

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

AND THE PROPERTY OF THE PROPER

. `

V.

OF THE BACIEIC

University of Cincinnati.

PUBLICATIONS

OF THE

Cincinnati Observatory.

Micrometrical Measurements

DOUBLE STARS,

1879-80. 🗸

•

LIBRARY OF THE

1

ASTRONOMICAL SOCIETY OF THE PACIFIC

1000 A 2004 147 多数 SHUS PASHASMOMICA SHE SHE SHE

PUBLICATIONS OF THE CINCINNATI OBSERVATORY.

MICROMETRICAL MEASUREMENTS

OF

455 DOUBLE STARS,

OBSERVED WITH THE

11 INCH REFRACTOR

DURING THE YEAR ENDING SEPTEMBER 1, 1880,

UNDER THE DIRECTION OF

ORMOND STONE, A. M.,

ASTRONOMER.

CINCINNATI:

Published by Authority of the Board of Directors of the University.

1882.

SECTION ONLY LIBRARY SEA

Q24 C5A5 no.6-7

OF THE ASTROMOMICAL SOCIETY -

INTRODUCTION.

THE present number of the Publications of this observatory consists partly of the results of observations preliminary to the preparation of a general catalogue of known double stars, situated between the equator and 30° south declination, and partly of observations of double stars which Mr. Burnham has found, in the course of his investigations, to need re-observing. These latter stars are not limited to the southern hemisphere. Northern stars were usually observed but once, except in cases where the first observation differed to such an extent from that given by Mr. Burnham as to indicate a possibility of change, either in position angle or distance. Southern objects, which had not already been measured at this observatory, were observed, as far as possible, twice. Binaries were, of course, observed more frequently. The observers were Messrs. H. A. Howe, H. V. Egbert and myself.

Personal Equation.—The observations were made and reduced in substantially the same manner as those contained in No. 5. The personal equations of Mr. Howe and myself were assumed to be the same as hitherto. Mr. Egbert's observations were included with the others, but reduced to the common standard by means of the following corrections deduced from observations contained in this number:

Class of Obs.	Corr. P.	No. of Comp.	Corr. D.	No. of Comp.
$\mathbf{E_n}$	o.ºo—o.º6 w	38	o."o1	22
$\mathbf{E}_{\mathtt{p}}$	-1.7-0.6 w	45	+0.12	28

where P is the position angle, D the distance and w the reciprocal of the visual angle (Publications Cincinnati Observatory, No. 5, Introduction).

A comparison of the mean results contained in this and the previous number gave for position angles:

$$C_6 - C_5 = -0.2 + 0.6 \cos 2 P + 0.3 \sin 4 P - [1.0 + 1.1 \sin (2 P - 60)] w$$
, and for distances,

$$C_6-C_3=+0.12+0.08 \sin (2 P-60)-0.015 D.$$

Binaries.—Those stars of the Dorpat Catalogue which show a difference of more than 3° between C_{0} and Σ may be classified as follows:

Differences between 3° and 5°: Σ 30, 82, 103, 105, 114, 233, 280, 355, 444, 487, 516, 529, 536, 564, 1146, 1506, 1690.

Differences between 5° and 10°: Σ 67, 118, 122, 248, 334, 371, 407, 442, 493, 609, 712, 1847, 2023, 3081.

Differences between 10° and 20°: Σ 23, 86, 113, 295, 408, 1500, 1876.

Differences greater than 20°: 2 125, 308?, 483?, 651?, 1216, 1664, 1670, 1998.

The following have differences in distance greater than 1.0: Σ 23, 30, 125, 171, 308?, 476, 518 AB, 651?

A similar comparison with the micrometrical measures made by Sir John Herschel with his seven-feet equatorial, at the Cape of Good Hope, gave the following classification:

Difference between 5° and 10°: h 5232.

Difference between 10° and 20°: h 2036.

Difference greater than 20°: Sh 243.

A comparison with observations made with the twenty-feet reflector gave:

Differences between 5° and 10°: h 3068, 4337, 4478, 4839, 5393, 5394.

Differences between 10° and 20°: h 4637, 4826.

The following doubles discovered by Mr. Burnham also need further attention: β 4, 267, 437, 555, 584.

ORMOND STONE,

Astronomer of the Cincinnati Observatory.

Mt. Lookout, February, 1882.

• • •

ř.		Mean	Pos	ition	Circl	е.	Assu	med	Micro	meter.	ngle.	'n	ece.
Number.	Double Star.	R. A. 1880.	ī	•	II	•	Zei		ī.	II.	Hour Angle.	Hyes.	Eye-piece.
1	Σ 3063	h.m. o i	о 31	40	33	45	175	30	r. 40.748	r. 40.215	-0.2	η	A
2		•••	35	50	37	50	175	30			0.3	p	A
3	•••		39	20	41	25	175	44	40.290	39.768	0.2	n	A
4	Σ 3064 rej.	0 2	169	55	170	15	175	44	43.508	36.552	— 3.6	p	ш
5	β 486	o 8	359	30	2	35	355	34	40.978	40.037	—0.8	n	A
6			2	40	2	35	355	38	40.953	40.049	-1.0	n	111
7	Σ 15	0 10	193	30	193	25	355	42	40.164	38.657	-1.7	p	A
8	h 1947	0 10	72	25	73	15	355	44	41.256	38.628	-3.2	n	111
9	Weisse	0 11	282	35	283	o	175	44	40.752	39.198	-3.5	n	A
10	Σ 23	0 11	164	30	165	30	175	42	40 678	38.300	0.0	n	A
11	β 393	0 12	6	20	7	10	355	42	40.593	40.366	-0.3	p	VI
12	β 256	0 13	245	10	245	20	355	30	40.848	40.142	—0.7	P	A
13	H v 85	0 14	12	0	12	0	355	44	49.188	30.788	-3.1	P	111
14	•••	•••	192	45	192	50	175	30	48.658	35-333	-2.6	p	111
15	Σ 30	0 21	294	35	295	5	355	44	43.323	37.696	—5.2	n	A
16	•••	•••	295	15	295	25	355	44	42.883	37.253	—3.0	n	III
17	Σ 31	0 22	234	35	235	30	175	44	40.803	39.208	-2.8	n	ш
18		•••	221	25	221	35	175	44	40.814	39.192	-2.8	P	ш
19	h 1968	0 22	246	50	247	5 0.	175	30	41.568	39.360	-0.7	p	A
20		•••	245	15	248	10	175	30	41.587	39.422	-o.8	p	A
21	h 1980	0 25	299	20	301	5	175	30	40.353	38.656	-o.8	p	111
22	h 3377	0 27	233	30	234	10	175	30	42.198	37.834	-1.5	p	Ш
23	h 3379	0 31	227	30	227	10	355	42	42.753	38.254	0.0	n	A
24		•••	225	40	226	30	355	42	42.602	38.372	0.0	Р	A
25			226	0	227	25	355	30	42.503	38.473	—0.6	p	A
26	h 1044	0 34	315	25	315	30	355	44	43 272	36.874	—2.7	n	ш
27		•••	314	35	315	5	355	44	43.210	36.815	—2.6	p	111
28	Σ 67	0 46	3	10	4	45	355	42	40.240	39.738	-1.9	n	111
29		•••	181	35	183	30	175	42	39.782	39.214	—1.8	p	ш
30	h 2000	o 46	291	10	291	35	175	30	42.092	36.947	0.0	p	111

ber.	Position	Angle.	Dista	ance.	tudes.	Epoch	rver.	N.
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	0	0	"	"			_	
1	217.2	217.7	1.82	1.74		79.771	S	
2	221.3	221.8	•••	•••	8.5 9.5	79.771	S	Very faint on account of twi-
3	224.6	222.3	1.78	1.83	8.0 9.0	79.582	Н	light.
4	354-4	353-9	23.74	23.78	7.0 10.0	79.612	Н	
5	5.5	5.7	3.21	3.13	6.0 11.0	79.765	S	Color of principal star 3.15.
6	7.0	7.3	3.09	2.93	5.5 10.0	79.760	S	Color of principal star 5.18.
7	197.8	196.0	5.14	5.26	9.0 10.5	79.658	E	Distance very poor.
8	77.1	76.4	8.97	9.07	7.0 9.0	79.612	Н	
9	107.1	106.4	5.30	5.35	8.o 8.2	79.612	н	
10	349-3	349.2	8.12	8 11		79.746	E	, , , , , , , , , , , , , , , , , , , ,
11	11.0	11.4	0.77	0.77.	6. o 8.o	79.749	s	Distance est. 0"5. Beautifully divided.
12	249.8	250.3	2.41	2.41	8.5 9.5	79.773	s	Both stars white.
13	16.3	16.0	62.79	62.83	7.5 9.0	79.612	н	
14	17.3	15.6	62.54	62.78		79.784	E	Micrometer II changed 5 rev. in reduction.
15	299.1	299. I	19.20	19.12	7.0 9.0	79.604	s	Cloudy.
16	299.6	299.0	19.21	19.31	6.5 8.o	79.612	н	
17	59.3	58.5	5.44	5.54		79.612	н	
18	55.8	55.7	5.54	5.58	8.5 9.0	79.612	Н	Position Angle changed 10°
19	71.8	72.2	7.54	7.54	7.0 11.0	79.787	s	in reduction.
20	71.2	71.6	7.39	7.39	7.0 10.5	79.853	s	Poor measure.
21	124.7	122.8	5.79	6.03		79.776	E	
22	58.3	56.5	18.31	18.55		79.902	E	Poor definition; companion
23	231.6	231.9	15.35	15.27		79.749	s	very faint.
24	-	•					s	
1	230.4	230.6	14.44	14.44		79.749	S	Clouds; distance poor.
25	231.2	231.4	13.75	13.75	6.5 9.0	79.773	II	Ciouds, distance poor.
26	319.7	319.1	21.84	21.94	8.5 8.7	79.612	н	
27	319.1	318.6	21.82	21.86		79.612		Madamatala acad wight
28	8.3	4. I	1.71	1.81	8.0 9.0	79.735	H	Moderately good night.
29	6.8	4.6	1.94	2.18	9.0 10.0	79.658	E	Blurry and faint.
30	115.9	114.2	17.56	17.80		79.902	E	

H		Mean	Pos	sition	Circl	e.			Micro	meter.	gle.		Ge.
Number.	Double Star.	R. A.					Assu: Zei				Hour Angle.	Eyes.	Eye-piece.
ź		1880.	I.	•	II	•	Zei	ιο.	I.	II.	Hou		Ey
	0	h. m.	0	,	0		0	′	r.	r.	- (
31	β 734	0 47	340	25	342	30	355	42	42.097	38.924	-0.6	n	A
32	Σ 70	0 47	58	55	59	15	175	30	40.717	38.305	-2.6	n	A
33		•••	240	50	240	20	355	30	40.673	38.314	—2.8	n	A
34	W. C. 457, 8	0 47	6	50	9	45	355	42	41.292	39.658	—о.3	n	A
35	Н. А. Н. 1	0 50	279	20	280	45	175	30	40.747	40.247	-0.4	P	A
36	•••	•••	278	45	280	50	175	30	40.738	40.230	_ o.8	P	A
37	Σ 76	o 50	196	35	197	20	355	42	39.954	39.035	-1.7	P	III
38	Σ 82	. 0 54	123	25	121	30	175	42	39.791	39.085	-1.8	n	III
39	h 2010	o 56	267	5	267	35	355	44	41.442	38.532	2.8	n	III
40	h 1064	o 56	358	50	0	10	355	44	•••		—2.6	P.	III
41	Σ 86	0 59	334	50	337	5	175	30	•••	•••	-0.7	P	. A
42	•••		334	55	336	10	175	30	•••	•••	—o.8	P	I
43	•••		155	55	155	45	355	42	41.398	38.622	-o.5	n	A
44	···.	•••	334	25	335	10	175	30	41.387	37-594	1.1	n	A
45	•••	•••	165	15	165	0	355	30	41.385	37.646	—1.3	n	A
46	h 10 A,B	o 59	310	20	311	30	355	42	40.672	39.308	-1.5	n	III
47	•••		306	40	307	25	355	42	•••		-1.4	P	III
48	•••		308	40	309	40	355	42	•••	•••			
49	A, C	•••	230	40	232	55	175	42	41.273	38.705	-1.4	p	III
50	•••	•••	232	35	232	15	175	42			-1.8	p	A
51	В,С		258	10	258	40	355	42	31.562	38.412	-1.4	p	III
52	•••	•••	260	45	261	10	355	42			-1.7	p	A
53	H iv 66	1 0	250	25	251	0	175	30	42.865	36.173	-2.4	n	A
54	Σ 89 rej.	1 0	190	20	190	40	175	42	41.869	37.137	-1.2	n	A
55	h 633	1 3	139	5	139	20	355	42	40.886	38.132	—1.8	n	III
56	Σ 96	1 5	96	55	97	15	175	30	39.687	39.308	-2.4	p	A
57	Σ 101	1 8	336	o	337	10	355	30	43.568	47.394	_o.6	n	A
58			335	30	336	30	335	34	43.586	37.428	-1.1	n	ш
59	H. V. E. A,B	1 9	89	10	88	50	175	30			-2.2	n	ш
60	A,C		110	5	109	50	335	30			-2.2	p	111

ber.	Position	n Angle.	Dista	ince.	tudes.	Epoch	rver.	Notes
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	0	. 0	"	"				
31	345.8	345.6	10.83	10.75	5.5 9.5	79.694	S	
32	243.6	243.5	8.23	8.22	•••	7 9.7 7 9	E	
33	245.1	245.0	8.05	8.04	•••	79.784	E	Poor definition.
34	12.6	12.7	5.58	5.50	7.0 9.0	79.694	S	
35	104.5	105.2	1.71	1.71	8.5 8.5	79.773	s	Both stars white.
36	104.3	105.0	1.73	1.73	8.5 8.5	79.787	s	<u> </u>
37	201.3	199.3	3.14	3 38	9.0 13.0	79.735	E	
38	306.8	306.8	2.41	2.40	8.0 9.0	79.658	E	
39	271.6	270.8	9.93	10.03	8.0 9.5	79.612	H	Poor definition.
40	3.8	3.4	15.e	•••	6.0 13.0	79.612	н	Tangent screw not used. Too faint for distance.
41	160.5	161.0				79.853	s	
42	160.0					79.853	s	
43	160.1	160.1	12.89	12.88		79.746	E	Mic. II assumed 37.622 in reduction.
44	159.3	159.3	12.94	12.93		79.776	E	(reduction.
45	169.6	159.6	12.76	12.75		79.902	E	Pos. Angle changed 10° in reduction.
46	315.2	314.0	4.66	4.76	8.5 10.0	79.656	н	reduction.
47	311.3	311.5				79.656	Н	
48	313.5	313.4			9.5	79.656	E	
49	56.1	55.7	8.76	8.80	,.,	79.656	Н	
	56.7		0.70		8.0 9.0	79.656	E	
50	262.7	54.9			10.0	79.656	Н	
,51	1	262.5	, 10.75	10.79	10.0			•.
52	265.3	263,5			•••	79.656	E	
53	75.2	75.2	22.84	22.83		79.779	Е	·
54	14.8	14.8	16.15	16.14	8.5 9.0	79.752	E	
55	143.5	143.4	9.40	9.39	10.0 11.0	79-735	E	
56	281.6	279.5	1.29	1.41		79-779	E	(Mic. II assumed 37.394 in
57	341.1	340.9	21.07	20.99	7.0 10.0	79.787	S	reduction.
58	340.4	340.2	21.02	20.86	7.0 9.5	.79.765	S	(Near a double having Pos.
59	273.5	271.8		•••		79.779	E	Angle = 190° .
60	114.5	114.5				79-779	E	

Number.	Double Star.	Mean R. A.	Pos	sition	Circl	е.	Assu	med	Micro	meter.	Hour Angle.	Eyes.	Eye.piece.
Nun	Double Stat.	1880.	I		11	·•	Zei	ro.	I.	• 11.	Hour,	E	Eyeı
6i	Σ 103	h. m. 19	o 240	55	o 241	, 15	355	/ 42	r. 40.231	r. 38.700	-1.7	p	ш
62	Σ 106	1 10	123	15	124	30	175	42	40.178	38.824	-1.5	n	ш
63	Σ 1σ2 Α,Β	1 11	309	0	306	25	355	44	•••		-2.4	n	A
64		•••	307	50	309	35	355	44			-2.3	p	A
65	⅓(A.+B),C		221	5	220	55	355	44	41.430	38.504	-2.7	n	A
66	.		220	3 5	220	10	355	44	41.460	38.500	-2.6	p	A
67	½ (A+B,D		239	o	239	15	175	44	44.039	35.829	—2 3	n	A
68	Σ 105	1 11	179	50	179	40	355	30	39.910	39.094	-2.0	p	A
69	Σ 112	1 14	144	35	144	15	175	30	42.791	36.180	2.9	p	ш
70	Σ 113	1 14	344	5	344	40	355	34	40.683	40.284	—0. 9	n	VI
71			340	40	343	35	335	30	40.706	40.264	-0.2	n	VI
72	h 20 36	1 14	197	15	201	40	175	30	40.728	40.245	-o.6	n	VI
73		.	201	15	203	0	175	30		·••	-o.6	p	A
74			202	10	201	30	175	30	39.690	39.282	-1.2	P	A
75			199	25	200	2	175	30	39.725	39.212	-1.0	p	A
76		•••	201	50	200	30	175	42			-0.5	p	A
77	Σ 114	1 15	168	30	168	45	175	42	40.064	38.938	—I.2	n	A
78		•••	169	20	170	30	175	30	•••		-1.8		
79	β 4	1 17	287	45	3 0 0	30	175	42			-1.3	P	A
80	Secchi	1 18	251	30	252	25	175	30	40.882	40.114	-0.1	p	A
18	Σ 120	1 19	. 94	40	94	40	175	42	41.100	38.938	+0.2	P	III
82		•:•	276	40	276	30	355	30	40.610	38.407	-1.2	p	ш
83	Σ 122	1 21	324	30	326	0	355	42	40 85 0	39.178	-1.9	n	III
84			322	50	321	50	355	42	40.463	38.572	-2.0	n	ш
85	Σ 118	1 21	67	20	67	5	355	30	41.193	37.797	-1.7	p	1
86		•••	67	20	66	30	355	42	41.173	37.832	-1.3	p	III
87	Σ 125	I 2I	166	25	167	0	175	42	44.508	35.392	-0.1	n	III
88	Σ 127	1 25	181	45	182	5	355	42	43.123	35.859	-2.2	n	A
89			1	40	0	55	175	42	43.082	35.901	-1.3	n	III
90	h 1085	1 30	112	50	114	15	175	42	40.05 9	38.928	-2. I	p	A

er.	Position	Angle.	Dista	ince.	.ndes.	Epoch	ver.	
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	0	0	"	"			-	
61	245.4	243.6	5.23	5-47	8.0 11.0	79-735	E	Very faint.
62	308.2	307.9	4.62	4.61	9.0 9.0	79.735	E	·
63	312.0	304.8	0.5e	0.52	7. o 8.o	79.612	Н	
64	313.0	310.8		•••	•••	79.612	Н	
65	225.3	224.9	9.99	10.04	7.0 8.5	79.612	Н	
66	224.6	224.5	10.10	10.12	•••	79.612	Н	cm 11 61 (1 11 1
67	63.4	63.0	28.02	28.07	7.0 10.0	79.612	Н	Two other faint doubles in the field.
68	184.2	182.3	2.78	2.90		79-779	E	Blurry.
69	328.9	327.2	22.56	22.80		79.784	E	,
70	348.8	348.9	1.36	1.32	7.5 8.0	79.765	s	Pretty steady, but thick haze.
71	346.6	346.6	1.51	1.47	5.5 7.5	79.787	s	
72	24.0	24.2	1.65	1.61	•••	79.771	s	
73	26.6	26.8			7.5 8.0	79.771	s	
74	26.3	24.1	1.39	1.51		79.776	E	Blurry.
75	24.2	22. I	1.75	1.87		79.902	E	Very blurry.
76	25.5	23.4				79.746	E	
77	352.9	352.7	3.84	3.83		79.752	E	·
78	354-4	354.2		•••	•••	7 9.77 9	Е	
79	118.4	119.1	0.5e	0.52	7.0 7.0	79.656	н	Wide companion at 100°.
80	76.0	76.5	2.62	2.62	7.0 9.0	79.771	s	
81	279.0	278.6	7.38	7.42	7.0 11.0	79. 680	н	
82	281.1	279.2	7.52	7.51	•••	79.776	E	•
83	329.6	3 2 8.4	5.71	5.81	7.5 9.0	79.658	н	
84	326.6	326.4	6.45	6.44	8.0 9.0	79.658	E	
85	71.7	70.0	11.59	11.71		79·77 9	E	
86	71.2	69.4	11.40	11.64	8.5 9.5	79.754	Е	
87	351.0	350.6	31.11	31.21	8.o 10.o	7 9.680	н	
88	186.2	186.2	24.79	24.78	8.0 9.0	79-754	E	
89	185.6	185.6	24.51	24.50	8.5 9.5	79 ·754	E	
90	297.8	295.9	3.86	3.98	8.5 9.0	79-754	E	

											i ai		
þer.	D 11 0:	Mean	Pos	sition	Circl	e.	Assu	med	Micro	meter.	Hour Angle.	es.	Eye-piece.
Number.	Double Star.	R. A. 1880.	I		II		Zei	ro.	ī.	II.	our 4	Eyes.	ye-p
											H	_	
91	h 1085	h. m. 1 30	113	25	113	, 50	355	42	r, 40.046	r. 38.951	—1.5	p	A
92	(continued.) h 17	1 33	276	30	276	50	355	42	41.156	38.873	_1.5	p	A
93	h 641	1 34	304	30	306	30	175	30	40.313	68.646		n	A
94	•••		304	55	304	35	175	42	40.291	38.703	—1.6		
95	Σ 146	1 35	301	35.	301	35	355	42			-1.4	n	A
96		`	301	40	301	25	355	42	43.529	36.487	-1.4	p	A
97	Σ 147	ı 36	262	25	263	o	175	42	40.512	39.492	0.0	P	III
98	•••		265	25	265	25	175	42	40.042	38.957	—0. 6	p	A
99	Σ 160	1 40	85	o	86	10	175	42	41.398	38.638	-2.0	p	III
100	•••	•••	266	15	266	30	355	30	40.903	39.082	-1.0	p	ш
101	Σ 166	I 42	357	40	357	0	355	42	41.119	38.885	-1.9	n	ш
102	•••		175	50	176	0	175	30	40.709	38.284	_o.8	n	III
103	β	1 42	343	20	349	o	355	30			-0.2	n	A
104		•••	169	40	169	25	175	42			-o.3	n	A
105			165	0	163	10	175	42			—0. 6	n	A
106	H. V. E.	1 42	143	15	143	45	355	30	40.341	38.696	—2.8	p	_ A
107	h 644	1 42	93	5	93	40	175	42	42.484	37.506	-1.2	P	III
108	Σ 171	I 43	335	0	335	55	175	42	44.340	35-595	<u>_1.8</u>	n	III
109	***		335	10	335	10	355	30	43.892	35.092	—0. 6	n	ш
110	Σ 173 rej.	1 44	20	0	19	55	175	42	43.298	36.712	—1.1	n	III
111	•••		199	10	199	40	355	42	43.286	36.738	-1.0	p	ш
112	Σ 170	1 44	240	40	241	35	355	42	39.985	39.024	-1.4	n	A
113		•••	241	30	241	50	255	42	40.001	39.020	-1.3	p	A
114	Σ 177	I 45	297	35	297	5 5	175	42	44-449	34.398	-1.2	p	ш
115	Σ 3113	1 46	270	15	270	20	355	44	40.143	39.808	—2. 7	n	A
116	β 183	I 47	219	15	223	45	355	30	40.830	40. 122	-0.2	p	A
117	Σ 199	1 56	15	40	16	5	355	30	44.819	34.187	-1.7	n	A
118	Σ 206	1 56	309	35	309	50	175	42	44.551	35,3 ⁸ 7	-1.1	n	ш
119	Σ 214	2 I	7	55	8	25	175	42	40.710	39.277	-1.9	n	III
120			4	15	4	5	175	42	40.719	39,285	-1.9		

ber.	Position	Angle.	Dista	ince.	tudes.	, Epoch	rver.	Notes.
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	0	0	"	"				
91	298.1	296.2	3.74	3.86	•••	79-779	E	·
92	281.0	280.8	7.79	7.81	9.0 10.0	79. 65 6	H	(Difficult to measure with
93	130.0	129.9	5.69	5.68	•••	79.776	E	Power A.
94	129.0	128.8	5.42	5.41	8.5 11.0	79-735	E	
95	305.9	305.5	•••	•••	•••	79.656	Н	
96	305.8	305.7	24.03	24.05	8. o 8.o	79.656	Н	
97	87.0	86.4	3.48	·3.52	6.0 7.0	79.6 80	н	
98	89.7	87.8	3.70	3.82	•••	79.746	E	
99	269.8	269.6	9.42	9.46	9.0 10.0	79.658	н	
100	270.9	269. I	9.6 3	9.87	•••	79. 776	E	
101	1.6	0.5	7.62	7.72	8.5 9.0	79.658	н	
102	0.4	0.3	8.28	8.27		79.776	E	
103	350.7	350.9	I.4e	1,42	8.0 9.0	79.787	s	Poor definition.
104	353.8	351.8		,	8.5 10.0	79.680	н	Distance impossible.
105	348.6	348.2			•••	79.902	E	Too faint for distance.
106	148.0	146.2	5.61	5.73	8.o 8.5	79.784	E	
107	277.7	277.5	16.99	17.03	7.5 13.0	79.656	н	,
108	159.8	159.3	29.84	29.94	8.5 8.5	79.658	Я	
109	339.7	339-7	30.03	30,02		79.776	E	
110	204.3	203.7	22.48	22.58	8.5 10.0	79.656	н	
111	203.7	203.2	22.35	22,39	.,.	79.656	н	
112	245.4	245.2	3.28	3.27	7.0 8.5	79.754	E	
113	246.0	244.I	3.35	3.47		79.754	E	
114	122.0	120.3	34.30	34-54	9.0 9.5	79-735	E	Careful measure.
115	274.6	272.2	1.14	1.19	8.5 -8.5	79.612	н	
116	226.3	226.7	2.42	2,42	8.0 9.5	79.771	s	Clouds; principal star white.
117	20.4	20.4	36.28	36.27		79-779	E	, ,
118	134.0	133.6	31.28	31.38	8.0 9.0	79.656	н	
119	192.5	190.8	4.89	4.99	8.0 9.5	79.658	н	
120	188.5	187.7	4.90	4.94	.,.	79.658	н	Assumed p III.
		///	7.70	7.74	-,,	75.030		

Number.	Double Star.	Mean R. A.	Pos	sition	Circl	е.	Assu	med	Micro	meter.	Hour Angle.	Eyes.	Eye-piece.
Nur		1880.	I	•	11	ſ. ,	Zei	ro.	I.	II.	Hour	邑	Eye-
121	Σ 222	h. m. 24	0 211	, 30	0 211	15	175	30	r. 41.967	r. 37.039	-2.9	p	A
122	Σ 231	2 7	47	5	47	5	175	42	42.311	37.670	-0.4	n	III
123	•••	*	45	40	45	50	175	42	42.272	37.652	—о.з	P	111
124	Σ 237	2 9	53	35	5 3	30	175	42	41.113	38.889	-1.2	P	ш
125	•••		232	0	231	55	355	42	41.046	38.008	-1.0	P	I
126	Σ 233	2 10	91	15	91	10	175	42		•••	— J.4	P	ш
127	•••		92	10	91	25	175	30			-1.2		
128	Σ 238	2 10	172	5	171	55	175	30	41.094	37.894	-2.6	p	ш
129	Σ 246	2 11	297	0	298	15	175	30	41.032	38.968	-2.2		
130	Σ 247 rej.	2 12	28	50	29	50	355	42			-1.9	n	ш
131		•••	27	55	29	5	355	42	41.051	38.904	-1.8	р	Ш
132	β 437	2 12	25	15	26	50	355	42	40.818	39.128	—1.8	ŕ	III
133	Σ 248	2 14	330	40	332	15	175	44	40.322	39.763	—2. 9	P	A
134	Σ 250	2 14	312	45	312	25	175	44	40.374	39.588	-2.5	n	A
135	Σ 251	2 14	260	20	263	35	355	44	40.273	39.6 3 0	-2.8	n	A
136	Σ 261	2 18	243	30	242	55	175	42	40.420	39.558	-0.9	p	A
137			243	40	243	55	175	42	40.432	39-557	-1.1	p	ш
138	Σ 271	2 24	177	o	177	10	355	30	41.256	37.720	-1.7		
139	Σ 276	2 26	250	20	250	20	255	42	40.306	39.692	—1.8	p	III
140	Σ 280	2 28	343	45	343	10	355	42	40.502	39.480	-0.2	n	A
141			164	0	164	5	175	42	40.492	39.513	—0.4 .	n	III
142	 .		342	10	342	30	355	42	40.037	39.987	—1.4	n	III
143			340	45	342	0	355	42	39. 9 61	39.959	-1.2	n	I
144	h 3506	2 29	236	30	239	0	355	30	42.064	38.943	-o.8	p	A
145	•		236	15	237	20	355	30	42.113	38.851	—0. 5	P	I
146	Σ 282	2 31	107	10	107	5 5	175	30	40.552	38.473	-1.5	n	A
147	•••		110	5	110	10	175	30	40.559	38.433	-1.5	p	A
148	Σ 287	2 32	247	35	247	20	175	42	40.938	39.054	-1.0	P	A
149	h 1123	2 34	63	20	63	35	175	44	42.978	37.043	—2. 6	n	A
150	•••	•••	63	10	62	55	175	44	42.912	37.026	-2.7	p	A

ber.	Position	Angle.	Dist	ance.	.ndes.	Epoch	ver.	_
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes	1800+	Observer.	Notes.
121	35.9	° 34.2	16.82	16.94		79.785	E	
122	231.4	230.6	15.84	15.94	6.0 8.0	79.680	н	
123	230.0	229.5	15.77	15.81		79.680	н	Windy.
124	237.8	237.4	14.42	14.46	8.0 8.3	79.656	н	Distance changed 2 rev. in
125	236.3		13.78			79.656	н	reduction. Distance changed I rev. in
126	275.5					79.030	E	clouded up.
127	276.3	273.3					E	Too faint for distance.
		274.4			•••	79.779	E	100 faint for distance.
128	356.5	354-7	10.92	11.16	•••	79.785	E	Distance changed I rev. in
129	122.1	122. I	10.46	10.45		79.785	_	reduction.
130	33.6	32.2	•••		10.0 10.5	79.658	H	
131	32.8	32.2	7.33	7.37		79.658	Н	
132	30.3	29.6	5.77	5.81	8.0 12.0	79.658	H	Very faint.
133	155.7	155.1	1.91	1.93	8.5 9.0	79.612	H	
134	136.8	135.4	2.68	2.73	8. o 9.0	79.612	Н	
135	266.2	265.2	2.19	2.24	8.0 9.0	79.612	H	
136	67.5	67.1	2.94	2.96	•••	79.656	Н	
137	68.1	67.5	2.99	3.03	8.5 9.0	79.656	Н	
138	181.6	181.6	12.07	12.06		79 . 785	E	
139	254.6	254.3	2.10	2.14	8.5 8.5	79.658	Н	
140	347.8	346.9	3.49	3.54	•••	7 9.68 0	н	
141	348.3	346.7	3-34	3.44	8.0 8.0	79.680	н	
142	346.6	346.3	3.58	3.57		79-735	E	
143	345.7		3.42			79-735	E	Mic. II assumed 38.959 in reduction.
144	242.2	242.4	10.65	10.65	4-5 7-5	79.787	s	Both stars white.
145	241.3		11.13			79.787	s	•
146	292.0	291.9	7.10	7.09		79-779	E	
147	294.6	292.8	7.26	7.38		79-779	E	
148	71.8	71.5	6.30	6.32	7.5 10.0	79.656	н	
149	247.7	247.3	20.26	20.31		79.612	н	
150	247.3	247.2	20.09	20.11	8.0 8.2	79.612	н	Micrometer reversed.

		,												
151 O Σ 44	nber.	Double Star.		Pos	sition	Circl	le.	Assu	med	Micro	meter.	Angle.	res.	piece.
151 0 Σ 44	Z			1	•	11	Ι.	Zei	ro.	I.	II.	Hour	Ey	Eye-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	151	0 Σ 44		l		l .		l		ľ	1	-2.8	P	A
154	152	Ο Σ 45	2 35	292	15	291	40	355	42	39-777	39.218	—o.8	p	A
155 Σ 295	153	h 2155	2 35	136	25	137	55	175	44	42.512	37.528	-2.4	n	ш
156 318 25 317 50 355 42 40.662 39.372 —0.2 p A 157 138 45 137 50 175 30 40.133 38.824 —1.2 n A 158 Σ 299 2 37 283 50 285 50 355 42 39.950 39.050 —1.2 p A 159 Σ 303 2 39 358 25 356 35 175 42 40.768 39.242 —1.9 n III 160 176 30 176 0 355 30 40.321 38.675 —1.1 n A 161 Br. 394 2 39 182 35 182 45 355 30 41.218 36.784 —0.7 n III 162 Σ 308 2 42 333 30 175	154	•••	•••	316	40	316	20	355	44	42.568	37.518	—2. I	P	Ш
157 138 45 137 50 175 30 40.133 38.824 —1.2 n A 158 Σ 299 2 37 283 50 285 50 355 42 39.950 39.050 —1.2 p A 159 Σ 303 2 39 358 25 356 35 175 42 40.768 39.242 —1.9 n III 160 176 30 176 0 355 30 40.321 38.675 —1.1 n A 161 Br. 394 2 39 182 35 182 45 355 30 41.322 37.695 —0.9 n III 162 Σ 308 2 42 333 50 333 30 175 30 41.322 37.695 —0.9 n III 164 Σ 330 2 51 8 35 8 15	155	Σ 295	2 35	320	35	321	20	355	42			0.3	n	A
158 Σ 299 2 37 283 50 285 50 355 42 39.950 39.050 —1.2 p A 159 Σ 303 2 39 358 25 356 35 175 42 40.768 39.242 —1.9 n IIII 160 176 30 176 0 355 30 40.321 38.675 —1.1 n A 161 Br. 394 2 39 182 35 182 45 355 30 41.218 36.784 —0.7 n III 162 Σ 308 2 42 333 50 333 30 175 30 41.322 37.695 —0.9 n III 164 Σ 330 2 51 8 35 8 15 175 42 40.218 39.740 —1.6 n A 165 188 5 187	156		•••	318	25	317	50	355	42	40.662	39-372	—0.2	P	A
159 Σ 303	157	•••	•••	138	45	137	50	175	30	40.133	38.824	—I.2	n	A
160 1.76 30 176 0 355 30 40.321 38.675 1.1 n A 161 Br. 394 2 39 182 35 182 45 355 30 41.218 36.784 -0.7 n IIII 162 Σ 308 2 42 333 50 333 30 175 30 41.322 37.695 -0.9 n IIII 163 β 10 2 44 97 10 95 20 175 42 40.348 39.610 -0.2 p IIII 164 Σ 330 2 51 8 35 8 15 175 42 40.218 39.740 -1.6 n A 165 188 5 187 55 355 30 40.788 38.218 -0.8 p IIII 166 Σ 334 2 53 316 15 312 15 355 30 -1.2	158	Σ 299	2 37	283	50	285	50	355	42	39.950	39.050	-1.2	p	A
161 Br. 394	159	Σ 303	2 39	358	25	356	35	175	42	40.768	39.242	-1.9	n	Ш
162 Σ 308 2 42 333 50 333 30 175 30 41.322 37.695 —0.9 n III 163 β 10 2 44 97 10 95 20 175 42 40.348 39.610 —0.2 p III 164 Σ 330 2 51 8 35 8 15 175 42 40.218 39.740 —1.6 n A 165 188 5 187 55 355 30 40.788 38.218 —0.8 p III 166 Σ 334 2 53 314 15 312 15 355 30 —1.2 167 Σ 341 2 57 44 55 44 35 175 42 —0.3 n III 168 45 20 45 15 175 42 0.0 n I 169 43 50 175 42 41.238 38.732 —2.1 p III 170 43 50 175 42 <td< td=""><td>160</td><td>•••</td><td></td><td>176</td><td>30</td><td>176</td><td>0</td><td>355</td><td>30</td><td>40.321</td><td>38.675</td><td>1.1</td><td>n</td><td>A</td></td<>	160	•••		176	30	176	0	355	30	40.321	38.675	1.1	n	A
163 β 10	161	Br. 394	2 39	182	35	182	45	355	30	41.218	36.784	—0.7	n	Ш
164 Σ 330 2 51 8 35 8 15 175 42 40.218 39.740 —1.6 n A 165 188 5 187 55 355 30 40.788 38.218 —0.8 p III 166 Σ 334 2 53 31c 15 312 15 355 30 —1.2 167 Σ 341 2 57 44 55 44 35 175 42 —0.3 n III 168 45 20 45 15 175 42 0.0 n I 169 42 0 43 50 175 42 41.238 38.732 —2.1 p III 170 43 10 43 5 175 42 41.238 38.732 —2.1 p III 171 43 50 175 42 41.238 38.732 —2.1 p III 171 43 50 175 42 41.238 38.787 +0.1 p II 171 41 5 42 40 175 42 40.752 38.261	162	Σ 308	2 42	333	50	333	30	175	30	41.322	37.695	-0.9	n	ш
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	163	β 10	2 44	97	10	95	20	175	42	40.348	39.610	-0.2	p	ш
166 Σ 334 2 53 318 15 312 15 355 30 -1.2 167 Σ 341 2 57 44 55 44 35 175 42 -0.3 n III 168 45 20 45 15 175 42 0.0 n III 169 42 0 43 50 175 42 41.238 38.732 -2.1 p III 170 43 10 43 5 175 42 41.238 38.732 -2.1 p III 171 43 10 43 5 175 42 41.238 38.732 -2.1 p III 171 41 5 42 40 175 42 41.152 38.787 +0.1 p III 172	164	Σ 330	2 51	8	35	8	15	175	42	40.218	39.740	-1.6	n	A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	165	•••	•••	188	5	187	55	355	30	40.788	38.218	0.8	P	III
168 45 20 45 15 175 42 0.0 n I 169 42 0 43 50 175 42 41.238 38.732 -2.1 p III 170 43 10 43 5 175 42 41.238 38.732 -2.1 p III 171 43 5 175 42 41.238 38.732 -2.1 p III 171 43 5 175 42 41.238 38.732 -2.1 p III 171 41 5 42 40 175 42 41.238 39.745 -0.2 p III 172 225 10 224 20 355 42 40.752 38.261 -1.8 p III 173 2358 3 3 346	166	Σ 334	2 53	316	15	312	15	355	30	•••		-1.2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	167	Σ 341	2 57	44	55	44	35	175	42			—о.з	n	III
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	168	•••	•••	45	20	45	15	175	42	•••		0.0	n	1
171 41 5 42 40 175 42 41.152 38.787 $+0.1$ p I 172 225 10 224 20 355 42 40.752 38.261 -1.8 p III 173 Σ 355 3 1 322 10 323 5 175 42 40.360 39.631 -1.4 n A 174 Σ 358 3 3 346 0 348 35 355 42 -2.1 n III 175 h 3554 3 7 343 35 344 10 355 42 42.927 37.083 -1.2 n III 176 β 84 3 10 203 55 207 25 175 30 40.610 40.382 -0.2 n VI 177 Σ 371 A,C 3 10 259 40 259 35 175 44 4	169	***		42	0	43	50	175	42	41.238	38.732	—2. I	p	ш
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170	•••		43	10	43	5	175	42	41.208	39.745	-0.2	p	ш
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	171	•••		41	5	42	40	175	42	41.152	38.787	+0.1	p	I
174 Σ 358 3 3 346 0 348 35 355 42 —2.1 n III 175 h 3554 3 7 343 35 344 10 355 42 42.927 37.083 —1.2 n III 176 β 84 3 10 203 55 207 25 175 30 40.610 40.382 —0.2 n VI 177 Σ 371 A,C 3 10 259 40 259 35 175 44 40.400 39.593 —2.7 n III 178 Jacob 3 14 277 30 277 15 355 30 p III	172			225	10	224	20	355	42	40.752	38.261	—1.8	p	ш
175 h 3554 3 7 343 35 344 10 355 42 42.927 37.083 —1.2 n III 176 β 84 3 10 203 55 207 25 175 30 40.610 40.382 —0.2 n VI 177 Σ 371 A,C 3 10 259 40 259 35 175 44 40.400 39.593 —2.7 n III 178 Jacob 3 14 277 30 277 15 355 30 p III	173	Σ 355	3 1	323	10	323	5	175	42	40.360	39.631	-1.4	n	A
175 h 3554 3 7 343 35 344 10 355 42 42.927 37.083 —1.2 n III 176 β 84 3 10 203 55 207 25 175 30 40.610 40.382 —0.2 n VI 177 Σ 371 A,C 3 10 259 40 259 35 175 44 40.400 39.593 —2.7 n III 178 Jacob 3 14 277 30 277 15 355 30 p III	174	Σ 358	3 3	346	.0	348	35	355	42			-2.1	n	Ш
177 Σ 371 A,C 3 10 259 40 259 35 175 44 40.400 39.593 —2.7 n III 178 Jacob 3 14 277 30 277 15 355 30 p III	175	h 3554	3 7	343	35		10	l	42	42.927	37.083	-1.2	n	III
178 Jacob 3 14 277 30 277 15 355 30 p III	176	β 84	3 10	203	\$ 5	207	25	175	30	40.610	40.382	-0.2	n	VI
	177	Σ 371 Α, С	3 10	259	40	259	35	175	44	40.400	39-593	-2.7	n	III
	178	Jacob	3 14	277	30	277	15	355	3 o				p	ш
	179	Schj. 100ì	3 19	359	35	359	55	1	42	42.478	37.469	_I.2	n	Ш
180 Σ 393 3 20 74 25 73 55 175 42 42.360 37.658 —1.1 p III	180	Σ 393	3 20		25	Į	55	ļ	42	42.360	37.658	-1.1	p	ш

ber.	Position	Angle.	Dist	ance.	tudes.	Epoch	rver.	N.
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	۰	•	"	"				
151	51.3	51.2	1.54	1.56	8. o 9 o	79.612	H	In a cluster.
152	296.3	294.3	1.91	2.03	6.5 10.0	79-735	E	
153	321.4	320.7	17.01	17.11	8.0 9.5	79.612	Н	
154	320.8	320.3	17.23	17.27	•••	79.612	н	
155	325.3	324.6			6.0 11.0	79.680	Н	
156	322.4	322.4	4.40	4.42		79.680	Н	
157	322.8	322.7	4-47	4.46	•••	79.902	E	Very poor definition.
158	289.1	287.2	3.07	3.19	4.0 10.0	79-735	E	
159	181.8	180.3	5.21	5.31	8.0 9.0	79.658	н	
160	180.8	180.7	5.62	5.61	•••	79.776	E	
161	187.2	187.1	11.72	11.71		79.902	E	Mic. assumed 37.784 in reduction.
162	158.2	158.1	12.38	12.37		79.776	E	(
163	100.6	100.1	2.52	2.56	8.0 12.0	79.680	н	Clouds.
164	192.8	192.1	8.46	8.51	7.5 9.5	79.656	н	Dis. changed 2 rev. in reduction.
165	192.5	190.7	8.77	9.01		79.776	E	(auction.
166	316.2	315.8		••	•••	79.902	E	Too poor definition for distance,
167	229.0	227.8			8.0 9.5	79.680	н	(tance.
168	229.6	•••			•••	79.680	н	
169	227.2	226.6	8.55	8.59	8.0 10.0	79.658	н	
170	227.4	226.8	8.41	8.45	•••	79.680	н	Error of 1 rev. in distance.
171	226.2		8.07		•••	79.680	Н	
172	229.0	227.2	8.50	8.74	8.0 12.0	79.732	E	Very faint, poor definition.
173	146.9	145.7	2.49	2.54	8.5 9.0	79.656	н	
174	351.6	350.8	10.e		9.0 12.0	79.658	н	
175	348.2	347.6	19.94	20.04	8.0 11.0	79.656	н	
176	30.2	30.6	0.78	0.74	6.0 8.0	79.783	s	,
177	83.9	82.0	2.75	2.85	8.0 10.0	79.612	н	B: 10m, P = 180°, D = 1".
178	281.9	280.0				79.902	E	2. 23, 2 - 2.00, 2 - 2.
179	184.0	183.4	17.10	17.20	8.o 9.o	79.656	н	Im prec., $5'\pm$ south of Σ 393.
180	258.5	258.2	·	•	,			1m prec., 5 = south of 2 393.
	250.5	250.2	16.05	16.09	8.0 10.5	79.656	Н	

Double Star. Mean Position Circle. Assumed Zero. I. II. III. I	p	III E
h. m. 0 / 0 / 0 / r, r.	n n	III
181 Σ 394 3 21 339 50 339 20 175 42 40.986 39.026 —2.3 182 H iv 89 3 24 322 45 324 15 175 42 42.988 37.040 —2.2 183 Σ 407 3 24 223 15 221 25 175 42 39.858 39.008 —1.2	n p	111
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	p	
	-	TTT
184 Σ 408 3 25 332 50 333 55 355 30 39.692 39.307 +0.2	n	A
185 Σ 414 3 28 0 15 1 15 175 42 41.119 38.918 —2.1	n	III
186 357 40 358 45 175 42 41.033 38.922 —2.1	P	III
187 Σ 416 rej. 3 28 48 50 48 50 355 42 43.783 36.209 —2.0	P	III
188 Σ 438 3 6 235 35 237 0 355 42 40.257 39.742 -2.0	P	III
189 Σ 439 3 37 33 10 33 30 355 44 43.417 36.578 -2.8	P	III
190 Σ 442 3 38 258 35 261 50 355 421.9	P	III
191 H. A. H. 3 38 313 55 313 0 175 42 44.112 35.857 —1.8	n	III
192 Σ 444 3 39 332 40 333 40 355 42 40.386 39.596 —1.6	n	III
193 Σ 451 rej. 3 40 137 40 136 50 175 42 42.452 36.572 —1.3	n	ш
194 Σ 456 rej. 3 42 294 40 294 50 175 42 43.170 36.794 —1.3	P	ш
195 β 401 3 44 251 15 251 45 355 30 40.082 38.908 0.0	n	III
196 253 20 253 25 355 30 —1.5	P	III
197 Σ 468 3 48 273 35 272 25 175 42 42.978 37.042 -1.2	p	III
198 Σ 478 3 53 311 35 312 30 175 42 40.971 38.091 —1.5	n	III
199 Σ 476 3 54 281 45 280 50 355 44 42.882 37.020 -0.9	n	III
200 Σ 487 A,B 3 55 183 55 184 45 175 42 41.288 37.672 -1.1	n	iii
201 A,C 231 45 230 30 355 42	p	ш
202 Σ 482 3 56 300 0 299 15 175 42 41.910 38.070 -1.7	n	III
203 Σ 483 3 56 348 0 350 55 175 44 40.304 39.722 -2.8	p	III
204 Σ 493 4 0 269 15 269 40 175 42 40.238 39.749 —1.2	p	A
205 266 40 268 40 175 42 40.237 39.774 -1.3	p	ш
206 Σ 515 4 7 39 35 39 40 355 42 —1	n	A
207 38 35 39 35 355 42 40.458 39.531 -1.5	p	A
208 Σ 512 4 7 221 0 222 0 355 44 40.720 39.200 -2.5	n	A
209 220 25 221 35 355 44 40.705 39.267 -2.4	n	III
210 218 50 219 45 355 44 40.752 39.263 -2.5	p	A

ber.	Position	Angle.	Dista	ınce.	udes.	Epoch	ver.	
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
181	163.9	o 162.7	6.69	6.79	7.0 8.0	79.658	н	
182	147.8	147.3	20.30	20.40	8.0 9.5	79.658	н	
183	46.6	44-5	2.90	3.14	8. o 10.0	79-735	E	Very faint.
184	337-9	337-4	1.31	1.30	•••	79.787	E	Very blurry.
185	185.0	183.7	7.51	7.61	7.5 7.5	79.658	н	
186	182.5	181.8	7.20	7.24	•••	79.658	н	
187	53.0	52.7	25.85	25.89	8.5 9.5	79.658	н	·
188	2 40.6	240.3	1.76	1.8o	8.o 8.8	79.658	н	_
189	37.6	37.3	23.34	23.38	8.0 10.0	79.612	н	·
190	264.5	263.1	2.e		9.0 10.0	79.658	н	
191	137.8	137.3	28.17	28.27	8.0 12.0	79. 65 8	Н	Principal star suspected double; P=330°, D=0"5.
192	337-5	335.1	2.70	2.80	7.5 10.5	79.658	н	, 33-7 3
193	321.6	321.5	20.07	20.06	8.0 8.5	79-735	E	
194	119.0	118.9	21.76	21.80	8 .5 9.5	79.656	н	_
195	256.0	255.7	4.01	4.00	6.0 10.0	79. 7 71	E	Windy.
196	257.9	255.9				79.776	E	Too faint for distance.
197	97.3	97.1	20.76	20.80	8.5 9.5	79.656	н	
198	136.3	136.2	9.83	9.82	8.0 9.0	79.735	E	
199	285.6	285.0	20.01	20.11	7.5 8.5	79.612	н	
200	8.6	8.5	12.34	12.33		79.735	E	
201	235.4	233.6				7 9·735	E	
202	123.9	123.3	13.10	13.20	8.0 9.5	79.658	н	
203	173.7	172.6	1.99	2.03	8.0 9.5	79.612	н	Star unsteady.
204	93.8	93.6	1.67	1.69	•••	79.656	н	
205	92.0	91.8	1.58	1.62	8.0 8.5	79.656	н	
206	43.9	42.4			8.o 8.5	79.656	н	
207	43.4	42.8	3.16	3.18	•••	79.656	н	·
208	225.8	225.3	5.19	5.24	•••	79.612	н	
209	225.3	224.5	4.91	5.01	••.	79.612	н	
210	223.6	223.4	5.08	5.10	7.5 7.5	79.612	н	

									,				
Number.	Double Star.	Mean R. A.	Pos	sition	Circl	e.	Assu	med	Micro	meter.	Hour Angle.	Eyes.	Eye-piece.
Nun		1880.	I	•	II	i .	Ze	ro.	I.	II.	Hour	न	Eye
211	Σ 512	h. m. 4 7	o 219	15	o 219	55	355	44	r. 40.722	r. 39.185	-2.3	p	111
212	(continued.) Σ 516	4 9	325	5	325	35	175	42	40.384	38.586	-2.4	n	III
213	Σ 518 A,B	4 10	280	50	280	45	175	42	52.562	28.412	—0.7	P	Ш
214		•••	280	55	280	40	175	42	47-495	38.454	_o.8	P	11
215	A,D	•••	308	6	309	27	175	30	45.808	35. 2 39	-0.5	n	III
216		•••				•		•	45.610	35.115	0.0	n	Ш
217	В,С	•••	295	5	295	0	175	42	40.965	40.001	-0.2	p	ш
218	Σ 525 rej. A,B	4 13	239	35	239	40	355	42	46.440	33.546	-1.0	P	Ш
219	В,С	•••	344	25	345	40	175	42	41.046	38.940	-1.1	n	Ш
220	Σ 527	4 13	5	25	8	35	175	30	41.354	39.602	-0.2	n	A
2 2 I	Σ 529	4 15	192	45	191	30	175	42	40.154	38.824	-2.8	P	A
222	Σ 536	4 16	154	45	154	50	355	30	39.763	39.242	-o. I	n	A
223	O. S.	4 24	342	25	342	20	355	30	40.504	38.518	—1.6	n	A
224	Σ 562	4 28	88	45	87	5	175	42		•••	-2.0	n	Ш
225		•••	81	0	81	5	175	42	40.3 0 4	39.672	-2. I	P	III
226	Σ 564	4 28	338	25	339	0	355	30	40.041	38.969	0.4	n	A
227	β	4 28	40	10	41	50	355	30		·	-o.6	n	Ш
228	•••	•••	42	0	46	20	355	30		•••	-0.5	P	Ш
229	Σ 609	4 44	251	35	251	15	175	30	39.848	39.139	-0.4	P	A
230	Σ 607	4 46	64	40	66	10	175	42	42.072	37.908	-2.2	P	III
231	0 Σ 91	4 50	232	30	233	20	355	42	40.600	40.3 86	-0.4	P	VI
232	β 314	4 54	322	0	332	15	355	30			-0.5	n	VI
233	Σ 651	5 4	231	15	231	30	175	30	41.982	36.987	-0.7	p	A
234	Σ 661	5 8	357	5	356	30	355	42	40.358	39.634	-1.5	n	A
235	β 555 A,B	5 9	330	35	337	15	175	42		•••	—0. 7	n	VI
2 36	Σ 668 ½(A+B),C	•••	196	45	197	20	355	42	41.890	39.087	-0.4	n	VI
237	3(-1-1-2),0		197	40	197	25	355	42	41.410	38.580	-1.8	n	III
238			19	20	18	40	175	42	41.391	38.644	-1.3	1 1	III
239	***		194	45	198	20	355	42	41.405	38.628	—ı.8	P	III
240			16	20	17	40	175	42	41.329	38.638	-1.3	p	III

ber.	Position	n Angle.	Dista	ance.	tudes.	Epoch	rver.	N.
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes	1800+	Observer.	Notes.
	0	0	"	"				
211	223.8	223.7	5.25	5.29	•••	79.612	H	
212	149.6	149.4	6.14	6.13	6.0 10.0	79.732	E	Definition very bad.
213	105.2	105.6	82.42	82.42	4.0 8.5	79.763	s	C Distance showed a section
214	105.1		82.05		9.0	79.752	s	Distance changed 5 rev. in reduction. Color of principal
215	133.3	132.9	36.07	35.91	13.5	79.783	s	(star 5.18.
216			35.82	35.66	12.0	79.763	s	Another comp. at about the same distance from A at 180°±
217	119.3	120.0	3.29	3.29	10.5	79.752	S	
218	243.9	243.6	44.01	44.05	8.0 9.0	79.656	н	
219	169.3	168.3	7.19	7.29	9.0 9.5	79.656	н	
220	191.5	190.7	5.98	5.90	7.5 10.0	79.785	s	
221	16.4	14.6	4-54	4.66	8.0 10.0	79.746	E	
222	159.3	159.0	1.78	1.77	•••	79.771	E	
223	346.9	346.8	6.78	6.77	•••	79.902	E	
224	272.2	270.6			•••	79.658	н	
225	265.3	265.4	2.16	2.20	7.5 11.0	79.658	н	
226	343.2	343.0	3.66	3.65	 .	79.787	E	Faint and difficult.
227	45.5	46.5		•••	6.0 9.0	79.783	s	
228	48.7	49.6		•••		79. 7 83	s	Driving clock stopped.
229	75.9	74.0	2.42	2.54		79.771	E	
230	249.7	249.5	14.21	14.25	9.0 11 .0	79.658	н	
231	237.2	237.7	0.73	0.73	8.o 8.5	79.752	s	
232	331.6	331.9				79.785	s	Very poor definition.
233	55.9	54.2	17.05	17.17		79.787	E	
234	1.1	359.6	2.47	2.52		79.656	н	
235	158.3	158.7	0.4e	0.42	1.0 6.0	79.763	s	Pear-shaped; no illumina- tion; magnificent definition.
236	201.4	201.5	9.57	9-53	6.5	79.763	s	Casa, magamoone dennition.
237	201.8	200.7	9.66	9.76	1.0 7.0	79.656	н	
238	203.3	202.2	9.38	9.48		79.658	н	Just before sunrise.
239	200.8	200,2	9.48	9.52		79.656	н	
240	201.3	200.6	9.18	9.22		79.658	н	5 m. before sunrise.

