

NMEA Reference Guide

Issue 2

CSR

Churchill House Cambridge Business Park Cowley Road Cambridge CB4 0WZ United Kingdom

Registered in England 3665875

Tel.: +44 (0)1223 692000 Fax.: +44 (0)1223 692001

www.csr.com

Document History

Revision	Date	Change Reason
1	30 JUN 10	Original publication of this document
2	22 DEC 10	Editorial Updates Updated content for the following message: MID 120 Added name in Table 3.29
3	21 JAN11	Editorial Updates

Trademarks, Patents and Licenses

Unless otherwise stated, words and logos marked with ™ or ® are trademarks registered or owned by CSR plc or its affiliates.

Other products, services and names used in this document may have been trademarked by their respective owners.

This document contains proprietary and confidential information regarding SiRF products and is provided only under a non-disclosure agreement. SiRF reserves the right to make changes to its products and specifications at any time and without notice. SiRF makes no warranty, either express or implied, as to the accuracy of the information in this document. Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance. All terms and conditions of sale are governed by separate terms and conditions, a copy of which may be obtained from your authorized SiRF sales representative. SiRF, SiRFstar, and the SiRF logo are registered trademarks of SiRF Technology, Inc. The SiRF products described in this document are protected by one or more patents granted in the United States and worldwide.

No statements or representations in this document are to be construed as advertising, marketing, or offering for sale in the United States imported covered products subject to the Cease and Desist Order issued by the U.S. International Trade Commission in its Investigation No. 337-TA-602. Such products include SiRFstarIII™ chips that operate with SiRF software that supports SiRFInstantFix™, and/or SiRFLoc® servers, or contains SyncFreeNav functionality.

Contents

1	Over	view	7
	1.1	Who Should Use This Guide	
	1.2	How This Guide Is Organized	7
	1.3	Related Manuals	7
	1.4	General Format	
2	Outp	ut Messages	
	2.1	Global Positioning System Fixed Data: Message ID GGA	
	2.2	Geographic Position - Latitude/Longitude: Message ID GLL	
	2.3	GNSS DOP and Active Satellites: Message ID GSA	
	2.4	GNSS Satellites in View: Message ID GSV	
	2.5	MSK Receiver Signal: Message ID MSS	
	2.6	Recommended Minimum Specific GNSSData: Message ID RMC	
	2.7	Course Over Ground and Ground Speed: Message ID VTG	
	2.8	Time and Date: Message ID ZDA	
	2.9	Proprietary: Message ID 140	
	_	OkToSend: Message ID 150	
		Data and Extended Ephemeris Mask: Message ID 151	
		Extended Ephemeris Integrity: Message ID 152	
		Extended Ephemeris ACK: Message ID 154	
		Proprietary: Message ID 155	
		ECLM ACK/NACK: Message ID 156, Sub ID 0x20	
		ECLM EE Age: Message ID 156, Sub ID 0x21	
		ECLM SGEE Age: Message ID 156, Sub ID 0x22	
		ECLM Download Initiate Request: Message ID 156, Sub ID 0x23	
		ECLM Erase Storage File: Message ID 156, Sub ID 0x24	
		ECLM Update File Content: Message ID 156, Sub ID 0x25	
		ECLM Request File Content: Message ID 156, Sub ID 0x26	
		Watchdog Timeout and Exception Condition: Message ID 160	
		Reserved: Message ID 225	
3		Messages	
3	3.1	SetSerialPort: Message ID 100	
		NavigationInitialization: Message ID 101	
	3.2		
	3.3	SetDGPSPort: Message ID 102	
	3.4	Query/Rate Control: Message ID 103	
	3.5	LLANavigationInitialization: Message ID 104	
	3.6	Development Data On/Off: Message ID 105:	
	3.7	Select Datum: Message ID 106	
	3.8	Proprietary: Message ID 107	
	3.9	Proprietary: Message ID 108	
		Extended Ephemeris Debug: Message ID 110	
		Set Message Rate: Message ID 112	
		Set GRF3i+ IF Bandwidth Mode: Message ID 113, Sub ID 0x01	
		Set GRF3i+ Normal/Low Power RF Mode: Message ID 113, Sub ID 0x02	
		ECLM Start Download: Message ID 114 (Sub ID 0x16)	
		ECLM File Size: Message ID 114, Sub ID 0x17	
		ECLM Packet Data: Message ID 114, Sub ID 0x18	
		ECLM Get EE Age: Message ID 114, Sub ID 0x19	
		ECLM Get SGEE Age: Message ID 114, Sub ID 0x1A	
		ECLM Host File Content: Message ID 114, Sub ID 0x1B	
	3.20	ECLM Host ACK/NACK: Message ID 114, Sub ID 0x1C	46

3.21	System Turn Off: Message ID 117, Sub ID 0x10	47
3.22	Switch to Boot Mode: Message ID 117, Sub ID 0x20	47
3.23	Storage Config Setting: Message ID 120	48
3.24	Marketing Software Configuration: Message ID 200	48
3.25	MSK Receiver Interface: Message ID MSK	49
Terms and	Definitions	50
List of	Tables	
Table 2.1	NMEA Output Messages	8
Table 2.2	Supported NMEA Output Messages	10
Table 2.3	GGA Data Format	12
Table 2.4	Position Fix Indicator	
Table 2.5	GLL Data Format	
Table 2.6	GSA Data Format	14
Table 2.7	Mode 1	14
Table 2.8	Mode 2	14
Table 2.9	GSV Data Format	15
Table 2.10	MSS Data Format	16
Table 2.11	RMC Data Format	17
Table 2.12	VTG Data Format	18
Table 2.13	ZDA Data Format	19
Table 2.14	Proprietary	19
Table 2.15	OkToSend Massage Data Format	20
Table 2.16	GPS Data and Ephemeris Mask	20
Table 2.17	Extended Ephemeris Integrity	21
Table 2.18	Extended Ephemeris ACK	21
Table 2.19	Proprietary	22
Table 2.20	ECLM ACK/NACK	22
Table 2.21	Description of ACK/NACK Values	23
Table 2.22	ECLM EE Age Fields	24
Table 2.23	ECLM EE Age	24
Table 2.24	ECLM Get SGEE Age	25
Table 2.25	ECLM Download Initiate Request	26
Table 2.26	Erase Storage File	26
Table 2.27	Update File Content	27
Table 2.28	Request File Content	27
Table 2.29	Watchdog and Exception Condition Notification	29
Table 3.1	NMEA Input Messages	30
Table 3.2	Supported NMEA Input Messages	31
Table 3.3	Set Serial Port Data Format	33
Table 3.4	Navigation Initialization Data Format	34
Table 3.5	Reset Mode Value (SiRFstarIII and Later)	34
Table 3.6	Reset Configuration: SiRFLoc Specific	35
Table 3.7	Set DGPS Port Data Format	35
Table 3.8	Query/Rate Control Data Format	36
Table 3.9	Messages	36
Table 3.10		
Table 3.11		
Table 3.12	·	
Table 3.13		
Table 3.14	Proprietary	40
Table 3.15	Proprietary	40

Table 3.16	Extended Ephemeris Debug	40
Table 3.17	Table Set Message Rate	
Table 3.18	Set GRF3i+ IF Bandwidth Mode	
Table 3.19	Set GRF3i+ IF Bandwidth Mode	42
Table 3.20	ECLM Start Download	42
Table 3.21	ECLM File Size	43
Table 3.22	SGEE Packet Data	
Table 3.23	ECLM Get EE Age	44
Table 3.24	Get SGEE Age	45
Table 3.25	Host File Content	45
Table 3.26	Host ACK/NACK	
Table 3.27	System Turn Off	47
Table 3.28	Switch to Boot Mode	47
Table 3.29	Storage Configuration Option Settings Format	48
Table 3.30	MSK Data Format	49

1 Overview

Most SiRF products support a subset of the NMEA-0183 standard for interfacing marine electronic devices as defined by the National Marine Electronics Association (NMEA).

The *NMEA Reference Manual* provides details of NMEA messages developed and defined by SiRF. It does not provide information about the complete NMEA-0183 interface standard.

