

xAct

Efficient manipulation of tensor expressions

José M. Martín García
Laboratoire Univers et Théories, Meudon
&
Institut d'Astrophysique de Paris

LUTH, Meudon, 21 April 2009

Human 10^{-2} flops vs. computer $10^9 - 10^{15}$ flops.

- Human 10^{-2} flops vs. computer $10^9 10^{15}$ flops.
- Numerics: Approximate solutions to continuous problems.

- Human 10^{-2} flops vs. computer $10^9 10^{15}$ flops.
- Numerics: Approximate solutions to continuous problems.
- Computers are discrete-calculus machines!

- Human 10^{-2} flops vs. computer $10^9 10^{15}$ flops.
- Numerics: Approximate solutions to continuous problems.
- Computers are discrete-calculus machines!
- Computer algebra (CA): Exact solutions.

- Human 10^{-2} flops vs. computer $10^9 10^{15}$ flops.
- Numerics: Approximate solutions to continuous problems.
- Computers are discrete-calculus machines!
- Computer algebra (CA): Exact solutions.
- Our problem: Efficient Tensor Computer Algebra (TCA).

Summary

- 1. General purpose computer algebra (CA)
 - Focus: the canonicalizer.
- 2. Computer algebra for tensor calculus (TCA)
 - Focus: types of problems.
- 3. A *Mathematica* / C implementation: *xAct*
- 4. Case example: scalars of the Riemann tensor

1. Computer algebra (CA)

1. Computer algebra (CA)

- **Definition:**
 - Manipulation of symbols (even the program itself)
 - No truncation of information
 - In science: manipulation of symbolic mathematical expressions

1. Computer algebra (CA)

Definition:

- Manipulation of symbols (even the program itself)
- No truncation of information
- In science: manipulation of symbolic mathematical expressions

Early history:

- 1950: ALGAE (Los Alamos)
- 1953: Kahrimanian, Nolan: differentiation systems
- ▶ 1963: ALTRAN / ALPAK (Bell Labs)
- 1960's: LISP: recursion, conditionals, dynamical allocation of memory, garbage collection, etc.

System	Language	Develop.	Release	Strengths

System	Language	Develop.	Release	Strengths
Reduce	LISP	?	1968	
Macsyma	LISP	?	1970	
Derive	LISP	1979	1988	

System	Language	Develop.	Release	Strengths
Reduce	LISP	?	1968	
Macsyma	LISP	?	1970	
Derive	LISP	1979	1988	
Maple	С	1979	1985	hashing routines
Mathematica	C	1986	1988	pattern matching

System	Language	Develop.	Release	Strengths
Reduce	LISP	?	1968	
Macsyma	LISP	?	1970	
Derive	LISP	1979	1988	
Maple	С	1979	1985	hashing routines
Mathematica	C	1986	1988	pattern matching
Maxima	CLISP	1982	1998	
Axiom	Aldor	1971-91	2002	object-oriented

General purpose systems:

System	Language	Develop.	Release	Strengths
Reduce	LISP	?	1968	
Macsyma	LISP	?	1970	
Derive	LISP	1979	1988	
Maple	С	1979	1985	hashing routines
Mathematica	C	1986	1988	pattern matching
Maxima	CLISP	1982	1998	
Axiom	Aldor	1971-91	2002	object-oriented

Specialised systems for:

- Celestial mechanics
- Group theory: MAGMA, GAP
- General Relativity

- Quantum Field Theory
- Fluid mechanics
- Industrial applications

Recursive algorithm $x_{i+1} = f(x_i)$ with initial seed x_0 :

Recursive algorithm $x_{i+1} = f(x_i)$ with initial seed x_0 :

Numerical: reserve fixed memory per number and

$$x_{i+1} = \text{Truncate}[f(x_i)]$$

- CA: exact algorithm, reallocate memory.
 - ⇒ Generic memory growth ⇒ Generic computing-time growth

Recursive algorithm $x_{i+1} = f(x_i)$ with initial seed x_0 :

Numerical: reserve fixed memory per number and

$$x_{i+1} = \text{Truncate}[f(x_i)]$$

- CA: exact algorithm, reallocate memory.
 - \Rightarrow Generic memory growth \Rightarrow Generic computing-time growth

Examples:

