

(Sheet # 2) - Part [1] - Electrostatic Force

Q1: Compute the electrostatic force between two charges of 5×10^{-9} C and -3×10^{-8} C which are separated by d = 10 cm

Solution

This is the scalar form of electrostatic force |F|

$$|F| = k_e \frac{|q_1 q_2|}{d^2} = (9 \times 10^9) \times \frac{\left| (5 \times 10^{-9}) \times (-3 \times 10^{-8}) \right|}{(10 \times 10^{-2})^2} = 1.35 \times 10^{-4} N = 135 \,\mu\text{N}$$

Q2: Two metallic spheres located at distance of d = 5 cm attract one another with force of F = 3 mN. If one of them has three times more charges than the other. <u>Determine</u> the charge value of the two spheres

Solution

This is the scalar form of electrostatic force |F|

$$\begin{aligned} q_2 &= 3q_1 \\ |F| &= k_e \frac{|q_1 q_2|}{d^2} = \left(9 \times 10^9\right) \times \frac{|(q_1) \times (q_2)|}{(5 \times 10^{-2})^2} = 3 \ mN = 3 \times 10^{-3} \ N \\ \frac{|(q_1) \times (3q_1)|}{(5 \times 10^{-2})^2} &= 3.333 \times 10^{-13} \\ q_1 &= 1.667 \times 10^{-8} \ \textit{C} = 16.67 \ \textit{nC} \end{aligned} \qquad \begin{aligned} q_2 &= 3\left(1.667 \times 10^{-8}\right) = 5 \times 10^{-8} \ \textit{C} = 50 \ \textit{nC} \end{aligned}$$

Q3: A particle of charge $-40 \,\mu$ C is located on y – axis at the point $y = 20 \,m$ and the second particle of charge $20 \,\mu$ C is placed on x – axis at $x = 30 \,m$. Determine the total electrostatic force on a third particle of charge $-10.0 \,\mu$ C placed at the origin

Solution

This is the vector form of electrostatic force *F*

For point charge [1] $-40 \ \mu C$ is located at y-axis at point (0, 20, 0) For point charge [2] $20 \ \mu C$ is located at x-axis at point (30, 0, 0) For point charge [3] $-10 \ \mu C$ is located at origin at point (0, 0, 0) $F = k_e \frac{|q_1q_2|}{|R|^3}R = k_e \left[\frac{q_1q_3}{|R_{13}|^3}R_{13} + \frac{q_2q_3}{|R_{23}|^3}R_{23}\right]$ $F_{13} = k_e \frac{q_1q_3}{|R_{13}|^3}R_{13} \qquad R_{13} = (0,0,0) - (0,20,0) = -20a_y \qquad |R_{13}| = \sqrt{(-20)^2} = 20$ $F_{23} = k_e \frac{q_2q_3}{|R_{23}|^3}R_{23} \qquad R_{23} = (0,0,0) - (30,0,0) = -30a_x \qquad |R_{23}| = \sqrt{(-30)^2} = 30$ $F = (9 \times 10^9) \left[\frac{(-40 \times 10^{-6}) \times (-10 \times 10^{-6})}{(20)^3} (-20a_y) + \frac{(20 \times 10^{-6}) \times (-10 \times 10^{-6})}{(30)^3} (-30a_x)\right]$ $F = (9 \times 10^9) [(-1 \times 10^{-12})a_y - (2.22 \times 10^{-13})a_x]$ $F = (2 \times 10^{-3})a_x + (-9 \times 10^{-3})a_y \ N = 2a_x - 9a_y \ mN \qquad \text{Vector Form}$ $Magnitude \ |F| = \sqrt{(2)^2 + (-9)^2} = 9.22 \times 10^{-3} \ N = 9.22 \ mN$ $Direction \ a_F = \frac{F}{|F|} = \frac{2a_x - 9a_y}{9.22} = 0.217a_x - 0.976a_y$

Q4: A point charge $q_1=2~\mu C$ located at origin and another point charge $q_2=-5~\mu C$ is on the coordinate (x=3,y=4)~m

Determine:

- A. The electrostatic force on charge q_1
- B. State that this force is attractive or repulsive

Solution

This is the vector form of electrostatic force F

For point charge $q_1 = +2 \mu C$ is located at *origin* at point (0, 0, 0)

For point charge $q_1 = -5 \mu C$ is located at point (3, 4, 0)

$$F_{21} = k_e \frac{|q_1 q_2|}{|R_{21}|^3} R_{21}$$

$$R_{21} = (0,0,0) - (3,4,0) = -3a_x - 4a_y \qquad |R_{21}| = \sqrt{(-3)^2 + (-4)^2} = 5$$

$$F = (9 \times 10^9) \left[\frac{(2 \times 10^{-6}) \times (-5 \times 10^{-6})}{(5)^3} (-3a_x - 4a_y) \right] = (2.16 \times 10^{-3})a_x + (2.88 \times 10^{-3}) a_y N$$

