such that
$$a_n = c$$
 for all $n \ge N$.

(1) Let (a_n) be a sequence in \mathbb{R} , and consider the bi-implication: " $\lim a_n = \infty \iff \lim \frac{1}{a_n} = 0$."

For each direction of this implication, either prove that direction if it is true, or else give a counterey employif it is folso.

Definition: A sequence (a_n) of real numbers is eventually constant if there is $c \in \mathbb{R}$ and $N \in \mathbb{N}$

Forward direction:

Proof Suppose linea =
$$\infty$$

Let
$$\leq 70$$

Consider $M = \frac{1}{2}$, then

Consider
$$M = \overline{\epsilon}$$
, then for some $N > M$,

 $A > M$ whenever $n > N$

So $Cn > \overline{\epsilon} \Rightarrow |a_n| < \epsilon$ whenever $n > N$

So an
$$7 \neq 3 |a_n| \leq vhenover n > v$$

So $lim a_n = 0$

Counterexample Consider
$$an = -n$$

So $\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$

(2) Let (a_n) and (b_n) be sequences of real numbers. Prove that if $\lim a_n = 0$ and (b_n) is bounded, then $\lim a_n b_n = 0$. Since Um is bounded, UbnD is also banded Consider the constant squence Sn = sup(bn) Then lim(sw) = suplbul Since lim(an) = 0 => lim(lan)=0 So lim ansn = lim(an) - (im(sn) =0 Since Sn= suplbal, 0 < | bal < Isal for all new > 0 ≤ lanbal ≤ lansal for all n ∈N Since $\lim D = \lim_{n \to \infty} |a_n S_n| = D$, by the squeeze thm, lim lander 1 =0 Therefore limanh = limlanbul =0

(4) Suppose A is a discrete ² subset of \mathbb{R} , and let (a_n) be a convergent sequence of numbers in A. Prove that either (a_n) is eventually constant or $\lim a_n \notin A$.
Proof. We prove it by contradiction
Write liman=L
Hosume (an) is not eventually constant and liman EA Since A is discrete, there exists some £70
and liman EH
Sime A is discrete, there exists some £70
such that (L-E, GE) (AKL) = Ø
Since liman=1, there exists some NEN s.t
for all $n \geqslant N$, $ a_n - L < \epsilon$, and since
(an) is not eventually constant, there
exists n >N st. an +b and lan-ll CE
i.e. ane(l-e,lte)
So an E (L-E, LE) MAI (L)
contradicting with Ct E, LtEJAAl(6) = Ø
This finishes the proof that (On) is either
eventually constant or limbor EA

Since for each 962, there are only firstely many terms of (an) that has 9 as denominator, Consider $N = \max\{k: a_k = \frac{p}{q} \text{ for some } p \leq M_{\gamma}\}$ and germy Take arbitrary NSNTI then $a_n = \frac{M}{9}$ where $q > \frac{M}{\epsilon}$ So $a_n \leq \frac{M}{M} = \epsilon$ So lim(an) = D This finishes the proof that every sequence of distinct numbers in On converges

(5) For each positive integer M, let \mathbb{Q}_M be the set of all rational numbers m/n where $m, n \in \mathbb{Z}$

converges.

let 270

and $|m| \leq M$. Prove that for all $M \in \mathbb{N}$, every sequence of distinct numbers in \mathbb{Q}_M

Let (an) be an abitrary sequence in Om

- (6) Let (a_n) and (b_n) be sequences of real numbers such that $a_n < b_n$ for all n. (a) Show that if $\lim a_n = \infty$, then $\lim b_n = \infty$. (b) Given an example to show that (a_n) and (b_n) could converge to the same real number.
 - (a) Suppose liman=00
 - Let M>0 and fix it

 - Then for some NEIN anom whenever NZN Since ancbn for all n =
 - Therefore lim (bn)=00
 - Consider an = $\frac{1}{n}$, $bn = \frac{2}{n}$ for all $n \in \mathbb{N}$ So an confor all NEIN
 - But lim an = limbn = 0

