厦门大学高等代数教案 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

第四章 复习题

1. 设 V 是数域 F 的一维线性空间. 证明: 从 V 到本身的映射 φ 是线性映射的充分必要条件是: 存在 $c \in F$, 使得对任意的 $\alpha \in V$, 都有 $\varphi(\alpha) = c\alpha$.

证明: 充分性显然.

必要性 因为 V 是数域 F 的一维线性空间,所以存在 $0 \neq \alpha_0 \in V$,且 α_0 是 V 的一个基. 因此对 V 中任意向量 α ,存在 $a \in F$,使得 $\alpha = a\alpha_0$. 而 φ 是 V 到自身的线性映射,所以 $\varphi(\alpha_0) \in V$,从而存在 $c \in F$,使得 $\varphi(\alpha_0) = c\alpha_0$. 进而 $\varphi(\alpha) = \varphi(a\alpha_0) = a\varphi(\alpha_0) = ac\alpha_0 = c\alpha$. \square

2. 设 n 维线性空间 V 的线性变换 φ 在任意一个基下的矩阵都相同,则 $\varphi = cid_V$, 其中 $c \in F$.

证明:设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 V 的一个基. V 的线性变换 φ 在该基下的矩阵 为 A, 即 $\varphi(\alpha_1, \alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)A$. 设 $\beta_1, \beta_2, \dots, \beta_n$ 是 V 的另一个基, $(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)P$, 则 P 可逆. 从而 $\varphi(\beta_1, \beta_2, \dots, \beta_n) = (\beta_1, \beta_2, \dots, \beta_n)P^{-1}AP$. 但由已知 φ 在 $\beta_1, \beta_2, \dots, \beta_n$ 下的矩阵也是 A, 因此 $A = P^{-1}AP$, 进而 PA = AP. 所以已知条件等价于对任意的可逆矩阵 P, PA = AP. 由第一章知识知矩阵 A 必为数量阵,设为 CE,故 $\varphi = Cid_V$. \square

3. 设 φ 是数域 $F \perp n$ 维线性空间 $V \perp$ 的线性变换,满足

$$a_n \varphi^n + a_{n-1} \varphi^{n-1} + \dots + a_2 \varphi^2 + a_1 \varphi + a_0 \mathrm{id}_V = 0,$$

其中 $a_i \in F$, $i = 0, 1, 2, \dots, n$. 设 $a_0 \neq 0$. 求证 φ 是可逆变换.

证明: (法一) 因 φ 是线性变换, 且 $a_0 \neq 0$, 故可定义 $\psi = -\frac{a_n}{a_0} \varphi^{n-1} - \frac{a_{n-1}}{a_0} \varphi^{n-2} - \cdots - \frac{a_2}{a_0} \varphi - \frac{a_1}{a_0} \mathrm{id}_V$, 则 ψ 是 V 的线性变换, 且由 $a_n \varphi^n + a_{n-1} \varphi^{n-1} + \cdots + a_2 \varphi^2 + a_1 \varphi + a_0 \mathrm{id}_V = 0$, 直接计算得 $\varphi \psi = \mathrm{id}_V = \psi \varphi$, 因此 φ 可逆.

(法二) 设 $\dim V = n$, 取定 V 的一个基 $\xi_1, \xi_2, \cdots, \xi_n$, 设 $\varphi(\xi_1, \xi_2, \cdots, \xi_n) = (\xi_1, \xi_2, \cdots, \xi_n)A$, 则根据 $\mathcal{L}(V) \cong F^{n \times n}$ 知 $a_n A^n + a_{n-1} A^{n-1} + \cdots + a_1 A + a_0 E_n = 0$. 因此

$$E_n = -\frac{1}{a_0}(a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A) = A(-\frac{a_n}{a_0} A^{n-1} - \frac{a_{n-1}}{a_0} A^{n-2} - \dots - \frac{a_1}{a_0} E_n),$$

从而 Λ 可逆. 故由 $\mathcal{L}(V) \cong F^{n \times n}$ 可知 φ 可逆. \square

4. 证明

$$W = \{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) \ | \ a,b \in \mathbb{R} \} \cong \mathbb{R}^2.$$

证明: 因 $W=\{\left(egin{array}{cc}a&b\\-b&a\end{array}\right)\parallel a,b\in\mathbb{R}\},$ 则 $\dim W=2=\dim\mathbb{R}^2$. 所以 $W=\{\left(egin{array}{cc}a&b\\-b&a\end{array}\right)\mid a,b\in\mathbb{R}\}\cong\mathbb{R}^2$. \Box

5. 设 $\alpha_1, \alpha_2, \dots, \alpha_s, \beta_1, \beta_2, \dots, \beta_t \in F^n$, 且

$$\begin{cases} \beta_1 = a_{11}\alpha_1 + a_{21}\alpha_2 + \dots + a_{s1}\alpha_s \\ \beta_2 = a_{12}\alpha_1 + a_{22}\alpha_2 + \dots + a_{s2}\alpha_s \\ \dots & \dots \\ \beta_t = a_{1t}\alpha_1 + a_{2t}\alpha_2 + \dots + a_{st}\alpha_s \end{cases}$$

上式可记为

$$(\beta_1, \beta_2, \cdots, \beta_t) = (\alpha_1, \alpha_2, \cdots, \alpha_s)A.$$

记 $A = (a_{ij}) = (A_1, A_2, \dots, A_t) \in F^{s \times t}$. 设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关,证明: $\beta_1, \beta_2, \dots, \beta_t$ 线性无关的充分必要条件是 A_1, A_2, \dots, A_t 线性无关.

