Data Driven Hybrid Algorithms for Preprocessing of Manually Acquired Ultrasound NDT Data

Sayako Kodera Technische Universität Ilmenau

Problem: reliability

Assisted Manual Ultrasonic Testing

Conventional manual UT

Source: Quality Magazine

Assisted Manual Ultrasonic Testing

3D SmartInspect ¹

Problem: reliability

- \rightarrow Assistance system
 - Position recognition
 - Data recording
 - Data visualization
 - Visual feedback
 - Post-processing

¹A. Omira, Real-time Reconstruction of Manually Measured Compressed Ultrasound Synthetic Aperture Measurement Data, 2021

Assisted Manual Ultrasonic Testing

3D SmartInspect ¹

Problem: reliability

- \rightarrow Assistance system
 - Position recognition
 - Data recording
 - Data visualization
 - Visual feedback
 - Post-processing

¹A. Omira, Real-time Reconstruction of Manually Measured Compressed Ultrasound Synthetic Aperture Measurement Data, 2021

Assisted Manual Ultrasonic Testing

3D SmartInspect ¹

Problem: reliability

- \rightarrow Assistance system
 - Position recognition
 - Data recording
 - Data visualization
 - Visual feedback
 - Post-processing
 - ightarrow Degraded resolution

¹A. Omira, Real-time Reconstruction of Manually Measured Compressed Ultrasound Synthetic Aperture Measurement Data, 2021

Motivation: Image Quality Improvement

Automatic measurement

 $^{^2}$ F. Krieg et al., SAFT processing for manually acquired ultrasonic measurement data with 3D SmartInspect, *SHM-NDT*, 2018

Motivation: Image Quality Improvement

Manual measurement

Measurement data²

SAFT Reconstruction²

Motivation: Image Quality Improvement

Manual measurement :: accumulation of random factors

SAFT Reconstruction²

Impact of Missing Data

ROI

Summary

Method 0000 Simulations

Impact of Missing Data

Full sampling

Reconstruction

Impact of Missing Data

Sparse sampling

Reconstruction [dB] 25 20 -1015 -1510 -20-255 10 15 20 25 77.3 0.5 83 88.5 25 10 15 20

x [mm]

Solution: Interpolation as Preprocessing

Solution: Interpolation as Preprocessing

Objectives

- Artefacts reduction in reconstructions
 - \rightarrow Interpolate missing data as preprocessing
 - ♠ Interpolation of nonlinear spatio-temporal data
- Fast yet interpretable method

Sparse sampling

Objectives

- Artefacts reduction in reconstructions
 - → Interpolate missing data as preprocessing
 - ♠ Interpolation of nonlinear spatio-temporal data
- Fast yet interpretable method

Preprocessed

Objectives

- Artefacts reduction in reconstructions
 - → Interpolate missing data as preprocessing
 - ♠ Interpolation of nonlinear spatio-temporal data
- Fast yet interpretable method

Solutions

- Spatial statistical interpolation
- Batch-wise interpolation
- Perform in space-frequency domain
- Incorporate DNN for fast on-site execution

Preprocessed

Contributions

- Spatial statistical modeling of UT data in space-frequency (SF) domain
- Develop a hybrid interpolation scheme in SF-domain
 - (i) Interpolation via a MMSE estimator
 - → SF-Kriging
 - (ii) Estimation of spatial statistics via DNN

 - $\to \textbf{FVnet}$
- Feedback feature for experimental design

Preprocessed

Contributions

- Spatial statistical modeling of UT data in space-frequency (SF) domain
- Develop a hybrid interpolation scheme in SF-domain
 - (i) Interpolation via a MMSE estimator
 - → SF-Kriging
 - (ii) Estimation of spatial statistics via DNN

 - $\to \textbf{FVnet}$
- Feedback feature for experimental design

Feedback

Contributions

- Spatial statistical modeling of UT data in space-frequency (SF) domain
- Develop a hybrid interpolation scheme in SF-domain
 - (i) Interpolation via a MMSE estimator
 - → SF-Kriging
 - (ii) Estimation of spatial statistics via DNN

 - $\to \textbf{FVnet}$
- Feedback feature for experimental design

Resmpl. + preproc.