1.1 Who Should Use This Guide

This manual was written assuming the user has a basic understanding of interface protocols and their use.

1.2 How This Guide Is Organized

This manual contains the following chapters:

- Output Messages: Section 2 defines NMEA standard output messages supported by SiRF and NMEA proprietary output messages developed by SiRF.
- Input Messages: Section 3 defines NMEA standard input messages supported by SiRF and NMEA proprietary input messages developed by SiRF.

1.3 Related Manuals

Refer to the following documents for more information:

- NMEA-0183 Standard For Interfacing Marine Electronic Devices
- SiRF Binary Protocol Reference Manual
- SiRF Evaluation Kit User Guides
- SiRF System Development Kit User Guides

1.4 General Format

NMEA 0183 messages use the ASCII character set and have a defined format. Each message begins with a \$ (hex 0x24) and end with a carriage return and line feed (hex 0x0D 0x0A, represented as <CR><LF>). Each message consists of one or more fields of ASCII letters and numbers, separated by commas. After the last field, and before the <CR><LF> is a checksum consisting of an asterisk (*, hex 0x2A) followed by two ASCII characters representing the hexadecimal value of the checksum. The checksum is computed as the exclusive OR of all characters between the \$ and * characters.

Note:

In NMEA 0183 specifications earlier than version 2.3, the checksum is optional.

All references to discontinued unsupported products GSW2 and SiRFXTrac are provided for historical reasons only.

2 Output Messages

Table 2.1 lists each of the NMEA output messages specifically developed and defined by SiRF for use within SiRF products.

Message	Description
GGA	Time, position and fix type data
GLL	Latitude, longitude, UTC time of position fix and status
GSA	GPS receiver operating mode, satellites used in the position solution, and DOP values
GSV	Number of GPS satellites in view satellite ID numbers, elevation, azimuth, and SNR values
MSS	Signal-to-noise ratio, signal strength, frequency, and bit rate from a radio-beacon receiver
RMC	Time, date, position, course and speed data
VTG	Course and speed information relative to the ground
ZDA	PPS timing message (synchronized to PPS)
150	OK to send message
151	GPS Data and Extended Ephemeris Mask
152	Extended Ephemeris Integrity
154	Extended Ephemeris ACK
155	Extended Ephemeris Proprietary Message
156,0X20	ECLM ACK/NACK
156,0X21	ECLM EE Get Age response
156,0X22	ECLM Get SGEE Age response
156,0X23	ECLM Download Initiate Request
156,0X24	ECLM Erase Storage File
156,0X25	ECLM Update File Content
156,0X26	ECLM Request File Content
160	Watchdog Timeout and Exception Condition

Table 2.1: NMEA Output Messages

A full description of the listed NMEA messages is provided in the following sections.

Table 2.2 summarizes which SiRF NMEA output messages are supported by the specific SiRF platforms.

Table 2.2 Supported NMEA Output Messages.

									Code Linked Host		GPIO Strapped Chip		OSP NMEA Switch Msg	
Message	GSW2 ⁽¹⁾	SiRFDRiv e ⁽¹⁾	SiRFXTra c ⁽¹⁾	SiRFLoc ⁽¹	GSW3 & GSWLT3 ⁽	SiRFDiRe ct	GSD3tw	GSD3fLP	GSD4t	GSD4e	GSD4t	GSD4e	GSD4t	GSD4e
GGA	All	All	All	All	All	All	All	All	All	All	No	All	No	All
GLL	All	All	All	All	All	All	All	All	All	All	No	All	No	All
GSA	All	All	All	All	All	All	All	All	All	All	No	All	No	All
GSV	All	All	All	All	All	All	All	All	All	All	No	All	No	All
MSS	All	No	No	No	No	No	No	No	No	No	No	No	No	No
RMC	All	All	All	All	All	All	All	All	All	All	No	All	No	All
VTG	All	All	All	All	All	All	All	All	No	No	No	All	No	All
ZDA	2.3.2 and later	No	No	No	All	No	All	No	No	No	No	All	No	All
150	2.3.2 and later	No	No	No	No	No	No	No	No	No	No	No	No	No
151	2.5 and later	No	2.3 and later	No	3.2.0 and later	Yes	Yes	Yes	No	No	No	No	No	No
152	2.5 and later	No	2.3 and later	No	3.2.0 and later	Yes	Yes	Yes	No	No	No	No	No	No
154	2.5 and later	No	2.3 and later	No	3.2.0 and later	Yes	Yes	Yes	No	No	No	Yes	No	Yes
155	No	No	No	No	No	No	No	Yes	No	No	No	No	No	No

									Code Lin	ked Host	GPIO Stra	pped Chip	OSP NME	EA Switch
Message	GSW2 ⁽¹⁾	SiRFDRiv e ⁽¹⁾	SiRFXTra c ⁽¹⁾	SiRFLoc ⁽¹	GSW3 & GSWLT3 ⁽	SiRFDiRe ct	GSD3tw	GSD3fLP	GSD4t	GSD4e	GSD4t	GSD4e	GSD4t	GSD4e
156,0x20	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
156,0x21	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
156,0x22	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
156,0x23	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
156,0x24	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
156,0x25	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
156,0x26	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
160	No	No	No	No	No	No	No	No	No	Yes	No	Yes	No	Yes

Table 2.2: Supported NMEA Output Messages

⁽¹⁾ GSW2 and SiRFDRive software only output NMEA version 2.20 (and earlier). Standard binaries for SiRFXTrac, GSW3, and GSWLT3 firmware use NMEA 3.0. Users of SiRF's software developer's kit can choose through software conditional defines (UI_NMEA_VERSION_XXX) to allow a choice between NMEA 2.20 and 3.00. The file NMEA_SIF.H contains the NMEA version defines.

In some numeric fields representing a single data element, leading zeros before a decimal are suppressed. A single "0" character preceding the decimal point is maintained. In compound numeric structures (such as LAT or LONG), leading zeros are suppressed only on the leftmost element. Trailing zeros are not suppressed.

2.1 Global Positioning System Fixed Data: Message ID GGA

Note:

Fields marked in *italic* apply only to NMEA version 2.3 (and later) in this NMEA message description.

Table 2.3 contains the values for the following example:

\$GPGGA,002153.000,3342.6618,N,11751.3858,W,1,10,1.2,27.0,M,-34.2,M,,0000*5E<CR><LF>

Name	Example	Unit	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	002153.000		hhmmss.sss
Latitude	3342.6618		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	11751.3858		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Position Fix Indicator	1		See Table 2.4
Satellites Used	10		Range 0 to 12
HDOP	1.2		Horizontal Dilution of Precision
MSL Altitude	27.0	meters	
Units	М	meters	
Geoid Separation	-34.2	meters	Geoid-to-ellipsoid separation. Ellipsoid altitude=MSL Altitude + Geoid Separation
Units	М	meters	
Age of Diff. Corr.		sec	Null fields when DGPS is not used
Diff. Ref. Station ID	0000		
Checksum	*5E		
<cr><lf></lf></cr>			End of message termination

Table 2.3: GGA Data Format

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3-5	Not supported
6	Dead Reckoning Mode, fix valid

Table 2.4: Position Fix Indicator

Note:

A valid status is derived from all the parameters set in the software. This includes the minimum number of satellites required, any DOP mask setting, presence of DGPS corrections, etc. If the default or current software setting requires that a factor is met, then if that factor is not met the solution will be marked as invalid.

2.2 Geographic Position - Latitude/Longitude: Message ID GLL

Note:

Fields marked in *italic* apply only to NMEA version 2.3 (and later) in this NMEA message description.

Table 2.5 contains the values for the following example:

\$GPGLL,3723.2475,N,12158.3416,W,161229.487,A,A*41<CR><LF>

Name	Example	Unit	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
UTC Time	161229.487		hhmmss.sss
Status	А		A=data valid or V=data not valid
Mode	А		A=Autonomous D=DGPS E=DR N=Output Data Not Valid R=Coarse Position (1) S=Simulator
Checksum	*41		
<cr><lf></lf></cr>			End of message termination

Table 2.5: GLL Data Format

⁽¹⁾ Position was calculated based on one or more of the SVs having their states derived from almanac parameters, as opposed to ephemerides.

