Introduction to Graphs

Graph: It is bunch of nodus conneted via Edges

Eni: Tru

Graph

Main difference between tru q Graphs

- 1) Tree is hirarchial data Structure, unlike graphs
- 2) No: of Edga in N node Fra = N-1

Classification of Graphs

Case-1:

Directed Graph

Underet graph

Faubook:

A __ B

Instagran:

Case-lj:

Weighted Grouph

Un Wilg hted Graphs

Case - 111

undereted cyclic graph

undercted ayelic graph

direted lych graph

dereund a cyclic graph

- a graph can be combination of multiple theye
- 3 Type of graph is always in Question.

How Graph is Given as Input? -> collection modes connected with Edges

Qi) Given an undirected graph with N Nodu & M Edga

W

Inputformat: 1 1 me, #Nocy # Edges Followed tlines u indicating Edge from 4 ___v ugvare nodes w indicate = weight of Ege between UGV

In Qualim:

- 6) Wighted or Un Wighted

Information which wan't be given

a) Cycliu r Aychi

Storing a graph

Input:

App: 1 - Adj Mahin:

ent mat[6][6] = 1 based enden

	0	l	2	3	ч	5
0						
<u>_</u>		0	-	0	ı	0
2		_	0	_	-	1
<u>z</u>		0	1	0		1
4		-1	1	J	G	0
5		0	1	ı	0	0

Ingeneral: N Noder - int g[NI][NI] - Sc: O(N2): Span

Classificating: W_

	unweighted	wighted, u, v, w In general wights are are non-zero
undireted	3[4][v]=1 3[v][4]=1	g[4][v]=w: are non-zero g[v][4]=w
diversed	g [4] [v] = 1	g [4] [r] = W

10:30 -3 10:40

Input: list x into g[6] E 8[6] 1 40

L Irita listainton 2 SU g[i] $\frac{1}{3}$ $\frac{1}$

Classification: (1) _____ (1) → TC:O(E) SC:O(E)

unwight graph => N Nodu: listint, g[N1]

Weighted graph & N Node: (1812 pair 19nt, 9nt) g [Ni]

	unweighted	wighted, u, v, w verter
undiruzd	glu), add (v)	grui. add ((V, W) wight from u-v
direted	g[v]. add(u)	gry. add (fu, wy)
	3	stur add (fr, wy)

Note: for every Edge we do I or a insertion basel on graph

18: Given a undirected graph & Source Node & Dest Node Check if node can be visited from Sacra Noce?

Graph:

 $\frac{S}{I} \longrightarrow \frac{D}{6}$ frehim Truy

Input:

S=1, D=6

obs: a nock add only on a bool vis [7] = & F)

Operations

idea:

Repeat HII Qua Emply

Step 1: Get front noch from mode & remove it
Step 2: Go to adjlist of mode, and add an unvisited neighbour
into Quin & make it as visited

```
// N - Nody E + Pages U[], V[): Page Connections ->
       BFS(int N, int E, int U[], int V[], int s, int d) &
     list xinto g[N+1] // Creating adg lin
                                                         T(: O(E)
                                                        Sc: 0(E)
    for (int i= 0; ix 6; i++) &
        /4[i], v[i], in fage from u[i] - v[i]
        g[u[i]]. aad(v[i])
g[v[i]]. add(u[i])

g[v[i]]. add(u[i])
    Queuxint, q; q. insert(s)
                                                         T(:0(E)
    bool vis[N+1] = f; vis [s] = True
                                                         SC:0(N)
    Int lev[N+1] = -1, lev[s] = 0
    90+ par(N+1)=-1; par(5)=-1
    while ( 9. strec) 20) &
      1 Step1: get front Nooe from a
        Int (u = q. fron + (); q. delete () - 1/ delete front
        11 Step2: Travere m adjlist of cu
        for (int i=0; ix g [cu]. size(); ita)h
          int (V = g | cm) 1. 1

if ( vistcv) == faln ) h

Note: If (v== d, we can

return true, here

its (cv) = True

its (if)
           int (v = g[cu][i]
               lev[cv] = lev[[4]+1 // update level since mode cu
                                                     pushing node cv
                par [cv] = cu // updating parent
    return vista), return leveal
```

// Say N nody:

cu	g[(u]
1=	gri)) Sum of au thrs = O(E)
2	g [2] (ax [Intermonal Edges] = undirected
<i>3</i> :	g (3) (ax[Total no: of Edger] = undirected [Total no: of Edger] of directed
N	g[N]] g[0]+g[i]+ - g[N] = Stac of Adj lin

Tracing: S:10 D:2

that obs:

BFS also gave you long th of shorter pale from source to an Nocle

Tracing: S: lo D: 2 par [12] = → patr from S → D $p\underline{ar[s)}$ $p\underline{ar[7]}$ par [11] -schriut pata S + D = patro from & D partioj party) partii) parts) party) Laghrat pata SaD 1/ get S -> D D fill par[Nt] A shortset path from S - D

A shortsit path from S -> D