

Análise de Algoritmos

João Paulo Dias de Almeida jp.dias.almeida@gmail.com

Universidade Federal de Sergipe

O que vamos aprender hoje?

- Relembrar o que é algoritmo
- Entender o que é e para que serve a análise de algoritmos
- Compreender o modelo RAM
- Entender como conduzir uma análise de algoritmo
- Aprender a utilizar a notação O

Glossário

Algoritmo:

Procedimento computacional que recebe um conjunto de dados de entrada e produz uma saída

Custo:

Tempo necessário para executar um algoritmo

Função de custo:

Descreve a relação entre tempo e entrada de dados

Modelo RAM:

Modelo de computador hipotético no qual instruções simples são executadas com a mesma duração

O que é um algoritmo?

É qualquer procedimento computacional bem definido que toma um conjunto de valores como entrada e produz um conjunto de valores como saída - Ascencio

Como vocês fariam a análise de um algoritmo?

Análise de algoritmos

- A análise de um algoritmo pode ser feita por diferentes ângulos:
 - 1. Análise de um algoritmo em particular
 - Qual o custo (tempo de execução) do algoritmo?
 - Quanto de memória o algoritmo necessita?
 - Largura de banda
 - Ou qualquer outro hardware em geral...

Análise de algoritmos

- A análise de um algoritmo pode ser feita por diferentes ângulos:
 - 2. Análise de uma classe de algoritmos
 - Qual seria o algoritmo de menor custo para resolver um problema?
 - É comum realizar a análise de uma família de algoritmos para identificar o que se adequa melhor à situação

Para analisar um algoritmo poderíamos medir o tempo de execução em um computador e anotar esse tempo?

O tempo de execução do algoritmo é confiável?

PC

Supercomputador

Outras características a se considerar

- Ao medir o tempo de execução de um algoritmo para mensurar o seu custo, você pode ser afetado também por:
 - Compilador
 - Sistema Operacional
 - Especificidades de cada hardware
- Para evitar estas imprecisões, usa-se um modelo hipotético de computador chamado RAM – Random Access Machine

- Esse modelo de computador possui todas as instruções de um computador real
- O custo (tempo de execução) individual de instruções simples é irrelevante no nosso caso
 - Instruções simples → operações aritméticas
 - Ou qualquer instrução que exija apenas um passo para ser executada
 - Por isso, vamos considerar que todas as instruções simples demoram um tempo constante

- Loops e sub-rotinas não são considerados irrelevantes
 - Ordenar 1 000 000 de itens é consideravelmente mais lento do que ordenar 10

O modelo RAM foi idealizado para que a análise do algoritmo seja independente da máquina

- Usando o modelo RAM, podemos contar quantos passos cada instrução leva para ser executada
 - Essa quantidade de passos será dependente da entrada
 - Exemplo do loop
- A nossa análise deve comparar dois algoritmos considerando todos os possíveis tamanho de entradas

Função de custo

- O tempo de execução de um algoritmo é representado por uma função de custo T
 - T(n) é o tempo necessário para executar um algoritmo para o problema de tamanho n
- Exemplo: Agora, vamos considerar um algoritmo para encontrar o menor elemento de um vetor A de inteiros, com n elementos

Exemplo

```
int calculamenor (int A[], int n)
                        int i, menor;
T(n) = n - 1
                        menor = A[0];
                        for (i = 1; i < n; i++)
         n-1
                              if (A[i] < menor)
    comparações
                                    menor = A[i];
                        return menor;
```

Função de custo

- A função T(n) representa a relação entre o tamanho do problema e o tempo necessário para resolvê-lo
 - O tempo de execução depende principalmente do tamanho da entrada
 - Experimente "plotar" o gráfico
- Considere agora o caso de realizar uma busca em um arquivo de dados sequencial
 - Nesse caso, não teremos apenas uma função de custo
 - Serão três análises: o melhor, o médio e pior custo

