

AD-A141 899

Damage Tolerant Design Handbook

A Compilation of Fracture and Crack-Growth Data for High-Strength Alloys

OTIC FILE CUPY

Metals and Ceramics Information Center

Metals and Ceramics Information Center Lattelle

Columbus Laboratories

This document how beau approved for public release and sale; in distribution is unlimited.

Prepared by

University of Dayton Research Institute

Materials Laboratory
Air Force Wright Aeronautical Laboratories
Wright-Patterson Air Force Base

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
MCIC-HB-01R (4 Volumes)	2. GOVT ACCESSION NO.		
DAMAGE TOLERANT DESIGN HANDBOOK. FRACTURE AND CRACK-GROWTH DATA FO	A COMPILATION OF	5. TYPE OF REPORT & PERIOD COVERED	
ALLOYS		6. PERFORMING ORG. REPORT NUMBER	
J. Gallagher		F33615-80-C-5149 DLA900-83-C-1744	
PERFORMING SAGANIZATION NAME AND ADDRE University of Dayton Research Ins 300 College Park Avenue Dayton, OH 45469		10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS	
1. CONTROLLING OFFICE NAME AND ADDRESS	 	12. REPORT DATE	
Materials Laboratory (AFWAL/MLSE) Air Force Wright Aeronautical Lab Wright-Patterson AFB, OH 45433		December 1983 13. NUMBER OF PAGES 3260	
MONITORING AGENCY NAME & ADDRESS(if stile	rent from Controlling Office)	Unclassified	
		150. DECLASSIFICATION DOWNGRADING SCHEOULE	

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (at the abstract entered in Bluck 20, if different from Report)

18. SUPPLEMENTARY NOTES

Availability: Metals and Ceramics Information Center, P.O. Box 8128, Columbus, Ohio 43201 HC \$400.00 for 4 Volumes

(No copies furnished by DTIC)

13 KEY WORDS (Continue on reverse side if necessary and identify by block number)

*Fracture (Mechanics), *Handbooks, *Titanium Alloys, *Nickel Alloys, *Stainless Steel, *Aluminum Alloys, High Strength Alloys, Structural Steel, Fracture Toughness, Damage Assessment, State of the Art, Data Compilation, Fatigue Crack Growth

ABSTRACT (Continue on reverse side if necessary and identify by block number)

This edition entirely revamps the 1975 edition. This edition is arranged by alloy rather than by property as in the previous addition. The data are presented in eight chapters and four volumes. Plane-strain fracture toughness ($K_{\rm IC}$), critical plane stress fracture toughness, apparent fracture toughness, R-curve, fatigue crack growth rates, sustained-load crack growth rate and threshold stress intensity ($K_{\rm ISCC}$) data are presented for stainless steels, titanium alloys, nickel-base alloys, alloy steels, 2000-, 6000- and 7000-series aluminum alloys.

DAMAGE TOLERANT DESIGN HANDBOOK MCIC-HB-01R

ABOUT THIS HANDBOOK —

The Damage Tolerant Design Handbook was prepared by University of Dayton Research Institute under U.S. Air Force sponsorship and is being distributed by the Metals and Ceramics Information Center (MCIC). Its purpose is to provide a single comprehensive reference source on available fracture mechanics data for structural metal alloys of particular interest for aircraft and aerospace application.

SUPPLEMENTS -

It is intended that, as new data are generated on the fracture characteristics of structural alloys, supplements to this Handbook will be published by MCIC. Further updating and expansion of the current edition will result in supplements as significant data become available. Minor additions, errata, and inserts will be distributed as information becomes available.

KEEPING YOUR HANDBOOK UP TO DATE —

In order that we may keep all holders of the **Damage Tolerant Design Handbook** advised of supplements and new reference data, a registry of the location of all copies will be maintained. To assist us, we ask that you complete and return one of the self-addressed postcards (following this page) upon initial receipt of the Handbook. If responsibility for this copy is transferred to another party, please use one of the other postcards to advise us of the change. If there are no postcards, simply write to MCIC at the address below.

YOUR ASSISTANCE IS SOLICITED -

Although a substantial and continuing effort is made to include all available appropriate fracture mechanics data in this Handbook, we recognize that important sources may have been inadvertently overlooked and, of course, that new data are regularly being generated. Should you or your organization be able to provide additional pertinent data, MCIC — and other users of this reference Handbook — will be most appreciative. To be useful, data should include the supporting facts regarding material, condition, and test specimens and procedures. If you can assist us in this respect, please call or submit such data to MCIC at the address below. Many thanks

ADDITIONAL INFORMATION —

Specific questions about, or information for, the **Damage Tolerant Design Handbook** should be addressed to the attention of Mr. Harold Mindlin at:

Metals and Ceramics Information Center

BATTELLE Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

Accession For

A Compilation of Fracture and Crack Growth
Data for High-Strength Alloys

J. Gallagher
Program Manager
University of Dayton Research Institute
Dayton, Ohio

Sponsored by

Materials Laboratory

Air Force Wright Aeronautical Laboratories Wright-Patterson Air Force Base, Ohio 45433

December 1983

Metals and Ceramics Information Center

BATTELLE Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

Approved for public release, distribution unlimited

ACKNOWLEDGMENT

This document was published by the Metals and Ceramics Information Center (MCIC), Battelle's Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201-2693. MCIC's objective is to provide a comprehensive current resource of technical information on the development and utilization of advanced metal- or ceramic-base metals.

MCIC is publishing this revised and expanded edition of the Damage Tolerant Design Handbook to increase the availability of information to the technical community. The loose leaf format was selected to facilitate updating the handbook as new information becomes available. This edition is a completely revised and expanded version of the original handbook first published by MCIC in 1972 and revised in 1973 and 1975.

The Center is operated by Battelle-Columbus under Contract Number DLA900-83-C-1744 for the U.S. Defense Logistics Agency; technical aspects of MCIC operations are monitored by the Office of the Deputy Under Secretary of Defense Research and Advanced Technology. The support of these sponsor organizations is gratefully acknowledged.

This document was prepared under the sponsorship of the Department of Defense. Neither the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use or publication of the information contained in this document or warrants that such use or publication will be free from privately owned rights.

Approved for public release; distribution unlimited.

All rights reserved. This document, or parts thereof, may not be reproduced in any form without written permission of the Metals and Ceramics Information Center.

FOREWORD

This report has been prepared as AFWAL-TR-83-4144 to summarize the results of a damage-tolerant-material-property collection and reporting program conducted under USAF Contract No. F33615-80-C-5149, Damage Tolerant Design Handbook. The Materials Laboratory of Air Force Wright Aeronautical Laboratories (AFWAL/ML) was the sponsor; Mr. G. J. Petrak (AFWAL/MLSE) of the System Support Division was the Project Monitor. The University of Dayton was the contractor; the University of Dayton Research Institute (UDRI) conducted the work under the general supervision of Dr. J. P. Gallagher, program manager, and Mrs. Patricia L. Stumpff, principal investigator. Miss Elizabeth L. Johnson was responsible for the development of the software system that both stored the damage tolerant data and created the handbook graphical and tabular reports. Dr. P. W. Hovey developed the analytical french curve method used to describe the mean trend subcritical crack growth behavior. Other UDRI employees who provided extensive support for the creation of the handbook are: Dr. A. P. Berens, Mrs. Joanda D'Antuono, Mrs. JoAnn D. Jones, Miss Ellen M. Bornhorst, Miss Mary E. Stander, and Mr. Kevin Sullivan.

The Handbook could not have been produced without the extensive support given to the data collection effort by the following organizations and individuals:

ORGANIZATION	CONTRIBUTORS
Aeronautical Systems Division (Wright-Patterson AFB)	E. Davidson, J. F. Gonzalez, T. King, and J. Lincoln
AiResearch	R. Graves, A. Hammond, D. W. McGrath, D. Ng, D. Schwab, and H. Walters
Alcoa	R. J. Bucci, R. C. Malcolm, E. H. Spuhler, and R. H. Wygonik
Armco	P. O. Metz
Army Material and Mechanics Research Center	R. Chait
Battelle-Columbus	S. Ford, R. C. Rice, and H. Mindlin
Boeing-Commercial	U. Goranson and C. K. Gunther
Boeing Military	F. K. Fox, J. J. Horsley, C. F. Tiffany, and L. Wright
Fairchild-Republic	J. Arrighi, H. W. Kleindienst, and M. Levy
Federal Aviation Administration	T. Swift
Flight Dynamics Laboratory (Wright-Patterson AFB)	A. Gunderson and J. Rudd
General Dynamics—Ft. Worth	V. Juarez, S. Manning, and J. W. Morrow
General Dynamics—Convair	T. Spamer, C. Tanner, E. Spier, and W. E. Witzell

(D)

General Electric Goodyear Aerospace Grumman Aerospace Howmet Co. Hughes Helicopter Kaiser Aluminum and Chemical Corp. Lawrence Livermore Nat. Lab. Lockheed-California	L. Beitch, A. Coles, P. Domas, and R. Spuhler D. A. Venkatu H. L. Eidinoff D. E. Macha A. G. Hirko L. J. Barker, K. R. Brown, K. R. Hasse, and N. L. Pearson
Grumman Aerospace Howmet Co. Hughes Helicopter Kaiser Aluminum and Chemical Corp. Lawrence Livermore Nat. Lab.	H. L. Eidinoff D. E. Macha A. G. Hirko L. J. Barker, K. R. Brown, K. R. Hasse, and N. L. Pearson
Howmet Co. Hughes Helicopter Kaiser Aluminum and Chemical Corp. Lawrence Livermore Nat. Lab.	D. E. Macha A. G. Hirko L. J. Barker, K. R. Brown, K. R. Hasse, and N. L. Pearson
Hughes Helicopter Kaiser Aluminum and Chemical Corp. Lawrence Livermore Nat. Lab.	A. G. Hirko L. J. Barker, K. R. Brown, K. R. Hasse, and N. L. Pearson
Kaiser Aluminum and Chemical Corp. Lawrence Livermore Nat. Lab.	L. J. Barker, K. R. Brown, K. R. Hasse, and N. L. Pearson
Lawrence Livermore Nat. Lab.	N. L. Pearson
	D. Chroit
Lockheed-California	R. Streit
	T. R. Brussat, and D. Pettit
Lockheed-Georgia	E. J. Batch. C. S. Chu, A. C. Fehrle, and T. M. Hsu
Lockheed—Palo Alto	M. J. Rebholz
Martin Marietta Aluminum	D. Mellem
Materials Laboratory (Wright-Patterson AFB)	C. Harmsworth, J. Larsen, and T. Nicholas
Materials Research Laboratory	E. J. Ripling and J. T. Santner
McDonnell-Douglas (St. Louis)	H. Dill, C. R. Saff, and D. Rich
McDonnell-Douglas (Long Beach)	P. Abelkis, H. C. Schjelderup, and D. S. Warrer
McDonnell-Douglas Astro.	J. M. Davidson, R. M. Fujita, T. R. Murray, and A. P. Penton, III
Naval Research Laboratory	T. W. Crooker and J. A. Hauser
NASA-Langley Research Center	C. M. Hudson, W. S. Johnson and
NASA-Lewis	J. C. Newman

の発見を含める。 「他のできない。 「他のでもな。 「他のできない。 「他のできない。 「他のできない。 「他のできない。 「他のできない。 「他ので。

NASA-Langley Research Center	C. M. Hudson, W. S. Johnson and J. C. Newman
NASA-Lewis	T. Orange
Northrop Corp.	J. Carter, V. C. Frost, A. F. Liu, P. Porter, P. Tanouye, and D. P. Wilhelm
Ogden Air Logistics Center (Hill AFB)	A. P. Allen, H. A. Johnson, D. King, J. Pearson-Smith, and A. Watson
Oklahoma City Air Logistics Center (Tinker AFR)	R. Meadows

Reynolds Metals Co.	F. E. Loftin, G. R. Shockley, and R. E. Zinkham
Rockwell International—Aircraft Division	T. Kutko, J. Stolpestad, and J. Young
Rockwell International—Shuttle Orbitor Division	C. D. Brownfield and R. M. Ehret
Rockwell International—Rocketdyne Division	S. Bashir and R. P. Jewett
San Antonio Air Logistics Center (Kelly AFB)	D. Schneider, J. Turner, and T. J. White

Sandia Laboratories J. Munford
Sikorsky Aircraft G. E. Lattin, and M. J. Rich
TRW (Defense and Space Systems) J. C. Lewis

ORGANIZATION

CONTRIBUTORS

University of Dayton Research Institute

Warner Robins Air Logistics Center

(Robins AFB)

Watervliet Arsenal

Westinghouse Hanford

R. R. Cervay

J. Lewis and J. Wagner

J. Underwood

L. A. James

THE LOST ACKNOWLEDGMENT

It never fails in projects like these, that in the course of making absolutely sure that we acknowledge each and every individual who helped make it possible, **WE LEAVE SOMEONE OUT!** In the event that this happened, please accept our apologies and our gratitude for whatever it was that you did.

Volume 1

CONTENTS

CHAPTER 1 HANDBOOK ORGANIZATION AND CONTENT

Overview
Organization
General Comments About Sorting Order and Abbreviations
Material Chapter Summaries
Alloy Section Summaries
Alloy Fracture Toughness Subsection Formats
Alloy Subcritical Crack Growth Subsection Formats

CHAPTER 2 METHODS OF CALCULATIONS

Overview
Plane-Strain Fracture Toughness (K_{Ic})
Critical Plane Stress Fracture Toughness
The Apparent Fracture Toughness
R-Curve (K_R Versus Δa_{eH})
Fatigue Crack Growth Rate
Sustained-Load Crack Growth Rates
Threshold Stress Intensity (K_{Iscc})

CHAPTER 3 STAINLESS-STEEL ALLOYS

AFC 260	Custom 455	15-5 PH (VM)
AFC 77	PH 13-8Mo	17-4 PH
AFC 77(VAR)	PH 14-8 Mo	17-7 PH
AM 355	PH 15-7 Mo	304
AM 362	15-5 PH	316
AM 364	15-5 PH (AM)	347

CHAPTER 4 TITANIUM ALLOYS

BETA	Ti-5AI-2.5Sn	Ti-6AI-6V-2.5Sn
BETA C	Ti-6-2-2-2	Ti-6Al-2Sn-4Zr-6Mo
BETA III	Ti-6-2-4-2	Ti-8AI-1Mo-1V
Corona 5	Ti-6-2-4-6	Ti-8Mo-8V-2Fe-3AI
Ti-6Al-2Sn-2Zr	Ti-6AI-4V	Ti-5AI-2.5\$n (ELI)
-2Mo-2Cr25Si	Ti-6Al-4V(ELI)	Ti-6AI-6V-2Sn (ELI)
Ti-441-3Mo-IV	Ti-6AI-6V-2So	, ,

Volume 2

CONTENTS

CHAPTER 5 NICKEL BASE ALLOYS

Astroloy P/M-H Inconel 600
Astroloy P/M-W Inconel 625
Astroloy 901 Inconel 718
Incoloy 901 IN 100

IN 100 P/M-G NASA IIB-7 P/M P/M Rene 95 Waspaloy

CHAPTER 6 ALLOY STEELS

AF 1410 H11 300M (VM) AF 1410 (VIM-VAR) 10Ni Steel 4140 A 286 12-9-2 (MAR) 4330V (MOD) D6 AC 12Ni-5Cr-3Mo 4340 HP 9-4-.20 18Ni (180) MAR 4340 (AM) HP 9-4-.20 (CEVM) 18Ni (200) MAR 4340 (DH) HP 9-4-.25 18Ni (250) MAR 4340 (EFM) HP 9-4-.30 4340 V 18Ni (280) MAR HP 9-4-.45 4340 (VAR) 18Ni (300) MAR **HY-TUF** 300M 4340 (MOD) HY-150 300M (AM) HY-180 300M (VAR)

Volume 3

CONTENTS

CHAPTER 7 2000 AND 6000 SERIES ALUMINUM ALLOYS

2014	2024 (Alclad)	2324
2020	2048	2419
2020 (Alclad)	2124	2618
2021	2214	6061
2024	2219	

CHAPTER 8 7000 SERIES ALUMINUM ALLOYS

7001	7039
7005	7049
7 007	7050
7010	7050 (Alciad)

Volume 4

CONTENTS

CHAPTER 8 7000 SERIES ALUMINUM ALLOYS

7075	7090	7178
7075 (Alc!ad)	7091	7178 (Alciad)
7079	7149	7475
7079 (Alciad)	7175	7475 (Alclad)
7000		

CHAPTER 1

HANDBOOK ORGANIZATION AND CONTENT

1.0	OVERVIEW	1-1
1.1	ORGANIZATION	1-2
1.2	GENERAL COMMENTS ABOUT SORTING ORDER AND ABBREVIATIONS	1-5
1.3	MATERIAL CHAPTER SUMMARIES	1-7
1.4	ALLOY SECTION SUMMARIES	1-18
1.5	ALLOY FRACTURE TOUGHNESS SUBSECTION FORMATS	1-21
1.6	ALLOY SUBCRITICAL CRACK GROWTH SUBSECTION	1-28

CHAPTER 1 HANDBOOK ORGANIZATION AND CONTENT

TABLE OF CONTENTS

SECTION		PAGE
1.0	OVERVIEW	1-1
1.1	ORGANIZATION	1-2
1.2	GENERAL COMMENTS ABOUT SORTING ORDER AND ABBREVIATIONS	1-5
	1.2.1 Sorting Order	1-5
	1.2.2 Abbreviations	1-5
1.3	MATERIAL CHAPTER SUMMARIES	1-7
	1.3.1 Available Data Summary	1-7
	1.3.2 Plane Strain Fracture Toughness Material Data Summary	1-12
	1.3.3 Plane Stress and Transitional Fracture Material Data Summary	1-12
	1.3.4 Fatigue Crack Growth Rate Material Data Summary	1-16
	1.3.5 Stress Corrosion Cracking Threshold Material Data Summary	1-18
1.4	ALLOY SECTION SUMMARIES	1-18
1.5	ALLOY FRACTURE TOUGHNESS SUBSECTION FORMATS	1-21
	1.5.1 Plane Strain Fracture Toughness	1-21
	1.5.2 Plane Stress Fracture Toughness Data	1-25
	1.5.3 R-Curve Data	1-28
1.6	ALLOY SUBCRITICAL CRACK GROWTH SUBSECTION FORMATS	1-28
	1.6.1 Fatigue Crack Growth Rate Data	1-28
	1.6.2 Sustained Load Crack Growth Rate	1-37
	1.6.3 Stress Corrosion Cracking Threshold	1-41

CHAPTER 1

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1-1	ASTM Abbreviations Used to Describe Specimen Orientations.	1-10
1-2	Sample Data Summary Table, Taken from Table 3.0.1 (Stainless Steel Alloys).	1-11
1-3	Summary of Plane Strain Fracture Toughness ($K_{\rm IC}$) Data, Taken from Table 3.0.2 (Stainless Steel Alloys).	1-13
1-4a	Format for Plane Stress and Transitional Fracture Toughness Data where Specimens were Constrained from Buckling. Example from Table 4.0.3, Titanium Alloys.	1-14
1-4b	Format for Plane Stress and Transitional Fracture Toughness Data where Specimens were not Constrained from Buckling. Example taken from Table 6.0.3, Alloy Steels.	1-15
1-5	Summary of Fatigue Crack Growth Rate Data, taken from Table 3.0.3 (Stainless Steel Alloys).	1-17
1-6	Summary of Stress Corrosion Cracking Threshold Material Data, taken from Table 3.0.4 (Stainless Steel Alloys).	1-19
1-7	Alloy Summary Format for Plane-Strain Fracture Toughness Data, Taken from Table 3.8.1.1, PH13-8Mo Stainless Steel.	1-20
1-8	Format for Alloy Fatigue Crack Growth Rate Data Summary, Data Taken from Table 3.8.1.4, PH13-8Mo Stainless Steel.	1-22
1-9	Format for Plane Strain Fracture Toughness Data. Example taken from AFC 77 Stainless Steel Alloys,	1-24

である。 関われていたができ 国際 じょうかん かんじゅう (2000の) 国際 しょうじょうかん (2000の) (20000) (2

		OUADMED 1	
C,		CHAPTER 1 LIST OF ILLUSTRATIONS	
		(Concluded)	
	FIGURE		PAGE
	1-10	Format for Plane Stress Fracture Toughness Data; Example taken from Table 3.9.2.1, PH14-8Mo Stainless Steel Alloy.	1-27
	1-11	Format for Resistance Curve (R-Curve) Data. Example taken from Figure 7.5.2.6, 2024 Aluminum Alloy.	1-29
	1-12	Graphical Format of the Fatigue Crack Growth Rate Data; Example Taken from Figure 3.8.3.14 Based on Stainless Steel Alloy PH13-8Mo Showing Effect of Stress Ratio.	1-30
)	1-13	Tabular Format for Fatigue Crack Growth Rate Data; Tabular Data Corresponds to Graphical Data Shown in Figure 1.12. Example taken from Table 3.8.3.14, PH13-8Mo Stainless Steel Alloy.	1-36
	1-14	Graphical Format for Sustained Load Crack Growth Rate Data. Example taken from Figure 3.2.2.1, AFC77 Alloy Stainless Steel.	1-38
	1-15	Tabular Format of Sustained Load Crack Growth Rate Data. Example taken from Table 3.2.3.1, AF77 Stainless Steel Alloy.	1-39
	1-16	Format for Stress Corrosion Cracking Threshold Data; Example taken from Table 3.2.3.2, AF77 Stainless Steel Alloy.	1-42
		1-iii	

CHAPTER 1 LIST OF TABLES

TABLE		PAGE
1.1	ORDER OF CHAPTERS	1-3
1.2	ORGANIZATION OF THE XTH MATERIAL CHAPTER	1-4
1.3	SORTING ORDER OF VARIOUS FIELDS	1-6
1.4	ABBREVIATIONS FOR MATERIAL SYSTEMS	1-8
1.5	ABBREVIATIONS FOR ALLOY CONDITIONING AND HEAT TREATMENTS	1-8
1.6	ABBREVIATIONS FOR PRODUCT FORMS	1-8
1.7	ABBREVIATIONS FOR ENVIRONMENTAL SYSTEMS	1-9
1.8	ABBREVIATIONS FOR SPECIMEN DESIGNS	1-9
1.9	ORDERING SCHEME FOR ENVIRONMENT	1-23
1.10	REFERENCE NUMBER FOR NEW DATA AND THE ORGANIZATIONS OR JOURNALS ASSOCIATED WITH THESE DATA	1-26
1.11	LIST OF POSSIBLE SYMBOLS USED FOR EACH SPECIMEN IN THE GRAPHICAL PRESENTATION OF THE FATIGUE CRACK GROWTH RATE DATA	1-33
1.12	ALTERNATE PRODUCT FORM SORTING ORDER FOR CRACK PROPAGATION DATA	1-33

CHAPTER 1 HANDBOOK ORGANIZATION AND CONTENT

1.0 OVERVIEW

This edition of the Damage Tolerant Design Data Handbook has been entirely revamped since the last update in 1975. The major organizational change is that data are now presented and sorted by material (aluminum, titanium, etc.) and by alloy (2024, 6Al-4V, etc.) rather than by property a.e., KIC, KISCC, da/dN). The reorganization makes it possible to present all the pertinent damage tolerant data on a particular alloy within one chapter subsection. This new organization was suggested by aerospace engineers as being the format best suited for their use. Additionally, this format now conforms to other aerospace structural metals handbooks such as the Military Handbook-5 and Aerospace Structural Metals Handbook.

A survey was conducted at the beginning of this handbook program; over one-hundred aerospace design, materials, and structural engineers were canvassed for their comments relative to the proposed organization, formats, types of summaries and new data types. Many of the comments and suggestions received were incorporated into the final design of the handbook. The data types of greatest interest were found to be fracture toughness data, fatigue crack growth rate data and R-curves. Interest in specific materials were mainly for the nickel base and aluminum alloy materials.

Throughout the handbook, the data are presented in English units, i.e., ksi $\sqrt{\text{in}}$. was the unit for the fracture toughness and applied stress intensity factor levels, and inches/hr or inches/cycle were the unit values for the growth rates. Metric units have been incorporated along with the English units on the graphical presentation of the sustained load and fatigue crack growth rate data, but limited space forced the decision not to include metric units for the tabular data.

1.1 ORGANIZATION

The handbook is divided into eight chapters and consists of four volumes. Following the first chapter on handbook usage and the the second chapter on methods of calculations are the six material chapters. The order of the chapters are as designated in Table 1.1. This order was selected to keep the data for a particular chapter together as much as possible while keeping the size reasonable and the four volumes approximately equal.

Table 1.2 depicts the basic organization of each material chapter. Within each material chapter, the data are further divided into a section of material summaries, followed by sections that contain the data for individual alloys. The first number of any section, subsection, table or figure number refers to the chapter or material as designated in Table 1.1. The second number will run consecutively from zero on. A zero in the second position indicates that the data is a material summary; each succeeding second number indicates a new alloy, with the highest second number referring to the bibliography for that material chapter.

次,到了这个人的,是是一个的人的,但是他们也是是是一个人的,我们也是是一个人的,我们也是有一个人的,我们也是是是一个人的,我们也是一个人的,我们也会会会会会会

In a given material summary section, i.e., X.O, there are five possible material summary tables listed as subsections. Tables will be listed in the order defined by Table 1.2. If not enough data are available for a particular summary, this summary will not be printed and the next summary will pick up the sequence number. Section 1.3 describes the formats for the material summaries.

In each alloy section, e.g., Sections X.1, X.2, etc., the third number in the sequence will designate whether the data are (1) an alloy summary, (2) fracture toughness data, or (3) crack growth resistance data. Within each subsection, the data tables and graphs are ordered consecutively.

TABLE 1.1
ORDER OF CHAPTERS

VOLUME NUMBER	CHAPTER	TITLE
1	1	Handbook Organization, Content, and Formats
1	2	Methods of Calculations
1	3	Stainless Steel Alloys
1	4	Titanium Alloys
2	5	Nickel Base Alloys
2	6	Alloy Steel Alloys
3	7	2000 and 6000 Series Aluminum Alloys
3 and 4	8	7000 Series Aluminum Alloys

TABLE 1.2 ORGANIZATION OF THE XTH MATERIAL CHAPTER

SECTION X.0 - Material Summaries

- X.0.1 Available Data Material Summary
- X.0.2 Plane Strain Fracture Toughness Material Data Sunmary
- X.0.3 Plane Stress and Transitional Fracture Toughness Data Summary
- X.0.4 Fatigue Crack Growth Rate Comparison Material Data Summary
- X.0.5 Stress Corrosion Cracking Threshold Material Data Summary

SECTION X.1 - First Material Alloy

- X.1.1 Alloy Summaries
 - X.1.1.1 Plane Strain Fracture Toughness Summary
 - X.1.1.2 Fatigue Crack Growth Rate Data Summary
- X.1.2 Fracture Toughness Data
 - X.1.2.1 Plane Strain Fracture Toughness Data for Alloy Number One
 - X.1.2.2 Plane Stress and Transitional Fracture Toughness Data for Stainless Steel Alloy Number One
 - X.1.2.3 R-Curves
- X.1.3 Subcritical Crack Growth Data
 - X.1.3.1 Fatigue Crack Growth Rate Data Data (Tables and Plots) for Alloy Number One
 - X.1.3.2 Sustained Load Crack Growth Rate Data
 - X.1.3.3 Stress Corrosion Cracking Threshold Data for Alloy Number One
- SECTION X.2 Second Material Alloy
- SECTION X.N Last Material Alloy
- SECTION X.N+1 Bibliography for the Chapter

There are three possible types of fracture toughness data: plane-strain fracture toughness data, plane stress and transitional fracture toughness data, and resistance curve data; Section 1.5 provides a detailed discussion of the data formats. There are three possible types of subcritical crack growth data: fatigue crack growth rate data, sustained load crack growth rate data, and stress corrosion cracking threshold data; Section 1.6 details the formats used to present these data.

To aid the handbook user locate data, examples of actual tables and figures follow. These examples are presented to familiarize the user with the formats presented in the handbook. Each table or figure is discussed as it is presented. The discussion follows the same order as that found in the handbook.

1.2 GENERAL COMMENTS ABOUT SORTING ORDER AND ABBREVIATIONS

1.2.1 Sorting Order

Table 1.3 describes the sorting order for all mechanical property data types. The left column lists the primary (material) data fields that have been sorted; the right column then lists the specific sorting order of each material data field. In all the following discussions, when a primary data field is noted as being sorted, the order of the sorting is as listed in Table 1.3. The primary data fields are also sorted; however, because the different data fields have different significance for individual mechanical property types, the sorting order is noted as each mechanical property data format is discussed. For all property data types, the property data are generally sorted in the order of first five primary data fields listed in Table 1.3.

1.2.2 Abbreviations

To ensure that all the necessary information is presented in the data tables and figures, specific abbreviations have been employed throughout the handbook. The abbreviations can be broken down into six categories that cover the following

TABLE 1.3 SORTING ORDER OF VARIOUS FIELDS

DATA FIELD	SORTING ORDER
1. Alloy	Blank Punctuation Marks (e.g., -) Alphabetic Characters (e.g., T) Numeric Characters (e.g., 6)
2. Condition/Heat Treatment	Blank Punctuation Marks Alphabetic Characters Numeric Characters
3. Product Forms	Sheet Plate Forging Extrusion Forged Bar Billet Casting Round Bar Welded and Stress Relieved Weldment Disk Extruded Bar Rolled Bar Bar
4. Test Temperatures	Negative Test Temp. (-423°F, -300°F) From 0°F to 65°F (O°F, 32°F etc.) From 65°F to 80°F (R.T.) Above 80°F (85°F, 200°F, etc.)
5. Specimen Orientation	L-S L-T T-S T-L S-T S-L L-C C-L L-R R-L R-C C-R
6. Yield Strength	Lowest to Highest
7. Buckling Constraints	Buckling of Crack Edges Not Restrained Buckling of Crack Edges Restrained Buckling of Crack Edges Unknown

data fields: (1) material, (2) condition/heat treatment, (3) product form, (4) environment, (5) specimen design, and (6) specimen/crack orientation. The abbreviations and associated descriptions for these six categories can be found in Tables 1.4 through 1.8 and Figure 1.1, respectively.

1.3 MATERIAL CHAPTER SUMMARIES

Material summaries are presented at the beginning of each chapter before any alloy summaries or detailed data. These summaries are meant to aid in the selection of materials for design and for basic comparisons of property data. There are five possible material summaries (see Table 1.2), each of which compare availability or properties of damage tolerant data for the given alloys, heat treatments, and product forms of a particular material. The five summaries immediately follow the text of introductory remarks that discuss the data for that material.

1.3.1 Available Data Summary

Figure 1.2 is the first page of the available data summary for the stainless steel chapter. As noted, the first number in the data summary table is a "3" which indicates that this is the third chapter; the second number is a "0" indicating that this is a material summary; the third number is a "1" which indicates that this is the first table in the material summary section. Note that the table numbers for subsequent data summaries only change in the third digit, except for the fatigue crack growth rate summary (see below).

The available data summary defines the property data that are available in the chapter by alloy, by condition/heat treatment, and by product form. The six different types of data are listed generally across the top of the table; an "x" is marked in the appropriate column to identify the particular property data that exists for the given alloy, condition/heat treatment, etc. The alloys are listed in the order that they appear in the handbook using the sorting order outlined in Table 1.3. This sorting order was created using a system

TABLE 1.4
ABBREVIATIONS FOR MATERIAL SYSTEMS

Abbreviation	<u>Materials</u>
ALUM TITAN. NICKEL STAIN. STEEL ALLOY STEEL	Aluminum Alloys Titanium Alloys Nickel-Base Alloys Stainless Steel Alloys Steel Alloys

TABLE 1.5
ABBREVIATIONS FOR ALLOY CONDITIONING AND HEAT TREATMENTS

Abbreviation	Condition/Heat Treatment
OQ ABQ	Oil Quenched Aus-Bay Quench
AC	Air Cool
WC	Water Quench
MA	Mill Anneal
BA	Beta Anneal
DA	Duplex Anneal
RA	Recrystallize Anneal
ST	Solution Treated
STA	Solution Treated And Aged

TABLE 1.6
ABBREVIATIONS FOR PRODUCT FORMS

Abbreviations	Product Form
S P E F FB BT BR	Sheet Plate Extrusion Forging Forged Bar Billet Round Bar
RB C W D EB B	Rolled Bar Casting Weldment Diak Extruded Bar Bar

では、関うというな。自己との人の人の自己というとは自己というとなる。自己などのなる。自己などの人の自己などのなどのは、自己などのなどのなどのなどのなどのなどのなどのなどのできない。

TABLE 1.7
ABBREVIATIONS FOR ENVIRONMENTAL SYSTEMS

Abbreviations	Environmental System
R. т.	Room Temperature (65°F-80°F)
L. H. A.	Low Humidity Air (< 10% RH)
Dry Air	Low Humidity Air (< 10% RH)
н. н. А.	High Humidity Air (> 80% RH)
Lab. Air	Laboratory Air (% RH unspecified)
Dist. H ₂ O	Distilled Water
Dist. Water	Distilled Water
3.5 PCT Nacl	3.5% Salt Water Solution
JP.4	JP-4 Aircraft Fuel
JP.4 - Fuel	JP-4 Aircraft Fuel
S. T. W.	Sump Tank Water
S. S. W.	Simulated Sea Water
s. c. s.	Shop Cleaning Solvent
F. C. S.	Field Cleaning Solvent
Salt Fog	Salt Fog
Temp.	Temperature

TABLE 1.8
ABBREVIATIONS FOR SPECIMEN DESIGNS

Abbreviations	Specimen Design*
CT	Compact Tension
NB	3Pt. Notched Bend
WOL	Wedge Open Load
CCP	Center Cracked Panel
BWOL	Bolt Loaded-Wedge Open Load
CANT	Cantilever Beam
TDCB	Tapered Double Cantilever Beam
CHAR	Charpy
PTSC	Part Through Surface Crack
SENT	Single Edge Notch Tension
KBBAR	K _B Bar
4-NB	4 Pt. Notched Bend
MCT	Modified Compact Tension
CNT	Center Notched Tension
DCB	Double Cantilever Beam
BDCB	Bolt Loaded Double Cantilever Beam

^{*}Also note that when "SG" is used in conjunction with a specimen design, the specimen is side-grooved along the path of the crack.

(a) Crack Plane Orientation Code for Rectangular Sections

(b) Crack Plane Orientation Code for Rectangular Sections Where Specimens are Tilted with Respect to the Reference Directions

(c) Crack Plane Orientation Code for Bar and Hollow Cylinder

Figure 1.1. ASTM Abbreviations Used to Describe Specimen Orientations.

<i>₹</i> ∂	Table 3.0.1	Table 3.0.1 DAIA FOR SIAIMESS STEEL ALLOYS		Ç
<i>ম</i>	KAILABLE DATA EOR STAN	NESS STEEL ALO		ິບູ
))
ALLOY CONDITION/HT		PRODUCT FORM	KIC KC R CURVES DA/DN DA/DT MISCC	
AFC 260 2200F 1HR .19 1HR -320F 1H	1900F 1HR 0G -100F 1HR 8U0F 2+2 HR	PLATE		×
2200F 1HR 19 1HR -320F 1H	1900F 1HR 00 -100F 1HR 1050F 2+2HR	PLATE		×
2200F 118R 19 14R -320F 1H	1900F 1HR DG -100F 1HR 900F 2+2 HR	PLATE		×
2200F 148 19 148 -320F 14	1900F 1HR 00 -100F 1HR 1000F 2+2 HR	PLATE		×
AFC 77 AUSTENIZED A	AUSTENIZED AT 2010F, QUENCHEDA. TEMPERED AT 810F	SHEET	×	
1800F 11#K 09 500F 2+2 HR	1800F 1HR 00, -100F 0.5HR, 500F 2+2 HR (COARSE GRAIN)	PLATE		×
1800F 1HR 09,	0, -100F O 34R, R (COARSE GRAIN)	PLATE	×	×
1800F 1HR UG 500F 2+2 HR	: 14R UR, -100F 0, 54R, 2+2 MR (FINE GRAIN)	PLATE		×
1800F 1HR DG 1000F 2+2 HR	1HR DG100F O. SHR. 242 HR (FINE GRAIN)	PLATE	×	×
1800F 1HR, 0 700F 2+2HR (00,-100F 0 5HR, (CDARSE GRAIN)	PLATE	×	
1800F 1HR. D BOOF 2+2HR (1800F 1HR, 00,-100F 0. 3HR, BOOF 2+2HR (CDARSE GRAIN)	PLATE	×	
1800F 1HN, IN 700F 2+2HR (THM, CM, -100F O. SFR, 2+2FR (FINE GRAIN)	PLATE	×	
1800F 1HR. 06. 800F 2+7HR (F1	0100F 0. 5HR,	PLATE	×	

sort of the database and sorts the alloys with designations using blanks, punctuation marks and alphabetic characters first with numeric characters following. Heat treatments and conditions are also sorted in this same manner. Following the sort by alloy and by condition/heat treatment, the property data are then sorted according to product form. The particulars of the sorting by product form are also outlined in Table 1.3 with sheet data listed before plate, forging, extrusion, etc.

1.3.2 Plane Strain Fracture Toughness Material Data Summary

The first page of the stainless steel, plane-strain fracture-toughness-data summary is shown in Figure 1.3. This is the second possible material summary and the third table digit is "2". The data are again sorted and separated on the data fields of alloy, condition/heat treatment and product form. All data listed are for room temperature (65°F - 80°F) laboratory air only. Plane strain fracture toughness mean values and standard deviations are listed for the three major orientations; that is, L-T, T-L and S-L. Product thickness range and minimum specimen thicknesses are listed for general information. Dashes in a particular column indicate that no mean plane strain fracture toughness data exist for the stated conditions.

250

1.3.3 Plane Stress and Transitional Fracture Material Data Summary

マイト 100 mm 100 からから 100 mm 100 がんかん 100 mm 100 mm

The plane stress and transitional fracture toughness data summary is presented third in the series of summaries. Figure 1.4 illustrates that these tables are presented as a function of whether the data are collected using specimens with or without buckling constraints. Note that in Figure 1.4 (all available titanium data) and 1.4b (all available alloy steel data) that the data are sorted by alloy, condition/heat treatment, test temperature, specimen orientation and specimen width. Yield strength is not a sorting field but is given for general information. The mean $K_{\rm C}$ values are listed as a function of specimen thickness which is indicated across the top of the page.

TABLE 1.0.2

PLANE STRAIN FRANTUME TORNIFIESS VALUES OF STAINLESS STEEL ALLOYS AT FIRM TEMPENATURE

1 1 1 1 1 1 1 1 1 1	¥5.1.6¥	CCelD1TICeV	PROGUCT	HANGE OF PRODUCT THICKNESSES (IN)			! !	(KS)	(KS) SQRT(1N)	î	(NS) 1805 (SX)	;	;
1,005 146,00 FOREING 6 UO 0 30 48 h 3 1 0 30 30 B 1 3 3 3 3 3 3 3 3 3		1	1	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		, -			<u>:</u>		V.	7-7	;
1.00F 118.1. 1.					SPECIMEN THICK .	E S	STD	SPECIMEN THICK *	ž		SPECIFEN THICK .	¥	S10
2100F 1181. FOREING 6 00 2 01 110 3 4 9 2 01 108 0 5 7	W.C /7 (VAR)	1/00F 1HR. 00 2100F 1HR. MOVED 10 FCE. AT 1923F-HELD 1HR. 00100F 24HR, 900F- 2*37R		9	8			%	8		! ! !		į
1500F 11#0.00, FOREING 4 00 0 48 72 1 7 8		2100F 118. MOVED TO FCE AT 1900F-HELD 118.00100F 418.300F 2+298	FORGING	8				0	o 80		!		i
1500F 148.00. FOREING 4 00 0 48 46 2 3 3	CUSTOM 455	1500F 1HB, 00. 950F 4HB, AC	FDRCING	8	0	12.		1	!		;	;	:
ANVENIED FORCING 3 00 1 01 114 1 13 7 1 00 99 6 22 4		1500F 1HR, 00, 900F 4HR, AC	FORGING	8	•			i	}	!	;	;	
FONCED BANK 2 20 1 63 103 0 19 4 1 63 69 6 18 SLEET 1 00-2 23 1 00 36 4 6 3 1 100 69 4 16 1 FUNCING 4 00-6 00 1 00 70 3 16 0 NOLLEO BANK 2 23 1 00 66 9 2 9 1 00 63 5 1 7 0 75 SMELT 1 30-2 25 1 00 105 6 4 8 1 00 96 2 5 2 FLATE 4 00 0 98 94 7 3 6 EXTRIBITION 1 30 1 00 66 9 3 1 10 65 2 21	049-C144	ANDE AL ED	FORCING	00 E	8	=	۲ <u>۱</u> ۲	8	\$	8	;	1	į
GIRET 1 00-2 23 1 00 30 4 6 3 1 00 64 4 16 1 FUNCING 4 00-8 00 1 00 70 3 16 0 MOLLED BAR 2 25 1 00 64 9 2 9 1 00 63 5 1 7 0 75 SHELT 1 50-2 25 1 00 105 6 94 7 3 6 PLATE 4 00 0 75 101 6 11 0 0 75 88 1 17 1 EXTRUSION 1 50 68 3 5 3 1 00 66 2 2 1		AUSTENTTE COND AND TRANSFORMED AT DOF, ACED 101		2 20	. 63	8		C9 1	8		;	;	;
FUNCING 4 00-8 00 1 00 70 3 14 0		966 #	Sulet	1 00-2 25	8	9	0	8	•	9	i t p	-	:
MOLLED BAR 2 25 1 00 66 9 2 9 1 00 65 5 1 7 0 75 1			FUNCTNG	00 g-00 ₹	8		0 91	į	;	:	!	:	;
SHELT 1 30-2 25 1 00 103 6 4 8 1 00 96 2 5 2 PLATE 4 00 0 98 94 7 3 6 FORGING 2 75-8 00 0 75 101 6 11 0 0 75 88 1 17 1 EXTRUSION 1 50 1 00 68 9 5 5 1 00 66 2 2 1			HOLLED BAN	2 35	8			8	8.0		0 75	*	C4
2 75-8 00 0 75 101 6 11 0 0 75 88 1 17 1 150 150 66 2 2 1		н1006	SPEET.		8			8	6	S	;	:	;
2 75-8 00 0 75 101 6 11 0 0 75 88 1 17 1 150 150 66 2 2 1			PLATE	8	9			-	1	:	:	;	;
1.50 469 55 100 462 21			FONCING	2 75-8 00	0 75	9 101	•	0 75	8	17.1	}	:	;
			Extrusion	8 -	8		6	8	3	ñ	;	1	-

Summary of Plane Strain Fracture Toughness ($\kappa_{\rm IC})$ Data, Taken from Table 3.0.2 (Stainless Steel Alloys). Figure 1.3.

TABLE 4.0.3

PLANE STRESS AND TRANSITIONAL FRACTURE TOUGHNESS OF TITANIUM ALLOYS (WITH BUCKLING CONSTRAINTS)

			1					
		Test	2		Yield		- K (Ksi /in)	
Alloy	Condition/Ht		Ortent Width	Wideh (In.)	Strength (Ks1)	Specimen Thickness (in.) = 0.02	0.040	0.050
T1-5A1-2.5Sn	Annealed	-423	-1	3.0	203	116.8/4.5 (5) 109.4/6.6 (9)		
				12.0	203	104.2/4.0 (8) 97.1/9.6 (2)		
			T-L	12.0	210	107.7/16.0 (2)	147.6/28.9 (2)	
T1-6A1-4V	\$	R. T.	1-1	24.0	92			196.4/19.9 (6) 159.4/7.5 (3)
T1 441 44 (5) (1)	_		ļ	0 81	136	161.6/6.5 (5)		
T1-8A1-1Mo- 1V	D. A.	. T		12.0	92.7	(111.7/15.0(3)		220.5/15.8(4)
				0.02	***			

*Mean/Standard Deviation (No. of Specimens)

Format for Plane Stress and Transitiona! Fracture Toughness Data where Specimens were Constrained from Buckling. Exampl from Table 4.0.3, Titanium Alloys. Figure 1.4a.

Example

· · · .

(-)

TABLE 6.0.3

PLANE STRESS AND TRANSITIONAL FRACTURE TOUGHNESS OF STEEL ALLOYS (WITHOUT BUCKLING CONSTRAINTS)

		Test	Specia		71-17		
Alloy	Condition/Ht	<u>.</u>	Orlent VI	Videh	Strength	Specimen K. (K. Thickness (in) = 0.025	r (Ks1 /in)
				,,,,,	(16n)	(20:0	
18 NI(300) MAR		-423	L-1	0.4	38 6	86.4/7.3 (5)	
		- 320	1-1	2.0	3.6	142.6/7.4 (5)	
				0.4	3,6	124.2/8.0 (5)	
		R. T.	1-1	2.0	111	132.1/4.3 (5)	
				c.4	111	128.5/3.8 (5)	
				0.81	111	110.3/10.9 (3)	

A Mean/Standard Deviation (No. of Specimens)

Format for Plane Stress and Transitional Fracture Toughness Data Where Specimens Were Not Constrained from Buckling. Example from Table 6.0.3, Alloy Steels. Figure 1.4b.

Individual $K_{\mathbf{C}}$ data values are listed only if useful in determining a trend in the data. Specimen thickness variations run along the top of the page and may vary from one table to another in order to prevent overcrowding the tables while still accommodating all of the data.

1.3.4 Fatigue Crack Growth Rate Material Data Summary

An example fatigue crack growth rate (FCGR) summary is presented in Figure 1.5 where the data are taken from the Stainless Steel Chapter. Note that the data are from Table 3.0.3.1, a four number sequenced designation. The first two numbers again indicate the chapter (3) and the summary section (0). The third number in the sequence (3) indicates that this is the third ordered table in the material summary (Note that insufficient plane stress and transitional fracture toughness data were available for this material so no summary table of the K_C type was generated). The fourth number in the sequence (1) indicates that this is the first ordered table in the fatigue crack growth rate summary. Readers will find one table for each specimen orientation for which there is enough data for the table to have meaning.

All data in a particular table were collected under conditions where the stress ratio (R) is between 0.0 and 0.1, and the environment is room temperature and laboratory air; the loading frequencies vary slightly depending on the individual tests. The range of test conditions are listed at the top of each table. Beneath the general description of test conditions are the data fields of alloy, condition/heat treatment and product form for which the FCGR data comparisons can be made. The ΔK (Delta K) levels are listed across the top of the table and are identical to some of the levels associated with the tabular format of the mean trend FCGR data, i.e., at levels of 2.5, 5.0, 10.0, 20.0, 50.0, 100.0 Ksi /in. (see Section 1.6 for a listing of all mean thend AK levels). The fatigue crack growth rates in units of 10⁻⁶ inches/cycles, are listed in the appropriate columns and rows according to the alloy, condition/ heat treatment, and product form for which they apply. With this format, it is easy to determine which materials, heat

Table 3.0.3.1

(1)

COMPANISON OF FATIONE CRACK ORDWIN RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR STAINLESS STEEL ALLOVS

TEST CONDITIONS:

SPECIMEN CRIENTATION Unknown ENVINOMENT: LAB AIR AT R. T. STRESS RATIO 0.03-0.10 FREGAENCY: 3.00-30.00HZ

MLLOY	CONDITION/HT	PAGDUCT FORM	8TRE 89 RAT 10	FREGUENCY	FATIOUE CRACK ORDATH RATES (MICRO IN/CYCLE) FOR DELTA W LEVELS (MSI BORT(IN)) = 2.9 5.0 10.0 20.0 10.0 1	RATES (NICRO IN (KSI SORT(IN)) 20.0 SO.	//CYCLE)
400	AMEALED	94667	0.03	8 01	691	3 O.C	
	ANENLED	DVEET	0.03	61	81.	2.63	
	AMEALED	BHEET	0 10	1. 67		9 či	
	ANNEALED	9ÆET	0. 10	8		9 6 %	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ANEALED & AGE	PLATE	0.03	3. 00	1	1.38	
316	ANNEALED AT 1950F. 114R. WD	PLATE	00 03 10 00	00 01		. 39	
347	050 IN. FROM CENTERLINE	WELDWENT	0 10	8 96		•	8
	AT CENTERLINE	WELDMENT	0.10	30.00		13.1	#
	AT HEAT AFFECTED ZONE	WELDMENT	0 0	30. 00		12	17.9

Summary of Fatigue Crack Growth Rate Data, Taken from Table 3.0.3 (Stainless Steel Alloys). Figure 1.5.

treatments, or product forms have the lowest growth rate at a particular ΔK level. For example, based on the data given in Figure 1.5, annealed and aged 304 stainless steel performs better than annealed 304 stainless steel.

1.3.5 Stress Corrosion Cracking Threshold Material Data Summary

Figure 1.6 illustrates, using Table 3.0.4, the format for the stress corrosion cracking threshold material data summary, the fifth possible material data summary. Because of the small number of specimens (typically one or two) that are used to generate these data, individual results are presented here rather than means and standard deviations. The data are sorted by alloy, condition/heat treatment, product form and specimen orientation. Possible environments for which $K_{\rm ISCC}$ data exist are listed across the top of the table; $K_{\rm ISCC}$ data values for each particular environment are listed in the appropriate row and column. This table summary allows for comparisons of $K_{\rm ISCC}$ values of various materials in a particular environment as well as a quick assessment of how various environments affect a particular material.

1.4 ALLOY SECTION SUMMARIES

Following the material summaries, the data were divided into sections by alloy. Each alloy section is further subdivided into three subsections: a summary subsection, a fracture toughness subsection, and a crack growth resistance subsection. The data content and format for these three subsections are described in this and the following two subsections, respectively.

There are two possible alloy summaries, a plane strain fracture toughness summary and fatigue crack growth rate data summary. Figure 1.7 presents the tabular format for the $K_{\rm IC}$ alloy summary. It is similar to the $K_{\rm IC}$ material summary in that the mean and standard deviation for a particular condition/heat treatment, product form and specimen orientation is given for each alloy. However, the number of specimens used to generate the data has been added. The data has also been sorted by product form first, then condition/heat treatment and specimen orientation.

TAMA. 3.0.4

D

INDIVIINIAL STRESS CORROSION CRACKING THRESHOLD DATA FOR STAINLESS STEEL ALLOYS AT ROOM TEMPERATURE

					TSCC			
Atlay	HT	FORM	SPECIMEN	SUMP TANK WATER 3.5% NACL	ENVIRONMENTS 201 NAC1	SEACOAST ATHOSPHERE	INDUST.	INDUST. ATMOSTHERE
		د		15				
	2000F 111R 00,-100F 0,5 11R, 700F 242 11R	Œ	;	05				
	2000F 1HR 0Q, -100F 0.5 HR, RHOF 2&2 HR	5	;	07				
	2000F 1HR OQ100F 0.5 HR, 900F 262 HR	ss.	;	\$1				
	2000F 1HR OQ, -100F 0.5 HR, 1100F 262 HR	s	:	01				
	2000F 1HR 0Q, -100F 0.5 HR, 500F CM,1000F	æ	;	30				
	2000F 1HR OQ, -100F 0.5 HR, 50P TOT CM, 700F	c .	;	06				
:	2000F 1HR 00, -100F 0.5 HR, 5 20 PCT CM, 700F	Æ	:	48				
AFC JGD	220HF 1HR, 1900F 1HR OQ, -100F 1HR, -300F 1HR, 900F, 26.2 HR	<u> </u>	4- L	07			-	: ! ! !
	2200F 108, 1900F 10R 00, -100F 10R, -100F 10R 1000F 262 0R	۵	J-T	45				
	2200F 1118, 1900F 1118 0Q, -100F 1118, -300F 1118, 1050F 252 118	<u>.</u>	J-1.	r				
API 355	SCT 850	مو م	1.1.		& •	77 18	45	-
	0001 LOS	p. 20	1-L 1-L		37	\$2 35	6 9	

Summary of Stress Corrosion Cracking Threshold Material Data, Taken from Table 3.0.4 (Stainless Steel Alloys). Figure 1.6.

92.2 ± 4.2 (2)	94.8 ± 7.8 (6)	103.1 ± 4.6 (3)	M1050	
1 1 1	75.0 ± 4.2 (2)	90.0 ± 7.1 (2)	H1000	
74, 1 ± 2, 1 (3)	63.5 ± 1.7 (6)	66.9 ± 2.9 (3)	Н 950	0
78	រាំ	1-7	CONDITION/HT	1-2
	ROLLED BAR	<u> 101</u>		
1 1 1	122.7 ± 3.0 (3)	114, 2 ± 0.9 (2)	н1 000	
1 	89. 6 ± 1. 8 (2)	103.0 ±19.4 (2)	AUSTENITE COND AND TRANSHORMED AT 38F, ACED 1015F	
1 6	<u>1-1</u>	[-]	CONDITION/HT	
	<u>FORGELI BAR</u>	<u> </u>		
SPEC IMENS)	ARD (NUMBER OF SPECIMENS)	MEAN KIC + STANDARD (KSI SGRT(IN) DEVIATION	CONDITION/HT	
Or' A rure	MEAN PLANE STRAIN FRACTURE TOUCHNESS DATA OF NLESS STEEL ALLOY PHI3-BMO AT NOOM TEMPERATURE	MEAN PLANE STRAIN FRACTURE STAINLESS STEEL ALLOY PH13-8MD	ME. STAINLE	
	3.8.1.1	Table 3.8.1.1		

Alloy Summary Format for Plane-Strain Fracture Toughness Data, Taken from Table 3.8.1.1, PH 13-8Mo Stainless Steel. Figure 1.7.

This summary basically puts all the K_{IC} data for a particular condition and product form together for easy comparison. It also allows for a quick assessment of the effect that orientation has on the fracture toughness.

The FCGR alloy data summaries shown in Figure 1.8 are similar to the FCGR material data summaries described previously. Note that for a particular alloy, the data are separated by the test variables of specimen orientation and environment which are listed at the top of each page. Other test variables such as condition/heat treatment, product form, stress ratio and frequency are then listed for the data as noted. Typically, a number of FCGR data summaries are produced to describe the effects of specimen orientation and environments. Sorting on specimen orientation is as shown in Table 1.3 and sorting on environment is in the order described in Table 1.9. With these summary tables, it is possible to determine which condition/heat treatment and product form give the lowest FCGR in a given environment for a given specimen orientation. Discrepancies in data sets can also be noted as well as a quick determination of how stress ratio and frequency affect the data in a particular environment.

1.5 ALLOY FRACTURE TOUGHNESS SUBSECTION FORMATS

Within each alloy section following the alloy summaries is the fracture toughness type data. Fracture toughness data consists of plane strain data (K_{IC}) , plane stress and transitional fracture toughness data (K_{C}) , and resistance curve data (R-curves). Each of these has a different and yet somewhat similar ordering scheme which is particularly suited to that type of data.

1.5.1 Plane Strain Fracture Toughness

The format for the plane-strain fracture toughness data is shown in Figure 1.9. This particular example is taken from the stainless steel chapter for alloy AFC 77. The data are sorted by condition/heat treatment, then product form, test temperature, orientation and yield strength using the sorting order identified in Table 1.3. All $K_{\rm IC}$ data collected for these

では、「「「「「「「「「「「「」」」というというとは、「「「」」というという。「「「」」というという。「「」」というと、「「」」というと Table 3.8.1.4

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

STAINLESS STEEL PHI3-8MD

	ENVIRONMENT: L. H. A.
<u>TĖZI COMDTITON</u> S	SPECIMEN ORIGNIATION L-T

COND1110N/HT	PRODUCT	STRESS	FREG (HZ)	DELTA K		AT10UE	FATIQUE CRACK GROWTH RATES (MICRO IN/CYCLE)	NITH RATE	55 .	
				LEVELS (KSI SORT(IN))	6. 10.	n	01	&	90	100
	EXTRUNED BAN	60	00 9					2. 22	20.8	
	EXTRUDED BAR	0.30	9.00					2.98		
			 				1			
H1000	FORGED BAR	0.08	9.00					8. 28		
H1000	FORGED BAR	0.30	6.00					4. 70		
H1000	FORCED BAR	0. 50	9.00				0.51	4. 70		
0001н	BILLCT	0. 00	9 00				0.34	4. 02		
H1000	EXTRUDED BAR	O. 08	9.00				0 33	3.73	34. 4	
0001н	EXTRUBED BAR	0.50	9 9				0.85	5. 59		
н1000	ROLLED BAR	80 0	1.00				0 29	3, 57		
н1000	ROI LED BAR	0 00	6.00				0 29	3.40		
н1000	ROLLED BAR	0.30	9.00				0 62	4, 39		
н1000	ROLLED BAR	0. 50	9.00				0 79	9.09		
			1		!		!			

Format for Alloy Fatique Crack Growth Rate Data Summary, Data Taken from Table 3.8.1.4, PH 13-8 Mo Stainless Steel. Figure 1.8.

TABLE 1.9 ORDERING SCHEME FOR ENVIRONMENT

表现,这种是一种,这种是一种是一种的,是是是一种的,是是是一种的,是是是一种的,是是是一种的,是是是一种的,是是一种的,是是是一种的,是是是一种的,是是一种的

Dry Air Low Humidity Air Negative Temperatures/Air 0°F to Room Temperature Room Temperature/Laboratory Air Above Room Temperature/Air Argon High Humidity Air JP-4 Fuel Water Saturated JP-4 Fuel Alternating JP-4 Fuel Distilled Water Nitrogen Solvent Cleaning Solution 3.5% Nacl Sump Tank Water Simulated Sea Water Salt Fog Field Cleaning Solvent

Table 3.2.2.1

	=	:	2	. =	2	2	-	=		Ę	:	2
REFER	2	1969 74720 (1969 74720 (1)	2	1969 74720 (1969 74720 (1968 84302 (305	84302 (1)	305	1969 76136 (1969 76136 (1)
PATE :	0961	1069	1969	1961	1969	1969	1968		8761	936	6961	1969
N(IC) BTAN N(IC) MEAN DEV (NG) FORT IN)	8	98 BE		00 64	90 00	00 00	8 •	24 00	00 47	2	70 00	96 00
2 9e (R(IC)/TVB)es2 (1N)	s 0 0	: 0	60 0		n 0	3 .	• 0	6		;	\$2° 0	71 0
CRACK		!	!	:	!	!	!		T 1 1 1 1 1 1 1 1 1	t	1	
CK DESIGN	₹	2 006	8	1	900 1	2000	0 480 N	3. 3.	, \$	₩ Z 00 00 00 00 00 00 00 00 00 00 00 00 0	0 480 NB	0 4BO NB
	2 000	000	8	0 006 1	0 200	006 -	006 -	0 006 1	000	0 006 1	1 300 0	0 006 1
YIELD STRENCTH (MSI)		0 691	908	0 000	224 0	535	183 0	0 615			207 0	214 0
SPECIMEN	ı	L-T	L-T	L-I (NIN)	L . [(M14)	L-T	ر بع	L-R	, , ,	: a:	<u>«</u>	<u>ر</u>
E E	- 35	1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 35 M	- 25 - 25 - 20	- š	~ 2	ď	~	. .		Œ	E
FRODUCT FORM THICK	. 93 93 1	o ≹ Šĝ	o æ 8 ô	- 28 E	% € % €	3.5	8 c	8	, 8 . n	8	8	8 n
_		, , , , , , , , , , , , , , , , , , ,	ر ب ب	. G. 20	φ. ?•	\$ \$	¥6.50 15.50	88 3.28 8.28		. M	88 2 • 2 • 4	# F.
	148. 04. P 0 56 R 1 L-T	198. 00. P 0 56 R T L-0 546. 700F 2-248 (COARSE ORAIN)	1HB, CO. P 0 36 R 1 L.	148.00. P 0 36 R T 0 548. (FINE GRAIN)	1148.09. P 0 56 R T L 0 54 R T L	0 548. 1000F 2+24R (FINE GRAIN)	148.00. 148. 700F	148, 00. 118, 800	8 8	1148. Ud. 1148. 900f	1148.00. 148.800F	198. DG. 1981. 9009
COND 17 10N	1800f	-1006	1800F	1000	1800f	1800	10001	1001	1900f 100f	2000£	3001.	200.01

NUTES (-1) CHRYCELLIGNINI PERCENTIO 16C.0 18MM.O 015P.0 021S.0 1351.0 21MI.14 OCR.S 02MD.13 4CD.0 27V.0 04M 1H SF DAIN AME AVERAGE VALUES

Format for Plane Strain Fracture Toughness Data. Example Taken from AFC 77 Stainless Steel Alloys, Table 3.2.2.1. Figure 1.9.

(Ta)

same parameters are put together with the mean and standard deviation listed in a column near the right of the page. Product thickness is listed after product form, but is not a sorting parameter. Specimen dimensions including thickness, width and crack length are also listed, but are not listed in any particular order. The 2.5 $(K_{Ic}/\sigma_{ys})^2$ criterion value is included for information purposes only. Two additional columns list the date of the reference and the reference number so that an idea of when the data were collected can be assessed, and where additional information might be obtained should it be desired. Reference numbers from the earlier handbook have been retained and new data have been assigned a new reference number with the first two digits signifying the organization or journal from which the data was obtained. Table 1.10 lists the general format for new reference numbers. The final column at the right hand side of the page refers to the notes at the bottom and are used to indicate out-of-range compositions, average data values, and other identifying important features.

1.5.2 Plane Stress Fracture Toughness Data

The format for presenting plane stress fracture toughness (K_C) data is presented in Figure 1.10. The sorting format for the plane stress fracture toughness (K_C) data within a particular alloy section is by condition, then buckling of crack edges restrained, unrestrained, or unknown, and then by product form, test temperature, specimen orientation, specimen thickness and specimen width. Additionally, initial and final crack lengths are given as a function of the total crack length (2a) for center-cracked panel/specimens. Also, the onset and maximum gross stress values are listed when available. The fracture toughness parameters K_C and K_{app} are calculated as described in Chapter 2 and the individual as well as the mean and standard deviation values are listed for both K_C and K_{app} . The final two columns present the date of the reference and the reference number.

TABLE 1.10

REFERENCE NUMBERS FOR NEW DATA AND THE ORGANIZATIONS OR JOURNALS ASSOCIATED WITH THESE DATA

- 1. ALxxx Alcoa Laboratories Alcoa Center, PA.
- 2. AMxxx Airesearch Manufacturing Los Angeles, CA.
- 3. BLxxx Battelle Columbus Laboratories, Columbus, OH
- 4. BWxxx Boeing Military Airplane Co., Wichita, KA
- 5. DAxxx Douglas Aircraft Long Beach, CA
- 6. EFMxx Journal of Engineering Fracture Mechanics
- 7. FRxxx Fairchild Republic Farmingdale, N.Y.
- 8. GDxxx General Dynamics Fort Worth, TX
- 9. GExxx General Electric Evendale, OH
- 10. HDxxx Westinghouse Hanford Development Lab., Richland, Wash.
- 11. LGxxx Lockheed Georgia Marietta, GA.

- 12. MAxxx McDonnell Aircraft Co. St. Louis, MO
- 13. MDxxx McDonnell Douglas Astronautics Corp, Huntington Beach, CA.
- 14. MRxxx Materials Research Laboratory Glenwood, IL
- 15. NCxxx Northrop Corporation Hawthorne, CA
- 16. NLxxx NASA Langley Research Center Hampton, VA.
- 17. NRxxx Naval Research Laboratories Washington, DC.
- 18. PWxxx Pratt & Whitney Aircraft Group Government Products
 Division West Palm Beach Florida
- 19. RAxxx Reynolds Metals Co. Richmond, VA
- 20. RIxxx Rockwell International North American Division & Shuttle Orbiter Div. - Los Angeles, CA.
- 21. UCxxx University of Cincinnati Cincinnati, OH
- 22. UDxxx University of Dayton Research Institute, Dayton, OH
- 23. UMxxx University of Missouri Rolle, Missouri
- 24. WAXXX Wright Aeronautical Laboratories- WPAFB, OH

Table 3.9.2.1

ž Ĉ STAINLESS STEEL PH14-8MD

	78d	DDUCT	- TEST	200	SPEC VIELD	SPEC	NEWECTHER		CRACK LENGTH GROSS STRESS	GROSS	GROSS STRESS	×	K (ADD) STAN	2	MATO	741		
COND I T I ON	FORM	FORM THICK TEMP	(F)	ğ	STR (KSI)	ETOTA TOTA	THICK	13		CKSI)	MSET MAX KSI) (KSI)	K(APP) (K81*8	MEAN DE		K(C) HEAN	DE C	HEAN DEV DATE REFER	EFER
1 1 1	1 1		1 1	1	1 1 1	; 1 ; 1 ;	1 1 1	1	1	1	, ; ; ; ;	; t	1 1 1	1	1 1 1	1 1		1
						BUCK	OUCHLING OF CRACK EDGES RESTRAINED	CRACK	EDGES R	ESTRAI	Z ED							
SRH1050	v	0.03		43 C-T	174 5	174.5 24.040 0.025	0.025	5. 990		1	72. 60 231. 63	231. 63		!	1		1964 57573	57573
SRH1050	တ	0.03	X	R. T. L-T	174. 5	174. 5 7. 990	0.025	2. 010		1	118.10	118, 10 218, 44#		-	ı		1964	57573
SRH1050	ហ	0 0 0	R. T. L-T	L-1	174.5 174.5 174.5	24, 020 24, 030 24, 040	0.023 0.023	6. 6. 3 000 000 000			95.90 72.40 71.90	95. 90 210. 21 72. 40 231. 22 71. 90 229. 61 223. 7/11. 7	23. 7/11.		/	-	1964 1964 1964	57573 57573 57573
SRH1050	S	0.05	R. T. L-T	L-1	196.6	24, 010	0.030 6.000	9.000	}	1	92. 10	92, 10, 294, 15					1964	57573
SRH1050	ທ	0 0	₹.	L-T	197.4	0.09 R.T. L-T 197,4 24,100	0.093 6.000	9.000	1	ł	115, 70 369, 42	369, 42		!	,		1964 3	57573

*NOTE- NET SECTION STRESS EXCEEDS BOX OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STD. DEV.

Format for Plane Stress Fracture Toughness Data; Example Taken from Table 3.9.2.1, PH14-8Mo Stainless Steel Alloy. Figure 1.10.

1.5.3 R-Curve Data

の発展のなって、最大というに最近なななが、最大ななな。最大ななな、最大なななな。最大ななな、最大ななな、自己なななな。自己ななななない。

The format for resistance curve (R-Curve) data is shown in Figure 1.11. The information listed at the top of the page includes the material type, the alloy, the condition/heat treatment, the product form, and the thickness if known, the specimen type and orientation, the specimen dimensions, thickness and width, the K_C value, if known, and the reference number. Unless otherwise specified, the data were taken at room temperature in laboratory air environments. Only one specimen is illustrated per figure, and the figures are sorted by alloy, condition/heat treatment, test temperature and environment, orientation and specimen thickness and width.

The resistance curve data are plotted on linear scales; K_R , the applied stress intensity, as a function of Δa_{eff} , the change in effective crack length (see Chapter 2 for the details associated with the calculation). There are two possible scales for the data; (1) the vertical scale ranging from 0 to 120 Ksi \sqrt{in} . and horizontal scale ranging between 0.0 to 1.1 inches, and (2) the vertical scale ranging from 0.0 to 240 Ksi \sqrt{in} . and the horizontal scale ranging between 0.0 and 3.3 inches. These two scales were chosen to accommodate all the data.

1.6 ALLOY SUBCRITICAL CRACK GROWTH SUBSECTION FORMATS

The subcritical crack growth data follow the fracture toughness data within each alloy section. The subcritical crack growth data includes: fatigue crack growth rate data, sustained load crack growth rate data, and stress corrosion cracking threshold data.

1.6.1 Fatigue Crack Growth Rate Data

The fatigue crack growth rate data are presented in two complementary formats - a graphical format and a mean trend tabular format. Figure 1.12 represents the graphical format which was chosen to present fatigue crack growth rate data. Basic information common to all data on a particular page is listed at the top of the page in the header section. Below

Figure 1.11. Format for Resistance Curve (R-Curve) Data. Example Taken from Figure 7.5.2.6, 2024 Aluminum Alloy.

■ディスクスの BMでん ストスト BMマスマンド は BMマスト

Figure 1.12. Graphical Format of the Fatigue Crack Growth Rate Data; Example Taken from Figure 3.8.3.14
Based on Stainless Steel Alloy PH13-8Mo Showing Effect of Stress Ratio.

the header section, there are four separate graphs on which the data are plotted. Each graph contains only data taken under identical conditions. Data are presented in each of the different graphs to show trends in behavior. The data on a page may describe the effects of one of three parameters: stress ratio, temperature/environment, and frequency. In order to accommodate these three variations, the header data at the top is slightly varied and the parameter being varied (e.g. stress ratio) is listed at the top of each of the active graphs as shown in Figure 1.12.

The header information at the top includes the material and alloy identifications listed in the small boxes in the upper right hand corner of each page for ease in locating the data. The condition/heat treatment is then listed at the top of the header. Below this, test and material parameters are listed in two columns; the first column listing the product form and product thickness, specimen type, specimen orientation and the two of the three parameters (i.e., stress ratio, test temperature/environment, frequency) not being varied on that particular page. The second column lists the room temperature tensile yield and ultimate strengths, the specimen dimensions of thickness and width, and the reference numbers identifying the data source.

|Manager Control | Manager M

All data are plotted as fatigue crack growth rate (da/dN) as a function of the range in the stress intensity factor (ΔK). The graphs are equal sized log-log plots ranging from 10^{-8} to 10^{-1} inches/cycle for the growth rates (i.e., seven decades), and from 1 to 200 Ksi $\sqrt{\text{in}}$ for values of ΔK . The definition of ΔK according to ASTM Standard E647 was chosen for data presentation throughout the handbook, i.e., ΔK = the maximum stress-intensity factor if the stress ratio is negative ($R \le 0$). For other details, see Chapter 2.

English units, i.e., inches/cycle for growth rates and Ksi $\sqrt{\text{in}}$. for ΔK , are listed to the left and the bottom of each page. Metric units, i.e., millimeters/cycle for growth rate values and megapascales \sqrt{m} for ΔK , are listed at the top and right of each page.

By reviewing Figure 1.12, it can be noted that there are two different data symbols utilized in each graph. The two different symbols represent data from two different tests. Up to twenty different tests can be accommodated with the symbols defined in Table 1.11. Each graph, however, is restricted to a maximum of 300 da/dN- Δ K points; if the amount of data greatly exceeded these values, the data were separated onto two plots and the variable listed in each of the graphs is exactly the same. Mean trend curves have been established for each data set and can be seen going through the data on most of the graphs. The mean trend was developed using a cubic spline polynomial with the ability to control some aspects of the curve fit. The method is described in detail in Chapter 2. Fatigue crack growth rate data containing less than eight data points are plotted but mean trend curves were not established for these data.

Fatigue crack growth rate data are sorted slightly differently than fracture toughness data. Within a particular alloy, the data are sorted first by condition/heat treatment (using the order discussed in Table 1.3) then by product form and thickness with the order for product form defined as in Table 1.12. The product form order was altered to keep the data on forged and extruded bars near the data for forgings and extrusions, respectively. The sort on product thickness after product form is by increasing thickness. The next sort is by specimen orientation using the order defined by Table 1.3 and is followed by a sort by type of plot.

TABLE 1.11
LIST OF POSSIBLE SYMBOLS USED FOR EACH SPECIMEN
IN THE GRAPHICAL PRESENTATION OF THE FATIGUE
CRACK GROWTH RATE DATA

Test Order No.	Symbol	Test Order No.	Symbol
1	œ	11	×
2	•	12	**
3	•	13	×
4	+	14	1
5	×	15	•
6	•	16	•
7	*	17	•
8	×	18	•
9	Z	19	*
10	Y	20	_

TABLE 1.12 ALTERNATE PRODUCT FORM SORTING ORDER FOR CRACK PROPAGATION DATA

Sheet
Plate
Bar
Billet
Disk
Extrusion
Extruded Bars
Forgings
Forged Bars
Rolled Bars
Round Bars
Castings
Weldments

In the final series of sorts, the data are ordered so that all the pages where the data varies on stress ratio are placed before the data that varies on test temperature/environment; these data are placed before any data which varies on frequency. When there are a number of stress ratio plots, within these data sets, the data are sorted by test temperature/environment using the order listed in Table 1.9. If there are a number of stress ratio plots which also have the same test temperature/environment, then the final sort is in order of decreasing frequency. Within the group of test temperature/environment plots that follow the stress ratio plots, these are also sorted additionally by increasing stress ratio then further by decreasing frequency if necessary. Within the group of frequency plots, which follow the temperature/environment plots, the data are further subdivided by increasing stress ratio and then by the test temperature/environment sort of Table 1.9 if necessary. organizational scheme was established for easy comparison of data and to define the effects that defined variables had on crack growth rate. For other types of comparisons, it may be necessary to search through a subsection to find all the data of interest.

5:0

では、10mmのでは、10mmでは、10m

As stated earlier, in addition to the graphical presentation there also exists a tabular format of the mean trend values. This format is presented in Figure 1.13. The tabular format and the graphical format will be presented side-by-side in the handbook with the tabular format on the left and the graphical format on the right. Figure 1.13 is the tabular format of the data presented in Figure 1.12. Note that the Table and Figure numbers are identical.

On examination of Figure 1.13, one can see that the Table can be broken up into six sections. These sections are identified as: (1) the header section, (2) the maximum AK-da/dN values section, (3) the mean trend fatigue crack growth rate values at the specified values of LK section, (4) the maximum AK - da/dN values section, (5) the root mean square percent error (RMSPE) section, and (6) the life prediction ratio section.

Section 1, the header section, does not include all the header information that is listed on the graphical format. Here only the material, alloy, condition/heat treatment and environment (if it is a stress ratio plot) are listed. Beneath the fatigue crack growth rate data header are the axes lables ΔK (Delta K) and da/dN. The letters A, B, C, and D, under the da/dN label, correspond to the same identifying letters on the four plots on the graphical format. Below these letters are the abbreviations of E for Environment, R for Stress Ratio, and F for Frequency which identifies the variable for this particular data set. Following these abbreviations are the values of the variables for this data.

Section 2 lists the minimum ΔK values to the left and the corresponding da/dN values in the appropriate column. These points present the slowest crack growth rate on the mean trend curves shown in Figure 1.12.

ジャンは「MISON スペクト 日本アンドンド・国際アンダンスト 日本のアンドンド Apple アンドンドンド MISON スペクト 国際アンドンド Apple Provided P

Section 3 lists the mean trend values. The ΔK values are listed to the left and the da/dN values are listed for each curve to the right in the appropriate column. However, the ΔK values are now fixed values and the growth rates in the columns correspond to these ΔK values for the individual graphs. There are 28 possible ΔK values ranging from 1 to 200 ksi $\sqrt{\ln}$; the specific values utilized are 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 13.0, 16.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 130.0, 160.0, and 200.0 Ksi $\sqrt{\ln}$.

Note that in Figure 1.13 all 28 ΔK values are not listed, only those in which there was a mean trend data available for at least one of the graphs. This means that in this case (Figure 1.12) all ΔK values less than 7.0 and greater than 60.0 Ksi $\sqrt{\text{in}}$. are not included since none of the curves had data outside this range.

Table 3.8.3.14

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.14 INDICATING EFFECT

OF STRESS RATIO

MATERIAL:	STAINLESS	STEEL	PH13-8M0
-----------	-----------	-------	----------

CONDITION: H1000

ENVIRONMENT: R. T., H. H. A.

DELTA K	:	DA/DN (10##~	S IN. /CYCLE)	
(KSI*IN**1/2)	A	В	c	D
	R=+0.10	R=+0. 30	R=+0. 50	
A: 11.42				
ELTA K B: 9.13	:	. 466		
MIN C: 4.87 D:	:		. 299	
7. 00			. 342	
8.00			. 468	
9. 00 10. 00		. 543	. 425 1. 08	
13. 00		2. 16	3. 06	
16. 00		4. 48	5. 84	
20.00	: 6. 71	9 . 37	11.6	
25. 00			24. 3	
30. 00		34. 6	47. 9	
35. 00	38.7	58. O	91. 9	
40. 00 50. 00	: 52. 4 : 108.	92. 8 215.	174. 607.	
	: 259 .	215.	807.	
	: 303 .			
ELTA K B: 56.12		339.		
MAX C: 50, 46	:		643.	
D:	:			
OOT MEAN SQUARE PERCENT ERROR	33. 16	14. 35	12. 25	
LIFE 0.0-0	. 5			~~~~~
REDICTION 0.5-0		•	•	
RATIO / 0.8-1 SUMMARY 1.25-2		1 1	2	

Figure 1.13. Tabular Format for Fatigue Crack Growth Rate Data; Tabular Data Corresponds to Graphical Data Shown in Figure 1.12. Example Taken from Table 3.8.3.14, PH 13-8Mo Stainless Steel Alloy.

Section 4 identifies the maximum (highest) $\Delta K = da/dN$ point on the mean trend curve in a manner similar to Section 2 which identified the lowest point on the curve.

Section 5, entitled "The Root Mean Square Percent Error" (RMSPE), is basically a description of scatter about the mean trend line; that is, a smaller value indicates a smaller scatter than a larger one. The calculation of this value is described in Chapter 2.

Section 6 presents life prediction information in terms of life prediction ratios. The life prediction ratio (LPR) is the number of cycles predicted (using the mean trend curve) divided by the actual number of cycles taken from the experimental crack length versus cycle data for a predefined interval. The actual LPR values are not listed but the results are summarized. The data summary is divided into five ranges, that is LPR's from: (1) 0.0-0.5, (2) 0.5-0.8, (3) 0.8-1.25, (4) 1.25-2.0, and (5) above 2.0. The numeric values in the columns across from the LPR range represents the number of specimens that had LPR's in that particular range. Because some data were received in reduced form only, i.e., (AK, da/dN) only, not all of the test specimens shown on the graphs will have LPR's, i.e., raw crack length versus cycle count data was not available for comparison. The LPR's generally were found to be in the center range, indicating an adequate mean trend fit of the data. For threshold type tests and for tests in which the loads were varied frequently through the test, LPR's tended to be outside this range.

1.6.2 Sustained Load Crack Growth Rate

reference in the contract of t

The sustained load crack growth rate data are presented subsequent to the fatigue crack growth rate data and are plotted on log-log plots in a manner similar to the FCGR data (See Figure 1.14). Tabular mean trend formats are also presented where sufficient data exists (See Figure 1.15). The data are

Figure 1.14. Graphical Format for Sustained Load Crack Growth Rate Data. Example Taken from Figure 3.2.3.1, AFC 77 Alloy Stainless Steel.

TABLE 3.2.3.1

SUSTAINED CRACK CROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.2.3.1 INDICATING EFFECT

OF ENVIRONMENT

		(:	DA/DT (10*1	#-3 [N/HOUR)	
(KSI*	IN##	(1/2)	: : A	В	C	D
			: : E: :DISTILLED WATE	:R		
K MAX MIN	A: B: C: D:	20.00	1. 01			
<u></u>		30. 00	4. 55 2. 67 3. 21 17. 5			
K MAX MAX		47. 00	; 5213 . :			

Figure 1.15. Tabular Format of Sustained Load Crack Growth Rate Data. Example Taken from Table 3.2.3.1, AFC 77 Stainless Steel Alloy.

PERCENT ERROR

plotted to present time based crack growth rate as a function of maximum stress-intensity factors on pages with header sections and four graphs of equal size with both English and Metric units lining the sides. Again, the header information includes the material and the alloy in the small boxes in the upper right hand corner of the pages. The condition/heat treatment is listed at the very top and the rest of the parameters are listed in two columns beneath the condition. The first column contains the parameters of form, form thickness, specimen type, specimen orientation, and test temperature/environment, while the second column contains the tensile yield strength, specimen thickness and width, initial crack length (a_{Ω}) , stress corrosion cracking threshold values, $K_{\mbox{\scriptsize ISCC}}$, and the reference numbers. before, there are also three variations on these plots, that is, variations on form and form thickness, tensile yield strength, and test temperature/environment. There are also some data sets in which condition/heat treatment for a given alloy is varied; these variations were manually designated on the plots. In addition to the three basic plot variations noted, the sustained load crack growth rate data have two possible growth rate axes. In order to accommodate the data, the two sets of axes chosen were 10^{-6} to 10^{0} inches/hr. and 10^{-4} to 10^2 inches/hour (English units). Both have maximum stress-intensity values that range from 1 to 200 Ksi $\sqrt{\text{in.}}$

Some of these data also have mean trend curves and mean trend tables associated with them. The mean trend tables are again presented directly opposite to the graphical presentation of the data, similar to that done for the fatigue crack growth rate data. Figure 1.15 is the tabular format of the data in Figure 1.14. The format of this table is similar to the fatigue crack growth rate data, so little further explanation is warranted. All of these data were received in reduced form, and therefore, no LPR's are given; due to the nature of the data, the values of the RMSPE are usually larger than for the FCGR data. Additionally, mean trend curves representative of the data were not always created; for these cases, no mean trend curve or table is presented.

1.6.3 Stress Corrosion Cracking Threshold

Following the sustained load crack growth rate data is the tabular stress corrosion cracking threshold data. An example of this data format is presented in Figure 1.16, which is similar to the fracture toughnes, data format. The material, alloy and data type are listed at the top of the sheet. To the left, the condition/heat treatment is listed, then product form, product thickness, test temperature, specimen orientation, yield strength, and environment. Following these parameters are the specimen thickness, width and design as well as crack length, fracture toughness, K_{ISCC} individual values, mean values, standard deviations, test times, dates and reference numbers.

The data are sorted according to (material, alloy) condition/heat treatment, product form, test temperature, specimen orientation and environment. The order of the sorts are identified in Table 1.3 except for environment which is sorted by the utility sort, i.e., by a sort similar to that for alloy and condition/heat treatment.

The fracture toughness values presented, K(Q), only indicate the level of crack toughness of the material; these values were obtained from the threshold tests and are not <u>valid</u> plane-strain fracture toughness values. The K(Q) values, however, should provide an engineer with an indication of stress-corrosion cracking sensitivity relative to fracture.

In the K $_{\rm ISCC}$ tabular data, there are two columns in which asterisks (*) may appear; the column on specimen design and the column on K $_{\rm ISCC}$. All asterisks that appear in the specimen design column indicate that the specimen has been side-grooved along the path of the crack; note (* = SG) at the top of the column. The asterisks that appear in the K $_{\rm ISCC}$ column behind the individual K $_{\rm ISCC}$ values indicate that the crack length and/or specimen thickness were not greater than 2.5 $({\rm K}_{\rm ISCC}/\sigma_{\rm YS})^2$, as noted at the bottom of the page.

		DATE REFER	9 747	1969 74720	1969 74720	9 747	1969 76136	1969 76136	1969 76136	1969 76136	1969 76136	1969 76136
		1	1	19	1	}	61	19	į	19	19	ţ
		E II	' ' '	i	1	}	; ;	i	1	i	i	!
		STAN	! !				!					
		K(ISCC) MEAN		15. 00	97. 00*	9 20.00	#00 08 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	105.00*	3 0. 00	40.00	33. 00	00 01
		20		25.00	111.00	30. 00	116.00	200.00	160.00	70.00	3 6. 00	43.00
	K(18CC)	CRACK LENGTH (IN)	, -	-				či 	11			
3.2.3.2		DESIGN (**SG)	0. 480 CANT+	0. 480 CANT+	0. 480 CANT+	0. 480 CANT+	0. 480 CANT	0. 480 CANT#	0. 480 CANT+	0. 480 CANT+	0. 480 CANT+	0.480 CANT+
Table 3.2	STEEL AFC 77	WIDTH CIN	1 200	1. 500	1. 300	1. 300	1. 300	1. 500	1. 500	1 500	1. 500	900
	STAINLESS S	ELD TR ENVIRONMENT 51 }	154. 0 3 5 PCT NACL	173. 0 3. 5 PCT NACL	196. 0 3. 5 PCT NACL	232. 0 3. 5 PCT NACL	190.0 3.5 PCT NACL	169. 0 3. 5 PCT NACL	180. 0 3. 5 PCT NACL	207.0 3.5 PCT NACL	214.0 3.5 PCT NACL	221 O 3 S PCT NACL
) %	,	;				- -	-	(a)	; }	1
		TEST TEMP (F)	 	æ ∺	8	æ. ⊷.	<u> </u>	χ. Τ	<u>α</u>	٦. ب	۳. ۲.	-
		ROBUCT: H THICK (IN)	56 RE)	R 00, P 0.36 SHR, 1000F 2+2 HR GRAINED STRUCTURE)	P 0.56 F 2+2 HR TRUCTURE)	P 0.36 30F 2+2 HR STRUCTURE)	B 3.00	3.00 F 2+24R	B 3.00 F 2+2 HR	B 3.00 F 2+2 HR	B 3.00 F 2+2 HR	00 6
			і ≑ощі	₹o₩	1HR DG. 0. SHR, 500 GRAINED B	THR DG. O. SHR, 100 GRAINED S	1HR 00 0. SHR 140	1HR 00 B 0. 5HR 500F	1HR DG 0. 5HR 700	1HR DQ 0. SHR BOO	1HR 00 0. SHR 900	8
		2	1800F 1F -100F 0.	1800F 1F -100F 0 (CDARSE	1800F -100F (FINE	1800F -100F (FINE	2000F -100F	2000F -100F	2000F	2000F -100F	2000F	2000F
								1-42	2			

Note - Data which do not meet minimum specimen thickness requirements of 2.5(KISCC/TYS) squared. +Note - (=SG) in design column implies that Asterisked specimens are side-grooved (SG).

Format for Stress Corrosion Cracking Threshold Data; Example Taken from Table 3.2.3.2, AFC 77 Stainless Steel Alloy. Figure 1.16.

Greater than (>) and less than (<) signs before the K_{ISCC} value indicates that the <u>actual</u> value is either greater than or less than the value stated, respectively. Data containing these signs were considered to be informative since little data exists and so were included; however, the data were not considered definitive and so were excluded from mean and standard deviation values.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
		CHAPTER 2	
		METHODS OF CALCULATIONS	
	2.0	OVERVIEW	2-1
	2.1	PLANE-STRAIN FRACTURE TOUGHNESS (KIc)	2-18
	2.2	CRITICAL PLANE STRESS FRACTURE TOUGHNESS	2-22
	2.3	THE APPARENT FRACTURE TOUGHNESS	2-26
	2.4	R-CURVE (KR VERSUS Daeil)	2-28
	2.5	FATIGUE CRACK GROWTH RATE	2-30
	2.6	SUSTAINED-LOAD CRACK GROWTH RATES	2-41
	2.7	THRESHOLD STRESS INTENSITY (Kisco)	2-43
(j			
w-			
<i>: 1</i>			

CHAPTER 2 METHODS OF CALCULATIONS

TABLE OF CONTENTS

SECTION			PAGE
2.0	OVERVIE	W	2-1
	2.0.1	Data Review and Acceptance Criteria	2-1
	2.0.2	Fracture Mechanics Basis	2-4
	2.0.3	Test Specimen Geometries	2-5
2.1	PLANE-S	TRAIN FRACTURE TOUGHNESS (KIC)	2-18
2.2	CRITICA	L PLANE STRESS FRACTURE TOUGHNESS	2-22
	2.2.1	Plane Stress and Transitional Fracture Toughness	2-22
	2.2.2	Plane Stress and Transitional Fracture Toughness Testing	2-23
	2.2.3	Critical Stress-Intensity Factor (Kc)	2-25
2.3	THE APP	ARENT FRACTURE TOUGHNESS	2-26
2.4	R-CURVE	(K _R VERSUS Δa _{eff})	2-28
2.5	FATIGUE	CRACK GROWTH RATE	2-30
	2.5.1	Fatigue Crack Growth Behavior	2-30
	2.5.2	Data Acceptance Criteria	2-32
	2.5.3	Data Reduction Procedures	2-32
	2.5.4	Data Reporting Procedures	2-34
2.6	SUSTAIN	ED-LOAD CRACK GROWTH RATES	2-41
	2.6.1	Sustained-Load Crack Growth Rate Behavior	2-41
	2.6.2	Data Acceptance Criteria	2-42
	2.6.3	Data Reduction Procedures	2-43
	2.6.4	Data Reporting Procedures	2-43
2.7	THRESHO	LD STRESS INTENSITY (K _{ISCC})	2-43
	2.7.1	The Threshold	2-43
	2.7.2	Conditions for Validity of Data	2-46

CHAPTER 2

LIST OF ILLUSTRATIONS

FIGURE		PAGE
2-1	Center Cracked Panel (CCP) Specimen.	2-8
2-2	Compact Tension (CT) Specimen.	2-8
2-3	Three Point Notched Bend (NB) Specimen.	2-9
2-4	Four Point Notched Bend (4-NB) Specimen.	2-9
2-5	Cantilever Beam (CANT) Specimen.	2-9
2-6	Dimensions of Several T Type Wedge Opening Load (WOL) Specimens.	2-10
2-7	Modified 1-T WOL (BWOL) Specimen Used to Determine $K_{\mbox{ISCC}}$ by Bolt Loading.	2-11
2-8	Single Edge Notch Tensile (SENT) Specimen.	2-11
2-9	Typical Design for Part-Through-Surface-Crack (PTSC) Specimen.	2-11
2-10	KB Bar (KB-BAR) Specimen	2-12
2-11	Double Cantilever Beam (DCB) Specimen with Side Grooves.	2-12
2-12	Bolt-Loaded Double Cantilever Beam (BDCB) Specimen.	2-13
2-13	Typical Tapered Double Cantilever Beam (TDCB) Specimen with Side Grooves.	2-13
2-14	Center-Notch Tensile (CNT) Specimen.	2-13
2-15	Fracture Toughness Behavior as a Function of Thickness.	2-19
2-16	Typical Crack Growth Behavior in Plane Stress and Transitional Stress States.	2-24
2-17	Thin-Section, Center-Cracked Tension Panel Configuration.	2-24
2-18	Description of the Three Fracture Toughness Criteria that are Utilized to Estimate Residual Strength Under Tearing Fracture Conditions.	2 - 27

CHAPTER 2

LIST OF ILLUSTRATIONS (Continued)

FIGURE		PAGE
2-19	Typical Crack Growth-Life Curve.	2-31
2-20	A Cubic Spline Curve Fit to FCGR Data for 2219-T851 Aluminum at a Stess Ratio of 0.3.	2-36
2-21	Schematic Drawing of Fatigue Cracked Cantilever Beam Test Specimen and Fixtures.	2-45

CHAPTER 2

LIST OF TABLES

TABLE		PAGE
2.1	APPLICABLE LIST OF STANDARDS FOUND IN PART 10, THE ASTM BOOK OF STANDARDS (1982)	2-2
2.2	CORRELATION LISTING OF TEST SPECIMEN SYMBOL, TEST SPECIMEN GEOMETRY, AND REFERENCE FIGURE NUMBER	2-7
2.3	STRESS-INTENSITY FACTOR COEFFICIENTS FOR TEST SPECIMEN GEOMETRIES USED TO GENERATE DAMAGE TOLERANT DATA	2-14
2.4	CRITERIA CHECKS FOR FATIGUE CRACK GROWTH RATE DATA	2-33
2.5	EXAMPLE FATIGUE CRACK GROWTH RATE TABLE (2219-T851 ALUMINUM)	2-38
2.6	FULL INTERVAL COMPARISONS OF LIFE PREDICTION RATIOS	2-40

e. <mark>Markaran kalan ka</mark>

CHAPTER 2 METHODS OF CALCULATIONS

2.0 OVERVIEW

This chapter briefly describes the methods used to calculate the damage tolerant properties reported in the Handbook. The properties reported for characterizing fracture resistance include:

- K_{IC}, the plane-strain fracture toughness
- K_C, the critical plane-stress (or transitional) fracture toughness
- KApp, the apparent plane-stress fracture toughness
- K_R, the tearing resistance

and, the properties reported for characterizing subcritical crack growth resistance include:

- $\frac{da}{dN}$, the constant amplitude fatigue crack growth rate
- $\frac{da}{dt}$, the sustained-load crack growth rate
- K_{Iscc}, the threshold for sustained load cracking

Sections 2.1 through 2.7 describe these properties and the specific methods of calculations utilized to convert laboratory (specimen) data into the properties reported.

2.0.1 Data Review and Acceptance Criteria

Newly acquired data and data available from previous revisions of the Handbook were systematically reviewed and analyzed. The principal data acceptance criteria were based on criteria established by the American Society for Testing and Materials (ASTM); these criteria are embedded within ASTM standards for test methods and practices. Table 2.1 lists those standards used to provide criteria for plane-strain fracture toughness ($K_{\rm IC}$) data, for R-curve data, and for fatigue crack growth rate (da/dN) data. ASTM literature

TABLE 2.1

APPLICABLE LIST OF STANDARDS FOUND IN PART 10, THE ASTM BOOK OF STANDARDS (1982)

ASTM STD	TITLE	
E616-81	Standard Terminology Relating to Fracture Testing	
E399-81	Test Method for Plane-Strain Fracture Toughness of Metallic Materials	
E561-81	Practice for R-Curve Determination	
E647-81	Test Method for Constant-Load-Amplitude Fatigue Crack Growth Rates Above 10 ⁻⁸ m/Cycle	

was also reviewed to establish criteria based on typical engineering practice for the other types of data collected and reported.

artantantantantantahintahintahi kalendahi kalendah kalendah kalendah di kalendah kalendah kalendah kalendah ka

Newly acquired data was substantially easier to process than the data available from previous revisions since the data suppliers screened their data according to ASTM criteria before it was released to the data processing organization (UDRI). Also, when questions concerning newly acquired data developed, the suppliers could be called and the questions resolved.

For the case of previously available Handbook data, it was necessary to systematically review the data employing a multi-step process. First, the computer compatible input data (computer cards) supplied to UDRI by MCIC were compared to the data reported in the 1975 revision of the Handbook. When discrepancies between variables (such as stress ratio, frequency, specimen direction, etc) were found, they were marked with an asterisk on the card image data so that the differences could be investigated further. One means of settling the discrepancy was through use of the second step in the process whereby the data were compared to the original reference. Since the data on the computer cards listed the specimen identification number, the original data was normally found with relative ease and comparisons Every attempt was made to consult the original references and verify the accuracy of these available data. As with newly acquired data, available data were also reviewed relative to applicable ASTM criteria prior to being identified as candidate data for the 1983 revision.

間ではないないない。現場のあれるといいで

The final step in the review process was the determination of whether the data were a "true" representation of the behavior they described. This step was implemented for both newly acquired data as well as for the available Handbook data in order to eliminate suspect data through subjective criteria. Unfortunately, it is not possible to detail the subjective criteria that were employed to exclude questionable data. It can be stated that the principal mode of operation here was by way of comparison between behaviors that were expected to be somewhat similar.

2.0.2 Fracture Mechanics Basis

であるシングのでは、「他の人の人が一般などの人がある。」 1980年 - 1980年

The damage tolerant data reported in this Handbook utilize the technology of linear elastic fracture mechanics. This technology is widely applied throughout the aerospace industry to relate structural calculations for cracked structures to material behavior in the presence of cracks. In essence, fracture mechanics provides a structural parameter, the stressintensity factor (symbol K) which characterizes the magnitude of stresses and strains in the crack tip region of essentially elastic structures. It was postulated that the stress-intensity factor represents a similitude parameter that describes crack tip behavior under various loading conditions (monotonically increasing load, fatigue loading, etc.); the hypothesis has been verified for a wide number of materials, loading conditions, and failure type mechanisms. For a more thorough review of linear elastic fracture mechanics and its applications to the aerospace industry, see AFWAL-TR-82-3073, USAF Damage Tolerant Design Handbook: Guidelines for the Analysis and Design of Damage Tolerant Aircraft Structures.

Currently, there are developments that are extending the technology of fracture mechanics to aid in the solution of crack problems for which the assumptions of linear elastic fracture mechanics are invalid. This technology is referred to as nonlinear fracture mechanics and its similitude parameter is the J-integral (J), or alternately the crack tip opening displacement (δ). To date, nonlinear fracture mechanics has been successfully utilized to characterize tearing type fractures and fractures occurring in the presence of large-scale yielding. Some evidence has been presented suggesting that J may provide a similitude parameter for non-monotonically increasing type loadings, i.e., for fatigue loadings; but, questions still exist here. It is expected that subsequent revisions of this Handbook will include nonlinear fracture mechanics type data such as $J_{\rm IC}$, a plane-strain fracture toughness property, and $J_{\rm P}$ -curves, (tearing resistance curves).

2.0.3 <u>Test Specimen Geometries</u>

As described above, the stress-intensity factor provides a parameter that can be used to establish similitude between two cracked structures. This means that if the stress-intensity factor in structure no. 1 equals the stress-intensity factor in structure no. 2 and if other conditions (loading, material, environment, etc) are the same, then the cracks in both structures will behave the same way. This concept provides the justification for conducting material behavior studies on small laboratory test specimens (coupons) which contain cracks. If the resistance to cracking in the laboratory can be optimized by a choice of material, then improved resistance can also be obtained for structural hardware (given that the material can be fabricated into the hardware without processing degradation taking place).

The types of test specimen geometries that have been employed to generate damage tolerance (fracture mechanics) type data for this Handbook are summarized in Table 2.2. Table 2.2 also guides the reader to individual figures (Figures 2.1 through 2.14) which describe the geometries associated with individual specimen names and symbols.

To relate the crack type data collected in a cracked test specimen to other cracked structures, it is necessary to have a description of the stress-intensity factor (K) as a function of crack length (a) for the test specimen geometry. Over the last fifteen years, a great deal of attention has been given to generating accurate stress-intensity factor equations for laboratory test specimen geometries, due to their importance to standard methods of test and to reporting data. The stress-intensity factor equations are typically presented in either of the following two forms:

$$K = \sigma \sqrt{\pi a} \cdot \beta$$

where $\sigma = \text{remote stress (load } \frac{1}{2} \text{ area})$ (2.1)

a = crack length measure

 β = function of crack length and global geometry

ALLOS AND MESON SERVICE SERVIC

or

$$K = \frac{P}{BW^{1/2}} - Y \tag{2.2}$$

where

P = load

B = thickness of specimen

W = width of specimen

Y = function of crack length (a) and global geometry

Equation 2.1 is used when the loading is applied remotely from the crack, whereas Equation 2.2 is more typically used for point loading or localized loading conditions. One should note that K is a linear function of loading (σ in Equation 2.1 and P in Equation 2.2) and that the loading and geometric components of the equations are independent of each other. Thus, if one wishes to describe a stress-intensity factor relationship for a given geometry, they might formulate the equations in the following forms:

$$\frac{K}{\sigma} = \sqrt{\pi a} \cdot \beta \tag{2.3}$$

or

$$\frac{K}{P} = Y \tag{2.4}$$

Equations 2.3 and 2.4 are referred to as stress-intensity factor coefficients; the right hand side of these equations only describes the effect of the crack in the given geometry.

Table 2.3 provides a listing of stress-intensity factor coefficients which were used to generate data for this Handbook. Each equation is given a stress-intensity factor equation number, e.g. SIF.7 refers to the stress-intensity factor coefficient for the WOL (Wedge Opening Load) specimen geometry illustrated in Figure 2.6. Also note that Table 2.3 has a remarks section which describes the conditions under which individual equations were used.

TABLE 2.2

CORRELATION LISTING OF TEST SPECIMEN SYMBOL,
TEST SPECIMEN GEOMETRY, AND REFERENCE FIGURE NUMBER

SYMBOL	TEST SPECIMEN	GEOMETRY DESCRIBED IN FIGURE NUMBER
CCP	Center Crack Panel	2.1
СТ	Compact (Tension)	2.2
NB	Three Point Notched Bend	2.3
4-NB	Four Point Notched Bend	2.4
CANT	Cantilever Beam	2.5
WOL	Wedge Opening Load	2.6
BWOL	Bolt Loaded WOL	2.7
SENT	Single Edge Notch Tension	2.8
PTSC	Part-Through Surface Crack	2.9
KB-BAR	K _R BAR	2.10
DCB	Double Cantilever Beam	2.11
BDCB	Bolt Loaded DCB	2.12
TDCB	Tapered Double Cantilever Beam	2.13
CNT	Center Notch Tension	2.14

Figure 2.1. Center Cracked Panel (CCP) Specimen.

Figure 2.2. Compact Tension (CT) Specimen.

Figure 2.3. Three Point Notched Bend (NB) Specimen.

のと、他のできないのでは、自己のできないとは、自己のできないとは、自己のできないとは、自己のできないとは、自己のできないとなっては、自己のできないとなっては、自己のできないとは、自己のできないとは、自己のできないとは、自己のできないとは、自己のできないとなっては、自己のできない。自己のできないとなっては、自己のできないとなっては、自己のできないとなっては、自己のできないとなっては、自己のできないとなっては、自己のできないとなっては、自己のできないとなっては、自己のできないとなっては、自己のできないとなっては、自己のできないとなっては、自己のできないとなっては、自己のできないとは、自己のできない。

0

Figure 2.4. Four Point Notched Bend (4-NB) Specimen.

Figure 2.5. Cantilever Beam (CANT) Specimen.

Figure 2.6. Dimensions of Several T Type Wedge Opening Load (WOL) Specimens.

Figure 2.7 Modified 1-T WOL (BWOL) Specimen Used to Determine $K_{\mbox{\scriptsize ISCC}}$ by Bolt Loading.

Figure 2.8. Single Edge Notch Tensile (SENT) Specimen.

がよった。 19.1 ないものとなる 19.1 できない 19.1 ではい 19.1 ではない 19.1 で

(

Figure 2.9. Typical Design for Part-Through-Surface-Crack (PTSC) Specimen.

ALL DIMENSIONS IN INCHES

のなるとは、これであるとのである。 では、これでは、これできないとのできないとのできないとのできないとのできない。これできないとのできない。これできないできない。これできないできない。これできないとのできない。これできないとのできない。これできないとのできない。これできないできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできないできない。これできないできない。これできない。これできない。これできない。これできない。これできない。これできない

Figure 2.10. KB Bar (KB-BAR) Specimen.

Figure 2.11. Double Cantilever Beam (DCB) Specimen with Side Grooves.

Figure 2.12. Bolt-Loaded Double Cantilever Beam (BDCB) Specimen.

Management of the State of th

Figure 2.13. Typical Tapered Double Cantilever Beam (TDCB) Specimen with Side Grooves.

Figure 2.14. Center-Notch Tensile (CNT) Specimen.

TABLE 2.3
STRESS-INTENSITY FACTOR COEFFICIENTS FOR TEST SPECIMEN
GEOMETRIES USED TO GENERATE DAMAGE TOLERANT DATA

TEST SZECIMEN GEOMETRY	STRESS-INTENSITY FACTOR COEFFICIENT	EQUATION NUMBER	REMARKS
CCP (See Figure 2.1)	Κ = /πa . (Sec πα) ¹ / ₃ α = a/W	S1F.1	This equation was used whenever K was calculated for the CCP Specimen
CT (See Figure 2.2)	$\frac{K}{BW_1^4} = \frac{(2+\alpha)}{(1-\alpha)^{3/2}} \cdot [0.866 + 4.64\alpha - 13.32\alpha^2 + 14.72\alpha^3 - 13.32\alpha^2 + 14.72\alpha^2 - 13.22\alpha^2 + 14.72\alpha^2 - 14.72\alpha^2$	S1F.2	This equation was used whenever K was calculated for data generated with the CT specimen; the equation is valid for a/W > 0.2
CT (See Figure 2.2)	$\frac{K}{BW^{4}} = \alpha \frac{129.6 - 185.5 + 655.7 \alpha^{2}}{-1017 \alpha^{3} + 638.9 \alpha^{3}}$ $\alpha = \alpha / U$ $\frac{H}{W} = 0.600$	SIF.3	This equation was used to calculate K for data incorporated into pre-1983 revisions. Reprocessed a vs N data utilized equation SIF.2
() PT BEND) (See Figure 2.3)	K. = Su ⁵ [2.9 - 4.6a + 21.8a ² Bu ⁵ a = a/w S = span length	S1F.4	No new data were processed from NB specimens. Previous data incorportated into the handbook utilized this equation.

:::

STRESS-INTENSITY FACTOR COEFFICIENTS FOR TEST SPECIMEN GEOMETRIES USED TO GENERATE DAMAGE TOLERANT DATA

TEST SPECIMEN GEOMETRY	STRESS-INTENSITY FACTOR COEFFICIENT	EQUATION NUMBER	REMARKS
(4 PT BEND)	$\frac{K}{6H}$ = $u^{\frac{1}{2}}[1.99 - 2.47a + 12.97a^{2}]$ $\frac{6H}{6H}$ = -23.17a ³ + 24.80a ³]	SIF.5	No new data were processed from 4-NB specimens. Previous data incorporated into the handbook utilized this equation. s/W must be greater than 2.
(See Figure 2.4)	<pre>d = a/W H = P(S-s)/4, mument S,s = major and minor span</pre>		
CANT	$\frac{K}{\frac{K}{150}} = 4.12 \left[(1-\alpha)^{1/3} - (1-\alpha)^3 \right]^3$ Bh	SIF.6	No new data were processed from CANT specimens. Previous data incorporated into the handbook utilized this equation.
(See Figure 2.5)	u = a/k N = P*S, moment		
חסר	$\frac{K}{P} = \frac{(2+\alpha)}{(1-\alpha)^{3/2}} = \frac{(0.8072 + 8.8583)}{-30.23\alpha^2 + 41.088\alpha^3}$ $\frac{1}{8W^3} = \frac{-24}{-24} \frac{15\alpha^6 + 4.951\alpha^5}{-24}$	S1F.7	All new a vs N data from WOI. specimens with H H 0.485 were processed using this equation
(Sec Eigure 2.6)	**************************************		
BMOL.	$\frac{K}{p} = a \frac{37.2}{(30.96 - 195.8a + 730.6a^2)} = \frac{1}{1186.3a^3 + 754.6a^8}$	S1F.8	Equation was used to calculate stress-intensity factors for both WOL and BWUL in pre-1983 revisions. No new BWOL ray data were received for processing.
(See Figure 2.7)	u = 1/W B = /B.B _N B - /B.B _N B - /B.B _N		

TABLE 2.3 (Continued)

SOURTHIES USED TO GENERATE DAMAGE TOLERANT DATA

STRESS-INTERSITY PACTOR EQUATION COEFFICIENT NUMBER REMARKS	K = u ^h (1.99 + 0.4124α + 18.70.1 ² SIF.9 New da/dN data processed from SENT specimens utilized this equation. Previous data incorporated into hendbook also utilized this equation. u = a/w	$\frac{K}{d}=1.1 \left(\frac{n_B}{q}\right)^3$ SIF.10 Equation was used to reduce a vs N data for PTSC specimens. Previous data incorporated into handbook also used a similar version of $q=1.0+1.464\left(\frac{n}{c}\right).65$ a = depth 2c = surface length	Equation (ised by Aircraft Engine Group SIF.11 Used for da/dN testing. Data received was of General Electric Company. Closely directly incorporated into the 1983 revision Approximates Neuman and Raju Solution for this geometry.	Specimen used for generating da/dN, da/dt, and Kisc data in pre-1983 revisions. The function Y was specified for given H/W. Data collected with DCB specimens were not reprocessed and no new data were received.
	SENT (See Figure 2.8)	PTSC (See F1gure 2.9)	KB 6AK (See F1gure 2.10)	DUB (See Figure 2.11)

Ç

の大学の大学の大学の

STRESS-INTENSITY FACTOR COEFFICIENTS FOR TEST SPECIMEN CEOMETRIES USED TO GENERATE DAMAGE TOLERANI DATA

REMARKS	Used for Kisco testing: nreviously calculated using this equation whe directly incorporated into the 1983 revision.	Equation used by McDonnell Aircraft (company to reduce data referenced in Ref. no. 84360 (Equation is based on Plane-Strain Assumptions). Data were incorporated without change.	No new data were processed from TDCB specimens. Previous data incorporated into the handbook utilized this equation.	No new data were processed from CNI specimens. Previous data (Kl $_{\rm Src}$) for sheet materials) incorporated into the handbook utilized this equation.
EQUATION NUMBER	SIF.1)	2.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	S1F.15	S1F.16
STRESS-INTENSITY FACTOR COEFFICIENT	*	$\frac{E}{E} = \left\{ \frac{dc}{da} \right\} = \left\{ \frac{1}{2} \right\}$ where $\frac{dc}{da} = \left[1.65 - 0.925 \right] (0.8 - \frac{B_N}{B}) \cdot *10^{-6}/1b$ $\frac{B}{N} = Net Thickness at Side (irnove)$ $E = Elastic Modulus$ $= Polsson's Ratio$	where dc constant da Fastic Hodulus B - Fastic Hodulus B - Fastic Hodulus B - Tastic Hodulus	K = -[-a, [] = 0.2a + 4a ²] 1 = a/k SIF.1b is comparable to SIF.1 FOR 0 = -1 = 0.2
TEST SPECIMEN GEOMETRY	8-DC8 Fixure 2.12	TOUB	Inch (Sec. Fagure 2.13)	(M) (New Figure 2, 14)

2.1 PLANE-STRAIN FRACTURE TOUGHNESS (K_{TC})

The plane-strain fracture toughness (K_{IC}) property was initially established to characterize the fracture resistance of materials that exhibited rather abrupt fractures in the presence of cracks. Early observations showed that thickness had a pronounced effect on the critical levels of stress-intensity factor associated with fracture; a schematic illustrating this behavior is presented in Figure 2.15. As noted in the schematic, for thicknesses greater than the experimentally determined lower-bound, the critical stress-intensity factor level was found to be relatively constant.

