Workshop 4

Student: James Laybourn A0176654U

Yeo Wei Ling A0186070H

Pham Huong Giang A0032685A

b. Arima modelling

I. Establishing stationarity

Gold price from 1960 to 2018

Date: 02/13/19 Time: 19:42 Sample: 1960M01 2018M12 Included observations: 708

_	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
_	ı		1	0.995	0.995	704.08	0.000
		d d	2		-0.052	1401.6	0.000
		l ji i	3	0.985	0.032	2092.8	0.000
		l ili i	4	0.980	0.023	2778.1	0.000
		ili i	5		-0.010	3457.1	0.000
			6		-0.071	4129.2	0.000
		i di i	7		-0.042	4793.6	0.000
		i di i	8		-0.028	5450.1	0.000
		l de l	9		-0.012	6098.5	0.000
		l di i	10	0.943	0.008	6739.2	0.000
		(-	11	0.937	-0.005	7372.1	0.000
	1	🐠	12	0.930	-0.043	7996.5	0.000
			13	0.923	0.022	8612.9	0.000
		(1	14	0.916	-0.013	9221.0	0.000
		10	15		-0.005	9820.9	0.000
		()	16		-0.043	10412.	0.000
			17		-0.009	10995.	0.000
		<u> </u>	18	0.888	0.017	11569.	0.000
		<u> </u>	19		-0.023	12134.	0.000
	1	<u> </u>	20	0.873	0.018	12692.	0.000
	'	<u> </u>	21		-0.028	13240.	0.000
	'	<u> </u>	22	0.859	0.027	13780.	0.000
		1	23		-0.010	14312.	0.000
		!!	24	0.844	0.015	14836.	0.000
		1 1	25	0.837	0.006	15353.	0.000
		9: 1	26 27		-0.040	15860.	0.000
			28		-0.003 -0.064	16360. 16851.	0.000
			29	0.807	0.005	17333.	0.000
		l li i	30	0.800	0.003	17807.	0.000
		l li i	31	0.792	0.010	18273.	0.000
		l äi i	32	0.785	0.006	18732.	0.000
		l ili l	33	0.778	0.019	19182.	0.000
		l äi l	34	0.771	0.013	19626.	0.000
		l ili	35	0.765	0.046	20062.	0.000
		l ili l	36	0.759	0.020	20493.	0.000
=		T I		300	3.020	_0 .00.	3.000

II. Identification

Date: 02/13/19 Time: 19:48 Sample: 1985M01 2018M12 Included observations: 407

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-	(b)	1 1	0.136	0.136	7.6014	0.006
di.	į di		-0.085		10.580	0.005
ı (b	j do	3	-0.000	0.028	10.580	0.014
1) 1	l do	4	0.047	0.035	11.506	0.021
r h	th	5	0.018	0.009	11.647	0.040
r(h)	l do	6	0.005	0.009	11.657	0.070
ı İ Di		7	0.072	0.074	13.829	0.054
r h	l do	8	0.024	0.001	14.060	0.080
(1)	l do	9	-0.013	-0.004	14.130	0.118
r h	l do	10	0.009	0.013	14.163	0.166
· 🛄	• 	11	0.154	0.148	24.152	0.012
ı (h	l oto	12	0.030	-0.017	24.534	0.017
1(1	1 1	13	-0.001	0.027	24.534	0.027
())	1 11	14	0.035	0.027	25.056	0.034
1 🖟 1	1 11	15	0.045	0.027	25.923	0.039
1.01	ļ (þ)	16	0.042	0.034	26.664	0.045
ı (İ)	1 11	17	0.019	0.015	26.820	0.061
1 0 1	(1)	18	0.057	0.038	28.209	0.059
ų į	ļ tilt	19	0.021	0.002	28.390	0.076
1 (i)		20	0.081	0.089	31.181	0.053
ı (li	ļ dh	21		-0.002	31.496	0.066
())	1 11	22	0.036	0.020	32.060	0.076
1 🖟 1	1 11	23	0.037	0.025	32.656	0.087
1.01	ļ (ļi)	24	0.047	0.037	33.608	0.092
ų į	ļ (þ	25	0.009	-0.016	33.647	0.116
1 ()	(b)	26	0.062	0.064	35.321	0.105
ı l ı	(-0.010		35.367	0.130
ı (İ)	ļ (þ)	28	0.001	0.013	35.368	0.159
1(1)	([1		-0.001		35.368	0.193
(I)	ļ (ķ)		-0.024		35.615	0.221
(1)	ļ di	31	0.052	0.025	36.817	0.218
ų (t	oti		-0.005		36.829	0.255
4	(-0.043		37.634	0.265
141	(II)		-0.047		38.641	0.268
ı İ li	ļ ģi	35	0.051	0.038	39.790	0.265
	()	36	-0.032	-0.073	40.258	0.287

