STA Numericals

Refer to **setup and hold** page to view STA basics and some more solved problems.

Problem 1:

In the following circuit

Each flip flop has:

Setup time of 60ps
Hold time of 20ps
Clock-to-Q maximum delay of 70ps
Clock-to-Q minimum delay of 50ps

Each XOR gate has:

Propagation delay of 100ps Contamination delay of 55ps

- a. If there is no clock skew, what is the maximum operating frequency of this circuit?
- b. How much clock skew can the circuit tolerate before it might experience a hold time violation?
- **c.** Redesign the circuit so that it can be operated at 3GHz frequency. How much clock skew can your circuit tolerate before it might experience a hold time violation?

Solution

a.

Longest path:

Tc \geq Tpcq + 3*Tpd + Tsetup Tc \geq 70 + 3*100 + 60 = 430 ps Max Frequency = 1/Tc = 2.33 GHz

b.

Tccq + Tcd≥Thold + Tskew

Shortest Path:

Tccq + Tcd \geq Thold + Tskew 50 + 55 \geq 20 + Tskew Tskew \leq 85 ps

C.

Tc \geq Tpcq + 2*Tpd + Tsetup + Tskew Tc \geq 330 + Tskew Tccq + 2Tcd \geq Thold + Tskew Tskew \leq 140 ps

Problem 2:

Q. Determining the Max. Clock Frequency for a Sequential Circuit.

Solution

Before starting timing analysis, consider the flow of data in this circuit in response to a rising clock edge, starting at flip-flop A.

- 1. Following the rising clock edge on Clk, a valid output appears on signal X after tClk-Q = 10 ns.
- 2. A valid output Y appears at the output of inverter F, tpd = 5 ns after a valid X arrives at the gate. 3. Signal Y is clocked into flip-flop B on the next rising clock edge. This signal must arrive at least ts = 2ns before the rising clock edge.

As a result, the minimum clock period, Tmin of the circuit is:

Tmin =
$$tClk - Q(A) + tpd(F) + ts(B)$$

= $10ns + 5ns + 2ns = 17ns$

maximum clock frequency of the circuit is 1/Tmin = 1/17ns = 58.8 MHz

Problem 3:

Q. Determining the Max. Clock Frequency the Sequential circuit shown below.

In a typical sequential circuit design there are often millions of flip-flop to flip-flop paths that need to be considered in calculating the maximum clock frequency. This frequency must be determined by locating the longest path among all the flip-flop paths in the circuit. For example, consider the circuit shown in above, there are three flip-flop to flip-flop paths (flop A to flop B, flop A to flop C, flop B to flop C), the delay along all three paths are:

TAB =
$$tClk-Q(A) + ts(B) = 9 \text{ ns} + 2 \text{ ns} = 11 \text{ ns}$$

TAC = $tClk-Q(A) + tpd(Z) + ts(C) = 9 \text{ ns} + 4 \text{ ns} + 2 \text{ ns} = 15 \text{ ns}$
TBC = $tClk-Q(B) + tpd(Z) + ts(C) = 10 \text{ ns} + 4 \text{ ns} + 2 \text{ ns} = 16 \text{ ns}$

Since the TBC is the largest of the path delays, the minimum clock period for the circuit is Tmin = 16 ns and the **maximum clock frequency** is 1/Tmin = 62.5 MHz.

Problem 4:

- Q. For the circuit given below calculate.
- Maximum clock frequency for reliable operation.
- The amount of clock skew the circuit can tolerate if it needs to operate at 5 Ghz.
- How much clock skew the circuit can tolerate before it experiences a hold time violation?

Gate	Tpd(ps)	Tcd(ps)
2-input NAND	20	15
2-input NOR	30	20
2-input XOR	60	40
NOT	15	10

Flip-Flop (clock-to-q) propagation delay (tpcq) = 35 ps

Flip-Flop (clock-to-q) contamination delay (tccq) = 20 ps

Flip-Flop data setup time (ts) = 30 ps

Flip-Flop data hold time (th) = 10 ps

Solution

a.

Period > (FF propagation delay) + (max combination circuit delay) + (FF Setup time) + (max clock skew)

Period > 35 + (60+20) + 30 + 0 ps

Period > 145 ns

1 01100 × 1-10 po

F < 1/(145 ps)

F < 6.8965 GHz.

b.

At F= 5 GHz Period = 1/(5 Ghz) = 200 ps.

Max clock skew = Clock period – (FF propagation delay + max combination circuit delay + FF Setup time)

Max clock skew = 200 - (35 + (60+20) + 30) = 200 - 145 = 55 ps.

C.

For hold time violation to NOT occur.

Hold time <= (FF contamination delay) + (min combinational circuit delay) - (max clock skew) So hold time will get violated when

Max clock skew > (FF contamination delay) + (min combinational circuit delay) - (Hold Time)

Max clock skew > 20 + (20+10) - 10

Max clock skew > 40 ps

Problem 5:

- Q. For the circuit given below calculate.
 - a. setup slack
 - b. hold slack

Solution

before proceeding with the solution we should know:

setup slack = RTmin(minimum required time) - ATmax(maximum arrival time) where; RTmin ≥ ATmax to satisfy setup time

Hold Slack = ATmin(minimum arrival time) - RTmax(maximum arrival time)

where; ATmax ≥ RTmin to satisfy hold time

Let's solve this..

a. Setup Slack

ATmax =
$$2 + 11 + 2 + 9 + 2 + 3 = 29$$
ns
RTmin = $2 + 5 + 2 + 15$ (here 15ns is the time perid) = 24 ns

we can see setup is violating as ATmax is less than RTmin.

b. Hold Slack

ATmin =
$$1 + 9 + 1 + 6 + 1 - 2$$
 (here Thold is considered and subtracted) = 16 ns RTmax = $3 + 9 + 3 = 15$ ns

here ATmax ≥ RTmin i.e 16 ≥ 15 (no violation)

Copyright © 2021

VLSI BACK-END ADVENTURE