Relevant Python modules: pandas AM

Pandas

- Conceived by Wes McKinney. Quantitative analyst for hedge fund AQR. ::: {.nonincremental}
 - -It is a library for processing tabular data, both numeric and time series.
 - -Provides data structures (series, dataframe) and methods for data analysis.

Python for Data Analysis. Wes McKinney :::

1 pip install pandas

Available by default with Anaconda.

Data Structures - Series

A one dimension object containing values, and associated labels called Index.

Unless we assign indices, P. will simply enumerate the items.

```
0
      10
1
      20
2
      30
3
     40
dtype: int64
      10
a
      20
b
      30
C
d
     40
dtype: int64
      10
a
      20
b
      30
C
     40
d
```

dtype: int64

Data Structures - Series

You can use the index to select one or more specific values.

```
10
a 10
c 30
dtype: int64
```

You can filter elements

```
a 10
b 20
dtype: int64
```

apply element-wise mathematical operations

```
a 100
b 400
c 900
d 1600
dtype: int64
```

or a combination of both

```
a 100
b 400
dtype: int64
```

Data Structures - DataFrame

In Pandas, DataFrames are 2D structures. Values are labelled by their index and column location.

Example: set up a DataFrame

Integers

		0
a	10	
b	20	
С	30	
d	40	

Integers	Floats
-----------------	---------------

		0		
a	10		1.5	
b	20		2.5	
С	30		3.5	
<u>d</u>	40		4.5	

Data Structures: DataFrame - 'loc'

You can select specific data according to its location label.

```
Integers 30.0
Floats 3.5
Name: c, dtype: float64

a 10
b 20
c 30
d 40
Name: Integers, dtype: int64
```

Data Structures: DataFrame - 'iloc'

Select a specific slice of data according to its position.

```
Integers 30.0
Floats 3.5
Name: c, dtype: float64

a 10
b 20
c 30
d 40
Name: Integers, dtype: int64
```

30

Data Structures: DataFrame - filters

Complex selection is achieved applying Boolean filters. Multiple conditions can be combined in one statement.

	Integers	Floats
b	20	2.5
С	30	3.5
d	40	4.5
	Integers	Floats
С	30	3.5
	40	4.5

Data Structures: DataFrame - Axis

DataFrames operate on 2 dimensions.

Axis = 0 invokes functions across rows. This is the default behaviour if axis is not specified.

```
Integers 100.0 Floats 12.0 dtype: float64
```

Axis = 1 invokes functions across columns.

```
a 11.5
b 22.5
c 33.5
d 44.5
dtype: float64
```

Data Structures: DataFrame - Axis

We can mix element-wise operations with functions applied to a given axis

Example: Create a column with the sum of squares of each row.

	Integers	Floats	sumsq
a	10	1.5	102.25
b	20	2.5	406.25
С	30	3.5	912.25
d	40	4.5	1620.25

Reading a file into pandas

Pandas can read a file and turn it into a DataFrame. Several arguments are available to specify the behavior of the process.

Some examles: index_col sets the column of the csv file to be used as index of the DataFrame sep specifies the separator in the source file parse_dates indicates which column to be converted as a datetime objects

Biostats data - info()

The info() method outputs top-down information on the DataFrame

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18 entries, 0 to 17
Data columns (total 5 columns):
                  Non-Null Count
#
    Column
                                  Dtype
    _____
                                  object
 0
    Name
                  18 non-null
    Sex
                  18 non-null
                                  object
 1
 2
   Age
                  18 non-null
                                  int64
    Height(in)
 3
                  18 non-null
                                  int64
    Weight(lbs)
                  18 non-null
4
                                  int64
dtypes: int64(3), object(2)
```

memory usage: 852.0+ bytes

Biostats data - head() and tail()

These convenient methods visualise respectively the first/last n rows (default = 5) in the DataFrame.

	Name	Sex	Age	Height(in)	V
0	Alex	M	41	74	17
1	Bert	M	42	68	16
2	Dave	M	32	70	15
3	Dave	M	39	72	16
4	Elly	F	30	66	12
	Name	Sex	Age	Height(in)	٦
13	Name Neil	Sex M	Age 36	Height(in)	
13 14					
	Neil	M	36	75	1
14	Neil Omar	M M	36 38	75 70	1

Biostats data - index column

Name: Bert, dtype: object

Selecting the index column affects the structure of the DataFrame and information retrieval. CAUTION: the index does not have to be unique. Multiple rows could have the same index name.

	Sex	Age	Height(in)	We
Name				
Alex	M	41	74	170
Bert	M	42	68	166
Dave	M	32	70	155
Dave	M	39	72	167
Elly	F	30	66	124
Sex Age Height(in) Weight(lbs)	M 42 68 166			

Descriptive statistics - describe()

Pandas selects quantitative variables and computes descriptive statistics

	Age	Height(in)	Weight(lbs
count	18.000000	18.000000	18.000000
mean	34.666667	69.055556	146.722222
std	7.577055	3.522570	22.540958
min	23.000000	62.000000	98.000000
25%	30.000000	66.250000	132.000000
50%	32.500000	69.500000	150.000000
75%	38.750000	71.750000	165.250000
max	53.000000	75.000000	176.000000
count mean std min 25% 50% 75%	18.000000 34.666667 7.577055 23.000000 30.000000 32.500000 38.750000		
max	53.00000		

Name: Age, dtype: float64

Descriptive statistics - categorcal variables

The value_counts() method computes the unique values and how many time they occurr.

```
Sex
M 11
F 7
Name: count, dtype: int64
```