The reasons for the independence of toughness with further increases in thickness were related to the amount and type of yielding which could occur at the crack tip under what has been referred to as plane-strain conditions. Because the thickness-independent toughness property was useful for comparing a large variety of metals for fracture resistance, ASTM (American Society for Testing and Materials) embarked on a standardization effort that eventually resulted in the ASTM Standard Test Method for plane-strain fracture toughness of metallic materials, i.e., in the ASTM Standard E399.

The ASTM Standard E399 is the current procedure for deterning critical plane-strain stress intensity factors (K_{TC} values) for high-strength alloys. From the method of test, "The property K_{TC} determined by this method characterizes the resistance of a material to fracture in a neutral environment in the presence of a sharp crack under severe tensile constraint, such that the state of stress near the crack front approaches tritensile plane-strain, and the crack-tip plastic region is small compared with the crack size and specimen dimensions in the constraint direction."

Assuming that plane-strain conditions are approximated when unstable cracking occurs at the crack front during a $\rm K_{IC}$ test, the critical stress intensity factor calculated from the

などは、一直はないないには、一直でしているのは、一直ではないのでは、一直ではないというです。一直ではないないない。一直にはないないないできない。ないというというないは、大利のできないというです。

Figure 2.15. Fracture Toughness Behavior as a Function of Thickness.

test data is characteristic of the material of the specimen at the testing temperature and for the specific crack growth direction. Since the properties vary somewhat from specimen to specimen in one plate or in one heat, and from heat to heat of a given alloy type with the same heat treatment, the measured K_{IC} values for several heats will show some degree of scattering in the data. Usually, the extent of scattering is greater than that for replicate tensile tests. For this reason, a relatively large number of data points would be required to establish minimum design values for any of the fracture mechanics parameters. To minimize the scatter in data, maximum effort is required in controlling the processing, preparation, and testing of each specimen. These precautions are discussed in the Method of Test (ASTM E399).

The ASTM E399 procedure indicates that calculated K values be designated K_Q , which is a provisional value. When the validity of the results is established by the procedures designated in the Method of Test, then the K_Q value can be identified as a valid K_{IC} value. Some of the primary criteria for judging the validity of K_{IC} values are based on crack length and specimen thickness conditions. The test data must demonstrate that sufficient constraint was available to justify the planestrain assumptions. The other requirements for validity of the K_{IC} values involve measurements of the length of the fatigue crack, contour of the crack front, out-of-plane deviation of the fatigue crack, maximum stress intensity resulting from the fatigue cracking load, and details of the load-deformation curves.

All newly acquired plane-strain fracture toughness ($\rm K_{IC}$) data incorporated in the 1983 Handbook revision were generated using the ASTM Standard E399. These newly acquired data were generated using the CT specimen geometry (See Figure 2.2). All suppliers of new $\rm K_{IC}$ data provided only E399 validated $\rm K_{IC}$ data in a reduced format which facilitated direct incorporation into

the Handbook. Data incorporated in earlier revisions for the most part utilized ASTM Standard E399 or the predecessor tentative method for plane-strain fracture toughness testing; and after review, these data were also included into the 1983 revision. In some instances, nonstandard specimens were used for generating critical plane-strain stress-intensity factors in the earlier revisions. Some of these data were incorporated in the 1983 revision on the basis that a reasonable procedure was used and that corresponding data from other sources were limited for the alloys concerned. All data were checked against the criteria for specimen thickness (B) and crack length (a), i.e., B, a $\geq 2.5~({\rm K_{IC}/\sigma_{ys}})^2$ where σ_{ys} is the tensile yield strength.

2.2 CRITICAL PLANE STRESS FRACTURE TOUGHNESS

2.2.1 Plane Stress and Transitional Fracture Toughness

The critical level of the stress-intensity factor for non-plane-strain conditions is normally described with the symbol K2, see Figure 2.15, and is referred to as the plane-stress or transitional fracture toughness. Generally, plane-stress fracture-toughness testing is representative only of through-thethickness cracks in relatively thin section materials. For a given material thickness, this configuration has the least lateral restraint on the crack front and, hence, approaches most closely the ideal plane-stress stress state conditions at the crack tip. As the material thickness increases, transitional stress state behavior is introduced by the restraint of additional material along the crack front. In contrast to that in plane-strain fracture-toughness testing, the characterization of fracture toughness in the plane-stress and transitional-stress states is complicated by the degree to which crack tip plasticity and associated stable crack extension are manifested prior to fracture. Although an explicit test method for this mode of toughness has not been formulated, there are a number of useful experimental guidelines which have been developed.

As background information, the nature of plane-stress and transitional fracture toughness is described here in terms of its deviation from that of the plane-strain stress state. Current procedures for this mode of testing and the associated analytical formulations of toughness then are presented.

The difficulties that beset the characterization of plane scress and transitional fracture are not only of a theoretical nature, but also of a practical experimental nature. Basic questions on the nature of plasticity, crack extension, and crack instability, as well as the wide variation in experimental techniques among laboratories all contribute to variability in the resulting fracture toughness evaluations. However, in spite of these difficulties, surprisingly consistent characterizations of fracture behavior can be obtained.

During the fracture test of a structural material in a plane-stress or transitional-stress state, stable extension of the initial fatigue precrack may occur as the load increases. This behavior is illustrated schematically in the crack growth curve of Figure 2.16. Depending on the material, stable crack extension may amount to 30 percent or more of the initial precrack length.

the term of the property of the term of the first of the

Once it is realized that fracture under these conditions is not an abrupt instability instantaneously associated with a small increment of crack extension, it must also be recognized that a single toughness parameter is not sufficient to characterize this complex behavior. In fact, the concept of crack growth resistance curves (see Section 2.4) is an outgrowth of these observations and best describes the material behavior. However, as a means of characterizing fracture behavior in plane-stress and transitional stress state, engineers have traditionally utilized abrupt fracture concepts, i.e., have used critical stress-intensity factor levels, to describe various events associated with the observed behavior.

2.2.2 Plane Stress and Transitional Fracture Toughness Testing

The procedures associated with testing thin-section center-cracked tension panels differ from those associated with plane-strain fracture toughness testing only in the additional emphasis and refinement that is directed to monitoring the slow, stable tear portion of the fracture process.

The general testing configuration is illustrated schematically in Figure 2.17. The specimen with an initial fatigue precrack, 2a_O, is loaded slowly under load or stroke control. The onset and extension of crack growth under increasing load is usually monitored photographically, visually, or by means of compliance gage calibration until fracture occurs.

Although, as previously mentioned, more attention is currently being directed to monitoring the detail stress and crack length dimensions during the slow tear process, the preponderance

Figure 2.16. Typical Crack Growth Behavior in Plane Stress and Transitional Stress States.

Figure 2.17. Thin-Section, Center-Cracked Tension Panel Configuration.

of available test data is limited to a record of σ_0 , $2a_0$, σ_c , and $2a_c$, as indicated in Figure 2.16. It is this information which is compiled and analyzed in this Handbook.

2.2.3 Critical Stress-Intensity Factor (K_C)

There are two clearly identified points that can be noted on the crack growth resistance curve shown in Figure 2.16, i.e. points O and C which are associated with the onset of tearing and critical conditions, respectively. Using a linear elastic fracture mechanics analysis, these two structural conditions can be formulated as

$$K_{\text{ONSET}} = \sigma_{\text{O}} \sqrt{\pi a_{\text{O}}} \left(\text{Sec } \frac{\pi a_{\text{O}}}{W} \right)^{1/2}$$
 (2.5)

and

$$K_{c} = \sigma_{c} \sqrt{\pi a_{c}} \left(\text{Sec } \frac{\pi a_{c}}{W} \right)^{1/2}$$
 (2.6)

using the stress-intensity factor information given in Table 2.3, i.e. Equation SIF.1. As requested by industry engineers, available test information (σ_0 , $2a_0$, σ_C , $2a_C$) were reported in the plane stress and transitional fracture toughness tables along with a calculation of the critical fracture toughness level based on Equation 2.6. While stress and crack length information was sometimes available for a calculation of the onset fracture toughness (Equation 2.5), insufficient space in the table precluded reporting this toughness.

plane stress and transitional fracture behavior absorb much more energy than plane-strain behavior due to the lack of thickness constraint on crack tip plasticity is also insufficient, and the assumption of linear elastic fracture mechanics are violated. The in-plane geometric constraint on crack tip plasticity is required to ensure that gross plasticity is not the controlling mechanisms of fracture. Extensive study

has indicated that the condition for CCP specimen instability for ductile materials is given by a net section stress criteria and not by a fracture (crack) controlled instability criteria. While the fracture toughness values for all plane strain type tests are reported, those values calculated for stress conditions where the net section stress ($\sigma_{\text{net}} = \text{Load}/(\text{W-2a}_{\text{C}})$ exceeds 80 percent of the tensile yield strength are marked with an asterisk. Asterisked values are not utilized in any mean or standard deviation calculations summarizing plane-stress fracture critical properties.

2.3 THE APPARENT FRACTURE TOUGHNESS

The apparent fracture toughness (K_{App}) is a plane stress and transitional fracture toughness property that is sometimes utilized as a lower bound on the critical fracture toughness. Its initial purpose was to preclude measurements of the tearing process observed during fracture tests of CCP specimens. As noted in Figures 2.17, and 2.16, the initial crack length ($2a_{\rm C}$) extends during the loading to the critical crack length ($2a_{\rm C}$). The two simplest measurements to make in such a fracture test are those of the initial crack length ($2a_{\rm C}$) and critical (maximum) stress at failure ($\sigma_{\rm C}$). Thus, for simplicity, a $K_{\rm App}$ fracture toughness calculation was made using

$$K_{App} = \sigma_{c} \sqrt{\pi a_{o}} \cdot (\sec \frac{\pi a_{o}}{W})^{\frac{1}{2}}$$
 (2.7)

Equation 2.7 represents the stress-intensity factor corresponding to the stress and crack length condition at point "A" in Figure 2.16. It can be noted by comparing Equations 2.6 and 2.7 that K_{App} will always be less than or equal to K_C since $a_O \leq a_C$. Also, K_{App} will always be greater than or equal to K_{ONSET} since $\sigma_O \leq \sigma_C$. A comparison of the apparent fracture toughness with the onset and critical fracture toughness is shown in Figure 2.18 for a wide ce: er cracked panel (CCP) specimen.

との主要ななどのも見りというでは見からのできませんとうとう情報となるのは、見られたとも見られるととは見て

(3)

:5^

Figure 2.18. Description of the Three Fracture Toughness Criteria that are Utilized to Estimate Residual Strength Under Tearing Fracture Conditions.

When the net section stress ($\sigma_{\text{net}} = \text{Load}/(\text{W-2a}_{\text{O}})$) exceeds 80 percent of the tensile yield strength, the K_{App} values are marked with an asterisk. The asterisked values are not utilized in any mean or standard deviation calculations summarizing plane-stress apparent fracture toughness properties.

2.4 R-CURVE $(K_R \text{ VERSUS } \Delta a_{eff})$

The resistance curve (or R-curve) provides a complete description of the tearing fracture behavior illustrated in Figure 2.16. R-curves characterize the resistance to fracture of materials during incremental slow-stable crack extension and result from growth of the plastic zone as the crack extends. ASTM recently formalized the collection and reporting of such curves through a new standard, ASTM Standard E561, covering the standard practice for R-Curve Determination. As stated by ASTM E561:

"An R-curve is a continuous record of toughness development in terms of K_R plotted against crack extension in the material as a crack is driven under continuously increased stress-intensity factor, K)."

The value of K_R (toughness) is calculated using standard stress-intensity factor equations evaluated with the instantaneous values of applied stress (σ) and crack length (a), as the crack extends. To account for the effects of plasticity, the measured crack length is enhanced with a plastic zone correction, and an effective crack length (a_{eff}) is actually used in the calculation of K_R . For example, when a CCP specimen is used to collect tearing resistance data, the K_R is calculated based on the standard stress-intensity factor equation (SIF.1) given in Table 2.3.

$$K_{p} = \frac{1}{2} \sqrt{\frac{\pi}{2}} \operatorname{eff} \cdot (\operatorname{Sec} - \frac{\operatorname{Ta} \operatorname{eff}}{W})^{\frac{1}{2}}$$
 (2.8)

where and seff are the current stress and effective crack length measurements in the test. The effective crack length for optical measurements is calculated from

$$a_{eff} = a + r_{c} \tag{2.9}$$

where a is the optically measured crack length and

るな意味のなかの意味のなかな。これでは、大きななないのでは、「これのなかない。」というなどは、「これのないない。」というない。「これのでは、「これのないない。」というない。

$$r_{y} = \frac{1}{2\pi} \left(\frac{\kappa}{\sigma_{ys}}\right)^{2} \tag{2.10}$$

the plastic zone size for the current applied stress and crack length. If the crack length is automatically monitored by compliance techniques, then the effective crack length is automatically obtained using the two compliance equations presented in ASTM E561.

The $\rm K_R$ value calculated from Equation 2.8 can be described as a function of the increment of physical crack extension ($\rm \Delta a = a - a_{O}$, $\rm a_{O}$ = initial crack length) or as suggested by ASTM 561 as a function of the increment of effective crack length ($\rm \Delta a_{eff} = (a + r_{y}) - a_{O}$). The functions $\rm K_R$ versus $\rm \Delta a$ and $\rm K_R$ versus $\rm \Delta a_{eff}$ are referred to as R-curves (or resistance curves). Data presented in this handbook correspond to the use of the ASTM E561 definition of R-curves, i.e. $\rm K_R$ is presented as a function of $\rm \Delta a_{eff}$.

One of the fundamental hypotheses behind the application of R-curves to the prediction of tearing type fractures in thin structures and in structures fabricated from ductile materials is that the R-curve (material tearing resistance) is independent of crack length for a given geometry and is independent of geometry and external loading. As long as the structure matches the monotonically increasing stress-intensity factor conditions given by the R-curve, the structure will exhibit the same tearing resistance experienced in the laboratory test specimen. The Damage Tolerant Guidelines Handbook (AFWAL-TR-82-3073) describes how the R-curve can be applied to the calculation of critical stress levels in structures.

2.5 FATIGUE CRACK GROWTH RATE

2.5.1 Fatigue Crack Growth Behavior

Under some loading conditions or environmental conditions, cracks can grow at load levels well below that required to cause fracture. As the crack continues to grow, conditions become more favorable for fracture, and eventually under the applied loading fracture does occur. This process whereby cracks are observed to grow at subcritical load levels is referred to as subcritical crack growth. Illustrated in Figure 2.19 is a fatigue crack growth curve, which shows the type of behavior typically observed during a specific subcritical crack growth process; in this case, damage is done to the material by cyclic (or fatigue) loading. This section addresses properties used to measure fatigue crack growth behavior and Sections 2.6 and 2.7 address properties used to characterize sustained load cracking in an environment.

The objective of fatigue crack growth testing is to determine the rates at which subcritical flaws propagate under cyclic loadings prior to reaching a size critical for fracture. These rates are determined from measurements of the crack extension occurring over an increment of cyclic loading. Typically, these measurements are made by monitoring crack extension optically on the specimen surface during the test. From the basic crack length and cycle count data, the fatigue-crack growth rate is determined as the quotient of the incremental crack growth divided by the incremental cycle count, i.e., $\Delta a/\Delta N$ or da/dN, the slope of the crack growth (life) curve.

The crack growth rate measures the resistance of the material to the applied loading conditions. The similitude parameter that allows data to be trunsferred from one cracked geometry to another is the range in stress-intensity factor (CK). The LK parameter is the difference between the maximum and minimum stress-intensity factors ($K_{\rm max}$ and $K_{\rm min}$, respectively) for a cycle of loading. The property of fatigue crack growth rate is described throughout this Handbook as a function of CK.

Figure 2.19. Typical Crack Growth-Life Curve.

2.5.2 Data Acceptance Criteria

In general, similar specimen configurations are used for fatigue-crack-growth testing as are used for other types of damage tolerant tests. The applied loads are reduced in magnitude and are cyclic in nature for studies of crack extension under fatigue loading conditions, and the experimental methods are extensions of the fracture testing procedures previously described. Instead of applying either a rising or sustained load to fracture the specimen, a constant amplitude cyclic load is applied to initiate and grow the crack over a significant portion of the specimen width. ASTM recently published a standard testing method, i.e., ASTM E647, which covers the collection and reporting of fatigue crack growth rate data. Most of fatigue crack growth rate data reported in the handbook were collected and reduced utilizing the guidelines and methods described by ASTM E647. For CCP and CT specimen geometries, the ASTM Standard describes 11 explicit criteria for validating the data; these criteria are summarized in Table 2.4. If data were noted to fail only one or two of the recommended criteria and provided a realistic representation of the growth rate behavior, they were incorporated into the handbook. Note is made in the handbook database of da/dN data that failed to meet the ASTM criteria listed in Table 2.4.

2.5.3 Data Reduction Procedures

Data reduction of crack growth rate from the crack length versus cycle count data was by one of two methods. The secant method was chosen when there were seven or less crack length versus cycle count measurements. A five point polynomial movable strip method was used for data with more than seven crack length versus cycle count measurements. This procedure was similar to the seven point method recommended in the ASTM standard; the five point method was chosen to provide additional data points at the extremes of growth rate range.

TABLE 2.4
CRITERIA CHECKS FOR FATIGUE CRACK GROWTH RATE DATA

Criteria No.	ASTM E647 Paragraph	Specimen Type	Criterion
1	7.1.3.1	CT	$\frac{W}{20} \leq B \leq W/4$
	7.1.3.2	CCP	20 B <u><</u> W/8
2	Figure 1	CT CCP	W > 1.00" None
3	8.6.3	CT and CCP	If $B/W \ge 0.15$ need front and back crack lengths.
4	7.1.1 7.1.2	CT CCP	a _N > 0.2W None
5	8.3	CT and CCP	$a_1 \ge 0.1B$ or h, whichever is greater
6	8.6.4	CT and CCP	(Front Crack Length-Back Crack Length) < 0.025 W or 0.25 B, whichever is less.
7	8.6.2.1	CT	if $0.25 \le a/W \le 0.60$ then $\Delta a \le 0.02$ W $a/W > 0.60$ then $\Delta a \le 0.01$ W
	8.6.2.2	CCP	if 2a/W ≤ 0.60 then la ≤ 0.03 W 2a/W > 0.60 then ∆a ≤ 0.02 W
8	8.6.2.3	CT and CCP	-
9	7.2.1	CT	$W - a \ge \frac{4}{\pi} \left(K_{\text{max}} / TYS \right)^2$
	7.2.2	CCP	P
10	8.5.1	CT and CCP	$\frac{\text{In Test}}{0 \le \left \frac{P_{\text{max}}}{P_{\text{max}}} \right \le 0.10} \le 0.10$
11	8.3.1	CT and CCP	(1) $\frac{\frac{\text{In Precracking}}{P_{\text{max}}^{2}a+1} \cdot \frac{P_{\text{max}}^{2}a}{P_{\text{max}}^{2}a} \leq 0.20$
			(2) $\Delta a \geq (3/\pi) \left(K_{\text{max}}/\text{TYS}\right)^2$
CCP = Ce B = Spec W = Spec a = Crac a _N = Not	pact Tension nter Cracked imen Thickne imen Width k Length ch Size igue Precrac	Panel ss	h = Height of Specimen Δa = Change in Crack Length P _{max} = Maximum Load K _{max} = Maximum Stress Intensity TYS = Tensile Yield Strength K _{max} = Maximum Stress Intensity at Smaller Crack Length being
-			Considered

It is important to note that the calculation of stress-intensity factor range (ΛK) is the difference between the maximum and minimum stress-intensity factors (K_{max} and K_{min} , respectively) as defined in ASTM Standard E647. These calculations are best expressed using equations specific to a given geometry; for illustration purposes, assume that the test specimen geometry is CCP. Then, the maximum and minimum stress-intensity factors are given by

والمرابع والمرابع

$$K_{\text{max}} = \sigma_{\text{max}} \sqrt{\pi a} \left(\sec \frac{\pi a}{W} \right)^{\frac{1}{2}}$$
 (2.11)

and

$$K_{\min} = \sigma_{\min} \sqrt{\pi a} \left(\sec \frac{a}{W} \right)^{\frac{1}{2}}$$
 (2.12)

where σ_{\max} and σ_{\min} are the maximum and minimum stresses in the applied loading cycle. The range of stress-intensity factor is defined as

$$\Delta K = K_{\text{max}} - K_{\text{min}}$$
 (2.13)

By ASTM convention, if K_{\min} is compressive (negative), then $K_{\min} \equiv 0$, and $\Delta K = K_{\max}$.

2.5.4 Data Reporting Procedures

The presentation of fatigue-crack-propagation rate data is far more complex than the presentation of fracture toughness data (either $K_{\rm IC}$ or $K_{\rm C}$) due to the large quantities of data which must be treated. Where a fracture test generally yields a single characteristic toughness value, a fatigue-crack-growth test specimen generally yields from 10 to 100 rate data points, da/dN, which must be evaluated in terms of the stress-intensity factor ΔK range.

The Damage Tolerant Design Data Handbook presents fatigue crack growth rate (da/dn) data in both graphical and tabular formats. A graphical format is used to present da/dN versus ΔK data and the mean trend of these data are tabulated. The

least squares cubic spline approximation method has been selected from those available to provide a practical method for generating tables with fixed ΔK values. A least squares cubic spline approximation is an analytic method of fitting a "French" curve to a data set. The curve is constructed by fitting different cubic polynomials on non-overlapping, connecting subintervals over the range of the independent variable. In the Handbook, the independent variable will be ΔK . The boundary points of the intervals are referred to as knots and the cubic polynomials meet at the knots. The polynomials are also constrained so that the first and second derivatives are continuous at the knots. The result of this process is a smooth curve which passes through the center of the data.

Figure 2.20 is an example of a spline curve fit to a da/dN data set reported by Hudak et al. for 2219-T851 Aluminum alloy. The stress ratio used to establish the data shown was 0.3. The knots are marked in the figure by the large dots.

In general, da/dN data are well enough behaved so that a maximum of five knots was sufficient in generating the handbook tables. The actual number of knots used in fitting a curve to a set of data is a function of the number of da/dN data points and their pattern in $da/dN-\Delta K$ space.

The mean trend table for a set of da/dN data will be generated by selecting points from the spline curve that has been fit to the data. The ΔK values will be chosen such that they are approximately equally spaced in a logarithmic scale and cover the complete range of ΔK values expected. The da/dN values are obtained through the interpolation of the spline curve at the preselected ΔK values. The complete set of ΔK values are: 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.9 as well as 10 times these values, and 130, 160, and 200.

A DESCRIPTION OF THE PROPERTY OF THE PROPERTY

ria)

Figure 2.20. A Cubic Spline Curve Fit to FCGR Data for 2219-T851 Aluminum at a Stress Ratio of 0.3.

Because the da/dN data do not always span the complete ΔK range, the table also reports the minimum and maximum da/dN values corresponding to the recorded minimum and maximum ΔK values. The extreme pairs of $(\Delta K, da/dN)$ points correspond to the extremes of the spline curve.

Table 2.5 describes the type of table designed for the handbook. The minimum values of ΔK and da/dN as obtained from the spline curves are presented at the top of the table for each data set with a variable such as stress ratio. These tables will be directly opposite the graphical format of the da/dN data. The interpolated da/dN data are listed in the body of the table as a function of the selected ΔK values that span the data sets, and the maximum values of ΔK and da/dN as obtained from the spline curves are presented towards the bottom of the table.

The last two sections of Table 2.5 are utilized to summarize the statistics of the data fitting process. The room mean square percent error (RMSPE) is utilized to describe the statistical accuracy for the spline curve fit at each stress ratio. The RMSPE is given by:

RMSPE = 100 x
$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} \frac{(\frac{y_i - \hat{y}_i}{\hat{y}_i})^2}{(2.14)}$$

 $y_i = observed da/dN|_i at \Delta K_i$

where

 $\hat{\mathbf{y}}_{i}$ = da/dN interpolated from table at $\Delta \mathbf{K}_{i}$.

The RMSPE is a measure of how close the data lie to the mean trend table and has a similar interpretation to the coefficient of variation, i.e., the smaller the better. The coefficient of variation is used when all the data have the same mean and is calculated by dividing the standard deviation by the mean and multiplying by 100. For da/dN data, the mean da/dN is a function of

(*	41 A	AK.			10 tinches		
	81 82	1.09	0.00730	0.00336	13-0.3	R4=0.5	25=0.8
ec:	ii ii	2.11 1.38 1.17			0.00369	0.00351	0.00112
		1.3 1.6 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 9.0 10.0 13.0 16.0 20.0	0.0167 0.0351 0.0676 0.127 0.216 0.336 0.488 0.884 1.37 1.91 2.47 3.00 3.80 7.16 13.2 28.3	0.0166 0.0639 0.171 0.566 1.14 1.93 3.09 4.78 7.04 17.0 36.2 126.0	0.0451 0.152 0.246 0.355 0.691 1.30 2.28 3.60 5.14 6.86 14.4 30.9	0.0176 0.0569 0.0911 0.139 0.218 0.339 0.753 1.46 2.50 3.95 6.07 9.38 38.4	0.00429 0.0251 0.0689 0.128 0.228 0.431 0.809 2.60 7.83 46.3
AE.	GFERE	20.7 24.7 19.3 13.8 7.01	32.0	867.0	81.3	146.0	47.4
Persons		•	2.2	80.4	8.6	6.4	6.1
life p							
0. 0.	.0 - (.5 - (.8 -) .5 - ().8 1.25 1.0	1	1 3	1	2	2
ور در				2-38			

 ΔK so this is taken into account when calculating the RMSPE. The RMSPE is an average percent error of the observed da/dN values from the curve established by the mean trend table.

When evaluating the mean trend da/dN description, engineers have come to rely on an evaluation of the ability of the mean trend curve to repredict the initial a versus N data and, in particular, to rely on life prediction ratio (N_p/N_A) which relates the predicted number of cycles (N_p) required to propagate a crack through a specified increment to the actual number of cycles (N_A) observed to propagate a crack through the same increment. Life prediction ratios between 0.8 and 1.25 are considered good and a life prediction ratio of 1.0 is ideal.

As a second measure of how well the mean trend curve fits the data, a summary of the life prediction ratios for the specimens used to generate the mean trend curve is included at the bottom of Table 2.5. This summary defines the number of specimens tested at each stress ratio presented whose life prediction ratios fall within the five intervals: 0.0 to 0.5, 0.5 to 0.8, 0.8 to 1.25, 1.25 to 2.0, and greater than 2.0.

The life prediction ratios summarized at the bottom of Table 2.5 are self predictions and as such will tend to be good. However, the summary is only valid for the data used to generate it and therefore should not be generalized to other situations. The life prediction ratio summary is not intended to predict how well the mean trend curve will predict crack growth for an arbitrary specimen; however, it does illustrate how well the mean trend in FCGR correlates with the lives of the cracks that were used in generating the mean trend.

In order to indicate how well the present method being used does in predicting life ratios, Table 2.6 gives a comparison on sixteen specimens of the Aluminum 2219-T851 at various stress ratios ranging from -1.0 to +0.8. The round-robin LPR resulted from an ASTM study conducted by eight organizations; the average results of the analysis are presented. From Table 2.6, it can be seen that the handbook mean trend method gives results comparable to other methods being used throughout the country.

TABLE 2.6
FULL INTERVAL COMPARISONS OF LIFE PREDICTION RATIOS

NO.	SPECIMEN	STRESS RATIO	ROUND-ROBÎN LPR	DTD HB LPR
1.	CT 2219-3	.1	1.03	.9910
2.	CT 4*	.1	0.94	.9095
3.	CT 5	.1	0.91	.8876
4.	CT 6*	.1	0.91	1.0554
5.	CT 11*	.1	1.08	1.0475
6.	CT 20	.1	0.64	.6271
7.	CT 56*	. 3	0.99	1.0221
8.	CT 58	.3	0.88	.8400
9.	CT 52	.5	1.07	1.0769
10.	CT 54*	.5	1.00	.9693
11.	CT 60*	.5	1.10	.8354
12.	CT 19	.8	1.71+	***
13.	CT 27*	. 8	1.02	.8321
14.	CT 37*	.8	0.92	.9607
15.	CCP 9*	-1.0	0.87	.9856
16.	CCP 11	-1.0	1.14	1.1572
	Mean		0.97	0.95
	Std. Dev.		0.12	0.13

^{*} Actual Data Were Available for Testing Life Prediction Analysis

^{***} Stress-Intensity Factor Out of Bounds

^{*} Not Included in Calculation of Mean or Std. Dev.

2.6 SUSTAINED-LOAD CRACK GROWTH RATES

2.6.1 Sustained-Load Crack Growth Rate Behavior

Sustained-load crack growth rate behavior is another type of subcritical crack growth behavior exhibited by materials which are sensitive to environmental attack. This type of subcritical crack growth behavior normally exhibits itself as a time-dependent crack growth rate process, whereby cracks are noted to extend under steady-state (sustained) static loading conditions in the presence of environments. Crack growth mechanisms controlling the sustained-load crack growth rate process include: stress-corrosion cracking, hydrogen embrittlement, liquid metal embrittlement, grain boundary separation, and creep. In practice, the time-dependent cracking process has been found to be driven by internal (residual) tensile stresses in the fabricated structure, even in the absence of externally applied loads; typically, however, the stressing condition which drives the crack is provided by external loads.

The objective of sustained-load crack growth testing is to determine the rates at which cracks propagate in precracked specimens subjected to statically applied loads and prescribed environmental conditions. As with fatigue crack growth rate tests, most of the crack length measurements are made optically on the specimen surface during the test. Non-optical methods used to establish cracking include compliance and stress wave analysis techniques. From the basic crack length and time data, the sustained-load crack growth rate is determined as the quotient of the incremental crack growth divided by the incremental time, i.e., $\Delta a/\Delta t$ or da/dt, the slope of the crack growth (time to failure) curve.

The crack growth rate measures the resistance of the material to the applied loading for the specified environment. In this case, the similitude parameter that allows data to be transferred from one cracked geometry to another is the static stress-intensity factor (K_{max}). The K_{max} parameter is the stress-intensity factor evaluated for the applied loading and current crack length. The property of sustained-load crack growth rate (da/dt) is described throughout this Handbook as a function of K_{max} .

2.6.2 Data Acceptance Criteria

For the most part, the testing methodology for da/dt properties follows that utilized to obtain da/dN properties. There are, however, no current ASTM standards that specifically cover the collection of da/dt data. Sustained-load data have been obtained with a variety of specimens including double cantilever beams (DCB), tapered double cantilever beams (TDCB), compact tension (CT) specimens, cantilever beams (CANT), single-edge-notch tensile (SENT) specimens, part-through-surface-crack (PTSC) specimens, and center-cracked panel (CCP) specimens.

One validity criterion that is sometimes applied to da/dt data is that the thickness dimension and crack length must be greater than 2.5 (K_{IC}/σ_{YS}) . No da/dt data were excluded from the 1983 revision, however, based on this criteria due to the scarcity of da/dt data. The reader will find K_{IC} , σ_{YS} and thickness reported with da/dt data whenever these were available.

Readers should note that sustained load crack growth rate data in aluminum alloys in planes other than those parallel to the surface of rolled plates are questionable because of the localized corrosion that occurs on the planes even though the initial notch and crack orientation are normal to these planes.

2.6.3 Data Reduction Procedures

Data reduction of sustained-load crack growth rates was accomplished using the secant method applied to crack length (a) measurements recorded as a function of time (t). These calculations and those of static stress-intensity factor were provided to the data processing organization for reformatting.

2.6.4 Data Reporting Procedures

The data reporting procedures for sustained-load cracking data are similar to those discussed in subsection 2.5.4 for fatigue crack growth rates. The major difference between the two subcritical cracking rate reporting procedures is that da/dt vs K_{max} describes the sustained-load behavior whereas da/dN vs ΔK describes the fatigue behavior. The reader might also note that no a vs t were available to compare with the integrated crack growth mean trend data and therefore no life prediction ratios were presented.

2.7 THRESHOLD STRESS INTENSITY (K_{TSCC})

2.7.1 The Threshold

In many environments, materials exhibit a condition whereby cracks are not observed to grow if the static stress intensity factor is below a critical level, designated $\rm K_{Iscc}$. This property is specific for a given material in a given environment within a specified time period. In high-strength materials, $\rm K_{Iscc}$ may be only a small fraction of the plane-strain fracture-toughness value ($\rm K_{Ic}$) of the material. In lower strength tougher materials where plane-strain conditions still prevail, $\rm K_{Iscc}$ may approach or equal $\rm K_{Ic}$, if the environment has little or no effect on the stress intensity required to propagate a crack.

 $K_{\rm ISCC}$ data have been obtained with a variety of specimens including: Cantilever beam (CANT), 3-point loaded bend beam (ND), 4-point loaded bend beam (4-NB), Single-edgenotch tensile (SENT), Center-cracked tensile (CNT), Part-

through surface-crack (PTSC), Compact tension (CT), Bolt-loaded WOL (BWOL), Double cantilever beam (DCB), and Tapered or contoured double cantilever beam (TDCB). All specimens are notched and precracked by fatigue, and many specimens are side grooved (SG) to ensure that the crack propagates in one plane perpendicular to the applied tensile loading and also to minimize the contribution of shear lips at the edges of the crack.

The types of specimens for determining $K_{\rm ISCC}$ fall into two broad categories: those that are loaded by weights or tensile machines (see Figure 2.21) and those that are self-loaded as by bolts. The former require bulky setups to accommodate lever arms, weights, and tensile machines while the latter are compact and portable. Thus the environment is applied to the externally loaded specimens usually in the form of a small container sealed onto the specimen, while the self-loaded specimen may be completely immersed in the environment.

Under dead-weight loading conditions, the usual practice is to run a number of specimens at various stress intensities less than $K_{\rm IC}$ for a finite length of time (more than 24 hours and usually about 500 hours) to establish $K_{\rm ISCC}$. Another method is to step load a single specimen until the crack starts to propagate. This method requires holding after each load increment for a sufficient time to establish that crack propagation does not occur.

Under bolt self-loading conditions, sufficient load is first applied to the bolt to cause the crack to extend beyond its precracked position. The specimen is then exposed to the environment. As the crack propagates in the environment, the stress-intensity factor decreases at the tip of the advancing crack until the crack arrests at $K_{\rm Iscc}$. Specimen length must be sufficient to ensure that the crack arrests before completely penetrating the specimen, thus assuring that a value is obtained for $K_{\rm Iscc}$.

. .

Figure 2.21. Schematic Drawing of Fatigue Cracked Cantilever Beam Test Specimen and Fixtures.

2.7.2 Conditions for Validity of Data

There are no ASTM standards that specifically cover the collection of $K_{\rm ISCC}$ data. The criterion typically used to validate $K_{\rm ISCC}$ data is that the thickness dimension (B) and crack length (a) are greater than the ASTM E399 requirement for plane-strain fracture toughness, i.e., that B and a ≥ 2.5 $(K_{\rm IC}/\sigma_{yS})^2$. Data which did not meet this criterion are identified in the $K_{\rm ISCC}$ tables with an asterisk. Many tests reveal a drastic reduction in the stress intensity required to propagate a crack even though the 2.5 $(K_{\rm IC}/\sigma_{yS})^2$ criterion is not met. Although these data are not recommended for material selection and design purposes, they do indicate a qualitative effect.

CHAPTER 3 STAINLESS STEEL ALLOY SECTION

3.0	Staintone Charles and a
3.1	Stainless Steel Material Summaries
	AFC 260
3.2	AFC 77
3.3	AFC 77 (VAR)
3.4	AM 355
3.5	AM 362
3.6	AM 364
3.7	Custom 455
3.8	PH 13-8Mo
3.9	PH 14-8 Mo
3.10	PH 15-7 Mo
3.11	15-5PH
3.12	15-5 PH(AM)
3.13	15-5 PH (VM)
3.14	17-4 PH
3.15	17-7 PH
3.16	304
3.17	316
3.18	347
3.19	Bibliography

では、大学のでは いきには、大学のでは これ からない これ からない これ からない からない これ からない これ からない これ からない これ からない からない これ からない これ

Table 3.0.1

AAR ABLE DATA FIRE STATIN FAR STEEL ALLOYS

MLLOY	COMDITION/HT	PRODUCT FORM	MIC MC	R CURVES	DA/DN	DA/DT	M19CC
AFC 260	2200F 1HR 1900F 1HR 08 -100F 1HR -320F 1HR 800F 2+2 HR	PLATE					×
	2200F 1HR 1900F 1HR 00 -100F 1HR -320F 1HR 1090F 2+2HR	PLATE					×
	2200F 1HR 1900F 1HR 08 -100F 1HR -320F 1HR 900F 2+2 HR	PLATE					×
	2200F 1HM 1900F 1HM 08 -100F 1HM -320F 1HM 1000F 2+2 HM	PLATE					ĸ
A €C 77	AUSTENIZED AT 2010F, GVENCHEDA TEMPERED AT 810F	BEE T				×	
	1800F 1HR 00, -100F 0. SHR, 300F 2+2 HR (CDANBE ORAIN)	PLATE					m
	1800F 14R 00, -100F 0.54R,	PLATE	×				×
	1800F 14R 00, -100F 0.54R, 500F 2+2 4R (FINE GRAIN)	PLATE					×
	1800F 14R 09, -100F 0. 34R,	PLATE	×				×
	1800F 14R, 00, -100F 0.54R, 700F 2+24R (CDARSE GRAIN)	PLATE	*				
	1800F 14ft, 00, -100F 0. 34ft, ROOF 2+24ff (CDARSE GRAIN)	PLATE	*				
	1800F 1HR. (M100F 0. 5HR. 700F 2+2HR (FINE GRAIN)	PLATE	×				
	1800F 1HR, DQ, -100F 0, SHR, BOOF 2+2HR (FINE GRAIN)	PLATE	×				

Table 3.0.1 (Con't)

AYALLAME DATA FOR STAINLESS STEEL ALLOYS

AFC 77

AL1.07

	PRODUCT			ي لا	R CURVEB	Š	Ì	3	
									1
1HR, 00, -100F 1HR, 700F	BOLNO.	ž	*						
-100F 1HR. BOOF	8000	ž.	×						
-100F 1HR. BOOF	900	ž	×						
在 6 0	\$							×	
監帯で	ž							×	
\$ 5 0	§							*	
-100F O. SFR	ž							×	
-100F O. 9FR	¥							×	
E 8	ž							×	
2000F 1HR CG100F 0. SHR 500F 2+2HR + 10 PCT CM. 1000F	Ž.							×	
2000F 1HR 00100F 0. SHR 500F 2+2HR + 10 PCT CH, 700F	3							×	
2000F 1HR DO100F 0. SHR 500F 2+2HR + 20 PCT CN. 700F	Ž							×	
-100F 1HR, 900F	ROCND	Ž	×						
-100F 1HR, BOOF	ROCND	~	×						
2100F 1HR,FC 10 1900F HOLD 1HR, OG100F 4HR, 500F 2+2 HR	TORGIN	y						×	
			TOURD BAR BAR ROUND BAR RO	PAR KOUND BAR K K HOUND BAR K HOUND BAR K HOUND BAR K HOUND BAR K HOUND BAR K K HOUND BAR K HOUND BAR K K HOUND BAR K HOUND BA	PART NOWED BARE X	PAR X X BAR X X COND BAR X X COND BAR X X COND BAR X X COND BAR X X CORCINC X X X CORCINC X X X CORCINC X X X CORCINC X X X X CORCINC X X X X X X X X X X X X X X X X X X X	DOF ROUND BAR X SOF ROUND BAR X BAR BAR BAR BAR BAR CHOND BAR X CHOND BAR CHOND	SOF ROUND BAR X BAR BAR X CONCINC ROUND BAR X CURCINC	DOF ROUND BAR X BAR BAR BAR BAR BAR BAR CHOCOL TOROL TO ALC

	Table 3.0.1	.0.1 (Con't)	
	AVALLABLE DATA FOR STAINLESS STEEL ALLOYS	INEBB STEEL ALOYS	
₩רוסג כס	MD I T I ON / HT	PRODUCT FORM MIC MC R CURVES DA/DN DA/DT MISCC	
AFC 77 (VAR) 137	AFC 77 (VAR) 1700F 1HR. DG 2100F 1HR. HOVED TO FCE AT 1933F.HELD 1HR. DG100F 24HR. 900F. 2+2HR	FOROING	
£ \$ 2	1906 148, MOVED TO FCE 1900F.HELD 148,00, -100F R. 300F 2+248	FURGINO X	
AH 755 HA	100 SCT1000	×	
	SCT 830	PLATE X BAR X	
	SC71000	PLATE X X X X X X X X X X X X X X X X X X X	
AM 362	006 н	×	
	0001н	×	
AM 364	H 830	FORGING	
	056 #	FORGING	
CUSTOM 455	900	FORGING	
	H 950	FORCING	
	H1000	FORGING	
¥.	OOF 1HR, DO, 930F 4HR, AC	FORGING	
ň	OOF 1HR. DO. 900F 4HR. AC	FORGING X	

Table 3.0.1 (Con't)

AVALLABLE DAIA FOR STAINLESS STEEL ALLUYS

AL LOY	C(R4D1710N/H4T	PRODUCT FORM	×10	ž	R CURVES	Ph/DN	DA/DT	M IBCC
CH13-6H13		EXTRUDED BAR				×		
	ANNE AL E.D	FURCING	×					
	AUSTENITE COND AND TRANSFORMED AT 38F. AGED 1015F	FORCED BAR	×					
	930	SHEET FORGING ROLLED BAR FORGED BAR	***					* **
	000	SHEET PLATE FORGIND EXTRUSION FORCED BAR ROLLED BAR BAR BILLET EXTRUDED BAR	***			х ккки		жжж
	H1025	SHEET	×					
	11090	ROLLED BAR BAR	×					×
	MILL 1700F, LAB 1050F 4HR	FORGING	×					
	MILL 1700F. LAB 1600F. 1000F 4HR	FOROINO	×					
	HILL 1700F, LAB 1500F, 1000F 4HR	FORCING	ĸ					
	RII 950	ROLLED BAN ROUND BAR	×					×
	RI4 975	ROLLED BAN	×					×

Table 3.0.1 (Con't)

NYALLABLE DAID FOR SIDIM ESS SIEEL ALLOYS

R CURVES DA/DN DA/DT MISCC	×	-	*	×	×	×		н		×	*	×	×	×		×	×
2 50 &																	
၌							×										
K1C	×							×	×		×				×		
PRODUCT FORM KIC KC	ROLLED BAR ROUND BAR	PLATE	PLATE	PLATE	PLATE	PLATE	94€ E1	ROLLED BAR	ROLLED BAR	£4.	ROLLED BAR BAR	BAR	BAR	BILLET	FORGING	FORGINO	FORCING
CONDITION/HT	RHIJONO	175*140MSI	TYS-180KS1	TYS=190KSI	TYS-200K51	TYS-210MS1	SRH1050	AH 930	RI41050	TH1050	006 н	H1025	Ht150m	TUS=150-165KS1	145=150-165MS1	М 900	H1000
ALLUY	P1413-HMI						PH14-8M0	PH15-7MD			13-254					15-504020	

Table 3.0.1 (Con't)

A'ALABLE DATA FOR STAINLESS STEEL ALLOYS

K 19CC	×	×	×		×		×	×	×							
DA/DI																
DA/DN			×			××			×	××	×	×	×	×	×	×
R CURVES DA/DN DN/DT KISCC																
KC.																
				×		×		×								
PRODUCT FORM KIC	FURCING	FORGINO	PLATE BAR	ROLLED BAR	848	ROUND BAR CABTING	Ĭ	ROLLED BAR	PLATE	SHEET PLATE	PLATE	PLATE	PLATE	MELDMENT	HELDMENT	WELDMENT
CONDITION/HT	и 700	H10^0	990	# 975	н1000	H1023	OS 112	RH105C	Тн1050	ANNEALED	ANNEALED & AGED	ANNEAL ED	ANNEALED AT 199CF, 1HR. WO	.050 IN. FROM CENTERLINE	AT CENTERLINE	AT HEAT AFFECTED ZONE
ALL:0Y	15 SPHIVE		HdF21				17-7PH			ğ		316		347		

Table 3.0.2

は、大学のできたのでは、一般のなどのなど、一般のなど、「一般のなどのできた。」というなど、「一般のないない」というなど、「一般のないない」というできた。

PI.ANE STRAIN FRACTURE TOUGHNESS VALUES OF BTAINLESS STEEL ALLOYS AT ROOM TEMPERATURE

	ļ	•		ج ۾		!	1	ļ	;	!	!	ļ	-	ŀ	!	;
	1			MEAN 9TD	1	!	!	 	!	!	 	1	74.1 2	 	1	;
			7	i		;	;	•				;		-	1	;
	w .			SPECIFEN THICK .	•	į	İ					į	0. 75	į	!	
	PERATUR			STD. DEV.	C .	1 00		!	22.	.	16. 1	!	1.7	ni N	1	17.1
	ON TEH	MIC	7	E &	6 0	0.000	!	}	8	8	6 9. 4	l	63.5	96. 2	!	8 8
	BTAINLESS STEEL ALLOVS AT ROOM TEMPERATURE	- IS		SPECIMEN THICK .	8	20.03	ļ	;	8	1. 63	8	!	1.8	1.00		0 75
	בפר ארר			810. DEV	6	→	.	6. 6.	13. 7	19.	9	16.0	6	4	6	110
	E98 8T		L-1	E E	9 8	110.9	72. 1	. 6	114. 1	103. 0	38. A	20.3	6 99	105.6	4 4	101.6
3.0.2	OF BTAINE	1		BPECIMEN THICK .	6	9 0	6	0 4 8	1. 0	1. 63	8	1.8	8	1 00	96 0	0 75
Table 3.	STRAIN FRACTURE TOUGHNESS VALUES OF	RANGE OF PRODUCT			8 •	8	8.	8	3.00	0 0	1, 00-2, 25	4, 00-B. 00	2 25	1, 50-2, 25	00 +	2, 75-8 00
	TRAIN FRACT	PRODUCT FORM			FORGINO	FORCINO	FORGINO	FORGINO	FORCING	FORCED BAR	SIEET	FORCING	ROLLED BAR	SHEET	PLATE	FONCING
	PLANE S	CONDITION/ HT			1700F 1HR. D0 2100F 1HR. HOVED 10 FCE. AT 1933F. HELD 1HR. DQ100F 24HR. 900F. 2+2HR	2100F 1HR. MOVED TO FCE AT 1900F. HELD 11R. 00100F 41R. 500F 2+2HR	1500F 1HR, 00. 950F 4HR, AC	1500F 1HR, DB, 900F 4HR, AC	ANNEALED	AUSTENITE COND FI AND TRANSFORMED AT 38F. ACED 1013F	н 950			000114		
	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AFFOA			AFC 77 (VAR)		CUSTON 455		PH13-8M0							
							3.0-9	9								

Table 3.0.2 (Con't)

PLANE STRAIN FRACTURE TOUGHESS VALUES OF STAINLESS STEEL ALLOYS AT ROOM TEMPERATURE

		8TD DEV.	 - -	}	4		-	i	-	i
	76	HEAN		i	2.2		1		1	İ
	70	SPECIMEN HE THICK +	į	}	0.73	!	}	!	!	1 9 1
î		810. DEV	3.0	Ą	7.8	0.2	.	4	ó	0.7
(KSI SORT(IN))	1-1	ES	1.00 122.7	75.0	94.8	9.00	6.2	72,7	8 .	1.00 47.0
(KSI)	L-1	SPECIMEN MEAN STD. THICK * DEV.	2.8	2. 80	1.8	8	8	1.8	8	1. 8
		9TD. DEV.	0	7.1	₹		-	1	-	ļ
	r-1	HEAN	114.2	%	103.1	1				
(KST BORT(IN))		BPECIMEN MEAN STD. THICK . DEV.	1.00 114.2	1.00 90.0	1. 00				;	
RANGE OF PRODUCT			80.1	96 -	2. 2. 2. 2. 3.	1.29	1. 29	2.29		1.25
ì			FURCED BAR	ROLLED BAR	ROLLED BAR	ROLLED BAR	ROLLED BAR	ROLLED BAR	FORGING	ROLLED BAR
ALLOY CONDITION/ PRODUCT HT FORM			н1000		0501Н	ян 950	RH1050	906 н	TYS-130-163KSI	RH1050
ALLOY			PH13-8M0			PH15-7M0		19-3PH		H95-21

. MINIMUM SPECIMEN THICKNESS (IN.).

Table 3.0.3.1

COMPARISON OF FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR STAINLESS STEEL ALLOYS

TEST CONDITIONS

SPECIMEN ORIENTATION Unknown

ENVIRONMENT: LAB AIR AT R. T.

STRESS RATIO: 0.05-0.10

FREQUENCY: 3, 00-30, 00H2

ALLOY	COND I T ION/HT	PRODUCT FORM	BTRESS Ratio	FREQUENCY	FATIOUE CRACK ORDWITH RATEB (MICRO IN/CYCLE) FOR DELTA K LEVELS (KBI BORT(IN)) + 2.5 5.0 10 0 20.0 50.0 1	OWTH RATEB EVELS (KSI 10 0 20	EB (MICRO IN/CYC II SGRT(IN)) + 20.0 50.0	CLE) 100.0
304	ANEALED	SHEET	0.03	10.00	ā.	. 163	3.07	
	ANNEALED	SHEET	0.03	19.00	•	. 133	5 8	
	ANNEALED	BHEET	0. 10	1. 67		Ŕ	2. 86	
	ANNEALED	94EET	0.10	8		(i	2. 36	
1	ANNEALED & AGE	PLATE	0.03	3.00		-	1.38	! ! !
316	ANNEALED AT 1950F. 14R. WG	PLATE	0.03	10.00		ณ่	Э.Э.	
347	.050 IN FROM CENTERLINE	WEL DWENT	0 10	30.00			6	
	AT CENTERLINE	WELDMENT	01.0	30.8			13 1	
	AT HEAT AFFECTED ZONE	WELDMENT	0. 10	90.00			17. 5	

Teble 3.0.3.2 Teble 3.0.3.2 Test compliance: SPECINGN SPECINGN TEST COMPARIZON OF PATION CONTINUATE NATIONALESS STEEL ALLOYS SPECINGN SPECI		58 . 9	2 .		6. 67	8	LATE	ANNEALED		
Table 3.0.3.2 Table 3.0.3.2 Table 3.0.3.2 Table 3.0.3.2 Table 3.0.3.2 Table 3.0.3.2 Table 3.0.3.2 Table 3.0.3.2 Table 3.0.3.2 Test contitions STRESS INTENSITY FACTOR FOR STAINESS STEEL ALLOYS STRESS RATIO 0.0-0 10 FREQUENCY: 0.03-30 0042 STRESS RATIO 0.0-0 10 FREQUENCY: 0.03-30 0042 TATLOY COSTOR 4555 H1000 FOR BINE 0.10 1 00-10 00 STA 31.9 157. H1000 FARE 0.00 20 00 30 3.30 3.30 3.31 17-7PH TH1090 FLATE 0.10 30 00 30 3.30 3.30 3.31		8.0			8	8	PLATE	ANNEALED	# OR	
Table 3.0.3.2 COPPARISON OF FATIOUE CRACK GROWTH RATES AT DEFINED LEVELS OF THE STREES STEEL ALLOYS SPECIFIEN SPECIFIE	1 1 1 1 0 0		33		90 O2	0 10	PLATE	TH1050	}	
Table 3.0.3.2 Table 3.0.3.2 Table 3.0.3.2 Test coolitions SPECINEN SPEC		53.1		Č	20 00 20 00	80.0	PLATE	006 н	;	-12
Table 3.0.3.2 Table 3.0.3.2 Test comparison of fatioue chack chouch hates at DeFined Levels of the Stress intensity factor for stainless steel Alloys IEST COMDITIONS: SPECING SPE		31.6			1.00	0.05	BAR	н1000		3.0-
Table 3.0.3.2 COPPARISON OF FATIOLE CRACK ORDITH RATES AT DEFINED LEVELS OF THE STRESS INTERSITY FACTOR FOR STAINLESS STEEL ALLOYS FIRM L-T ENVIRONMENT: LAS AIR AT R. T. FOR OD-10 FREGUENCY: 0.03-30.00412 CONDITION/HT FORM RATIO FREGUENCY FOR DELTA K LEVELS (RSI SORTINI) = 2.9 5.0 10.0 20.0 50.0 100.0 H1000 FORBING 0.10 10.00-30.00 2.78	127.	31.9	ę. 4		1. 00- 10. 00	0. 10	FOROING	0001н	PH13-8H0	3
Table 3.0.3.2 Table 3.0.3.2 COPPARISON OF FATIOUE CRACK GROWTH RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR STAINLESS STEEL ALLOYS TION L-7 ENVIRONMENT: LAB AIR AT R. T. FREQUENCY: 0.03-30.0047 FREQUENCY: 0.03-30.0047 CONDITION/HT FORM RATIO FREQUENCY FOR DELTA K LEVELS (NSI BORTINI) = 2.9 5.0 10.0 20.0 30.0	1 c 3 c 5 c 5 c 5 c 5 c 5 c 5 c 5 c 5 c 5		2.78		10.00- 30.00	01 0	FORCING	H1000	CUSTOM 455	
Table 3.0.3.2 Table 3.0.3.2 COPPARIBON OF FATIONE CRACK ORDWITH MATER AT DEFINED LEVELS OF STRESS INTENSITY FACTOR FOR STAIMLESS STEEL ALLOVS TION L-7 ENVIRONMENT: LAB AIR AT R. T. FREGUENCY: 0.03-30.00412	100 0	1N) = 30.0	TH RATES (MICI		FREQUENCY	BTRESS RATIO	PRODUCT FORM	CONDITION/HT	ALLOY	
Table 3.0.3.2 COPPARISON OF FATIONE CRACK ORDATH RATES AT DEFINED LEVELS OF STRESS INTERSITY FACTOR FOR STAINLESS STEEL ALLOYS TION L-T ENVIRONMENT: LAB AIR AT R. T.				21400		FREGU			STRESS RAT	
Table 3.0.3.2 COPARISON OF FATIOUE CRACK ORDATH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR FOR STAINLESS STEEL ALLOVS				AT R. T.		ENV I ROM			SPECIMEN ORIENTA	
									TEST CONDITIONS:	
Table 3.0.3.2			五		K ORDMTH RATES FACTOR FOR STA	TIONE CRACI	PARIBON OF FA	L O3		
					0.3.2	Table 3.				
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		}	E			177.57.	. * . * * *	A HOUSE CONTRACTOR	# 1 2 2 4 4 4 5 4 4 184 .	3

		2	3			\$	8	į		ş
			4.4	886	. 0269	20.00 20.00	0.10	PLATE	TH1050	17-7PH
1			8 ni	0607		30.90	0 10	ROUND BAR	H1025	17-4PH
:	199.	19.3		i ! ! !		10.00	0.03	BAR.	H1025	Hd5:-\$1
-	143.	g	9. 57	j 1 1 1 1		1.00-10.00	0.10	FURGING	H1000	PH13-8M0
1			8 2			20.00-30.00	0.10	FORCING	H1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			3.8			30 08	0 0	FORCINO	H1000	
						10.00	0 10	FOROTNO	H1000	CUSTON 455
	(CLE)	7(IN) = 50.0	ATEB (HIC KSI SON) ZO. 0	CROWTH RALES 10.0	FATICUE CRACK GROWTH RATEB (MICRO IN/CYCLE) FOR DELTA M LEVELB (MBI BORT(IN)) = 2.3 5.0 10.0 20.0 50.0 1	FREQUENCY	STRESS RATIO	PRODUCT FORM	CONDITION/HT	שרנו
					DOH2	SMCY: 1, 00-30, 00HZ	FREGUENCY:		01.00-00.10	STRESS RATIO
					AT R. T.	ENT: LAB AIR AT R. T	EWIRDMENT:		A710N T-L	SPECINEN ORIENTATION
									:A	TEST COMPITIONS:
				: OF THE	COMPARISON OF FATIOUE CRACK OROUTH RATES AT DEFINED LEVELS OF THE BTRESS INTENSITY FACTOR FOR BTAINLESS STEEL ALLOYS	COROWTH RATES FACTOR FOR STA	IOUE CRACI	ARIGON OF FAT BTRESS	1 00	
						Table 3.0.3.3	Table			
ÇQ										₹
SACONO CONTRACTOR OF THE SACONO CONTRACTOR OF						C				

TABLE 3.0.4

INDIVIDUAL STRESS CORROSION CRACKING THIRESHOLD DATA FOR STAINLESS STREE ALLOYS AT ROCH TEMPERATURE

					KISCC (Ksivin)		
1	CONDITION/	PRODUCT	SPECIMEN	- 1	ENVIRONMENTS		
ACION	±=		ORIENTATION	SUMP TANK MATER 3.5% NACL	204 NACI	SEACOAST ATMOSPHERE	INDUST, ATMOSTHERE
NFC 77	1800F 1118 OQ, -100F 0.5 HR, 500F 262 HR, (Coarse 6.5.)	<i>د</i>	;	15			
	2000F 1HR 00,-100F 0,5 HR, 700F 242 HR	6 0	i	0\$			
	2000F 18R 0Q100F 0.5 HR, ROOF 3&2 HR	æ	;	C♥			
	2000F 111R OQ, -1100F 0.5 HR, 900F 262 IIR	5	:	25			
	2000F 1HR OQ100F 0.5 HR, 1100F 242 HR	•	;	61			
	2000F 1HR 00, -100F 0.5 HR, 500F 262 HR, 6 10FCT CM, 1000F	£	:	30			
	2000F 111R 0Q, -100F 0.5 HR, SOO 262 HR, & 10RCT CM, 700F	Œ	;	06			
	2000F 1HR NO100F 0.5 HR, 500F 262 HR, 6 20 PCT CN, 700F	æ	:	89₹			
AFC 260	; !	<u> </u>	1-L	C+			· · · · · · · · · · · · · · · · · · ·
	2200F 1HR, 1900F 1HR 0Q, -100F 1HR 1000F 242 HR	۵	1-1	\$			
	2200F 148, 1900F 148 00, 100F 148, 1050F 262 48	<u>.</u> :	1-L				
85. W	SCT 850	A 60	11.		80 4 0	24 18	45 18
	SCT 1000	a. aa	1-1- 1-1-		28	52 35	99

Table 3.0.4 (Continued)

• . .

INDIVIDUAL STRESS CORROSION CRACKING THRESHOLD DATA FOR STAINLESS STREEL ALLOYS AT BOOM TEMPERATURE

ALLOY	CONDITION/ HT	PRODUCT	SPECIMEN ORIENTATION	SUMP TANK WATER 3.5% NACL	ENVIRONMENTS 201 NaCl	SEACOAST ATMOSPHERE INDUST. ATMOSFHERE	INDUST. A	THOSTHERE
AN 362	0064			12				
	H1000	•	1	31				
CUSTON 455	н900	•	;	09				
	H950	i i		12				
PH13-8Mo	05611	í	1-t	₹2				
		٤ ،	F-1	99	¥	*		9
		8			ş	76		60
	H1000	4	<u></u> 1	55				
		£	5	8				
		£	7	100				
		2	-1	0,				
	HIUSU	•	1-1		65	=		83
	TYS-210 KSI	۵.	1-L	120				
PH15-7MD	18	*	;	14				
	RH 1050	4	;	18				
15-5 PH	00611	•			æ	36		3
15-5 PH (VM)	11900	•	-	95				
17-4 PH	00611	•	;	82				
17-7 PH	PH 1050	a	7.1		59	12		74
	T111050	•	;	16				

Table 3.1.3.

11KE DATE REFER	1771	
THE CHILD	1971 80689	
DEC		
3		
113CC) 1 1N) 1 1N) 1 1N) 2 1 00	6 8 8 8	
(KBI 050RT IN)	8	
TBCC)	47.88	
3 '	CAST -	
MFC 260 PECTIVED (134) (1450) B B C CANTE (134) (1450) B C CANTE (134) C	0. 480 CANT	
* E		
STR EWINGWENT WID (IN) (AB1) (196. 0 3. 9 PCT MACL.	
	0 0	
.		
11587 SPE (5) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
FURH THICK TEST SPEC (IN) (F) (IN) (F)		ĸ
COMBITTION FURN THICK TEBY OR (IN) (F) 2200F 1HR P 0.36 R.T. T-L 2200F 1HR BOOF 2+2 HR 2200F 1HR P 0.36 R.T. T-L 1900F 1HR P 0.36 R.T. T-L 1900F 1HR P 0.36 R.T. T-L	-320F 1HR 1050F 2+2HR 2200F 1HR P 0 30 R.T. T-L 1900F 1HR 900F 2+2 HR 2200F 1HR P 0 -100F 1HR 2200F 1HR P 0 -100F 1HR 1900F 1HR P 0 -100F 1HR	4000
	1 111 11	Ĭ
COMBITTON 2200F 1HR 1900F 1HR 2200F 1HR 2200F 1HR	-320¢ 2200¢ -320¢ 2200¢ 1900¢	1747

*NOTE-DATA WHICH DO NOT NEET HININGH SPECINEN THICKNESS REGUINENENTS OF 2. SKAIBCC/TY8) SQUARED

Table 3.2.2.1

						STAINE	STAINLESS GTEEL	a AFC 77		K(IC)	ĉ				
COMBITION	TION .	PACIOL	'	1631 164 (F)	BPECIMEN ORIENT	VIELD BTRENOTH (KSI)	HIGH	THICK DI	DEBION	CRACK LENOTH (IN)	2. 90 (K(IC)/TVB)+2 (IN)	R(IC) BTAN R(IC) MEAN DEV (MBI-898NT IN)	8	REFER	,
	148. 08. 0. 348. 100	005 2-246	\$000 \$000 \$1	A. T.		2	_	9	2		6 0 0	23.00	• 9 • 1	1969 74720 (=
1800F -100F	1148, UG, P 0.36 R.T. 0.348, 700F 24248 (CDARSE GRA	F 24248	8 000 8	7. T.	A L-1	8	900	0. 900	2		0 11	38. 90	1961	1969 74720 (2
1800F -100F	1148, DO, P 0 36 R.T. 0 348, BOOF 2+2HR (CDARSE GRA	PF 2+298	9. St.	7. 32 52. 52.	L-T AIN)	30 9 .	. 30	8	Z		6 0	8	1961	9730	2
1800F	1HR, 00	F 2 - 23 40	35 F	A T CRAIL	F - 1 (F	203.0	1. 300	. 000	•		61.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 6961	1969 74720 (. =
1800F	1HR. 06. P 0 36 R.T (0 34R. BOOF 2+24R (FINE GRAIN)	7 2+30 F	8 F	R. T.	L-T	224.0	1. 300	900	2	•	0.03	31. 80	1961	74720 (-
1600F -100F	1800F 1HR, 08. P 0, 36 R.T. L. -100F 0, 3HR, 1000F 2+2HR (FINE GRAIN)	P 0.	8 Z	 	L-T	822	1. 300	9.300	2	İ	\$	30.06	1361	1969 74720 (2
1800F -100F	1HR. 00. BR 1HR. 700F 2+2HR		8	E	4	183.0	1 300	0 4 0	2	i	0.14	8 .	196	84302 (=
1800F -100F	1HR. 00. 1HR. 800F	£	8	<u>ج</u> بـ	5	213.0		•	7		0. 0.	29.00	-	64302	2
	1148.00. 1148. 800F	1 E	. 8	1 <u>1</u> 1	ٺ ،	322 0	006		7 2			80 1	🐔	200	. = .
2000F	134R. DG. 114R. 900F	2+2488 3	. 8	្ន			8	0	.		-	Si Ci	936	84302 (:
2000F -100F	1HR. 00. 1HR. 800F	88 3 2+2+8	8	F.	4	207.0	1. 300	0.480	9	!	0.23	70.00	1969	1969 76136 (2
2000F	148.00. 148.900F	8R 3	8 8	E E	4	214.0	1.500	0.40	2		0.17	36. 00	1969	1969 76136 (2
20103	e														

NDTES.
(1) COMPOSITION(HI PERCENTIO 16C, O 18MN, O. 015P, O. 021S, O. 1351, O. 21N1, 14, OCR, S. 02MD, 13, 4CD, O. 23V, O. 04N
THESE DATA ARE AVERAGE VALUES

Table 3.2.3.1

SUSTAINED CRACK CROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.2.3.1 INDICATING EFFECT

OF ENVIRONMENT

			وطرن آ	_i: 3.2.3.1		
		SUS	TAINED CRACK CROW OF STRESS	TH HATES AT INTENSITY FA		
		DATA A	SSOCIATED WITH FI	GURE 3.2.3.1	INDICATING EFFE	ст
				WY (RONMENT		
		AUSTENI	S STEEL AFC 77 TIZED AT 2010F,QU	ENCHED & TEN	MPERED AT 810F	
(KSI+	(MA)	K	:	DA/DT (10+	**-3 IN/HOUR)	
(101)	. 11477		: A	В	С	D
			E= :DISTILLED WATER			
K MAX MIN	A: B: C: D:	20.00	1. 0 1			
		30. 00 35. 00	: 4, 55 : 2, 67 : 3, 21 : 17, 5			
K MAX MAX		47. 00	: 5213. : :			
ROOT ME			62. 42			

Table 3.2.3.2

	FFER	14720	4720	74720	74720	76136	76136	76136	76136	76136	76136
	DATE REFER	1969 74720	1969 74720	1969 74720	1969 74720	96	1969 76136	1969 76136	1969 7613 6	1969 76136	1969 76136
	TEST TIME (MIN))))			· •		*			
	STAN DEV					 					1
	CRACK LENGTH K(Q) V(ISCC) MEAN (IN) (KSI*SOPT IN) A	8	8 8	• 000	80	#00 : 08	109. 00+	90.00	8 0.0	35.00	10.00
	(MSI#SORT IN)	119	23.00	00 111		116.00	200.00	160.00	70.00	8	80 .64
K (13CC)	CRACK LENGTH (IN)		:							}	1 1 1
¥	THICK DESIGN (IN) (**SG)	BO CANT.	0 480 CANT.	0. 480 CANT+	BO CANT.	0. 480 CANT+	0. 480 CANT*	0 480 CANT.	0. 480 CANT+	0. 480 CANT+	0. 480 CANT+
MFC 77	3PE					ı					1
		1 20	1. 500	1.500	. 300	006 -	1. 300	1 300	1 300	1. 300	1.300
STATMLESS SICEL	E Z	I MACI	D 3. 5 PCT NACL	0 3. 5 PCT NACL	D 3, 9 PCT NACL	0 3. 5 PCT NACL	0 3.5 PCT NACL	0 3.5 PCT NACL	0 3. 5 PCT NACL	0 3.5 PCT NACL	3 5 PCT NACL
	716 51 (KS	5.	173 0	196 0	232. 0	130	169	180	207.0	214.0	221.0
		! !	1	:	;		.	}	1	}	1 1
		. E	α.	~	α	<u>ε</u>	=	←	E .	Œ	± 1
	FORM THEN (173)	1HR 00, P 0 56 0 SHR, 500F 2+2 HR SE GRAINED STRUCTURE)	19COF 1HR 00, P 0 56 -100F 0 SHR, 1KNOT 2+2 HR (COARSE GRATHED STRUCTURE)	1800F 148 00. P 0 56 -100F 0 548, 300F 2+2 18 (FINE GRAINED SIRUCTURE)	1HR 00, P 0.56 0.54R.100F 2+2 HR GRAINED STRUCTURE)	1HR 03 B 3 00 0 5HR 1400F 2 2 HR	2000F 1HR 00 B 3 00 -100F 0. 5HR 500F 2+2HR	1 PR OG B 3 00 0 3 PR 700F 2+2 HR	2000F 1HR 00 B 3 00 -100F 0 5HR BOOF 2+2 HR	2000F 1HR 00 B 3 00 -100F 0 5HR 900F 2+7 HR	2000F 1HR 00 B 3 00 R T -100F 0 5HR 1100F 2+2 HR
		1800F -100F	1900f -100f	1900F -100F (FINE	1800F -100F (FINE	2000F	2000F	2000F	2000F -100F	20001-	2000F - 100F

*NITE-DATA WHICH DO NOT HEET HINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2. 3 KISCC/TYS) SOUAPED

Table 3.2.3.2 (Continued)

(1)

. . . .

	5 1	5 5	36	95	ı 9	8 '	
	DAYE REFER	1 ¹⁷⁶ 76136	1969 76136	*	09679 6791	:473 67360	
		1	- 24	19	; b .	1	
	TEST TIME (MIN)	ł	i	•	;	1	
	1) 1	1	
	BTAN DEV) 1	(!	
	CRACK LENDTH K(0) K(18CC) PEAN (1N) (RSI*SORT IN)				1	! !	
	SCC)	8 8	% %	8	! 3 ! 5	8	
	SORT.				, ,	^ :	! !
	CRACK LENDTH K(Q) K(18CC (1N) (KSI*SQRT IN)	96	106.00	107. 00	0.400 108.00 > 10.50	0. 400 110.06 > 10.00	
ŝ	100 TH		1	-	, 8 , 8	8	1
K(19CC)					•		1
	MIDTH THICK DESIGN	•	0. 480 CANT	Q. 480 CANT+	: * : 2		! !
	HEN CHEN	8	6	08	1 006.0	8	1
APC 77	26C1H 1741				•		1
	A CAR	i ii	. 900	. 30	ا ایک ا	ે	
STAINLESS STEEL	302		~	-	, &	τ1 Γ	1 1 1
LESB		7 ₩ CF	1 0≸	T ¥	J ¥C	NACL	ì i
N V	ENVIRONENT	PC1	PCT	4 CT	3. 9 PCT NACL	PC1	1
Φ.	ENVI	ණ ල	හ ල	က် က်	ີ່ ຫ ຕ່	ණ ල්	, !
	TELE STR (KB1)	25.0	277. 0 3. 5 PCT NACL	297. 0 3. 5 PCT NACL	1 69 8 69	164. 6 3. 9 PCT NACL	1
	SPEC 1		}	}		7	1 1
	TEST SPEC TEMP DR	3,00 %.1	2000F 1HR DG. B 3.00 R.T -100F 0.54R 500F 2+2HR + 10 PCT CM. 700F	2000F 14R 09, B 3 00 R.T -100F 0 34R 500F 2+24R + 20 PC1 CM, 700F	10.00 R.T. L-T	2100F 1HR,FC F 10,00 R,T, T-L TO 1900F HOLD 1HR, D0100F 500F 2+2 HR	1
	HICK (1K)	8	8	8	86	88	1
				10 10 10 10 10 10 10 10 10 10 10 10 10	10 (R. 106. – 10	8	1
	- 07 - 18	00F	# US	8 000 000 000 000 000	9: T	2100F 1HR, FC F 10, 00 TO 1900F HOLD 1HR, D0100F TC, 300F 2+2 HR	1
	•	2000F 1HR 00, B -100F 0 5HR 500F + 10 PCT CW. 1000F	S & S	20 % 20 % 20 %	21:0F 1HB, FC 6 TO 1900F HOLD 11 4HB, 500F 2+2 HR	2100F 1HR.FC TO 1900F HOLD 18	1
	CONDITION	, Hor	F 0 1	F 0	F 1HR, FG 900F HOU 530F 2+1	900F	,
		2000F 1HR 00, B 3.00 R.T100F 0.5HR 500F 2.2HR + 19 PCT CM.1000F	2000 -100	2000 -100 + 20	21CO 10 1	2100 10 1	,

Table 3.3.1.1

MEAN PLANE STRAIN FRACTURE TOUGHNESS DATA OF STAINLESS STEEL ALLOY AFC 27 (VAR) AT ROCH TEMPERATURE

	S		1-3	, , ,	
BIAIMLESS SIEEL MLLOY M-C // (VAR) AI ROCH IEM-ENAIUNE	(MUNEER OF SPECIMENS)		1	30.8 ± 1.3 (7)	108.0 ± 3.7 (2)
FE ALLOY AFG 77 (VA	HEAN KIC + STANDARD SORT(IN) DEVIATION	EDRGING	1-1	48.6 ± 3.1 (7) 50.6	110 3 ± 4.9 (2) 108.0
	CONDITION/HT HEA		CONDITION/HT	1700F 1HR, DQ 4B, 6 2100F 1HR, MOVED TO FCE AT 1933F-HELD 1HR, DQ, -100F 24HR, 900F, 2+2HR	2100F 114R, 110.9 HOVED TO FCE AT 1900F.HELD 114R, 00 100F 44R, 500F 2+24R
	GMD		COMO	1700/ 2100/ MOVEL AT 19 24HR, (2150F HOVE AT 15 1HR. C

Table 3.3.2.1

<u>0</u>
77 (VAR)
AC 77
9TEEL
TAINLESS

901 NB 0.510 0.900	002 0.901 NB 0.510 0.10 0.00 0.00 0.901 NB 0.913 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.	210. 0 1. 002 0. 901 NB 0. 510 0. 900 NB 0. 510 0. 900 NB 0. 510 0. 901 NB 0. 510 0. 900 NB 0. 510 0. 900 NB 0. 510 0. 900 NB 0. 510 0. 900 NB 0. 910	210.0 1.002 0.901 NB 0.510 0.10 210,0 1.002 0.901 NB 0.510 0.10 2464,900f; 24348	L-T 210.0 1.002 0.901 NB 0.510 0.10 (-10 210.0 1.002 0.901 NB 0.510 0.10 (-10 210.0 1.002 0.901 NB 0.513 0.10 (-10 24 NB 900 1.002 0.901 NB 0.513 0.10	L-T 210.0 1.002 0.901 NB 0.510 0.10 210.0 1.002 0.901 NB 0.513 0.10 0.10 2.10 0.10 0	L-T 210.0 1.002 0.901 NB 0.510 0.10 2.1006 24HR 900F, 24HR 900F, 24HR 900F, 24HR
901 NB 0. 927 0. 14 48. 901 NB 0. 902 0. 16 48. 900 NB 0. 903 0. 18 90. 900 NB 0. 907 0. 18 90. 900 NB 0. 907 0. 13 44. 900 NB 0. 910 0. 15 44. 901 NB 0. 910 0. 15 44. 901 NB 0. 910 0. 17 44. 901 NB 0. 910 0. 17 44.	0. 901 NB 0. 923 0. 14 48. 0. 902 NB 0. 903 0. 14 48. 0. 900 NB 0. 903 0. 18 48. 0. 900 NB 0. 903 0. 18 49. 0. 900 NB 0. 900 0. 10 44. 0. 901 NB 0. 910 0. 10 44. 0. 901 NB 0. 910 0. 15 44.	0 1.002 0.301 NB 0.323 0.177 3.3. 0 1.002 0.301 NB 0.327 0.14 49. 0 1.002 0.301 NB 0.303 0.16 48. 0 1.002 0.300 NB 0.303 0.18 30. 0 1.002 0.300 NB 0.307 0.18 49. 0 1.002 0.300 NB 0.307 0.13 44. 0 1.002 0.301 NB 0.310 0.15 47.	192. 0 1.002 0.301 NB 0.323 0.177 3.3. 192. 0 1.002 0.301 NB 0.327 0.14 49. 192. 0 1.002 0.301 NB 0.303 0.16 49. 192. 0 1.002 0.300 NB 0.307 0.18 30. 192. 0 1.002 0.300 NB 0.307 0.18 44. 192. 0 1.002 0.301 NB 0.310 0.15 44.	192.0 1.002 0.301 NB 0.323 0.17 3.5 1.022 0.301 NB 0.327 0.14 48 1.022 0.300 NB 0.327 0.14 48 1.022 0.300 NB 0.307 0.18 30 1.022 0.300 NB 0.307 0.18 30 44 1.022 0.300 NB 0.320 0.18 47 1.022 0.301 NB 0.310 0.15 47 1.022 0.301 NB 0.310 0.17 49 47 1.022 0.301 NB 0.310 0.31	R.T. L-T 192.0 1.002 0.501 NB 0.523 0.17 53. 1.17 192.0 1.002 0.500 NB 0.527 0.14 48. 192.0 1.002 0.500 NB 0.503 0.16 48. 192.0 1.002 0.500 NB 0.507 0.18 50. 187 192.0 1.002 0.500 NB 0.507 0.18 49. 192.0 1.002 0.500 NB 0.507 0.18 44. 192.0 1.002 0.500 NB 0.507 0.13 44. 192.0 1.002 0.500 NB 0.510 0.17 44.	6 00 R.T. L-T 192.0 1.002 0.501 NB 0.523 0.17 53. 6 00 192.0 1.002 0.501 NB 0.523 0.14 49. 6 00 192.0 1.002 0.500 NB 0.533 0.14 49. 6 00 192.0 1.002 0.500 NB 0.503 0.18 50. 6 00 192.0 1.002 0.500 NB 0.507 0.18 50. 6 00 192.0 1.002 0.500 NB 0.507 0.13 44. 6 00 192.0 1.002 0.500 NB 0.507 0.13 44. 6 00 192.0 1.002 0.500 NB 0.507 0.13 44. 6 00 192.0 1.002 0.500 NB 0.507 0.13 44. 6 00 192.0 1.002 0.500 NB 0.507 0.13 44. 6 00 192.0 1.002 0.500 NB 0.507 0.13 44. 6 00 192.0 1.002 0.500 NB 0.507 0.15 47. 6 00 10 10 10 10 10 10 10 10 10 10 10 10
901 KB	002 0.901 NB 0.923 0.111 43. 002 0.901 NB 0.920 0.16 92. 002 0.901 NB 0.920 0.18 92. 003 0.901 NB 0.913 0.18 92. 003 0.901 NB 0.913 0.18 92. 003 0.901 NB 0.913 0.18 92. 003 0.901 NB 0.929 0.17 93. 004 0.901 NB 0.929 0.17 94.	210.0 1:002 0.901 NB 0.923 0.11 43. 210.0 1:002 0.901 NB 0.923 0.16 92. 194.0 1:002 0.901 NB 0.910 0.17 90. 194.0 1:002 0.901 NB 0.910 0.17 90. 194.0 1:002 0.901 NB 0.913 0.16 48. 194.0 1:002 0.901 NB 0.913 0.16 48. 194.0 1:002 0.901 NB 0.913 0.16 49. 194.0 1:002 0.901 NB 0.913 0.17 99. 194.0 1:002 0.901 NB 0.900 0.17 99.	2448, 900F, 2+248 2410, 0 1, 002 0, 901 NB 0, 923 0, 116 92, 210, 0 1, 002 0, 901 NB 0, 920 0, 16 92, 194, 0 1, 002 0, 901 NB 0, 910 0, 17 90, 194, 0 1, 002 0, 901 NB 0, 913 0, 16 48, 194, 0 1, 002 0, 901 NB 0, 913 0, 16 48, 194, 0 1, 002 0, 901 NB 0, 913 0, 16 48, 194, 0 1, 002 0, 901 NB 0, 913 0, 16 48, 194, 0 1, 002 0, 901 NB 0, 913 0, 17 91, 194, 0 1, 002 0, 901 NB 0, 913 0, 17 91, 194, 0 1, 002 0, 901 NB 0, 913 0, 17 91, 194, 0 1, 002 0, 901 NB 0, 913 0, 17 91, 194, 0 1, 002 0, 901 NB 0, 913 0, 17 91, 194, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913 0, 17 90, 184, 0 1, 002 0, 901 NB 0, 913	7—1 210.0 1.002 0.901 NB 0.923 0.11 43. 210.0 1.002 0.901 NB 0.923 0.16 92. 210.0 1.002 0.901 NB 0.920 0.16 92. 194.0 1.002 0.901 NB 0.910 0.17 90. 194.0 1.002 0.901 NB 0.913 0.18 92. 194.0 1.002 0.901 NB 0.913 0.16 48. 194.0 1.002 0.901 NB 0.913 0.16 48. 194.0 1.002 0.901 NB 0.913 0.16 48. 194.0 1.002 0.901 NB 0.913 0.19 92. 194.0 1.002 0.901 NB 0.909 0.17 99.	7—1 210.0 1.002 0.901 NB 0.923 0.11 43. 210.0 1.002 0.901 NB 0.923 0.16 92. 210.0 1.002 0.901 NB 0.920 0.16 92. 194.0 1.002 0.901 NB 0.910 0.17 90. 194.0 1.002 0.901 NB 0.913 0.18 92. 194.0 1.002 0.901 NB 0.913 0.16 48. 194.0 1.002 0.901 NB 0.913 0.16 48. 194.0 1.002 0.901 NB 0.913 0.16 48. 194.0 1.002 0.901 NB 0.913 0.19 92. 194.0 1.002 0.901 NB 0.909 0.17 99.	7-L 210.0 1.002 0.901 NB 0.923 0.11 43. 210.0 1.002 0.901 NB 0.923 0.16 92. 210.0 1.002 0.901 NB 0.920 0.16 92. 194.0 1.002 0.901 NB 0.910 0.17 90. 194.0 1.002 0.901 NB 0.913 0.18 92. 194.0 1.002 0.901 NB 0.913 0.18 92. 194.0 1.002 0.901 NB 0.913 0.18 92. 194.0 1.002 0.901 NB 0.913 0.17 99. 194.0 1.002 0.901 NB 0.929 0.17 99. 194.0 1.002 0.901 NB 0.900 0.17 99.
0.900 NB NB NB NB NB NB NB NB NB NB NB NB NB	002 0 000 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	192.0 1.002 0.900 NB 0.520 0. 192.0 1.002 0.901 NB 0.910 0. 1002 0.901 NB 0.923 0. 1906.2 1.002 0.901 NB 0.923 0. 194.0 1.002 0.901 NB 0.913 0. 194.0 1.002 0. 194.0 1.002 0. 194.0 NB 0.913 0. 194.0 1.002 0. 194.0 NB 0.913 0. 194	24-18, 0 1, 002 0, 900 NB 0, 920 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T-L 210.0 1.002 0.900 NB 0.920 0. 1.002 0.901 NB 0.923 0. 1.002 0.901 NB 0.923 0. 1.002 0.901 NB 0.923 0. 1.002 0.901 NB 0.920 0. 1.002 0.901 NB 0.920 0. 194.0 1.002 0.901 NB 0.913 0. 194.0 1.002 0. 19	T-L 210.0 1.002 0.900 NB 0.920 0. 210.0 1.002 0.901 NB 0.923 0. 210.0 1.002 0.901 NB 0.923 0. 210.0 1.002 0.901 NB 0.923 0. 220 0. 210.0 1.002 0.901 NB 0.920 0. 320 0. 194.0 1.002 0.901 NB 0.913 0. 194.0 1.002 0.901 NB 0.902 0. 194.0 1.002 0. 194	T-L 210.0 1.002 0.900 NB 0.920 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.901 NB 0.923 0.900 NB 0.927 0.900 NB 0.903 0.900 NB 0.903 0.901 NB 0.920 0.901 0.920 0.901 NB 0.920 0.900 0.920 0.900 0.920 0.900 0.900 0.920 0.900 0.900 0.920 0.900 0.900 0.920 0.900 0.900 0.920 0.900 0.900 0.920	002 0.901 NB 0.923 002 0.900 NB 0.923 002 0.900 NB 0.903 002 0.900 NB 0.903 002 0.901 NB 0.923 002 0.901 NB 0.923 002 0.901 NB 0.923 002 0.901 NB 0.923 003 0.901 NB 0.913 003 0.901 NB 0.913	192 0 1 002 0 901 NB 0 923 192 0 1 002 0 901 NB 0 923 192 0 1 002 0 901 NB 0 933 192 0 1 002 0 901 NB 0 903 192 0 1 002 0 900 NB 0 903 192 0 1 002 0 901 NB 0 920 193 0 1 002 0 901 NB 0 923 210 0 1 002 0 901 NB 0 923 194 0 1 002 0 901 NB 0 910 194 0 1 002 0 901 NB 0 910 194 0 1 002 0 901 NB 0 910 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913	192 0 1 002 0 901 NB 0 923 192 0 1 002 0 901 NB 0 927 192 0 1 002 0 901 NB 0 933 192 0 1 002 0 901 NB 0 903 192 0 1 002 0 901 NB 0 903 192 0 1 002 0 901 NB 0 903 210 0 1 002 0 901 NB 0 923 210 0 1 002 0 901 NB 0 923 210 0 1 002 0 901 NB 0 923 194 0 1 002 0 901 NB 0 910 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913 194 0 1 002 0 901 NB 0 913	T-1 192.0 1.002 0.901 NB 0.923 192.0 1.002 0.901 NB 0.923 192.0 1.002 0.901 NB 0.927 192.0 1.002 0.901 NB 0.927 192.0 1.002 0.901 NB 0.903	T-1 192.0 1.002 0.901 NB 0.923 1923 192.0 1.002 0.901 NB 0.923 192.0 1.002 0.901 NB 0.927 192.0 1.002 0.901 NB 0.927 192.0 1.002 0.900 NB 0.903 NB	T-1 192.0 1.002 0.901 NB 0.923 1923 192.0 1.002 0.901 NB 0.923 192.0 1.002 0.901 NB 0.927 192.0 1.002 0.901 NB 0.927 192.0 1.002 0.901 NB 0.903 NB
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 000 000 000 000 000 000 000 000 00	210. 0 1.002 0.901 NB 192. 0 1.002 0.901 NB 192. 0 1.002 0.901 NB 192. 0 1.002 0.901 NB 192. 0 1.002 0.901 NB 192. 0 1.002 0.901 NB 193. 0 1.002 0.901 NB 194. 0 1.002 0.901 NB	2448, 900f, 24348 192.0 1.002 0.501 NB 192.0 1.002 0.501 NB 210.0 1.002 0.501 NB 210.0 1.002 0.501 NB 194.0 1.002 0.501 NB	L-T 210.0 1.002 0.501 NB 192.0 1.002 0.501 NB 194.0	1.005 2448, 9005, 2+248 1.005 0.901 NB 192.0 1.002 0.901 NB 192.0 1.002 0.901 NB 192.0 1.002 0.901 NB 192.0 1.002 0.901 NB 192.0 1.002 0.901 NB 192.0 1.002 0.901 NB 192.0 1.002 0.901 NB 192.0 1.002 0.901 NB 194.0 1.002 0.901 NB	7-1 210.0 1.002 0.501 NB 1.1002 0.501 NB 1.502 0.500 NB 1.502 0.500 NB 1.502 0.500 NB 1.502 0.500 NB 1.502 0.501 NB 1.502 0.50
66 666666 66 666666 , ¢	20 000000 00 000000 00 000000 00 000000 000 0000	210. 0 1. 002 0. 002 0. 1. 002 0. 1. 002 0. 1. 002 0. 1. 002 0. 1. 002 0. 1. 002 0. 1. 002 0. 1. 002 0. 1. 002 0. 1. 002 0. 1. 002 0. 1. 002 0. 1.	210.0 1.002 0.02 0.192.0 1.002 0.192.0 1.002 0.192.0 1.002 0.192.0 1.002 0.192.0 1.002 0.192.0 1.002 0.192.0 1.002 0.194.0 1.002	L-T 210.0 1.002 0. 210.0 1.002 0. 210.0 1.002 0. 192.0 1.002 0. 193.0 1.002 0. 194.0 1.002 0.	L-T 210.0 1.002 0. 210.0 1.002 0. 210.0 1.002 0. 192.0 1.002 0. 192.0 1.002 0. 192.0 1.002 0. 192.0 1.002 0. 192.0 1.002 0. 192.0 1.002 0. 194.0 1.002 0.	L-T 210.0 1.002 0. 1.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22.00.00 197.00	2448, 900° 2448, 90° 24488, 90° 24488, 9	L-T 210.0 210.0 210.0 210.0 210.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 193.0 193.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0	L-T 210.0 210.0 210.0 210.0 210.0 192.0 193.0 194.0	L-T 210.0 210.0 210.0 210.0 210.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0 193.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0
HR, DQ F 6 00 - 65 L-T 210.0 HR, DQ F 6 00 - 65 L-T 210.0 HR, DQ F 6 00 R T. L-T 192.0 HR, DQ F 6 00 R T. L-T 192.0 HR, DQ F 6 00 - 65 T-L 210.0 HR, DQ F 6 00 - 65 T-L 210.0 HR, DQ F 6 00 - 65 T-L 210.0 HR, DQ F 6 00 R T. T-L 194.0 HR, DQ F 6 00 R T. T-L 194.0 F MELD 6 00 R T. T-L 194.0 HR, DQ F 6 00 R T. T-L 194.0 HR, DQ F 6 00 R T. T-L 194.0 HR, DQ F 6 00 R T. T-L 194.0 HR, DQ F 6 00 R T. T-L 194.0 HR, DQ F 6 00 R T. T-L 194.0 HR, DQ F 6 00 R T. T-L 194.0 HR, DQ F 6 00 R T. T-L 194.0 HR, DQ F 6 00 R T. T-L 194.0 HR, DQ F 6 00 R T. T-L 194.0	1-1 1006 1-1006		1148, D0 F 6 00 1148, D0 F 6 0	1146, D9 F 1146, D9 F 1146, D0 F	1148. 00 1148. 00	1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F 1700F

NOTES (1) COMPOSITION(MF PERCENT) 0 15C. 0 08MM. 0 012P. 0 004S. 0 20SI. 1 17NI. 13 7CR. 3 02MD. 13 3CD. 0 30V. 0 18CB. 0 020M

•

Table 3.4.3.1

-PRODUCT - TEST SPEC VIELD -PRODUCT - TEST SPEC VIELD (IN) (F) (RS1) (RS1) (IN) (F) (RS1) (RS1) (RS1) (IN) (F) (RS1) (RS1) (RS1) (IN) (F) (RS1) (RS1) (RS1) (IN) (F) (RS1) (RS1) (IN) (F) (RS1) (RS1) (IN) (F) (RS1) (RS1) (IN) (F) (RS1) (RS1) (IN) (F) (RS1) (RS1) (IN) (FS2) (RS1) (IN) (FS2) (RS1) (IN) (FS2) (RS1) (IN) (FS2) (RS1) (IN) (FS2) (RS1) (IN) (FS2) (RS1) (IN) (FS2) (RS1) (IN) (FS3) (RS1) (IN) (RS1) (IN) (FS4) (RS1) (IN)	ON FORM THICK TEMP OR (IN) (F) 1000 B 2.25 R T P 1 13 R.T T-L P 1 13 R T T-L B 2.00 R T. T-L B 2.00 R T. T-L B 2.00 R T. T-L P 1 13 R T T-L B 2.00 R T. T-L B 2.00 R T. T-L B 2.00 R T. T-L B 2.00 R T. T-L B 2.00 R T. T-L B 2.00 R T. T-L B 2.00 R T. T-L B 2.00 R T. T-L B 2.00 R T. T-L B 2.00 R T. T-L B 2.00 R T. T-L P 1 13 R T. T-L P 1 T-L							
P 1 13 R T T-L 132.3 INDUSTRIAL ATM 2.000 1.000 CT 48.00 137.000 P 1 13 R T T-L 132.3 SEACDAST ATM 2.000 1.000 CT 48.00 24.00 P 1 13 R T T-L 132.3 SEACDAST ATM 2.000 1.000 CT 48.00 24.00 P 1 13 R T T-L 190.3 SPCT NACL 1.300 0.480 CANT 99.20 32.30 B 2 23 R T 180.0 3.5 PCT NACL 1.000 CT 39.20 32.30 B 2 00 R T T-L 190.3 SEACDAST ATM 2.000 1.000 CT 36.60 18.00 B 2 00 R T T-L 190.3 SEACDAST ATM 2.000 1.000 CT 36.60 18.00 P 1 13 R T T-L 169 7 INDUSTRIAL ATM 2.000 1.000 CT 104.70 99.00 P 1 13 R T T-L 169 7 SEACDAST ATM 2.000 1.000 CT 104.70 99.00 P 1 13 R T T-L 169 7 SEACDAST ATM 2.000 1.000 CT 104.70 99.00 P 1 13 R T T-L 169 7 SEACDAST ATM 2.000 1.000 CT 104.70 99.00 P 1 13 R T T-L 169 7 SEACDAST ATM 2.000 1.000 CT 104.70 99.00 P 1 13 R T T-L 152.4 INDUSTRIAL ATM 2.000 1.000 CT 104.70 99.00 B 2 00 R T T-L 172.4 SEACDAST ATM 2.000 1.000 CT 104.70 99.00	1000 B 2.25 R T P 1 13 R T T-L P 1 13 R T T-L B 2 00 R T T-L B 2 00 R T T-L P 1 13 R T T-L B 2 00 R T T-L P 1 13 R T T-L B 2 00 R T T-L P 1 13 R T T-L P 1 1 13 R T T-L P 1 1 13 R T T-L P 1 1 13 R T T-L P 1 1 13 R T T-L P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SPEC YIELD OR STR ENVIRONMENT (KSI)	WIDTH (IN)	DE810N	I I	HEAN	BTAN TEBT DEV TIME (MIN)	DATE REFER
P 113 R T T-L 132.9 INDUSTRIAL ATH 2.000 1.000 CT 48.00 49.00 P 113 R T T-L 132.9 SEACDAST ATH 2.000 1.000 CT 48.00 8.00 B 2 23 R T 180.0 3.9 PCT MACL 1.900 0.480 CANT 99.20 32.90 B 2 20 R T. T-L 190.3 INDUSTRIAL ATH 2.000 1.000 CT 36.60 18.00 B 2 00 R T. T-L 190.3 SEACDAST ATH 2.000 1.000 CT 36.60 18.00 P 113 R T T-L 169.7 INDUSTRIAL ATH 2.000 1.000 CT 36.60 6.00 P 113 R T. T-L 169.7 SEACDAST ATH 2.000 1.000 CT 104.70 99.00 P 113 R T. T-L 169.7 SEACDAST ATH 2.000 1.000 CT 104.70 92.00 P 113 R T T-L 169.7 SEACDAST ATH 2.000 1.000 CT 104.70 92.00 P 113 R T T-L 169.7 SEACDAST ATH 2.000 1.000 CT 104.70 92.00 B 2 20 R T T-L 172.4 INDUSTRIAL ATH 2.000 1.000 CT 104.70 92.00 B 2 20 R T T-L 172.4 SEACDAST ATH 2.000 1.000 CT 104.70 93.00 B 2 00 R T T-L 172.4 SEACDAST ATH 2.000 1.000 CT 104.00 039.00	8 8 1 13 8 1 7-L 8 8 8 7 7-L 8 8 7 7-L 8 8 8 7 7-L 8 8 8 7 7-L 8 8 7 7-L 8 8 7 7-L 8 8 7 7-L 8 8 7 7-L 8 7-L	T 163.2 3.5 PCT NACL	1. 300	90 CANT		117. 00•	^	1971 843
P 113 R. T T-L 132.3 SEACDAST ATM 2 000 1.000 CT 48.00 B 2 23 R T 180.0 3.3 PCT MACL 1.500 0.480 CANT 59.20 B 2 20 R T T-L 190.3 INDUSTRIAL ATM 2.000 1.000 CT 36.60 B 2 00 R T. T-L 190.3 SEACDAST ATM 2.000 1.000 CT 36.60 B 2 00 R T. T-L 190.3 20 PCT MACL 2.000 1.000 CT 36.60 P 113 R T. T-L 169.7 SEACDAST ATM 2.000 1.000 CT 36.60 P 113 R T T-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 P 1 13 R T T-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 P 1 2 00 R T T-L 159.7 SO PCT MACL 2.000 1.000 CT 104.70 B 2 00 R T T-L 172.4 IMDUSTRIAL ATM 2.000 1.000 CT 104.70 B 2 00 R T T-L 172.4 SEACDAST ATM 2.000 1.000 CT 70.00	B B C C C C C C C C C C C C C C C C C C	T T-L 152.9 INDUSTRIAL ATH	2 000 i	1 1	1 9	45.00	1 1	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
B 2 23 R T 1-L 192.3 20PCT NACL 1.900 1.000 CT 48.00 B 2 20 R T 7-L 190.3 INDUBTRIAL ATM 2.000 1.000 CT 36.60 B 2 00 R T 7-L 190.3 SEACDAST ATM 2.000 1.000 CT 36.60 B 2 00 R T. 7-L 190.3 20 PCT NACL 2.000 1.000 CT 36.60 P 1 13 R T 7-L 169.7 INDUSTRIAL ATM 2.000 1.000 CT 104.70 P 1 13 R T 7-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 P 1 13 R T 7-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 B 2 23 R T 7-L 172.4 INDUSTRIAL ATM 2.000 1.000 CT 104.70 B 2 20 R T 7-L 172.4 INDUSTRIAL ATM 2.000 1.000 CT 104.70 B 2 00 R T 7-L 172.4 SEACDAST ATM 2.000 1.000 CT 104.70 B 2 00 R T 7-L 172.4 SEACDAST ATM 2.000 1.000 CT 70.00	B 2 25 R T B 2 20 R T. 1-L B 2 00 R T. 1-L C 2 00 R T. 1-L C 3 1 13 R T. 1-L C 4 1 13 R T. 1-L C 5 1 13 R T. 1-L C 6 1 13 R T. 1-L C 7 1 13 R T. 1-L C 8 2 25 R T. 1-L C 8 2 20 R T 1-L C 9 R T 1-L C 9 2 00 R	T T-L 132.9		70 CT	9			. 1973 86688
B 2 29 R T 180. 0 3.5 PCT NACL 1.500 0.480 CANT 36.60 B 2 00 R T. T-L 190.3 INDUSTRIAL ATM 2.000 1.000 CT 36.60 B 2 00 R T. T-L 190.3 SEACDAST ATM 2.000 1.000 CT 36.60 P 1 13 R T. T-L 190.3 20 PCT NACL 2.000 1.000 CT 36.60 P 1 13 R T. T-L 169.7 PEACDAST ATM 2.000 1.000 CT 104.70 P 1 13 R T. T-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 P 1 13 R T T-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 B 2 20 R T T-L 172.4 INDUSTRIAL ATM 2.000 1.000 CT 104.70 B 2 00 R T T-L 172.4 SEACDAST ATM 2.000 1.000 CT 70.00	B 2 00 R T. T-L B 2 00 R T. T-L B 2 00 R T. T-L B 2 00 R T. T-L B 2 00 R T. T-L C 1 13 R T. T-L B 2 2 00 R T T-L B 2 00 R T T-L B 2 00 R T T-L B 2 00 R T T-L	T T-L 152.5		70 CT		8	}	. 1973 86688
B 2 00 R T. T-L 190.3 SEACDAST ATM 2.000 1.000 CT 36.60 B 2 00 R T. T-L 190.3 SEACDAST ATM 2.000 1.000 CT 36.60 C 1 13 R T. T-L 190.3 20 PCT NACL 2.000 1.000 CT 36.60 C 1 13 R T. T-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 C 1 13 R T. T-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 C 1 13 R T T-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 C 2 00 R T T-L 172.3 9 PCT NACL 2.000 1.000 CT 104.70 C 3 00 R T T-L 172.4 SEACDAST ATM 2.000 1.000 CT 104.70 C 5 00 R T T-L 172.4 SEACDAST ATM 2.000 1.000 CT 70.00	B 2 00 R T. 1-L B 2 00 R T. 1-L C 1 13 R T. 1-	T 180.0	8	10 CANT		32. 30	> 30000	1971 84333
B 2 00 R T. T-L 190.3 SEACDAST ATH 2.000 1.000 CT 36.60 P 1 13 R T. T-L 190.3 20 PCT NACL 2.000 1.000 CT 36.60 P 1 13 R T. T-L 169.7 INDUSTRIAL ATH 2.000 1.000 CT 104.70 P 1 13 R T. T-L 169.7 SEACDAST ATH 2.000 1.000 CT 104.70 P 1 2 00 R T T-L 169.7 20 PCT NACL 2.000 1.000 CT 104.70 B 2 20 R T T-L 172.4 INDUSTRIAL ATH 2.000 1.000 CT 104.70 B 2 00 R T T-L 172.4 SEACDAST ATH 2.000 1.000 CT 70.00 B 2 00 R T T-L 172.4 SEACDAST ATH 2.000 1.000 CT 70.00	B 2 00 R T. T-L P 113 R T. T-L P 113 R T. T-L B 2 00 R T T-L B 2 00 R T T-L B 2 00 R T T-L	T. T-L 190.3		70 01		1B. 00	1	. 1973 86688
B 2 00 R T. T-L 190.3 20 PCT NACL 2.000 1.000 CT 36.60 P 1.13 R.T. T-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 P 1.13 R.T. T-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 B 2.25 R.T 171.2 3.9 PCT NACL 2.000 1.000 CT 104.70 B 2 00 R T T-L 172.4 INDUSTRIAL ATM 2.000 1.000 CT 70.00 B 2 00 R T T-L 172.4 SEACDAST ATM 2.000 1.000 CT 70.00	B 2 00 R T. T-L P 1.13 R.T. T-L P 1.13 R.T. T-L R 2 25 R.T. T-L B 2 00 R T T-L B 2 00 R T T-L	T. T-L. 190.3		0 CT		18.00	1	. 1973 86688
P 1 13 R. T. T-L 169.7 INDUBTRIAL ATM 2.000 1.000 CT 104.70 P 1.13 R. T. T-L 169.7 SEACDABT ATM 2.000 1.000 CT 104.70 P 1.13 R. T. T-L 169.7 20 PCT NACL 2.000 1.000 CT 104.70 B 2.25 R. T 171.2 3.9 PCT NACL 1.500 0.480 CANT 68.40 B 2.00 R T T-L 172.4 INDUSTRIAL ATM 2.000 1.000 CT 70.00 B 2.00 R T T-L 172.4 SEACDAST ATM 2.000 1.000 CT 70.00	P 1 13 R.T. 7-L P 1.13 R.T. 7-L P 1.13 R.T. 7-L B 2.25 R.T B 2.00 R.T. 7-L	T. T-L 190.3		70 CT		90 '9		. 1973 86688
P 1 13 R. T. T-L 169.7 INDUSTRIAL ATM 2.000 1.000 CT 104.70 P 1.13 R. T. T-L 169.7 SEACDAST ATM 2.000 1.000 CT 104.70 P 1 13 R. T T-L 169.7 20 PCT NACL 2.000 1.000 CT 104.70 B 2.25 R. T 171.2 3.9 PCT NACL 1.900 0.480 CANT 88.40 B 2.00 R T T-L 172.4 INDUSTRIAL ATM 2.000 1.000 CT 70.00 B 2.00 R T T-L 172.4 SEACDAST ATM 2.000 1.000 CT 70.00	P 1 13 R.T. T-L P 1 13 R.T. T-L B 2 25 R.T. T-L B 2 00 R T T-L	; ; ; ; ; ; ;	1	ı	1	1	1 1 1 1 1	1 1 1 1
P 1.13 R.T. T-L 169.7 SEACDAST ATH 2.000 1.000 CT 104.70 P 1.13 R.T T-L 169.7 20 PCT NACL 2.000 1.000 CT 104.70 B 2.25 R.T 171.2 3.5 PCT NACL 1.500 0.480 CANT 88.40 B 2.00 R.T T-L 172.4 INDUSTRIAL ATH 2.000 1.000 CT 70.00 B 2.00 R.T T-L 172.4 SEACDAST ATH 2.000 1.000 CT 70.00	P 1.13 R.T. T-L 169.7 P 1.13 R.T. T-L 169.7 B 2.25 R.T 171.2 B 2.00 R.T. T-L 172.4	J-1 1-F		10 CT	104. 70	99.00	!	1973 86688
B 2.25 R.T 171.2 3.9 PCT NACL 1.000 CT 104.70 B 2.00 R.T 171.2 3.9 PCT NACL 1.900 0.480 CANT 88.40 B 2.00 R.T. 1-L 172.4 INDUSTRIAL ATH 2.000 1.000 CT 70.00 B 2.00 R.T. 1-L 172.4 SEACDAST ATH 2.000 1.000 CT 70.00	P 1 13 R.T T-L 169.7 B 2.25 R.T 171.2 B 2 00 R T T-L 172.4 B 2 00 R T T-L 172.4	T-L 169.7		72 62		52.00	İ	. 1973 86688
B 2 00 R T T-L 172.4 INDUSTRIAL ATH 2.000 1.000 CT 70.00 B 2 00 R T T-L 172.4 SEACGAST ATH 2.000 1.000 CT 70.00	B 2 00 R T T-L 172.4 B 2 00 R T T-L 172.4	T T-L 169.7	8	72 O		37.00	!	1973 86688
B 2 00 R T T-L 172.4 INDUSTRIAL ATH 2.000 1.000 CT 70.00 66. B 2 00 R T T-L 172.4 SEACDAST ATH 2.000 1.000 CT 70.00 35	B 2 00 R T T-L 172.4 B 2 00 R T T-L 172.4	.T 171.2	900	O CANT		88 40•	> 30000 1971	1971 84333
B 2 00 R T T-L 172.4 SEACGAST ATM 2.000 1.000 CT 70.00 35	B 2 00 R T T-L 172.4	T T-L 172.4		0 CT		66 . 00		1973 86688
		T T-L 172.4		10 0		39 00	;	1973 86688
8 2 00 N. I 1- 172.4 20 PUI KALL 2.000 1.000 CI 70.00	SCT1000 B 2 00 R. T T-L 172 4 20 PCT MAK	T 1-L 172	2 000 1 00	0 CT	70.00	28.00	1	1973 86688

*NOTE-DATA WHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2 SKHSCC/TYS) SQUARED

Table 3.5.3.1

Ø

17.5

	DATE REFER	> 42000 1971 84333		> 36000 1971 84333	1 1 1 1
	TEST TIME (MIN)	> 42000		% %	1
	M BEV	•	1 1 1 1		
	((18CC) ME(1 1N)	12. 50	1 1 1	40, 10 31, 00	1
	K(G) K(ISCC (KSI*SGRT IN)	30,20 12.50	1	40. 10	
K(18CC)	CRACK LENGTH		1 1 1	}	
	DE310	1, 500 0, 480 CANT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.500 0.480 CANT	
BTEEL AM 362	KIDTH (12)	l l	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.500	
STAINLESS STEEL	VIELD STR ENVIRDMENT (RSI)	SOO S S PCT MACL		178. 9 3. 5 PCT NACL	
				178.9	
	TEST SPEC TEMP OR (F)	, ,		;	
	TEST TEMP (F)	\		~	
	FORM THICK 1	1 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 25 R. T	
	FORM	1 1	a ,	•	
	CONDITION	1 1 1	006 H	н1000	

Table 3.6.3.1

のは、日本のでは、「中国のでは、これでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国

· V

						STAINLESS STEEL AM 364	il A 3	*	K(ISCC)					
CONDITION	FURM	FORM THICK (IN)	TEST (F)	29 85 ;	VIELD BTR (KBI)	ENVIRONMENT	WIDTH (IN)	U F	N LENGTH K(D)	HICK DESIGN LENGTH K(Q) K(ISCC) MEAN (IN) (4-80) (IN) (KSI+SGRT IN) B	BTAN	TEST TIME (MIN)	DATE REFER	EFER
н 850	LL.	8	3 00 R T T-L		163 3	183 3 3 5 PCT NACL	1.300	0. 4B0 CANT	131. 00	• 93 · 00•	^	> 60000 1971 84333	1971 8	233
026 H	! !	8 6	3 00 R T T-L	•	186 7	186 7 3.5 PCT NACL	1. 500	0. 460 CANT	1 1	128.00 128.00	^ -	> 60000 1971 84333	971 0	1333
; ; ;	1	1	1	1	1		1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1	

***OTE-DATA WHICH DO NOT MEET MINIMAM SPECIMEN THICKNESS REQUIREMENTS OF 2. SIKISCC/TYS) SQUARED

Table 3.7.1.1

HEAN PLANE BTRAIN FRACTUME TOUGHNESS DATA OF BTAINLESS STEEL ALLOY CUSTON 455 AT ROOM TEMPERATUME

(MANDER OF SPECIFENS)		ដ្ឋ		:
	a	1	-	
HEAN KIC & BTANDARD (KBI BORT(IN)) DEVIATION	ECOLOTHO	7	72.1 ± 7.0 (2)	46. 2 ± 3. 3 (3)
CONDITION/HT		COND1 T 10N/HT	1500F 1HR, DB, 930F 4HR, AC	1300F 114.00.

Table 3.7.1.2

FATIOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TAINLESS STEEL CUSTON 455

ENVIRONMENT: LAB AIR AT R. T.