Preprocessing Scheme

ST-domain: temp. correlation \rightarrow vector-valued pred.

Sought:

$$extbf{ extit{a}}_{ extbf{ extit{s}}_0} \in \mathbb{R}^{ extit{M}}$$

Given:

$$m{A}_{S} = egin{bmatrix} m{a}_{m{s}_{1}} & m{a}_{m{s}_{2}} & \cdots & m{a}_{m{s}_{N}} \end{bmatrix} \in \mathbb{R}^{M \times N}$$

Samp. and pred. positions

ST-domain: temp. correlation \rightarrow vector-valued pred.

Sought:

$$\pmb{a_{s_0}} \in \mathbb{R}^M$$

Given:

$$\mathbf{A}_{S} = \begin{bmatrix} \mathbf{a}_{\mathbf{s}_{1}} & \mathbf{a}_{\mathbf{s}_{2}} & \cdots & \mathbf{a}_{\mathbf{s}_{N}} \end{bmatrix} \in \mathbb{R}^{M \times N}$$

SF-domain: orthogonal Fourier bases

 \Rightarrow individual prediction for a single frequency

$$extbf{ extit{p}}_{ extbf{ extit{s}}_0} = extbf{ extit{F}}_{ extit{M}} extbf{ extit{a}}_{ extbf{ extit{s}}_0} \ \in \mathbb{C}^{ extit{M}}$$

Samp. and pred. positions

SF-domain: \rightarrow set of scalar-valued pred. $\forall \omega_m$

Sought:

$$p_{s_0m}\in\mathbb{C}$$

Given:

$$oldsymbol{\pi}_m^{\mathcal{S}} = egin{bmatrix} p_{s_1m} & p_{s_2m} & \cdots & p_{s_Nm} \end{bmatrix}^\mathsf{T} \in \mathbb{C}^M$$

Samp. and pred. positions

Assumptions: intrinsic stationarity

- â Stationary assumptions for the increments
- (1) Mean of the increments is 0

$$\mathsf{E}\left\{p(\boldsymbol{s})-p(\boldsymbol{s}+\boldsymbol{h})\right\}=0$$

(2) Variance of the increments is shift invariant \rightarrow function of the spatial lag

$$Var \{p(s) - p(s + h)\} := 2\gamma(h)$$

Assumptions: intrinsic stationarity

- $\hat{=}$ Stationary assumptions for the increments
- (1) Mean of the increments is 0

$$\mathsf{E}\left\{p(\boldsymbol{s})-p(\boldsymbol{s}+\boldsymbol{h})\right\}=0$$

(2) Variance of the increments is shift invariant \rightarrow function of the spatial lag

$$Var \{p(s) - p(s + h)\} := 2\gamma(h)$$

 $2\gamma(h) =$ Frequency variogram (FV) (nonnegative, real-valued)

Linear unbiased MMSE predictor (Kriging):

$$\hat{p}_{oldsymbol{s}_0\,m}=oldsymbol{w}_m^{\mathsf{H}}oldsymbol{\pi}_m^{\mathcal{S}}$$

Linear unbiased MMSE predictor (Kriging):

$$\hat{p}_{oldsymbol{s}_0 m} = oldsymbol{w}_m^{\mathsf{H}} oldsymbol{\pi}_m^{\mathcal{S}}$$

Weights: 2nd order statistics = inc. variance

Linear unbiased MMSE predictor (Kriging):

$$\hat{p}_{oldsymbol{s}_0 m} = oldsymbol{w}_m^{\mathsf{H}} oldsymbol{\pi}_m^{\mathcal{S}}$$

