Information Layer

AP CSP @ SouthLake Christian Academy

We saw that simple messages, colors, and images require many bits.

EX: A 1200x1200 pixel 24-bit color emoji requires

 $1200 \times 1200 \times 24 = 34560000 \text{ bits} = 4320000 \text{ bytes}$

= 4320000 bytes

Compression

- lossy: compression that loses information
 - data gets trashed to save space
 - unable to reconstruct original data
- lossless: compression that does not loses information
 - able to reconstruct original data

Run Length Encoding

- a method of compression that describes how many times a character or text is repeated
- starting from left to right, we start counting how many times 1 is repeated, then how many times 0 is repeated, etc.

Instead of $0000011111111 \rightarrow 057$

Which type of compression?

Size: 12KB Size: 4KB

Which type of compression?

Takeaway

- Run Length encoding is a lossless compression
- Lossy compression generally allows for faster transmission
 - since we threw out bits, we can send a message in less time

Quantifying Compression

 $\begin{array}{c} \textbf{compression rate: 1} - \frac{compressed\ data\ size}{original\ data\ size} \end{array}$

also called space saving

original size compressed size compression rate

12KB

4KB

 $1-rac{4}{12}pprox 67\%$

Example

original bin	compressed	compressed	compression
	dec	bin	rate
0b00000111111	0 5 7	0b000101111	$1-rac{9}{12} = 25\%$

Key Takeaways

- 1. Compressing data saves us bits!
- 2. Compression can remove unnecessary data (lossy)
 - generally faster transmission speed
- 3. Compression can just restructure data (lossless)
- 4. Compression methods work better for large data