue Gain: F _s = 48kHz, Load = 16Ω	
Figure 9.7	Amplitude vs. Analogue Gain: $F_s = 96$ kHz, Load = 100 k Ω	
Figure 9.8	THD+N vs. Analogue Gain: F _s = 96kHz, Load = 100kΩ	
Figure 9.9	Amplitude vs. Analogue Gain: $F_s = 96kHz$, Load = 32Ω	
Figure 9.10	THD+N vs. Analogue Gain: $F_s = 96kHz$, Load = 32Ω	
Figure 9.11	Amplitude vs. Analogue Gain: $F_s = 96kHz$, Load = 16Ω	
Figure 9.12	THD+N vs. Analogue Gain: F_s = 96kHz, Load = 16 Ω	
Figure 9.13	Output Amplitude vs. Input Amplitude: $F_s = 48kHz$, Load = $100k\Omega$	
Figure 9.14	THD+N vs. Input Amplitude: $F_s = 48kHz$, Load = $100k\Omega$	
Figure 9.15	Output Amplitude vs. Input Amplitude: $F_s = 48kHz$, Load = 32Ω	
Figure 9.16	THD+N vs. Input Amplitude: F_s = 48kHz, Load = 32 Ω	
Figure 9.17	Output Amplitude vs. Input Amplitude: $F_s = 48kHz$, Load = 16Ω	
Figure 9.18	THD+N vs. Input Amplitude: F_s = 48kHz, Load = 16 Ω	
Figure 9.19	Output Amplitude vs. Input Amplitude: F_s = 96kHz, Load = 100k Ω	
Figure 9.20	THD+N vs. Input Amplitude: F _s = 96kHz, Load = 100kΩ	83
Figure 9.21	Output Amplitude vs. Input Amplitude: $F_s = 96kHz$, Load = 32Ω	84
Figure 9.22	THD+N vs. Input Amplitude: F _s = 96kHz, Load = 32Ω	84
Figure 9.23	Output Amplitude vs. Input Amplitude: F _s = 96kHz, Load = 16Ω	85
Figure 9.24	THD+N vs. Input Amplitude: F _s = 96kHz, Load = 16Ω	85
Figure 9.25	Output Amplitude vs. Input Frequency: F _s = 48kHz, Load = 100kΩ	86
Figure 9.26	THD+N vs. Input Frequency: F _s = 48kHz, Load = 100kΩ	86
Figure 9.27	Phase vs. Frequency: F _s = 48kHz, Load = 100kΩ	87
Figure 9.28	Output Amplitude vs. Input Frequency: F _s = 48kHz, Load = 32Ω	87
Figure 9.29	THD+N vs. Input Frequency: F_s = 48kHz, Load = 32 Ω	88
Figure 9.30	Phase vs. Frequency: F _s = 48kHz, Load = 32Ω	88
Figure 9.31	Output Amplitude vs. Input Frequency: F _s = 48kHz, Load = 16Ω	89
Figure 9.32	THD+N vs. Input Frequency: F _s = 48kHz, Load = 16Ω	89
Figure 9.33	Phase vs. Frequency: F _s = 48kHz, Load = 16Ω	90
Figure 9.34	Output Amplitude vs. Input Frequency: F _s = 96kHz, Load = 100kΩ	90
Figure 9.35	THD+N vs. Input Frequency: F _s = 96kHz, Load = 100kΩ	91
Figure 9.36	Phase vs. Frequency: F _s = 96kHz, Load = 100kΩ	91
Figure 9.37	Output Amplitude vs. Input Frequency: F _s = 96kHz, Load = 32Ω	92
Figure 9.38	THD+N vs. Input Frequency: F _s = 96kHz, Load = 32Ω	92
Figure 9.39	Phase vs. Frequency: F _s = 96kHz, Load = 32Ω	93
Figure 9.40	Output Amplitude vs. Input Frequency: F _s = 96kHz, Load = 16Ω	93
Figure 9.41	THD+N vs. Input Frequency: F _s = 96kHz, Load = 16Ω	94
Figure 9.42	Phase vs. Frequency: F _s = 96kHz, Load = 16Ω	94
Figure 9.43	Noise floor: $F_s = 48kHz$, Load = $100k\Omega$, Bluetooth Inquiry On, A-Weighting	95
Figure 9.44	SNR: $F_s = 48kHz$, Load = 100k Ω , Bluetooth Inquiry On, A-Weighting	
Figure 9.45	Noise floor: $F_s = 48kHz$, Load = $100k\Omega$, Bluetooth Inquiry Off, A-Weighting	
Figure 9.46	SNR: $F_s = 48$ kHz, Load = 100k Ω , Bluetooth Inquiry Off, A-Weighting	
Figure 9.47	Noise floor: $F_s = 48kHz$, Load = 32Ω , Bluetooth Inquiry On, A-Weighting	
Figure 9.48	SNR: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry On, A-Weighting	
Figure 9.49	Noise floor: $F_s = 48kHz$, Load = 32 Ω , Bluetooth Inquiry Off, A-Weighting	

Figure 9.50	SNR: $F_s = 48kHz$, Load = 32 Ω , Bluetooth Inquiry Off, A-Weighting	98
Figure 9.51	Noise floor: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry On, A-Weighting	
Figure 9.52	SNR: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry On, A-Weighting	
Figure 9.53	Noise floor: $F_s = 48$ kHz, Load = 16Ω , Bluetooth Inquiry Off, A-Weighting	
Figure 9.54	SNR: $F_s = 48kHz$, Load = 16Ω , Bluetooth Inquiry Off, A-Weighting	100
Figure 9.55	Noise floor: $F_s = 96kHz$, Load = $100k\Omega$, Bluetooth Inquiry On, A-Weighting	101
Figure 9.56	SNR: $F_s = 96kHz$, Load = $100k\Omega$, Bluetooth Inquiry On, A-Weighting	101
Figure 9.57	Noise floor: $F_s = 96kHz$, Load = $100k\Omega$, Bluetooth Inquiry Off, A-Weighting	102
Figure 9.58	SNR: $F_s = 96kHz$, Load = $100k\Omega$, Bluetooth Inquiry Off, A-Weighting	102
Figure 9.59	Noise floor: $F_s = 96kHz$, Load = 32Ω , Bluetooth Inquiry On, A-Weighting	103
Figure 9.60	SNR: $F_s = 96kHz$, Load = 32Ω , Bluetooth Inquiry On, A-Weighting	
Figure 9.61	Noise floor: $F_s = 96kHz$, Load = 32Ω , Bluetooth Inquiry Off, A-Weighting	104
Figure 9.62	SNR: $F_s = 96kHz$, Load = 32Ω , Bluetooth Inquiry Off, A-Weighting	104
Figure 9.63	Noise floor: $F_s = 96kHz$, Load = 16Ω , Bluetooth Inquiry On, A-Weighting	105
Figure 9.64	SNR: $F_s = 96kHz$, Load = 16Ω , Bluetooth Inquiry On, A-Weighting	105
Figure 9.65	Noise floor: $F_s = 96kHz$, Load = 16Ω , Bluetooth Inquiry Off, A-Weighting	106
Figure 9.66	SNR: $F_s = 96kHz$, Load = 16Ω , Bluetooth Inquiry Off, A-Weighting	106
Figure 9.67	1 KHz FFT: F_s = 48kHz, Load = 100k Ω , Bluetooth Inquiry On, No Weighting, Left Channel	107
Figure 9.68	1 KHz FFT: F_s = 48kHz, Load = 100k Ω , Bluetooth Inquiry On, No Weighting, Right Channel	107
Figure 9.69	1 KHz FFT: F_s = 48kHz, Load = 100k Ω , Bluetooth Inquiry Off, No Weighting, Left Channel	108
Figure 9.70	1 KHz FFT: F_s = 48kHz, Load = 100k Ω , Bluetooth Inquiry Off, No Weighting, Right Channel	108
Figure 9.71	1 KHz FFT: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry On, No Weighting, Left Channel	109
Figure 9.72	1 KHz FFT: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry On, No Weighting, Right Channel	109
Figure 9.73	1 KHz FFT: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry Off, No Weighting, Left Channel	110
Figure 9.74	1 KHz FFT: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry Off, No Weighting, Right Channel	110
Figure 9.75	1 KHz FFT: F _s = 48kHz, Load = 16Ω, Bluetooth Inquiry On, No Weighting, Left Channel	111
Figure 9.76	1 KHz FFT: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry On, No Weighting, Right Channel	111
Figure 9.77	1 KHz FFT: $F_s = 48$ kHz, Load = 16Ω , Bluetooth Inquiry Off, No Weighting, Left Channel	112
Figure 9.78	1 KHz FFT: $F_s = 48kHz$, Load = 16Ω , Bluetooth Inquiry Off, No Weighting, Right Channel	112
Figure 9.79	1 KHz FFT: $F_s = 96$ kHz, Load = 100 k Ω , Bluetooth Inquiry On, No Weighting, Left Channel	113
Figure 9.80	1 KHz FFT: F_s = 96kHz, Load = 100k Ω , Bluetooth Inquiry On, No Weighting, Right Channel	113
Figure 9.81	1 KHz FFT: $F_s = 96$ kHz, Load = 100 k Ω , Bluetooth Inquiry Off, No Weighting, Left Channel	114
Figure 9.82	1 KHz FFT: $F_s = 96$ kHz, Load = 100 k Ω , Bluetooth Inquiry Off, No Weighting, Right Channel	114
Figure 9.83	1 KHz FFT: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry On, No Weighting, Left Channel	115
Figure 9.84	1 KHz FFT: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry On, No Weighting, Right Channel	115
Figure 9.85	1 KHz FFT: F_s = 96kHz, Load = 32Ω, Bluetooth Inquiry Off, No Weighting, Left Channel	116
Figure 9.86	1 KHz FFT: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry Off, No Weighting, Right Channel	116
Figure 9.87	1 KHz FFT: F_s = 96kHz, Load = 16Ω, Bluetooth Inquiry On, No Weighting, Left Channel	117
Figure 9.88	1 KHz FFT: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry On, No Weighting, Right Channel	117
Figure 9.89	1 KHz FFT: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry Off, No Weighting, Left Channel	118
Figure 9.90	1 KHz FFT: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry Off, No Weighting, Right Channel	118
Figure 10.1	Output Amplitude vs. Input Amplitude: Sample Rate = 8 kHz	119
Figure 10.2	THD+N vs. Input Amplitude: Sample Rate = 8 kHz	
Figure 10.3	Output Amplitude vs. Input Amplitude: Sample Rate = 16 kHz	
Figure 10.4	THD+N vs. Input Amplitude: Sample Rate = 16 kHz	120

