CS210: ARTIFICIAL INTELLIGENCE LAB

LAB ASSIGNMENT 3: AI & Python

Submitted By:

Name: Akshat Sahu

Roll No: U22CS034

Branch: CSE

Semester: 4th Sem

Division: A

Submitted To: Dr. Chandra Prakash

Department of Computer Science and Engineering

SV NATIONAL INSTITUTE OF TECHNOLOGY SURAT

2024

 Robot Operating System (ROS) is an open source software development kit for robotics applications. ROS offers a standard software platform to developers across industries that will carry them from research and prototyping all the way through to deployment and production. Install the ROS 1 in your system as discussed in the LAB. (Help File). Mention the steps in Installation and Configuration.

Step 1: open browser and search ros noetic

Step 2: ROS Noetic Ninjemys -> Installation -> Ubuntu

Step 3: setup source.list

Step 4: setup keys

Step 5: Installation

Step 6 Sudo apt install ros-noetic-desktop-full

```
Set-100 http://in.archive.ubustr.com/joints to seed for insect. or 70 medic of 7.1 medic of 7.1
```

Step 7 : set up environment

```
nttgntt-VirtualBox:-$ is

Desktop Documents Downloads Music Pictures Public snap Templates Videos

nitgntt-VirtualBox:-$ cd ..

nitgntt-VirtualBox:/S is

bin cdrom etc lib lib64 lost+found mnt proc run snap swapfile work

boot dev home lib32 libx32 media opt root sbin srv sys usr

nttgntt-VirtualBox:/$ cd opt/

nttgntt-VirtualBox:/$ cd opt/

nttgntt-VirtualBox:/opt$ is

ros

nitgntt-VirtualBox:/opts cd ros/

nitgntt-VirtualBox:/opt/ros$ is

noetic

nttgntt-VirtualBox:/opt/ros/noetic$ is

bin etc lib local_setup.sh setup.bash _setup.util.py share

env.sh include local_setup.bash local_setup.sh setup.sh setup.zsh

nttgntt-VirtualBox:/opt/ros/noetic$ is

bin etc lib local_setup.bash setup.bash _setup_util.py share

env.sh include local_setup.bash local_setup.sh setup.bash _setup_util.py share

intgntt-VirtualBox:/opt/ros/noetic$ is

bin etc lib local_setup.bash setup.bash _setup_util.py share

intgntt-VirtualBox:/opt/ros/noetic$ source /opt/ros/noetic/setup.bash

nttgntt-VirtualBox:/opt/ros/noetic$

nttgntt-VirtualBox:/opt/ros/noetic$

nttgntt-VirtualBox:/opt/ros/noetic$

nttgntt-VirtualBox:/opt/ros/noetic$

nttgntt-VirtualBox:/opt/ros/noetic$

nttgntt-VirtualBox:/opt/ros/noetic$

nttgntt-VirtualBox:/opt/ros/noetic$

nttgntt-VirtualBox:/opt/ros/noetic$
```

```
bash: /home/akshat/turtlebot3_ws/install/setup.bash: No such file or directory
akshat@ubuntu20:-/Desktop$ roscore
... logging to /home/akshat/.ros/log/32484fd6-ba19-11ee-a118-9138645ca423/roslaunch-ubuntu20-3109.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://ubuntu20:38743/
ros_comm version 1.16.0

SUMMARY
=======

PARAMETERS
* /rosdistro: noetic
* /rosversion: 1.16.0

NODES
auto-starting new master
process[master]: started with pid [3216]
ROS_MASTER_URI=http://ubuntu20:11311/

setting /run_id to 32484fd6-ba19-11ee-a118-9138645ca423
process[rosout-1]: started with pid [3226]
started core service [/rosout]
```

Step 8: echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc

2.Execute the turtlesim node as discussed in LAB to control the Turtlesim by terminal and python script; and implement the basics of 2D navigation.

Explore the ROS Basic Commands: roscore, rosrun, rosnode and rostopic.

