CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12 Extension 1 Mathematics

Term2 Assessment Task 2014

Time allowed: 55 minutes			
Name:	Class:	Teacher	
Kellahan / White / Lobejko / Fardouly			

Instructions:

- All questions should be attempted.
- Show ALL necessary working on your own paper.
- Marks may not be awarded for careless or badly arranged work.
- Only board-approved calculators may be used.
- Start each question on a new page and only write on one side of each sheet of paper.

Outcome	Q1 to Q8	& Q10	Q9		
HE4		· • • •			/35
HE6					/5
		/35		/5	/40

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \sin^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

Year 12 HSC Term 2 Assessment Task (40 marks)

Mathematics Extension 1

1. Find the trigonometric equation for the graph below.

- 2. Consider the function $f(x) = 3 \sin^{-1} \frac{x}{2}$
 - (a) Evaluate f(2)
 - (b) State the domain and range of y = f(x)
 - (c) Draw the graph of y = f(x)

[4]

[1]

- 3. Consider the function $f(x) = 1 + \frac{3}{(x-4)}$ for x > 4
 - (a) Give the horizontal and vertical asymptotes for y = f(x)
 - (b) Find the inverse function $f^{-1}(x)$
 - (c) State the domain of $f^{-1}(x)$

[4]

- 4. Show that $tan\left(\sin^{-1}\frac{5}{13}-\cos^{-1}\frac{3}{5}\right)$ is equal to $-\frac{33}{56}$ [2]
- 5. (a) Solve the equation $2sin^2\theta = sin^2\theta$ for $0 \le \theta \le 2\pi$

[2]

- (b) Find the general solutions of $2\sin^3 x \sin x 2\sin^2 x + 1 = 0$ [3]
- 6. (a) Differentiate $y = cos^2 3x$ [2]
 - (b) Find $\frac{d}{dx}\cos^{-1}(3x^2)$ [1]
 - (c) Show that the derivative of $y = \tan^{-1} \frac{x}{a}$ is $\frac{a}{(a^2 + x^2)}$ [2]

7. (a)
$$\int \frac{dx}{x^2+7}$$
 [1]

(b)
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-2x^2}} dx$$
 [3]

(c)
$$\int_0^{\frac{\pi}{2}} \sin^2 3x \, dx$$
 [2]

8. Differentiate
$$x \sin^{-1} x + \sqrt{1 - x^2}$$
 and hence evaluate $\int_0^1 \sin^{-1} x \, dx$ [4]

9. (a) Evaluate
$$\int_2^{10} \frac{x}{\sqrt{x-1}} dx$$
 using the substitution $x = t^2 + 1$ [3]

(b) Integrate
$$\frac{\sec^2(\sin x)}{\sec x} dx$$
 using the substitution $u = \sin x$ [2]

10. Express $\sin 4x + \sqrt{3}\cos 4x$ in the form $R\sin(4x + \alpha)$, where α is in terms of π and hence find the general solution of the equation $\sin 4x + \sqrt{3}\cos 4x = 0$, in exact form. [4]

	YR 12 HSC Term 2 Ext 1	2014 Solutions	
	y=2sin3 <u>x</u>	5 (a) $2\sin^2\theta = \sin 2\theta$ $0 \le \theta \le 2\pi$	
	0 Z	$2 \sin^2 \theta - \sin 2\theta = 0$	
2	(a) $f(2) = 3\sin^{-1}1$	$2\sin^2\theta - 2\sin\theta\cos\theta = 0$	
	= 311	$2\sin\theta (\sin\theta - \cos\theta) = 0$	
		$sin\theta = 0$ or $tan\theta = 0$	
	b) D: -1 ≤ 2 ≤ 1	: 0 = 0, 17, 217, 平, 5年	
	$-2 \le x \le 2$		
	R: -# < y < 1/2	$(b) 2\sin^3 x - \sin x - 2\sin^2 x + 1 = 0$	
	-3 <u>T</u> ≤ y ≤ <u>3</u> T	$\sin x (2\sin^2 x - 1) - 1/2\sin^2 x - 1) = 0$	
	· —	$(2 \sin^2 \alpha - 1)(\sin \alpha - 1) = 0$	
	C) 31 /	$\sin^2 x = \frac{1}{2} \qquad \sin x = 1$	
		$\sin \alpha = \pm \frac{1}{1/2} \qquad \therefore \alpha = n \hat{\mathbf{n}} + (-1)^{n} \sin \alpha$	5-11
	-2 0 2 X	2	
		$\frac{x = nn + (-1)^{1/1}}{2}$	
	1 311	((a) 11 - and 22-	
2		$6 (a) y = cos^2 3ac$ = $(cos 3x)^2$	
3	(a) Vert asym: x=4	$\frac{dy}{dx} = 2(\cos 3x)x - \sin 3x \times 3$	
· · ·	Horiz.asym: y=1	$\frac{dx = -6 \sin 3x \cos 3x}{= -6 \sin 3x \cos 3x}$	
	b) $x = 1 + \frac{3}{4 - 4}$	= -3 sin6x	•
	$x-1=\frac{3}{4-4}$		_
	$\begin{array}{c c} & & & & & & & & & & & \\ \hline & & & & & & &$	(b) $\frac{d}{dx} \cos^{-1}(3x^2) = -6x$ $\sqrt{1-9x^4}$	
	$y-4=\frac{3}{x-1}$	VI-9x*	
	$y = \frac{3}{x-1} + 4$	· · · · · · · · · · · · · · · · · · ·	
	$f^{-1}(x) = 4 + \frac{3}{x-1}$		
		· · · · · · · · · · · · · · · · · · ·	
	c) Df(x): x>1 ()		
4	let $\theta = \sin^{-1} \frac{5}{13}$ & $\alpha = \cos^{-1} \frac{3}{5}$	5/1.	
	$\frac{13}{\sin \theta} = \frac{5}{13} \cos \alpha = \frac{3}{5}$	13 ± 5 × T 4	
	$\tan(\theta - x) = \frac{\tan \theta - \tan x}{2}$	12 3'	
ĺ	$\tan(\theta - x) = \frac{\tan \theta + \tan \theta}{1 + \tan \theta + \tan \alpha}$	$\frac{1}{12} + \frac{5}{12} - \frac{5}{12} - \frac{33}{5} = -\frac{33}{5}$	
,	= 5/2 - 3	12 5/ 56	
	1+ 20	<u> </u>	
,1			

