Image Classification: Cats and Dogs

Authors:

- Rahiq Raees
- Mulin Chen
- Basim Hilal
- Jingchao Zhu

Competition Overview and Data Exploration

Directory

```
train/
    dogs/
         dog001.jpg
         dog002.jpg
         . . .
    cats/
         cat001.jpg
         cat002.jpg
         . . .
test/
    000001.jpg
    000002.jpg
     . . .
```


Data Processing and Methodology

CNN Results

Simple CNN

VGG16

Deep CNN

VGG16 Tuned

Hyperparameter tuning

Simple CNN

Epoch	Train Acc	Val Acc	Notes
10	78.6%	79.6%	Strong learning
20	84.9%	85.3%	good

Simple CNN + random search

Epoch	Train Acc	Val Acc	Val Loss	Notes
1	96.8%	77.1%	0.7963	Overconfident model
2	98.4%	77.9%	0.8770	Val loss worsens, LR reduced
3	99.4%	78.3%	1.1089	Val loss explodes

Overfiting: RandomSearch likely chose too many filters, too large dense layer, low dropout, or high learning rate \rightarrow perfect train accuracy, poor validation.

No learning in tuning strategy: RandomSearch blindly picked 3 random configs — too shallow to find optimal settings.

Bad tuning sample: tuned on just 2,000 images — that subset didn't reflect the full training set \rightarrow overfit to tuning data, failed to generalize.

Simple CNN + Bayesian

Epoch	Train Acc	Val Acc	Val Loss	Notes
1	96.8%	77.1%	0.7963	Overconfident model
2	98.4%	77.9%	0.8770	Val loss worsens, LR reduced
3	99.4%	78.3%	1.1089	Val loss explodes

Overfitting via overpowered configs: Bayesian search likely favored too many filters, oversized dense layers, low dropout, or aggressive learning rates \rightarrow led to perfect training accuracy but poor validation.

Shallow search: Only ran 3–5 trials — far too few for Bayesian Optimization to explore the hyperparameter space effectively → stuck in local minima, no real tuning.

Poor tuning subset: Used just 2,000 images for tuning — subset didn't represent the full training distribution \rightarrow model overfit to the sample, failed to generalize.

Findings and Challenges

Model comparison:

Deep CNN outperformed Simple CNN across all key metrics — accuracy, loss, and generalization.

Transfer learning (e.g., VGG16) demonstrated competitive performance with reduced training time and lower overfitting risk.

Evaluation metrics:

Binary cross-entropy worked well for probabilistic outputs. Accuracy, validation loss, and early stopping were used to track and compare model quality.

Conclusions are Well-Supported:

The chosen Deep CNN architecture is justified by strong empirical results. Hyperparameter tuning methods must shift from manual to automated (Bayesian/Random search) to scale experiments efficiently.

Thanks for Listening!