

Rohrleitungen (1)*				
Aufgabennummer: B_040				
Technologieeinsatz:	möglich □	erforderlich ⊠		

a) Rohre sollen, wie in der nachstehenden Skizze vereinfacht dargestellt, geradlinig zwischen den Punkten A, B und C verlegt werden.

Die folgenden Daten des Dreiecks *ABC* sind bekannt: $\overline{AB} = 50 \text{ m}$, $\overline{AC} = 80 \text{ m}$, $\gamma = 20^{\circ}$. Der Winkel β ist ein stumpfer Winkel.

- Berechnen Sie die fehlenden Bestimmungsstücke dieses Dreiecks (beide Winkel und Länge der fehlenden Seite).
- b) Ein Verbindungsstück für 2 Rohre soll untersucht werden. Das Verbindungsstück ist rotationssymmetrisch bezüglich der x-Achse. Die obere Begrenzungskurve der Schnittfläche, die in der nachstehenden Grafik schraffiert dargestellt ist, wird durch die Funktionsgleichung $y=2+\frac{x^2}{2}-\frac{x^4}{4}$ beschrieben, wobei x und y Längen in Dezimetern beschreiben. Der innere Durchmesser des Verbindungsstückes ist d=2 dm.

- Berechnen Sie die Breite b des Verbindungsstückes.
- Erstellen Sie eine Formel zur Berechnung des Volumens des Verbindungsstückes mithilfe der Integralrechnung.

Das Verbindungsstück ist aus einem Material mit der Dichte ρ = 900 kg/m³ gefertigt.

Berechnen Sie die Masse des Verbindungsstückes.

^{*} ehemalige Klausuraufgabe

Rohrleitungen (1)

c) In einem Rohr nimmt der Druck durch die Reibung ab. Er wird also mit zunehmender Entfernung vom Rohranfang geringer.

Entsprechend dem Gesetz von Hagen-Poiseuille kann der Druck in einem Rohr in Abhängigkeit von der Rohrlänge *x* durch eine lineare Funktion *p* beschrieben werden.

– Zeigen Sie, dass der Druckverlust Δp proportional zur Rohrlänge ist; d.h., für alle x ist $\Delta p(x) = p(0) - p(x) = c \cdot x$ mit c konstant.

Der Druck in einem Rohr wird an 2 Stellen gemessen. Die Ergebnisse sind in der nachstehenden Tabelle angegeben.

Rohrlänge in m	Druck in bar	
5	3,998	
33	3,901	

- Bestimmen Sie mithilfe der linearen Interpolation den Druck bei einer Rohrlänge von 14 m.
- Beschreiben Sie, welche Bedeutung die Steigung der linearen Funktion p in diesem Sachzusammenhang hat.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Rohrleitungen (1) 3

Möglicher Lösungsweg

a) Der Winkel β ergibt sich durch Anwendung des Sinussatzes: $\sin(\beta) = \frac{\overline{AC} \cdot \sin(\gamma)}{\overline{AB}}$. $\beta_1 \approx 33,2^{\circ} \text{ und } \beta_2 \approx 146,8^{\circ}$

Da ein stumpfer Winkel vorliegt, gilt: $\beta = \beta_2$.

Der dritte Winkel ergibt sich über die Winkelsumme: $\alpha = 180^{\circ} - \gamma - \beta \approx 13,2^{\circ}$.

Damit ist die dritte Länge des Dreiecks: $\overline{BC} = \frac{\overline{AB} \cdot \sin(\alpha)}{\sin(\gamma)}$.

BC ≈ 33,3 m

b) Berechnung der Breite b durch Lösen der Gleichung $2 + \frac{\chi^2}{2} - \frac{\chi^4}{4} = 1$ mittels Technologieeinsatz: $x = \pm 1,79...$

Die Breite des Verbindungsstückes beträgt rund 3,6 dm.

Formel zur Berechnung des Volumens:

$$V = \pi \cdot \int_{-1.8}^{1.8} y^2 dx - 1^2 \cdot \pi \cdot 2 \cdot 1.8$$

Berechnen der Masse: $m = \rho \cdot V = 0.9 \cdot 35.4... \Rightarrow m \approx 31.9 \text{ kg}$

c) Mit $p(x) = k \cdot x + d$ erhält man $\Delta p(x) = p(0) - p(x) = d - (k \cdot x + d) = -k \cdot x$. Also: c = -k.

Aus den beiden Messwerten ergibt sich die lineare Funktion p mit $p(x) = -0.003464 \cdot x + 4.015$. $p(14) \approx 3,967$

Bei einer Rohrlänge von 14 m ergibt sich mithilfe der linearen Interpolation ein Druck von rund 3,967 bar.

Die Steigung gibt den Druckabfall in Bar pro Meter an.

Lösungsschlüssel

- a) 1 × A: für den richtigen Ansatz zur Berechnung des stumpfen Winkels
 - 1 x B: für die richtige Berechnung der fehlenden Bestimmungsstücke
- b) 1 x B1: für die richtige Berechnung der Breite des Verbindungsstückes
 - 1 × A: für das richtige Erstellen einer Formel zur Berechnung des Volumens
 - 1 × B2: für die richtige Berechnung der Masse
- c) 1 x D: für den richtigen Nachweis der direkten Proportionalität
 - 1 × A: für einen richtigen Ansatz (z. B. mithilfe einer linearen Funktion bzw. ähnlicher Dreiecke)
 - 1 x B: für die richtige Bestimmung des Interpolationswertes
 - 1 x C: für die richtige Beschreibung der Bedeutung der Steigung in diesem Sachzusammenhang