ENSEMBLE MODEL

Predicting whether the client of a certain bank in Taiwan will default to the next month or not.

Date	14/04/2020	
Name	Vinit Ravichandran Iyer	
	Ashmitha Nagesh	

Content List

Sr No	Description	Page No
1	Introduction	3
2	Source Code	5
3	Coefficient Output	21
4	Inference	21

Introduction

Ensemble methods is a machine learning technique that combines several base models in order to produce one optimal predictive model. There are different types of Ensemble models, namely:

• BAGGing, or Bootstrap AGGregating. **BAGG**ing gets its name because it combines Bootstrapping and Aggregation to form one ensemble model. Given a sample of data, multiple bootstrapped subsamples are pulled. A Decision Tree is formed on each of the bootstrapped subsamples. After each subsample Decision Tree has been formed, an algorithm is used to aggregate over the Decision Trees to form the most efficient predictor.

• Random Forest Models. Random Forest Models can be thought of as BAGGing, with a slight tweak. When deciding where to split and how to make decisions, BAGGed Decision Trees have the full disposal of features to choose from. Therefore, although the bootstrapped samples may be slightly different, the data is largely going to break off at the same features throughout each model. In contrary, Random Forest models decide where to split based on a random selection of features. Rather than splitting at similar features at each node throughout, Random Forest models implement a level of differentiation because each tree will split based on different features. This level of differentiation provides a greater ensemble to aggregate over, ergo producing a more accurate predictor.

A random forest takes a random subset of features from the data, and creates n random trees from each subset. Trees are aggregated together at end.

The goal of any machine learning problem is to find a single model that will best predict our wanted outcome. Rather than making one model and hoping this model is the best/most accurate predictor we can make, ensemble methods take a myriad of models into account, and average those models to produce one final model. It is important to note that Decision Trees are not the only form of ensemble methods, just the most popular and relevant in Data Science today.

In the model described hereafter, we have found the AUC. An evaluation metric that considers all possible classification thresholds. The Area Under the ROC curve is the probability that a classifier will be more confident that a randomly chosen positive example is actually positive than that a randomly chosen negative example is positive.

We investigated the data, checking for data unbalancing, visualizing the features and understanding the relationship between different features. We Concluded with **Random Forest Classifier**, for which we obtained an AUC score of **0.65**.

Source Code

1. Importing Packages

Input	import pandas as pd
	import numpy as np
	import seaborn as sea
	import matplotlib.pyplot as plt
	import gc
	from datetime import datetime
	from sklearn.model_selection import train_test_split
	from sklearn.metrics import roc_auc_score
	from sklearn.ensemble import RandomForestClassifier

2. Importing the Data

Input	data = pd.read_excel("default of credit card clients.xls", header = 1)
	data.head()
	data.nead()

Output

```
ID LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 ... BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AMT2 PAY_
         120000
                                                                             3272
                                                                                       3455
                                                                                                 3261
                                                                                                                    1000
                                                      0 0 0 ...
          90000
                                     2
                                                0
                                                                             14331
                                                                                       14948
                                                                                                 15549
                                                                                                           1518
                                                                                                                    1500
          50000
                                                                             28314
                                                                                       28959
                                                                                                 29547
                                                                                                          2000
                                                                                                                    2019
          50000
                                                                             20940
                                                                                       19146
                                                                                                 19131
                                                                                                           2000
                                                                                                                    36681
5 rows × 25 columns
```

3. Knowing the Data

Input	data.:	info()					
Output	<cla< th=""><th colspan="6"><pre><class 'pandas.core.frame.dataframe'=""></class></pre></th></cla<>	<pre><class 'pandas.core.frame.dataframe'=""></class></pre>					
1	Rang	reIndex: 30000 entries, 0 to	29999				
	Data	columns (total 25 columns)	:				
	#	Column	Non-Null Count	Dtype			
	0	ID	30000 non-null	int64			
	1	LIMIT_BAL	30000 non-null	int64			
	2	SEX	30000 non-null	int64			
	3	EDUCATION	30000 non-null	int64			
	4	MARRIAGE	30000 non-null	int64			
	5	AGE	30000 non-null	int64			
	6	PAY 0	30000 non-null	int64			
	7	PAY 2	30000 non-null	int64			
	8	PAY 3	30000 non-null	int64			
	9	PAY_4	30000 non-null	int64			

