ARMA процессы

ARMA уравнение

ARMA уравнение: план

- Определение.
- Неединственность решений.
- Несократимость уравнения.

О цели старых проблемах

Цель: простое уравнение для широкого множества процессов.

Проблемки:

• Неединственность уравнения для одного процесса.

Требование обратимости уравнения.

• У $MA(\infty)$ бесконечное число параметров.

Попробуем добавить лаги y_t в уравнение!

Новая проблема

$$y_t - y_{t-1} = u_t - u_{t-1}$$
, где (u_t) — белый шум.

Решения:

- $y_t = u_t$;
- $y_t = u_t 0.7$;
- $y_t = u_t 0.8$;

Бесконечное число решений.

ARMA уравнение

Определение

Уравнение вида

$$y_t = c + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + u_t + \alpha_1 u_{t-1} + \ldots + \alpha_q u_{t-q},$$

где (u_t) — белый шум назовём ARMA уравнением.

ARMA — AutoRegressive Moving Average —

Авторегрессия и скользящее среднее

Определение

Уравнение вида $P(L)y_t=c+Q(L)u_t$, где (u_t) — белый шум, P(L) и Q(L) полиномы от лага с P(0)=Q(0)=1, назовём ARMA уравнением.

Уравнение — не процесс!

Почему?

- Одно уравнение имеет множество решений.
- Один процесс описывается несколькими уравнениями.

Несократимость уравнения

Определение

AMRA уравнение вида $P(L)y_t = c + Q(L)u_t$ называется несократимым, если полиномы P(L) и Q(L) не имеют общих корней.

Сократимое уравнение:

$$y_t - y_{t-1} = u_t - u_{t-1}$$
 или $(1 - L)y_t = (1 - L)u_t$

Несократимое уравнение:

$$y_t - y_{t-1} = u_t - 0.5u_{t-1}$$
 или $(1 - L)y_t = (1 - 0.5L)u_t$

ARMA уравнение: итоги

- Линейное уравнение на y_t и u_t .
- Имеет много решений.
- Требование несократимости.

Структура решений **ARMA** уравнения

Структура решений: план

- Начальные условия.
- Когда есть стационарные решения?
- Разрушаем мифы!

Начальные условия

Несократимое ARMA уравнение:

$$y_t = 0.5y_{t-1} + u_t$$
, где (u_t) — белый шум.

Пробуем разные начальные условия:

• $y_0 = 0$:

$$y_1 = u_1$$
, $y_2 = u_2 + 0.5u_1$, $y_3 = u_3 + 0.5u_2 + 0.25u_1$, ...

• $y_0 = 2u_1$:

$$y_1 = 2u_1$$
, $y_2 = u_2 + u_1$, $y_3 = u_3 + 0.5u_2 + 0.5u_1$, ...

Начальные условия определяют и прошлые $y_t!$

Теоремка один

Любое ARMA уравнение, где есть хотя бы один лаг y_t , имеет бесконечное количество решений.

Теоремка два

Для того, чтобы получить единственное решение ARMA уравнения вида $P(L)y_t=c+Q(L)u_t$, достаточно задать начальные условия в количестве равном степени P(L).

$$y_t = 0.6y_{t-1} + 0.08y_{t-2} + u_t$$
 и $y_0 = u_0, y_1 = u_0 + 4$

А сколько стационарных решений?

Правильная теорема

Если ARMA уравнение $P(L)y_t=c+Q(L)u_t$ несократимо, то оно

- имеет ровно одно стационарное решение, если у лагового полинома $P(\ell)$ у всех корней $|\ell_i| \neq 1$;
- не имеет стационарных решений, если у лагового полинома $P(\ell)$ есть корень с $|\ell_i|=1$.
- $y_t = 0.5y_{t-1} + u_t, P(L) = 1 0.5L, \ell_1 = 2$: одно стационарное решение;
- $y_t = y_{t-1} + u_t, P(L) = 1 L, \ell_1 = 1$: нет стационарных решений.