证明:记 $U=\langle \alpha_1,\alpha_2,\cdots,\alpha_s\rangle$,因 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 是 F^n 上 s 个线性无关向量,所以 U 是 F上 s 维线性空间,且 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 是 U 的一个基.已知条件等价于 A_i 是 β_i 在基 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 下的坐标 $(i=1,2,\cdots,t)$,由同构即得 $\beta_1,\beta_2,\cdots,\beta_t$ 线性无关的充分必要条件是 A_1,A_2,\cdots,A_t 线性无关.

6. 证明:有限维线性空间 V 的任意子空间 U 都是 V 上某个线性变换的核;有限维线性空间 V 的任意子空间 U 都是 V 上某个线性变换的像.

证明: 设 ξ_1, \dots, ξ_r 是 U 的一个基, 将其扩为 V 的一个基 $\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n$. 定义 $\varphi: V \to V, \sum_{i=1}^n a_i \xi_i \mapsto \sum_{i=r+1}^n a_i \xi_i$, 则 φ 是 V 的线性变换, 且 $U = \operatorname{Ker} \varphi$. 定义 $\psi: V \to V, \sum_{i=1}^n a_i \xi_i \mapsto \sum_{i=1}^r a_i \xi_i$, 则 ψ 是 V 的线性变换, 且 $U = \operatorname{Im} \psi$.

7. 设 φ 是 n 维线性空间 V 上的线性变换, 则

- (1) $\operatorname{Ker}\varphi \subseteq \operatorname{Ker}\varphi^2 \subseteq \operatorname{Ker}\varphi^3 \subseteq \cdots \subseteq \operatorname{Ker}\varphi^m \subseteq \cdots$;
- (2) $\operatorname{Im}\varphi \supseteq \operatorname{Im}\varphi^2 \supseteq \operatorname{Im}\varphi^3 \supseteq \cdots \supset \operatorname{Im}\varphi^m \supset \cdots$:

- (3) 存在正整数 s, 使得 $\operatorname{Ker}\varphi^s = \operatorname{Ker}\varphi^{s+1}$;
- (4) 存在正整数 t, 使得 $\text{Im}\varphi^t = \text{Im}\varphi^{t+1}$;
- (5) 若 $\operatorname{Ker}\varphi^s = \operatorname{Ker}\varphi^{s+1}$, 则对于任意的正整数 i, 有 $\operatorname{Ker}\varphi^s = \operatorname{Ker}\varphi^{s+i}$;
- (6) 若 $\operatorname{Im}\varphi^t = \operatorname{Im}\varphi^{t+1}$,则对于任意的正整数 i,有 $\operatorname{Im}\varphi^t = \operatorname{Im}\varphi^{t+i}$:
- (7) $\operatorname{Ker}\varphi^s = \operatorname{Ker}\varphi^{s+1}$ 的充分必要条件是 $\operatorname{Im}\varphi^s = \operatorname{Im}\varphi^{s+1}$.
- (8) 若 $\operatorname{Ker}\varphi^s = \operatorname{Ker}\varphi^{s+1}$, 则 $V = \operatorname{Ker}\varphi^s \oplus \operatorname{Im}\varphi^s$.

证明: (1) 要证 $\operatorname{Ker}\varphi \subseteq \operatorname{Ker}\varphi^2 \subseteq \operatorname{Ker}\varphi^3 \subseteq \cdots \subseteq \operatorname{Ker}\varphi^m \subseteq \cdots$, 只要证明 $\operatorname{Ker}\varphi^m \subseteq \operatorname{Ker}\varphi^{m+1}(m=1,2,\cdots)$ 即可.

对任意 $\alpha \in \operatorname{Ker}\varphi^m$,则 $\varphi^m(\alpha) = 0$,有 φ 是线性变换,所以 $\varphi^{m+1}(\alpha) = \varphi(\varphi^m(\alpha)) = \varphi(0) = 0$,故 $\alpha \in \operatorname{Ker}\varphi^{m+1}$. 这就证明了 $\operatorname{Ker}\varphi^m \subseteq \operatorname{Ker}\varphi^{m+1}$.

- (2) 要证 $\operatorname{Im}\varphi^2 \supseteq \operatorname{Im}\varphi^3 \supseteq \cdots \supseteq \operatorname{Im}\varphi^m \supseteq \cdots$, 只要证 $\operatorname{Im}\varphi^s \supseteq \operatorname{Im}\varphi^{s+1}(s=1,2,\cdots)$ 即可.
- (法一) 因 φ 是 V 的线性变换,所以 $\operatorname{Im}\varphi \in V$,从而 $\operatorname{Im}\varphi^{s+1} = \varphi^{s+1}(V) = \varphi^s(\varphi(V)) = \varphi^s(\operatorname{Im}\varphi) \subseteq \varphi^s(V) = \operatorname{Im}\varphi^s$.
- (法二) 对任意 $\beta \in \operatorname{Im} \varphi^{s+1}$, 则存在 $\alpha \in V$, 使得 $\beta = \varphi^{s+1}(\alpha)$. 因 φ 是 V 的线性变换,所以 $\varphi(\alpha) \in V$, 从而 $\beta = \varphi^s(\varphi(\alpha)) \in \operatorname{Im} \varphi^s$, 故 $\operatorname{Im} \varphi^s \supseteq \operatorname{Im} \varphi^{s+1}$.
- (3) 由 (1) 可有 $\operatorname{Ker}\varphi\subseteq\operatorname{Ker}\varphi^2\subseteq\operatorname{Ker}\varphi^3\subseteq\cdots\subseteq\operatorname{Ker}\varphi^m\subseteq\cdots$ 由于 V 是有限维, $\dim\operatorname{Ker}\varphi$ 是常数,且维数不能为负数,因此上式不能无限不能下去,从而一定存在正整数 s 使得 $\dim\operatorname{Ker}\varphi^s=\dim\operatorname{Ker}\varphi^{s+1}$,但 $\operatorname{Ker}\varphi^s\subseteq\operatorname{Ker}\varphi^{s+1}$,所以 $\operatorname{Ker}\varphi^s=\operatorname{Ker}\varphi^{s+1}$.
 - (4) 方法同(3)
 - (5) 由 (3) 用数学归纳法证明:显然当 i = 1 时结论成立.

