Advanced Quantitative Research Methodology, Lecture Notes: Matching Methods for Causal Inference¹

Gary King²

Institute for Quantitative Social Science Harvard University

¹©Copyright 2016 Gary King, All Rights Reserved.

²GaryKing.org

• Current practice:

Current practice:

"Matching As Nonparametric Preprocessing For Reducing Model Dependence In Parametric Causal Inference" (Daniel Ho, Kosuke Imai, Gary King, Elizabeth Stuart)

- Current practice:
 - "Matching As Nonparametric Preprocessing For Reducing Model Dependence In Parametric Causal Inference" (Daniel Ho, Kosuke Imai, Gary King, Elizabeth Stuart)
- Current practice violates current statistical theory.

- Current practice:
 - "Matching As Nonparametric Preprocessing For Reducing Model Dependence In Parametric Causal Inference" (Daniel Ho, Kosuke Imai, Gary King, Elizabeth Stuart)
- Current practice violates current statistical theory. So let's change the theory:

- Current practice:
 - "Matching As Nonparametric Preprocessing For Reducing Model Dependence In Parametric Causal Inference" (Daniel Ho, Kosuke Imai, Gary King, Elizabeth Stuart)
- Current practice violates current statistical theory. So let's change the theory:
 - → "A Theory of Statistical Inference for Matching Methods in Applied Causal Research"

 (Stefano lacus, Gary King, Giuseppe Porro)

- Current practice:
 - "Matching As Nonparametric Preprocessing For Reducing Model Dependence In Parametric Causal Inference" (Daniel Ho, Kosuke Imai, Gary King, Elizabeth Stuart)
- Current practice violates current statistical theory. So let's change the theory:
 - "A Theory of Statistical Inference for Matching Methods in Applied Causal Research" (Stefano lacus, Gary King, Giuseppe Porro)
- The most popular method (propensity score matching, used in 53,200 articles!) sounds magical:

- Current practice:
 - "Matching As Nonparametric Preprocessing For Reducing Model Dependence In Parametric Causal Inference" (Daniel Ho, Kosuke Imai, Gary King, Elizabeth Stuart)
- Current practice violates current statistical theory. So let's change the theory:
 - → "A Theory of Statistical Inference for Matching Methods in Applied Causal Research"

 (Stefano lacus, Gary King, Giuseppe Porro)
- The most popular method (propensity score matching, used in 53,200 articles!) sounds magical:
 - → "Why Propensity Scores Should Not Be Used for Matching" (Gary King, Richard Nielsen)

- Current practice:
 - "Matching As Nonparametric Preprocessing For Reducing Model Dependence In Parametric Causal Inference" (Daniel Ho, Kosuke Imai, Gary King, Elizabeth Stuart)
- Current practice violates current statistical theory. So let's change the theory:
 - "A Theory of Statistical Inference for Matching Methods in Applied Causal Research" (Stefano lacus, Gary King, Giuseppe Porro)
- The most popular method (propensity score matching, used in 53,200 articles!) sounds magical:
 - "Why Propensity Scores Should Not Be Used for Matching" (Gary King, Richard Nielsen)
- Matching methods optimize either imbalance (\approx bias) or # units pruned (\approx variance); users need both simultaneously':

- Current practice:
 - "Matching As Nonparametric Preprocessing For Reducing Model Dependence In Parametric Causal Inference" (Daniel Ho, Kosuke Imai, Gary King, Elizabeth Stuart)
- Current practice violates current statistical theory. So let's change the theory:
 - "A Theory of Statistical Inference for Matching Methods in Applied Causal Research" (Stefano Iacus, Gary King, Giuseppe Porro)
- The most popular method (propensity score matching, used in 53,200 articles!) sounds magical:
 - "Why Propensity Scores Should Not Be Used for Matching" (Gary King, Richard Nielsen)
- Matching methods optimize either imbalance (≈ bias) or # units pruned (≈ variance); users need both simultaneously':
 - "The Balance-Sample Size Frontier in Matching Methods for Causal Inference" (Gary King, Christopher Lucas and Richard Nielsen)

• Goal: reduce model dependence

- Goal: reduce model dependence
- A nonparametric, non-model-based approach

- Goal: reduce model dependence
- A nonparametric, non-model-based approach
- Makes parametric models work better rather than substitute for them (i.e,. matching is not an estimator; its a preprocessing method)

- Goal: reduce model dependence
- A nonparametric, non-model-based approach
- Makes parametric models work better rather than substitute for them (i.e,. matching is not an estimator; its a preprocessing method)
- Should have been called pruning (no bias is introduced if pruning is a function of T and X, but not Y)

- Goal: reduce model dependence
- A nonparametric, non-model-based approach
- Makes parametric models work better rather than substitute for them (i.e,. matching is not an estimator; its a preprocessing method)
- Should have been called pruning (no bias is introduced if pruning is a function of T and X, but not Y)
- Apply model to preprocessed (pruned) rather than raw data

- Goal: reduce model dependence
- A nonparametric, non-model-based approach
- Makes parametric models work better rather than substitute for them (i.e,. matching is not an estimator; its a preprocessing method)
- Should have been called pruning (no bias is introduced if pruning is a function of T and X, but not Y)
- Apply model to preprocessed (pruned) rather than raw data
- Violates the "more data is better" principle, but that only applies when you know the DGP