CAND VICTOR TOTAL	STAINLESS ST
SPECIFICAL LINES OR LENIATION L-1	

COMD 1 1 TON / 141	PRODUCT FORM	STRESS	FREG. (HZ)	DELTA K		FATIOUE CRACK GROWTH RATES (MICRO IN/CYCLE)	TRACK ORC	DUTH RATE		
				(KSI SORT(IN))	e e	n	9	8	8	8
МІОЮ	FURGING	07	01 01 00-30 00					6		
								•		
0001н	rore ind	8	10.00-30.00					3. 72		

*				ł	!			
				8				
				NTEB	6		_	
		α		PROUTH RA		9.8	98	
		TY FACTOR		FATIOUE CRACK GROWTH RATES (MICRO IN/CYCLE) 5 10 20				
		-INTENS!	LAB AIR AT R. T.	FAT10UE				
		E STRESS		2.5				
(2)		FALIGUE CRACK CROWTH RATE AT DE . () LEVELB OF THE STRESS-INTENSITY FACTOR STAINLESS STEEL CUBTOM 435	ENVINDINGENT:	DELTA M LEVELS (MSI SONT(IN))				
	.е 3.7.1.3	IE AT DE . (STAIMLESB		FRE0.	00 01	80.08	20 00-30 00	
	Table	CROWTH RA		STRESS	0.10	0 10	0 10	
		FACTONE CRACI	I	PRODUCT FORM	FUNCINO	TOPCING	FORETWE	
			<u>LEST, COMPLICUES</u> SPECIMEN OPTENTATION	CONDITIONANT	0ю01н	н1000	H1000	
···							3.7	-3

Table 3.7.2.1

96	PRODUCT TEBT FDRM THICK TEMP (IN) (F)	SPECIMEN VIELD ORIENT STRENGTH (NSI)	STAINLY VIELD STRENGTH (KSI)	61A INLESS STEEL CUSTON 499 61.DSPECINGN ENOTH WIDTH THICK DESIGN KSI) (IN) (IN)	PECTIVEN- THICK L	CUSTON 455 INEN CK DESION N)	GRACK CRACK LENOTH (K	R(IC) CRACK 2.5* LENOTH (R(IC)/TVB)**2 (IN) (IN)	K(IC) STAN K(IC) MEAN DEV KSISBORT IN)	PA TĒ	REFER
1 1 2 00 4 00 4 00 00 00 00 00 00 00 00 00 00	1		L-7 246.0 1.900 0.480 NB	1. 900 0 480 NB	1 00	99	010	1 00	0.310 0.25 77.60 0.310 0.18 66.60 72.17 7.8 77934 0.310 0.18		77934
00 00 4 00 00 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	5	233 233 233 233 233 233 233 233 233 233	300	000	222	0 0 0 0 0 0 0 0 0	606	47, 70 42, 40 48, 40 46, 27, 3, 3		2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

MATERIAL: STAINLE CONDITION: H1000 ENVIRONMENT: R.			455		
DELTA K (KSI+IN++1/2)	: :		DA/DN (10##-	6 IN./CYCLE)	
	: :	A	В	С	D
	:	R=+0. 10	R=+0. 30		

		3	unit 2 7 2 1		
	معديد عبر		ARLF 3.7.3.1	******	
	FATI		ATH RATES AT DEF S INTENSITY FACT		
	DATA ASS	OCIATED WITH	FIGURE 3.7.3.1 IN	NDICATING EFFE	СТ
		Of	STRESS RATIO		
MATERIAL: 9 CONDITION: ENVIRONMENT	H1000	STEEL CUSTOM	455		
DELTA (KSI+IN++			DA/DN (10##-6		
	:	A	В	С	
	:	R=+0. 10	R=+0. 30		
DELTA K B: MIN C: D:	10. 07 : 12. 71 : :	261	1.04		
	: 13. 00 :	. 699	1. 10		
	16.00 : 20.00 :	1. 39 2. 78	1. 99 3. 72		
	25 . 00 : 3 0. 00 :	4, 91 6, 90			
A: DELTA K B:	32. 83 : 23. 86 :	8. 14	5. 31		
MAX C: D:	: :				
ROOT MEAN S PERCENT ER		11. 51	2. 74		
LIFE PREDICTION RATIO	0, 0-0, 5 0, 5-0, 8 0, 8-1, 25	3	1		
	1, 25~2, 0 >2, 0		-		
			3.7-6		

	AN SQUARE	11. 51	2. 74	
		:		
	D:	:		
MAX	C:	:		

LIFE				
PREDICTION	0.5-0.8			
RATIO	0.8-1.25	3	1	
SUMMARY	1, 25~2, 0			

Figure 3.7.3.1

TABLE 3.7.3.2

FATIGUE CRACK CROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.7.3.2 INDICATING EFFECT

OF FREQUENCY

MATERIAL: STAINLESS STEEL CUSTOM 455

CONDITION: H1000

のでは、これでは、100mmによっている。100mmになっては、100mmになった。100mmでは、10

ENVIRONMENT: R. T. , LAB AIR

DELTA (KSI*IN**			DA/DN (10##-	6 IN. /CYCLE)	
(421*14**	:	A	В	С	D
	:	F(HZ)= 5.0	F(H2)= 10.0	F(HZ)= 20.0	
DELTA K B:	62. 02 : 25. 12 : 12. 70 :	39. 7	4. 98	. 7 39	
	13.00 : 16.00 : 20.00 : 25.00 : 30.00 :		7. 09	. 703 1. 04 3. 00 3. 70	
	35. 00 : 40. 00 : 50. 00 : 60. 00 : 70. 00 :	68 . 9	10. 0 13. 9 25. 0		
DELTA K B: MAX C: D:	76 . 71 : 56 . 40 : 25 . 96 : :	82. 1	35. 0	3. 16	
ROOT MEAN S PERCENT ER		9. 70	9. 22	22. 29	
PREDICTION RATIO	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0	5 1	1	1 1	

では**は以びかなは**目のので

○ 日本のではないとは国内がアンドンではなったのから、自由でくてくっては国内でファンタンとは国力とようとのでは関われたのかの国内によってもないという。

Figure 3.7.3.2

TABLE 3.7.3.3

FATIGUE CRACK OROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.7.3.3 INDICATING EFFECT OF ENVIRONMENT.

MATERIAL: STAINLESS STEEL CUSTOM 455 CONDITION: H1000 DELTA K DA/DN (104*-6 IN. /CYCLE) (KS1*IN**1/2) В D E= R. T. E=- 100F : LAB AIR AIR 10.09 : . 256 A: DELTA K B: MIN C: D: . 828 **13**.00 : 16.00 : 1.43 20.00 : 2. 58 25.00 : 4, 75 27.10: 6, 32 A: DELTA K B: MAX C: D: ROOT MEAN SQUARE 13. 93 0.00 PERCENT ERROR LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 SUMMARY 1. 25~2. 0 (NP/NA) >2. 0

FORM: 2.50"TH FORGING YIELD STRENGTH: 195. Ø- 205. Ø KSI STEEL SPECIMEN TYPE: ULT. STRENGTH: 204.4 KSI CT ORIENTATION T-L SPECIMEN THK: Ø. 750" STRESS RATIO: +0.10 SPECIMEN WIDTH: 2. 100" CUSTOM **FREQUENCY:** 20.0 - 30.0 HZ HEFERENCES:RIØØ4 453 ΔK (MPA √m) ΔK (MPA √m) 100 40 10 10 40 130 ENVIRONMENT: - 100 F. **(A)** B ENVIRONMENT: R. T. 10 ⁰ AIR 10⁻² 10⁻² 10.1 10⁻¹ 10.3 10-3 10-2 10-2 da/dN (:n/cycle) da/dN (mm/cycle) 10⁻⁴ 10 10.3 10⁻³ 10⁻⁵ 10.3 10-4 10.4 10^{.5} 10.6 10⁻⁵ 10-5 10'7 10-7 10⁻⁶ 10⁻⁶ 10-8 10⁻⁸ 40 10 100 10 40 100 **©** لتلتليا ❿ سنتليا ENVIRONMENT: 100 **ENVIRONMENT:** 10 ⁰ 10² 10-2 10-1 10.1 10⁻³ 10-3 10⁻² 10⁻² da/dN (in/cycle) (mm/cycle) 10⁻⁴ 10 4 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ da/dN 10.4 10⁻⁴ 10⁻⁶ 10⁶ 10⁻⁵ 10^{.5} 10.7 10⁻⁷ 10⁻⁶ 10⁻⁶ 10 40 100 40 100 10 ΔK (KSI √in) ΔK (KSI √in)

STAIN.

CONDITION/HT: H1000

Figure 3.7.3.3

The first of the state of the s

Table 3.7.3.4

STAINLESS SIEEL CUSTOM 435 K(1SCC) - FRODLY F- 1EST SIEC YIFLD - FRODLY F- 1EST SIEC YIFL - FRODLY F- 1EST SIEC YIFLD - FRODLY F- 1EST SIEC YIFLD - FRODLY F- 1EST SIEC YIFLD - FRODLY F- 1EST SIEC YIFLD - FRODLY F		DATE REFER	> 60000 1969 77934	1 1 1 1 1	> 60000 1971 84333
STAINLESS STEEL CUSTOM 435 K(15CC) - PRODUY F- 1EST STEEC YIFLD - PRODUK F- 1EST STEEC YIFLD		TEST TIME (MIN)	00009 <		00009 <
STAINLESS STEEL CUSTOM 435 K(1SCC) - PRODUY F- 1ES1 SIPEC YIFLD - PRODUY F- 1ES1 SIPEC YIFLD - PRODUY F- 1ES1 SIPEC YIFLD - PRODUM F- 1ES1 SIPEC YIFLD		91 AN DEV		1 1	
STAINLESS STEEL CUSTON 435 K(15CC) - PRODUY F- 1ES1 SPEC YIFLD - PRODUY F- 1ES1 SPEC YIFLD - PRODUY F- 1ES1 SPEC YIFLD - PRODUY F- 1ES1 SPEC YIFLD SPECIMEN GRACK SPECIMEN LENGTH (1N) (1N) (**SG		HEAN		1 1 1	
STAINLESS STEEL CUSTON 435 K(15CC) - PRODUY F- 1ES1 SPEC YIFLD - PRODUY F- 1ES1 SPEC YIFLD - PRODUY F- 1ES1 SPEC YIFLD - PRODUY F- 1ES1 SPEC YIFLD SPECIMEN GRACK SPECIMEN LENGTH (1N) (1N) (**SG		(NI IN)	8 9	1	72. 10
STAINLESS STEEL CUSTON 435 K(15CC) - PRODUY F- 1ES1 SPEC YIFLD - PRODUY F- 1ES1 SPEC YIFLD - PRODUY F- 1ES1 SPEC YIFLD - PRODUY F- 1ES1 SPEC YIFLD SPECIMEN GRACK SPECIMEN LENGTH (1N) (1N) (**SG		K(2) KSI+538	62. 00		72. 10
STAINLESS SIG - PRODUY F - 1651 SPEC YIFLD - PRODUY F - 1651 SPEC YIFLD 	(2251		;	1	1
STAINLESS SIG - PRODUY F - 1651 SPEC YIFLD - PRODUY F - 1651 SPEC YIFLD 		HICK DESIGN (IN) (#856)	0 500 CANT	1	D. ABO CANT
110H FORM HHICK TEHN OR STR ENV (TH) (F) (KSI) F 4 00 R T 255, 0 3, 3	TEEL CUSTO	CIDIH TE	1.900	1 1 1	1.300
110R	STAINLESS S	ENVIRONMENT	3.5 PCT NACL	1 1 1 1 1 1 1 1 1	3.5 PCT NACL
110R		YIFLD STR (KSI)	255.0		246.0
110R 1-08R 1HICK 1EPP (110) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F			;	1	;
1108 1-08th		16.91 16.97 (F)	⊢	1	-
1108 1-08th		PA F=:	6 0 4	1	5
CORD 1110R		FROI			L
		c0r0 (1 10R	005 H	1 1 1	H 550

Table 3.8.1.1

STATESTANDA STATESTANDA

Q

HEAN PLANE BTRAIN FRACTURE TOUGHNESS DATA DF STAINLESS STEEL ALLOY PHI3-8HO AT ROOM TEMPERATURE

(NAMBER OF BPECIFIEND)		1	69. 4 ±16. ; (4)	96.2 ± 5.2 (4)		13 1 1			1.4 £1	99.6 +22.4 (6)		88.1 ±17.1 (7)		. <u></u>	
HEAN RIC + BTANDARD BI BORT(IN) DEVIATION	REEL	ij	38.4 ± 6.3 (2) 69.4	105, 6 ± 4, 8 (6) 96.2	PLAIE	17	94,7 ± 3,6 (3)	ECROINO	1	114.1 ±15.7 (5) 99.6	70.3 ±16.0 (9)	101. 6 ±11.0 (12) 88.1	EXTRUSTON	ij	
CONDITION/HT (KSI		CONDITION/HT	064 H	н1000		COND1710N/H7	н1000		CONDITION/HT	ANNEALED	н 950	н1000		COMDITION/HT	

	STAINLE	IN PLANE STRAIN FRAC	(Continued)	ų.
		ESS STEEL ALLOY PHIS	STAINLESS STEEL ALLOY PHIS-BND AT ROOM TEMPERATURE	TURE
	CONDITION/HT (R	MEAN KIC + BTANDARD KSI BORT(IN) DEVIATION	MAD (NUMBER OF SPECIMENS)	PECITENS)
		203 803	EURDED DAR	
	CONDITION/HI	ij	1	ដ
	AUSTENITE COND AND TRANSFORMED AT 38F. ACED 1019F	103.0 ±19.4 (2)	89.6 ± 1.8 (2)	
	н1000	114.2 ± 0.9 (2)	122.7 ± 3.0 (3)	
		100°	BOLLED RAN	
	COND1110N/H1	1	ปี	1
	н 950	66.9 ± 2.9 (3)	63.9 ± 1.7 (6)	74.1 ± 2.1 (3)
	н1000	90.0 ± 7.1 (2)	0	
	103 1 4 1 E01	103 1 ± 4, 6 (3)	94.8 ± 7.8 (6)	92.2 ± 4.2 (2)
Ŕ				

Table 3.8.1.2

FATICUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

STAINLESS STEEL PHI3-8MI)

SMOI I TOMOS ISSI

SPECIMIN OFICHTATION LAT

DRY AIR AT R. T. ENVIRONMENT

29.6 8 FATIOUE CRACK GROWTH RATES (MICRO IN/CYCLF) 4, 17 3 07 2 0 • 5 DELTA N LEVELB (KSI SORT(IN)) 9 6.00 FRE9. (H2) STRESS RATIO 0.10 90.00 FORCED BAR FORGED BAR PRODUCT FORM CONDITION:/HT

8

4.79

0 64

8

0 30

FURCED BAR

н1000 H1000 H1000

|--|

•:

Table 3.8.1.4

いた。一般ななななない。これでは、一般ななななない。

FALIGUE CRACK CROWIII RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

STAIMLESS STEEL PHI3-841)

ORICHIAN CHI

ENVIRONMENT: L.H. A. A. A. A. A. A. T. T.

							!			}
CONDITION/HT	PRODUCT FORM	STRESS RATIO	FREG.	DEL TA K	ī	ATTONE C	FATIOUE CRACK ORDATH RATES (HICRD IN/CYCLF)	MITH RATI	9	
				I FVELS (KSI SORT(IN))	n n	n	2	۶	8	8
	EXTRUDED DAN	8 0	8 9				!	22 6	90. 00.	
	EXTRUDED BAR	000	9					P ri		
			1							
н1000	FORGED BAR	8	8					e. Si		
H1000	CORCED BAR	0°.30	8					4. 70		
н1000	FORCED BAR	8	8				0. 31	4. 70		
H1000	BILLET	9.0	8				90	4. 02		
н1000	EXTRUDED BAR	60.0	8				0 33	3, 73	8	
н1000	EXTRUDED BAR	9 30	8				0.83	0. 0.		
н1000	MOLLED BAR	98 .0	8				8	3, 37		
н1000	ROLLED BAR	9.80	8				8,	₽ •		
н1000	ROLLED BAR	90 00 0	8				6 3	8		
H1000	ROLLED BAR	800	8				0 79	8		

Table 3.8.1.5

FATIGUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

STAINLESS BYEEL PHIS-BMU

IEST COMPLIONS
SPECIMEN
ORIENTATION L-1

ENVIRONMENT: LAB AIR
AT R. T.

CONDITION/HT	PRODUCT FORM	STRESS RATIO	FREG.	DELTA K		ATIQUE (E CRACK GRO	FATIOUE CRACK GROWTH RATES (NICRO IN/CYCLE)	8 2	
				(KSI BORT(IN))	n N	n	0.00	8	8	8
н1000	rore in	0. 10	0.10 1.00-10.00					£	5.44 31.9 127	127
H1000	BAR	o. n2	1.8						31.6	

়া

Table 3.8.1.6

HEY FACTOR

ENVIRONMENT: H. H. A. A. A. A. A. A.

GPECIMEN DRIENTIUM: L-T

TEST COMPITIONS

FATIONE CRACK CROUTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSI	STAINLESS STEEL PHI3-BM)
---	--------------------------

CONDITION/HT	PRODUCT FORM	STRESB RA110	FREG. (HZ)	DELTA K		FATIOUE (M)	FATIOUE CRACK ORDATH RATES (MICRO IN/CYCLF)	DWTH RAT	E9	
	;			LEVELS (KSI 900T(IN))	9 0	•	0	R	8	8
							-			
H1000	FURCED BAR	0. 10	1.8				8	7.56 105	103	
и1000	FORGED BAR	9. 30	1.8				0.61	11.3	129	
н1000	FORCED BAR	8	8				0	2.5		

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

STAINLESS STEEL PHI3-6HD

IEST SUPERITUMS

ENVIRONMENT: S.T. W. AT R. T.

SPECINEN CRIENTATION: L-T

CONDITION/HT	PRODUCT FORM	STRESS RATIO	FREG. (HZ)	DELTA K	-	FATIOUE	UE CRACK GROWTH (MICRO IN/CYCLE)	FATIOUE CRACK GROWTH RATES (MICRO IN/CYCLE)	8 3	
				(KSI BORT(IN))	er Ni	•	2	8.	s	8
	EXTRUDED BAR	9. O	8		 -			.; 8		
900	EXTERNED BAN O OB	8	8				44 0	0 44 7 11		t ; ;
11000	ROLLED BAR	80.0	8.1				; ;	£ 1.5		
н1000	ROLLED BAR	90.0	8				9.64	2.5		
H1000	ROLLED BAR	80	0. 10					ģ		

3.8-8

Table 3.8.1.8

FATIOUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

STAINLESS STEEL PHI3-GHO

TEST CONDITIONS

SPECIMEN ORIENTATION.

<u>ب</u>

DRY AIR AT R. T. ENVIRONENT:

8 37. 1 **%** 8 FATIGUE CRACK GROWTH RATEB (MICRO IN/CYCLE) . 13. I. 4. 17 3 8 0. 42 0.26 0.31 0 e ci DELTA K LEVELB (KBI SORT(IN)) 8 8 8 0.10 00.0 8 FURCED BAR PRODUCT FORM FURCED BAR FURGED BAR CONDITION/HT H1000 H1000 H1000

		001	
		06	9.3
		WTH RATE CLE) 20	4.01
5	:	UE CRACK GROWTH (MICRO IN/CYCLE) 10 20	7 .
IERGI I Y		FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	<u> </u>
TRESS-IN	L. H. A. AT B. T.	E SO	
FATICUE CRACK GROWTH MATE AT DEFINED LEVELS OF THE BYRESS-INTENSITY FACION	ENVIRONMENT: L. H. A.	DELTA K LEVELS (KBI SGNT(IN))	
AT DEFINE		FREG. (HZ.)	8 8
GROWTH RATE		STRESS RATIO	8 8
FATIGUE CRACK	Į	PRODUCT FORM	BTLLET ROLLED BAR
	IEST_COMOLLIONS SPECIM:N ORIENTATION	COND LT 1 ON / HT	м1000

Ż								
				100				
				1ATE8 90	1 108	7 215	607	
		8		FATIONE CRACK GROWTH RATES (NICRO IN/CYCLE)	6.71	54 9.37	98 11. 6	
		ITY FACT		UE CRACK CMICRO IN		0.54	8	
		59-INTENE	I.4 I. A.					
a		AT DEFINED LEVELB OF THE BTRESS-INTENBITY FACTOR STAINLESS STEEL PHI3-8MD	EWIROMENT: H	DELTA K LEVEL8 (KST BORT(IN)) 2.				
	3.8.1.10	AT STA		FREQ. (HZ.)	8 .1	1.00	8 .	
	Table 3	CROWTH RATE		STRESS	01.0	00 0	8	
		FATICUE CRACK CROWTH RATE	<u>.</u>	PRODUCT FORM	FORCED BAR	FORCED BAR	FORGED BAR	
			IEST CONDITIONS SPECIM:N ORIENTATION	CONDITION/H?	н1000	н1000	H1000	
(3)			-		Ī	Ħ	Ī	
							3.8	-11

Table 3.8.1.11

TO STATE STATE OF STATE

	FATIONE CRACK	CROWTH RAT	E AT DEFIN STAINLES	FATIONE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR STAINLESS STEEL PHIJ-8MU	TRESS-I	NTENSI TY	FACTUR			
IEST COMPLITONS SPECIMEN ORIENTATION	ž			ENVIRONMENT: 9.T.W.	9. T. R.	. F				
CONDITION/HT	PRODUCT	STRESS	FREG.	DELTA K LEVELS (KSI SORT(IN))	, v.	FATIGUE (MI	UE CRACK GROWTH (MICRO IN/CYCLE)	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	8	8
H1000	FORGED BAR ROLLED BAR	60 0 60 0	8 8				0.28	9 9 9 5 4 3		

					STAINLE	STAINLESS SIFEL	CH13-BHD	OHS	K (1C)	5					
C04D11104	FORM	- PRODUCT FORM THICK	71.0	SPICTMEN	LD NETH S13	LIDIA CIN	ECIMEN HICK (IN)	ESION	CRACK LENGTH (IN)	ACIC)/TYS)**?	M(IC) MEAN (KEI 650RT IN)		STAN	DATE	REFER
AMEALED	: :	: 88838 mnnnn	·	1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 6 4 5 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2. 003 2. 003 1. 996 1. 999	. 55555	9.00 04.00 0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	103.8 92.1 128.4 126.9	_	15.7	~ ~ ~ ~ ~	$\circ \circ \circ \circ \circ$
ANNEAL ED		88888 nnnnnn	r ai	Į	202.0 202.0 202.0 203.0 204.0	00 4 00 00 00 00 00 00 00 00 00 00 00 00		555555	1000 H 000 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83, 91 132, 91 109, 27 113, 50 79, 44 78, 36) t	ži į	1976 1976 1976 1976 1976	MC001 MC001 MC001 MC001 MC001	
AUSTENITE COND FB 2 20 F AND TRANSFORMED AT 38F, ACED 1013F AND RANSFORMED AT 38F, ACED 1013F	FB 38F. A6	E 2 20 2 20 2 2 20 2 2 2 2 2 2 2 2 2 2 2			00 00 nini nini	88 83		55 55	1, 977 1, 197 1, 604 1, 387		116. 70 89. 20 90. 89	103. 0/	₹ 6 0 1	1973 1973 1973 1973	89836 89836 89836 89836
	i un un	0000000	1 EK EK	֡֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	00 0000	1 000 1 00 00 1 0 1 00 00 1 0 1 0 1 0 1	000 1	1 1		. 00 0000		8 5		1972 1972 1972 1972 1972	
490 1	u	888888888	⊢ α	2		2 000	000 1		1 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 8 8 8 8 4 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70.3	70.3/ 16.0	1972 1972 1972 1972 1972 1972 1972	84369 84369 84369 84369 84369 84369

Table 3.8.2.1 (Continued)

	<u>e</u> '			 					
	REFER	88998 88998 80998	86498 86498 86498 86498 86488	96689 96689 96689	84369 84369 84369 84369 84369	84365 84365 84365 84365	84306 84306 84306	84306 85836 85836	89034 88136 89034 89136
	DATE	1973 1973 1973	1973 1973 1973 1973 1973	1973	1972 1972 1972 1972 1972	27.01 27.01 27.01 27.01		1973	1973 1974 1973 1974
	1		 ^	- I		0	•	•	
	STATE	Ni	-i	(i)	₹.	ni	С	₹ .	
	HEAN DEV	76 .9%	63. 5/	74. 17	79 '601	96. 2/	94.77	\$ \$	
	# (C) #E	283	88388\$	868	2 888888	8888		5 88 	2383
	M(IC) MEAN (MSI#SORT IN)	40.04	0000000	0.40	1000 1000 1000 1000 1000 1000	99.7		£ 5.4	97.59
				1					
	/1748	230	4 5 4 B 6 6	888	74 55 53 63 63 63	2 6 4 4 2 6 6 4	9 8 8 6 8 6	20 24	4 4 4 8 8 8 8
	2.5* (K(IC)/IYS)**? (IN)		00000	000	00000	0000	000	0 00	0000
KC IC		~ ~ 0	o • • • • • •	000 / 1		0000	- ₽ 0	9 -9	0000
x	CRACK.	1. 077 1. 069 1. 040	1 060 1. 049 2. 071 2. 028 1. 030 1. 996	0. 780			1. 761 1. 768 1. 782	1, 794 1, 941 1, 030	1, 232 1, 232 1, 000 1, 188
D	'		44444	! ! !				-	
PH13-8H0	18 1	555		555			777	5 55	0 B 0
Ŧ	SPECIMEN- THICK D (IN)	000	i i i - i i	0.730	88 8	8888	0. 990 0. 978 0. 994	0.9%	2.000 2.238 2.261
3		000		(0000			0000
STAINLESS STREL	1013	લં લં ભં	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	986	ล่ก่ำก่	8888 8888 8888	6, 6, 6 8, 8, 8 8, 8, 8	9 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2. 493 2. 493 2. 493
INCE	Ha !	000	00000	000	000000	0000	000		0000
ST/	VIELD STRENGTH (MSI)	20 20 20 20 20 20 20 20	197	20 50 50 50 50 50 50 50 50 50 50 50 50 50	22222	203	222	1981 1895.	203
	SPI.C IMEN OR IENT	-	٠	; ;	. 	٠.	-	ب ب	-
	SP. C	ن	-	්	֡֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	7.	L-1	ן - ר- ז	1-1
	TEMP (C)	~	-	۲- د	Œ	⊢	⊢ α'	R + &	⊢ α
	× '	000	ស្តស្តស្តស្ត	222	000000	3322	888	8 88	8888
	E E E	נין נין נין	(1) (1) (1) (1) (1) (1)	2000		n n	***	4 4 2	0000
	FIRM THICK	Œ	89 C	c	ı	v	۵	a. u.	la.
	,			1	I				
	<u>z</u>			1					
	CORD1710N	20	950	450		H1000	8	0001H	ĝ
	500		I	-	H1000	Ĭ	HI 000	0001H	000 IH

		œ	84365 88136 84365 89034 89636 89836 89836 89836	90011	85837 85837 85837 85837 85034 85034	95636 90011 9001	90011 90011 90011 99836 99836 90011	90011
		ATE.	1972 1974 1973 1973 1973 1973	1974	1973 1973 1973 1973 1973 1973	1973 1974 1974 1974	1974 1974 1974 1974 1973 1974 1974	1974
		(IC) STAN EAN DEV TIN)	101. 6/ 11 0	34. 37. 2. 1	88.17.1	90.07	6.6 /6.89	48.77 1.2
			131.00 99.30 106.00 106.00 99.40 91.70	36.00 33.00	73 96 73 96 73 96 73 96 73 96 73 96 73 96 74 96 75 96 76 76 96 76 76 96 76 76 76 76 76 76 76 76 76 76 76 76 76	86. 46 90. 90 90. 90	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	### ## ## ## ## ## ## ## ## ## ## ## ##
		2 54 (IC)/TYS (IN)	-0000000000000000000000000000000000000	0 17	0000000 6466499	0 0 0 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.5.5.0000 7.5.5.0000 7.5.000000	9000 G
	ued)	CRACK CRACK LENGTH (K (IN)	1 000 1 226 2 226 2 226 2 226 3 200 2 200 3 200		1. 008 0. 990 1. 013 0. 986 1. 000	•	1. 973	
Ø	.l (Continued)	THIS-DE	1 25 000 CT CT CT CT CT CT CT CT CT CT CT CT CT	1. 630 CT 1. 630 CT	0.732 CT 0.730 CT 0.730 CT 0.732 CT 2.00732 CT	1. 368 CT 1. 000 CT 1. 000 CT 1. 000 CT	1, 000 CT 1, 000 CT 1, 000 CT 1, 000 CT 1, 413 CT 1, 000 CT	11.000 1.000 1.000 1.000 1.000
di s	le 3.8.2.1	LESS STREL LILL SPE (IN) (L	1 000 1 000 1 000 1 000 1 000 1 000 1 000	3.000	00000000000000000000000000000000000000	2 000 0 000 0 0 00 0 0 0	00000	0000
		SIOT SIOT SIOT	2000 00 00 00 00 00 00 00 00 00 00 00 00	215.0	20.000000000000000000000000000000000000	202. 0 215. 0 215. 0 215. 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	215.0
		SPECTMEN CRIENT S	; ; 5	T-l.	7	9-T L-T	5	<u>†</u>
		7FST X 1FM (F)	! !	19 (- α	7. 6.5	r œ	1 C
		- PRODUCT FORM HICK	4 m 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 R	2222888 2222888	8 999		200
		100	! u . :	ıL	L	r m	ω	w
**		CORED 1.1 1.0R4	1 1 000 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Н1000	н17.00	н 1000 н 1000	000	0001н

Table 3.8.2.1 (Continued)

	REFER	4 90011 4 90011 4 90011	3 83836	9 cD004 8 cD004	9 e0009 8 e0009 8 e0009	4 90011	ያ ያ	2 84369	3 86688 3 86688 3 86688	3 86688 3 86688 3 86688 3 86688 3 86688	3 86688	8883
	DATE	1974 1974 1974	1973	1978 1978	1978 1978 1978	1974	1974	1972	1973 1973 1973	1973 1973 1973 1973 1973	1973	1973
	BEC	ų.		Ö	о г і	7.1	4. U	1 1	4	7.8	₹ (! !
	K(IC) HEAN HT IN)	/ 2 %		114.2/	122 7/	6 06	79. 0/	1 1 1 1 1	103.17	\6 \ 7 6	72. 2/	1 1 1
		68 90 66 90 66 90	48.90	113.50	124.80 119.30 124.00	93.00 83.00	78.00 72.00	94.3	103, 90 98, 20 107, 30	88. 10 102. 10 101. 40 86. 30 88. 90	9.00	78.80
(2)	(K(IC)/TYS)*rs? (IN)	0 0 0 27 7 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.14	0.69	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 9 4. 6 8. 8	# H 0 0		000	0 681 0 982 0 39 0 82	6. 73 0. 73	1
COLOX	CRACK LENGTH (IN)		1.028	1.052	1.034 1.048 1.058				228	2. 104 2. 104 2. 091 1. 032 1. 028	76	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-CHO	DESIGN	15	7	55	555	55	55		555	555555		
. PH13-CM0	ECIMEN HICK (IN)	1.000	0. 998		1.000	 8 8 8 8			888	- ii ii - ii -	0.73	1 300
ESS STEFL	A HIGIN	000 000 000 000 000 000 000	2 006	4 00 00 4 4 00 4 4 00 4 4 0 0 4 4 0 0 4 1 0 0 0 4 1 0 0 0 4 1 0 0 0 4 1 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000 000 000 000 000	3 300		8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.500	. 996
STAINLESS	YIELD STRENGTH (MSI)	208.0 208.0 208.0	210.0	215.0	216.0 216.0 216.0	203.0	203.0	7000.0	172.0 172.0 172.0	178 178 178 178 178 198 198 198 198 198 198 198 198 198 19	176.0 176.0	195.0
	SPECIMEN DRIENT	7	ר- נ	F : 1	<u>۲</u>	F-1	ĭ		۲ .	1-L	ر ق	 [-1
	TEST TEMP TEMP	<u>-</u>	9	<u>د</u>	F &	μ α	- α	-	⊢	⊢	-	, 2
	FORT THICK	000 000 000 000	- 00	88	888	2 00	200	1 8 1	20.00	222222 222222 222222 222222	2 23	1 1 1 8 1 10
	!	w	ā	e	3	œ œ	a		8	œ Œ	<u></u>	ראם ה
	CONDITION	H1000	н1000	н1000	11000	H1000	н1000	H1025	0501	H1050	1050	MILL 1700F. LAB

Şi**Ç**

			i			1		ı	
			REFER	1973 85836	1973 83836	90011		90011 90011 90011	11006
			8	1973	1973	1974	1974	1974	1974 90011
			91AN DEV			1 1	(vi	1 B	1 1
			N(IC) STAN N(IC) MEAN DEV (KSI*SONT IN)		ę.] ; !	9.	, 0 , 0 , 0	! !
			- ·	67.6	72. 90	97.0 62.0	99.0	66.99 9.99 9.99 9.99	93.00
		•	2.9e K(1C)/TYB)+42 (IN)	0.30	0.34	0.18	0.21 0.23 0.24		1 46 0
	(pa	KCIC)	CRACK LENOTH (CIN)	1.060	1.052				: ;
@	8.2.1 (Continued)	Q. 48-	DESIGN	5	13	; 55	55	555	5
	.1 (Ç	PH13-8420	ECIMEN HICK (IN)	1. 000	0. 999		00	6 6 6	0.900
	ຕໍ	SS BTEEL		900	2.006		88	0000	1.000
	Table	STAINLESS	YIELD STRENOTH (KSI)	199. 0	9.0	210.0	210.0 210.0	207.0 207.0 207.0	205.0
			PECIMEN	5	-	· · · · ·		1 4- 1 4- 1 1 1	· •
			TEST TEMP (F.)	89 80	6	 	1	<u>-</u> -	1 1 1 2
			FORM THICK (IN)	- 00 \$	8 8	88	8	999	 %
			FORM	L ~	L	, ; , , , , , , , , , , , , , , , , , ,	1	—	:
			1	HILL 17 MF, LAB	₹ ₹	1 1 1 1	! !		1 1 1 1
. 3:			CONDITION	HILL 1 1600F.	HILL 1730F.	1 1 1 E	; ;	I	RHI 000

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.1 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: STAINLESS STEEL	. PH13-8M0	NLESS	ST	MATERIAL:
---------------------------	------------	-------	----	-----------

CONDITION:

ENVIRONMENT: R. T. , L. H. A.

DELTA (KSI*IN*			DA/DN (10##-6	IN. /CYCLE)	
(V21±1N±.	*1/2/ :	A	В	С	D
	: :	R=+0. 08	R=+0. 30		
DELTA K B: MIN C: D:	13. 43 : 10. 60 : :	. 370	. 114		
	13.00 : 16.00 : 20.00 : 25.00 : 30.00 : 35.00 : 40.00 : 50.00 :	. 936 2. 22 4. 12 6. 17 8. 51 11. 4 20 8 40. 2	. 463 1. 32 2. 98 5. 56 8. 77 13. 1 19. 6		
DELTA K B: MAX C: D:		45. 5	38. 4		
ROOT MEAN		8. 38	7. 23		
PREDICTION	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0	1	1		

Figure 3.8.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.2 INDICATING EFFECT

OF ENVIRONMENT

DELTA (KSI#IN#)		:	DA/DN (10*#-6	IN. /CYCLE)	
(VOIMINM)	*1/ <i>&</i> /	: A	В	c	D
		: : E= R. T. : L. H. A6. OHZ	E=- 65 F L. H. A6. OHZ	E= R. T. S. T. W1. OHZ	
A:	13. 43	:			
DELTA K B:			. 259		
MIN C:	12. 50	:		. 148	
D:		:			
	13. 00	•		211	
	16.00		. 531	. 211 . 962	
	20.00		1. 32	2. 25	
		4. 12			
			4. 78		
	35.00				
		11.4		31.5	
		: 20.8	21.6		
	60.00	: 40. 2	41.8		
A:	61.76	: 45.5			
ELTA K B:			5 0. 5		
MAX C:		:		42. 5	
D:		: :			
PERCENT EF	RROR		7. 09		
LIFE					
REDICTION					
		21. 1	1	1	
SUMMARY					
(NP/NA)	>2.	0			

である。 「大学のできる。 「大学のでな 「大学のできる。 「大学のできる。 「大学のできる。 「大学のできる。 「大学のできる。 「大学のできる。

in a second seco

Figure 3.3.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.3 INDICATING EFFECT

OF FREQUENCY

			TABLE: 3.8.3.3		
	FAT		DWTH RATES AT BS INTENSITY F	DEFINED LEVELS	
	DATA AS			INDICATING EFFE	ст
		(OF FREQUENCY		
MATERIAL: § CONDITION: ENVIRONMENT	H1000	STEEL PH13-8	10		
DELTA (KSI+IN+			DA/DN (10**	-6 IN. /CYCLE)	
1100-210-	:	A	В	С	D
	:	F(HZ)= 1.00	o		
DELTA K B: MIN C: D:	22 . 06 : : : : : : : : : : : : : : : : : :	5. 28			
	25.00 : 30.00 : 35.00 : 40.00 : 50.00 :	12. 5 17. 1			
DELTA K B: MAX C: D:	56. 54 : : :	46. 7			
ROOT MEAN S		1. 97	****		
PREDICTION	0.8-1.2	5 1			· trac atta apa asa asa asa asa asa asa
SUMMARY	1. 25-2. 0				

Figure 3.8.3.3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.4 INDICATING EFFECT

OF ENVIRONMENT

DELTA (KSI*IN**		:	DA/DN (10**-6	IN. /CYCLE)	
/V21 = 114= =	. 1 / 2 /	: A	В	c	D
		: : E≔ R. T. : L. H. A.			
A: DELTA K B: MIN C: D:	8. 54	: . 20 : :			
	9. 00 10. 00 13. 00 16. 00 20. 00 25. 00 30. 00 35. 00	: .341 : .786 : 2.11 : 4.02 : 6.85 : 10.3			
A: DELTA K B: MAX C: D:	35. 80	: 15. 4 : :			
OOT MEAN S PERCENT ER		17. 07			
REDICTION RATIO SUMMARY	O. 8-1.	5 & 25 1 Q			

CONDITION/HT: H1000 STAIN. 6.00"TH BILLET FORM: YIELD STRENGTH: 191. Ø KSI STEEL SPECIMEN TYPE: CT ULT STRENGTH: 208. Ø KSI ORIENTATION: L-T SPECIMEN THK: Ø. 997" STRESS RATIO: +0.08 6. 191" SPECIMEN WIDTH: PH13-8MD FREQUENCY: 6.00 HZ REFERENCES:85837 ΔK (MPA √m) ∆K (MPA √m) 10 40 100 10 40 100 ENVIRONMENT: البليليا **(B)** ENVIRONMENT: R. T. 10 ⁰ 10² 10⁻² 10-1 10-1 10⁻³ 10.3 10⁻² 10.5 da/dN (in/cycle) da/dN (mm/cycle) 10.4 10 10⁻³ 10⁻³ 10^{.5} 10⁻⁵ 10-4 10-4 10⁻⁶ 10⁶ 10.5 10⁻⁵ 10.7 107 10⁻⁶ 10⁻⁶ 10^{.8} 10⁻⁸ 40 100 10 10 40 100 C ENVIRONMENT: ليليليا **D** 10 ⁰ **ENVIRONMENT:** 10 ⁰ 10² 10-2 10-1 10-1 10^{.3} 10⁻³ 10⁻² 10⁻² da/dN (in/cycle) (mm/cycle) 10 4 10 4 10^{·3} 10⁻³ 10^{.5} 10⁻⁵ 10'4 10⁻⁴ 10.6 10⁶

(

10.7

30

10

ΔK (KSI √in)

40

100

Figure 3.8.3.4

10.5

10^{.6}

10⁻⁷

10-8

10

ΔK (KSI √in)

40

100

10⁻⁵

10⁻⁶

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.5 INDICATING EFFECT

OF ENVIRONMENT

			SP ENVIRONMENT		
MATERIAL: CONDITION:		SS STEEL PH13-	BMO		
DELTA	-	:	DA/DN (10#	+-6 IN. /CYCLE)	
(KSI*IN*	*1/2)	A	В	С	D
		E=- 65F			
DELTA K B: MIN C: D:	8. 14	: . 129 : :			
	9.00 10.00 13.00 16.00 20.00 25.00 30.00	. 238 . 552 . 1. 05 . 2. 02 . 3. 92 . 7. 14			
DELTA K B: MAX C: D:	35. 96	: 14. 2 : :			
ROOT MEAN PERCENT E	RROR	6. 53			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.5-0. 0.8-1.	5 8 25 0 1			

Figure 3.8.3.5

1/ELE 3.8.3.6

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.6 INDICATING EFFECT

OF ENVIRONMENT

DELTA (KSI*IN**			DA/DN (10*	*-6 IN./CYCLE)	
(//	1,2,	: A	В	C	D
		: E= R. T. : L. H. A.			
DELTA K B: MIN C: D:		. 241 :			
	20.00 25.00 30.00 35.00	: .340 : 1.01 : 2.00 : 3.47 : 5.60 : 8.38 : 11.9 : 16.1			
A: DELTA K B: MAX C: D:		54. 3			
ROOT MEAN S PERCENT ER	ROR				
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 0. 5-0. 0. 8-1.	5 8 25 1 0		**************************************	

である。当時は大学を表現している。可能のできる。一個などのでは、「他のなどのでは、「他のなどのでは、「他のなどのでは、「他のなどのでは、「他のなどのなど、「他のなどのなど、「他のなど、「他のなどのなど、

Figure 3.8.3.6

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.7 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: S CONDITION: ENVIRONMENT	H1000 T: R.T., I	STEEL PH13-8M	0				
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)					
(W21#1M##	11/2) :	A	В	c	D		
	; ;	R=+0. 08	R≈+0. 50				
DELTA K B: MIN C: D:		. 154	. 252				
	8. 00 : 9. 00 : 10. 00 : 13. 00 : 20. 00 : 25. 00 : 30. 00 : 40. 00 : 50. 00 :	2. 31 3. 83 5. <i>9</i> 3	.383 .578 .852 1.82 3.10 5.59 11.0				
DELTA K B: MAX C: D:		48. 3	32. 5				
FROM NO TH	us (tel	15. 95	11. 43				
PANA)	り、たら ラーマラ 1-1,25 * 5-2,0		2				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.8 INDICATING EFFECT

OF ENVIRONMENT

DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)				
(NOI#IN#*	(1/2)	: A	В	С	D	
		: : E= R. T. : L. H. A6. OH2	E=- 65 F L. H. A6. OHZ	E= R. 7. S. T. W1. OHZ		
DELTA K B: MIN C: D:		. 156	. 112	. 388		
	20.00	:	. 123 . 167 . 236 . 635 1. 31 2. 87 4. 64	. 479 . 643 1. 49 3. 13 7. 11 15. 8 29. 0		
	35 . 00 40 . 00	16. 2 23. 2 34. 4		27. U		
DELTA X 5: MAX C: D:	29 . 92		12. 3	43. 7		
ROOT MEAN S		16. 24	16. 25	8. 27		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.5-0. 0.8-1. 1.25-2.	8 25 2 0 1	1	1		

Figure 3.8.3.8

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTUR

DATA ASSOCIATED WITH FIGURE 3.8.3.9 INDICATING EFFECT

OF ENVIRONMENT

		: DA/DN (10**-6 IN./CYCLE)					
DELTA K : (KSI*IN**1/2) :							
		: A	В	C	D		
		: : E= R.T. :LAB AIR	E≃ R.T. SIM. SEA WATER				
A:	12. 29	: 1.26					
DELTA K B: MIN C: D:		: : :	1.30				
	13. 00	: : 1.53	1. 82				
	16.00	: 2 . 9 9	4.36				
	20.00		9.07				
	25 . 00 30 . 00		16. 1 23. 9				
	35 . 00	: 13.0	32. 3				
	40.00	: 21.0	41. 8				
	50 . 00	: 31 . 7 : 44. 0	65 . 5				
			99 . 7				
	80 00	; 58.6 ; 76.7					
	90 . 00	. 73. 7 : 99. 1					
		: 127.					
		259.					
		: 457.					
ELTA K B:		:	145.				
MAX C:		:					
		· :					
PERCENT E	SQUARE RROR	6. 23	11.04				
LIFE							
REDICTION							
RATIO		25 2	2				
SUMMARY	4 6						

STAIN. CONDITION/HT: H1000 YIELD STREAGTH: 206. 0 KSI 3. 00"TH FORGING FORM: STEEL ULT. STRENGTH: 210.6 KSI SPECIMEN TYPE: CT 1.005" 1.003-SPECIMEN THK: ORIENTATION: L-T SPECIMEN WIDTH: 4.500-7.400" STRESS RATIO: +0.10 PH13-8M0 REFERENCES:NC002 1.00- 10.00 HZ FREQUENCY: ΔK (MPA √m) ΔK (MPA √m) 100 100 10 40 40 10 ппп B **(A)** ENVIRONMENT R. SIM. SEA WATER R. T. ENVIRONMENT: 10 2 10-2 10⁻¹ 10-1 10⁻³ 10.3 10⁻² 10.2 da/dN (mm/cycle) da/dN (in/cycle) 10.4 10 4 10⁻³ 10-3 10^{.5} 10⁻⁵ 10-4 10'4 10.6 10⁶ 10.5 10.5 10.7 10.7 10^{.6} 10⁻⁶ 10.8 10.8 40 100 10 40 100 10 **(** لتنتلنا C لللبليل ابايانا 10 ⁰ ENVIRONMENT: ENVIRONMENT: 10 ° 10.2 10.2 10-1 10-1 10^{.3} 10.3 10.5 10-2 da/dN (in/cycle) (mm/cycle) 10 4 10 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ da/dN 10.4 10'4 10⁶ 10⁶ 10^{.5} 10.5 10⁻⁷ 10'7 10.6 10^{.6} 10⁻⁸ 10 100 10 ΔK (KSI √In) ΔK (KSI √in)

Figure 3.8.3.9

Table 3.8.3.10

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSUCIATED WITH FIGURE 3.8.3.10 INDICATING EFFECT

OF ENVIRONMENT

DELTA K (KSI*IN**1/2)	:	DA/DN (10**-6	IN. /CYCLE)	
(WD1#1M##1\S)	. A	В	С	D
	E= R.T. :LAB AIR	E= R.T. SIM. SEA WATER		
A: 12.16 DELTA K B: 12.34 MIN C: D:	1.37	1. 57		
35. 00 40. 00 50. 00 70. 00 80. 00 90. 00 130. 00 A: 116. 68 DELTA K B: 137. 87	3. 16 5. 57 9. 04 12. 9 17. 0 21. 6 32. 1 45. 2 61. 7 82. 8 110. 145.	1.93 4.42 8.95 15.5 22.8 31.2 40.9 65.4 99.7 148. 212. 296. 404. 896.		
MAX C: D: RODT MEAN SQUARE	6. 87	12. 77		
PERCENT ERROR		نان بعد جي مان الله الله على الله بنان بيان بان الله الله الله الله الله الله الله ال		
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA)	9 . 25 2 : 0	2		

Figure 3.8.3.10

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.11 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: STAINLESS STEEL !	7H13-6M0
-----------------------------	----------

CONDITION: H1000

ENVIRONMENT; P. T. , DRY AIR

DELTA			DA/DN (10**-	6 IN. /CYCLE)	
(KSI#IN##	11/2) :	A	ម	С	D
	; ;	R=+0. 10	R=+0. 30	R=+0. 50	
DELTA K B: MIN C: D:		. 137	. 177	. 0264	
	7.00 : 8.00 : 9.00 : 10.00 : 13.00 : 20.00 : 25.00 : 35.00 : 40.00 : 50.00 : 70.00 : 80.00 :	. 144 . 237 . 724 1. 53 3. 07 5. 69 9. 00 13. 0 17. 7 29. 6 45. 7 67. 2 95. 9	. 244 . 393 . 582 1. 36 2. 41 4. 17 6. 96 10. 5 15. 1 21. 1	. 120 . 243 . 413 . 641 1. 58 2. 80 4. 79 8. 03 12. 6 19. 5	
A: DELTA K B: MAX C: D:		114.	22. 2	25. 1	
ROOT MEAN S PERCENT EF		5. 19	5. 60	6. 49	
PREDICTION RATIO SUMMARY	0 0-0 5 0.5-0.8 0.8-1.25 1.25-2.0 22.0	1	1	1	

TAPL: 3.8.3.12

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.12 INDICATING EFFECT

OF STRESS RATIO

		SIRESS KALID				
MATERIAL: STAINLESS CONDITION: H1000 ENVIRONMENT: R.T.,						
DELTA K :		DA/DN (10**-6 IN. /CYCLE)				
(KSI*IN**1/2) :	A	В	C	D		
: :	R=+0.10	R=+0. 30	R=+0. 50			
A: 9.78 : DELTA K B: 9.28 : MIN C: 6.78 : D:	. 219	. 576	. 393			
7.00 : 8.00 : 9.00 : 10.00 :		. 218	. 299 . 375 . 592 . 942			
13.00 : 16.00 : 20.00 : 25.00 : 30.00 : 35.00 : 40.00 :	1. 52 3. 61 7. 56	2.50 5.41 11.3 21.9 36.0 53.6 74.8	2.89 6.11 12.5 24.6 43.1 71.2			
A: 59.32 : DELTA K B: 50.68 : MAX C: 47.33 : D:		134.	221.			
ROOT MEAN SQUARE PERCENT ERKOR		7. 15				
LIFE 0.0-0.5 PREDICTION 0.5-0.6 RATIO 0.8-1.6 BUMMARY 1.25-2.6 (NP/NA) >2	5 3 25 & 0	2	2			

学のシング語から、2000年のでは、1000年のでは、1000年の100年の10

Figure 3.8.3.12

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.13 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: STAINLESS	STEEL PH13-8MO
CONDITION: H1000	
ENVIRONMENT: R.T.,	DRY AIR

DELTA K : (KSI*IN**1/2) :			DA/DN (10##~	5 IN./CYCLE)	
(N21+1N++	1/2) :	A	В	С	D
	: :	R=+0. 10	R=+0. 30	R=+0. 50	
A:	9 . 25 :	. 147			
ELTA K B: MIN C: D:	7. 78 : 6. 00 :		. 176	. 121	
	7. 0 0 :			. 153	
	8 00 : 9.00 :		. 193 . 28 9	. 220 . 335	
	10.00 :	. 265	. 426	. 511	
	13.00 :	. 737	1. 15	1. 40	
	16 . 00 :	1. 59	2. 29	2. 62	
	20 .00 :	3. 14	4. 17	4. 60	
	25 . 00 :	5. 52	6. 93	7. <i>L</i> 2	
	30.00	8. 27	10.2	11.5	
	35 . 00 : 40 . 00 :	11. 4 15. 0	14.4	16.8	
	50 .00 :	24. 3	19. 8 37. 1	24. 1	
	60 00	37. 7	69.9		
	70 . 0 0 :	57. E	134.		
	80 .00 :	87.4			
A :	86 8 0 :	116.			
ELTA K B:	73.72		171		
THAX C:	48. 54 :			42. 9	
D.	:				
DOT MEAN S		8. 22	7 37	6. 14	

LIFE 0.0-0 5
PREDICTION 0.5-0 8
FATED 0.6-1 25 1 1
SUMMARY 1 25-2 0 1
(NF/NA) 12 0

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.14 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: S CONDITION: ENVIRONMENT	H1000	STEEL PH13-8M					
DELTA			DA/DN (10**-6 IN./CYCLE)				
(KSI*IN*+	€1/2) :	Α	В	С	D		
	:	R=+0.10	R=+0. 30	R=+0.50			
DELTA K B: MIN C: D:	9. 13 : 6. 87 :	. 928	. 466	. 2 7 9			
	30.00 : 35.00 : 40.00 : 50.00 : 60.00 :	2. 57 6. 71 15. 3 26. 6 30. 7 52. 4 108. 259.	. 543 2. 16 4. 48 9. 37 19. 2 34. 6 58. 0 92. 8 215.	. 342 . 468 . 625 1. 08 3. 06 5. 84 11. 6 24. 3 47. 9 91. 9 174. 607.			
DELTA K B: MAX C: D:	50 . 46 : :		339.	613.			
	GQUARE RKOR	33 16	14. 35	12. 25			
PREDICTION RATIO / SUMMARY	0.0-0.5	5 ₂	1 1	2			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.15 INDICATING EFFECT

OF STRESS RATIO

CONDITION: H100 ENVIRONMENT: R						
DELTA K		DA/DN (10**-6 IN. /CYCLE)				
(KSI*IN**1/2)	: : A	В	С	D		
	: : R=+0.08	k=+0. 30	R=+0. 50			
DELTA K B: 10.		. 571				
MIN C: 6. D:	81 : :		. 119			
8. 9. 10.	00 : 00 : 00 : 00 :		. 132 . 220 . 345 . 515			
16. 20. 25.	00 : 1.52 00 : 3.49 00 : 5.82 00 : 8.52 00 : 12.7	1.29 2.52 4.70 8.11 13.4	1.33 2.60 4.70 7.10			
DELTA K B: 34. MAX C: 29. D:		18. 7	8. 31			
PERCENT ERROR	E 10.57					
LIFE 0.0 PREDICTION 0.5 RATIO 0.6 SUMMARY 1.25 (NP/NA)	9-0, 5 5-0, 8 3-1, 25 1 5-2, 0	1	1			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.16 INDICATING EFFECT

OF ENVIRONMENT

DELTA K (KSI*IN**1/2)		:	DA/DN (10**-6 IN./CYCLE)				
		A	В	С	ם		
		: : E≕ R. T. : S. T. W.					
DELTA K B: MIN C: D:	10. 68	1.11 :					
	16.00 20.00 25.00						
DELTA K B: MAX C: D:		54. 6					
PERCENT EF	RROR	8. 98	**************************************				
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 0. 5-0. 0. 8-1.	5 8 25 1					

Figure 3.8.3.16

FATIGUE CRACK OROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.3.3.17 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: S CONDITION: ENVIRONMEN	H1000	TEEL PH13-8M	10		
DELTA K : (KSI*IN**1/2) :			DA/DN (10**-	6 IN. /CYCLE)	
/V21±1M±	:	A	B	С	D
	:	R=+0.08	R=+0. 30	R≃+0. 50	
		. 155			
DELTA K B:			. 514		
MIN C:				. 593	
D:	:				
	9.00 :	. 194			
	10.00 :		. 624	. 792	
	13.00 :	. 931	1. 49	2. 02	
	16.00 :	1. 92	2.61	3. 20	
	20.00 :	3.40	4 39	5. 09	
	25 . 00 :	5. 43	7. 05	7. 90	
		7. 97	10.3	11.7	
	35 . 00 :	12. 1	14. 4	19. 4	
	40.00 :	7. 97 12. 1 19. 4	19. 7	38.0	
	42 . 46 :	15. 5			
DELTA K B:			22. 8		
MAX C:	41.04 :			44.6	
D:	; ;				
PERCENT EF	ROR		5. 40	7. 95	
LIFE PREDICTION RATIO	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0	2	1	1	

(NP/NA)

>2.0

TAME: 3.8.3.18

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.18 INDICATING EFFECT

OF ENVIRONMENT

は、自然などととは、自然のないのでは、関本ととなるとは、関本などのない。

DELTA K		DA/DN (10**-6 IN./CYCLE)			
(KSI*IN**1/2)		: A	B	c	D
			E=- 65 F L. H. A6. OHZ		
A: DELTA K B: MIN C:	15.07		. 404	. 517	
D:		:		. • • ·	
	9.00 10.00	: . 290		5.44	
	13.00 16.00	: 1.80	. 594	. 544 1. 68	
	20. 00 25. 00		1. 67 3. 68	5. 24 13. 6	
	3 0. 00	10.0	5. 60	24. 5	
	35. 00 40. 00	14.1		35. B 45. 9	
	50 . 00			60. 7	
		: 15.3			
DELTA K B: MAX C: D:	56. 24		7. 95	66. 5	
ROOT MEAN S		16. 46	12. 41	14. 12	
LIFE PREDICTION RATIO	0.5-0.	8 25 i	1	1	

Trible 3.8.3.19

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.19 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: STAINLESS STEEL PH13-8MO

CONDITION: H1000

ENVIRONMENT: R. T. , S. T. W.

DELTA K :		DA/DN (10**-	IN. /CYCLE)	
(KSI*IN**1/2)	A	В	С	D
:	R=+0. 08	R=+0. 30		
A: 11.05 : DELTA K B: 8.60 : MIN C: : D: :	. 260	. 276		
9.00 : 10.00 : 13.00 : 16.00 : 20.00 : 25.00 : 30.00 :	1.07 2.32 4.15 13.7 41.7 63.4	. 372 . 640 2. 10 6. 04 12. 2 25. 5 70. 5 183.		
A: 38.49 : DELTA K B: 36.46 : MAX C: : D: :	65 . 6	225.		
ROOT MEAN SQUARE PERCENT ERROR	24. 63	15. 20		
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 SUMMARY 1.25-2.0 (NP/NA) >2.0	i	2		_

Figure 3.8.3.19

である。 1977年 - 1977年

TribLL 3.8.3.20

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.20 INDICATING EFFECT

OF FREQUENCY

DELTA (KSI*IN**			DA/DN (10**	H-6 IN./CYCLE)	
(WST & TIAK A	1727 :	A	В	С	D
	:	F(HZ)= 0.1			
A: DELTA K B: MIN C: D:	14.76 : :	2. 15			
	16.00 : 20.00 : 25.00 : 30.00 :	12. 7			
DELTA K B: MAX C: D:	31.99 : : :	26. 7			
OOT MEAN S PERCENT ER	-	3. 35			

Figure 3.8.3.20

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.8.3.21 INDICATING EFFECT

OF ENVIRONMENT

DELTA (KSI+IN*	K	:	DA/UN (10**~	IN. /CYCLE)	
(N21#10#;	F1/2)	: A	В	C	D
		: : E= R. T. : L. H. A. −6. OHZ	E=- 65 F L. H. A6. OHZ	E= R. T. S. T. W1. OHZ	
A:	10. 66	: . 158			
DELTA K B:			. 360		
MIN C: D:	7.82	: :		. 101	
	8. 00	: :		. 106	
	9.00			. 162	
	10.00			. 286	
	13.00	: . 658 : 1.88	. 622	1. 47	
		: 1.85 : 4.01	1. 52 3. 15	3. 55 6. 43	
		. 4.01 : 6.78	5. 47	17. 3	
	30 . 00		8. 16	27. 6	
	35.00	: 13.5	U . U .	62. 8	
	40.00				
		: 23. 2			
DELTA K B:			9. 87		
MAX C:	36. 71	:		102.	
D:		: :			
ROOT MEAN S		3. 59	10. 72	13. 75	*****
LIFE	0. 0-0.	5	~		
PREDICTION					
RATIO			1	1	
SUMMARY (NP/NA)	1. 25 −2. >2.				

Main and the second a

						SIAIM.ESS SK	SITEL PHI	PHI3-PMD	K-1SCC)							
NO11110PAD 7		FORM THERE (TH)	ı	1651 SPEC 16hr OR 67)	YIELD SIR (MO1)	ENVIRONMENT	WIDTH (NI)	HIDTH THICK DESIGN (IN) (**SC)	CRACK LENGTH CIN)		K(IECC) HEAN	1	STAN DEV	TEST TIME (MIN)	DATE REFER	•
950	L	÷	~	٠	207 3		1. 300	0.480 C.WIT	: : :	73, 90	73 90		^	90009	1971 84333	_
95	2	086886888 44444444	μ	5		⊒່ ⊢ ຫ				888888888888888888888888888888888888888		/0 'B #	. vi	82990 82320 31720 31720 48780 91720 91720 82320 82320 86280	1976 R 1006 1976 R 1006 1976 R 1006 1976 R 1006 1976 R 1006 1976 R 1006 1976 R 1006	
930	•	2 23	E	7	196 7	INDUSTRIAL ATH	60 00 00	1. 000 CT	;	3 3	39.00				1973 86688	
о 650	€	2 25	•	7	196 7	SEACOABT ATH	2 000	1. 000 CT		3	9.16			1	1973 86688	
8	•	2 23	E C		196. 7	٤	8	-		62.60	8	(1		1973 86698	
, , , , , , , , , , , , , , , , , , ,	; , w	, 2222 ,	' ' # *	ר '	22.22	1 1 2 1 2 1 1 1 0	. 00000 . 66666	1. 000 BCK 1. 000 BCK 1. 000 BCK 1. 000 BCK 1. 000 BCK	1111	88888	88888			6290 6290 6290 6290	976 RIO 976 RIO 976 RIO 976 RIO	
н1000	w	500	₹	7	213.0 213.0		8 8 8 6 6 6 6 6 6	1. 000 DCB 1. 000 DCB 1. 000 DCB		132.00 > 132.00 >	888 888 888 888			116820 116820 116820	1976 R1006 1976 R1006 1976 R1006	
н 000	8	0 8 8 - • •	e e	- -1	215.0	ر ۲. تـ ۲. تـ	4 0 0	0. 998 MDL 1. 000 DCB 1. 000 DCB	1.207	127.00 >	84.4 80.00 00.00 00.00		^	60420 91720 80320	1978 6D009 1976 R1006 1976 R1006	0-4-4
н 1000	e	88	~	L:	215 0	3. 5% IMGL	0, 0, 0, 0, 0, 0,	0. 998 MOL.	1 250		94 94 90 90	3 9	^	60420 60420	1978 CD009 1978 CD009	0.0
000	a	0000	Œ	7	216 0 216 0 198 0 198 0	zi ⊩ vi	# 6 0 0 # 6 0 0 # 6 0 0 # 6 0 0 # 6 0 0	0.999 MOL 0.999 MOL 1.000 DCB 1.000 DCB	1 048	123 00 >	6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		^^	60420 60420 83520 83520	1978 eboo9 1978 eboo9 1976 RICO6 1976 RICO6	e e0 -0

na in Maray Walk

		TEST TIME DATE REFER (NIN)	823520 1976 RIO 91720 1976 RIO 91720 1976 RIO	> 60420 1978 CD009 > 60420 1978 CD009	75180 1974 RI004	60180 1976 R1006 73240 1976 R1006	86280 1976 R1006 116820 1976 R1006 116820 1976 R1006 116820 1976 R1006	96290 1976 R1006 116820 1976 R1006 116820 1976 R1006 116820 1976 R1006	1973 866	1973 86688	98998 6261	120960 1976 RIO 120960 1976 RIO 120960 1976 RIO 120960 1976 RIO	120960 1976 RIO 120960 1976 RIO
		BTAN DEV		13.0				1	, 1 ,		1	i ·	1 1 1
		E AN	3	74. 47				1	 		! !	• •	
		(2)	888	63 20 85 30	75.00	% % 8 8 8	25.05 20.05 80.05 80.05	6888 8888 8888	•	8	65 00	8888	888
			888	1 1	8	88	8888	8888	•		2	 ! 8888	 . 888
	_	I 1	888		55	- 132	8888	8888	. 60	. 97.60	4	96.68	. 688
	KCISCO	CRACK LENGT		1. 880 1. 250						;		. !!!!	
-	(paned)	DESIGN (0 = 50 C)		ತ್ತ ತ್ರ	DCB	200			. 5	5	C		. 558
•	(Continued)	Ż×~ '	888	866 O	1 000	98	8888	0000	۱ 8	8		8888	000
	77. ¥	DTH 07	000 000 000 000	2.343	300	6.6	0000 0000 0000 0000 0000	00000 00000 00000 00000	, 8	800 900	00 00 00 00	8888	1 000 1 000 1 5 5
•	Table 3.8.3.	# EN1	3 1 1 0 0 0 0	216 0 3.5% NACL 216.0	208.0 F.C.S.	208 0 5 C 8 208 0	208 0 5.1. M. 208 0 208 0 208 0 209 0	215.0 S. T. M. 215.0 S. T. M. 215.0 215.0	F	178.5 SEACOAST ATH	178. 5. 20 PCT NACL	7.0 % TE. 0.7 % O . 0	21 to 21 to
		39.45 80	ب	<u>1</u>	1-1	<u>ן</u>	7	ַב <u>ְ</u>	ب ب ا	7	7	:	רי איי
		165) 1647 (F)	j es	-	~	•	E	<u>.</u>		E	€	!	· -
		195 1815 183	4 4 4	8 	0;	0; 0; 0; 0;	5555	9999	52 1	33	23	8888	555
		PROBUCT FORM THIS	<u>1</u>	æ	æ æ	œ œ	æ		1 ! 60 !	•	•	1 62 1 50 1	. e
		COMBITION	8	H1000	H1000	и 1000	н1000	000	ново	н1050	н1050	8H 950	RH 973

Table 3.8.3.22 (Continued)

HILLY (FT) (KS) (KS) (KS) (KS) (KS) (KS) (KS) (KS		PROIME 1	: 1.4 (4)		SPEC	VIELD	STAINLESS STIEL	TEEL PHIC	EL PHI3-840 K	Krisco) - Chack	ŝ	(2)513	3	STAN	TE8T	DATE REFER	E F
BR 1 50 R T 1-5 213 0 S T W 5 500 1 000 CT 96 00 101 00 12 12 15 0 218 0 2					5 ;	S18 (KS1)	NOTRONIEN	Î Z	(18) (+20) (18) (+20)	(NI)	(S1eS0k	2 1		,		1	
F 1 00 R. T. T-L 190. 0 3.5 PCT NACL 1.000 CANT6 1.000		ğ	0.1	α		215.0	r c		1 000 C1		96	101		-	120960		900
F 1 00 R.T. T-L 180 0 3.5 PCT NACL		•	200			215.0			1 200 CT		 8 9	, 42 80		_		1976 H	8
P 1 00 R. T. T-L 180 0 3.5 PCT NACL 1.000 CANT8 190 00 170 008 P 1 00 R. T. T-L 190 0 3.5 PCT NACL 1.000 CANT8 190 00 130 008 P 1 00 R. T. T-L 200 0 3.5 PCT NACL 1.000 CANT8 190 00 135 008 P 1 00 R. T. T-L 210 0 3.5 PCT NACL 1.000 CANT8 135 00 120 008		:		1		0 B:2		3 300	1 000 CT		8	00 68 0	1 1 1	— i i i	130960	1976 8	98 :
P 1 00 R.T. T-L 180. 0 3.5 PCT NACL 1.000 CANTe 190. 00 160. 00e P 1 00 R.T. T-L 200. 0 3.5 PCT NACL 1.000 CANTe 190. 00 130. 00e P 1 00 R.T. T-L 210. 0 3.5 PCT NACL 1.000 CANTe 190. 00 135. 00e P 1 00 R.T. T-L 210. 0 3.5 PCT NACL 1.000 CANTe 190. 00 120. 00	TYS=140MS1	: ! <u>a</u>	8 -	<u>-</u>	<u> </u>	140.0	3.5 PCT NACL	1		1	8	170 00			•	1972 8	13613
P 1 00 R. T. T-L 190. 0 3. 9 PCT NACL 1. 000 CANTe 180. 00 130. 00e P 1. 00 R. T. T-L 200. 0 3. 9 PCT NACL 1. 000 CANTe 190. 00 135. 00e P 1 00 R. T. T-L 210. 0 3. 9 PCT NACL 1. 000 CANTe 139. 00 120. 00	1	1		1 P	ı 🔑	180 0			1. 000 CANTe			· · · · · · · · · · · · · · · · · · ·		t t		1972 8	5,1
P 1. 00 R. T. T-L 200. 0 3. 5 PCT NACL 1. 000 CANTe 190. 00 159. 00e				1 pr		190.0	¦ ≨		1. 000 CANT			130 :001	, ,	1 1 1 1 1 1		1972 B	13613
P 1 00 R.T. T-L 210.0 3.5 PCT NACL 1.000 CANT 135.00 120.00		1 1		<u> </u>		0 00Z			1. 000 CANT®			125.00				1972	3613
	1	1		# F.		210.0			1.000 CANT			8	 			1972	13613

*NOTE-DATA UNICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REQUINEMENTS OF 2. SKISCC/TYS)SQUARED

THE COLUMN TWO IS NOT THE PROPERTY OF THE PARTY	N(C) STAN MEAN DEV DATE REFER ORT IN)	
	ATE.	
	MIC) STAN MEAN DEV IT IN)	1
	A TEA	l !
	STAN N(C) DEV N(C) MEAN (MSI-SORT IN)) ! :
	DEV	
	GROSS STRESS REALP) STAN ONSET HAX K(APP) HEAN DEV M(C) (MB1) (KS1) (MS1+SQRT IN) (MS1+S	
Kic	MAX (KS1)	1
_	CRACK LENGTH GROSS STRESS WIDTH THICK INIT FINAL OWEET MAK (IN) (IN) (IN) (IN) (KBI) (KSI) W B 2A(D) 2A(F) 91(D) S(MAX)	!
문	E Z = ~	;
STAINLESS SIFEL PHI4-8MD	FIN	1
Ī	N T N N	1
IGEL	81-28	1
S S	EN CK EN CK	1
INE	FC14	,
STA	2013 E (N 1)	1
	13	ı
	YIELO Str (KSI)	1
		,
	<u>₹</u> €	1
	TES TEM (F)	ı
	PRODAUCT TEST SPEC FURH THICK TEMP OR (IN) (F)	,
	100 F	,
	<u> </u>	,
		1
	3	,
	CURDITION	,
	5	,

	E464 97973	1964 57573	1964 57573 1964 57573 / 1964 57573	1964 97973	1964 97573
	!	į		:	
RAINED	72 60 231.63	118, 10, 218, 44+	95 90 210 21 72 40 231 27 71 90 229 61 223 7/11, 7	92 10 294.19	115 70 369 42
BUCKLING OF CRACK EDGES RESTRAINED	:	:		:	!
CRACK E	9	2.010	0 0 0 0 0 0 0 0 0 0 0 0	9 000	9 90
LING OF	0.023	0.025	0.023	0.030	0.093
	174 5 24,040 0,023 3,990	174. 5 7. 990 0. 025	174. 5 24. 020 174. 5 24. 030 174. 5 24. 040	196. 6. 24. 010	197. 4 24. 100
	174 5	174. 9	174.9 174.9 174.9	196.6	197. 4
	63 L-T	L-1	R T. L-T	L-1	1-1
		~	a	F	0 09 R T. L-T
	0 03	0 03 R T. L-T	0 0 0 0	0 05 R.T L-T	60 0
	v	Ø	v	ø	en
	SRH1050	SRH1050	S8H1050	SRH1050	SRH1050

*NOTE- NET SECTION STRESS EXCEEDS BOX OF YIELD BIRENGTH, VALUE NOT INCLUDED IN HEAN OR STD. DEV

		URE	EC19ENB)		1-1		
٥	1.1	ACTURE TOJOHNEBB DATA OF 119—7HO AT ROOM TEMPERATURE	MDAND IMPRER OF BPECIFERS)	ROLLED BAR	1	30.4 + 0.1 (2)	
	Table 3.10.1.1	PEAN PLANE BTRAIN FRACTURE STAINLESS STEEL ALLOY PHIS-7ND	MEAN KIC + BTANDARD (KBI BORTCIN) DEVIATION		ij		
		# # # # # # # # # # # # # # # # # # #	COMD1110N/HT		CONDITION/HT	064 HB	

	•	1	•
	REFER	1973 86688 1973 86688	B 8999 B 8999
	DATE	1973	1973
	E 5	0	
	(1C) 8	30. 6/ 0.1	40.2/ 1.9
	K(IC) STAN K(IC) MEAN DEV (KSI+50RT IN)	96 97 97	41. 30 40. 70 61. 30
	G** (SA		
~	# 55 W C C C C C C C C C C C C C C C C C	000	911
KCIC	CRACK 2 50 LENGTH (KCIC)/IVS) #2 (IN) (IN)	1.029	1 010
Q		55	1 555
PHIS	CIMEN-	88	000
SIAINLESS STEEL PHIS-7MO	WIDTH THICK DESIGN	2 600 2 600	1 000 0 1 000 0 1 0 0 0 0
SIAIMLES	* 1	204.0	0.891
	SPECIMEN YIELD ORIENT STRENOT (MSI)	<u> </u>	; ;
	TEST TEMP (C)	- α	΄ - α
	FORM THICK TOTAL CINO	1 25	1 222 2 23 1 1 1 1
	FORM	a e	
	CONDITION	8н 950	BH1050

			DATE REFER	> 30000 1971 84333		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			11ME (MIN)			
			BTAN DEV		ı	1 1
			. REA	14 80	, e	1 1 1 1
			CRACK LENSTH M(Q) N(15CC (IN) (MSI+SORT IN)	36.16	3 5	
		K (ISCC)	CRACK LENGIF (IN)		;	
			MIDTH THICK DESIGN LEND (IN) (IN) (+-SG) (IN)	1. 900 0 480 CANT	1. 500 0 480 CANT	1 1 1
Q	Table 3.10.3.1	IEEL PHIS		i	1	1 1
	Table	SIAINLESS SIEEL PHID-7MO	ELD itr envir onte nt isi)	196 5 3.5 PCT NACL	167. B 3. 9 PCT NACL	, 1 1 1 1
			TEST SIFC YIELD TEMP OR STR (F)		71	1
			TEST TEMP (F)	F	i —	1 1 !
			FORM THICK	82.1.88		1
额			CUMBITIUM	RH 950	TH1050	1 1 1

Table 3.11.1.1

HEAN PLANE STRAIN FRACTURE TOUCHNESS DATA OF TAINLESS STEEL ALLOY 19-99H AT ROOM TEMPERATURE

CONDITION/HT L_I_I FOREING CONDITION/HT L_I_I FYS=130-163KSI CONDITION/HT L_I	14. 8 ± 6. 9 (3)	
72.	72.7 + 4.9 (6)	

	FATIONE CRACK	CROWTH RAT	E AT DEFIN	ED LEVELS OF THE B	FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE BIRESB-INTENSITY FACTOR
			9TAINLE8	STAINLESS STEEL 15-5PH	
TEST_CONDATIONS SPECINEN ORIENTATION	7.			ENVIROMENT	H. H. A. T. T. T. T. T. T. T. T. T. T. T. T. T.
COND 1 T TON/HT	PRODUCT FORM	STRESS RATIO	FREG.	DELTA K LEVELS (KBI SORT(IN))	FATIONE CRACK GROWTH R. (MICRO IN/CYCLE) 2.9 9 10 20
TUS-130-169KSI	BILLET	8.1-			% E
TUS=150-165KSI	BILLET	-0.20			9.6
TUS=150-163KS1	BILLET	6			9. N

0.73

Table 3.11.1.3

(3)

FATICUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

BTAINLESS STEEL 15-3PH

TEST CONDITIONS

SPECIMEN ORIENTATION SH

ENVIRONMENT: H.H.A.

CONDITION/HI	PRODUCT FORM	STRESS	FREG. (HZ)	DELTA K	_	FATIGUE (M)	CHICRO IN/CYCLE)	FATICUE CRACK ORDWIN RATES (MICRO IN/CYCLE)	8	
				LEVELS (KBI SORT(IN))	e N	80	9	8	8	8
TUS=150-165MSI	BILLET	-1.00						4.78	91.6	
TUS-150-163KSI	BILLET	8						3.46	38.0	
TUS=150-165KSI	BILLET	5						3.16	97.9	
TUS=150-169KSI	BILLET	0.40						6.02		

Table 3.11.2.1

	l ex			1 1
	REFER	99999 99999 99999	86688 86688 84212	14007 14007 14007
	DATE	1973 1973 1973 1973		1978
	BTAN		4. U	i •
	MCIC) B MEAN D MT IN)		72. 77	94.8/
	K(IC) HEAN (KBI+BGRT IN)	8885		1 1 888
	K(I)	0.0.45		និងខ
	CK 2.5° TH (K(EC)/TVB)**2 ((1N) (1N)			1
	94 (N) 1N)	0000 0000 0000	000 0 4 8 8 4 8	- 00 - 00 - 00 - 00
K(1C)	K (K (K)			1
¥	CRACK (IN)	2.037	1.000	
				1
I.	DESTON	5555		, 555
19-9PH	IDTH THICK DESIGN	8888	8 88	1 222
BTEEL		888		1 000
E88	MTOTA (NI)	****		। ଅନ୍ତର୍ଶ ।
BTAINLESS STEEL	YIELD BTRENOTH (KBI)	22.00	92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
_			122 2	1
	SPECIMEN OR 1ENT	, <u>,</u>	4	1-1-
		E	₽- 2 2	- -
	PRODUCT TEST FORM THICK TEMP (IN) (F)	1	8 22.5	,
	1000		, www.	
	PROD		2	1 1 1 1
		' I I		
	108	1		178-1150-163451
	CONDITION	004	900	1 4S=1

THE PROPERTY OF THE PROPERTY O

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACIOR

DATA ASSOCIATED WITH FIGURE 3.11.3.1 INDICATING EFFECT

OF ENVIRONMENT

DELTA (KSI+1N+			DA/DN (10**-6	IN. /CYCLE)	
(VOI×IN*)	*1/2/	A	В	С	D
		: : E= R.T. :LAB AIR-10.OHZ		:	
DELTA K B: MIN C: D:		8. 27	5. 06		
	20.00 25.00 30.00 35.00 40.00 50.00 60.00 70.00 80.00 90.00	15. 0 18. 0 22. 0 29. 7 41. 2 56. 1	9. 97 15. 7 20. 3		W.
DELTA K B: MAX C: D:	124. 79 30. 88	: 146.	21. 5		
ROOT MEAN ! PERCENT EI		8. 12	19. 17		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.8-1.	8 25 2 0	1		

Figure 3.11.3.1

and a superior and the last of

FATICUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.11.3.2 INDICATING EFFECT

OF ENVIRONMENT

MATERIAL: STAINLESS STEEL 15-5PH CONDITION: H1025 DELTA K DA/DN (10**-6 IN. /CYCLE) (KSI*IN**1/2) B C D E= R. T. : LAB AIR 28.88 : 1.50 DELTA K B: MIN C: D: 30.00 : 1.73 35.00 : 3. 08 40.00 : 5. 37 **50**. 00 : 15.3 60.00 : 31. 1 70.00 : 48.6 80.00 : 70.0 90.00 : 102. 100.00 : 155. A: 107.17 : 219. DELTA K B: MAX C: ROOT MEAN SQUARE 42.67 PERCENT ERROR 0.0-0.5 LIFE PREDICTION 0.5-0.8 RATIO 0.8-1.25 2 1. 25-2. 0 SUMMARY >2.0 (NP/NA)

لَنَهُا

Figure 3.11.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.11.3.3 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: STAIL CONDITION: H10 ENVIRONMENT:	25				
DELTA K (KSI*IN**1/2	. :		DA/DN (10**-6	IN. /CYCLE)	
/W21#1/4##1/\$, . :	A	В	С	D
	:	R=+0. 05	R=+0. 50		
A: 33 DELTA K B: 24 MIN C: D:	. 23 : . 76 : :	17. 9	13. 2		
30 35 40 50	. 00 : . 00 : . 00 : . 00 :	19. 9 25. 6 39. 4 60. 4	13. 4 18. 6 26. 7 . 36. 7		
	. 17 : . 53 : :	69 . 7	44. 1		
ROOT MEAN SQUAI PERCENT ERROR		2. 30	4. 38		
	5-0. B	1	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.11.3.4 INDICATING EFFECT

OF STRESS RATIO

DELTA (KSI*IN*			DA/DN (10**~	6 IN. /CYCLE)		
(1,02 4 214 -	:	A	В	С	D	
	:	R=-1.00	R≕-0. 20	R≃+0. 04	R=+0. 40	
	12.00 :	. 706				
DELTA K B:			. 915	700		
_	13. 44 : 9. 60 :			. 7 38	. 629	
	10.00 :				. 73 9	
	13.00 :	. 9 85			1. 76	
	16 . 00 :	2. 07	1. 5 2	1.45	3. 05	
	20.00 :	3. 9 3	3. 05	2. 92	5. 18	
	25 . 00 :	6. 82	5. 43	5. 22	8. 94	
	30 . 00 : 35 . 00 :	10. 5 15. 5	8. 39 12. 2	8.09 11.8	14. 9 24. 9	
	40.00 :	22. 3	12. 2 17. 2	16.8	24. 9 42. 2	
	50 . 00 :	45. 6	33. 6	33. 6	74. 6	
	60 . 00 :	94.6	66. 2	47. B		
	70.00 :		133.	140.		
A:	70 . 00 :	200.				
DELTA K B:			272 .			
MAX C:				231.		
D:	48 . 00 : :				101.	
ROOT MEAN S PERCENT EF		1. 30	. 62	2. 28	2. 82	

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.11.3.5 INDICATING EFFECT

OF STRESS RATIO

	K :		DA/DN (10**-	6 IN. /CYCLE)	
(KSI*IN*	(172) : :	A	В	С	D
	:	R=-1. 00	R = −0. 20	R=+0. 04	R≃+0. 40
A:	14.00 :	1. 69			
ELTA K B:	14.00 :		1. 31		
MIN C:	15.36 :			1.56	
D:	10.80 :				1.24
	: 13. 00 :				2. 09
	16.00 :	2. 61	1. 92	1. 75	3. 51
	20.00 :	4. 78	3. 4 <i>6</i>	3. 16	6. 02
	25 . 00 :	8. 05	5. 99	5. 45	10. B
	30.00 :	12. 2	9. 38	B. 51	18. 7
	35 . 00 :	17. 7	13. 9	12. 7	33. 0
	40.00 :	25. 3	20. 1	18. 5	5 3. 0
	50 . 00 :	51.6	39.8	37. <i>9</i>	
	60 . 00 :			76. 5	
A:	60 . 00 :	108.			
DELTA K B:			76. 0		
	67. 20 :			126.	
D:	48 .00 :				146.
ROOT MEAN S PERCENT EI		7. 16	1. 94	2. 77	4. 04

SUMMARY 1. 25-2. 0

>2. 0

(NP/NA)

Table 3.11.3.6

	DATE REFER	1973 86688	1973 86488	1973 86688	1 1	1973 66688	1973 86688	1473 86688	
	DATE .	1973	1973	1973	•	1973	1973	1473	
	TEST TIME (MIN)		i	-	1 1 1 1 1	1	;	i	
	BTAN				1				
	¥ ;				1	•			
	19CC) 1N)	8	8	33	1	72.00	72.00	72. 00	
	ENGTH M(0) M(ISCC) WE IN) (MSI*SORT IN)	71.80	71.80	71. 80	1 1 1	75. 70	73. 70	75. 70	
K (I SCC)	CRACK LENGTH (IN)	ł	!	-	1	i	}	}	
	MIDTH THICK DESIGN LENGTH K(0) K(19CC) MEAN (IN) (IN) (+=80) (IN) (KSI+SGRT IN) K B A	1. 000 CT	1. 000 CT	1. 000 CT	1 1 1 1 1 1 1 1	1. 000 CT	1. 000 CT	1. 000 CT	
EEL 13-3	MEDTH CIN	90 00 00	9 9 9	% %	1 1 1	9. 000	000 000	2 000 7	
BTAINLEBS STEEL 19-9PH	IELD STR ENVIRONMENT KB1)	171.2 INDUSTRIAL ATH	171. 2 BEACDABT ATH	171.2 20 PCT NACL	1 1 1 1 1 1	93. I INDUSTRIAL ATH	93.1 BEACDABT ATH	93. 1. 20 PCT NACL	
	YIELD STR (KB1)	171.2	171.2	171.2	1 1	5	43.1	B	
	9 8 °	7	7	7	;	7	7	7	
	TEST (TEMP) (F.)	F	₽. Œ	<u>-</u>	1	F.	£.	æ. 	
	DUCT THICK (IN)	2 25 R T. T-L	2 23	2 25 R.T. T-L	1	2.25 R.T. T-L	5 52	2.25 R.T.	
	FORT	•	•	•	1 1	•	•	•	
	CONDITION	006 н	006 н	906 н	1 1 1	H1150H	H1130M	H1150M	

*NOTE-DATA WHICH DO NOT HEET MINIMUM SPECINEN THICKNESS REQUIRENENTS OF 2. SKRIBCC/TYB)BOUARED

Table 3.12.3.1

	EFER :	64333	14333
	DATE REFER	1971	1971
	TEST TIME (MIN)	EEE+8 1261 00009 <	> =0000 1971 84333
	BTAN DEV	1	
	FCIPEN CRACK THICK DESIGN LENGTH MIG) F(15CC) MEAN (IN) (4=SC) (IN) (MSI=SGRT IN) B	• 00 08	* 8
	1 * 60R F		114,00 114 00*
•	TH KIG (KS)	08 96	- 114
(335L) X	CRAC	} !	1
	WIDTH THICK DESIGN LENGTH	1.300 0 480 CANT	0. 480 CANT
SPH(AM	ECIPEN THICK (IN)	8 1 0 1	8
13-	WIDTH (IN)	1.300	1.500
SIFE	130	1	·
STAINLESS SIFFIL 13-5PH(AM)	ENVIRONMENT	175 0 3 5 PCT NACL	157 9 3.5 PCT NACL
	SPEC / PLD (KRT)	175 0	157.9
	SIFC	,	;
	TENT TEHP (F.)	3 CO R T	3 CO R T
	FORM THICK (TID)	8 6	00 C
	PRO	<u>i.</u> 1	L
	COR!D1710N	006 н	н1000

-NOIE-DATA WHICH DO NOT PEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2. SKAISCC/TYS) BOUARED

Table 3.13.3.1

のなどのであるとのでは、「「「「「「「「」」というないできます。 「「「」」できることのは、「「」」できることのは、「「」」できることが、「「」」できることが、「「」」できることが、「「」」できることが、「「」」できることが、「「」」できることが、「「」」できることが、「「」」できることが、「「」」できることが、「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」

	DATE REFER	84333	64333	1 1
	DATE	1971	1971	t k t
	TE8T TIME (MIN)	> 48000 1971 84333	> 60000 1971 84333	1 1 1
	STAN	1 1 1		1
	HEA			;
	THICK DESIGN LENGTH K(Q) F (ISCC) MEAN (IN) (*SC) (IN) (KSI*SORT IN)	99 66	120.00 120.00•	1
	(KS1*50)	74. 50	120 00	1
KUSCC)	CRACK LENGTH (1N)	} !		
	DESIGN (**50)	O CANT	CANT	1
-SPHCVM	•	1.900 0 480 CANT	1 500 0 480 CANT	1
L 15	WIDTH (NI)	200	000	1
SICE	13-		1	1
STAINLESS SICEL 15-5PH(VM)	ENVIRONMENT	174 9 3.9 PCT NACL.	137, 6 3, 5 PCT NACL	
	VIELD STR (KSI)	174 9	157.6	,
	SPEC	1 1	1 1	
	TES! SPEC 1 TEM OR (F)	· -	΄ α	
	FORM THICK T	# 67 O € 4	4 50 R.T	
	PRE]	; ! !	; ; ;	
	CONDITION	1 1 006 H	0001H	

*NOTE-DATA WHICH DO NOT HEET HINIMUM SPECIMEN THICKNESS REGUIREMENTS OF 2. SKKISCC/TYS)SQUARED

Table 3.14.1.1

STAINLESS STEEL 17-4PH

TEST CONDITIONS

		001	}			
	89	8				
!	HTH RATE	8	2.8	5.77		
	UE CRACK GROWTH (MICRO IN/CYCLE)	2	90 0		0.51	
Œ	FATIQUE CRACK GROWTH RATES (MICRO IN/CYCLE)	e n			0.03	
LAB AI	L	r)				
ENVIRONMENT: LAB AIR	DELTA K	(KBI BORT(IN))				
	FREG.		90 00	10.00	30.00	
	STRESS RA110		01.0	0. 30	0.00	
 -	PRODUCT FORM		ROUND BAR	RUUND DAR	ROUND BAR	
SPECIMEN ORIENTATION	CONDITION/HT		H1029	H1025	H1023	

STAINLESS SIEFL 17-4PH

DATE	84212	1 1 1 1 1 1	1979 DA001
BTAN DEV		1	
M(1C) BEAN DO (MBI4SONT IN)	9	; ; ; ; ; ; ;	74. 90
SPECIMEN YIELDSPECIMEN CRACK 2.3* K(IC) 9TAN ORIENT STRENGTH WIDTH THICK DESIGN LENGTH (K(IC)/TYS)**? K(IC) MEAN DEV I (KSI) (IN) (IN) (IN) (IN) (IN) A M B A	0.63	1	0.43
CRACK LENGTH CIN)	1 000	1 ! ! !	0. 937
SICN	2	1	5
PECIMEN- THICK DI (IN)	168. 0 2. 000 1, 000 NB	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	175 3 1.990 0.503 CT
E STORY	2.000	1 1	1 990
STRENGTH WIDTH THICK DESIGN (KSI) (IN) (IN)	168.0	;	175 3
SPECIMEN	# #	1 1	÷
TEST TEMP	⊢	1 !	⊢
FORM THICK TEMP (IN)	3 23 R		3 00 R.T
FORM	Œ		8
COMD1110M	н 975	;	H1C25

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.14.3.1 INDICATING EFFECT

OF STRESS RATIO

CONDITION: H900 ENVIRONMENT: R.T	Γ. , LA	B AIR			
DELTA K	:		DA/DN (10**-	6 IN. /CYCLE)	
(KSI+IN++1/2)	:	A	В	C	D
	:	R=+0. 08			

	A:	7. 54	:	. 126
DELTA K	B:		:	
MTN	A .			

D:

MAX

MATERIAL: STAINLESS STEEL 17-4PH

B . 00		. 13
9.00	:	. 21
10.00	:	. 30
13.00	:	. 74
16.00	:	1. 54
20.00	:	3. 38
25.00	:	7. 25
30.00	:	13. 1
35.00	:	20. 9
40.00	:	30. 5
50 00		52 1

		A:	56. 40	:	6B. 4
DELTA	ĸ	B :		:	
MAX		C:		:	

ROOT	MEAN	SQUARE	22 .	74
PERC	ENT	ERHOR		

	~	
LIFE	0.0-0.5	
PREDICTION	0.5-0.8	
RATIO	0.8~1.25	1
SUMMARY	1.25-2.0	
(NP/NA)	>2. 0	

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.14.3.2 INDICATING EFFECT

DELTA K (KSI#IN##1/2)		<u>:</u>	DA/DN (10##-6	S IN. /CYCLE)	
/VST + 114+	-1/2/	A	В	С	D
		: E= R.T. : H. H. A.			
ELTA K B: MIN C: D:	8. 33	. 214			
	9.00 10.00 13.00 16.00 20.00	:			
ELTA K B: MAX C: D:	20. 04	: 3. 51 :			
ODT MEAN ! PERCENT EI		17. 98		***************************************	من جديد هند هند جي جي جي جي جي جي جي جي جي جي جي جي جي

とは、これでは、自己ので

(NP/NA)

>2.0

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.14.3.3 INDICATING EFFECT

OF STRESS RATIO

DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)				
(KSI*IN*	*1/2) : :	A	В	c	D	
	:	R=+0. 10	R=+0. 30			
A: DELTA K B: MIN C:	20.54 : 11.39 :	1. 48	. 708			
D:	:					
	13.00 : 16.00 : 20.00 :		1. 33 2. 76 5. 77			
	25.00 : 30.00 : 35.00 :	3, 15 5, 61 9, 33	16. 5			
	40 .00 :	15. 9				
DELTA K B: MAX C: D:	49. 82 : 28. 37 : :	54. 3	39. 5			
ROOT MEAN PERCENT E	_	8. 26	7. 5 3			

the state of the s

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.14.3.4 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: STAINLESS STEEL 17-4PH

DELTA			DA/DN (10**-6	IN. /CYCLE)	
(KSI#IN##	:	A	В	c	D
	:	R=+0. 10	R=+0. 50		
A: DELTA K B: MIN C: D:	7 48 : 4 00 :	. 0111	. Q0984		
	5.00 : 5.00 : 7.00 : 9.00 : 13.00 : 14.00 : 25.00 : 25.00 : 35.00 : 15	. 0175 . 0344 . 0607 . 288 . 879 2. 00 3. 46 7. 22	. 0357 . 0802 . 143 . 229 . 347 . 512		
A: DELTA K B: MAX C: D:	38. 39 : 12. 62 : : :	19. 6	1. 41		
ROOT MEAN S PERCENT ER	ROR	11. 17	6. 89		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25	1	1		

国人会会会の国際ではなる。

Table 3.14.3.5

	BIAN 155C) MEAN DEV TIME DATE REFER 145CPT IN)	CACTURE LA CONTRACTOR D	51 30		119, 00 119, 00* > 60000 1971 84333	
K (1860)	WIDTH THICK DESIGN LENGTH K(Q) 1 (1SCC) PEAN (1N) (1N) (**SI*SOPT IN)	; ; ; ; ; ; ; ;	180 CANT 51 50	1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
STAINLESS SIEFL 17-4PH		B 1 1 1 3 1 1 1	1.500 0.480 CANT	1 1 1 1 1 1 1 1 1	1, 500 0 180 CANT	1 1 1 1 1 1
STAINLESS	CR STR ENVIRONMENT (KST)	1 1 1 1 1 2	176 5 3.5 PCT NACL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AND A S PCT MACL	
	1881 9PEC 1899 CA	, , ,	-			12 67
	FORM THEN TEN ON STR ENVI			-		e .
	COR011 100	i	; 1 1 1 1	005 ∓	1 1 1 1	н1000

*NDIE-DATA WHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2, SKRISCC/TYS) SQUARED

			•		230	********
		Table 3.15	.1.1			त्याच्याचे प्रेर्ण स्टब्स्
	HEAN 87AINLES	I PLANE STRAIN FR	ACTURE TOUCHNESS DATA OF -7PH AT ROOM TEMPERATUR	LU		retert û bû
TO SERVICE CONTROL OF THE PROPERTY OF THE PROP	CONDITION/HT (MG	MEAN KIC ± 8TA	NDARD (NUMBER OF 8P	ECIMENS)		
	TH/NO.LT.GNO.	1-1	ME 0318	Į		
	RH1 050		47.0 ± 0.7 (3)			ais air aire is aire
3.15-1					3.15-1	
فرقونه ينصر فلمنا مائيسة والمناقضة المرسر المائيسة والمناقضة المناقضة والمناقضة والمناقضة والمناقضة والمناقضة						
						स्यास्त्री स् यास्य
and the second s						
· · · · · ·						

STAINLESS BIEEL 17-7PH

1	
M(IC) 97AN (ASI-89NT IN)	46.30 1973 86688 47.70 1973 86688 A7 10 A7 07 1973 86688
DATE.	1973
9TAN DEV	0
M(1C) MEAN	•
K(IC) (K81+80	82.4
(8)	
### ##################################	0.00
CRACK LENOTH (11N)	1.066
EB104	555
PECIMEN- THICK (1N)	1.000
HTOTA	0000
SPECIMEN VIELDGPECIMEN CRACK 2.30 CRIENT STRENGTH MIDTH THICK DESIGN LENGTH (KIIC)/TVS)+ (KSI) (IN) (IN) (IN) (IN)	190.0
SPECIMEN ORIENT	ĭ
TEST (TEMP (F)	~
FDRM THICK TEMP (IN) (F)	200
FDRH	æ.
CONDITION	PH1050

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.15.3.1 INDICATING EFFECT

OF STRESS RATIO

DELTA K : (KSI*IN**1/2) :			DA/DN (10*	⊭-6 IN./CYCLE)	
(K21+1N+4	: 1/21	A	B	c	D
	:	R-=+0. 10			
DELTA K B: MIN C: D:	2. 85 : : :	. 00325			
	3.00 : 3.50 : 4.00 :	. 00947 . 0155			
	5.00 : 6.00 : 7.00 : 8.00 :	. 0425 . 0857 . 152			
	9.00 : 10.00 : 13.00 : 16.00 :	. 433 1. 19			
DELTA K B: MAX C: D:	18. 70 : : :	3, 75			
ROOT MEAN S PERCENT ER		11. 25			
	0. 0-0. 3 0. 5-0. 8 0. 8-1. 2	3 3 1 25			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.15.3.2 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: STAINLESS CONDITION: TH1050 ENVIRONMENT: R.T.,				neur den mile des aus qui seu lieu que seu seu sei est			
DELTA K :	· ** ** ** ** ** ** ** ** ** ** ** ** **	DA/DN (10*#-6 IN./CYCLE)					
(KSI+IN++1/2) :	A	В	С	D			
: :	R=+0. 10						
A: 3.82 : DELTA K B: : MIN C: : D: :	. 00558						
4.00 : 5.00 : 6.00 : 7.00 : 8.00 : 9.00 : 10.00 : 13.00 : 20.00 : 25.00 : 35.00 : 40.00 : DELTA K B: MAX C: D:	. 0264 . 0447 . 0841 . 153 . 253 . 388 1. 03 2. 12 4. 44 9. 34 17. 5 30. 7 51. 4						
ROOT MEAN SQUARE PERCENT ERROR	11.14						
LIFE 0.0-0.5 PREDICTION 0.5-0.6 RATIO 0.8-1.2 SUMMARY 1.25-2.0 (NP/NA) >2.0	; ; 1 ;5 ;						

Table 3.15.3.3

					STAIM ESS SIFFL 17-7FH	Ft. 17-	ZFH K	Kelsco						
FORM THICK CIRD	•	1657 519 CR 1647 CR (7)		STR	ENIRONNENT	WIDTH THE	MIDTH THICK DESIGN LENGT (IN) (IN) (+SC) (IN)	CHACK	CHACK (MSI-Sub I IN)	_ ,		STAN DEV	TEST TIME (NIN)	DATE REFER
- 3		.s R T	1	171 3	1.5 PCT NACL	900	0 480 CANT		~	0 .		^ !	42000	> 42000 1971 84333
; S		25 R T T-L	: ! <u>!</u>	8 8	INDUSTRIAL ATH	1 00 1 00 1 01	1.000 01		47.00	8] 	 	1	B8999 CZ61
:: -	_	25 R 7 T-L	1-1	1 8 0.5	190. S. SEACOAST. ATH	900	1. 000 cT	1	47.00	12 00				98998 6261
:: -		25 R.T T.L.	ĭ	20.5	190, 5 20 PCT NACL	60 00 00	1. 000 CT		47.00	10.8				1973 86688
- - -		1. 75 R. T	: ;		3. 5 PCT NACL	1.300	0. 480 CANT		36 70	13.80	1		30000	> 30000 1971 84333

Table 3.16.1.1

FATICUE CRACK CROUTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

BTAINLESS STEEL 304

			BTAINLE	BTAINLESS STEEL 304					
SHOTLTONGS 1531									
SPECTHEN ORIENTATION Unknown	Unknown			ENVIRONMENT: LAB AIR.T.	4 ×	<u>e</u> .			
COND 1 1 1 ON/HT	PRODUCT FORM	STRESS RATIO	FREG.	DELTA K		FATIOUE C	UE CRACK OROWTH	FATIOUE CRACK ORDWITH RATEB	1
		:		(KS) BORT(IN))	n n	n	0	S .	X
ANEALED	SHEET	60.03	9 .01			 	0. 16	3.07	
MMEALED	SPEET	6 .	19. 80				0 13	60	
ANNEAL ED	SHEET	0. 10	1.67					2.86	
AMEALED	SHEET	0, 10	8					8	

8

8

8

0.03

ANNEALED & ACE

Table 3.16.1.2

FATIOUE CRACK CACANTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

STAINLEBS STEEL 304

IEST CONDITIONS

SPECIMEN ORIENTATION:

ENVIRONMENT: LAB AIR AT R. T. ב

8 8 o g 8 FATIONE CRACK GROWTH RATES (MICRO IN/CYCLE) **g** 8 0 n **6** DELTA K LEVELS (KBI SGRT(IN)) 8 6.67 FREG. (HZ) STRESS RATIO 0.0 8 PRODUCT : FURH PLATE PLATE CONDITION/HT ANNEALED ANNEAL ED

FATIGUE CRACK GROWTH TATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.16.3.1 INDICATING EFFECT

OF FREQUENCY

MATERIAL: STAINLE CONDITION: ANNEAL ENVIRONMENT: R.	LED				
DELTA K	:		DA/DN (10##-6	in./cycle)	
(KSI#IN##1/2)	: : :	A	В	С	D

	•	P(HL)= 10.0	F (HZ)= 13.0
A:	9. 98 :	. 160	

DELIM	n	B :	7. 10	•		
MIN		C:		:		
		D:		:		
				:		
			10.00	:	. 163	. 133

	•		
13. 00	:	. 438	. 360
16.00	:	1.37	1.01
20 . 00	:	3. 07	2. 83

	A:	23. 49	:	6. 30	
DELTA K	B:	21.04	:		3. 45
MAX	C:		:		
	D:		:		

ROOT MEAN S PERCENT ER	ROR	15. 06	26. 43
LIFE	0.0-0.5		

REDICTION	0.5-0.8		
RATIO	0. 8-1. 23	3	3
SUMMARY	1. 25-2. 0		1
(NP/NA)	>2.0		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.16.3.2 INDICATING EFFECT

OF FREQUENCY

DEL (KSI#I			:			DA/DN (10**-6	IN. /CYCLE)	
(801*1		1,4,	:	A		B	С	ס
			:	F(HZ)=	1. 67	F(HZ)= 6.00		
DELTA K MIN			71 : 85 : :	. 7	72	. 128		
		16. 20. 25.	00 : 00 : 00 : 00 : 00 :	2. 8	1	. 312 . 657 2. 56		
DELTA K MAX			52 : 51 : :	20. 3	•	4. 77		
ROOT MEA		_	 E	23. 51		8. 28		
LIFE PREDICTI RATIO SUMMAR (NP/NA	ON RY	0.5 0.5 1.25	5-0. 8 3-1. 2	2 5 2	. A 44 44 44 44	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.16.3.3 INDICATING EFFECT

OF FREQUENCY

		UI	- FREQUENCY				
MATERIAL: CONDITION: ENVIRONMEN	ANNEALED T: R.T.,						
DELTA K :			DA/DN (10++-6 IN./CYCLE)				
(KSI*IN*	*1/2) : :	A	В	С	D		
	:	F(HZ)= 0.03	F(HZ)= 6.67				
DELTA K B: MIN C: D:		11. 1	854				
		24. 7 56. 0 101. 154.	1. 92 3. 05 4. 50 8. 12 15. 3 28. 5 45. 7				
DELTA K B: MAX C: D:	:	217.	78. 3				
ROOT MEAN PERCENT E	SGUARE RROR	5. 23	5. 67				
PREDICTION RATIO	0.0-0.5 0.5-0.6 0.8-1.2 1.25-2.0	3 25 1)	1				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.16.3.4 INDICATING EFFECT

	٠٠	SIRESS RAILU		
MATERIAL: STAINLES CONDITION: ANNEALE				
	, LAB AIR			
DELTA K (KSI*IN**1/2)	:	DA/DN (10**-	6 IN. /CYCLE)	
(U31±1/4±1/5)	. A	В	С	ם
	: : R=+0.05			
DELTA K B: MIN C: D: 200.00	:			
DELTA K B: MAX C: D:	: : :			Ç
ROOT MEAN SQUARE PERCENT ERROR	0. 00			
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.0	8 25 0			

the state of the s

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.16.3.5 INDICATING EFFECT

	01	F FREQUENCY		
MATERIAL: STAINLES CONDITION: ANNEALE ENVIRONMENT: R.T.	D			
DELTA K (KSI*IN**1/2)	: :	DA/DN (10**-6	IN. /CYCLE)	
	A	В	С	D
	F(HZ)= 3.00	F(HZ)= 6.67		
A: DELTA K B: 16.13 MIN C: D:	: : :	1. 09		
20.00 25.00 30.00 35.00 40.00 50.00	: : : :	1.86 3.44 5.93 9.64 15.0 32.5		
A: DELTA K B: 67.92 MAX C: D:	:	63. 2 101.		
ROOT MEAN SQUARE PERCENT ERROR	0. 00			
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2	8 25 0	1	 _	

FATIGUE CRACK OROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.16.3.6 INDICATING EFFECT

OF ENVIRONMENT

E=+ 800 F : A B C II E=+ 800 F : AIR DELTA K B:				DA/DN (10##-			DELTA K (KSI+IN++1/2)	
: AIR DELTA K B: : : : : : : : : : : : : : : : : :)	D	С	В	A	:	(VOI # 1)4##	
DELTA K B: : MIN C: : D: : 13.00 : 1.46 16.00 : 2.90 20.00 : 5.70 25.00 : 10.3 30.00 : 21.0						: : A		
16.00 : 2.90 20.00 : 5.70 25.00 : 10.3 30.00 : 21.0					1. 46	12. 99 : : :	DELTA K B: MIN C:	
					2. 90 5. 70 10. 3	16.00 : 20.00 : 25.00 :		
MAX C: : D: :					47 . 9	34.83 : : : :	DELTA K B: MAX C:	
ROOT MEAN SQUARE 15.35 PERCENT ERROR						-		

Figure 3.16.3.6

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.16.3.7 INDICATING EFFECT

OF ENVIRONMENT

DELTA K (KSI*IN**1/2)		: DA/DN (10##-6 IN./CYCLE)					
		: : A	3	С	D		
		: : E=+ 550 F :AIR					
DELTA K B: MIN C: D:	17. 34	: 1. 23 : :					
	35. 00	: 4. 94 : 12. 0 : 19. 4 : 36. 7					
A: DELTA K B: MAX C: D:	51. 20	: 86. 4 : :					
ROOT MEAN SG PERCENT ERR							
LIFE PREDICTION RATIO SUMMARY 1 (NP/NA)	0. 5-0. 0. 8-1.	5 8 25 2					

i. Vije

. . .

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.16.3.8 INDICATING EFFECT

OF ENVIRONMENT

-	K	:	DA/DN (10##-6 IN./CYCLE)				
(KSI#IN#	1/2)	. A	В	C	D		
		: : E= R. T. :LAB AIR					
DELTA K B: MIN C: D:	19. 08	: 1. 17 :					
	30 . 00	1. 38 3. 99 11. 4 27. 8					
DELTA K B: MAX C: D:		: 31.6 : :					
ROOT MEAN S		8. 08					
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	ε 25 1 0					

in the state of th

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.17.3.1 INDICATING EFFECT

OF ENVIRONMENT

DELTA K (KSI#IN##1/2)		:	DA/DN (10*+	+-6 IN. /CYCLE)	
		: : A	В	c	D
		: E=+ 98 F :AIR			
DELTA K B: MIN C: D:	17. 85	: . 435 : :			
	20. 00 25. 00 30. 00 35. 00 40. 00 50. 00	: 2.81 : 6.38 : 12.0 : 20.1 : 47.3			
DELTA K B: MAX C: D:	60. 48	: 102. : :			
ROOT MEAN S PERCENT EF		6. 93			
LIFE PREDICTION PATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 1 0			

その2000年でクレントンで1000年では、1000年間ではなりには1000年間によっているとのでは、1000年間であるのののでは「Notices of Miles

Figure 3.17.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.17.3.2 INDICATING EFFECT

OF ENVIRONMENT

DELTA K : (KSI*IN**1/2) :		:	DA/DN (10**-6	IN. /CYCLE)			
(NDI*	TIAM	71/Z.	,	A	В	С	ם
				: E=+ 600 F :AIR	E=+ 800 F AIR		
DELTA K				1. 10 : :	2. 43		
		20. 25.	00	2. 02 4. 63 12. 5	5. 14 15. 7 35. 2		
DELTA K MAX		28. 30.			38. 1		•
ROOT ME PERCEN			RE	14. 78	7. 64		
LIFE PREDICT RATIC SUMMA (NP/N	ION) ARY	0. \$	5-0. 3-1. 5-2.	8 25 2 0	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.17.3.3 INDICATING EFFECT

OF FREQUENCY

MATERIAL:	STAINLESS	STEEL 316		
CONDITION	ANNEA! ED	AT 1950F.	1 FID .	L

ENVIRONMENT: R. T. , LAB AIR

DELTA K : (KSI+IN++1/2) :			DA/DN (10**-6 IN./CYCLE)			
(VDI#I	N##	1/2) :	A	В	c	D
		:	F(HZ)= 5.00	F(HZ)= 10.00		
ELTA K		21 . 20 : 19. 09 :	2. 84	2. 51		
MIN	C: D:	:		2. 7.		
		20 . 00 :		2. 39		
		25 . 00 :	5. 45	6. 24		
		30 . 00 :		13. 1		
		35 . 0 0 :		30 . <i>9</i>		
		40.00 :	42. 4	53. 1		
	A:	40.78 :	46. 5			
ELTA K	B:	40.55 :		53 . 6		
MAX	C:	:				
	D:	:				
OOT MEA			4. 22	20. 54		
LIFE		0.0- 0.5				
		O. 5-0 B				
RATIO		0.8-1.2		1		
SUMMAR	Υ	1. 25-2. U	ı	1		

Figure 3.17.3.3

Figure 3.18.1.1

FFLUE COACH CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

BTAINLESS STEEL 347

SHOP COME, JUNE

	8		:		
	8	6	13.1	9) K	
	FATIOUE CRACK GRUMTH RATES (NICHO IN/CYCLE)				
	CRACK GR				
æ -	FAT IOUE CMI				
AT R. T.	en Gi				
FNVIRCHENT	DELTA K LEVELG (KG1 SGRT(IN))				
	FREG. (MZ)	30.00	0 10 30 00	8 8	
	STRESS RATIO	0 10	0	0 0	
		WELDYENT	HELDHENT	HELDMENT	
7.00 Co.	1	030 IN FROM	AT CENTERLINE	AT HEAT AFFICTED ZONE	

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.18.3.1 INDICATING EFFECT

OF STRESS RATIO

		Ur	- 21KE22 KWIID						
MATERIAL: 5 CONDITION: ENVIRONMENT	AT CENTE	RLINE							
DELTA K (KSI#IN##1/2)			DA/DN (10**-6 IN./CYCLE)						
		A	В	c	D				
	:	R=+0. 10							
DELTA K B: MIN C: D:	36 . 67 :	1. 71							
	40. 00 : 50. 00 : 60. 00 :								
DELTA K B: MAX C: D:	69. 67 : :	9 2. 0							
ROOT MEAN S PERCENT EF									
	0.0-0.5 0.5-0.6 0.8-1.2 1.25-2.6	5 3 25)							

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.18.3.2 INDICATING EFFECT

OF STRESS RATIO

	.	OF-	STRESS RATIO		
MATERIAL: 9 CONDITION: ENVIRONMENT	AT HEAT A	FFECTED ZONE			
DELTA (KSI*IN**	K :		DA/DN (10**-	6 IN. /CYCLE)	
(VD! a IMaa	:	A	В	c	۵
	:	R≕+0. 10			
DELTA K B: MIN C: D:	30. 61 :	2. 27			
	35.00 : 40.00 : 50.00 : 40.00 :	4. 06 6. 87 17. 5 46. 5			
DELTA K B: MAX C: D:	68. 77 : : : : : : : : : : : : : : : : : :	121.			
ROOT MEAN S PERCENT ER		9. 70			
PREDICTION RATIO SUMMARY	0.8-1.23				

SONON APPROXIMENTATION OF CONTROL AND CONTROL BOSTON BOSTON BOSTON BOSTON BOSTON BELLEVILLE BOSTON BOSTON BELLEVILLE BOSTON BOST

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 3.18.3.3 INDICATING EFFECT

OF STRESS RATIO

		K +1/2)	:		DA/DN (10**~	6 IN. /CYCLE)	
17.51	- 114-	1/6/	•	A	B	c	D
			:	R=+0.10			
DELTA! MIN	A: K B: C: D:	36. 21	: : : : : : : : : : : : : : : : : : : :	2. 53			
		60 . 0 0	: : :	4. 98 9. 83 18. 0 47. 3 89. 2			,
DELTA I MAX	A: K B: C: D:	81. 77	: : :	93. 9			
ROOT MI				10. 14		~	

TABLE 3.19 REFERENCES FOR STAINLESS STEEL DATA

	REFERENCES FOR STAINLESS STEEL DATA
57573	PH14-8Mo K _C
	Anon., "Fracture Toughness and Tear Tests," Air Force Materials Laboratory, Research and Technology Division, Report No. ML-TDR-64-238, October 1964.
70887	PH 13-SMo K _{Iscc}
	Peterson, M.H., Brown, B. F., Newbegin, R. L., and Groover, R. E., Stress Corrosion Cracking of High Strength Steels and Titanium Alloys in Chloride Solutions at Ambient Temperature," Corrosion, 23, (5), pp. 142-148, May 1967.
74720	APC 77 K _{Ic} K _{Iscc}
	Webster, D., "The Use of Deformation Voids to Refine the Augtenitic Grain Size and Improve the Mechanical Properties of AFC 77," Research Report D6-23870, The Boeing Co., Renton, WA., ARPA Contract N00014-66-C-0365, February 1969.
76136	AFC 77 K _{Ic} K _{Isce} da/dt
	Webster, D., "The Stress Corrosion Resistance and Patigue Crack Growth Rate of a High Strength Martensitic Stainless Steel, AFC 77." Research Report D6-23973, The Boeing Co., Renton, WA., ARPA Contract NC0014-66-C-0365, June 1969.
77934	Custom 455 KIc Kisco
	Uchida, J. M., "Evaluation of Carpenter Custom 455," Research Report D6-23928, The Bosing Co., Kenton, WA., November 18, 1969.
80685	AFC 260 KIC KISCC
	Webster, D., "Optimization of Strength and Toughness in Two High Strength Stainless Steels," Metallurgical Transactions, 2, (7), pp. 1857-1862, July 1971.
83613	PH 13-8M KISCC
	Sandoz, G., "The Resistance of Some High Strength Steels to Slow Crack Growth in Salt Water," NRL Memorandum Report 2454, Naval Research Laboratory, Washington, D.C., February 1972.
84212	15-5 PH K _{IC} 17-4 PH K _{IC}
	Takas, E. G., "Fracture Toughness Tests, Data on Armco 17-4PH and 15-5 PH Alloys," letter to J.E. Campbell, Battelly Columbus, October 18, 1972.
84302	APC 77 Kic
	Webster, D., "Increasing the Toughness of Martensitic Stainless Steel AFC 77 By Control of Retained Austenite Content, Ausforming and Strain Aging," Transactions of the ASM, 61, (4) pp. 816-838, December 1968.
84306	PH 13-8 Mo K _{Tc}
	Harrigan, M. J., "B-1 Fracture Mechanics Data for Air Force Handbook Usage," Report TFU-72-501, North American Rockwell, Los Angeles Division, Los Angeles. CA., April 21, 1972.
84333	AM 355 K _{ISCC} AM 364 K _{ISCC} AM 364 K _{ISCC} CUSTOM 455 K _{ISCC} FH 13-8 MO K _{ISCC} PH 15-7 MO K _{ICCC} 15-5 PH K _{ISCC} 17-4 PH K _{ISCC} 17-7 PH K _{ISCC} Carter, C. S., Farwick, D. G., Ross, A. M., Uchida, J. M., "Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steels," Corrosion 27, (5), pp. 190-197, May 1971.

