

RTL8711AF

SINGLE-CHIP 802.11b/g/n 1T1R WLAN SoC

Pre-Release DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 0.1

26 July 2015

Track ID: JATR

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com

COPYRIGHT

©2015 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

REVISION HISTORY

Revision	Release Date	Summary	
0.0	2014/09/30	Preliminary release.	
0.0	2015/03/05	update PINMUX table	

Table of Contents

1.	GENERAL DESCRIPTION	1
2.	FEATURES	2
3.	BLOCK DIAGRAM	4
3.1	I. FUNCTIONAL BLOCK DIAGRAM	4
3.2	2. WIFI AND NFC APPLICATION DIAGRAM	5
3.3	3. POWER SUPPLY APPLICATION DIAGRAM	6
4.	MEMORY MAPPING	7
4.1	I. PROGRAMMING SPACE	7
4.2	2. IO Space	8
4.3	B. EXTENSION MEMORY SPACE	12
5.	PIN ASSIGNMENTS	13
5.1	I. PACKAGE IDENTIFICATION	13
6.	PIN DESCRIPTIONS	14
6.1	I. POWER ON TRAP PIN	14
6.2	2. RF AND NFC	15
6.3	B. POWER PINS	15
6.4	1. CLOCK PINS	16
6.5	5. DIGITAL IO PINS	16
6.6	S. SDIO Interface	18
7.	PIN FUNCTION TABLE	19
7.1	I. PIN CONFIGURABLE FUNCTION GROUP SUMMARY TABLE	19
8.	FUNCTIONAL DESCRIPTION	20

8.1. POWER MANAGEMENT CONTROL UNIT	20
8.1.1. Features	20
8.1.2. Power Mode Description	20
8.2. MEMORY SYSTEM	22
8.2.1. Memory Architecture	22
8.2.2. Internal ROM	22
8.2.3. Internal SRAM	23
8.2.4. SPI NOR Flash	23
8.3. GENERAL PURPOSE DMA CONTRLLER	25
8.3.1. Features of GDMA	25
8.4. GENERAL PURPOSE TIMER	25
8.4.1. Features of GTimer	25
8.5. GPIO FUNCTIONS	25
8.5.1. Features of GPIO	25
8.6. UART INTERFACE CHARACTERISTICS	26
8.6.1. Features of UART	26
8.6.2. High Speed UART Specification	26
8.6.3. UART Interface Signal Levels	28
8.7. SPI INTERFACE	28
8.7.1. Features of SPI	28
8.8. I2C Interface	29
8.8.1. Features of I2C	29
8.9. PWM Interface	30
8.9.1. Features of PWM	30
8.10. EXTERNAL TRIGGER EVENT INTERFACE	30
8.10.1. Features of External Trigger Event	30

8.11. SDIO/RTK SPI Device Mode Interface	30
8.11.1. Features of SDIO/RTK SPI Device Mode Interface	30
8.11.2. SDIO Device Mode Specifications	31
8.12. I2S INTERFACE	32
8.12.1. Features of I2S	32
8.13. PCM Interface	32
8.13.2. PCM Specifications	33
8.14. SECURITY ENGINE	37
8.14.1. Features	37
9. ELECTRICAL CHARACTERISTICS	39
9.1. TEMPERATURE LIMIT RATINGS	39
9.2. Temperature Characteristics	39
9.3. Power Supply DC Characteristics	39
9.3.1. Power Mode Description	40
9.4. MECHANICAL DIMENSIONS	43
9.4.1. Package Specification	43
9.4.2. Mechanical Dimensions Notes	44
9.5. DIGITAL IO PIN DC CHARACTERISTICS	44
9.5.1. Electrical Specifications	44
10. ORDERING INFORMATION	46

List of Tables

TABLE 1.	Power On Trap Pins	14
TABLE 2.	RF AND NFC PINS	15
TABLE 3.	Power Pins	15
TABLE 4.	CLOCK AND OTHER PINS	16
TABLE 5.	SDIO Transceiver Interface	18
TABLE 6.	PIN FUNCTION GROUP TABLE	19
TABLE 7.	FLASH BUS DC PARAMETERS	24
TABLE 8.	FLASH BUS DC PARAMETERS	24
TABLE 9.	UART BAUD RATE SPECIFICATIONS	26
TABLE 10.	SDIO Interface Timing Parameters	31
TABLE 11.	PCM Interface Clock Specifications	36
TABLE 12.	PCM Interface Timing	36
TABLE 13.	TEMPERATURE LIMIT RATINGS	39
TABLE 14.	THERMAL PROPERTIES	39
TABLE 15.	Power Supply DC Characteristics	39
TABLE 16.	Typical Digital IO DC Parameters (3.3V Case)	44
TABLE 17.	Typical Digital IO DC Parameters (1.8V Case)	45
TABLE 18.	Ordering Information	46