8 cont. (c) $y = \tan^{-1} \frac{x}{a}$ $\int \sin^{-1}x = \left[x \sin^{-1}x + \sqrt{1 - x^{2}} \right]_{0}^{1}$ $= \frac{1}{1 + \frac{x^2}{a^2}} \cdot \frac{1}{a}$ $= \frac{1}{a^2 + x^2} \cdot \frac{1}{a}$ $= \frac{a^2}{a^2 + x^2} \cdot \frac{1}{a}$ = $(1 \sin^{-1} 1 + \sqrt{1-1^2}) - (0 \sin 0 + \sqrt{1-0^2})$ 960 Let $x = t^2 + 1$ $\frac{dx}{dt} = 2t$ (a) $\int \frac{dx}{x^2 + 7} = \frac{1}{\sqrt{7}} \tan^{-1} \frac{x}{\sqrt{7}} + C$ $\int \frac{1}{\sqrt{1-2x^2}} dx = \int \frac{1}{\sqrt{2}\sqrt{\frac{1}{2}-x^2}} dx$ $= \sqrt{\frac{1}{\sqrt{2}}} \sin^{-1}\sqrt{2} \times \sqrt{\frac{1}{2}}$ = 1/2 sin-1/2 - 1/2 sin-1/2 $\frac{2^{3}}{1} = \int_{3}^{3} \frac{t^{2}+1}{t} \cdot 2t \cdot dt$ $= 2 \left[\frac{1^{3}}{3} + t \right]^{3}$ $= 2 \left\{ \left(\frac{3^{3}}{3} + 3 \right) - \left(\frac{1^{3}}{3} + 1 \right) \right\}$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\sin^2 3x} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{(1-\cos 6x)} \, dx$ $=\frac{0}{2}\left[x-\frac{\sin 6x}{6}\right]^{\frac{7}{2}}$ $=\frac{64}{3}$) = $21\frac{1}{3}$) $=\frac{1}{2}\left\{\frac{1}{2}-\sin 3I - (0)\right\}$ $\frac{8}{dx} \propto \sin^{-1} x + \sqrt{1-x^2} = x \times \frac{1}{\sqrt{1-x^2}} + \sin^{-1} x \times 1 + \frac{1}{x} (1-x^2) \times -2x$ $= \frac{x}{\sqrt{1-x^2}} + \sin^{-1} x - \frac{x}{\sqrt{1-x^2}}$

3

$$\frac{q}{\sin \left(\frac{\sec^2(\sin x)}{\sec x}\right)} dx = \frac{\sec^2(u) \cdot \sec x \cdot du}{\sec x}$$

: dx = secx.du

$$\cos \alpha = \frac{1}{R}$$

$$\sin \alpha = \sqrt{3}$$

$$= 2$$

$$= 2$$

tanx = V3

$$\frac{1}{12} = \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} = \frac{1}{3} \sin \left(\frac{4x}{3} + \frac{1}{3} \right)$$

 $\sin 4t + \sqrt{3} \cos 4t = 0$

:
$$2 \sin(4x + \frac{\pi}{3}) = 0$$

 $\sin\left(4x+\frac{11}{3}\right)=0$

$$4x + II = 0, \pm 11, \pm 211'$$

= nn where n is an integer

$$\frac{1}{3} + \alpha = n\Pi - \frac{\Pi}{3}$$

$$-\alpha = 2\pi - \pi$$

9<u>R 3nN-N</u>