

Entorno MATLAB

Introducción

MATLAB es la abreviatura de "matrix laboratory".

Está diseñado para funcionar principalmente con matrices y arreglos completos.

Todas las variables de MATLAB son arreglos multidimensionales, sin importar el tipo de datos. Una matriz es un arreglo bidimensional.

Operadores aritméticos

Operación	Símbolo	Ejemplo
Suma	+	5 + 4
Resta	-	5 - 4
Multiplicación	*	5 * 4
División derecha	/	5 / 4
División izquierda	\	5\3 = 3/5
Exponenciación	٨	5 ^ 3

Orden de precedencia

Precedencia	Operación
Primero	Paréntesis, el más interno se ejecuta primero
Segundo	Exponenciación
Tercero	Multiplicación y división
Cuarto	Suma y resta

Formato de impresión en pantalla

Formato	Descripción	Ejemplo usando pi
short (default)	Punto fijo con 4 decimales	3.1416
long	Punto fijo con 15 decimales	3.141592653589793
shortE	Notacion cientifica, 4 dec	3.1416e+00
longE	Notación científica, 15 dec	3.141592653589793+00
shortG	5 digitos	3.1416
longG	15 digitos	3.14159265358979
shortEng	Notación ingenieril exp multiplo de 3, 4 decimales	3.1416e+000
longEng	Notación ingenieril, 15 dec	3.14159265358979e+000
+	Indica si es positivo o negativo	+
bank	Divisas, 2 decimales	3.14
hex	Hexadecimal	400921fb54442d18
rat	Relación entre números enteros pequeños	355/113

Funciones trigonométricas básicas

Función	Descripción
sin(x)	Seno del ángulo, x en radianes
cos(x)	Coseno del ángulo, x en radianes
tan(x)	Tangente del ángulo, x en radianes
cot(x)	Cotangente del ángulo, e en radianes

Funciones de redondeo

Round: redondea al entero más próximo (antes de 2014). Puede recibir distintos argumentos:

>>round(pi)

>>round(pi,3) 3.1420

>>round(3312,2,'significant') 3300

Fix: redondea hacia el cero

ans =

-1 -3 5

Funciones de redondeo

Ceil: redondea hacia el infinito, ejemplo:

$$ans = 46$$

Floor: redondea hacia menos infinito

$$ans = -36$$

Variables especiales

Variable	Valor
pi	Número pi
eps	Mínima distancia entre dos números
inf	Un número muy muy muy grande
NaN	Not a Number
ans	Resultado de lo último tecleado en command window
i	Raíz cuadrada de -1
j	Igual que i

Crear una variable

Para crear una variable debemos de asignarle un nombre representativo, para ello nos situamos sobre la línea de comandos (>>) y tecleamos lo siguiente:

>> a =45 % nombre de variable "a" valor: 45 %Inicia respuesta del intérprete de comandos a =

45

%Termina respuesta de intérprete de comandos

>> b=36; % notar que en este caso no existe una respuesta

Matrices y arreglos

Para crear un arreglo debemos de separar los elementos con una coma, o un espacio, dentro de dos corchetes, ejemplo:

$$>> A = [1, 2, 3, 4]$$

También válido:

$$>>$$
A = [1 2 3 4]

Matrices y arreglos

Para crear una matriz con varias filas debemos separar las filas con punto y coma o solo presionar enter para crear una nueva fila, ejemplo:

También válido:

456

789]

Concatenación

Podemos crear nuevas variables ya sean arreglos o matrices a partir de ya existentes, para ello usaremos la concatenación, ejemplo:

>>c=magic(3);

>>a=[c,[456 789;859 896;654 784]]

a =

8 1 6 456 789

3 5 7 859 896

4 9 2 654 784

Operador: (dos puntos)

Con este operador podemos hacer múltiples cosas, entre ellas crear arreglos ejemplo:

a =

23 24 25 26 27 28 29

Podemos definir el incremento, la sintáxis es la siguiente:

Nombre_vector = [inicio:incremento:fin]; Ejemplo:

q =

23 26 29

Función linspace()

Esta función nos regresa un arreglo con elementos equidistantes, debemos de especificar 3 argumentos: inicio, termino y numero de elementos. Ejemplo:

>>a=linspace(4,28,9)

a =

4 7 10 13 16 19 22 25 28

Si se omite el número de elementos ,que en este caso es 9, la cantidad de elementos será 100

Operador transposición ' (comilla simple)

Este operador nos permite transponer un arreglo, ejemplos:

1

2

3

] 4

2 5

3 6

Indexación de arreglos

>>a=magic(4);

Lineal: se requiere solamente de un índice, la numeración comienza en 1 y se hace en función de las columnas, ejemplo:

>>a=magic(4);

Indexación de arreglos

Con operador dos puntos:

7

1 4

>> a(:,2:3)

$$a =$$

>> a(1:2,3:4)

Operadores relacionales

Operador	Funcion equivalente	Descripción
<	It	Menor que
<=	le	Menor igual que
>	gt	Mayor que
>=	ge	Mayor igual que
==	eq	Igual que
~=	ne	Diferente qe

El resultado de ocupar un operador relacional será una variable de carácter lógico, es decir un 0(false) ó 1(true).

Indexación de arreglos

Lógica: podemos hacer uso de los operadores relacionales para acceder a elementos que cumplan una condición, ejemplo

Pero veamos el resultado de hacer esta operación:

Strings (cadenas)

Las cadenas son arreglos de caracteres, se utilizan para visualizar mensajes de texto como salida de alguna función, como argumento de función. Ejemplo:

```
>>a='Hola Mundo';
```

>>a(4)

ans =

a

Matriz de cadenas

>>datos=['Luis';'21';'Quimica']

Dimensions of matrices being concatenated are not consistent.

Para esto existe una función llamada char(), ejemplo:

>>datos=char('Luis','21','Quimica')

datos=

Luis

2

Quimica

Operaciones matriciales

Suma y resta:

Las matrices deben ser del mismo tamaño, o si el segundo operando es un escalar, este se sumará a cada uno de los elementos:

$$C =$$

Operaciones matriciales

Multiplicación:

La operación se ejucta de acuerdo con las reglas del álgebra ineal, por lo que la operación A*B se ejecuta si solamente el número de columnas de A es igual al número de filas de B, ejemplo:

$$C =$$

38 32

101 86

164 140

Operaciones matriciales

División: Como vimos anteriormente existe la división por la derecha y por la izquierda, ambas se ocupan para resolver sistemas de ecuaciones lineales del tipo AX=B(div derecha) y XC=D (divizquierda), ejemplo:

$$4x - 2y + 6z = 8$$

$$2x + 8y + 2z = 4$$

$$6x + 10y + 3z = 0$$

$$>>$$
A = [4 -2 6; 2 8 2; 6 10 3]; B=[8;4;0];

$$X =$$

-1.8049

0.2927

2.6341

Operaciones elemento a elemento

En este caso la operación se realiza elemento a elemento, ejemplo:

Símbolo	Descripción	Símbolo	Descripción
*	Multiplicación	./	División derecha
.^	Exponenciación	.\	División izquierda

