http://itbookshub.com/

Discrete Mathematical Structures Solved MCQs- Part2

MCQs

Multiple Choice Questions

Discrete Mathematical Structures Solved MCQs- Part2

How I	many onto	(or surjective)	functions	are there	from an	n-element
(n > 2) set to a 2	- element set?	•			

- 2n
- C 2n -1
- C 2n 2
- 2(2ⁿ -2)

A partial ordered relation is transitive, reflexive and

- Antisymmetric
- Bisymmetric
- Anti reflexive.
- Asymmetric

A vertex of a graph is called even or odd depending upon

- C Total number of edges in a graph is even or odd
- C Total number of vertices in a graph is even or odd
- Its degree is even or odd
- None of these

Which of the following statements are TRUE?

- (1) The problem of determining whether there exists a cycle in an undirected graph is in P.
- (2) The problem of determining whether there exists a cycle in an undirected graph is in NP.
- (3) If a problem A is NP-Complete, there exists a non-deterministic polynomial time algorithm to solve A.

\circ	1,2 and 3
\circ	1 and 2 only
\circ	1 and 3 only
\circ	2 and 3 only
lf n	is an integer and n2 is odd ,then n is
0	even
\circ	odd
0	even or odd
\circ	prime
	rd VARANASI?
\circ	64
\circ	120
\circ	40320
0	720
(i) ((ii) (iii)	ich two of the following are equivalent for an undirected graph G? G is a tree There is at least one path between any two distinct vertices of G G contains no cycles and has (n-1) edges G has n edges
0	(i) and (ii)
\circ	(i) and (iii)
\circ	(i) and (iv)
0	(ii) and (iii)
The	complete graph with four vertices has k edges where k is
0	3
\circ	4

0	5
	6
oro	nich of the following shall be a compound proposition involving the positions p, q and r, that is true when exactly two of the p, q and r true and is false otherwise?
	A
0	В
0	C
0	D
	now many ways can a hungry student choose 3 toppings for his ze from a list of 10 delicious possibilities?
0	100
	120
	110
0	150
n a	any undirected graph,the sum of degrees of all nodes
	Must be even
0	Is twice the number of edges
0	Must be odd
0	Must be even
	number of colours required to properly color vertices of every nar graph is
0	2
0	3

0	4
0	5
	trapzoidal rule for integration gives exact result when integrated olynomial of degree
0	0 but not 1
\circ	1 but not 0
0	0 or 1
0	2
are	G be a complete undirected graph on 6 vertices. If vertices of G labeled, then the number of distinct cycles of length 4 in G is all to
0	15
\circ	45
0	90
0	360
nun	nsider an undirected graph G with 100 nodes. The maximum nber of edges to be included in G so that the graph is not inected is
0	2451
0	4950
\circ	4851
0	9900
	vo fair coins are flipped and at least one of the outcomes is known be a head, what is the probability that both outcomes are heads?
0	1/3
0	1/4
0	1/2

0	2/3
A g	raph G is called a if it is a connected acyclic graph
0	Cyclic graph
0	Regular graph
0	Tree
0	Not a graph
	now many ways can a president and vice president be chosen from et of 30 candidates?
0	820
0	850
0	880
0	870
15€	G be a simple undirected planar graph on 10 vertices with edges. If G is a connected graph, then the number of bounded es in any embedding of G on the plane is equal to
0	3
0	4
0	5
0	6
Wh	ich of the following pair is not congruent modulo 7?
0	10, 24
0	25, 56
0	-31, 11
0	-64, -15

The number of nodes in a complete binary tree of height h (with roots

at level 0) is equal to

The relation $\{(1,2), (1,3), (3,1), (1,1), (3,3), (3,2), (1,4), (4,2), (3,4)\}$ is

- Reflexive
- C Transitive
- Symmetric
- Asymmetric

The length of Hamiltonian Path in a connected graph of n vertices is

- n-1
- n
- O n+1
- n/2

The number of leaf nodes in a complete binary tree of depth d is

- 2d
- C 2d-1+1
- C 2d+1+1
- C 2d+1

Four fair coins are tossed simultaneously. The probability that latest one head and tail turn up is

