Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики

Высшая школа прикладной математики

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

по дисциплине «Математическая статистика»

Выполнила студентка гр.3630102/80101

А.А. Тимофеева

Руководитель доцент, к.ф.-м.н.

А.Н.Баженов

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
2.1 Боксплот Тьюки	5
2.1.1 Определение	5
2.1.2 Описание	5
2.1.3 Построение	6
2.2 Теоретическая вероятность выбросов	6
3 ПРОГРАММНАЯ РЕАЛИЗАЦИЯ	6
4 РЕЗУЛЬТАТЫ	7
4.1 Боксплот Тьюки	7
4.2 Доля выбросов	9
4.3 Теоретическая вероятность выбросов	10
5 ОБСУЖДЕНИЕ	10
6 ПРИЛОЖЕНИЕ	10

СПИСОК ИЛЛЮСТРАЦИЙ

Рис.1 Нормальное распределение	7
Рис.2 Распределение Коши	7
Рис.3 Распределение Лапласа	8
Рис.4 Распределение Пуассона	8
Рис.5 Равномерное распределение	9

СПИСОК ТАБЛИЦ

Таблица 1: Доля выбросов	9
Таблица 2: Теоретическая вероятность выбросов	10

1 ПОСТАНОВКА ЗАДАЧИ

Для 5 распределений:

- Нормальное распределение N(x,0,1)
- Распределение Коши С(x, 0, 1)
- Распределение Лапласа $L(x, 0, \frac{1}{\sqrt{2}})$
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Стенерировать выборки размером 20 и 100 элементов. Построить для них боксплот Тьюки. Для каждого распределения определить долю выбросов экспериментально (сгенерировать выборку, соответствующую распределению 1000 раз, и вычислив среднюю долю выборов) и сравнить с результатами, полученными теоретически.

2 ТЕОРИЯ

2.1 Боксплот Тьюки

2.1.1 Определение

Боксплот (англ. box plot) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей.

2.1.2 Описание

Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Несколько таких ящиков можно нарисовать бок о бок, чтобы визуально сравнивать одно распределение с другим; их можно располагать как горизонтально, так и вертикально. Расстояния между различными частями ящика позволяют определить степень разброса (дисперсии) и асимметрии данных и выявить выбросы.

2.1.3 Построение

Границами ящика служат первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов). Длину «усов» определяют разность первого квартиля и полутора межквартильных расстояний и сумма третьего квартиля и полутора межквартильных расстояний. Формула имеет вид

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), \quad X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1),$$
 (1)

где X_1 — нижняя граница уса, X_2 — верхняя граница уса, Q_1 — первый квартиль, Q_3 — третий квартиль. Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков.

2.2 Теоретическая вероятность выбросов

Встроенными средствами языка программирования Python в среде разработки PyCharm можно вычислить теоретические первый и третий квартили распределений (Q_1^T и Q_3^T соответственно). По формуле (1) можно вычислить теоретические нижнюю и верхнюю границы уса (X_1^T и X_1^T соответственно). Выбросами считаются величины x, такие что:

$$\begin{bmatrix}
x < X_1^T \\
x > X_2^T
\end{bmatrix}$$
(2)

Теоретическая вероятность выбросов для непрерывных распределений

$$P_B^T = P(x < X_1^T) + P(x > X_2^T) = F(X_1^T) + (1 - F(X_2^T))$$
(3)

где $F(X) = P(x \le X) - функция распределения$

3 ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm. Исходный код лабораторной работы приведён в приложении.

4 РЕЗУЛЬТАТЫ

4.1 Боксплот Тьюки

Рис.1 Нормальное распределение

Рис.2 Распределение Коши

Рис.3 Распределение Лапласа

Рис.4 Распределение Пуассона

Рис. 5 Равномерное распределение

4.2 Доля выбросов

Округление доли выбросов:

Выборка случайна, поэтому в качестве оценки рассеяния можно взять дисперсию пуассоновского потока: $D_n \approx \sqrt{n}$

Доля
$$p_n=\frac{D_n}{n}=\frac{1}{\sqrt{n}}$$
 Для $n=20$: $p_n=\frac{1}{\sqrt{n}}-$ примерно 0.2 или 20% Для $n=100$: $p_n=0.1$ или 10%

Исходя из этого можно решить, сколько знаков оставлять в доле выбросов.

Выборка	Доля выбросов
Normal, n = 20	0.02
Normal, n = 100	0.01
Cauchy, n = 20	0.15
Cauchy, n = 100	0.16
Laplace, n = 20	0.07
Laplace, $n = 100$	0.06
Pois, $n = 20$	0.02
Pois, n = 100	0.01
Unif, n = 20	0
Unif, n = 100	0

Таблица 1: Доля выбросов

4.3 Теоретическая вероятность выбросов

Распределение	Q_1^T	Q_3^T	X_1^T	X_2^T	P_B^T
Нормальное распределение	-0.674	0.674	-2.698	2.698	0.007
Распределение Коши	-1	1	-4	4	0.156
Распределение Лапласа	-0.490	0.490	-1.961	1.961	0.063
Распределение Пуассона	8	12	2	18	0.008
Равномерное распределение	-0.866	0.866	-3.464	3.464	0

Таблица 2: Теоретическая вероятность выбросов

5 ОБСУЖДЕНИЕ

По данным, приведенным в таблице, можно сказать, что чем больше выборка, тем ближе доля выбросов будет к теоретической оценке. Снова доля выбросов для распределения Коши значительно выше, чем для остальных распределений. Равномерное распределение же в точности повторяет теоретическую оценку - выбросов мы не получали.

Боксплоты Тьюки действительно позволяют более наглядно и с меньшими усилиями оценивать важные характеристики распределений. Так, исходя из полученных рисунков, наглядно видно то, что мы довольно трудоёмко анализировали в предыдущих частях.

6 ПРИЛОЖЕНИЕ

Код программы URL:https://github.com/tmffv/MathStat/blob/master/lab3/lab3.py