Pattern Sense: Classifying Fabric Patterns Using Deep Learning Project Documentation format

1. Introduction

Project Title: [Pattern Sense: Classifying Fabric Patterns Using Deep Learning]

Team Members:

1. Team leader: Khyathi Devarakonda

2. Team member : Jinkala Venkata Sai

3. Team member : Bannaravuri Triveni

4. Team member : Dulipudi Tanusha

2. Project Overview

Purpose:

- The purpose of "PATTERN SENSE: CLASSIFYING FABRIC PATTERNS USING DEEP LEARNING" is to develop a system that automatically identifies and categorizes different fabric patterns using deep learning techniques. This aims to automate a task that is currently often done manually, improving efficiency and accuracy in the textile industry.
- To automatically recognize and classify different fabric patterns (e.g., plain, satin, twill, stripes, plaids, floral) using deep learning, replacing manual inspection and handcrafted feature extraction with an end-to-end, scalable image analysis approach
- Goals:
- The main goal of "Pattern Sense: Classifying Fabric Patterns Using Deep Learning" is to automate the process of classifying fabric patterns, specifically using deep learning techniques to improve accuracy and efficiency compared to traditional manual methods.
- Features:

Dataset & Preprocessing

- High-quality fabric images captured under controlled illumination, using consistent focal length and ISO settings for clarity
- Data augmentation to create robust variance: flips, rotations (e.g., every 30°), zoom, shear, brightness changes boosting generalization and avoiding overfitting

CNN Architectures & Transfer Learning

- Pre-trained models like ResNet-50, VGG-16/19, Google Net/Inception are fine-tuned for fabric textures combining strong feature abstraction with task adaptation.
- Architecture improvements include identity shortcuts (ResNet) to combat vanishing gradients, small-kernel stacks (VGG), and inception modules for multi-scale feature capture

Texture-Specific Feature Enhancements

- Feature fusion: Combine CNN features with classical descriptors like HOG, HSV histograms, LBP, and GLCM to enrich shape and color cues
- Attention-enhanced networks such as DenseNet variants emphasize discriminative texture regions, boosting accuracy

Scalability & Efficiency

 Integration of depth wise-separable convolutions (e.g., Mobile Net-style) and channel pruning for lightweight and fast inference—vital for deployment on embedded devices

3. Architecture

4. Setup Instructions

• Prerequisites:

To complete this project, you must require the following software and packages.

- Software Requirements:
- Visual Studio Code (VS Code) or any Python-supported IDE
- Python 3.10 for better suitable to all packages □ Python packages:
- - Type "pip install pandas" and click enter.
 - Type "pip install scikit-learn" and click enter.
 - Type "pip install matplotlib" and click enter.
 - Type "pip install scipy" and click enter.
 - Type "pip install seaborn" and click enter.
 - Type "pip install tenser flow" and click enter.
 - Type "pip install Flask" and click enter Installation:

Install Required Packages:

Ensure you run:

pip install flask==2.3.3 pip install torch==2.2.2 pip install torchvision==0.17.2 pip install numpy=1.26.4 pip install pillow==10.3.0 pip install opency-python=4.9.0.80 pip install scikit-learn==1.4.2 pip install matplotlib==3.8.4 Download Dataset:

https://www.kaggle.com/datasets/nguyngiabol/dress-pattern-dataset

Prepare the Dataset: python data_preparation.py

Create Data Label python

create data labels.py Train the

Model:

python train a model.py

Run the Flask Web Application:

python app.py

5. Folder Structure

API Documentation

- a) Home Page
 - □ URL: /
 - ☐ Method: GET
 - Description: Displays the landing page of the application.
 - Response: Returns the index.html template.
- b) About Page
 - ☐ URL: /about

☐ Method: GET

• Description: Displays information about the project.

• Response: Returns the about.html template.

c) Inspect Page (Upload & Predict UI)

 $\hfill \square$ URL: /inspect

☐ Method: GET

• Description: Displays the image upload form for prediction.

• Response: Returns the inspect.html template.

d) Image Prediction API

☐ URL: /predict

☐ Method: POST

• Description: Accepts an image file, performs classification using the trained model, and returns the prediction.

