15

25

30

Procédé et dispositif pour déterminer une valeur de référence d'une réponse, notamment d'une réponse mode S reçue par un radar secondaire

La présente invention s'applique notamment à la surveillance du trafic aérien, et plus particulièrement, aux systèmes coopératifs sol avion qui permettent de situer en distance radiale et en azimut les avions présents dans un certain volume et de les interroger.

Ces systèmes coopératifs comportent un radar de surveillance dit secondaire et des transpondeurs embarqués à bord de véhicules porteurs coopératifs, tels que des avions. Le radar secondaire coopère selon un protocole déterminé avec les transpondeurs (appelés encore répondeurs). Le radar secondaire comporte un interrogateur qui émet des impulsions d'interrogation modulées en amplitude et en phase à la fréquence de 1030 MHz pour établir une communication avec les transpondeurs présents dans le lobe d'émission de son antenne. Ces transpondeurs répondent par des trains d'impulsions modulées en amplitude à la fréquence de 1090 MHz. Ces impulsions sont reçues et traitées par un récepteur du radar secondaire.

Les radars secondaires utilisés dans cette application sont appelés radars de surveillances (connus sous le nom de "Secondary Surveillance Radar ou SSR dans la littérature anglo-saxonne). La Convention sur l'Aviation Civile Internationale, appelée encore nome OACI (Organisation de l'Aviation Civile Internationale) définit un protocole de communication pour les radars secondaires dans son annexe 10 (Télécommunications Aéronautiques), volume IV (Radar de surveillance et systèmes anti-collision). La nome OACI définit plusieurs modes d'interrogation, tel que les modes A, C et S. Le mode S se distingue des modes A et C en ce qu'il permet une interrogation sélective des avions par l'emploi d'un numéro d'identification propre à chaque avion.

Une réponse mode S se compose d'un préambule formé d'une suite de quatre impulsions dont les positions sont invariables, suivi d'un bloc de données composé de 56 ou 112 valeurs binaires ou bits, les valeurs binaires étant codées sur des intervalles de temps successifs de 1 µs, par une modulation en position d'impulsion. Les 24 derniers bits du bloc de données forment un code de redondance cyclique (CRC) et les autres bits

Best Avallable Copy

25

ì

forment un message. Le CRC permet un décodage sans erreur du message lorsqu'il a subi une détérioration sur une zone de moins de 24 μ s.

Il s'avère que la détérioration du message dépasse souvent les 24 μs notamment dans les cas de multitrajets (où elle peut atteindre la totalité du message) et dans les cas d'imbrication d'une réponse en mode S avec plusieurs réponses en mode classique A ou C.

Les phénomènes multitrajets se produisent fréquemment en zone terminale lorsque l'avion est près du sol et de l'interrogateur du radar secondaire. Ils sont dus à des réflexions de la réponse du transpondeur sur des bâtiments et sur le sol qui arrivent décalées dans le temps par rapport à la réponse directe et perturbent celle-ci.

La demande de brevet français n° 89 14416 "dispositif de détection de signaux de répondeurs interrogés par un radar secondaire en présence de phénomène de multitrajets" (FR 2.654.217) déposée le 3 novembre 1989 décrit un procédé de détermination de la puissance moyenne d'une réponse mode S par analyse de l'histogramme des valeurs des impulsions possibles pendant la durée d'une réponse mode S. Ce procédé est mis en œuvre par un dispositif de détection d'impulsions de données permettant le décodage de réponses mode S en présence de phénomène de multitrajets.

Plus précisément, la position des impulsions de préambule est utilisée pour générer des signaux de cadencement. Les signaux de cadencement permettent de recueillir trois échantillons du signal de réception par intervalle de 0,5 μs, c'est à dire par position potentielle d'une impulsion du bloc de données. Un premier échantillon est pris au milieu de l'intervalle, et les deux autres encadrent le premier. Les valeurs des premiers échantillons sont reportées dans un histogramme, avec une pondération calculée à partir des deux autres échantillons. Une valeur de référence de la réponse mode S est alors déterminée à partir de l'histogramme, la valeur de référence reflétant le niveau d'amplitude des impulsions de données de la réponse mode S. Une impulsion de données est détectée lorsque la valeur de l'échantillon au milieu d'un intervalle de 0,5 μs est proche de la valeur de référence.

Toutefois, si la réponse mode S est imbriquée avec une autre réponse mode S, une majorité des échantillons est altérée. Ceci affecte en

20

25

ξ.