2.3 GNSS DOP and Active Satellites: Message ID GSA

Table 2.6 contains the values for the following example:

\$GPGSA,A,3,07,02,26,27,09,04,15, , , , , ,1.8,1.0,1.5*33<CR><LF>

Name	Example	Unit	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	А		See Table 2.7
Mode 2	3		See Table 2.8
Satellite Used ⁽¹⁾	07		SV on Channel 1
Satellite Used ⁽¹⁾	02		SV on Channel 2
Satellite Used			SV on Channel 12
PDOP ⁽²⁾	1.8		Position Dilution of Precision
HDOP ⁽²⁾	1.0		Horizontal Dilution of Precision
VDOP ⁽²⁾	1.5		Vertical Dilution of Precision
Checksum	*33		
<cr><lf></lf></cr>			End of message termination

Table 2.6: GSA Data Format

 $^{^{(2)}}$ Maximum DOP value reported is 50. When 50 is reported, the actual DOP may be much larger.

Value	Description
М	Manual – Forced to operate in 2D or 3D mode
А	2D Automatic – Allowed to automatically switch 2D/3D

Table 2.7: Mode 1

Value	Description
1	Fix not available
2	2D (<4 SVs used)
3	3D (>3 SVs used)

Table 2.8: Mode 2

⁽¹⁾ Satellite used in solution.

2.4 GNSS Satellites in View: Message ID GSV

Table 2.9 contains the values for the following example:

\$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71

\$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41<CR><LF>

Name	Example	Unit	Description
Message ID	\$GPGSV		GSV protocol header
Number of Messages ⁽¹⁾	2		Total number of GSV messages to be sent in this group
Message Number ⁽¹⁾	1		Message number in this group of GSV messages
Satellites in View ⁽¹⁾	07		
Satellite ID	07		Channel 1 (Range 1 to 32)
Elevation	79	degrees	Channel 1 (Maximum 90)
Azimuth	048	degrees	Channel 1 (True, Range 0 to 359)
SNR (C/N0)	42	dBHz	Range 0 to 99, null when not tracking
Satellite ID	27		Channel 4 (Range 1 to 32)
Elevation	27	degrees	Channel 4 (Maximum 90)
Azimuth	138	degrees	Channel 4 (True, Range 0 to 359)
SNR (C/N0)	42	dBHz	Range 0 to 99, null when not tracking
Checksum	*71		
<cr><lf></lf></cr>			End of message termination

Table 2.9: GSV Data Format

⁽¹⁾ Depending on the number of satellites tracked, multiple messages of GSV data may be required. In some software versions, the maximum number of satellites reported as visible is limited to 12, even though more may be visible.

2.5 MSK Receiver Signal: Message ID MSS

Note:

Fields marked in *italic* apply only to NMEA version 2.3 (and later) in this NMEA message description.

Table 2.10 contains the values for the following example:

\$GPMSS,55,27,318.0,100,1,*57<CR><LF>

Name	Example	Unit	Description
Message ID	\$GPMSS		MSS protocol header
Signal Strength	55	dB	SS of tracked frequency
Signal-to-Noise Ratio	27	dB	SNR of tracked frequency
Beacon Frequency	318.0	kHz	Currently tracked frequency
Beacon Bit Rate	100		bits per second
Channel Number	/		The channel of the beacon being used if a multi- channel beacon receiver is used
Checksum	*57		
<cr><lf></lf></cr>			End of message termination

Table 2.10: MSS Data Format

Note:

The MSS NMEA message can only be polled or scheduled using the MSK NMEA input message. See section 3.25.

2.6 Recommended Minimum Specific GNSSData: Message ID RMC

Note:

Fields marked in italic apply only to NMEA version 2.3 (and later) in this NMEA message description.

Table 2.11 contains the values for the following example:

\$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598, ,*10<CR><LF>

Name	Example	Unit	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	161229.487		hhmmss.sss
Status ⁽¹⁾	А		A=data valid or V=data not valid
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		ddmm.mmmm
E/W Indicator	w		E=east or W=west
Speed Over Ground	0.13	knots	
Course Over Ground	309.62	degrees	True
Date	120598		ddmmyy
Magnetic Variation ⁽²⁾		degrees	E=east or W=west
East /West Indicator ⁽²⁾	E		E=east
Mode	A		A=Autonomous D=DGPS E=DR N=Output Data Not Valid R=Coarse Position (3) S=Simulator
Checksum	*10		
<cr><lf></lf></cr>			End of message termination

Table 2.11: RMC Data Format

⁽¹⁾ A valid status is derived from all the parameters set in the software. This includes the minimum number of satellites required, any DOP mask setting, presence of DGPS corrections, etc. If the default or current software setting requires that a factor is met, then if that factor is not met the solution will be marked as invalid.

⁽²⁾ CSR Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions relative to true North.

⁽³⁾ Position was calculated based on one or more of the SVs having their states derived from almanac parameters, as opposed to ephemerides.

2.7 Course Over Ground and Ground Speed: Message ID VTG

Note:

Fields marked in italic apply to NMEA version 2.3 (and later) in this NMEA message description.

Table 2.12 contains the values for the following example:

\$GPVTG,309.62,T, ,M,0.13,N,0.2,K,A*23<CR><LF>

Name	Example	Unit	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	degrees	Measured heading
Reference	т		True
Course		degrees	Measured heading
Reference	М		Magnetic ⁽¹⁾
Speed	0.13	knots	Measured horizontal speed
Units	N		Knots
Speed	0.2	km/hr	Measured horizontal speed
Units	К		Kilometers per hour
Mode	A		A=Autonomous D=DGPS E=DR N=Output Data Not Valid R=Coarse Position (2) S=Simulator
Checksum	*23		
<cr><lf></lf></cr>			End of message termination

Table 2.12: VTG Data Format

⁽¹⁾ SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions.

⁽²⁾ Position was calculated based on one or more of the SVs having their states derived from almanac parameters, as opposed to ephemerides.

2.8 Time and Date: Message ID ZDA

This message is included only with systems which support a time-mark output pulse identified as "1PPS". Outputs the time associated with the current 1PPS pulse. Each message is output within a few hundred ms after the 1PPS pulse is output and tells the time of the pulse that just occurred.

Table 2.13 contains the values for the following example:

\$GPZDA,181813,14,10,2003,,*4F<CR><LF>

Name	Example	Unit	Description
Message ID	\$GPZDA		ZDA protocol header
UTC Time	181813	hhmmss	The UTC time units are: hh=UTC hours from 00 to 23 mm=UTC minutes from 00 to 59 ss=UTC seconds from 00 to 59 Either using valid IONO/UTC or estimated from default leap seconds
Day	14		Day of the month, range 1 to 31
Month	10		Month of the year, range 1 to 12
Year	2003		Year
Local zone hour ⁽¹⁾		hour	Offset from UTC (set to 00)
Local zone minutes ⁽¹⁾		minute	Offset from UTC (set to 00)
Checksum	*4F		
<cr><lf></lf></cr>			End of message termination

Table 2.13: ZDA Data Format

2.9 Proprietary: Message ID 140

This message is reserved for SiRF extended ephemeris usage only. The content of this message is proprietary.

Table 2.14 contains the message parameter definitions.

Name	Example	Unit	Description
Message ID	\$PSRF140		PSRF140 protocol header
Extended Ephemeris			Proprietary message
Checksum			
<cr><lf></lf></cr>			End of message termination

Table 2.14: Proprietary

⁽¹⁾ Not supported by CSR, reported as 00.

2.10 OkToSend: Message ID 150

This message is sent out during power-saving mode such as TricklePower[™] and Push-to-Fix[™] to indicate when the receiver is ready to receive messages or when it is going into low-power mode. When power is restored, it is the first message sent, and when power is going to be reduced, it is the last message sent.

