ESC FINAL PROJECT 기말발표

주제: Linear Regression을 통한 아파트 경매 가격 상승률 예측

1조 강태환 김동휘 이재현 조유림 최익준

1. EDA

1) 중간발표 중요 내용

- 날짜 관련 파생변수 생성 : 최종 경매일과 최초 경매일 차이
- 시군구/감정사 클러스터링 진행 후 더미변수 생성
- Y와의 correlation이 높으면서 서로 correlation이 높은 6개의 변수 \rightarrow PCA를 통해 차원 축소

2) 변경 사항

1. floor(층수) → skyscraper 더미변수 생성

30층 이상의 고층건물은 1, 30층 미만은 0의 값을 부여해 더미 변수 생성

2. Hammer price/ minimum sales price(최저 매각 가격) Y값 새롭게 생성하는 방식 \rightarrow **기존의 Y값**인 Hammer price를 예측하기로 결정

변환한 y값에 대해서 OLS 모형의 설명력이 너무 낮았음

3. Y값에 대해 **BOX-COX Transformation** 진행

```
plt.hist(data['Hammer_price'])
plt.show()
```


기존의 hammer price 분포는 정규분포 형태가 아니다. OLS 가정사항 위반!

```
lambda_boxcox = boxcox(data['Hammer_price'])[1]
data['Hammer_price'] = boxcox(data['Hammer_price'])[0]
```

plt.hist(data['Hammer_price'])
plt.show()

BOX COX Transformation을 통해 정규분포 형태로 만들어줌

2. 모델링

1) Frequentist 관점 OLS

backward selection을 통해 변수 선택

단계1 : 변수 전체 사용

from statsmodels.formula.api import ols

```
res = ols('Hammer_price ~ PC1 + PC2 + Claim_price + Auction_count + Final_First_auction_data + ad_si_0 + ad_si_1 + ad_si_2 + Appr_0 + Appr_1 + 서울 + skyscraper',data = data).fit()
res.summary()
```

		0.867		ed:	R-square		mmer_price	: Ha	Dep. Variable
		0.866		ed:	R-square	Adj.	OLS	l:	Model
		1004.		ic:	F-statist		ast Squares	l: Le	Method
		0.00		c):	F-statisti	Prob (2 Jun 2021	: Wed, (Date
		6356.4	-	d:	Likelihoo	Log-	11:18:30):	Time
		74e+04	1.27	IC:	A		1855	: :	No. Observations
		81e+04	1.28	IC:	В		1842	s:	Df Residuals
							12	l:	Df Model
							nonrobust	: :	Covariance Type
0.975]	025	[0.	P> t		t	std err	coef		
146.459	484	130.	0.000	0	34.001	4.073	138.4719	ntercept	Ir
7.253	840	6.	0.000	0	66.989	0.105	7.0462	PC1	
-5.037	801	-5.	0.000	(-27.841	0.195	-5.4190	PC2	
1.54e-10	-10	-4.72e	0.319	(-0.997	1.6e-10	-1.59e-10	m_price	Clair
-3.135	033	-4.	0.000	(-15.655	0.229	-3.5842	n_count	Auction
0.006	001	0.	0.004	(2.898	0.001	0.0038	on_data	Final_First_auction
4.556	563	1.	0.000	0	4.010	0.763	3.0595	ad_si_0	
4.188	458	2.	0.000	(7.535	0.441	3.3228	ad_si_1	
7.153	401	3.	0.000	0	5.518	0.956	5.2771	ad_si_2	
0.694	343	-3.	0.198	(-1.287	1.029	-1.3242	Appr_0	
-6.324	018	-36.	0.005	0	-2.797	7.570	-21.1708	Appr_1	
11.003	398	9.	0.000	0	24.928	0.409	10.2006	서울	
0.673	153	0.	0.002	0	3.117	0.132	0.4129	scraper	sky
				22	2.1	Watson:	Durbin-	554.932	Omnibus:
				34	2222.5	era (JB):	Jarque-Be	0.000	Prob(Omnibus):
				00	0.	rob(JB):	P	-1.404	Skew:
				10	5.03e+	ond. No.	C	7.568	Kurtosis:

• Claim price의 p-value가 0.319로 제거

단계2 : Claim price 제거 후 fitting

```
res2 = ols('Hammer_price ~ PC1 + PC2 + Auction_count + Final_First_auction_data + ad_si_0 + ad_si_1 + ad_si_2 + Appr_0 + Appr_1 + 서울 + skyscraper',data = data).fit()
res2.summary()
```

Dep. Variable	: Ha	mmer_price		R-square	d:	0.867	
Mode	l:	OLS	Adj.	R-square	d:	0.866	
Method	l: Le	ast Squares		F-statisti	ic:	1095.	
Date	: Wed, (02 Jun 2021	Prob (F-statistic	c):	0.00	
Time):	11:18:30	Log-	Likelihoo	d:	-6356.9	
No. Observations	: :	1855		Al	C: 1.2	74e+04	
Df Residuals	i:	1843		ВІ	C: 1.2	80e+04	
Df Mode	l:	11					
Covariance Type):	nonrobust					
		coef	std err	t	P> t	[0.025	0.975]
Ir	ntercept	138.3632	4.071	33.986	0.000	130.379	146.348
	PC1	7.0346	0.105	67.292	0.000	6.830	7.240
	PC2	-5.4089	0.194	-27.827	0.000	-5.790	-5.028
Auction	_count	-3.5865	0.229	-15.666	0.000	-4.035	-3.137
Final_First_auction	on_data	0.0038	0.001	2.871	0.004	0.001	0.006
	ad_si_0	3.0427	0.763	3.989	0.000	1.547	4.539
	ad_si_1	3.3059	0.441	7.503	0.000	2.442	4.170
	ad_si_2	5.2602	0.956	5.501	0.000	3.385	7.136
	Appr_0	-1.3189	1.029	-1.281	0.200	-3.337	0.700
	Appr_1	-20.9751	7.568	-2.772	0.006	-35.817	-6.133
	서울	10.1912	0.409	24.912	0.000	9.389	10.994
sky	scraper	0.4154	0.132	3.137	0.002	0.156	0.675
Omnibus:	555.406	Durbin-	Watson:	2.12	23		
Prob(Omnibus):	0.000	Jarque-Be	era (JB):	2222.98	32		
Skew:	-1.406	P	rob(JB):	0.0	00		
Kurtosis:	7.567	C	ond. No.	7.49e+0)3		

- Appr_0 변수의 p-value값이 0.2로 유의하지 않음
- Appr_0는 감정사 변수에 대한 dummy variable로 Appr_1 변수도 함께 제거해주기로 함

단계3:최종모형

```
res3 = ols('Hammer_price ~ PC1 + PC2 + Auction_count + Final_First_auction_data + ad_si_0 + ad_si_1 + ad_si_2 + 서울 + skyscraper', data = data).fit()
res3.summary()
```

			_				
Dep. Variable:	Han	nmer_price		R-squared		0.867	
Model:		OLS	Adj. F	R-squared	l:	0.866	
Method:	Lea	st Squares	ı	-statistic	::	1332.	
Date:	Tue, 0	1 Jun 2021	Prob (F	-statistic):	0.00	
Time:		19:05:37	Log-L	ikelihood	l: -	6361.5	
No. Observations:		1855		AIC	: 1.27	'4e+04	
Df Residuals:		1845		BIC	: 1.28	80e+04	
Df Model:		9					
Covariance Type:		nonrobust					
		coef	std err	t	P> t	[0.025	0.975]
						•	-
Int	ercept	137.7325	4.070	33.842	0.000	129.750	145.715
	PC1	6.9914	0.103	67.573	0.000	6.788	7.194
	PC2	-5.3327	0.192	-27.715	0.000	-5.710	-4.955
Auction	_count	-3.5937	0.229	-15.668	0.000	-4.044	-3.144
Final_First_auction	n_data	0.0039	0.001	2.942	0.003	0.001	0.006
a	d_si_0	3.1037	0.762	4.071	0.000	1.608	4.599
a	d_si_1	3.3343	0.441	7.555	0.000	2.469	4.200
a	d_si_2	5.0524	0.953	5.303	0.000	3.184	6.921
	서울	10.2332	0.410	24.985	0.000	9.430	11.036
skys	craper	0.4339	0.132	3.276	0.001	0.174	0.694
Omnibus:	551.890	Durbin-	Watson:	2.12	23		
Prob(Omnibus):	0.000	Jarque-B	era (JB):	2194.36	52		
Skew:	-1.398	Р	rob(JB):	0.0	00		
Kurtosis:	7.535	С	ond. No.	4.02e+0)3		