 $\det(A+B) \longrightarrow n! \, 2^n \text{ terms } (\simeq 4 \cdot 10^9 \text{ for } n=10)$

Recursive algorithm $x_{i+1} = f(x_i)$ with initial seed x_0 :

Numerical: reserve fixed memory per number and

$$x_{i+1} = \text{Truncate}[f(x_i)]$$

- CA: exact algorithm, reallocate memory.
 - ⇒ Generic memory growth ⇒ Generic computing-time growth

Examples:

Intermediate expression swell:
 Simple input → Complex intermediate steps → Simple output

Recursive algorithm $x_{i+1} = f(x_i)$ with initial seed x_0 :

Numerical: reserve fixed memory per number and

$$x_{i+1} = \text{Truncate}[f(x_i)]$$

- CA: exact algorithm, reallocate memory.
 - \Rightarrow Generic memory growth \Rightarrow Generic computing-time growth

Examples:

Linear systems with random integers $|c_i| \le 100$. Timing (s):

Exact Numerical

Richardson's theorem (1968):

Richardson's theorem (1968):

Let be E a set of real functions such that

- If $A(x), B(x) \in E$ then $A(x) \pm B(x), A(x)B(x), A(B(x)) \in E$.
- The rational numbers are contained as constant functions.

Richardson's theorem (1968):

Let be E a set of real functions such that

- If $A(x), B(x) \in E$ then $A(x) \pm B(x), A(x)B(x), A(B(x)) \in E$.
- The rational numbers are contained as constant functions.

Then for expressions A(x) in E,

if $\log 2, \pi, e^x, \sin x \in E$ then $A(x) \ge 0$ for all x is unsolvable;

Richardson's theorem (1968):

Let be E a set of real functions such that

- If $A(x), B(x) \in E$ then $A(x) \pm B(x), A(x)B(x), A(B(x)) \in E$.
- The rational numbers are contained as constant functions.

Then for expressions A(x) in E,

- if $\log 2, \pi, e^x, \sin x \in E$ then $A(x) \ge 0$ for all x is unsolvable;
- if also $\sqrt{x^2} \in E$ then $A(x) \equiv 0$ is unsolvable.

Richardson's theorem (1968):

Let be E a set of real functions such that

- If $A(x), B(x) \in E$ then $A(x) \pm B(x), A(x)B(x), A(B(x)) \in E$.
- The rational numbers are contained as constant functions.

Then for expressions A(x) in E,

- if $\log 2, \pi, e^x, \sin x \in E$ then $A(x) \ge 0$ for all x is unsolvable;
- if also $\sqrt{x^2} \in E$ then $A(x) \equiv 0$ is unsolvable.
- If furthermore there is a function $B(x) \in E$ without primitive in E then the integration problem is unsolvable. Example: e^{x^2} .

Richardson's theorem (1968):

Let be E a set of real functions such that

- If $A(x), B(x) \in E$ then $A(x) \pm B(x), A(x)B(x), A(B(x)) \in E$.
- The rational numbers are contained as constant functions.

Then for expressions A(x) in E,

- if $\log 2, \pi, e^x, \sin x \in E$ then $A(x) \ge 0$ for all x is unsolvable;
- if also $\sqrt{x^2} \in E$ then $A(x) \equiv 0$ is unsolvable.
- If furthermore there is a function $B(x) \in E$ without primitive in E then the integration problem is unsolvable. Example: e^{x^2} .

Is Computer Algebra doomed to failure?

There are families of expressions for which a canonical form can always be defined. Example: polynomials.

There are families of expressions for which a canonical form can always be defined. Example: polynomials.

- Definition: A = B iff their canonical forms coincide.
- There are different canonical forms for a family of expressions.

There are families of expressions for which a canonical form can always be defined. Example: polynomials.

- Definition: A = B iff their canonical forms coincide.
- There are different canonical forms for a family of expressions.

The algorithm in charge of canonicalization is called *the canonicalizer*.

There are families of expressions for which a canonical form can always be defined. Example: polynomials.

- Definition: A = B iff their canonical forms coincide.
- There are different canonical forms for a family of expressions.

The algorithm in charge of canonicalization is called *the canonicalizer*.

Do not confuse

- canonicalization: objective, given a canonical form
- simplification: largely subjective. More difficult. *Mathematica*:

There are families of expressions for which a canonical form can always be defined. Example: polynomials.

