

Dr. Christian Czymara

FORSCHUNGSPRAKTIKUM I UND II: LÄNGSSCHNITTDATENANALYSE IN R

Fixed effects session v

AGENDA

- Decomposition of variance into within and between part
- The logic of Fixed Effects (FE) models
- Benefits and limitations of FE
- Comparison of FE and First Difference models

THE POPULARITY OF FIXED EFFECTS IN SOCIOLOGY

Source: Hill, Davis, Roos & French (2020). <u>Limitations of fixed-effects</u> models for panel data. Sociological Perspectives, 63(3): 359

Figure 1. The growing number of articles mentioning fixed-effects (1990–2017) with demarcation for the current study period (2012–2017) by Social Forces (SF), American Journal of Sociology (AJS), and American Sociological Review (ASR).

WITHIN AND BETWEEN VARIANCE IN PANEL DATA

WITHIN AND BETWEEN VARIANCE

--- Total variance of y

Within variance for respondent 1

...... Within variance for respondent 2

--- Between variance

WITHIN AND BETWEEN VARIANCE

- •Within variance: within one individual over time $\rightarrow (y_{it} \bar{y}_i)$
- Between variance: between individuals $\rightarrow (\bar{y}_i \bar{\bar{y}})$

	Year	y_{it}	Individual-specific mean (\bar{y}_i)	Overall mean $(\bar{\bar{y}})$
7	2009	0.58		
	2010	0.88	0.50	
1	2011	0.04		
2	2009	0.66		
2	2010	0.22	0.46	0.42
2	2011	0.5		
3	2009	0.3	$\sim \sim$	
3	2010	0.3	- 0.30	
3	2011	0.3		

WITHIN AND BETWEEN VARIANCE

$$-\bar{y} = 0.42$$

$$\bar{y}_1 = 0.50$$

$$\bar{y}_2 = 0.46$$

$$\bar{y}_3 = 0.30$$

ID	Year	y_{it}
1	2009	0.58
1	2010	0.88
1	2011	0.04
2	2009	0.66
2	2010	0.22
2	2011	0.5
3	2009	0.3
3	2010	0.3
3	2011	0.3

Overall variance: $(y_{it} - \bar{y})$	Within variance: $(y_{it} - \bar{y}_i)$	Between variance: $(\bar{y}_i - \bar{\bar{y}})$
0.16	0.08	0.08
0.46	0.38	0.08
-0.38	-0.46	0.08
0.24	0.2	0.04
-0.2	-0.24	0.04
0.08	0.04	0.04
-0.12	0	-0.12
-0.12	0	-0.12
-0.12	0	-0.12

UNOBSERVED HETEROGENEITY

RECAP: OMITTED VARIABLE BIAS

- OLS yields biased effects if confounding variables are omitted
- Omitted variables
 △ unobserved heterogeneity
- So... How can we use panel data to estimate unbiased effects if there is correlated unobserved heterogeneity?

PANEL DATA MODEL

- •Adding index for time: $y_{it} = \beta_0 + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + \varepsilon_{it}$
- •Differentiating between time-constant and time-varying variables:
- $y_{it} = \beta_0 + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + e_{it}$
- i = 1, ..., n units (e.g. persons)
- t = 1, ..., T observations (e.g.: person-years)
- k time-varying variables x
- *l* time-constant variables *z*
- •Decomposition of error term: $\varepsilon_{it} = u_i + e_{it}$

UNOBSERVED EFFECTS MODEL

$$y_{it} = \beta_0 + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + e_{it} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i$$

- Time varying characteristics
- Variables (x), for example: grades, attitudes, income, ...
- •Idiosyncratic error (e_{it}) : All sources of time-varying variance not captured by x, treated similar to error term in OLS

- Time constant characteristics
- •Variables (z), for example: country of birth, date of graduation, ... (?)
- •Unobserved heterogeneity (u_i) : All time-constant sources of variation not captured by z

UNOBSERVED HETEROGENEITY: EXAMPLE

- True model: $death_{it} = \beta_0 + \beta_1 coffee_{it} + \beta_2 gender_i + u_i + e_{it}$
- •Gender not observed: $death_{it} = \beta_0 + \beta_1 coffee_{it} + u_i + e_{it}$
- The error term is now correlated with the variables in the model (remember session ii)
- $ullet u_i$ includes gender, a confounding variable that correlates with coffee and death (in this example)

CORRELATED UNOBSERVED HETEROGENEITY

- •Analogous to OLS , unobserved effects model yields biased estimates if error terms $(u_i \text{ or } e_{it})$ correlate with variables in the model
- Solution: Control everything that is time-constant of each unit (here: person)
- \mathbf{u}_i as something "typical" for person i
- Part of u_i might be observed, but other parts might not
- How can we control for such stable idiosyncrasies?