- Goal: reduce model dependence
- A nonparametric, non-model-based approach
- Makes parametric models work better rather than substitute for them (i.e,. matching is not an estimator; its a preprocessing method)
- Should have been called pruning (no bias is introduced if pruning is a function of T and X, but not Y)
- Apply model to preprocessed (pruned) rather than raw data
- Violates the "more data is better" principle, but that only applies when you know the DGP
- Overall idea:

- Goal: reduce model dependence
- A nonparametric, non-model-based approach
- Makes parametric models work better rather than substitute for them (i.e,. matching is not an estimator; its a preprocessing method)
- Should have been called pruning (no bias is introduced if pruning is a function of T and X, but not Y)
- Apply model to preprocessed (pruned) rather than raw data
- Violates the "more data is better" principle, but that only applies when you know the DGP
- Overall idea:
 - If each treated unit exactly matches a control unit w.r.t. X, then: (1) treated and control groups are identical, (2) X is no longer a confounder, (3) no need to worry about the functional form $(\bar{Y}_T \bar{Y}_C)$ is good enough).

- Goal: reduce model dependence
- A nonparametric, non-model-based approach
- Makes parametric models work better rather than substitute for them (i.e,. matching is not an estimator; its a preprocessing method)
- Should have been called pruning (no bias is introduced if pruning is a function of T and X, but not Y)
- Apply model to preprocessed (pruned) rather than raw data
- Violates the "more data is better" principle, but that only applies when you know the DGP
- Overall idea:
 - If each treated unit exactly matches a control unit w.r.t. X, then: (1) treated and control groups are identical, (2) X is no longer a confounder, (3) no need to worry about the functional form $(\bar{Y}_T \bar{Y}_C)$ is good enough).
 - If treated and control groups are better balanced than when you started, due to pruning, model dependence is reduced

(King and Zeng, 2006: fig.4 Political Analysis)

(King and Zeng, 2006: fig.4 Political Analysis)

(King and Zeng, 2006: fig.4 Political Analysis)

What to do?

(King and Zeng, 2006: fig.4 Political Analysis)

What to do?

Preprocess I: Eliminate extrapolation region

(King and Zeng, 2006: fig.4 Political Analysis)

What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune) within interpolation region

(King and Zeng, 2006: fig.4 Political Analysis)

What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune) within interpolation region
- Model remaining imbalance (as you would w/o matching)

• Must remove data (selecting on X) to avoid extrapolation.

- Must remove data (selecting on X) to avoid extrapolation.
- Options to find "common support" of p(X|T=1) and P(X|T=0)

- Must remove data (selecting on X) to avoid extrapolation.
- Options to find "common support" of p(X|T=1) and P(X|T=0)
 - 1. Exact match, so support is defined only at data points

- Must remove data (selecting on X) to avoid extrapolation.
- Options to find "common support" of p(X|T=1) and P(X|T=0)
 - 1. Exact match, so support is defined only at data points
 - 2. Less but still conservative: convex hull approach

- Must remove data (selecting on X) to avoid extrapolation.
- Options to find "common support" of p(X|T=1) and P(X|T=0)
 - 1. Exact match, so support is defined only at data points
 - 2. Less but still conservative: convex hull approach
 - let T^* and X^* denote subsets of T and X s.t. $\{1 T^*, X^*\}$ falls within the convex hull of $\{T, X\}$

- Must remove data (selecting on X) to avoid extrapolation.
- Options to find "common support" of p(X|T=1) and P(X|T=0)
 - 1. Exact match, so support is defined only at data points
 - 2. Less but still conservative: convex hull approach
 - let T^* and X^* denote subsets of T and X s.t. $\{1 T^*, X^*\}$ falls within the convex hull of $\{T, X\}$
 - use X* as estimate of common support (deleting remaining observations)

Remove Extrapolation Region, then Match

- Must remove data (selecting on X) to avoid extrapolation.
- Options to find "common support" of p(X|T=1) and P(X|T=0)
 - 1. Exact match, so support is defined only at data points
 - 2. Less but still conservative: convex hull approach
 - let T^* and X^* denote subsets of T and X s.t. $\{1 T^*, X^*\}$ falls within the convex hull of $\{T, X\}$
 - use X* as estimate of common support (deleting remaining observations)
 - 3. Other approaches, based on distance metrics, pscores, etc.

Remove Extrapolation Region, then Match

- Must remove data (selecting on X) to avoid extrapolation.
- Options to find "common support" of p(X|T=1) and P(X|T=0)
 - 1. Exact match, so support is defined only at data points
 - 2. Less but still conservative: convex hull approach
 - let T^* and X^* denote subsets of T and X s.t. $\{1 T^*, X^*\}$ falls within the convex hull of $\{T, X\}$
 - use X* as estimate of common support (deleting remaining observations)
 - 3. Other approaches, based on distance metrics, pscores, etc.
 - 4. Easiest: Coarsened Exact Matching, no separate step needed

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching reduces model dependence, bias, and variance

Hypothesis: Democratic senate majorities slow FDA drug approval time

- Hypothesis: Democratic senate majorities slow FDA drug approval time
- n = 408 new drugs (262 approved, 146 pending).