- Definition: A = B iff their canonical forms coincide.
- There are different canonical forms for a family of expressions.

The algorithm in charge of canonicalization is called *the canonicalizer*.

Do not confuse

- canonicalization: objective, given a canonical form
- simplification: largely subjective. More difficult. *Mathematica*:

Simplify[
$$(x-1)(x+1)$$
] \longrightarrow $-1+x^2$
Simplify[$(x-y)(x+y)$] \longrightarrow $(x-y)(x+y)$
Simplify[x^4-x] \longrightarrow $x(-1+x^3)$

-

2. Computer algebra for (GR) tensors

Motivation: Long but "simple" problems

- Perturbation theory
- Bel-Robinson, super energy-momentum tensors, ...

$$4B_{abcd} = C_a{}^e{}_b{}^f C_{cedf} + {}^*C_a{}^e{}_b{}^f {}^*C_{cedf} \quad \Rightarrow \quad B_{abcd} = B_{(abcd)}$$

Riemann polynomials:

$$R_{abcd}R^{a}{}_{e}{}^{c}{}_{f}R^{bfde} = R_{abcd}R^{a}{}_{e}{}^{c}{}_{f}R^{bedf} - \frac{1}{4}R_{abcd}R^{ab}{}_{ef}R^{cdef}$$

- Lovelock (dimension-dependent) identities
- Component expansions in numerics (code generation)

```
[ Kranc: Husa, Hinder, Lechner '04]
```

Manipulation and classification of metrics

```
[ GRDB: Ishak, Lake '02; ICD: Skea '97]
```

Added benefits: reproducibility, error-free, ...

2b. TCA. Early history

R. d'Inverno 1969

ALAM

Component computations:

- Give a metric in a coordinate system / frame.
- Compute other tensors from that metric.
- Key issues:
 - Component expansions. Many terms. Memory? [Lake '03]
 - Symmetries. Independent components? [Klioner '04]

Component computations:

- Give a metric in a coordinate system / frame.
- Compute other tensors from that metric.
- Key issues:
 - Component expansions. Many terms. Memory? [Lake '03]
 - Symmetries. Independent components? [Klioner '04]

Abstract computations:

- Define tensors with symmetries, connections, etc.
- Compute and simplify expressions.
- Key issue: canonicalization with symmetries and dummy indices.

Component computations:

- Give a metric in a coordinate system / frame.
- Compute other tensors from that metric.
- Key issues:
 - Component expansions. Many terms. Memory? [Lake '03]
 - Symmetries. Independent components? [Klioner '04]

Abstract computations:

- Define tensors with symmetries, connections, etc.
- Compute and simplify expressions.
- Key issue: canonicalization with symmetries and dummy indices.

Question: Component computations from abstract computations?

$$\dots + 3r^2 R_{abcd} R^{aecf} T^b{}_e \nabla_f v^d + R^{abcd} R_{cdef} R^{ef}{}_{ab} + \dots$$

• General expression: tensor polynomial

$$\dots + 3r^2 R_{abcd} R^{aecf} T^b_{\ e} \nabla_f v^d + R^{abcd} R_{cdef} R^{ef}_{\ ab} + \dots$$

Expand and canonicalize terms independently (parallelism).

$$\dots + 3r^2 R_{abcd} R^{aecf} T^b_{\ e} \nabla_f v^d + R^{abcd} R_{cdef} R^{ef}_{\ ab} + \dots$$

- Expand and canonicalize terms independently (parallelism).
- Tensor product: sort tensors and construct equivalent single tensor with inherited symmetries [Portugal '99].

$$\dots + 3r^2 R_{abcd} R^{aecf} T^b_{\ e} \nabla_f v^d + R^{abcd} R_{cdef} R^{ef}_{\ ab} + \dots$$

- Expand and canonicalize terms independently (parallelism).
- Tensor product: sort tensors and construct equivalent single tensor with inherited symmetries [Portugal '99].
- Canonicalize tensor with n indices and arbitrary symmetry:
 - "Simple" algorithms: timings are exponential in n.
 - Efficient algorithms: timings are effectively polynomial in n.

$$\dots + 3r^2 R_{abcd} R^{aecf} T^b_{\ e} \nabla_f v^d + R^{abcd} R_{cdef} R^{ef}_{\ ab} + \dots$$

- Expand and canonicalize terms independently (parallelism).
- Tensor product: sort tensors and construct equivalent single tensor with inherited symmetries [Portugal '99].
- Canonicalize tensor with n indices and arbitrary symmetry:
 - "Simple" algorithms: timings are exponential in n.
 - Efficient algorithms: timings are effectively polynomial in n.
- Arrange dummy indices in full expression.

