Quantum LTC With Positive Rate

David Ponarovsky

September 6, 2022

preamble. preamble.

The Construction. Fix primes q, p_1, p_2, p_3 such that each of them has 1 residue mode 4. Let A_1, A_2, A_3 be a different generators sets of $\mathbf{PGL}(2, \mathbb{Z}/q\mathbb{Z})$ obtained by taking the solutions for $a_0^2 + a_1^2 + a_2^2 + a_3^2 = p_i$ such that each pair A_i, A_j satisfy the TNC constraint. Then consider the graphs: (G is the $\mathbf{PGL} \times \mathbb{Z}_2$ group).

$$\Gamma_{1} = Cay_{2}(G, A_{1}) \times_{G} Cay_{2}(G, A_{2})$$

$$\Gamma_{2} = Cay_{2}(G, A_{1}) \times_{G} Cay_{2}(G, A_{3})$$

$$\Gamma_{\square_{1}} = (G, \{(g, agb) : a \in A_{1}, b \in A_{2}\})$$

$$\Gamma_{\square_{2}} = (G, \{(g, agc) : a \in A_{1}, c \in A_{3}\})$$

Then define the codes:

$$\begin{split} C_z^\perp &= \mathcal{T} \left(\Gamma_{\square_1}, C_{A_1} \otimes C_{A_2} \right) \\ &\mid \mathcal{T} \left(\Gamma_{\square_2}, C_{A_1} \otimes C_{A_3} \right) \\ C_x &= \mathcal{T} \left(\Gamma_{\square_1}, \left(C_{A_1}^\perp \otimes C_{A_2}^\perp \right)^\perp \right) \\ &\mid \mathcal{T} \left(\Gamma_{\square_2}, \left(C_{A_1}^\perp \otimes C_{A_3}^\perp \right)^\perp \right) \\ C_w &= \mathcal{T} \left(\Gamma_{\square\square}, \left(C_{A_1}^\perp \otimes C_{A_2}^\perp \otimes C_{A_3}^\perp \right)^\perp \right) \end{split}$$

Notice that the faces of Γ_{\square_1} , Γ_{\square_2} are disjointed and here the symbol | means just joint them together. The main focus here is to prove local test-ability for computation base (i.e C_x) and for completeness one also must to define the code

$$C_{w_z} = \mathcal{T}\left(\Gamma_{\Box\Box}, (C_{A_1} \otimes C_{A_2} \otimes C_{A_3})^{\perp}\right)$$

Definition Define the mapping (not linear)

$$\phi:\mathcal{T}\left(\Gamma_{\square_{1}}\cup\Gamma_{\square_{2}},\mathbb{F}_{2}\right)\rightarrow\mathcal{T}\left(\Gamma_{\square\square},\mathbb{F}_{2}\right)$$

as the summtion over the fowlloing local maps ϕ_g . which for given vertex $g \in V(\Gamma_{\square\square})$ with local view c_1 on Γ_{\square_1} and local view c_2 on Γ_{\square_2} compute the tensor $c_{abc} =$ $c_{1_{ab}}c_{2_{ac}}$ and set result bit on the plaquette defined by the vertices g, ag, gb, gc, agb, agc.

We will abuse the notation by defining for every subset of vertices $S \subset V$ the map $\phi_S = \sum_{g \in S} \phi_g$.

Lemma 1 Fix a vertex g and assume that the local views c_1, c_2 that lay over the graphs $\Gamma_{\square_1}, \Gamma_{\square_2}$ belongs to the dual tensors $(C_{A_1}^{\perp} \otimes C_{A_2}^{\perp})^{\perp}$, $(C_{A_1}^{\perp} \otimes C_{A_3}^{\perp})^{\perp}$. And inaddtion $1^{\Delta} \in C_{A_1}$ then

$$\phi_g\left(c_1, c_2\right) \in \left(C_{A_1}^{\perp} \otimes C_{A_2}^{\perp} \otimes C_{A_3}^{\perp}\right)^{\perp}$$

Proof. The case where $c_1 \in \mathbb{F}^{A_1} \otimes C_{A_2}$ or $c_2 \in \mathbb{F}^{A_1} \otimes C_{A_2}$ C_{A_3} is trival. Suppose that both $c_1 \in C_{A_1} \otimes \mathbb{F}^{A_2}$ and $c_2 \in C_{A_1} \otimes \mathbb{F}^{A_3}$. And let h be any check of C_{A_1} .