1

particulier les échantillons pris au milieu des intervalles de 0,5 µs, dont les valeurs sont utilisées non seulement pour détecter des impulsions de données individuelles, mais aussi pour déterminer la valeur de référence. Par conséquent, ce procédé est inadapté en cas d'imbrication de deux réponses mode S, et plus généralement en cas de pollution par un multitrajet ou par une imbrication avec un signal dont la puissance est du même ordre de grandeur ou supérieure à la puissance de la réponse sous analyse.

L'invention a notamment pour but d'établir une valeur de référence d'une réponse, et ce même en présence d'une pollution importante de la réponse, notamment lorsque deux réponses en mode S sont imbriquées.

A cet effet, l'invention a notamment pour objet un procédé pour déterminer une valeur de référence d'une réponse contenue dans un signal de réception d'un radar secondaire, la réponse comprenant des impulsions agencées selon un protocole déterminé, procédé dans lequel :

- 15 on repère dans le signal de réception la position des impulsions présentes;
 - on détermine des positions potentielles d'impulsions de la réponse considérée ;
 - on sélectionne des fenêtres temporelles, chaque fenêtre temporelle repérant dans le signal de réception une partie stable d'une impulsion dont la position a été repérée et dont la position repérée coïncide avec une position potentielle déterminée, la valeur de référence étant la valeur prise majoritairement par des échantillons du signal de réception, ces échantillons étant situés dans les fenêtres temporelles sélectionnées.

Ainsi, les échantillons ne sont pas systématiquement pris à la même position, c'est à dire au milieu de l'intervalle de $0,5~\mu s$. Seuls les échantillons présumés clairs dans une impulsion sont sélectionnés.

Selon un mode de mise en œuvre avantageux, en présence d'imbrication entre plusieurs réponses, lorsqu'on sélectionne les fenêtres temporelles pour déterminer la valeur de référence, on limite la sélection aux fenêtres temporelles situées dans une partie non imbriquée de la réponse considérée.

Ceci permet de déterminer des valeurs de références de plusieurs réponses lorsque plusieurs réponses sont imbriquées.

1

Selon un mode de mise en œuvre avantageux, on repère la position des impulsions présentes par détection de fronts montants et/ou descendants dans le signal de réception.

Selon un mode de mise en œuvre avantageux, lié à l'utilisation d'un codage en position, les impulsions isolées ayant une largeur déterminée, si le signal de réception comporte une impulsion semblant avoir une durée supérieure à la largeur déterminée, on repère non seulement la position de cette impulsion, mais aussi la position d'une impulsion masquée, la position de l'impulsion masquée étant déduite du front montant ou du front descendant de l'impulsion longue auquel on ajoute ou on retire la largeur déterminée.

Selon un autre mode de mise en œuvre avantageux, en présence d'imbrication entre plusieurs impulsions, la position de la première impulsion est repérée à partir d'un front montant et la position de la demière impulsion est repérée à partir d'un front descendant.

Selon un mode de mise en œuvre avantageux, on teste la coïncidence entre la position des impulsions présentes dans le signal de réception d'une part, et la position d'impulsions de données potentielles d'autre part, en utilisant une tolérance fonction de la précision du repérage de la position des impulsions présentes dans le signal de réception.

L'invention a aussi pour objet un procédé de détection d'impulsions d'une réponse dans lequel :

- on détermine une valeur de référence,
- on détermine la valeur moyenne des échantillons situés dans une fenêtre temporelle sélectionnée ;
 - on détecte une impulsion chaque fois que la valeur moyenne déterminée appartient à une certaine plage de valeurs centrée autour de la valeur de référence déterminée.

L'invention a aussi pour objet un dispositif de détermination d'une valeur de référence d'une réponse contenue dans un signal de réception d'un radar secondaire, la réponse comprenant des impulsions agencées selon un protocole déterminé, dispositif comprenant au moins :

- des moyens pour repérer dans le signal de réception la position des impulsions présentes ;

10

15

35

<u>:</u>

1

 des moyens pour déterminer des positions potentielles d'impulsions de la réponse considérée;

 des moyens pour sélectionner des fenêtres temporelles, chaque fenêtre temporelle repérant dans le signal de réception une partie stable d'une impulsion dont la position a été repérée et dont la position repérée coïncide avec une position potentielle déterminée, la valeur de référence étant la valeur prise majoritairement par des échantillons du signal de réception, ces échantillons étant situés dans les fenêtres temporelles sélectionnées.