Weights: 2nd order statistics = inc. variance

$$oldsymbol{w}_m = \Gamma_m^{-1} oldsymbol{v}_m \in \mathbb{R}^N$$

Linear unbiased MMSE predictor (Kriging):

$$\hat{p}_{oldsymbol{s}_0\,m}=oldsymbol{w}_m^{\mathsf{H}}oldsymbol{\pi}_m^{S}$$

Weights: 2nd order statistics = inc. variance

$$oldsymbol{w}_m = \Gamma_m^{-1} oldsymbol{v}_m \in \mathbb{R}^N$$

Between the samples:

$$\Gamma_{m} = \begin{bmatrix} \operatorname{Var} \left\{ p_{s_{1}m} - p_{s_{1}m} \right\} & \cdots & \operatorname{Var} \left\{ p_{s_{N}m} - p_{s_{1}m} \right\} \\ \vdots & \ddots & \vdots \\ \operatorname{Var} \left\{ p_{s_{1}m} - p_{s_{N}m} \right\} & \cdots & \operatorname{Var} \left\{ p_{s_{N}m} - p_{s_{N}m} \right\} \end{bmatrix} \in \mathbb{R}^{N \times N} \xrightarrow{2} \xrightarrow{4} \xrightarrow{6} x / dx$$

Linear unbiased MMSE predictor (Kriging):

$$\hat{p}_{oldsymbol{s}_0\,m}=oldsymbol{w}_m^{\mathsf{H}}oldsymbol{\pi}_m^{S}$$

Weights: 2nd order statistics = inc. variance

$$oldsymbol{w}_m = oldsymbol{\Gamma}_m^{-1} oldsymbol{v}_m \in \mathbb{R}^N$$

Between the samples:

$$\Gamma_{m} = \begin{bmatrix} \operatorname{Var} \left\{ p_{s_{1}m} - p_{s_{1}m} \right\} & \cdots & \operatorname{Var} \left\{ p_{s_{N}m} - p_{s_{1}m} \right\} \\ \vdots & \ddots & \vdots \\ \operatorname{Var} \left\{ p_{s_{1}m} - p_{s_{N}m} \right\} & \cdots & \operatorname{Var} \left\{ p_{s_{N}m} - p_{s_{N}m} \right\} \end{bmatrix} \in \mathbb{R}^{N \times N} \xrightarrow{2} \xrightarrow{4} \xrightarrow{6} x / dx$$

Between p_{s_0m} and the samples:

$$oldsymbol{v}_m = egin{bmatrix} \mathsf{Var}\left\{ p_{oldsymbol{s}_0 m} - p_{oldsymbol{s}_1 m}
ight\} & \cdots & \mathsf{Var}\left\{ p_{oldsymbol{s}_0 m} - p_{oldsymbol{s}_N m}
ight\} \end{bmatrix}^\mathsf{T} \in \mathbb{R}^N$$

Linear unbiased MMSE predictor (Kriging):

$$\hat{p}_{oldsymbol{s}_0\,m}=oldsymbol{w}_m^{\mathsf{H}}oldsymbol{\pi}_m^S$$

Weights: 2nd order statistics = inc. variance

$$oldsymbol{w}_m = oldsymbol{\Gamma}_m^{-1} oldsymbol{v}_m \in \mathbb{R}^N$$

Between the samples:

$$\Gamma_{m} = \begin{bmatrix} \operatorname{Var} \left\{ p_{s_{1}m} - p_{s_{1}m} \right\} & \cdots & \operatorname{Var} \left\{ p_{s_{N}m} - p_{s_{1}m} \right\} \\ \vdots & \ddots & \vdots \\ \operatorname{Var} \left\{ p_{s_{1}m} - p_{s_{N}m} \right\} & \cdots & \operatorname{Var} \left\{ p_{s_{N}m} - p_{s_{N}m} \right\} \end{bmatrix} \in \mathbb{R}^{N \times N} \xrightarrow{2} \xrightarrow{4} \xrightarrow{6}$$

