FINAL: 180 Minutes

Last Name:	
First Name:	
RIN:	
Section:	

Answer ALL questions. You may use **two** double sided $8\frac{1}{2} \times 11$ crib sheets. NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

1	2	3	4	5	Total
200	40	40	40	40	350

(10 bonus points)

1 Circle at most one answer per question. 10 points for each correct answer.

- (1) The **negation** of "Every student is a friend of some other student" is
 - A Some student has a friend who is a student.
 - B Some student is a friend of all students.
 - C Some student is not a friend of some other student.
 - D Some student is not a friend of all other students.
 - E Some student has no friends.
- (2) Estimate $2^1 \times 2^2 \times 2^3 \times \cdots \times 2^{20} = \prod_{i=1}^{20} 2^i$.
 - $\boxed{\text{A}} \ 1.65 \times 10^{61}$
 - $\boxed{\text{B}} 1.65 \times 10^{63}$
 - $\boxed{\text{C}} 1.65 \times 10^{65}$
 - $\boxed{\text{D}} 1.65 \times 10^{67}$
 - $\boxed{\text{E}} \ 1.65 \times 10^{69}$
- (3) What is the <u>most accurate</u> order relation between 2^n and e^n ?
 - $\boxed{\mathbf{A}} \ 2^n \in o(e^n).$
 - $\boxed{\mathbf{B}} \ 2^n \in O(e^n).$
 - $\boxed{\mathbb{C}} \ 2^n \in \Theta(e^n).$
 - $\boxed{\mathbf{D}} \ 2^n \in \Omega(e^n).$
 - $\boxed{\mathbb{E}} \ 2^n \in \omega(e^n).$
- (4) f(n) satisfies the recurrence f(0) = 1; f(n) = nf(n-1). Which order relationship describes f.
 - $\boxed{\mathbf{A}} \ f \in \Theta(2^n).$
 - $\boxed{\mathrm{B}} f \in O(2^n).$
 - $\boxed{\mathbf{C}} \ f \in o(2^n).$
 - $\boxed{\mathbf{D}} f \in \Theta(n^n).$
 - $\boxed{\mathrm{E}} f \in o(n^n).$

- (5) What is the greatest common divisor of 756 and 840?
 - A 12.
 - B 28.
 - C 63.
 - D 84.
 - E 189.
- (6) What is the minimum number of colors needed to color the graph on the right?
 - A 2.
 - B 3.
 - C 4.
 - D 5.
 - E 6.

- (7) On the right is the 4×12 grid graph. What is the average degree of a node?
 - A 3.
 - $\boxed{\text{B}} \ 3\frac{1}{4}.$
 - $C 3\frac{1}{3}$.
 - $D 3\frac{1}{2}$.
 - $\boxed{\text{E}} \ 3\frac{2}{3}$.

- (8) Shirts come in 6 colors. 4 students are in a row. You must assign shirts to the students, and two students standing next to each other cannot get the same color shirt. In how many ways can you do this?
 - A $\binom{9}{3}$.
 - $\boxed{\text{B}} \ 6 \times 5 \times 4 \times 3.$
 - $\begin{bmatrix} C \end{bmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix}$.
 - $\boxed{\mathrm{D}} \ 6 \times 5^3.$
 - $\boxed{\mathrm{E}}$ 6^4 .

 (9) Pokemons have 4-digit serial numbers, e.g. 0255. A pokemon is defective if any digit repeats (e.g. 0255, 5250, 5255 are defective). Approximately what fraction of the possible serial numbers are defective? A 0. B 0.25. C 0.5. D 0.75. E 1.
 (10) A senate committee of 10 senators must pick a president. 3 candidates will be proposed from the 10 senators, and everyone votes. In how many ways can the 3 candidates be chosen. A 1000. B 720. C 120. D 10! E 10!/3!
 (11) Three integers z₁, z₂, z₃ satisfy 0 ≤ z₁ ≤ z₂ ≤ z₃ ≤ 6 (the sequence is non-decreasing and bounded between 0 and 6). How many such sequences are there? A 28. B 42. C 84. D 165. E 168.
 (12) You are thinking of a graph with 4 nodes (A) (B) (C) (D). How many such graphs are there? A 24. B 64. C 81. D 256. E 4096.

