Study Guide: Approximation of functions with finite elements

Hans Petter Langtangen 1,2

 $^1{\rm Center}$ for Biomedical Computing, Simula Research Laboratory $^2{\rm Department}$ of Informatics, University of Oslo

Oct 16, 2013

Contents

1	Wh	y finite elements?	1
	1.1	Domain for flow around a dolphin	2
	1.2	The flow	3
	1.3	Basic ingredients of the finite element method	3
	1.4	Our learning strategy	3
	1.5	Approximation set-up	4
	1.6	How to determine the coefficients?	4
	1.7	Approximation of planar vectors; problem	4
	1.8	Approximation of planar vectors; vector space terminology	5
	1.9	The least squares method; principle	6
	1.10		6
	1.11	The projection (or Galerkin) method	6
		Approximation of general vectors	6
		The least squares method	7
		The projection (or Galerkin) method	7
_			_
2		proximation of functions	7
	2.1	The least squares method	7
	2.2	The projection (or Galerkin) method	8
	2.3	Example: linear approximation; problem	8
	2.4	Example: linear approximation; solution	8
	2.5	Example: linear approximation; plot	9
	2.6	Implementation of the least squares method; ideas	9
	2.7	r	10
	2.8	Implementation of the least squares method; plotting	10
	2.9	Implementation of the least squares method; application	10
	2.10	Perfect approximation; parabola approximating parabola	11
	2.11	Perfect approximation; the general result	11
	2.12	Perfect approximation; proof of the general result	12
			12

	2.14	Ill-conditioning (1)	12
	2.15	Ill-conditioning (2)	13
	2.16	Fourier series approximation; problem and code	13
	2.17	Fourier series approximation; plot	13
		Fourier series approximation; improvements	14
		Fourier series approximation; final results	14
		Orthogonal basis functions	15
		The collocation or interpolation method; ideas and math	15
		The collocation or interpolation method; implementation	15
		The collocation or interpolation method; approximating a parabola by linear functions	
		Lagrange polynomials; motivation and ideas	16
		Lagrange polynomials; formula and code	16
		Lagrange polynomials; successful example	17
		Lagrange polynomials; a less successful example	17
		Lagrange polynomials; oscillatory behavior	17
		Lagrange polynomials; remedy for strong oscillations	18
		Lagrange polynomials; recalculation with Chebyshev nodes	19
	2.31	Lagrange polynomials; less oscillations with Chebyshev nodes	19
	3 Fini	ite element basis functions	20
	3.1	So far: basis functions have been global	20
	3.2	In the finite element method we use basis functions with local support	20
	3.3	The linear combination of hat functions is a piecewise linear function	21
	3.4	Elements and nodes	21
	3.5	Example on elements with two nodes (P1 elements)	22
	3.6	Illustration of two basis functions on the mesh	22
	3.7	Example on elements with three nodes (P2 elements)	23
	3.8	Some corresponding basis functions (P2 elements)	23
	3.9	Examples on elements with four nodes per element (P3 elements)	24
	3.10	Some corresponding basis functions (P3 elements)	24
	3.11	The numbering does not need to be regular from left to right	25
	3.12	Interpretation of the coefficients c_i	25
	3.13	Properties of the basis functions	25
		How to construct quadratic φ_i (P2 elements)	26
		Example on linear φ_i (P1 elements)	27
	3.16	Example on cubic φ_i (P3 elements)	28
4	4 Cale	culating the linear system for c_i	28
	4.1	Computing a specific matrix entry (1)	28
	4.2	Computing a specific matrix entry (2)	29
	4.3	Calculating a general row in the matrix; figure	29
	4.4	Calculating a general row in the matrix; details	30
	4.5	Calculation of the right-hand side	30
	4.6	Specific example: two elements; linear system and solution	30
	4.7	Specific example: two elements; plot	31
	4.8	Specific example: what about four elements?	31

5	Asse	embly of elementwise computations	3
	5.1	Split the integrals into elementwise integrals	3
	5.2	The element matrix	32
	5.3	Illustration of the matrix assembly: regularly numbered P1 elements	32
	5.4	Illustration of the matrix assembly: regularly numbered P3 elements	33
	5.5	Illustration of the matrix assembly: irregularly numbered P1 elements	34
	5.6	Assembly of the right-hand side	34
6	Map	oping to a reference element	34
	6.1	Affine mapping	35
	6.2	Integral transformation	35
	6.3	Advantages of the reference element	35
	6.4	Standardized basis functions for P1 elements	35
	6.5	Standardized basis functions for P2 elements	35
	6.6	Integration over a reference element; element matrix	36
	6.7	Integration over a reference element; element vector	36
	6.8	Tedious calculations! Let's use symbolic software	36
7	Imp	lementation	37
	7.1	Compute finite element basis functions	37
	7.2	Compute the element matrix	37
	7.3	Example on symbolic and numeric element matrix	38
	7.4	Compute the element vector	38
	7.5	Fallback on numerical integration if symbolic integration fails	38
	7.6	Linear system assembly and solution	39
	7.7	Linear system solution	39
	7.8	Example on computing approximations	39
	7.9	The structure of the coefficient matrix	40
	7.10	General result: the coefficient matrix is sparse	40
	7.11	Exemplifying the sparsity for P2 elements	4
	7.12	Matrix sparsity pattern for regular/random numbering of P1 elements	4
	7.13	Matrix sparsity pattern for regular/random numbering of P3 elements	4
		Sparse matrix storage and solution	42
	7.15	Approximate $f \sim x^9$ by various elements; code	42
		Approximate $f \sim x^9$ by various elements; plot	43
8	Con	aparison of finite element and finite difference approximation	43
	8.1	Interpolation/collocation with finite elements	43

1 Why finite elements?

- \bullet Can with ease solve PDEs in domains with $complex\ geometry$
- Can with ease provide higher-order approximations
- Has (in simpler stationary problems) a rigorus mathematical analysis framework (not much considered here)

1.1 Domain for flow around a dolphin

1.2 The flow

1.3 Basic ingredients of the finite element method

- \bullet Transform the PDE problem to a $variational\ form$
- Define function approximation over finite elements
- Use a machinery to derive *linear systems*
- Solve linear systems

1.4 Our learning strategy

- Start with approximation of functions, not PDEs
- \bullet Introduce finite element approximations
- See later how this is applied to PDEs

Reason: the finite element method has many concepts and a jungle of details. This strategy minimizes the mixing of ideas, concepts, and technical details.

