ECE 321 Software Requirements Engineering

Lecture 13: Dynamic and Static Analysis of Petri Nets

Last week: Petri Nets

Last week: Concurrency in Petri Nets

Are T_1 and T_2 concurrent?

Last week: Concurrency in Petri Nets

Are T₁ and T₂ concurrent? **YES**

And now? **NO**

Last week: Will the execution of this model result in deadlock?

Last week: Petri Net extensions: Assigning values to tokens

- In contains 3 tokens with the values 4, 6 and 7
- C contains one token with the value 2

This week: verification of Petri Nets

- Verification of properties
 - Behavioural
 - Depend on the initial marking
 - Structural
 - Depend on the structure of the PN (topology)

Which properties do Petri Nets have?

- Behavioural properties
 - Reachability
 - Boundedness
 - Liveness
 - Conservativeness
- Structural properties
 - Structural liveness
 - Controllability
 - Structural boundedness

Behavioural properties: reachability

- Marking M is reachable from M_0 if there exists a firing sequence $s = \langle T_1 T_2 T_3 ... \rangle$ that transforms M_0 to M
- $M_0 = (1,0,0)$
- Can we reach M = (0,1,0)?

$$-s =$$

- And what about M = (1,1,0)?
 - No

Behavioural properties: Boundedness

• A place is k-bounded if the number of tokens in that place does not exceed k for any marking reachable from M_0

Behavioural properties: Boundedness 2/2

 P_1 , P_2 and P_3 are 1-bounded

How about now? P_4 is unbounded

Behavioural properties: Liveness 1/2

- A transition t is live, if there exists a marking M that is reachable from every M₀ from which t is enabled
 - i.e., there is always a firing sequence from M₀ that enables t

Behavioural properties: Liveness 2/2

 T_1 is not live; T_2 and T_3 are live

All transitions are live

Behavioural properties: Conservativeness 1/2

 The total number of tokens in the PN is constant

Behavioural properties: Conservativeness 2/2

Conservative PN

Non-conservative PN

Which properties do Petri Nets have?

- Behavioural properties
 - Reachability
 - Boundedness
 - Liveness
 - Conservativeness
- Structural properties
 - Structural liveness
 - Controllability
 - Structural boundedness

Structural properties: Structural liveness 1/2

- A live Petri Net has only live transitions
- Liveness implies deadlock-free
- Deadlock-free does not imply liveness

Structural properties: Structural liveness 2/2

T₁ is not live; PN is deadlock free

PN is live

Structural properties: Controllability

Any marking is reachable from any other marking

Structural properties: Structural boundedness

- PN is structurally bounded if it is bounded for any initial marking M₀
- 1-bounded PNs are called safe
 - Safeness can be important in e.g., storage system to prevent buffer overflow

Dynamic and static analysis

- Dynamic analysis
 - Involves experimentation using models
 - Targets to show correct/incorrect behaviour
- Static analysis
 - Applies analysis to the model
 - Targets proving theorems about properties

Dynamic analysis of Petri Nets 1/2

- Uses graphs or trees
 - Reachability graphs
 - Graph representation of all possible firing sequences
 - Shows possible behaviours of the system
 - Graph is analyzed by searching for a particular node or path
 - Node = particular state of the system (marking)
 - Created from the initial state/marking
 - If the node/path is found, the behaviour is possible

Dynamic analysis of Petri Nets 2/2

- Experimentation to show (in)correct behaviour
 - Usually used to show incorrect behaviour
 - e.g., show that deadlock is possible
- An experiment is a single behaviour (particular situation)
- To prove that behaviour is correct we need to execute all possible experiments

Dynamic analysis of the semaphore

- Marking vector:
 - $M = (In_1, CR_1, Sem, In_2, CR_2, Out_2)$
 - Shown marking is (1,0,0,1,1,0,0)
- Let's draw the reachability graph!

Reachability graph of the semaphore

• M = (In₁, CR₁, Sem, In₂, CR₂, Out₂)

Questions answered using the reachability graph

- Can both processes access the critical resource at the same time?
- Can one process access the critical resource, while the other process waits?