- 모든 변수가 유의하다고 나옴
- 최종 변수 : PC1, PC2, Auction_count(총 경매횟수), Final_First_auction_data(최종 경매일과 최초 경매일 차이), 시군구 더미변수, 시도 더미변수, 고층건물 더미변수
- adjusted r square값은 0.866

2) Bayesian Linear Regression

단계 1. Model Selection

```
class Model:
    def z_function(self,data,category_index):
        p = data.shape[1]
        category = [i for i in range(p)]
        Ncategory = []
        for i in category_index:
            Ncategory.append(i)
            for j in i:
                category.remove(j)
        x = [[i] \text{ for } i \text{ in category}]
        for i in Ncategory:
            x.append(i)
        result = []
        cnt=0
        for i in range(len(x)):
            count = len(list(combinations(x,i+1)))
            for j in range(count):
```

```
z = [0]*p
                for k in range(i+1):
                    if len(list(combinations(x,i+1))[j][k]) == 1: #(1,2)
                        z[list(combinations(x,i+1))[j][k][0]] = 1
                    else:
                        for m in range(len(list(combinations(x,i+1))[j][k])):#(1,
(2,3,4))
                            z[list(combinations(x,i+1))[j][k][m]] = 1
                result.append(z)
        return result
   def sig(self, X, y):
       X = np.array(X)
        n = X.shape[0]
        yhat = X@inv(t(X)@X)@t(X)@y
        res = y-yhat
        return sum(res**2)/n
    def posterior(self,X,y,category_index,g):
        nu0 = 1
        z = Model.z_function(self,X,category_index)
        y = np.array(y)
        1 = []
        for i in z:
           i = np.array(i)
            Xz = X.iloc[:,np.where(i==1)[0]]
            n,p = Xz.shape
           Xz = np.array(Xz)
            sig0 = Model.sig(self,Xz,y)
            ssr = t(y)@(np.eye(n)-g/(g+1)*Xz@inv(t(Xz)@Xz)@t(Xz))@y
            loglikelihood = (-n/2)*log(np.pi)+loggamma((nu0+n)/2)-
\log_{nu0/2} -p/2*\log(1+g)+nu0/2*\log(nu0*sig0)-(nu0+n)/2*\log(nu0*sig0+ssr)
            1.append(loglikelihood)
        1 = 1/sum(1)
        return 1
```

z_function(self,data,category_index)

- PC1 + PC2 + Claim_price + Auction_count + Final_First_auction_data + ad_si_0 + ad_si_1 + ad_si_2 + Appr_0 + Appr_1 + 서울 + skyscraper 변수 포함여부를 z 로 나타냄
- 더미 변수에 대해서는 제거할 때 동시에 제거하고 포함할 때는 동시에 포함하도록 설계

```
z = m.z_{function}(x,[[5,6,7],[8,9]]) # 카테고리 변수의 인덱스를 입력할 수 있도록 함
```

```
[[1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0],
...
```

• 511 경우의 수!!

posterior(self,X,y,category_index,g)