1.5 Approximation set-up

General idea:

$$u(x) = \sum_{i=0}^{N} c_i \psi_i(x), \tag{1}$$

where

- $\psi_i(x)$ are prescribed functions
- c_i , i = 0, ..., N are unknown coefficients to be determined

1.6 How to determine the coefficients?

- least squares method
- projection or Galerkin method
- interpolation (or collocation) method

Underlying motivation for our notation.

Our mathematical framework for doing this is phrased in a way such that it becomes easy to understand and use the $FEniCS^a$ software package for finite element computing.

ahttp://fenicsproject.org

1.7 Approximation of planar vectors; problem

Given a vector $\mathbf{f} = (3, 5)$, find an approximation to \mathbf{f} directed along a given line.

1.8 Approximation of planar vectors; vector space terminology

$$V = \operatorname{span} \{ \psi_0 \}. \tag{2}$$

- ψ_0 is a basis vector in the space V
- Seek $\boldsymbol{u} = c_0 \boldsymbol{\psi}_0 \in V$
- ullet Determine c_0 such that $oldsymbol{u}$ is the "best" approximation to $oldsymbol{f}$
- Visually, "best" is obvious

Define

- ullet the error $oldsymbol{e} = oldsymbol{f} oldsymbol{u}$
- \bullet the (Eucledian) scalar product of two vectors: $(\boldsymbol{u},\boldsymbol{v})$
- the norm of e: $||e|| = \sqrt{(e,e)}$

1.9 The least squares method; principle

- Idea: find c_0 such that ||e|| is minimized
- Actually, we always minimize $E = ||e||^2$

$$\frac{\partial E}{\partial c_0} = 0.$$

1.10 The least squares method; calculations

$$E(c_0) = (\mathbf{e}, \mathbf{e}) = (\mathbf{f}, \mathbf{f}) - 2c_0(\mathbf{f}, \psi_0) + c_0^2(\psi_0, \psi_0)$$
(3)

$$\frac{\partial E}{\partial c_0} = -2(\mathbf{f}, \boldsymbol{\psi}_0) + 2c_0(\boldsymbol{\psi}_0, \boldsymbol{\psi}_0) = 0 \tag{4}$$

$$c_0 = \frac{(\boldsymbol{f}, \psi_0)}{(\psi_0, \psi_0)} \tag{5}$$

$$c_0 = \frac{3a + 5b}{a^2 + b^2} \tag{6}$$

Observation for later: the vanishing derivative (4) can be alternatively written as

$$(\mathbf{e}, \boldsymbol{\psi}_0) = 0. \tag{7}$$

1.11 The projection (or Galerkin) method

- Backgrund: minimizing $||e||^2$ implies that e is orthogonal to any vector v in the space V (visually clear, but can easily be computed too)
- Alternative idea: demand $(\boldsymbol{e}, \boldsymbol{v}) = 0, \quad \forall \boldsymbol{v} \in V$
- Equivalent statement: $(e, \psi_0) = 0$ (see notes for why)
- Insert $e = f c_0 \psi_0$ and solve for c_0
- Same equation for c_0 and hence same solution as in the least squares method

1.12 Approximation of general vectors

Given a vector f, find an approximation $u \in V$:

$$V = \operatorname{span} \{ \psi_0, \dots, \psi_N \}.$$

- We have a set of linearly independent basis vectors ψ_0, \dots, ψ_N
- Any $\boldsymbol{u} \in V$ can then be written as $\boldsymbol{u} = \sum_{j=0}^N c_j \boldsymbol{\psi}_j$

1.13 The least squares method

Idea: find c_0, \ldots, c_N such that $E = ||e||^2$ is minimized, e = f - u.

$$E(c_0, \dots, c_N) = (\boldsymbol{e}, \boldsymbol{e}) = (\boldsymbol{f} - \sum_j c_j \psi_j, \boldsymbol{f} - \sum_j c_j \psi_j)$$
$$= (\boldsymbol{f}, \boldsymbol{f}) - 2 \sum_{j=0}^N c_j (\boldsymbol{f}, \psi_j) + \sum_{p=0}^N \sum_{q=0}^N c_p c_q (\psi_p, \psi_q).$$

$$\frac{\partial E}{\partial c_i} = 0, \quad i = 0, \dots, N.$$

After some work we end up with a linear system

$$\sum_{i=0}^{N} A_{i,j} c_j = b_i, \quad i = 0, \dots, N$$
(8)

$$A_{i,j} = (\psi_i, \psi_j)$$

$$b_i = (\psi_i, \mathbf{f})$$

$$(10)$$

$$b_i = (\boldsymbol{\psi}_i, \boldsymbol{f}) \tag{10}$$

The projection (or Galerkin) method

Can be shown that minimizing ||e|| implies that e is orthogonal to all $v \in V$:

$$(\boldsymbol{e}, \boldsymbol{v}) = 0, \quad \forall \boldsymbol{v} \in V,$$

which implies that e most be orthogonal to each basis vector:

$$(\boldsymbol{e}, \boldsymbol{\psi}_i) = 0, \quad i = 0, \dots, N. \tag{11}$$

This orthogonality condition is the principle of the projection (or Galerkin) method. Leads to the same linear system as in the least squares method.

2 Approximation of functions

Let V be a function space spanned by a set of basis functions ψ_0, \ldots, ψ_N ,

$$V = \operatorname{span} \{\psi_0, \dots, \psi_N\},\$$

Find $u \in V$ as a linear combination of the basis functions:

$$u = \sum_{j \in I} c_j \psi_j, \quad I = \{0, 1, \dots, N\}$$
 (12)

2.1The least squares method

- Extend the ideas from the vector case: minimize the (square) norm of the error.
- What norm? $(f,g) = \int_{\Omega} f(x)g(x) dx$

$$E = (e, e) = (f - u, f - u) = (f(x) - \sum_{j \in I} c_j \psi_j(x), f(x) - \sum_{j \in I} c_j \psi_j(x))$$
(13)

$$E(c_0, \dots, c_N) = (f, f) - 2\sum_{j \in I} c_j(f, \psi_i) + \sum_{p \in I} \sum_{q \in I} c_p c_q(\psi_p, \psi_q)$$
(14)

$$\frac{\partial E}{\partial c_i} = 0, \quad i = \in I$$

After computations identical to the vector case, we get a linear system

$$\sum_{j\in I}^{N} A_{i,j} c_j = b_i, \quad i \in I$$

$$\tag{15}$$

$$A_{i,j} = (\psi_i, \psi_j)$$

$$b_i = (f, \psi_i)$$
(16)
(17)

$$b_i = (f, \psi_i) \tag{17}$$

2.2The projection (or Galerkin) method

As before, minimizing (e, e) is equivalent to the projection (or Galerkin) method

$$(e, v) = 0, \quad \forall v \in V, \tag{18}$$

which means, as before,

$$(e, \psi_i) = 0, \quad i \in I. \tag{19}$$

With the same algebra as in the multi-dimensional vector case, we get the same linear system as arose from the least squares method.

