Feuille d'exercices 21 : Intégration

1 Propriétés de l'intégrale

Exercice 1. Calculer: $\int_{-1}^{2} x|x|dx$ et $\int_{-1}^{1} x|x|dx$.

Exercice 2. Calculer: $\lim_{x\to 0} \int_x^{3x} \frac{\cos t}{t} dt$

Exercice 3. Calculer: $\lim_{x\to +\infty} \int_{x}^{x^3} \frac{dt}{(\ln t)^2}$ $\lim_{x\to 0} \int_{x}^{2x} \frac{e^t}{t} dt$

Exercice 4. Soit $f \in \mathcal{C}^0([0, +\infty[)$ telle que $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$. On définit $F :]0, +\infty[\to \mathbb{R}, x \mapsto \frac{1}{x} \int_0^x f(t) dt$. Montrer que $\lim_{x \to +\infty} F(x) = \ell$.

Exercice 5. Soit $f \in \mathcal{C}^0([a,b])$, montrer que : $\exists c \in [a,b], f(c) = \frac{1}{b-a} \int_a^b f(t)dt$

Exercice 6. 1. Soient a < b, soit f continue sur [a, b], soit g continue sur [a, b] et positive.

Montrer qu'il existe $c \in [a, b]$ tel que $\int_a^b f(t)g(t) dt = f(c) \int_a^b g(t) dt$.

- 2. Soit f continue au voisinage de 0.
 - (a) Calculer $\lim_{x\to 0} \frac{1}{x^2} \int_0^x t f(t) dt$.
 - (b) Calculer $\lim_{x\to 0^+} \int_x^{2x} \frac{f(t)}{t} dt$.

Exercice 7. Soient f et g deux fonctions continues sur [0,1] telles que :

$$\forall x \in [0,1], f(x) = \int_0^x g(t)dt \text{ et } g(x) = \int_0^x f(t)dt.$$

Montrer que f et g sont égales à la fonction constante nulle.

Exercice 8. Soit f continue sur [0,1] telle que $\int_0^1 f(t)dt = \frac{1}{2}$. Montrer que f admet un point fixe dans [0,1].

Exercice 9. Soit f une fonction continue sur [0,1] telle que : $\int_0^1 f(t) dt = 0$ et $\int_0^1 t f(t) dt = 0$. Montrer que f s'annule au moins deux fois sur [0,1].

Exercice 10. Soit f continue sur [a,b]. On suppose qu'il existe $n \in \mathbb{N}$ tel que : $\forall k \in [0,n]$, $\int_a^b x^k f(x) dx = 0$. Montrer que f admet au moins n+1 zéros sur [a,b].

Exercice 11. Soit $f:[a,b] \to \mathbb{R}$ continue telle que $\left| \int_a^b f(t)dt \right| = \int_a^b |f(t)|dt$. Montrer que f est de signe constant sur [a,b].

Exercice 12. Soit $f \in C^0([0,1])$ telle que $\int_0^1 f^2 = \int_0^1 f^3 = \int_0^1 f^4$.

Calculer $\int_0^1 (f^2 - f)^2$.

En déduire toutes les fonctions $f \in \mathcal{C}^0([0,1])$ vérifiant $\int_0^1 f^2 = \int_0^1 f^3 = \int_0^1 f^4$.

Sommes de Riemann 2

Exercice 13. Calculer les limites suivantes :

1.
$$\lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{n}{n^2 + k^2}$$

2.
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{k}{n^2 + k^2}$$

3.
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=n}^{2n-1} \sin\left(\frac{k\pi}{n}\right)$$

Exercice 14. Calculer les limites suivantes :

$$1. \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} 2^{\frac{k}{n}}$$

3.
$$\lim_{n \to +\infty} \sum_{k=n+1}^{2n} \frac{1}{k}$$

4.
$$\lim_{n \to +\infty} \frac{1}{n^2} \prod_{k=0}^{n-1} (n^2 + k^2)^{\frac{1}{n}}$$

2.
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 2kn}}$$

5.
$$\lim_{n \to +\infty} \left(\frac{(2n)!}{n!n^n} \right)^{\frac{1}{n}}$$

Exercice 15. Calculer la limite suivante : $\lim_{n \to +\infty} \frac{1}{n^2} \sum_{n=1}^{n} \sqrt{k(n-k)}$.

Indication : pour le calcul de l'intégrale, on pourra effectuer le changement de variable $x = \cos^2 t$.

1. Montrer que pour tout $n \in \mathbb{N}^*$: $X^{2n} - 1 = (X^2 - 1) \prod_{k=1}^{n-1} (X^2 - 2X \cos \frac{k\pi}{n} + 1)$ Exercice 16.

2. Calculer, pour
$$x \in \mathbb{R} \setminus \{-1, 1\} : I(x) = \int_0^{\pi} \ln(x^2 - 2x \cos t + 1) dt$$
.

Calculs de primitives et d'intégrales

Exercice 17. Calculer les intégrales suivantes :

1.
$$\int_{0}^{\frac{\pi}{2}} \sin^{2}(x) \cos(x) dx$$
2.
$$\int_{-1}^{1} (t^{2} + t + 1)e^{-t} dt$$
3.
$$\int_{1}^{2} (\ln t)^{2} dt$$
4.
$$\int_{1}^{e} t^{n} \ln(t) dx \text{ où } n \in \int_{0}^{2} \frac{\arcsin\left(\frac{t}{2}\right)}{\sqrt{4 - t^{2}}} dt$$

$$3. \int_{1}^{2} (\ln t)^2 dt$$

$$\int_{-\infty}^{2} \arcsin\left(\frac{t}{2}\right)$$

 $6. \int_{-\infty}^{1} \sqrt{1-t^2} dt$

Exercice 18. Déterminer une primitive des fonctions suivantes :