2c-3. Classes: types of symmetries

2c-3. Classes: types of symmetries

Monoterm symmetries (perm groups):

$$R_{bacd} = -R_{abcd}, \qquad R_{cdab} = +R_{abcd}$$

- Most packages use ad hoc exponential algorithms.
- Polynomic algorithms to manipulate the Symmetric Group S_n , based on Strong Generating Set representations

```
[ Schreier, Sims, Knuth, ... 70's, 80's ].
```

Applied to tensor/spinor canonicalization: [Portugal et al. '01]

2c-3. Classes: types of symmetries

Monoterm symmetries (perm groups):

$$R_{bacd} = -R_{abcd}, \qquad R_{cdab} = +R_{abcd}$$

- Most packages use ad hoc exponential algorithms.
- Polynomic algorithms to manipulate the Symmetric Group S_n , based on Strong Generating Set representations

[Schreier, Sims, Knuth, ... 70's, 80's].

Applied to tensor/spinor canonicalization: [Portugal et al. '01]

Multiterm symmetries (perm algebras):

$$R_{abcd} + R_{acdb} + R_{adbc} = 0$$

- No known efficient algorithms. Solutions?
- Most elegant: Young tableaux [Fulling et al. '92; Peeters '05]
- Particular case: dimension-dependent identities [Edgar et al. '02].

2d. Tensor packages

MAXIMA: itensor, stensor / ctensor

REDUCE: atensor, RicciR, ExCalc / GRG, GRLIB, RedTen

MAPLE: Riegeom, Canon, MapleTensor / Riemann, Atlas, GRTensorII

MATHEMATICA: MathTensor (\$\$), dhPark, Tensors in Physics (\$), Tensorial (\$), Ricci, TTC, EinS, xTensor / GRTensorM, xCoba

Standalone: cadabra

Prototyping: Kranc, RNPL, TeLa

Many other small packages for component computations.

- Antisymmetric tensor $F_{ba} = -F_{ab}$.
- $F^{ab}F_{bc} \stackrel{n}{\dots} F^h{}_a = 0$ if number n of tensors is odd.

- Antisymmetric tensor $F_{ba} = -F_{ab}$.
- Fab $F_{bc} \stackrel{n}{...} F_a^h = 0$ if number n of tensors is odd.
- Timings (in seconds)

n	Perm group	MathTensor	xTensor
1	2	0	0
3	48	0.01	0.01
5	3840	0.02	0.03
7	645120	1.12	0.05
9	185794560	350	0.07
11	$8.2 \ 10^{10}$	107745	0.09
19	$6.4\ 10^{22}$?	0.28
29	$4.7 \ 10^{39}$?	0.94
39	$1.1 \ 10^{58}$?	2.7
49	$3.4\ 10^{77}$?	6.5
59	$8.0\ 10^{97}$?	13.7

Random monomial Riemann scalars:

The algorithm uses the intersection algorithm, which is known to be exponential in the worst case.

A million random monomial Riemann⁷ scalars:

A million random monomial Riemann¹⁰ scalars:

xCore

Mathematica Tools

3. The xAct project

3. The xAct project

Strengths:

- Fast monoterm canonicalization.
- Mathematical structure, GR-oriented.
- Free software (GPL).
- Extensive, *Mathematica*-style documentation.

Strengths:

- Fast monoterm canonicalization.
- Mathematical structure, GR-oriented.
- Free software (GPL).
- Extensive, *Mathematica*-style documentation.

Current weaknesses:

- Multiterm canonicalization missing.
- Tensor-editing interface missing.
- Incomplete development of calculus with charts.

Strengths:

- Fast monoterm canonicalization.
- Mathematical structure, GR-oriented.
- Free software (GPL).
- Extensive, *Mathematica*-style documentation.

Current weaknesses:

- Multiterm canonicalization missing.
- Tensor-editing interface missing.
- Incomplete development of calculus with charts.

