Matemáticas e Ingeniería Informática

Hoja 5: Aplicaciones lineales. Matriz de una aplicación lineal.

1. Para cada una de las aplicaciones siguientes decide, razonadamente, si es lineal o no.

i)
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
, $F(x,y) = (2x + 3y, -5x)$.

ii)
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
 , $F(x,y) = (x, y^2)$.

iii) {funciones
$$f: \mathbb{R} \to \mathbb{R}$$
} \xrightarrow{T} {funciones $g: \mathbb{R} \to \mathbb{R}$ }, $T[f(x)] = f(\cos x)$.

iv) {funciones
$$f: \mathbb{R} \to \mathbb{R}$$
} \xrightarrow{T} {funciones $g: \mathbb{R} \to \mathbb{R}$ }, $T[f(x)] = \cos(f(x))$.

v)
$$F: \mathbb{R}[x] \to \mathbb{R}[x]$$
, $F(p(x)) = p(x+1)$.

vi)
$$F: \mathbb{R}[x] \to \mathbb{R}[x]$$
, $F(p(x)) = p(x) + 1$.

vii)
$$\mathcal{F}: \mathbb{R}[x] \to \mathbb{R}$$
, $\mathcal{F}(p(x)) = \int_{-1}^{2} p(x) dx$.

viii)
$$F: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$$
, $F(A) = \det A$.

ix)
$$F: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$$
, $F(A) = I_2 + A$.

x)
$$F: M_{2\times 2}(\mathbb{R}) \to M_{2\times 3}(\mathbb{R})$$
, $F(A) = \begin{bmatrix} 1 & 2 \\ 0 & 5 \end{bmatrix} A \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$.

- **2.** De una aplicación lineal $A: \mathbb{R}^3 \to \mathbb{R}$ sabemos que A(1,0,0) = -1, A(2,1,0) = 5 y A(3,4,1) = 7. Sabiendo eso, determina A(3,5,-1).
- **3.** Para cada $a \in \mathbb{R}$ sea $A : \mathbb{R}^4 \to \mathbb{R}^3$ dada por $f(\mathbf{x}) = A\mathbf{x}$, donde A es la siguiente matriz:

$$A = \left(\begin{array}{cccc} 1 & 1 & 2 & a \\ 1 & 2 & -1 & 4 \\ 0 & -2 & 6 & 2 \end{array}\right).$$

- a) Halla, en función de a, una base de $\operatorname{Im} A$ y una base de $\ker A$.
- b) Comprueba que, para todos los valores de a, se cumple:

$$\dim(\operatorname{Im} A) + \dim(\ker A) = \dim(\operatorname{dominio} \operatorname{de} A).$$

4. Para el espacio vectorial \mathbb{V} de las matrices reales simétricas 2×2 , consideramos la siguiente base:

$$\mathcal{B} \; = \; \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \, , \, \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \, , \, \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \, \right\} \, .$$

- a) Comprueba que $f: \mathbb{V} \to \mathbb{V}$ dada por $f(M) = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix} M \begin{bmatrix} 0 & -2 \\ 1 & 3 \end{bmatrix} M$ es lineal y halla la matriz A de f respecto de \mathcal{B} en salida y en llegada (atención: A es 3×3).
- b) Utiliza A para hallar una base de $\operatorname{Im} f$ y una base de $\ker f$ (atención: estas bases tienen que ser conjuntos de matrices simétricas 2×2).
- c) Comprueba que $\dim(\operatorname{Im} f) + \dim(\ker f) = \dim(\operatorname{dominio} \operatorname{de} f)$.

- **5.** Sea $\mathbb{R}[x]_{\leq 1}$ el espacio vectorial $\{\varphi \equiv a + bx : a, b \in \mathbb{R}\}$ de los polinomios reales de grado ≤ 1 .
- a) Demuestra que se pueden definir dos aplicaciones $F,G:\mathbb{R}[x]_{\leq 1}\to\mathbb{R}[x]_{\leq 1}$ por las siguientes fórmulas:

$$F(\varphi) = (1+3x)\varphi + (1-3x^2)\varphi'$$
, $G(\varphi) = (6+3x)\varphi + (1-3x^2)\varphi'$.

- b) Comprueba que F y G son lineales y halla sus matrices respecto de la base $\{1,x\}$, tanto en salida como en llegada.
- c) Utiliza el resultado de b) para demostrar rápidamente que $G=\frac{3}{4}\,F^4-F^3-5F,$ es decir $G=\frac{3}{4}\,F\circ F\circ F\circ F-F\circ F\circ F-5\,F.$
- **6.** Sea $\mathbb{R}[x]_{\leq 2}$ el espacio vectorial $\{\varphi \equiv a + bx + cx^2 : a, b, c \in \mathbb{R}\}$ de los polinomios reales de grado ≤ 2 . Definimos una aplicación $F : \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 2}$ por la fórmula $F(\varphi) = 2\varphi (x+1)\varphi'$.
- a) Comprueba que F está bien definida y es lineal.
- b) Halla la matriz A de F respecto de la base $\{2+x,3x,x^2\}$ en salida y la base $\{1,x,x^2\}$ en llegada.
- c) Utiliza A para hallar una base de $\operatorname{Im} F$ y una base de $\ker F$ (atención: estas bases tienen que ser conjuntos de polinomios). Comprueba que $\dim(\operatorname{Im} F) + \dim(\ker F) = \dim(\operatorname{dominio} \operatorname{de} F)$.
- 7. Para cada $a \in \mathbb{R}$ se define la aplicación $T_a : \mathbb{R}^2 \to \mathbb{M}_{2 \times 2}(\mathbb{R})$ como $T_a(\mathbf{v}) = \begin{bmatrix} a \\ 3 \end{bmatrix} \mathbf{v}^t + \mathbf{v} \begin{bmatrix} 1 & 3a \end{bmatrix}$.
- a) Comprueba que T_a es lineal y halla su matriz respecto de las bases estándar de \mathbb{R}^2 y $\mathbb{M}_{2\times 2}(\mathbb{R})$.
- b) Utiliza el resultado de a) para determinar los valores de a para los que T_a es inyectiva.
- 8. Para cada $a \in \mathbb{R}$ definimos la aplicación lineal $G_a : \mathbb{R}^4 \to \mathbb{R}^3$ como $G_a(\mathbf{x}) = A_a\mathbf{x}$, siendo

$$A_a = \begin{pmatrix} 1 & 2 & 2 & 2a \\ 3 & 4+a & 3a & 0 \\ 0 & 1 & 3 & 5+a \end{pmatrix}.$$

Determina los valores de a para los que G_a es suprayectiva.