Top 10 Algorithms in the 20th century QuickSort

Shunyao Li 10/22/2014

Outline

- Introduction
- QuickSort
- Complexity Analysis
- Optimization
- Application

Outline

- Introduction
- QuickSort
- Complexity Analysis
- Optimization
- Application

What is sorting

What is sorting

Insertion Sort

Insertion Sort Selection Sort

Insertion Sort Selection Sort

1948 Merge Sort

1956 Bubble Sort

1960 Quick Sort

1964 Heap Sort

most widely used

21st century Hybrid Sorting algorithms

Concepts

- Time Complexity
 - number of comparisons
- Space Complexity function of n (scale of the problem) best/worst/average cases
- Big O Notation n: scale of the problem

$$O(n) \ O(n^2) \ O(\log n)$$

$$O(f(n)) = cf(n)$$

Divide and Conquer

Divide a big problem into several small problems

Eg: Binary Search, Fast Fourier Transform...

Outline

- Introduction
- QuickSort
- Complexity Analysis
- Optimization
- Application

- Step One: Select the first element, called pivot
- Step Two: Re-order the array so that all elements less than pivot come before the pivot, values greater than pivot come after it.
 How to re-order the array?

Values less than Pivot Pivot Values greater than Pivot

Sub-array A Sub-array B

Step Three: Apply the above steps over and over again on each sub-array until there is only one element in the subarray.

Select the first element as Pivot

Select the first element as Pivot

PL points to the element on the left; PR points to the element on the right

If the element in PL is less than pivot, pass it

If the element in PL is greater than pivot, stop

If the element in PR is greater than pivot, pass it

If the element in PR is less than pivot, stop

Swap

Continue Moving

Swap

Continue Moving until PL is behind PR Have scanned over the whole sequence

swap pivot with PR

10 12 19 23 24 34 49

Outline

- Introduction
- QuickSort
- Complexity Analysis
- Optimization
- Application

Complexity Analysis

- Time/Space Complexity
 - for best/worst/average cases

	Time	Space
Best		
Worst		
Average		

length of the array: n=7

Level=1 34 12 10 19 49 23 Level=2 10 19 24 49 Level=3 49 19 10 24

n-1=6 comparisons

n-3=2+2 comparisons

0 comparison

Depth=3

Tree

10 12 19 23 24 34 49

6+(2+2)=10 comparisons

	Time	Space
Best		
Worst		
Average		

length of the array: n=7

Depth=3) Minimum Depth = log(n) (See reference)

$$6+(2+2)=10$$
 comparisons

	Time	Space
Best		
Worst		
Average		

length of the array: n=7

Depth=3) Minimum Depth = log(n) (See reference)

- ► Total comparisons = n * Depth = nlog(n)
- ightharpoonup Memory usage = Depth = log(n)
- ► Time Complexity: O(nlog(n))
- Space Complexity: O(logn)

	Time	Space
Best		
Worst		
Average		

length of the array: n=7

Depth=3) Minimum Depth = log(n) (See reference)

- ► Total comparisons = n * Depth = nlog(n)
- \blacktriangleright Memory usage = Depth = log(n)
- ► Time Complexity: O(nlog(n))
- Space Complexity: O(logn)

	Time	Space
Best	O(nlogn)	O(logn)
Worst		
Average		

Worst Case Maximize Depth

	Time	Space
Best	O(nlogn)	O(logn)
Worst		
Average		

Maximize Depth

Worst Case

49	34	24	23	19	12	10
10	12	19	23	24	34	49

	Time	Space
Best	O(nlogn)	O(logn)
Worst		
Average		

	Time	Space
Best	O(nlogn)	O(logn)
Worst		
Average		

length of the array: n=7

$$(n-1) + (n-2) + \dots + 1 = O(n^2)$$

Level=1 10 12 19 23 24 34 49 6 comparisons

Level=2 (12)

12 19 23 24 34 49

5 comparisons

Level=3

19 23 24 34 49

4 comparisons

Level=4

23 24 34 49

3 comparisons

Level=5

24) 34 | 49

2 comparisons

Level=6

34 49

1 comparison

Level=7

49

Depth=n=7

	Time Spac	
Best	O(nlogn)	O(logn)
Worst		
Average		

length of the array: n=7

$$(n-1) + (n-2) + \dots + 1 = O(n^2)$$

Level=

Time Complexity = n * Depth = O(n*n)

Space Complexity = Depth = O(n)

Depth=n=7

	Time	Space
Best	O(nlogn)	O(logn)
Worst		
Average		

length of the array: n=7

$$(n-1) + (n-2) + \dots + 1 = O(n^2)$$

Level=1 6 comparisons 12 Level=2 49 5 comparisons Level=3 24 34 4 comparisons Level=4 49 3 comparisons 49 2 comparisons Level=5 1 comparison Level=6 49

Level=

Time Complexity = n * Depth = O(n*n)

Space Complexity = Depth = O(n)

Depth=n=7

	Time	Space
Best	O(nlogn)	O(logn)
Worst	$O(n^2)$	O(n)
Average		

Average Case

Prob(i) #comparisons at each level
$$T(n) = \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) + cn$$