L'invention présente l'avantage d'augmenter le rapport signal à bruit et d'augmenter le rapport signal à brouilleur par rapport aux techniques connues, grâce à l'utilisation d'un plus grand nombre d'échantillons de signal de réception. De plus, le procédé selon l'invention est simple à mettre en œuvre.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée suivante présentée à titre d'illustration non limitative et faite en référence aux figures annexées, lesquelles représentent :

- la figure 1, le format d'une réponse mode S selon la norme OACI;
- 20 la figure 2, un exemple d'impulsions de données d'une réponse mode S ;
 - la figure 3, un exemple de signal généré dans le cadre d'un exemple de mise en œuvre pratique de l'invention, le signal comportant une fenêtre temporelle repérant dans le signal de réception une partie stable d'une impulsion dont la position a été repérée;
- la figures 4, un exemple de signal de réception d'un extrait d'une réponse mode S, un exemple de signal généré dans le cadre d'un exemple de mise en œuvre pratique de l'invention, le signal repérant dans le signal de réception la position des impulsions présentes, et des exemples de signaux générés dans des modes de réalisations avantageux de l'invention;
 - la figure 5, un autre exemple de signal de réception, en présence d'imbrication de deux impulsions provenant de transpondeurs différents, un exemple de signal généré dans le cadre d'un exemple de mise en œuvre pratique de l'invention, et des exemples de signaux générés dans des modes de réalisations avantageux de l'invention;

20

- la figure 6, un exemple de signal généré dans le cadre d'un exemple de mise en œuvre pratique de l'invention, lors de la détermination des positions potentielles d'impulsions de données d'une réponse mode S considérée ;
- la figure 7, un exemple d'utilisation, dans le cadre d'un mode de 5 réalisation avantageux de l'invention, du signal de réception résultant d'une d'imbrication de deux réponses mode S.

On se réfère maintenant à la figure 1 sur laquelle est représenté le 10 format d'une réponse mode S selon la norme OACI. Une réponse mode S comprend un préambule PRE et des données MES. Le préambule comprend quatre impulsions émises à des positions déterminées par la norme OACI, à laquelle l'homme du métier pourra se reporter. Les impulsions de préambule ont une largeur normalisée de 0.5 µs.

Le préambule est suivi des données MES. Les données MES comportent n valeurs binaires, référencées B₁, B₂ ... B_n. Selon le type de réponse (courte ou longue), le nombre de valeurs binaire n peut être 56 ou 112. Chaque valeur binaire est codée sur une période de 1 µs. Ainsi, les données d'une réponse mode S occupent 56 ou 112 µs.

Le codage des données est un codage en position. Pour chaque valeur binaire, une impulsion de donnée est présente en début ou en fin d'une période de 1 us, la position de cette impulsion en début ou en fin de période permettant de coder pour une valeur binaire 0 ou 1. Sur chaque période de 1 µs, l'impulsion de donnée occupe une largeur normalisée de 25 0,5 μs.

On se réfère maintenant à la figure 2 sur laquelle est représenté un exemple du début des données d'une réponse mode S. Dans cet exemple, les premières valeurs binaires B₁ à B₆ sont respectivement 0, 1, 1, 0, 0, 1. Le temps maximum pendant lequel aucune impulsion de données est 30 émise intervient lorsqu'une valeur 0 succède à une valeur 1 (entre B₃ et B₄). Ce temps est de 1 µs. De même, la temps maximum pendant lequel une impulsion de donnée est émise intervient lorsqu'une valeur 1 succède à une valeur 0 (entre B5 et B6). Ce temps est aussi de 1 µs, c'est à dire deux fois 0,5 µs, l'impulsion de donnée étant à cheval sur deux périodes de 1 µs.

On se réfère maintenant à la figure 3. On élabore un signal de réception SRC, ce signal étant échantillonné à une période supérieure à la durée d'une impulsion de données. Les dispositifs élaborant les signaux de réception sont en eux-même connus et ne seront pas décrits. Le signal de 5 réception SRC est représentatif de la puissance reçue par l'antenne, et s'appelle de façon conventionnelle LOGΣ. La fréquence d'échantillonnage du signal de réception SRC peut être de 20 MHz, ce qui correspond à une période d'échantillonnage de 50 ns. Ceci permet de disposer de l'ordre de 10 échantillons dans une impulsion de données sur une période de 1 µs.