- Hypothesis: Democratic senate majorities slow FDA drug approval time
- n = 408 new drugs (262 approved, 146 pending).
- lognormal survival model.

- Hypothesis: Democratic senate majorities slow FDA drug approval time
- n = 408 new drugs (262 approved, 146 pending).
- lognormal survival model.
- seven oversight variables (median adjusted ADA scores for House and Senate Committees as well as for House and Senate floors, Democratic Majority in House and Senate, and Democratic Presidency).

- Hypothesis: Democratic senate majorities slow FDA drug approval time
- n = 408 new drugs (262 approved, 146 pending).
- lognormal survival model.
- seven oversight variables (median adjusted ADA scores for House and Senate Committees as well as for House and Senate floors, Democratic Majority in House and Senate, and Democratic Presidency).
- 18 control variables (clinical factors, firm characteristics, media variables, etc.)

 Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).

- Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).
- Match: prune 49 units (2 treated, 17 control units).

- Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).
- Match: prune 49 units (2 treated, 17 control units).
- run 262,143 possible specifications and calculates ATE for each.

- Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).
- Match: prune 49 units (2 treated, 17 control units).
- run 262,143 possible specifications and calculates ATE for each.
- Look at variability in ATE estimate across specifications.

- Focus on the causal effect of a Democratic majority in the Senate (identified by Carpenter as not robust).
- Match: prune 49 units (2 treated, 17 control units).
- run 262,143 possible specifications and calculates ATE for each.
- Look at variability in ATE estimate across specifications.
- (Normal applications would only use one or a few specifications.)

Reducing Model Dependence

Figure: SATT Histogram: Effect of Democratic Senate majority on FDA drug approval time, across 262, 143 specifications.

Another Example: Jeffrey Koch, AJPS, 2002

Figure: SATT Histogram: Effect of being a highly visible female Republican candidate across 63 possible specifications with the Koch

Without Matching:

Without Matching:

Imbalance

Without Matching:

Imbalance → Model Dependence

Without Matching:

Imbalance → Model Dependence → Researcher discretion

Without Matching:

Imbalance → Model Dependence → Researcher discretion → Bias

Without Matching:

Imbalance → Model Dependence → Researcher discretion → Bias

Qualitative choice from unbiased estimates = biased estimator

Without Matching:

Imbalance → Model Dependence → Researcher discretion → Bias

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments

Without Matching:

Imbalance → Model Dependence → Researcher discretion → Bias

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse_[eff]

Without Matching:

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse [eff]
- conscientious effort doesn't avoid biases (Banaji 2013)[acc]

Without Matching:

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse [eff]
- conscientious effort doesn't avoid biases (Banaji 2013)[acc]
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)[exprt]

Without Matching:

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse [eff]
- conscientious effort doesn't avoid biases (Banaji 2013)[acc]
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)[exprt]
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)[tch]

Without Matching:

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse [eff]
- conscientious effort doesn't avoid biases (Banaji 2013)[acc]
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)[exprt]
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)[cch]
- "Teaching psychology is mostly a waste of time" (Kahneman 2011)

Without Matching:

Without Matching:

Model Dependence → Researcher discretion → Bias

A central project of statistics: Automating away human discretion

• Y_i dep var, T_i (1=treated, 0=control), X_i confounders

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$\mathsf{TE}_i = Y_i(1) - Y_i(0)$$

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i(1) - Y_i(0)$$
= observed – unobserved

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0)$$
= observed – unobserved

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0)$$
= observed – unobserved

• Estimate $Y_i(0)$ with Y_i with a matched $(X_i \approx X_i)$ control

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0)$$
= observed – unobserved

- Estimate $Y_i(0)$ with Y_i with a matched $(X_i \approx X_i)$ control
- · Quantities of Interest:

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0)$$

= observed – unobserved

- Estimate $Y_i(0)$ with Y_i with a matched $(X_i \approx X_i)$ control
- · Quantities of Interest:
 - 1. SATT: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \underset{i \in \{T_i = 1\}}{\mathsf{Mean}} \left(\mathsf{TE}_i \right)$$

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0)$$

= observed – unobserved

- Estimate $Y_i(0)$ with Y_j with a matched $(X_i \approx X_j)$ control
- Quantities of Interest:
 - 1. SATT: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \underset{i \in \{T_i = 1\}}{\mathsf{Mean}} (\mathsf{TE}_i)$$

2. FSATT: Feasible SATT (prune badly matched treateds too)

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0)$$

= observed – unobserved

- Estimate $Y_i(0)$ with Y_j with a matched $(X_i \approx X_j)$ control
- Quantities of Interest:
 - 1. SATT: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \underset{i \in \{T_i = 1\}}{\mathsf{Mean}} (\mathsf{TE}_i)$$

- 2. FSATT: Feasible SATT (prune badly matched treateds too)
- Big convenience: Follow preprocessing with whatever statistical method you'd have used without matching

