1. Оценки и доверительные интервалы.

- **1** Пусть X_1, \ldots, X_n выборка из распределения $N(a, \sigma^2)$, где a и σ^2 неизвестные параметры. Построить доверительный интервал для третьего момента этого нормального распределения.
- **2** Пусть X_1, \ldots, X_n выборка из распределения $U(-\theta, \theta), \theta > 0$. Построить оценку параметра θ методом максимального правдоподобия. Проверить её на состоятельность.
- **3** По выборке X_1, \ldots, X_n из распределения $U(0, \theta), \ \theta > 1$, с помощью метода моментов найти несмещенную оценку параметра $1/\theta$.
- 4 Пусть X_1, \ldots, X_n выборка из распределения U(a,b), b > a > 0. Выбрав в качестве априорного распределения сопряжённое, найти байесовскую оценку двумерного параметра (a,b).
- **5** На примере бесконечной выборки $X = (X_1, X_2, \ldots)$ из произвольного распределения с конечным вторым моментом изучить поведение статистики

$$T_n = \frac{\sum_{i=1}^n X_i - nEX_1}{\sqrt{nDX_1}}.$$

Сходится ли T_n на какой-нибудь реализации выборки X? Как вы это объясните? Также проверьте, что центральная предельная теорема всё же выполняется.

6 Дана выборка X_1, \ldots, X_n из распределения Парето с параметром $\alpha > 0$, имеющего плотность $p(x) = \frac{\alpha}{x^{\alpha+1}} I\{x > 0\}$. Для всех $k \leq n$ построить по выборке X_1, \ldots, X_k доверительные интервалы уровня доверия γ для параметра α , вывести их на графике в зависимости от k и сделать выводы.

Замечание. Задачи 5 и 6 являются практическими, распределение в 5-той задаче и выборку в задаче 6 выдадут семинаристы.