

Concours ITA session 2015

Composition : Physique 7
Durée : 2 Heures

<u>Mécanique</u>

Un mobile P assimilé à un point matériel de masse m, se déplace sur un rail situé dans un plan vertical. Le rail comporte une partie IA constituée d'un demi-cercle de centre C et de diamètre IA = 2r. On néglige tout frottement. La position du point P lorsque sa trajectoire est à l'intérieur du demi-cercle est repérée par l'angle $\theta = (\overrightarrow{CI}, \overrightarrow{CP})$. Voir la figure ci-dessous. On désigne par g la norme de l'accélération de la pesanteur.

A l'instant t = 0, le mobile est libéré en H sans vitesse initiale à la hauteur h au-dessus de I, point le plus bas du demi-cercle.

- 1- Exprimer en fonction de r , h, g et θ la norme V_P de la vitesse du point P lorsqu'il est à l'intérieur du demi-cercle.
- 2- Donner l'expression de la norme R de la réaction exercée par le rail sur le point P
- 3- De quelle hauteur minimale hm doit-on lâcher le mobile sans vitesse initiale en H pour qu'il arrive jusqu'en A, point le plus haut du demi-cercle ?
- 4- Donner dans ces conditions ($h = h_m$) l'expression de la réaction $R_{\rm I}$ en I, point le plus de la trajectoire.
- 5- Exprimer la norme V_A de la vitesse du mobile lorsqu'il arrive au point A après avoir été lâché sans vitesse initiale depuis une hauteur $h = h_m$.

Electrocinétique

EXERCICE-1

Le circuit de la figure 1 est alimenté par un générateur idéal de tension continue, dont la force électromotrice est E=20~V. Les bobines, de résistance négligeable, ont la même inductance propre L=2~mH et les condensateurs la même capacité $C=0.2~\mu F$.

A l'instant t = 0 où l'on applique entre A et B la tension E, les bobines et les condensateurs ne possèdent aucune énergie.

- 1- Déterminer la loi de variation de la charge q d'un condensateur en fonction du temps t.
- 2- En déduire la valeur maximale u_M de la différence de potentiel u_C(t).
- 3- Etablir l'expression de la différence de potentiel u_{MN} en fonction du temps.
- 4- En déduire la valeur maximale u'_M de la différence de potentiel u_{MN}.

EXERCICE-2

Un générateur, de résistance interne R_0 , délivre une f.é.m sinusoïdale e(t) de pulsation ω et d'expression : e(t) = $E\sqrt{2}$ sin ω t. Il est relié aux bornes d'un résistor de résistance R.

- 1- Donner l'expression de la puissance moyenne P dissipée dans le résistor.
- 2- Calculer la valeur de la résistance R en fonction de R₀ pour que la puissance P soit maximale.
- 3- On insère en série avec le résistor une bobine pure d'inductance L = 0.1 H.
- 3-1 Calculer en fonction de R la puissance P' dissipée dans le résistor
- 3-2 Donner l'expression de la valeur $R_{\rm m}$ de la résistance R pour laquelle la puissance est maximale.