Questions answered using the reachability graph

- Can both processes access the critical resource at the same time?
 - Look for (0,1,0,0,0,1,0)
- Can one process access the critical resource, while the other process waits?
 - Look for (1,0,0,0,0,1,0) or (0,1,0,0,1,0,0)

Dynamic analysis of the semaphore

- Analysis is dynamic because we enumerate all possible behaviours
- Although the system runs forever, the graph can still model it

Static analysis of Petri Nets

- Reachability graph can become HUGE
 - Static analysis does not require the graph
- Analyse the structure of the PN using
 - State equation and incidence matrix
 - Invariants
 - Properties that hold in all markings of PN
- Uses linear algebra to prove properties
 - Matrix equations

Incidence matrix A 1/3

- I = matrix of input places
 - Rows are transitions
 - Columns are places

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Incidence matrix A 2/3

- O = matrix of output places
 - Rows are transitions
 - Columns are places

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad O = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Incidence matrix A 3/3

Incidence matrix A

$$- A = O - I$$

- What does this matrix show?
 - The net result of each transition on each place

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad O = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad A = O - I = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

A vector representation of firing transitions

- $M = M_0 + t$
 - t is the input/output vector of an enabled transition

$$M = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

State equation

- $M = M_0 + vA$
 - There exists a firing vector v such that M_o is transformed into M
 - M is reachable from M₀
 - *v* contains t-elements (one for each transition)

An example of the state equation

- Given: $M = M_0 + vA$, $M_0 = (1,0,0)$, M = (0,0,1), t = 3
- How can we reach M from M₀?

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} -v_1 & v_1 + v_2 - v_3 & -v_2 + v_3 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -v_1 + 1 & v_1 + v_2 - v_3 & -v_2 + v_3 \end{bmatrix}$$
$$v_1 = 1, v_2 = v_3 - 1$$

So M is reachable from M_0 by firing (1,0,1), or (1,k,k+1)

Invariants

- T-invariant (transition-invariant)
 - Firing sequence that brings PN back to the marking it starts in
- P-invariant (place-invariant)
 - Indicate places in which sum of tokens is constant for any reachable marking

The t-invariant 1/2

- The sequence of transitions that bring back PN to the marking it starts in
- Basically, a sequence of markings of which the net effect is zero

$$M = M_0 + yA$$

 $M = M_0 + 0$
 $M = M_0$

• Let's solve yA = 0

The t-invariant 2/2

$$yA = 0 \rightarrow \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$
$$y_1 = 0, y_2 = y_3$$

General form of y = (0,k,k)

The number of tokens in M

- M(p) is the number of tokens in place p for marking M
- So, the total number of tokens in marking M is:
 - $M(P_1) + M(P_2) + M(P_3) + M(P_{...}) + M(P_n)$
 - Note: we can also write Mx where x is a vector with an element for each place

The p-invariant

Indicate places in which sum of tokens is constant for any reachable marking

$$M = M_0 + yA$$

To get the number of tokens, we use the vector x:

$$Mx = (M_0 + yA)x$$

$$Mx = M_0x + yAx$$

if
$$Ax = 0$$
 then $Mx = M_0x$

x is called a p-invariant

The p-invariant

- Indicate places in which sum of tokens is constant for any reachable marking
- What is Ax = 0?

$$Ax = 0 \rightarrow \begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$x_1 = x_2 = x_3$$

General form of x = (k,k,k)(sum of tokens is constant for any marking that we can reach)

- We know that all places are in the invariant
- We know that $Mx = M_0x$, and x = (1,1,1) so:

$$M(P_1) + M(P_2) + M(P_3) =$$

$$M_0(P_1) + M_0(P_2) + M_0(P_3) = ?$$

- We know that all places are in the invariant
- We know that $Mx = M_0x$, and x = (1,1,1) so:

$$M(P_1) + M(P_2) + M(P_3) =$$

$$M_0(P_1) + M_0(P_2) + M_0(p_3) = \mathbf{1}$$

- Because the total number of tokens in $M_{
 m o}$ is 1
- What is this invariant useful for?

- We know that all places are in the invariant
- We know that $Mx = M_0x$, and x = (1,1,1) so:

$$M(P_1) + M(P_2) + M(P_3) =$$

$$M_0(P_1) + M_0(P_2) + M_0(p_3) = \mathbf{1}$$

- Because the total number of tokens in $M_{
 m o}$ is 1
- What is this invariant useful for?
 - Proves mutual exclusiveness between the places

- What is the p-invariant now?
 - -(1, 1, 1, 0)

Can you calculate the invariants?

- T-invariant (yA = 0)
- P-invariant (Ax = 0)
- P-invariant equation

Can you calculate the invariants?

- T-invariant (yA = 0)
 - y = (k, k, k)
- P-invariant (Ax = 0)
 - x = (a,b,a,b)
- P-invariant equation
 - For a=1: $M(P_1) + M(P_3) = 1$
 - For b=1: $M(P_2) + M(P_4) = 1$

Examples of invariant analysis

- Invariants are useful for analysis of properties such as liveness and boundedness
- For example, we can use a p-invariant to prove mutual exclusiveness
 - $e.g., M(P_1) + M(P_2) + M(P_3) = 1$
- Advantage: much less computationally intensive than dynamic analysis

Next week

- Reading week
 - So no lecture
- Office hours as usual