I det følgende refererer $\log n$ til logaritmen med base 2, dvs. 2-tals-logaritmen. Vær opmærksom på at de sidste tre spørgsmål involverer Big-Theta eller Big-Omega, og de foregående spørgsmål involverer Big-O. Bemærk, i denne opgave skal du have mere end halvdelen rigtige for at opnå point.

In the following, $\log n$ refers to $\log a$ see 2, i.e. the binary logarithm. Be aware that the final three sub-problems involve Big-D. Note, in this assignment you must have more than half correct in order to obtain points.

	True	False
$3n^{3/2}+\log n=O\left(n^{2/3} ight)$	0	0
$2(\log n)^4 = O\left(n^2 ight)$	0	0
$\sqrt{n} \cdot \log n = O(n)$	0	0
$6n^{3/2} = O\left(8^{\log n} ight)$	0	0
$4\log\left(n^6 ight) = O\left((\log n)^2 ight)$	0	0
$2^{2\log n} = O(\log(n!))$	0	0
$n^2=O\left(n^{3/2} ight)$	0	0
$n^{0.1}=O(n)$	0	0
$n=O\left(n^{1/3} ight)$	0	0
$\sqrt{n} = \Theta(n \cdot \log n)$	0	0
$n^{2/3}=\Omega(n)$	0	0
$n^2 = \Theta\left(n^{0.1} ight)$	0	0

```
Algorithm loop1(n) Algorithm loop2(n)
 s = 1
                        i = 0
 for i = 1 to n
                        j = n
    for j = 1 to i
                        while i < j
       for k = j to i
                           i = i + 2
          s = s + 1
                           j = j + 1
Algorithm loop3(n)
                      Algorithm loop4(n)
 i = 1
                        i = n
 j = n
                        i = 0
 while i < j
                        while i > 0
    i = 2 * i
                           if j < i
    j = j + n
                              j = j + 1
                           _{
m else}
                              i = 0
                              i = i - 1
```

Angiv udførelses-tiden for hver af ovenstående algoritmer som funktion af n i Θ -notation.

Algorithm loop1(n)
$$s=1$$
 $i=0$ $j=n$ while $i < j$ $i=i+2$ $j=j+1$

Algorithm loop3(n) $i=1$ $i=n$ $j=0$ while $i < j$ while $i < j$ $i=n$ $j=0$ $j=n$ $j=0$ $j=j+1$

For each of the above algorithms, state its execution time as a function of n in Θ -notation.

	$\Theta\left(n^3\right)$	$\Theta\left((\log n)^2\right)$	$\Theta(\sqrt{n})$	$\Theta\left(n^2\right)$	$\Theta(n \log n)$	$\Theta(n\sqrt{n})$
loop1	0	0	0	0	0	0
loop2	0	0	0	0	0	\circ
loop3	0	0	0	0	\circ	0
loop4	0	0	0	0	\circ	0

Den følgende kodeudsnit beregner potensen af x. Vi får to heltal, og algoritmen returnerer et heltal. Find den **mindste** Store-O tidskompleksitet for algoritmen.

```
public static long power(int x, int n)
{
   long pow = 1L;

   // loop till n become 0
   while (n > 0)
   {
        // if n is odd, multiply the result by x
        if ((n & 1) == 1) {
            pow *= x;
        }

        // divide n by 2
        n = n / 2;

        // multiply x by itself
        x = x * x;
   }
}
```

The following code snippet calculates the power of x. We are given two integers, and the algorithm returns an integer. Find the **tightest** Big-O time complexity of the algorithm.

```
public static long power(int x, int n)
{
  long pow = 1L;

  // loop till n become 0
  while (n > 0)
  {
      // if n is odd, multiply the result by x
      if ((n & 1) == 1) {
            pow *= x;
      }

      // divide n by 2
      n = n / 2;

      // multiply x by itself
      x = x * x;
    }
```

 $egin{array}{c|c} \mathbf{A} & \mathcal{O}(n) \\ \hline \mathbf{B} & \mathcal{O}(\log n) \\ \hline \mathbf{C} & \mathcal{O}(n^2) \end{array}$

D	$\mathcal{O}(n\log n)$				
Е	$\mathcal{O}(n^3)$				
F	$\mathcal{O}((\log n)^2)$				
tem 4					
rækkefølg	heltalsarray af størrelse N , vil vi kontrollere, om arrayet er sorteret (enten i stigende eller faldende e). En algoritme løser dette problem ved at foretage en enkelt gennemløb af arrayet og kun sammenligne ent i arrayet med dets naboer. Den værste tidskompleksitet for denne algoritme er:				
algorithm	In integer array of size N , we want to check if the array is sorted (in either ascending or descending order). An solves this problem by making a single pass through the array and comparing each element of the array only acent elements. The worst-case time complexity of this algorithm is				
4	>				
☐ bo	th $\mathrm{O}(N)$ and $\Omega(N)$				
□ O(.	N) but not $\Omega(N)$				
	$\operatorname{V}) ext{ but } \operatorname{not} \operatorname{O}(N)$				
	ther $O(N)$ nor $\Omega(N)$				
_	b. Overvej følgende tre funktioner:				
	$f_2=n^{\log n}, f_3=n^{\sqrt{n}}$				
	følgende muligheder arrangerer funktionerne i stigende rækkefølge af asymptotisk vækstrate (fx er n^2 arrangeret i stigende rækkefølge af asymptotisk vækstrate)?				
b. Conside	er the following three functions:				
$f_1=10^n,$	$f_2=n^{\log n}, f_3=n^{\sqrt{n}}$				
	of the following options arranges the functions in the increasing order of asymptotic growth rate (e.g. n^2 ordered in the increasing order of asymptotic growth rate)?				
$\Box f_3$,	$f_2,\ f_1$				
$\ \ \Box \ f_2,$	$f_1,\;f_3$				
$\ \ \Box \ f_1,$	$f_2,\;f_3$				
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$f_3,\ f_1$				