LM1117/LM1117I-800mA 低压差线性调压器

概述

LM1117 是一个低压差电压调节器系列。其压差在 1.2V 输出,负载电流为 800mA 时为 1.2V。它与国家半导体的工业标准器件 LM317 有相同的管脚排列。LM1117 有可调电压的版本,通过 2 个外部电阻可实现 1.25~13.8V 输出电压范围。另外还有 5 个固定电压输出(1.8V、2.5V、2.85V、3.3V 和 5V)的型号。

LM1117 提供电流限制和热保护。电路包含 1 个齐纳调节的带隙参考电压以确保输出电压的精度在±1%以内。LM1117 系列具有 LLP、TO-263、SOT-223、TO-220 和 TO-252 D-PAK 封装。输出端需要一个至少10uF 的钽电容来改善瞬态响应和稳定性。

特性

- 提供 1.8V、2.5V、2.85V、3.3V、5V 和可调电压的型号
- 节省空间的 SOT-223 和 LLP 封装
- 电流限制和热保护功能
- 输出电流可达 800mA
- 线性调整率: 0.2% (Max)
- 负载调整率: 0.4% (Max)
- 温度范围
 - -LM1117: 0°C~125°C
 - -LM1117I: -40°C~125°C

应用

- 2.85V 模块可用于 SCSI-2 有源终端
- 开关 DC/DC 转换器的主调压器
- 高效线性调整器
- 电池充电器
- 电池供电装置

典型应用

SCSI-2 总线有源终端

* 要求调压器远离电源滤波器

订购信息

封装	温度范围	型号	封装标识	出货形式
3 引脚 SOT-223	0°C~125°C	LM1117MPX-ADJ	N03A	编带和卷轴
		LM1117MPX-1.8	N12A	编带和卷轴
		LM1117MPX-2.5	N13A	编带和卷轴
		LM1117MPX-2.85	N04A	编带和卷轴
		LM1117MPX-3.3	N05A	编带和卷轴
		LM1117MPX-5.0	N06A	编带和卷轴
	-40°C~125°C	LM1117IMPX-ADJ	N03B	编带和卷轴
		LM1117IMPX-3.3	N05B	编带和卷轴
		LM1117IMPX-5.0	N06B	编带和卷轴
3 引脚 SOT-220	0°C~125°C	LM1117T-ADJ	LM1117T-ADJ	直条
		LM1117T-1.8	LM1117T-1.8	直条
		LM1117T-2.5	LM1117T-2.5	直条
		LM1117T-2.85	LM1117T-2.85	直条
		LM1117T-3.3	LM1117T-333	直条
		LM1117T-5.0	LM1117T 5.0	直条
3 引脚 SOT-252	0°C~125°C	LM1117DTX-ADJ	LM117DT-ADJ	编带和卷轴
		LM1117DTX-1.8	LM11.7DT-1.8	编带和卷轴
		LM1117DTX-2.	LM1M7DT-2.5	编带和卷轴
		LM1117DTX-2.85	LM1117DT-2.85	编带和卷轴
		LM1117DTX-3.3	LM1117DT-3.3	编带和卷轴
		LM1117DT¥-5.0	LM1117DT-5.0	编带和卷轴
	-40°C~125°C	LM117IDTX-ADJ	LM1117IDT-ADJ	编带和卷轴
	•	LM1Y17IDTX-3.3	LM1117IDT-3.3	编带和卷轴
		LM1117IDTX-5.0	LM1117IDT-5.0	编带和卷轴
8 引脚 LLP	0°C~125 €	LM1117LTX-ADJ	LM1117LT-ADJ	编带和卷轴
		LM1117LTX-1.8	1117-1.8	编带和卷轴
	1/2	LM1117LTX-2.5	1117-2.5	编带和卷轴
		LM1117LTX-2.85	1117-2.85	编带和卷轴
		LM1117LTX-3.3	1117-3.3	编带和卷轴
		LM1117LTX-5.0	1117-5.0	编带和卷轴
	-40°C~125°C	LM1117ILTX-ADJ	1117IAD	编带和卷轴
		LM1117ILTX-3.3	1117I33	编带和卷轴
		LM1117ILTX-5.0	1117I50	编带和卷轴
TO-263	0°C~125°C	LM1117SX-ADJ	LM1117SADJ	编带和卷轴
		LM1117SX-2.85	LM1117S2.85	编带和卷轴
		LM1117SX-3.3	LM1117S3.3	编带和卷轴
		LM1117SX-5.0	LM1117S5.0	编带和卷轴