TABLE 3.19 (Continued)

84365 PH 13-8Mo $K_{\rm IC}$ Takacs, E. G., "Plane Strain Fracture Toughness - PH 13-8 Mo,"
Tabulated Data from Armco Steel Corporation, Advanced Materials Division, Baltimore, Md., July 11, 1972.

85034 PH 13-8 Mo K_{IC}

Mitchell, John, "Laboratory Reports on Fracture Toughness Tests," per memo from Ed Cawthorne of February 5, 1973; data sheets from Shultz Steel Co., South Gate, CA.

AFC 77 da/dN

Speidel, M.O., "Dynamic and Static Embrittlement of a High Strength Steel in Water," preprint from L' Hydrogen Dans Les Metaux, 1, Editions Science et Industries, Paris, France (no date).

85836 PH 13-8Mo K_{IC} "B-1 Fracture Toughness Data (K_{IC}) - Rockwell International," Rockwell International Corp., Los Angeles, CA., April 24, 1973.

85837 PH 13-8 Mo da/dN

"Fracture Toughness Data Collection, Rockwell International Corporation, from B-1 Program," Rockwell International Corporation, Los Angeles, CA., April 1973.

£ 3

85857 PH 13-8 Mo K_{IC}
Shultz Steel Company - Fracture Toughness Data - May 10, 1973, per memo from Ed. Cawthorne of May 10, 1973.

AM 355 K_{Iscc}
PH 13-8MO K_{Iscc}
PH 15-7 MO K_{Ic}
15-5 PH K_{Ic}
17-7 PH K_{Ic}
Sprowls, D. O., et al., "Evaluation of Stress Corrosion Cracking Susceptibility Using Practure Mechanics Techniques," Final Report Part I, Aluminum Co. of America, Alcoa Technical Center, Alcoa, Pa., Contract NASA-21487, May 31, 1973.

87360 AFC 77 K_{IC} K_{ISCC}

Caton, R. G., and Carter, C. S., "Evaluation of AFC 77 Martensitic Stainless Steel for Airframe Structural Applications," Report AFML-TR-73-182, Boeing Commercial Airplane Co., Seattle, WA., Contract F33615-71-C-1550, September 1973.

B8136 PH 13-8 Mo K_{IC}

Dill, H. D., "Evaluation of Steel Alloys 300M, HP-9Ni-4Co-20, HP-9Ni-4Co - 30, and PH 13-8Mo, "Report MDC-A2639, McDonnell Aircraft Co., McDonnell Douglas Corp., St. Louis, Mo., December 21, 1973, with data supplements received May 2, 1974.

98579 PH 13-8Mo da/dN
"B-1 Program da/dN Data for Aluminum Alloys," Rockwell International
Corporation, Memorandum to H.D. Moran from E.W. Cawthorne Battelle's
Columbus Laboratories, April 3, 1974.

TABLE 3.19 (Continued)

90011 PH 13-8Mo KIC

"Rockwell International, B-1 Program Fracture Toughness Data of August 5, 1974," with memorandum from E.W. Cawthorne to H.D. Moran of Battelle's Columbus Laboratories, August 5, 1974.

92270 15-5 PH da/dN

Rice, R. L., "Fracture Toughness and Fatigue Crack Propagation in 15-5 PH Stainlass Steel Bar," memorandum to J. E. Campbell, Battelle Columbus Laboratories, Columbus, Ohio, January 31, 1975.

AM001 347 da/dN

"Patigue Crack Propagation in a 347 Stainless Steel Weld," Prepared for Airesearch Manufacturing Co., by Del West Associates, Inc., July 29, 1975.

BW004 15-5 PH da/dN

Watson, K. R., "Pylon Durability and Damage Tolerance Analysis," The Boeing Co., Wichita, KA., Contract No. F33657-78-C-0108-P20036, Document No. D361-400 41-2, September 1980.

BW005 15-5 PH da/dN

Watson, K. R., "Weapons Bay Durability and Damage Tolerance Analysis," The Boeing Co., Wichita, KA., Contract No. F33657-78-C-0108-P20036, Document No. D361-40041-1, September 1980.

8W007 15-5 PH KIC

の対象を行うという。「自然の対象を対象を行うというできない。」というできない。「自然の対象を行うというなど、自然の対象を対象を行うというない。」というできた。「自然のないと、「自然のない」というできた。

(

Hananel A., Watson, K., Knoff, K., and Sherrich, G., "Fracture Mechanics Testing of B-52/CMI Materials," Final Test Report, The Boeing Co., Wichita, KA., Contract No. F33657-78-C00108-PZ0036, Document No. D361-11197-1, December 1978.

DA001 17-4 PH K_{IC} da/dN 17-7 PH da/dN

Patigue Crack Growth Rate Data Sheets on Aluminum Alloys 2024, 7010, 7050, 7075, and 7475; Stainless Steel Alloys 17-4 PH and 17-7 PH, and Alloy Steels 4340, A286, H-11, HY-180 and 12-9-2, Sent from Mr. Paul Abelkis, Douglas Aircraft Co., McDonnell Douglas Corp., Long Beach, CA., March 1982.

GD009 PH 13-8 Mo KIC KISCC da/dN

Margolis, W. S., "P-16 Material Allowables Evaluation of PH 13-8Mo Steel Alloy, H1000 Temper," General Dynamics, Fort Worth Division, Report No. 16PR1084, October 1978.

GD010 17-4PH da/dN

Margolis, W. S., "Constant Amplitude Patigue Crack Growth Rate of 17-4 PH Steel Alloy Casting, H1025, Repair Welded and Stress Relieved at 90F," General Dynamics, Port Worth Division, Report No. 16PR1195, May 1979.

HD007 304 da/dN

James, L. A., Schwenk, E. B., "Patigue-Crack Propagation Behavior of Type 304 Stainless Steel at Elevated Temperatures," Metallurgical Transactions, Vol. 2, pp. 491-496, (1971).

HD008 304 da/dN

James, L. A., "Effect of Thermal Aging Upon the Fatigue-Crack Propagation of Austenitic Stainless Steels," Metallurgical Transactions, Vol. 5, pp. 831-838, (1974).

TABLE 3.19 Continued)

HD009 304 da/dN

James, L. A., Staalsund, J. L., Bauer, R. E., "Optimization of Fatigue Crack Growth Testing for First Wall Materials Development Evaluations," Journal of Nuclear Materials, Vol. 85-86, Part B, pp. 851-854, (1979).

. .

HD010 304 da/dN

James, L. A., "Specimen Size Considerations in Fatique-Crack Growth
Rate Testing in Fatique Crack Growth Measurement and Data Analysis,
STD-738, pp. 45-47, ASTM, (1981).

HD011 304 da/dN

James, L. A., "Frequency Effects in the Elevated Temperature Crack
Behavior of Austenitic Stainless Steels-A Design Approach," Journal
of Pressure Vessel Technology, Vol. 101, pp. 171-176, (1979).

HD012 304 da/dN 316 da/dN 316 da/dN James, L. A., "Some Observations Regarding Specimen Size Criteria for Fatigue-Crack Growth Rate Testing," Report HEDL-TME 77-87, Westinghouse Hanford Co., Richland, WA., August 1977.

HD013 316 da/dN

James, L. A., "The Effect of Elevated Temperature Upon the Fatigue-Crack Propagation Behavior of Two Austenitic Stainless Steels," Mechanical Properties of Materials, Vol. III, pp. 341-352, Society of Materials Science, Japan, 1972.

HD014 316 da/dN

James, L. A., "A Survey of the Effect of Heat-to-Heat Variations Upon the Patigue-Crack Propagation Behavior of Types 304 and 316 Stainless Steels," Report HEDL-TME 75-37, Westinghouse Hanford Co., Richland, WA., May 1975.

のでは、「日本

RI006

MA001 PH 13-8Mo K_{IC} da/dN

Fracture Toughness and Fatigue Crack Growth Rate Data for Stainless
Steel PH 13-8 Mo. Data supplied by D. L. Rich of McDonnell Aircraft
Co., St. Louis, Mo.: Attachment No. 1, Received March 12, 1982.

NC001 PH 13-8 Mo K_{IC}

Plane Strain Practure Toughness Data Sets on Aluminum, Steel and
Titanium Alloys. Data sent from P.G. Porter of Northrop Corporation,
March 1, 1982.

NCOO2 PH 13-8Mo da/dN

Fatigue Crack Growth Rate Data on Aluminum Steel and Titanium Alloys.

Data sent from P.G. Porter of Northrop Corp., March 1, 1982.

RIO04 CUSTOM 455 da/dN

Mines, R. G., "Fracture Machanics Evaluation of Custom 455 Stainless
Steel," Rockwell International, Shuttle Orbiter Division, Laboratory
Test Report No. 2761-41-33, May 1980

PH 13-8Mo K_{ISCC}

Ferguson, R. R., Berryman, R. C., "Fracture Mechanics Evaluation of B-1 Materials," Rockwell International, B-1 Division, Los Angeles, CA., Contract No. F33657-70-C-0800, Report No. AFML-TR-76-137, October 1976.

CHAPTER 4

TITANIUM ALLOY SECTIONS

4.0	Titanium Material Summaries
4.1	Beta
4.2	Beta C
4.3	Beta III
4.4	Corona 5
4.5	Ti-6Al-2Sn-2Zr-2Mo-2Cr25Si
	(also see Section 4.8)
4.6	Ti-4Al-3Mo-1V
4.7	Ti-5Al-2.5Sn
4.8	Ti-6-2-2-2 (also see Section 4.5)
4.9	Ti-6-2-4-2
4.10	Ti-6-2-4-6 (also see Section 4.15)
4.11	Ti-6AI-4V
4.12	Ti-6Al-4V (ELI)
4.13	Ti-6AI-6V-2Sn
4.14	Ti-6AI-6V-2.5Sn
4.15	Ti-6Al-2Sn-4Zr-6Mo (also see
	Section 4.10)
4.16	Ti-8Al-1Mo-1V
4.17	Ti-8Mo-8V-2Fe-3AI
4.18	Ti-5Al-2.5Sn (ELI)
4.19	Ti-6Al-6V-2Sn (ELI)
4.20	Bibliography

 \cdot ;

TABLE 4.0.1

MALLABLE DATA TOR ILLONIUM ALLENS

1	CONTUINANT			
7 7 7	BLTA STAB	25 26 26		
	1745F W	MEET		
	1745 WO HENNE GIMP	SHEET		
	1745F MG. +1095F 1000+R	SHEET		
	1745F WG. +1040F 16HR	SHEET		
	1745F WG +1095F 250HR	SHEET		
	1745F WG. +1095F 500HR	SHEET		
## 1A C	STA	PLATE	×	
BETA 111	ACET LONGE . LOOHER			×
	AUR D 1250F. SOHN			×
	AGED 900F. 100HR			×
	BETA STAB *AGED 900F 1HR	SHEET		
	STA	PLATE		×
	STA 900F 100MR			×
	STA 900F 40HR			×
	STA 900F URB			×
	STA-1325F WG, 1045F BHR (ELECTRON BEAM WELD ZONE)	PLATE	×	
	STA-1325F MB, 1043F BHR (HEAT AFFECTED ZONE)	PLATE	×	
	STA-1325F WG. 1045F B HR	PLATE	×	
	STA (B WELDMENT (WELD ZONE)	MELDMENT		×
	STA: E B WELDMENT CHEAT	MELDMENT		×

TABLE 4.0.1 (Cont)

AVAILABLE DATA FOR ITTANIUM ALLOYS

81.14.111	1325F 27MM, NO 925F GHR	PLATE	×		
	1350F O S HB. NO. 950F BHD. AC	EXTRUSION	×		
HETA 11	BCTA STABILITED	3466		×	
¥ 7 ★	\$1\$	SHEET		×	
COHONA 1	ALPHA DETA FORCED & LOW	FORCING	ж		
115AL2 55N(F(1)	ANNEA ED	FORGING	×		
	AMMEALED (ES)	FORGING	×		
	ANNE ALFD (1S)	FORGINO	×		
17 JINSCOP IVE	1 BAL 6025NIFL 1 1607F 1 HR. WG. 1030F 4 HR. AC	PLATE	*		
	1550) 1 HRUMO 1125F 4 HRUAC	PLATE	R		
TE 4AL SMB EV	MILL ANNEALED	PLATE			×
संबंध है कि है	:	SHEET		×	
	ANK NID	SHEET	M	×	
JECHZBNUC RK.	THAN DENGTHAND BETA PROCESSED	FORGING	×		
	BU. B FIN 10MA RETA UPSET. BETA FINISH D. 10% PRIMARY ALPHA HILL ANNEALED 1300F I HH. AC	FORCING	×		
	RU, B FIN 10STA BETA UPSFT. BFTA FINISHED: 10% PRIMARY ALPHA. SOLUTION TREATED & AGED 1625F 1 MR. AC. 1100F B 148. AC	FORGING	×		

TABLE 4.0.1 (Cont)

(

AVAILABLE DATA FOR ILTANIUM ALLOYS

AL 1.07	CONDITION: HT	PRODUCT FORM MIC MC	NIC NC	URIVES	DA/DN	R CURVES DA/DN DA/DT	M I SCC
	BU. B FIN-10STO BETA UP BETA FINISHED, 10ZPRIHA SOLUTION TREATEDLOVERA 1625F 1 HR. AC. 1300F 1	FORGING	×				
	BU.B FIN-SOMA RETA UPSET. BETA FINISHED-SOX PRIMARY ALPHA. MILL ANNEALED ISOXF I HR.AC	FORGING	×				
	LULG FINISSETABETA UPSET, BETA FINISSED SKY PRIMARY ALPHAN- SOLITIUN IREATED & AGED. 16275 I HRIACITIOON BIREAC	FOREING	×				
	BY HABFINIOSTA DETA UPSET. HI ALPHA PLIA FINISHED.10% REDUCTION. SOLUTION TREATED S. ACED. 14234 THR. AC. 1100F BHR.AC	FOROING	*				
	BU, HABETNIGOSTA BETA UPSET. HE ALPHA BETA FINISHED, DOX REDUCTION, SOLUTION TREATED & AGED: 1625F 1 HR. AC. 1130F BHR. AC	FOROINO	*				
	BU. LABETNIOSTA BETA UPSET. LO ALPHA-BETA FINISHED. 10X REDUCTION. SOLUTION TREATED A AGED 1650F 1 HR. AC. 1100F BHR. AC	FORCING	×				
	STA 16256 2 MR. AC. 1100F B. 18. AC	FORGING	×				
	50% PRIMARY ALPIN	FORCING	*				
11-6AL:4V	•	;			×		×
	AB FORCED-MA ALPHA-BETA FORGED, MILL ANNEALED	FORCING	*				
	AB FORGED-RA ALPMA-BETA FORCED, RECHYSTALLIZED ANNY ALLIZOD: 4 HR.F.C. TO 1000-LAC	FOROING	*				

TABLE 4.0.1 (Cont)

できるとは関われたのでは、このできるというできるというできた。 できるとは対しませんできない。 「できるとは対しませんできるというできるというできるというできるというできる。このできるというです。

AVAILABLE DATA FOR TITANIUM ALLOYS

AL1.04	COMBITION/HT	PRODUCT FORM MIC	MIC.	Š.	R CURVES DA/DN DA/DT MISCC	NG/40	DA.DT	MISCC
11-6AL-4V	ALPHA-BETA FORGED	FORGING				×		
	ANNEAL CD	FORGING	×					
		EXTRUSION	×					
		BILLET	×	×		×		
						;		
	ANNEALED AT 1375F. 3HRS. AC	PLATE				*		
	ANNEALED 1000F 2 HR. AC	BILLET	×					
	AANEALED 1300F 4 HR. AC	FORGING	×					•
	ANNEAL ED 1375F 3HR. AC	PLATE	*					
	ANNEALED 2700F 2 HR	FORGING	×					
	AS RECEIVED	FORGED BAR	×					
	AS RECEIVED PROBABLY MA	PLATE						=
	AS RECETVED ABIALPHA-BETA	FORGED BAR	×					
	AS WELDED F B WELDMENT	HELDMENT				×		
	AS WELDED & B WELDMENT HEAT AFFECTED ZONE!	WELDMENT				×		
	D FDRGED BETA FORGED REMEATED TO 1950F DRAWN 10 SIZE, ANNEALED 1300F	FORCED BAR	*					
	D FORCED- NA BETA FORCED. MILL ANNEALED, 1300F 2 HR. AC	FORGING	×					
	₹ 23	SHEET PLATE FURGING				***		

(-3

TABLE 4.0.1 (Cont)

AVAILABLE DATA FOR TEFANIOR ALLOYS

¥3 : 1

>	- COMBITION HT	PRODUK'T FURM KIC KC R CURVES	K1C KC	R CURVES	LA/DN DA/DT	DA.BT	NISCC
1					:		
≥	NB. AD FINIOSIO RETA BLOCKED. ACPIN BETA FINICATO. TOZ REDUCTION. SOLUTIUN TREATED & LVERAGED 1750F THR. MO. 1300F 2: HR. AC	FRUING	>				
	DR. AN FINGOCIO DETA-BLICKED. ALPINA RETA LINISPED. BOX REDNCTION. GALUTION TREATED R. OVERAGEN 1/50F. 148. NO. 110/11 2:144. AC.	TOROING	×				
	PB. AB FIN-MA RETA BLOCKED. ALPHA-DCIA PINISHED. MILL ANNEM ED	F ORG ING	*				
	BB. AH FIN-BA NETA BLOCKED. ALPHA RETA LINISHED. RECRYSTALLIZED ANNELAL 1700F 4 180-FC TO 100MF.AC	FORCING	*				
	RB. AB FIN-JOHN RETA BLOCKED. ALPHA RETA FINITHE D. 302. REDICTION, MILL. ANNIALED. 1300F	FORCINC	×				
	BB. D. FINIOSTIDA BETA EINISPED: TOZHFDUCTIUM. SCHULLION TREATÇD & DVERANED. 1756F. T. IM. MO. 1700F. ZHR. AC.	TORO ING					
	RD P FIN 10MA NETA BLOCKED. HELLA FINISHED, 10ZREDUS TON. MILL, AMMENLED, 1300F 2 HR, AC	CORCING	¥				
	BETA ANNEALED	PLATE	*				
	BETA FURCED	FORCING			*		
	BETA PROCESSED-MILL ANNEALED	SPEFT	×		××		

TABLE 4.0.1 (cont)

AVAILABLE DATA FOR ILLANIUM ALLOYS

ALLIN	CONDITIONALIT	PRODUCT FORM KIC	KIC NC R CURVES DA/DN DA/DT KISCO	DA. DN	DA/DT	K ISCC
74- M9-1:	DB	PLATE		×		
	N4 + 14	PLATE		×		
	DB + 208TC	PLATE		×		
	2180+ • 00	PLATE		*		
	DB) + PC	PLATE		×		
	D. 86	PLATE		×		
	DDIC(HA)	PLATE		×		
	DIFFUSION BINDED	PLATE	ĸ			
	DIFFUSION BONDED	BILLET	×			
	DIFFUSION BOND ANNEALED	BILLET	×			
	EB WELD, STRESS RELIEVED (HEAT AFFECTED ZONE)	WELDMENT			×	
	CR WELD, STRESS RELIEVED (WELD)	WEL DMENT			×	
	FINISH ROLLED 1440F	PI ATE				×
	CTA WELD POSTUELD 1200F IMP (HEAT AFFECTED 20ME)	PLATE				×
	GTA WELD POSTUELD 14GOF 1HR (HCA! AFFECTED ZONE)	Pl.ATE				×
	GTA MELD POSTMELD 1100F PHR (MELD 21ME)	PI.ATE				×
	GTA - WELD POSTWELD 1100F	PLATE				×

TABLE 4.0.1 (Cont)

AVAILABLE DATA FOR TITANIUM ALLOYS

ALLEY	COMDITION/HT	PRODUCT FORM KIC	X 10	ñ	R CURVES		DA/DN DA/DT MISCO	MISCC	!
VA 467-11	ŧ	PLATE SMEET EXTRUSION FURGING		××		***			
	MA COARSE BRAIN 1300F 2 HB. AC	FORG ING	×						
	HA FINE CRAIN 1300F 2 HR. AC	FORGING	×						
	MA 10-20XALPHM 10 10 20X PRIMMRY ALPHA HILL ANNEALED 1300F 2 HR. AC	FORCING	×						
	MA L'RIOF ZHINS AC	D1584				××			
	MA 40 50ZALTHA 40 TO 50X PRIMARY ALPHA, MILL ANNEALED 13NOF 2 HR. AC	FORGING	*						
	MILL AMEALED	PLATE	×					жж	
		EXTRUSION	×						
	MILL ANNEALED 1300F 248. AC	FORGING	жж						
	HINUTERAN CASING	PL ATE						×	
	€	PLATE FORGING				××		××	
	RACFAST COOLED	PLATE				×			
	RECRYSTALLIZE ANNEAL	PLATE	× ×						

TABLE 4.0.1 (Cont)

AVAILABLE DATA FOR LLIONIUM ALLDYS

A LOY

1) 6AL-4V

CONDITIONAL	PRODUCT FORM	MIC KC R C	R CURVES	DA/DN DA/DT	DA/DT	KISCC
SOL TREATED 10SOF AMP. MELDED 10SOL AMR.	FORCING					×
50L TREATED 1050F 4+4 HR	FORGING					*
STA	PLATE FORGING	××				
\$ 25	PLATE FURGINO	×		×		
510A 1750F 1 HR. MG. 1300F 2 HR. AC	FURCING	×				
STRESS PELIEVED E B WELDMENT (WELD ZONE)	WELDMENT			×		
STRESS RELIEVED E B WELDHENT (HAT AFFECTED ZONE)	HELDHENT			×		
WELDED & STRESS RELIEVED 1100F	WELDMENT			×		
1000F 2HR	FORGING				*	
1300F 1187. At	FORGING	×				
SOOF SHR AC	EXTRUSION					×
1450F. 1187. AC	PLATE	×				
1557F AMRS FF, INDOF AMRS AREON COOLED	FCRGING			*		
1700F 4MR FC TO 14GOF AC. DIFFUSION BOND THERMAL CYCLE	P _L ATE					×
1700f & HR. AC. 1400F & HR. AC	FORGING	×				

TABLE 4.0.1 (Cont)

Ó

AVAILABLE DATA FOR ILLANIUM ALLOYS

אל ו טא		PRODUCT	MIC NO	R CURVES FAZON DAZDT MISCO	FA/ PN	DA/DT	MISCC
	And design the state of the sta		1		! :		
TI- 6AI -4V	1225F 148 MG 1250F 448 AC (STOA)	EXTRUSION					×
	1725F 1HR MG. 1000F 1HM AC (STA)	EX TRUSION					×
	1750F WG 1000F BHD 1000F	FORGING					×
	1750F 1 HR LUG 1000F 4 HR	FORGING	×				
	1750F 1148 FC TO 1 LOOF, AC	PLATE	×				
	1750F 1HR, FC TO RT	PLATE	*				
	1750F 1000F 2HR AC	FORCING					×
	1750F 2 HR.FC TO 900F AT 100F/HR.AC	FORGING	×				
	1750F ZHR. MG. 1000F ZHR. AC. 1300F ZHR. AC. STA	PI,ATE	×				
	1230F 1 SHN MG 1050F-1100F HHR, 950F RIR	FORGING					×
	1750F JHRS ARGUL COOLED, 100 OF JHHS ARGUN COOLED	FCRGING			×		
	1775F 114R WG. 1675F 14R WG.	NS I O			×		
	1275F 1148 MG. 1675F 1MR MG. 1000F 1200F 2-BHRS AC	MS1 Q			×		
	THE ACT SHIP WOLL INOU BHIR + 1025F	SHEFT					×
	THE CONTRACT OF STREET SHIPS AC	FLATE	4				
	1950E AHRS WOLLDOOF AHRS ARG	FORGING			×		

TABLE 4.0.1 (Cont)

VAILABLE DATA FOR TITANIUM ALLOYS

אַנייז זע	CONDITION/HT	FRODUCT FORM	7 × 10	Ų.	R CURVES	DA/DN D	DA/DT	M I SCC
CL AM MY CELD	ANNEAL ED	SHEET		×				
	∀	PLATE				×		
I - 6AL 4VIELE	ANNEAL ED	FORGING	~			*		
	ζα.	PLATE				¥		
	RECRYSTALLETE ANNEAL	PI,ATE	×					
	1800F 1HR HELIUM COOL	PLATE						×
N: 2 A9: 184-13	ANNEALED TO 20 10-20% PRIMARY ALHAA ANNEALED 1350F 2 HB. AC	FORCING	*					
	MINEALED 40-50 40-50% PRIMARY ALLINA ANNITALED 13:0F 2 HR. AC.	FORGING	×					
	ANNEAL -COAMSE GRAIN-1350F	FORGING	-					
	ANNEAL -FINE GRAIN 1350F	FORGING	×					
	Ę.Д	PLATE				×		
	ABLIEB FIN-10 BETA BLOCKED. ALPHA-BETA LINISHED. 10X PEDUCTION. SALUTION TREATED ALUVERAGED 1450 I HRIHO 1300F 2 HRIAC	FORG ING	×					
	BR.AR FIN-10MA BFIA BLOCKED. ALPHA-BETA FINISHTD 10% REDUCTION, MILL ANNEALED 13507 2-110-AC	FOR GING	×					
	FR. AB FIN-30 BETA BLOCKED. ALFINA BETA FINISH B. 30% DEDUCTION. SOLUTION TREATED % OVERAGED 16/0F THR. WO. 13/0F 2 188. AC.	FORGING	×					

TABLE 4.0.1 (Cont)

では、10mmのでは、1

O

AVAILABLE DATA FOR IITANIUM ALLOYS

ALL CIV	CONDITIONANT	PRODUCT FORM KIC	NIC KC R CURVES	S DA/DN DA/DT	N/DT MISCC
1]6al4v. 25N	RB. AB FIN-30MA RETA BLUCKED. ALPHA BETA FINISMED. 30XREDUCTION. MILL AMMERLED. 1350F 2 188. AC.	F 0R 6 1 N G			
	BB. B FIN-10 BETA BLOCKED, BFTA FINISHED. 1072HEDUCTION, SOLUTION TREATED & GYERAGED, 1659F 1 HR. MG. 1300F 2HR. AC	FORGING	×		
	PR.P FIN-10HA REIA BLOCKED. BETA FINISHED. 10% REDUCTION. MILL AAMEALED 1350F 2 HR.AC	rorging	×		
	RETA ANNE AL	PLATE	×		
	BETA ANNEAL 1810F 1 HR. ARGON COOL	PLATE	×		
	RETA ANNE AL B. STUA-1800) O SHR. AC. 1575F O THR. WO. 1050F B HR. AC.	PLATE	×		
	BE, AB FOR ANN BETA FLECTED. ALPHA BETA FORGED, ANNEALED. 13501-2-148, AC	rorging	*		
	BF.B FOR-ANN RETA FLECTED. BETA FORCED. ANNLALED 135GF 2 HR.AC	FORGING	×		
	PF.LAR FOR-ANNETA FLECTED. LOW ALCHA-BETA FORGED (1500F) ANNEALED, 1350F 2 HR. AC	FORGING	×		
	DUPLEX ANNEAL	PLATE	×		
	\	CXTRUSTON		***	
	MILL AMENED	PLATE FORGING	××		

TABLE 4.0.1 (Cont)

AVAILABLE DATA FOR ILTANIUM ALLINYS

ALL (17	CONDITIONALIT	PRODUCT FORM KIC KC R CURVES DA/DN DA/DT KISCC	MIC MC	R CURVES	DA/DN	DA/DI	M I SCC
			:				
11 AAL (V. 25N	MILL AMERICO	FORGED BAR	* ×				
	MILL ANNIALED 1000F 2 HR. AC	PILLET	*				
	< α				×		
	RECRYSTALL LE ANNEN.	PLATE	×				
	STA-1630F 0 5HR: MR: 1030F 6 HB: AC	FORGING	×				
	STA-1650F 0 SHR. WR. 1050F 24 HR. AC	FORGING	×				
	STA-1675F 0 25 HR. MG.	PLATE	×				
	STOA	PLATE			×		
	TOA-1500F 1 SHP, WG, 1250F 6 HR, AC	EXTRUSION	>-				
	STDA-1550F J HR. WO. 130GF 2 HP. AC	FORGING	×				
	STDA 1700F 1 HR, MG, 1400F 1 HR-AC	PLATE	×				
	Though and	HILLET FORGING	×			×	
	1450) 1 144 443.	FORGING	×				
	1675F 2 HR. AC 1600F 1 HR. FC	PLATE	*				
	1475F 2 HP. AC 1600F 1 HR. FC	FOR 6 1 NC	×				
	1675F 2 18.40 1500F 1 HR.FC	FORGED BAR	×				

TABLE 4.0.1 (Cont)

AVAILABLE DATA FOR TITANIUM ALLOYS

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !					
NSV 7 AV NO-11	;	Pt ^1E			×
	1000 2HR AC	FORGING			×
	1300F 2HR AC	FORGING			×
	1550F 1HR WA 900F 4HR AC	PLATE			×
1.6.5.5.0.0	z.	PLATE	×		
	STA	PLATE	×		
11-6-2-4-2	1790F THR AC. 1190F BHHS AC	FORGING	м		
11 6 2 4 6	1	EXTRUSION	×		
	1599F INRS AC 1350F ZHRS DO.	FDRGING	×		
T1 6AL 1MG 19		SVEET PLATE	ж	××	* *
	1.4	SHEET	×		
	Ę	SPEET	×	**	
	HIII ANNEALD	PI ATE			×
	HILL ANNFALED 1435F BHR FC	SHEET			×
	SAC AMMEN LD	PLATE			×
	157 OF 1HR. HQ	PLATE		×	
	15/35 THP ACTO/SE BHRAC LOOPE 2016 AC	P. ATE			×
	THE REST TRUBE THE MO	FLATE			×
	1725F FC. 1200F 3HR WG	PLATE	_	×	

TABLE 4.0.1 (Cont)

AVAILABLE DAIA FOR TITANIUM ALLOYS

אורטא	CONDITION/HT	PRODUCT FORM KIC MC R CURVES DA/DN DA/DT MISCO	MIC MC R C	URVES	EA/DN	DA/DI	MISCC
71-BAI - 1M0-17	1-8AI - 1MD-19 1775F O SHR FC TO 1200F 1200F	PLATE					×
	1875F IHR AC	PLATE					×
	1825F 1HR AC. 1350F 2HRS AC				×		
	1800F 1HR MG. 1100F BHRS AC	FORDING	×		×		
	2000F. 0 SHN. AC	PLATE					×
T) - BHORV2F E 3A!	STA PEAGED AT 1100F 6HR	PLATE	>				•
	1475F 1 5 HR, WO, 1000F B HR, AC	EXTRUSION	» .				
• 11	STA-1740F 1 HR. AC. 1000F BMR. AC	PLATE	×				
	1740F 1 IR.AC	PLATE	×				
	ALPHA: BETA FORCED	FORGING					×

1904 Mendelstand Bereinsteinstanden er eine eine Seine S

TABLE 4.0.2

PLANE STRAIN FRACTURE TOUGHNESS VALUES OF TITANIUM ALLOYS AT ROOM TEMPERATURE

) ()) !	8TD DEV	ļ							1		°		;	
	7	E &			;							- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		!	
	Į.	SPECIMEN THICK +	1		į	}	}		1	1		0. 75	1	-	1
(((BTO DEV.	6			į	ų r	•	S S			3.0		10.8	n √
(KSI BORT(IN))	7	¥	6 .6	}		1	39. 4	4.0	93.3	1		62.2	;	94.9	4 2. 6
(K91		BPECIMEN THICK +	8	ļ	;	į	8	1. 49	1. 63	Ì		0.75	}	%	8
	i ! !	9TD.	1. 4	.	1.	- •			!	9.6	• o	<u>-</u>	n n	10.4	
	L-1	TEAN	.	4 9	99. 3	61.6		4		79.6	8	38 . 1	4 .	57. 1	
	ر إ	BPECIMEN THICK +	1.8	0.75	0. 62	0. 63		38.	;	1. 25	1.33	0.75	1. 25	0.36	
RANGE OF PRODUCT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8. 96	0 8 °C	o 9 ·	6.62	g G	8 Fi	8	9. %	8. Ri	6 6	2.73	1, 00-3, 50	e G
PRODUCT FORM	1 1 6 1 1 1 1 1		PLATE	PLATE	PLATE	PLATE	FORGING	FORDING	EXTRUSION	BILLET	BILLET	FDR01NG	PLATE	FOROED BAR	FORGED BAR
CONDITION/ HT			81.4	1325F 254R, MG 925F BHR	STA-1740F 1 HR. AC. 1000F BMR. AC	1740F I HR. AC	AB FORGED-MA ALPHA-BETA FORGED, HILL ANNEALED	ANNEALED			ANNEALED 1000F 2 HR. AC	ANNEALED 1300F 4 HR. AC	ANNEALED 1375F 3HR, AC	AS RECEIVED	B FORCED BETA FORCED REHEATED TO 1950F DRAWN TO 512E. ANNEALED
ALLOY	; ; ; ; ; ; ; ;		BETA C	BETA 111	•-11		TI-6AL-4V								

. HINIMUM SPECIMEN THICKNESS (IN.)

TABLE 4.0.2 (Cont)

PLANE BIRAIN FRACTURE TOUGHNESS VALUES OF TITANIUM ALLOYS AT ROOM TEMPERATURE

DETAILS DETA	ALLOV	CONDITION/ HT	PRODUCT FORM	RANCE OF PRODUCT THICKNESSES (IN)				(481	(KBI BORT(IN))	68			
#ETRECED-TAM #ETA FORGED #ETA						-	,		ا ب			7	
PETOREED-HA FOREING 2.00 1.00 70.6 4.9 1.00 71.0 0.4 1.00 73.9					SPECIMEN THICK .	TEAN	8TD.	SPECIMEN THICK +	E &	5 S	BPECIMEN THICK *	EAN	91D DEV
AMMERLED MANERLED 1-6AL-4V	B FORCED-NA BETA FORCED. HILL AMEALED 1300F 2 HR, AC	FORGINO	8 ni	8 .	9.0	÷	8	71.0	•	8		n N	
ANNEALED ANNEALED ANNEALED ANNEALED ANNEALED FLATE 1.00-3.50 1.24 93.6 1.3 1.29 100.6 6.8 ANNEALED EXTRUSION 1.00-4.00 1.47 83.3 3.1 1.50 87.3 4.1 1.29 100.2 6.8 2.181.AC EXTRUSION 1.00-2.50 1.13 82.8 7.8 1.00 49.3 3.9 1.00 43.6 3.9 1.40 1.40 1.29 83.6 1.2 89.6 6.9 1.40 43.6 3.9 1.40 1.40 1.29 83.6 1.2 89.8 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 6.9 1.40 89.8 9.9 89.8 9.9 1.40 89.8		BETA PROCESSED MILL ANNEALED	PLATE	8 0 E	1. 90	4 . 6	4.	ļ		}	l		
ANWEALED PLATE 1.00-1.30 1.24 39.6 1.3		DIFFUGION BOND ANNEALED	BILLET	1. 00-3. 50	8		4.7	93	2	. .		- 1	ļ
ANMEALED PLATE 1.29-2.00 1.29 100.6 6.8 ANMEALED FORFIUM 2.00 1.47 83.9 3.1 1.30 87.9 4.1 2 HB.AC BILLET 2.30 1.00 47.7 2.9 1.00 49.5 3.9 1.00 43.6 3 STALLIZE PLATE 1.00-2.90 1.13 82.8 7.8 1.00 49.5 3.9 1.00 43.6 3 STALLIZE PLATE 1.00-2.90 1.13 82.8 7.8 1.00 69.8 10.8 .		HILL ANNEAL	PLATE	1. 00-1. 50	1. 24	99. 6	. 3	;	-		;	;	1
EXTRINGIAN 1.60-4.00 1.47 83.9 3.1 1.30 87.5 4.1		MILL ANNEALED	PLATE	1, 25-2, 00	}	;	1		100.	•			1
ANMEALED FORGING 2.00 1.00 47.7 2.9 1.00 49.5 3.9 1.00 43.6 5 2 HR, AC BILLET 2.30 1.23 84.0 3.4 1.00 49.5 3.9 1.00 43.6 5 STALLIZE PLATE 1.00-2.30 1.13 82.8 7.8 1.00 80.8 10.8			EXTRUSION	1, 80-4, 00	1, 47	8 3.	-	1. 30	87. 3	7.		1	ŀ
STALLIZE PLATE 1. 00-2. 50 1. 13 82.8 7.8 1. 00 80.8 10.8		HILL AMEALED	FOROING	8	1.8	47, 7	o.	1.8	1	B	2.8	43.6	ID
STALLIZE PLATE 1.00-2.50 1.13 62.8 7.8 1.00 60.8 10.8 6.53 42.6 2.0 6.64 42.6 2.0 6.63 42.6 2.0 6.63 42.6 2.0		Tagge & Late MC	BILLET	2.30	1. 23	94.0	6	-	}		;		Ì
FURIDING 1.20-6.70 1.25 83.6 5.9 1.25 83.9 6.9 1.43 88.9 3. STA PLATE 0.62		RECRYSTALL 17E	PLATE	1. 00-2. 30	1. 13	<u>8</u>	7. 0	8	8	10.8	1		i
6 HR, AC, FORCINO 1.40 1.25 79, 9 4.2 1.29 81.2 3.8			FORGING	1. 20-6. 70	1.23	8 3.6	6) 6)	1. 25	60.4	•	1. 43	98	D)
6 HR.AC. FORGINO 1.40 1.25 79.9 4.2 1.28 81.2 3.8		\$12	PLATE	9 .0		1	-	0. 63	42.6	9.	!		-
1 HR. WG. FORGING 3.00		1700F 6 HR, AC. 1400F 6 HR, AC	FORCINO	1. 40	1. 25	79. •	4	 8	91.2	6 0	1		i
IHR FC PLATE 1. 30 1. 50 91. 9 2. 1 20F. AC IHR. FC PLATE 1. 30 71. R 3. 2 1. 50 91. 6 1. 3 2HR. MG. PLATE 0. 62 0. 63 41. 4 2. 3 2HR. AC. 2HR. AC. 3TA		1750F 1 HR, 440. 1000F 4 HR	FORGING	3.00	1	ļ	į	8 n	74.3	÷	1		1
2HR, MG, PLATE 0. 62 0. 63 41. 4 2. 3 2HR, AC, 21RA		1750F 1HR FC TO 1100F, AC	PLATE	1. 30	}	1	}	1.50		u.	1		1
2HR. WG. PLATE 0. 62 0. 63 41. 4 2. 3 2HR. AC. 2HR. AC. 2HR. AC. 2HR. AC. 31A		1750F 1HR.FC TO RT	PLATE	1. 30	1. 30	71.8		1	9.	- 3			
				0. 62	0.63	44							İ

. MINIMUM SPECIMEN THICKNESS (IN.).

TABLE 4.0.2 (Cont)

PLANE BIRAIN FRACTURE TOUGHNEBS VALUES OF TITANIUM ALLOYS AT ROOM TEMPERATURE

11-6AL-4V(ELI)	ALLOY	CONDITION/ HT	FORM	RANDE OF PRODUCT THICKNESSES (IN)				(83)	(KSI SORT(IN)	â			
ANNEALED FONOTHO RECRYSTALLIZE PLATE ANNEAL 1810F 1 HR. ANDUN COOL BETA ANNEAL B PLATE 6170A-1800F 0. 3HR. AC. 1879F 0. 3HR. AC. DUPLEX ANNEAL B PLATE HILL ANNEALED PLATE HILL ANNEALED PLATE FOROTHO 817LET 1000F 2 HR. AC. 57A-1679F 0. 39 HR. AB. 1100F 4 HR. BITCHT 1100F 4 HR. BITCHT 1100F 4 HR. BITCHT 1100F 4 HR. BITCHT 1100F 4 HR. BITCHT 1100F 1 HR. AC.					ر	١	1		7	į		1	
### ### ### ##########################					SPECIMENTHICK .	TE À	BTD DEV.	BPECIMEN THICK *	Æ	9 9 9 9 9 9	SPECIMEN THICK *	TEAN	*
PECRYSTALLIZE	L-4V(ELI)	ANEALED	FOROTHO	9 00	8 ni	8		2.0	4 .3	6	1	,	
BETA AMMERAL 1810F 1 HR, ANDON COOL BETA AMMERAL & PLATE 8 TOA-1800F 0. SHR. AG. 1973F 0. SHR. AM. 1030F 8 HR. AG. DUPLEX AMMERALED PLATE 1000F 2 HR. AG. 8 TA-1600F 0. SHR. AM. 1000F 6 HR. AG. 8 TA-1600F 0. SHR. AM. 1000F 6 HR. AG. 8 TA-1600F 1 100F 4 HR. 8 TOA-1700F 1 HR. AG. 1 HR. AG. 1 HR. AG. 1 HR. AG. 1 HR. AG.	_ •	RECRYSTALL (2E ANGEAL	PLATE	8	6 N	76. 1	⊙	8 ni	76.	0.			!
PLATE PLATE FURDING BILLET BILLET PLATE PLATE BILLET		BETA AMERAL 1810F 1 HR. ARGON COOL	PLATE	9 . 0				9.	2.	o o	1		1
PLATE PLATE FURDING FURET PLATE PLATE		BETA AMEAL B BTDA-1800F O. 348, AC. 1573F O. 348, WB. 1030F B HR, AC	PLATE	ğ	3	9.	• 	!		i		1	
PLATE FURGINO BILLET BILLET PLATE PLATE BILLET		DUPLEX AMERAL	PLATE	0.30	ļ		1	9	69. 1	o N		1	- 1
FURGING BILLET FURGING FURE FLATE 1	_	HILL AMERIED	PLATE	0. 30-1. 00			-	0. 49	8	n n		ļ	•
PILLET PILLET FUNDING FUNDING PILLET 1			FURGING	9 6	8	9	2.7	1	1		}	;	
PILLET FURGING PLATE PLATE 1			BILLET	25	1.24		•		!	į		1	1
FURBING PLATE PLATE 1		HILL AMMERLED 1000F 2 HR. AC	DILLET	8	1.23	37.1	u u	İ		1		;	,
PLATE DOF BILLET 1		STA-1600F 0 3441-WB-1000F 6 HR. AC	FURBINO		1. 01	8	<u>0</u>		!			;	1
PLATE 11	-	STA-1673F 0.25 HR, NB, 1100F 4 HR	PLATE	2	<u> </u>	ļ		<u>.</u>	5	e ri			,
DILLET	 '	BTDA-1700F	PLATE	8	8	4.0	<u>-</u>	8 8	46. 1	E.	-		- 1
		1 HR. AC	DILLET	12. 00	1.02	3	6	1. 02	97.0	J. 7	ļ		- 1
TI-BHOBVZFE3AL STA.REAGED AT PLATE 1.00		STALREAGED AT	PLATE	8 :	8	*	0 ;	\$	93.4	-	}	1	1

TABLE 4.0.2 (Cont)

PLANE BTRAIN FRACTURE TOURNESS VALUES OF TITANIUM ALLOYS AT ROOM TEMPERATURE

ALLOY	CONDITION/ HT	PRODUCT FORM	RAMOE OF PRODUCT THICHNESSES (IN)				1831	(KBI BORT([M))	6			
			L-1	,	L-1			ĭ		6 0	9- F	
				BPECIMEN MEAN STD. THICK + DEV.	FA	2 d 2 v	BPECINEN HEAN STD. THICK . BEV.	F.	5 5 5 5	BPECIMEN HEAN 8TD. THICK . DEV.	ž	810 06.
TISAL6V2SN(EL1) 1600F 1 HR. WB. 100F 4 HR. AC	600F 1 HR. NB.	PLATE	8	0.23 27.8 0.5	8	e o	1			1		
Ä	1630F 1 HR. MB.	PLATE	8.1	0. 23	0.25 34.0 3.5	ຄ ຕ່	İ	1	1	1		:
. HINIMUM SPECIMEN THICKNESS	INEN THICKNESS	CIM.).										

TABLE 4.0.3

「「「「国内のあることに対対ないのとなるとは、「「国内のもののは、「国内のもののは、「国内のもののは、「国内のもののでは、「国内のもののでは、「国内のものものでは、「国内のものものでは、「国内のもの 国内 はいいかい 「国内のものは、「国内のものものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、「国内のものは、

Ö

PLANE STRESS AND TRANSITIONAL FRACTURE TOUGHNESS OF TITANIUM ALLOYS (WITH BUCKLING CONSTRAINTS)

		Ţ	•	•	7177		7.7	
	Condit ton/fit	įE		Specimen Orient Width (in.)	Strength (Kn1)	Specimen Thickness (in.) - 0.020	0.040	0.050
T1-5a1-2.55a An	Amme a leed	2		3.0	êê	116.8/4.5 (5)		
				12.0	ê	104.2/4.0 (8)		
			T-1	12.0	210	107.7/14.0 (2)	147.6/28.9 (2)	
W A9-149-11		H. T.	LT	24.0	×S			156.4/19.9 (6)
TI-641-4V (ELI) As	Ameeled	1. 1		10.0	1.8	161.6/6.5 (5)		
	D. A.	A. T.	1-1	12.0	**	111.7/15.0(3)		220.5/15.8(4)

*Heam/Standard Deviation (No. of Specimens)

CONFANISON OF FATIONE CRACK ONDWITH RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR TITANIUM ALLOYS

TEBT CONDITIONS;

SPECIMEN CALL L-T

ENVIRONMENT: LAB AIR AT R. T.

FREGUENCY: 0, 10-50, 00H2

STREBS RATIO: 0.00-0.10 FREGUENCY:

אררפא	CONDITIONANT	PRODUCT	GTREBO	FREGUENCY	FATIONE CHACK ORDWIN RATES (HICRO IN/CYCLE) FOR DELTA K LEVELS (KSI SORT(IN)) = 2. S S. O 10. O 20. O 50. O 1	ORGHTH R LEVELS 10.0	ATES (NIC) (KSI SOFT 20.0	NO IM/CYCI (IN) - 80.0	100.0
11-5AL-2. 3GN	MOENLED	15348	0.10	30.00			11. 6	184.	
	ANNEAL ED	DIEET	0.10	30.00			11.7	}	! ! ! !
11-6-2-4-6		EKTRUS I ON	0 10	8.0		. 019	6.7	!	1
11-6AL-4V	MOEMED	BILLET	o g	10.00- 20.00		. 270	•		
	AMEALED AT 1373F. 3HRB. AC	PLATE	8	10.00- 20.00		8	5		
	\$	FORO 1MD	9.0	. 10- 20.00			2j 80	ā	
	BETA PROCESSED -HILL AMERLED	PLATE	0	8			416		
	Į	PLATE	9	. 10- 30.00	C410 ·	3	12. 4		
	£	PLATE	9	. 10- 30, 00		<u>.</u>	%		
	£	PLATE	3	90°.				9	
	£	PLATE	0.0	20.00			4 43		
	£	FOR 1 NO	8	1.00-30.00				Ĕ	
	£	EXTRUBION	0. 10	1.00-20.00			\$	ğ	
TI-6AL-4V(ELI)	ANDEALED	FOR 0 1 NO	9	1.00-10.00			12. •	90g	
	\$	PLATE	0 10	10.00			9 .0		

CARLES MANAGEMENT OF THE SAME

			TABLE	TABLE 4.0.4.1 (Cont)	at)					SES.
	5	COPPARISON OF FATIOUE C STREBS INTENS	TIONE CRACI	CAACK GROWTH RATES AT DEFINED LEVELS OF THE 1817Y FACTOR FOR TITABIUM ALLOYS	AT DEFINED (LEVELS OF	Ā			
IEST CONDATAGNOS. BPECTHEN ORJENTATION:	710N: L-T		ENVINDMENT:	ENT: LAB ATR ATR. T.	AT R. T.					
STRESS RATIO:	110: 0.00-0.10		FREQUENCY:	ENCY: 0, 10-50, 00HZ	2100					
WTFOA	CONDITION/HT	PRODUCT FORM	61AEBB RATIO	FREGUENCY	FATIBUE 6	CRACK OROW ELTA K LEV	FATIOUE CRACK OROWTH RATES (MICRO IN/CYCLE) FOR DELTA R LEVELS (RSI DORT(IN)) = 5 5.0 10.0 20.0 50.0 I	100 1N/CV((LE)	ł
T1-6AL-6V-25N	£	EKTRUBION	8 6	. 10- 20.00		0440 620	57 . 7 OS			; ;
TI-6AL-1HO-1V	ļ	SHEET	g	. 10- 12.00		13. 28		4	1243.	,
	2	8) EET	8	1.00- 30.00				67.2		
	\$	13348	0 0	43.00			% %	246.		
	£	B-EET	0. 10	43.00			7. 47			
	£	# EF	9 6	8			**			

COMPANIBON OF FATIOUE CRACK ONDWIN RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR TITANIUM ALLOYS

TEST CONDITIONS:

SPECIMEN DRIENTATION: T-L.

ENVIRONMENT: LAB AIR AT R. T.

FREGUENCY: 0.10-53.30HZ 0.02-0.10 STRESS RATIO:

LED BHEET 0.10 LED SHEET 0.10 DED WELDHENT 0.10 HEAT ZONE) FURBIUM 0.10 LIEVED WELDHENT 0.10 ALIEVED WELDHENT 0.10	ארוסג	COMD 1 T 10M/HT	PRODUCT FORM	81AEB8 RATIO	FREQUENCY	FATIOUE CRACK OROUTH RATEB (HICRO IN/CYCLE) FOR DELTA K LEVELB (KBI BORT(IN)) = 2.5 5.0 10.0 20.0 50.0 1	EB (HJCH 20.0	0 IM/CYCL IN)) = 30.0	E)
AS WELDED WELDMENT (WELD ZOWE) AS WELDED E. B. WELDMENT (WELD ZOWE) AS WELDED E. B. WELDMENT HEAT AFFECTED ZOME) BA FORBING RA FORBING E. B. WELDMENT (WELDWENT HEAT AFFECTED ZOWE) ZOWE) STRESS RELIEVED WELDMENT (WELD ZOWE) ANNEALED FORBING RA PLATE	TI-5AL-2, 95N	ANEALED	BAEET	0. 10	90. 00- 53. 30		9.		
AS WELDED E. B. WELDMENT (MELD 20ME) AB WELDED E. B. WELDMENT (MELDMENT (MEAT AFFECTED 20ME) HA EXTRUBION RA PLATE BYRESS RELIEVED E. B. WELDMENT (HEAT AFFECTED 20ME) GTRESS RELIEVED WELDMENT (HELD 20ME) GRANEALED FORGING RA PLATE		ANNEALED	SHEET	0. 10	30.00		11.9	141.	
AB WELDED E. B. MELDMENT MELDMENT (HEAT BA FOROINO MA EXTRUBION RA FLATE BTRESS RELIEVED WELDMENT (HEAT AFECTED ZONE) GTRESS RELIEVED GTRESS RELIEVED GWELDMENT (MELD ZONE) ANNEALED RA PLATE	11-6AL-4V	AS WELDED E. B. WELDMENT (WELD ZONE)	WELDYENT	0 10	10.00		5		
BA FOROINO HA EXTRUBION RA PLATE BTRESS RELIEVED WELDMENT (HEAT AFFECTED 20NE) GTRESS RELIEVED E. B. WELDMENT (WELD 20NE) AMMEALED RA PLATE		AB WELDED E. D. WELDMENT (MEAT AFFECTED 20NE)	MELDYENT	0 0	90.00		ğ		
RA FLATE BYRESS RELIEVED WELDMENT E. B. WELDMENT (HEAT AFFECTED 20NE) GTRESS RELIEVED WELDMENT E. B. WELDMENT (WELD ZONE) ANNEALED RA PLATE		\$	FOROINO	9	. 10- 20. 00		g. 27	103.	3242.
BTRESS RELIEVED WELDMENT E. B. WELDMENT (HEAT AFFECTED 20ME) GTRESS RELIEVED WELDMENT E. B. WELDMENT E. B. WELDMENT (WELD 20ME) AMMERLED RA PLATE		£	EXTRUBION	0. 10	5.00- 20.00		13.7	8	
BTRESS RELIEVED MELDMENT E. B. MELDMENT (HEAT AFFECTED 20NE) GTRESS RELIEVED MELDMENT E. B. MELDMENT (NELD 20NE) ANNEALED FORGING		€	PLATE	0. 10	10.00		21.3		
GTRESS RELIEVED WELDMENT E. B. WELDMENT (WELD ZONE) ANNEALED FORGING RA PLATE		BTRESS RELIEVED E. B. JELDHENT (HEAT AFFECTED 20NE)	WELDHENT	0 0	10- 10 00		<u>.</u>	44	
ANNEALED FORGING RA PLATE		GTREBS RELIEVED E. B. WELDWENT (WELD ZONE)	;	0. 10	. 10- 10:00		10. 1		
PLATE 0. 10	(I-6AL-4V(ELI)	ANNEALED	FORCING	0.10	1, 00- 20, 00		1. 4	171.	
		4	PLATE	0. 10	1.00-10.00		2.73	240	

COMPARIBON OF FATIONE CRACK GROWTH RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR TITANIUM ALLOYS

TEST CONDITIONS.

BPECIPEN ORIENTATION: C-R

ENVIRONMENT: LAB AIR AF R. T. FREGUENCY: 0.16-30, 00HZ STRESS RATIO: 0.03-0.10

ALLOY	CONDITION/HT	ION/HT	PRODUCT FORM	BTREBB RATIO	FREGUENCY	FAT160	E CRACK I DELTA H S. O	ORCHTH R LEVELB 10.0	FATIOUE CRACK ONDWITH RATES (MICRO IN/CYCLE) FOR DELTA K LEVELS (MSI BORT(IN)) = 5 5.0 10.0 20.0 50.0 1	IN)) = 50.0	100.0
11-6-2-4-2	1790F 1HR AC, 1100F 8HRS AC	R AC.	FDROING	0. 10	91 .				10.3		
11-6-2-4-6	1690F 29488 AC. 1950F 2948 06. 1100F 69489 AC	488 AC. 488 06. 478 AC	FOROTHO	0.10	90 OS		. 109	68			
11-6AL-4V	1775F 1HR WG. 1673F 1HR WG. 1000F 4HRS AC. 900F 3HR	## FF FF FF FF FF FF FF FF FF FF FF FF F	X	60	.33- 10, 00					2.	
,	1773F 1HR MD. 1673F 1HR MD. 1000F-1200F 2	1HR ND. 1HR ND. -1200F 2-8H	DISK	0.00	0. 03 - 0. 30			C 98 .	0 -		
71-8AL-1M0-1V	1830F 1148 440. 1100F 8488 AC	R MO.	FOROINO	0 10	30.00		. 107	8			

TABLE 4.0.5

STRESS CORROSION CRACKING THRESHOLD DATA FOR TITANIUM ALLOYS AT ROOM TEMPERATURE

PRODUCT SPECIMEN NON-SPHERE SPACOAST SUMP TANK JP-4 3.53						ENVIRC	ENVIRONMENTS	Klacc (Kat	Klacc (Kat /in.)			!
Seta Forged F T-L 27.0 18.0 27.0 34.0 18.1 17.0 18.1 18.0 19.0	ALLOY	COMDITION/HT	PRODUCT FORM	SPECIMEN ORIENTATION	INDUSTRIAL ATMOSPHERE	SEACOAST ATHOSPHERE	SUMP TANK NATER	JP-4 FUEL	3.5X NaC1	SHOP CLEANING SOLVENT	FIELD CLEANING SOLVENT	ļ
First Forged F T-L 42.0 42.0 34.	11-6A1-4V	Alpha-Beta Forged	<u>.</u>	1-1	27.0	18.0			27.0			
Finish Rolled P T-S 76.2(7) CTA Weld P L-T 58.0 76.2(7) Frost Led 2 RR F L-T 58.0 32.0 Hill Annealed P L-S 39.3(7) 32.0 KA F T-L 59.8(6) 35.0(2) Hill Annealed P L-T 59.8(6) 35.0(2) Hill Annealed P L-T 55.0(2) 55.0(2) Hill Annealed P L-T 56.0(4) 55.0(2) Hill Annealed P L-T 55.2(5) 55.2(5) Hill Anneale Cycle T-L 55.2(5) 55.2(5) History Hill Way E L-S 60.0 History Hill Way E L-S 60.0 Hoody Hill Ac E L-S 60.0 Hoody Hill Ac E L-T 31.0 48.5(2) Hoody Edit Ac E L-T 31.0 43.3 32.4 Hoody Edit Ac F L-T<		Beta Forged	<u>د</u>	1-T	42.0	42.0			34.0			
CTA Weld P		Finish Rolled	۵.	T-S					76.2(7)			
HAT I Annealed P L-S 59.3(7) RA T-L T 59.3(7) F T-L 59.8(6		GTA Weld Postweld 2MR (Heat Affected Zone)	۵.	<u>-1</u>			58.0					
RA P L-T 59.3(7) 1700F 4HR FC F T-L 59.8(6) 10 1400F 4HR FC P L-T 66.0(2) 10 1400F AC T-L 55.2(5) 10 1400F AC F L-S 60.0 17 25F 1HR MA) E L-S 60.0 12 30F 4HR AC STOA) 60.0 60.0 17 25F 1HR MA) E L-S 60.0 17 30F 1HR MA) E L-S 48.5(2) 1000F 2HR AC F L-T 31.0 43.3 11 50F 2HR AC F L-T 30.5 32.4 12 90F 2HR AC F L-T 30.5 21.0 12 90F 2HR AC F L-T 30.5 21.0		Mill Annealed	۵.	r-s					32.0			
T-L 59.8(6) 5.2(2) 5.0(4) 5.0		*	۵.	7			59.3(7)					
1700F 4HK FC F T-L 55.0(2) 56.0(4) 56.0(4) 56.0(2) 10.1400F AC T-L 55.2(5) 55.2(5) 56.0(2) 57.2(5)				-			59.8(6)			69.0(2)	0.02	
1700F 4HK FC P L-T 55.2(5) 10 1460F AC T-L 55.2(5) 110 1460F AC T-L 55.2(5) 170 F HR MO, E L-S 60.0 170 F HR MO, INS MODE THR MO, INS MODE THR MO, INS MODE THR MO, INS MODE THR MO, INS MODE THR MO, INS MODE THR MO, INS MODE THR MO, INS MODE THR MODE THR MODE THR			(a.	1-L S-L			53.0(2) 56.0(4)					
10 1400F 44R FC F L-1 10 1400F AC T-L 55.2(5) 10 1400F AC T-L 55.2(5) 11 1400F AR AC T-L 55.2(5) 12 15 14 14 14 14 12 15 15 14 14 14 13 15 15 14 14 14 14 15 15 15 14 14 14 15 15 15 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 1			•				(6,70,77					
10 14 14 14 14 15 15 15 15		1700F 4HR FC	۵.	ا را			(7)0.99			0 67	0 02	
1725F 1HK MQ, E L-S 1250F 4HK AC (STOA) 1725F 1HK MA, E L-F 1000F 1HK AC (STA) 1750F, 1000F 2HK AC (STA) 1750F, 2400F F L-T 248 AC 1900F 2HK AC 1900F 2HK AC F L-T 1550F 1HK MQ P T-S		to table AC Diffusion Bond Thermal Cycle		1-1			(6)7.66			2.	2	
1725F 1HR M.; E 1S 1000F 1HR AC (STA) 1750F, 1040F F L-T 2HR AC 1900F 2HR AC 1900		1725F 1HR W), 1250F 4HR AC (STOA)	u	r-s					0.09			
1750F, 1040F F L-T 31.0 43.3 24R AC 1000F 2HR AC F L-T 30.5 190F 2HR AC F L-T 30.5		1725F 1HR W. 1000F 1HR AC (STA)	ui	lS					48.5(2)			
1000F 2HK AC F L-T 30.5 190F 2HK AC F L-T 1550F 1HK MQ P T-S		1750F, 1000F 2HR AC	<u>.</u>	1-1			31.0	43.3			 	
F L-T T-S	Fi-6AL-6V-2Sn		i s	:				30.5				
7-5		L MOF ZHK AC	<u>.</u>	1-1					32.4			
900F 4HR AC	:	1550F 14R WQ 900F 4HR AC	۵.	T-5					21.0			1

TABLE 4.0.5 (Cont)

STRESS CORRUSION CRACKING THRESHOLD DATA FOR TITANIUM ALLOYS AT ROOM TEMPERATURE

							K18	Klacc			ŀ
					ENVIR	ENVIRONMENTS	X)	(Ket /18.)			
ALLOY	COMD I T LOW/HT	FORM	SPECIMEN ORIENTATION	INDUSTRIAL ATMOSPHERE	SEACOAST ATHOSPHERE	SUMP TANK WATER	JP-4 FUEL	3.52 NaC1	SHOP CLEANING SOLVENT	FIELD CLEANING SOLVENT	
T1-8A1-1Mo-IV	MILL Annealed	•	L-S T-S					20.0			
	Mill Annealed										
	IAJSF BHR FC	۵.	1-s					21.0			
	Vacuum Annealed	~	7.					26 1(3)			
	1520 IHR WQ	۵.	1-L					7 17			
4.0-	1675F 1HR AC. 1075F 8HR AC. 1000F 2HR AC	۵.	7					26.4			
27	1700F 1HR AC 1200F 2HR WQ	4	T-S					28.0			
	1825F IHR AC	•	1-S					73.0			
	2000F 0.5 HR AC	۵.	1-1					47.3			

TABLE 4.1.3.1

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.1.3.1 INDICATING EFFECT

OF ENVIRONMENT

	MAX IN##1/2)	;	DA/DT (10)**-3 IN/HOUR)	
(1074	114 # 1 / 5 /	A	В	С	D
		: E= : 3. 5% NACL			
K MAX MIN	A: B: C:	: :			
11614	D:	; ;			
	200.00) :			
K MAX	A: B:	:			
MAX	C:	•			

PERCENT ERROR

4.1-2

Figure 4.1.3.1

						TABLE	4.1.3.2		K(1860)			
OND LT 1 CRU		! & 2	1EST 1EMP (F.)	7 E	ELD TR 61)	ROWENT	E CENT	DES16	CRACK LENOTH K(0) (IN) (KST+1)	K(ISCC) MEAN	TAN	EST INE DATE R IN)
ETA STAR		· <u>9</u>	ı 🛌	' ທຸ	6.03.9	PCT NACL	1 60	160 CN	72.0	7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t	20 1969 7
1715F W3	!		- E	; ; ;	H9	6H KGL. +1000HV		SENT	2	0 44 0	1 1 1	19928 0261
1745F WG	ສາ	1	i E	, !	49	.6M KCL. -1000MV	:	BENT	100.00	0 > 55,00*		1970 82651
1715F WG	œ	!	۳ ۲	, 	3	6H KCL. O HV		SENI	100.00	0 32.00		1970 82651
1745F 1/10	v	!	r E	}	5	. 6M KCL, +500MV	-	SENT	100.00	0 34 00		1970 82651
1745F WG	ທ	1 1	E E	:	5	. 6M KCL, -500MV	1	BENT	100.00	0 22.00		1970 82651
1.245F MG	S	!	7. T.	, !	¥9.	KCL, -790MV	! ! !	8	100.0	28. 88		1970 8
1745F UR. +1093F 61HR	: i i		F	; ;	¥9	6M KCL, -500MV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32.00	22.00	1 1 1	1970 B2651
1245F WG. +1095F 1000HR	ທ _ສ	1	1 E	· ·	F9	6H MCL, ~500HV		THE SENT	00 .00	00 8		16928 0261
1745F 110, +1095F 16HR	œ	1	ج آ	;	*	. 6H KCL,30DHV	}	SENT	60.00	0 26.00		1970 82651
1745F WG. +1095F 250MR	gr.	1	α. Έ	' !	5	6H KCL, -500HV		BENT	22: 00	00 91 0		1970 82651
1745F UQ. +1095F 500HR	ະກ	;	, ⊢ ∝	;	H9	1 KCL, -500MV	-	LN3S	00 B	8 0		1970 82651

		**
	TABLE 4.2.1.1	
	MEAN PLANE BTRAIN FRACTURE TOUGHNESS DATA OF TITANIUM ALLOY BETA C AT ROOM TEMPERATURE	
	COMDITION/HT HEAN RIC + BTANDARD (NUMBER OF SPECIMENS) (KBI BORT(IN)) DEVIATION	
	CONDITION/HT L-I IS 854	
	8TA 44.1 ± 1.4 (3) 43.9 ± 0.6 (2)	
4.2-1		
:		

TABLE 4.2.2.1

					TITANIAM	E.	BETA C	Ų	K(10)	G						
CCRIDITION	FRUDU FORM	FRUDUCI TEST 9 :ORM THICK TEMP (TN) (F)	TEST TEMP (F)	PECIM	VIELD STRENOTH (KSI)	WIDTH CIN	HIDTH THICK DEGICN (IN) (IN)	-	CRACK LENGTH (1N)	CRACK 2.5+ LENGTH (M(1C)/TY8)++2 M(1C) MEAN 1 (1N) (1N) (M) (MS1+SORT 1N)	K(IC)	K(IC) MEAN DEV KSI+SORT IN	STAN	DATE	REFER	i s
: < <10	, , , <u>c</u>	, 288 1	; 5 5	·			, 446 ,	555	1. 10	0.00 0.00 0.00	31. 40 30. 50 31. 30			1974 1974 1974	88575 (1) 88575 (1) 88575 (1)	222
41 ۸	د	200 200 200 200 200	⊢ ` œ	<u></u>	180.0 180.0	1. 973	0 999 1 004	555	1. 042 1. 074 1. 090	0 0 0 4 4 6 6 4 6	6.5.4. 08.6.6.		44.17.1.4	1974	88375 88375 88375	
STA	c	នន	α .	7-	180.0	1.996	1.002	55	1.047	0. 13 0. 13	43. 40 44. 30		43, 97, 0.6	1974	88575 88575	

HUTES TYS APPROX 190

TABLE 4.2.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.2.3.1 INDICATING EFFECT

OF STRESS RATIO

DELTA K	•	DRY AIR 				
(KSI+IN++1/2)	:					
	: A	B	С	D		
	R=+0. 10	R=+0. 50				
A: 5.37 ELTA K B: MIN C: D:	: . 164 : :					
	:					
	: 63.5 : 110 .					
MAX C: D:	: : :					
OOT MEAN SQUARE PERCENT ERROR		0. 00				

>2.0

(NP/NA)

Figure 4.2.3.1

TABLE 4.2.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.2.3.2 INDICATING EFFECT

OF STRESS RATIO

DELTA	K :	DA/DN (10++-6 IN./CYCLE)					
(KSI*IN**1/2) :		•	A B C				
	;	A	В	C	D		
	:	R=+0. 10	R=+0. 50				
A:	4.58 :	. 805					
ELTA K B:	:						
MIN C:	:						
D:	:						
	7. 00 :	1. 03					
	8.00:	1. 67					
	9.00 :	2. 45					
	10.00 :	3. 35					
	13.00 :	6. 72					
		11. 3					
	20 . 00 :	20. 2					
	25.00 :	39. 4 75. 1					
	30 . 00 :	/5. 1					
	35.00 :						
	40.00 :	2/1.					
	42 . 90 :	394.					
DELTA K B:							
MAX C:							
D:	:						
				~==			
PERCENT E	RROR	29. 18					
	0. 0-0. 5	4.404.884.884.884.8					
PREDICTION							
RATIO	0.8-1.25	4					
	1. 25-2. 0	4					
	>2. 0						

Figure 4.2.3.2

named a language of the second second second second second second second second second second second second se

TABLE 4.2.3.3

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.2.3.3 INDICATING EFFECT

OF STRESS RATIO

M BETA-C			
·			
	DA/DN (10#	-6 IN. /CYCLE)	
. A	В	C	D
: R=+0. 10			
:			
:			
:			
; •			
<i>:</i>			
:			
:			
:			نم ن م
:			₹
0. 00		de	,======================================
	R=+0. 10	R=+0. 10	: R=+0. 10

では、日本のできないという。自己のことのことは、自己のなかないと、自己のなかないとなる。自己のことでは、自己のことのないない。

、関係などなどは国内のなどの対象が利用ではないのは国内の

のことでは、大学のでは、1992年によっている。1992年には、1992

Figure 4.2.3.3

TABLE 4.3.1.1

Ŷ

HEAN PLANE BTRAIN FRACTURE TOUGHEESS DATA OF TITANIUM ALLOY BETA III AT ROOM TENFERATURE

BPECIFENS)	1	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AND INJURER OF BPECIFERE)	קיים ביי קיים ביי	# 1
(KBI BORT(IN) DEVIATION	1-1	49.8 ± 1.2 (3)
CONDITIONNET	CONDITIONAL	1325F . 2548, MB 925F 84R

. . . .

TABLE 4.3.2.1

	REFER	46193 ET91	1973 88144	1973 88144	91793	87230 (87230 (87230 (
	DATE:	1973	1973	1973	1974	197
	K(IC) PEAN DEV (KSI+BORT IN)	42.20	76. 30	83, 70	48.40 50.90 50.40 49.8/ 1.2	5.20 5.80 9.20 9.20
(2)	CRACK 2.5* LENGTH (K(1C)/TVB)**2 (IN) (IN)	0.17	0. 33	0.67	1 000	\$ 9 D 0 0 0
K(1C)	CRACK LENGTH (1N)	0.917	0. 930	0. 477	0.763	77
111		5	C1	13	555	100
BC 1 1 1 1	THICK (IN)	6	0. 998	1 003	0.730	000
£	MIDTH THICK DESIGN	8 ci	2. 800	2. 000	1 1203	654
TITANIUM	YIELD STRENOTH (KSI)	130.0	130.0	190.0	, 000	178.0 178.0 178.0
	SPECIMEN DRIENT	7-L 0ME)	Ţ	•	\$	ا ا ا ا
	TEST TEMP (F)	R. T	R. T. ZONE)	–	ا 🚡 ا	F:
	FORM THICK TEMP (IN) (F)	Z PEAN	1 00 FECTED	8 -	000	288
	, <u>i ii</u>	P (ELECTRO	CHEAT AF		1 6	
	CONDITION	Ĩ	S1A-1325F P 1 00 R.T. WO. 1045F BHR (HEAT AFFECTED ZONE)	SIA-1329F 40, 1013F 8 1R	1025F 20FR, MG 970F DFR	1340F 0, 5 HR, HO, 950F RHR, AC

HOTES.
(1) ALPHA PRECIPITATE IN BETA MATRIX
STRAIGHTNESS OF CRACK FRONT MAY NOT MEET ABTM E399-72 REGUIREMENTS

TABLE 4.3.3.1

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.3.3.1 INDICATING EFFECT

OF ENVIRONMENT

DELTA K (KSI+IN++1/2)		:	DA/DN (10**	-6 IN. /CYCLE)	
(19141144)	-1/2/	A	В	C	D
		: : E=- 65F :AIR	E=+ 175F AIR		
A:	26. 74	: 28. 9			
DELTA K B:	20. 02	:	10. 1		
MIN C:		:			
D:		:			
	25. 00	•	19. 1		
		34. 0	31.8		
		: 41.6	47. 8		
		: 52. 2	66. 7		
	50 . 00	: 100.	110.		
	60 . 00	: 260.			
A:	68. 42	: 291 .			
ELTA K B:	58. 85	:	149.		
MAX C:		:			
D:		•			
		: 			

Figure 4.3.3.1

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.3.3.2 INDICATING EFFECT

OF ENVIRONMENT

MATERIAL: TITANIU CONDITION: STA, E				
DELTA K (KSI+IN++1/2)	:	DA/DN (10##-6	IN. /CYCLE)	
(VQ1=1M==1\S)	A	B	C	מ
	E= R.T.: LAB AIR			
A: DELTA K B:	:			
MIN C:	· :			
D:	:			
200. 00	· ·			
A: DELTA K B:	: :			
MAX C:	:			
D:	:			
ROOT MEAN SQUARE PERCENT ERROR	0. 00			
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA) >2). 8 . 25 0			

・自由ではない。これでは、インフルの大田間のののできる。 全国国人ののののの国際できたののの国際でしなが、アンス国際ではないのでは、「大人の

Figure 4.3.3.2

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.3.3.3 INDICATING EFFECT

DELTA (KSI+IN+	K	:	DA/DN (10**-	6 IN. /CYCLE)	
///01 - 214-		A	В	c	a
		: : E=+ 175F :AIR			
A: DELTA K B: MIN C: D:	24. 74	: 12.8 :			
	30. 00 35. 00	: !3. 2 : 23. 2 : 35. 2 : 50. 1 : 97. 2			
DELTA K B: MAX C: D:	58. 23	: 171. : : :			
ROOT MEAN S PERCENT ER		9. 56			

Figure 4.3.3.3

والمرازي والمرازي والمرازي والمرازي والمرازي والمرازي والمرازي والموازع والمرازي والمرازي والمرازي والمرازي والمرازي

ATES AT DEFINED NSITY FACTOR 4.3.3.4 INDICAT ONDITION	
	ING EFFECT
ONDITION	
,	
/DT (10**-3 IN/	HOUR)
B	C D
	:50F
)9 .	
35. 16. 77. 73. 11.	
57 .	
5, 09 0.	00
1751	C= 000F AQED 12 50HRS 09. 21. 35. 16. 77. 93. 11. 30.

Figure 4.3.3.4

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.3.3.5 INDICATING EFFECT

OF CONDITION

(KSI*	MA)		:	DA/DT (10)**-3 IN/HOUR)	
11101-	411			В	С	D
			: C=	C=	C=	
			:STA 900F 100HRS	STA 900F BHRS	STA 900F 40HRS	
	A:	15. 00	35940.			
XAM >	B:		:			
MIN	C:	25 . 5 0	:		2144.	
	D:		:			
		16. 00	: 36148.			
		20 . 00	: 36335.			
		25. 00	: 36035.			
		30 . 00	: 35746.		3216.	
		35 . 00	: 35668.		4046.	
		40 . 00	: 35843.		4457.	
		50 . 0 0	: 36930.		4444.	
	A:	56 . 00	: 38016.			
(MAX	B :		:			
MAX	C:	55 . 00	:		4234.	
	D:					

PERCENT ERROR

TABLE 4.3.3.6

	DATE PEFER	1970 82651	1970 82651	1970 82651	1970 82651	1970 82651	1970 82651	159%B 0261
	TEST TIME (MIN)	-	-				1	:
	HEAN	ŧ	0	•	0	0	0	•
	X(1860	33.00	28 9	29. 00	21.8	24. 8	14. 00	92
	CRACK LENOTH K(Q) K(1SCC) HEAN (IN) (KSI-8ORT IN) A	9.00	65. 80	65 . 00	69 . 60	69 . 69	63. 00	92.00
K(18CC)	CRACK LENGTH		!	}			!	
¥	THICK DESIGN (IN) (#=SC) B	SENT	BENT	SENT	BEN1	SENT	SENT	SENT
DETA 111	ECIMEN- THICK (IN)	,		ļ	İ	į		
DET/	WIDTH THICK DESIGN LENGT (IN) (1N) (#=SG) (IN) A B A		;	!	•		!	! !
TITANION	ENVIRONMENT	6M KCL.	6H KCL. 	- AN KCL.	6M KCL, OMV	6M KCL, +900MV	6H KCL500HV	6H KCL, -730HV
	VIELD STR (KS1)			!				
	TEST SPEC TEMP OR (F)		1		1	;		1
	TEST TEMP (F)	R. T.	&	₹	H . H	æ. ⊢.	€	E
	FORH FRICK CIN)			}		;		
	•	v.	s Ĭ	v.	8 441	S E	<u>ب</u> م	S E
	CONDITION	REIN STAB +ASED 900F	BETA STAB +AGED 900F	BETA STAB +AGED 900F	BETA STAB	BETA STAB +AJED 900F 1	BETA STAB +ACED POOF	PETA STAB +AGED 900F 1

+NOTE-PATA WHICH DO NOT MEET MINIMUM SPECINEN THICKNESS REQUIREMENTS OF 2, 5(KISCC/TYS) SQUARED

TABLE 4.4.2.1

	REFER	1003
	DATE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	K(IC) BTAN IIC) MEAN DEV 31-8081 IN)	; ; ; ; ; ; ; ; ;
a	N CRACK 2.50 K(IC) BTAN DESIGN LEWITH (K(IC)/TYB)**2 K(IC) MEAN DEV DATE I (IN) (IN) (KSI*BORT IN) A	136.3 2.000 0.57 64.84 R1005
K IC	CRACK LENGTH (1N)	
CORDINA 5	THICK DESIGN	1
TI IMIUM	SPECIMEN YIELDSPECIMEN	
	SPECINEN OR LENT	 . :
	T TEST TICK TEME TN) (F)	2 00
	IMIDACT TEST FORM THICK TEMP (IN) (F)	NHTAL & AC
	C(Nab111064	ALPIN-RETA F 2 00 FORCED & LINA AMERIA, R ARE

の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の			を込み		222 C.V.C.C.
			Ð		**** *****
			4.5.1.1		. 3
w to in Albania	¥F	MEAN PLANE BTRAIN FRACTURE TOUMPHEBB DATA DE TITANIUN ALLOY TI-+ AT RODH TEMPERATURE	TOUNNEESS DATA OF OH TENEERATURE		• • •
	COMDITION/HT	PEAN KIC _ STANDARD INBI BENT(IN) DEVIATION	(MANDER OF BPECIFIEDS)	(HENG)	
s Chair chair ann an t-		FLAIE			
	CONDITIONANT	ij	า๋	ī	
	87A-1740F 1 HB. AC. 100CF GHR. AC	39. 3 ÷ 1. 9 (3)	•		
2200	1740F 1 HR. AC	61. 6 ± 1. 6 (3)			•
4.5-1					

TABLE 4.5.2.1

のでは、100mmのでは、100mmのでは、100mmのできない。 100mmのできない。	1	222	
	REFER	96186 96186 69186	98196 98196 98196
	DATE	1974	1974
	BTAN	E .	1 4
	MEAN MEAN MT IN	95.3/	61.6
	(1C) 91#90	94. 76 94. 30 06. 30	6.2.00 19.9.90 19.90
Û	CRACK 2.30 LENGTH (M(1C)/TYS)**2 K (IN) (IN) (M)	6.00 6.00 6.00	1
K(1C)	CRACK LENGTH (IN)	1. 000	, 0000
	DESTON	555	1 555
1-1-	HIDTH THICK DESIGN	0.624 0.623 0.623	0.623
E	HIGH (NI)	0 00 0 0 0 0 0 0	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
TITANIUM	VIELD STRENGTH (KSI)	197. 0 197. 0 197. 0	1 48.0 1 48.0 1 48.0
	SPLC IMEN DRIENT	L-1	
	16.ST 16.PP (T)	€	1 € F
	FORH THICK TEPE OR (IN) (F)		
		E.	· ·
	C01:D1111341	S.I.M1740F 1. iff. AC. 1000/F RHP, AC	1740F 1 HR.AC

(1) *-6AL-29N-27R-2H0-2CR-0, 2391

TABLE 4.6.3.1

	BTAN TEST DEV TIME DATE ROFER (MIN)	7866 4961
K(18CC)	HIDTH THICK DESIGN LENGTH K(Q) K(ISCC) MEAN DEV (IN) (IN) (**GO) (IN) (**GO) (IN) (**GO) (IN) (**GO)	
TI-4AL-3MD-1V M(18CC)	WIDTH THICK DESIGN	1 ;
TITANIUM	PROTAUCT: TEST SPEC VIELD FORM THICK TEMP OR STR ENVIRONMENT (IN) (F) (MSI)	0.50 R.T. L-S 3.9 PCT NACI.
	CONDITION FOR	MILL ANNEALED P

*NOTE-DATA MATCH DO NOT MEET MINIMUM SPECIMEN THICKNESS REGUIREMENTS OF 2. STRISCC/TYS) BOUARED

				. <u>§</u>	3			
				E8 2	3	5.36 94.7		
				FATIGUE CRACK GROWTH RATES	\$	96	4.77	
		Y FACTOR		UE CRACK GROWTH (MICRO IN/CYCLE)	<u> </u>			0 27
		INTENSIT	DRV ARGON AT R. T.	FAT IGUE	•			0 03
		STRESS-		1	n Ni			
٧	TABLE 4.7.1.1	FATIOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR TITANIUM TI-SAL-2 95N	ENVIPONHENT:	DELTA K LEVELS:	(KSI SORT(IH))			
	TABI	E AT DEFINEI		FREG. (HZ)		8	8	98 00-88 30
		CROWTH RAT		STRESS		0.10	0.10	67 6
		FATIQUE CRACI	۲.	PRODUCT FORM		SHEET	SPEE	1000
*			IEST CONDITIONS SPECIMEN ORIENTATION	CONDITION/HT		ANNEALED	ANNEALED	•

TABLE 4.7.1.2

FATIQUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENBITY FACTOR

TITANIUM TI-SAL-2 55N

IESI. SONDIJJONS SPECTNEN ORTENTATION L-T	7			ENVIRCHMENT: LAB AIR	LAB AT R	٣.				
CONDITION/HT	PRODUCT	STRESS	FRE0.	DELTA K	-	AT ICUE	WE CRACK ORDWTH (MICRO IN/CYCLE)	FATIGUE CRACK OROWTH RATES (MICRO IN/CYCLE)	SD III	
				LEVELS:	S.	S.	01	8	8	9
ANNEALED	SHEET	0.10	30.00					11. 6 124	124	
ANNE ALE D	SHEET	0. 10	90°09					11.7		
ANNEALED	SHEET	0.67	55.00-58.30			0. 13	0.15 2 13			

TABLE 4.7.1.3

FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STREBS-INTENSITY FACTOR

TITANIUM TI-SAL-2 58N

CCU TOIG FULL MAN COLUMN	AT R. T.	SS FREG. PELTA W FATIGUE CRACK GROWTH RATES D (HZ) DELTA W (MICRO IN/CVCLE)	(KSI SORT(IN)) 2.5 5 10 20 50	0 30.00	50 00 11.8	7 35, 00-38, 30
	١١	PRODUCT STRESS FURM RATIO		SHEET 0.10	SHEET 0. 10	SHEET 0 67
SMOTH GOND TEST	DRIENTATION L	CONDITION/HT		ANDEALED	ANNE ALED	ANNEALED

TABLE 4.7.1.4

FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI- SAL-2 5SN		ENVIRONMENT 3 5% NACL
	IEST CONDITIONS	SPECIMEN ORIENTATION L-T

SHEET 0.10 30 00 SHEET 0.10 30 00 SHEET 0.10 50 00	CONDITION/HT	PRODUCT FORM	STRESS	FRE0.	DELTA K	FATIOUE (MI	FATIONE CRACK GROWTH RATES (MICRO IN/CYCLE)	OWTH RAT	E 3	
SHEET 0.10 30.00 SHEET 0.10 50.00 SHEET 0.10 50.00					(KSI SORT(IN))		01	8	90	8
SHEET 0.10 30.00 SHEET 0.10 50.00										
SHEET 0.10 50.00 SHEET 0.67 55.00-59.30	ANNE AL ED	SHEET	0 10	8				30.2 157	157	
SPEET 0 67 35, 00-58, 30	ANNEALED	SHEET	0.10	8				8		
	ANNEALED	SHEET	0 67	55, 00-58, 30		0	7, 97			

Ć3

×.	A									
							8			
						ж Ф	8	41		
						OWIN RAT	8	9.38 114	9. G	
			/ FACTOR			FATIGUE CRACK CROWTH RATES (MICRO INCYCLE)	0			•
			INTENSITY	DRY AMCON		FATIGUE	en			
			STRESS-		AT R. T.		is Gi			
G		RABLE 4.7.1.5	FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR TITONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE	ENVIRONMENT		DELTA K	(KSI SORT(IN))			
		TABLE	TE AT DEFINED TITANI			FREG. (H7.)		90 OE	50 00-53 30	00 -00 PS
			GROWTH RA			SIRESS		01.0	0. 10	0 47
			FATICUE CRACK		1-r	PRODUCT FORM		SHEET	SPEET	13365
巜				IEST CONDITIONS	OR LENTAT 10N	COND 1 1 CON/HI		AMEALED	ANNE AL E D	ANNE AI FD

TABLE 4.7.1.6

	FATIOUE CRACK	CROWTH RA	TE AT DEFINE	FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR TI-SAL-2 55N	TRESS-1	NTENSITY	FACTOR		
IEST_CONDITIONS SPECIMEN ORIENTATION T-L	7			ENVIRONMENT	LAB AIR AT R T	Œ			
COND 1 1 CON/H1	PRINDUCT	SIRESS	FREG. (HZ)	DELTA K LEVELS: (KSI SGRT(IN))	n ni	FATIGUE CRACK GROWTH RATES (RICRO IN/CYCLE) 5 10 20	UE CRACK GROWTH (HIGRO IN/CYCLE)	MUTH RAT	# % # %
NWEALED	SHEET	0.10	8 %					6.11	₹
ANNEALED	SHEET	0 10	30 00-33 30					11.8	
ANGEALED	SHEET	0.67	54, 20-58, 30			0.13	8 0		

TABLE 4.7.1.7

では、1990年の日本のでは、1

FATIONE CRACK OROWIN RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-SAL-2 SEN

TEST CONDITIONS

SPECIMEN THE ORIENTATION THE

ENVIRONMENT: DIST. HZD AT R. T.

1H/ND1 1 [ONO)	PRODUCT FORM	STREES	FREG. (HZ)	DELTA K		FATIQUE	FATIOUE CRACK GROWTH RATES	CHIN RAT	80	
				(KSI SORT(IN))	2.5	ın	10	8	8	100
ANEALED	SHEET	01 0	8 8					12. 9 130	130	
ANNE ALED	SPEET	01 0	50 00-33 30					12.0		
ANNEALED	SHEET	0.67	SE 20-38			8	3 72			

TABLE 4.7.1.8

FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TEST CONDITIONS							
SPECIMEN ORIENTATION T-L	<u>.</u>			ENVIRONMENT 3 5% NACL	3 SX NACL		
CONDITION/HT	PRODUCT	SIRESS	FREG. (HZ)	DELTA K	FATIG	FATIGUE CRACK GROWTH RATEL	POUTH RATE
				(MSI SORT(IN))	8.3	ç	8

30 00-53.30 54.20-38.30

0 67

SHEET

SHEET

ANNEALED
ANNEALED
ANNEALED

8

0.98 14 6

TABLE 4.7.2.1

A CONTROL AND A CONTROL OF A SOCIAL PROPERTY OF CANADA SOCIAL BANKS

·:·

		!		_	1		CRACK	CRACK LENGTH	98040	STRESS	2004.7	141		1		
DND 1 T 1 OH	-	-1906 1H1 (N1)	5 F	z n z	MIDTH THICK	THICK	E 2 0		taa	HAX (KBI) S(HAX)	K(APP) HEAN (KBI-80RT IN)			.	PATE	DATE REFER
1	: : :	1 1 1	1 1 1	1 1 1			1	CRACK EDGES RESTRAINED	ESTRAL	1		 		 	•	ı
ANSTALFD	G	Ö	- 423 L-T		000 E		8		į	10.00					1967	68768
		000		2,033 3			0	000	!				111. 85		1961	66766
				303	8 6	0.014	8	0. 270	į				106. 26*			96499
				500			8			64	8 i					68968
		0 05		200 300 300 300 300 300 300 300 300 300	8 6	0.014	000		1		1 PA		112. 40		/961	962468
				200 000 000			0 8 8	000	1		72.73				146	9968
		0 05		203	000 E	0.014	9.340	0.670	;				135. 40		1967	.8960
		0		203	8	0.034	0.130	0000		181.00	78.66*		123. 02•		1967	98498
				203	000 m	0.019	9	0.810	;	103.60	97. 37		123. ±		1967	99589
				202	000		0.510	92	-	107.60	98.06 96.1/	e N	119, 62 116, 8/	•	1961	89689
	u	6	T-1 504 -		000	9	0 270	0.470	;	96	16 06		121, 19*		1967	89489
	,	6					000		ĺ		200		109.88		1967	89669
		6		2 6		8	9	8	·	172. 70		N D		!	1961	68968
															;	
ANNIE AL ED	U.	05	- 423 L-T		9 9	0.0	2.010	230	}	8	3.5				1961	96468
		000		8	9 9	0.017	8 8 8	0 6 0			43. 42				1467	89489
		0		203	9	0.0	0.490	008	1	103.70	23.33		50.83 S3.83		1967	99689
				503	9	0.018	0.490	9			97.34				1967	69469
		0 05		203	9	0.018	0.130	0.230	1	181.60	82.09 •		113, 92•		1967	9969
				203	9		0.230	0.830	1				140. 55+		1961	89689
				202	9	0.014	0.240	0.640			46. 12		157. 72.		1967	89689
		000		203	9	0.018	8	330	;		93.98		109. 87		1967	89689
				000	9		9	200	1	48.80	72. 73				1967	68768
				500	000		000	0 720		109, 10			117. 07		1961	68968
				500	000		020	1.210	•		45.02		100.98		1967	89689
				600	000		000	0.410	-		-29 86		154. 87*		1961	09689
					000		000	1.340	į				110.94		1967	68768
		0 05		203	9	910 0	000	0 220	;		86, 744 94, 8/	1.0	112, 90+109, 47	6.6	1961	09689
ANDJE ALI ED	ď	ç	- 423 1-1	5		6	4	0.430	;	90	09.16		103. 10		1961	89689
	•								!		95 35		102. 42		1967	68968
								9	;	8			110.78		1967	68968
									!		FO 628	-	137, 920		1967	89689
		((()			9			-	1	26.00	65		10. St		1961	99689
							Š	2								

TABLE 4.7.2.1 (con't)

K(C)

TI--9AL-2, 35N

TITANIUM

			!		1			CRACK	CRACK LENGTH	CRINSS 9	STRESS	•	0	2					
		100 E	1651 769P (F)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	YTELD STR (NSI)	Ŭ	THICK (110)	T COYC	FINAL	ONSET (KS1) H(0)	CKSI)	K(APP) MEAN (MSI+SORT IN)	E IN		K(C) MEAN (K91+90RT IN)			DATE	DEV DATE REFER
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 •	[! !	; ; ; ;	BUCK	BUCKL ING OF	CRACK	. B	ESTRAIN		1 1	; ; ;	1	1		l I	l	
AIR FALED	တ		- 423 (203. 5	12, 000 12, 000	0.019		2. 460 0. 630					-					89489
		0 05 0 0 0 0			203. 3 203. 3 203. 5	12. 000 12. 000 12. 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	2. 410	-	52. 10	91. 91 89. 73 93. 96	93.3/	, vi	109.08 97.23 103.97.1	104. 2/	4	1967	89489 89489
M#EALED	w	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 423 L-T		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	40 000 000 000 000 000 000 000 000 000	4.00.9.400 9.00.9.300 9.00.9.300 9.00.9.300 9.00.9.300 9.00.9.300 9.00.9.300		39.20 153.30 70.40 70.40	103. 44 7. 103. 44 7. 103. 65 7.	6.99	**************************************	106. 28 117. 36* 101. 08 100. 26 120. 01 131. 76	110.7/12	ø	1967 1967 1967 1967 1967	89489 89489 89489 89489 89489 89489
ARFALED	w	0 0	- 423 (193.3 193.3	15. 930 15. 930	0. 016 0. 014	4. 980	5. 480 5. 280	11			92 . 3/	7.0	103. 92 90. 29	97. 1/	6. 40		69689 89589
MITALED	တ	* % * %	- 423 L-T		228 228 238 238 238 238 238 238 238 238	888		0.480 0.080 0.170			63.90 34.60 131.10 115.30	97.34 46.66 60.77	95.17	0)	!	1971	80104 80104 80104
AINEAL ED	o n	66666	- 423 L-T		228 0 228 0 228 0 228 0	000000 0000000000000000000000000000000	0.0063	0 0 140 0 2 730 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			115, 10 123, 00 46, 80 78, 30 147, 10	61.91 97.86 97.80 65.39	39.07	₽		/	-	1971 1971 1971 1971	80104 80104 80104 80104
ANTIEALED	ຕ	90 0	- 423 L-T		228.0	3,000	90.0	0.990	İ	į	48. 50 50	64 . 83						1971	80104
ANNEALED	r.	000	- 423 L-T		211.0	0000	0.113	0.240			116. 90 90. 30 161. 30	74, 44 73, 90 70, 66	74 2/	* 6		Ì	ł	1971	90104 90104 90104

HOTE - NET SECTION STRESS EXCEEDS BOX OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STD. DEV

4.7-10

TABLE 4.7.2.1 (con't)

paramene con cara montre e extermaciones amba a concoción de esta de esta de esta de esta de esta de esta de entre

(

		REFER		9000	80104 80104	90104	89689	68768	8958 9	69689	1966 66218	1966 66103 1966 66103	66103 66103
		DATE		1971	1971	1441	1961	1961	1967	1967	1966	1966	1966
	STAN	HEAN DEV DATE REFERITION			/							/16.0	/38. 9
	K(C) STAN	HEAN AT IN		1								107. 7.	147. 6
		K(C) (K81#98				İ	139. 93	143. 73	200.71	211.86	-	95. 87. 4. 0. 118. % 107. 7/16. 0	168.07 93,7/11,5 127,14 147,6/28.9
	MATR	A C		1.1	77. 47 0.9							• ÷	711.5
	MATR (904) H	N		77.6/	77. 4						_	93.6	43.7
	=	((APP)		71. 72. 78. 38 76. 89	76. 77 78. 01	60. 47	44. 60 133. 16	44, 80 133, 11	54, 90, 163, 94	38. 70 176. 16	68. 70 196. 87•	96. 67 90. 78	85. 38 101. 81
KCC	STRESS		g.	138.30 119.00 97.30	8 8 8 8	\$.3	4.60	.	34.90	38. 70	69 . 70	64. 70 112. 40	129.00 73.70
Z	ORUSS	1	EBTRAI		} }	!	}	}	1		ļ	11	} }
11-5AL-2. 5/8N		_	EDCES				9	9.610	6. 780	9		1. 590	1.070
Ē	CRACK	INIT FINAL (IN) 2A(F)	CRACK	0.130 0.270 0.380	0.00	8	000	094	3.060	9, 070	4. 330	0.330	0. 280
5		1	PO ONI	0.112	0.116	0.064	0.018	0.00	0.018	0, 018	0. 202	0.013	0.03 6 0.93 6
TITANIUM		-		8 8 8 8 8 8 8 8 8	6 6 6 6	9	13, 940	16. 230	19, 990	16, 390	13.880	12 000 12 000	12, 000
		VIELD Str (KSI)		211.0	211.0	228.0	171.2	171.2	109.3	E .401	110.7	211.8	207.3
		5 E	! ! !	- -1	L-1	L-1	L-1	1-1	7	R. T. L-T	R.T. L-T	Ĭ	7.
		1EST 1EP (F)	f 	-	6, 10 - 423 L-T 0 10	0.06 ~ 420 L-T	0 02 - 320 L-T	0 02 - 320 L-T	RT. L-T	E.		0.02 - 423 T-L n or	0 03 - 423 T-L 0 03
		MCI- THICK	t t	0.10 - 423 L-T 0.10 0.10	000	90 0	0 05	0	0 05	0	0 5	0 0 0 0	0 0
		PNORACI TEST SPEC (ORM THICK TEMP OR (IN) (F)	i 1 1	e e	Ø	ĸ	c	en	Ø	60	ທ	v	w
		CORIDITION	1 f 1 ;	AREA ED	AIRIEALED	MOREALED	NAMERLED	ANTEALED	ANFIENLED	AN IEAL ED	ANNEALED	ANNEALED	MINENLED

FIGTE- NET SECTION STRESS EXCEEDS BOX OF VIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR BTD. DEV.

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.7.3.1 INDICATING EFFECT

OF ENVIRONMENT

			OL MATHOMICIAL			
MATERIAL: CONDITION:	ANNEALE					
DELTA (KSI+IN+	K	:		-6 IN. /CYCLE)		
(VO1=114=)	* L / & /		B	c	D	
				E= R. T.		
		: DRY ARCON	LAB AIR	DIST. H20	3. 5% NACL	
A:	16. 59	: 2.12				
DELTA K B:			8, 19			
MIN C:	16. 62	:		7. 49		
D:	17. 57	:			16. 3	
	20.00	: 4. 77	11.7	11.8	23. 5	
		10.0	20. 7		37. 5	
		: 17.3	- -		50. 5	
		28. 6	47. 3	42. 4	64. 2	
	40. 00	:		52 . 7		
A:	38. 01	: 38.7				
DELTA K B:			57. 0			
MAX C:				5 6. 3		
D:	38 . 00	:			73. 6	
PERCENT E	RROR		2. 10		4. 46	
LIFE						
PREDICTION						
RATIO			2	2	2	
SUMMARY		=				
(NP/NA)	22	0				

Figure 4.7.3.1

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ABSOCIATED WITH FIGURE 4.7.3.2 INDICATING EFFECT

CONDITION:	ANNEALE		L-2. 56N		
DELTA (K8I+IN+	K	:	DA/DN (10##	-6 IN. /CYCLE)	
11101 - 114-		A	В	С	D
		: E= R.T. : DRY AROUN	E= R.T. Lab air	E= R. T. DIST. H20	E= R. T. 3. 5% NACL
		: 4. 02			
DELTA K B:			8. 97		
MIN C: D:	21. 49 20. 00			16. 0	30. 2
	20.00	: 5. 56	11. 6		
	25.00	: 11.6	21.3	23. 4	
			34. 4		
		: 33. 6		5 1. 0	
	40 . 00	: 50.3	71. 3	69. 9	
	50 . 00	: 94. 7	124.	124.	157.
A:	53. 17	: 112.			
DELTA K B:	53. 30	:	145.		
MAX C:	53. 14	:		148.	
D:	53 . 17	: :			181.
PERCENT ER	ROR		3. 18		
LIFE				ر چہ جہ تھے جہ نے بلک ملہ نے اگ جہ نے اگ	
PREDICTION					
RATIO	0. 8-1.	25 2	2	2	2
SUMMARY				~	_
(NP/NA)					

Figure 4.7.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.7.3.3 INDICATING EFFECT

MATERIAL: T CONDITION:			TI-5AL			
DELTA (KSI+IN++	K (2)			DA/DN (10++-	6 IN. /CYCLE)	
(VOI=114==	1/4/	:	A	В	С	a
		: : DRY	E= R.T. ARCON	E= R.T. LAB AIR	E= R. T. DIST. H20	E= R. T. 3. 5% NACL
A:			. 0150			
DELTAK B: MIN C:	3. 99 3. 44	:		. 0597	. 0749	
D:	3. 77 3. 77	:			. 0/47	. 125
	3. 50	:			. 0781	
	4.00			. 0604		. 149
			. 0301	. 152		
	6 . 00		. 0444	. 310		
	7. 00		. 0558	. 558		2. 34
	8.00		. 0782	. 922	1. 65	5. 30
	9.00		. 136		2. 51	7. 20
	10. 00	:	. 278	2. 13	3. 49	7. 9 7
A:	11.87	:	. 999			
ELTA K B:				5. 60		
MAX C:					5. 99	
D:	12. 93	: :				12. 4
PERCENT ER	GUARE ROR		18. 92	14. 40		
LIFE	0. 0-0.	5			· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
REDICTION RATIO	0. 5-0.	8	1	•	_	
RATIO	0.8-1.	25	3	4	4	4
SUMMARY (NP/NA)						

Figure 4.7.3.3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.7.3.4 INDICATING EFFECT

MATERIAL: TITANIUM CONDITION: ANNEALED							
DELTA K : (KSI+IN++1/2) :		DA/DN (10##-6 IN./CYCLE)					
(191±114±)	-1/2/	: A	В	С	D		
		E= R.T. DRY ARGON	E≂ R.T. LAB AIR	E= R.T. DIST.H20	E= R.T. 3.5% NACL		
DELTA K B:	16. 63		7. 03				
MIN C: D:	16. 57 16. 28			7. 01	13. 7		
	25. 00	5. 35 11. 7	20. 2				
	35. 00	: 21. 2 : 34. 7		33. 4 49. 2			
A: DELTA K B: MAX C:	38.10		59. 5	59 . 9			
D:	37. 84	: :			79. 1		
ROOT MEAN SQUARE PERCENT ERROR				5. 63			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 2 0	2	2	2		

Figure 4.7.3.4

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.7.3.5 INDICATING EFFECT

		·				
MATERIAL: 1 CONDITION:	ANNEALE	TI-5A				
DELTA (KSI#IN##	K	· ·		-6 IN. /CYCLE)		
(101 41144			B	C	D	
		E= R.T.	E= R.T. Lab air	E= R. T. DIST. H20	E= R.T. 3.5% NACL	
		: 3. 96				
DELTA K B:			11. 5			
MIN C:				9. 45	35 4	
D:	21. 52	:			35. 6	
	20.00	: 5.38	11. 9	12. 5		
	25 00	. 12 4	23. 1	23. 6	49. 4	
	30.00	: 22. 2 : 35. 5	37. 4	38. 6	68. 1	
	35.00	: 35. 5	55. 1	57. 2	87. 1	
	40.00	: 53. 5	77. 2	79. 0	109.	C.
	50.00	: 53.5 : 114.	141.	130.	176.	
		: 145.				
DELTA K B:			169.			
MAX C:				148.		
D:	5 3. 13	: :			207	
PERCENT ER	ROR			5. 31		••
LIFE	0. 0-0.	5				
PREDICTION	0. 5-0.	8	_		_	
		25 2	2	2	2	
SUMMARY						
(NP/NA)	>2.	0				

ويواريها أوروان والمناز وراما والمناه والمستام والمستماع والماع والمتاب والمناه والمتاب والمستعلق والمتابية

Figure 4.7.3.5

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.7.3.6 INDICATING EFFECT

MATERIAL: 1 CONDITION:	ANNEALE	.D	TI-5AL	-2. 55N		
DELTA K : (KSI+IN++1/2) :		: DA/DN (10**-6 IN./CYCLE)				
17102 214		:	A	B	C	D
		: DRY	E= R.T. ARGON	E= R.T. LAB AIR	E= R. T. DIST. H20	E= R. T. 3. 5% NAC
			. 0 9 30			
DELTA K B:				. 0501		
MIN C:					. 237	
D:	4. 23	:				. 209
	4. 00	•		. 0662		
	5 . 00			. 158	. 363	. 981
	6.00		. 0905	. 347	. 658	3. 37
	7. 00		. 105	. 685	1. 13	6. 92
	8.00		. 164	1. 23	1. 81	10. 5
	9. 00		. 285	2. 02	2. 48	13. 1
	10.00		. 497	3. 08	3. 72	14. 6
			1. 86	7. 57		
A:	13. 02	:	1. 87			
DELTA K B:				7. 68		
MAX C:	12. 74	:			6. 71	
D:	10. 00	: :				14. 6
PERCENT E	RROR			11. 13	7. 18	37. 84
LIFE		5				
PREDICTION	Q. 5- 0.	8				3
RATIO	0. 8- 1.	25	3	4	4	1
BUMMARY	1. 25-2.	0				
(NP/NA)	>2.	0				

Figure 4.7.3.6

TABLE 4.8.1.1

FATIGUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI6-2-2-2

TEST CONDITIONS

SPECIMEN
ORIENTATION L-T

ENVIRONMENT: H. H. A. A. R. T.