What We Currently Have. Given a candidate for a codeword c we could check efficiently if $c \in C_z^{\perp}$. Additionally summing up the local correction of each vertex in C_x yields a codeword in C_w . Now we would want to show something similar to property 1 in Levarier and Zemor which imply that any codeword of C_w with weigh beneath a linear threshold ηn must to be also in C_X . (And therefore we can reject candidates with high weight).

Assume that we have succeed to do so. Then the test- $\Gamma_{\square\square} = (G, \{(g, gb, agc), (g, gc, agb) : a \in A_1, b \in A_2, c \in A_3\}$ ing protocol will be looked as follow, first we check that the candidate is not in C_z^{\perp} and then we check that is indeed in C_x . And repeat again in the phase base. Then there are constants κ_1, κ_2

$$\begin{split} \operatorname{accept} &\sim \kappa_{1} \cdot d\left(c, C_{z}^{\perp}\right) \\ &+ \left[1 - \kappa_{1} \cdot d\left(c, C_{z}^{\perp}\right)\right] \kappa_{2} d\left(c, C_{x}\right) \\ \operatorname{reject} &\sim \left[1 - \kappa_{1} \cdot d\left(c, C_{z}^{\perp}\right)\right] \\ &+ \kappa_{1} \cdot d\left(c, C_{z}^{\perp}\right) \cdot \left[1 - \kappa_{2} d\left(c, C_{x}\right)\right] \end{split}$$

Disclaimer. The use of the \sim was made by purpose. The above should be formalize by inequalities. (And this also make another problem as the term $1 - \kappa_1 \cdot d$ () is in the opposite direction).

The Hard Part. It seems (at least for now) that the hard part is to find an analog for Lemma 1 in Levrier-Zemor, Which can formalize as follow: Consider a codeword $c \in C_w$ such that $|c| \leq \eta n$ then we could always find a vertex in Γ_{\square_1} and a local codeword $\xi \in C_{A_1} \otimes c_{A_2}$ on his support such that $|c + \xi| < |c|$.

Tasks.

- 1. Prove that $\Gamma_{\square\square}$ is indeed an expander. Should be (relative) easy.
- 2. Prove a Lemma 1 analogy. And while do so, understand what are the properties we should require from the small code. (i.e w-robustness and p-resistance for puncturing).
- 3. Show that we could actually choose such $\{A\}_i$ and the matched small codes.

- 4. Understand what it mean quantomly test if a $c \in C_w/C_x$. Namely, is weight counting can be consider as X-check which commute with the other Z-checks?
- 5. Write a program which plot small complex in a small scale for getting more intuition.

All The Vertices Are Normal Define a normal vertex in V_1 to be a vertex such his local view (a codeword in a dual tensor code). supported on less then $w = \Delta^{\frac{3}{2}}$ faces. Consider the code C_w defined above, and assume in addition that the distance and the rate of the small codes C_{A_j} , $\delta\Delta$ satisfy the equation $(\Delta r)^4 (1 - 2\delta) < \frac{1}{2}\delta^3$ and also the code C_{A_1} contains the word 1^{Δ} .

Then for any $x \in C_w$ such that all the vertices in the induced graphs $\Gamma_{\square_1}, \Gamma_{\square_2}$ by it are normal. Then there exists a vertex $g \in V_0$ and a local codeword $c \in C_{A_1} \otimes C_{A_2} \otimes C_{A_3}$ supported entirely on the neighborhood of g such that: $|x+c| \leq |x|$.

Proof. Let g be an arbitrary vertex in V_0 we know by Leverrir and Zemor that the local views of g in $\Gamma_{\square_1}, \Gamma_{\square_2}$ are $\Delta^{3/2}$ close to $C_{A_1} \otimes C_{A_2}$ and $C_{A_1} \otimes C_{A_3}$ by the w-robustness property.

