Lesson 5: Normal Distribution

Preparation

Solutions

Please note that the steps show rounded numbers, but that the final answers to the problems are calculated without rounding.

Problem	Part	Solution
1	A	0.19- Unusual $(z = -2.088)$
1	В	0.225- Not Unusual $(z = -1.059)$
1	\mathbf{C}	0.325- Not Unusual $(z = 1.882)$
1	D	0.335- Unusual $(z = 2.176)$
2	-	The probability that a randomly selected professional baseball player will have a batting average that is greater than 0.335 is 0.015.
3	-	The Normal Density curve is symmetric and has a bell shape. It is determined by its mean and standard deviation.
4	-	z: tells how many standard deviations away from the mean a certain observation lies x: an observed data point. μ : mean of the population.
5	-	σ : standard deviation of the population. For any bell-shaped distribution, 68% of the data will lie within 1 standard deviation of the mean, 95% of the data will lie within 2 standard deviations of the mean, and 99.7% of the data will lie within 3 standard deviations of the mean. This is called the 68-95-99.7% Rule for Bell-shaped Distributions. Needs to be at least three sentences.
6	A	$\mu=150.8$ $\sigma=8.8$
6	В	P(X > 165) = P(z > 1.6136) = 0.0533
6	$\stackrel{ m D}{ m C}$	z = -1.2816; this is Not Unusual. See question 1.
6	Ď	GRE score $= 139.5$, which rounds to 140.
7	A	$\mu=1800$
		$\sigma = 600$
7	В	P(X > 2500) = P(z > 1.1667) = 0.1217
7	С	P(X < 2500) = P(z < 1.1667) = 0.8783
		This answer is easier to get by subtracting the answer to part (a) from 1.
7	D	P(X < 1500) = P(z < -0.5) = 0.3085
7	\mathbf{E}	P(1500 < X < 2500) = 0.5698
7	\mathbf{F}	3^{rd} quartile of the speeds of hydrogen = 2204.4 $\frac{m}{s}$
8	A	Not normal
8	В	Not Normal
8	\mathbf{C}	Normal
8	D	Normal
8	\mathbf{E}	Not Normal
8	\mathbf{F}	Normal