## An Invitation to Gromov-Hausdorff convergence

Jiayin Pan

UC Santa Cruz

### In a nutshell

The *Gromov-Hausdorff distance* between two metric spaces measures how they look alike.

A sequence of metric spaces  $X_i$  Gromov-Hausdorff converges to some limit metric space Y, written as  $X_i \stackrel{GH}{\rightarrow} Y$ , means almost impossible to distinguish Y and  $X_i$  for large i.

#### In a nutshell

The *Gromov-Hausdorff distance* between two metric spaces measures how they look alike.

A sequence of metric spaces  $X_i$  Gromov-Hausdorff converges to some limit metric space Y, written as  $X_i \stackrel{GH}{\to} Y$ , means almost impossible to distinguish Y and  $X_i$  for large i.

#### Examples:

- Sphere  $(S^2, g_i)$  to a football sphere
- ullet Curved surface to a tangent plane  $\mathbb{R}^2$
- A closed manifold to a point
- Flat cylinder to a line
- Integers to a line



## Principle

To understand some *nice* spaces, we have to understand some *singular* spaces first.

Analog: To understand the *smooth* solutions of some differential equation, we have to understand its *weak* solutions first.

### A note on its history

According to Wikipedia:

The Gromov-Hausdorff distance was introduced by David Edwards in 1975, and it was later rediscovered and generalized by Mikhail Gromov in 1981.

### Hausdorff distance

### Definition (Hausdorff distance)

Let Z be a metric space and let X and Y be two non-empty compact subsets of Z. The *Hausdorff distance* between X and Y in Z is defined as

$$d_H^Z(X,Y) = \inf\{r > 0 | X \subseteq B_r(Y), Y \subseteq B_r(X)\}.$$

### Hausdorff distance

### Definition (Hausdorff distance)

Let Z be a metric space and let X and Y be two non-empty compact subsets of Z. The *Hausdorff distance* between X and Y in Z is defined as

$$d_H^Z(X,Y)=\inf\{r>0|X\subseteq B_r(Y),Y\subseteq B_r(X)\}.$$

#### Facts:

- $d_H^Z(X, Y) = 0$  iff X = Y.
- $d_H^Z$  is a distance function on  $C_Z$ , the set of non-empty compact subsets of Z.
- If Z is a complete metric space, then  $(\mathcal{C}_Z, d_H^Z)$  is complete.



# Gromov-Hausdorff distance/convergence

#### Definition (Gromov-Hausdorff distance)

Let X and Y be two compact metric spaces. The Gromov-Hausdorff distance between X and Y is defined as

$$d_{GH}(X,Y) = \inf\{d_H^Z(f(X),g(Y))|f:X \to Z,g:Y \to Z$$
 are isom. embeddings to some metric space  $Z\}$ .

$$X_i \xrightarrow{GH} Y$$
, if  $d_{GH}(X_i, Y) \rightarrow 0$ .

# Gromov-Hausdorff distance/convergence

#### Definition (Gromov-Hausdorff distance)

Let X and Y be two compact metric spaces. The *Gromov-Hausdorff distance* between X and Y is defined as

$$d_{GH}(X,Y) = \inf\{d_H^Z(f(X),g(Y))|f:X \to Z,g:Y \to Z$$
 are isom. embeddings to some metric space  $Z\}$ .

$$X_i \xrightarrow{GH} Y$$
, if  $d_{GH}(X_i, Y) \to 0$ .

#### Facts:

- $d_{GH}(X, Y) = 0$  iff X is isometric to Y.
- $(\mathcal{M}et_c, d_{GH})$  is a complete metric space, where  $\mathcal{M}et_c$  is the isometry classes of all compact metric spaces.

## Gromov-Hausdorff distance/convergence

#### Definition (Gromov-Hausdorff distance)

Let X and Y be two compact metric spaces. The *Gromov-Hausdorff distance* between X and Y is defined as

$$d_{GH}(X,Y) = \inf\{d_H^Z(f(X),g(Y))|f:X \to Z,g:Y \to Z$$
 are isom. embeddings to some metric space  $Z\}$ .

$$X_i \stackrel{GH}{\longrightarrow} Y$$
, if  $d_{GH}(X_i, Y) \rightarrow 0$ .