List of Tables

Table 2.1	Basic Rate Transmitter Performance at 20°C	. 11
Table 2.2	Basic Rate Emissions Performance at 20°C	. 12
Table 2.3	Basic Rate Transmitter Performance at -40°C	. 13
Table 2.4	Basic Rate Transmitter Performance at 85°C	. 14
Table 2.5	Basic Rate Receiver Performance at 20°C	. 15
Table 2.6	Basic Rate Receiver Performance at -40°C	. 16
Table 2.7	Basic Rate Receiver Performance at 85°C	. 16
Table 3.1	EDR Transmitter Performance at 20°C	. 17
Table 3.2	EDR Transmitter Performance at -40°C	. 18
Table 3.3	EDR Transmitter Performance at 85°C	. 19
Table 3.4	EDR Receiver Performance at 20°C	
Table 3.5	EDR Receiver Performance at -40°C	. 22
Table 3.6	EDR Receiver Performance at 85°C	. 23
Table 4.1	Bluetooth low energy Transmitter Performance at 20°C	. 24
Table 4.2	Bluetooth low energy Transmitter Performance at -40°C	. 25
Table 4.3	Bluetooth low energy Transmitter Performance at 85°C	. 26
Table 4.4	Bluetooth low energy Receiver Performance at 20°C	
Table 4.5	Bluetooth low energy Receiver Performance at -40°C	. 28
Table 4.6	Bluetooth low energy Receiver Performance at 85°C	. 29

1 Introduction

This document describes characterisation data for a production status BlueCore® CSR8675 BGA IC. Read this in conjunction with the *CSR8675 BGA Data Sheet*.

This document includes:

- RF characterisation for basic rate, EDR and Bluetooth low energy based on Bluetooth v4.1 test specification
- RF typical performance graphs for basic rate, EDR and Bluetooth low energy
- Audio typical performance graphs for stereo codec ADC and DAC

1.1 Conditions

The CSR8675 BGA is designed to meet the Bluetooth v4.1 specification when used in a suitable circuit between -40°C and 85°C. The transmitter output is designed to be unconditionally stable over a guaranteed temperature range.

Results were obtained using CSR's evaluation circuit.

All Bluetooth results are referenced to the output of the CSR8675 BGA.

All Bluetooth measurement methods are in accordance with Bluetooth v4.1 test specification.

2 Radio Characteristics: Basic Data Rate

2.1 Transmitter Performance

2.1.1 Temperature 20°C

RF Characteristics, V	DD = 1.35V	Notes	Min	Тур	Max	Bluetooth Specification	Unit
Maximum RF transmi	t power	(1) (2) (3)	6	10	-	-6 to 4	dBm
RF power variation ov with compensation er	ver temperature range nabled	(4)	-	±0.5	-		dB
RF power variation ov with compensation dis	ver temperature range sabled	(4)	-	±1.5	-	N-X	dB
20dB bandwidth for m	nodulated carrier	-	-	925	1000	≤1000	kHz
	$F = F_0 \pm 2MHz$	(5) (6)	-	-23	-20	≤-20	dBm
ACP	$F = F_0 \pm 3MHz$	(5) (6)	-	-32	-28	≤-40	dBm
	$F = F_0 \pm > 3MHz$	(5) (6)	_	-65	-40	≤-40	dBm
Δf _{1avg} maximum mod	ulation	-	140	165	175	140	kHz
Δf _{2max} minimum mode	ulation		115	137	-	≥115	kHz
$\Delta f_{2avg}/\Delta f_{1avg}$		-	0.8	0.9	-	≥0.80	-
ICFT		(7)	-75	15	75	±75	kHz
Drift rate		-	-	7	20	≤20	kHz/50µs
Drift (single slot packet)		-	-	15	25	≤25	kHz
Drift (five slot packet)		-	-	15	40	≤40	kHz
2 nd harmonic content		(8)	-	-40	-	≤-30	dBm
3 rd harmonic content	(-)	(8)	-	-55	-	≤-30	dBm

Table 2.1: Basic Rate Transmitter Performance at 20°C

Note:

For Table 2.1:

- The firmware maintains the transmit power within Bluetooth v4.1 specification limits.
- (2) Measurement made using appropriate PS Key settings.
- Class 2 RF transmit power range, Bluetooth v4.1 specification.
- (4) Parameters depend on matching circuit used, and behaviour over temperature. These parameters may be beyond CSR's direct control.
- $^{(5)}$ Measured at $F_0 = 2441$ MHz.
- (6) CSR8675 BGA guaranteed to meet ACP performance in Bluetooth v4.1 specification. Exceptions in 3 bands permitted in Bluetooth v4.1 test specification. For exceptions P_{TX} ≤ -20dBm.
- (7) Ignores any frequency error in the reference.
- (8) Filter will attenuate the harmonics.

2.1.2 Emissions at 20°C

Emissions, VDD = 1.35V	Frequency (GHz)	Notes	Min	Тур	Max	Cellular Band	Unit
	0.746 - 0.764	(1)	-	-155	-	CDMA700	
	0.869 - 0.894	(2)	-	-130	-	GSM 850	
	0.869 - 0.894	(1)	-	-135	-	CDMA 800	
Emitted power in	0.925 - 0.960	(2)	-	-150	-	GSM 900	
cellular bands measured at the	1.570 - 1.580	(3)	-	-142	-	GPS	dBm / Hz
output of the CSR8675 BGA. Output power	1.805 - 1.880	(2)	-	-135	-	GSM 1800	
≤ 10dBm.	1.800 – 1.880	(2)	-	-145	-	WCDMA1800	
	1.930 - 1.990	(1)	-	-140	-	GSM 1900	
	1.910 - 1.990	(1)	-	-145	-	W-CDMA 1900	
	2.110 - 2.170	(4)	-	-130		W-CDMA 2100	

Table 2.2: Basic Rate Emissions Performance at 20°C

Note:

For Table 2.2:

- (1) Maximum of average burst power in 1.2MHz bandwidth normalised to 1Hz. Hopping on.
- (2) Maximum of average burst power in 200kHz bandwidth normalised to 1Hz. Hopping on.
- (3) Maximum of average burst power in 1MHz bandwidth normalised to 1Hz. Hopping on.
- (4) Maximum of average burst power in 5MHz bandwidth normalised to 1Hz. Hopping on.

