Introduction to Monte Carlo

Introduction

- Long and rich history since computers were invented
- Contributed to the success of Bayesian Statistics
 - and is still very popular with practioners in many applications
- Important in many other topics:
 - optimisation (simulated annealing), computational physics, statistical mechanics, ...

Good historical account in Wikipedia: https://en.wikipedia.org/wiki/Monte_Carlo_method

Introduction to Monte Carlo

- What is Monte Carlo?
 - Sampling from complex high dimensional distributions to compute integrals
 - use simulation to take advantage of computational power available.
- There are also other deterministic approximation methods:
 - difficult to tune or implement in higher dimensions
 - not very flexible in terms of setup and underlying approximations

Outline

- Perfect Monte Carlo
 - understanding basic principles and variance
- ► Other topics on variance reduction
 - control variates, Rao-Blackwellisation
- Discussion

Purpose of Monte Carlo

Consider an arbitrary distribution on $\mathcal X$ with a density π w.r.t to dx, such that

$$\pi(dx) = \frac{\gamma(x)}{Z} dx$$

and is Z unknown.

- We want to compute
 - expectations:

$$\pi(\varphi) = \mathbb{E}_{\pi}[\varphi(X)] = \langle \pi, \varphi \rangle = \int_{\mathcal{X}} \varphi(x)\pi(dx)$$

here $\varphi: \mathcal{X} \longrightarrow \mathbb{R}^{n_x}$ is a function of interest - examples: $\varphi = x^n$, $\varphi = 1_A,...$

- normalising const: $Z = \int \gamma(x) dx$
- ightharpoonup mode(s): $x^* = \arg\max\gamma$

Bayesian Inference

- Bayesian inference
 - Parameter X is a random variable and Y is some dataset
 - ▶ Bayes rule: posterior likelihood × prior

$$p(x|y) \propto \underbrace{p(y|x)p(x)}_{\gamma(x)}$$

Here evidence

$$Z = p(y) = \int p(y|x)p(x)dx$$

is very useful to compare models, but is unknown

Perfect Monte Carlo

- ▶ **IF** we can obtain i.i.d. samples $X^i \sim \pi$, i = 1, ..., N
- One can use perfect Monte Carlo

$$\widehat{\pi}(\varphi) = \int_{\mathcal{X}} \varphi(x)\widehat{\pi}(dx) = \frac{1}{N} \sum_{i=1}^{N} \varphi(X^{i}). \tag{1}$$

with

$$\widehat{\pi}(dx) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{i}}(dx)$$

In a way one can view samples forming an atomic approximation of π

$$\widehat{\pi} = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^i}$$

Perfect Monte Carlo principles

Perfect MC: Obtain i.i.d. samples $X^i \sim \pi$ and use sample average

$$\widehat{\pi}(\varphi) = \frac{1}{N} \sum_{i=1}^{N} \varphi(X^i)$$

- Principles:
 - Unbiasedness: $\mathbb{E}^N[\widehat{\pi}(\varphi)] = \pi(\varphi)$
 - ► SLLN: $\widehat{\pi}(\varphi) \to_{N\to\infty} \pi(\varphi)$
 - $\qquad \mathsf{CLT:} \ \sqrt{N}(\widehat{\pi}(\varphi) \pi(\varphi)) \to \mathcal{N}(0, \rho^2), \quad \rho^2 = \pi\left(\left(\varphi \pi(\varphi)\right)^2\right)$

Unbiasedness

▶ Because we sample i.i.d., $X^i \sim \pi$, $\widehat{\pi}(\varphi)$ is an unbiased estimator:

$$\mathbb{E}_{\pi}\left[\sum_{i=1}^{N}\varphi\left(X^{i}\right)\right]=\sum_{i=1}^{N}\mathbb{E}_{\pi}\left[\varphi\left(X^{i}\right)\right]=N\mathbb{E}_{\pi}\left[\varphi\left(X\right)\right]$$

Example 1:

$$\frac{1}{N}\mathbb{E}_{\pi}\left[\sum_{i} 1_{X^{i} < c}\right] = \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}_{\pi}\left[1_{X^{i} < c}\right] = p(X^{i} < c)$$

Unbiasedness and variance

- **Example 2**: for N > 1 use $\frac{1}{N} \sum_{i=1}^{N} X^i$ to estimate $\mathbb{E}_{\pi}[X]$
- In fact a single sample from π is an unbiased estimate for $\mathbb{E}_{\pi}[X]$
- But we require many samples and high N
 - ▶ variance of estimator decreases with rate 1/N

Perfect Monte Carlo variance

▶ Variance (non-asymptotic) is given by

$$Var\left[\widehat{\pi}(\varphi)\right] = \frac{1}{N}Var\left[\varphi(X^i)\right] = \frac{1}{N}\left(\int_{\mathcal{X}} \varphi^2(x)\pi(dx) - \pi(\varphi)^2\right)$$

- Note **rate** of decrease w.r.t N is not dependent on size of \mathcal{X}
- \blacktriangleright Dimensionality still important as integrals and π can depend implicitly on dimension and properties of φ

Issues with perfect Monte Carlo

- ► Very often direct sampling **not possible**
- Even if this is possible relative variance can still be very high:
 - when $\varphi = 1_A$ where A is a tail with very low probability $(p(X^i < c))$ is very low in Example 1 above)
- Curse of dimensionality:
 - for a required precision we might need exponential computational cost in the dimension
- Crucial question:
 - for a given problem how many samples do I need?