Γ.		Mach	- Pc	·.:.		Ja	$\overline{\Box}$				Mean Position Circle. Micrometer.													
Number.	Double Star.	Mean R. A.	ro:	sitio	ı Cırc	le.	Assu	ımed		meter.	Angl	Eyes.	piece											
Nar		1880.	I		11	ſ.	Ze	ero.	I.	II.	Hour Angle.	न्त्र	Eye-piece.											
241	Σ668½(A+B)C (continued.)	h. m. 5 9	196	30	196	40	355	42	r. 40.934	r. 38.118	-2.0	p	A											
242			196	o	197	. 0	355	42	40.832	38.174	-1.8	p	I											
243	Σ.667	5 9	309	o	309	10	175	42	40.079	38.953	—0. 6	p	ш											
244	h 3752	5 15	274	45	274	50	175	30	40.932	40.042	—0.6	p	VI											
245 ·	Σ 701	5 18	219	50	219	55	175	42	40.332	38.644	-0.4	n	III											
246	Σ 702	5 18	254	30	253	10	175	42	40.767	38.270	-1.5	p	111											
247	Σ 706	5 19	217	45	216	45	175	42	40.022	38.937	—3.5	p	A											
248	H vi 68	5 19	276	55	276	50	355	30			-1.5	p	111											
249	Σ 712	5 20	230	15	230	45	175	30	39.908	39.062	-1.4	p	A											
250			231	45	231	30	175	42	39.926	39.068	-1.7	p												
251	β 320	5 23	281	15	283	35	355	30			-0.2	p	VI											
252			280	5	280	35	355	42	40.870	40.116	—0.4	p	A											
253			278	30	283	35	335	30			—о.з	p	III											
254	Σ 743	5 29	275	15	276	30	355	30	39.783	39.171	-o.6	p	A											
255	Σ 741	5 29	281	5	281	20	355	30	40.939	38.015	-0.7	p	III											
256	H. V. E.	5 29	240	10	240	٠ 5	355	30	46.322	33.646	—1.2	p	ш											
257	Σ 748 A,B	5 29	55	0	55	20	355	42	41.895	38.090	-2.I	p	III											
258	A, C		307	20	308	15	355	42	41.858	38.119	-2.0	n	III											
259	B,D		295	5	295	5	355	42	42.768	37.187	-2.2	n	III											
260	С,с		342	0	343	40	355	42	40.506	39.500	-2.4	n	III											
261			166	10	166	15	175	30			-o.3	n	A											
262			166	0	167	o	175	42			-1.3	n	III											
263	C, D		28	0	27	25	355	42	41.218	38.772	-2.3	p	111											
264	Σ 752 A,B	5 30	318	25	318	45	175	42	41.609	38.350	—r.8	n	III											
265	H. C. Zones	5 30	217	30	216	30	175	30				p	III											
266	Σ 754	5 31	284	15	283	30	355	42	40.264	38.752	-0.4	p	III											
267	Σ 755	5 32	311	25	314	5	355	42	40.833	39.148	1 1	1 1	ш											
268	Σ 759	5 32	318	40	319	30	355	42	44.365	35.577	-2.5	n	III											
269	Σ 763	5 33	314	40	316	0	355	42	40.817	39.190	1	n	Ш											
270	Σ 774	5 35	328	0	328	20	175	30	40.885	40.110		n	A											

ber.	Posițio	n Angle.	Dista	ınce.	ndes.	Epoch	ver.	
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	0	0	"	"			_	
241	200.9	199.1	9.61	9.73		79-735	E	•
242	200.8		9.07			79-735	E	
243	313.4	311.4	3.84	4.08	7.0 10.0	79.735	E	
244	99.3	9 9.7	3.04	3.04	4.5 7.0	79.784	s	Distance observed without illumination.
245	44.2	144.0	5.76	5.75	•••	79-735	E	Pos. Angle changed 100° in reduction.
246	78.1	76.3	8.52	8.76	8.o 9.o	79-735	E	Very faint.
247	41.6	39.7	3.70	3.82	8.0 10.0	79.746	E	Windy.
248	281.4	279.7				79.825	E	Distance 9 rev. ±
249	55.0	53.1	2.89	3.01	·	79.825	E	
250	55.9	54.0	2.93	3.05		79-735	E	• .
251	286.9	287.4		•••	3.o 8.o	79.783	s	Definition too poor for distance.
252	284.6	285.2	2.57	2.57	2.5 7.5	79.752	s	Color of principal star 5.20.
253	285.5	286.3				79.783	S	·
254	280.4	278.4	2.09	2.21		79.771	E	Distance poor; very blurry.
255	285.7	283 9	9.98	10.22		79.787	E	Companion very faint.
256	244.6	242.9	43.26	43.50		79.825	E	Observed for Σ 744.
257	59.5	59.1	12.98	13.02	5.5 7.0	79.658	н	Upper side of trapezium.
258	312.1	311.5	12.76	12.86	7.0	79.658	н	Dis. observed with bright field.
259	299.4	298.9	19.05	19.15	8.0	79.658	н	Right hand side of trapezium.
260	347.1	345.2	3.43	3.53	11.0	79.658	н	
261	350.7	350.5			•••	79.771	E	
262	350.8	350.5				79-735	E	
263	32.0	31.4	8.31	8.35		79.658	н	Lower side of trapezium.
264	142.9	142.2	11.12	11.22		79.658	н	
265	41.5	39.7			· •••	79.825	E	Too faint for distance.
266	288.2	286.3	5.16	5.4Q		79-735	E	
267	317.0	315.7	5 ·75	5.85	8.5 9.0	79.658	н	
268	323.4	322.9	29.99	30.09	8.0 8.5	79.658	н	
269	319.8	318.6	5.55	5.65	8.0 9.0	79.658	н	
270	152.7	152.6	2.64	2.56	4.0 5.0	79.78 4	s	Distance observed without illumination.

per.	Mean Double Star. R. A.		Pos	sition	Circl	e.	Assu	med	Micro	meter.	Angle.	Eyes.	Eye-piece.
Number.	Double Star.	188o.	I	•	11		Zei	ro.	I.	II.	Hour Angle.	Ey	Eye-1
anra.		h. m.	۰	1				_4		r.		Γ	
271	Σ 774 (continued.)		325	5	330	35	175	30	140		-0.5	n	I
272	***	***	330	5	331	0	175	42	40.368	39.615	-2.0	n	III
273	Σ 790	5 40	265	45	267	0	175	30	40 543	38.440	-o.8	P	III
274	Σ 839	5 59	278	50	280	10	355	30	41.206	39.764	-0.4	P	A
275	***	222	283	55	284	5	355	42	40.229	38.751	-0.8	P	III
276	Σ 871	6 5	300	5	300	50	355	42	40.588	38.424	-0.9	n	A
277	H iv 81	6 31	258	10	258	25	355	30	42.034	36.951	-0.9	p	A
278	A. G. C. 1	6 40	41	55	42	25	355	42	***		—I.O	n	A
279			41	30	41	55	355	42	41.996	38.982	-1.1	p	A
280	Σ 1011	6 55	295	30	294	30	335	42	40.136	38.831	-1.4	p	111
281	h 750	7 0	269	30	268	0	175	30	40.729	38.270	-1.4	p	II
282	h 2362	7 2	184	35	184	10	355	30	43.674	35.319	-2.0	P	A
283	Σ 1034	7 4	192	20	190	50	175	30	39.903	39.108	-1.2	n	II
284	Σ 1045	7 7	225	15	226	o	355	30	40.357	38.688	-1.1	p	A
285	h 3938	7 9	246	10	246	5	355	30	42.391	36.568	-1.0	p	III
286	Σ 1056	7 10	115	50	116	5	175	30	114		-1.9	n	A
287	Σ 1103	7 24	240	50	239	50	355	30	40.125	38.860	-1.1	p	A
288	β 201	7 34	324	0	327	8	355	30	40 917	40 076	-0.4	n	A
289	Σ 1124	7 34	140	5	140	25	175	30	42.427	37.710	-1.5	n	III
290	Σ 1146	7 42	189	35	190	5	175	30	39.921	38.989	-o.8	n	A
291			191	10	191	50	175	30	39.913	39.006	-0.9	P	A
292	0 Σ 182	7 46	212	30	212	5	175	30	39.684	39.312	-1.2	p	A
293	β 334	8 2	349	45	350	5	355	30			- 0.1	n	A
294	H. A. H. 9	8 12	287	0	290	5	355	30	40.962	40.006	-0,2	p	A
295	Σ 1216	8 15	337	10	345	30	175	05/			+0.1	n	A
296	Σ 1260	8 35	297	5	297	10	355	30	40.218	38.766	-0.1	p	P
297	β 587	8 46	326	10	327	30	175	30			-0.1	n	A
298	Σ 1295	8 50	353	0	354	5	355	30	40.102	39.864	+0.1	n	A
299	β 210	8 51	358	15	359	30	178	13	40.890	40.140	-0.3	n	A
300			359	40	359	15	178	13	40.905	40.123	-0.4	n	A

ber.	Position	Angle.	Dista	ince.	tudes.	Epoch	rver.	Notes.
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	0	0	"	"				
271	152.3	•••	•••	•••	3.5 5.5	79.784	S	
272	154.8	152.6	2.57	2.67	•••	79.658	H	Dark wires.
273	90.9	89.o	7.18	7.42	•••	79.787	E	
274	284.0	284.5	4.92	4.92	8.0 8.2	79.784	S	
275	288.3	286.4	5.04	5.28	•••	79-735	E	
276	305.0	304.9	7-39	7.38		79.787	E	•
277	262.8	261.1	17.35	17.47		79.787	E	Definition poor.
278	46.5	46.8				79.752	s	No illumination.
279	46. o	46.2	10.29	10.29	1.0 7.0	79.752	s	No illumination.
280	299.3	297.3	4.45	4.69	9.0 9.5	79-735	E	
281	93.2	91.4	8.39	8.63	•••	79.771	E	
282	188.9	187.2	28.51	28.63		79.825	E	
283	16.1	15.6	2.71	2.70	•••	79.771	E	
284	230.1	228.3	5.70	5.82		79.787	E	Definition poor.
285	250.6	248.8	19.87	20.11	•••	79.771	E	
286	300.5	300.3	•••			79.825	E	Too blurry for distance.
287	244.8	243.0	4.32	4.44		79.771	E	
288	330.1	330.8	2.87	2.79	7.0 8.0	80.155	s	Very windy.
289	324.8	324.7	19.50	19.49	•••	79.815	E	Poor definition; Mic. II assumed 36.710 in reduction.
290	14.3	14.1	3.18	3.17	•••	79.771	Е	Coumou 301/10 in reduction.
291	16.0	14.1	3.10	3.22	•••	79.771	E	
292	36.8	34.7	1.27	1.39	•••	79.771	Е	
293	354-4	354.2			•••	80.177	E	
294	293.0	293.6	3.26	3.26	8.5 9.0	80.223	s	
295	165.8	166.4	0.6e	0.62		80.223	s	Clearly separated.
296	301.6		4.96			80.218	E	
297	151.3	152.2	0.4e	0.42	5.0 8.0	80.223	s	Perhaps only atmospheric
298	358.o	357.9	4.22	4.14	7.0 7.5	80.229	s	elongation. Mic. II assumed 38.864 in reduction.
299	180.6	180.7	2.56	2.48	7.0 7.0	79.237	s	(
300	181.2	181.3	2.67	2.59	6. o 6.o	79.261	s	Both stars white.

ber.	Double Star.	Mean R. A.	Pos	sition	Circl	e	Assu	med	Micro	meter.	ngle.	es.	iece.
Number.	Double Star.	1880.	1	•	11	•	Ze	ro.	I.	II.	Hour Angle.	Eyes.	Eye-piece.
301	Σ 1308	h. m. 8 59	261	, 0	o 261	30	175	, 30	r. 41.044	r. 37.948	0. І	p	P
302	h 4172	9 I	30	55	33	35	175	30	41.527	39-445	-0.1	n	A
303	•••	•••	31	35	34	15	175	30			0.0		
304	W. M. C. Z.	9 25	53	15	53	30	175	30			+0.1	n	A
305	β 217	10 I	274	30	274	40	355	30	39.780	39.200	-o.5	p	A
306			275	45	275	15	355	30	39.782	39.212	—о.8	P	P
307	h 4305	10 15.	28	40	31	10	175	30	43.032	37.968	—0.2	n	A
308	β	10 16	273	48	278	10	175	30			- o.5	p	A
309	Σ 1440	10 24	341	40	344	10	355	30	42.763	38.218	-0.3	n	A
310	h 4337	10 32	249	o	249	30	175	30	40.996	38.010	—0.7	P	A
311	Σ 1474	10 42	12	20	13	50	355	30	41.517	39.482	—0.3	n	P
312			192	30	193	0	175	30	41.487	39-494	0.8	n	I
313	Σ 1500	10 54	308	25	310	20	355	30	40.714	40.268	+0.1	n	A
314	 .		302	20	307	50	355	30			—о.3	n	I
315			307	ю	308	30	355	30	40.695	40.282	0.0	p	A
316	••• <u>•</u>	•••	295	20	309	10	355	30		•••	-0.2	p	I
317	O. S.	10 54	150	40	150	45	175	30	40.448	38.600	o.6	n	A
318	H i 77	10 56	192	25	192	55	175	30	39.906	39.089	-o.3	p	A
319	Σ 1506 ·	10 59	29	35	30	50	175	30	42.074	38.865	-o.3	n	A
320	•••	•••	30	55	31	o	175	30			0.0	n	I
321	•••		29	5	32	5	175	30	42.068	38.981	_0.2	p	A
322	•••		28	50	30	50	175	30			—о. 1	p	I
323	β 220	11 7	319	32	318	45	355	30	40.632	40.354	-0.2	n	P
324	Σ 1529	11 13	245	3 o	246	50	355	30	41.885	39 .057	0.0	P	P
325	β 26	11 18			••				40.848	40.081	0.0	p	A
326			239	30	241	.10	175	30			0.1	p	III
327	S 627	11 23	327	o	327	35	355	30	44.635	36.289	—0.2	n	A
328	A,½(B+C) 		325	40	326	0	355	30	44.610	36.345	-0.1	p	A
329	В,С		39	5	40	20	175				+0.4	n	A
330	Jacob 143	II 24	255	15		50	175		40.681	38.328	-0.2	p	A

Number.	Position	Angle.	Dista	ince.	Magnitudes.	Epoch	Observer:	Notes.
Nun	Obs.	Cor.	Obs.	Cor.	Magn	1800+	Opse	
301	。 85.8	•	10.57	<i>"</i>		80.218	E	
302	216.8	217.1	7.11	7.03	7.5 8.5	80.223	s	•
303	217.4	217.6	•••			80.223	s	
304	237.9	239.0	0.6e	0.62	7.0 8.0	80.223	s	·
305	279.1	277.1	1.98	2.10		80.218	E	
306	280.0		1.94		•••	80.218	E	
307	214.4	214.5	17.28	17.20	7.3 8.8	80.223	s	
308	100.5	101.4	1.0e		8.5 11.0	80.245	s	Principal star white.
309	347.4	347.9	15.51	15.43	7.0 9.0	80.245	s	•
310	73.8	72.0	10.19	40.31	8.5 10.0	80.218	Е	
311	17.6		6.94			80.215	s	
312	17.2		6.80		7.0 7.0	80.215	s	
313	313.9	314.6	1.52	1.44		80.223	s	
314	309.6					80.223	s	
315	312.3	313.0	1.41	1.41	8.o 8.o	80.223	s	Both stars white.
316	306.8	·				80.223	s	
317	335.2	335.1	6.31	6.30		80.218	E	Too faint to measure easily.
318	17.2	15.3	2.79	2.91		80.218	E	,
319	214.7	214.8	10.95	10.87	7.0 9.0	80.245	s	
320	215.5					80.245	s	
321	215.1	215.2	10.54	10.54		80.245	s	
322	214.3					80.245	s	
323	323.6		0.95		6.0 7.0	80.215	s	
324	250.7		9.65		6.5 7.5	į	s	·
325			2.62	2.62		80.333	s	Very poor definition.
326	64.8	65.4				80.333	s	Very poor definition.
327	331.8	331.5	28.48	28.40	6.o	80.294	s	Poor definition; white.
328	330.3	330.8	28.21	28.21		80.294	s	
329	224.2	224.9	0.8e	0.82	8.0 9.0	80.294	s	Poor definition; white.
330		78.2	8.03	8.15		80.368	E	
								<u> </u>

٠		Mean	Por	sition	Circl	e.			Micro	meter.	gle.		ن
Number.	Double Star.	R. A.					Assu	med			Ang	Eyes.	Eye-piece.
Nul		1880.	I	•	I	Ι.	Zei	ro.	I.	II.	Hour Angle.	Ξ	Eye
331	H iii 96	h. m. 11 26	o 204	, 0	o 204	35	o 175	30	r. 40.738	r. 38.073	_o.3	n	A
332	•••		204	50	205	25	175	30	40.682	38.270	_O.2	n	I
333	•••	•••	205	50	206	25	175	30	40.750	38.150	-0.5	p	A
334		•••	204	55	205	0	175	30	40.677	38.218	-0.2	p	I
335	β 456	11 31	249	50	249	o	355	30	•••		0.0	p	A
336	h 4478	11 47	340	0	341	35	355	30	40.764	40.206	0.0	n	A
337	•••	•••	338	50	341	40	355	30	40.798	40.191	0.4		•••
338	h 4479	11 47	268	40	269	15	175	30	40.504	38.488	—о.з	n	A
339	h 4481	11 51	192	5	193	5	355	30				n	A
340	Σ 1593	11 57	11	50	15	40	355	30	40.702	40.285	—о.з	n	A
341	h 4496	12 0	203	20	203	20	175	30	41.280	37.713	-0.2	n	A
342	Σ 1605	12 4	272	50	273	20	355	30	42.986	36.998	-0.1	p	A
343	Σ 3080	12 5	193	20	196	40	355	30			-0.2	n	A
344	Σ 1635	12 15	348	40	349	45	175	30	42.428	38.488	—0.2	n	A
345	O. S. 71	12 19	324	50	327	0	355	30	42.485	38.519	—0.2	n	A
346	Sh 145	12 24	209	35	209	25	355	30	43.063	35.900	-0.2	n	A
347	Σ 1649	12 25	190	5	190	50	355	30	41.725	38.209	-0.4	n	A
348	Σ 1664	12 32	244	0	244	45	355	30	43.620	37.367	0.6	P	A
349	***	•••	243	50	243	50	355	30			—0.2	p	I
3 5 0	β 607	12 35	311	20	313	20	355	30	40.665	40.326	-0.1	n	A
351	•••	·	305	55	307	30	355	30	40.652	40.337	0,0	p	A
352	Σ 1670	12 36	331	55	333	10	175	30	41.262	39.710	-0.4	n	A
353	44		332	5	332	45	175	30	41.281	39.711	-0.9	n	P
354	Carl	-	331	5	332	55	175	30	41.383	39.716	-o.6	n	1
355	1		152	40	153	20	355	30	40.219	38.709	-1.0	n	A
356	can-		332	35	332	15	175	30	40.237	38.741	0.1	n	A
357	994		151	40	152	0	335	30	40.252	38.776	-0.3	n	A
358	,		152	0	153	30	355	30	40.213	38.738	-o.3	n	A
359	150		332	20	332	5	175	30	40.178	38.818	+0.1	n	1
360			153	10	152	40	355	30	40.060	38.943	-o.8	n	I

ber.	Position	Angle.	Dista	ance.	tudes.	Epoch	ver.	
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	0	0	"	11			_	
331	28.8	28.7	9.10	9.09	•••	80.218	E	
332	29.6	•••	8.23	•••	•••	80.218	E	
333	30.6	28.8	8.87	8.99	•••	80.218	E	
334	29.5		8.39			80.218	E	•
335	253.9	255.2	0.7e	0.72	9.5 9.5	80.245	s	
336	345-3	345-4	1.90	1.82	4.0 5.0	80.245	S	C Disturbed by stress baris
337	344.8	344.8	2.07	1.99	5.0 7.0	80.223	s	Disturbed by atmospheric elongation; principal star
338	93.5	93.4	6.88	6.87	8.0 9.5	80.360	E	(white.
339	197.1	196.9			•••	80.368	E	Too blurry for distance.
340	18.2	18.7	1.42	1.34	8.o 8.o	80.333	s	Poor definition.
341	27.8	27.8	12.17	12.16	8.0 , 9.0	80.360	E	
342	277.6	277.8	20.44	23.85	7.8 8.8	80.294	s	Mic. I assumed 43.986 in reduction.
343	199.5	199.6	5.e		8.0 9.5	80 349	s	Too faint for distance.
344	173.7	173.5	13.45	13.37	7.5 8.5	80.349	s	Both stars white.
345	330.4	3 30. 0	13.54	13.46	8.0 10.5	80.333	s	Poor definition; principal star white.
346	214.0	214.0	24.44	24.43	4.0 9.0	80.360	E	
347	195.0	194.9	12.00	15.40	•••	80.223	E	Mic. II assumed 37.209 in reduction.
348	248.9	249.2	21.34	21.34	7.0 8.5	80.322	s	Color of principal star 2.10.
349	248.3		***	***	1000	80.322	s	
350	316.8	316.9	1.16	1.08	***	80.341	S	
351	311.2	312.1	1.08	1.08	9.0 11.0	80.341	s	
352	157.0	156.9	5.30	5.22	Diff.=0.2	80.376	s	Colors 5.18 5.18.
353	156.9		5.36	***	***	80.215	s	
354	156.5		5.69	***		80.376	s	
355	157.5	157.4	5.15	5.14	100	80.218	E	Miserable definition.
356	156.9	156.8	5.10	5.09		80.360	E	
357	156.3	156.2	5.04	5.03		80.371	E	
358	157.2	157.1	5.04	5.03		80.376	E	416
359	156.7		4.64			80.360	E	
360	157.4		3.81			80.376	E	
<u> </u>	-37-4		3.0.			50.370		

	,											_	
Number.	Double Star.	Mean R. A.	Pos	sition	Circl	e.	Assu	med	Micro	meter.	Hour Angle.	Eyes.	Eye.piece.
Nun		1880.	I	•	11	••	Zei	ro.	I.	II.	Hour	(a	Eye.
361	O. S.	h. m. 12 40	o 270	, 25	° 270	0	358	17	r. 40.882	r. 	0.0	p	A
362	Σ 1690	12 50	323	15	323	20	175	30	41.364	39.604	-0.1	n	A
363	•••		320	5	321	20	175	30			o .o	p	A
364	0 Σ 256	12 50	243	25	243	40	355	30	39.588	39.385	-0.2	p	A
365	o. s.	12 52	239	5	240	35	175	30	40.788	40.196	-0.2	n	A
366	• •••	•••	239	20	240	.25	175	30	40.818	40.200	-0.2	p	A
367	•••	•••	239	35	240	15	175	30			0.0	p	I
368	•••		243	30	242	55	175	30	39.781	39.218	-0.4	p	A
369	Σ 1704	12 53	227	20	229	o	175	30	33.505	27.472	-0.4	p	A
370	A. G. C. 5	12 54	325	45	326	45	175	30	40.683	40.293	-0.2	n	A
37I	•••		323	40	323	35	175	30			o.1	p	A
372	•••		146	45	148	30	355	30	39.644	39.262	0.0	ļ	
373	β	12 58	224	40	226	10	355	30	•••		-0.1	p	VI
374	β 609	13 5	172	15	173	5	175	30	•••		-0.2	n	A
375	•••		348	20	351	20	355	30					
376	β 221	13 7	217	45	224	30	175	30	40.733	40.253	-0.2	n	A
377	•••		219	35	223	50	175	30	40.707	40.270	—о.з	p	A
378	H ii 45	13 7	207	50	209	10	175	30	41.272	39.714	-0.4	n	A
379	•••	•••	29	0	29	20	355	30	41.330	39.683	-0.3	n	I
380	•••	•••	207	10	209	0	175	30	•-•		-0.4	p	A
381		•••	29	15	29	45	355	30	•••	•••	-0.4	p	I
382	•••	•••	210	30	210	55	175	30	40.230	38.688	0.5	p	A
3 ⁸ 3	•••	•••	210	5	210	30	175	30	40.218	38.744	-0.2	p	A
384	β 342	13 9	27	20	30	10	355	30	41.086	39.908	+0.4	n	A
385				•		•		•	41.053	39.918	+0.4	n	A
386	•••	•••	27	20	29	35	355	30	•••	•••	+0.4	p	A
387		•••	210	50	211	30	175	30	40.1 0 8	38.917	0.3	n	A
388			210	0	211	0	175	30	40.073	38.921	—о.з	p	A
389	o. s.	13 9	329	0	329	o	355	30	•••		—0.2	n	A
390	o. s.	13 15	168		177		358	13	•••		2.5	p	VI

ber.	Position	Angle.	Dista	ance.	tudes.	Epoch	rver.	
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes	1800+	Observer.	Notes.
	0	0	"	"			-	
361	271.9	272.4	2.6		9.0 9.5	79-355	S	,
362	147.8	147.5	6.01	5.93	7.5 9.0	80.322	S	•
363	145.2	145.8	•••	•••		80.322	S	
364	248.0	245.6	0.69	0.81	•••	80.371	E	
365	64.3	64.9	2.02	1.94	8.0 8.0.	80.333	s	Poor definition.
366	64.4	64.8	2.11	2.11	7.5 8.o	80.349	s	Both stars white.
367	64.4	•••	•••	•••	•••	80.349	s	
368	67.7	65.7	1.92	2.04	•••	80.223	E	
369	52.7	52.9	20.59	20.59	6.0 1 0 .0	80.363	s	
370	150.8	150.9	1.33	1.25	6.o 8.o	80.376	s	
371	148.1	149.0			•••	80.376	s	
372	152.1	151.6	1.30	1.29	•••	80.376	E	Unsatisfactory.
373	229.9	227.3	o.6e	0.62	••.	80.346	E	
374	357.2	357-7	0.8e	0.82	7.0 10.0	80.338	s	Principal star white.
375	354-3	354-7	 .		•••	80.341	s	
376	45.6	46.2	1.64	1.56		80.363	s	
377	46.2	46.7	1.49	1.49	8.0 10.0	80.363	s	
378	33.0	33.2	5.32	5.24	•••	80.366	s	Poor definition.
379	33.7	•••	5.62		•••	80.366	s	
380	32.6	32.8			•••	80.366	s	Poor definition.
381	34.0	•••				80.366	s	
382	35.2	33-4	5.26	5.38	•••	80.223	E	
383	34.8	33.0	5.03	5.15		80.371	E	
384	33.2	33.4	4.02	3.94	8.o 8.5	80.379	s	
385			3.87	3.79		80.379	s	
386	33.0	33.2			•••	80.379	s	
387	35.7	35.6	4.06	4.05	•••	80.379	E	
388	35.0	33.2	3.93	4.05	8.0 8.5	80.379	E	
389	333.5	333.5	3.33		8.0 10.0	80.360	E	Too faint for distance.
390		175.1	0.4e	0.42		79.300	S	
390	174.3	-/3.1	0.40	0.42	7.5 7.5	19.300		

		Mean Position Circle.											
Number.	Double Star.	Mean R. A.	Pos	sitior	Circl	e.	Assu	med	Micro	meter.	Hour Angle.	Eyes.	Eye-piece.
Nun		1880.	I	•	11	•	Zei	ro.	I.	II.	Hour	(E)	Eye-1
391	Σ 1742	h. m. 13 18	o 344	, 50	o 347	, 50	355	30	r. 40.687	r. 40.279	-o.1	n	A
392	•••		336	20	349	20	355	30	•••	•••	0.0	n	I
393			166	35	166	10	175	30	39.672	39.285	-0.2	n	A
394	•••		166	10	165	55	175	30	39.630	39-334	-0.1	n	A
395	O. S.	13 20	347	50	351	20	355	30	40.750	4 0 .270	-0.1	n	A
396	h 2653	13 23	231	15	233	45	355	30	43.506	37.414	- 0.1	p	A
397	β 114	13 28	312	0	314	20	175	30	40.764	40.249	-0.2	n	A
398			314	40	315	30	175	30			—о. з	n	A
399	•••	•••	310	5	312	0	175	30	•••	•••	o .o	n	I
400	•••		309	0	310	50	175	30	40.695	40.305	—0. 1	p	A
401	•••		309	55	311	0	175	30	•••	•••	-0.2	p	A
402	•••		304	55	309	25	175	30			+0.1	p	I
403	H n 69	13 30	6	40	8	40	175	30	42.003	39.003	+0.1	n	A
404	•••		187	10	187	35	355	30	40.962	38.048	-0.5	n	A
405	O. S.	13 31	256	50	259	35	355	30	41.160	39.819	+0.1	p	A
406	Σ 1763	13 31	215	40	216	40	175	30	40.949	40.055	+0.1	n	A
407	•••		214	5	217	5	175	30	40.972	40.056	-0.1	n	I
408	•••		216	5	216	50	175	30	40.916	40.070	0.0	p	A
409			215	5	214	10	175	30	40.930	39.990	-0.1	P	I
410	h 4604	13 34	273	50	275	50	355	30	42.764	38.233	-0.3	P	A
411	•••		276	40	276	10	355	30	41.807	38.208	0.0	P	A
412	•••	 .	275	40	275	15	355	30	41.766	38.332	0. 3	p	A
413	h 2671	13 37	247	o	246	45	175	30	43.576	35.423	-0.1	p	A
414			247	0	247	45	175	30	43.495	35-399	_o.2	p	A
415	h 2674	13 38	180	55	180	30	175	30	42.811	38.089	-0.2	n	A
416	Σ 3081	13 39	240	10	244	55	175	30	40.770	40.170	+0.1	p	A
417			245	30	245	40	175	30	39.752	39.172	-0.3	p	A
418	β Α,1	13 40	296	25	298	5	355	30			+0.2	n	A
419			296	35	296	55	355	30	40.230	39.750	+0.4	n	A
420	•••		292	25	294	25	355	30	40.208	39.753	+0.3	P	A

ber.	Position	n Angle.	Dist	ance.	tudes.	Epoch	rver.	Notes
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes	1800+	Observer.	Notes.
	0	0	"	"	115			
391	350.8	351.0	1.39	1.31	7.5 . 8.0	80.363	S	
392	347-3				- 666	80.363	S	
393	350.9	350.4	1.32	1.31		80.223	E	
394	350.5	350.0	1.01	1.00		80.346	E	
395	354.1	354.2	1.64	1.56	8.0 9.0	80.349	S	
396	237.0	237.2	20.79	20.79	8.0 12.0	80.338	S	Principal star white.
397	137.7	137.6	1.76	1.68	7.8 8.0	80.322	s	
398	139.6	139.5			8.0 8.0	80.333	S	Poor definition.
399	135.5					80.333	s	
400	134.4	135.2	1.33	1.33	9264	80.322	s	
401	135.0	135.8			***	80.333	s	Poor definition.
402	131.7					80.333	s	
403	192.2	192.2	10.24	10.16	6.8 7.8	80.376	S	
404	191.9	191.8	9.94	9.93	6.0 7.5	80.376	E	Both stars white.
405	262.7	263.1	4.58	4.58	8.5 11.0	80.423	s	the same of the same
406	40.7	41.1	3.05	2.97		80.366	s	Poor definition.
407	40.1		3.13			80.366	S	
408	41.0	41.3	2.89	2.89	7.0 8.0	80.366	S	Poor definition.
409	39.1		3.21	440	***	80.366	S	
410	279.3	279.6	15.46	15.46	8.0 10.0	80.420	s	
411	280.9	279.2	15.70	15.82	9.0 11.0	80.346	E	
412	280.0	278.3	15.13	15.25	8.0 10.5	80.360	E	Vom son definition
1	2.7			100		13.00		Very poor definition.
413	71.4	69.7	27.82	27.94	9.0 9.5	80.360	E	
414	71.9	70.2	27.63	27.75	9.0 10.0	80.398	E	Mic. readings changed 2 rev.
415	5.2	5.2	16.12	22.93	8.0 9.0	80.423	E	in reduction.
416	67.0	67.4	2.05	2.05	8.0 8.5	80.442	S	
417	70.1	68.1	1.98	2.10		80.223	E	
418		301.5		••••	***	80.420	S	
419	301.2	300.4	1.64	1.69		80.420	н	
420	297.9	297.7	1.55	1.57	***	80.420	Н	

ber.	Double Stee	Mean	Pos	ition	Circl	e.	Assu	med	Micro	meter.	Angle.	es.	iece.
Number.	Double Star.	R. A. 1880.	I.	•	II	•	Zei		I.	II.	Hour Angle.	Eyes.	Eye-piece.
421	h 4617	h. m. 13 44	° 253	, 20	o 255	35	0	,	r. 40.187	r. 39.816	—0. 1	P	A
422	h 4637			30			355	30	41.418	37.632	-0.5	n	A
		13 51	313	5	313	30	175	30					
423			215	25	214	10	175	30	41.383	37·594 39.988	-0.1	P	A A
424	β 344	13 52	300	20	303	15	175	30	40.983		-0.2		
425	•••	•••	296	10	297	35	175	30	40.977	39.988	0.1	P	A
426	h 4650	14 0	237	20	238	0	175	30	•••	•••	O. I	P	A
427	h 4661	14 5	222	20	224	50	175	30		•••	-0.2	P	A
428	•••	•••	227	0	226	45	175	30		•••	-0.2	P	A
42 9	h 4664	14 8	191	15	191	10	175	30	42.100	36.896	0.1	n	A
430	•••		190	25	189	40	175	30	42.102	36.882	-0.4	n	A
43 I	•••		190	0	189	25	175	30	42.062	37.864	-0.2	n	A
432	H. A. H. 27	14 11	246	55	248	0	175	30	41.342	39.589	-0.4	p	A
433	β 116	14 13	275	10	276	15	355	30	39.914	39.048	-0.4	p	A
434	Σ 1833	14 16	162	25	163	20	175	28	40.321	38.706	0.0	n	A
435	o. s.	14 18	262	40	268	30	355	30			-0.5	P	A
436		•••	277	45	278	35	355	30			-0.4	P	A
437	β 225	14 19	273	10	275	25	175	30	40.709	40.320	-0.2	p	A
438	•••		280	10	280	10	175	30	39.659	39.284	-0.3	P	A
439	Σ 1847	I4 22	253	45	254	25	355	30	42.911	36.136	-0.2	P	A
440	•••		254	30	255	0	355	30	42.788	36.136	+0.2	p	I
441	H. V. E.	14 23	193	25	195	40	175	30	41.032	39.957	_0.2	n	١.
442			10	50	14	10	355	30	41.043	39.973	_0.1		
443			194	45	195	20	355	30	40.091	39.905	o.8	n	١.
444			194	25	194	50	355	30	40.020	39.939	-0.1	n	١.
	İ			•	'	-		-	•	38.973	-0.3	n	١.
445	 		193	35	195	50	355	30	40.039	ĺ	_		١.
446	β 117	14 25	266	30	267		175	30	40.833	40.128	-0.1	P	١.
447	h 2723	14 25	132	35	132		355		43.496	35.514	0.0		١.
448	W. M. C. Z.	14 30	286	0	286	25	175		43.490	37.517	-0.2	P	١.
449			288	20	.289	0	175	3 0	42.384	36.578	o.1	p	Ι.
450	β 226	14 32	256	30	259	5	175	30	40.634	40.349	0.0	p	A

ber.	Position	Angle.	Dista	ince.	tudes.	Epoch	rver.	
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	۰	0	"	"				
421	259.0	259.7	1.27	1.27	8.0 10.0	80.338	S	Principal star white.
422	137.8	137.8	12.92	12.91	•••	80.371	E	Distance unsatisfactory.
423	139.3	137.6	12.93	13.05	9.0 9.5	80.376	Е	
424	126.3	126.0	3.40	3.32	8.0 9.0	80.330	S	
425	121.4	122.0	3.38	3.30	•••	80.330	S	
426	62.2	60.5			9.0 12.0	80.346	E	Comp. too faint for distance.
427	48.1	48.5	•••	•••	•••	80.363	s	Too poor definition for distance.
428	51.4	49.4		•••	•••	80.398	E	Clouds.
429	15.7	15.7	17.76	17.75	8.5 9.0	80.346	E	
430	14.5	14.5	17.82	17.81	•••	80.371	E	
431	14.2	14.2	14.33	17.73	8.o 9.o	80.423	E	Mic. II assumed 36.864 in reduction.
432	72.0	72.4	5.99	5.99	8. o 9.o	80.349	s	(
433	280.2	278.3	2.96	3.08	•••	80.368	E	Poor definition.
434	167.4	167.3	5.51	5.50	6.0 6.5	80.448	E	
435	270.1	271.0	0.8e	0.82	8.0 9.5	80.379	s	
436	282.7	280. I	•••	•••	8.0 9.0	80.379	E	
437	98.8	99.5	1.33	1.33	8.0 9.0	80.376	s	
438	104.7	102.6	1.28	1.40	8.0 9.5	80.376	E	
439	258.6	256.9	23.12	23.24		80.366	E	Poor definition; distance
440	259.2		22.70			80.366	E	unsatisfactory.
441	19.0	19.1	3.67	3.59	8.7 9.2	80.371	s	
442	17.0	17.1	3.65	3.57	8.5 9.0	80.379	S	-
443	199.5	199.4	4.05	4.04		80.223	E	Mic. II. assumed 38.905 in
444	199.1	199.0	3.69	3.68		80.322	E	reduction. Very faint; Mic. II. assumed
445	199.1	199.1	3.64	3.63	8.5 10.0	80.379	E	38.939 in reduction.
446	91.5	92.0			_	80.330	S	
1	1		2.41	2.41			E	
447	137.2	137.2	27.24	27.23	8.0 10.5	80.407		Dath stars milita
448	110.7	111.1	20.38	20.38	7.0 8.0	80.360	S	Both stars white.
449	113.2	111.5	19.81	19.93	9.0 - 9.5	80.349	E	Companion difficult to see.
450	82.3	83.1	0.97	0.97	8.0 8.0	80. 338	S	Both stars white.

Number.	Double Star.	Mean R. A.	Po	sition	Circl	e.	Assu	med	Micro	meter.	Hour Angle.	Eyes.	Eye-piece.
Num		1880.	I	•	11	i .	Ze	ro.	I.	II.	Hour,	Ey	Eye-I
45I	β 345	h. m. 14 35	o 292	10	o 295	35	355	30	r. 40.633	r. 40.367	0.0	p	A
452	Σ 1869	14 36	307	35	307	45	175	30	44.300	36.68 o	-0.1	n	A
453	•••		306	5	306	20	175	30	44.285	36.701	0.0	p	A
454	Sh 184	14 39	305	5	305	50	175	30	41.827	39.195	—0.4	n	A
455			303	30 .	304	50	175	30	41.788	39.180	0.3	p	A
456	Σ 1876	14 40	247	50	249	0	175	30	39.653	39.320	-0.1	p	A
457	S 663	14 42	328	50	334	0	355	30	40.817	40.169	0.0	n	A
458	•••		333	55	334	55	35 5	30	39.809	39.179	+0.3	n	A
459	β 118	14 47	305	5	305	10	355	30	39.772	39.207	-0.2	p	A
460	h 4716	14 49	352	40	353	40	355	30	40.951	40.073	-0.5	n	A
461	Sh 190	14 50	287	15	286	15	35 5	30	41.686	37.252	0.1	p	A
462	β 239	14 52	304	35	306	40	355	30	40.632	40.336	0.3	n	A
463	•••		292	20	300	25	355	30	40.632	40.338	-0.4	P	A
464			305	48	308	15	355	30	39.623	39.378	0.0	n	A
465	•••		304	0	304	55	355	30	39.612	39.366	-0.1	P	A
466	h 2757	14 52	266	30	268	55	175	30	42.276	38.711	-0.1	p	A
467			272	40	273	5	175	30	41.240	38.710	0.0	P	A
468	Σ 1899	14 55	244	45	245	o	178	13	44.202	35.742	-0.4	P	A
469			253	40	254	45	185	38	43.657	35.252	-0.7	p	A
470	Σ 3090	15 3	269	10	272	5	355	30	40.726	40.269	-0.4	p	A
471	•••		274	5	275	20	355	30	39.709	39.263	-0.2	P	A
472	β 350	15 8	330	50	334	50	175	30	40.690	40.305	-0.1	n	A
473	β 352	15 11	239	20	241 ·	55	175	30	42.612	38.368	0.0	n	A
474	•••		238	10	239	20	175	30	42.548	38.360	0.1	P	A
475			24 3	45	243	30	175	30	41.589	3 7.3 84	0.0	p	A
476	β 227	15 12	355	20	355	45	175	30	40.767	40.187	0.1		
477	h 4767	15 18	317	45	317	35	175	30	44.330	44.776	-0.4	n	A
478	•••		318	0	317	10	175	30	44.281	34.714	0.0	n	A
479	H. V. E.	15 18	203	20	204	5	175	3 0	41.863	37.156	<u>-</u> 0.5	n	A
48o	h 4769	15 18	188	10	188	25	355	30	40.884	38.122	—0.2	n	A

ber.	Position	Angle.	Dista	nce.	tudes.	Epoch	rver.	N
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	0	0	"	"				
451	298.4	299.4	0.90	0.90	7.8 8.5	80.420	S	
452	132.2	131.7	26.00	25.92	8.3 9.3	80.442	S	
453	130.7	131.1	25.88	25.88	***	80.442	S	
454	130.0	129.6	8.98	8.90	5.0 7.0	80.423	S	
455	128.7	129.2	8.90	8.90	***	80.423	s	
456	72.9	70.7	1.14	1.26		80.322	E	
457	335.9	335.8	2.21	2.13	8.5 11.5	80.376	s	
458	338.9	338.6	2.15	2.14	9.0 11.5	80.376	E	
459	309.6	307.6	1.93	2.05	9.0 10.0	80.346	E	Poor definition.
460	357-7	357.8	3.00	2,92	9.0 10.0	80.445	s	Hazy.
461	291.2	289.5	15.13	15.25	8.0 9.5	80.349	E	Windy.
462	310.1	310.1	1.01	0.93		80.379	s	-
463	300.9	301.8	1.00	1.00	6.0 7.0	80.379	s	Distance estimated o"6.
464	311.5	310.9	0.84	0.83		80.379	E	
465	309.0	306.7	0.84	0.96	•••	80.379	E	
466	92.2	92.5	12.17	12.17	7.5 9.0	80.360	S	Principal star white.
467	97.4	95.7	12.05	12.17	9.0 10.5	80.346	E	Mic. II. assumed 37.710 in
468	1000	66.3	28.87	28.89	7.0 10.0	79.251	н	reduction.
469		66.9	28.68	28.80	6.0 10.0	79.357	E	
	1000		750		100		S	
470		275.7	1.56	1.56	325 733	80.371	10	
471	6.76	277.1	1.52	1.64		80.322		
472	1	157.5	1.31	1.23	7.0 8.0	80.445	S	12 - 42 12
473	1.339	65.5	14.48	14.40	•••	80.360	S	* Poor definition.
474		63.5	14.29	14.29	7.0 9.0	80.360	S	Principal star white.
475	1 10000	66.4	14.35	14.47	8.5 9.0	80.346	E	(n1-6-1/2
476	180.0	180,2	1.98	1.90	7.0 9.5	80.423	S	Poor definition; principal star white.
477	142.2	142.2	32.61	32.60		80.366	E	Poor definition; distance unsatisfactory.
478	142.1	142.1	32.65	32.64	9.0 10.0	80.407	E	Poor definition.
479	28.2	28.2	16.06	16.05	8.5 10.5	80.398	E	
480	192.8	192.7	9.43	9.42	8.5 9.5	80.349	E	

Number.	Double Star.	Mean R. A.	Po	sition	n Circl	e.	Assu	med	Micro	meter.	Hour Angle.	Eyes.	Eye-piece.
Nur		1880.	I	•	1	Ι.	Ze	ro.	I.	II.	Hour	Ey	Eye-1
481	h 4769 (continued)	h. m. 15 18	187	15	188	, 0	355	30	r. 40.885	r. 38.090	_o.3	n	A
482	h 4774	15 22	0	25	3	30	355	30	41.810	39.140	0.1	n	A
483	•••			•		•		•	41.883	39.131	—о.з		
484	Arg.S.54 A,1	15 34	198	20	198	25	175	30	44-759	34-304	0.2	n	A
485	А,С		143	35	143	30	175	30	•••		-0.1	n	A
486	A,I		137	40	137	0	175	30	52.422	26.348	0.2	p	A
487	h 4807	15 41	354	50	0	5	355	30	42.015	38.960	0.2	n	A
488	β 36	15 46	272	35	273	•	355	30	39.906	39.122	-0.4	p	A
489	Sh 213	15 52	313	25	316	10	355	30	43.093	37.858	0.2	n	A
490	•••	•	313	IQ	314	25	355	30	43.112	37.897	0.1	p	A
491	•••		315	35	315	35	355	30	42.112	36.904	-0.7	n	A
492	•••		315	15	315	10	355	30	42.094	36.868	0.0	P	A
493	h 4826	15 55	239	35	244	25	355	30	41.224	39.749	-0.3	P	A
494	•••		246	45	245	40	355	30	40.218	38.789	-0.3	P	A
495	β 38	15 56	166	40	167	30	175	28	40,086	38.889	0.9	n	A
496	Σ 1998 A,]	3 15 58	183	45	184	15	355	30	39.668	39.268	-0.8	n	A
497	•••		186	45	184	30	355	30	39.622	39.364	0.7	n	A
498	А,(249	50	250	15	175	30	40.510	38.477	0.6	p	A
499	β 39	16 1	250	35	252	50	355	30	40.953	40.011	-0.2	p	A
500	•••		251	15	252	25	355	28	40.948	40.011	0.6	P	A
501	h 4839	16 5	248	50	251	55	175	30	41.160	39.813	-0.1	p	A
502	•••		255	50	256	45	175	30	40.078	38.908	-0.2	p	A
503	β 120 · A, l	16 5	178	35	176	15	175	30			-0.2	n	A
504	C,I	i	220	30	220	55	175	30	39.782	39.212	-0.3	p	A
505	Σ 2023	16 9	227	45	225	45	355	30			-0.1	n	A
506	β 624	16 16	316	25	317	30	355	30			-0.4	n	A
507	O. S.	16 20	157	18	161	52	175	30	41.804	39.116	+0.1	n	A
508	Σ 2046	16 20	221	55	223	50	358	13	41.726	39.298	1	n	A
509	Σ 3105	16 25	217	15	218	28	175	30	4/20		-3.3		A
510					1		l				0.0	P	
٠,٠	•••	•••	219	35	220	3 5	175	30	•••	***	+0.2	P	A

