Combinador Lineal

- Resuelve un problema de Regresión Lineal
- □ Función de Error
 - Error cuadrático medio
- □ Técnica de optimización
 - Descenso de gradiente estocástico

Técnica del descenso del gradiente estocástico

$$w(t+1) = w(t) + \Delta w(t)$$
$$w(t+1) = w(t) - \mu \nabla \xi(w(t))$$

se utiliza

$$\xi = \langle \varepsilon_k^2 \rangle \approx \varepsilon_k^2 = (d_k - \sum_{i=0}^N x_{ik} w_i)^2$$

Técnica del descenso del gradiente estocástico

$$w(t+1) = w(t) + \Delta w(t)$$
$$w(t+1) = w(t) - \mu \nabla \xi(w(t))$$

se utiliza

$$\xi = \langle \varepsilon_k^2 \rangle \approx \varepsilon_k^2 = (d_k - \sum_{i=0}^N x_{ik} w_i)^2$$

veamos que

$$\nabla \varepsilon_k^2(t) = -2\varepsilon_k(t)x_k$$

Ejemplo - Central de energía eléctrica

- □ El archivo **CCPP.csv** contiene 9568 datos de una Central de Ciclo Combinado recolectados entre 2006 y 2011.
- Objetivo: Predecir la producción neta de energía eléctrica por hora (PE) de la planta
- Las características relevadas son:
 - Temperatura ambiente (AT)
 - Presión ambiente (AP)
 - Humedad relativa (RH)
 - Vacío de escape (V)

<u>(ver cómo funciona la central)</u>

Ejemplo - Central de energía eléctrica

■ Matriz de Correlación

Index	AT	V	AP	RH	PE
AT	1	0.844107	-0.507549	-0.542535	-0.948128
V	0.844107	1	-0.413502	-0.312187	-0.86978
AP	-0.507549	-0.413502	1	0.0995743	0.518429
RH	-0.542535	-0.312187	0.0995743	1	0.389794
PE	-0.948128	-0.86978	0.518429	0.389794	1

Error cometido en este ejemplo $\longrightarrow Error = (y - \hat{y}) = 94.76$

Descenso de gradiente estocástico

□ Se busca minimizar el ECM para el ejemplo actual

$$E = (y - \hat{y})^2 = (y - (w_1.x_1 + w_2.x_2 + b))^2$$

Debemos calcular el gradiente para saber cómo modificar los pesos

$$\frac{\partial E}{\partial w_1} = -2(y - \hat{y}) \frac{\partial (w_1, x_1 + w_2, x_2 + b)}{\partial w_1} = -2(y - \hat{y})x_1$$

$$\frac{\partial E}{\partial w_2} = -2(y - \hat{y}) \frac{\partial (w_1 \cdot x_1 + w_2 \cdot x_2 + b)}{\partial w_2} = -2(y - \hat{y})x_2$$

$$\frac{\partial E}{\partial b} = -2(y - \hat{y}) \frac{\partial (w_1 \cdot x_1 + w_2 \cdot x_2 + b)}{\partial b} = -2(y - \hat{y})$$

□ La forma gral. es

$$\frac{\partial E}{w_i} = -2(y - \widehat{y})x_i$$

Descenso de gradiente estocástico

□ Se busca minimizar el ECM para el ejemplo actual

$$E = (y - \hat{y})^2 = (y - (w_1.x_1 + w_2.x_2 + b))^2$$

- Debemos calcular el gradiente para saber cómo modificar los pesos
- Luego

$$w_1 = w_1 - \alpha \frac{\partial E}{\partial w_1}$$

$$w_1 = w_1 + 2\alpha \cdot (y - \hat{y}) \cdot x_1 = -8.50 + 2\alpha * 94.76 * 14.96 = -8.47$$

