ESCRIVIU LA RESPOSTA A CADA PREGUNTA EN UN FULL DIFERENT

ESCRIVIU ELS VOSTRES NOM, COGNOMS I GRUP EN CADA FULL

- 1. a) Definiu el concepte de punt adherent a un conjunt. Calculeu l'adherència del conjunt $C = \{ (x, y) \in \mathbb{R}^2 : x^2 1 < y \le 0 \}.$
 - b) Definiu el concepte de conjunt compacte. Si $f: \mathbb{R}^2 \to \mathbb{R}^2$ és la funció definida per $f(x,y) = (e^{x-y}\sin(x^2y),\,\log(1+y^2e^{-x})),$

proveu que $f(\overline{C})$ és compacte.

Justifiqueu detalladament les respostes.

2. Per a cada $\alpha > 0$ considereu la funció $f_{\alpha} : \mathbb{R}^2 \to \mathbb{R}$ definida per

$$f_{\alpha}(x,y) = \begin{cases} \frac{\log(1+x^2y^4)}{(x^2+y^2)^{\alpha}}, & \text{si } (x,y) \neq (0,0) \text{ i } x \leq 0, \\ 0, & \text{si } (x,y) = (0,0) , \\ \frac{|\sin(xy)|^{\alpha}}{x^2+y^2}, & \text{si } (x,y) \neq (0,0) \text{ i } x > 0. \end{cases}$$

Determineu els valors d' $\alpha > 0$ per als quals f_{α} és contínua en l'origen.

Justifiqueu detalladament la resposta.

- **3.** a) Definiu els conceptes de derivada direccional i de diferencial. Enuncieu i proveu la relació entre aquests dos conceptes.
 - b) Per a cada enter n > 0 considereu la funció $f_n : \mathbb{R}^2 \to \mathbb{R}$ definida per

$$f_n(x,y) = \begin{cases} \frac{(xy)^n}{(x^2 + y^2)^2}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

- (b.1) Calculeu les derivades direccionals de f_n en l'origen (quan existeixin).
- (b.2) Determineu els enters n > 0 per als quals f_n és diferenciable en l'origen. Justifiqueu detalladament les respostes.

ESCRIVIU LA RESPOSTA A CADA PREGUNTA EN UN FULL DIFERENT
ESCRIVIU ELS VOSTRES NOM, COGNOMS I GRUP EN CADA FULL