	10	PAY_5	30000	non-null	int64	
	11	PAY 6	30000	non-null	int64	
	12	BILL AMT1	30000	non-null	int64	
	13	BILL AMT2	30000	non-null	int64	
	14	BILL AMT3	30000	non-null	int64	
	15	BILL AMT4	30000	non-null	int64	
	16	BILL AMT5	30000	non-null	int64	
	17	BILL AMT6	30000	non-null	int64	
	18	PAY AMT1	30000	non-null	int64	
	19	PAY AMT2	30000	non-null	int64	
	20	PAY AMT3	30000	non-null	int64	
	21	PAY AMT4	30000	non-null	int64	
	22	PAY AMT5	30000	non-null	int64	
	23	PAY AMT6	30000	non-null	int64	
	24	default payment next month	30000	non-null	int64	
	dtyp	es: int64(25)				
	memory usage: 5.7 MB					
Input	data	.describe()				

Output

	ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4		
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	1999	5
mean	15000.500000	167484.322667	1.603733	1.853133	1.551867	35.485500	-0.016700	-0.133767	-0.166200	-0.220667	222	4
std	8660.398374	129747.661567	0.489129	0.790349	0.521970	9.217904	1.123802	1.197186	1.196868	1.169139		€
min	1.000000	10000.000000	1.000000	0.000000	0.000000	21.000000	-2.000000	-2.000000	-2.000000	-2.000000	1.0	-17
25%	7500.750000	50000.000000	1.000000	1.000000	1.000000	28.000000	-1.000000	-1.000000	-1.000000	-1.000000	5.4	
50%	15000.500000	140000.000000	2.000000	2.000000	2.000000	34.000000	0.000000	0.000000	0.000000	0.000000		4
75%	22500.250000	240000.000000	2.000000	2.000000	2.000000	41.000000	0.000000	0.000000	0.000000	0.000000		ŧ
max	30000.000000	1000000.000000	2.000000	6.000000	3.000000	79.000000	8.000000	8.000000	8.000000	8.000000	1999	88
8 rows	× 25 columns											
4												-

• Checking the amount of Credit Limit

```
Input plt.figure(figsize = (14,6))
plt.title('Amount of credit limit - Density Plot')
sea.set_color_codes("pastel")
sea.distplot(data['LIMIT_BAL'],kde=True,bins=200, color="blue")
plt.show()
```


Largest group of amount of credit limit is apparently for amount of 50K.

Input	data['LIMI'	_BAL'].value_count	nts().head(5)
Output	50000	3365	
1	20000	1976	
	30000	1610	
	80000	1567	
	200000	1528	
	Name: LIM	IT_BAL, dtype: i	int64

This proves that the largest group of amount of credit limit is 50k

• Visualizing the amount of Credit Limit grouped by Default payment of the next month

```
Input class_0 = data.loc[data['default payment next month'] == 0]["LIMIT_BAL"]
class_1 = data.loc[data['default payment next month'] == 1]["LIMIT_BAL"]
plt.figure(figsize = (14,6))
plt.title('Default amount of credit limit - grouped by Payment Next Month
(Density Plot)')
sea.set_color_codes("pastel")
sea.distplot(class_1,kde=True,bins=200, color="red")
sea.distplot(class_0,kde=True,bins=200, color="green")
plt.show()
```

Output

Most of defaults are for credit limits 0-100,000 (and density for this interval is larger for defaults than for non-defaults). Larger defaults number are for the amounts of 50,000, 20,000 and 30,000.

• Visualizing the Credit Limit relationship with respect to Gender

Input	fig, (axmale, axfemale) = plt.subplots(ncols=2, figsize=(12,6))
	s = sea.boxplot(ax = axmale, x="SEX", y="LIMIT_BAL",
	hue="SEX",data=data, palette="PRGn",showfliers=True)
	s = sea.boxplot(ax = axfemale, x="SEX", y="LIMIT BAL",
	hue="SEX",data=data, palette="PRGn",showfliers=False)
	plt.show();

- 1 = Male 2 = Female
- The limit credit amount is quite balanced between sexes.

 The males have a slightly smaller Q2 and larger Q3 and Q4 and a lower mean.

 The female have a larger outlier max value.

