Metric Space

Author

Suroj Plalunga

Contents

1	Lecture 01: Definition and Examples		
	1.1	Definition of Metric space	3
	1.2	Example of Metric space	3
2	Lec	ture 02: Notion Of Open and Closed Set	7
	2.1	Definition of Open Ball	7
		2.1.1 Example of Open ball	
3	Lec	ture 03: Properties of set.	١0
	3.1	Properties of open set	10
	3.2	Convergence of Sequence Using Metric Space	11
		3.2.1 Example of Closed Set	11

Chapter 1

Lecture 01: Definition and Examples

1.1 Definition of Metric space

Metric Space

Definition 1.1. A Metric Space (X, d) is a set x together with a map $d: X \times X \to [0, \infty)$. Such that,

- 1. $\forall x, y \in X, d(x, y) = 0 \iff x = y \ (Reflective)$
- 2. d(x,y) = d(y,x), $\forall x,y \in X$ (Symmetric)
- 3. $d(x,z) \le d(x,y) + d(y,z)$, $\forall x,y \in X$ (Triangle Inequality)

1.2 Example of Metric space

Example 1.1.1. $X = \mathbb{R}$, together with $\forall x, y \in X, (x, y) \mapsto d(x, y) = |x - y|, (X, d)$ is Metric Space

Example 1.1.2. $X = \mathbb{R}^2 = \{(x_1, x_2) | x_i \in \mathbb{R}, i = 1, 2\}$ together with $\forall x, y \in X, (x, y) \mapsto d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$. (X, d) is Metric Space

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}, \forall x, y \in X = \mathbb{R}^n$$

Example 1.1.3. $X = \mathbb{R}^n = \{(x_1, x_2, ..., x_n) | x_i \in \mathbb{R}, i = 1, 2,n \}$ together with $\forall x, y \in X, (x, y) \mapsto d(x, y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$. (X, d) is Metric Space

Proof: Let $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$

1. (Reflexive)

$$d(x,y) = 0$$

$$\iff \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^2 = 0$$

Since,

$$(x_i - y_i)^2 > 0$$

So,

$$\left(\sum_{i=1}^{n} (x_i - y_i)^{1/2}\right)^2 = 0$$

$$\iff \forall i = \{1, ..n\} : \left((x_i - y_i)^2 = 0\right)$$

$$\iff x_i = y_i, \forall i \iff x = y$$

2. (Symmetry)

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2} = d(y,x)$$

3. Triangle inequality

Cauchy-Schwar Inequality

Let
$$(x_1, ..., x_n), (y_1, ..., y_n) \in \mathbb{R}^n$$
 then
$$\sum_{i=1}^n x_i y_i \le \left(\sum_{i=1}^n x_i^2\right)^{1/2} \left(\sum_{i=1}^n y_i^2\right)^{1/2}$$

$$\iff \langle x, y \rangle \le ||x|| \cdot ||y||$$

W.T.S.
$$d(x,z) \le d(x,y) + d(y,z)$$

 $\iff \sqrt{\sum (x_i - z_i)^2} \le \sqrt{\sum (x_i - y_i)^2} + \sqrt{\sum (y_i - z_i)^2}$

Proof.

$$\sum (x_i - z_i)^2 = \sum (x_i - y_i + y_i - z_i)^2 = \sum (x_i - y_i)^2 + (y_i - z_i)^2 + 2(x_i - y_i)(y_i - z_i)$$

$$\sum (x_i - y_i)^2 + \sum (y_i - z_i)^2 + 2\sum (x_i - y_i)(y_i - z_i)$$

$$\leq \sum (x_i - y_i)^2 + \sum (y_i - z_i)^2 + 2\sqrt{\sum (x_i - y_i)^2} \sqrt{\sum (y_i - z_i)^2}$$

$$\leq \left(\sqrt{\sum x_i - y_i}\right)^2 + \sqrt{\sum x_i - y_i}^2$$
thus

$$\sqrt{\sum (x_i - z_i)^2} \le \sqrt{\sum (x_i - y_i)^2} + \sqrt{\sum (y_i - z_i)^2}$$