Other data:

- ©2002–2009, GPL. Version 0.7 in March 2004; currently in 0.9.8
- 17000 lines of Mathematica code + 2500 lines of C code.
- 31 articles have used it:

3c. Results

- Hyperbolicity analysis of the Einstein equations (Gundlach & JMM)
- High order perturbation theory in GR (Brizuela & JMM)
- Invariants of the Riemann tensor (JMM & Portugal)
- The light-cone theorem (Choquet-Bruhat, Chruściel & JMM)
- Superfield integrals in string theory (Green et al.)
- Dynamical laws of superenergy (García-Parrado)
- Initial data sets for the Schwarzschild spacetime (GP & Valiente)
- Cosmological perturbation theory (Pitrou et al.)
- Post-Newtonian computations (Blanchet et al.)
- Quantum Field Theory (Álvarez et al.)
- "Galileon" (Deffayet et al.)

- Define one or several manifolds, and products of them.
- Define (complex) vector bundles on them.
- Define tensors with arbitrary monoterm symmetries.
- Define connections of any type. Automatic Christoffel, Riemann, ... generation.
- Define one or several metrics on each manifold. Warped metrics. Induced metrics.

- Define one or several manifolds, and products of them.
- Define (complex) vector bundles on them.
- Define tensors with arbitrary monoterm symmetries.
- Define connections of any type. Automatic Christoffel, Riemann, ... generation.
- Define one or several metrics on each manifold. Warped metrics. Induced metrics.
- Parametric derivatives, Lie derivatives, Poisson brackets.

- Define one or several manifolds, and products of them.
- Define (complex) vector bundles on them.
- Define tensors with arbitrary monoterm symmetries.
- Define connections of any type. Automatic Christoffel, Riemann, ... generation.
- Define one or several metrics on each manifold. Warped metrics. Induced metrics.
- Parametric derivatives, Lie derivatives, Poisson brackets.
- Single canonicalization routine (ToCanonical).

- Define one or several manifolds, and products of them.
- Define (complex) vector bundles on them.
- Define tensors with arbitrary monoterm symmetries.
- Define connections of any type. Automatic Christoffel, Riemann, ... generation.
- Define one or several metrics on each manifold. Warped metrics. Induced metrics.
- Parametric derivatives, Lie derivatives, Poisson brackets.
- Single canonicalization routine (ToCanonical).
- Transformation rules, which detect the character of the indices, the manifold of the indices, the symmetries of the tensors, and take into account metrics.

- Define one or several manifolds, and products of them.
- Define (complex) vector bundles on them.
- Define tensors with arbitrary monoterm symmetries.
- Define connections of any type. Automatic Christoffel, Riemann, ... generation.
- Define one or several metrics on each manifold. Warped metrics. Induced metrics.
- Parametric derivatives, Lie derivatives, Poisson brackets.
- Single canonicalization routine (ToCanonical).
- Transformation rules, which detect the character of the indices, the manifold of the indices, the symmetries of the tensors, and take into account metrics.
- Use all machinery of *Mathematica*.

- Use always abstract tensor notation. Penrose abstract-indices.
- Wald's book conventions. Ashtekar's approach to gauge.

- Use always abstract tensor notation. Penrose abstract-indices.
- Wald's book conventions. Ashtekar's approach to gauge.
- Symbols have a type: tensor, abstract-index, manifold, ...

- Use always abstract tensor notation. Penrose abstract-indices.
- Wald's book conventions. Ashtekar's approach to gauge.
- Symbols have a type: tensor, abstract-index, manifold, ...
- Notation for T^a_b ?

- Use always abstract tensor notation. Penrose abstract-indices.
- Wald's book conventions. Ashtekar's approach to gauge.
- Symbols have a type: tensor, abstract-index, manifold, ...
- Notation for T^a_b ?
 - T[a,-b]

- Use always abstract tensor notation. Penrose abstract-indices.
- Wald's book conventions. Ashtekar's approach to gauge.
- Symbols have a type: tensor, abstract-index, manifold, ...
- Notation for T^a_b ?
 - T[a,-b]
 - Tensor[Name["T"], Indices[Up[a], Down[b]]]