Table 2.15 contains the values for the following examples:

- 1. OkToSend
 - \$PSRF150,1*3F<CR><LF>
- 2. not OkToSend

\$PSRF150,0*3E<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF150		PSRF150 protocol header
OkToSend	1		1=OK to send, 0=not OK to send
Checksum	*3F		
<cr><lf></lf></cr>			End of message termination

Table 2.15: OkToSend Massage Data Format

2.11 Data and Extended Ephemeris Mask: Message ID 151

SiRFInstantFix uses Message ID 151 to request ephemerides for specific satellites.

\$PSRF151,3,1485,147236.3,0x43002732*4A<CR><LF>

Table 2.16 contains the parameter definitions and example values.

Name	Example	Unit	Description
Message ID	\$PSRF151		PSRF151 protocol header
GPS_TIME_VALID_FL AG	3	N/A	Bit 0 = 1, GPS week is valid
GPS Week	1485	week number	Extended week number
GPS Time of Week	147236.3	seconds	GPS Time Of Week
EPH_REQ_MASK	0x43002732	N/A	Mask to indicate the satellites for which new ephemeris is needed. Eight characters preceded by the following characters, "0x", are used to show this 32-bit mask (in hex). The MSB is for satellite PRN 32, and the LSB is for satellite PRN 1.
Checksum			
<cr><lf></lf></cr>			End of message termination

Table 2.16: GPS Data and Ephemeris Mask

2.12 Extended Ephemeris Integrity: Message ID 152

SiRFInstantFix uses Message ID 152 to report the validity of various aspects of satellite data in the receiver. \$PSRF152,0x43002712,0x43002712,0x00000001*44<CR>>LF>

Table 2.17 contains the parameter definitions and example values.

Name	Example	Unit	Description
Message ID	\$PSRF152		PSRF152 protocol header
SAT_POS_VALIDITY_ FLAG	0x00000002	N/A	Hexadecimal representation of 32-bit field, where MSB represents satellite PRN 32, LSB satellite PRN 1. A bit set to 1 indicates an invalid position has been found for that satellite.
SAT-CLK-VALIDITY- FLAG	0x00000002	N/A	Hexadecimal representation of 32-bit field, where MSB represents satellite PRN 32, LSB satellite PRN 1. A bit set to 1 indicates that satellite has an invalid clock.
SAT-HEALTH-FLAG	0x00000001	N/A	Hexadecimal representation of 32-bit field, where MSB represents satellite PRN 32, LSB satellite PRN 1. A bit set to 1 indicates that satellite is reported to be unhealthy.
Checksum	*44		
<cr><lf></lf></cr>			End of message termination

Table 2.17: Extended Ephemeris Integrity

2.13 Extended Ephemeris ACK: Message ID 154

The SiRFInstantFix software uses Message ID 154 to acknowledge input messages 107, 108, 110. \$PSRF154,110*3B<CR>><LF>

Table 2.18 contains parameter definitions and example values.

Name	Example	Unit	Description
Message ID	\$PSRF154		PSRF154 protocol header
ACK ID	110	N/A	Message ID of the message to ACK (107, 108 or 110)
Checksum			
<cr><lf></lf></cr>			End of message termination

Table 2.18: Extended Ephemeris ACK

2.14 Proprietary: Message ID 155

This message is reserved for SiRF extended ephemeris usage only. The content of this message is proprietary.

Table 2.19 contains the message parameter definition.

Name	Example	Unit	Description
Message ID	\$PSRF155		PSRF155 protocol header
Extended Ephemeris			Proprietary message
Checksum			
<cr><lf></lf></cr>			End of message termination

Table 2.19: Proprietary

2.15 ECLM ACK/NACK: Message ID 156, Sub ID 0x20

This is the ACK/NACK response to message ID 114, Sub ID 0x16, 0x17, 0x18, 0x19, or 0x1A. The Sub Message ID for this message is fixed to 0x20.

Table 2.20 contains the values for the following example:

Sub ID=0x20, ACK Sub ID=0x16

\$PSRF156,20,72,16,0,0*09<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF156		ECLM ACK/NACK
Sub ID	0x20 (Decimal: 32)		0x20: Sub ID for ECLM ACK/NACK
ACK Message ID	0x72		114: Msg ID for ECLM Download
ACK Sub ID	0x16		0x16: Sub ID for ECLM Start Download This field can take values 0x16, 0x17, 0x18, 0x19, or 0x1A to ACK corresponding SIDs
ACK/NACK	0x0		0: ACK 1: NACK
Reason	0x0		See Table 2.21
Checksum	*09		
<cr><lf></lf></cr>			End of message termination

Table 2.20: ECLM ACK/NACK

Value	Example	Code	Description
0	0x00	ECLM_SUCCESS	Success
1	0x01	ECLM_SPACE_UNAVAILABLE	Insufficient space
2	0x02	ECLM_PKT_LEN_INVALID	Packet length field out of range
3	0x03	ECLM_PKT_OUT_OF_SEQ	Packet received is out of sequence
4	0x04	ECLM_DOWNLOAD_SGEE_NONEWFILE	No new file
5	0x05	ECLM_DOWNLOAD_CORRUPTFILE_ER ROR	Corrupt file
6	0x06	ECLM_DOWNLOAD_GENERIC_FAILURE	Generic failure
7	0x07	ECLM_API_GENERIC_FAILURE	Generic failure calling CLM API

Table 2.21: Description of ACK/NACK Values

2.16 ECLM EE Age: Message ID 156, Sub ID 0x21

This is the response to message ID 114, Sub ID 0x19. The Sub Message ID for this message is fixed to 0x21.

Table 2.23 contains the input values for the following example:

Sub ID=0x21, prnNum=7

\$PSRF156,21,1,7,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0*10<CR><LF>

If NACKed, the reason for the NACK is present in the next byte (see Table 2.21). If ACKed, the following fields appear after the ACK field.

Field Name	Description
numSAT ID	This field indicates the number of times the following fields are present in the message
prnNum;	PRN number of satellite for which age is indicated in other fields
ephPosFlag	Ephemeris flag to indicate the type of ephemeris available for the satellite: (Position Age): 0: Invalid ephemeris, not available 1: Broadcast Ephemeris (BE) 2: Server-generated EE (SGEE) 3: Client-generated EE (CGEE)
eePosAge	Age of EE in 0.01 days (Position Age)
cgeePosGPSWeek	GPS week of BE used in the CGEE generation. 0 if ephPosFlag is not set to 3, or set to 0 (Position Age)
cgeePosTOE	TOE of BE used in the CGEE generation. 0 if ephPosFlag is not set to 3, or set to 0 (Position Age)
ephClkFlag	Ephemeris flag to indicate the type of ephemeris available for the satellite (Clock Age)
eeClkAge	Age of EE in 0.01 days (Clock Age)
cgeeClkGPSWeek	GPS week of BE used in the CGEE generation. 0 if ephClkFlag is not set to 3, or set to 0 (Clock Age)
cgeeClkTOE	TOE of BE used in the CGEE generation; 0 if ephClkFlag is not set to 3 or set to 0 (Clock Age)

Table 2.22: ECLM EE Age Fields

Name	Example	Unit	Description
Message ID	\$PSRF156		ECLM output
Sub ID	0x21 (Decimal: 33)		0x21: Sub ID for ECLM EE Age
numSAT	1		This field indicates the number of times the fields repeat
prnNum;	7		PRN number = 7
ephPosFlag	2		EE age

Name	Example	Unit	Description
eePosAge	00		
cgeePosGPSWeek	00		
cgeePosTOE	00		
ephClkFlag	2		
eeClkAge	00		
cgeeClkGPSWeek	00		
cgeeClkTOE	00		
Checksum	*10		
<cr><lf></lf></cr>			End of message termination

Table 2.23: ECLM EE Age

2.17 ECLM SGEE Age: Message ID 156, Sub ID 0x22

This is the response to the message ID 114, Sub ID 0x1A. The Sub Message ID for this message is fixed to 0x22.

