第6章 化学平衡

化学平衡的概念

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

- 合成氨反应: 氮气和氢气的浓度随时间减少, 氨气浓度随时间增长
- 纯氨分解,最终分解成氨气,氮气和氢气的混合物

$$mA + nB \rightleftharpoons pC + qD$$

可逆反应与化学平衡
 化学反应都是可逆的,但是不同反应的限度相差很大。

• **随时间的变化,**υ_正↓,υ_逆↑

• 平衡状态:

- 反应正向反应速率和逆向反应速率逐渐相等
- 物和生成物的浓度就不再变化
- 平衡浓度: 处在平衡状态的物质浓度

化学平衡的特征

- 动态平衡
- 平衡状态的性质相同,与之前的过程无关
- 体系自发地向平衡移动
- 平衡表示两个相反的反应方向的均衡

动态平衡的实验证据 同位素实验

- (a) A reaction mixture in which N_2 , D_2 , and ND_3 have reached equilibrium is mixed with one with the same concentrations of N_2 , H_2 , and NH_3 .
- (b) After some time, the concentrations of N₂, hydrogen and ammonia are found to be the same, but the D atoms are distributed among the hydrogen and ammonia molecules.

常见的化学平衡

- 酸碱平衡
- 沉淀溶解平衡
- 氧化还原平衡
- 配位平衡

6.1 平衡常数

N_2O_4 -NO₂体系的平衡浓度 (373 K)

试验次序		起始浓度 mol·dm ⁻³	浓度变化 mol·dm ⁻³	平衡浓度 mol·dm ⁻³	$\frac{[NO_2]^2}{[N_2O_4]}$
1	N ₂ O ₄ NO ₂	0.100 0.000	-0.060 +0.120	0.040 0.120	0.36
2	N ₂ O ₄ NO ₂	0.000 0.100	+0.014	0.014 0.072	0.37
3	N ₂ O ₄ NO ₂	0.100 0.100	-0.030 +0.060	0.070 0.160	0.36

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ 无色 棕红色

起始浓度不同,平衡浓度也不同

$$mA + nB \rightleftharpoons pC + qD$$

在温度T时,平衡浓度[A],[B],[C],[D]之间有:

$$\frac{[\mathbf{C}]^p[\mathbf{D}]^q}{[\mathbf{A}]^m[\mathbf{B}]^n} = K$$

K是常数:该反应在温度T的平衡常数。

实验平衡常数K(经验平衡常数):

由实验直接测定的平衡常数。

平衡常数:表明化学反应限度的一种特征值。

在温度T时,平衡浓度[A],[B],[C],[D]之间有:

$$\frac{[\mathbf{C}]^p[\mathbf{D}]^q}{[\mathbf{A}]^m[\mathbf{B}]^n} = K$$

- 圆括号(): 起始浓度; 方括号[]: 平衡浓度
- 浓度的表达式: $mol \cdot dm^{-3}, p_x, ...$
- 浓度的表达式会改变*K*的数值和单位,但不会改变结论:浓度幂的乘积是一个常数

$C_2H_5OH + CH_3COOH \rightleftharpoons CH_3COOC_2H_5 + H_2O$ (373 K)

起始浓度	/ (mol•dm-3)	转化率	平衡常数	
C ₂ H ₅ OH	CH ₃ COOH	C ₂ H ₅ OH	CH ₃ COOH	1 K th XX
3.0	3.0	67	67	4.0
3.0	6.0	83	42	4.0
6.0	3.0	42	83	4.0

- 转化率:与温度和起始浓度有关
- 不同起始浓度有不同转化率,但平衡常数相同

平衡常数的物理意义

$$\frac{[\mathbf{C}]^p[\mathbf{D}]^q}{[\mathbf{A}]^m[\mathbf{B}]^n} = K$$

- 平衡常数 / 值的大小: 反应进行的程度(限度)。
- *K*值越大,反应进行越完全。
- 一个反应在某一定温度下只有一个特征的平衡常数,但反应中物质的转化率可以不同。

书写和应用平衡常数时的注意事项

- 1. 平衡常数表示式要与化学方程式相对应,并注明温度。
 - *K*值的表示与化学方程式写法有关。
 - *K*值实际含义是相同的。

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

$$K = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = 0.36 \quad (373 \text{ K})$$

$$1/2N_2O_4(g) \rightleftharpoons NO_2(g)$$

$$K' = \frac{[\text{NO}_2]}{[\text{N}_2\text{O}_4]^{1/2}} = 0.60 \quad (373 \text{ K})$$