10

Selon un mode de réalisation pratique de l'invention, on génère un signal STB permettant de repérer les parties stables en niveau des impulsions présentes dans le signal de réception. Ainsi, on génère un créneau S1 dans le signal STB, ce créneau étant associé à l'impulsion P1 présente dans le signal SRC.

15

Pour repérer les parties stables d'une impulsion, différents principes peuvent être employés. Par exemple, une impulsion peut être réputée stable lorsque la dispersion des puissances des échantillons par rapport à la moyenne des puissances est bornée par une valeur de dispersion maximale. Plusieurs paramètres peuvent être pris en compte pour 20 déterminer la valeur de la dispersion maximale, c'est à dire pour définir la stabilité d'une impulsion. La valeur de la dispersion maximale peut dépendre notamment de la tolérance en puissance que la norme OACI autorise pour un transpondeur. On peut ajouter une marge à cette tolérance en puissance, cette marge rendant compte du niveau de bruit du signal de réception et des 25 erreurs de mesures du récepteur du radar secondaire. Selon un mode de réalisation pratique, la dispersion maximale peut être tabulée en fonction de la puissance moyenne, de manière à rendre compte de l'évolution du bruit avec la puissance du signal, le niveau de bruit augmentant avec la puissance du signal de réception.

30

On peut repérer les parties stables d'une impulsion en utilisant un autre procédé, tel que celui décrit dans la demande de brevet n° 92 03868 "procédé et dispositif de détection de mélanges d'impulsions reçues par un radar secondaire" (FR 2 689 250). Selon ce procédé, on utilise non seulement le signal de puissance, mais aussi un signal d'écartométrie, noté

¢.

10

20

25

30

ţ

de façon conventionnelle $\Delta I \Sigma$ (désigné encore par l'acronyme OBA dans la littérature anglo-saxonne).

D'une manière générale, le repérage des parties stables d'une impulsion est basé sur l'analyse de la forme d'un ou plusieurs signaux de réception, chaque signal de réception comportant plusieurs échantillons par impulsion. Plus précisément, on recherche si les échantillons d'un signal sont compris à l'intérieur d'une fourchette déterminée. L'étendue de cette fourchette peut être un paramètre tabulé en fonction du niveau du signal.

On se réfère maintenant à la figure 4 sur laquelle est représenté un exemple de signal de réception correspondant à la séquence de valeurs binaires B₄, B₅, B₆ représentée à la figure 2. Le signal de réception SRC comporte deux impulsions P₁, P₂. Selon l'invention, on analyse la forme du signal de réception pour repérer la position des impulsions présentes dans le signal de réception. Par exemple, les impulsions peuvent être repérées à partir de leur front montant et/ou descendant. Selon un mode de mise en œuvre pratique de l'invention, on génère un signal de repérage des impulsions IMP. Dans cet exemple, les positions des impulsions P₁ et P₂ sont repérées à partir de leurs fronts montants respectifs F₁ et F₂. Le signal de repérage IMP comporte ainsi des indications I₁ et I₂ du début de ces impulsions.

Les deux impulsions P_1 et P_2 correspondent en fait à trois valeurs binaires. L'impulsion P_1 correspond à la valeur binaire B_4 . L'impulsion P_2 correspond à la fois aux valeurs binaires B_5 et B_6 . Il manque donc une information dans le signal de repérage IMP permettant de traiter la valeur binaire B_6 . Ceci est lié au codage en position, dans lequel une seule impulsion d'une durée double à la durée d'une impulsion de donnée isolée est générée lors d'une succession particulière de valeurs binaires 0-1.

Selon un mode de réalisation avantageux, lié à l'utilisation d'un codage en position, on repère non seulement la position des impulsions présentes dans le signal de réception, mais aussi la position d'impulsions masquées dans les situations où une seule impulsion est émise pour deux valeurs binaires. Par exemple, lorsqu'on repère la position des impulsions à partir des fronts montants, on repère la position d'une impulsion masquée lors d'une succession de valeurs binaires 0-1, le front montant de l'impulsion

30

masquée étant positionné en début de la période de 1 μ s correspondant à la valeur binaire 1.

Pour repérer la position d'une impulsion masquée, on identifie les impulsions longues parmi les impulsions présentes dans le signal de réception, une impulsion longue étant une impulsion dont la durée est supérieure à une largeur normale d'une impulsion codant pour une valeur binaire isolée. Pour chaque impulsion longue identifiée, on génère non seulement un signal de repérage de l'impulsion longue, mais aussi un signal de repérage d'une impulsion masquée. La position du signal de repérage de l'impulsion masquée peut être déduit du front montant ou du front descendant de l'impulsion longue.