Between p_{s_0m} and the samples: \rightarrow unknown

$$oldsymbol{v}_m = egin{bmatrix} \mathsf{Var}\left\{ p_{oldsymbol{s}_0m} - p_{oldsymbol{s}_Nm}
ight\} & \cdots & \mathsf{Var}\left\{ p_{oldsymbol{s}_0m} - p_{oldsymbol{s}_Nm}
ight\} \end{bmatrix}^\mathsf{T} \in \mathbb{R}^N$$

Linear unbiased MMSE predictor (Kriging):

$$\hat{p}_{oldsymbol{s}_0\,m}=oldsymbol{w}_m^{\mathsf{H}}oldsymbol{\pi}_m^S$$

Weights: 2nd order statistics = FVs

$$oldsymbol{w}_m = \Gamma_m^{-1} oldsymbol{v}_m \in \mathbb{R}^N$$

Between the samples:

$$oldsymbol{\Gamma}_m = egin{bmatrix} \gamma(oldsymbol{s}_1 - oldsymbol{s}_1) & \cdots & \gamma(oldsymbol{s}_N - oldsymbol{s}_1) \ dots & \ddots & dots \ \gamma(oldsymbol{s}_1 - oldsymbol{s}_N) & \cdots & \gamma(oldsymbol{s}_N - oldsymbol{s}_N) \end{bmatrix} \in \mathbb{R}^{N imes N}$$

Between p_{s_0m} and the samples:

$$\boldsymbol{v}_m = egin{bmatrix} \gamma(\boldsymbol{s}_0 - \boldsymbol{s}_1) & \cdots & \gamma(\boldsymbol{s}_0 - \boldsymbol{s}_N) \end{bmatrix}^\mathsf{T} \in \mathbb{R}^N$$

Linear unbiased MMSE predictor (Kriging):

$$\hat{p}_{oldsymbol{s}_0\,m}=oldsymbol{w}_m^{\mathsf{H}}oldsymbol{\pi}_m^{\mathcal{S}}$$

Weights: 2nd order statistics = FVs

$$oldsymbol{w}_m = \Gamma_m^{-1} oldsymbol{v}_m \in \mathbb{R}^N$$

Between the samples:

$$oldsymbol{\Gamma}_m = egin{bmatrix} \gamma(oldsymbol{s}_1 - oldsymbol{s}_1) & \cdots & \gamma(oldsymbol{s}_N - oldsymbol{s}_1) \ dots & \ddots & dots \ \gamma(oldsymbol{s}_1 - oldsymbol{s}_N) & \cdots & \gamma(oldsymbol{s}_N - oldsymbol{s}_N) \end{bmatrix} \in \mathbb{R}^{N imes N}$$

Between p_{s_0m} and the samples:

$$\boldsymbol{v}_m = \begin{bmatrix} \gamma(\boldsymbol{s}_0 - \boldsymbol{s}_1) & \cdots & \gamma(\boldsymbol{s}_0 - \boldsymbol{s}_N) \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^N$$

 \Rightarrow Estimate of $\gamma_m(h)$

Frequency Variogram Estimation

Frequency Variogram Estimation

(I) Nonparametric estimation

(II) Parametric estimation

Frequency Variogram Estimation

- (I) Nonparametric estimation
 - Method-of-moments estimate
 - (−) requires adequate samples∴ some lags may be missing
- (II) Parametric estimation

Frequency Variogram Estimation

- (I) Nonparametric estimation
 - Method-of-moments estimate
 - (−) requires adequate samples∴ some lags may be missing
- (II) Parametric estimation
 - Modeling based on SPDEs
 - Parameter estimation for each lag and frequency
 - ightarrow not suitable for online applications

BackgroundMethodSimulationsSummary○○○○○○○●○○○○○○○

Frequency Variogram Estimation

(I) Nonparametric estimation

- Method-of-moments estimate
- (−) requires adequate samples∴ some lags may be missing