]

Example 1.1.4. (Non-Ecludiean Metric Space). Let $X = \{f : [a, b] \to \mathbb{R} \mid f \text{ is continuous on } [a, b] \}$ together with

$$d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|$$

Proof. Let $f, g \in X$. Then since |f - g| is continuous on a closed bounded interval [a, b] by maximum minimum theorem $\{|f(x) - g(x)| : x \in [a, b]\}$ has Least upper bound (sup) which means

$$0 \leq d(f,g) = \sup\{|f(x) - g(x)| : x \in [a,b]\} < \infty$$

So d(f,g) is well defined.

1. Reflexive.

$$d(f,g) = 0 \iff \sup\{|f(x) - g(x)| : x \in [a,b]\} = 0$$
$$\iff |f(x) - g(x)| = 0, \forall x \in [a,b]$$

Since |f - g| is no-zero and Sup is zero.

$$\iff f(x) = g(x), \, \forall x \in [a, b]$$

Thus, $d(x,y) = 0 \iff f = q$

2. Symmetric.

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in [a,b]\} = \sup\{|g(x) - f(x)| : x \in [a,b]\}$$

Thus d(f,g) = d(g,f)

3. Triangle Inequality.

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in [a,b]\} = \sup\{|f(x) - h(x) + h(x) + g(x)| : x \in [a,b]\}$$

Since

$$|f(x) - g(x)| = |f(x) - h(x) + h(x) + g(x)| \le |f(x) - h(x)| + |h(x) - g(x)|$$

And

$$|f(x) - g(x)| \le \sup\{|f(x) - g(x)| : x \in [a, b]\}$$

Similarly,

$$|f(x) - h(x)| + |h(x) - g(x)| \le \sup\{|f(x) - h(x)| : x \in [a, b]\} + \sup\{|h(x) - g(x)| : x \in [a, b]\}$$

$$|f(x) - h(x)| + |h(x) - g(x)| \le d(f, h) + d(h, g)$$

$$|f(x) - g(x) \le d(f, h) + d(h, g), \ \forall x \in [a, b]$$

$$\implies d(f, g) \le d(f, h) + d(h, g)$$

Chapter 2

Lecture 02: Notion Of Open and Closed Set

2.1 Definition of Open Ball.

Open Ball

Definition 2.1. Let (X,d) be ca metric space. Let $x_0 \in X$ and r > 0. Then the **open ball** with radius r centered at x_0 is defined as:

$$B(x_0, r) = \{ y \in X \mid d(x_0, y) < r) \}$$

2.1.1 Example of Open ball.

Example 2.1.1. In \mathbb{R} -line.

$$X = \mathbb{R}, \ d(x,y) = |x - y| \ x, y \in \mathbb{R}$$

$$\begin{array}{ccc}
& & B(x_0, r) \\
& & x_0 + r & x_0 & x_0 - r
\end{array}$$

Example 2.1.2. In 1-D \mathbb{R} -line.

$$X = \mathbb{R}^2 = \{(x_1, x_2) | x_i \in \mathbb{R}, i = 1, 2\} \text{ together with } \forall x, y \in X, (x, y) \mapsto d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

Example 2.1.3.

$$X = C[a, b], \text{ together with } d(f, g) = \sup_{x \in [a, b]} |f(x) - g(x)|$$

Note: These dashed line around our Lines is the open ball $B(x_0, r)$.

Open Set

Definition 2.2. Let $O \subseteq X$, O is open if $\forall x \in O$, $\exists r > 0$ such that $B(x_0, r) \subseteq O$.

Lemma

Lemma 2.2.1. $B(x_0, r)$ is an open set.

Proof.

