$\overline{\mathrm{DM}\ \mathrm{N}^{\mathrm{o}}\mathrm{2}\ \mathrm{(pour}\ \overline{\mathrm{le}\ 30/09/2008)}}$

Racine carrée d'un endomorphisme

NOTATIONS:

Soit V un espace vectoriel réel; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V).

Soit f un endomorphisme de l'espace vectoriel V; l'endomorphisme noté f^k , où k est un entier naturel désigne l'endomorphisme unité Id_V si l'entier k est nul, l'endomorphisme obtenu en composant f k-fois avec lui-même si l'entier k est supérieur ou égal à 1:

$$f^0 = Id_V \quad ; \quad f^{k+1} = f^k \circ f$$

Soit E l'espace vectoriel des polynômes réels; étant donné un entier naturel n, soit E_n l'espace vectoriel des polynômes réels de degré inférieur ou égal à n:

$$E = \mathbb{R}[X]$$
 ; $E_n = \mathbb{R}_n[X]$.

Soit D l'endomorphisme de l'espace vectoriel $E = \mathbb{R}[X]$ qui, au polynôme Q, fait correspondre le polynôme dérivé Q'. De même, soit D_n l'endomorphisme de l'espace vectoriel $E_n = \mathbb{R}_n[X]$ qui, au polynôme Q, fait correspondre le polynôme dérivé Q'.

L'objet et du problème est de rechercher des réels λ pour lesquels l'endomorphisme $\lambda Id_E + D$ est égal au composé d'un endomorphisme g de l'espace vectoriel E avec lui-même; ainsi que des réels λ pour lesquels l'endomorphisme $\lambda Id_{E_n} + D_n$ est égal au composé d'un endomorphisme g de l'espace vectoriel E_n avec lui-même.

Les troisième et quatrième parties peuvent être abordées indépendamment des première et deuxième parties ainsi que des préliminaires.

Les troisième et quatrième parties sont réservées aux 5/2!

PRÉLIMINAIRES

Noyaux itérés :

Soient V un espace vectoriel réel et f un endomorphisme de V.

1°) Démontrer que la suite des noyaux des endomorphismes $f^k, k = 0, 1, 2, ...$ est une suite de sous-espaces vectoriels de V emboîtée croissante :

$$\operatorname{Ker} f^0 \subset \operatorname{Ker} f^1 \subset \operatorname{Ker} f^2 \subset \ldots \subset \operatorname{Ker} f^k \subset \operatorname{Ker} f^{k+1} \subset \ldots$$

2°) Démontrer que, s'il existe un entier p tel que les noyaux des endomorphismes f^p et f^{p+1} soient égaux ($\operatorname{Ker} f^p = \operatorname{Ker} f^{p+1}$), pour tout entier q supérieur ou égal à p, les noyaux des endomorphismes f^q et f^{q+1} sont égaux ($\operatorname{Ker} f^q = \operatorname{Ker} f^{q+1}$); en déduire la propriété suivante :

pour tout entier
$$k$$
 supérieur ou égal à p , $\operatorname{Ker} f^k = \operatorname{Ker} f^p$.

En déduire que, si l'espace vectoriel V est de dimension finie n, la suite des dimensions des noyaux des endomorphismes f^k est constante à partir d'un rang p inférieur ou égal à la dimension n ($p \le n$). En particulier les noyaux $\operatorname{Ker} f^n$, $\operatorname{Ker} f^{n+1}$ sont égaux.

3°) Démontrer que, si l'endomorphisme u d'un espace vectoriel V de dimension finie n, est tel qu'il existe un entier q supérieur ou égal à 1 ($q \ge 1$), pour lequel l'endomorphisme u^q est nul ($u^q = 0$), l'endomorphisme u^n est nul ($u^n = 0$).

L'endomorphisme u est dit nilpotent.

PREMIÈRE PARTIE

Le but de cette partie est d'établir des propriétés des endomorphismes g recherchés et de donner un exemple.

1°) Une caractérisation des sous-espaces vectoriels stables par g:

Soit λ un réel donné.

a) Étant donné un entier naturel $n \ (n \in \mathbb{N})$, soit p un entier naturel inférieur ou égal à l'entier $n \ (0 \le p \le n)$. Démontrer que, s'il existe un endomorphisme g de l'espace vectoriel $E_n = \mathbb{R}_n[X]$, tel que

$$g^2 = \lambda I d_{E_n} + D_n$$

l'endomorphisme g commute avec D_n :

$$g \circ D_n = D_n \circ g$$
.

