第八章 采样系统

- 8.1 导论
- 8.2 采样与保持
 - 8.2.1 脉冲采样
 - 8.2.3 Shannon定理
- 8.3 z-变换
 - 8.3.1 定义
 - 8.3.3 *z*-传递函数
- 8.4 采样系统分析
 - 8.4.1 稳定性分析
 - 8.4.2 双线性变换
- 8.5 小结

- 8.2.2 冲激采样
- 8.2.4 保持器
- 8.3.2 z-变换的性质
- 8.3.4 z-传递函数的计算流程

8.4.3 时间响应

8.1 导论

1. 连续系统

- G_p(s) 连续对象
- G_c(s) 模拟控制器
- 时间变量、系统变量均连续变化

2. 采样系统

- G_p(s) 连续对象
- D(z) 数字控制器
- 连续 (模拟) 信号和离散 (数字) 信号同时存在
- 采样开关, A/D、D/A 转换器

3. 离散时间信号和数字信号

4. 采样类型

(1) 周期采样

$$t_k = kT \qquad k = 0,1,2,\cdots$$

(2) 多速采样

$$t_k = \begin{cases} pT_1 \\ qT_2 \end{cases} \quad p, q = 0, 1, 2, \dots$$

(3) 多阶采样

$$t_{k+1} - t_k \neq t_k - t_{k-1}$$
,
 $t_{k+1} - t_k = 常值$

(4) 随机采样

8.2 采样与保持

8.2.1 脉冲采样

◆ 采样器: 单位阶跃响应的开关

- **采样间隔** T = 常数
- 采样时刻 $t_k = kT$
- γ<< T

◆ 采样后的信号:

• 采样操作即调幅过程

- *p*(*t*):脉冲阵列
- *p*(*t*)的Fourier级数

$$p(t) = \sum_{k=-\infty}^{\infty} C_k \exp(jk\omega_s t)$$
 $\omega_s = 2\pi/T$

* C_k 的计算很复杂

$$C_{k} = \frac{\gamma}{T} \times \frac{\sin(k\gamma\pi/T)}{k\gamma\pi/T} \times e^{-jk\gamma\pi/T}$$

•
$$x_{p}^{*}(t) = x(t) \cdot p(t) = \sum_{k=-\infty}^{\infty} C_{k} x(t) \exp(jk\omega_{s}t)$$

* $x_p^*(t)$ 的计算也很复杂

8.2.2 冲激采样 (理想采样)

- ◆ 理想采样器
- 脉冲高度为 1/γ
- $\gamma \rightarrow 0 \Rightarrow$ 理想采样器

◆ 冲激阵列

•
$$\delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

• Dirac δ -函数: $\delta(t)$

(i)
$$\delta(0) = \infty$$

(ii)
$$\delta(t) = 0$$
 for all $t \neq 0$

$$\frac{t}{0}$$

(iii)
$$\int_{-\infty}^{\infty} \delta(t) \, \mathrm{d}t = 1$$

i.e. 冲激强度为1

(iv)
$$\int_{-\infty}^{\infty} \delta(t) \varphi(t) dt = \varphi(0)$$
 对任意函数 $\varphi(t)$

◆ 采样后的信号

2020/8/25

TAC(1), Chap.8 Sampled Systems

$$\delta_T(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

•
$$x^*(t) = x(t) \cdot \delta_T(t)$$

= $\sum_{n=0}^{\infty} C_n \cdot \delta(t-n)$

$$=\sum_{n=-\infty}^{\infty}C_n\cdot\delta(t-nT)$$

•
$$C_n = \int_{nT^-}^{nT^+} x(t) \delta(t - nT) dt$$

= $x(nT) = x^*(nT)$

 $\oint \delta_{\tau}(t)$

x*(t)的Fourier级数

$$\delta_T(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{jk\omega_s t}$$

$$x^{*}(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} x(t) e^{jk\omega_{s}t}$$

x*(t)的频谱

$$x^{*}(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} x(t) e^{jk\omega_{s}t}$$

