Databases Worksheets

https://powcoder.com

DB Worksheet 1: Primitive Relational Algebra Operators

	branch	
<u>sortcode</u>	bname	cash
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

		movemen	t
<u>mid</u>	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	8/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999

		account		
<u>no</u>	type	cname	rate?	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

key branch(sortcode) key branch(bname) key movement(mid) key account(no) movement(no) $\stackrel{f_k}{\Rightarrow}$ account(no) account(sortcode) $\stackrel{f_k}{\Rightarrow}$ branch(sortcode)

1. What is the result of the RA query $\pi_{\text{cname,sortcode}} \sigma_{\text{type='deposit'}}$ account

2. Assignment Project Exam Help

 $\pi_{\mathsf{account.no,cname,mid}} \, \sigma_{\mathsf{account.no=movement.no} \land \mathsf{movement.amount} < 0} \, \mathsf{account} \times \mathsf{movement}$

https://powcoder.com

- 3. Write an RA query to return the scheme (cname) that lists the cname of all customers that have made a wild reval from a account at DOWCOUCI
- 4. Write an RA query to return the scheme (cname,bname) that lists the cname of all deposit account holders, together with bname where the account is held.
- 5. Write an RA query to return the scheme (sortcode) that lists the sortcodes of branches that either have less than £10,000 of cash, or that hold deposit accounts.
- 6. Write an RA query to return the scheme (sortcode) that lists those branches where no deposit account is held

DB Worksheet 2: Derived Relational Algebra Operators

1.	What is the result of the RA query $\pi_{bname,cname}(branch \bowtie account)$	
2.	What is the result of the RA query $\pi_{bname,cname}(branch \bowtie account \bowtie movement)$	
3.	What is the result of the RA query $\pi_{\sf sortcode,type}$ account $\div \pi_{\sf sortcode}$ branch	

- 4. Write an RA query returning the scheme (bname, mid) that lists branch names, together with mass that in the project Exam Help
- 5. Write an RA query returning the scheme (sortcode,bname,cash) that lists rows of all branches that have at least one deposit account COM
- 6. Write an RA query returning the scheme (sortcode) that lists the sortcodes of branches that have both have less than \$100000 of tash, and that hold deposit adcounts.

DB Worksheet 3: Equivalences Between RA Expressions

Consider the following queries over the bank_branch database.

1. Put a tick or cross to indicate if each equivalence holds:

Equivalence	Correct?
$\pi_{no,type}\sigma_{type=}$ 'deposit' account $\equiv\sigma_{type=}$ 'deposit' $\pi_{no,type}$ account	
$\pi_{no,type}\sigma_{type=`deposit'}account \equiv \sigma_{type=`deposit'}\pi_{type,no}account$	
$\pi_{type}\sigma_{type}$ -'deposit' account $\equiv\sigma_{type}$ -'deposit' π_{no} account	
$\sigma_{sortcode=56}(account \times movement) \equiv \sigma_{sortcode=56} account \times movement$	
$\pi_{sortcode}(account \times movement) \equiv \pi_{sortcode} account \times movement$	
$\pi_{ m no,type}\sigma_{ m type=}$ 'deposit' account $\equiv\pi_{ m no,type}\sigma_{ m type<>}$ 'current' account	

2. Simplify the following RA query to contain as few RA operators as possible

 $\pi_{
m no,type}\,\sigma_{
m sortcode=56}\,\pi_{
m no,type,sortcode}\,\sigma_{
m type=}$ 'deposit' account

3. Rewrite the following RA query into the form $\pi_{...} \sigma_{...} R \times S$, the general form of which we will call a **project select product** (**PSP**) query.

$\overset{\sigma_{\text{account.no}=\text{novement.no}}(\pi_{\text{no,cname}} \overset{\text{account}}{\text{ecc}} \times \pi_{\text{mid,no}} \, \sigma_{\text{amount}}) \\ \text{Assignment Project Exam Help}$

4. Rewrite the following RA to be a union between two PSP queries

 $\sigma_{\rm account.no=movement.no}(\pi_{\rm no,cname,rate}\ {\rm account}\ \times \\ (\pi_{\rm mid}, \ {\rm Pinfoint}\ {\rm Soo}\ {\rm provement}\ {\rm trace}\ {\rm trace}\$

Add WeChat powcoder

5. Rewrite the following query to an equivalent form that minimises the number of tuples, and the number of attributes within those tuples, that are handled by the \times operator.