FIXED EFFECTS

LEAST SQUARE DUMMY VARIABLES

- Let say person i is a person which has been interviewed several times
- One solution: Control for individual i
- \rightarrow Add a dummy for individual i (1: interviews of individual i, 0: interviews of all other respondents)
- Because we observe every person multiple times, we could add dummies for all persons without exhausting degrees of freedom

LEAST SQUARE DUMMY VARIABLES

- •Include a dummy variable for each person (not person-year!)
- $\bullet death_{it} = \beta_0 + \beta_1 coffee_{it} + \gamma_1 \delta_1 + \dots + \gamma_n \delta_n + u_i + e_{it}$
- Such a model is called a Least Square Dummy Variables (LSDV) regression
- Model yields so-called fixed effects estimates
- Fixed Effects because each unit has a specific fixed effect on the dependent variable

FIXED EFFECTS-TRANSFORMATION

- Including dummy variables for each unit might not always be feasible
- Another way to obtain results: Fixed Effects-Transformation
- •Instead of controlling u_i , we eliminate it from the regression function

MEANS

t = 1:	$death_{i1} = \beta_0 + \beta coffee_{i1} + u_i + e_{i1}$
t = 2:	$death_{i2} = \beta_0 + \beta coffee_{i2} + u_i + e_{i2}$
-Mean:	$\overline{death}_{i.} = \beta_0 + \beta \overline{coffee}_{i.} + \overline{u}_i + \overline{e}_{i.}$
→	$\overline{death}_{i.} = \beta_0 + \beta \overline{coffee}_{i.} + (u_i) + \overline{e}_{i.}$

TIME-DEMEANING AT T=1

- (t = 1) mean:
- $(death_{i1} \overline{death}_{i.})$

$$= (\beta_0 + \beta coffee_{i1} + u_i + e_{i1}) - (\beta_0 + \beta \overline{coffee}_{i.} + u_i + \overline{e}_{i.})$$

$$= \beta(coffee_{i1} - \overline{coffee}_{i.}) + (u_i - u_i) + (\bar{e}_{i1} - \bar{e}_{i.})$$

$$= \beta(coffee_{i1} - \overline{coffee}_{i.}) + (\bar{e}_{i1} - \bar{e}_{i.})$$

TIME-DEMEANING AT T=2

- (t = 2) mean:
- $(death_{i2} \overline{death}_{i.})$

$$= (\beta_0 + \beta coffee_{i2} + u_i + e_{i2}) - (\beta_0 + \beta \overline{coffee}_{i.} + u_i + \overline{e}_{i.})$$

$$= \beta(coffee_{i2} - \overline{coffee}_{i.}) + (u_i - u_i) + (\bar{e}_{i2} - \bar{e}_{i.})$$

$$= \beta(coffee_{i2} - \overline{coffee}_{i.}) + (\bar{e}_{i2} - \bar{e}_{i.})$$

TIME-DEMEANING

- Time-demeaning of panel data
- $(death_{it} \overline{death}_{i.}) = \beta(coffee_{it} \overline{coffee}_{i.}) + (\overline{e}_{it} \overline{e}_{i.})$
- •All estimates are based on within-unit variation over time
- •All between-unit variance (time stable difference between persons) is removed from the data

FIXED EFFECTS TRANSFORMATION

•
$$t = 1$$
: $y_{i1} = \beta_0 + \beta_1 x_{1i1} + \dots + \beta_k x_{ki1} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + e_{i1}$
• $t = 2$: $y_{i2} = \beta_0 + \beta_1 x_{1i2} + \dots + \beta_k x_{ki2} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + e_{i2}$
• $t = T$: $y_{iT} = \beta_0 + \beta_1 x_{1iT} + \dots + \beta_k x_{kiT} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + e_{iT}$

Mean:

$$\bar{y}_{i.} = \beta_0 + \beta_1 \bar{x}_{1i.} + \dots + \beta_k \bar{x}_{ki.} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + \bar{e}_{i.}$$

FIXED EFFECTS TRANSFORMATION

- •Mean: $\bar{y}_{i.} = \beta_0 + \beta_1 \bar{x}_{1i.} + \dots + \beta_k \bar{x}_{ki.} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + \bar{e}_{i.}$
- •t mean: $(y_{it} \bar{y}_{i.}) = (\beta_0 + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + e_{it}) (\beta_0 + \beta_1 \bar{x}_{1i.} + \dots + \beta_k \bar{x}_{ki.} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + \bar{e}_{i.})$
- $\Rightarrow (y_{it} \bar{y}_{i.}) = \beta_1(x_{1it} \bar{x}_{1i.}) + \dots + \beta_k(x_{kit} \bar{x}_{ki.}) + (e_{it} \bar{e}_{i.})$
- $\rightarrow \ddot{y}_{it} = \beta_1 \ddot{x}_{1it} + \dots + \beta_k \ddot{x}_{kit} + \ddot{e}_{it}$

