MA553: Spring 2016 Homework

Carlos Salinas

February 20, 2016

1 Homework 1

Problem 1.1. Let G be a group, $a \in G$ an element of finite order m, and n a positive integer. Prove that

$$|a^n| = \frac{m}{\gcd(m,n)}.$$

Proof.

Problem 1.2. Let G be a group, and let a, b be elements of finite order m, n respectively. Show that if ba = ab and $\langle a \rangle \cap \langle b \rangle = \{e\}$, then |ab| = lcm(m, n).

Proof.

Problem 1.3. Let G be a group and H, K normal subgroups with $H \cap K = \{e\}$. Show that

- (a) hk = kh for every $h \in H$, $k \in K$.
- (b) HK is a subgroup of G with $HK \cong H \times K$.

Proof.

Problem 1.4. Show that A_4 has no subgroup of order 6 (although 6 | $12 = |A_4|$).

Proof.

2 Homework 2

Problem 2.1. Let G be the group of order $2^3 \cdot 3$, $n \ge 2$. Show that G has a normal 2-subgroup $\ne \{e\}$.

Proof.

Problem 2.2. Let G be a group of order p^2q , p and q primes. Show that the Sylow p-Sylow subgroup or the q-Sylow subgroup of G is normal in G.

Proof.

Problem 2.3. Let G be a subgroup of order pqr, p < q < r primes. Show that the r-Sylow subgroup of G is normal in G.

Proof.

Problem 2.4. Let G be a group of order n and let $\varphi \colon G \to S_n$ be given by the action of G on G via translation.

- (a) For $a \in G$ determine the number and the lengths of the disjoint cycles of the permutation $\phi(a)$.
- (b) Show that $\varphi(G) \not\subset A_n$ if and only if n is even and G has a cyclic 2-Sylow subgroup.
- (c) If n = 2m, m odd, show that G has a subgroup of index 2.

Proof.

Problem 2.5. Show that the only simple groups $\neq \{e\}$ of order < 60 are the groups of prime order.

Proof.

2.1 Homework 3

Problem 2.6. Let G be a finite group, p a prime number, N the intersection of all p-Sylow subgroups of G. Show that N is a normal p-subgroup of G and that every normal p-subgroup of G is contained in N.

Proof.

Problem 2.7. Let G be a group of order 231 and let H be an 11-Sylow subgroup of G. Show that $H \subset Z(G)$.

Proof.

Problem 2.8. Let $G = \{e, a_1, a_2, a_3\}$ be a non-cyclic group of order 4 and define $\varphi \colon S_3 \to \operatorname{Aut}(G)$ by $\varphi(\sigma)(e) = e$ and $\varphi(\sigma)(a_1) = a_{\sigma(i)}$. Show that φ is well-defined and an isomorphism of groups.

Proof.

Problem 2.9. Determine all groups of order 18.

Proof.