lab_4 - Wprowadzenie

Problem: prezentacja liczb w postaci znakowej dziesiętnej

liczba 123 => '123' dziesiętnie

Algorytm:

Wielokrotne dzielenie przez podstawę systemu (10) i zapis reszt z dzielenia w postaci znakowej w odpowiedniej kolejności

Przykład: liczba 357

Krok	Dzielna	lloraz	Reszta	Znak
1	357	35	7	'7'
2	35	3	5	'5'
3	3	0	3	'3'

Warunkiem stopu w algorytmie jest wyzerowanie się ilorazu

Zamiana reszty na cyfrę dziesiętną (znak):

Zapis liczby w postaci łańcucha znaków:

- utworzenie napisu (ciągu znaków) poprzez zapisanie uzyskanych cyfr w odpowiedniej kolejności
- problem: zmienna liczba znaków
- problem: znaki pojawiają się w kolejności od najmniej znaczącej cyfry do najbardziej znaczącej ('7', '5', '3') a mają utworzyć napis '357' – trzeba je "odwrócić" (np. poprzez użycie stosu lub danej o dostępie swobodnym (tablicy)

Zapis od prawej do lewej:

7	7
18	18
246	246
3579	3579

efekt: latwiejsze porównanie liczb i oszacowanie wielkości

Realizacja:

- petla do..while()
- dzielenie całkowite **DIV %ebx**:

```
dzielnik ebx (32 bity)
reszta edx (32 bity)
iloraz eax (32 bity)
```

- o dzielna edx:eax (64 bity!)
- problem: jak zwrócić rezultat konwersji? funkcja dostaje jako argument adres miejsca w którym ma zapisać znaki i zapisuje je w kolejności od prawej do lewej (funkcja dostaje adres miejsca przeznaczonego na najmniej znaczącą cyfrę dziesiętną i sama zmniejsza ten adres przy zapisywaniu kolejnych znaków)