Review: Direction Vectors & slope

Given line segment AB. If slope $m = \frac{b}{a} \in run$

then $\overrightarrow{m} = (a,b) \leftarrow$ direction vector

<u>ex1</u>: Determine the equivalent vector and parametric egns of the line y= 3x-4.

Solution:

y-int:
$$(0,-4)$$

If $m = \frac{2}{3}$, $m = (3,2)$
vector eqn.
 $(x,y) = (0,-4) + +(3,2)$

parametric equation:

$$X = 0 + 3t$$
 or $X = 3t$
 $Y = -4 + 2t$ or $Y = -4 + 2t$

 $e \times 2$: Given the vector equation r = (2,-2) + t(-1,3)determine the equivalent slope y-intercept form.

Solution:

$$: m = \frac{3}{-1} = -3$$

line contains the point (2,-2)

$$-2 = -3(2) + b$$

$$-2 = -6 + 6$$

$$y = -3x + 4$$

exi Determine the acute & formed at the point of intersection created by the lines: $L_1: (x_1y) = (3,1) + t(1,3)$ $L_{2}: (x,y) = (-1,-2) + t(2,-3)$ Solution: dot product the direction Vectors (1,3),(2,-3)=|(1,3)|(2,-3)|(050) $(1)(2) + (3)(-3) = \sqrt{1^2+3^2} \sqrt{2^2+(-3)^2} \cos \Theta$ $2 - 9 = \sqrt{10} \sqrt{13} (050)$ -7 = (050 0=127.9° : the acute angle is 52.1°

ex: For the pair of lines

$$x=3$$
 and $5x-10y+20=0$,

determine the size of the
acute angle created by the
intersection of the lines.

Solution:

For $x=3$, $m_1 = (0,1)$

and $5x-10y+20=0$, $\vec{n}^2 = (5,-10)$
 $\vec{m}_1^2 = (10,5)$ or $(2,1)$

So $\cos \theta = \frac{\vec{m}_1 \cdot \vec{m}_2}{|\vec{m}_1| |\vec{m}_2|}$
 $\cos \theta = (0,1) \cdot (2,1)$
 $\sqrt{3+1^2} \sqrt{2^2+1^2}$
 $\cos \theta = \frac{(0)(2)+(1)(1)}{\sqrt{1}}$
 $\cos \theta = \frac{1}{\sqrt{5}}$
 $\theta = 63^\circ$