4. Preparing the Data

Checking for missing data

Input	total = data.isnull().sum().sort_value	s(ascending = False)
_	print(total)	
Output	default payment next month	0
1	PAY 6	0
	LIMIT BAL	0
	SEX	0
	EDUCATION	0
	MARRIAGE	0
	AGE	0
	PAY 0	0
	PAY 2	0
	PAY 3	0
	PAY 4	0
	PAY 5	0
	BILL AMT1	0
	PAY AMT6	0
	BILL AMT2	0
	BILL_AMT3	0
	BILL AMT4	0
	BILL AMT5	0
	BILL AMT6	0
	PAY AMT1	0
	PAY AMT2	0
	PAY AMT3	0
	PAY AMT4	0
	PAY AMT5	0

ID	0
dtype: int64	

• Checking for data imbalance

```
Input temp = data["default payment next month"].value_counts(normalize=True)
df = pd.DataFrame({'default payment next month': temp.index,'values':
temp.values})

plt.figure(dpi = 140)
plt.title('Checking data imbalance, (Default = 0, Not Default = 1)')
plt.bar(df['default payment next month'], df['values'])
plt.show()
```

Output

A minimum of 22% of the total clients will defualt into next month. The data does not have a large imbalance with respect to the target value - Default payment for next month.

5. Feature Correlation Matrix

Input	var =
1	['BILL AMT1','BILL AMT2','BILL AMT3','BILL AMT4','BILL AMT5',
	BILL AMT6']
	,
	plt.figure(figsize = (8,8))
	plt.title('Amount of bill statement (Apr-Sept) \ncorrelation plot (Pearson)')
	corr = data[var].corr()
	sea.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns,linewidth
	s=.1,vmin=-1, vmax=1)
	plt.show()

Output

Correlation is decreasing with distance between months. Lowest correlations are between Sept-April.

Input	var = ['PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4',
	'PAY_AMT5']
	plt.figure(figsize = (8,8))
	plt.title('Amount of previous payment (Apr-Sept) \ncorrelation plot (Pearson)')
	corr = data[var].corr()
	sea.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns,linewidth
	s=.1,vmin=-1, vmax=1)
	plt.show()

There are no correlations between amounts of previous payments for April-Sept 2005.

Input	var = ['PAY_0','PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6']
	plt.figure(figsize = (8,8)) plt.title('Repayment status (Apr-Sept) \ncorrelation plot (Pearson)') corr = data[var].corr() sea.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns,linewidth s=.1,vmin=-1, vmax=1) plt.show()

Correlation is decreasing with distance between months. Lowest correlations are between Sept-April.

6. Visualizing Sex, Education, Age and Marriage variables

Marriage status meaning is:

- 0 : unknown (let's consider as others as well)
- 1 : married
- 2 : single
- 3 : others

Sex meaning is:

- 1 : male
- 2 : female

Input	def boxplot_variation(feature1, feature2, feature3, width=16):						
	fig, ax1 = plt.subplots(ncols=1, figsize=(width,6))						
	s = sea.boxplot(ax = ax1, x=feature1, y=feature2, hue=feature3,						
	data=data, palette="PRGn",showfliers=False)						
	s.set_xticklabels(s.get_xticklabels(),rotation=90)						
	plt.show();						
Input	boxplot_variation('MARRIAGE','AGE', 'SEX',8)						

Output

It looks like Married status 3 (others), with mean values over 40 and Q4 values over 60 means mostly vidowed or divorced whilst Married status 0 could be not specified or divorced, as Q1 values are above values for married of both sexes.

Married males have mean age above married women. Unmarried males have mean value for age above unmarried women as well but closer. Q3 abd Q4 values for married man are above corresponding values for married women. Education status meaning is:

- 1 : graduate school
- 2 : university
- 3 : high school
- 4 : others
- 5 : unknown
- 6 : unknow

Input	boxplot variation('EDUCATION','AGE', 'MARRIAGE',12)	

Input boxplot_variation('AGE','LIMIT_BAL', 'SEX',16)

Output

Above plot is for Credit Limit amount distribution grouped by Age and Sex Mean, Q3 and Q4 values are increasing for both male and female with age until aroung 35 years and then they are oscilating and get to a maximum of Q4 for males at age 64.