So we can represent the locals views on g as the following disjointed vectors, each lays on Γ_{\square_1} , Γ_{\square_2} :

$$y = y_1 y_2^{\top} + \xi_y$$
$$z = z_1 z_2^{\top} + \xi_z$$

such that $y_1y_2^{\top} \in C_{A_1} \otimes C_{A_2}$, $z_1z_2^{\top} \in C_{A_1} \otimes C_{A_3}$ and the ξ_y, ξ_z are the corresponded errors of the local views from the tensor codes.

Let $\{y_1^jy_2^{i}^{\top}\}$, $\{z_1^jz_2^{i}^{\top}\}$ be the bases for $C_{A_1}\otimes C_{A_2}$ and $C_{A_1}\otimes C_{A_3}$ such that $y_1^j,z_1^j\in C_{A_1}$ and $y_2^i\in C_{A_2},z_2^i\in C_{A_3}$. And denote by $\alpha_{ij},\beta_{ij}\in\mathbb{F}_2$ the coefficients of $y_1y_2^{\top}$ and $z_1z_2^{\top}$.

By the fact that $1^{\Delta} \in C_{A_1}$ we have that for any i, j the vector:

$$\bar{y_1}^j y_2^i = 1^{\Delta} y_2^i ^{\top}
+ y_1^j y_2^i ^{\top} = (1^{\Delta} + y_1^j) y_2^i ^{\top}
\in C_{A_1} \otimes C_{A_2}$$

And by the same calculation we get also that $\bar{z_1}^j z_2^i \ ^{\top} \in C_{A_1} \otimes C_{A_3}$.

Claim. Assume that $y_1y_2^{\top}$ and $z_1z_2^{\top}$ are in the bases defined above. Let $\tau \in \mathbb{F}_2^{A \times B \times C}$ such that $\tau_{abc} = \left(y_1y_2^{\top}\right)_{ab}\left(z_1z_2^{\top}\right)_{ac}$ then:

$$d\left(\tau, C_{A_1} \otimes C_{A_2} \otimes C_{A_3}\right) \le (1 - \delta) \Delta^3$$

Proof. First notice that $y_{1a}y_{2b}z_{2c}$ is a valid codeword of $C_{A_1} \otimes C_{A_2} \otimes C_{A_3}$. That because that the projection obtained by fixing any two coordinates yields either a zero or a codeword of one the codes.

Therefore we could consider the following codeword $\tilde{\tau}_{abc} = (y_{1a} + \bar{z}_{1a}) y_{2b} y_{2c}$ and bounding the distance of τ by

$$d(\tau, C_{A_1} \otimes C_{A_2} \otimes C_{A_3}) \leq d(\tau, \tilde{\tau})$$

$$= \sum_{abc} (y_{1a} + \bar{z}_{1a}) y_{2b} y_{2c} \oplus (y_{1a} z_{1a}) y_{2b} y_{2c}$$

$$= \sum_{abc} (y_{1a} + \bar{z}_{1a} \oplus y_{1a} z_{1a}) y_{2b} y_{2c}$$

$$\leq |\{y_{1a} = 0 \text{ and } z_{1a} = 0\}| \cdot \Delta^2 \leq (1 - 2\delta) \Delta^3$$

Claim. Let $y_1y_2^{\top}, z_1z_2^{\top}$ be codewords in $C_{A_1} \otimes C_{A_2}, C_{A_1} \otimes C_{A_3}$. And let w be the vector define by $w_{abc} = \left(y_1y_2^{\top}\right)_{ab} \left(z_1z_2^{\top}\right)_{ac}$. Then

$$d\left(w, C_{A_1} \otimes C_{A_2} \otimes C_{A_3}\right) \le \left(r\Delta\right)^4 \left(1 - \delta\right) \Delta^3 + \Theta\left(\Delta^{2\frac{1}{2}}\right)$$

Consider again the representation of the local view w on the vertex g.

