5章 三角関数

練習問題3-A

1.
$$\tan \alpha = -\frac{3}{4}$$
 であるから
$$\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$$

$$= 1 + \left(-\frac{3}{4}\right)^2$$

$$= 1 + \frac{9}{16} = \frac{25}{16}$$
 よって , $\cos^2 \alpha = \frac{16}{25}$

lpha は鈍角なので, $\coslpha < 0$ であるから, $\coslpha = -rac{4}{5}$ $\sin \alpha = \tan \alpha \cos \alpha$

$$= -\frac{3}{4} \cdot \left(-\frac{4}{5}\right) = \frac{3}{5}$$
また, $\cos \beta = -\frac{2}{\sqrt{5}}$ であるから
$$\sin^2 \alpha = 1 - \cos^2 \alpha$$

$$= 1 - \left(-\frac{2}{\sqrt{5}}\right)^2$$

$$= 1 - \frac{4}{5} = \frac{1}{5}$$

 β は鈍角なので , $\sin \beta > 0$ であるから , $\sin \beta = \frac{1}{\sqrt{5}}$ $\tan \beta = \frac{\sin \beta}{\cos \beta}$

$$= \frac{\frac{1}{\sqrt{5}}}{-\frac{2}{\sqrt{5}}} = -\frac{1}{2}$$

以上より $\sin \alpha = \frac{3}{5}, \quad \cos \alpha = -\frac{4}{5}, \quad \tan \alpha = -\frac{3}{4}$ $\sin \beta = \frac{1}{\sqrt{5}}, \quad \cos \beta = -\frac{2}{\sqrt{5}}, \quad \tan \beta = -\frac{1}{2}$

(1) 与式 =
$$\sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$= \frac{3}{5} \cdot \left(-\frac{2}{\sqrt{5}}\right) + \left(-\frac{4}{5}\right) \cdot \frac{1}{\sqrt{5}}$$

$$= -\frac{6}{5\sqrt{5}} - \frac{4}{5\sqrt{5}}$$

$$= -\frac{10}{5\sqrt{5}} = -\frac{2}{\sqrt{5}}$$

(2) 与式 =
$$\cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$= -\frac{4}{5} \cdot \left(-\frac{2}{\sqrt{5}}\right) - \frac{3}{5} \cdot \frac{1}{\sqrt{5}}$$
$$= \frac{8}{5\sqrt{5}} - \frac{3}{5\sqrt{5}}$$
$$= \frac{5}{5\sqrt{5}} = \frac{1}{\sqrt{5}}$$

(3) 与武 =
$$\frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$
$$= \frac{-\frac{3}{4} - \left(-\frac{1}{2}\right)}{1 + \left(-\frac{3}{4}\right)\left(-\frac{1}{2}\right)}$$
$$= \frac{-\frac{1}{4}}{\frac{11}{8}} = -\frac{2}{11}$$

$$2. \qquad \cos^2 \alpha = 1 - \sin^2 \alpha$$

$$=1-\left(-\frac{1}{\sqrt{3}}\right)^2$$

$$=1-\frac{1}{3}=\frac{2}{3}$$

$$\pi<\alpha<\frac{3}{2}\pi$$
 より, $\cos\alpha<0$ なので
$$\cos\alpha=-\sqrt{\frac{2}{3}}=-\frac{\sqrt{2}}{\sqrt{3}}$$
よって, 2 倍角の公式より

 $\sin 2\alpha = 2\sin \alpha \cos \alpha$

$$= 2 \cdot \left(-\frac{1}{\sqrt{3}}\right) \left(-\frac{\sqrt{2}}{\sqrt{3}}\right) = \frac{2\sqrt{2}}{3}$$
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$= \left(-\frac{\sqrt{2}}{\sqrt{3}}\right)^2 - \left(-\frac{1}{\sqrt{3}}\right)^2$$
$$= \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$$

$$=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$$

$$\pi<\alpha<\frac{3}{2}\pi$$
 より , $\frac{\pi}{2}<\frac{\alpha}{2}<\frac{3}{4}\pi$ なので
$$\sin\frac{\alpha}{2}>0, \quad \cos\frac{\alpha}{2}<0\cdots ①$$