采用Laplace变换

$$X^*(s) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(s - jk\omega_s)$$

s = j ω ,则

$$X^*(j\omega) =$$

$$\frac{1}{T} \sum_{k=-\infty}^{\infty} X[j(\omega - k\omega_{s})]$$

 $\int |X(j\omega)|$

8.2.3 Shannon采样定理

令 $2\omega_1$ 为连续信号x(t)的频谱宽度

• 若 $\omega_{\rm s} \geq 2\omega_{\rm l}$,

则信号 x(t) 可利用采样后的信号 $x^*(t)$ 完全重构

例 8.2.1 确定如下系统采样输入到采样输出之间的传递函数

Solution:

$$u^{*}(t) = \delta(t) \qquad U^{*}(s) = 1$$

$$y(t) = e^{-t} \qquad y^{*}(t) = \delta(t) + e^{-T}\delta(t - T) + e^{-2T}\delta(t - 2T) + \cdots$$

$$Y^{*}(s) = 1 + e^{-T}e^{-Ts} + e^{-2T}e^{-2Ts} + \cdots = \frac{1}{1 - e^{-T(s+1)}}$$

$$G^{*}(s) = \frac{Y^{*}(s)}{U^{*}(s)} = \frac{1}{1 - e^{-T(s+1)}}$$

- 采样系统的分析与设计看起来似乎并不复杂
 - * s-域的传递函数

- * 超越函数
- * 不便于分析和设计
- * 需寻求新的分析工具

8.2.4 保持器 (Holder)

◆ 零阶保持器Zero-order hold:

$$\delta(t)$$
 ZOH $h_0(t)$

•
$$h_0(t) = 1(t) - 1(t - T)$$

● **ZOH的传递函数**:
$$H_0(s) = \frac{1 - e^{-Is}}{s}$$

◆ ZOH的频率响应:

令
$$s = j\omega$$
, $\omega_s = \frac{2\pi}{T}$,则

$$H_0(j\omega) = \frac{1 - e^{-j\omega T}}{j\omega} = \frac{2}{\omega} \cdot e^{-\frac{j\omega T}{2}} \cdot \frac{e^{\frac{j\omega T}{2}} - e^{-\frac{j\omega T}{2}}}{2j} = \frac{2}{\omega} \cdot \sin\frac{\omega T}{2} \cdot e^{-\frac{j\omega T}{2}}$$

$$T = \frac{2\pi}{\omega_{\rm s}}$$

$$H_0(j\omega) = \frac{2}{\omega} \cdot \sin \frac{\omega T}{2} \cdot e^{-\frac{j\omega T}{2}}$$

$$= \frac{2}{\omega} \cdot \sin \frac{\omega \pi}{\omega_{s}} \cdot e^{-j\frac{\omega \pi}{\omega_{s}}} = \frac{2\pi}{\omega_{s}} \cdot \frac{\sin \frac{\omega}{\omega_{s}}}{\frac{\omega \pi}{\omega_{s}}} \cdot e^{-j\frac{\omega \pi}{\omega_{s}}}$$

$$H_0(j\omega) = \frac{2\pi}{\omega_s} \cdot \frac{\sin\frac{\omega\pi}{\omega_s}}{\frac{\omega\pi}{\omega_s}} \cdot e^{-j\frac{\omega\pi}{\omega_s}}$$

• Bode图

Nyquist图

2020/8/25

TAC(1), Chap.8 Sampled Systems

◆ ZOH的特点

• 仅利用最近的一个数据

• 当
$$\omega = k\omega_s$$

$$|H_0(j\omega)| = 0$$

$$X^*(j\omega)H_0(j\omega) \approx X(j\omega)$$

● 相角滞后小于 π

8.3 z-变换法

- 8.3.1 z-变换
- 1. 定义
- ◆ 采样后的信号
- 単边信号 x(t)

$$(x(t) = 0 \text{ for } t < 0)$$

• 采样后的信号:

$$x^{*}(t) = x(t)\delta_{T}(t) = \sum_{n=0}^{\infty} x(kT)\delta(t - kT)$$

$$x^{*}(t) = \sum_{n=0}^{\infty} x(kT)\delta(t - kT)$$

♦ 时间函数的z-变换

$$X(z) = \mathcal{Z}\{x^{*}(t)\}\$$

$$= x(0) + x(T)z^{-1} + x(2T)z^{-2} + \dots + x(kT)z^{-k} + \dots$$

$$= \sum_{k=0}^{\infty} x(kT)z^{-k} \qquad x(t) \longrightarrow x^{*}(t)$$

● 对于离散时间信号 x(k)

$$X(z) = Z\{x(k)\} = \sum_{k=0}^{\infty} x(k) z^{-k}$$

◆ 常用函数可查阅z-变换表

8.3.2 z-变换的性质

(1) 平移定理

$$\mathcal{Z}\{x(t-nT)\} = z^{-n}X(z)$$

$$\mathcal{Z}\lbrace x(t+nT)\rbrace = \\ z^{n}X(z) - \sum_{i=0}^{n-1} x(iT)z^{n-i}$$

