CSC 225 FALL 2014 ALGORITHMS AND DATA STRUCTURES I ASSIGNMENT 1 UNIVERSITY OF VICTORIA

- 1. Order the following functions by order of growth starting with the slowest. $n^{0.4}$, 2^{2^n} , 4n, $(\log n)^4$, n^4 , 4, 4^n , n!, $4^{\log n}$, $4n \log \log n$.
- 2. Consider the following sum: $S(n) = \sum_{i=1}^{n} \log i$. Give a simple function f(n) so that the sum S(n) is O(f(n)). Explain why.
- 3. (a) Show that $f(n) = 4 \log n + \log \log n$ is $\Theta(\log n)$ by finding a real numbers $c_1, c_2 > 0$ and an integer $n_0 > 0$, such that

$$c_1 \log n \le 4 \log n + \log \log n \le c_2 \log n,$$

for all $n \ge n_0$.

(b) Show that $f(n) = 4 \log n + \log \log n$ is $\Theta(\log n)$ by showing that there exists a real number c > 0, such that

$$\lim_{n \to \infty} \frac{f(n)}{\log n} = c$$

4. Consider the recurrence equation,

$$T(n) = \begin{cases} 1 & \text{if } n = 0 \\ T(n-1) + 2^n & \text{otherwise.} \end{cases}$$

Show, by induction, that $T(n) = 2^{n+1} - 1$.

5. Consider the Algorithm arrayFind, given below, which searches an array A for an element x.

Algorithm arrayFind(x, A):

Input: An element x and an n-element array, A.

Output: The index i such that x = A[i] or -1 if no element of A is equal to x.

```
\begin{array}{l} i \leftarrow 0 \\ \textbf{while } i < n \ \textbf{do} \\ \textbf{if } x = A[i] \ \textbf{then} \\ \textbf{return } i \\ \textbf{else} \\ i \leftarrow i+1 \\ \textbf{return } -1 \end{array}
```

- (a) Counting assignments, comparisons, and returns only, calculate the worst-case, T(n), and best-case, $T_b(n)$, running times of arrayFind.
- (b) Prove by induction (loop invariants) that arrayFind is correct.