实验六 OTL 功率放大器

一、实验目的

- 1、熟悉 Multisim9 软件的使用方法。
- 2、掌握理解功率放大器的工作原理。
- 3、掌握功率放大器的电路指标测试方法

二、虚礼实验仪器及器材

双踪示波器、信号发生器、交流毫伏表、数字万用表等仪器、晶体三极管 2N3906, 2N3904, 1N3064 等

三、实验步骤

如下图所示输入电路图:

1.静态工作点的调整

分别调整 R4 和 R1 滑动变阻器器, 使得万用表 XMM2 和 XMM3 的数据分别为 5---10mA 和 2.5V, 然后测试各级静态工作点填入下表:

(注意,信号发生器的大小为0)

		Ic1=Ic3= mA	V V V
	Q1	Q2	Q3
Ub			
Uc			
Ue			

2.最大不失真输出功率理想情况下, $P_{\scriptscriptstyle OM}=rac{1}{8}rac{U_{\scriptscriptstyle CC}^{\,2}}{R_{\scriptscriptstyle L}}$,在实验中可通过测量R.两端的电压有

效值,来求得实际的 $P_{\scriptscriptstyle OM}=rac{U_{\scriptscriptstyle O}^{\,2}}{R_{\scriptscriptstyle L}}$ 。

3. 效率 η

$$\eta = \frac{P_{\scriptscriptstyle OM}}{P_{\scriptscriptstyle E}} \times 100\%$$
 , $P_{\scriptscriptstyle E}$: 直流电源供给的平均功率。理想情况下, $\eta = 78.5\%$ 。

在实验中,可测量电源供给的平均电流 I_{dc} ,从而求得 $P_{E}=U_{cc}\cdot I_{dc}$,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。

4. 输入灵敏度

输入灵敏度是指输出最大不失真功率时,输入信号Vi之值。

5. 频率响应的测试

填表:

Ui = mV

	fL	fH	通频带
F(Hz)			
U0(V)			
Av			

四、思考题

- 1、分析实验结果,计算实验内容要求的参数。
- 2、总结功率放大电路特点及测量方法。