归纳假设结论对 $j \le i-1$ 成立,即 $\operatorname{Ker}\varphi^s = \operatorname{Ker}\varphi^{s+j}(j \le i-1)$.

再证 i 时结论成立. 事实上, 有

$$\operatorname{Ker}\varphi^{s} = \operatorname{Ker}\varphi^{s+(i-1)} \subseteq \operatorname{Ker}\varphi^{s+i}.$$
 (1)

对任意 $\beta \in \text{Ker}\varphi^{s+i}$, 则有 $0 = \varphi^{s+i}(\beta) = \varphi^{s+(i-1)}(\varphi(\beta))$, 即 $\varphi(\beta) \in \text{Ker}\varphi^{s+(i-1)} = \text{Ker}\varphi^s$. 所以 $\varphi^{s+1}(\beta) = 0$, $\beta \in \text{Ker}\varphi^{s+1} = \text{Ker}\varphi^s$, 此即

$$\operatorname{Ker}\varphi^{s+i} \subseteq \operatorname{Ker}\varphi^{s}.$$
 (2)

- 由 (1) 和 (2) 式可得 $\operatorname{Ker}\varphi^{s+i} = \operatorname{Ker}\varphi^s$.
 - (6) 方法同 (5).
- (7) (必要性) 由 dimKerφ^s + dimImφ^s = dimV = dimKerφ^{s+1} + dimImφ^{s+1}, 且 Kerφ^s = Kerφ^{s+1}, 故 dimKerφ^s = dimKerφ^{s+1}, 从而 dimImφ^s = dimImφ^{s+1}. 又因 Imφ^{s+1} ⊆ Imφ^s, 故得 Imφ^{s+1} = Imφ^s.

(充分性) 若 $\operatorname{Im}\varphi^{s+1} = \operatorname{Im}\varphi^s$. 由 $\operatorname{dim}\operatorname{Ker}\varphi^s + \operatorname{dim}\operatorname{Im}\varphi^s = \operatorname{dim}\operatorname{V} = \operatorname{dim}\operatorname{Ker}\varphi^{s+1} + \operatorname{dim}\operatorname{Im}\varphi^{s+1}$,得 $\operatorname{dim}\operatorname{Ker}\varphi^s = \operatorname{dim}\operatorname{Ker}\varphi^{s+1}$,而 $\operatorname{Ker}\varphi^s \subseteq \operatorname{Ker}\varphi^{s+1}$,所以 $\operatorname{Ker}\varphi^s = \operatorname{Ker}\varphi^{s+1}$.

- (8) 对任意 $\alpha \in V$, 因为 $\varphi^m(\alpha) \in \operatorname{Im} \varphi^m = \operatorname{Im} \varphi^{2m}$, 所以存在 $\beta \in V$, 使 得 $\varphi^m(\alpha) = \varphi^{2m}(\beta)$, $\alpha = \varphi^m(\beta) + (\alpha \varphi^m(\beta))$. 而 $\varphi^m(\alpha \varphi^m(\beta)) = 0$, 即 $\alpha \varphi^m(\beta) \in \operatorname{Ker} \varphi^m$. 即证明了 $V = \operatorname{Im} \varphi^m + \operatorname{Ker} \varphi^m$. 若 $\alpha \in \operatorname{Ker} \varphi^m \cap \operatorname{Im} \varphi^m$, 则 $\alpha = \varphi^m(\beta), \varphi^m(\alpha) = 0$, 于是 $0 = \varphi^m(\alpha) = \varphi^{2m}(\beta)$, 即 $\beta \in \operatorname{Ker} \varphi^{2m} = \operatorname{Ker} \varphi^m$, 于是 $\alpha = \varphi^m(\beta) = 0$. 这就证明了 $\operatorname{Im} \varphi^m \cap \operatorname{Ker} \varphi^m = 0$. 所以 $V = \operatorname{Im} \varphi^m \oplus \operatorname{Ker} \varphi^m$. \square
- 8. 设 φ 是 n 维线性空间的线性变换,满足 $\dim \text{Im} \varphi^2 = \dim \text{Im} \varphi$,求证 $\text{Im} \varphi \cap \text{Ker} \varphi = 0$.

证明: 因 $\dim \operatorname{Im} \varphi^2 = \dim \operatorname{Im} \varphi$, $\dim \operatorname{Im} \varphi^2 + \dim \operatorname{Ker} \varphi^2 = n = \dim \operatorname{Im} \varphi + \dim \operatorname{Ker} \varphi$, 则得 $\dim \operatorname{Ker} \varphi^2 = \dim \operatorname{Ker} \varphi$. 又因 $\operatorname{Ker} \varphi \subseteq \operatorname{Ker} \varphi^2$, 所以 $\operatorname{Ker} \varphi = \operatorname{Ker} \varphi^2$.

