car-crashes

September 14, 2023

```
[1]: import numpy as np import matplotlib.pyplot as plt import seaborn as sns
```

$0.0.1 \quad \text{Importing and Loading car_crashes Dataset}$

```
[2]: p=sns.load_dataset('car_crashes')
p
```

[2]:		total	speeding	alcohol	not_distracted	no previous	ins premium	\
	0	18.8	7.332	5.640	18.048		784.55	•
	1	18.1	7.421	4.525	16.290		1053.48	
	2	18.6	6.510	5.208	15.624	17.856	899.47	
	3	22.4	4.032	5.824	21.056	21.280	827.34	
	4	12.0	4.200	3.360	10.920	10.680	878.41	
	5	13.6	5.032	3.808	10.744	12.920	835.50	
	6	10.8	4.968	3.888	9.396	8.856	1068.73	
	7	16.2	6.156	4.860	14.094	16.038	1137.87	
	8	5.9	2.006	1.593	5.900	5.900	1273.89	
	9	17.9	3.759	5.191	16.468	16.826	1160.13	
	10	15.6	2.964	3.900	14.820	14.508	913.15	
	11	17.5	9.450	7.175	14.350	15.225	861.18	
	12	15.3	5.508	4.437	13.005	14.994	641.96	
	13	12.8	4.608	4.352	12.032	12.288	803.11	
	14	14.5	3.625	4.205	13.775	13.775	710.46	
	15	15.7	2.669	3.925	15.229	13.659	649.06	
	16	17.8	4.806	4.272	13.706	15.130	780.45	
	17	21.4	4.066	4.922	16.692	16.264	872.51	
	18	20.5	7.175	6.765	14.965	20.090	1281.55	
	19	15.1	5.738	4.530	13.137	12.684	661.88	
	20	12.5	4.250	4.000	8.875	12.375	1048.78	
	21	8.2	1.886	2.870	7.134	6.560	1011.14	
	22	14.1	3.384	3.948	13.395	10.857	1110.61	
	23	9.6	2.208	2.784	8.448	8.448	777.18	
	24	17.6	2.640	5.456	1.760	17.600	896.07	
	25	16.1	6.923	5.474	14.812	13.524	790.32	
	26	21.4	8.346	9.416	17.976	18.190	816.21	

27	14.9	1.937	5.215	13.857	13.410	732.28
28	14.7	5.439	4.704	13.965	14.553	1029.87
29	11.6	4.060	3.480	10.092	9.628	746.54
30	11.2	1.792	3.136	9.632	8.736	1301.52
31	18.4	3.496	4.968	12.328	18.032	869.85
32	12.3	3.936	3.567	10.824	9.840	1234.31
33	16.8	6.552	5.208	15.792	13.608	708.24
34	23.9	5.497	10.038	23.661	20.554	688.75
35	14.1	3.948	4.794	13.959	11.562	697.73
36	19.9	6.368	5.771	18.308	18.706	881.51
37	12.8	4.224	3.328	8.576	11.520	804.71
38	18.2	9.100	5.642	17.472	16.016	905.99
39	11.1	3.774	4.218	10.212	8.769	1148.99
40	23.9	9.082	9.799	22.944	19.359	858.97
41	19.4	6.014	6.402	19.012	16.684	669.31
42	19.5	4.095	5.655	15.990	15.795	767.91
43	19.4	7.760	7.372	17.654	16.878	1004.75
44	11.3	4.859	1.808	9.944	10.848	809.38
45	13.6	4.080	4.080	13.056	12.920	716.20
46	12.7	2.413	3.429	11.049	11.176	768.95
47	10.6	4.452	3.498	8.692	9.116	890.03
48	23.8	8.092	6.664	23.086	20.706	992.61
49	13.8	4.968	4.554	5.382	11.592	670.31
50	17.4	7.308	5.568	14.094	15.660	791.14

