AP Physics C: Mechanics - Semester 1 Notes

Manav Bokinala

Fall 2021

Contents

1	Vec	tors and Motion in 2 Dimensions	2
	1.1	Polar Notation	2
	1.2	Vector Addition	2
	1.3	Scalar Multiplication	2
	1.4	Vector Multiplication	2
	1.5	Dot Product	
		1.5.1 Dot Product Properties	
	1.6	Cross Products	
		1.6.1 Cross Product Properties	
2	Dra	g Force	3
	2.1	v^2 model	3
	2.2	$v \bmod el$	3
	2.3	Terminal Velocity	3
3		erential Equations	
	3.1	Integrating Differential Equations	4
4	Cin	cular Motion	1
#	4.1	Uniform Circular Motion	Ξ
	$\frac{4.1}{4.2}$		
	$\frac{4.2}{4.3}$	Velocity	
	$\frac{4.5}{4.4}$		
	4.4	Force	J
5	Rot	ational Motion	5
	5.1	Variables	5
	5.2	Angular Velocity	5
	5.3	Angular Acceleration	6
	5.4	Kinematic Equations	6
6		ter of Mass (Discrete Objects)	
	6.1	Position of the Center of Mass	
	6.2	Velocity of the Center of Mass	
	6.3	Acceleration of the Center of Mass	1
7	Con	ter of Mass (Continuous Objects)	7
•	7.1	Position of Center of Mass	•
	1.1	1 OSITION OF CENTER OF WIRESS	١
8	Rot	ational Intertia	7
	8.1	Discrete Objects	2
	8.2	Continuous Objects	8
	8.3	Parallel Axis Theorem	
	8.4	Systems of Objects	
9	Tor		
	9.1	±	9
	9.2	Torque in Newton's Second Law	ı١

1 Vectors and Motion in 2 Dimensions

Unit vector: length of 1, no units (used for direction)

- Denoted with "hat"
- \hat{x} , \hat{y} , \hat{z} usually denoted as \hat{i} , \hat{j} , \hat{k}

For a 2D velocity vector:

$$\vec{v} = v_x \hat{i} + v_u \hat{j}$$

1.1 Polar Notation

$$\vec{v} = \sqrt{{v_x}^2 + {v_y}^2}$$
 at θ°

 θ is angle relative to positive x-axis

1.2 Vector Addition

$$\vec{A} = A_x \hat{i} + A_y \hat{j}$$

$$\vec{B} = B_x \hat{i} + B_y \hat{j}$$

$$\vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$$

1.3 Scalar Multiplication

 $scalar \cdot vector = vector$

$$\vec{A} = A_x \hat{i} + A_y \hat{j}$$
$$2\vec{A} = 2A_x \hat{i} + 2A_y \hat{j}$$

1.4 Vector Multiplication

 $vector \times vector$

scalar/dot product: $\vec{A} \cdot \vec{B}$

• results in scalar

vector/cross product: $\vec{A} \times \vec{B}$

• results in vector

1.5 Dot Product

$$\vec{A}\cdot\vec{B}=|A||B|\cos\theta$$

• θ is the angle between the two vectors

Or,

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y By$$

1.5.1 Dot Product Properties

$$\vec{A}\cdot\vec{B}=\vec{B}\cdot\vec{A}$$

$$\vec{A}\cdot\vec{B}=0 \text{ if } \vec{A} \text{ and } \vec{B} \text{ are orthogonal}$$

1.6 Cross Products

If
$$\vec{C} = \vec{A} \times \vec{B}$$
,
 $|C| = |A||B|\sin\theta$

the cross product is **orthogonal** to both original vectors (uses 3rd dimension)

1.6.1 Cross Product Properties

$$\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}$$

 $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$

right hand rule - cross product goes "into" or "out of" page

2 Drag Force

- ullet resistive force by ${\it fluids}$ on ${\it moving objects}$
- opposes direction of motion

2.1 v^2 model

$$F_{drag} = -\frac{1}{2}C\rho Av^2$$

- \bullet C drag coefficient
- ρ density of fluid greek letter "rho"
- A cross-sectional area of object
- \bullet v velocity of object
- negative sign just indicates direction opposite to motion

