How to get drunk in style!

supervised machine learning algorithms to predict wine quality

Timo

Ironhack Bootcamp Februray 2025

Project Overview

How to get drunk in style:

- dataset of wine features chosen
- quality of the wine rated according to these features
- decisive features selected and normalized
- supervised machine learning algorithms implemented to predict wine quality.

objective: allow users to select best wines for maximum pleasure

impact: everyone shall can get drunk in style!

Wine Quality Prediction

data set from kaggle by M Yasser H usability score: 10.0

1143 entries

https://www.kaggle.com/datasets/yasserh/wine-quality-dataset

11 key wine characteristics

Quality score (based on sensory data): 0 - 10 no name of the wines given! :-(

Comment: Portugese wines from Vinho Verde https://en.wikipedia.org/wiki/Vinho_Verde

11 key wine characteristics: 4 categories

density: mass per unit volume, higher when sugar & alcohol higher = sweeter.

alcohol (% **ethanol**): higher = better balance & richness in flavor. **residual sugar:** sugar left unfermented, affects sweetness.

pH: Low pH (acidic, 0-6) improves stability & freshness, high pH (alkaline, 8-14) leads to flat & dull flavors.

fixed acidity: non-volatile acids (e.g. tartaric, malic acids)

-> moderate levels contribute to crisp & fresh taste, too much can make the wine overly sour.

volatile acidity: mainly acetic acid -> causes vinegar taste citric acid: enhances freshness, contributes to fruity taste.

free sulfur dioxide: free SO₂ = prevents oxidation & microbial growth, preserves freshness, but excess gives unpleasant smell.

total sulfur dioxide: free + bound SO₂, preserve wine, very high levels cause a pungent odor.

sulphates: Sulfur compounds act as preservatives, enhance antimicrobial properties, but excessive amounts can negatively affect taste.

chlorides: salt content, high levels give salty taste = undesirable

Data Cleaning & Preparation

Preprocessing of data for modelling:

- all column names conclusive & lower case
- all values numerical
- no null values
- no duplicated values
- --> No extensive cleaning needed
- --> More free time to get drunk early on Monday

Exploratory data analysis

11 features in data

histograms

target is wine quality

120

100

80

sulphates

alcohol

80

60

40

pH

40

Exploratory data analysis - wine quality -

rating based on sensory data: 0 - 10

Feature Engineering & Selection

data set split: 80% training & 20% test

Model Building

3+4 different classification models to predict wine quality:

- K Nearest Neighbour: 11 non-norm features, 11 min-maxnorm features, or 6 selected min-max-norm features
- Logistic Regression: 6 selected min-max-norm features
- Decision Tree: 6 selected min-max-norm features
- four different ensemble modelling techniques

ML Model Name	Features	Accuracy
KNN #1	11x non-normalized	45.4
KNN #2	11x MinMax-normalized	62.0
KNN #3	6x MinMax-normalized	61.6
Logistic Regression	6x MinMax-normalized	66.8
Decision Tree	6x MinMax-normalized	31.8
LogReg + Bagging	6x MinMax-normalized	65.9
Random Forest	6x MinMax-normalized	64.2
Gradient Boosting	6x MinMax-normalized	53.3
LogReg + Adapt. Boosting	6x MinMax-normalized	65.1

Model Evaluation

Model performance: accuracy of wine quality prediction:

LogReg: 66.8% > Ensemble: 53.3-65.9% >

KNN: $45.4\% \rightarrow 62.0\% \rightarrow 61.6\% > Tree: 31.8\%$

-> Logistic regression model results in best prediction!

Model Evaluation

CONFUSION MATRICES

ML Model Optimization

Hyperparameters = settings controlling training process

Hyperparameter tuning techniques employed:

- Grid Search (not covered)
- Cross-Validation (not covered)
 - KNN: n_neighbors=20 (low complexity)
 - LogReg: default
 - DecTree: max_depth=5 (high complexity)
 - Bagging: n_estimators=100, max_samples = 500
 - RandForest: n_estimators=100, max_depth=20
 - GradBoost: max_depth=20, n_estimators=100
 - AdaptBoost: n_estimators=50, learning_rate=1.0

Key Findings & Insights

- MinMax normalization improved prediction
- Model accuracy: LogReg > 4x Ensemble > KNN > Tree
- Feature effectiveness: correlation with wine quality
 %alc > vol.ac. > sulph. > cit.ac. > tot. sulf. diox. > chlor.
- LogReg model Coeff.Var:
 vol.ac. > %alc > tot. sulf. diox. > sulph. > chlor. > cit.ac.

Real-World Application & Impact

Application of Wine Quality Prediction:

- Make informed decision when buying wine
- Get drunk using good quality wine

Ethical Considerations & Limitations:

- higher prevalence of wine quality 5-7
- no normal distribution of wine qualities
- low quality wines may turn sour in shelves

Challenges & Learnings

Challenges faced:

- depression cause working alone -> drink wine
- developing ideas -> drink wine
- getting info & advice -> ask ChatGPT
- time management

Key learnings:

- Chillax! Focus!
- You can do it if you really want,
- but you must try...

Future Work & Improvements

Future Work & Expansion of Project:

- Add wine names
- Add distributers
- -> facilitate access for users
 - Increase number of wines listed
 - Increase number of features
 - Model optimization applying hyperparameter tuning techniques
- -> increase accuracy of prediction

Now you know what to consider when you want to get drunk in style!

Thank you!

Timo

Ironhack Bootcamp Februray 2025

