Konsenzus otporan na otkaze (Fault-Tolerant Consensus)

Model komunikacije

- ·Potpun graf (svaki čvor povezan sa svakim)
- ·Sinhrona mreža

Slanje svima (Broadcast)

Slanje poruke a svim proc u jednoj rundi

Na kraju runde: svi su primili a

Slanje svima

Dva ili više procesora mogu slati svima u istoj rudi

$$p_2$$
 p_3
 p_4
 p_5
 p_4
 p_5
 p_4
 p_5

Otkazi tipa ispada (Crash)

Neke od poruka se gube, one nikad neće biti primljene

Neispravan procesor p_1

$$p_3$$

$$p_5$$

$$p_4$$

Posle otkaza proces nestaje iz mreže

Konsenzus

Svako ima neku početnu vrednost

Svi moraju da se odluče za istu vrednost

Uslov validnosti:

Ako svi počnu sa istom vrednošću, oni moraju da se odluče za tu vrednost

Jedan jednostavan algoritam

Svaki procesor:

1. Pošalji vrednost svim procesorima

2. Odluči se za minimum

(potrebna je samo jedna runda)

Početak

Kraj

Ovaj algoritan zadovoljava uslov validnosti

ako svi počnu sa istom početnom vrednošću, svi se odlučuju za tu vrednost (minimum)

Konsenzus sa otkazima ispada

Ovaj jednostavan algoritam <u>ne</u> radi

Svaki procesor:

- 1. Šalje vrednost svim procesorima
- 2. Odlučuje se za minimum

Početak

Neispravan procesor ne šalje svoju vrednost svim procesorima

Razmenjene vrednosti

ispao

Odluči se za minimum

Kraj

Nema konsenzusa!!!

Ako neki algoritam rešava konsenzus za f procesa u otkazu, kažemo da je on:

f-elastičan algoritam konsenzusa

Primer: Ulaz i izlaz jednog 3-elastičnog algoritma konsenzusa

Jedan f-elastičan algoritam

Runda 1: pošalji svima svoju vrednost

Runda 2 do runde f+1: pošalji svima sve novo primljene vred.

Kraj runde f+1: odluči se za min. primljenu vrednost

Početak

(2)

3

Runda 2

Kraj

Odluči se za min vrednost

Početak

0

4

(2)

3

Drugi primer: izvršenje sa 2 otkaza

Runda 3

Kraj

0, 1,2,3,4

Odluči se za min vrednost

Početak

0

4

(2)

3

Još jedan primer izvršenja sa 2 otkaza

Pošalji svima sve vrednosti

Runda 2

Pošalji svima sve vrednosti

Napomena: Na kraju ove runde svi procesi znaju sve druge vrednosti

Runda 3

Pošalji svima sve vrednosti (niko ne dobija novu vrednost u ovoj rundi)

Kraj

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

Odluči se za min vrednost

Ako ima f otkaza i f+1 rundi, onda postoji runda bez otkaza procesa

U algoritmu, na kraju runde bez otkaza:

 Svaki (ispravan) proces zna sve vrednosti svih drugih procesa koji učestvuju

·To znanje se ne menja sve do kraja algoritma Zbog toga, na kraju runde bez otkaza:

svi bi se odlučili za istu vrednost

Ali, pošto nije poznata tačna pozicija ove runde, moramo pustiti algoritam da izvrši svih f+1 rundi

Validnost algoritma:

kad svi procesi počnu sa jedom istom ulaznom vred. onda je konsenzus ta vred.