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0)$$

= observed – unobserved

- Estimate $Y_i(0)$ with Y_j with a matched $(X_i \approx X_j)$ control
- Quantities of Interest:
 - 1. SATT: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \underset{i \in \{T_i = 1\}}{\mathsf{Mean}} (\mathsf{TE}_i)$$

- 2. FSATT: Feasible SATT (prune badly matched treateds too)
- Big convenience: Follow preprocessing with whatever statistical method you'd have used without matching
- Pruning nonmatches makes control vars matter less: reduces imbalance, model dependence, researcher discretion, & bias

Complete Randomization

Complete Fully Randomization Blocked

Balance	Complete	Fully	
Covariates:	Randomization	Blocked	
Observed			
Unobserved			

Balance	Complete	Fully	
Covariates:	Randomization	Blocked	
Observed	On average		
Unobserved			

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	
Unobserved	On average	

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ Fully blocked dominates complete randomization

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

[→] Fully blocked dominates complete randomization for:

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ Fully blocked dominates *complete randomization* for: imbalance,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ Fully blocked dominates *complete randomization* for: imbalance, model dependence,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ Fully blocked dominates complete randomization for: imbalance, model dependence, power,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

~ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs,

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

~> Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

~ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

~ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

• PSM: complete randomization

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

~ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

PSM: complete randomization

Other methods: fully blocked

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

~ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked
- Other matching methods dominate PSM

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

→ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked
- Other matching methods dominate PSM (wait, it gets worse)

(Approximates Fully Blocked Experiment)

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Distance $(X_c, X_t) = \sqrt{(X_c X_t)' S^{-1} (X_c X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
 - (Many adjustments available to this basic method)
- 2. Estimation Difference in means or a model

Best Case: Mahalanobis Distance Matching

Best Case: Mahalanobis Distance Matching

Best Case: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, C(X)

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
- 2. Estimation Difference in means or a model

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - · Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model

(Approximates Fully Blocked Experiment)

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - · Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Weight controls in each stratum to equal treateds

(Approximates Completely Randomized Experiment)

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

(Approximates Completely Randomized Experiment)

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$

(Approximates Completely Randomized Experiment)

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
 - Distance $(X_c, X_t) = |\pi_c \pi_t|$

(Approximates Completely Randomized Experiment)

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
 - Distance $(X_c, X_t) = |\pi_c \pi_t|$
 - Match each treated unit to the nearest control unit

(Approximates Completely Randomized Experiment)

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
 - Distance $(X_c, X_t) = |\pi_c \pi_t|$
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused

(Approximates Completely Randomized Experiment)

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i \beta}}$
 - Distance $(X_c, X_t) = |\pi_c \pi_t|$
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model

(Approximates Completely Randomized Experiment)

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i \beta}}$
 - Distance $(X_c, X_t) = |\pi_c \pi_t|$
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
 - (Many adjustments available to this basic method)
- 2. Estimation Difference in means or a model

Propensity

Score

Education (years)

Propensity

Score 21/48

Education (years)

Propensity
Score 21/48

Education (vears)

Propensity
Score 21/48

Best Case: Propensity Score Matching is Suboptimal

Deleting data only helps if you're careful!

"Random pruning": pruning process is independent of X

- "Random pruning": pruning process is independent of X
- Discrete example

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t , F_t , controls M_c , F_c

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t , F_t , controls M_c , F_c
 - Randomly prune 1 treated & 1 control → 4 possible datasets:
 - 2 balanced $\{M_t, M_c\}$, $\{F_t, F_c\}$
 - 2 imbalanced $\{M_t, F_c\}$, $\{F_t, M_c\}$

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t , F_t , controls M_c , F_c
 - Randomly prune 1 treated & 1 control \leadsto 4 possible datasets: 2 balanced $\{M_t, M_c\}$, $\{F_t, F_c\}$
 - 2 imbalanced $\{M_t, F_c\}$, $\{F_t, M_c\}$
 - ⇒ random pruning increases imbalance

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t , F_t , controls M_c , F_c
 - Randomly prune 1 treated & 1 control → 4 possible datasets:
 2 balanced {M_t, M_c}, {F_t, F_c}
 2 imbalanced {M_t, F_c}, {F_t, M_c}
 - \implies random pruning increases imbalance
- Continuous example

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t , F_t , controls M_c , F_c
 - Randomly prune 1 treated & 1 control → 4 possible datasets:
 2 balanced {M_t, M_c}, {F_t, F_c}
 2 imbalanced {M_t, F_c}, {F_t, M_c}
 - \implies random pruning increases imbalance
- Continuous example
 - Dataset: $T \in \{0,1\}$ randomly assigned; X any fixed variable; with n units

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t , F_t , controls M_c , F_c
 - Randomly prune 1 treated & 1 control → 4 possible datasets:
 2 balanced {M_t, M_c}, {F_t, F_c}
 2 imbalanced {M_t, F_c}, {F_t, M_c}
 - \implies random pruning increases imbalance
- Continuous example
 - Dataset: $T \in \{0,1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2 , where $d=\bar{X}_t-\bar{X}_c$

