華中科技大學

电子线路实验报告

实验一: 集成运算放大器的基本应用

院系		电子信息与通信学院	
专业	班级 _	信卓 2201 班	
姓	名 _	董浩	
学	号_	U202213781	
指导教师		陈林	

2023年10月19日

目 录

1	实验目的	1
2	实验元器件	1
3	实验任务	2
3.1	研究电压跟随器的作用	2
3.2	反向比例加法电路	2
3.3	积分电路	3
4	实验原理	3
4.1	反向比例加法电路	3
4.2	积分运算电路	4
5	实验过程	5
6	实验分析	5
7	实验总结	5

1 实验目的

- 1. 熟练掌握集成运算放大器的正确使用方法。
- 2. 掌握用集成运算放大器构成各种基本运算电路的方法。
- 3. 学会合理选用示波器的直流、交流耦合方式观察不同波形的方法。

2 实验元器件

名称	型号(参数)	数量
集成运算放大器	NE5532	1
	100Ω	1
	500Ω	1
 电阻	1ΚΩ	2
七 四	5.1ΚΩ	1
	10ΚΩ	1
	100ΚΩ	1
电容	0.22μF	1

3 实验任务

3.1 研究电压跟随器的作用

(1) 按图3-1连接电路。断开开关 K。输入 f=1kHz,Vipp=1V 的正弦信号,用示波器观察输出波形。

闭合开关 K。观察输出波形的变化情况。分别记录 K 闭合前、后信号源输出信号的峰-峰值,计算信号源的内阻 Rs,并解释 100Ω 负载电阻连接到信号源上产生的负载效应。

(2) 按图3-2连接电路。仍然从信号源送出频率为 1kHz、峰峰值为 1V 的正弦信号,用示波器观察输入、输出波形 (幅值与相位关系)。分别记录接上 RL 和去掉RL,两种情况下输出信号 vo 的大小,并解释观察到的实验现象。

图 3-1 直接连接

图 3-2 通过电压跟随器连接

3.2 反向比例加法电路

- (1) 按照图 3-3 在面包板上组装电路。电阻值取 $R_F=100k\Omega$, $R_1=10k\Omega$, $R_2=5.1k\Omega$, 安装电阻前先用万用表测试电阻值填入表中。
- (2) 按照图 3-3 连接分压电路,其中 $R_{s1}=R_{s2}=1k\Omega$. 将 v1 和 v2 连至图 3-3 对应输入端。
- (3) 检查无误后接通电源。从信号源送出频率为 1kHz、峰-峰值为 300mV 的正弦信号。用示波器测得 v_1 、 v_2 和 v_o 。填入表中,并记录它们的波形。
- (4) 关闭电源,将 R_{s2} 改为 500Ω , 检查无误后接通电源,再次用示波器测得 v1、v2 和 vo 填入表中。

图 3-3 加法器

3.3 积分电路

按照图 3-4 在面包板上组装电路。取 $R_1 = 10k\Omega$, $R_F = 100k\Omega$, C = 0.22F, $R_P = 10k\Omega$, 输入 f=200Hz, 峰峰值为 1V 的正方波。用示波器测试 v_i 和 v_o , 并画出其波形。

图 3-4 积分器

4 实验原理

4.1 反向比例加法电路

反向比例加法电路的实现如图 4-1 所示,输出电压的表达式为:

$$v_o = -\left(\frac{R_F}{R_1}v_{i1} + \frac{R_F}{v_{i2}}\right) \tag{4-1}$$

 R_1, R_2, R_F 用于控制输出电压与输入电压的关系,可在运放的同相输入端加上一直流补偿电阻,其取值为 $R_1//R_2//R_F$,减少输入失调电流对电路的影响。

图 4-1 反向比例加法电路

4.2 积分运算电路

积分运算电路的电路图如图 3-4 所示,当运算放大器开环电压增益足够大,且 R_5 开路时,可认为 $i_R=i_C$,其中 $i_R=\frac{V_i}{R_1}$, $i_c=-C\frac{dv_o(t)}{dt}$ 。设 t=0 时,电容器两端 初始电压 $v_o(O)$,则 $v_o(t)=\int_0^t v_1(t)\mathrm{d}t+v_o(0)$ 。当 $v_o(0)=0$ 且输入信号 $v_i(t)$ 为辐度为 V_i 的直流电压时, $v_o(t)=-\frac{1}{R_1C}\int_0^t V(t)\mathrm{d}t+v_o(0)=-\frac{1}{R_1C}V_it$,此时输出电压 $v_o(t)$ 的波形是随时间线性下降的,当输入信号为正方波时,输出电压的稳态波形 如图所示。

实际电路中,反馈电阻 Rf 用于直流负反馈,目的是减小集成运算放大器输出端的直接漂移,且其阻值必须取得大一些,防止电路变成一阶低通滤波器。但同时 Rf 的加入会对电容 C 产生分流作用,进而导致积分误差。因此,一般选用的元器件应满足 $R_f C \gg R_1 C$,以减小误差。

图 4-2 积分电路

- 5 实验过程
- 6 实验分析
- 7 实验总结