A. $F = 2.16a_x + 2.88a_y \ mN$ Vector Form

Magnitude
$$|F| = \sqrt{(2.16)^2 + (2.88)^2} = 3.6 \times 10^{-3} \ N = 3.6 \ mN$$

$$Direction \ a_F = \frac{F}{|F|} = \frac{2.16a_x + 2.88a_y}{3.6} = 0.6a_x + 0.8a_y$$

B. A s the two charges are in opposite sign

the net force is attractive

Q5: Three point charges are fixed in place in the right angle triangle shown below, in which $q_1 = 0.71 \,\mu\text{C}$ and $q_2 = -0.67 \,\mu\text{C}$. Determine magnitude and direction of the electrostatic force on the +1.0 μ C (let's call this q_3) charge due to the other two charges

Solution

$$m = 10\cos 30^{\circ} = 8.66 \ cm$$

$$n=10\sin 30^{\circ}=5$$
 cm

This is the vector form of electrostatic force F

$$F_{3} = \sum F_{x} a_{x} + \sum F_{y} a_{y} = \left[|F_{13}| \cos 60^{\circ} - |F_{23}| \right] a_{x} + \left[|F_{13}| \sin 60^{\circ} \right] (-a_{y})$$

$$|F_{13}| = k_{e} \frac{|q_{1}q_{3}|}{d_{13}^{2}} \qquad |F_{13}| = \left(9 \times 10^{9} \right) \left[\frac{\left| \left(0.71 \times 10^{-6} \right) \left(1 \times 10^{-6} \right) \right|}{(10 \times 10^{-2})^{2}} \right] = 0.639 \, N$$

$$|F_{23}| = k_{e} \frac{|q_{2}q_{3}|}{d_{23}^{2}} \qquad |F_{23}| = \left(9 \times 10^{9} \right) \left[\frac{\left| \left(-0.67 \times 10^{-6} \right) \left(1 \times 10^{-6} \right) \right|}{(5 \times 10^{-2})^{2}} \right] = 2.412 \, N$$

$$F_{3} = \left[0.639 \cos 60^{\circ} - 2.412 \right] a_{x} + \left[0.639 \sin 60^{\circ} \right] (-a_{y}) = -2.1 a_{x} - 0.5534 a_{y}$$

$$|F_{3}| = \sqrt{(-2.1)^{2} + (-0.5534)^{2}} = 2.1717 \, N$$

$$a_{F} = \frac{F_{3}}{|F_{3}|} = \frac{-2.1 a_{x} - 0.5534 a_{y}}{2.1717} = -0.967 a_{x} - 0.255 a_{y}$$

Q6: Two small insulating spheres are attached to silk threads and aligned vertically as shown in the below figure for stationary position. These spheres have equal masses of 40 g and carry charges q_1 and q_2 of equal magnitude 2.0 μ C but opposite sign. The spheres are brought into the positions shown in the figure, with a vertical separation of 15 cm between them. Note that you cannot neglect gravity. Determine the tension in the lower threads

Solution

Lower threads are referred to the sphere B and its corresponding charge q_2

All forces in the y – axis — Tension and weight forces of sphere B in the bottom direction As one of the two charges is positive and the other is negative — F_e is attraction to the top

This is the vector form of electrostatic force F

$$F_{2} = \sum F_{x} a_{x} + \sum F_{y} a_{y} = 0 + \left[|F_{e}| - T - F_{g}| a_{y} \right]$$

$$|F_{e}| = k_{e} \frac{|q_{1}q_{2}|}{d^{2}} \qquad |F_{e}| = \left(9 \times 10^{9} \right) \left[\frac{\left| \left(2 \times 10^{-6} \right) \left(-2 \times 10^{-6} \right) \right|}{(15 \times 10^{-2})^{2}} \right] = 1.6 N$$

$$F_{g} = mg = \frac{40}{1000} \times 9.81 = 0.3924 N \qquad \qquad for stationary position F_{2} = 0$$

$$T = 1.6 - 0.3924 = 1.208 N$$

(Report Section) Q7: Three point charges are located at corners of an equilateral triangle as shown below. Determine magnitude and direction of net electrostatic force on $7 \mu C$ charge

This is the vector form of electrostatic force F

$$F = \sum F_x a_x + \sum F_y a_y = \left[|F_1| \cos 60^\circ + |F_2| \cos 60^\circ \right] a_x + \left[|F_2| \sin 60^\circ - |F_1| \sin 60^\circ \right] a_y$$

$$|F_1| = \left(9 \times 10^9 \right) \left[\frac{\left| \left(7 \times 10^{-6} \right) \left(-4 \times 10^{-6} \right) \right|}{(0.5)^2} \right] = 1.008 \, N$$

$$|F_2| = \left(9 \times 10^9 \right) \left[\frac{\left| \left(7 \times 10^{-6} \right) \left(2 \times 10^{-6} \right) \right|}{(0.5)^2} \right] = 0.504 \, N$$

$$F = \left[1.008 \cos 60^\circ + 0.504 \cos 60^\circ \right] a_x + \left[0.504 \sin 60^\circ - 1.008 \sin 60^\circ \right] a_y = 0.756 a_x - 0.4365 a_y$$

$$|F| = \sqrt{(0.756)^2 + (-0.4365)^2} = 0.873 \, N$$

$$a_F = \frac{F}{|F|} = \frac{0.756 a_x - 0.4365 a_y}{0.873} = 0.866 a_x - 0.5 a_y$$