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t , F_t , controls M_c , F_c
 - Randomly prune 1 treated & 1 control → 4 possible datasets:
 2 balanced {M_t, M_c}, {F_t, F_c}
 2 imbalanced {M_t, F_c}, {F_t, M_c}
 - \implies random pruning increases imbalance
- Continuous example
 - Dataset: $T \in \{0,1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2 , where $d=\bar{X}_t-\bar{X}_c$
 - $E(d^2) = V(d) \propto 1/n$ (note: E(d) = 0)

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t , F_t , controls M_c , F_c
 - Randomly prune 1 treated & 1 control → 4 possible datasets:
 2 balanced {M_t, M_c}, {F_t, F_c}
 2 imbalanced {M_t, F_c}, {F_t, M_c}
 - \implies random pruning increases imbalance
- Continuous example
 - Dataset: $T \in \{0,1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2 , where $d=\bar{X}_t-\bar{X}_c$
 - $E(d^2) = V(d) \propto 1/n$ (note: E(d) = 0)
 - Random pruning $\rightsquigarrow n$ declines $\rightsquigarrow E(d^2)$ increases

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t , F_t , controls M_c , F_c
 - Randomly prune 1 treated & 1 control → 4 possible datasets:
 2 balanced {M_t, M_c}, {F_t, F_c}
 2 imbalanced {M_t, F_c}, {F_t, M_c}
 - \implies random pruning increases imbalance
- Continuous example
 - Dataset: $T \in \{0,1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2 , where $d=\bar{X}_t-\bar{X}_c$
 - $E(d^2) = V(d) \propto 1/n$ (note: E(d) = 0)
 - Random pruning \rightsquigarrow *n* declines \rightsquigarrow $E(d^2)$ increases
 - \implies random pruning increases imbalance

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t , F_t , controls M_c , F_c
 - Randomly prune 1 treated & 1 control → 4 possible datasets:
 2 balanced {M_t, M_c}, {F_t, F_c}
 2 imbalanced {M_t, F_c}, {F_t, M_c}
 - \implies random pruning increases imbalance
- Continuous example
 - Dataset: $T \in \{0,1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2 , where $d=\bar{X}_t-\bar{X}_c$
 - $E(d^2) = V(d) \propto 1/n$ (note: E(d) = 0)
 - Random pruning \rightsquigarrow *n* declines \rightsquigarrow $E(d^2)$ increases
 - \implies random pruning increases imbalance
- Result is completely general (see math in the paper)

1. Low Standards: Sometimes helps, never optimizes

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t$$

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but }$$

 $\pi_c = \pi_t \not\implies X_c = X_t$

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but }$$

 $\pi_c = \pi_t \implies X_c = X_t$

2. The PSM Paradox: When you do "better," you do worse

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but }$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning)

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but}$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \leadsto all $\hat{\pi}\approx 0.5$ (or constant within strata)

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but}$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \leadsto all $\hat{\pi} \approx 0.5$ (or constant within strata) \leadsto pruning at random

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but }$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \leadsto all $\hat{\pi} \approx 0.5$ (or constant within strata) \leadsto pruning at random \leadsto Imbalance

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but }$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \leadsto all $\hat{\pi} \approx 0.5$ (or constant within strata) \leadsto pruning at random \leadsto Imbalance \leadsto Inefficency

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but }$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \leadsto all $\hat{\pi}\approx 0.5$ (or constant within strata) \leadsto pruning at random \leadsto Imbalance \leadsto Inefficency \leadsto Model dependence

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but }$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \leadsto all $\hat{\pi} \approx 0.5$ (or constant within strata) \leadsto pruning at random \leadsto Imbalance \leadsto Inefficency \leadsto Model dependence \leadsto Bias

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but }$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \leadsto all $\hat{\pi}\approx 0.5$ (or constant within strata) \leadsto pruning at random \leadsto Imbalance \leadsto Inefficency \leadsto Model dependence \leadsto Bias
 - If the data have no good matches, the paradox won't be a problem but you're cooked anyway.

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but}$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \leadsto all $\hat{\pi}\approx 0.5$ (or constant within strata) \leadsto pruning at random \leadsto Imbalance \leadsto Inefficency \leadsto Model dependence \leadsto Bias
 - If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
 - Doesn't PSM solve the curse of dimensionality problem?

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but }$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \leadsto all $\hat{\pi} \approx 0.5$ (or constant within strata) \leadsto pruning at random \leadsto Imbalance \leadsto Inefficency \leadsto Model dependence \leadsto Bias
 - If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
 - Doesn't PSM solve the curse of dimensionality problem?
 Nope.

- 1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

$$X_c = X_t \implies \pi_c = \pi_t \text{ but}$$

 $\pi_c = \pi_t \implies X_c = X_t$

- 2. The PSM Paradox: When you do "better," you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \leadsto all $\hat{\pi}\approx 0.5$ (or constant within strata) \leadsto pruning at random \leadsto Imbalance \leadsto Inefficency \leadsto Model dependence \leadsto Bias
 - If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
 - Doesn't PSM solve the curse of dimensionality problem?
 Nope. The PSM Paradox gets worse with more covariates

PSM is Blind Where Other Methods Can See

PSM is Blind Where Other Methods Can See

PSM is Blind Where Other Methods Can See

What Does PSM Match?