2.1.3 Temperature -40°C

RF Characteristics, VI	DD = 1.35V	Notes	Min	Тур	Max	Bluetooth Specification	Unit
Maximum RF transmit power		(1) (2) (3)	5	9	-	-6 to 4	dBm
20dB bandwidth for mo	odulated carrier	-	-	925	1000	≤1000	kHz
AOD	F = F ₀ ± 2MHz	(4)(5)	-	-23	-20	≤-20	dBm
ACP	$F = F_0 \pm 3MHz$	(4)(5)	-	-30	-26	≤-40	dBm
Δf _{1avg} maximum modu	lation	-	140	165	175	140	kHz
Δf _{2max} minimum modulation		-	115	140	-	≥115	kHz
$\Delta f_{2avg}/\Delta f_{1avg}$		-	0.8	0.9	-	≥0.80	-
ICFT		(6)	-75	15	75	±75	kHz
Drift rate		-	-	8	20	≤20	kHz/50µs
Drift (single slot packet)		-	-	12	25	≤25	kHz
Drift (five slot packet)		-		12	40	≤40	kHz

Table 2.3: Basic Rate Transmitter Performance at -40°C

Note:

For Table 2.3:

- (1) The firmware maintains the transmit power within Bluetooth v4.1 specification limits.
- (2) Measurement made using appropriate PS Key settings.
- (3) Class 2 RF transmit power range, Bluetooth v4.1 specification.
- (4) Measured at $F_0 = 2441 \text{MHz}$.
- (5) CSR8675 BGA guaranteed to meet ACP performance in Bluetooth v4.1 specification. Exceptions in 3 bands permitted in Bluetooth v4.1 test specification. For exceptions P_{TX} ≤ -20dBm.
- (6) Ignores any frequency error in the reference.

2.1.4 Temperature 85°C

RF Characteristics, VI	DD = 1.35V	Notes	Min	Тур	Max	Bluetooth Specification	Unit
Maximum RF transmit power		(1) (2)(3)	5	9	-	-6 to 4	dBm
20dB bandwidth for mo	odulated carrier	-	-	925	1000	≤1000	kHz
400	F = F ₀ ± 2MHz	(4)(5)	-	-30	-20	≤-20	dBm
ACP	F = F ₀ ± 3MHz	(4)(5)	-	-38	-34	≤-40	dBm
Δf _{1avg} maximum modu	lation	-	140	165	175	140	kHz
Δf _{2max} minimum modu	lation	-	115	137	-	≥115	kHz
$\Delta f_{2avg}/\Delta f_{1avg}$		-	0.8	0.9	-	≥0.80	-
ICFT		(6)	-75	15	75	±75	kHz
Drift rate		-	-	6	20	≤20	kHz/50µs
Drift (single slot packet)		-	-	12	25	≤25	kHz
Drift (five slot packet)		-		12	40	≤40	kHz

Table 2.4: Basic Rate Transmitter Performance at 85°C

Note:

For Table 2.4:

- (1) The firmware maintains the transmit power within Bluetooth v4.1 specification limits.
- (2) Measurement made using appropriate PS Key settings.
- (3) Class 2 RF transmit power range, Bluetooth v4.1 specification.
- (4) Measured at $F_0 = 2441 \text{MHz}$.
- (5) CSR8675 BGA guaranteed to meet ACP performance in Bluetooth v4.1 specification. Exceptions in 3 bands permitted in Bluetooth v4.1 test specification. For exceptions P_{TX} ≤ -20dBm.

QQ:1915388033

(6) Ignores any frequency error in the reference.

2.2 Receiver Performance

2.2.1 Temperature 20°C

RF Characteristics, VDD = 1.35V	Frequency (GHz)	Notes	Min	Тур	Max	Bluetooth Specification	Unit	
	2.402	-	-	-87	-83	4		
Sensitivity at 0.1% BER for all basic rate packet types	2.441	-	-	-90	-86	≤-70	dBm	
	2.48	-	-	-90	-86			
Maximum received signal at 0.1% BER		-	-20	>-10	-	≥-20	dBm	
	0.030 - 2.000	-	-10	1	-	-10		
Continuous power required to block Bluetooth reception (for	2.000 - 2.400	-	-27	-7	-	-27	dD	
input power of -67dBm with 0.1% BER) measured at the output of the CSR8675 BGA	2.500 - 3.000	-	-27	-6	-	-27	dBm	
output of the delited best	3.000 - 12.75	-	-10	3	-	-10		
C/I co-channel		(1) (2) (3)	-	5	11	≤11	dB	
	F = F ₀ + 1MHz	(1) (2) (3)	-	-5	0	≤0	dB	
	F = F ₀ - 1MHz	(1) (2) (3)		-3	0	≤0	dB	
	F = F ₀ + 2MHz	(1) (2) (3)	-	-35	-30	≤-30	dB	
Adjacent channel selectivity C/	F = F ₀ - 2MHz	(1) (2) (3)	-	-25	-20	≤-20	dB	
	$F = F_0 + 3MHz$	(1) (2) (3)	-	-45	-40	≤-40	dB	
7	F = F ₀ - 5MHz	(1) (2) (3)	-	-45	-40	≤-40	dB	
	F = F _{Image}	(1) (2) (3)	-	-20	-9	≤-9	dB	
Maximum level of intermodulation	(4)	-39	-23	-	≥-39	dBm		
Spurious output level		(5)	-	-155	-	-	dBm/Hz	

Table 2.5: Basic Rate Receiver Performance at 20°C

Note:

For Table 2.5:

- (1) CSR8675 BGA is guaranteed to meet the C/I performance as specified by the Bluetooth v4.1 specification.
 - Measured at $F_0 = 2441 MHz$.
 - $F_{lmage} = F_0 + 3MHz$. However, depending on crystal frequency and channel number, the image may switch to the opposite side of the carrier. When this occurs, $F_{lmage} = F_0 3MHz$ and the offsets in the table equations associated with C/I are also reversed.
 - (4) Measured at f₁ f₂ = 5MHz. Measurement is performed in accordance with Bluetooth RF test RCV/CA/05/c, i.e. wanted signal at -64dBm.
 - (5) Measured at unbalanced port of the balun. Integrated in 100kHz bandwidth and normalised to 1Hz. Actual figure is typically -155dBm/Hz except for peaks of -77dBm at 1600MHz and -77dBm in-band at 2.4GHz.

2.2.2 Temperature -40°C

RF Characteristics, VDD = 1.35V	Frequency (GHz)	Notes	Min	Тур	Max	Bluetooth Specification	Unit
	2.402	-	-	-88	-84		
Sensitivity at 0.1% BER for all basic rate packet types	2.441	-	-	-90	-86	≤-70	dBm
	2.48	-	-	-90	-86		
Maximum received signal at 0.1% BER		-	-20	>-10	-	≥-20	dBm

Table 2.6: Basic Rate Receiver Performance at -40°C

2.2.3 Temperature 85°C

RF Characteristics, VDD = 1.35V	Frequency (GHz)	Notes	Min	Тур	Max	Bluetooth Specification	Unit
	2.402	-	-	-86	-82		
Sensitivity at 0.1% BER for all basic rate packet types	2.441	-	-	-88	-84	≤-70	dBm
	2.48	-	-	-88	-84		
Maximum received signal at 0.1% BER		7-	-20	>-10	-	≥-20	dBm

Table 2.7: Basic Rate Receiver Performance at 85°C

3 Radio Characteristics: Enhanced Data Rate

3.1 Transmitter Performance

3.1.1 Temperature 20°C

RF Characteristics, VDD = 1.35	SV .	Notes	Min	Тур	Max	Bluetooth Specification	Un
Relative transmit power		-	-4	-1	1	-4 to 1	dB
	ω _ο	-	-	1.5	10	≤10 for all blocks	kH
π/4 DQPSK max carrier frequency stability	ω _i	-	-	4	75	≤75 for all packets	kH
	ω _o + ω _i	-	-	4	75	≤75 for all blocks	kH
	ω _ο	-	-	1.5	10	≤10 for all blocks	kH
8DPSK max carrier frequency stability	ω _i	-	-	4	75	≤75 for all packets	kH
	ω _o + ω _i	-	-	4	75	≤75 for all blocks	kH
	RMS DEVM	(1)	-	8	20	≤20	%
π/4 DQPSK modulation accuracy	99% DEVM	(1)	-/	15	30	≤30	%
	Peak DEVM	(1)	-	17	35	≤35	%
	RMS DEVM	(1)	-	6	13	≤13	%
8DPSK modulation accuracy	99% DEVM	(1)	-	12	20	≤20	%
	Peak DEVM	(1)	-	17	25	≤25	%
	F > F ₀ + 3MHz	(2)(3)	-	-58	-40	≤-40	dB
In-band spurious emissions	F < F ₀ - 3MHz	(2)(3)	-	-58	-40	≤-40	dB
7//	F = F ₀ - 3MHz	(2)(3)	-	-28	-24	≤-40	dBı
	F = F ₀ - 2MHz	(2)(3)	-	-22	-20	≤-20	dBı
	F = F ₀ - 1MHz	(2)(3)	-	-32	-26	≤-26	dE
n-band spurious emissions	F = F ₀ + 1MHz	(2)(3)	-	-32	-26	≤-26	dE
	F = F ₀ + 2MHz	(2)(3)	-	-25	-20	≤-20	dBı
	F = F ₀ + 3MHz	(2)(3)	-	-42	-40	≤-40	dBı
EDR differential phase encoding		-	99	No Errors	-	≥99	%

Table 3.1: EDR Transmitter Performance at 20°C

For Table 3.1:

- (1) Modulation accuracy utilises differential error vector magnitude with tracking of the carrier frequency drift.
- (2) Bluetooth specification values are for 8DPSK.
- CSR8675 BGA guaranteed to meet in-band spurious performance in Bluetooth v4.1 specification. Exceptions in 3 bands permitted in Bluetooth v4.1 test specification. For exceptions $P_{TX} \le -20 dBm$.