RECAP: TRANSFORMING THE DATA

ID	Year	y_{it}
1	2009	0.58
1	2010	0.88
1	2011	0.04
2	2009	0.66
2	2010	0.22
2	2011	0.5
3	2009	0.3
3	2010	0.3
3	2011	0.3

Overall	Within	Between	
variance:	variance:	variance:	
$(y_{it}-\bar{\bar{y}})$	$(y_{it} - \bar{y}_i)$	$(\bar{y}_i - \bar{\bar{y}})$	
0.16	0.08	0.08	
0.46	0.38	0.08	
-0.38	-0.46	0.08	
0.24	0.2	0.04	
-0.2	-0.24	0.04	
0.08	0.04	0.04	
-0.12	0	-0.12	
-0.12	0	-0.12	
-0.12	0	-0.12	

RECAP: TRANSFORMING THE DATA

ID	Year	y_{it}
1	2009	0.58
1	2010	0.88
1	2011	0.04
2	2009	0.66
2	2010	0.22
2	2011	0.5
3	2009	0.3
3	2010	0.3
3	2011	0.3

Overall variance: $(y_{it} - \bar{y})$	Within variance: $(y_{it} - \bar{y}_i)$	Between variance: $(\bar{y}_i - \bar{\bar{y}})$
0.16	0.08	0.08
0.46	0.38	0.08
-0.38	-0.46	0.08
0.24	0.2	0.04
-0.2	-0.24	0.04
0.08	0.04	0.04
-0.12	0	-0.12
-0.12	0	-0.12
-0.12	0	-0.12

RECAP: WITHIN AND BETWEEN VARIANCE

COMPOSITION OF y

Explained Unexplained variance variance

WHY DO DEMEANED FE AND LSDV YIELD THE SAME EFFECTS?

- Both are practically linear models using the OLS estimator
- Including dummies for units partials out the effects of individuals
- What is left is independent of all differences between individuals or in other words: rid of between variance
- Dummy variables capture all (also unmeasured) timeconstant characteristics of individuals
- Thus, you also get the FE estimates when you control for the unit-specific means of each variable

WHY DO FE AND LSDV NOT YIELD THE SAME STANDARD ERRORS?

- N seems to be the same (data points)
- But time-demeaning actually costs degrees of freedom because it uses information from the data (the unit-specific means)
- •... Or LSDV: each dummy costs one degree of freedom
- Running a linear model with manually demeaned data does not account for this
- Hence, significance tests need to be corrected manually
- If they are not, OLS with manually demeaned variables yields underestimated standard errors

MODELLING TIME TRENDS IN FE

ONE- VS. TWO-WAY FE

- Person FE: Average change in y if x increases by one unit over time
- •Time FE: Average change in y if x increases by one unit between cases
- •Two-way FE: Average difference in within-person changes in y at time point t for each one unit increase in x at t, averaged over all t
- → "two-way FE model unhelpfully combines within-unit and cross-sectional variation in a way that produces uninterpretable answers." (Kropko & Kubinec 2020: 1)

FIXED EFFECTS INDIVIDUAL SLOPES

- •FE assume parallel trends between treated and untreated
- •I.e.: Both groups would follow the same over-time trend in y if x wouldn't change
- •For example: Does marriage increase hourly wage for men? → Men who eventually get married show steeper wage growth even before marriage
- See Rüttenauer & Ludwig (2020)

LIMITS OF FIXED EFFECTS

See Hill, Davis, Roos & French (2020). Limitations of fixed-effects models for panel data. *Sociological Perspectives* 63 (3) 357 - 369.

LOW STATISTICAL POWER

- Observations without temporal variation do not contribute to FE estimator by design
- → Reduced sample size
- Low statistical power (high standard errors)
- Observations with little temporal variation contribute little to FE estimator
- Coefficients are based on small number of observations
- Limited reliability ("Silly estimators", Beck & Katz 2001: 494)
- Increased Type II error rate (false negative)
- Statistically significant FE estimate likely robust, but non-significant FE may be due to low power

EXTERNAL VALIDITY

- Observations with little temporal variation contribute little to FE estimator
- Model of temporal changes only apply to a specific subgroup of observations
- →Subgroup might differ from broader population (i.e. sample might no longer be representative)
- →P-values might have less statistical meaning
- •FE are treatment effects on treated (only units with change are observed), OLS (theoretically) are average treatment effects

OTHER ISSUES OF FE

- Estimates less reliable with less time periods
- Repeated measurement error (overly conservative estimates)
- FE useless for estimating time stable differences
- Unclear which variables are time-stable or varying
- •FE only control *time-stable* effects of time-stable variables

LIMITS TO CAUSAL INFERENCE

- 1. Time-varying confounders (erogeneity assumption)
- 2. Reverse causality (y affecting x)
- 3. Lagged effects (past x affecting current y)
- •All would be solved by including all time-varying confounders, but how realistic is that?

