Handin 4

10893, Rasmus Bækgaard

September 20th, 2013

Problem 1

Which of the following sets are well-ordered? (Why/why not?)

$$a S = \{x \in \mathbb{Q} : x \ge -10\}$$

S is not well-ordered, since there is a subset which has no least number. A subset could be written as $x = (-10 : \infty)$

b
$$S = \{-2, -1, 0, 1, 2\}$$

S is well-ordered, since it is finite and and only with natural numbers which can be written as S = [-2:2].

c
$$S = \{x \in \mathbb{Q} : -1 \le x \le 1\}$$

S is not well-ordered, since it is in \mathbb{Q} and a subset can be written as U = (-1, 1] which means we have no least value when we can divide by a larger number to get an even smaller number.

d
$$S = \{p : p \text{ is prime}\} = \{2, 3, 5, 7, 9, 11, 13, \dots\}$$

S is well-ordered, since there is a lower limit for any subset.

Problem 2

Use mathematical induction to prove that $1+5+9+\ldots+(4n-3)=2n^2-n$ for every positive integer n.

Base case

P(1) should be true:

$$4n - 3 = 2n^2 - n \tag{1}$$

$$4 \cdot 1 - 3 = 2 \cdot 1^2 - 1 \tag{2}$$

$$1 = 1 \tag{3}$$

From (??) we have shown the base case is in fact true.

Induction step

The following should apply: $\forall k \in \mathbb{N}, P(k) \Rightarrow P(k+1)$

Proof.

$$1 + 5 + 9 + \ldots + (4k - 3) = 2k^2 - k P(k) (4)$$

$$1+5+9+\ldots+(4(k+1)-3)=2(k+1)^2-k+1$$
 $P(k+1)$ (5)

$$= \underbrace{1 + 5 + 9 + \ldots + (4k - 3)}_{\text{Lefthand side of P(k)}} + (4(k + 1) - 3) \tag{6}$$

$$=2k^2 - k + 4k + 1\tag{7}$$

$$=2k^2 + 3k + 1 (8)$$

$$=2(k+1)^2 - (k+1) \tag{9}$$

The result the same as (??) true and therefor follows the Principle of Mathematical Induction.

Problem 3

Prove that $2^n \ge n^3$ for every integer $n \ge 10$.

Proof. The inequality holds for n=10 since $2^{10} \ge 10^3$. Assume that $2^k \ge k^3$, where k is a nonnegative integer. We show that $2^{k+1} \ge (k+1)^3$. When k=10, we have $2^{10}=1024 \ge 1000=10^3$. We therefor assume that $k \ge 10$. Then

$$2^{k+1} = 2 \cdot 2^k \ge k^3 + 3k^2 + 3k + 1 \tag{10}$$

$$2 \cdot 2^k \ge 2 \cdot k^3 \qquad \qquad 2 \cdot 10^2 = 2048, 2 \cdot 10^3 = 2000 \tag{11}$$

$$\geq k^3 + k^3$$
 Isolate the first k^3 (12)

$$\ge k^3 + 10k^2 k^3 \ge 10k^2 (13)$$

$$=k^3 + 3k^2 + 7k^2 \tag{14}$$

$$\geq k^3 + 3k^2 + 3k + 1 \tag{15}$$

By the Principle of Mathematical Induction, $2^n \ge n^3$ for every integer $n \ge 10$, since (??) is equal to (??).

Problem 4

Use the method of minimum counterexample to prove that $3|(2^{2n}-1)|$ for every positive integer n.

Proof. Assume, to the contraty, that there are positive integers n such, that 6 $/(2^{2n}-1)$. Then there is a a smallest positive integer n such that 6 $/(2^{2n}-1)$. Let m be this integer. If n=1, then $2^{2n}-1=3$. Since 3|3, it follows that $3|(2^{2n}-1)$ for n=1. Therefor, $m \ge 2$. So we can write m=k+1 where $1 \le k \le m$.

So $3|(2^{2k}-1)$, hence $3x=2^{2k}-1 \Leftrightarrow 3x+1=2^{2k}$. Observe that

$$m^{2m} - 1 = 2^{2(k+1)} - 1 (16)$$

$$=2^2 \cdot 2^{2k} - 1 \tag{17}$$

$$= 4 \cdot (2^{2k} - 1) \tag{18}$$

$$= 4 \cdot (3x+1) - 1 \tag{19}$$

$$= 3(4x+1) (20)$$

This show us that $3|(2^{2m}-1)$ is true, since $4x+1=\mathbb{Z}$. This is a contradiction, so the original statement is proved.

Problem 5

Use the Strong Principle of Mathematical to prove the following.

Let $S = \{i \in \mathbb{Z} : i \geq 2\}$

and the P be a subset of S with the properties that $2,3 \in P$

and if $n \in S$, then either $n \in P$ or n = ab, where $a, b \in S$.

Then every element of S either belongs to P or it can be expressed as a product of elements of P.

Proof. The set, S, consist of only integers greater than 2 and P is a subset of S. Should n be in the set S, it can be expressed as a product of two numbers in the subset, or it is in the subset it self.

Case 1: n is not a prime – let's say 6. Here n can be expressed as $2 \cdot 3 = 6$ and n is therefor not in the subset, P.

Case 2: n is not a prime – let's say 12. Here n can be expressed as $3 \cdot 4 = 12$ and n is not in the subset, but 4 is.

Case 3: n is a prime – let's say 5. Here n can not be expressed by the product of the elements in P and is only the set, S.

With the cases we can see, that all elements of S can be in the subset, P. Some elements of S cannot be the product of elements in P and must therefor be in the subset.

It can also be stated a number in the subset is $k \geq 2$, which means that $2 \leq a \leq k$ and $2 \leq b \leq k$ which then follow, that $k + 1 = a \cdot b$.

Problem 6

Use the Strong Principle of Mathematical Induction to prove, that for each integer $n \ge 12$, there are non-negative integers a and b such the n = 3a + 7b.

Proof. Prove the base case:

$$12 = 3 \cdot 4 + 7 \cdot 0 \tag{21}$$

Next we assume, that for an integer $k \ge 12$ that for every integer i within $12 \le i \le k$, there exist non-negative integer a and b such that i = 3a + 7b.

We show that there exists non-negative integers x and y such that k+1=3x+7y. Since $13=3\cdot 2+7\cdot 1$ and $14=3\cdot 0+7\cdot 2$ we may assume that $k\geq 14$.

Since $k-2 \ge 12$, there exist non-negative integers c and d such that k-2 = 3x + 7d. Hence k+1 = 3(c+1) + 7d.

By the Strong Principle of Mathematical Induction, for each integer $n \ge 12$, there are non-negative integers a and b such that n = 3a + 7b is true.