Example: linear approximation; problem

Problem.

Approximate a parabola $f(x) = 10(x-1)^2 - 1$ by a straight line.

$$V = \mathrm{span} \left\{ 1, x \right\}.$$

That is, $\psi_0(x) = 1$, $\psi_1(x) = x$, and N = 1. We seek

$$u = c_0 \psi_0(x) + c_1 \psi_1(x) = c_0 + c_1 x,$$

2.4 Example: linear approximation; solution

$$A_{0,0} = (\psi_0, \psi_0) = \int_1^2 1 \cdot 1 \, dx = 1 \tag{20}$$

$$A_{0,1} = (\psi_0, \psi_1) = \int_1^2 1 \cdot x \, dx = 3/2 \tag{21}$$

$$A_{1,0} = A_{0,1} = 3/2, (22)$$

$$A_{1,1} = (\psi_1, \psi_1) = \int_1^2 x \cdot x \, dx = 7/3 \tag{23}$$

$$b_1 = (f, \psi_0) = \int_1^2 (10(x-1)^2 - 1) \cdot 1 \, dx = 7/3 \tag{24}$$

$$b_2 = (f, \psi_1) = \int_1^2 (10(x-1)^2 - 1) \cdot x \, dx = 13/3 \tag{25}$$

Solution of 2x2 linear system:

$$c_0 = -38/3, \quad c_1 = 10, \quad u(x) = 10x - \frac{38}{3}$$
 (26)

2.5 Example: linear approximation; plot

2.6 Implementation of the least squares method; ideas

Consider symbolic computation of the linear system, where

- f(x) is given as a sympy expression f (involving the symbol x),
- phi is a list of $\{\psi_i\}_{i\in I}$,
- ullet Omega is a 2-tuple/list holding the domain Ω

Carry out the integrations, solve the linear system, and return $u(x) = \sum_j c_j \psi_j(x)$

2.7 Implementation of the least squares method; code

```
import sympy as sm
def least_squares(f, phi, Omega):
    N = len(phi) - 1
    A = sm.zeros((N+1, N+1))
   b = sm.zeros((N+1, 1))
    x = sm.Symbol('x')
    for i in range(N+1):
        for j in range(i, N+1):
A[i,j] = sm.integrate(phi[i]*phi[j],
                                    (x, Omega[0], Omega[1]))
            A[j,i] = A[i,j]
        b[i,0] = sm.integrate(phi[i]*f, (x, Omega[0], Omega[1]))
    c = A.LUsolve(b)
    u = 0
    for i in range(len(phi)):
        u += c[i,0]*phi[i]
    return u
```

Observe: symmetric coefficient matrix so we can halve the integrations.

2.8 Implementation of the least squares method; plotting

Compare f and u visually:

```
def comparison_plot(f, u, Omega, filename='tmp.pdf'):
    x = sm.Symbol('x')
    # Turn f and u to ordinary Python functions
    f = sm.lambdify([x], f, modules="numpy")
    u = sm.lambdify([x], u, modules="numpy")
    resolution = 401  # no of points in plot
    xcoor = linspace(Omega[0], Omega[1], resolution)
    exact = f(xcoor)
    approx = u(xcoor)
    plot(xcoor, approx)
    hold('on')
    plot(xcoor, exact)
    legend(['approximation', 'exact'])
    savefig(filename)
```

All code in module approx1D.py¹

2.9 Implementation of the least squares method; application

```
>>> from approx1D import *
>>> x = sm.Symbol('x')
>>> f = 10*(x-1)**2-1
>>> u = least_squares(f=f, phi=[1, x], Omega=[1, 2])
>>> comparison_plot(f, u, Omega=[1, 2])
```

¹http://tinyurl.com/jvzzcfn/fem/approx1D.py

2.10 Perfect approximation; parabola approximating parabola

- What if we add $\psi_2 = x^2$ to the space V?
- That is, approximating a parabola by any parabola?
- (Hopefully we get the exact parabola!)

```
>>> from approx1D import *
>>> x = sm.Symbol('x')
>>> f = 10*(x-1)**2-1
>>> u = least_squares(f=f, phi=[1, x, x**2], Omega=[1, 2])
>>> print u
10*x**2 - 20*x + 9
>>> print sm.expand(f)
10*x**2 - 20*x + 9
```

2.11 Perfect approximation; the general result

- What if we use $\phi_i(x) = x^i$ for $i = 0, \dots, N = 40$?
- The output from least_squares is $c_i = 0$ for i > 2

General result.

If $f \in V$, least squares and projection/Galerkin give u = f.

2.12 Perfect approximation; proof of the general result

If $f \in V$, $f = \sum_{j \in I} d_j \psi_j$, for some $\{d_i\}_{i \in I}$. Then

$$b_i = (f, \psi_i) = \sum_{j \in I} d_j(\psi_j, \psi_i) = \sum_{j \in I} d_j A_{i,j}.$$

The linear system $\sum_{j} A_{i,j} c_j = b_i, i \in I$, is then

$$\sum_{j \in I} c_j A_{i,j} = \sum_{j \in I} d_j A_{i,j}, \quad i \in I,$$

which implies that $c_i = d_i$ for $i \in I$ and u is identical to f.

