4 BIT Vedic Multiplier

VLSI Lab-EC403

Under the supervison of

Dr .Vasantha MH

Presented by
SAHIL YADAV [20ECE1039]
RAUSHAN KUMAR [20ECE1042]

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

17 nd November 2024

AIM

- The main aim of this project is to design and simulation of Low power, High Performance Full adder and half adder circuit and measure different parameters 4-bit multiplier and Low-Power, High Performance a) 4 bit Vedic Multiplier and 4 bit multiplier using Cadence tool
- Considering their advantages and disadvantage these are compares on the basis of area, speed and delay

What is an Multiplier?

- Multiplication is a mathematical operation that at its simplest is an abbreviated process of adding an integer a specified of times.
- Carries out arithmetic and logic operations on the Operands in computer .

What is Propagation Delay?

- The average of time taken for output to change from low level to high level and high level to low level.
- Tp = (TpHL + TpLH) / 2

Our Approach ..?

Inverter:

Fig-1: Schematic of Inverter

Α	Υ
0	1
1	0

Delay:

$$Ton=0.04ns$$
 $Toff=0.03ns$
 $T=\frac{Ton+Toff}{2}$
 $T=0.03ns$

Transistors:

$$Y=(A.B)$$

A	В	С
0	0	1
0	1	1
1	0	1
1	1	0

Delay:

$$Ton=0.06ns$$

$$Toff=0.02ns$$

$$T=\frac{Ton+Toff}{2}$$

$$T=0.04ns$$

Transistors:

Fig-2: Schematic of NAND

AND:

Y=A.B

Fig-4: Schematic of AND

A	В	С
0	0	0
0	1	0
1	0	0
1	1	1

Delay:

$$Ton=0.25ns$$
 $Toff=0.19ns$
 $T=\frac{Ton+Toff}{2}$
 $T=0.22ns$

Transistors:

NOR:

$$Y=(A+B)$$

Fig-3: Schematic of NOR

A	В	С
0	0	1
0	1	0
1	0	0
1	1	0

Delay:

$$Ton=0.060ns$$

$$Toff=0.067ns$$

$$T=\frac{Ton+Toff}{2}$$

$$T=0.0635ns$$

Transistors:

OR:

$$Y=A+B$$

Α	В	С
0	0	1
0	1	1
1	0	1
1	1	0

Delay:

$$Ton=0.3ns$$

$$Toff=0.25ns$$

$$T=\frac{Ton+Toff}{2}$$

$$T=0.27ns$$

Transistors:

Fig-5: Schematic of OR

XOR:

$$Y=A'B+AB'$$

A	В	С
0	0	0
0	1	1
1	0	1
1	1	0

Delay:

Ton=0.14ns Toff=0.09ns $T=\frac{Ton+Toff}{2}$ T=0.11ns

Transistors:

Fig-6: Schematic of XOR

Half-Adder

Fig-9: Schematic of Half Adder

$Sum = A \bigoplus B$ Carry = A*B

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Transistors:

Output For Half-Adder:

Delay:

Sum:

Ton=0.179ns Toff=0.07ns $T=\frac{Ton+Toff}{2}$ T=0.35ns

Carry:

Ton=0.07ns Toff=0.06ns $T=\frac{Ton+Toff}{2}$ T=0.065ns

Fig-10: Output of Half-Adder

Full Adder

Fig-11: Schematic of Full Adder

$S = A \oplus B \oplus Cin;$
$Cout = (A*B) + (Cin*(A \oplus B)).$

А	В	С	S	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Transistors:

Output For Full Adder:

Fig-12: Output of Full Adder

Delay: Sum: Ton=0.75nsToff=0.6ns $T = \frac{Ton + Toff}{2}$ T = 0.65 nsCarry: Ton=0.15ns*Toff=0.2ns* $T = \frac{Ton + Toff}{Toff}$ T = 0.17 ns

