UFBA - IME - DMAT —- ÁLGEBRA LINEAR I(MATA07) - PROFA: ISAMARA 5^a LISTA EXERCÍCIO

- 1. Mostre que $T: \mathbb{R}^3 \longrightarrow \mathbb{R}; T(x,y,z) = -2x + 3y + 7z; \quad \forall v = (x,y,z) \in \mathbb{R}^3$ é uma transformação linear.
- 2. Seja $V = \mathbb{R}^3$ um espaço vetorial real e seja $T: V \longrightarrow V; T(x,y,z) = (x+z,x+2y,1); \forall v = (x,y,z) \in V$. Verifique se T é uma transformação linear.
- 3. Verifique se as aplicações definidas abaixo são Transformações Lineares:
 - (a) Seja $V = \mathbb{R}^2$ um espaço vetorial real e seja $T: V \longrightarrow V; T(v) = \lambda v; \ \forall v \in V; \ \forall \lambda \in \mathbb{R}.$
 - (b) Seja $V = \mathbb{R}^2$ um espaço vetorial real e seja $T: V \longrightarrow V; T(x,y) = (x,-y); \quad \forall v = (x,y) \in V.$
 - (c) Seja $V = \mathbb{R}^2$ um espaço vetorial real e seja $T: V \longrightarrow V; T(x,y) = (-x,y); \quad \forall v = (x,y) \in V.$
 - (d) Seja $V=\mathbb{R}^2$ um espaço vetorial real e seja $T:V\longrightarrow V; T(x,y)=(-x,-y); \ \forall v=(x,y)\in V.$
 - (e) Seja $V=\mathbb{R}^2$ um espaço vetorial real e seja $T:V\longrightarrow V; T(x,y)=(x,y)+(a,b); \forall v=(x,y)\in V; \text{ e um dado vetor não-nulo}$ $(a,b)\in\mathbb{R}^2.$
 - (f) Seja $V = \mathbb{R}^2$ um espaço vetorial real e seja $T: V \longrightarrow V; T(x,y) = (xcos\theta ysen\theta, xsen\theta + ycos\theta); \forall v = (x,y) \in V.$
 - (g) Seja $V=\mathbb{R}^2$ um espaço vetorial real e seja $T:V\longrightarrow V; T(x,y)=(x+ytg\theta,y); \forall v=(x,y)\in V; \theta \text{ \'e o \^angulo de deslocamento do eixo-}y.$
 - (h) Seja $V=\mathbb{R}^2$ um espaço vetorial real e seja $T:V\longrightarrow V; T(x,y)=(x^2,x+2y); \forall v=(x,y)\in V.$
- 4. Seja o conjunto $C([0,1]) = \{f : [0,1] \longrightarrow \mathbb{R}/f \text{ \'e uma função contínua } \}.$ Mostre que a aplicação $T : \mathbb{R}^2 \longrightarrow C([0,1])$; tal que $T(x,y) = xe^t + ye^{2t}$; $\forall (x,y) \in \mathbb{R}^2$ é uma transformação linear.

- 5. Seja $P \in M_n(\mathbb{R})$ uma matriz invertível. Mostre que $T: M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$; $T(A) = P^{-1}AP; \forall A \in M_n(\mathbb{R})$ é um operador linear em $M_n(\mathbb{R})$.
- 6. Seja $T: P_3(\mathbb{R}) \longrightarrow P_3(\mathbb{R}); T(p(t)) = 2p'(t)$. Verifique se T é um operador linear em $P_3(\mathbb{R})$.
- 7. Sejam $U \in V$ espaços vetoriais sobre o mesmo corpo K; e seja L(U,V) o conjunto de todas as Transformações Lineares de U em V. Mostre que L(U,V) é um espaço vetorial sobre o corpo K.
- 8. Sejam $F, G \in L(\mathbb{R}^3, \mathbb{R})$; tais que $F : \mathbb{R}^3 \longrightarrow \mathbb{R}$; F(x, y, z) = -2x + 3y + 7z e, $G: \mathbb{R}^3 \longrightarrow \mathbb{R}; G(x, y, z) = x + y + z.$

Determine as seguintes Transformações Lineares: F + G, $2F \in FoI$; onde $I \in L(\mathbb{R}^3)$ é o operador idêntico em \mathbb{R}^3 .

9. Sejam $F, G \in L(\mathbb{R}^4, M_2(\mathbb{R})); T \in L(M_2(\mathbb{R}), P_3(\mathbb{R}));$ tais que

$$F: \mathbb{R}^4 \longrightarrow M_2(\mathbb{R}); F(x, y, z, w) = \begin{pmatrix} x & z \\ w & y \end{pmatrix},$$
$$G: \mathbb{R}^4 \longrightarrow M_2(\mathbb{R}); G(x, y, z, w) = \begin{pmatrix} 2z & x - y \\ w & w \end{pmatrix}, e$$

$$G: \mathbb{R}^4 \longrightarrow M_2(\mathbb{R}); G(x, y, z, w) = \begin{pmatrix} zz & x - y \\ w & w \end{pmatrix}, e$$

$$T: M_2(\mathbb{R}) \longrightarrow P_3(\mathbb{R}); T(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = a + at + (b+d)t^2 + ct^3.$$

Determine as seguintes Transformações Lineares: F + 3G e ToG.

10. Sejam $F, G \in L(\mathbb{R}^4)$; tais que

$$F: \mathbb{R}^4 \longrightarrow \mathbb{R}^4; F(x, y, z, w) = (2x, z, w + y, w),$$

$$G: \mathbb{R}^4 \longrightarrow \mathbb{R}^4; G(x, y, z, w) = (z, z + w, z, x + y).$$

Determine as seguintes Transformações Lineares: FoG, GoF, F^2, G^2 .

- 11. Seja $T: \mathbb{R}^2 \longrightarrow P_2(\mathbb{R})$; tal que $T(e_1) = 1 t$ e $T(e_2) = 1 t^2$ uma transformação linear. Encontre T.
- 12. Determine o operador linear $T \in L(\mathbb{R}^3)$; tal que $T(e_1) = e_3, T(e_1 + e_3) = e_1 + e_2 + e_3$ e $T(e_3 - e_2) = e_1 + e_2.$