Máquinas (de Estado) Síncronas (infinitas e finitas)

Circuitos Digitais II Prof. Fernando Passold

Última atualização: 03 Nov 2017

1) Diagrama de Blocos genérico:

I) Diagrama de Blocos genérico (variação):

1) Diagrama de Blocos genérico:

1) Diagrama de Blocos genérico:

Tantos FF's ou Latches quantos diferentes estados devem ser transitados pelo circuito.

1) Diagrama de Blocos genérico:

Forma a lógica de saída necessária para criar o efeito de saída (interface de saída) desejada.

Máquinas Sequenciais

Fig. 10.6. A Asynchronous sequential circuit

Fig. 10.7. Synchronous sequential circuit

Circuitos Assíncronos:

Não possuem NENHUM circuito temporizado associado com o mesmo e uma operação dispara outras operações tão logo ocorra (sem maior controle, ou "sincronização"). Internamente existe um feed-back (laço de realimentação) para fornecer as informações relacionados com estados internos importantes (significativas) para gerar com sucesso (sem erros) os próximos estados. O laço de realimentação é algumas chamado de "memória" (Flip-Flops ou Latches).

Circuitos Síncronos:

Mais fácil de perceber a diferença com um circuito síncrono, comparando as figuras 10.6 e 10.7.

No circuito síncrono, o MESMO pulso de clock é usado para gatilhar (de forma controlada) a memória do circuito e uma lógica combinacional associada com estes pulsos de clock é que determina como o circuito evolui de um estado para outro.

Máquina Síncrona

2) Diagrama de estados (exemplo):

Continuação...

Circuito:

Analisando o circuito notamos que:

$$\begin{array}{rcl} A(t+1) & = & \underline{A(t)} \cdot X + B(t) \cdot X \\ B(t+1) & = & \overline{A(t)} \cdot X \end{array}$$

$$y = [A(t) + B(t)] \overline{X}$$

Tabela de transição de estados:

		Table	e 10.2		
	sent	I/P (X)	Next	State	O/P
	ite			_	
A	В	X	A	В	(z)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Projeto de partes de circuitos síncronos:

 Requer tabelas de transição associadas com os FFs escolhidos para memorizar os diferentes estados necessários para o circuito. A partir destas tabelas fica possível projetar a parte do circuito combinacional (mapas de Karnaugh) usadas para definir o comportamento desejado para o circuito completo (sequencial e síncrono).

Fig. 10.23. State diagram of the sequential circuit

Table 10.10. (a) State table for the Example 10.6

Present State	Output	Next State	Q_{n+1} for Input X
Q_n	Y	0	1
A	0	A	В
В	0	C	C
С	0	D	D
D	1	A	D

Table 10.10. (b) State table rewritten with binary values

Pres Stat		Output	Next	State		$\frac{1}{2^{n+1}}$ Input X
Q_n		Y	0)		1
X_1	X_2		D_1	D_2	D_1	D_2
0	0	0	0	0	0	1
0	1	0	1	0	1	0
1	0	0	1	1	1	1
1	1	1	0	0	1	1

São 4 estados: A, B, C e D. Mas apenas 2 FF's-D são usados para resolver este problema!

2^2 = 4.

Continuação...

Table 10.10. (a) State table for the Example 10.6

Present	Output	Next State	Q_{n+1}
State			for Input X
Q_n	Y	0	1
A	0	A	В
В	0	C	C
С	0	D	D
D	1	A	D

Table 10.10. (b) State table rewritten with binary values

Present State	Output	Next	State		$\frac{Q_{n+1}}{n put X}$
Q_n	Y	0)		1
X_1 X_2		D_1	D_2	D_1	D_2
0 0	0	0	0	0	1
0 1	0	1	0	1	0
1 0	0	1	1	1	1
1 1	1	0	0	1	1

Fig. 10.23. State diagram of the sequential circuit

Fig. 10.24. Block diagram of the sequential detector

Fig. 10.25. K-maps for (a) D₁ (b) D₂ and (c) Y

From these K-maps, logic expressions for D_1 , D_2 and Y are given as:

$$\begin{split} D_1 &= X_1 \cdot \overline{X}_2 + \overline{X}_1 \cdot X_2 + X_1 \cdot X \\ D_2 &= X_1 \cdot \overline{X}_2 + \overline{X}_2 \cdot X + X_1 \cdot X \\ Y &= X_1 \cdot X_2 \end{split}$$

Combinational circuit is now designed to satisfy these equations and is given in Fig. 10.26.