#### Facts:

- $d_{GH}(X, Y) = 0$  iff X is isometric to Y.
- $(\mathcal{M}et_c, d_{GH})$  is a complete metric space, where  $\mathcal{M}et_c$  is the isometry classes of all compact metric spaces.

Pointed Gromov-Hausdorff convergence for locally compact metric spaces:  $(X_i, x_i) \xrightarrow{GH} (Y, y)$ , if  $B_r(x_i) \xrightarrow{GH} B_r(y)$  for all r > 0.



## How to use GH convergence

Wishlist: Precompactness to obtain convergent subsequences.

### How to use GH convergence

Wishlist: Precompactness to obtain convergent subsequences.

If we do have certain precompactness, then (after passing to a subsequence) we can use GH convergence to

- study a family of metric spaces: take a sequence  $X_i$ , then  $X_i \xrightarrow{GH} Y$ .
- study the infinitesimal structure of a metric space at a point:  $(r_iX,x) \xrightarrow{GH} (C_xX,v)$ , where  $r_i \to \infty$ .
- study the large structure of a non-compact metric space at infinity:  $(r_i^{-1}X, x) \xrightarrow{GH} (C_{\infty}X, v)$ , where  $r_i \to \infty$ .

### How to use GH convergence

Wishlist: Precompactness to obtain convergent subsequences.

If we do have certain precompactness, then (after passing to a subsequence) we can use GH convergence to

- study a family of metric spaces: take a sequence  $X_i$ , then  $X_i \xrightarrow{GH} Y$ .
- study the infinitesimal structure of a metric space at a point:  $(r_iX, x) \xrightarrow{GH} (C_xX, v)$ , where  $r_i \to \infty$ .
- study the large structure of a non-compact metric space at infinity:  $(r_i^{-1}X, x) \xrightarrow{GH} (C_{\infty}X, v)$ , where  $r_i \to \infty$ .

We can also study additional structures (functions, measures, group actions,...) on metric spaces by passing them from the sequence to limit space.



## Precompactness

#### Precompactness theorem (Gromov 1981)

Let  $X_i$  be a sequence of compact metric spaces.  $X_i$  has a convergent GH subsequence if it satisfies:

- (uniformly bounded diameter)  $\operatorname{diam} X_i \leq D$  for all i;
- (uniformly bounded covering) for any  $\epsilon > 0$ , there is a number Q such that  $X_i$  can be covered by Q many  $\epsilon$ -balls for all i.

## Precompactness

### Precompactness theorem (Gromov 1981)

Let  $X_i$  be a sequence of compact metric spaces.  $X_i$  has a convergent GH subsequence if it satisfies:

- (uniformly bounded diameter)  $\operatorname{diam} X_i \leq D$  for all i;
- (uniformly bounded covering) for any  $\epsilon > 0$ , there is a number Q such that  $X_i$  can be covered by Q many  $\epsilon$ -balls for all i.

As an example, a sequence that do not have any convergent subsequence: attaching segments to a common point.

## Precompactness

### Precompactness theorem (Gromov 1981)

Let  $X_i$  be a sequence of compact metric spaces.  $X_i$  has a convergent GH subsequence if it satisfies:

- (uniformly bounded diameter)  $\operatorname{diam} X_i \leq D$  for all i;
- (uniformly bounded covering) for any  $\epsilon > 0$ , there is a number Q such that  $X_i$  can be covered by Q many  $\epsilon$ -balls for all i.

As an example, a sequence that do not have any convergent subsequence: attaching segments to a common point.

Geometric objects with the uniformly bounded covering condition:

- Finitely generated groups with controlled growth
- Riemannian *n*-manifolds with Ricci curvature bounded below



## Growth of finitely generated groups

Let S be a finite generating set of a group  $\Gamma$ .

Word metric:

 $d_S(e,\gamma) = \min\{k|\gamma \text{ can be written as a word in } S \text{ of length } k\}.$   $d_S(\gamma,\gamma') = d_S(e,\gamma^{-1}\gamma').$ 

## Growth of finitely generated groups

Let S be a finite generating set of a group  $\Gamma$ .

Word metric:

 $d_S(e, \gamma) = \min\{k | \gamma \text{ can be written as a word in } S \text{ of length } k\}.$  $d_S(\gamma, \gamma') = d_S(e, \gamma^{-1}\gamma').$ 

Growth function:  $G_S(r) = \#\{\gamma \in \Gamma | d_S(e, \gamma) \leq r\}.$ 

 $\Gamma$  has polynomial growth, if  $G_S(r) \leq Cr^k$ . (This definition is indeed independent of the choice of S.)

