1.5- COMBINAÇÃO LINEAR

Def.: Sejam os vetores $v_1, v_2, ..., v_n$ do espaço vetorial V e os escalares $\lambda_1, \lambda_2, ..., \lambda_n$. Qualquer vetor $v \in V$ da forma:

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = \sum_{i=1}^n \lambda_i v_i$$

é uma combinação linear dos vetores $v_1, v_2, ..., v_n$.

Exemplos:

1- As cores nas telas dos monitores de computadores são geralmente baseadas no que se chama o **modelo de cores RGB**¹. Nesse sistema, a criação de cores baseia-se em juntar porcentagens de três cores primárias: vermelho (R-red), verde (G-green) e azul (B-blue).

Isso pode ser feito identificando cada uma dessas cores primárias com vetores de IR^3 e formando combinações lineares, por exemplo:

$$r = (1,0,0)$$
 vermelho puro, $g = (0,1,0)$ verde puro e $b = (0,0,1)$ azul puro.

Para formar uma determinada cor c, as porcentagens das cores primárias são convertidas para a forma decimal c_1 , c_2 e c_3 que serão os coeficientes (escalares) da combinação linear que resultará na cor c. Esses coeficientes variam entre 0 e 1 (inclusive):

$$c = c_1 r + c_2 g + c_3 b = c_1 (1,0,0) + c_2 (0,1,0) + c_3 (0,0,1) = (c_1, c_2, c_3), \ 0 \le c_i \le 1.$$

O conjunto de todas as combinações lineares do tipo acima ou o conjunto de todas as cores é denominado espaço RGB que pode ser representado por um cubo:

Os vetores ao longo da diagonal entre preto e branco representam tons de cinza.

¹ Inspirado em ANTON, H. & BUSBY, R. C. Álgebra Linear Contemporânea. Editora Bookman.

2- No espaço vetorial P_2 dos polinômios de grau \leq 2, verifique que $v=7x^2+11x-26$ é uma combinação linear dos polinômios:

$$v_1 = 5x^2 - 3x + 2$$
 e $v_2 = -2x^2 + 5x - 8$. Da forma: $3v_1 + 4v_2$.

Para os exemplos 3 a 5 considere os seguintes vetores no IR^3 : $v_1 = (1, -3, 2)$ e $v_2 = (2, 4, -1)$.

3- Escrever o vetor v = (-4, -18, 7) como combinação linear dos vetores v_1 e v_2 .

Prof^a Mara Freire

4- Mostrar que o vetor v = (4, 3, -6) não é combinação linear dos vetores v_1 e v_2 .

5- Determinar o valor de k para que o vetor u = (-1, k, -7) seja combinação linear dos vetores v_1 e v_2 .

1.6- SUBESPAÇO GERADO

Def.: Sejam os vetores $v_1, v_2, ..., v_n$ em V, seja o subespaço vetorial W dado pelo conjunto de todos os vetores de V que são combinação linear de $v_1, v_2, ..., v_n$, onde W é chamado de subespaço gerado por $v_1, v_2, ..., v_n$ e que pode ser denotado por $W = [v_1, v_2, ..., v_n]$ ou $span[v_1, v_2, ..., v_n]$.

Os vetores $v_1, v_2, ..., v_n$ são chamados geradores do subespaço W.

Ex.:

1- Determine o subespaço gerado pelos vetores dados nos itens abaixo:

a)
$$i = (1, 0)$$
 e $j = (0, 1)$.

b)
$$i = (1, 0, 0)$$
 e $j = (0, 1, 0)$.

c)
$$e_1 = (1, 0, 0), e_2 = (0, 1, 0) e e_3 = (0, 0, 1).$$

1.7- INDEPENDÊNCIA E DEPENDÊNCIA LINEAR

Sejam os vetores $v_1, v_2, ..., v_n$ em V.

1.7.1- Independência Linear

Def.: O conjunto $\{v_1, v_2, ..., v_n\}$ é linearmente independente (LI), ou os vetores $v_1, v_2, ..., v_n$ são LI, se a equação

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$$

ou seja, caso a equação admita *apenas a solução trivial* ($\lambda_1 = 0, \lambda_2 = 0, \dots, \lambda_n = 0$).

1.7.2- Dependência Linear

Def.: O conjunto $\{v_1, v_2, ..., v_n\}$ é linearmente dependente (LD), ou os vetores $v_1, v_2, ..., v_n$ são LD, se existirem soluções $\lambda_i \neq 0$.