Mean values are generally smaller for males than for females, with few exceptions, for example at age 39, 48, until approximately 60, where mean values for males are generally larger than for females.

Above plot is for Credit Limit amount distribution grouped by Marriage status and Education level

7. Splitting the data for Training and Test data

8. Random Forest Classifier

We will use as validation criterion GINI, which formula is GINI = 2 * (AUC) - 1, where AUC is the Receiver Operating Characteristic - Area Under Curve (ROC-AUC) . Number of estimators is set to 100 and number of parallel jobs is set to 4.

Input	clf = RandomForestClassifier(n jobs=-1,							
1	random state=42,							
	criterion='gini',							
	n estimators=350,							
	verbose=False)							
	predictors = train_df.drop(columns=['default payment next							
	month']).columns.values							
	target = 'default payment next month'							

Input	clf.fit(train_df[predictors].values, train_df[target].values)							
Output	RandomForestClassifier(n_estimators=350, n_jobs=-1, random_s tate=42,							
	verbose=False)							
Input	preds = clf.predict(val_df[predictors])							

• Features Importance

Input	tmp = pd.DataFrame({'Feature': predictors, 'Feature importance':
	clf.feature_importances_})
	tmp = tmp.sort_values(by='Feature importance',ascending=False)
	plt.figure(figsize = (7,4))
	plt.title('Features importance',fontsize=14)
	s = sea.barplot(x='Feature',y='Feature importance',data=tmp)
	s.set_xticklabels(s.get_xticklabels(),rotation=90)
	plt.show()

The most important features are PAY_0, AGE, BILL_AMT1, LIMIT_BAL, BILL_AMT2, BILL_AMT3.

Confusion Matrix

Input	cm = pd.crosstab(val_df[target].values, preds, rownames=['Actual'],
	colnames=['Predicted'])
	fig, $(ax1)$ = plt.subplots(ncols=1, figsize=(5,5))
	sea.heatmap(cm,
	xticklabels=['Not Default', 'Default'],
	yticklabels=['Not Default', 'Default'],
	annot=True,ax=ax1,
	linewidths=.2,linecolor="Darkblue", cmap="Blues")
	plt.title('Confusion Matrix', fontsize=14)
	plt.show()

9. Random Forest with One Hot Encoder

5 rows × 93 columns

Input	cat_features = ['EDUCATION', 'SEX', 'MARRIAGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6']									
	train_df_bkp = train_df.copy() val_df_bkp = val_df.copy()									
	train_f_df = pd.get_dummies(train_df_bkp, columns = cat_features) val_f_df = pd.get_dummies(val_df_bkp, columns = cat_features)									
	print("Default of Credit Card Clients train data - rows:",train_f_df.shape[0]," columns:", train_f_df.shape[1])									
	print("Default of Credit Card Clients val data - rows:",val_f_df.shape[0]," columns:", val_f_df.shape[1])									
Output	put Default of Credit Card Clients train data - rows: 22500 c									
	Default of Credit Card Clients val data - rows: 7500 colu mns: 89									
Input	train_fa_df, val_fa_df = train_f_df.align(val_f_df, join='outer', axis=1, fill_value=0)									
	print("Default of Credit Card Clients train data - rows:",train_fa_df.shape[0]," columns:", train_fa_df.shape[1])									
	print("Default of Credit Card Clients val data - rows:",val_fa_df.shape[0],"									
	columns:", val_fa_df.shape[1])									
Output	Default of Credit Card Clients train data - rows: 22500 co									
	lumns: 93									
	Default of Credit Card Clients val data - rows: 7500 colu mns: 93									

Inp	ut	tra	in_fa_d	f.head(5)								
Outp	ut												
	AGE	BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_AMT4	BILL_AMT5	BILL_AMT6	EDUCATION_0	EDUCATION_1	EDUCATION_2	F	PAY_6_8	PAY_AMT
21177	31	80928	82690	84462	86263	87238	89176	0	0	0		0	400
23942	24	15730	16776	35036	14694	16914	14074	0	0	1		0	131:
1247	35	2667	2667	0	0	0	0	0	0	1		0	266
23622	40	0	0	0	0	0	0	0	0	1		0	
28454	36	68028	67864	59165	29314	28844	29443	0	0	1	Care at 1	0	334

