ACROBOARD: APLICAÇÃO DE REALIDADE VIRTUAL E GAMIFICAÇÃO PARA AUXILIAR PACIENTES EM TRATAMENTO DE ACROFOBIA

Acadêmico:

Alan Felipe Jantz

afjantz@furb.br

Orientador:

Dalton Solano dos Reis

dalton@furb.br

Roteiro

- Introdução
- Objetivos
- Fundamentação Teórica
- Trabalhos Correlatos
- Descrição do aplicativo
- Resultados
- Conclusões

Introdução

- Fobia é um medo persistente, excessivo e irreal, classificado como um transtorno de ansiedade, pode ser tratado com remédios ou psicoterapias, com acompanhamento médico;
- Uma das psicoterapias é o tratamento de exposição à realidade virtual, que melhorou com a evolução dos ambientes virtual, ajudando na imersão e no senso de presença dos usuários;
- O senso de presença dá aos usuários a percepção de estar no ambiente virtual, é importante para estimular nos usuários a sensação de desconforto e ansiedade;
- Com estes sentimentos que causam desconforto, é possível utilizar técnicas de gamificação para manter a motivação e engajamento do usuário.

Objetivos

Disponibilizar um aplicativo para auxiliar pacientes em tratamento de acrofobia utilizando terapia de exposição a realidade virtual junto a mecanismos de gamificação.

Os objetivos específicos são:

- gerar ambiente virtual que favoreça o sentimento de ansiedade relacionado ao medo de altura;
- explorar mecanismos de desafios que o usuário deve realizar dentro do ambiente virtual e dar pontuações ao completar tais desafios;
- coletar dados da posição do usuário durante a utilização do aplicativo para permitir o acompanhamento da evolução do paciente;
- validar facilidade de uso e aceitação do aplicativo com profissionais da área.

Realidade Virtual e Senso de Presença

- Realidade alternativa criada artificialmente, um ambiente digital que pode ser experimentado como um ambiente real
 - Sentidos como visão e audição são frequentemente explorados nestes ambientes
- Senso de presença é percepção de estar no ambiente virtual, o mundo real é "desligado" e apenas o mundo virtual é visto e ouvido pelo usuário
 - Varia de usuário para usuário
- A imersão mede o quão preciso um ambiente virtual é capaz de fazer com o que o usuário se sinta em uma realidade diferente da qual ele se encontra
 - Qualidade da imagem
 - Campo de visão
 - Precisão do tempo de resposta
 - Interação com elementos do ambiente virtual

Gamificação

- Utilização de mecanismos de jogos como uma metodologia
- Tem por objetivo tornar tarefas tediosas ou repetitivas mais agradáveis para melhorar o engajamento e a motivação de determinado público-alvo
- Entre os elementos que podem ser utilizados, estão:
 - Metas
 - Respostas às ações do usuário
 - Desafios
 - Pontuação de desempenho
 - Recompensas

Acrofobia

- Fobia específica relacionada à altura
 - Comumente associado a locais altos, como montes, janelas ou aviões
 - Também ocorre com situações específicas, como abismos, edifícios altos ou precipícios
- Não está necessariamente relacionado a experiências traumáticas
- Pode ocorrer ao estar em um local que estimule a fobia, quando imagina uma situação ou visualiza uma imagem
- Atinge qualquer faixa etária, mas possui ocorrência maior com pessoas entre 5 e
 7 anos e por volta dos 14 anos de idade

Emprego da Realidade Virtual no tratamento de fobia de altura

Estácio, Jacob e Artero (2016)

- Tem como objetivo utilizar realidade virtual para verificar, experimentalmente, os resultados que podem ser obtidos através desta metodologia no tratamento de fobia de altura
- Possui um mundo virtual onde o paciente pode explorar uma vizinhança e utilizar um elevador panorâmico

Emprego da Realidade Virtual no tratamento de fobia de altura

Estácio, Jacob e Artero (2016)

 Concluiu que o ambiente virtual pode gerar comportamentos similares ao de um ambiente real, destacando que com a ajuda de equipamentos específicos de RV, é possível melhorar a imersão do indivíduo

Gamificação de procedimentos médicos

Adilkhan e Alimanova (2020)

- Tem como objetivo tornar o processo de reabilitação da movimentação das mãos mais lúdico
- Possui um ambiente virtual interativo
- Utilização do sensor Leap Motion para captar a movimentação das mãos
- Exploração da gamificação através de fases com diferentes cenários

Sensor Leap Motion

Gamificação de procedimentos médicos

Adilkhan e Alimanova (2020)

- Concluiu que este tipo de abordagem pode ajudar na motivação e comprometimento dos pacientes
- Recompensas dadas durante o uso da aplicação gamificada e tratamentos diferentes dos convencionais ajuda na motivação dos pacientes

Uma proposição de gamificação em sistemas m-Health para o engajamento dos usuários

Cechetti (2018)

- Tem como objetivo apresentar uma proposição de gamificação para favorecer o engajamento dos usuários durante o tratamento com a utilização de aplicativos de saúde m-Health
- Alguns dos elementos de gamificação são:
 - Barras de progresso com pontos coletados pelos usuários
 - Recomendação de desafios para coleta de novos pontos
 - Sistema de classificação entre pacientes
 - Feedback de desempenho ao completar desafios

Uma proposição de gamificação em sistemas m-Health para o engajamento dos usuários

Cechetti (2018)

- Foi concluído que a gamificação favoreceu o engajamento dos participantes com elementos de jogos, inclusive motivando aqueles que não possuíam adesão ao tratamento antes do teste
- Outro fator que ajuda na aderência de pacientes na utilização de aplicativos como este é o supervisionamento por profissionais da saúde.

Descrição do aplicativo

Requisitos

- Renderizar um ambiente virtual (RF);
- Permitir que o usuário se locomova dentro do ambiente virtual (RF);
- Proporcionar ao usuário sentimento de desconforto/ansiedade (RF);
- Implementar mecanismos de gamificação, tais quais níveis e pontuação ao atingir objetivos (RF);
- Coletar dados da posição do usuário durante a utilização do aplicativo para acompanhamento do psicólogo (RF);
- Emitir um relatório de desempenho do usuário durante a utilização do aplicativo para acompanhamento do psicólogo (RF);
- Utilizar o motor de jogos Unity (RNF);
- Ser compatível com o sistema operacional Android (RNF);
- Ser implementado utilizando a linguagem C# (RNF).

Especificação

Game + StartTime: DateTime Level + Paused: bool + Positions: Vector3<> + ReportPath: string + StartTime: DateTime? + ReportCreated: bool + Stage: int + Levels: Queue<Level> + MinDistance: float = 5 + CurrentLevel: Level Level(stage: int) + Score: float Level(stage: int, startTime: DateTime) Game(startTime: DateTime, levels: Queue<Level>) + SetStage(stage: int): void + Pause(): void + SetStartTime(startTime: DateTime): void + Resume(): void + AddPoint(position: Vector3): void + AddPoints(pointValue: int, amount: float): void + ContainsPointNear(randomPoint: Vector3): bool + NextLevel(): Level

Especificação

AcroboardConfiguration

AcroboardConfiguration

- + FilesPath: string
- + PlayerVelocity: float
- + PlatformVelocity: float
- + PlayerViewMaxDistance: float
- + LevelsAmount: int
- + SpectatorMode: bool
- + Tutorial: bool
- + Reset(): void
- GetStringValue(key: string, defaultValue: string): string
- GetFloatValue(key: string, defaultValue: float): float
- GetIntValue(key: string, defaultValue: int): int

```
private static string GetStringValue(string key, string defaultValue)
    var result = PlayerPrefs.GetString(key);
   if (string.IsNullOrWhiteSpace(result))
        PlayerPrefs.SetString(key, defaultValue);
        result = defaultValue;
   return result;
private static float GetFloatValue(string key, float defaultValue)
   var result = PlayerPrefs.GetFloat(key);
   if (result == 0)
        PlayerPrefs.SetFloat(key, defaultValue);
        result = defaultValue;
   return result;
private static int GetIntValue(string key, int defaultValue)
   var result = PlayerPrefs.GetInt(key);
   if (result == 0)
        PlayerPrefs.SetInt(key, defaultValue);
        result = defaultValue;
   return result;
```

LevelGenerator

```
public static Queue<Level> Genetare(int amount)
    var result = new Queue<Level>();
   for (int stage = 0; stage < amount; stage++)</pre>
        var level = new Level(stage + 1);
        List<LevelPointRange> pointsRange = defaultPointRanges;
        if (pointRangePerLevel.ContainsKey(stage))
            pointsRange = pointRangePerLevel[stage];
        foreach (var pointRange in pointsRange)
            var randomPoint = pointRange.GetRandomRange();
            while (level.ContainsPointNear(randomPoint))
                randomPoint = pointRange.GetRandomRange();
            level.AddPoint(randomPoint);
        result.Enqueue(level);
   return result;
```

```
private static readonly Dictionary<int, List<LevelPointRange>> pointRangePerLevel =
    new Dictionary<int, List<LevelPointRange>>()
    {
        [0] = PointRangeGenerator.Generate(3, 01, 10),
        [1] = PointRangeGenerator.Generate(4, 05, 25),
        [2] = PointRangeGenerator.Generate(5, 15, 35),
        [3] = PointRangeGenerator.Generate(5, 25, 45),
        [4] = PointRangeGenerator.Generate(6, 35, 55),
        [5] = PointRangeGenerator.Generate(6, 45, 65),
        [6] = PointRangeGenerator.Generate(7, 55, 75),
        [7] = PointRangeGenerator.Generate(8, 65, 85),
    };

private static readonly List<LevelPointRange> defaultPointRanges =
    PointRangeGenerator.Generate(5, 1, Platform.CurrentMaxHeight);
```

