

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM: EE-2003 Computer Organization & Assembly Language (COAL)

COURSE DESCRIPTION FORM

FAST School of Computing, National University of Computer INSTITUTION and Emerging Sciences, Karachi

PROGRAM TO BE **EVALUATED**

BS-School of Computing-Fall 2022

Course Description	on						
Course Code	EE2003	EE2003					
Course Title	Computer Organization & Assembly Language						
Credit Hours	3						
Prerequisites by Course(s) and Topics	PF, DLD						
Grading Policy	Absolute grading						
Policy about missed assessment items in the course	Retake of missed assessment items (other than midterm/ final exam) will not be held. For a missed midterm/ final exam, an exam re-take/ pre-take application along with necessary evidence are required to be submitted to the department secretary. The examination assessment and retake committee will decide the exam re-take/ pre-take cases.						
Course Plagiarism Policy			ay result in F grade in the course. marks in the whole assignments category.				
Assessment	50% Theory 50% Practical Assessment Items						
Instruments with	_	-					
Weights	_	Number	Weight (%)				
	Assessment Items		Weight (%) 6%=3*2				
Weights (homework, quizzes, midterms, final, programming	Assessment Items Assessment Item	Number	• ' '				
Weights (homework, quizzes, midterms, final, programming assignments, lab	Assessment Items Assessment Item Assignment	Number 3	6%=3*2				
Weights (homework, quizzes, midterms, final, programming	Assessment Items Assessment Item Assignment Grand Assignment	Number 3 1	6%=3*2 5%				
Weights (homework, quizzes, midterms, final, programming assignments, lab	Assessment Items Assessment Item Assignment Grand Assignment Class Participation	Number 3 1 -	6%=3*2 5% 3%				
Weights (homework, quizzes, midterms, final, programming assignments, lab	Assessment Items Assessment Item Assignment Grand Assignment Class Participation Quiz	Number 3 1 - 3	6%=3*2 5% 3% 6%= 3*2				
Weights (homework, quizzes, midterms, final, programming assignments, lab	Assessment Items Assessment Item Assignment Grand Assignment Class Participation Quiz Midterm Exam	Number 3 1 - 3 2	6%=3*2 5% 3% 6%= 3*2 30%= 2*15				
Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Assessment Items Assessment Item Assignment Grand Assignment Class Participation Quiz Midterm Exam Final Exam	Number 3 1 - 3 2	6%=3*2 5% 3% 6%= 3*2 30%= 2*15				

Dr. Nouman M Durrani

Coordinator

URL (if any)	
Current Catalog Description	 Programming Methodology of low-level languages How to access computer hardware directly Overview of a user-visible architecture (of Intel 80x86 processors) Intel 80x86 instruction set, assembler directives, macro, etc. How programs interact with the operating system for various services including memory management and input/output services How is it possible to interface high-level language and low-level language modules
Textbook (or Laboratory Manual for Laboratory Courses)	Assembly Language for Intel Based Computers K.Irvine 7 th Edition MIPS Assembly Language Programming by Ed Jorgensen, Version 1.1.35 April 2018
Reference Material	Computer organization and design: the hardware/software interface by David A. Patterson and John L. Hennessy Computer Organization & Embedded Systems Hamacher et al. 6 th Ed.

NCEAC.FORM.001-D

Course Learning Outcomes

A. Course Learning Outcomes (CLOs)

On successful completion of this course students will have to know how of:

CLO	Course Learning Outcome (CLO)	Domain	Taxonomy Level	PLO	Tools
01	Illustrate micro-architectures of x86 and RISC processors	Cognitive	3	02	A1, Q1, M1, F
02	Create basic assembly code using different type of addressing modes in x86 & RISC ISAs to solve simple-moderate problems	Cognitive	4	02	A2, Q1, M1, F
03	Apply translation of machine instructions into binary code and visa versa.	Cognitive	5	03	A2, A3, Q2, M1, M2, F
04	Illustrate use of stack during a parametrized function/procedure call that uses local variables.	Cognitive	5	03	Q3, A3, M2, F
05	Justify need to use assembly code along with a high-level language code	Cognitive	5	03	Q3,A3, M2, F
Tool: A	I = Assignment, Q = Quiz, M = Midterm, F = Final	l			•