Continuação:

Table 10.10. (b) State table rewritten with binary values

Present State		Output	Next State			n + 1 Input X
Q_n		Y	0)		1
X_1	X_2		D_1	D_2	D_1	D_2
0	0	0	0	0	0	1
0	1	0	1	0	1	0
1	0	0	1	1	1	1
- 1	1	1	0	0	1	1

Fig. 10.25. K-maps for (a) D₁ (b)

From these K-maps, logic expressions for D

$$D_1 = X_1 \cdot \overline{X}_2 +$$

$$D_2 = X_1 \cdot \overline{X}_2 + \overline{X}_2 \cdot X_1 \cdot$$

$$Y = X_1 \cdot X_2$$

Fig. 10.23. State diagram of the sequential circuit

FIGURA 8.46 Contador de 3 bits con decodificación activa a nivel ALTO de los estados 2 y 7.

Decodificar saídas de Contador

← Exemplo:

Neste caso, os instantes "2" e "7" podem estar liberando* certas operações num circuito combinacional (ou sequencial) muito maior.

* gerando sinais de "Enable" para outras partes de um circuito maior.

* Los datos se desplazan de Q₀ a Q₂.

FIGURA 9.29

Solución

El periodo de reloj es $2 \mu s$. Luego el retardo de tiempo puede incrementarse o decrementarse de dos en dos μs , desde un mínimo de $2 \mu s$ hasta un máximo de $16 \mu s$, como ilustra la Figura 9.30.

FIGURA 9.30 Diagrama de tiempos que muestra los retardos para el registro de la Figura 9.29.

Temporizar sinais

← Exemplo:

Neste caso, nas saídas do registrador é possível se obter pulsos que são gerados em diferentes instantes de tempo, conforme a saída selecionada do registrador.

Criar um cronômetro programável capz de contar de 99 à 0 segundos (decrescente), onde:

- a) o usuário pode programar ("setar") o valor inicial;
- b) usuário usa um botão para dar partida no cronômetro ("Start");
- c) este mesmo botão permite pausar a contagem ("Pause") e
- d) onde existe um outro botão para reinicializar todo o sistema ("Restart").

Soluções/Opções iniciais:

- •Uso de CIs contadores do tipo 74190 (contadores síncronos up/down, programáveis);
- Uso de "thumb-switches" (SWITCH THUMB BCD) que possibilitam que usuário programe o valor de início da contagem:

Thumbwheel switch - conexão...

https://www.youtube.com/watch?v=YW6X6a643fk

Soluções:

1) Idealizar um diagrama de estados para o circuito:

Criar um cronômetro programável capz de contar de 99 à 0 segundos (decrescente), onde:

- a) o usuário pode programar ("setar") o valor inicial;
- b) usuário usa um botão para dar partida no cronômetro ("Start");
- c) este mesmo botão permite pausar a contagem ("Pause") e
- d) onde existe um outro botão para reinicializar todo o sistema ("Restart").

Criar um cronômetro programável capz de contar de 99 à 0 segundos (decrescente), onde:

- a) o usuário pode programar ("setar") o valor inicial;
- b) usuário usa um botão para dar partida no cronômetro ("Start");
- c) este mesmo botão permite pausar a contagem ("Pause") e
- d) onde existe um outro botão para reinicializar todo o sistema ("Restart").

Soluções:

2) Decidir componentes/opções de projeto:

Criar um cronômetro programável capz de contar de 99 à 0 segundos (decrescente), onde:

- e programar ("setar") o valor inicial;
- m botão para dar partida no cronômetro ("Start");
- pisand otão permite pausar a contagem ("Pause") e
 - m outro botão para reinicializar todo o sistema ("Restart").

Soluções:

thumb-switch

3) Deduzir tabela transição do circuito completo:

Extradas (Ext.)	Estean atual	Prox. restant	Observacedo/
de Controle	(4.9.9)	Qo Q, Q, Q,	Cometarior
"Int"	1000	1000	"Not start" ("Parallel Load =
START= 1	1000	0 1 00	"PL" -> "RUN"
START = 1	0100	0 0 1 0	"RUN" START "PAUSE "
START=1	0 0 1 0	01,00	" LAUSE" START "RUN"
ESTART=1	0100	0010	"RUN" RESTART > "PAUSE"
RESTART= 1	0010	1000	"PANSE" RESTART PL"
c' do 74190	0100	0001	"RNN"> Fim
RESTART -1	0001	1 000	FIM RESTART "PL"

Soluções:

4) Levantar equações para as entradas de controle dos FF's usados para controlar os estados do circuito:

$$d_{0} = q_{2} \cdot RESTART + q_{3} \cdot RESTART$$

$$d_{0} = RESTART \cdot (q_{2} + q_{3})$$

$$d_{1} = q_{0} \cdot START + q_{2} \cdot START$$

$$d_{1} = START \cdot (q_{0} + q_{2})$$

$$d_{2} = q_{1} \cdot START + q_{1} \cdot RESTART$$

$$d_{2} = q_{1} \cdot (START + RESTART)$$

$$d_{3} = (TC_{(CI74190-Dezenas)}) \cdot (q_{1} + q_{2})$$

Notar que:

$$Init = Power - Up \to \begin{cases} Q_0 &= 1 \\ Q_1 &= 0 \\ Q_2 &= 0 \\ Q_3 &= 0 \end{cases}$$

Tabela de t	ravsicao:		1
Extradas (Ext.)	Estado atmal	Prox. restado	Observacedy/
de Controle	(4.9.9)	Qo Q Q Q Q 3	Cometation
"Int"	1000	1000	"Not start" ("Parallel Load =
START= 1	1000	0100	"PL" -> "RUN"
START = 1	0100	0 0 1 0	"RUN" START "PAUSE"
START=1	0 0 1 0	01,00	" LAUSE" START "RUN"
RESTART=1	0100	0010	"RUN" RESTART PAUSE"
restart= 1	0010	1000	"PANSE" RESTART > " PL"
TC do 74190	0100	0001	"RNN"> Fim
RESTART - 1	0001	1 000	FIM RESTART "PL"

Notar que as saídas dos FF's geram sinais de controle internos:

Q0=1 \Rightarrow "Parallel Load (74190's) + piscar display;

Q1=1 \Rightarrow Count Enable (CE) dos 74190's;

Q2=1 \Rightarrow Disable Count Enable dos 74190's + piscar

display;

Q3=1 \Rightarrow Disable Count Enable dos 74190's + piscar display;

4) Equações:

$$d_0 = q_2 \cdot RESTART + \cdot RESTART$$

$$d_0 = RESTART \cdot (q_2 + q_3)$$

$$d_1 = q_0 \cdot START + q_2 \cdot TART$$

$$d_1 = START \cdot (q_0 + q_2)$$

$$d_2 = q_1 \cdot START + q_1 \cdot ESTART$$

 $d_2 = q_1 \cdot (START + RESTART)$

$$d_3 = (TC_{(CI\ 74190-Dezen\ is)}) \cdot (q_1 + q_2)$$

Notar que:

$$Init = Power - Up \to \begin{cases} Q_0 &= 1 \\ Q_1 &= 0 \\ Q_2 &= 0 \\ Q_3 &= 0 \end{cases}$$

Extraday (Ext.)	Estas and	Prox. restado	Observace/
de Controle	(4)(4)(4)	Q0 Q1 Q2 Q3	Cometation
"Int"	1000	1000	"Not start" ["Parallel Load = 1
START= 1	1000	0 1 00	"PL" -> "RUN"
START = 1	0100	0 0 10	"RUN" START "PAUSE "
START=1	0 0 1 0	01,00	" PAUSE" START "RUN"
RESTART=1	0100	0010	"RUN" RESTART PAUSE"
restart=1	0010	1000	"PANSE"_RESTART > " PL"
1° do 74190	0100	0001	"RNN"> Fim
RESTART - 1	0001	1 000	FIM RESTART PL"

Soluções:

5) Verificando detalhes

funcionamento do contador

74190:

$$d_0 = q_2 \cdot RESTART + q_3 \cdot RESTART$$

$$d_0 = RESTART \cdot (q_2 + q_3)$$

$$d_1 = q_0 \cdot START + q_2 \cdot START$$

$$d_1 = START \cdot (q_0 + q_2)$$

$$d_2 = q_1 \cdot START + q_1 \cdot RESTART$$

$$d_2 = q_1 \cdot (START + RESTART)$$

$$d_3 = (TC_{(CI\ 74190-Dezenas)}) \cdot (q_1 + q_2)$$

$$Init = Power - Up \to \begin{cases} Q_0 &= 1 \\ Q_1 &= 0 \\ Q_2 &= 0 \\ Q_3 &= 0 \end{cases}$$

4) Eqs:

thumb-switch

 $d_0 = q_2 \cdot RESTART + q_3 \cdot RESTART$ $d_0 = RESTART \cdot (q_2 + q_3)$

 $d_1 = q_0 \cdot START + q_2 \cdot START$

 $d_1 = START \cdot (q_0 + q_2)$

 $d_2 = q_1 \cdot START + q_1 \cdot RESTART$

 $d_2 = q_1 \cdot (START + RESTART)$

 $d_3 = (TC_{(CI\ 74190-Dezenas)}) \cdot (q_1 + q_2)$

 $Init = Power - Up \rightarrow \begin{cases} Q_0 &= 1\\ Q_1 &= 0\\ Q_2 &= 0\\ Q_2 &= 0 \end{cases}$

Parte Final...

6) Diagrama Elétrico...