

PVsyst - Simulation report

Grid-Connected System

Project: AL - Sheffield Utilities

Variant: 540W 35% Rev(A) with Shading Model

Tracking system with backtracking

System power: 12.51 MWp

AL - Tuscumbia - United States

Author

EDF Renewables Distributed Solutions (United States) 6940 Columbia Gateway Drive, Suite 400 Columbia / 21046 USA

Variant: 540W 35% Rev(A) with Shading Model

EDF Renewables Distributed Solutions (United States)

VC1, Simulation date: 10/06/22 11:44 with v7.2.15

PVsyst V7.2.15

Project summary

Geographical Site Situation Project settings

AL - TuscumbiaLatitude34.65 °NAlbedoUnited StatesLongitude-87.65 °W

Altitude 158 m Time zone UTC-6

Meteo data

AL - Tuscumbia

Solar Anywhere V3.5 - TMY

System summary

Grid-Connected System Tracking system with backtracking

PV Field Orientation Near Shadings

Orientation According to string

OrientationTracking algorithmAccording to stringsTracking plane, horizontal N-S axisAstronomic calculationElectrical effect

Tracking plane, horizontal N-S axis

Astronomic calculation

Axis azimuth

0 ° Backtracking activated

System information

PV Array Inverters

Nb. of modules23166 unitsNb. of units40 unitsPnom total12.51 MWpPnom total10000 kWac

Pnom ratio 1.251

0.20

100 %

User's needs Unlimited load (grid)

Results summary

Produced Energy 23608963 kWh/year Specific production 1887 kWh/kWp/year Perf. Ratio PR 90.80 %

Table of contents

Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Horizon definition	5
Near shading definition - Iso-shadings diagram	6
Main results	7
Loss diagram	8
Special graphs	9
P50 - P90 evaluation	10

Variant: 540W 35% Rev(A) with Shading Model

EDF Renewables Distributed Solutions (United States)

VC1, Simulation date: 10/06/22 11:44 with v7.2.15

PVsyst V7.2.15

General parameters

Grid-Connected System Tracking system with backtracking

PV Field Orientation

Orientation Tracking algorithm **Backtracking array** Tracking plane, horizontal N-S axis Astronomic calculation Nb. of trackers

429 units Axis azimuth Identical arrays

Backtracking activated

Sizes

Tracker Spacing 13.1 m Collector width 4.55 m Ground Cov. Ratio (GCR) 34.8 % -/+ 60.0 ° Phi min / max.

Backtracking strategy

+/- 69.5 ° Phi limits Backtracking pitch 12.8 m Backtracking width 4.40 m

Models used

Transposition Perez Diffuse Imported Circumsolar separate

Near Shadings User's needs Horizon 1.7 °

According to strings Unlimited load (grid)

Bifacial model definitions

Electrical effect 100 %

Bifacial system

Average Height

2D Calculation Mode unlimited trackers

Bifacial model geometry

Ground albedo Tracker Spacing 13.06 m 0.30 Tracker width 4.55 m Bifaciality factor 70 % **GCR** 34.8 % Rear shading factor 7.0 % 2.10 m Rear mismatch loss 2.4 % Axis height above ground Shed transparent fraction 0.0 %

PV Array Characteristics

PV module		Inverter	
Manufacturer	CSI Solar Co., Ltd.	Manufacturer	ChintPower
Model	CS6W-540MB-AG 1500V	Mode l	CPS SCH275KTL-DO/US-800
(Custom parameters defi	nition)	(Custom parameters d	efinition)
Unit Nom. Power	540 Wp	Unit Nom. Power	250 kWac
Number of PV modules	23166 units	Number of inverters	40 units
Nominal (STC)	12.51 MWp	Total power	10000 kWac
Modules	858 Strings x 27 In series	Operating voltage	500-1500 V
At operating cond. (50°C)		Pnom ratio (DC:AC)	1.25
Pmpp	11.46 MWp		
U mpp	1003 V		
I mpp	11426 A		
Total PV power		Total inverter power	
Nominal (STC)	12510 kWp	Total power	10000 kWac
Total	23166 modules	Number of inverters	40 units
Module area	59528 m²	Pnom ratio	1.25

Variant: 540W 35% Rev(A) with Shading Model

EDF Renewables Distributed Solutions (United States)

PVsyst V7.2.15 VC1, Simulation date: 10/06/22 11:44 with v7.2.15

Array losses

Array Soiling Losses

Average loss Fraction

Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%

Thermal Loss factor

Module Quality Loss

DC wiring losses

LID - Light Induced Degradation

Loss Fraction

Module temperature according to irradiance

Global array res. 0.96 mΩ 0.8 %

Uc (const)

40.0 W/m²K

Loss Fraction

0.5 %

1.0 % at STC

Uv (wind)

0.0 W/m²K/m/s

Module mismatch losses

Loss Fraction

1.5 % at MPP

IAM loss factor

Loss Fraction

Incidence effect (IAM): User defined profile

-0.5 %

20°	40°	60°	65°	70°	75°	80°	85°	90°
1.000	1.000	1.000	0.990	0.960	0.920	0.840	0.720	0.000