3.1.2 Temperature -40°C

RF Characteristics, VDD = 1.35	sv.	Notes	Min	Тур	Max	Bluetooth Specification	Unit
Relative transmit power		-	-4	-1	1	-4 to 1	dB
	ω _ο	-	-	2	10	≤10 for all blocks	kHz
π/4 DQPSK max carrier frequency stability	ω _i	-	-	6	75	≤75 for all packets	kHz
	ω _o + ω _i	-	-	10	75	≤75 for all blocks	kHz
	ω _ο	-	-	2	10	≤10 for all blocks	kHz
8DPSK max carrier frequency stability	ω _i	-	-	6	75	≤75 for all packets	kHz
	ω _o + ω _i	-	-	10	75	≤75 for all blocks	kHz
	RMS DEVM	(1)	X	8	20	≤20	%
π/4 DQPSK modulation accuracy	99% DEVM	(1)	-	12	30	≤30	%
	Peak DEVM	(1)	-	20	35	≤35	%
	RMS DEVM	(1)	-	6	13	≤13	%
8DPSK modulation accuracy	99% DEVM	(1)	-	12	20	≤20	%
	Peak DEVM	(1)	-	20	25	≤25	%
	$F > F_0 + 3MHz$	(2)(3)	-	-58	-40	≤-40	dBm
744	F < F ₀ - 3MHz	(2)(3)	-	-58	-40	≤-40	dBm
	F = F ₀ - 3MHz	(2)(3)	-	-27	-23	≤-40	dBm
1///	F = F ₀ - 2MHz	(2)(3)	-	-21	-20	≤-20	dBm
In-band spurious emissions	F = F ₀ - 1MHz	(2)(3)	-	-32	-26	≤-26	dB
	F = F ₀ + 1MHz	(2)(3)	-	-34	-26	≤-26	dB
	F = F ₀ + 2MHz	(2)(3)	-	-30	-20	≤-20	dBm
	F = F ₀ + 3MHz	(2)(3)	-	-42	-40	≤-40	dBm
EDR differential phase encoding		-	99	No Errors	-	≥99	%

Table 3.2: EDR Transmitter Performance at -40°C

For Table 3.2:

- (1) Modulation accuracy utilises differential error vector magnitude with tracking of the carrier frequency drift.
- (2) Bluetooth specification values are for 8DPSK.
- CSR8675 BGA guaranteed to meet in-band spurious performance in Bluetooth v4.1 specification. Exceptions in 3 bands permitted in Bluetooth v4.1 test specification. For exceptions $P_{TX} \le -20 dBm$.

3.1.3 Temperature 85°C

RF Characteristics, VDD = 1.35	sv.	Notes	Min	Тур	Max	Bluetooth Specification	Unit
Relative transmit power		-	-4	-1	1	-4 to 1	dB
	ω _ο	-	-	1.5	10	≤10 for all blocks	kHz
π/4 DQPSK max carrier frequency stability	ω _i	-	-	4	75	≤75 for all packets	kHz
	ω _o + ω _i	-	-	4	75	≤75 for all blocks	kHz
	ω _ο	-	-	1.2	10	≤10 for all blocks	kHz
8DPSK max carrier frequency stability	ω _i	-	_	4	75	≤75 for all packets	kHz
	ω _o + ω _i	-	-	4	75	≤75 for all blocks	kHz
	RMS DEVM	(1)	X	6	20	≤20	%
π/4 DQPSK modulation accuracy	99% DEVM	(1)	-	12	30	≤30	%
	Peak DEVM	(1)	-	17	35	≤35	%
	RMS DEVM	(1)	-	6	13	≤13	%
8DPSK modulation accuracy	99% DEVM	(1)	-	11	20	≤20	%
	Peak DEVM	(1)	-	17	25	≤25	%
	F > F ₀ + 3MHz	(2)(3)	-	-60	-40	≤-40	dBm
74.	F < F ₀ - 3MHz	(2)(3)	-	-60	-40	≤-40	dBm
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F = F ₀ - 3MHz	(2)(3)	-	-35	-31	≤-40	dBm
	F = F ₀ - 2MHz	(2)(3)	-	-26	-20	≤-20	dBm
In-band spurious emissions	F = F ₀ - 1MHz	(2)(3)	-	-35	-26	≤-26	dB
	F = F ₀ + 1MHz	(2)(3)	-	-35	-26	≤-26	dB
	F = F ₀ + 2MHz	(2)(3)	-	-30	-20	≤-20	dBm
	$F = F_0 + 3MHz$	(2)(3)	-	-46	-40	≤-40	dBm
EDR differential phase encoding		-	99	No Errors	-	≥99	%

Table 3.3: EDR Transmitter Performance at 85°C

For Table 3.3:

- (1) Modulation accuracy utilises differential error vector magnitude with tracking of the carrier frequency drift.
- (2) Bluetooth specification values are for 8DPSK.
- CSR8675 BGA guaranteed to meet in-band spurious performance in Bluetooth v4.1 specification. Exceptions in 3 bands permitted in Bluetooth v4.1 test specification. For exceptions $P_{TX} \le -20 dBm$.

3.2 Receiver Performance

3.2.1 Temperature 20°C

RF Characteristics	, VDD = 1.	35V	Modulation	Notes	Min	Тур	Max	Bluetooth Specification	Unit
		Ch 0	π/4 DQPSK	(1)	-	-88	-70	-	
		Ch 39	π/4 DQPSK	(1)	-	-92	-70	≤-70	dBm
0	ensitivity at 0.01% BER Ch 78 Ch 0 Ch 39		π/4 DQPSK	(1)	-	-92	-70		
Sensitivity at 0.01%			8DPSK	(1)	-	-80	-70		
			8DPSK	(1)	-	-84	-70	≤-70	dBm
Ch 78		Ch 78	8DPSK	(1)	-	-84	-70		
Maximum ragaiyaa	loissal of C	149/ DED	π/4 DQPSK	-	-20	>-8		≥-20	dBm
Maximum received	i signai at t).1% BER	8DPSK	-	-20	>-10	-	≥-20	dBm
C/I == = == == = = ± C	140/ DED		π/4 DQPSK	(2) (3)	-	10	13	≤13	dB
C/I co-channel at ().1% DER		8DPSK	(2) (3)	-	17	21	≤21	dB
	F - F	48411-	π/4 DQPSK	(2) (3)	X-	-10	0	≤0	dB
	F = F ₀ +	IMHZ	8DPSK	(2) (3)	-	-5	5	≤5	dB
	5-5 4	N 41 1-	π/4 DQPSK	(2) (3)	-	-5	0	≤0	dB
	F = F ₀ - 1	IVIHZ	8DPSK	(2) (3)	-	-2	5	≤5	dB
	F - F	20411-	π/4 DQPSK	(2) (3)	-	-40	-30	≤-30	dB
	$F = F_0 + 2$	ZIVIHZ	8DPSK	(2) (3)	-	-28	-25	≤-25	dB
Adjacent channel			π/4 DQPSK	(2) (3)	-	-22	-20	≤-20	dB
selectivity C/I	$F = F_0 - 2$	INHZ	8DPSK	(2) (3)	-	-22	-13	≤-13	dB
		20041	π/4 DQPSK	(2) (3)	-	-50	-40	≤-40	dB
YW	$F = F_0 + 3$	3IVIHZ	8DPSK	(2) (3)	-	-40	-33	≤-33	dB
			π/4 DQPSK	(2) (3)	-	-50	-40	≤-40	dB
	$F = F_0 - 5MHz$	8DPSK	(2) (3)	-	-45	-33	≤-33	dB	
_			π/4 DQPSK	(2) (3)	-	-20	-7	≤-7	dB
	F = F _{Imag}	е	8DPSK	(2) (3)	-	-10	0	≤0	dB

Table 3.4: EDR Receiver Performance at 20°C

For Table 3.4:

- (1) Dirty transmitter used.
- (2) CSR8675 BGA is guaranteed to meet the C/I performance as specified by the Bluetooth v4.1 specification.
- Measured at F_0 = 2441MHz. However, depending on crystal frequency and channel number, the image may switch to the opposite side of the carrier. When this occurs, F_{lmage} = F_0 3MHz and the offsets in the table equations associated with C/I are also reversed.

3.2.2 Temperature -40°C

RF Characteristics, VDD = 1	.35V	Modulation	Notes	Min	Тур	Max	Bluetooth Specification	Unit
	Ch 0	π/4 DQPSK	(1)	-	-88	-70		
	Ch 39	π/4 DQPSK	(1)	-	-92	-70	≤-70	dBm
	Ch 78	π/4 DQPSK	(1)	-	-93	-70		
Sensitivity at 0.01% BER	Ch 0	8DPSK	(1)	-	-82	-70		
	Ch 39	8DPSK	(1)	-	-84	-70	≤-70	dBm
	Ch 78		(1)	-	-84	-70		
Maximum received signal at 0.1% BER		π/4 DQPSK		-20	>-8	-	≥-20	dBm
		8DPSK		-20	>-10	-	≥-20	dBm

Table 3.5: EDR Receiver Performance at -40°C

Note:

For Table 3.4:

(1) Dirty transmitter used.