Left sub-array

Right sub-array

i: pivot partition location

By Mathematical induction

$$T(n) = O(nlog(n))$$

	Time	Space
Best	O(nlogn)	O(logn)
Worst	$O(n^2)$	O(n)
Average		

Average Case

Prob(i) #comparisons at each level
$$T(n) = \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) + cn$$

Left sub-array

Right sub-array

i: pivot partition location

By Mathematical induction

$$T(n) = O(nlog(n))$$

	Time	Space
Best	O(nlogn)	O(logn)
Worst	$O(n^2)$	O(n)
Average	O(nlogn)	O(logn)

Complexity Summary

	Time	Space
Best	$O(n \log n)$	$O(\log n)$
Worst	$O(n^2)$	O(n)
Average	$O(n \log n)$	$O(\log n)$

	Best	Average	Worst
Insertion Sort			
Selection Sort			
Bubble Sort			
Merge Sort			
Heap Sort			
Quick Sort			

	Best	Average	Worst
Insertion Sort	n		
Selection Sort	n^2		
Bubble Sort	n		
Merge Sort			
Heap Sort			
Quick Sort	nlogn		

	Best	Average	Worst
Insertion Sort	n		n^2
Selection Sort	n^2		n^2
Bubble Sort	n		n^2
Merge Sort			
Heap Sort			
Quick Sort	nlogn		n^2

	Best	Average	Worst
Insertion Sort	n	n^2	n^2
Selection Sort	n^2	n^2	n^2
Bubble Sort	n	n^2	n^2
Merge Sort			
Heap Sort			
Quick Sort	nlogn	nlogn	n^2

	Best	Average	Worst
Insertion Sort	n	n^2	n^2
Selection Sort	n^2	n^2	n^2
Bubble Sort	n	n^2	n^2
Merge Sort	nlogn	nlogn	nlogn
Heap Sort	nlogn	nlogn	nlogn
Quick Sort	nlogn	nlogn	n^2

^{*}MergeSort and HeapSort are faster than QuickSort in the worst case.

	Best	Average	Worst
Insertion Sort	n	n^2	n^2
Selection Sort	n^2	n^2	n^2
Bubble Sort	n	n^2	n^2
Merge Sort	nlogn	nlogn	nlogn
Heap Sort	nlogn	nlogn	nlogn
Quick Sort	nlogn	nlogn	n^2

^{*}MergeSort and HeapSort are faster than QuickSort in the worst case.

O(f(n)) = cf(n)

Can it be even better?

^{*}Practically, QuickSort is still the fastest: constant factor on average case is small

Outline

- Introduction
- QuickSort
- Complexity Analysis
- Optimization
- Application

Optimization

	Time	Space
Best	$O(n \log n)$	$O(\log n)$
Worst	$O(n^2)$	O(n)
Average	$O(n \log n)$	$O(\log n)$

Avoid the worst case

- Choose pivot randomly
- Choose pivot as a "median-of-three"
- Use insertion sort for small arrays
- Choose median of the array as pivot
 - always be O(nlog(n))
 - \triangleright Need O(n) for finding the median
 - rarely used because of the large algorithm complexity and the very large constant factor on O(n)

Used in <stdlib> of C

Can we come up with an even better solution?

There is a lower bound in time complexity

Lower Bound in Time Complexity

► Think of sorting as a decision tree: (eg: {1,2,3})

- Each leaf is a possible order of {1,2,3}
- n numbers -> n! possibilities -> n! leaves
- Fast -> make less decisions -> less levels -> less depth
- minimum depth = log(n!) ~= O(nlogn)

Outline

- Introduction
- QuickSort
- Complexity Analysis
- Optimization
- Application

Application

- C standard library
 - http://repo.or.cz/w/glibc.git/blob/HEAD:/stdlib/qsort.c
 - median of three
 - Use insertion for small arrays
- Java: Dual-pivot quicksort

The Kth largest number

pivot	
t < K	

Summary

- QuickSort is an divide-and-conquer based algorithm
- QuickSort can be summarized as two steps:
 - Select and place the pivot in its correct place
 - Recursively sort both sides of the pivot
- Optimization and Application

	Time	Space
Best	$O(n \log n)$	$O(\log n)$
Worst	$O(n^2)$	O(n)
Averag	$O(n \log n)$	$O(\log n)$

Interesting Visualization

https://www.youtube.com/watch?v=kPRA0W1kECg

Reference

- Proof for the depth of a binary tree: http://cs.stackexchange.com/questions/6161/what-is-the-depth-of-a-complete-binary-tree-with-n-nodes
- Proof for the best case: http://www.cs.princeton.edu/ courses/archive/spr03/cs226/lectures/analysis.4up.pdf
- Discussion of Multi-Pivot QuickSort: http://cs.stanford.edu/~rishig/courses/ref/l11a.pdf
- Proof for average case of QuickSort: http://en.wikipedia.org/wiki/Quicksort

Thanks!