En remarquant que le sous-espace vectoriel $E_p = \mathbb{R}_p[X]$ est égal à $\operatorname{Ker}(D_n)^{p+1}$, démontrer que E_p est stable par l'endomorphisme g de E_n ; soit g_p la restriction de l'endomorphisme g à E_p . Démontrer la relation :

$$(g_p)^2 = \lambda I d_{E_p} + D_p.$$

b) Démontrer que, s'il existe un endomorphisme g de l'espace vectoriel $E = \mathbb{R}[X]$, tel que

$$g^2 = \lambda I d_E + D,$$

l'endomorphisme g commute avec D:

$$g \circ D = D \circ g$$
.

En déduire que, pour tout entier naturel n, le sous-espace vectoriel $E_n = \mathbb{R}_n[X]$ est stable par l'endomorphisme g et que, si g_n est la restriction de l'endomorphisme g à E_n , il vient :

$$(g_n)^2 = \lambda I d_{E_n} + D_n.$$

c) Soit g un endomorphisme de l'espace des polynômes réels $E=\mathbb{R}[X]$ tel que :

$$g^2 = \lambda I d_E + D \,.$$

i) Soit F un sous-espace vectoriel de l'espace vectoriel E de dimension n+1 stable par l'endomorphisme D. Démontrer que l'endomorphisme D_F , restriction de D à F, est nilpotent.

En déduire que le sous-espace vectoriel F est égal à $E_n = \mathbb{R}_n[X]$. Déterminer ensuite tous les sous-espaces vectoriels G de E (de dimension finie ou non) stables par D.

ii) Démontrer que, pour qu'un sous-espace vectoriel G de E soit stable par l'endomorphisme g, il faut et il suffit qu'il soit stable par D.

2°) Une application immédiate : le cas $\lambda < 0$:

a) À quelle condition nécessaire sur le réel λ existe-t-il un endomorphisme g de l'espace vectoriel $E_0 = \mathbb{R}_0[X]$ tel que

$$g^2 = \lambda I d_{E_0} + D_0 ?$$

- b) Soit λ un réel strictement négatif ($\lambda<0$), déduire des résultats précédents les deux propriétés :
 - · Il n'existe pas d'endomorphisme g de E tel que :

$$g^2 = \lambda I d_E + D .$$

· Il n'existe pas d'endomorphisme g de E_n tel que :

$$g^2 = \lambda I d_{E_n} + D_n .$$

3°) Une représentation matricielle simple de D_n :

Soient n un entier naturel supérieur ou égal à 1, λ un réel.

Matrice A_{λ} : soit A_{λ} la matrice carrée d'ordre n+1 définie par les relations suivantes : ses coefficients a_{ij} , i=0,1,...n, j=0,1,...n, sont définis par les relations :

$$a_{ii} = \lambda$$
, $a_{i\,i+1} = 1$, $a_{ij} = 0$ si $j \neq i$ ou si $j \neq i+1$.

C'est-à-dire:

$$A_{\lambda} = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix}$$

a) Soit f un endomorphisme d'un espace vectoriel V de dimension finie n+1 tel que l'endomorphisme f^{n+1} soit nul sans que l'endomorphisme f^n le soit :

$$f^{n+1} = 0, \quad f^n \neq 0.$$

Démontrer qu'il existe un vecteur y de l'espace vectoriel V tel que la famille $B = (f^n(y), f^{n-1}(y), ..., y)$ soit libre. Quelle est la matrice associée à l'endomorphisme f dans la base B?

b) En déduire qu'il existe une base B_n de l'espace vectoriel $E_n = \mathbb{R}_n[X]$ pour laquelle la matrice associée à l'endomorphisme D_n est la matrice A_0 . Que vaut la matrice associée à l'application $\lambda Id_{E_n} + D_n$ dans cette base B_n ?

4°) Un exemple :

Dans cette question l'entier n est égal à 2.

a) Démontrer que les seuls endomorphismes h de E_2 qui commutent avec l'endomorphisme D_2 sont les polynômes de degré inférieur ou égal à 2 en D_2 :

$$h = aId_{E_2} + bD_2 + c(D_2)^2.$$

a, b, c sont trois réels.

b) En déduire qu'il existe des endomorphismes g de E_2 qui vérifient la relation suivante :

$$g^2 = \lambda I d_{E_2} + D_2.$$

Déterminer les matrices carrées G d'ordre 3 qui vérifient la relation suivante :

$$G^2 = A_1$$
.

DEUXIÈME PARTIE

L'objet de cette partie est d'étudier le cas où le réel λ est nul. Dans cette partie l'entier n est supposé donné supérieur ou égal à 1.