3.2.3 Temperature 85°C

RF Characteristics, VDD = 1	.35V	Modulation	Notes	Min	Тур	Max	Bluetooth Specification	Unit
	Ch 0	π/4 DQPSK	(1)	-	-88	-70		
	Ch 39	π/4 DQPSK	(1)	-	-91	-70	≤-70	dBm
O	Ch 78	π/4 DQPSK	(1)	-	-91	-70		
Sensitivity at 0.01% BER	Ch 0	8DPSK	(1)	-	-80	-70		
	Ch 39	8DPSK	(1)	-	-83	-70	≤-70	dBm
	Ch 78		(1)	-	-83	-70	KX	
Maximum received signal at 0.1% BER		π/4 DQPSK	-	-20	>-8	-	≥-20	dBm
		8DPSK	-	-20	>-10	-	≥-20	dBm

Table 3.6: EDR Receiver Performance at 85°C

Note:

For Table 3.6:

(1) Dirty transmitter used.

4 Radio Characteristics: Bluetooth low energy

4.1 Transmitter Performance

4.1.1 Temperature 20°C

RF Characteristics, VI	DD = 1.35V	Notes	Min	Тур	Max	Bluetooth Specification	Unit
Maximum RF transmit	power	(1)	5.0	9.0	10.0	-20 to 10	dBm
	F = F ₀ ± 2MHz	(2)(3)	-	-27	-20	≤-20	dBm
ACP	F = F ₀ ± 3MHz	(2)(3)	-	-35	-23	≤-30	dBm
	F = F ₀ ± > 3MHz	(2)(3)	-	<-60	-30	≤-30	dBm
Δf _{1avg} maximum modι	ılation	-	225	263	275	225 < f _{1avg} < 275	kHz
Δf _{2max} minimum modu	lation	-	185	206	-	≥185	kHz
$\Delta f_{2avg}/\Delta f_{1avg}$		-	0.8	0.83	En	≥0.80	-
ICFT		(4)	-20	3	20	±150	kHz
Carrier drift rate		-		4	20	≤20	kHz/50µs
Carrier drift				5	50	≤50	kHz
2 nd harmonic content		(5)	T-	-22	-	-	dBm
3 rd harmonic content		(5)	-	-31	-	-	dBm

Table 4.1: Bluetooth low energy Transmitter Performance at 20°C

Note:

For Table 4.1:

- Typically, an external filter attenuates the transmit power to maintain the transmit power within Bluetooth v4.1 specification limits. Alternatively, change the power table PS Keys to reduce the transmit limits. Alternatively, change the power table PS Keys to reduce the transmit power.
- (2) Measured at $F_0 = 2440 MHz$.
- (3) CSR8675 BGA guaranteed to meet ACP performance in Bluetooth v4.1 specification.
- (4) Ignores any frequency error in the reference.
- (5) Addition of a filter attenuates the harmonics.

4.1.2 Temperature -40°C

RF Characteristics, VI	DD = 1.35V	Notes	Min	Тур	Max	Bluetooth Specification	Unit
Maximum RF transmit power		(1)	2.0	6.0	10.0	-20 to 10	dBm
	$F = F_0 \pm 2MHz$	(2)(3)	-	-30	-20	≤-20	dBm
ACP	$F = F_0 \pm 3MHz$	(2)(3)	-	-37	-25	≤-30	dBm
	$F = F_0 \pm > 3MHz$	(2)(3)	-	<-60	-30	≤-30	dBm
Δf _{1avg} maximum modu	ulation	-	225	264	275	225 < f _{1avg} < 275	kHz
Δf _{2max} minimum modu	ılation	-	185	212	-	≥185	kHz
$\Delta f_{2avg}/\Delta f_{1avg}$		-	0.8	0.84		≥0.80	-
ICFT		(4)	-20	6	20	±150	kHz
Carrier drift rate		-	-	5	20	≤20	kHz/50µs
Carrier drift		-	-	7	50	≤50	kHz

Table 4.2: Bluetooth low energy Transmitter Performance at -40°C

Note:

For Table 4.2:

- (1) Typically, an external filter attenuates the transmit power to maintain the transmit power within Bluetooth v4.1 specification limits. Alternatively, change the power table PS Keys to reduce the transmit limits. Alternatively, change the power table PS Keys to reduce the transmit power.
- (2) Measured at $F_0 = 2440 MHz$.
- (3) CSR8675 BGA guaranteed to meet ACP performance in Bluetooth v4.1 specification.
- (4) Ignores any frequency error in the reference.

4.1.3 Temperature 85°C

RF Characteristics, VI	DD = 1.35V	Notes	Min	Тур	Max	Bluetooth Specification	Unit
Maximum RF transmit power		(1)	4.0	8.0	10.0	-20 to 10	dBm
	$F = F_0 \pm 2MHz$	(2)(3)	-	-31	-20	≤-20	dBm
ACP	$F = F_0 \pm 3MHz$	(2)(3)	-	-39	-30	≤-30	dBm
	$F = F_0 \pm > 3MHz$	(2)(3)	-	<-60	-30	≤-30	dBm
Δf _{1avg} maximum modu	ulation	-	225	264	275	225 < f _{1avg} < 275	kHz
Δf _{2max} minimum modι	ulation	-	185	202	-	≥185	kHz
$\Delta f_{2avg}/\Delta f_{1avg}$		-	0.8	0.83		≥0.80	-
ICFT		(4)	-20	5	20	±150	kHz
Carrier drift rate		-	-	5	20	≤20	kHz/50µs
Carrier drift		-	-	6	50	≤50	kHz

Table 4.3: Bluetooth low energy Transmitter Performance at 85°C

Note:

For Table 4.3:

- (1) Typically, an external filter attenuates the transmit power to maintain the transmit power within Bluetooth v4.1 specification limits. Alternatively, change the power table PS Keys to reduce the transmit limits. Alternatively, change the power table PS Keys to reduce the transmit power.
- (2) Measured at $F_0 = 2440 MHz$.
- (3) CSR8675 BGA guaranteed to meet ACP performance in Bluetooth v4.1 specification.
- (4) Ignores any frequency error in the reference.

QQ:1915388033

4.2 Receiver Performance

4.2.1 Temperature 20°C

RF Characteristics, VDD = 1.35V	Frequency (GHz)	Notes	Min	Тур	Max	Bluetooth Specification	Unit
	2.402	-	-	-91.0	-87.0	4	
Sensitivity at 30.8% PER for all basic rate packet types	2.440	-	-	-93.0	-89.0	≤-70	dBm
	2.480	-	-	-93.0	-89.0		
Reported PER during PER report integrity test	2.426	(1)	50	50	65.4	50 < PER < 65.4	%
Maximum received signal at 30.8% PER		-	-10	>-10	-	≥-10	dBm
Continuous power required	0.030 - 2.000	(2)	-30	>3	-	-30	
to block Bluetooth reception (for input power of -67dBm	2.000 - 2.400	(2)	-35	-3	-	-35	
with 30.8% PER) measured at the output of the	2.500 - 3.000	(2)	-35	-3		-35	dBm
CSR8675 BGA	3.000 - 12.75	(2)	-30	>3	7	-30	
C/I co-channel	,	(3)(4)(5)	-	5	21	≤21	dB
	F = F ₀ + 1MHz	(3)(4)(5)	2-/	2	15	≤15	dB
	F = F ₀ - 1MHz	(3)(4)(5)	1	-12	15	≤15	dB
	F = F ₀ + 2MHz	(3)(4)(5)	-	-29	-17	≤-17	dB
Adjacent channel selectivity C/I	F = F ₀ - 2MHz	(3)(4)(5)	-	-23	-15	≤-15	dB
	$F = F_0 + 3MHz$	(3)(4)(5)	-	-44	-27	≤-27	dB
	F = F ₀ - 5MHz	(3)(4)(5)	-	-51	-27	≤-27	dB
F = F _{Image}		(3)(4)(5)	-	-26	-9	≤-9	dB
Maximum level of intermodul	ation interferers	(6)	-50	-16	-	≥-50	dBm
Spurious output level		(7)	-	-155	-	-	dBm/Hz

Table 4.4: Bluetooth low energy Receiver Performance at 20°C

For Table 4.4:

- (1) Measured in accordance with the RCV-LE/CA/07/C test. Random number of packets transmitted by tester of which 50% have corrupted CRCs. Wanted signal level is -30dBm.
- (2) CSR8675 BGA is guaranteed to meet the blocking performance as specified by the Bluetooth v4.1 specification.
- (3) CSR8675 BGA is guaranteed to meet the C/I performance as specified by the Bluetooth v4.1 specification.
- (4) Measured at $F_0 = 2440 MHz$.
- (5) F_{Image} = F₀ 3MHz. However, depending on crystal frequency and channel number, the image may switch to the opposite side of the carrier. When this occurs, F_{Image} = F₀ + 3MHz and the offsets in the table equations associated with C/I are also reversed.
- Measured at f_1 f_2 = ±3, 4 and 5MHz. Measurement is performed in accordance with Bluetooth RF test RCV-LE/CA/05/C, i.e. wanted signal at -64dBm.
- (7) Integrated in 100kHz bandwidth and normalised to 1Hz. Actual figure is typically -155dBm/Hz except for peaks of -83dBm at 1600MHz and -77dBm in-band at 2.4GHz.

