The Great Mind of Scott Fujimoto

Donghu Kim

Intro: Twin Delayed DDPG (TD3)

TD3 = DDPG + Conservative Value Fitting

Main idea: Actor-Critic also has an overestimation bias problem!

Solution: Clipped Double Q-Learning

- · Similar to Double Q Learning, but uses minimum as the target value.
- · Rather underestimate values than overestimate; at least it doesn't propagate to other values.

Sample mini-batch of
$$N$$
 transitions (s, a, r, s') from \mathcal{B} $\tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon, \quad \epsilon \sim \operatorname{clip}(\mathcal{N}(0, \tilde{\sigma}), -c, c)$ $y \leftarrow r + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a})$ Update critics $\theta_i \leftarrow \operatorname{argmin}_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2$

Intro: Twin Delayed DDPG (TD3)

- 1. Clipped Double Q-Learning $(\min_{i=1,2} Q)$
 - · Only for critic; actor gradient uses Q_{θ_1} only.
- 2. Delayed policy update (if *t mod d* then)
 - · Give critic more training time to get more accurate values.
 - $\cdot d = 2$ is enough to improve performance.
- 3. Target policy smoothing regularization ($\tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon$)
 - · Deterministic policies can overfit values to narrow actions.
 - · Smooth out action space, by enforcing similar actions to have similar values.

Algorithm 1 TD3

```
Initialize critic networks Q_{\theta_1}, Q_{\theta_2}, and actor network \pi_{\phi}
with random parameters \theta_1, \theta_2, \phi
Initialize target networks \theta_1' \leftarrow \theta_1, \theta_2' \leftarrow \theta_2, \phi' \leftarrow \phi
Initialize replay buffer \mathcal{B}
for t = 1 to T do
    Select action with exploration noise a \sim \pi_{\phi}(s) + \epsilon,
    \epsilon \sim \mathcal{N}(0, \sigma) and observe reward r and new state s'
    Store transition tuple (s, a, r, s') in \mathcal{B}
    Sample mini-batch of N transitions (s, a, r, s') from \mathcal{B}
    \tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon, \quad \epsilon \sim \text{clip}(\mathcal{N}(0, \tilde{\sigma}), -c, c)
    y \leftarrow r + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a})
    Update critics \theta_i \leftarrow \operatorname{argmin}_{\theta_i} N^{-1} \sum_{i=1}^{n} (y - Q_{\theta_i}(s, a))^2
    if t \mod d then
        Update \phi by the deterministic policy gradient:
        \nabla_{\phi} J(\phi) = N^{-1} \sum_{\alpha} \nabla_{\alpha} Q_{\theta_1}(s, \alpha) |_{\alpha = \pi_{\phi}(s)} \nabla_{\phi} \pi_{\phi}(s)
        Update target networks:
        \theta_i' \leftarrow \tau \theta_i + (1 - \tau)\theta_i'
        \phi' \leftarrow \tau \phi + (1 - \tau) \phi'
    end if
end for
```

Overview

- TD7 = TD3 + State-Action Embedding (SALE)
 - + Smarter Replay Buffer (LAP)
 - + (for online) Policy Checkpoints
 - + (for offline) BC Loss
 - + Some other stuff

Main Results

Online - Mujoco

Table 1: Average performance on the MuJoCo benchmark at 300k, 1M, and 5M time steps, over 10 trials, where \pm captures a 95% confidence interval. The highest performance is highlighted. Any performance which is not statistically significantly worse than the highest performance (according to a Welch's t-test with significance level 0.05) is highlighted.

