CONTENTS 1

Diabetes Prediction model

DS II Final team

Contents

L	oad Data	2
E]	DA	3
	Summary statistics	3
	Density plots (numerical covariates)	7
	Bar plots (categorical covariates)	8
	Partition plots	9
M	Iodels	12
	training data	
	Nonlinear models	13

```
library(RNHANES)
library(tidyverse)
library(summarytools)
library(leaps)
library(readr)
library(caret)
library(ggplot2)
library(patchwork)
library(mgcv)
library(nlme)
library(dplyr)
library(plyr)
library(AppliedPredictiveModeling)
library(dplyr)
library(scales)
library(pROC)
#library (MASS)
#library(klaR)
```

Load Data

levels(raw_data\$diabetes)[1] <- "yes"
levels(raw_data\$diabetes)[2] <- "no"
contrasts(raw_data\$diabetes)</pre>

```
data_files <- nhanes_load_data(file_name = "DIQ_H", year = "2013-2014")
data_files <- data_files %>%
  left_join(nhanes_load_data("HDL_H", "2013-2014"), by = "SEQN") %>%
  left_join(nhanes_load_data("INS_H", "2013-2014"), by = "SEQN") %>%
  left_join(nhanes_load_data("TRIGLY_H", "2013-2014"), by = "SEQN") %>%
  left_join(nhanes_load_data("DEMO_H", "2013-2014"), by = "SEQN") %>%
  left_join(nhanes_load_data("BMX_H", "2013-2014"), by = "SEQN") %>%
  left_join(nhanes_load_data("OGTT_H", "2013-2014"), by = "SEQN") %>%
  left_join(nhanes_load_data("BPX_H", "2013-2014"), by = "SEQN") %>%
  left_join(nhanes_load_data("PAQ_H", "2013-2014"), by = "SEQN") %>%
  left_join(nhanes_load_data("DPQ_H", "2013-2014"), by = "SEQN") %>%
  left_join(nhanes_load_data("SLQ_H", "2013-2014"), by = "SEQN")
raw_data <- data_files %>%
  select(SEQN, RIAGENDR, RIDAGEYR, RIDRETH3, BMXBMI, LBDHDD, LBDLDL, LBXTR, LBXIN, LBXGLT, BPXSY1, BPXD
raw_data <- raw_data[raw_data$DIQ010 != 3 & raw_data$DIQ010 != 7 & raw_data$DIQ010 != 9, ] %>% mutate(
  drop_na(DIQ010)
 colnames(raw_data) <- c("ID", "gender", "age", "race", "bmi", "hdl", "ldl", "triglyceride", "insulin",</pre>
 contrasts(raw_data$diabetes)
2 1 0 2 1
```

no

```
yes 0 no 1
```

```
write.csv(raw_data, "final_data.csv")
```

EDA

Summary statistics

Data Frame Summary

 raw_data

Dimensions: 9578 x 18 **Duplicates:** 319

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
1	gender	1. 1	4706 (49.1%)	IIIIIIII	0
	[factor]	2. 2	4872 (50.9%)	IIIIIIIII	(0.0%)
2	age	Mean (sd) : 32.4 (23.9)	80 distinct values	:	Ò
	[numeric]	$\min < \max < \max$:		::	(0.0%)
		1 < 28 < 80		::.	
		IQR (CV) : 41 (0.7)		:::::::	
				::::::::	
3	race	1. 1	$1616 \ (16.9\%)$	III	0
	[factor]	2. 2	893 (9.3%)	I	(0.0%)
		3. 3	3449 (36.0%)	IIIIIII	
		4. 4	$2148 \ (22.4\%)$	IIII	
		5. 6	1033 (10.8%)	II	
		6. 7	439 (4.6%)		
4	bmi	Mean (sd) : 25.6 (7.9)	436 distinct	:	706
	[numeric]	$\min < \max < \max$:	values	.::	(7.4%)
		12.1 < 24.6 < 82.9		:::	
		IQR (CV) : 10.4 (0.3)		:::.	
				::::.	
5	hdl	Mean (sd) : 53.2 (15.2)	116 distinct	:	2128
	[numeric]	$\min < \max < \max$:	values	:	(22.2%)
		10 < 51 < 173		.:.	
		IQR (CV) : 19 (0.3)		:::	
				:::.	