Par exemple lorsque les impulsions sont repérées par leurs fronts montants, on ajoute dans le signal de repérage un front montant $0,5~\mu s$ après le front montant de chaque impulsion longue. De manière alternative, on ajoute dans le signal de repérage un front montant $0,5~\mu s$ avant le front descendant de chaque impulsion longue.

D'une manière générale, les impulsions de données codant pour une valeur binaire isolée ayant une largeur déterminée, si le signal de réception comporte une impulsion semblant avoir une durée supérieure à la largeur déterminée, on repère non seulement la position de cette impulsion, mais aussi la position d'une impulsion masquée, la position de l'impulsion masquée étant déduite du front montant ou du front descendant de l'impulsion longue auquel on ajoute ou on retire la largeur déterminée.

Dans cet exemple appliqué au décodage de réponses mode S, cette largeur déterminée est de $0.5~\mu s$. Ainsi, le signal de repérage IMP comporte une indication I_3 correspondant à un front montant d'une impulsion masquée, ce front montant permettant de repérer la position d'une impulsion de données masquée, cette impulsion de données correspondant à la valeur binaire B_6 .

On se réfère maintenant à la figure 5 sur laquelle est représenté un exemple de signal de réception en présence d'imbrication de deux impulsions provenant par exemple de transpondeurs différents ou de phénomènes de multitrajets. Cette imbrication se traduit par la présence d'une impulsion P₄ dans le signal de réception SRC, l'impulsion P₄

comportant deux fronts montants consécutifs F₄ et F₅ et un front descendant F₆.

Les fronts montants F₄ et F₅ peuvent être utilisés pour repérer respectivement deux positions I_4 et I_5 d'impulsions. Le front descendant F_6 5 peut être utilisé pour repérer une position d'impulsion l₆, la position repérée étant décalée d'une largeur normale d'impulsion de données (c'est à dire 0,5 µs) par rapport au front descendant, de manière à repérer la position théorique du début de l'impulsion.

De préférence, en présence d'imbrication entre plusieurs impulsions, la position de la première impulsion est repérée à partir d'un front montant et la position de la demière impulsion est repérée à partir d'un front descendant. On utilise ainsi les parties non imbriquées des impulsions pour en repérer la position, ce qui apporte une meilleure précision. Dans l'exemple de la figure 5, on effectue ainsi un repérage à partir du front descendant F6, 15 ce qui permet d'indiquer une impulsion à la position le dans le signal de repérage IMP.

Dans ce mode de réalisation avantageux, le front montant F5 n'est pas utilisé. En d'autres termes, le signal de repérage IMP comporte les indications de position I4 et I6 et non l'indication de position I5. En effet, les indications de position I_5 et I_6 correspondent à une même impulsion.

On se réfère maintenant à la figure 6. Lorsqu'une réponse dont on cherche les impulsions de données est identifiée dans le signal de réception, on détermine des positions potentielles d'impulsions de données de la réponse considérée. Une réponse, par exemple en mode S, peut être identifiée à partir de ses impulsions de préambule.

Il existe d'autres procédés pour identifier des réponses mode S dans un signal de réception. On peut par exemple citer le procédé décrit dans la demande de brevet français n° 03 11893 "procédé de pré-détection de réponses dans un radar secondaire et application à la détection de réponses mode S". Selon ce procédé, pour identifier une réponse mode S, on reconnaît une séquence d'impulsions de 56 ou 112 µs correspondant à des impulsions de données d'une réponse mode S courte ou longue, l'intervalle de temps séparant une impulsion de celle qui la précède ne pouvant excéder 1 µs d'après la norme OACI.

ĭ

30

Dans cet exemple, la réponse considérée RMS est une réponse mode S. Les impulsions de données peuvent être positionnées soit au début soit à la fin d'une période de 1 µs. Par conséquent, il y a deux positions potentielles par période de 1 µs, c'est à dire une impulsion potentielle toutes les 0,5 µs. Selon un mode de réalisation pratique, on génère un signal de filtrage FLT permettant de repérer les positions potentielles T₁, T₂, T₃, T₄ des impulsions de données de la réponse considérée.

