GLMs; definition and derivation

Ben Bolker

September 18, 2018

Licensed under the Creative Commons attribution-noncommercial license (http:

//creativecommons.org/licenses/by-nc/3.0/). Please share & remix noncommercially,

mentioning its origin

Introduction

Definition:

- exponential family conditional distribution (all we will really use in fitting is the *variance function* $V(\mu)$: makes *quasi-likelihood models* possible)
- linear model η (linear predictor) = $X\beta$
- smooth, monotonic link function $\eta = g(\mu)$

Before we used

$$f(y;\theta,\phi) = \exp[(a(y)b(\theta) + c(\theta))/f(\phi) + d(y,\phi)]$$

but let's say without loss of generality (putting the distribution into canonical form):

$$\left\{ a(y) \mapsto y, b(\theta) \mapsto \theta, c(\theta) \mapsto -b(\theta), f(\phi) \mapsto \phi, d(y, \phi) \mapsto c(y, \phi) \right\}^{1} :$$

$$\left[\ell = (y\theta - b(\theta))/\phi + c(y, \phi) \right]$$

where y=data, θ =location parameter, ϕ = dispersion parameter (scale parameter).

Example: Poisson distribution

$$\ell(y, \theta, \phi) = y(\log \theta) - \exp(\log \theta) - \log(y!) \tag{1}$$

so $b = \exp(\theta)$; a = identity; $\phi = 1$; $c = -\log(Y!)$

Useful facts

• The score function $\frac{\partial \ell}{\partial \theta}$ has expected value zero.

Therefore for exponential family:

$$E((y - b'(\theta))/a(\phi)) = 0$$

$$\mu - b'(\theta)/a(\phi) = 0$$

$$\mu = b'(\theta)$$
(2)

(Check against Poisson.)

¹ McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. London: Chapman and Hall; and • Mean depends *only* on $b'(\theta)$.

$$E\left(\frac{\partial^2 \ell}{\partial \theta^2}\right) = -E\left(\frac{\partial \ell}{\partial \theta}\right)^2 \tag{3}$$

Therefore for exponential family:

$$E\left(\frac{b''(\theta)}{a(\phi)}\right) = -E\left(\frac{Y - b'(\theta)}{a(\phi)}\right)^{2}$$

$$\frac{b''(\theta)}{a(\phi)} = -\frac{\operatorname{var}(Y)}{a^{2}(\phi)}$$

$$\operatorname{var}(Y) = b''(\theta)a(\phi) = \frac{\partial \mu}{\partial \theta}a(\phi) \equiv V(\mu)a(\phi)$$
(4)

- Check against Poisson.
- Variance depends *only* on $b''(\theta)$ and $a(\phi)$.

Usually have $a(\phi) = \phi/w$ where w are weights. Canonical link uses $g^{-1} = b$.

Iteratively reweighted least squares

Procedure

Likelihood equations

• compute adjusted dependent variate:

$$Z_0 = \hat{\eta}_0 + (Y - \hat{\mu}_0) \left(\frac{d\eta}{d\mu}\right)_0$$

(note: $\frac{d\eta}{d\mu} = \frac{d\eta}{dg(\eta)} = 1/g'(\eta)$: translate from raw to linear predictor scale)

• compute weights

$$W_0^{-1} = \left(\frac{d\eta}{d\mu}\right)_0^2 V(\hat{\mu}_0)$$

(translate variance from raw to linear predictor scale). This is the inverse variance of Z_0 .

• regress z_0 on the covariates with weights W_0 to get new β estimates (\rightarrow new η , μ , $V(\mu)$...)

Tricky bits: starting values, non-convergence, etc.. (We will worry about these later!)

Justification

Reminders:

- Maximum likelihood estimation (consistency; asymptotic Normality; asymptotic efficiency; "when it can do the job, it's rarely the best tool for the job but it's rarely much worse than the best" (S. Ellner); flexibility)
- multidimensional Newton-Raphson estimation: iterate solution of $A\Delta \mathbf{b} = \mathbf{u}$ where A is the negative of the *Hessian* (second-derivative matrix of ℓ wrt β), \mathbf{u} is the *gradient* or *score* vector (derivatives of ℓ wrt β)

Maximum likelihood equations Remember $\ell = \sum_i w_i \left((y_i \theta_i - b(\theta_i)) / \phi + c(y, \phi) \right)$. Ignore the last term because it's independent of θ .

Partial Decompose $\frac{\partial \ell}{\partial \beta_i}$ into

$$\frac{\partial \ell}{\partial \beta_i} = \frac{\partial \ell}{\partial \theta} \cdot \frac{\partial \theta}{\partial \mu} \cdot \frac{\partial \mu}{\partial \eta} \cdot \frac{\partial \mu}{\partial \beta_i}$$
 (5)

- $\frac{\partial \ell}{\partial \theta}$: effect of θ on log-likelihood, $(Y \mu)/a(\phi)$.
- $\frac{\partial \theta}{\partial \mu}$: effect of mean on θ . $d\mu/d\theta = d(b')/d\theta = b'' = V(\mu)$, so this term is 1/V.
- $\frac{\partial \mu}{\partial \eta}$: dependence of mean on η (this is just the inverse-link function)
- $\frac{\partial \eta}{\partial \beta_i}$: the linear predictor $\eta = X\beta$, so this is just x_j .

