Title

Author

March 30, 2023

Abstract

Hello blah bldsjlfdsjk sjdklfs

1 Introduction

More text

2 Main Results

We start with a definition:

Definition 1. Define a (k,d,n)-generative net with layer widths k_0,k_1,\ldots,k_d with $k=k_0$ and $k_d=n$ and coefficients $\{l_i\}_{i\in[d]}\subseteq\mathbb{N}^d$ to be a function $G:^k\to^n$ of the form where for each $i\in[d]$, $\sigma_i:\mathbb{R}^{k_i}\to\mathbb{R}^{k_i}$ is a piecewise affine function with pieces generated by no more than l_ik_i hyperplanes.

Our main theorem is the following:

Theorem 1. The self-difference of the range of a ?? G is contained in the range of a positive-homogeneous piecewise linear function $\tilde{G}: {}^{2k+1} \to {}^n$ with a number of linear conical pieces M such that

$$\log M \le 2kd \log \left(\frac{es}{k}\right), where$$

$$s = \left(\prod \right)$$

3 Proofs

We now prove the main result:

Proof. Notice that G is a piecewise affine function with N pieces and ?? lemma::

Lemma 2. A ?? will have at most

$$\log N \le kd \log \left(\frac{es}{k}\right) affine pieces where s := \left(\prod \right)$$

It follows that $(x,y) \to G(x) - G(y)$ is also piecewise affine and has no more than 2N pieces. Then from ?? lemma::

Lemma 3. Let $f: \mathbb{R}^k \to \mathbb{R}^n$ be piecewise affine with N pieces. Then there exists a function $\tilde{f}: \mathbb{R}^{k+1} \to \mathbb{R}^n$ which is piecewise linear with conical pieces such that $(\tilde{f}) \supseteq (f)$. Furthermore, $\tilde{f}((x,1)) \equiv f(x)$ and in the case that f has polyhedral pieces, \tilde{f} will have pieces that are polyhedral cones.

there exists a function $\tilde{G}: \mathbb{R}^{2k+1} \to \mathbb{R}^n$, and one can check that it has all the properties in the statement.

We used two lemmas in the previous proof; ??, ??. These are based on [vershyninHighDimensionalProbabilityIntroduction2018]. We now show ??.

Proof. From the definition of a \ref{action} , the ith layer has an activation that is piecewise affine with no more than l_ik_i affine pieces. This ith layer will have a in its domain contained in a finite number of subspaces that are of dimension of no more than $\min(k,k_i)$. Therefore consider the ith activation acting on a $\min(k,k_i)$ —dimensional subspace. By \ref{black} lemma::

Lemma 4. Let U be a k- dimensional hyperplane in general position in n . Let there be P hyperplanes $\{H_i\}_{i\in [P]}$ in n . These hyperplanes induce connected components between the hyperplanes that we call "cells". The subspace U may intersect at most

intersect at most
$$\sum_{i=0}^{k} {P \choose i} \le \left(\frac{eP}{k}\right)^k \text{ cells.}$$

, the layer will generate no more than $\left(\frac{el_ik_i}{\min(k,k_i)}\right)^{\min(k,k_i)}$ pieces for each subspace in its domain. Notice that this expression is monotonically increasing in k_i . Therefore, by increase k_i to $\max(k,k_i)$ we get the upper bound

 $\left(\frac{el}{k}\right)^k$. It follows that the number of affine pieces Nofthefull network is such that $N \leq \prod$ And we now give the proof of lemma ??;

Proof. Letting S be the finite partition of dom(f) corresponding to the affine pieces of f, we have that $f(x) = \sum_{s \in S} W_s x + b_s$ for some $R^{n \times k}$ matrices $\{W_s\}$ and some vectors $\{b_s\} \subseteq \mathbb{R}^k$. Let $s_0 \in S$. For any vector $\tilde{x} \in \mathbb{R}^{k+1}$ with $\tilde{x} = (\tilde{x}_{[k]}, \tilde{x}_{k+1})$, let

() := $k \le 0(Ws \ \theta \tilde{x}[k] + bs \theta \tilde{x}k) + k \ \dot{\delta} \ \theta \sum$ Created: ??