Environment	Time step	TD3	SAC	TQC	TD3+OFE	TD7
HalfCheetah	300k 1M 5M	7715 ± 633 10574 ± 897 14337 ± 1491	8052 ± 515 10484 ± 659 15526 ± 697	7006 ± 891 12349 ± 878 17459 ± 258	11294 ± 247 13758 ± 544 16596 ± 164	15031 ± 401 17434 ± 155 18165 ± 255
Hopper	300k 1M 5M	1289 ± 768 3226 ± 315 3682 ± 83	2370 ± 626 2785 ± 634 3167 ± 485	3251 ± 461 3526 ± 244 3462 ± 818	1581 ± 682 3121 ± 506 3423 ± 584	2948 ± 464 3512 ± 315 4075 ± 225
Walker2d	300k 1M 5M	1101 ± 386 3946 ± 292 5078 ± 343	1989 ± 500 4314 ± 256 5681 ± 329	2812 ± 838 5321 ± 322 6137 ± 1194	4018 ± 570 5195 ± 512 6379 ± 332	5379 ± 328 6097 ± 570 7397 ± 454
Ant	300k 1M 5M	1704 ± 655 3942 ± 1030 5589 ± 758	1478 ± 354 3681 ± 506 4615 ± 2022	1830 ± 572 3582 ± 1093 6329 ± 1510	6348 ± 441 7398 ± 118 8547 ± 84	6171 ± 831 8509 ± 422 10133 ± 966
Humanoid	300k 1M 5M	1344 ± 365 5165 ± 145 5433 ± 245	1997 ± 483 4909 ± 364 6555 ± 279	3117 ± 910 6029 ± 531 8361 ± 1364	3181 ± 771 6032 ± 334 8951 ± 246	5332 ± 714 7429 ± 153 10281 ± 588

Offline - D4RL

Table 2: Average final performance on the D4RL benchmark after training for 1M time steps. over 10 trials, where \pm captures a 95% confidence interval. The highest performance is highlighted. Any performance which is not statistically significantly worse than the highest performance (according to a Welch's t-test with significance level 0.05) is highlighted.

Environment	Dataset	CQL	TD3+BC	IQL	$\mathcal{X} ext{-QL}$	TD7
HalfCheetah	Medium Medium-Replay Medium-Expert	46.7 ± 0.3 45.5 ± 0.3 76.8 ± 7.4	48.1 ± 0.1 44.6 ± 0.4 93.7 ± 0.9	47.4 ± 0.2 43.9 ± 1.3 89.6 ± 3.5	47.4 ± 0.1 44.2 ± 0.7 90.2 ± 2.7	58.0 ± 0.4 53.8 ± 0.8 104.6 ± 1.6
Hopper	Medium Medium-Replay Medium-Expert	59.3 ± 3.3 78.8 ± 10.9 79.9 ± 19.8	59.1 ± 3.0 52.0 ± 10.6 98.1 ± 10.7	63.9 ± 4.9 93.4 ± 7.8 64.2 ± 32.0	67.7 ± 3.6 82.0 ± 14.9 92.0 ± 10.0	76.1 ± 5.1 91.1 ± 8.0 108.2 ± 4.8
Walker2d	Medium Medium-Replay Medium-Expert	81.4 ± 1.7 79.9 ± 3.6 108.5 ± 1.2	84.3 ± 0.8 81.0 ± 3.4 110.5 ± 0.4	84.2 ± 1.6 71.2 ± 8.3 108.9 ± 1.4	79.2 ± 4.0 61.8 ± 7.7 110.3 ± 0.2	91.1 ± 7.8 89.7 ± 4.7 111.8 ± 0.6
Total		656.7 ± 24.3	671.3 ± 15.7	666.7 ± 34.6	674.9 ± 20.4	784.4 ± 14.1

Ablation & Run Time

Figure 5: Ablation study over the components of TD7. The y-axis corresponds to the average performance over all five MuJoCo tasks, normalized with respect to the performance of TD7 at 5M time steps. The shaded area captures a 95% confidence interval.

Figure 6: Run time of each method for 1M time steps on the HalfCheetah environment, using the same hardware and deep learning framework (Py-Torch [Paszke et al., 2019]).

Main idea of TD7: Encode state-action pairs to latent space

Why would we need to encode an already compact low-level state?

- · There's more to learn about the underlying dynamics of the environment.
- · There's more to learn about the interaction between states and actions.

Extensive experiments to verify their design choice. (Section 4.2, Appendix D)

Figure 3: The mean percent loss from using alternate design choices in TD7 at 1M time steps, over 10 seeds and the five benchmark MuJoCo environments. Bracketed values describe the range of the 95% confidence interval around the mean. Percent loss is computed against TD7 where the default choices correspond to a percent loss of 0. See Section 4.2 for a description of each design choice and key observations. See the Appendix for further implementation-level details.

State encoder f, State-Action encoder g

· State-Action embedding g(f(s), a) tries to predict next State embedding f(s') (\approx SPR)

$$\mathcal{L}(f,g) := \left(g(f(s), a) - |f(s')|_{\times} \right)^2 = \left(z^{sa} - |z^{s'}|_{\times} \right)^2, \tag{2}$$

· Embeddings are used in main networks Linear, Q, π , but with stop gradient $|\cdot|_{\times}$. i.e., the encoders are trained only with MSE loss.