2.13 Finite-precision/numerical computations

The previous computations were symbolic. What if we solve the linear system numerically with standard arrays?

exact	sympy	numpy32	numpy64
9	9.62	5.57	8.98
-20	-23.39	-7.65	-19.93
10	17.74	-4.50	9.96
0	-9.19	4.13	-0.26
0	5.25	2.99	0.72
0	0.18	-1.21	-0.93
0	-2.48	-0.41	0.73
0	1.81	-0.013	-0.36
0	-0.66	0.08	0.11
0	0.12	0.04	-0.02
0	-0.001	-0.02	0.002

- Column 2: sympy.mpmath.fp.matrix and sympy.mpmath.fp.lu_solve
- Column 3: numpy arrays with numpy.float32 entries
- Column 4: numpy arrays with numpy.float64 entries

2.14 Ill-conditioning (1)

Observations:

- Significant round-off errors in the numerical computations (!)
- But if we plot the approximations they look good (!)

Problem: The basis functions x^i become almost linearly dependent for large N.

2.15 Ill-conditioning (2)

- Almost linearly dependent basis functions give almost singular matrices
- Such matrices are said to be *ill conditioned*, and Gaussian elimination is severely affected by round-off errors
- The basis $1, x, x^2, x^3, x^4, \dots$ is a bad basis
- Polynomials are fine as basis, but the more orthogonal they are, $(\psi_i, \psi_j) \approx 0$, the better

2.16 Fourier series approximation; problem and code

Consider

$$V = \operatorname{span} \left\{ \sin \pi x, \sin 2\pi x, \dots, \sin (N+1)\pi x \right\}.$$

```
N = 3
from sympy import sin, pi
phi = [sin(pi*(i+1)*x) for i in range(N+1)]
f = 10*(x-1)**2 - 1
Omega = [0, 1]
u = least_squares(f, phi, Omega)
comparison_plot(f, u, Omega)
```

2.17 Fourier series approximation; plot

```
N = 3 \text{ vs } N = 11:
```


2.18 Fourier series approximation; improvements

- Considerably improvement by N = 11
- But always discrepancy of f(0) u(0) = 9 at x = 0, because all the $\psi_i(0) = 0$ and hence u(0) = 0
- Possible remedy: add a term that leads to correct boundary values

$$u(x) = f(0)(1-x) + xf(1) + \sum_{j \in I} c_j \psi_j(x).$$
(27)

The extra term ensures u(0) = f(0) and u(1) = f(1) and is a strikingly good help to get a good approximation!

2.19 Fourier series approximation; final results

$$N = 3 \text{ vs } N = 11$$
:

2.20 Orthogonal basis functions

This choice of sine functions as basis functions is popular because

- the basis functions are orthogonal: $(\psi_i, \psi_j) = 0$
- implying that $A_{i,j}$ is a diagonal matrix
- implying that we can solve for $c_i = 2 \int_0^1 f(x) \sin((i+1)\pi x) dx$

In general for an orthogonal basis, $A_{i,j}$ is diagonal and we can easily solve for c_i :

$$c_i = \frac{b_i}{A_{i,i}} = \frac{(f, \psi_i)}{(\psi_i, \psi_i)}.$$

2.21 The collocation or interpolation method; ideas and math

Here is another idea for approximating f(x) by $u(x) = \sum_{j} c_{j} \psi_{j}$:

- Force $u(x_i) = f(x_i)$ at some selected collocation points $\{x_i\}_{i \in I}$
- \bullet Then u interpolates f
- ullet The method is known as interpolation or collocation

$$u(x_i) = \sum_{j \in I} c_j \psi_j(x_i) = f(x_i), \quad i \in I, N.$$
 (28)

This is a linear system with no need for integration:

$$\sum_{j \in I} A_{i,j} c_j = b_i, \quad i \in I$$
(29)

$$A_{i,j} = \psi_j(x_i) \tag{30}$$

$$b_i = f(x_i) \tag{31}$$

No symmetric matrix: $\psi_i(x_i) \neq \psi_i(x_i)$ in general

2.22 The collocation or interpolation method; implementation

points holds the interpolation/collocation points

```
def interpolation(f, phi, points):
    N = len(phi) - 1
    A = sm.zeros((N+1, N+1))
    b = sm.zeros((N+1, 1))
    x = sm.Symbol('x')
    # Turn phi and f into Python functions
    phi = [sm.lambdify([x], phi[i]) for i in range(N+1)]
    f = sm.lambdify([x], f)
    for i in range(N+1):
        for j in range(N+1):
            A[i,j] = phi[j](points[i])
        b[i,0] = f(points[i])
    c = A.LUsolve(b)
    u = 0
    for i in range(len(phi)):
        u += c[i,0]*phi[i](x)
    return u
```

2.23 The collocation or interpolation method; approximating a parabola by linear functions

- Potential difficulty: how to choose x_i ?
- The results are sensitive to the points!

(4/3, 5/3) vs (1, 2):

2.24 Lagrange polynomials; motivation and ideas

Motivation:

- The interpolation/collocation method avoids integration
- With a diagonal matrix $A_{i,j} = \psi_j(x_i)$ we can solve the linear system by hand

The Lagrange interpolating polynomials ψ_j have the property that

$$\varphi_i(x_j) = \delta_{ij}, \quad \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases}$$

Hence, $c_i = f(x_i)$ and

$$u(x) = \sum_{i \in I} f(x_i)\psi_i(x) \tag{32}$$

- Lagrange polynomials and interpolation/collocation look convenient
- Lagrange polynomials are very much used in the finite element method

2.25 Lagrange polynomials; formula and code

$$\psi_i(x) = \prod_{j=0, j \neq i}^{N} \frac{x - x_j}{x_i - x_j} = \frac{x - x_0}{x_i - x_0} \cdots \frac{x - x_{i-1}}{x_i - x_{i-1}} \frac{x - x_{i+1}}{x_i - x_{i+1}} \cdots \frac{x - x_N}{x_i - x_N},$$
(33)

```
def Lagrange_polynomial(x, i, points):
    p = 1
    for k in range(len(points)):
        if k != i:
        p *= (x - points[k])/(points[i] - points[k])
    return p
```

2.26 Lagrange polynomials; successful example

2.27 Lagrange polynomials; a less successful example

2.28 Lagrange polynomials; oscillatory behavior

12 points, degree 11, plot of two of the Lagrange polynomials - note that they are zero at all points except one.

Problem: strong oscillations near the boundaries for larger N values.

2.29 Lagrange polynomials; remedy for strong oscillations

The oscillations can be reduced by a more clever choice of interpolation points, called the $Chebyshev\ nodes$:

$$x_i = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\left(\frac{2i+1}{2(N+1)}pi\right), \quad i = 0..., N,$$
 (34)

on an interval [a, b].