1°) Existence d'un endomorphisme g tel que $g^2 = D_n$:

- a) Montrer que, s'il existe un endomorphisme g de l'espace vectoriel $E_n = \mathbb{R}_n[X]$ tel que $g^2 = D_n$, alors l'endomorphisme g est nilpotent et le noyau de l'endomorphisme g^2 a une dimension au moins égale à 2 (dim Ker $g^2 \ge 2$).
- b) En déduire qu'il n'existe pas d'endomorphisme g de l'espace vectoriel $E_n = \mathbb{R}_n[X]$ tel que $g^2 = D_n$.
- c) En déduire qu'il n'existe pas d'endomorphisme g de l'espace vectoriel $E = \mathbb{R}[X]$ tel que $g^2 = D$.

2°) Existence d'un endomorphisme g tel que $g^k=D^m$:

Soit m un entier supérieur ou égal à 1 $(m \ge 1)$ et k un entier supérieur ou égal à 2 $(k \ge 2)$. Soit g un endomorphisme de l'espace vectoriel $E = \mathbb{R}[X]$ tel que la relation ci-dessous soit vérifiée :

$$q^k = D^m$$
.

- a) Démontrer que les deux endomorphismes D et g sont surjectifs.
- b) Démontrer que les sous-espaces vectoriels de E, Ker g^p ont des dimensions finies lorsque l'entier q est inférieur ou égal à l'entier k ($0 \le q \le k$).
- c) Soit p un entier supérieur au égal à 2 et inférieur ou égal à k ($2 \le p \le k$). Soit Φ l'application définie dans l'espace vectoriel $\operatorname{Ker} g^p$ par la relation :

$$\Phi: P \longrightarrow g(P)$$
.

Démontrer que cette application Φ est une application linéaire de $\operatorname{Ker} g^p$ dans l'espace vectoriel $\operatorname{Ker} g^{p-1}$. Quel est le noyau de l'application Φ ? Démontrer que l'application Φ est surjective ($\operatorname{Im} \Phi = \operatorname{Ker} g^{p-1}$).

En déduire une relation entre les dimensions des sous-espaces vectoriels $\text{Ker}g^p$ et $\text{Ker}g^{p-1}$. Quelle est la dimension de l'espace vectoriel $\text{Ker}g^p$ en fonction de la dimension de l'espace vectoriel $\text{Ker}g^p$?

d) Déterminer une condition nécessaire et suffisante sur les entiers k et m pour qu'il existe au moins un endomorphisme g de l'espace vectoriel E tel que $g^k = D^m$. Retrouver le résultat de la question II-1.c.

TROISIÈME PARTIE

L'entier strictement positif n est supposé fixé. Dans cette partie, l'espace vectoriel $E_n = \mathbb{R}_n[X]$ est muni de la base B_n définie à la question I-3.b. La matrice associée à l'application I_{E_n} est la matrice I_{n+1} ; la matrice associée à l'endomorphisme D_n , est désignée par le même symbole D_n .

Étant donné un réel λ supposé strictement positif ($\lambda > 0$), soit L_n l'application de \mathbb{R} dans l'espace des matrices carrées réelles d'ordre n+1, $M_{n+1}(\mathbb{R})$ qui, au réel t, associe la matrice L_n définie par la relation suivante :

$$L_n(t) = \sum_{k=1}^{n} (-1)^{k-1} \frac{t^k}{k} (D_n)^k.$$

La matrice $(D_n)^k$ est le produit k-fois avec elle-même de la matrice D_n .

- 1°) Dérivée de l'application $t \longmapsto (L_n(t))^k$:
 - a) Démontrer que, pour tout t réel, la matrice $I_{n+1} + tD_n$ est inversible et que son inverse, noté $(I_{n+1} + tD_n)^{-1}$ s'écrit sous la forme suivante :

$$(I_{n+1} + tD_n)^{-1} = \sum_{k=0}^{n} a_k (t) (D_n)^k.$$

Déterminer les fonctions $a_k: t \longmapsto a_k(t)$ (bien sûr : $(D_n)^0 = I_{n+1}$).

- b) Démontrer que l'application de \mathbb{R} dans l'ensemble des matrices, réelles, carrées, d'ordre $n+1:t\longmapsto (I_{n+1}+tD_n)^{-1}$ est dérivable; exprimer sa dérivée à l'aide des matrices $(I_{n+1}+tD_n)^{-1}$ et D_n .
- c) Démontrer que, pour tout réel t, la matrice $L_n(t)$, élevée à la puissance n+1 est nulle :

$$\left(L_n\left(t\right)\right)^{n+1}=0.$$

d) Calculer la fonction dérivée $t \longmapsto \frac{d}{dt}L_n(t)$ de la fonction $t \longmapsto L_n(t)$ au moyen des matrices D_n et $(I_{n+1} + tD_n)^{-1}$.