设 $\alpha \in \text{dimIm}\varphi \cap \text{Ker}\varphi$, 则存在 β 使得 $\alpha = \varphi(\beta)$, 且 $\varphi(\alpha) = 0$. 所以 $\varphi^2(\beta) = \varphi(\alpha) = 0$, 即 $\beta \in \text{Ker}\varphi^2 = \text{Ker}\varphi$, 故 $\alpha = \varphi(\beta) = 0$. 这就证明了 $\text{Im}\varphi \cap \text{Ker}\varphi = 0$.

- 9. 设 φ, ψ 是线性空间 V 的两个线性变换,且 $\varphi^2 = \varphi, \psi^2 = \psi$.则
- (1) $\text{Im}\varphi = \text{Im}\psi$ 的充分必要条件是 $\varphi\psi = \psi$, $\psi\varphi = \varphi$;
- (2) $\operatorname{Ker}\varphi = \operatorname{Ker}\psi$ 的充分必要条件是 $\varphi\psi = \varphi$, $\psi\varphi = \psi$.

证明: (1) (法一) 由 $\varphi \psi = \psi$ 得 $\operatorname{Im} \psi \subseteq \operatorname{Im} \varphi$. 同理由 $\psi \varphi = \varphi$ 得 $\operatorname{Im} \varphi \subseteq \operatorname{Im} \psi$. 所以 $\operatorname{Im} \varphi = \operatorname{Im} \psi$.

反之,若 $\operatorname{Im}\varphi = \operatorname{Im}\psi$,则对任意的 $\alpha \in V, \psi(\alpha) \in \operatorname{Im}\psi = \operatorname{Im}\varphi$. 因此,存在 $\beta \in V, \psi(\alpha) = \varphi(\beta)$. 又因为 $\varphi^2 = \varphi$,故 $\varphi\psi(\alpha) = \varphi^2(\beta) = \varphi(\beta) = \psi(\alpha)$. 此即 $\varphi\psi = \psi$. 同理可证 $\psi\varphi = \varphi$.

(法二) 充分性 设 $\dim V = n$. 因为 $\psi = \varphi \psi$, 所以 $\operatorname{Im} \psi = \varphi(V) = \varphi \psi(V) \subseteq$

 $\varphi(V) = \operatorname{Im}\varphi$, 同理, 由 $\varphi = \psi\varphi$, 可得 $\operatorname{Im}\varphi \subseteq \operatorname{Im}\psi$. 故 $\operatorname{Im}\varphi = \operatorname{Im}\psi$.

必要性 设 $\eta_1, \eta_2, \cdots, \eta_r$ 是 $\operatorname{Im}\varphi(\mathbb{P} \operatorname{Im}\psi)$ 的一个基. 且设 $\alpha_i, \beta_i \in V, \varphi(\alpha_i) = \psi(\beta_i) = \eta_i, \ (i=1,2,\cdots,r), \ \text{则} \ \alpha_1,\alpha_2,\cdots,\alpha_r \ \text{和} \ \beta_1,\beta_2,\cdots,\beta_r \ \text{均线性无关,} \ \text{且由}$ $\varphi^2 = \varphi, \ \psi^2 = \psi, \ \text{知} \ \varphi(\eta_i) = \varphi^2(\alpha_i) = \varphi(\alpha_i) = \eta_i, \ \text{同理} \ \psi(\eta_i) = \eta_i, \ (i=1,2,\cdots,r).$ 又设 $\alpha_{r+1},\cdots,\alpha_n$ 是 $\operatorname{Ker}\varphi$ 的一个基. 现证 $\eta_1,\cdots,\eta_r,\alpha_{r+1},\cdots,\alpha_n$ 是 V 的一个基. 事 实上,设 $a_1\eta_1+\cdots+a_r\eta_r+a_{r+1}\alpha_{r+1}+\cdots+a_n\alpha_n=0.$ 因 φ 是线性变换,将其作用于上 式两边得 $0=a_1\varphi(\eta_1)+\cdots+a_r\varphi(\eta_r)=a_1\varphi^2(\alpha_1)+\cdots+a_r\varphi^2(\alpha_r)=a_1\eta_1+\cdots+a_r\eta_r,$ 因此 $a_1=\cdots=a_r=0,$ 进而 $a_{r+1}\alpha_{r+1}+\cdots+a_n\alpha_n=0,$ 从而 $a_{r+1}=\cdots=a_n=0.$

对任意 $\alpha \in V$, $\alpha = \sum_{i=1}^r a_i \eta_i + \sum_{i=r+1}^n a_i \alpha_i$, $\varphi(\alpha) = \sum_{i=1}^r a_i \varphi(\eta_i) = \sum_{i=1}^r a_i \eta_i$, $\psi \varphi(\alpha) = \psi(\sum_{i=1}^r a_i \eta_i) = \sum_{i=1}^r a_i \eta_i = \varphi(\alpha)$, 因此 $\varphi = \psi \varphi$. 同理可证 $\psi = \varphi \psi$.

(2) 充分性 设 $\varphi\psi = \varphi, \psi\varphi = \psi$. 对任意的 $\alpha \in \text{Ker}\varphi, \varphi(\alpha) = 0$, 故 $\psi(\alpha) = \psi\varphi(\alpha) = 0$. 因此 $\alpha \in \text{Ker }\psi, \text{Ker }\varphi \subseteq \text{Ker}\psi$. 同理 $\text{Ker}\psi \subseteq \text{Ker }\varphi$. 因此 $\text{Ker}\varphi = \text{Ker}\psi$.

