Machine Learning +

Programme Grant Update Science Talk

Machine Learning Overview

Supervised Machine Learning

General Idea:

- Given a dataset with known labels ...
- "Train" a machine learning model using the dataset ...
- Then used the trained model to make predictions for new data which do not have labels

Supervised Machine Learning

Methods:

- Regression
- Random Forests, Support Vector Machines, K-Nearest Neighbor
- Deep Learning (Neural Networks)

Types of Supervised Learning Tasks

Image related tasks are the most common problems for machine learning

Why These Tasks are Difficult?

What we see:

What the computer "sees":

- It is difficult to come up with a set of "strict rules" to define image content
- Such tasks require the use of more sophisticated learning algorithms

Machine Learning vs Deep Learning

Machine Learning

Deep Learning

Neural Network Types

Simple Neural Networks:

Used on 1-Dimensional Data

Convolutional Neural Networks:

Used on 2D or 3D Data (Images, Volumes, Videos)

Recurrent Neural Networks:

Used on Sequential Data (Text, Time-Series)

Neural Network Types

Simple Neural Networks:

Used on 1-Dimensional Data

Convolutional Neural Networks:

Used on 2D or 3D Data (Images, Volumes, Videos)

Recurrent Neural Networks:

Used on Sequential Data (Text, Time-Series)

Introducing Neural Networks

- Given some input data,
- **Transform** the data through **intermediate** layers (number can be $N \ge 0$ layers) (we can also have as many nodes as we want for the intermediate layers),
- So the **output** becomes the probability of being in each class

Starting with a (very) simple neural network:

Starting with a (very) simple neural network:

TASK: given a single number at the input (X_1) , predict if its **positive** or **negative** (at the output, Y).

Starting with a (very) simple neural network:

TASK: given a single number at the input (X_1) , predict if its **positive** or **negative** (at the output, Y).

Ideally:

If
$$x \ge 0$$
, we would want $[Y_1 Y_2] = [1 0]$ (or any $Y_1 > Y_2$)
If $x < 0$, we would want $[Y_1 Y_2] = [0 1]$ (or any $Y_1 < Y_2$)

Starting with a (very) simple neural network:

TASK: given a single number at the input (X_1) , predict if its **positive** or **negative** (at the output, Y).

Ideally:

If
$$x \ge 0$$
, we would want $[Y_1 Y_2] = [1 0]$ (or any $Y_1 > Y_2$)
If $x < 0$, we would want $[Y_1 Y_2] = [0 1]$ (or any $Y_1 < Y_2$)

To transform the input (1 node) to the output (2 nodes), we can perform a matrix multiplication:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

Starting with a (very) simple neural network:

TASK: given a single number at the input (X_1) , predict if its **positive** or **negative** (at the output, Y).

Ideally:

If
$$x \ge 0$$
, we would want $[Y_1 Y_2] = [1 0]$ (or any $Y_1 > Y_2$)
If $x < 0$, we would want $[Y_1 Y_2] = [0 1]$ (or any $Y_1 < Y_2$)

To transform the input (1 node) to the output (2 nodes), we can perform a matrix multiplication:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

How do we choose which w's get our desired Y's?

Equation from last slide:

$$[X_1][W_1 \quad W_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of \mathbf{w} 's.

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of \mathbf{w} 's.
- Train the neural network with lots of **X**'s and **Y**'s so it can incrementally update **w**'s with gradient descent each iteration.

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of \mathbf{w} 's.
- Train the neural network with lots of **X**'s and **Y**'s so it can incrementally update **w**'s with gradient descent each iteration.

Sample Training Set:

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of **X**'s and **Y**'s so it can incrementally update **w**'s with gradient descent each iteration.

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of X's and Y's so it can incrementally update w's with gradient descent each iteration.

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of \mathbf{w} 's.
- Train the neural network with lots of **X**'s and **Y**'s so it can incrementally update **w**'s with gradient descent each iteration.

This simple problem has many solutions for w, e.g. $[w_1 \ w_2] = [0.6 \ 0.4]$ (or any $w_1 > w_2$).

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of **X**'s and **Y**'s so it can incrementally update **w**'s with gradient descent each iteration.

This simple problem has many solutions for w, e.g. $[w_1 \ w_2] = [0.6 \ 0.4]$ (or any $w_1 > w_2$).

```
If we input X = 1 and X = -1:

[1][0.6 	 0.4] = [0.6 	 0.4] 	 (Y_1 > Y_2, higher value for positive)

[-1][0.6 	 0.4] = [-0.6 	 -0.4] 	 (Y_1 < Y_2, higher value for negative)
```


Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of \mathbf{w} 's.
- Train the neural network with lots of **X**'s and **Y**'s so it can incrementally update **w**'s with gradient descent each iteration.