半角の公式より
$$\sin^2\frac{\alpha}{2} = \frac{1-\cos\alpha}{2}$$

$$= \frac{1-\left(-\frac{\sqrt{2}}{\sqrt{3}}\right)}{2}$$

$$= \frac{\frac{\sqrt{3}+\sqrt{2}}{2\sqrt{3}}}{2\sqrt{3}} = \frac{3+\sqrt{6}}{6}$$
 ①より , $\sin\frac{\alpha}{2} = \sqrt{\frac{3+\sqrt{6}}{6}} = \frac{\sqrt{3+\sqrt{6}}}{\sqrt{6}}$
$$\cos^2\frac{\alpha}{2} = \frac{1+\cos\alpha}{2}$$

$$= \frac{1+\left(-\frac{\sqrt{2}}{\sqrt{3}}\right)}{2}$$

$$= \frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}} = \frac{3+\sqrt{6}}{6}$$
 ①より , $\cos\frac{\alpha}{2} = -\sqrt{\frac{3-\sqrt{6}}{6}} = -\frac{\sqrt{3-\sqrt{6}}}{\sqrt{6}}$

$$= \frac{\frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\cos \alpha \cos \beta}}$$
$$= \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{\frac{\sin \alpha}{\cos \alpha} - \frac{\sin \beta}{\cos \beta}}$$
$$= \frac{\tan \alpha + \tan \beta}{\tan \alpha - \tan \beta} = \boxed{\Box}$$

5. (1) 積
$$\rightarrow$$
 和・差の公式により
左辺 = $\frac{1}{2} \{ \sin(\theta + 3\theta) + \sin(\theta - 3\theta) \}$
 $+ \frac{1}{2} \{ \sin(\theta + 5\theta) + \sin(\theta - 5\theta) \}$
 $+ \frac{1}{2} \{ \sin(\theta + 7\theta) + \sin(\theta - 7\theta) \}$
 $= \frac{1}{2} \{ \sin 4\theta + \sin(-2\theta) \} + \frac{1}{2} \{ \sin 6\theta + \sin(-4\theta) \}$
 $+ \frac{1}{2} \{ \sin 8\theta + \sin(-6\theta) \}$
 $= \frac{1}{2} (\sin 4\theta - \sin 2\theta) + \frac{1}{2} (\sin 6\theta - \sin 4\theta)$
 $+ \frac{1}{2} (\sin 8\theta - \sin 6\theta)$
 $= \frac{1}{2} (\sin 8\theta - \sin 2\theta)$

6. (1) 与式 =
$$\sqrt{3^2 + (\sqrt{3})^2} \sin(x + \alpha)$$

= $\sqrt{12} \sin(x + \alpha)$
= $2\sqrt{3} \sin(x + \alpha)$
ここで, $\cos \alpha = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$, $\sin \alpha = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2}$ よ

り,
$$\alpha=\frac{\pi}{6}$$
 よって,与式 $=2\sqrt{3}\sin\left(x+\frac{\pi}{6}\right)$ (2) 与式 $=\sqrt{(-\sqrt{3})^2+1^2}\sin(x+\alpha)$ $=\sqrt{4}\sin(x+\alpha)$ $=2\sin(x+\alpha)$ ここで, $\cos\alpha=\frac{-\sqrt{3}}{2}$, $\sin\alpha=\frac{1}{2}$ より, $\alpha=\frac{5}{6}\pi$ よって,与式 $=2\sin\left(x+\frac{5}{6}\pi\right)$

この関数のグラフは , $y=\sin x$ のグラフを , y 軸方向に $\sqrt{2}$ 倍に拡大し , x 軸方向に $\frac{\pi}{4}$ 平行移動したものであるから , グラフは次のようになる .