Number.	Positio	n Angle.	Dist	ance.	Magnitudes.	Epoch	Observer.	Notes.
Num	Obs.	Cor.	Obs.	Cor.	Magn	1800+	Opse	2.00.00
	۰	•	"	"				
481	192.1	192.0	9.54	9-53	8.0 9.5	80.398	E	
482	6.5	6.5	9.11	9.03	6.0 10.0	80.338	S	Principal star white.
483			9.39	9.31	7.5 10.0	80.437	S	
484	22.9	22.9	35.68	35.67	8.5 9.0	80.349	Ė	Blurry.
485	328.0	328.0	60.e		10.5	80.349	E	Too faint for distance.
486	321.8	320. I	88.98	89.10	9.5	80.349	E	Distance unsatisfactory.
487	2.0	1.9	10.43	10.35	8.0 11.0	80.442	s	·
488	277.3	275.4	2.68	2.80	5.0 7.5	80.379	E	
489	319.3	318.9	17.87	17.79	8.0 9.0	80.376	Ś	
490	318.3	318.8	17.80	17.80	•••	80.376	s	
491	320.1	320.1	17.77	17.76	8.o 8.3	80.376	E	•
492	319.7	318.0	17.84	17.96	•••	80.376	E	
493	246.5	246.8	5.03	5.03	9.0 9.5	80.423	s	
494	250.8	249.0	4.88	5.00	9.0 10.0	80.420	E	Poor definition; both stars white.
495	351.6	351.5	4.08	4.07	8.5 10.0	80.478	E	Poor definition.
496	188.5	188.o	1.37	1.36	•••	80.322	E	Became very blurry.
497	190.1	189.6	0.88	0.87	•••	80.398	E	
498	74-5	72.7	6.94	7.06	•••	80.398	E	
499	256.2	256.7	3.21	3.21	5.0 8.8	80.442	s	Windy during measure of distance.
500	256.4	256.9	3.20	3.20	6.0 9.0	80.478	s	,
501	74-9	75.4	4.60	4.60	6.o 8.5	80.423	s	Poor definition. Color of principal star 2.22.
502	80.8	79.0	3.99	4.11	6.o 8:o	80.420	E	
503	1.9	1.0	•••			80.398	E	Only elongated.
504	45.2	43.2	1.95	2.07		80.398	E	
505	231.2	230.8	•••		· •••	80.322	E	Too poor definition for distance.
506	321.5	320.9	ı.e			80.379	E	
507	344.1	344.0	9.17	9.09	8.0 11.0	80.420	s	
508	224.6	224.3	8.29	8.21	9.0 10.0	79.313	s	
509	42.4	43.5	0.7e	0.72	8. o 8.o	8 0 .376	s	
510	44.6	- 41.9			8.o 8.5	80.376	Ē	e care e more con c
		·						

ij		Mean	Pos	sition	Circl	e.	A		Micro	meter.	ngle.	š	ece.
Number.	Double Star.	R. A. 1880.	1	•	11		Assu: Ze:		I.	II.	Hour Angle.	Eyes.	Eye-piece.
511	Σ 3106	h. m. 16 49	o 240	30	o 241	40	175	28	r. 	r. 	-o.7	p	A
512	•••	•••	243	5	244	15	355	30	39.822	39.189	—0 .6	p	A
513	Sh 240	16 50	227	5	228	0	355	31	41.198	39.782	-0.2	p	A
514	.,.	•••	226	30	226	40	355	30	40.188	38.798	—0.7	p	A
515	h 4902	16 50	24	35	26	o	355	28	42.129	38.849	0.0	n	A
516		•••	204	45	205	55	175	28		•••	-0.1	P	A
517	h 589	17 3	297	50	298	10	355	28	40.902	38.072	-0.5	P	A
518	Σ 2132	17 6	289	2	284	52	175	30			—1.6	n	A
519	•••	•••	285	5	281	35	175	30			—1.6		•••
520	Sh 243	17 8	16	10	18	o	355	31	41.125	39.864	-o.3	n	A
521		•••	16	45	18	50	355	31	41.149	39.842	0.0	n	I
522	β 282	17 8	327	30	330	20	175	28	41.125	39.857	+0.2	n	A
523	h 4932	17 9	223	20	223	30	355	2 8	40.921	38.027	0.1	p	A
524	O. S.	17 11	285	30	285	5	355	30	41.941	36.994	_0. 9	p	A
525		•••	286	30	287	10	355	31	41.932	37.061	0.1	p	A
526	0. S.	17 14	216	15	220	35	175	30			o.1	n	A
527		•••	218	35	220	35	175	30		•••	-0.2	p	A
528	h 4953	17 19	169	25	170	5	355	30	42.152	36.821	—о.8	n	A
529			170	15	169	10	355	30	42.142	36.832	-0.1	n	A
530	Arg. S. 66	17 23	10	0	11	5	175	30	40.731	38.248	— 0.6	n	A
531	Σ 2173	17 24	294	30	294	15				•••	0.2	p	VI
532	•••		294	0	296	30	١				—0.3	p	A
533	Σ 2183 rej. A, B	17 29	8	15	9	35	355	30	44.643	36.328	o .o	n	A
534	Σ 2191	17 34	266	45	265	45	358	17	43.397	35.523	-0.3	p	A
535			264		264	5	355	31	43.362	ł	-0.2	P	A
536	Arg. S. 67	17 36	287		ŀ	10	355	30	44.871	ł	-0.4	p	A
537	н. а. н.	17 45	184	35	1 .	45	175	30	40.443	38.548	-0.2	n	A
538			183.		183	45	175	28	40.458		—0.3	n	A
539	W. M. C. Z.	17 46	356	0	358	30	175		41.278		0.0	n,	III
540	Σ 2244	17 51		15	269				40.652		-0.4	p	A

ber.	Position	Angle.	Dista	ince.	Magnitudes.	Epoch	Observer.	Notes.
Number.	Obs.	Cor.	Obs.	Cor.	Magni	1800+	Opse	110103
511	65.6	66.2			9.0 9.0	80.478	s	
512	248.2	246.2	2.16	2.28	•••	80.398	E	
513	232.0	232.3	4.83	4.83	6.0 7.5	80.560	s	
514	231.1	229.3	4.74	4.86	7.o 8.o	80.379	E	
515	29.8	29.9	11.19	11.11	•••	80.442	S.	
516	29.9	30.0	•••		8.o 9.o	80.442	s	
517	302.5	300.7	9.66	9.78	8.5 9.5	80.459	E	
518	111.5	111.3			8.0 9.0	80.439	s	Too poor definition for distance.
519	107.8	108.5	•••		•••	80.439	s	
520	21.6	21.8	4 30	4.22		80.596	s	
521	22.3		4.46		•••	80.596	s	
522	153.4	153.1	4-33	4.25	6.0 10.5	80.442	s	
523	228.0	226.2	9.88	10.00	8.5 10.5	80.459	E	Distance poor.
524	289.8	288. I	16.88	17.00	•••	80.349	E	
525	291.3	289.6	16.62	16.74	8.o 8.5	80.579	E	
526	42.9	43.7	o. 8e	0.82	•••	80.398	s	٠.
527	44.1	44-9		•••	8.5 9.5	80.398	s	
528	174.2	174.2	18.19	18.18	8.5 9.5	80.379	E	Difficult.
529	174.2	174.2	18.12	18.11	•••	80.420	E	
530	195.0	194.9	8.47	8.46	•••	80.379	E	:
531			0. 5e	0.52	•••	80.554	S	
532					6.0 6.5	80.554	s	
533	13.4	13.4	28.38	28.30	7.0 9.0	80.398	s	
534	268.0	266.3	26.87	26 .99	8.o 9.o	79-355	E	
535	268.6	2 6 6.9	26.40	26.52	7.0 7.5	80.557	E	
536	292.0	290.3	36.69	36.81	8.o 8.5	80.379	E	
537	9.2	9.2	6.47	6.46	9.0 10.0	80.420	E	Difficult.
538	8.3	8.2	6.63	6.62	8.0 9.5	80.45 9	E	; !
539	1.8	2.2	2.17	2.01	0.11; 0.01	80.516	s	
540			1.28	1.28	7.0 7.3	80.554	s	: 0.

ii Š	Double Con	Mean	Pos	sition	Circl	e.	Assu	med	Micro	meter.	Angle.	Eyes.	Eye-piece.
Number.	Double Star.	R. A. 18 5 0.	1	•	11		Zei	ro.	I.	II.	Hour Angle.	Ey	Eye-I
541	Σ 2244 (continued)	h. m. 17 51	270	, 25	o 272	45	355	31	r. 40.684	r. 40.275	—о.8	p	A
542	Σ 2262	17 57	245	20	246	10	355	31	40.784	40.164	—0.6	p	A
543	•••	•••	244	20	251	45	355	31			-0.5	p	I
544	•••		247	50	248	0	358	13	40.237	39-777	+0.8	P	A
545		•••	247	20	247	5	355	30	39.710	39-273	-0.4	p	A
546	h 500 9	17 57	195	55	195	15	175	30	40.071	38.938	-0.7	n	A
547	H. V. E.	17 57	11	20	11	40	355	31	40.155	38 84 6	-0.3	n	A
548	h 5010	17 57	344	5	344	20	35 5	44	41.083	40.013	-0.3	n	A
549	Σ 2272	17 59	244	45	248	20	178	13	40.946	40.058	+0.4	P	A
550	•••		248	35	247	25	178	17	40.947	40.133	—1.3	p	A
55×	•••		245	20	245	50	178	13	40.973	40.037	+0.7	P	Ш
552	•••		238	40	240	30	175	31	40.940	40.042	0.0		
553	 ·		249	50	248	50	178	13	40.441	39.592	+0.5	p	A
554	·	•••	242	40	242	50	175	30	39.869	39.144	0.0	P	A
555	•••	•••	247	5	247	20	175	30	39.862	39.142	—0.2	P	I
556	O. S. 88	18 o	274	0	274	15	355	31	42.390	36.621	o.1	P	A-
557	β 244	18 I	254	25	255	οĭ	355	31	39.77 r	39.218	<i></i> ċ.5	P	A
558	β 132	18 4	242	5	·240	20	178	13			-0.2	p	A
559			233	20	234	48	355	31	39.638	39.328	0.0	P	A
560	•••	•••	235	0	235	0	355	31	39.604	39-355	-0.2	P	A
561	h 5035	18 7	254	0	255	o	355	28	42.976	37.966	0.0	P	A
562	β 131	18 7	276	o	278	ō	355	31	39.872	39:113	0.0	p	A
563	h 2823	18 8	327	10	329	5	355	31	43-454	37.505	0.2	n	A
564	•••		147	35	148	ο.	175	30	42.478	36.479	-0.1	n	A
565	β 285	18 9	317	25	321	55	35 5				-0.4	n	A
566	h 2827	18 10	248	50	248		355	•	42.434	36.562	. 0.0	p	A
567	Sh 264	18 12	229	10	229	1	178	13	43.058	37.960	-0.2	P	A
568	β 48	18 14	176	15	176	35	175	31	39.853	39.159	_o.5	n	A
5 69	O. S.	18 16	261	25	263	20	178	13	41.465	39-495	-0.3	P	A
570	β 49	18 17	218	.0	222	45	175	28			+0.1		
_''ٽا	F 72		1			73	1,,			<u> </u>		<u> </u>	

			سخ عسم	4	and any areas	a v saar ees		
Number.	Position	Angle.	Dist	ance.	tude	Epoch	rver.	Notes.
Num	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
541	o 276. I	o 276.9	// 1.40	// I.40	7.0 8. 0	80.560	ş	Distance measured with dark wires.
542	250.2	250.7	2.12	2.12	5.5 6.5	80.560	s	Distance measured with dark wires.
543	252.5	•••			•••	80.560	ş	(wites.
544	249.7	248.7	1.57	1.59	•••	79.267	н	Observed after sunrise.
545	251.7	249.7	1.49	1.62	•••	80.379	E	·
546	20. I	19.9	3.87	3.86	9.0 9.5	80.576	E	
547	16.0	15.9	4-47	4.46	9.0 9.2	80.576	E	
548	348.5	348.4	3.65	3.57	9.0 9.5	79-5 93	s	
549	68.3	68.8	3.03	3.03	•••	79.270	s	·
550	69.7	70.2	2.78	2.78	•••	79.346	\$	•
551	67.4	67.9	3.19	3.19		79.270	s	
552	64.1	64.5	3.06	3.06		80.560	Ş	Distance measured with dark wires.
553	71.1	70.4	2.90	2.92		79.267	н	
554	67.2	65.3	2.47	2.59	. •••	80.379	E	
555	71.7	•••	2.46	•••	·	80.379	E	
556	278.6	276.9	19.69	19.81	9.0 9 .5	80.574	E	Near h 592.
557	25 9.3	257.3	1.89	2.01	•••	80.579	E	
558	63.0	63.7	0.8e	0.82	6.5 6.5	79.270	s	Tangent screw not used.
559	238.6	236.4	1.06	1.18	8.5 8.8	80.576	E	'
560	239.5	237.3	0. 85	0.97		80.579	E	Very faint.
561	259.0	259.3	17.10	17.12	5.0 9. 0	80.530	s	
562	281.5	279.6	2.59	2.71	•••	80.579	E	
563	332.6	332.3	20 .30	20.22	8.5 9.0	80.593	S	
564	332.3	332-3	20.47	20.46	9.0 9.5	80.420	E	
565	324.2	324.2	I.2e		8.0 10.0	80.596	s	Poor definition,
566	253.2	251.5	20.04	20.16	9.0 9.5	80.582	E	In an oval nebula.
567	51.2	51.4	17.40	17.40	6.0 8.0	79.270	S	
568	0.9	0.6	2.37	2.36	9.0 9.5	80.582	E	
569	84.2	84.6	6.72	6.72	8.5 9.0	79 .297	S	
570	44.9	45.2	•••	•••	•••	80.516	S	

ber.	Double Star.	Mean R. A.	Pos	sition	Circl	le.	Assu	med	Micro	meter.	Angle.	es.	lece.
Number.	Double Star.	188o.	I		11	Ι,	Ze	ro.	I.	II.	Hour Angle.	Eyes.	Eye-piece.
57 I	β 49 (continued)	h. m. 18 17	o 219	0	o 220	10	175	28	r. 	r. 	0.1		
572	Jacob 201	18 18	285	50	289	5	"	•	40.769	40.136	0.2	p	A
573	•••	•••	290	35	290	10	355	31	40.791	40.164	+0.2		
574	β 247	18 26	342	50	346	20	175	31	41.568	39.370	+0.1	n	A
575	Σ 2434 B,C	18 57	237	55	240	20	175	42	40.729	40.199	+0.1	p	Ш
576	S 711	1 9 I	299	15	298	35	175	30	46.197	32.754	-o.8	n	A
577	h 1373?	19 6	237	45	237	30	175	28	40.802	38.188	0. 6	p	A
578	β 138	19 7	274	15	278	50	355	31	40.656	40.296	—0.2	p	A
579	H. A. H. 95	19 15	321	15	327	5	175	42	•••		—0. 6	n	A
580	н. а. н.	19 16	260	50	260	5	175	28	•••		-0.2	P	A
581	•••	•••	257	55	258	20	175	31			-0.7	p	A
582	•••		•••				••	•	39.830	39.092	•••	p	A
583	•••				••	•		•	39.800	39.111	•••	P	A
584	h 2866 A,B	19 16	230	25	230	10	175	31	42.889	36.121	-0.4	p	A
585		•••	230	0	230	20	175	. 31	42.921	36.061	—0.5	P	A
586	A,C	•••	132	50	132	25	355	31	43.013	36.003	-0.4	n	A
587	В,С		273	40	272	40	35 5	31	44.588	34.406	-0.3	P	A
588	O. S.	19 20	9	50	11	35	175	31	41.220	39.778	0. 0	n	A
589	·	•••	10	15	11	30	175	31	41.146	41.218	– 0.7	n	Ш
590	β 423	19 20	293	45	297	0	175	42	40.677	40.306	-0.5	n	A
591	Σ 2541	19 30	325	35	330	45	355	31	41.035	39.920	0.6	n	A
592	Σ 2545	19 32	316	0	316	5	355	31	40.011	38.934	0.1	n	A
593			136	35	137	25	175	31	40.040	38.952	-0.4	n	Ā
594	h 5144	19 38	4	25	5	30	355	42	42.081	38.962	-0.3	n	A
595	•••		184	45	186	50	175	42	41.961	39.031	-0.7	n	1
596			184	55	185	10	175	28	40.983	38.025	0.2	n	A
597	A. C. 12	19 52	141	25	142	30	175	31	40.672	40.296	—0. 6	n	Α
598		•••	138	25	139	30	175	31	39.639	39.326	-0.5	n	A
599	h 5164	19 54	298	5 5	300	55	175	42	41.857	39.123	0.6	n	A
600	•••		295	20	296	20	175	42	41.881	39.145	-0.5	p	A

ber.	Position	Angle.	Dista	ance.	tudes.	Epoch	rver.	N-A
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes	1800+	Observer.	Notes.
	۰	0	"	"		0		
571	44. I	44-4	•••	•••		80.516	S	
572	•••	•••	2.16	2.16	5.0 8.0	80.554	S	
573	294.8	295.4	2.14	2.14	5.0 8.5	80.560	S	Very poor definition. (Most of the time exceedingly
574	169.1	169.0	7.50	7.42	7.0 10.0	80. 5 93	S	faint.
575	63.4	64.2	18.1	1.81	8.0 10.5	79.680	S	
576	123.4	123.4	45.88	45.87	7.5 8.5	80.379	E	Too wide for power A.
577	62.2	59.8	8.92	9.04	9.5 10.0	80.442	E	Position angle probably 239.°8.
578	281.0	281.7	1.23	1.23	8.0 10.0	80.593	s	Distance estimated o."8
579	148.5	149.4	0.4 e	0.42	6.o 6.5	79.691	S	
580	85.0	83.0			•••	80.442	E	Became too faint for distance.
581	82.6	80.6		 .	9.0 9.3	80.576	E	Too faint for distance.
582			2.52	2.64		80.579	E	Very faint.
583			2.35	2.47		80.582	E	Light clouds; poor definition.
584	54.8	53.1	23.10	23.22	8.o 8.3	80.574	E	
585	54.6	52.9	23.41	23.53		80.576	E	
586	137.1	137.1	23.92	23.91		80.576	E	
587	277.7	276.0	34-75	34.87	8.0 8.5	80.574	E	P est = 180°.
588	195.2	195.2	4.92	4.84	6.8 7.3	80.623	s	,
589	195.4	195.7	4.65	4.49		80.623	s	
590	119.7	119.6	1.27	1.19	7.0 8.0	79.691	s	Distance estimated I"0
591	332.6	332.4	3.80	3.72	8.0 10.0	80.596	s	Stars seem faint and unsatis.
592	320.5	320.4	3.68	3.67	7.0 8.5	80.560	E	factory to-night. Poor definition.
593	321.5	321.4	3.71	3.70		80.563	E	
594	9.3.	9.3	10.64	10.56		79.683	s	
595	10.1		10.00		9.0 10.0	79.683	s	
596	9.6	9.5	10.10	10.09	8.0 9.0	80.516	E	
597	326.5	326.6	1.28	1.20	3.5 9.0	80.557	s	
598	323.4	322.8	1.07	1.06		80.563	E	
	1				80.00	l	S	
599	124.2	123.8	9.33	9.25	8.0 9.0	79.691		
600	120.1	120.6	9.34	9.34		79.691	S	

ber.	Double Star.	Mean	Pos	sition	Circl	e. ′	Assu	med	Micro	meter.	Angle.	es.	iece.
Number.	Double Star.	R. A. 1880.	I.	•	II		Zei	ro.	I. :	II.	Hour Angle.	Eyes.	Eye-piece.
601	h 2918	h. m. 19 55	o 129	′ 15	o 130	5	°	28	r. 41.941	r. 37.088	-0.2	n	A
602	Σ 2646	20 8	225	25	225	10	175	31	42.861	36.108	-0.4	p	A
603	Arg. S. 84	20 15	262	40	263	0	355	42	43.114	37.859	+0.2	P	A
604	•••		262	10	262	50	355	42	43.028	37-974	o.1	p	I
605	н. а. н.	20 20	231	20	231	40	175	30	40.404	39.603	– 0.3	p	Ш
606	H ii 51	20 22	348	o	347	15	175	42	41.012	40.045	-0.2	n	m
607	H iv 71	20 23	236	15	236	10	355	31	42.718	36.242	—о.3	p	A
608	O. S.	20 31	243	20	245	25	355	30			o.1	p	A
609		•••	236	35	240	10	355	42	40.180	39.776	— o.6	p	III
610	h 921	20 35	214	o	215	15	175	31	40.850	38.143	—о.8	P	A
611	β 267	20 35	235	0	236	10	355	44	40.835	40.238	0.3	p	III
612		•••	230	50	234	10	355	44			—о.з	P	I
613	β 674	20 38	98	0	103	25	355	42			—o .6	p	A
614			97	40	98	25	355	30	40.178	39.787	-0.4	P	A
615	h 5220	20 39	170	20	170	15	175	28	42.127	36.852	-0.5	n	A
616	β 154	20 46	234	35	236	30	175	42	40.922	40. 0 81	—1.1	p	A
617	, 		233	20	236	10	175	42	40.926	40. 0 87	+0.1	p	A
618	•••		54	35	54	5	35 5	42	40.953	40.070	-0.1	p	I
619	Σ 2745	20 58	185	10	186	40	355	31	40.989	40.050	-0.2	n	A
620			5	35	7	15	175	31	40.908	40.094	-0.5	ı	A
621			3	10	7	5	175	31	40.974	40.035	-0.2	n	I
622	h 5252	21 6	136	25	135	35	175	31	39.926	39.014	—1.0	n	A
623	H. V. E.	21 8	335	35	335	40	175	44	53.967	24.837	-0.5	n	III
624	Σ 2781	21 10	344	20	345	10	175	31	40.963	40.042	-0.1	n	A
625	β 271	21 13	224	15	229	42	355	42	40.870	40.104	_o.1	n	A
626			225	40	228	20	355	42	40.802	40.192	_o.2	P	A
627	Σ 2787	21 16	194	45	195	0	175	30	42.783	36.152	о.8	n	III
628	β 272	21 18	250	50	250	45	355	30	40.618	39.368	0.8	P	III
629	н. а. н.	21 19	318	55	319	40	175	42	41.163	38.794	—I.2	n	III
630			319	50	317	35	175	42	41,212	38.800	— <u>i</u> .i	p	III

ber.	Position	n Angle.	Dista	ance.	tudes.	Epoch	rver.	N.
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Observer.	Notes.
	•	•	"	"		_		
601	134.2	134.2	16.56	16.55	•••	80.442	E	
602	49.8	48.1	23.05	23.17	7.5 9.0	80.560	E	·
603	267.1	267.4	17.93	17.93		79.713	S	
604	266.8	•••	17.25		9.0 10.0	79.713	S	
605	56.0	5 5.0	2.73	2.77	8.5 9.0	79.790	н	
606	171.9	172.1	3.30	3.14	5.0 7.0	79.710	s	
607	240.7	239.0	22.10	22.22	6.0 6.5	80.560	E	
608	248.9	248.0	•••		8.5 9.0	79.790	н	Blurry and hazy.
609	242.7	241.3	1.38	1.42	8.o 8.o	79.754	н	Poorly defined.
610	39.1	37-3	9.24	9.36		80.563	E	
611	239.8	240.5	2.04	2.04	10.0 10.0	79.593	s	
612	236.8		•••	•••		79-593	s	
613	105.0	104.7	•••	•••	8.0 11.0	79.754	н	Too blurred for distance.
614	102.5	102.0	1.33	1.35	8.0 10.5	79.790	Ή	
615	354.8	354.8	18.00	17.99	8.o 9.o	80.516	E	
616	59.8	60.3	2.87	2.89	8.0 9.0	79.683	s	
617	59.0	59.4	2.86	2.86	8.o 9.5	79.694	s	
618	58.6		3.01			79.694	s	
619	190.4	190.5	3.20	3.12	6.o 8.5	80.563	s	•
620	190.9	191.1	2.78	2.70	5.5 7.0	80.593	s	
621	189.6		3.20			80.593	s	
622	320.5	320.3	3.11	3.10		80.563	E	
623	59.9	59.9	99.41	99.40	9.0 9.5	79.656	E	
624	169.2	169.2	3.14	3.06	8.0 8.2	80.563	s	
625	231.3	231.8	2.61	2.53		79.694	s	
626	231.3	231.7	2.08	2.08	6.5 9.5	79.694	s	
627	19.4	19.4	22.63	22.62		79.779	E	
628	255.3	255.7	4.27	4.31	8.0 12.0	79.790	н	Exceedingly difficult.
629	143.6	142.8	8.08	8.18	8.0 10.0	79.754	н	
630	143.0	143.0	8.23	8.27		79.754	н	
	-+3.0		J3	- /	1	17:134	1	l

		Mean Position Circle.										11	
Number.	Double Star.	r. R. A.			Circl	e.	Assu	med	Micro	meter.	Hour Angle.	Eyes.	Eye-piece.
Nun			1	•	11		Zei	ro.	I	II.	Hour	E	Eye-
631	β 683	h. m. 21 21	o 195	/ 45	o 196	20	355	30	r. 	r. 	-o.6	n	III
632	β 165	21 28	175	35	175	10	355	30	40.702	39.341	-0.7	n	ш
633	Σ 2809	21 31	338	o	338	35	175	42	45.016	35.923	-0.7	n	A
634	•••	•••	337	55	339	o	175	42	45.033	35.918	0.9	n	I
635	Σ 2826 A,C	21 41	75	25	75	40	355	42	40.557	39.410	0.5	p	A
636	н.а.н. а,в		279	0	280	55	175	30	•••		-0.3	p	A
637	O. S. 110	21 41	353	20	354	20	175	42	40.412	39.616	-1.1	n	III
638	h 305 9	21 44	69	45	69	40	175	42	43.607	36.320	-1.3	P	ш
639	h 615	21 47	63	5	63	5	355	42	41.817	38.213	0.9	p	A
640		•••	63	10	63	10	355	42	41.766	38.186	-1.1	P	Ш
641	Σ 2838	21 48	179	50	181	15	355	31	42.387	36.585	-1.2	n	A
642	Σ 2839 rej.	21 49	270	55	271	0	355	42	44-459	35-459	0.6	P	111
643	. 	•••	270	25	270	35	355	30	44.028	34.952	-1.4	p	ш
644	h 3068	21 51	282	50	282	45	355	30	42.014	38.951	—о.з	P	A
645		•••	103	30	102	15	175	42			—1.2	p	ш
6 46	Σ 2847	21 52	298	15	299	35	175	42	40.668	40.314	—0.8	n	A
647		•••	296	45	295	45	175	42	40.653	40.361	- 0.7	P	A
648	Σ 2848	21 52	231	45	231	30	175	42	41.432	38.570	—1.8	P	A
649		•••	231	35	231	25	175	42	41.455	38.568	—1.6	P	I
650	O. S. 111	21 53	210	10	213	30	175	38	42.217	38.787	-0.1	n	A
651	•••		30	45	33	10	355	42	42.183	38.773	0.5	n	III
652	···		209	35	210	50	175	38	42.238	38.722	-0.2	P	A
653		•••	29	35	31	10	355	42	42.195	38.712	-0.4	P	III
654	•••		30	30	3 2	50	355	42	41.651	38.259	—0 .9	n	III
655			32	35	31	55	355	42		•••	—1.0	P	III
656	β 256	21 54	287	55	289	5	175	31	40.749	40.243	-0.3	P	A
657	S 802	21 56	61	0	60	35	175	31	40.034	38.992	-o.8	P	A
658			239	30	239	15	355	31	39.989	38.993	-0.4	P	I
659	β 475	22 6	54	20	48	20	175	42			-0.7	P	A
660	•••		40	35	44	25	175	42			—0.6		ш

ber.	Position	Angle.	Dista	inc e.	tudes.	Epoch	rver.	Notes.
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes	1800+	Observer.	Notes.
,	•	0	"	"				77
631	200.5	197.3	2.5e	•••	8.5 12.0	79.790	H	Very faint; clouds, etc.
632	179.9	178.4	4.64	4.74	8.0 10.5	79.790	H	
633	162.6	162.4	31.03	30.95	•••	79.691	S	
634	162.8	•••	31.11	•••	5.5 8.0	79.691	S	
635	79.8	79-4	3.91	3.93	8.0 9.0	79-754	Н	A slightly elongated at 120°±
636	104.5	105.5	0.8e	0.82	8.0 10.0	79.771	S	Principal star white.
637	178.1	175.9	2.72	2.82	8.0 9.5	79-754	H	Faint.
638	254.0	253.7	24.87	24.91	7.0 11.0	79.754	Н	Very faint.
639	67.4	67.1	12.30	12.32	•••	79.754	Н	Faint.
640	67.5	67.1	12.22	12.26	7.5 9.0	79.754	Н	
641	185.0	185.o	19.80	19.79	•••	80.560	E	Difficult on account of faint- ness of companion.
642	275.3	275.0	30.72	30.76	7.5 9.5	79.754	н	•
643	275.0	273.3	30.97	31.21		79-779	E	Too faint to measure distance well.
644	287.3	287.7	10.45	10.45	8.5 11.0	79.771	S	
645	287.2	2 87.0			8.0 11.0	79-754	н	Too faint for distance.
646	123.2	123.3	1.21	1.13	7.0 8.0	79.691	s	
647	120.6	121.6	1.00	1.00	•••	79.6 91	s	
648	55.9	55.5	9.77	9.79	7.0 8.0	79.735	н	
649	55.8		9.85		•••	79-735	н	
650	36.2	36.3	11.71	11.63		79.76 0	s	
651	36.3	36.6	11.64	11.48	6.5 10.0	79.749	s	
652	34.6	34-7	12.00	12.00	7.5 10.0	79. 760	s	Principal star white.
653	34.7	34-9	11.89	11.89		79.749	s	
654	36.o	35.1	11.58	11.68		79.754	н	
655	36.6	36.o			7.0 10.0	79 754	н	
656	113.0	113.7	1.73	1.73	5.5 7.0	80.563	s	
657	245.3	243.4	3.56	3.68		80.560	E	Very blurry.
658	243.8		3.40			80. 560	E	
659	235.6	234.5			7.0 11.0	79.754	н	Too blurred for distance.
660	226.8	224.6	1.0e			79.754	н	

ber.	D. 11. C.	Mean	Pos	sitior	Circ	le.	Assu	med	Micro	meter.	ngle.	es.	iece.
Number.	Double Star.	R. A. 1880.	I	•	II	Ι.	Ze		I.	II.	Hour Angle.	Eyes.	Eye-piece.
661	H n 56	h. m. 22 8	° 110	15	0	45	355	/ 42	r. 40.697	r. 39.317	0.0	p	Ш
662	•••		292	15	292	35	175	34	40.174	38.782	<u>_1.1</u>	p	A
663	β 171	22 8	252	40	255	15	355	42	•••		+0.1	P	Ш
664	O. S. 114	22 8	91	10	92	20	355	42	41.345	38.598	-0.2	P	Ш
665	H n 102	22 10	291	0	291	25	355	42	41.883	38.136	—ı.8	n	ш
666		•••	290	35	290	25	355	42	•••		—1.6	P	ш
667	Σ 2885 rej.	22 10	95	10	94	20	355	42	43.203	36.780	<u> </u>	P	ш
668	Σ 2892 rej. A, B	22 13	56	40	52	10	355	42		•••	-0.4	P	III
669	A, C	•••	260	20	259	10	355	42	45.274	34.651	0.5	p	III
670	h 962 A,B	22 14	13	35	14	50	355	42	40.920	39.086	—1.5	n	III
671	•••	•••	194	15	196	10	175	42	41.801	38.195	+0.2	n	III
672			13	10	11	10	355	42		· 	—1. 6	P	Ш
673	A,C		219	15	218	40	355	42	41.451	38.578	+0.1	n	III
674		···	39	25	40	15	175	42	41.372	38.551	-1.4	P	ш
675	Σ 2901	22 18	321	5	319	45	175	34	39.958	39.077	-o.8	n	A
676	Sh 345	22 20	119	50	121	35	175	31	41.598	41.359	0.2	P	A
677			302	35	303	0	355	31	40.596	38.387	-o.5	P	A
678	Σ 2909	22 23	327	35	3 2 7	45	355	42	41.000	39-973	—1.2	n	A
679	 .		327	20	327	30	355	42	40.950	39.993	-0.7	n	A
6 80	•••		328	10	328	40	355	42	40.958	40.004	o.7	n	III
681	•••		326	40	326	20	355	42	41.020	39.987	—0.4	n	II
682			3 27	50	328	30	355	42	41.132	39.879	o.8	n	I
683	·		147	55	148	20	175	30	40.473	39. 52 3	-1.5	n	A
684		•••	328	35	3 2 8	50	3 5 5	30	40.463	39.522	—1. 5	n	A
685	. 	•••	328	25	327	40	355	42	40.485	39.530	-1.5	n	Ш
686			148	0	147	20	175	31	39-953	38.987	ò.7	n	A
687	Σ 2913	22 24	326	5	326	15	355	42	41.103	38.853	+0.2	n	A
688	Σ 2928	22 33	311	45	310	35	175	42	41.142	39.847	—о.з	n	VI
689	•••	•••	311	30	314	45	175	42	41.128	39.872	-o.3	n	VI
690			312	45	315	10	175	42	41.125	39.832	0.3	n	A

ber.	Position	Angle.	Dist	ance.	tudes.	Epoch	rver.	
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes	1800+	Observer,	Notes.
	•	•	"	"			\vdash	
661	115.3	115.1	4.71	4.75	6.5 7.5	79-754	Н	
662	116.8	115.0	4.75	4.87	7.0. 9.0	79.765	E	Very windy.
663	258.3	257.9	10.e		8.5 12.0	79-754	Н	
664	96.0	95.7	9.37	9.41	8.0 12.0	79.754	Н	10 sec. ± following another 8.
665	295.5	295.0	12.79	12.89	9·5 9 ·5	79-735	н	
6 66	294.8	294.3	•••		•••	79-735	н	
667	99.0	98.8	21.92	21.96	8.0 12.0	79-754	н	
66 8	58.7	58.1	10.е		12.0	79.754	Н	Very faint.
669	264.0	263.7	36.25	36.29	8.0 9.0	79-754	н	
670	18.5	17.1	6.26	6.36		79-735	н	
671	19.5	18.7	5.48	5.58	11.0	79-754	н	Micrometer changed 2 rev. in reduction.
672	16.5	16.0			5.5 10.0	79-735	н	
673	223.3	222.3	9.81	9.91	5.5 11.0	79-754	н	
674	224. I	223.6	9.63	9.67	10 .0	79-735	н	
675	144.8	144.6	3.01	3.00	9.0 9.5	79.765	E	Unsatisfactory; faint; poor definition.
676	305.2	305.7	7.64	7.64	7.0 7.0	80.563	s	Micrometer II changed 2 rev.
677	307.3	305.5	7.54	7.66		80.560	E	(in reduction.
678	332.0	332.0	3.50	3.42		79.713	S	
679	331.7	331.7	3.27	3.19		79.746	S	
68o	332.7	332.8	3.26	3.10		79.713	s	
681	330.8		3.53			79.746	s	
682	332.5		4.28		***	79.713	s	
683	332.6	331.5	3.24	3.29	4-5 4-5	79.787	н	
684	333.2	332.1	3.21	3.26	4.5 4.5	79.790	н	(3)
685	332.3	330.6	3.26	3.36		79-735	н	
686	332.2	332.0	3.30	3.29		80.560	E	
687	330.5	330.0	7.68	7.73	8.0 9.0	79.754	н	
688	135.5	135.2	4.42	4.38		79.746	s	
689	137.4	137.1	4.29	4.25		79.749	s	
690	1.00	138.0	4.41	4-33		79.713	s	

Number.	Double Star.	Mean R. A.	Pos	sitior	Circl	e.	Assu	med	Micro	meter.	Hour Angle.	Eyes.	Eye-piece.
Nun		1880.	I	•	11		Zei	ro.	I.	II.	Hour	Ey	Eye-I
691	•••	h. m.	312	, 40	313	30	175	/ 42	r. 41.127	r. 39.857	—0. 6	n	ш
692	•••		312	25	312	45	175	42	41.092	39.916	—0. 5	n	ш
693	•••		313	30	313	55	175	42	40.115	39.827	-0.4	n	II
694	•••	•••	309	55	311	15	175	42	41.114	39.863	—0.2	p	VI
695	•••	•••	310	20	311	10	175	42	41.117	39.876	0.3	p	VI
696		•••	309	35	310	3 5	175	42	41.110	39.881	+0.2	p	A
697	•••	•••	30 9	50	310	0	175	42	41.131	39.881	+0.3	p	ш
698	•••		310	20	311	5	175	42	41.124	39.894	0.4	P	Ш
699		•••	311	10	311	10	175	42	40.111	39.907	-0.1	P	11
700		•••	311	0	311	15	355	31	40.165	38.790	-0.4	n	A
701		•••	312	30	312	10	175	42	40.076	38.902	+0.7	p	VI
702	•••	•••	313	30	313	5	175	42	40.119	38.883	+1.1	P	A
703	Σ 2940	22 38	136	15	137	0	355	42	39.881	39.101	0.3	p	·A
704	h 1811	22 43	3 2 9	55	331	20	175	42	40.793	39.179	—1.7	n	III
705	Σ 2948	22 45	179	25	179	45	175	42	39.880	39.116	1.8	n	. A
706	•••		179	50	180	0	175	42	39.889	39.105	-2.1	p	A
707	Σ 2953	22 48	134	15	133	15	355	42	40.714	38.250	-1.7	P	A
708	O. S.	22 52	127	5	130	o	355	31	•••		+0.3	n	A
709			125	42	128	45	355	31	40.853	40.133	+0.2	P	A
710	h 1838	22 54	82	25	81	55	175	42	39.794	39.184	-1.4	n	A
711	•••		83	0	83	35	175	42	39.789	39.201	1.5	P	A
712	Σ 2971	22 54	359	5	358	40	355	42	40.311	38.718	1.0	n	. A
713	•••		182	40	182	45	179	52	40.283	38.733	-0.2	n	A
714	Σ 2970	22 56	33	0	32	5 5	35 5	42	41.149	38.811	—r.8	P	III
715	h 3174	23 4	14	55	14	25	355	42	40.788	39.214	-1.7	n	III
716	β 714	23 8	330	30	333	45	175	42			—0.8	n	VI
717	h 981	23 8	96	30	96	40	175	42	42.680	37.427	-1.7	P	III
718	β 715	23 8	250	20	255	55	355	34	40.960	40.073	-0,2	p	ш
719	•••		252	50	254	45	355	30	40.970	40.050	0.0	P	III
720	Σ 2996	23 9	102	50	102	50	355	42	40.224	38.753	—0. 6	P	A

ber.	Position	n Angle.	Dist	ance.	tudes.	Epoch	rver.	
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes	1800+	Observer.	Notes.
	. 0	0	"	"				
691	137.4	137.2	4.33	4.17	8.5 8.7	79.713	S	
692	136.9	136.7	4.01	3.85	•••	79.749	S	(Micrometer I changed 1 rev.
693	138.0	•••	4.40	•••		79.746	S	in reduction.
694	134.9	135.5	4.27	4.27		79.746	s	
695	135.0	135.6	4.24	4.24		79.749	S	
696	134.4	134.9	4.19	4.19		79.713	s	
697	134.2	134.8	4.27	4.27	•••	79.713	s	
698	135.0	135.6	4.20	4.20		79.749	s	
699	135.5		4.11			79.746	s	Micrometer I changed 1 rev. in reduction.
700	315.6	315.5	4.69	4.68		80.560	E	
701	136.6	134.8	4.01	4.07		79.746	E	
702	137.6	135.8	4.22	4.34	•••	79.746	E	
703	140.9	138.8	2.66	2.78	9.0 10.0	79.752	E	
704	154.9	153.7	5.51	5.61	8.5 9.0	79.735	н	
705	3.9	3.7	2.61	2.60	•••	79.752	E	
706	4.2	2.3	2.68	2.80	7.0 9.0	79.752	E	
707	138.0	136.2	8.41	8.53	8.0 11.0	79.752	E	Companion very faint.
708	133.0	132.7				80.563	s	•
709	131.7	132.3	2.46	2.46	7.0 8.0	80.563	s	
710	266.5	266.2	2.08	2.07	·	79.752	E	The position angle is in the
711	267.6	265.6	2.01	2.13	10.0 11.0	79.752	E	right quadrant.
712	3.2	3.1	5.44	5.43	8. o 9.o	79.752	E	
713	2.8	2.7	5.29	5.28		79.497	E	
714	37.3	36.7	7.98	8.02	8.5 9.5	79.735	н	
715	19.0	17.4	5.37	5.47	8.5 9.0	79.735	н	
716	156.5	156.6	o.8e	0.82	7.0 11.0	79.760		Perhaps an "atmospheric wing."
717	280.9	280.7	17.93				H H	remaps an atmospheric wing.
718	257.6	256.9		17.97	8.5 12.0 6.0 12.0	79.735	S	
719	258.3		3.03	3.03		79.765		
		257.6	3.14	3.14	6.0 11.0	79.771	S	
720	107.1	105.3	5.02	5.14	8.5 9.0	79.752	Е	

Number.	Double Star.	Mean R. A.	Pos	ition	Circl	е.	Assur	med	Micro	meter.	Angle.	es.	iece.
Num	Double Star.	188o.	I.		11	•	Zei	ro.	I.	II.	Hour Angle.	Eyes.	Eye-piece.
721	h 5393	h. m. 23 12	o 299	15	o 302	4 0	355	3 0	r. 43·305	r. 37.658	-1. 0	n	Ш
722	•••	•••	299	o	299	20	355	30	43.261	37-775	—0. 9	p	Ш
723	h 5394	23 13	15	45	18	15	355	30	42.113	38.980	-0.4	n	A
724			196	0	197	15	175	30	42.122	38.955	-1.5	n	A
725			195	0	197	10	175	30	42.016	38.943	-1.6	p	A
72 6	Σ 3003	23 13	83	50	83	40	175	42	42.906	36.069	0.4	p	ш
727	h 3189	23 17	308	50	309	40	175	42	46.127	33-945	—1.7	n	ш
728	Σ 3008	23 18	247	45	249	20	355	42	41.190	39-774	0. І	p	VI
729	•••		249	15	250	30	355	30	41.190	39-794	—0. 6	p	VI
730		•••	247	20	249	35	355	31	41.198	39.792	0.0	p	A
731			248	25	248	15	355	42	41.176	39.818	-0.2	p	III
732	Σ 3011	23 20	148	30	148	10	175	42	40.504	38.470	-0.3	p	A
733	H. V. E.	23 20	228	50	229	IO	175	30		•••	-o.8	p	III
734	Σ 3014	23 22	92	35	94	25	175	42	41.115	38.855	—1.6	P	III
735	h 3196	23 24	194	0	193	40	175	31	42.455	36.552	-0.1	n	A
736			196	20	196	30	175	28	42.531	•••	—1.0	p	A
737	h 3197	23 24	304	0	305	10	355	30			-1.2	n	A
738	•••								41.720	39.242	0.0	n	A
739			301	o	302	35	355	30	41.720	39.295	-1.1	P	A
740			300	35	303	20	355	30			— 0.3	P	I
74 I	β 726	23 40	327	40	330	15	355	38			—o. 8	n	A
742			316	15	321	3 5	355	30			-o.5	n	A
743		·	317	5	317	15	355	30			-0.4	P	A
744	H.V. E. 124	23 41	262	15	261	40	175	42	40.222	39.828	-1.5	P	III
745	Σ 3040	23 42	32	20	32	25	175	42	40.612	39.392	-1.7		. 111
746	Σ 3045	23 48	252	50	253	25	355	42	40.250	39.737	-1.5	P	III
747	Σ 3046	23 50	241	45	242	30	355	42	39.948	39.050	0.0	p	A
748	Weis se	23 54	266	15	267	40	175	42	40.249	39.718	—I.2	P	III
749	H. A. H.?	23 55	80	10	83	35	355	42	40.268	39.738	-1.4	p	III
750	Σ 3052	23 57	182	25	182	30	175	42	44-453	34.501	—0. 7	n	A

ber.	Position	n Angle.	Dista	ance.	tudes.	Epoch	Observer.	Notes.
Number.	Obs.	Cor.	Obs.	Cor.	Magnitudes.	1800+	Obse	Notes.
	0	0	"	"	- 3	T. H		
721	305.5	305.1	19.27	19.11	8.0 10.0	79.771	S	
722	303.7	304.2	18.72	18.72	144	79.771	S	
723	21.5	20.9	10.69	10.61	6.0 10.5	79.773	S	Principal star white.
724	21.1	21.3	10.81	10.73		79.790	S	
725	20.6	20.8	10.49	10.49	5.0 10.5	79.790	s	
726	268.o	266.3	23.33	23.57		79.752	E	
727	133.6	133.2	41.57	41.67		79-735	Н	
728	252.8	253.3	4.83	4.83		76.749	s	
729	254.4	254.8	4.76	4.76	6.5 7.5	79.790	s	
730	253.0	253.4	4.80	4.80	7.0 8.0	80.563	s	
731	252.6	253.1	4.63	4.63	7.0 8.0	79.749	s	
732	332.6	330.8	6.94	7.06		79.752	E	
733	53.5	51.7	7.e			79.902	E	
734	277.8	277.7	7.71	7-75	7.5 9.5	79.735	н	
735	18.3	18.3	20.15	20.14	9.0 10.0	80.893	E	Definition very poor.
736	21.0	19.3	1		9.0 10.0	80.516	E	Became too faint for distance
		308.8	•••	•••	8.0 9.0	79.790	s	became too fame for distance
737	309.1		۰۰۰			79.842	s	
738			8.46	8.38	9.0 10.0		1	City Is
739	306.3	306.9	8.28	8.28	•••	79.790	S	Clouds.
740	306.5	•••	•••	•••	•••	79.809	S	Too faint with power A. (Probably an error of 10° in
741	333.3	3 33·7	0.8e	0.82	8.0 10.5	79.76 0	S	pos. angle.
742	323.4	32 3.6	o.7e	0.72	8.o 10. o	79-773	S	
743	321.7	322.6	•••		•••	79.773	S	
744	86.3	86. 1	1.34	1.38	8.5 9.0	7 9·7 3 5	Н	·
745	216.7	216.0	4.16	4.20	8,5 8.5	79-735	Н	•
746	257.4	257.1	1.75	1.79	8.0 9.0	79-735	н	
747	246.4	244.5	3.06	3.18	•••	79.746	E	
748	91.3	91.0	1.81	1.85	8.5 9.0	79.735	Н	
749	86.2	85.9	1.81	1.85	8.5 9.0	79-735	н	Probably same as preceding
750	6.8	6.8	33.96	33.95		79.752	E	

MEAN RESULTS.

1879-80.