功能框图 **o** v_{in} 热保护 电流限制 **o** v_{out} /**//** 衬底 **◆** GND(固定输出) - → ADJ.(可调输出) 管脚图 TO-263 **SOT-223** ☐ INPUT INPUT **◆**Vout 🗀 ОИТРИТ ОИТРИТ $V_{\rm OUT}$ **]**□ ADJ/GND ADJ/GND 顶视图 顶视图 侧视图 TO-220 LLP v_{оит} О ⊃ ADJ/GND ADJUST [1] 8 NC 顶视图 7 2 V_{OUT} 6 3 V_{IN} V_{OUT} TO-252 4 5 V_{OUT} Input 当使用 LLP 封装时,引脚 2、3 和 4 必须连在一起, Output 引脚 5、6 和 7 必须连接在一起。

顶视图

☐ Adj/GND

顶视图

极限参数

最大输入电压(V_{IN} to GND): 20V

结温 (T_J): 150℃

储存温度范围: -65℃~150℃

引脚温度:

-TO-220(T)封装: 260℃, 10秒

-SOT-223(IMP)封装: 260℃, 4秒

ESD 保护: 2000V

工作参数

输入电压(V_{IN} to GND): 15V

结温 (T_J) 范围:

-LM1117: 0°C~125°C

-LM1117I: -40°C~125°C

LM1117 电气特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF}	参考电压	LM1117-ADJ				
		$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 2V, T_J = 25 ^{\circ}\text{C}$	1.238	1.250	1.262	V
		$10\text{mA} \leq I_{\text{OUT}} \leq 800\text{mA}, 1.4\text{V} \leq V_{\text{IN}}$	1.225	1.250	1.270	V
		10V				
V _{OUT}	输出电压	LM1117-1.8				
		$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 3.8 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	1.782	1.800	1.818	V
		$0 \leqslant I_{OUT} \leqslant 800 \text{mA}, 3.2 \text{V} \leqslant V_{IN} \leqslant 10 \text{V}$	1.746	1.800	1.818	V
		LM1117-2.5				
		$I_{OUT} = 10 \text{mA} \times V_{OUT} = 4.5 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	2.475	2.500	2.525	V
		$0 \leqslant I_{OUT} \leqslant 800 \text{mA}, 3.9 \text{V} \leqslant V_{IN} \leqslant 10 \text{V}$	2.450	2.500	2.550	V
		LMC1.22.85				
		$I_{OUT} = 10 \text{mA}, V_{IN} = 4.85 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	2.820	2.850	2.880	V
	1	$0 \le I_{OUT} \le 800 \text{mA}, 4.25 \text{V} \le V_{IN} \le 10 \text{V}$	2.790	2.850	2.910	V
		$0 \le I_{OUT} \le 500 \text{mA}, V_{IN} = 4.1 \text{V}$	2.790	2.850	2.910	V
		LM1117-3.3				
		$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 5 \text{V}, T_J = 25 ^{\circ}\text{C}$	3.267	3.300	3.333	V
		$0 \leqslant I_{OUT} \leqslant 800 \text{mA}, 4.75 \text{V} \leqslant V_{IN} \leqslant 10 \text{V}$	3.235	3.300	3.365	V
		LM1117-5.0				
		$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 7 \text{V}, T_J = 25 ^{\circ}\text{C}$	4.950	5.000	5.050	V
		$0 \leqslant I_{OUT} \leqslant 800 \text{mA}, 6.5 \text{V} \leqslant V_{IN} \leqslant 12 \text{V}$	4.900	5.000	5.100	V
$\Delta V_{\rm OUT}$	线性调整率	LM1117-ADJ				
		$I_{OUT} = 10 \text{mA}, 1.5 \text{V} \leq V_{IN} - V_{OUT} \leq 13.75 \text{V}$		0.035	0.2	%
		LM1117-1.8				
		$I_{OUT} = 0$ mA, 3.2 V \leq V _{IN} \leq 10V		1	6	mV
		LM1117-2.5				
		$I_{OUT} = 0$ mA, 3.9 V \leq V _{IN} \leq 10V		1	6	mV