	ø,	001 06	27.1	₩		423		!
	ITH RATE (E)	8	13.3				13. 5	
	FATIQUE CRACK GROWTH RATES (HICRO IN/CYCLE)	01	8 : 0	8		1 87 17.3	2.37	
	FATIOUE C	n			1		0.16	
		S.	 		1			
	DELTA K	(KSI SORT(IN))						
	FREG (HZ)		8	8 8	1	8	80.08	
	STRESS		0	01 0	1	01 0	01 0	
	PRODUCT FORM		47 A 19	PLATE	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PLATE	PLATE	
!	CONDITION/HT		15		; ; ; ; ; ; ;	STA	STA	

TABLE 4.8.1.2

HATIQUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM T16-2-2-2-2

Š.	
3	
þ	
3	
į	
4	

3 5% NACL
ENVIRONMENT
7
SPECIMEN ORIENTATION

CONDI: ION/HI	PRODUCT FORM	STRESS	FREG (HZ)	DELTA K		FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	UE CRACK GROWTH	NUTH RAT	Ę.	
				LEVELS:	2 5	v	10 20	20	8	100
ST	PLATE	0 10 1 00	8				01 6	2 10 47 6 361	196	
18	PLATE	0 10	00 00			0.31	4 70 30.7	8 7		
STA	1	0 10	1 00	PLATE 0 10 0 00	! ! !	! ! ! ! ! !		77	 	
STA	FLATE	01 0	00 02			0 47	0 47 5 90 15 2	5		

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.8.3.1 INDICATING EFFECT

OF ENVIRONMENT

MATERIAL: T CONDITION:		1165555			
DELTA		***************************************	DA/DN (10##-	6 IN. /CYCLE)	
(KSI#I N##	1/2)	A	В	c	D
			E= R. T. H. H. A. 20HZ	E= R. T. 3.5% NACL 1HZ	E= R. T. 3. 5% NACL 20HZ
A :		1. 20			
DELTA K B:			. 076	. 594	
	6. 77 : 3. 89 :			. 304	. 048
	4.00				. 069
	5.00 :				. 319
	6. 00 :		. 186		. 742
	7.00 :		. 378	. 630	1. 39
	8.00 :		. 659 1. 03	. 915 1. 38	2. 27 3. 37
	9.00 :		1. 50	2. 10	3. 37 4. 70
	13.00		3. 45	4. 80	10. 0
	16.00		6. 12	18. 0	17. 6
	20.00		10. 7	47. 6	30. 7
	25.00 :		18. 2	110.	5 0. 9
	30.00 :		2 7. 7	194.	73. 5
	35 . 00 :		3 9. 8	291 .	96 . 6
	40.00 :		55 . 1	390 .	119.
	50 .00 :		98. 4	561.	
	60.00 :			673 .	
	70.00 :	2775.			
A:	71.40 :	-	4.55		
	56. 48 :		139.	400	
MAX C: D:	63. 4B : 49. 43 :			697 .	155.
:ע	77. 43				133.
ROOT MEAN S PERCENT ER		8. 80	8. 83	22. 49	11.12
	0. 0-0.				1
PREDICTION			•	4	
RATIO	0.8-1.2		1	1	
	1. 25-2. (
(NP/NA)	>2. (J			

Figure 4.8.3.1

the design of the second section is the best of the best of the second section in the second section is the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the section is the second section in the section is the second section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the section is the section in the sect

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.8.3.2 INDICATING EFFECT

OF ENVIRONMENT

ONDITION:	STA	T16222			
DELTA K : (KSI+IN++1/2) :			DA/DN (10**-	-6 IN. /CYCLE)	
***************************************	:	A	B	C	D
	:	E= R. T. H. H. A. 1HZ	E= R. T. H. H. A. 20HZ	E= R. T. 3. 5% NACL 1HZ	E= R. T. 3.5% NAC 20HZ
A :	7.18 :	. 54			
ELTA K B:			. 06		
	16.00 :			35. 9	
D:	3.64 :				. 06
	4. 00 :				. 125
	5 . 00 :		. 164		. 471
	6.00 :		. 369		1.13
	7.00 : 8.00 :		. 686 1. 12		2. 0 9 3. 27
	9.00:		1. 69		4. 57
	10.00 :		2. 37		5. 9 0
	13.00 :		5. 02		9. 60
	16.00 :	9. 07	8. 36	35 . 9	12. 5
	20 . 00 :		13. 5	77. 4	15. 2
		32. 7	20. 3		
		56. 9	27 . 1		
		95. 6	33. 8		
		1 58 .	40. 2		
		423. 1195.			
•	44.00	0.500			
A: ELTA K B:			42. 5		
	20 . 37 :		42. J	78. 9	
D:				76. 7	15. 2
	:				
PERCENT E			8. 43	14. 68	20. 21
LIFE	0. 0-0. 5)			
REDICTION			_	_	
RATIO			1	1	_
SUMMARY	1. 25- 2. 0 >2. 0				1

Figure 4.8.3.2

TABLE 4.9.1.1

である。ととは、これできないと、これできないと、これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない。これできない

FATIONE CRACK OPOWIH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUR TI-6-2-4-2

IEST CONDITIONS

SPECIMEN ORIENTATION C-R

ENVIRONMENT: LAB AIR AT R. T.

	80		
E 3	8		
FATIGUE CRACK GROWTH RATES	ୡ	10.3	
CRACK CROWTH	£ ;		2 27
FATIGUE	۰		
-	6		
DELTA K	(KSI SQRT(IN))		
FREG.		91 0	91 0
STRESS		0.10	0.50
PRODUCT FORM		FORGING	FORGING
TH/N01110M03		1770F 1HR AC.	1793F 1HR AC. 1100F HHRS AC

TABLE 4.9.1.2

A COURT MANY ADMITH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-6-2-4-2

(E 3)

OR IENTAT I'S SPECIMEN

α | 4 ENVIRONMENT

8 2 FATIOUE CRACK ORDWTH RATES (MICRO IN/CYCLE) ୡ 2 900 F n N DELTA K LEVELS: (KSI SORT(IN)) FREG. STRESS RA110 PRODUCT FORM CONDITION/HT

8

5 69

5 35

91 0

ر د

FURGING

1790F HHR AC.

1 22

0.27

8 8

0 0

FORG1NG

1790F 1HR AC. 1100F BHRS AC

;

8

FORGING

179GF 1HR AC. 1100F BHRS AC

TABLE 4.9.1.3

がいた。 場合しないでは、これでは、これでは、マンプランスのでは、10mmのできないできない。 10mmのできないできないできないできない。

• . .

*

		3	
		FATIQUE CRACH CROWTH RATES (MICRO IN/CYCLE) 5 10 20	7. 9.
FAC TOR		UE CRACE GROWTH (HICHO IN/CYCLE) 10 20	5 6 1 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
INTENBITY	A1R AT 1000 F	FATIQUE (MI	
TRESS-	A L	8 8	
FATIGUE CRACH GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR	ENVIRONENT	DELTA K LEVELS (KSI SORT(IN))	
E AT DEFIN		FRE0 (HZ)	8 0
C GROWTH RATI		STRESS	· ·
FATIGUE CRACI	•	PRODUCT FORM	FORGING FORGING
	IEST CONDAIAONS SPECIMEN ORTENTATION	1H/HD1:10M00	1790F 1HR AC. 1100F BHRS AC. 1790F 1HR AC. 1100F BHRS AC.

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.9.3.1 INDICATING EFFECT

OF STRESS RATIO

DELTA K :			DA/DN (10++-6	IN. /CYCLE)	
(KSI*IN**1/2) :		A	B	C	1
	: :	R=+0. 10	R=+0. 50		
	11.61 :	1. 81			
ELTA K B: MIN C: D:	7. 05 : : :		. 52		
	B. 00 :		. 919		
	9.00:		1. 50		
	10.00 : 13.00 :	2. 52	2. 27 5. 70		
	16.00 :		10. 5		
	20.00:	10. 3			
	24.68 :	22. 0			
ELTA K 9:	19.52 :		17. 1		
MAX C: D:	: : :				
	BGUARE RROR	7. 82	9. 78		

ŪŽ

Figure 4.9.3.1

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.9.3.2 INDICATING EFFECT

OF STRESS RATIO

MATERIAL:	TITANIUM		TI-6.	-2-4-2	2
CONDITION:	1790F 1H	R AC.	1100F	BHRS	AC

DELTA K : (KSI+IN++1/2) :		· · · · · · · · · · · · · · · · · · ·	DA/DN (10#	#-6 IN. /CYCLE)		
(81414441/2)		A	B	c	D	
		;	R=+0. 70			
DELTA K	A: B:	5. 15	1. 36			
MIN	C:	;	• : :			
		6. 00	2. 04 2. 71			
		7.00 8.00 9.00	: 3. 36			
		10. 00 13. 00	: 5 . 35			
	A :	13. 08	16. 0			
DELTA K MAX	D: D:					
ROOT ME/			15. 01			

LIFE 0.0-0.5
PREDICTION 0.5-0.8
RATIO 0.8-1.25
SUMMARY 1.25-2.0
(NP/NA) >2.0

Figure 4.9.3.2

FATIGUE CRACK OROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.9.3.3 INDICATING EFFECT

OF STRESS RATIO

		Ur	SINESS KALLU		
	1790F 1HR	TI-6-2-4 AC, 1100F BHR AIR			
DELTA K : (KSI+IN++1/2) :			DA/DN (10##-6	IN. /CYCLE)	
///01 - 114-	:	A	В	С	D
	:	R=+0. 50			
A: DELTA K B: MIN C: D:	5. 60 : 6. 00 : 7. 00 : 8. 00 : 9. 00 : 10. 00 : 13. 00 : 16. 00 :	3.89 4.28 5.34 6.50 7.77 9.16 14.0 20.1 30.2			
DELTA K B: MAX C: D:	20. 12 : : : : : : : : : : : : : : : : : :	30. 5			

4. 85

11001	1 100	1 Odomic	
PER	CENT	ERROR	

LIFE 0.0-0.5
PREDICTION 0.5-0.8
RATIO 0.8-1.25
SUMMARY 1.25-2.0
(NP/NA) >2.0

Figure 4.9.3.3

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS

DATA ABSOCIATED WITH FIGURE 4.9.3.4 INDICATING EFFECT

		•	TABLE 4.9.3.4		
	FAT	IQUE CRACK OR	TABLE 4.9.3.4 DWTH RATES AT DEF BS INTENSITY FACTO	INED LEVELS	
			BS INTENSITY FACTO		c T
	enth no		F ENVIRONMENT	DICATING EPPE	- 1
CONDITION:	1790F 1H	TI-6-2- R AC, 1100F B	HRS AC	*****	
DELTA (KSI#IN#	K :		DA/DN (10**-6	IN. /CYCLE)	
(VOT a Tida:	:	A	В	С	
	; ;	E=+ 800F AIR	E=+1000F AIR		
A:	4. 95 :	. 26	r9&13		
DELTA K B:	5. 44 :	. 40	. 70		
MIN C: D:	:				
	5. 00 :	. 270			
	6.00 :	. 378	. 846		
	7.00 :	. 511	1. 12		
	8.00 : 9.00 :	. 6 82 . 910	1. 43 1. 80		
	10.00 :		2. 24		
	13. 00 :		4. 34		
	16.00 :	6. 35	8. 64		
A :	18. 28 :	9. 39			
DELTA K B:	18. 45 :		15. 5		
MAX C: D:	: :				
ROOT MEAN S		5. 58	4. 40		
PERCENT E		· ·			
LIFE PREDICTION	0. 0-0. 5 0. 5-0. 8				
RATIO	0.8-1.2	5			
SUMMARY (NP/NA)	1. 25-2. 0 >2. 0				
(10/)10//) L . U				

Figure 4.9.3.4

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STREBS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.9.3.5 INDICATING EFFECT

OF FREQUENCY

CONDITI	ON:		TI-6-2- HR AC, 1100F 9H F,AIR			
	LTA		:	DA/DN (10##-	6 IN. /CYCLE)	
(KSI*	IN	•1/2)	: : A	В	C	D
			: : F(HZ)=2 MIN. : TRAPEZOIDAL (
DELTA K MIN		8. 97	5. 44 : :			
		13. 00 16. 00	5. 69			
DELTA K MAX	A: B: C: D:	22 . 81	29. 5 :			

7.30

8-3

LIFE	0. 0-0. 5
PREDICTION	0. 5-0. 8
RATIO	0.8-1.25
SUMMARY	1. 25-2. 0
(NP/NA)	>2. 0

ROOT MEAN SQUARE

PERCENT ERROR

is. And man that a that a that a that a that a that a that is a dark of that a that a that a dark is a dark of a that a dark of a that a dark of a that a dark of a that a dark of a that a dark of a that a dark of a that a dark of a that a dark of a that a dark of a that a dark of a that a dark of a that a dark of a

Figure 4.9.3.5

'Ai
2
7
=
$\boldsymbol{\exists}$
7
-
•
4
٠
- 1
-
UN.
$\overline{}$

<u>፞፞ቘቔዀዀኇዀዀዀዀዀዀዀ</u>		Caleita Cal.	ale take take	istais.		
Š.						
			801			
			MIH RATES CLE) 20 90	10 12 3		
	STREED-INTENSITY FACTOR	L	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	1 69	3 11 0.81 3 42	
	_ w	NT. AIR AT BOOF	2.5		-	
D	TABLE 4.10.1.1 #FIMED LEVELS OF THE THEANIUM TI-6-2-4-6	ENVIRONHENT:	DELTA K LEVELS (MST SORT(IN))			
	TAI F AT PAF LNB 111 AN		FREG. (H?)	8 8	8 8 8 8	
	A HINDRA A		STREES RATIO	0 0 0	8 8	
	TABLE 4.10.1 FALISING LEVELS OF TITANIUM TI-6.2-4		PRUDUCT FIRM	EXTRUSION EXTRUSION	EXTRUSION F. I IRUSION	
		IEST <u>CÉMATITONS</u> BPECIPEN ONTENIATION	(N), 9957 ([QF43)	į		
			, Ι		4.10-1	

Φ
7
٠
ĩ
Ċ.
ĩ
۵۰
_
-
£
5
-
3
3
-
~
-

SPECIMEN OPIENTATION C-R CONDITION/RIT PRODUCT STRESS FREG.
CONDITION/RI PRODUCT STRESS FREQ. DELTA H (MICRO IN/CYCLE) LEVELS: (KST SQRT(IN)) 2.5 5 10 20 50 100
1690F 248S AC. FORGING 0 10 0 16 1550F 248S 00. 1100F 948S AC
1690F 24RS AC. FORGING 0.10 30.00 1555F 24RS 00.
1690F 744RS AC, FORGING 3 50 0 16 3 90 1550F 744RS 00. 1100F F44RS AC
1690F 2HRS AC. FORDING 0 SO 2 HIN HOLDTINE 1550F 2HRS 00. 1100F DHRS AC

TABLE 4.10.1.3

DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

	FATIQUE CRACI	CROWTH RAT	E AT DEFIN	FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE BTRESS-INTENBITY FACTOR TINGUE CRACK GROWTH RATE AT DEFINED TINGUE TINGUE.2-4-6	TRESS-	INTENSITY	F AC 1 UK		
IEST CONDITIONS SPECIMEN ORIENTATION	5			ENVIRONMENT	A I A	B00 F			
COND 1 1 LON/HT	PRODUCT FORM	STRESS	FREG (HZ)	DELTA K LEVELS: (KSI SORT(IN))	in di	FATIGUE (MI	JE CRACK GROWTH	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	, v
1690F 2HRS AC. 1550F 2HRS 00. 1100F 6HRS AC	FORGING	8	90 96				2 03		
1650F 24485 AC. 1550F 2485 30. 1100F 8485 AC	FOR 6 1 MG	c c	0					9.7	
1690F 2485 AC. 1950F 2485 OQ. 1100F 2485 AC	FORG ING	2 0	80 86				1 87		
1690F 24RS AC. 1550F 24RS 00. 1100F R4RS AC	FORCING	ς c	0 6				4 67		

8

ဝို

6 71

5 4

0 16

0 70

FORCING

1690F 2HRS AC. 1950F 2HRS 00-1100F 3HRS AC

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.10.3.1 INDICATING EFFECT

OF STRESS RATIO

	K :		DA/DN (10++-	-6 IN. /CYCLE)	
(KSI*IN**)1/2) : :	A	В	С	i
	: :	R=+0. 10			
A:	7. 20 :	. 185			
ELTA K B:	:				
MIN (): D:	:				
D.	:				
	B. 00 :	. 291			
	9 .00 :	. 496			
	10.00 :				
	13.00 :				
	16.00 : 20.00 :				
	25.00 :				
	30 . 00 :	48. 0			
A:	33 . 04 :	61. 9			
ELTA K B:	:				
MAX C:	:				
D:	:				
OOT MEAN E	GUARE RROR	21. 73			

Figure 4.10.3,1

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.10.3.2 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: 1 CONDITION: ENVIRONMENT		TI-6-2-4	4-6		
DELTA	K :		DA/DN (10**-		
(KSI+IN+	:	A	B	c	D
	:	R=+0. 10	R=+0. 30	R=+0. 50	R≖+0. 70
A:		1. 05			
DELTA K B:			. 654		
	5 . 54 :			. 861	
D:	4.89 :				. 815
	5. 00 :				. 819
	6. 00 :		. 747	. 977	. 9 76
	7.00 :		. 984	1. 31	1. 31
	B. 00 ;		1. 28	1. 77	1. 83
	9.00 :	1. 14	1. 65	2. 37	2. 53
	10.00:	1. 69	2. 09	3. 11	3. 42
	13.00 :	3. 27	3. 96	6. 30	6. 81
	16.00 :	5. 65	6. 77	10. 8	
	20.00 :	10. 1	12. 3		
	25 . 00 :	17. 1 24. 7	22 . 5		
	30.00 : 35.00 :	24. /	36. 9 55. 4		
A:	33 . 38 :	29. 7			
ELTA K B:	35. 34 :		5 6. 8		
MAX C:				16. 9	
D:	13. 67 : :				7. 59
ROOT MEAN S PERCENT EF			7. 69		9. 94
LIFE PREDICTION RATIO	0. 8-1. 25		ه سد دی دی شد شده سه صر فقه ده شریکه شاه ش		
PREDICTION RATIO SUMMARY	0. 5-0. 8 0. 8-1. 25				

Figure 4.10.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.10.3.3 INDICATING EFFECT

OF ENVIRONMENT

DELTA (KSI+IN++		:	DA/DN (10++-6	S IN. /CYCLE)	
///W4 - 714 = #	• • • • •	. A	В	С	מ
		: E=+ 800F :AIR			
A: ELTA K B: MIN C: D:	5. 05	. 43			
	6. 00 7. 00 8. 00 9. 00 10. 00 13. 00	:			
ELTA K B: MAX C: D:	14. 76	: 6. 43 : :			
OOT MEAN S PERCENT ER		5. 79			# * * * *

Figure 4.10.3.3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.10.3.4 INDICATING EFFECT

OF ENVIRONMENT

DELTA K		: DA/DN (10##~6 IN./CYCLE)					
(KSI*I N** 1/2)				В		С	D
		: E=+ : AIR	600F				
ELTA K B: MIN C: D:	13. 85	: 4 .	87				
	20. 00 25. 00 30. 00	: 7. : 12. : 19. : 29. : 43.	0 6 6				
ELTA K B: MAX C: D:		: 103. : :					
OOT MEAN S PERCENT ES	BGUARE RROR	8. 3	21	, at the last stay and all the last stay and			

SANTE CONTRACTOR OF THE SANTANCE OF THE SANTAN

Figure 4.10.3.4

FATIQUE CRACK QROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.10.3.5 INDICATING EFFECT

OF ENVIRONMENT						
CONDITION:		TI-6-2-4- HRS AC, 1550F 2HRS		9HRS		
DELTA K (KSI+IN++1/2)		: DA/DN (10**-6 IN./CYCLE)				
/UGY-114-A	1/6/	A	В	C	D	
		: E=+ 800F :AIR				
DELTA K B: MIN C: D:	4. 73	: 2.46 : :				
	5. 00 6. 00 7. 00 8. 00 9. 00 10. 00	: 3. 43 : 4. 31 : 5. 40				
DELTA K B: MAX C: D:	13. 00	: 11.6 : 14.3 :				
ROOT MEAN S PERCENT ER	ROR	: 5. 34	~ = = + - + - + - + - + - + - + - + - + -			
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 0. 5-0. 0. 8-1.	5 8 25	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

できない。このでは、「は、「は、「は、「は、「は、「は、」というできない。「は、このできない。」というできない。「は、このできない。」というできない。「は、このできない。」というできない。「は、このできない は、このできない は、このできない は、このできない。「は、このできない。」というでは、このできない。「は、このできない。」というでは、このできない。「は、このできない。」というできない。「は、このできない。」というでは、このできない。「は、このできない。」」というでは、このできない。「は、このできない。」」というできない。「は、このできない。」というできない。「は、このできない。」」というできない。「は、このできない。」」というできない。「は、このできない。」」というできない。「は、このできない。」」というできない。「は、このできない。」」というできない。」
「は、このできない。」」というできない。「は、このできない。」」というでは、このできない。」は、このできない。「は、このできない。」」というでは、このできない。「は、このできない。」」というでは、このできない。「は、このできない。」」というできない。「は、このできない。」」というできない。「は、このできない。」は、このできない。このできない。」は、このできない。」は、このできない。このできない。」は、このできない。このできない。」は、このできない。」は、このできない。」は、このできない。」は、このできない。」は、このできない、このできない、このできない、このできない、このできない、このできない。」は、このできない。」は、このできない。」は、このできない。」は、このできない。このでい

(NP/NA)

>2. 0

Figure 4.10.3.5

倒されるともももも思わららいいいになる。

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.10.3.6 INDICATING EFFECT

OF ENVIRONMENT

DELTA K (KSI+IN++1/2)		: DA/DN (10##-6 IN./CYCLE)				
(V2T#IM#	P1/2)	: : A B		c	D	
		: : E= R.T. :LAB AIR	E=+ 600F AIR	E=+ 800F AIR		
A: ELTA K B: Min C:	8. 23		. 71	1. 09		
D:		:		1. 07		
	5. 00					
	6. 00					
	7.00					
	8. 00 9. 00		001	1. 36		
	10.00		1. 41	1. 87		
	13.00	: . 985 : 2.44	3. 20	3. 49		
	16. 00		6. 41	7. 28		
		: 5.88				
ELTA K B:			8 . 71			
MAX C: D:	17. 28	: :		11. 0		
PERCENT EF	ROR		3. 55	6. 28		

Figure 4.10.3.6

and the second second second second second second second second second second second second second second second

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.10.3.7 INDICATING EFFECT

OF ENVIRONMENT

DELTA K (KSI#IN##1/2)		DA/DN (10##-6 IN./CYCLE)					
		A	B	С	D		
		: E=+ 600F : AIR	E=+ BOOF AIR				
A: DELTA K B: MIN C: D:		: 1. 71 :	4. 20				
	13, 00 16, 00 20, 00 25, 00 30, 00 35, 00	: 4. 56 : 9. 04 : 17. 6 : 28. 0	6. 76 11. 5 18. 9 29. 3 44. 4				
ELTA K B: MAX C: D:		: 33 . 1 : :	61. 4				
OOT MEAN ! PERCENT EI	ROR						

Figure 4.10.3.7

indering planting of the property of the state of the sta

TABLE 4.10.3.8

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.10.3.8 INDICATING EFFECT

OF ENVIRONMENT

DELTA (KSI+IN+	K	:	DA/DN (10##-6	IN. /CYCLE)	
(VDI ATMA)	*1/2/	A	B	C	D
		E=+ 600F	E=+ 800F AIR		
A: DELTA K B: MIN C: D:		: 1. 35 : :	3. 26		
	8. 00 9. 00 10. 00 13. 00 16. 00	: 2. 80 : 3. 80 :	3. 82 4. 67 8. 96 18. 1		
MAX C:	12. 83 16. 58		20. 9		
OOT MEAN S		6. 25	4. 12		

>2.0

(NP/NA)

Figure 4.10.3.8

TABLE 4.10.3.9

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.10.3.9 INDICATING EFFECT

OF ENVIRONMENT

	K		DA/DN (10##-	6 IN. /CYCLE)	
(KSI#I N #	*1/2)		В	C	1
			E= R.T. LAB AIR 999.99HZ	E=+ 600F AIR .16HZ	
		: . 31			
ELTA K B:			. 00		
MIN C: D:	4. 41	:		. 79	
	2. 00	:	. 0130		
	2. 50	•	. 0636		
	3.00	-	. 121		
	3. 50		. 176		
	4.00		. 237		
	5. 00		. 460	1. 12	
	6.00	: 1. 53		1. 65	
	7.00			2. 19	
	8.00			2. 90	
	9. 00 10. 00			3. 61	
	13.00			4. 74 12. 5	
A:	8. 59	: 19. 9			
ELTA K B:	5. 84	:	1.48		
MAX C:	14. 50	:		22 . 0	
D:		:			
DOT MEAN S PERCENT ER	BOUARE RROR	12. 54	20. 47	7. 74	

Figure 4.10.3.9

TABLE 4.11.1.1

HEAN PLANE BTRAIN FRACTURE TOUGHEESS DATA OF TITANIUM ALLOY TI—6AL—4V AT ROOM TEMPERATURE

CONDITIONANT	MEAN KIC + BTANDARD (MBI BORT(IN)) DEVIATION	UND (MUMBER OF BPECIFEMB)	PECIFEMB
		# # # # # # # # # # # # # # # # # # #	
COMDITION/HT	, J	1	1
AMEALED 1379F 3HR. AC	60.4 ± 9.9 (2)		•
BETA PROCESSED MILL ANNEALED	94.9 ± 4.8 (3)		-
HILL MNEAL	55.6 ± 1.3 (2)		
HILL AMEALED		100. 6 ± 6. 8 (6)	
RECRYSTALL IZE AWEAL	82. 0 ± 7. 0 (22)	80. 6 ±10. 8 (22)	-
918	•	42.6 ± 2.0 (3)	1
1750F 1HR FC TO 1100F. AC	-	91.5 ± 2.1 (2)	
1750F 1HR. FC TO RT	71.8 ± 3.2 (2)	91.6 ± 1.3 (2)	
1750F 2HB, NB, 1000F 2HB, AC, 1300F 2HB, AC, BTA	41. 4 + 2.3 (2)		Ì
	9	EDROINE	
COMDITION/HT	ij	1	1
AB FURGED-NA ALPNA-BETA FURGED, MILL ANEALED		35. 4 ± 2. 7 (4)	
ANNEALED	84, 4 ± 1, 8 (2)	63.4 ± 9.9 (2)	
AMEALED 1300F 4 HR, AC	30.1 ± 1.2 (3)	62.2 ± 3.0 (3)	68.1 ± 1.0 (2)

TABLE 4.11.1.1 (con't)

HEAN PLANE BTRAIN FRACTURE TOUGHBEBB DATA OF TITANIUM ALLOY II-6AL-4V AT ROOM TEMPERATURE

		EDITOLINO	
CONDITION/HT	ij	1	1
B FURGED-NA BETA FTRUED, NILL ANKEALED 1300F 2 HR, AC	70.6 ± 4.9 (3)	71.0 ± 0.4 (3)	73. 9 (4 2. 9 (2)
MILL AMEALED 1300F 2 HR, AC	47.7 ± 2.9 (3)	49, 9 ± 3, 9 (3)	43.6 ± 9.8 (3)
RECRYBTALL IZE ANEAL	83.6 ± 9.9 (41)	63, 7 ± 6. 7 (50)	86.9 ± 3.2 (9)
1700F 6 HR, AC, 1400F 6 HR, AC	75.9 ± 4.2 (6)	81, 2 ± 5, 0 (6)	
1750F 1 HR. WG. 1000F 4 HR		79.3 ± 4.9 (3)	-
	EXID	EXTRAGION	
CONDITION/HT	ij	រាំ	ជ
ANGEALED		73.3 ± 2.3 (2)	
HILL AWEALED	83.9 ± 3.1 (3)	H7.5 ± 4.1 (6)	1
	EDRG	EDROED BAR	
COMDITION/HT	ቯ	1	1
AS RECEIVED	57.1 ±10.4 (14)	54. 9 ±10. 8 (21)	-
PETA FORCED REMEATED TO		42.6 ± 4.3 (4)	1

THE PROPERTY OF THE PROPERTY O

STANDERSONAL STANDARD STANDERS STANDARD

		L ul	EC IPEDIO)		1	•	-		
Ø	.l.l (con't)	HEAN PLANE BTRAIN FRACTURE TOUGHEDB DATA OF TITANIUH ALLOY TI-GAL-4V AT ROOM TEPPERATURE	AND (MAMBER OF SPECIFEMS) TION	EXLET	រាំ			64.2 ±11.8 (13)	
	TABLE 4.11.	IN PLAKE BTRAIN FRAC ANIUM ALLOY TI—SAL—	PEAN KIC & BTANDARD (BI BORT(IN) DEVIATION	3	ៗ	79.6 ± 9.6 (2)	90. ♥ ± 0. 6 (2)	68.2 ± 9.7 (9)	84. 0 +1 0. 4 (3)
		A	COMBITION/HT (K		COMDITION/HT	ANNEALED	ANNEALED 1000F 2 HR. AC	DIFFUSION BOND ANKALED	HILL AMENLED 1300F 2 IR, AC
4									

3	COND 1 T ION/HT	PRODUCT FORM	STRESS	FREG.	DELTA K LEVELS:		CRACK ORD	FATIQUE CRACK ORDATH RATES	
		Р ССВ Н	RATID	(42)	DELTA K LEVELS: (KSI SØRT(IN))	7.11 G/H	CROCK ONG CRO IN/CV	MTH RATES CLE) 20	8
£		PLATE	07.0	8			80	9.19	
4		PLATE	0.10	9 9			9 0		85. 6
€		PLATE	0.30	9			9 0	9.73	
A		PLATE	96 0	98 9)) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		61 1	10. 9	
¥Ŧ	RETA PROCESSED -HILL ANNEALED	9. FEET	01.0	10.00			1	•	48. 6
W F	BETA PROCESSED -MILL ANNEALED	PLATE	0. 10	00.00				4. 51	
E I	RETA PROCESSED -MILL ANNEALED	PLATE	01 0	00 01				•	49.7
E E	BETA PROCESSED	PLATE	0. 10	10.00				3	

TABLE 4.11.1.3

FATIOUE CRACK ORDUTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

FITANIUM TI-6AL-4V

TEST CONDITIONS

SPECIMEN
ORIENTATION L-T

۱-۱

ENVIRONMENT: L. H. A. A. A. R. T.

CONDITION/HT	PRODUCT FORM	STRESS	FREG. (HZ)	DELTA K		ATIQUE	FATIQUE CRACK ORGUTH RATES (MICRO IN/CYCLE)	DUTH RA	166	
				LEVELS: (KSI SORT(IN))	in Ni	'n	01	8	8	8
DBTC	PLATE	8	8				!	9	753	
DB10	PLATE	œ 0	8 -	BPEC THK*1. 00"			0 33	13.1	582	
DBTC	PLATE	900	1.8	SPEC THICAD. 50"			0 62	19. 4	2180	
	1		1		1	1				
£	SHEE1	8	8				1 79	13.7		
₹ £	SHEET	8	4				2.24			
1	SHEED	8	8				8	21.1		
Š.	PLATE	9	1.8	DATA OUT OF TREND				(g)		
4	PLATE	8	1.00-6.00	8			0. 42	*	402	
ş	PLATE	000	1.00-6.00	8			•	11.2	255.	
£	EXTRUSION	98	1.8					13.9		
AR	EXTRUSION	0	%				0 37	11.7		
£	EXTRUSION	0.30	9. 0					16. 8		
4	EXTRUSION	9 9	8 .					17. 3		
						1				
₹	PLATE	8	9					10.4		
A A	PLATE	8 0 °0	9 9					7.60		
₹ &	PLATE	0.08	9	DATA OUT OF TREND				(g)	145	
₹	PLATE	0 0	8				0.72	11.3		

TABLE 4.11.1.3 (Con't)

FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

IE. CONDITIONS SPECIMEN DRIENTATION L-T	٤			ENVIRONMENT. L. H. A. AT R. "	L H A AT R. T	_				
COMDITION/HT	PRODUCT	STRESS RATIO	FREQ. (HZ)	DELTA K LEVELS:		ATTONE CRACK (MICRO IN	FATIOUE CRACK ORDATH RATES (MICRO IN/CYCLE)	CLE)	8 8	9
						,	:			
.	PLATE	90 :0	8				0 49	9. 42	171	
₹.	PLATE	98	9				33	15. 9		
₹.	PLAIE	96	9 9				1 94	9 9		
₹.	PLAIE	0.70	8				3 12			
<	FORGING	95.0	8				98	5.78	3	
€.	FORCING	0.08	9					6. 76		
₹.	FORGING	8.0	8				1 22	16. 2	\$	

TABLE 4.11.1.4

FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

SPECTMEN ORIENTATION	1-1			ENVIRONMENT	LAB AIR AT R. 1					
CONDITION/HI	PRODUCT	STRESS	FREG.	DELTA K	FATI	OUE CRAC	7 ORO 1N/CYO	FATIOUE CRACK OROUTH RATES (HICRO IN/CYCLE)		
				(KEI SORT(IN))	2.5		01	&	8	3
ANNEALED	BILLET	۵۰ °۵	10 00-20 00			0	0 27	6.49		
ANNEALED AT		2 0 0	10 00-30 00			•	92	9.70		
▼	FURCING	0.02	0. 02 0. 10-20. 00					2.55 102	2	
RETA PROCESSED	PLATE	0.10	0 0					0.91		
DETA PROCESSED MILL ANNEALED	PLATE	9 9	80 1				1 47			
VI	PLATE	-1.00	10.00			1	1.14	12.8 328	æ	
4 1	PLATE	30°0	0 10-30 00	0 10-30 00 CATA OUT OF TREED	c:	0 10 0	•	(<u>a</u>		
₹ E	PLATE	0.02	0. 10-30. 00			0	0 13	8		
₹	PLATE	0.0	80.08					•	96. 5	
Ą E	PLATE	0.03	80.08					6. 97		
₹ E	PLATE	9.30	20.00			0	\$			
₹	PLATE	0.50	00 01			æ	8 32	4 24		
4	1		,							

TABLE 4.11.1.5

FIGUE CRACK ORDWIN RATE AT DEFINED LEVELB OF THE STRESS-INTENSITY FACTOR

			ES	8	115		1009	
			OWTH RAT	8	4. 10	9.31	12.0	
5		'	UE CRACK GROWTH	C				
MICHOLIN		- i	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	3 5				
3 KESS-11		14		2.5				
FALLONE CHACK ORDAIN RATE AT DEFINED LEVELED OF THE STRESSTIN EMBITY FALLON	TITANIUM TI-6AL-4V	ENVIRONMENT	DELTA K	LEVELS:				
E AT DEFINE	TITAN		FREG. (H2)		01 0	0, 10	0. 10	
OKCUMIN KA			STRESS		0.10	0.30	0.50	
FATIONE CHACK		ت	PRODUCT		PLATE	PLATE	PLATE	
		IEST CONDITIONS SPECTHEN ORIENTATION	COMDITION/HT		₹ 8	₹	₹	

TABLE 4.11.1.6

ない。魔人となるない自然ないない。

でいるから、関することがは、同ななどのと、同ななどのは、同ななどのは、関立などのでは、同ななどのでは、例ではなどなどに対しています。

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

111AN:UN 11-6AL-4V

TEST CONDITIONS

SPECIMEN DRIENTATION L-T

ENVIRONMENT

CONDITION/HT	PRODUCT FORM	STRESS RATIO	FREG. (92)	DELTA K		FAT I OUE	FATIOUE CRACK ORDETH RATES (MICRO IN/CYCLE)	DUTH RATI	9	
				LEVELS:	6. 6.	n	01	8	8	8
V	FORGING	80.0	0. 02 0. 10- 20. 00	FORGING 0.02 0.10-20.00				2.08	2.08 80.2	4343.0
₫ ₫	EXTRUSION EXTRUSION	9 9 0 0	8 8				1 47	12.0		
	PLATE	89 00 00	1 00	PLATE 0.08 1.00 0.08 1.00 5.54			•	6. e.		

TABLE 4.11.1.7

FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

IEST CONDITIONS SPECIMEN ORIENTATION	ī			EW1RDIMENT:					
COND1110N/HT	PRODUCT FORM	STRESS	FREG. (MZ)	DELTA K LEVELS: (KSI 908T(IN))	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	PACK CORT	DATH RAT	8 <u>.</u>	80
₽.	PLATE	0.10	8 -		i	!	11.1	3	,
D&TC	PLATE	6 5 0	8			•	13.9		
£	SHEET	80	8			8			
Ž.	PLATE	0.03	8	SPEC THK-0. 50"			87.5		
Ę	PLATE	0.03	8	SPEC THE-1.00"		8	31. 9		
£	EXTRUSION	90.0	8				14.3	386 .	
£	EXTRUSION	0. 10	1. 00- 10. 00	8			11.2	234.	
RA A	PLATE	90 0	010				11.0		
4	PLATE	8	8			0	8	344	
€ α	PLATE	98	8				8		
₹2	PLATE	8	8			0 77	13.4		
₹ α	PLATE	8	8			2, 27	X,		
₹ @	PLATE	8	8			4 23			
₫ α	FORGING	8 o	1. 8			1.69	æ g		

2
9
2
ã
1531

TABLE 4.11.1.8 FATIOUE CRACK OROWIH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR TITANIUM TI-6AL-4V	EWUIRGNAFENT: 3.5% MACL. AT R.T.	PRODUCT STREES FREG. DELTA K (MICHO IN/CYCLE) FURH RATTO (HZ) DELTA K (MICHO IN/CYCLE) (KSI BORT(IN)) 2.5 5 10 20 50 100	PLATE 0 10 10.00	PLATE 0.10 10.00	
	IEST CONDITIONS SPECIFIEN ORIENTATION	COND 1 TION/HT	₹8	&	

TABLE 4.11.1.9

FIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

	באון ופער כאשר		MT11	TITANIUM TI-6AL-4V	TITANIUM TI-6AL-4V	
IESI, COMPLITONS Specifien Orientation	ĭ			ENV IRCHENT	DRV AIR AT R T	
DND1710N/HT	PRODUCT	STRESS RATIO	FREQ.	DELTA K LEVELS: (KGI SORT(IN))	FATIGUE CRACH ORDWIN RATES (MICRO IN/CYCLE) 2.5 5 10 20	8
	PLATE	0.10	0 10			ន័
	PLATE	0 10	8		80 6	3
	PLATE	8	0 10		₽ 02 80 1	
	PLATE	8	96 -		1. 32 17. 2	
						- }

TABLE 4.11.1.10

		EB 8		278	529	908
		MTH RAT	12. 12 12. 12. 1	7.70	9. 11. 22. 7. 52	11. 4 1. 63 7. 63
Y FACTOR		FATIONE CRACK ORGUTH RATES (MICRO IN/CYCLE)	8,	*	.9 e	S 6
INTENGIT	ĕ	FATIOUS CH				
TRESS-	1 F R R F F	2.5				
FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR TILOME.AV	EWIROPENT	DELTA K LEVELS: (KGI BORT(IN))				
E AT DEFINE		FREG (HZ)	8 8 • •	8 8	1.00-6.00	8 8 8 8
CROUTH RAT		STRESS	80 OC	8 6 0 0	8 P 8	8 8 8 9 0 0 0 0
FATIONE CRACK	ĭ	PRODUCT FORM	PLATE PLATE	PLATE PLATE	SHEET PLATE EXTRUSION	PLATE PLATE FORGING FORGING
	IEST. COMDITIONS SPECIMEN ORIENTATION	CONDITIONANT	80 CO	DBTC DBTC	1 1 1	4 4 4 4

TABLE 4.11.1.11

SPECINEN ORIENTATION	ĭ			ENVIRONMENT	LAB AIR AT R. T.	~		!		
CONDITION/HT	PRODUCT FORM	STRESS	FREG. (HZ)	DELTA K LEVELS:	ī	ATIQUE C	RACK GRE	FATIOUE CRACK GROWTH RATES (MICRO IN/CYCLE)	 100	
			(KG)	(KSI SORT(IN))	e ri	n	2	2	8	8
AS WELDED F B WELDWENT (WELD ZUNE)	MELDHENT	0 10	06 01					2. 2.		
AS WELDED E B. MELDMENT (MEAT AFFECTED 20NE)	HEL DHENT	0	8 01		, , , , , ,	; ; ; ; ;		2 6		, 1 1 1 1 1
€	FORGING	8	0 10-20 00			 		2.27	103	32.42
£	EXTRUSION	0. 10	5.00- 20.00	 	; ; t ; ; ;	t 1 1 1 1 1	? } 1 	13.7	8	# \$ \$ \$ \$ \$
₹2	PLATE	0 10	10.00	1 ; ; ; ; ; ; ; ; ;	; (() ()	1	1 - - -	21.3	7 7 1 6 6 1 1	†
STRESS RELIEVED E. B. WELDHENT (HEAT AFFECTED		0. 10	0 10-10 00						¥	
STRESS RELIEVED E.D. WELDWENT (WELD ZONE)	WELDPENT	0. 10	0. 10–10 00		- ; 	1 	! ! ! :	10.1	1 ; ; ; ; ;	
							1			

South The Section of States and Section of Section Sec

TABLE 4.11.1.12

FATIOUE CRACK ORDATH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

		FATIOUE CRACK ORDWIM RATES (MICRO IN/CYCLE)	11.7 135	88 ES 1.50
	179 F	FATIOUE CR (MICR		
	A I A	in Ni		
TITANIUM TI-6AL-4V	ENVIRONMENT: AIR	DELTA K LEVELS: (KSI SGRT(IN))	PLATE C. 10 0. 10-10. 00	
TITANI		FREG (HZ)	C. 10 D. 10-10. 00	0. 10 0. 10-10. 00
		STRESS RATIO	o. 10	0. 10
	<u>;</u>	PRODUCT	PLATE	WELDWENT
	IEST COMOLITONS SPECTNEN ORIENTATION	CONDITION/HT	£	STRESS RELIEVED E B WELDHENT (HEAT AFFECTED CONE)

TABLE 4.11.1.13

FATTOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

IEST CONDITIONS

SPECIMEN 0RIENTATION T-L

ENVIRONMENT: H H. A.

CONDITION/HT	PRODUCT	STRESS	FREG.	DELTA K	1	TIOUE CI	UE CRACK GROWTH	FATIOUE CRACK GROWTH RATES	99	
				LEVELS: (KB1 SORT(IN))	in Ni	en.	2	8	8	8
			3							
4	7 F		3				;	. !		
₽,	PLATE	0 10	8				3 37	e Ri		
₹	PLATE	0.50	10 00			93	3 63	\$ (
Q	PLATE	80	10 00	DATA OUT OF TREND			6 45	(%)		

TABLE 4.11.1.14

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

	801			9
	83	C01		1360
	FATIGUE CRACK ORDMIN RATES (MICRO IN/CYCLE) 5 10 20	2.40 103	14.2	6
	CRACK OF		0 72	:
FUEL 7.	FAT1QUE (M)			
4-97 A	8 0			
ENVIRONMENT: UP-4 FUEL	DELTA K LEVELB: (KSI 998T(IN))		0 72 14.2	
	FREG.	0.10-20.00	7 00	0 10-10 00
	STRESS	0 05	90.0	0 10
7	PRODUCT FORM	FORCING		WEL DYENT
IEST CONDITIONS SPECIMEN ORTENTATION	CONDITION/HT	∢ ⇔	RA	STACSS RELIEVED F B WELDWENT (HEAT AFFECTED ZONE)

TABLE 4.11.1.15

FATIOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-6AL-4V

CONDITION/HT PRODUCT			ENVIRONMENT: WATER SATURATED JP-4 FUEL AT R. T.	MATER AT R.	SATURA'	TED JP-4	FUEL		
	STRESS	FREG.	DELTA H		ATTOUE	CRACK OR	FATIOUE CRACK ORGATH RATEB	63	
			LEVELS: (K81 SGRT(IN))	n ni	n	01	8	8	8
RA PLATE	0.10	0°.10		 		 - 		204	
RA PLATE	0. 10	8 -						5.	
RA PLATE	0.50	0 10					17.0		
RA PLATE	000	1.00				1 33	10. 4		

(m)

TABLE 4.11.1.16

0

FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-6AL-4V

IEST COMPLITONS

202 ያ 197 126 2 FATIQUE CRACK OROWTH RATES (MICRO IN/CYCLE) 19.0 8 8 21. 8 ጸ 2 64 0 43 0 DIST. WATER **6** ENVIRONMENT DELTA M LEVELS: (KSI SORT(IN)) 0 10-10 00 0. 10 15.00 01 0 01 0 8 8 FREG. STRESS RAT10 0 10 0.10 0, 10 8 01 0 8 8 PRODUCT FORM WELDMENT PLATE PLATE PLATE PLATE PLATE PLATE 7 SPECIMEN ORIENTATION STRESS RELIEVED E B WELDMENT (WELD ZONE) TH/N01110N00 ₹ Ð ď

TABLE 4.11.1.17

FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

		60		† † † † † † † † † † † † † † † † † † †	
	S	8		652	
	FATIQUE CRACH GROWTH RATES	8	8.	256	
	UE CRACK GROWTH (MICRO IN/CYCLE)	01		1	[-
HATER 175 F	FAT IQUE	ဟ		1	
DIST		ο Ο			
ENVIRONMENT: DIST. WATER AT 175 F	DELTA K LEVELS:	(MSI SORT(IN))		LDMENT 0.10 0.10-10.00	
	FREG.		1 00	0 10-10 0	
	STRESS		0% 0	01 0	
7-1	PRODUCT FORM		PLATE) W 1	
IEST CONDITIONS SPECTHEN DRIENTATION	CONDITION/HI		A G	STRESS RELIEVED E B WELDMENT (HEAT AFFECTED ZONE)	

TABLE 4.11.1.18

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-SAL-4V

TEST CONDITIONS

SPECIMEN T-L

ENVIRONMENT 3 SXNACL AT R. T.

C DND 1 7 10N/HT	PRODUCT	STRESS	FREG.	DELTA K	F.	TIGUE C	FATIGUE CRACK GROWIN RATES (MICRO IN/CYCLE)	WIH RAT	TES	
				LEVELS (KSI SORT(IN))	5 2	in.	10	8	8	8
4B	PLATE	01.0	8 7					9 7	1 88	
€ @	PLAIE	01 .0	10.00			,	86.0	13.8	109	
	PLATE	8	15 00				**			
RA	PLATE	0. 10	0. 10						1652	
₩.	PLATE	0 10	0 10				8 E	4 7		
₹ 8	PLATE	0. 10	8					9.0	226	
8	PLATE	0 10	900				4 86	63.0		
€ 02	PLATE	0 10	00 01					6. 98.		
RA	PLATE	8	0 10	,			2 35			
4 4	PLATE	0 20	8				5 65	117		
د	PLATE	0 20	10.00	DATA OUT OF TREND			(£)	3		
STRESS RELIEVED E B WELDMENT (WELD ZONE)	WELDMEN	01 0	0 10-10 00	8		! ! ! !	i ! !	1 C C S B	4C181	1 8 8 1 8
GTRESS RELIEVED E B WELDWENT CHEAT AFFECTED 20N	WELDMENT F)	0. 10	0. 10-10. 00	8	1 1 1 1 1 1 1		; { 1 1 1	13.9		\

TABLE 4.11.1.19
FATISUE CRACH GROWTH RATE AT DEFINED LEVELS OF THE BTRESS-INTENSITY FACTOR

SPECIMEN ORIENTON	ļ			ENVIRONMENT	S. T. W.					
CONDITION/HT	PRODUCT FORM	STRESS	FREG.	DELTA K	FAT	FATIGUE CRACK GROWTH RATES	OROWTH N/CYCLE	A RATE	m	
				LEVELS: (KBI SORT(IN))	en N	9 10		&	8	8
BA	PLATE	01.0	01.0	DATA OUT OF TREND		95 0	1	(3)	00+	
⋖	PLATE	01 0	8				*		192	
∀ 0	PLATE	0.10	10. 80				91	18. 6	94.3	
1	PLATE	B O O	8 7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8 50 8 50	214	
DB + 2DBTC	PLATE	BO :0	8				,,	7.93	244	
DB + 4DBTC	PLATE	80 · 0	8		i t f t t 1	i : : : : : : : : : : : : : : : : : : :		9. 03	30 8	
D81 + PC	PLATE	8 0 0	8				=	11.2		
DBTC	PLATE	BO 0	8		1 3 4 1 3 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	83 16	18. 4		
₹.	EXTRUSION	BO 0	8 9			29 '0		11.1		
₹ £	EXTRUSION	01 0	1. 00-10. 00	8			Ni .	8	324	
₹#	PLATE	8 0	15.00			30	3			
A A	PLATE	90.0	8	DATA OUT OF TREND		Ċ)	88 %			
8	PLATE	8	8			0.96		12.7	58	

TABLE 4.11.1.19 (Con't)

マンストン・アンストロンストン・アンストン・アロンストン・アンストン・アンストン・アロンストン・アロンストン・アンストン・アンストン・アンストン・アンストン・アロンストン

FALLOUSE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM 11-64L-4V

IES__GONDLIJONS SPECTHEN OF TENTATION T-L

ENVIRONMENT S T IL

TH/H01:10N03	PRUDUCT	STRESS	FREG (HZ)	DELTA K	FATIGUE CRACK OR	FATIGUE CRACK ORDUTH RATES	DUTH RAT	TES	
				LEVELS: (KSI BORT(IN))	\$ 'n	0	8	S,	8
₹2	PLATE	900	8				9. 12		
RA	PLATE	80.0	8				8		
AA	PLATE	0 10	0 0					\$06	
₹ 2	PLATE	0. 10	01 0					3950	
₹2	PLATE	0 10	8 -					310	
4	PLATE	0	8 .			2 05	S S		
4	FORCING	8	8 -				19.1	225.	
Œ Cr.	FORCING	80 0	8			69 0	14.0	192	
Œ.	FORCING	90 0	00 7			0 74	14.9		
4	FORGING	9	8			8	61.3		

TABLE 4.11.1.20

FATICUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-6AL-4V

TEST CONDITIONS

		30 100		
	vTES	ň		
	CLE)	8	0.78 21.3	9. 78
	FATIQUE CRACK GROWTH RATES	9	0.78	
٠	ATIQUE	en .		
N T T T T T T T T T T T T T T T T T T T		es Ci		
ENVIRONMENT: S.T.W.	DELTA K	LEVELS (KGI SORT(IN))	PLATE 0.08 1.00	
	FREG.		8 -	8 -
	STRESS		80 0	8 6
-S-	PRODUCT			PLATE
SPECIMEN ORIENTATION	CONDITION/HT		80	DB + TR

TABLE 4.11.1.21

Ŵ,

FATIQUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-6AL-4V

TEST CONDITIONS

SPECTMEN ORIENTATION L-	<u>*</u>			ENVIRONENT: AIR	¥ 14	300				
CONDITEON/HT	PRODUCT	STRESS	FREG.	DELTA K		FATIOUE (NIC	CRACK OR	FATIOUE CRACK ORDUTH RATES (NICHO IN/CYCLE)	5	
				(KSI SGRT(IN))	8	n	61	8	8	<u>8</u>
£	¥510	8	8				:	6.72		
1300F 298S AC	SIG	0.25	93					13.5		
HA 1300F ZHRS AC	NS 10	5	8				10			

TABLE 4.11.1.22

SECTION OF THE PROPERTY OF THE

FATIGUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR TITANIUM TI-64L-4V

	001					
	9				,	257
	WIH RATE CLE) 20	1 6 6	8	£ .4	€	80 Ni
	RACK ORO RD IN/CY	61 0				
	FATIOUE CRACK OROUTH RATES (MICRO IN/CYCLE)					
ARGON AT R. T.	, v,					
ENVIRGINIENT	DELTA W LEVELS (MST BORT(IN))					
	FREG (HZ)	10.00	8	8		00 00
	STRESS	0 10	01	0 10	01 0	0
Ţ	PRODUCT	FIREINO	FORCING	rORCING	<u>.</u>	FORG1NG
TEST CONDITIONS SPECIFIEN ORIENTATION	CONDITION/HT	1550F 4HRS FC. 1000F 4HRS. ARGON CUDLED	1990F 4HRS FC. 1000F 4HRS. ARGON COOLED	1750F 444S ARCON COOLED, 1000F 444S, ARCON COOLED	1750F 44RS ARCON COLLED. 1000F 44RS: ARCON COLLED	1950F 44RS MG. 1000F 44RS ARGIN COCLED

TABLE 4.11.1.23

なると、これのないのでは、これのことは、自然のないのでは、これのないとは、自然のないないとは、自然のないないない。

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

•		100		
	66	8		
	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	8	4 .	3.37
	MACK OR	01		
:	TIGUE O	n	3	
ARCON AT R. T	1	2.5		
ENVIRONMENT: ARCON AT R. T	DELTA K	(KSI SORT(IN))		
	FREG. (HZ)		10 00	8
	STRESS		01 '0	0
*	PRODUCT FORM		FORGING 0.10 10.00	FORCING
IEST CONDITIONS SPECTIVEN ORTENTATION	COND11ION/HI		1750F 44RS ARCON COOLED. 100CF 44RS ARCON COOLED	1950F 4HRS MG. 1000F 4HRS ARGON (COLED

TABLE 4.11.1.25

	TALLED CRACE	A CAGUTH RA	TE AT BEF11	FALLOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR TI-6AL-4V	TRESG-	INTEMBITY	FACTOR		
IEST_CONDITIONS SPECINEN ORIENTATION	4			ENVIRONENT: AIR	A ! .	300			
CONDITION/HT	PRODUCT FORM	BTRES6 RATIO	FREQ	DELTA N LEVELS: (KGT GORT(IN))	8 %	FATIOUE (UE CRACH GROWTH	RATES	
)
1775F 14R Mg, 1675F 14R Mg, 1800F-1200F 2-84RS AC	% 55 56 57 57	60.0	8				0 74 10.1	10. 1	
1775F 1HR NG. 1675F 1HR NG. 1000F-1200F 2-BHRS AC	DISK AC	0	8					6	

TABLE 4.11.1.26

POSSIBLION CONTRACTOR OF CONTRACTOR OF THE STATE OF THE S

FATICUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-6AL-4V

SPECIMEN ORIENTATION C-R				ENVIRONMENT	4 4 8 T	600 F				Ì
CONDITION/HT	PRODUCT	STRESS	FREG.	DELTA W LEVELS: (KSI SORT(IN))	\$ 8	FATIBUE O	UE CRACK GROWTH (MICRO IN/CYCLE)	FATIONE CRACK GROWTH RATES (MICRO IN/CYCLE)	9	801
1773F 1PR MG. 1673F 1PR MG. 1000F-1200F 2-8HFS AC	DISK	0 03	S. O				60 1	28		
1775F 1HR 440. 1675F 1HR 140. 1000F-1200F 2-8HRS AC	A) I	60 0	8				- 73	9		
177% 1HR WO. 167% 1HR WG. 1030F-1200F 2-BHS AC	DISK	62 0	0 33				(i)	E.		
1775F : HR MO. 1675F : HR MO. 1009F-1200F 2-BHRS AC	X	0 86 0	6				2 12			

TABLE 4.11.2.1

これとととなるとのでは、10mmのなどのでは、10mmのなどのでは、10mmのなどのなどのでは、これでは、10mmのなどのなどのは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmの

HE TO SO SO SO SO SO SO SO SO SO SO SO SO SO	
### HILD ALL AND KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH KITC) ### HIDTH TRICK BESION LENGTH MILE BESION LENGTH BESION LENGTH BESION LENGTH LENGT	
HILE 4.11.2.1 BILE 4.11.2.1 BILE 4.11.2.1 HILL 4.12.1 HILL 4.	
THE 4.11.2.1 WHEN TI-6AL-4V K(IC) WIDTH TRICK DESIGN LENGTH (KIC)/TY8)**2 K(IC) WHOTH TRICK DESIGN LENGTH (KIC)/TY8)**2 K(IC) E 300 I 250 CT I 250 O 44 59. 50 E 300 I 250 CT I 250 O 44 59. 50 E 300 I 200 CT I 200 O 74 69. 60 E 300 I 200 CT I 200 O 74 69. 60 E 300 I 200 CT I 200 O 74 69. 60 E 300 I 200 CT I 200 O 74 69. 60 E 300 I 200 CT I 200 O 74 69. 60 E 300 I 200 CT I 200 O 74 69. 60 E 300 I 200 CT I 200 CT I 200 O 74 69. 60 E 300 CT	
### 4, 11, 2, 1 ###################################	
HUTH THICK DESIGN (ENOTH (RICL)/TY8):10.1 WIDTH THICK DESIGN (ENOTH (RICL)/TY8):10.1 E. 500 1.250 CT 1.250 0.52 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.44 E. 500 1.250 CT 1.250 0.77 E. 500 1.250 CT 1.27 E. 500 1.250 CT 1.27 E. 500 1.250 CT 1.27 E. 500 1.250 CT 1.27 E. 500 1.250 CT 1.27 E. 500 1.250 CT 1.27 E. 500 1.250 CT 1.27 E. 500 1.250 CT 1.27 E. 500 1.250 CT 1.27 E. 500 1.250 CT 1.27 E. 500 1.250 CT 1.27 E. 500 1.27	
### ### ##############################	
ABLE 4.11.2.1 WHOTH TRICK DESIGN (LENG (IN) (IN) (IN) (IN) (IN) (IN) (IN) (IN)	
ABLE 4.11.2.1 WIDTH TRICK DESIGN (IN) (IN) 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 2. 500 1.250 CT 3. 501 1.250 CT 3. 501 1.250 CT 4. 605 1.250 CT 3. 501 1.250 CT 4. 605 1.250 CT 4. 605 1.250 CT 3. 501 1.250 CT 3. 501 1.250 CT 4. 605 1.250 CT 4. 605 1.250 CT 3. 501 1.250 CT 3. 501 1.250 CT 4. 605 1.250 CT	160
2. 300 1. 230 3. 001 1. 230 3. 002 1. 230 3. 003 1. 524	009Н, 0.
######################################	0.094, 0.0
E TE 0000000 0000 000000 00000 00000	. 16FE, 0.
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V. O 622C. O
97),CIREN ORIENT F. T. T. T. L. T. T. L. T. L. T. L. T. L. T. L. T. L. T. L. T. L. T. T. L. T. L. T. L. T. L. T. L. T. L. T. T. L. T. T. L. T. T. L. T. T. L. T. T. T. T. T. T. T. T. T. T. T. T. T.	35AL, 4, 31V,
	£ 9 ()
THICK THICK THICK TO SEE TO SEE THE SE	COVER PERCEN
	IDOVID SX IOV(MI
COMPITION AB FORGED-HA ALPHA-BETA ANAEALED ANAEALED ANAEALED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALIZED ANAEALED ANAEALED ANAEALED	IS:
AB FDRGE ALINA-BE FORGED, H ANNEALED ANNEALED ANNEALED ANNEALED ANNEALED ANNEALED ANNEALED ANNEALED ANNEALED ANNEALED ANNEALED	10 (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)
4.11-31	

TABLE 4.11.2.1 (con't)

Ö

(.ý.

					TITANIUM	5	71-6	TI-6AL-4V	K(1C)	a						
1004	-	CI THICK CIN)	TEST TEMP (F)	PECIMEN	RENOT (KSI)	1013	ű i	ESION	CRACK LENGTH (IN)	2. 54 (MCIC)/TYS)++2 (IN)	K(IC) MEAN (MGI+SGRT IN)	KCIC) BTAN HEAN DEV HT IN)		DATE	REFER	1
 .eb 13756	, , <u> </u>	1 23 1	ا 🚡 ا	<u> </u>		2.499	1.250	; 55 ;	1.224	0.48	8.4 8.4 8.3	60.47		1975	A003	
ED 22007	r t <u>u</u>	98588	٠ <u>٦</u>	! ! ! !	00000	. 88888 	88888	55555	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40000 00000 00000 00000	97. 5/	6- 1 6- 1	474	8962 (8962 (8962 (22222 ,
AS RECEIVED	·	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	; ; cc	ا ا ا	0000000000000	00000000000000	8883888838888	555555555555555	1.020 1.074 1.074 1.029 1.029 1.029 1.020 1.020 1.020		**************************************		•	1974 1974 1974 1974 1974 1974 1974	40012 40012 40012 40012 40012 40012 40012 40012 40012 40012 40012 40012 40012	
AS RECEIVED	a	8 8 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ri di	<u>;</u>	28 28 28 28 28 28 28 28 28 28 28 28 28 2	1 978 1 978 1 979	0 7328 0 7739 0 7739 0 502 0 503 1 000 1 000 1 000 1 000 1 000	555555555555555555555555555555555555555	1 0 0 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000000000000000000000000000000000000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			00000000000000000000000000000000000000	90012 90012 90012 90012 90012 90012 90012	

TABLE 4.11.2.1 (con't)

AS RECEIVED FB 1 50 1 90 1 90 2 90 2 90	R TERP (F)	SPECIMEN ORIENT	YIELD STRENGTH	D HLOIN	Z.	_	CRACK	2.5• (K(IC)/TYB)•#2	K(1C)	STAN			
E	œ		(MSI)				(1N)	(NI)	_	<u>.</u>	DATE:	REFER	1
		<u></u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0. 356 11. 001 1. 003 1. 003 1. 001 0. 999	5555555555	0. 994 1. 023 1. 033 1. 033 1. 033 1. 033 1. 033 1. 033 1. 033	0000000000 04400000000 044000000000	45.86.89.99.99.99.99.99.99.99.99.99.99.99.99.	6/ 10	666666666	90012 90012 90012 90012 90012 90012	
AS RECEIVED-AB FB 3 50 (ALPHA-DETA FORCED) AS RECEIVED-AB FR 3.50 (ALPHA-DETA FORCED)	, E E	· · <u>·</u> · <u>·</u>	127.0	1 00 00 1 00 00 1 01 01	1 80 80 1 1 1		t. 023	1	77. 10	' ! !	1974	90012	1
FORGED FB 2 25 21 FIN FURGED 2 25 25 25 25 25 25 25 25 25 25 25 25 2	<u>~</u>	1 7	0.000	1 0000 1 0000 1 0i fi di di	1 0000	1 5555	1. 046 1. 048 1. 038 1. 058	, 1 1 0 0 0 0 1 0 0 0 0	4.9.46. 4.9.49. 4.9.49. 5.00.49.	1 4	197	689998 899998 899998	
F 2.75 ED 1300F 2 HR.AC	 	; ; ; ; ;	00	98		: 55	1		7.50	3, 9, 4	' '		, 22
H FUNGED-NA F 2 00 HILL ANNEALED 2 00 LIGHOF 2 HR AC	<u>-</u> x	_	137.0	8 8 8 8 8 8 8 8 8	888	555		0 0 0 7 7 4 8 7 4	76. 50 67. 30 70. 67	÷	1971	80338 80338 80338	
D FORGED-MA F 2.00 R.T. RETA FORGED, MILL ANNEM ED 1300F MUTES:	R. T.	T-t Hil. AC	131.0	000 &	8	5) ! }	0. 73	70. &0		1971	BC\$03	

TOTES: COMP. DISK

TABLE 4.11.2.1 (con't)

・ 1997年 - 1

(3)

	1 1 10 10 11	മ . ത			i i	ญผณ
	REFER	80538 80538 80538	9058 9058 9058 9058	9038 9038 9038 9038		88962 88962 88962
	DATE	1971 1971 1971 1971	197	197	7 61	1974 1974 1974
	BTAN	0 N	ı mi	1	6 I	6
	HEAN RT IN	~ ~	ı gi	79.17	78.2/	91. 7/
	K(IC) MEAN (KSI+5508T IN)	55 55	_ 0.00.00.00 0.00.00.00	80. 70 74. 40 74. 80 70. 30	80, 30	77.00 83.90 80.30
a	n ~ 2	00 00 00 44 00 00	00.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
K(IC)	Z T C T		1 230		1 1 000	2.2.4.4
1-4v	DESIGN	55 55	1 5555	1 5555	UU	5558
TI-6AL-4V	ECINEN HICK (IN) B	1 000	2300	। निर्मित्	88 1	8889
Į	MIDTH (NI)	 000 000 000 000 010 010	1 00000 1 00000 1 00000 1 01010101	00000	1 13 000 12 000 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0000
TITANION	LD NOTH S1)	131.0 131.0 132.0	132.0	i manas	127.0 127.0 127.0 ALED: 1300F	136.0 136.0
	SPECIMEN ORIENT		i i t :	1 2	THE AMEAL	35 8. T.
	TEST TEMP (F)	1 pr pr 1 pr 1 pr 1 pr 1 pr 1 pr 1 pr 1	1 F	· 📜 📱	A SOLE	e œ
	PRODUCT FORM THICK (IN)	1 00 00 00 1 1 00 00 00 1 1 00 00 00 1 1 00 00 00 1		1700F	2 30 2 30 902REDUC	ម្ចាប់ ស្តីទីទី
		F 1300F 2 F 1300F 2	! ! %	F	VISHED, 30	L
	COLID 1 1 CON	D FORCED-MA BEIA FURRED, HILL ANNEALED P FORCED-HA BEIA FORCED, HILL ANNEALED	DB. AB FIN-MA BETA DLOCKED. ALPMA-DE!A FINISHED. HILL	BB. AB FIN-RA F RETAIN BETA BLOCKED, ALPHA-BETA FINSHED. RECRYSTALLIZED ANNEAL	BB, AB FIN-304N F 2 50 R.T RETA BLOCKED, 2 50 ALFHA BETA FINISHED, 30XREDUCTION, MILL	DB. AH FINIOSTO F 2. ALPHA BETA

NOTES: (1) F-14 OUTBUAND COVER

					245	TABLE	4.11.2.1	2	(con't)	_			
COND1110N	1 L . :	-PRODUCT DRN THICK (IN)	TEST TEMP (F.)	SPECIMEN ORIENT S	YIELD STRENGTH (KS1)	E STOTAL	SPECIMEN THICK DE: (IN) B	12. 1	CRACK ENGTH (IN)	2, 5* (K(IC) / TYS) **2 (1N)	K(1C) HEAN (KSI*50RT IN)	BTAN DEV	DATE REFER
INGOS OCKEU ETA 6. 30	F	เกเกเก	R. 1.	REATED	137. 0 137. 0 137. 0 OVERAGED	2 000 2 000 2 000 1750f 1	8886	CT CT CT 00F 2		0.00	848 1	n. E	1974 68962 1974 68962 1974 68962
DB. B FIN-10MA DETA BLOCKED. DETA FINISHED. LOZREPUCTION.		MALED.	R. T.	HU P	128.0 128.0 128.0	. 888 ı . ninini ı	888 1	1000 I	888 1		74, 90 74, 40 71, 10 73, 37	6- i - i	1974 88962 1974 88962 1974 88962
NIOST DCKED NISHE	. 5	4000 c		 RACED: 17	138:0 138:0 138:0 30F 1 HR.	9. 1300f	888 ·	55 5			9. 60 6. 40 6. 40 1. 186. 17	an i ci i	1974 88962 1974 88962 1974 88962
DETA ANNEALED PLATE EB WELDED THEN B	P P EIA ANN.	ା ଜଣ୍ଞ ଜଣ୍ମ	2 2	, LO	116.0 116.0 TURE	· 66	999		193	0.40	69. 80 68. 30 69. 2/		1974 88575 1974 88575
ANNE AL E D	٤	22223 22223 22223	69	ا ۔۔	125.0 125.0 125.0 125.0	4. 003 4. 003 4. 003 6. 003	2. 001 1. 998 1. 991 2. 000	55555	22.22.20 22.22.20 22.21.6 22.23 23.08 24.08 25.08 26.0	1. 79 1. 79 1. 95 1. 95	105, 10 105, 90 113, 90 110, 90 108, 00 109, 4/	69 69	1974 88575 1974 88575 1974 88575 1974 88575
NETA ANNEALED	e :	8 !	۳. ا ۲. ا	: : :	126.0	9, 330	000	3 .	1 1	86.0	79.20	1	1977 JEHOS
FROCESSED ANNEALED	a.	888	F.	L-1	86	88		10 11		1, 44	99.96		1975 UDOUB

Ti)

TABLE 4.11.2.1 (con't)

©

i		1011	3	TITANEUM	5	TI-6AL-4V	} 4	K(IC)				
FCN:N THICK	ו בַּבּוֹ	× '	•	STRENGTH (KSI)	WIDTH (NIX)	THICK D	DESIGN	CRECTH (1N)	¥,	K(1C) (KS1+SQ	PATE:	REFER
0	Ç	<u>د</u> ا	!	120.0	4.003	2.00%	C 1	996.	F. 47	92. 10	1973	(1) 9E8GB
0	3	α -	<u>-</u> -1	120.0	9 00 E	1. 300	5	1. 574	1, 11	79, 90	1973	1973 85836 (1)
9	Z	œ.	7	120.0	3.003	1. 301	5	1. 575	1. 20	6 3. 10	1973	1973 85836 (1)
222	888	E.	÷	0 0 0 1 2 0 0 1 2 0 0	4. 000 4. 000 6. 000	1.300	555		1.34 1.34 1.36	88.00 87.00 82.00 83.77 3.2	1974	89004 (1) 89004 (1) 89004 (1)
G.	8	E	S	120.0	4.000	98	5		1.12	91.00	1974	B9004 (1)
90 10	63	E	1-1	120.0	3.000	1.500	C 1	}	1.11	80.00	1974	B9004 (1)
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	201212000	ri ci	7	25.00 25.00 25.00 25.00 25.00 25.00	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.002 1.002 1.003 1.003 1.003 1.003 1.000	55555555	1.072 1.092 1.092 1.019 1.029 1.027 1.020	00000000000000000000000000000000000000	77. 90 80. 70 70. 80 96. 10 69. 00 70. 40 94. 70 68. 27	470 470 470 470 470 470 470	90012 90012
0 [5	62	⊢ .	1	120.0	3.000	1. 900	5	1	- 30	83.00	1974	B7004 (1)
	0,000	≟ æ	ĭ	125.0 125.0 131.0 133.0 133.0	2. 000 2. 001 1. 993 1. 998 2. 000	1. 003 0. 676 1. 000 1. 000 1. 000 0. 999	5555555	1, 043 1, 043 1, 043 1, 013 1, 019	0.80 0.64 0.90 0.84 0.67 0.73	70 80 76 90 76 90 76 90 72 70 71 40	4701 4701 4701 4701 4701 4701	90012 (2) 90012 (2) 90012 (2) 90012 (2)

HOTES: USFUSION RONDED - 1700F 4HR,FC TO 1400F AT 100F/HR THEN TO 900F IN 0 .79HR (1) DIFFUSION ROND ANNEALED = 1750F 1.5 TO 4HR,FC TO 900F AT 100F/HR

TABLE 4.11.2.1 (con't)

T1-6AL-4V

PUINALIT

を含むできない。 「「「「「「「「「「「「「「「」」」」というできない。 「「「」」」というできない。 「「」」というできない。 「「

THE THE THE TENT TEST SPECIFIEN TIELD THE THE THE TEST OF THE THE THE THE THE THE THE THE THE THE	REFER 1	90012 (1) 90012 (1) 90012 (1) 90012 (1) 90012 (1)	84305 (2) 84306 (2) 84306 (2) 84306 (2)	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	88962 88962 88962 88962 88962 88962	88962 88962
THE DITCH TENT SPECIFIEN VIELD						
THE BY THE BY THE STREAM HIDTH THICK DESIGN LEVELY HILLDY THICK DESIGN LEVELY HILLDY THE BY T				,		666
HILLY TEST SPECIFIEN VIELD THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY TEST SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY TEST SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY TEST SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH LEWETH (RICOTYYS)**2 KICK) NEW TOTAL HILLY SPECIFIEN THICK DESIGN LEWETH L	BIAN	=======================================	ri	i ni	, K	
TOTAL THE STATE SPECIFIED VIELD	K(IC) HEAN RT IN)	9 9				
ON FORM HICK TEPP ORIENT STRENGTH HIDTH THICK DESIGN LEWCH (RICE)/TYS) FORM HICK TEPP ORIENT STRENGTH HIDTH THICK DESIGN LEWCH (RICE)/TYS) WALFU ET 1 50 R.T. T-L 134 0 2.000 1 0.00 CT 1 0.03 0.05 1.00 1 0.01 0.03 0.05 1.00 2.00 1 0.00 CT 1 0.03 0.05 1.00 2.00 1 0.00 CT 1 0.03 0.05 1.00 8.T. S-T 3.998 1.493 CT 1.92 1.43 8.00 1.00 0.0 T 1.00 0.0 0.03 142 0.0 2.00 1 0.00 CT 1 0.00 0.03 144 0.0 1.00 0.0 1 0.00 CT 1 0.00 0.03 145 0.0 2.00 1 0.00 CT 1 0.00 0.03 146 0.0 1.00 0.0 1.00 0.0 0.03 147 0.0 2.00 1 0.00 CT 1 0.00 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 1.00 0.0 0.03 148 0.0 1.00 0.0 0.00 0.03 148 0.0 1.00 0.0 0.00 0.03 148 0.0 0.00 0.00 0.00 148 0.0 0.00 0.00 0.00 148 0.0 0.00 0.00 0.00 148 0.0 0.00 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.0 0.00 0.00 148 0.00 0.00 148 0.00 0.00 148 0.00 0.00 148 0.00 0.00 148 0.00 0.00 148 0.00 0.00 148 0.00 0.00 148 0.00 0.00 148 0.00 0.00 148 0.00 0.00 148 0.00 0.00 148 0.00 1	K(1C) (KB1•59					B
ON FIRED (T TEET SPECIFEN VIELD (IN) (IN) (IN) (IN) (IN) (IN) (IN) (IN)	'S) • • 2			i i		
ON FIRED (T TEET SPECIFEN VIELD (IN) (IN) (IN) (IN) (IN) (IN) (IN) (IN)	10.77 10.77		4 4 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DN FORM LIJICA TEST SPECIFIEN VIELDSPECIFIEN GARCINEM LEGION	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1	,
NA FORTH THICK TEMP OR LENT STRENGTH WIDTH THICK (RST) (IN) (IN) (IN) (IN) (IN) (IN) (IN) (IN	CRACK LENGTH (IN)	1. 043 1. 033 1. 031 1. 018 1. 042	1. 926 1. 881 1. 920 1. 963	00000		0000
NA FORTH THICK TEMP OR LENT STRENGTH WIDTH THICK (RST) (IN) (IN) (IN) (IN) (IN) (IN) (IN) (IN	ESIGN	55555	C C C C C C C C C C C C C C C C C C C	55555	 555555	; ; 555
ON FORM LHICK TEMP ORIENT STRENGTH WIDTH TIN) (F) R.T. T.L. 134.0 2.000 N/ALED 2 90 1.798 ON BT 8 00 R.T. S-T 1.30 0.1.798 ON BT 8 00 R.T. S-T 1.30 0.2.000 ON BT 8 00 R.T. S-T 1.39.0 2.000 ON BT 8 00 R.T.	ECIMEN- HICK (IN)	1. 000 1. 001 0. 877 0. 979 1. 004	1, 493 1, 493 1, 493 1, 493	000000	888888	900
ON FORM THICK TEPP ORIENT (F) VALED 2 50 2 50 2 50 2 50 2 50 2 50 2 50 3 00 8 00 8 00 8 00 8 00 8 1. S-T 1. S-T 1. 00 8 00 9 00 9 00 14 00 14 00 14 00 15 00 6 00 7 1						
ON FORM THICK TEMP (F) ON BT 11.50 R.T. WALEU BT 12.50 R.T. ON BT 80.00 R.T. SIT F 14.00 R.T. GRAIN F 6.00 R.T. HALVE 6.00 R.T. CRAIN F 6.00 R.T. CALTIN F 6.00 R.T. OXALTIN F 6.00 6.00 C. OXALTIN F 6.00 C. OXALTIN F 6.00 C. OXALTIN F 6.00 C. OXALTIN F 6.00 C. OXALTIN F 6.00 C. OXALTIN F 6.00 C. OXALTIN F 7.00 C. OXALT	VIELD STRENGTH (KSI)					141.0
ON FORM THICK TEMP (F) ON BT 11.50 R.T. WALEU BT 12.50 R.T. ON BT 80.00 R.T. SIT F 14.00 R.T. GRAIN F 6.00 R.T. HALVE 6.00 R.T. CRAIN F 6.00 R.T. CALTIN F 6.00 R.T. OXALTIN F 6.00 6.00 C. OXALTIN F 6.00 C. OXALTIN F 6.00 C. OXALTIN F 6.00 C. OXALTIN F 6.00 C. OXALTIN F 6.00 C. OXALTIN F 6.00 C. OXALTIN F 7.00 C. OXALT	SPECIMEN	ب خ	*	' : :	1 1 1	! ! ! ! !
ON BT 1.50 WALEU BT 1.50 WALTEU B 00 B	TEST TEMP (F)	⊬ ∉	⊨ œ	! ⊨ ! ⊨ ! α∈	1 1 π	' a≟
ON NOALE U BIT I STANTIN TO TO TO TO TO TO TO TO TO TO TO TO TO	*	8 4 8 8 4 8	88888	88883		, 000
00 V V V V V V V V V V V V V V V V V V	្ត	ଳ । ଓ ଓ ଓ ଲ		1	ı	1
ON VYALEU ON CRAIN	_	<u>.</u>	6	1 14		ı u
	NO1 1 1	DIRID ANNEALED	DOWNED DOWNED	COARSE COARSE IN 1300F R. AC	FINE CRAIN	10-20XALPHM TO 20X

S: DIFFUSION WAND ANDEALED = 1700F 1,5 TG 4FG,FC 10 900F AT 100F/HR) DIFFUSION BONDED = 1700F 4HR,FC TO 1400F AT 100F/HR HEW 10 900F IN 0 75HR

TABLE 4.11.2.1 (con't)

. .

	1			J 6			a	88
	REFER	8962 8962 1	HA002 HA002 JEH01	₩9068	88144 88144 88144	84306 84306 84306 83064 83064	84306 NC001 NC001 NC001	84306 84306 NC001 NC001 NC001
	DATE		1981 1981 1977	1972	1973 1973 1973	1972 1972 1972 1972 1972	1972 1976 1976 1976 1976	1972 1972 1976 1976 1976 1976
	BTAN DEC	.		1	o N	•	ci -	7
	2 = !	/1 .69	33. 6/	1 1 1	87. ¶	100.6/	8 3.9°	97. 5/
	K(1C) ME (KS1450RT	70.0	\$ R R R	112.00	65 CE 00 CE	92.79 94.89 112.89 105.89	83.08 83.09 82.09 74.17	92.30 92.10 81.82 87.42 89.64
•	2.5* K(IC)/TYS)**2 (IN)	0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1	9. 45 9. 17	1.94	0.0 0.0 0.0 0.0 0.0	400000000	7777	25 3 7 F F F F F F F F F F F F F F F F F F
K(1C)	CRACK LENGTH (1 (1N)	0000	1.297	2.137	1.970	1, 741 1, 824 1, 817 2, 038 2, 047	2. 031 2. 031 2. 049	2. 084 2. 102 2. 102 2. 076 2. 076
۱-4 ۱-4	DESTON	555 1	55 \$	1 5	555	555555	55555	555555
11-6AL-4V	SPECIMEN-1 THICK DE (1N)	0000		i 600 i	2 2 00 2 00 4 00 4 00	1.1.2.2.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	1. 578 1. 578 1. 578 1. 577 1. 578	1. 496 1. 973 1. 973 1. 978 1. 978
5	E CITA	0000 I	396	000	4 4 4 900 000 000 000	6.6.6.4.4.4.4.4.9.0000000000000000000000	0.000000000000000000000000000000000000	# # 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
HUINVIIL	IELD RENGTH (KSI)	133.0	_	127.0	157. 0 157. 0 157. 0	119.4 119.4 119.6 126.0 126.0	124.0 124.0 124.0 124.0 124.0	123 3 123 3 127 0
	∪ —	; ; ;	<u>.</u> I	1 -	ĭ	<u>י</u> ר	5	Ţ
	TEST TEMP (F.)	!	# # # #	E	6	⊬ œ	⊢ ≅	ri Ci
	HICK TIN)	1 2000 : 1 2000 : 1 2000 :	328	8	888	211244 2000 21124 2000 21124 2124 2124 2124 2124 2124 2124 2124 2124 2124 2124 2124 2124 2124 21	8 8 8 8 3	000000
	_		<u> </u>		c.	c.	w	m
	101:	HA 40-SOZALPIN F 49-10-SOZ PRIMARY ALPIN, HILL ANNEALED 1390F	ANNEAL	HILL WREALFD	MIIL ANNEALFU	HILL ANNEALED	MILL AMEALED	HILL AMERLED
	GN _C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	#5 40 40 10 11 PR EMO	אורו	יינר.	1 2	ם ה בור	אורר	411.1

(1) CURTISITION(WE FERCENT) 6, 51AL, 4, 06V, 0, 024C, 0, 19FE, 0, 012N, 0, 006M, 0, 150 (2) CORFOSITION(WE FERCENT) 6, 55AL, 4, 51V, 0, 022C, 0, 16FE, 0, 009N, 0, 006M, 0, 16D

TABLE 4.11.2.1 (con't)

K(IC)

11-6AL-4V

TITANIUM

: 5	C:				0.00	1 0		
	HA002	80538 80538 80538	80338 80338 80338	80538 80538 80538	84360 84360 84360	84306		84004
PATE	1961	1971 1971 1971	1971	1971	1971 1971 1971	1972	1972 1972 1973 1973 1974 1974 1974 1974 1974	1974
BTAN		e n	ei ei		# fi	1		
MEAN DEV		47.77	49. 9/	43. 6	8 . 9.	1 1 1		
K(IC) MEAN (KBI#SORT IN)	60 99	2 9 9 1 1 8 9 1 1 1 8 9 1 1 1 1	4 4 8 4 8 6 8 8 8	37.30 4.3.30 80	8 8 8 8 8 8	1 0	74 996-996-997-996-996-996-996-996-996-996-	85. GO
Y8) ***						1		
2, 5+ (A(1C) ZTYB) ++2 (IN)	ő ő	999	887	9.00	1.15	1 6	011011011011000000000000000000000000000	
CRACK LENGTH (11N)	1, 399		1 1 1		1, 277	1 6 6	200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	;
	5	555	555	555	555	; 5	555555555555555555555555555555555555555	C
PECIMEN- THICK D (IN)	1. 248	888	888	1.1.1 888 888	1. 250	. 302	1. 230 1. 230 1. 230 1. 230 1. 230 1. 230 1. 230	80 80 80
S HIGH	2. 478	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 6 8 8 6 6 6	9 9 4 9 9 4 9 9 8	9.86	444444 N	900
VIELD STRENGTH (KRI)	130.0	200	0.00	140.0	120.0 127.0 127.0			120.0
SPECIMEN	r1	۲.	7	.	7		5	
TEND TEND (F)	F.	⊢ ′	ب ش	# #	r a	1 5	F. &	
~	8	888	288 888	888	888	1 . 98 . 1		
FORM THICK	ie.	lı.	ı		=	! !	£	. •
106	HILL ANNEALED	SOOF 2 HR AC	HILL ANNEALEN	HILL ANNEALED	HILL AMERALED 1300F 2 HR. AC	RECRYSTALLIZE	ANTEAL 12E	
COMDITION	HILL A	HILL A	HILL A	HELL A	HILL M	RECRYST	ANTE AL	

NUTES I 1) RECRYSTALLIZE ANNEAL-1700F 4 HR.FC TO 1400F AT 100F/HR.CDDL TO 900F IN ; 75HR

.:::

TABLE 4.11.2.1 (con't)

(2)

. . .

Condition Cond						TITAMICE	5	4-11	TI-6AL-4V	KCIC	û					
1		_	*		SPECIMEN OR LENT			PECIMEN THICK (IN)	E8168	CRACK LENOTH (1N)	2. 9e (K(IC)/TVS) es 2 (IN)	K(IC) HEAN (KSI-SORT IN)	PA :			
12.0																
13.0 12.0	PECRYSIALL 12F	۵	23		1-1	120.0	1	230		-	1.14		197	_	-	_
13.0	ANT A		200			20.00		1. 370		-	= :		197		_	=
1 20			3			121.0		1. 496		190 - G	7	41.00	197		-	_
1 1 1 1 1 1 1 1 1 1			3			121.0		200		!	8.	87.00	197		-	=
130 121.0 6.001 1.477 CT 2.103 1.30 86.60 1.77 1.472 81306 1.41 90.20 82.87 7.8 1972 81306 1.41 90.20 82.87 7.8 1972 81306 1.41 90.20			3			121.0		300			1.4	92.00	197		_	_
1 50			<u>۔</u>			121.0		200		3, 103	8-	99.99	197		_	<u>-</u>
F 2 50 R T. 7-L 120.0 3.000 1.108 CT 1.320 0.823 69.30 1972 84306 (1 2 5 5 R T. 7-L 120.0 3.000 1.108 CT 1.320 0.823 69.30 1973 89004 (2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			3			121.0				9.069	1. 4	R	_		_	•
Part 1.50 6.53 74, 14.76 CT 1.476 CT 1.520 0.643 0.6430 1972 84306 197													•			
F 2 50 R T. T-L 130.0 1,108 CT 1,320 0,92 70,00 1972 1970 1974 89004 1974 </td <td>RECRYSTALLIZE AMMENL</td> <td>۵</td> <td>8</td> <td></td> <td>ĭ</td> <td>;</td> <td>J. #1</td> <td>1. 476</td> <td></td> <td>2. 110</td> <td>1.83</td> <td>77. 00</td> <td>197</td> <td></td> <td>~</td> <td>2</td>	RECRYSTALLIZE AMMENL	۵	8		ĭ	;	J. #1	1. 476		2. 110	1.83	77. 00	197		~	2
1 2 2 2 2 2 2 2 2 2	PECRYSTALLIZE	٩			ن <u>ہ</u> خ		9	1.108	_	1. 320	0.83		197		- 2	-
2.50 120.0 4,000 2,000 CT 120 95,00 1974 89004 2.50 120 0 1,000 1,000 1,000 1,000 1974 89004 2.50 120 0 1,000 1,000 1,000 1,000 1974 89004 2.50 120 0 1,000 1,000 1,000 1,000 1974 89004 1.50 120 0 1,000 1,000 1,000 1,000 1974 89004 1.50 120 0 0 0 1,000 1,000 1974 89004 1.50 120 0 0 0 0 1,000 1974 89004 1.50 120 0 0 0 0 0 1974 89004 1.50 120 0 0 0 0 0 1974 89004 1.50 120 0 0 0 0 0 1974 89004 1.50 120 0 0 <td< td=""><td>NEW CAL</td><td></td><td></td><td></td><td></td><td></td><td>!</td><td>230</td><td>_</td><td>!</td><td>0 0</td><td></td><td>197</td><td></td><td>- 7</td><td></td></td<>	NEW CAL						!	230	_	!	0 0		197		- 7	
1.25 1.20	;		8				4.000	000	-	-			197		-	-
2.50 120.0 4.000 2.000 CT 0.83 64.00 1974 89004 <								230		-	8	26.90	161		-	-
2 50 120 0 CT 130 93 1974 87004 1974							4.000	8		1	8	69.00	197			~
2 00 120.0 6.001 2.009 CT 1.97 106.40 1972 993 74.00 1972 99304 1972 99304 1974 99004 1974 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>!</td> <td>1</td> <td></td> <td>1</td> <td>8</td> <td></td> <td>197</td> <td></td> <td></td> <td>~</td>							!	1		1	8		197			~
1.25							9	200		3.048	1. 97	106. 40	197		2	~
1.50			2				1	200		1	60	74.00	197			-
1.25							900	1. 370		-	- 30	86.90	197			_
1.25							4 90	1.498		2. IB	- -		197		- 2	-
2 30 120 0 4 000 CT 0 98 73 00 1974 89004 1 120 1 120 1 120 0 1 1			ار در				!	1. 230		-	1. 14		197			_
1.30							4	, 000 000 000		1	9		197		_ _ _	^
2 50 120 0 CT 1.44 91.00 1974 B9004 1 2 2 50 120 0 3.000 1.27 CT 1.344 0 0.90 77.39 B9336 1 1 2 2 50 1 2 2 0 0 1							900 F	1.300		1	2		197		- -	_
2 50 120.0 3.000 1.127 CT 1.344 0.90 71.90 1973 8536 1.79 101.30 1973 8536 1973 8536 1.79 101.30 1973 8536 1.79 101.30 1973 8536 1973 8536 1973 8536 1973 8536 1973 8536 1973 8536 1973 8536 1973 8936 1974 8904							1	-	5	1	=	81.8	197		_	_
2 00 120.0 5.999 1.997 CT 3.036 1.79 101.30 1973 83246 2 30 120.0 2.997 1.374 CT 1.334 0.64 69.40 1973 83246 2 30 120.0 1.290 CT 1.00 1974 89004 1974 89004 1 20 1.20 1.290 CT 1.00 76.00 1974 89004 1974							000 Fi	1, 127		1. 34	9		197		-	•
2 30 120 0 2.997 1.374 CT 1.334 0.84 69.40 1973 83836 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							5.999	1. 33		3.036			197		_	•
2 30 1870 0 1120 0 1120 0 1120 0 1120 0 1120 1134 811 00 11974 89004 1 1220 1 1			s S				e vi	1.374		1. 534	7 0		197		-	_
1.25			8				!	!		-	1, 14		197		_	_
F R.T. L-f 4.000 CT 1.00 75.00 1.974 89004 (1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			23				!	230		-	B		197		_	_
1.00			8				♦	% %		-			197		-	_
1,00			유 -				3000	-	_	-			167		_	_
F R. T. 1,-f 3,000 1,300 CT 1,03 77,00 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 89004 1974 1972 89004 1974 1974 89004 1974			3				38	8	_		-		197		_	=
F R. T. Lf 3.000 1 300 CT 1.03 77.00 1974 89004 (4.000 2.020 CT 1.20 83.00 1974 89004 (3.000 1.300 CT 0.92 73.00 1974 89004 (4.000 1.790 CT 1.06 78.00 1974 89004 (4.000 1.790 CT 1.06 78.00 1974 89004 (•			
4.000 2.020 CT 1.20 83.00 1974 87004 (DECRYCIALL 176	ŗ	!		-	}							197		·	2
3.000 1.500 CT 1.06 73.00 1974 89004 (10 mm	•	! !		;	1				1			107		_	=
114.0 2,977 1,499 CT 1,528 1,43 86,10 1973 89034 (1							197		_	: :
114.0 2.977 1.499 CT 1.528 1.43 86.10 1973 89034 (3 1			: 6					: 4
114.0 2.977 1.499 CT 1.528 1.43 86.10 1973 85034 (1			1		2		1			141		٠.	
			e E			114.0		- 430		926			14		-	^
		TALL LZE	A:NEAL.	-1700F	4			HE. COOL		Z	ş					
BECRYSTALL 12E ANNEAL = 1700F 4 NO. FC TO 1400F AT 100F/HR, COOL TO 900F IN		1ALL 17E	AMEN	1700	•			H. COOL		Z	ş					
PECRYSTALLIZE APACAL=1700F 4 HD.FC TO RECRYSTALLIZE ANMEAL=1700F 4 HD.FC TO									1							

PECRYSTALLIZE ANNEAL=1700F 4 HR.FC TO 1400F AT 100F/HR.CDOL TO 900F IN TRECPYSTALLIZE ANNEAL=1700F 4 HR.FC TO 1400F AT 100F/HR.CDOL TO 900F IN TYS APPRIX 120

TABLE 4.11.2.1 (con't)

					TITANIUM	5	11-6	T1-6AL-4V	K(1C)	c					
DI 1 10	_	THEORY CIND	TFST TEMP (F.)	SPFC INEN	VIELD STRENGTH (RSI)	WIDTH CAN	SPECIMEN H THICK (IN)	DESTON	CRACK LENOTH (111)	2. 3s (XCIC)/TYB)+s2 (IN)	K(1C) (KBI+80	K(IC) STAN MEAN DEV HT IN)	DATE	REFER	
T T T T T T T T T T T T T T T T T T T	i i u	, 2	, ~	1	0 511	8	- S	5	1. 924	1. 49	8		1973	85034	=
ALBERT AL	•	2 2	•	•	. Т.	. 6.	49		3. 939	8	30.5		1973	_	=
					117.0	2, 959	1.303		1. 334	1. 47			1973		=
					117.0	905 905	28		1, 539	1.03			1973		=
		5 62			_	60 Fi	1. 499		1.540	1. 46	90° 90		1973	83034	<u> </u>
					118.0	2. 999	1, 499		1, 526	1. 19			1973		2
		9 6			119.0	13 10 10 10	1, 497		1. 536	1. 46			1973	_	2
						3.007	1. 498		1. 363	1. 49			1973		2 :
		0;; (4				3.003	1. 300		1. 932	- 3 - 3			1973		2 ;
						6 6 7	- - -		1. 933	ጽ ~			6/61		2 :
						ы 8	1. 909		- 38 - 38	7 :			261		2 :
		6. 70				ы 6	1. 302		1.941	9 0			1979		2 :
		2				ا ا ا	1.376		1.615	8			6761	75850	2:
					121.0	D 00	1. 374		200	1.27			2/41		
		2				E 6			96	2.5	2 9		7/61		
		8 8				88		5 t		3 =			1973		
						8 6	200		900	1.24			1573		=
						000	1 499		1,633				1973		=
						600	1.318		- 383	1.12			1973		1
		3			123.0	2 98	1.417		1. 993	0.43			1973	_	1
		2				3 90	1.377		1.603	1. 17			1973		=
		S -				3 9 9	1.377		1. 578	6			1973		2
		8			124 0	3.003	1. 301		1. 607	1. 16			1973		2
						900 Fi	1. 409		1. 577	9.0	76. 98		1973		2
					124.0	8 6	100		1. 583				1973		2 :
						ci Si	1.34		1. 585	B (27.5		
		S Cr				9 8	- 30		- 349	8			7/61		- :
						3 00	1.379		1.612	¥ :			7/4	/CBCB /	
		2			126.0	E C	1.493		1, 241		3				
		8 9					1. 246			 			107.0	_	=
		R :							1 367				1073		
		R 9				38	1.630	<u>.</u>		2 6			1973	_	1
		2 6								3 8			1473		2
		R 9			2	2 6		5 2		3 8			1973		2
		2				3			8		-	83.6/ 3.	.		
RECRYSTALL 12E ANNEAL	•	}	. .	Ţ	1	J. 500	1. 750	5		F .	87.00		1974	99004	ô

PECRYSTALLIZE ANNEAL=1700F 4 HR.FC TO 1400F AT 100F/HR.COOL TO 900F IN . 75HR PECRYSTALLIZE ANNEAL=)700F 4 HR.FC TO 1400F AT 100F/HR.COOL TO 900F IN . 75HR 1YS APPRIX 120 13) (13) (2)

TABLE 4.11.2.1 (con't)

					TITANICH	E	11-6	11-6AL-4V	K(1C)	Û						
NO1110N		± '	TEST TEMP (F.)	SPLC INEN OR I CNT	VIELD STRENOTH (KSI)	E TLOIR	DTH THICK I	DESIGN	CRACK LENGTH (IN)	2.50 (R(IC)/TYB)002 (1N)	K(IC) E K(IC) MEAN C (KGISTORT IN)	BEV DE	DATE .	REFER	1	
PECDVCTAL 17E	. L	, ,	-	<u> </u>	- 1	8	-		ļ	0.0			1974	90004 (=	
ANEAL		1	;	!	!	3 000	300	5		0.83	70.00			89004	1	
							750	5	!	1. 40				99004	=	
		04 6			116.0	٠.	. 502	5	1.04	1.36				83034 (=	
		g G			117.0	100 100	. 500	7	1. 937	1. 24	85. 56 Sc.			92034	2	
		6. 70			118.0		- - - -	5	1. 578	8	83. BO			92024	2	
		5 623 5			119.0	100 10	- 8	L 0	1. 343	1. 10				9034	2	
		3, 40			119.0		- 8	5	2.040	1. 27				9000	2	
		55 52 53			0.0	2. 777	1. 499	5	1. 518	1.03				89034 (=	
		800				3.007	- 30	5	1. 374	1.33	88. 4 0			95857 (2	
		30 00			120.0	2,003	1. 498	5	1 320	1. 23				85034 (=	
		200			121.0	6 6	- 23 23	5	1, 973	1. 11				83837 <	2	
		6. 70			121.0	9	. 38	CT	1. 546	8 0				85034 (=	
		<u>ء</u>				900 E	1. 243	-	1, 475	2.3	64.80		1973 8	82837 (_	
		<u>۾</u>			122.0	3 90 90	1. 248	C	1. 947	96.0				85857 (=	
		3 40				946 5	1, 497	Ç	1.493	6			E.	83034 (<u>-</u>	
		4 73				100 100	. 302	C	1. 536			_		B2034 (<u>-</u>	
		6.70				9 9 9	- 30 - 30	5	1. 344	8	9.6	_		B2034 (2	
		8			123.0	2.438	300	CT	1. 530	2				89034 (=	
		8				13 13 13 13 13 13 13 13 13 13 13 13 13	 8	CT	1. 972	2.				85857 (<u>-</u>	
		6. 70			124.0	2.998	- 88 80	5	1. 501	1. 12	83 80			B2034 (<u>-</u>	
		4 73			123.0	3. <u>00</u> 1	8	5	1. 341	1. 24		-		83034	=	
					125.0	900 Fi	- 48	- 2	. 993	8		_	_	63637	2	
					126.0	9 6 6	200	5	. 98	8:		_	-	95637 (<u> </u>	
						13 493	. 302	Ç.	1. 535	1.31		-		83034	î	
		S S				64 64 64	<u>2</u>	5	1. 316	8	9			83034	2	
					26.0	6 8	<u> </u>	Ļ	3. 321	1. 47		-) /6868	2 :	
						8 8 8 8	8	5	1. 730	8 3	9	- •	B 6748) /CBCB	2 :	
					127.0	9 6	8	5 8		5	2 9	•		10000	::	
		29				3 8	3 (5	776	3 6				7000	: :	
						3	5	- !	240	:		•			::	
		P :				8 8		5 (3		2 9				•	
		2				8	1.377	ָ בּ	1. 373	# (P) (P) (P) (P) (P) (P) (P) (P) (P) (P)					•	
		<u>ያ</u>			0.6	E 00	424	נו		2	R				2 :	
		8				2 5	333	ر د	386		65. E			**************************************	2 :	
		8			24.0	9 6	1.367	5	- 3 8 ¢	~ ~	8. 15.			82034	<u> </u>	
		<u>۾</u>				6	1.347	<u>د</u>	1. 587	%	8 6			0.000	= :	
		2 2			30.0	8	986	F.	1. 364	4	68. GO		1973 8	B3034	= :	
		<u>8</u>			0.00	9 010 F	234	L)	- 649	. Z) /caca	<u> </u>	

THEST RECEYSTALLIZE NAMEAL-1700F 4 HR.FC TO 1400F AT 100F/HR.COOL TO 900F IN , 794R TYS APPROX 120

TABLE 4.11.2.1 (con't)

K(10)

TI-64L-4V

TITANICH

DATE REFER	1973 63034 (11) 1973 63637 (11) 1973 63637 (11) 1973 63637 (11) 1973 63637 (11) 1973 63637 (11) 1973 63637 (11) 1973 63637 (11)	1974 89004 (2) 1973 89634 (1) 1973 89034 (1) 1973 89034 (1) 1973 89034 (1) 1973 89634 (1) 1973 89634 (1)	1973 85836 1973 85836 1973 85836 R1003	1974 BB962 1974 BB962 1974 BB962
IC) BTAN NN DEV IN)	6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	89. 4 6. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7	42.6/ 2.0	,
2.9* (IC) TVB)**? K(IC) ME(IN) (ME)************************************	5 2 2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	B B B C C C C C C C C C C C C C C C C C	6.00 4.00 5.00 5.00 5.00 5.00 5.00 5.00 5	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
ಕ 1	987 0.99 653 1.27 922 1.32 962 0.93 963 0.91 977 0.86 537 1.15 623 1.15	952 952 953 953 953 953 953 953 953 953 953 953	831 0.16 801 0.18 790 0.19	2.00 000 000 0.44 000 0.44
ESICN	5555555555	555555555	555	1 555
TH THICK	004 1.399 008 1.344 000 1.300 005 1.375 006 1.497 000 1.409 000 1.380 007 1.380	000 003 001 11,302 000 11,302 000 11,302 000 11,302 000 11,302 000 11,303 000 10,303 000 10,300 1	903 0 633 903 0 634 901 0 632	2. 000 000 1. 000 . 000 1. 000
STRENGTH WID	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22222222 222222222 222222222 222222222	160.00 3. 160.00 3. 126.00 3.	132.0 142.0 22.0 22.0 22.0 22.0
SPECIMEN	<u>z</u>	ا ا ا	t !	1
16ST (15HP (F)	e.	μ 1 <u>1</u> 2 1	E	r r α α
FERRY THICK (IN)	8888888888 	444444	333 8	8 8 8 8 8 8 8 8
ייין אני בינונא	i.			
1401 L1 1040 3	FCR1STALLT2 INEAL	RE(RYSTALL)ZE		STDA STDA 1750F 1 HR MG. 1310F 2 HR AC

HITES:
(-1) RECRYSTALLIZE APMEAL=1700F 4 HR,FC TO 1400F AT 100F/HR,COOL TO 900F IN .75HR
(-2) RECRYSTALLIZE APMEAL=1700F 4 HR,FC TO 1400F AT 100F/HR,COOL TO 900F IN .75HR
TYS APPROX. 120

TABLE 4.11.2.1 (con't)

がからなっ

					TITANIUM	5	3-11	11-6AL-4V	K(10)	•						
NO 1 1 1 0 N	_	THICK	TEST (TEMP (F.)	CIMEN	YIELD STRENGTH (RSI)	E SE	SPECIMEN- H TMICK (IN)	DESIGN	CRACK LENOTH ((1N)	2. 5e (K(IC)/TY8)e+2 (IN)	K(IC) MEAN (KBI4BORT IN		₹ 2 '	DATE	REFER	1
1450F. 1HR. AC	. a .		· [. ב	146.0		2 ;	5	i		8 .	,	! !	1961	10031	ı
1700F 6 HR AC	· • • • • • • • • • • • • • • • • • • •	, 000000	/ + → t ex	1 1 1 1	866666		1 269	; 55555	1. 603 1. 603 1. 987 1. 983 1. 604	1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0	7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i 01 •	44444		i
1700F 6 HR. AC.	Ŀ	999999	e e	÷ •	00000	00000 00000 00000 00000	2 4 4 4 4 4	555555	1. 364 1. 368 1. 368 1. 568	0.1.0.1.0.1.0.1.0.0.1.0.0.0.0.0.0.0.0.0	86. 30 76. 90 87. 90 74. 80 77. 10	9. 2/	100 t 100 t	1973 1973 1973 1973 1973	83837 83837 83837 1 83837	ı
1250F 1 HR, MA, 1000F 4 HR	t i tu t <u>u</u> 1	1 88 88 1 88 88	1 73 1	, , , , ,	0.991		1 00 000 1 00 000 1 01 01 01 01		2 098 2 098 2 098 2 099	1 00 00 1 44 44 1 08 64	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2. 2. 71. 5. 1. 5.	n n r	196 196 196 196	6411	
	1 . 1:	88 88	° 8	į į	147.0 147.0 148.0	8 8 8 8 8 00 00 00 00	000 000 000 000	로로 로로	2.091 2.041 2.011	00 00 04 44 11 7\$	66. 48 66. 68 69. 68	65.0/	4 0	3961 3961 3961	76411 76411 76411 76411	
1750F 1 HR, WG, 1000F 4 HR 1750F 1 HR, WG,		888 89 ศักส์ ก	F	ť ť	40.00 60.00 60.00 60.00	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000 000 000 000 000 000	로로로 로	2.019	000 00 104 04	7.4. 3.6. 5.6. 5.6. 5.6. 5.6. 5.6. 5.6. 5.6	7.3	6 € 6	3661	76411 76411 76411 76411 76411	
1990F 4 HR		8					3		Š	B						

TABLE 4.11.2.1 (con't)

	!	:			1		1 1		1 1	
	REFER	6411	8583	3836	83836 83836	3836 3836		88440	96968	1001
	DATE :		1973	197	1973	1973	1973	1973	1973	1981
	STAN	6 1		'n		.	1 1		1 0 1 1 0 1	
	MCIC) MEAN MT IN)	78.0/		5	71.8/	2	l I 1		1 4 1	
	K(IC) MEAN (KSI*BORT IN)	4.8	6	9.6	74.96	4 6 4 6 8 6	79.80	90. 90	3.9.80 13.00	
	2. 34 (K(1C)/TVS)++2 (1N)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5. 8	11.1 8.0 1.0		64 .1 64 .1	1 02 H	1.21	1 7 00 1	
K(1C)	CRACK LENOTH ((IN)	2.033	1. 991	1.93	1,717	1. 936 1. 986	1.716	1. 381	1.869	
TI-6AL-4V	DESTON	호호	L	55	55	55	; ; ;	5	; 55	5
1-1-	SPECIMEN THICK DESI (2N) B	88 1	1. 501	2 2	1.302	2 2	1.300	1. 500	0.634	8
5	WIDTH (IN)	88	4.003	4.4 000 4.00	400	4. 008 4. 003		3.003		i
TITANIUN	YIELD STRENOTH (KSI)	127	120.0	88	0.00	0.0	115.0	130.0	130.0	126
	SPICTHEN	7	L-1	ٻ		7	֧֚֚֚֚֚֚֚֚֚֚֚֚֚֚֡֝֝֡֓֓֓֝֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝	ĭ	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	7
	TEMP TEMP (F)		⊬ Œ	œ	; ⊬ ; æ	Ę.		<u>~</u>	! 	€
	PRODUKT FORM THICK (1N)	88 1	8	5 S	88	88	. 8 . E	00 C	7 26 7	8
	FORM			۵	1 ; , <u>a.</u>	٩	F	F F/IM. AC	; ; ;	ء و د
	CONTRIBUTION	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1HR 00F. A	1HR FC DOF, AC	IHR. FC	INR. FC	1750F 2 HR, FC F	1750F 2 HR.FC F	2482. MQ. 2482. AC. 3	0 34n 30f. 21
	Q COEST	1750F 1000F	1750	1750 10 1	1750F 10 RT	1750F 10 RT	17508	1750¢ 10 90	1750F 1000F 1300F	1900f AC 13

TABLE 4.11.2.2

K(C)

11 -6AL-4V

TITANICH

	6	5			1			,					24	-		2	
CONDITION	FORM	FORM THICK TEMP (IN) (F)		5	STR	WIDTH THICK (IN)	THICK	1N1 2A(D)	FINAL (13) 2A(F)	0MBET (KB1) 3(0)	KAST) S(MST)	K(AP9) HEAN (KSIeSORT IN)		K(C) MEAN (KBI+990PT IN	_	Ω ,	DEV DATE REFER
						NCK N	BUCKL ING OF	CRACK	EDCES RESTRAINED	FBIRAL							
ANDE AL FD	u	8	T-1001		9 5 7 1	6	9	3		İ	4	• 11				-	643 54304
})	8	•		0 571	8	0	8	•		10			!!!!		. =	
		0			3	00 00 00	0	060	'	!	8	117		1		, 	963 54304
		3			63	8 8	0000	3	-	!		122		!		-	
		0			0 631	900 80	0	8		į		135		!!!		_	
		8				00 B	040	2		!		121		!		_	
		0			0.63	000 8	0.040	4.440		}		116. 22 121 4/ 7.0	7.0	1	- /		1963 54304
ANNEALED	ø		⊢	5	137.3	900		000	•			143		-		-	
					137.3	8		8				137		-		~	
					137.3	000 B		000	•	1		143		!		_	
					137.3	8		9	•	;		5		1		-	
		300			137.3	900 B	000	986		!	500	152.56		-		-	1963 54304
					137 3	000 49		3.030	Ť	ţ		146		1		-	
					6 761	000 B		0 400		;		8	Ψ	!	- /	-	
ANNEALED	ຫ		330 L-T	ב	76.7	900		0.530		ļ	111. 20	69		;		-	
					76.7	8		260	1	;	8	8		1		Ä	
		0			76.7	900	0	0.570	-	1	101	96.06		1		Ť	1963 54304
					46 7	8		930	-	1	2.0	116				-	
					7 94	000 B	0	8 8 8	1	ļ	90.30	149		1		Ä	

1971 83984 1971 83984 1971 93984	1971 83984	1971 83984
187, 79* 182, 38* / 6, 1	142, 95	236.45* 8/10.1 229.56*/ -
37, 80 148, 60 31, 70 140, 00 85, 10 151, 52e144, 37, 6, 1	15.40 125.65	10.380 31.30 45.10 189.99 6 6.100 31.10 67.30 175 67 182 8
3.780 6.860 18.70 3 3.800 5.220 25.60 3 1.720 36.50 8	0, 285 12, 930 13, 550 11, 30 15, 40 125, 65	8.020 10.380 31.30 3.990 6.100 31.10
9000	0.285 12	0.280 B
630	130.0 14.110	130. 0 16. 120 130. 0 16. 120
0.00 0.00 0.00	0.001	130.0
0 25 R T. L-T 0 25 0 25	0.25 R.T. L-T	0 25 R.T. L-T 0 25
٩	۵	a
4	ş	ž.

BUCKLING OF CRACK EDGES UNBUGAN

WANTE - NET SECTION STRESS EXCEEDS BOX OF YIELD STRENGTH, WALUE NOT INCLUDED IN MEAN OR STD. DEV

TABLE 4.11.2.2 (con't)

						TITANIUM	#10#	I	TI-6AL-4V	_	K(C)						
	i	ļ		8		i	į		CRACK LENGTH	00	9TRE89	3		•		2	
D 1 1 0 N	-	DIM	1	3 8	STR	EIOTH CIN)		1N17 (1N) 2A(0)	FINAL (IN) 2A(F)	ONSET (KSI) FI(D)	(K81)	K(APP) MEA (KBI*BORT I		K(C) MEAN (KSI+90RT IN)	N OE C	V DATE	REFER
C } !	: :	!	i f ;	! ! !	() !		1 1 4	1 , 1 1	, ,	ı J	t I	! ! ! !	!	! !	ı	; ;	
						BOC	BUCKLING OF		CRACK EDGES UNKUNDAN	MONA							
MA	1	C 0	æ	1-1	130.0	18, 600 16, 600	0.265	4. 540		33. 40 33. 60	75.30	209.36 212.33 210.8/	3/ 2. 1		/	1971 -	83984 83984
ŽĮ.	2	000	Ε α	F-1	0.000	32, 130 32, 140	0.273 0.273 0.270	8. 010 19. 200 12. 720	21. 700	93.45 93.45 93.45	38.90 26.20 47.00	217, 31 187, 15 233, 00, 212, 5	9/23.3	218. 68 295. 74 257.	237, 3754.	1971 1971 3 1971	83784 83784 83784
Ę.	£	9 8	я. Н	L-1	130.0	32.160 32.160	0.262	6. 020 8. 070		8. 8. 8. 8.	75.20	236.38 205.27 220.8/22	3/22.0		- /-	1971 -	83984 83984
						BUCK	BUCKLING OF	CRACK	EDGES R	RESTRAINED	9						
;	,		•		į	6											
Ç	'n		- 2	5	9 5			6			3 9	2				1964	57873
					, E		9	9	_	31.80	52, 10	166.39		175. 22		36	
						24 030	0.00	9	1	90				1		1964	
					136. 5		0.049	9 9		!	60.70	193.83		1		1961	
					136 10.			8 8		43.60	49.60	36 39	-	228. 75		1964	57573
					5 6	24.060	2 6	9 8	}		4	184.07				964	
		0			36.3	24.070	000	9		1	36. 60			;		1964	
					136.7			6.010	7.350	41. 10	51.80	165. 57		186. 67		1964	
					136.7				1	1				-		1961	
					136.7			6. 010	730	43.80	5	164. 29		207. 75		1964	
		0				24 080			22	45.90	2 2 3 3	38		198. 79		1964	57573
					0.96	24. 080	0.024	900	200		3	130.0G 10/.	8.2170.70		170.4717.	, , , , , , , , , , , , , , , , , , ,	-
Ā	6	0 05	=	<u>r</u> -1	136. 7	24, 370	0, 052	9, 990	}		54, 20	172. 73		1		1964	57573
£	Ú.		~	1-1	23.3		0.212	900	;	;	81.00	258, 66*		***		1964	57573
	:	0			127.3	2		9	1	ļ		243.96				1964	
					129, 3	ž	0. 212	010 9	-	63. 60	70, 60	225. 66		!		1964	
*NOTE - NET SECTION STRESS EXCEEDS	FCT 10N	STRESS	; Exce		0% OF Y	BOX OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR BTD.	NOTH V	ALUE NO	1 INCLU	DED IN	HEAN O	R STD. DEV					

TABLE 4.11.2.2 (con't)

· ; ; .

