Complex Analysis Lecture 03

MA201 Mathematics III

M. Guru Prem Prasad & Arup Chattopadhyay

IIT Guwahati

Learning Outcome of this Lecture

We learn

- Complex Functions and its visualization
- Limits of Functions
- ullet Point at Infinity (∞) , Extended Complex Plane and Riemann Sphere
- ullet Limits involving ∞
- Continuity
- Properties of Continuous Functions
- Differentiation
- Properties of Differentiable Functions

Complex Functions

Definition

A complex valued function f of a complex variable is a rule that assigns to each complex number z in a set $D \subseteq \mathbb{C}$ one and only complex value w. We write w = f(z) and call w the image of z under f. The set D is called the domain of the definition of f and the set of all images $R = \{w = f(z) : z \in D\}$ is called the range of f.

Usually, the real and imaginary parts of z are denoted by x and y, and those of the image point w are denoted by u and v respectively, so that $w=f(z)=u+i\,v$, where $u\equiv u(z)=u(x,\,y)$ and $v\equiv v(z)=v(x,\,y)$ are real valued functions of z=x+iy.

Example: Consider the function $f(z)=z^2$ for $z\in\mathbb{C}$. This function assigns to each complex number z in \mathbb{C} one and only complex value $w=z^2$. The real and imaginary parts of f(z) are given by

$$\Re(f(z)) = u(x, y) = x^2 - y^2$$
 $\Im(f(z)) = v(x, y) = 2xy$.

Visualizing Complex Functions

In order to investigate a complex function w=f(z), it is necessary to visualize it.

We view z and its image w as points in the complex plane, so that f becomes a transformation or mapping from D in the z-plane (xy-plane) on to the range R in the w-plane (uv-plane).

Limits of functions

Definition

Let w=f(z) be a complex function of a complex variable z that is defined for all values of z in some neighborhood of z_0 , except perhaps at the point z_0 . We say that f has the limit w_0 as z approaches z_0 if **for each** positive number $\epsilon>0$, there exists a $\delta>0$ such that

$$|f(z) - w_0| < \epsilon$$
 whenever $0 < |z - z_0| < \delta$.

We write it as $\lim_{z\to z_0} f(z) = w_0$.

- Geometrically, this says that for each ϵ -neighborhood $B_{\epsilon}(w_0) = \{w \in \mathbb{C} : |w-w_0| < \epsilon\}$ of the point w_0 in the w-plane, there exists a deleted or punctured δ -neighborhood $B_{\delta}^*(z_0) = \{z \in \mathbb{C} : 0 < |z-z_0| < \delta\}$ of z_0 in the z-plane such that $f(B_{\delta}^*(z_0)) \subset B_{\epsilon}(w_0)$.
- In case of functions $f: \mathbb{R} \to \mathbb{R}$, the variable x approaches the point x_0 in only two directions, either right or left. But, in the complex case, z can approach z_0 from any direction. That is, for the limit $\lim_{z\to z_0} f(z)$ to exist, it is required that f(z) must approach the same value no matter how z approaches z_0 .

- Example 1: If f(z)=2i/z then examine the existence of $\lim_{z\to i}f(z)$.
- Example 2: If $f(z) = \overline{z}$ then examine the existence of $\lim_{z \to (1+2i)} f(z)$.
- Example 3: If $f(z)=\Re(z)/|z|$ then examine the existence of $\lim_{z\to 0}f(z)$.
- Example 4: If $f(z)=z/\overline{z}$ then examine the existence of $\lim_{z\to 0}f(z)$.