III. Estimation

Dependent Variable: DLOG(GOLD)
Method: ARMA Generalized Least Squares (Gauss-Newton)
Date: 02/13/19 Time: 21:15
Sample: 1985M02 2018M12
Included observations: 407
Convergence achieved after 7 iterations
Coefficient covariance computed using outer product of gradients d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	0.003484 0.168141	0.002007 0.049007	1.736294 3.430960	0.0833 0.0007
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.022957 0.020545 0.034667 0.486726 791.8023 9.516057 0.002176	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quit Durbin-Wats	ent var riterion terion nn criter.	0.003484 0.035029 -3.881092 -3.861393 -3.873297 2.027007
Inverted MA Roots	17			

Date: 02/13/19 Time: 21:15 Sample: 1985M01 2018M12 Included observations: 407 Q-statistic probabilities adjusted for 1 ARMA term

	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-	ıtı.	I di	1 1	-0.014	-0.014	0.0826	
	di.	i di		-0.083		2.9407	0.086
	ili.	i ib	3	0.006	0.004	2.9562	0.228
	rib	i di	4	0.044	0.037	3.7572	0.289
	ı İı	j do	5	0.012	0.015	3.8212	0.431
	10	l do	6	-0.009	-0.002	3.8545	0.571
	ı İ li	j do	7	0.071	0.073	5.9501	0.429
	ı İt	l do	8	0.014	0.013	6.0286	0.536
	i(b)	1 (0	9	-0.013	-0.002	6.0963	0.636
	ı(b	L do	10	-0.014	-0.013	6.1841	0.721
	· 🗀	•	11	0.155	0.150	16.261	0.092
	rije -	L do	12	0.006	0.005	16.276	0.131
	1(1)	1 (1)	13	-0.007	0.020	16.295	0.178
	(1)	1 (1)	14	0.030	0.028	16.687	0.214
	i (I)] (0)	15	0.034	0.025	17.179	0.247
	i (I)	ļ do	16	0.035	0.037	17.712	0.278
	i)i] (0)	17	0.004	0.014	17.720	0.341
	(1)] (0)	18	0.056	0.042	19.067	0.325
	40	(1)		-0.002		19.068	0.388
	ı (Di	(D)	20	0.079	0.087	21.738	0.297
	ų)	1 (0)	21	0.009	0.011	21.775	0.353
	10	1 (0)	22	0.030	0.016	22.172	0.390
	10	1 (0)	23	0.025	0.021	22.442	0.434
	(4)	1 (0)	24	0.044	0.045	23.291	0.444
	ų)	ļ (þ)	25	-0.009		23.329	0.500
	i j i	ļ (j)	26	0.067	0.069	25.265	0.448
	40	ļ oļi		-0.022		25.476	0.492
	· P	1 (1)	28	0.003		25.481	0.548
	ų.	ļ <u>(ļ</u>)	29		-0.022	25.489	0.601
	ų į	•(t)		-0.034		25.988	0.626
	101	1 12	31	0.059	0.024	27.526	0.596
	ığı	1 10		-0.009		27.565	0.643
	4	1 1		-0.032		28.029	0.668
	4	ļ <u>9</u> !		-0.052		29.253	0.654
	i j i	1 1	35	0.065	0.038	31.146	0.608
	(1)	(0)	36	-0.033	-0.054	31.641	0.631

IV. TESTING

Model ARMA(2,0) is the best since the AIC, RSS, SBC and HQ are smallest and all the coefficients are significant.