(II) Parametric estimation

- Modeling based on SPDEs
- Parameter estimation for each lag and frequency
 → not suitable for online applications

(III) Data driven approach via DNN (FVnet)

- Property: lattice data within a small batch
 - → Vector-valued lags and frequency variograms
- Method-of-moments estimates are available
 - ⇒ Vector-valued regression problem

Simulation studies

- Batch interpolation
- Reconstruction of subsampled data

Simulation studies

- Batch interpolation
- Reconstruction of subsampled data

Simulation studies

- Batch interpolation
- Reconstruction of subsampled data

Purpose

- Resolution of reconstructed images
- Effectiveness of experimental design

Scenario and Assumptions

- Base data = densely scanned measurements (0.5 mm grids $\hat{=}$ 8.7 samples $/\lambda^2$)
- $ROI = 25 \, \text{mm} \times 25 \, \text{mm}$
- Subsampling in ROI: 5...17%($\stackrel{.}{=} 0.44...1.48$ samples $/\lambda^2$)
- Moving window interpolation (50% overlap)
- Single batch = $5 \, \text{mm} \times 5 \, \text{mm}$

Comparison

- Reference
 - = Reconstruction of fully sampled data
- Inverse Distance Weighting (IDW)

Comparison

- Reference
 - = Reconstruction of fully sampled data
- Inverse Distance Weighting (IDW)

Evaluation metrics

- Normalized squared error
- Generalized Contrast-to-Noise Ratio (gCNR)

Comparison

- Reference
 - = Reconstruction of fully sampled data
- Inverse Distance Weighting (IDW)

Evaluation metrics

- Normalized squared error
- Generalized Contrast-to-Noise Ratio (gCNR)

$$gCNR = 1 - P(false detection)$$

 $\Rightarrow higher gCNR \stackrel{\circ}{=} better resolution$

Performance Evaluation for Varying Coverage

- (1) Initial sampling (= N)
- (2) Interpolation via SF-Kriging
- (3) Variance map as feedback
- (4) Prioritized resampling + random resampling (= 2N)

- (1) Initial sampling (=N)
- (2) Interpolation via SF-Kriging
- (3) Variance map as feedback
- (4) Prioritized resampling+ random resampling(= 2N)

- (1) Initial sampling (= N)
- (2) Interpolation via SF-Kriging
- (3) Variance map as feedback
- (4) Prioritized resampling+ random resampling(= 2N)

- (1) Initial sampling (= N)
- (2) Interpolation via SF-Kriging
- (3) Variance map as feedback
- (4) Prioritized resampling+ random resampling(= 2N)

- (1) Initial sampling (= N)
- (2) Interpolation via SF-Kriging
- (3) Variance map as feedback
- (4) Prioritized resampling+ random resampling(= 2N)

- (1) Initial sampling (= N)
- (2) Interpolation via SF-Kriging
- (3) Variance map as feedback
- (4) Prioritized resampling+ random resampling(= 2N)

- (1) Initial sampling (= N)
- (2) Interpolation via SF-Kriging
- (3) Variance map as feedback
- (4) Prioritized resampling+ random resampling(= 2N)
- → Effect on reconstruction resolution

Conclusion (1)

Research problem and objectives

- Direct SAFT reconstruction of managed UT data
 - \rightarrow Degraded resolution
 - : Accumulation of random factors
- Sparse and/or irregular spatial subsampling of UT data
 - → Spatial aliasing in SAFT reconstructions
 - \Rightarrow Appearance of artefacts
- Goal = artefacts reduction by preventing spatial aliasing
 - \rightarrow Interpolate missing UT data
 - ♠ Interpolation of nonlinear spatio-temporal data
- Fast yet interpretable method

Conclusion (2)