Limit of f(z) and Limit of $\Re(f(z))$ and $\Im(f(z))$

Theorem

Let $f(z)=u(x,\ y)+i\,v(x,\ y)$ be a complex function that is defined in some neighborhood of z_0 , except perhaps at $z_0=x_0+i\,y_0$. Then

$$\lim_{z \to z_0} f(z) = w_0 = u_0 + i \, v_0$$

if and only if

$$\lim_{(x,\;y)\to(x_0,\;y_0)} u(x,\;y) = u_0 \qquad \text{and} \qquad \lim_{(x,\;y)\to(x_0,\;y_0)} v(x,\;y) = v_0 \;.$$

Example: Let $f(z)=z^2$. Then, $f(z)=u(x,\ y)+i\,v(x,\ y)$ where $u(x,\ y)=x^2-y^2$ and $v(x,\ y)=2xy$. Using above theorem, show that

$$\lim_{z \to (1+2i)} z^2 = -3 + 4i \ .$$

Limit of Functions and Algebraic Operations

Theorem

If
$$\lim_{z \to z_0} f(z) = A$$
 and $\lim_{z \to z_0} g(z) = B$ then
$$\lim_{z \to z_0} k \, f(z) = k \, A \,, \quad \text{where } k \text{ is a complex constant },$$

$$\lim_{z \to z_0} \left(f(z) + g(z) \right) = A + B \,,$$

$$\lim_{z \to z_0} \left(f(z) - g(z) \right) = A - B \,,$$

$$\lim_{z \to z_0} f(z)g(z) = AB \,,$$

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{A}{B} \quad \text{provided } B \neq 0 \,.$$

Point at Infinity ∞ and the Extended Complex Plane

It is convenient to include with the complex number system $\mathbb C$ one ideal element, called point at infinity, denoted by the symbol ∞ . Then the set $\widehat{\mathbb C}=\mathbb C\cup\{\infty\}$ is called the extended complex plane and satisfies the following properties.

• For $z \in \mathbb{C}$,

$$z + \infty = \infty + z = z - \infty = \infty$$
, and $\frac{z}{\infty} = 0$.

• For $z \in \mathbb{C} \setminus \{0\}$,

$$z\cdot\infty=\infty\cdot z=\infty, \qquad {\rm and} \qquad rac{z}{0}=\infty \; .$$

 $\bullet \ \infty \cdot \infty = \infty.$

Expressions such as $\infty + \infty$, $\infty - \infty$, $0 \cdot \infty$, ∞ / ∞ are not defined since they do not lead to meaningful results.

Riemann Sphere and Stereographic Projection

- Join the North Pole N = (0, 0, 1) with the complex number z = x + iy by a straight line L which pierce the sphere at Z.
- \bullet The mapping $z\mapsto Z$ gives one-to-one correspondence between $S\setminus\{N\}$ and $\mathbb{C}.$
- As |z| approaches ∞ (along any direction in the plane), the corresponding point Z on S approaches N.
- Associate the North Pole N with the point at infinity ∞ .
- $|z|>1 \mapsto$ Upper hemisphere of S. $|z|<1 \mapsto$ Lower hemisphere of S. $|z|=1 \mapsto$ Equator of S.
- S is called the Riemann sphere. This bijection between S and $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is called the Stereographic Projection.

Limits involving infinity

Let $f:D\subseteq\mathbb{C}\to\mathbb{C}$. Let z_0 be a limit point of D. Then, $\lim_{z\to z_0}f(z)=\infty$ if for each $\epsilon>0$, there exists a $\delta>0$ such that

$$0 < |z - z_0| < \delta \implies |f(z)| > 1/\epsilon$$
.

Let $f:D\subseteq\mathbb{C}\to\mathbb{C}$. Let ∞ be a limit point of D. Then, $\lim_{z\to\infty}f(z)=w_0$ if for each $\epsilon>0$, there exists a $\delta>0$ such that

$$|z| > 1/\delta \implies |f(z) - w_0| < \epsilon$$
.

Let $f:D\subseteq\mathbb{C}\to\mathbb{C}$. Let ∞ be a limit point of D. Then, $\lim_{z\to\infty}f(z)=\infty$ if for each $\epsilon>0$, there exists a $\delta>0$ such that

$$|z| > 1/\delta \implies |f(z)| > 1/\epsilon$$
.

Results related Limits involving Infinity

$$\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0.$$

$$\lim_{z \to \infty} f(z) = w_0 \iff \lim_{z \to 0} f(1/z) = w_0.$$

$$\lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to 0} \frac{1}{f(1/z)} = 0.$$

Exercises: Find (i)
$$\lim_{z\to\infty}\frac{4z^2}{(z-1)^2}$$
, (ii) $\lim_{z\to 1}\frac{1}{(z-1)^3}$,

ii)
$$\lim_{z \to 1} \frac{1}{(z-1)^3}$$
,

(iii)
$$\lim_{z\to\infty} \frac{z^2+1}{z-1}$$
.

