Due Tueday 12 September 2023, 11 AM

Linear Algebra, Math 2101-003 Homework set #2

1. For each of the following four sets of vectors $\{u,v\}$, compute the (Euclidean) angle between them.

$$\mathbf{(a)} \ u = \begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}, v = \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}$$

(a)
$$u = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
.
(b) $u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$.

(c)
$$u = \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$
, $v = \begin{vmatrix} 2 \\ 2 \end{vmatrix}$.

(d)
$$u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

2. Let $\Pi_n = \{p(x) \text{ polynomials of degree } \leq n\}$ and define the inner product for this space as $\langle p,q \rangle = \int_{-1}^1 p(x)q(x)dx$. Let p(x) = 1, $q(x) = 3x^2 - 1$. Show that $\langle p,q \rangle = 0$.

3. Consider two lines in \mathbb{R}^n , that is fix $v, w \in \mathbb{R}^n$ and define

$$L_1 = \{ x \in \mathbb{R}^n \mid x = \alpha v, \text{ for some } \alpha \in \mathbb{R} \},$$

 $L_2 = \{ y \in \mathbb{R}^n \mid y = \beta w, \text{ for some } \beta \in \mathbb{R} \},$

and let θ be the angle between v and w, that is,

$$\cos \theta = \frac{\langle v, w \rangle}{\|v\| \|w\|}.$$

Prove that for all $x \in L_1$, $y \in L_2$ it holds that the angle betweem x amd y is also θ .

Two more exercises on the reverse.

4. Let S be a subspace of a vector spave V with an inner product. Define

$$S^{\perp} = \{ x \in V \mid \langle x, v \rangle = 0, \forall v \in S \},$$

that is, the set of all vectors which are orthogonal to all vectors in S. Prove that S^{\perp} is also a subspace of V.

5 (a). Let $S = \{x \in \mathbb{R}^3 \mid x_3 = 0\}$, i.e., the horizontal plane. Show that

$$S^{\perp} = \left\{ \alpha \middle| \begin{array}{c|c} 0 \\ 0 \\ 1 \end{array} \middle| \alpha \in \mathbb{R} \right\},$$

i.e., the vertical axis is orthogonal to the horizontal plane.

(b). Show that if $S = \{x \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$, then

$$S^{\perp} = \left\{ \begin{array}{c|c} 1 & \\ \alpha & 1 & | \alpha \in \mathbb{R} \\ 1 & \end{array} \right\}.$$

- (c). What subspace is V^{\perp} , if V is the vector space?
- (d). Show that for every S subspace of a vector space V,

$$\left(S^{\perp}\right)^{\perp} = S$$

Name: Elle Nguyen

HW # 2

(a)
$$u = 1$$
, $v = 0$ $(u, v) = 0(0) + 1(0) + 1(1) = 0 + 0 + 1 = 1$
 $||u|| = \sqrt{0^2 + 1^2 + 1^2} = \sqrt{0 + 1 + 1} = \sqrt{2}$
 $||v|| = \sqrt{0^2 + 0^2 + 1^2} = \sqrt{0 + 0 + 1} = 1$

$$\cos\theta = \frac{\langle u, v \rangle}{\|u\| \|v\|} = \frac{1}{\sqrt{2}(1)} = \frac{1}{\sqrt{2}} \longrightarrow \theta = 45^{\circ}$$

(c)
$$u = \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$
, $v = \begin{vmatrix} 2 \\ 2 \end{vmatrix}$ $\langle u, v \rangle = 1(2) + (-1)2 = 2 - 2 = 0$
 $\langle u, v \rangle = 1(2) + (-1)2 = 2 - 2 = 0$

(d)
$$u = 1$$
, $v = -1$ $||u|| = \sqrt{1^2 + 0^2} = \sqrt{1 + 0} = 1$
 $||v|| = \sqrt{(-1)^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}$

$$\cos\theta = \frac{\langle u,v\rangle}{\|u\|\|\|v\|} = \frac{-1}{1(\sqrt{2})} = \frac{-1}{\sqrt{2}} \rightarrow \theta = 135^{\circ}$$

For all $x \in L_1$, $y \in L_2$: $x = \Delta V$, y = BW for some d, $B \in \mathbb{R}$ $\langle x, y \rangle = \langle \Delta V, BW \rangle = \Delta \langle V, BW \rangle = \Delta B \langle V, W \rangle$ Let Y denote the angle between x and y, need to show $Y \equiv \theta$

by linearity of inner product

$$\cos \Psi = \frac{\langle x, y \rangle}{\|x\| \|y\|} = \frac{1}{\|\alpha v\| \|\beta w\|} = \frac{1}{\|\alpha v\| \|\beta w\|} = \frac{1}{\|\alpha v\| \|\beta v\|} = \frac{1}{\|\alpha v\|} = \frac{1$$

Case 1 d. B are both positive : |x| = d. |B| = B

$$\cos \Psi = \frac{\langle \beta \langle v, w \rangle}{\langle \beta ||v|| ||w||} = \frac{\langle v, w \rangle}{||v|| ||w||} = \cos \theta \rightarrow \Psi \equiv \theta \quad \text{QED!}$$