Achievements and contributions

- Extensive study on spatial statistics
- Spatial statistical modeling of UT data in space-frequency domain
- Problem formulation for a hybrid approach
 - (i) Space-frequency domain Interpolation via SF-Kriging
 - (ii) Estimation of second order spatial statistics via FVnet
 - ♠ Vector-valued regression
 - ightarrow Applicable to other types of spatio-temporal lattice data
- Extension of point SF-Kriging to multi-point ones
- Establishing a preprocessing scheme with a feedback feature

Conclusion (3)

Findings

Samples $/\lambda^2$	0.61	0.61 0.87	0.87
FVnet SF-Krig.	X	✓	///
Resamp. $+$ SF-Krig.	\approx	///	✓

Conclusion (3)

Findings

Samples $/\lambda^2$	0.61	0.61 0.87	0.87
FVnet SF-Krig.	X	✓	///
Resamp. $+$ SF-Krig.	æ	///	✓

Future work

- Incorporate the neighboring batch information in FVnet
- Parameteric estimation of frequency variogram via DNN
- Extension to a progressive approach

Backup

System inaccuracy

- Positional inaccuracy
- Inconsistent coupling

Path selection

Automatic

Manual

System inaccuracy

- Positional inaccuracy
- Inconsistent coupling

Path selection

Inaccurate

System inaccuracy

- Positional inaccuracy
- Inconsistent coupling

Path selection

Constant

Inconsistent

System inaccuracy

- Positional inaccuracy
- Inconsistent coupling

Path selection

Incomplete

System inaccuracy

- Positional inaccuracy
- Inconsistent coupling

Path selection

Full

Incomplete

ST-Interpolation in SF-domain

ST-domain: temp. correlation \rightarrow vector-valued pred.

Sought:

$$\pmb{a}_0 \in \mathbb{R}^M$$

Given:

$$\mathbf{A}_{S} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{N} \end{bmatrix} \in \mathbb{R}^{M \times N}$$

ST-domain: temp. correlation \rightarrow vector-valued pred.

Sought:

$$\pmb{a}_0 \in \mathbb{R}^M$$

Given:

$$\mathbf{A}_{S} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{N} \end{bmatrix} \in \mathbb{R}^{M \times N}$$

SF-domain: orthogonal Fourier bases

 \Rightarrow individual prediction for a single frequency

$$oldsymbol{p}_0 = oldsymbol{F}_M oldsymbol{a}_0 \ \in \mathbb{C}^M$$

Samp. and pred. positions

SF-domain: \rightarrow set of scalar-valued pred. $\forall \omega_m$

Sought:

$$p_{0m} \in \mathbb{C}$$

Given:

$$oldsymbol{\pi}_m^{\mathcal{S}} = egin{bmatrix} p_{1m} & p_{2m} & \cdots & p_{Nm} \end{bmatrix}^\mathsf{T} \in \mathbb{C}^M$$

Samp. and pred. positions

SF-domain: \rightarrow set of scalar-valued pred. $\forall \omega_m$

Sought:

$$p_{0m} \in \mathbb{C}$$

Given:

$$\pi_m^S = \begin{bmatrix} p_{1m} & p_{2m} & \cdots & p_{Nm} \end{bmatrix}^\mathsf{T} \in \mathbb{C}^M$$

⇒ Optimal prediction:

$$\hat{p}_{0m} = \mathsf{E}\left\{p_{0m} \mid oldsymbol{\pi}_m^{\mathcal{S}}
ight\}$$

Assumpations: intrinsic stationarity

- \rightarrow closer points $\hat{=}$ similar values
- (1) Mean of the increments is 0

$$\mathsf{E}\left\{p(\boldsymbol{s})-p(\boldsymbol{s}+\boldsymbol{h})\right\}=0$$

(2) Variance of the increments is shift invariant→ function of the spatial lag

$$Var \{p(s) - p(s + h)\} := 2\gamma(h)$$

Assumpations: intrinsic stationarity

- \rightarrow closer points $\hat{=}$ similar values
- (1) Mean of the increments is 0

$$\mathsf{E}\left\{p(\boldsymbol{s})-p(\boldsymbol{s}+\boldsymbol{h})\right\}=0$$