On détermine ensuite une valeur de référence de la réponse considérée. La valeur de référence est une valeur moyenne d'un signal de réception en présence d'une impulsion de donnée. La valeur de référence peut être basée sur le signal LOG∑ par exemple. La valeur de référence peut être basée sur un autre signal. Par exemple, on peut déterminer une valeur de référence du signal d'écartométrie. Ceci permet d'évaluer la position azimutale (par rapport à l'axe radioélectrique du radar secondaire) du transpondeur ayant émis la réponse. On peut aussi déterminer une valeur de référence du signal sur la voie différence, appelé de façon conventionnelle signal LOG∆.

La détermination d'une ou plusieurs valeurs de référence peut être utilisée pour effectuer un décodage correct des bits du message d'une réponse mode S. Normalement, toutes les impulsions qui appartiennent à une seule réponse sont au même niveau dans le signal de réception (puissance sur la voie somme, puissance sur la voie différence, écartométrie, fréquence de la réponse du transpondeur). La détermination d'une ou plusieurs valeurs de référence permet de comparer le niveau d'un signal de réception à la valeur de référence correspondant à ce signal de réception. En fonction du résultat de cette comparaison, une impulsion peut non être reconnue comme appartenant ou non à la réponse considérée.

Pour déterminer une valeur de référence d'un signal de réception quelconque ($LOG\Sigma$, $LOG\Delta$, ...), on sélectionne des fenêtres temporelles, chaque fenêtre temporelle repérant dans le signal de réception une partie stable d'une impulsion dont la position a été repérée et dont la position repérée coïncide avec une position potentielle déterminée, la valeur de référence étant la valeur prise majoritairement par des échantillons du signal de réception, ces échantillons étant situés dans les fenêtres temporelles sélectionnées.

'n

30

ţ

Selon un mode de réalisation pratique, on utilise le signal de repérage IMP, lequel repère la position des impulsions présentes (impulsions visibles ou masquées) dans le signal de réception. On utilise le signal de filtrage FLT pour ne retenir que les impulsions dont la position repérée coıncide avec une position potentielle d'impulsion de donnée. Ensuite, on sélectionne les échantillons du signal de réception SRC situés dans les fenêtres du signal STB qui correspondent aux impulsions retenues. On peut déterminer ensuite la valeur de référence à partir d'un histogramme des échantillons sélectionnés. En d'autres termes, la valeur de référence peut être déterminée en sélectionnant le niveau pris majoritairement par les échantillons sélectionnés du signal de réception. Par exemple, la valeur de référence peut être le pic de l'histogramme. Selon un autre mode de mise en œuvre, la valeur de référence peut être la moyenne des valeurs de l'histogramme qui appartiennent à une plage de valeurs atteintes un nombre de fois égal au moins à la moitié du nombre de fois où est atteinte la valeur du niveau majoritaire.

Selon un mode de réalisation avantageux, on teste la coïncidence entre la position des impulsions présentes dans le signal de réception d'une part, et la position d'impulsions de données potentielles d'autre part, en utilisant une tolérance fonction de la précision du repérage de la position des impulsions présentes dans le signal de réception. Selon un mode de réalisation pratique, on génère un signal de doute DBT, indiquant un doute sur la position d'une impulsion repérée dans le signal de repérage IMP. Le signal de doute DBT peut par exemple (voir figure 4) indiquer un doute D₃ sur la position des impulsions masquées l₃, lesquelles sont déterminées de manière indirecte (en utilisant le format de la réponse considérée). Le signal de doute DBT peut aussi (voir figure 5) indiquer un doute D₆ sur la position d'une impulsion l₆, lorsque deux méthodes de détermination de la position de cette impulsion ne donnent pas les mêmes résultats (positions l₅ et l₆).

Selon un mode de réalisation pratique, le signal de filtrage FLT comporte des fenêtres temporelles, par exemple de 50 ns à 100 ns, dont la largeur est plus importante en présence d'un doute dans le signal de doute DBT. Ainsi, le signal de filtrage FLT permet d'effectuer le test de coïncidence avec une tolérance variable.

Ainsi, on obtient une valeur de référence avec une précision importante, malgré la présence de bruit ou de pollution, grâce à un filtrage préalable des échantillons au niveau de chaque impulsion. Le procédé peut être amélioré en ajoutant un filtrage au niveau de la réponse, et non seulement au niveau des échantillons.