B. Program Learning Outcomes

For each attribute below, indicate whether this attribute is covered in this course or not. Leave the cell blank if the enablement is little or non-existent. 1. Computing Apply knowledge of mathematics, natural sciences, Knowledge computing fundamentals, and a computing specialization to the solution of complex computing problems. 2. Problem Identify, formulate, research literature, and analyze reaching Analysis complex computing problems. substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences. 3. Design/ Design solutions for complex computing problems Develop and design systems, components, and processes Solutions that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. Conduct investigation of complex computing 4. Investigation & Experimentation problems using research-based knowledge and research-based methods. 5. Modern Tool Create, select, and apply appropriate techniques. resources and modern computing tools, including Usage prediction and modeling for complex computing problems. Apply reasoning informed by contextual knowledge 6. Society Responsibility to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems. 7. Environment Understand and evaluate sustainability and impact and Sustainability of professional computing work in the solution of

complex computing problems.

_			
	8. Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.	
	9. Individual and Teamwork	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.	
	10. Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
	11. Project Management and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
	12. Lifelong Learning	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	
	· · · · · · · · · · · · · · · · · · ·	·	

C. Mapping of CLOs on PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)													
			PLOs										
		1	2	3	4	5	6	7	8	9	10	11	12
	1					✓							
CLOs	2		✓	✓									
	3					✓							

Topics covered in
the course with
number of
lectures on each
topic (Assume 15
weeks of instruction
and 1 hour lecture
duration)

Topics to be covered							
List of Topics	Week	No. of Weeks	Contact Hours	CLO(s)			
Introduction: Introduction to Computer Architecture & Organization & Assembly Language (1 Lecture)							
Applications of Assembly Language, Assemble-Link-Execute Cycle (1 Lecture)		1	3	1			
Assembly Relativity, Portability, Virtual Machine Concept and Machine Levels (1 Lecture)	1						
Microcomputer Concepts, Components of Microcomputer (1 Lecture)							
Intel 80x86 Processor Architecture, Mode of Operations (1 Lecture)		1	3	1			
Basic Execution Environment (1 Lecture)	2						
Assembly Language Fundamentals: Integer, Character & String Literals, Identifier, Directive Vs Instruction (1 Lecture)							
Instruction, Defining Data (1 Lecture)		1	3	2			
Symbolic Constants (1 Lecture)	3						
Assignment no 1 Release (Start of Week 3)							
Data Transfer (1 Lecture)							
Addressing		_		_			
(1 Lecture)	4	1	3	2			
Arithmetic Operations (1 Lecture) Assignment no 1 Submission	4						

2
4
2
2
2

	Extended Addit	tion & Subtraction					
	(1 Lecture)	non & Subtraction					
	Week 11	MID -2 Exam					
	Advanced Pro and Examples						
	Recursion (1 L	ecture)		1	3	1,2,4	
	INVOKE, ADD	R, PROC, PROTO es (1 Lecture)	12				
	Assignment n (Start of Week						
	String and Arr String primitive (3 Lectures)		13 1				
	Two dimension	nal array (1 Lecture)		1	3	2	
	Assignment n (End of Week	o 3 Submission 13)					
	Instruction For Instruction Set Translation and	mats, encoding an and Modes of Addressing, Working of an p File and Memory Map	14	1	3	3	
	CISC vs RISC, Assembly (3 L	Introduction to MIPS ectures)	15	1	3		
	Week 16		Final	Exam			
	Review			1	3		
	Total			16	48		
Laboratory Projects/Experime nts Done in the Course	Mentioned in I	_ab Course Description					
Programming Assignments	3 Assignments	are given which are attach	ned in the ass	signments se	ection		

NCEAC.FORM.001-D

Done in the Course						
Class Time Spent	Theory (%)	Problem Analysis (%)	Solution Design (%)	Social and Ethical Issues (%)		
(in percentage)	50	25	20	5		
Oral and Written Communications	Every student is required to submit at least 1 written report of typically 10 pages in IEEE research report format. Students will also be called for viva/presentation of the project and any assignment where necessary in Lab Section					

Instructor Name: Rabia Ahmed Ansari

Instructor Signature:

Date: <u>21st-August-2022</u>