```
In [223...
           import pandas as pd
           from matplotlib import pyplot as plt
           import seaborn as sns
           import scipy.stats as stats
           import pylab
           from scipy.stats import shapiro
           import pingouin as pg
           import numpy as np
           from plotly import express as px
           from plotly import graph objects as go
           from statsmodels.graphics.gofplots import qqplot
           %matplotlib inline
           import warnings
           warnings.filterwarnings('ignore')
In [224...
          data = pd.read_excel("clp.xlsx")
           data
Out[224]:
                 USDCLP
                           DXY Cobre
              0
                  592.90
                          90.36 3.3660
              1
                  594.00
                          90.61 3.3530
              2
                  594.70 90.32 3.3595
                  595.10
                          89.94 3.3305
              4
                  591.70 90.08 3.3255
           1228
                  890.46 106.66 3.8335
           1229
                  890.70 106.40 3.8200
           1230
                  886.50 106.28 3.7735
           1231
                  911.75 106.67 3.6880
           1232
                  921.20 106.97 3.6320
          1233 rows × 3 columns
In [151...
          data.shape
           (1236, 3)
Out[151]:
In [154...
          data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1233 entries, 0 to 1232
          Data columns (total 3 columns):
               Column Non-Null Count Dtype
                       _____
               USDCLP 1233 non-null
                                        float64
           1
               DXY
                       1233 non-null
                                        float64
           2
               Cobre 1233 non-null
                                        float64
          dtypes: float64(3)
          memory usage: 29.0 KB
In [202...
           data.head()
              USDCLP
Out[202]:
                       DXY
                             Cobre
           0
                592.9 90.36 3.3660
           1
                594.0 90.61 3.3530
                594.7 90.32 3.3595
           3
                595.1 89.94 3.3305
           4
                 591.7 90.08 3.3255
In [203...
           data.keys()
           Index(['USDCLP', 'DXY', 'Cobre'], dtype='object')
Out[203]:
In [204...
           data.describe()
                     USDCLP
                                    DXY
                                               Cobre
Out[204]:
           count 1233.000000 1233.000000 1233.000000
           mean
                  753.501769
                               96.662685
                                            3.369645
             std
                   84.731032
                                4.943758
                                            0.678179
                  581.100000
                               89.030000
                                            2.175000
            min
            25%
                  685.850000
                               93.190000
                                            2.800000
            50%
                  751.000000
                               96.360000
                                            3.186500
            75%
                  808.100000
                               98.160000
                                            4.040500
                  993.510000
                               114.110000
                                            4.865500
            max
In [205...
           plt.scatter(data['DXY'],data ['USDCLP'])
           plt.title ("DXY, USDCLP")
           plt.xlabel ("DXY")
           plt.ylabel ("USDCLP")
           Text(0, 0.5, 'USDCLP')
Out[205]:
```


In [159... sns.pairplot(data)

Out[159]: <seaborn.axisgrid.PairGrid at 0x12bacb4c0>

In [161... plt.hist(data['USDCLP'], edgecolor = 'black', linewidth=1)

```
Out[161]: (array([ 57., 118., 224., 204., 195., 225., 104., 41., 47., 18.]), array([581.1 , 622.341, 663.582, 704.823, 746.064, 787.305, 828.546, 869.787, 911.028, 952.269, 993.51 ]), <BarContainer object of 10 artists>)
```



```
In [163... plt.hist(data['Cobre'], edgecolor = 'black', linewidth=1)
```

Out[163]: (array([35., 143., 331., 161., 134., 83., 42., 136., 122., 46.]), array([2.175 , 2.44405, 2.7131 , 2.98215, 3.2512 , 3.52025, 3.7893 , 4.05835, 4.3274 , 4.59645, 4.8655]), <BarContainer object of 10 artists>)


```
In [164... plt.hist(data['DXY'], edgecolor = 'black', linewidth=1)
```



```
In [165...
stats.probplot (data['USDCLP'], dist="norm", plot=pylab)
pylab.show()
```



```
estadistico, p_value = shapiro(data['USDCLP'])
print('Estadisticos=%.3f, p=%.3f' % (estadistico, p_value))
```