- 1. open terminal and run roscore stack: master roscore
- **2.** open new terminal and run command **rosrun** rosrun turtlelism turtlelism_node

Moving the turtle

Rviz

Install Gazebo in your system and mention the steps in installation and configuration.

Step 1: Setup your computer to accept software from packages.osrfoundation.org.

```
sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_rel
ease -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'

mit@mit-VirtualBox:-$ sudo sh -c 'echo "deb http://packages.osrfoundation.org/ga
zebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stab
le.list'
[sudo] password for mit:
```

```
wget https://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
```

```
sudo apt-key add -
--2024-01-23 04:41:41-- https://packages.osrfoundation.org/gazebo.key
Resolving packages.osrfoundation.org (packages.osrfoundation.org)... 52.52.171.7
3
Connecting to packages.osrfoundation.org (packages.osrfoundation.org)|52.52.171.
73|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1755 (1.7K) [application/octet-stream]
Saving to: 'STDOUT'
- 100%[==============] 1.71K ----KB/s in 0s
2024-01-23 04:41:43 (384 MB/s) - written to stdout [1755/1755]
```

Step 3: Install Gazebo.

```
Get:1 http://security.ubuntu.com/ubuntu focal-security InRelease [114 kB]
Hit:2 http://in.archive.ubuntu.com/ubuntu focal InRelease
Get:3 http://in.archive.ubuntu.com/ubuntu focal-updates InRelease [114 kB]
Get:4 http://packages.osrfoundation.org/gazebo/ubuntu-stable focal InRelease [4,279 B]
Get:5 http://security.ubuntu.com/ubuntu focal-security/restricted amd64 Packages [2,462 kB]
Hit:6 http://packages.ros.org/ros/ubuntu focal InRelease
Hit:7 http://in.archive.ubuntu.com/ubuntu focal-backports InRelease
Get:8 http://packages.osrfoundation.org/gazebo/ubuntu-stable focal/main i386 Packages [40.0 kB]
Get:9 http://in.archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages [3,030 kB]
Get:10 http://packages.osrfoundation.org/gazebo/ubuntu-stable focal/main amd64 Packages [134 kB]
Get:11 http://in.archive.ubuntu.com/ubuntu focal-updates/main i386 Packages [920 kB]
Get:11 http://in.archive.ubuntu.com/ubuntu focal-updates/universe amd64 Packages [1,155 kB]
Get:13 http://in.archive.ubuntu.com/ubuntu focal-updates/universe i386 Packages [768 kB]
Get:14 http://in.archive.ubuntu.com/ubuntu focal-updates/multiverse amd64 Packages [8,456 B]
Get:15 http://in.archive.ubuntu.com/ubuntu focal-updates/multiverse amd64 Packages [26.1 kB]
Get:16 http://security.ubuntu.com/ubuntu focal-security/restricted i386 Packages [35.5 kB]
Get:17 http://security.ubuntu.com/ubuntu focal-security/restricted Translation-en [343 kB]
Get:18 http://security.ubuntu.com/ubuntu focal-security/restricted Translat
```