 $\pi_{\mathsf{no},\mathsf{cname},\mathsf{tdate}}\,\sigma_{\mathsf{amount}<\mathsf{0}\land\mathsf{account}.\mathsf{no}=\mathsf{movement}.\mathsf{no}}(\mathsf{account}\times\mathsf{movement})$

DB Worksheet 4: Datalog

		movemen	t
<u>mid</u>	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	8/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999

		account		
<u>no</u>	type	cname	rate?	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

key branch(sortcode) key branch(bname) key movement(mid) key account(no) movement(no) $\stackrel{fk}{\Rightarrow}$ account(no) account(sortcode) $\stackrel{fk}{\Rightarrow}$ branch(sortcode)

- 1. Write a Datalog query returning the scheme (cname,bname) listing the cname of all deposit account holders, together with bname where the account is held.
- 2. VASSITED HAR GOING COUNTY TO THE GOING COUNTY TO THE ACCOUNT. THE BOTTOM TO THE ACCOUNT AND THE ACCOUNTS T

https://powcoder.com

- 3. Write a Datalog query that returns the scheme (no) listing the 'target account' numbers, defined as these accounts that the many vither valvorary five preposit.
- 4. List what the following Datalog query returns, and explain its semantics.

DB Worksheet 5: Translating Between RA and SQL

Consider the following fragment of the bank_branch database:

		account		
<u>no</u>	type	cname	rate?	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

rent'	Baile	y, J.	NULL
move	ment(no) $\stackrel{fk}{\Rightarrow}$	account(no)

		movemen	t
<u>mid</u>	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	8/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999

1. Write the RA expression using project, select and product operators equivalent to the SQL query below.

SELECT account.cname, movement.amount

FROM account JOIN movement ON account.no=movement.no

WHERE account.rate>2.0

AND movement.amount>1000

Assignment Project Exam Help
2. Modify your A expression to use any other RA operators you have been shown to write a mimimal RA expression (i.e. one that uses as few operators as possible).

https://powcoder.com
3. Write a minimal SQL query (i.e. as compact as posible) equivalent to the RA expression π_{no} movement $-\pi_{no}$ account

- 4. Write a minimal SQL query equivalent to the RA expression $\pi_{no,type}$ account
- 5. Write a minimal SQL query equivalent to the RA expression π_{type} account
- 6. Write a minimal SQL query equivalent to the RA expression $\pi_{\mathsf{type,cname}}$ account
- 7. Write a minimal SQL query equivalent to the RA expresss account κ movement

DB Worksheet 6: SQL Set Operators

The following questions again use the bank_branch database:

	branch	
<u>sortcode</u>	bname	cash
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

		movemen	t
<u>mid</u>	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	8/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999

		account		
<u>no</u>	type	cname	rate?	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

key branch(sortcode) key branch(bname) key movement(mid) key account(no) movement(no) $\stackrel{fk}{\Rightarrow}$ account(no) account(sortcode) $\stackrel{fk}{\Rightarrow}$ branch(sortcode)

1. Write an SQL query returning the scheme (mid,no,amount,tdate) listing all details of movements for accounts 100,101,103 and 107.

Assignment Project Exam Help

2. Write an SQL query returning the scheme (sortcode) listing the sortcode of all branches without any dribs of Sounts. DOWCOUCT.COM

Add WeChat powcoder

3. Write an SQL query without using any negation (*i.e.* without the use of NOT or EXCEPT) returning the scheme (no) listing accounts with no movements on or before the 11-Jan-1999.

4. Write an SQL query returning the scheme (cname) listing customers that have every type of account that appears in account.

DB Worksheet 7: Null Values in SQL

In a modified version of the **bank_branch** database, called **bank_branch_null**, there are the following two tables:

		account		
<u>no</u>	type	cname	rate?	sortcode
100	'current'	'McBrien, P.'	null	67
101	'deposit'	'McBrien, P.'	5.25	67
119	'deposit'	'Poulovassilis,	A.' 5.50	56
125	'current'	'Bailey, J.'	null	56