List of Figures

FIGURE 1.	BLOCK DIAGRAM	4
FIGURE 2.	SINGLE-BAND 11n (1x1) AND NFC TAG SOLUTION	5
FIGURE 3.	Power Supply Architecture	6
FIGURE 4.	PIN ASSIGNMENTS	13
FIGURE 5.	UART Interface Waveform	28
FIGURE 6.	SDIO INTERFACE TIMING	31
FIGURE 7.	LONG FRAMESYNC	33
FIGURE 8.	SHORT FRAMESYNC	33
FIGURE 9.	16-BIT OUTPUT DATA WITH 8-BIT PCM SAMPLE DATA AND SIGN EXTENSION	34
FIGURE 10.	16-BIT OUTPUT DATA WITH 8-BIT PCM SAMPLE DATA AND ZERO PADDING	34
FIGURE 11.	16-BIT OUTPUT DATA WITH 13-BIT PCM SAMPLE DATA AND SIGN EXTENSION	34
FIGURE 12.	16-BIT OUTPUT DATA WITH 13-BIT PCM SAMPLE DATA AND AUDIO GAIN	34
FIGURE 13.	PCM Interface (Long FrameSync)	35
FIGURE 14.	PCM Interface (Short FrameSync)	36

2015-10-14 viii

1. General Description

Realtek RTL8711AF is a highly integrated single-chip low power 802.11n Wireless LAN (WLAN) network controller. It combines an ARM-CM3 MCU, WLAN MAC, a 1T1R capable WLAN baseband, and RF in a single chip. It also provides a bunch of configurable GPIOs which are configured as digital peripherals for different applications and control usage.

RTL8711AF integrates internal memories for complete WIFI protocol functions. The embedded memory configuration also provides simple application developments.

2. Features

General

- Package QFN48 (6x6mm²)
- CMOS MAC, Baseband PHY, and RF in a single chip for 802.11b/g/n compatible WLAN
- Complete 802.11n solution for 2.4GHz band
- 72.2Mbps receive PHY rate and 72.2Mbps transmit PHY rate using 20MHz bandwidth
- 150Mbps receive PHY rate and 150Mbps transmit PHY rate using 40MHz bandwidth
- Compatible with 802.11n specification
- Backward compatible with 802.11b/g devices while operating in 802.11n mode

Standards Supported

- 802.11b/g/n compatible WLAN
- 802.11e QoS Enhancement (WMM)
- 802.11i (WPA, WPA2). Open, shared key, and pair-wise key authentication services

- WIFI WPS support
- WIFI Direct support
- Light Weight TCP/IP protocol

WLAN MAC Features

- Frame aggregation for increased MAC efficiency (A-MSDU, A-MPDU)
- Low latency immediate High-Throughput Block Acknowledgement (HT-BA)
- Long NAV for media reservation with CF-End for NAV release
- PHY-level spoofing to enhance legacy compatibility
- Power saving mechanism

WLAN PHY Features

- 802.11n OFDM
- One Transmit and one Receive path (1T1R)
- 20MHz and 40MHz bandwidth transmission

- Short Guard Interval (400ns)
- DSSS with DBPSK and DQPSK, CCK modulation with long and short preamble
- OFDM with BPSK, QPSK, 16QAM, and 640QAM modulation. Convolutional Coding Rate: 1/2, 2/3, 3/4, and 5/6
- Maximum data rate 54Mbps in 802.11g and 150Mbps in 802.11n
- Fast receiver Automatic Gain Control (AGC)
- On-chip ADC and DAC

Peripheral Interfaces

- SDIO Slave
- Maximum 2 high speed UART interface with baud rate up to 4MHz

- 1 log UART with standard baud rate support
- Maximum 3 I²C interface
- I²S with 8/16/24/32/48/96/44.1/88.2 KHz sampling rate
- Maximum 2 PCM with 8/16KHz sample rate
- Maximum 2 SPI supported with baud rate up to 41.5MHz.
- Support 4 PWM with configurable duration and duty cycle from 0 ~ 100%
- Support 4 External Timer Trigger Event (ETE function) with configurable period in low power mode
- Maximum 21 GPIO pins

3. Block Diagram

3.1. Functional Block Diagram

Figure 1. Block Diagram

3.2. WIFI and NFC Application Diagram

Figure 2. Single-Band 11n (1x1) and NFC Tag Solution

3.3. Power Supply Application Diagram

Figure 3. Power Supply Architecture

The integrated Power Management Unit (PMU) provides the following features:

- 1.2V power bulk or LDO selectable.
- 3.3V power source integrated power cut controlled by FW.

