

Master thesis

Simulation of complex actuators

Author : Hubert Woszczyk Promotor : Pr. Bernard Boigelot

Master thesis submitted for the degree of Msc in Electrical Engineering

Simulation of complex actuators

Hubert Woszczyk

Abstract

Lorem ipsum dolor...

Acknowledgments

I want to thank:

• Grégory Di Carlo, for the textures he provided me with.

Contents

1	Introduction					
	1.1 Introduction					
2	Setting up the simulation					
	2.1 Choosing the right engine					
	2.2 Settings					
	2.3 Model					
3	Conclusion					

List of Figures

Chapter 1

Introduction

1.1 Introduction

This is the introduction

Chapter 2

Setting up the simulation

2.1 Choosing the right engine

[1] The list of physics simulating engines is quite long, but the most popular ones are, in no particular order

- 1. Bullet
- 2. ODE
- 3. DART
- 4. Simbody
- 5. PhysX
- 6. Havok

Bullet was chosen because while it does not distinguish itself when it comes to pure physical simulation [2], a 3D modelling application called Blender is built atop of it, providing excellent tools for fast and easy robot modelisation. Blender also provides access to Bullet through a well document Python API.

Table 2.1: Features comparison

Engine	License	Coordinates	Origin	Editor	Solver type
Bullet	Free	Maximal	Games	Blender	Iterative
ODE	Free	Maximal	Simplified		Iterative
			robot dynam-		
			ics, games		
DART	Free	Generalized	Computer		
			graphics,		
			robot control		
Simbody	Free	Generalized	Biomechamics		
PhysX	Proprietary	Maximal	Games		
Havok	Proprietary	Maximal	Games		

2.2 Settings

To have satisfactory results some settings need to set correctly.

- The timestep
- The number of solver iterations
- $\bullet\,$ The numbe of sub steps

2.3 Model

Chapter 3

Conclusion

Bibliography

- [1] Herman Bruyninckx. Blender for robotics and robotics for blender. Dept. of Mechanical Engineering, KU Leuven, Belgium, 2004.
- [2] Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based robotics: Comparison of bullet, havok, mujoco, ode and physx.