续上表

符号	参数	条件	最小值	典型值	最大值	单位
$\Delta V_{ m OUT}$	线性调整率	LM1117-2.85				
		$I_{OUT} = 0$ mA, 4.25 V \leq V _{IN} \leq 10V		1	6	mV
		LM1117-3.3				
		$I_{OUT} = 0$ mA, 4.75 V \leq V _{IN} \leq 15V		1	6	mV
		LM1117-5.0				
		$I_{OUT} = 0$ mA, 6.5 V \leq V _{IN} \leq 15V		1	10	mV
ΔV_{OUT}	负载调整率	LM1117-ADJ				
		$V_{IN}-V_{OUT} = 3V, 10 \le I_{OUT} \le 800 \text{mA}$		0.2	0.4	%
		LM1117-1.8				
		$V_{IN} = 3.2V, 0 \le I_{OUT} \le 800 \text{mA}$		1	10	mV
		LM1117-2.5				
		$V_{IN} = 3.9V, 0 \le I_{OUT} \le 800 \text{mA}$		1	10	mV
		LM1117-2.85				
		$V_{IN} = 4.25 \text{V}, 0 \le I_{OUT} \le 800 \text{mA}$		→	10	mV
		LM1117-3.3	<u> </u>			
		$V_{IN} = 4.75 \text{V}, 0 \le I_{OUT} \le 800 \text{mA}$	O	1	10	mV
		LM1117-5.0	7			
		$V_{IN} = 6.5 \text{V}, 0 \le I_{OUT} \le 800 \text{mA}$		1	15	mV
V_{IN} - V_{OUT}	压差	I _{OUT} = 100mA		1.10	1.20	V
		$I_{OUT} = 500 \text{mA}$		1.15	1.25	V
		$I_{OUT} = 800 \text{mA}$		1.20	1.30	V
I_{LIMIT}	电流限制	V_{IN} - $V_{OUT} = 5V$, $T_J = 25$ °C	800	1200	1500	mA
	最小负载电流	LM1117-ADJ, $V_{IN} = 15V$		1.7	5	mA
	空载电流	LM1117-1-8. V _{IN} ≤15V		5	10	mA
		LM1117-2.5, $V_{IN} \le 15V$		5	10	mA
		$M1172.85, V_{IN} \leq 10V$		5	10	mA
		LM1117-3.3, $V_{IN} \leq 15V$		5	10	mA
		LM1117-5.0, V _{IN} ≤15V		5	10	mA
	热调节	T _A = 25°C, 30ms 脉冲		0.01	0.1	%/W
	调节管脚电流			60	120	uA
	调节管脚电流	10≤I _{OUT} ≤800mA				
	变化	$1.4V \leq V_{\text{IN}} - V_{\text{OUT}} \leq 10V$		0.2	5	uA
	温度稳定性			0.5		%
	长期稳定性	T _A = 125℃, 1000 小时		0.3		%
	RMS 输出噪声	V _{OUT} 的百分比,10Hz≤f≤10kHz		0.003		%