Descenso de gradiente estocástico

Se busca minimizar el ECM para el ejemplo actual

$$E = (y - \hat{y})^2 = (y - (w_1.x_1 + w_2.x_2 + b))^2$$

- Debemos calcular el gradiente para saber cómo modificar los pesos
- Luego

$$w_1 = w_1 - \alpha \frac{\partial E}{\partial w_1}$$
 $w_2 = w_2 - \alpha \frac{\partial E}{\partial w_2}$ $b = b - \alpha \frac{\partial E}{\partial b}$ $w_1 = -8.47$ $w_2 = 7.76$ $b = 174.80$

$$(-8.50 \quad 7.68) * {14.96 \choose 41.73} + 174.80$$
 $\hat{y} = 368.49$ $y = 463.26$

Error cometido en este ejemplo $\longrightarrow Error = (y - \hat{y}) = 94.76$

X Y
$$x_0 = 1$$
 b $y_0 = 1$ $y_0 =$

$$(-8.47 \quad 7.76) * {14.96 \choose 41.73} + 174.80$$
 $\hat{y} = 372.23$ $y = 463.26$

Error cometido en este ejemplo $\longrightarrow Error = (y - \hat{y}) = 91.03$

(Atributos normalizados linealmente entre 0 y 1)

 \square PE = -0.92 * AT -0.18 * V + 0.03 * AP - 0.15 * RH + 1.09

Comb_LINEAL_CCPP_RN.ipynb

Boston Housing data set

Contiene datos de las viviendas de 506 secciones censales de Boston del censo de 1970.

- Objetivo: Predecir el precio de una casa.
- Analizar los atributos antes de usarlos.
- Selección de atributos por correlación.

- CRIM Crimen per cápita por ciudad
- ZN proporción de terrenos residenciales
- INDUS proporción de negocios no minoristas
- CHAS 1 si el tramo limita el río, 0 si no
- NOX concentración de óxidos nítricos
- RM nro. promedio de habitaciones por vivienda
- AGE proporción de unidades construidas antes de 1940
- DIS Distancias promedio a centros de empleo
- RAD accesibilidad a las autopistas radiales
- TAX tasa de impuesto
- PTRATIO colegios por localidad
- B proporción de personas negras (año 1980!)
- LSTAT porcentaje de personas de bajo estatus.
- MEDV valor medio de las viviendas ocupadas por sus dueños

Histogramas de los atributos relevados

Vector W – sin normalizar los ejemplos

Vector W – ejemplos normalizados linealmente

Vector W – normalización con media y desvío

Neurona General

Función de Salida LINEAL

$$f(x) = x$$

$$f'(x) = 1$$

desde Python

```
import numpy as np
import grafica as gr
from matplotlib import pyplot as plt

x = np.array(range(-50,50,1))/10.0

y = gr.evaluar('purelin', x)
plt.plot(x,y,'-')
```


Función SIGMOIDE \in (0,1)

$$f(x) = \frac{1}{1 + e^{-x}} \qquad f'(x) = f(x) * (1 - f(x))$$

desde Python

```
import numpy as np
import grafica as gr
from matplotlib import pyplot as plt

x = np.array(range(-30,30,1))/10.0

y = gr.evaluar('logsig', x)
plt.plot(x,y,'-')
plt.axis([-3, 3, 0, 1])
plt.show()
```


Función SIGMOIDE ∈ (-1,1)

$$f(x) = \frac{2}{1 + e^{-2x}} - 1$$

desde Python

```
import numpy as np
import grafica as gr
from matplotlib import pyplot as plt

x = np.array(range(-30,30,1))/10.0

y = gr.evaluar('tansig', x)
plt.plot(x,y,'-')
plt.axis([-2, 2, -2, 2])
plt.show()
```

$$f'(x) = 1 - f(x)^2$$

Ejemplo

Dados los siguientes conjuntos de puntos del plano

$$A = \{(2,2), (1,0), (0,1), (-1,1)\}$$

$$B = \{(3,1), (3,3), (2,4), (2,5)\}$$

- Utilice una neurona no lineal para clasificarlos
- Representar gráficamente la solución propuesta.