ARMA(2,0)

Dependent Variable: DLOG(GOLD)
Method: ARMA Generalized Least Squares (Gauss-Newton)
Date: 02/13/19 Time: 20:05
Sample: 1985M02 2018M12
Included observations: 407
Convergence achieved after 3 iterations
Coefficient covariance computed using outer product of gradients
d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.003473	0.001795	1.934889	0.0537
AR(1)	0.151000	0.049495	0.049495 3.050839	
AR(2)	-0.106442	0.049492	-2.150690	0.0321
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.029622 0.024818 0.034591 0.483406 793.1887 6.166225 0.002302	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	0.003484 0.035029 -3.882991 -3.853442 -3.871297 1.993252
Inverted AR Roots	.0832i	.08+.32i		

Date: 02/13/19 Time: 20:06 Sample: 1985M01 2018M12 Included observations: 407 Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ılı.	l th	1	0.003	0.003	0.0029	
ih —	i ili	2	0.001	0.001	0.0031	
ı in	l di	3	0.023	0.023	0.2232	0.637
ı İ li	j do	4	0.038	0.038	0.8345	0.659
r j h	l th	5	0.018	0.018	0.9745	0.807
ı(b	1 10	6	-0.003	-0.003	0.9773	0.913
ı b ı		7	0.073	0.071	3.1785	0.672
r(h)	l th	8	0.016	0.014	3.2896	0.772
r h	ļ tļu	9	0.006	0.004	3.3028	0.856
ı(h	40	10	-0.009	-0.012	3.3375	0.911
· 🗐		11	0.156	0.151	13.581	0.138
r j t	1 11	12	0.011	0.007	13.629	0.191
r j u	1 11	13	0.010	0.010	13.669	0.252
(1)	1 11	14	0.038	0.028	14.272	0.284
(1)	1 11	15	0.037	0.026	14.846	0.317
: -	1 0	16	0.044	0.038	15.658	0.335
rija -	1 11	17	0.011	0.012	15.707	0.402
ı (D)	[i]i	18	0.067	0.045	17.622	0.346
r j t	40	19		-0.005	17.628	0.413
ı (Di		20	0.088	0.085	20.937	0.283
r h	ļ tļi	21	0.015	0.012	21.038	0.335
. (≬)	1 11	22	0.041	0.013	21.772	0.353
r i ji	1 11	23	0.029	0.019	22.148	0.391
i þ i	[i]ii	24	0.053	0.048	23.356	0.382
ı l ı	ļ uļi		-0.006	-0.027	23.373	0.439
ı İ Di	(b)	26	0.072	0.065	25.608	0.373
ı ≬ ı	II I		-0.021	-0.049	25.800	0.418
ı j ı	1 11	28	0.007	0.000	25.820	0.473
r h	4 1	29	0.008	-0.018	25.847	0.527
10(1	(Q)	30	-0.034	-0.041	26.366	0.553
1 þ 1	1 11	31	0.056	0.020	27.734	0.532
ı (h	10		-0.015		27.832	0.579
ı l ı	u[i		-0.025		28.113	0.615
ı d ı	(34	-0.056	-0.073	29.509	0.593
ı b ı	t t	35	0.056	0.036	30.937	0.570
(1) (• • • • • • • • • • • • • • • • • • •	36	-0.038	-0.051	31.586	0.587

ARMA(0,2)

Dependent Variable: DLOG(GOLD)
Method: ARMA Generalized Least Squares (Gauss-Newton)
Date: 02/13/19 Time: 20:06
Sample: 1985M02 2018M12 Included observations: 407