O melhor, o médio, e o pior caso

- Imagine executar um algoritmo e todas as combinações de dados executadas por ele
- Para o problema da ordenação, o algoritmo compara o valor de cada item com todos os outros
 - O pior caso é caso é aquele que representa o número máximo de passos que o algoritmo utiliza para realizar uma tarefa de tamanho N
 - O melhor caso é aquele que representa o número mínimo de passos
 - O caso médio é aquele representa a média de passos para executar a tarefa

O pior caso é o mais útil das três medidas

- Imagine levar n reais para um cassino e fazer algumas apostas
 - No melhor caso, você ganha todas as apostas e sai de lá dono do cassino

- Imagine levar n reais para um cassino e fazer algumas apostas
 - No pior caso, você perde todos n reais.
 - Isso é fácil de calcular e muito provável de acontecer!

- Imagine levar n reais para um cassino e fazer algumas apostas
 - O caso médio é que os apostadores perdem 87,32% do dinheiro
 - Isso é difícil de estabelecer e está sujeito a debate:
 - Pessoas inteligentes ganham mais dinheiro?
 - A média foi calculada usando uma pessoa inteligente?
 - Trapaceiros ganham mais que jogadores honestos. E agora?

 O importante é perceber que esta análise define uma função numérica representando uma relação entre tempo e tamanho da entrada

Função de custo

- O importante é perceber que esta análise define uma função numérica representando uma relação entre tempo e tamanho da entrada
- As funções podem ser bem definidas como:

$$y = x^2 - 2x + 1$$

 Ou uma função temporal do patrimônio de um investidor na bolsa:

$$W_h(i) = W_t(i) + N_t(i)D_t + (W_t(i) - N_t(i)P_t)r + N_t(i)(P_h - P_t)$$

Função de custo - desvantagens

- Além disso, é difícil trabalhar com essas funções porque:
 - Podem existir muitas oscilações: a busca binária é mais rápida quando o problema tem um tamanho específico

Função de custo com muitas oscilações

Função de custo - desvantagens

 Além disso, é difícil trabalhar com essas funções porque:

2. Exige muito detalhe:

- É necessário contar todas as instruções do algoritmo para o pior caso
- É dependente de decisões de implementação
 - O programa usa if encadeado ou um switch-case?

Função de custo - desvantagens

 Uma função precisa, como essa abaixo, acrescenta pouca informação útil:

$$T(n) = 12754 n^2 + 4353 n + 834 lg_2 n + 13546$$

- O importante é perceber que n cresce de forma quadrática
- Para focar no que realmente importa, vamos utilizar notações assintóticas

Notações Assintóticas

Notação Assintótica

- O melhor, o médio, e pior caso são funções sob o tamanho do conjunto de dados a ser processado
- A notação assintótica serve para comparar estas funções ignorando os detalhes que não são úteis para a nossa análise de comparação entre algoritmos
 - Vamos ignorar as diferenças entre multiplicações de constantes

$$f(n) = 2n \qquad g(n) = n$$

Definições - Notação O (Big Oh)

- Limite superior (Upper bound)
 - Ocorre quando f(n) = O(g(n))
 - Ou seja, c · g(n) é limite superior de f(n)
 - Sendo assim, existe uma constante c com a qual f(n) será sempre $\leq c \cdot g(n)$, considerando-se um n grande o suficiente $(n \geq n_0)$

$$f(n) \le c \cdot g(n), n \ge n_0$$

Limite superior

Vamos tentar?

- Verifique se $3n^2 100n + 6 = O(n^2)$
 - Basta encontrar um valor de c que demonstre isso

$$c = 3$$
 $3n^2 > 3n^2 - 100n + 6$

Atenção!

$$f(n) = 3n^2 - 100n + 6$$

 $f(n) = O(n^2)$

Em Análise de Algoritmos $f(n) = O(n^2)$ significa que $f(n) \in O(n^2)$.

