Rotation Number and Dynamics on the Circle

Subhadip Chowdhury

University of Chicago

https://subhadipchowdhury.github.io

May 2, 2018

What is a Dynamical System?

- ▷ "something" that "evolves" over time.
- Needs two ingredients
 - → **something:** A mathematical object, e.g. some geometric space
 - → rule of evolution: A transformation of this space, repeated over and over. Time can be continuous or discrete.

Examples of Dynamical Systems

▶ Examples

ightarrow Exponential growth or decay - Bacteria population, Radioactive emission

Examples of Dynamical Systems

▶ Examples

- → Exponential growth or decay Bacteria population, Radioactive emission
- → Chaotic motion Double pendulum

Examples of Dynamical Systems

▶ Examples

- → Exponential growth or decay Bacteria population, Radioactive emission
- ightarrow Chaotic motion Double pendulum
- \rightarrow Billiards on a table

Applications in Mathematics, Physics, Biology, Chemistry, Engineering, Economics ...

Dynamical Systems on the Circle

- ▶ Something = a Circle
- ▶ Rule = iterate a function (from the circle to itself) over time

Circle = interval [0, 1] with 0 and 1 glued

- ▶ Think (scaled) polar coordinates.
- ▶ Example The doubling map

$$f\!(x) = 2x \pmod 1$$

- $\triangleright f(1/4) = 1/2, f(1/2) = 0, f(3/4) = 1/2.$
- ▶ Orbit sequence of points generated by the iteration rule

Doubling Map

Figure: Starting point = 3/31

$$3/31 \to 6/31 \to 12/31 \to 24/31 \to 48/31 \to 96/31$$

▶ Periodic orbit - repeats itself in time

When do you have a *Periodic orbit* of length n?

Rotation Map

 $hd R_{\theta} :=$ Rotation counterclockwise by θ

$$\mathit{R}_{\theta}(\mathit{x}) = \mathit{x} + \theta \pmod{1}$$

$$\rightarrow R_1(x) = x.$$

Is $R_{0.5}(x)$ same as $R_{\pi}(x)$?

Orbit of a Rational rotation

Figure: Rational rotation by 7/23

Orbits of Rotation Map

- \triangleright Orbit of a point is periodic if and only if θ is rational. In which case, every point has a periodic orbit.
- \rightarrow In last example period length was 23.

If $\theta = p/q$, how many revolutions around the circle does it make before coming back to the starting point?

 \triangleright What if θ is not rational? Does it ever 'come back'?

Irrational Rotation

Figure: Irrational rotation by $\frac{1}{\sqrt{2}}$

Dense Orbit

Theorem

For an irrational rotation of the circle, the orbit of a point visits every subinterval. In other words, every orbit is dense.

Proof.

Exercise! Easy proof by contradiction.

Homeomorphisms of the Circle

- \triangleright f: a map from the Circle to itself.
- ▶ Graph of f: can be drawn on the unit square.

Homeomorphism

- → Continuous
- \rightarrow one-to-one and onto
- → inverse is continuous
- \triangleright Example of homeomorphism: R_{θ}
- ▶ Non-Example Doubling map

Figure: $f(x) = x^2$

Figure: $f(x) = x^2$ on the

Circle

More Examples

 $\triangleright f: [0,1] \rightarrow [0,1]$ continuous bijective where $0 \equiv 1$ and f(1) = f(0).

(b) f(x) = x + 0.2(mod 1)

(c) A piecewise linear map

(d) A standard circle map

Poincaré's Rotation Number

- \triangleright Want a *number* $\tau(f)$ to describe a map f.
- ▶ Average length of thread used!

length used in first iteration
$$\rightarrow \frac{\text{length used in first two iteration}}{2}$$

$$\rightarrow \frac{\text{length used in first three iteration}}{3} \rightarrow \cdots \rightarrow \tau(\textit{f})$$

$$\triangleright \tau(R_{\theta}) = \theta.$$

 \triangleright If f fixes a point then $\tau(f) = 0$.

Rational Rotation Number

Theorem

 $\tau(f)$ is rational p/q if and only if f has a periodic point.

- \triangleright Any periodic orbit has length q.
- ▶ Example

$$f(x) = x + \frac{1}{2} - \frac{1}{4\pi}\sin(2\pi x)$$

- $\rightarrow \{0, \frac{1}{2}\}$ is a periodic orbit.
- $\rightarrow \tau(f) = \frac{1}{2}$

Figure: Graph of f(f(x)) - x

- \rightarrow Another periodic orbit exists: { ~ 0.2886 , ~ 0.7114 }.
- → What if we start at another point?

Orbit of f(x)

Figure: Starting point = 0.2

▶ Not every point has a periodic orbit.

Standard circle map and Arnold Tongue

- \triangleright Start with rigid rotation: $f(x) = x + \alpha$
- ▶ Next introduce small perturbation.
- ▶ Standard circle map, a.k.a. Arnold map

$$f(x) = x + \alpha - \frac{\epsilon}{2\pi} \sin(2\pi x) \pmod{1}$$

Check that f is a homeomorphism when $0 \le \epsilon \le 1$.

(a) Heatplot of $\tau(f)$ against α as X axis and ϵ as Y axis

(b) Phase-locked regions for rational $\tau,$ $0\leqslant\alpha,\varepsilon\leqslant1$

Figure: courtesy of Wikipedia

Devil's Staircase

Two homeomorphisms

- \triangleright What if we have two circle maps? Call them f and g.
- ho Suppose au(f) = 0 = au(g). \implies They each fix a point.
- \triangleright Suppose f fixes p, and g fixes q.
- ▶ Question: Must $f \circ g$ fix a point? What can we say about $\tau(f \circ g)$?

(a) Starting configuration

(b) After applying f

(c) After applying g

Ziggurat

More generally, if we know $\tau(f)$ and $\tau(g)$, what can we say about $\tau(f \circ g)$? $\tau(f \circ g)$ can take a range of values. What's important is the **maximum**.

▶ The Jankins–Neumann ziggurat

Figure: Plot of $\max\{\tau(f \circ g)\}$ against $\tau(f)$ and $\tau(g)$

Thank you.

Questions? Email me at subhadip@math.uchicago.edu.