Convergence achieved after 6 iterations

Coefficient covariance computed using outer product of gradients d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1) MA(2)	0.003479 0.152267 -0.079426	0.001840 0.049625 0.049625	1.890931 3.068330 -1.600517	0.0593 0.0023 0.1103
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.029432 0.024628 0.034595 0.483500 793.1496 6.125643 0.002394	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	0.003484 0.035029 -3.882799 -3.853250 -3.871105 1.997577
Inverted MA Roots	.22	37		

Date: 02/13/19 Time: 20:07 Sample: 1985M01 2018M12 Included observations: 407 Q-statistic probabilities adjusted for 2 ARMA terms

	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
_	ıh.	l th	1	0.000	0.000	0.0001	
	u i ti	i di		-0.004		0.0069	
	10	(b)	İз	-0.004	-0.004	0.0151	0.902
	ı İb	l dio	4	0.045	0.045	0.8489	0.654
	r j r	i di	İ 5	0.018	0.018	0.9808	0.806
	10	l di	6	-0.003	-0.003	0.9848	0.912
	ı İbi	i bi	7	0.073	0.074	3.1922	0.670
	1/1	(h)	8	0.012	0.010	3.2501	0.777
	1/1	(h	9	0.005	0.004	3.2596	0.860
	1(1)	l di	10	-0.011	-0.011	3.3143	0.913
	· 🖆		11	0.156	0.150	13.485	0.142
	1 1	l th	12	0.010	0.006	13.526	0.196
	1 1	i i ji	13	0.008	0.009	13.553	0.259
	())	i i i	14	0.033	0.032	14.025	0.299
	(#)	i i i	15	0.036	0.024	14.566	0.335
	())	101	16	0.044	0.039	15.382	0.353
	1 1	i i i	17	0.007	0.011	15.404	0.423
	1 🏚	(II)	18	0.066	0.045	17.246	0.370
	1 1	ų,	19		-0.005	17.247	0.438
	ı (Di	ı D	20	0.087	0.085	20.504	0.305
	ı İı	i i i	21	0.012	0.012	20.563	0.361
	(1)	10	22	0.042	0.014	21.320	0.379
	ı Įt	ļ Ų!	23	0.025	0.019	21.585	0.424
	i þ i	<u> </u>	24	0.053	0.049	22.818	0.412
	ų.	· · · · · · · · · · · · · · · · · · ·	25	-0.008		22.844	0.470
	i ji i	<u> </u>	26	0.070	0.066	25.013	0.405
	181	(1)	27	-0.021		25.206	0.451
	111	111	28		-0.002	25.220	0.507
	111	111	29		-0.016	25.235	0.561
	(1)	11	30	-0.033		25.712	0.589
	10	111	31	0.057		27.169	0.563
	111	(1)		-0.017		27.291	0.608
	(1)	4		-0.024		27.544	0.645
	4	9:		-0.056		28.952	0.622
	(())	(I)	35	0.058	0.036	30.476	0.593
-	ı Q ı	()	36	-0.038	-0.052	31.125	0.609

ARMA(1,0)

Dependent Variable: DLOG(GOLD)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 02/13/19 Time: 20:08
Sample: 1985M02 2018M12
Included observations: 407
Convergence achieved after 11 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) SIGMASQ	0.003486 0.136010 0.001201	0.002101 0.039860 6.43E-05	1.659647 3.412218 18.67665	0.0978 0.0007 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.018565 0.013706 0.034788 0.488914 790.8945 3.820989 0.022702	Mean depen S.D. depend Akaike info c Schwarz cri Hannan-Qui Durbin-Wats	ent var riterion erion nn criter.	0.003484 0.035029 -3.871717 -3.842168 -3.860024 1.969347
Inverted AR Roots	.14			