(2) 初值定理

若
$$\lim_{z\to\infty} X(z)$$
 存在,则 $\lim_{z\to\infty} X(z) = x(0)$

(3) 终值定理

若 x (∞) 存在, 即 X (z) 没有 $|z| \ge 1$ 的极点 (z = 1除外)

则
$$x(\infty) = \lim_{z \to 1} [(z-1)X(z)]$$

更多性质请参阅教材

8.3.3 z-传递函数

• 定义:
$$G(z) = \frac{Y(z)}{U(z)}$$

- 也称脉冲传递函数
- 1. 根据输入与输出信号求z-传递函数

◆ 采样后的输入信号

$$u^{*}(t) = u(0)\delta(t) + u(T)\delta(t-T) + u(2T)\delta(t-2T) + \cdots$$
$$+ u(nT)\delta(t-nT) + \cdots$$
$$= \sum_{n=0}^{\infty} u(nT)\delta(t-nT)$$

● *u**(*t*)的*z*-变换

$$U(z) = \sum_{n=0}^{\infty} u(nT) z^{-n}$$

• 可见 $z = e^{Ts}$

● *u**(*t*)的Laplace变换

$$U^*(s) = \sum_{n=0}^{\infty} u(nT) e^{-nTs}$$

◆ 采样后的输出信号

$$y^{*}(t) = y(0)\delta(t) + y(T)\delta(t-T) + y(2T)\delta(t-2T) + \cdots$$
$$+ y(kT)\delta(t-kT) + \cdots$$
$$= \sum_{k=0}^{\infty} y(kT)\delta(t-kT)$$

$$y^*(t) = \sum_{k=0}^{\infty} y(kT) \delta(t - kT)$$

● 卷积和 (Convolution summation)

当
$$t = kT$$

$$y(kT) = g(t)u(0) + g(t-T)u(T) + g(t-2T)u(2T) + \dots + g(t-kT)u(kT)$$

$$= \sum_{n=0}^{k} g(t-nT)u(nT) = \sum_{n=0}^{k} g(kT-nT)u(nT)$$

$$\sum_{(n=k-m)}^{m=k-n} \sum_{m=0}^{k} g(mT)u(kT-mT) = u(kT) * g(kT)$$

● *y**(*t*)的z-变换

$$Y(z) = \sum_{k=0}^{\infty} y(kT)z^{-k} = \sum_{k=0}^{\infty} \sum_{n=0}^{k} g(kT - nT)u(nT)z^{-k}$$

$$Y(z) = \sum_{k=0}^{\infty} \sum_{n=0}^{k} g(kT - nT)u(nT)z^{-k}$$

$$\sum_{n=0}^{\infty} g(kT - nT)u(nT)$$

$$= g(kT)u(0) + g(kT - T)u(T) + \dots + g(T)u(kT - T) + g(0)u(kT) + g(-T)u(kT + T) + \dots + g(T)u(kT - T)u(T) + \dots + g(T)u(kT - T)u(kT - T)u(kT$$

$$Y(z) = \sum_{k=0}^{\infty} \sum_{n=0}^{k} g(kT - nT)u(nT)z^{-k}$$

* 因此

$$Y(z) = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} g(kT - nT)u(nT)z^{-k}$$

$$= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} g(mT)u(nT)z^{-(n+m)}$$

$$= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} g(mT)u(nT)z^{-(n+m)}$$

$$= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} g(mT)u(nT)z^{-(n+m)}$$

independent
$$= \sum_{n & m=0}^{\infty} g(mT) z^{-m} \sum_{n=0}^{\infty} u(nT) z^{-n}$$

$$= \sum_{m=0}^{\infty} g(mT) z^{-m} \cdot U(z) = G(z) \cdot U(z)$$

$$G(z) = \frac{Y(z)}{U(z)}$$

$$\sum_{m=0}^{\infty} g(mT)z^{-m} \cdot U(z) = G(z)U(z)$$

◆ z-传递函数

$$G(z) = \sum_{m=0}^{\infty} g(mT) z^{-m}$$

◆ 根据定义求z-传递函数的流程

$$G(s) \xrightarrow{\mathcal{L}^{-1}} g(t) \longrightarrow g^*(t) \xrightarrow{\mathcal{Z}} G(z)$$

