DÉRIVÉES USUELLES

<u>Fonction</u>	<u>Dérivée</u>	Domaine de validité
$x \longmapsto f[u(x)]$	$x \longmapsto u'(x) f' [u(x)]$	selon D_u et D_f
$x \longmapsto x^n (n \in \mathbb{N}^*)$	$x \longmapsto nx^{n-1}$	\mathbb{R}
$x \longmapsto \alpha x^2 + \beta x + \gamma$	$x \longmapsto 2\alpha x + \beta$	\mathbb{R}
$x \longmapsto x^p (n \in \mathbb{R}^*)$	$x \longmapsto px^{p-1}$	$]-\infty,0[$ ou $]0,+\infty[$
$x \longmapsto [u(x)]^a (a \in \mathbb{R}^*)$	$x \longmapsto a u'(x) [u(x)]^{a-1}$	selon D_u
$x \longmapsto \frac{1}{x}$	$x \longmapsto \frac{-1}{x^2}$	$]-\infty,0[$ ou $]0,+\infty[$
$x \longmapsto \frac{1}{x^n}$	$-n\frac{1}{x^{n+1}}$	\mathbb{R}
$x \longmapsto \frac{1}{u(x)}$	$x \longmapsto \frac{-u'(x)}{u(x)^2}$	$\{x \in D_u \; ; \; u(x) \neq 0\}$
$x \longmapsto \sqrt{x}$	$x \longmapsto \frac{1}{2\sqrt{x}}$	$]0,+\infty[$
$x \longmapsto \sqrt{u(x)}$	$x \longmapsto \frac{u'(x)}{2\sqrt{u(x)}}$	$\{x \in D_u \; ; \; u(x) > 0\}$
$x \longmapsto \ln x$	$x \longmapsto \frac{1}{x}$	$]0,+\infty[$
$x \longmapsto \ln u(x)$	$x \longmapsto \frac{u'(x)}{u(x)}$	$\{x \in D_u \; ; \; u(x) > 0\}$
$x \longmapsto e^x$	$x \longmapsto e^x$	\mathbb{R}
$x \longmapsto a^x$	$x \longmapsto (\ln a) a^x$	\mathbb{R}
$x \longmapsto e^{u(x)}$	$x \longmapsto u'(x) e^{u(x)}$	D_u
$x \longmapsto \sin x$	$x \longmapsto \cos x = \sin\left(x + \frac{\pi}{2}\right)$	\mathbb{R}
$x \longmapsto \cos x$	$x \longmapsto -\sin x = \cos\left(x + \frac{\pi}{2}\right)$	\mathbb{R}
$x \longmapsto \tan x$	$x \longmapsto \frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\left]\frac{-\pi}{2},\frac{\pi}{2}\right[\ + \ \pi\mathbb{Z}$
$x \longmapsto \arcsin x$	$x \longmapsto \frac{1}{\sqrt{1-x^2}}$] - 1, 1[
$x \longmapsto \arccos x$	$x \longmapsto \frac{-1}{\sqrt{1-x^2}}$] - 1, 1[
$x \longmapsto \arctan x$	$x \longmapsto \frac{1}{1+x^2}$	\mathbb{R}
$x \longmapsto \operatorname{sh} x$	$x \longmapsto \operatorname{ch} x$	\mathbb{R}
$x \longmapsto \operatorname{ch} x$	$x \longmapsto \operatorname{sh} x$	\mathbb{R}
$x \longmapsto \operatorname{th} x$	$x \longmapsto \frac{1}{\operatorname{ch}^2 x} = 1 - \operatorname{th}^2 x$	\mathbb{R}
$x \longmapsto \operatorname{arg} \operatorname{sh}$	$x \longmapsto \frac{1}{\sqrt{1+x^2}}$	\mathbb{R}
$x \longmapsto \operatorname{arg} \operatorname{ch}$	$x \longmapsto \frac{1}{\sqrt{x^2 - 1}}$	$]1,+\infty[$

 $x \longmapsto \frac{1}{1 - x^2}$

 $x \longmapsto \arg \operatorname{th}$

]-1,1[