1 Group Actions

Galois: $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$. Gal $(\mathbb{Q}(i)/\mathbb{Q}) \cong \mathbb{Z}_2$ CAYLEY: |G| = n is isomorphic to a subgroup of S_n

Definition 1.1: Group action

G acting on a set X is $\alpha: G \times X \to X$ such that $\alpha(g,h) = \alpha_g(x)$.

Or equivalently, $\alpha: G \to \operatorname{Perm}(X) \cong S_{|x|}$ such that $\alpha(g) = \alpha_g$

The action satisfies:

- (1) $\alpha_e(x) = x$
- (2) $\alpha_q(\alpha_h(x)) = \alpha_{qh}(x)$

Notation: the action gives $x \in X \rightarrow g \cdot x \in X$

Definition 1.2: Orbits

The subsets of *X* given by $G \cdot x = \{ y \in X \mid y = g \cdot x \text{ for some } g \in G \}$

Notice: Orbits partition G.

Proposition 1.3

The group action is transitive if there is only one orbit.

Transitive: for any $x \in X$, we can find $g \in G$, $y \in X$ such that $x = g \cdot y$

Proposition 1.4

The group action defines an equivalence relation on X with equivalence classes = orbits

Definition 1.5: Stabilizers

For $x \in X$, stabilizers is the subgroup of G, $G_x = \{g \in G \mid g \cdot x = x\}$.

We say the action is **free** if all stabilizers are trivial (no non-identity elements of *G* has a fixed point $g \cdot x = x$).

Theorem 1.6: Orbit-Stabilizer Theorem

 $|G| = |G_x| \times |G \cdot x| =$ (order of stabilizer of x) × (order of orbit of x).

Proof. (Lagrange's Theorem staff)

Lemma 1.6.1

The group actions give homomorphism $\alpha: G \to Perm(X)$

Theorem 1.7: Cayley's Theorem

Every finite group G is (isomorphic to) a subgroup of a symmetric group. Specifically: $|G| = n, G \cong S \leqslant S_n$.

Example 1.8. Groups acting on themselves:

(1) Left multiplication: $m: G \to Perm(G)$ such that $m_g(x) = mg$. The orbits of this action are left cosets.

(2) Conjugation: $\alpha: G \to \operatorname{Perm}(G)$ which is $G \to \operatorname{Auto}(G)$ actually. $\alpha_g(x) = gxg^{-1} = \underbrace{x^g}_{\text{conjugation notation}}$

For part (2):

Orbits = conjugacy classes

$$Cl(x) = \{ y \in G \mid y = gxg^{-1} = x^g \text{ for some } g \in G \}$$

Stabilizers: centralizers

$$G_x = C_G(x) = \{g \in G \mid gxg^{-1} = x\} = \{g \in G \mid gx = xg\}$$

Note: If x conjugate to y then Cl(x) = Cl(y)

Proposition 1.9

FACT:

- (1) $|G| = |C_G(x)| \times |Cl(x)| \Longrightarrow |Cl(x)| = [G:C_G(x)] \Longrightarrow |Cl(x)| |G|$ for every x.
- (2) Class equation: $G = \sqcup_i Cl(g_i)$, g_i representatives of conjugacy classes. This means

$$|G| = \sum_{i} |Cl(g_i)| = \sum_{i} [G:C_G] = |Z(G)| + \underbrace{\sum_{i=k} [G:C_G(x_i)]}_{\text{sum of } |Cl(x)| \neq 1}$$

(3) If $x \in Z(G)$, |Cl(x)| = 1

Proposition 1.10: 7.3.1

Center of a p-group is non-trivial. (Note if G is a p-group, $|G| = p^k$ for some integer k.

Proof. $|G| = p^k$. By class equation, $|G| = |Z(G)| + \sum_i [H : C_G(x_i)]$. Suppose |Z(G)| = 1, so $p^k = 1 + \sum_i [G : C_G(x_i)]$. And $[G : C_G(x_i)] \mid p^k \implies = p^{m_i}$. So

$$p^{k} = 1 + \sum_{i=1}^{k} p^{m_{i}}$$

$$= 1 + p(p^{m_{1}-1} + p^{m_{2}-1} + \dots + p^{m_{k}-1})$$

$$\equiv 1 \pmod{p}$$

Contradiction. So $|Z(G)| \neq 1$.

Proposition 1.11: 7.3.3

Groups of order p^2 are abelian.

Proof. $|G| = p^2$, we want to show $|Z(G)| = p^2$. By previous proposition, $|Z(G)| \neq 1$, so |Z(G)| = p or p^2 . We want to rule out the possibility of order being p. $|G| = |Z(G)| + \sum_{i=1}^{k} [G : C_G(x_i)]$. Notice the order cannot exceed p^2 , the nontrivial conjugacy classes should have order p. Note that if $x \notin Z(G)$, then $Z(G) < C_G(x) \implies |C_G(x)| = p^2$, which is a contradiction.

1.1 Dihedral Groups

Definition 1.12: Dihedral Group

Groups of symmetries of regular n-gons = $\{n \text{ rotations}, n \text{ reflection}\}\$

Notation: D_n (in book) or D_{2n} (modern notation).