必要性 (法一) 若 $Ker\varphi = Ker\psi$, 对任意的 $\alpha \in V$, 有

$$\psi(\alpha - \psi(\alpha)) = \psi(\alpha) - \psi^{2}(\alpha) = 0,$$

因此 $\alpha - \psi(\alpha) \in \text{Ker } \psi = \text{Ker } \varphi$, 即 $\varphi(\alpha - \psi(\alpha)) = 0$. 也就是 $\varphi(\alpha) = \varphi\psi(\alpha)$, $\varphi = \psi\varphi$. 同理可证 $\psi\varphi = \psi$.

(法二) 设 $\dim V = n$, ξ_{r+1}, \dots, ξ_n 是 $\operatorname{Ker} \psi$ 的一个基,因 $\operatorname{Ker} \varphi = \operatorname{Ker} \psi$, 所以 $\varphi(\xi_i) = 0$, $(i = r+1, \dots, n)$. 将其扩为 V 的一个基 $\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n$, 则 $\psi(\xi_1), \dots, \psi(\xi_r)$ 线性无关。现证 $\psi(\xi_1), \dots, \psi(\xi_r), \xi_{r+1}, \dots, \xi_n$ 线性无关,从而是 V 的一个基。事实上,若

$$a_1\psi(\xi_1) + \dots + a_r\psi(\xi_r) + a_{r+1}\xi_{r+1} + \dots + a_n\xi_n = 0$$
 (3)

将线性变换 ψ 作用于上式两边,得 $a_1\psi^2(\xi_1)+\cdots+a_r\psi^2(\xi_r)=0$. 又因为 $\psi^2=\psi$, 因此 $\psi^2(\xi_i)=\psi(\xi_i)$, $(i=1,\cdots,r)$, 上式即 $a_1\psi(\xi_1)+\cdots+a_r\psi(\xi_r)=0$, 故 $a_1=\cdots=a_r=0$, 代入式 (3), 进而 $a_{r+1}=\cdots=a_n=0$.

对 V 中任意向量 α , $\alpha = \sum_{i=1}^{r} a_i \psi(\xi_i) + \sum_{i=r+1}^{n} a_i \xi_i$, $\varphi(\alpha) = \sum_{i=1}^{r} a_i \varphi \psi(\xi_i)$, $\varphi \psi(\alpha) = \varphi(\sum_{i=1}^{r} a_i \psi^2(\xi_i)) = \varphi(\sum_{i=1}^{r} a_i \psi(\xi_i)) = \sum_{i=1}^{r} a_i \varphi \psi(\xi_i)$, 故 $\varphi \psi = \varphi$. 同理可证, $\psi \varphi = \psi$. \square

10. 设 V 是数域 F 上 n 维线性空间, $\varphi_1, \varphi_2, \dots, \varphi_s$ 是非零线性变换,求证: 存在 $\alpha \in V$,使得 $\varphi_i(\alpha) \neq 0$, $i = 1, 2, \dots, s$.

证明: 依题意,由于每个 $\varphi_i \neq 0$, 故 $\operatorname{Ker} \varphi_i$ 是 V 的真子空间. 由第三章总复 习题第 7 题可知,有限个真子空间 $\operatorname{Ker} \varphi_i$ 不能覆盖 V. 因此必存在 $\alpha \in V$,使得 α 不属于任意一个 $\operatorname{Ker} \varphi_i$,故 $\varphi_i(\alpha) \neq 0$. \square

11. 设 V 是数域 F 上 n 维线性空间, $\varphi_1, \varphi_2, \dots, \varphi_s$ 是两两不同的线性变换,求证: 存在 $\alpha \in V$,使得 $\varphi_1(\alpha), \varphi_2(\alpha), \dots, \varphi_s(\alpha)$ 两两不同.

证明: 依题意, 令 $V_{ij} = \{v \in V | \varphi_i(v) = \varphi_j(v)\}(i < j)$, 其中 $i, j \in \{1, 2, ..., k\}$. 易知 $V_{ij} = \operatorname{Ker}(\varphi_i - \varphi_j)$, 故 V_{ij} 是 V 的子空间. 又 $\varphi_1, \varphi_2, ..., \varphi_k$ 两两不同,故 $\operatorname{Ker}(\varphi_i - \varphi_j) \neq V$,即每个 V_{ij} 都是 V 的真子空间. 而这些 V_{ij} 总共只有有限 个,故由第三章总复习题第 7 题知,必存在 $\alpha \in V$ 不属于所有的 V_{ij} 的并. 此时 $\varphi_1(\alpha), \varphi_2(\alpha), ..., \varphi_k(\alpha)$ 两两不相同. \square

12. 设 φ 是 n 维线性空间 V 上的线性变换, φ 在一个基 $\xi_1, \xi_2, \dots, \xi_n$ 下的矩阵是

$$\begin{pmatrix} a & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & a & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & a \end{pmatrix}.$$

求证:

- (1) 设 $U \neq V$ 的 φ 子空间,且 $\xi_n \in U$,则 U = V;
- (2) 对于任意的非零 φ 子空间 U, 总有 $\xi_1 \in U$;
- (3) V 不能分解为两个非平凡的 φ 子空间的直和;
- (4) 求 φ 的所有不变子空间.

