The NeuroML ecosystem for standardised multi-scale modelling in neuroscience

Ankur Sinha
Silver Lab
Department of Neuroscience, Physiology, & Pharmacology
University College London
2024-02-26

An understanding of the brain

- 86B neurons¹
- complex morphologies: dendritic trees
- active and passive ion channels
- inputs spread out over the dendritic tree
- but: also 85B glia

¹Suzana Herculano-Houzel. **"The human brain in numbers: a linearly scaled-up primate brain".** In: Frontiers in human neuroscience 3 (2009), p. 31. DOI: 10.3389/neuro.09.031.2009

A mechanistic understanding of the brain

Figure showing multiple scales of modelling goes here.

The model life cycle

- tweaked version of life cycle figure from paper goes here.
- remove NeuroML, add data

Standards enable FAIR neuroscience

- · NWB/BIDS for data
- NeuroML/SBML etc. for modelling
- Add logos

But, too many standards?

· XKCD here.

NeuroML

· Introduction to NeuroML.

NeuroML: scope

• Figure 2 from paper

NeuroML: software ecosystem

• Figure 3

NeuroML: software ecosystem: core tools

• Figure 4

NeuroML: create models

- Figure 5
- · Code example

NeuroML: validate models

• Figure 6

NeuroML: visualise models

- Figure 7
- Figure 8
- Figure 9

NeuroML: simulate models

• Example simulation: neuron/netpyne

NeuroML: fit models

- Figure from docs
- · Mention inspyred

NeuroML: share and re-use models

• GitHub, OSBv1, OSBv2, NeuroML-DB

NeuroML: the standard

Schema, component types

NeuroML: the APIs

Python API

NeuroML: LEMS

LEMS, advantages

NeuroML: Documentation

Jupyterbook

NeuroML: projects

GSoC, Outreachy, good computer science students