2.30 Lagrange polynomials; recalculation with Chebyshev nodes

2.31 Lagrange polynomials; less oscillations with Chebyshev nodes

12 points, degree 11, plot of two of the Lagrange polynomials - note that they are zero at all points except one.

3 Finite element basis functions

3.1 So far: basis functions have been global

 $\psi_i(x) \neq 0$ for most $x \in \Omega$

3.2 In the finite element method we use basis functions with local support

- Local support: $\psi_i(x) \neq 0$ for x in a small subdomain of Ω
- Typically hat-shaped
- u(x) based on these ψ_i is a piecewise polynomial defined over many (small) subdomains

3.3 The linear combination of hat functions is a piecewise linear function

3.4 Elements and nodes

Split Ω into non-overlapping subdomains called $\mathit{elements}\colon$

$$\Omega = \Omega^{(0)} \cup \dots \cup \Omega^{(N_e)} \,. \tag{35}$$

On each element, introduce points called *nodes*: x_0, \ldots, x_{N_n}

- The finite element basis functions are named $\varphi_i(x)$
- $\varphi_i = 1$ at node i and 0 at all other nodes
- φ_i is a Lagrange polynomial on each element
- For nodes at the boundary between two elements, φ_i is made up of a Lagrange polynomial over each element

3.5 Example on elements with two nodes (P1 elements)

Data structure: nodes holds coordinates or nodes, elements holds the node numbers in each element

3.6 Illustration of two basis functions on the mesh

3.7 Example on elements with three nodes (P2 elements)

nodes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0] elements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]

3.8 Some corresponding basis functions (P2 elements)

3.9 Examples on elements with four nodes per element (P3 elements)

```
2.5
 2.0
 1.5
 1.0
 0.5
 0.0
                0 1 2
                                                           9
                            3
                                     5
                                           6
                                                     8
                                                               10 11 12
-0.5
                   \Omega^{(0)}
                                \Omega^{(1)}
                                                \Omega^{(2)}
                                                                 \Omega^{(3)}
-1.0
-1.5
                 0
                                                        4
                                                                            6
```

```
d = 3  # d+1 nodes per element
num_elements = 4
num_nodes = num_elements*d + 1
nodes = [i*0.5 for i in range(num_nodes)]
elements = [[i*d+j for j in range(d+1)] for i in range(num_elements)]
```

3.10 Some corresponding basis functions (P3 elements)

3.11 The numbering does not need to be regular from left to right

3.12 Interpretation of the coefficients c_i

Important property: c_i is the value of u at node i, x_i :

$$u(x_i) = \sum_{j \in I} c_j \varphi_j(x_i) = c_i \varphi_i(x_i) = c_i$$
(36)

3.13 Properties of the basis functions

 $\varphi_i(x)$ is mostly zero throughout the domain:

- $\varphi_i(x) \neq 0$ only on those elements that contain global node i,
- $\varphi_i(x)\varphi_j(x) \neq 0$ if and only if i and j are global node numbers in the same element.

Since $A_{i,j}$ is the integral of $\varphi_i \varphi_j$ it means that most of the elements in the coefficient matrix will be zero (important for implementation!).

3.14 How to construct quadratic φ_i (P2 elements)

- 1. Associate Lagrange polynomials with the nodes in an element
- 2. When the polynomial is 1 on the element boundary, combine it with the polynomial in the neighboring element

3.15 Example on linear φ_i (P1 elements)

$$\varphi_{i}(x) = \begin{cases} 0, & x < x_{i-1}, \\ (x - x_{i-1})/h, & x_{i-1} \le x < x_{i}, \\ 1 - (x - x_{i})/h, & x_{i} \le x < x_{i+1}, \\ 0, & x \ge x_{i+1} \end{cases}$$
(37)

3.16 Example on cubic φ_i (P3 elements)

4 Calculating the linear system for c_i

4.1 Computing a specific matrix entry (1)

 $A_{2,3}=\int_{\Omega}\varphi_{2}\varphi_{3}dx\colon\,\varphi_{2}\varphi_{3}\neq0$ only over element 2. There,

$$\varphi_3(x) = (x - x_2)/h, \quad \varphi_2(x) = 1 - (x - x_2)/h$$

$$A_{2,3} = \int_{\Omega} \varphi_2 \varphi_3 \, \mathrm{d}x = \int_{x_2}^{x_3} \left(1 - \frac{x - x_2}{h} \right) \frac{x - x_2}{h} \, \mathrm{d}x = \frac{h}{6} \,.$$

4.2 Computing a specific matrix entry (2)

$$A_{2,2} = \int_{x_1}^{x_2} \left(\frac{x - x_1}{h}\right)^2 dx + \int_{x_2}^{x_3} \left(1 - \frac{x - x_2}{h}\right)^2 dx = \frac{h}{3}.$$

4.3 Calculating a general row in the matrix; figure

$$A_{i,i-1} = \int_{\Omega} \varphi_i \varphi_{i-1} \, \mathrm{d}x = ?$$

4.4 Calculating a general row in the matrix; details

$$\begin{split} A_{i,i-1} &= \int_{\Omega} \varphi_i \varphi_{i-1} \, \mathrm{d}x \\ &= \underbrace{\int_{x_{i-2}}^{x_{i-1}} \varphi_i \varphi_{i-1} \, \mathrm{d}x}_{\varphi_i \varphi_{i-1}} + \underbrace{\int_{x_i}^{x_i} \varphi_i \varphi_{i-1} \, \mathrm{d}x}_{\varphi_i \varphi_{i-1}} + \underbrace{\int_{x_i}^{x_{i+1}} \varphi_i \varphi_{i-1} \, \mathrm{d}x}_{\varphi_{i-1} = 0} \\ &= \underbrace{\int_{x_{i-1}}^{x_i} \underbrace{\frac{x - x_i}{h}}_{\varphi_i(x)} \underbrace{\left(1 - \frac{x - x_{i-1}}{h}\right)}_{\varphi_{i-1}(x)} \, \mathrm{d}x = \frac{h}{6} \, . \end{split}$$

- $A_{i,i+1} = A_{i,i-1}$ due to symmetry
- $A_{i,i} = h/3$ (same calculation as for $A_{2,2}$)
- $A_{0,0} = A_{N,N} = h/3$ (only one element)

4.5 Calculation of the right-hand side

$$b_{i} = \int_{\Omega} \varphi_{i}(x) f(x) dx = \int_{x_{i-1}}^{x_{i}} \frac{x - x_{i-1}}{h} f(x) dx + \int_{x_{i}}^{x_{i+1}} \left(1 - \frac{x - x_{i}}{h} \right) f(x) dx.$$
 (38)

Need a specific f(x) to do more...

