When to stop the iteration?
O residual (-fixic)
E> [fixe] = fixe)-fix*) = [f'(5) xe-x* = pee. 1
ge [xc, x]
\Rightarrow $e_{+} < \frac{\varepsilon}{p}$
Here we assumed in an intered I containing x*,
Here we assumed in an interval I containing x*, [f'(x)]? p (f') is bounded from below)
What if p=0? Keep expanding the Taylor series and look at the higher derivortives. or try fix+(x-x*)?
@ Step size 1Xx-Kx-1
E> (Xx-Xx-1 > 1xx-X*1-1 Xx-X*1 (trrangular inequality)
we also have $\frac{ x_k - x_{k-1} }{ x_k - x_{k-1} } > \frac{ x_{k-1} - x_{k-1} }{ x_k - x_{k-1} } - $
Um V = I
$\exists \exists \exists k \text{argl enorgh } \text{S.t.} \frac{ X_k - X_{k-1} }{ X_k - X^* } \ge \frac{1}{2L}$
=> E> (Xx- Xx-1) 3 (ZL-1) 1Xx-X*1 Play with-the constant to make sine RLIS is positive.
> Ox 2 9. () \ Par le large quende
>> ex = 2 (1/21-1) for k (age enough.