AvgL1Norm: Keeping the embedding scale constant.

- · To prevent monotonic growth or collapse to a redundant representation.
- · Seems to be inspired from cosine similarity loss from BYOL and SPR.
- · Not applied on State-Action embedding z_t^{sa} since it targets an already normalized embedding $z_t^{s'}$.

$$AvgL1Norm(x) := \frac{x}{\frac{1}{N} \sum_{i} |x_i|}.$$

Fixed embeddings: Using target networks on embedding networks

- · Embeddings have a non-stationary problem (just like value targets).
- \cdot Copy to target network every n steps.

$$Q_t \leftarrow Q_{t+1}, \qquad \pi_t \leftarrow \pi_{t+1}, \qquad (f_{t-1}, g_{t-1}) \leftarrow (f_t, g_t), \qquad (f_t, g_t) \leftarrow (f_{t+1}, g_{t+1}).$$
 (8)

 $\cdot Q_{t+1}, \pi_{t+1}$ always use embeddings from f_t, g_t , and Q_t, π_t use those from f_{t-1}, g_{t-1} .

$$Q_{t+1}(z_t^{sa}, z_t^{s}, s, a) \approx r + \gamma Q_t(z_{t-1}^{s'a'}, z_{t-1}^{s'}, s', a'), \quad \text{where } a' \sim \pi_t(z_{t-1}^{s'}, s'),$$

$$\pi_{t+1}(z_t^{s}, s) \approx \underset{-}{\operatorname{argmax}} Q_{t+1}(z_t^{sa}, z_t^{s}, s, a), \quad \text{where } a \sim \pi(z_t^{s}, s).$$

$$(6)$$

Clipping values: Dealing with extrapolation error

· Using learned embeddings caused jumps in value estimation – likely due to action extrapolation.

...what about offline...?

- · Luckily this will naturally heal in online setting, so all we have to do is minimize the damage.
- · Clip the target value into min/max of previous Q values.

$$Q_{t+1}(z_t^{sa}, z_t^{s}, s, a) \approx r + \gamma Q_t(z_{t-1}^{s'a'}, z_{t-1}^{s'}, s', a'), \quad \text{where } a' \sim \pi_t(z_{t-1}^{s'}, s'),$$

$$Q_{t+1}(s, a) \approx r + \gamma \operatorname{clip}\left(Q_t(s', a'), \min_{(s, a) \in D} Q_t(s, a), \max_{(s, a) \in D} Q_t(s, a)\right).$$
(6)
*Embeddings omitted

LAP = PER + Huber Loss + Priority clipping

Main theory: Any loss \mathcal{L}_A with PER has an equivalent \mathcal{L}_B without PER (in expectation).

 \cdot e.g., L_1 loss with prioritized sampling has the same expected gradient as L_2 loss with uniform sampling.

$$\underbrace{\mathbb{E}_{\mathcal{U}}[\nabla_{Q}\mathcal{L}_{\mathrm{MSE}}(\delta(i))]}_{\mathrm{expected gradient of MSE under }\mathcal{U}} = \underbrace{\mathbb{E}_{\mathcal{D}_{2}}\left[\frac{\sum_{j}\delta(j)}{N|\delta(i)|}\delta(i)\right]}_{\mathrm{by Equation (5)}} \propto \mathbb{E}_{\mathcal{D}_{2}}\underbrace{\left[\underset{\nabla_{Q}\mathcal{L}_{\mathrm{L1}}}{\mathrm{sign}}(\delta(i))\right]}_{\nabla_{Q}\mathcal{L}_{\mathrm{L1}}(\delta(i))} = \underbrace{\mathbb{E}_{\mathcal{D}_{2}}[\nabla_{Q}\mathcal{L}_{\mathrm{L1}}(\delta(i))]}_{\mathrm{expected gradient of L1 under }\mathcal{D}_{2}}$$

$$\delta(i) = Q(i) - y(i) \qquad \mathcal{D}_{2} \text{ to be a prioritized sampling scheme } p(i) = \underbrace{\mathbb{E}_{\mathcal{D}_{2}}[\nabla_{Q}\mathcal{L}_{\mathrm{L1}}(\delta(i))]}_{\sum_{j \in \mathcal{B}}|\delta(j)|}$$

Does that mean PER is meaningless?

- · No, because their variance are not the same.
- · In fact, it can be shown that prioritization scheme lowers the variance (albeit often marginal in practice).