Summary statistics 4

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
6	ldl [numeric]	Mean (sd): 106 (34.9) min < med < max: 14 < 103 < 375 IQR (CV): 46 (0.3)	194 distinct values	: .: ::. :::	6553 (68.4%)
7	triglyceride [numeric]	Mean (sd): 111.7 (115.9) min < med < max: $13 < 88 < 4233$ IQR (CV): 73 (1)	344 distinct values	:	6515 (68.0%)
8	insulin [numeric]	Mean (sd): 13.4 (18.7) min < med < max: 0.1 < 9.3 < 682.5 IQR (CV): 9.1 (1.4)	1716 distinct values	:	6567 (68.6%)
9	glucose [numeric]	Mean (sd): 114 (45.5) min < med < max: 40 < 104 < 604 IQR (CV): 44 (0.4)	227 distinct values	: :: :: ::	7294 (76.2%)
10	bp_systolic [numeric]	Mean (sd): 117.9 (18) min < med < max: 66 < 116 < 228 IQR (CV): 20 (0.2)	71 distinct values	::	2571 (26.8%)
11	bp_diastolic [numeric]	Mean (sd): 65.7 (15) min < med < max: 0 < 66 < 122 IQR (CV): 16 (0.2)	59 distinct values	:	2571 (26.8%)
12	waist [numeric]	Mean (sd): 86.9 (22.5) min < med < max: 40.2 < 87.4 < 177.9 IQR (CV): 31.6 (0.3)	1030 distinct values	:	1091 (11.4%)
13	lifestyle [numeric]	Mean (sd): 478.5 (642.1) min < med < max: 0 < 480 < 9999 IQR (CV): 300 (1.3)	36 distinct values	:	2625 (27.4%)
14	education [factor]	1. 1 2. 2 3. 3 4. 4 5. 5 6. 7 7. 9	442 (7.9%) 761 (13.6%) 1261 (22.6%) 1715 (30.7%) 1406 (25.1%) 2 (0.0%) 5 (0.1%)	I II IIIII IIIIII IIIII	3986 (41.6%)

Summary statistics 5

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
15	married	1. 1	2866 (51.3%)	IIIIIIIII	3986
	[factor]	2. 2	419 (7.5%)	I	(41.6%)
		3. 3	637 (11.4%)	II	, ,
		4. 4	170 (3.0%)		
		5. 5	1096 (19.6%)	III	
		6. 6	401 (7.2%)	I	
		7. 77	2 (0.0%)		
		8. 99	1 (0.0%)		
16	depression	Mean (sd) : 0.4 (0.8)	$0:3955\ (75.5\%)$	IIIIIIIIIIIII	4343
	[numeric]	$\min < \max < \max$:	$1:876\ (16.7\%)$	III	(45.3%)
		0 < 0 < 9	2:205(3.9%)		
		IQR (CV) : 0 (2.1)	3:194(3.7%)		
			7:2~(~0.0%)		
			9:3~(~0.1%)		
17	sleep	Mean (sd) : 7 (3.2)	12 distinct values	:	3300
	[numeric]	$\min < \max < \max$:		:	(34.5%)
		2 < 7 < 99		:	
		IQR (CV) : 2 (0.5)		:	
				:	
18	diabetes	1. yes	737~(~7.7%)	I	0
	[factor]	2. no	$8841 \ (92.3\%)$	IIIIIIIIIIIIIIII	(0.0%)

```
raw_data <- raw_data[-c(7:10)]
dfSummary(raw_data[,-1], valid.col = FALSE)</pre>
```

Data Frame Summary

 raw_data

Dimensions: 9578 x 14 Duplicates: 319

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
1	gender	1. 1	4706 (49.1%)	IIIIIIII	0
	[factor]	2. 2	4872 (50.9%)	IIIIIIIII	(0.0%)
2	age	Mean (sd) : 32.4 (23.9)	80 distinct values	:	ò
	[numeric]	$\min < \max < \max$::	(0.0%)
		1 < 28 < 80		::.	, ,
		IQR (CV) : 41 (0.7)		::::::::	
				:::::::::	
3	race	1. 1	1616 (16.9%)	III	0
	[factor]	2. 2	893 (9.3%)	I	(0.0%)
		3. 3	3449 (36.0%)	IIIIIII	, ,
		4. 4	2148(22.4%)	IIII	
		5. 6	1033 (10.8%)	II	
		6. 7	439 (4.6%)		
4	bmi	Mean (sd) : 25.6 (7.9)	436 distinct	:	706
	[numeric]	$\min < \max < \max$	values	.::	(7.4%)
		12.1 < 24.6 < 82.9		:::	, ,
		IQR (CV) : 10.4 (0.3)		:::.	
		- , , , , , , ,		::::.	

