Promp compression: Why, How, What and Where

Petr Lorenc

Agenda - Start with WHY ...

- WHY we did it?
- **HOW** was it done?
- WHAT is there beneficial for you?
- WHERE can I try it?

But Why is it important for you?

- Because we want to reduce a cost
 - It can reduce the token count = reduce the cost for the company
- Because we do not want to wait
 - It can speed up your prompt (less tokens for input)

So **How** it was measured?

• We want the same output as without any prompt compression

Let's start from the end ...

• We want the same output as without any prompt compression

To get **Score** we need some test-data

Summarisation (similar to non-RAG applications):

- Given a context, the task is to generate a summary that captures the main points of the document. This task aims to evaluate how compression affects the overall understanding of models on the input contexts.
- https://huggingface.co/datasets/EdinburghNLP/xsum

QA over Documents (similar to RAG applications):

- Given a document, the task is to answer given question.
- We skip the Retrieval part (not a factor here)
- https://huggingface.co/datasets/rag-datasets/rag-mini-bioasq

We have the dataset, now we need metrics

We want the same output as without any prompt compression

Selection of similarity metrics

- BM25
 - Based on tokens overlap
- GZIP + NCD (Normalized Compression Distance)
 - Based on difference between the compression rate of concatenated text and each part separately
- ROUGE-L: Longest Common Subsequence (LCS)
 - Based on tokens overlap
- BERTscore F1
 - Based on semantic similarity overlap of tokens (embeddings)
- SentenceTransformers (SBERT) + cosine similarity
 - Based on semantic overlap
- OpenAl GPT4
 - Based on "semantic" overlap + reasoning

apiGPTeal family (Azure-based)

• We want the same output as without any prompt compression

And finally, we got to the compression part

We want the same output as without any prompt compression

How it was measured?

Baselines

- Ask GPT4 to compress the prompt
- Randomly remove 50% (chosen artificially because of other approaches)

Used Approaches

- LLMLingua
- LongLLMLingua
- LLMLingua 2
- Selective Context
- Prompt Optimizer
- GPtrim

How it was measured?

Baselines

- Ask GPT4 to compress the prompt
- Randomly remove 50% (chosen artificially because of other approaches)

Used Approaches

- LLMLingua
- LongLLMLingua
- LLMLingua 2
- Selective Context
- Prompt Optimizer
- Gptrim

remove additional information

How it was measured?

Baselines

- Ask GPT4 to compress the prompt
- Randomly remove 50% (chosen artificially because of other approaches)

Used Approaches

- LLMLingua
- LongLLMLingua
- LLMLingua 2

Assume well trained LLM model (with perplexity output)

Lower perplexity = lower contribution to the prompt

Lower perplexity = lower surprise of next token

I am hap.. -> ...py VS ...tic

- Selective Context
- Prompt Optimizer
- Gptrim

What was measured?

GPT 4 turbo	GPT 4	Random	LongLLMLingua	LLMLingua	LLMLingua 2	GPTrim
BM25	7.21	5.54	6.41	6.82	11.86	10.9
GZIP	0.53	0.58	0.55	0.54	0.44	0.39
ROUGE	0.53	0.59	0.56	0.559	0.44	0.38
BERTScore F1	0.112	0.127	0.11	0.117	0.08	0.07
SBert	0.100	0.117	0.10	0.116	0.07	0.06
GPT 4 as Judge	0.22	0.246	0.241	0.253	0.14	0.117
Latency	19.69 s	0.0025s	7.0732 s	5.3 s	0.2333 s	0.0096 s
Compression	2690 → 249 (10%)	2690 → 1322 (50%)	2690 → 1223 (45%)	2690 → 828 (30%)	2690 → 1388 (51%)	2690 → 2323 (86%)
HW requirements	None	None	GPU - 17-21G	GPU - 17-21G ml.g5.xlarge	GPU - 1-2GB model	None

What was measured?