まって
最大値
$$\sqrt{2}$$
 $\left(x=rac{3}{4}\pi$ のとき $ight)$
最小値 $-\sqrt{2}$ $\left(x=rac{7}{4}\pi$ のとき $ight)$

練習問題 3-B

(2) 与式 =
$$(\cos 10^{\circ} \cos 50^{\circ}) \cos 70^{\circ}$$

= $\frac{1}{2} \{\cos(10^{\circ} + 50^{\circ}) + \cos(10^{\circ} - 50^{\circ})\} \cos 70^{\circ}$
= $\frac{1}{2} \{\cos 60^{\circ} + \cos(-40^{\circ})\} \cos 70^{\circ}$
= $\frac{1}{2} \left(\frac{1}{2} + \cos 40^{\circ}\right) \cos 70^{\circ}$
= $\frac{1}{4} \cos 70^{\circ} + \frac{1}{2} \cos 40^{\circ} \cos 70^{\circ}$
= $\frac{1}{4} \cos 70^{\circ}$
+ $\frac{1}{2} \cdot \frac{1}{2} \{\cos(40^{\circ} + 70^{\circ}) + \cos(40^{\circ} - 70^{\circ})\}$
= $\frac{1}{4} \cos 70^{\circ} + \frac{1}{4} \{\cos 110^{\circ} + \cos(-30^{\circ})\}$
= $\frac{1}{4} (\cos 70^{\circ} + \cos 110^{\circ} + \cos 30^{\circ})$
= $\frac{1}{4} \left\{\cos 70^{\circ} + \cos(180^{\circ} - 70^{\circ}) + \frac{\sqrt{3}}{2}\right\}$
= $\frac{1}{4} \left\{\cos 70^{\circ} - \cos 70^{\circ} + \frac{\sqrt{3}}{2}\right\}$
= $\frac{1}{4} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}$

3. (1)
$$\theta = 18^{\circ}$$
 のとき
左辺 $= \sin 2 \cdot 18^{\circ} = \sin 36^{\circ}$
右辺 $= \cos 3 \cdot 18^{\circ}$
 $= \cos 54^{\circ}$
 $= \cos(90^{\circ} - 36^{\circ})$
 $= \sin 36^{\circ}$
よって、左辺 $=$ 右辺

(2) 2倍角の公式より ,
$$\sin 2\theta = 2\sin\theta\cos\theta$$
 3倍角の公式より , $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$ これらを , $\sin 2\theta = \sin 3\theta$ に代入して $2\sin\theta\cos\theta = 4\cos^3\theta - 3\cos\theta$ $\cos\theta = \cos 18^\circ \neq 0$ であるから $2\sin\theta = 4\cos^2\theta - 3$ $4\cos^2\theta - 3 - 2\sin\theta = 0$ $4(1-\sin^2\theta) - 3 - 2\sin\theta = 0$ $4\sin^2\theta + 2\sin\theta - 1 = 0$ よって $\sin\theta = \frac{-1\pm\sqrt{1^2-4\cdot(-1)}}{4}$ $= \frac{-4\pm\sqrt{5}}{4}$ $0 < \sin 18^\circ < 1$ であるから , $\sin 18^\circ = \frac{-1+\sqrt{5}}{4}$

4. 半角の公式より,
$$\sin^2 x = \frac{1-\cos 2x}{2}$$
, $\cos^2 x = \frac{1+\cos 2x}{2}$ また, $\sin 2x = 2\sin x\cos x$ より, $\sin x\cos x = \frac{\sin 2x}{2}$

よって
$$f(x) = 2 \cdot \frac{1 - \cos 2x}{2} - \frac{\sin 2x}{2} + \frac{1 + \cos 2x}{2}$$