This point of view reveals the problem of using prioritized L_2 loss (which is what we often use).

Roughly, a prioritized L_{τ} loss is equivalent to a uniform $L_{\tau+\alpha-\alpha\beta}$ loss.

- \cdot e.g., A prioritized L_2 loss is equivalent to a uniform(non-prioritized) $L_{2+\alpha-\alpha\beta}$ loss.
- $\cdot \alpha, \beta \in [0,1]$ are the hyperparameters of PER.

Theorem 3 The expected gradient of a loss $\frac{1}{\tau} |\delta(i)|^{\tau}$, where $\tau > 0$, when used with PER is equal to the expected gradient of the following loss when using a uniformly sampled replay buffer:

$$\mathcal{L}_{\text{PER}}^{\tau}(\delta(i)) = \frac{\eta N}{\tau + \alpha - \alpha\beta} |\delta(i)|^{\tau + \alpha - \alpha\beta}, \qquad \eta = \frac{\min_{j} |\delta(j)|^{\alpha\beta}}{\sum_{j} |\delta(j)|^{\alpha}}. \tag{7}$$

$$L_2 = L_{2+\alpha-\alpha\beta}$$

Now the question becomes: "Is $L_{2+\alpha-\alpha\beta}$ a good loss?"

Giving the answer first: "Since $2 + \alpha - \alpha\beta \ge 2$, no."

Why? Firstly, the uniform L_2 loss is an unbiased objective for value learning (Observation 2).

But going over L_2 (i.e., L_x , 2 < x) would over-exaggerate high errors (i.e., favor outliers).

```
Observation 2 (MSE) Let \mathcal{B}(s,a) \subset \mathcal{B} be the subset of transitions containing (s,a) and \delta(i) = Q(i) - y(i). If \nabla_Q \mathbb{E}_{i \sim \mathcal{B}(s,a)}[0.5\delta(i)^2] = 0 then Q(s,a) = \text{mean}_{i \in \mathcal{B}(s,a)}y(i).
```

And that's what's exactly happening in prioritized L_2 (or uniform $L_{2+\alpha-\alpha\beta}$) loss!

- $\cdot \alpha$, $\beta \in [0,1]$ guarantees that $0 \le \alpha \alpha \beta$, meaning $2 + \alpha \alpha \beta \ge 2$.
- · In short, L_2 with prioritization scheme is actually a biased objective; a *badly* biased one.

So how do we fix this?

Simply use L_1 loss in prioritized scheme ($\tau = 1$), so we can have $1 \le 1 + \alpha - \alpha\beta \le 2$.

There's also a good reason why L_1 is not a bad idea, but let's skip that.

Fix one last problem, and we have LAP!

 L_1 loss is terrible around optimal point, since the gradient doesn't saturate.

We'll have to resort back to L_2 around optimal point: Huber loss

As said before, prioritized L_2 favors high-error outliers: Clip all low-error samples to 1

$$p(i) = \frac{\max(|\delta(i)|^{\alpha}, 1)}{\sum_{j} \max(|\delta(j)|^{\alpha}, 1)}, \qquad \mathcal{L}_{\text{Huber}}(\delta(i)) = \begin{cases} 0.5\delta(i)^{2} & \text{if } |\delta(i)| \le 1, \\ |\delta(i)| & \text{otherwise.} \end{cases}$$
(9)

Fun fact: LAP also has an equivalent non-prioritized loss, named PAL.

Policy Checkpoints (for online RL)

No matter how hard we try, function approximation & RL is inherently unstable.

Keep the 'peak performance' policy during training, use that for evaluation.

Problem: How can we not waste time evaluating policies?

Solution: Do off-policy RL with the samples obtained during evaluation!

- · Standard off-policy RL: Collect a data point → train once
- · Proposed: Collect N data points over several evaluation episodes → train N times

Figure 30: **Performance of individual seeds with and without checkpoints.** Learning curves of five individual seeds, with and without checkpoints, on the MuJoCo benchmark. The shaded area captures a 95% confidence interval around the average performance.

Policy Checkpoints (for online RL)

Let's be smarter about this.

- 1. Evaluate with minimum performance and not average.
 - · Avoids policies that are unstable, even if they're better on average.
 - · This also allows us to prematurely halt the evaluation and move onto the next policy.
- 2. Restrict evaluation to 1 episode in early learning stage (750k steps).
 - · Early stage policies require more exploration and fast feedback.