$$A = \{(-1,3), (1,0), (0,1), (-1,1)\}$$

$$B = \{(3,1), (3,3), (2,4), (2,5)\}$$

neuronaNoLineal.py

Entrenamiento de una neurona no lineal

- \square Seleccionar el valor de α
- Inicializar los pesos W y b con valores random
- Mientras (la variación del ECM sea mayor a la cota prefijada)
 - Para cada ejemplo
 - Ingresar el ejemplo a la red.
 - Calcular el error $\varepsilon = (y \hat{y})$ y $\frac{\partial \varepsilon^2}{\partial w} = (y \hat{y})^2$
 - Actualizar los pesos de la red

$$w_i = w_i - \alpha \frac{\partial \varepsilon^2}{\partial w_i}$$

¿Cómo sería la derivada del error si la neurona no es lineal?

$$\frac{\partial \varepsilon^{2}}{\partial w} = \left[\frac{\partial (y - \hat{y})^{2}}{\partial w_{0}}; \dots; \frac{\partial (y - \hat{y})^{2}}{\partial w_{n}} \right]$$

$$\frac{\partial \varepsilon^{2}}{\partial w_{j}} = -2(y - \hat{y}) \underbrace{\frac{\partial (neta)}{\partial (neta)}}_{\partial (neta)} \underbrace{\frac{\partial (neta)}{\partial w_{j}}}_{\partial w_{j}} = \frac{\partial (\sum_{i=0}^{n} w_{i} x_{i})}{\partial w_{j}} = x_{j}$$

$$\frac{\partial \varepsilon^2}{\partial w_j} = -2(y - \hat{y})f'(neta)x_j$$

Entrenamiento de una neurona no lineal

- $lue{}$ Seleccionar el valor de lpha
- Inicializar los pesos W y b con valores random
- Mientras (la variación del ECM sea mayor a la cota prefijada)
 - Para cada ejemplo
 - Ingresar el ejemplo a la red.
 - Calcular $\frac{\partial \varepsilon^2}{\partial w_i} = -2 * \varepsilon * f'(neta) * x_i$
 - Actualizar los pesos de la red

$$w_i = w_i - \alpha \frac{\partial \varepsilon}{\partial w_i} = w_i + 2\alpha * \varepsilon * f'(neta) * x_i$$

 Utilice una neurona no lineal con salida sigmoide para resolver el problema del XOR

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$f'^{(x)} = f(x) * (1 - f(x))$$

ClassNeuronaGral.py

```
nn = NeuronaGradiente(alpha=0.01, n_iter=50, cotaE=10E-07, FUN='sigmoid', random state=None, draw=0, title=['X1','X2'])
```

Parámetros de entrada

- alpha: valor en el intervalo (0, 1] que representa la velocidad de aprendizaje.
- n_iter: máxima cantidad de iteraciones a realizar.
- cotaE: termina si la diferencia entre dos errores consecutivos es menor que este valor.
- **FUN:** función de activación 'sigmoid', 'tanh', 'purelin'.
- random_state: None si los pesos se inicializan en forma aleatoria, un valor entero para fijar la semilla
- draw: valor distinto de 0 si se desea ver el gráfico y 0 si no. Sólo si es 2D.
- □ title: lista con los nombres de los ejes para el gráfico. Se usa sólo si draw no es cero.

ClassNeuronaGral.py

```
nn = NeuronaLineal(alpha=0.01, n_iter=50)
nn.fit(X, T)
```

Parámetros de entrada

- X : arreglo de NxM donde N es la cantidad de ejemplos y M la cantidad de atributos.
- **T**: arreglo de N elementos siendo N la cantidad de ejemplos

Retorna

- w_: arreglo de M elementos siendo M la cantidad de atributos de entrada
- □ **b**_: valor numérico continuo correspondiente al bias.
- □ errors_: errores cometidos en cada iteración.