4. Memory Mapping

4.1. Programming Space

Name	Mode	Physical	Size	IP Function
Code			1MB	Instruction Memory (ROM)
		0x000F_FFFF		
		0x1000_0000	448KB	Inter SRAM: BD SRAM and Buffer
		0x1006_FFFF		SRAM share total 448KB physical sram
		0x1FFF_0000	64KB	TCM (Tightly-Coupled Memory)
		0x1FFF_FFFF		SRAM

4.2. IO Space

Mode	Physical	Size	IP Function
	0x4000_0000	4KB	SYS Control (SYSON)
	0x4000_0FFF	1	
	0x4000_1000	2KB	GPIO Control
	0x4000_17FF	1	
	0x4000_1800		RSVD
	0x4000_1FFF	1	
	0x4000_2000	4KB	Timer Control
	0x4000_2FFF	1	
	0x4000_3000	1KB	UART for Log
	0x4000_33FF	1	
	0x4000_3400	1KB	I2C_2 Control
	0x4000_37FF	1	
	0x4000_3800	1KB	I2C_3 Control
	0x4000_3BFF	1	
	0x4000_3C00		RSVD
	0x4000_4FFF	1	
	0x4000_5000	4KB	SDR SDRAM controller
	0x4000_5FFF		
	0x4000_6000	4KB	SPI flash controller
	0x4000_6FFF	1	
	0x4000_7000		RSVD
	0x4000_FFFF		
	0x4001_0000	4KB	ADC
	0x4001_0FFF		
	0x4001_1000	4KB	DAC
	0x4001_1FFF		
	Mode	0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_17FF 0x4000_1800 0x4000_1FFF 0x4000_2000 0x4000_3FFF 0x4000_3400 0x4000_37FF 0x4000_3800 0x4000_3FF 0x4000_3BFF 0x4000_3C00 0x4000_5FFF 0x4000_5000 0x4000_5FFF 0x4000_6000 0x4000_6FFF 0x4000_7000 0x4000_FFFF 0x4001_0000 0x4001_0FFF	0x4000_0000

Name	Mode	Physical	Size	IP Function
Peripheral		0x4004_0000	1KB	UART_0 Control
		0x4004_03FF		
		0x4004_0400	1KB	RSVD
		0x4004_07FF		
		0x4004_0800	1KB	UART_2 Control
		0x4004_0BFF		
		0x4004_0C00		RSVD
		0x4004_1FFF		
		0x4004_2000	1KB	SPI_0 Control
		0x4004_23FF		
		0x4004_2400	1KB	SPI_1 Control
		0x4004_27FF		
		0x4004_2800	1KB	RSVD
		0x4004_2BFF		
		0x4004_2C00		RSVD
		0x4004_3FFF		
		0x4004_4000	1KB	RSVD
		0x4004_43FF		
		0x4004_4400	1KB	I2C_1 Control
		0x4004_47FF		
		0x4004_4800		RSVD
		0x4004_FFFF		

Name	Mode	Physical	Size	IP Function
Peripheral		0x4005_0000	16KB	RSVD
		0x4005_3FFF		
		0x4005_4000		RSVD
		0x4005_7FFF		
		0x4005_8000	16KB	SDIO Host
		0x4005_BFFF		
		0x4005_C000		RSVD
		0x4005_FFFF		
		0x4006_0000	2KB	GDMA0
		0x4006_07FF	ZKD	ODMA0
		0x4006_0800	2KB	RSVD for other DMA
		0x4006_0FFF		
		0x4006_1000	2KB	GDMA1
		0x4006_17FF	2KD	ODMAI
		0x4006_1800		RSVD for other DMA
		0x4006_1FFF		

Name	Mode	Physical	Size	IP Function
Peripheral		0x4006_2000	1KB	RSVD
		0x4006_23FF		
		0x4006_2400	3KB	RSVD
		0x4006_2FFF		
		0x4006_3000	1KB	I2S_1 Control
		0x4006_33FF		
		0x4006_3400	3KB	RSVD
		0x4006_3FFF		
		0x4006_4000	1KB	PCM_0 Control
		0x4006_43FF		
		0x4006_4400		RSVD
		0x4006_4FFF		
		0x4006_5000	1KB	PCM_1 Control
		0x4006_53FF		
		0x4007_0000	16KB	Security Engine
		0x4007_3FFF		
		0x4007_4000	48KB	RSVD
		0x4007_FFFF		
		0x4008_0000	256KB	WIFI REG &
		0x400B_FFFF		TX/RX FIFO direct map
		0x400C_0000	256KB	RSVD
		0x400F_FFFF		
		0x403F_FFFF	1MB	RSVD

4.3. Extension Memory Space

Name	Mode	Physical	Size	IP Function
Flash	0x9800_0000 0x9810_0000	0x9800_0000	1 M. (T)	F 4 1 CL 1
		1MB	External flash memory	

5. Pin Assignments

Figure 4. Pin Assignments

5.1. Package Identification

"Green" package is indicated by a 'G' in the location marked "T" in Figure 2. The version is shown in the location marked 'VV', e.g., A0=Version A0

6. Pin Descriptions

The following signal type codes are used in the tables:

l:	Input	O:	Output
T/S:	Tri-State bi-directional input/output pin	S/T/S:	Sustained Tri-State
O/D:	Open Drain	P:	Power pin

6.1. Power On Trap Pin

Table 1. Power On Trap Pins

Symbol	Туре	Pin No	Description			
NORMAL_MODE_SEL	I	2	Shared with GPIOB_2			
			1: Normal operation mode			
			0: Enter into test/debug mode			
BOOT_SCENARIO	I	48	Shared with GPIOB_0			
			0: booting from flash			
			1: booting from internal memory			
EEPROM_SEL	I	25	Shared with GPIOF_5			
			0: Internal NV memory select			
			1: reserved for internal testing use			
ICFG0	I	44	Shared with GPIOC_0			
			When NORMAL_MODE_SEL is "1", then ICFG0 is test mode BIT0.			