Sometimes, the coefficients $\frac{1}{2}C\rho Av^2$ are grouped into one coefficient (b or k)

- So, $F_{drag} = -bv^2$
- also called the drag coefficient
- specific to object and location
- calculated experimentally

$2.2 \quad v \text{ model}$

for *small objects* moving at *slow speeds*,

$$F_{drag} = -bv$$

2.3 Terminal Velocity

For an object in free fall, terminal velocity occurs when $\left| \vec{F}_{drag} \right| = \left| \vec{F}_{gravity} \right|$

$$F_{net} = F_g - F_{drag}$$

$$0 = mg - bv_t$$

$$v_t = \frac{mg}{b} \ (v \text{ model})$$

$$v_t = \sqrt{\frac{mg}{b}} \ (v^2 \text{ model})$$

3 Differential Equations

Differential equations define relationship between a function and one or more derivatives of that function

Drag force is modeled with a differential equation:

$$F_{drag} = bv$$

$$ma = bv$$

$$m\frac{dv}{dt} = bv$$

3.1 Integrating Differential Equations

$$m\frac{dv}{dt} = bv$$
 rewrite equation to see dependent and independent variables $\frac{1}{v}dv = \frac{b}{m}dt$ separate each variable to one side $\int \frac{1}{v}dv = \int \frac{b}{m}$ integrate

4 Circular Motion

Centripetal force $(F_c \text{ or } \sum F_c)$ isn't really a force - it is the **net** force along the centripetal axis (the axis going through a point on the circular path and the center of said circle).

- could be weight, thension, friction, etc.
- is always orthogonal (perpendicular) to velocity
- depends on mass and tangential velocity of object and radius of circular path

4.1 Uniform Circular Motion

Uniform circular motion occurs when an object moving in a circle with a fixed radius has a constant tangential (and therefore angular) speed

frequency (f) is measured in Hertz Hz **period** (T) is measured in seconds (s)

4.2 Velocity

$$v_t = \frac{\Delta x}{T} = \frac{2\pi r}{T} = 2\pi r f$$

4.3 Acceleration

$$a_c = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$$

Centripetal acceleration always points toward the center of the circular path

• does not change *speed* of object; only changes *direction*

4.4 Force

Centripetal force is the sum of all forces on the centripetal axis

$$\sum F = ma$$

$$\sum F_c = ma_c$$

$$\sum F_c = \frac{mv^2}{r}$$

points toward the center of the circular path

5 Rotational Motion

rigid bodies: objects that do not change shape (deform)

translational motion: motion of the center of mass of the object

rotational motion: rotation around a fixed point (not always the center of mass)

Circular Motion	Rotational Motion	
circular path	spins about axis of rotation	
all parts of object move with same velocity	different points on the object travel at different speeds	

5.1 Variables

- ullet R distance from point on object to axis of rotation
- ullet θ angular displacement measured in radians
- \bullet S Arc Length

$$S = R\theta$$

5.2 Angular Velocity

rate of change of θ

$$\omega = \frac{\Delta \theta}{t} = 2\pi f$$

• ω - angular velocity - measured in radians/second

all points on a rigid body have the same angular velocity ω does not point in the direction of rotation

- ullet use the right hand rule to determine the direction of omega always orthogonal to the rotational plane
 - usually described as "into page" or "out of page"
 - sometimes described as "clockwise" or "counterclockwise"

5.3 Angular Acceleration

rate of change of omega

$$\alpha = \frac{\Delta\omega}{t}$$

• α - angular acceleration - measured in radians/second²

 α does **not** point in the direction of rotation - same as angular velocity (ω)

• use right hand rule just like angular velocity to determine direction of α

5.4 Kinematic Equations

Translational Kinematics	Rotational Kinematics
$\bar{v} = \frac{\Delta x}{t}$	$\bar{\omega} = \frac{\Delta \theta}{t}$
$\bar{v} = \frac{v_1 + v_2}{2}$	$ar{\omega}=rac{\omega_1+\omega_2}{2}$
$\bar{a} = \frac{v - v_0}{t}$	$\bar{\alpha} = \frac{\omega - \omega_0}{t}$
$\Delta x = v_0 t + \frac{1}{2} a t^2$	$\Delta\theta = \omega_0 t + \frac{1}{2}\alpha t^2$
$v_f^2 = v_0^2 + 2a\Delta x$	$\omega_f^2 = \omega_0^2 + 2\alpha\Delta\theta$