$$\begin{aligned} w_{abc} &= y_{ab} z_{ac} = \left(y_1 y_2^\top + \xi_y\right)_{ab} \left(z_1 z_2^\top + \xi_z\right)_{ac} \\ \left(y_1 y_2^\top\right)_{ab} \left(z_1 z_2^\top\right)_{ac} &= \left(\sum_{ij} \alpha_{ij} y_1^i y_2^{j\top}\right)_{ab} \left(\sum_{ij} \beta_{ij} z_1^i z_2^{j\top}\right)_{ac} \\ &= \sum_{ijlk} \alpha_{ij} \beta_{lk} y_{1a}^i y_{2b}^{j\top} z_{1a}^l z_{2c}^{k\top} \\ &\Rightarrow d\left(\sum_{abc} \left(y_1 y_2^\top\right)_{ab} \left(z_1 z_2^\top\right)_{ac}, C_{A_1} \otimes C_{A_2} \otimes C_{A_3}\right) \\ &< \left(\Delta r\right)^4 \left(1 - \delta\right) \Delta^3 \end{aligned}$$

In addition its clear that $\left|\sum_{abc} \xi_{ab} \left(z_1 z_2^\top + \xi\right)_{ac}\right| \leq \sum_c \sum_{ab} |\xi_{ab}| \leq \Delta^{2\frac{1}{2}}$. Hence, we have that

$$d\left(w, C_{A_1} \otimes C_{A_2} \otimes C_{A_3}\right) \le \left(r\Delta\right)^4 \left(1 - \delta\right) \Delta^3 + \Theta\left(\Delta^{2\frac{1}{2}}\right)$$

Dense Normal Net Counting Let us call the normal vertices the vertices with degree less then ξ in $\Gamma^{\cup,\square} = \Gamma^x_{\square,1} \cup \Gamma^x_{\square,2}$. And Let us say that that an edge of Γ^{\cup} is heavy if it is incident to at least η squares in Γ_{\square_1} and Γ_{\square_2} . Let T be set of vertices in V_0 that are connected to (at least) one normal vertex through a heavy edge.

First notice that the number of vertices in the induced graph by x is bounded by it's weight: $|S| \leq \frac{2|x|}{\delta \Delta}$

By the mixing Lemma we get:

$$\begin{split} |E\left(S,T\right)| &\geq \eta |T| \\ |E\left(S,T\right)| &= |E\left(S,T\right)_{\Gamma_{1}} \cup E\left(S,T\right)_{\Gamma_{2}}| \\ &\leq \frac{|S||T|}{n} \left(2 \cdot 2\Delta - \Delta\right) \\ &+ \sqrt{|S||T|} \left(2 \cdot \lambda_{\text{double cover}} + \lambda_{\text{ramnujan}}\right) \end{split}$$

Hence we have that:

$$\begin{split} |T| \left(\eta - \frac{2|x|}{\delta \Delta} \cdot \frac{3\Delta}{n} \right) &\leq \sqrt{|S||T|} \lambda^{\star} \\ |T| &\leq \left(\frac{\lambda^{\star}}{\eta - \frac{6|x|}{n\delta}} \right)^{2} |S| \end{split}$$

Denote by S_e the set of vertices in $\Gamma^{\cup,\square}$ with degree greater then ξ . Then by repeating on the above calculation, while substituting Γ_i by $\Gamma_{i,\square}$, We obtain that there is λ_2^{\star} such that:

$$|S_e| \le \left(\frac{\lambda_2^{\star}}{\xi - (2\Delta^2 - \Delta)\frac{|x|}{n\delta\Delta}}\right)^2 |S|$$

Define \bar{d}_T to be the average (over T) of heavy edges incident to a vertex of T. So

$$\bar{d}_T = \frac{|E\left(T, S/S_e\right)|}{T} \ge \frac{|S| - |S_e|}{|T|}$$

$$\ge \left(1 - \left(\frac{\lambda_2^*}{\xi - (2\Delta^2 - \Delta)\frac{|x|}{n\delta\Delta}}\right)^2\right) / \left(\frac{\lambda^*}{\eta - \frac{6|x|}{n\delta}}\right)^2$$

Let us call to the quantity above $\Delta \rho$ and denote by $1-\tau$ the fraction of vertices of T with degree less then $\frac{1}{2}\Delta \rho$. Then $\Delta \rho \leq \bar{d}_T \leq 3\Delta \tau + (1-\tau)\Delta \rho \Rightarrow \tau \geq \frac{\rho}{2(3-\rho)} \geq \rho/3$. Namely, at least $\rho/3$ of vertices of T are incident to at least $\frac{1}{2}\Delta \rho$ heavy edges.