MDM Matches

PSM Matches

Controls: $X_1, X_2 \sim \text{Uniform}(0,5)$

Treateds: $X_1, X_2 \sim \mathsf{Uniform}(1,6)$

PSM Increases Model Dependence & Bias

$$Y_i = 2T_i + X_{1i} + X_{2i} + \epsilon_i$$

$$\epsilon_i \sim N(0, 1)$$

The Propensity Score Paradox in Real Data

The Propensity Score Paradox in Real Data

Nielsen et al. (AJPS, 2011)

The Propensity Score Paradox in Real Data

Similar pattern for > 20 other real data sets we checked

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:

- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)

- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L_1) :

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching
- Result:

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching
- Result:
 - Simple to use

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching
- Result:
 - Simple to use
 - All solutions are optimal

- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching
- Result:
 - Simple to use
 - All solutions are optimal
 - · No iteration or diagnostics required

- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching
- Result:
 - Simple to use
 - All solutions are optimal
 - · No iteration or diagnostics required
 - No cherry picking possible

• Consider 1 point on the SATT frontier:

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - · Choose subset with lowest imbalance

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - · Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - · Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as "greedy" but we prove are optimal

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - · Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as "greedy" but we prove are optimal
 - do not require evaluating every subset

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - → It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as "greedy" but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - ~→ It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as "greedy" but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets
 - is the exact frontier (no approximation or estimation)

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for <u>each</u> sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe
 - ~→ It's hard to calculate!
- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as "greedy" but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets
 - is the exact frontier (no approximation or estimation)
 - → It's easy to calculate!

Job Training Data: Frontier and Causal Estimates

- 185 Ts; pruning most 16,252 Cs won't increase variance much
- Huge bias-variance trade-off after pruning most Cs
- Estimates converge to experiment after removing bias
- No mysteries: basis of inference clearly revealed

Warning: figure omits some details!

- Warning: figure omits some details!
- Very fast; works with any continuous imbalance metric

• Warning: This figure omits some technical details too!

- Warning: This figure omits some technical details too!
- Works very fast, even with very large data sets

Formal Notation and Assumptions for Causal Inference

Formal Notation and Assumptions for Causal Inference

• Units: i = 1, ..., n

Formal Notation and Assumptions for Causal Inference

- Units: i = 1, ..., n
- Treatment variable: $T_i = 1$ for treateds; 0 for controls

- Units: i = 1, ..., n
- Treatment variable: $T_i = 1$ for treateds; 0 for controls
- Potential outcomes: $Y_i(t)$ is the (potential) value of outcome variable if $T_i = t$ (for t = 0, 1)

- Units: i = 1, ..., n
- Treatment variable: $T_i = 1$ for treateds; 0 for controls
- Potential outcomes: $Y_i(t)$ is the (potential) value of outcome variable if $T_i = t$ (for t = 0, 1)
- Treatment effect: $TE_i = Y_i(1) Y_i(0)$

- Units: i = 1, ..., n
- Treatment variable: $T_i = 1$ for treateds; 0 for controls
- Potential outcomes: $Y_i(t)$ is the (potential) value of outcome variable if $T_i = t$ (for t = 0, 1)
- Treatment effect: $TE_i = Y_i(1) Y_i(0)$
- Fundamental problem of causal inference: $Y_i(0)$ and $Y_i(1)$ are never both observed for any i

- Units: i = 1, ..., n
- Treatment variable: $T_i = 1$ for treateds; 0 for controls
- Potential outcomes: $Y_i(t)$ is the (potential) value of outcome variable if $T_i = t$ (for t = 0, 1)
- Treatment effect: $TE_i = Y_i(1) Y_i(0)$
- Fundamental problem of causal inference: $Y_i(0)$ and $Y_i(1)$ are never both observed for any i
- Observed outcome: $Y_i = T_i Y_i(1) + (1 T_i) Y_i(0)$

- Units: i = 1, ..., n
- Treatment variable: $T_i = 1$ for treateds; 0 for controls
- Potential outcomes: $Y_i(t)$ is the (potential) value of outcome variable if $T_i = t$ (for t = 0, 1)
- Treatment effect: $TE_i = Y_i(1) Y_i(0)$
- Fundamental problem of causal inference: $Y_i(0)$ and $Y_i(1)$ are never both observed for any i
- Observed outcome: $Y_i = T_i Y_i(1) + (1 T_i) Y_i(0)$
- Pretreatment control variables: X_i (k-vector)

- Units: i = 1, ..., n
- Treatment variable: $T_i = 1$ for treateds; 0 for controls
- Potential outcomes: $Y_i(t)$ is the (potential) value of outcome variable if $T_i = t$ (for t = 0, 1)
- Treatment effect: $TE_i = Y_i(1) Y_i(0)$
- Fundamental problem of causal inference: $Y_i(0)$ and $Y_i(1)$ are never both observed for any i
- Observed outcome: $Y_i = T_i Y_i(1) + (1 T_i) Y_i(0)$
- Pretreatment control variables: X_i (k-vector)
- Simplification we will use: focus on TE for treated units; so $Y_i(0)$ is unobserved; $Y_i(1) = Y_i$

• Overlap ("common support"): $Pr(T_i = 1|X) < 1 \ \forall \ \text{treated} \ i$

- Overlap ("common support"): $Pr(T_i = 1|X) < 1 \forall \text{ treated } i$
- If no overlap: TE_i does not logically exist

- Overlap ("common support"): $Pr(T_i = 1|X) < 1 \forall \text{ treated } i$
- If no overlap: TE; does not logically exist
- Stable Unit Treatment Value (SUTVA): logical consistency, so
 potential values are fixed if T changes (or "no interference";
 no "versions of treatment").