2. 根据框图变换求z-传递函数

• 对于如下框图

$$U^*(s) \longrightarrow G(s) \xrightarrow{Y(s)} T$$

$$\bullet \ \ Y(s) = G(s) \cdot U^*(s)$$

•
$$Y(s) = G(s) \cdot U^*(s)$$
 $Y(z) = Z[G(s) \cdot U^*(s)]$

● z-变换表达式

$$U(z) \longrightarrow G(z)$$

$$Y(z) = G(z) \cdot U(z)$$

•
$$Z[G(s) \cdot U^*(s)] = G(z) \cdot U(z)$$

例 8.3.1 确定如下系统的脉冲传递函数

$$\begin{array}{c|c}
u(t) & u^*(t) \\
\hline
T & G_1(s)
\end{array}$$

$$\begin{array}{c|c}
y_1(t) & y_1^*(t) \\
\hline
T & G_2(s)
\end{array}$$

$$\begin{array}{c|c}
y(t) & y^*(t) \\
\hline
T & T
\end{array}$$

Solution:

•
$$Y_1(s) = G_1(s)U^*(s)$$
 \Rightarrow $Y_1(z) = G_1(z)U(z)$

$$Y(s) = G_2(s)Y_1^*(s) \Rightarrow Y(z) = G_2(z)Y_1(z)$$

$$Y(z) = G_2(z)G_1(z) \cdot U(z)$$

$$= G(z) \cdot U(z)$$

$$\bullet \ G(z) = G_2(z)G_1(z)$$

例 8.3.2 确定如下系统的脉冲传递函数

Solution:

•
$$\Leftrightarrow G(s) = G_1(s)G_2(s)$$
, \downarrow
$$Y(s) = G_2(s)G_1(s)U^*(s) = G(s) \cdot U^*(s)$$
$$Y(z) = G(z) \cdot U(z)$$

• 其中
$$G(z) = \sum_{m=0}^{\infty} g(mT)z^{-m}$$

$$g(t) = \mathcal{L}^{-1}[G_1(s)G_2(s)]$$

• N.B: 一般而言
$$Z[G_1(s)G_2(s)] \neq G_1(z)G_2(z)$$

$$G_1(s) = \frac{1}{s} \qquad G_1(z) = \frac{z}{z - 1}$$

$$G_2(s) = \frac{1}{s + 1} \qquad G_2(z) = \frac{z}{z - e^{-T}} \qquad G_1(z)G_2(z) = \frac{z^2}{(z - 1)(z - e^{-T})}$$

$$G(s) = G_1(s)G_2(s) = \frac{1}{s(s + 1)}$$

$$Z[G_1(s)G_2(s)] = \frac{(1-e^{-T})z}{(z-1)(z-e^{-T})}$$

• i?
$$Z\left[G_1(s)G_2(s)\right] = G_1G_2(z)$$

例 8.3.3 确定如下系统的脉冲传递函数

Solution:

•
$$e(t) = r(t) - v(t)$$
 \Rightarrow $E(z) = R(z) - V(z)$

•
$$V(s) = F(s)Y(s) = F(s)G(s) \cdot E^*(s)$$

 $V(z) = FG(z) \cdot E(z)$

•
$$E(z) = R(z) - FG(z) \cdot E(z)$$

$$E(z) = \frac{R(z)}{1 + FG(z)}$$

$$E(z) = \frac{R(z)}{1 + FG(z)}$$

$$\bullet Y(s) = G(s) \cdot E^*(s)$$

•
$$Y(z) = G(z) \cdot E(z) = G(z) \cdot \frac{R(z)}{1 + FG(z)}$$

• 闭环脉冲传递函数:

$$\frac{Y(z)}{R(z)} = \frac{G(z)}{1 + FG(z)}$$

例 8.3.4 确定如下系统的脉冲传递函数

Solution:

$$Y(s) = G(s)E(s) = G(s)[R(s) - V(s)]$$

$$= G(s)R(s) - G(s)F(s) \cdot Y^*(s)$$

•
$$Y(z) = GR(z) - GF(z) \cdot Y(z)$$

$$Y(z) = \frac{GR(z)}{1 + GF(z)}$$

● R(z)到 Y(z) 没有脉冲传递函数

8.3.4 计算z-传递函数的一般流程

- (1) 确定两个采样器之间的 G(s)
- 如果存在 ZOH, 则 $G(s) = G_p(s)H_0(s)$
- G(s) 须包括所有串联的传递函数
- (2) 计算 $g(t) = \mathcal{L}^{-1}[G(s)]$

