Review - Chapter 5: Limits and Continuity of Functions

Parker Hyde

February 22, 2022

5.2 Continuous Functions

Definition 1. Let f be a real-valued function with domain $E \subset R$. Fix an accumulation point of E, $p \in E$. Then f is continuous at p if

$$\lim_{x \to p} f(x) = f(p)$$

Notice that we need p in the domain E to even consider continuity.

Example 1. The function

$$h(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0\\ 1 & x = 0 \end{cases}$$

is discontinuous at x = 0 because $\lim_{x \to 0} h(x)$ doesn't exist. Thus it can't possibly equal h(p).

Proof. proof by Proposition 2 from 5.1. We end up with two sequences whos images converge to different values. This can't happen since every sequence image should converge to the same limit. \Box

Theorem 1. Let f and g be functions with domain E and let $p \in E$ be an accumulation point of E. If f and g are continuous at p then so are

$$(f+g), (f*g), \text{ and } \left(\frac{f}{g}\right) \text{ (provided } g(p) \neq 0).$$

Proof.
$$\lim_{x \to p} (f+g)(x) = \lim_{x \to p} f(x) + \lim_{x \to p} g(x) = f(p) + g(p) = (f+g)(p).$$

The other two proofs are essentially identical. Here's another extension of a result given in section 5.1.

Proposition 1. f is a function with domain E and $p \in E$ is an accumulation point of E. Then

$$\lim_{x \to p} f(x) = f(p)$$

if and only if

$$a_j \subset E \ and \ \lim_{j \to \infty} a_j = p \implies \lim_{j \to \infty} f(a_j) = f(p).$$

We knew this was true for any limit point, ℓ , from section 5.1 proposition 2. This is just the special case where $\ell = f(p)$.

Restating this fact in the following form will be useful in a second.

Corollary 1. If f is continuous at p and $\lim_{j\to\infty} a_j = p$, then

$$\lim_{j \to \infty} f(a_j) = f\left(\lim_{j \to \infty} a_j\right)$$

Cool, now we can apply it in the next proposition.

Proposition 2. Let $g: D \to E$ and $f: E \to F$ and suppose $p \in D$ is an accumulation point of D. Assume g is continuous at p and f is continuous at g(p). Then $f \circ g$ is continuous at p.

Proof. Let a_j be a sequence such that $\lim_{j\to\infty} a_j = p$. Then

$$\lim_{j \to \infty} f \circ g(a_j) = \lim_{j \to \infty} f(g(a_j))$$

$$= f(\lim_{j \to \infty} g(a_j))$$

$$= f(g(\lim_{j \to \infty} a_j))$$

$$= f(g(p))$$

$$= f \circ g(p)$$

This proof is probably best read from bottom to top. We need to be careful when assuming f is continuous at $\lim_{j\to\infty} g(a_j)$.

 ${\bf Remark~1.}~ to-do.~ Discuss~ limits~ of~ composite~ functions.~ piecewise~ and~ constant~ function~ counterex-ample$

Definition 2 (inverse image). f is a function with domain E and W is any set of real numbers. Then

$$f^{-1}(W) = \{ x \in E : f(x) \in W \}$$

is the inverse image of W under f.

Theorem 2. f with domain E is continuous \iff the inverse image of any open set under f is the intersection of E with an open set. If E is open, then f is continuous \iff the inverse image of every open set under f is open.

Proof. to-do. \Box

Corollary 2. f with domain E is continuous \iff the inverse image of any closed set under f is the intersection of E with a closed set. If E is closed, then f is continuous \iff the inverse image of every closed set under f is closed.

Proof. to-do.