Case 2 α , β are both negative $|x| = -\alpha$, $|\beta| = -\beta$

$$\cos \Psi = \frac{\angle B < V, W>}{(-\angle)(-B)||V|| ||W||} = \frac{\angle B < V, W>}{\angle B ||V|| ||W||} = \frac{\langle V, W>}{||V|| ||W||} = \cos \Theta \longrightarrow \Psi \equiv \Theta$$

Case 3 α is negative, B is positive α $|\alpha| = -\alpha$, $|\beta| = \beta$

$$\cos \Psi = \frac{\langle \beta \langle v, w \rangle}{(- \langle x \rangle \beta ||v|| ||w||} = \frac{- \langle v, w \rangle}{||v|| ||w||} = -\cos \theta \rightarrow \Psi = |g0^{\circ} - \theta|$$

Case 4 α is positive, B is negative $\alpha : |\alpha| = \alpha \cdot |B| = -B$

$$\cos \Psi = \frac{\angle \beta < \vee, \vee >}{\angle (-\beta) || \vee || || || ||} = \frac{-\langle \vee, \vee >}{|| \vee || || || ||} = -\cos \theta \rightarrow \Psi = |90^{\circ} - \theta|$$

$$\rightarrow \Psi \neq \theta$$

. The proof does not apply when a, B have opposite signs

: The proof applies for some α , $\beta \in \mathbb{R}$ that have the same signs $\alpha \in \mathbb{R}$!

Take $y, w \in S^{\perp}$, $\alpha \in \mathbb{R}$; wish to show $(\alpha y + w) \in S^{\perp}$ $\forall v \in S$; $y, w \in S^{\perp}$ then $(\alpha y, v) = (\alpha v, v) = 0$ Consider $(\alpha y + w, v) = \alpha (0) + 0 = 0 + 0 = 0$ by linearity of inner product $(\alpha y + w, v) = 0$

$$\therefore \langle xy + w, v \rangle = 0$$

$$\therefore (xy + w) \in S^{\perp} \quad \therefore S^{\perp} \text{ is a subspace of } V \quad \text{QED!}$$

(a) Take
$$v \in S : v = \begin{bmatrix} v_1 \\ v_2 \\ 0 \end{bmatrix} \forall v_1, v_2 \in \mathbb{R}$$

Take
$$w \in S^{\perp}$$
: $w = \propto \begin{vmatrix} 0 & 0 \\ 0 & = \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 0 & d \end{vmatrix}$ $\forall x \in \mathbb{R}$

To show that the vertical axis is orthogonal to the horizontal plane, wish to show that $\langle v, w \rangle = 0$

Consider $\langle v, w \rangle = v_1(0) + v_2(0) + 0(d) = 0 + 0 + 0 = 0$.: $\langle v, w \rangle = 0$ > definition of inner product

(b) Take
$$v \in S: v_1 + v_2 + v_3 = 0$$
 where $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$

Take
$$W \in S^{\perp}$$
: $W = \chi$ $| | = \chi$ $\forall \chi \in \mathbb{R}$

Need to show that S^{\perp} is the orthogonal complement of S or $\langle v, w \rangle = 0$ Consider $\langle v, w \rangle = (v_1) d + (v_2) d + (v_3) d$ definition of inner product = $(v_1 + v_2 + v_3) \propto$ = $0(\alpha) = 0$ $\therefore \langle v, w \rangle = 0$ QED!

- (c) If V is the vector space, V^{\perp} consists of all vectors that are orthogonal to every vector in V. Since every vector in V is orthogonal to itself, the only vector satisfying this is the zero vector (0). .: V[⊥] = {0}
- (d) To show that $(S^{\perp})^{\perp} = S$, need to show 2 inclusions:

(i)
$$S \subseteq (S^{\perp})^{\perp}$$

By definition, $S^{\perp} = \{x \in V \mid \langle x, v \rangle = 0, \forall v \in S \}$

$$\therefore (S^{\perp})^{\perp} = \{ y \in V \mid \langle y, w \rangle = 0, \forall w \in S^{\perp} \}$$

i.e: $(S^{\perp})^{\perp}$ denotes the set of all vectors in vector space V that are orthogonal to every vector in orthogonal complement of S Let a € S, b ∈ S¹: a ⊥ b

: a
$$\in$$
 S and a \in $(S^{\perp})^{\perp}$: $S \subseteq (S^{\perp})^{\perp}$

(ii) $(S^{\perp})^{\perp} \subseteq S$ Let $c \in (S^{\perp})^{\perp}$: $b \perp c$ with $b \in S^{\perp}$ } but $b \perp a$ with $a \in S$ (from (i)) \int $c \in S$, otherwise c would not be orthogonal to all of S^{\perp} $c \in S$ and $c \in (S^{\perp})^{\perp}$ $c \in S$

Since (i) & (ii) are sotisfied, $S = (S^{\perp})^{\perp}$ QED!