- Use always abstract tensor notation. Penrose abstract-indices.
- Wald's book conventions. Ashtekar's approach to gauge.
- Symbols have a type: tensor, abstract-index, manifold, ...
- Notation for T^a_b ?
 - T[a,-b]
 - Tensor[Name["T"], Indices[Up[a], Down[b]]]
 - Translator between internal / external notations

- Use always abstract tensor notation. Penrose abstract-indices.
- Wald's book conventions. Ashtekar's approach to gauge.
- Symbols have a type: tensor, abstract-index, manifold, ...
- Notation for $T^a{}_b$?
 - T[a,-b]
 - Tensor[Name["T"], Indices[Up[a], Down[b]]]
 - Translator between internal / external notations
 - Choice: T[a,-b]

•

- Use always abstract tensor notation. Penrose abstract-indices.
- Wald's book conventions. Ashtekar's approach to gauge.
- Symbols have a type: tensor, abstract-index, manifold, ...
- Notation for $T^a{}_b$?
 - T[a,-b]
 - Tensor[Name["T"], Indices[Up[a], Down[b]]]
 - Translator between internal / external notations
 - Choice: T[a,-b]
- Notation for covariant derivatives:
 - Penrose & Rindler) What are $\nabla_2 v_3$ and $\partial_2 v_3$? Is it $e_2{}^a e_3{}^b \nabla_a v_b$ or $e_2{}^a \nabla_a \left(e_3{}^b v_b\right)$?

- Use always abstract tensor notation. Penrose abstract-indices.
- Wald's book conventions. Ashtekar's approach to gauge.
- Symbols have a type: tensor, abstract-index, manifold, ...
- Notation for $T^a{}_b$?
 - T[a,-b]
 - Tensor[Name["T"], Indices[Up[a], Down[b]]]
 - Translator between internal / external notations
 - Choice: T[a,-b]
- Notation for covariant derivatives:
 - Penrose & Rindler) What are $\nabla_2 v_3$ and $\partial_2 v_3$? Is it $e_2{}^a e_3{}^b \nabla_a v_b$ or $e_2{}^a \nabla_a (e_3{}^b v_b)$?
 - Choice: ∇_a and ∂_a are operators: Cd[-a][expr]
- Lie derivatives: LieD[v[i]][expr]

- Scalar inv $R^{abcd}R_{ab}{}^{ef}R_{cdef}$, or differential inv $R_{ab}\nabla_c\nabla_dR^{acbd}$.
- Used in the classification of spacetimes, GR Lagrangian expansions, QG renormalization, etc.

- Scalar inv $R^{abcd}R_{ab}{}^{ef}R_{cdef}$, or differential inv $R_{ab}\nabla_c\nabla_dR^{acbd}$.
- Used in the classification of spacetimes, GR Lagrangian expansions, QG renormalization, etc.
- Haskins 1902: 14 independent scalar invs in 4d.
- Narlikar and Karmarkar 1948: first list of 14 scalar invs: $(R, R^2, W^2, R^3, W^3, R^2W, W^4, R^4, R^2W^2, W^5, R^2W^3, R^4W, R^4W^2, R^4W^3)$.

- Scalar inv $R^{abcd}R_{ab}{}^{ef}R_{cdef}$, or differential inv $R_{ab}\nabla_c\nabla_dR^{acbd}$.
- Used in the classification of spacetimes, GR Lagrangian expansions, QG renormalization, etc.
- Haskins 1902: 14 independent scalar invs in 4d.
- Narlikar and Karmarkar 1948: first list of 14 scalar invs: $(R, R^2, W^2, R^3, W^3, R^2W, W^4, R^4, R^2W^2, W^5, R^2W^3, R^4W, R^4W^2, R^4W^3)$.
- Other invariants are (possibly nonpolynomial) functions of them.
- Completeness: polynomic basis for all invariants. Relations?

•

- Scalar inv $R^{abcd}R_{ab}{}^{ef}R_{cdef}$, or differential inv $R_{ab}\nabla_c\nabla_dR^{acbd}$.
- Used in the classification of spacetimes, GR Lagrangian expansions, QG renormalization, etc.
- Haskins 1902: 14 independent scalar invs in 4d.
- Narlikar and Karmarkar 1948: first list of 14 scalar invs: $(R, R^2, W^2, R^3, W^3, R^2W, W^4, R^4, R^2W^2, W^5, R^2W^3, R^4W, R^4W^2, R^4W^3)$.
- Other invariants are (possibly nonpolynomial) functions of them.
- Completeness: polynomic basis for all invariants. Relations?
- Sneddon 1999: 38 s-invs (deg 11). Complete basis. (Rotor calculus.)
- Carminati-Lim 2007: graph-based construction of s-inv relations.