On se réfère à la figure 7 sur laquelle est représenté un signal lors d'une imbrication entre deux réponses mode S. Le début H₁ de la première réponse R₁ est une zone dite claire, c'est à dire non imbriquée avec d'autres réponse. La fin H₂ de la demière réponse R₂ est aussi une zone claire. Selon un mode de réalisation avantageux, en présence d'imbrication entre plusieurs réponses, lorsqu'on sélectionne les fenêtres temporelles pour déterminer la valeur de référence, on limite la sélection aux fenêtres temporelles situées dans une partie non imbriquée de la réponse considérée. Selon le mode de réalisation pratique décrit, le signal de filtrage FLT est limité à la zone temporelle H₁ lorsqu'on considère la première réponse R₁. Ceci permet de disposer d'un histogramme présentant un pic étroit, même en présence d'imbrication entre deux réponses mode S.

Le procédé décrit peut être mis en œuvre en utilisant des moyens connus de l'homme du métier, tels que des circuits logiques câblés ou des circuits programmés. Les signaux IMP, DBT, FLT, décrits à titre d'exemple, peuvent être des signaux numériques ou analogiques. De préférence, ces signaux sont échantillonnés à la période du signal de réception SRC.

Si deux réponses mode S sont imbriquées, l'invention permet non seulement de déterminer des valeurs de référence de la première réponse, mais aussi de déterminer des valeurs de référence de la seconde réponse. Le filtrage des parties non imbriquées des réponses permet de sélectionner uniquement les échantillons :

- appartenant à une seule réponse, et
- non pollués par d'autres signaux.

30

On dispose ainsi de valeurs de référence précises, déterminée à partir d'échantillons sélectionnés, mais suffisamment nombreux pour en faire une moyenne fiable.

Bien entendu l'invention peut s'appliquer à d'autres domaines que 35 la surveillance du trafic aérien. On peut citer par exemple une application

ì

militaire de l'invention, dans laquelle des radars secondaires sont embarqués à bord de véhicules porteurs (par exemple ACAS), ces radars secondaires fonctionnant sans émettre de message d'interrogation (ou très rarement) mais en analysant des messages émis de façon spontanée ou en réponse à des interrogations d'autres radars secondaires, ces messages ayant le format d'une réponse normalisée. On peut aussi citer une application civile de l'invention, dans laquelle le radar secondaire est embarqué dans un véhicule porteur tel qu'un aéronef ou un bateau, le radar secondaire embarqué étant utilisé comme radar anti-collision.

REVENDICATIONS

- 1. Procédé pour déterminer une valeur de référence d'une réponse contenue dans un signal de réception d'un radar secondaire, la réponse comprenant des impulsions agencées selon un protocole déterminé, procédé dans lequel :
- 5 on repère (IMP) dans le signal de réception (SRC) la position des impulsions présentes ;
 - on détermine (FLT) des positions potentielles d'impulsions de la réponse considérée :
- on sélectionne des fenêtres temporelles, chaque fenêtre temporelle repérant dans le signal de réception une partie stable (STB) d'une impulsion dont la position a été repérée et dont la position repérée coïncide avec une position potentielle déterminée, la valeur de référence étant la valeur prise majoritairement par des échantillons du signal de réception, ces échantillons étant situés dans les fenêtres temporelles sélectionnées.
 - 2. Procédé selon la revendication 1 dans lequel en présence d'imbrication entre plusieurs réponses, lorsqu'on sélectionne les fenêtres temporelles pour déterminer la valeur de référence, on limite la sélection aux fenêtres temporelles situées dans une partie non imbriquée de la réponse considérée.
 - 3. Procédé selon la revendication 1 dans lequel on repère la position des impulsions présentes par détection de fronts montants et/ou descendants dans le signal de réception.
 - 4. Procédé selon la revendication 3 dans lequel les impulsions isolées ayant une largeur déterminée, si le signal de réception comporte une impulsion semblant avoir une durée supérieure à la largeur déterminée, on repère non seulement la position de cette impulsion, mais aussi la position d'une impulsion masquée, la position de l'impulsion masquée étant déduite du front montant ou du front descendant de l'impulsion longue auquel on ajoute ou on retire la largeur déterminée.

١.

5. Procédé selon la revendication 3 dans lequel en présence d'imbrication entre plusieurs impulsions, la position de la première impulsion est repérée à partir d'un front montant et la position de la demière impulsion est repérée à partir d'un front descendant.

5

- 6. Procédé selon la revendication 1 dans lequel on teste la coïncidence entre la position des impulsions présentes dans le signal de réception d'une part, et la position d'impulsions de données potentielles d'autre part, en utilisant une tolérance fonction de la précision du repérage de la position des impulsions présentes dans le signal de réception.
 - 7. Procédé de détection d'impulsions d'une réponse dans lequel :
 - on détermine une valeur de référence selon l'une quelconque des revendications précédentes,
- on détermine la valeur moyenne des échantillons situés dans une fenêtre temporelle sélectionnée ;
 - on détecte une impulsion chaque fois que la valeur moyenne déterminée appartient à une certaine plage de valeurs centrée autour de la valeur de référence déterminée.