证明: (1) 依题意,

$$\varphi(\xi_1, \xi_2, \cdots, \xi_n) = (\xi_1, \xi_2, \cdots, \xi_n) \begin{pmatrix} a & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & a & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & a \end{pmatrix},$$

可知 $\varphi(\xi_1) = a\xi_1, \ \varphi(\xi_2) = \xi_1 + a\xi_2, \ \cdots, \ \varphi(\xi_n) = \xi_{n-1} + a\xi_n.$

若设 U 为包含 ξ_n 的 φ — 不变子空间,故由 $\xi_n \in U$,得 $\varphi(\xi_n) \in U$,故 $\xi_{n-1} = \varphi(\xi_n) - a\xi_n \in U$,进而 $\varphi(\xi_{n-1}) \in U$,得 $\xi_{n-2} \in U$, · · ·,以此类推可得出 $\xi_1, \xi_2, \cdots, \xi_n \in U$,故只能 U = V,即得 V 中包含 ξ_n 的 φ — 不变子空间只有 V 自身.

- (2) 设 U 为任意一个非零 φ 不变子空间,任取一个非零向量 $\alpha \in U$. 由 $\alpha \in V$,可设 $\alpha = a_1\xi_1 + a_2\xi_2 + \cdots + a_n\xi_n$,则 a_1, a_2, \cdots, a_n 中至少有一个不为零,不妨设 a_i 是 $a_n, a_{n-1}, \cdots, a_1$ 中第一个不为零者,此时 $\alpha = a_1\xi_1 + a_2\xi_2 + \cdots + a_i\xi_i$.则有 $\varphi(\alpha) = a_1\varphi(\xi_1) + a_2\varphi(\xi_2) + \cdots + a_i\varphi(\xi_i) = a_2\xi_1 + a_3\xi_2 + \cdots + a_i\xi_{i-1} + a\alpha \in U$.因 U 是 V 的子空间,所以 $a_2\xi_1 + a_3\xi_2 + \cdots + a_i\xi_{i-1} \in U$,将其仍记为 α ,从而 $\varphi(\alpha) = a_3\xi_1 + a_4\xi_2 + \cdots + a_i\xi_{i-2} + a\alpha \in U$,所以 $a_3\xi_1 + a_4\xi_2 + \cdots + a_i\xi_{i-2} \in U$, …,以此类推,我们有 $a_i\xi_1 \in U$. 由于 $a_i \neq 0$,因此 $\xi_1 \in U$,命题得证.
- (3) 由 (2), 任意两个两个非平凡 φ 不变子空间 V_1, V_2 必包含 ξ_1 , 故 $V_1 \cap V_2 \neq 0$, 从而 V 不能分解为两个非平凡 φ 不变子空间的直和.
 - (4) $0, U_i = \langle \xi_1, \dots, \xi_i \rangle, (i = 1, 2, \dots, n)$ 是 φ 的不变子空间. \square
- 13. 设 A, B 都是 $m \times n$ 矩阵, 求证: 线性方程组 AX = 0 和 BX = 0 同解的充分必要条件是存在 m 阶可逆矩阵 P. 使得 A = PB.

证明: 因为 P 是可逆矩阵, 充分性显然. 下证必要性.

(法一) 因为方程组 AX = 0, BX = 0 同解. 自然地, AX = 0 的解必是 BX = 0 的解,因此 AX = 0 和 $\binom{A}{B}X = 0$ 同解,进而 B 的行向量可由 A 的行向量线性表出。同理, A 的行向量也可由 B 的行向量线性表出,故存在 m 阶非异阵 P, 使 B = PA. 事实上,设 A 秩为 r, 由于 A, B 行向量组等价,所以 A, B 的行向量组的极大线性无关组变到前 r 行,再通过矩阵行的消法变换将 A 的其余行消为零,此过程用矩阵表示即存在可逆矩阵 S, 使得 $SA = \binom{A_1}{0}$. 同理,对矩阵 B, 存在可逆矩阵 Q, 使得 $TB = \binom{B_1}{0}$,其中 A_1 , B_1 都是 $r \times n$ 阶行满秩矩阵,且他们的行向量组等价.因此 A_1 的行向量均可由 B_1 的行向量线性表示,该关系用矩阵表示就是:存在 r 阶方阵 W_1 使得 $A_1 = W_1B_1$. 若 W_1 不可逆,即 $r(W_1) < r$,则 $r(A_1) < r$,与 $r(A_1) = r$ 矛盾.故 W_1 可逆.从而直接计算可知,只

要令 $P=S^{-1}\left(\begin{array}{cc}W_1&0\\0&E_{m-r}\end{array}\right)T$,即有 P 可逆,且 A=PB.