- (13) \mathbf{X}, \mathbf{Y} are random variables (not necessarily independent) and $\mathbf{Z} = a\mathbf{X} + b\mathbf{Y}$. What is $\mathbb{E}[\mathbf{Z}]$?
 - $\boxed{\mathbf{A} \ a \ \mathbb{E} \left[\mathbf{X} \right] + b \ \mathbb{E} \left[\mathbf{Y} \right]}$
 - $\boxed{\mathbf{B}} \ a^2 \, \mathbb{E} \left[\mathbf{X} \right] + b^2 \, \mathbb{E} \left[\mathbf{Y} \right]$
 - $\boxed{\mathbf{C}} (a+b)(\mathbb{E}[\mathbf{X}] + \mathbb{E}[\mathbf{Y}])$
 - $\boxed{\mathbf{D}} \ a(\mathbb{E}[\mathbf{X}] + \mathbb{E}[\mathbf{Y}]) + b(\mathbb{E}[\mathbf{X}] + \mathbb{E}[\mathbf{Y}])$
 - E None of the above are true in general.
- (14) This test has 20 multiple choice questions, each with 5 possible choices. If you answer questions randomly, what is the expected number of multiple questions you get correct?
 - A 3
 - B 4
 - C 5
 - D 6
 - E 10
- (15) About 1 in a 1000 people have Coeliac disease. The test for Coeliac randomly makes a mistake 5% of the time (95% accuracy). You tested positive. *Approximately* what are the chances you have Coeliac?
 - \boxed{A} 0.2%
 - B 2%
 - C 20%
 - D 50%
 - E 95%

- (16) A random binary string $b_1b_2...b_{10}$ of 10 bits is the input to the automaton. What is the probability that the string is accepted?
 - $A \frac{2}{1024}$
 - $\frac{45}{1024}$
 - $C \frac{56}{1024}$
 - $D \frac{90}{1024}$
 - $\boxed{\text{E}} \frac{512}{1024}$

(17) What is a computing problem?
A Person.
B An automaton (machine which transitions between states as it reads the input).
C An automaton with stack memory.
D An automaton with random access memory.
E A set containing finite binary strings.
 (18) The computing problem \$\mathcal{L}\$ = {strings with an even number of 1s} can be solved by: (I) DFA. (II) CFG. (III) Turing Machine.
A I,II,III
В І,ІІІ
D III only
E None of these models of computing
(19) The computing problem $\mathcal{L} = \{\text{strings corresponding to programs which HALT}\}$ can be solved by: (I) DFA. (II) CFG. (III) Turing Machine.
B I,III
D III only
E None of these models of computing
(20) A DFA has two states a start state q_0 and a second state q_1 . The DFA is described by a list of its accept states and a list of its transition instructions. The order in which you list the accept states and the transition instructions does not matter. We draw a DFA as a graph with nodes q_0, q_1 and add a directed arrow for each transition instruction (the accepting states have double circles).
$\underline{\text{How many different DFA's are there with two states?}} \; (\textit{Different DFA's can have the same (YES)-set})$
$oxed{A}$ 4.
B 8.
C 16.
D 32.
$oxed{\mathrm{E}}$ 64.

$2 \quad {\rm Random \ Walk}$

A drunk leaves the bar (at position 1), and takes independent steps: left (L) with probability $\frac{1}{2}$ or right (R) with probability $\frac{1}{2}$. The drunk stops when he reaches home (at 0) or the jail (at 3). Compute the *expected* number of steps the drunk makes.

$\bf 3$ Induction

(a) G(1)=1; Prove that $G(n)=\frac{1}{n}$ for integer $n\geq 1.$ $G(n)=G(n-1)\left(1-\frac{1}{n}\right) \text{ for } n>1;$

(b) The *n*th Harmonic number is $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Prove that $H_1 + H_2 + \dots + H_n = (n+1)H_n - n$.

4 Turing Machine

Give a high-level description of a Turing Machine that solves the problem $\mathcal{L} = \{0^n \# 1^{n^2} \mid n \geq 0\}$ (squaring). (You may find it useful to illustrate how your TM works on 00#1111.)

${\bf 5} \hspace{0.5cm} \hbox{ [Hard] Unsolvable Problems}$

 $\underline{Prove} :$ There is an undecidable computing problem which is a subset of $\{1\}^*.$

SCRATCH

SCRATCH