Лабораторная работы 1.4.2

Старостин Александр, Б
01-401 $9\ {\rm Hosfps},\ 2024\ {\rm rog}$

Определение ускорения свободного падения при помощи оборотного маятника

1 Аннотация

Цель работы: определить величину ускорения свободного падения, пользуясь оборотным маятником.

В работе используются: оборотный маятник, счётчик числа колебаний, секундамер, штангенциркуль с пределом измерений 1 м.

2 Теоретические сведения

Период колебаний физического маятника T с моментом инерции относительность ос качения I, массой m и расстоянием от центра масс до оси качения a:

$$T = 2\pi \sqrt{\frac{I}{mga}} \tag{1}$$

Пусть положение грузов на оборотном маятнике такого, что периоды колебаний маятника T_1 и T_2 на призмах Π_1 и Π_2 совпадают:

$$T_1 = T_2 = T = 2\pi \sqrt{\frac{I_1}{mgl_1}} = 2\pi \sqrt{\frac{I_2}{mgl_2}}$$
 (2)

По теореме Гюгенса-Штейнера:

$$I_1 = I_0 + m l_1^2, I_2 = I_0 + m l_2^2 (3)$$

Из (2) и (3), исключая I_0 и m, получим (L - расстояние между двумя призмами):

$$g = (l_1 + l_2) \frac{4\pi^2}{T^2} = 4\pi^2 \frac{L}{T^2} \tag{4}$$

Это справедливо при различных l_1 и l_2 .

Тк не существует точного равенства $T_1=T_2,$ то:

$$T_1 = 2\pi \sqrt{\frac{I_0 + ml_1^2}{mgl_1}}, T_2 = 2\pi \sqrt{\frac{I_0 + ml_2^2}{mgl_2}}$$
 (5)

Тогда получаем, что:

$$g = 4\pi^2 \frac{L}{T_0^2} \tag{6}$$

где:

$$T_0^2 = \frac{l_1 T_1^2 - l_2 T_2^2}{l_1 - l_2} \tag{7}$$

Тогда погрешность ускорения свободного падения будет вычислена по формуле:

$$\varepsilon_g = \sqrt{\varepsilon_L^2 + 4\varepsilon_{T_0}^2} \tag{8}$$

где

$$\varepsilon_{T_0} = \frac{\sqrt{l_1^2 + l_2^2}}{l_1 - l_2} \sigma_T \frac{1}{T_0} \tag{9}$$

Для того, чтобы измерения и вычисления были точными должно быть верным, что:

$$1, 5 < \frac{l_1}{l_2} < 3 \tag{10}$$

3 Ход работы

3.1 Измерение масс частей установки

Был снят стержень с установки и были измерены его масса вместе с грузами и призмами, масса стержня отдельно, массы грузов и массы призмы. Массы нужны для того, чтобы была возможность теоритически вычислить центр инерции (масс) стержня вместе с грузами и призмами. Результаты имерений привидены в таблице:

Таблица 1: Массы частей установки

Часть установки	Масса, г
Маятник	4021.4 ± 0.3
Стержень	891.5 ± 0.3
Груз 1	1495.3 ± 0.3
Груз 2	1481.0 ± 0.3
Призма 1	76.6 ± 0.3
Призма 2	77.2 ± 0.3

3.2 Установка призм на стержень

Призмы были установлены на стержень таким образом, что концы (острия) призм смотрели внутрь стержня и расстояния от концов стержней до ближайшего острия призм составляло 24 ± 0.01 см. Важно, что груз 1 находился между призмами и груз 2 находися между призмой 2 и ближайшем от неё концом стержня.

3.3 Измерение расстояния между концами (остриями) призм

С помощью штангенциркуля было измерено расстояние между концами (остриями) призм. Оно составило 51.40 ± 0.01 см.

3.4 Теоретическое вычисление расстояний от концов призм до центра инерции маятника

Изменяя положение грузов 1 и 2 на стержне, мы изменяли положение центра инерции маятника. Взяв определённое отношение $\frac{l_1}{l_2}$ такое, чтобы оно удолетворяло неравенству (10), мы можем рассчитать значение l_1 и l_2 и проверить эти значения на практике, те проверить, определяют ли эти значения центр инерции маятника. Результаты вычислений приведены в таблице:

Таблица 2: Теоритические значения l_1 и l_2

$\frac{l_1}{l_2}$	l_1 , см	l_2 , см
1.74	32.64	18.76

3.5 Измерение расстояний от концов призм до центра инерции маятника

Установив маятник на т-образную подставку таким образом, чтобы маятник находился в равновесии, мы измерили расстояния от концов призм до точки равновесия маятника. Результаты измерений приведены в процессе:

Таблица 3: Измеренные значения l_1 и l_2

l_1 , cm	l_2 , cm	$\frac{l_1}{l_2}$
32.66 ± 0.01	18.74 ± 0.01	1.7428

3.6 Измерение периода T_2 колебаний маятника, когда сверху груз 2

Поместив маятник на установку 2-ым грузом вверх, мы измеряли периоды колебаний маятника, чтобы определить средний период колебаний. Амплитуда колебаний составляла 5° . Результаты измерений приведены в таблице: Погрешность периода: $\sigma_{T_2} = T_2 \frac{\sigma_{t_2}}{t_2}$

Таблица 4: Определение среднего периода $\overline{T_2}$

N - количество колебаний	t_2 - время всех колебний, с	$T_2 = \frac{t_2}{N}$ - период колебаний, с
20	29.91 ± 0.03	1.4955 ± 0.0015
20	29.90 ± 0.03	1.4950 ± 0.0015
20	29.90 ± 0.03	1.4950 ± 0.0015
20	29.90 ± 0.03	1.4950 ± 0.0015

Погрешность вычисления среднего периода: $\sigma_{\overline{T_2}} = \sqrt{\frac{1}{n(n-1)}\sum_{i=1}^n (T_{2i} - \overline{T_2})^2}$

Средний период: $\overline{T_2} = 1.4951 \pm 0.0001$ с.

