Las Positas

Las Positas College 3000 Campus Hill Drive Livermore, CA 94551-7650 (925) 424-1000 (925) 443-0742 (Fax)

Course Outline for AUTO L1

ADVANCED ENGINE PERFORMANCE

Effective: Fall 2016

I. CATALOG DESCRIPTION:

AUTO L1 — ADVANCED ENGINE PERFORMANCE — 5.00 units

Continuation of Automotive Technology A6 and A8 with an emphasis on diagnosis of electronic problems including computer controlled circuits/systems using schematics, diagnostic procedures and equipment. Students are strongly recommended to enroll in Automotive Lab concurrently.

3.00 Units Lecture 2.00 Units Lab

Prerequisite

AUTO A8 - Engine Performance with a minimum grade of c

AUTO A6 - Electrical/Electronic Systems with a minimum grade of c

Grading Methods:

Letter or P/NP

Discipline:

	MIN
Lecture Hours:	54.00
Lab Hours:	108.00
Total Hours:	162.00

II. NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: 1

III. PREREQUISITE AND/OR ADVISORY SKILLS:

Before entering the course a student should be able to:

A. AUTOA8

- 1. Distinguish and explain the different types of fuel delivery systems;
- Distinguish and explain the different types of ignition systems
- Perform tests related to popular fuel systems used on current model cars;
- Perform tests related to popular ignition systems used on current model cars
 Formulate diagnostic patterns, and analyze gas readings to expedite proper repairs
- Manipulate and use hand held diagnostic test equipment
 Demonstrate proficient use of diagnostic information systems;
- 8. Explain theory and functionality of carburetors, throttle body, and port injectors;
 9. Explain safety procedures and the handling of hazardous waste materials;
 10. Maintain a clean and professional environment.

B. AUTOA6

- Diagnose and repair basic automotive battery, starting, charging systems;
 Use electrical test equipment for accurate diagnosis of electrical systems and sub-systems;
 Use problem-solving skills to categorize systems faults in automotive circuits and make needed repairs;
 Identify types of ignition systems;
 Describe and evaluate fuel control circuits for proper operation;
 Explain the fundamentals of electronic and electrical theories;

- Conduct circuit and wire repairs;
- 8. Maintain a clean and professional environment.

IV. MEASURABLE OBJECTIVES

Upon completion of this course, the student should be able to:

- A. Obtain and interpret scan tool data, retrieve and record stored On Board Diagnostics (OBD) diagnostic trouble codes, and other On Board controllers:
- B. Diagnose the causes of electrical failures or concerns resulting from malfunctions in the computerized control systems with or without diagnostic trouble codes:
- C. Chart, inspect and test computerized engine control system sensors, Powertrain control module (PCM), actuators, and circuits using a graphing multi-meter (DMM)/digital storage oscilloscope (DSO), and perform necessary action;

- D. Access and use service information to perform step-by-step diagnosis;
- Evaluate complex electrical system problems;
- Develop diagnostic paths using wiring schematics;
- Diagnose malfunctions of electronic control systems causing vehicle performance problems, and determine necessary action;
- Outline hazardous waste handling
- I. Maintain a clean professional environment.

V. CONTENT:

- A. On Board computer scan data
 - 1. Retrieval of codes and data
 - a. Flash codes
 - b. Scanner codes
 - 2. Interpretation of information
 - a. Factory set procedures
- b. Develop own diagnostic procedures
 B. Emission system diagnostics and testing
- - Perform flow chart testing, with codes, and without codes
 Evaluate exhaust gas emission smog test results
 Electronic pulse with modulation evaluation
- Diagnostic patterns, and analyze scope readings
 Digital storage oscilloscope usage
 Scope connection
 D. Diagnostic service information

 D. Diagnostic service information

 1. Access conjuging information (aleaters in the content in
- - Access service information
 Access service information (electronic)
 a. Application of information
 Access service information (paper)
 a. Application of information
 - 3. Research labor time guides for work determined in diagnostics
- E. Ignition timing
 - Inspection of adjustable systems
 a. Proper operation of timing light
 b. Follow factory procedures
- c. Set timing to specifications
 F. Explain theory and functionality of "OPEN/CLOSED loop systems
 - List theory of fuel flow delivery system in open loop status
 - a. Sensor contribution at operating temperatures
- G. Exhaust system evaluation

 - Back pressure
 a. Testing and diagnosis
 Installation inspection
- H. Emissions and performance
 - 1. Explain impact of emissions system on vehicle performance
 - a. Diagnoses of power systems
- I. Valve adjustments
 - 1. Adjustment of hydraulic and solid lifters
- J. Dynamometer
 - Set up and use of dynamometer Safety procedures

 - 3. List dynamic information obtained from testing (loaded mode)
- K. Handling of hazardous waste materials

 1. Storage and handling of gasoline

 2. Storage and handling of diesel fuel
- L. Professional environment
 - Safety glasses (clear lens) worn in all Laboratory areas
 No loose clothing (coveralls strongly recommended)
 Long Hair secured

 - No open toe shoes (safety shoes recommended)
 Work areas maintained: clean free of debris and spills

VI. METHODS OF INSTRUCTION:

- A. Lab Student Hands-on laboratory activities and assignments
- B. Lecture -

VII. TYPICAL ASSIGNMENTS:

- A. Lecture based assignments

 1. Lecture on 5 gas chemistry
- B. Text reading
 1. Read Chapter One
- C. Lab based assignments

 1. Perform 5 gas analysis on at least five vehicles

VIII. EVALUATION:

- A. Methods
 - Exams/Tests
 - Quizzes
 - 3. Home Work
 - 4. Lab Activities
- B. Frequency
 - 1. Minimum two tests
 - a. Midterm
 - b. Final
 - 2. Weekly Homework from text and lecture
 - 3. Weekly reading from text
 - 4. Weekly lab assignments

- Hallembeak, Barry. Automotive Fuels & Emissions Classroom Manual., 5 ed., Thomson Delmar Learning, 2014.
 Hallembeak, Barry. Automotive Fuels & Emissions Shop Manual. 6 ed., Thomson Delmar Learning, 2014.
 Halderman, James. Automotive Maintenance and Light Repair. 6 ed., Pearson, 2014.

X. OTHER MATERIALS REQUIRED OF STUDENTS: A. Safety glasses