•

- Scalar inv $R^{abcd}R_{ab}{}^{ef}R_{cdef}$, or differential inv $R_{ab}\nabla_c\nabla_dR^{acbd}$.
- Used in the classification of spacetimes, GR Lagrangian expansions, QG renormalization, etc.
- Haskins 1902: 14 independent scalar invs in 4d.
- Narlikar and Karmarkar 1948: first list of 14 scalar invs: $(R, R^2, W^2, R^3, W^3, R^2W, W^4, R^4, R^2W^2, W^5, R^2W^3, R^4W, R^4W^2, R^4W^3)$.
- Other invariants are (possibly nonpolynomial) functions of them.
- Completeness: polynomic basis for all invariants. Relations?
- Sneddon 1999: 38 s-invs (deg 11). Complete basis. (Rotor calculus.)
- Carminati-Lim 2007: graph-based construction of s-inv relations.
- Fulling et al 1992: bases for d-invs up to 10 derivatives and R^6 .

7 Riemann \rightarrow 28 indices \rightarrow 28! $\simeq 3.0 \cdot 10^{29}$ s-invs

- 7 Riemann \rightarrow 28 indices \rightarrow 28! $\simeq 3.0 \cdot 10^{29}$ s-invs
- Use monoterm symmetries: 16352 invariants

- 7 Riemann \rightarrow 28 indices \rightarrow 28! $\simeq 3.0 \cdot 10^{29}$ s-invs
- Use monoterm symmetries: 16352 invariants
- Use cyclic property: 1639 invariants

- 7 Riemann \rightarrow 28 indices \rightarrow 28! $\simeq 3.0 \cdot 10^{29}$ s-invs
- Use monoterm symmetries: 16352 invariants
- Use cyclic property: 1639 invariants
- Antisymmetrise over sets of 5 indices in 4d: 4311 integer equations

- 7 Riemann \rightarrow 28 indices \rightarrow 28! $\simeq 3.0 \cdot 10^{29}$ s-invs
- Use monoterm symmetries: 16352 invariants
- Use cyclic property: 1639 invariants
- Antisymmetrise over sets of 5 indices in 4d: 4311 integer equations
- Gauss elimination: Intermediate swell problem:
 - Original integers: $|c_i| \le 384$

- 7 Riemann \rightarrow 28 indices \rightarrow 28! $\simeq 3.0 \cdot 10^{29}$ s-invs
- Use monoterm symmetries: 16352 invariants
- Use cyclic property: 1639 invariants
- Antisymmetrise over sets of 5 indices in 4d: 4311 integer equations
- Gauss elimination: Intermediate swell problem:
 - Original integers: $|c_i| \le 384$
 - Final integers: $|c_f| \le 4978120$

- 7 Riemann \rightarrow 28 indices \rightarrow 28! $\simeq 3.0 \cdot 10^{29}$ s-invs
- Use monoterm symmetries: 16352 invariants
- Use cyclic property: 1639 invariants
- Antisymmetrise over sets of 5 indices in 4d: 4311 integer equations
- Gauss elimination: Intermediate swell problem:
 - Original integers: $|c_i| \le 384$
 - Final integers: $|c_f| \le 4978120$
 - Largest intermediate integer:

 $41284320888114626312105608472587963577277605659619553121090337199745221229120263938390479190798331362\\ 9332658685142520797678355583630907136564045657358541395134420154091637344181884734088835920651682654\\ 5838550350981924166243854816386358011913196352080821446913112544207777945582431400973483457511551249\\ 4271650405780114863779964319571108875740447236120954785394441817343113274871351581501474081446209153\\ 5133993980627211654318697002059693685910102607365896788999230680327719504392651078493689021476459822\\ 1917466623055176060658271638645490139036389024466375930303586688550738508615214422459534528028026604\\ 3392962118745453989341765134526682155897073108863212658336777829476719031970391332987380834358579837\\ 4768508365933468022268161668651405869982994847652173877241170117828300225631267244981449350418876807\\ 8308059566617955048754211100127225300485494079978006577938025856377710049543176142178387315401497328$

Required 8Gb RAM and 384-bytes integers (BigNum: GMP).

