Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчёт по лабораторной работе № 4

Тема: Расчёт сетей СМО.

Дисциплина: Системный анализ и принятие решений.

Выполнил студент гр. 5130901/10101	(подпись)	М.Т. Непомнящий
Руководитель		А.Г. Сиднев
	(подпись)	

Санкт-Петербург

Оглавление

1.	3	адание	3
	1.1.	Условие варианта	3
2.	X	од работы	4
	2.1.	Часть А	4
	2.2.	Часть Б	6
	2 3	Сравнительная таблица	8

1. Задание

1.1. Условие варианта

Вариант 7:

Задана сеть массового обслуживания, включающая три узла, M=3 . Число каналов обслуживания в узлах определяется вектором $\boldsymbol{m}^T=(1\ 1\ 1)$, интенсивности обслуживания — вектором

$$\mu^T = (2 c^{-1}, 0.8 c^{-1}, 0.1 c^{-1}).$$

В сети циркулируют N заявок в соответствии с матрицей передач R:

$$R = \begin{pmatrix} 0.1 & 0.4 & 0.5 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Требуется:

- а) определить характеристики узлов и сети в целом (N = 3);
- б) сопоставить характеристики узлов указанной сети с сетью, где узлы 2 и 3 объединены в один узел с числом каналов, равным двум и усреднённой интенсивностью $0.45\ c^{-1}$.

2. Ход работы

2.1. Часть А

Изобразим граф сети для пункта (а):

Рис. 1 – Граф сети (а)

Рассчитаем вероятности посещения узлов сети ω . Для этого построим систему уравнений:

$$\omega_1 = \frac{\omega_1}{10} + \omega_2 + \omega_3$$

$$\omega_2 = \frac{2\omega_1}{5}$$

$$\omega_3 = \frac{\omega_1}{2}$$

$$\omega_1 + \omega_2 + \omega_3 = 1$$

Значения ω:

$$\omega_1 = \frac{10}{19}$$

$$\omega_2 = \frac{4}{19}$$

$$\omega_3 = \frac{5}{19}$$

Количество состояний системы равно $|S(3,4)| = C_6^3 = 10$, где S(N,M) — множество всех состояний при N заявок в системе и M узлах

Вероятность каждого состояния рассчитывается по формуле:

$$P(n_1, ..., n_m) = \frac{\prod_{i=1}^{M} z_i(n_i)}{\sum_{n \in S(N,M)} \prod_{i=1}^{M} z_i(n_i)}$$

где

$$z_i(n_i) = \frac{\omega_i^{n_i}}{\prod_{k=1}^{n_i} \mu_i(k)}$$
$$\mu_i(k) = \begin{cases} k\mu_i, & k < m_i \\ m_i\mu_i, & k \ge m_i \end{cases}$$

где m_i – количество каналов в узле.

В таком случае вероятности равны:

P_{003}	$8.1037 \cdot 10^{-1}$
P ₀₁₂	$8.1037 \cdot 10^{-2}$
P_{021}	$8.1037 \cdot 10^{-3}$
P_{030}	$8.1037 \cdot 10^{-4}$
P_{102}	$8.1037 \cdot 10^{-2}$
P_{111}	$8.1037 \cdot 10^{-3}$
P_{120}	$8.1037 \cdot 10^{-4}$
P ₂₀₁	$8.1037 \cdot 10^{-3}$
P_{210}	$8.1037 \cdot 10^{-4}$
P ₃₀₀	$8.1037 \cdot 10^{-4}$

Для расчета свойств системы использовались следующие формулы:

$$\bar{J}_{j} = \sum_{n \in S(N,M)} n_{j} P(n_{1}, \dots, n_{m})$$

$$\bar{n}_{o_{j}} = \sum_{n \in S(N,M); n_{j} > m_{j}} (n_{j} - m_{j}) P(n_{1}, \dots, n_{m})$$

$$\bar{t}_{o \times_{j}} = \frac{\bar{n}_{o_{j}}}{\mu_{j} \left(\bar{J}_{j} - \bar{n}_{o_{j}}\right)}$$

$$\bar{t}_{c_{j}} = \frac{\bar{J}_{j}}{\mu_{j} \left(\bar{J}_{j} - \bar{n}_{o_{j}}\right)}$$

Для всей сети:

$$\bar{n}_o = \sum_{i=1}^{M} \bar{n}_{o_i}; \bar{j} = \sum_{i=1}^{M} \bar{j}_i; \bar{t}_c = \sum_{i=1}^{M} \bar{t}_{c_i}; \bar{t}_{o \times i} = \sum_{i=1}^{M} \bar{t}_{o \times i}$$

	1 узел	2 узел	3 узел	Вся сеть
Среднее число требований <i>j</i>	$1.1021 \cdot 10^{-1}$	1.1021 · 10 ⁻¹	2.7796	3.0
Среднее число ожидающих требований \bar{n}_o	$1.0535 \cdot 10^{-2}$	1.0535 · 10 ⁻²	1.7828	1.8039
Среднее время пребывания \bar{t}_c	$5.5285 \cdot 10^{-1}$	1.3821	2.7886 $\cdot 10^{1}$	$2.9821 \cdot 10^{1}$
Среднее время ожидания $\bar{t}_{\text{ож}}$	$5.2846 \cdot 10^{-2}$	1.3211 · 10 ⁻¹	1.7886 · 10 ¹	$1.8071 \cdot 10^{1}$