Ovo važi, pošto je vrednost za koju se odluči svaki proces neka ulazna vrednost

Donja granica

Teorema: Bilo koji f-elastičan alg. konsenzusa zahteva bar f+1 rundi

Skica dokaza:

Predpost. zbog kontradikcije da je f ili manje rundi dovoljno

Scenario najgoreg slučaja:

U svakoj rundi, postoji proces koji otkazuje

Runda 1

pre nego proces p_i otkaže, on šalje svoju vred. a samo procesu p_k

pre nego proces p_k otkaže, on šalje vred. a samo procesu p_m

Na kraju runde **f** samo proces p_n zna za vrednost **a**

proces p_n može odlučiti **a**, a svi drugi procesi mogu odlučiti drugu vrednost (b)

Zbog toga f rundi nije dovoljno Potrebno je bar f+1 rundi

Vizantijski otkazi (Byzantine Failures)

Vizantijski otkazi

Različiti procesi primaju različite vrednosti

Neke poruke mogu biti izgubljene

Vizantijski proces se može ponašati kao proces koji je ispao iz rada (Crash)

Nakon otkaza, proces nastavlja da funkcioniše u mreži

Konsenzus sa vizantijskim otkazima

f-elastičan algoritam konsenzusa:

rešava konsenzus za f procesa u otkazu

Primer: Ulaz i izlaz za

1-elastičan algoritam konsenzusa

Uslov validnosti:

ako svi ispravni procesi počnu sa istom vred. onda se svi ispravni procesi odlučuju za tu vrednost

Donja granica za broj rundi

Teorema: Bilo koji f-elastičan alg. konsenzusa sa vizantijskim otkazima zahteva bar f+1 rundi

Dokaz:

sledi iz donje granice za ispade (crash)

Jedan algoritam konsenzusa

Algoritam Kralj (King)

```
rešava konsenzus za
```

```
n procesa i f otkaza, gde je f < \frac{n}{4}
```

Postoji f+1 faza

Svaka faza ima dve runde slanja svima

U svakoj fazi postoji različit kralj

Primer: 12 procesa, 2 otkaza, 3 kralja

početne vrednosti

Primer: 12 procesa, 2 otkaza, 3 kralja

početne vrednosti

Napomena: Postoji kralj koji je ispravan

Svaki procesor p_i ima prioritetnu vrednost v_i

Na početku, prioritetna vrednost se postavlja na početnu vrednost

Faza k

Runda 1, procesor p_i :

- \cdot Šalji svima prioritetnu vred. v_i
- Neka je a većinska vrednost od primljenih vred. (uključujući v_i) (u slučaju nerešenog ishoda izaberi proizvoljnu vred.)

• Postavi $v_i = a$

Faza k

Runda 2, kralj p_k :

Šalji svima novu prior. vrednost v_k

Runda 2, proces p_i :

Ako v_i ima većinu, ne veću od $\frac{n}{2} + f$

onda postavi $v_i = v_k$

Kraj Faze f+1:

Svaki proces odlučuje o prior. vrednosti

Primer: 6 procesa, 1 otkaz

Faza 1, Runda 1

Svi šalju svima

Faza 1, Runda 1

Izaberi većinsku vred

U rundi 2, svi će izabrati kraljevu vrednost

Faza 1, Runda 2

Kralj šalje svima

Svi izabiraju kraljevu vrednost

Svi šalju svima

Izaberi većinsku vred

U rundi 2, svi će izabrati kraljevu vrednost

Kralj šalje svima

Svi izabiraju kraljevu vrednost

Konačna odluka

Teorema: U fazi Φ u kojoj
je kralj ispravan,
svi ispravni procesori se
odlučuju za istu vrednost

Dokaz: Razmotrimo fazu Φ

Na kraju runde 1, ispitujemo dva slučaja:

Sluč. 1: neki čvor je izabrao svoju prioritetnu vrednost sa jakom većinom ($> \frac{n}{2} + f$ glasova)

Sluč. 2: ni jedan čvor nije izabrao svoju prioritetnu vrednost sa jakom većinom

Sluč. 1: neka je čvor i izabrao svoju prioritetnu vred. a sa jakom većinom ($> \frac{n}{2} + f$ glasova)

Na kraju runde 1, svi drugi čvorovi moraju imati prioritetnu vred. a (uključujući kralja)

Objašnjenje:

Bar $> \frac{n}{2} + f$ ispravnih čvorova je moralo poslati svima a na početku runde 1

Na kraju runde 2:

Ako čvor zadrži svoju spost. vred.: onda odlučuje a

Ako čvor dobije vrednost od kralja: onda on odlučuje a , pošto je kralj odlučio a

Zbog toga: Svaki ispravan čvor odlučuje a

Sluč. 2: Ni jedan čvor nije izabrao svoju prior. vred. sa jakom većinom ($>\frac{n}{2}+f$ glasova)

Svaki ispravan čvor će usvojiti vrednost od kralja, pa će se svi odlučiti za istu vrednost

KRAJ DOKAZA

Neka je a vrednost koja je odlučena na kraju faze Φ

Posle Φ , vred. a će uvek biti prioritetna sa jakom većinom, pošto je broj ispravnih procesora: $n-f>\frac{n}{2}+f$

(jer je
$$f < \frac{n}{4}$$
)

Zato, od Φ sve do poslednje faze f+1 svaki ispravan procesor odlučuje a

Jedan nemoguć rezultat

Teorema: Ne postoji f-elastičan algoritam za n procesa, koji zadovoljava

$$f \ge \frac{n}{3}$$

Dokaz: Prvo dokazujemo slučaj sa 3 procesa, a zatim opšti slučaj

Slučaj sa 3 procesa

Lema: Ne postoji 1-elastičan algoritam za 3 procesa

Dokaz: Predpost. radi kontradikcije da postoji 1-elastičan algoritam za 3 procesa

Početna vrednost

Odlučena vrednost

Predpost. da su procesi u prstenu

Procesi misle da su u trouglu

(uslov validnosti)

(uslov validnosti)

Nemoguće!!! jer je algoritam 1-elastičan

Zaključak:

Ne postoji algoritam koji rešava konsenzus za 3 procesa od kojih je 1 vizantijski proces

Slučaj sa n procesa

Predpost. radi kontradikcije da postoji neki f-elastičan algoritam A za n procesa, za koji je: $f \ge \frac{n}{3}$

Koristićemo algoritam A da rešimo konsenzus za 3 procesa i 1 otkaz

(kontradikcija)

algoritam A

Svaki proces q simulira algoritam A

za
$$\frac{n}{3}$$
 svih p procesa

Kad q otkaže

onda $\frac{n}{3}$ svih p procesa takođe otkaže

algoritam A toleriše
$$\frac{n}{3}$$
 otkaza

Došli smo do konsenzusa sa 1 otkazom Nemoguće!!!

Zaključak:

Ne postoji f-elastičan algoritam za n procesa, gde je

$$f \ge \frac{n}{3}$$

Rendomizirani vizantijski dogovor

Postoji neki poverljiv procesor 9 koji u svakoj rundi baca na slučaj novčić (coin) i informiše sve druge procesore

coin = heads (verovatnoća
$$\frac{1}{2}$$
)

coin = tail (verovatnoća
$$\frac{1}{2}$$
)

Svaki procesor P_i ima prioritetnu vred. v_i

Na početku, prioritetna vred se postavlja na početnu vred

Predpostavimo da je početna vred. binarna

$$V_i \in \{0,1\}$$

Ovaj algoritam toleriše $f < \frac{n}{8}$ vizantijskih procesora

Postoje tri praga vrednosti:

$$L = \frac{5n}{8} + 1$$
 $H = \frac{6n}{8} + 1$ $G = \frac{7n}{8} + 1$

U svakoj rundi, procesor p_i izvršava:

Šalji svima v_i ; Primi vrednosti od svih procesora; $maj_i \leftarrow većinska vrednost;$ $tally_i \leftarrow broj pojava od maj;$ If coin=heads then threshold $\leftarrow L = \frac{5n}{\Omega} + 1$ else threshold $\leftarrow H = \frac{6n}{6} + 1$ If $tally_i \ge the shold then v_i \leftarrow maj_i$ else $v_i \leftarrow 0$ If $tally_i \ge G = \frac{7n}{8} + 1$ then došlo se do odluke Analiza: Ispitajmo slučajeve u rundi

