THESIS OUTLINE

1. Category Theory

- ✓ Definition of Category
- \checkmark Definition of Functor
- ✓ Category of Rings and/or Groups
- o Category of sets
- ✓ Category of Vector Spaces
- \checkmark Definition of isomorphism
- Category of abelian group sequence?
- o Category of pairs?

2. Algebra

2.1. Ring Completion.

- \checkmark Ring completion definition
- \checkmark Ring completion verification
- ✓ Ring completion Example
- \circ (for n-points): ring completion of $(\mathbb{N} \cup \{0\})^n$

2.2. Packing together Modules.

- ✓ Direct sum on modules definition
- Verifications for direct sum
- Extension to other categories
- Example for vector spaces: $\mathbb{R}^n \oplus \mathbb{R}^m \cong \mathbb{R}^{n+m}$
- ✓ Tensor product on modules definition
- Verifications for tensor product
- Extension to other categories
- Example for vector spaces: $\mathbb{R}^n \otimes \mathbb{R}^m \cong \mathbb{R}^{nm}$
- Example/Result: $\mathbb{Z}[\alpha]/(\alpha^2) \otimes \mathbb{Z}[\beta]/(\beta^2) \cong \mathbb{Z}[\alpha,\beta]/(\alpha^2,\beta^2)$
- \circ Idea of a outer product i.e. external product to make μ less jarring later.

3. Topology

3.1. Basic Definitions.

- ✓ Definition of topological space
- ✓ Definition of HM. i.e. cnts function

3.2. Category of Topological Spaces.

- ✓ Definition of the Category
- $\checkmark\,$ Formal comparison to metric space with functor
- \checkmark Construction of S^2 as example

3.3. Mappings in Topology.

- ✓ Definition of quotient map and quotient topology
- \circ Example: I to S^1
- ✓ Definition of inclusion map and subspace topology
- \circ Example of $\mathbb{R}P^1$
- Definition of $\mathbb{C}P^1$

- Theorem: $\mathbb{C}P^1 \cong S^2$
 - 3.4. Operations on Topological Spaces.
- Wedge Sum
- Smash Product
- Cone Definition
- Example: D^n construction
- Suspension Definition
- Example: S^n construction
- Reduced Suspension
- Relevant sequence construction.
- Discuss the "union" sign.
 - 3.5. More Topology.
- ✓ Definition of Compact
- ✓ Definition of Hausdorff
- o Definition of Normal
- Theorem: Every Compact Hausdorff Space is Normal 3.6. Homotopy Things.
- Homotopic Functions
- Homotopic Spaces
- Contractible definition
- \bullet Examples: those necessary for ch. 6 costruction
 - 3.7. Appendix.
- o Urysohn Lemma

4. Vector Bundles

4.1. Basic Definition and Examples.

- \sim Motivation: vector fields
- ✓ Definition of V.B.
- \checkmark Brief definition of fiber.
- Brief definition of section.
- Example: Definition of trivial bundle of dimension n: ε^n .
- Example: Tangent Bundle over S^1 or S^2 .
- Example: Mobius band
- $\circ\,$ Canonical line bundle over $\mathbb{R}P^1$ gives mobius band

4.2. Category Theory of Vector Bundles.

- $\checkmark\,$ Definitions of homomorphism, isomorphism.
- ✓ Explanation of Category
- Definition of restriction
- Vereification that restrction is a vector bundle.
- \checkmark Definition of \oplus on vector bundles
- ✓ Properties of ⊕ on vector bundles (required for K-Theory def)
- \checkmark Verifications for \oplus
- \checkmark Definition of \otimes on vector bundles.
- \checkmark Propertues of \oplus on vector bundles (required for K-Theory def)
- \checkmark Verifications for \otimes
- ✓ Definition of pullback bundle
- ✓ Verifications for pullback bundles
- \checkmark Important properties of pullback bundles
- \checkmark Verification of properties of pullbacks

- Note restriction as example of pullback
 - 4.3. Necessary Results on Vector Bundles.
- Theorem: If H is canonical line bundle on $\mathbb{C}P^1$, $(H \otimes H) \oplus 1 \cong H \oplus H$
- Verification for above.
- ✓ Theorem: For every vector bundle E, there exists an E' such that $E \oplus E'$ is trivial.
- Verification for above.
- Example of above. Mobius band with itself.
- Pullback from homotopic map gives an isomorphism.
- Corrolarry: A contractible implies the bundle over A is trivial.

5. Definition of K-Theory

5.1. The K-Theory Functor K.

- \checkmark Definition of K functor on topological spaces.
- \checkmark Verification that above gives ring.
- \checkmark Definition of K functor on homomorphisms.
- ✓ Verification that above gives homomorphism of rings.
- ✓ Verification that above is a functor.
- Simple Examples

5.2. The Reduced K-Theory Functor \widetilde{K} .

- \bullet Definition of K functor on topological spaces.
- Verification that above gives ring.
- Definition of \widetilde{K} functor on homomorphisms.
- Verification that above gives homomorphism of rings.
- Verification that above is a functor.
- Simple Examples
- Theorem: $K(X) \cong K(X) \oplus \mathbb{Z}$

5.3. Notation.

- Describing elements of K and \widetilde{K}
- pullback notation

6. K-Theory as a cohomomology theory

6.1. Exact Sequences.

- Short exact sequence definition
- State splitting Lemma
- o Verify splitting lemma
- Verify K and K relations claimed previously
- Discuss that (X, A) induces a short exact sequence
- Verify that the above is indeed a short exact sequence
- Extend above sequence to a long sequence
- Talk about homotopy equivalences and K-Theory at some point.

6.2. Extending to a cohomology theory.

- Discussion of what constitues a cohomology theory and why the reader should care?
- The construction

6.3. Patterns of K-Theory.

- Definition of the external product
- The external product $\widetilde{K}(S^{2k}) \otimes \widetilde{K}(X) \to \widetilde{K}(S^{2k} \wedge X)$ is an isomorphism.

- Bott Periodicity...
- $\widetilde{K}(S^n)$ is \mathbb{Z} for n even and 0 for n odd.
- $K(S^{2k}) \otimes K(X) \to K(S^{2k} \times X)$ is an isomorphism.

7. DIVISION ALGEBRA APPLICATION

7.1. Division Algebras and Paralizable Spheres.

- Define division algebras
- reduce division algera problem to a K-Theory problem
- Define paralizable spheres
- o reduce paralizable spheres to a K-Theory problem
 - 7.2. Even Case.
 - 7.3. Odd Case.

8. Overall Themes and Ideas

- Tell the reader right at the beginning the plan to get a ring out of a space and remind the reader of this goal all the way through.
- I may add a brief introductiony-ish thing that provides a brief summary (similar to what my slide presentation will be) of the direction that the book is going. It feels a bit harsh to push the reader into category theory and hope they survive until chapter 4 to finally see vector bundles... This way I can also talk of the motivation to what I address along the way. I can use the word vector bundle earlier to give motivation and do a better job of giving a story.