Binary fission

Celdeling in bacteriën

I. Equal products of cell division:

Binary fission: most bacteria

- II. Unequal products of cell division:
 - 1. Simple budding: Pirellula, Blastobacter

2. Budding from hyphae: Hyphomicrobium, Rhodomicrobium, Pedomicrobium

3. Cell division of stalked organism: Caulobacter

4. Polar growth without differentiation of cell size:

Rhodopseudomonas, Nitrobacter, Methylosinus

Time (h)	Total number of cells	Time (h)	Total number of cells
0	1	4	256 (2 ⁸)
0.5	2	4.5	512 (2 ⁹)
1	4	5	1,024 (2 ¹⁰)
1.5	8	5.5	2,048 (2 ¹¹)
2	16	6	4,096 (2 ¹²)
2.5	32		
3	64	•	
3.5	128	10	1,048,576 (2 ²⁰)

(a)

Groeicurve batch culture

Gesloten systeem met vast volume

Temperatuur en groei

cardinal temperatures

Temperatuur en groei

Psychrofielen en psychrotoleranten

Psychrofielen: optimale groeitemperatuur van 15 °C of lager.

Psychrotoleranten: kunnen bij lage temperature groeien (b.v. 0°C of in de koelkast), maar hebben een optimum boven 20 °C

Oefening aanpassingen pyschrofielen

- Eiwitstructuur: (t.o.v. mesofielen)
 - meer/minder α -helices dan β -sheets \rightarrow flexibeler
 - meer/minder polaire and meer/minder hydrofobe residuen
 - meer/minder bindingen zoals waterstofbruggen en ionische bindingen
- Cytoplasmatisch membraan: meer/minder onverzadigde vetzuren (t.o.v. mesofielen)
- "cold shock" proteins
- cryoprotectants
- soms exopolysaccharide slijmlaag aan celoppervlak (ook cryoprotectant)

16e: figuur 4.24+25

(Hyper)thermofielen

Optimale groeitemperatuur:

- thermofielen 45 80 °C
- hyperthermofielen 80 °C of hoger

Bacteria: (bekend) tot 95 °C

Methanopyrus: 122 °C

Aanpassingen (hyper)thermofielen

- eiwitten:
 - meer ionische bindingen
 - sterk hydrofobe binnenkant

vaak maar enkele substituties!

 productie van bepaalde moleculen die beschermen tegen denaturatie

- Membranen:
 - Bacteria: meer lange, verzadigde vetzuren
 - Archaea: lipide monolagen (zie ook college 4)

Eiwitten van (hyper)thermofielen

Commerciele toepassingen b.v.:

- Taq polymerase (<u>Thermus aquaticus</u>)
- Industriele toepassingen

(b)

LET OP: ook bij acidofielen en alkalifielen is pH in de cel ~neutraal (rond 7)

Halofielen

Osmofielen en xerofielen

osmofielen:

groeien het best bij hoge suikerconcentraties

xerofielen:

groeien het best onder zeer droge omstandigheden

Compatible solutes

Organism group and example	Major cytoplasmic compatible solute(s)	Minimum a _w for growth ^c	
Most nonphototrophic <i>Bacteria</i> (<i>Escherichia</i>) and freshwater cyanobacteria (<i>Anabaena</i>)	Amino acids (mainly glutamate or proline ^a)/ sucrose, trehalose ^b	O.98 CH ₂ OH HOH	OH CH ₂ OH
Marine cyanobacteria (Synechococcus)	œGlucosylglycerol ^b	0.92	
Marine algae (<i>Phaeocystis</i>)	Mannitol, ^b various glycosides, dimethylsulfoniopropionate	$\begin{array}{c} \text{CH}_3\\ \text{H}_3\text{C}-\overset{\circ}{\text{S}}-\text{CH}_2\text{CH}_2\\ \\ \text{Dimethylsulfoniopro} \end{array}$	
Halotolerant Bacteria (Staphylococcus)	Amino acids	0.90	
Salt lake cyanobacteria (Aphanothece)	Glycine betaine	CH_3 $H_3C-N^+-CH_2-CC$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	00-
Halophilic phototrophic purple <i>Bacteria</i> (<i>Halorhodospira</i>)	Glycine betaine, ectoine, trehalose ^b	H ₃ C CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ C COO Ectoine	
Extremely halophilic Archaea (Halobacterium) and some Bacteria (Salinibacter)	KCI	0.75	
Halophilic green algae (<i>Dunaliella</i>)	Glycerol	CH ₂ OH CHOH CH ₂ OH Glycerol	
Haloalkaliphilic Archaea (Natrinema)	KCI	0.68	
Xerophilic and osmophilic yeasts (Zygosaccharomyces)	Glycerol	D.62 ^d	
Xerophilic filamentous fungi (Xeromyces)	Glycerol	0.605 ^d	

⁸See Figure 6.27 for the structures of amino acids.

bStructures not shown. Like sucrose, trehalose is a C12 disaccharide; glucosylglycerol is a C9 alcohol; mannitol is a C6 alcohol.