1. Write an SQL query returning the scheme (mid) to find movements known not to have occurred on 5/1/1999

Assignment Project Exam Help

2. Write an SQ cherr returning the scheme (mid) to find mevements that have or might have occurred on 5/1/1909.

Add WeChat powcoder

- 3. Write an SQL query returning the scheme (no,mid) that lists account numbers, and any movements mids that have or might have occurred on that account
- 4. What is the result of the following query:

```
SELECT account.no
FROM account
WHERE account.no NOT IN (SELECT movement.no FROM movement)
```

5. Write an SQL query returning the scheme (no) that lists those account numbers that might not have any movements.

DB Worksheet 8: Left, Right, Outer and Inner Joins

The following question uses the bank_branch_null database:

movement						
<u>mid</u>	no	amount	tdate			
0999	119	45.00	null			
1000	100	2300.00	5/1/1999			
1001	101	4000.00	5/1/1999			
1002	100	-223.45	8/1/1999			
1004	107	-100.00	11/1/1999			
1005	103	145.50	12/1/1999			
1006	100	10.23	15/1/1999			
1008	101	1230.00	15/1/1999			
1009	119	5600.00	18/1/1999			
1010	100	null	20/1/1999			
1011	null	null	20/1/1999			
1012	null	600.00	20/1/1999			
1013	null	-46.00	20/1/1999			

	account						
<u>no</u>	type	cname		rate?	sortcode		
100	'current'	'McBrien, P.'		null	67		
101	'deposit'	'McBrien, P.'		5.25	67		
119	'deposit'	'Poulovassilis,	Α.'	5.50	56		
125	'current'	'Bailey, J.'		null	56		

1. What is the result of

SELECT account.no, movement.mid account NATURAL LEFT JOIN movement

Assignment Project Exam Help

2. What is the https://powcoder.com
SELECT account.no, movement.mid

account NATURAL FULL OUTER JOIN movement

Add WeChat powcoder

3. Write an SQL query returning the scheme (no,cname,mid) that lists all account numbers in the database (including just those in movement), and lists any known mid or cname for each account. The result for the current data should be:

no	cname	mid
100	McBrien, P.	1000
100	McBrien, P.	1006
100	McBrien, P.	1010
100	McBrien, P.	1002
101	McBrien, P.	1008
101	McBrien, P.	1001
103	null	1005
107	null	1004
119	Poulovassilis, A.	999
119	Poulovassilis, A.	1009
125	Bailey, J.	null

DB Worksheet 9: OLAP Queries in SQL

The following questions should be written to run on the bank_branch database listed below.

branch						
<u>sortcode</u>	bname	cash				
56	56 'Wimbledon'					
34	'Goodge St'	8900.67				
67	'Strand'	34005.00				

movement							
<u>mid</u>	no	amount	tdate				
1000	100	2300.00	5/1/1999				
1001	101	4000.00	5/1/1999				
1002	100	-223.45	8/1/1999				
1004	107	-100.00	11/1/1999				
1005	103	145.50	12/1/1999				
1006	100	10.23	15/1/1999				
1007	107	345.56	15/1/1999				
1008	101	1230.00	15/1/1999				
1009	119	5600.00	18/1/1999				

	account					
<u>no</u>	type	cname	rate?	sortcode		
100	'current'	'McBrien, P.'	NULL	67		
101	'deposit'	'McBrien, P.'	5.25	67		
103	'current'	'Boyd, M.'	NULL	34		
107	'current'	'Poulovassilis, A.'	NULL	56		
119	'deposit'	'Poulovassilis, A.'	5.50	56		
125	'current'	'Bailey, J.'	NULL	56		

key branch(sortcode) key branch(bname) key movement(mid) key account(no) movement(no) $\stackrel{fk}{\Rightarrow}$ account(no) account(sortcode) $\stackrel{fk}{\Rightarrow}$ branch(sortcode)

1. Write an SQL query returning the scheme (no,balance,avg_trans) that lists for each account that has transactions the account no, the balance (computed as the sum of the movements for the account), and the average value of transactions on that account.

Assignment Project Exam Help

https://powcoder.com

2. Alter the query for (1) so that it includes the customer name of each account, and includes all accounts held at the Hanking helisting of balances, even if the account has no movements.

3. Write an SQL query returning the scheme (cname,current_balance,deposit_balance) that lists one row for each customer (*i.e.* each distinct cname), with a column for the net balance of all current accounts held by the customer, and a column for the net balance of all deposit accounts held by the customer.

