Journées de méthodologie statistique (JMS) - 2018

Du bon usage des modèles Reg-ARIMA en désaisonnalisation

Dominique Ladiray et Alain Quartier-la-Tente Département des Méthodes Statistiques Insee, Seasonal Adjustment Centre of Excellence (SACE)

Introduction à la procédure de désaisonnalisation

X-13ARIMA-SEATS et TRAMO-SEATS

Procédure d'ajustement saisonnier

Écriture mathématique du Reg-ARIMA

Écriture mathématique du modèle Reg-ARIMA en désaisonnalisation :

$$\begin{array}{ll} \text{Additif:} & Y_t \\ \text{Multiplicatif:} & \log(Y_t) \end{array} \} = \underbrace{\beta_0 L Y_t + \beta_1 W D_t}_{\text{Régresseurs JO}} + \underbrace{\sum_i \gamma_i O_{i,t}}_{\text{Ruptures}} + \underbrace{\varepsilon_t}_{\sim ARIMA}$$

Objectif de l'étude : illustrer des problèmes d'instabilité des estimations avec des exemples sur :

- la correction de l'effet année bissextile (leap year)
- l'estimation de ruptures (outliers)
- l'identification du modèle ARIMA

Sommaire

- 1. Correction de l'effet année bissextile
- 1.1 Quand et comment corriger l'effet année bissextile?
- 1.2 Méthodologie de l'étude
- 1.3 Exemples
- 1.4 Résultats des simulations
- 2. Correction des ruptures
- 3. Identification du modèle ARIMA
- 4. Conclusion et recommandations

Quand faut-il le corriger?

Année bissextile ($leap\ year$) : un jour en plus en février \simeq 4 ans

 \rightarrow prise en compte de l'effet « longueur du mois » : c'est un effet de calendrier

Quand le corriger

D'après les guidelines sur l'ajustement saisonnier, le faire lorsque :

- il y a un sens économique à le faire
- l'effet est stable et statistiquement significatif

Étude des IPI européens (1330 séries) : l'effet *leap year* existe (mais pas toujours mesurable du fait de la collecte)

Deux méthodes pour le corriger

1. Avec le modèle Reg-ARIMA

$$LY_t = egin{cases} 0,75 & \text{si } t \text{ est un mois de février bissextil} \\ -0,25 & \text{si } t \text{ est un mois de février non bissextil} \\ 0 & \text{sinon} \end{cases}$$

2. Avec une correction a priori en multipliant la série initiale par :

$$\begin{cases} \frac{28,25}{29} \simeq 0,974 & \text{mois de février bissextil} \\ \frac{28,25}{28} \simeq 1,009 & \text{mois de février non bissextil} \\ 1 & \text{sinon} \end{cases}$$

[Bell, 1992] : les deux méthodes équivalentes si schéma multiplicatif et valeur estimée proche de 0,035 ($\simeq \frac{29}{28} - 1$, valeur attendue)

 \rightarrow Étude des estimations de la 1^{re} méthode

Méthodologie utilisée

Méthodologie : modèle identifié sur l'ensemble de la période (ARIMA, outliers, etc.) et estimation mois par mois sur le passé en figeant la date de début d'estimation

On considère qu'il y a convergence lorsque le coefficient estimé reste :

- positif
- non significativement différent de la dernière valeur
- significative : stabilité du choix de corriger
- ⇒ IPI européen : 410 séries convergent

Exemples (1/2) : IPI FR-0610 (extraction de pétrole brut)

Exemples (2/2): IPI FR-1391 (Fabrication d'étoffes à mailles)

Une convergence plutôt lente...

... Vers une valeur pas toujours cohérente

Comparaison des deux méthodes de correction

FIGURE 1 – Pourcentage des séries pour lesquelles l'AICC de la méthode 2 (pré-ajustement du LY) est inférieur à l'AICC méthode 1 (régresseur LY)

Sommaire

- 1. Correction de l'effet année bissextile
- 2. Correction des ruptures
- 2.1 Les différentes ruptures étudiées
- 2.2 Méthodologie de l'étude
- 2.3 Exemple
- 2.4 Résultats des simulations
- 3. Identification du modèle ARIMA
- 4. Conclusion et recommandations

Les principaux types d'outliers

Point atypique

Additive outlier (AO)