- o 1/16
- o 1/8
- 0 7/8

0	15/16
	d the number of relations from A = {cat, dog, rat} to B = {male , nale}
0	64
О	6
\circ	32
0	15
	d the number of ways to paint 12 offices so that 3 of them will be en, 2 of them pink, 2 of them yellow and the rest ones white.
\circ	55,440
О	1,66,320
О	4.790E+08
0	39,91,680
The	number of functions from an m element set to an n element set
О	mn
О	m + n
О	nm
0	m * n
In a	graph if e=(u, v) means
0	u is adjacent to v but v is not adjacent to u
\circ	e begins at u and ends at v
О	u is processor and v is successor
0	both b and c

Rank of the matrix Row1 [1,1] and Row2[0,0] is

O	4
0	2
0	1
O	0
In a	any undirected graph the sum of degrees of all the nodes
O	Must be even
0	Are twice the number of edges
0	Must be odd
0	Need not be even
	N = {1, 2, 3,} be ordered by divisibility, which of the following oset is totally ordered,
0	(2, 6, 24)
O	(3, 5, 15)
0	(2, 9, 16)
0	(4, 15, 30)
	o dice are thrown simultaneously. The probability that the product the two numbers on the two disc is an even number, is
0	1/2
0	3/4
О	5/16
0	3/8
	Cabe's cyclomatic metric V(G) of a graph G with n vertices, e ges and p connected component is
0	е
0	n
0	e – n + 2p

0	e - n + p
edç	G be a simple undirected planar graph on 10 vertices with 15 ges. If G is a connected graph, then the number of bounded faces any embedding of G on the plane is equal to
0	3
0	4
О	5
0	6
	undirected graph possesses an eulerian circuit if and only if it is nected and its vertices are
0	all of even degree
О	all of odd degree
О	of any degree
0	even in number
pro	nsider an undirected random graph of eight vertices. The bability that there is an edge between a pair of vertices is ½. What he expected number of unordered cycles of length three?
0	1/8
O	1
O	7
0	8
0	A
0	В
0	C
0	D

Ler	Length of the walk of a graph is		
\circ	The number of vertices in walk W		
\circ	The number of edges in walk W		
\circ	Total number of edges in a graph		
0	Total number of vertices in a graph		
Nui	mber of elements in the power set P(S) of the set S={(Q),1(2,3)}		
\circ	2		
\circ	4		
\circ	8		
0	10		
A g	raph is a collection of		
0	Row and columns		
0	Vertices and edges		
0	Equations		
0	None of these		
Has	sse diagram are drawn		
\circ	Partially ordered sets		
\circ	Lattices		
\circ	Boolean algebra		
0	None of these		
Nui	mber of vertices of odd degree in a graph is		
0	Always even		
0	Always odd		
0	Either even or odd		
0	Always zero		

Which of the following statements is/are TRUE for undirected graphs? P: Number of odd degree vertices is even. Q: Sum of degrees of all vertices is even. \circ P only \circ Q only Both P and Q Neither P nor Q A graph with n vertices will definitely have a parallel edge or self loop of the total number of edges are more than n \circ more than n+1 \circ more than (n+1)/2 more than n(n-1)/2Cyclometric complexity of a flow graph G with n vertices and e edges $^{\circ}$ V(G) = e+n-2 $^{\circ}$ V(G) = e-n+2 V(G) = e+n+2 $^{\circ}$ V(G) = e-n-2 The statement (p^q) _ p is a Contingency Absurdity **Tautology** \circ None of the above

Let G be a complete undirected graph on 6 vertices. If vertices of G are labeled, then the number of distinct cycles of length 4 in G is

equ	al to
0	15
О	30
0	90
С	360
gra P: N	ich of the following statements is/are TRUE for undirected phs? Number of odd degree vertices is even. Sum of degrees of all vertices is even.
О	P only
С	Q only
О	Both P and Q
0	Neither P nor Q
3 bi	A contains 5 white and 2 black balls .Bag B contains 2 white and lack balls .if any one bag is chosen and a ball is taken out of it at dom ,what is the probability the ball is black?
0	31/70
0	1/2
О	5/12
С	3/5