

Sub A We Claim:

1. A method for amplifying at least a first and second diversity-encoded signal, each
2 of which represents information represented by a first signal to be transmitted using transmit
3 diversity, and for amplifying a second signal to be transmitted without using transmit diversity,
4 the method comprising the steps of:

5 sharing the amplification of the at least first and second diversity-encoded signals
6 between at least two amplifiers; and

7 sharing the amplification of the second signal between the at least two amplifiers.

1. 2. The method of claim 1, wherein the first and second sharing steps are carried out
2 concurrently.

1. 3. The method of claim 1,

2 further comprising the step of forming at least first and second composite signals as
3 functions of the at least first and second diversity-encoded signals; and

4 wherein the first of the sharing steps comprises the steps of:

5 amplifying the first composite signal in a first amplifier of the at least two
6 amplifiers; and

7 amplifying the second composite signal in a second amplifier of the at least two
8 amplifiers.

1. 4. The method of claim 3,

2 further comprising the step of forming the at least first and second composite signals as
3 functions of the second signal; and

4 wherein the second of the sharing steps comprises the steps of:

5 amplifying the first composite signal in a first amplifier of the at least two
6 amplifiers; and

7 amplifying the second composite signal in a second amplifier of the at least two
8 amplifiers.

1 5. The method of claim 3, wherein the step of forming the at least first and second
2 composite signals is performed in the digital domain.

1 6. The method of claim 5,
2 further comprising the steps of:
3 pre-distorting the first composite signal; and
4 pre-distorting the second composite signal; and
5 wherein the steps of amplifying the first and second composite signals comprise
6 amplifying the pre-distorted first and second composite signals.
7

1 7. The method of claim 1,
2 further comprising the step of forming at least first and second composite signals as
3 functions of the second signal; and
4 wherein the second of the sharing steps comprises the steps of:
5 amplifying the first composite signal in a first amplifier of the at least two
6 amplifiers; and
7 amplifying the second composite signal in a second amplifier of the at least two
8 amplifiers.

1 8. A method for processing at least a first diversity-encoded signal and a second
2 diversity-encoded signal each of which represents information represented by a first signal, the
3 method comprising the steps of:
4 forming at least first and second composite signals as functions of the at least first and
5 second diversity-encoded signals;
6 amplifying the first composite signal in a first amplifier to produce an amplified first
7 composite signal;
8 amplifying the second composite signal in a second amplifier to produce an amplified
9 second composite signal; and

10 forming amplified first and second diversity-encoded signals as functions of at least the
11 amplified first and second composite signals.

1 9. The method of claim 8, wherein:

2 the amplified first diversity-encoded signal comprises an amplified phase-shifted first
3 diversity-encoded signal; and

4 the amplified second diversity-encoded signal comprises an amplified phase-shifted
5 second diversity-encoded signal.

1 10. The method of claim 8, wherein:

2 the first composite signal is a function of a combination of the first diversity-encoded
3 signal with a phase-shifted version of the second diversity-encoded signal; and

4 the second composite signal is a function of a combination of the second diversity-
5 encoded signal with a phase-shifted version of the first diversity-encoded signal.

1 11. The method of claim 8, wherein:

2 the amplified first diversity-encoded signal is a function of a combination of the
3 amplified first composite signal with a phase-shifted version of the amplified second composite
4 signal; and

5 the amplified second diversity-encoded signal is a function of a combination of the
6 amplified second composite signal with a phase-shifted version of the amplified first composite
7 signal.

1 12. The method of claim 8, wherein:

2 the first composite signal is a function of a sum of the first diversity-encoded signal and
3 of the second diversity-encoded signal; and

4 the second composite signal is a function of a difference between the first diversity-
5 encoded signal and the second diversity-encoded signal.

1 13. The method of claim 8, wherein:

2 the amplified first diversity-encoded signal is a function of a sum of the amplified first
3 composite signal and the amplified second composite signal; and

4 the amplified second diversity-encoded signal is a function of a difference of the
5 amplified first composite signal and the amplified second composite signal.

1 14. The method of claim 8, further comprising the steps of:

2 transmitting the amplified first diversity-encoded signal over a first antenna; and

3 transmitting the amplified second diversity-encoded signal over a second antenna.

1 15. The method of claim 8, further comprising the steps of:

2 forming the at least first and second composite signals as functions of a second signal;

3 and

4 forming an amplified second signal as a function of at least the amplified first and second
5 composite signals.

1 16. The method of claim 8, wherein the step of forming the at least first and second
2 composite signals is performed in the digital domain.

1 17. The method of claim 16,

2 further comprising the steps of:

3 pre-distorting the first composite signal; and

4 pre-distorting the second composite signal; and

5 wherein the steps of amplifying the first and second composite signals comprise
6 amplifying the pre-distorted first and second composite signals.