PointRangeGenerator

```
public static List<LevelPointRange> Generate(int pointsAmount, float heightMin, float heightMax)
   var result = new List<LevelPointRange>();
   var usedRanges = new List<int>();
   for (int i = 0; i < pointsAmount; i++)</pre>
        var index = Random.Range(0, PointsRange.Count);
        if (usedRanges.Count < 4)</pre>
            while (usedRanges.Contains(index))
                index = Random.Range(0, PointsRange.Count);
        else
            usedRanges.Clear();
        usedRanges.Add(index);
        var range = PointsRange[index];
       result.Add(new LevelPointRange(new Vector3(range.Min.x, heightMin, range.Min.y),
                                       new Vector3(range.Max.x, heightMax, range.Max.y)));
   return result;
```


Área predefinida ao redor da plataforma (PointsRange)

LogHandler e ReportManager

Verifica se o relatório já não foi criado, caso não tenha sido, chama o método de criação do relatório de desempenho da classe FileManager

```
public static class ReportManager
   private static GameReport _currentGameReport;
   public static GameReport GetCurrentGameReport() => _currentGameReport;
   public static void CreateGameReport(int expectedStages)
       _currentGameReport = new GameReport(expectedStages);
   public static void AddLevel(Level level)
       _currentGameReport?.AddLevel(level.Stage, level.StartTime.GetValueOrDefault());
   public static void EndLevel(DateTime endTime)
       if (_currentGameReport?.HasCurrentLevel ?? false)
           _currentGameReport.EndLevel(endTime);
   public static void AddPoint(double playerHeight, double pointHeight)
       _currentGameReport?.AddPoint(DateTime.Now, playerHeight, pointHeight);
   public static void LogStatus(DateTime gameStartDateTime, double height,
                                PlayerLookingDirection playerLookingDirection)
       FileManager.LogPlayerStatus(gameStartDateTime, height, playerLookingDirection);
```

Google Cardboard XR Plugin for Unity

```
public class CameraPointer : MonoBehaviour
   private GameObject _gazedObject = null;
    public void Update()
        if (Physics.Raycast(transform.position, transform.forward, out RaycastHit hit,
                            AcroboardConfiguration.PlayerViewMaxDistance))
            if (_gazedObject != hit.transform.gameObject)
                _gazedObject = hit.transform.gameObject;
                if (_gazedObject.CompareTag(Constants.PointSphereTag))
                    _gazedObject.SendMessage("OnLook");
        else
            _gazedObject = null;
```


Aplicativo com visão estereoscópica

Operacionalidade da aplicação

Telas da aplicação

Menu inicial

Menu de configurações

Operacionalidade da aplicação

Elementos do cenário

Esfera de pontuação

Operacionalidade da aplicação

Menus dentro do cenário

Menu de pausa

Mapeamaneto de teclas utilizadas pelo controle

Testes de funcionalidade do aplicativo

Realizados durante o desenvolvimento no Editor Unity e no dispositivo Samsung Galaxy S20+ com o Cardboard VR Shinecon.

- Garantir a geração dos níveis e esferas;
- Comportamento de movimento do jogador com o Controle sem fio Xbox;
- Movimentação da plataforma com o Controle sem fio Xbox;
- Geração dos relatórios;
- Visibilidade dos elementos do cenário e ações da interface com visão estereoscópica.

Cardboard modelo VR Shinecon

Testes de utilização por um profissional da área

Duas conversas foram feitas com o prof. Carlos Nunes, do curso de psicologia na FURB.

Antes do desenvolvimento:

- Identificar pontos a serem abordados;
- Dificuldades enfrentadas pelos aplicativos existentes.

Após o desenvolvimento:

- Validação do cenário e seus elementos;
- Possibilidade de utilização;
- Sugestões de melhorias.

Prof. Carlos Nunes utilizando o aplicativo

Conclusões

- O aplicativo possui potencial para ser utilizado como ferramenta por psicólogos durante psicoterapias
- Unity se mostrou um ótimo motor de jogos para a criação do cenário e comportamentos dos elementos do cenário
- O plug-in Google Cardboard XR Plugin for Unity facilitou a aplicação da visão estereoscópica e controle de movimentação da cabeça

Sugestões

- Adicionar mais componentes ao ambiente da cidade;
- Implementar uma versão web/desktop que se conecta ao aplicativo móvel para acompanhamento do psicólogo;
- Permitir a alteração dos valores na tela de configurações para personalizar a experiência do usuário;
- Coletar dados fisiológicos, como batimentos cardíacos ou frequência respiratória, durante a utilização do aplicativo.

Muito obrigado!