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
1	Σ 3063	L. 47294	h. m. s. o I 28	o / - 5 13	o 220.6	1.78	3.2	8.2 9.2	79.71
2	Σ 3064 rej.	P. M. 2873	0 2 10	+39 26	353.9	23.78	1.1	7.0 10.0	79.61
3	β 486	Ceti 31	o 8 19	— 8 27	6.3	3.05	2.2	5.8 10.5	79.76
4	Σ 15	L. 204	0 9 44	- 6 16	196.0	5.26	1.1	9.0 10.5	79.66
5	h 1947	L. 209	0 10 3	+42 56	76.4	9.07	1.1	7.0 9.0	79.61
6	Weisse	W o 264	0 11 10	+35 11	106.4	5-35	1.1	8.0 8.7	79.61
7	Σ 23	W o 164	O II 20	— o 21	349.2	8.11	1.1	•••	79.75
8	β 393	L. 291	0 12 12	_21 48	11.4	0.69	1.1	6.0 8.0	79-75
9	β 256	Anon.	0 13 9	—14 2 9	250.3	2.41	1.1	8.5 9.5	79.77
10	H v 85	L. 335	0 13 44	+37 34	15.8	62.80	1.1	7.5 9.0	79.70
II	Σ 30	Cassiopeæ 49	0 20 43	+49 19	299.1	19.20	2,2	6.8 8.5	79.61
12	Σ 31	P. M. 26	0 21 30	+40 45	57.1	5.56	1.1	8.5 9.0	79.61
13	h 1968	L. 593	0 21 33	—17 4	71.9	7.46	2.2	7.0 10.8	79.87
14	h 1980	Anon.	0 25 25	_11 56	122.8	6.03	1.1	•••	79.78
15	h 3377	Anon.	0 27	-26.45	56.5	18.55	1.1	•••	79.90
16	h 3379	L. 937	0 30 47	-28 5	231.3	14.49	3.3	7.0 9.5	79.76
17	h 1044	Anon.	0 33 46	+43 5	318.8	21.90	2.2	8.5 8.7	79.61
18	Σ 67	L. 1432	0 45 52	+ 9 57	4.4	2.00	1.1	8.5 9.5	79.70
19	h 2000	Anon.	0 46 6	-15 30	114.2	17.80	1.1		79.90
20	β 734	Lac. 238	0 46 47	-24 40	345.6	10.75	1.1	5-5- 9-5	79.69
21	Σ 70	P. M. 68	0 46 52	+52 2	244.2	8.13	2.2		79.78
22	W. C. 457,8	Lac. 241	0 47 19	-25 26	12.7	5.50	1.1	7.0 9.0	79.69
23	Н. А. Н. 1	O. Arg. 509	0 49 52	-17 I	105.1	1.72	2.2	8.5 8.5	79.78
24	Σ 76	P. M. 73	0 50 19	+10 1	199.3	3.38	1.1	9.0 13.0	79.74
25	Σ 82	L. 1737	0 54 26	+ 8 50	306.8	2.40	1.1	8.0 9.0	79.66
26	h 2010	L. 1774	0 55 53	+47 3	270.8	10.03	1.1	8.0 9.5	79.61
27	h 1064	39 Andromedæ	0 56 10	+40 42	3.4	15.	1.0	6.0 13.0	79.61
28	Σ 86	L. 1885	0 58 43	_ 6 7	160.0	12.85	4.3	•••	79.87
29	h 10 A,B	Anon.	0 58 47	+12 11	313.0	4.76	2.1	8.2 9.8	79.66
30	A,C	11940			55.2	8.80	2.1	9.5	79.66

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
31	h 10 B,C	Anon.	h. m. s. o 58 47	0 / +12 II	o 263.1	10.79	2. I		79.66
3 2	H iv 66	Cassiopeæ 106	0 59 59	+52 51	75.2	22.83	1.1		79.78
33	Σ 89 rej.	O. Arg. 1090	1 0 13	+79 42	14.8	16.14	1.1	8.5 9.0	79.75
34	h 633	Schj. 379	I 3 3	— 3 3 ²	143.4	9 .39	1.1	10.0 11.0	79.74
35	Σ 96	Piazzi o 312	1 4 51	+64 22	279.5	1.41	1.1		79.78
36	Σ 101	L. 2204	I 7 54	- 8 15	340.6	20.94	2.2	7.0 9.8	79.78
37	H.V. E. A,B	Anon.	1 9	+53 7	271.8		1.		79.78
38	А,С		•••		114.5		ı.		79.78
3 9	Σ 103	Lamont V 191	ı 8 38	— I 59	243.6	5.47	1.1	8.0 11.0	79.74
40	Σ 106	W i 124	1 10 14	— 7 47	307.9	4.61	1.1	9.0 9.0	79.74
4 I	Σ 102 Α,Β	L. 2283	1 10 40	+48 23	307.8	0.52	2.1	7.0 8.0	79.61
42	(A+B),C	•••	•••		224.7	10.08	2.2	7.0 8.5	79.61
43	½(A+B),D	•••	•••		63.0	28.07	1.1	7.0 10.0	79.61
44	Σ 105	P. M. 100	1 10 53	+65 32	182.3	2.90	1.1		79.78
45	Σ 112	O. Arg. 1406	1 13 40	+45 42	327.2	22.80	1.1		79.78
46	Σ 113	42 Ceti	1 13 40	— 1 8	347.8	1.40	2.2	6.5 7.8	79.78
47	h 2036	L. 2416	1 14 4	—16 26	24.1	1.66	5.3	7.5 8.0	79.79
48	Σ 114	Anon.	1 15 4	+72 13	353-4	3 .83	2. I		79.75
49	β 4	L. 2483	I 16 34	+10 44	119.1	0.52	1.1	7.0 7.0	79.66
50	Secchi	Lac. 381	1 17 52	—24 59	76.5	2.62	1.1	7.0 9.0	79-77
51	Σ 120	Ceti 202	1 18 58	- 6 34	278.9	7.46	1.1	7.0 11.0	79.73
52	Σ 122	L. 2632	I 20 42	+ 2 55	327.4	6.12	1.1	7.8 9.0	79.66
53	Σ 118	P. M. 113	I 20 47	+82 44	69.8	11.68	2,2	8.5 9.5	79.77
54	Σ 125	L. 2635	I 20 50	- 0 4 6	350.6	31.21	1.1	8.0 10.0	79.68
55	Σ 127	P. M. 121	I 24 59	+78 32	186.0	24.67	1.1	8.2 9.0	79-75
56	h 1085	Anon.	I 30 25	+63 6	296.0	3.92	2.2	8.5 9.0	79.77
57	h 17	Anon.	1 32 46	+11 35	280.8	7.81	1.1	9.0 10.0	79.66
58	h 641	L. 3053	I 33 33	— 3 8	129.5	5.57	2.2	8.5 11.0	79.76
59	Σ 146	W i 600	I 34 57	+ 9 30	305.6	24.05	2.1	8.0 8.0	79.66
60	Σ 147	χ' Ceti	1 35 49	—11 55	87.2	3.70	2.2	6.0 7.0	79.72

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
61	Σ 160	Anon.	h. m. s. 1 40 16	- 3 °	o 269.4	9.66	1.1	9.0 10.0	79-77
62	Σ 166	W i 720	1 41 48	 3 56	0.4	8.00	1.1	8.5 9.0	79.77
63	β	L. 3289	1 41 50	— I 33	350.3	1.4	3.0	8.5 9.5	79.79
64	H. V. E.	Anon.	1 42	+45 29	146.2	5.73	1.1	8.0 8.5	79.78
65	h 644	L. 3303	I 42 22	+75	277.5	17.03	1.1	7.5 13.0	79.66
6 6	Σ 171	P. M. 157	I 42 40	_ 2 I	159.3	2 9. 98	1.1	8.5 8.5	79-77
67	Σ 173 rej.	L. 3344 -	I 43 38	+13 45	203.4	22.48	1.1	8.5 10.0	79.66
68	Σ 170	P. M. 174	I 44 24	+75 38	244.6	3-37	2.2	7.0 8.5	79-75
69	Σ 177	W i 783	1 45 13	+ 4 21	120.3	34.54	1.1	9.0 9.5	79.74
70	Σ 3113	L. 3406	1 46 4	+44 2	272.2	1.19	1.1	8.5 8.5	79.61
71	β 183	L. 3487	1 47 21	-17 20	226.7	2.42	1.1	8.0 9.5	79.77
72	Σ 199	O. Arg. 2289	1 55 58	+67 6	20.4	36.27	1.1		79.78
73	Σ 206	W i 982	I 56 27	+10 47	133.6	31.38	1.1	8.0 9.0	79.66
74	Σ 214	O. Arg. 1067	2 1 2	+15 1	189.2	4.96	1.1	8.0 9.5	79.66
75	Σ 222	59 Andromedæ	2 3 36	+38 28	34.2	16.94	1.1		79.78
76	Σ 231	66 Ceti	2 6 39	— 2 57	230.0	15.88	1.1	6.o 8.o	79.68
77	Σ 237	Schj. 654	2 9 17	+10 13	237.4	14.46	1.1	8.0 8.3	79.66
78	Σ 233	P. M. 208	2 9 26	+75 49	273.8	2.6	1.0		79.77
7 9 ·	Σ 238	P. M. 212	2 9 56	+36 56	354-7	11.16	1.1		79.78
80	Σ 246	L. 4239	2 11 28	+33 56	122.1	10.45	1.1		79.78
81	Σ 247 rej.	DM 320	2 12 7	+ 3 37	32.2	7.37	1.1	10.0 10.5	79.66
82	β 437	L. 4291	2 12 26	+ 3 39	2 9. 6	5.81	1.1	8.0 12.0	79 .6 6
83	Σ 248	W ii 278	2 13 31	+42 14	155.1	1.93	1.1	8.5 9.0	79.61
84	Σ 250	W ii 287	2 13 57	+36 52	135.4	2.73	1.1	8.0 9.0	79.61
85	Σ 251	P. M. 224	2 14 21	+38 50	265.2	2.24	1.1	8.0 9 .0	79.61
86	Σ 261	P. M. 232	2 17 55	+10 57	67.3	2.99	2.2	8.5 9.0	79.66
87	Σ 271	L. 4608	2 23 38	+24 42	181.6	12.06	1.1		79.78
88	Σ 276	P. M. 413	2 26 20	+ 5 48	254-3	2.14	1.1	8.5 8.5	79.66
89	Σ 280	L. 4773	2 28 9	— 6 10	346.7	3.52	2.2	8.o 8.o	79.70
90	h 3506	Lac. 783	2 28 35	28 46	242.4	10.65	1.1	4.5 7.5	79.79

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
91	Σ 282	O. Arg. 2973	h. m. s. 2 31 8	° ′ +65 8	o 292.4	7.24	2.2		79.78
92	Σ 287	L. 4903	2 32 24	+14 20	71.5	6.32	1.1		79.66
93	h 1123	W ii 778	2 34 15	+42 17	247.2	20.21	2.2	8.o 8.2	79.61
94	0 Σ 44	W ii 785	2 34 23	+42 12	51.2	1.56	1.1	8.0 9.0	79.61
95	0 Σ 45	W ii 573	2 34 40	+ 4 21	294.3	2.03	1.1	6.5 10.0	79.74
96	h 2155	L. 4954	2 35 1	+42 18	320.5	17.19	1.1	8.0 9.5	79.61
97	Σ 295	84 Ceti	2 35 5	_ I I2	323.2	4-44	3.2	6.0 11.0	79.75
98	Σ 299	γ Ceti	2 37 5	+ 2 44	287.2	3.19	1.1	4.0 10.0	79.74
99	Σ 303	W ii 644	2 38 35	_ 2 28	180.5	5.49	2.2	8. o 9.o	79.73
100	Br. 394	Lac. 850	2 38 54	_26 o	187.1	11.71	1.1		79.90
101	Σ 308	Anon.	2 41 40	_10 22	158.1	12.37	1.1	•••	79.78
102	β 10	L. 5276	2 44 23	- 5 2 9	100.1	2.56	1.1	8.0 12.0	79.68
103	Σ 330	Ceti 478	2 51 4	— 1 3	191.5	8.71	2,2	7-5 9-5	79.73
104	Σ 334	L. 5523	2 53 1	+ 6 10	315.8	1.5	1.0		79.90
105	Σ 341	L. 5652	2 56 57	_ 2 33	227.1	8.59	3.2	8.0 10.5	79.69
106	Σ 355	W ii 1056	3 0 54	+ 7 56	145.7	2.54	1.1	8.5 9.0	79.66
107	Σ 358	W ii 1091	3 2 45	- 4 9	350.8	15.	1.0	9.0 12.0	79.66
108	h 3554	L. 5959	3 6 42	— 3 22	347.6	20.04	1.1	8.0 11.0	79.66
109	β 84	W iii 147	3 10 5	— 6 22	30.6	0.74	1.2	6. o 8.o	79.78
110	Σ 371	L. 6023	3 10 23	+46 35	82.0	2.85	1.1	8.0 10.0	79.61
111	Jacob	τ⁴ Eridani	3 14 11	-22 12	280. 0	4.9	1.0		79.90
112	Schj. 1001	L. 6327	3 19 19	— 1 35	183.4	17.20	1.1	8.0 9.0	79.66
113	Σ 393	L. 6352	3 20 11	— I 27	258.2	16.09	1.1	8.0 10.5	79.66
114	Σ 394	L. 6367	3 21 6	+20 3	162.7	6.79	1.1	7.0 8.0	79.66
115	H iv 89	L. 6436	3 23 33	+19 42	147.3	20.40	1.1	8.0 9.5	79.66
116	Σ 407	W iii 408	3 24 16	11 33	44-5	3.14	1.1	8.o 10.o	79.74
117	Σ 408	W iii 412	3 24 42	- 4 41	337-4	1.30	1.1		79-79
118	Σ 414	L. 6568	3 27 33	+19 24	182.8	7.42	1.1	7.5 7.5	79.66
119	Σ 416 rej.	DM 556	3 28 2	+19 25	52.7	25.89	1.1	8.5 9.5	79.66
120	Σ 438	L. 6831	3 36 26	+22 21	240.3	1.80	1.1	8.o 8.8	79.66

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch +1880
121	Σ 439	P. M. 370	h. m. s.	+31 47	° 37.3	23.38	1.1	8.o 10.o	79.61
122	Σ 442	DM 538	3 37 55	+22 21	263.1	2.	1.0	9. 0 10.0	79.66
123	н. а н.	Anon.	3 38	+22 21	173.3	28.27	1.1	8. o 12.0	79.66
124	Σ 444	15 Pleiadum	3 38 43	+22 46	335.1	2.80	1.1	7.5 10.5	79.66
125	Σ 451 rej.	L. 6986	3 40 6	—I3 42	321.5	20.06	1.1	8.o 8.5	79.74
126	Σ 456 rej.	DM 664	3 42 9	+ 1 15	118.9	21.80	1.1	8.5 9.5	79.66
127	β 401	L. 7109	3 44 10	- 1 53	255.8	4.00	1.1	6.0 10. 0	79.77
128	Σ 468	Anon.	3 48 7.	_ 2 10	97.1	20.80	1.1	8.5 9.5	79.66
129	Σ 478	W iii 1016	3 53 11	+11 12	136.2	9.82	1.1	8.0 9.0	79.74
130	Σ 476	L. 7368	3 53 36	+38 20	285.0	20.11	1.1	7.5 8.5	79.61
131	Σ 487 A,B	W iii 1054	3 55 12	—10 4 7	8.5	12.33	1.1		79-74
132	A, C	•••			233.6	22.	1.0		79-74
133	Σ 482	W iii 1167 •	3 55 48	+21 48	123.3	13.20	1.1	8.0 9.5	79.66
134	Σ 483	L. 7439	3 56 2	+39 11	172.6	2.03	1.1	8. o 9.5	79.61
135	Σ 493	W iii 1146	4 0 22	+ 5 22	92.9	1.67	2,2	8.0 8.5	79.66
136	Σ 515	L. 7879	4 7 8	+ 2 34	42.6	3.18	2. 1	8.0 8.5	79.66
137	Σ 512	W iv 79	4 7 10	+45 6	224.2	5.16	3.3	7.5 7.5	79.61
138	Σ 516	L. 8027	4 8 41	—10 33	149.4	6.13	1.1	6.0 10 .0	79-73
139	Σ 518 Α,Β	40 Eridani	4 9 46	- 7 50	105.6	82.42	1.1	4.0 8.5	79.76
140	A, D	•••	•••		132.9	35.78	1.2	12.8	79.77
141	В,С	•••			120.0	3.29	1.1	10.5	79.52
142	Σ525 rej. A , B	W iv 217	4 12 34	- 2 59	243.6	44.05	1.1	8. o 9.o	79.66
143	В,С	•••			168.3	7.29	1.1	9.0 9.5	79.66
144	Σ 527	L. 8107	4 13 13	- 7 43	190.7	5.90	1.1	7.0 10.0	79.84
145	Σ 529	L. 8141	4 15 28	+28 7	14.6	4.66	1.1	8.0 11.0	79-75
146	Σ 536	L. 8222	4 16 13	4 58	159.0	1.77	1.1	•••	79-77
147	o. s.	L. 8521	4 23 55	—25 28	346.8	6.77	1.1	•••	79.90
148	Σ 562	Tauri 278	4 27 35	+22 27	268.0	2.20	1.1	7.5 11.0	79.66
149	Σ 564	Anon.	4 27 42	-12 23	343.0	3.65	1.1	•••	79-79
150	β	46 Eridani	4 28 4	-70	48.0	1.3	1.0	6.0 9.0	79.78

Number.	Double Star.	Name.	Mean R. A.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
151	Σ 609	DM 865	h. m. s. 4 43 40	+ 0 57	° 74.0	2.54	1.1		79.77
152	Σ 607	D M 744	4 45 48	+25 18	249.5	14.25	1.1	9.0 11.0	79.66
153	0 Σ 91	L. 9268	4 49 57	+ 2 59	237.7	0.73	1.1	8.o 8.5	79-75
154	β 314	Leporis 3	4 53 39	—16 34	331.9	0.5	1.0		79.78
155	Σ 651	W v 38	5 4 14	- 7 13	54.2	17.17	1.1	•••	79-79
156	Σ 661	κ Leporis	5 7 41	—13 5	359.6	2.52	1.1	•••	79.66
157	β 555 B,C	Rigel	5 8 46	8 20	158.7	0.42	1.1/2	6.0 6.5	79.76
158	Σ 668	Rigel	5 8 46	— 8 20	200.7	9.55	5.5	1.0	79.70
159	A, ½ (B+C) Σ 667	W v 165	5 8 52	– 7 13	311.4	4.08	1.1	7.0 10.0	79.74
160	h 3750	L. 10063	5 15 20	-2I 22	279.7	3.04	1.1	4.5 7.0	79.78
161	Σ 701	Orionis 88	5 17 33	- 8 32	144.0	5.75	1.1		79-74
162	Σ 702	L. 10134	5 18 21	+ 2 15	76.3	8.76	1.1	8.0 9.0	79-74
163	Σ 706	Anon.	5 18 38	+30 14	39.7	3.82	1.1	8.0 10.0	79.75
164	H vi 68	L. 10165	5 19 O	— 2 57	279.7	I 20.	1.0		79.82
165	Σ 712	L. 10195	5 20 15	+ 2 50	53.6	3.03	2.2		79.78
166	β 320	β Leporis	5 23 6	—20 5I	286.3	2.57	2. 1	2.8 7.8	79-77
167	Σ 743	P. M. 602	5 28 47	— 4 28	278.4	2.21	1.1	•••	79-77
168	Σ 741	L. 10512	5 28 48	— O 12	283.9	10.22	1.1		79-79
169	H.V. E.	Anon.	5 29 2	+ 7 11	242.9	43.50	1.1		79.82
170	Σ 748 Α,Β	θ^1 Orionis	5 29 23	- 5 28	59.1	13.02	1.1	5.5 7.0	79.66
171	A, C	•••	•••		311.5	12.86	1.1	7.0	79.66
172	В, D				298. 9	19.15	1.1	8.0	79.66
173	C,c	•••		•••	349.0	3.53	2. 1	11.0	79-74
174	C,D			•••	31.4	8.35	1.1		79.66
175	Σ 752 A,B	ι Orionis	5 29 34	— 5 59	142.2	11.22	1.1		79.66
176	H. C. Zones	Anon.	5 30	- 1 O	39 .7	18.	1.0		79.82
177	Σ_754	Orionis 158	5 30 44	_ 6 8	286.3	5.40	1.1	•••	79.74
178	Σ 755	•••	5 31 51	+23 13	315.7	5.85	1.1	8.5 9.0	79.66
179	Σ 759	Anon.	5 31 47	+17 41	3 22 .9	30.09	I.1	8.0 8.5	79.66
180	Σ 763	P. M. 614	5 32 40	+10 12	318.6	5.65	1.1	8.0 9.0	79.66

Number.	Double Star.	Name.	R.	ean A.		Mea Dec 188	:.	Position Angle.	Distance.	Weights.	Maonitudes	o	Epoch 1800+
181	Σ 774	ζ Orionis	h. n 5 3		s. 42	。 — 2	0	o 152.6	2.60	2.2	3.8	5.2	79-73
182	Σ 790	Orionis 187	5 4	ļo	6	– 4	19	89.0	7.42	1.1		•	79.7 9
183	Σ 839	Anon.	5 5	8	52	— 2	43	285.3	5.06	2.2	8.0	8.2	79.76
184	Σ 871	W vi 93	6	5. :	27	— o	44	304. 9	7.38	1.1		•	79.79
185	H iv 81	ν ¹ Can. Maj.	6 3	31	8	<u>_18</u> .	34	261.1	17.47	1.1			79-79
186	A. G. C. 1	Sirius	6 3	39 .	5 2	— 16	33	46.5	10.29	2. I	1.0	7.0	79-75
187	Σ 1011	Can. Maj. 124	6 9	55	24	-15	9	297.3	4.69	1.1	9.0	9.5	79-74
188	h 750	Anon.	7	0	13	<u> </u>	7	91.4	8.63	1.1		•	79-77
189	h 2362	Anon.	7	I	51	+ 3	33	187.2	28.63	1.1			79.82
190	Σ 1034	W vii 37	7	3	35	8	7	15.6	2.70	1.1		•	79-77
191	Σ 1045	L. 14013	7	6	42	_ 2	58	228.3	5.82	1.1	٠.		79-79
192	h 3938	L. 14105	7	8	43	-22	42	248.8	20.11	1.1		•	79.77
193	Σ 1056	L. 14107	7	9 .	30	— I	39	300.3	3.8	1.0			79.82
194	Σ 1103	L. 14601	7 2	24	11	+ 5	30	243.0	4-44	1.1		•	79-77
195	β 201	L. 14945	7 3	33 -	4I	20	o	330.8	2.79	1.1	7.0	8.0	80.16
196	Σ 1124	W vii 959	7 3	33	50	+22	5	324.7	19.49	1.1			79.82
197	Σ 1146	5 Puppis	7 4	12	20	-11	54	14.1	3.20	2.2		•	79.77
198	0 Σ 182	L. 15349	7 4	1 6	24	+ 3	42	34.7	1.39	1.1	٠.	•	79.77
199	β 334	L. 15933	8	2	3	—21	42	354.2	2.4	1.0	٠.		80.18
200	H. A. H. 9	W. M.Z.(221)28	8 1	12	2 6	—2 6	54	293.6	3.26	1.1	8.5	9.0	80.22
201	Σ 1216	L. 16375	8 1	15	15	– 1	13	166.4	0.62	1.1/2		•	80.22
202	Σ 1260	L. 17455	8 3	34	59	11	45	299.8	5.08	I.I			80.22
203	β 587	15 Hydræ	8 4	1 5 ·	4 I	- 6	44	152.2	0.42	1.1		•	80.22
204	Σ 1295	17 Hydræ	8 4	19	37	— 7	31	357.9	4.14	1.1	7.0	7 ·5	80.23
205	β 210	L. 17696	8 5	51	18	—16	58	181.0	2.54	2.2	6.5	6.5	79.25
206	Σ 1308	L. 17927	8 :	58	59	— з	31	84.0	10.69	1.1		••	80.22
207	h 4172	Anon.	9	I	5	-24	55	217.4	7.03	2. 1	7.5	8.5	80.22
208	W. M. C. Z.	Lac. 3873	9 2	25	26	-2 8	14	239.0	0.62	1.1	7.0	8.o	80.22
209	β 217	W. M. Z. (248)9	10	I	16	—24	8	277.6	2,08	2.2	•	•	80.22
210	h 4305	Anon.	10	۲4	54	—2 3	2	214.5	17.20	1.1	7-5	8. 8	80.22

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1880+
211	β	Lamont XII 701	h. m. s. 10 16 26	° ′ —13 4	°	// I.0	1.0	8.5 11.0	80.24
212	Σ 1440 ·	L. 20356	10 23 46	- 3 18	347.9	15.43	1.1	7.0 9.0	80.24
213	h 4337	O. Arg. 10765	10 31 45	—18 44	72.0	10.31	1.1	8.5 10.0	80.22
214	Σ 1474	L. 20799	10 41 43	-14 38	17.7	6.86	1.1		80.22
215	Σ 1500	L. 21116	10 53 55	 2 50	313.8	1.42	2.2	8.0 8.0	80.22
216	o. s.	O. Arg. 11040	10 54 18	-25 24	335.1	6.30	1.1		80.22
217	H i 77	Anon.	10 56 12	-15 8	15.3	2.91	1.1		80.22
218	Σ 1506	L. 21238	10 58 38	— 3 34	215.0	10.70	2.2	7.0 9.0	80.24
21 9	β 220	Crateris 22	11 6 34	-17 51	323.8	0.87	1.1	6.0 7.0	80.22
220	Σ 1529	L. 21586	11 13 17	<u> </u>	251.0	9.65	1.1	6.5 7.5	80.22
221	β 26	L. 21697	11 17 42	- 9 46	65.4	2.62	1.1		80.33
222	S 627	Anon.	11 23 15	-16 41	331.6	28.30	1.1	6.0	80.29
223	A,½ (B+C) B,C	•••	•••		224.9	0.82	1.1/2	8.0 9.0	80.29
224	Jacob 143	Hydræ 271	11 23 41	-23 47	78.2	8.15	1.1	•••	80.37
225	H iii 96	17 Crateris	11 26 19	—28 36	28.8	9 .04	2.2	•••	80.22
226	β 456 ·	L. 22020	11 30 45	11 41	255.2	0.72	I. ½	9.5 9.5	80.24
227	h 4478	β Hydræ	11 46 51	-33 14	345.1	1.88	2.2	4.5 6.0	80.23
228	h 4479	O. Arg. 11733	11 47 16	—23 55	93-4	6.87	1.1	8.0 9.5	80.36
229	h 4481	L. 22513	11 51 12	—21 52	196.9	3.2	1.0	•••	80.37
230	Σ 1593	W xi 959	11 57 23	— I 47	18.7	1.34	1.1	8.o 8.o	80.33
231	h 4496	Anon.	12 O I	-18 14	27.8	12.16	1.1	8.0 9.0	80.36
232	Σ 1605	W xii 28	12 4 19	— I 34	277.8	23.85	1.1	7.8 8.8	80.29
233	Σ 3080	W xii 50	12 5 24	—13 2	199.6	4.6	1.0	8.0 9.5	80.35
234	Σ 1635	L. 23131	12 14 57	-10 48	173.5	13.37	1.1	7.5 8.5	80.35
235	O. S. 71	O. Arg. 12151	12 19 22	-27 45	330.0	13.46	1.1	8.0 10.5	80.33
236	Sh 145	δ Corvi	12 23 40	—15 51	214.0	24.43	1.1	4.0 9.0	80.36
237	Σ 1649	W xii 401	12 25 24	—10 24	194.9	15.40	1.1	•••	80.22
238	Σ 1664	L. 23613	12 32 7	—10 51	249.2	21.34	1.1	7.0 8.5	80.32
239	β 607	Schj. 4572	12 35 2	0 48	314.5	1.08	2.2	9.0 11.0	80.34
240	Σ 1670	γ Virginis	12 35 35	<u> </u>	156.9	5.13	6.6		80.32

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
241	o. s.	Anon.	h. m. s. 12 40 2	° ′ —21 47	o 272.4	// I.5	1.0	9.0 9.5	79.36
242	Σ 1690	W xii 831	12 50 4	- 4 13	146.6	5.93	2. I	7.5 9.0	80.32
243	Ο Σ 256	L. 24098	12 50 17	— о 18	245.6	0.81	1.1		80.37
244	O. S. 73	Anon.	12 52	—12 29	65.1	2.03	3.3	7.8 8.0	80.30
245	Σ 1704	44 Virginis	12 53 29	- 3 10	52.9	20.59	1.1	6.0 10. 0	80.36
246	A. G. C. 5	46 Virginis	12 54 25	— 2 43	150.5	1.27	3.2	6. o 8.o	80.38
247	β	48 Virginis	12 57 43	- 3 I	227.3	0.6	1.0		80.35
248	β 609	W xiii 27	13 4 31	- 4 18	356.2	0.82	$2.\frac{1}{2}$	7.0 10.0	80.34
249	β 221	L. 24532	13 6 54	-14 49	46.4	1.52	2.2	8.0 10.0	80.36
250	H ii 45	54 Virginis	13 7 3	—18 11	33.1	5.26	4.3		80.33
251	β 342	O. Arg. 12741	13 8 49	-18 17	33.8	3.96	4.4		80.38
252	O. S. 74	Anon:	13 9	-23 35	333-5	12.2	1.0	8.0 10.0	80.36
253	0. S.	Anon.	13 15	+30 58	175.1	0.42	1.1/2	7-5 7-5	79.30
254	Σ 1742	W xiii 267	13 18 12	+ 2 2	350.5	1.20	3.3	7.5 8.0	80.31
255	O. S. 76	O. Arg. 12867	13 19 43	—22 37	354.2	1.56	1.1	8.0 9.0	80.35
256	h 2653	Anon.	13 22 46	-17 25	237.2	20.79	1.1	8.0 12.0	80.34
257	β 114	W xiii 438	13 28 0	— 8 о	137.0	1.50	4.2	7.9 8.0	80.33
258	H n 69	f Hydræ	13 30 9	-25 53	192.0	10.04	2.2	6.4 7.6	80.38
259	O. S.	Anon.	13 31	-14 10	263.1	4.58	1.1	8.5 11.0	80.42
260	Σ 1763	81 Virginis	13 31 18	- 7 16	41.2	2.93	2.2	7.0 8.0	80.37
261	h 4604	W.M.C.Z. (25)3	13 34 4	-27 38	279.0	15.51	3.3	8.3 10.5	80.38
262	h 2671	L. 25285	13 36 37	-24 22	70.0	27.84	2.2	9.0 9.8	80.38
263	h 2674	Anon.	13 38 27	—19 18	5.2	22.93	1.1	8.0 9.0	80.42
264	Σ 3081	W xiii 645	13 38 47	—11 15	67.8	2.08	2.2	8.0 8.5	80.33
265	β A, B	86 Virginis	13 39 33	-11 49	299.9	1.63	3.2		80.42
266	h 4617	O. Arg. 13176	13 43 54	-29 17	259.7	1.27	1.1	8.0 10.0	80.34
267	h 4637	Anon.	13 50 45	—11 58	137.7	12.98	2.2	9.0 9.5	80.37
268	β 344	O. Arg. 12385	13 52 23	-24 58	124.4	3.31	2.2	8.0 9.0	80.33
269	h 4650	W. T. Z. (118)8	14 0 5	—28 37	60.5	10.	1.0	9.0 12.0	80.35
270	h 4661	O. Arg. 13452	14 5 8	-28 20	49.0	2.	2.0		80.38

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
271	h 4664	O. Arg. 13477	h. m. s.	0 / -28 4I	o 14.8	17.74	3.3	8.2 9.0	80.38
272	H. A. H. 27	W.M.Z. (116)37	14 10 39	_27 16	72.4	5.99	1.1	8.o 9.o	80.35
273	β 116	L. 26177	14 13 3	_13 9	278.3	3.08	1.1		80.37
274	Σ 1833	L. 26267	14 16 18	- 7 13	167.3	5.50	1.1	6.0 6.5	80.45
275	O. S.	W. C. 5948	14 18 15	—27 35	2 75.6	0.82	$2.\frac{1}{2}$	8.0 9.2	80.38
276	β 225 B,C	χ Tur. Sol.	14 18 48	—19 2 6	101.0	1.36	2.2	8.0 9.2	80.38
277	Σ 1847	W xiv 379	14 22 14	- 9 40	256.9	23.24	1.1	•••	80.37
278	H.V.E.	W xiv 388	14 22 58	<u>—14 29</u>	198.7	3.70	5-5	8.6 9.4	80.33
279	β 117	L. 26481	14 24 41	-15 5	92.0	2.41	1.1	7.5 8.5	80.38
280	h 2723	Anon.	14 25 24	-23 30	137.2	27.23	1.1	8.0 10.5	80.41
281	W. M. C. Z.	O. Arg. 13760	14 30 24	-29 10	111.3	20.12	2.2	8.0 8.8	80.35
282	β 226	L. 26665	14 32 5	-21 49	83.1	0.99	1.2	8.0 8.0	80.34
283	β 345	Lac. 6051	14 34 40	-29 11	299.4	0.90	1.1	7.8 8.5	80.42
284	Σ 1869	P. M. 1646	14 36 22	- 5 27	131.4	25.90	2.2	8.3 9.3	80.44
285	Sh 184	54 Hydræ	14 39 4	-24 56	129.4	8.90	2.2	5.0 7.0	80.42
286	Σ 1876	L. 26890	14 40 2	- 6 53	70.7	1.26	1.1	. •••	80.32
287	β 617 B,C	L. 26952	14 42 23	-23 45	337.2	2.14	2.2	8.8 11.5	80.38
288	β 118	O. Arg. 14034	14 47 I	-16 I	307.6	2.05	1.1	9.0 10.0	80.35
289	h 4716	Anon.	14 49 22	-24 10	357.8	2.92	1.1	9.0 10.0	80.44
290	Sh 190	Piazzi xiv 212	14 50 27	-2 0 52	289.5	15.25	1.1	8.0 9.5	80.35
291	β 239	59 Hyd ræ	14 51 33	—27 10	307.4	0.90	4.4	6.0 7.0	80.38
292	h 2757	L. 27229	14 51 47	—21 55	94.1	12.17	2.2	8.2 9.8	80.35
293	Σ 1899	L. 27342	14 55 21	- 2 41	66.6	28.84	2.2	6.5 10.0	79.30
2 94	Σ 3090	L. 27568	15 2 32	— o 31	276.4	1.60	2,2	8.0 8.0	80.35
295	β 350	Lac. 6291	15 8 29	—27 9	157.5	1.23	1.1	7.0 8.0	80.44
2 96	β 352	O. Arg. 14427	15 10 43	-2 6 33	65.1	14.37	3.3	7.8 9.0	80.36
297	β 227	B. A. C. 5039	15 12 7	-23 50	180.2	1.90	1.1	7.0 9.5	80.42
298	h 4767	W.M.C.Z. (31)9	15 17 59	26 30	142.2	32.62	2.2	8.0 9.8	80.39
299	H.V.E.	Anon.	15 18	-26 20	28.2	16.05	1.1	8.5 10.5	80.40
300	h 4769	L. 28062	15 18 24	—21 30	192.4	9.48	2.2	8.2 9.5	80.37

Number.	Double Star.	Name.	I	Mea R. A 1880	۱.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800-
301	h 4774	Lac. 6395	ŀ	m. 21		° ′ —28 27	o 6.5	9.17	1.2	6.8 10.0	80.39
301	Arg.S.54 A,B	O. Arg. 14768	15	34	30	-29 46	22.9	35.67	1.1	8.5 9.0	80.35
303	A,C				_		328.0	60.	1.0	10.5	80.35
304	A ,D						320.1	89.10	1.1	9.5	80.35
305	h 4807	W. C. 6502	15	40	31	20 52	1.9	10.35	1.1	8.0 11.0	1
306	β 36	2 Scorpii	15	46	24	—24 58	275.4	2.80	1.1	5.0 7.5	80.38
307	Sh 213	L. 29043	15	52	9	-19 35	319.0	17.83	4.4	8.o 8.6	80.38
308	h 4826	W.M.C.Z.(15)115	15	54	3 6	—29 22	247.9	5.02	2.2	9.0 9.8	80.42
309	β ₃ 8	L. 29136	15	55	39	-24 41	351.5	4.07	1.1	8.5 10.0	80.48
310	Σ 1998 A,B	ξ Scorpii	15	57	46	_II 2	188.8	1.11	2.2		80.36
311	A,C	•••					72.7	7.06	1.1	·	80.40
312	β 39	11 Scorpii	16	o	57	-12 25	256.9	3. 2 0	1.1	6.0 9.0	80.48
313	h 4839	c1 Scorpii	16	4	51	-28 6	77.2	4.36	2.2	6.0 8.2	80.42
314	β 120 A,B	ν Scorpii ·	16	5	1	— 19 9	1.0	0.7	1.0	•••	80.40
315	` C, D	•••					43.2	2.07	1.1	•••	80.40
316	Σ 2023	P. M. 1794	16	8	3 6	+ 5 50	230.8	1.6	1.0		80.32
317	β 624	O. Arg. 15565	16	15	42	-22 50	320.9	1.1	1.0	•••	80.38
318	o. s.	O. Arg. 15637	16	19	49	—26 55	344.0	9.09	1.1	8.0 11.0	80.42
319	Σ 2046	P. M. 1820	16	19	51	+64 39	224.3	8.21	1.1	9.0 10.0	79.31
3 2 0	Σ 3105	L. 30053	16	25	21	- 6 4 6	42.7	0.72	$2.\frac{1}{2}$	8.0 8.2	80.38
321	Σ 3106	W xvi 912	16	49	17	- 4 58	66.2	2.28	2. I	•••	80.44
322	Sh 240	Piazzi xvi 236	16	50	o	—19 21	230.8	4.84	2.2	6.5 7.8	80.47
323	h 4902	L. 30779	16	50	26	—27 35	30. 0	11.11	2. I	8.0 9.0	80.44
324	h 589	L. 31181	17	3	2 9	-24 47	300.7	9.78	1.1	8.5 9.5	30.46
325	Σ 2132	L. 31290	17	6	2 6	— 3 54	109.9	1.6	2.0	8.0 9.0	80.44
326	Sh 243	36 Ophiuchi	17	7	5 9	—26 25	21.8	4.22	1.1	••••	80.60
327	β 282 A,C	Lamont XII 2082	17	8	30	-14 27	153.1	4.25	1.1	6.0 10.5	80.44
328	h 4932	O. Arg. 16530	17	8	43	-18 3	226.2	10.00	1.1	8.5 10.5	80.46
329	o. s.	Anon.	17	11		—16 55	288.7	16.87	2.2	8.0 8.5	80.46
330	o. s.	O. Arg. 16653	17	14	13	<u>-17 55</u>	44.3	0.82	$2, \frac{1}{2}$	8.5 9.5	80.40

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1880- -
331	h 4953	O. Arg. 16774	h. m. s. 17 19 19	。 / 19 25	o 174.2	// 18.14	2.2	8.5 9.5	80.40
33 2	Arg. S. 66	L. 31784	17 22 42	-17 43	194.9	8.46	1.1		80. 3 8
3 3 3	Σ 2173	B. A. C. 5910	17 24 14	- o 58		0.52	0.]	6.o 6.5	80.55
334	Σ 2183 rej A,C	L. 32017	17 29 5	- 5 51	13.4	28.30	1.1	7.0 9.0	80.40
335	Σ 2191	L. 32179	17 33 25	— 4 54	266.6	26. 68	2.2	7.5 8.2	79.96
336	Arg. S. 67	O. Arg. 17099	17 35 30	-2 9 53	290.3	36.81	1.1	8.0 8.5	80.38
337	н. А. н.	W.M.Z.(27)48	17 44 38	-28 27	8.7	6.54	2.2	8.5 9.8	80.44
338	W. M. C. Z.	O. Arg. 17320	17 46 12	28 40	2.2	2.01	1.1	10.0 11.0	80.52
339	Σ 2244	Tauri Pon. 9	17 50 55	+ 0 5	276 .9	1.34	1.2	7.0 7.6	8 0.56
340	Σ 2262	au Ophiuchi	17 56 33	- 8 11	24 9.7	1.78	3.3	5.5 6.5	80.07
341	h 5009	W. C. 7599	17 56 54	-24 15	19.9	3.86	1.1	9.0 9. 5	8 0.58
3 42	H. V. E.	Anon.	17 57	25 28	15.9	4.46	1.1	9.0 9.2	80.58
343	h 5010	O. Arg. 17564	17 57 15	24 20	348.4	3.57	1.1	9.0 9.5	79.59
344	Σ 2272	70 p Ophiuchi	17 59 23	+ 2 32	67.9	2.94	5.5		79.64
345	O. S. 88	Anon.	18 o	-19 o	276.9	19.81	1.1	9.0 9.5	80.57
346	β 244	L. 33188	18 1 1	—27 53	257.3	2.01	1.1		80.58
347	β 132	B. A. C. 6158	18 4 7	—19 52	59.2	1.03	3.2	7.5 7.6	80.14
348	h 5035	μ Sagittarii	18 6 35	—21 5	259.3	17.12	1.1	5.0 9.0	80.53
349	β 131	L. 33443	18 6 42	-15 38	279.6	2.71	1.1		80.58
350	h 2823	Anon.	18 7 55	—19 59	332.3	20.34	2.2	8.8 9.2	80.51
351	β 285	O. Arg. 17953	18 9 26	-25 3	324.2	1.2	1.0	8.0 10.0	80.60
352	h 2827	Anon.	18 9 59	—19 5 5	251.5	20.16	1.1	9.0 9.5	80.58
353	Sh 264	L. 33642	18 11 40	-18 40	51.4	17.40	1.1	6.0 8.0	79.27
354	β 48	L. 33729	18 13 54	-19 43	0.6	2.36	1.1	9.0 9.5	80.58
355	o. s.	Anon.	18 16	-18 55	84.6	6.72	1.1	8.5 9.0	79 .3 0
356	β 49	O. Arg. 18155	18 17 3	—19 37	44.8	7.9	2.0		80.52
357	Jacob 201	21 Sagittarii	18 18 12	20 36	295.4	2.15	1.2	5.0 8.0	80.56
358	β 247	L. 34253	18 25 37	- 9 27	169.0	7.42	1.1	7.0 10.0	80.59
359	Σ 2434 B,C	L. 35545	18 56 34	- o 53	64.2	1.81	1.1	8.0 10.5	79.68
360	S 711	O. Arg. 19092	19 0 41	—27 I	123.4	45.87	1.1	7.5 8.5	80.38

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
361	h 1373	Anon.	h. m. s. 19 6	o / 18 20	o 242. I	9.04	1.1	9.5 10.0	80.44
362	β 138	L. 36013	19 6 37	-14 39	281.7	1.09	r.r	8.0 10.0	80.59
363	H. A. H. 95	L. 36414	19 14 38	+ 2 43	149.4	0.42	1.4	6.0 6.5	79.69
364	Н. А. Н.	O. Arg. 19458	19 15 56	_18 13	81.8	2.5 6	2.2	9.0 9.3	80.51
365	h 2866 A,B	O. Arg. 19469	19 16 29	—18 13	53.0	23.38	2.2	8.o 8. 3	80.58
366	A,C				137.1	23.91	1.1		8 0.58
367	в,с				276.0	34.87	1.1	8.5	80.57
368	o. s.	Anon.	19 20	-16 II	195.4	4.84	2.2	6.8 7.3	80.62
369	β 423	O. Arg. 19560	19 20 18	-29 44	119.6	1.19	1.1	7.0 8.0	79.69
370	Σ 2541	L. 37113	19 30 12	- 10 42	332.4	3.72	1.1	8.0 10.0	80.60
371	Σ 2545	L. 37207	19 32 8	—10 2 6	320.9	3.68	2.2	7.0 8.5	80.56
372	h 5144	Anon.	19 38 27	-25 49	9.4	10.32	2.2	7.5 8.8	80.10
3 73	A. C. 12	L. 38059	19 52 8	– 2 33	3 24.7	1.13	2.2		80.56
374	h 5164	O. Arg. 20141	19 53 31	—27 31	122.2	9.30	2.2	8.0 9.0	7 9.69
375	h 2918	L. 38161	19 54 58	-17 53	134.2	16.55	1.1		80.44
376	Σ 2646	Aquilæ 241	20 8 I	- 6 2 5	48.1	23.17	1.1	7.5 9.0	80.56
377	Arg. S. 84	O. Arg. 20438	20 15 24	_2 0 36	267.4	17.93	1.1		79.71
378	Н. А. Н.	Anon.	20 20	-27 10	55.0	2.77	1.1	8.5 9.0	79.79
379	II ii 51	ρ Capricorni	20 22 I	—18 13	172.1	3.14	1.1	5.0 7.0	79.71
380	H iv 71	o Capricorni	20 23 1	-18 59	239.0	22.22	1.1	6.0 6.5	80.56
381	o.s.	Anon.	20 31	-26 55	245.3	1.42	2.1	8.2 8.5	79.78
382	h 921	Lamont IX 3926	20 35 21	- 4 56	37.3	9.36	1.1		80.56
383	β 267	Anon.	20 35 25	- 4 50	240.5	2.04	1.1	10.0 10.0	79-59
384	β 674	W. C. 9020	20 37 53	—21 19	103.4	1.35	2. I	8.0 10.8	79.78
385	h 5220	Lac. 8555	20 39 16	—27 18	354.8	17.99	1.1	8.0 9.0	80.52
386	β 154	L. 40292	2 0 4 6 6	— 16 37	59.8	2.88	2.2	8.0 9.2	79.69
387	Σ 2745	12 Aquarii	20 57 44	- 6 18	190.8	2.91	2.2	5.8 7.8	80.58
388	h 5252	O. Arg. 21208	21 5 43	—15 29	320.3	3.10	1.1		80.56
389	H. V. E.	Anon.	21 8	— I 20	59.9	99.40	1.1	9.0 9.5	79.66
390	Σ 2781	L. 41284	21 10 20	- 8 9	169.2	3.06	1.1	8.0 8.2	80.56

Number.	Double Star.	Name.	Mean R. A.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
391	β 271	Lac. 8777	h. m. s. 21 12 50	0 / -26 51	231.8	2.30	2.2	6.5 9.0	79.69
392	Σ 2787	Schj. 8640	21 15 42	+ 1 31	19.4	22.62	1.1		79.78
393	β 272	L. 41564	21 17 50	—13 19	255-7	4.31	1.1	8.0 12.0	79.79
394	H. A. II.	O. Arg. 21368	21 18 33	_20 54	142.9	8.22	1.1	8.0 10.0	79-54
395	β 683	L. 41683	21 20 43	—20 44	197.3	2.5	1.0	8.5 12.0	79.79
3 96	β 165	L. 41954	21 27 55	- 3 59	178.4	4.74	1.1	8.0 10.5	79-79
397	Σ 2809	B. A. C. 7515	21 31 24	- o 56	162.4	30.95	1.1		79.69
398	Н.А.Н. А, В	W xxi 950	21 40 57	-13 42	105.5	0.82	1.1	8.0 10.0	79-77
399	Σ 2826 A,C				79.4	3.93	1.1	8.0 9.0	79-54
400	O. S. 110	O. Arg. 21650	21 41 25	—27 42	175.9	2.82	1.1	8.0 9.5	79.75
401	h 3059	Lac. 8937	21 43 50	-28 30	253.7	24.91	1.1	7.0 11.0	79-75
402	h 615	L. 42645	21 47 7	-17 19	67.1	12.30	2.2	7.5 9.0	79-75
403	Σ 2838	Aquarii 100	21 48 21	- 3 52	185.0	19.79	1.1		80.56
404	Σ 2839 rej.	L. 42692	21 48 34	—12 32	274.2	30.90	1.1	7-5 9-5	79.77
405	h 3068	W.T. Z. (81)25	21 50 49	-28 21	287.4	10.45	2.1	8.2 11.0	79.76
406	Σ 2847	L. 42810	21 51 53	-44	122.4	1.06	2.2	7.0 8.0	79.69
407	Σ 2848	L. 42827	21 52 1	+ 5 12	55.5	9.79	1.1	7.0 8.0	79-74
408	O. S. 111	11 Piscis Aus.	21 52 42	—2 8 12	35.6	11.75	5.4	7.0 10.0	79.76
409	β 256	η Piscis Aus.	21 53 56	—29 2	113.7	1.73	1.1	5.5 7.0	80.56
410	S 802	29 Aquarii	21 55 53	—17 33	2 43.4	3.68	1.1	•••	80.56
411	β 475	L. 43305	22 6 16	- 8 36	230.6	ı.	1.0	7.0 11.0	79-75
412	H n 56	41 Aquarii	22 7 40	21 40	115.0	4.82	2.2	6.8 8.2	79.76
413	β 171	L. 43350	22 7 51	—21 38	257.9	11.4	1.0	8.5 12.0	79-75
414	o. s.	Anon.	22 8	-2 0 40	95.7.	9.41	1.1	8.0 12.0	79· 7 5
415	H n 102	Anon.	22 9 49	— 3 3o	294.6	12.89	1.1	9.5 9.5	79.74
416	Σ 2885 rej.	P. M. 2689	22 9 56	— 8, 17	98.8	21.96	1.1	8.0 12.0	79-75
417	Σ2892 rej. A, B	P. M. 2697	22 12 55	-11 23	58.1	9.	1.0	12.0	79-75
418	A,C	•••	•		263.7	36.29	1.1	8.0 9.0	79-75
419	h 962 A,B	30 Pegasi	22 14 25	+ 5 11	17.3	5-97	2. I	11.0	79.74
420	A,C		***		223.0	9.79	1.1	5.5 10.5	79.75

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
421	Σ 2901	L. 43731	h. m. s. 22 18 23	° ′ + 3 13	o 144.6	// 3.00	1.1	9.0 9.5	79.76
422	Sh 345	53 Aquarii	22 20 3	-17 21	30 5 .6	7.65	2.2	7.0 7.0	80.56
4 2 3	Σ 2909	ζ Aquarii	22 22 39	- o 38	331.8	3.28	6.6	4.5 4.5	79.88
424	Σ 2913	L. 4 3 936	22 24 14	- 8 44	330.0	7.73	1.1	8.0 9.0	79.75
425	Σ 2928	L. 44276	22 33 10	-13 14	135.8	4.27	10.10		79.83
426	Σ 2940	P. M. 2750	22 38 2	+72 6	138.8	2.78	1.1	9.0 10.0	79.75
427	h 1811	Lamont XI 3203	22 42 56	+12 29	153.7	5.61	1.1	8.5 9.0	79.74
428	Σ 2948	P. M. 2758	22 45 20	+65 55	3.0	2.70	2.2	7.0 9.0	79-75
429	Σ 2953	P. M. 2763	22 48 2	+60 17	136.2	8.53	1.1	8.0 11.0	79.75
430	O. S.	Anon.	22 52	-97	132.5	2.46	2.1	7.0 8.0	80.56
431	h 1838	O. Arg. 24973	22 53 56	+66 26	265.9	2.10	2.2	10.0 11.0	79.75
432	Σ 2971	P. M. 2779	22 54 12	+77 51	2.9	5.34	2.2	8.o 9.o	79.62
433	Σ 2970	P. M. 2780	22 56 6	11 57	36.7	8.02	1.1	8.5 9.5	79.74
434	h 3174	W xxiii 22	23 3 53	8 43	17.4	5.47	1.1	8.5 9.0	79.74
435	β 714	L. 45468	23 7 57	— 3 17	156.6	0.6	1.0	7.0 11.0	79.76
436	h_981	Lamont V 9129	23 8 2	+ 2 13	280.7	17.97	1.1	8.5 12.0	79.74
437	β 715	Aquarii 290	23 8 25	—II 2I	257.2	3.08	1.1	6.0 11.5	79-77
438	Σ 2996	P. M. 2805	23 8 39	+81 to	105.3	5.14	1.1	8.5 9.0	79.75
439	h 5393	L. 45605	23 12 0	25 37	304.6	18.92	1.1	8.0 10.0	79.77
440	h 5394	96 Aquarii	23 13 10	— 5 47	21.0	10.61	3.3	5.5 10.5	79.78
441	Σ 3003	P. M. 2813	23 13 22	+82 48	266.3	23.57	1.1	•••	79.75
442	h 3189	L. 45801	23 17 23	- O 22	133.2	41.67	1.1		79.74
443	Σ 3008	Piazzi xxiii 69	23 17 32	-97	253.7	4.77	3.3	6.8 7.8	79.98
444	Σ 3011	P. M. 2820	23 19 36	+76 25	330.8	7.06	1.1	•••	79.75
445	H.V. E.	Anon.	23 20	22 3	51.7	7.	1.0	•••	79.90
446	Σ 3014	P. M. 2822	23 21 52	+10 29	277.7	7.75	1.1	7.5 9.5	79-74
447	h 3196	O. Arg. 22868	23 23 37	-2I I4	18.8	20.14	2. I	9.0 10.0	80.70
448	h 3197	Anon.	23 23 51	17 57	307.8	8.33	2.2	8.5 9.5	79.79
449	β 726	Anon.	23 40	—I3 25	326.6	0.77	2,1	8.0 10.2	79.77
450	H.V. E. 124	Anon.	23 41	+16 27	86.1	1.38	1.1	8.5 9.0	79-74

Number.	Double Star.	Name.	Mean R. A. 1880.	Mean Dec. 1880.	Position Angle.	Distance.	Weights.	Magnitudes.	Epoch 1800+
		D. M. O.	h. m. s.	0 /	0 ("		0 - 0 -	
451	Σ 3040	P. M. 2852	23 42 0	+ 9 29	216.0	4.20	1.1	8.5 8.5	79-74
452	Σ 3045	P. M. 2856	23 48 17	+ 1 48	257.1	1.79	1.1	8.0 9.0	79-74
453	Σ 3046	L. 46916	23 50 14	—10 10	244 .5	3.18	1.1	•••	79-75
454	Weisse	W xxiii 1071	23 53 42	+ 1 12	88.4	1.85	2.2	8.5 9.0	79-74
455	Σ 3052	P. M. 2864	23 56 46	+70 41	6.8	33.95	1.1	•••	79-75

· • . • •

Cr ; c

University of Cincinnati.

PUBLICATIONS

OF THE

Cincinnati Observatory.

OBSERVATIONS OF COMETS.

1880-82.

LIBRARY OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC

্রান্ত কর্ম আন্তর্ভাগ স্থান বিভাগ কর্মান্তর্ভাগ কর্মান্তর্ভাগ কর্মান্তর্ভাগ কর্মান্তর্ভাগ কর্মান্তর্ভাগ কর্মান্তর্ভাগ কর্মান্ত

··Company Dispersionの関係を表 · Straight in Dept. Dept.

OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC

PUBLICATIONS OF THE CINCINNATI OBSERVATORY.

OBSERVATIONS OF THE COMETS

OF 1880, 1881 AND 1882,

MADE UNDER THE DIRECTION OF

ORMOND STONE, A. M., ASTRONOMER,

AND

HERBERT C. WILSON, A. M., ASTRONOMER, pro tem.,

Prepared for publication by the latter.

CINCINNATI:

PUBLISHED BY AUTHORITY OF THE BOARD OF DIRECTORS OF THE UNIVERSITY.
1883.

LIBRARY OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC

CONTENTS.

77.77								PAGE.
INTRODUCTION,		•	•	•	•	•	•	v
OBSERVATIONS OF POSITIO	ONS:							
Comet d, 1880 (Hartwig), .								2
Comet f, 1880 (Pechule), .								
Comet b, 1881. Great Come	t, .							4
Comet c, 1881 (Schaeberle),			٠.					
Comet d, 1881 (Encke), .								
Comet e, 1881 (Barnard), .								•
Comet a, 1882 (Wells), .								16
Comet c, 1882. Great Come								18
Comet d, 1882 (Barnard),								24
ASSUMED MEAN PLACES OF	F COM	PAR	ISON	STA	RS,			26
PHYSICAL OBSERVATIONS:								
Notes on the Tail of Comet b,	1881,	with I	Plates	I., II	and	IX.,		3 5
Notes on the Head of Comet	<i>b</i> , 1881,	with	Plate	III.,				43
Notes on Comet c, 1881, .								52
Notes on Encke's Comet, .								53
Notes on Comet e, 1881, .								53
Notes on Comet a, 1882, with	Plates 1	IV. ar	nd V.,				•	54
Notes on the Tail of Comet c ,								62
Notes on the Head of Comet	c, 1882,	with	Plate	VIII	.••,			· 7 I
Notes on Comet d, 1882,	•		•		• ·			79

INTRODUCTION.

N June, 1882, Professor Ormond Stone resigned his position as Astronomer of the Cincinnati Observatory, to accept a position as Director of the Leander McCormick Observatory and Professor of Practical Astronomy in the University of Virginia. Since then I have been in charge of the Observatory as Astronomer pro tem.