- Overlap ("common support"): $Pr(T_i = 1|X) < 1 \forall \text{ treated } i$
- If no overlap: TE_i does not logically exist
- Stable Unit Treatment Value (SUTVA): logical consistency, so
 potential values are fixed if T changes (or "no interference";
 no "versions of treatment").
- Example of no SUTA: $Y_i(0) = 5$ if $T_i = 1$ but $Y_i(0) = 8$ if it were the case that $T_i = 0$

- Overlap ("common support"): $Pr(T_i = 1|X) < 1 \ \forall$ treated i
- If no overlap: TE; does not logically exist
- Stable Unit Treatment Value (SUTVA): logical consistency, so
 potential values are fixed if T changes (or "no interference";
 no "versions of treatment").
- Example of no SUTA: $Y_i(0) = 5$ if $T_i = 1$ but $Y_i(0) = 8$ if it were the case that $T_i = 0$
- If overlap, but no SUTVA: Y_i(0) and TE_i exist but are not fixed QOIs

- Overlap ("common support"): $Pr(T_i = 1|X) < 1 \forall \text{ treated } i$
- If no overlap: TE; does not logically exist
- Stable Unit Treatment Value (SUTVA): logical consistency, so
 potential values are fixed if T changes (or "no interference";
 no "versions of treatment").
- Example of no SUTA: $Y_i(0) = 5$ if $T_i = 1$ but $Y_i(0) = 8$ if it were the case that $T_i = 0$
- If overlap, but no SUTVA: Y_i(0) and TE_i exist but are not fixed QOIs
- Example of SUTVA violation: use entire data set to define Y or T by cluster analysis. Then when T changes from 0 to 1, the values of Y may change, but the meaning of the categories will as well.

Sample Average Treatment Effect on the Treated

$$\mathsf{SATT} = \mathsf{mean}_{i \in \{T=1\}}(\mathsf{TE}_i)$$

• Sample Average Treatment Effect on the Treated

$$\mathsf{SATT} = \mathsf{mean}_{i \in \{T=1\}}(\mathsf{TE}_i)$$

Feasible SATT

FSATT: TE; averaged over well-matched treated units

• Sample Average Treatment Effect on the Treated

$$\mathsf{SATT} = \mathsf{mean}_{i \in \{T=1\}}(\mathsf{TE}_i)$$

Feasible SATT

FSATT: TE_i averaged over well-matched treated units

Other QOIs: PATT, FPATT; SATE, FSATE; PATE, FPATE

• Ignorable Treatment Assignment (ITA)

- Ignorable Treatment Assignment (ITA)
 - aka: "selection on observables," "no selection on Y," "unconfoundedness," "conditional independence"; special cases: "exogeneity," "no omitted variable bias"

- Ignorable Treatment Assignment (ITA)
 - aka: "selection on observables," "no selection on Y,"
 "unconfoundedness," "conditional independence"; special cases: "exogeneity," "no omitted variable bias"
 - Goal: Identification (we can learn the truth if $n \to \infty$)

- Ignorable Treatment Assignment (ITA)
 - aka: "selection on observables," "no selection on Y,"
 "unconfoundedness," "conditional independence"; special cases: "exogeneity," "no omitted variable bias"
 - Goal: Identification (we can learn the truth if $n \to \infty$)
 - The mechanism that produces treatment assignment (T_i) is independent of the potential outcomes

- Ignorable Treatment Assignment (ITA)
 - aka: "selection on observables," "no selection on Y,"
 "unconfoundedness," "conditional independence"; special cases: "exogeneity," "no omitted variable bias"
 - Goal: Identification (we can learn the truth if $n \to \infty$)
 - The mechanism that produces treatment assignment (T_i) is independent of the potential outcomes
 - Formally: $T_i \perp Y_i(0)|X$ for all treateds

- Ignorable Treatment Assignment (ITA)
 - aka: "selection on observables," "no selection on Y,"
 "unconfoundedness," "conditional independence"; special cases: "exogeneity," "no omitted variable bias"
 - Goal: Identification (we can learn the truth if $n \to \infty$)
 - The mechanism that produces treatment assignment (T_i) is independent of the potential outcomes
 - Formally: $T_i \perp Y_i(0) | X$ for all treateds
- Uncorrelated Treatment Assignment (UTA) (ITA Simplified)