GPT 4 turbo	GPT 4	Random	LongLLMLingua	LLMLingua	LLMLingua 2	GPTrim
BM25	7.21	5.54	6.41	6.82	11.86	10.9
GZIP	0.53	0.58	0.55	0.54	0.44	0.39
ROUGE					0.44	0.38
BERTScore F1					0.08	0.07
SBert	Is it go	ood res	not?	0.07	0.06	
GPT 4 as Judg			0.14	0.117		
Latency	15.05 5	0.00233	7.07323	J.J J	0.2333 s	0.0096 s
Compression	2690 → 249 (10%)	2690 → 1322 (50%)	2690 → 1223 (45%)	2690 → 828 (30%)	2690 → 1388 (51%)	2690 → 2323 (86%)
HW requirements	None	None	GPU - 17-21G	GPU - 17-21G ml.g5.xlarge	GPU - 1-2GB model	None

Is it good result or not?

Baseline

RAG	T=0,0	T=0,2	T=0,4	T=0,6	T=0,8	T=1,0	T=1.2	T=1.4
BM25	16.98	15.69	14.71	14.51	13.90	13.18	12.32	11.69
GZIP	0.23	0.26	0.33	0.42	0.44	0.47	0.53	0.55
ROUGE	0.20	0.23	0.32	0.41	0.45	0.46	0.56	0.58
BERTScore	0.037	0.042	0.05	0.077	0.080	0.089	0.10	0.11
SBert	0.019	0.027	0.045	0.069	0.066	0.062	0.09	0.08
GPT 4	0.068	0.083	0.095	0.14	0.13	0.14	0.17	0.18

RAG	T=0,0	T=0,2	T=0,4	T=0,6	T=0,8	T=1,0	T=1.2	T=1.4
BM25	16.98	15.69	14.71	14.51	13.90	13.18	12.32	11.69
GZIP	0.23	0.26	0.33	0.42	0.44	0.47	0.53	0.55
ROUGE -	0.20	0.23	0.32	0.41	0.45	0.46	0.56	0.58
BERTScore	0.037	0.042	0.05	0.077	0.080	0.089	0.10	0.11
SBert	0.019	0.027	0.045	0.069	0.066	0.062	0.09	0.08
GPT 4	0.068	0.083	0.095	0.14	0.13	0.14	0.17	0.18

GPT 4 turbo	LLMLingua 2	GPTrim	T=1,0	
BM25	11.86	10.9	13.18	
GZIP	0.44	0.39	0.47	
ROUGE	0.44	0.38	0.46	
BERTScore F1	0.08	0.07	0.089	
SBert	0.07	0.06	0.062	
GPT 4 as Judge	0.14	0.117	0.14	

GPT 4o
BM25
GZIP
ROUGE
BERTScore F1
SBert
GPT 4 as Judge

GPT 4o	LLMLingua 2
BM25	14.27
GZIP	0.466
ROUGE	0.453
BERTScore F1	0.095
SBert	0.063

0.168

14.79	13.18
0.425	0.47
0.404	0.46
0.0869	0.089
0.0563	0.062
0.145	0.14

T=1,0

GPTrim

How it looks like in practise?

Many in **the list have been** found down old mine tunnels **or on** slag heaps where water and **even fire have had the** opportunity to work **up** novel com**pound**s. It is another example, the researchers argue, of our **per**vasive influence on the planet.\n

the list have been or on even fire have had the upoundsIt another per planet.

So WHAT is there beneficial for you?

- You can save the money spend
 - Company pays for the tokens, so less tokens = less money

- You can reduce the latency of your prompt, but
 - it depends on the method
 - LLMLingua 2 is getting fast but still it is additional model
 - Gptrim has lower performance but it is super fast

• You will get the similar output as having reasonble low temperature

Conclision - Start with WHY ... End with answers

• WHY we did it?

Because we want work with longer context.

HOW was it done?

By comparing output of uncompressed and compressed prompt

WHAT is there beneficial for you?

• It can save cost and potentionally speed up your repeating prompt