Date: 02/13/19 Time: 20:09 Sample: 1985M01 2018M12 Included observations: 407 Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
110	1 10	1	0.015	0.015	0.0880	
	□ -	2	-0.107	-0.107	4.8075	0.028
1 11	[th	3	0.005	0.008	4.8175	0.090
	ļ (ļ)	4	0.047	0.035	5.7146	0.126
1 🕩	1 1/1	5	0.012	0.012	5.7721	0.217
1(1	ļ tļu	6	-0.008	0.001	5.7961	0.327
ı ()		7	0.071	0.074	7.8884	0.246
1.11	ļ (þ	8	0.016	0.011	7.9959	0.333
ı l ı	1 10		-0.018		8.1296	0.421
(()	ļ do	10	-0.010		8.1751	0.517
· 📁	I	11	0.155	0.149	18.214	0.051
1 1	1 1/1	12	0.010	0.000	18.258	0.076
11/1	i di	13	-0.010	0.023	18.298	0.107
1 1 1	1 1	14	0.030	0.027	18.686	0.133
	i di	15	0.036	0.026	19.238	0.156
i ∮ i	ļ (þ)	16	0.034	0.036	19.744	0.182
1.11	i di	17	0.006	0.014	19.761	0.231
ı Ü i	ļ (ļi)	18	0.054	0.040	20.987	0.227
ųĮ.	ļ Ų	19		-0.004	20.989	0.280
ı D i	ļ 1 P	20	0.077	0.088	23.530	0.215
1 1 1	1 1/1	21	0.012	0.008	23.593	0.261
111	ļ 1 ļ 1	22	0.029	0.018	23.945	0.296
1/1	1 1/1	23	0.027	0.023	24.265	0.334
1 🌓	ļ ' ļ l'	24	0.042	0.042	25.044	0.348
11/1	ļ <u>1</u> 11	25	-0.006	-0.019	25.058	0.403
ı j lı	ļ <u>"</u>	26	0.064	0.069	26.862	0.363
. ∯ı	'¶'	27	-0.020		27.030	0.408
1 1	<u> </u> ' <u>'</u> '	28	0.002	0.010	27.032	0.462
· · · · · · · · · · · · · · · · · · ·	ļ <u>"</u>	29		-0.025	27.035	0.516
ı l ı	ļ (Q)	30	-0.031	-0.038	27.472	0.546
۱ پا ر	' <u></u> '	31	0.058	0.025	28.966	0.519
<u>'</u>	ļ <u>"</u>		-0.007		28.986	0.570
<u>'</u>	'¶'		-0.037		29.592	0.589
ı Q i	ļ Q !		-0.050		30.720	0.581
i ∮ i	' ! '	35	0.064	0.039	32.560	0.538
		36	-0.032	-0.059	33.006	0.565

ARMA(1,1)

Dependent Variable: DLOG(GOLD)

Method: ARMA Generalized Least Squares (Gauss-Newton)
Date: 02/13/19 Time: 19:55
Sample: 1985M02 2018M12
Included observations: 407
Convergence achieved after 8 iterations
Coefficient covariance computed using outer product of gradients d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C AR(1) MA(1)	0.003484 -0.331592 0.491350	0.001922 0.246073 0.227199	1.813133 -1.347533 2.162646	0.0706 0.1786 0.0312	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.027818 0.023006 0.034623 0.484304 792.8132 5.780121 0.003349	Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Qui Durbin-Wats	ent var criterion erion on criter.	0.003484 0.035029 -3.881146 -3.851597 -3.869452 2.012300	
Inverted AR Roots Inverted MA Roots	33 49				

