OANDA Group

FX Volatility Prediction and Insights from Tick Data and Market Events

Oanda industrialist

Geoff Lynch

Members from Academia

Sebastian Jaimungal (The Univ. of Toronto)

Tom Salisbury, Huaxiong Huang (York Univ. & Fields Inst.)

Matheus Grasselli, Yicheng Chen (McMaster Univ.)

Nathan Gold (York Univ.)

Yifan Li, Yichen Zhu, Andrew Day (Western Univ.)

Victor Mouquin, You Zhou (Shanghai Jiaotong Univ.)

Mengjin Zhao, Yadong Yan, Wentao Hu, Bin Teng (Shangdong Univ.)

Xing Li, Zhixing Fei (Shanghai Univ. of Finance and Economics)

May 11, 2018

Table of contents

- 1. Problem Revisited
- 2. The analysis of uncategorized events' impact
- 3. The analysis of categorized events' impact
- 4. Latent Variable Modeling

Problem Revisited

Objectives

- Classify and characterize the volatility regime for a given FX pair.
- Understand the relationship between the current volatility regime and market reaction to known event.

Snapshot of price data and event data

Figure 1: Snapshot of several lines of price data

Currency	Timestamp	Ask Price	Bid Price	Trade or not
EUR/USD	1514844002	1.20022	1.20082	T
EUR/USD	1514844092	1.20073	1.20133	T
EUR/USD	1514844092	1.20077	1.20137	Т
EUR/USD	1514844092	1.20061	1.20121	T
EUR/USD	1514844092	1.20074	1.20134	T
EUR/USD	1514844092	1.20053	1.20113	Т
EUR/USD	1514844092	1.20047	1.20107	T

Figure 2: The event data

56
56
L90
4.7
0.1
1.7
(

The analysis of uncategorized

events' impact

Diurnal pattern of intensity (1 min window)

Formula of transition matrix

- Transition matrix from intensity λ_t^k to volatility regimes $\Lambda_t^k \in \{1, 2, 3\}$, where k is day index and t is bin index.
- Unconditioned transition matrix:

$$A_{ij} = rac{a_{ij}}{\sum_j a_{ij}}$$
 $a_{ij} = \sum_{t,k} 1_{\{\Lambda^k_t = i, \Lambda^k_{t+1} = j\}}$

Conditional transition matrix with event impact:

$$B_{ij} = \frac{b_{ij}}{\sum_j b_{ij}}$$

$$b_{ij} = \sum_n 1_{\{\Lambda_{t_n}^{k_n} = i, \Lambda_{t_{n+1}}^{k_n} = j\}}$$

Average distribution of regime ratio 5 mins before/after event

Average distribution of regime ratio 15 mins before/after event

Transition Matrix

```
Unconditioned matrix t->t+1
[[ 0.79  0.17  0.04]
 [ 0.19 0.53 0.28]
 [ 0.03 0.26 0.7111
Transition matrix during event and 1 minute after
[[ 0.66  0.27  0.07]
[ 0.15 0.52 0.331
 [ 0.04 0.25 0.71]]
Unconditioned matrix t->t+2
[[ 0.57  0.26  0.17]
[ 0.29 0.34 0.371
 [ 0.15 0.34 0.51]]
Transition matrix 1 minute before event and 1 minute after
[[ 0.62  0.23  0.14]
r 0.17 0.52 0.311
 [ 0.04 0.25 0.71]]
Unconditioned matrix t->t+3
[[ 0.52  0.28  0.2 ]
 [ 0.31 0.33 0.361
 [ 0.19 0.34 0.48]]
Transition matrix 1 minute before event and 2 minute after
[[ 0.61  0.23  0.16]
 [ 0.2 0.49 0.311
 r 0.05 0.29 0.6511
```

Probability Transformation of Intensity Data

- \hat{F}_t : the ecdf of intensity in bin t
- Unconditional:

$$\lambda_t^k \stackrel{\hat{\mathcal{F}}_t}{\to} \rho_t^k \in [0, 1]$$

Conditional:

$$\lambda_{t_n}^{k_n} \overset{\hat{\mathcal{F}}_t}{
ightarrow}
ho_{t_n}^{k_n} \in [0,1] (ext{at the event})$$

The unconditional distribution should be uniform (in theory).

We will see the conditional distributions before and after the event.

RStudio: Natebook Output

Figure 3: Conditional distributions at and before the event

(x axis: ρ , y axis: density)

RStudio: Natebook Output

Figure 4: Conditional vs unconditional distributions (ks.test) before the event (x axis: time points before the event, y axis: p-value)

RStudio: Natebook Qutput

Figure 5: Conditional distributions at and after the event $(x \text{ axis: } \rho, \text{ y axis: density})$

9.0 0.4 0.0

Figure 6: Conditional vs unconditional distributions (ks.test) after the event (x axis: time points after the event, y axis: p-value)

time points after the event

40

50

10

20

The analysis of categorized

events' impact

Quadratic variation

$$QV = \sum_{t=0}^{5min} (S_t - S_{t-1})^2$$

Figure 7: Background ratios of increase of volatility over the day

Measure of Ratio

$$Ratio = \frac{\frac{\text{QV(after 5 mins of event)}}{\text{QV(before 5 mins of typical)}}}{\frac{\text{QV(after 5 mins of typical)}}{\text{QV(before 5 mins of typical)}} - 1$$

Impact of Events

Event Name	QV (5mins)	QV (30mins)
FOMC Minutes United States	212.80%	150.75%
Fed Interest Rate Decision United State	201.99%	233.86%
ECB Monetary policy statement and pro	156.38%	139.40%
Unemployment Rate United States	141.35%	125.42%
Nonfarm Payrolls United States	140.88%	125.05%
Retail Sales (MoM) United States	128.33%	62.61%
Retail Sales ex Autos (MoM) United Sta	113.58%	52.14%
Consumer Price Index (YoY) United State	112.54%	62.52%
Consumer Price Index Ex Food & Energy	111.26%	62.78%

Does Mismatch matter?

Figure 8: The Unemployment Rate

Latent Variable Modeling

Thanks!

Any Questions and Suggestions?