概率论与数理统计模拟试题(十二)

一、填空题(每小题3分,共5小题,满分15分)
1. 己知 $P(A) = 0.5$, $P(B) = 0.6$, $P(B A) = 0.8$, 则 $P(A \cup B) = $
2. 设随机变量 X 服从标准正态分布 $N(0,1)$,则 $Y=\mid X\mid$ 的概率密度
3. 设随机变量 X 服从参数为 λ 的泊松分布且 $P(X=3) = \frac{4}{3}e^{-2}$,则 $EX^2 = $
4. 二维随机向量 (X,Y) 服从 $D = \{(x,y) x+y \ge 1, 0 < x < 1, 0 < y < 1\}$ 有限区域上
的均匀分布,则根据切比晓夫不等式有: $P\left\{ \mid X+Y-\frac{4}{3} \mid \geq 3 \right\} \leq \underline{\hspace{1cm}}$.
5. 已知铝的密度 $X \sim N(\mu, \sigma^2)$,测量了 16 次,得 $\overline{x} = 2.705$, $s = 0.029$,在置
信度 0.95 下, μ 的置信区间为
二、选择题(每小题3分,共5小题,满分15分)
(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后
的括号内)
1. 袋中有5个黑球,3个白球,大小相同,一次随机摸出4个球,其中恰有3个白
球的概率为().
(A) $\frac{3}{8}$; (B) $(\frac{3}{8})^5(\frac{1}{8})$; (C) $(\frac{3}{8})^3(\frac{1}{8})$; (D) $\frac{5}{C_8^4}$
2. $P(C=k)=c\lambda^k e^{-\lambda}/k!$ $(k=0,2,4,\cdots)$ 是随机变量 X 的概率函数,则 λ,c 一定
满足().
(A) $\lambda > 0$; (B) $c > 0$; (C) $c\lambda > 0$; (D) $c > 0$ 且 $\lambda > 0$. 3. (X,Y) 为二维随机变量,则 $U = X + Y$, $V = X - Y$ 不相关的充要条件为 (
(A) $EX = EY$ (B) $EX^2 - (EX)^2 = EY^2 - (EY)^2$
(C) $EX^2 = EY^2$ (D) $EX^2 + (EX)^2 = EY^2 + (EY)^2$
4. 设随机变量 X 和 Y 都服从正态分布,且它们不相关,则()
(A) X 与 Y 一定独立; (B) (X, Y) 服从二维正态分布;
(C) X 与 Y 未必独立; (D) X+Y 服从一维正态分布
5. 设随机变量 $X \sim N(0,1), Y \sim N(1,4), 且 \rho_{XY} = 1, 则 ()$
(A) $P{Y = -2X - 1} = 1$; (B) $P{Y = 2X - 1} = 1$;

(C) $P{Y = -2X + 1} = 1$; (D) $P{Y = 2X + 1} = 1$.

三、 $(10\,

eta)$ 甲、乙进行比赛,每进行一次,胜者得一分,在一次比赛中,甲"胜"的概率为 α ,乙胜的概率为 $B(\alpha+\beta=1)$. 独立地进行比赛到有一人超过对方两分就停止(例如在乒乓球比赛中,双方比分为10:10 时,开始交替发球,直到有一方超过对方两分为止),多得两分者为胜. 试求甲、乙获胜的概率(设每一次比赛均可分出胜负).

四、(10 分) 设二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} 1, & 0 < x < 1; & 0 < y < 2(1-x) \\ 0, & 其他 \end{cases}$$

求随机变量Z = X + Y的概率密度.

五、(10 分)已知随机变量 X 服从(1,2)上的均匀分布,求(1) $Y=e^{2X}$ 的概率密度 $f_{Y}(y)$,

(2) Ee^{2X} .

六、 $(6\, \%)$ 设随机变量 $X\sim U\left[0,1\right]$,求 (1) $Y=X^2-4X+1$ 的密度函数; (2) 2X 与 Y 之相关系数.

七、(14分) 设总体 $X\sim U[1,\ \theta],\ X_1,\cdots,X_n$ 为简单随机样本.

- (1) 求 θ 的矩估计 $\hat{\theta}$, 并问 $\hat{\theta}$ 是否为 θ 的无偏估计?
- (2) 求估计量的方差 $D\hat{\theta}$.