Request Parameters:

Nam	Тур	Description
e	e	
image	File	The image file to be uploaded (JPG, PNG, etc.).

Upon successful prediction, the following details are displayed:

- Uploaded image preview
- Predicted class label (e.g., "tribal")
- Confidence score (percentage)

Future Scope for Authentication (Optional Enhancements):

Hybrid AI Models & Explainability

- Physics-informed and hybrid models: Combining CNNs with physics-based models (e.g., fabric drape, fibre structure) can improve authentication robustness and interpretability
- Explainable AI (XAI): Especially for high-value fabrics (e.g., silk, Pashmina), systems that clearly show "why" a pattern is flagged as fake—based on thread density, weave irregularities—will foster trust.

Enhanced Data & Real-Time Vision

• High-resolution imaging improvements: Adoption of line-scan cameras, multispectral/hyperspectral imaging, and 3D capture can uncover authenticity features invisible to the naked eye.

• Real-time authentication during production: Inline visual inspection can identify anomalies on the fly—enhancing QC and reducing waste

Generative AI & Pattern Design

- GAN-based counterfeit detection: As counterfeiters use generative AI to create nearperfect fake patterns, authentication systems will need GAN-based "tampering detectors" to spot synthetic sequences
- Adaptive, co-created patterns: Counterparts could include AI-based modules that generate unique, traceable pattern IDs for each production batch, simplifying downstream verification.

Sustainability & Circular Fashion

- Automated sorting for recycling: AI systems will classify fabric prints and materials for optimal recycling—for instance, segregating cotton vs polyester blends for better reuse streams
- Waste reduction & traceability: Authentication tied to lifecycle metadata (e.g., recycled content, eco-certifications) supports sustainable sourcing claims

Recommended Future Features:

- ☐ Admin Login: Only authorized personnel can retrain or upload new datasets.
- ☐ User Dashboard: Registered users can track prediction history.
- ☐ API Access Tokens: Protect REST APIs for mobile or external application integration.

9. User Interface

10. Testing

Testing Strategy

Dataset Preparation & Splitting

- High-quality, balanced dataset: Collect diverse, high-res fabric images across all pattern classes. Remove duplicates, fill missing labels, and balance classes via augmentation or sampling
- Split into train/validation/test:
 - o Common split: 60–70% train, 15–20% validation, 15–20% test.
 - o Use stratified sampling to preserve class distributions.

Cross-Validation for Robustness

- Stratified k-fold (e.g. k = 5 or 10) during training/validation. Ensures each fold well represents pattern categories
- Evaluate model consistently across folds—use mean performance and standard deviation to detect variability

Data Augmentation & Test-Time Augmentation

- Train-time augmentation: Apply flips, rotations, scale, crop, brightness, shearing, translation, noise—key for texture generalization
- Test-time augmentation (TTA): Average predictions over multiple augmented crops/scales to improve stability

Evaluation Metrics & Error Analysis

- Use multiple metrics: accuracy, precision, recall, F1-score, ROC-AUC to address class imbalance
- Employ confusion matrices to check misclassification patterns and identify confusing fabric classes.
- Conduct error-slice analysis: evaluate performance across image conditions like lighting, fabric type, camera resolution

Preventing Overfitting

- Use early stopping based on validation loss or accuracy
- Apply regularization: L2 weight decay, dropout layers.
- Monitor both train and validation performance to detect divergence or overfitting.

Robustness & Bias Testing

- Stress-test with perturbed inputs (e.g., noise, lighting variations) to gauge stability .
- Evaluate on different subgroups (e.g., handloom vs machine-made, varying capture devices) to identify biases
- Optional: adversarial attacks for edge-case analysis

Final Testing & Generalization

- After tuning, evaluate on the held-out test set one final time—this is the true measure of generalization
- Ensure test data is not used for hyperparameter tuning—it's only for final assessment

Continuous Monitoring Post-Deployment

- Use a monitoring pipeline (e.g., MLflow, Tensor Board) to track model drift: monitor changes in accuracy, input data distribution, class representation.
- Implement proactive retraining triggers when performance drops below thresholds (e.g., F1 < 90%).