ClassNeuronaGral.py

Y = nn.predict(X)

- Parámetros de entrada
 - X : arreglo de NxM donde N es la cantidad de ejemplos y M la cantidad de atributos.
- Retorna: un arreglo con el resultado de aplicar la neurona general entrenada previamente con fit() a la matriz de ejemplos X.
 - □ **Y**: arreglo de N elementos siendo N la cantidad de ejemplos

import numpy as np
from ClassNeuronaGral import NeuronaGradiente

```
# Ejemplos de entrada de la función AND
X = np.array([[0,0], [0,1], [1,0], [1,1]])
X = 2*X-1
T = np.array([0,0,0,1])
ppn = NeuronaGradiente(alpha=0.1, n iter=50, cotaE=10e-07, FUN='sigmoid',
                       random state=None, draw=1, title=['x1', 'x2'])
ppn.fit(X,T)
#-- % de aciertos ---
Y = (ppn.predict(X) > 0.5) *1
print("Y = ", Y)
print("T = ", T)
aciertos = sum(Y == T)
print("aciertos = %d (%.2f%%)" % (aciertos, 100*aciertos/X.shape[0]))
```

Ejemplo

- Sobre una cinta transportadora circulan naranjas y melones. Se busca obtener un clasificador de frutas que facilite su almacenamiento. Para cada fruta se conoce su diámetro, en centímetros y su intensidad de color naranja, medida entre 0 y 255.
- Utilice la información del archivo FrutasTrain.csv para entrenar una neurona no lineal capaz de reconocer los dos tipos de fruta.
- Compare la manera de obtener la función discriminante de la neurona no lineal con respecto al perceptrón.
 - NeuronaGral_FRUTAS_RN.ipynb
 - Perceptron_FRUTAS_RN.ipynb

Funciones de costo

□ Error cuadrático medio

$$C = \frac{1}{n} \sum_{n} (y - \hat{y})^2 = \frac{1}{n} \sum_{n} (y - f(neta))^2$$

Entropía cruzada binaria

$$C = -\frac{1}{n} \sum_{n} [y \ln \hat{y} + (1 - y) \ln(1 - \hat{y})]$$

Ejemplo

Entrene una neurona no lineal con función de salida sigmoide entre 0 y
 1 utilizando como función de costo el error cuadrático medio para que reciba un 1 y responda 0

$$x = 1$$
 (entrada)
 $y = 0$ (salida esperada)

Función de costo

$$C = \frac{(y - \hat{y})^2}{2}$$

Ejemplo

□ alfa=0.25 e inicio en W=0.6 y b=0.9

□ alfa=0.25 e inicio en W=2 y b=2

 \square alfa=0.25 e inicio en W=4 y b=2

Entropía cruzada binaria

 Es una función de costo que puede usarse con neuronas no lineales con función sigmoide entre 0 y 1

$$C = -\frac{1}{n} \sum_{n} [y \ln \hat{y} + (1 - y) \ln(1 - \hat{y})]$$

donde

- $\square y$ es el valor binario esperado
- $\hat{y} = 1/(1 + e^{-\sum x_i w_i}) \text{ es la}$ salida de la neurona

- Ver que es una función de costo
 - □ C > 0
 - C tiende a 0 (cero) a medida que la neurona aprende la salida deseada.

$$C = -\frac{1}{n} \sum_{n} [y \ln \hat{y} + (1 - y) \ln(1 - \hat{y})]$$

$$\frac{\partial C}{\partial w_j} = -\frac{1}{n} \sum_{n} \left(\frac{y}{\hat{y}} - \frac{1 - y}{1 - \hat{y}} \right) \frac{\partial \hat{y}}{\partial w_j}$$
 f(neta)

$$\frac{\partial C}{\partial w_j} = -\frac{1}{n} \sum_{n} \left(\frac{y}{f(neta)} - \frac{1 - y}{1 - f(neta)} \right) \frac{\partial f(neta)}{\partial w_j}$$

$$C = -\frac{1}{n} \sum_{n} [y \ln \hat{y} + (1 - y) \ln(1 - \hat{y})]$$

$$\frac{\partial C}{\partial w_j} = -\frac{1}{n} \sum_{n} \left(\frac{y}{f(neta)} - \frac{1 - y}{1 - f(neta)} \right) \frac{\partial f(neta)}{\partial w_j}$$