Estadisticos=0.982, p=0.000

```
In [168...
    data_corr = data.corr(method='pearson')
    data_corr
```

```
        Out[168]:
        USDCLP
        DXY
        Cobre

        USDCLP
        1.000000
        0.674744
        0.259269

        DXY
        0.674744
        1.000000
        -0.093952

        Cobre
        0.259269
        -0.093952
        1.000000
```

```
yticklabels=data_corr.columns,
cmap='coolwarm'
)
```

```
Out[206]: <AxesSubplot:>
```


Out[207]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [208...
corr = pg.pairwise_corr(data, method='pearson')
corr.sort_values(by=['p-unc'])[['X', 'Y', 'n', 'r', 'p-unc']]
```

```
        Out [208]:
        X
        Y
        n
        r
        p-unc

        0
        USDCLP
        DXY
        1233
        0.674744
        1.387236e-164

        1
        USDCLP
        Cobre
        1233
        0.259269
        2.173979e-20

        2
        DXY
        Cobre
        1233
        -0.093952
        9.565777e-04
```

```
In [209... from sklearn.preprocessing import LabelEncoder
```

```
encoder = LabelEncoder()
In [210...
          X = data.drop(['USDCLP'], axis=1)
          y = data['USDCLP']
          X.shape, y.shape
Out[210]: ((1233, 2), (1233,))
In [225...
          from sklearn.model_selection import train_test_split
          from sklearn.metrics import r2 score, mean squared error, mean absolute error
          from sklearn.ensemble import RandomForestRegressor
In [226...
          from sklearn.model selection import train test split
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, rando
In [227...
          from sklearn.ensemble import RandomForestRegressor
          regressor = RandomForestRegressor(n_estimators = 1000, random_state = 42)
          regressor.fit(X_train, y_train)
Out[227]:
                               RandomForestRegressor
          RandomForestRegressor(n_estimators=1000, random_state=42)
In [228...
          #Modelación regresión random forest
In [229...
          model rf = RandomForestRegressor(random state=42)
          model_rf.fit(X_train, y_train)
          #predicción modelo
          pred_rf = model_rf.predict(X_test)
          print(pred rf)
          print(pred rf.shape)
```

		Modelo K	andom forest CDDC	EI DA'I CODRE	
[606.379	674.2557	718.286989		831.878992	
728.2511	658.1213	704.2475	778.048	600.7618	795.6652
672.6026	706.141	717.856	641.726	775.602	703.81
950.9612	790.1773	735.989474		724.315309	
784.165	860.9574	741.098157		807.126371	
810.404163		837.90724	827.207336		761.4516
821.081672	718.217	773.91707	848.281	945.4174	750.7842
675.8298	837.1124	668.988	844.872	748.6961	833.6625
739.971	777.183	783.161882		820.286	814.3604
722.504	939.2639	796.4744	716.989	767.043583	
807.506808	689.745	794.2128	947.8127	603.391	805.7587
832.842		780.467	718.5824	741.723844	
836.864	684.1119	892.6234	671.953 790.02	741.902003	736.056454 705.308
798.578	690.4481	782.762		671.738	
694.654 683.197498	823.683292	720.444 790.3422	679.3243 666.2596	671.1383 801.1939	684.647895 657.88
799.6442	684.8571	686.9234	692.21163	629.296	956.1589
957.9721	703.236	733.99127	729.818316		858.1491
735.138257	848.4701	700.2352	962.146	950.4625	709.424769
887.2785	777.5537	599.612	779.041	926.504	714.669292
819.883058	763.0998	684.3926	676.536	698.219	729.136
724.378	763.287	739.198291		684.4505	843.5386
	747.955549			765.458613	
731.264	892.3147	804.2722	805.0956	717.570576	
762.0433	715.159	839.615	683.4579	787.908543	
679.0673	739.98967	752.6373	716.506	668.969	790.127
931.7913	682.8493	707.026712		600.9092	718.914
692.5129	754.9136	766.935	720.207	697.365994	
779.077	804.131881		790.7172	957.5155	775.348
613.853		700.609856		730.2065	771.281773
	805.498799		739.264057	837.2615	613.347
682.9935	686.4893	827.6442	801.1939	810.18354	838.9522
735.603753		756.038	937.0451	914.5076	768.013
	739.037257		835.291	728.091	748.222612
806.192688	718.1	718.852	685.0067	863.9975	807.0749
637.907	782.7033	821.157408	601.087	723.22	665.316
679.0059	747.108048		735.115181		637.
703.6887	680.4064	689.2018	724.880679		726.227948
830.9463	721.598	803.408856	777.546	722.828059	849.235
860.7366	805.083156	853.2199	726.1249	765.795806	684.2965
947.5063	792.905	717.093	701.8003	789.069	769.9714
712.637527	768.9671	756.0101	831.87534	680.3011	740.386568
653.181	840.642	716.992	690.661865	759.2062	749.308064
633.0506	801.801157	738.872912	722.175	814.404348	677.1767
815.1406	640.928	702.416963	655.027	798.401595	847.794
719.366	854.6077	754.5494	944.4756	645.298	773.390363
729.782	710.4995	714.468	964.6649	960.2518	706.047
724.8405	705.9001	747.080199	701.315	686.9469	791.4407
678.717	777.502	764.95581	657.5921	807.0083	751.881
816.4113	770.0963	675.5079	719.326	722.175292	690.6332
824.8909	712.423	685.542	636.749	688.3936	709.505
861.1439	673.5448	671.538	678.1655	965.3069	726.833
774.371	771.019	781.595	854.5566	690.038202	763.519547
637.	704.287265	636.007	703.589	823.495624	799.132169
782.328357	698.9596	643.348	914.9654	847.338	928.0423
775.120236	956.8627	641.194	779.67307	674.3941	730.088541
721.231234		609.692	716.985	722.8365	712.227
680.9153	684.697	922.2701	854.0111	717.639	787.818
740.737508		678.5312	658.408	841.8555	807.6911
733.984632	777.754932	725.054	782.685214	849.693	791.881

