CM 045 H - Geometria Analítica Ciência da Computação e Informática Biomédica

15 de Outubro de 2018

Nome:

Q:	1	2	3	Total
P:	25	25	50	100
N:				

	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8
GRR								

Considere o triângulo ABC retângulo em \hat{A} . Sabendo que A(1,3) e B(-2,4), determine

- (a) $\boxed{5}$ a equação paramétrica da reta r que passa nos pontos A e B.
- (b) 10 a equação cartesiana da reta s que passa nos pontos $A \in C$.
- (c) 10 as equações possíveis para o segmento BC dado que o ângulo \hat{B} é $\frac{\pi}{3}$.

Dadas as retas $r: \frac{x-d_7}{a} = \frac{y-1}{b} = \frac{z-3}{b}$ e $s: \begin{cases} x = -1 + (d_5+1)s \\ y = as \\ z = 4+bs \end{cases}$, determine as condições

sobre a e b para que sejam

- (a) 8 retas paralelas coincidentes. Justifique sua resposta.
- (b) 9 retas concorrentes. Justifique sua resposta.
- (c) 8 retas ortogonais. Justifique sua resposta.

Considere a reta r: $\begin{cases} x=(d_8+1)+t\\ y=1-3t\\ z=1+2t \end{cases}, \text{ a reta } s: \frac{x-5}{4}=\frac{y-6}{-5}=\frac{z-4}{3}. \text{ Determine:}$

- (a) $\boxed{8}$ a posição relativa das retas r e s. Justifique sua resposta.
- (b) $\boxed{10}$ a equação cartesiana do plano π_1 que contém r, não intersecciona com s e passa pelo ponto $A(d_6+1,1,-1)$.
- (c) $\boxed{10}$ a equação paramétrica do plano π_2 que é ortogonal a π_1 e contém s.
- (d) 12 todos os pontos que pertencem tanto a π_1 quanto a π_2 .
- (e) 10 a reta $l \in \pi_2$ concorrente a r e s e passa no ponto $B \in \pi_2$, localizado no eixo das abscissas.