Thermostat Algorithm

Ines Ahrens

May 15, 2016

Abstract

1 first understanding

1.1 Introduction

- randbedingungen sind wichtig und mssen beschrieben werden
- es gibt harte und weiche Randbedingungen:
 - harte RB: gelten fr jeden Zeit/ Ortspunkt im System
 - weiche RB: mssen im durchschnitt erfllt sein.
- unterschiedliche Arten von RB
 - rumliche RB: form und umgebung des Systems. Dabei gibt es vakuum RB, "fixed" RB (nt verstandnen) und periodische RB. Hat iwas mit Hamiltonian zu tun und noch mehr was ich nicht verstehe.
 - Thermodynamische RB: verstehe ich gar nicht
 - experimentel bestimmte RB: bereinstimmung zwischen wirklichkeit und simulation. weiche RB. genaue erklrung unverstndlich
 - geometrische RB: Unterschied zu rumliche RB? bsp ist Bindungslage.
 was ist geometrische RB genau?
- wir werden genauer die Thermodynamischen RB untersuchen. Genauer, wenn eine konstante Temperatur gefordert ist. Wir betrachten nur vaccum oder periodische RB.

1.2 Ensembles

- Was sind intensive und extensive variables?
- unterschied zwischen intensive und extensive variables ist "erklrt"
- welche verndern sich whrend der simulation, andere nicht.

- unterschied zwischen direkt beobachtbaren und durchschnittlichen variablen.
- standart MD passt nicht zu experimenten, also andere variablen:
 - canonical ensemble: temperatur hat festgelegten durchschnittswert,
 Totale Energie des Systems kann schwanken.
 - isothermal -isobaric ensemble: fester durchschnittlicher Druck, Volumen kann schwanken
 - grabd canonical ensemble: konstantes Volumen und Temperatur, aber Partikel knnen sich mit denen des Wrmebades austauschen. Das chemische Potential hat festen durchschnittswert, aber die Anzahl der Partikel kann schwanken.
 - gibt noch unwichtige andere