$$= 1 - \cos 2x - \frac{1}{2} \sin 2x + \frac{1}{2} + \frac{1}{2} \cos 2x$$

$$= -\frac{1}{2} \sin 2x - \frac{1}{2} \cos 2x + \frac{3}{2}$$

$$= -\frac{1}{2} (\sin 2x + \cos 2x) + \frac{3}{2}$$

$$= -\frac{1}{2} \{ \sqrt{1^2 + 1^2} \sin(2x + \alpha) \} + \frac{3}{2}$$

$$= -\frac{\sqrt{2}}{2} \sin(2x + \alpha) + \frac{3}{2}$$

$$= -\frac{\sqrt{2}}{2} \sin(2x + \alpha) + \frac{3}{2}$$
 ここで, $\cos \alpha = \frac{1}{\sqrt{2}}$, $\sin \alpha = \frac{1}{\sqrt{2}}$ より, $\alpha = \frac{\pi}{4}$ よって, $f(x) = -\frac{\sqrt{2}}{2} \sin\left(2x + \frac{\pi}{4}\right) + \frac{3}{2}$
$$0 \le x \le \frac{\pi}{2}$$
 より, $0 \le 2x \le \pi$ すなわち, $\frac{\pi}{4} \le 2x + \frac{\pi}{4} \le \pi + \frac{\pi}{4}$

したがって,
$$-\frac{1}{\sqrt{2}} \le \sin\left(2x + \frac{\pi}{4}\right) \le 1$$
 となるので
$$-\frac{1}{\sqrt{2}} \cdot \left(-\frac{\sqrt{2}}{2}\right) \ge -\frac{\sqrt{2}}{2} \sin\left(2x + \frac{\pi}{4}\right) \ge 1 \cdot \left(-\frac{\sqrt{2}}{2}\right)$$

$$\frac{1}{2} \ge -\frac{\sqrt{2}}{2} \sin\left(2x + \frac{\pi}{4}\right) \ge -\frac{\sqrt{2}}{2}$$

$$\frac{1}{2} + \frac{3}{2} \ge -\frac{\sqrt{2}}{2} \sin\left(2x + \frac{\pi}{4}\right) + \frac{3}{2} \ge -\frac{\sqrt{2}}{2} + \frac{3}{2}$$

$$2 \ge -\frac{\sqrt{2}}{2} \sin\left(2x + \frac{\pi}{4}\right) + \frac{3}{2} \ge \frac{3 - \sqrt{2}}{2}$$
 すなわち, $\frac{3 - \sqrt{2}}{2} \le f(x) \le 2$ であるから 最大値 2,最小値 $\frac{3 - \sqrt{2}}{2}$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

$$= \frac{2t}{1 - t^2} \quad (\text{tete} \ t, t \neq \pm 1)$$

$$\cos 2\alpha = 2\cos^2 \alpha - 1 \cdots \text{(1)}$$

$$\cot \alpha = \frac{1}{\cos^2 \alpha} \text{ s.i)}$$

$$\cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha} = \frac{1}{1 + t^2}$$

$$\cot \alpha = \frac{1}{1 + t^2} - 1$$

$$= \frac{2 - (1 + t^2)}{1 + t^2}$$

$$= \frac{1 - t^2}{1 + t^2}$$

$$\sin 2\alpha = \tan 2\alpha \cos 2\alpha$$

$$= \frac{2t}{1 - t^2} \cdot \frac{1 - t^2}{1 + t^2}$$

$$= \frac{2t}{1 + t^2}$$

6. (1)
$$\sin 2x = 2\sin x \cos x$$
 であるから $2\sin x \cos x = \cos x$ $2\sin x \cos x - \cos x = 0$ $\cos x(2\sin x - 1) = 0$

よって,
$$\cos x=0$$
 または, $2\sin x-1=0$ $\cos x=0$ より, $x=\frac{\pi}{2},\ \frac{3}{2}\pi$ $2\sin x-1=0$ より, $\sin x=\frac{1}{2}$ であるから, $x=\frac{\pi}{6},\ \frac{5}{6}\pi$ 以上より, $x=\frac{\pi}{6},\ \frac{\pi}{2},\ \frac{5}{6}\pi,\ \frac{3}{2}\pi$

$$(2)$$
 $\cos 2x = 2\cos^2 x - 1$ であるから $2\cos^2 x - 1 + 3\cos x - 1 = 0$ $2\cos^2 x + 3\cos x - 2 = 0$ $(\cos x + 2)(2\cos x - 1) = 0$ $\cos x + 2 = 0$ より $\cos x = -2$ であるが $\cos x \le 1$ であるから 、不適 . $2\cos x - 1 = 0$ より $\cos x = \frac{1}{2}$ であるから $\cos x = \frac{\pi}{3}$ であるから