So we get

$$\frac{\partial \ell}{\partial \beta_{j}} = \frac{(Y - \mu)}{a(\phi)} \cdot \frac{1}{V} \cdot \frac{d\mu}{d\eta} \cdot x_{j}$$

$$= \frac{1}{a(\phi)} W(Y - \mu) \frac{d\eta}{d\mu} x_{j}$$
(6)

Ignoring weights, this gives us a likelihood (score) equation

$$\sum u = \sum W(y - \mu) \frac{d\eta}{d\mu} x_j = 0$$
 (7)

Scoring method Going back to finding solutions of the score equation: what is *A*?

$$A_{rs} = -\frac{\partial u_r}{\partial \beta_s}$$

$$= \sum \left[(Y - \mu) \frac{\partial}{\partial \beta_s} \left(W \frac{d\eta}{d\mu} x_r \right) + W \frac{d\eta}{d\mu} x_r \frac{\partial}{\partial \beta_s} (Y - \mu) \right]$$
(8)

The first term disappears if we take the *expectation* of the Hessian (Fisher scoring) or if we use a canonical link. (Explanation of the latter: $Wd\eta/d\mu$ is constant in this case. For a canonical link $\eta = \theta$, so $d\mu/d\eta = db'(\theta)/d\theta = b''(\theta)$. Thus $Wd\eta/d\mu = 1/V(d\mu/d\eta)^2 d\eta/d\mu =$ $1/Vd\mu/d\eta = 1/b''(\theta) \cdot b''(\theta) = 1$.) (Most GLM software just uses Fisher scoring regardless of whether the link is canonical or noncanonical.)

The second term is

$$\sum W \frac{d\eta}{d\mu} x_r \frac{\partial \mu}{\partial \beta_s} = \sum W x_r x_s$$

(the sum is over observations) or $\mathbf{X}^T \mathbf{W} \mathbf{X}$ (where $\mathbf{W} = \text{diag}(\mathbf{W})$) Then we have (ignoring ϕ)

$$A\mathbf{b}^* = A\mathbf{b} + \mathbf{u}$$

$$\mathbf{X}^T \mathbf{W} \mathbf{X} \mathbf{b}^* = \mathbf{X}^T \mathbf{W} \mathbf{X} \mathbf{b} + \mathbf{u}$$

$$= \mathbf{X}^T \mathbf{W} (\mathbf{X} \mathbf{b}) + \mathbf{X}^T \mathbf{W} (y - \mu) \frac{d\eta}{d\mu}$$

$$= \mathbf{X}^T \mathbf{W} \boldsymbol{\eta} + \mathbf{X}^T \mathbf{W} (y - \mu) \frac{d\eta}{d\mu}$$

$$= \mathbf{X}^T \mathbf{W} \mathbf{z}$$
(9)

This is the same form as a weighted regression ... so we can use whatever linear algebra tools we already know for doing linear regression (QR/Cholesky decomposition, etc.)

Other sources

- (McCullagh and Nelder, 1989) is really the derivation of IRLS I like best, although I supplemented it at the end with (Dobson and Barnett, 2008).
- (Myers et al., 2010) has information about Newton-Raphson with non-canonical links.
- more details on fitting: (Marschner, 2011), interesting blog posts by Andrew Gelman, John Mount

Choice of distribution As previously discussed, choice of distribution should usually be dictated by data (e.g. binary data=binomial, counts of a maximum possible value=binomial, counts=Poisson ...) however, there is sometimes some wiggle room (Poisson with offset vs. binomial for rare counts; Gamma vs log-Normal for positive data). Then:

• Analytical convenience

- Computational convenience (e.g. log-Normal > Gamma; Poisson > binomial?)
- Interpretability (e.g. Gamma for multi-hit model)
- Culture (follow the herd)
- Goodness of fit (if it really makes a difference)

(Note: I cheated a little bit. The differences are larger for lower CV values ...)

Choice of link function More or less the same reasons, e.g.:

- analytical: canonical link best (logistic > probit: $g = \Phi^{-1}$)
- computational convenience: logistic > probit
- interpretability:
 - probit > logistic (latent variable model)
 - complementary log-log works well with variable exposure models
 - log link: proportional effects (e.g. multiplicative risk models in predator-prey settings)
 - logit link: proportional effects on odds
- culture: depends (probit in toxicology, logit in epidemiology ...)
- restriction of parameter space (log > inverse for Gamma models, because then range of g^{-1} is $(0, \infty)$
- Goodness of fit: probit very close to logit

o

2

4

References

Dobson, A. J. and A. Barnett (2008, May). An Introduction to Generalized Linear Models, Third Edition (3 ed.). Chapman and Hall/CRC.

-2

-4

Marschner, I. C. (2011, December). glm2: Fitting generalized linear models with convergence problems. *The R Journal* 3(2), 12–15.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. London: Chapman and Hall.

Myers, R. H., D. C. Montgomery, G. G. Vining, and T. J. Robinson (2010). Appendix A.6: Computational details for GLMs for a noncanonical link. In Generalized Linear Models, pp. 481–483. John Wiley & Sons, Inc.