```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
from \ sklearn.linear\_model \ import \ LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.utils import resample
from sklearn.model_selection import train_test_split
from \ sklearn. metrics \ import \ accuracy\_score, \ confusion\_matrix, \ classification\_report, \ ConfusionMatrixDisplay
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
warnings.filterwarnings('ignore')
df=pd.read_csv('/content/Churn_Modelling.csv',encoding='Latin-1')
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMem
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Fema l e	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Fema l e	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Fema l e	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	Spain	Fema l e	43	2	125510.82	1	1	
9995	9996	15606229	Obijiaku	771	France	Ma l e	39	5	0.00	2	1	
9996	9997	15569892	Johnstone	516	France	Ma l e	35	10	57369.61	1	1	
9997	9998	15584532	Liu	709	France	Fema l e	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	Germany	Ma l e	42	3	75075.31	2	1	
9999	10000	15628319	Walker	792	France	Fema l e	28	4	130142.79	1	1	
10000 rows × 14 columns ∢									>			

```
df.head()
df.columns = df.columns.str.lower()

df.drop(columns = ['rownumber', 'customerid', 'surname'], inplace = True)

# one-hot encoding categorical values
cat = ['geography', 'gender']

def one_hot(data, col):
    for _ in col:
        data[_] = pd.Categorical(df[_]).codes
    return data

df = one_hot(df, cat)
```


EXPLORATORY DATA ANALYSIS

```
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10000 entries, 0 to 9999
     Data columns (total 11 columns):
     # Column
                          Non-Null Count Dtype
     0
         creditscore
                          10000 non-null
                                          int64
         geography
                          10000 non-null
         gender
                          10000 non-null
                          10000 non-null
                                          int64
         age
                          10000 non-null
     4
         tenure
                                          int64
         balance
                          10000 non-null
                                          float64
                          10000 non-null
     6
         numofproducts
                                          int64
                          10000 non-null
         hascrcard
                                          int64
                          10000 non-null
     8
         isactivemember
                                          int64
     9
         estimatedsalary
                          10000 non-null
                                          float64
     10 exited
                          10000 non-null
                                          int64
```

dtypes: float64(2), int64(7), int8(2)

df.describe(include = 'all')

 $disp_heatmap(df)$

memory usage: 722.8 KB

	creditscore	geography	gender	age	tenure	balance	numofproducts	hascrcard	isactivemember
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000
mean	650.528800	0.746300	0.545700	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100
std	96.653299	0.827529	0.497932	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797
min	350.000000	0.000000	0.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000
25%	584.000000	0.000000	0.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000
50%	652.000000	0.000000	1.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000
75%	718.000000	1.000000	1.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000
max	850.000000	2.000000	1.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000

```
print('NA Values: \n',df.isna().sum(),'\n\n Null Values: \n ',df.isnull().sum())
     NA Values:
      creditscore
                         0
     geography
                        0
                        0
     gender
     age
                        0
     tenure
                        0
     balance
                        0
     numofproducts
     hascrcard
                        0
     isactivemember
     estimatedsalary
                        0
     exited
     dtype: int64
      Null Values:
      creditscore
                          0
     geography
     gender
                        0
     age
     tenure
                        0
     balance
     numofproducts
                        0
     hascrcard
                        0
     isactivemember
                        0
     estimatedsalary
                        0
     exited
                        0
     dtype: int64
def disp_heatmap(df):
    df_corr = df.corr()['exited']
    sns.heatmap(df_corr.to_frame(), annot = True, fmt = '.5f', cmap = 'coolwarm')
```



```
exit = df[df['exited']==1]
stay = df[df['exited']==0]
print('Stayed : ', stay.count()[0])
print('Exited : ', exit.count()[0])

    Stayed : 7963
    Exited : 2037

sns.displot(x = 'exited',y = 'creditscore', data = df)
plt.title('what does credit score say about churn?')
plt.show()
```


RESAMPLING THE DATA TO REDUCE SKEW-NESS

```
stay_resample = resample(stay, n_samples = exit.count()[0], replace = False, random_state = 42)
df = pd.concat([stay_resample, exit])
sns.countplot(data = df, x = 'exited')
plt.title('resampled targets')
plt.show()
```


FOR SELECTING ONLY TOP 5 FEATURES

features

```
y = df['exited']
x = df.drop(columns = 'exited')

rf = RandomForestClassifier(max_depth = 5)
rf.fit(x, y)
imp = rf.feature_importances_
features = pd.DataFrame(imp, index = x.columns, columns = ['importance']).sort_values('importance', ascending = False)
```



```
sns.barplot(y = features.importance, x = features.index)
plt.xticks(rotation = 90)
plt.title('feature_importance')
plt.show()
```


SELECTING ONLY TOP 5

x.drop(columns = ['gender', 'creditscore', 'estimatedsalary', 'tenure', 'hascrcard'], inplace = True)

CLASSIFYING THE DATA

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, shuffle = True)

USING RANDOM FOREST

```
rf = RandomForestClassifier(max_depth = 10, n_estimators = 500)
rf.fit(x_train, y_train)
y_pred = rf.predict(x_test)
```

report = classification_report(y_pred, y_test)
print(report)

	precision	recall	f1-score	support	
0	0.77	0.75	0.76	624	
1	0.75	0.77	0.76	599	
accuracy			0.76	1223	
macro avg weighted avg	0.76 0.76	0.76 0.76	0.76 0.76	1223 1223	

acc = accuracy_score(y_pred, y_test)
print(f"RF Accuracy: {acc*100}%")

RF Accuracy: 76.04251839738349%

→ AFTER USING RANDOM FOREST THE ACCURACY IS 76%

Using logistics regression

print(f"LR Accuracy: {acc*100}%")

LR Accuracy: 50.20441537203598%

After Using Logostics Regression the Accuracy is 50%