Symbol	Туре	Pin No	Description
ICFG1	I	43	Shared with GPIOC_1
			When NORMAL_MODE_SEL is "1", then ICFG0 is test mode BIT1.
ICFG2	I	42	Shared with GPIOC_2
			When NORMAL_MODE_SEL is "1", then ICFG0 is test mode BIT2.
ICFG3	I	41	Shared with GPIOC_3
			When NORMAL_MODE_SEL is "1", then ICFG0 is test mode BIT3.

6.2. RF and NFC

Table 2. RF and NFC Pins

Symbol	Туре	Pin No	Description
NFC_IP	I	5	NFC input differential signal
NFC_IN	I	6	NFC input differential signal
RF_IO	10	13	WL RF signal

6.3. Power Pins

Table 3. Power Pins

Symbol	Туре	Pin No	Description					
SW_LX	Р	37	Switching Regulator Output					
SW_HV3	Р	36	Switching Regulator Input					
			Or Linear Regulator input from 3.3V to 1.2V					

Symbol	Туре	Pin No	Description
VA33	Р	10, 12, 14, 23	3.3V for Analog Circuit
VD33IO	Р	4, 26, 35, 39	VDD3.3V for Digital IO or digital blocks
VDD_IO	Р	16, 45	GPIOE and GPIOC group IO power
VDIO_SDIO	Р	30	SDIO Bus IO power
VD12D	Р	34, 40	VDD 1.2V Digital Circuit
VA12	Р	7, 11, 15, 22	1.2V for analog blocks
SW_GND	Р	38	Switching Regulator Ground

6.4. Clock Pins

Table 4. Clock and Other Pins

Symbol	Туре	Pin No	Description
XI	I	9	40MHz OSC Input
			Input of 40MHz Crystal Clock Reference
XO	0	8	Output of 40MHz Crystal Clock Reference

6.5. Digital IO Pins

Please refer to section 6 Pin Function Table for more detailed information.

Symbol	Туре	Pin No	Description
GPIOB_0	Ю	48	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_1	Ю	1	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_2	Ю	2	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_3	Ю	3	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_0	Ю	21	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_1	Ю	20	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_2	Ю	19	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_3	Ю	18	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_4	Ю	17	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_0	Ю	27	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_1	Ю	28	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_2	Ю	29	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_3	Ю	31	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_4	Ю	32	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_5	Ю	33	GPIO pin. The MUX function can be referred to Pin Function Table.

Symbol	Туре	Pin No	Description
GPIOC_0	Ю	44	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_1	Ю	43	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_2	Ю	42	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_3	Ю	41	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_4	Ю	46	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_5	Ю	47	GPIO pin. The MUX function can be referred to Pin Function Table.
CHIP_EN	I	24	Enable chip. 1: enable chip; 0: shutdown chip

6.6. SDIO Interface

Table 5. SDIO Transceiver Interface

Symbol	Туре	Pin No	Description
GPIOA_0	Ю	27	SDIO bus SD_D2
GPIOA_1	Ю	28	SDIO bus SD_D3
GPIOA_2	Ю	29	SDIO bus SD_CMD
GPIOA_3	Ю	31	SDIO bus SD_CLK
GPIOA_4	Ю	32	SDIO bus SD_D0
GPIOA_5	Ю	33	SDIO bus SD_D1