Full Adder Using Gates

В	С	S	C0
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0	0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0

Fig-11: Schematic of Full Adder

Transistors:

Output For Full Adder Using Gates:

Fig-12: Output of Full Adder

Delay: Sum: Ton=0.208ns Toff=0.477ns $T=\frac{Ton+Toff}{2}$ T=0.3425nsCarry:

$$Ton=0.075ns$$

$$Toff=0.0069ns$$

$$T=\frac{Ton+Toff}{2}$$

$$T=0.072ns$$

4 Bit Multiplication Algorithm

				A3	A2	A1	A0	
			x	В3	B2	B1	В0	Inputs
			С	B 0 x A3	B0 x A2	B0 x A1	B0 x A0	
		+ _	B1 x A3	B1 x A2	B1 x A1	B1 x A0		
		C	sum	sum	sum	sum		Internal
	+	B2 x A3	B2 x A2	B2 x A1	B2 x A0			Signals
	C	sum	sum	sum	sum			••
+	B3 x A3	B3 x A2	B3 x A1	B3 x A0				
С	sum	sum	sum	sum				
P 7	P6	P5	P4	P3	P2	P1	P0	Outputs

4 Bit Normal Multiplier:

Delay:

Ton=0.14ns Toff=0.09ns $T=\frac{Ton+Toff}{2}$ T=0.11ns

Transistors:

Fig-6: 4 Bit Normal Multiplier

Output For 4 Bit Multiplier:

Fig- 37: Output of 4 Bit Multiplier

4 Bit Vedic Multiplication Algorithm

Fig2: Algorithm of UT sutra

4 Bit Vedic Using Gates:

Fig-6: 2 Bit Vedic Multiplier

Output For 4 Bit Vedic Using Gates:

Fig- 37: Output of 8 Bit Multiplier

2 Bit Vedic Multiplier:

Delay:

Ton=0.0344ns Toff=0.107ns $T=\frac{Ton+Toff}{2}$ T=0.55ns

Transistors:

Fig-6: 2 Bit Vedic Multiplier

Output For 2 Bit Vedic Multiplier:

Fig- 37: Output of 2 Bit Multiplier

4 Bit RC Adder

Fig-15: Schematic of Adder

Output For 4 Bit RC Adder:

Delay:

Ton=1.02ns Toff=0.5ns $T=\frac{Ton+Toff}{2}$ T=0.75ns

Transistors:

Fig-16: Output of 4 Bit Adder

4 Bit Vedic Multiplier Using RCA

Fig-36 : Schematic of Multiplication

4 Bit Vedic Multiplier:

Delay:

Ton=1.02ns Toff=0.82ns $T=\frac{Ton+Toff}{2}$ T=0.92ns

Transistors:

Fig-6: Symbol of 4 Bit Vedic Multiplier

Output For 4 Bit Vedic Using RCA Part1:

Fig- 37: Output of 8 Bit Multiplier

Output For 4 Bit Vedic Using RCA Part2:

Fig- 37: Output of 8 Bit Multiplier

4 Bit Vedic Multiplier Demo Video:

COMPARISON

Parameter	Delay (ns)	Power (μW)	PDP (pJ)
Inverter	0.03	13.3	0.399
NAND Gate	0.24	18.72	4.492
AND Gate	0.22	28.32	6.23
OR Gate	0.27	32.18	8.688
XOR Gate	0.32	42.53	4.67
Half Adder	0.35	84.82	29.6
Full Adder	0.65	220.41	143.19
2-bit vedic Multiplier	0.5	140.58	70.25
4 -bit VedicType 1	1.43	1429	2043.47
4 -bit Vedic Type 2	0.92	1138	1046.96

APPLICATIONS

- It is used in DSP applications
- It is used for filters and Fourier Transform
- It is also used in ALU
- Embedded Systems
- Communications system in QAM, OFDM
- Machine Learning Matrix Multiplication
- Control System Controller design

Thank You...!