Then gazebo 11

```
sudo apt-get install gazebo11
# For developers that work on top of Gazebo, one extra package
sudo apt-get install libgazebo11-dev
```

```
Reading package lists... Done
Bullding dependency tree
Reading state information... Done
The following additional packages will be installed:
    gazebo11-plugin-base libgazebo11 libgazebo11-dev libignition-common3 libignition-common3-av
    libignition-common3-av-dev libignition-common3-core-dev libignition-common3-dev
    libignition-common3-av-dev libignition-common3-core-dev libignition-common3-graphics
    libignition-common3-graphics-dev libignition-ommon3-profiler
    libignition-common3-profiler-dev libignition-fuel-tools4 libignition-fuel-tools4-dev
    libignition-transport8 libignition-transport8-core-dev libignition-transport8-dev
    libignition-transport8 libignition-transport8-log-dev libsdformat9 libsdformat9-dev
    sdformat9-sdf

Suggested packages:
    gazebo11-doc
    The following packages will be upgraded:
    gazebo11 gazebo11-plugin-base libgazebo11 libgazebo11-dev libignition-common3
    libignition-common3-av libignition-common3-av-dev libignition-common3-core-dev
    libignition-common3-dev libignition-common3-events libignition-common3-profiler
    libignition-common3-profiler-dev libignition-lev-lools4 libignition-fuel-tools4-dev
    libignition-math6 libignition-math6-dev libignition-msgs5 libignition-fuel-tools4-dev
    libignition-math6 libignition-math6-dev libignition-msgs5 libignition-fuel-tools4-dev
    libignition-math6 libignition-math6-dev libignition-msgs5 libignition-fuel-tools4-dev
    libignition-transport8 libignition-transport8-log-dev libsdformat9 libsdformat9-dev
    sdformat9-sdf
29 upgraded, 0 newly installed, 0 to remove and 234 not upgraded.
    Need to get 19.2 MB of archives.
    After this operation, 709 kB of additional disk space will be used.
    Do you want to continue? [Y/n] y
    Get: 1 http://packages.osrfoundation.org/gazebo/ubuntu-stable focal/main amd64 libignition-common3-graphics-dev amd64 3.17.0-1-focal [8,540 B]
    Get: 2 http://packages.osrfoundation.org/gazebo/ubuntu-stable focal/main amd64 libignition-common3-core-dev amd64 3.17.0-1-focal [
```

Gazebo

I was not able to construct my house but later on will try my best

4 Construct the following house configuration space/ environment using Gazebo.

NOT COMPLETED IN THE CLASS

5. Construct a wheeled differential robot in the environment of Gazebo. Move the robot in one direction . Show your creativity in the designing of the robot.

NOT COMPLETED IN THE CLASS

PART B: Exploratory Problem

- 6. Explore the
 - ·History of ROS,
 - · ROS Versions and
 - Examples of ROS-compatible robots and hardware.

History of ROS:

Origins:

ROS was first developed in 2007 by the Stanford Artificial Intelligence Laboratory (SAIL) as part of a research project aimed at creating a common platform for developing robotic software components.

- The initial version of ROS was based on a publish-subscribe architecture, where nodes can publish or subscribe to data on topics
- ROS has been widely adopted in various fields, including industrial automation, service robots, autonomous vehicles, and space robots.
- the history of ROS is one of rapid growth and success, driven by its strong technical foundations, broad adoption, and active user community.

ROS Versions:

ROS 1:

Provides a broad range of functionality, including hardware abstraction, low-level device control, message passing, visualization, and a comprehensive set of libraries and tools.

Proven success in research and development across the robotics community.

ROS 2:

A newer version focused on addressing limitations and expanding capabilities.

Offers a flexible framework for developing and running robotics applications.

Provides improved portability across different operating systems, including Linux, Windows, Mac, and real-time operating systems (RTOS).

Examples of ROS-Compatible Robots and Hardware:

ROSbots:

Small, four-wheeled robots equipped with a camera, LiDAR, and a point cloud device.

Ideal for learning ROS and research applications.

AiNex:

Humanoid robot with 24 degrees of freedom, powered by a Raspberry Pi.

Capable of walking, climbing, hurdling, grasping, and executing complex movements.

CRANE-X7:

Compact robot with a 7-axis structure.

Simulates flexible operations similar to a person's arm.

Turtlebot 2 and Turtlebot 3:

Turtlebot 2 is a versatile robot platform.

Turtlebot 3 is a smaller version with two different configurations and includes a 360º laser.

Q7. Explore the different robot simulator used for research, design, and development of robots

Here are some robot simulators:

1. Virtual Robotics Toolkit

A simulator for LEGO Mindstorms or VEX robots. It is focused on STEM education and can be used by teams preparing for robotics competitions

2 Gazebo

Gazebo is a free, open-source 3D robotics simulator that simulates real-world physics. It can simulate populations of robots in complex indoor and outdoor environment

3 Webots

A free and open-source 3D robot simulator. It allows users to create 3D simulation models of robots interacting with their environment

4. Nvidia Isaac Sim

A robotics simulation and synthetic data generation tool. It allows robot makers to train and test robots more efficiently