

17.2

24.0

10.9

8.8

8.9

8.2

20.8

11.8

13.4

38.5

22.2

23040

35787

37524

46.0

20.0

17.0

7.5 5.2 4.5 26.2 57123 6.0 **Problems** Problem 1 How many rows are in the dataset? [5]: 5 Double-click here for the solution. Problem 2 How many community areas in Chicago have a hardship index greater than 50.0? [6]: 0 Double-click **here** for the solution. Problem 3 What is the maximum value of hardship index in this dataset? **Did you know?** IBM Watson Studio lets you build and deploy an Al solution, using the best of open source and IBM software and giving your team a single environment to work in. Learn more here. [7]: %sql SELECT MAX (hardship\_index) FROM chicago\_socioeconomic\_data; ibm\_db\_sa://gkm89241:\*\*\*@dashdb-txn-sbox-yp-lon02-01.services.eu-gb.bluemix.net:50000/BLUDB [7]: 1 98.0 Double-click \_\_here\_\_ for the solution. %sql SELECT MAX(hardship\_index) FROM chicago\_socioeconomic\_data; Problem 4 Which community area which has the highest hardship index? [20]: %sql select community\_area\_name from chicago\_socioeconomic\_data where hardship\_index = ( select max(hardship\_index) from chicago\_socioeconomic\_data ) \* ibm\_db\_sa://gkm89241:\*\*\*@dashdb-txn-sbox-yp-lon02-01.services.eu-gb.bluemix.net:50000/BLUDB Done. [20]: community\_area\_name Riverdale Double-click \_\_here\_\_ for the solution. ## We can use the result of the last query to as an input to this query:
%sql\_SELECT community\_area\_name FROM chicago\_socioeconomic\_data where hardship\_index=98.0 \*\*sqL SELECT community\_area\_name FROM chicago socioeconomic\_data ORDER BY hardship\_index DESC NULLS LAST FETCH FIRST ROW ONLY; ## or you can use a sub-query to determine the max hardship index:

\*\*sql select community\_area\_name from chicago\_socioeconomic\_data where hardship\_index = ( select max(hardship\_index) from chicago\_socioeconomic\_data ) Correct answer: 'Riverdale' Problem 5 Which Chicago community areas have per-capita incomes greater than \$60,000? [22]: %sql select community\_area\_name from chicago\_socioeconomic\_data where per\_capita\_income\_ > 6  $* ibm\_db\_sa://gkm89241:***@dashdb-txn-sbox-yp-lon02-01.services.eu-gb.bluemix.net:50000/BLUDB$ [22]: community\_area\_name Lake View Lincoln Park Near North Side Loop Double-click \_\_here\_\_ for the solution. <!-- Hint: %sql SELECT community\_area\_name FROM chicago\_socioeconomic\_data WHERE per\_capita\_income\_ > 60000; Correct answer:Lake View,Lincoln Park, Near North Side, Loop

Create a scatter plot using the variables <code>per\_capita\_income\_</code> and <code>hardship\_index</code> . Explain the correlation between the two variables.

[24]: income\_vs\_hardship = %sql SELECT per\_capita\_income\_, hardship\_index FROM chicago\_socioeconomic\_data;

[23]: import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

\* ibm\_db\_sa://gkm89241:\*\*\*@dashdb-txn-sbox-yp-lon02-01.services.eu-gb.bluemix.net:50000/BLUDB Come. //home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional ndexing is deprecated; use 'arr[tuple(seq)]' instead of 'arr[seq]'. In the future this will be interpreted as an array index, 'arr[np.array(seq)]', which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] \* weights, axis=axis) / sumval 20 10000 20000 30000 40000 50000 60000 70000 80000 90000 per capita income [27]: income\_vs\_poverty = %sql SELECT per\_capita\_income\_, percent\_households\_below\_poverty FROM chicago\_socioeconomic\_data;
plot = sns.jointplot(x='per\_capita\_income\_',y='percent\_households\_below\_poverty', data=income\_vs\_poverty.DataFrame())
plt.title('income\_vs\_poverty') \* ibm\_db\_sa://gkm89241:\*\*\*@dashdb-txn-sbox-yp-lon02-01.services.eu-gb.bluemix.net:50000/BLUDB [27]: Text(0.5, 1, 'income\_vs\_poverty') 10000 20000 30000 40000 50000 60000 70000 80000 90000 per\_capita\_income\_ [28]: income\_vs\_unemployed = %sql SELECT per\_capita\_income\_, percent\_aged\_16\_unemployed FROM chicago\_socioeconomic\_data; plot = sns.jointplot(x='per\_capita\_income\_',y='percent\_aged\_16\_unemployed', data=income\_vs\_unemployed.DataFrame()) \* ibm\_db\_sa://gkm89241:\*\*\*@dashdb-txn-sbox-yp-lon02-01.services.eu-gb.bluemix.net:50000/BLUDB 10000 20000 30000 40000 50000 60000 70000 80000 90000 per\_capita\_income\_ Conclusion Now that you know how to do basic exploratory data analysis using SQL and python visualization tools, you can further explore this dataset to see how the variable per\_capita\_income\_ is related to percent\_households\_below\_poverty and percent\_aged\_16\_unemployed. Try to create interesting visualizations! Summary In this lab you learned how to store a real world data set from the internet in a database (Db2 on IBM Cloud), gain insights into data using SQL queries. You also visualized a portion of the data in the database to see what story it tells.

plot = sns.jointplot(x='per\_capita\_income\_',y='hardship\_index', data=income\_vs\_hardship.Data=rame())

