FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Teodor Duraković Naměřeno: 27. března 2024

Obor: F Skupina: Út 14.00 Testováno:

Úloha č. 7: Určení teploty elektrického oblouku a OH radikálu

1. Zadání

1. Identifikujte spektrální čáry emitované parami materiálu elektrod v obloukovém výboji a určete jejich intenzitu. Ze sklonu pyrometrické přímky určete teplotu oblouku.

2. Určete z naměřeného molekulového spektra radikálu OH rotační teplotu.

2. Teorie

Látky excitované na vyšší energetické hladiny mohou svoji energii předat okolí ve formě záření. Pokud se elektron v atomech nebo molekulách přechodem na nižší hladinu deexituje, je vyzářen foton s energií odpovídající rozdílu hladin:

$$h\nu = E_m - E_n = \frac{hc}{\lambda_{mn}} \tag{1}$$

Tuto vlastnost využívá optická emisní spektroskopie (OES), která analyzuje záření vzniklé ve vysoce energetických prostředích jako je plazma. Podle struktury spektra lze odlišit typy zářící látky: u atomů vzniká čárové spektrum, u molekul pásové, u pevných látek spojité.

Tato úloha se skládá ze dvou částí. V první určujeme excitační teplotu par železa v obloukovém výboji. Ve druhé vyhodnocujeme rotační teplotu radikálu OH v neizotermickém plazmatu.

2.1. Excitační teplota atomů železa

Pro relativní intenzitu spektrální čáry platí vztah:

$$I_{mn} \sim \frac{A_{mn}g_m}{\lambda_{mn}} \cdot \exp\left(-\frac{E_m}{kT}\right)$$
 (2)

kde I_{mn} je relativní intenzita čáry, λ_{mn} vlnová délka, A_{mn} pravděpodobnost přechodu (Einsteinův koeficient spontánní emise), g_m statistická váha horní hladiny, E_m excitační energie horní hladiny a k je Boltzmannova konstanta, T teplota.

Po úpravách získáme vztah vhodný pro lineární závislost tzv. pyrometrické přímky:

$$\ln\left(\frac{I_{mn} \cdot \lambda_{mn}}{A_{mn}g_m}\right) = -\frac{E_m}{kT} + \text{konst}$$
 (3)

Z naměřených relativních intenzit, známých vlnových délek, energií a přechodových pravděpodobností lze tak sestavit lineární závislost a určit teplotu z její směrnice.

2.2. Rotační teplota molekuly OH

Dvouatomová molekula má oproti atomům navíc vibrační a rotační stupně volnosti. Celková energie jejího stavu je dána jako součet:

$$E = E_e + E_v(\nu) + E_r(N) \tag{4}$$

kde E_e je energie elektronového stavu, $E_v(\nu)$ vibrační energie (v aproximaci anharmonického oscilátoru) a $E_r(N)$ rotační energie (v aproximaci netuhého rotátoru). Pro rotační energii platí:

$$E_r(N) = hc \cdot \left[B_{\nu} N(N+1) - D_e N^2 (N+1)^2 \right]$$
(5)

Základ pro výpočet rotační teploty tvoří intenzity rotačních čar:

$$I_{J'} \propto \tilde{\nu}^4 S_{J'J''} \cdot \exp\left(-\frac{B'hcN'(N'+1)}{kT}\right)$$
 (6)

Po logaritmování opět dostáváme lineární $I_{mn} \sim \frac{A_{mn}g_m}{\lambda_{mn}} \cdot \exp\left(-\frac{E_m}{kT}\right)$ (2) Po logaritmování opět dostáváme lineárn vztah, jehož směrnice umožňuje výpočet teploty:

$$\ln\left(\frac{I_{J'}}{\tilde{\nu}^4 S_{J'J''}}\right) = -\frac{B'hc}{kT}N'(N'+1) + \text{konst} \quad (7)$$

kde $\tilde{\nu}$ je vlnočet čáry, $S_{J'J''}$ je Hoenl-Londonův faktor, B' rotační konstanta horního vibračního stavu a N' je rotační kvantové číslo (v této úloze platí N' = J' - 1/2).

2.3. Vyhodnocení a software

Při praktickém vyhodnocení se provádí je nutná správná identifikace spektrálních čar (včetně případného posunu) a odečtení temného signálu. Zatímco temný signál lze eliminovat bez referenčních dat, posun spektrálních čar je nutno vyvodit za pomocí reference.