Table 2.24 contains the input values for the following example:

Sub ID = 0x22, SGEE Age = 0x7da8, Prediction Interval = 0x15180

Example:

\$PSRF156,22,7da8,15180*3E<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF156		ECLM ACK/NACK
Sub ID	0x22 (Decimal: 34)		0x22: Sub ID for ECLM Get EE Age ACK/NACK
SGEE Age	0x7da8		Age of the satellite
Prediction Interval	0x15180		Prediction interval
Checksum	*3E		
<cr><lf></lf></cr>			End of message termination

Table 2.24: ECLM Get SGEE Age

2.18 ECLM Download Initiate Request: Message ID 156, Sub ID 0x23

This message is a Download Initiate Request. It is sent if a fresh download of the SGEE file is required.

Table 2.25 contains the input values for the following example:

Sub ID = 0x23, Start Download = 0x1, Time to Wait = 0x0

Example:

\$PSRF156,23,1,0*09<CR><LF>

Table 2.25 contains the message parameter definitions.

Name	Example	Unit	Description
Message ID	\$PSRF156		ECLM ACK/NACK
Sub Message ID	0x23 (Decimal: 35)		0x23: Download Initiate Request
start/stop	0x1		1: Start download 0: Stop download
Time to Next Start	0x0		0: Immediate start, otherwise specified number of seconds
Checksum	*09		Checksum
<cr><lf></lf></cr>			End of message termination

Table 2.25: ECLM Download Initiate Request

2.19 ECLM Erase Storage File: Message ID 156, Sub ID 0x24

This message erases a storage file specified by NVMID.

Table 2.26 contains the input values for the following example:

Sub Message ID = 0x24, NVM ID = 0x3

Example:

\$PSRF156,24,3*10<CR><LF>

Table 2.26 contains the input values for the following example.

Name	Example	Unit	Description
Message ID	\$PSRF156		ECLM ACK/NACK
Sub Message ID	0x24 (Decimal: 36)		0x24: Erase Storage File
NVM ID	0x3		1: Erase SGEE file 2: Erase CGEE file 3: BE file
Checksum	*10		
<cr><lf></lf></cr>			End of message termination

Table 2.26: Erase Storage File

2.20 ECLM Update File Content: Message ID 156, Sub ID 0x25

Send update file content to host for specified file.

Table 2.27 contains the input values for the following example:

Sub ID = 0x25, NVMID:0x2, Blocks = 0x1

Example:

\$P\$RF156,25,2,11,4f06,1,29,38,c2,75,4e,fb,c,b3,cc,b0,bf,b6,93,3e,84,24,90*1C <CR><LF>

Table 2.27 contains the input values for the following example.

Name	Example	Unit	Description
Message ID	\$PSRF156		ECLM ACK/NACK
Sub Message ID	0x25 (Decimal: 37)		0x25: Sub ID for ECLM Update File Content
NVM ID	0x2		SGEE File: 1 CGEE File: 2 BE File: 3
Size	0x11		Size
Offset	0x4f06		Offset
Seq Number	0x1		Seq number
Data	29,38,c2,75,4e,fb,c,b3, cc,b0,bf,b6,93,3e, 84,24,90		
Checksum	*1C		
<cr><lf></lf></cr>			End of message termination

Table 2.27: Update File Content

2.21 ECLM Request File Content: Message ID 156, Sub ID 0x26

Request for file content of specified NVM ID.

Table 2.28 contains the input values for the following example.

Sub ID = 0x26, NVMID:0x3, Blocks = 0x1

Example:

\$PSRF156,26,3,1,1,4c,0*75<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF156		ECLM ACK/NACK
Sub Message ID	0x26 (Decimal: 38)		0x26: Sub ID for ECLM Request for file content
NVM ID	0x3		SGEE File: 1 CGEE File: 2 BE File: 3

Name	Example	Unit	Description
Seq Number	0x1		
Num Blocks	0x1		Number of blocks in packet
Block Size	0x4c		
Block offset	0x0		Offset in file
Checksum	*75		
<cr><lf></lf></cr>			End of message termination

Table 2.28: Request File Content

2.22 Watchdog Timeout and Exception Condition: Message ID 160

This message notifies a PVT product host of a watchdog timeout or processor exception in the receiver. The consistent accumulation of these notification messages by the host can produce statistics for:

- Reliability measurement and analysis
- For troubleshooting purposes

For the GSD4e, it has the critical purpose of enabling the host to determine the need for reloading the patch RAM. The watchdog event, and some exception events, are indications of potential corruption in the patch RAM. This message enables the host to initiate the patch download protocol.

Typically, upon receipt of this message, the host requests to switch the receiver into binary OSP messaging mode. Already in OSP messaging mode, the host polls the software version of the receiver, and the response contains the actual patch status of the receiver. The host then compares this status with the last applied patch according to the patch maintenance value stored in the host. If the software version response does not indicate the up-to-date patch status, the host initiates the reload of the required patch according to the latest patch maintenance value stored in the host. After completing the patch procedure using the binary OSP messages, the host switches back to NMEA mode for normal operation to continue.

Example:

\$PSRF160,W,1,0*5A<CR><LF>

This message is not supported in the GSD4t or earlier products.

Name	Example	Unit	Description
Message ID	\$PSRF160		PSRF160 protocol header
Event Condition	W		W: Watchdog time-out event E: Reserved: Exception condition event
Patch RAM corruption	1		0: Intact, not corrupted 1: Corrupted, need to restore
Exception code			Hexadecimal value of the processor exception code register (0 if event 'W')
Checksum	*hh		
<cr><lf></lf></cr>			End of message termination

Table 2.29: Watchdog and Exception Condition Notification

2.23 Reserved: Message ID 225

Except for Sub ID 6, the contents of this message are proprietary, reserved for use by SiRF engineers, and are not described here.

3 Input Messages

This section describes the NMEA input messages listed in Table 3.1.

Message	Description				
100	SetSerialPort: Set Port A parameters and protocols				
101	NavInit: Parameters required to start using X/Y/Z ⁽¹⁾				
102	SetDGPSPort: Set port B parameters for DGPS input				
103	Query NMEA Message and/or set output rate				
104	LLANavInit: Parameters to Start Using Lat/Long/Alt ⁽²⁾				
105	DevDataOn/Off: Development Data Messages On/Off				
106	Selection of Datum for Coordinate Transformation				
107	Extended ephemeris proprietary message				
108	Extended ephemeris proprietary message				
110	Extended ephemeris debug				
114,0x16	ECLM start download				
114,0x17	ECLM file size				
114,0x18	ECLM packet data				
114,0x19	ECLM Get EE Age				
114,0x1A	ECLM Get SGEE Age				
114,0x1B	ECLM Host File Content				
114,0x1C	ECLM Host ACK/NACK				
117, 0X10	System Turn Off				
117, 0X20	Switch to Boot Mode				
120	Storage Configuration Setting				
200	Marketing Software Configuration				
MSK	Command message to an MSK radio-beacon receiver				

Table 3.1: NMEA Input Messages

Note:

NMEA input messages 100 to 200 are SiRF proprietary NMEA messages. The MSK NMEA string is as defined by the NMEA 0183 standard.

Table 3.2 shows which SiRF platforms support the NMEA input messages.

⁽¹⁾ Input coordinates in WGS-84 ECEF format.

⁽²⁾ Input coordinates in WGS-84 Latitude, Longitude and MSL Altitude format.