Surprisingly works well, even with high number of evaluation episodes (20+).

Figure 26: **Maximum number of assessment episodes.** Learning curves on the MuJoCo benchmark, varying the maximum number episodes that the policy is fixed for. Results are averaged over 10 seeds. The shaded area captures a 95% confidence interval around the average performance.

Behavior Cloning (for offline RL)

Direct application of TD3 + BC.

Constrain behavior policy to the offline dataset's action distribution.

$$\pi \approx \operatorname*{argmax}_{\pi} \mathbb{E}_{(s,a) \sim D} \left[Q(s, \pi(s)) - \frac{\lambda |\mathbb{E}_{s \sim D} \left[Q(s, \pi(s)) \right]|_{\times} (\pi(s) - a)^2}{\lambda |\mathbb{E}_{s \sim D} \left[Q(s, \pi(s)) \right]|_{\times} (\pi(s) - a)^2} \right]. \tag{11}$$

$$\mathcal{L}(\pi_{t+1}) := -Q + \lambda |\mathbb{E}_{s \sim D} [Q]|_{\times} (a_{\pi} - a)^{2}, \qquad (22)$$

Why the $\mathbb{E}_{S \sim D}[Q]$?

· Original TD3 + BC normalizes the Q value loss to match the scale between the two losses.

$$\pi = \operatorname*{argmax}_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \left[Q(s, \pi(s)) \right] \to \pi = \operatorname*{argmax}_{\pi} \mathbb{E}_{(s, a) \sim \mathcal{D}} \left[\lambda Q(s, \pi(s)) - \left(\pi(s) - a \right)^{2} \right]. \tag{3}$$

$$\lambda = \frac{\alpha}{\frac{1}{N} \sum_{(s_{i}, a_{i})} |Q(s_{i}, a_{i})|}. \tag{5}$$

· (It seems like) TD7 upscales BC loss instead of downscaling Q loss.

Overall Algorithm

TD7 (TD3+4 additions) has several networks and sub-components:

- Two value functions $(Q_{t+1,1}, Q_{t+1,2})$.
- Two target value functions $(Q_{t,1}, Q_{t,2})$.
- A policy network π_{t+1} .
- A target policy network π_t .
- An encoder, with sub-components (f_{t+1}, q_{t+1}) .
- A fixed encoder, with sub-components (f_t, g_t) .
- A target fixed encoder with sub-components (f_{t-1}, g_{t-1}) .
- A checkpoint policy π_c and checkpoint encoder f_c (q is not needed).

Algorithm 2 TD7 Train Function 1: Sample transition from LAP replay buffer with probability (Equation 30). 2: Train encoder (Equation 13). 3: Train value function (Equation 15). 4: Update (Q_{\min}, Q_{\max}) (Equations 20 & 21). 5: **if** $i \mod policy \pmod policy \pmod policy = 0$ Train policy (Equation 22). 7: **if** $i \mod target \ update \ frequency = 0$ **then** Update target networks (Equation 26). Algorithm 4 Policy Checkpoints with Minimum Performance and Early Termination 1: **for** episode = 1 **to** assessment_episodes **do** ▷ Assessment Follow the current policy π_{t+1} and determine episode_reward. $min_performance \leftarrow min(min_performance, episode_reward).$ Increment timesteps_since_training by the length of the episode. 5: if min_performance < checkpoint_performance then</pre> *⊳ Early termination* End current assessment. 7: **if** min_performance > checkpoint_performance **then** ▷ Checkpointing Update checkpoint networks $\pi_c \leftarrow \pi_{t+1}, f_c \leftarrow f_t$. checkpoint_performance ← min_performance 10: **for** i = 1 **to** timesteps_since_training **do** ▶ Training Train RL agent. Reset min_performance.

$$z^{s} := f(s), \qquad z^{sa} := g(z^{s}, a). \tag{12}$$

$$\mathcal{L}(f_{t+1}, g_{t+1}) := \left(g_{t+1}(f_{t+1}(s), a) - |f_{t+1}(s')|_{\times}\right)^{2} \tag{13}$$

$$\text{Encoders} \qquad = \left(z_{t+1}^{sa} - |z_{t+1}^{s'}|_{\times}\right)^{2}, \tag{14}$$

$$\mathcal{L}(Q_{t+1}) := \text{Huber}\left(\text{target} - Q_{t+1}(z_{t}^{sa}, z_{t}^{s}, s, a)\right), \tag{15}$$