Continuous functions

Definition

Let f(z) be a complex function of a complex variable z that is defined for all values of z in some neighborhood of z_0 . We say that f is continuous at z_0 if for each $\epsilon>0$, there exists a $\delta>0$ such that

$$|z - z_0| < \delta$$
 \Longrightarrow $|f(z) - f(z_0)| < \epsilon$.

Equivalently, f(z) is continuous at the point z_0 if $\lim_{z\to z_0} f(z)$ exists and is equal to $f(z_0)$.

Let $f:D\subseteq\mathbb{C}\to\mathbb{C}$. We say that f is continuous in the set D if f is continuous at each point of D.

Geometrical Interpretation of Continuity

To be continuous at z_0 , the function f should map Near by points of z_0 in to Near by points of $f(z_0)$.

Near by concept is written in terms of neighborhood.

The continuity of f(z) at a point z_0 can be interpreted geometrically as for each ϵ -neighborhood $B_{\epsilon}(f(z_0)) = \{w \in \mathbb{C} : |w - f(z_0)| < \epsilon\}$ of the point $f(z_0)$ in the w-plane, there exists a δ -neighborhood $B_{\delta}(z_0) = \{z \in \mathbb{C} : |z - z_0| < \delta\}$ of z_0 in the z-plane such that the function f(z) maps $B_{\delta}(z_0)$ inside $B_{\epsilon}(f(z_0))$.

Example: Let $f(z) = z^2$. Then,

$$\lim_{z \to (1+2i)} f(z) = \lim_{z \to (1+2i)} z^2 = (1+2i)^2 = -3 + 4i = f(1+2i) .$$

Therefore, the function f(z) is continuous at the point (1+2i).

Example: Let $f(z) = \Re(z)/|z|$ for $z \neq 0$ and f(0) = 1. The function f(z) is not continuous at 0, since $\lim_{z \to 0} \frac{\Re(z)}{|z|}$ does not exist.

Example: Let $f(z)=\Re(z)/|1+z|$ for $z\neq 0$ and f(0)=1. The function f(z) is not continuous at 0, since $\lim_{z\to 0}\frac{\Re(z)}{|1+z|}=0$ which is not equal to f(0)=1.

Results on Continuity

Theorem

Let $f(z) = u(x, y) + i \ v(x, y)$ be defined in some neighborhood of $z_0 = x_0 + i \ y_0$. Then, f is continuous at z_0 if and only if u(x, y) and v(x, y) are continuous at (x_0, y_0) .

Theorem

Suppose that the functions f and g are continuous at z_0 . Then, the following functions are continuous at z_0 : (i) f(z)+g(z), (ii) f(z)-g(z), (iii) f(z)g(z) and (iv) $\frac{f(z)}{g(z)}$ provided that $g(z_0)\neq 0$.

Theorem

Suppose that f is continuous at z_0 and g(z) is continuous at $f(z_0)$. Then, the composition function $h=g\circ f=g(f(z))$ is continuous at z_0 .

Results on Continuity (continuation...)

Theorem

Suppose that f(z) is continuous at z_0 . Then, |f(z)| and $\overline{f(z)}$ are continuous at z_0 .

Theorem

Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$. If D is a connected set and f is continuous in D then the set f(D) is a connected set. That is, Continuous image of connected set is connected.

Theorem

Let $f:D\subset\mathbb{C}\to\mathbb{C}$. If D is a compact set and f is continuous in D then the set f(D) is a compact set. That is, Continuous image of compact set is compact. Further |f| attains its maximum and minimum values in D.

DIFFERENTIABLE FUNCTIONS

Differentiability

Definition

Let $f:D\subseteq\mathbb{C}\to\mathbb{C}$ where D is an open set. Let $z_0\in D$. If

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists, then f is said to be differentiable at the point z_0 , and the number

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

is called the derivative of f at z_0 .