4.2.2 Temperature -40°C

RF Characteristics, VDD = 1.35V	Frequency (GHz)	Notes	Min	Тур	Max	Bluetooth Specification	Unit
Sensitivity at 30.8% PER for all basic rate packet types	2.402	-	-	-92.0	-88.0	≤-70	dBm
	2.440	-	_	-93.0	-89.0		
	2.480	-	-	-93.0	-89.0		
Reported PER during PER report integrity test	2.426	(1)	50	50	65.4	50 < PER < 65.4	%
Maximum received signal at 30.8% PER		-	-10	>-10	-	≥-10	dBm

Table 4.5: Bluetooth low energy Receiver Performance at -40°C

Note:

For Table 4.5:

(1) Measured in accordance with the RCV-LE/CA/07/C test. Random number of packets transmitted by tester of which 50% have corrupted CRCs. Wanted signal level is -30dBm.

4.2.3 Temperature 85°C

RF Characteristics, VDD = 1.35V	Frequency (GHz)	Notes	Min	Тур	Max	Bluetooth Specification	Unit
Sensitivity at 30.8% PER for all basic rate packet types	2.402	-	-	-90.0	-86.0	≤-70	dBm
	2.440	-	-	-92.5	-88.5		
	2.480	-	-	-92.5	-88.5		
Reported PER during PER report integrity test	2.426	(1)	50	50	65.4	50 < PER < 65.4	%
Maximum received signal at 30.8% PER		-	-10	>-10	-	≥-10	dBm

Table 4.6: Bluetooth low energy Receiver Performance at 85°C

Note:

For Table 4.6:

(1) Measured in accordance with the RCV-LE/CA/07/C test. Random number of packets transmitted by tester of which 50% have corrupted CRCs. Wanted signal level is -30dBm.

5 Typical Radio Performance: Basic Data Rate

5.1 Transmitter Performance

Figure 5.1: Maximum Transmit Power vs Temperature (20 DH5 Packets)

Note:

Output power temperature compensation was disabled. Performance measured at output of the CSR8675 BGA.

Figure 5.2: Firmware Controlled Transmit Power vs Temperature (20 DH5 Packets)

Note:

Output power temperature compensation was enabled.

Figure 5.3: Transmit Power Variation and Mean vs Channel (20 DH5 Packets)

Figure 5.4: -20dB Bandwidth vs Temperature (DH5 Packets)

Figure 5.5: Adjacent Channel Transmit Power Variation and Mean vs Channel (DH1 Packets) at -40°C

Figure 5.6: Adjacent Channel Transmit Power Variation and Mean vs Channel (DH1 Packets) at 20°C

Figure 5.7: Adjacent Channel Transmit Power Variation and Mean vs Channel (DH1 Packets) at 85°C

Figure 5.8: Frequency Deviation Δf_{1avg} vs Temperature (10 DH5 Packets)

Figure 5.9: Frequency Deviation Δf_{2max} vs Temperature (10 DH5 Packets)

Figure 5.10: Modulation Ratio (Δf_{2avg}/Δf_{1avg}) vs Temperature (20 DH5 Packets)

Figure 5.11: ICFT vs Temperature

Figure 5.12: Carrier Frequency Drift for 10 DH1 Packets vs Temperature

Figure 5.13: Carrier Frequency Drift for 10 DH3 Packets vs Temperature

Figure 5.14: Carrier Frequency Drift for 10 DH5 Packets vs Temperature

Figure 5.15: Carrier Frequency Drift Rate vs Temperature (10 Packets, All Packet Types)

Figure 5.16: Spectrum (Loopback DH1 Packets with TPN9 Payload)

Figure 5.17: DH5 Burst Power vs Time

5.2 Receiver Performance

Figure 5.18: Receive Sensitivity vs Temperature (595 DH5 Packets, Dirty Tx. ON, Hopping OFF)

Figure 5.19: Receive Sensitivity Variation and Mean vs Channel

Figure 5.20: Carrier to Interferer Ratio and Mean vs Channel (DH1 Packets), 20°C

6 Typical Radio Performance: Enhanced Data Rate

6.1 Transmitter Performance

Figure 6.1: π/4DQPSK Relative Transmit Power vs Temperature (10 2-DH5 Packets)

Figure 6.2: 8DPSK Relative Transmit Power vs Temperature (10 3-DH5 Packets)

Figure 6.3: $\pi/4DQPSK$ Absolute Block Frequency Error, ω_0 vs Temperature (200 2-DH5 Blocks)

Figure 6.4: π/4DQPSK Absolute Initial Frequency Error, ω_i vs Temperature (200 2-DH5 Blocks)

Figure 6.5: $\pi/4DQPSK$ Absolute Total Frequency Error, $(\omega_o + \omega_i)$ vs Temperature (200 2-DH5 Blocks)

Figure 6.6: 8DPSK Absolute Block Frequency Error, ω_o vs Temperature (200 3-DH5 Blocks)

Figure 6.7: 8DPSK Absolute Initial Frequency Error, ω_i vs Temperature (200 3-DH5 Blocks)

Figure 6.8: 8DPSK Absolute Total Frequency Error, (ω₀+ω_i) vs Temperature (200 3-DH5 Blocks)

Figure 6.9: π/4DQPSK RMS DEVM vs Temperature (200 2-DH5 Blocks)

Figure 6.10: π/4DQPSK Peak DEVM vs Temperature (200 2-DH5 Blocks)

Figure 6.11: 8DPSK RMS DEVM vs Temperature (200 3-DH5 Blocks)

Figure 6.12: 8DPSK Peak DEVM vs Temperature (200 3-DH5 Blocks)

Figure 6.13: Adjacent Channel Transmit Power Variation and Mean vs Channel (2-DH5 Packets) at 20°C

Figure 6.14: Adjacent Channel Transmit Power Variation and Mean vs Channel (3-DH5 Packets) at 20°C

Figure 6.15: Adjacent Channel Transmit Power Variation and Mean vs Channel (2-DH5 Packets) at -40°C

Figure 6.16: Adjacent Channel Transmit Power Variation and Mean vs Channel (3-DH5 Packets) at -40°C

Figure 6.17: Adjacent Channel Transmit Power Variation and Mean vs Channel (2-DH5 Packets) at 85°C

Figure 6.18: Adjacent Channel Transmit Power Variation and Mean vs Channel (3-DH5 Packets) at 85°C

6.2 Receiver Performance

Figure 6.19: π/4DQPSK Receive Sensitivity Variation vs Channel (2-DH5 Loopback, 16Mbits, Dirty Tx. ON, Hopping OFF)

Figure 6.20: π/4DQPSK Receive Sensitivity vs Temperature (2-DH5 Loopback, 16Mbits, Dirty Tx. ON, Hopping OFF)

Figure 6.21: 8DPSK Receive Sensitivity Variation vs Channel (3-DH5 Loopback, 16Mbits, Dirty Tx. ON, Hopping OFF)

Figure 6.22: 8DPSK Receive Sensitivity vs Temperature (3-DH5 Loopback, 16Mbits, Dirty Tx. ON, Hopping OFF)

Figure 6.23: $\pi/4DQPSK$ Receive C/I at 20°C

Figure 6.24: 8DPSK Receive C/I at 20°C

7 Typical Radio Performance: Bluetooth low energy

7.1 Transmitter Performance

Figure 7.1: Transmit Power vs. Temperature

Figure 7.2: Transmit Power Variation and Mean vs. Channel at -40°C

Production Information
© Cambridge Silicon Radio 2014
Confidential Information - This Material is Subject to CSR's Non-Disclosure Agreement

Figure 7.3: Transmit Power Variation and Mean vs. Channel at 20°C

Figure 7.4: Transmit Power Variation and Mean vs. Channel at 85°C

Figure 7.5: In-band Spurious Emissions vs. Frequency at -40°C

Figure 7.6: In-band Spurious Emissions vs. Frequency at 20°C

Figure 7.7: In-band Spurious Emissions vs. Frequency at 85°C

Figure 7.8: Frequency Deviation Δf_{1avg} vs. Temperature

Figure 7.9: Frequency Deviation Δf_{2max} vs. Temperature

Figure 7.10: Modulation Ratio ($\Delta f_{2avg}/\Delta f_{1avg}$) vs. Temperature

