Organización de Computadoras CURSO 2022

TURNO RECURSANTES

CLASE 1

- Organización y Arquitectura de Computadoras Diseño para optimizar prestaciones, Stallings W., Editorial Prentice Hall (5ta edición).
- Organización de Computadoras, Tanenbaum A., Editorial Prentice Hall (4ta edición).
- Estructura de Computadores y Periféricos, Martinez Durá R. et al., Editorial Alfaomega, 2001.
- Arquitectura de Computadores Un enfoque cuantitativo, Hennessy & Patterson., Editorial Mc Graw Hill (1ra edición).
 - http://weblidi.info.unlp.edu.ar/catedras/organiza/
 - Curso "Recursantes Organización de Computadoras" en IDEAS

- > Representación de tipos de datos numéricos
 - Números sin signo
 - Números con signo
- Operaciones aritméticas básicas
- Banderas de condición
- Otras tipos de representaciones
 - > BCH
 - > BCD
 - Caracteres

4

- > Para operar, las computadoras utilizan señales eléctricas.
- Si bien las señales eléctricas pueden adoptar infinitos valores, desde los comienzos de la computación se observó que era más fácil operar con ellas si se asumía que podían tomar solo 2 valores discretos: alto y bajo, en lugar de n valores (por ejemplo 10).
- ➤ El valor alto se lo puede asociar al valor 1, y el bajo al 0 (podría ser al revés, también).

5

- Es decir, es <u>más difícil</u> identificar una variable eléctrica con muchos niveles que una con solo 2 niveles.
 - Ejemplo :
 - > lámpara encendida ó apagada (2 posibles niveles o estados)
 - lámpara encendida con 10 intensidades distintas (10 posibles niveles o estados)
- En el ejemplo anterior, es más fácil conocer el "estado" de la lámpara en el primer caso (encendida o apagada), que determinar alguna de las 10 intensidades distintas.

Las computadoras manejan 2 tipos básicos de datos (binarios):

- Númericos (números)
 - enteros (con/sin signo)
 - reales (con signo)
 - decimales codificados en binario (BCD)
- Alfanuméricos (caracteres)
 - Alfabéticos
 - Símbolos

Representación de números

enteros

- Sin signo: números positivos
 - Binario sin signo (BSS)
- Con signo: números positivos y negativos
 - Módulo y signo (BCS)
 - Complemento a uno (Ca1) Complemento a la base reducida
 - Complemento a dos (Ca2) Complemento a la base
 - Exceso

<u>Números enteros sin signo -</u> Binario sin signo (BSS)

- Todos los números se consideran positivos (incluyendo el 0).
- Cada combinación de bits representa un número BSS distinto. La cantidad de combinaciones distintas depende de la cantidad de bits empleados en la representación y del rango del número a representar.
- ➤ La asignación se ordena correlativamente en forma ascendente a partir de 0.

Números enteros sin signo -Binario sin signo (BSS)

Ejemplo:

- Quiero representar un número entero positivo en el rango de 0 a 7 (8 números).
 - Asignando una combinación por cada número a representar, se necesitan 8 combinaciones.
 - Usando 3 bits se tendrán 8 combinaciones.
 - Cada combinación se asigna a un número distinto, ordenándolos de forma creciente.

Números enteros sin signo -Binario sin signo (BSS)

Resultado:

Representación BSS Decimal equiv.

000

001

010

....

111

8

combinaciones

Números enteros sin signo -Binario sin signo (BSS)

Ejemplo: n = 8 bits (combinaciones=256)

Representación BSS	Decimal
0000000	0
•••••	••••
0111111	127
1000000	128
••••••	••••
1111111	255

256 combinaciones

<u>Números enteros sin signo -</u> Binario sin signo (BSS)

- ➤ La cantidad de representaciones distintas depende del número n de bits empleado.
- Si se usan n bits, se pueden representar 2ⁿ números distintos.
- > El rango de un número en BSS es, por lo tanto:

$$0 \longrightarrow (2^n - 1)$$

Existen varias formas de representación de números enteros con signo:

- Binario con Signo BCS (también llamado Módulo y Signo MYS)
- > Técnica de Complementos:
 - Complemento a 1
 - Complemento a 2
- > Técnica de Exceso

- ➤ Si el número usa n bits, 1 bit representa el signo, y los n-1 bits restantes, el valor absoluto (o la magnitud).
- Se acostumbra a usar el bit del extremo izquierdo para el signo (bit posición n-1), y los bits restantes para la magnitud (posiciones 0 a n-2).
- > En n bits:

- Un 0 en el bit de signo indica que el número es positivo, y un 1 indica que el número es negativo.
- Los n-1 bits restantes representan el valor absoluto en binario.
- ightharpoonup Rango de la magnitud: $0 \longrightarrow 2^{n-1}-1$
- (comparar con BSS).
- Rango del número en BCS:

$$-(2^{n-1}-1) \longrightarrow +(2^{n-1}-1)$$

con 2 representaciones del cero

Ejemplos:

Escala numérica con n= 3 bits

$$000 = +0$$

$$001 = +1$$

$$010 = +2$$

$$011 = +3 = +(2^{n-1} -1)$$

$$100 = -0$$

$$101 = -1$$

$$110 = -2$$

$$111 = -3 = -(2^{n-1} - 1)$$

Escala numérica con n=8 bits

Números 00000000 +0

positivos ...

 $01111111 + 127 + (2^{n-1}-1)$

Números 10000000 -0

negativos < ...

 $11111111 -127 -(2^{n-1}-1)$

Propiedades del BCS:

- > El primer bit sólo indica el signo.
- > Los positivos empiezan con cero (0).
- Los negativos empiezan con uno (1).
- Hay dos representaciones del cero.
- > El intervalo es simétrico.
- ▶ Dado que el 0 está duplicado (positivo y negativo) hay en total 2ⁿ-1 números distintos, es decir 1 menos que la cantidad en binario sin signo.

Fundamentos de las técnicas de Complementos

Definición:

"Se define el complemento de un número A a un número N (con A menor que N) como la cantidad que le falta a A para llegar a N".

Es decir:

Complemento a N de A = N - A

Propiedad: el complemento a un número N del número (N-A) es igual a A, ya que:

Complemento a N de (N-A) = N - (N-A) = A

- Si n es el número de bits a usar para la representación, entonces:
- ➢ OPCIÓN 1: si N = baseⁿ − 1, es decir N = 2ⁿ 1
 se llama Complemento a la base disminuída o Complemento a 1 (Ca1).
 - ➢ OPCIÓN 2: si N= baseⁿ, es decir N =2ⁿ
 se llama Complemento a la base o Complemento a 2 (Ca2)

Supongamos que se representarán números en Ca1 usando n bits:

า-1 (

Número en CA1 de n bits

23

- Se define:
 - Los <u>números positivos</u> se representan igual que en BSS y BCS.
 - Los <u>números negativos</u> son complementarios de los positivos, es decir, se obtienen como Ca1 de los positivos:

es decir:

N° negativo = Ca1 de N° positivo = N - N° positivo

donde:

$$N = 2^n - 1$$

Ejemplo: supongamos trabajar números en CA1 en 8 bits, es decir n=8.

El número 7 positivo se representará como:

▶ De acuerdo a la definición de CA1, el 7 negativo se obtiene como CA1 del número 7 positivo. Si N = 28 -1, entonces:

$$-7_{10} = N - 00000111$$
 , es decir

$$-7_{10}$$
= (2⁸ -1) – 00000111 , o bien

$$-7_{10}$$
= 11111111 - 00000111

$$-7_{10}$$
= 11111000

Otros ejemplos:

$$+32_{10} = 00100000$$
 $-32_{10} = 11011111$
 $+8_{10} = 00001000$ $-8_{10} = 11110111$
 $+41_{10} = 00101001$ $-41_{10} = 11010110$

> Escala numérica con n= 3 bits

$$000 = +0$$

$$001 = +1$$

$$010 = +2$$

$$011 = +3 = +(2^{n-1}-1)$$

$$100 = -3 = -(2^{n-1}-1)$$

$$101 = -2$$

$$110 = -1$$

$$111 = -0$$

Escala numérica con n=8 bits

Números positivos

•••

$$01111111 + 127 + (2^{n-1} - 1)$$

Números negativos

•••

Propiedades del CA1:

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- Los números complementarios tienen los bits invertidos
- Hay 2 representaciones del cero (+0 y -0)
- Rango de la representación en CA1:

$$-(2^{n-1}-1) \longrightarrow +(2^{n-1}-1)$$

Dada una cadena de bits en representación CA1 ¿qué número decimal representa?

Cuando es positivo (bit mas significativo en 0):

como siempre (es decir, como en BCS)

Ejemplo:

 $01100000 = 1 \times 2^6 + 1 \times 2^5 = 64 + 32 = 96$

Cuando es negativo, se pueden usar 3 métodos:

Opción 1: hacer el Ca1 del número negativo para obtener el positivo:

Ejemplo: qué número decimal representa el número 11100000 representado en CA1?

- 1) El CA1 del 11100000 es 00011111
- 2) El número 00011111 es igual +31
- 3) Entonces 11100000 es igual a -31

31

Opción 2: por cálculo del "peso" de cada dígito binario,
 el bit más significativo tiene un peso de:

peso del primer dígito =
$$-(2^{n-1}-1)$$

el resto de los dígitos tienen todos peso positivo (como en BSS y BCS).