(3) 计算
$$G(z) = \sum_{k=0}^{\infty} g(kT)z^{-k}$$

例 8.3.5 确定如下系统的脉冲传递函数

Solution:

(i) 方法 A: 根据定义

•
$$G(s) = \frac{C(s)}{R^*(s)} = \frac{1 - e^{-s}}{s^2(s+1)} = (1 - e^{-s}) \cdot \left[\frac{1}{s^2} - \frac{1}{s} + \frac{1}{s+1} \right]$$

•
$$g(t) = \mathcal{L}^{-1}[G(s)] = [t-1+e^{-t}] \cdot 1(t)$$

$$-[(t-1)-1+e^{-(t-1)}] \cdot 1(t-1)$$

•
$$g(0) = 0$$

$$g(k) = \left[k - 1 + e^{-k}\right] - \left[k - 1 - 1 + e^{-(k-1)}\right]$$
$$= 1 + e^{-k} - e^{-(k-1)}$$

•
$$G(z) = \sum_{k=0}^{\infty} g(k)z^{-k} = \sum_{k=1}^{\infty} g(k)z^{-k}$$

 $= \sum_{k=1}^{\infty} \left[1 + e^{-k} - e^{-(k-1)} \right] z^{-k}$
 $= \sum_{k=1}^{\infty} \left[z^{-k} + (1 - e)(ez)^{-k} \right]$

$$= \frac{\frac{1}{z}}{1 - \frac{1}{z}} + \frac{(1 - e)\frac{1}{ez}}{1 - \frac{1}{z}}$$

$$= \frac{1}{z - 1} + \frac{e^{-1} - 1}{z - e^{-1}} = \frac{e^{-1}z + 1 - 2e^{-1}}{z^2 - (1 + e^{-1})z + e^{-1}}$$

$$= \frac{0.368z + 0.264}{z^2 - 1.368z + 0.368}$$

$$G(z) = \sum_{k=1}^{\infty} \left[z^{-k} + (1-e)(ez)^{-k} \right]$$

$$G(s) = (1 - e^{-s}) \left[\frac{1}{s^2} - \frac{1}{s} + \frac{1}{s+1} \right]$$

(ii) 方法 B: 根据z-变换表

• 若
$$G(s) = \left(1 - e^{-Ts}\right)X(s) = X(s) - e^{-Ts}X(s)$$

则 $g(t) = x(t) - x(t-T) \cdot 1(t-T)$

• 根据叠加和平移定理知

$$G(z) = X(z) - z^{-1}X(z) = (1 - z^{-1})X(z)$$

● 根据对应关系 $G(s) = \left(1 - e^{-Ts}\right)X(s)$ $G(z) = \left(1 - z^{-1}\right)X(z)$

可得到计算云-传递函数的如下步骤

• 带零阶保持器的传递函数

$$G(s) = (1 - e^{-s}) \cdot \frac{G_{p}(s)}{s}$$
$$X(s) = \frac{G_{p}(s)}{s} = \frac{1}{s^{2}} - \frac{1}{s} + \frac{1}{s+1}$$

● 根据 z- 变换表

$$X(z) = \mathbf{Z}[X(s)] = \mathbf{Z}\left[\frac{G_{p}(s)}{s}\right] = \frac{z}{(z-1)^{2}} - \frac{z}{z-1} + \frac{z}{z-e^{-1}}$$
$$= \frac{z(2-z)}{(z-1)^{2}} + \frac{z}{z-e^{-1}}$$

$$X(z) = \frac{z(2-z)}{(z-1)^2} + \frac{z}{z-e^{-1}}$$

•
$$G(z) = (1 - z^{-1})X(z)$$

$$= \frac{z-1}{z} \cdot \left[\frac{z(2-z)}{(z-1)^2} + \frac{z}{z-e^{-1}} \right]$$

$$= \frac{2-z}{z-1} + \frac{z-1}{z-e^{-1}}$$

$$= \frac{e^{-1}z - 2e^{-1} + 1}{z^2 - (1+e^{-1})z + e^{-1}}$$

8.4 采样系统分析

- 8.4.1 z-平面上的稳定性分析
- ◆ z-平面上的稳定域
- ◇ z 和 s 之间的映射

$$\bullet z = e^{Ts}$$

•
$$s = \sigma + j\omega$$

$$\Rightarrow$$

•
$$s = \sigma + j\omega$$
 $\Rightarrow z = e^{T(\sigma + j\omega)} = e^{T\sigma}e^{jT\omega}$