(7) Let (a_n) be a sequence of positive real numbers. Show that if $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L > 1$, then $\lim a_n = \infty.$ Proof Let $\varepsilon = \frac{1-1}{2}$ Since line and = L, there is some MEIN s.t. anti- LI < for all n>M i.e. L-ECANTICL+E

i.e.
$$L-\varepsilon < \frac{2n+1}{n} < L+\varepsilon$$

$$\Rightarrow \frac{2n+1}{n} > \frac{2n+1}{n} = \frac{2n+1}{n$$

8) Find the lim sup and lim inf of the following sequences. (No justification is needed). (a) $(a_n)_{n\geq 1}$, where $a_n=(-1)^{n+1}+\frac{(-1)^n}{n}$ linear $(a_n)=(-1)^n$ (b) $(b_n)_{n\geq 1}$, where $b_n=\sin\frac{1}{n}$ | insep $(b_n)=\lim_{n\to\infty}(b_n)=0$ (c) (c_n) , where $c: \mathbb{N} \to \mathbb{Q}$ is any bijection $\limsup LC_N = +\infty$, $\liminf C_N = -\infty$ (d) (d_n) , where $d_n = \ln n + \cos n$

limsup (dn) = liminf (dn) = +00

Then di= Sz-Si= b-a $\int dn = \frac{S_{n-1} + S_n}{2} - S_n, \text{ if } n \ge 2$

$$= -\left(\frac{1}{2}S_{n} - \frac{1}{2}S_{n-1}\right) = -\frac{1}{2}d_{n-1}$$

Let dn = Snt1-Sn for all nEN

Note that for all new, Sn+1=(= Sn+1-Sn)+S1

(9) Let $a, b \in \mathbb{R}$ with a < b. Find the limit of the sequence (s_n) defined recursively by $s_1 = a$,

 $s_{n+2} = \frac{s_n + s_{n+1}}{2}.$

 $s_2 = b$, and for all $n \in \mathbb{N}$,

 $\lim_{n\to\infty} S_n = \frac{2}{3}b + \frac{1}{3}a$

Prove your claim.

Proof

$$= S_1 + \sum_{i=1}^{\infty} dn = a + \frac{1 - (-\frac{1}{2})^n}{1 - (-\frac{1}{2})^n} d_1 = a + \frac{2}{3} (1 - (-\frac{1}{2})^n) (b - a)$$

$$S_0 \lim_{n \to \infty} S_n = \lim_{n \to \infty} S_{n+1} = \lim_{n \to \infty} (a + \frac{2}{3} (b - a) - \frac{2}{3} (-\frac{1}{2})^n (b - a)$$

$$= \frac{2}{3} b + \frac{1}{3} a - \frac{2}{3} (b - a) \lim_{n \to \infty} (-\frac{1}{2})^n \text{ by limit law}$$

Since |-= | <1, |im (-=)=1 So lim Sn = 3b+3a

(10) Give an example of a divergent sequence (a_n) in \mathbb{R} with a convergent subsequence such that all convergent subsequences of (a_n) converge to the same limit.
Consider: $an = n^{(+)}$ i.e. $(an) = (1,2,\frac{1}{3},4,\frac{1}{5},\frac{1}{6},)$
Then (an) diverges but every anvergent
subsequence of (an) convergent to L=0
Proof
O Consider $(\Omega_{n_k}: k \text{ is odd}) = (1, 3, 5,) \rightarrow 0$
2 Every convergent subsequence of (an) converges to 0
Let (ank) a convergent subsequence of (an)
Then kind is a strictly increasing function
(i) Sugase there are infinitely KGINS.t Mr. 15 even
Now we show that (any) diverges, so this is impossible
Let LER. Take M=1. Let N ∈ N and fix it.
If there is no nk >N s.t. ank > L+1
then there one only fritely many even nk,
Controdicts which indicates there must exists
Mr>N s.t anx-U>M
= (Ank) diverges, contradicts
Therefore there can only be finitely many KEN
s.t. Mx is even
So we can cut the tail and then all remaining nx (kely) are odd => (ank) converges to 0.
THE CHEWYORE DUD - CONK) WITH THE

(11) Let
$$(a_n)$$
 and (b_n) be bounded sequences of positive real numbers.

