Group Assignment 1

Simon Yu

2025-10-01

Table of contents

Question 1																							3
Question 2																							3
Question 3																							3
Question 4																							4
Question 5																							4
Question 6																							4
Question 7																							5
Question 8																							5
Question 9																							
Question 10		_		_	_			_	_													_	6

List of Figures

List of Tables

library(dplyr)

```
data <- read.csv("compustat_food_bev.csv")

# filter data for Wendy's (WEN)
wen_data <- filter(data, tic == "WEN")

# convert datadate to Date type
wen_data$datadate <- as.Date(wen_data$datadate, format = "%d/%m/%Y")</pre>
```

Question 1

```
#1. Add a new column named daily_return
# to store daily return value

#2. Drop the rows whose daily return values are NA
wen_data <- mutate(wen_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
wen_data <- filter(wen_data, !is.na(daily_return))</pre>
```

Question 2

```
#1. Add a new column named overnight_return
# to store overnight return value

#2. Drop the rows whose overnight_return values are NA
wen_data <- mutate(wen_data, overnight_return = (prcod - lag(prccd)) / lag(prccd))
wen_data <- filter(wen_data, !is.na(overnight_return))</pre>
```

Question 3

```
#1. Add a new column named volume_change
# to store daily volume change value

#2. Drop the rows whose volume_change values are NA

wen_data <- mutate(wen_data, volume_change = (cshtrd - lag(cshtrd)))
wen_data <- filter(wen_data, !is.na(volume_change))</pre>
```

Question 4

A data.frame: 6×5

	datadate <date></date>	daily_return <dbl></dbl>	overnight_re- turn <dbl></dbl>	vol- ume_change <int></int>	mfv <dbl></dbl>
1					
2	2020-09-04 2020-09-08	-0.01685649 0.01251158	0.011389522 -0.006950880	-929061 87249	-2148667 1761526
3	2020-09-09	0.02951945	0.006864989	-591443	2005638
4	2020-09-10	-0.02867304	0.002444988	-59870	-2741393
5 6	2020-09-11 2020-09-14	$-0.01739130 \\ 0.02608291$	$0.007322654 \\ 0.007452259$	-462401 1315156	-664416 2556174

Question 5

```
library(lubridate)

# Add a new column named month
wen_data <- mutate(wen_data, month = month(datadate))</pre>
```

Question 6

```
# Add a new column named year
wen_data <- mutate(wen_data, year = year(datadate))</pre>
```

```
# show the table containing only the new 2 date columns
wen_data_dates <- filter(wen_data[ , c("datadate", "month", "year")])
head(wen_data_dates, 10)</pre>
```

A data.frame: 10×3

	datadate <date></date>	month <dbl></dbl>	year <dbl></dbl>
1	2020-09-04	9	2020
2	2020-09-08	9	2020
3	2020-09-09	9	2020
4	2020-09-10	9	2020
5	2020-09-11	9	2020
6	2020-09-14	9	2020
7	2020-09-15	9	2020
8	2020-09-16	9	2020
9	2020-09-17	9	2020
10	2020-09-18	9	2020

Question 7

```
# Calculate the total trade volume (cshtrd) for June 2023
trade_volume_2023_06 <- filter(wen_data, year == 2023 & month == 6)
sum(trade_volume_2023_06$cshtrd)</pre>
```

54557454

Question 8

```
# Calculate the mean of daily return over the period
mean_daily_return <- mean(wen_data$daily_return)
print(mean_daily_return)</pre>
```

[1] 5.375167e-05

Question 9

```
# Find the date for maximum high price over the period
max_high_price <- max(wen_data$prchd)

date_max_high_price <- filter(wen_data, prchd == max_high_price)
print(date_max_high_price$datadate)</pre>
```

[1] "2021-06-08"

Question 10

```
# Find the date for largest daily return over the period
max_daily_return <- max(wen_data$daily_return)
date_max_daily_return <- filter(wen_data, daily_return == max_daily_return)
print(date_max_daily_return$datadate)</pre>
```

[1] "2021-06-08"