MA2104

AY22/23 Sem 1

github.com/jasonqiu212

01. Vectors, Lines, Planes

- **Dot Product** $a \cdot b = ||a|| ||b|| \cos \theta$
- $a \cdot b = b \cdot a$ $a \cdot (b+c) = a \cdot b + a \cdot c$
- $a \cdot b = 0 \leftrightarrow a \perp b$
- **Projection** $\operatorname{proj}_a b = \frac{a \cdot b}{a \cdot a} a$
- $\operatorname{comp}_a b = ||\operatorname{proj}_a b|| = \frac{a \cdot b}{||a||}$
- Cross Product $-a \times b = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \langle a_2b_3 a_3b_2, -(a_1b_3 b_1a_3), a_1b_2 a_2b_1 \rangle$
- $ullet a imes b \perp a ext{ and } \perp b \qquad a imes b = -b imes a$
- $||a \times b|| = ||a|| ||b|| \sin \theta$ Direction: Right hand rule
- $\bullet \ A = ||a \times b|| \qquad ||PQ|| \sin \theta = \frac{||PQ \times PR||}{||PR||}$

- Result is a scalar value
- $\bullet \ A_{\mathsf{Base}} = ||b \times c|| \qquad V = Ah = a \cdot (b \times c)$

- Line $\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle > + \langle a, b, c \rangle t$
- 2D: Either parallel or intersecting
- 3D: Either parallel, intersecting, or skew
- **Tangent Vector** Given $r(t) = \langle f(t), g(t), h(t) \rangle$:

$$r'(a) = \lim_{\Delta t \to 0} \frac{r(a + \Delta t) - r(a)}{\Delta t} = \langle f'(a), g'(a), h'(a) \rangle$$

- $\bullet \frac{d}{dt}(r(t) + s(t)) = \frac{d}{dt}r(t) + \frac{d}{dt}s(t)$
- $\frac{d}{dt}(r(t)s(t)) = r'(t)s(t) + r(t)s'(t)$
- $\frac{d}{dt}(r(t) \cdot s(t)) = r'(t) \cdot s(t) + r(t) \cdot s'(t)$
- $\frac{d}{dt}(r(t) \times s(t)) = r'(t) \times s(t) + r(t) \times s'(t)$
- Arc Length Given smooth $r(t) = \langle f(t), g(t), h(t) \rangle$:

$$S = \int_{a}^{b} ||r'(t)|| dt$$

02. Functions of 2 Variables

- Surface z = f(x, y)
- Horizontal Trace (Level curve) Intersects with horizontal plane (i.e. f(x,y)=k)
- Level Surface f(x, y, z) = k
- Vertical Trace Intersections with vertical plane
- Contour Plot f(x,y) = k with lots of k's
- • Quadric Surfaces $Ax^2 + By^2 + Cz^2 + J = 0$ or $Ax^2 + By^2 + Iz = 0$
- Cylinder There exists plane such that all planes parallel to plane intersect surface in some curve

Equation	Standard form		h =	t .	_
	(symmetric about z-axis)		WWW		₩
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$	Elliptic paraboloid	7			y y
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$	Hyperbolic paraboloid ~		7	-4	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Ellipsoid	1			
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	(Elliptic) cone		٠.		
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Hyperboloid of one sheet		y −5		
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$	Hyperboloid of two sheets	<i>'</i>			
	> z _↑	24	9470		
			ý.		
	y				

- Limit $\lim_{(x,y)\to(a,b)} f(x,y) = L$
- To show limit DNE: Show 2 paths with different limits
- To show limit exists:
 - * Deduce from properties of limits or continuity
 - $\cdot \lim(\ldots \pm \ldots) = \lim \ldots \pm \lim \ldots$
 - $\lim_{n \to \infty} (\ldots) (\ldots) = \lim_{n \to \infty} (\ldots) \lim_{n \to \infty} (\ldots)$
 - $\cdot \lim \frac{(...)}{(...)} = \frac{\lim (...)}{\lim (...)}$ where denom. $\neq 0$
 - * Squeeze Theorem $|f(x,y) L| \le g(x,y)$ and $\lim_{(x,y)\to(a,b)} g(x,y) = 0 \to \lim_{(x,y)\to(a,b)} f(x,y) = L$
- Continuity $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$
- If f and g are continuous, then $f\pm g$, fg, $\frac{f}{g}$, $f\circ g$ are all continuous
- Polynomial, trigonometry, exponential, rational functions are all continuous, but not necessarily defined

03. Derivative

04. Gradient Vector