4. Write an SQL query returning the scheme (no,cname,type,pc_cust_funds,pc_type_funds) that lists one row for each account, and for each account, lists the no, cname and type of the account, and in pc_cust_funds the percentage of the customer funds held in the account, and in pc_type_funds the percentage of the total funds in this particular type of account. For the current data this should result in:

no	cname	type	pc_cust_funds	pc_type_funds
100	McBrien, P.	current	28.52	84.22
101	McBrien, P.	deposit	71.48	48.29
103	Boyd, M.	current	100.00	5.87
107	Poulovassilis, A.	current	4.20	9.91
119	Poulovassilis, A.	deposit	95.80	51.71
125	Bailey, J.	current	NULL	0.00

Assignment Project Exam Help

https://powcoder.com

DB Worksheet 10: Constructing an $ER^{\mathcal{KLMOS}}$ Schema

The following text gives a description of a UoD, which you have been asked to build a relational database that stores data associated with the UoD.

The payroll system for *BIG Inc* records the salaries, status, joining date, name, and payroll number for all of the corporations 30,000 employees. Each employee works for one division, and each division has an account number for paying its staff. We identify divisions by their name, and record the address where the division's HQ is located.

For employees sent abroad by BIG Inc, we record the address, country and telephone number of the foreign tax office that will handle the employee. It is assumed that each country has one central tax office that we have to deal with. All other employees have their tax affairs dealt with by the Inland Revenue.

Draw an $ER^{\mathcal{KLMOS}}$ schema of the UoD

Assignment Project Exam Help
https://powcoder.com
Add WeChat powcoder

DB Worksheet 11: Constructing an $ER^{\mathcal{ADHKLMNOSVW}}$ Schema

The following text gives a description of a UoD, which you have been asked to build a relational database that stores data associated with the UoD.

The customer and supplier database of *Big Inc* will hold all accounts of the company, divided into customer accounts and supplier accounts. All accounts have an account number, and one account manager assigned from the company's staff. *Big Inc* identifies staff by a sid, and records the staff member's name and room. The account managers have a limit on the number of accounts they can manage. Only certain staff members are permitted to be account managers.

For customer accounts we need to record a credit limit on the balance of the account, and the telephone number of the accounts department at the customer.

For supplier accounts we need to record which Big Inc products are supplied, and at what price.

Big Inc products are identified by the company standard part_no and all have a description. For some we record the colour. Some products have a record of the components, each component identified by a combination of part_no and component number, and again each has a description. Some products do not have a supplier.

Big Inc has purchased a copy of the Post Office address file, and associates every account to an address from this file. The address data includes street number, street name, town, county and post code, and uses a combination of street number and post

Assignment Project Exam Help

Draw an $ER^{ADHKLMNOSVW}$ schema of the UoD

https://powcoder.com

DB Worksheet 12: Minimal Cover of FDs and Candidate Keys

Suppose a relation R(A, B, C, D, E, F, G, H) has the FDs

$$S = \{AB \rightarrow DEH, BEF \rightarrow A, FGH \rightarrow C, D \rightarrow EG, EG \rightarrow BF, F \rightarrow BH\}$$

- 1. Rewrite S to an equivalent set of FDs which only have a single attribute on the RHS of each FD.
- 2. Consider each FD $X \to A$, and for each $B \in X$, consider if $X \to B$ from the other FDs. If so, replace $X \to A$ by $(X B) \to A$ in S.
- 3. Consider each FD $X \to A$, and compute X^+ without using $X \to A$. If $A \subseteq X^+$, delete $X \to A$ since it is rundundant. This will give a minimal cover S_c of S.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

4. Justify what are the minimal candidate keys of R constrained by S_c

DB Worksheet 13: Lossless Decomposition of Relations

- 1. Suppose relation R(A, B, C, D, E) has the FDs $S = \{AB \to C, C \to DE, E \to A\}$. For each of the following decompositions, determine if the decomposition if lossless, and if not lossless, illustrate a dataset for R that fails to decompose in a lossless manner over the relations.
 - (a) $R_1(A, B, C), R_2(C, D, E)$

(b) $R_1(A, B, C), R_2(C, D), R_3(D, E)$

Assignment Project Exam Help

- 2. Suppose relation R(A, B, C, D, E, F) has the FDs $S = \{AB \to CD, C \to E, A \to F\}$. Give a lossless determination of R into three relations $R_1, R_2, \text{ and } R_3$.
- 3. Suppose relation R (A B, A, A). Give a lossless decomposition of R into three relations R_1 , R_2 , and R_3 .