- Ignorable Treatment Assignment (ITA)
 - aka: "selection on observables," "no selection on Y," "unconfoundedness," "conditional independence"; special cases: "exogeneity," "no omitted variable bias"
 - Goal: Identification (we can learn the truth if $n \to \infty$)
 - The mechanism that produces treatment assignment (T_i) is independent of the potential outcomes
 - Formally: $T_i \perp Y_i(0) | X$ for all treateds
- Uncorrelated Treatment Assignment (UTA) (ITA Simplified)
 - Goal: SATT = SATT

- Ignorable Treatment Assignment (ITA)
 - aka: "selection on observables," "no selection on Y,"
 "unconfoundedness," "conditional independence"; special cases: "exogeneity," "no omitted variable bias"
 - Goal: Identification (we can learn the truth if $n \to \infty$)
 - The mechanism that produces treatment assignment (T_i) is independent of the potential outcomes
 - Formally: $T_i \perp Y_i(0) | X$ for all treateds
- Uncorrelated Treatment Assignment (UTA) (ITA Simplified)
 - Goal: SATT = SATT
 - Sufficient (not necess.): $(Y_i(0)|T_i=1,X)=(Y_j(0)|T_j=0,X)$ \forall treateds i & matching controls j

- Ignorable Treatment Assignment (ITA)
 - aka: "selection on observables," "no selection on Y,"
 "unconfoundedness," "conditional independence"; special cases: "exogeneity," "no omitted variable bias"
 - Goal: Identification (we can learn the truth if $n \to \infty$)
 - The mechanism that produces treatment assignment (T_i) is independent of the potential outcomes
 - Formally: $T_i \perp Y_i(0) | X$ for all treateds
- Uncorrelated Treatment Assignment (UTA) (ITA Simplified)
 - Goal: SATT = SATT
 - Sufficient (not necess.): $(Y_i(0)|T_i=1,X)=(Y_j(0)|T_j=0,X)$ \forall treateds i & matching controls j
 - Necessary: mean($Y_i(0)|T=1,X$) = mean($Y_j(0)|T=0,X$) (average within strata of X are equal)

- Ignorable Treatment Assignment (ITA)
 - aka: "selection on observables," "no selection on Y,"
 "unconfoundedness," "conditional independence"; special cases: "exogeneity," "no omitted variable bias"
 - Goal: Identification (we can learn the truth if $n \to \infty$)
 - The mechanism that produces treatment assignment (T_i) is independent of the potential outcomes
 - Formally: $T_i \perp Y_i(0) | X$ for all treateds
- Uncorrelated Treatment Assignment (UTA) (ITA Simplified)
 - Goal: SATT = SATT
 - Sufficient (not necess.): $(Y_i(0)|T_i=1,X)=(Y_j(0)|T_j=0,X)$ \forall treateds i & matching controls j
 - Necessary: mean($Y_i(0)|T=1,X$) = mean($Y_j(0)|T=0,X$) (average within strata of X are equal)
 - Simpler special case under 1-to-1 matching on X: $mean(Y_i(0)|T_i=1) = mean(Y_i|T_i=0)$

Existing Theory of Inference: Stop What You're Doing!

Existing Theory of Inference: Stop What You're Doing!

Existing Theory of Inference: Stop What You're Doing!

• Framework: simple random sampling from a population

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- · Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T=1|X) < 1 (T=0,1) are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

Alternative Theory of Inference: It's Gonna be OK!

• Framework: stratified random sampling from a population

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T=1|X) < 1 (T=0,1) are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X
 ("continuous" variables have natural breakpoints, like CEM)

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints, like CEM)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T=1|X) < 1 (T=0,1) are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints, like CEM)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T=1|X) < 1 (T=0,1) are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X
 ("continuous" variables have natural breakpoints, like CEM)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
 - Set-wide Unconfoundedness: T⊥Y(0) | A

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints, like CEM)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
 - Set-wide Unconfoundedness: T⊥Y(0) | A
 - Set-wide Common support: Pr(T = 1|A) < 1

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T=1|X) < 1 (T=0,1) are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X ("continuous" variables have natural breakpoints, like CEM)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
 - Set-wide Unconfoundedness: T⊥Y(0) | A
 - Set-wide Common support: Pr(T = 1|A) < 1
- Fits all common matching methods & practices; no asymptotics

Existing Theory of Inference: Stop What You're Doing!

- Framework: simple random sampling from a population
- Exact matching: Rarely possible; but would make estimation easy
- Assumptions:
 - Unconfoundedness: $T \perp Y(0) \mid X$ (Healthy & unhealthy get meds)
 - Common support: Pr(T = 1|X) < 1 (T = 0, 1 are both possible)
- Approximate matching (bias correction, new variance estimation): common, but all current practices would have to change

- Framework: stratified random sampling from a population
- Define A: a stratum in a partition of the product space of X
 ("continuous" variables have natural breakpoints, like CEM)
- We already know and use these procedures: Group strong and weak partisans; Don't match college dropout with 1st year grad student
- Assumptions:
 - Set-wide Unconfoundedness: T⊥Y(0) | A
 - Set-wide Common support: Pr(T = 1|A) < 1
- · Fits all common matching methods & practices; no asymptotics
- Easy extensions for: multi-level, continuous, & mismeasured treatments; A too wide, n too small