Advanced Machine Learning

Likhit Nayak

Madimic Ecaning

Dataset Augmentation

Best way to make a machine learning model generalize better is to train it on more data - create fake data and add to the training set.

Dataset Augmentation

Dataset Augmentation

4 - 4

Dataset Augmentation - Injecting Noise

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." Proceedings of the 25th international conference on Machine learning. 2008.

Early Stopping

Van Engelen, Jesper E., and Holger H. Hoos. "A survey on semi-supervised learning." Machine learning 109.2 (2020): 373-440.

Assumptions:

- 1. Smoothness assumption
 - If two samples x and x' are close in the input space, their labels y and y' should be the same
- Low-density assumption
 - The decision boundary should not pass through high-density areas in the input space
- 3. Manifold assumption
 - The input space is composed of multiple lower-dimensional manifolds on which all data points lie
 - Data points lying on the same manifold have the same label

Van Engelen, Jesper E., and Holger H. Hoos. "A survey on semi-supervised learning." Machine learning 109.2 (2020): 373-440.

Ladder Networks

Rasmus, Antti, et al. "Semi-supervised learning with ladder networks." Advances in neural information processing systems 28 (2015).

Other Semi-supervised Networks

Virtual adversarial training

 Miyato, T., Maeda, S. I., Koyama, M., & Ishii, S. (2018). Virtual adversarial training: A regularization method for supervised and semi-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8), 1979–1993.

Π-model

 Laine, S., & Aila, T. (2017). Temporal ensembling for semi-supervised learning. In International conference on learning, representations.

Multitask Learning

Assumption:

Among the factors that explain the variations observed in the data associated with different tasks, some are shared across two or more tasks.

Intuition:

In the same way that additional training examples put more pressure on the parameters of the model toward values that generalize well, when part of a model is shared across tasks, that part of the model is more constrained towards "good values", thus yielding better generalization.

Multitask Learning

References

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Multitask Learning