- Q1. What do you expect when aqeuous solutions of CaI2 is mixed with AgF in 1:2 molar ratio?
- (a) Only AgI precipitates
- (b) Only CaF₂ precipitates
- (c) Both AgI and CaF₂ precipitate
- (d) No precipitate is formed

Answer: C

MARKS=1

Q2. Draw any two stabilizing non-covalent interactions between acetone and benzene molecules.

Note. This is an only MODEL answer. Other scientifically correct structures will be considered case by case basis.

MARKS=2

- Q3. Which of the following reactions is(are) NOT example(s) of thermite process?
 - (a) $3MnO_2 + 4Al \rightarrow 3Mn + 2Al_2O_3$
 - (b) $Al_2O_3 + 2Fe \rightarrow 2Al + Fe_2O_3$
 - (c) $Cr_2O_3 + 2Al \rightarrow 2Cr + Al_2O_3$
 - (d) $2HgO + HgS \rightarrow 3Hg + SO_2$

Ans: (b) & (d)

MARKS=1

- Q4. The process used in purifying metals by electrolysis is called
 - (a) electroplating
 - (b) electrometallurgy
 - (c) electrolytic refining
 - (d) electrodeposition

Ans: (c)

MARKS=1

- Q5. Select the correct statements:
 - (a) In the decomposition of a metal oxide into oxygen and gaseous metal, entropy increases
 - (b) In the decomposition of a metal oxide into oxygen and gaseous metal, entropy remains constant.
 - (c) To make ΔG^0 negative, the temperature should be high enough so that $T\Delta S^0 > \Delta H^0$.
 - (d) Decomposition of a metal oxide is an endothermic change.

Ans: (a), (c) and (d)

MARKS=1

Q6. Consider the thermal decomposition of a metal oxide MO(s). Here the melting point of the metal is 2000°C. At 2500°C, MC(s) is expected to form when carbon is added after the complete removal of O_2 gas from the reaction mixture. Plot ΔG vs T for the above processes from 0 to 3000°C noting all the scenarios mentioned.

MARKS=2

Q7. The complex in which the metal in its lowest oxidation state is

- a) $[Cr(CO)_6]$
- b) $K_2[Cr_2O_7]$
- c) $[Cr(Cl)_3(H_2O)_3]$
- d) $Na_2[Fe(CO)_4]$

(d)

MARKS=1

Q8. The recipe to stabilize first-row transition metal complex with large coordination number is(are)

- a) Ligand with strong π -acceptor capability
- b) Use soft ligands
- c) Sterically hindered ligand
- d) A metal ion with large positive charges

Ans: d

Q9. Assume water reacts with $[Mn(Cl)_6]^{4-}$ and $[Mn(CN)_6]^{4-}$ which are kept in two separate reaction flasks. Which reaction will proceed faster? Rationalize your answer ONLY based on the molecular orbital theory.

Ans: In [Mn(Cl)₆]⁴⁻, Mn²⁺ is high spin, which means that the eg* orbital is also filled. Therefore M-Cl bonds are weaker than the M-CN bonds. While in M-CN complex, there is no electron in antibonding eg*, hence, the ligand can approach metal much closer than in M-Cl complex. So the M-Cl complex is expected to react faster.

- Q10. The molecule(s) likely to show Jahn-Teller distortion is(are)
 - a) Linear $[Mn(Cl)_2]^{+1}$
 - b) $[Co(CO)_6]^{+2}$
 - c) $[Cu(CN)_6]^{-3}$
 - d) $[Mn(Cl)_6]^{-3}$

PS: Some of the molecules listed here are hypothetical.

Ans: b and d.

- Q11. The number of non-bonding *d*-orbitals expected for a square-pyramidal $[Mn(NH_3)_5]^{3+}$ complex is
 - a) 3
 - b) 5
 - c) 4
 - d) 2

Ans a

- Q12. Among the following, the paramagnetic outer orbital complex(es) is/are:
 - a) $[Ni(NH_3)_6]^{2+}$
 - b) $[Zn(NH_3)_6]^{3+}$
 - c) $[Cr(NH_3)_6]^{2+}$
 - d) $[Co(NH_3)_6]^{3+}$

Ans a, b and c

- Q13. The correct order of stability for $[Cr(CO)_6]$ (I); $[Fe(CO)_6]$ (II); $[Mn(CO)_6]$ (III); and $[Co(CO)_6]$ (IV) is:
 - a) IV < III< II< I
 - b) III< I< II< IV
 - c) IV < II < III < I
 - d) I< III< II< IV