Figure 7.11: Initial Carrier Frequency Offset vs. Temperature

Figure 7.12: Carrier Frequency Drift vs. Temperature

Figure 7.13: Carrier Frequency Drift Rate vs. Temperature

Figure 7.14: Spectrum

7.2 Receiver Performance

Figure 7.15: Receive Sensitivity vs. Temperature

Figure 7.16: Receive Sensitivity Variation and Mean vs. Channel at -40°C

Figure 7.17: Receive Sensitivity Variation and Mean vs. Channel at 20°C

Figure 7,18: Receive Sensitivity Variation and Mean vs. Channel at 85°C

Figure 7.19: Carrier to Interferer Ratio and Mean vs. Frequency at 20°C

8 Typical Audio Performance: ADC

The audio graphs in this section were produced in the following conditions:

General

- At room temperature
- Using a single typical part mounted on a CSR development board (R13072v4)

Amplitude and Left/Right Balance vs. Analogue Gain

- Measurement bandwidth = 20Hz to 20kHz
- Amplitude response = RMS
- No weighting applied
- 1kHz input signal

Linearity

- Measurement bandwidth = 20Hz to 20kHz
- Amplitude response = RMS
- No weighting applied
- 1kHz input signal

Distortion (THD+N) vs. Frequency

- Measurement bandwidth = 20Hz to F_s/2, capped to 20kHz
- Amplitude response = RMS
- No weighting applied
- Input amplitude = 300mVrms
- Analogue gain set to 2, digital gain set to 0
- Roll off at low frequencies due to AC coupling capacitors on PCB

Noise Floor (Idle Noise) and SNR

- Measurement bandwidth = 20Hz to F_s/2, capped to 20kHz
- Amplitude response = RMS
- Weighting as stated on graph
- Input signal = 1kHz 0dBFS for SNR, muted for noise floor
- Analogue gain varied, digital gain set to 0

Output Spectrum

- Measurement bandwidth = 20Hz to 20kHz
- Amplitude response = RMS
- No weighting
- Input signal = 300mVrms
- Analogue gain set to 2, digital gain set to 0

8.1 Amplitude and Left/Right Balance vs Analogue Gain

Figure 8.1: Amplitude vs. Analogue Gain at F_s = 48kHz and Input = 30mV

Figure 8.2: THD+N vs. Analogue Gain at F_s = 48kHz and Input = 30mV, Signal Starts Clipping above Analogue Gain 9

Figure 8.3: Amplitude vs. Analogue Gain at F_s = 48kHz and Input = 300mV

Figure 8.4: THD+N vs. Analogue Gain at F_s = 48kHz and Input = 300mV, Signal Starts Clipping above Analogue Gain 2

8.2 Linearity

Figure 8.5: Amplitude vs. Input Level at $F_s = 48kHz$

8.3 Distortion (THD+N) vs. Frequency

Figure 8.6: Amplitude vs. Input Frequency at F_s = 8kHz

Figure 8.7: Amplitude vs. Input Frequency at $F_s = 48kHz$

Figure 8.8: THD+N vs. Input Frequency at $F_s = 8kHz$

Figure 8.9: THD+N vs. Input Frequency at $F_s = 48kHz$

Figure 8.10: Phase vs. Input Frequency at $F_s = 8kHz$

Figure 8.11: Phase vs. Input Frequency at $F_s = 48kHz$

8.4 Noise Floor (Idle Noise) and SNR

Figure 8.12: Noise Floor at F_s = 48kHz, Bluetooth Inquiry Off, A-Weighting

Figure 8.13: SNR at F_s = 48kHz, Bluetooth Inquiry Off, A-Weighting

Figure 8.14: Noise Floor at F_s = 48kHz, Bluetooth Inquiry On, A-Weighting

Figure 8.15: SNR at $F_s = 48kHz$, Bluetooth Inquiry On, A-Weighting

8.5 FFT at 1kHz

Figure 8.16: 1 KHz FFT at F_s = 48kHz, Bluetooth Inquiry Off, Left Channel

Figure 8.17: 1 KHz FFT at $F_s = 48$ kHz, Bluetooth Inquiry Off, Right Channel

Figure 8.18: 1 KHz FFT at F_s = 48kHz, Bluetooth Inquiry On, Left Channel

Figure 8.19: 1 KHz FFT at F_s = 48kHz, Bluetooth Inquiry On, Right Channel

Typical Audio Performance: DAC

The audio graphs in this section were produced in the following conditions:

General

- At room temperature
- Using a single typical part mounted on a CSR development board (R13072v4)

Amplitude and Left/Right Balance vs. Analogue Gain

- Measurement bandwidth = 20Hz to 20kHz
- Amplitude response = RMS
- No weighting applied
- Input signal = 0dBFS, 1kHz
- Analogue gain varied, digital gain set to 0

Linearity

- Measurement bandwidth = 20Hz to 20kHz
- Amplitude response = RMS
- No weighting applied
- Input signal = 1kHz
- Analogue gain varied, digital gain set to 0

Distortion (THD+N) vs. Frequency

- Measurement bandwidth = 20Hz to 20kHz
- Amplitude response = RMS
- No weighting applied
- Input signal = 0dBFS, 1kHz
- Analogue gain set to 15, digital gain set to 0

Noise Floor (Idle Noise) and SNR

- Measurement bandwidth = 20Hz to 20kHz
- Amplitude response = RMS
- Weighting as stated on graph
- Input signal = 0dBFS, 1kHz
- Analogue gain varied, digital gain set to 0

Output Spectrum

- Measurement bandwidth = 20Hz to 20kHz
- Amplitude response = RMS
- No weighting
- Input signal = -60dBFS, 1kHz
- Analogue gain set to 7, digital gain set to 0

Digital Microphone

- Measurement bandwidth = 20Hz to 20kHz
 - Amplitude response = RMS
- No weighting
- Input signal = 2nd order PCM to sigma-delta modulator, 1kHz
- Microphone clock frequency = 4MHz

9.1 Amplitude and Left/Right Balance vs Analogue Gain

Figure 9.1: Amplitude vs. Analogue Gain: $F_s = 48kHz$, Load = 100kΩ

Figure 9.2: THD+N vs. Analogue Gain: F_s = 48kHz, Load = 100kΩ

Figure 9.3: Amplitude vs. Analogue Gain: $F_s = 48kHz$, Load = 32Ω

Figure 9.4: THD+N vs. Analogue Gain: $F_s = 48$ kHz, Load = 32Ω

Figure 9.5: Amplitude vs. Analogue Gain: $F_s = 48kHz$, Load = 16Ω

Figure 9.6: THD+N vs. Analogue Gain: F_s = 48kHz, Load = 16 Ω

Figure 9.7: Amplitude vs. Analogue Gain: $F_s = 96kHz$, Load = $100k\Omega$

Figure 9.8: THD+N vs. Analogue Gain: F_s = 96kHz, Load = 100kΩ

Figure 9.9: Amplitude vs. Analogue Gain: $F_s = 96kHz$, Load = 32Ω

Figure 9.10: THD+N vs. Analogue Gain: $F_s = 96kHz$, Load = 32Ω

Figure 9.11: Amplitude vs. Analogue Gain: $F_s = 96kHz$, Load = 16Ω

Figure 9.12: THD+N vs. Analogue Gain: $F_s = 96kHz$, Load = 16Ω

9.2 Linearity and THD+N

Figure 9.13: Output Amplitude vs. Input Amplitude: $F_s = 48$ kHz, Load = 100k Ω

Figure 9.14: THD+N vs. Input Amplitude: $F_s = 48kHz$, Load = $100k\Omega$

Figure 9.15: Output Amplitude vs. Input Amplitude: $F_s = 48kHz$, Load = 32Ω

Figure 9.16: THD+N vs. Input Amplitude: $F_s = 48kHz$, Load = 32Ω

Figure 9.17: Output Amplitude vs. Input Amplitude: $F_s = 48kHz$, Load = 16Ω

Figure 9.18: THD+N vs. Input Amplitude: $F_s = 48$ kHz, Load = 16Ω

Figure 9.19: Output Amplitude vs. Input Amplitude: $F_s = 96 \text{kHz}$, Load = $100 \text{k}\Omega$

