Mathematics: Number Systems

Duration: $1\frac{1}{2}$ hours

30 Points

This question paper contains six questions on one page. Please answer all questions. Each question carries 5 points.

Some instructions and quidelines:

- A set is a collection of items having a specific property. For example, ℚ is the set
 of all rational numbers
- To denote that a number x belongs to a specific set \mathbb{X} we use the notation $x \in \mathbb{X}$, which is read as "x belongs to or is in the set \mathbb{X} ".
- A set \mathbb{A} is a *subset* of set \mathbb{B} if every element of \mathbb{A} is also an element of \mathbb{B} . In addition to this, \mathbb{B} may or may not have any other elements. We write this as: $\mathbb{A} \subseteq \mathbb{B}$.
- The *cardinality* of a set is the number of elements in it. It is notationally written as |S|.
- These are some set notations that might come in handy to you:
 - $-\mathbb{R}$: Set of all real numbers.
 - $-\mathbb{Q}$: Set of all rational numbers.
 - $\mathbb N$: Set of all natural numbers.
 - $-\mathbb{Z}$: Set of all integers.
 - $-\mathbb{P}$: Set of all prime numbers.
 - We may use a superscript \pm to denote a set that contains only positive or negative numbers, respectively.

ALL THE BEST!

- 1. Suppose you are given a number a. Given that a < 0 and $a^2 = 2$, justify if $a \in \mathbb{Q}^-$.
- 2. Order the following sets as subsets of one another (if it is possible at all, of course-if not, state why). \mathbb{N} , \mathbb{Q}^+ , \mathbb{R}^+ \mathbb{Z}^+ . Can you find two rational numbers between -1 and 1 such that five numbers you have (including the two given) are at exactly the same difference from one another, taken in order? This is also called an *arithmetic progression*, when the difference between any two consecutive numbers in a sequence is the same.
- 3. Let us take the number $b=0.9999\ldots$ Which of the above sets does b belong to? We know that π is irrational. That means we do not the value of π very accurately, and we use approximations like $\pi=3.14159\ldots$ Then, how can we use it if its value keeps varying? Or is this statement wrong? Justify.
- 4. Solve for $c: \sqrt{c}+\frac{1}{\sqrt{c}}=4$. and $\sqrt{d}-\frac{1}{\sqrt{d}}=0$. Let, $e=d^2$ and $f=\sqrt{e}$. Find the possible value(s) of $\left(\frac{f}{c}\right)^{f^{-1}}$.
- 5. Given that $a^{a^{-1}}=b^{b^{-1}}=c^{c^{-1}}$ and $a^{bc}+b^{ca}+c^{ab}=729$, show that $a\notin\mathbb{Q}$ but $a\in\mathbb{R}$. What is the value of a?
- 6. Find the value of: $\sqrt{p + \sqrt{p + \sqrt{p + \dots}}}$, if p = 2. If $q = 1 + \sqrt[3]{5} + \sqrt[3]{25}$, find the value of $q^3 3q^2 12q + 6$.