Ans: c

Q14. In the given plot, the spin state of iron in *deoxy*-hemoglobin represented correctly in

- A) I
- B) II
- C) III
- D) IV

Ans a

Q15. The relative energies of d-orbitals in a trigonal bipyramidal [ML₅] complex as per CFT

a)
$$d_z^2 \approx d_{x^2-y^2} > d_{xy} = d_{xz} = d_{yz}$$

b)
$$d_z^2 > d_{x^2 - y^2} = d_{xy} > d_{xz} = d_{yz}$$

b)
$$d_z^2 > d_{x^2-y^2} + d_{xy} = d_{xz} = d_{yz}$$

c) $d_z^2 > d_{xz} = d_{yz} > d_{x^2-y^2} = d_{xy}$
d) $d_z^2 = d_{xz} = d_{yz} > d_{x^2-y^2} = d_{xy}$

d)
$$d_z^2 = d_{xz} = d_{yz} > d_{x^2 - y^2} = d_{xy}$$

Ans b

Q16. Sketch the MO diagram of [ML₅(CO)] and trans [ML₄(CO)₂] (only pi part is sufficient) (Note: assume that the CO ligands are occupied along the X-axis in both cases). Draw on MOs side by side relative to each other and note down the important differences.

MARKS=3

Rubrics New Marks = 0/3 Old Marks = 0.00				
	Drawing MO correctly for [ML5(CO)] showing xz, xy lower in energy than yz (see model answer)	1	Ø	
	Drawing trans [ML4(CO)2] MO diagram showing dxz and dxy are lower in energy than dyz (see model answer)	1	Ø	
	Showing the difference between [ML5(CO)] and trans [ML4(CO)2] with larger stabilization of dxz and dxy in [ML4(CO)2].	1	Œ	
	wrong answer	0	Ø	

Q17. The ligand and metal orbital interaction(s) lead(s) to zero overlap in the following list is(are)

Ans:b, c

Q18. Why is orbital angular momentum quenched significantly due to ligand field in transition metal complexes while in lanthanide ions its effect is negligible?

- a) Lanthanide has more unpaired electrons than the 3d metal ion
- b) Interaction of ligand orbital with lanthanide ions is very poor
- c) 4f-orbitals are buried and hence energetically much higher than the ligand orbital
- d) Because lanthanide ion has a large coordination number

Ans:b and c

Q19. Stepwise stability constants (K_1, K_2, K_3) for (en) complexes of some 3d transition metal ions in aqueous solution are shown below. The stability of complexes (with less than 10 d electrons) gradually increases from left to right across the series except for K_3 of Cu(II). Why?

Due to Jahn-Teller distortion, K3 will be smaller than K1 and K2 here.

Rubrics New Marks = 0 / 2.00 Old Marks = 0.00			
	Writing the equations or showing the structure where there is a strain in [Cu(en)3] (see model answer)	1	Ø
	Reason as Jahn-Teller distortion	1	Ø
	wrong answer	0	Ø

Q20. The correct order of crystal field splitting value is: (a) $[Co(NH_3)_6]^{3+}$ (b) $[Ir(NH_3)_6]^{3+}$ (c) $[Rh(NH_3)_6]^{3+}$ (d) $[CoCl_4]^{2-}$ (e) $[CoF_6]^{3-}$

- A. d < a < e < b < c
- B. d<e< a <c<b
- C. d < e < a < c < b
- D. d<b<c<a <e

Ans: C. We are aware that B is also the same as C. If either of B or C are chosen one mark will be awarded (could be adhoc addition over and above in SAFE)

Q22. For [Mn(H₂O)₆]³⁺ complex, the correct statement that describes the Zeeman effect is

- (a) A largest negative slope is expected for m_s=-1 level.
- (b) A largest negative slope is expected for m_s=-2 level.
- (c) A largest positive slope is expected for $m_s=+2$ level.
- (d) A largest positive slope is expected for $m_s=+1$ level.

Ans: b and c

Q23. Among the following compounds: A, B, C, and D. The statement that describes the correct order of magnetic characteristics of A, B, C and D is

- A. Anti-ferromagnetic, ferromagnetic, paramagnetic, ferrimagnetic
- B. Ferromagnetic, antiferromagnetic, diamagnetic, paramagnetic
- C. Antiferromagnetic, paramagnetic, ferromagnetic, ferromagnetic
- D. Ferrimagnetic, ferromagnetic, paramagnetic, antiferromagnetic

Ans: A

Q24. Magnetic susceptibility χ for a transition metal compound is measured to be 14.33 X 10° cm³ K mol⁻¹. Fitting the susceptibility yield Curie-Weiss constant θ = -4.95 at 300 K. Predict the number of unpaired electrons are present in the molecule.