Changement de niveau

Level Shift (LS)

Rupture dans la composante saisonnière

Seasonal Outlier (SO)

Changement transitoire de niveau

Transitory Change (TC)

Méthodologie utilisée

Sur les IPI européens :

- 1. identification et estimation du modèle sur 13 ans
- simulation d'une rupture 5 ans après la date de début de niveau 10 pour un modèle additif
- 3. estimation du coefficient de la rupture en figeant les estimations de tous les autres paramètres et la date de début d'estimation

On considère qu'il y a convergence lorsque :

$$\left| rac{ ext{valeur estim\'ee}}{ ext{derni\`ere valeur estim\'ee}} - 1
ight| < 5 \%$$

Exemple d'un AO pour la série IPI IT-1413 (Fabrication de vêtements de dessus)

Une convergence plutôt lente...

... Mais pas toujours vers la bonne valeur

	Minimum	25 %	50 %	75 %	Maximum
Modèles additifs					
Additive outlier (AO)	-73,4	8,0	11,0	14,4	45,9
Level Shift (LS)	-33,9	6,3	9,2	12,8	95,0
Seasonal outlier (SO)	-83,5	5,9	8,1	10,4	34,3
Transitory Change (TC)	-56,9	6,9	10,2	14,2	133,5

Sommaire

- 1. Correction de l'effet année bissextile
- 2. Correction des ruptures
- 3. Identification du modèle ARIMA
- 4. Conclusion et recommandations

Identification de deux modèles équivalents

On reprend le même modèle de base sous deux formes différentes mathématiquement équivalentes :

- Le régresseur leap year intégré dans le système des régresseurs jours ouvrables
- 2. Le régresseur leap year introduit comme régresseur externe
- \rightarrow étude du modèle automatique

Modèles automatiques différents

Le régresseur LY est dans les effets de calendrier	Le régresseur LY est dans les régresseurs externes			
Summary	Summary			
Estimation span: [1-1990 - 11-2016] 323 observations Trading days effects (7 variables) 3 detected outliers Arima model [(2,0,0)(0,1,1)]	Estimation span: [1-1990 - 11-2016] 323 observations No trading days effects 8 detected outliers Arima model [(0,1,1)(0,1,1)]			
Coefficients T-Stat P[T > t] Phi(1) -0,5256 -9,46 0,0000 Phi(2) -0,2878 -5,17 0,0000 BTheta(1) -0,7913 -20,56 0,0000	Coefficients T-Stat P[]T] > t] Theta(1) -0,5051 -10,08 0,0000 BTheta(1) -0,7533 -18,80 0,0000			
Correlation of the estimates	Correlation of the estimates Theta(1) BTheta(1)			
Phi(1) Phi(2) BTheta(1) Phi(1) 1,0000 -0,7388 -0,0184 Phi(2) -0,7388 1,0000 0,0489 BTheta(1) -0,0184 0,0489 1,0000	Theta(1) 1,0000 0,0280 BTheta(1) 0,0280 1,0000			
Coefficients T-Stat P[T > t] Leap year 4,3861 2,65 0,0085	Coefficients T-Stat P[T > t] Leap year 4,5569 2,92 0,0038			

Sommaire

- 1. Correction de l'effet année bissextile
- 2. Correction des ruptures
- 3. Identification du modèle ARIMA
- 4. Conclusion et recommandations

Conclusion et recommandations (1/2)

Simulations critiquables et améliorables mais mettent en évidence la potentielle instabilité des modèles Reg-ARIMA souvent utilisés comme boîtes noires

Instabilités ont un effet limité sur la CVS-CJO. . . mais ont un effet sur l'histoire à court terme et sur les révisions!

Algorithmes automatiques des méthodes X-13ARIMA-SEATS et TRAMO-SEATS très importants et très utiles

Conclusion et recommandations (2/2)

Spécifier le modèle au préalable au niveau de la série :

- baser les procédures de choix en s'appuyant sur un raisonnement d'abord économique (attention aux séries trop longues)
- ene pas utiliser les méthodes comme des boîtes noires. . . Sinon, vous serez comme ce statisticien qui. . .

Merci de votre attention

« Il se sert des statistiques comme un ivrogne d'un réverbère : pour se soutenir et non pour s'éclairer. »

Citation largement attribuée à Andrew Lang (1844-1912)