If we write $\Delta z = z - z_0$, then the above definition can be expressed in the form

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z)}{\Delta z}$$

We can also use the Leibnitz notation for the derivative, $\frac{df}{dz}(z_0)$, or $\frac{df}{dz}|_{z=z_0}$.

Note: In the complex variable case there are infinitely many directions in which a variable can approach a point z_0 . But, in the real case, there are only two directions, namely, left and right to approach. So the statement that a function of a complex variable has a derivative is **stronger** than the same statement about a function of a real variable. For example, the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x| is differentiable on $\mathbb{R} \setminus \{0\}$. But, if we consider the same function as a function of complex variable, that is, $f: \mathbb{C} \to \mathbb{R}$ given by f(z) = |z|, then it is nowhere differentiable in \mathbb{C} (which will be proved later). Therefore, it has lost the differentiability on the set $\mathbb{R} \setminus \{0\}$ in the complex case

Examples

Example 1: By using the definition of derivative, let us compute f'(z) at an arbitrary point $z_0 \in \mathbb{C}$ for the function f(z) = z.

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{z - z_0}{z - z_0} = \lim_{z \to z_0} 1 = 1$$
.

Therefore, the derivative of f(z) = z is f'(z) = 1 for any $z \in \mathbb{C}$.

Example 2: By using the definition of derivative, let us compute f'(z) at an arbitrary point $z_0 \in \mathbb{C}$ for the function $f(z) = z^2$.

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{z^2 - z_0^2}{z - z_0} = \lim_{z \to z_0} (z + z_0) = 2z_0.$$

Therefore, the derivative of $f(z) = z^2$ is f'(z) = 2z for any $z \in \mathbb{C}$.

Examples

Example 3:

Let $f:\mathbb{C}\to\mathbb{C}$ be defined by $f(z)=\overline{z}$ for $z\in\mathbb{C}$.

Examine the differentiability of f(z) at each point z of \mathbb{C} .

Answer: $f(z) = \overline{z}$ is not differentiable at any point of $\mathbb C$ (No where differentiable in $\mathbb C$).

Details are worked out on the board.

Example 4:

Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by f(x,y) = (x,-y) for $(x,y) \in \mathbb{R}^2$.

Examine the Frechet differentiability of f on \mathbb{R}^2 (Differentiability in \mathbb{R}^2 from multivariable calculus)

Compare with the above example (Example 3).

Details are worked out on the board.

Examples

Example 5:

On \mathbb{C} , examine the differentiability of $f(z) = |z|^2$ for $z \in \mathbb{C}$.

Answer: The $f(z) = |z|^2$ is not differentiable in $\mathbb{C} \setminus \{0\}$. Further it is differentiable at z = 0.

That is, $|z|^2$ is differentiable only at the point 0 in \mathbb{C} .

Comparison: The function $f(x) = |x|^2$ for $x \in \mathbb{R}$ is (real) differentiable at each point of \mathbb{R} .

Details are worked out on the board.

Example 6:

On \mathbb{C} , examine the differentiability of f(z) = |z| for $z \in \mathbb{C}$.

Answer:The f(z) = |z| is not differentiable at any point of \mathbb{C} .

That is, |z| is nowhere differentiable in \mathbb{C} .

Comparison: The function f(x) = |x| for $x \in \mathbb{R}$ is (real) differentiable at each point of $\mathbb{R} \setminus \{0\}$.

Details are worked out on the board.

Results and Properties

- If f(z) is differentiable at z_0 , then f is continuous at z_0 .
- If $f(z) \equiv c$ is a constant function, then f'(z) = 0.

Theorem

Let f(z) and g(z) be two differentiable functions. Then,

- Sum: $\frac{d}{dz}[f(z) + g(z)] = f'(z) + g'(z)$
- Product: $\frac{d}{dz}[f(z)g(z)] = f'(z)g(z) + f(z)g'(z)$
- $\textbf{ Quotient: } \frac{d}{dz} \left[\frac{f(z)}{g(z)} \right] = \frac{f'(z)g(z) f(z)g'(z)}{(g(z))^2} \text{ provided } g(z) \neq 0$
- Composition: $\frac{d}{dz}[f(g(z))] = f'(g(z)) g'(z)$