海纳电子资讯网:www.fpga-arm.com为您提供各种IC的中文资料,应用资料

LM1117I 电气特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF}	参考电压	LM1117I-ADJ				
		$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 2V, T_J = 25 ^{\circ}\text{C}$	1.238	1.250	1.262	V
		$10\text{mA} \leqslant I_{\text{OUT}} \leqslant 800\text{mA}, 1.4\text{V} \leqslant V_{\text{IN}}\text{-}V_{\text{OUT}} \leqslant$	1.200	1.250	1.290	V
		10V				
V _{OUT}		LM1117I-3.3				
		$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 5 \text{V}, T_J = 25 ^{\circ}\text{C}$	3.267	3.300	3.333	V
		$0 \leqslant I_{OUT} \leqslant 800 \text{mA}, 4.75 \text{V} \leqslant V_{IN} \leqslant 10 \text{V}$	3.168	3.300	3.432	V
		LM1117I-5.0				•
		$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 7V, T_J = 25 ^{\circ}\text{C}$	4.950	5.000	5.050	V
		$0 \leqslant I_{OUT} \leqslant 800 \text{mA}, 6.5 \text{V} \leqslant V_{IN} \leqslant 12 \text{V}$	4.800	5.000	5.200	V
ΔV_{OUT}	线性调整率	LM1117I-ADJ				
		$I_{OUT} = 10 \text{mA}, 1.5 \text{V} \leq V_{IN} - V_{OUT} \leq 13.75 \text{V}$		0.035	0.3	%
		LM1117I-3.3				
		$I_{OUT} = 0 \text{mA}, 4.75 \text{V} \leq V_{IN} \leq 15 \text{V}$		\	10	mV
		LM1117I-5.0				
		$I_{OUT} = 0 \text{mA}, 6.5 \text{V} \leq V_{IN} \leq 15 \text{V}$	O	1	15	mV
ΔV_{OUT}	负载调整率	LM1117I-ADJ				
		$V_{IN}-V_{OUT} = 3V, 10 \le I_{OUT} \le 800 \text{mA}$		0.2	0.5	%
		LM1117I-3.3				
		$V_{IN} = 4.75V, 0 \le I_{OUT} \le 800 \text{mA}$		1	15	mV
		LM1117I-5.0				
		$V_{IN} = 6.5 \text{V}, 0 \le I_{OUT} \le 800 \text{mA}$		1	20	mV
V_{IN} - V_{OUT}	压差	I _{OUT} = 100mA	1.10	1.30	V	
		$I_{OUT} = 500 \text{mA}$		1.15	1.35	V
		$I_{OUT} = 800 \text{mA}$		1.20	1.40	V
I _{LIMIT}	电流限制	$V_{\rm NJ} V_{\rm Obs} = 5 \rm V, T_{\rm J} = 25 ^{\circ} \rm C$	800	1200	1500	mA
	最小负载电流	LM1117I-ADJ, $V_{IN} = 15V$		1.7	5	mA
	空载电流	M1117I-3.3, V _{IN} ≤15V		5	15	mA
	3	LM1117I-5.0, V _{IN} ≤15V		5	15	mA
	热调节	T _A = 25°C, 30ms 脉冲		0.01	0.1	%/W
	调节管脚电流			60	120	uA
	调节管脚电流	10≤I _{OUT} ≤800mA				
	变化	$1.4V \leq V_{\text{IN}} - V_{\text{OUT}} \leq 10V$		0.2	5	uA
	温度稳定性			0.5		%
	长期稳定性	T _A = 125℃, 1000 小时		0.3		%
	RMS 输出噪声	V _{OUT} 的百分比,10Hz≤f≤10kHz		0.003		%

典型的性能曲线

LM1117-2.85 负载瞬态响应 0.3 = 10 μ F 0.2 $C_{OUT} = 10 \mu F$ Output Voltage Deviation (V) = 4.25V 0.1 Preload = 0.1A 0 -0.1 -0.2 Load Current 0.5 (Y 0 0 10 20 30 40 50 60 70 80 90 100 TIME (μs)

LM1117-5.0 负载瞬态响应

应用的注意事项

- 1.0 外部电容/稳定性
- 1.1 输入旁路电容

建议使用输入旁路电容。10uF 的钽电容适用于几乎所有的应用。

1.2 调节端旁路电容

调节端通过一个旁路电容(C_{ADJ})接地可增强对纹波的抑制。该旁路电容可防止输出电压放大倍数的增加。在任何纹波频率下, C_{ADJ} 的阻抗都应当小于 R1,这样可防止纹波被放大。

