Simple Classification

- ➤ Based on images, perform letter classification
- > Get lots of images of each letter
- > Train a classifier

159.302

Stephen Marsland

3.2

Bayesian Classification

Stephen Marsland

Probability

- > We are dealing with probabilities
- > We make the histogram from our examples
- > Joint probability $P(C_i, X_j)$ > Conditional probability $P(X_j|C_i)$

Stephen Marsland

Bayes' Rule

$$P(C_i|X_j) = \frac{P(X_j|C_i)P(C_i)}{P(X_j)}$$

- ➤ Most important equation in machine learning
- Combine things that are easy to find to get useful answers
- > Denominator normalises it so probabilities sum to 1

Prior Knowledge

- ➤ Suppose we know that Class 1 is more likely that Class 2
- ❖Distribution of letters in English text
- > We should be able to include this information into the classifier: $P(C_1)$

$$P(C_i, X_j) = P(C_i|X_j)P(X_j)$$

$$P(C_i, X_j) = P(X_j|C_i)P(C_i)$$

Stephen Marsland

Classification Process

- > Inference
- Compute posterior probabilities from data
- > Make decisions

Use posterior probabilities to classify new data

> We do this here by maximising the posterior probability

Naïve Bayes Classifier

- ➤ What if we assume that the features are independent?
- Then can just compute:

$$P(X_j^1 = a_1 | C_i) \times P(X_j^2 = a_2 | C_i) \times \dots \times P(X_j^n = a_n | C_i)$$

$$= \prod P(X_j^k = a_k | C_i)$$

 \rightarrow Gross simplification

► Surprisingly effective

Bayes Classifier

$$P(C_i|\mathbf{x}) > P(C_j|\mathbf{x}) \ \forall i \neq j$$

- \triangleright Need to compute $P(\mathbf{x}|C_i)$
- ➤ Often have high dimensional feature vectors

$$P(X_j^1 = a_1, X_j^2 = a_2, \dots, X_j^n = a_n | C_i)$$

> Curse of dimensionality applies - need lots and lots of data

3.9

Stephen Marsland

Decision Trees

What to Maximise

- > We maximised posterior probability
- There are other choices
- Maximise likelihood
- ❖Minimise risk
- ➤ Medical data better to think somebody has a disease than not if unsure
- > Loss matrix

Stephen Marsland

Decision Trees

- ➤ Split classification down into a series of choices about features in turn
- > Lay them out in a tree
- ➤ Progress down the tree to the leaves

159.302 3.13 Stephen Marsland

Entropy

- \triangleright Tells us how much extra information we get from knowing p_i
- ➤ Measures the amount in impurity in the set of features
- ➤ Makes sense to pick the features that provides the most information

159.302

3.16

Stephen Marsland

Rules and Decision Trees

- > Can turn the tree into a set of rules:
- ❖(outlook = sunny & humidity = normal)
 (outlook = overcast) |
 (outlook = rain & wind = weak)
- > How do we generate the trees?
- ❖ Need to choose features
- ❖ Need to choose order of features

159.302 **3.15** Stephen Marsland

Information Gain

$$Gain(S, F) = Entropy(S) - \sum_{f \in values(F)} \frac{|S_f|}{|S|} Entropy(S_f)$$

- > Choose the feature that provides the highest information gain over all examples
- That is all there is to ID3:
- ❖ At each stage, pick the feature with the highest information gain

3.18 Stephen Marsland

ID3 (Quinlan)

- > Search over all possible trees
- ❖Greedy search no backtracking
- ❖ Susceptible to local minima
- ❖Uses all features no pruning
- > Can deal with noise
- Labels are most common value of examples

159.302 **3.19** Stephen Marsland

Missing Data

- Suppose that one feature has no value
- > Can miss out that node and carry on down the tree, following all paths out of that node
- > Can therefore still get a classification
- > Virtually impossible with neural networks

Stephen Marsland

Inductive Bias

- ➤ How does the algorithm generalise from the training examples?
- Choose features with highest information gain
- ❖Minimise amount of information is lef
- ❖Bias towards shorter trees
- ♦ Occam's Razor (KISS)

❖Put most useful features near root

Stephen Marsland

Post-Pruning

> Run over tree

Prune each node by replacing subtree below with a leaf

> Evaluate error and keep if error same or better

Stephen Marsland

159.302

C4.5

➤ Improved version of ID3, also by Quinlan

➤ Use a validation set to avoid overfitting

Could just stop choosing features (early stopping)

➤ Better results from post-pruning

❖ Make whole tree

Chop off some parts of tree afterwards

Stephen Marsland

Rule Post-Pruning

- > IF ((outlook = sunny) & (humidity = high))
- > THEN playTennis = no
- > Remove preconditions:
- **♦**Consider IF (outlook = sunny)
- ❖ And IF (humidity = high)
- Test accuracy
- ❖If one of them is better, try removing both

3.30 Stephen Marsland

Rule Post-Pruning

- > Turn tree into set of if-then rules
- Remove preconditions from each rule in turn, and check accuracy
- Sort rules according to accuracy
- > Rules are easy to read

159.302 3.29 Stephen Marsland

	Stephen Iviaisiand		3.32	3		107.502
_	No	Strong	High	Mild	Rain	14
_	Yes	Weak	Normal	Hot	Overcast	13
_	Yes	Strong	High	Mild	Overcast	12
_	Yes	Strong	Normal	Mild	Sunny	11
_	Yes	Weak	Normal	Mild	Rain	10
_	Yes	Weak	Normal	Cool	Sunny	9
_	No	Weak	High	Mild	Sunny	8
_	Yes	Strong	Normal	Cool	Overcast	7
_	No	Strong	Normal	Cool	Rain	6
_	Yes	Weak	Normal	Cool	Rain	5
_	Yes	Weak	High	Mild	Rain	4
_	Yes	Weak	High	Hot	Overcast	3
	No	Strong	High	Hot	Sunny	2
_	No	Weak	High	Hot	Sunny	1
_	Play?	Wind	Humid	Temp	Outlook	Day

Comparison Between Decision Trees and Naïve Bayes Classifier

59.302 3.31 Stephen Marsland

➤ Outlook = Sunny ➤ Wind = Strong ► Humidity = High > Temperature = Cool Test Case 3.34 Stephen Marsland

Naïve Bayes

> Yes: 0.0053

➤ No: 0.0206

➤ So solution is no

> Conditional probability is:

$$\frac{0.0206}{0.0206} = 0.79$$

$$\frac{0.0206}{0.0206 + 0.0053} = 0.795$$

3.36

159.302

Stephen Marsland

Naïve Bayes

- > P(yes)*P(Outlook=Sunny) yes)*P(Wind=Strong|yes) yes)*P(Temperature=Cool yes)*P(Humidity=High|
- Similar for no
- >Count all the probabilities from the table

3.35 Stephen Marsland