^cTo achieve an osmotic a_w lower than about 0.77, solutes other than just NaCl are necessary; for example, other salts (MgCl₂, MgSO₄, or CaCl₂) or nonsalts, such as glycerol or sucrose. For most organisms listed (other than for the xerophiles), the lower a_w for growth can be extended downward somewhat by additional solutes. ^dGrowth of *Zygosaccharomyces* tested in high-sucrose medium. Germination of *Xeromyces* spores tested using matric water potential.

Zuurstof en groei

Group	Relationship to O ₂	Type of metabolism	Example ^a	Habitat ^b
Aerobes				
Obligate	Required	Aerobic respiration	Micrococcus luteus (B)	Skin, dust
Facultative	Not required, but growth better with O ₂	Aerobic respiration, anaerobic respiration, fermentation	Escherichia coli (B)	Mammalian large intestine
Microaerophilic	Required but at levels lower than atmospheric	Aerobic respiration	Spirillum volutans (B)	Lake water
Anaerobes				
Aerotolerant	Not required, and growth no better when O ₂ present	Fermentation	Streptococcus mutans (B)	Oral cavity
Obligate	Harmful or lethal	Fermentation or anaerobic respiration	Methanobacterium formicicum (A)	Sewage sludge, anoxic lake sediments

^aLetters in parentheses indicate phylogenetic status (B, *Bacteria*; A, *Archaea*). Representatives of either domain of prokaryotic cells are known in each category. Most eukaryotes are obligate aerobes, but facultative aerobes (for example, yeast) and obligate anaerobes (for example, certain protozoa and fungi) are known. ^bListed are typical habitats of the example organism; many others could be listed.

Facultatief anaeroob = facultatief aeroob

Oefening zuurstof en groei

Kweek obligaat anaeroben

(a) (b)

Reductie zuurstof

3 intermediairen tussen zuurstof en water (partieel gereduceerd)

Reactants	Products				
$O_2 + e^- \rightarrow$	O ₂ -		(superoxide)		
$O_2^- + e^- + 2 H^+ \rightarrow$	H_2O_2		(hydrogen peroxic		
$H_2O_2 + e^- + H^+ \rightarrow$	H ₂ O +	OH•	(hydroxyl radical)		
OH• + e ⁻ + H ⁺ →	H ₂ O		(water)		
Outcome:					
$O_2 + 4 e^- + 4 H^+ \rightarrow 2 H_2 O$					

Als ETK "lekt" kan er partiële reductie ontstaan.

16e: figuur 4.30 **15e: figuur 5.27**

Bescherming tegen zuurstofradicalen

$$H_2O_2 + H_2O_2 \rightarrow 2 H_2O + O_2$$

(a) Catalase

$$H_2O_2$$
 + NADH + H⁺ \rightarrow 2 H_2O + NAD⁺

(b) Peroxidase

$$O_2^- + O_2^- + 2 H^+ \rightarrow H_2O_2 + O_2$$

(c) Superoxide dismutase

$$4 O_2^- + 4 H^+ \rightarrow 2 H_2 O + 3 O_2$$

(d) Superoxide dismutase/catalase in combination

(e) Superoxide reductase

Oefening microbiële groei

Planktonic versus sessile growth

Plantonic growth: bacteriën drijven in een oplossing

Voor micro-organismen kan het nuttig zijn om aan een oppervlak te groeien (sessile).

Biofilm: bacteriële cellen gehecht aan een oppervlak, omgeven door een poreuze, plakkerige matrix.

Microbiële matten: extreem dikke biofilms, bestaan meestal uit een compleze gemeenschap van verschillende micro-organismen.

Vorming biofilm

Verloopt in stappen:

- 1. Attachment: aan een oppervlak (b.v. met pili, flagellen of fimbriae)
- 2. Colonization: groei + uitscheiding extracellulaire polysacchariden (EPS)
- 3. Development: metabole differentiatie
- 4. Dispersal: → kolonisatie nieuwe gebieden

Een biofilm kan uit meerdere soorten bestaan

Waarom biofilms?

- Bescherming tegen b.v. fysieke krachten, fagocytose en toxines
- Biofilms 'vangen' nutrienten en voorkomen dat cellen 'weggewassen' worden.
- Helpt om in favoriete niche blijven
- Helpt bacteriën om dicht bij elkaar te leven

Alle figuren in deze PowerPoint zijn eigen werk of afkomstig uit Brock Biology of Microorganisms (16th edition, Pearson) tenzij anders vermeld.