4.6 Specific example: two elements; linear system and solution

- f(x) = x(1-x) on $\Omega = [0,1]$
- \bullet Two equal-sized elements [0,0.5] and [0.5,1]

$$A = \frac{h}{6} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad b = \frac{h^2}{12} \begin{pmatrix} 2 - 3h \\ 12 - 14h \\ 10 - 17h \end{pmatrix}.$$

$$c_0 = \frac{h^2}{6}, \quad c_1 = h - \frac{5}{6}h^2, \quad c_2 = 2h - \frac{23}{6}h^2.$$

4.7 Specific example: two elements; plot

$$u(x) = c_0 \varphi_0(x) + c_1 \varphi_1(x) + c_2 \varphi_2(x)$$

4.8 Specific example: what about four elements?

5 Assembly of elementwise computations

5.1 Split the integrals into elementwise integrals

$$A_{i,j} = \int_{\Omega} \varphi_i \varphi_j dx = \sum_{e} A_{i,j}^{(e)}, \quad A_{i,j}^{(e)} = \int_{\Omega^{(e)}} \varphi_i \varphi_j dx.$$
 (39)

Important:

- $A_{i,j}^{(e)} \neq 0$ if and only if i and j are nodes in element e (otherwise no overlap between the basis functions)
- \bullet all the nonzero elements in $A_{i,j}^{(e)}$ are collected in an $\mathit{element\ matrix}$

5.2 The element matrix

$$\tilde{A}^{(e)} = {\{\tilde{A}_{r,s}^{(e)}\}}, \quad r, s \in I_d = {\{0, \dots, d\}},$$

$$\tilde{A}_{r,s}^{(e)} = \int_{\Omega^{(e)}} \varphi_{q(e,r)} \varphi_{q(e,s)} dx, \quad r,s \in I_d.$$

- r, s run over local node numbers within an element, while i, j run over global node numbers.
- i = q(e, r): mapping of local node number r in element e to the global node number i. Math equivalent to i=elements[e][r].
- ullet Add contribution from an element into the global coefficient matrix (assembly)

$$A_{q(e,r),q(e,s)} := A_{q(e,r),q(e,s)} + \tilde{A}_{r,s}^{(e)}, \quad r,s \in I_d.$$

$$\tag{40}$$

5.3 Illustration of the matrix assembly: regularly numbered P1 elements

Animation²

²http://tinyurl.com/k3sdbuv/pub/mov-fem/fe_assembly.html

5.4 Illustration of the matrix assembly: regularly numbered P3 elements

 ${\rm Animation^3}$

 $^{^3 {\}tt http://tinyurl.com/k3sdbuv/pub/mov-fem/fe_assembly.html}$

5.5 Illustration of the matrix assembly: irregularly numbered P1 elements

Animation⁴

5.6 Assembly of the right-hand side

Split in elementwise contributions:

$$b_i = \int_{\Omega} \varphi_i \varphi_j dx = \sum_e b_i^{(e)}, \quad b_i^{(e)} = \int_{\Omega^{(e)}} f(x) \varphi_i(x) dx.$$
 (41)

Important:

- $b_i^{(e)} \neq 0$ if and only if global node i is a node in element e (otherwise $\varphi_i = 0$)
- The d+1 nonzero $b_i^{(e)}$ can be collected in an element vector

$$\tilde{b}_r^{(e)} = \{\tilde{b}_r^{(e)}\}, \quad r \in I_d.$$

Assembly:

$$b_{q(e,r)} := b_{q(e,r)} + \tilde{b}_r^{(e)}, \quad r, s \in I_d.$$
(42)

6 Mapping to a reference element

Instead of computing

$$\tilde{A}_{r,s}^{(e)} = \int_{\Omega^{(e)}} \varphi_{q(e,r)}(x) \varphi_{q(e,s)}(x) dx$$

over some element $\Omega^{(e)} = [x_L, x_R]$, we now map $[x_L, x_R]$ to a standardized reference element domain [-1, 1] with local coordinate X.

⁴http://tinyurl.com/k3sdbuv/pub/mov-fem/fe_assembly.html

6.1 Affine mapping

$$x = \frac{1}{2}(x_L + x_R) + \frac{1}{2}(x_R - x_L)X.$$
(43)

or rewritten as

$$x = x_m + \frac{1}{2}hX, \qquad x_m = (x_L + x_R)/2$$
 (44)

6.2 Integral transformation

Integrating on the reference element is a matter of just changing the integration variable from x to X. Introduce local basis function

$$\tilde{\varphi}_r(X) = \varphi_{q(e,r)}(x(X)) \tag{45}$$

The integral transformation reads

$$\tilde{A}_{r,s}^{(e)} = \int_{\Omega^{(e)}} \varphi_{q(e,r)}(x)\varphi_{q(e,s)}(x)dx = \int_{-1}^{1} \tilde{\varphi}_{r}(X)\tilde{\varphi}_{s}(X)\frac{dx}{dX}dX.$$

$$(46)$$

Introduce the notation det J = dx/dX = h/2 (2D/3D must use det J)

$$\tilde{A}_{r,s}^{(e)} = \int_{-1}^{1} \tilde{\varphi}_r(X)\tilde{\varphi}_s(X) \det J \, dX \,. \tag{47}$$

$$\tilde{b}_r^{(e)} = \int_{\Omega^{(e)}} f(x) \varphi_{q(e,r)}(x) dx = \int_{-1}^1 f(x(X)) \tilde{\varphi}_r(X) \det J \, dX \,. \tag{48}$$

6.3 Advantages of the reference element

- Always the same domain for integration: [-1, 1]
- We only need formulas for $\tilde{\varphi}_r(X)$ on the reference elements (no need for piecewise polynomial definition)
- \bullet All geometric information (length and location) is "factored out" in the mapping and det J

6.4 Standardized basis functions for P1 elements

$$\tilde{\varphi}_0(X) = \frac{1}{2}(1 - X)$$
 (49)

$$\tilde{\varphi}_1(X) = \frac{1}{2}(1+X) \tag{50}$$

6.5 Standardized basis functions for P2 elements

P2 elements:

$$\tilde{\varphi}_0(X) = \frac{1}{2}(X - 1)X\tag{51}$$

$$\tilde{\varphi}_1(X) = 1 - X^2 \tag{52}$$

$$\tilde{\varphi}_2(X) = \frac{1}{2}(X+1)X\tag{53}$$

Easy to generalize to arbitrary order!