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

$$K'' = \frac{[N_2O_4]}{[NO_2]} = 2.8$$
 (373 K)

2. 平衡常数值依浓度表示方法的不同而异。

- 当浓度用 $mol\cdot dm^{-3}$ 时 (通常情况),K可用 K_c 表示。
- 气相反应的平衡量用分压或摩尔分数表示,其平衡常数可分别用 K_p 或 K_x 表示。

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

$$K_{\rm c} = \frac{[{
m NH}_3]^2}{[{
m N}_2][{
m H}_2]^3}$$
 $K_{\rm p} = \frac{p^2_{
m NH3}}{p_{
m N2} \cdot p^3_{
m H2}}$ $K_{\rm x} = \frac{x^2_{
m NH}}{x_{
m N2} \cdot x^3_{
m H2}}$

当各种气体都符合理想气体定律时,三种K之间的关系为:

$$pV = nRT p = n/VRT = cRT p_{N2} = p \cdot x_{N2}$$

$$K_p = K_c(RT)^{\Delta n} K_p = K_x p^{\Delta n}$$

- 平衡常数有量纲,但一般不写。
- 对于非理想溶液,应以活度 α 代替浓度c。

$$mA + nB \Rightarrow pC + qD$$

$$\frac{\alpha_{\mathbf{C}^{\mathbf{p}}} \cdot \alpha_{\mathbf{D}}^{q}}{\alpha_{\mathbf{A}^{m}} \cdot \alpha_{\mathbf{B}^{n}}} = K$$

3. 固相不必写入平衡常数式

- 固相的平衡蒸气压一定
- 纯物质固体和液体的活度为1

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$
 $K_p = p_{CO2}$

$$Fe_2O_3(s) + 3CO(g) \rightleftharpoons 2Fe(s) + 3CO_2(g) \quad K_p = p^3co_2/p^3_{CO}$$

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$
 $K_c = [Ag^{+}][Cl^{-}]$

当有气体(或溶液)与固体共存于一个体系之中时, 此类反应叫多相反应,它们的平衡叫多相平衡。 4. 凡浓度或压力几乎保持恒定不变的物质项可不必写入平衡常数式,即把该项浓度(或压力)归并入常数项。

例:有水参加的电离反应,水的浓度变化不大,不写入 表达式:

$$HAc (aq) + H2O (l) \rightleftharpoons H3O+(aq) + Ac-(aq)$$

$$K = \frac{[H_3O^+][Ac^-]}{[HAc]}$$

6.2 平衡常数与Gibbs自由能变的关系

6.2.1 任意条件下的Gibbs自由能变 —— van't Hoff等温式

• 某一反应**在温度**T时,任意状态的 $\Delta G(T)$ 和标准状态的 $\Delta G^{\alpha}(T)$ 之间的关系

气相反应: $mA(g) + nB(g) \rightleftharpoons qC(g)$

Van't Hoff等温式可写作:

$$\Delta G(T) = \Delta G^{\Omega}(T) + 2.30RT \lg \frac{\left(\frac{p_{\text{C}}}{p^{\Omega}}\right)^{q}}{\left(\frac{p_{\text{A}}}{p^{\Omega}}\right)^{m} \left(\frac{p_{\text{B}}}{p^{\Omega}}\right)^{n}}$$

- p/p^e: 相对压力,相对于标准状态的压力,无量纲。
- $p^{\Theta} = p^{\Theta}_{A} = p^{\Theta}_{B} = p^{\Theta}_{C} = 1 \text{ bar} = 100 \text{ kPa} = 1 \times 10^{5} \text{ Pa}$

等温式的写法与p的单位有关

$$\Delta G(T) = \Delta G^{o}(T) + 2.30RT \lg \frac{(p_{c})^{q}}{(p_{A})^{m}(p_{B})^{n}}$$

- 上式p以bar为单位,分压项p的物理意义已是隐含着除以 p°的相对压力。
- 若压力的单位为Pa或kPa,则应除以10⁵ Pa或100 kPa,得 到相对压力*p/p*⁶,然后再进行运算。

等温式的写法与物质的形式有关

$$mA(g) + nB(s) \rightleftharpoons qC(aq) + rD(l)$$

$$\Delta G(T) = \Delta G^{o}(T) + 2.30RT \lg?$$

$$\Delta G(T) = \Delta G^{\Omega}(T) + 2.30RT \lg \frac{(c_c/c^{\Omega})^q}{(p_A/p^{\Omega})^m}$$