$$\text{target} := r + \gamma \operatorname{clip}\left(\min\left(Q_{t,1}(x), Q_{t,2}(x)\right), Q_{\min}, Q_{\max}\right), \tag{16}$$

$$x := \left[z_{t-1}^{s'a'}, z_{t-1}^{s'}, s', a'\right], \tag{17}$$

$$a' := \pi_{t}(z_{t-1}^{s'}, s') + \epsilon, \tag{18}$$

$$\epsilon \sim \operatorname{clip}(\mathcal{N}(0, \sigma^{2}), -c, c). \tag{19}$$

$$Q_{\min} \leftarrow \min\left(Q_{\min}, \text{target}\right), \tag{20}$$

$$Value functions \qquad Q_{\max} \leftarrow \max\left(Q_{\max}, \text{target}\right), \tag{21}$$

$$\mathcal{L}(\pi_{t+1}) := -Q + \lambda |\mathbb{E}_{s \sim D}\left[Q\right]|_{\times} (a_{\pi} - a)^{2}, \tag{22}$$

$$Q := 0.5 \left(Q_{t+1}, (x) + Q_{t+1,2}(x)\right) \tag{23}$$

$$x := \left[z_{t}^{sa\pi}, z_{t}^{s}, s, a_{\pi}\right], \tag{24}$$

$$a_{\pi} := \pi_{t+1}(z_{t}^{s}, s). \tag{25}$$

$$\left(Q_{t,1}, Q_{t,2}\right) \leftarrow \left(Q_{t+1,1}, Q_{t+1,2}\right), \tag{26}$$

$$\pi_{t} \leftarrow \pi_{t+1}, \tag{27}$$

$$\left(f_{t-1}, g_{t-1}\right) \leftarrow \left(f_{t}, g_{t}\right), \tag{28}$$

$$\text{Policy} \qquad \left(f_{t}, g_{t}\right) \leftarrow \left(f_{t+1}, g_{t+1}\right). \tag{29}$$

 $p(i) = \frac{\max(|\delta(i)|^{\alpha}, 1)}{\sum_{i \in D} \max(|\delta(j)|^{\alpha}, 1)},$

 $|\delta(i)| := \max \Big(|Q_{t+1,1}(z_t^{sa}, z_t^s, s, a) - \mathsf{target}|, |Q_{t+1,2}(z_t^{sa}, z_t^s, s, a) - \mathsf{target}| \Big),$

(30)

(31)

Encoders

Policy

PFR

Overall Algorithm

SALE LAP BC TD3 Others

$$z^s := f(s), \quad z^m := g(z^s, a). \tag{12}$$

$$\mathcal{L}(f_{t+1}, g_{t+1}) := \left(g_{t+1}(f_{t+1}(s), a) - |f_{t+1}(s')|_{\times}\right)^2 \tag{13}$$

$$= \left(z_{t+1}^{a} - |z_{t+1}^{a}|_{\times}\right)^2, \qquad (14)$$

$$\mathcal{L}(g_{t+1}) := \text{Huber}(\text{target} - g_{t+1}(z_t^m, z_t^*, s, a)), \qquad (15)$$

$$= \left(z_{t+1}^{a} - |z_{t+1}^{a}|_{\times}\right)^2, \qquad (14)$$

$$\mathcal{L}(g_{t+1}) := \text{Huber}(\text{target} - g_{t+1}(z_t^m, z_t^*, s, a)), \qquad (16)$$

$$= \left(z_{t+1}^{a} - |z_{t+1}^{a}|_{\times}\right)^2, \qquad (17)$$

$$= \left(z_{t+1}^{a} - |z_{t+1}^{a}|_{\times}\right)^2, \qquad (19)$$

$$= \left(z_{t+1}^{a}$$

TalkRL Podcast

- S. Fujimoto already said (in 2019) Mujoco is a dying benchmark.
 - · Then why did he do this in Mujoco... is the mystery.

And it seems like he was thinking about state-action embedding.

Paper List

(TD3) Addressing Function Approximation Error in Actor-Critic Methods, S. Fujimoto et al.

(TD3+BC) A Minimalist Approach to Offline Reinforcement Learning, S. Fujimoto et al.

(LAP) An Equivalence between Loss Functions and Non-Uniform Sampling in Experience Replay, S. Fujimoto et al.

(TD7) For SALE: State-Action Representation Learning for Deep Reinforcement Learning, S. Fujimoto et al.