Rubrics New Marks = 0 / 2 Old Marks = 0.00				
☐ Number of unpaired electron as 5	2	Ø		
☐ Wrong answer (NO marks for steps)	0	Ø		

Q25. Work out the term symbol for Cr(0) free ion.

Cr(0) electronic configuration d5s1 here L = 0 so S and S = 3 so 7 S. J mentioned or not, is Ok. 7 S $_{3}$ or 7 S

Q26. The magnetic susceptibility has been measured for the following compounds (**A**) $KCr(SO_4)_2.12H_2O$, (**B**) $(NH_4)_2Cu(SO_4)_2.6H_2O$. (**C**) $K_3[Mn(CN)_6]$, and (**D**) $K_2Mn(SO_4)_2.6H_2O$. (**D**). The magnetic susceptibility estimated at 80 K and at 300 K are; for **A** 3.87 and 3.85 μ_B , for **B** 1.91 and 1.93 μ_B , for **C** 3.5 and 3.1 μ_B and for D 5.91 and 5.91 μ_B . Pick the correct

statement among the following for compounds A-D regarding orbital angular moment (OAM) the data provided.

- A. A has no OAM, B has no OAM, C has OAM and D has no OAM.
- B. A has OAM, B has no OAM, C has OAM and D has OAM.
- C. A has OAM, B has no OAM, C has no OAM and D has no OAM.
- D. A has no OAM, B has OAM, C has no OAM and D has no OAM.

Ans: (A)

Q27. Magnetic susceptibility plot of a dinuclear Fe^{II} compound (Molecular structure and magnetic data are given below for $[Fe(bithiazole)(NCS)_2]_2(bpym)]$ are shown below. In the curve A, B and C respectively correspond to


```
A. LS-Fe1 –LS –Fe2, LS-Fe1 –HS –Fe2 and HS-Fe1 –HS –Fe2
```

- B. LS-Fe1 –LS –Fe2, LS-Fe1 –LS –Fe2 and HS-Fe1 –LS –Fe2
- C. LS-Fe1 –LS –Fe2, HS-Fe1 –HS –Fe2 and HS-Fe1 –HS –Fe2
- D. LS-Fe1 –HS –Fe2, LS-Fe1 –HS –Fe2 and LS-Fe1 –HS –Fe2

PS. Here HS and LS refer to high-spin and low-spin state of Fe^{II} ions, respectively.

Ans (A)

Q28. Magnetic susceptibility plot of compounds A and B which follows Curie law are given below. Choose the correct set of compound(s) which fit the data provided.

- (a) $[Mn(H_2O)_4]^{3+}$; $[Co(PPh_3)_2(PMe_3)_4]$
- (b) [Cr(H₂O)₆]²⁺; [Fe(CN)₆]³⁻ (c) [FeCl₄]²⁻; [Ti(H₂O)₆]³⁺
- (d) $[MnCl_4]^-$; $[RuF_6]^{3-}$

Ans: a-d

Q29. Two dinuclear Cu^{II}-Ni^{II} compounds I and II with their metal-ligand bond distances are given below (Å). Using appropriate orbital diagrams, predict the nature of exchange coupling in these two complexes.

Rubrics New Marks = 0 / 2 Old Marks = 0.00				
	Compound I antiferromagnetic	0.5	Ø	
	compound II ferromagnetic	0.5	Ø	
	Correct orbital diagram for Compound I (see model answer)	0.5	Ø	
	Correct orbital diagram for Compound II (see model answer)	0.5	Ø	
	Wrong answer	0	Ø	

Antiferromagnetic as two orbitals overlap

ferromagnetic as NO two orbitals overlap

Q30. Which of the following species is NOT a reactive oxygen species (ROS)?

A. H_2O_2

B. $O_2^{\bullet -}$

C. OH-

D. OH•

Answer: C

Q31. Which of the following protein state(s) is/are stable in the tissue ($p_{02} \sim 20$ -40 mm of Hg)?

- A. Oxy-hemoglobin
- B. Oxy-myoglobin
- C. Deoxy-hemoglobin
- D. Deoxy-myoglobin

Answer: B, C

Q32. Which of the following factor(s) influence the *bent mode* of O_2 binding to iron centre present in haemoglobin?

- A. Fe-oxidation and spin-state
- B. O₂ frontier orbitals
- C. The presence of distal histidine
- D. The partial pressure of O_2

Answer: A, B and C