Since Γ^{\cup} is 3Δ regular we get that $|S| - |S_e| \leq 3\Delta |T|$. In the other-hand we have shown that

$$|S_e| \le \left(\frac{\lambda_2^*}{\xi - (2\Delta^2 - \Delta)\frac{|x|}{n\delta\Delta}}\right)^2 |S|$$

$$\Rightarrow |S| \le \left(1 - \left(\frac{\lambda_2^*}{\xi - (2\Delta^2 - \Delta)\frac{|x|}{n\delta\Delta}}\right)^2\right)^{-1} 3\Delta |T|$$

$$= (1 - \theta^2) 3\Delta |T|$$

And by using again the mixing Lemma we have that:

$$E(S_e, T) \leq \frac{\theta^2}{1 - \theta^2} 3\Delta |T|^2 \frac{3\Delta}{n} + \lambda^* \sqrt{\frac{\theta^2}{1 - \theta^2}} |T|$$

$$\leq \left(\frac{\theta^2}{1 - \theta^2} 9\Delta^2 + \lambda^* \sqrt{\frac{\theta^2}{1 - \theta^2}}\right) |T|$$

$$\leq \left(9\Delta^2 + \lambda^*\right) |T|$$

Hence at most an $\frac{1}{6}\rho$ proportion of vertices of T are adjacent to more than $\frac{6}{\rho}\left(9\Delta^2+\lambda^\star\right)$ vertices of $S_e,$ And at least $\frac{5}{6}\rho$ proportion of T are adjacent to less then $\frac{6}{\rho}\left(9\Delta^2+\lambda^\star\right)$. And therefore we have that at least $\frac{1}{6}\rho$ vertices are:

- 1. Incident to at least $\frac{1}{2}\Delta\rho$ heavy edges.
- 2. Adjacent to at most $\frac{6}{\rho} \left(9\Delta^2 + \lambda^* \right)$ vertices of S_e .

Proof Of Theorem 1 Let us call to the set of vertices satisfy the constraints above **good vertices**. Pick any good vertex $g \in T$. Remember that each heavy edge between a normal vertex of S and a vertex of T corresponds to either a row or a column shared by the two local views

By w-robustness, for any small enough $\xi \leq w$, the local view of any normal vertex is supported on at most $\frac{\xi}{\delta\Delta}$ rows and columns. Hence, the row (or column) shared

between the normal vertex and v is at distance at most $\frac{\xi}{\delta\Delta}$ from a nonzero codeword of C_{A_1} (or C_{A_2} , C_{A_3}).

Let us denote by $x_{v'}$ the the local view obtained by taking only the rows and columns that shared between v and normal vertices. The γ -resistance to puncturing property implies that if we could find η, ξ such that for any |x| < d we have:

$$\frac{6}{\rho} \left(9\Delta^2 + \lambda^{\star} \right) \le \gamma \qquad \left(\Theta \left(\Delta^{\frac{1}{2}} \right) \right)$$

Then the local view of v is at distance at most:

$$d(x_{v}, C_{A_{1}} \otimes C_{A_{2}} \otimes C_{A_{3}})$$

$$\leq d(x_{v'}, \cdot) + | \text{ ignored bits } |$$

$$\leq d(x_{v'}, \cdot) + \frac{3}{2}\Delta^{2} \cdot \frac{6}{\rho} \left(9\Delta^{2} + \lambda^{\star}\right)$$

Choosing $\eta, \xi, \delta, \gamma, w, |x| < d$ such that the above is lower than $\frac{1}{2} \left(\delta \Delta \right)^3$ finishes the proof.

Theorem 2. The code $C_w/\mathcal{T}(\Gamma_{\Box\Box}, (C_{A_1} \otimes C_{A_2} \otimes C_{A_3}))$ has positive rate and linear distance.

Theorem 3. The code defined by C_x has an efficient test for rejecting candidate with high error weigh.