Summary statistics 6

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
5	hdl	Mean (sd): 53.2 (15.2)	116 distinct	:	2128
	[numeric]	$\min < \max < \max$:	values	:	(22.2%)
		10 < 51 < 173		.:.	
		IQR (CV) : 19 (0.3)		:::	
				:::.	
6	bp_systolic	Mean (sd): 117.9 (18)	71 distinct values	:	2571
	[numeric]	$\min < \max < \max$::	(26.8%)
		66 < 116 < 228		::	
		IQR (CV) : 20 (0.2)		.::.	
-	1 1: 4 1:	M (1) 65.7 (15)	FO 1: 4: 4 1	::::.	0571
7	bp_diastolic	Mean (sd): $65.7 (15)$	59 distinct values	:	2571
	[numeric]	$\min < \max < \max$: .	(26.8%)
		0 < 66 < 122		:::	
		IQR (CV) : 16 (0.2)		:::	
8	waist	Moon (ad) + 86 0 (22 5)	1030 distinct	:::::	1091
0	[numeric]	Mean (sd) : 86.9 (22.5) min < med < max:	values	: .	(11.4%)
	[numeric]	40.2 < 87.4 < 177.9	varues	:::	(11.4/0)
		IQR (CV) : 31.6 (0.3)		::::::	
		1Q1t (OV) . 31.0 (0.3)		::::::::	
9	lifestyle	Mean (sd): 478.5	36 distinct values		2625
9	[numeric]	(642.1)	30 distilict values	•	(27.4%)
	[Humerie]	$\min < \max < \max$		· ·	(21.470)
		0 < 480 < 9999		·	
		IQR (CV) : 300 (1.3)		· ·	
10	education	1. 1	442 (7.9%)	I	3986
10	[factor]	2. 2	761 (13.6%)	II	(41.6%)
	[ractor]	3. 3	1261 (22.6%)	IIII	(11.070)
		4. 4	1715 (30.7%)	IIIIII	
		5. 5	1406 (25.1%)	IIIII	
		6. 7	2 (0.0%)		
		7. 9	5 (0.1%)		
11	married	1. 1	2866 (51.3%)	IIIIIIIII	3986
	[factor]	2. 2	419 (7.5%)	I	(41.6%)
	. ,	3. 3	637 (11.4%)	II	,
		4. 4	170 (3.0%)		
		5. 5	1096~(19.6%)	III	
		6. 6	401 (7.2%)	I	
		7. 77	2 (0.0%)		
		8. 99	1 (0.0%)		
12	depression	Mean (sd) : $0.4 (0.8)$	0:3955~(75.5%)	IIIIIIIIIIIII	4343
	[numeric]	$\min < \max < \max$:	$1:876\ (16.7\%)$	III	(45.3%)
		0 < 0 < 9	2:205(3.9%)		
		IQR (CV) : 0 (2.1)	3:194(3.7%)		
			7:2~(~0.0%)		
			9:3~(~0.1%)		
13	sleep	Mean (sd) : 7 (3.2)	12 distinct values	:	3300
	[numeric]	$\min < \max < \max$:		:	(34.5%)
		2 < 7 < 99		:	
		IQR (CV) : 2 (0.5)		:	
				:	

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
14	diabetes [factor]	1. yes 2. no	737 (7.7%) 8841 (92.3%)	I IIIIIIIIIIIIIII	0 (0.0%)

Density plots (numerical covariates)

Bar plots (categorical covariates)

```
diabetes_gender = ggplot(raw_data,
      aes(x = diabetes,
           fill = factor(gender,
                         levels = c("1", "2"),
                         labels = c("male", "female")))) +
  geom_bar(position = position_dodge(preserve = "single")) +
  scale_fill_brewer(palette = "Set2") +
 labs(fill = "gender")
diabetes_race = ggplot(raw_data,
       aes(x = diabetes,
           fill = factor(race,
                         levels = c("1", "2", "3", "4", "6", "7"),
                         labels = c("Mexican American", "Other Hispanic", "White", "Black", "Asian", "O
  geom_bar(position = position_dodge(preserve = "single")) +
   scale_fill_brewer(palette = "Set2") +
  labs(fill = "race")
diabetes_education = ggplot(raw_data,
       aes(x = diabetes,
           fill = factor(education,
                         levels = c("1", "2", "3", "4", "5"),
                         labels = c("< 9th grade", "9 - 11 grade", "H.S./GED", "Some college", "College
  geom_bar(position = position_dodge(preserve = "single")) +
  scale_fill_brewer(palette = "Set2") +
  labs(fill = "education")
diabetes_married = ggplot(raw_data,
      aes(x = diabetes,
           fill = factor(married,
                         levels = c("1", "2", "3", "4", "5", "6"),
                         labels = c("Married", "Widowed", "Divorced", "Separated", "Never married", "Li
  geom_bar(position = position_dodge(preserve = "single")) +
   scale_fill_brewer(palette = "Set2") +
   labs(fill = "married")
(diabetes_gender + diabetes_race) / (diabetes_education + diabetes_married)
```

Partition plots 9

Partition plots

Partition plots 10

Partition Plot

Partition plots 11

Partition Plot

Partition Plot

Models

training data

```
# Missing data omitted
diabetes_data <- na.omit(raw_data)
summary(diabetes_data)</pre>
```