Upon the advice of Professor Stone I have devoted my time during the day principally to the reduction and preparation for publication of the miscellaneous observations which remain unpublished. The present number of the Publications of this Observatory contains the observations of comets made under Professor Stone's direction, and those made by myself during the latter half of 1882. Previous to 1880 no attention was paid to comets, the equatorial being occupied almost entirely with double-star observations. In the fall of 1880, the driving apparatus of the equatorial having been sent to Messrs. Fauth & Co., of Washington, for repairs and new attachments, a few observations of the comets d and f, 1880, were made. In June, 1881, the great comet b, which so suddenly appeared above our horizon, followed in July by another (c) of considerable dimensions, drew attention more especially to the field of cometary astronomy, and since that time comets have been observed whenever opportunity offered.

The observers have been: Professor Ormond Stone and Messrs. H. V. Egbert, F. P. Leavenworth, John Jones and H. C. Wilson. These names are designated in the column marked observer by the initial letters S, E, L, J and W.

The instruments used were the equatorial, chronograph, sidereal clock and sidereal chronometer. It will not be necessary to give here a detailed description of these instruments. A few points will be needed, however, to explain the observations.

The Equatorial.—The object-glass is by Merz & Mahler, of Munich; refigured by Alvan Clark & Sons, in 1876. Its aperture is 111/4 inches.

The filar micrometer has three wires of spider web; two parallel and separately movable by screws; the other fixed at right angles to these. The screw which moves one of the parallel wires has a graduated head. The value of one revolution of this screw is 13...651. The wires are illuminated by lamp-light admitted through the side of the tube close to the micrometer. The position circle is graduated to 15, and reads by verniers to 1. The readings increase from right over to left or from north toward east.

The ring-micrometer has two rings, of which the diameters, as derived from five transits of the stars 17, 23, η and 27 Tauri, on October 14, 1881, are as follows:

	Outer diameter.	Inner diameter
Large ring,	510″.3	464 ".5
Small ring,	264.4	224.3

The eye-pieces used with the filar micrometer have the following magnifying powers:

In the observations of position of the comets eye-piece I was always employed, unless otherwise stated in the notes.

The finder has an object-glass of 21/2 inches aperture, and an eye-piece magnifying 30 times.

The Chronograph is by Wm. Bond & Son, of Boston. The barrel of the Chronograph is 6 inches in diameter, 13½ inches in length, and revolves once in a minute. The motive power is electricity. The beats of the clock and observer's signals are registered by a single Mackinnon stylographic pen.

The Sidereal Clock is by Robert Molyneux, of London. It has a mercurial pendulum and a make-circuit connection with the chronograph. the pendulum, at the middle of each oscillation, dips into a globule of mercury, thus completing the circuit through the chronograph. The clock is placed on a solid stone pier in the transit room, free from the vibrations of the building. October, 1880, a large case, 3% feet square on the outside, was built around the clock to prevent sudden changes of temperature. This case is double and nearly air-tight. A window of three thicknesses of 3/6-inch plate glass with air-spaces between, enables the observer to see the face of the clock and a thermometer hung within, without opening the case. The case is opened once a week when the clock is wound. The effect of this case is to reduce the changes of temperature within it, so that there is hardly ever a variation of more than 2° in one day. The errors of the clock have been determined once or twice a week by transits of stars taken with a 3-inch Buff & Berger transit. Its rate has generally been very satisfactory.

The Sidereal Chronometer.—This is a break-circuit chronometer by Wm. Bond & Son. It was seldom used with the chronograph. Its error was determined each day by comparison with the Molyneux clock.

OBSERVATIONS OF POSITION.

The observations for the position of the comets were made with the equatorial, and, with the exception of two dates, the filar micrometer. On September 24 and October 14, 1881, the ring-micrometer was used. The times of the observations were generally recorded on the chronograph with the Molyneux clock. On

a few dates the chronometer was connected with the chronograph, and on a few dates the times were noted by the eye and ear method on the chronometer.

Method of Observation.—The movable wires were first placed parallel to the equator by turning the micrometer until a star, passing through the field of view by the rotation of the earth, was bisected by one of the wires during the whole of its passage. With the micrometer clamped in this position, two or more measures of the difference in declination between the comet and comparison star were made, the times being noted for each bisection of the comet. Then the micrometer was rotated 90° on the position circle, the wires placed at a convenient distance apart, and the times of transit of star and comet over both wires noted. Several transits were thus taken, then the micrometer was turned back to its original position, or 180° from the latter, and the difference in declination again measured, the number of measures being equal, if possible, to those first taken. Sometimes the parallel was again determined, but this was not generally done. When possible, without having too great a difference in right ascension, the comparison star was selected so that both comet and star should pass near the center of the field of view.

The Printed Columns.—The first column contains the reference number, the second the date, the third the Mt. Lookout mean solar times of the observations. The latter were obtained by taking the mean of the times for the bisection of the comet in the measures of declination and the mean of the times of transit of the comet for the differences in right ascension. The observed times being sidereal, they were reduced to mean solar time.

The fourth column contains the means of the differences in the times of transit of the comet and comparison star. The sixth contains the means of the measures of difference in declination.

The fifth and seventh give the corrections to be applied to Δa and $\Delta \delta$ for refraction.

Column eight gives the number of comparisons included in the means given in the third, fourth and sixth columns.

The tenth and twelfth columns give the apparent right ascension and declination of the comet, obtained by adding the observed differences Δa and $\Delta \delta$, and the corrections for refraction, to the assumed apparent position of the comparison star.

The eleventh and thirteenth columns give the corrections for parallax. The constant of solar parallax was assumed 8.848.

The fourteenth column gives the initial of the observer's name, the fifteenth the reference number of the comparison star. The last gives such notes as refer to the observation of position.

Assumed Places of Comparison Stars.—The places of the comparison stars were taken from the following catalogues:

•	Epoch.
Fedorenko. — Etoiles circumpolaires.	1790.0
Lalande. — Baily's.	1800.0
Weisse. — Positiones mediæ stellarum fixarum,	1825.0
Rümker. — Catalogue of 12,000 stars,	1836.0

	Epoch.
O. Arg. N.—Oeltzen's "Argelander's Zonen-Beobachtungen."	1842.0
O. Arg. S.— " " " "	1850.0
Radcliffe Catalogue of 6317 stars.	1845.0
Lamont. — Verzeichniss von telescopischen Sternen.	1850.0
Washington. — Mural Circle Zones.	1850.0
Carrington.—Catalogue of 3735 circumpolar stars.	1855.0
DM.—Argelander's astronomische Beobachtungen zu Bonn. Band III, IV, V.	1855.0
Bonn " Band VI.	1855.0
Gr. Nine Yr. Catalogue. — Greenwich Nine Year Catalogue of 2263 stars.	1872.0
539 Sterne Catalogue of the "Astronomische Gesellschaft." 1880, 188	1, 1882.

A few star places were also obtained from the Astronomische Nachrichten, and a number were not found in any catalogue.

The star places were reduced to the beginning of the year of observation by Table XX of the Star Tables of the American Ephemeris. The reductions to the apparent places at the times of observation were computed by the formulæ

$$da = f + g \sin (G + a) \operatorname{tg} \delta + h \sin (H + a) \operatorname{sec} \delta$$

$$d\theta = i \cos \delta + g \cos (G + a) + h \cos (H + a) \sin \delta.$$

The quantities f, g, h, i, G and H were taken from the Berliner astronomische Jahrbuch.

The first column gives the reference number of the star, the second the mean right ascension and the fourth the mean declination of the star at the beginning of the year. The third and fifth columns give the reductions to the apparent place for the date of observation. The sixth column gives the catalogue from which the place of the star was obtained. Those stars not found in any catalogue are marked anonymous.

PHYSICAL OBSERVATIONS.

These consisted of sketches, measures, and notes in regard to the appearance of the comets. They were generally made just before or just after the position observations.

The sketches of the tail of Comet b, 1881, and of Comet c, 1882, were made either in the dome or at an open window of the library. An opera-glass, magnifying 2½ diameters, was sometimes used. Upon the pencil sketches all the stars visible in the vicinity of the comet were plotted as accurately as possible with the eye. The stars were afterward identified in Heis's Atlas Calestis and plotted to a scale three times that of the engravings. The position of the nucleus was then plotted and the tail drawn in the same proportion, relative to the stars, as on the original sketch.

The sketches of the head were made with the 11-inch equatorial. Unless otherwise stated eye-piece I was used.

The drawings from which the Plates II, III, IV, V, VIII, VIII were reduced were compiled by myself from the original sketches. The scales were chosen so as to enlarge most of the sketches about three times, then in the pro-

cess of photo-engraving they were reduced to one-third, so that the engravings are of very nearly the same size as the original sketches. On the plates the drawings are arranged symmetrically with reference to the direction of the sun. A line from the sun through the nucleus is parallel to the side of the plate. The deviation of any part of the comet from the direction toward or opposite the sun is thus shown at a glance. On Plates II and VII the direction of the sun is toward the bottom, while on Plates III, IV, V and VIII it is toward the top of the page. The arrows denote the direction of apparent diurnal motion, or position angle 270°.

Plate I gives a map of that portion of the sky through which Comet b, 1881, moved, the apparent course of the nucleus and the outlines of the tail on the several dates of observation. Plate VI gives a similar map for Comet c, 1882. The stars were plotted from Heis's Atlas, their positions being corrected for precession from 1855 to 1881 and 1882. All the stars down to the six and a half magnitude were included.

Reductions.—In the reduction and discussion of the tail-observations, I have followed the method of Professor Bredichin, the Director of the Observatory of Moscou. His theory and methods of investigation are fully explained in the Annals of the Moscou Observatory (Vol. V, livr. 2 and VII, livr. 2) and in Copernicus (Vol. I, page 99-115).

The theory is briefly this: The tail of a comet consists of particles of matter emitted from the nucleus and repelled by a force $(1-\mu)$ the reverse of gravitation. The effective force which acts upon the particle is μ , which, combined with the tangential velocity of the nucleus, causes the particle to describe a hyperbolic orbit. This orbit will be convex or concave to the sun, according as the repulsive force $(1-\mu)$ is greater or less than unity. When $1-\mu=1$, i. e., when the effective force of the sun is o, the particle moves in a straight line in the direction of the tangent, and with a constant velocity equal to that of the nucleus at the moment of emission. The path of the particle will also be modified by the initial velocity (g) and direction (G) of its emission from the nucleus. As the discharge of matter from the nucleus usually takes place from the side toward the sun, the repelled particles are driven outward past the nucleus on all sides, forming a hollow conoid, whose axis lies in the plane of the orbit of the nucleus.

Professor Bredichin has investigated the observations of a large number of bright comets, and concludes that they may be referred to three general types, for which the theoretical values of $1-\mu$ are 12 (type I), 1 (type II) and 0.3 (type III), expressed in units of the Newtonian force. The value of $1-\mu$ for the second type varies between 2.6 and 0.8. In some of the great comets there have been several conoids belonging to the same type, diverging slightly so as to broaden the extremity of the tail. The tail of type I is usually long, narrow and nearly straight. Type II is much shorter, broader and more curved. Type III is very short and faint, and deviates widely from the direction opposite the sun. The initial velocities derived for the three types are 0.15 (I), 0.03 (II) and 0.01 (III), for which the unit of time is 58.13244 days (=\frac{1}{2}, k being the constant of solar attraction) and the unit of distance is the mean radius of the earth's orbit

solar attraction), and the unit of distance is the mean radius of the earth's orbit. As to the constitution of comets' tails, Professor Bredichin offers the hypothesis, that the different conoids consist of particles whose atomic weights are inversely proportional to the repulsive forces $\mathbf{i} - \mu$. Thus type I contains hydrogen, type II carbon or compounds of carbon and hydrogen, and type III metallic vapors, such as iron, sodium, etc. (Annales de l'Observatoire de Moscou, Vol. V, livr. 2, VI livr. 1, VII, livr. 2.)

I have computed the position angle and distance of the observed points from the nucleus and reduced them to the plane of the orbit by Bessel's formulæ (Astronomische Nachrichten, No. 300 and 1172). The angles (ϕ) of the observed points from the prolongation of the radius vector, were reduced to the same epoch by Bredichin's formulæ (Annales de l'Observatoire de Moscou, VIII, 1). For the comparison of the observations with theory, I have computed, for the chosen epochs, the positions of particles emitted from the nucleus at various times and repelled by different forces $(1 - \mu)$, corresponding to the general types I, II and III. These positions are represented on Plates IX and X, together with the observed points. The curved lines drawn through them represent the axes of the various conoids.

In the reduction of the head-observations the position angles were compared with the direction toward instead of opposite the sun.

Below is a collection of the formulæ used in the reduction and discussion of the tail-observations, with explanation of the notation used:

For the position angle p and distance s of the observed point in the tail, and the position angle p_o of the radius vector prolonged

```
tg \phi = \cot g d' \cos (a' - a) tg \phi = \cot g d \cos (a - a) \cot g \phi = \cos (\theta + \phi) \cot g (a' - a) \csc \phi \cot g \phi = \cos (\theta + \phi) \cot g (a' - a) \csc \phi \cot g \phi = \cos (\theta + \phi) \cot g (a' - a) \csc \phi \cot g \phi = \cos (\theta + \phi) \cot g (a' - a) \csc \phi \cot g \phi = \cos (\theta + \phi) \cot g (a' - a) \csc \phi \cot g \phi = \cot g \phi
```

For the reduction to the plane of the orbit (Astronomische Nachrichten, No. 300 and 1172): $A = \Omega' - 90^{\circ} \qquad D = 90^{\circ} - i'$

$$\cos S = -\sin \theta \sin D - \cos \theta \cos D \cos (A - a)$$

$$\sin S \cos P = \cos \theta \sin D - \sin \theta \cos D \cos (A - a)$$

$$\sin S \sin P = \cos D \sin (A - a)$$

$$\sin S \cos P = -\sin \theta \cos D + \cos \theta \sin D \cos (A - a)$$

$$\sin S \sin P = -\cos \theta \sin (A - a)$$

$$\tan S \sin P = -\cos \theta \sin (A - a)$$

$$\tan S \sin P = -\cos \theta \sin (A - a)$$

$$\tan S \sin P = -\cos \theta \sin (A - a)$$

$$\tan S \sin P = -\cos \theta \sin (A - a)$$

$$\tan S \sin P = -\cos \theta \sin (A - a)$$

$$\tan P = \sin G \tan (A - a)$$

$$\tan P = \sin G \tan (A - a) \sec (G + b)$$

$$\cot S = -\tan G \tan (A - a) \sec (G + b)$$

$$\cot S = -\tan G \tan (A - a) \sec (G + b)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot G \tan (A - a)$$

$$\cot S = -\cot$$

A and D = right ascension and declination of north pole of comet's orbit. Ω' and i' = ascending node and inclination of comet's orbit referred to the plane of the equator. P = position angle of the north pole of the comet's orbit at the geocentric place of the comet.

P = position angle of the cometocentric place of the earth at the pole of the comet's orbit.

S = cometocentric distance of the earth from the pole of the comet's orbit.

T = cometocentric angle between the earth and the observed point in the tail.

u = position angle of the observed point referred to the pole of the comet's orbit.

 u_0 = position angle of the radius vector referred to the pole of the comet's orbit.

 ϕ = angle at the nucleus between the observed point and the radius vector prolonged.

 ρ = distance of the nucleus from the earth.

 Δ = distance of the observed point from the nucleus.

For the reduction of the angles ϕ to the same epoch (Annales de l'Observatoire de Moscou, VIII, 1):

$$d\phi = -\cos^2\phi. \text{ F. } \frac{1}{\sqrt{\xi}}\sin\frac{1}{2}(v_o + v)\sin\frac{1}{2}(v_o - v) \div \sin\frac{1}{2}$$
$$F = \frac{4}{8}\frac{1}{\sqrt{q}\sqrt{1-\mu}} \qquad \xi = \Delta\cos\phi$$

 $v_{\rm o}=$ true anomaly of the nucleus at the given epoch.

v = " " time of observation.

q = perihelion distance of comet.

For the theoretical representation of the observations (Annales de l'Observatoire de Moscou, VII, 2, and "Copernicus," Vol. I, page 107-108):

$$H^2 = \frac{2}{r_1}$$
 $\beta = 90^{\circ} - \frac{v_1}{2}$ $m = \frac{H^2 r_1}{\mu}$

Orbit convex to the sun $(1 - \mu > 1)$

$$E^{2} = m \sin^{2} \beta (m + 2) + 1 \qquad \cos V_{1} = (m \sin^{2} \beta + 1) \cos \psi$$

$$COS \psi = \frac{1}{E} \qquad P = 2r_{1} E \sin \frac{1}{2} (\psi + V_{1}) \sin \frac{1}{2} (\psi - V_{1})$$

$$b = P \cot^{2} \psi \qquad N = \frac{\lambda Kt}{b^{\frac{3}{2}}} = \lambda E \operatorname{tg} F + \log \operatorname{tg} (45^{\circ} + \frac{1}{2} F)$$

$$\operatorname{tg} \frac{1}{2} V = \operatorname{tg} \frac{1}{2} F \operatorname{tg} \frac{1}{2} \psi \qquad R = \frac{P}{2 E \sin \frac{1}{2} (\psi + V) \sin \frac{1}{2} (\psi - V)}$$

Orbit concave to the sun $(1 - \mu < 1)$

$$E^{1} = m \sin^{2} \beta (m - 2) + 1 \qquad \cos V_{1} = (m \sin^{2} \beta - 1) \cos \psi$$

$$COS \psi = \frac{1}{E} \qquad P = 2r_{1} E \cos \frac{1}{2} (\psi + V_{1}) \cos \frac{1}{2} (\psi - V_{1})$$

$$b = P \cot g^{2} \psi \qquad N = \frac{\lambda Kt}{b^{\frac{3}{2}}} = \lambda E \operatorname{tg} F - \log \operatorname{tg} (45^{\circ} + \frac{1}{2} F)$$

$$\operatorname{tg} \frac{1}{2} V = \operatorname{tg} \frac{1}{2} F \cot g \frac{1}{2} \psi \qquad R = \frac{P}{2 E \cos \frac{1}{2} (V + \psi) \cos \frac{1}{2} (V - \psi)}$$

$$\log k = 8.2355814 - 10; \log \lambda = 9.6377843 - 10$$

$$\omega = v_1 - V_1 + V \qquad \qquad \Delta^2 = r^2 + R^2 - 2 r R \cos(v - \omega)$$

$$\eta = R \sin(v - \omega) \qquad \qquad \frac{\eta}{\Delta} = \sin \phi \qquad \xi = \Delta \cos \phi$$

Orbit straight $(1 - \mu = 1)$

$$au = (M - M_1) k$$
 $R^2 = s^2 + r_1^2 + 2 s r_1 \cos \beta$
 $s^2 = \frac{2 \tau^2}{r_1}$ $\sin a = \frac{s \sin \beta}{R}$ $\omega = v_1 + a$

If the initial velocity g and the angle G be taken into consideration, H_1 and β_1 must be substituted for H and β .

$$H_1^2 = H^2 + g^2 - 2 Hg \cos(\beta - G); \sin \gamma = \frac{g}{H_1} \sin(\beta - G); \ \beta_1 = \beta + \gamma.$$

M, v and r = the time of observation, true anomaly of the nucleus and its radius vector.

 M_1 , v_1 and r_1 = the time of emission of the particle, true anomaly and radius vector of the nucleus for this time.

 β = the angle of the radius vector r_1 with the tangent.

H= velocity of the nucleus in the direction of the tangent for the time M_1 .

 $K = k \nu \overline{\mu}$; k is the Gaussian constant.

 V_1 = the angle between r_1 and the axis of the hyperbolic orbit of the particle.

t = the interval of time between the passage of the hyperbolic perihelion and the time of observation M.

E = eccentricity of the hyperbolic orbit.

P = semiparameter

 ψ = the asymptotic angle to the hyberbola.

V = true hyperbolic anomaly of the particle for the time M.

R = hyperbolic radius vector of the particle.

 ω = angle between the radius R and the axis of the parabolic orbit of the nucleus.

The position observations of the comets of 1880, and part of those of Comet b, 1881, were reduced by Mr. Egbert. All of the reductions have been made in duplicate by myself. Professor Stone has kindly assisted me by valuable suggestions.

H. C. WILSON,

Astronomer pro tem. of the Cincinnati Observatory.

Mt. Lookout, December, 1883.

POSITION OBSERVATIONS

OF.

COMETS,

1880-2.

		_			·		
Number.	Date.	Mt. Lookout Mean Time.	Δa Comet — *	Refraction.	Δδ Comet — *	Refraction.	No. of Comparisons.
	1880	h. m. s.	m. s.	S.	, ,,	"	
1	October 7	7 30 46	-0 47.59				11
2	7	7 32 31			-6 55.5		4
3	8	7 21 56			—ı 12.8	0.0	3
4	, 8	7 44 18	—I 20.47	0.00	•••		11
5	8	7 53 58	+6 11.28		•••	 .	10
6	8	8 16 42			—ı o.3	0.0	7
7	9	7 28 56			—3 52.4	- o. t	9
8	9	7 33 21	+0 11 20	0.00	***		20
9	12	8 12 34	+1 17.06	0.00	•••		10
10	12	8 15 48		•••	-o 46.2	0.0	11
11	12	8 56 25	+1 29.58	-0.01	•••	:	10
12	13	7 21 55	•••		—о 21.4	0.0	10
13	13	7 29 36	o 25.46	•••	•••		20
14	21	6 57 58			— 0 45.4	0.0	13
15	21	7 15 0	+1 21.68	. 0.00		•••	20
16	November 2	6 39 9			-O. 22.4	0.0	10
17	2	6 50 40	+1 1.22	. 0.00			20

Comet f, 1880.

18	December 18	6	27	58	—о 38.4 2	—о.оз		•••	20
19	18	6	29	5	•••		—4 10.8	-0.4	10
20	31	7	7	31		•••	+o 19.8	0.0	3
21	31	7	7	31	'		-0 43.4	- 0.1	3
22	31	7	25	13	+3 5.52	0.00	•••		4
2 ?	31	7	25	13	—о 44.8 о	-0.01	•••		4
24	31	7	27	31			—о 1.65	0.0	4
25	31	7	32	o	—o 3.20	0.00			10

Number.	A	Appa R.		Parallax.	Apparent Decl.			Parallax.	Observer.	Comparison Star.	Notes.
τ	h. 16	m. 2 0	s. 46.1	s. +0.63	0		"		s	ı	
2		•••			+23	34.	3	+5.5	s	1	
3					. 22	40	2.8	+5.4	s	2	
4	16	31	12.49	+0.64					s	2	
5	16	31	14.5	+0.65					s	3	
6					22	42.9	9	+5.6	s	3	
7		•••			21	46	59.7	+5.5	s	4	
8	16	40	54.76	+0.61					s	4	
9	17	4	24.04	+0.55		•••			s	5	
10					19	19	47.6	+5.4	s	5	
11	17	4	36.55	+0.58					L	5	
12					18	39-3	3	+4.7	E	6	Fainter, but possibly more condensed than hitherto.
13	17	11	55.8	+0.48					E	6	
14		•••			14	1.4	•	+3.9	E	7	
15	17	49	4-5	+0.34					E	7	·
16		• • •			9	58	39.2	+3.1	E	8	Very faint.
17	18	2 I	53.23	+0.19		•••			E	8	

Comet f, 1880.

18	18	59	34.81	+0.29	+11	 57	30.8	+3.3	E E	9	Quite bright; round; con- densed in center; no tail. W. notes times on chro- nometer.
20					19	24.3	3	+3.0	s	10	
21					19	22.5	;	+3.0	s	12	·
22	20	o	8.4	+0.29					s	10	{ W. notes times on chro- nometer.
23	20	o	10.5	+0.29				·	s	12	
24					19	24.2	2	+3.2	s	11	Double distance measured.
25	20	0	9. o	+0.29		•••		•••	s	11	

-		rvaiions of	00111010.	00	,, 1001.		
Number.	Date.	Mt. Lookout Mean Time.	Δa Comet —*	Refraction.	∆⁄ Comet — *	Refinction.	No. of Compartheaux,
26	1881 June 23	h. m. s. 15 9 8	m. s.	s.	, " +8 1.3	<i>"</i> , ÷≥6	2
27	23	15 29 15	—2 58.18		•••		
28	23	15 31 34	+0 44.70	0.00	! 		2
29	24	8 51 43	•••		+8 25.0	+9-5	2
30	24	9 5 37	+2 28.24	+0.78			4
31	24	15 47 59	, 		+1 55.1	+0.2	2
32	.i. 27	8 33 43	•••		+7 29.4	+1.1	I
33	27	8 37 26			+7 42.0	+1.2	1
34	27	9 14 1	—ı 5.84	+o. o 6		•••	4
35	27	9 14 1	—I 10.20	0.00			: 4
36	27	9 15 17	+o 27.98	+0.06			. 2
37	27	9 24 9			+0 23.0	+0.1	, 2
38	27	12 38 37	+1 15.20	0.00			. 8
39	27	12 40 15			—о 18.7	0.0	4
40	July 1	11 10 16	I 0.7I	0.00			8
41	1	11 11 6			—1 33.9	o. ı	4
42	2	10 58 58	+2 55.37	0.00			4
43	2	11 0 57			+o 28.5	+0.1	2
44	3	15 32 18	+6 41.60	+o. o 6	•••		4
45	3	15 33 42			+4 52.8	+0.2	3
46	··· 4	11 36 47	+5 51.01	-0.01			4
47	4	11 36 47	+5 50.73	+0.01			4
48	4	11 43 31			. —3 26.9	0.3	3
49	5	10 50 17	—о 51.89				7
50	5	10 50 17	-o 47 55		•••		7
51	5	10 50 48			+o 36.6		4
52	7	10 9 54			—I 20.3	o. I	4
53	7	10 10 36	+1 57.16	+0.02			8
54	8	10 55 4	+1 14.21				5
55	8	10 55 4	+1 17.27	• •••			6

Number,	Apparent	Parallax.	Apparent Decl.	Parallax.	Observer,	Comparison Star.	Notes.
26	h. m. s.	S	0 / //	"	_		(Nucleus bright and well
1		,		+22. I	•		defined. W. notes times on chro-
27	5 36 23.99	ľ		•••		13	nometer.
28	5 36 24.28			•••	•	14	(11)
29		· '		;			W. notes times on chro- nometer.
30	5 39 11.71	+1.32			;	15	
31		'	•	+18.8			(W. notes times on chro-
32				+20. i			{ W. notes times on chro- nometer.
33				+20.3	- :		
34	5 53 35-54	+1.46	•••	•••		18	
35		+1.47		'	' S !	19	•
36	5 53 35.64	+1.47	•••	•••	S	17	
37			60 40 50.2	+22.4			(8
38	i	· !	•••		W	20	S. notes times on chro- nometer.
39	,	···· '	••		W	20	
40	6 22 22.27	+0.47	•••	•••	w	21	
41		····	70 33 56.7	+19.6	w	21	
42	6 32 o.o6	+0.71	•••	***	s	22	
43	· 		72 27 47.2	+18.3	s	22	
44	6 45 29.31	—2.90	•••	•••	s	23	
45	.		74 20 50.7	+11.6	s	23	
46	6 54 6.17	+0.40	***		s	24	
47	6 54 6.52	+0.40	•••		s	25	
48			75 30 51.8	+16.7	s	25	
49			•••	,	s	26	
50	7 6 16	+1.34			s	27	
51			76 42.1	+15.1	s	27	
52			78 41.8	+12.2		28	
53	7 34 28	+2.45	•••		s	28	
54	:		***		w	29	
55			•••		w	- 1	

Number,	Date		Mt. Mea	_	kou:	Con	Se net — *	Refinction,	M €:met —*	Refraction.	No. of Compartsons.
56	1881 July	8	à. 10	m. 55	s. 39	-	<u>.</u>	<u>.</u>	, " ÷o 4j.\$		6
57	~ .	8	10	55	21			_	-4 15.1		2
58		8	11	1	36				-0 56.9		5
59		8	11	11	54	+0	38.75	-			10
60		8	11	21	51				—о 33.6	0.0	2
61	•••	8	11	37	8	-2	58.65	÷0.01	-		4
62		9	. 9	31	36				+0 13-9		. 2
63	•••	9	9	37	53	-1	22.49				8
64		9	9	37	53	-6	7.26				8
65	***	9	9	38	50				+1 48	: :	3
66	•••	12	9	5	10	÷0	30.00	!		'	6
67		12	9	6	33		•••	i	÷0 7.4		4
68		13	, 9	37	44		•••		+1 40	. 0.0	6
69	•••	13	9	38	23	+2	0.58	—0.06		i	6
70	•••	13	10	38	8		•••	1 ;	+1 33.0	0.0	3
71	•••	13	10	41	34	+2	52.09	; -a.o7			8
72	•••	15	9	38	37	—2	41.75	+0.15			6
73	•••	15	, 9	40	36	l	•••	! !	—5 48.6	-0.2	6
74	•••	18	; 8	40	45	-0	51.15	-0.16			6
75	•••	18	8	4 0	52	i I	•••		—2 22. 0	0.0	4
76	August	. 1	12	21	42		•••	-	—2 34.0	-0.1	9
77	•••	1	12	40	45	+1	20.00	+0.09	•••		12
78	•••	1	12	48	23	-2	41.34	+0.19	•••	:	5
79	•••	1	13	24	6				<u> </u>	0.2	4
80	•••	3	10		28		•••		—11 35.3	—0.2	3
81	•••	3	10		53	;		+0.48			6
82	•••	3	10	50	7	+3	30.20	+0.22			6
83	•••	3	11	I 2	4		•••		_5 25.5	O.I	3
84	•••	5	10		36		•••	· · · · · · · · · · · · · · · · · · ·	—4 25.9	1.0	7
85	•••	5	10	30	25	+2	14.51	+0.18	***	l	18

Number.	Apparent R. A.	Parallax.	Apparent Decl.	Parallax.	Observer.	Comparison Star.	Notes.		
	h. m. s.	s.	0 / //	"					
56				•••	w	29			
57		•••	•••	•••	W	_			
58			•••	•••	W	31			
59				•••	W	31			
60			+79 33 3.2	+13.1	W	32			
61	7 51 33.78	+1.20		•••	w	3 2			
62				•••	S	33			
63					s	33			
64				•••	s	34			
65	 .	·			s	34			
66					s	35			
67					S	35			
68		·	81 52 0.0	+5.7	w	36			
69	9 21 59.64	+4.36	•••		w	36			
70			81 52 29.0	+7.9	s	36			
71	9 22 51.14	+3.62			s	36			
72	9 59 35.05			•••	w	37			
73	•••		82 12 6.8		w	37	W. notes times on chro nometer.		
74	10 50 2.72	+4.47	•••		w	38			
75	•••		82 16 38.3	+0.2	w	38			
76	•••				L	39			
77			•••		L	39			
78	13 8 13.30	+2.03			L	40			
79		•••	80 11 40.4	+5.4	L	40			
80			79 52.3	+o.8	E	42			
8r	13 18 51	+2.44			E	42			
82	13 18 52.2	+2.43	•••		E	41			
83			79 51.3	+2.2	E	4 I	279 to 4 to 10 19 19 14 1 19		
84			79 31 26.4	+0.9	L	43	Faint in moonlight; tail scarcely visible; coma very		
85	13 29 9.08	+2.28	•••		L	43	(large.		
			L						

					, 1001.		
Number.	Date.	Mt. Lookout Mean Time.	Δa Comet —*	Refraction.	Δð Comet—*	Refraction.	No. of Comparisons.
86	1881 August 5	h. m. s.	m. s. +2 42.50	s. —0.44	′ ′′	"	4
87	5	11 37 26			+11 49.2	+0.3	2
88	9	10 51 25			+4 13.6	+0.1	4
89	9	10 51 25			-0 12.4	0.0	4
90	9	10 51 25			_6 50.3	-0.2	4
91	9	10 58 5			-6 57.7	-0.2	3
92	· 9	11 33 0	—7 31.19	+0.27	•••		3
93	9	11 33 0	—7 31.83	+0.28			3
94	9	11 39 0	— і 28. іо	—0.12	•••	•••	4
95	9	11 39 0	—1 50.03	0.00	•••		4
96	10	10 16 25	+9 42.65	-0.09	•••		6
97	10	10 54 55			+3 7.5	+0.1	3
98	11	10 18 51	+13 52.54	+0.26			2
99	11	10 57 6	—o 39.73	+0.11			12
100	11	11 4 46	+2 25.01	-0.02			10
101	11	11 5 42			—6 8. г	-0.2	I
102	11	11 25 1			−3 35.9	-o.1	7
103	11	II 25 I	•••		+0 48.6	0.0	7
104	15	12 6 26	+2 56.61	+0.25	•••		12
105	15	12 23 25	•••	•••	-9 10.8	—о.з	6
106	16	10 18 20	•••		—16· 55.5	—о.з	5
107	16	10 41 3	+6 31.73	+0.49			10
108	22	12 37 29	+6 36.18	+0.11	•••		4
109	22	12 39 30	—3 39.30	+0.14			4
110	22	13 10 28			—7 33.8	—о.з	2
111	22	13 17 28			-5 31.6	-0.2	2
112	24	8 47 19			+3 16.1		4
113	24	8 47 19			+3 16.1		4
114	24	8 47 19			-4 30.3	-0.1	4
115	24	8 47 19	•••		—о 3 5 .6		4

Number.	Apparent R. A.	Parallax.	Apparent Decl.	Parallax.	Observer.	Comparison Star.	Notes.
86	h. m. s.	s. +2.23	0 / //	"	L	44	
87			+79 31 5.0	+2.7	L	44	
88			78 52 8.7	+2.9	L	45	
89	İ			' [*]	L	46	
90			78 52 4.4	+2.8	L	47	
91			•••		L	 48	
92	13 47 44.63	+2.02			L	47	
93					L	48	
94	13 47 45.75	+2.01			L	45)
95		•	•••		L	46	
96	13 52 49.68	+1.98			E	49	
97			78 42 46.3	+1.5	E	49	2
98	13 55 59.91	+1.94			L	49	. 1
99	13 55 59	+1.90			L	51	
100	13 55 52	+1.89		··· .	L	50	
101			78 33 30.4	+1.8	L	49	
102			78 30.7	+2.5	L	51	l'
103			78 30.6	+2.5	L	50	A.
104	14 12 13.98	+1.28			L	52	- 7
105			77 57 17.1	+3.4	L	52	(Compt. ann. 1 11 and
106			77 49 32.4	+ o .6	E	52	Comet compared directly with 9.5 magnitude star,
107	14 15 49.34	+1.70			E	52	and this star compared with star (52).
108	1.00.	+1.29		•••	L	53	
109		•••	•••	•••	L	54	
110		"			L	54	
111			76 59 48.9	+5.8	L	53	
112	•	•••	 .	. 	E	5 5	
113	i	•••		•••	E	56	}
114		"	76 46 14. 0	•••	E	57	
115	<u> </u>	•••	•••	•••	E	58	

Number.	Date	•		Loo in T	kout ime.	Соп	<i>Δa</i> net — *	Refraction.	∆ð Comet — *	Refraction,	No. of Compartsons.
	1881		h.	m.	s.	m.	s.	S.	, "	"	
116	August	24	9	13	30	+0	18.34			•••	7
117	•••	24	9	13	30	-· o	9.03		•	•	. 7
118	•••	24	9	13	30	-3	6.70	+0.05	•••		7
119	•••	24	9	13	30	-3	3 6.6 6			<u> </u>	7
120	Septemb	er 6	10	49	13	+0	14.95		•••	ļ	10
121	•••	6	11	10	38		•••		-3 34.0	!	5
I 22	•••	12	11	45	13	—о	50.31	0.00	•••		6
123	•••	12	11	45	13	— I	12.27	0.00			· 6
124	•••	12	11	46	0		•••		-0 I5.2	0.0	4
125	•••	12	11	46	o				+ь 13.6	0.0	4
126	•••	21	10	2	56	+0	56.75	0.00	· •••		12
127	•••	21	10	8	50		•••		—o 29.6	0.0	10
128	October	14	10	31	43	-о	37.84	+0.11	<u>9</u> 42.8	-0.2	6

Comet c, 1881.

	·									
129	July	17	14	58	46	+0 12.00	+0.03	•••		10
130		17	14	58	46	+o 6.81	0.00	•••		10
131	•••	17	14	58	52			—3 55.5 ~	-o.5	4
132		17	15	23	59	···		+0 39.9	+0.1	3
133		18	15	33	I	+1 21.22	+0.03		•••	6
134	•••	18	15	38	36			_2 9.8	-0.4	5
135	•••	19	14	33	16	<u>-2</u> 32.73	+0.02	***		6
136	•••	19	14	32	20			—1 2. 5	—о.з	6
137		22	15	24	57	+2 26.36	-0.02	•••	•••	8
138	•••	22	15	3 5	6	·		+o 44.8	+0.4	5
139	•••	24	14	20	4	—I 7.75		•••	,	4
140	•••	24	15	3	4	+o 22.68	+0.02	•••	•••	8
141		24	15	3	4	—o 23.58	0.00	•••	•••	8.
142	•••	24	15	3	4	—I 52.06	0.00	•••	•••	8

Number.	Apparent R. A.	Parallax.	Apparent Decl.	Parallax.	Observer	Comparison Star.	Notes.
	h. m. s.	s.	0 / //	"			
116	•••		•••	•••	E	55	
117				•••	E	56	
118	14 45 19.91			•••	E	57	
119	•••		•••		E	58	
120	•••			•••	L	59	Very faint in moonlight.
121	···			•••	L	59	
122	15 56 9	+1.02		•••	w	60	
123	15 56 9	+1.02		•••	w	61	·
124	···		+74 36.5	+9.0	w	60	
125			74 36.5	+9.0	w	61	(Nucleus bright but amall
126	16 30 58.64	+0.96	•••		w	62	Nucleus bright but small. W. notes times on chronometer.
127			73 39 28.7	+0.6	w	62	(Very faint. Observed with
128	18 5 8.45	+0.74	70 57 3 7. 6	+1.0	w	63	ring micrometer. J. notes times on chronometer.

Comet c, 1881.

L											
129	5	51	11.70	0.34		•••			s	64	Nucleus bright.
130		•••				•••		•••	s	65	
131		•••			+39	57	10.0	+3.3	s	64	
132		•••			39	57.	5	+3.0	s	66	
133	5	53	13	—о.3 6		•••			s	67	
134					40	19.	2	+2.9	s	67	
135	5	55	2.35	-o.35		•••			w	68	
136		•••			40	40	29.5	+3.7	w	68	
137	6	I	27.15	0.40		•••			s	69	Observed in dawn. Nucleus still quite plainly visible.
138					41	52	31.6	+3.0	s	69	
139		•••				•••			s	70	Comet faint.
140	6	6	19.67	0.42		•••			s	71	
141		•••				•••			s	72	
142	6	6	20. I I	-0.42		•••			s	73	

Number.	Date.			Loo in Ti		Δa Comet — *	Refraction.	Δδ Comet — *	Refraction.	No. of Comparisons.
143	1881 July	24	h. 15	m. 21	s. 31	m. s.	s. 	/ // 6 16.2	// 0.4	1
144	•••	24	15	26	6			-0 46.5	0.0	2
145	•••	24	15	31	12	·		—о 13.5	0.0	4
146	•••	24	. 15	31	12	•••		-o 11.6	0.0	4
147	•••	24	15	46	4	-3 4.29	0.00			4
148	•••	24	15	58	40	-o 15.5				1
149		24	16	0	I	+o 28.92	+0.02			4
150	•••	24	16	0	I	—I 45.73	0.00	•••		4
151		24	16	0	46 .	-3 2.54	0.00	•••		3
152		25	15	5	40	•••		+1 33.0	+0.1	2
153	•••	25	15	17	2	+7 56.65	0.00			2
154	•••	25	15	27	33			_o 21.6	o. o	4
155	•••	25	15	28	16	+6 7.69	0.00			8
156		25	15	31	49	+1 31.13	0.00	•••		6
157	•••	25	15	31	49	+0 49.98	0.00			6
158		26	15	3	49	·		+1 39.0	0,0	5
159		26	15	15	53			+3 52.2	+0.1	2
160	•••	26	16	10	I	-1 48.75	-0.01	•••	 .	5
161	•••	26	16	12	15	<u>—4</u> 7.01	0.00			3
162		27	15	12	39	+1 41.20	0.00	•••		16
163		27	15	15	45			+o 23.6	0.0	11
164	August	I	14	38	29	+1 4.18	0.00	•••		10
165		I	14	38	29	+0 9.17	0.00	•••		10
166	•••	I	14	38	45	+0 41.90	0.00	•••		9
167	•••	1	14	39	24	+o 51.58	0.00	•••		8
168		I	15	4	38			-9 3.4	-0.4	3
169		I	15	4	38	•••		-4 55⋅3	- 0.1	3
170	•••	1	15	8	11	•••		<u> </u>	-0.4	3
171		I	15	8	11	•••		<u>_8 22.6</u>	—о.з	3
172	•••	I	15	35	42	•••		—3 39.2	-0.2	I

Number.	Apparent R. A.	Parallax.	Apparent Decl.	Parallax.	Observer.	Comparison Star.	Notes.
143	h. m. s.	8.	0 / // +42 43 30.9	+3.2	s	71	
144	•••	•••	42 43 40.2	İ	S	74	
145		•••		'	S	72	
146			 42 43 44.4	+3.1	S	73	·
147	6 6 24.23	-0.43		-3.1	s	74	
148				"	L	72	
149	6 6 25.91	-0.43			L	71	
150	6 6 26.44	-0.43			L	73	·
151	6 6 25.98	-0.43	•		L	74	Clouds.
152	•••		43 10.5	+3.5	s	75	
153	6 9 4.04	-0.44			s	76	
154			43 10 35.7	+3.2	s	77	•
155	6 9 5.24	-0.44	•••		s	77	
156	6 9 4	-0.44	•••		s	75	
157	6 9 5	-0.44	•••		s	78	
158			43 38 3.2	+3.6	L	79	
159			43 38 16.0	+3.4	L	8o	
160	6 12 5.18	0.46	•••		L	80	{ The transits were taken in the dawn.
161	6 12 5.46	0.46			L	79	(
162	6 15 5.66	-0.47			L	81	Comet almost round.
163	•••		44 6 55.6	+3.2	L	81	
164	6 34 59	-0.52	•••		E	82	Nucleus bright = 41/2 m.
165	••• •	•••	•••		E	83	
166		•••	•••		Е	84	
167	6 34 59	-o.52	•••		Е	85	
168	•••		4 6 43. 6	+4.I	Е	82	
169	•••	•••	46 44.2	+4.I	E	85	
170	•••		•••		Е	84	
171	•••		,		E	83	
172			46 45 6.6	+3.5	E	86	

1880 h. m. s. m. s. s. ' " " 173 August I 15 38 21 +5 19.7 +0.2 I												
173 August 1 15 38 21 +5 19.7 +0.2 1 174 1 15 44 13 -1 33.08 0.00 2 175 1 15 44 13 -2 19.26 0.00 2 176 5 15 35 45 -7 38.5 -0.3 5 177 5 15 35 45 +2 3.4 +0.1 5 178 5 15 57 58 +0 45.25 0.00 10 180 10 16 15 12 +2 57.8 +0.1 6 181 10 16 15 35 +1 8.84 0.00 10 18	Number.	Date.		1			Com		Refraction.		Refraction.	
174 1 15 44 13 -1 33.08 0.00 2 175 1 15 44 13 -2 19.26 0.00 2 176 5 15 35 45 -7 38.5 -0.3 5 177 5 15 35 45 +2 3.4 +0.1 5 178 5 15 57 58 +0 45.25 0.00 10 179 5 15 57 58 -0 31.59 0.00 10 180 10 16 15 12 +2 57.8 +0.1 6 181 10 16 15 35 +1 8.84 0.00 10 182 14<		1880		h.	m.	s.	m.	s.	s.	, ,,	"	
175 1 15 44 13 -2 19.26 0.00 2 176 5 15 35 45 -7 38.5 -0.3 5 177 5 15 35 45 +2 3.4 +0.1 5 178 5 15 57 58 +0 45.25 0.00 10 179 5 15 57 58 -0 31.59 0.00 10 180 10 16 15 12 +2 57.8 +0.1 6 181 10 16 15 35 +1 8.84 0.00 10 182 14 15 59 36 -2 58.5 -0.1 5 183	173	August	1	15	38	21		•••		+5 19.7	+0.2	I
176 5 15 35 45 -7 38.5 -0.3 5 177 5 15 35 45 +2 3.4 +0.1 5 178 5 15 57 58 +0 45.25 0.00 10 179 5 15 57 58 -0 31.59 0.00 10 180 10 16 15 12 +2 57.8 +0.1 6 181 10 16 15 35 +1 8.84 0.00 10 182 14 15 59 36 -2 58.5 -0.1 5 183 14 16 4 18 +4 13.99 0.00 4 184 14<	174	•••	1	15	44	13	—1	33.08	0.00		•••	2
177 5 15 35 45 +2 3.4 +0.1 5 178 5 15 57 58 +0 45.25 0.00 10 179 5 15 57 58 -0 31.59 0.00 10 180 10 16 15 12 +2 57.8 +0.1 6 181 10 16 15 35 +1 8.84 0.00 10 182 14 15 59 36 -2 58.5 -0.1 5 183 14 16 4 18 +4 13.99 0.00 10 184 14 16 33 56 +1 36.6 0.0 2 186 16	175	•••	I	15	44	13	-2	19.26	0.00	1	•••	2
178 5 15 57 58 +0 45.25 0.00 10 10 15 57 58 -0 31.59 0.00 10 10 16 15 12 +2 57.8 +0.1 6 181 10 16 15 35 +1 8.84 0.00 10 182 14 15 59 36 -2 58.5 -0.1 5 183 14 16 4 18 +4 13.99 0.00 10 184 14 16 16 4 -0 52.30 0.00 4 185 14 16 33 56 +1 36.6 0.0 2 186 16 8 23 32 +3 45.7<	176	•••	5	15	35	45		•••		-7 38.5	0.3	5
179 5 15 57 58 —0 31.59 0.00 10 16 15 12 +2 57.8 +0.1 6 181 10 16 15 35 +1 8.84 0.00 10 182 14 15 59 36 -2 58.5 —0.1 5 183 14 16 4 18 +4 13.99 0.00 10 184 14 16 16 4 —0 52.30 0.00 4 185 14 16 33 56 +1 36.6 0.0 2 186 16 8 23 32 +3 45.7 +1.0 5	177	•••	5	15	35	45		•••		+2 3.4	+0.1	5
180 10 16 15 12 +2 57.8 +0.1 6 181 10 16 15 35 +1 8.84 0.00 10 182 14 15 59 36 -2 58.5 -0.1 5 183 14 16 4 18 +4 13.99 0.00 10 184 14 16 16 4 -0 52.30 0.00 4 185 14 16 33 56 +1 36.6 0.0 2 186 16 8 23 32 +3 45.7 +1.0 5	178	•••	5	15	57	58	+0	45.25	0.00			10
181 10 16 15 35 +1 8.84 0.00 10 182 14 15 59 36 -2 58.5 -0.1 5 183 14 16 4 18 +4 13.99 0.00 10 184 14 16 16 4 -0 52.30 0.00 4 185 14 16 33 56 +1 36.6 0.0 2 186 16 8 23 32 +3 45.7 +1.0 5	179	•••	5	15	57	58	•	31.59	0.00	•••	•••	10
182 14 15 59 36 -2 58.5 -0.1 5 183 14 16 4 18 +4 13.99 0.00 10 184 14 16 16 4 -0 52.30 0.00 4 185 14 16 33 56 +1 36.6 0.0 2 186 16 8 23 32 +3 45.7 +1.0 5	180	•••	10	16	15	12		•••		+2 57.8	+0.1	6
183 14 16 4 18 +4 13.99 0.00 10 184 14 16 16 4 -0 52.30 0.00 4 185 14 16 33 56 +1 36.6 0.0 2 186 16 8 23 32 +3 45.7 +1.0 5	. 181	•••	10	16	15	35	+1	8. 84	0.00	•••		10
184 14 16 16 4 -0 52.30 0.00 4 185 14 16 33 56 +1 36.6 0.0 2 186 16 8 23 32 +3 45.7 +1.0 5	182	•••	14	15	5 9	36		•••		-2 58.5	0.1	5
185 14 16 33 56 +1 36.6 0.0 2 186 16 8 23 32 +3 45.7 +1.0 5	183	•••	14	16	4	18	+4	13.99	0.00	•••		10
186 16 8 23 32 +3 45.7 +1.0 5	184	•••	14	16	16	4	—o	52.30	0.00	•••		4
	185	•••	14	16	3 3	56		•••		+1 36.6	0.0	2
187 16 8 50 35 -3 24.35 +0.07 10	186	•••	16	8	23	32		•••		+3 45.7	+1.0	5
	187	•••	16	8	50	35	—3	24 .35	+0.07			10
188 16 9 21 57 -2 58.12 +0.07 8	188	•••	16	9	21	57	-2	58.12	+0.07	•••		8

Comet d, 1881.

189	September 21	13	15	48	+3 35.13	0.00	-		6
190	21	13	17	35			+2 18.4	+0.1	8
191	24	11	1	55	-o 41.55	-0.09	+9 49.9	+1.5	4
192	24	11	17	48	—o 36.72	o. o 6	+9 49.4	+1.0	2

Comet e, 1881.

193	September 23	7-	27 8	 	-0 11.9	0.0	2

Number.	Apparent R. A.			Parallax.		ppar Decl		Parallax.	Observer.	Comparison Star.	Notes.
173	h.	m.	s.	s. 	。 +46	45.0	<i>"</i>	// +3·5	E	87	·
174	6	35	12.57	-0.55					E	86	
175	6	35	14	-0.55	:		•		E	87	
176					49	4.3	3	+4.0	E	88	: :
177		•••		•••	49	5.2	2	+4.0	E	89	
178	6	59	20	—0.68					E	88	
179	6	59	23	—o.68					E	89	
180		·			51	58	39.6	+4.2	L	90	
181	7	43	3 2.6 9	о.86					L	90	Appeared very dim.
182		•••			52	46	52.1	+6.9	L	91	
183	8	48	43.01	0. 98					L	91	
184	8	48	52.02	— 1.00					L	92	
185			•		52	46	45. I	+5.8	L	92	Comet quite bright.
186		•••	:	***	52	16	40.6	+10.3	E	93	
187	9	21	30.98	+0.72		•••			E	93	
188	9	21	57.21	+0.77		•••			J	93	

Comet d, 1881.

189	6 16 27.1	3 -0.84		•••		•••	w	95	No nucleus. Very faint. W. notes times on chronometer.
190	•••		+42	2 5	37.3	+3.9	W	95	(Ring micrometer used. J.
191	6 43 29.3	5 —o.88	42	55	10.2	+8.6	w	96	notes times on chronometer.
192	6 43 34.2	0.90	42	55	9.3	+8.9	J	96	Ring micrometer used. W. notes times on chron.

Comet e, 1881.

193	 	+7	8	39.8	+4.I	w	94	Disappeared in a cloud.