Inp	ut	tra	in fa d	f.head(:	5)								
Outp													
	AGE	BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_AMT4	BILL_AMT5	BILL_AMT6	EDUCATION_0	EDUCATION_1	EDUCATION_2	•••	PAY_6_8	PAY_AMT
2308	25	8864	10062	11581	12580	13716	14828	0	0	1	100	0	150
22404	26	136736	125651	116684	101581	77741	77264	0	1	0	110	0	448
23397	32	70122	69080	68530	69753	70111	70212	0	0	0	***	0	243
25058	49	20678	18956	16172	16898	11236	6944	0	0		1051	0	161
2664	36	94228	47635	42361	19574	20295	19439	0	0	1	115	0	200
5 rows	× 93 c	olumns											
4													*
Inp	ut			'default									
		pre	dictors	$_{f} = ['A]$	GE', 'B	ILL_A	MT1', 'E	BILL_AN	1T2', 'BII	LL_AMT	3',		
			LL AN			_				_			
			'BILL	AMT5	5', 'BILl	L AMT	6', 'ED'	UCATIO	N 0', 'EI	DUCATION	ΟN	J 1',	
												_ ′	
		EI'	'EDUCATION_2', 'EDUCATION_3', 'EDUCATION_4', 'EDUCATION 5',										
			'EDUCATION 6', 'LIMIT BAL', 'MARRIAGE 0', 'MARRIAGE 1',										
						_				7 0 -2', 'I			0'
									- 1	7 0 5', 'P			_ ^
			_	`		_							
			_			_		_	_	Y_2_0'			
			_			_				_2_6', 'P			-
			_	′		_ ′		_		Y_3_1'			_ ′
			'PAY_3_3', 'PAY_3_4', 'PAY_3_5', 'PAY_3_6', 'PAY_3_7', 'PAY_3_8',										
			'PAY_41', 'PAY_42', 'PAY_4_0', 'PAY_4_1', 'PAY_4_2', 'PAY_4_3',										
			'PAY	_4_4', 'I	PAY_4	_5', 'PA	Y_4_6',	'PAY_4	_7', 'PAY	'_4_8', 'P	A٦	Y_5	-1',
			'PAY 5 -2', 'PAY 5 0', 'PAY 5 2', 'PAY 5 3', 'PAY 5 4', 'PAY 5 5',										
			'PAY 5 6', 'PAY 5 7', 'PAY 5 8', 'PAY 6 -1', 'PAY 6 -2', 'PAY 6 0',										
			_	`		_				$\frac{1}{6}$ $\frac{1}{6}$, 'P.			
								1', 'SEX		15, 1A1	_'	71011-	т,
Lace	-4	21£		_		_							
Inp					-1		_	[target_f	J /	-l 1		- a1	
Out	put			restCl	assıf	ıer(n_	_estima	ators=3	ou, n_j	obs=-1,	r	ando	m_s
		ta	te=42,				rhogo-	-E2166\					
T	4		1 1	C 1'	1 C			=False)					
Inpi	Input preds = clf.predict(val_fa_df[predictors_f])												

• Features Importance

```
tmp = pd.DataFrame({'Feature': predictors f, 'Feature importance':
Input
            clf.feature_importances_})
            tmp = tmp.sort_values(by='Feature importance',ascending=False)
            plt.figure(figsize = (16,4))
plt.title('Features importance',fontsize=14)
            s = sea.barplot(x='Feature',y='Feature importance',data=tmp)
            s.set xticklabels(s.get xticklabels(),rotation=90)
            plt.show()
```

Output

The most important features are AGE, LIMIT_BAL, BILL_AMT1, PAY_0_2, BILL_AMT2, BILL_AMT3.

• Confusion Matrix

Output

Input	roc_auc_score(val_df[target].values, preds)						
Output	0.6532579949015062						

The ROC-AUC score obtained with Random Forest Classifier is 0.65.

We will use for Random Forest Classifier dummified variables for the categorical features.

Input	_auc_score(val_fa_df[target].values, preds)
Output	0.6507662549156908

With the dummified features, there is no improvement of the AUC score but the change is quite small. Still giving an AUC score of 0.65.

Inference

We investigated the data, checking for data unbalancing, visualizing the features and understanding the relationship between different features. We Concluded with **Random Forest Classifier**, for which we obtained an AUC score of **0.65**.