Flow Cytometry Analysis

- Determining cell types using deep learning techniques
- Creating software to allow streamlined process for flow cytometry analysis

The problem

FlowJo

The current standard of analyzing flow cytometry data is the use of the paid application FlowJo, which is very tedious and done manually.

Variability in Data

The method for determining different cell states and types is done by eye, and lacks the capability to determine non-linear patterns. In addition, the multi-channel capabilities of the flow data are not utilized.

Problem statement

There are significant limitations in the standard ways used to interpret flow cytometry data, and specific learning algorithms can be used to better determine various cell states.

Challenges

click to	FSC- unscroll	FSC- output; dou	GRN- uble click to	GRN- hide	NN	RED- HLin	RED- HLog	RED2- HLin	RED2- HLog	RED2- A	RED2- ALog	RED2- W	SSC- HLin	SSC- HLog	YEL- HLin	YEL- HLog
0	576.0	959.0	43.0	671.0	0	0.0	169.0	0.0	125.0	0.0	155.0	702.0	120.0	785.0	0.0	242.0
1	437.0	928.0	9.0	502.0	0	0.0	228.0	0.0	118.0	0.0	137.0	765.0	106.0	771.0	0.0	0.0
2	289.0	882.0	4.0	412.0	1	0.0	246.0	0.0	79.0	0.0	0.0	493.0	22.0	598.0	0.0	175.0
3	85.0	746.0	285.0	881.0	0	3.0	385.0	1.0	288.0	1.0	298.0	480.0	62.0	712.0	8.0	489.0
4	464.0	935.0	11.0	524.0	0	1.0	253.0	0.0	252.0	0.0	225.0	593.0	123.0	788.0	0.0	114.0

Plotting multiple experiments

Solution: Web application for Flow Cytometry Analysis

https://fcs.nathan2wong.com

Demonstration Video

Machine Learning and Classification

- Initial goal: determine difference between different samples (ie. Dox vs Nothing)
- Secondary goal: classify into 4 different cell types
- Unsupervised learning, Perceptrons, Decision-trees,
 Convolutional Neural Networks, Support Vector Machine,
 K-nearest neighbors, Monte-Carlo Random Walk

Unsupervised Learning

Train to differentiate datasets (ie. Dox vs Control)

Perceptron: Binary Linear Classifier (~99% accuracy)

		Green out; double click		classifier
0		599.188782		[1]
1	0.599727	2.180591	0	[0]
2	932.756930	346.388988	1	[1]
3	795.294284	124.819488	1	[1]
4	1.961999	0.115012	0	[0]
5	992.634669	381.528351	1	[1]
6	1.773458	2.059145	0	[0]
7	870.866412	502.507863	1	[1]
8	1.916221	-0.019927	0	[0]
9	1.516055	1.693334	0	[0]
10	1.935923	2.216021	0	[0]
11	1.423885	1.832374	0	[0]
12	2.320462	1.099079	0	[0]
13	798.416642	493.536988	1	[1]
14	866.829447	408.425943	1	[1]
			3	

Perceptron: Binary Linear Classifier (~74% accuracy)

Adding more features (~79% accuracy)

click to	FSC- unscroll o	FSC- output; dou	GRN- uble click to	GRN-	NN	RED- HLin	RED- HLog	RED2- HLin	RED2- HLog	RED2- A	RED2- ALog	RED2- W	2 2 72	SSC- HLog	YEL- HLin	YEL- HLog
0	576.0	959.0	43.0	671.0	0	0.0	169.0	0.0	125.0	0.0	155.0	702.0	120.0	785.0	0.0	242.0
1	437.0	928.0	9.0	502.0	0	0.0	228.0	0.0	118.0	0.0	137.0	765.0	106.0	771.0	0.0	0.0
2	289.0	882.0	4.0	412.0	1	0.0	246.0	0.0	79.0	0.0	0.0	493.0	22.0	598.0	0.0	175.0
3	85.0	746.0	285.0	881.0	0	3.0	385.0	1.0	288.0	1.0	298.0	480.0	62.0	712.0	8.0	489.0
4	464.0	935.0	11.0	524.0	0	1.0	253.0	0.0	252.0	0.0	225.0	593.0	123.0	788.0	0.0	114.0

Nature Article Flow Cytometry Data

Other Classifiers (~ 70-75% accuracy)

- Random Forest (Decision tree)
- Hyperparameter regularization for perceptrons
- Convolutional Neural network (10 hidden nodes)

```
INFO:tensorflow:Calling model fn.
INFO:tensorflow:Done calling model fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from neomodel/train5/model.ckpt-9000
INFO:tensorflow:Running local init op.
INFO:tensorflow:Done running local init op.
INFO:tensorflow:Saving checkpoints for 9000 into neomodel/train5/model.ckpt.
INFO:tensorflow:loss = 225.01385, step = 9001
INFO:tensorflow:global step/sec: 105.394
INFO:tensorflow:loss = 163.49983, step = 9101 (0.954 sec)
INFO:tensorflow:global step/sec: 103.952
INFO:tensorflow:loss = 290.31854, step = 9201 (0.958 sec)
INFO:tensorflow:global step/sec: 114.036
INFO:tensorflow:loss = 359.3168, step = 9301 (0.885 sec)
INFO:tensorflow:global step/sec: 113.929
INFO:tensorflow:loss = 147.5505, step = 9401 (0.878 sec)
INFO:tensorflow:global step/sec: 108.405
INFO:tensorflow:loss = 164.68896, step = 9501 (0.917 sec)
INFO:tensorflow:global step/sec: 102.552
INFO:tensorflow:loss = 149.77173, step = 9601 (0.977 sec)
INFO:tensorflow:global step/sec: 108.835
INFO:tensorflow:loss = 289.1897, step = 9701 (0.917 sec)
INFO:tensorflow:global step/sec: 110.329
INFO:tensorflow:loss = 457.52533, step = 9801 (0.906 sec)
INFO:tensorflow:global step/sec: 107.603
INFO:tensorflow:loss = 682.356, step = 9901 (0.929 sec)
INFO:tensorflow:Saving checkpoints for 10000 into neomodel/train5/model.ckpt.
INFO:tensorflow:Loss for final step: 433.19727.
```

Challenges and Next Steps

Wet lab side

Need to re-evaluate goals for this project

Computational

- Develop a reliable method to determine 'true' cell states
 - Sequencing is most reliable method, as described in Nature paper
- Gather more data, with more parameters (MTT can be used)
 - Currently looking into full-well imaging
 - Image Cytometry

Web application

- Expand to fit a library of detection parameters
- Add more visualization capabilities