									Code Linked Host		GPIO Strap	oped Chip	OSP NMEA Switch Msg	
Message	GSW2	SiRFDRiv e	SiRFXTra c	SiRFLoc	GSW3 & GSWLT3	SiRFDiRe ct	GSD3tw	GSD3fLP	GSD4t	GSD4e	GSD4t	GSD4e	GSD4t	GSD4e
100	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	No	Yes
101	Yes	Yes	Yes ⁽¹⁾	Yes	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes	Yes	No	No	No	Yes	No	Yes
102	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No	No	No	Yes	No	Yes
103	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	No	Yes
104	Yes	Yes	Yes ⁽¹⁾	Yes	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes	Yes	No	No	No	Yes	No	Yes
105	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	No	Yes
106	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	No	Yes
107	2.5 and later	No	2.3 and later	No	Yes	Yes	Yes	Yes	No	No	No	Yes	No	Yes
108	2.5 and later	No	2.3 and later	No	Yes	Yes	Yes	Yes	No	No	No	Yes	No	Yes
110	2.5 and later	No	2.3 and later	No	3.2.0 and later	Yes	Yes	Yes	No	No	No	Yes	No	Yes
114,0x16	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
114,0x17	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
114,0x18	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
114,0x19	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes

									Code Linke	ed Host	GPIO Strap	pped Chip	OSP NMEA	A Switch
Message	GSW2	SiRFDRiv e	SiRFXTra c	SiRFLoc	GSW3 & GSWLT3	SiRFDiRe ct	GSD3tw	GSD3fLP	GSD4t	GSD4e	GSD4t	GSD4e	GSD4t	GSD4e
114,0x1A	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
114,0x1B	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
114,0x1C	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes
117, Ox10	No	No	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes
117, Ox20 ⁽²⁾	No	No	No	No	No	No	No	No	No	Yes	No	Yes	No	Yes
120	No	No	No	No	No	No	No	No	No	Yes	No	Yes	No	Yes
200	Yes ⁽³⁾	No	No	No	No	No	No	No	No	No	No	No	No	No
MSK	Yes	Yes	No	No	No	No	No	No	No	No	No	No	No	No

Table 3.2: Supported NMEA Input Messages

⁽¹⁾ In GSW firmware versions prior to GSW3.5.0, input of position and [XXXtme] time are not allowed.

⁽²⁾ Only revisions 4.1.0 and later support this message.

⁽³⁾ Only with a GSC2xr chip

3.1 SetSerialPort: Message ID 100

This command message is used to set the protocol (SiRF binary or NMEA) and/or the communication parameters (Baud rate, data bits, stop bits, and parity). Generally, this command is used to switch the module back to SiRF binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and the receiver resumes, after a reset, using the saved parameters.

Table 3.3 contains the input values for the following example:

Switch to SiRF binary protocol at 9600,8,N,1

\$PSRF100,0,9600,8,1,0*0C<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF100		PSRF100 protocol header
Protocol	0		0=SiRF binary 1=NMEA
Baud	9600		1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200
DataBits	8		8 only
StopBits	1		1 only
Parity	0		0=None only
Checksum	*0C		
<cr><lf></lf></cr>			End of message termination

Table 3.3: Set Serial Port Data Format

For the GSD4e, operation at speeds below 38400 carries risk of dropped messages when using SGEE (Server Generated Extended Ephemeris).

3.2 NavigationInitialization: Message ID 101

This command restarts the receiver, and specifies the type of restart. Optionally, it may also initialize position (in X, Y, Z ECEF coordinates), clock drift, GPS Time Of Week and GPS Week Number. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to quickly acquire signals.

For software that does not support initializing data (some versions of GSW3 and GSWLT3, and SiRFXTrac), attempting to include initializing data may cause unpredictable results. Do not set the initialize-data bit in the ResetCfg word.

Table 3.4 contains the input values for the following example:

Start using known position and time.

\$PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3*1C<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF101		PSRF101 protocol header
ECEF X	-2686700	meters	X coordinate position
ECEF Y	-4304200	meters	Y coordinate position
ECEF Z	3851624	meters	Z coordinate position
ClkDrift	96000	Hz	Clock Drift of the Receiver ⁽¹⁾
TimeOfWeek	497260	sec	GPS Time Of Week
WeekNo	921		GPS Week Number
ChannelCount	12		Range 1 to 12
ResetCfg	3		See Table 3.5 and Table 3.6
Checksum	*1C		
<cr><lf></lf></cr>			End of message termination

Table 3.4: Navigation Initialization Data Format

⁽¹⁾ Use 0 for last saved value if available. If this is unavailable, a default value of 96250 is used.

Value	Description
1	Hot start
2	Warm start (no init)
3	Warm start (with init)
4	Cold start
8	Factory start

Table 3.5: Reset Mode Value (SiRFstarIII and Later)

Decimal	Description
00	Perform a hot start using internal RAM data. No initialization data is used.
01	Use initialization data and begin in start mode. Uncertainties are 5 seconds time accuracy and 300 km position accuracy. Ephemeris data in SRAM is used.
02	No initialization data is used, ephemeris data is cleared, and warm start performed using remaining data in RAM.
03	Initialization data is used, ephemeris data is cleared, and warm start performed using remaining data in RAM.
04	No initialization data is used. Position, time, and ephemeris are cleared, and a cold start is performed.
08	No initialization data is used. Internal RAM is cleared and a factory reset is performed.

Table 3.6: Reset Configuration: SiRFLoc Specific

3.3 SetDGPSPort: Message ID 102

This command is used to control the serial port used to receive RTCM differential corrections. Differential receivers may output corrections using different communication parameters. If a DGPS receiver is used that has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters are stored in battery-backed SRAM and the receiver restarts using the saved parameters.

Note:

In receivers that do not support RTCM 104 DGPS (e.g. SiRFStarIII), this command is not supported.

Table 3.7 contains the input values for the following example:

Set DGPS Port to 9600 baud, 8 data bits, 1 stop bit, no parity bit.

\$PSRF102,9600,8,1,0*12<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF102		PSRF102 protocol header
Baud	9600		1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200
DataBits	8		8,7
StopBits	1		0,1
Parity	0		0=None 1=Odd 2=Even
Checksum	*12		
<cr><lf></lf></cr>			End of message termination

Table 3.7: Set DGPS Port Data Format

3.4 Query/Rate Control: Message ID 103

This command is used to control the output of only standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. It also controls the ZDA message in software that supports it. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted.

Table 3.8 contains the input values for the following example:

Query the GGA message with checksum enabled

\$PSRF103,00,01,00,01*25<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF103		PSRF103 protocol header
Msg	00		Message to control. See Table 3.8 (1)
Mode	01		0=Set Rate 1=Query one time 2=ABP On 3=ABP Off
Rate	00	sec	Output Rate, 0 = Off 1–255 = seconds between messages ⁽²⁾
CksumEnable	01		0=Disable Checksum 1=Enable Checksum
Checksum	*25		
<cr><lf></lf></cr>			End of message termination

Table 3.8: Query/Rate Control Data Format

⁽²⁾ The Rate field is ignored unless the Mode field is set to 0 (Set Rate).

Value	Description
0	GGA
1	GLL
2	GSA
3	GSV

⁽¹⁾ The Msg field is ignored if the Mode field has values of 2 or 3 (ABP On/Off).

Value	Description
4	RMC
5	VTG
6	MSS (If internal beacon is supported)
7	Not defined
8	ZDA (if 1PPS output is supported)
9	Not defined

Table 3.9: Messages

Note:

In TricklePower mode, the update rate specifies TricklePower cycles rather than seconds. If the TP cycle is set at 5 seconds, then an update rate of 2 means to output the message every 2 cycles, or 10 seconds.

3.5 LLANavigationInitialization: Message ID 104

This command is used to cause a restart of the receiver, and to specify the type of restart. Optionally, it may also initialize position (in latitude, longitude, and altitude), clock drift, GPS Time Of Week and GPS Week Number. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to quickly acquire signals.

For software that does not support initializing data (GSW3, GSWLT3, SiRFXTrac), attempting to include initializing data may cause unpredictable results. Do not set the initialize-data bit in the ResetCfg word.

Table 3.10 contains the input values for the following example:

Start using known position and time.

\$PSRF104,37.3875111,-121.97232,0,96000,237759,1946,12,1*07<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF104		PSRF104 protocol header
Lat	37.3875111	degrees	Latitude + = North (Range 90 to -90)
Lon	-121.97232	degrees	Longitude + = East (Range 180 to -180)
Alt	0	meters	Altitude position
ClkDrift	96000	Hz	Clock Drift of the Receiver ⁽¹⁾

Name	Example	Unit	Description
TimeOfWeek	237759	sec	GPS Time Of Week
WeekNo	1946		Extended GPS Week Number
ChannelCount	12		Range 1 to 12
ResetCfg	1		SeeTable 3.11
Checksum	*07		
<cr><lf></lf></cr>			End of message termination

Table 3.10: LLA Navigation Initialization Data Format

 $^{^{(1)}}$ Use 0 for last saved value if available. If this is unavailable, a default value of 96,250 Hz is used.