Date Mt. Lookout	10		outions of	Comers.		i u, 1002.		
194 March 24 13 41 25 m. s. m. s	Number.	Date.			Refraction.		Refraction.	No. of Comparisons.
195 24 13 51 30 +0 24.09 0.00			1	m. s.	s.	•	l	l
196 24 13 51 30 -0 32.79 0.00 10 197 24 14 13 1 -8 2.3 -0.1 1 198 28 15 12 4 +1 44.44 0.00 12 199 28 15 34 24 -0 26.9 0.0 8 200 28 15 34 24 -2 32.2 0.0 4 201 28 15 48 8 +0 9.07 0.00 6 202 April 12 11 41 54 +0 15.97 +0.01 6 203 14 12 59 44 -2 48.0 0.0 7	194	March 24	13 41 25	•••		-4 24.4	-0.1	6
197 24 14 13 I -8 2.3 -0.1 I 198 28 15 12 4 +1 44.44 0.00 12 199 28 15 12 34 -0 26.9 0.0 8 200 28 15 34 24 -2 32.2 0.0 4 201 28 15 48 8 +0 9.07 0.00 6 202 April 12 11 41 54 +0 15.97 +0.01 6 203 12 11 42 6 -2 48.0 0.0 7 205 14 13 5 40 +3 8.52 0.00 4 207 14 13	195	24	13 51 30	+0 24.09	0.00	•••	•••	10
198 28 15 12 4 +1 44.44 0.00 12 199 28 15 12 34 -0 26.9 0.0 8 200 28 15 34 24 -2 32.2 0.0 4 201 28 15 34 24 -2 32.2 0.0 4 201 28 15 48 8 +0 9.07 0.00 6 202 April 12 11 41 54 +0 15.97 +0.01 6 203 12 11 42 6 +3 55.4 +0.1 8 204 14 13 5 40 +3 8.52 0.00 6 205 14 1	196	24	13 51 30	-o 32.79	0.00		•••	10
199 28 15 12 34 </td <td>197</td> <td> 24</td> <td>14 13 1</td> <td>•••</td> <td></td> <td>—8 2.3</td> <td>-0.1</td> <td>1</td>	197	24	14 13 1	•••		—8 2.3	-0.1	1
200 28 15 34 24 -2 32.2 0.0 4 201 28 15 48 8 +0 9.07 0.00 6 202 April 12 11 41 54 +0 15.97 +0.01 6 203 12 11 42 6 +3 55.4 +0.1 8 204 14 12 59 44 -2 48.0 0.0 7 205 14 13 5 40 +3 8.52 0.00 6 206 14 13 7 56 +0 46.85 0.00 4 207 14 13 8 8 -2 20.5 0.0 5 208 17 14 27 39 <td>198</td> <td> 28</td> <td>15 12 4</td> <td>+1 44.44</td> <td>0.00</td> <td>•••</td> <td></td> <td>12</td>	198	28	15 12 4	+1 44.44	0.00	•••		12
201 28	199	28	15 12 34	•••		—o 2 6.9	0.0	8
202 April 12 11 41 54 +0 15.97 +0.01 12 203 12 11 42 6 +3 55.4 +0.1 8 204 14 12 59 44 -2 48.0 0.0 7 205 14 13 5 40 +3 8.52 0.00 6 206 14 13 7 56 +0 46.85 0.00 4 207 14 13 8 58 -2 20.5 0.0 5 208 17 14 22 47 +6 5.8 5 209 17 14 22 47 +6 8.1 5 210 17 14 27 39 -0 9.67 7 211 17 14 27 39 -2 51.12 +0.02 8 212 20 12 4 22	200	28	15 34 24	•••		-2 32.2	0.0	4
203 12 11 42 6 +3 55.4 +0.1 8 204 14 12 59 44 -2 48.0 0.0 7 205 14 13 5 40 +3 8.52 0.00 6 206 14 13 7 56 +0 46.85 0.00 4 207 14 13 8 58 -2 20.5 0.0 5 208 17 14 22 47 +6 5.8 5 209 17 14 27 39 -0 9.67 +6 8.1 5 210 17 14 27 39 -2 0.66 8 212	201	28	15 48 8	+ o 9.07	0.00	•••		6
204 14 12 59 44 -2 48.0 0.0 7 205 14 13 5 40 +3 8.52 0.00 6 206 14 13 8 58 -2 20.5 0.0 5 208 17 14 22 47 +6 5.8 5 209 17 14 22 47 +6 8.1 5 210 17 14 27 39 -0 9.67 7 211 17 14 27 39 -2 0.66 8 212 20 12 4 22 -2 51.12 +0.02 8 213 20 12 5 <	202	April 12	11 41 54	+o 15.97	+0.01	•••		12
205 14 13 5 40 +3 8.52 0.00 6 206 14 13 7 56 +0 46.85 0.00 4 207 14 13 8 58 -2 20.5 0.0 5 208 17 14 22 47 +6 5.8 5 209 17 14 27 39 -0 9.67 +6 8.1 5 210 17 14 27 39 -0 9.67 7 211 17 14 27 39 -0 9.67 </td <td>203</td> <td> I2</td> <td>11 42 6</td> <td>•••</td> <td></td> <td>+3 55.4</td> <td>+0.1</td> <td>8</td>	203	I2	11 42 6	•••		+3 55.4	+0.1	8
206 14 13 7 56 +0 46.85 0.00 4 207 14 13 8 58 2 20.5 0.0 5 208 17 14 22 47 +6 5.8 5 209 17 14 22 47 +6 5.8 5 210 17 14 27 39 -0 9.67 7 211 17 14 27 39 -2 0.66 8 212 20 12 4 22 -2 51.12 +0.02 8 213 20 12 5 20 +5 45.0 +0.1 6 214 23	204	14	12 59 44	•••		—2 48.0	0.0	7
206 14 13 7 56 +0 46.85 0.00 4 207 14 13 8 58 2 20.5 0.0 5 208 17 14 22 47 +6 5.8 5 209 17 14 22 47 +6 5.8 5 210 17 14 27 39 -0 9.67 7 211 17 14 27 39 -2 0.66 8 212 20 12 4 22 -2 51.12 +0.02 8 213 20 12 5 20 +5 45.0 +0.1 6 214 23	205	14	13 5 40	+3 8.52	0.00	•••	•••	6
207 14 13 8 58 -2 20.5 0.0 5 208 17 14 22 47 +6 5.8 5 209 17 14 22 47 +6 8.1 5 210 17 14 27 39 -0 9.67 7 211 17 14 27 39 -2 0.66 8 212 20 12 4 22 -2 51.12 +0.02 8 213 20 12 5 20 +5 45.0 +0.1 6 214 23 12 52 26 +2 24.50 +0.03 6 217 23 12	206	14	13 7 56		0.00	•••	•••	4
208 17 14 22 47 +6 5.8 5 209 17 14 22 47 +6 8.1 5 210 17 14 27 39 -0 9.67 7 211 17 14 27 39 -2 0.66 8 212 20 12 4 22 -2 51.12 +0.02 8 213 20 12 5 20 +5 45.0 +0.1 6 214 23 12 52 20 +8 33.8 +0.1 4 216 23 12 52 40 +0 22.28 6 217 23 12	207	· 14	l	•••		—2 20.5	0.0	5
209 17 14 22 47 +6 8.1 5 210 17 14 27 39 -0 9.67 7 211 17 14 27 39 -2 0.66 8 212 20 12 4 22 -2 51.12 +0.02 8 213 20 12 5 20 +5 45.0 +0.1 6 214 23 12 52 19 +8 33.8 +0.1 4 215 23 12 52 26 +2 24.50 +0.03 6 216 23 12 52 40 +0 22.28 6 217 23 12 43	208	17		•••		_		1
210 17 14 27 39 -0 9.67 7 211 17 14 27 39 -2 0.66 8 212 20 12 4 22 -2 51.12 +0.02 8 213 20 12 5 20 +5 45.0 +0.1 6 214 23 12 52 19 +8 33.8 +0.1 4 215 23 12 52 26 +2 24.50 +0.03 6 216 23 12 52 40 +0 22.28 6 217 23 12 53 30 +3 23.8 8 218 24 12 43 33	209	17		•••				
211 17 14 27 39 -2 0.66 8 212 20 12 4 22 -2 51.12 +0.02 8 213 20 12 5 20 +5 45.0 +0.1 6 214 23 12 52 19 +8 33.8 +0.1 4 215 23 12 52 26 +2 24.50 +0.03 6 216 23 12 52 40 +0 22.28 6 217 23 12 55 30 +3 23.8 8 218 24 12 43 33 +0 21.20 +0.02 10 220				-o 9.67		•••		
212 20 12 4 22 -2 51.12 +0.02 8 213 20 12 5 20 +5 45.0 +0.1 6 214 23 12 52 19 +8 33.8 +0.1 4 215 23 12 52 26 +2 24.50 +0.03 6 216 23 12 52 40 +0 22.28 6 217 23 12 55 30 +3 23.8 8 218 24 12 43 33 +0 21.20 +0.02 10 219 24 12 45 1 +3 38.6 +0.1 6 220 27 10 28 18 +0 35.64 7 221 29 10 20 6 +3 10.5 8	211	-						
213 20 12 5 20 +5 45.0 +0.1 6 214 23 12 52 19 +8 33.8 +0.1 4 215 23 12 52 26 +2 24.50 +0.03 6 216 23 12 52 40 +0 22.28 6 217 23 12 55 30 +3 23.8 8 218 24 12 43 33 +0 21.20 +0.02 10 219 24 12 45 1 +3 38.6 +0.1 6 220 27 10 28 18 +0 35.64 7 221 29 10		•						· · I
214 23 12 52 19 +8 33.8 +0.1 4 215 23 12 52 26 +2 24.50 +0.03 6 216 23 12 52 40 +0 22.28 6 217 23 12 55 30 +3 23.8 8 218 24 12 43 33 +0 21.20 +0.02 10 219 24 12 45 1 +3 38.6 +0.1 6 220 27 10 28 18 +0 35.64 7 221 27 10 30 32 +1 25.35 12 222 29 10 20 6 +3 10.5 8			,			•		
215 23 12 52 26 +2 24.50 +0.03 6 216 23 12 52 40 +0 22.28 6 217 23 12 55 30 +3 23.8 8 218 24 12 43 33 +0 21.20 +0.02 10 219 24 12 45 1 +3 38.6 +0.1 6 220 27 10 28 18 +0 35.64 7 221 27 10 30 32 +1 25.35 12 222 29 10 20 6 +3 10.5 8	_					'		
216 23 12 52 40 +0 22.28 6 217 23 12 55 30 +3 23.8 8 218 24 12 43 33 +0 21.20 +0.02 10 219 24 12 45 1 +3 38.6 +0.1 6 220 27 10 28 18 +0 35.64 7 221 27 10 30 32 +1 25.35 12 222 29 10 20 6 +3 10.5 8		_				10 33.0		
217 23 12 55 30 +3 23.8 8 218 24 12 43 33 +0 21.20 +0.02 10 219 24 12 45 1 +3 38.6 +0.1 6 6 220 27 10 28 18 +0 35.64 7 221 27 10 30 32 +1 25.35 12 222 29 10 20 6 +3 10.5 8		_				•••		
218 24 12 43 33 +0 21.20 +0.02 10 219 24 12 45 I +3 38.6 +0.1 6 220 27 10 28 18 +0 35.64 7 221 27 10 30 32 +1 25.35 12 222 29 10 20 6 +3 10.5 8		-	,		***		•••	
219 24 12 45 1 +3 38.6 +0.1 6 220 27 10 28 18 +0 35.64 7 221 27 10 30 32 +1 25.35 12 222 29 10 20 6 +3 10.5 8							•••	
220 27 10 28 18 +0 35.64 7 221 27 10 30 32 +1 25.35 12 222 29 10 20 6 +3 10.5 8			1	+0 21.20	+0.02			
221 27 io 30 32 +1 25.35 12 222 29 io 20 6 +3 10.5 8			1	•••			+0.1	1 . [
222 29 10 20 6 +3 10.5 8	1				•••	+0 35.64	•••	7
				+1 25.35			•••	
223 29 10 20 10 +0 10.86 10	222	29	10 20 6		•••	+3 10.5	•••	8
	223	29	10 20 10	+o 10.86		•••	•••	10

1; 1; 1; 18 N	
Number. Parallax. Comparison Star.	Notes.
h. m. s. s. o / // //	
	cleus stellar.
195 18	notes times on chro- meter.
196 18 3 25.69 -0.30 W 98	
197 36 15 14.0 +1.3 W 98	
198 18 10 54.42 -0.24 W 99 { W. no	notes time on chro- meter.
199 38 43 47.0 +0.6 W 99	
200 W 100	
201 W 100	
202 W 101	
203 W 101	
204 51 51 52.5 +0.8 W 102	
205 18 52 45.19 -0.54 W 102 \{ W.	notes times on chro- meter.
206	incter.
207 W 103	
208 W 104	
209 W 105	
210 W 104 { W.	notes times on chro- meter.
211 W 105	meter.
212 19 16 26.27 -0.74 W 106 \{ W.	notes times on chro- meter.
213 57 37 54.8 +1.6 W 106	meter.
214 60 45 16.0 +0.4 W 107	
215 19 32 28.76 —0.80 W 107	
216 W 108	
217 W 108	
	ndy.
219 61 47 40.2 +0.6 W 109	
W TTO 5 Tim	nes recorded on Morse
221 W 110	
222 W 111 Haz	zy and moonlight.
Y Tim	nes recorded on Morse egister.

Number.	Da	ite.	- 1	Loo in T	kout ime.	Cor	Δ <i>a</i> net — *	Refraction.	Δδ Comet — *	Refraction.	No. of Comparisons.
		882	h.	m.	5.	m.	s.	s.	, "	"	
224	May	8	10	24	5	-2	52.20	-0.09	***	***	6
225	1	8	10	24	5	-0	20.93	-0.17			4
226		8	10	25	5		***	***	+ 8 29.4	-0.4	4
227		8	10	25	5				+15 15.9	-o.8	2
228	•••	15	11	44	47				+10 29.7	+1.0	4
229	444	15	11	46	58	+3	54.12	+0.04		***	6
230		16	9	47	29	-1	52.18	0.00		inc	6
231		16	9	48	18		•••		- 3 19.7	-0.3	6
232	***	18	9	51	47	+3	54.38	0.00			6
233	***	18	9	51	51				- 2 48.0	-0.4	6
234	600	18	10	55	51				+ 1 9.6	+0.2	3
235		18	11	16	49	+0	18.62	0.00			10
236		22	10	38	18				— 2 13.0	-o.6	6
237		22	10	49	54	+4	16.13	0.00			10

Comet c, 1882.

238	Octob	er 4	16	52	54		***	***	+12	11.5	+4.0	1
239		4	17	3	57	+0	10.08	-0.19			***	9
240	***			,		10	10.49	-0.19				9
241		5	17	2	53	11 3	•••		+ 3	46.6	+0.8	4
242		- 5	17	3	48	-1	11.82	-0.05				6
243						10	11.40	-0.05				6
244	***					1,7	11.00	-0.05				6
245		6	17	23	30			***	+10	7.4	+1.2	6
246		6	17	23	37	+0	31.73	-0.06			•••	12
247		1					32.23	—0.06				12
248							32.79	-0.06				12
249	•••						33.09	-0.06				12
250		13	17	17	40				- 3	51.0	-o.8	1

Number.	Apparent R. A.			Parallax.	_	pare Decl		Parallax.	Observer.	Comparison Star.	Notes.
224	h.		s.	s. —1,22	۰	,	"	"	w	112	Comet faint in clouds. Times recorded on Morse
224	22	42	17.09	1.22		•••		•••			Register.
225		•••		•••		•••		•••	w	113	
226		•••		•••	+74	10	58.1	+6.9	w	112	
227		•••							w	113	
228					72	36	44.7	+8.4	w	114	{ W. notes times on chronometer.
229	1	33	1.09	—о.78		•••		···	w	114	
230	1	51	31.20	+0.18					w	115	{ W. notes times on chronometer.
231		•••	•		71	47	35-7	+9.2	w	115	
232	2	26	43-33	+0.33		•••			w	116	W. notes times on chronometer.
233		•••			69	38	3 2 .9	+9.2	w	116	
234		•••		•••		•••			w	117	
235		•••		•••		•••			w	117	Time recorded on Morse Register.
236		•••		•••	64	7	29.9	+9.6	w	118	W. notes times on chronometer.
237	3	18	44.21	+0.13		•••		. •••	w	118	

Comet.c, 1882.

238					– 8	52	37-4	+4-3	w	119	Nucleus 2.
239	10	34	5.85	—0.32		•••			w	119	Nucleus 1.
240			6.26	0.32		•••			w	119	Nucleus 2.
241		•••			- 9	20	34-5	+4-4	w	120	n ₂
242	10	32	31.79	-0.32		•••			w	120	n ₁
243			32.21	-0.32		•••			w	120	n ₂
244			32.61	-0.32		•••			w	120	n ₈
245					– 9	47	44-9	+4.4	w	121	n ₂
246	10	30	59.01	—0.30		•••			w	121	n _o
247			59.51	-0.30		•••			w	121	n ₁
248		31	0.07	-0.3 0		•••			w	121	n ₂
249			0.37	—0. 30		•••			w	121	n ₈
250		.,,,		•••	-12	47	31.3	+4.5	W	122	n ₂

		<u> </u>			7 0, 1002.		
Number.	Date.	Mt. Lookout Mean Time.	Δa Comet — *	Refraction.	Δð Comet — *	Refraction.	No. of Comparisons.
251	1882 October 13	h. m. s. 17 33 38	m. s.	s. 	/ // -0 43.2		4
252	13	17 34 7	+3 36.63	0.00	•••		6
25 3	•••		37-78	0.00	•••	•••	6
254	•••		38.23	0.00	. •••		6
255	•••		38.68	0.00	•••		6
256	13	17 34 7	+2 56.60	+0.05	•••		6
25 7	•••		57·7 5	+0.05	•••		6
258	•••		58.20	+0.05	•••		6
259	•••		58. 65	+0.05	•••		6
260	19	17 30 49	+2 15.09	-0.01	•••		4
261	•••		15.64	-0.01	•••		4
262	19	17 31 40			+5 2.I	+0.4	4
263	20	16 58 30	•••		—1 33.2	-0.2	4
264	20	17 4 37	+1 17.64	+0.01		•••	8
265	•••		18.17	+0.01			8
266	29	16 6 49	•••		6 15.9	—0.9	4
267	29	16 6 49			— 7 57.8	0.9	4
268	29	16 8 10	+0 21.59	+0.05			14
269	···· .		22.41	+0.05	•••		14
270	29	16 8 10	+o 13.96	+0.06			14
271			14.78	+0.06	·••		14
272	November 2	17 I 9	, 		+10 45.0	+0.9	3
273	2	17 14 1	··· .		→o 59.1	1.0—	6
274	2	17 17 0	+0 22.00	0.03			12
275	•••		22.82	—о оз			12
276			23.60	0.03			12
277	2	17 17 0	- o 20.99	+0.02		·	12
278	•••		20.16	+0.02			12
279	•••		19.38	+0.02			12
280	3	16 43 41			—5 31.5	0.5	4
			·	<u> </u>	<u> </u>	<u>'</u>	

Number.	Apparent R. A.	Parallax.	Apparent Decl.	Parallax.	Observer.	Comparison Star.	No	tes.
251	h. m. s.	s. 	1	" " 2.5 +4.6	w	123	n ₂	
252	10 21 11.28	_0.25		1	w	123	n _o .	
253	12.43	-0.25			w	123	n ₁	
254	12.88	-0.25	•••		w	123	n _s	
255	13.33	-0.25			w	123	n _s .	
256	10 21 10.49	0.25			w	122	n _o	
257	11.64	—0.25			w	122	n ₁ .	
258	12.09	-0.25			w	122	n ₂	:
259	12.54	-0.25			w	122	n _s	,
260		-0.22			w	124	n ₁	
261	•••	-0.22			w	124	n ₂ .	
262	•••			+4.6	w	124	n ₂ .	
263			—15 35 I	1.1 +4.6	W	125	n ₂	
264	10 11 54.66	-0.24			w	125	$\mathbf{n_1}$	
265	55.19	-0.24			W	125	· n ₂	
266			18 58 30	6.1 +4.6	W	126	n ₂ .	
267			—18 5 8 30	0.3. +4.6	W	127	n ₂	
268	9 5 9 7. 29	-0.25			W	126	n ₁ .	••
269	8.11	-0.25		"	W	126	n ₂	
270	9 59 7.24	-0.25			W	127	n ₁	
271	8.06	—0.25		"	W	127	n ₂ ·	
272	•••		—20 2 6 30	0.8 +4.9	W	128	n ₂ Slightly	hazy.
27 3	***			+5.0	W	129	n ₂	
274	9 52 40.34	1		· ·	W	128	n ₁	
² 75	41.16	l		- "	1 1	128	n ₂	:
276	41.94	-0.15			1 1	128	n ₈	
277	•••				W	1	n ₁ .	
278	•••		•••	"	W	-	n ₂	
279	•••				W	-	n ₈	
280	40.	•••	—20 47 2 <u>:</u>	3.4 +4.9	W	130	n ₂	

					,		
Number.	Date.	Mt. Lookout Mean Time.	Δa Comet — *	Refraction.	Δδ Comet — *	Refraction.	No. of Comparisons.
	1882	h. m. s.	m. s.	s.	, ,,	"	
281	November 3	16 45 27	-0 4.95	+0.02	•••	•••	10
282	•••	•••	3. 0 8	+0.02	•••	•••	10
283	***		2.15	+0.02	•••	•••	10 -
284	•••	•••	1.37	+0.02	•••	•••	10
285	7	15 58 56	•••		—5 5.6	— 0.6	6
286	7	15 59 O	+0 49.18	+0.03	•••		10
287	•••		52.03	+0.03			10
288	•••		53.03	+0.03	•••	•••	10
289	7	15 59 0	+1 3.15				10
290	•••		6.00		•••		10
291	•••		7 .0 0		•••	•••	10
292	20	17 42 21	•••	•••	+3 4.0	+0.3	2
293	20	17 53 54	+1 9.04	0.00	•••		10
294	•••	•••	12.89	0.00	•••		10
295	20	17 53 54	+1 11.41	0.00	•••		8
296	•••		15.26	0.00	•••		8
297	29	17 25 52			6 32.2	_o.8	4
298	29	17 37 51	_0 34.20	-0.02			3
299	29	17 37 51	51.60	-0.02			3
	December 11		, , ,,,		+9 6.7	+1.4	2
300	11	"		0.03	+9 6.7	' '	2
301	1883		—2 10.9				6
302	January 31		***	•••	+0 10.1	0.0	-
303	31				I 40. I	-0.1	6
304	31	8 51 22	+0 35.17	0.00	•••	- ***	10
305	31	8 51 22	-0 31.21	0.00	***	•••	10
306	February 8	8 43 38	_o 2.76	0.00			20
307	•••		+o 1.72	. 0.00	•••		20
308	•••		+0 7.07	0.00	·	•••	20
. 309	8	8 55 1	•••		—7 28.8	—0.5	5
310	28	9 29 33	•••		-2 12.7	—о. 1	6

	,						
Number.	Apparent R. A.	Parallax.	Apparent Decl.	Parallax.	Observer.	Comparison Star.	Notes.
-0-	h. m. s.	S.	0 / //	"			
281	9 51 0.26	-0.18		•••	w	130	n _o
282	2.13	-0.18	•••	***	W	130	n ₁
283	3.06	-0.18	•••	•••	W	130	n _g
284	3.84	0.18	***	•••	W	130	n _a
285	· •••		—22 13 6. 0	+4.8	W	131	n ₂
286	9 44 0.30	-0.21	***	•••	W	131	n _o .
287	3.15	—0.2 I	·	;·· ·	w	131	n ₁
288	4.15	-0.21	•••	•••	w	131	n _g
289	•••		•••	•••	w	132	n _o
290	•••			•••	w	132	n ₁
291	•••		•••		w	132	n ₂
292	•••		—26 18 19.8	+5.4	w	133	· n _g
293	9 16 9.03	+0.06	•••	•••	w	133	n _o Cloudy.
294	12.88	+0.06	. 	•••	w	133	n ₂
295	•••				w	134	n _o
296	•••		•••		w	134	n ₂
297	•••		—28 31 35.8	+5.3	w	135	n ₂
298	8 52 27.31	+0.12	•••	••.	w	135	n ₂
299	8 52 27.25	+0.12		•••	w	136	n ₂
300		·	30 16 21.8	+ 5.2	w	137	n ₂ Very hazy.
301	8 16 37.6	-0.10			w	137	n ₂
302			—22 II I2,8	+3.4	w	138	n ₂
303	*****		—22 II II.6	+3.4	w	139	n ₂
304	6 10 16.35	-0.03			w	138	n _s
305	6 10 16.33			***	w		n ₂
306	6 I 49.39	0.00		•••	w		n _o (?)
307	53.87	0.00			w	140	n ₂ (?)
308	59.22	0.00	•••	•••	w	140	End of nucleus.
309	39.22			 	w	140	
1	••• •	•••	—20 3 13.7°	+3.1	1		n _s (?)
310	•••	•••	—15 14 47.6	+2.4	W	141	n ₂ (?)

Number.	Date.		1	Loo in T	kout ime.	Con	Δa net — *	Refraction.	Δδ Comet — *		Refraction.	No. of
	1883	To I	h.	m.	S.	m.	s.	s.	,	"	"	
311	February	28	9	31	26	+1	12.17	-0.01			***	10
312	March	2	9	4	8	—3	2.50	-0,01			•••	6
313		2	9	4	22				-6	19.2	-0.4	6
314		3	8	53	53				-2	24.4	-0.1	6
315	***	3	8	55	2	+0	6.01	0.00				10
316	oie	3	8	55	2	+0	25.88	0.00				10
317		3	8	55	2	+0	18.45	0.00				10
318		3	8	55	2	+0	14.00	0.00				10

Comet d, 1882.

1	1882		1	163	200			730	•			
319	September	24	16	29	20	+0	6.88	0,00			•••	14
320		24	16	31	13	+0	29.50	0.00			***	4
321		24	16	32	3			500	-0	59-3	0.0	6
322	October	11	15	33	26				-0	1.5	0.0	4
323		11	15	33	26			***	-0	54-4	-0.2	4
324		11	15	33	26				+4	26.1	+0.7	4
325		11	15	34	16	— o	22.46	0.00				8
326		11	15	34	16	-0	38.00	+0.01				8
327		11	15	34	16	-0	58.44	-0,04				8
328		12	15	43	39	-2	4.83		1			6
329		12	15	43	39	-2	35-72	+0.04				6
330	3.0	12	15	43	47				-4	21.4	-0.7	4
331		13	15	27	44	+2	51.38	+0.16				8
332	***	13	15	28	13				-9	15.1	-2.6	4

Number.	Apparent R. A.	Parallax.	Apparent Decl.	Parallax.	Observer.	Comparison Star.	Notes.
	h. m. s.	s.	0 / //	"			
311	5 51 43.43	+0.09		•••	w	141	' n ₂ (?)
312	5 51 22.80	+0.08	•••		w	142	Middle of nucleus.
313	••••		-14 49 38.1	+2.3	w	142	
314		•••			w	143	** **
315			•••		w	143	ie ee ee
316					w	144	66 66 6.
317			•••		w	145	66 66 66
318					w	146	cc cc cc

Comet d, 1882.

319	7	40	19.46	+0.25					w	147	Comet very faint. Has a nucleus.
320	7	40	19.01	+0.25					w	148	
321					+ 6	43	23.5	+3.9	w	147	
322		•••			-18	33	43.8	+6.8	w	149	Very faint in haze. Slight central condensation.
323			•		-18	33	45-4	+6.8	w	150	
324		•••			-18	33	38.9	+6.8	w	151	
325	8	2 9	2.27	+0.40					w	149	
326	8	29	2.38	+0.40		•••			w	150	
327	8	29	2.75	+0.40					w	151	
328						•••			w	153	Strong central condensa-
329	8	32	54.89	+0.39					w	152	
330		•••		•••	-20	29	17.6	+7.1	w	152	
331	8	3 6	52.49	+0.43					w	154	In a group of faint stars.
332		•••			-22	25	12.0	+7.1	w	154	

	J133W170CW		1 100000 0		Comp		
Number.	Mo R. 188		Reduction.	Mean Decl. 1880.0		Reduction.	. Authority.
1	h. m. 16 21		s. + 1.95	° † 23	/ // 41.I	// + 4.0	DM 23° 2935.
2	16 32	31.01	+ 1.95		41 11.6	+ 4.0	Weisse 16h 976.
3	16 31	1.2	+1.95	22	43.9	+ 4.0	DM 22° 2992.
4	16 40	41.60	+1.96	21	50 48.5	+ 3.7	Weisse 16h 1246.
5	17 3	4.99	+1.99	19	20 31.0	+ 2.9	Weisse 17h 24.
6	17 12	19.0	+2.26	18	39-5	+ 7.0	DM 18° 3339.
7	17 47	40.5	+2.34	14	2.0	+ 9.1	DM 14° 3357.
8	18 20	49.55	+2.46	9	5 8 50.8	+10.7	Weisse 18h 452.
9	19 0	10.83	+2.43	12	1 32.8	+ 9.2	1½ (Weisse 18h 1518 + Lamont 1246).
10	19 57	0.6	+2.26	19	23.8	+14.9	DM 19° 4254.
11	20 0	9.9	+2.27	19	23.9	+15.3	DM 19° 4278.
12	20 0	5 3.0	+2.27	19	23. I	+15.4	DM 19° 4286.
	188	1.0		1	o.1 88 1		
13	5 39	20.48	+1.71	46	40 33.5	- 2.7	O.Arg.N. 6201-2, Radcliffe 1554.
14	5 35	37.86	+1.72	46	48 48.5	- 2.7	O.Arg.N. 6142.
15	5 36	40.92	+1.77	49	46 19.6	_ 2.9	" 539 Sterne" 377.
16	5 38	58.52	+1.72	50	58 16.9	- 3.1	O.Arg.N. 6190-1.
17	5 53	5.81	+1.79	60	26 55.7	- 3.9	Krueger's Zones, (Astr. Nach. 2405.)
18	5 54	39.53	+1.79	6 0	27 12.2	- 3.9	Krueger's Zones, (Astr. Nach.
19	5 54	43.86	+1.78	60	40 31.0	- 3.9	Krueger's Zones, (Astr. Nach.
20	5 53	9	+1.79	61	6.3	- 3.9	Anonymous.
21	6 23	21.32	+1.66	70	35 35.8	— 5.1	O.Arg.N. 6920, Radcliffe 1745.
22	6 29	3.09	+1.60	72	27 23.8	- 5.2	O. Arg. N. 7023.
23	6 38	46.15	+1.50	74	16 3.2	— 5.5	O.Arg.N. 7167.
24	6 48	13.76	+1.41	75	24 1.5	5.6	O.Arg.N. 7336.
25	6 48	14.41	+1.39	75	34 24.6	 5.6	O.Arg.N. 7334.
2 6	7 7	6		76	41±		Anonymous.
27	7 7	2	+1.19	76	41.6	— 5.6	DM 76° 272.
28	7 32	30	+0.81	78	43.3	— 5.8	DM 78° 264.
29	7 49	52		79	31.5		Anonymous. Est. 9.0 m.

Number.	Mea R. A 1881.	٠.	Reduction.		Mean Decl. 1881.0	Reduction.	Authority.
30	h. m. 7 49	s. 49	s. 	。 +79	28.0	<i>"</i>	Anonymous. Est. 9.0 m.
31	7 50	45		79	33-3		Anonymous. Est. 9.5 m.
32	7 54	31.93	+0.49	79	33 43.0	- 6.2 ·	O.Arg.N. 8462-3.
33	8 9	15		80	5.9		Anonymous. Est. 10.5 m.
34	8 14	o	•••	80	4.9		Anonymous. Est. 9.0 m.
35	9 1	52		81	34-4		Anonymous.
36	9 20	0.22	-1.10	81	51 o.8	— 4.8	"539 Sterne" 137.
37	10 2	18.48	—1.83	82	17 59.4	— 3.8	Anonymous (Astr. Nach. 2424).
38	10 50	56.47	-2.44	82	19 2.9	_ 2.6	Carrington 1628.
39	13 6	51		80	14.3		Anonymous. Est. 9.0 m.
40	13 10	57.31	—2.86	80	16 56.6	+ 1.9	Fedorenko, Supplement 160.
41	13 15	25	2.87	79	56.7	+ 1.9	DM 80° 407.
42	13 19	16	—2.93	80	3.8.	+ 2.1	DM 80° 409.
43	13 26	57.24	—2.8 5	79	35 50.1	+ 2.3	DM 79° 424 (Astr. Nach. 2424,
44	13 26	43.55	-2.71	79	19 13.2	+ 2.3	DM 79° 423 (Astr. Nach. 2409). Micrometrical comparison with
45	13 49	16.72	-2.75	78	47 51.7	+ 3.3	Rad. 3039. DM 78° 468 (Astr. Nach. 2424).
46	13 49	37	•••	78	52.3		Anonymous. Est. 9.5 m.
47	13 55	18.38	—2 .83	78	58 51.2	+ 3.7	O.Arg.N. 14191.
48	13 55	18		78	59. o		Anonymous. Est. 9.5 m.
49	13 42	9.93	2.82	78	39 36.1	+ 2.6	O.Arg.N. 14003, Rad. 3099, Bonn 466, Gr. Nine Yr. Catalogue 1263.
50	13 53	30	-2.79	78	29.9 .	+ 3.3	DM 78° 470.
51	13 56	42	—2.79	78	34.0	+ 3.6.	DM 78° 472.
52	14 9	19.99	- 2.87	78	6 24.2	+ 4.0	"539 Sterne" 459.
53	14 32	1.51	-2.94	77	5 15.9	+ 4.8	Radcliffe 3237, Groombridge 2140.
54	14 42	17		77	7.4		DM 77° 551.
55	14 45	4		76	42.8		Anonymous. Est. 9.5 m.
56	14 45	32		76	42.8	.	Anonymous. Est. 9.5 m.
57	14 48	29.48	2.92	76	50 38.4	+ 6.0	DM 76° 537 (Astr. Nach. 2424).
58	14 49	0		76	46.7	•••	Anonymous. Est. 8.5 m.
59	15 33	9	•••	75	18.5	•	Anonymous. Est. 9.0 m.

Number.		Mean		Reduction.	Authority.			
60	h. 15	m. 57	s. 2	s. —3.05	+74	36.6	+10.3	DM 74° 639.
61	1	57		-3.04		35.1	+10.3	DM 74° 641.
62	16		4.92	-3.03		39 45-4	+12.9	Bonn 73° 723.
63				-1.85	71	6 58.5	+22.1	O.Arg.N. 17949-50.
64	5	3	57-47	0.5	40	1 10.8	- 4.8	Astr. Nach. 599.
65		51	3		39			Anonymous.
66	5		12	+2.20		56.9	- 4-7	DM 39° 1461.
67	10	51		+2.21		21.4	- 4.9	DM 40° 1473.
68		G.	32.82	+2.24		41 37.5	- 5.2	Astr. Nach. 599.
69	P	4	58.48	+2.33	41		- 5.7	Weisse 5h 1868.
70	6	6	41		42	55-9		Anonymous.
71	6	5	54.60	+2.37		49 53.7	- 6.2	Weisse 6h 65.
72	6	7	20		42	56±		Anonymous. Faint.
73	6	8	9.82	+2.35	42	44 2.3	- 6.3	Weisse 6h 145.
74	6	9	26.17	+2.35	42	44 33.0	- 6.3	Bonn 42° 1522.
75	6	7	30	+2.39	43	9.0	- 6.3	DM 43° 1496.
76	6	1	4.96	+2.43	43	9 24.1	- 6.2	Weisse 5h 1948.
77	6	2	55.13	+2.42	43	11 3.6	- 6.3	Weisse 5h 2025.
78	6	8	13	+2.40	43	10.4	- 6.8	DM 43° 1502.
79	6	16	10.08	+2.39	43	36 31.1	- 6.9	Weisse 6h 383.
80	6	13	51.54	+2.40	43	34 30.6	- 6.9	DM 43° 1518 (Astr. Nach. 2437)
81	6	13	22.03	+2.43	44	6 39.0	— 7.0	Weisse 6h 295.
82	6	33	52	+2.53	46	52.8	- 8.6	DM 46° 1175.
83	6	34	48		46	52.1		Anonymous.
84	6	34	15		46	53.2		Anonymous.
85	6	34	5	+2.52	46	49.2	- 8.6	DM 46° 1176.
86	6	36	43.14	+2.51	46	48 54.6	- 8.6	O.Arg.N. 7184.
87	6	37	30	+2.50	46	39.8	- 8.6	DM 46° 1184.
88	6	58	32	+2.52	49	12.1	-10.1	DM 49° 1592.
89	6	59	52	+2.51	49	3.3 .	-10.1	DM 49° 1596.

Number.	Mea R. A 1881.	٠.	Reduction.		Mea Dec 1881	1.	Reduction.	Authority.
90	h. m.	s. 21.45	s. +2.40		55	53.8	// —12.1	O.Arg.N. 8326.
91	8 44 :	26.9 6	+2.06	52	50	3.8	-13.1	O.Arg.N. 9363.
92	8 49	42.30	+2.02	52	45	21.5	_13.0	O. Arg. N. 9443.
93	9 24	53.51	+1.75	52	13	7.1	-13.2	"539 Sterne" 140.
94	13 34	37.65	+2.09	7	9	1.3	— 9.6	Lamont 1278, Rümker 4407.
95	6 12	47.61	+4.39	42	23	28.7	- 9.9	Radcliffe 1705, Groombridge 1140.
96	6 44	6.41	+4.58	42	45	31.6	-12.8	Weisse 6h 1280.
	1882	.0		1	882	.0		CDW e60 coop Missesses and a second
97	18 2	59.76	+1.23	. 36	18	58.2	-13.9	DM 36° 3020. Micrometrical comparison with Weisse 18h 44 and 18h 76.
98	18 3	57.26	+1.22	36	23	30.3	-13.9	Weisse 18h 76.
99	18 9	8.69	+1.29	38	44	27.8	-13.9	Radcliffe 3867.
100	18 10	49		38	46.	5		Anonymous. Est. 9.5 m.
101	18 45	52.0		49	57.	3		DM 49° 2874.
102	18 49	3 5.2 6	+1.40	51	54	53.2	-12.7	O.Arg.N. 18732.
103	18 51	57-3		51	54-	4		DM 51° 2458.
104	19 4	1.6	•••	54	39.	3		DM 54° 2086.
105	19 5	51.5		54	39.	0		DM 54° 2088.
106	19 19	16.03	+1.34	57	32	21.4	-11.7	O.Arg.N. 19209.
107	19 30	2.91	+1.34	60	36	53-3	-11.2	O.Arg.N. 19384.
108	19 32	5		60	42.	1		Anonymous. Est. 9.5 m.
109	19 38	12.15	+1.30	61	44	12.5	-11.0	Bonn 61° 1888.
110	19 58	2 6		64	53.	7		DM 64° 1402.
111	20 17	22		66	52.	7		DM 66° 1283.
112	22 45	9.05	+0.33	72	2	34-9	_ 5.8	O.Arg.N. 24761, Bonn 73° 996.
113	22 42	37.30		73	55	57.2		O.Arg.N. 24693.
114	1 29	6.55	+0.38	72	26	16.1	2.1	" 539 Sterne" 347.
115	1 53	22.93	+0.45	71	50	57.3	 1.6	"539 Sterne" 31.
116	2 22	48.0 8	+0.87	69	41	22.7	- 1.4	Bonn 69° 158.
117	2 27	16 .		69	34.	2		D M 69° 166.
118	3 14	26.58	+1.50	64	9	44-7	— 1.2	Radcliffe 934.

								7	W7 13011 C1W1 31
Number.		Me R. 188		Reduction.		Me: Dec 1882	cl.	Reduction.	Authority.
119	h. 10	m. 33	s. 53.89	s. +2.07	- 9	4	// 41.5	// -11.4	Weisse 10h 581.
120	10	33	41.57	+2.09	9	24	10.5	-11.4	Weisse 10h 575.
121	10	30	25.23	+2.11	9	57	42.3	-11.2	Weisse 10h 515.
122	10	18	11.57	+2.27	12	43	28.9	—10.6	Weisse 10h 280.
123	10	17	32.38	+2.27	12	46	48.7	-10.5	Weisse 10h 274.
124	10	10	52	+2.41	15	7		-10.0	Anonymous.
125	10	10	34-57	+2.44	15	33	17.7	-10.0	Lalande 19967-68.
126	9	58	42.95	+2.70	18	52	9.9	- 9.4	O. Arg.S. 10333.
127	9	58	50.52	+2.70	18	50	23.2	- 9.4	O.Arg.S. 10335.
128	9	52	15.56	+2.81	20	37	7.7	- 9.1	O.Arg.S. 10252.
129	9	52	58	+2.81	20	25		— 9.1	Anonymous.
130	9	51	2.34	+2.85	20	41	42.2	- 9.2	Lalande 19499.
131	9	43	8.11	+2.98	22	7	51.0	- 8.9	Lalande 19269.
132	9	42	57		22	8:	±		Anonymous.
133	9	14	56.53	+3.46	26	21	15.3	- 8.7	Washington Zones.
134	9	14	54	+3.46	26	21	±	- 8.7	Anonymous.
135	8	52	57-73	+3.80	28	24	53-4	- 9.4	O.Arg.S. 9191.
136	8	54	15.06	+3.80	28	20	54.5	- 9.4	O.Arg.S. 9215.
137	8	18	44.27	+4.22	30	25	19.7	-10.2	O.Arg.S. 8484.
		188	3.0			188	3 .0		
138	6	9	39.12	+2.06	22	11	6.6	16.2	O. Arg.S. 4842-3.
139	6	10	45.48	+2.07	22	9	15.2	-16.2	O.Arg.S. 4871-2.
140	6	1	50.22	+1.93	19	55	27.3	-17.1	Lalande 11677.
141	5	50	29.69	+1.58	15	12	17.0	-17.8	Weisse 5h 1257.
142	5	54	23.74	+1.57	14	43	0.5	-18.o	$\begin{cases} \frac{1}{3} \text{ (Weisse 5h 1362} + \text{O.Arg S.} \\ 4507 + \text{Lalande 11404} \end{cases}$
143	5	51	7		14	36			Anonymous.
144	5	50	47		14	36	±		Anonymous.
145	5	50	55		14	36	<u>+</u>		Anonymous.
146	5	50	59		-14	36	<u>±</u>		Anonymous.

Assumed Places of Comparison Stars.

Number.		Me R 1882	A.	Reduction.	•	• Mean Decl. 1882.0		Reduction.	Authority.
147	h.	m. 40	s. 9.84	5. +2.74		5 44	29.8	- 7.0	Anonymous. (Astr. Nach. 2499).
148	7	39	46.77	+2.74	+ 6	5 39	8.3	- 7.0	Weisse 7h 1029.
149	8	29	22.22	+2.51	18	33	38.6	- 3.7	{ ½ (Lalande 16914 + O.Arg.S. 8716).
150	8	29	37.86	+2.51	18	32	47.1	- 3.7	O. Arg.S. 8728.
151	8	29	58.73	+2.50	18	38	2.0	- 3.7	Lalande 16938.
152	8	35	28.10	+2.47	20	24	51.9	- 3.7	O.Arg.S. 8851.
153	8	34	57	+2.47	20	25	±	- 3.7	Anonymous.
154	8	33	58.48	+2.47	-2:	15	51.2	- 3.1	O.Arg,S. 8819.

PHYSICAL OBSERVATIONS

OF

COMETS,

1881-2.

Notes on the Tail of Comet b, 1881.

June 23.7. Egbert. Sketch showing outline of tail.

"Only stars a [Aurigæ] and β [Aurigæ] could be seen, so that the tail may not be properly proportioned. A line passed through the nucleus and the main part of the tail would intersect Polaris. Opera-glass used."

June 23, 15^h 30^m. Egbert. Sketch showing outline of tail with six stars: a, β , δ , ξ , and 17 Aurigæ, and 56 Camelopardalis.

"The stars put down were used in determining the position of the comet. The head nearly equal in brilliancy to Capella. Opera-glass used. A line passed through the comet would fall a little below Polaris." [This sketch is represented on Plate I. Measures of the sketch give for points in the axis of the tail:

$$x = \frac{2}{9}$$
 of the distance from ξ Aurigæ to 56 Camelopardalis $x' = \frac{2}{7}$ " δ Aurigæ to 17 Aurigæ.

June 24, 9h 33m. Stone. Sketch showing outline of comet, with three stars: 2 Lyncis, 83 and 60 Camelopardalis. Plate I.

"(Entered from memory at 10 o'clock.) Tangent at a pointed to a point half-way between a and γ Ursae Majoris., b half-way between Camelopardalis 10 [60] and 31 [83]. c very nearly at Camelopardalis 10. d, = Camelopardalis 43, near the line of greatest brightness, was twice as far from nucleus as b or c. General direction of tail directly toward Polaris." [a, b and c were points in the edges of the tail. d was at the end of the axis. The identification of d as given in the note is undoubtedly wrong. It is probably Camelopardalis 81. A measure of the sketch gives for the axis

 $x = \frac{8}{10}$ distance from Camelopardalis 83 to 60.]

June 26. Stone.

"At 15^h M. T. there was a secondary tail much fainter than the first, but nearly or quite twice as long, extending in a great circle toward a point a little to the right of Polaris." [A sketch accompanies this note but no reference stars are given. As shown in the sketch, the principal tail was broad and curved the same as on the 24th. The long straight tail separated from the curved tail at about half the length of the latter from the nucleus.]

July 2, 12h 35m. Wilson. Sketch, Plate II, No. 1.

[No notes. The stars plotted are

1. 97 Camelopardalis	7. 123 Camelopardalis
2. 93 "	8. 159 Cephei
3. 110 "	9. Polaris
4. 103 "	10. 131 Camelopardalis
5. 2 Draconis	11. d Ursæ Minoris
6. 124 Camelopardalis	

There seem to be three distinct parts to the tail.]

July 3, 15h 0m. Stone. Sketch, Plate II, No. 2.

"Examined with naked eye. a [Camelopardalis 103] about half way to the pole." [The stars plotted are 1, 3 and 4 of the preceding note. This sketch was probably made in the dome at the beginning of the observations for position of the nucleus. For the axis

$$x = 15'$$
 east of 97 Camelopardalis $x' = 30'$ " 103 " .]

July 4, 12h. Stone. Sketch, Plate II, No. 3.

"A line drawn from b [d Ursæ Minoris] will be tangent at a [right edge of tail on a line joining stars 2 and 3]. The tail is nearly included between two lines drawn from d and b [e and d Ursæ Minoris]." [The stars plotted were 1, 2, 3, 4, 5, 9 and 11 as given above. For the axis

$$x = \frac{1}{2}$$
 distance from θ to ε Ursæ Minoris $x' = \frac{1}{2}$ "93 to 110 Camelopardalis.]

July 5, 13h 30m. Stone. Sketch, Plate II, No. 4.

"At a [near the nucleus] the tail points toward c [δ Ursæ Minoris], and at b [near the end of tail] toward d [ϵ Ursæ Minoris]." [The stars plotted were 1, 2, 3 and 4. The original sketch does not show the left edge quite so near star 3 as the engraving. For the axis

```
x = \frac{1}{3} distance to \varepsilon Ursæ Minoris.

x' = \frac{1}{2} " from 103 to 110 Camelopardalis.]
```

July 6, 13h 40m. Stone. Sketch, Plate II, No. 5.

[No notes. The stars plotted were 1, 2, 3, 4, 5, 6, 7, 9, 10 and 11. The left edge is perhaps a little too bright in the engraving. For the axis

```
x = \frac{1}{2} distance from 103 to 123 Camelopardalis.]
```

July 13, 11h Om. Stone. Sketch, Plate II, No. 6.

"In opera-glass. Fainter than hitherto, perhaps on account of clouds." [The stars plotted were probably 5, 9 and 10. For the axis

 $x = \frac{2}{9}$ distance from 131 Camelopardalis to Polaris.]

July 15, 10h 20m. Wilson.

"Comet appears brighter to-night than for several nights past. Atmosphere very clear and transparent. Quite a large portion of the tail is visible with power 90. In the finder the tail can be followed to twice the diameter of its field [about 5°]. Appears quite bright. Nucleus dense."

July 15, 10h 0m. Stone. Sketch, Plate II, No. 7.

"As seen through opera-glass. At a [right edge of tail near the nucleus] the edge of the tail seemed parallel to a line joining c [2 Draconis] and d [123 Camelopardalis]. The brighter portion lay nearly in a straight line passing through a point midway between e and f [124 and 131 Camelopardalis]. All these stars are plainly visible to the naked eye. e may be 2 Draconis. Comet seems much brighter than usual, $= 3\frac{1}{2}$ magnitude." [The stars plotted were 5, 6, 7, 9 and 10. For the axis

x = 131 Camelopardalis.]

July 17, 14h 20m. Stone. Sketch, Plate II, No. 8.

"The tail seemed to be continually changing. At times it appeared almost in a straight line from the nucleus to d [131 Camelopardalis]; then to be concave toward c [123 Camelopardalis]; again to curve off toward f [left extremity in engraving], or lie in a straight line extending almost or quite to e [135 Camelopardalis]. The drawing gives something like the average appearance. The branches did not seem in motion, but rather to change continually in brightness. The head (4th mag.) is again quite bright this morning, but perhaps not quite as much so as on Friday night last, although the tail is fully as long and bright I think." [The stars plotted were 6, 7, 10 and 12 = 135 Camelopardalis. For the axis

x = 135 Camelopardalis.

July 18, 14h 20m. Stone. Sketch, Plate II, No. 9.

"At times the tail extended almost in a great circle toward b [138 Camelo-pardalis], again the northern side was near a or d [135 or 131 Camelopardalis]." [The stars plotted were 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16.

13 = 138 Camelopardalis 15 = 129 Camelopardalis 16 = 127 "

For the axis,

x = 135 Camelopardalis.

July 22, 14h 20m. Stone. Sketch, Plate II, No. 10.

"Extreme outlines extended from b to c [135 to 137 Camelopardalis]. Tangent at a [127 Camelopardalis] passes through b. Star a is a little outside. Scarcely perceptible beyond dc [the middle of the tail as drawn]. Much fainter than hitherto. Different portions changeable. With opera-glass." [Stars plotted were 6, 7, 10, 12, 13, 14, 15, 16 and 17 = 137 Camelopardalis. For the axis

 $x = \frac{1}{3}$ distance 135 to 137 Camelopardalis.]

July 23, 9h 10m. Stone. Sketch, Plate II, No. 11.

"When the comet is examined at e [about $\frac{1}{3}$ distance from nucleus to end of tail] it seems to point almost in a great circle to a [the right extremity]. If however it is examined near the end, it appears to point toward b [a point midway between stars 12 and 17]. Tail is scarcely perceptible beyond the line joining e and e [the stars 10 and 18]. The width of the field [opera-glass?] extends from Polaris to e Ursæ Minoris." [Stars plotted were 10, 12, 17 and 18 = Carrington 1968. For the axis

 $x = \frac{1}{2}$ distance from 135 to 137 Camelopardalis.]

July 23, 11h. Leavenworth.

"Left side brightest of the comet." [Accompanying this note is a sketch of the bright part of the tail as seen in the finder of the large equatorial. Both sides are nearly straight and the left is much brighter than the right. The finder inverts the object seen, so that it was really the right side which was brightest.]

DISCUSSION OF THE NOTES.

