PURDUE CS47100 SEPT 11, 2019 PROF. JENNIFER NEVILLE

INTRODUCTION TO AI

RECAP: ADVERSARIAL SEARCH

- Minimax search is a way of finding an optimal move in a zero-sum two player game
- Alpha-beta pruning is a way of finding the optimal minimax solution while avoiding searching subtrees of moves which won't be selected
 - Some branches will never be played by rational players since they include sub-optimal decisions (for either player)
 - Pruning produces results that are exactly equivalent to complete (unpruned) search
 - Node ordering can improve effectiveness; Perfect ordering gives time complexity $O(b^{m/2})$, thus, can search twice as far as ordinary minimax in equal time

RESOURCE LIMITS

RESOURCE LIMITS

- Problem: In realistic games, cannot search to leaves
- **Example:**
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
- Guarantee of optimal play is gone; More plies makes a BIG difference
- > Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions

WHAT TO DO WHEN SEARCH IS INTRACTABLE

- > Stop the search before you reach terminal states (using depth cutoff)
- ▶ Evaluate nodes using an evaluation function What properties should the evaluation function have?

EVALUATION FUNCTIONS

EVALUATION FUNCTIONS

- Desirable properties
 - Order terminal states in same way as true utility function
 - Strongly correlated with the actual minimax value of the states
 - Efficient to calculate
- ▶ Typically use **features** simple characteristics of the game state that are correlated with the *probability of winning*
- The evaluation function combines feature values to produce a score:

$$Eval(x) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s) = \sum_{i=1}^n w_i f_i(s)$$

EXAMPLE FEATURES

- What would be some useful features for chess?
 - Relative number of Bishops; Knights; Rooks; Pawns
 - Total number of pieces
 - Has queen?
 - Castled?
 - In check?
 - Distance of furthest pawn from start
 - Relative freedom (relative total number of possible moves)
 - etc.

DEPTH MATTERS

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

HOW COULD YOU LEARN A GOOD EVALUATION FUNCTION?

ALPHAGO SYSTEM

- Deep learning +
 Reinforcement learning
- One model predicts next move, given current state of board, trained on 30 million positions from human games
- Another model predicts likelihood of winning given current state, trained on 30 million positions from selfplay
- **System** combines two models using Monte Carlo search

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." *Nature* 529.7587 (2016): 484-489.

WHAT IF A GAME HAS A "CHANCE ELEMENT"?

GAME TREE WITH CHANCE ELEMENT

EXPECTED VALUE

The sum of the probability of each possible outcome multiplied by its value:

$$E(X) = \sum_{i} p_i x_i$$

- Are there pathological cases where this statistic could do something strange
 - Extreme values ("outliers")
 - Functions that are a non-linear transformation of the probability of winning

EXPECTED MINIMAX VALUE

- Now three different cases to evaluate, rather than just two.
 - MAX, MIN, CHANCE

EXPECTED-MINIMAX-VALUE(n) = UTILITY(n) $max_{s \in successors(n)}$ MINIMAX-VALUE(s) $min_s \in successors(n)$ MINIMAX-VALUE(s) $\sum_{s \,\in\, successors(n)} P(s) \times EXPECTEDMINIMAX(s) \quad if \ CHANCE \ node$

if terminal node if MAX node if MIN node

CONSTRAINT SATISFACTION PROBLEMS

WHAT IS SEARCH FOR?

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- ▶ Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)

CONSTRAINT SATISFACTION PROBLEMS

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
- Constraint satisfaction problems (CSPs) a special subset of search problems
 - ▶ State is defined by variables X_i with values from a domain D
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- > Allows useful general-purpose algorithms with more power than standard search algorithms

CSP EXAMPLES

EXAMPLE: MAP COLORING

- Variables: WA, NT, Q, NSW, V, SA, T
- \triangleright Domains: D = {red, green, blue}
- Constraints: adjacent regions must have different colors

Implicit: $WA \neq NT$

Explicit: (WA, NT) ∈ {(red, green), (red, blue), ...}

Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

CONSTRAINT GRAPHS

CONSTRAINT GRAPHS

 Binary CSP: each constraint relates (at most) two variables

 Binary constraint graph: nodes are variables, arcs show constraints

 General-purpose CSP algorithms use the graph structure to speed up search.
 E.g., Tasmania is an independent subproblem

EXAMPLE: N-QUEENS

ightharpoonup Variables: Q_k

▶ Domains: {1,2,3,...*N*}

Constraints:

Implicit: $\forall i, j$ non-threatening (Q_i, Q_j)

Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

. . .

EXAMPLE: SUDOKU

- Objective
 - Fill the empty cells with numbers between 1 and 9
- Rules
 - Numbers can appear only once on each row
 - Numbers can appear only once on each column
 - Numbers can appear only once on each region
- Variables? Domain?
- Constraints?

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

SOLVING CSPS

STANDARD SEARCH FORMULATION

- Standard search formulation of CSPs
- States defined by the values assigned so far (ie. partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

SEARCH METHODS

What would BFS do?

What would DFS do?

What problems does naive state space search have in this setting?

BACKTRACKING SEARCH

BACKTRACKING SEARCH

- ▶ Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering and only consider assignments to a single variable at each step
 - ▶ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
- Idea 2: Check constraints as you go
 - Incremental goal test" i.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
- Depth-first search with these two improvements is called backtracking search (not the best name)
- Can solve n-queens for n ≈ 25

BACKTRACKING EXAMPLE