```
798.4446
                      681.8095
                                739.445565 644.914
                                                        725.351053 759.6922
           732.4721 677.7324 795.832771 674.429
          (370,)
In [215...
          y pred = model rf.predict(X test)
In [216...
          #Comparación datos reales con proyectados
          data=pd.DataFrame({'USDCLP':y_test, 'Predicción':y_pred})
          data
Out[216]:
                 USDCLP
                         Predicción
             18 600.9000 606.379000
            342 695.6700
                         674.255700
            467
                 787.4713 718.286989
            852 729.5000
                         705.197000
           980
                 811.7100 831.878992
           880 735.8800 759.692200
            795 736.0000 732.472100
            272 657.3000 677.732400
           1068 788.6100 795.832771
            165 675.5000 674.429000
          370 rows × 2 columns
In [231...
          from sklearn import metrics
          print('Testing R2 Score: ', r2_score(y test, pred rf)*100)
          print('Mean Absolute Error:', metrics.mean absolute error(y test, y pred))
          print('Mean Squared Error:', metrics.mean squared error(y test, y pred))
          print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, y
          mape = 100 * (errors / y_test)
          accuracy = 100 - np.mean(mape)
          print('Certeza:', round(accuracy, 2), '%.')
          Testing R2 Score: 82.06514705390137
         Mean Absolute Error: 23.477404670270243
         Mean Squared Error: 1334.0632360841435
          Root Mean Squared Error: 36.524830404591114
          Certeza: 96.87 %.
In [219...
          plt.figure(figsize=(5, 7))
          ax = sns.distplot(y, hist=False, color="r", label="Precio actual")
          sns.distplot(y pred, hist=False, color="b", label="Valor proyectado" , ax=ax)
          plt.title('Precio actual vs Valor proyectado')
```

```
plt.show()
plt.close()
```


In [232... #Proyección precio USDCLP, con valores de Cobre y DXY 17-11-2022 y 18-11-2022
prueba= pd.DataFrame({"Cobre":[3.688, 3.632], "DXY":[106.67, 106.97]})
prueba

```
Out [232]: Cobre DXY

0 3.688 106.67

1 3.632 106.97
```

```
In [234...
#Resultados
#Precio reales de USDCLP para las fechas proyectadas: 911.75, 921.2
print(model_rf.predict(prueba))
```

	[708.395 708.395]
In []:	