Value	Description
1	Hot start
2	Warm start (no init)
3	Warm start (with init)
4	Cold start
8	Factory start

Table 3.11: Reset Mode Value (SiRFstarIII and Later)

3.6 Development Data On/Off: Message ID 105:

This command turns development data (debug messages) on and off. Development data can be used to help diagnose system problems since many parts of the software contain messages that are output when problems are detected.

Table 3.12 contains the input values for the following example:

Debug=1

\$PSRF105,1*3E<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF105		PSRF105 protocol header
Debug	1		0=Off 1=On
Checksum	*3E		
<cr><lf></lf></cr>			End of message termination

Table 3.12: Development Data On/Off Data Format

3.7 Select Datum: Message ID 106

This message allows the selection of an alternate map datum. The receiver software may contain one or more alternate datums in addition to WGS84, the default GPS datum. The table below lists some datums that may be in a particular software build. In addition, other datums may have been added by either SiRF or by developers with SDK software access. Available datums, if different from the list below, should be documented in the system or software documentation.

Table 3.13 contains the input values for the following example:

Datum=TOKYO_MEAN

\$PSRF106,178*32<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF106		PSRF106 protocol header
Datum	178		21=WGS84 178=TOKYO_MEAN 179=TOKYO_JAPAN 180=TOKYO_KOREA 181=TOKYO_OKINAWA
Checksum	*32		
<cr><lf></lf></cr>			End of message termination

Table 3.13: Select Datum Data Format

3.8 Proprietary: Message ID 107

This message is reserved for SiRFInstantFix usage only. The content of this message is proprietary.

Table 3.14 contains the message parameter definitions.

Name	Example	Unit	Description
Message ID	\$PSRF107		PSRF107 protocol header
Extended Ephemeris			Proprietary message
Checksum			
<cr><lf></lf></cr>			End of message termination

Table 3.14: Proprietary

3.9 Proprietary: Message ID 108

This message is reserved for SiRFInstantFix usage only. The content of this message is proprietary.

Table 3.15 contains the message parameter definitions.

Name	Example	Unit	Description
Message ID	\$PSRF108		PSRF108 protocol header
Extended Ephemeris			Proprietary message
Checksum			
<cr><lf></lf></cr>			End of message termination

Table 3.15: Proprietary

3.10 Extended Ephemeris Debug: Message ID 110

This message allows control of a SiRFInstantFix debug flag. Turning on the flag forces the receiver to ignore broadcast ephemeris from the satellites and only use SiRFInstantFix ephemeris for navigation.

Table 3.16 contains the message parameter definitions.

Name	Example	Unit	Description
Message ID	\$PSRF110		PSRF110 protocol header
DEBUG_FLAG	0x01000000		0x01000000 = Debug flag on, ignore broadcast ephemeris 0x00000000 = Debug flag off, normal operation
Checksum			
<cr><lf></lf></cr>			End of message termination

Table 3.16: Extended Ephemeris Debug

3.11 Set Message Rate: Message ID 112

This message is intended only for SiRFInstantFix and must not be used otherwise.

Table 3.17 contains the message parameter definitions for the following example:

\$PSRF112,140,1,1*3B<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF112		PSRF112 protocol header
Message ID to set	140		This is the only NMEA message ID supported
Message rate	1	sec	140 – valid rate is 1 (i.e. occurring once at every periodic EE event, in every 6 seconds) or 0 (to disable)
Send Now	1		Poll NMEA message ID once.

Table 3.17: Table Set Message Rate

3.12 Set GRF3i+ IF Bandwidth Mode: Message ID 113, Sub ID 0x01

This message enables the user to set the IF bandwidth mode for the GRF3i+.

Table 3.18 contains the values for the following example:

Sub ID = 0x1, GRF3i+ Bandwidth Mode Selection = 0x1

Example:

\$PSRF113,01,01*24<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF113		GRF3i+ protocol header
Sub ID	0x01 (Decimal: 01)		0x01: Set GRF3i + IF bandwidth mode
GRF3i+ If Bandwidth Mode Selection	0x01		0=Wideband Mode 1=Narrowband Mode [default]
Checksum	*24		
<cr><lf></lf></cr>			End of message termination.

Table 3.18: Set GRF3i+ IF Bandwidth Mode

3.13 Set GRF3i+ Normal/Low Power RF Mode: Message ID 113, Sub ID 0x02

This message enables the user to set the RF power mode to normal or low.

Table 3.19 contains the values for the following example:

Sub ID=0x2, GRF3i+ power mode=0x1

Example:

\$PSRF113.02.01*27<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF113		GRF3i+ protocol header
Sub ID	0x02 (Decimal: 02)		0x02: Set GRF3i+ power mode
GRF3i+ power mode Selection	0x01		0=Normal power [default] 1=Low power
Checksum	*27		
<cr><lf></lf></cr>			End of message termination.

Table 3.19: Set GRF3i+ IF Bandwidth Mode

Note:

GRF3i+ Power Mode would be internally saved to NVM. By default, it would be initialized to 0 (Normal power).

3.14 ECLM Start Download: Message ID 114 (Sub ID 0x16)

This message indicates to the GPS receiver that Host EE Downloader wants to initiate the SGEE file download. The Sub Message ID for this message is fixed to 0x16.

Table 3.20 contains the input values for the following example:

Sub ID=0x16

Example:

\$PSRF114,16*08<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF114		ECLM download packet header
Sub ID	0x16 (Decimal: 22)		0x16: Sub ID for ECLM start download
Checksum	*08		
<cr><lf></lf></cr>			End of message termination

Table 3.20: ECLM Start Download

The receiver reports the success or failure of this message with message ID 156, Sub ID 0x20.

3.15 ECLM File Size: Message ID 114, Sub ID 0x17

This message is sent from Host EE Downloader to the GPS receiver to indicate the size of the SGEE file to be downloaded. The Sub Message ID for this message is fixed to 0x17.

Table 3.21 contains the values for the following example:

Sub Message ID=0x17, SGEE File Size=0x2859

Example:

\$PSRF114,17,2859*23<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF114		Message ID
Sub ID	0x17 (Decimal:23)		0x17: SGEE file length
File Length	0x2859		File length
Checksum	*23		
<cr><lf></lf></cr>			End of message termination

Table 3.21: ECLM File Size

The receiver reports the success or failure of this message with message ID 156, Sub ID 0x20.

3.16 ECLM Packet Data: Message ID 114, Sub ID 0x18

This message is sent from Host EE Downloader to the GPS receiver to indicate the size of the SGEE file to be downloaded. The Sub Message ID for this message is fixed to 0x18.

Table 3.22 contains the values for the following example:

Sub ID=0x18, Packet Sequence No=1, Packet Length=32

Example:

Name	Example	Unit	Description
Message ID	\$PSRF114		Message ID
Sub ID	0x18 (Decimal: 24)		0x18: SGEE Packet Data
Packet Sequence No	1	In decimal	File length
Packet Length	32	In decimal	Length of this packet
Packet Data	62,12,31,6,3,2,7,d9,7, 7,0,0,39,6d,8f, 12,0,0,0,0,0,1,2d, 9a,e7,5,2,ff,fe,28,5		SGEE data in this packet of length Packet Length
Checksum	*3D		
<cr><lf></lf></cr>			End of message termination

Table 3.22: SGEE Packet Data

The receiver reports the success or failure of this message with message ID 156, Sub ID 0x20.

3.17 ECLM Get EE Age: Message ID 114, Sub ID 0x19

This message is sent from Host EE Downloader to the GPS receiver to get the EE age from the GPS receiver. The Sub Message ID for this message is fixed to 0x19.