Pro identifikaci rotační struktury spektra OH se využívá programů SPAN 1.7 a Lifbase 2.1 – první umožňuje analýzu naměřeného spektra, druhý poskytuje simulované spektrum pro orientaci. Hodnota rotační konstanty použitá v úloze je:

$$B' = 1696.6 \text{ cm}^{-1}$$

3. Zpracování dat

3.1. Excitační teplota atomů železa

Zpracováváme soubor data3, pracujeme se spektrem viditelným na obr. 1.

Obrázek 1: Spektrum obloukového výboje železa závislost rel. intenzity na vlnové délce

Pro kompenzaci temného signálu využíváme oblasti bez spektrálních čar - zde konkrétně plochou oblast kolem vlnové délky 450 nm. Detekcí vrcholů nalezneme potenciální spektrální čáry, poté je přiřadíme k tabulce v návodu[2]. Získáváme data na obr. 2:

Obrázek 2: Spektrum obloukového výboje železa po odstranění temného signálu a detekci špiček

Následně přiřazujeme detekované čáry k referenčním čarám v návodu, pro získání rel. intenzity integrujeme oblast pod špičkou. Pro integraci je nutno vymezit meze samotné čáry - jelikož se proces snažíme algoritmizovat a data nezpracovávat manuálně, meze definujeme tak, že pro každou čáru detekujeme i Full Width Half Maxmum a samotné meze jako body vzdálené od středu o 1.625 · FWHM. Zpracováním získáváme výsledek viditelný na obr. 3.

Obrázek 3: Spektrum obloukového výboje železa - fialové oblasti znázorňují meze integrace

Zároveň lze měřit odchylku detekovaných čar od čar referenčních, získáváme

 $\Delta\lambda=0.084\pm0.151\,\mathrm{nm}$. Odchylka od referenčních dat tedy není primárně způsobena posunem celého spektra. Ze závislosti odchylky na vlnové délce pozorujeme, že s rostoucí vlnovou délkou roste i odchylka (obr. 4). Lze tedy předpokládat, že jsou data "roztažena", odchylka roste od bodu, který jsme lineární regresí získali jako průsečík osy x.

Obrázek 4: Závislost odchylky měřené vlnové délky od délky referenční

Se získanými relativními intenzitami je nicméně možno určit teplotu výboje. Použitím formule (3), resp. vykreslením pyrometrické přímky (obr. 5), odhadujeme teplotu.

Obrázek 5: Pyrometrická přímka obloukového výboje železa

$$T_{\rm Fe} = 5729 \pm 564 \, {\rm K}$$

Při zpracování v programu SPAN získáváme teplotu:

$$T_{\rm Fe} = 5624 \pm 965 \, {\rm K}$$

Zabudovaná funkce kalkulace teploty nám nefungovala, proto jsme tuto teplotu získali znovu kalkulací intenzit a následnou tvorbou pyrometrické přímky. Vysoká nejistota vychází mj. ze skutečnosti, že jsme tímto způsobem získali intenzitu relativně nízkého počtu čar.

3.2. Rotační teplota molekuly OH

Pro analýzu spektra molekuly OH nejdříve generujeme referenční data tak, jak je uvedeno v návodu. Okamžitě pozorujeme velký rozdíl mezi měřenými a referenčními (simulovanými) daty, jak je vidět na Obr. 6, odchylka zde dosahuje až několika nanometrů.

Obrázek 6: Naměřené a simulované spektrum OH

Kalibraci provádíme obdobným způsobem, jako v předchozí úloze. Srovnáním největších špiček určíme odchylku, lineárním fitem závislosti odchylky na vlnové délce (původní, nekalibrované) z konstant regrese určíme kalibrační funkci, kterou aplikujeme na původní vlnové délky naměřených dat. Zároveň odstraňujeme hodnoty temného signálu (v tomto případě z oblasti vlnových délek kolem 300 nm), stejným způsobem jako v předchozí úloze. Srovnání kalibrovaného a simulovaného spektra je tímto úspěšně provedeno, jak lze ověřit na Obr. 7.