3.7 Измерение периода T_1 колебаний маятника, когда сверху груз 1

Поместив маятник на установку 1-ым грузом вверх, мы измеряли периоды колебаний маятника, чтобы определить средний период колебаний. Амплитуда колебаний составляла 5°. Результаты измерений приведены в таблице:

Таблица 5: Определение среднего периода $\overline{T_1}$

N - количество колебаний	t_1 - время всех колебний, с	$T_1 = \frac{t_1}{N}$ - период колебаний, с
20	29.43 ± 0.03	1.4715 ± 0.0015
20	29.44 ± 0.03	1.4720 ± 0.0015
20	29.43 ± 0.03	1.4715 ± 0.0015
20	29.43 ± 0.03	1.4715 ± 0.0015

Погрешность периода: $\sigma_{T_1} = T_1 \frac{\sigma_{t_1}}{t_1}$

Погрешность вычисления среднего периода: $\sigma_{\overline{T_1}} = \sqrt{\frac{1}{n(n-1)}\sum_{i=1}^n (T_{1i} - \overline{T_1})^2}$

Средний период: $\overline{T_1} = 1.4716 \pm 0.0001$ с.

${f 3.8}$ Оценка различия значений $\overline{T_1}$ и $\overline{T_2}$

Из-за неидеальности условий проведения измерений $\overline{T_1}$ и $\overline{T_2}$ не совпадают. Оценим, на сколько они различаются: $\frac{\Delta T}{T} = \frac{\overline{T_2} - \overline{T_1}}{\overline{T_2}} = 0.0157 = 1.57\%$

Различие между $\overline{T_1}$ и $\overline{T_2}$ незначительное, значит измеренные периоды подходят для определения ускорения своболного паления

3.9 Измерения для определения ускорения свободного падения

Чтобы определить ускорения свободного падения, можно повторить действия из пунктов (5) - (9), посторить линейный график и определить коэффициент наклона графика, а по нему и ускорение свободного падения.

Из формул (6) и (7) следует:

$$(T_1^2 l_1 - T_2^2 l_2) \frac{g}{4\pi^2} = l_1^2 - l_2^2 \tag{11}$$

Формула (11) является линейной зависимостью, по которой из углового коэффициента можно найти g.

Измерения нужных нам величин для построения графика приведены в таблице:

Таблица 6: Величины для построения графика

Номер измерения	T_1 , c	T_2 , c	l_1 , см	l_2 , cm
1	1.4716 ± 0.0001	1.4951 ± 0.0001	32.66 ± 0.01	18.74 ± 0.01
2	1.4812 ± 0.0001	1.5116 ± 0.0001	31.10 ± 0.01	18.30 ± 0.01
3	1.4907 ± 0.0001	1.5507 ± 0.0001	33.86 ± 0.01	17.54 ± 0.01
4	1.5050 ± 0.0001	1.5682 ± 0.0001	32.81 ± 0.01	18.59 ± 0.01
5	1.5375 ± 0.0001	1.6241 ± 0.0001	34.66 ± 0.01	16.74 ± 0.01
6	1.5348 ± 0.0001	1.6404 ± 0.0001	33.65 ± 0.01	17.75 ± 0.01
7	1.5257 ± 0.0001	1.6173 ± 0.0001	34.48 ± 0.01	16.92 ± 0.01
8	1.5433 ± 0.0001	1.6431 ± 0.0001	34.73 ± 0.01	16.67 ± 0.01
9	1.4898 ± 0.0001	1.5095 ± 0.0001	31.64 ± 0.01	19.76 ± 0.01
10	1.4844 ± 0.0001	1.5115 ± 0.0001	31.97 ± 0.01	19.43 ± 0.01

3.10 Построение графика для определения по нему ускорения свободного падения

По данным из пункта 3.10 построим график для зависимости из формулы (11):

Рисунок 1: Линейная зависимость из формулы (11)

По МНК построим наилучшую прямую y = kx + b для зависмости из формулы (11):

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = 25.23407, \text{ cm/c}^2$$

 $b = \langle y \rangle - k \langle x \rangle = -11.017, \text{ cm}^2$

$$b = \langle y \rangle - k \langle x \rangle = -11.017$$
, cm²

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\leq y^2 > - < y >^2}{< x^2 > - < x >^2} - k^2} = 1.22299, \text{ cm/c}^2$$

3.11 Результат измерения ускорения свободного падения

Из коэффициента угла наклона прямой найдём g:

$$g = 4\pi^2 k = 995.192$$
 см/с $^2 = 9.95192$ м/с 2

$$\sigma_g = g \frac{\sigma_k}{k} = 48.233 \ {\rm cm/c^2} = 0.48233 \ {\rm m/c^2}$$

Тогда ускорение свободного падения составляет: $g = 9.95192 \pm 0.48233 \; \mathrm{m/c^2}$

4 Вывод

Мы измерили величину ускорения свободного падения $g=9.95192\pm0.48233~\mathrm{m/c^2},$ используя оборотный маятник.