6.6 Integration over a reference element; element matrix

P1 elements and f(x) = x(1-x).

$$\tilde{A}_{0,0}^{(e)} = \int_{-1}^{1} \tilde{\varphi}_{0}(X)\tilde{\varphi}_{0}(X)\frac{h}{2}dX
= \int_{-1}^{1} \frac{1}{2}(1-X)\frac{1}{2}(1-X)\frac{h}{2}dX = \frac{h}{8}\int_{-1}^{1}(1-X)^{2}dX = \frac{h}{3}, \qquad (54)
\tilde{A}_{1,0}^{(e)} = \int_{-1}^{1} \tilde{\varphi}_{1}(X)\tilde{\varphi}_{0}(X)\frac{h}{2}dX
= \int_{-1}^{1} \frac{1}{2}(1+X)\frac{1}{2}(1-X)\frac{h}{2}dX = \frac{h}{8}\int_{-1}^{1}(1-X^{2})dX = \frac{h}{6}, \qquad (55)
\tilde{A}_{0,1}^{(e)} = \tilde{A}_{1,0}^{(e)}, \qquad (56)
\tilde{A}_{1,0}^{(e)} = \int_{-1}^{1} \tilde{\varphi}_{1}(X)\tilde{\varphi}_{1}(X)\frac{h}{2}dX$$

$$\begin{split} \tilde{A}_{1,1}^{(e)} &= \int_{-1}^{1} \tilde{\varphi}_{1}(X) \tilde{\varphi}_{1}(X) \frac{h}{2} dX \\ &= \int_{-1}^{1} \frac{1}{2} (1+X) \frac{1}{2} (1+X) \frac{h}{2} dX = \frac{h}{8} \int_{-1}^{1} (1+X)^{2} dX = \frac{h}{3} \,. \end{split}$$
 (57)

6.7 Integration over a reference element; element vector

$$\tilde{b}_{0}^{(e)} = \int_{-1}^{1} f(x(X))\tilde{\varphi}_{0}(X) \frac{h}{2} dX
= \int_{-1}^{1} (x_{m} + \frac{1}{2}hX)(1 - (x_{m} + \frac{1}{2}hX)) \frac{1}{2}(1 - X) \frac{h}{2} dX
= -\frac{1}{24}h^{3} + \frac{1}{6}h^{2}x_{m} - \frac{1}{12}h^{2} - \frac{1}{2}hx_{m}^{2} + \frac{1}{2}hx_{m}$$

$$\tilde{b}_{1}^{(e)} = \int_{-1}^{1} f(x(X))\tilde{\varphi}_{1}(X) \frac{h}{2} dX
= \int_{-1}^{1} (x_{m} + \frac{1}{2}hX)(1 - (x_{m} + \frac{1}{2}hX)) \frac{1}{2}(1 + X) \frac{h}{2} dX
= -\frac{1}{24}h^{3} - \frac{1}{6}h^{2}x_{m} + \frac{1}{12}h^{2} - \frac{1}{2}hx_{m}^{2} + \frac{1}{2}hx_{m}.$$
(59)

 x_m : element midpoint.

6.8 Tedious calculations! Let's use symbolic software

```
>>> import sympy as sm
>>> x, x_m, h, X = sm.symbols('x x_m h X')
>>> sm.integrate(h/8*(1-X)**2, (X, -1, 1))
h/3
>>> sm.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6
>>> x = x_m + h/2*X
>>> b_0 = sm.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print b_0
-h**3/24 + h**2*x_m/6 - h**2/12 - h*x_m**2/2 + h*x_m/2
```

Can printe out in LATEX too (convenient for copying into reports):

```
>>> print sm.latex(b_0, mode='plain')
- \frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m}
- \frac{1}{12} h^{2} - \frac{1}{2} h x_{m}^{2}
+ \frac{1}{2} h x_{m}
```

7 Implementation

- Coming functions appear in fe_approx1D.py⁵
- Functions can operate in symbolic or numeric mode
- The code documents all steps in finite element calculations!

7.1 Compute finite element basis functions

Let $\tilde{\varphi}_r(X)$ be a Lagrange polynomial of degree d:

```
import sympy as sm
import numpy as np
def phi_r(r, X, d):
    if isinstance(X, sm.Symbol):
        h = sm.Rational(1, d) # node spacing
nodes = [2*i*h - 1 for i in range(d+1)]
    else:
         \mbox{\tt\#} assume \mbox{\tt X} is numeric: use floats for nodes
        nodes = np.linspace(-1, 1, d+1)
    return Lagrange_polynomial(X, r, nodes)
def Lagrange_polynomial(x, i, points):
    for k in range(len(points)):
         if k != i:
            p *= (x - points[k])/(points[i] - points[k])
    return p
def basis(d=1):
    """Return the complete basis."""
    X = sm.Symbol('X')
    phi = [phi_r(r, X, d) for r in range(d+1)]
    return phi
```

7.2 Compute the element matrix

```
def element_matrix(phi, Omega_e, symbolic=True):
    n = len(phi)
    A_e = sm.zeros((n, n))
    X = sm.Symbol('X')
    if symbolic:
        h = sm.Symbol('h')
    else:
        h = Omega_e[1] - Omega_e[0]
    detJ = h/2  # dx/dX
    for r in range(n):
        for s in range(r, n):
```

⁵http://tinyurl.com/jvzzcfn/fem/fe_approx1D.py

```
A_e[r,s] = sm.integrate(phi[r]*phi[s]*detJ, (X, -1, 1))
A_e[s,r] = A_e[r,s]
return A_e
```

7.3 Example on symbolic and numeric element matrix

```
>>> from fe_approx1D import *
>>> phi = basis(d=1)
>>> phi
[1/2 - X/2, 1/2 + X/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
[h/6, h/3]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.016666666666667]
[0.0166666666666667, 0.03333333333333]
```