	ins_losses	${\tt abbrev}$
0	145.08	AL
1	133.93	AK
2	110.35	AZ
3	142.39	AR
4	165.63	CA
5	139.91	CO
6	167.02	CT
7	151.48	DE
8	136.05	DC
9	144.18	FL
10	142.80	GA
11	120.92	HI
12	82.75	ID
13	139.15	IL
14	108.92	IN
15	114.47	IA
16	133.80	KS
17	137.13	KY
18	194.78	LA
19	96.57	ME
20	192.70	MD

```
21
         135.63
                     MA
22
         152.26
                     ΜI
23
         133.35
                     MN
24
         155.77
                     MS
25
         144.45
                     MO
26
          85.15
                     MT
27
         114.82
                     NE
28
         138.71
                     NV
29
         120.21
                     NH
30
         159.85
                     NJ
31
         120.75
                     NM
32
         150.01
                     NY
33
         127.82
                     NC
34
         109.72
                     ND
35
         133.52
                     OH
36
         178.86
                     OK
37
         104.61
                     OR
38
         153.86
                     PA
39
         148.58
                     RI
40
         116.29
                     SC
41
                     SD
          96.87
42
                     TN
         155.57
43
                     \mathsf{TX}
         156.83
44
         109.48
                     UT
45
         109.61
                     VT
46
         153.72
                     VA
47
         111.62
                     WA
48
         152.56
                     WV
49
         106.62
                     WI
         122.04
                     WY
50
```

[3]: p.shape

0.0.2 Dimensions of car_crashes Dataset

Column Non-Null Count Dtype
--- ----0 total 51 non-null float64

Data columns (total 8 columns):

```
speeding
                     51 non-null
                                      float64
1
2
    alcohol
                                      float64
                     51 non-null
3
    not_distracted 51 non-null
                                      float64
4
    no_previous
                     51 non-null
                                      float64
5
    ins premium
                     51 non-null
                                      float64
6
    ins_losses
                                      float64
                     51 non-null
7
    abbrev
                     51 non-null
                                      object
```

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

0.0.4 Provides count, mean, Standard Deviation, Minimum and Maximum values

[5]: p.describe() [5]: total speeding alcohol not_distracted no_previous 51.000000 51.000000 51.000000 51.000000 51.000000 count 15.790196 4.998196 4.886784 mean 13.573176 14.004882

std 4.122002 2.017747 1.729133 4.508977 3.764672 1.792000 1.593000 min 5.900000 1.760000 5.900000 25% 12.750000 3.766500 3.894000 10.478000 11.348000 50% 15.600000 4.608000 4.554000 13.857000 13.775000 75% 18.500000 6.439000 5.604000 16.140000 16.755000 max23.900000 9.450000 10.038000 23.661000 21.280000

ins_losses ins_premium 51.000000 51.000000 count 886.957647 134.493137 mean std 178.296285 24.835922 641.960000 82.750000 min 25% 768.430000 114.645000 50% 858.970000 136.050000 75% 1007.945000 151.870000 1301.520000 194.780000 max

0.0.5 First 5 rows of the Dataset

[6]: p.head()

[6]: total speeding alcohol not_distracted no_previous ins_premium 18.8 7.332 5.640 784.55 0 18.048 15.040 1 18.1 7.421 4.525 16.290 17.014 1053.48 2 18.6 6.510 5.208 15.624 17.856 899.47 3 22.4 4.032 5.824 21.056 21.280 827.34 4 12.0 4.200 3.360 10.920 10.680 878.41

ins_losses abbrev
0 145.08 AL

```
1 133.93 AK
2 110.35 AZ
3 142.39 AR
4 165.63 CA
```

0.0.6 Last 5 rows of the Dataset

```
[7]: p.tail()
[7]:
         total
                speeding
                           alcohol not_distracted no_previous
                                                                   ins_premium \
     46
          12.7
                    2.413
                             3.429
                                             11.049
                                                           11.176
                                                                         768.95
     47
          10.6
                    4.452
                             3.498
                                              8.692
                                                            9.116
                                                                         890.03
     48
          23.8
                    8.092
                             6.664
                                             23.086
                                                           20.706
                                                                         992.61
     49
          13.8
                    4.968
                             4.554
                                              5.382
                                                           11.592
                                                                         670.31
     50
          17.4
                   7.308
                             5.568
                                             14.094
                                                           15.660
                                                                         791.14
         ins_losses abbrev
     46
             153.72
                         VA
             111.62
     47
     48
             152.56
                         WV
     49
             106.62
                         WI
             122.04
                         WY
     50
```

0.1 Multivariate

0.1.1 Data Analysis on the Dataset-Factors Affecting Total Crashes

```
[8]: fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 8))

# Create barplots for each column
sns.barplot(data=p, x='speeding', y='total', ax=axes[0, 0])
axes[0, 0].set_title('Speeding vs Total')

sns.barplot(data=p, x='alcohol', y='total', ax=axes[0, 1])
axes[0, 1].set_title('Alcohol vs Total')

sns.barplot(data=p, x='not_distracted', y='total', ax=axes[1, 0])
axes[1, 0].set_title('Not Distracted vs Total')

sns.barplot(data=p, x='not_previous', y='total', ax=axes[1, 1])
axes[1, 1].set_title('Not Previous vs Total')

# Adjust layout
plt.tight_layout()

# Show the plots
plt.show()
```



```
[9]: sns.scatterplot(x="alcohol",y="not_distracted",data=p,color="red")
```