Вариация теоремы

Правильная теорема

Если ARMA уравнение несократимо, то оно

- имеет ровно одно стационарное решение, если у характеристического полинома $\phi_{AR}(\lambda)$ у всех корней $|\lambda_i| \neq 1$;
- не имеет стационарных решений, еслиу характеристического полинома $\phi_{AR}(\lambda)$ есть корень с $|\lambda_i|=1.$
- $y_t = 0.5y_{t-1} + u_t, \phi_{AR}(\lambda) = \lambda 0.5, \lambda_1 = 0.5$: одно стационарное решение;
- $y_t = y_{t-1} + u_t, \phi_{AR}(\lambda) = \lambda 1, \lambda_1 = 1$: нет стационарных решений.

Распространённый миф!

$$y_t = 2y_{t-1} + u_t, \lambda_1 = 2$$
: нет стационарных решений?

Стационарное решение в студию!

$$y_t = -0.5u_{t+1} - 0.5^2u_{t+2} - 0.5^3u_{t+3} - 0.5^4u_{t+4} + \dots$$

Структура решений: итоги

- Начальные условия дают единственность решения.
- У несократимого уравнения стационарное решение либо единственно, либо не существует.
- Разрушаем миф про $|\lambda_i| > 1$.

Происхождение мифа

Происхождение мифа: план

- Нюансы $MA(\infty)$.
- Шумы бывают разные!
- Выводы о структуре решений.

Распространённый миф!

 $y_t = 2y_{t-1} + u_t, \lambda_1 = 2$: есть стационарное решение!

Стационарное решение в студию!

$$y_t = -0.5u_{t+1} - 0.5^2u_{t+2} - 0.5^3u_{t+3} - 0.5^4u_{t+4} + \dots$$

Это не $MA(\infty)$?

$$y_t = -0.5u_{t+1} - 0.5^2u_{t+2} - 0.5^3u_{t+3} - 0.5^4u_{t+4} + \dots$$

Определение

Процесс (y_t) , который можно представить в виде

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2} + \dots,$$

где (u_t) — белый шум, бесконечное количество $\alpha_i \neq 0$ и $\sum_{i=1}^\infty \alpha_i^2 < \infty$, называется $MA(\infty)$ процессом.

Это $MA(\infty)!$

$$y_t = -0.5u_{t+1} - 0.5^2u_{t+2} - 0.5^3u_{t+3} - 0.5^4u_{t+4} + \dots$$

Данный можно представить в виде

$$y_t = \nu_t + 0.5\nu_{t-1} + 0.5^2\nu_{t-2} + 0.5^3\nu_{t-3} + \dots,$$

где $(
u_t)$ — белый шум.

$$\nu_t = (1 - 0.5L)y_t = (1 - 0.5L)(-0.5u_{t+1} - 0.5^2u_{t+2} - 0.5^3u_{t+3} + \dots)$$

Происхождение мифа

Правильная теорема

Если ARMA уравнение $P(L)y_t = c + Q(L)u_t$ несократимо, то оно имеет ровно одно стационарное решение вида $MA(\infty)$ относительно (u_t) , если и только если $|\ell_i| > 1$ для всех корней лагового полинома P(L).

Вариация

Если ARMA уравнение $P(L)y_t = c + Q(L)u_t$ несократимо, то оно имеет ровно одно стационарное решение вида $MA(\infty)$ относительно (u_t) , если и только если $|\lambda_i| < 1$ для всех корней характеристического полинома $\phi_{AR}(\lambda)$.

Разница в шумах!

Несократимое ARMA уравнение $P(L)y_t = c + Q(L)u_t$.