From these notes and sketches it is evident that Comet b had two distinct The one was long, narrow and faint, and nearly straight in the direction opposite the sun. The other was the principal tail. It was bright, broad and Perhaps also the faint portion on the left side of the tail on July 2 may be considered a part of a third tail, which deviates still more from the direction opposite the sun than the principal one. The straight tail was seen on June 26 and July 2, and perhaps also the straightness of the right side on July 3, 4 and and 22, was due to the presence of this branch, though so faint as to be invisible beyond the principal tail. The principal tail was brightest and largest on June 23 and 24 (the comet was then only $\frac{3}{10}$ of the distance from the earth to the sun), and decreased gradually with its increasing distance from both the earth and the The irregular variations in brightness and form of the comet may be explained partly by the different conditions of the atmosphere and the phases of the moon at the times at which the observations were made. It is worthy of note however, that on July 6 the left side of the tail was longer and more distinct than the right (contrary to the usual appearance) and that on the same date a bright mass was observed to be thrown off from the nucleus into the left side of the tail. Whether these two phenomena were connected or not, it is of course impossible to state.

Unfortunately the notes in regard to the condition of the atmosphere are not sufficient to permit a study of its effect. The phases of the moon may be derived from the following table:

Date.	Time of Observation.	Moon Rises	
June 23	15 ^h 30 ^m 9 33	14 ^h 56 ^m Sets.	New Moon.
26	15 0	7 44	

Dat	æ.		ne of vation.		oon ets.	
July	2	I 2 ^h	35 ^m	10h	35 ^m	
	3	15	0	11	2	
	4	I 2	0	11	31	First Quarter.
	5	13	30	I 2	4	
	6	13	40	I 2	43	
				Ris	ses.	Full Moon.
	13	11	0	8	50	
	15	10	0	9	54	
	17	14	20	10	58	Last Quarter.
	18	14	20	11	33	
	22	14	20	14	34	
	23	9	10	15 .	29	

From this table it will be seen that the observations from July r'3 to 22 were affected by moonlight.

The positions of the reference stars used in the notes, as taken from Heis' catalogue and reduced to the epoch 1881.5 are as follows:

	•	• .	
Number		•	
on Plate II.		a	8
•••	∂ Aurigæ	87° 26′	54° 16′
•••	ξ "	86 14	55 41
• •	17 ".	74 21	51 26
•••	56 Camelopardalis	7 ¹ 57	53 34
•••	60 "	73 13	6 0 16
•••	83 "	86 5	59 52
•••	2 Lyncis	92 18	59 3
1	97 Camelopardalis	100 41	77 8
· 2	93 ''	96 30	79 42
3	110 "	116 32	79 48
4	103 "	106 32	82 38
5	2 Draconis	140 2	81 51
6	124 Camelopardalis	154 9	83 10
7	123 . "	153 ·7	84 51
8	159 Cephei	101 10	87 14
9	Polaris	19 7	88 41
10	131 Camelopardalis	192 3	84 4
II	d Ursæ Minoris	272 40	86 37
•••	ε " "	254 32	82 14
I 2	135 Camelopardalis	206 25	83 21
13	138	224 33	83 0
14	126 "	170 52	81 47
15	129 "	181 25	82 22
16	127 "	178 32	81 31
17	137 "	208 11	81 21
18	Carrington 1968	197 47	81 4
	•		

In the following reductions only the points in the axis of the principal tail (designated by x at the end of each note) are used, except for the observations of June 26 and July 2. The positions of the nucleus were computed with the aid of Dunér's elements (Astronomische Nachrichten, No. 2394):

```
T=1881, June 16.442, Greenwich mean time.

\pi-\Omega=354^{\circ} 15'2

\Omega=270^{\circ} 57'7

i=63^{\circ} 25'9

Mean equinox 1881.0.

\log q=9.865985

x=r\left[9.65082\right]\sin\left(356^{\circ} 25'7+v)

y=r\left[9.99185\right]\sin\left(243^{\circ} 25'7+v)

z=r\left[9.96124\right]\sin\left(328^{\circ} 28'1+v)
```

Designating the coördinates of the nucleus by a and b, those of the observed points in the tail by a' and b', and those of the sun by a and d, and computing the position angle (p_0) of the radius vector, and the position angle and distance (p and s) of the observed points from the nucleus, we have:

Greenwich	M.T.	a	ð			a	a	?	p	o
June 23.88	o 84°	4.5	+46°	51:5	93°	11.8	+23°	25 ['] .3	20°	19′
24.63	2 84	48.0	50	0.9	93	49.6	23	24.2	—ı8	9
26.85	9 87	20.0	· 58	14. I	96	17.3	23	19.5	-14	15
July 2.75	8 98	5.0	72	34.8	102	23.3	22	58.o	 5	I 2
3.85	9 101	2.2	74	20.3	103	31.8	22	52.2	— 2	56
4.73	4 103	328	75	32.9	104	25.8	22	47.4	— I	I,
5.79	7 106.	56.2	76	50.5	105	31.4	22	41.1	+ 1	36
6.80	4 110	26.0	77	54.8	106	34.5.	22	34.8	+ 4	20
13.71	0 140	54.5	81	53.2	113	36. ı	2 I	40.8	+29	7
15.65	1 150	2. I	82	12.7	115	33.7	21	22.4	+36	33
17.83	1 159	28.6	. 82	18.2	117	45.4	21	0.2	+44	42
18.83	1 163	27. I	82	16.7	118	45.6	20	49.4	+47	7
22.83	1 176	51.4	81	52.7	122	45.2	20	2.8	+56	52
23.61	6 179	2.5	81	46.0	123	31.8	19	52.9	+58	19

and for the same moments:

	d	ı'	ď		p			s	p -	p o
June 23	83°	28′	+54°	20′	2°	46′	7°	28′	+17°	33
24	82	14	59	59	- 7	22	10	2	10	47
26	18	57	88	0	- 3	.35	31	5	10	40
July 2	272	40	86	37	+ •	54	20	48	6	6
2	101	·IO	87	14	+ •	27	14	39	5	39
2	192	3	84	4	+18	45	18	41	23	57
2	140	2	81	51	+25	39	I 2	28	30	5 I
2	100	4 I	77	8	+ 5	11	4	33	10	23
3	107	50	82	38	+ 5	58	8	24	8	54

	a	. '	ď		p		S	p-1	ø,
3	1000	56′	+77°	8′	— o° 27'	20	48′	+2°	
4	267	31	84	26	+431	6	37	5	32
4	106	10	79	45	+ 6 19	4	16	7	20
5	111	32	81	13	+ 9 2	4	29	7	26
5	256	30	82	14	+ 7 42	6	52	6	6
6	125	37	84	II	+13 16	6	38	8	56
13	191	0	85	45	+31 17	6	18	2	10
15	192	3	84	4	+49 45	5	I 2	13	I 2
17	206	26	83	2 I	+57 7	5	47	12	25
18	206	26	83	2 I	+58 4	5	20	10.	57
22	207	I	82	41	+64 7	4	5	7	15
23	207	18	82	2 I	+67 44	3	54	9	25

On Plate II, p_0 is the direction toward the top; $p-p_0$ is the deviation of the tail from a line through the nucleus parallel to the side of the plate. The earth had just passed through the plane of the comet's orbit on June 21, 16^h 38^m, so that the apparent deviation $(p-p_0)$ of the tail from the radius vector was much less than its real deviation in the plane of the orbit.

For the reduction of the observations to the plane of the orbit, we compute the coördinates of the north pole of the comet's orbit:

$$A = 192^{\circ} 6'2$$

 $D = +23^{\circ} 51'0$

and the following quantities:

	1	D	P'			S	v		log r	log ρ
June 23	60°	57	220°	49′	95°	50′	+16°	14.8	9.87473	9.4816
24	61	48	218	15	97	46	17	49.8	9.87652	9.4926
26	65	4	2 I I	28	102	45	22	27.5	9.88275	9.5310
July 2	78	43	198	43	111	30	33	59.0	9. 90 468	9.6463
3	82	II	197	0	112	38	35	59.8	9.90948	9. 6 67 1
4	85	5	195	46	113	24	37	34.0	9.91343	9.6833
5	88	56	194	25	114	17	39	26. 2	9.918 38	9.7023
6	92	50	193	13	115	2	41	10.1	9.92319	9.7197
13	125	36	187	I 2	118	46	52	1.3	9.95856	9.8245
15	135	14	185	59	119	31	54	45.3	9.96894	9 .8495
17	145	11	184	48	120	15	57	40.6	9.98075	9.8757
18	149	23	184	18	120	34	58	57.8	9.98618	9.8848
22	163	35	τ82	30	I 2 I	40	63	48.3	0.00793	9.9290
23	165	55	182	II	121	51	64	42.0	0.01217	9.9366

With the aid of these quantities we compute T (the angle at the nucleus between the earth and the observed point in the tail) and the coördinates ϕ and Δ of the observed points. To reduce the angles ϕ to the same epoch we apply the correction $d\phi$ and designate the corrected angle by ϕ' . The epoch June 27 434 is chosen in order to compare these results with those obtained by Professor Bredichin (Annales de l'Observatoire de Moscou, Vol. VIII, Livr. 1.).

-	2	r	φ		dq	b	ϕ'		Δ
June 23	120	59 [′]	+21°	51'	o°	37 ′	+21°	14'	0.1128
24	20	59	17	47	 o	28	17	19	0.1051
26	31	52	20	2	<u> </u>	8	19	54	0. 1969
July 2	61	52	14	15	+1	38	15	53	0. 1 5 8 1
2	62	42	13	19	+1	I 2	14	31	0.1150
2	. 38	I 2	41	25	+0	46	42	11	0. 1694
2	33	15	47	47	+0	31	48	18	0.1336
2	54	18	22	3 8	+0	38 .	23	16	0.0414
3	60	15	20	0	+ 1	6	2 I	6	0.0729
• 3	75	6	3	39	+0	43	4	22	0.0232
4	69	15	I 2	57	+2	5	15	2	0.0573
4	65	46	16	50	+0	58	17	48	0.0382
5	6 8	46	16	57	+1	10	18	7	0.0411
5	7 I	40	14	5	+2	30	16	35	0.0539
6	68	48	19	59	+1	34	2 I	33	0.0626
13	97	49	4	22	+3	40	8	2	0.0755
15	82	4	26	20	+2	54	29	14	0.0642
17	86	4 I	24	0	+3	44	27	44	0 .0758
18	92	13	20	34	+4	4	24	38	0.0719
22	104	56	12	9	+4	34	16	43	0.0640
23	102	55	15	46	+4	27	20	8	0.0614

The points corresponding to ϕ' and Δ are represented on Plate *IX* by small circles. The scale of Δ is $\tau = \text{earth's mean distance from sun} = 25$ inches. The dotted lines represent the outline of the tail as observed on July 2.

Comparison with Theory.

Assuming $I - \mu = I$, we compute the coördinates of four points corresponding to the position, on June 27.434, of particles of matter emitted from the nucleus at the epochs May 27.775, June 4.781, 11.903 and 16.442. The true anomalies of the nucleus at these times were -40° , -25° , -10° and 0° . The resulting coördinates are

φ	,	Δ
42°	36′	0.2269
32	23	o. 1 3 36
22	20	0.0650
15	39	0.0327

These points are represented on Plate IX by crosses, on the curved line marked $1 - \mu = 1$.

It will be noticed that the curve drawn through these points passes almost exactly through the middle of the principal tail of July 2, and that the third point falls in the midst of the group of observed points. All of the observations in July, with the exception of July 13, which should probably be rejected, are fairly represented. Those in June indicate a greater repulsive force.

Assuming therefore $I - \mu = 2.0$ and 2.6 for the principal tail, 12.0 for the straight branch and 0.3 for the faint curved branch, and taking as the epochs of emission of the different branches, respectively May 27.775, June 4.781 and June 16.442, we obtain the following results, using the accurate formulæ of hyperbolic motion:

ιμ	M_1	$\log E$	$\log P$	$oldsymbol{F}$	φ	Δ
0.3	May 27.775	0.250016	0.321915	15° 44′ 10″	44° 53′	0.0669
2.0	June 4.781	0.467885	0.167015	44 46 22	33 22	0.2550
2.6	4. 78 1	0. 343862	9.962895	49 57 43	33 52	0.3232
12.0	16.442	0.072550	9. 12561 3	58 42 12	16 54	0.3434

These points are also represented on Plate IX by crosses marked $1 - \mu = 0.3$, 2.0, 2.6 and 12.

The curve corresponding to $I - \mu = 2.0$ passes between the observed points of June 23 and 24, and, as neither of these was determined with great accuracy, probably the mean of the two will be near the truth. The right branch observed July 2 corresponds to a value of $I - \mu$ greater than 2.6 but much less than 12.0. The axis $I - \mu = 0.3$ is curved too much for the faint branch. Probably all three branches should be considered as belonging to Bredichin's Type II.

The observation of the straight tail on June 26 was not accurate enough to determine the value of the repulsive force, but from observations made elsewhere it was doubtless of Type I.

Notes on the Head of Comet b, 1881.

June 23, 16h. Stone. Sketch, Plate III, No. 1.

"Ray at 184.9. Principal ray 170.7. Radius opposite first ray of inner fan 55.6. Radius parallel to first ray 103.7." [The term "fan" designates the bright sector or fan-shaped emission of light on the sunward side of the nucleus. In the subsequent notes the term "jet" or "principal jet" is often used with the same significance. The "rays" observed were the sides of the fan.]

June 24, 8h 30m. Stone.

[Several outline sketches with measures, but no notes. Principal jet at 138°5. From it arise three envelopes, the distance of their upper limits from the nucleus being respectively 35"1, 69".2 and 132".0. Another jet at 264°.2. The nucleus is nearer the right than the left side of the head. There is a bright streak extending from the right branch of the principal jet down the right side of the tail. The position angle of a line through this is 344°6.]

June 24, 15h. Stone. Sketch, Plate III, No. 2.

"The third jet was not seen at first and was much fainter than the others."

June 26, 15^h 20^m-16^h 15^m. Stone. Several outline sketches combined in Plate III, No. 3.

"Principal ray [left side of fan] 147.°o. Axis of tail 349.°3. Nucleus elongated in direction 203.°2. Height of principal ray 27.0, probably roughly in direction 113.°2. The height is equal to two-thirds of the distance to which it extends from the nucleus. Nucleus twice as long as broad. A third envelope was faintly visible. Was unable to obtain position on account of clouds. These sketches were made during clear intervals between clouds."

June 27, 9h 35m. Wilson. Sketch, Plate III, No. 4, a.

"Position angle of principal jet 99.2. Height of principal jet, measured in direction 136.7, 60.2. Distance of outer envelope from nucleus, in direction 208.3, 94.5. General direction of envelope 181.2."

June 27. Stone. Sketch, Plate III, No. 4, b.

9^h 48^m. "Nucleus elongated in direction 241.6." [The sketch is on the preceding page to the note in the observing book, and therefore probably precedes it in time.]

June 27, 12h 0m. Wilson. Sketch, Plate III, No. 4 and No. 4, c.

"(Note written just after leaving the dome.) At first the middle jet appeared simply as a corner on the right jet, forming a right angle. Left jet was very faint, but longer than the middle one. The middle jet appeared to separate gradually from the right jet and to grow longer. Left jet grew somewhat brighter."

June 27, 13h 10m. Stone. Sketch, Plate III, No. 4, d.

"There are now three jets instead of one—the middle one brightest. The right hand one is the fainter of the three. The right hand jet is apparently in the same position as the single one was."

June 28, 12h. Stone. Sketch, Plate III, No. 5.

"The outer envelope extends about 5' from the nucleus. The fan fades almost imperceptibly into the outer envelope."

July I, IIh 50m. Wilson. Sketch, Plate III, No. 6.

"Position	angle	of right sid	le of far	n, .	102°.7	Length, 27.4
"	"	left '	"	. •	254.8	" 36.4
"	"	brightes	t p art,	•	170.2	Height, 35.4
Greates	t length	of fan, in	P. A.	•	293.3,	39.7
Extent	of nebu	ılosity,	".	•	293.3	304.6
Diamete	er of no	ebulosity,	"		83.3	390.8"

July 2, 11h. Stone. Sketch, Plate III, No. 7.

"(Note written July 4.) The fan on Saturday night faded off, leaving no well-marked border. It was much fainter relatively than hitherto."

July 3, 14h 50m. Stone. Sketch, Plate III, No. 8.

"Estimated position angle [of middle of fan] 148°. 16h 30m.—Sketch similar to preceding one. Estimated position angle 40° [180°—40°=140°?]. Right branch disappeared with dawn before left branch."

July 4, 12h. Stone.

"The fan, though perceptible, was much fainter than hitherto."

July 5, 11h 15m. Stone. Sketch, Plate III, No. 9.

"P. A. of right side of fan 88.2. P. A. of left side 272.4. Brightest direction 132.8."

July 6. Wilson. Sketch, Plate III, No. 10, a.

"At first sight of comet, at about 10 P. M. (the early part of the evening had been cloudy) I was surprised to see a new jet, much brighter and narrower than the one usually visible, and opposite in direction. On closer examination this appeared to be separated from the nucleus by a distinct dark line. Thought at first that this might be due to the instrument being out of focus, but after focusing carefully on a bright star the appearance was the same, only the separation was more distinct. Concluded then that the nucleus had become double."

July 6. Stone. Sketches, Plate III, No. 10, b and e.

"After formation of separate nuclei final change took place during first measures.

"The fan usually seen was not so well marked as usual. The jet, on the other hand, rivalled the nucleus itself in brightness, but was irregular."

July 6. \	Wilson.	Sketch, Plate	II, No. 1	Ο, ε.			
10h	35 ^m	P. A. of 1	Vuclei,	36°.8	•••	•••	Power I
10	48	Distance of	of Nucle	i,	•••	5″57	"
10	55	"	"	•••	•••	6.15	"
11	2	66	"	•••	••	6.33	"
11	8	P. A. of 1	Juclei,	35.8	•••	•••	6.6

11	11	P. A. of	Jet,	•••	52°0	•••	Power I
II	14	" "	"	•••	54.0		"
II	16	"	Nuclei,	34.6	•••	•••	"
11	18	"	"		•••		"
II	25	Distance		•••	•••	6. 1 1	"
11	5			35°4	53.°0	6″.04	

Sketch, Plate III, No. 10, d.

July 6. Stone.

I 2 ^h	24 ^m	P. A. of Nuclei,	38°.8		•••	Power I
I 2	27	"	37.8		•••	4.6
I 2	37	Distance of Nuclei,	•••	•••	9".68	"
I 2	47	"			11.52	"
I 2	55	P. A. of Nuclei,	36.0			"
I 2	59	"	37. I	•••		"
13	I	P. A. of Jet,	•••	41.4	•••	"
13	4	"	•••	45-4	•••	"
						
I 2	47	,	37°∙4	43°4	10.60	

Sketch, Plate III, No. 10, f.

July 6. Wilson.

13 ^h	24 ^m	P. A. of	Nuclei,	40°.5	•••	•••	Power I
13	27		"	37.5	•••	•••	"
13	30	P. A. of	New Jet,	•••	43°7	•••	4.6
13	32	"	"	•••	44.7	•••	"
13	38	Distance		,	•••	10.35	"
13	46	• • •	"	•••	•••	9.83	"
13	55	P. A. of	Nuclei,	36.o	•••	•••	"
13	57	"	"	36.2	•••	•••	"
13	59	P. A. of	New Jet,	•••	43.9	•••	"
14	I	"	"	•••	42.8	•••	. "
13	43			37 ° 5	43 .8	10'.09	

[N. B.—Professor Stone measured the distance between the centers of the nuclei, while I measured the clear space between their edges. A correction of about 2" should be added to my measures to make them consistent with his.—W.]

July 7. Wilson. Sketch, Plate III, No. 11, a.

"During visitors' hour (7 to 8 P. M.) the nucleus seemed much larger than last night and the fan denser. New jet had entirely disappeared."

July 7, 10h 35m. Stone. Sketch, Plate III, No. 11, b.

[&]quot;The nucleus and envelopes at times seemed to flash up."

[&]quot;P. A. of brightest portion of fan 155.4. Seems to be continually changing."

July 8, 12h. Wilson. Sketch, Plate III, No. 12.

"Fan tonight is very wide. Nearly 180°."

July 9, 9h 40m. Stone. Sketch, Plate III, No. 13.

"P. A. of right side of fan 105.5. Left side 255.5. Brightest direction 176.8. The nucleus was quite small and star-like. The fan was brightest in the direction 176.8. The fan was first visible in the twilight, then it seemed centered in a mass of faint nebulosity which had a brighter portion shaped something like a fan."

July 12, 9h 25m. Stone. Sketch, Plate III, No. 14.

"P. A. of bottom of jet [left side] 249.8. Comet much smaller and fainter. Only the fan visible when illumination was on. Did not examine with dark field."

July 15, 10h 25m. Wilson. Sketch, Plate III, No. 15.

"Comet appears brighter tonight than for several nights past. Atmosphere very clear and transparent. Quite a large portion of the tail visible with power 90. Nucleus dense."

July 18, 9h 10m. Wilson. Sketch, Plate III, No. 16.

July 23. Stone.

"There is no fan visible tonight. The nucleus is bright and well defined, and has about it a brighter surrounding nebulosity."

September 21, 9h 30m. Wilson. Sketch, Plate III, No. 17.

"Comet still has a tail; length equal semi-diameter of field, power 90 [9']. Breadth, at widest part, 1/4 diameter of field [4'.5]. Nucleus bright but small; quite well defined. Coma large, — \(\frac{1}{2}\) diameter of field [3'.6]."

September 24. Wilson.

"Comet bright in center. Tail visible 1/4 diameter of the field [4'5]."

October 20. Wilson. Sketch, Plate III, No. 18.

"Comet faint. Nucleus not well defined. Appears like an elongated mass of vapor."

October 25. Wilson.

¹⁴ Comet faint. Nucleus scarcely distinguishable."

[Between July 23 and September 21 the comet was observed several times, but no notes or sketches were made. No attempt to observe it was made after October 25.]

DISCUSSION OF THE NOTES.

The principal features of the head of Comet b, 1881, as indicated by the above notes and sketches, were the "nucleus," the "fan," the "jets" and the "envelopes." During the first observations the comet was very near the earth, so that these features could be seen distinctly. As the distance increased the en-

velopes were the first to vanish, then the jets, then the fan and last the nucleus, leaving in October only an oblong hazy spot like a little cloud.

The Nucleus.

The notes in regard to the nucleus are very few, but the sketches made when it was nearest show it to have been very bright and dense, something like a planet in appearance. Its disc was elongated at times, so that the ratio of longest and shortest diameters was 3 to 2 and 2 to 1. The direction of this elongation seems to have varied. As measured on June 26 and 27, there was a change of nearly 40° in position angle. From the original sketches I have measured the position angle of the longest diameter on several dates when the sketches show a distinct elongation, although no mention is made of it in the notes. These measures are enclosed in brackets. Comparing these with the computed position angle (p_{\circ}) of the sun from the nucleus, we have

				Ratio of
	p	⊅ ₀	<i>p - p</i> _o	Diameters.
June 23.89	[190°].	158°,5	[+31°]	[3:2]
24.83	[245]	161.9	[+83]	[2:1]
26.83	203.2	165.7	+37.5	2 : I
27.63	241.6	166.9	十74.7	2 : I
28.73	•••	•••	[+8o]	[2:1]
July 3.88	[215]	177.0	[+38]	[3:2]
5.70	[270]	181.1	[+89]	[2:1]
6.73	36.7	183.7	+33.0	Double
7.70	[260]	186. I	[+74]	[2:I]

On June 28 the nucleus made an angle of about 80° with the middle of the fan, but the direction of the latter was not measured. In the sketches of July 1 and 2 no elongation is noticeable. On July 6 the nucleus was double, the position of the components corresponding almost exactly with that of the elongation on June 23, June 26 and July 3.

An inspection of the column $p-p_0$ shows a remarkable oscillation between values ranging near 30° and 90°. The period of this oscillation seems to have been about 2.7 days, or some fraction thereof. The ratio of the diameters of the nucleus also seems to have varied, the elongation being at a maximum June 26 and June 27, minimum July 1 and maximum again July 6, when a division occurred and a portion was thrown off in the direction of the elongation, forming a secondary nucleus. After the division the nucleus proper became nearly round or perhaps a little elongated in the direction 90° from the sun. July 7 it was again decidedly elongated. The later sketches are indistinct as to the nucleus.

The Secondary Nucleus of July 6.

The measures of the secondary nucleus on July 6 show a motion in a straight line away from the nucleus proper. The position angle did not change sensibly in four hours, while in the same time the distance increased nearly 10". Professor Stone's measures show an increase in distance between the centers of the nuclei of 4".66 in two hours and twenty-eight minutes, a rate of 1".89 per hour. My

measures of the clear space between the discs of the nuclei give an increase of 4.05 in two hours and thirty-eight minutes, or 1.54 per hour. Taking the mean of the two, we obtain 1.77 as the hourly motion at twelve o'clock, equivalent to 400 miles, if perpendicular to the line of sight. Supposing this motion to have been uniform, the discs of the nuclei should have been tangent at about 8 P. M., local time. The actual separation probably took place later than that.

The following statement, written a few days later by Professor Stone, gives a fuller description of the phenomenon than the notes written at the time. This statement is essentially the same as that communicated to Science, Vol. II, No. 57:

"On that evening the comet was hidden by clouds until about 10 o'clock, local time, when Mr. Wilson went into the dome to observe its position with the eleven inch refractor. He soon, however, returned and called my attention to the remarkable appearance of the nucleus. I went to the dome and from that time until 3 o'clock we alternately examined the comet, making sketches and measures. The fan had its usual appearance, but when first observed there projected from the nucleus a bright red jet into the dark region on the side of the nucleus opposite the fan. This jet was totally different in appearance from those usually seen. It was at first straight, and in brightness rivalled the nucleus itself; in fact, at the first glance, it seemed to form one with the nucleus. inspection, however, I saw that it had a transparent appearance, but still intensely bright and red. The next glance showed that there was a thin, dark line separating it from the nucleus. Mr. Wilson had already called my attention to this dark line before I went to the dome. During the first few minutes a decided change took place. The jet seemed to separate and form a nucleus of its own, so that for a time the comet appeared double. Gradually the detached portion grew fainter until when last seen, at about 3 o'clock in the morning, although plainly visible, it was no brighter than the fan-shaped appendage on the opposite side of the nucleus.

"There can be no question that a great outburst took place in the comet on that evening, nor that a portion of the nucleus became detached and floated off into that portion of the tail immediately behind the fan. The phenomenon was watched very carefully for five hours, and I think I could hardly be mistaken in what I saw."

This statement contains about all that can be derived from the observations. If the oscillation of the nucleus as indicated above was real, the division on July 6 occurred near the minimum limit of the oscillation, so that we could detect no change in the position angle of the parts. The fact that the position angle of the jet is so much greater than that of the nuclei may indicate that it was emitted before the nucleus reached the limit of oscillation. The change in the observed position angle of the jet, although it was in the right direction for the oscillation, proves nothing, for during the last set of observations it had diminished to less than half its original length and was very faint.

The "Fan."

The "fan" or "principal jet" received the most attention. The term "jet" is probably the more proper one, for the outline of the "fan" was exactly the

profile of a jet, or a multitude of jets, thrown up from the sunward side of the nucleus and falling or rather driven backward, not to the nucleus but past it, toward the direction opposite the sun.

Comparing the sketches, it is evident that this "principal jet" was continually changing, both in form and direction, as well as in brightness. We notice the following phases:

Jet branched; upper limit well defined: June 24, 27, July 1, 3, 6, 7, 8, 12, 15, 18.

Jet not branched; upper limit round and well marked: June 23 and 26. Jet not branched; no well defined limit: June 28, July 2, 4, 5 and 9.

The branches of the principal jet were in most cases unequal and unequally curved. This would be the natural result if the jet were emitted at an angle with the direction of the opposing force from the sun, and we shall find in fact, by examining the measures of the position angle, that the central or brightest direction of the fan was not exactly toward the sun. On the other hand we shall find also that the largest branch of the jet is sometimes on the same side and sometimes on the opposite side to the inclination of the central part.

The observation of June 27 gives evidence of the multiplicity of the jets composing the fan and of the velocity with which they were emitted, also that their emission was not constant nor simultaneous. At the beginning of the observation the whole emission was toward the right, at a large angle with the direction of the sun, then a jet was seen to rise gradually toward the sun inclined slightly to the left, reaching, within two hours and a half, the height of over 60" (equivalent, at the distance of the comet at that time, to over 9,000 miles). Meanwhile another jet was thrown out to the extreme left with equal or greater velocity. At the end of the observation the middle jet was the brightest, and the one to the right had begun to diminish.

July 7 gives another illustration of the rapid variations in the principal jet. Between 7 and 8 P. M. the discharge was very abundant in both branches, and especially in the left. At 10^h 35^m the left branch had almost disappeared, and the brightest direction was toward the right and "seemed to be continually changing."

The lesser jets, apparently opposite the sun, seen June 23 and 24, may be explained as the result of the perspective. The comet was then between the earth and the sun, but out of the direct line and in such a position that a jet thrown exactly toward the sun would be directed away from the earth at an angle of about 145°, or only 35° from the line of sight. A jet emitted from the side of the nucleus opposite the earth and inclined more than 35° to the direction of the sun, would appear to be projected opposite to the sun.

The remarkable jet of July 6 can not be thus explained. The relative positions of the earth and the comet had so changed that the tail of the comet was then nearly perpendicular to the line of sight.

By September 21 the comet had receded so far that the angle between the earth and sun, as seen from the nucleus, was small. The jets were emitted toward the earth, obscuring both themselves and the nucleus.

The following table gives the width and brightest direction of the fan or

principal jet, and a comparison with the position angle of the sun. w is the angle between the sides of the fan, before recurving. The numbers in brackets were obtained by measuring the original sketches.

	w	p	p _o	<i>p</i> p _o	Observer.	
June 23.89	[55°]	170°.	158°,5	+ 1 2°2	S	Moonlight.
24.83	[50]	138.5	161.9	-23.4	S	
26.83	[110]	147.0	165.7	—18.7	S	
27.63	[65]	•••	•••	•••	S	
27.64	[50]	99.2	166.9	67.7	w	
27.77	[110]	[150]	•••	[—17]	W	
27.78	[130]	[170]		[+3]	S	
28.73	[110]	•••	•••	•••	S	
July 1.72	[52]	170.2	173.0	— 2.8	W	•
2.78	['30]	•••	•••	•••	S	
3.87	[35]	155	177.0	-22	S	
3.90	[50]	140	•••	37	S	
5.70	184. 2	132.8	181.1	-48.3	S	Moonlight.
6.73	[130]	[200]	183.7	[+16]	Wand S	Moonlight.
7-53	[140]	•••	•••	[+10]	W	Moonlight.
7.70	[130]	155.4	186.1	 30.7	S	Moonlight.
8.53	[180]	•••	•••	•••	W	Moonlight.
8.73	[140]	•••	•••	•••	W	Moonlight.
9. 6 3	150.0	176.8	193.4	—16.6	S	Moonlight.
12.61	[100]	[200]	204.8	[— 5]	S	Moonlight.
· 15.66	[130]	•••	•••	•••	W	Moonlight.
18.61	[130]	•••	•••	•••	W	

The column w shows a variation between the limits 30° and 184.° This variation was irregular and appears to have been independent of the moonlight. In general the width of the fan was greater during the later observations.

The column $p-p_0$ exhibits a marked oscillation, but not so regular as that indicated by the nucleus. Excluding the numbers in brackets the signs, with one exception, are minus, indicating, perhaps, a tendency of the fan to fall behind the nucleus in its orbital motion.

If we suppose the center of the fan and the elongation of the nucleus to have been in the plane of the orbit, the evidence of oscillation becomes more marked in the measures of the fan but less marked in those of the nucleus, as will be shown by the following-table. ϕ is the angle $p-p_0$ reduced to the plane of the orbit.

	Nucleus	Fan
	$oldsymbol{\phi}$	· φ
June 23	[+26°]	+ 17.7
24	[+37]	—I 1 2.8
26	+38	— 73.2
27	+53	—ı 16.8

	Nucleus	Fan
	φ	φ
June 27	•••	[— 61°]
July 1	•••	 6.0
3	[+55]	— 60.9
. 5	$[+8_{3}]$	- 74.9
6	+54	[+32.3]
7	[+82]	— 55·7
9	•••	— 34.4

This supposition, however, makes the deviation of the fan from the direction of the sun too great in several instances. It is more probable that the brightest direction of the fan was not always in the plane of the orbit.

The Envelopes.

Of the separated envelopes seen June 23, 24 and 26 but little can be said, except that they resembled very much the envelopes of the great comet of 1858, which were found by Bond (Annals of the Harvard College Observatory, Vol. III,) to have been thrown off by the nucleus at regular intervals. Those observed June 24 were peculiar in that they retained the jet form. The appearance was that of three jets, the one within the other, emitted from the nucleus in the same direction and with different velocities, or with the same initial velocity and repelled by different forces from the sun. The height to which a jet would rise toward the sun may be expressed approximately by the formula $\varepsilon = \frac{g^2 r^2}{2(1-\mu)}$. If we know the initial velocity (g) we can easily compute by this formula the repulsive force $(1-\mu)$, or vice versa. Professor Bredichin, from investigations of the tails of a great number of bright comets, has found that the initial velocity is usually about 0.03 in tails of Type II. The measured heights of the three jets June 24 were respectively 35", 69" and 132", which in linear measure reduced to the plane of the orbit become 0.000086, 0.000169 and 0.000323. With these values of ε , assuming g = 0.03, we obtain $1 - \mu = 3.0$, 1.5 and 0.8. These results agree very well with those obtained from the observations of the tail.

Notes on Comet c, 1881.

July 18. Stone.

[&]quot;Strong indications of the formation of a tail. Nucleus not central."

July 19. Wilson. [Two sketches show a large nucleus and two bright wings.] "Slight trace of tail can be seen. Very broad."

July 22. Stone. [Sketch shows bright nucleus and two wings at an angle of nearly 180°.] "Nucleus not central. Observed in dawn. Nucleus still quite plainly visible. The wings were only visible after careful study. Still, after dawn had obliterated all else, traces of them were to be seen."

July 27. Leavenworth.

"Comet almost round."

June 28. Egbert. [Sketch shows bright nucleus, round coma, and very faint tail.]

"There is considerable haze in the atmosphere. Tail very indistinct. Edge of coma ill defined. Considerable condensation."

August 1. Egbert. [Sketch shows bright nucleus, round coma, and two branches of the tail.]

"Nucleus quite bright. Comet = 4.5 magnitude."

Notes on Encke's Comet.

September 21. Wilson.

"Comet large, very faint, nearly round. A little more dense on the south preceding side. Nucleus not very well defined. Width of coma 224". This includes only what is plainly visible. Around this there seems to be faint light which extends some distance but is too faint to be measured. Comet just visible in finder."

September 24. Wilson.

"Comet very faint but comparatively large. About 4' in diameter. Nearly round. South preceding portion a little more dense than the rest."

Notes on Comet e, 1881.

September 21. Wilson.

"Found comet after sweeping for a short time. It disappeared behind clouds before measures could be taken. Very small but comparatively bright. Had somewhat the appearance of a bright star through thick haze."

September 23. Wilson.

"Comet found at second sweep of telescope. Small, round, bright. Dense in the center. About 1' in diameter. Disappeared quickly in the haze near the horizon."

September 24. Wilson.

"Comet faint in haze. Otherwise appearance same as last night."

September 29. Wilson.

"Comet large. Still round. Much brighter, although in moonlight."

October 10. Wilson.

"Comet quite faint. Still large and round. Got into the haze before I could make any measures."

Notes on Comet a, 1882.

March 24, 13h 51m. Wilson. Sketch, Plate IV, No. 1.

"The comet is small and faint, but has a starlike nucleus. This is brighter than star d [a faint star following the nucleus, estimated magnitude eleventh] and fainter than c [DM 36° 3022, magnitude 9.5]. The tail is straight and almost exactly parallel to the line of apparent motion of the stars. Its length, as far as I could trace it, was almost equal to half the distance between a and b [DM 36° 3020 and 3027 (=6')]."

March 28, 15h 54m. Wilson. Sketch, Plate IV, No. 2.

"The tail in the direction 288.2 may be an illusion of the eye produced by two very faint stars. The tail in the direction 262.9 is quite distinct and extends two-thirds of the diameter of the field [12']. The nucleus is larger and brighter than when I saw it last. It is about twice as bright as the star b [not identified]. I think b is a 9.5 magnitude."

April 12, 12h 8m. Wilson. Sketch, Plate IV, No. 3.

"Comet much brighter than when I last saw it. Visible in finder now. P. A. of tail 256°8. Length equal diameter of field, power 90 [= 18'2]. The tail does not appear exactly straight to-night, but curves soon after leaving the nucleus and then appears straight again. The P. A. near the nucleus is 269°3. Nucleus very much condensed, and planetary in appearance. I could not see the short branch which I thought I saw on March 28."

April 14, 13h 47m. Stone. Sketch, Plate IV, No. 4.

"The tail can be traced securely one diameter of the field [power 90,=18.2]. P. A. 256.0. The P. A. was obtained by placing the nucleus at the edge of the field and noting the general direction. Width of tail 53.6, at a distance from the apex equal to the width. $14^h 11^m$.—Star $x [DM 51^o 2456]$ is on left edge of tail. The tail seems as though made up of a great number of parts, the central of which are more crowded and longer, making the tail brightest along the axis, but somewhat jagged at the edge at distances from the nucleus greater than one-half diam-

eter of field. The axis, I think, was a little to the right of the center. The coma faded away very rapidly from the nucleus; no well-defined limit; shaded off imperceptibly into surrounding sky. Tail grew slightly broader for about one-half diameter of field [9] then narrowed to a point. When examined closely I thought the actual edges of the nebulosity seemed to separate to the end. [Sketch.] At times I thought I saw nebulosity extending about one-third diameter of field farther [24]. At times also I thought I saw a bend similar to that seen by Wilson on the 12th. In the finder the tail was plainly visible, but unless carefully examined, comet might easily be mistaken for a star. It was midway in brightness between the stars a and b [DM 51° 2471 (8.9 m.) and 2456 (8.4 m.)]. Estimated 7.5 magnitude."

April 17, 15h 54m. Stone. Sketch, Plate IV, No. 5.

15^h 16^m.—"Position angle of tail taken with nucleus placed in center of field, power 90, 259. Length of tail 1.2 diameters of field [22']. Above position angle would be true for about one-fourth diameter of field [4'5] from nucleus. In the finder the comet is between a and b [DM 54° 2088 (8.9 m.) and 2089 (7.8m.)] in brightness. Estimated 8.0 magnitude.

"The axis was much brighter than on either side. The nucleus was stellar even with power A. With A it looked like a 10 m. star. The nebulosity at the apex was very faint, and brightest near the nucleus but on the opposite side from the apex. The apex was perhaps 20" from the nucleus. The bend is a little exaggerated perhaps. Should judge the direction from the nucleus to the middle differs about 10° from the direction near the end. Width of the main part of the tail, excluding the faint projection on the left side, 129".4. The projection is scarcely perceptible more than one-half or two-thirds the distance from the nucleus as given in the drawing.

"The bend was suspected when the comet was first observed, but when I left I was in doubt, as the tail at that time seemed *perfectly straight*. There were some bright stars near the end of the tail which may have caused an illusion. In the finder the comet looks larger and more diffuse than hitherto and shows more of the outline as seen in the large telescope."

April 20. Wilson.

"Tail nearly two diameters of field to-night."

April 20. Stone. Sketch, Plate IV, No. 6.

"13^h 6^m.—Position angle of tail 256°.2. The nucleus was placed at the edge of the field, power 90, and general direction measured. 13^h 26^m.—Position angle 255°.2; nucleus placed at center of field and general direction noted as before. Length of tail, 1.8 diameter of field [33].

"In the finder the nucleus is midway between a and c [DM 57° 1977 (8.7 m.) and 1981 (9.0 m.)] in brightness. Estimated 7.0 magnitude. With power A the nucleus was about 9.2 magnitude. Star d [anonymous, about 2' north of DM 57° 1981,] estimated 9.0 magnitude. Last time observed, the nucleus with high power looked like a very small, sharply defined star upon a faint nebulous background.

To-night with power A the surrounding nebulosity is almost as bright as the nucleus and fades off imperceptibly from it, and the nucleus seems larger and not so sharply defined as before.

"Power 1: Distance from nucleus to apex 24."8. Greatest width at about one-quarter field [4.5] from nucleus, 165."9. The brightest portion has a nearly constant width of 84."9, but slightly spreading, with a bright nebulous line down the axis. When nucleus was placed at the edge of the field the other side of the field seemed to cut off the end of a tail of nearly uniform width, gradually fading from nucleus. Beyond, the tail was very faint. No bend anywhere, unless very near the nucleus where the position of the brighter portion was perhaps continually shifting. The axis was perhaps a little to the right (i. e., south) of the center and more sharply defined on that side, especially a short distance from the nucleus. In other words, I had a suspicion of a similar form to that seen on the last night observed; but, if so, it was not nearly so marked as before."

April 23, 13h 10m. Wilson.

"P. A. of tail 259.5 roughly. It is getting cloudy, so that I can hardly distinguish the tail for more than half the field, power 90 [9]."

April 24, 13h 56m. Stone. Sketch, Plate IV, No. 7.

"In the finder the comet is midway in brightness between d and $f[DM61^{\circ}$ 1888 (8.7 m.) and 62° 1747 (7.5 m.)]. Estimated 7 magnitude. In general the comet continues to grow brighter, still I can trace the tail only for one diameter of the field [power 90]. P. A. with nucleus at edge of field, 260.8; with nucleus at center, 260.3. Greatest width of tail 148.8. Nucleus about two-fifths distance from right to left side of tail. A slight bend (?) toward the left one-half way to end of tail. With power 90 nucleus = 7.5 magnitude; star $d[DM61^{\circ}$ 1888 (8.7 m.)] estimated 8.0 m. The star, however, shines with a much intenser light, whereas the nucleus had a perceptible size. Nucleus was apparently a mere condensation of nebulosity and the light not at all stellar. The star d orange; nucleus intensely white. Not examined with higher powers. The brighter portion of the tail along the axis ends in a point. The faint outer edges end bluntly (?)."

April 27, 10h 58m. Wilson.

"Tail of comet very faint on account of the haze. Can not see it farther than to the comparison star [9']. P. A. 260.4. Nucleus quite bright."

April 29, 10h 39m. Wilson.

"Tail visible about half diameter of field, power 90 [9']. P. A. 276.3."

April 29. Stone. Sketch, Plate IV, No. 8.

"11^h 55^m.—P. A. of axis of tail, nucleus in center of field, power 90, 296. I.
P. A. of axis, with nucleus just beyond edge of field, 297. I. 12^h 7^m.—Greatest width of tail, at one-third field from nucleus, 179. 4. 12^h 14^m.—Distance from apex to nucleus 15. [Sketch.] Axis about four-elevenths distance from right to left edge of tail. Tail much brighter near nucleus and along the axis for about one diameter field. Beyond that the difference is not noticeable, except there is

a gradual fading away from the nucleus. In finder 7 m.; power 18 m.; power 4 9 m. Only looks stellar with A at times. Perhaps flying clouds may account for this. At times I had a suspicion that the tail had a projection on the left side, as in the drawing. I feel quite certain that the tail is concave on the right side. It is much brighter near the nucleus than hitherto, but I am unable to trace it more than two diameters with power I. Clouds prevented my getting a parallel."

May 15, 12h 10m. Wilson. Sketch, Plate V, No. 1.

"Comet much brighter. Tail visible half diameter of finder. Nucleus very dense; with brightly illuminated wires it appears like a planet of the seventh magnitude. P. A. of tail at a distance equal to the diameter of the field, power I, 329.6. The bright part is club-shaped or conical, densest and widest around the nucleus, gradually fading and narrowing to a point near the edge of the tail at a distance equal to diameter of field. P. A. of bright axis 331.8. Looked at the nucleus with powers II, III and A. II and III spread out the nucleus somewhat and made the coma appear brighter than with I. Power A diminished the brightness of the head. I thought I could see a jet with this power in direction 225° from axis of the tail, but was not sure of it." [In the finder the tail extended between and a little beyond stars DM 72°, 85 and 88.]

May 16, 10h 20m. Wilson. Sketch, Plate V, No. 2.

"The comet has much the same appearance as last night and is somewhat brighter when the clouds do not interfere. There is the same denser cone at the right side of the tail as last night. P. A. of wires tangent to sides of tail at a distance equal to diameter of field, power I, 328°4. P. A. of bright part 335°0.

"10^h 29^m.—Before beginning measures I traced the tail easily to 3 diameters of power 90 [55'], but it has now clouded so that I can not see it more than two. Examined the head with powers *III* and A. Neither of them show anything like a dark axis to the cone, but rather that the central portion is the brightest. With A a decidedly bright streak is visible for a short distance from the nucleus. The coma is brightest on the side toward the sun, as if a fan is almost visible." [In the finder the extremity of the tail is midway between the stars DM 72°, 111 and 112.]

May 18, 10^h 29^m. Wilson. Sketch, Plate V, No. 3.

"P. A. of wires tangent to sides of tail at widest part, 338.5. P. A. of bright part 345.2. As before, there is a dense tail ending in a point near the right edge at about one diameter of field, power *I*, from the nucleus. A fan is visible to-night with power *I*, but too faint to be measured. The width I should estimate at about 100°. With power *A* the estimated diameter of the nucleus is 3"." [In the finder the tail passes centrally over stars *DM* 70°, 189 and 182 to 183.]

May 22, 11h 20m. Wilson. Sketch, Plate V, No. 4.

"Comet is very much brighter than when last observed, although seen through thick haze. A bright fan is visible, although small. P. A. of its sides, 114° and 205°. P. A. of bright axis of tail, 353.2. P. A. of lines tangent to sides of tail in field of power *I*, 346°5. The comparison star is about a fifth

magnitude [$DM64^{\circ}$ 391 (6.0 m.), Radcliffe 934 (5.3 m.)]. Nucleus in power I is 1 m. fainter than comparison star; in power II 2 m. fainter than comparison star; in power III 7 m. In power A the nucleus is no longer stellar, but is spread out so that I can not estimate its magnitude. Diameter 18"4."

May 23. Wilson.

"Saw the fan distinctly while preparing to observe. Clouded up."

May 29. Wilson.

"Looked at comet through thick haze and smoke near the horizon. No comparison star visible. Nucleus very bright; about a second magnitude. Is of a dull red color, due to the smoke I suppose. Seems to flash and vary its light all the time. This may be due to the poor definition. Scarcely any tail is visible. The moon is nearly full."

DISCUSSION OF THE NOTES.

The interesting features of Comet a, 1882, were the bright nucleus and the narrow, pointed tail which it had when discovered, although the comet was then at a distance of 1.64 (astronomical units) from the earth and 2.03 from the sun. The sketches show a gradual increase in the brightness and dimensions of the tail, corresponding with its approach to the earth and sun. In all the sketches the axis is the brightest part of the tail. In the later ones there seem to be two parts or two tails, the one within the other, but with different axes; the inner tail bright, "club-shaped" or "conical," broadest at the nucleus and tapering to a point; the outer faint, slightly spreading, with its right side three or four times longer than its left. The sketches for May 15, 16 and 18 are not given to their full length on Plate V. They should extend a little below the bottom of the plate.

In reducing the observations I have used Lamp's elements of the orbit of the comet (Astronomische Nachrichten No. 2428):

$$T = 1882$$
, June 10.5266 Greenwich mean time.
 $\pi = 53^{\circ} \quad 54' \quad 40''$
 $\Omega = 204^{\circ} \quad 54' \quad 50''$
 $i = 73^{\circ} \quad 47' \quad 29''$
Mean equinox 1882.0,
 $\log q = 8.783674$.

According to these the earth passed through the plane of the comet's orbit April 14 at 12^h 8^m, Greenwich mean time. The observation on that date was made about seven and a half hours later. As, however, the change in the relative positions of the earth and comet would scarcely be perceptible in that time, the appearance should not be appreciably different from that seen in the plane of the orbit. The observed position angle of the axis agrees exactly with the computed position angle of the radius vector for that time. This shows that the axes of the different conoids of the tail were in the plane of the orbit. As seen they were therefore superposed, making the tail "seem as though it were made up of a great number of parts." The conoids were of different diameters,

and the narrower ones were naturally the longer, so that the central parts were "more crowded and longer, making the tail brightest along the axis, but somewhat jagged at the edges." The distance of the comet was so great that the hollow space, within the narrow conoids, was not visible. The extension of the sides to the full length of the tail, as shown in the sketch, was only suspected, yet it may have been real, for the tail was then turned away from the earth at an angle of 145°, so that the extremity would necessarily be very faint.

The observed width, 53.6, was the actual thickness of the tail near the nucleus, equivalent to about 30,000 miles. The greatest thickness was somewhat more than that.

The Nucleus.

The following table gives all the estimates of magnitude of the nucleus, contained in the notes:

			rect Estim Power <i>I</i> .	ates. Power A.	Estimates by Comparison with <i>DM</i> stars.	Observer.
March	24	. 	100	•••	•••	W
	28		9.3	•••	•••	W
April	14	7.5	•••	•••	$\frac{1}{2}$ (8.9+8.4)=8.6	S
	17	8. o		10.0	$\frac{1}{2}(8.9+7.8)=8.4$	S
	20	7.0	•••	9.2	$\frac{1}{2}(8.7+9.0) = 8.8$	S
	24	7.0	7.5	•••	$\begin{cases} \frac{1}{2} (8.7 + 7.5) = 8.1 \\ 7.5 + 0.7 = 8.2 \end{cases}$	S S
	29	7.0	8.0	9.0	•••	S
May	15	•••	7.0	•••	•••	W
	18	·	•••	3"	•••	\mathbf{w}
	22	•••	6.0	18"	5.6+1.0=6.6	W
	29	•••	2.0	•••	· · · · ·	W

The effect of increasing the magnifying power was to diminish the brightness of the nucleus, although during the last observations the apparent size was increased.

Assuming the estimate 10.0, March 24, to have been correct, I have computed the magnitude (m_0) for each of the above dates, using the formula for the light of a planetoid (*Oppolzer's Bahnbestimmung page* 91). Comparing these with the estimates (m) made with power I and with comparison stars, we find that the agreement is very close, excepting the last, which was a very rough estimate:

	r	ρ	m_{\circ}	m	$m-m_{\circ}$
March 24	2.03	1.64	10.0	10.0	0.0
28	1.87	1.55	9.8	9.3	-o.5
April 14	1.57	1.23	8.9	8.6	о. з
17	1.51	1.18	8.7	8.4	о. з
20	1.45	1.13	8.6	8.8	+0.2
24	1.37	1.07	8.3	8.2	0. I
29	1.26	1.01	8. o	8.0	0.0

	r	P	$m_{\rm o}$	m	$m-m_o$
May 15	0.91	0.90	7. I	7.0	-o. 1
18	0.84	0.89	6.9	•••	•••
22	0.73	0.89	6.6	6.6	0.0
29	0.52	0.91	5 ·9	2.0	—3.9

The Tail.

The following are the measures of the axis. s is the length of the axis for which the observed position angle p is true. l is the total length of the tail.

Greenwich M. T.	· p	s	I	p _o	<i>pp</i> ₀	•
March 24.81	270°±	6′	6′	266°.6	+ 3°	. •
28.90	262.9	I 2	I 2	264. 1	— I.2	
April 12.74	256.8	18	18	256.6	+ 0.2	
14.81	256.0	. 18	24	256.0	0.0	
17.86	259. I	18	22	255.5	+ 3.6	
20.79	256.2	18	33	255.5	+ 0.7	
20.79	255.2	. 9	3 3	255.5	 0.3	
23.78	259.5	9	9	256.3	+ 3.2	Cloudy.
24.80	260.8	18	18	256.8	+ 4.0	
24.80	260.3	9	18	256.8	+ 3.5	
27.69	260.4	9	9	259.0	+ 1.4	Moonlight.
29.68	276.3	9	9	261.6	+14.7	"
29.73	297. 1	18	36	261.7	+35.4	"
2 9.73	296. I	9	36	261.7	+34.4	"
May 15.74	329.5	18	40	325.8	·+ 3·7	
16.66	328.4	18	55	329.6	— I.2	
18.67 .	338.5	18	7 I	336 .8	+ 1.7	
22.7 I	346.2	18	25	3 46.3	- o. I	Moonlight.