We have

$$D_{2n} = \langle r, s \mid r^n = e, s^2 = e, srs = r^{-1} \rangle$$

Another general rule: compose two reflection, get the rotation corresponding $2 \times \theta$ where θ = angle between the axes of rotations.

Proposition 1.13

n odd:

- $Z(D_{2n}) = \{e\}$
- All reflections are conjugate (they are all in the same conjugacy class)

n even:

- $Z(D_{2n}) = \{e, r^{\frac{n}{2}}\}$
- Vertex axis reflections are conjugate, fare axis reflections are conjugate. That is, there are two conjugacy classes: vertex axis reflections and fare axis reflections

Example 1.14. Class equation for $D_8 = \{\text{symmetries of square}\}$

We can think about the elements of D_8 as the elements of S_4 because each element permutes the vertices:

$$r \rightarrow (1234)$$

$$s_1 \rightarrow (23)$$

$$s_2 \to (12)(34)$$

- (1) $Z(D_8) = \{e, (13)(24)\} = \{e, r^2 \equiv S_1 S_3\}$
- (2) $Cl((13)) = \{(13), (24)\}$ (vertex axis reflections) $Cl((12)(34)) = \{(12)(34), (14)(23)\}$ (fare axis reflections)

$$Cl(r) = Cl((1234)) = \{(1234)(1432)\}$$
 (order 4 rotations)

Homework hint (problem 10): Classify group of order 8 =

(1) 3 abelian =
$$\begin{cases} \mathbb{Z}/8\mathbb{Z} \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \end{cases}$$
$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

(2) 2 non-abelian =
$$\begin{cases} D_8 \\ Q_8 = \{1,i,j,k,-1,-i,-j,-k\} \end{cases}$$

1.2 Simple groups

Definition 1.15: Simple groups

Simple groups have no non-trivial normal subgroups. The simple groups are the building blocks of all groups (Some side reading: classification of simple groups)

Lemma 1.15.1: 7.4.2

For normal subgroup $N \le G$ ($qNq^{-1} = N$), we have

- (1) $x \in N \implies Cl(x) \subseteq N$
- (2) $N = \bigcup_x Cl(x)$
- (3) $|N| = \sum_{x \text{ represents of distinct conjugacy class}} |Cl(x)|$

Theorem 1.16: 7.4.3

 A_5 is simple where A_5 = icosahedral group = even parts of permutation in S_5

Proof. We've given that A_5 has the following class equation:

$$|A_5| = 60 = 1 + 20 + 12 + 12 + 15$$

which is established with geometry in book section 7.4.

Suppose N is normal in A_5 , then $|N| \mid 60$. By proposition (3) in the lemma, |N| = 1 + m where m = sum of subset of $\{20, 12, 12, 15\}$. But no such integer m with these combined property \implies no normal subgroup.

The theorem of **Galois group** (we don't need to know for now): Galois group of polynomial \Leftrightarrow polynomial is solvable by radicals. We have $Gal(\mathbb{Q}(\alpha_1, \alpha_2, ..., \alpha_5)/\mathbb{Q}) \leqslant A_5$. Since A_5 is not solvable, degree 5 polynomials are not solvable by radicals (has no formula of roots in terms of n)

1.3 Conjugacy classes in S_n

Example 1.17. We can think about S_5 as $\phi : \{1, 2, 3, 4, 5\} \rightarrow \{a, b, c, d, e\}$. Consider $p \in S_n$, $\phi \circ p \circ \phi^{-1} : \{a, b, c, d, e\} \rightarrow \{a, b, c, d, e\}$. Let q = (1452), p = (134)(25). We have

$$qpq^{-1} = (1452)(134)(25)(2541) = (435)(12) = p'$$

We find that p and its conjugate p' have same disjoint cycle decomposition (cycle structure). And we find that $\phi: \{1, 2, 3, 4, 5\} \rightarrow \{4, 1, 3, 5, 2\}$ maps p to p', which is exactly the same as q.

Proposition 1.18: 7.5.1

p and p' are conjugate in $Sn \Leftrightarrow$ cycle decompositions are the same length (see the example above).

Example 1.19. Consider class equation for S_4 :

Conjugacy classes	partition of 4	#
e	1+1+1+1	1
(**)	1+1+2	6
(**)(**)	2+2	3
(***)	1+3	8
(****)	4	6

Table 1

Group of order 8 (Problem 10): If abelian, = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. If not, = 1 + 1 + 2 + 2 + 2

Example for abelian case: Let $|G| = p^2q^2$, the possible groups are $\mathbb{Z}/p^2q^2\mathbb{Z}$, $\mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/q^2\mathbb{Z}$, ... $(p \times p \times q^2, p^2 \times q \times q, p \times p \times q \times q)$ of the same form)

Now let's see $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$. We know $(-1)^2 = 1, i^2 = j^2 = k^2 = -1, ijk = -1$. And $Z(Q_8) = \{\pm 1\}$.

Class equation for Q_8 : Recall $|Cl(x)| = [Q_8 : C_G(x)]$, and $C_G(i) = \{x \in Q_8 \mid xi = ix\} = \{1, i, -1, -i\}$. Similarly $C_G(j) = \{1, -1, j, -j\}, C_G(k) = \{1, -1, k, -k\}$. So $[Q_8 : C_G(x)] = 2$ for all x = i, j, k.

To distinguish D_8 and Q_8 , see what their normal subgroups are.