## Growth of finitely generated groups

Let S be a finite generating set of a group  $\Gamma$ .

Word metric:

 $d_S(e,\gamma) = \min\{k | \gamma \text{ can be written as a word in } S \text{ of length } k\}.$  $d_S(\gamma,\gamma') = d_S(e,\gamma^{-1}\gamma').$ 

Growth function:  $G_S(r) = \#\{\gamma \in \Gamma | d_S(e, \gamma) \leq r\}.$ 

 $\Gamma$  has polynomial growth, if  $G_S(r) \leq Cr^k$ . (This definition is indeed independent of the choice of S.)

#### Examples:

- $\mathbb{Z}^k$  has polynomial growth (of degree k).
- The free group generated by two elements does not have polynomial growth.
- If a subgroup H has finite index in  $\Gamma$ , then  $\Gamma$  have the same growth type as H.



### Nilpotent groups

Abelian:  $[\Gamma, \Gamma] = \{e\}$ . Nilpotent:  $[\Gamma, \Gamma] = \Gamma^1, [\Gamma, \Gamma^i] = \Gamma^{i+1}$ ; eventually,  $\Gamma^m = \{e\}$ . Example: (Discrete) Heisenberg 3-group  $N = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\}.$  $N^1 = [N, N] = \left\{ egin{pmatrix} 1 & 0 & c \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \middle| c \in \mathbb{Z} 
ight\}.$  $N^2 = [N, N^1] = \{e\}.$ 

N has polynomial growth of degree 4.

### Nilpotent groups

Abelian:  $[\Gamma, \Gamma] = \{e\}.$ 

Nilpotent:  $[\Gamma, \Gamma] = \Gamma^1, [\Gamma, \Gamma^i] = \Gamma^{i+1}$ ; eventually,  $\Gamma^m = \{e\}$ .

Example: (Discrete) Heisenberg 3-group

$$N = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\}.$$

$$\mathcal{N}^1 = [\mathcal{N}, \mathcal{N}] = \left\{ egin{pmatrix} 1 & 0 & c \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \middle| c \in \mathbb{Z} 
ight\}.$$

$$N^2 = [N, N^1] = \{e\}.$$

*N* has polynomial growth of degree 4.

#### Theorem (Wolf 1968)

Any finitely generated (virtually) nilpotent group has polynomial growth.



### Theorem (Gromov 1981)

Any finitely generated group with polynomial growth is virtually nilpotent.

#### Theorem (Gromov 1981)

Any finitely generated group with polynomial growth is virtually nilpotent.

Gromov's approach: If  $\Gamma$  has polynomial growth, then the sequence  $(r_i^{-1}\Gamma, e, d_S)$  is precompact in GH, where  $r_i \to \infty$ . Passing to a subsequence,  $(r_i^{-1}\Gamma, e, d_S) \xrightarrow{GH} (G, e, d)$ . Then use the limit space (G, d) to prove the theorem.

#### Theorem (Gromov 1981)

Any finitely generated group with polynomial growth is virtually nilpotent.

Gromov's approach: If  $\Gamma$  has polynomial growth, then the sequence  $(r_i^{-1}\Gamma, e, d_S)$  is precompact in GH, where  $r_i \to \infty$ . Passing to a subsequence,  $(r_i^{-1}\Gamma, e, d_S) \xrightarrow{GH} (G, e, d)$ . Then use the limit space (G, d) to prove the theorem. (Simple) Examples:

- $\Gamma = \mathbb{Z}$ ,  $S = \{1\}$ , then  $G = \mathbb{R}$  with standard metric.
- $\Gamma = \mathbb{Z}^2$ ,  $S = \{(1,0), (0,1)\}$ , then  $G = \mathbb{R}^2$  with box metric.

### Theorem (Gromov 1981)

Any finitely generated group with polynomial growth is virtually nilpotent.