 $1/(2\pi * f_{RIPPLE} * C_{ADJ}) \le R1$

R1 是输出端与调节端之间的电阻。它的范围通常为 $100\sim200\Omega$ 。例如,当 R1 = 124Ω , f_{RIPPLE} =120Hz 时, C_{ADJ} 应当大于 11uF。

1.3 输出电容

输出电容对于保持输出电压的稳定性起着非常重要的作用,它必须同时满足最小容值和 ESR (等效串联阻值)的要求。如果使用钽电容,LM1117 要求输出电容的最小值为 10uF。输出电容值的增加提高了回路的稳定性和瞬态响应。输出电容的 ESR 值必须在 0.3Ω~22Ω之间。在使用可调压的型号时,通常需要使用较大容量的输出电容(22uF 的钽电容)。

2.0 输出电压

LM1117 的可调压型号在输出端和调节端之间具有一个 1.25V 的参考电压 V_{REF} ,如图 1 所示。该电压通过跨接电阻 R1 产生一个恒定的电流 I1。调节端输出的电流会使输出端产生误是,但由于它与 I1 相比非常小(60uA)并在线路和负载变化时保持恒定,因此该误差可以忽略。恒定电流 I1 机向输出端。通过设置 R2 可得到所需要的输出电压。

对于固定电压的型号, R1 和 R2 都集成在器件的内部。

3.0 负载调整

LM1117 对输出端和地之间的电压或输出端与调节端之间的电压进行调整。在某些情况下,线路阻抗会导致负载电压出现误差。为了获得最佳的负载调整,需要采取一些预防措施。

如图 2 所示为使用固定调压器的典型电路。Rt1 和 Rt2 为线路阻抗。很显然,由于线路电阻导致的压降,负载电压 V_{LOAD} 小于 V_{OUT} 。这时,负载调整将达不到器件手册的规格。为了改善这一点,负载的正端必须直接连到输出端,负端必须直接连接到地。

图 2 固定调压器的典型电路

当使用可调的调压器时(见图 3),必须将 R1 的一端直接连接到调压器的输出端,而不是靠近负载的一端。这样就避免了线路压降对参考电压的影响。例如,5V 的调压器,在输出端和负载之间有 0.05Ω 的电阻,负载对线路的调整为 $0.05\Omega \times I_L$ 。如果 R1(= 125Ω)连接到靠近负载的一端,有效线路阻抗将是 $0.05\Omega \times (1+R2/R1)$ 。在此例中相当于原来的 4 倍。此外,R2 的接地端要靠近负载的负端以实现微弱的地感应并改善负载调整率。

4.0 保护二极管

在正常操作下,LM1117 不需要任何保护二极管。对于可调压的型号,输出端和调节端之间的电阻限制了电流。不需要通过二极管转移调压器的电流,即使调节端带有电容。调节端可承受相对于输出端±25V的瞬时信号而不会损坏器件。

当输出端连接了电容,而输入端对地短路时,输出、电容将会向调压器输出端放电。放电电流取决于电容的容量、调压器的输出电压和 $V_{\rm IN}$ 的跌落速度。在 LM I117 中,输出端与输入端之间的二极管可承受 I0A~20A 微秒级的浪涌电流。

如果输出端使用了超大的电容(≥1000uF),并且输入端瞬间短路到地,器件可能会损坏。这种情况下建议在输出和输入端之间连接一个外部工程管,如图 4 所示。

□N4002

5.0 散热要求

有可能需要安装散热器使器件温度保持在正常工作范围,视最大散热功率和最高的环境温度而定。

典型应用电路

* $\mathbf{C}_{\mathsf{Adj}}$ is optional, however it will improve ripple rejection.

* Select for charge rate.

电池的后备电源

低压差负电源

物理尺寸 单位: 英寸(毫米)

SOT-223 封装

NN

- 12 -

3 引脚 TO-263 封装

8 引脚 LLP 封装