7. Pin Function Table

7.1. Pin Configurable Function Group Summary Table

Table 6. Pin Function Group Table

PIN name	JTAG	SDIO	UART Group	I2C Group	SPI Group	I2S Group	PCM Group	WL_LED	PWM	ETE	WKDT	GPIO INT	Default State	SCHMT
GPIOA_0		SD_D2	UART2_IN		SPI1_MISO							GPIO_INT	PH	0
GPIOA_1		SD_D3	UART2_CTS		SPI1_MOSI							GPIO_INT	HI	
GPIOA_2		SD_CMD	UART2_RTS		SPI1_CLK								PH	0
GPIOA_3		SD_CLK											PH	0
GPIOA_4		SD_D0	UART2_OUT		SPI1_CS								PH	
GPIOA_5		SD_D1									D_SBY0		PH	
GPIOB_0			UART_LOG_OUT	Γ						ETE0			HI	
GPIOB_1			UART_LOG_IN					WL_LED0		ETE1	D_SLP0		PH	
GPIOB_2				I2C3_SCL						ETE2			HI	0
GPIOB_3				I2C3_SDA						ETE3		GPIO_INT	PH	
GPIOC_0			UARTO_IN		SPIO_CSO	12S1_WS	PCM1_SYNC		PWM0	ETE0			HI	
GPIOC_1			UARTO_CTS		SPIO_CLK	I2S1_CLK	PCM1_CLK		PWM1	ETE1		GPIO_INT	HI	0
GPIOC_2			UARTO_RTS		SPI0_MOSI	I2S1_SD_TX	PCM1_OUT		PWM2	ETE2			HI	
GPIOC_3			UARTO_OUT		SPI0_MISO	I2S1_MCK	PCM1_IN		PWM3	ETE3		GPIO_INT	HI	0
GPIOC_4				I2C1_SDA	SPIO_CS1	I2S1_SD_RX						GPIO_INT	HI	
GPIOC_5				I2C1_SCL	SPIO_CS2							GPIO_INT	HI	0
GPIOE_0 JT	AG_TRST		UARTO_OUT	I2C2_SCL	SPIO_CSO		PCM0_SYNC		PWM0				PH	0
GPIOE_1 JT			UARTO_RTS	I2C2_SDA	SPIO_CLK		PCM0_CLK		PWM1			GPIO_INT	PH	0
GPIOE_2 JT	TAG_TDO		UARTO_CTS	I2C3_SCL	SPI0_MOSI		PCM0_OUT		PWM2			GPIO_INT	PH	0
GPIOE_3 JT	TAG_TMS		UARTO_IN	I2C3_SDA	SPI0_MISO		PCM0_IN		PWM3		D_SBY3	GPIO_INT	PH	0
GPIOE_4 JT	GCLK				SPIO_CS1								PH	0

NOTE1: PH = Pull-High, HI = High-impedance

NOTE2: GPIOA_1 needs external Circuit to do the pull high control; others' pull control can be done by register setting (including GPIOA_1's PD).

8. Functional Description

8.1. Power Management Control Unit

8.1.1. Features

The PMU provides the following functions:

- Bulk/LDO to output 1.2V
- 2 very Low power clock source with less accuracy: 1K and 500K
- 1 low power 32.768KHz clock source with moderate accuracy
- Wakeup system detector to resume from low power state

8.1.2. Power Mode Description

8.1.2.1 Shutdown Mode

CHIP_EN deasserts to shutdown whole chip without external power cut components required.

8.1.2.2 Deep Sleep Mode

CHIP_EN keeps high. Enter into Deep Sleep mode by API. The trigger timer period can be configured or GPIOB_1 can be used as external trigger event. The DLSP trigger timer can be configured with the range $1 \sim 3600$ sec.

8.1.2.3 Deep Standby Mode

CHIP_EN keeps high. Entering into Deep Sleep mode by API. The trigger timer period can be configured or all GPIO group can be used as external trigger event.

8.2. Memory System

8.2.1. Memory Architecture

RTL8711AF integrates ROM, internal SRAM, extended NOR flash to provide applications with a variety of memory requirements.

8.2.2. Internal ROM

RTL8711AF integrates 1MB ROM to provide high access speed, low leakage memory. The ROM memory clock speed is up to 166MHz. The ROM lib provides the following functions:

- Boot Code and MCU initialization
- Default UART driver
- Non-flash booting functions and drivers
- Peripheral libs
- Security function libs

8.2.3. Internal SRAM

448KB SRAM is integrated to provide instruction, data, and buffer usage. The maximum clock speed is up to 166MHz.

Additional 64KB fast access data memory (TCM) is provided for FW data section. The range is $0x1FFF-0000 \sim 0x1FFF-FFFF$.

8.2.4. SPI NOR Flash

Features

- Targeted SPI flash frequency: Up to 83.3MHz (when CPU clock is 166MHz)
- In addition to a programmed I/O interface, also supports a memory-mapped I/O interface for read operation
- Supports Read and Fast Read in memory-mapped I/O mode

Supported NOR Flash List

Table 7. Flash Bus DC Parameters

Vendor	Part Number	Density	Voltage	Ю	
MXIC	MXIC_MX25L8006E	8M Bits	3.3V	1I/2O	

Electrical Specifications

Table 8. Flash Bus DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V _{IH}	Input-High Voltage	LVTTL	2.0	-	-	V	1
V _{IL}	Input-Low Voltage	LVTTL	-	-	0.8	V	2
V _{OH}	Output-High Voltage	-	2.4	-	-	V	3
V _{OL}	Output-Low Voltage	-	=	-	0.4	V	3
I _{IL}	Input-Leakage Current	V _{IN} =3.3V or 0	-10	±1	10	μΑ	-
I _{OZ}	Tri-State Output-Leakage Current	-	-10	±1	10	μΑ	-
R _{PU}	Input Pull-Up Resistance	-	-	75	-	ΚΩ	4
R _{PD}	Input Pull-Down Resistance	-	-	75	-	ΚΩ	4

Note 1: V_{IH} overshoot: VIH (MAX)=VDDH + 2V for a pulse width ≤ 3 ns.

