

Balanced BSTs are height-balanced trees that ensures nearly half of the data is located in each subtree:

BST Sub-structures

Example: BST Insert

Consider a new node inserted into an initially balanced BST:

BST Insert

We identify the deepest node in the tree that is out of

balance:

BST Rotation

To turn a stick into a mountain: Break the stick in half, raise it up as a mountain, and re-attach the children:

Generic Left Rotation

Consider an arbitrary tree such that:

• The deepest point of imbalance is at node b.

- The balance factor of b is 2.
- The balance factor of c is 1.
- An insert in t₃ or t₄ caused the imbalance.

Generic Left Rotation

BST Insert, Example #2

Consider a new node inserted into an initially balanced BST:

BST Insert

We identify the deepest node in the tree that is out of balance:

BST Rotation

We "unbend" the elbow with a rotation about the bend and then we have a stick:

Generic Right-Left Rotation

Consider an arbitrary tree such that:

• The deepest point of imbalance is at node b.

The balance factor of b is 2.

The balance factor of c is -1.

An insert in t₂ or t₃ caused the imbalance.

Generic Right-Left Rotation b

Rotation Summary

	Balance factor (b) of the lowest point of imbalance	Balance factor (b) of the node in the direction of imbalance
Left Rotation	2	1
Right Rotation	-2	-1
Right-Left Rotation	2	-1
Left-Right Rotation	-2	1

BST Rotations

 BST rotations restore the balance property to a tree after an insert causes a BST to be out of balance.

- Four possible rotations: L, R, LR, RL
 - Rotations are local operations.
 - Rotations do not impact the broader tree.
 - Rotations run in O(1) time.
- These trees are called "AVL Trees"