20

- 8. Dispositif de détermination d'une valeur de référence d'une réponse contenue dans un signal de réception d'un radar secondaire, la réponse comprenant des impulsions agencées selon un protocole déterminé, dispositif comprenant au moins :
- des moyens pour repérer (IMP) dans le signal de réception (SRC) la position des impulsions présentes;
 - des moyens pour déterminer (FLT) des positions potentielles d'impulsions de la réponse considérée ;
- des moyens pour sélectionner des fenêtres temporelles, chaque fenêtre temporelle repérant dans le signal de réception une partie stable (STB) d'une impulsion dont la position a été repérée et dont la position repérée coïncide avec une position potentielle déterminée, la valeur de référence étant la valeur prise majoritairement par des échantillons du signal de réception, ces échantillons étant situés dans les fenêtres temporelles sélectionnées.

Fig. 1

Fig. 2

Fig. 3

`

Fig. 5

3/3

Fig. 6

Fig. 7

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G01S13/78

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system tollowed by classification symbols)

IPC 7 GO1S

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 577 480 A (THOMSON CSF) 5 January 1994 (1994-01-05) abstract page 6, column 9, line 14 - page 9, column 16, line 23; figures 1-7	1,3,4,7,
A	EP 0 577 479 A (THOMSON CSF) 5 January 1994 (1994-01-05) abstract page 5, column 7, line 35 - page 12, column 21, line 6; figures 1-9	1,2,5,7,
A	EP 0 577 478 A (THOMSON CSF) 5 January 1994 (1994-01-05) abstract page 5, column 7, line 29 - page 8, column 13, line 49; figures 1-6	1,4,6-8
	-/	

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international filing date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed	 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of the actual completion of the international search 26 January 2005	Date of mailing of the international search report $10/02/2005$
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Blondel, F

12	1/	CL	4 U	U4/	'US	230
----	----	----	------------	-----	-----	-----

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	NGEVAIL TO CIGITITIO
A	EP Q 564 322 A (THOMSON CSF) 6 October 1993 (1993-10-06) abstract page 2, column 2, line 34 - page 4, column 6, line 48; figures 1-4	1,7,8
A	FR 2 654 217 A (THOMSON CSF) 10 May 1991 (1991-05-10) cited in the application	
	·	

PCI	/Er	2004	/ U5	238
-----	-----	------	------	------------

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0577480	A	05-01-1994	FR	2692995 A1	31-12-1993
			CA	2099702 A1	31-12-1993
1			DE	69308175 D1	27-03-1997
`			DE	69308175 T2	05-06-1997
			EP	0577480 A1	05-01-1994
			RU	2127438 C1	10-03-1999
•			US	5406288 A	11-04-1995
EP 0577479	Α	05-01-1994	FR	2692998 A1	31-12-1993
			CA	2099700 A1	31-12-1993
			DE	69321882 D1	10-12-1998
			DE	69321882 T2	12-05-1999
			EP	0577479 A1	05-01-1994
			RU	2117314 C1	10-08-1998
			US	5455586 A	03-10-1995
EP 0577478	Α	05-01-1994	FR	2692996 A1	31-12-1993
			CA	2099701 A1	31-12-1993
			DE	69308657 D1·	17-04-1997
			DE	69308657 T2	19-06-1997
			EP	0577478 A1	05-01-1994
			RU	2138062 C1	20-09-1999
			US	5432517 A	11-07-1995
EP 0564322	Α	06-10-1993	FR	2689250 A1	01-10-1993
			DE	69304111 D1	26-09-1996
			DE	69304111 T2	23-01-1997
			EP	0564322 A1	06-10-1993
			JP	6027234 A	04-02-1994
			US	5341139 A	23-08-1994
FR 2654217	Α	10-05-1991	FR	2654217 A1	10-05-1991
			CA	2029147 A1	04-05-1991
			DE	69007421 D1	21-04-1994
			DE	69007421 T2	14-07-1994
			DK	426543 T3	02-05-1994
			EP	0426543 A1	08-05-1991
			JP	3167492 A	19-07-1991
			US	5063386 A	05-11-1991

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

TREFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY