6 СВЕТОТЕХНИЧЕСКИЙ РАСЧЁТ

6.1 Расчёт системы общего равномерного освещения методом коэффициента использования светового потока

Рассчитаем количество светильников методом коэффициента использования светового потока для помещений с номинальной освещённостью 100 лк и более.

Коэффициенты отражения стен, потолка, рабочей поверхности берем согласно рекомендациям [2].

Определяем индекс помещения по формуле, ([3], с.107):

$$i_n = \frac{A \cdot B}{H_p \cdot (A+B)},\tag{6.1}$$

Где А-длина помещения, для литейного цеха А=42 м;

В-ширина помещения, для литейного цеха В=36 м.

$$i_n = \frac{42 \cdot 36}{7,0 \cdot (42 + 36)} = 2,76.$$

Определяем требуемый световой поток уровнем освещённости, ([3], с.107):

$$\Phi = \frac{E_{\min} \cdot K_3 \cdot A \cdot B \cdot z}{\eta},\tag{6.2}$$

где E_{min} — нормируемая освещенность, для литейного цеха, E_H =300лк, (ПЗ, п.1); K_3 — коэффициент запаса, K_3 =1,5, (ПЗ, п.1);

z — коэффициент, учитывающий неравномерность освещения(z=1,1-линейные ИС; z=1,15-точечные ИС.

 η – коэффициент использования светового потока, η =1,01 ([3],табл. 8.1).

$$\Phi = \frac{300 \cdot 1,5 \cdot 42 \cdot 36 \cdot 1,1}{1,01} = 741029,7$$
 лм.

Число светильников по, ([3], с.105):

					KP 1-43 01 03.3Э22c.Π3			
Изм	Лист	№ докум.	$\Pi o \partial n$.	Дата				
Pa	зраб.	Егорченко Е. Д				Лит	Лист	Листов
Ι	Іров.	Елкин В.Д.			Светотехнический расчет	V	15	29
Т. н	контр.					ΓΓΤ	У им. П.О.	Сухого
Н. 1	контр.					Кафедра	«Электро	снабжение»
7	Утв.					1 1	1	

$$N = \Phi / \Phi_{\pi}, \tag{6.3}$$

где Φ_{π} – световой поток одной лампы, Φ_{π} =16000лм, ([3], табл. 5.4).

$$N = \frac{741029,7}{16000} = 46,31$$

Принимаем N=46 шт.

Расчёт остальных ламп в помещениях освещённостью не менее 100 люкс остаётся таким же.

Полученные данные заносим в таблицу 6.1.

Таблица 6.1 – Высота и количество светильников

П	Тип	Кол-во	Индекс	Коэф-т	Коэф-т	Коэф-т
Помещение	светиль-	светильников	помещения	отражен	отражен	отражен
	ника			ия ρ_{π}	ияρ _с	ияρр
Литейный цех	ДСП-160	46	2,76	0,7	0,5	0,3
Кабинет мастеров	ДСП-44	8	1,71	0,7	0,5	0,3
Кабинет	поп 44	8	1,71	0,7	0,5	0,3
технологов	ДСП-44					
Лаборатория	ДСП-131	6	1,42	0,7	0,5	0,3
КТП	LZ-136	2	0,9	0,5	0,3	0,1
Склад	LZ-136	2	0,9	0,5	0,3	0,1

Коэффициент использования	Световой поток лампы Ф	Кол-во ламп в светильнике и её мощность	Световой поток Фл	
1,01	16000	1х120 Вт	741029,7	
0,72	4400	1х44 Вт	37125	
0,72	4400	1х44 Вт	37125	
0,58	5500	1х55 Вт	30724	
0,5	3600	2х18 Вт	7176	
0,5	3600	2х18 Вт	7176	

6.2 Расчёт точечным методом аварийного эвакуационного освещения

В производственных помещениях совместно с общим освещением должно устанавливаться и аварийное освещение. Причём аварийное освещение может быть двух видов:

Из	Лист	№ докум.	Подп.	Дата

- 1) Для продолжения работы устанавливается тогда, когда необходимо продолжать технологический процесс или завершить его до определённой стадии. Для этого освещения $E_{min} = 0.5$ лк.
- 2) Аварийное эвакуационное освещение организуется для того, чтобы обеспечить нормальные проход (без травматизма) при погасании основного рабочего освещения. Минимальная освещённость в местах проходов в основном помещении не менее 0,5 лк, ([5], с. 15).

Расчет выполним для литейного цеха.

Для эвакуационного освещения выберем светильники ДСП-160 с КСС типа Г. Расположим их в рядах с лампами рабочего освещения.

Расчёт ведём для наиболее удалённой точки (точка A), в которой освещенность минимальна, определяем расстояния проекций от точки A до ближайших аварийных светильников d_i .

В зависимости от типа светильников по кривым пространственных изолюкс, ([6], рисунок 7.7) для каждого значения H_p и d находятся условные освещенности в люксах e_i , ([6], c. 37).

Потребную нормируемую освещенность эвакуационного освещения определим по формуле, ([4], с. 38):

$$E_P = \frac{\Phi \cdot \mu \cdot \sum e_i}{1000 \cdot K_3},\tag{6.4}$$

где K_3 – коэффициент запаса, K_3 =1,5, (ПЗ, п.1);

 μ – коэффициент, учитывающий освещенность от удаленных источников света, μ =1,2, ([4], c. 39);

 Φ – световой поток лампы, Φ =16000лм, ([3], табл. 5.1).

Таблица 6.2 Таблица значение освещенности от ламп аварийного освещения

N светильника	Расстояние d,м	е, лк
1	17	0,21
2	33	0,0
3	10	0,6
4	41	0,0

$$E_p = \frac{16000 \cdot 1,2 \cdot (0,6+0,21)}{1000 \cdot 1,5} = 10,4$$
 лк.

Из	Лист	№ докум.	Подп.	Дата

 E_P =12,2 лк> E_{min} =0,5лк — условие выполнено, следовательно эвакуационное освещение рассчитано верно.

Таблица 6.3 Результаты расчета точечным методом аварийного и эвакуационного освещения

Номе р на плане	Наименование помещения	Тип светильника аварийного освещения	Кол- во штук	Световой поток	Сум е, лк	Еа, лк
1	Литейный цех	ДСП-160	9	16000	0,81	10,4
2	Кабинет мастеров	-		-	-	-
3	Кабинет	-			-	-
	технологов			-		
4	Лаборатория	-	-	-	-	-
7	КТП	LZ-136	1	3600	0,5	1,7
8	Склад	-	-	-	-	_

Из	Лист	№ докум.	Подп.	Дата