- weak prior 부여
- $ightarrow g=n,\;
 u_0=1, \sigma_0^2=$ estimated residual variance under the least squares estimate
- ightarrow unit information prior for $p(\sigma^2)$
 - log likelihood값을 이용해 posterior값을 구함

	model	posterior
0	[1,0,0,0,0,0,0,0,0,0,0]	0.001954
1	[0,1,0,0,0,0,0,0,0,0,0]	0.001955
2	[0,0,1,0,0,0,0,0,0,0,0]	0.001955
3	[0,0,0,1,0,0,0,0,0,0,0]	0.001955
4	[0,0,0,0,1,0,0,0,0,0,0]	0.001955

```
np.argmax(posterior)
509

result.iloc[509,:]
model [0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```

• PC1 변수를 제외하고 다른 변수 모두 사용하기로 결정

단계2 β 샘플링

```
from scipy.stats import gamma
from scipy.stats import multivariate_normal

BETA = []

for i in range(1000):
    precision_MC = gamma.rvs(a = nu0+n, scale = (nu0+n)/((nu0*s0)+ssr),size=1)
    cov_MC = 1/precision_MC * inv(t(xz).dot(xz))
    beta_MC = multivariate_normal.rvs(mean = beta * g/(g+1),
    cov=cov_MC*g/(g+1),size=1)
    BETA.append(beta_MC)

pd.DataFrame(BETA).mean()
```

• Monte Carlo approximation 을 이용해 beta 샘플링

$$\begin{split} & \text{sample } 1/\sigma^2 \sim \text{gamma} \big(\left[\nu_0 + n\right]/2, \left[\nu_0 \sigma_0^2 + \text{SSR}_g\right]/2 \big); \\ & \text{sample } \boldsymbol{\beta} \sim \text{ multivariate normal } \left(\frac{g}{g+1} \hat{\boldsymbol{\beta}}_{\text{ols}} \;, \frac{g}{g+1} \sigma^2 \left[\mathbf{X}^T \mathbf{X} \right]^{-1} \right) \;. \end{split}$$

```
0
    87.368541 #intercept
1
     -1.632595 #PC2
      0.000023 #Claim price
3
     -2.945322 #Auction count
4
     0.005012 #Final_First_auction_data
5
    24.100314 #ad_si_0
6
     9.487440 #ad_si_1
     30.645763 #ad_si_2
     7.222672 #Appr_0
9
    29.947249 #Appr_1
10 14.348095 #서울
     1.803751 #skyscrapper
11
```

• weak prior를 사용했기 때문에 일반 OLS에서 추정한 계수와 값이 유사한 것을 확인할 수 있음

	coef
Intercept	87.4158
PC2	-1.6335
Claim_price	1.024e-09
Auction_count	-2.9464
$Final_First_auction_data$	0.0049
ad_si_0	24.1131
ad_si_1	9.4923
ad_si_2	30.6621
Appr_0	7.2263
Appr_1	29.9635
서울	14.3558
skyscraper	1.8042
Skystruper	1.0042

3. Test data에 적용

Test data에 train data와 동일한 방식으로 전처리 진행

1. 시군구/ 감정사

- train data에서 클러스터링 한 결과를 그대로 사용
- train data에 없는 감정사는 가장 큰 규모의 군집으로 넣어줌

```
for i in range(829):
    if testdata['addr_si'][i] == '서초구':
        testdata['ad_si_0'][i] = 1
    elif testdata['addr_si'][i] == '용산구':
        testdata['ad_si_0'][i] = 1
    elif testdata['addr_si'][i] == '송파구':
        testdata['ad_si_0'][i] = 1
```

2. PCA

• train data에서 구한 loading 값을 이용해서 계산


```
PC2 = []
for i in range(820):
    PC2.append(PC11[i]+PC22[i]+PC33[i]+PC44[i]+PC55[i]+PC66[i])
```

3. Y값을 구한 후에 inverse-transformation 진행

```
prehammer2 = inv_boxcox(hammer2, lambda_boxcox)
```

결과: RMSE 기준

tt.csv	2021-06-02	238613007.3490338	0
edit	23:23:11	189620750.87831324	
tt2.csv edit		180564322.9969324 172375958.09373492	0

• 일반회귀 : RMSE 238613007

• Bayesian Linear Regression : RMSE 180564322

• Bayesian Linear Regression의 결과가 더 좋은 것을 확인할 수 있음