

Problem Set 4 is due This Friday, Feb 14 (10pm)

Class 9: Lower Bound of Circuit Sizes

Maybe related: Complexity Zoo,

https://complexityzoo.net/Complexity Zoo

University of Virginia cs3120: DMT2

Wei-Kai Lin

Recap: Representing Circuits as Bits

Strings

- Equivalent: NAND straightline program
- n-bit input, ℓ lines, m-bit output.
- Circuit size $s = \ell + m$ (# gates)
- Represented by a sequence of:
 - -2(s+1) natural numbers (at most)
 - $-O(s \log s)$ bits

Example

```
def CIRCUIT(X[0],X[1]):
                                             // 2-bit in, 1-bit out
                                             // 1st line. 0 and 1 are input
  temp2 = NAND(X[Q],X[1])
  temp3 = NAND(X[0], temp2)
                                             // 2nd line. 2, 3, ... are temp
  temp4 = NAND(X[1], temp2)
                                             // 3rd line (and so on
  temp5 = NAND(temp3,temp4)
                                             // return, one line per bit
  return temp5
```

1 line:

input & output lengths

ℓ lines: one NAND per line

m lines: ne output bit per line n,

n: $v_{n,1}$, n+1: $v_{n+1,1}$, $v_{n,2}$ $v_{n+1,2}$

last: $r_1, r_2, ... r_m$

Representing a sequence in bits

- Chars (e.g. ASCII): represents English letters, digits, punctuation in 8 bits

 - Represent any (finite length) sequence in chars

- '1' is 01
 Separator ',' is 11

Subtle: How many variables?

n-bit input, ℓ lines, m-bit output. Circuit size $s = \ell + m$ (# gates) Num variables: $n + \ell$ (if # > s, need more than $\log s$ bits)

Without loss of generality, $n \le s$, $n + \ell \le 2s$

Poved:

Theorem. There is a constant c such that for any s, any circuit of size s can be represented in $c \cdot s \log s$ bits.

(s.104s

Theorem 5.1 (Representing programs as strings)

There is a constant c such that for $f \in SIZE(s)$, there exists a program P computing f whose string representation has length at most $cs \log s$.

Recap: SIZE(s)

- SIZE(s): set of all *functions f* such that are "computable" by NAND circuits of *s* gates.
 - -f is "computable" by something: there exists something computing f

Definition 4.18 (Size class of functions)

For all natural numbers n, m, s, let $SIZE_{n,m}(s)$ denote the set of all functions $f: \{0,1\}^n \to \{0,1\}^m$ such that there exists a NAND circuit of at most s gates computing f. We denote by $SIZE_n(s)$ the set $SIZE_{n,1}(s)$. For every integer $s \ge 1$, we let $SIZE(s) = \bigcup_{n,m} SIZE_{n,m}(s)$ be the set of all functions f for which there exists a NAND circuit of at most s gates that compute f.

Circuit Complexity

But is the inclusion strict? Is there a function here?

Goal today:

Prove that the inclusion is **strict**.

Proof idea:

- 1. Show that SIZE(s) is small (in cardinality)
- 2. Show that there are many more (finite) functions that are computable in 10x circuit size

Spoiler: counting

Theorem 5.1 (Representing programs as strings)

There is a constant c such that for $f \in SIZE(s)$, there exists a program P computing f whose string representation has length at most $cs \log s$.

Theorem: Every circuit of size s can be written using $O(s \log s)$ bits.

How many strings are at most x bits?

(for any natural number x)

$$2+2+2+\cdots+2^{(N)}=2^{(N)}$$

Consequence of Programs as Data

Theorem: Every circuit of size s can be written using $O(s \log s)$ bits.

How many different circuits of size s can exist?

Theorem: There are at most
$$2^{O(s \log s)}$$
 many circuits of size s

How many (distinct) functions computable in circuit size (s/
$$n$$
) – 1 = $O(g(n))$

$$2 \xrightarrow{x+1} -1 \le 2 \xrightarrow{x+1} (\le) 20(x), \quad x = s \log s$$

$$2 \xrightarrow{x+1} -1 \in 20(x) \qquad (\le) 2 \cos \log s + 1 \quad C.s \log s$$

$$2 \xrightarrow{x+1} -1 \in 20(x) \qquad (\le) 2 \cos \log s + 1 \quad C.s \log s$$

Consequence of Programs as Data

Theorem: Every circuit of size s can be written using $O(s \log s)$ bits.

Theorem: There are at most $2^{O(s \log s)}$ many circuits of size s

How many (distinct) functions computable in circuit size s?

How many (distinct) functions can be computed using y many (distinct) circuits? (for any natural number y)

Each function can be computed by more than 1 circuits

But

Two distinct functions must be computed by two distinct circuits

Consequence of Programs as Data

Theorem: Every circuit of size s can be written using $O(s \log s)$ bits.

Theorem: There are at most $2^{O(s \log s)}$ many circuits of size s

Corollary: at most $2^{O(s \log s)}$ many functions are in SIZE(s)

Proof:

1 st

Corollary: at most $2^{O(s \log s)}$ many functions are in SIZE(s)

 $|SIZE(s)| = 2^{O(s \log s)}$ for all s

5et Funcs

 $|SIZE(3)| \le 2^{c \cdot 3 \log 3}$ and $|SIZE(30)| \le 2^{c \cdot 30 \log 30}$ |Maximum Maximum Maxi

Is it strict?

But is the inclusion **strict**? Is there a function *here*?

How many functions of n-bit input are there?

There are 2^{2^n} many Boolean function on n inputs

Corollary: Not all functions can be computed by a ing circuit of size at most $\frac{2^n}{c \cdot n}$, $S = \frac{2}{c \cdot n}$

circuit of size at most
$$\frac{2^n}{c \cdot n}$$

Proof: # func in
$$\{0,1\}^n \to \{0,1\}$$
 is 2
 $|SIZE(S)| = 2^{c \cdot s \log S} = 2^{c \cdot \frac{2^n}{c \cdot n} \cdot (n - \log(c \cdot n))}$

$$\frac{2}{2} \sum_{n=1}^{\infty} 2^{n}$$

There is a constant $\delta > 0$ such that for any n, there is a n-bit-input function such that requires more than $\frac{2^n}{\delta \cdot n}$

Charge

Circuit size lower bound

Counting number of circuits vs functions

PS4: due this Friday 10:00pm

Questions? (maybe for Wei-Kai)

0,1) not universal. x, x2.-x)= ax, + a.x + ... - ax+ b mod 2