## TD7-Diodes

**Exercice 1.** On considère le circuit suivant avec E=6V et  $R=200\Omega$ :



La caractéristique de la diode est donnée de façon approchée par :

$$\begin{cases} I = 0 & \text{pour } U \le U_0 \\ I = \frac{U - U_0}{R_d} & \text{pour } U \ge U_0 \end{cases}$$

avec :  $U_0 = 0, 4V$  et  $R_d = 60\Omega$ .

- 1. Quel est le point de fonctionnement de ce circuit ?
- 2. Calculer le facteur de régulation  $f_0 = \frac{\Delta U}{\Delta E}$  et le taux d'ondulation  $\frac{\Delta U}{U}$  si la tension de l'alimentation est un signal sinusoïdal de tension crête à crête de 2V et de valeur moyenne 6 V.
- 3. Quelles sont les valeurs que doit prendre une résistance  $R_C$  placée en parallèle aux bornes de la diode pour que la diode soit passante et que son courant maximal soit de 20 mA?

## Exercice 2. On considère le circuit suivant :



La diode admet pour tension seuil  $U_S$  et comme résistance interne  $R_d$ .

Déterminer l'intensité parcourant la résistance R en appliquant le théorème de Millman dans les cas suivants :

- 1. La diode est passante.
- 2. La diode est bloquée.



## TD7-Diodes

## Exercice 3. On considère le montage ci-dessous :



La tension seuil de la diode utilisée est  $V_D$ . L'amplificateur opérationnel est supposé idéal.

- 1. Déterminer, en régime établi, la tension  $v_s(t)$  aux bornes de la résistance d'utilisation  $R_u$  lorsque la tension appliquée à l'entrée du circuit est  $v_e(t) = v_{em} cos(\omega t)$ , avec  $v_{em} > V_D$ .
- 2. Que devient cette tension  $v_s(t)$  lorsque la diode est retournée ?
- 3. Quelle est la fonction réalisée par ce circuit ?

Exercice 4. On considère le montage ci-dessous avec  $E=10V,\,L=100mH$  et  $r=100\Omega$  :



La tension seuil de la diode est  $V_D = 0,6V$  et sa résistance directe  $r_D = 10\Omega$ .

- 1. Pour t < 0, l'interrupteur est fermé et le circuit est en régime établi. A t = 0, l'interrupteur est ouvert. Calculer la tension u(t) qui apparaît aux bornes de l'interrupteur.
- 2. Que se passerait-il si la diode était supprimée ?