6 Center of Mass (Discrete Objects)

- The point at which all mass of an object is though to be concentrated
- also thought of as "average location of mass"
- can be determined experimentally or mathematically
- the center of mass of all objects moves like a point particle even if the object is rotating
- could be inside or outside the object
- the geometric center of an object is *not* always its center of mass only when the object has a uniform density
- unless specified, objects have a uniform density

6.1 Position of the Center of Mass

$$x_c m = \frac{1}{M} \sum m_i x_i$$

- $x_c m = position$ of the center of mass of the systeme
- ullet M total mass of the systeme
- m_i mass of the $i^{\rm th}$ particle
- v_i psoition of the $i^{\rm th}$ particle

A continuous object can be broken down into symmetric discrete pieces to find its center of mass

6.2 Velocity of the Center of Mass

$$v_c m = \frac{1}{M} \sum m_i v_i$$

• v_i - velocity of the $i^{\rm th}$ particle

6.3 Acceleration of the Center of Mass

Newton's third law (F = ma) actually refers to the center of mass of a system or object:

$$Ma_{cm} = \sum F_{external}$$

7 Center of Mass (Continuous Objects)

Not all continuous objects have a uniform mass density

• Mass density usually varies with location

$$x_{cm} = \frac{1}{M} \int x \ dm$$

- \bullet x position of particle
- \bullet dm infinitely small mass

position is given as a function of mass integrate along the length of the object

7.1 Position of Center of Mass

1. Define mass density function:

$$\lambda = \frac{dm}{dx}$$

2. Separate variables:

$$dm = \lambda(x)dx$$

- 3. Integrate along length of object to find total mass of object:
- 4. Use integral form of center of mass formula (see above) to solve for the position of the center of mass
 - use total mass calculated in step 4

8 Rotational Intertia

Rotational inertia (a.k.a moment of inertia): ability of an object to resist changes in its rotational motion

symbol: I scalar quantity units: kg \cdot m²

8.1 Discrete Objects

$$I = \sum m_i R_i^2$$

- m_i mass of object
- ullet R distance between axis of rotation and the object

The same object can have different rotational inertias depending on the location of the axis of rotation

8.2 Continuous Objects

$$I = \int R^2 \ dm$$

Object and Axis of Rotation	Rotational Inertia
Thin rod, about center	$rac{1}{12}ML^2$
Thin rod, about end	$rac{1}{3}ML^2$
Cylinder or disk, about center	$\frac{1}{2}MR^2$
Cylindrical hoop, about edge	MR^2

8.3 Parallel Axis Theorem

If the moment of inertia about the center of mass (I_{CoM}) is known, the moment of inertia about any parallel axis of rotation can be found using the formula:

$$I_{parallel} = I_{CoM} + Md^2$$

- \bullet *M* mass of the objects
- \bullet d distance between the axes

8.4 Systems of Objects

For a system of discrete and/or continous objects:

$$I_{system} = I_1 + I_2 + I_3 + \dots + I_n$$

9 Torque

Torque is the ability of a force to make an object rotate - a "twisting force"

symbol: τ ("tau") units: $N \cdot m$ vector quantity

Magnitude depends on

- size of the force
- direction

• location at which the force is applied

torque is given as the cross product $R \times F$:

$$\tau = R \times F = RF \sin \theta$$

- \bullet R distance from the axis of rotation to the applied force
- ullet F applied force
- θ angle between R and F (when drawn tip-to-tail)

9.1 Direction of Torque

Use the right hand rule to find the direction of torque:

- point index finger in direction from axis of rotation to applied force
- point middle finger in direction of applied forces
- point thumb out this is the direction of the torque

9.2 Torque in Newton's Second Law

$$au_{net} = R imes F$$

$$= RF_{net}$$

$$= Rma \qquad \qquad \text{Newton's 2nd Law, } F = ma$$

$$= Rm\alpha R \qquad \qquad a = \alpha R$$

$$= I\alpha \qquad \qquad \text{rotational inertia, } I = mR^2$$