Note 2: V_{IL} undershoot: V_{IL} (MIN)=-2V for a pulse width \leq 3ns.

Note 3: The output current buffer is 8mA for the flash address and data bus; and is 8mA for Flash control signals.

Note 4: These values are typical values checked in the manufacturing process and are not tested.

8.3. General Purpose DMA Contrller

8.3.1. Features of GDMA

- Dual port DMA with totally 12 channels
- Configurable endian
- Support memory-memory, memory-peripheral, peripheral-memory, and peripheral-peripheral DMA transfer
- Support block level flow control
- Support address auto-reload, link-listed mode
- Support scatter-gather mode

8.4. General Purpose Timer

8.4.1. Features of GTimer

- 8 Gtimer supported
- Time unit is 32us
- Support Counter mode and timer mode

8.5. GPIO Functions

8.5.1. Features of GPIO

- GPO and GPI function
- Support interrupt detection with configurable polarity per GPIO
- Internal weak pull up and pull low per GPIO

Multiplexed with other specific digital functions

8.6. UART Interface Characteristics

8.6.1. Features of UART

- Support maximum 2 HS-UART (max baud rate 4MHz and DMA mode) and 2 low speed UART (IO mode)
- UART (RS232 Standard) Serial Data Format
- Transmit and Receive Data FIFO
- Programmable Asynchronous Clock Support
- Auto Flow Control
- Programmable Receive Data FIFO Trigger Level
- DMA data moving support to save CPU loading

8.6.2. High Speed UART Specification

The RTL8711AF UART interface is a standard 4-wire interface with RX, TX, CTS, and RTS. The default baud rate is 115.2k baud. In order to support high and low speed baud rate, the RTL8711AF provides multiple UART clocks.

Table 9. UART Baud Rate Specifications

Desired Baud Rate	Actual Baud Rate	Error (%)	
300	300	0.00%	

Desired Baud Rate	Actual Baud Rate	Error (%)
600	600	0.00%

Desired Baud Rate	Actual Baud Rate	Error (%)
900	900	0.00%
1200	1200	0.00%
1800	1800	0.00%
2400	2400	0.00%
3600	3601	0.03%
4800	4798	-0.04%
7200	7198	-0.03%
9600	9603	0.03%
14400	14395	-0.03%
19200	19182	-0.09%
28800	28846	0.16%
38400	38462	0.16%
56000	55970	-0.05%
57600	57692	0.16%
76800	76531	-0.35%
115200	115385	0.16%
128000	127119	-0.69%
153600	153061	-0.35%

Desired Baud Rate	Actual Baud Rate	Error (%)
230400	229167	-0.54%
460800	458333	-0.54%
500000	500000	0.00%
921600	916667	-0.54%
1000000	1000000	0.00%
1382400	1375000	-0.54%
1444444	1437500	-0.48%
1500000	1500000	0.00%
1843200	1833333	-0.54%
2000000	2000000	0.00%
2100000	2083333	-0.79%
2764800	2777778	0.47%
3000000	3000000	0.00%
3250000	3250000	0.00%
3692300	3703704	0.31%
3750000	3750000	0.00%
4000000	4000000	0.00%

Figure 5. UART Interface Waveform

8.6.3. UART Interface Signal Levels

The UART signal level ranges from 1.8V to 3.3V. The host provides the power source with the targeted power level to the RTL8711AF UART interface via the IO power.

8.7. SPI Interface

8.7.1. Features of SPI

- Support maximum 2 SPI port
- Support Master/Slave mode (SPIO only), and Master only (SPI1)
- Support DMA to offload CPU bandwidth
- 1 very high speed SPI (Master only)
 - Support up to 3 CS (multi-slave mode up to 3 slave)
 - Support baud rate up to 41MHz (Master mode)

- 1 high speed SPI (Master/Slave)
 - Support baud rate up to 20MHz (Master mode)
 - Support baud rate up to 5MHz (Slave mode Rx only)
 - Support baud rate up to 4MHz (Slave mode TRx)
- Programmable clock bit-rate
- Programmable clock polarity and phase
- Multiple Serial Interface Operations support
 - Motorola SPI
 - Texas Instruments SSI
 - National Semiconductor Microwire

8.8. I2C Interface

8.8.1. Features of I2C

- Support maximum 3 I2C port
- Three speeds:
 - Standard mode (0 to 100 Kb/s)
 - Fast mode (<400 Kb/s)
 - High-speed mode (<3.4 Mb/s) (with appropriate bus loading)
- Master or Slave I2C operation
- 7- or 10-bit addressing
- Transmit and receive buffers
- TX and RX DMA support (I2C 0 and 1 only)

8.9. PWM Interface

8.9.1. Features of PWM

- Support maximum 4 PWM functions
- 0~100% duty can be configurable
- Minimum resolution is 64us
- The period can be configured up to 8 seconds