Tools Used

- Python: Core programming language used for model development and backend logic.
- PyTorch: Deep learning framework used to build and train the CNN model for fabric pattern classification.
- Flask: Lightweight Python web framework used to build the web application and route user requests.
- HTML/CSS: Used for designing the frontend user interface of the web application.
- SQLite: Lightweight relational database used to store user information and prediction history.
- Jinja2: Templating engine integrated with Flask to dynamically render HTML pages.
- NumPy: Used for data handling and loading class label arrays.
- PIL (Python Imaging Library): Used for image processing before passing to the model.
- TorchVision:
 - A PyTorch library used for image transformations, pre-trained models, and dataset utilities—essential for image preprocessing in the fabric classifier.
- Scikit-learn:
 - Used for evaluating the model with metrics like accuracy, precision, recall, confusion matrix, and classification report.
- Matplotlib:
 - A plotting library used to visualize training accuracy/loss graphs and evaluation results for better model understanding.

12. Known Issues

Limited & Biased Datasets

- Small dataset sizes restrict coverage of pattern diversity. Fabric image datasets are often limited (e.g., 3K–10K images), hurting generalization and risking overfitting
- Sampling bias: Majority class images dominate, underrepresenting rare patterns, so models generalize poorly to unseen types

CNN Bias Toward Texture Over Shape

- Pretrained CNNs (e.g., ResNet-50) tend to overly rely on texture, neglecting shape information. This bias can lead to misclassification under distortion or when fabrics vary substantially
- Mitigation: training with stylized-image augmentation or shape-texture debiasing methods can improve robustness

Sensitivity to Rotation, Scale, & Lighting

- Fabric textures change wildly with orientation, zoom, or lighting. Standard CNNs struggle without specific augmentation or encoding mechanisms.
- Wavelet CNNs or Deep-TEN encoding layers help gain invariance to scale and viewpoint

Insufficient Texture-Specific Feature Encoding

☐ Typical fine-tuning can't fully capture micro-structures in patterns. Advanced modules (e.g., Deep-TEN, bilinear pooling) improve representation but add complexity and training data requirements

Computational Bottlenecks

- High-capacity CNNs (e.g., DenseNet, ResNet) with encoding layers are expensive in memory/compute—problematic for edge devices
- Solutions include compact models, pruning, or knowledge distillation—but may reduce accuracy.

13. Future Enhancements

Topological Deep Learning for Structural Awareness

☐ Incorporate topological layers (e.g. persistence homology) to explicitly learn fabric's multi-scale structure and weave topology—offering robustness to distortions and enhancing texture understanding beyond pixel-level features

Multi-Modal & Depth-Enhanced Inputs

☐ Add RGB-D or multi-view inputs (e.g., depth maps, multi-angle captures) to capture 3D surface features like fabric drape, thickness, and texture shadows—ideal for distinguishing similar weaves

Advanced Texture Encoding Modules

☐ Integrate state-of-the-art modules such as Deep-TEN, wavelet-based CNNs, or mixture-enhancement + attribute clustering to learn richer, more invariant texture representations

Multi-Task Learning: Defect Detection + Classification

☐ Implement unified pipelines combining classification + segmentation/detection heads (e.g., MobileNetV2-SSD-FPN, YOLOv5, U-Net) to detect defects alongside pattern types in industrial contexts

Lightweight & Efficient Models

☐ Apply model compression, pruning, quantization, or distillation to tailor models for edge devices—enabling real-time deployment in resource-constrained manufacturing workflows

Unsupervised Anomaly Detection
☐ Incorporate unsupervised or self-supervised techniques (e.g., motif-based CNNs trained on defect-free fabric) to detect rare or unseen defects with minimal labelling effort
Domain Adaptation & Robustness Strategies
☐ Deploy advanced augmentations (adversarial, style, lighting, geometric), as well as self-training / domain adaptation approaches, to ensure stability across new fabrics, lighting conditions, and production lines
Explainability & Model Interpretability
☐ Use Grad-CAM, topological insights, or feature-importance mappings to highlight the fabric structures driving decisions—crucial for user trust and model validation in industrial settings.