This simple problem has many solutions for \mathbf{w} , e.g. $[w_1 \quad w_2] = [0.6 \quad 0.4]$ (or any $w_1 > w_2$).

If we input X = 1: $[1][0.6 \quad 0.4] = [0.6 \quad 0.4]$

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of **X**'s and **Y**'s so it can incrementally update **w**'s with gradient descent each iteration.

This simple problem has many solutions for \mathbf{w} , e.g. $[w_1 \quad w_2] = [0.6 \quad 0.4]$ (or any $w_1 > w_2$).

If we input X = 1:

Equation from last slide:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

- Set up an optimization problem to solve the values of w's.
- Train the neural network with lots of **X**'s and **Y**'s so it can incrementally update **w**'s with gradient descent each iteration.

This simple problem has many solutions for \mathbf{w} , e.g. $[w_1 \quad w_2] = [0.6 \quad 0.4]$ (or any $w_1 > w_2$).

If we input
$$X = 1$$
 and $X = -1$:
$$[1][0.6 \quad 0.4] = [0.6 \quad 0.4]$$
normalize:
$$\left[\frac{e^{0.6}}{e^{0.6} + e^{0.4}} \quad \frac{e^{0.4}}{e^{0.6} + e^{0.4}}\right] = [0.550 \quad 0.450]$$

$$[-1][0.6 \quad 0.4] = [-0.6 \quad -0.4]$$
normalize:
$$\left[\frac{e^{-0.6}}{e^{-0.6} + e^{-0.4}} \quad \frac{e^{-0.4}}{e^{-0.6} + e^{-0.4}}\right] = [0.450 \quad 0.550]$$

Question?

For our neural network:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

We have weights of:

$$[W_1 \quad W_2] = [0.6 \quad 0.4]$$

- What is our output if the input is $X_1 = 0$?

Question?

For our neural network:

$$[X_1][w_1 \quad w_2] = [Y_1 \quad Y_2]$$

We have weights of:

$$[w_1 \quad w_2] = [0.6 \quad 0.4]$$

- What is our output if the input is $X_1 = 0$?

$$[X_1][w_1 \quad w_2] = [0][0 \quad 0]$$

$$[\mathbf{Y_1} \quad \mathbf{Y_2}] = \begin{bmatrix} e^0 & e^0 \\ e^0 + e^0 & e^0 + e^0 \end{bmatrix} = [0.5 \quad 0.5]$$

import the packages we will be needing import tflearn

import the packages we will be needing import tflearn

define the input layer (1 node)
X_i = tflearn.input_data(shape=[None, 1])


```
# import the packages we will be needing import tflearn
```

```
# define the input layer (1 node)
X_i = tflearn.input_data(shape=[None, 1])
```

define the output layer (2 nodes), softmax normalizes values between 0/1 Y_j = tflearn.fully_connected(X_i, n_units=2, activation='softmax')


```
# import the packages we will be needing import tflearn
```

```
# define the input layer (1 node)
X_i = tflearn.input_data(shape=[None, 1])
```

define the output layer (2 nodes), softmax normalizes values between 0/1 Y j = tflearn.fully connected(X i, n units=2, activation='softmax')

We don't need to define w_i


```
# import the packages we will be needing import tflearn

# define the input layer (1 node)

X_i = tflearn.input_data(shape=[None, 1])

Input Output

Y_1 Positive

X_1 Output

Y_2 Negative
```

define the output layer (2 nodes), softmax normalizes values between 0/1 Y_j = tflearn.fully_connected(X_i, n_units=2, activation='softmax')

set up optimization problem (sgd = stochastic gradient descent)
optimization_problem = tflearn.regression(Y_j, optimizer="sgd")

initialize variables w_i with random values to provide a starting point for optimization model = tflearn.DNN(optimization problem)

Input

Output

Positive

Negative

```
# import the packages we will be needing import tflearn
```

```
# define the input layer (1 node)
X_i = tflearn.input_data(shape=[None, 1])
```

define the output layer (2 nodes), softmax normalizes values between 0/1 Y_j = tflearn.fully_connected(X_i, n_units=2, activation='softmax')

set up optimization problem (sgd = stochastic gradient descent) optimization problem = tflearn.regression(Y j, optimizer="sgd")

initialize variables w_i with random values to provide a starting point for optimization model = tflearn.DNN(optimization_problem)

train the model (assuming we have some data) for 100 iterations, update w every iteration model.fit(data, label, n epoch=100)