Exemplos:

1- Seja o espaço vetorial $V = IR^3$ e a equação $3v_1 + 4v_2 - v_3 = 0$, verifique se os vetores $v_1 = (2, -1, 3), v_2 = (-1, 0, -2)$ e $v_3 = (2, -3, 1)$ são linearmente dependente:

2- Seja o espaço vetorial $V = IR^4$, verifique se os vetores $v_1 = (2, 2, 3, 4)$, $v_2 = (0, 5, -3, 1)$ e $v_3 = (0, 0, 4, -2)$ são LI ou LD.

3- Verifique se no espaço vetorial M (3, 1) das matrizes-colunas, de ordem 3×1 , os vetores

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 são LI ou LD.

4- Verifique que no IR^2 , os vetores $e_1 = (1, 0)$ e $e_2 = (0, 1)$ são LI, mas os vetores e_1 , e_2 , e v = (a, b) são LD.

5- Verifique se no espaço vetorial M (2, 2), o conjunto $W = \begin{cases} \begin{bmatrix} -1 & 2 \\ -3 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 3 & -4 \\ 3 & 1 \end{bmatrix} \end{cases}$ é LD.

Curso de Álgebra Linear Prof" Mara Freire

Teorema: Um conjunto $W = \{v_1, v_2, ..., v_n\}$ é LD se, e somente se, pelo menos um desses vetores é combinação linear dos outros.

Dem.: Seja W linearmente dependente. Então, por definição, um dos coeficientes da igualdade

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_i v_i + \ldots + \lambda_n v_n = 0$$

deve ser diferente de zero. Supondo que $\lambda_i \neq 0$, vem:

$$\lambda_i v_i = -\lambda_1 v_1 - \lambda_2 v_2 - \ldots - \lambda_{i-1} v_{i-1} - \lambda_{i+1} v_{i+1} - \ldots - \lambda_n v_n$$

ou

$$v_i = -\frac{\lambda_1}{\lambda_i} v_1 - \ldots - \frac{\lambda_{i-1}}{\lambda_i} v_{i-1} - \frac{\lambda_{i+1}}{\lambda_i} v_{i+1} - \ldots - \frac{\lambda_n}{\lambda_i} v_n$$

 \log_{10} , v_i é uma combinação linear dos outros vetores.

Por outro lado, seja v_i uma combinação linear dos outros vetores, então

$$v_i = + \beta_1 v_1 + \ldots + \beta_{i-1} v_{i-1} + \beta_{i+1} v_{i+1} + \ldots + \beta_n v_n$$

assim,

$$\beta_1 v_1 + \ldots + \beta_{i-1} v_{i-1} - 1 v_i + \beta_{i+1} v_{i+1} + \ldots + \beta_n v_n = 0$$

se verifica para $\beta_i \neq 0$. No caso $\beta_i = -1$. Logo, $W = [v_1, v_2, ..., v_n]$ é LD.

Exemplos:

1- Os vetores
$$v_1 = (1, -2, 3)$$
 e $v_2 = (2, -4, 6)$ são LD, pois $v_1 = \frac{1}{2}v_2$ ou $v_2 = 2v_1$.

2- Os vetores $v_1 = (1, -2, 3)$ e $v_2 = (2, 1, 5)$ são LI, pois $v_1 \neq kv_2$, $\forall k \in IR$.

- 1.7.3- Propriedades da Dependência e da Independência Linear:
- 1- Se $W = \{v\} \subset V$ e $v \neq 0$, então W é LI.

De fato, como $v \neq 0$, a igualdade $\lambda v = 0$, só se verifica se $\lambda = 0$.

2- Se um conjunto $W \subset V$ contém o vetor nulo, então $W \notin LD$.

De fato: Seja o conjunto $W = \{v_1, ..., 0, ..., v_n\}$. Então, a equação $0v_1 + ... + \lambda 0 + ... + 0v_n = 0$, se verifica para todo $\lambda \neq 0$. Logo, $W \notin LD$.

3- Se uma parte de um conjunto $W \subset V$ é LD, então W também é LD.

De fato: Sejam $W = \{v_1, ..., v_r, ..., v_n\}$ e a parte $W_1 = \{v_1, ..., v_r\} \subset W$, W_1 é LD. Como W_1 é LD, existem $\lambda_i \neq 0$ que verificam a igualdade: $\lambda_1 v_1 + ... + \lambda_r v_r = 0$ e esses mesmo $\lambda_i \neq 0$ verificam também a igualdade $\lambda_1 v_1 + ... + \lambda_r v_r + 0 v_{r+1} + ... + 0 v_n = 0$. Logo $W = \{v_1, ..., v_r, ..., v_n\}$ é LD.

4- Se um conjunto $W \subset V$ é LI, qualquer parte W_1 de W também é LI.

