Pabna University of Science and Technology

Faculty of Engineering and Technology

Department of Information and Communication Engineering

Assignment on Basic concepts of Estimation, Consistent of Estimates, Unbiased Estimates

Course Code: **STAT-2201**

Course title: Engineering Statistics

Submitted By:

Md. Rifat Hossen

Roll: 200614

Session:2021-2022

2 nd Year 2 nd semester

Department of Information and

Communication Engineering,

PUST

Submitted To:

Dr. Md. Sarwar Hosain

Associate Professor.

Department of Information and

Communication Engineering,

PUST

Date of Submission: 19-04-2025

1. Basic Concepts in Estimation

Estimation involves using observed data to approximate unknown population parameters. Key components include:

a. Parameters vs. Estimators

- Parameter (θ): A fixed, unknown numerical characteristic of a population (e.g., mean μ , variance σ^2).
- Estimator ($\hat{\theta}$): A rule or formula (e.g., sample mean \bar{X} , sample variance s^2) used to estimate θ .
- Estimate: The computed value of $\hat{\theta}$ from a given sample.

b. Properties of a Good Estimator

An ideal estimator should have:

- 1. Unbiasedness On average, it equals the true parameter.
- 2. Consistency Improves with larger sample sizes.
- Efficiency Has the smallest possible variance among competing estimators.
- 4. Sufficiency Uses all available information in the sample.

c. Common Estimation Methods

- Method of Moments (MoM): Equates sample moments to population moments.
- Maximum Likelihood Estimation (MLE): Finds θ that maximizes the likelihood function.
- Least Squares Estimation (LSE): Minimizes the sum of squared errors (common in regression).

2. Unbiased Estimates

An estimator is unbiased if its expected value equals the true parameter.

a. Mathematical Definition

$$E[\widehat{\theta}] = \theta$$

b. Examples

• Sample Mean (\bar{X}) is unbiased for the population mean (μ) :

$$E[\bar{X}] = \mu$$
, where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

• Sample Variance (s^2) is unbiased for σ^2 :

$$E[s^2] = \sigma^2$$
, where $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

c. Importance of Unbiasedness

- Ensures no systematic over- or underestimation.
- Critical in hypothesis testing and confidence intervals.

d. Limitations

- An unbiased estimator may have high variance, leading to poor precision.
- Some biased estimators (e.g., ridge regression) perform better in practice.

3. Consistent Estimates

An estimator is consistent if it converges to the true parameter as the sample size grows.

a. Mathematical Definition (Convergence in Probability)

$$\lim_{n\to\infty} P(|\hat{\theta} - \theta| \ge \epsilon) = 0$$
 for any $\epsilon > 0$

Or, equivalently:

$$\hat{\theta} \sim P0$$

b. Examples

- Sample Mean (\bar{X}) is consistent for μ (by the Law of Large Numbers).
- Maximum Likelihood Estimators (MLEs) are typically consistent under regularity conditions.

c. Importance of Consistency

- Ensures that with enough data, estimates become arbitrarily close to the truth.
- A minimal requirement for reliable inference in large samples.

d. Relationship with Unbiasedness

- Unbiasedness does not imply consistency:
 - $_{\circ}$ Example: Using only the first observation (X_1) to estimate μ is unbiased but inconsistent.
- Consistency does not require unbiasedness:
 - Example: A biased estimator like $\theta = X + 1/n$ is consistent because the bias vanishes as $n \to \infty$.

4. Practical Implications and Trade-offs

a. Bias-Variance Trade-off

Mean Squared Error (MSE) balances bias and variance:

•
$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = Var(\hat{\theta}) + (Bias(\hat{\theta}))^2$$

•

 Sometimes, accepting small bias reduces variance, improving overall accuracy.

b. Choosing Between Estimators

- For small samples: Unbiasedness may be prioritized.
- For large samples: Consistency becomes crucial.

c. Applications

- Economics: Consistent estimators ensure policy evaluations improve with more data.
- Machine Learning: Regularized (biased) estimators prevent overfitting.
- Quality Control: Unbiased measurements ensure accurate process monitoring.