(法二) 设 $A, B \in F^{m \times n}$. 定义 $\varphi : F^n \to F^m$, $X \mapsto AX$, $\psi : F^n \to F^m$, $X \mapsto BX$. $\epsilon_1, \dots, \epsilon_n$ 和 $\epsilon_1, \dots, \epsilon_m$ 分别是 F^n 和 F^m 的标准单位列向量,则

$$\varphi(\epsilon_1, \dots, \epsilon_n) = (\epsilon_1, \dots, \epsilon_m) A, \tag{4}$$

$$\psi(\epsilon_1, \dots, \epsilon_n) = (\epsilon_1, \dots, \epsilon_m) B. \tag{5}$$

设 $X_{r+1}, X_{r+2}, \dots, X_n$ 是 $\operatorname{Ker}\varphi$ (也是 $\operatorname{Ker}\psi$) 的一个基,将其扩为 F^n 的一个基 $X_1, \dots, X_r, X_{r+1}, \dots, X_n$. 则 $\varphi(X_1), \dots, \varphi(X_r)$ 线性无关,可扩为 W 的一个基 $Y_1 = \varphi(X_1), \dots, Y_r = \varphi(X_r), Y_{r+1}, \dots, Y_m$. 同理 $\psi(X_1), \dots, \psi(X_r)$ 线性无关,可扩为 W 的一个基 $Z_1 = \psi(X_1), \dots, Z_r = \psi(X_r), Z_{r+1}, \dots, Z_m$. 定义 $\sigma: W \to W$, $\sum_{i=1}^m a_i Z_i \mapsto \sum_{i=1}^m a_i Y_i$, 则 σ 是可逆变换. 至此有如下关系成立:

$$\varphi(X_1, \dots, X_n) = (Y_1, \dots, Y_m) \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix},$$

$$\psi(X_1, \dots, X_n) = (Z_1, \dots, Z_m) \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix},$$

$$\sigma(Z_1, \dots, Z_m) = (Y_1, \dots, Y_m).$$

从而 $\varphi = \sigma \psi$, 且

$$\sigma(\varepsilon_1, \dots, \varepsilon_m) = (\varepsilon_1, \dots, \varepsilon_m) P, \tag{6}$$

其中 $P = (Y_1, \dots, Y_m)(Z_1, \dots, Z_m)^{-1}$ 可逆. 因此由 (4)-(6) 及同构知 A = PB.

(法三) 设 r(A) = r, 且设 n 维列向量 $u_{r+1}, u_{r+2}, \cdots, u_n$ 是 AX = 0 的一个基础解系,将其扩为 F^n 的一个基 $u_1, u_2, \cdots, u_r, u_{r+1}, u_{r+2}, \cdots, u_n$,则 Au_1, Au_2, \cdots, Au_r 线性无关.记 $U = (u_1, u_2, \cdots, u_r, u_{r+1}, u_{r+2}, \cdots, u_n)$, $A_1 = (Au_1, Au_2, \cdots, Au_r)$,则 U 可逆, A_1 列满秩,且 $AU = (A_1, 0)$. 同理,因为 BX = 0 与 AX = 0 同解,所以若记 $B_1 = (Bu_1, Bu_2, \cdots, Bu_r)$,则 B_1 列满秩,且 $BU = (B_1, 0)$. 注意到 A_1 和 B_1 同为 $m \times r$ 阶列满秩矩阵,因此存在 m 阶可逆矩阵 P_1, P_2 使得

$$P_1 A_1 = \left(\begin{array}{c} E_r \\ 0 \end{array}\right) = P_2 B_1.$$

故 $P_1AU = P_2BU$, 而 U 可逆, 因此令 $P = P_1^{-1}P_2$, 就有 P 可逆, 且 A = PB.

注 1: Au_1, Au_2, \cdots, Au_r 线性无关的证明. 若 $a_1Au_1 + a_2Au_2 + \cdots + a_rAu_r = 0$, 则 $A(a_1u_1 + a_2u_2 + \cdots + a_ru_r) = 0$, 即 $a_1u_1 + a_2u_2 + \cdots + a_ru_r$ 是 AX = 0 的 一个解,因此 $a_1u_1 + a_2u_2 + \cdots + a_ru_r = a_{r+1}u_{r+1} + a_{r+2}u_{r+2} + \ldots + a_nu_n$. 而 $u_1, u_2, \cdots, u_r, u_{r+1}, u_{r+2}, \cdots, u_n$ 线性无关,所以 $a_i = 0, (i = 1, 2, \cdots, n)$.

注 2: 若 $m \times r$ 矩阵 A_1 列满秩,则存在可逆矩阵 P_1 使得 $P_1A_1 = \begin{pmatrix} E_r \\ 0 \end{pmatrix}$. 事实上,对 A_1 ,存在可逆矩阵 S 和 T 使得 $A_1 = S \begin{pmatrix} E_r \\ 0 \end{pmatrix} T$. 因此

$$A_1 = S \begin{pmatrix} E_r \\ 0 \end{pmatrix} T = S \begin{pmatrix} T \\ 0 \end{pmatrix} = S \begin{pmatrix} T & 0 \\ 0 & E_{m-r} \end{pmatrix} \begin{pmatrix} E_r \\ 0 \end{pmatrix},$$

$$\Leftrightarrow P_1 = \begin{pmatrix} T & 0 \\ 0 & E_{m-r} \end{pmatrix}^{-1} S^{-1}$$
,则 $P_1 A_1 = \begin{pmatrix} E_r \\ 0 \end{pmatrix}$.

