FERIENKURS ANALYSIS 2 FÜR PHYSIKER

JOHANNES R. KAGER UND JULIAN SIEBER

Aufgabenblatt 4

Aufgabe 1 (zum Aufwärmen). Zeigen Sie durch Differenzieren und Einsetzen, dass die Funktion $x=\frac{Ct}{1+t}$ die allgemeine Lösung der Differentialgleichung $t(1+t)\dot{x}-x=0$ darstellt $(C\in\mathbb{R})$. Wie lautet die durch den Punkt P=(1;8) gehende Lösungskurve?

 $\bf Aufgabe~2~(\star).$ Lösen Sie folgende DGLen mithilfe "Trennen der Variablen" oder "Variation der Konstanten":

- $\dot{x}(1+t^2) = tx$
- $\dot{x} = (1-x)^2$, x(0) = 2
- $t\dot{x} + x = t \cdot \sin t$

Aufgabe 3 (**). Bestimmen Sie die Lösungen der DGL

$$\dot{x}(t) + tx(t) = tx(t)^3.$$

Aufgabe 4 (*). Sei $x:I\to\mathbb{R}$. Finden Sie die allgemeine Lösung der DGL 2. Ordnung

$$\ddot{x} - 6\dot{x} + 5x = 0$$

Aufgabe 5 (*). Sei $y(x): I \to \mathbb{R}$. Lösen Sie das Anfangswertproblem

$$\ddot{y} - 7\dot{y} + 6y = \sin x$$

so, dass y(x) periodisch wird. Achtung: an der Stelle des gewohnten Fkt.namens x wird hier y verwendet. x ersetzt das gewohnte t.

Aufgabe 6 (***). Skizzieren Sie das Richtungsfeld der jeweiligen DGL 1. Ordnung mit Hilfe von Isoklinen und versuchen Sie eine Lösungskurve einzuzeichnen. Wie lautet die allgemeine Lösung der DGL? (Hinweis: zeichnen Sie Linien konstanter Steigung \dot{x} ein)

a)
$$\dot{x} = \frac{1}{2} \frac{x}{t}$$
, $x > 0$, b) $\dot{x} = x$

Aufgabe 7 $(\star\star)$. Lösen Sie folgende lineare DGLen n-ter Ordnung. (Hinweis: Satz zur Lösungsnormalform)

- $\bullet \ddot{x} 7\dot{x} + 6x = 0$
- y''' 4y'' 11y' 6y = 0
- $x^{(4)} x = 0$

Aufgabe 8 (*). Lösen Sie folgende Bernoullische DGL:

$$x' + \frac{1}{t}x - x^3 = 0$$

Aufgabe 9 (**). Sei $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

- (i) Berechnen Sie e^{At} .
- (ii) Bestimmen Sie eine Basis des Vektorraumes aller Lösungen $x\in\mathbb{R}^3, t\in\mathbb{R}$ des Gleichungssystems

$$\dot{x} = Ax$$
.

(iii) Lösen Sie das Anfangswertproblem

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ e^{2t} \end{pmatrix}, \quad \begin{pmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Aufgabe 10 (**). Sind folgende Aussagen richtig oder falsch? Begründen Sie!

- (i) Seien $a, b \in \mathbb{R}$. Ist die Funktion $t \to te^t$ eine Lösung von $\ddot{x} + a\dot{x} + bx = 0$, dann ist auch die Funktion $t \to e^t$ eine Lösung dieser Differentialgleichung.
- (ii) Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei stetig differenzierbar. Die Funktionen $x_1: \mathbb{R} \to \mathbb{R}$ und $x_2: \mathbb{R} \to \mathbb{R}$ seien Lösungen der Differentialgleichung $\dot{x} = f(t,x)$. Gilt $x_1(0) < x_2(0)$, dann folgt $x_1(t) < x_2(t)$ für alle $t \in \mathbb{R}$.

Aufgabe 11 (**). Sei (X,d) ein vollständiger metrischer Raum und $f:X\to X$ eine Selbstabbildung, für welche es ein $n\in\mathbb{N}$ gibt, sodass

$$f^n := \underbrace{f \circ \cdots \circ f}_{n \text{ mal}}$$

eine Kontraktion ist. Zeigen Sie, dass f einen eindeutigen Fixpunkt besitzt.

Geben Sie ein Beispiel an, welches zeigt das f selbst keine Kontraktion sein muss. Betrachten Sie nun die Funktion $g:[0,\infty)\to[0,\infty)$,

$$g(x) = \frac{1}{3} \left(x + \sin x + \frac{1}{x+1} \right)$$

und zeigen Sie, dass g einen eindeutigen Fixpunkt besitzt.

Aufgabe 12 $(\star \star \star)$. Zeigen Sie, dass für $(a_1, a_2, a_3) \in \mathbb{R}^3$ das Gleichungssystem

$$x = a_1 + \frac{1}{6}(\sin y + \sin z)$$
$$y = a_2 + \frac{1}{6}(\sin x + \sin z)$$
$$z = a_3 + \frac{1}{6}(\sin x + \sin y)$$

eine eindeutige Lösung besitzt.