Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 30/09/2016	Dr. David Israel Flores Granados Ing. Mónica Patricia René Ing. San Martín Alejandro Martín Canul	Revisión del programa para incorporarse en el plan de estudios de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores
Asignatura(s) a) II0215 Electricidad y Magnetismo	a) IT0208. Electrónica Digital
a) Todos	a)Todos

Nombre de la asignatura	Departamento o Licenciatura
Electrónica analógica	Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
3 - 3	IT0263	6	Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Seminario	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir el funcionamiento de componentes analógicos pasivos y activos para su integración en el diseño de circuitos básicos utilizando diagramas y circuitos.

Objetivo procedimental

Aplicar los elementos pasivos y activos en sub-sistemas electrónicos representativos para la implementación de circuitos.

Objetivo actitudinal

Fomentar el trabajo colaborativo para el desarrollo de practicas de laboratorio para la implementación de circuitos analógicos.

Unidades y temas

Unidad I. FUNDAMENTOS

Explicar los elementos pasivos para la implementación de circuitos analógicos simples

- 1) Elementos pasivos en C.D y C.A.
- 2) Circuitos resistivos
- 3) Circuitos capacitivos e inductivos
- 4) Circuitos RC, RL y RLC
- 5) Circuitos de aplicación

Unidad II. ELEMENTOS ACTIVOS UNIJUNTURA

Ilustrar el funcionamiento del diodo y sus aplicaciones para el diseño de circuitos analógicos simples

- 1) Materiales semiconductores
- 2) Unión PN.
- 3) Principios de funcionamiento y polarizacion del diodo
- 4) Tipos de diodos
- 5) Circuitos de aplicación

Unidad III. ELEMENTOS ACTIVOS BASICOS MULTIJUNTURA

Operar el transistor bipolar en circuitos analógicos mono-etapa para la implementación en circuitos analógicos

- 1) Unión PNP y NPN
- 2) Principios de funcionamiento y polarización de transistores bipolares
- 3) Tipos de Transistores
- 4) Circuitos de aplicación

Unidad IV. AMPLIFICADOR OPERACIONAL

Aplicar conceptos de programación y sistemas digitales para el diseño de prototipos

- 1) Principios de funcionamiento
- 2) Tipos de amplificador operacional
- 3) Circuitos de aplicación

Actividades que promueven el aprendizaje

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados. Coordinar la discusión de casos prácticos. Realizar tareas asignadas Participar en el trabajo individual y en equipo Resolver casos prácticos (circuitos) Realizar foros para la discusión de temas o problemas.

Actividades de aprendizaje en Internet

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Desarrollo de Proyectos	25
Participación	10
Practicas	25
Trabajos de Investigación	10
Total	100

Fuentes de referencia básica

Bibliográficas

Boylestad N (2008). Electrónica: teoría de circuitos y dispositivos electroónicos (8a edición). USA: Prentice Hall

Cuesta L. (2005). Electrónica analógica- análisis de circuitos. México: Mc Graw Hill Interamericana

Hambley A.(2002) Electrónica. México: Prentice Hall (2a edición).

Hayt W. (2012) Análisis de circuitos en ingeniería (8a edición), México: Mc Graw Hill.

Malvino B. (2007) Principios de electrónica (7a edición). España: Mc Graw Hill.

Web gráficas

.

Fuentes de referencia complementaria

Bibliográficas

Floyd T. (2007) Principios de circuitos (8a edición). México: Prentice Hall.

Shuleer C. (2002) Electrónica principios y aplicaciones. España: Reverté.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Ingenieria, licenciatura o posgrado en Ciencias de la Computación, Sistemas, Electrica o Electrónica

Docentes

2 años de experiencia impartiendo asignaturas afines en instituciones de educación superior o posgrado.

Profesionales

Experiencia en el desarrollo de software de base, sistemas embebidos, controladores de dispositivos