8.10. External Trigger Event Interface

8.10.1. Features of External Trigger Event

- Support maximum 4 External Trigger Event functions without CPU active
- Triggered by GTIMER

8.11. SDIO/RTK SPI Device Mode Interface

8.11.1. Features of SDIO/RTK SPI Device Mode Interface

- Support SDIO 2.0 SDR25
- CIS can be configured with internal non-volatile memory for fast card detection
- RTK SPI provides high efficiency SPI interface with interrupt and full duplex mode
- Support high performance Ethernet to WIFI transformation
- Support non-flash booting in the use of Ethernet to WIFI transformation card

8.11.2. SDIO Device Mode Specifications

8.11.2.1 Bus Timing Specification

Figure 6. SDIO Interface Timing

Table 10. SDIO Interface Timing Parameters

NO	Parameter	Mode	MIN	MAX	Unit
f _{PP}	Clock Frequency	Default	0	25	MHz
		HS	0	50	MHz
T _{WL}	Clock Low Time	DEF	10	-	ns
		HS	7	-	ns
T _{WH}	Clock High Time	DEF	10	-	ns
		HS	7	-	ns
T _{ISU}	Input Setup Time	DEF	5	-	ns
		HS	6	-	ns
T _{IH}	Input Hold Time	DEF	5	-	ns
		HS	2	-	ns
T _{ODLY}	Output Delay Time	DEF	-	14	ns

NO	Parameter	Mode	MIN	MAX	Unit
		HS	-	14	ns

8.12. I2S Interface

8.12.1. Features of I2S

- Support 8/16/24/32/48/96KHz, 44.1/88.2KHz
- Support 16 or 24 bits format
- Integrated DMA engine to minimize SW efforts
- Support TX and RX direction
- Master or Slave mode support

8.13. PCM Interface

8.13.1.1 Features of PCM

The RTL8711AF supports 2 PCM digital audio interface that are used for transmitting digital audio/voice data to/from the Audio Codec. Features are supported as below:

- Supports Master and Slave mode
- Programmable long/short Frame Sync
- Supports 8-bit A-law/μ-law, and 13/16-bit linear PCM formats
- Supports sign-extension and zero-padding for 8-bit and 13-bit samples
- Supports padding of Audio Gain to 13-bit samples
- PCM Master Clock Output: 64, 128, 256, or 512kHz

Supports SCO/ESCO link

8.13.2. PCM Specifications

8.13.2.1 PCM Format

FrameSync is the synchronizing function used to control the transfer of DAC_Data and ADC_Data. A Long FrameSync indicates the start of ADC_Data at the rising edge of FrameSync, and a Short FrameSync indicates the start of ADC_Data at the falling edge of FrameSync

Figure 7. Long FrameSync

Figure 8. Short FrameSync

8.13.2.2 Sign Extension and Zero Padding for 8-Bit and 13-Bit Samples

For 16-bit linear PCM output, 3 or 8 unused bits may be sign extended/zero padded.

Figure 9. 16-Bit Output Data with 8-Bit PCM Sample Data and Sign Extension

Figure 10. 16-Bit Output Data with 8-Bit PCM Sample Data and Zero Padding

Figure 11. 16-Bit Output Data with 13-Bit PCM Sample Data and Sign Extension

For 16-bit linear PCM output, 3-bit programmable audio gain value can be padded to 13-bit sample data.

Figure 12. 16-Bit Output Data with 13-Bit PCM Sample Data and Audio Gain

8.13.2.3 PCM Interface Timing

Figure 13. PCM Interface (Long FrameSync)

Figure 14. PCM Interface (Short FrameSync)

Table 11. PCM Interface Clock Specifications

Symbol	Description	Min.	Тур.	Max.	Unit
F _{BCLK}	Frequency of BCLK (Master)	64	-	512	kHz
$F_{FrameSync}$	Frequency of Frame Sync (Master)	-	8	-	kHz
F _{BCLK}	Frequency of BCLK (Slave)	64	-	512	kHz
F _{FrameSync}	Frequency of Frame Sync (Slave)	-	8	-	kHz
D	Data Size	8	8	16	bits
N	Number of Slots Per Frame	1	1	1	Slots

Table 12. PCM Interface Timing

Symbol	Description	Min.	Тур.	Max.	Unit
T _{BCLKH}	High Period of BCLK	980	-	-	ns

Symbol	Description	Min.	Тур.	Max.	Unit
T _{BCLKL}	Low Period of BCLK	970	-	-	ns
T _{FrameSync_Del}	High		-	75	ns
T _{BCLKD_OUT}	Delay Time from BCLK High to Valid DAC_Data	-	-	125	ns
T _{SETUPIN}	Set-up Time for ADC_Data Valid to BCLK Low	10	-	-	ns
T _{HOLDIN}	Hold Time for BCLK Low to ADC_Data Invalid	125	-	-	ns

8.13.2.4 PCM Interface Signal Levels

The PCM signal level ranges from 1.8V to 3.3V. The host provides the power source with the targeted power level to the RTL8711AF PCM interface via the VDD_IO pin.