Não significa igualdade

Isso se chama **abuso de notação**.

Faça você mesmo

• Verifique se $3n^2 - 100n + 6 = O(n)$

Não é O(n) porque $c \times n < 3n^2$, quando n > c

Mais uma vez

• Verifique se $3n^2 - 100n + 6 = O(n^3)$

$$c = 1$$

 $n^3 > 3n^2 - 100n + 6$, quando $n > 3$

Definições - Notação Ω

- Limite inferior (lower bound)
 - Ocorre quando $f(n) = \Omega(g(n))$
 - Ou seja, c · g(n) é limite inferior de f(n)
 - Sendo assim, existe uma constante c com a qual f(n) será sempre $\geq c \cdot g(n)$, considerando-se um n grande o suficiente $(n \geq n_0)$

$$f(n) \ge c \cdot g(n), n \ge n_0$$

Limite inferior

Vamos tentar?

- Verifique se $3n^2 100n + 6 = \Omega(n^2)$
 - Basta encontrar um valor de c que demonstre isso

$$c = 2$$

 $2n^2 < 3n^2 - 100n + 6$, quando $n > 100$

Definições - Notação Θ

- $f(n) = \Theta(g(n))$ significa que $c_1 \cdot g(n)$ é limite superior de f(n) e $c_2 \cdot g(n)$ é limite inferior de f(n)
- Sendo assim, existe uma constante c_1 e uma constante c_2 que quando multiplicadas a g(n) "envolvem" f(n)

$$c_1 \cdot g(n) \ge f(n) \ge c_2 \cdot g(n), n \ge n_0$$

Notação Θ

Vamos tentar?

• Verifique se $3n^2 - 100n + 6 = \Theta(n^2)$

É verdade! Vimos que f(n) é $O(n^2)$ e também é $\Omega(n^2)$

Crescimento e Relações de dominância

Taxas de crescimento

- Vimos que é possível descartar constantes multiplicativas
- As funções abaixo são tratadas de forma idêntica:

$$f(n) = 0.001n^2$$
 $g(n) = 1000n^2$

Taxa de crescimento de funções comuns (ns)

1 ns = 0,001 μs

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu s$	$0.01~\mu s$	$0.033~\mu s$	$0.1~\mu s$	1 μs	$3.63~\mathrm{ms}$
20	$0.004~\mu s$	$0.02~\mu s$	$0.086~\mu s$	$0.4~\mu s$	1 ms	77.1 years
30	$0.005~\mu s$	$0.03~\mu s$	$0.147~\mu s$	$0.9~\mu s$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005~\mu s$	$0.04~\mu s$	$0.213~\mu s$	$1.6~\mu s$	18.3 min	
50	$0.006~\mu s$	$0.05~\mu s$	$0.282~\mu s$	$2.5~\mu \mathrm{s}$	13 days	
100	$0.007~\mu s$	$0.1~\mu s$	$0.644~\mu s$	$10~\mu s$	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010~\mu s$	$1.00~\mu s$	$9.966~\mu s$	1 ms		
10,000	$0.013~\mu s$	$10 \ \mu s$	$130~\mu s$	100 ms		
100,000	$0.017~\mu s$	$0.10 \mathrm{\ ms}$	$1.67~\mathrm{ms}$	10 sec		
1,000,000	$0.020~\mu s$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023~\mu s$	$0.01 \mathrm{sec}$	0.23 sec	1.16 days		
100,000,000	$0.027~\mu s$	$0.10 \sec$	2.66 sec	115.7 days		
1,000,000,000	$0.030~\mu s$	1 sec	$29.90 \mathrm{sec}$	31.7 years		