De fato, se W_1 fosse LD, pela propriedade anterior o conjunto W também seria LD, o que contradiz a hipótese.

5- Se $W = \{v_1, v_2, ..., v_n\} \subset V$ é LI e B = $\{v_1, v_2, ..., v_n, u\} \subset V$ é LD, então u é combinação linear de $v_1, v_2, ..., v_n$.

De fato: Como B é LD, existem escalares $\lambda_1, ..., \lambda_n$, β , nem todos nulos, tais que: $\lambda_1 v_1 + ... + \lambda_n v_n + \beta u = 0$. Bom, se $\beta = 0$, então alguns dos λ_i não é zero na igualdade: $\lambda_1 v_1 + ... + \lambda_n v_n = 0$. Porém esse fato contradiz a hipótese de que W é LI. Conseqüentemente, tem-se $\beta \neq 0$, e portanto: $\beta u = -\lambda_1 v_1 - ... - \lambda_n v_n$ o que implica: $u = -\frac{\lambda_1}{\beta} v_1 - ... - \frac{\lambda_n}{\beta} v_n$ isto é, u é combinação linear de $v_1, v_2, ..., v_n$.

Exercícios

1- Para resolver os itens baixo, considere os seguintes vetores $v_1 = (1, -3, 2)$ e $v_2 = (2, 4, -1)$, ambos no IR^3 .

- a) escrever o vetor v = (-4, -18, 7) como combinação linear dos vetores v_1 e v_2 .
- b) mostrar que o vetor v = (4, 3, -6) não é combinação linear dos vetores v_1 e v_2 .
- c) Determinar o valor de k para que o vetor u = (-1, k, -7) seja combinação linear de v_1 e v_2 .
- d) Determinar a condição para x, y, z de modo que (x, y, z) seja combinação linear dos vetores v_1 e v_2 .
- 2- Mostrar que o vetor $v = (3, 4) \in IR^2$ pode ser escrito de infinitas maneiras como combinação linear dos vetores $v_1 = (1, 0)$, $v_2 = (0, 1)$ e $v_3 = (2, -1)$.
- 3- Seja $V = IR^3$. Determinar o subespaço gerado pelo vetor $v_1 = (1, 2, 3)$.
- 4- Seja $V = IR^3$. Determinar o subespaço gerado pelo conjunto $W = \{v_1, v_2\}$, sendo $v_1 = (1, -2, -1)$ e $v_2 = (2, 1, 1)$.
- 5- Seja $V = IR^3$. Determinar o subespaço gerado pelo conjunto $W = \{v_1, v_2, v_3\}$, sendo $v_1 = (1, 1, 1)$, $v_2 = (1, 1, 0)$ e $v_3 = (1, 0, 0)$.
- 6- Mostrar que o conjunto $W = \{(3, 1), (5, 2)\}$ gera o IR^2 .
- 7- Sejam V = M(2, 2) e o subconjunto $W = \left\{ \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \right\}$. Determine o subespaço span(W).
- 8- Verificar se são LI ou LD os seguintes conjuntos:

a)
$$\left\{ \begin{bmatrix} 1 & 2 \\ -4 & -3 \end{bmatrix}, \begin{bmatrix} 3 & 6 \\ -12 & -9 \end{bmatrix} \right\} \subset M(2, 2)$$

- b) $\{(2, -1), (1, 3)\} \subset IR^2$.
- c) $\{(-1, -2, 0, 3), (2, -1, 0, 0), (1, 0, 0, 0)\} \subset IR^4$.
- d) $\{1 + 2x x^2, 2 x + 3x^2, 3 4x + 7x^2\} \subset P_2$.
- 9- Determinar o valor de k para que o conjunto $\{(1, 0, -1), (1, 1, 0), (k, 1, -1)\}$ seja LI.

RESPOSTAS

1- a) $v = 2v_1 - 3v_2$; b) Sistema incompatível, logo v não pode ser escrito como combinação linear de v_1 e v_2 ; c) k = 13; d) (y + 2z, y, z) com $y, z \in IR$. 2- a = 3 -2c, b = 4 + c. 3- $[v_1] = \{(x, 2x, 3x)/x \in IR\}$. 4- $[v_1, v_2] = \{(x, y, z) \in IR^3/x + 3y - 5z = 0\}$. 5- $[v_1, v_2, v_3] = IR^3$. 6- $span(W) = IR^2$. 7- $span(W) = \begin{cases} -2y + t & y \\ -y & t \end{cases} / y, t \in IR \end{cases}$. 8- a) LD; b) LI; c) LI; d) LD. 9- $k \neq 2$.