Étant donné un entier naturel k donné, déduire des résultats précédents l'expression de la fonction dérivée $t \longmapsto \frac{d}{dt} (L_n(t))^k$ de la fonction $t \longmapsto (L_n(t))^k$ à l'aide de l'entier k et des matrices $L_n(t)$, D_n et $(I_{n+1} + tD_n)^{-1}$.

 $\mathbf{2}^{\circ}$) Matrice $\varphi_{u}\left(t\right)$:

étant donné un réel u, soit $\varphi_{u}\left(t\right)$ la matrice définie par la relation suivante :

$$\varphi_u(t) = \sum_{k=0}^{n} \frac{u^k}{k!} (L_n(t))^k.$$

La matrice $(L_n(t))^k$ est la matrice $L_n(t)$ élevée à la puissance k.

a) Démontrer qu'étant donnés deux réels u et v le produit des matrices $\varphi_u(t)$ et $\varphi_v(t)$ est égal à la matrice $\varphi_{u+v}(t)$:

$$\varphi_{u}(t) \cdot \varphi_{v}(t) = \varphi_{u+v}(t)$$

b) Démontrer que la fonction $t \mapsto \varphi_u(t)$ est dérivable et que sa dérivée φ'_u est définie sur la droite réelle par la relation suivante :

$$\varphi_u'(t) = u \left(I_{n+1} + t D_n \right)^{-1} . D_n . \varphi_u(t)$$

c) Dans cette question le réel u est égal à 1; démontrer que la dérivée seconde de la fonction φ_1 est nulle : pour tout réel t, $\varphi_1''(t) = 0$. En déduire la relation :

$$\varphi_1\left(t\right) = I_{n+1} + tD_n.$$

3°) Existence de l'endomorphisme g:

a) Soit λ un réel strictement positif ($\lambda > 0$); en utilisant les résultats de la question précédente et en remarquant la relation suivante

$$\lambda I_{n+1} + D_n = \lambda \left(I_{n+1} + \frac{1}{\lambda} D_n \right),$$

démontrer qu'il existe une matrice carrée réelle d'ordre n+1 telle que

$$M^2 = \lambda I_{n+1} + D_n.$$

Exprimer cette matrice M avec une matrice $\varphi_u\left(t\right)$. En déduire l'existence d'un endomorphisme g de E_n tel que :

$$g^2 = \lambda I d_{E_n} + D_n.$$

b) Retrouver les matrices obtenues à la question I-4.

QUATRIÈME PARTIE

1°) Un développement en série entière :

a) Soit h la fonction définie sur la demi-droite $[-1, +\infty[$ par la relation :

$$h\left(x\right) = \sqrt{1+x}.$$

Déterminer une équation différentielle linéaire du premier ordre dont une solution est cette fonction h.

b) En déduire qu'il existe un intervalle ouvert]-R, R[dans lequel la fonction h est la somme d'une série entière de terme général $b_p x^p, p = 0, 1, 2, \dots$ Déterminer le rayon de convergence R et les coefficients b_p .

pour tout réel
$$x$$
 appartenant à $]-R,R[\,,\,h(x)=\sum_{p=0}^{\infty}b_{p}x^{p}.$

c) Déterminer les valeurs des réels c_n , n = 0, 1, 2, ... définis par la relation suivante :

$$c_n = \sum_{p=0}^n b_p b_{n-p}.$$

2°) Existence d'un endomorphisme g de E tel que $g^2=\lambda Id_E+D$ où λ est strictement positif :

Soit λ un réel strictement positif donné ($\lambda > 0$).

a) Soit T l'application définie dans $E = \mathbb{R}[X]$ par la relation :

pour tout
$$P \operatorname{de} E$$
, $T(P) = \sum_{p=0}^{\infty} \frac{b_p}{\lambda^p} D^p P$.

Démontrer que T est un endomorphisme de E.

- b) Calculer pour tout polynôme P de E son image par l'application composée $T \circ T = T^2$.
- c) En déduire l'existence d'un endomorphisme g de E qui vérifie la relation suivante :

$$q^2 = \lambda I d_E + D.$$

d) En déduire, pour tout entier naturel n, l'existence d'un endomorphisme g_n , de l'espace vectoriel $E_n = \mathbb{R}_n[X]$ tel que la relation ci-dessous ait lieu :

$$(g_n)^2 = \lambda I d_{E_n} + D_n.$$

Exprimer l'endomorphisme g_n comme un polynôme de l'endomorphisme D_n . Retrouver les matrices obtenues à la question I-4.

FIN DU PROBLÈME