Q8: An electron is fixed at position x = 0 and a second charge q is fixed at $x = 4 \times 10^{-9}$ m (to the right). A proton is now placed between the two at $x' = 1 \times 10^{-9}$ m. Determine the charge q be (magnitude and sign) so that the proton is in equilibrium

as proton and electron have opposite signed charges $|F_1|$ is an attraction force for equilibrium at proton (+e) $|F_1| = |F_2|$

$$(9 \times 10^{9}) \left[\frac{\left| (1.6 \times 10^{-19})(-1.6 \times 10^{-19}) \right|}{(1 \times 10^{-9})^{2}} \right] = (9 \times 10^{9}) \left[\frac{\left| (1.6 \times 10^{-19})q \right|}{(3 \times 10^{-9})^{2}} \right]$$
$$2.56 \times 10^{-20} = 0.01778q$$
$$|q| = 1.44 \times 10^{-18} C$$

As the $|F_2|$ is attractive force and proton is a positive charge $q = -1.44 \times 10^{-18} \ C$

q must be negative charge

Q9: Four point charges are located on the corners of a square shown in the below figure. If the net Coulomb force on q_2 is zero. Determine is the ratio of Q/q

$$F_{2} = \sum F_{x} a_{x} + \sum F_{y} a_{y} = \left[|F_{1}| - |F_{3}| \cos 45^{\circ} \right] a_{x} + \left[|F_{2}| - |F_{3}| \sin 45^{\circ} \right] a_{y}$$

$$|F_{1}| = k_{e} \left[\frac{|qQ|}{(l)^{2}} \right] \qquad |F_{2}| = k_{e} \left[\frac{|qQ|}{(l)^{2}} \right] \qquad |F_{3}| = k_{e} \left[\frac{\left| -\frac{Q}{2} \times Q \right|}{\left(\sqrt{2}l\right)^{2}} \right]$$

$$for \ F_{2} = 0 \qquad \left[|F_{1}| - |F_{3}| \cos 45^{\circ} \right] a_{x} = 0 \qquad k_{e} \left[\frac{|qQ|}{(l)^{2}} \right] = k_{e} \left[\frac{\left| -\frac{Q}{2} \times Q \right|}{\left(\sqrt{2}l\right)^{2}} \right] \cos 45^{\circ}$$

$$q = \frac{Q}{4} \times 0.7071 = 0.177Q \qquad \frac{Q}{q} = \frac{1}{0.177} = 4\sqrt{2} = 5.657$$

Note that: if you utilized the term $[|F_2| - |F_3| \sin 45^\circ] a_y = 0$ it will gives the same solution

Q10: Two point charges $q_1 = +2 \mu C$ and $q_2 = +8 \mu C$ are 30 cm apart from each other. Extra charge q is placed so that three charges are brought to a balance. <u>Determine</u> the location of the charge q

to make charges balanced for the same signed $q_1 \& q_2$ q positioned between q_1 and q_2 for balance $|F_1| = |F_2|$

$$k_e \left[\frac{\left| \left(2 \times 10^{-6} \right) q \right|}{(x)^2} \right] = k_e \left[\frac{\left| \left(8 \times 10^{-6} \right) q \right|}{(30 - x)^2} \right]$$

$$\left[\frac{x}{30 - x} \right]^2 = \frac{2 \times 10^{-6}}{8 \times 10^{-6}} = \frac{1}{4} \qquad \frac{x}{30 - x} = \frac{1}{2} \qquad 2x = 30 - x \qquad 3x = 30 \qquad x = 10 \text{ cm}$$

q is placed at 10 cm to the right from q_1 or at 30 cm to the left from q_2

(Report Section)Q11: Two point charges are given as $q_1 = +2 \mu C$ and $q_2 = -8 \mu C$ are at distance d = 10 cm. Determine the position of a third charge q_3 to be placed so that net Coulomb force acted upon it is zero

Solution

for a balanced charges

q positioned in the left of q_1 or in the right of q_2

for balance
$$|F_1| = |F_2|$$

$$|F_1| = |F_2|$$

if q positioned in the left of q_1

$$k_e \left[\frac{\left| \left(2 \times 10^{-6} \right) q \right|}{(x)^2} \right] = k_e \left[\frac{\left| \left(-8 \times 10^{-6} \right) q \right|}{(10+x)^2} \right]$$
$$\left[\frac{x}{10+x} \right]^2 = \frac{2 \times 10^{-6}}{8 \times 10^{-6}} = \frac{1}{4} \qquad \frac{x}{10+x} = \frac{1}{2} \qquad 2x = 10+x \qquad x = 10 \qquad x = 10 cm$$

q is placed at 10 cm to the left from q_1 or at 20 cm to the left from q_2

Note that: Report (Q7 and Q11) will be delivered in beginning of 5^{th} week section

End of Sheet

Dr. Mohamed Tayseer