Table 3.23 contains the values for the following example:

Sub ID =0x19, Num Sat=1, Prn Num=1

Example:

\$PSRF114,19,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0*1B<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF114		Message ID
Sub ID	0x19 (Decimal: 25)		0x19: Get EE Age
Num Sat	0x1		Number of times below fields will be repeated
prnNum	0x1		PRN number=1
ephPosFlag	0x0		
eePosAge	0x0		
cgeePosGPSWeek	0x0		
cgeePosTOE	0x0		
ephClkFlag	0x0		
eeClkAge	0x0		
cgeeClkGPSWeek	0x0		
cgeeClkTOE	0x0		
Pad	0x0		
Checksum	*1B		
<cr><lf></lf></cr>			End of message termination

Table 3.23: ECLM Get EE Age

The receiver reports the success or failure of this message with message ID 156, Sub ID 0x21 or 0x20.

3.18 ECLM Get SGEE Age: Message ID 114, Sub ID 0x1A

This message is sent from Host EE Downloader to the GPS receiver to get the SGEE age from the GPS receiver. The Sub Message ID for this message is fixed to 0x1A.

Table 3.24 contains the values for the following example:

Sub ID = 0x1A, Sat ID = 1

Example:

\$PSRF114,1a,1*42<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF114		Message ID
Sub ID	0x1A (Decimal: 26)		0x1A: Get SGEE Age
Sat ID	0x1		Satellite ID for which SGEE Age is asked
Checksum	*42		
<cr><lf></lf></cr>			End of message termination

Table 3.24: Get SGEE Age

The receiver reports the success or failure of this message with message ID 156, Sub ID 0x22 (success) or 0x20 (failure).

3.19 ECLM Host File Content: Message ID 114, Sub ID 0x1B

This message is sent to the GPS receiver in response to a Request File Content message. The Sub Message ID for this message is fixed to 0x1B.

Table 3.25 contains the values for the following example:

Sub Message ID = 0x1B, NVM ID = 3, Num Blocks = 1

Example:

\$PSRF114,1b,1,3,1,a,0,0,0,f,6,0,f0,0,0,4a,0*41<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF114		Message ID
Sub ID	0x1B (Decimal: 27)		0x1B: Host file content
SeqNum	0x01		
NVM ID	0x03		1:SGEE file 2:CGEE file 3:BE file

Name	Example	Unit	Description
Num Blocks	0x1		Number of blocks per packet
Block Length	0xA		Block size
Offset	0x0		Offset of block in file
Data	0,0,f,6,0,f0,0,0,4a,0		Block data
Checksum	*41		
<cr><lf></lf></cr>			End of message termination

Table 3.25: Host File Content

3.20 ECLM Host ACK/NACK: Message ID 114, Sub ID 0x1C

This message is the response to Output Message 156 with SubMsgID 0x23, 0x24 or 0x25.

Table 3.26 contains the values for the following example:

ACK for Downloader initiate request

\$PSRF114,1c,9c,23,0,0*06<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF114		Message ID
Sub ID	0x1C (Decimal: 28)		0x1C: Host ACK/NACK
ACK Message ID	0x9C		\$PSRF156
ACK Sub ID	0x23		This can contain values 0x23, 0x24, 0x25
ACK/NACK	0x0		0x0:ACK 0x1:NACK
Reason	0x0		0x0:SUCCESS 0x1:Invalid NVMID 0x13:File access error
Checksum	*06		
<cr><lf></lf></cr>			End of message termination

Table 3.26: Host ACK/NACK

3.21 System Turn Off: Message ID 117, Sub ID 0x10

This message requests that the GPS receiver perform an orderly shutdown and switch to hibernate mode.

Table 3.27 contains the values for the following example:

\$PSRF117,16*0B<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF117		Message ID
Sub ID	0x10 (Decimal: 16)		0x10: System turn off
Checksum	*0B		
<cr><lf></lf></cr>			End of message termination

Table 3.27: System Turn Off

3.22 Switch to Boot Mode: Message ID 117, Sub ID 0x20

This message is a request that the GPS receiver perform an orderly shutdown and switch to boot mode.

Table 3.28 contains the values for the following example:

Sub ID=0x20

\$PSRF117,0x20,32*0D<CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF117		System Turn Off
Sub ID	(Decimal: 32)		0x20: SID_SwitchToBootMode
Checksum	*0D		
<cr><lf></lf></cr>			End of message termination

Table 3.28: Switch to Boot Mode

3.23 Storage Config Setting: Message ID 120

This command sets storage configuration options to determine on which storage media the different types of system data will be physically stored.

Table 3.29 contains the input values for the following example:

Store patches on I2C serial flash and extended ephemeris data on I2C EEROM.

\$PSRF120,F,R,*<checksum><CR><LF>

Name	Example	Unit	Description
Message ID	\$PSRF120		PSRF120 Protocol Header
Patch Storage Setting	F		"N"=Do not store to I2C serial flash (default). "F"=Store to I2C serial flash "0"=No change applied to patch
EE Storage Setting	R		"H"=Storage available on host "R"=I2C EEROM provided for GSD4e access (default). "F"=Store to parallel FLASH "N"=No storage "0"=No change applied to patch storage settings.
Checksum	*		
<cr><lf></lf></cr>			End of message termination

Table 3.29: Storage Configuration Option Settings Format

Note:

This message is supported by GSD4e and later.

3.24 Marketing Software Configuration: Message ID 200

Note:

This message is used to select one of the pre-programmed configurations within ROM-based devices. Refer to the appropriate product datasheet to determine message format and specific configurations supported.

3.25 MSK Receiver Interface: Message ID MSK

Table 3.30 contains the values for the following example:

\$GPMSK,318.0,A,100,M,2,*45<CR><LF>

Name	Example	Unit	Description
Message ID	\$GPMSK		MSK protocol header
Beacon Frequency	318.0	kHz	Frequency to use
Auto/Manual Frequency ⁽¹⁾	А		A: Auto M: Manual
Beacon Bit Rate	100		Bits per second
Auto/Manual Bit Rate ⁽²⁾	М		A: Auto M: Manual
Interval for Sending \$ MSS ⁽³⁾	2	sec	Sending of MSS message for status

Table 3.30: MSK Data Format

Note:

The NMEA messages supported by the receiver does not provide the ability to change the DGPS source. If you need to change the DGPS source to internal beacon, use the SiRF binary protocol and then switch to NMEA.

⁽¹⁾ If Auto is specified, the previous field is ignored and the receiver will search for beacon frequency automatically.

⁽²⁾ If Auto is specified, the previous field is ignored and the receiver will search for the correct bit rate.

 $^{^{(3)}}$ When status data is not to be transmitted this field is null.

Terms and Definitions

Term	Definition
ACK	ACKnowledge
ASCII	American Standard Code for Information Interchange
BE	Broadcast Ephemeris
C/N _o	Carrier to Noise Density
CGEE	Client Generated Extended Ephemeris
CR	Carriage Return
DGPS	Differential Global Positioning System
DoP	Dilution of Precision
EE	Extended Ephemeris
GGA	NMEA Term: Global Positioning System Fix Data
GLL	Generic Location Layer
GNSS	Global Navigation Satellite System
GPIO	General Purpose Input/Output
GPS	Global Positioning System
GSA	NMEA string: GNSS DOP and Active Satellites
GSV	NMEA string: GNSS Satellites in View
LF	Line Feed
LSB	Least-Significant Bit (or Byte)
MSB	Most Significant Bit (or Byte)
MSK	NMEA string: MSK Receiver Interface
MSS	NMEA string: MSK Receiver Signal
NMEA	National Marine Electronics Association
NVM	Non-Volatile Memory
OSP	One Socket Protocol
PRN	Pseudo-Random Noise
PVT	Position, Velocity and Time
RAM	Random Access Memory
RMC	Recommended Minimum Specific GNSS Data
RTCM	Radio Technical Commission for Maritime Services
SDK	Software Development Kit
SGEE	Server Generated Extended Ephemeris
SID	Sub ID
SNR	Signal-to-Noise Ratio
SRAM	Static Random Access Memory
SV	Space Vehicle
UTC	Co-ordinated Universal Time
VTG	NMEA string: Course Over Ground and Ground Speed
ZDA	NMEA string: Time & Date