Discrete Differential Geometry

Maxwell Thum

February 13, 2023

Introduction

This is an interactive blueprint to help with the formalisation of several definitions and results from *discrete differential geometry*, using Keenan Crane's textbook as a general template.

The actual Lean code can be found at (https://github.com/maxwell-thum/DDG_Lean3). This blueprint is adapted from the blueprint of Thomas F. Bloom and Bhavik Mehta's Unit Fractions project (https://github.com/b-mehta/unit-fractions), which was itself based on the blueprint created by Patrick Massot for the Sphere Eversion project (https://github.com/leanprover-community/sphere-eversion).

This blueprint uses Patrick Massot's leanblueprint plugin (https://github.com/PatrickMassot/leanblueprint) for plasTeX (http://plastex.github.io/plastex/).

Chapter 1

Combinatorial Surfaces

1.1 Abstract simplicial complexes

Definition 1.1. An abstract simplicial complex \mathcal{K} is a set of non-empty¹ finite sets called simplices such that for all $\sigma \in \mathcal{K}$, if $\sigma' \subseteq \sigma$ and $\sigma' \neq \emptyset$, then $\sigma' \in \mathcal{K}$.

Abstract simplicial complexes are the combinatorial or topological analogs of *geometric simplicial complexes*, which we will see shortly. Abstract simplicial complexes capture the connectivity of geometric simplicial complexes without their geometry.

Definition 1.2. The degree or dimension of an (abstract) simplex with k+1 vertices is k.

Definition 1.3. An (abstract) simplex of degree k is called an abstract k-simplex. The set of all k-simplices is denoted F_k .

For instance, 0-simplices are points or vertices, 1-simplices are line segments or edges, 2-simplices are triangles or faces, and 3-simplices are tetrahedra.

A nonempty subset of an abstract simplex is called a *face*. By definition of an abstract simplicial complex, all of the faces of a simplex are themselves simplices. A proper subset of a simplex is called a *proper face*.

Definition 1.4. Given two simplicial complexes \mathcal{K} and \mathcal{K}' , we say that \mathcal{K}' is a *subcomplex* of \mathcal{K} if $\mathcal{K}' \subseteq \mathcal{K}$, that is, every simplex in \mathcal{K}' is a simplex in \mathcal{K} as well.

Definition 1.5. If the set of degrees of the simplices of an abstract simplicial complex has a maximum k, then that abstract simplicial complex is said to be an abstract simplicial k-complex.

Definition 1.6. Let \mathcal{K} be an abstract simplicial k-complex. If every simplex is a face of some k-simplex, then we say \mathcal{K} is *pure* and call it a *pure simplicial* k-complex.

Definition 1.7. The star $St(\sigma)$ of a simplex σ in an abstract simplicial complex \mathcal{K} is the set of all simplices in \mathcal{K} having σ as a face.

The star $\operatorname{St}(S)$ of a set S of simplices in $\mathcal K$ (i.e., a subset of $\mathcal K$) is the set of all simplices in $\mathcal K$ having some simplex in S as a face. Equivalently, $\operatorname{St}(S) = \bigcup_{\sigma \in S} \operatorname{St}(\sigma)$.

Definition 1.8. The *closure* Cl(S) of a set of simplices $S \subseteq \mathcal{K}$ is the smallest (by inclusion) simplicial complex containing S.

¹Some authors allow simplices to be empty.

Lemma 1.9.

$$\mathrm{Cl}(S) = \bigcup_{\sigma \in S} \mathcal{P}(\sigma) \ \ \, \varnothing.$$

Definition 1.10. The $link \operatorname{Lk}(\sigma)$ of a simplex $\sigma \in \mathcal{K}$ is the set of all simplices $\tau \in \mathcal{K}$ such that σ and τ are disjoint and their union is a simplex. In set-builder notation,

$$Lk(\sigma) := \{ \tau \in \mathcal{K} \mid \tau \cap \sigma = \emptyset, \tau \cup \sigma \in \mathcal{K} \}.$$

Lemma 1.11. For any set of simplices $S \subseteq \mathcal{K}$,

$$Lk(S) = Cl(St(S)) St(Cl(S)).$$

1.1.1 Oriented ASCs

Definition 1.12. An *orientation* on a simplex is a choice of a permutation of its vertices. This permutation and every permutation related to it by even permutations is called *positively oriented*. Every permutation related to it by odd permutations is called *negatively oriented*.

An *oriented abstract simplicial complex* is an abstract simplicial complex with an orientation assigned to each of its simplices.

1.1.2 The halfedge mesh

1.2 Simplicial complexes

Definition 1.13. A (geometric) simplicial complex is...

Definition 1.14. The *underlying abstract simplicial complex* of a geometric simplicial complex is the abstract simplicial complex whose abstract simplices are simply the sets of vertices of each geometric simplex.

Definition 1.15. The *geometric realization* of an abstract simplicial complex \mathcal{K} is a geometric simplicial complex whose underlying abstract simplicial complex is \mathcal{K} itself. In particular, we define it as...

Chapter 2

Discrete Exterior Calculus

Throughout this chapter, we let \mathcal{K} be an oriented abstract simplicial complex.

2.1 Discrete Differential Forms

Definition 2.1. A (real-valued) discrete (differential) k-form on an oriented abstract simplicial complex $\mathcal K$ is a map $\alpha\colon F_k\to\mathbb R$. The set of all discrete k-forms on $\mathcal K$ is denoted Ω^k .

2.1.1 Discretization

Recall the notions of a manifold and differential (k-) forms. From here on, let M be an n-dimensional triangulable topological manifold. Let $t: |\mathcal{K}| \to M$ be a triangulation of M.

Definition 2.2. The discretization on \mathcal{K} of a differential k-form α on M is a discrete differential k-form defined by integrating α over the image in M of each (oriented) k-simplex in \mathcal{K} . In other words, for all $\sigma \in F_k$,

$$\hat{\alpha}_{\sigma} := \int_{t(|\sigma|)} \alpha.$$

We denote this map by \int_k .

2.2 Discrete Exterior Calculus

2.2.1 The discrete exterior derivative

Definition 2.3. The discrete exterior derivative on k-forms is a map $\hat{\mathbf{d}}_k : \hat{\Omega}^k \to \hat{\Omega}^{k+1}$ such that $\hat{\mathbf{d}}_k \circ \int_k = \int_{k+1} \circ \mathbf{d}_k$.

We are not yet able to prove this in Lean, but

Theorem 2.4. The discrete exterior derivative is unique and given by

$$(\mathrm{d}_k\alpha)(\sigma) = \sum_{\tau \in F_k \cap \mathcal{P}(\sigma)} \mathrm{sgn}(\tau,\sigma)\alpha(\tau)$$

for all $\alpha \in \Omega^k$ and $\sigma \in F_{k+1}$.