Positive

Negative

```
Input
                                                                                      Output
# import the packages we will be needing
import tflearn
# define the input layer (1 node)
X i = tflearn.input data(shape=[None, 1])
# define the output layer (2 nodes), softmax normalizes values between 0/1
Y j = tflearn.fully connected(X i, n units=2, activation='softmax')
# set up optimization problem (sgd = stochastic gradient descent)
optimization problem = tflearn.regression(Y j, optimizer="sgd")
# initialize variables w i with random values to provide a starting point for optimization
model = tflearn.DNN(optimization problem)
# train the model (assuming we have some data) for 100 iterations, update w every iteration
model.fit(data, label, n epoch=100)
# make a prediction
print( model.predict([[1]]) )
                                 \# should get Y1 > Y2 (output = [Y1, Y2])
print( model.predict([[-1]]) )
                                 \# should get Y1 < Y2 (output = [Y1, Y2])
```

More Complicated Neural Network

To map
$$X_i \rightarrow Y_j$$
:

To map
$$X_i \to Y_j$$
:
$$[X_1 \quad X_2] \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} \\ v_{21} & v_{22} & v_{23} & v_{24} \end{bmatrix} = [Y_1 \quad Y_2 \quad Y_3 \quad Y_4]$$

To map $Y_j \to Z_k$:

$$\begin{bmatrix} Y_1 & Y_2 & Y_3 & Y_4 \end{bmatrix} \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \\ w_{41} & w_{42} \end{bmatrix} = \begin{bmatrix} Z_1 & Z_2 \end{bmatrix}$$

More Complicated Neural Network

To map
$$X_i \rightarrow Y_i$$
:

To map
$$X_i \to Y_j$$
:
 $[X_1 \quad X_2] \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} \\ v_{21} & v_{22} & v_{23} & v_{24} \end{bmatrix} = [Y_1 \quad Y_2 \quad Y_3 \quad Y_4]$

To map $Y_j \rightarrow Z_k$:

$$\begin{bmatrix} Y_1 & Y_2 & Y_3 & Y_4 \end{bmatrix} \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \\ w_{41} & w_{42} \end{bmatrix} = \begin{bmatrix} Z_1 & Z_2 \end{bmatrix}$$

Transformations are done with matrix multiplications

Mid Session Break

MRC – Hypertension Modelling

Background:

- Hypertension contributes to increased risk of stroke and heart attack
- Early detection of hypertension may aid the development of preventative measures
- We aim to identify trends and early indicators for hypertension to quantify progression in a population-wide dataset

Method – Pseudo Temporal Modelling

- In a population-level cohort (such as the UK Biobank), participants fit into different stages of disease progression and represent the entire healthy-to-disease scale
- Build a pseudo-temporal model using cross-sectional data to study the changes/progression of various biomarkers in patients from healthy to diseased
- Assign a score (0 to 1) to reflect the degree of disease, in our case the severity of hypertension
- "Trajectory inference" is the main method used

Trajectory Inference

- Pseudo-temporal modelling to score patients based on their disease progression
- Fits patients on "trajectories" of disease progression
- Each trajectory may relate to changes in different combinations of biomarkers
- Trajectory inference 2 main steps:
 - Dimensionality reduction of features
 - Connect each patient in the reduced dimensional space to form a minimum spanning tree

Contrastive Trajectory Inference (cTI)

- "Contrastive" trajectory inference method to improve separation of predefined groups
- Incorporate prior information (background/between/diseased) during the dimensionality reduction step of trajectory inference

Contrastive Trajectory Inference (cTI) – Dimensionality Reduction

Contrastive PCA (cPCA) for dimensionality reduction:

PCA:

- Standard PCA is done by first computing the covariance matrix (cov)
- Then perform eigen decomposition on the covariance matrix to transform features into a reduced representation

cPCA:

• cPCA is performed by computing a weighted sum between the covariance of the background (cov_b) and diseased (cov_d) group over a range of α 's (~100 values from 10⁻² to 10²):

$$cov = cov_d - \alpha \times cov_b$$

- Perform eigen decomposition for each of these resulting covariance matrices
- Determine the optimal α using K-means clustering to find the value which produces the best clustering tendency of the background and disease groups in the reduced space

Contrastive Trajectory Inference (cTI) – Trajectory Construction

- Consider each individual as a "node" in a complete graph in the contrastive principle component space (cPC)
- Edge of the graph are defined by the Euclidean distance between nodes in the cPC space
- Define "root node" as the node with the smallest overall distance in the cPC space from all nodes in in the population