Završetak: Postoji neki procesor P_i sa $tally_i \ge G = \frac{7n}{8} + 1$

Drugi slučajevi:

Sluč. 1: Dva procesora p_i i p_k imaju različite $maj_i \neq maj_k$

Sluč. 2: Svi procesori imaju isti maj_i

Završetak: Postoji neki procesor P_i sa $tally_i \ge G = \frac{7n}{8} + 1$

Pošto procesora u otkazu ima najviše $f < \frac{n}{8}$

procesor p, prima bar

$$tally_i - f \ge \frac{6n}{8} + 1$$

glasova za maj, od dobrih procesora

Zbog toga, svaki procesor P_k

će imati
$$maj_i = maj_k$$

$$tally_k \ge H = \frac{6n}{8} + 1$$

Sledstveno, na kraju runde svi dobri procesori će imati istu prioritetnu vrednost:

$$v_k = maj_k = maj_i$$

Opažanje:

Ako na početku runde svi dobri procesori imaju istu prioritetnu vrednost onda se algoritam završava u toj rundi

Ovo važi jer će za svaki procesor P_i uslov završetka $tally_i \ge G = \frac{7n}{8} + 1$ biti zadovoljen u toj rundi

Zbog toga, ako je usloz završetka zadovoljen za jedan procesor u nekoj rundi, onda, će uslov završetka biti zadovoljen za sve procesore u sledećoj rundi.

Sluč. 1: Dva procesora p_i i p_k imaju različite $maj_i \neq maj_k$

Mora biti da je
$$tally_i < L = \frac{5n}{8} + 1$$
i da je $tally_k < L = \frac{5n}{8} + 1$

I zbog toga je
$$v_i = v_k = 0$$

Zato, svaki procesor bira 0, i algoritam se završava u sledećoj rundi

Predpost. (radi kontradikcije) da je

$$tally_{i} \geq L = \frac{5n}{8} + 1$$

Onda je bar

$$tally_i - f \ge \frac{4n}{8} + 1 = \frac{n}{2} + 1$$

dobrih procesora glasalo maj_i

Sledstveno,
$$maj_i = maj_j$$

Kontradikcija!

Sluč. 2: Svi procesori imaju isti maj_i

Onda za bilo koja dva procesora P_i i P_k važi da je $|ta/|y_i - ta/|y_k| \le f$

jer bi inače, broj procesora u otkazu bio veći od f

Neka je P_{\min} procesor sa

$$tally_{\min} = \min_{i} \{tally_{i}\}$$

Pod-sluč. 1:
$$tally_{min} < L = \frac{5n}{8} + 1$$

Ako je threshold =
$$H = \frac{6n}{8} + 1$$

(ovo se dešava sa verovatnoćom $\frac{1}{2}$)

onda, za bilo koji procesor P_k važi da je

$$tally_k \le tally_{min} + f < L + f = \frac{6n}{8} + 1 = H$$

I zbog toga je
$$v_i = v_k = 0$$

Dakle, svaki procesor izabira 0, i algoritam se završava u sledećoj rundi

(ovo se dešava sa verovatnoćom
$$\frac{1}{2}$$
)

Pod-sluč. 2:
$$tally_{min} \ge L = \frac{5n}{8} + 1$$

Ako je threshold =
$$L = \frac{5n}{8} + 1$$

(ovo se dešava sa verovatnoćom $\frac{1}{2}$)

onda, za bilo koji procesor P_k važi da je

$$tally_k \ge tally_{\min} \ge L$$

I zbog toga je
$$V_k = V_{\min}$$

Dakle, svaki procesor izabira V_{\min} , i algoritam se završava u sledećoj rundi

(ovo se dešava sa verovatnoćom
$$\frac{1}{2}$$
)