 $\frac{y - f(neta)}{f(neta)(1 - f(neta))}$

 $f'(neta)x_j$

$$C = -\frac{1}{n} \sum_{n} [y \ln \hat{y} + (1 - y) \ln(1 - \hat{y})]$$

$$\frac{\partial C}{\partial w_j} = -\frac{1}{n} \sum_{n} \left(\frac{y - f(neta)}{f(neta)(1 - f(neta))} \right) f'(neta) x_j$$

Si
$$f(neta) = \frac{1}{1+e^{-neta}}$$
, $f'(neta) = f(neta)(1-f(neta))$

$$C = -\frac{1}{n} \sum_{n} [y \ln \hat{y} + (1 - y) \ln(1 - \hat{y})]$$

$$\frac{\partial C}{\partial w_j} = -\frac{1}{n} \sum_{n} \left(\frac{y - f(neta)}{f(neta)(1 - f(neta))} \right) f'(neta) x_j$$

$$\frac{\partial C}{\partial w_j} = -\frac{1}{n} \sum_{n} (y - f(neta)) \ x_j = -\frac{1}{n} \sum_{n} (y - \hat{y}) \ x_j$$

Entrene una neurona no lineal con función de salida sigmoide entre 0 y
 1 utilizando como función de costo el error cuadrático medio para que reciba un 1 y responda 0

$$x = 1$$
 (entrada)
 $y = 0$ (salida esperada)

Función de costo

$$C = -(y \ln \hat{y} + (1 - y) \ln(1 - \hat{y}))$$

$$\frac{\partial C}{\partial w} = -(y - \hat{y}) x$$

□ alfa=0.25 e inicio en W=0.6 y b=0.9

 \square alfa=0.25 e inicio en W=2 y b=2

 \square alfa=0.25 e inicio en W=4 y b=2

Clasificación con más de 2 clases

- Pueden utilizarse varias neuronas no lineales para resolver un problema de clasificación con más de 2 clases.
- Cada neurona de la capa de salida buscará responder por un valor de clase distinto.
- El error de la capa será la suma de los errores de las neuronas que la forman.

Para obtener el resultado de la red debe calcularse

$$f(W*x^T+b)$$

siendo f la función de activación

[[-2.56], [-0.35], [-7.03]]

W

b

Función sigmoid()

X	f(X)
-5.00	0.01
-4.00	0.02
-3.00	0.05
-2.00	0.12
-1.39	0.20
-1.00	0.27
0.00	0.50
1.00	0.73
1.39	0.80
2.00	0.88
3.00	0.95
4.00	0.98
5.00	0.99

$$f(x) = \frac{1}{1 + \exp(-x)}$$

Función sigmoid()

X	f(X)
-5.00	0.01
-4.00	0.02
-3.00	0.05
-2.00	0.12
-1.39	0.20
-1.00	0.27
0.00	0.50
1.00	0.73
1.39	0.80
2.00	0.88
3.00	0.95
4.00	0.98
5.00	0.99

$$f(x) = \frac{1}{1 + \exp(-x)}$$

Función Softmax

 Se utiliza como función de activación en la última capa para normalizar la salida de la red a una distribución de probabilidad.

Capa softmax

$$neta_{j} = \sum_{i} w_{ji} x_{i} + b_{j}$$

$$\hat{y}_{j} = \frac{e^{neta_{j}}}{\sum_{k} e^{neta_{k}}}$$

- La salida de la capa es una distribución de probabilidad
 - $\hat{y}_j > 0 \quad j = 1..k$ $\sum_j \hat{y}_j = 1$

Ver que el incremento en algún \hat{y}_i producirá disminuciones en el resto

Función Softmax

□ Ejemplo

Función Softmax

□ Ejemplo

Función softmax

Función softmax

Neta	sigmoid	exp(neta)	softmax
5	0,99	148,41	0,71
4	0,98	54,60	0,26
2	0,88	7,39	0,04

Entrada	Sa	Salidas de la propagación hacia adelante			Salidas de la capa Softmax			
		cat	dog	horse		cat	dog	horse
	Propagación hacia adelante	5	4	2	Función	0.71	0.26	0.04
Parties of the second		4	2	8	Softmax →	0.02	0.00	0.98
		4	4	1		0.49	0.49	0.02