2.2. Часть Б

Изобразим граф сети для пункта (б):

Рис. 2 – Гра сети (б)

Рассчитаем вероятности посещения узлов сети ω . Для этого построим систему уравнений:

$$\omega_1 = \frac{\omega_1}{10} + \omega_2$$

$$\omega_2 = \frac{9\omega_1}{10}$$

$$\omega_1 + \omega_2 = 1$$

Значения ω:

$$\omega_1 = \frac{10}{19}$$

$$\omega_2 = \frac{9}{19}$$

Количество состояний системы равно $|S(3,4)| = C_6^3 = 4$, где S(N,M) — множество всех состояний при N заявок в системе и M узлах

Вероятность каждого состояния рассчитывается по формуле:

$$P(n_1, ..., n_m) = \frac{\prod_{i=1}^{M} z_i(n_i)}{\sum_{n \in S(N,M)} \prod_{i=1}^{M} z_i(n_i)}$$

где:

$$\begin{split} z_i(n_i) &= \frac{\omega_i^{n_i}}{\prod_{k=1}^{n_i} \mu_i(k)} \\ \mu_i(k) &= \begin{cases} k\mu_i, & k < m_i \\ m_i\mu_i, & k \geq m_i \end{cases} \end{split}$$

где m_i – количество каналов в узле.

В таком случае вероятности равны:

P_{03}	$5.5172 \cdot 10^{-1}$
P_{12}	$2.7586 \cdot 10^{-1}$
P_{21}	$1.3793 \cdot 10^{-1}$
P ₃₀	$3.4483 \cdot 10^{-2}$

Для расчета свойств системы использовались следующие формулы:

$$\bar{J}_{j} = \sum_{n \in S(N,M)} n_{j} P(n_{1}, \dots, n_{m})$$

$$\bar{n}_{o_{j}} = \sum_{n \in S(N,M); n_{j} > m_{j}} (n_{j} - m_{j}) P(n_{1}, \dots, n_{m})$$

$$\bar{t}_{o \times j} = \frac{\bar{n}_{o_{j}}}{\mu_{j} \left(\bar{J}_{j} - \bar{n}_{o_{j}}\right)}$$

$$\bar{t}_{c_{j}} = \frac{\bar{J}_{j}}{\mu_{j} \left(\bar{J}_{j} - \bar{n}_{o_{j}}\right)}$$

Для всей сети:

$$\bar{n}_o = \sum_{i=1}^{M} \bar{n}_{o_i}; \bar{j} = \sum_{i=1}^{M} \bar{j}_i; \bar{t}_c = \sum_{i=1}^{M} \bar{t}_{c_i}; \bar{t}_{om} = \sum_{i=1}^{M} \bar{t}_{om_i}$$

	1 узел	2 узел	Вся сеть
Среднее число требований \bar{J}	6.5517 · 10 ⁻¹	2.3448	3.0
Среднее число ожидающих требований \bar{n}_o	$2.069 \cdot 10^{-1}$	5.5172 · 10 ⁻¹	7.5862 · 10 ⁻¹
Среднее время пребывания \bar{t}_c	7.3077 · 10 ⁻¹	2.906	3.6368
Среднее время ожидания $ar{t}_{ ext{oж}}$	2.3077 · 10 ⁻¹	6.8376 · 10 ⁻¹	9.1453 ⋅ 10 ⁻¹

2.3. Сравнительная таблица

	Система	1 узел	2 узел	3 узел	Вся сеть
Среднее число	A	1.1021 · 10 ⁻¹	1.1021 · 10 ⁻¹	2.7796	3.0
требований <i>j</i>	Б	6.5517 · 10 ⁻¹	2.3448	-	3.0
Среднее число ожидающих требований	A	1.0535 · 10 ⁻²	1.0535 · 10 ⁻²	1.7828	1.8039
$ar{n}_o$	Б	$2.069 \cdot 10^{-1}$	5.5172 · 10 ⁻¹	-	7.5862 $\cdot 10^{-1}$
Среднее время	A	5.5285 · 10 ⁻¹	1.3821	$2.7886 \cdot 10^{1}$	$2.9821 \cdot 10^{1}$
пребывания $ar{t}_c$	Б	7.3077 $\cdot 10^{-1}$	2.906	-	3.6368
Среднее время ожидания	A	5.2846 · 10 ⁻²	1.3211 · 10 ⁻¹	$1.7886 \cdot 10^{1}$	$1.8071 \cdot 10^{1}$
$ar{t}_{ ext{ow}}$	Б	$2.3077 \cdot 10^{-1}$	6.8376 · 10 ⁻¹	-	9.1453 $\cdot 10^{-1}$