DB Worksheet 14: Normal Forms

Suppose a relation R(A, B, C, D, E, F, G, H) has the FDs

$$S_c = \{AB \rightarrow D, EF \rightarrow A, FG \rightarrow C, D \rightarrow EG, EG \rightarrow F, F \rightarrow BH\}$$

1. Decompose the relation into 3NF

- 2. Decompose the relation into BCNF
- 3. Determine if your decompositions in (1) and (2) preserve FDs, and if they do not, suggest has to suppose the reserve FDs are the preserve FDs.

https://powcoder.com

DB Worksheet 15: Anomalies in Transactions

BEGIN TRANSACTION rental_charge
UPDATE directory
SET charge=charge+17
COMMIT TRANSACTION rental_charge

BEGIN TRANSACTION transfer_charge UPDATE directory FROM charge=charge+100 WHERE telephone=1000

UPDATE directory
SET charge=charge-100
WHERE telephone=1002
COMMIT TRANSACTION transfer_charge

total_charge $H_3 = r_3[d_{1000}], r_3[d_{1001}], r_3[d_{1002}]$

BEGIN TRANSACTION total_charge SELECT SUM(charge) FROM directory COMMIT TRANSACTION total_charge

di:	rectory	
telephone	name	charge
1000	Adams	10.00
1001	Jones	120.25
1002	Black	344.00

$$\label{eq:rental_charge} \begin{split} \text{rental_charge} \; H_1 &= r_1[d_{1000}], w_1[d_{1000}], r_1[d_{1001}], w_1[d_{1001}], r_1[d_{1002}], w_1[d_{1002}] \\ \text{transfer_charge} \; H_2 &= r_2[d_{1000}], w_2[d_{1000}], r_2[d_{1002}], w_2[d_{1002}] \end{split}$$

For each (Shi having his tries the my lift) Care to current exclution from pair of the above histories, and if so, then determine if any of the following three anomalies has occurred:

- A lost update https://powcoder.com
- B inconsistent analysis
- C dirty read

- 1. $r_3[d_{1000}], r_1[d_{1000}], w_1[d_{1000}], r_1[d_{1001}], w_1[d_{1001}], r_1[d_{1002}], w_1[d_{1002}], c_1, r_3[d_{1001}], r_3[d_{1002}], c_3$
- 3. $r_1[d_{1000}], r_2[d_{1000}], w_1[d_{1000}], r_1[d_{1001}], w_1[d_{1001}], r_1[d_{1002}], w_2[d_{1000}], r_2[d_{1002}], w_1[d_{1002}], w_2[d_{1002}], c_1, c_2$
- 4. $r_3[d_{1000}], r_3[d_{1001}], r_2[d_{1000}], w_2[d_{1000}], r_3[d_{1002}], r_2[d_{1002}], w_2[d_{1002}], c_2, a_3$
- $5. \ r_2[d_{1000}], w_2[d_{1000}], r_1[d_{1000}], r_2[d_{1002}], w_2[d_{1002}], a_2, w_1[d_{1000}], r_1[d_{1001}], w_1[d_{1001}], r_1[d_{1002}], w_1[d_{1002}], c_1[d_{1002}], c_2[d_{1000}], c_2[d_{1000}], c_2[d_{1000}], c_3[d_{1000}], c_3[d_{10$

DB Worksheet 16: Serialisability

$$H_1 = r_1[o_1], w_1[o_1], w_1[o_2], w_1[o_3], c_1$$

$$H_2 = r_2[o_2], w_2[o_2], w_2[o_1], c_2$$

$$H_3 = r_3[o_1], w_3[o_1], w_3[o_2], c_3$$

$$H_x = r_1[o_1], w_1[o_1], r_2[o_2], w_2[o_2], w_2[o_1], c_2, w_1[o_2], r_3[o_1], w_3[o_1], w_3[o_2], c_3, w_1[o_3], c_1$$

$$H_y = r_3[o_1], w_3[o_1], r_1[o_1], w_1[o_1], w_3[o_2], c_3, w_1[o_2], r_2[o_2], w_2[o_2], w_2[o_1], c_2, w_1[o_3], c_1$$

1. Determine what are the ordered conflicting pairs in H_x , and write them down in the form $rw_i[o] \to rw_j[o]$ (where the rw should be replaced by a r or w in your answer as appropriate). Use your answer to determine if H_x is CSR.