AC wiring losses

Inv. output line up to MV transfo

Inverter voltage 800 Vac tri Loss Fraction 2.00 % at STC

Inverter: CPS SCH275KTL-DO/US-800

Copper 40 x 3 x 50 mm² Wire section (40 Inv.) Average wires length 111 m

MV line up to Injection

MV Voltage 12.5 kV

Average each inverter

Wires Copper 3 x 300 mm² Length 990 m 0.10 % at STC Loss Fraction

AC losses in transformers

MV transfo

12.5 kV Grid voltage

Operating losses at STC

Nominal power at STC 12261 kVA Iron loss (24/24 Connexion) 2.45 kW/Inv. Loss Fraction 0.10 % at STC Coils equivalent resistance $3 \times 2.61 \text{ m}\Omega/\text{inv}$. Loss Fraction 1.00 % at STC

Variant: 540W 35% Rev(A) with Shading Model

EDF Renewables Distributed Solutions (United States)

PVsyst V7.2.15 VC1, Simulation date: 10/06/22 11:44 with v7.2.15

Horizon definition

Horizon from PVGIS website API, Lat=34°41"58', Long=-87°41"33', Alt=158m

Horizon profile

Azimuth [°]	-180	-143	-135	-45	-38	15	23	38	45	53
Height [°]	0.4	0.4	1.5	1.5	1.9	1.9	2.3	2.3	3.1	3.4
Azimuth [°]	60	68	75	83	135	143	158	165	180	
Height [°]	3.8	3.8	2.7	2.3	2.3	1.1	1.1	0.4	0.4	

Sun Paths (Height / Azimuth diagram)

PVsyst V7.2.15 VC1, Simulation date: 10/06/22 11:44 with v7.2.15

Project: AL - Sheffield Utilities

Variant: 540W 35% Rev(A) with Shading Model

EDF Renewables Distributed Solutions (United States)

Variant: 540W 35% Rev(A) with Shading Model

EDF Renewables Distributed Solutions (United States)

PVsyst V7.2.15 VC1, Simulation date: 10/06/22 11:44

with v7.2.15

Main results

System Production

Produced Energy 23608963 kWh/year

Specific production
Performance Ratio PR

1887 kWh/kWp/year 90.80 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	72.9	27.38	4.24	98.1	95.0	1260242	1212984	0.988
February	82.5	30.20	7.86	110.3	107.7	1390794	1336004	0.968
March	126.9	55.54	9.61	159.8	155.7	1923198	1848916	0.925
April	161.7	62.28	17.22	206.1	202.0	2349444	2256347	0.875
May	190.4	78.25	20.93	240.1	235.4	2739659	2631512	0.876
June	195.6	72.94	25.58	249.0	244.1	2823222	2710387	0.870
July	191.1	76.48	26.77	241.0	236.3	2766628	2655974	0.881
August	176.2	70.86	25.08	225.2	220.9	2623842	2518966	0.894
September	145.7	54.88	21.60	191.5	187.5	2282076	2191747	0.915
October	118.0	39.73	18.49	161.6	157.6	1949045	1872372	0.926
November	83.7	30.66	12.86	110.6	107.9	1381969	1330364	0.961
December	64.8	27.10	7.60	85.0	82.6	1083696	1043390	0.981
Year	1609.4	626.30	16.53	2078.4	2032.6	24573815	23608963	0.908

Legends

GlobHor Global horizontal irradiation EArray Effective energy at the output of the array

DiffHor Horizontal diffuse irradiation E_Grid Energy injected into grid T_Amb Ambient Temperature PR Performance Ratio

GlobInc Global incident in coll. plane
GlobEff Effective Global, corr. for IAM and shadings

Variant: 540W 35% Rev(A) with Shading Model

EDF Renewables Distributed Solutions (United States)

PVsyst V7.2.15 VC1, Simulation date: 10/06/22 11:44

with v7.2.15

Variant: 540W 35% Rev(A) with Shading Model

EDF Renewables Distributed Solutions (United States)

PVsyst V7.2.15 VC1, Simulation date: 10/06/22 11:44 with v7.2.15

Variant: 540W 35% Rev(A) with Shading Model

EDF Renewables Distributed Solutions (United States)

PVsyst V7.2.15 VC1, Simulation date: 10/06/22 11:44 with v7.2.15

P50 - P90 evaluation Meteo data Simulation and parameters uncertainties Source Solar Anywhere V3.5 PV module modelling/parameters 1.0 % Inverter efficiency uncertainty 0.5 % Kind TMY, multi-year Year-to-year variability(Variance) 3.5 % Soiling and mismatch uncertainties 1.0 % **Specified Deviation** Degradation uncertainty 1.0 % Climate change 0.0 % Global variability (meteo + system) Annual production probability Variability (Quadratic sum) 3.9 % Variability 0.92 GWh P50 23.61 GWh P90 22.43 GWh P95 22.09 GWh **Probability distribution** 0.50 0.45 P50 = 23.61 GWh 0.40 Grid simul = 23.61 GWh 0.35 0.30 Probability 0.25 0.20 P90 = 22.43 GWh 0.15 P95 = 22.09 GWh 0.10 0.05 0.00 23 24 25 26

E_Grid system production GWh