I am unable to account for the sudden increase in the position angle on April 29. There must have been an extraordinary shifting, either of the tail of the comet or of the position circle of the telescope. The latter, in itself, would seem the more probable, but I can find no other evidence of it. The zero of the circle, determined before the observation on that night, agrees exactly with those determined on the preceding and subsequent nights. Besides, the circle screws on the tube of the telescope with a right hand screw and, when set, is turned as far as it will go. It could, then, only shift by turning to the left, which would decrease the observed position angle, whereas the angles actually observed were too great.

Excepting April 29, the column $p-p_0$ shows that the deviation from the radius vector was small. The larger angles on April 17, 23 and 24 may have been really measures of the bright cone which was so distinctly seen after May 15.

The latter was considerably inclined to the radius vector, as shown by the following measures:

	p	⊅ ∘	<i>pp</i> 。	s
May 15	331°.8	3 25.8	+6°.0	18′
16	335.0	329.6	+5.4	18
18	345.2	336.8	+8.4	18
22	353.2	346.3	+6.9	18

If we reduce these position angles to the plane of the orbit we obtain

	P	P'	S	\boldsymbol{T}	φ
May 15	70°.9	200°.7	123° 1	103.°7	+ 9 <u>°</u> 8
16	74-4	202.2	124.2	103.8	+ 8.7
18	80.8	205.5	126.4	97.7	+13.3
22	87.9	213.2	131.0	95.3	+10.4

The average of these values of ϕ is $+ 10^\circ.5$ for May 18. This value is much greater than that which would correspond to $1-\mu=1$, and we therefore conclude that the bright part of the tail must be classed under Type *III*, composed of metallic vapors. The presence of metallic vapors in the part of the tail near the nucleus is confirmed by the spectroscopic observations in May and June, when the spectrum of the comet contained two very bright lines coincident with the D or Sodium-lines of the solar spectrum (Astronomische Nachrichten No. 2437, Copernicus, Vol. II, No. 24, etc.).

The positions of the extremity of the tail, as determined by reference stars in the finder, give the following results:

	Þ	s	<i>p-p</i> 。	ϕ	Δ
May 15	328°.2	o° 30′	+ 2°3	+ 3.8	0.0083
16	341.7	0 42	+ t 2. I	+20.6	0 .0109
18	344.7	ııı	+ 7.9	+12.5	0.0186

These are so discordant as to be of very little value.

The measures of the apex and the width of the tail are so few that it is hardly worth the while to discuss them. e is the distance of the apex from the nucleus, w the width of the tail and s the distance from the nucleus at which the width was measured.

	e	$oldsymbol{w}$	s	•
April 14	est. 13"	53.6	0′.7	
17	est. 20	129.4	4.5	
20	24.8	165.9	4.5	
•	•••	84.9	4.5	Bright portion.
24	•••	148.8	4.5	
29	15.2	179.4	6.	

The notes on the coma show that no jets were visible before the middle of May. Previous to that time the coma is described as fading rapidly toward the apex, and on April 17 as brightest on the side opposite the sun. A fan-shaped

jet toward the sun was suspected May 15 and 16, and was certainly seen May 18, 22 and 23. The comet was then at its least distance from the earth, 0.90, and rapidly approaching the sun.

After May 29 it was lost in the rays of the sun. Several attempts were made to find the comet after perihelion, but without success.

Notes on the Tail of Comet c, 1882.

[The observations of Comet c were all made by myself.—W.]

September 18.

"At about 1" P. M. I received a telephone message stating that something which looked like a comet had been seen near the sun, by several persons at Proctor and Gamble's office, Cincinnati. I immediately looked and without difficulty, by simply shading my eyes from the sun with my hand, detected the comet, about 5° west and 1° south of the sun. The tail was visible for about ½°, and directly opposite the sun. At that moment the sky was perfectly clear around the sun, but before I could get to the dome and turn the equatorial on the comet, the rapidly flying clouds came over and I could only get glimpses of the comet between clouds. In the finder I could see a very bright round nucleus with two bright curved appendages like wings [Sketch, Plate VIII, September 18, a]. None of the tail could be seen in the large telescope."

September 18, 17h 36m.

"Comet has been visible to naked eye about 10 minutes. Length about 10." [A rude sketch shows the tail convex on the left (north) side and straight on the right, spreading rapidly from the nucleus so that its width at the extremity is nearly half the length.]

September 24, 17h 10m.

"Tail of comet first seen above horizon at about 16° 30°, while I was observing Barnard's Comet. Tail then seemed about 15° long. Tail now is at least 10° long and 2° broad at extremity. There is a dark rift in the tail beginning not far from the nucleus and extending the whole length, as indicated in the sketch. The rift is not entirely dark, but contains some of the nebulous matter. The rift at the end is one-fourth as wide as the tail. The tail is slightly curved toward the left, looking from the head." [The sketch shows the left side of the tail longer than the right, and the rift is on the right side of the axis. The sketch was not reproduced, for want of reference stars.]

September 30, 16h 45m. Sketch, Plate VII, No. 1.

"Tail visible at 16^h in full moonlight (moon on the meridian) through thick fog. Head not up yet. 16^h 40^m.—Right side of tail is directed toward the bright

star a Hydræ and extends five-eighths of the distance. There seems to be a narrow rift in the tail near the right side, extending about two-thirds of the length from the head. 16^h 55^m.—The left edge seems to fade off gradually while the right is well defined. Clear. The light at the extremity of the tail seemed variable, extending at times 1° farther than at others."

October 4.

"Tail visible at 15^h 35^m, through thick haze and fog. Moon at last quarter, 60° from comet. Position of end of tail, south side, $a = 9^h$ 35^m, $\delta = -10^\circ$ 39'; north side, $a = 9^h$ 35^m, $\delta = -7^\circ$ 34'. Middle of tail, $a = 10^h$ 8^m, $\delta = 8^\circ$ 39'. The dark rift near the right side of the tail was not so plainly visible as at other times, yet it was evident."

October 5.

"Tail half way up at 15^h 40^m. At 17^h 50^m tail extended three-fourths the distance to a Hydræ. Central line pointed almost exactly toward a Hydræ. Slightly curved upward. Did not notice the dark rift."

October 6, 17h 40m.

"Central axis of tail pointed almost exactly toward a Hydræ. Curved slightly upward. Right edge well defined; left fades off gradually. Extremity 4° wide." [A rough sketch shows that the outline of the tail was nearly the same as on September 30, the bright part nearly straight and spreading gradually from the head, the faint part on the left.]

October 10.

"Saw end of tail at 16th through rift in clouds. It extended to a Hydræ at left or upper extremity. 4° broad at the end."

October 12, 16h 30m. Sketch, Plate VII, No. 2.

[On the original sketch the following stars were plotted: 10 Sextans, a, λ , v^2 , v^1 and μ Hydræ. λ and v^2 Hydræ were seen through the bright part of the tail.]

October 13, 16h 0m. Sketch, Plate VII, No. 3.

"Tail has very much the same appearance as yesterday. Perhaps the extension of the right extremity is a little longer." [The stars plotted were: 10 Sextans, a, λ , v^1 , 49 and 51 Hydræ. v^2 Hydræ should have been in the middle of the brightest part of the tail, but does not appear in the sketch.]

October 19, 16h 0m. Sketch, Plate VII, No. 4.

"Comet is not nearly so bright to the eye as last time I observed it. The tail seems more nearly straight, a little broader and shorter. There is a bright star $[v^1 \text{ Hydræ}]$ in the brighter part of the tail about two-fifths of the length from the head." [The stars plotted were: a, λ , v^1 , 49, 51 and 16 Hydræ.]

October 29, 15h 15m.

"Tail visible in bright moonlight to about 5° beyond a Hydræ in R. A."

November 2, 16h 25m. Sketch. [Outline given on Plate VI.]

"The moon is nearly half full and just north of a Hydræ at a distance equal to the length of the comet. Yet the tail is plainly visible for the whole length sketched. There is no extension at the right extremity, as seen last time. The tail is very bright for half its length on the lower [right] side, fading off gradually toward the upper [left] side and extremity." [The stars plotted were: a, λ , v^1 , v^2 , μ , 49, 51, 16, 9, 10, 59, 69, 79, 80 and 84 Hydræ. Right extremity near 10 Hydræ, left midway between 16 and 49 Hydræ, middle extremity at 16 Hydræ.]

November 3.

"The general appearance of the tail is about the same as yesterday. A little brighter because of less moonlight."

November 7, 14h 40m to 15h 0m. Sketch, Plate VII, No. 5.

"Tail is very bright yet. No moonlight. Nothing peculiar about the tail. At 15^h 12^m a meteor passed exactly across the middle of the comet's tail at right angles. Third magnitude. Left a train of sparks brighter than the comet, so that the streak was visible for an instant on the tail." [The stars plotted were: 9, 10, 16, 59, 69, 79, 80 and 84 Hydræ, and several faint stars visible with an opera-glass. The star marked 10 on Plate VII is not correctly placed in this engraving. It should be near the axis of the tail.]

November 14, 17h 30m. Sketch, Plate VII, No. 6.

"Clear between clouds. Did not have time to observe position. Stars all visible to the naked eye. Between 17^h 30^m and 17^h 35^m I saw three bright meteors (all brighter than the first magnitude) fall from the direction of *The Sickle* [Leo] across the tail of the comet. Each left a train of sparks across the tail of the comet, visible for a second or more. One crossed near the head, another near the middle, the other near the end of the tail. [The stars plotted were: 9, 10, 16, 59, 69, 79 Hydræ and 64 and 66 Argo.]

November 20, 17h 25m. Sketch, Plate VII, No. 8.

"Stars all visible to naked eye." [The stars plotted were: 9, 10, 16, 59, 69, 79 Hydræ, 50, 60, 64, 66, 67 and 70 Argo.]

November 29.7.

"Moon at last quarter, just north of comet. Comet visible to naked eye. Has a faint tail about 5° long."

December II.6.

"Comet not more than 4° long. Not very bright. Sky hazy."

January 29.4. 1883.

"Cleared off at 9 P. M. Saw comet for a few minutes. Scarcely visible to naked eye. With opera-glass tail is about 4° long. With large telescope, power 90, scarcely any tail at all is visible. Clouded up before I could obtain measures for position." [A rough sketch shows that the tail extended to ν Canis Majoris.]

January 31.

"Comet scarcely visible with opera-glasses."

DISCUSSION OF THE NOTES.

The above notes and sketches were, most of them, made very hurriedly, while I was preparing to observe the position of the nucleus, and while the head of the comet was very near the horizon, so that they are not accurate in detail. My object in making them was only to get the position of the extremity of the tail by reference to easily identified stars.

The sketches show two distinct parts of the tail; the one very bright, composed of a single narrow conoid, spreading gradually from the nucleus; the other much fainter, nearly twice as broad as the first and spreading a little more rapidly. Both parts were curved slightly toward the left (north). This curvature apparently increased until the middle of November, after which it gradually The axis of the fainter part was inclined several degrees to the left of that of the brighter part. On September 24 only the bright conoid could be seen. The hollow space, within the conoid, was visible as a dark channel or "rift" traversing the whole length of the conoid. This channel was not perfectly dark, but the light in it was faint in comparison with that on either side. The channel did not coincide with the axis of the bright part of the tail, but was wholly on the right side of the axis. September 30 both parts of the tail were visible and nearly equal in length. The dark channel was closed at both ends, and less marked. After October 5 the dark channel was not noticed. 12, 13 and 19 the right side of the bright conoid was apparently much longer than the broad part of the tail. November 7, 14 and 20 the bright conoid could not be distinguished for more than two-thirds of the length of the tail, and instead of spreading seemed to taper to a point within the right edge of the tail.

I did not at any time see the faint projection of the tail toward the sun which was seen by several observers from the 5th to the 15th of October. The reason has been stated above, viz: that the head of the comet was always very near the horizon when I examined it with the naked eye.

In the reduction of the observations I have used the points represented by stars within or very near the limits of the tail, and in the brightest part. The positions of the stars on Plates VI and VII were taken from Heis's Catalogue and reduced to 1882.0. Those on Plate VII are as follows:

Number.	Name.	a	ó		
I	a Hydræ	140° 28′	— 8° 9′		
2	10 Sextans	146 40	— 7 33		
3	λ Hydræ	151 13	—11 46		
. 4	v ² ''	149 51	<u>—12</u> 30		
5	v1 ''	146 27	—14 16		
6	51 ''	138 42	-93		
7	49 ''	138 32	—II 29		
8	16 "	130 13	- 13 7		
9	9. ''	128 37	—12 4		
10	10 "	129 4	<u>—15</u> 31		

Number.	Name.	a		ð	ð			
11	59 Hydræ	140°	29′	21°	36 3 4 3 23 9 10			
I 2	69 ''	141	57	20	36			
13	79 ''	143	59	-23	4			
14	8o ''	144	15	-23	23			
15.	50 Argo	126	34	19	10			
16	64 ''	135	43	-23	23			
17	66 "	139	15	25	28			

The right extremity is designated by Re, the left by Le, the middle by Me, and the middle of the brightest part by M. The stars observed for these points were:

		Le	Me	Re	M	
September	30	•••	•••	I	•••	$s = \frac{5}{8}$ distance.
October	4	•••	•••	•••	•••	
	5	•••	I	•••	•••	
	6	•••	I	•••	•••	
	10	1	•••	•••	•••	
	I 2	I	•••	7	½ (3 to 4)	
	13	I	•••	7	4	
	19	6	7	3/4 (7 to 8)	5	
November	2	½ (7 to 8)	8	3/4 (8 to 10)	10*	$*s = \frac{1}{3}$ distance.
	7	•••	8	10	1/3 (12 to 1	1)
	14	8	10	•••	•••	
	20	1/3 (10 to 15)	•••	$\frac{1}{10}$ (15 to 10)	15*	$*s = \frac{1}{3}$ distance.
January	29	v Ca	nis M	ajoris	•••	

The elements of the orbit of the nucleus were:

T = September 17.2304, Greenwich mean time.

$$\pi = 55^{\circ}$$
 12'7
 $\Omega = 345$ 50.6
 $i = 141$ 54.9
log $q = 7.88356$.
 $x = r [9.99500] + \sin (170^{\circ} 35'9 + v)$
 $y = r [9.98762] + \sin (262 43.0 + v)$
 $z = r [9.44651] + \sin (48 59.5 + v)$

The coördinates of the nucleus and the sun, and position angle of the radius vector for the moments of observation were:

Greenwich M. T. a b a d
$$p_0$$

September 30.935 160° $15'.9$ -6° $59'.6$ 187° $27'.8$ -3° $13'.5$ 263° $28'$
October 4.951 158 30.5 -8 54.1 191 7.0 -4 46.9 264 56
5.950 158 7.0 -9 21.5 192 1.7 -5 10.0 265 19
6.971 157 43.8 -9 48.9 192 57.7 -5 33.5 265 4^2
10.901 156 19.7 -11 31.2 .196 34.3 -7 3.0 267 14

Greenwich	h M. T.	ď	ı		ð		a	a	?	p.	
	12.970	155°	37 ['] .4	—12°	23′.2	1980	29′.2	— 7°	49.9	268°	4′
	13.922	155	18.2	<u>—12</u>	46.7	199	2 I . I	— 8	10.8	268	27
	19.933	153	17.7	-15	TI.I	204	59.9	<u>10</u>	23.3	27 I	6
November	r 2.981	148	8.8	20	26.5	218	32.5	 15	7.6	278	13
	7.926	145	59.3	22	9.2	223	27.9	—16	37. I	281	17
	14.964	142	29.5	-24	29.2	230	37.3	—ı 8	32.3	286	58
	20.961	139	3.6	26	16.2	236	51.3	-19	57.8	291	16
January	29.610	93	12.9	22	43.8	312	21.5	-17	46.5	46	4 I

For the observed points in the tail we have at the same moments:

			a'		p	s	p - p _o
September	30	Re	140° 28′	— 8° 9′	265° 22′	J 2 ° I 4'	+ 1° 54′
October	4	Re	143 45	—10 <u>39</u>	261 56	14 33	— 3 °
	4	Le	143 45	— 7 34	274 9	14 32	+ 9 13
	4	M	152 0	— 8 30	273 6	6 12	+ 8 10
	· 5	Me	140 28	 8 9	272 32	17 33	+ 7 13
	6	Me	140 28	— 8 9	274 10	17 14	+ 8 28
	10	Le	140 28	— 8 9	280 43	15 57	+13 29
	10	Re	140 28	<u>—12</u> 9	266 2	15 33	— I I2
	I 2	Le	140 28	— 8 9	284 25	15 21	+16 21
	I 2	Re	138 22	—II 29	271 13	17 1	+39
	I 2	· M	150 32	<u>—12</u> 8	272 18	5 9	+ 4 17
	13	Le	141 0	— 8 23	285 21	14 37	+16 54
	13	Re	137 22	-11 29	272 19	17 32	+352
	13	\boldsymbol{L}	151 13	—11 46	283 48	4 23	+15 21
	13	M	149 51	—12 30	272 30	5 4	+ 4 3
	19	Le	138 42	-93	291 35	15 36	+20 29
, .	19	Re	132 18	12 43	274 17	20 27	+ 3 11
	19	Me	138 32	—11 29	282 38	14 52	+11 32
	19	M	146 27	14 16	276 59	6 44	+ 5 53
November	2	Le	134 22	<u>—12</u> 18	299 30	15 28	+21 17
	2	Me	130 13	-13 7	290 16	18 42	+12 3
	2	Re	129 22	 14 56	284 3	18 43	+ 5 50
	2	M	129 4	-15 31	28 2 4	6 15	+ 3 51
	7	Me	130 13	—13 7	298 24	17 35	+17 7
	7	Re	129 4	 15 31	289 35	17 20	+ 8 18
	7	M	141 28	<u>—21</u> 0	284 23	4 35	+36
	14	Le	130 · 13	—r3 7	312 11	16 18	+21 46
	14	Me	129 4	—15 31	302 55	15 29	+1557
	20	Le	128 14	—16 44	311 18	13 49	+20 2
	20	Re	126 49	—18 5o	300 51	13 27	+ 9 35
•	20	M	126 34	 19 10	² 99 4	4 31	+ 7 48
January	29	Me	97 53	—19 1 0	38 31	5 22	- 8 10

For the reductions to the plane of the orbit we compute the coördinates of the North Pole of the comet's orbit

$$A = 237^{\circ} 20.6$$

 $D = -73 45.9$

and the following quantities:

13

19

14

20

November

154

154 54

153 42

153 57

¹53 44

0

+21

+15

+12

+21 24

+17 44

18

35

		P	P'	S	$oldsymbol{v}$	$\log r$	$\log \rho$
September	30	163° 55′.2	259° 30′.8	100° 18'.6	167° 16′.3	9.79422	0. 1 1 7 0 4
October	4	163 44.1	261 45.4	101 39.5	168 19.9	9.86948	0.13014
	5	163 41.6	262 16.0	101 59.1	168 32.8	9.88544	0. 13287
	6	163 39.1	262 46.3	102 19.1	168 45.0	9.90096	0. 13564
	10	163 29.8	264 37.4	103 33.8	169 25.1	9.95386	0. 14498
	I 2	163 25.1	265 33.5	104 11.9	169 42.8	9.97848	0.14906
	13	163 23.0	265 59.0	104 29.1	169 50.3	9.98892	0.15075
	19	163 9.9	26 8 38. 1	106 13.7	170 30.5	0.04834	0. 15952
November	2	162 42.8	275 11.2	109 48.9	171 35.0	0. 15 2 36	0. 1 7032
	7	162 35.8	277 46.6	110 51.0	171 51.7	0. 18170	0.17219
	14	162 30.0	281 49.3	112 6.8	172 13.2	0.22056	0. 17411
	20	162 31.4	285 36.1	112 52.9	172 27.2	0.24698	0. 17599
January	29	170 26.6	326 47.5	99 19.5	174 5.4	0.45908	0.34329

The angles ϕ are reduced to the epoch October 19.933. In computing $d\phi$ I have assumed $1 - \mu = 2.6$ for the right extremity, $1 - \mu = 1.5$ for the middle extremity, $1 - \mu = 1.0$ for the left extremity and the middle of the bright part of the tail.

			Right Extre	nity.		
		T	$oldsymbol{\phi}$	đφ	$oldsymbol{\phi'}$	Δ
September	30	137° 29′	+ 5° 18′	—2° 9′	+ 3° 9′	0.5502
October	4	124 42	- 8 52	 1 19	<u>—10 11</u>	0.5193
	10	131 58	— 2 42	o 45	— 3 ² 7	0.6970
	12	140 23	+ 5 48	 0 40	+ 5 8	1.0983
	13	141 28	+ 6 48	—о <u>з</u> 6	+ 6 12	1.1895
	19	141 3	+ 4 54	0 00	+ 4 54	1.5898
November	2	145 17	· + 6 17	+1 I	+ 7 18	1.7232
	7	147 40	+ 7 45	+1 15	+9 0	1.6452
	20	150 32	+ 6 46	+1 32	+ 8 18	1.2642
•			Left Extren	nity.		
October	4	149 22	+17 5	2 59	+14 6	1.2211
	10	152 11	+19 19	—ı 43	+17 36	1.8659
	I 2	153 50	+20 59	—ı 14	+19 45	1.9881

59

0 00

+138

+2 50

+2 40

+20

+19

+18

+21 24

+15 15

5

1.8091

2.3525

 2.100^{2}

2.5015

1.6612

Middle Extremity.

		T	φ	$d\phi$	$oldsymbol{\phi}'$	Δ
October	5	146° 40′	+13° 57′	—1° 56′	+12° 1'	1.5054
	6	148 5	+15 18	—ı 52	+13 26	1.5973
	19	149 15	+14 20	0 00	+14 20	1.3536
November	2	149 24	+11 36	+1 13	+12 49	2.3014
	7	152 I	+13 55	+1 46	+15 41	2.4877
•	14	152 11	+12 8	+1 41	+13 49	1.8662
January	29	166 11	— 3 2 4	+4 13	+ 0 49	1.4031
•			Middle of Brig	tht Part.		
October	4	148 5	+14 41	—1 38	+13 3	0.3358
	I 2	141 59	+ 7 32	—о зо	+72	0.2337
	13	141 44	+ 7 5	-o 24	+ 6 41	0.2282
	19	144 11	+ 8 26	0 00	+8 26	0. 3483
November	2	143 41	+ 4 19	+0 43	+ 5 2	0.3216
	7	144 8	+ 3 11	+0 45	+356	0.2288
	20	149 50	+ 5 38	+1 8	+ 6 46	0.2728

The points corresponding to ϕ' and Δ are represented on Plate X; those for the right extremity by \bot ,s; those for the left extremity by \bot ,s; those for the middle extremity by small circles, and those for the middle of the brightest part by dots. BC is the limit of the tail on October 19, DE on November 7. The scale of Δ is 1=2.5 inches, exactly $\frac{1}{10}$ the scale used for Comet \dot{b} , 1881, Plate IX.

The left side of the tail was much longer than the right, but in perspective appeared the shorter of the two after September 30. Both sides were very much foreshortened in perspective, as the tail was turned away from the earth at an angle of over 140°. The direction of the left extremity from the nucleus was over 150° from the earth. Had the tail been vertical to the line of sight on October 19 it would have spanned an arc of nearly 60°.

The Δ ,s show a rapid increase in the length of the tail up to about the 7th of November, after which there is a decrease. If we draw curves through the Δ ,s for each extremity, and extend them backward, we find that they become zero very soon after the time of perihelion passage, September 17. This would seem to indicate that the matter which formed the tail was thrown off from the nucleus after perihelion, and that it was the same matter which formed the extremity, at least of the brighter part, from September 24 to some time in November. The earlier observations of the faint part are less certain, for the earth was then very near the plane of the comet's orbit (having passed through it on September 8), so that the fainter parts were projected behind the bright conoid, and near the extremity were directed almost straight away from the earth.

Comparison with Theory.

The theoretical axes of the tail are computed as follows: Assuming first $1-\mu=1$, and taking the times of emission corresponding to the true anomalies

of the nucleus 100°, 125°, 140°, 150°, 160° and 165° we have for the epoch October 19.933

	M = October 19.93	v = 170	$1-\mu=1$		
$\boldsymbol{v_1}$	M_1	φ	Δ	7	Ĕ
100°	Sept. 17.3276	+37°11′	4.9156	2.970	3.916
125	17.4664	+24 35	3.1611	1.315	2.874
140	17.7616	+16 53	2.0357	0.592	1.948
150	18. 3884	+11 40	1.2762	0.258	1.250
160	20.8858	+ 7 29	0.4507	0.059	0.447
165	25.6810	+325	0.2096	0.012	0.209

These points, excepting the first, are represented on Plate X by the crosses on the line marked $1-\mu=1.0$. This value of $1-\mu$ will satisfy the observations of the middle of the tail and the left extremity on October 19. The bright conoid requires a greater value of the repulsive force, and there are faint parts on the left side of the tail which indicate less values.

The points on the other axes, on Plate X, were computed with the accurate hyperbolic formulæ. I give the more important quantities:

ι - μ	v_1		M_1		lo	$\log E$			V_1		lc	g P
2.6	140°	Sept.	17.761	6	0.0	84428	+	19°	18'	54"	7.9	80462
2.6	150		18.388	4	0.0	52266		16	5	5	7.98	80470
2.6	160		20.885	8	0.0	25093		II	38	25		80482
2.0	140		17.761			43433		27	30	56		34596
2.0	150		18.388			93181		23	47	40		34585
2.0	160		20.885			46926		17	52	40		34623
0.8	140		17.761			07642		86	58	34		B3555
0.8	150		18.388		0.4	.01694		97	31	2 I		83552
0.3	140		17.761			54701		125	56	37		39488
0.3	150		18.388	4	0.0	32986	1	138	32	39	8.33	39468
1μ	F		i	V		φ			Δ		η	ξ
2.6	89° 42′	47 ^{''}	+ 34°	25'	6"	+19°	50'	•	3.842	90	1.304	3.614
2.6	89 22	6	27		30	13	26	2	2. 531	8	o. 5 8 8	2.462
2.6	8 7 51	42	18	35	46	6	55	1	. 181	7	0.142	1.146
. 2.0	89 41	48	43	50	22	19	2	3	3.239	3	1.056	3.062
2.0	-	50	35	49	56	I 2	56		.117	•	0.474	2.064
2.0		10	25	17	4	6	43		. 960		0.112	0.954
0.8	, .	I 2	107	•	54	16	34		.657		0.472	1.589
0.8	89 3	45	I I 2	29	56	II	16		.077		0.210	1.056
0.3		35	150	3 9	10	13	41		.824		0.195	0.801
0.3	85 13	24	156	5	2	9	54	•	•479	8	0.082	0.473

The axis $1-\mu = 2.6$ passes through the middle line of the bright conoid, and the axes $1-\mu = 0.8$ and $1-\mu = 0.3$ fall within the limits of the faint part of the tail on October 19.

On September 18 and 25 the nucleus was situated near the apex of the head and the discharge seemed to take place from the sides. I have therefore taken for the right side of the tail $G = -90^{\circ}$, and for the left $G = +90^{\circ}$. As the initial velocity was probably greater than the average, while the comet was so near the sun, I have assumed g = 0.1. For the right side we have

$$1-\mu$$
 M_1
 G
 g
 $\log E$
 V_1
 $\log P$
 2.6
 Sept. 18.3884
 -90°
 0.1
 0.061319
 17° $13'$ $27''$
 8.057553

 and for the left

 $1-\mu$
 M_1
 G
 g
 $\log E$
 V_1
 $\log P$
 0.2
 Sept. 17.7616
 $+90^{\circ}$
 0.1
 0.025244
 134°
 $6'$ $27''$
 8.234316

 from which we obtain
 .

 1
 μ
 F
 V
 ϕ
 Δ
 η
 ξ
 2.6
 89° $21'$ $32''$
 29° $25'$ $8''$
 $+11^{\circ}$ $58'$
 2.5331
 0.525
 2.478
 0.2
 85
 18
 4
 159
 2
 0
 $+16$
 48
 0.5594
 0.162
 0.535

The lines drawn through these points include nearly all of the observed points which were within the limits of the tail. Those for the right extremity, October 4 and 10, were not accurately determined. The observation for January 29 was very uncertain, as the comet could scarcely be seen.

Comparing the observed with the computed points, we conclude that the bright conoid was composed of particles affected by the repulsive force $\mathbf{1}-\mu=2.0$ to 2.6. The particles at its extremity, October 19.933, were emitted from the nucleus about September 20.0. The faint part of the tail was composed of a number of conoids for which the value of $\mathbf{1}-\mu$ ranged from 1.0 to 0.2 or less The particles at the extremity of these conoids, October 19.933, left the nucleus between September 17.76 and September 18.39. The line AC represents the ends of the various conoids which left the nucleus at the same time.

The tail attained its greatest length about November 7, at which time the extremity was more than twice as far away as the nucleus, and nearly one and a half times more distant than the head afterward was, when it became invisible to the eye.

Notes on the Head of Comet c, 1882.

September 18, 1h 15m. Sketch, Plate VIII, No. 1, a.

"As seen in the finder of the large equatorial. Clouds were flying rapidly all the time, making it difficult to keep the comet in sight. Comet was not seen in large telescope until nearly three o'clock, and then only the nucleus and part

of the coma were visible, on account of the brightness of the sunlight which entered the tube." [This sketch is not drawn to scale.]

September 18, 174 47m. Sketch, Plate VIII, No. 1.

"Power 90. Length of branches ½ diameter of field. Sun just up. In the finder length equal ¼ diameter of field. 17^h 53^m.—P. A. of axis of tail 270.6. P. A. of left side of bright fan 331.6; right side 213.9. Width of head at nucleus 54.6.

"Power 230. Nucleus still visible and large, with two wings. The sky is quite hazy in addition to the bright sunlight."

September 24, 17^h 25^m. Sketch, Plate VIII, No. 2.

"Power 90. Nucleus seems brightest on side opposite sun. With nucleus at edge of field, P. A. of the intersection of left branch with opposite edge of field 249°; right branch 280°. Nucleus in center of field: P. A. of inner edge of right branch, at nucleus, 303°.3; ditto of left branch 231°.6. These measures were taken as the comet's head appeared through rifts in the clouds near the horizon. 17^h 47^m.—Comet's head still visible to naked eye through thin clouds. At sunrise; nucleus visible with power 90; scarcely visible in finder." [The engraving does not show the nucleus satisfactorily. In the original sketch the nucleus is very large, distinct and round. The nebulosity between it and the sun is not more than half the diameter of the nucleus in depth. I will state here also that none of the engravings on Plate VIII show the nucleus, or nuclei, as distinctly as they were actually seen.]

October 4, 17h 12m. Sketch, Plate VIII, No. 3.

"P. A. of nuclei 277.0 [two measures]. There is no fan. There is one jet on the upper side of the larger nucleus, but it is so short, narrow and condensed that it seems like a third nucleus, only that there is no separation between it and the larger one. The smaller nucleus has a longer jet in the direction of the tail and quite bright. The coma is comparatively faint. By that I mean that there is no bright envelope around the nucleus. It is very little brighter than the tail near the head. 17^h 40^m.—[Sketch a.] Nothing is now visible in power 90 but the two nuclei and part of the appendage to the smaller one. The clear space between the nuclei I estimate at 2", the distance between their centers 10". The micrometer wire being broken, I can make no measures."

October 5, 17h 29m. Sketch, Plate VIII, No. 4.

"Head not very plain at first on account of clouds. At 16^h 30^m it became plainly visible with power 90. Nucleus is still divided into three parts.

16^h 50^m.—P. A. of upper nucleus
$$[n_8]$$
 277°.4, distance 6″.26 " lower " $[n_1]$ 278.6, " 5.60

" $17^{h}29^{m}$.—Power A. Two lower nuclei, n_1 and n_2 , are distinctly visible. The upper, n_3 , is blurred almost out of sight. P. A. n_2n_1 , $280^{\circ}.2$; distance 5.40 [two measures, each a quadruple distance]. n_2 estimated 3" in diameter; n_1 estimated 1.5; n_3 blurred. n_1 has an appendage in P. A. 280.4, length estimated

30". A small fan emitted from n_8 toward the sun. The two nuclei n_1 and n_2 are round and planet-like; appear solid. $17^h 40^m - n_1$ and n_2 are still visible, although through thick clouds. $17^h 45^m - No$ longer visible. During last measures the appearance was like this [Sketch a]. Scarcely any of the nebulosity could be seen."

October 6, 17h 36m. Sketch, Plate VIII, No. 5.

"Power 90. Tried power A. Comet too faint and blurry. P. A. of nuclei $281^{\circ}9$. There seem to be four nuclei in a row. $17^{\circ}44^{\circ}$.—Distance between two central nuclei $[n_1n_2]$ 7.58. Too faint in daylight. Nothing visible except two little round discs."

October 12, 17h. Sketch, Plate VIII, No. 6. [No Notes]. 17h 39m. Sketch a.

"As visible now. P. A. of nuclei 285°2. At first the nebulosity was so thick and bright around the nucleus that I could not distinguish the separate portions, but it appeared about four times as long as broad. As the sky became lighter the nebulosity faded out of sight, and the three separate parts of the nucleus became distinctly visible. The appearance and relative positions are about the same as on the 6th. The third is a mere point, apparently within the fan or jet emitted by the second or principal nucleus. The first has a small round disc with an appendage approximately in the direction of the tail. Whether this appendage is a jet or not I am unable to satisfy myself."

October 13, 16h 20m. Sketch, Plate VIII, No. 7.

"The nuclei seem more distinctly visible and better defined than yesterday. The nebulosity around them is not so dense. P. A. of the three nuclei $285^{\circ}.2$. P. A. of the appendage to n_1 $288^{\circ}.1$. The central part of the tail is not dark, but brighter than the outer portions. Sometimes I think I can see two bright points in the appendage to n_1 near the preceding end. The nebulosity is dense on the right side of the nuclei.

16 41 . Distance
$$n_1$$
 to bright point near end 16.11 ... $n_1 n_2$ 8.35 ... $n_2 n_3$ 9.83."

October 19, 17h 0m. Sketch, Plate VIII, No. 8.

"16^h 15^m.—Power 90. Envelope faint. Nucleus bright, but very hazy, so that division is scarcely visible. Can barely see n_1 and n_2 , but n_3 is not yet distinct. 16^h 20^m.—Power A. Nucleus very elongated, about 60" by 10", but can not see any separation. 16^h 30^m.—Separation is becoming more distinct now. Can see n_1 and n_2 . P. A. of the whole elongation 290°.4. 16^h 38^m.—Power 90. n_1 and n_2 are quite distinctly visible and separated. n_3 is faint and hazy yet. P. A. of the three nuclei 286°.6. The P. A. above included the appendage to n_1 . P. A. of the latter 293°.7.

16 ^h 50 ^m	Distance $n_1 n_2$	10.'03
16 53	$n_2 n_3$	9.01
	$n_1 n_0$	29.6
	P. A. of bright axis	of tail 274.8

 $17^h 49^m \dots n_1$ and n_2 still visible with power 90."

October 20.

" n_1 and n_2 very plainly visible. n_8 indistinct. Think I can see one or two bright points in the tail of n_1 . Is not this made up of large meteors? P. A. of n_2n_1 286.6. P. A. of tail of n_1 290.9. 17^h 23^m.—P. A. of n_2n_8 290.6. 17^h 30^m.—Distance n_2n_1 10.20. n_3 too faint to measure."

October 29. Sketch, Plate VIII, No. 9.

"15^h 30^m.—Nucleus quite bright and very much elongated in the direction of the tail. Can not distinguish the separation with power 90.

"15^h 50^m.—With power A nucleus is five times as long as broad, but no distinct bright discs are visible. 16^h 40^m.—Two nuclei can now be distinguished, n_1 and n_2 . They are farther apart than hitherto, but not distinct enough to measure distance. P. A. of nuclei 293°.2. With power A the bright parts of the nucleus are much more nebulous and indistinct. There seem, however, to be two bright points within them. Axis of tail 281°.4. [Sketch]. 17^h 40^m.—Nuclei are now sufficiently distinct for measures of distance. Distance n_1n_2 15″84. With power A nuclei could be seen, but not so distinctly as with power I."

November 2. Sketch, Plate VIII, No. 10.

"16h 50m.—Nucleus very much elongated,—5:1. Can see two bright portions (n_1n_2) , but not distinctly separated. 17^h 55m.—P. A. of nuclei 295°2 [two measures]. Distance 15".90. Not good. Too faint to measure. No jets were visible. At first the nucleus was very much elongated and surrounded by a thick hazy envelope, not very extensive, however. The tail was brightest just behind the nucleus where the dark space was during the earlier observations. By moving the telescope back and forth I could discern the outline of the head to consist of two curves issuing from the nucleus. These curves were not visible without motion of the telescope. [Sketch.] I could see two portions of the nucleus which were brighter than the rest, and afterward thought I could see two others. The two brighter ones were between the others. The sky was somewhat hazy, which I think was the reason I could not measure the distance of the nuclei."

November 3. Sketch, Plate VIII, No. 11.

" 17^h 6".—P. A. of nuclei n_2n_1 294.7. P. A. of bright axis of tail 281.2. Distance of nuclei n_2n_1 21"06. The two bright round spots, n_1 and n_2 , within the nucleus were visible, and a third seemed to appear, now and then, at the end of the nucleus nearest the sun. The nucleus was surrounded by a hazy envelope, nearly round, a little elongated with the nucleus. A bright streak extended from behind the nucleus through the tail. The outline of the fainter part of the head was as yesterday, two curves issuing from the end of the nucleus. These could be distinguished only by moving the telescope back and forth in the direction of the tail."

November 7. Sketch, Plate VIII, No. 12.

"16" 30".—P. A. of bright axis of tail 285.9. Elongation of nucleus 303.3. Width of bright nebulosity around the nucleus 67.0; length 138.2. Distance of the two bright points n_1 and n_2 19.15. 16" 42"."

November 20.

"Could not see the division in the nucleus, but could see a brighter portion at the following end, which I used as the point of measurement. The nucleus was elongated as usual. P. A. estimated roughly from memory, 315°. In the transits I took also the time of the preceding end of the nucleus. The whole appearance of the head was nearly the same as when I saw it last, except that I could not see the two bright points in the nucleus. 18h 15m."

November 29.

"At first it was very clear and I could see the two brighter portions of the nucleus, but could not distinguish their discs. Nucleus elongated as usual. Clouds did not give me time to measure position angle."

December II.

"Too cloudy. Can not see the comet with faint illumination."

January 29, 1883.

"With power 90 scarcely any tail at all is visible. The nucleus is elongated in the direction of the tail and is large and indistinct. Clouded up before I could take measures of position."

January 31.

"With power 90 tail can not be traced more than one diameter of field. Coma elongated and slightly condensed in central part. P. A. 51.1. P. A. of tail is a few degrees less than this. Too faint to measure."

February 8.

"9^h 3^m.—P. A. of elongation of nucleus 70°.2. P. A. of tail 57°.0. Width of bright part of coma 61."0; length, 172."7. Nucleus is on the lower side of the visible part of the tail. Nucleus large and indistinct."

February 28.

"Comet very faint. Elongated in P. A. 69.2. Tail can be traced 11/2 diameters of field, power 90."

March 2.

"The head is elongated still in about the direction of the tail, which is scarcely visible. P. A. of elongation 253.°0, approximately." [A sketch accompanying this note shows that the appearance of the head was similar to the brighter part as sketched November 7th, only very much fainter.]

DISCUSSION OF THE NOTES.

Comparing the sketches on Plate VIII with those on Plate VII, it seems probable that, from September 18 to October 12, I saw only the head of the bright conoid and that, from October 13 to November 7, the head of the fainter part of the comet was also visible in the telescope. Figure 2, Plate X, gives the outlines of the parts of the head and nucleus October 19. The first observations were made in the sunlight or bright twilight, so that only the sides of the conoid, where the depth of matter seen through was greatest, were visible. As the comet moved away from the sun and out of the twilight, the sides of the conoid gradually contracted and more of the matter could be seen toward the middle, thus apparently filling in the dark hollow space, so that after October 12 it was no longer visible.

This comet, although so brilliant to the eye, was by no means so fine an object in the telescope as the great comet of 1881. There were no bright jets or envelopes such as were seen in the latter. My attention was drawn chiefly to the nucleus, which, between September 24 and October 4, seems to have met with a catastrophe, by which it was separated into three or more parts. Two of these, designated n_1 and n_2 in the notes, had perceptible discs and were "round and planet-like." Their diameters, if the estimates made with power 450 on October 5 were correct, were $n_1 = 900$ miles and $n_2 = 1800$ miles. These discs were seen best in the bright twilight after the nebulosity around them had become invisible. They were seen distinctly October 4, 5, 6, 12 and 13. Bright points corresponding to n_1 and n_2 were visible up to November 29. The one point of condensation January 31 was probably n_2 .

The third nucleus n_8 appears to have been seen with certainty from October 4 to October 20, but was at all times very minute and surrounded with a hazy envelope.

 n_1 with its appendage resembled very much the secondary nucleus and jet observed in Comet b, 1881, on July 6, but was certainly of a more permanent character. The appendage was seen distinctly up to November 7, and indistinctly, in the general elongation of the nucleus, up to the last observation. Its position angle, as measured from October 5 to October 20, was about 3° greater than that of the nuclei n_2n_1 . A fourth bright point was at times seen within this appendage.

The principal measures given in the notes are those of the nuclei and the axis of the tail. The reductions of the position angles and distances are given in the following tables:

Axis of Tail ..

+ 2.4

18

Greenw	rich M. T.	p	p _o	<i>p</i> —p _o	s	φ	. Д
September	18.978	270°.6	260.°1	+10°.5	9′	+28°3	
	24.962	267.5	261.5	+ 6.0	9	+17.1	
	24.962	264.9	•••	+ 3.2	18	+10.6	•••
October	19.937	274.8	271.1	+ 3.7	18	+ 5.7	
	29.9 3 0	281.4	275.4	+ 6.0	18	+6.4	•••
November	3.947	281.2	278.8	+ 21	τR	1 27	

278.8

3.947

281.2

Greenw	ich M. T.	p	p _o	<i>p</i> - p °	s	φ	· Д
November	7.926	285.°9	281°3	+ 4°.6	18'	+ 4°.6	
January	31.603	<50	49.6	0	18	0	***
February	8.602	57.0	59.8	— 2.8	18	— 1.9	•••
						•	
			n_2	n_1			
October	4.951	277.°O	264°,9	+12°.1	est 10"	+20.5	•••
	5.951	279.4	265.3	+14.1	5.50	+21.9	0.000082
	6.971	281.9	265.7	+16.2	7.58	+23.4	0.000120
	12.971	285.2	26 8. 1	+17.1	•••	+21.6	•••
	13.923	285.2	268.4	+16.8	8.35	+21.0	0.000130
	19.937	286. 6	271.1	+15.5	10.03	+17.8	0.000150
	20.964	286.6	271.5	+15.1	10.20	+17.2	0.000151
	29.9 30	293.2	275.4	+17.8	15.84	+16.3	0.000248
November	2.981	295.2	278.2	+17.0	15.90	+15.1	0.000233
	3.947	294.7	278 .8	÷15-9	21.06	+14.1	0.000317
	7.926	303.3	281.3	+22.0	19.15	+16.8	0.000320
			<i>n</i> ₈	21.			
01		0			,,		
October	4.951	277.0	264°9	+12.1	.".	+20°.5	•••
	5.937	277.4	265.3	+12.1	6.26	+20.0	, 0.000088
	6.971	281.9	265.7	+16.2	•••	+23.4	•••
	12.971	285.2	268. ¥	+17.1		+21.6	•••
	13.923	285.2	268.4	+16.8	9.83	+21.0	0.000154
	19.937	286.6	271.1	+15.5	9.01	+17.8	0.000135
•	20.964	290.6	271.5	+19.1	•••	+20.2	•••
			n_1	n_0			
October	5.937	280°.4	265°.3	+15°.1	est 30"	+22.9	•••
	6.971	281.9	265.7	+16.2		+23.4	
	12.971	285.2	268.1	+17.1	•••	+21.6	•••
	13.923	28 8 . 1	268.5	+19.6	16. 1	+23.0	0.000267
	19.937	293.7	271.1	+22.6	29.6	+22.7	0.000507
	20.964	290.9	271.5	+19.4	-	+20.4	
		Elongai	tion of W	hole Nuc	leus.	Rat	io of length
		p	p _o	p-	<i>t</i> 。 9		width.
October	4.951	270°.0	264°,9	_		:0°.4	•••
	5.937	280.0	265.3		•	22.5	•••
	6.971	281.9	265.7		_	3.4	4:I
	12.971	285.2	268. 1			1.6	4:1
	13.923	286.7	268.5	•		2.0	•••
	19.937	290.4	271.1		•	0.6	6 : I
	20 . 964	289.4	271.5	•		9.3	•••
	29.930	293.2	275·4			6.3	5 : I

		p	p.	<i>p</i> —p _o	φ	Ratio of length to width.
November	2.981	295.°2	278°.2	+17.°0	+15°.1	5 : I
	3.947	294.7	278.8	+15.9	+14.3	•••
	7.926	303.3	281.3	+22.0	+16.8	138": 67"
	20.995	315	291.3	+24	+15	•••
January	31.603	51.0	49.6	+ 1.4	+ 0.8	***
February	8.602	70.2	59.8	+10.4	+14.0	173": 71"
	28.631	69.2	78.o	8.8	—ı ı . 6	•••
March	2.613	72.9	79-4	— 6.5	-12.2	2:1

The deviation of the axis from the radius vector was very marked in September, but the angle ϕ derived from the position angles then observed are uncertain, for the earth was then very near the plane of the comet's orbit, so that a small error in ϕ would produce a large error in ϕ . The position angles observed after November 7 were also liable to error from the faintness of the comet as seen in the telescope.

The ϕ and Δ of the parts of the nucleus were computed on the assumption that the center of each part was in the plane of the orbit. The change of signs in February, before the earth had again reached the plane of the comet's orbit, would seem to indicate that the elongation was not in the plane of the orbit. The last four observations are however not very reliable, as the comet was then exceedingly faint.

For the whole elongation $p-p_0$ shows a gradual increase from October 4 to 19, and a decrease from October 19 to March 2, while ϕ decreases for the whole time.

For n_2n_1 , $p-p_0$ shows an increase to October 12, a decrease to October 20, and an increase to November 7, while ϕ shows a general decrease.

For n_3n_2 and n_1n_0 the change in $p-p_0$ October 4 to 20 is about the same as for the total elongation, and ϕ is nearly constant.

The distance of the discs n_1 and n_2 increased regularly from 5.5 October 5, to 19" November 7, or, in linear measure reduced to the plane of the orbit, from 0.000082 to 0.000320 astronomical units,—7,500 miles to 29,500 miles.

The distance of n_3 from n_2 seems to have increased at about the same rate. If we plot the Δ ,s n_1n_2 , we find that they may be represented fairly by a straight line drawn from the first to the last. This line extended backward crosses the zero line at about September 20, which is the date already found for the emission of the bright conoid of the tail. This coincidence is remarkable, for it suggests the inference, that the division of the nucleus and the emission of the bright conoid occurred at the same time, and were the result of the same cause.

From the differences in the times of transit of the parts of the nucleus we may also determine their distances by the formula $s = da \cos \delta \csc \rho$.

	da			Number	$s = da \cos \delta \csc \rho$.		
	$n_0 n_2$	$n_1 n_2$	$n_2 n_8$	of Transits.	$n_0 n_2$	$n_1 n_2$	$n_2 n_8$
	S	s	S		"	"	"
October 4	•••	0.40	•••	9	•••	6.0	•••
5	•••	0.42	0.42	6	•••	6.3	6.3
6	1.17	0.54	0.36	10	17.7	8.2	5.4
13	1.64	0.49	0.45	6	24.6	7.4	6.8
19	•••	0.53	•••	6	•••	8. o	•••
20		0.53	•••	8	•••	8.0	•••
29	•••	0.85	•••	- 14	•••	13.0	•••
November 2	3.21	0.89	0.79	20	50.0	13.8	I 2. 2
3	3.85	0.92	0.81	10	59.6	14.2	12.5
7	3.96	1.05	•••	10	65.9	17.4	•••
20	3.86	•••		6	73.4	•••	•••

These distances show about the same rate of increase as the direct measures. It is singular, however, that, with the exception of the first three of $n_1 n_2$, they are all less than the direct measures by about the same amount.

Notes on Comet d, 1882.

September 25.6.

"Comet is very faint. Requires very little illumination. No perceptible tail. There is a bright point in the center, but very small, which was observed as the nucleus."

October II.6.

"Comet very faint in haze near horizon. Slight central condensation. No tail."

October 12.6.

"Comet strongly condensed in center. No sign of tail."

October 13.6.

"There is a faint star on the south side of the comet which might be mistaken for the nucleus. No sign of tail yet."

ERRATA.

On Plates I and II the scale should be o instead of '.

RETURN Annual/Methodis/Statists/Computer School Library TO 100 Evans Hall 642-3381 LOAN PERIOD 1 2 3 1 MONTH 4 5 6 ALL BOOKS MAY BE RECALLED AFTER 7 DAYS DUE AS STAMPED BELOW NOV 2 0 1987 V		-	
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS DUE AS STAMPED BELOW NOV 2 0 1987 VW 0 1987 V			
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS DUE AS STAMPED BELOW NOV 2 0 1987 VARIABLE 1 7 1 20 1 20 1 20 1 20 1 20 1 20 1 20			
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS DUE AS STAMPED BELOW NOV 2 0 1987 V V V V V V V V V V V V V	- LOAN PERIOD 1		3
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS DUE AS STAMPED BELOW NOV 2 0 1987 V V V V V V V V V V V V V V V V V V	4	5	6
DUE AS STAMPED BELOW NOV 2 0 1987 BELIEBRARY LOAN OF CALLER BERK BERK OF CALLER BERK OF	7		
DUE AS STAMPED BELOW NOV 2 0 1987 BELIEBRARY LOAN OF CALLER BERK BERK OF CALLER BERK OF	ALL BOOKS A	AAV DE DECALLED	A ETED 7 DAVS
OF CALIF. BERK.	ALL BOOKS /	MAT DE RECALLED	AFIER / DATS
OF CALIF. BERK.	DIE	AC CTAMBED DE	10W
EPLIBRARY LOAN OCT 2 1 1987 OF CALIF. BERK		AS STAMPED DE	LOW
DCT Z 1 1987	NOV 2 0 1987	·	
EPLIERARY LOF CALIF.			
EPLIERARY LOF CALIF.	~	y.	
EPLIERARY LOF CALIF.	<u> </u>	<u> </u>	
COF CAL	9	<u> </u>	
COF CAL	≻ 88	i,	
	4 -	3	
	- B 7	_3	
<u>Ш</u> .		F	
2 2		.•	
	Ż	Ž	
	**************************************	<u> </u>	
		:	
LININGSCIEV OF CALLED NIA DESIGN		LIAIN/EDCITY OF C	ALIEODANA BERKELEY
UNIVERSITY OF CALIFORNIA, BERKELE FORM NO. DD3, 1/83 BERKELEY, CA 94720	FORM NO. DD3. 1/		r. CA 94720
			(Ps

CANADA BANKS

QB4 C5 A5 no. 6-7