Gromov's approach: If  $\Gamma$  has polynomial growth, then the sequence  $(r_i^{-1}\Gamma, e, d_S)$  is precompact in GH, where  $r_i \to \infty$ . Passing to a subsequence,  $(r_i^{-1}\Gamma, e, d_S) \xrightarrow{GH} (G, e, d)$ . Then use the limit space (G, d) to prove the theorem. (Simple) Examples:

- $\Gamma = \mathbb{Z}$ ,  $S = \{1\}$ , then  $G = \mathbb{R}$  with standard metric.
- $\Gamma = \mathbb{Z}^2$ ,  $S = \{(1,0),(0,1)\}$ , then  $G = \mathbb{R}^2$  with box metric.

(Pansu 1982) Detailed description of (G, d)...leads to the study of Carnot groups and subRiemannian/subFinsler geometry.



# GH convergence in Riemannian geometry

### Gromov's precompactness theorem (1981)

Let  $(M_i, p_i)$  be a sequence of complete Riemannian n-manifolds of  $\text{Ric} \geq -(n-1)$ , then  $(M_i, p_i)$  has a GH convergent subsequence.

GH convergence provides a platform to study a class of Riemannian manifolds with uniform geometric conditions.

# GH convergence in Riemannian geometry

### Gromov's precompactness theorem (1981)

Let  $(M_i, p_i)$  be a sequence of complete Riemannian n-manifolds of  $\text{Ric} \geq -(n-1)$ , then  $(M_i, p_i)$  has a GH convergent subsequence.

GH convergence provides a platform to study a class of Riemannian manifolds with uniform geometric conditions.

Various curvature bounds:

$$\lambda \le \sec \le \Lambda$$
,  $\sec \ge \lambda$ ,  $\lambda \le \operatorname{Ric} \le \Lambda$ ,  $\operatorname{Ric} \ge \lambda$ .

Non-collapsing/collapsing:

$$\operatorname{vol}(B_1(p_i)) \geq v > 0, \quad \operatorname{vol}(B_1(p_i)) \to 0.$$



## Questions to be addressed

 $M_i^n \xrightarrow{GH} X$  with various geometric conditions.

#### Questions:

- What can we say about the structure of X?
- What can we say about the relations between X and  $M_i$  for large i?

### Questions to be addressed

 $M_i^n \xrightarrow{GH} X$  with various geometric conditions.

#### Questions:

- What can we say about the structure of X?
- What can we say about the relations between X and M<sub>i</sub> for large i?

Some geometric properties can be directly passed to X. (e.g. X is a length metric space.)

In general, when the sequence satisfies  $\mathrm{Ric} \geq -(n-1)$ , the limit space X may not be a topological manifold, may not be locally contractible, may not have integer Hausdorff dimension.

### Stability/Finiteness

Stability:  $M_i \xrightarrow{GH} X$  non-collapsing, under certain curvature conditions, X is a manifold diffeo./homeo. to  $M_i$  for i large. In some cases, certain convergence of Riemannian metrics holds.

### Stability/Finiteness

Stability:  $M_i \xrightarrow{GH} X$  non-collapsing, under certain curvature conditions, X is a manifold diffeo./homeo. to  $M_i$  for i large. In some cases, certain convergence of Riemannian metrics holds.

Stability  $\Rightarrow$  Finiteness: Suppose not...a sequence of mutually distinct  $M_i$ ...subsequence GH converges... $\rightarrow \leftarrow$  stability.

### Stability/Finiteness

Stability:  $M_i \xrightarrow{GH} X$  non-collapsing, under certain curvature conditions, X is a manifold diffeo./homeo. to  $M_i$  for i large. In some cases, certain convergence of Riemannian metrics holds.

Stability  $\Rightarrow$  Finiteness: Suppose not...a sequence of mutually distinct  $M_i$ ...subsequence GH converges... $\rightarrow$   $\leftarrow$  stability.

- (Cheeger 1970) Collection of closed *n*-manifolds M with  $|\sec| \le 1$ ,  $\operatorname{diam}(M) \le D$ ,  $\operatorname{vol}(M) \ge v > 0$  has finitely many diffeo. types.
- (Perelman 1991) Collection of closed *n*-manifolds M with  $\sec \ge -1$ ,  $\operatorname{diam}(M) \le D$ ,  $\operatorname{vol}(M) \ge v > 0$  has finitely many homeo. types.
- (Cheeger-Naber 2015) Collection of closed 4-manifolds M with  $|\mathrm{Ric}| \leq 3$ ,  $\mathrm{diam}(M) \leq D$ ,  $\mathrm{vol}(M) \geq v > 0$  has finitely many diffeo. types.