		5		57573 57573	57.573	97373 97373 97373	57573	57573	57573	57573	57573	;		58782 58782	58782	58782	1
		DEV DATE REFER		1964 57 1964 57	1964 97	1964 37 1964 37 1964 37	1964 57	1964 57	1964 57	1964 57	1964 57:			1964 38 1964 38	86 7961	1964 58	1
	3	\ \ \ \		61	19	19 7. 5. 19	19	5	-	1.9	5	!		~	2	10	1
	:			- /										4			1
	•	MEAN IORT IN				<u>\$</u>	•	•	•	•	•			<u> </u>	•	_	1
		K(C) MEAN (KSI+BORT IN)			167.72	207. 78* 164. 74 134. 07. 199. 4/	163.496	186.89	231. 93	162.23	142.64			146. 98 141. 72 144. 4/	190.38	103.28	1 1
	;			. 2	-		=	-	N	-	-			20.01	-	Ž	1
	Š	" ~ '		204, 41* 245, 86, 238, 5/11, 2		144 2/10.0								101. 17			1
	•	K(APP) MEAN (KBI+BORT IN)			0		3	72.	Š	73*	:				.	ē	i
		K (APF		204, 41° 245, 86	151. 53	155.28 141.29 135.97	98.	175.7	9	149.7	139, 01•			102. 64 77. 57	126. 94	66.03	l l
K(C)	STRESS	KAT)		93. 10 35. 30	47.30	77.30	75. 60	93.30	103, 70, 170, 02+	77.70	75. 40)))	AINED	93. 90 91. 90	54, 40	28 30	1
×		, an i	RAINE		8	888			8	7 07	40		REBTR	nn 	•		1
2	H 0R089		REST		€.	823	0 61. 20	36.00	2. 740 48. 00	5	3		M	-			1
T1-6AL-4V	ENCT	FINAL	EDGES		7. 100	3. 130 2. 340 2. 370	2. 600	2 230	2.74	2. 460	2.090		5300	3.200	9 000	3.200	1
Ė	CRACK LENGTH	1NI FINA (1N) (1N) 2A(D) 2A(F)	CRACK EDGES RESTRAINED	3.010	3. 990	940	1. 980	2 000	1. 980	2. 0 0 0	2.000		CAACK EDGES NOT RESTRAINED	2.020	3.000	3.000	1 1 1
Σ		ا ر عدا	5	212	021	030	620	0.032	0. 127	ç	160	; ; ;	BUCKLING OF	382	25.	86	1
TITANIUM		, ,	UCKL 1	0 0	ö	000	Ö			o o	o o		JCKL 11	00	ó	ó	1 1 1
Ħ		HEAT		24,080	24, 070	8 000 8 010 010	B 040	8.010	8.030	8. 030	B. 020		x	5, 970 5, 970	B. 970	9 970)
		STR (KSI)		129.0 129.0	136.9	163 163 164 3 164 3	127.0	136.0	139.7	60.7	191.7	1		147.1	147. 1	147.1	;
	Ş			<u>-</u> -	ב	ĭ	7	7	1	ĭ	7			L-1	1-1	ב	1
		(T)		E.	8	110	<u>-</u> `	E.	≓ æ	690 F-L	9			E.	R. +	⊢ α	1 1
	5	FORM THICK (IN)		0 9 9	0 02	1 0000 0000	0 03	0.05	0. 13	E0 0	000				!	!	1
	Š	FORM		x	t:	ອ	¢:		ສ	ສ	ហ	-		<u>.</u>	ir.	<u>4</u>	,
												1		٠ ٧٠	. A C	. »	:
		COMBITION										1		1300F 1HR, AC	1300F 1HP. AC	1300F 1HR. AC	!
		GD-10		Š	ă	ž Ž	4	ž	Ę	đ I	Ę	1		1360	1300	1300	1

-MUTE- NET SECTION STRESS EXCEEDS BOX OF YIELD STRENGTH VALUE NOT INCLUDED IN HEAN OR STD. DEV.

the state of the s

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.1 INDICATING EFFECT

OF ENVIRONMENT

MATERIAL: TO	ITANIUN	1 TI-6AL-			
DELTA (DA/DN (10##	-6 IN. /CYCLE)	
		: A	B	С	D
		: : E= R.T. :LAB AIR			
A:	6. 09	: . 129			
DELTA K B:		:			
MIN C:		;			
D:		:			
	7. 00	. 238			
	8.00	: . 340			
	9 . 00				
	10. 00	: 1. 36			•
A:	12. 31	: 2. 90			
DELTA K B:		:			
MAX C:		:			
D:		:			
ROOT MEAN SO PERCENT ERI	-	12. 09			. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
LIFE			سر دان که کند شد هادانی که دان که کارست میا ۵		
PREDICTION					
RATIO					
SUMMARY	_				
(NP/NA)	>2 .	U			

の一般のでは、「一般のできる。」のできる。「一般のできる。「一般のできる。」のできる。「一般のできる。「一般のできる。」「一般のできる。「一般のできる。」「一般のできる。「一般のできる。」「一般のできる。

Figure 4.11.3.1

FATIQUE CRACK QROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.2 INDICATING EFFECT

OF STRESS RATIO

DELTA			DA/DN (10##-	5 IN. /CYCLE)	
(KSI#I N#	:	A	В	С	D
	: :	R=+0. 10	R=+0. 30	R=+0. 50	R=+0. 70
	11.07:	1. 31			
DELTA K B:			. 201		
	5. 18 :			. 0883	
D:	3.07 :				. 0336
	3. 50 :				. 0473
	\$. 00 :				. 0707
	<i>3</i> . 00 :				. 152
	6. 00 :			. 165	. 300
	7 . 00 :			. 334	. 544
	8. 00 :		. 400	. 656	1. 04
	9 . 00 :		. 904	1. 14	
	10.00 :		1. 65	1. 81	
	13.00 :	2. 86	4. 56	5. 34	
	16.00 :	5 . 86	8. 52	12. 1	
	20.00 :	10. 4	17. 0		
	25 . 00 : 30 . 00 :	17. 8 31. 2			
	35. 00 :	58. 9			
	40.00	121			
	41.03 :	142.			
ELTA K B:	21.70 :		20. 4		
MAX C:	18. 26 :			18. 5	
D:	8 . 80 : :				1. 80
ROOT MEAN S		12. 53	16. 74	28. 71	12. 56

	FA	TIQUE CRACK OF	TABLE 4.11.3.3	FINED LEVFLS	
		OF STRE	SS INTENSITY FAC	TOR	
	DATA A		FIQURE 4.11.3.3 II ENVIRONMENT	NDICATING EFFE	;τ
MATERIAL: T: CONDITION:	ITANIUH				
DELTA (DA/DN (10++-6	IN. /CYCLE)	
/ NG1 = 114== /	1,6,		B	C	D
		E= R.T.	E=+ 300F AIR		
DELTA K B: MIN C: D:	8. 55 8. 26	: . 799 : :	. 885		
.	9. 00 10. 00		. 976 1. 26		
	13. 00 16. 00	: 4. 02	3. 60 9. 07		
DELTA K B: MAX C: D:	17. 54 18. 42		15. 0		
ROOT MEAN SO PERCENT ERI		11. 07	23. 47		
PREDICTION	0. 8-1.	8 25 0			

Figure 4.11.3.3

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.4 INDICATING EFFECT

OF ENVIRONMENT

MATERIAL: CONDITION:	TITANIUH	TI-6AL	_ -4 V		
DELTA (KSI+IN+	K =1/2)	- (DA/DN (10##-	5 IN. /CYCLE)	
	_		B	С	D
		E= R.T.			
		: . 424			
DELTA K B:	8. 12	:	. 208		
MIN C:		:			
D:		:			
	9. 00		. 495		
		: 1.14	. 971		
		: 3. 48	2. 95		
	16. 00	: 11.3	6. 42		
		. 14. 2			
DELTA K B:	18. 48	:	13. 6		
MAX C:		:			
D:		: :			
ROOT MEAN S PERCENT EI		17. 73	27. 56	4	
	0. 0-0.	_	- 		
PREDICTION					
RATIO					
SUMMARY					
(NP/NA)	>2.	0			

Figure 4.11.3.4

the state of the s

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.5 INDICATING EFFECT

OF STRESS RATIO

			INESS KAIIC	,	
MATERIAL: T	ANNEALED	,)		
ENVIRONMENT					
DELTA (K8I*IN**			DA/DN (10##	-6 IN. /CYCLE)	
(//	:	٨	B	C	D
	• :	R=+0. 02			
A :	9.04 :	. 1 35			
DELTAK B: Min C:	:				
D:	:				
	10.00 :	. 270			
	13.00 :	1. 30			
	16.00 :	3. 67			
	20.00:	9. 49			
	25.00 :				
	30 . 00 :				
	35 . 00 :				
	40 . 00 :	87. 2			
A :	44. 93 :	120.			
DELTA K B:	:				
MAX C:	:				
D:	:				
ROOT MEAN S PERCENT ER	ROR	24. 21			************
LIFE	0. 0-0. 5		·		
PREDICTION	0. 5-0. B	1			
	0. 8-1. 25	1			
SUMMARY	-				
(NP/NA)	>2.0				

Figure 4.11.3.5

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.6 INDICATING EFFECT

OF STRESS RATIO

DELTA (KBI+IN+	K :		DA/DN (10##	-6 IN. /CYCLE)	
11101 - 114-		A	В	С	D
	: :	R=+0. 02			
	8. 52 :	. 0853			
DELTA K B:	:				
HIN C:	:				
D:	•				
	9 . 00 :	. 131			
	10.00 :	. 283			
	13.00 :				
	16.00 :				
	20.00 :	9 . 70			
	25 . 00 :				
	30.00:	40, 8 70, 2			
	35.00 :	70. 2			
	40.00 :	116.			
A:	42.37 :	145.			
DELTA K B:	:				
MAX C:	:				
D:	:				
ROOT MEAN S	GUARE	-	# -		
PERCENT ER	ROR			· · · · · · · · · · · · · · · · · · ·	
LIFE	0. 0-0. 5				
	0. 5-0. 8	2			
	0. 8-1. 25				
SUMMARY					
(NP/NA)	<i>></i> 2. U				

Figure 4.11.3.6

		TA	BLE 4.11.3.7		
	FATI	QUE CRACK GROW OF STRESS	TH RATES AT DE		
	DATA ASS	OCIATED WITH F	IQURE 4.11.3.7	INDICATING EFFECT	•
			STRESS RATIO		
MATERIAL: T CONDITION: ENVIRONMENT	BA	TI-6AL-4	v 		
DELTA (KSI+IN++			DA/DN (10++-	5 IN. /CYCLE)	
(1/21 - 1/4	:	A	B	С	D
	:	R=+0. 10			
DELTA K B: MIN C: D:	5. 13 : : : : : : : : : : : : : : : : : : :	1. 45			
	6. 00 :	1. 91			
	7.00 : 8.00 :	2. 47 3. 10			
	9 . 00 : 10 . 00 :	3, 82 4, 66			
	13. 00 : 16. 00 :	8, 43 15, 4			
DELTA K B: MAX C: D:	18.19 :	24. 2			
ROOT MEAN S PERCENT ER	ROR	14. 35	د مدده د دود ها ها ها ها ها ها ها ها ها ها ها ها ها		••••••
PREDICTION	0. 0-0. 5 0. 3-0. 8 0. 8-1. 25	2			

Figure 4.11.3.7

Makabalan karabalan kababalan karaban

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.8 INDICATING EFFECT

OF STRESS RATIO

CONDITION:		TI-6AL-4V				
DELTA K : (KSI*IN**1/2) : :		DA/DN (10++-6 IN./CYCLE)				
		A	B	С	D	
	: :	R=+0. 10	R=+0. 30	R=+0. 70		
A:	9. 98 :	1. 84				
DELTA K B:	17.87 :		10. 4			
MIN C:				2. 34		
D:	:					
	10.00 :	1. 86		3. 90		
	13.00 :			9. 31		
	16.00:	8. 71		14. 6		
	20 . 00 :	14. 5	15. 1	24. 4		
	25 . 00 :		26 . 9	53. 8		
		32. 7	40 . 7	150 .		
	35.00 :	45. 7 63. 2	59 . 7			
	40 . 00 : 50 . 00 :	63. 2	8 9 . 2			
			224.			
	60.00 : 70.00 :					
	70.00	₹/8.				
A:	71.28 :	521.				
DELTA K B:			643.			
MAX C:	33 . 00 :			311.		
D:	:					
ROOT MEAN SQUARE PERCENT ERROR				15. 91	ه شدن هند جند داد	
	0. 0-0. 5		and also and also app age to a compared the contract of the	نت در دوم که در دوم در دوم در دوم در دوم در دوم در دوم در دوم در دوم در دوم در دوم در دوم در دوم در دوم در دوم		
	0. 5-0. 8		i	1		
	O. 8-1. 25					
	1. 25-2. 0					
(NP/NA)	>2. O					

TITAN CONDITION/HT: BA ALLOY YIELD STRENGTH: 130. 0 KSI FORM: Ø. Ø5"TH SHEET ULT. STRENGTH: SPECIMEN TYPE: CCP SPECIMEN THK: Ø. Ø50" **ORIENTATION:** SPECIMEN WIDTH: 3. 150" 12 00 HZ FREQUENCY: TI-BAL REFERENCES NLØØ1 R. T. , LAB AIR **ENVIRONMENT: 4**V ΔK (MPA √m) ΔK (MPA √m) 100 100 10 10 40 ليليليا لتلتيل B STRESS RATIO = +0. 30 STRESS RATIO = +0. 10 10² 10² 10-1 10-1 10-3 10-3 10-2 10-2 da/dN (in/cycle) 10⁻⁴ 10⁴ 10⁻³ 10⁻³ 10-5 10⁻⁵ 10.4 10-4 10⁶ 10⁶ 10⁻⁵ 10.5 10⁻⁷ 10 10.6 10⁻⁶ O 10-8 10 40 100 10 40 100 10 ℗ ليليلين **(C)** 111111 لبليانا 10 ⁰ 10 ⁰ STRESS RATIO = +2, 70 STRESS RATIO = 10² 10-2 10-1 10.1 10-3 10.3 10-2 da/dN (in/cycle) 10 104 10⁻³ 10.5 10⁻⁵ 10-4 10.4 10⁶ 10⁶ 10-5 10.5 10.7 10-7 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁶ 100 40 10 40 100 ₩ ÇĨñ) ΔK (KSI √in)

である。Michaely できる。 1990年間には、1990年には、1990年間には、1990年間には、1990年には、1990年間には、1990年には、1990年間には、1990年には、1990年には、1990年間には、1990年間には、1990年間には、1990年間には、1990年間には、1990年間には、1990年には、1

Figure 4.11.3.8

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.9 INDICATING EFFECT

OF FREQUENCY

CONDITION: E ENVIRONMENT:	R. T.	. 3. 5% NACL			
DELTA K : (KSI+IN++1/2) :			DA/DN (10##	-6 IN. /CYCLE)	
(1101 - 114 1		A	В	C	D
	:	F(HZ)= 10.00			
A: DELTA K B: MIN C: D:	9.65 : : : : : : : : : : : : : : : : : : :	. 46			
	10.00 : 13.00 : 16.00 : 20.00 : 25.00 : 30.00 :	3. 62 9. 15 17. 6 26. 5			
A: DELTA K B: MAX C: D:	34. 71 : : : :	39. 3			
ROOT MEAN SO PERCENT ERF	ROR	4. 39) هي اڳڻ وڪ آڪ تحد وجد بحد آڪ خوب وجد ج	 	
LIFE PREDICTION	0. 0-0. 5 0. 5-0. 8 0. 8-1. 2	5			

いたが、 できょう アンドラン・アンドラ スプラン・アンドラ (Manager Control of the Control o

Figure 4.11.3.9

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.10 INDICATING EFFECT

OF ENVIRONMENT

CALL STATE OF THE

MATERIAL: TITANIUM CONDITION: BA		_				
DELTA K (KSI+IN++1/2)	DA/DN (10++-6 IN./CYCLE)					
(NGI WINWWI)E)	A	В	С	ם		
:	E# R.T. DRY AIR	E= R.T. 3.5%NACL				
A: DELTA K B: 8.24 : MIN C: D:		. 237				
9.00 10.00 13.00 16.00 20.00	: :	. 574 . 985 2. 65 6. 65 13. 8				
25. 00 30. 00 35. 00 40. 00 50. 00		22. 6 31. 4 41. 7 55. 9 109.				
60.00		245.				
A: DELTA K B: 68.19 : MAX C: D:		51 7.				
ROOT MEAN BOUARE PERCENT ERROR	-		يت هيد ويد خلق هند هي خل هند سيد بده ويد هي هند وي هند وي هند وي هند وي هند وي هند وي هند وي هند وي			
LIFE 0.0-0.9 PREDICTION 0.5-0.6 RATIO 0.8-1.2 SUMMARY 1.25-2.6	5 3 25	1	# # # & # # # # # # # # # # # # # # # #			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.11INDICATING EFFECT

OF ENVIRONMENT

CONDITION:	BA	TI-6AL-			
	K			-6 IN. /CYCLE)	
		: A	B	C	D
		: : E= R.T. : S. T. W.			
A .	45 05				
DELTA K B:		11.7			
MIN C:		• •			
D:		• •			
•		•			
	16. 00	: 11. 9			
		: 18. 6			
		: 28. 3			
		: 39. 2			
	35. 00				
	40.00	: 64. 3 : 94. 3			
		. 74.3 : 129.			
		168.			
	80.00				
A:	87. 57	: 252.			
DELTA K B:		:			
MAX C:		:			
D:		•			
		: 			
PERCENT E	RROR	10. 42			
LIFE PREDICTION RATIO SUMMARY	0. 0-0.	5 B 25 1		******************	

Figure 4.11.3.11

			TABLE 4.11.3.12		
	FAT		ROWTH RATES AT DE 198 INTENSITY FAC		
D/	SA ATA	SOCIATED WITH	FIQURE 4.11.3.12	INDICATING EFFEC	T
~~~~~~			F ENVIRONMENT		
MATERIAL: TITA CONDITION: BA		TI-6AL	_ <b>-4V</b>		
DELTA K (K8I#IN##1/	:		DA/DN (10++-6	S IN. /CYCLE)	
(102 114 27)	:	<b>A</b>	Ð	C	ם
	:	E= R.T. 3.5%NACL	E= R. T. S. T. W.		
DELTA K B: 16	D. 21 : 3. 51 :		30. 5		
MIN C: D:	:				
	3. 00 : 5. 00 :				
	o. 00   :	38. 5	35. 3		
	5. 00 :		73. 3		
		83. 1 100.	95. 4 103.		
		136.	112.		
		281.	192.		
61	<b>o. 00</b> :		<b>489</b> .		
	7. 34 :				
MAX C:	7.64 : :		1087.		
D: 					
ROOT MEAN SQU PERCENT ERRO		17. <b>39</b>	15. 35		
LIFE 0	0-0. 5				,
	8-1.	25 ) 1	1		
(NF/NA)	<i>7€.</i> (	•			



Figure 4.11.3.12

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ABSOCIATED WITH FIGURE 4.11.3.13INDICATING EFFECT

#### OF ENVIRONMENT

MATERIAL CONDITIO		BA	TI-6AL					
	TA	K		DA/DN (10##-6 IN./CYCLE)				
(K8I#IN##1/2)			<b>A</b>	B	С	D		
			: : E= R. T. : S. T. W.					
DELTA K MIN		9. 81	: , <b>55</b> : :					
	•	10. 00 13. 00						
		16. 00 <b>20</b> . 00	: 2. 73 : 6. <b>4</b> 3					
			: 36. 1 : 72. 9					
		<b>40</b> . 00 <b>50</b> . 00 <b>60</b> . 00	: <b>400</b> .					
DELTA K			: <b>2127</b> .					
MAX			· : :					
ROOT MEA	N S	ROR	<b>43</b> . <b>57</b>					
LIFE PREDICT:	ON	0. 0-0. 0. 5-0.	5 8					
		0.8-1.1						
		>2.						



Figure 4.11.3.13

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ABBOCIATED WITH FIGURE 4.11.3.14INDICATING EFFECT

#### OF STRESS RATIO

MATERIAL: CONDITION: ENVIRONMEN	BA	TI-6AL-	4V		
Delta (KSI+In+	K :		DA/DN (10##-6	IN. /CYCLE/	
(MOIMIUM	:	<b>A</b>	B	C	D
	; ;	R=+0. 10	R=+0. 30		
A:	7.64:	. 108			
DELTA K B:	9.89 :		. <b>284</b>		
MIN C:					
D:	:				
	B. 00 :	. 113			
	9. 00 :				
	10.00 :		. 302		
	13.00:	. <b>93</b> 7	1.79		
	<b>16.00</b> :		4. 90		
	20.00:	9. 10	<i>\$.</i> <b>75</b>		
		19. 6 33. 0	18. 5		
		51. 5	32. 2 52. 4		
		7 <b>9</b> . 0	J&. 4		
A:	45. 52 :	122.			
DELTA K B:	34, 92 :		80. 2		
MAX C:	:				
D:	:				
PERCENT E	RROR	16. 21	10. 73	د الله الله الله الله الله الله الله الل	
	0. 0-0. 5	به چه خو <b>که که که په چه که که په</b> چه بيونين			
PREDICTION					
	0. 8-1. 25		1		
SUMMARY	1. 25-2. 0	1			
(NP/NA)	>2. 0				



この間ではなっています。

これの人の人の情報がなからのとは国内のからのの一種できないのでした。数ななないないではないの

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.15INDICATING EFFECT

#### OF STRESS RATIO

MATERIAL: T CONDITION: ENVIRONMENT	BA	TI-6AL-4	<b>4</b> V			
DELTA (KSI+IN+	 К :		DA/DN (10##-6	IN. /CYCLE)		•
(491-114-	:	A	В	C	Ð	
	:	R=+0. 10	R=+0. 50			
A: DELTA K B: MIN C:		. 30	<b>53</b> . <b>3</b>			
D:	:					
	13. 00 : 16. 00 :	3. 08				
	20.00 :	11. 1 27. 6 48. 0	/1 6			
	29.00 :	49.0	61.5 86.0			Ţ
	<b>35</b> . 00 :	70. <b>5</b>	119.			
		<b>95.</b> 9				
	<b>50</b> . 00 :	163.				
	<b>59</b> . 09 :	264.				
DELTA K B:	<b>36</b> , 06 :		<b>134</b> .			
MAX C: D:	: :					
ROOT MEAN S	GUARE	16. 76	3. 81			••
	0. 0-0. 5 0. 5-0. 8 0. 8-1. 2: 1. 25-2. 0		i			<b>-</b> .

ですると、関係のなどのでは、自己のとののない。自己のとののでは、関係などのなどのでは、自己のとのなどは、自己のなどのでは、これでは、これでは、自己のなどのでは、これでは、自己のなどのでは、自己のなどのでは、



Figure 4.11.3.15

## FATIGUE CRACK QROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.16INDICATING EFFECT

#### OF FREQUENCY

UP PREGUENCY							
MATERIAL: TITANIUM CONDITION: BA		-4V					
ENVIRONMENT: R. T.	, S. T. W.						
DELTA K :		DA/DN (10**	-6 IN. /CYCLE)				
(KSI+IN++1/2) :	A	В	C	D			
: :	F(HZ)= 0.1	О,					
<b>A</b> : :							
DELTA K B: : MIN C: :							
D: :							
: <b>200</b> . 00 :							
<b>A</b> : :							
DELTA K B:							
MAX C: :							
<b>D</b> : :							
ROOT MEAN SQUARE PERCENT ERROR	0. 00						
LIFE 0.0-0.5 PREDICTION 0.5-0.6 RATIO 0.8-1.2 SUMMARY 1.25-2.0 (NP/NA) >2.0	) ?5						

(i.....

THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE POSSESS OF THE PO

But the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t



Figure 4.11.3.16

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.17INDICATING EFFECT

### OF STRESS RATIO

7		Olicop Maile		
CONDITION: BA ENVIRONMENT: R.			7 <b>7 4 6 7</b> 4 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
DELTA K (KSI+IN++1/2)	:	DA/DN (10##-6		
(V21±14##1\K)		B	С	a
	: 2=+0. 10	R≈+0. 50		
A: 26.5 DELTA K B: HIN C: D:	3 : 15. 5 : :			
35. 0 40. 0 50. 0	: 0 : 26.2 0 : 45.2 0 : 67.8 0 : 126.			<b>£</b>
A: 63.90 DELTA K B: MAX C: D:	6 : <b>271</b> . : : :			
ROOT MEAN SQUARE PERCENT ERROR	5. 71			
LIFE 0.0-( PREDICTION 0.5-( RATIO 0.8- SUMMARY 1.25-2 (NP/NA)	0. 8 1. <b>25</b> 2. 0			



ed Theory and Theory continues and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

Figure 4.11.3.17

natural administration of the latest and a section

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.18INDICATING EFFECT

#### OF STRESS RATIO

		Ur	SIKESS KALIU		
MATERIAL: CONDITION: ENVIRONMEN	BA	TI-6AL-4 I. H. A.	<b>4</b> V		
DELTA K : (KSI+IN++1/2) :			DA/DN (10##-6 IN./CYCLE)		
(VD1 x 1Mx)	;	A	В	С	p
•	:	R=+0. 10	R=+0. 30	R≃+0. <b>5</b> 0	
A: DELTA K B: MIN C:		. 965	. 451	1. 47	
D:	: : 13. 00 :	. <b>929</b>	1. 15	1.62	
	16.00 : 20.00 :	1. 19 4. 10	3. 13 9. 31	3, 85 12, 0	
	<b>25</b> . 00 :		23. 5 38. 6	27. 6	
	<b>35</b> . 00 :	41. 9	<b>52</b> . 8	78. O	
	<b>50</b> . 00 :	62.0 115. 208.	84.8	182. 1010.	
A: DELTA K B:	66. 20 : 48. 80 :	454.	<b>210</b> .		
MAX C: D:	<b>50</b> . 10 : :			1013.	
PERCENT E	RROR		11. 45		
LIFE PREDICTION RATIO BUMMARY	0.0-0.5 0.5-0.8 0.6-1.25 1.25-2.0 >2.0		1	1	



Figure 4.11.3.18

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.19 INDICATING EFFECT

#### OF STRESS RATIO

MATERIAL: TI		TI-6AL-4	V		
ENVIRONMENT	R. T. , D				
DELTA I	K :		DA/DN (10##-6		
(KSI+IN++	1/ <b>2</b> ) :	A	B	С	D
	:	R=+0. 10	R=+0. 50		
	9. 56 :	. 04			
DELTAK B: MIN C:	7. 43 : :		. 40		
D:	:				
	8.00:		. 538		
	9.00:	2.22	. 826		
	10.00 :				
	13.00 :	. 482 1. 62 5. 43	2. 85 5. 40		
	16. 00 : 20. 00 :	1. 62 5. 42	5. 49 10. 9		
		15. 7	21. <b>5</b>		
	30.00	32.2	38. 1		
	35.00	32. 2 51. 7 69. 3	62. 5		
	40.00	49 3	GE. U		
	50.00 :				
	50. 68 :	85. 7			
DELTA K B:	<b>36</b> . 97 :		74. 9		
MAX C:	:				
D:	:				
	GUARE	22. 63			
PERCENT ER	ROR				
LIFE	0. 0-0. 5				
PREDICTION					
RATIO			_		
SUMMARY		1	1		
(NP/NA)	>2. 0				



Figure 4.11.3.19

AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPER

. .

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.20INDICATING EFFECT

#### OF ENVIRONMENT

MATERIAL: TITANIUM CONDITION: BA	TI-6A	4V			
DELTA K (KSI+IN++1/2)		DA/DN (10##-6 IN./CYCLE)			
(1,02 - 2,14 - 2, -2,		В	c	D	
	: : E= R.T. :S.T.W.				
A: DELTA K B: MIN C: D:	: : :				
200. 00	<b>:</b> :				
DELTA K B: MAX C: D:	: : : :				
ROOT MEAN SQUARE PERCENT ERROR	0. 00			b	
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	8 25 0				

など、関係などのとの関係を表現のというと、関係などなど、自然などのは、関係などのなどのできません。

A second designation of the second designation of the second second second second second second second second



Figure 4.11.3.20

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.21 INDICATING EFFECT

#### OF ENVIRONMENT

CONDITION:	BA	TI-6AL					
DELTA **KSI	K :	•	DA/DN (10##~6 IN./CYCLE)				
			В	С	D		
	:	: :	E= R.T. JP-4 FUEL	E= R.T. SIM SEA WATER			
A:	10. 25	. 0872					
DELTA K B:	12. 23	:	. 115				
MIN C: D:		:		. 219			
D.		• •					
	13.00	. 294	. 165	. <b>779</b>			
	16.00	: . 820	. 566	1. 94			
	20.00	2. 55	2. 08	4. 82			
	25. 00	7, 52 17, 1 31, 9	<b>6</b> . 89	11. 6			
	30.00	17. 1	16. 1	<b>55</b> 5			
	35. 00	: 31. 9	16. 1 <b>29</b> . 9	43. 1			
	<b>40</b> . 00	51.8	<b>44</b> . 6	70. <b>5</b>			
	<b>50</b> . 00	: 102. : 133.	88. 2	149.			
	<b>60</b> . <b>00</b>	: 183.	168.	254.			
	70.00	<b>356.</b>	339.	438.			
	80.00	: 794. : 2039.	736.	<b>933</b> .			
	<del>9</del> 0. 00	: <b>2039</b> .	1726.	<b>2619</b> .			
	100.00	:	4343.				
A:	95. 83	: <b>5976</b> .					
DELTA K B:			51 <i>7</i> 8.				
MAX C:				9645.			
D:		• •					
~~~~~		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*		
ROOT MEAN	SQUARE RROR	26. 01		25. 45	_		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 8-1. 3 1. 25-2.	5 9 25 0					

Figure 4.11.3.21

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.22INDICATING EFFECT

OF ENVIRONMENT

MATERIAL: 1 CONDITION:		TI-6AL			
DELTA K :			DA/DN (10**		
(KSI*IN*	1/2) :	A	В	c	D
	: :	E= R.T. LAB AIR	E= R.T. JP~4 FUEL	E= R.T. SIM SEA WATER	
		0750			
DELTA K B:			. 0872		
MIN C: D:	10.11 :			. 177	
	13. 00 :	. 226	. 204	. 651	
	16.00 :	. 743	. 741	1.66	
	20.00:	2. 27	2. 40	4. 09	•
	25 . 00 :		6. 63 14. 0	9. 39	
	30.00:	13. 1		9, 39 18, 0 31, 2	
	35 . 00 :		25. 6	J E	
	40.00 :		42. 9	5 0. 5	
	50.00 :	103. 227.	103.	118.	
	60. 00 :	22 7.	224 .	25 0.	
	70.00 :	467.	457 .	499.	
	80.00 :	918. 1746.	903.	959 .	
	90.00 :	1746.	1743.	1789.	
	100.00 :	3242.		3259.	
	104.34 :				
DELTA K B:			3302.		
MAX C: D:	102.34 :			3 739.	
ROOT MEAN S			29. 08		
LIFE PREDICTION	0. 0-0. 5 0. 5-0. 8				
RATIO					
SUMMARY	1. 25-2. 0				
(NP/NA)	>2.0	ı			

TITAN. CONDITION/HT: BA 1. 30"TH FORGING YIELD STRENGTH: 110. 0- 110. 5 KSI FORM: ALLOY ULT. STRENGTH: 124.5- 125.0 KSI SPECIMEN TYPE: WOL SPECIMEN THK: 1.250" ORIENTATION T-L STRESS RATIO: +0.02 SPECIMEN WIDTH: 5. 000" TI-BAL 0.10- 20.00 HZ REFERENCES:MAØØ5 FREQUENCY: **4**V ΔK (MPA √m) ΔK (MPA √m) 100 100 10 40 10 40 ENVIRONMENT: R. T. R. T. **(B)** ENVIRONMENT: 100 JP-4 FUEL 10² 10² 10-1 10-1 10.3 103 10⁻² 10.5 da.dN (mm/cycle) da/dN (in/cycle) 10 10'4 10'3 10⁻³ 10^{.5} 10⁻⁵ 10⁻⁴ 10'4 10^{.6} 10⁶ 10.5 10.5 107 10" 10.6 10.6 0 10⁻⁸ 10.4 10 40 100 10 40 100 ENVIRONMENT R. ENVIRONMENT: **© (D)** لتلتلتا 100 100 10^{.2} 10⁻² 10.1 10-1 10^{.3} 10.3 10.5 10.2 da/dN (in/cycle) 10 4 104 10⁻³ 10.3 10⁻⁵ 10.5 10'4 101 10.6 10⁶ 10'5 10.5 10'7 107 10⁻⁶ 10.6 10.8 10-8 10 40 100 10 40 100 ΔK (KSI √in) ΔK (KSI √in)

Figure 4.11.3.22

taria di distribuita de de describuita de constante de constante de describuita de la constante de la constant

		T	ABLE 4.11.3.23			
			S INTENSITY FA	CTOR		
	DATA AS		FIGURE 4.11.3.23 ENVIRONMENT	INDICATING EFFE	CT	
MATERIAL: 1		TI-6AL- CESSED-MILL AN				
DELTA (K8I+IN+			_	-6 IN. /CYCLE)		
	; ; ;	E= R.T. DRY AIR	B	c	D	
DELTA K B: MIN C: D:	23 . 05 : : : : : : : : : : : : : : : : : :	5. 27				
	25.00 : 30.00 : 35.00 : 40.00 : 50.00 :	10. 3 15. 7 23. 4				
DELTA K B: MAX C: D:	59.48 : : : : : : : : : : : : : : : : : : :	94. 0				
ROOT MEAN S		7. 55				
LIFE PREDICTION RATIO BUMMARY (NP/NA)	0.0-0.5 0.5-0.6 0.8-1.2 1.25-2.0	3 25)				
			4.11-94			

Figure 4.11.3.23

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.24 INDICATING EFFECT

OF ENVIRONMENT

DELTA K : (KSI*IN**1/2) :		:	DA/DN (10##-6 IN./CYCLE)					
(//				: A	B		С	D
				E= R.T. DRY AIR				
DELTA K MIN	A: B: C: D:	23.	71	5. 76 :				
		25. 30. 35. 40. 50.	00 00 00	: 9, 23 : 14, 6 : 22, 9 : 48, 7				
DELTA K MAX	A: B: C: D:	60 .	18	: 83 . 4 : :				
ROOT ME PERCEN			E	15. 14				

(NP/NA)

>2. 0

Figure 4.11.3.24

and all a had a been a had a had a had a had a had a had a had a had a had a had a had a had a had a had a had

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.25INDICATING EFFECT

OF STRESS RATIO

DELTA K (KSI+IN++1/2)		DA/DN (10++-6 IN./CYCLE)					
		A	В	c	D		
	: :	R=+0. 10					
A: DELTA K B:	17. 02 :	2. 69					
MIN C: D:	:						
		4. 51					
		9. 81					
	30.00 : 35.00 :	16. 8 28. 4					
	30 . 30 .	20 . 4					
A:	35.59 :	31. 4					
DELTA K B:	:						
MAX C: D:	:						
U.	:						
ROOT MEAN S PERCENT EF		7. 19					

Figure 4.11.3.25

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.26 INDICATING EFFECT

OF ENVIRONMENT

DELTA K :		DA/DN (10**-6 IN./CYCLE)					
(KSI*IN**1/2	:	A	В	С	D		
	: : : DR	E= R.T. Y AIR					
A: 16 DELTA K B: MIN C: D:	. 77 : : : :	2. 51					
25 30	. 00 :	4. 66 9. 56 16. 9 27. B					
A: 36 DELTA K B: MAX C: D:	. 12 : : : :	30. 9					
ROOT MEAN SQUA PERCENT ERROR		6. 21					

Cal

・ サイン・プログログラン・ファイン・プログラン・プログラン・ファイン・プログラン・プログ

(NP/NA)

>2. 0

Figure 4.11.3.26

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.27INDICATING EFFECT

OF STRESS RATIO

DELTA K : (KSI*IN**1/2) :		DA/DN (10++-6 IN./CYCLE)					
(V21±1V±	·#1/2/ :	A	B	c	D		
	; ;	R≖+0. 10	R=+0, 50				
A: DELTA K B:	14.50 :	. 518	0720				
MIN C:			. 0730				
	7.00 : 8.00 :		. 133 . 387				
	9.00 : 10.00 :		. 827 1. 47				
	13 . 00 :		4. 98				
	16.00 : 20.00 :	. 593 . 917	13. 6				
	25 . 00 :	2. 12					
	30 . 00 : 35 . 00 :	6. 80 25. 7					
A:		43. 2					
DELTA K B: MAX C: D:			17. 6				
ROOT MEAN PERCENT E		13. 98	- -	. ^ & & & & & & & & & & & & & & & & & &	~~~~		

Figure 4.11.3.27

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.28 INDICATING EFFECT

OF FREQUENCY

MATERIAL: T CONDITION: ENVIRONMENT	DB : R.T.		-6AL-4V				
DELTA K : (KSI+IN++1/2) :		DA/DN (10##-6 IN./CYCLE)					
17102 - 211-	:	A		B	C	D	
	:	F(HZ)=	6 . 00				
DELTA K B: MIN C: D:	13. 23 : : :	14. 0					
	16.00 : 20.00 :	33. 1					
	30 . 00 :	61. 3 144. 415.					
DELTA K B: MAX C: D:	37.82 : : :	1316.					
ROOT MEAN S PERCENT ER	ROR						
	0.8-1.2	5 1				****	

Figure 4.11.3.28

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.29 INDICATING EFFECT

OF ENVIRONMENT

			OF EN41	KOMILIAI		
MATERIAL: CONDITION:		TI:	-6AL-4V			
DELTA (KSI+IN+	K *1/2\	:	DA/	'DN (10**	-6 IN. /CYCLE)
(491±14±	- 1/42)			B	C	D
		: : E= R. : : L. H. A.	т.			
	7. 88	:	39			
DELTA K B: MIN C:		:				
D:		•				
٠.		:				
	8.00	: 10	47			
	9.00		42			
	10.00					
	13. 00					
	16.00					
	_	: 12. 1				
		: 25. 6				
	30. 00	: 35. 2				
A:	32. 73	: 36.6				
DELTA K B:		:				
MAX C:		:				
D:		:				
		:				
PERCENT E	RROR	17. 52				
	0. 0-0.					
PREDICTION	0. 5- 0.	8				
RATIO						
SUMMARY						
(NP/NA)	>2.	0				

T.

<u>Variation to the contraction of</u>

_		ABLE 4.11.3.30		
F	ATIQUE CRACK GRO OF STRES	HTH RATES AT D B INTENSITY FA		
DATA	A880CIATED WITH		DINDICATING EFFE	СТ
MATERIAL: TITANIU				
CONDITION: DB				
DELTA K (KSI+IN++1/2)	: : : •	DA/DN (10##- B	C	D
	: : E= R.T. : S.T.W.	-	-	-
A: 12.21 DELTA K B: MIN C: D:	: . 149 : :			
13.00 14.00 20.00 25.00 30.00 35.00 40.00	1.78 5: 8.20 5: 22.2 5: 41.4 65.8 6: 78.3			
A: 54.03 Delta K B: Max C: D:	: 296. : : :			
ROOT MEAN SQUARE PERCENT ERROR	19. 51			
LIME 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA) >2	. 8 . 25 1 . 0			
		4.11-108		