Capa Softmax

$$\hat{y}_j = \frac{e^{neta_j}}{\sum_k e^{neta_k}}$$

Función de costo: Negative Log-Likelihood (NLL)

$$C = -\sum_{k} y_k \ln \hat{y}_k$$

donde y es un vector binario que vale 1 sólo en la posición correspondiente al valor de clase esperado. Luego

$$C = -\ln \hat{y}_s$$

s es la neurona correspondiente al valor de clase esperado

Capa Softmax

$$\hat{y}_j = \frac{e^{neta_j}}{\sum_k e^{neta_k}}$$

Función de costo: Negative Log-Likelihood (NLL)

$$C = -\ln \hat{y}_s$$

y es la neurona correspondiente al valor de clase esperado

Derivada de la función NLL

$$\frac{\partial C}{\partial w_{jk}} = -(y_j - \hat{y}_j) x_j \qquad \frac{\partial C}{\partial b_j} = -(y_j - \hat{y}_j)$$

Coincide con la derivada de la entropía cruzada binaria

Capa softmax

□ Función de costo: Negative Log-Likelihood (NLL)

La clase correcta está pintada de rojo

Total = 1.07

- Sólo se evalúa en la neurona correspondiente a la salida esperada
- Cuando más cerca está de 1 menor será el error.
- A menor valor de la neurona softmax correspondiente a la clase correcta, mayor error.

ClassRNMulticlase.py

rn = RNMulticlase(alpha=0.01, n_iter=50, cotaE=10e-07, FUN='sigmoid', COSTO='ECM', random_state=None)

Parámetros de entrada

- alpha: valor en el intervalo (0, 1) que representa la velocidad de aprendizaje.
- n_iter: máxima cantidad de iteraciones a realizar.
- cotaE: termina si la diferencia entre dos errores consecutivos es menor que este valor.
- **FUN:** función de activación 'sigmoid', 'tanh', 'softmax'.
- COSTO: función de costo 'ECM', 'EC_binaria', 'EC'
- random_state: None si los pesos se inicializan en forma aleatoria, un valor entero para fijar la semilla

ClassRNMulticlase.py

rn = RNMulticlase(alpha=0.01, n_iter=50, cotaE=10e-07, FUN='sigmoid', COSTO='ECM' rn.fit(X, T)

Parámetros de entrada

- X : arreglo de NxM donde N es la cantidad de ejemplos y M la cantidad de atributos.
- **T**: arreglo de N elementos siendo N la cantidad de ejemplos

Retorna

- w_: arreglo de M elementos siendo M la cantidad de atributos de entrada
- b_: valor numérico continuo correspondiente al bias.
- errors_: errores cometidos en cada iteración.
- accuracy_: precisión de la clasificación en cada iteración

ClassRNMulticlase.py

Y = nn.predict(X)

- Parámetros de entrada
 - X: arreglo de NxM donde N es la cantidad de ejemplos y M la cantidad de atributos.
- Retorna: un arreglo con el resultado de aplicar la neurona general entrenada previamente con fit() a la matriz de ejemplos X.
 - □ Y: vector de N elementos siendo N la cantidad de ejemplos con el número de clase.

Ver el siguiente código

RNMulticlase_IRIS_RN.ipynb

¿Puede utilizarse una neurona lineal para clasificar dos conjuntos de ejemplos?

- Limitaciones?
- Resolución utilizando una neurona no lineal.

Redes multicapa

 Con una sola neurona no se puede resolver el problema del XOR porque no es linealmente separable.

XOR

 $w_{11}=1$ $w_{12}=1$ $b_1=-0.5$; $w_{21}=1$ $w_{22}=1$ $b_2=-1.5$; $w_{31}=1$ $w_{32}=-1.5$ $b_3=-0.5$

XOR

p1	p2	[] (or)	l2 (AND)	a
1	0	1	0	1
1	1	1	1	0
0	0	0	0	0
0	1	1	0	1

Problema no separable linealmente

 Se busca obtener un algoritmo más general que permita integrar el aprendizaje entre las dos capas.

Animación de una RN

Tinker With a Neural Network Right Here in Your Browser