Obrázek 7: Kalibrované a simulované spektrum OH

Nyní referenční data z tabulky návodu přiřadíme konkrétním čarám, integrací získáme jejich rel. intenzitu a znovu můžeme určit rotační teplotu pyrometrickou přímkou (obr. 8)

Obrázek 8: Pyrometrická přímka OH radikálu

$$T_{\rm OH} = 280 \pm 1 \, {\rm K}$$

3.2.1. Zpracování dat v programu SPAN

Pro výpočet rotační teploty molekuly OH data znovu importujeme, v programu dle instrukcí označíme pouze radikál OH, následně identifikujeme konkrétní čáry. Následně lze automaticky ze spektra kalibrovat graf, teplota je vypočtena automaticky. Získáváme:

$$T_{\rm OH}=300\pm16\,\rm K$$

4. Závěr

Úspěšně se nám podařilo stanovit teplotu elektrického výboje Fe - získaná hodnota pro teplotu výboje dává smysl - teplota elektrického oblouku dosahuje hodnot 3 000 - 8 000 K [1]. Stejně tak se nám podařilo určit rotační teplotu molekuly OH, jejíž hodnotu se nám zároveň podařilo ověřit, respektive replikovat, softwarem SPAN.

Odkazy

- [1] Tadeáš Hartman. SPEKTROSKOPICKÁ ANALÝZA ELEKTRICKÉHO OBLOUKU. VUT, přístup: duben 2025. 2021. URL: https://www.vut.cz/www_base/zav_prace_soubor_verejne.php?file_id=192473.
- [2] Ústav fyzikální elektroniky, PřF MU. Fyzikální praktikum 3 – Úloha F: Optická emisní spektra atomů a molekul. https://is.muni. cz. Verze 3. března 2025. 2025.

5. Příloha

Tabulka 1: Naměřené a referenční hodnoty spektrálních čar železa včetně intenzit a dalších parametrů.

$\lambda_{\mathrm{nam.}} [\mathrm{nm}]$	$I_{ m max}$ [a.u.]	$\lambda_{\mathrm{ref}} \; [\mathrm{nm}]$	E_m [eV]	$A_m g_m \ [10^8 \mathrm{s}^{-1}]$	$I_{ m int}$ [a.u.]	$\Delta\lambda$ [nm]
429.5289	5451.388889	429.413	4.371	0.7100	1203.107744	-0.1159
430.0347	8610.388889	429.924	5.308	5.2000	1931.572144	-0.1107
430.8777	15041.388889	430.791	4.434	5.9000	3821.806067	-0.0867
431.5521	3606.388889	431.509	5.070	1.5000	765.422144	-0.0431
432.6198	15763.388889	432.576	4.473	6.1000	3630.195206	-0.0438
433.6876	2578.388889	433.705	4.415	0.2300	584.124067	0.0174
435.2611	2262.388889	435.274	5.070	1.0000	511.688678	0.0129
437.5088	1956.388889	437.593	2.832	0.0094	466.247128	0.0842
438.2954	20480.388889	438.357	4.312	7.7000	5367.759939	0.0616
440.3742	13880.388889	440.475	4.371	4.4000	3722.427900	0.1008
441.3855	8525.388889	441.512	4.415	2.8000	1992.000750	0.1265
442.5652	2317.388889	442.731	2.851	0.0099	538.930667	0.1658
444.0256	3902.388889	444.234	4.988	1.1000	1030.196411	0.2084
444.5311	2309.388889	444.772	5.009	1.1000	669.295872	0.2409
445.7104	3126.388889	445.912	4.955	1.0000	1532.649372	0.2016
446.4405	3595.388889	446.655	5.606	5.3000	1298.992717	0.2145
447.3389	3947.388889	447.602	5.614	5.4000	852.832389	0.2631
447.9565	3371.388889	448.217	2.875	0.0053	1016.836294	0.2605
449.1917	3767.388889	449.457	4.955	1.2200	844.602400	0.2653
452.5592	6224.388889	452.862	4.913	1.8000	1978.389039	0.3028

Tabulka 2: Naměřené spektrální čáry radikálu OH a hodnoty potřebné pro určení rotační teploty.

$\lambda_{\mathrm{nam.}} \; [\mathrm{nm}]$	$I_{ m max}$ [a.u.]	$\lambda_{\mathrm{ref}} \; [\mathrm{nm}]$	N'	$S_{J'J''}$	$I_{ m int}$ [a.u.]	N'(N'+1)	$\ln\left(\frac{I_{\mathrm{int}}}{\tilde{\nu}^4 S_{J'J''}}\right)$
307.846	38365.416	307.843	1.0	0.563	699.391	2.0	-34.429
307.997	40643.416	307.996	2.0	1.065	803.388	6.0	-34.926
308.329	21662.749	308.326	4.0	2.100	425.078	20.0	-36.237
308.521	11930.749	308.512	5.0	2.640	235.717	30.0	-37.053
308.736	5361.082	308.733	6.0	3.160	112.294	42.0	-37.972