Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
Code		Theory	Practical	Tutori al	Theory	Practic al	Tutorial	Total	
ECC405	Principles of Communication Engineering	03		1	03		-	03	

Subject	Subject Name	Examination Scheme								
Code	Oubject Hame	Theory Marks				Exam	Term	Prac.	Total	
Jour		Internal assessment		End Sem.	Duration (in Hrs.)	Work	Oral			
		Test	Test	Avg.	Exam			_		
		1	2	of				W		
				Test 1						
				and		(
				Test 2		-			100	
ECC405	Principles of	20	20	20	80	03			100	
	Communicatio n Engineering					2			= 1	

Course Pre-requisite:

- ECC301 Engineering Mathematics- III
- 2. ECC302 Electronic Devices and Circuits

Course Objectives:

- To illustrate the fundamentals of basic communication system.
- To understand various analog modulation and demodulation techniques.
- 3. To focus on applications of analog modulation and demodulation techniques.
- 4. To explain the key concepts of analog and digital pulse modulation and demodulation techniques.

Course Outcomes:

After successful completion of the course student will be able to:

- Understand the basic components and types of noises in communication system.
- 2. Analyze the concepts of amplitude modulation and demodulation.
- Analyze the concepts of angle modulation and demodulation.
- Compare the performance of AM and FM receivers.
- Describe analog and digital pulse modulation techniques.
- Illustrate the principles of multiplexing and demultiplexing techniques.

Module No.	Unit No.	Topics				
1		Basics of Communication System	05			
	1.1	Block diagram, electromagnetic spectrum, signal bandwidth and power, types of communication channels, Introduction to time and frequency domain. Basic concepts of wave propagation.	03			
	1.2	Types of noise, signal to noise ratio, noise figure, noise temperature and Friss formula.	02			
2		Amplitude Modulation and Demodulation	12			
	2.1	Basic concepts, need for modulation, waveforms (time domain and frequency domain), modulation index, bandwidth, voltage distribution and power calculations.	04			
	2.2	DSBFC: Principles, low-level and high-level transmitters, DSB suppressed carrier, Balanced modulators with diode (Ring modulator and FET) and SSB systems.	04			
	2.3	Amplitude demodulation: Diode detector, practical diode detector, Comparison of different AM techniques, Applications of AM and use of VSB in broadcast television.	04			
3		Angle Modulation and Demodulation	10			
	3.1	Frequency and Phase modulation (FM and PM): Basic concepts, mathematical analysis, FM wave (time and frequency domain), sensitivity, phase and frequency deviation, modulation index, deviation ratio, bandwidth requirement of angle modulated waves, narrowband FM and wideband FM.	04			
	3.2	Varactor diode modulator, FET reactance modulator, stabilized AFC, Direct FM transmitter, indirect FM Transmitter, noise triangle, pre- emphasis and de-emphasis	03			
	3.3	FM demodulation: Balanced slope detector, Foster-Seely discriminator, Ratio detector, FM demodulator using Phase lock loop, amplitude limiting and thresholding, Applications of FM and PM.	03			
4		Radio Receivers	04			
	4.1	Characteristics of radio receivers, TRF, Super - heterodyne receiver block diagram, tracking and choice of IF, AGC and its types and Communication receiver.	03			
	4.2	FM receiver block diagram, comparison with AM receiver.	01			
5	1 6	Analog and Digital Pulse Modulation & Demodulation	06			
	5.1	Sampling theorem for low pass signal, proof with spectrum, Nyquist criteria, Sampling techniques, aliasing error and aperture effect.	03			
1	5.2	PAM, PWM, PPM generation, detection and applications. Basics of PCM system and differential PCM system. Concepts of Delta modulation (DM) and Adaptive Delta Modulation (ADM).	03			
6		Multiplexing & De-multiplexing	02			
	6.1	Frequency Division Multiplexing transmitter & receiver block diagram and applications. Time Division Multiplexing transmitter & receiver block diagram and applications.	02			
		Total	39			
		ı				

Textbooks:

- Kennedy and Davis, "Electronics Communication System", Tata McGraw Hill, Fourth edition.
- B.P. Lathi, Zhi Ding "Modern Digital and Analog Communication system", Oxford University Press, Fourth edition.
- Wayne Tomasi, "Electronics Communication Systems", Pearson education, Fifth edition.

Reference Books:

- Taub, Schilling and Saha, "Taub's Principles of Communication systems", Tata McGraw Hill, Third edition.
- P. Sing and S.D. Sapre, "Communication Systems: Analog and Digital", Tata McGraw Hill, Third edition.
- Simon Haykin, Michel Moher, "Introduction to Analog and Digital Communication", Wiley, Second edition.
- Dennis Roddy and John Coolen, Electronic Communication, Pearson, 4/e, 2011.
- 5. Louis Frenzel, "Communication Electronics", Tata McGraw Hill, Third Edition.

NPTEL/ Swayam Course:

 Course: Analog Communication By Prof. Goutam Das (IIT Kharagpur); https://swayam.gov.in/nd1_noc20_ee69/preview

Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- Question paper will comprise of total 06 questions, each carrying 20 marks.
- Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- Remaining questions will be mixed in nature and randomly selected from all the modules.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Total 04 questions need to be solved.