(3)
$$\sqrt{1^2 + (-1)^2} \sin(x + \alpha) = 1$$

$$\sqrt{2} \sin(x + \alpha) = 1$$

$$\cos \alpha = \frac{1}{\sqrt{2}}, \ \sin \alpha = \frac{-1}{\sqrt{2}} \ \text{より,} \ \alpha = -\frac{\pi}{4}$$

$$\text{よって,} \sin \left(x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$0 \le x < 2\pi \ \text{より,} \ -\frac{\pi}{4} \le x - \frac{\pi}{4} < 2\pi - \frac{\pi}{4} \ \text{であるから}$$

$$x - \frac{\pi}{4} = \frac{\pi}{4}, \ \frac{3}{4}\pi$$
 したがって, $x = \frac{\pi}{2}, \ \pi$

$$\begin{array}{ll} (\ 4\) & \sqrt{1^2+(\sqrt{3})^2}\sin(x+\alpha)=1 \\ & 2\sin(x+\alpha)=1 \\ & \cos\alpha=\frac{1}{2},\ \sin\alpha=\frac{\sqrt{3}}{2}\ \text{より}\ , \, \alpha=\frac{\pi}{3} \\ & \text{よって}\ , \sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2} \\ & 0\leq x<2\pi\ \text{より}\ , \, \frac{\pi}{3}\leq x+\frac{\pi}{3}<2\pi+\frac{\pi}{3}\ \text{であるから} \\ & x+\frac{\pi}{3}=\frac{5}{6}\pi,\ \frac{13}{6}\pi \\ & \text{したがって}\ , \, x=\frac{\pi}{2},\ \frac{11}{6}\pi \end{array}$$

7. (1)
$$\sin 2x = 2\sin x \cos x$$
 であるから $2\sin x \cos x - \sin x > 0$ $\sin x (2\cos x - 1) > 0$ よって, $\begin{cases} \sin x > 0 \\ 2\cos x - 1 > 0 \end{cases}$ または, $\begin{cases} \sin x < 0 \\ 2\cos x - 1 < 0 \end{cases}$ i) $\begin{cases} \sin x > 0 \\ 2\cos x - 1 > 0 \end{cases}$ のとき $\sin x > 0$ より, $0 < x < \pi \cdots$ ① $2\cos x - 1 > 0$ より, $\cos x > \frac{1}{2}$ であるから $0 \le x < \frac{\pi}{3}, \frac{5}{3}\pi < x < 2\pi \cdots$ ②

① , ②より ,
$$0 < x < \frac{\pi}{3} \cdots ③$$

$$egin{aligned} \sin x &< 0 &$$
 のとき $2\cos x - 1 &< 0 &$ $\sin x &< 0$ より , $\pi &< x &< 2\pi \cdots 4 &$ $2\cos x - 1 &> 0$ より , $\cos x &< rac{1}{2}$ であるから $rac{\pi}{3} &< x &< rac{5}{3}\pi \cdots 5 & \end{aligned}$

④ , ⑤より ,
$$\pi < x < \frac{5}{3}\pi \cdots$$
⑥ ③ , ⑥より , $0 < x < \frac{\pi}{3}, \ \ \pi < x < \frac{5}{3}\pi$

(2)
$$\cos 2x = 1 - 2\sin^2 x$$
 であるから $1 - 2\sin^2 x + \sin x \ge 0$ $2\sin^2 x - \sin x - 1 \le 0$ $(2\sin x + 1)(\sin x - 1) \le 0$ よって, $-\frac{1}{2} \le \sin x \le 1$ ここで, $\sin x \le 1$ は,任意の x について成り立つので $\sin x \ge -\frac{1}{2}$ これより, $0 \le x \le \frac{7}{6}\pi$, $\frac{11}{6}\pi \le x < 2\pi$