Figure 9.20: THD+N vs. Input Amplitude: $F_s = 96$ kHz, Load = 100kΩ

Figure 9.21: Output Amplitude vs. Input Amplitude: $F_s = 96kHz$, Load = 32Ω

Figure 9.22: THD+N vs. Input Amplitude: $F_s = 96kHz$, Load = 32Ω

Figure 9.23: Output Amplitude vs. Input Amplitude: $F_s = 96kHz$, Load = 16Ω

Figure 9.24: THD+N vs. Input Amplitude: $F_s = 96kHz$, Load = 16Ω

CSR

9.3 Distortion (THD+N) vs. Frequency

Figure 9.25: Output Amplitude vs. Input Frequency: $F_s = 48$ kHz, Load = 100k Ω

Figure 9.26: THD+N vs. Input Frequency: $F_s = 48$ kHz, Load = 100kΩ

Figure 9.27: Phase vs. Frequency: $F_s = 48kHz$, Load = $100k\Omega$

Figure 9.28: Output Amplitude vs. Input Frequency: $F_s = 48kHz$, Load = 32Ω

Figure 9.29: THD+N vs. Input Frequency: $F_s = 48kHz$, Load = 32Ω

Figure 9.30: Phase vs. Frequency: $F_s = 48kHz$, Load = 32Ω

Figure 9.31: Output Amplitude vs. Input Frequency: $F_s = 48$ kHz, Load = 16Ω

Figure 9.32: THD+N vs. Input Frequency: $F_s = 48kHz$, Load = 16Ω

Figure 9.33: Phase vs. Frequency: $F_s = 48kHz$, Load = 16Ω

Figure 9.34: Output Amplitude vs. Input Frequency: F_s = 96kHz, Load = 100kΩ

Figure 9.35: THD+N vs. Input Frequency: $F_s = 96kHz$, Load = 100k Ω

Figure 9.36: Phase vs. Frequency: $F_s = 96kHz$, Load = $100k\Omega$

Figure 9.37: Output Amplitude vs. Input Frequency: $F_s = 96kHz$, Load = 32Ω

Figure 9.38: THD+N vs. Input Frequency: $F_s = 96kHz$, Load = 32Ω

Figure 9.39: Phase vs. Frequency: $F_s = 96kHz$, Load = 32Ω

Figure 9.40: Output Amplitude vs. Input Frequency: $F_s = 96kHz$, Load = 16Ω

Figure 9.41: THD+N vs. Input Frequency: $F_s = 96kHz$, Load = 16Ω

Figure 9.42: Phase vs. Frequency: $F_s = 96kHz$, Load = 16Ω

9.4 Noise Floor (Idle Noise) and SNR

Figure 9.43: Noise floor: F_s = 48kHz, Load = 100k Ω , Bluetooth Inquiry On, A-Weighting

Figure 9.44: SNR: F_s = 48kHz, Load = 100kΩ, Bluetooth Inquiry On, A-Weighting

Figure 9.45: Noise floor: F_s = 48kHz, Load = 100k Ω , Bluetooth Inquiry Off, A-Weighting

Figure 9.46: SNR: F_s = 48kHz, Load = 100k Ω , Bluetooth Inquiry Off, A-Weighting

Figure 9.47: Noise floor: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry On, A-Weighting

Figure 9.48: SNR: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry On, A-Weighting

Figure 9.49: Noise floor: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry Off, A-Weighting

Figure 9.50: SNR: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry Off, A-Weighting

Figure 9.51: Noise floor: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry On, A-Weighting

Figure 9.52: SNR: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry On, A-Weighting

Figure 9.53: Noise floor: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry Off, A-Weighting

Figure 9.54: SNR: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry Off, A-Weighting

Figure 9.55: Noise floor: F_s = 96kHz, Load = 100k Ω , Bluetooth Inquiry On, A-Weighting

Figure 9.56: SNR: F_s = 96kHz, Load = 100kΩ, Bluetooth Inquiry On, A-Weighting

Figure 9.57: Noise floor: F_s = 96kHz, Load = 100k Ω , Bluetooth Inquiry Off, A-Weighting

Figure 9.58: SNR: F_s = 96kHz, Load = 100kΩ, Bluetooth Inquiry Off, A-Weighting

Figure 9.59: Noise floor: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry On, A-Weighting

Figure 9.60: SNR: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry On, A-Weighting

Figure 9.61: Noise floor: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry Off, A-Weighting

Figure 9.62: SNR: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry Off, A-Weighting

Figure 9.63: Noise floor: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry On, A-Weighting

Figure 9.64: SNR: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry On, A-Weighting

Figure 9.65: Noise floor: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry Off, A-Weighting

Figure 9.66: SNR: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry Off, A-Weighting

9.5 FFT at 1kHz

Figure 9.67: 1 KHz FFT: F_s = 48kHz, Load = 100k Ω , Bluetooth Inquiry On, No Weighting, Left Channel

Figure 9.68: 1 KHz FFT: $F_s = 48$ kHz, Load = 100k Ω , Bluetooth Inquiry On, No Weighting, Right Channel

Figure 9.69: 1 KHz FFT: F_s = 48kHz, Load = 100k Ω , Bluetooth Inquiry Off, No Weighting, Left Channel

Figure 9.70: 1 KHz FFT: F_s = 48kHz, Load = 100kΩ, Bluetooth Inquiry Off, No Weighting, Right Channel

Figure 9.71: 1 KHz FFT: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry On, No Weighting, Left Channel

Figure 9.72: 1 KHz FFT: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry On, No Weighting, Right Channel

Figure 9.73: 1 KHz FFT: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry Off, No Weighting, Left Channel

Figure 9.74: 1 KHz FFT: F_s = 48kHz, Load = 32 Ω , Bluetooth Inquiry Off, No Weighting, Right Channel

Figure 9.75: 1 KHz FFT: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry On, No Weighting, Left Channel

Figure 9.76: 1 KHz FFT: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry On, No Weighting, Right Channel

Figure 9.77: 1 KHz FFT: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry Off, No Weighting, Left Channel

Figure 9.78: 1 KHz FFT: F_s = 48kHz, Load = 16 Ω , Bluetooth Inquiry Off, No Weighting, Right Channel

Figure 9.79: 1 KHz FFT: F_s = 96kHz, Load = 100k Ω , Bluetooth Inquiry On, No Weighting, Left Channel

Figure 9.80: 1 KHz FFT: F_s = 96kHz, Load = 100kΩ, Bluetooth Inquiry On, No Weighting, Right Channel

Figure 9.81: 1 KHz FFT: $F_s = 96$ kHz, Load = 100k Ω , Bluetooth Inquiry Off, No Weighting, Left Channel

Figure 9.82: 1 KHz FFT: F_s = 96kHz, Load = 100kΩ, Bluetooth Inquiry Off, No Weighting, Right Channel

Figure 9.83: 1 KHz FFT: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry On, No Weighting, Left Channel

Figure 9.84: 1 KHz FFT: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry On, No Weighting, Right Channel

Figure 9.85: 1 KHz FFT: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry Off, No Weighting, Left Channel

Figure 9.86: 1 KHz FFT: F_s = 96kHz, Load = 32 Ω , Bluetooth Inquiry Off, No Weighting, Right Channel

Figure 9.87: 1 KHz FFT: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry On, No Weighting, Left Channel

Figure 9.88: 1 KHz FFT: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry On, No Weighting, Right Channel

Figure 9.89: 1 KHz FFT: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry Off, No Weighting, Left Channel

Figure 9.90: 1 KHz FFT: F_s = 96kHz, Load = 16 Ω , Bluetooth Inquiry Off, No Weighting, Right Channel

10 Digital Microphone

Figure 10.1: Output Amplitude vs. Input Amplitude: Sample Rate = 8 kHz

Figure 10.2: THD+N vs. Input Amplitude: Sample Rate = 8 kHz

Figure 10.3: Output Amplitude vs. Input Amplitude: Sample Rate = 16 kHz

Figure 10.4: THD+N vs. Input Amplitude: Sample Rate = 16 kHz

11 Document References

Document	Reference, Date
Bluetooth v4.1 RF-PHY test specification	RF-PHY.TS.4.1.0, 03 December 2013
Bluetooth v4.1 Test Specification	TS.4.1.0, 03 December 2013
Core Specification of the Bluetooth System	Bluetooth Specification Version 4.1, 03 December 2013
CSR8675 BGA Data Sheet	CS-232426-DS

Terms and Definitions

Term	Definition
8DPSK	8-phase Differential Phase Shift Keying
π/4 DQPSK	π/4 rotated Differential Quaternary Phase Shift Keying
ACP	Adjacent Channel Power
ADC	Analogue to Digital Converter
BER	Bit Error Rate
BlueCore [®]	Group term for CSR's range of Bluetooth wireless technology ICs
Bluetooth®	Set of technologies providing audio and data transfer over short-range radio connections
C/I	Carrier over Interferer
CDMA	Code Division Multiple Access
codec	Coder decoder
CSR	Cambridge Silicon Radio
DAC	Digital to Analogue Converter
dBm	Decibels relative to 1 mW
DCS	Digital Communications System
DEVM	Differential Error Vector Magnitude
EDR	Enhanced Data Rate
GPS	Global Positioning System
GSM	Global System for Mobile communications
IC	Integrated Circuit
ICFT	Initial Carrier Frequency Tolerance
PER	Packet Error Rate
RF	Radio Frequency
rms	root mean squared
W-CDMA	Wideband Code Division Multiple Access