1 18. A transmitter comprising:

2 a first device for forming at least a first and second composite signals as functions of at
3 least first and second diversity-encoded signals, the first and second diversity-encoded signal
4 representing information represented by a first signal;

5 a first amplifier having an input coupled to the first device, the amplifier amplifying the
6 first composite signals to produce an amplified first composite signal;

7 a second amplifier having an input coupled to the first device, the amplifier amplifying
8 the second composite signal to produce an amplified second composite signal; and

9 a second device having a first input coupled to an output of the first amplifier and having
10 a second input coupled to an output of the second amplifier, the second device for forming
11 amplified first and second diversity-encoded signals as functions of at least the amplified first
12 and second composite signals.

1 19. The transmitter of claim 18, wherein the first device comprises:

2 channel processing circuitry; and

3 at least one radio for forming the first and second composite signals.

1 20. The transmitter of claim 18, wherein

2 the first device comprises:

3 channel processing circuitry;

4 at least one radio; and

5 a first hybrid combiner having an input coupled to an output of the radio, a first
6 output coupled to the first amplifier, and a second output coupled to the second amplifier, the
7 first hybrid combiner forming the first and second composite signals; and

8 the second device comprises a second hybrid combiner having a first input coupled to the
9 first amplifier, and a second input coupled to the second amplifier.

1 21. The transmitter of claim 20, wherein the first and second hybrid combiners
2 comprise 90° hybrid combiners.

1 22. The transmitter of claim 18, wherein:

2 the first device further comprises a digital predistorter having an output coupled to the
3 first and second amplifiers, the digital predistorter pre-distorts the first composite signal and the
4 second composite signal;

5 the first amplifier amplifies the pre-distorted first composite signal to produce the
6 amplified first composite signal; and

7 the second amplifier amplifies the pre-distorted second composite signal to produce the
8 amplified second composite signal.

1 23. The transmitter of claim 18, wherein:

2 the amplified first diversity-encoded signal comprises an amplified phase-shifted first
3 diversity-encoded signal; and

4 the amplified second diversity-encoded signal comprises an amplified phase-shifted
5 second diversity-encoded signal.

1 24. An apparatus comprising:

2 at least one antenna; and

3 a transmitter coupled to at least one of the at least one antennas, the transmitter
4 comprising:

5 a first device for forming at least a first and second composite signals as functions
6 of at least first and second diversity-encoded signals, the first and second diversity-encoded
7 signal representing information represented by a first signal;

8 a first amplifier having an input coupled to the first device, the amplifier
9 amplifying the first composite signals to produce an amplified first composite signal;

10 a second amplifier having an input coupled to the first device, the amplifier
11 amplifying the second composite signal to produce an amplified second composite signal; and

12 a second device having a first input coupled to an output of the first amplifier and
13 having a second input coupled to an output of the second amplifier, the second device for
14 forming amplified first and second diversity-encoded signals as functions of at least the
15 amplified first and second composite signals.

1 25. The apparatus of claim 24, wherein the first device comprises:

2 channel processing circuitry; and

3 at least one radio for forming the first and second composite signals.

1 26. The apparatus of claim 24, wherein
2 the first device comprises:
3 channel processing circuitry;
4 at least one radio; and
5 a first hybrid combiner having an input coupled to an output the radio, a first
6 output coupled to the first amplifier, and a second output coupled to the second amplifier, the
7 first hybrid combiner forming the first and second composite signals; and
8 the second device comprises a second hybrid combiner having a first input coupled to the
9 first amplifier, and a second input coupled to the second amplifier.

1 27. The apparatus of claim 26, wherein the first and second hybrid combiners
2 comprise 90° hybrid combiners.

1 28. The apparatus of claim 24, wherein:
2 the first device further comprises a digital predistorter having an output coupled to the
3 first and second amplifiers, the digital predistorter pre-distorts the first composite signal and the
4 second composite signal;
5 the first amplifier amplifies the pre-distorted first composite signal to produce the
6 amplified first composite signal; and
7 the second amplifier amplifies the pre-distorted second composite signal to produce the
8 amplified second composite signal.

1 29. The apparatus of claim 24, wherein:
2 the amplified first diversity-encoded signal comprises an amplified phase-shifted first
3 diversity-encoded signal; and
4 the amplified second diversity-encoded signal comprises an amplified phase-shifted
5 second diversity-encoded signal.

1 30. The apparatus of claim 24, wherein the apparatus includes at least two antennas
2 and the transmitter is coupled to at least two of the antennas.

1 31. The apparatus of claim 24, wherein the apparatus further comprises a receiver
2 coupled to at least one of the antennas.

Add. A2

09631885 • 080400