7.4 Compute the element vector

```
def element_vector(f, phi, Omega_e, symbolic=True):
    n = len(phi)
    b_e = sm.zeros((n, 1))
    # Make f a function of X
    X = sm.Symbol('X')
    if symbolic:
        h = sm.Symbol('h')
    else:
        h = Omega_e[1] - Omega_e[0]
    x = (Omega_e[0] + Omega_e[1])/2 + h/2*X  # mapping
    f = f.subs('x', x)  # substitute mapping formula for x
    detJ = h/2  # dx/dX
    for r in range(n):
        b_e[r] = sm.integrate(f*phi[r]*detJ, (X, -1, 1))
    return b_e
```

Note f.subs('x', x): replace x by x(X) such that f contains X

7.5 Fallback on numerical integration if symbolic integration fails

- Element matrix: only polynomials and sympy always succeeds
- Element vector: $\int f \tilde{\varphi} dx$ can fail (sympy then returns an Integral object instead of a number)

```
def element_vector(f, phi, Omega_e, symbolic=True):
    ...
    I = sm.integrate(f*phi[r]*detJ, (X, -1, 1)) # try...
    if isinstance(I, sm.Integral):
        h = Omega_e[1] - Omega_e[0] # Ensure h is numerical
        detJ = h/2
        integrand = sm.lambdify([X], f*phi[r]*detJ)
        I = sm.mpmath.quad(integrand, [-1, 1])
    b_e[r] = I
    ...
```

7.6 Linear system assembly and solution

7.7 Linear system solution

```
if symbolic:
    c = A.LUsolve(b)  # sympy arrays, symbolic Gaussian elim.
else:
    c = np.linalg.solve(A, b)  # numpy arrays, numerical solve
```

Note: the symbolic computation of A and b and the symbolic solution can be very tedious.

7.8 Example on computing approximations

```
>>> h, x = sm.symbols('h x')
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3,
          h/6,
                     01
[h/6, 2*h/3, h/6]
[ 0,
          h/6, h/3]
>>> b
[ h**2/6 - h**3/12]
[ h**2 - 7*h**3/6]
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
                                       h**2/6]
[12*(7*h**2/12 - 35*h**3/72)/(7*h)]
[7*(4*h**2/7 - 23*h**3/21)/(2*h)]
```

Numerical computations:

```
>>> nodes = [0, 0.5, 1]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> x = sm.Symbol('x')
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>>> A
[ 0.166666666666667, 0.083333333333333, 0]
```

7.9 The structure of the coefficient matrix

```
>>> d=1; N_e=8; Omega=[0,1] # 8 linear elements on [0,1]
>>> phi = basis(d)
>>> f = x*(1-x)
>>> nodes, elements = mesh_symbolic(N_e, d, Omega)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, [h/6, 2*h/3,
                           0,
                   Ο,
                 h/6,
                           Ο,
                                    Ο,
                                            Ο,
                                                    Ο,
                                                                  0]
                                   0,
[ 0,
        h/6, 2*h/3,
                         h/6,
                                            0,
                                                    0,
                                                                  0]
[ 0,
[ 0,
[ 0,
           0,
                 h/6, 2*h/3,
                                 h/6,
                                            0,
                                                    0,
                                                            0,
                                                                  0]
           0,
                                         h/6,
                                                    0,
                         h/6, 2*h/3,
                                                                  0]
                 Ο,
                  0,
                                                 h/6,
                                                            0,
                         0,
                                 h/6, 2*h/3,
                                                                  0]
           Ο,
                                   0,
           Ο,
                   Ο,
                           Ο,
                                         h/6, 2*h/3,
                                                          h/6,
                                                                  0]
[ 0,
                                          0,
           0,
                   0,
                           0,
                                    0,
                                                  h/6, 2*h/3, h/6]
                                                    0,
                                                          h/6, h/3]
```

Note: do this by hand to understand what is going on!

7.10 General result: the coefficient matrix is sparse

- ullet Sparse = most of the entries are zeros
- Below: P1 elements

7.11 Exemplifying the sparsity for P2 elements

$$A = \frac{h}{30} \begin{pmatrix} 4 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 16 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & 8 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 16 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & 8 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 16 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 8 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 16 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 4 \end{pmatrix}$$
 (61)

7.12 Matrix sparsity pattern for regular/random numbering of P1 elements

• Left: number nodes and elements from left to right

• Right: number nodes and elements arbitrarily

7.13 Matrix sparsity pattern for regular/random numbering of P3 elements

43

• Left: number nodes and elements from left to right

• Right: number nodes and elements arbitrarily

7.14 Sparse matrix storage and solution

The minimum storage requirements for the coefficient matrix $A_{i,j}$:

- P1 elements: only 3 nonzero entires per row
- P2 elements: only 5 nonzero entires per row
- P2 elements: only 7 nonzero entires per row
- It is important to utilize sparse storage and sparse solvers
- In Python: scipy.sparse package

7.15 Approximate $f \sim x^9$ by various elements; code

Compute a mesh with N_e elements, basis functions of degree d, and approximate a given symbolic expression f by a finite element expansion $u(x) = \sum_j c_j \varphi_j(x)$:

```
import sympy as sm
from fe_approx1D import approximate
x = sm.Symbol('x')

approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=4)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=2)
approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=8)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=4)
```

7.16 Approximate $f \sim x^9$ by various elements; plot

8 Comparison of finite element and finite difference approximation

- Finite difference approximation of a function f(x): simply choose $u_i = f(x_i)$ (interpolation)
- Galerkin/projection and least squares method: must derive and solve a linear system
- What is really the difference?

8.1 Interpolation/collocation with finite elements

Let $x_i, i \in I$, be the nodes in the mesh. Collocation means

$$u(x_i) = f(x_i), \quad i \in I, \tag{62}$$

which translates to

$$\sum_{j \in I} c_j \varphi_j(x_i) = f(x_i),$$

but $\varphi_j(x_i) = 0$ if $i \neq j$ so the sum collapses to one term $c_i \varphi_i(x_i) = c_i$, and we have the result

$$c_i = f(x_i). (63)$$

- Same result as the standard finite difference approach
- \bullet *u interpolates* f at the node points
- u has a variation between the node points dictated by the φ_i functions

\mathbf{Index}

```
approximation
by sines, 13
collocation, 15
of functions, 7
of general vectors, 6

collocation method (approximation), 15

Galerkin method, 7

Lagrange (interpolating) polynomial, 16

projection, 7

sparse matrices, 42
```