(a) Show that $\limsup (a_n + b_n) \le \limsup (a_n) + \limsup \sup (b_n)$.

(b) Give an example to show that $\limsup (a_n + b_n)$ might not equal $\limsup (a_n) + \limsup \sup (b_n)$.

(c) Show that if (a_n) converges, then $\limsup \sup (a_n + b_n) = \limsup \sup (a_n) + \limsup \sup \sup (b_n)$.

(a) Proof $\limsup (a_n + b_n) = \limsup \sup (a_n + b_n) = \limsup \sup (a_n) + \limsup \sup \sup (b_n)$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$.

Let $n \in \mathbb{N}$, Let $n \in \mathbb{N}$, Let $n \in \mathbb{N}$ Let $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$, Let $n \in \mathbb{N}$ Let $n \in \mathbb{N}$ Let $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ Let $n \in \mathbb{N}$ Let $n \in \mathbb{N}$ Let $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ Let

(12) Prove that there exists a sequence (a_n) in \mathbb{R} such that for every $r \in \mathbb{R}$ there is a subsequence of (a_n) that converges to r. Proof Since N & Q, there exists a surjective throther S: N - Q. Note that (Sn) is a sequence. Let rell be arbitrary real number Then there exists a sequence in Q (Gr) st. (9n)->r Since S: N-> Q is surjective, consider the subsequence (Sny) of (Sn) defined by Snx = 9m for some MEN, for all kelly Then Take a Monotonic subsequence of (Sng) as (Sm) (Sm) is a subsequence of (Snx), so it is also a subsequence of (Snx). Then there is some NEIN s.t. |9n-r/ < E whenever n>N Since there is some term Sm st Sm = 9N and since (Sm) is monotonic, | Sma-+ (< & Therefore (Sm) -> r whenever m>M

(13) Determine whether the following sets are open, closed, both, or neither (no justification needed):

(a)
$$\{\frac{1}{n}: n \in \mathbb{N}\}$$
 neither

(b) $\{\frac{1}{n}: n \in \mathbb{N}\} \cup \{0\}$ closed & not open

(D) $\{\frac{1}{n}: n \in \mathbb{N}\} \cup \{0\}$ closed & not dosed

(d) \mathbb{Z} closed & not open

(e) \mathbb{Q} neither

(f) $\bigcap_{n\geq 1} \left(-\frac{1}{n}, \frac{1}{n}\right)$ closed & not open

(14) Either prove the following if it is true, or else give a counterexample if it is false: if $A \subseteq \mathbb{R}$ is closed and discrete, then there is $\epsilon > 0$ such that $|a - b| \ge \epsilon$ for every pair of distinct elements $a, b \in A$. [cf: HW 1, #11(b)]

Consider $Sn = \sum_{k=1}^{\infty} \frac{1}{k}$, which is a partial Jum of harmonic senes.

 $A = \{S_n : n \in \mathbb{N}\}$

There is no subsequential limit in $Sn \in \mathbb{N}$ and $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ and $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ by $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ and $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ by $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ and $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ and $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ and $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ and $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ and $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ and $Sn \in \mathbb{N}$ is a partial $Sn \in \mathbb{N}$ and S

And for each on (ne/N), consider

E= n+1, then Vz(Sn) () Allong = p

So A is discrete

But there is no £70 s.t. |a-b| > E

for each pair of a bear, since if we take E>D $SFEHI-SFET < \frac{1}{2}=E$