定常 σ

s-平面

z-平面

定常 ω

• 定常 5

◇ z-平面上的稳定域

$$z = e^{Ts}$$
 $\stackrel{s=\sigma+j\omega}{=}$ $e^{T\sigma}e^{jT\omega}$ $\operatorname{Re}\{s\} < 0 \iff |z| < 1$

◆ 渐近稳定条件:

• OL z-传递函数:
$$GH(z) = \frac{K\psi(z)}{\varphi_{o}(z)}$$

• CL 特征方程:
$$\varphi_{c}(z) = \varphi_{o}(z) + K\psi(z)$$

♦ 稳定条件: $\varphi_{c}(z) = 0$ 所有的根都在单位圆内

1. Jury稳定性判据 (代数准则)

• CL 特征多项式

$$\varphi_{c}(z) = z^{n} + a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_{1}z + a_{0}$$

Jury阵列

	a_{n-1}	a_{n-2}	• • • •	• • •	a_1	a_0
a_0	a_1	a_2			a_{n-1}	1
b_{21}	b_{22}	b_{23}			b_{2n}	
$c_{21} = b_{2n}$	$c_{22} = b_{2,n-1}$	$c_{23} = b$	$0_{2,n-2}$		$c_{2n} =$	b_{21}
b_{31}	b_{32}	b_{33}		$b_{3,n-1}$		
$c_{31} = b_{3,n}$	$c_{32} = b_{3,n-2}$	c_{33}		$b_{3,n-1}$ $c_{3n} = c_{3n}$	<i>b</i> ₃₁	

...

...

 $C_{n+1, 1}$

其中

$$b_{21} = \det \begin{bmatrix} 1 & a_{n-1} \\ a_0 & a_1 \end{bmatrix} \qquad b_{22} = \det \begin{bmatrix} 1 & a_{n-2} \\ a_0 & a_2 \end{bmatrix} \qquad \dots$$

$$b_{31} = \det \begin{bmatrix} b_{21} & b_{22} \\ c_{21} & c_{22} \end{bmatrix}$$
 $b_{32} = \det \begin{bmatrix} b_{21} & b_{23} \\ c_{21} & c_{23} \end{bmatrix}$...

- - -

• 稳定性的充分和必要条件:

$$\varphi_{c}(1) > 0$$
 $(-1)^{n} \varphi_{c}(-1) > 0$
 $c_{21} > 0$
 $c_{i1} < 0$ for $i = 3, 4, \dots, n+1$

N.B. 存在多种代数准则

E. I. Jury.

Theory and Application of the z- transform Method. (2nd ed), Malabar, Florida: Krieger, 1982)

例 8.4.1 试确定如下闭环特征 多项式表征的系统的稳定性

$$\varphi_{\rm c}(z) = z^3 + \frac{2}{3}z^2 - \frac{1}{4}z - \frac{1}{6}$$

Solution:

(i) 书写Jury阵列

•	1	$\frac{2}{3}$	$-\frac{1}{4}$	$-\frac{1}{6}$
	_1	1	$\frac{2}{3}$	1
	6	4	3	
h .	5	5	35	
<i>b</i> ₂₁ =	<u> 36</u>	$\frac{-}{8}$	36	
C	_ 35	5	_ 5	
<i>c</i> ₂₁ =	36	8	36	
h	25	_ 25		
<i>b</i> ₃₁ =	36 25	27		
c ₃₁ =	= -	_ 25		
_	27	36		
<i>b</i> ₄₁ =	=-0.375			
$c_{41} =$	=-0.375	0		