(法四) 设 V, W 分别是数域 F 上的 n 维和 m 维线性空间, $\xi_1, \xi_2, \dots, \xi_n$ 和 $\eta_1, \eta_2, \dots, \eta_m$ 分别是 V 和 W 的一个基. 定义

$$\varphi: V \to W, \varphi(\xi_1, \xi_2, \cdots, \xi_n) = (\eta_1, \eta_2, \cdots, \eta_m) A, \tag{7}$$

$$\psi: V \to W, \psi(\xi_1, \xi_2, \cdots, \xi_n) = (\eta_1, \eta_2, \cdots, \eta_m)B, \tag{8}$$

则 φ 和 ψ 都是 V 到 W 的线性映射. 由同构知条件 AX = 0 和 BX = 0 同解等价于 $Ker\varphi = Ker\psi$. 设 $\zeta_{r+1}, \zeta_{r+2}, \cdots, \zeta_n$ 是 $Ker\varphi$ (也是 $Ker\psi$) 的一个基,将其扩为 V 的一个基 $\zeta_1, \cdots, \zeta_r, \zeta_{r+1}, \cdots, \zeta_n$. 则 $\varphi(\zeta_1), \cdots, \varphi(\zeta_r)$ 线性无关,可扩为 W 的一个基 $\alpha_1 = \varphi(\zeta_1), \cdots, \alpha_r = \varphi(\zeta_r), \alpha_{r+1}, \cdots, \alpha_m$. 同理 $\psi(\zeta_1), \cdots, \psi(\zeta_r)$ 线性无关,可扩为 W 的一个基 $\beta_1 = \psi(\zeta_1), \cdots, \beta_r = \psi(\zeta_r), \beta_{r+1}, \cdots, \beta_m$. 定义 $\sigma: W \to W$, $\sum_{i=1}^m a_i \beta_i \mapsto \sum_{i=1}^m a_i \alpha_i$,则 σ 是可逆变换. 至此有如下关系成立:

$$\varphi(\zeta_1, \dots, \zeta_n) = (\alpha_1, \dots, \alpha_m) \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix},$$

$$\psi(\zeta_1, \dots, \zeta_n) = (\beta_1, \dots, \beta_m) \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix},$$

$$\sigma(\beta_1, \dots, \beta_m) = (\alpha_1, \dots, \alpha_m),$$

从而 $\varphi = \sigma \psi$. 记

$$(\alpha_1, \dots, \alpha_m) = (\eta_1, \dots, \eta_m) S. (\beta_1, \dots, \beta_m) = (\eta_1, \dots, \eta_m) T.$$

故 S, T 可逆. 令 $P = ST^{-1}$, 则

$$\sigma: W \to W, \sigma(\eta_1, \eta_2, \cdots, \eta_m) = \sigma(\eta_1, \eta_2, \cdots, \eta_m)P \tag{9}$$

则由 (7)-(9) 及同构知 A = PB. \square

14. 记 V 是 n 维线性空间, U 是 m 维线性空间, $\varphi:V\to U$ 是线性映射. 求证: 存在线性映射 $\psi:U\to V$. 使得

$$\varphi\psi\varphi=\varphi,\quad \psi\varphi\psi=\psi.$$

证明: (法一) 设 ξ_{r+1}, \dots, ξ_n 是 $\operatorname{Ker}\varphi$ 的一个基, 将其扩为 V 的一个基 ξ_1, \dots, ξ_r , ξ_{r+1}, \dots, ξ_n . 则 $\varphi(\xi_1) \doteq \eta_1, \, \varphi(\xi_2) \doteq \eta_2, \, \dots, \, \varphi(\xi_r) \doteq \eta_r$ 线性无关,可扩为 U 的一个基 $\eta_1, \dots, \eta_r, \, \eta_{r+1}, \dots, \eta_m$,则 $\varphi(\sum_{i=1}^n a_i \xi_i) = \sum_{i=1}^r a_i \eta_i$.

定义 $\psi: U \to V$, 使得 $\psi(\sum_{i=1}^{m} a_i \eta_i) = \sum_{i=1}^{r} a_i \xi_i$, 则 ψ 是 U 到 V 的线性映射,且 $\varphi \psi \varphi(\sum_{i=1}^{n} a_i \xi_i) = \varphi \psi(\sum_{i=1}^{r} a_i \eta_i) = \varphi(\sum_{i=1}^{r} a_i \xi_i) = \sum_{i=1}^{r} a_i \eta_i = \varphi(\sum_{i=1}^{n} a_i \xi_i)$,故 $\varphi \psi \varphi = \varphi$. 同理可证 $\psi \varphi \psi = \psi$.

(法二) 对 V 到 U 的线性映射 φ , 存在 V 的基 $\xi_1, \xi_2, \cdots, \xi_n$ 和 U 的基 $\eta_1, \eta_2, \cdots, \eta_m$, 使得 φ 在这两个基下的矩阵为 $A = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}_{m \times n}$. 定义 U 到 V 的线性映射 ψ , 使得 $\psi(\eta_1, \eta_2, \cdots, \eta_m) = (\xi_1, \xi_2, \cdots, \xi_n)B$, 其中 $B = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}_{n \times m}$, 则 ABA = A, BAB = B. 由同构知 $\varphi \psi \varphi = \varphi$, $\psi \varphi \psi = \psi$.

(法三) 设 ξ_1,ξ_2,\cdots,ξ_n 和 $\eta_1,\eta_2,\cdots,\eta_m$ 分别是 V 和 U 的一个基, φ 在这两个基下的矩阵为 A. 对矩阵 A, 存在可逆矩阵 P 和 Q, 使得 $A=P\begin{pmatrix}E_r&0\\0&0\end{pmatrix}Q$, 令 $B=Q^{-1}\begin{pmatrix}E_r&0\\0&0\end{pmatrix}P^{-1}$, 则 ABA=A, BAB=B. 再令 U 到 V 的线性映射 ψ , 使得 $\psi(\eta_1,\eta_2,\cdots,\eta_m)=(\xi_1,\xi_2,\cdots,\xi_n)B$, 则由同构知 $\varphi\psi\varphi=\varphi$, $\psi\varphi\psi=\psi$. \square

(李小凤解答)