Figure 4.11.3.30

LINE SELECTION CONTRACTOR DE LA CONTRAC

		T	ABLE 4.11.3.31		
	FA	FIQUE CRACK ORD			
	DATA AS			INDICATING EFFE	СТ
	~~~~	0F	ENVIRONMENT		
MATERIAL: T CONDITION:		TI-6AL-	40		
DELTA (KSI+IN++			DA/DN (10++-	-6 IN. /CYCLE)	~
***************************************		<b>A</b>	B	С	D
	:	E= R. T. S. T. W.			
A: DELTA K B: MIN C: D:	<b>9. 39</b>	. 371			
	10.00 13.00 16.00 20.00 25.00 30.00 35.00 40.00	4. 03 11. 4 21. 3 31. 5 46. 2 77. 1			
DELTA K B: MAX C: D:	47. 88				
ROOT MEAN S PERCENT ER		9. 26			<b>***********</b> *************************
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. ( 0. 5-0. ( 0. 8-1. ( 1. 25-2. ( >2. (	9 25 1 0	· · · · · · · · · · · · · · · · · · ·		~
			4.11-110		



Figure 4,11,3,31

<u>GARANGAN KANDAN BANGAN SANGAN BANGAN BANGAN BANGAN BANGAN BANGAN BANGAN BANGAN BANGAN BANGAN BANGAN BANGAN BA</u>

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.32INDICATING EFFECT

#### OF ENVIRONMENT

MATERIAL: TO		TI-6AL-4	V		
DELTA (			DA/DN (10#4	-6 IN. /CYCLE)	
(101-114)	4,4,	<b>A</b>	В	C	D
		: : E≃ R.T. :S.T.W.			
DELTA K B: MIN C: D:	10. 12	. 176			
	30.00	: 2.01 : 9.78 : 29.1 : 50.6 : 83.1			
DELTA K B: MAX C: D:	44. 78	: <b>33</b> 7. : : :			
ROOT MEAN SO PERCENT ERI		15. 89			••••••
SUMMARY		8 25 1 0			

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s



Figure 4.11.3.32

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.33 INDICATING EFFECT

## OF ENVIRONMENT

		T	ABLE 4.11.3.33		
	FATI		WTH RATES AT DE		
	DATA ASS	OCIATED WITH	FIGURE 4.11.3.331	NDICATING EFFE	СТ
		OF	ENVIRONMENT		
MATERIAL: 1 CONDITION:	DB + 2DBT		4V 		
DELTA (KSI*IN*			DA/DN (10##-6	IN. /CYCLE)	
/ WOT # 114#	:	A	В	c	
	: : : <b>s</b>	E= R.T.			
DELTA K B: MIN C: D:	13. 92 : : :	1. 11			
	: 16. 00 : 20. 00 :	2. 14 7. <del>7</del> 3			
	<b>25</b> . 00 : <b>30</b> . 00 :	23. 1 45. 2			
	<b>35</b> . 00 :	<b>74.</b> 0			
		112. 244.			
	·	545.			
DELTA K B: MAX C:	<b>62.46</b> : : :	671.			
D:	:				
ROOT MEAN S PERCENT EF	ROR	6. 56			
LIFE PREDICTION	0. 0-0. 5				
SUMMARY (NP/NA)	1. 25-2. 0	•			
			4.11-114		



Figure 4.11.3.33

# FATIGUE CRACK OROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.34 INDICATING EFFECT

#### OF ENVIRONMENT

		OF	ENVIRONMENT		
MATERIAL: CONDITION:		TI-6AL- TC	4V		
DELTA (KSI+IN+			DA/DN (10++-	6 IN. /CYCLE)	
11102 " 211"	:	A	В	С	D
	: 1	E= R. T. L. H. A.			
DELTA K B: MIN C: D:	14. 18 :	2. 57			
	16. 00 : 20. 00 : 25. 00 :	5. 81 8. 36 30. 9			
DELTA K B: MAX C: D:	26. 83 : : :	31. 9			
ROOT MEAN : PERCENT E		16. 76			<b></b>
PREDICTION RATIO	0.0-0.5 0.5-0.8 0.8-1.29 1.25-2.0	3 1			



Figure 4.11.3.34

<u> Santa de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya dela companya dela companya dela companya dela companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de</u>

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.35INDICATING EFFECT

## OF ENVIRONMENT

CONDITION: D	B + 4DB	TI-6AL-4V	,					
DELTA K (KSI#IN##1	:		DA/DN (10##-5 IN./CYCLE)					
	:	A	В	С	D			
		E≃ R. Υ. S. T. W.						
DELTA K B: MIN C: D:	11.85 : : :	. 262						
	13. 00 : 16. 00 : 20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 : 50. 00 :	2.26 9.02 25.2 48.5 77.4 112.						
DELTA K B: MAX C: D:	54. 46 : : :	<b>2</b> 70.						
ROOT MEAN SO PERCENT ERR								
LIFE PREDICTION RATIO SUMMARY 1 (NP/NA)	0.5-0.8 0.8-1.2 .25-2.0							

wa)



Figure 4.11.3.35

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.36 INDICATING EFFECT

#### OF ENVIRONMENT

UP ENVIKUNMENI							
MATERIAL: CONDITION:		TI-6AL-	4V				
DELTA (KSI*IN*	K *1/2)	:	DA/DN (10**	-6 IN. /CYCLE)			
(1/101 = 1/4 =	*1,6,		В	c	D		
		: : E= R.T. :S.T.W.					
DELTA K B: MIN C: D:	10. 37	: 256 : :					
	16.00	. 631 : 1.82 : 11.2 : 30.5					
DELTA K B: MAX C: D:	27. 18	: <b>41.3</b> : : : : : : : : : : : : : : : : : : :					
ROOT MEAN : PERCENT E		24. 25					
PREDICTION	O. 8-1.	8 1 25					

27.00

(NP/NA)

>2.0



多公司的公司。 第120年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 1

(上間での)ののは間のなかなか間のできるとは間

間のなるのではないのできないのはない。

Figure 4.11.3.36

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ABSOCIATED WITH FIGURE 4.11.3.37 INDICATING EFFECT

## OF STRESS RATIO

ENVIRONMENT					
DELTA (KSI#IN##	K :		DA/DN (10##-6	IN. /CYCLE)	
/ W@T = 114= #	:	<b>A</b>	B	С	D
	: :	R=+0. 08	R=+0. 30		
		3. 40			
DELTA K B: MIN C: D:	9. <b>83</b> : : :		. 53		
	10,00 :		. 626		
	13.00 :		3. 62		
		9. 50	<b>8</b> . <b>9</b> 3		
		16. 4	19. 4		
	<b>25</b> . 00 : <b>30</b> . 00 :	<b>29</b> . 4	44. 3		
		4	109. 286.		
	40.00 :	75. 1 1 <b>7</b> 1.	<b>683</b> .		
	50.00 :	753.	2181.		
	58. 30 :	1802.			
DELTA K B:			4408.		
MAX C:	:				
D:	:				
ROOT MEAN S PERCENT ER	QUARE ROR	11. 57			
LIFE	0. 0-0. 5			# <b></b>	
PREDICTION					
RATIO		1	1		
BUTTIAK Y	1. 25-2. 0				



なが、一般などのなどは、これであるから、一般などなどなどのでは、一般などのなど、一般などのなど、一般などのなど、「他のなどのなど、「他のなどなどなど、「他のなどなどなど、「他のなどなど、「他のなどなど、「他のなどのなど、「他のなどのなど、「他のなどのなど、「他のなどなどなど、「他のなどなどなど、「他のなどなどなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、「他のなど、」」

Figure 4.11.3.37

# FATIQUE CRACK OROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.38INDICATING EFFECT

#### OF ENVIRONMENT

		) 	JE ENVIRONMENI				
MATERIAL: CONDITION:		TI-6AL	4V				
DELTA (KSI+IN+		:	DA/DN (10##-6 IN./CYCLE)				
/VD1-114-	=1/4/	A	9	С	D		
		: E= R. T. : L. H. A.	E= R. T. S. T. W.				
DELTA K B: MIN C: D:	10. 00	: . 359 : :					
		: 4.77 : 13.1 : 26.2 : 43.1 : 69.0 : 110.					
DELTA K B: MAX C: D:	<b>59. 95</b>	: <b>750</b> . : :					
PERCENT E	RROR	29. 28	0. 00				
LIFE PREDICTION	0. 5-0. 0. 8-1.	5 8 1 25 0	*				

いたというないというともは、これのことのとのできないとのできないというとは、これのできないとのできないとのできないというとは、これのできないというとは、これのできないとのできないとのできないというという



Figure 4.11.3.38

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ABBOCIATED WITH FIGURE 4.11.3.39INDICATING EFFECT

#### OF ENVIRONMENT

DBTC				
K				
	<b>A</b>	B	C	D
	: E= R. T. : L. H. A.			
9. 82	: . <b>564</b> : :			
13. 00 16. 00 20. 00	: 1. 45 : 4. <b>62</b> : 12. 5			,
35. 00 40. 00	: 41. 1 : 69. 5 : 114.			
56. 48	: <b>685</b> . : :			
GUARE RROR	14. 29			
0.0-0. 0.5-0. 0.8-1.	5 8 25 i			
	9. 82 10. 00 13. 00 16. 00 20. 00 25. 00 30. 00 35. 00 40. 00 50. 00 54. 48 39UARE RROR 0. 0-0. 0. 5-0. 0. 8-1.	DBTC    K	M	DBTC    DA/DN (10##-6 IN:/CYCLE)

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s



Figure 4.11.3.39

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.40INDICATING EFFECT

## OF ENVIRONMENT

MATERIAL: 1 CONDITION:	DBTC	TI-6AL-			
DELTA (KSI+IN+	K			#-6 IN./CYCLE)	
		A	В	c	D
		E≂ R. T. :S. T. W.			
DELTA K B: MIN C: D:		. 115			
	16. 00 20. 00 25. 00 30. 00	. 192 . 349 . 629 2. 52			
DELTA K B: MAX C: D:		100.			
ROOT MEAN S PERCENT ER	ROR				
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 8 0. 8-1. 2 1. 25-2. 0	5 3 25 2 0 1			

される様々というには関係されても自動がというと言葉があっては意味のような自動であるのが、自動などのは言葉でもないない。またものなるなななない。



Figure 4.11.3.40

ening a section in the first and indicate the section in the section in the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the secti

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASBOCIATED WITH FIGURE 4.11.3.41 INDICATING EFFECT

#### OF ENVIRONMENT

CONDITION:	DBTC	TI-6AL	4V			
DELTA K (KSI+IN++1/2)		DA/DN (10++-6 IN./CYCLE)				
(4014144	W1/2)	<b>A</b>	B	С	D	
		: : E≅ R.T. : L. H. A.	E≃ 77. T. 6. T. W.			
DELTA K B: MIN C: D:	9. 01	:	1. 16			
	16.00 20.00 25.00 30.00 35.00 40.00	1.31 2.3.42 1.7.70	1.83 4.86 9.41 18.4 37.3			
DELTA K B: MAX C: D:	29. 65	: <b>336</b> . : :	<b>68</b> . <b>3</b>			
PERCENT E	SQUARE RROR	8. 90	14. 34			
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 0. 5-0. 0. 8-1.	5 8 25 1	2		# \ ~ # # # \ # # # # # # # # # # # # #	

いた。「関係していくいとは、自己のないのは、自己のないのは、自己のないのは、自己のないのは、自己のないのは、自己のないのは、自己のないのない。「自己のないのないないない。」「自己のないのないない」「自己のないのない」「自己のないのない」「自己のないのない」「自己のないのない」「自己のないのない」「自己のないのない」「自己のないのない」「自己のないのない」「自己のないのない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」「自己のない」」「自己のない」」「自己のない」「自己のない」「自己のない」」「自己のない」「自己のない」」「自己のない」「自己のない」「自己のない」」「自己のない」「自己のない」」「自己のない」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」」「自己のない」」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない」」「自己のない。」」「自己のない」」「自己のない。」」「自己のない。」」「自己のない。」」「自己のない。」」「自己のない、自己のない。」」「自己のない。」」「自己のない。」」「自己のない」」」「自己のない。」」「自己のない。」」「自己のない」」」「自己のない」」」「自己のない。」」「自己のない。」」



Figure 4.11.3.41

		ר	TABLE 4.11.3.42		
	FA	TIGUE CRACK GRO OF STRES	OWTH RATES AT DESIGNATION OF THE PROPERTY FAC		
	DATA A	SSOCIATED WITH	FIGURE 4.11.3.42	INDICATING EFFE	СТ
			ENVIRONMENT	~~~~~~~	
MATERIAL: TI CONDITION: D	BTC	TI-6AL-		~	
DELTA K (KSI*IN**1		:	DA/DN (10##~	6 IN. /CYCLE)	
		: A : == B T	В	С	D
		: E= R.T. :STW/JP4			
A: DELTA K B: MIN C: D:	9. 95	: . 448 : : :			
	10. 00 13. 00				
	16. 00 20. 00	: 2. 13 : 5. 48			
		: 14. 0 : 27. 0			
A: DELTA K B: MAX C: D:	32. 61	: <b>33</b> . <b>6</b> : :			
ROOT MEAN SG PERCENT ERR		7. 81			
PREDICTION	0.8-1.	8 25 1			
			4.11-132		



Figure 4.11.3.42

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.43 INDICATING EFFECT

#### OF STRESS RATIO

UF SIRESS RAILU							
MATERIAL: TITANIUM TI-6AL-4V CONDITION: DBTC(RA) ENVIRONMENT: R.T., L.H.A.							
DELTA K		DA/DN (10++-6 IN./CYCLE)					
(KSI#I <del>N##</del> 1	/2) : :	A	В	С	D		
	:	R=+0. 30					
DELTA K B: MIN C: D:	30. 88 : : :	<b>57</b> . 1					
	35. 00 : 40. 00 :	116. 182.					
DELTA K B: MAX C: D:	40. <del>78</del> : : : :	1 <b>98</b> .					
ROOT MEAN SQUARE PERCENT ERROR		13. 89	• /				
LIFE PREDICTION RATIO SUMMARY 1 (NP/NA)	0. 5-0. 8 0. 8-1. 25	1					



Figure 4.11.3.43

and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.44INDICATING EFFECT

## OF STRESS RATIO

MATERIAL: TITANIUM CONDITION: MA			<b>!</b> V				
ENVIRONMENT: R.T. / I		H.A. DA/DN (10**-6 IN./CYCLE)					
(KSI*IN*		DM/DIA (IOWW-0 IIA, /CIGLE/					
;		A B		С			
	:	R=+0. 08	R=+0. 30	R=+0. 50			
	7. 65 :	. 624					
DELTA K B:			. 529				
MIN C:	8.06 :			. <b>930</b>			
D:	:						
	7. 00 :		. 504				
	B. 00 :	. 7 <b>55</b>	. 790				
	7.00:	1. 21	1.44	1. 53			
	10.00 :		2. 24	2. 30			
	13.00 :	4. 27	4. 98	5. 34			
	16.00 :	7. 75	7. 91	9. 87			
	<b>20</b> . 00 :	13. 7		21. 1			
	<b>25</b> . 00 :						
	<b>30</b> . 00 :	34. 8					
A:	<b>30</b> . 60 :	36. 4					
DELTA K B:			9. 32				
MAX C:	20. 31 :			22. 4			
D:	:						
	:						
PERCENT E	RROR	12. 56	13. 85				
LIFE							
	0. 5-0. B						
	0. 8-1. 25	2	1	1			
	1. 25-2. 0	_	<del>"</del>	-			
	>2. 0						

TI



Figure 4.11.3.44

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

		TABLE 4.11.3.45		
FA		OWTH RATES AT ESS INTENSITY F		
DATA A	BSOCIATED WITH	FIGURE 4.11.3.4	5 INDICATING EFFEC	T
	(	F ENVIRONMENT		
MATERIAL: TITANIUM CONDITION: MA	TI-6AL	4V		
DELTA K	: :	DA/DN (10##		
(KSI*IN*#1/2)		B	С	D
	: : E= R. T. : L. H. A. : 1HZ	E= R. T. JP-4 FUEL 6HZ	E≈ R. T. S. T. W. 1HZ	
DELTA K B: 9.64 MIN C: 5.67 D:		1. 10	. 45	
6. 00 7. 00 8. 00 9. 00 10. 00 13. 00 16. 00 20. 00 25. 00 30. 00	: 1. 57 : 4. 02 : 7. 47 : 12. 9	1. 23 1. 47 2. 98 5. 82 12. 9 24. 2 30. 2	. 505 . 743 1. 16 1. 91 3. 22 15. 0 30. 2	
DELTA K B: 30.58 MAX C: 19.01 D:	:	30. 3	<b>37</b> . <b>1</b>	
ROOT MEAN SQUARE PERCENT ERROR	7. 29	21. 16	6. 77	جه جه ربید ربید شد به به جه در
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	8 25 1 0	1	1	
		4.11-138		



Figure 4,11,3,45

in the lateral of the lateral position in the billion in the property of the contract of the billion of the contract of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the billion of the bi

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.46INDICATING EFFECT

## OF ENVIRONMENT

At Parallement							
MATERIAL: CONDITION:		TI-6AL	4V				
DELTA K :		DA/DN (10++-6 IN. /CYCLE)					
(KBI+IN+	<b>+</b> 1/2)		B	C	a		
		: : E= R.T. :L.H.A.	E= R. T. S. T. W.				
DELTA K B: MIN C: D:	11. 52	: <b>2. 24</b> : :					
	13. 00 16. 00 20. 00 25. 00 30. 00 35. 00 40. 00	: 5. 19 : 9. 22 : 16. 7 : 28. 0 : 44. 3					
DELTA K B: MAX C: D:	44. 56	: <b>77</b> . 0 : :					
ROOT MEAN PERCENT E	RROR	5. 77	0. 00				
	0. 0-0. 0. 5-0. 0. 5-1. 1. 25-2.	8 25	# # # # # # # # # # # # # # # # # # #				

tindere and a translation of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of t

>2.0

(NP/NA)



Figure 4.11.3.46

Manufacture and the second of the second of the second of the second of the second of the second of the second

		LE 4.11.3.47		
FAT	IQUE CRACK GROWT OF STRESS	H RATES AT DE		
DATA AS	SOCIATED WITH FI		INDICATING EFFE	СТ
		TRESS RATIO		
MATERIAL: TITANIUM CONDITION: MA ENVIRONMENT: R.T.	TI-6AL-4V ,LAB AIR	,		
DELTA K : (KSI+IN++1/2) :		DA/DN (10##-	5 IN. /CYCLE)	
(V21#1M##1/5)	A	В	С	D
:	R=+0. 02			
A: 4.82 : DELTA K B: : MIN C: : D: :	. 0166			
5.00 : 6.00 : 7.00 : 8.00 : 9.00 : 10.00 : 13.00 :	. 0414 . 0822 . 152 . 266 . 442 1. 59			
20.00 : 25.00 : 30.00 : 35.00 :	12. 4 33. 5			
A: 38.83 : DELTA K B: : MAX C: : D: :	185.			
ROOT MEAN SQUARE PERCENT ERROR	27. 55		, , , , , , , , , , , , , , , , , , ,	
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.2 SUMMARY 1.25-2.0 (NP/NA) >2.0	) 25 2			
		4.11-142		



Figure 4.11.3.47

and the state of the state of the state of the state of the state of the state of the state of the state of the

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ABBOCIATED WITH FIGURE 4.11.3.48INDICATING EFFECT

### OF ENVIRONMENT

MATERIAL: CONDITION	: MA	I TI-6AL	<b>-4</b> V		
DELT	A K ##1/2)	, , ,	DA/DN (10++-	6 IN. /CYCLE)	
1101-11	1/6/	<b>A</b>	B	C	D
		: : E= R. T. : L. H. A. SP. THK. =. 67*	E= R.T. L.H.A. SP.THK.=.50"	E= R.T. S.T.W. SP.THK.=.49"	
DELTA K B MIN C	11.30 10.36		4. 69	21. 1	
D	13. 00 16. 00	:	8. 27 20. 4	33. 8 47. 9	
			72. 6 452. 2286.	<b>87</b> . 5	
DELTA K B	33. 26 23. 71		3547.	198.	
ROOT MEAN PERCENT	SQUARE ERROR		17. 55		
LIFE PREDICTION RATIO	0.0-0. N 0.5-0. O.6-1. 1.25-2.	5 8 25 1	1	1	

このでは、このできたが、「日本ではないない。」「日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできたが、日本のできのできたが、日本のではのできのできたが、日本のできたが、日本のできたが、日本のできのできのできのできのできのできのできのできのできのできので



Figure 4.11.3.48

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4,11,3,49INDICATING EFFECT

#### OF STRESS RATIO

	K :		DA/DN (10##-6	IN. /CYCLE)	
(KSI+IN+	(1/2) : :	A	В	С	D
	: :	R=+0. 05	R=+0. 30		
DELTA K B: MIN C: D:		. 313	. 342		
	9. 00 : 10. 00 : 13. 00 : 16. 00 : 20. 00 : 25. 00 : 30. 00 :	2. 98 6. 97 9. 80 13. 8	. 429 . 995 3. 46		
DELTA K B: MAX C: D:	38. 24 : 14. 23 : :	<b>45</b> . O	4. 08		
ROOT MEAN S	ROR	24. 23	<b>22</b> . 40		
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 5		1		ar an m ap ag ag ag ag ag ag ag ag ag ag ag ag ag



Figure 4.11.3.49

____

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.50 INDICATING EFFECT

### OF ENVIRONMENT

		_			
MATERIAL: 1 CONDITION:	MA	TI-6AL	-4V		
DELTA WI*IN#	K	:	DA/DN (10##-	-6 IN. /CYCLE)	
11100		<b>A</b>	3	С	D
		: E= R.T. :LAB AIR			
DELTA K B: MIN C: D:	31. 29	: 17. 0 :			
	40.00	25. 5 : 39. 6 : 96. 5			
A: Delta K B: Max C: D:	<b>59</b> . 30	: <b>220</b> . : : : : : : : : : : : : : : : : : : :			
ROOT MEAN S		8. 28			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	8 25 1 0			



Figure 4.11.3.50

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.11.3.51INDICATING EFFECT

### OF STRESS RATIO

			SIKERR KAITO		_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
MATERIAL: 1 CONDITION: ENVIRONMEN1	MA	TI-6AL-	·4V		
DELTA (KSI+IN+			DA/DN (10##-6	IN. /CYCLE)	
11102 - 211	:	A	8	C	D
	:	R=-1.00	R=+0. 50		
A:	<b>8.</b> 85 :	. <b>632</b>			
DELTA K B:	5. 43 :		. 380		
MIN C:	:				
D:	:				
	<b>6</b> . 00 :		. 734		
	7.00 :		1. 77		
	8.00:		3. 40		
	<b>9.00</b> :		5. 65		
	10.00 :		8. 52		
	13.00 :		21.2		
	16.00 : 20.00 :		41. 9 92. 4		
	<b>25</b> . 00 :		72. <del>7</del> 206.		
	30.00 :		316.		
	35.00 :		381.		
	40.00 :	127.	524.		
		<b>328</b> .			
	60.00 :	724.			
	70.00 :				
	<b>80</b> . 00 : <b>90</b> . 00 :	2115.			
	<b>70</b> . 00 .	2030.			
A:	92.48 :	3016.			
ELTA K B:		•	1688.		
MAX C:	:				
D:	<b>:</b>				
ROOT MEAN S		10. 15	18. 86		
PERCENT ER	(KUK				~~~~~~~
LIFE	0. 0-0. 5	•			
PREDICTION					
	0.8-1.2				
SUMMARY					
(NP/NA)	>2. 0	•			



Figure 4.11.3.51

ingalakan kalan inganggalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.52INDICATING EFFECT

### OF ENVIRONMENT

	:	DA/DN (10**-6 IN./CYCLE)				
1/2)	: : <b>A</b>	B	c	D		
		E=+ 175F AIR				
25. 62	: 26. 3					
17. 93	:	8. 57				
	:					
	•					
20.00	:	11. 7				
		20. 6				
30.00	: 55. 6	31. 8				
35. 00	: 158.					
_		2 <b>9</b> 0.				
44 04						
		470				
65. 75	· :	767.				
	:					
	:					
ROR	39. 40					
-						
	25. 62 17. 93 20. 00 25. 00 30. 00 35. 00 40. 00 50. 00 41. 96 45. 73 39 40. 00 60. 00 41. 96 45. 73	A : E=- 65F : AIR : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : E=- 65F : AIR : AIR : E=- 65F : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR : AIR	A B  E=- 65F E=+ 175F  AIR AIR  25. 62 : 26. 3 17. 93 : 8. 57  20. 00 : 11. 7 25. 00 : 20. 6 30. 00 : 55. 6 31. 8 35. 00 : 158. 46. 5 40. 00 : 1500. 66. 6 50. 00 : 135. 60. 00 : 280.  41. 96 : 5475. 65. 73 : 429.  39. 40 11. 28  180R  0. 0-0. 5 0. 5-0. 8 0. 8-1. 25 1. 25-2. 0	A B C  E=- 65F E=+ 175F  AIR AIR  25. 62 : 26. 3 17. 93 : 8. 57  20. 00 : 11. 7 25. 00 : 20. 6 30. 00 : 55. 6 31. 8 35. 00 : 158. 46. 5 40. 00 : 1500. 66. 6 50. 00 : 135. 60. 00 : 280.  41. 96 : 5475. 65. 73 : 429.  39. 40 11. 28  RQUARE 39. 40 11. 28  RQUARE 39. 40 11. 28  0. 0-0. 5 0. 5-0. 8 0. 8-1. 25		

indicitation and a first in the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of th



の行動を行うという。関連されているないのは、関心となって、自然のなって、なるなど、関心となっては、自然のできないのは、関目のできないという。

**利力というというというのでなったったった。別で、** 

Figure 4.11.3.52

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.53 INDICATING EFFECT

### OF ENVIRONMENT

CONDITION:	MA	TI-6AL	•		
DELTA (KBI+IN+	K	;	DA/DN (10##-6		
		. •	B	С	D
		: : E= R.T. :L.H.A. 1-6HZ			
DELTA K B: MIN C: D:		: . 123 : :	. 441		
	7.00 8.00 7.00 10.00 13.00	: . 203 : . 286 : . 415 : 2. 22	. 436 . 589 2. 89		
	20. 00 25. 00 30. 00 35. 00	: 24. 7 : 38. 2 : 49. 7 : 48. 7 : 109.	11. 3 31. 5 59. 6 77. 8		
DELTA K B: MAX C: D:	32. 79	: :	84. 7		
	GUARE	14. 83	22. 37		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 2	1		

CONDITION/HT: MA TITAN. 1.25"TH PLATE FORM: YIELD STRENGTH: 120.0 KSI **ALLOY** SPECIMEN TYPE: CT ULT. STRENGTH: 134. Ø KSI ORIENTATION L-T SPECIMEN THK: Ø. 990-Ø. 997" STRESS RATIO: +0.30 SPECIMEN WIDTH: 6.000-6. Ø10" TI-BAL FREQUENCY: REFERENCES:85837 4٧ ΔK (MPA √m) ΔK (MPA √m) 100 10 40 100 10 40 R. T. ENVIRONMENT: R. T. . **(A)** ENVIRONMENT: **(B)** 10⁰ L. H. A. 1-8HZ 10⁻² 10-2 10-1 10-1 10⁻³ 10.3 10.5 10-2 da/dN (in/cycle) 104 10-4 10.3 10^{·3} 10⁻⁵ 10⁻⁵ 10'4 10-4 10⁶ 10⁶ 10^{.5} 10⁻⁵ 10⁻⁷ 10^{.7} 10⁻⁶ 10⁻⁶ 10⁻⁸ 10-8 40 100 10 100 10 40 **©** ENVIRONMENT: ◐ 10 ⁰ **ENVIRONMENT:** 100 10-2 10-2 10-1 10.1 10⁻³ 10 10-2 10.5 da/dN (in/cycle) 10⁻⁴ 10 4 10⁻³ 10⁻³ 10⁻⁵ 10^{.5} 10.4 10-4 10⁶ 10⁶ 10⁻⁵ 10^{.5} 10⁻⁷ 10.7 10⁻⁶ 10⁻⁶ 10-8 10 40 100 10 40 100 ΔK (KSI √in)  $\Delta K$  (KSI  $\sqrt{in}$ )

Figure 4.11.3.53

his minimalistic in the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.54INDICATING EFFECT

### OF STRESS RATIO

		OF	STRESS RATIO	]	
CONDITION:	IT: R. T. , L		40		
DELTA (KSI+IN)	K :		DA/DN (10#4	-6 IN. /CYCLE)	
\r\ <b>01</b> - 114-	:	A	В	С	D
	:	R=+0. 30			
DELTA K B: MIN C: D:	:	. 14			
DELTA K B: MAX C: D:	:	26. 4 48. 3 75. 9 113. 255.			
PERCENT E			د الله الله الله الله الله الله الله الل		
PREDICTION RATIO	0.0-0.5	1			

の名の意味があれている。自然のないないのは、自然のできないという。自然のできないのは、自然のないのでは、自然のないないのでは、これできないないできないないない。

(NP/NA)

>2.0



Figure 4.11.3.54

### FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ABSOCIATED WITH FIGURE 4.11.3.55INDICATING EFFECT

OF STRESS RATIO							
MATERIAL: CUNDITION: ENVIRONMEN	MA T: R.T. , l	TI-6AL-4	<i>y</i>				
DELTA (KSI+IN+	K :		DA/DN (10**	-6 IN. /CYCLE)			
1001-200-	:	A	B	c	D		
	:	R=+0. 02					
DELTA K B: MIN C: D:	:	. 0335					
	6.00 : 7.00 :	. 0448					
	<b>9.</b> 00 : <b>9.</b> 00 : <b>10.</b> 00 :						
	13. 00 : 16. 00 :	. 554					
	<b>20</b> . 00 :	5. 92 10. A					
	30. 00 : 35. 00 : 40. 00 :	46. 1 86. 0 133.					
<b>A</b> :	44, 29 :						
DELȚA K B: MAX C: D:	: : :						
ROOT MEAN !	RROR	35. 66					
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 5	2		# <b>* * *</b> * * * * * * * * * * * * * * * *			

and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t



Figure 4.11.3.55

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ABSOCIATED WITH FIGURE 4.11.3.56 INDICATING EFFECT

# OF STRESS RATIO

	к :		DA/DN (10##-6 IN./CYCLE)			
(KSI*IN**1/2) :		A	8	c	D	
	<b>:</b>	R=+0. 08	R=+0. 30	R=+0. 50		
	7. 76 :	. 147				
DELTA K B:			1. 20	1. 70		
MIN C: D:	10. 32 :			1. 70		
	:					
	8.00:					
	9.00:					
	10. 00 : 13. 00 :	. 373	3. 31	5. 53		
	16.00:	1. 36 4. 04	9. 32	9. 75		
	<b>20</b> . 00 :	11.7	16. 8	17. 3		
	<b>25</b> . 00 :		38. 1	47. 0		
	<b>30</b> . 00 :	36. 2	<b>66</b> . 0	94. 0		
A:	34. 01 :	36. 7				
DELTA K B:			<b>66.</b> 0			
MAX C:	30. 83 :			94. 6		
D:	<i>:</i> :					
ROOT MEAN S	ROR	21. 28	14. 01			
	0. 0-0. 5		ه شده مدرای و بده این ماه جن می این این این این این این این این این ای			
PREDICTION						
RATIO	0. 8-1. 25	2	1	1		
SUMMARY						
(NP/NA)	>2. U					



Figure 4.11.3.56

19.人のののの**自然のの人の人を**関われていたの意味のいというが通常というというできないというではなっている。 できらんたらのでもほごく

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.57 INDICATING EFFECT

# OF ENVIRONMENT

MATERIAL: CONDITION:		TI-6AL	_ <b>-4</b> V		
DELTA K (KSI+IN++1/2)		:	DA/DN (10##	-6 IN. /CYCLE)	, ## #1, #P #1, #P #1, PP #1
		: <b>A</b>	В	С	D
			E= R.T. J.P.4		
A:	13. 17	: 1. 51			
DELTA K B:			8. 27		
	11.48		<u> </u>	1. 35	
D:		:		0. 00	
	13. 00	:		1. 82	
	16.00			5. 04	
	20.00		12. 0	14. 3	
	25. 00		25. 1	32. 4	
	30.00		43. 5	53. 9	
	35. 00		68. 4	80. 4	
	40.00		103.	117.	
	50.00			266.	
<b>A</b> .	42. 59	: 116.			
DELTA K B:			171.		
	51.63		<b>4</b> / <b>4</b> ·	308.	
D:	01.00	:		305.	
•		:			
ROOT MEAN PERCENT E		13. 77	3. 38	8. 04	
LIFE PREDICTION RATIO SUMMARY (NP/NA)	O. <b>8-</b> 1.	8 25 1	1	1	



Figure 4.11.3.57

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.58 INDICATING EFFECT

# OF ENVIRONMENT

CONDITION:	MA	TI-6AL			
DELTA K (KSI+IN++1/2)			DA/DN (10**-6		
11/01 - 114		: <b>A</b>	B	С	D
		: : E≈ R. T. : L. H. A. - 6HZ	E= R.T. S.T.W. 6HZ		
DELTA K B: MIN C: D:	9. 22	: <b>1.76</b> : :	. 428		
	10. 00 13. 00 16. 00 20. 00 25. 00 30. 00 35. 00	: 5, 21 : 12, 7 : 15, 9 : 36, 0	. 620 1. 97 4. 67 11. 1 24. 8 45. 1 71. 6		
DELTA K B: MAX C: D:	3 <del>9</del> . 27	: :	<del>98</del> . <b>5</b>		
ROOT MEAN S	BGUARE RROR	16. 43	6. 59		
LIFE PREDICTION RATIO BUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 1	1		



Figure 4,11,3,58

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.59INDICATING EFFECT

### OF ENVIRONMENT

CONDITION:	HA	TI-6AL			
	K :		DA/DN (10##		
(	:	A	В	C	ם
	:	F= R. T.	E= R. T.	E= R.T.	
		LAB AIR	S. T. W.	SIM. SEA WATER	
	•	1-20HZ	S. T. W. 1-10HZ	E= R.T. SIM. SEA WATER 1-10HZ	
<b>A</b> :	12. 95 :	. 690			
DELTA K B:			1. 21		
MIN C:				. <b>987</b>	
D:	:				
	13.00		2. 42	2. 42	
	16.00 :	3. 12	4 14	4. B4	
	<b>20</b> . 00 :	9. 50	11. 2	<b>9. 69</b>	
		21. 0	23. 9		
	<b>30</b> . 00 :	35. 6			ę;
	<b>35</b> . 00 :	55. 1 83. 7 202.	73. B	58. 5 95. 9	
	40.00 :	<b>83</b> . 7	73. 8 116.		
	<b>50.00</b> :	202.	254.	242.	
		548.	496.	580.	
	70.00 :	1660.			
		<b>2768</b> .			
DELTA K B:			<b>518</b> .		
MAX C:	<b>66.66</b> :			1019.	
D:	:				
PERCENT E	BQUARE RROR	18. 14	27, 52		· • • • • • • • • • • • • •
LIFE	0. 0-0.	<b>5</b>			
PREDICTION			_		
RATIO			2	2	
SUMMARY					
(NP/NA)	<i>7</i> 2, (	,			



Plaure 4.11, 3,59

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.69NDICATING EFFECT

### OF ENVIRONMENT

CONDITION	: MA	TI-6AL	4V			
DELTA K : (KSI+IN++1/2) :		DA/DN (10##-6 IN./CYCLE)				
		: <b>A</b>	B	С	D	
		: E= R.T. :LAB AIR 5-20HZ	E= R. T. S. T. W. 1-10HZ	E= R.T. Sim. Sea Water 1-10HZ		
DELTA K B	10. 58 10. 52		2. 31	2. <del>9</del> 8		
	16. 00 20. 00 25. 00 30. 00 35. 00	: 98.6 : 281.	4.93 11.3 25.9 47.7 67.3 90.6 128.			
DELTA K B:	56. 74 63. 55		<b>73</b> 7.	874.		
PERCENT 6	ERROR		17. 66			
LIFE PREDICTION RATIO	0.0-0. 0.5-0. 0.8-1. 1.25-2.	5 8 25 2 0	2	1		



Staure 4.11, 3,60

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.61 INDICATING EFFECT

### OF ENVIRONMENT

(KSI+IN++1/2)  A B C D  E= R.T. E= R.T. E= R.T. SIMULATED FUEL 10HZ 08-10HZ 09-10HZ  A: DELTA K B: 15.25 MIN C: 13.51 D: 7.15 5.95 20.00 7.15 5.95 20.00 7.15 6 14.2 25.00 30.9 31.1 30.00 55.5 63.1	
EDRY ARGON DRY AIR SIMULATED FUEL 10HZ .08-10HZ .09-10HZ  A:	
DELTA K B: 15.25 : 5.87  MIN C: 13.51 : 2.61  D: :  16.00 : 7.15 5.95  20.00 : 15.6 14.2  25.00 : 30.9 31.1	
MIN C: 13.51: 2.61 D: : : : : : : : : : : : : : : : : : :	
20. 00 : 15. 6 14. 2 25. 00 : 30. 9 31. 1	
30. 00 : 55. 5 63. 1	
35. 00 : 99. 4 130. 40. 00 : 183. 280. 50. 00 : 696. 1513.	,
A: : ELTA K B: 51,67 : 882.	
MAX C: 51.36: 1932. D: :	
DOT MEAN SQUARE 0.00 57.69 39.37 PERCENT ERROR	



Figure 4,11.3,61

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ABSOCIATED WITH FIGURE 4.11.3.62 INDICATING EFFECT

#### OF ENVIRONMENT

CONDITION:	MA	TI-6AL	4∨	_		
DELTA K : (KSI+IN++1/2) :		: DA/DN (10**-6 IN./CYCLE)				
(VDIATMAX	/1/ <i>2</i> /	<b>A</b>	B	c	Ð	
		: E= R.T. : DIST. WATER 10HZ	E= R.T. 3.5% NACL 1-10HZ			
DELTA K B: MIN C: D:		: : :	13. 3			
	25. 00 30. 00 35. 00 40. 00 50. 00 40. 00 70. 00 80. 00	: : : : :	29. 1 61. 4 93. 1 123. 197. 342. 694. 1657.			
DELTA K B: MAX C: D:		: : :	<b>20</b> 10.			
PERCENT ER	GUARE ROR			* ** ** ** ** ** ** ** ** ** ** ** ** *		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 0				

では1mmでクラント 自分の人の自動がとなる。自然などとは異なるなるのでは、10mmであるともなどを表現なるのでは、10mmであることには、10mmであると、10mmである。



Figure 4.11.3.62

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ABBOCIATED WITH FIGURE 4.11.3.63 INDICATING EFFECT

### OF STRESS RATIO

MATERIAL: T		TI-6AL-	40			
ENVIRONMENT		LAB AIR				
DELTA K : (KSI+IN++1/2) :		DA/DN (10##-6 IN./CYCLE)				
(KRI#IN##	11/2)	<b>A</b>	В	С	D	
	:	•		•	•	
	:	R=+0. 02				
A:	18. 15 :	6. <b>34</b>				
DELTA K B:	:					
MIN C:	:					
D:	:					
	20.00:	8. 18				
	<b>25</b> . 00 :	8. 18 15. 7				
	30.00 :	29. 2				
	<b>35</b> . 00 :	53. 0				
	<b>40</b> . 00 :					
	<b>50</b> . 00 :					
	<b>60</b> . 00 :	857.				
<b>A</b> :	60. 61 :	914.				
DELTA K B:	:					
MAX C:	:					
D:	:					
	:					
ROOT MEAN SQUARE PERCENT ERROR		13. 19				
LIFE	0. 0-0. 5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6		
PREDICTION		1				
	0. 8-1. 25					
SUMMARY						
(NP/NA)	>2. 0					



Figure 4.11.3.63

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.64INDICATING EFFECT

### OF STRESS RATIO

DELTA K : (KSI+IN++1/2) :			DA/DN (10##~6 IN./CYCLE)				
(VOIATUA)	11/6/	, . :	A	9	C	D	
		:	R=+0.00	R=+0. 25	R≈+0. 54		
<b>A</b> :	10.	<b>32</b> :	. 410				
DELTA K B:				1.01			
MIN C: D:	7.	74 :			. <b>59</b> 9		
	A	00 :			. 621		
		00 :			925		
	10.	00 :			1. 19		
		00 :	1. 29	2. 58	3.77		
		00 :		6.11	9. 69		
		00 : 00 :	6. 7 <b>2</b> 16. 1	13. 5 20. 1			
		00 :	31. 4	20. 1			
		00 :					
		00 :	76. 6				
			97. 8				
DELTA K B:				<b>37</b> . <b>7</b>			
	19.	<b>93</b> :			20.8		
D:		: :					
ROOT MEAN S			20. 23	29. 07	43. 68		

たのとの一般的というという。 「「「「「「「「」」」というないのは、「「「」できないのは、「「」できないのは、「「」できないのは、「「」できないのは、「「」できないのは、「「」できないのは、「「」できないのは、「「」できないのは、「「」できないのは、「」できないのは、「」できない。「「」できないのは、「」できない。「「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できないのは、「」できない。」できない。「」できないのは、「」できないのは、「」できない。」できない。「」できないのは、「」できない。」できない。「」できないのは、「」できない。」できない。「」できない。」できない。「」できない。」できない。「」できない。」できない。「」できない。」できない。「」できない。」できない。「」できない。」できない。「」できないのは、「」できない。」できない。「」できない。」できない。「」できない。」できない。」できない。「」できない。」できない。」できない。「」できない。」できない。」できない。「」できない。」できない。」できない。」できない。「」できない。」できない。」できない。「」できない。」できない。」できない。「」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない、「」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。「」できない。」できない。」できない。」できない。」できない。」できない。「」できない、「」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない、「」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できない。」できな



Figure 4.11.3.64

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.65 INDICATING EFFECT

# OF STRESS RATIO

MATERIAL: TITANIUM	TI-6AL-4V
--------------------	-----------

>2.0

(NP/NA)

CONDITION: MA 1300F 2HRS AC

DELTA (KSI+IN+	K :		DA/DN (10**-	5 IN./CYCLE)	
(VD1 ± 114 ±	*1/2/ :	A	В	С	D
	; ;	R≖+0. 00	R=+0. 25	R=+0. 54	
A:	10.19:	1. 49			
DELTA K B:			1, 23		
	8. 13 :			. 684	
D:	:				
	9. 00 :		1. 21	. 964	
	10.00:		1. 24	1. 46	
	13.00 :	2. 32	2.08	4. 75	
	16.00 :	3. 90	4. 36	12. 4	
	<b>20</b> . <b>00</b> :	7. 83	11. 2	<b>30</b> . <b>9</b>	
	<b>25</b> . 00 :	18.0	28. 1		
	<b>30</b> . 00 :	39. 4			
		81.4			
	<b>40</b> . <b>00</b> :	160.			
A:	41.78 :	202.			
DELTA K B:	<b>28</b> . <b>82</b> :	-	46. 2		
MAX C:	20.36:			32. <del>9</del>	
D:	:				
ROOT MEAN	SQUARE	21. 78	 23. 65	 26. 02	
PERCENT E	RROR				
PREDICTION RATIO	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0				



なったない。 なったなない。 は、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないのでは、これないでは、これないのでは、これないのでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないではないでは、これないではないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないでは、これないで

Figure 4.11.3.65

### FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

	OF	STRESS RATIO		
MATERIAL: TITANIUM CONDITION: RA ENVIRONMENT: R.T.	TI-6AL-	4V		
DELTA K : (KSI*IN*+1/2) :		DA/DN (10##-6	IN. /CYCLE)	
:	<b>A</b>	В	C	D
:	R=+0. 10	R=+0. 50		
A: 8.50 : DELTA K B: 4.86 : MIN C: : D: :	2. 47	. 285		
5. 00 : 6. 00 : 7. 00 : 8. 00 : 9. 00 : 10. 00 :	2. 81 3. 57	. 326 . 698 1. 21 1. 85 2. 65 3. 63		
13. 00 : 16. 00 : 20. 00 : 25. 00 : 30. 00 : 35. 00 :	6. 90 12. 0 23. 8 51. 6 105.	9. 44 19. 2 64. 9		
DELTA K B: 42.13 : MAX C: : D: :	487.	169.		
ROOT MEAN SQUARE PERCENT ERROR	8. 97	13. 03		- 4 <i></i>
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.2 SUMMARY 1.25-2.0 (NP/NA) >2.0	5 1	1		
		4.11-180		



Figure 4.11.3.66

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.67INDICATING EFFECT

### OF FREQUENCY

MATERIAL: T		TI-6AL-4	ŧv		
CUMDITION: ENVIRONMENT					
DELTA (KSI+IN++			DA/DN (10**-6		
(1101 - 111 -	:	A	B	C	D
	:	F(HZ)= 0.10	F(HZ)= 10.00		
A:	<b>8</b> . 36 :	2. 00			
DELTA K B: MIN C: D:	<b>9</b> . <b>72</b> : :		2. 33		
	9. 00 :	2. 47	2. 79		
	10.00 :	3. 50	4. 86		
	13.00 :	7. 45	15. 6		
	16.00 :	21. 1 44. 7	32. 6		
		44. / 74. O			
	<b>30</b> . 00 :	74. 4	168.		
	<b>35</b> . 00 :		237.		
	<b>40</b> . 00 :		<b>32</b> 1.		
A:	26. 41 :	79. 4			
DELTA K B:	42.50 :		370.		
MAX C:	:				
D:	:				
PERCENT ER	GUARE ROR	9. 04			
PREDICTION	0. 0-0. 5 0. 5-0. 8	1			
RATIO SUMMARY (NP/NA)		7	1		



Figure 4.11.3.67

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11,3,681NDICATING EFFECT

# OF FREQUENCY

NVIRONMENT		HUMID AIR			
DELTA	K :		DA/DN (10**	-6 IN. /CYCLE)	
(KSI#IN##	11/2) :	A	В	С	D
	:	•	•	J	2
	;	F(HZ)= 10.00	•		
A:	8. 50 :	. 637			
ELTA K B:	:				
MIN C: D:	:				
D.	:				
	9.00:				
		1. 18			
		3. 12			
		6. 30			
		12. 1			
		19. 9 26. 1			
	<b>35</b> . 00 :	29. 2			
<b>A</b> :	37. 14 :	29. 6			
ELTA K B:					
MAX C:	:				
D:	:				
	:				
OOT MEAN S PERCENT ER	ROR				
LIFE					
REDICTION					



Figure 4.11.3.68

Makala katan katan di terbahan kan katan katan katan katan katan katan katan katan katan katan katan katan kat

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.69INDICATING EFFECT

#### OF FREQUENCY

DELTA K : (KSI+IN++1/2) :		DA/DN (10**-	IN. /CYCLE)		
(KSI*IN	<del> **1/2) :</del> :	A	Э	c	a
	:	F(HZ)= 10.00			
DELTA K B MIN C	: : :: :	37. 3			
	20.00 : 25.00 :	37. 9 49. 7 67. 2 84. 6 99. 2			,
DELTA K B MAX C	:	101.			
ROOT MEAN PERCENT	ERROR	22. 70	**************************************		**************************************

■ アンスススス 国内のグンス (1) ではなど (2) More かんかく (2) More かんかい (2) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3) More かんかん (3



# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11, 3.70 INDICATING EFFECT

### OF STRESS RATIO

MATERIAL: TI CONDITION: I ENVIRONMENT	RA	TI-6AL-4	<b>4</b> V				
DELTA K		DA/DN (10**-6 IN./CYCLE)					
(KSI#I <del>N##</del>	1/2) :	<b>A</b>	B	c	a		
	: :	R=+0. 10	R=+0. 50				
A: DELTA K B: MIN C:		4. 77	. 99				
D:	:						
	6.00 : 7.00 :		1. 54 2. 63				
	8.00 : 9.00 :		3. 84 5. 12				
	10.00:	6. 51	6. <b>45</b> 10. <b>9</b>				
	16.00 :	9. <b>2</b> 7	16. 7				
	<b>20</b> . 00 : <b>25</b> . 00 :	14. 4 23. 2	26. 8				
		27. 0	<b>33</b> . 7				
DELTA K B: MAX C: D:	23. 27 :		33. /				
ROOT MEAN S PERCENT ER		5. 20	12. 89				
LIFE PREDICTION	0. 5-0. 8 0. 8-1. 25 1. 25-2. 0	1	1				



Figure 4.11.3.70

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.71 INDICATING EFFECT

### OF STRESS RATIO

MATERIA			UM	TI-6AL-	4V		
	HEN'	T: R.		5% NACL			
DELTA K :		:	DA/DN (10#4-6 IN./CYCLE)				
(1102.2	214-		:	<b>A</b>	•	c	۵
			;	R=+0. 10	R=+0. 50		
				35. 5			
DELTA K			4 :		15. 2		
MIN	D:		;				
			;				
		7. 0 8. 0			15. <b>6</b> 22. 0		
		7.0			28. 4		
		10.0			33. 7		
		13. 0			51. 4		
		16.0			86. B		
		20.0		50. 7	148.		
			0:	<b>86</b> . 0			
		35.0	ö :	132. 181. 204			
		40.0	ŏ :	204.			
	<b>A</b> :	42, 6	7 :	207.			
DELTA K		<b>23</b> . 0	7 :		<b>697</b> .		
MAX	-		:				
	D:		; ;				
PERCEN	T E	RROR		11. 25	10. 47		
		0. 0-		*****			
PREDICT	ION	0. 5-	0. •				
		0. 8-		1	1		
		1. 25-					
(NP/N	A)	>	<b>2</b> . 0				

C; F



Figure 4.11.3.71

# FATIQUE CRACK QROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.72INDICATING EFFECT

# OF STRESS RATIO

CONDITION:	RA	TI-6AL-	-4V		
ENVIRONMENT		, S. T. W.			
DELTA (KSI+IN+	K :	1-070 tay 100-000 tay 100-000 tay 100-000 tay 100-000 tay	DA/DN (10#	+-6 IN. /CYCLE)	- <b> </b>
		A	B	С	D
	:	R=+0. 08			
	<b>5</b> . 67 :	. 224			
DELTA K B:	:				
MIN C: D:	:				
D:					
	6. 00 :	. 262			
	7.00 :				
	8.00 :	. 747			
	9.00:				
	10.00 :				
	13.00 : 16.00 :				
	20.00				
A:	23. 65 :	81. 2			
DELTA K B:	:				
MAX C:	:				
D:	:				
ROOT MEAN S PERCENT ER	ROR			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
LIFE	0.0-0.				ر پرد شد شد. پرد جنو مید بود است که پودا کا
PREDICTION					
RATIO					
SUMMARY					
(NP/NA)	>2.0	)			



Figure 4.11.3.72

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4,11.3.73INDICATING EFFECT

#### OF STRESS RATIO

MATERIAL: TIT CONDITION: RA ENVIRONMENT:	A R. T.					
DELTA K (KSI+IN++1	;			N (10##-6	IN. /CYCLE)	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		A		B	C	D
	:	R=+0.	10			
DELTA K B: MIN C: D:	<b>29</b> . 01	1405.				
	30. 00 :	1418.				
	35.00 :	1800. 2531.				
		3951.				
A: S DELTA K B: MAX C: D:	52. 51 : :	4043.				
PERCENT ERRO	DR	-				
LIFE (PREDICTION (RATIO (SUMMARY 1.	0.0-0.5 0.5-0.6 0.8-1.6	5 3 25 2				
•						
			4.	.11-194		



Figure 4.11.3.73

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.74 INDICATING EFFECT

### OF ENVIRONMENT

. <b></b>			SIAA I KOMBEIA I		
	MATERIAL: TITANIUM CONDITION: RA		-4V		
DELTA M (KSI*IN**)		• • •	DA/DN (10**-	-6 IN. /CYCLE)	
,,,o a,,		<b>A</b>	B	C	D
		: : E= R.T. :LAB AIR			
DELTA K B: MIN C: D:	13. 05	: <b>4</b> . <b>93</b> : : : : : : : : : : : : : : : : : : :			
	20. 00 25. 00 30. 00				
DELTA K B: MAX C: D:	36. 63	: <b>279</b> . : : :			
ROOT MEAN SG PERCENT ERR		9. 02			
LIFE PREDICTION RATIO SUMMARY 1 (NP/NA)	0. <b>5-</b> 0. 0. <b>8-</b> 1.	5 8 25 1	- *		



で、最大なななななななななななななななななな。 第122章 大きななななななななななななななない。 第12章 大きなななななななななななない。

Figure 4.11.3.74

			TABLE 4.11.3.75		
	FA		OWTH RATES AT I		
	DATA A	SSOCIATED WITH	FIGURE 4.11.3.7	SINDICATING EFFEC	;т
			F ENVIRONMENT		
MATERIAL: TI CONDITION: F		TI-6AL	4V		
DELTA M		:	DA/DN (10**	-6 IN. /CYCLE)	
		: <b>A</b>	В	C	D
			E= R. T. 3. 5% NACL		
DELTA K B:	9. 44 8. 60 9. 40	• •	. 341	. 364	
	9. 00 10. 00 13. 00	. 434	. 405 . 646 2. 66	. <b>646</b>	
DELTA K B:	11. 75 13. 55 12. 61	<b>;</b>	3. 37	2. 09	
ROOT MEAN SO PERCENT ERF		15. 71	16. 16	11. 43	,
PREDICTION RATIO	0, 0-0. 0, 5-0. 0, 8-1. 1, 25-2. >2,	8 25 0			



■ なんかなな。 ■ でもののの。 ■ なったのの 魔式をなるなな ■ なるなのの ■ からののなど ■ こうらのの M でついる M でいる グランド はこ

Figure 4.11.3.75

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.76INDICATING EFFECT

### OF ENVIRONMENT

MATERIAL: CONDITION:		TI-6A					
DELTA K : (KSI+IN++1/2) :		:	DA/DN (10##-6 IN./CYCLE)				
(VOI+14-	*1/2/	. <b>A</b>	В	С	D		
		E= R.T. :DRY AIR	E= R.T. H2O STAURATED JP-4 FUEL	E= R.T. DIST. WATER			
A: DELTA K B: MIN C: D:	28. 27		<b>32</b> . 7	30. 5			
	13. 00 16. 00 20. 00 25. 00	: 3. 88 : 9. 08					
	35. 00 40. 00	: 31.5 : 49.5	36. 7 51. 9 75. 9 179.	44. 5 67. 7 96. 3 197.			
	60.00 70.00 80.00	: :	465. 1304.	455. 1228. 3814.			
DELTA K B: MAX C: D:	71.17		1476.	4465.			
ROOT MEAN PERCENT E	SQUARE	25. 19	10. 30	22. 32			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.8-1.	8 25 0					

プログランスをディック・ファインは、アファインスを対して、アンドのできない。これには、アンドのできない。これには、アンドンスのできない。これには、アンドンスのできない。これには、アンドンスのできない。 アンドンスのできない。これには、アンドンスのできない。これには、アンドンスのできない。これには、アンドンスのできない。これには、アンドンスのできない。これには、アンドンスのできない。これには、アンドンスのできない。これに



Figure 4.11.3.76

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.77 INDICATING EFFECT

### OF ENVIRONMENT

MATERIAL: 1 CONDITION:		TI-6Al	_ <b>-4</b> V			
DELTA K : (KSI*IN**1/2) :						
(KSI+IN+	1/2)	: : <b>A</b>	В	С	a	
		: : E= R.T. :3.5% NACL	E≕ R.T. S.T.W.			
A: DELTA K B:		: <b>14</b> . <b>1</b>	<b>84</b> . <b>9</b>			
MIN C: D:		; ;				
	16. 00 20. 00	: 16.3 : 28.6				
	<b>25</b> . 00 <b>30</b> . 00	: <b>54</b> . 7 : <b>97</b> . <b>2</b>	100.			
	<b>35</b> . 00 <b>40</b> . 00		144. 187.		:	
	50. 00 60. 00	: 251. : 526. : 943.	31C. 604.			
	70. 00 <b>90</b> . 00	: <b>1504</b> .	1456. 4302.			
A: DELTA K B:		: 1660.	<b>505</b> 0.			
MAX S:	<b>01</b> . <b>0</b> 0	· : :	0000.			
PERCENT E	RRUR	14 68	8. 17			
PERCENT EN LIFE PREDICTION RATIO SUMMARY	0 0-0. 0. 5-0. 0. 8-1	5 8 25				

PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION OF THE PRODUCTION O

>2. 0

(NP/NA)



Figure 4.11.3.77

		TABLE 4.11.3.78		
FAI		ROWTH RATES AT DE ESS INTENSITY FAC		
DATA AS	BOCIATED WITH	H FIGURE 4.11.3.78	NDICATING EFFECT	
		OF ENVIRONMENT		
MATERIAL: TITANIUM CONDITION: RA	TI-6A	L·-4V		
DELTA K : (KBI+IN++1/2) :		DA/DN (1044-6	IN. /CYCLE)	) — — — — — — — — — — — — — — — — — — —
, , , , , , , , , , , , , , , , , , ,	<b>A</b>	p	C	D
:	E= R.T. DRY AIR	E= R.T. H20 BATURATED JP-4 FUEL		
A: 27.66 : DELTA K B: 28.99 : MIN C: 14.90 : D: :		42. 9	<b>3</b> . <b>43</b>	
16, 00 : 20, 00 : 25, 00 :			6. 83 19. 0 34. 4	
30.00 : 35.00 : 40.00 : 50.00 : 60.00 :	66. 1 101. 224. 562.	47. 2 70. 6 79. 2 204. 507.	63. 3 105. 152. 254. 468.	
70.00 : A: 62.76 : DELTA K B: 79.39 : MAX C: 78.93 : D:	767.	1 547. 5230.	1243. 8143.	
ROOT MEAN SQUARE PERCENT ERROR	7. 58	13. 76	16. 77	
LIFE 0.0-0.5 PREDICTION 0.5-0.6 RATIO 0.6-1.2 SUMMARY 1.25-2.6 (NP/NA) >2.6	B 25 )			
		4.11-204		



Figure 4.11.3.78

the desirable desirable desirable desirable desirable de servicio de desirable de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión del compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compressión de la compresión de la compressión de la co

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.79 INDICATING EFFECT

### OF ENVIRONMENT

UF ENVIRUNMENT						
MATERIAL: CONDITION:						
DELTA K : (KSI+IN++1/2) :		DA/DN (10**-6 IN./CYCLE)				
(101 - 111-		· •	В	С	D	
		E= R.T.	E= R. T. 8. T. W.			
DELTA K B: MIN C: D:		: <b>363</b> . : :	143.			
	35. 00 40. 00 50. 00 60. 00	: 642. : 984. : 1262. : 1852. : 3042. : 6176.	286. 449. 905. 2145.			
DELTA K B: MAX C: D:	60. 36	: <b>9991</b> . : : :	2225.			
ROOT MEAN PERCENT E		18. 75				
PREDICTION RATIO	0.0~0. 1 0.5~0. 0.9~1. 1.25~2. >2.	8 25 0				

and a factorization in the contraction of a factorization in the factorization in the factorization is a factor



Figure 4.11.3.79

たい スタイ 間位 かいりがい かいない はんききもんされ 重ない ちら

printer and the minute of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.80INDICATING EFFECT

### OF ENVIRONMENT

MATERIAL: TITANIUM CONDITION: RA		TI-6AL-4V				
DELTA K (KSI*IN**1/2)		: DA/DN (10++-6 IN./CYCLE)				
		A	В	С	Ď	
		: E= R.T. :DRY AIR	E= R.T. H20 SATURATED JP-4 FUEL	ALT JP-4 FUEL		
		. 364				
DELTA K B:	8. 65	:	. <b>78</b> 9			
MIN C: D:	7. 94	:		1. 07		
	8.00	. 381		1. 07		
	9.00		. 950	1. 16		
	10.00	1.52	1. 53	1. 55		
	13.00		4. 57	<b>6</b> . 24		
		: 9.13	9. <b>49</b>	19. 1		
		: 17. 2		<b>35</b> . 4		
	<b>25</b> . 00		<b>35</b> . 1	<b>51</b> . <b>4</b>		
	30.00	: 71.5 : 157.	64. 4	80. 0		
	<b>35</b> . 00 <b>40</b> . 00		120 <i>.</i> 278.	157.		
A:	37. 05	: 220.				
DELTA K B:	<b>45</b> . 45	:	2354.			
MAX C: D:	39. 99	: :		396.		
	BQUARE	16. 89	=	23. 26		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 0				

いた。「日本のことのでは、日本のことには、日本のことには、日本のことのできる。日本のことのできる。「日本のことのできる。」というないのできる。「日本のことのとのできる。」というない。「日本のことのできる



AND THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T

Figure 4.11.3.80

hadrational acceptational and analysis and an acceptance and an extension entered and acceptance and a construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the con

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

# DATA ASSOCIATED WITH FIGURE 4.11.3.81INDICATING EFFECT

# OF ENVIRONMENT

(KSI*IN**1/2 A: 15 DELTA K B: 16	: : :	A	В	<b>c</b> .	D
		F 49ec			U
			E=+ 175F JP-4 FUEL		
DELTA K B: 16	8. 65 :	6. 24			
			10. 4		
MIN C: 15				13. 0	
D: 16	. 62 :				39. 9
14	. 00 :	6. 72		15. 2	
20	0. 00 :	13. 3	16. 9	29. 6	266.
25	. 00 :	24. 8	<b>27</b> . 0	43. 6	477.
		41.7	<b>40</b> . <b>7</b>	<b>60</b> . <b>B</b>	<b>53</b> 7.
		<b>67. 2</b>		<b>93.</b>	698.
40	0.00 :	107.	109.	166.	1277.
A: 42	2. 30 :	133.			
ELTA K B: 45	5. 72 :		219.		
MAX C: 44	. 48 :			314.	
D: 46	). 18 : :				4629.
OOT MEAN SQUA	_	9. 95	6. 80	6. 53	36. 25



and the said the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the said of the s

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ABSOCIATED WITH FIGURE 4.11.3.82INDICATING EFFECT

# OF ENVIRONMENT

DELTA K (KSI*IN**1/2)		DA/DN (10##-6 IN./CYCLE)			
(11 <b>62</b> * 814 * 1		. A	Ð	C	D
			E= R.T. DIST. H2O CRACK SPRAYED		
			WITH LP8-3		
		: 507			
DELTA K B: MIN C:	15. 22 8. 86		11. 9	1. 02	
D:	9. 27	:			1. 21
	9.00	: : 1. 26		1. 15	
	10.00	: 2.64		2. 65	2. 02
	13.00		4.4.4	20. 3	9. 56
	20.00	: 20. <del>9</del> : 36. <del>8</del>	11. 1 22. 8	63. 4 117.	24. 9 52. 5
	25.00	. 61.9	42. 7	165.	93. 6
	30.00	102.	65. 0	236.	149.
		: 177.	121.	401.	235.
	<b>40</b> . 00	: 394.	369.	838.	384.
		: 1764.			
DELTA K B:			8433.	400	
MAX C: D:	40. 49			1937.	403.
PERCENT ER	RROR		32. 49		12. 99
LIFE	0. 0-0.	5			~~~~~
REDICTION RATIO					
SUMMARY					
	>2.				



Figure 4.11.3.82

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.83INDICATING EFFECT

### OF ENVIRONMENT

MATERIAL: 1 CONDITION:	_	TI-6AL-4	V				
DELTA		:	DA/DN (10**-6 IN./CYCLE)				
(KSI*IN**1/2) :		: <b>A</b>	В	С	D		
		: E=- 65F :NITROGEN & AIR					
DELTA K B: MIN C: D:	17.05	5. <b>84</b> : :					
	25. 00 30. 00	12. 2 21. 7 37. 0 83. 7					
DELTA K B: MAX C: D:	39.00	: 209. : : :					
ROOT MEAN S		13. 05			10 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40 to 40		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	8 25 0					



スタの一般でいくという。 日本のことの「自然ななななな」 日本のことには、「自然などのとなる。「日本のないのでは、「自然などのとなる。」 これのことには、「日本のとのとのと、「日本のとのと、「日本のとのと、「日本のとのと、「日本のとのと、「日本のとのと、「日本のとのと、「日本のとのと、「日本のとのと、「日本のとのと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日本のと、「日

Figure 4.11.3.83

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.84INDICATING EFFECT

#### OF ENVIRONMENT

DELTA		:	DA/DN (10**~6	IN. /CYCLE)	
(KSI+IN+	F1/ <b>∠</b> )		В	c	D
		: E= R.T. :DRY AIR	E= R.T. H20 SATURATED JP-4 FUEL.	E≃ R.T. DIST. WATER	
DELTA K B: MIN C: D:		:	12. 1	9. 45	
	25.00	: 1.08 : 2.57 : 6.86 : 20.4 : 48.6 : 70.2	12.3 17.0 36.3 70.5 128.	12. 2 21. 8 43. 6 117. 391. 1251.	
DELTA K B: MAX C: D:	46.00		2006.	1196.	
ROOT MEAN S PERCENT ER		92. 37	14. 73	12.84	



Figure 4.11.3.84

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.85INDICATING EFFECT

### OF ENVIRONMENT

CONDITION:	RA	TI-6AL	4V					
DELTA	K	; ;	DA/DN (10++-6 IN./CYCLE)					
(K8I+IN++1/2)		<b>A</b>	8	C	D			
		: E= R. T. : 3. 5% NACL						
DELTA K B: MIN C: D:	7, <del>9</del> 7 22, 18		77. 7					
	9, 00 10, 00	:	<b>160</b> .					
DELTA K B: MAX C: D:	30. 00 19. 93 34. 79	: 31.4	20 <b>9</b> . <b>262</b> .					
PERCENT E	BQUARE RROR	21. 59	10. 97					
	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	5 <b>8</b> 25 0	· <b>**</b> · · · · · · · · · · · · · · · · · ·					

のでは、これでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10m

<mark>Bertelen Bertelen in belegteten bestelle</mark> der der bestellte bestellt bestellt bestellt in bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt bestellt be



Figure 4.11.3.85

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.86 INDICATING EFFECT

#### OF STRESS RATIO

MATERIAL: T		TI-6AL-4	V		
	r: R. T. , L.	H. A.	~~~~~~~~		
DELTA (K8I#IN##	K :		DA/DN (10**-	S IN. /CYCLE)	
1702 421444	:	<b>^</b>	B	С	D
	:	R=+0. 08	R=+0. 30	R=+0. 50	R=+0. 7
	<b>5. 98</b> :	. 0135			
DELTA K B:			. 10 <del>9</del>		
MIN C:	<b>6.39</b> :			. 226	
D:	<b>5</b> . 11 :				. 14
	6. 00 :	. <b>0139</b>			. 37
	7.00 :	. 0485	. 22 <del>9</del>	. 371	. 79
	<b>8.00</b> :	. 127	. 464	. 726	
	9.00 :	. 270	. 839	1. 25 1. <del>9</del> 4	2. 17
	10.00:	. 499	1. 39	1. 94	3. 12
	13.00 :	1. 84	4. 24	5. 08	7. 33
	1 <i>6.</i> 00 :	4. 30	8. 75	9. 54	14. 9
	<b>20</b> . 00 :	9. 42	15. 9	16.8	
		19. 0	23. 2		
	30.00:	<b>32</b> . 7			
	<b>35</b> . 00 : <b>40</b> . 00 :	<b>52. 2</b>			
	<b>50</b> . 00 :	171.			
	<b>52.</b> 96 :	213.			
DELTA K B:			24. 1	_	
MAX C:				18. 1	
D:	19. 21 : :				30. 8
	BQUARE RROR	33. <del>9</del> 7	20. 34	21. 38	6. 79
LIFE	0. 0-0. 5	,			
	0. 5-0. B		1	1	
RATIO	0. 8-1. 25	2	1	1	1
SUMMARY	1. 25-2. 0	3			
	>2. 0				



Figure 4.11.3.86

<u>A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTO</u>

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### Ġ.

#### DATA ASSOCIATED WITH FIGURE 4.11.3.87INDICATING EFFECT

#### OF STRESS RATIO

DELTA			DA/DN (10**-6 IN./CYCLE)				
(K8I*IN**1/2) :		A	В	c	D		
	: :	R=+0. OB	R=+0. 30	R=+0. 50			
		. 340					
ELTA K B:	<b>7. 37</b> :		. 385				
MIN C:	<b>5.9</b> 7 :			. 293			
D:	÷						
	6. 00 :			. 300			
	7.00:			. 649			
	8.00:		. 784	1. 32			
	9.00:	. 423	1. 37	2. 46			
	10.00 : 13.00 :	. <del>59</del> 0 1. 52	2. 27 7. 32	4. <b>23</b> 13. 5			
	16.00:	3.49	7. <b>32</b> 15. 3	24. 6			
	20.00 :	8. <del>78</del>	24. 5	£4. U			
	25.00 :		• • • • • • • • • • • • • • • • • • • •				
	<b>30</b> . 00 :						
	<b>35</b> . 00 :	94. 6					
	<b>40</b> . 00 : <b>50</b> . 00 :	158.					
	50.00 : 60.00 :						
	80.00 .	371.					
A:	66.77 :	<i>7</i> 72.					
DELTA K B:	22. 54 :		26. 4				
MAX C:	17.45 :			28. 0			
D:	:						
ROOT MEAN SQUARE PERCENT ERROR							
LIFE	0. 0-0. 5						
PREDICTION	0. 5-0. 8	2					
	0. 8-1. 25		1	1			
	1. 25-2. 0 >2. 0	2					



Figure 4.11.3.87

# FATIQUE CRACK QROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ABBOCIATED WITH FIGURE 4.11.3.88 INDICATING EFFECT

#### OF ENVIRONMENT

MATERIAL: TITANIU CONDITION: RA							
DELTA K	:	DA/DN (10**-6 IN./CYCLE)					
(KSI*IN**1/2)	: : <b>A</b>	B	С	D			
	: : E=~ 65F : L. H. A.	E= R. T. L. H. A.					
A: 12.57 DELTA K B: 5.98 MIN C: D:	: 2.09 : :	. 0135					
6. 00 7. 00 8. 00 9. 00	: :	. 0139 . 0485 . 127 . 270 . 499					
10. 00 13. 00 16. 00	: 2.46	. 477 1. 84 4. 30					
20.00	: 11. 1	9. 42					
25. 00		19. 0					
30. 00 35. 00		32. 7 52. 2					
40. 00		79. <b>4</b>					
50. 00		171.					
A: 31.93 DELTA K B: 52.96 MAX C: D:	: : :	213.					
ROOT MEAN SQUARE PERCENT ERROR	4. 90						
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA) >2	. 5 . 8 . 25 1 . 0	2					



Figure 4.11.3.88

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.89INDICATING EFFECT

#### OF ENVIRONMENT

MATERIAL: T CONDITION:		TI-6AL	. <b>-4</b> V				
DELTA (KSI+IN+4			DA/DN (10##-6 IN./CYCLE)				
(1100 - 211-		<b>.</b>	9	C	ם		
		: : E= R. T. : L. H. A.	E=+ 265F L. H. A.				
A: DELTA K B: MIN C: D:		: . <b>230</b> : :	3. 05				
<b>U</b> .	9.00 10.00	. 728					
	13.00 16.00 20.00 25.00	: 5.76 : 11.3	5. 05 11. 4 21. 8				
Δ.	<b>30</b> . 00		36. 8				
DELTA K B: MAX C: D:			45. 8				
PERCENT ER	ROR	13. 20					
LIFE PREDICTION RATIO	0. 0-0. 0. 5-0. 0. <b>8-</b> 1.	5 8 25 2	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Bummary (NP/NA)							



Figure 4.11.3.89

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.90INDICATING EFFECT

### OF ENVIRONMENT

		,					
CONDITION:	RA	TI-6Al	L-4V				
DELTA **NI*ISX)	K	:	DA/DN (10**-6 IN./CYCLE)				
(VO1+114+	#1/ <i>E</i> /		B	С	D		
		: : E= R. T. : L. H. A.	E≈ R. T. J. P. 4	E=+ 150F S. T. W.			
		: 14.4					
DELTA K B: MIN C: D:	12. 49		. 107	2. 27			
	8. 00 9. 00		. 126 . 308				
	10.00	:	. <b>663</b>	_			
	13. 00 16. 00		3. 00 6. 83	2. 73 5. 97			
	20.00		12. 8	11.8			
	25 00	. 16.6	20. 2	24. 4			
	30.00	30. 7		53. 4			
		: 50. 0 : 74. 7					
		: 84. 3					
DELTA K B:			<b>22</b> . 7				
MAX C: D:		: :		102.			
PERCENT E	RROR		20. 62				
LIFE PREDICTION	0. 0-0. 0. <b>5</b> -0.	5	1	1			
SUMMARY (NP/NA)	1. 25-2.	0	•	•			



Figure 4,11.3.90

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS UF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.91 INDICATING EFFECT

### OF FREQUENCY

MATERIAL: TITANIUM CONDITION: RA ENVIRONMENT: R.T.			<b>-4</b> V			
	K :	DA/DN (10##-6 IN. /CYCLE)				
/V9141444	:	<b>A</b>	В	С	D	
	: :	F(HZ)= 0.1	0 F(HZ)= 1.00			
A:	11.17 :	1. 07				
DELTA K B: MIN C: D:			. 340			
	<b>7.</b> 00 :		. 423			
	10.00 :		. <b>590</b>			
	13.00 :		1. 52			
		4. 15	3. 49			
	<b>20</b> . 00 : <b>25</b> . 00 :		8. 98 23. 4			
	<b>30</b> . 00 :	49. Q	23. 4 50. 6			
	35.00 :	₹7. ♥	94. 6			
	40.00		158.			
	50.00 :		344.			
	<b>60</b> . 00 :		591.			
<b>A</b> :	32. 56 :	89. 8				
DELTA K B:	<b>66.</b> 77 :		772.			
MAX C:	:					
D:	: :					
PERCENT ER	ROR	12. 74	58. 58			
LIFE	0. 0-0. 5		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
PREDICTION			2			
	0. 8-1. 25	1	_			
SUMMARY			2			
(NP/NA)	<i>&gt;</i> 2. 0					



Figure 4.11.3.91

# FATIGUE CRACK OROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.92INDICATING EFFECT

#### OF ENVIRONMENT

MATERIAL: TITANIUM CONDITION: RA					
	K	:	DA/DN (10**	•	
/ WOT = 114=	-1/6/	: A	3	C	D
		: : E= R. T. : L. H. A. 6HZ	E= R. T. J. P. 4 1HZ	E≃ R.T. S.T.W. 1HZ	
A:	8. 94	: . 231			
DELTA K B: MIN C:	7. 99	:	. 226		
MIN C: D:		: :		. <b>0803</b>	
	7.00	• •		. <b>175</b>	
	8. 00	:	. <b>22</b> 6	. 346	
	9. 00		. 375	. 604	
	10.00			. <b>964</b>	
	13.00		3. 58	2. 78	
	16.00		7. 91	5. 93	
	20.00 25.00	: 11. 4 : 20. 2	14. 2	12. 7	
		32.0		<b>26. 3</b>	
	35. 00	. <b>32</b> . 0 : <b>49</b> . 9		47. <b>6</b> 79. 4	
	40.00	. 78. <b>5</b>		126.	
	50.00	: 208.		295.	
	60.00	: 208. : 609.		592.	
	70. 00			1160.	
A:	<b>63</b> . 39	: 893.			
DELTA K B:			25. 7		
MAX C:		:		1242.	
D:		: :			
ROOT MEAN S PERCENT EI	BGUARE RROR	27. 79	12. 67		P
LIFE	0. 0-0.	5	·~~~~~~~~~~~~~~		
PREDICTION	0. 5-0.	8 1		1	
RATIO			1		
SUMMARY				1	
(NP/NA)	<b>&gt;2</b> .	0			

TO SOUTH EXPERIENCE TO SOUTH TO SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUTH THE SOUT



Figure 4.11.3.92

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.93 INDICATING EFFECT

#### OF ENVIRONMENT

CONDITI	ON:	RA		TI-6AL						
DEI *KSI)	LTA	K			DA/DN (10++-6 IN./CYCLE)					
(101-			,	<b>A</b>	В	С	D			
				: : E= R. T. : F. C. S.						
	A:	13.	81	: 3. 33						
DELTA K				:						
MIN				:						
	D:			:						
		14	00	: 4. 56						
				8. 72						
				: 16.8						
		30.	00	: 24.7						
	A:	30.	21	: 24. 9			6			
DELTA K		<b>U</b> U.		:						
MAX	_			:						
	D:			•						
				:						
ROOT ME PERCEN			RE	4. 69						
LIFE PREDICT RATIO SUMMA (NP/N	ION RY	0. 9 0. 1 1. 2	5-0. 3-1. 5-2.	5 8 25 1 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		************			



Figure 4.11.3.93

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.94 INDICATING EFFECT

#### OF ENVIRONMENT

MATERIAL: T	_	TI-6AL-	-4V					
DELTA (KSI#IN##		:	DA/DN (10++-6 IN./CYCLE)					
(VDI = IM=	·1/e)	<b>A</b>	В	c	a			
		: : E= R. T. : L. H. A.						
DELTA K B: MIN C: D:	11. 70	: 1.48 : :						
	13. 00	2. <del>78</del>						
DELTA K B: MAX C: D:	15. 81	5. 79 :						
ROOT MEAN S PERCENT ER	ROR			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
LIFE PREDICTION	0. 8-1.	5 8 25 1 0						



Figure 4.11.3.94

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.95INDICATING EFFECT

#### OF ENVIRONMENT

DELTA K (KSI+IN++1/2)		:	DA/DN (10##-6	IN. /CYCLE)		
		·1/2/		В	C	D
			: E= R. T. : L. H. A. 6HZ	E=+ 150F S. T. W. 1HZ		
DELTA K B: MIN C: D:	B: C:		: 1. 74 :	. <b>99</b>		
		13. 00 16. 00 20. 00 25. 00 30. 00	: 2. 12 : 7. 80 : 17. 5	1.06 2.71 9.37 31.9 67.8		
DELTA K MAX		29. 18 34. 28		<b>93</b> . 1		
ROOT ME PERCEN		BGUARE RROR				
LIFE	ION RY	0. 0-0. 0. 5-0. 0. 8-1.	5 8 25 1	1		

では、**職務ものの法則**の分かった。**職の行われた関係ののの。**関係のなかの。関係ののの法則ののののは、関係ののの法則のののの法則のののの。



ジャンド 関係のできらい 日本のできるとのできるとのできる。 「「「「「「「「「「「「「「「」」」」」」 「「「「「「」」」」 「「「」」」 「「「」」」 「「」」 「「」」 「「」」 「「」」 「「 」」 「「」」 「「 」」 「「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」」 「 」

Figure 4.11.3.95

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.96 INDICATING EFFECT

#### OF ENVIRONMENT

HATERIAL: TITANIUM	T1				
CONDITION: RA					
DELTA K	DA/DN (10++-6 IN./CYCLE)				
(K8I+IN++1/2)	: : <b>^</b>	В	c	D	
	: : E= R.T. : S.T.W.				
DELTA K B: HIN C: D:	. <b>788</b>				
16. 00 20. 00 25. 00	: <b>8.</b> 98				
DELTA K 8: MAX C: D:	: 33. 2 : :				
ROOT MEAN SQUARE PERCENT ERROR	10. 04				
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	5 8 25 1				



Figure 4.11.3.96

#### FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.97 INDICATING EFFECT

#### OF STRESS RATIO

UF DIRECT RAILU							
MATERIAL: T CONDITION:   ENVIRONMENT	RA	TI-6AL-4 . T. W.	V				
DELTA (KSI*IN**		DA/DN (10++-6 IN./CYCLE)					
/ WOT a Tidaa	:	<b>A</b>	Ð	С	D		
	: :	R=+0. 08					
DELTA K B: MIN C: D:	7. 80 : : :	. 142					
	20.00 :	. 215 . 594 . 778 1. 31 3. 25 13. 4 37. 5					
DELTA K B: MAX C: D:	28.44 :	54. 6					
ROOT MEAN SQUARE PERCENT ERROR		22. 56		and the first that the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the fir	** ** ** ** ** ** ** ** ** ** ** ** **		
LIFE PREDICTION RATIO SUMMARY	0. 5-0. 8 0. 8-1. 25	1	# <b>.</b>		***************************************		



Figure 4.11.3.97

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.98INDICATING EFFECT

#### OF ENVIRONMENT

シャン 1 年にこうこう 1 日間できるとのできません。

MATERIAL: TITANIUM CONDITION: RA		TI-6AL	. <b>-4</b> V			
DELTA K : (KSI*IN**1/2) :		: DA/DN (10++-6 IN./CYCLE)				
(NDI ATMA	1/2/	<b>A</b>	В	c	D	
		: : E= R. T. : L. H. A. -6HZ	E= R. T. S. T. W. 1HZ			
DELTA K B: MIN C: D:		: . 561 :	. 991			
	20.00	4. 76 10. 4 19. 9	1. 70 3. 96 9. 34 28. 1			
DELTA K B: MAX C: D:	32. 46 27. 68		34. 6			
ROOT MEAN SQUARE PERCENT ERROR		-		4,		
LIFE PREDICTION	0. 0-0. 0. 5-0. 0. 8-1.	5 8 25 1 0	2	<u> </u>		



Figure 4.11.3.98

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ABBOCIATED WITH FIGURE 4.11.3.99INDICATING EFFECT

#### OF ENVIRONMENT

MATERIAL: TITANIUM CONDITION: RA		TI-6AL				
DELTA K : (KSI+IN++1/2) :		DA/DN (10**-6 IN./CYCLE)				
		<b>A</b> ,	В	C	D	
		: : E= R. T. : L. H. A. 6HZ	E= R. T. S. T. W. 1HZ			
DELTA K B: MIN C: D:		:	. <b>743</b>			
	20.00	: 3. 51 : 9. 89 : 20. 7	1. 37 3. 28 9. 12 23. 1 40. 6			
DELTA K B: MAX C: D:	29. 26 31. 56		45. 4			
RODT MEAN SQUARE PERCENT ERROR		9. 23				
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	5 8 25 1 0	1 1			



Figure 4.11.3.99

# FATIGUE CRACK QROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.10 INDICATING EFFECT

#### OF ENVIRONMENT

UF ENVIKUNMEN!							
MATERIAL: CONDITION:	RA						
DELTA K : (KSI*IN**1/2) :		:	DA/DN (10++-6 IN./CYCLE)				
11/01 - 114-		: A	B	C	D		
		E= R. T. ; L. H. A.					
DELTA K B: MIN C:		: <b>2.02</b> :					
D:	20. 00 25. 00						
	35. 00 40. 00 50. 00	: 36. 3 : 57. 6 : 145.					
A: Delta k B: Max C:							
D:		: :					
ROOT MEAN PERCENT E	SQUARE ERROR	8. 69					
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.2 SUMMARY 1.25-2.0		5 8 25 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
(NP/NA)	>2.						

では、10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmで



Figure 4.11.3.100

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.101INDICATING EFFECT

#### OF STRESS RATIO

MATERIAL: TITANIU CONDITION: RA ENVIRONMENT: R. T		<b>-4∨</b>		
DELTA K (KSI+IN++1/2)		DA/DN (10#4	+-6 IN. /CYCLE)	***
***************************************		B	c	D
	: : R=+0.08			
A: 6, 72	: . 356			
DELTA K B:	:			
MIN C:	:			
D:	:			
7. 00	: :			
8. 00				
9. 00	: . <b>95</b> 7			
10. 00	: 1. 65			
13. 00	: 7, 24			
16. 00				
20.00	: 36.8			
A: 21.08	: 38. 2			
DELTA K B:	:			
MAX C:	:			
D:	:			
	:			
ROOT MEAN SQUARE PERCENT ERROR	9. 22			
LIFE 0.0-0.				
PREDICTION 0.5-0.				
RATIO 0.8-1.				
SUMMARY 1.25-2.				
(NP/NA) >2.				

では、大学などのなどでは、「他のないないとは、「他のないないない。」というないないは、「他のなかなな」となっては、「他のないない。「他のないない。」というないない。「他のないないない」というないない。



Figure 4.11.3.101

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.102INDICATING EFFECT

#### OF STRESS RATIO

			SINCSO KAIL	<b>,</b> 			
MATERIAL: 1 CONDITION: ENVIRONMEN	RA	TI-6AL- B. T. W.	4V				
DELTA (KSI+IN+	K :	DA/DN (10**-6 IN./CYCLE)					
/ 1/01 # 1 <b>//</b> #:	**************************************	A	В	c	D		
	:	R=+0. 08					
DELTA K B: MIN C: D:	10. 96 : : :	1. 07					
		36. 1 64. 4 99. 4 139.					
DELTA K B: MAX C: D:	54. 52 : : : :	264.					
ROOT MEAN S PERCENT EF	ROR	22. 85	نو بنه جه خبر خد من میراند مد سومت خد ند		شنه ليند پيڪ نيپه ختي 700 کنه امير شنه ۽		
PREDICTION RATIO SUMMARY	0. 0-0. 5	1 1					



■ こうない ジング ■ 女子 ダイス からの (Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Manager Control of Mana

様ということもののはない

Figure 4.11.3.102

## FATIGUE CRACK OROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.10 INDICATING EFFECT

#### OF STRESS RATIO

MATERIAL: T CONDITION: ENVIRONMENT	RA	TI-6AL-	·4V				
DELTA	K :	DA/DN (10##~6 IN./CYCLE)					
(KBI+IN++1/2)		A	B	C	D		
	: :	R=+0. 08	R=+0, 30				
A:	10.40 :	, 132					
DELTA K B: MIN C: D:	9.44 : :		. 866				
	10.00:		1. 22				
	13.00 :		4. 26				
	16.00 :		8. 77				
	<b>20</b> . 00 : <b>25</b> . 00 :		16. 2 28. 2				
	<b>30</b> . 00 :		45. 4				
	35.00 :		72. 4				
	40.00 :		117.				
	50.00 :		324.				
<b>A</b> :	34. 94 :	36. 0					
DELTA K B: MAX C: D:			710.				
RODT MEAN S PERCENT ER	ROR	12. 27	8. 17		• • •		
LIFE PREDICTION RATIO BUMMARY	0, 0-0, \$ 0, 5-0, \$ 0, 8-1, 2	5 1	1				



Figure 4.11.3.103

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE4.11.3.104NDICATING EFFECT

CONDITION:	RA	TI-6AL	4V				
	K	:	DA/DN (10**-6 IN./CYCLE)				
/401 - 14-	(SI+IN++1/2) : A		В	С	D		
		E= R. T.					
		: . 349					
DELTA K B: MIN C: D:		: : : : : : : : : : : : : : : : : : : :	. <b>93</b> 3				
	10.00	: :					
	13.00		. 812				
	16.00		1.38				
	20. 00		<b>5</b> . <b>54</b>				
	25.00	: 15. 9	14. 2				
		34. 1	<b>2</b> 6. 6				
		: 60. 1 : 71. 3					
		: 166.					
A:	58. 69	: 341.					
DELTA K B:	32. 23	•	34.8				
MAX C: D:		: : :					
PERCENT E	RROR	25. 76	17. 89				
	0, 8-1. 1, 25-2.	5 8 25 2 0	1				



Figure 4.11.3.104

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.109NDICATING EFFECT

#### OF STRESS RATIO

DELTA K : (K81+1N++1/2) :		DA/DN (10**-6 IN./CYCLE)					
(K8I+IN+	**1/2) : :	A	B	С	D		
	: :	R=+0. 08	R=+0. 50				
DELTA K B: MIN C: D:	9. 49 : :	. 837	2. 14				
	10.00 : 13.00 : 16.00 : 20.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00 : 25.00	, 920 2, 53 7, 65 19, 1 32, 8 48, 1 67, 2 135, 327,	2.68 6.78 11.9 19.8 32.7 51.6				
DELTA K B: MAX C: D:	:	885.	101.				
ROOT MEAN PERCENT E		13. 63	7. 38	جدة خيث خيث الله الله الله الله الله الله الله الل			
LIFE PREDICTION RATIO SUMMARY (NP/NA)		1	1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			



14個人ななるのは 14個人ななるのは 14個人なななない 15人なななない 15人なななない 15人ななない 15人なななない 15人なななない 15人なななない 15人なななない 15人なななない 15人なななない 15人なななない 15人なななない 15人なななない 15人なななない 15人なななない 15人なななない 15人ななない 15人なななない 15人なななない 15人なななない 15人なななない 15人なななない 15人なななない 15人ななない 15人ななない 15人なない 15人なない 15人なない 15人なない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなない 15んなな 15んなな 15んなな 15んなな 15んなな 15んな 15んなな 15んな 15んな 15んな 15んな 15んな 15んな 15んな 15んな 15んな 15んな 15んな 15んな 15んな 15んな 15んな 15co 15co 

見なからなどは個人ななななの間であるからのであるとなりというなくなかができた。

Figure 4.11.3.105

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.10@NDICATING EFFECT

### OF STRESS RATIO

CONDITION: ENVIRONMENT							
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)					
(1/01 = 1/4=)	:	A	B	c	D		
	:	R=+0. 50					
A: DELTA K B: Min C:	<b>7.69</b> : : :	1.88					
D:	:						
	8.00 : 9.00 :						
	10.00 :	3. 39					
	13.00 : 16.00 :	14. 7 33. 8					
	20 00 :	33. 8 61. 3					
	25.00 :						
	<b>30</b> . 00 :	171.					
	<b>35</b> . 00 : <b>40</b> . 00 :	277.					
	<b>40.</b> 00 :	426.					
A:	40. 43 :	440.					
DELTA K B:	:						
MAX C:	:						
D:	:						
ROOT MEAN S PERCENT EI	BQUARE RROR						
LIFE	0. 0-0. 5						
PREDICTION							
	0. 8-1, 25	1					
	1. 25-2. 0 >2. 0						



Figure 4.11.3.106

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.10 INDICATING EFFECT

#### OF ENVIRONMENT

MATERIAL: TITANIUM CONDITION: RA							
DELTA K (KSI+IN++1/2)		: DA/DN (10++-6 IN./CYCLE)					
(102-114-41/6/		: <b>A</b>	B	С	D		
		: E= R. T.	E= R. T.				
		: S. T. W.	S. T. W.				
		SP. THK. =, 77"	SP. THK. =1. 04"				
A:		. <b>707</b>					
	8. 02	:	. 184				
MIN C:		:					
D:		:					
	9. 00	<b>:</b> •	. <b>398</b>				
	10.00		. 7 <b>42</b>				
	13.00		2. 75				
	16.00		6. 48				
	20.00	: 14. 0	14. 9				
	<b>25</b> . 00		<b>33</b> . <b>5</b>				
	30, 00	: 51.9					
	35. 00						
	<b>40</b> . 00 <b>50</b> . 00						
<b>A</b> :	58. 05	: <b>270</b> .					
DELTA K B:			56. <b>2</b>				
MAX C:		:					
D:		<b>:</b>					
ROOT MEAN S PERCENT EF	BOUARE	10. 30	25. 37				
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 0. 5-0. 0. 8-1.	5 8 25 1	1	and tags was after tags with all tags was all			

1954 - Madalar L. Karasara - Karasara L. Kasasara - Kasasara L. Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Kasasara - Ka

ti 7



Figure 4.11.3.107

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE4.11.3.108INDICATING EFFECT

MATERIAL: T	BTOA	TI-6AL-	-4V					
DELTA (KSI+IN++	K	DA/DN (10++-6 IN./CYCLE)						
11102-411-	2, 2,	A	В	С	D			
		: : E= R. T. : L. H. A.						
A: DELTA K B: MIN C: D:	11. 82	: <b>9.43</b> :						
	13. 00 16. 00	9. 10 20. 2						
DELTA K B: MAX C: D:	18. 56	: <b>37</b> . <b>1</b> : : : : : : : : : : : : : : : : : : :						
ROOT MEAN 8 PERCENT ER	ROR							
SUMMARY	0. 0-0. 0. 5-0. 0. 8-1.	5 8 25 i						



Figure 4.11.3.108

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.8.109 NDICATING EFFECT

DELTA K (KSI+IN++1/2)			:	DA/DN (10##	-6 IN. /CYCLE)		
(101-11	<b>4</b>	1,4,		A	В	С	Q
				E= R.T. LAB AIR	E= R.T. DIST. WATER		
DELTAKI MIN (				: 2. 20 :	5. <b>22</b>		
		20. 25. 30. 35. 40. 50.	00 00 00	: 10.1 : 24.6 : 63.5 : 175. : 1080.	19. 2 78. 6 273. 2053. 9009.		
DELTA K 1	<b>B</b> :	40.	52	: 1462.	21786.		
	N 8	QUAR	E	39. 26	111. 76		· Par (10) - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -

CONDITION/HT: STRESS RELIEVED E. B. 1. 00"TH WELDMENT YIELD STRENGTH: ALLOY FORM: ULT. STRENGTH: SPECIMEN TYPE: CT 1.000" SPECIMEN THK: ORIENTATION T-L SPECIMEN WIDTH: 2. 000" STRESS RATIO: +0.10 TI-BAL REFERENCES:88144 Ø. 10- 10.00 HZ FREQUENCY: 4٧ AK (MPA √m) ΔK (MPA √m) 100 100 10 40 10 40 ENVIRONMENT: DIST. WATER ENVIRONMENT: **(B) (A)** R. T. 100 R. 10'2 10 10'1 10.1 10'3 10'3 10⁻² 10^{.2} da/dN (in/cycle) Ø 10 104 10.3 10⁻³ 10⁻⁵ 10'5 104 10.6 10 10-6 105 10'7 10' 10.4 10.6 10-4 10 40 100 100 10 40 10 ⑫ **(C)** ENVIRONMENT: 100 100 ENVIRONMENT: 10² 10.2 10-1 10.1 1 103 10.3 10.5 10-2 da/dN (in/cycle) 104 104 10⁻³ 10.3 ~ 10⁻⁵ 10.5 104 10.4 10.6 10 10'5 10.5 = 10' 10' 10' 10.6 10'8 10'4 10 40 100 10 40 100 ΔK (KSI √in) ΔK (KSI √in) 

WELDMENT (WELD ZONE)

不要要到,他们的人,不是一种,我们是有有的人的,我们的有关的,我们就是有的人的,我们的人的人的,我们也是有一种的人的人的,我们也是有一个人的人,这个人的人的人的

TITAN.

Figure 4.11.3.109

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGUREA.11.3.110INDICATING EFFECT

DEL				:	DA/DN (	10##-6	(N. /CYCLE)	
(KSI#I	(Amm)	1/2/		<b>A</b>	я		С	Ø
				: E= R.T. : 3.5% NACL				
	A:	21.	95	: 17.8				
DELTA K MIN		28.	50	: : :	<b>31</b> . 1	l		
		25.	00	: : 120.				
				: 854.	53. 6	<b>5</b>		
				2746.	179			
				: 5987.	895.			
				: 16134.				
	A:	51.	09	: 20210.				
DELTA K					8329.			
MAX	C:			•				
	D:			:				
ROOT MEA				74, 94	39. 82	?		
LIFE			 _^	, 		_ ~ ~ ~ ~ ~ ~ ~ ~ .		
PREDICTI			_					
RATIO	_		-					
BUMMAR								
(NP/NA		-						



Tigure 4.11.3.119

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.1111NDICATING EFFECT

DELTA K (KSI+IN++1/2)		DA/DN (10++-6 IN. /CYCLE)					
(V21=1M=	#1/ <i>&amp;</i> /		B	С	ם		
		: E= R.T. : 3.5% NACL .1-10HZ	E≈+ 175F 3.5% NACL 10HZ	E=+ 175F 3.5% NACL .1HZ			
A: DELTA K B: MIN C: D:		: 14. 6 :					
	25. 00 30. 00 35. 00	: 13. 9 : 17. 7 : 84. 5 : 626. : 4908.					
A: DELTA K B: MAX C: D:		: 172725. : :					
ROOT MEAN PERCENT E	SGUARE		0. 00	0. 00			



Figure 4.11.3.111

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE4.11.3.112NDICATING EFFECT

DELTA K (KSI+IN++1/2)		DA/DN (10##-6 IN./CYCLE)						
(VOIATION:	-1/2/	<b>A</b>	B	c	D			
		E= R.T. :LAB AIR						
	15. 64	: 3. 64						
ELTA K B:		:						
MIN C: D:		:						
U.		:						
	16.00	: 4. 27						
		: 14. 2						
		: 29. 9						
		: 47. 5						
		71.9						
		: 113. : 344.						
A:	52. 34	: 1326.						
ELTA K B:		:						
MAX C:		:						
D:		: :						
	BQUARE RROR	34. 88						



Figure 4.11.3.112

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE4.11.3.113INDICATING EFFECT

#### OF ENVIRONMENT

DELTA K : (KBI+IN++1/2) : :			DA/DN (10##	-6 IN. /CYCLE)	
		. A	B	С	D
		: E=- 65F :AIR	E=+ 175F AIR	E= R.T. JP-4 FUEL	E=+ 175F DIST. WATER
A:	29. 03	: 59. 9			
ELTA K B:	16. 93	:	4. 81		
MIN C:	18. 23	:		<b>5</b> . <b>4</b> 7	
D:	<b>29</b> . 99	:			46. 8
	20. 00	• :	8. 82	9. 65	
	<b>25</b> . 00		<b>15</b> . <b>2</b>	16. 8	
		: 56. 6		22. 4	46. 9
		: 143.		43. 5	
			49. B		192.
	<b>50</b> . 00			1561.	<b>95</b> 2.
	<b>60</b> . 00	:	1058.		3157.
		: 585.			
ELTA K B:	61.62	:	<b>244</b> 9.		
MAX C:				2318.	
D:	67. 44	: :			5530.
	BOUARE		24. 73		53. 19

(NP/NA)

>2.0



Figure 4.11.3.113

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.114 NDICATING EFFECT

			TI-6AL-4V E.B. WELDMENT (WELD ZONE)				
DELTA K (KSI+IN++1/2)							
	:	A	B	C	D		
	: : : (	E= R.T. LAB AIR					
A: 16 DELTA K B: MIN C: D:	5. 39 : : :	. <b>700</b>					
	0. 00 : 3. 00 :	5. 94 18. 0					
A: 25 PELTA K B: MAX C: D:	3. 00 : : : :	18. O					
OOT MEAN SQUA	RE						



Figure 4.11.3.114

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.119NDICATING EFFECT

#### OF ENVIRONMENT

DELTA		:	DA/DN (10##-	-6 IN. /CYCLE)	
(KSI#IN##1/2)		<b>A</b>	В	C	a
		: : E= R.T. :LAB AIR			
A: DELTA K B: MIN C: D:	15. 35	: 1. <b>78</b> :			
	20. 00 25. 00 30. 00	2. 50 6. 52 13. 2 24. 7 50. 2			·
A: DELTA K B: MAX C: D:	35. 34	: <b>52.</b> 9 : : : : : : : : : : : : : : : : : :			
ROOT MEAN 9 PERCENT ER		7. 47			

でも、10mmである。これでは、10mmである。これでは、10mmである。これでは、10mmである。これできたが、10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである 10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである。10mmである

(NP/NA)

>2. 0



Figure 4.11.3.115

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE4.11.3.11@NDICATING EFFECT

#### OF ENVIRONMENT

DELTA K (KSI*IN**1/2)		: DA/DN (10**-6 IN./CYCLE)				
1102 - 114-			B	С	D	
			E= R. T. S. T. W.			
A:		:				
DELTA K B:		:				
MIN C: D:						
		:				
	200. 00	:				
A:		:				
DELTA K B:		:				
MAX C:		:				
D:		:				
ROOT MEAN S		0.00	0. 00			
PERCENT EI		0.00	0. 00			

( J

に最大なななな。動物などのない。例でなるなどの対象を含めてなるない。



Figure 4.11.3.116

### FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.117 NDICATING EFFECT

#### OF ENVIRONMENT

DELTA K : (KSI*IN**1/2) :		DA/DN (10##-6 IN./CYCLE)				
(VDT = 114=)	(1/2)	<b>A</b>	В	С	D	
		: : E≈ R.T. :ARGON				
		: . 15				
DELTA K B: MIN C: D:	10. 56	:	. <b>26</b>			
	10.00	: : . 195				
	13.00	. 884	. 854			
	16.00		1. 96			
	20.00	: 3. 81	4. 08			
	25.00	7. 97				
	<b>30</b> . 00	18.1	21.0			
	35.00	: 46.8	<b>54</b> . <b>5</b>			
	40. 00	: 137.	<b>158</b> .			
<b>A</b> :	44. 83	: 434.				
DELTA K B:	41.26	:	209.			
MAX C:		;				
D:		: :				
ROOT MEAN S		29. 57	28. 88	~==~		

のため、関係のできないと、100mgのからのでは、100mgのからの、100mgのからなどの関係がある。 100mgのできない。 100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと、100mgのできないと

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s



Figure 4.11.3.117 4.11-283

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ABSOCIATED WITH FIGURE4.11.3.118INDICATING EFFECT

nei t	ARGON C		DA / DAI / 1/44+			
	m n **1/2)	DA/DN (10**-6 IN./CYCLE)				
		: <b>A</b>	B	С	D	
		E= R.T. : ARGON				
DELTA K B Min C D	: 10. 57 :	: . 20 : :	. 15			
	16. 00 20. 00 25. 00 30. 00 35. 00	. 850 2. 04 4. 05 8. 51 20. 4 59. 1 207.	. 539 1. 54 4. 13 10. 5 23. 1 48. 0 97. 7			
DELTA K B Max C	: <b>43</b> . 64 :	407.	163.			
PERCENT	ERROR	31. 31	41. 13			
LIFE PREDICTIO RATIO SUMMARY	0. 0-0. N 0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 0				



の大学の関係というとの「MESTACK ACCUSED かったいなどの MESTACK ACCUSED サイド・アイド MESTACK ACCUSED かっている MESTACK ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED ACCUSED AC

Figure 4.11.3.118

		•	TABLE 4.11.3.119		
	FA		OWTH RATES AT 1 BS INTENSITY FA		
	DATA A			9INDICATING EFFE	ст
			F ENVIRONMENT		-
	1750F 4 ARGON C	hrs argon cool Ooled			
DELTA			DA/DN (10**	-6 IN. /CYCLE)	
(KSI+IN+	¥1/2)	: : <b>A</b>	В	c	D
		: : E= R.T. : ARGON			
<b>A</b> :	10. 71	: . 231			
DELTA K B: MIN C:		:			
D:		:			
	13.00				
	16. 00 <b>20</b> . 00				
	25. 00	: 11.7			
	30. 00 35. 00				
	40.00				
A:	40. 42	: 360.			
DELTA K B:	- · · <del>-</del>	:			
MAX C: D:		• :			
ROOT MEAN PERCENT E		23. 92			
LIFE	0. 0-0.				
PREDICTION	0. 5-0. 0. 8-1.				
SUMMARY	1. 25-2.	0			
(NP/NA)	>2.	0			
			4.11-286		



Figure 4.11.3.119

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGUREA.11.3.120INDICATING EFFECT

## OF ENVIRONMENT

DELTA K (KSI+IN++1/2)		DA/DN (10*#-6 IN./CYCLE)					
		<b>A</b>	B	С	D		
		E= R.T.	E=+ 200F AIR				
A:	30. 47	: 37. 2					
DELTA K B: MIN C: D:	30. 79	: : : : : : : : : : : : : : : : : : : :	48. 5				
	35.00	: : <b>58. 5</b>	<b>9</b> 6. <b>8</b>				
		: <b>83</b> . 9					
	50.00		<b>35</b> 6.				
	60.00	: <b>290</b> .	745.				
		: 625.	1817.				
	80.00	: 1545.					
A:	80. 58	: 1635.					
ELTA K B:	74. 44	1	2874.				
MAX C:		;					
D:		: :					
OOT MEAN S	GUARE	7. 07	7. 10				





Figure 4.11.3.120

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.121INDICATING EFFECT

#### OF STRESS RATIO

DELTA K : (KSI*IN**1/2) :			DA/DN (10##-	6 IN./CYCLE)	
(KRI#IN#4	(1/2) :	A	В	С	D
	:	R=+0. 03	R=+0. 25	R=+0. 54	
		. 78 <b>8</b>			
ELTA K B:			2. 71		
MIN C: D:	10.48 :			3. 11	
	10,00 :	. 865 3. 13			
	<b>13</b> . 00 :	3. 13	4. 91	6. 16	
	16.00:	6. 22	9. 51	11.5	
		11.0	18. 9		
		18. 9	<b>37</b> . <b>5</b>		
		32. 1	<b>66. 2</b>		
		<b>57</b> . 0			
	40.00 :	107.			
	44.18 :	191.			
ELTA K B:			71. 1		
MAX C:	19.06 :			15. 7	
D:	:				
DOT MEAN S PERCENT ER		15. 97	10. 81	14. 72	

では、東西のできたが、東西のできた。 「東西のできたが、東西のできた。」「東西のできた。 「東西のできたが、東西のできた。」「東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、 「東西のできたが、東西のできた。」「東西のできた。」「東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、東西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西のできたが、西ので



Figure 4.11.3.121

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ABSOCIATED WITH FIGURE 4.11.3.1221 NDICATING EFFECT

#### OF STRESS RATIO

DELTA K :			DA/DN (10**-	S IN. /CYCLE)	
(KSI*IN**1/2)	:	A	В	c	ם
	: :	R=+0. 03	R=+0. 25	R=+0. 54	
A: 9. DELTA K B: 10. MIN C: 11. D:	90 :	. 687	1. 46	3. <b>45</b>	
13. 16. 20. <b>25</b> . 30. 35.	00 : 00 : 00 : 00 :	2. 32 4. 94 10. 1 19. 7 33. 4	3.46 6.88 11.9 20.9 39.8	5. 10 8. 22	
A: 41. DELTA K B: 32. MAX C: 18. D:	83 :	87. 2	<b>6</b> 0. <b>4</b>	11. 5	
ROOT MEAN SQUAR PERCENT ERROR			21. 04	6. 65	

and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t



Figure 4.11.3.122

in the property of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.12 INDICATING EFFECT

## OF STRESS RATIO

		UF	STRESS RATIO		
CONDITION:			4V R WG, 1000F-12	00F	
	4 K :	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	DA/DN (10##-	6 IN. /CYCLE)	~
(KSI#IN	**1/2) : : :	A	В	С	D
	:	R=+0. 03	R=+0. 25	R=+0. 54	
DELTA K B:	9. 19 : 9. 28 : 8. 94 :	. 501	1. 84	1.96	
D:				• , , =	
	9.00 : 10.00 :		2. 04	1. 96 2. 12	
	13.00 : 16.00 : 20.00 : 25.00 :		3. 70 6. 85 13. 3 22. 6	4. 38 8. 94	
	30.00 : 35.00 : 40.00 :	32. 9 52. 0	28. 3		
	42, 82 ; 30, 82 ;	95. 8	28. 7		
	19.48 :		20. /	13. 6	
ROOT MEAN PERCENT I	-	11.62	14. 03	14. 72	
	0.0-0.5 N 0.5-0.8 0.8-1.25				

LIFE 0.0~0.5
PREDICTION 0.5~0.8
RATIO 0.8~1.25
SUMMARY 1.25~2.0
(NP/NA) >2.0

の意味などの意味を含めている。

and and and and and and and and an analysis and an analysis and an analysis of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of



Figure 4.11.3.123

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.124INDICATING EFFECT

### OF STRESS RATIO

			DIRECO KATTO		
MATERIAL: T CONDITION: ENVIRONMENT	1775F 1HR 2-8HR5 AC : + 600F,		4V R WQ, 1000F-120	00F	
DELTA	_		DA/DN (10**-	S IN. /CYCLE)	
(KSI*IN*	÷1/2) :	A	В	c	D
	:	R=+0. 03			
DELTA K B: MIN C: D:	8. 01 : : :	. 906			
	9,00 : 10.00 : 13.00 : 16.00 : 20.00 : 25.00 : 30.00 : 35.00 :	1. 29 1. 77 3. 85 6. 94 12. 6 21. 6 32. 2 43. 5 54. 6			
DELTA K B: MAX C: D:	42. 55 :	60. 1			
ROOT MEAN E PERCENT ER		7. 35			
PREDICTION	0. 8-1. 25				

のの単語できなられると言葉であると、なる自然を含むない。自然できない。これでは言葉である。これのない。これでは、これでは、「これのない。「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、「これでは、



Figure 4.11.3.124

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE4.11.3.125INDICATING EFFECT

### OF ENVIRONMENT

(KSI*IN**1/2)  E= R. T.  A: 10.04 : .179  DELTA K B:  MIN C:  D: :	C D
A: 10.04 : .179  DELTA K B:  MIN C:  D:  13.00 : .508  16.00 : 1.08  20.00 : 2.38  25.00 : 5.58  30.00 : 12.3  35.00 : 26.6  40.00 : 56.9	
DELTA K B: : : : : : : : : : : : : : : : : :	
MIN C: : : : : : : : : : : : : : : : : : :	
D: : : : : : : : : : : : : : : : : : :	
:	
16,00 : 1,08 20.00 : 2,38 25.00 : 5,58 30.00 : 12,3 35.00 : 26,6 40.00 : 56,9	
16,00 : 1,08 20.00 : 2,38 25.00 : 5,58 30.00 : 12,3 35.00 : 26,6 40.00 : 56,9	
20.00: 2.38 25.00: 5.58 30.00: 12.3 35.00: 26.6 40.00: 56.9	
25. 00 : 5. 58 30. 00 : 12. 3 35. 00 : 26. 6 40. 00 : 56. 9	
35. 00 : 26. 6 40. 00 : 56. 9	
40. 00 : 56. 9	
<b>50.00</b> : <b>257</b> .	
A: 50.06 : 260.	
DELTA K B: :	
MAX C: :	
<b>D</b> : :	
:	
RODT MEAN SQUARE 57.10 PERCENT ERROR	
LIFE 0.0-0.5 PREDICTION 0.5-0.8	



アンドロロストンとは、Marketoneのストンとは、Marketoneのできないと、Marketoneのできない。 Marketone Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews Andrews

Figure 4.11.3.125

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

	<b>.</b>		TABLE 4.11.3.126	DEFINED   EUSI C		
	FF		ESS INTENSITY FA			
	DATA A	ASSOCIATED WITH	FIQURE4.11.3.12	ANDICATING EFF	EÇT	
			OF ENVIRONMENT			-
		1 TI-6AL HRS WQ,1000F 4	4V Bhrs Argon Coole	ED		
DELTA (KSI*IN**		,	DA/DN (10++-	-6 IN. /CYCLE)		-
(401=14==	1/2/	<b>A</b>	В	c	D	
		E= R.T.				
DELTA K B: MIN C: D:	11.18	. 159				
	13. 00 16. 00 20. 00	: 1. 31 : 3. 37				
	25. 00 30. 00 35. 00	8. 42 20. 3 51. 3				Ğ.
DELTA K B: MAX C: D:	35. 49	: <b>5</b> 6. <b>4</b> :				
ROOT MEAN S PERCENT ER		39, 65			THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF THE SEC OF	•.
PREDICTION RATIO	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	. 8 . <b>25</b> . 0				•
						v.



Figure 4.11.3.126

# SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.127INDICATING EFFECT

### OF ENVIRONMENT

		TI-6AL		ED	
	MAX	:	DA/DT (10#4	+-6 IN/HOUR)	
(KBI*	IN##1/2)	: : <b>A</b>	В	c	D
		E= E= :3.5% NACL; 75F	E <b>=</b> AIR; 175F		
K MAX MIN	A: B: C: D:	: : :			
	200.00	: :			
K MAX MAX	A: B: C: D:	; ; ; ;			
ROOT ME	AN SQUARE	0 00	0 00		

PERCENT ERROR

distribution and a side to a side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the side of the s



Figure 4.11.3.127

and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t

### SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.128INDICATING EFFECT

#### OF ENVIRONMENT

		т	ABLE 4.11.3.1	28	
	509		OWTH RATES A S INTENSITY	T DEFINED LEVELS FACTOR	
	DATA A	SSOCIATED WITH	FIGURE4.11.3.	128INDICATING EFFE	)T
.~~~~~		OF	ENVIRONMENT		
	: EB WELD	TI-6AL- ),STRESS RELIEVE	D (WELD ZONE	)	
	AX			0**-6 IN/HOUR)	
(VDI*IN	<b>**</b> 1/2)	<b>A</b>	В	С	
		E=: 3.5% NACL: 75F	<del></del>		
K MAX B Min C	: :	: <b>171</b> . : : : : : : : : : : : : : : : : : : :			
	40. 00	: : 724548.			
K MAX B MAX C	: :	: <b>964781</b> . : :			
ROOT MEAN	-	48. 35	·		
FERGERI	ENNON				
	•				
	•				
	•				
	•				
	•				

ting the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of



れない。とこうゲットではなくなる。

では、いかいからないという。日本のでは、「日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本の

Figure 4.11.3.128

# SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR



## DATA ASSOCIATED WITH FIGURE 4.11.3.1291NDICATING EFFECT

## OF ENVIRONMENT

K MAX (KSI+IN++1/2)		:	DA/DT (10**-3	DA/DT (10**-3 IN/HOUR)			
(1/214	. T [A#1	11/2	,	<b>A</b>	B	С	ε
				E= R. T. : 0.6M KCL -500 MV	E= R.T. 0.6M KCL -1000 MV		
				240.	202		
K MAX MIN	B.	23.	OC		232.		
11114	D:			:			
		25.	00	542.	266.		
				854.	299.		
				933.	341.		
		40.	00	1059.	474.		
	A:	45.	20	1499.			
K MAX	<b>B</b> :	45.	20	:	867.		
MAX	C:			:			
	D:			<u>*</u>			

PERCENT ERROR





Figure 4.11.3.129

# SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.130INDICATING EFFECT

### OF ENVIRONMENT

K MAX		:	DA/DT (10**	-3 IN/HOUR)				
(KSI*	IN#+	1/2)	•	: : <b>A</b>	В	С	D	
				: : E= R.T. :5M KI +1000 MY	E= R.T. 5M KI +500 MV		E= R.T. 5M KI -500	MV
	A:			:				
K MAX	<b>B</b> :	17.			<b>97</b> 0.			
MIN	C:	_	50			1202.	_	
	D:	19.	20	:			1271.	
		20.	00	· :	17493.	6645.	3216.	
		25.	00	:	26009.	15774.	9 <b>982</b> .	
		30.	90	:	38482.	27636.	<b>1532</b> 7.	
		35.	00	:		42504.	21875.	
		40.	00	:		56727.	30115.	
	A:			:				
K MAX	B:	34.	00	:	52976.			
MAX	C:	44.				6 <b>5</b> 948.		
	D:	44.	70	:			40011.	



では、「関係などのでは、「動物のないのでは、「動物をないのでは、動物のではないのでは、動物のでは、「動物のでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、「動物のではないのでは、

Figure 4.11.3.130

#### TAB'.E 4.11.3.131

# SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.11.3.1311NDICATING EFFECT

#### OF ENVIRONMENT

	MAX		:	DA/DT (10*	++-3 IN/HOUR)	
(KSI#	IN**	1/2)	: : <b>A</b>	В	С	D
			: : E= R.T. :5M KI ~1000 MV		) MV	
K MAX MIN	A: B: C: D:	30. 00	: <b>1328</b> . : :			
		<b>35</b> . 00 40. 00				
K MAX MAX	A: B: C: D:	44. 00	: 10010. : :			

PERCENT ERROR



Figure 4.11.3.131

ا به المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ ا المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ

## SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.11.3.132 NDICATING EFFECT

#### OF ENVIRONMENT

	MA			:				DA/DT (1	I E-**0.	N/HOUR)		
(KSI*	TIAM	11/2	,	:		A		В		С	D	
				: : 6M		R. T.	ЗМ	E= R. T. KF		= R.T. KF	E= R.T. DIST. WATER	
	A:	30.	00	:	461							
K MAX	<b>B</b> :			:								
MIN		35.								<b>30</b> . <b>0</b>		
	D:	31.	40	:							196.	
		35.	00	:	1075	<b>5</b> .					381.	
			00		2121				2	07.	485.	
	A:	44.	50	:	3590	<b>)</b> .						
K MAX	<b>B</b> :			•								
MAX	C:	44.	20	:					5	<b>29</b> .		
	D:	45.	00	:							<b>522</b> .	



Figure 4.11.3.132

## SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE4.11.3.133NDICATING EFFECT

#### OF ENVIRONMENT

	MA		:	DA/DT (10	**-3 IN/HQUR)		
(KSI#	IN**	11/2)	<b>A</b>	В	¢	D	
			E= R.T. : 0.6M KCL +2000 MV	E= R.T. O. 6M KCL +1000 MV	E= R. T. O.6M KCL +500 MV	E= R.T. O.AM KCL (	o MV
	A:		:				
K MAX	<b>B</b> :	23. 50		<b>363</b> .			
MIN	C:				882.	_	
	D:	21. 50	:			<b>576</b> .	
		25. 00	•	1708.	1236.	869.	
		30.00		2448.	1823.	1303.	
		35.00		3586.	2242.	1789.	
		40. 90		5102.	3027.	2398.	
	A:		:				
K MAX	<b>B</b> :	<b>45</b> . 00	:	<b>6844</b> .			
MAX	C:	45. 20			5110.		
	D:	45. 00	:			3230.	



Figure 4.11.3.133

# SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ABSOCIATED WITH FIGURE4.11.3.134INDICATING EFFECT

## OF ENVIRONMENT

MATERIA CONDITI		TITANIUM MA	TI6AL	4V		
	MA)		:	DA/DT (10##	-3 IN/HOUR)	
(KSI#	TMM	<b>(1/2)</b>	<b>A</b>	В	c	D
			ER R. T.	E= R.T. JP-4 FUEL		
K MAX MIN	A: B: C: D:	<b>30</b> . 00	: . <b>693</b> : :			
		35. 00 40. 00				
K MAX MAX	A: B: C: D:	<b>45</b> . 00	: <b>4520</b> . : :			
ROOT ME	AN 8	GUARE	27. 43	0. 00		

PERCENT ERROR



■ たけんから Manage のできる Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage Manage

Figure 4.11.3.134 4.11-317

# SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.11.3.139 NDICATING EFFECT

#### OF ENVIRONMENT

		TITANIUN 1000F 3		AL-4V		
(KSI+	MA)		: :	DA/DT (10*	-3 IN/HOUR)	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • • • • • • • • • • • • • • • • • •		. <b>A</b>	B	С	a
			E= R.T.	E≈ R.T. JP-4 FUEL		
	A:	35. 60	<b>: 222</b> .			
K MAX	B:		:			
MIN	C: D:		· :			
		40. 00	3703.			
	A:	47.00	: <b>28832</b> .			
K MAX	B:		:			
MAX	C: D:		: :			
ROOT ME	AN S	SQUARE		0. 00		

PERCENT ERROR

t 7



Figure 4.11.3.135

TABLE 4.11.3.136

FORM THE TEMP (FINE)	20 20 20 20 20 20 20 20 20 20 20 20 20	TITANIUM  VIELD SIR ENVIRONMENT  (KSI)	150	TI-6AL-4V K(SPECIHEN DTH THICK DESIGN N) (IN) (#*SC)	K(ISCC) - CRACK - LENGTH K(	K(Q) K(ISCC	K(1SCC) MEAN	81AN DEV	TEST TIME (MIN)	DATE A	REFER
; ;	- 1	:			,		1 1	1 1 1	;		1
r- E	<b>L-1</b>	116. 0 3. 5 PCT NACL	 	LANT	119	8	42.00		:		1990
<u>ب</u>	}	105 O HETHANDL	1. 100	0. 750 CANT	8	8	•00 .09		!	1969	84328
<u>ج</u> ب	1	105.0 NHEXANE	1. 100	0. 750 CANT	86	8 8	•00 08		1	1968	9432E
<b>E</b>	-	105 0 3.5 PCT NACL	1. 100	0. 750 CANT	86	8	<b>80</b> . 00*		1	1968	84328
ri ezi	<b>S</b> -	106.0 JP-4 FUEL 106.0 108.0 108.0	3.073 3.073 3.078	1.249 BWOL 1.251 BWOL 1.251 BWOL 1.252 BWOL	1.363		66. 30 66. 60 69. 00 69. 00	^^^^	>133920 >133920 >133920 >133920	1977 1977 1977 1977	MA00% MA005 MA005
r ď		106 0 91M, SEA WATER 106 0 108:0	3.077 3.077 3.077 5.073	1, 249 BNOL 1, 290 BNOL 1, 291 BNOL 1, 293 BNOL	1. 619 1. 364 1. 354 1. 353	1111	3828		13392	977	HA003 HA003 HA003
i i	7	144 9 INDUSTRIAL ATH	2 000	1. 000 CT		8	27. 00	! ! !		· 6	-0
≓ œ	7	144. 9 SEACOAST ATM	3, 000	1. 000 CT	36.	8	19.00			1973 6	86688
-	Ĭ	144. 9 3. 5 PCT NACL	90 90 90	1. 000 CT		8	, 0	1		6261	8 <b>6</b> 688
· 💆	1	125 0 3.5 PCT NACL		CAN1	1 1 20 00	, ,	103:00	i I i I i I			6
±	· ÷	134 9 INDUSTRIAL ATH	2. 000	1. 000 CT		8	42.00			1973 86688	94489

NUTE-JATA WHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REGUIREMENTS OF 2. STAISCC/TYS)SQUARED

TABLE 4.11.3.136 (Con't)

						TITANIUN	11	11-6A4V	¥	K(18CC)							
	PEG.	THICK	TEST TEMP (F)	) 20 10 10 10 10 10 10 10 10 10 10 10 10 10	STR (KSI)	ENVIRONMENT	WIDIN (IN)	THICK !	DEBICK (engo)	CRACK LENGTH K(0) (1N) (KSI+S A		- 1	3	BTAN DEV	1114E (1114)	PATE	DATE REFER
BETA FORGED		زم ا	2	בָּ	134.9	SEACOAST	2.000	1. 000 CT	_	ļ	<b>**</b> 20	42. 80				1973	58998
BETA FORCED	i.	e N	~	ĭ	134.9	3. 5 PCT NACL.	8 ni	8	!		8	8 1	1 !	1 1 1			1973 B&6BA
	! ! 6	1	1 -		1	TO THE POST MACH		98.	•	1.166		8	! !	 		973	96
1440F		8			1		88	5 05 C	•		116.8				-	1972	
					114 0		5 000 7	0. 750 NB	•		116.00		_		1	1972	
		9			114.0		80 80	280	•		8 9 9	3	_			1972	94034
		8					8 6	8	•								
		8					000	8	•			R :					
		8					8 6 6 6		• •							1972	
		8 8 m (					3 8	3 8	•								
		2 8					8	8	•						1		
		3 8			1		88	000	•	•	-	2 2			-	1572	84036
							1	1	1	! !	1	1 1 1	76.2/	7.8	1	1	:
CIA - WELD P FOSTUELD 1100H 27H CHEAT AFFECTED 20NE)	ZONE)	1 23	<u>α</u>	֡֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		FIELD CLE	8	800		1	1	8				1974	8900¢
							1	į								•	
GTA - WELD	۵	C.	<b>-</b>	-			8 8	8 9				* 00 42 7 00 42					94004
POSTURELD 1100F- 2FR (HEAT AFFECTED ZONE)		3 2 3 2					88					8 8	•				84004
CTA - WELD FOSTWELD 1100F (HEAT AFFECTED	P 20NE)	1. 23	<b>∝</b>	L-1	!	SHOP CLEANING BOLVENT	9. 900	0. 300 BCB				> 64, 90•			1	1974	89004
1 1	: 1 1	1 1	1	1	1 1 1		1	1 1 1	1	 	1 1	1	1 t 1	1 1 1	1		1
CTA WELD POSTWELD 1200F AFFECTED ZONE)	_ <del>_</del> =	1.25 ! (HEAT		R. T. L-T	!	ži ⊢ Sõ	900	o. 123 R	2			> 67. 00	•			1974 B9004	006 8

*NOTE-DATA WHICH IN NOT HEET HININGH SPECINEN THICKNESS REQUIREMENTS OF 2. SKKISCC/TYS)SQUARED

TABLE 4.11.3.136 (Con't)

						TITANION	4-11	11-6AL-4V	K(1SCC)	•					
962D171G62	PROD JRH		(F)	SIFEC	VIELD STR (	ENVIRONHENT	WIDIM THICK (IN) (IN) B	THICK DESIGN (IN) (**SC)	'	H K (0) (KSI*S	¥ :	AN STAN	TEST TIME (MIN)	DATE REFER	PEFER .
ر يو ي	. 3	52	μ α	1	!			0, 125 BC	ł	; ; ;	> 62.00*			1974 89004	89004
GTA WELD P 1.25 PUSTURED 1200F 1HR (NEAT AFFECTED 20NE)	- <del>-</del> -	1 23 NEAT	<b>≓</b> <b>α</b>	5	1	⊒i Fi Gi	9.300	0.250 BCB	-		\$ 66. 00°		† 1	1974 R9004	40046
CIA WELD POOF DIR PUSINGED 1400F DIR OFAT AFFECTED ZONE)	E SONG	86 1	<u>.</u> Œ	f1		⊐i F	9 200 3	0. 250 BCB			> 70 00*		!	1974	R9004
GTA WELD POSTWELD 1100F (WFLD TONE)	2 N	1 29	<u>μ</u>	5			9. 300	0. <b>300</b> DC			93.0		i	474	340
HILL ANNEALED	, o	E1 0		1		A-50	1.300	0. 129 MOL	;   ;	,	* 00 · B9	1 1 1 1	t   	1974 88700	98700
MILL ANNEALED	v	0 13	<b>3</b>	ļ		HCB	1. 300	O. 125 MOL	1		38. 60		}	1974	88700
HILL AMERLED	ຫ	61 0	<u>=</u>	ļ	i	HCB/1PCT CO2	1.300	0. 125 MOL	!	1	40. 90*		!	1974	<b>BB700</b>
MILL ANNEALED	v	0 20	=	Į	!	DIST WATER	1	0. 200 DCB	-		33.00		;	1651	81221
MILL ANNEALFD	œ	0.70	E C	Į	-	1 H KF	1	0. 200 DCB			35, 00+		:	1451	81221
HILL AMMEALED	w	0 20	Ľ «	ĭ	-	3 H KF	!	0. 200 BCB	i	1	37.00		:	1431	81221
HTLL ANNEALED	<b>6</b> 7	0 30	بر ح	Ĭ		6 H RF	1	0. 200 DCB			31.00		-	1971	12218
HILL AMMERLED	ທ	0.20	<b>⊢</b> α	7	-	SH KF. O MV	!	0. 200 DCB	1	-	19, 00			1651	81221
HILL ANNEALED	v	و و	<b>3</b>	7		6H NF. +1000HV	}	0.200 DCB	-	-	16.00		1 1	1651	12218
HILL ANNEALED	v	0.50	₹. T.	<u>ب</u>	-	6M KF. +500MV		0. 200 PCB	}		17.00		;	1441	12219

*NOTE-DATA MICH DO NUT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2. 3 (KISCC/TYB) SOUGHED

のでは、「「「「「「」」では、「「「「」」では、「「「「」」という。「「「」」という。「「」」という。「「」」という。「「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」

....

TABLE 4.11.3.136 (Con't)

						TITANIOM	11-(	TI-6AL-4V	K(18CC)							
CONDITION	_	THICK	TEST TEMP (F)	8 5 °	VIELD STR (KSI)	ENVIRONEENT	WIDTH THICK (IN) (IN)	DESIG	'	K(8)	~ 1	HEAN D	DEV 1	TEST TIME D	DATE REFER	EFER
I. ANNEALE	ູ່ທ	0.30		ب		6H KF10		0. 200 DCB	ļ	!	31.0			-	971	91221
HILL ANNEALED	ø	0. 20	E.	1-	-	6H KF 1300HV	1	0. 200 008			38, 00			1	1971 8	12218
MILL ANERALFD	s	0. 20	E.	7	-	6H KF500HV	!	0. 200 DCB	!		90 00 00			}	1971 8	81221
MILL ANNEALED	•	8 0	<b>C</b>	L-8		3. 5 PCT NACL	1	2	1	<b>61. 00</b>	8.8			Ī	1969 7	75386
HILL ANNEALED	٩	8	κ΄ κ΄	ب ق	0 .021	3. 5 PCT NACL	2.00	0. 750 CANT		86. 88	<b>67</b> . 00•			-	1961	70931
HINTEMAN CASING	! @	1 1	1 F	1 W	165.0	3. 5 PCT NACL	0.730	0. 100 CANT		1 6	1 29 .00	1 1	) 		1967 7	70931
1 1 1 1 1	i 	1 1 1	l J f	;	1 1	1 1 1 1 1	! !	1 1 1 1 1	1 1	1 1	1 1 1	1	1 1	1 1	:	1
4	c.	9.	æ.	L-1	0	9. T.E.	500		i	8	\$		•			R 1006
		8			117 0		8 6	1.000 UCB	1		•00 ·69 ^		•			R1006
		1.30			117.0		900	1. 000 DCB	!	74.00	• 00 09		•			R1006
		20			117.0					74.00	33 00		m			R1006
		20			121.0		000		1	76.90			•	1 09646		R 1006
		8			121.0					76.88			•			R1006
		8			121.0				‡ 1 1	8	\$ 67.8		<b>4</b> 7			R 1006
		8			121.0				-		> 69.80		•			R 1006
		6			22.0				1	77. 00	9¢		_	70140 1		R 1006
		2 30								77.00			_			R1006
		8 8			122.0		90 6		;	77.88	80 94		•			H 1006
					122.0		0 0 0	1. 000 DCB	1 1	77. 8	-	39. 3/	P P Ni	34360	1976 R	R 1006
Ą	د	<b>9</b> .	<b>6</b> .	1	122.0	F. C. 9.	300 300	1. 000 DCB	+	77. 00	70.00		=	119100 1	1976 R	R1006
40	۵	9	-	7		# C	5	800 000 1		77,00			•		1976 R	R 1006
	•	20			0	;	000	8	1	77.00	63.00		=	112200 1	1976 R	R 1006
												69. 0/	<b>8</b> . 9			
48	٥	1. 50	E.	7	0	S. T. M.	9.500		}	77.00	61.00		•			R 1006
		05			122.0			1.000 DCB	-	77.88	62.90		n	1 09046		R1006
		1 30			132.0		5 300 2	1. 000 DCB	t t 5	77. 80	38. 00		•		1976 R	R1006
*WITE-DATA WHICH DO NOT HEET HINITHUM	1CH 00	NOT HE	ET HIN	3	SPECEN	SPECIMEN THICKNESS REGUIRENEEDS OF	OUTRENE	N.	S(K1GCC/TYS)SQUARED	QUARED						

TABLE 4.11.3.136 (Con't)

	TEST TIME DATE REFER (MIN)	0300 1976 R10 1980 1976 R10 1980 1976 R10	60360 1976 R1006 60360 1976 R1006	20 1976 R10 60 1976 R10 60 1976 R10 20 1976 R10 80 1976 R10	1969 70535	1969 705 1969 785	1972 84282	1974 B90
	BTAN	i Di	6	<b>6</b>	; ' ' ; ; ;		, ' ; , , , , , , , , , , , , , , , , , , ,	
	K(ISCC) HEAN ORT IN)	62. 00 61. 00 39. 00	95 00 91. 00 93. 07	48. 48. 48. 48. 48. 48. 48. 48. 48. 48.	32.00 31.00	28. 00# 30. 00#	65.00	96. 98
_	TH K(G) (KBI*S	890.0 890.0	73.00	20.00 20.00 20.00 20.00 20.00	6 47.00 6 47.00	4.4 0.0	- 94.70	
H ( 19CC )	CN LENGTH			11111	0.026	00	1	
TI-6AL-4V	THICK DEST	1 000 BC	1. 000 DCB 1. 000 DCB	1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000 BC 1. 000	0.062 PTSC 0.062 PTSC	0. 032 PT U. 032 PT	0 4 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1	og ooo 1
11-6	WIDTH (IN)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9. 300 9. 300	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.300	88	1 000 1 1 200 1 1 1 1	3.300
TITANIUM	SPEC YIELD OR STR ENVIRONMENT (KSI)	122. 0 5. T. W. 126. 0	119.0 S. T. W. 117.0	S. T. N.	133.0 N204 315PSIG	160.0 N204 313PSIG	121, 2 3, 5 PCT NACL	. S. T. W.
	E &	7	T. T-L	. S-L	95	95	י ר ר י	L-1
		2.55 8.00 8.00	4. 4 0. 0 8	1;1:00		1 }	0.50 R.T.	1 SO R.T.
	FORM	_	Ŀ	<u>.</u>			, m. m. ;	r D IMERMA
	COMBITION		٧.		SOL TREATED TOTOF 4HR.	TREATED OF 4+4 HR	1300F 2HR AC	700F 4HR FC 3 1400F AC. 1FFUSION BO

*MOTE-DATA WHICH DO NOT MEET MINIMUM SPECINEN THICKNESS REGUIREMENTS OF 2. SIKISCC/TYS)SQUARED

		TABLE 4	1.11.3.1	4.11.3.136 (Con't)					
		HUINNIT	11-6	T [-6AL-4V K	M(19CC)				
9 ND1110:000	FORM THICK TEMP (IN) (F)	OR STR ENVIRONMENT (KS)	HIGH (NI)	TH THICK DESION  IN IN (**50)  B	CRACK LENOTH K(Q) (IN) (KSI#S	IK(Q) K(ISCC) MEAN (KSI4SQAT IN)	Bran BEV	TINE (HIN)	DATE REFER
1706 448 FC P TO 1406 AC, PLEFUSION BOND THERMAL CYCLE	<b>-</b>	1111	000000 00000 00000 00000 00000 00000	1.000 DCB 1.000 DCB 1.000 DCB 1.000 DCB 1.000 DCB	9999	92.00 44.00 94.00 61.00 92.00 53.00 92.00 53.00	35. 2/ 7.	•	- 1974 B3004 - 1974 B3004 - 1974 B9004 - 1974 B9004 - 1974 B9004
ZODE AHR EC PO 14 NOE AC. DIT	SO R.T. BOND	-L SHOP CLEANING	3. 500	1.000 DCB	!	0 69 00		1	- 1974 8
SF THR WO FOR THE NO.		-S 139.4 3.9 PCT NACL	2 200	0 480 NB 0 480 NB	. !!	1 96 20 20 1 00 1 00	1 1 1 1	;	- 1972 842 - 1972 842
ST THR WG. E	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-S 145. 7 3. 5 PCT NACL 146. 9	1 200	0 480 NB 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	t	20 51.0 80 46.0	E	: !!	1972 842
1750F 140 1000F F 0 81#P 1000F (ALPHA+BEFA)	30 78 1	160.0 DIST WATER +50	1.000.1	0.030 PTSC	£ <b>}</b>	43. 90 40. 004	; ; ; ;	1080	0 1968 77290
1750F WO 1000F F RHM 1000F (ALPHA+8E1A)	0.50 0.50 7. T	160.0 HETHANDI. 160.0	1.000	0, 030 PTSC 0, 060 PTSC	C.4 	43. 90 < 26. 00# 45. 90 > 26. 00#	**	180	0 1968 77290 0 1968 77290
OF WG 10(OF F 1000F (ALT'HA	50 R. T.	160.0 PPH NA2CR207	1. 000	0.060 PTSC		90 43.0		^	1968 7
1753F 1 51R NG F 1050F-1190F 81R, 950F FIR		160.9 AEROZINE 90	008 0	0.093 PTSC	92.	20 37.00	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	- 1969 75528 - 1969 75528

TABLE 4.11.3.136 (Con't)

	DATE PEFER	1969 75528	75528	. <b>6</b>	₹	1974 88700	1974 88700
	BATE	1969	1969	1971	141		1974
	TEST TIME (MIN)					i   i   i	•
	BTAN			) ) 		; ; ;	
	CRACK LENGTH K(0) K(19CC) MEAN (IN) (KSI*SORT IN)	42 00# 39. 00#	Q <b>=</b>	43. 30 43. 30	31. 00	46. 20*	64.30*
	H K(Q) K(1SCC (KSI*SQRT IN)	91. 30 92. 20	92. 20 91. 30	2 2 3 3 3 3	90. 90		 
K(ISCC)	CRACK						1
11-6AL-4V K	CIDYH THICK DESIGN LENCY (IN) (IN) (+-50) (IN)	0,099 P7SC 0,095 P7SC	0.093 PTSC 0.093 PTSC	1.250 TDCD	1, 250 TDCB	0. 125 WOL HYDRAZINE	0. 125 MOL
11-	HTGIN SIN	0.800		, , , , , , ,	3 000		1. 300
HUINVIII	VIELD STR ENVIRONMENT (KSI)	161. 4 FREON TF 160. 9	160. 9 N204	144, 9 JP-4 FUEL	144.9 3.5 PCT NACL	HARTIN 1.300	PROPELLANT GRADE HYDRAZINE
	SPEC				L1		}
	1681 16MP (F.)	R. T.	r. œ	, E	⊢. α	7 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	<u>⊢</u> α
	FORH THICK TEMP OR (171) (F)		!!	2.30 R.T. L-T	2 30 R T. L-T	1, 23 Best Ac	1 25 BHR AC
	ļ	~	7 65 F	t : :	<u>u</u>	WO S 1075F	1023f
	CORDITION	- ភូទូធ្ន	1750F 1. SHR NO F 1050F-1169F BHR, 930F BHR	1750F 1000F	1750F 1060F	1790F 1, SHR WO S 1, 25 1160F 8HR + 1075F 8HR AC	1790F 1. SHE WG S 1.25 R.T 1160F BHR + 1023F BHR AC

2. SIKISCC/TYS) SQUARED *NOTE-DATA WHICH DO NOT HEET HINIMUM SPECIMEN THICKNESS REQUIREMENTS OF

TABLE 4.12.1.1

MEAN PLANE STRAIN FRACTURE TOUGHESS DATA OF TITANIUM ALLOY TI-GAL-4V(ELI) AT ROOM TEPFERATURE

	(Grant)		1			IJ	1
١		PLAIE	1	76.8 ± 0.7 (3)	EUROTHE	ปี	B4.3 ± 0.4 (3)
	(KBI BORTCIN) DEVIATION		7	76.1 ± 4.0 (3)	8	1	83, 5 + 1, 3 (3)
- {	COMPITIONAL		COMBITION/MT	RECRYSTAL 12E ANEAL		COMPITIONANT	ANSEALED

A STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR

TABLE 4.12.1.2

FATIOUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

# TITANIUM TI GAL-4V(EL1)

	Ē	3	
	<u>s</u>	s g	!
	MUTH RAT	206 4 206	10.8
	FATICUE CRACK CRIMIN RATES (MICRO INJENCIE)	2	
α.	AT JOUE OF	,	
CAB AIR AT R. T			
ENVIRGNENT	DELTA K LEVELS.		
	FREQ.	0 10 1.00-10.00	
	STRESS	0 10	01 0
٤	PRODUCT FORM	FORCING	PLATE
IEST CONDITIONS SPECIMEN ORIENTATION	CD4D171D4/H1	MAEALED	AA PLATE 0 10

9
Ħ
9
9
123

			1 12				8	0	PLATE	<b>₹</b>	12
		12. 8	-			•	0 10- 1 00	90	PLATE	\$	4.
		ž					8	0 0	PLATE	4	
		<b>8</b> ₹					13.00	8	PLATE	1	
	8	F RATES 20 90	FATIONE CRACK ORDUTH RATES (HICRO INCYCLE) 5 10 20		~	DELTA A LEVELS: (AGI BERT([N))	FNEG (H2)	STRESS PAT10	FORM	CO-011104/HT	
				DRY AIR AT R. T.		ENINGEEDI			<u>‡</u>	IEST COMOLLIONS SPECIMEN ORIENTATION:	
			Y FACTOR	S-INTENSITY	E STRES (EL1)	FATIGUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR TITANIUM TI-GAL-OV (ELI)	TE AT BEFIN	K CROWIN RA	FATIBLE CRACI		
						TABLE 4.12.1.3	TABLE				
袋						<b>(</b> )				Ž,	
CAN THE STREET STREET STREET											! !

TABLE 4.12.1.4

			8	12	<b>%</b>
			MITH MATE	171 • 11	7.75 240
FACTOR			SAACK GRO		
TENSITY		<u>«</u> _	FATIOUE CRACK ORDATH RATES (MICRO IN/CYCLE) 19 9 10 20		
TRESS-11	<u>-</u>	34	6 6		
FATIONE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACIOR	11TANIUM TI-6AL-4V(EL1)	ENVIRCHENT: LAB ATR T	DELTA M LEVELS: (MSI SURT(IN))	FURGING 0 10 1 00-20 00 11 9 171	
E AT DEFINED	1117811		FPEG. (HZ)	00 02-00 1 01 0	00 01-00 1 01 0
CROWTH RAT			STRESS RATIO	01 0	0 10
FATIONE CRACK		7	PRODUCT FORM	FURCING	PLATE
		IESI COMOLLIONS SPECIMEN ORIENTATION T-L	COMD 1 T COM/14T	NMEALED	₹ <b>₹</b>

TABLE 4.12.1.5

FATTONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUN TI-6AL-" / (ELI)

SMITTOWO IS 31

SPECIMEN THE ORIENTATION THE

ENVIRONMENT: MZO SATURATED JP-4 FUEL. AT R. T.

CONDITION/HT	PRODUCT FORM	STRESS RATIO	FREG.	DELTA K	•	ATIQUE (HI	PRACK GR	FATIGUE CRACK OROWTH RATES	<b>8</b>	
				LEVELS. (KSI SORT(IN))	e v	n	01	ጸ	8	8
1	PLATE	8 0	15 00					6.		
1	PLATE	0. 10	0. 10						2	
1	PLATE	0 10	8						8	
1	PLATE	8	8					13.8		
4	PLATE	8	0 10					6 (61		

TABLE 4.12.1.6

FATIONE CRACK OROUTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

			AT11	TITANIUM TI-6AL-4V (ELI)	1					
EST CONDITIONS PECIFEN ORIENTATION T-L	Į			ENVIRGNENT: DIST MATER	DIST.	. HATER				
MD1710N/H7	PROBUCT FDBH	STRESS	FRE0.	DELTA K LEVELS: (KSI 90R7 (1N))	in ri	FATIOUE CRACK ORDWIN RATES (MICRO IN/CYCLE)	UE CRACK GROWTH (MICRO IN/CYCLE)	MIN RATE	8	8
	PLATE	8 .	8 51				<u> </u> 	8		
	PLATE PLATE	0. 0.	8 8				0.27	13.7	<b>Ξ</b>	

TABLE 4.12.1.7

FATICUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-6AL-4V (ELI)

ENVIRONEENT: 3.5% NACL AT R. T.

COMD 1 TION/HT	PRODUCT FORM	STRESS RATIO	FREG.	DELTA K	_	FATIQUE	FATIOUE CRACK ORDUTH RATES (MICRO IN/CYCLE)	DUTH RATI	<b>8</b>	ı
				LEVELS (KSI SORT([N))	o N	n	2	8	8	8
	P. S. T. F. S. T. F. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S. T. S.	8	15.00					14.9		
•	PLATE	01.0	0 10						393	
4	PLATE	0.10	8						214	
€	PLATE	8	8 .1					31.3		
•	PLATE	8	0 10					15.0		

			FF15 SS	214			
			FATIOUE CRACK GROWTH RATEIS (HICRO IN/CYCLE) 5 IO 20		12. 7	% %	
C108			UE CRACH CROWTH CHICHO IN/CYCLE)			13	
SITY FA			WE CRA				
- INTERE		3 F	!				
STRESS	Ê	<b>V</b> , <b>T</b>	SO CH				
ELS OF THE	TITANIUM TI-6AL-4V (ELI)	ENV I ROMMENT	DELTA K LEVELS: (KSI SORT(IN))				
	1 1513		(KSI				
TE AT DEF11	111		FREG.	8	0 10	8 .	
CROUTH RA			STRESS	0. 10	8	<b>%</b>	
FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR		į	PRODUCT FURM	PLATE	PLATE	PLATE	
		IEST CONDITIONS SPECIMEN ORTENTATION T-L	COMD1710N/H7	8.4	₹ 8	<b>₩</b>	
			!	-		_	

TABLE 4.12.2.1

COPIDITION	FORM	THE THEM TENT	15.50 15.70 (F)	SPECIMEN ORIENT	STRENCTH (KSI)	, E ( ) 3   1   1   1   1   1   1   1   1   1	LIDIH THICK DESIGN	DESICN	LENGTH CENSTH	TH (KITC) TYS) 2 1	(KS14S	K(IC) MEAN (KSI=SORT IN)	) 	PATE .	REF. 2
ANNF ALED	L	888	Œ	<u>.</u>	117 0 117 0 117 0 117 0	4 000 3 776 0 996	2 00 5 00 1 00 1	555	2 130 2 136 143	56.5	82. 42 84. 93 83. 23	83.5%		1976 1976 1976	MC001
ANNE AL ED	L.	888	<b>⊢</b> Œ	1-1	117.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0053 2 020	555	2 126	- 2 8 - 2 - 2	84, 71 84, 23 83, 89	84.3/	•	1976 1976 1976	MC001 MC001
RECRYSTALLIZE ANNEAL	f I <u>D</u>	. 888 . nnn	' <b>-</b>	د ا	119 0	0000	2 000	555	2 072 2 088 2 117	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	73.32 86.45 74.45	76.17	1 0 € <b>€</b>	1976 1976 1976	MC001 MC001 MC001
RECRYSTALL 12E ANNEAL	a.	888	<b>-</b> α	Ţ	122 0	4 4 4	888	555	2 034 2 034	0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0	76 19 76.61	76. 87	0.7	1976 1976 1976	MC001 MC001

TABLE 4.12.2.2

						TITANICA	5	=	TI-6AL-4V (ELI) K(C)	(EL1)	K(C)						
	i	3	Ç	C C C C C C C C C C C C C C C C C C C	2			-	LENGTH	08039	STRESS	KOADP	74	,	STA.	,	
CONDITION	1001	FORM THICK TEMP OR (IN) (F)	Į.	8	STR	WIDIN (IN)	THICK	TINI CINI	1			K(APP) MEAN	) DEC	K(C) HEAN (KSI45GRT IN)		DEV DATE	: REFER
1 1 1 1	! !	1 .	1	1 1 1		! ! !	1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1	1		1
						BUCKI	LING OF	CRACK	BUCKLING OF CRACK EDGES RESTRAINED	ESTRAT	MED						
INPEALED	m	0 03	R. T. L-T	7	136.0	2 000	0.023	0.490	0. 780	;	104.00	94, 77#		127. 27*		1964	
	1	0 03			136.0	900	0.023	0.480	000	1	104,00	93.63*		129.62		1964	
		0			136.0	9000	0.025	0.470	0.750	1	107.00	43.20		127. 37*		1964	
		000			136.0	2000	0 023	0.480	0 750	!	104.00	93.63		123. 79*		1964	
		0 03			136 0	2 000	0.025	0.480	0 700	1	105.00	94. 55#		119. 24*		1964	60378
ONNEALED	υħ	0.03	~	R. T. L-T	136.0	000	0.023	1. 270		1	71.80	100	•	126. 95*		1961	
	ı	0			0 961	000	000	. 280	_	1	96 99		.,	126. 31•		1961	
		0			0 %	9	0.023	1, 260	1.650	;	70. 60	8		127. 29		1964	87509 1
		0			136.0	4, 030	0.023	1, 270	~	•	73.60		. •	125. 44+		1964	
		000			136.0	4.040	0.029	1. 270	-	;	74 90	112, 74+107, 27, 3, 0	0	134, 724	/	1964	

*NOTE- NET SECTION STRESS EXCEEDS BOX OF YIELD STRENOTH. VALUE NOT INCLUDED IN MEAN OR STD. DEV.

49, 30 134, 33 164, 70 1764 60378 42, 10 131, 26 164, 08 1964 60578 44, 10 137, 33 167, 42 1964 60378 41, 60 129, 68 136, 9/10, 3 137, 91 161, 67, 6, 5 1964 60378 •.••

·.·.

NUMBER

136.0 136.0 136.0 136.0

R.T. L-T

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.12.3.1 INDICATING EFFECT

CONDITI	ON:	ANNEALED		V (ELI)		
DE	LTA	K : #1/2) :		DA/DN (10*	*-6 IN. /CYCLE)	
11102		:	A	B	С	D
		:	E= R.T. LAB AIR			
			2. 61			
DELTA K						
MIN	C:					
	D:	:				
		13. 00 :	2. 73			
		16.00 :	— ·			
		20.00	12. 9			
			23. 5			
			37, <b>6</b>			
		35.00 :				
			87. 5			
		50.00 :	206.			
		60.00 :	206. 506.			
	A:	<b>67.30</b> :	1005.			
DELTA M	B:	:				
MAX						
	D:	:				
		:				
		SQUARE RROR	6. 38		# A % A & % M M % M M % M M M M M M M M M M M M	· (a) + (4) + (5) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a) + (a)
		0. 0-0. 5			# & 4,	~
		0.5-0.8				
		0.8-1.2				
		1. 25-2. 0				
		>2. 0				



Figure 4.12.3.1

best a the business at a best a second a decided a second and a few for the few for the few best and a few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the few for the

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.12.3.2 INDICATING EFFECT

		Ur c	MY I KUNMEN I		
MATERIAL: CONDITION:	ANNEALED	TI-6AL-4V			
DELTA	K :		DA/DN (10++-		
(KSI+IN+	*1/2) :	<b>A</b>	В	С	D
	: : L	E= R.T. AB AIR			
A:		. 717			
DELTA K B: MIN C:					
D:					
<b>.</b>	:				
	13.00 :	. 974			
	16.00 :	4. 18			
		11. <del>9</del>			
	<b>25</b> . 00 :				
	<b>30</b> . 00 :				
	35. 00 : 40. 00 :	<b>52.</b> 3			
	40.00 : 50.00 :	75. 1			
	<b>60</b> . 00 :				
	80.00	401.			
A:	<b>63. 28</b> :	662.			
DELTA K B:					
MAX C:	:				
D:	:				
	:				
ROOT MEAN PERCENT E	RROR	26. 42			
LIFE PREDICTION	0. 0-0. 5				
	0. 8-1. 25	2			
	1. 25-2. 0	ī			
	>2.0				



Figure 4.12.3.2

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.12.3.3 INDICATING EFFECT

#### OF STRESS RATIO

MATERIAL: TITANIUM	TI-6AL-	4V (ELI)		
CONDITION: BA ENVIRONMENT: R.T.	DRY AIR			
DELTA K		DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN**1/2)	A	B	С	D
	R=+0. 10	R=+0. 80		
A: 40.32 DELTA K B: 7.50 MIN C: D:		. 190		
8.00 9.00 10.00 13.00 16.00 20.00 25.00		. 286 . 597 1. 12 4. 50		
30, 00 35, 00 40, 00 50, 00	128. 229.			
A: 71.02 DELTA K B: 13.61 MAX C: D:	: : :	5. 54		
ROOT MEAN SQUARE PERCENT ERROR	4. 60			
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1 SUMMARY 1.25-2. (NP/NA) >2.	5 8 25 0			



Figure 4.12.3.3

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ABSOCIATED WITH FIGURE 4.12.3.4 INDICATING EFFECT

## OF STRESS RATIO

CONDITIO	N: BA	TI-6AL-	4V (ELI)		
	TA K	:	DA/DN (10##	-6 IN. /CYCLE)	
(KSI#I	N##1/2) :	<b>^</b>	B	c	D
	:	R=+0. 80			
	<b>A:</b> :	:			
DELTA K					
MIN	<u>C</u> :	:			
	D:				
	200.00	:			
	<b>A</b> :	• •			
DELTA K		• •			
MAX	C:	•			
	D:	:			
	,	: 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
ROOT MEA	N SQUARE ERROR	0. 00			
PREDICTI RATIO	0.0-0. (DN 0.5-0.0 0.8-1.1 (Y 1.25-2.0 ) >2.0	8 25 0			



Figure 4.12.3.4

アンスからなる 国のなどがって、其内の人の人の人は アンシンシンとのはできなる

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.12.3.5 INDICATING EFFECT

#### OF ENVIRONMENT

	AK		:		DA/DN (10+	+-6 IN. /CYCLE)	
(KSI*IN	**1/2	)	• •	A	8	С	D
			: : DRY	E= R.T. AIR			
A ELTA K B		53		. 0879			
MIN C	:		:				
	13.	00	: :	. 227			
		.00		1. 01			
		.00		4. 02			
		. 00		11. 9			
				22. 4			
	35	. 00	:	31. 3			
<b>A</b>	: 37	. 95	:	34. 5			
ELTA K B		-	:				
MAX C	):		:				
E	):		:				
			:				
DOT MEAN PERCENT							
LIFE				, ₁₀₀	~~~~~	, , _ _{1, _}	A 44 44 A4 44 A4 A4 A4 A4 A4 A4 A4 A4 A4

できた。自然ないとの人が自然なくないとは関うないのは、自然のないのでは、自然のないのでは、自然のないのでは、これできた。とのできたのでは、自然のないのでは、自然のないのでは、自然のないのでは、自然のない



Figure 4.12.3.5

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.12.3.6 INDICATING EFFECT

#### OF ENVIRONMENT

MATERIAL: CONDITION:		TI-6AL-			
DELTA (KSI+IN+				6 IN. /CYCLE)	
/ NOT = 114=	-1, -,	<b>A</b>	3	C	D
		: E= R.T. : H2O SATURATED JP-4 FUEL	E= R.T. DIST. WATER	E= R. T. 3.5% NACL	E= R. T. S. T. W.
		: . <b>387</b>			
DELTA K B:			. 968	=	
MIN C:				. 117	
D:	13. 53	:			. 40
	13. 00	•		1. 36	
			1. 27	2. 99	1. 64
		5. 14	5. 20	14. 5	1.04
	_	: 13. 4	<del></del> -	• •	
		22. 4			
		: 32.4	<b>35</b> . 7		
	40. 00	: <b>45. 9</b>	<b>55</b> . <b>4</b>		
A:	43. 49	: 59.6			
DELTA K B:			<b>55</b> . <i>9</i>		
MAX C:				24. 0	
D:	16. 98	: :			3. 23
PERCENT E	RROR	11. 94	-	22. 82	
LIFE	0. 0~0.				
PREDICTION	0. <b>5-</b> 0.	8			
RATIO					
SUMMARY					
(NP/NA)	<b>&gt;2</b> .	0			

THE CAMPBELL PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P



Figure 4.12.3.6

# FATIGUE CRACK OROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.12.3.7 INDICATING EFFECT

DELTA (KSI+IN+		:	DA/DN (10##-6	IN. /CYCLE)	
/ VOT = 114= :	(1/6)	<b>A</b>	В	C	D
		: H20 SATURATED	E= R.T. ALT JP4-FUEL & DIST. WATER	E= R.T. DIST. WATER	
		: 19. 4			
DELTA K B:			19. 2		
MIN C:	42. 57	:		<b>63</b> . 1	
D:		:			
		: 26. 4	31. 1		
		: <b>40</b> . <b>8</b>			
		: <b>57</b> . 7	<b>69</b> . 0		
			122.	141.	
			212.	<b>2</b> 10.	
	70. 00	: 402.	388.	383.	
<b>A</b> :	72. 48	: <b>483</b> .			
DELTA K B:			<b>489</b> .		
MAX C:	74. 51	:		<b>607</b> .	
D:		: :			
	GUARE	10. 21		5. 17	



Figure 4.12.3.7

## FATIQUE CRACK QROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.12.3.8 INDICATING EFFECT

#### OF ENVIRONMENT

DELTA K :		DA/DN (10##-6 IN./CYCLE)				
(KSI#IN##)	(72)	: : A	В	c	D	
		: : E= R. T. : 3. 5% NACL				
A: DELTA K B: MIN C: D:		: <b>51.6</b> : :	37. B			
	35. 00 40. 00 50. 00 60. 00	74. 9 107. 138. 214. 355.	53. 2 70. B 89. 5 214. 616.			
DELTA K B: MAX C: D:		: <b>833</b> . : : :	757.			
COOT MEAN SO PERCENT ERF	ROR	7. 81	10. 86		· 44, 65, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46	

£ =

くろうち 日本できていた。11日間のでするのもの自己のながなられる自己のながないのは、日本できないのは、日本ではないないできない。これでは、これでは、日本できないのなどのできなっている。「「「「「「「「「「」」」」

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s



Figure 4.12.3.8

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

:.:

#### DATA ASSOCIATED WITH FIGURE 4.12.3.9 INDICATING EFFECT

#### OF ENVIRONMENT

CONDITION: BA		TI-6AL-4V (ELI)				
DELTA K (KSI+IN++1/2)		DA/DN (10**-6 IN./CYCLE)				
		. <b>A</b>	Ð	С	D	
		E= R.T. :H20 SATURATED JP-4 FUEL				
A:	26. 50	: 15. 3				
DELTA K B: MIN C: D:	26. 86	: : :	11.0			
	30, 00	: : 28.0	36. 5			
	35. 00	47. 5	110.			
	40, 00	: 67.9	194.			
	50. 00	: 123.	353.			
	60. 00	: 230.	624.			
	70. 00	: 501.	1449.			
A:	76. 78	: 1014.				
DELTA K B:	<b>75</b> . 41	:	2636.			
MAX C:		:				
D:		: :				
ROOT MEAN SQUARE PERCENT ERROR				ن سود وليد والله الله الله الله الله الله الله الل		
LT TO THE PROPERTY (CAN AND AND AND AND AND AND AND AND AND A	0. 0-0. ? 5-0. ? (2-1. 1. ?	5 8 25 0		*****************		



Figure 4,12.3.9

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASECCIATED WITH FIGURE 4.12.3.10 INDICATING EFFECT

CONDITION: BA		TI-6AL-4V (ELI)					
DELTA K : (KSI+IN++1/2) :		DA/DN (10**-6 IN./CYCLE)					
(NOT#14#	*1/4/	. •	B	С	D		
		: E=- 65F :NITROGEN & AIR					
A: DELTA K B: MIN C: D:	15. 30	: <b>2</b> . <b>20</b> : : : : : : : : : : : : : : : : : : :					
	20. 00 25. 00 30. 00	: 2. 69 : 9. 07 : 15. 4 : 22. 0 : 33. 1 : 53. 4					
A: DELTA K B: MAX C: D:	-	: <b>66</b> . <b>9</b> : :					
PERCENT E	RROR	11. 19					
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 8-1.	5 8 25 0					



Figure 4.12.3.10

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.12.3.11INDICATING EFFECT

DELTA K (KSI+IN++1/2)		:		DA/DN (10##-	6 IN. /CYCLE)	
(KSI+IN+	<b>1</b> /2)	:	A	В	C	Ð
		: E=+ :DRY AIR	175F	E=+ 175F JP-4 FUEL	E=+ 175F DIST. WATER	E=+ 175F 3.5% NACL
<b>A</b> :	15. 15	: 4	. 42			
ELTA K H:	14.71	•		3. 87		
MIN C:	21.49	:			19. 1	
D:	15. 01	:				5. 51
	16.00	· : 5	. 69	5. 02		6. 93
	20.00	: 12	. <b>1</b>	13. 3		17.8
				<b>24</b> . 0		48. 6
				36. 9	50. 4	100.
	35. 00	: 54	. <b>1</b>	<b>59</b> . 6	7 <b>3</b> . 3	159.
	40. 00	: 78	). <b>O</b>	<b>99.</b> 0	91. 9	
A:	40. 96	: 80	. 3			
ELTA K B:	42. 28	:		101.		
MAX C:					<b>95</b> . <b>5</b>	
D:	35. 56	: :				165.
			05	14. 61	7. 92	12. 39



ジングは、動きないとうだが、自然のものである。 「他のできないというだけ、自然のものできませんがあるので、自然のものできませんがある。 「他のできないというできませんが、これできませんが、これできませんが、これできませんが、これできない。」できないとのできませんが、「他のできないできませんが、これできませんが、これできませんが、「他のできませんが、「他のできませんが、」できませんが、「他のできませんが、「他のできませんが、」できませんが、「他のできませんが、「他のできませんが、」できませんが、「他のできませんが、「他のできませんが、」できませんが、「他のできませんが、「他のできませんが、」できませんが、「他のできませんが、」できませんが、「他のできませんが、」できませんが、「他のできませんが、」できませんが、「他のできませんが、」できませんが、「他のできませんが、」できませんが、「他のできませんが、」できませんが、「他のできませんが、「他のできませんが、」できませんが、「他のできませんが、」できませんが、「他のできませんが、」できませんが、「他のできませんが、」できませんが、「他のできませんが、」」できませんが、「他のできませんが、」」できませんが、「他のできませんが、」」できませんが、「他のできませんが、」」できませんが、「他のできませんが、」」できませんが、「他のできませんが、」」できませんが、「他のできませんが、」」できまませんが、「他のできませんが、」」できませんが、「他のできませんが、」」できまませんが、「他のできませんが、」」できまませんが、「他のできませんが、」」できまませんが、「他のできませんが、」」できまませんが、「他のできませんが、」」できままままり、「他のできませんが、」」できまませんが、「他のできませんが、」」できまままり、「他のできませんが、」」できまままり、「他のできませんが、」」できまままり、「他のできませんが、」」できまままり、「他のできませんが、」」できまままり、「他のできままり、「他のできませんが、」」できままり、「他のできませんが、」」できままり、「他のできませんが、」」できままり、「他のできませんが、」」できままり、「他のできませんが、」」できままり、「他のできませんが、」」できままり、「他のできままり、「他のできませんが、」」できままり、「他のできませんが、」」できままり、「他のできませんが、」」できままり、「他のできませんが、」」できままり、「他のできませんが、」」できままり、「他のできませんが、」」できままり、「他のできままり、「他のできませんが、」」できままり、「他のできままり、「他のできます」」」できままり、「他のできままり、「他のできます」」」できままり、「他のできままり、「他のできます」」」できままり、「他のできままり、「他のできままり、」」できままり、「他のできままり、「他のできままり、」」できままり、「他のできままり、「他のできままり、」」」できままり、「他のできままり、「他のできままり、「他のできままり、」」できままり、「他のできままり、「他のできます」」」は、「他のできます」」」は、「他のできままり、「他のできます」」」は、「他のできます」」」は、「他のできます」」は、「他のできます」」」は、「他のできます」」は、「他ののできます」」は、「他ののできます」」」は、「他ののできます」」は、「他ののできます」」は、「他ののできます」」は、「他ののできます」」は、「他のできます」」は、「他のできます」」は、「他のできます」」は、「他のできます」」は、「他のできます」」は、「他ののできます」」は、「他のできます」」は、「他のできます」」は、「他のできます」」は、「他のできます」」は、「他のできます」」は、「他のできます」」は、「他のできます」は、「他のできます」は、「他のできます」」は、「他のできまする」」は、「他のできます」」は、「他のできます」」は、「他のできまする。」」は、「他のできます」」は、「他のできます」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする」」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のできまする。」は、「他のでものでものでもん

Figure 4.12.3.11

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.12.3.12INDICATING EFFECT

## OF ENVIRONMENT

(KSI+1N++	K (2)	:	DA/DN (10##-6	IN. /CYCLE)	
(VOT-114-	1/2/	<b>A</b>	В	c	D
		: H20 SATURATED	E= R.T. ALT JP4-FUEL & DIST. WATER	DIST. WATER	
		: . 61			
ELTA K B:			. <b>50</b>		
MIN C: D:	9. 85	:		. 23	
	10. 00	:		. 273	
	13. 00	: 2, 24	2. 19	2. 03	
	16. 00	: 6. 47	5. 87	6. 01	
	20. 00	: 13.8	12. 9	13. 7	
	<b>25</b> . <b>0</b> 0	: 24. 6	23. 5	<b>25</b> . <b>5</b>	
	30.00	: <b>39</b> . 7	35. 5	40. 7	
	35. 00	: 66.0	<b>5</b> 0. 1	63. 0	
	40. 00	: 117.		<b>98</b> . 7	٠
A:	41. 26	: 137.			
ELTA K B:			<b>55.</b> 4		
MAX C:	44. 21	:		148.	
D:		: :			
OOT MEAN S			20.98	16. 08	



Figure 4.12.3.12

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.12.3.13INDICATING EFFECT

## OF EMVIRONMENT

DELTA	K :	,	DA/DN (10##-6	IN. /CYCLE)	
(KSI#IN#	•1/2) : :	A	Ð	С	D
		E= R. T. 3. 5% NACL			
DELTA K B: MIN C: D:		. <b>980</b>	. 991		
	25. 00 : 30. 00 :	2. 61 9. 36 31. 3 69. 0 115.	1. 13 3. 77 9. 26 28. 2 62. 3 86. 9		
		184. 308.	120 <i>.</i> 196.		
DELTA K B: MAX C: D:		333.	258.		
PERCENT EF	ROR	18. 54			
	0. 0-0. 5 0. 5-0. 6 0. 8-1. 2 1. 25-2. 6	5 9 25 )			. in an an an an an an an an an an an an an

.



Figure 4.12.3.13

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.12.3.14NDICATING EFFECT

## OF ENVIRONMENT

DELTA (KSI+IN+	K M	:	DA/DN (10##	-6 IN. /CYCLE)	
(VØ141M*)	-1/2)	<b>A</b>	В	c	D
		: : E= R.T. :DRY AIR			
DELTA K B: MIN C: D:	10. 10	: . 424 : :			
	<b>25</b> . 00 <b>30</b> . 00	: 6. 34 : 12. 8 : 22. 4 : 36. 2 : 60. 4			
DELTA K B: MAX C: D:	40. 48	: 113. : : :			
OOT MEAN S		20. 59	, a, e e e e e e e e e e e e e e e e e e	ه خين آننا منذ من ويه ديد کل وي که کند که بخاطن که ويه د	

マスティーへの 自動 システィ・・・・・ 対象のない ストライン 内でいたい ここのにない 経路



Figure 4.12.3.14

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.12.3,15INDICATING EFFECT

## OF ENVIRONMENT

DELTA (KSI*IN*+		:	DA/DN (10##	-6 IN. /CYCLE)	
(VOT#TM##	11/4/	. A	В	С	D
		: E= R.T. :H2O SATURATED JP-4 FUEL	E= R. T. 3.5% NACL	E= R. T. S. T. W.	
A:	14.08	: 3. 65			
DELTA K B:			5. 62		
MIN C: D:	15. 38	:		4. 56	
	16. 00	6, <b>63</b>	6. 80	5. 42	
	<b>20</b> . 00	: 13. 9	15. 0	12. 7	
	<b>25</b> . 00	: 25.0	37.8	<b>27</b> . <b>2</b>	
		42.8	178.	<b>54</b> . 1	
	<b>35</b> . 00 <b>40</b> . 00	; <b>78</b> . <b>6</b> ;	<b>264</b> .	110. 233.	
		: 105.			
DELTA K #:			<b>264</b> .		
MAX C: 10:	<b>42</b> . 70	: : : : : : : : : : : : : : : : : : : :		357.	
RECENT EN		7. 84	21. 27	9. 49	



the state of the first of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Figure 4.12.3.15

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.12.3.16INDICATING EFFECT

## OF ENVIRONMENT

MATERI CONDIT			TI-6AL			
		K *1/2)	· · ·	DA/DN (10##-6	_	
			: <b>A</b>	8	С	D
			: E= R.T. :LAB AIR 10HZ	SIM. SEA WATER		
	A:	12, 94	: . 519			
		10.88		3. 44		
		13. 00	. 565	3. 90		
		16. 90		7. 39		
				15. 0		
		25.00	: 10.8 : 19.4 : 30.8	32. 1		
		30.00	30.8	64. 3		
		35.00	50.6	121.		
		40.00	91.5	204.		
		50.00	:	393.		
	Δ.	47 16	: 202.			
DELTA		50.76		404.		
MAX			:			
	D:		:			
PERCE	NT E	SQUARE RROR		20. 45		*
LIF	E	0. 0-0. 0. 5-0		· ************************************		
		0.8-1.		2		
		1. 25-2.		•		
(NP/		>2.				

الثناة



Figure 4.12.3.16

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.12.3.17INDICATING EFFECT

## OF ENVIRONMENT

CONDITION:	RA	TI-6Al	4V (ELI)		
	K :		DA/DN (10**-6	IN. /CYCLE)	
(KSI#IN#	*1/2) : :	. •	B	С	D
	; ;	E= R.T. LAB AIR	E≖ R.T. Sïm. SEA WATER		
DELTA K B: MIN C: D:		1. 50	2. 76		
	35.00 : 40.00 :	3. 68 7. 75 16. 0 29. 4 51. 4 87. 2 240.			
DELTA K B: MAX C: D:	:		221.		
ROOT MEAN		16. 76	30. 38		
PREDICTION RATIO SUMMARY	0. 0-0. 5 0. 5-0. 8 0. 8-1. 2 1. 25-2. 0	3 1 25 2	1 1		



Figure 4.12.3.17

<u>Ų partingarija partingarija partingarija partingarija partingarija partingarija partingarija partingarija par</u>

TABLE 4.12.3.18

	DATE PEFER		146/ /0431	
	TEST TIME (MIN)	 		
	STAN DEV	1 1		
	WIDTH THICK DESIGN LENGTH M(0) M(1SCC) MEAN IN (1N) (**SO) (1N) (*SI*SORT IN) N N N N		112.00 B4.00*	
(3361)	CRACK LENOTH K(0) (IN) (KSI*	1 1 1 1	112.0	
11-6AL-4V(FLI) K(18CC)	FCIMEN THICK DESIGN (IN) (*=80)	1 1 1	1.000 0.500 CANT#	
-11	WIDTH CIN)	1 1	1.000	
TITANICH	SPEC YIELD OR STR ENVIRONMENT (RSI)	1 1 1 1 1 1	1.00 R. F T-8 115.2 3.5 PCT NACL	
	STR (KS1)	1	115.	
	U,	1 1 1	÷	
	7 TEMP (F)	1	æ 0	
	OHCT- THICK	ŀ	-	
	FORN THICK TO	1 1 1	Ŀ	
	C(HJD1 T I ON	1 1 1 1	BOWN THR	HELTURY COOL

*NOTE-DATA MICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REGUIREMENTS OF 2. STRISCC/TV8) SQUARED

:

•.



## TABLE 4.13.1.1

## HEAN PLANE BTRAIN FRACTURE TOUGHEESS DATA OF TITANIUM ALLOY TI-6AL-6V-28N AT ROOM TEMPERATURE

PEAN KIC + STANDAND
1 1 4 1 1 4 4 4 4 4

TABLE 4.13.1.1 (Con't)

MEAN PLANE BIRAIN FRACTURE TOUGHBEBB DATA OF ITTANIUM ALLOY II-64L-64-28N AT ROOM TEMPERATURE

CONDITION/HT REAM KIC + STANDARD (MARBER OF SPECIFEMS)  (KS) SORT(IN) DEVIATION  RILLET  CONDITION/HT (-I I- I- S-L  HILL ANNEALED 32.3 ± 6.4 (4)  HILL ANNEALED 57.1 ± 2.2 (2)  1000F 2 HR. AC  BTDA-1700F 62.8 ± 6.9 (4) 57.0 ± 3.7 (4)  1 HR. WG, 1400F 1 HR. AC						
(KB1 BORT(1N)) DEVIATION  (KB1 BORT(1N)) DEVIATION  (L-I L-I I  D 52.3 ± 6.4 (4)  C 62.8 ± 6.9 (4)  F 62.8 ± 6.9 (4)	BPEC IMENS)		1	-	e	
		131	1	•	•	37.0 ± 3.7 (4)
a au L	PEAN KIC + BTANDA (KBI BORT(IN) DEVIAL	3	5	32. 3 ± 6. 4 (4)	57. 1 ± 2. 2 (2)	62.8 ± 6. 9 (4)
			CONDITION/HT	MILL AMERLED	HILL AMEALED 1000F 2 HR. AC	8TDA-1700F 1 HR, WG, 1400F 1 HR, AC

TABLE 4.13.1.2

0

FATIOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-6AL-6V-25N

ENVIRONMENT

TEST CONDITIONS

SPECIMEN OPIENTATION

Š FATIQUE CRACK CROWTH RATES (MICRO IN/CYCLE) 9 03 10.2 8 2 58 1 73 'n a DELTA M LEVELS: (KSI SQRT(IN)) 10.00 FREG (HZ) STRESS RATIO 01 0 900 PRODUCT FORM PLATE PLATE r.s CONDITION/HT

8

STOA STOA

TABLE 4.13.1.3

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR TITANIUM 11-6AL-6V-25N

TEST CONDITIONS

		0,0	396	
	ATH RATES CLE)	20	1 64 15 1	+ E1
	WE CRACK GROWTH F	<u>c.</u>	1 64	0 11 1 76 13 4
	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	In .		0 11
1 k		ю Ю		
ENVIRONMENT	DELTA K	LEVELS (KSI SORT(IN))		
	FREG (HZ)		8 -	8
	STRESS		01 0	0 10
1-1	PRODUCT FORM		PLATE	PLATE
SPECINEN ORIENTATION L-T	COND1110N/HT		STOA	STOA

8

TABLE 4.13.1.4

# FATIGUE CRACK OROUTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-6AL-6V-2SN

	•
SMOTTFONDS 11	PECIMEN
IEST	8

ENVIRONMENT. 3.5% NACL AT R. T.

CONDITION/HT	PRODUCT FORM	STREES	FREG.	DELTA K		ATTOUE (H)	FATIONE CRACK ORDATH RATES (MICRO IN/CYCLE)	JUTH RATE	<b>50</b>	
				LEVELS: (KSI SORT(IN))	e ri	'n	0	8	8	8
							,	4 86 6	0786	
\$10 <b>4</b>	PLATE	0 10	8				8	r Š	}	
STOA	PLATE	0 10	8			0.23	3 13 19.3	E (1		

TABLE 4.13.1.5

FATIONE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

## 117ANTUR 11-6AL-6V-2SN

	8	
	55 50 50	
	DMTH RAT	2.67 63.9
	CRACK OR	1 15
, <b>L</b>	FATIOUE CRACK ORDWIN RATES (NICRO IN/CYCLE)	
I K	n n	
ENVIRGNOENT	DELTA K LEVELS: (KGI SORT(IN))	
	FREG. (HZ)	0 0
	STRESS RAT 10	0 0
S.	PRODUCT	PLATE
IEST COPOLLIDGE SPECTHEN ORIENTATION	COMDITION/HT	STOA

				, , ,			•
				. 8			
				ATES 30		_	
	9	Ę		ORDWTH R. N/CYCLE) 20	31	49 92.1	
	2			FATIOUE CRACK ORDWIN RATES (MICRO IN/CYCLE)		-	
	,		3 SZ NACL AT R. T	'n			
		-28V		a â			
<b>Š</b> )	TABLE 4.13.1.6	METINED LEVELS UP THE BY TITANIUM TI-6AL-6V-26N	ENVIRONMENT	DELTA M LEVELB: (KSI SORT(IN))			
	TABLE	AT DEFINED		FREG. (HZ.)	0. 10–10. 00	8	
		CROWTH RATE		STRESS	0. 10	Ot O	
		FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS UP THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS-INIGMOILT PARTICULARIES OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF THE BIRESS OF T	7-9	PRODUCT	PLATE	PLATE	
			IEST CONDITIONS SPECIFIEN ORLENTATION	COND 17 1 CON/HT			
<u> </u>			₽ Ø	9	4	ST0*	

TABLE 4.13.1.7

スクログラックでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、100000mのでは、100000mのでは、100

FATICUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TITANIUM TI-6AL-6V-25N

7 77 7	
	SPECIMEN
7	SPEC

SPECIMEN T-L. ORIENTATION T-L.	7			ENVIRONMENT	HUMID AIR AT R. T					1
CONDITION/HT	PRODUCT	STRESS	FREG (HZ)	DELTA K		FATIQUE CRACK GROWTH RATES	UE CRACK GROWTH (HICRO IN/CYCLE)	JUTH RATE	,sa	
				LEVELS: (KGI SQRT(IN))	60 60	n	9	8	8	8
TDA	PLATE	0 10	00 01				2 16 12.4	4 %		
10A	PLATE	0 10	10 00				6 73	6 6	42.3	
40 <b>7</b>	PLATE	0	10 00			0.33	2 38	\$ .5		

A CRACK 2.	SPECIFICATION CRACK 2.		VIETDSPECIMEN CRACK 2.	SPECIMEN VIETSPECIMEN CRACK 2.30	THAT SPECIFER VIELDSPECIFER CRACK 2.
KAREN	TOTAL CONTROL OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	TOTAL STREET STREET		CAPTOLINE VIELD	TISE COLCUMEN VICED
DEGION LENG	THICK DESIGN LENG	LIDIU THICK DESIGN I FNO	erecuotu uihtu THICK NEGION IENO	COLOUR STORMOTH HINTE THICK NESTON I FNO	THE STREET, STREET, THE THICK SECTION I FIND
DESTON	THICK DESIGN	MIDIN THICK DESIGN	STRENDIN NIDIH THICK DESIGN	COLUMN STREAM WIDTH THICK DESIGN	TEM COLUMN STORMSTW WINTH THICK DESIGN
	SPECTME THICK	LIDIN THICK	VIELDSPECIME STRENDTH WIDTH THICK	SPECIMEN VIELDSPECIME COSTONIA STRENDEN LIBER THICK	COMMITTEE THE COLORS ATTEMPT OF THE COLORS ATTEMPTED TO THE CR. THE CO. THE CO. THE CO. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR. THE CR

			ស្លាល់លំលំល	្	। । दुस्	•		ώ č
		E REFER	974 88962 974 88962 974 88962 974 88962 974 88962 974 88962	74 88 74 88 74 88 74 88	~ ~	~ ~	74 88 74 88	•
		<b>8</b>		,	. 61			l)
		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<b>*</b>		i 0 1			
		MCTC MEAN	8	*	, 8 ;	\$	5 7	
		M(IC) MEAN (MSI=BORT IN)	666666	. 245222	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	# # # #	0.09 0.09 0.09	45
		VB) • • 2		!	1 I	; 1 	ı (	•
		C) 2.9+ (K(IC)/TYB)++2 (IN)	000000	000000	. 8 E	00	0.54 0.67 0.67	
		ENOTH (12)	00000	88888	000	000	1. 000 1. 000 0. 1300F	000
	٠.	TI-6AL-6V-29N THEN CK DESIGN L(N)	555555	1	! 55	i ' <b>55</b>	CT CT - HR.	. 5
<b>(3)</b>	4.13.2	TI-6AL SPECIMEN THICK DE (IN)	00000	4 888888		88		88
	rable	MIDTH TH	000 000 000 000 000 000 000 000 000 000 000 000	1 888888	1 1 000 1 000 1 000 1 000	88	' 88 €	1 000 1 000 1 010
		VIELD VIELD STRENOTH (			1 43.0	1 49.0	148.0 148.0 TREATED &	147.0
		SPECIMEN ORIENT	<u>.</u>	1	: : !	1 1	SOLUTIO	! ! ! !
		TEMP (F)	<b>-</b>	1 F. 1 SE	, <del>L</del>	, <del>-</del> , <b>e</b>	- E	, E
		FORM THICK	888888	888888	, 88 <del>4</del>	888 9		, , ,
			L	: ! <b>L</b>	, , ,	F. 1050F 3	· 🙀	, , , <u>, , , , , , , , , , , , , , , , ,</u>
		; !		/ 	:	,	10 10 ED.	1
		CONDITION	υñ	ANNEAL -FINE GRAIN-1350F 2 HR. AC		AMEALCD 40-50 40-50; PRIMARY ALPHA ANNEALED	78. AB FIN-10 RETA BLOCKED W_PHA-BETA F	89. AB FIN-10MA
		CG+D	ANNEAL - GPAIN-1 2 HR. AC	ANTEAL GRAIN-	ANTERIO 10-203	ANTEL 40-50 ALPHA	98. A	. R

	N(IC) STAN MEAN DEV DATE REFER	1974 08962	1974 1974 1974 -6/ 2.4	1974 68962 1974 68962 1974 68962 4. 7/ 0.6	1974 86962 1974 66962 2.2/ 2.1	1974 86962 1974 88962 1974 86962 70. 5/ 1. 0	1977 JEHO1 1971 BJ222 1971 BJ222 4 37 2.0 1971 BJ222
	K(1C) (M81+8K)	<b>3</b>	6.5 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	44.44.44.44.44.44.44.44.44.44.44.44.44.	73.67 70.70 67.07	71,74 6,74 70,76 70,76	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	C) 2. 5* (K(1C)/TYB)**2 (1N)	0.64	0000	ı	66	. 000 t	
ģ	CRACK ENOTH (IN)	1. 000 AC	1. 000 1. 000 1. 000 1. 000	1.1.1 0000 1.000 1.000	300F 2 HR, AC	0000	86
4.13.2.1	11-6AL-6V-25N 11-6AL-6V-25N 11-6AL-6V-25N 11-6AL-6V-25N	. 000 CT 350F 2 HR		000 01	1.000 CT 1.000 CT 1.HR, NO. 134	000 000 1000 1000 1000	000 447 647 647 647 647 647 647 647 647 647
PBLE	HIGH	2.000 ANNEALE	1 26.12.12.12.12.12.12.12.12.12.12.12.12.12.	: 888 :   ninini	88#	0000 0000 0000	2. 3.00
	TITANIUM A YIELD STRENOTH W (MSI)	147.0 JCTION, HIL	148.0 148.0 148.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	140.0 140.0	136.0 136.0	139.88
	T SPECTHEN P ORIENT	D 10% RED	TREATED	EALED 13	ION TREAT	1 2 3 1	· ·
	-FREDUCT TES DIEM THICK TEM (IN) (F)	2 50 R.T		888	2 30 R 2 50 R REDUCTION, SOL	2 30 R 2 30 R 2 30	00 00 00 00 00 00 00 00 00 00 00 00 00
	011100	BE, AB FIN-1CMA F BETA BLOCKED, ALP	D. AB FIN-30 FTA BLOCKED. PHA-BETA INISHED. 30X RED	B. AB FIN-3046 ETA BLOCKED, FYA-BETA INISHED, 302RED	' m < <	B F IN-10MA B F IN-10MA B F IN-10MA B F EDUCTION, MI	BETA ANEAL P DETA ANEAL P 1810F 1 HR.

TABLE 4.13.2.1 (Con't)

K(IC)

11 AAL-6V-2SN

REFER	<b>2</b> 2	88962 88962 88962	88962 88962 88962	88962 88962 88962	83222 ( 83222 ( 83222 (
<b>P T E</b>	1974	1974	1974	1974	1971
	<b>.</b>			<b>9</b>	i 0
K(IC) MEAN (KSI+SGRT IN)	8	79.37	7. 1.	% 9 9	8
K (10)	91.30 48.80	74 50 79 30 72 10	73 90 73 80 74 70	58 10 55 20 7 55 20	64.90 67.90
30	•	! ! ! !	; ;	1	; ; !
(K(IC)/TYS)++2 (IN)	0.0 24 4	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 74 0 75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	440
CENOTH (K	88	0000	0000	888	988 078 036
DESIGN	55		555 ;	555	555
THICK	0 0 0 0	000	0000	0000	0000
ETOTH (ST)	2 : 000 2 : 000	0000	0000	0 00 00 0 0 0 0 0 0 0 0	0000 0000 0000 0000
STRENOTH (ASI)	6 6 0 0	0.000	136.0 136.0 136.0	444	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ORIENT	L-f		; ;	; ;	į
(F)	<b>~</b> •	ا ا د ري	E .	8. T	<b>-</b>
	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	888	888	6 6 6 7 1 1 2 5 6 6 6 7 1 1 2 5 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	838
FORM THICK	0.00 M		¥ 1	F 45 (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	
+	575F 0	EALED.	ا في نه -	BELLAB FOR ANN F 2 50 BETA FLECTED. 2 50 IOM ALPHA-BETA 2 50 FORGED(1500F), ANNEAN.ED: 1350F	NAEAL
NO1110N03	BETA ANNEAL STRA-1800F 0 SHR. AC. 15	BETA FLECTI ALPHA-BETA FORGED. ANN	BF.B FOR-ANN BETA FLECTED BETA FORCED. ANNEALED 135	DF. LAB DETA FI LOW ALI FORGED	DUPLEX

. ....

1973 90384 ( 2) 1973 90384 ( 2)

0

42.3/

\$ \$ 8 8 8

0 0

00

55

230

00 157

88 CI CI

Ç

HILL ANNEALED

JEM01 83222 83222

1977 1971 1971

266

000

0 522

**1**55

000 0

\$ 8 8 8 8 8 C - -

888

-00

MILL ANNEALED

1700F 1 HR. ARGON COOL, 1400F 1 HR, ARGON CUOL. COMPOSITION(WI PERCENT) 5 6AL, 9 4V, 2 0SN, 0 026C, 0 37FE, 0 014N, 0 084H, 0, 180, 0 50CU MOTES C _ C

THE PARTY OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.

TABLE 4.13.2.1 (Con't)

11-6AL-6V-28N M(1C)

TITANICH

			THICK CENT	TEST TEMP (F.)	FICTMEN	YIELD STRENGTH (KSI)	S-TIGITA (IN)	SPECIMENTHICK (IN)	DESTON	CRACK LENGTH (1N)	2. 5* (K(IC)/TV8)+*2 (IN)	K(IC) K(IC) NEAN (KBI-SQRT IN)	K(1C) (HEAN I	91AN 0EV	PATE:	REFER	1
HILL	HIL AMERED	; ! ! <b>E</b>	8	٠.	י י י י	163.3	8	0.4	5	0. 517	0. 10	33.2	6	ø.	_	83222	
HILL A	ANNEAL ED	i.	; ;	μ. α	·	144.0	2.2 3.00 9.00	1, 250	55	1, 250	0, 37 0, 37	6.00	35. 7.	0	1973 1973	90584 90584	
MILL /	HILL AMEALED	L.	200 200 200 200 200 200 200 200 200 200	6	7	169. 0 169. 0 169. 0	2 5 305 2 4 98 2 3 303	1.007	555	1. 299	0.19	5.83 3.75 8.83	4.2/	9.7	1973 1973 1973	90389 90389	
אנור י	HIL AREALEN	i.	0 0 0 0 0 0 0 0 0	<b>.</b>	<u>-</u>	0.00	2.301.2.498	0.999	555	1.300	0.36 0.37	51. 70 36. 90 37. 30	<b>38</b> . 6.	2.7	1973 1973 1973	90389 90589 90589	
אנרר,	HILL ANNEALED	8	1.50	₩. ₩.	į	193.0	300	1. 230	5	1, 250	0. 20	43, 10			1973	50584	
HII C	HIIL ANNEALED	<b>-</b>	8888	r E	<u>-</u> -1	1111 1444 0000	2 19 19 19 19 19 19 19 19 19 19 19 19 19	1, 251 1, 243 1, 243 1, 293	5555	1. 332 1. 262 1. 216 1. 297	0 0 0 0 0 0 0 0 0 0 0 0	88.86 88.46 90.44 90.44	32.37	<b>4</b>	1971 1971 1971 1971	84360 84360 84360 84360	
HILL /	HILL ANNEALED	Ē	0.0		<u>ר</u>	n n	900	2 2	55	1, 293	<b>o</b> o	9.9 9.9 9.0 9.0		u i	1971	84360 84360	1
PECRYS	נארוזנב	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	8	, , , , , , , , , , , , , , , , , ,	; ; ; ;	1 0 0 1	00 1		, <u>3</u>			63.7	! I		^	E 401	
STA-1400F 0 THR. MO. 6 HR. AC	10001	: ! La.	888	3	1-1	209. 0 209. 0	444	1.010	000	1. 326 1. 267 1. 283	0.0.0	20.70 26.80 27.80	8.	<b>6</b>	1973 1973 1973	90589 90389 <del>9</del> 0389	
STA-1600F 0 3987, MG. 5 187, AC	STA-1600F 0 3HR, MG, 1000H 6 HR, AC	L.	6 6 8 8 6 8	€.	-1	000	2. 302 2. 302 2. 301	1.089	555	1. 296 1. 296 1. 278	0.07	30.20	30.8	0.7	1973 1973 1973	90589 90589	
STA-1600F 0 34R, HB,	STA-1600F O SHR, WB, 1000F & HR, AS	¥ ¥ • •	86 86 7	8	<b>-</b> -1	165.0	2. 501	. 8	5	- 292	98 0	99. 90			1973	90389	

STATES TO STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND THE STATES AND

		œ	t 1	. 2223	222	t 1	666	ı :	t 1
		DATE REFEI	1973 90389 1973 90589	1972 86494 1972 86494 1972 86494 1972 86494	1972 B6494 1972 B6494 1972 B6494	1971 83222 1971 83222 1971 83222	1973 87230 1973 87230 1973 87230	1974 88962	1974 909B1
		((IC) STAN EAN DEV I	93.0/ 3.2	0 / 60	26.77. 2.1	34. 17. 3. 8	34.20 1973 87230 ( 2) 54.30 1973 87230 ( 2) 54.30 33.6/ 1.4	. 0.0	
		K(10) 7 (K81+998	4.20	25.96	5.5.5 5.5.6.6 5.6.6.6.6.6.6.6.6.6.6.6.6.	37.00 29.80 39.90	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.04	44.30
		2.54 (10.71 (10)	0.00	1 1 1	9 n n 0 0 0 0 0 0	0.07	, 4884 1 000	0.18	1 000
	Ĕ	CEACK ENOTH (IN)	1, 278	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 917 0. 923 0. 909	1, 080	0.774	· · · · · · · · · · · · · · · · · · ·	
٥	4.13.2.1 (	FI-6AL-6V-5 IMEN-1-1-C CM DESIGN N)	.019 CT	900 CT 499 CT 499 CT	. 900 CT . 900 CT . 900 CT	1 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	730 CT 730 CT 749 CT	1 000	373 CT 373 CT 273 CT
_	PABLE	101 101 101 101 101 101 101 101 101 101	497	0.998 0.0.794 0.0.997 0.0.997 0.0.000 0.0.1	1. 001 1. 001 1. 001 0.	1 888	476	1 00 00 1 00 00 1 00 00	1.000
		TITANIU VIELD STRENCTH (KSI)	165. 0 165. 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	198 0 198 0 198 0	17.0.0 17.0.0 17.0.0 17.0.0	000	134.0	136.0
		SPICIMEN	١-١	, , , , , , , , , , , , , , , , , , ,	ĭ	; ; ; ; ;	<b>F</b>	1	 
		TEST TEMP (1)	98	<del>-</del>	<b>-</b>	· · · · · · · · · · · · · · · · · · ·	E	<b>⊢</b>	! !
		PHIPAG ( FERM THICK (IN)	88			52.55	888	88 NN	
		7 5 1	<b>i.</b>	<u> </u>	•	) <u>.                                    </u>	; , ,	_	! <u>a</u> .
		CONDITION	STA-16-00F () SHR, NO, 1000F is HR, AC	FA-1450F SHR. 143. 105 1 HR. AC	0. 1050F	10-1673F 25 48, 40,	1600F 140, 1250F 16	A-1650F R. 40. 1300F R. AC	TDA-1700F IR. NG. 1400F IR. AC

ISOTHENIAL FORGING FOR AIRCRAFT NOSE WHERL ALPHA PRECIFITATE IN RETA MATRIX STRAIGHTNESS UF CRACK FRUNT MAY NAT MEET ASTM E399-72 HEQUIREHENTS

MOTES ( 1) ( 2)

on far and the care of a far and a far at a far at a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far and a far

TABLE 4.13.2.1 (Con't)

11-6AL-6V-2SN K(1C)

TIMME

r			ı		1	22	
REFER	90981 90981 90981 90981	90981 90981 90981	90981	9 9	84316 84316 84316 84316 84316	90584	90584 90584 90584 90584
DATE .	1974 1974 1974 1974	1974 1974 1974	1974		1965 1965 1965 1965 1965	1973	1973 1973 1973 1973
	1	<b>4</b>	<b>Б</b>	<del>-</del>	nıı niı	<b>-</b>	4 U
HEAN HT IN	7 4	3	57.0/	23. 6/	31.2/	<b>33. 8/</b>	33.8/ 80.2/
K(1C) MEAN (KGJ = SGRT IN)	44, 90 40, 30 40, 30 40, 10	33. 63. 63. 63. 63. 63. 63. 63. 63.	98.80 98.00 99.90 99.90	2 8 3 8	31.88 34.39.99 34.39.99 36.39.99	93.00 92.30	26.29 26.29 26.29 26.29
(K(IC)/TYB)++2 (IN)	0 0 0 0 5 0 0 0 6 0 0 0	0000 0000 0044 0074	0000 4484 1000		000000000000000000000000000000000000000	<b>0</b> 00000000000000000000000000000000000	00 00 04 40 04 00
LENOTH (IN)				40	0, 191 0, 301 0, 177 0, 274 0, 132	ம்ம்	1.230
DESIGN	5555	2 2 2 2 2 2 2 2 2	2222	22	22222	55	<b>55 55</b>
H CK I	0. 378 0. 378 0. 378 0. 378	1.020	020	2 6 6 2 8	000000000000000000000000000000000000000	1.2	1.250
H (NI)	000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	00000 00000 00000	0.301	0 9998 0 9998 0 901 0 901	8 8	000 000 000 000 000 000
SIRENGTH	160.0 160.0 160.0	147.0 147.0 148.0	0000	270.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	130.0 130.0	138.0 138.0 190.0 190.0
ORIENT	Ţ	۲- <u>۲</u>	<u>-</u>	; ; ; ;	<del>ر</del> و	; ; ; ;	1 !
(F)	- -	⊢ α	μ.: α.:	1 <b>8</b> 2	F.	نے ا	8 E
THICK		8888	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 4 4 1 8 8 1	4 4 4 4 4 4 0 0 0 0 0 0 0	88	11 98
_	<b>C</b>	5	Ē	: : ! LL	u.	; ; • • •	. 2
: : :	¥	700F 3. 140H		1 HR, WG.	HR, 199.	2 HR AC 1 HM FC	2 HR. AC 1 HR. AC 2 HR. AC 1 HR. AC
CONDITION	10^-1 118. 14	STRA-1700F t IR. NG. 1404V t IR. AC	158-1 18.8 18.0	1650F 1 1030F 1	9 k	1675F 2 1600F 1	1675F 2 1690F 1 1675F 2 1600F 1

NOTES (-1) COMPOSITION (UT PERCENT) S. GAL, S. 4V, Z. OSN, O. OZÁC, O. SZFE, O. OTAN, O. ODAM, O. 18D. O. SOCU

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.13.3.1 INDICATING EFFECT

## OF STRESS RATIO

MATERIAL: TITANI	UM	TI-6AL-6	/-29N		
CONDITION: BA ENVIRONMENT: R.	T. , H	UMID AIR			
DELTA K	:		DA/DN (10++-	-6 IN. /CYCLE)	
(KSI+I <del>N++</del> 1/2)	:	<b>A</b>	B	C	D
	: :	R=+0. 10			
<b>A</b> :	:				
DELTA K B:	:				
MIN C: D:	:				
<b>.</b>	:				
200. 0	<b>o</b> :				
A:	:				
DELTA K B:	:				
MAX C:	:				
D:	: :				
ROOT MEAN SQUARE PERCENT ERROR		0. 00			
LIFE 0.0- PREDICTION 0.5-	-				
RATIO 0.8-					
SUMMARY 1.25-					



Figure 4.13.3.1 4.13-17

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.13.3.2 INDICATING EFFECT

## OF ENVIRONMENT

MATERIAL: TITANIUM CONDITION: BA DELTA K : (KSI+IN++1/2) :		1 11-6AL-	TI-6AL-6V-2SN		
		: DA/DN (10++-6 IN./CYCLE)			
11100 1011	~ 2.	<b>A</b>	B	С	D
		E= R.T.			
	8. 91	: 1. 38			
DELTA K B:		:			
MIN C:		:			
D:		•			
	9 00	: 1. 36			
		1. 51			
		5. 40			
	16. 00	: 12.5			
<b>A</b> :	17. 76	: 12.0			
DELTA K B:		:			
MAX C:		•			
D:		: :			
ROOT MEAN PERCENT E	SQUARE RROR	27. 07			
	0. 0-0.			7 m m 7 m m m m m m m m m m m m m m m m	
PREDICTION					
RATIO					
SUMMARY	1. 25~2.	0			

(公園をおからなどのは、おからなどのは、おからなどのは、おからなどのは、または、おからは、これをは、これをは、これをは、これでは、これでは、これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これで これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これできた。これでき

例の例外 Marine 1997年 Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Mar



Figure 4.13.3.2

## FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.13.3.3 INDICATING EFFECT

## OF ENVIRONMENT

CONDITION: MA		TI-6AL-6V-28N				
DELTA K (KSI*IN**1/2)		: DA/DN (10##-6 IN./CYCLE)				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • •	<b>A</b>	В	С	D	
		: INTERSTITIAL	E= R.T. INTERSTITIAL DXYGEN=0.16%			
DELTA K B: MIN C: D:	18. 53	: <b>3</b> . <b>37</b> : : : : : : : : : : : : : : : : : : :	8. 57			
	25. 00 30. 00 35. 00	: 26. 7	11. 7 30. 7 66. 7			
DELTA K B: MAX C: D:		: 112. : : :	171.			
ROOT MEAN BQUARE PERCENT ERROR		5. 19	12. 71			
LIFE PREDICTION RATIO BUMMARY (NP/NA)	0. 5-0. 0. 8-1.	9 25 0				



Figure 4.13.3.3

## FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.13.3.4 INDICATING EFFECT

## OF ENVIRONMENT

MATERIAL: TI CONDITION: M	I <b>A</b>					
DELTA K : (KSI*IN**1/2) :		DA/DN (10++-6 IN./CYCLE)				
(1/01-11/4-1	:	A	B	С	D	
	:	E= R.T. LAB AIR				
DELTA K B: MIN C: D:	<b>4.16</b> : : : : : : : : : : : : : : : : : : :	. 0207				
	5. 00 : 6. 00 : 7. 00 :	. 0905				
	8.00 : 9.00 : 10.00 :	. 420 . 620				
	13.00 : 16.00 : 20.00 : 25.00 :	3. 43 7. 73				
	30.00 : 35.00 : 40.00 :	35. 2 64. 0				
DELTA K B: MAX C: D:	: : :					
PERCENT ERROR		19. 73				
LIFE PREDICTION RATIO SUMMARY 1	0. 0-0. 5 0. 5-0. 6 0. 8-1. 2	1 5 1				



Figure 4.13.3.4

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

#### DATA ASSOCIATED WITH FIGURE 4.13.3.5 INDICATING EFFECT

### OF ENVIRONMENT

MATERIAL: CONDITION:		TI-6A	L-6V-2SN		
DELTA (KSI+IN+	K		DA/DN (10**	-6 IN. /CYCLE)	
(VOT# 14#.	*1/ <i>&amp;</i> /		В	С	D
			E= R.T. DRY AIR		
		: 4.85			
DELTA K B:			1.28		
MIN C:				2. 41	
D:	10. 25	:			. 93
	13. 00	:	3. 53	5. 70	2. 36
	16.00		7. <b>54</b>	10. <b>9</b>	4. 79
	20.00	: 10.3	11.1	22. 4	9. 77
	25. 00		19. 1	51. 6	17. <del>9</del>
	30.00	: 40. 9	48. 9	118.	36. 9
	35.00	: 72. 9	107.		<b>65</b> . <b>4</b>
	40.00	: 120.	164.	<b>632</b> .	113.
	<b>50</b> . 00	: 633.	371.		<b>32</b> 2.
A:	55. 28	: 911.			
DELTA K B:			1749.		
MAX C:				1015.	
D:	58. 29	<b>:</b>			747.
PERCENT E	RROR		29. 90		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 9-1. 1. 25-2.	5 B 25 0	~~~~~		



シンドの関われるというとは自然の対象をはは関節のものののの自動などのであり、重要とファンシンを開発もなるのである。

ME アンドラング A ME POST かんかん ない 日本 アンドラング はない

Figure 4.13.3.5

industrial and a translation of the formation of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the bound of the boun

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.13.3.6 INDICATING EFFECT

### OF ENVIRONMENT

MATERIAL: CONDITION:		TI-6AL			
DELTA (KSI*IN*		, ,	DA/DN (10##-6		
(1102 - 214	-4/6/	A	В	C	D
		INTERSTITIAL	E= R.T. INTERSTITIAL DXYGEN=0.16%		
DELTA K B: MIN C: D:	18. 44 21. 24		10. 6		
	35. 00 40. 00 50. 00 60. 00 70. 00	13. 6 23. 0 34. 8 49. 3 86. 0 125. 154.	23. 7 47. 1 72. 4 96. 3		
DELTA K B: MAX C: D:	48.09	199	129.		
ROOT MEAN SQUARE PERCENT ERROR					
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 8-1, 2 1. 25-2, (	5 3 25 )			



がは他のというできたが、1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900年の1900

Figure 4.13.3.6

# FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

### DATA ASSOCIATED WITH FIGURE 4.13.3.7INDICATING EFFECT

#### OF STRESS RATIO

MATERIAL: TITANIUM CONDITION: STOA ENVIRONMENT: R.T.		V-29N		
DELTA K (KSI*IN**1/2)		DA/DN (10##-	6 IN. /CYCLE)	
(V21=1W==1\5)	A	В	С	D
:	R=+0.10			
A: 8.20 : DELTA K B: MIN C: D:	. 39			
30.00 : 35.00 : 40.00 : 50.00 :	. 734 1. 67 3. 15 5. 98 10. 8 16. 7 23. 2 29. 9 42. 3			
A: 54.31 DELTA K B: MAX C: D:	<b>4</b> 6. <b>9</b>			
ROOT MEAN SQUARE PERCENT ERROR				
LIFE 0.0-0.5 PREDICTION 0.5-0.0 RATIO 0.8-1.3 SUMMARY 1.25-2.0 (NP/NA) >2.0	5 9 25 1 0			

charles of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta



Figure 4.13.3.7

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

•...

## DATA ASSOCIATED WITH FIGURE 4.13.3.8 INDICATING EFFECT

#### OF ENVIRONMENT

CONDITION:	STOA				
DELTA (KSI+IN+	K	:	DA/DN (10##-	6 IN. /CYCLE)	
(//		A	B	C	D
		E= R. T. : H. H. A.	E= R. T. 3. 5% NACL		
DELTA K B: MIN C: D:		: . <b>526</b> : :	2. 50		
	13. 00 16. 00 20. 00 25. 00	: 2. 58	2. 48 3. 14 15. 0 20. 8 29. 2 53. 7 61. 1		
DELTA K B: MAX C: D:		: 140. : :	61. 1		
PERCENT ER	BGUARE RROR	12. 68			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. <del>5-</del> 0. 0. 8-1. 1. 25-2.	5 8 25 0			

A manufactural service and the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the servi



Figure 4.13.3.8

# FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

## DATA ASSOCIATED WITH FIGURE 4.13.3.9 INDICATING EFFECT

#### OF ENVIRONMENT

DELTA		:	DA/DN (10##-	6 IN. /CYCLE)	
(KSI#IN#	P1/2)	<b>A</b>	В	C	ם
		: E= R. T. : H. H. A.			
A:	8. 70	. 824			
ELTA K B: Min C:		•			
D:		:			
		:			
	_	: 1. 01			
	10.00				
	13.00	: 4. 16 : 6. 42			
		: 10. 2			
		: 20. 7			
	30.00				
A:	34. 23	: 139.			
ELTA K B:		:			
MAX C:		:			
D:		<b>:</b>			
OOT MEAN (	BOUARE		# # # # # # # # # # # # # # # # # # #		,
~~~~~			### <b>***</b>		
LIFE REDICTION					