(2) Variance of the increments is shift invariant \rightarrow function of the spatial lag

$$Var \{p(s) - p(s + h)\} := 2\gamma(h)$$

 $2\gamma(h) = \text{Frequency variogram (FV)}$

Linear predictor:

$$\hat{p}_{0m} = oldsymbol{w}_m^{\mathsf{H}} oldsymbol{\pi}_m^{\mathcal{S}}$$

Linear unbiased MMSE predictor (Kriging):

$$\min_{oldsymbol{w}_m} f(oldsymbol{w}_m) ext{ s.t. } \sum_{i=1}^N w_i = 1$$

$$f(\mathbf{w}_{m}) = \mathbb{E}\left\{|p_{0m} - \hat{p}_{0m}|^{2}\right\}$$

$$= Var\left\{p_{0m} - \hat{p}_{0m}\right\}$$

$$= -\sum_{i=1}^{N} \sum_{j=1}^{N} w_{i}w_{j}\gamma_{m}(\mathbf{h}_{ij}) + 2\sum_{i=1}^{N} w_{i}\gamma_{m}(\mathbf{h}_{0i})$$

with $\boldsymbol{h}_{ij} = \boldsymbol{s}_i - \boldsymbol{s}_j$ and $\boldsymbol{h}_{0i} = \boldsymbol{s}_0 - \boldsymbol{s}_i$

Linear predictor:

$$\hat{p}_{0m} = oldsymbol{w}_m^{\mathsf{H}} oldsymbol{\pi}_m^{\mathcal{S}}$$

Linear unbiased MMSE predictor (Kriging):

$$\min_{oldsymbol{w}_m} f(oldsymbol{w}_m) ext{ s.t. } \sum_{i=1}^N w_i = 1$$

$$f(\mathbf{w}_{m}) = \mathbb{E}\left\{|p_{0m} - \hat{p}_{0m}|^{2}\right\}$$

$$= \mathbb{E}\left\{|p_{0m} - \hat{p}_{0m}|^{2}\right\}$$

$$= -\sum_{i=1}^{N} \sum_{j=1}^{N} w_{i}w_{j}\gamma_{m}(\mathbf{h}_{ij}) + 2\sum_{i=1}^{N} w_{i}\gamma_{m}(\mathbf{h}_{0i}) \rightarrow \text{Estimate of } \gamma_{m}(\mathbf{h})$$

with $\boldsymbol{h}_{ii} = \boldsymbol{s}_i - \boldsymbol{s}_i$ and $\boldsymbol{h}_{0i} = \boldsymbol{s}_0 - \boldsymbol{s}_i$

Properties and assumptions:

- \rightarrow within a small batch
- Intrinsic stationary
- Variability in x and y is negligible

$$ightarrow \gamma_m(h) = \gamma_m(h)$$

- Lattice data
 - \rightarrow known vector-valued lags $\in \mathbb{R}^{N_h}$
- Vector-valued FV $\gamma_m \in \mathbb{R}^{N_h}$
- There are certain structures in FVs
 - ightarrow similar within the neighboring bins

Properties and assumptions:

- ightarrow within a small batch
- Intrinsic stationary
- Variability in x and y is negligible $\rightarrow \gamma_m(h) = \gamma_m(h)$
- Lattice data \rightarrow known vector-valued lags $\in \mathbb{R}^{N_h}$
- Vector-valued FV $\gamma_m \in \mathbb{R}^{N_h}$
- There are certain structures in FVs
 → similar within the neighboring bins

Properties and assumptions:

- ightarrow within a small batch
- Intrinsic stationary
- Variability in x and y is negligible $\rightarrow \gamma_m(h) = \gamma_m(h)$
- Lattice data \rightarrow known vector-valued lags $\in \mathbb{R}^{N_h}$
- Vector-valued FV $\gamma_m \in \mathbb{R}^{N_h}$
- There are certain structures in FVs
 → similar within the neighboring bins