1.
$$f_1: t \mapsto \frac{t}{(t^2-4)^2}$$

4.
$$f_4: t \mapsto t \arctan t$$

7.
$$f_7: x \mapsto \frac{\ln(x)}{x + x(\ln x)^2}$$

$$2. \ f_2: x \mapsto \sin x e^{2x}$$

5.
$$f_5: x \mapsto \sin^2(x) \cos^2(x)$$

7.
$$f_7: x \mapsto \frac{\ln(x)}{x + x(\ln x)^2}$$

8. $f_8: x \mapsto \frac{1}{\sqrt{x} + \sqrt{x^3}}$
9. $f: x \mapsto \frac{x+1}{x^2 - x + 1}$

3.
$$f_3: x \mapsto (x^2 + 1)\sin x$$

6.
$$f_6: t \mapsto t \sin^3 t$$

9.
$$f: x \mapsto \frac{x+1}{x^2 - x + 1}$$

Suites et intégrales

Exercice 19. Soient $I_n = \int_0^1 \frac{x^n}{1+x} dx$. Montrer que (I_n) tend vers 0

Exercice 20. Soient a < b. Montrer le lemme de Lebesgue :

$$\lim_{n \to +\infty} \int_{a}^{b} f(t) \sin(nt) dt = 0,$$

- 1. pour une fonction f de classe C^1 sur [a, b],
- 2. pour une fonction f en escalier sur [a, b],
- 3. pour une fonction f continue sur [a, b].

Exercice 21. Pour $n \in \mathbb{N}$, on pose $u_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$.

- 1. Calculer u_0 et u_1 . Montrer que : $\forall n \in \mathbb{N}^*$, $u_n = u_{n-1} \frac{1}{n!}$.
- 2. Montrer que la suite (u_n) est monotone et convergente et calculer sa limite.
- 3. En déduire que :

$$e = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!}.$$

Exercice 22. Soit $f:[0,1]\to\mathbb{R}$ continue et $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=\int_0^1t^nf(t)dt$.

- 1. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers 0.
- 2. On suppose ici que f est de classe C^1 sur [0,1] et que $f'(1) \neq 0$. Déterminer la limite de la suite $(nu_n)_{n\in\mathbb{N}}$ et en déduire un équivalent de u_n .

Exercice 23. Soient 0 < a < b, déterminer :

$$\lim_{n \to +\infty} \int_{a}^{b} \cos(nt^{2}) dt.$$

Exercise 24. Soit f une fonction continue et positive sur [a,b]. Pour tout $n \in \mathbb{N}^*$, on pose:

$$I_n = \left(\int_a^b f(x)^n dx\right)^{\frac{1}{n}}.$$

Montrer que la suite (I_n) converge vers $M = \sup f(x)$.

Indication: Justifier l'existence de $c \in [a, b]$ tel que f(c) = M.

Minorer I_n en intégrant sur un voisinage de c.

Majorer I_n en majorant f par M.

5 Fonctions définies par une intégrale

Exercice 25. On considère pour tout x > 0, la fonction définie par : $f(x) = \int_{-\infty}^{2x} \frac{\cos(t)}{t} dt$.

- 1. À l'aide d'une intégration par parties, montrer que : $\forall x > 1, |f(x)| \leq \frac{2}{x}$.
- 2. En déduire la limite de f lorsque $x \to +\infty$.
- 3. Déterminer $\lim_{x\to 0^+} f(x)$. 4. Montrer que f est dérivable sur \mathbb{R}_+^* et calculer f'(x).

Exercice 26. Soit f une fonction continue sur [a, b]. Montrer que :

$$\left(\forall \alpha, \beta \in [a, b], \int_{\alpha}^{\beta} f(x) dx = 0\right) \Rightarrow (\forall x \in [a, b], f(x) = 0).$$

Exercice 27. Soit f continue et positive sur \mathbb{R}^+ .

On suppose qu'il existe un nombre réel k positif tel que :

$$\forall x \in \mathbb{R}^+, f(x) \le k \int_0^x f(t) dt.$$

Montrer que f est nulle.

Indication: on pourra étudier la fonction $F: x \mapsto e^{-kx} \int_0^x f(t)dt$.

Exercice 28. Soit f une fonction continue sur [0,1]. On considère la fonction F définie par :

$$\forall x \in [0,1], \quad F(x) = \int_0^1 \min(x,t) f(t) dt.$$

- 1. Montrer que F est de classe C^2 .
- 2. Calculer F' et en déduire que :

$$\forall x \in [0,1], \quad F(x) = \int_0^x \left(\int_u^1 f(t)dt \right) du.$$

Applications des formules de Taylor

Exercice 29. Montrer que pour tout x dans \mathbb{R}_+ , $x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$.

Exercice 30. Montrer que pour tout x dans $[0, \pi/2], 1 - \frac{x^2}{2} \le \cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{24}$.

Exercice 31. Montrer que :

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ \left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{|x^{n+1}|e^{|x|}}{(n+1)!}$$

xercice 32. 1. Montrer que $\cos x = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!}$ 2. Montrer que $\sin x = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$ Exercice 32.

Exercice 33. Soit $f: [-a, a] \to \mathbb{R}$ de classe C^2 .

Montrer que pour $x \in [-a, a]$ on a $|f'(x)| \le \frac{1}{2a}|f(a) - f(-a)| + \frac{a^2 + x^2}{2a} \sup_{t \in [-a, a]} |f''(t)|$. (On pourra appliquer deux fois la formule de Taylor avec reste intégral.)