Taxa de crescimento

- Todos os algoritmos utilizam basicamente o mesmo tempo quando n = 10
- Qualquer algoritmo com n! é inútil quando n ≥ 20
 - 2ⁿ é ineficiente quando n > 40
- Algoritmos quadráticos cujo custo de execução é n² são úteis até n = 10 000
 - Deterioram rápido → n > 1 000 000 é ineficiente
- Algoritmos lineares e n lg n são aplicáveis para entradas de 1 bilhão de itens
- Um algoritmo O(lg n) não tem dificuldade para lidar com nenhum tamanho de entrada (n)

- A notação O agrupa as funções em conjuntos de classes
 - Todas as funções de uma mesma classe são consideradas equivalentes

$$f(n) = 0.34n$$
 $g(n) = 234 000n$ $O(n)$

 Dizemos que uma função com taxa de crescimento mais rápido domina a mais lenta

•
$$f(n) = O(g(n)) \rightarrow g \gg f$$

 Algumas poucas classes são utilizadas no curso introdutório de Análise de Algoritmos

• Funções constantes, f(n) = 1:

É o custo de realizar uma operação simples (e.g. somar dois números, exibir valor na tela). Esta função não depende do valor de n

Funções logarítmicas, f(n) = log n

Funções que crescem lentamente a medida que o valor de n cresce. O algoritmo da busca binária está nesta classe.

Funções lineares, f(n) = n

São funções que medem o custo de olhar cada item em n pelo menos uma vez (ou duas, ou dez vezes...). Algoritmos que buscam pelo maior ou menor valor em um vetor, e aqueles que calculam o valor médio.

Funções superlineares, f(n) = n lg n:

Crescem um pouco mais rápido do que as lineares. Esta classe de funções surge em algoritmos como **Quicksort** e **Mergesort**.

Funções quadráticas, f(n) = n²:

As funções desta classe medem o custo de olhar em todos os pares de itens em n (ou quase todos os pares). Aparece nos algoritmos **insertion sort** e **selection sort**.

Funções cúbicas, f(n) = n³:

Estas funções ocorrem quando enumeramos todas as triplas de itens possíveis em n. Ocorre em alguns algoritmos de programação dinâmica.

Funções exponenciais, f(n) = cⁿ, c > 1:

Ocorre quando enumera-se todos os subconjuntos possíveis de n-itens em n. Algoritmos desta classe se tornam inúteis rápido.

• Funções fatoriais, f(n) = n!:

Ocorre quando é gerada todas as permutações de n itens. É a função que cresce mais rapidamente entre as que vamos estudar.

$$n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$$

Atividade

Operações com a notação O

Somando funções

 A soma de duas funções é governada pela função dominante:

$$O(f(n)) + O(g(n)) \rightarrow O(max(f(n), g(n)))$$

Exemplo

$$n^3 + n^2 + n + 1 = O(n^3)$$

Multiplicando funções

- Multiplicar é realizar uma mesma soma repetidas vezes
- Multiplicar uma função por um valor constante não afeta o seu comportamento assintótico
 - Considerando que o valor constante é maior do que zero (c > 0)

$$O(c \cdot f(n)) \rightarrow O(f(n))$$

$$\Omega(c \cdot f(n)) \rightarrow \Omega(f(n))$$

$$\Theta(c \cdot f(n)) \rightarrow \Theta(f(n))$$

Multiplicando funções

$$O(f(n)) * O(g(n)) \rightarrow O(f(n) * g(n))$$

$$\Omega(f(n)) * \Omega(g(n)) \to \Omega(f(n) * g(n))$$

$$\Theta(f(n)) * \Theta(g(n)) \to \Theta(f(n) * g(n))$$

Resumo

- Podemos conduzir a análise de um algoritmo em particular ou de uma classe de algoritmos
- Usamos a palavra custo para se referir ao tempo de execução de um algoritmo
- Usamos uma função matemática para descrever o custo de um algoritmo a partir de uma determinada entrada
- A notação O é utilizada para comparar funções de custo e remover detalhes pouco úteis para a comparação de algoritmos

Dúvidas?

Referências Bibliográficas

Referências Bibliográficas