- 7 Riemann \rightarrow 28 indices \rightarrow 28! $\simeq 3.0 \cdot 10^{29}$ s-invs
- Use monoterm symmetries: 16352 invariants
- Use cyclic property: 1639 invariants
- Antisymmetrise over sets of 5 indices in 4d: 4311 integer equations
- Gauss elimination: Intermediate swell problem:
 - Original integers: $|c_i| \le 384$
 - Final integers: $|c_f| \le 4978120$
 - Largest intermediate integer:
- $41284320888114626312105608472587963577277605659619553121090337199745221229120263938390479190798331362\\ 9332658685142520797678355583630907136564045657358541395134420154091637344181884734088835920651682654\\ 5838550350981924166243854816386358011913196352080821446913112544207777945582431400973483457511551249\\ 4271650405780114863779964319571108875740447236120954785394441817343113274871351581501474081446209153\\ 5133993980627211654318697002059693685910102607365896788999230680327719504392651078493689021476459822\\ 1917466623055176060658271638645490139036389024466375930303586688550738508615214422459534528028026604\\ 3392962118745453989341765134526682155897073108863212658336777829476719031970391332987380834358579837\\ 4768508365933468022268161668651405869982994847652173877241170117828300225631267244981449350418876807\\ 8308059566617955048754211100127225300485494079978006577938025856377710049543176142178387315401497328$
 - Required 8Gb RAM and 384-bytes integers (BigNum: GMP).
 - We get the 27 invs of Sneddon's basis up to degree 7 (6 dual), plus all polynomial expression of any other invariant. Invar package: CPC 2007.
 - Database of 645 625 relations up to 12 metric derivatives. CPC 2008.

4c. Riemann invariants

Degree	A	A^*	В	B^*	C	C^*	D	D^*
1	1	1	1	0	1	0	1	0
2	3	4	2	1	2	1	2	1
3	9	27	5	6	3	2	3	2
4	38	232	15	40	4	1	3	1
5	204	2582	54	330	5	2	3	2
6	1613	35090	270	3159	8	2	4	2
7	16532	558323	1639	_	7	(1)	3	(1)
8	217395	_	13140	_	(9)	(1)	(2)	(1)
9	3406747	_	_	_	(11)	(1)	(3)	(1)
10	_	_	_	_	(9)	(1)	(1)	(1)
11	_	_	_	_	(9)	(0)	(1)	(0)
12	_	_	_	_	(9)	(0)	(0)	(0)

A: Permutation symmetries,

C: Dim-dep identities,

B: Cyclic symmetry,

D: Products of duals (*).

Brief review of the field of Computer Algebra, focusing on the importance of the canonicalizer.

- Brief review of the field of Computer Algebra, focusing on the importance of the canonicalizer.
- There are important problems in GR and other fields which require Tensor Computer Algebra.

- Brief review of the field of Computer Algebra, focusing on the importance of the canonicalizer.
- There are important problems in GR and other fields which require Tensor Computer Algebra.
- For the first time we have tensor packages with efficient canonicalization algorithms for monoterm symmetries, and they are free software!

- Brief review of the field of Computer Algebra, focusing on the importance of the canonicalizer.
- There are important problems in GR and other fields which require Tensor Computer Algebra.
- For the first time we have tensor packages with efficient canonicalization algorithms for monoterm symmetries, and they are free software!
- There are multiterm algorithms, but we need something more efficient. Idea: databases of solutions (example: Invar package).

- Brief review of the field of Computer Algebra, focusing on the importance of the canonicalizer.
- There are important problems in GR and other fields which require Tensor Computer Algebra.
- For the first time we have tensor packages with efficient canonicalization algorithms for monoterm symmetries, and they are free software!
- There are multiterm algorithms, but we need something more efficient. Idea: databases of solutions (example: Invar package).
- * XAct implements the fastest algorithms, in a GR-oriented structure based on Penrose abstract indices. Well tested and documented.

```
http://metric.iem.csic.es/Martin-Garcia/xAct/
http://luth.obspm.fr/~luthier/Martin-Garcia/xAct/
```