CALCUL VECTORIEL

Exercice 1

Deux points A et B, ont pour coordonnées cartésiennes dans l'espace : A(2,3,-3), B(5,7,2) Déterminer les composantes du vecteur \overrightarrow{AB} ainsi que son module, sa direction et son sens.

Exercice 2

La résultante de deux forces $\vec{F_1}$ et $\vec{F_2}$ est égale à 50 N et fait un angle de 30° avec la force $\vec{F_1} = 15N$. Trouver le module de la force $\vec{F_2}$ et l'angle entre les deux forces.

Exercice 3

Soient les vecteurs suivants : $\overrightarrow{U_1} = A_1 \overrightarrow{i} + A_2 \overrightarrow{j} + A_3 \overrightarrow{k}$ et $\overrightarrow{U_2} = B_1 \overrightarrow{i} + B_2 \overrightarrow{j} + B_3 \overrightarrow{k}$

1) Calculer les produits scalaires : $\overrightarrow{U_1}.\overrightarrow{U_2},\overrightarrow{U_1}.\overrightarrow{U_1},\overrightarrow{U_2}.\overrightarrow{U_2}$

On donne: $\vec{v}_1 = 2\vec{i} - \vec{j} + 5\vec{k}$, $\vec{v}_2 = -3\vec{i} + 1.5\vec{j} - 7.5\vec{k}$, $\vec{v}_3 = -5\vec{i} + 4\vec{j} + \vec{k}$

- 2) Calculer; $\overrightarrow{V_1}.\overrightarrow{V_2}$ et $\overrightarrow{V_1} \wedge \overrightarrow{V_2}$
- 3) Sans faire de représentation graphique que peut-on dire du sens et de la direction du vecteur $\overrightarrow{V_2}$ par rapport à $\overrightarrow{V_1}$;
- 4) Calculer les produits suivants $\overrightarrow{V_1}$. $(\overrightarrow{V_2} \wedge \overrightarrow{V_3})$ et $\overrightarrow{V_1} \wedge (\overrightarrow{V_2} \wedge \overrightarrow{V_3})$;
- 5) Déterminer la surface du triangle formé par les vecteurs $\overrightarrow{V_2}$ et $\overrightarrow{V_3}$

Exercice 4

Soient les vecteurs :

$$\vec{U} = 2\vec{i} + 6\vec{k}$$
, $\vec{V} = 8\vec{i} + y\vec{j} + z\vec{k}$, $\vec{p} = 3\vec{i} - 4\vec{j} + 2\vec{k}$ et $\vec{q} = -2\vec{i} + y\vec{j} + 12\vec{k}$

- 1) Déterminer y et z pour que les vecteurs \vec{U} et \vec{V} soient colinéaires ;
- 2) Déterminer la valeur de y pour que les vecteurs \vec{p} et \vec{q} soient perpendiculaires;

29/09/2024 Page 1/1