8.14. Security Engine

8.14.1. Features

- Provide low SW computing and high performance encryption
- Supported authentication algorithms:
 - MD5
 - SHA-1
 - SHA-2 (SHA-224 / SHA-256)

- HMAC-MD5
- HMAC-SHA1
- HMAC-SHA2

•

- Supported Encryption / Decryption mechanisms:
 - DES (CBC / ECB)
 - 3DES (CBC / ECB)
 - AES-128 (CBC / ECB / CTR)
 - AES-192 (CBC / ECB / CTR)
 - AES-256 (CBC / ECB / CTR)

9. Electrical Characteristics

9.1. Temperature Limit Ratings

Table 13. Temperature Limit Ratings

Parameter	Minimum	Maximum	Units
Storage Temperature	-55	+125	°C
Ambient Operating Temperature	-20	+85	°C
Junction Temperature	0	+125	°C

9.2. Temperature Characteristics

Table 14. Thermal Properties

Power (w)	PCB (layer)) Theat ja (C/W) Theta jc (C/W)		Psi jt (C/W)
1	2	38.7	12.4	0.35
1	4	28.1	11.1	0.24

9.3. Power Supply DC Characteristics

Table 15. Power Supply DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Units
VA33, VD33IO, SW_HV3	3.3V Supply Voltage	3.0	3.3	3.6	V

Symbol	Parameter	Minimum	Typical	Maximum	Units
VDD_IO	Digital IO Supply Voltage	1.62	1.8~3.3	3.6	V
VA12_AFE, VA12_SYN, VA12_RF	1.2V Core Supply Voltage	1.08	1.2	1.32	V
IDD33	3.3V Rating Current (with internal regulator and integrated CMOS PA)	-	-	450	mA
IDD_IO	IO Rating Current (including VDD_IO)			200	mA
IDD_IO_33	3.3V IO Rating Current			50	mA

9.3.1. Power Mode Description

■ Shutdown Mode

CHIP_EN deasserts to shutdown whole chip without external power cut components required.

Deep Sleep Mode

CHIP_EN keeps high. Enter into Deep Sleep mode by API. The trigger timer period can be configured or GPIOB_0 can be used as external trigger event. The DLSP trigger timer can be configured with the range $1 \sim 3600$ sec.

Deep Standby Mode

CHIP_EN keeps high. Entering into Deep Sleep mode by API. The trigger timer period can be configured or all GPIO group can be used as external trigger event.

9.4. Mechanical Dimensions

9.4.1. Package Specification

9.4.2. Mechanical Dimensions Notes

Cumbal	Dimension in mm			Dimension in inch		
Symbol	Min	Nom	Max	Min	Nom	Max
Α	0.75	0.85	1.00	0.030	0.034	0.039
A ₁	0.00	0.02	0.05	0.000	0.001	0.002
A ₃	0.20 REF				0.008 REF	
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E		6.00BSC			0.236BSC	
D2/E2	4.15	4.4	4.65	0.163	0.173	0.183
е	0.40BSC			0.016BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020

Notes:

1. CONTROLLING DIMENSION: MILLIMETER(mm).

2. REFERENCE DOCUMENTL: JEDEC MO-220.

9.5. Digital IO Pin DC Characteristics

9.5.1. Electrical Specifications

Table 16. Typical Digital IO DC Parameters (3.3V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	LVTTL	2.0	=	-	V
V _{IL}	Input-Low Voltage	LVTTL	-	=	0.8	V
V _{OH}	Output-High Voltage	LVTTL	2.4	-	-	V
V _{OL}	Output-Low Voltage	LVTTL	-	-	0.4	V
V _{T+}	Schmitt-trigger High Level		1.78	1.87	1.97	V
V _{T-}	Schmitt-trigger Low Level		1.36	1.45	1.56	V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{IL}	Input-Leakage Current	V _{IN} =3.3V or 0	-10	±1	10	μΑ

Table 17. Typical Digital IO DC Parameters (1.8V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	CMOS	0.65x V _{CC}	-	-	V
V _{IL}	Input-Low Voltage	CMOS	-	-	0.35x V _{cc}	V
V _{OH}	Output-High Voltage	CMOS	V _{CC} -0.45	-	-	V
V _{OL}	Output-Low Voltage	CMOS	-	-	0.45	V
V _{T+}	Schmitt-trigger High Level		1.02	1.09	1.14	V
V _{T-}	Schmitt-trigger Low Level		0.67	0.73	0.8	V
I _{IL}	Input-Leakage Current	V _{IN} =1.8V or 0	-10	±1	10	μΑ

10. Ordering Information

Table 18. Ordering Information

Part Number	Package	Status
RTL8711AF-VB1-CG	QFN48	MP