Assignment Project Exam Help

https://powcoder.com

2. Determine the conflicting pairs in H_y , and use your answer to determine if H_y is CSR.

DB Worksheet 17: Recoverability

$$H_w = r_2[o_1], r_2[o_2], w_2[o_2], r_1[o_2], w_2[o_1], r_2[o_3], c_2, c_1$$

$$H_x = r_2[o_1], r_2[o_2], w_2[o_1], w_2[o_2], w_1[o_1], w_1[o_2], c_1, r_2[o_3], c_2$$

$$H_y = r_2[o_1], r_2[o_2], w_2[o_2], r_1[o_2], w_2[o_1], c_1, r_2[o_3], c_2$$

$$H_z = r_2[o_1], w_1[o_1], r_2[o_2], w_2[o_2], r_2[o_3], c_2, r_1[o_2], w_1[o_2], w_1[o_3], c_1$$

1. Fill in for each history the list of pairs of operations where one transaction has read from another transaction $(w_i[o] \to r_j[o])$, and where one transaction has overwritten another transaction $(w_i[o] \to w_j[o])$.

- 2. Determine if H_w is RC, ACA, or ST.
- 3. Determine if H_x is Re, ACA, or ST. hat powcoder
- 4. Determine if H_y is RC, ACA, or ST.
- 5. Determine if H_z is RC, ACA, or ST.

DB Worksheet 18: Deadlocks and Waits-For Graphs

You are told that three transactions H_1, H_2, H_3 perform the following sequence of operations:

$$H_1: w_1[o_1], r_1[o_2], r_1[o_4]$$

$$H_2: r_2[o_3], r_2[o_2], r_2[o_1]$$

$$H_3: r_3[o_4], w_3[o_4], r_3[o_3], w_3[o_3]$$

1. Write down all the possible conflict pairs from H_1, H_2, H_3 in the form $rw_i \to rw_j$.

Assignment Project Exam Help

2. Write a confurrent execution of H_1 , H_2 , H_3 which results in a deadlock involving all three transactions. Hit use the conflict parts of tetrative which transaction might have to wait for another, and then work out possible cycles of such waits-for].

Add WeChat powcoder

3. Draw the WFG for your answer in (2).

4. How would you resolve the deadlock?

DB Worksheet 19: Cache Consistent Checkpoint

The log belong is kept by a DM that is using cache consistent checkpointing and where the scheduler is using strict executions.

	LOG	b_7	
Ī	UNDO	$w_7[b_{67}, cash=34005.25]$	
	REDO	$w_7[b_{67}, cash=37005.25]$	
	LOG	b_2	
I	UNDO	$w_2[b_{34}, cash = 10900.67]$	
	REDO	$w_2[b_{34}, cash = 8900.67]$	
	LOG	b_6	
	UNDO	$w_6[a_{101}, rate=5.25]$	
	REDO	$w_6[a_{101}, rate=6.00]$	
	LOG	b_1	
	UNDO	$w_1[b_{56}, cash=94340.45]$	
	REDO	$w_1[b_{56}, cash=84340.45]$	
	CP	$\{1, 2, 6\}$	
	UNDO	$w_6[a_{119}, rate=5.50]$	
	REDO	$w_6[a_{119}, rate=6.00]$	
	LOG	c_6	
	UNDO	$w_2[b_{67}, cash=34005.00]$	
	REDO	$w_2[b_{67}, cash=36005.25]$	TT 1
Assignmen		roject Ex	am Help
_		<u> </u>	
	UNDO	$w_1[b_{34}, cash=8900.67]$	
4	REDO	$w_1[b_{34}, cash=18900.67]$	
https://		10 10 10 10 10 10 10 10 10 10 10 10 10 1	om
	REDO	$w_9[b_{67}, cash = 20000.00]$	
A 1 1 1	LOG	c_9	1
Add V	Ve(Chat now	coder
nave to recover the database	ofter a	evetom failure using the	abovo log

You have to recover the database after a system failure using the above log.

- 1. In the backward scan for undos, what will be the set of committed transactions, the set of uncommitted transactions, and list of undo action(s) be when you reach the *cp* record?
- 2. Which actions(s) must you undo before the cp record?
- 3. Which actions(s) must you redo?
- 4. Can you devise a more efficient algorithm that minimises the number of redo and undo actions performed?