SUMMING UP

SUMMARY

- FE eliminate any between-unit variance from the data
- Estimates only based on within-unit variation
- Automatically control for unobserved heterogeneity (everything time-constant)
- •... Which is a huge step forward for estimating unbiased effects in many cases

SUMMARY

- However, time-constant variables drop out (effects of constants cannot be estimated, just like OLS)
- •... But interactions between time-constant and time-varying variables can still be estimated \rightarrow Does the effect of x depend on z?
- Often more crucial: Many aspects might not be totally constant but empirically vary only little over time
- •FE "may kill some of the omitted variables bias bathwater, but they also remove much of the useful information in the baby, the variable of interest." (Angriest & Pischke 2009: 225)

FIRST DIFFERENCE

FIRST DIFFERENCE ESTIMATION

- Depended variable is the change in y compared to the time before
- •... which is explained by changes in x compared to the time before
- For t = 2 this yields the same results as FE
- The sum of the deviation of two data points from their mean equals the difference between those data points
- •When t > 2, results will differ

FE AND FIRST DIFFERENCE WITH T=2

FIRST DIFFERENCE ESTIMATION

•t:
$$y_{it} = \beta_0 + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + e_{it}$$
•t - 1:
$$y_{it-1} = \beta_0 + \beta_1 x_{1it-1} + \dots + \beta_k x_{kit-1} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + e_{it-1}$$

Difference:

$$(y_{it} - y_{it-1}) = \beta_1(x_{1it} - x_{1it-1}) + \dots + \beta_k(x_{kit} - x_{kit-1}) + (e_{it} - e_{it-1})$$

- •FE model deviations from the unit-specific mean at each time point, but otherwise ignore the temporal aspect
- That means for FE it does not matter when a particular value was observed
- •FD, on the other hand, model changes in y between two consecutive time points
- Hence, the temporal order is important for FD

- FE and FD both eliminate between-unit variance (control for unobserved heterogeneity)
- And both cannot estimate effects of time-constant variables
- •FD automatically control general time trend, FE do not (but can be added to model by including dummies for time-points)
- •FD is based on fewer observations because data point at t drops out when there is no observation at t-1

ID	t	y_{it}	x_{it}	$\bar{y}_{i.}$	$\overline{x}_{i.}$
1	1	6	0	8	3
1	2	8	3	8	3
1	3	6	2	8	3
1	4	10	5	8	3
1	5	10	5	8	3

ID	t	y_{it}	x_{it}	$\bar{y}_{i.}$	$\overline{x}_{i.}$	$y_{it} - \bar{y}_{i.}$	$x_{it} - \overline{x}_{i.}$
						-2	
1	2	8	3	8	3	0	0
1	3	6	2	8	3	-2	-1
1	4	10	5	8	3	2	2
1	5	10	5	8	3	2	2

ID	t	y_{it}	x_{it}	$\overline{y}_{i.}$	\overline{x}_{i} .	$y_{it} - \bar{y}_{i.}$	$x_{it} - \overline{x}_{i.}$	$y_{it} - y_{it-1}$	$x_{it} - x_{it-1}$
1	1	6	0	8	3	-2	-3	•	•
1	2	8	3	8	3	0	0	2	3
1	3	6	2	8	3	-2	-1	-2	-1
1	4	10	5	8	3	2	2	4	2
1	5	10	5	8	3	2	2	0	0

THAT BEING SAID...

LITERATURE

- Chapter 4.1 (pages 126 ff.) in: Andreß, Golsch, & Schmidt (2014). Applied panel data analysis for economic and social surveys. Springer Science & Business Media
- Brüderl (2010). <u>Kausalanalyse mit Paneldaten</u>. Pages 963-994 in: Handbuch der sozialwissenschaftlichen Datenanalyse. VS Verlag für Sozialwissenschaften
- •Study applying Fixed Effects: Czymara & Dochow (2018). <u>Mass</u> media and concerns about immigration in Germany in the <u>21st century: individual-level evidence over 15 years</u>. European Sociological Review, 34(4), 381-401