Contrastive Trajectory Inference (cTI) – Pseudo Time Score Calculation

- Construct a minimum spanning tree which minimizes the overall distance between all nodes
- Find the shortest path between each node and the root node
- The disease (pseudo time) score is the normalized distance along the shortest path

Study Population – UK Biobank

- UK Biobank has around 500,000 participants from the general population
- 100,000 of these participants are planned to undergo medical imaging (cardiac MRI + brain MRI + carotid ultrasound)
- UK Biobank contains ~15,000 features for each patient
- Imaging patient dataset contains ~30,000 participants with ~2,000 imaging features
- Aim:
 - Investigate the progression/change in features from the normotensive population to the hypertensive population

Data Pre-Processing

- Filter out patients without blood pressure readings
- Filter out variables which are not related to imaging/baseline measures
- Remove participants who have already experienced a heart attack, angina or stroke before the time of imaging
- Filter columns/rows with too many missing values
- Remove outliers
- Perform z-score normalization
- Adjust for age/sex

Data Label Definition

- Define blood pressure groups
 - Background: < 120/80 (both)
 - Disease: > 160/100 (either)
 - Between: Any patient otherwise
- Tightening "background" group definition
 - Remove patients already diagnosed with high blood pressure
 - Remove patients on blood pressure medication
 - Remove patients that had a high blood pressure reading at any stage (3 visits)
- The final data frame has 27,338 (participants) with 1,086 (features)
- Distribution of samples: background = 1,380, Between = 21,759, Disease = 4,199

Main Results – Pseudotime Score

Distribution of Disease Score By Group

Evaluating the Accuracy of the cTI Model

- AUC of 99.5% for distinguishing between "background" and "diseased"
- Sensitivity = 96.4%
- Specificity = 97.2%
- Optimal threshold = 0.027

Evaluating the Stability of the cTI Model

- Run the cTI model on 100% of the data to produce the set of baseline disease scores
- Split dataset into 90:10 splits
- Run cTI on 90% of the data to generate disease, ignore the 10% left out
- Compare the scores generated from the subset dataset with those obtained from the full dataset

- Repeat this for every 90:10 split (10-fold cross validation)
- Overall 10-fold validation resulted in an RMSE of 0.04 (sd = 0.004)

Predicting Scores for New Patients

- Place new patient in the current trajectory map from the existing cTI model
 - cTI generates a reduced representation (cPC) for the existing data
 - Transform new patient into the existing cPC space of the current cTI model
 - "Infer" the disease score as the score of the patient in the existing model with the smallest distance from a new patient in the cPC space

Advantages:

- Don't need to re-run cTI model
- Nearest neighbor is easy to quantify when there are only ~15 cPCs

Implementation of cPC Transformation

- Equation of transformation in/out of the cPC space:
 - $X_{cPC} = X * Eig(cov_d \alpha \times cov_b)$ (matrix multiplication with the most optimal α)
 - The eigen matrix above is generated when building the cTI model, and can be stored as an intermediary value
 - New patients can be mapped into the cPC space with:

$$X_{cPC\ New} = X_{New} * Eig(cov_d - \alpha \times cov_b)$$

Implementation of cPC Transformation

- The transformed data for the new patient can then be compared with X_{cPC} to find the sample in the existing model with the closest Euclidean distance
- Disease score can then be inferred directly from the nearest existing sample

Experimental Setup for Evaluating the "Prediction" Method

- Run the cTI model on 100% of the data to produce the set of baseline disease scores
- Split the data into 90% (training) and 10% (testing)
- Use the 90% to train the cTI model
- Use the proposed prediction approach to predict the 10% left out

- Compare the predicted scores of the 10% with scores of the same patient in the 100% run
- Repeat this for every 90:10 split (10-fold cross validation)

Experimental Results for "Prediction" Method

- 10-fold cross validation resulted in an RMSE of 0.043
- Errors for each group were:
 - Background = 0.018 RMSE
 - Between = **0.085 RMSE**
 - Disease = **0.094 RMSE**

Trajectories – Preliminary Results

- Compute the Laplacian of the matrix representation of the minimum spanning tree
- Perform eigen decomposition on the Laplacian, the coordinates are thus the first two eigen vectors

Zoomed in Section

Trajectories – Preliminary Results

- Color each unique trajectory
- Many "unique" trajectories close to the root node due to low overlap

Future Work

Contrastive Trajectory Inference Model:

Improve score distribution in the model output

Understanding cTI Model:

- Explore which variables contribute to elevated scores
- Explore the change in these variables from healthy to disease

Trajectory Investigation:

- Develop method to assign patients to a small number of "main" trajectories
- Explore which variables are more significant in different trajectories