溶液:浓度用物质的量浓度表示纯固体、液体:不写入等温式

起始分压商(反应商)

气相反应: $mA(g) + nB(g) \rightleftharpoons qC(g)$

$$Q = \frac{\left(\frac{p_{\rm C}}{p^{\alpha}}\right)^q}{\left(\frac{p_{\rm A}}{p^{\alpha}}\right)^m \left(\frac{p_{\rm B}}{p^{\alpha}}\right)^n}$$

- 形式、写法和平衡常数完全相同
- 分压项不是平衡状态而是起始状态

$$\Delta G(T) = \Delta G^{o}(T) + 2.30RT \lg Q$$

- $\Delta G(T)$ 与 $\Delta G(T)$ 有关,也与反应商Q有关。
- 当 (p_A) 、 (p_B) 、 (p_C) 都等于标准压力时,Q=1,

$$\Delta G(T) = \Delta G^{o}(T)$$

• $\Delta G^{\circ}(T)$ 代表温度为T、反应物和生成物的起始分压都处于标态时的反应Gibbs自由能变。

6.2.2 van't Hoff等温式的含义

$$mA(g) + nB(g) \rightleftharpoons qC(g)$$

对于热化学反应方程式的吉布斯自由能变 $\Delta_r G$,反应进程是1mol时候,由反应物完全反应生成产物对应的吉布斯自由能变化(反应已进行,反应完全)。

而van't Hoff等温式,

$$\Delta G(T) = \Delta G^{\Omega}(T) + 2.30RT \lg \frac{\left(\frac{p_{\text{C}}}{p^{\Omega}}\right)^{q}}{\left(\frac{p_{\text{A}}}{p^{\Omega}}\right)^{m} \left(\frac{p_{\text{B}}}{p^{\Omega}}\right)^{n}}$$

任意状态的 $\Delta G(T)$

问题:

van't Hoff等温式中 $\Delta G(T)$ 的初态和末态是什么?

混合物既有A,B又有C;还没开始反应,这时候计算出的吉布斯自由能变的含义是什么(反应尚未进行)

$aA + bB \rightleftharpoons cC + dD$

初始状态: $n_A \mod A$, $n_B \mod B$, $n_C \mod C$, $n_D \mod D$ 问题1: $A \lor B \lor C \lor D$ 混合物总Gibbs自由能等于多少

$$G = n_A \Delta_f G_{m,A}^{\alpha} + n_B \Delta_f G_{m,B}^{\alpha} + n_C \Delta_f G_{m,C}^{\alpha} + n_D \Delta_f G_{m,D}^{\alpha} ??$$

$$G = \sum_{i} G_i = n_A \mu_A + n_B \mu_B + n_C \mu_C + n_D \mu_D$$

 μ_i : i 物质化学势

$aA + bB \rightleftharpoons cC + dD$

初始状态: $n_A \mod A$, $n_B \mod B$, $n_C \mod C$, $n_D \mod D$ 问题2: $A \lor B \lor C \lor D$ 混合物什么时候能量最小

$$G = \sum_{i} G_{i} = n_{A}\mu_{A} + n_{B}\mu_{B} + n_{C}\mu_{C} + n_{D}\mu_{D}$$

$$\left(\frac{\partial G}{\partial \xi}\right)_{T,P} = \Delta_{r}G^{\alpha} + 2.30RT \lg \frac{\left(\frac{p_{C}}{p^{\alpha}}\right)^{c} \left(\frac{p_{D}}{p^{\alpha}}\right)^{d}}{\left(\frac{p_{A}}{p^{\alpha}}\right)^{a} \left(\frac{p_{B}}{p^{\alpha}}\right)^{b}} = 0$$

$$\Delta G = \Delta_{r}G^{\alpha} + 2.30RT \lg \frac{\left(\frac{p_{C}}{p^{\alpha}}\right)^{c} \left(\frac{p_{D}}{p^{\alpha}}\right)^{d}}{\left(\frac{p_{A}}{p^{\alpha}}\right)^{a} \left(\frac{p_{B}}{p^{\alpha}}\right)^{b}}$$

$aA + bB \rightleftharpoons cC + dD$

van't Hoff 等温式的意义:

上述假定反应所有反应物和产物的任意一种混合状态,如果反应沿着假定的正方向有极小的反应进程 ($\partial \xi$),所对应的Gibbs自由能变

Progress of reaction

6.2.3 平衡常数K与 $\Delta G^{\alpha}(T)$ 的关系

$$mA(g) + nB(g) \rightleftharpoons qC(g)$$

平衡状态时, $\Delta G(T)=0$

$$mA(g) + nB(g) \rightleftharpoons qC(g)$$

Q项中各物质的分压都是指平衡分压。

$$\Delta G^{\mathbf{o}}(T) + 2.30RT \lg \frac{([p_c]/p^{\mathbf{o}})^q}{([p_A]/p^{\mathbf{o}})^m ([p_B]/p^{\mathbf{o}})^n} = 0$$

$$K_p^{\mathbf{o}} = \frac{([p_c]/p^{\mathbf{o}})^q}{([p_A]/p^{\mathbf{o}})^m([p_B]/p^{\mathbf{o}})^n}$$

$$-\Delta G^{\theta}(T) = 2.30RT \lg K_{p}^{\theta} \qquad \text{ig} \qquad \lg K_{p}^{\theta} = -\frac{\Delta G^{-\theta}(T)}{2.30RT}$$

$$\lg K_{p}^{\alpha} = -\frac{\Delta G(T)^{\alpha}}{2.30 * T}$$

$$K_p^{\mathbf{o}} = \frac{([p_c]/p^{\mathbf{o}})^q}{([p_A]/p^{\mathbf{o}})^m([p_B]/p^{\mathbf{o}})^n}$$

标准平衡常数 (K_{P}^{θ}) :

- 一定温度T的反应平衡常数可以通过 $\Delta G^{o}(T)$ 计算
- 无量纲
- 实验测定的平衡常数,只要把实测分压除以标态压力用相对压力表示,那么把经验平衡常数作为无量纲处理也是合理的。

$$mA(g) + nB(s) \rightleftharpoons qC(aq) + rD(l)$$

$$K^{\Omega} = \frac{([C]/c^{\Omega})^q}{([p_A]/p^{\Omega})^m}$$

溶液:浓度用物质的量浓度表示纯固体、液体:不写入平衡常数

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

$$\Delta G^{o}(298k) = 2 \times \Delta G_{f}^{o}(NH_{3}, g) - \Delta G_{f}^{o}(N_{2}, g) - 3 \times \Delta G_{f}^{o}(H_{2}, g)$$

= - 32.8 kJ·mol⁻¹

由
$$-\Delta G^{\alpha}(T) = 2.30RT \lg K_{p}^{\alpha}$$
 可得,
$$K_{p}^{\alpha}(298 \text{ k}) = \frac{([p(NH_{3})]/p^{\alpha})^{2}}{([p(N_{2})]/p^{\alpha})([p(H_{2})]/p^{\alpha})^{3}} = 5.8 \times 10^{5}$$

- 298 K时 ΔG 是负值,表明正向的合成氨反应能自发进行。
- K_{p} ·很大,表明转化率高,反应进行的比较彻底。
- K_p^{Θ} 反映了反应进行的限度。

例: 求T = 673 K时, 合成氨反应的标准平衡常数:

当 T = 673 K时,同一合成氨反应的Gibbs自由能变:

$$\Delta G^{o}(298 \text{ K}) = -32.8 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta H^{\circ}(298 \text{ K}) = 91.8 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta S^{\alpha}(298 \, K) = -0.198 \, \text{kJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

假设在该温度区间内, △H°和△S°不随温度变化

$$\Delta G^{\alpha}(673 \text{ K}) = \Delta H^{\alpha} - T\Delta S^{\alpha} = 41.5 \text{ kJ} \cdot \text{mol}^{-1}$$

由
$$-\Delta G^{\circ}(T) = 2.30RT \lg K_{\rm p}^{\circ}$$
,可得

$$K_p^{\mathbf{o}}(673 \text{ k}) = \frac{([p(\text{NH}_3)]/p^{\mathbf{o}})^2}{([p(\text{N}_2)]/p^{\mathbf{o}})([p(\text{H}_2)]/p^{\mathbf{o}})^3} = 5.9 \times 10^{-4}$$

例: 求T = 673 K时,合成氨反应的标准平衡常数:

$$\Delta G^{a}(673 \text{ K}) = 41.5 \text{ kJ} \cdot \text{mol}^{-1}; \quad K_{p}^{a}(673 \text{ K}) = 5.8 \times 10^{-4}$$