ID gender race education married age

9: 1 (Other): 1

bmi hdl bp_systolic bp_diastolic

Min.: 14.10 Min.: 10.00 Min.: 66.0 Min.: 0.00

1st Qu.:24.10 1st Qu.: 42.00 1st Qu.:110.0 1st Qu.: 62.00 Median :27.70 Median : 50.00 Median :120.0 Median : 70.00

Mean :28.83 Mean : 52.84 Mean :122.7 Mean : 69.75

Nonlinear models 13

```
3rd Qu.:32.20 3rd Qu.: 62.00 3rd Qu.:132.0 3rd Qu.: 78.00
Max. :74.10 Max. :173.00 Max. :228.0 Max. :122.00
 waist
                  lifestyle
                                     depression
                                                          sleep
                                                                        diabetes
Min.: 55.50 Min.: 0.0 Min.: 0.0000 Min.: 2.000 yes: 529
1st Qu.: 87.20 1st Qu.: 240.0 1st Qu.:0.0000 1st Qu.: 6.000 no :3717
Median: 97.30 Median: 420.0 Median: 0.0000 Median: 7.000
Mean: 98.83 Mean: 449.6 Mean: 0.3479 Mean: 6.939
3rd Qu.:108.20 3rd Qu.: 540.0 3rd Qu.:0.0000 3rd Qu.: 8.000
Max. :177.90 Max. :9999.0 Max. :9.0000 Max. :99.000
set.seed(1)
trainRows <- createDataPartition(diabetes_data$diabetes, p = 0.8, list = FALSE)
# training data
x <- diabetes_data[trainRows ,-c(1, 15)]</pre>
y <- diabetes data$diabetes[trainRows]</pre>
# test data
x2 <- diabetes_data[-trainRows ,-c(1, 15)]</pre>
y2 <- diabetes_data$diabetes[-trainRows]</pre>
```

Nonlinear models

```
ctrl <- trainControl(method = "cv",</pre>
                      summaryFunction = twoClassSummary,
                      classProbs = TRUE)
## Non-linear Logistic regression: GAM, MARS
# GAM
#set.seed(1)
\#model.qam \leftarrow train(x = x,
                     y = y,
#
                     method = "qam",
#
                     metric = "ROC",
                     trControl = ctrl)
#model.gam$finalModel
# MARS
set.seed(1)
model.mars \leftarrow train(x = x,
                     y = y,
                     method = "earth",
                     tuneGrid = expand.grid(degree = 1:3,
                                              nprune = 2:15),
                     metric = "ROC",
                     trControl = ctrl)
plot(model.mars)
```

Nonlinear models 14

coef(model.mars\$finalModel)

```
(Intercept) h(waist-86.9) h(74-hdl) h(86-bp_diastolic)
4.92044992 -0.05025456 -0.02809120 -0.01171198
race3 h(bmi-41.4) h(age-28)
0.72597496 0.11873361 -0.05851595
```

```
## Non-linear Discriminant analysis: QDA, Naive Bayes (NB)
# QDA = for continuous features
#set.seed(1)
\#model.qda \leftarrow train(x = x,
                      y = y,
#
                      method = "qda",
#
                      metric = "ROC",
#
                      trControl = ctrl)
# NB
set.seed(1)
nbGrid <- expand.grid(usekernel = c(FALSE,TRUE),</pre>
                        fL = 1,
                        adjust = seq(.2, 2.5, by = .2))
model.nb \leftarrow train(x = x,
                   y = y,
```

Nonlinear models 15

```
method = "nb",
tuneGrid = nbGrid,
metric = "ROC",
trControl = ctrl)
```



```
res <- resamples(list(MARS = model.mars, NB = model.nb))
summary(res)</pre>
```

Call: summary.resamples(object = res)

Models: MARS, NB Number of resamples: 10

ROC Min. 1st Qu. Median Mean 3rd Qu. Max. NA's MARS $0.7731281\ 0.7945418\ 0.8005599\ 0.8106704\ 0.8210825\ 0.8801973\ 0$ NB $0.7457468\ 0.7865422\ 0.8022083\ 0.8050834\ 0.8180215\ 0.8622661\ 0$

Sens Min. 1st Qu. Median Mean 3rd Qu. Max. NA's MARS 0.02380952 0.0952381 0.1162791 0.1178848 0.1578073 0.1666667 0 NB 0.18604651 0.2558140 0.2738095 0.2689922 0.3035714 0.3333333 0

Spec Min. 1st Qu. Median Mean 3rd Qu. Max. NA's MARS $0.966443\ 0.9798658\ 0.9831932\ 0.9842056\ 0.9915825\ 0.996633\ 0$ NB $0.909396\ 0.9403882\ 0.9495910\ 0.9479018\ 0.9621212\ 0.962963\ 0$