the state of the s

TITAN. CONDITION/HT: STOA 0. 38"TH PLATE YIELD STRENGTH: 130. Ø KSI ALLOY FORM: ULT. STRENGTH: 167.2 KSI SPECIMEN TYPE: PTSF SPECIMEN THK: 0. 972" ORIENTATION L-S SPECIMEN WIDTH: 5. 000" STRESS RATIO: +0.10 TI-BAL 1 REFERENCES:00001 FREQUENCY: Ø. 10 HZ 6V-2SN ΔK (MPA √m) ΔK (MPA √m) 10 40 100 100 10 40 ENVIRONMENT: ENVIRONMENT: **(B)** 10² 10 10.1 10.1 10³ 10³ 10.5 10.2 da/dN (in/cycle) 104 104 10.3 10.3 10.5 10 104 104 10⁶ 10.4 10'5 10'5 107 10⁷ 10' 10.8 10'4 10 40 100 40 100 10 11 (**[1] ©** ENVIRONMENT: **(D)** 100 100 ENVIRONMENT: 10-2 102 10.1 10.1 103 103 10.2 10'2 da/dN (in/cycle) 104 104 10'3 10'3 10 10⁻¹ 10'4 10'4 104 10 10' 10' 10' 107 10'6 10.8 10' 10 40 100 10 40 100 AK (KBI √in) AK (KS √In)

Figure 4.13.3.9

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ABSOCIATED WITH FIGURE 4.13.3.10INDICATING EFFECT

OF STRESS RATIO

MATERIAL . TI					
CONDITION: 8' ENVIRONMENT:	TOA R. T. ,	TI-6AL-0 H. H. A.	V-28N		
DELTA K (KSI+IN++1)	;		DA/DN (10##-6	IN. /CYCLE)	
(NBIWINWE)	/ 4 / :	A		C	D
	; ;	R=+0. 10	R=+0. 50		
	8. 40 : 8. 70 :	. 537	1. 35		
	20.00 : 25.00 :	. 670 1. 15 4. 83 14. 7 41. 6 88. 0	1. 45 2. 67 11. 7 31. 4 63. 5		
	33, 13 : 22, 70 : :	122.	75. 6		
root mean so Percent erri			36. 15		^*****

SUMMARY (NP/NA)

>2. 0

0.3

■ (MAC フランコ ■ CA かんかんから 単元 からからから 音音 A からかかかれ 利力 パイティア 不然 他にから

Figure 4.13.3.10

the form and the state of the s

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.13.3.11INDICATING EFFECT

OF ENVIRONMENT

		K		DA/DN (10##-	6 IN. /CYCLE)	
(NS1+1	Mas	1/2)	: : A	В	С	D
			: : E= R.T. :3.5% NACL			
	A:	9. 26	: 1. 28			
ELTA K	_		:			
	C:		:			
	D:		:			
		10.00	: : 1. 49			
		13.00	: 6.18			
		16.00	. 27 2			
		20 . 00	: 92 . 1			
			: 185.			(
			: 282.			•
		35. 00	: 423.			
		40. 00	: 685.			
	A:	45. 85	: 2081.			
ELTA K			:			
MAX	C:		:			
	D:		:			
DOT MEA	N E	GUARE	32. 03			
PERCENT					· · · · · · · · · · · · · · · · · · ·	
		0. 0-0.				

Figure 4.13.3.11

関われた。カラス 同じ、これのこれに関するのののののないないできないというにはでき

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.13.3.12INDICATING EFFECT

OF STRESS RATIO

		TI-6AL-			
CONDITION: S ENVIRONMENT:	R. T.				
DELTA K (KBI+IN++1	:		DA/DN (10##-6	IN. /CYCLE)	
/VD1#1M##1	:	A	В	С	D
	:	R=+0. 10	R=+0. 50		
A: DELTA K B: MIN C: D:		. 61	. 23		
	5.00 : 6.00 : 7.00 : 8.00 : 9.00 : 10.00 :	1. 4C 2. 16	. 334 . 572 . 907 1. 29 1. 77 2. 38 5. 66		
	16.00 : 20.00 : 25.0° : 30.00 : 35.00 : 40.00 :	12. 4 24. 7 56. 3 146.	13. 9 49. 5		
DELTA K B: MAX C: D:	: : :		105.		
ROOT MEAN SO PERCENT ERR	UARE	16. 17	19. 45	، بید می سد بین کی سه جو این شد سه سه سه سه سه د	
LIFE PREDICTION RATIO SUMMARY 1 (NP/NA)	0.5-0.8 0.8-1.25 .25-2.0		1		

Figure 4.13.3.12

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.13.3.13INDICATING EFFECT

OF ENVIRONMENT

MATERIAL: CONDITION:		1 TI-6AL-	6V-28N		
DELTA (KSI#IN#		:	DA/DN (10##-	-6 IN. /CYCLE)	* ~ * * * ~ ~ ~ * * * * * * * * * * * *
(401 = 14=	-1/2/	: A	В	С	D
		E= R. T. : 3. 5% NACL			
DELTA K B: MIN C: D:	8. 30	1.38 :			
	13.00	: 2. 35 : 6. 07 : 13. 5			
DELTA K B: MAX C: D:		: 48. 2 : :			
ROOT MEAN PERCENT E		15. 51	******		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.8-1.	8 25 1 0			

Figure 4.13.3.13

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS

OF STRESS INTENSITY FACTOR

OF ENVIRONMENT

DATA ASSOCIATED WITH FIGURE 4.13.3,14 INDICATING EFFECT

MATERIAL: CONDITION:		TI-6AL	-6V-25N		
DELTA (KSI+IN+		: :	DA/DN (10**	-6 IN. /CYCLE)	
(NOT ATMA	.#1/ <i>\$</i>)	A	B	c	D
			E= R. T. 3. 5% NACL 1HZ	E= R. T. H. H. A. 20HZ	E= R. T. 3. 5% NACL 20HZ
DELTA K B: MIN C: D:	6. 57 4. 47	:	. 540	. 0681	. 174
A ;	50. 00 60. 00		. 634 1. 01 1. 60 2. 35 5. 51 12. 8 38. 4 85. 1 150. 264. 505.	. 118 . 240 . 419 . 715 1. 17 1. 76 4. 20 7. 53 13. 4 24. 3 41. 2 68. 5 113.	. 231 . 469 . 869 1. 45 2. 21 3. 13 6. 72 11. 4 19. 3 32. 8 51. 9 79. 2
DELTA K B:	54. 97 45. 10	: :	6717.	187.	116.
ROOT MEAN PERCENT E		14. 47	19. 12	9. 46	12. 48
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.8-1.	8 25 1 0	1	1	1

Figure 4.13.3.14

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.13.3.15 INDICATING EFFECT

OF ENVIRONMENT

	MAX	:		DA/DT (10**	-3 IN/HOUR)	
(K21*	IN##1/	(2) :	A	8	С	D
		:	E= R.T. 3.5% NACL	E= R.T. JP-4 FUEL		
	A:	:				
K MAX	B:	:				
LITIA	C: D:	:				
	20)O. 00 :				
	A:	:				
K MAX	B :	:				
MAX	C: D:	:				

東京はいった。 1987年 - 19874 - 1987年 - 1987年 - 1987年 - 1987年 - 1987年 - 1987年 - 1987年 - 198

PERCENT ERROR

TABLE 4.14.3.1

						11144144	1	11-64-6V-2. 998 K(19CC)	¥ 200	1900)						
10:110:	100	FORM THICK (2N)	1EST 1EPP (F.)	5 5	VIELD STR (RSI)	ENIRGSE	WIDTH THICK DESIGN (IN) (IN) (==50)	THICK DESIGN (IN) (==90)	_ 1	CRACK LENGTH (1N)	CRACK LENGTH R(B) R(1SCC (IN) (RSI®SORT IN)	CRACK LEWOTH K(B) K(1SCC) PEAN (1N) (KSIPSORT IN)	STAN DEV	TEST TIME (MIN)	DATE REFER	EFER .
	<u>.</u>		=	!	1	PCT INCL			CANT		8 8	21. 80	1		1967 70887	10887
INCOF 296 AL		, ,	2 20 R.T. L-1	<u>.</u>	1 88 1	- 191	8 1	92			97. 10	8]			960
60 60	L			5	7 7 7	1.9 PCT 1860.	8	2	. ,		8.7		; ; ; ; ;		. 2 .	990
	•	8	1.00 8.1.1-5	ŗ	<u>ķ.</u>	t s per ma	8	9. 7.			8 g	21. 80			. 2	10431
1 1 1	!	1 1	1	;	1 1	1 3 4 4 4 4 1 1	;			1			1	1	1 ; 1	t 1

TABLE 4.15.2.1

VC.

					11 (100)	5	7	A ZEMETH	TI-LA ZEMINAMO KITC	•						
			PPE :	S King	VIELD STRETCHETK CRS.1)		MUCH CITED	8 7 1	Section 1	(Reic)/175)-02 (Rei	Refer (Major)			Ä	BELEB	•
		N	•		*	1	*	t	1	8	*			_	8	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Ä		. 883	; ;	888	585	828 222		•			
1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	. 5	222	, - [333 	888	888	ttt,		282	38 A	2 8	6	£ 5 £		222
FIR-16STG VPST.	10.		- 1			88 × ×	884	553	884	82	2.R 5.K	\$ #	• -	ž ž	33	. == .
		E	Ľ Ľ		XX.	44 884	***	; t t		88	22 22	ă	.	ĒĒ	33 S	, 22
F 18-38-11-11-11-11-11-11-11-11-11-11-11-11-11	Ž.	5.5			33	883	881	55	884	88	88 %%	\$ 7	•	<u> </u>	33	. == .
PLINGFERREFIA F 2 75 R T RETAIN OF THE STREET S 2 75 RECT		2.4 2.8			22	200	***	55 <u>4</u>		22 y	88	 	 	22		==

, 2	: 222 :		
MIT REFER	2008 P/A1 2008 P/A1 2008 P/A1	1974 BEN42 1974 BEN42	121221
MCCC STAN	3 1	8.27 1.1	¥. 2
Called Street	444	131	ererrr Adricar
2.3* (10.799)** (10) (10) (10) (10) (10) (10)		### ### ### ### ### ### #### #########	225885
2 5F. ' 8-	988	888	88888
4.15.2.1 (con't) 11-44.29842840 R(IC) 27EC PRED	8884	7	\$\$\$\$\$\$
MANUAL AND AND AND AND AND AND AND AND AND AND		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
TITORE TELE TOTAL	3355	23. 25. 25.	333333
247.2 PER 2017 PER 20		•	<u>;</u>
NVT NCST SPFC; NUTCA NSP GRAI (7NG CF) (7NG CF) (27 75 N.T NETA FINESSES, 162		73 R.T. 73 T. 73 CALVITON THEATED	*
		ECTION OF THE	
CO-01710H FTEET	FULL HATE INDUSTRA F 2.75 R. T. FETA LEGEL R. T. 2.75 ACTIVAL-RETA FIN 2.75 15 EB. 301 MENUTION SOLUTION THEATED & ACED.	LLANTINIOSIA ETA LOSET.LO ETA LOSETA HISSORIA NO RE	

DISK COMPSE CHAIN SIZE DISK FINE CHAIN SIZE

#0165 (1) (2)

TABLE 4.16.1.1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACIOR

			11744	TITANIUM TI-BAL-IND-IV		5	
ISSL COMBILIONS SPECIMEN ORIENTATION	נֿ			ENVIRGREEMT	LAB AIR AT R. T.		
CONDITION/HT	PRODUCT	STRESS	FNEG (NZ)	DELTA K LEVELS: (KSI SGRT(IN))	FATIOUS (NE	UE CRACH ORDATH (NICHOLE) 10 20	FATIOUE CRACK ORDATH RATER (NICRO IN/CYCLE)
	25 46	8	0 10-12 00			8	6 G
\$	SPEEF	8	1 00-30 00				
£	SHEET	0. 10	43 . 88				8.7
\$	SPEET	0. 23	1 00-30 00				-
₹ 0	SHEET	0. 43	1. 00-30. 00				13.3
¥a	SHEET	79 0	1 00-30 00			() ()	

1243

=

7. 47

43.00

0. 10

SHEET

£

8

ន្ត

TABLE 4.16.2.1	TITANIUM TI-BAL-1HD-IV K(IC)	FRODUCT TEST SPECTHEN YIELDSPECTHEN CRACK 2.5* K(IC) BTAH FORH THICK TEMP ORIENT STRENGTH WIDTH THICK DESIGN LENOTH (K(IC)/TYS)**2 K(IC) MEAN DEV DATE REFER TIN) (F) (KSI) (IN) (IN) (IN) (IN)	R T, C-R 142.0 2.500 0.500 0.18 38.22 1977 F4002
		FORM	4.
		HOLLTON	PESOF THE U.S. THOOF BIRS AC

TABLE 4.16.2.2

11-8AL-1M0-1V

TIINNIUM

REFER		67821	67821 67821 67821 67821	67821	71709 71709 71709 71709	71709 71709 71709 71709 71709 71709 71709	71709 71709 71709 71709 71709
DATE .		1966 67821	996	9961	896 896 896	896 896 896 896 896	896 896 896 896
STAN DEV			0			© €	1
			11. 77				
8 I		2	33° 42 4	5	73. 248. 04.	46* 94* 99* 90* 71* 71* 20* 220	625 625 63 63
· .		197. 33	123.	153	210. 285. 206. 132.	230 236 236 236 236 236 236 236 236	207 207 220 220 220
STAN			4/10.0		3/13.2		•
K(APP) FEAN GRT 1N			₩.		136.3	1961	*
K(APP) FLAN (KSI+SORT IN		. 16	988 888 888 888 888	8	88%38	42322544	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1		0 138.	20 109. 90 104. 90 104.	0 124	30 137. 90 213. 00 134. 20 145.	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
HAX (KSI)	Q Q	73.30	200 E	66. 10	87.30 105.90 79.20 33.70	84 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	37.80 103.00 62.00 90.10
CRUSS OWSET (KS1)	EDGES RESTRAINED	8	8888	43.90	88888	2288882223	88488
010-1	S RE	630 62.	700 99. 800 42. 360 41. 240 79.	970 4	030 62. 790 27. 100 73. 390 92. 700 19.	000 000 000 000 000 000 000 000 000 00	700 25 230 63 230 33 530 42 100 31
FINAL (IN)	EDGE	"	o n n =	αi	44444	94490004	ର୍ଷ କ୍ରୁଷ
CRACK LENGTH INIT FINAL (IN) (IN) 2A(0) 2A(F)	CRACK	2. 110	0. 380 2. 120 0. 930	2.100	1. 300 3. 500 1. 020 1. 970 3. 010	4 4 4 4 4 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6	4.910 1.000 2.940 2.020 1.320
THICK	BUCKL ING OF	0.020	0.020	0.043	0.0000		0.0000
HIDTH THICK	BUCK	000 6	000 000 000 000 000	9.000		88888888	88888
		8 7	2222	•	000000		
VIELD STR (KSI)		133	133 135 135	ğ	88888		100 100 100 100 100 100 100 100 100 100
SPEC		ב	L-1	L-1	۲-1	<u>-</u>	7
TEST TEMP (F)		Α. -	r. æ	F	<u>⊢</u> α	F	}- œ
PRODUCT CORM THICK (1N)		0, 02	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.04			00000
FORM							00000
		v	ຕ	en en	S)	ග	c h
COMPLITON		DA	<u> </u>	0	DA A	⋖	4

*NOTE - NET SECTION STRESS EXCEEDS BOX OF YIELD BTRENGTH, VALUE NOT INCLUDED IN MEAN OR STD. DEV.

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ABBOCIATED WITH FIGURE 4.16.3.1 INDICATING EFFECT

OF STRESS RATIO

	OF	STRESS RATIO		
MATERIAL: TITANIUM CONDITION: ENVIRONMENT: R.T.		1MO-1V		
DELTA K :		DA/DN (10##-	-6 IN./CYCLE)	
(K8I*IN**1/2) :	A	B	С	D
	R=+0. 02			
DELTA K B: :	. 621			
MIN C: : D: .				
7.00 : 8.00 :				
9.00 : 10.00 :	1. 70			
13.00 : 13.00 : 16.00 :	4. 56			
	13. 5			
30.00 : 35.00 :	37. 3			
40.00 :				
60.00 :	243. 387.			
90.00 :	589. 867.			
100.00 :				
A: 118.36 : DELTA K B: : MAX C: :	2281.			
D: :				
ROOT MEAN SQUARE PERCENT ERROR				
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.2	5			7
BUMMARY 1, 25-2, 0				

>2.0

(NP/NA)

Figure 4.16.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.2 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: 1 CONDITION:		TI-BAL-1	10-1V		
NVIRONMENT	_	LAB AIR			
DELTA (KBI*IN*)			DA/DN (10##-6	6 IN. /CYCLE)	
(104-411-	:	A	В	С	D
	:	R=+0. 10			
A :	17.97 :	5. 41			
DELTA K B:	:				
MIN C: D:	:				
D.	•				
	20.00 :	7. 58		•	
		10. 5			
	30 .00 :	14. 1			
		24 . 9			
		6 0. 4			
	5 0.00 :				
	60 . 00 :	78 7.			
A:	62 . 14 :	1256			
DELTA K B:	:	1200.			
MAX C:	:				
D:	:				
	:				
ROOT MEAN		12. 44	*- * -*-		
PERCENT EF	KRUK				
LIFE	0.0-0.5				
PREDICTION					
	0. 8-1. 25	5 2			
BUMMARY	1. 25-2. 0				

Figure 4.16.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.3 INDICATING EFFECT

OF STRESS RATIO

DELTA K :		DA/DN (10##-	6 IN. /CYCLE)	
(KSI*IN**1/2) :	A	В	c	D
;	R=+0. 00	R=+0. 25	R=+0. 43	R=+0. 8
A: : DELTA K B: 29.33 : MIN C: : D: :		33. 3		
30. 00 : 35. 00 : 40. 00 : 50. 00 :		35. 3 51. 0 71. 5 162.		
A: : DELTA K B: 59.13 : MAX C: : D: :		439.		
ROOT MEAN SQUARE PERCENT ERROR	0. 00	6. 87	0. 00	0. 00

Figure 4.16.3.3

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.4 INDICATING EFFECT

OF STRESS RATIO

		TI-BAL-	1MD-1V		
CONDITION: ENVIRONMEN	T: R.T. L	AB AIR			
	K :		DA/DN (10**~	6 IN. /CYCLE)	
(V21±1V#)	*1/2) : :	A	В	c	D
	:	R=+0.00	R=+0. 25	R=+0. 43	R=+0. 67
		28. 2			
DELTA K B:			13. 3		
	14, 82 : 7, 48 :			6. 14	. 590
	8.00 :				. 860
	9 .00 :				1.48
	10.00 :				2. 22
	13.00 :				5. 13
	16.00 :			7. 88	10. 2
	20.00 :		45 /	13. 3	
	25. 00 : 30. 00 :		15. 6 24. 6	21. 1	
	35. QO :		39. B		
	40.00 :	32 . 8	60. B		
	50.00 :	67. 2	5 0. 5		
	56. 83 :	95 . 6			
DELTA K B:			67. 5		
MAX C:				32 . 5	
D:	18. 26 : :				17. 6
ROOT MEAN ! PERCENT EI		16. 65	12. 77	9. 57	19. 18
	0. 0-0. 5	~ ~ ~ ~ ~ ~ ~			
PREDICTION		_			
	0. 8-1. 25		4	4	3
	1. 25-2. 0	1			1
(NP/NA)	>2.0				

では、これできるとは、「これでは、これできる。これでは、「これでは、「これできる。」できるのでは、「これできる。」できるのでは、「これできる。 「これできる。」できるとは、「これできる。」」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」」できるとは、「これできる。」」できるとは、「これできる。」できるとは、「これできる。」できるとは、「これできる。」できることは、これできる。」できることは、これできる。」できることは、これできる。」できることは、これできる。」できることは、これできる。」できることは、これできる。これで

Figure 4.16.3.4

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ABBOCIATED WITH FIGURE 4.16.3.5 INDICATING EFFECT

OF STRESS RATIO

CONDITION: MA)	TI-8AL-1	MO-1V		
ENVIRONMENT:	R.T	Lab air 			
DELTA K			DA/DN (10++-	-6 IN. /CYCLE)	
(K8I#IN##1/	2) :	A	3	C	D
	:	R=+0. 10			
A: 1	9.10 :	6. 63			
DELTA K B:	:				
MIN C: D:	: :				
a	: :0. 00 :	7. 47			
		10. 2			
3	0.00:	24. 4			
3	15 . 00 :	54. 3			
A: 3	9. 05 :	6 7. 0			
DELTA K B:	;				
MAX C:	:				
D:	: :				
ROOT MEAN SQU PERCENT ERRO		28. 77			
LIFE 0	0-0 5				
PREDICTION O		1			
RATIO		_			
SUMMARY 1.		•			
(NP/NA)	>2. 0				

والمراب والموازي والمراجع والموازي والمراجع والمراجع والموازي والمواز والمواز والموازي والمواجع والموازي

rigure 4,16,1,5

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.6 INDICATING EFFECT

OF STRESS RATIO

FATI		ABLE 4.16.3.6 With rates at de	FINED LEVELS	
	_	B INTENSITY FAC		_
DATA ASE		STRESS RATIO	NDICATING EFFEC	1
MATERIAL: TITANIUM CONDITION: 1825F 1HR ENVIRONMENT: R.T.,	TI-8AL- AC, 1350F 2H	1 MD -1V		
DELTA K ;		DA/DN (10++-6	IN. /CYCLE)	
(K8]*IN**1/2)	A	3	c	D
;	R=+0. 00	R=+0. 04	R=+0. 54	
A: 13.50: DELTA K B: 6.37: MIN C: 10.39:	2. 16	. 0417	2. 48	
7.00 : 8.00 : 9.00 : 10.00 :		. 0911 . 214 . 379 . 581		
13.00 : 16.00 : 20.00 : 25.00 : 30.00 :	2. 86 10. 6 23. 3 75. 2	1. 60 4. 92	6. 6 2 19. 0	
A: 31.31 : DELTA K B: 19.64 : MAX C: 16.74 : D: :	107.	28. 6	21. 9	
PERCENT ERROR	17. 10	20. 60	11. 15	*****
LIFE 0.0-0.5 PREDICTION 0.5-0.6 RATID 0.5-1.25 SUMMARY 1.25-2.0 (NP/NA) >2.0				

tij

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ABBOCIATED WITH FIGURE 4.16.3.7 INDICATING EFFECT

(KSI*IN**) A: DELTA K B:	(/ 2)	: :	A	8	С	D
		:			-	U
			E= R.T. B AIR	E=+ 800F AIR		
WEITA M. M.	4. 09		. 0338	455		
MIN C: D:	3 . /t	:		. 455		
	5. 00	;) •	. 107			
	6. 00		. 200	. 450		
	7. 00		. 355	. 484		
	8. 00		. 598	. 591		
) :		. 769		
			1. 50	1. 03		
			4. 70	2. 51		
	16.00) :		5. 52		
A ·	15.89		11. 5			
DELTA K B:			•••	10. 7		
MAX C:		:				
D:		: :				
ROOT MEAN SO PERCENT ERR	RDR		10. 00	8. 96		,

Figure 4.16.3.7

PERCENT ERROR

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.8 INDICATING EFFECT

MATERIA CONDITI		ritanium	TI-8/	AL-1MD-1V		
(KSI*		(11/21	:	DA/DT (10**	-3 IN/HOUR)	
11100	•,•.			B	C	a
			: E=	E=		
			: DRY CCL4	WATER SAT COL4	,	
	A:	28. 00	581.			
K MAX	B :	2 9. 5 0	:	8 55.		
MIN	C:		:			
	D:		:			
		30. 00	: 751.	89 6.		
			1259.	1149.		
			: 1854.	1358.		
			: 3149.	2767 .		
			: 4375 .	5272 .		
		70 JO	: 5470 .			
	A:	74. 50	5887.			
K MAX	8:	67. 5 0	:	6317 .		
MAX	C:		:			
	D:		:			
ROOT ME			 19. 95	19. 48		

Figure 4.16.3.8

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.9 INDICATING EFFECT

K	MAX	<u> </u>	:		DA/DT (1	0##-3 IN/HOUR)	
(KSI*	IN##	1/2)	: :	A	В	С	D
			: : : DRY	E= CH2CL2	E= WATER SAT CH2CL2	E= DRY CH2I2	
	A:		:				
K MAX	_		:				
MIN	C: D:	28. 50	:			1394.	
		30. 00	:			1601.	
		35.00	:			2143.	
		40.00	:			25 07.	
		50.00	:			2739 .	
		60 . 00	:			2740 .	
	A:		:				
K MAX			:				
MAX	C :	70. 90	:			2753.	
	D:		:				

ななは、質などののなど、関係であるのでは関係ないのでは、関係なるのでは関係のないのでは、関係などのでは、関係などのでは、対象に対象になっては、対象には、自分では、対象には、対象には、対象には、対象には、

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.10INDICATING EFFECT

OF ENVIRONMENT

MATERIA CONDITI	L: TITAN on :	IUM TI-	BAL-1MO-1V		
	MAX IN**1/2)	:	DA/DT (10	++-3 IN/HOUR)	*~~~~~
(4914	114==1/2/	A	В	C	D
		E= :3.5% NACL			
	A:	:			
K MAX	B :	:			
MIN	C: D:	:			
	200.	00 :			
	A :	:			
K MAX	B :	:			
MAX	C: D:	:			
ROOT ME	D: AN SQUAR	: E 0.00	~		

PERCENT ERROR

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.11 INDICATING EFFECT

OF ENVIRONMENT

K (KSI*	MAX		:		DA/DT	(10**-3	IN/HOUR)	
\.\ \.		• • • •	:	A	В		C	D
			:	E=				
			: 3	5% NACL				
	A:	20. 80) :	59. 2				
K MAX	B :		:					
MIN	C:		:					
	D:		:					
		25. 00	: O :	11168.				
	A:	29. 50	o :	29280.				
K MAX	B:		:					
MAX	C:		:					
	D:		:					

が、これでは、**自己などなって、自己などのなが、自己などのなどの**であれていたが、自己などのなど、自己などのなどのなどのなどのなどのできないというできない。

Figure 4.16.3.11

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.12 INDICATING EFFECT

OF ENVIRONMENT

MATERIAL: TITANIUM CONDITION: MA			TI-BAL-1	1MO-1V		
	MA)		:	DA/DT (10+	+-3 1N/HOUR)	
(201	(K81+IN++1/2)		A	8	c	D
			E E MATER			
	A:	20. 00	: 10.0			
K MAX	B :		:			
MIN	C:		:			
	D:					
		25. 00	; ; 110.			
		30.00				
		35.00				
		40.00				
	A:	49.00	: 1610.			
K MAX	8:		:			
MAX	C:		:			
	D:		:			

PERCENT ERROR

ĬĸŔĸĬĸŊĸĬĸĬĸĬĸŊĸĬĸŊĸĬĸŊŊĬĸŊĸĬĸŊĬ

Figure 4.16, 1.12

edicing training the color of the color of the delication of the color

SUSTAINED CRACK OROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.13 NDICATING EFFECT

		4 /2 \	:	DA	/DT (10#	+-3 IN/HOUR)		
(KSI+	7 14 m m	13/4/	A		B	С	а	
			E= R.T.			E= R.T. METHANOL		
	A :	16. 00	; 430.					
K MAX	D:			9:	3. 3			
MIN	C:	12.00	:			1. 98		
	D:		:					
		13. 00	;			5. 76		
		16.00	:			42 . 1		
		20,00	: 1875.			129.		
		25.00	: 3467.			172 .		
		30 . 00	; 4989.	18	2.	1 9 7.		
		35.00	: 6257.	33	0 .	188.		
		40.00	: 7222.	48		189.		
		50, 00	; 8360.	67	2 .	256 .		
	A :	60 , 00	: 8778.					
K MAX	3:	60 .00	:	60	4.			
MAX	C;	60 . 00	:			527 .		
	D:		:					

Figure 4.16.3.13

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ABSOCIATED WITH FIGURE 4.16.3.14 INDICATING EFFECT

OF ENVIRONMENT

	++-3 IN/HOUR)	DA/DT (104	:		KAM	
D	c	В	^	1/2)	IN#4	(KSI*
	E= R.T. HNO3	E= R.T. GLYCERINE	: : E= R.T. :TI CL4			
				16. 80	A :	
		1.64		26 . 00		K MAX
	1. 35		:	33. 80		MIN
					D:	
			: 23. 4	20. 00		
				25. 00		
<u> </u>		1. 92		30.00		
**	1.46	3.14	: 40. 3	35.00		
	2.44	5. 32	: 44.0	40.00		
	6. 40	10. 2	; 56. 3	50 . 00		-
			: 91.2	60. 00	A:	•
		9. 11		60.00		K MAX
	7. 20		:	60.00	C:	MAX
			:		D:	

PERCENT ERROR

Figure 4,15,3,14

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ABENCIATED WITH FIGURE 4.16.3.15 INDICATING EFFECT

OF ENVIRONMENT

	MA)		:	DA/DT (10	**-3 IN/HOUR)	
(K81*	INT	11/21		B	C	1
			E= R.T. : 5H2D/1HCL, -1000 MV	E= R.T. 5H2O/1HCL, -400 MV	E= R.T. 5H2D/1HCL,-200 MV	
	A:	17.00	: 12.6			
K MAX	B:	15.70	:	2 9. 0		
MIN	_	<i>49.</i> 5 0	;		5910 .	
	D:		:			
		16.00	:	35. 1		
		20.00	1621.	1310.		
		25 . 00	2968.	2062.		
		30.00	4042	2828.		
			4890.	3618.		
		40.00	5667.	4463.		
			7553	6450	58 61.	
		60 00	; 10704.	9081.	15121.	
	A	70.00	16458.			
K MAX	₿.	68. OO	:	11998		
MAX	C.	70.00			15986.	
	D.					

MANAGED TO A DESCRIPTION OF THE CONTRACTOR OF TH

PERCENT ERROR

Figure 4,16,3,15

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.16 INDICATING EFFECT

OF ENVIRONMENT

	MA)		:	DA/DT (10**-3 IN/HOUR)				
(KSI#	IN#	1/2)		9	С	D		
			E= R.T. :5H2O/1HCL, +500 MV	E= R.T. 5H2O/1HCL, +1000 MV	E= R.T. 5H2O/1HCL, -1.9 TO -1.5			
K MAX E	A: B: C: D:	46 . 5 0	: : :		4942.			
		5 0. 00 6 0. 00			5303. 5814.			
K MAX MAX	A: B: C: D:	70.00	: : : : : : : : : : : : : : : : : : : :		5752 .			

PERCENT ERROR

Figure 4,16,3,16

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.17 INDICATING EFFECT

OF ENVIRONMENT

(KSI*	MA)		:		DA/DT (10)**-3 IN/HOUR)	
(201*	THE	11/2/	:	A	B	C	D
				E= 21000PPM CL 32F	E= 21000PPM CL 72F	E= 21000PPM CL 140F	E# 121000PPM 200F
				3113.			
K MAX	B :	17.00) :		5014.		
MIN	C:		:				
	D:		:				
		20. 00) :		77 59 .		
		25. 00) :	4963.	11801.		
		30.00) :	6674.	14738.		
				7 73 7.	16734.		
		40.00) :	8432.	18121.		
		5 0, 00) :	9637.	20090.		
		60 . 00) :	11481.			
	A:	61.00) :	11729.			
K MAX		57. 00			2136 6.		
MAX	C:		:				
	D:		:				

THE STANDARD AND SECOND

Yigure 4.16.3.17

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 4.16.3.18 INDICATING EFFECT

OF ENVIRONMENT

(KSI#	MA		:	DA/DT (10+	#-3 IN/HOUR)		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				В	c	Q	
			E=+ 32F :WATER, O. 1PPM CL		E=+ 32F WATER, 6000PPM CL		
	A:		:				
K MAX			:				
MIN		22.00			4288.		
	D:	16. 00	:			4246.	
		20.00	:			6984 .	
		25. 00	:		7535.	12536.	
		30.00	:		11710.	15437.	
		35.00	:		13591.	16541.	,
		40.00			14216.	17074.	7-3
		50. 00	:		15481.	19061.	
	A:		:				
K MAX			;				
MAX	C:	58.00	:		19718.		
	D:	58 . 00	:			23086.	

こうい 重要がつかがっては重要がからながらない。 またからかから 自動でなっている 自動のためののと言葉できなからの言葉できるものの意味というというないを見ない。

TITAN. CONDITION/HT: 1725F FC. 1200F 3HR WQ Ø. 250" 8. 2"TH PLATE SPECIMEN THK: ALLOY FORM: SPECIMEN TYPE: CANT 2.000" SPECIMEN WIDTH: ORIENTATION:T-L CRACK LENGTH (Ao): & 258" YIELD STRENGTH: 150.0 KSI Kiscc: TI-BAL REFERENCES:85855 **ULT. STRENGTH:** 1M0-1V Kmax (MPA √m) K max (MPA √m) 100 10 40 100 10 40 ENVIRONMENT: + 32° WATER, 8. 1PPM CL 32° F, اناتليا **(B)** 104 ENVIRONMENT: + WATER, 198PPM 102 10² 103 103 101 101 10² 102 da/dt (in/hour) (mm/hour) 100 10' 10' da/dt 10-1 100 100 10-2 10-1 10-10-10-3 10-10-10-10~ 10-4 100 100 ENVIRONMENT POPPH CL **©** 0 ENVIRONMENTOPPM 104 102 101 103 10 10' 10' 10 10-1 10-1 10 10' 10' 10" 100 104 10-10-10-10-10 . 10-1 10-1 10-4 10 100 10 40 100 Kman (KBI VIN) Kmax (KBI √in) Figure 4,16.3.18

4,16-39

の分の10mmのこのでのできますシンプランを開発していたのでは、10mmのことのできませんのできない。 10mmのことのできない 10mmのこと 10mmのこと 10mmの 1

TABLE 4.16.3.19

	E 90	1662 26431	19902 19	•	1969 75386	967 B4327	-	-	147 FEET	W7 B4327	3,75	OCT OT 1981	:									₫ .	# EC.
		٠ ;	1367		<u>₹</u>			-				1	,	**	•	•	!!		3			2	- 1 8
	W = 5	;		!	1			1			,	3		1 1		i	!	_	Ì	1 1	,		İ
		, 1 1								•	i		;		9			5			2		
	3) 		•							;		1		Z			N X			À) ;	
	136C)	8	8 8		8	\$ 1 \$ 1			8 8 7 7	8	\$	8		88		-	8 8 X X		8	8 8 8 8		8	R R
	KCD)	8	8		8				88		\$	8 8 8 8	•	33			ğ 3 8 8			8 8	}	8	t 8
K(1900)	CENTRAL CENTRA				1	1		1		1	1	8						•	1		,	9	<u>.</u>
71-64-IND-1V K	ICA BESTO	0. 125 CANT	5		•	0 130 Cert		8	0 300 CMT.			3		0 270 Cente	;	8) 	8				23 62 5
7	TION.			!	1	81	8					8	1			•		<u>.</u>	•				•
TITANDA	ELP TH GAVINGAEDA SI)	30 (- 3 5 PCT INC.	3 5 PCT 1960.		3 9 PCT INQ.	3 0 3.5 PCT INC.		•	e e					3 0 WE NOW .			0 0			0 6		10 5 TO 1 STEWORT 10 STEWORT 10 STEWORT 10 STEWNS	O STATES CICL
	P •		1	1		-		2)	រី រី	2	!	-	1	S E	}	-	R A		-	BE		3	7.
	56.	T	1	•	7	£ .					•		1	7		7			7			. Z	13 7.4
	i É È		•	•	? .	28	3	2	2 8 	8				•			 		•	. 1			f;
	Ę			!		L.							•	•					•				
	E		1		PER SHIPPERED	יוון אספוענד						2	:	THE PARTY		**************************************			FRAR			\$ \$ a a a a a a a a a a	-

TI-BAL-MB-TV RETSEE)

Ti Lead of

	- 1945 CAN	IND ENG
	*	#
	t	\$
1_ '	•	
	• 228 80	5 ex .
	•	ï
		2 Ye 840.
	Ž	Ž.
	اني ده -	7
******	•	•
	f;	£.
	•	•
	T DY	

-CT 16-12 MCC 10 NOT NOT HANDLEN SPECIFIED INCOMESS REQUIREMENTS OF 2 STALFOCT TVS/SEAMED

TAME 4.16.3.19 (Con't)

	DATE PEFCE	784CH 5481	**************************************	1962 63689	1962 8369	1942 B3485	489CB 2761	(WA 80689	1942 B2589	1962 R3699	1942 B3689	1942 B34B5	1962 R368°	1962 B3689	1962 B3689
		<u> </u>	=	-		-	-	5	-	-	1	-	-	1	<u> </u>
	F. S. S. S. S. S. S. S. S. S. S. S. S. S.		1	1	ł	1	ł	1	;	1	1	ł	1	1	1
	3														
	• 1	R	8	2	8	8 .7	2 2	8 %	8 R	8	8	8	23	8	<u>.</u>
	CHACK LENGTH RIGO RITECE (IN) (RESONAL IN)		t 8	t 8	t 8	t 8	t 8	t 8	t 8	t 8	t 8	t. 8	t .	t. 8	5
Ş	Section 1	8	£				÷	6		5	0	•	5	98	C
ACTRECT	٠, '	,	6	•	•	é	ó	0	0	ó	ó	ö	ó	ó	6
	100 mm		0 230 803	2	6. 230 853	5	0.230 ECS	0 230 BCB	0. 230 BCS	0. 230 800	0. 230 BCS	0. 230 BCB	0. 230 BCB	0 230 BCB	0. 290 BCB
11-04-140-1V			٠ د	82 0	2	9. 23	5	6 5	₽	9.23		9.23	5	6	0. 23
=	. .	8	8	8	8	8	8	8	8	1 000	8	8	98 1	1. 800 1. 4	1 2 8
	1500								ş					=	==
	' -	•	_						200		;	_	턴		2 300.1
	' -	E D	5	d d	g .	1 TE	g A	8 1.8	- LIG 500PV	LIG.	£ 18.	Ē	MI LIG.	TINE (4) LIG	(2.5) BINE(2.5)(.)
111/1000	' -	E D	MATER LITE	שונפ רוני	ANTE LIG.	- I GOGIEV	ANTE LIG.	MATER LICE.	MATER LIG 50874	ANTER LICE.	MATER LIG.	MATER O IN	MATER WILLION.	MIERO) Rycerine (4) lio	MATERIES SY DEVERTINE (2 SUL)
Tirenten	THE BANKEBER (TES)	IN BURNES HOL IN	IN . BATE LITE	124 0 MATER LIFE.	134 e ante cita.	124 0 MATER LITE.	124 0 MATER LITE.	124 0 MATER LICE.	124 0 MATER LICE SOUR	124 6 MATER LICA.	134 O MATER LICE.	124 0 MATER 0 IN	124 0 MATER WI LIG.	124 0 MATERILI CLYCERINE (4) LICL	124 0 MATERICE 5) 1
Tiveston	THE ENTEROREM (RS)	MAYER HOL IN	_	1-4 124 0 MATER LIFE.	•		T. 124 0 MATES LICE.		MATER LIGA		•		T-L 124 0 MATER WI LIG.		T-C 124 0 MATERIES. 91
undert 11	SPEC VIELD OF STR BRYDGOODIT (IIS))	124 6 MATER HOL. 19 710.3	7,1	7	ž	<u>*</u>	š	ž	O GAT MACL.	*	<u>,</u>	124 0 MATER C.I.O.	7.	<u>×</u>	7.
underen 1.1	TEST SPEC VIELD TEST SPEC VIELD TEST SPEC VIELD TEST SPEC VIELD	23 P 7 74 124 B MATERIAL IN	3 81 14 130	23 61 14 130 65		0 K 71 10 K			S n T 1. 134 0 MATGR LIGA	2 7: 1 8:	·	23 R T T-L 124 0 IMPER LIG.	35 B T T-C 138 0	17 14 6	0 12 12 0
under: I I	TEST SPEC VIELD TEST SPEC VIELD TEST SPEC VIELD TEST SPEC VIELD	3 0 1 74 124 0 MATER HOL. 114	* 1 1-4 15% •	• 1 14 120 0	• ** **	0 17 14 0	• K: 7: 1 =	R 7 7-4 124 0	0 7 7-4 124 0 MATER LING.	0 127 72 18	0 821 71 18	# T 1-L 124 0 MATER	0 921 1-1 1 18	0 17 14 150	1 14 130
underen ta	FEET THE STATE OF STR. BAYESONE (IN) (I) (IS)	7 0.3 9 7 74 130 0 m 180 m 180.5	3 81 14 130	23 61 14 130 65		0 K 71 10 K			S n T 1. 134 0 MATGR LIGA	2 7: 1 8:	·	23 R T T-L 124 0 IMPER LIG.	35 B T T-C 138 0	17 14 6	0 12 12 0
uniter (1)	Figure Practice Test SPEC VIELD Figure Practice Test (Par 187) (Fig. 187)	11 CO 17 17 170 MATERIAL IN		0 22 11 17 130	*** Y	· 5		0 27 72 . 2 55	0 23 8 7 74 124 0 MATES LIG	0 27 72 1 4 5 6 6	0 22 71 12 52 0	A THE INDIANTER	0 22 1-1 12 5:0	0 22 71 14 130	0 22 71 14 5:0
uniter (1)	FEET THE STATE OF STR. BAYESONE (IN) (I) (IS)	11 CO 11 T. 120 WATER HOLD IN	• 23 - 14 - 15 • • • • • • • • • • • • • • • • • •	0 22 71 14 62 0		0 K2 71 14 Si 0 4		0 27 14 150	0 23 R 7 74 124 0 MANER LIG		0 X 7 1 1 8 6 0	. 023 RT 14 124 0 MATER	0 22 3 2 1 1 1 20 0	0 23 # 1 14 134 0	0 22 24 14 13 0

TABLE 4.16.3.19 (Con't)

	DATE PEFER	836	52 806.89	52 B3683	1962 83689	52 836A9	189E8 25	-8968 -	68968 2	2 B3689	A 83687	1962 83689	-89¢8 Z	5 83689	2 93609	60908 2961
		, <u>-</u>	5	1962	5	1962	1962	1962	1962	1962	1962	19	1962	1962	1962	1961
	TEST TIME (MIN)	; !	1962			i	1	!						! ! !		
	STAN DEV) }														
	¥ ,	,														
	K(15CC) PEAN MT IN)	6	19.00	23	19. 30	25. 00	8	21.80	8	8 8	30.20	21.30	22. 20	23. %	% %	29°.
	¥ .	5 8	\$. 8	93.00	93.8	93.00	93.00	98.00	93.00	43.00	43.00	93.00	43.00	93.00	93.00	93.00
K(18cc)	CRACK LENOTH (1N)	0. 783	0.985	0. 483	0. 983	0.985	0.983	0.983	0.983	0. 983	0.983	0. 983	0. 985	0.983	0. 985	0.985
11-BAL-110-5V F	201516 47 1211 201516 47 1211	0 230 008	0 250 DCB	0. #14 BCB ICL: -1000HV	0. 250 DCB	0. 250 DCB	0. 250 DCB	0. 250 DCB	0. 250 DCB	0. 230 DCB	O. 250 DCB	0. 250 DCB	0. 250 DCB	0.250 bcm	0. 250 DCB	0.250 008
-	P. CET.	000	1 190	L. DOD	2	80	1 000	1. 000	1.000	8	 8	1.000	8 -	80 -	1.000	1. 990
41177	SIR SIP INGOCOV	MATERIA, 47 MEDOIT ATLICA.	124 O MATERIA) CLYECOIME(1) LICA	124 0 9 th 1 WEN VENT 1. 000 0.1	184 0 CCL4	124 0 DIED LICL	124 O METHANDL LICE	124 0 MATER LICL	124.0 ACETONE LIBR	124 O MATER APPONTUR CHLORIDE	IN D MATER O. IN	4 0 MATER LICL +10000HV	124.0 MATER LICL ONV	124 0 MATER LICL +2000FN	124. 0 MATER LICL -1000MV	194 O GLYCERINE LICL
	E E										ا 124	r 124	_			_
	resi resi	· ·	7 -	71 - 4	1 1 481	171 1-1	136 14	1 1 01 1	181 14	1-1 151	71 101	203 T-L	203 T-L	203 1-L	203 T-L	205 1-L
	Fired Posten)n /•		6: 0	62 0	? .	0.23	د. د:	0 23	• :- ¢	0 23	0 :3	0	6:0	6: 0	8
	- E	4	6	•	£	£	۵		c		4	c	٤	c.	•	۲
		f	ž	3	•	<u>\$</u>	9	US 611 AXTVI	901 gan a) "	<u> </u>	G WI 2021	Ī	5	9	Q Ł	93
		7	5.	3. •	B41 A7261	ţ	7	\$	-	ent acces	1500	15.24	9	76.61	±1 €25€1	on and alcol

TABLE 4.16.3.19 (Con't)

							TITANIUM	11-6	T1-8AL-1H0-1V K	K(1SCC)						
301 41 drau -	4104		FIRM THICK (114)	1651 1679 (1)	Si-FC OP	STR STR (KSI)	ENVIRONMENT	W101H (N1)	DESIGN (**SO)	CRACK LENGTH (IN)	(KSI*SORT IN)	CRACK LENGTH K(Q) K(ISCC) PEAN (IN) (KSI+SGRT IN)	91AN DEV	TEST TIME (MIN)	FATE	PATE REFER
dHI .60251			c		ب	o T	TER	1 000	0. 250 DCB	0.985	98	42.00*		ļ	1962	1962 E3669
7.00	Un and seems	د	0 75	20\$ 1 ·L	ب 	124.0 4	124.0 WATER LICL	1.000	0.250 008	0.985	99.00	20.80			1962	83 6 89
1.0	241 9H1 10031	د چ	0.23	212	<u>1</u> -1	124.0	SILICONE DIL	80 .1	0. 250 DCB	0.983	99.00	69.00			1962	69960
15.104. 140		ā	0.03	203	1-L	124 0 1	O WATER LICL	1.000	0. 250 DCB	0. 985	93.00	22. 70		1	1962	63689
.w.:21	68 ant 30231	و	0	412	1-1	124.0	CLYCERINE LICL	000 -	0.250 DCB	0.995	99. 00	26. 00		1	1962	63409
7. E. C. T.	15 15 18 18 18 18 15 15 15 15 15 15 15 15 15 15 15 15 15	AC 1000	THE ACT POLICE SHEACT	ا د د د د د د د د د د د د د د د د د د د	, 1	138.73	9% NACL		0. B&& CANT	1	1	, 40 t	1 3	<u> </u>	. 66	- R
5 E	1 E 3	: =	3 -	1 1 c	: S	107.9 3	9 PCT NACL	. 88 -	00 CANT	1	112.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	; ;		- وير
18 PM	0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	17 50 0 BHR FC P 0 2 10 10 10 10 10 10 10 10 10 10 10 10 10	0 25 247 AC 247 AC	, &C	· · · ·	130 0	WATER 21000PPH CHLORIDE	. 00 . 00 . 0i	0. 250 CANT	0. 200	69.40	17 70	1 1 3 1	:		1973 83855
10 Kg	1975 G THE TO P	1754 G THR PC P 0 5 TO 1200F LEPON 0 SHR AC. 1200F SHR AROUN (NEWEN	O 25 HR AC. ENCH	c C	1.1	130.0	MATER O. 1PPH CHLORIDE	2 000	0. 250 CANT	0 200	39. 30	24, 20			1973	8385
10 13 10 13 123 04	12301 348 FC P	1734 O SHR FC P O Z 10 12506", 1200F O THR AC 1250F GHR ARRIN GLENCH	O 25	Œ	۲	150.0	MATER 100PPH CHLORIDE	6 7 7	0.250 CANT	9. 200	38. 70	20. 80			1973	1973 85855
12751 101 120051	0 명해 00F : I의 일본 전	12751 9 SHRFTC P 0 20 TO 1200F, 1200F 0 SHRF AC. 1200F SHRF ARGEN BUSINGH	0 23 HR AC. FINCH	-	٠ ٢٠	130.0	MATER 21000FPH CHLORIDE	2.630	0.250 CANT	0. 200	67.40	00 °₹1		; ; ;		1973 85855

PROTE DATA WHICH DO NOT HEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2, SCHISCC/TYS) SOUARED

Ö

	DATE REFER	1973 R3855	1973 85855	850 EZ 6 1	16607 7961	1991 1890
	DEV TINE (MIN)	İ	İ	•	,	i į
					! !]
	¥ :	18. 40	14. 70	9	່ ຊ	47.30
	W(O) W(ISCC	3	3		00	
K(15CC)	CRACK LENGTH (IN)	0. 200 60 30	0. 200 62. 10	8		
TI- RAL - 1HO-1V K	THICK DESIGN	0. 250 CANT	0. 250 CANT	0. 250 CANT	0. 500 CANT+	0 866 CANT
11-8	(1N)	2 000	2.000	000 N	000	
TITANIUM	ENVIRONHENT	ISO O MATER EDOOPPH CHAORIDE	SO 0 MATER 21000FPH CHLORIDE	MATER 21000PPH	3. 9 PCT NACL	115. 1 3. 3% NACL
	SIR SIR (RSI)	130 n	130 0	_	130 4	113.1
		7	1:-F	ĭ	S-1	1 1-
	1EST 1EMP (F)	A T -L	140 F-L	200 1-€	F = C	<u>κ</u>
	FINSH THICK TEMP OR (IN) (F)	P 0.25 O.5142 AC. GRENOH	0 25 0 118 AC. BURNEH			00 1
	ABUTA NOTATISTICO	1777 O SHR FC P O P 15 1500F.1700F O SHR AC. 1200F. 3HR ARGIN ORFINEH	1775F O SHAMING P O 23 TO 1200F, 1200F O SHMI AC. 1700F THAT ARMHA HAILINGH	<u>=</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DV GHT JESST	POUNE, O SHR, AC P 1 30

*								
		¥	(96)	1		4.17-1		
Đ	.17.1.1	: TOVCHNEBB DATA OF :3AL AT ROOM TEHPERATUR	INVEST OF BFECIFE	Į.	3.9 ± 1.0 (3)			
	TABLE 4.	EAN PLANE BTRAIN FRACTURE ITANIUM ALLOY TI-BROBVZFE	PEAN RIC ± BTANDARD	L-I	34.0 + 1.0 (3)			
		¥E	CONDITION/HT	CONDITIONAL	STA, REAGED AT 1100F GHR			
%								

• \$; ez			. 222
		REFER	8642 8642 8642	8642 8642 8643	87230 87230 87230
, ; ,		DATE		111	1973 1973 1973 2
		91 A	=	=	i
		K(IC) PEAN (KBI#BORT IN	% % %	Š.	¦ ន័
		CRACK 2.50 LENGTH (K(IC)/TYS)002 K(IC) MEAN (IN) (IN) (KSI8BORT IN)	53.00 53.10 53.90	9 9 9	34.30
		78) e#5		1)
		2.5* ((1C)/T (IN)	90.00	000	0.00
	K(1C)	CRACK ENGTH (K (1N)	1 001 0 994 0 995	0. 987 1. 008 1. 014	
	II-BMDBV2FE3AL M(IC)	,	-00		1
.2.1	-BM08V	SPECIFIEN THICK DESIGN (IIV)	98 98 98 98 98 98 98	991 CT 998 CT 996 CT	, 000
TABLE 4.17.2.1	Ţ	MIDTH THICK DESIGN (IN) (IN)	0. 998 1. 002 1. 005	0. 991 0. 998 0. 998	000
TABLE	ī	HIDTH (IN)	1. 989 1. 790 1. 775	1.991	2 S &
	TITANIUM	,	170. 0 170. 0 170. 0	177.0 177.0 177.0	199. 0 199. 0 199. 0
	-	STI	77.7	71	
		PFCINE OR IENT	- -1	Ţ ;	.
		TEST SPECIMENT TEMP ORIENT (F)	Ε.) 	⊢ `
			888	888	9 9 9 9 8 8 9 8 8
		FORM THICK CIN)			
			<u>د</u> د	ا د	
		1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SIN. REAGED AN	STALREAGED AF	₽
		CONDITION	STALREAGE 1100F AIR	3TA, REAGE TEOF &HR	14755 10. 19

COPPOSITION(WI PERCENT) 2. 2641, 7. 99V, 8. 17MD, 0. 022C, 0. 018N, 0. 0070H, 0. 160, 0. 006CU ALPHA PRECIPITATE IN BETA MATRIX STAALCHTNESS OF CRACK FRONT MAY NOT NEET ASTM E399-72 REQUIRENENTS INTES.

4.17-2

TABLE 4.18.2.1

				!											
Han Chan	FORM	1110k	TEST TEMP (C)	SFICINEM	VIELD STRENGTH (RSI)	WIDTH (TN)	TAICK DEST	DESTON	CRACK LENGTH (1N)	(K(IC)/TVS)+#2 (IN)	1	MEAN MEAN ORT 1N)	STAN DEV	DATE:	REFFR
NI SEAL FD	L	:	- 423	1		2000	1.006		010					1970	5.E
		f i				-	1 003		1 060	0 0	99			1970	68437
		1			186.0		1,006							1970	R0433
		:			187.0	0 0 0 0	2 000	C1	0 950	0.40	74.50			1970	89433
							1 004		1 020	0.32	67.00			1970	86437
		:			187 0	2 000	1 000					67.5/	*	0261	RB433
ATHEM CD	L		- 423	#-1-			- 8		0.930		74. 50			1970	66437
		200			189 0	2.000	1.000	5	0.910	0.32	67.90			1970	68437
		8 <u>9</u>				0 2 1	8		930		OC 69			1970	68437
		2					1 000				71. 90	70.8/	7	1970	66439
ANER ALED	u.	8	- 423	υ- 2		000 2	1 000		040					1970	96439
					189.0	2 000	1 000	5	1 020	0 19	32.40				08439
		S 2			189.0	2.000	000		000			93.27	9		68437
:	!	1 1 :	1	1 1	1 1	1 1 1	1 1 1	1	, , ,		1 1	1	,	: !	1
ATHEALED (ES)	Ŀ	!	- 423	•			1 004	5	1 020		71.30			0761	68439
		•			0 981	2.000	1.002	CI	1 020	0 33	69 80				66437
		1			0 981		8		1 050		70 00				กศุลา
		,					2 003		000 -		20.00				8B439
		ı i					1.002	7	1.010		7C 80				68439
		1 :			0 981	8	8	C1	010		69.80			1970	PB439
	1	1		1 1	1	1	1	; ; 1	1 1 1	; ; ; ;	. I	70.3/	9 1		
ANIFALED (18)	-	!	- 403	;	186.0	5 000	000	5	1 010	90.0					86439
		!					- 005	5	090					1970	88439
							8	7	020						98439
		:					1 002	CT	020	0 37	71.70				68437
		!			186 0	8 8 0	1.00	5	066 0	0, 41				1970	PB439
												:			

PRITES 7 13 FOUTAKED CHROCHOR 23 THERRHEDLATE STANCTURE BETWEEN PLATELET ALPHA AND FINE EQUIAKED GRAINS

TABLE 4.19.1.1

HEAN PLANE BTRAIN FRACTURE TOUGHESS DATA OF TITANIUM ALLOY TIGALAVZBN(ELI) AT ROOM TEMPERATURE

BPEC IPENS)		1	* * * * * * * * * * * * * * * * * * * *	•
(MANDER OF BPECIFEND)		1		
MEAN RIC + BTANDARD (RBI BERT(IN) DEVIATION	PLAIE	ij	27.6 ± 0.6 (2)	34. 0 ± 3. 5 (2)
CONDITION/HT		CONDITIONAL	1600F 1 HR, MG, 1050F 4 HR, AC	1630F 1 HR. WG.

TABLE 4.19.2.1

	REFER	04316 84316 84316	84316 84316 84316	84316 84316	84316 84316	84316 84316
	DATE	8 6961 8 6961	8 5961	1965 8 1965 8	1965 B	1965 B
	1	n n	6 1	6	0	9.9
		8	39.68	23.7/	98	34. 07
	K(IC) MEAN (KRIOFORT IN)	8 6 6 5 5 5 5 5 6	9.50	2.2. 2.3.3.	38. 60 37. 30	31.30 36.30
ũ	2. 3° (K(IC)/TYS)%2 (IN)	0.00 0.07 0.08	0.07	0 05	0. 13 0. 12	0.09
TIGALGUZSN(ELI) K(IC)	CHACK LENGTH (1N)	0.215 0.184 0.222	0.223	0. 221 0. 206	0 205	0.191
DNSZA9.	DESIGN	222		2 2	9 9	2 2
116A	THICK DESIGN	0. 251 0. 250 0. 250	0.230	0.230	0.230	0.248
Ę	S TIOIN (II)	0.479	0.479	0.474	0.499	0.0 4.4 6.4
TI TANIUM	YIELD STRENGTH (KSI)	179.0 179.0 179.0	179.0	258.0 258.0	170.0	170.0
	SPECIMEN	5: 1	<u>-</u>	ٺ	ار. چ	3
	THICK TEMP	⊬	<u>i</u>		–	æ. ►
	FRINK THICK (IN)	888	888	88	88	38
	· -		<u>.</u>	٠	<u>.</u>	٩
	; ; 5	147. WG. 148. Ar.	1650F 1 18; HQ.	HIT. ING.	HR. UG.	1650F 1 HR. HR.
	COMBITION	1600F 1	1650F 1		1.550F 1 1.125F 4	1650F 1 HR. HR.

(jai

TABLE 4.20

REFERENCES FOR THE TITANIUM ALLOY DATA

54304 TI-6AL-4V Kc

Figge, I. E., "Residual Static Strength of Several Titanium and Stainless Steel Alloys and One Superalloy at - 109 F, 70 F, and 550 F", NASA TN D-2045, Langley Research Center (December 1963).

57573 TI-6AL-4V Kc

Anon., "Fracture Toughness and Tear Tests", Air Force Materials Laboratory, Research and Technology Division, Report No. ML-TDR-64-238 (October 1964).

58782 TI-5AL-4V K

Anon., "Thick Section Fracture Toughness", ML-TDR-64-236, Boeing-North American (October 1964).

60578 TI-6AL-4V(ELI) Kc

Christian, J. L., Yang, C. T., and Witzell, W. E., "Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryogenic Environment", ASD-TDR-62-258, Part III, General Dynamics/Astronautics (December 1964).

66103 TI-5AL-2.58n Ke

Ferguson, C. W., "Hypervelocity Impact Effects on Liquid Hydrogen Tanks", NASA CR-54852, Douglas Aircraft Co., Inc. (March 1966).

66218 TI-SAL-2.58a Kc

Tiffany, C. F., Lorenz, P. H., and Hall, L. R., "Investigation of Plane-Strain Flaw Growth in Thick-Walled Tanks", NASA CR-54837, The Boeing Company (February 1966).

67821 TI-BAL-1HD-1V Kc

Walker, E. K., "A Study of the Influence of Geometry on the Strength of Fatigue Cracked Panels", AFFDL-TR-66-92, Northrop Norair (June 1966)

68968 TI-SAL-2.58n Kc

Sullivan, T. L., "Uniaxial and Biaxial Fracture Toughness of Extra-Low-Interstitial 5Al-2.5Sn Titanium Alloy Sheet at 20 K", NASA TN D-4016, Lawis Research Center (June 1967).

70733 TI-BAL-1HO-1V KISCC

Smith, H. R., et al., "A Study of Stress Corrosion Cracking by Wedge-Force Loading", Report D6-19768, The Boeing Company, Renton, Wash., Contract N00014-66-C-0365 (June 1967).

70887 TI-6AL-4V KISCC TI-6AL-6V-2.35s KISCC TI-8AL-1MO-1V KISCC

では、これでは、「一般のないない」というないとは、「一般のないない」というないとなっている。

Peterson, M. H., Brown, B. F., Newbegin, R. L., and Groover, R. E., "Stress Corrosion Cracking of High Strength Steels and Titanium Alloys in Chloride Solutions at Ambient Temperature", Corrosion, 23 (5), 142-148 (May 1967).

70931 TI-6AL-4V KISCC TI-6AL-4V(ELI) KISCC TI-6AL-6V-2.5Sn KISCC TI-8AL-1MO-1V KISCC

Judy, Jr., R. W., and Goode, R. J., "Stress-Corrosion Cracking Characteristics of Alloys of Tiranium in Salt Water", Interim Report 6564, Naval Research Laboratory, Washington, D.C., Contracts NONR-610(09), NONR-760(31) and N00014-66-C0365 (July 21, 1967).

71709 TI-8AL-140-1V K.

Figge, I. E., "Residual-Static-Strength and Slow-Crack-Growth Behavic of Duplex-Annealed Ti-8Al-1Mo-1V Sheet", NASA TN D-4358, Langley Research Center (March 1968).

74355 TI-6AL-4V KISCO

Stanley, J. K., "Solutions to Some Stress Corrosion Cracking Problems in Aerospace Applications", Technical Report TR-0200 (4112.22)-1, Aerospace Corporation, El Segundo, Calif., Contract F04701-68-C-0200 (November 1968).

75386 TI-4AL-3HO-1V KISCC TI-6AL-4V KISCC TI-8AL-1HO-1V KISCC

Cartis, R. E., et al., "Relationship Between Composition, Microstructure, and Stress Corrosion Cracking (In Salt Solution) In Titanium Alloys", ASM Transactions Quarterly, 62 (2), 457-469 (June 1969).

75528 TI-6AL-4V KIECC

Bixler, W. D., "Fracture Characteristics of 6Al-4V Titanium Alloy Porgings Containing Alpha Stringer Microstructure", NASA Final Report CR-99512, The Boeing Company, Seattle, Wash., Contract NAS-9-8809 (January 1969).

76411 TI-6AJ.-4V KIC

Wessel, E. T., et al., "Engineering Methods for the Design and Selection of Materials Against Fracture", Final Technical Report, Westinghouse Research Laboratories, Pittsburgh, Pa., Contract DA-30-069-AMC-602 (T) (June 24,1966).

77290 TI-6AL-4 V KIRCC

Reuter, W. G., et al., "Monitoring of Crack Growth on Ti-6Al-4V Alloy by the Stress Wave Analysis Technique", NASA Report CR-101888, Aerojet General Corporation, Sacramento, Calif. (December 1968).

77456 BETA da/dt, KIscc TI-8AL-1MO-1V da/dt, KIscc

> Katz, Y., "Micro-Hechanical Approach to Stress Corrosion Cracking in Titanium Alloys", Thesis Report No. UCRL-19046, University of California, Lawrence Radiation Laboratory, Berkeley, Calif., AEC Contract W-7405-eng-48 (September 1969).

78535 TI-6AL-4V Kisco

Hasters, J. N., et al., "Fracture and Nitrogen Tetroxide/Sustained Load Flaw Growth in 6A1-4V Titanium", Final Report D2-121397-1, NASA CR-109366, The Boeing Company, Seattle, Wash., Contract NAS7-100 (October 1969).

80104 TI-5AL-2.55n K

Orange, T. W., Sullivan, T. L., and Calfo, F. D., "Fracture of Thin Sections Containing Through and Part-Through Cracks", NASA TN D-6305, Lewis Research Center (April 1971).

80538 TI-6AL-4V KIC

Petrak, G. J., "Machanical Property Evaluation of Seta Forged Ti-6Al-4V", Report AFML-TR-70-291, University of Dayton Research Institute, Dayton, Ohio, Contract F33615-69-C-1471 (January 1971).

81221 TI-6AL-4V da/dt, KIacc

Beck, T. R., et al., "Stress Corrosion Cracking of Titanium Alloys: Studies of Cracks in Thin Specimens; SCC of Ti-6Al-4V in Chloride, Iodide and Fluoride Solutions; Stress Corrosion Cracking in Molten Salts; Electrochemistry of Freshly Generated Titanium Surfaces", Report 20, The Boeing Company, Seattle, Wash., Contract NAS 7-489 (Juna 1971).

81741 TI-8AL-1MO-1V da/dt

Bucci, R. J., and Paris, P. C., "Observations on Sustained Load Environmental Crack Growth of a Titanium 8A1-1Mo-1V Alloy", Corrosion, 27 (12) 525-530 (December 1971).

BETA Kiscc
BETA III da/dt
Ti-BAL-IMO-IV da/dt
Beck, T. R., and Blackburn, M. J., "Stress Corrosion Cracking of
Titanium Alloys: SCC Velocity; Concentration of TiCl;", Report 18,
The Boeing Company, Seattle, Wash., Contract NAS 7-489 (December 1970).

83222 TI-6AL-6V-2Sn KTc

Amateau, M. F., et al., "F-15 Program Final Report Ti-6Al-6V-2Sn and Ti-6Al-4V Fatigue Crack Propagation", Report No. ATR-72(9990)-3, The Aerospace Corporation, El Segundo, Calif. (September 29, 1971).

83689 TI-8AL-1MO-1V da/dt, KIsco

Back, T. R., et al., "Fundamental Investigation of Stress Corrosion Cracking", Report D180-15006-1, The Boeing Company, Aerospace Group, Seattle, Washington, Contract NASW-2245 (April 1962).

83984 TI-6AL-4V K.

1

Feddersen, C. E., and Hyler, W. S., "Fracture and Fatigue-Crack-Propagation Characteristics of k-Inch Mill-Annealed Ti-6Al-4V Titanium Alloy Plate", Report G-9706, Battelle, Columbus Laboratories, Columbus, Ohio, Contract N00156-70-C-1336 (November 1, 1971).

84036 TI-6AL-4V KIRCE

Beaches, C. D., and Meyn, D. A., "The Effect of Thickness Upon Sustained Load Crack Propagation in Ti-6Al-4V Alloy Tested in 34% NaCl Solution", NRL Report 7449, Naval Research Laboratory, Washington, D.C. (August 8, 1972).

84282 TI-6AL-4V KISCC

Spurr, W. F., "SST Technology Follow-On Program, Phase I, Titanium Alloy 6A1-4V Extrusion", Report No. FAA-SS-72-06, Boeing Report D6-60206, The Boeing Company, Commercial Airplane Group, Seattle, Wash., Contract No. DOT-FA-SS-71-12 (July 1972).

84290 TI-8AL-1MO-1V da/dt

Smith, H. R., Piper, D. E., and Downay, F. K., "A Study of Stress-Corrosion Cracking by Wedge Force Loading", Engineering Fracture Hechanics, 1, p 123-128 (1968), Pergamon Press.

TI-6AL-4V KIC 94306 Harrigan, M. J., "8-1 Fracture Mechanics Data for Air Force Handbook Usage", Report TFD-72-501, North American Rockwell, Los Angeles Division, Los Angeles, California (April 21, 1972). 84316 TI-6AL-2Sn K, TI-6AL-2Sn(ELI) KIC

> DeSisto, T. S., and Hickey, Jr., C. F., "Low-Temperature Mechanical Properties and Fracture Toughness of Ti-6Al-6V-2Sn", ASTM Proceedings, 65, 641-653 (1965).

84326 TI-SAL-IMO-IV KIRCO Report of NRL Progress, Naval Research Laboratory, Washington, D.C. (May 1968).

TI-SAL-IMO-IV KIRCO 84327 Report of NRL Progress, Naval Research Laboratory, Washington, D.C., (May 1967).

84328 TI-6AL-4V KTECC Report of NRL Progress, Naval Research Laboratory, Washington, D.C., (November 1968).

TI-6AL-4V KIc, da/dN, da/dt, KIsco TI-6AL-6V-2Sn KIc. da/dN TI-6AL-6V-2.5Sn KIsco McDonnell Aircraft Com any, McDonnell Douglas Corp., St. Louis, Mo.. Phase B Test Program, Report MDC A0913 (May 18, 1971).

| 現代のできないのでは、これでは、100mmのできない。 100mmのできない 100mmのでき

84360

85837

TI-6AL-4V da/dN

85034 Mitchell, John, "Laboratory Reports on Fracture Toughness Tests", per memo from .d Cawthorne of February 5, 1973; data sheets from Shultz Steel Company, South Gate, California.

85064 TI-6AL-4V KIC Bjeletich, J. G., "Development of Engineering Data on Thick-Section Electron-Beam-Welded Titanium", Report N-LJ-71-18, Lockheed Aircraft Corporation, Lockheed Palo Alto Research Laboratory, Palo Alto Celif., Contract F33615-71-C-1338 (October 12, 1972).

85634 TI-6AL-4V KIC "Fracture Toughness and Tensile Properties Data for Ti-6Al-4V Forgings", Shultz Steel Company, South Gate, Calif., Attached to memo from Ed Cawthorne dated March 5, 1973.

85836 TI-6AL-4V KIC "B-1 Fracture Toughness Data (K (sub $1_{\rm C}$)) - Rockwell International Corporation, Los Angeles, Calif. (April 24, 1973).

"Fracture Toughness Data Collection, Rockwell International Corporation, from B-1 Program", Rockwell International Corporation, Los Angeles, Calif. (April 1973).

And and a facility of the faci

85855 TI-8AL-1MD-1V da/dt, KIRCC

Boyd, J. D., "Stress-Corrosion Cracking of Ti-8Al-LMo-1V in Aqueous Environments: 1. The Kinetics of Subcritical Crack Propagation", Metallurgical Transactions, 4 (4) 1029-1035 (April 1973).

85857 TI-6AL-4V KTC

"Shultz Steel Company - Fracture Toughness Data - May 10, 1973", per memo from Ed Cawthorne of May 10, 1973.

86099 TI-8AL-1MO-1V da/dN

Wanhill, R. J. H., "A Review and Analysis of Fatigue Crack Propagation in Titanium Alloys at Room Temperature", Report No. NRL-TR-71035U, National Aerospace Laboratory, The Netherlands (February 1971).

86429 TI-8-8-2-3 KTC

"Fracture Toughness Data", Programs Report on Materiels Test Program, General Dynamics Corporation, Fort Worth Division, Fort Worth, Texas, Contract F33615-72-C-2149 (Received July 6, 1973).

86494 TI-5AL-6V-2Sn KIC

Harmsworth, C. L., "Evaluation Report - Fracture Toughness Evaluation of Isothermally Forged Ti-6Al-6V-2Sn STA", Report MXE 72-64, Air Force Materials Laboratory, WPAFB, Ohio (November 15, 1972).

86575 TI-6AL-4V KIc. Kisco

"Rockwell International, B-1 Program, da/dN Data, Center-Cracked Tension Specimens", Lockheed California Company, Burbank, CA, Raport LR25152 (Received July 1973) (Nemo from Ed Cawthorne dated July 10,1973).

86688 TI-6AL-4V KIC, KISC

Sreowls, D. O., at al., "Evaluation of Stress-Corrosion Cracking Susceptibility Weing Fracture Mechanics Techniques", Final Report, Port I, Aluminum Com any of America, Alcos Technical Center, Alcos Conter, PA, Contract JASS-21487 (May 31, 1973).

36844 T.'-6AL-6V-2Su de/dN

"Crack Growth Rate Data Generated Under USAF Contract F33615-72-C-2165", Lockheed Aircraft Corporation, Lockheed-Georgia Company, Harietta, GA, Contract F33615-72-C-2165, Data sheets received from AFFDL August 13, 1973.

87230 **BETA III K_{IC}**TI-6AL-6V-2Sa K_{IC}
TI-8-8-2-3 K_{IC}

DeSisto, T. S., "Fracture Toughness Heasurements of Three Titanium Alloy Extrusions", Report AMERC-TR-73-31, Army Materials and Machanics Research Center, Watertown, MA (July 1973).

88140 TI-6AL-4V da/dN TI-6AL-4V(ELI) da/dN

Hell, L. R., Finger, R. W., and Spurr, W. F., "Corrosion Fatigue Crack Growth in Aircraft Structural Haterials", Report AFML-TR-73-204, Boeing Aerospace Company, Seattle, WA, Contract AF33615-71-C-1687 (September 1973).

88144 BETA III K_{IC} , da/dNTI-6AL-4V K_{IC} , da/dt

> Bjeletich, J. G., "Development of Engineering Data on Thick-Section Electron Beam Welded Titanium", Report AFML-TR-73-197, Lockheed Missiles and Space Company, Inc., Palo Alto, CA, Contract F33615-71-C-1338 (August 1973).

88186 TI-6-2-2-2 KIC TI-6AL-6V-2Sn KIC

> "Salected Pages from Materials Section of Final Report on Cargo/ Tanker Phase IA (AFFDL-TR-73-51) and Lockheed Report SMN 378", Summary Report, Lockheed-Georgia Company, Marietta, GA, Contract F33615-72-C-2165 (February 8, 1974).

88439 TI-SAL-2.5Sq(ELI) K_{Ic}

Reuter, W. G., "Fracture Toughness of Ti-5Al-2.5Sn ELI Forgings at -423 F", Summary Report, Aerojet-General Corporation, Sacramento, CA (September 9, 1970).

88440 TI-6AL-4V KIC

"Titanium-6Al-4V Fracture Toughness and Tensile Test Data of December 19, 1973", Memo from E. W. Cawthorne with fracture toughness data from Shultz Steel Company (December 19, 1973).

88468 TI-6AL-4V da/dN

Bell, P. D., "Data Sheets for Constant Amplitude Crack Growth Data Generated by Grumman Aerospace Corporation for 2219-T851 Aluminum and Mill Annualed 6Al-4V Titanium Alloy Place", in letter to J. E. Campbell from Grumman Aerospace Corporation, Bethpage, NY, Contract P33615-72-C-1744 (March 15, 1974).

88575 BETAC K_{Ic} , da/dNTI-6AL-4V K_{Ic} , da/dN

"Advanced Metallic Air Vehicle Structure Program", Material Property Data Test Report Phase II, Report FZM-6148A, General Dynamics, Convair Asrospace Division, Fort Worth, TX, Contract AF33615-73-C-3001 (January 1974).

88579 TI-6AL-4V da/dN

"B-1 Program da/dN Data for Aluminum Alloys", Rockwell International Corporation, memorandum to H. D. Moran from E. W. Cawthorne, Battelle's Columbus Laboratories (April 3, 1974).

88700 TI-6AL-4V K

Gilbreath, W. P., and Adamson, M. J., "The Stress Corrosion Susceptibility of Several Alloys in Hydrazine Fuels", NASA Technical Note, Report NASA TN D-7604, Ames Renearch Center, Moffett Field, CA (February 1974).

88911 TI-SAL-2.5Sg da/dM

Wanhill, R. J. B., et al., "Fatigue Crack Propagation Data for Ticanium Sheet Alloys - Interim Report No. 3:Ti-5Al-2.5Sn", Report NLR TR 72093 U, National Assospace Laboratory, The Netherlands (July 1972).

88962 TI-6AL-4V K_{IC} TI-6AL-6V-25n K_{IC} TI-6-2-4-6 K_{IC}

Sparks, R. B., and Long, J. R., "Improvement Manufacturing Methods for Producing High Integrity More Reliable Titanium Forgings", Report AFML-TR-73-301, Wyman-Gordon Company, Worcester, MA, Contract AF33615-71-C-1560 (February 1974).

89004 TI-6AL-4V KIC, KISCC

"Rockwell International, 8-1 Program Titanium K_{Ic} , K_{c} , and K_{Iscc} Data for HB-01 Revision", with data attached to memorandum from £. W. Cawthorna to H. D. Moran (May 1, 1974).

89504 TI-6AL-4V KIC

Cervay, R. R., "Mechanical Properties of Ti-6Al-4V Annealed Forgings", Report AFML-TR-74-49, University of Dayton Research Institute, Dayton, OH, Contract F33615-72-C-1282 (March 1974).

90012 TI-6AL-4V KTC

"Ti-6Al-4V Fracture Toughness Data - Shultz Steel Company, South Gate, CA, of August 8, 1974", with memorandum from E. W. Cawthorne to H. D. Moran of Battelle's Columbus Laboratories (August 8, 1974).

90584 TI-6AL-4V KIC TI-6AL-6V-2Sn KIC

DeMay, S., "Improved Fracture Toughness of Titanium", Final Report, Grussman Aerospace Corporation, Bethpage, NY, Contract N62269-73-C-0127 (June 1973) (AD 778 652).

10589 TI-6AL-6V-2Sn KIC

Fiftal, C. F., and Beck, E. J., "Development of Fracture Mechanics Data for 6Al-6V-2Sn Titanium Alloy", Report MCR-74-43, Martin Marietta Corp., Denver Division, Denver, CO, Contract NAS 9-13599 (January 1974).

90981 TI-6AL-4V da/dN TI-6AL-6V-2Sn KIC, da/dN

Krupp, W. E., Wisser, F. T., Pettit, D. E., and Hosppner, D. W., Data Sheets for Final Report on "Investigation of the Effects of Stress and Chemical Environments on the Prediction of Fracture in Aircraft Structural Materials", Rye Canyon Research Laboratory, Lockheed-California Company, Burbank, CA, Contract F33615-71-C-1688, data sheets received October 21, 1974.

91332 TI-6AL-4V da/dN

Wells, R. E., "New Alloys for Advanced Hetallic Fighter-Wing Structures" Northrop Corporation, Aircraft Division, Hawthorne, Ca. AIAA/ASME/SAE 15th Structures, Structural Dynamics and Materials Conference, Las Vegas, NV (April 17-19, 1974).

the state of the s

91793 BETA III KIC

Van Stone, R. H., Low J. R. Jr., and Shannon, J. L., Jr., "The Effect of Microstructure on the Fracture Toughness of Titanium Alloys", NASA Technical Report No. 2-Ti, Carnegie-Mellon University, Pittsburgh, Pa., and NASA, Lewis Research Center, Cleveland, Ohio. Research Grant NGR 39-087-047 (December 1974).

91945 TI-6AL-6V-2Sn da/dN

Kondas, K. R., et al., "Cyclic-Crack-Growth and Fracture Resistance of Ti-6Al-6V-2Sn as Influenced by Recrystallization Anneal and Interstitial Oxygen Content", NRL Report 7844, Naval Research Laboratory, Washington, D.C. (January 8, 1975).

GD006

(人)の関係の人の人人の重要のようです。 自身 とかたため 自動のとのこの人の関係のできない 動物のできる人の関係のできるとのない 関係のできない 対象 たんたんこう 大野寺

Margolis, W. S., "P-16 Material Test Allowables for Aluminum Alloy 7475, 3.0" Plate - T7351 Temper and 0.5" Plate (92" Width) - T7651 Temper and - T7351 Temper", General Dynamics, Fort Worth Division, Report No. 16PR926, April 1978.

GD007 TI-6AL-4V da/dN

Margolis, W. S., "F-16 Material Allowables Evaluating Rets Annealed 6Al-4V Titanium Alloy", General Dynamics, Fort Worth Division, Report No. 16PR944, September 1978.

GE006 TI-SAL-IMO-IV da/dN

"Fatigue Crack Growth Rate Data on Titanium Ti-8-1-1 Alloy Using Kg Bar Specimens from the TF34 DTA Effort", Data Sent from M. S. Gilbert, General Electric Co., Evendale, Ohio, October 1982.

GEOO7 TI-6AL-4V da/dN

"Fatigue Crack Growth Rate Data on Titanium Ti-6-4 Alloy Using Kg Bar Specimens from the TF34 DTA Effort", Data sent from M. S. Gilbert, General Electric Co., Evendale, Ohio, October 1982.

JEMO1 TI-6AL-4V KIC TI-6AL-6V-2Su KIC

Toder, G. R., Cooley, L. A., and Crooker, T. W., "Enhancement of Fatigue Crack Growth and Fracture Resistance in Ti-6Al-4V and Ti-6Al-6V-2Sn Through Micro-Structural Modification", Journal of Engineering Materials and Technology, Vol. 99,pp. 315-318, October 1977.

MADO2 TI-6AL-4V K_{Ic}, da/dN TI-6AL-6V-2Sn da/dN

Fracture Toughness of Ti-6Al-4V Plate and Forging, Aluminum 2124-T851 Plate and 7175-T73652 Forging and Fatigue Crack Growth Rate for Ti-6Al-4V Plate and Forging, Ti-6Al-6V-2Sn Extrusion, Aluminum 2124-T851 Plate and Aluminum 7175-T73652 Forging, Data Submitted by D. L. Rich of HcDonnell Aircraft Co., St. Louis, MO, Attachment #2, Received March 12, 1982.

MADO3 TI-6AL-4V KIC, da/dN

Seay, S., and Krieg, J. F., "Wing Carry Through Lug Joint Crack Growth Tests", McDonnell Aircraft Co., St. Louis, MO. Report MDC A3449, Attachment #3, Submitted by D. L. Rich, March 12, 1982.

 ~ 1

MA005 TI-6AL-4V da/dN, Klacc

Garland, K., and Krieg, J. F., "Final Report - Basic Fracture Data for F-18 Haterial", McDonnell Aircraft Co., St. Louis, MO, Report No 3 NA-66-7KW, Attackment #5, 1977.

MAOO6 TI-6AL-4V de/dN

Garland, K., and Krieg, J. F., "Evaluation of the Effect of Material Cyclic Softening and Hardening on Crack Initiation Life and Crack Growth, with and without Overloads, as a Function of Stress Ratio", McDonnell Aircraft Co., St. Louis, MO, April 1978.

MAO11 TI-8AL-1MO-1V da/dN

"Final Report, F/RF-4C/D Damage Tolerance and Life Assessment Study - Vol. II", McDonnell Aircraft Co., St. Louis, MO, Contract No. AFSC F33657-73-A-0062, Report No. MDC A2883, February 1975.

NCOO1 TI-6AL-4V KIC TI-6AL-4V(ELI) KIC

"Plane Strain Practure Toughness Data Sets on Aluminum, Steel and Titanium Alloys", Data Sent from P. G. Porter of Northrop Corp., Hawthorne, CA, March 1, 1982.

NCOO2 TI-6AL-4V da/dN TI-6AL-4V(ELI) da/dN

"Fatigue Grack Growth Rate Data on Aluminum, Steel, and Titanium Alloy", Data sent from P. G. Porter, Northrop Corp., Hawthorne, CA, Harch 1, 1982.

NLOO1 TI-6AL-4V da/dN

なった。本語の名とはANAでは、ANAでは、ANACAS ANACAS

(D)

Data Sheets on Ti-6Al-4V - Fatigue Crack Growth Rate Tests - submitted by W. S. Johnson, NASA Langley Research Center, Hampton, VA, March 1982.

NROO1 TI-6AL-4V K_{Ic} TI-8AL-1MO-1V K_{Iscc}

> Yoder, G. R., Cooley, L. A., and Crooker, T. W., "Effects of Microstructure and Frequency on Corrosion-Fatigue Crack Growth in Ti-8Al-lNo-lV and Ti-6Al-4V", Naval Research Laboratory, Washington, D.C., Report 4678, December 1981,

PW002 TI-6-2-4-2 da/dN TI-8AL-1M0-1V K_{Tc}

> Beyer, J. R., Sime, D. L., and Wallace, R. M., "Titanium Demage Tolerant Design Data for Propulsion Systems", United Technologies Corp., Pratt and Whitney Aircraft Group, West Palm Beach, FL. Report APML-TR-77-101, Contract No. F33615-75-C-5130, June 1977.

PWO03 TI-6AL-4V da/dW

Fatigue Crack Growth Rate Data on Titanium and Nickel Base Alloy from B. S. Schwartz, Pratt and Whitney Aircraft Group, Government Products Division, West Paim Beach, FL. July 1982.

RI005 CORONAS KIC TI-6-2-4-6 KIC TI-6AL-4V KIC

Chesnutt, J. C., et al., "Patigue Crack Propagation and Fracture of Titanium Alloys", Rockwell International Science Center, Thousand Oaks, CA, and Department of Metallurgy and Material Science, Carnegie-Helion University, Pittsburgh, PA.

RIOO6 TI-6AL-V KISCO

Ferguson, R. R., and Berryman, R. C., "Fracture Mechanics Evaluation of B-1 Materials", Rockwell International, B-1 Division, Los Angeles, CA, Contract No. F33657-70-C-0800, Report No. AFML-TR-76-137, October 1976.

UD001 TI-6-2-4-6 da/dN

Cervey, R. R., "Ti-6-2-4-6 Elevated Temperature Modeling of Fatigue Crack Growth Rate Data", University of Dayton Research Institute, Dayton, Ohio, Contract No. F33615-80-C-5011 Technical Memorandum UDR-TM-81-48, December 1981.

UDOOS TI-6AL-4V KIC. da/dN

Cervey, R. R., "Beta Processed Titanium 6Al-4V Fracture Properties". University of Dayton Research Institute, Dayton, Ohio, Contract No. F33615-74-C-5024, Technical Memorandum UDRI-TM-75-08, July 1975.

UMOO1 TI-6AL-4V da/dN

Wilson, D. A., "A Statistically Based Investigation of Microstructural Effect on the Facigue Properties of Titanium and Titanium Alloys", Dissertation to University of Missouri, in Partial Fulfillment of PhD Requirement, December 1978.

こうかい こうこうしょう はいしゅうしゅう しゅうしゅう ないない 自己 しょうしゅう