- ΔG° (673 K)是正值, K_p° (673 K)很小:在673 K标态时的合成 氨反应已经不能发生了。
- 不能发生为什么又平衡了?
- 实际反应温度得选择要兼顾平衡和速率两个因素,并须选用 适当的催化剂,一般在573-773 K之间。

6.2.4 利用Q和 K_p^{α} 判断反应进行的方向和限度

- 起始状态用Q表示,平衡状态则用 K_p^0 表示
- 利用两者的比值,可判断反应进行的方向和程度。

$$\Delta G(T) = 2.30 RT \lg \frac{Q_p}{K_p^{\Omega}}$$

Gibbs自由能判据:

 $Q_p/K_p^{\alpha} < 1$, $Q_p < K_p^{\alpha}$, 则正向反应自发进行;

 $Q_p/K_p^{\alpha}=1$, $Q_p=K_p^{\alpha}$, 则反应处于平衡状态;

 $Q_p/K_p^{\Omega} > 1$, $Q_p > K_p^{\Omega}$,则逆向反应自发进行。

$6.2.5 \Delta G^{o}(T)$ 估计化学反应方向

$$\Delta G(T) = \Delta G^{o}(T) + 2.30RT \lg Q$$

一般:

- 1) $\Delta G^{\alpha}(T) > 40 \text{ kJ·mol}^{-1}$: 反应限度相当小,可认为不能进行;
- 2) 当 $\Delta G^{o}(T) < -40 \text{ kJ·mol}^{-1}$: 反应限度相当大,可认为自发进行;
- 3) $\Delta G^{\alpha}(T)$ 介于两者之间: 反应方向则需结合反应条件具体分析。

 $|\Delta G^{\alpha}(T)|$ 足够大时,Q的变化不改变 $\Delta G(T)$ 的正负

6.2.6 van't Hoff 等温式的适用范围

- 该等温式也适用于溶液体系;
- ΔG° 项须用溶液态的 $\Delta G_{\mathrm{f}}^{\circ}$ 值计算。
- 浓度项应是相对浓度 c/c° 。现选定 $c^{\circ} = 1 \text{ mol·dm}^{-3}$,所以 c/c° 在数值上与c相等,而K值也是无量纲的。 K_{c} 与 K_{c}° 的物理意义是统一的。

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

$$\Delta G^{\alpha} = \Delta G_{f,NH_4^+(aq)}^{\alpha} + \Delta G_{f,OH^-(aq)}^{\alpha} - \Delta G_{f,H_2O(l)}^{\alpha} - \Delta G_{f,NH_3(aq)}^{\alpha}$$

$$\Delta G^{\alpha} = 27.1 \text{ kJ·mol}^{-1}$$

$$\Delta G^{\alpha} = -2.30 RT lg K_c^{\alpha}$$

$$K_c^{\alpha} = 1.8 \times 10^{-5}$$

6.3 多重平衡

多重平衡:一种物质同时参与几种平衡。

(1)
$$SO_2 + 1/2O_2 \rightleftharpoons SO_3$$

(2)
$$NO_2 \rightleftharpoons NO + 1/2O_2$$

(3)
$$SO_2 + NO_2 \rightleftharpoons SO_3 + NO$$

处于多重平衡体系中的物质,只有一个平衡浓度

- 可利用 $热化学定律通过\Delta G^{o}(T)$ 的加和关系导出平衡常数之间的关系式。
- 用多重平衡概念间接求平衡常数

$$(1) SO_2 + 1/2O_2 \rightleftharpoons SO_3$$

$$K_1 = \frac{(P_{SO_3}/P^{\Omega})}{(P_{SO_2}/P^{\Omega})(P_{O_2}/P^{\Omega})^{1/2}}$$

(2)
$$NO_2 \rightleftharpoons NO + 1/2O_2$$

$$K_2 = \frac{(P_{\text{NO}}/P^{\text{O}})(P_{\text{O}_2}/P^{\text{O}})^{1/2}}{(P_{\text{NO}_2}/P^{\text{O}})}$$

(3)
$$SO_2 + NO_2 \rightleftharpoons SO_3 + NO$$

$$K_2 = \frac{(P_{SO_3}/P^0)(P_{NO}/P^0)}{(P_{SO_2}/P^0)(P_{NO_2}/P^0)}$$

由 $\Delta G^{\theta}_1 + \Delta G^{\theta}_2 = \Delta G^{\theta}_3$ 和 $\Delta G^{\Omega}(T) = -2.30RT \lg K$ 可得:

$$K_1 \times K_2 = K_3$$