$$\varphi_{c}(z) = z^{3} + \frac{2}{3}z^{2} - \frac{1}{4}z - \frac{1}{6}$$

(ii) 稳定条件

$$\varphi_{\rm c}(1) = \frac{15}{12} > 0$$

$$(-1)^3 \varphi_{\rm c}(-1) = \frac{3}{12} > 0$$

$$c_{21} = \frac{35}{36} > 0$$

$$c_{31} < 0$$

$$c_{41} < 0$$

⇒ 系统稳定

$$\varphi_{\rm c}(z) = 0$$
 $z = -0.667, \pm 0.5$

$$b_{21} = -\frac{5}{36} \qquad \frac{5}{8} \qquad \frac{35}{36}$$

$$c_{21} = \frac{35}{36} \qquad \frac{5}{8} \quad -\frac{5}{36}$$

$$b_{31} = -\frac{23}{36} - \frac{23}{27}$$

$$c_{31} = -\frac{25}{27} - \frac{25}{36}$$

$$b_{41} = -0.3750$$

$$c_{41} = -0.3750$$

2. 根轨迹法

例 8.4.2 确定如下系统的稳定性

Solution:

(i) OL z-传递函数

$$C(z) = \frac{G(z)}{1 + GF(z)} R(z)$$

$$G(z) = GF(z) = \frac{0.632Kz}{(z - 1)(z - 0.368)}$$

$$G(z) = \frac{0.632Kz}{(z-1)(z-0.368)}$$

(ii) 根轨迹

$$z = -1$$
 是临界点

$$G(s) = \frac{K}{s(s+a)}$$

(iii) 稳定条件

● 将 z = -1代入闭环特征方程得

$$z^2 - (1.368 - 0.632K)z + 0.368 = 0 \implies K = 4.329$$

● 当 K > 4.329, 系统不稳定

N.B: 连续闭环系统当 K > 0 时一直稳定

8.4.2 双线性变换 (Bilinear Transformation)

•
$$w = \frac{z-1}{z+1}$$
 i.e. $z = \frac{1+w}{1-w}$

$$z = \frac{1+w}{1-w}$$

◆ 其他方式

$$z = \frac{w+1}{w-1}$$

$$w = \frac{z+1}{z-1}$$

z-plane

w-plane

 $\Diamond z$ -平面上单位圆内 ⇔ w-平面上左半平面

Routh准则

• $\varphi_{c}(z) = 0$ 的根都在z-平面上的单位圆内

$$\Leftrightarrow (1-w)^n \varphi_c \left(\frac{1+w}{1-w}\right) = 0$$
 的根都在w-平面上的左半平面

例 8.4.3 考虑如下开环z-传递函数,确定闭环系统的稳定性

$$GH(z) = \frac{0.632Kz}{(z-1)(z-0.368)}$$

Solution:

Solution:

$$GH(z) = \frac{0.632Kz}{(z-1)(z-0.368)}$$

(i) CL 特征方程

•
$$\varphi_{c}(z) = z^{2} - (1.368 - 0.632K)z + .368 = 0$$

$$z = \frac{1+w}{1-w}$$

• 通过双线性变换

$$(1+w)^2 + (0.632K - 1.368)(1+w)(1-w) + 0.368(1-w)^2 = 0$$
$$(2.736 - 0.632K)w^2 + 1.264w + 0.632K = 0$$

(ii) CL 稳定条件

- 2.736 0.632K > 0 **且** 0.632K > 0
- 即 0 < *K* < 4.329

N.B: 通过如下双线性变换将得到相同的结果

$$z = \frac{w+1}{w-1}$$
 i.e. $w = \frac{z+1}{z-1}$

◆ 稳定性分析方法小结

8.4.3 时间响应

1. 有限拍响应

$$G_{CL}(z) = \frac{a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n}{z^n}$$

$$= a_0 + a_1 z^{-1} + \dots + a_{n-1} z^{-n+1} + a_n z^{-n}$$

◆ 单位脉冲响应

$$g^{*}(t) = a_{0}\delta(t) + a_{1}\delta(t-T) + \cdots + a_{n-1}\delta[t-(n-1)T] + a_{n}\delta(t-nT)$$

◆ CL 响应在有限时间内达到稳态值

例 8.4.7 考虑如下闭环z-传递函数,试确定系统的时间响应

$$G_{\rm CL}(z) = \frac{2z - 1}{z^2}$$

Solution:

(1) 单位阶跃响应

$$R(z) = \frac{z}{z-1}$$

$$C(z) = G_{CL}(z)R(z)$$

$$= \frac{2z-1}{z^2} \cdot \frac{z}{z-1}$$

$$= \frac{2z-1}{z^2-z}$$

$$= 2z^{-1} + z^{-2} + z^{-3} + z^{-4} + \cdots$$

(2) 单位斜坡响应

$$R(z) = \frac{Tz}{(z-1)^2}$$

$$C(z) = G_{CL}(z)R(z)$$

$$= \frac{2z-1}{z^2} \cdot \frac{Tz}{(z-1)^2}$$

$$= \frac{T(2z-1)}{z^3 - 2z^2 + z} = 2Tz^{-2} + 3Tz^{-3} + 4Tz^{-4} + \cdots$$

2. 稳态响应

• 考虑稳定的闭环系统

• 误差
$$E(z) = \frac{R(z)}{1 + GF(z)}$$

(1) 单位阶跃输入
$$r(t) = 1(t)$$

$$r(t) = 1(t)$$

$$R(z) = \frac{z}{z - 1}$$

$$R(z) = \frac{z}{z-1} \qquad E(z) = \frac{1}{1 + GF(z)} \cdot \frac{z}{z-1}$$

• 根据终值定理

$$\lim_{t \to \infty} e(t) = \lim_{z \to 1} (z - 1)E(z) = \lim_{z \to 1} \frac{z}{1 + GF(z)}$$
$$= \frac{1}{1 + \lim_{z \to 1} GF(z)}$$

•
$$K_p = \lim_{z \to 1} GF(z)$$
:静态位置误差系数

$$\bullet \quad e_{\rm ss} = \frac{1}{1 + K_{\rm p}}$$

 $E(z) = \frac{R(z)}{1 + GF(z)}$

$$E(z) = \frac{R(z)}{1 + GF(z)}$$

(2) 斜坡输入

$$R(z) = \frac{Tz}{(z-1)^2}$$

$$R(z) = \frac{Tz}{(z-1)^2} \qquad E(z) = \frac{1}{1 + GF(z)} \cdot \frac{Tz}{(z-1)^2}$$

• 根据终值定理

$$\lim_{t \to \infty} e(t) = \lim_{z \to 1} (z - 1)E(z) = \lim_{z \to 1} \frac{Tz}{(z - 1)[1 + GF(z)]}$$
$$= \lim_{z \to 1} \frac{T}{(z - 1)GF(z)}$$

r(t) = t

• $K_v = T^{-1} \lim (z-1)GF(z)$:静态速度误差系数

$$\bullet \ e_{\rm ss} = \frac{1}{K_{\rm v}}$$

$$E(z) = \frac{R(z)}{1 + GF(z)}$$

(3) 抛物线输入

$$R(z) = \frac{T^2 z(z+1)}{2(z-1)^3}$$

$$r(t) = \frac{1}{2}t^{2}$$

$$E(z) = \frac{1}{1 + GF(z)} \cdot \frac{T^{2}z(z+1)}{2(z-1)^{3}}$$

• 根据终值定理

$$\lim_{t \to \infty} e(t) = \lim_{z \to 1} (z - 1)E(z) = \lim_{z \to 1} \frac{T^2 z(z + 1)}{2(z - 1)^2 [1 + GF(z)]}$$

$$= \lim_{z \to 1} \frac{T^2}{(z - 1)^2 GF(z)}$$

•
$$K_a = T^{-2} \lim_{z \to 1} (z - 1)^2 GF(z)$$
:静态加速度误差系数

$$\bullet \ e_{\rm ss} = \frac{1}{K_{\rm a}}$$

输入	单位阶跃	单位斜坡	单位抛物线
Type 1 单个极点 z = 1	$e_{ss} \rightarrow 0$ $K_{p} \rightarrow \infty$	$e_{\rm ss} = \frac{1}{K_{\rm v}}$	$e_{\rm ss} \rightarrow \infty$
Type 2 两个极点 z = 1		$e_{\rm ss} \rightarrow 0$ $K_{\rm v} \rightarrow \infty$	$e_{\rm ss} = \frac{1}{K_{\rm a}}$
Type 3 三个极点 z = 1			$e_{ss} \rightarrow 0$ $K_a \rightarrow \infty$

§ 8.5 小结

- 1. 脉冲采样、冲激采样、保持
- 2. z-传递函数
- 3. z-传递函数的计算
- 4. 采样系统的稳定性分析
- 5. 采样系统的时间响应

End of Chapter 8