Let $x \in B(x_0, r)$

From fig S is radius at x inside $B(x_0, r)$

So,
$$S = r - d(x, x_0)$$

Claim: $B(x,S) \subseteq B(x_0,r)$

$$\iff y \in B(x,S) \implies y \in B(x_0,r)$$

Proof.

Let $y \in B(x, S)$ By definition, d(x, y) < S

$$d(x,y) < r - d(x,x_0)$$

Since By Triangle Inequality,

$$d(x_0, y) \le d(x_0, x) + d(x, y)$$

$$\implies d(x,y) + d(x,x_0) < r$$

$$\implies d(x_0y) \le d(x,y) + d(x,x_0) < r$$

$$\iff d(x_0,y) < r$$

$$\implies y \in B(x_0,r)$$

Since y is arbitrary so,

$$y \in B(x,S) \implies y \in B(x_0,r), \forall y \in B(x,S)$$

Thus,

$$B(x,S) \subseteq B(x_o,r)$$

In nutshell, We have shown that,

 $B(x_0,r) \subseteq X, \forall x \in B(x_0,r)$ there is S such that $B(x,S) \subseteq B(x_0,r)$

Hooray!!! We have shown that $B(x_0, r)$ is an open set.

Chapter 3

Lecture 03: Properties of set.

3.1 Properties of open set

Contact point

Definition 3.1. Let (X,d) be a Metric Space, Let $A \subseteq X$. A point $x_0 \in X$ is contact point of the $A \subseteq X$ if $\forall r > 0, \exists x \in A : x \in B(x_0, r)$

Example 3.1.1.

3.2 Convergence of Sequence Using Metric Space.

Limit of Sequence in Metric Space

Let $\{x_n\}_{n=1}^{\infty}$ be the Sequence in Metric space (X,d). Let $x \in X$. We say that

$$\lim_{n \to \infty} x_n = x$$

If $\forall r > 0$, $\exists N(r) \in \mathbb{N}$ s.t if $\forall n > N(r)$ then

$$d(x_n, x) < r \iff x_n \in B(x, r)$$

Illustration

Lemma 3.1.1. Let (X, d) be a metric space.

1.

$$\lim_{n \to \infty} x_n = x \iff \lim_{n \to \infty} d(x_n, x) = 0$$

2. x is contact point of $A \subseteq X \iff \lim_{n \to \infty} x_n = x$; $\{x_n\}_{n=1}^{\infty} \subseteq A$

Closed set

A set $E \subseteq X$ is closed if E contains all it's contact point (By the Lemma 3.1.1)

$$E \text{ is closed} \iff \text{whenever}\{x_n\} \subseteq E : x_n \to x \text{ then } x \in E.$$

3.2.1 Example of Closed Set

Example 3.1.2. Example of Closed set in (\mathbb{R}^2, d) , $E := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$

Remark

But $F := E - \{(0,1)\}$ is not closed set.

Since contact point of F should lies in both $B((1,0), \forall r > 0)$ and $F = E - \{(1,0)\}$. But contact is not in $F = E - \{(1,0)\}$. Thus F is not closed set.

Lemma 3.1.2. (Another Definition of Closed set.)

Let (X, d) be a metric space. Let $A \subseteq X$. Then

$$A$$
 is open $\iff A^c = X/A$ is close

Since $(A^c)^c = A$

 $A^c = X/A$ is open $\iff A$ is close.

 $A ext{ is close } \iff A^c = X/A ext{ is open.}$

Pf.

Suppose A is open. Let x_0 be a contact pooint of A^c

Then $\exists \{x_n\}_{n=1}^{\infty}$ in A^c such that $x_n \to x$. We need to show that A^c is closed \iff all contact point of A^c is contained in A^c . So $x_0 \in A^c$ If not , $x_0 \in A$ But since A is open $\exists r > 0$ such that $B(x_0, r) \subseteq A$. But since $x_n \to x_o$, so $x_n \in B(x_0, r)$ for sufficiently large n. so $x_n \in A$