## General limit spaces

#### Curvature Limit spaces

```
|\sec| \le 1 orbit space (Cheeger, Gromov, Fukaya)
```

 $\sec \ge -1$  Alexandrov space (Burago, Gromov, Perelman)

 $\mathrm{Ric} \geq -(n-1)$  Ricci limit space (Cheeger, Colding, Naber)

## General limit spaces

#### Curvature Limit spaces

```
|\sec| \le 1 orbit space (Cheeger, Gromov, Fukaya)
```

 $\sec \ge -1$  Alexandrov space (Burago, Gromov, Perelman)

 $\mathrm{Ric} \geq -(n-1)$  Ricci limit space (Cheeger, Colding, Naber)

...also leads to the study of non-smooth metric spaces with synthetic curvature conditions.

## Maximally collapsed manifolds

 $(M, g_i) \xrightarrow{GH}$  point while keeping curvature bounded. Example: any closed flat manifold.

- Almost flat:  $|\sec| \le 1$ .
- Almost nonnegative sectional curvature:  $\sec \ge -1$ .
- Almost nonnegative Ricci curvature:  $Ric \ge -(n-1)$ .

## Maximally collapsed manifolds

 $(M, g_i) \xrightarrow{GH}$  point while keeping curvature bounded. Example: any closed flat manifold.

- Almost flat:  $|\sec| \le 1$ .
- Almost nonnegative sectional curvature:  $\sec \ge -1$ .
- Almost nonnegative Ricci curvature:  $Ric \ge -(n-1)$ .

Recall: Any closed flat manifold is finitely covered by a torus.

#### Theorem

If  $M^n$  is almost ..., then

- (Gromov 1978) M is finitely covered by a nilmanifold.
- (Kapovitch-Petrunin-Tuschmann 2010) *M* is finitely covered by a nilpotent space.
- (Kapovitch-Wilking 2012)  $\pi_1(M)$  is C(n)-nilpotent.



• (Rong 1996) Closed *n*-manifold *M* with  $0 < \delta \le \sec \le 1$ . Then  $\pi_1(M)$  is  $C(n, \delta)$ -cyclic.

- (Rong 1996) Closed *n*-manifold *M* with  $0 < \delta \le \sec \le 1$ . Then  $\pi_1(M)$  is  $C(n, \delta)$ -cyclic.
- (Petrunin-Tuschmann 1999) Collection of closed n-manifolds M with

```
\pi_1(M) = \pi_2(M) = 0, |\sec| \le 1, \operatorname{diam}(M) \le D has finitely many diffeo. types.
```

- (Rong 1996) Closed *n*-manifold *M* with  $0 < \delta \le \sec \le 1$ . Then  $\pi_1(M)$  is  $C(n, \delta)$ -cyclic.
- (Petrunin-Tuschmann 1999) Collection of closed *n*-manifolds M with  $\pi_1(M) = \pi_2(M) = 0$ ,  $|\sec| \le 1$ ,  $\operatorname{diam}(M) \le D$  has finitely many diffeo. types.
- (Kapovitch-Wilking 2012) Closed n-manifold M with  $\operatorname{Ric} \geq -(n-1), \quad \operatorname{diam}(M) \leq D.$  Then  $\pi_1(M)$  is generated by at most C(n,D) many elements.

- (Rong 1996) Closed *n*-manifold *M* with  $0 < \delta \le \sec \le 1$ . Then  $\pi_1(M)$  is  $C(n, \delta)$ -cyclic.
- (Petrunin-Tuschmann 1999) Collection of closed *n*-manifolds M with  $\pi_1(M) = \pi_2(M) = 0$ ,  $|\sec| \le 1$ ,  $\operatorname{diam}(M) \le D$  has finitely many diffeo. types.
- (Kapovitch-Wilking 2012) Closed n-manifold M with  $\operatorname{Ric} \geq -(n-1), \quad \operatorname{diam}(M) \leq D.$  Then  $\pi_1(M)$  is generated by at most C(n,D) many elements.
- (Pan 2017) Alternative proof of Milnor conjecture in dim 3: any open 3-manifold M with  $\mathrm{Ric} \geq 0$  has a finitely generated  $\pi_1(M)$ . (First proved by Liu 2013, using minimal surface theory.)