Problem formulation for DNN

- \Rightarrow Estimate the structure of $\gamma_m \in \mathbb{R}^{N_h}$

Network inputs

- Input 1 = Fourier coefficients of 3 bins $\Pi_m = [\pi_{m-1} \ \pi_{m-1} \ \pi_{m-1}] \in \mathbb{C}^{N \times 3}$
- Input 2 = Scan positions

FVnet

- (i) $\Phi_{\mathsf{EFV}}: \mathbb{C}^{M \times 3} \mapsto \mathbb{R}^{N_h \times 3}$
 - Fourier coeffs. \mapsto smoothed & normalized method-of-moments estimate of the FVs
- (ii) $\Phi_{\mathsf{hist}} : \mathbb{R}^{N \times 2} \mapsto \mathbb{R}^{N_h}$

Sampling positions \mapsto distribution of the available lags

Parameters: MUSE

	Parameter	Value/range
Specimen	Material	Steel
	Speed of sound c_0	5900 m s
	Dimension (L \times D \times H)	200 mm × 140 mm × 90 mm
UT Probe	Manufacturer	KARL DEUTSCH
	Model	P 1462.1
	Diameter (transducer element)	10 mm
	Center frequency f_C	$4.0\pm0.4\mathrm{MHz}$
	Bandwidth (-6dB)	$2.6\pm0.5 ext{MHz}$
Measurements	Wavelength λ	$pprox 1.475\mathrm{mm}$
	Spacing along x-axis dx	0.5 mm
	Spacing along y-axis dy	0.5 mm
	Sampling frquency f_S	80 MHz
	Temporal interval dt	12.5 ns
	Spacing along z-axis dz	36.875 μm

Parameters: SF-Kriging

	Parameter	Value/range
For all schemes	Batch size $(N_x \times N_y \times N_z)$	10 imes 10 imes 512
	Maximal lag $h_{\sf max}$	$5\sqrt{2}\mathrm{dx} \approx 7.071\mathrm{dx}$
For SF-Kriging	Minimal numer of points	5
	Weights regularization λ	1.0

Parameters: FWM Constant

	Parameter	Value/range
Specimen / Measurements	Material	Steel
	Speed of sound c ₀	5900 m s
	Dimension (L \times D \times H)	45 mm × 45 mm × 90 mm
	Spacing along x -axis dx	0.5 mm
	Spacing along <i>y</i> -axis dy	0.5 mm
	Sampling frquency f_S	80 MHz
	Temporal interval dt	12.5 ns
	Spacing along z-axis dz	36.875 μm
UT pulse	Transducer beam spread	25°
	Pulse model	Gabor
	SNR	20 dB

Parameters: FWM Variables

	Parameter	Value/range
Synthetic data	ROI (I)	$x = 10 \dots 35 \mathrm{mm}$
	$(30 \times 30 \times 512)$	$y=10\ldots 35\mathrm{mm}$
		$z = 24 \dots 43 \text{mm}$
	ROI (II)	$x = 10 \dots 35 \mathrm{mm}$
	$(30\times30\times512)$	$y=10\ldots 35\mathrm{mm}$
		$z=33\ldots52\mathrm{mm}$
Scatterer configuration	Number of scatterers in ROI	[2, 5, 10]
	Reflectivity of each scatterer	0.1 1
UT pulse	Center frequency f_C	$3.36\pm0.34\mathrm{MHz}$
	Bandwidth $(-6 dB)$	$1.0\pm0.1 ext{MHz}$
	Wavelength λ	$pprox 1.756\mathrm{mm}$
Spatial subsampling	Block size $(N_x \times N_y \times N_z)$	$10 \times 10 \times 512$
	Number of scans / block	10 100
	Scan distribution	Uniform or random walk

Results: Batch Wise Interpolation

Results: Batch Wise Interpolation

