Please submit your solutions to Moodle by Sunday, 29.10.2023, 23:55.

Homework #2

1.

For the circuit on the left
$$\begin{split} R_1 = & R_3 = 200 k \Omega, \ R_2 = 100 k \Omega \\ V_{tn} = & 1V, \ V_{tp} = -1V \\ K_N = & K_P = 0.25 mA/V^2 \\ \lambda_1 = & 0.02 V^{-1}, \ \lambda_2 = 0.01 V^{-1} \end{split}$$

- **a.** Find the DC operating points of M1 and M2 and calculate the small signal parameters, i.e. I_D, V_{DS}, g_m and r_o.
- v_{out} **b.** Find the small signal gain of the circuit, $A_V = v_{out}/v_{in}$.
 - **c.** Find small signal R_{in} and R_{out} .

You should decide on whether to use λ 's in the DC analysis or not.

2.

For the circuit on the left K_N =0.25mA/V², V_{TN} =1V. λ =0.01V⁻¹.

- **a.** Find the value of R_S in order to have 0V DC at the v_{out} node. You can assume $\lambda=0$.
- **b.** Find the small signal gain by assuming $\lambda=0$.
- c. Find the small signal gain without ignoring r_0 and show that your result converges to part b for λ =0. You will need to do some algebra for this part. You don't need to repeat part a.
- **d.** Find R_{in} and R_{out} without ignoring r_o .

3.

For the circuit on the left: R_G =5M Ω , K_N =0.5mA/ V^2 , V_{TN} =1V, λ =0.01 V^{-1}

- a. Assuming M1 is in SAT, find R_S and R_D such that I_{DQ} =0.2mA and V_{DQ} =1V. Assume λ =0 for this part.
- **b.** Find the open circuit voltage gain, $A_{VOC}=v_{out}/v_{in}$ assuming $R_L=\infty$.
- c. Find R_{in} and R_{out}.
- **d.** Find $A_V = v_{out}/v_{in}$ for $R_L = 10k\Omega$ using your results in part b and c. Do not rederive A_V . You will need to use the black box model of the amplifier.

4.

Assume that M1 and M2 are biased in SAT for the circuit shown on the left and λ =0 for both transistors.

Calculate the voltage gain (v_{out}/v_{in}) in terms of transistor g_m 's and circuit parameters.

5.

For the circuit on the left, V_{tp} =-1V, K_P =0.5mA/V², λ =0.

- **a.** Find the value of R_S and R_D such that I_{DQ} =0.5mA and V_{SDQ} =5V.
- **b.** Find the input (R_{in}) and output resistance (R_{out}) .
- **c.** Find the output current i_{out} if v_{in} =0.5mV cos(ω t).

6.

For the circuit shown on the left, K_{N1} =0.1 mA/V², K_{N2} =0.5 mA/V², K_{N3} =1 mA/V² Vth=1V and λ =0 for all transistors.

- **a.** Find I_{D1} , I_{D2} and verify the states of all transistors. Find all the DC node voltages on the circuit.
- **b.** Find the AC small signal gain, $A_V = v_{out} / v_{in}$. Find the symbolic answer first.