- Если у $\phi_{AR}(\lambda)$ есть корень с $|\lambda_i|=1$, то стационарных решений нет.
- Если у $\phi_{AR}(\lambda)$ все корни с $|\lambda_i| < 1$, то стационарное решение единственно и имеет вид $MA(\infty)$ относительно (u_t) :

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2} + \dots$$

• Если у $\phi_{AR}(\lambda)$ все корни с $|\lambda_i| \neq 1$, но есть корень с $|\lambda_i| > 1$, то стационарное решение единственно и имеет вид $MA(\infty)$:

$$y_t = \mu + \nu_t + \alpha_1 \nu_{t-1} + \alpha_2 \nu_{t-2} + \dots$$

Происхождение мифа: итоги

- Слово «можно» в $MA(\infty)$ важно.
- Разница между $|\lambda_i| < 1$ и $|\lambda_i| > 1$.

ARMA процесс

ARMA процесс: план

- Определение AR и ARMA процесса.
- Обратимость для единственности записи.
- Свойства.

AR процесс

Определение

AR(p) процессом с уравнением

$$y_t = c + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + u_t,$$

где (u_t) — белый шум и $\beta_p \neq 0$ называется решение этого уравнения вида $MA(\infty)$ относительно (u_t) .

Определение с лагами

AR(p) процессом с уравнением

$$P(L)y_t = c + u_t,$$

где (u_t) — белый шум, P(L) имеет степень p и P(0)=1, называется решение этого уравнения вида $MA(\infty)$ относительно (u_t) .

Определения у разных авторов

В нашем определении AR(p) процесс обязательно стационарен.

Некоторые авторы не включают в определение AR(p) процесса требование стационарности.

ARMA процесс

Определение

ARMA(p,q) процессом с уравнением

$$y_t = c + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + u_t + \alpha_1 u_{t-1} + \ldots + \alpha_q u_{t-q},$$

где (u_t) — белый шум, $\beta_p \neq 0$ и $\alpha_q \neq 0$, называется решение этого уравнения вида $MA(\infty)$ относительно (u_t) .

Определение с лагами

ARMA(p,q) процессом с уравнением

$$P(L)y_t = c + Q(L)u_t,$$

где (u_t) — белый шум, P(L) имеет степень p, Q(L) имеет степень q, и P(0)=Q(0)=1, называется решение этого уравнения вида $MA(\infty)$ относительно (u_t) .

ARMA: нюансы

• AR(1) процесс с уравнением $y_t = 0.5y_{t-1} + u_t$:

$$y_t = u_t + 0.5u_{t-1} + 0.5^2u_{t-2} + \dots$$

• AR(1) процесса с уравнением $y_t = y_{t-1} + u_t$ не существует:

 $\phi_{AR}(\lambda)=\lambda-1$, $\lambda_1=1$, нет стационарных решений.

- AR(1) процесса с уравнением $y_t = 2y_{t-1} + u_t$ не существует:
- $\phi_{AR}(\lambda) = \lambda 2$, $\lambda_1 = 2$, есть стационарное решение вида $MA(\infty)$, но не относительно (u_t) .

А что с неединственностью записи?

Один и тот же ARMA(p,q) процесс (y_t) может описываться разными уравнениями!

Спасительная обратимость

Если ряд (y_t) является ARMA(p,q) процессом с уравнением $P(L)y_t=c+Q(L)u_t$, то данное уравнение будет единственным, если на MA часть выполнено условие обратимости.

Условие обратимости ARMA уравнения:

- у характеристического многочлена $\phi_{MA}(\lambda)$ все корни $|\lambda_i| < 1$;
- у лагового многочлена Q(L) все корни $|\ell_i| > 1$.

ARMA процесс: итоги

- Процесс стационарен по определению;
- AR и MA процессы являются частными случаями ARMA процесса;
- Малым числом параметров описываются разнообразные $MA(\infty)$ процессы.
- Можно приблизить любую структуру ACF и PACF.
- Теоретические ACF и PACF экспоненциально убывают.
- Условие обратимости гарантирует единственность записи.