Date: 02/13/19 Time: 19:56 Sample: 1985M01 2018M12 Included observations: 407 Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
0.10	1016	1	-0.007	-0.007	0.0193	
181	1	2	-0.031	-0.031	0.4112	12000
. 11	100	3	-0.019	-0.019	0.5526	0.45
		4	0.051	0.050	1.6156	0.446
11	1010	5	0.013	0.012	1.6820	0.64
1	L L	7	-0.004 0.072	-0.001 0.075	1.6894	0.793
	100	8	0.072	0.075	3.8338	0.573
	1	8	0.010 -0.001 -0.014 0.155	0.009 0.002 -0.010 0.149	1.6894 3.8358 3.8768 3.8776 3.9589 14.056 14.082	0.693
1	1	10	-0.001	-0.002	3.0580	0.75
100	-	11	0.155	0.149	14.056	0.86
100	1 1	12	0.008	0.007	14.082	0.16
111	111	13	0.002	0.007 0.012	14.084	0 22
11	1	14	0.030	0.034 0.022 0.040	14.463	0.27 0.30 0.33
11	1010	15 16	0.034	0.022	14.968 15.682	0.30
110	1.0	16	0.041	0.040	15.682	0.33
- 10	1.11	17	0.004	0.010	15.689	0.403
	11	18	0.062	0.044	17.336	0.36
1	100	19	-0.001 0.084	-0.005	17.336	0.43
1.5	1	20	0.008	0.086	20.390	0.31 0.36 0.39 0.44
	1 11	21 22	0.000	0.015	21 088	0.30
1	1 10	23	0.000	0.020	21 288	0.44
	11	24	0.051	0.048	22.420	0.43
1	1	25	-0.009	-0.024	22,458	0.49
10	1	23 24 25 26	0.039 0.021 0.051 -0.009 0.069	0.011 0.015 0.020 0.048 -0.024 0.067	24.514	0.43 0.49 0.43
11	1	27	-0.021	-0.045	15.689 17.336 17.336 20.398 20.427 21.088 21.288 22.420 22.458 24.514 24.715 24.723 24.731	0.47
1.11	110	28	0.004	-0.000	24.723	0.53
11	1.0	29	0.004	-0.016	24.731	0.59
	1	30	-0.032	-0.043	25.193 26.728	0.61
	1	31	0.059	0.026	26.728	0.58
1	1	32	-0.015 -0.026	-0.025 -0.046	26.831 27.124	0.63
	1	33	-0.026	-0.046	28.490	0.47 0.53 0.59 0.61 0.58 0.63 0.66 0.64
	100	35	0.062	0.037	30.193	0.60
	100	36	-0.037	-0.054	30.797	0.62

V. FORECASTING

2018 forecasting

Dependent Variable: DLOG(GOLD)
Method: ARMA Generalized Least Squares (Gauss-Newton)
Date: 02/13/19 Time: 20:18
Sample: 1985M02 2017M12
Included observations: 395

Convergence achieved after 8 iterations Coefficient covariance computed using outer product of gradients

d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	0.003602 0.168036	0.002054 0.049747	1.753633 3.377795	0.0803 0.0008
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.022688 0.020201 0.034959 0.480310 765.1665 9.123316 0.002689	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quii Durbin-Wats	ent var riterion erion nn criter.	0.003619 0.035318 -3.864134 -3.843988 -3.856152 2.028732
Inverted MA Roots	17			

STATIC

DYNAMIC

The static model prediction fit well with the actual data.

Predict for 2019

Dependent Variable: DLOG(GOLD) Method: ARMA Generalized Least Squares (Gauss-Newton) Date: 02/13/19 Time: 20:31

Sample: 1985M02 2018M12 Included observations: 407

Convergence achieved after 7 iterations

Coefficient covariance computed using outer product of gradients d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	0.003484 0.168141	0.002007 0.049007	1.736294 3.430960	0.0833 0.0007
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.022957 0.020545 0.034667 0.486726 791.8023 9.516057 0.002176	Schwarz criterion		0.003484 0.035029 -3.881092 -3.861393 -3.873297 2.027007
Inverted MA Roots	17		·	

The gold price for the next 12 months (Jan to Dec 2019) will marginally increase.

The risk is high for the next 12 months since the 95% prediction interval is wide, 50% of the current price. If you need to sell physical gold within 12 months, it is risky. However, if you can choose when to sell the gold, due to the generic trend in the long term, you would be able to choose when to sell at the optimal price. The prediction interval is (1000, 1700)

If it is one-step forecast then both forecasts are the same. The difference arises when forecasting further: "dynamic forecast" will take previously forecasted values while "static forecast" will take actual values to make next step forecast. So, for 2019, the data is not available therefore the "static forecast" cannot be used.