Tail estimation example using Perfect Monte Carlo

- ▶ Consider a continuous distribution P with density p(x)
- ▶ We are interested in computing $p^* = P(X \le c) \approx 10^{-9}$
- ► Naive Monte Carlo setting:
 - ▶ For i = 1: N sample i.i.d. $x^i \sim p(\cdot)$, then compute

$$\widehat{p^*} = \frac{1}{N} \sum_{i=1}^N 1_{x \le c}(x^i)$$

 $\blacktriangleright \ \widehat{p^*} \ \text{consistent, CLT} \ \sqrt{N} \big(\widehat{p^*} - p^* \big) \to \mathcal{N} \big(0, \mathbb{V}\textit{ar}_P \ [1_{x \leq c}] \big),$

Tail estimation example using Perfect Monte Carlo

- ► Variance of estimator $\sigma_{\widehat{p^*}}^2 = \frac{\mathbb{V}ar_p[1_{x \leq c}]}{N} = \frac{p^* p^{*^2}}{N}$,
- ► Relative error:

$$\mathit{RE} = \sqrt{\mathbb{Var}\left[rac{\widehat{
ho^*}}{p^*}
ight]} pprox rac{1}{\sqrt{p^*N}}$$

ightharpoonup So would like at least $N\sim 10^{11}$ to get decent estimators - Prohibitively long simulation times

Control variates

- ▶ When estimating $\mathbb{E}_{\pi}[\varphi(X)]$ there are ways to reduce the variance
 - control variates or antithetic variables
 - conditioning or Rao Blackwellisation
 - ► Importance Sampling
 - **....**

Control variates

- Let $\widehat{\varphi}$ be an unbiased estimate for $\mathbb{E}_{\pi}[\varphi(X)]$.
- For any Y such that $\mathbb{E}_{\pi}[Y] = 0$ and a constant β , then $\widehat{\varphi} + \beta Y$ is also an unbiased estimator

$$\mathbb{E}_{\pi}\left[\widehat{\varphi} + \beta Y\right] = \mathbb{E}_{\pi}\left[\widehat{\varphi}\right] + \beta \mathbb{E}_{\pi}\left[Y\right] = \mathbb{E}_{\pi}\left[\varphi\left(Y\right)\right]$$

and

$$Var_{\pi}\left[\widehat{\varphi}+\beta Y\right]=Var_{\pi}\left[\widehat{\varphi}\right]+\beta^{2}\mathbb{V}ar_{\pi}\left[Y\right]+2\beta\mathbb{C}ov_{\pi}\left[\widehat{\varphi},Y\right]$$

Control variates

▶ In theory one can minimise variance w.r.t to β ,

$$\beta = -\frac{\mathbb{C}ov_{\pi}\left[\widehat{\varphi}, Y\right]}{\mathbb{V}ar_{\pi}\left[Y\right]}$$

to actually get a zero variance estimator!

- ▶ In practice it is difficult to achieve this, i.e. to find such β , Y
 - but can choose Y and tune β numerically and get good variance reduction
- Similar ideas appear in <u>antithetic variates</u> or <u>Multi-level Monte</u> Carlo

Rao Blackwell conditioning

▶ Consider a bivariate distribution $\tilde{\pi}(x, y) = \pi(x|y)p(y)$, i.e.

$$\int \tilde{\pi}(x,dy) = \pi(x),$$

and assume one can simulate $\pi(x|y)$ and p(y).

▶ Then $\mathbb{E}\left[\varphi(X)|Y\right]$ is an **unbiased** estimator for $\mathbb{E}_{\pi}\left[\varphi(X)\right]$

$$\mathbb{E}_{\pi}\left[\varphi(X)\right] = \mathbb{E}_{p}\left[\mathbb{E}\left[\left.\varphi(X)\right|\right.Y\right]\right]$$

In addition, we have the variance conditioning identity

$$\mathbb{V}ar_{\pi}\left[\varphi(X)\right] \geq \mathbb{V}ar_{p}\left[\mathbb{E}\left[\left.\varphi(X)\right|Y\right]\right]$$

Rao Blackwell conditioning

- Conclusion:
 - conditioning can improve on the variance.
- Procedure:
 - use perfect Monte Carlo from p(y) and then sample from $\pi(x|y)$
 - ▶ Obtain i.i.d. samples: $Y^i \sim p \ X^i \sim \pi(\cdot|Y^i)$
 - Yⁱ acts as an auxiliary variable

Discussion

- Very often perfect Monte Carlo is possible only for simple cases
 - standard distributions for which random number generation is possible
- Even when it is possible to get direct samples from π , some test functions φ can result to estimates with very high Monte Carlo variance
 - e.g. Example 1 above for $\varphi = 1_A$
- Variance of estimators are a measure of efficiency
 - in some cases indirect sampling can be better

Other approaches for Monte Carlo sampling

- ▶ There are indirect ways for approximating $\pi(\varphi)$
- ► Basic approaches:
 - rejection sampling
 - importance sampling
- More advanced
 - Markov Chains MCMC
 - particle systems & methods Sequential Monte Carlo (SMC)
 - and various combinations of all the above