[9]: <Axes: xlabel='alcohol', ylabel='not_distracted'>


```
[10]: sns.scatterplot(x="ins_losses",y="ins_premium",data=p,color="green")
```

[10]: <Axes: xlabel='ins_losses', ylabel='ins_premium'>


```
[11]: sns.scatterplot(x='total',y='speeding',data=p)
```

[11]: <Axes: xlabel='total', ylabel='speeding'>

0.1.2 Pairplot

[12]: sns.pairplot(p)
plt.show()

0.2 Bivariate

0.2.1 Lineplot

```
[13]: sns.lineplot(x='total',y='speeding',data=p)
```

[13]: <Axes: xlabel='total', ylabel='speeding'>


```
[14]: #lineplot a=sns.lineplot(x="speeding",y="alcohol",data=p,color="green")
```


0.2.2 Directly Proportional

```
[15]: sns.lineplot(x="alcohol",y="not_distracted",data=p,color="red")
```

[15]: <Axes: xlabel='alcohol', ylabel='not_distracted'>


```
[16]: sns.lineplot(x="ins_premium",y="ins_losses",data=p,color="cyan")
```

[16]: <Axes: xlabel='ins_premium', ylabel='ins_losses'>

0.2.3 Countplot

```
[17]: sns.set_style("whitegrid")
sns.countplot(x="total", data=p)
plt.show()
```



```
[18]: sns.set_style("whitegrid")
sns.countplot(x="not_distracted", data=p)
plt.show()
```



```
[19]: sns.set_style("whitegrid")
sns.countplot(x="alcohol", data=p)
plt.title("Count of Alcohol",fontsize=20)
plt.show()
```


0.2.4 Histogram

```
[20]: sns.histplot(p['ins_premium'], color='orange')
   plt.xlabel('Insurance Premium')
   plt.ylabel('Frequency')
   plt.title('Histogram of Insurance Premium')
   plt.show()
```



```
[21]: sns.histplot(p['alcohol'], color='blue')
  plt.xlabel('Alcohol')
  plt.ylabel('Frequency')
  plt.title('Histogram of car crashes due to Alcohol')
  plt.show()
```



```
[22]: sns.histplot(p['speeding'], color='red')
  plt.xlabel('Speeding')
  plt.ylabel('Frequency')
  plt.title('Histogram of car crashes due to Overspeeding')
  plt.show()
```


0.2.5 Barplot

```
[23]: sns.barplot(y=p['total'],x=p['speeding'],data=p)
```

[23]: <Axes: xlabel='speeding', ylabel='total'>


```
[24]: sns.barplot(y=p['alcohol'],x=p['total'],data=p)
```

[24]: <Axes: xlabel='total', ylabel='alcohol'>


```
[25]: sns.barplot(y=p['ins_losses'],x=p['ins_premium'],data=p)
```

[25]: <Axes: xlabel='ins_premium', ylabel='ins_losses'>

0.2.6 Correlation for each attribute

```
[26]: a=p.corr()
a
```

C:\Users\sbkom\AppData\Local\Temp\ipykernel_28308\4238299828.py:1:
FutureWarning: The default value of numeric_only in DataFrame.corr is
deprecated. In a future version, it will default to False. Select only valid
columns or specify the value of numeric_only to silence this warning.
 a=p.corr()

[26]:		total	speeding	alcohol	not_distracted	no_previous	\
	total	1.000000	0.611548	0.852613	0.827560	0.956179	
	speeding	0.611548	1.000000	0.669719	0.588010	0.571976	
	alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	
	not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	
	no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	
	ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	
	ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	

ins_premium ins_losses

total -0.036011 -0.199702 speeding -0.077675 -0.065928 alcohol -0.170612 -0.112547 not_distracted -0.174856 -0.075970 no_previous -0.156895 -0.006359 ins_premium 1.000000 0.623116 ins_losses 0.623116 1.000000

0.2.7 Data Visualising using Heatmap

[27]: sns.heatmap(a, annot=True, cmap="YlGnBu")

[27]: <Axes: >