Ejemplo:

$$11100000 = -1x(2^{7} - 1) + 1x2^{6} + 1x2^{5} =$$

$$= -127 + 64 + 32 = -31$$

➤ Opción 3: encontrar el complementario positivo, aplicando la definición de Ca1 = $(2^n - 1)$ - N°

Resumen propiedades del CA1

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- Hay dos ceros (uno positivo y otro negativo)
- > El intervalo es simétrico
- ▶ Dado que el 0 está duplicado (positivo y negativo) hay en total 2ⁿ-1 números distintos, es decir 1 menos que la cantidad en binario sin signo.

33

Supongamos que se representarán números en Ca2 usando n bits :

34

- > Se define:
 - Los <u>números positivos</u> se representan igual que en BSS y BCS y Ca1
 - Los <u>números negativos</u> (o complementarios de los positivos) se obtienen como Ca2 de los positivos:

es decir:

N° negativo= Ca2 de N° positivo = N - N° positivo

donde:

$$N=2^n$$

Ejemplo: supongamos trabajar números en CA2 en 8 bits. Es decir n=8.

El número 7 positivo se representará como:

▶ De acuerdo a la definición de CA2, el 7 negativo se obtiene como CA2 del número 7 positivo. Si N = 28, entonces:

$$-7_{10} = N - 00000111$$
 , es decir

$$-7_{10}$$
= (2⁸) – 00000111 , o bien

$$-7_{10}$$
= 100000000 - 00000111

haciendo la cuenta:

Hay que restar 0000111 de 10000000:

Comparar este resultado con el obtenido para la representación del -7 en CA1 visto anteriormente.

> Escala numérica con n= 3 bits

$$000 = +0$$

$$001 = +1$$

$$010 = +2$$

$$011 = +3 = +(2^{n-1}-1)$$

$$100 = -4 = -(2^{n-1})$$

$$101 = -3$$

$$110 = -2$$

$$111 = -1$$

Escala numérica con n=8 bits

0000000 Números

+0

01111111

+127 $+(2^{n-1}-1)$

Números

positivos

10000000

-128

 $-(2^{n-1})$

negativos

11111111

Propiedades del CA2:

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- > Hay 1 sola representación del cero
- Dado que hay 1 sola representación del 0, hay en total 2ⁿ números distintos.
- ➤ Al tener la misma cantidad de números positivos, y 1 sola representación del 0, se agrega un número negativo más.
- Rango de la representación en CA1:

$$-(2^{n-1}) \longrightarrow +(2^{n-1}-1)$$

Dada una cadena de bits en representación CA2 ¿qué número decimal representa?

Cuando es positivo (bit mas significativo en 0):

como siempre (es decir, como en BCS)

Ejemplo:

 $01100000 = 1 \times 2^6 + 1 \times 2^5 = 64 + 32 = 96$

Cuando es negativo (bit más significativo en 1) tengo varias opciones:

- Opción 1: aplicar la definición : bⁿ N_o
- Opción 2: calcular el Ca1 y sumarle 1 al resultado.
- Opción 3: usar regla práctica, "mirando" el número desde la derecha, repetir los dígitos binarios hasta el primer bit en 1 inclusive, y luego invertir los demás bits.
- > Opción 4: considerando el "peso" que tiene el bit de signo.

Opción 1: aplicar la definición de Ca2 para obtener el complementario positivo. Es decir, si N_o es el número negativo que quiero calcular, se debe hacer:

2ⁿ – N_o (para obtener el complementario positivo)

- Opción 2: calcular el CA1 y sumarle 1
- Ejemplo: qué número decimal representa el número 11100000 representado en CA2?
- 1) El CA1 del 11100000 es 00011111 = +31
- 2) El número en CA2 es igual al CA1+1, es decir +32
- 3) Entonces 11100000 en CA2 es igual a -32

- Opción 3: Usando la siguiente regla práctica, para encontrar el complementario positivo:
 - Se toma el número binario negativo.
 - Se barre el número de derecha a izquierda.
 - Si el bit es 0, el complementario también es 0.
 - Se repite el barrido hasta encontrar el primer bit en 1. El complementario tendrá ese bit en 1.
 - > A partir del primer 1 (excluído) se invierten los bits restantes.

Ejemplo:

número negativo: 11100000 (🛑 barrido

Complementario positivo: 00100000 que es el número +32₁₀

- ✓ Los dígitos en rojo se copiaron igual
- ✓ Los dígitos en azul se invirtieron

Opción 4: el "peso" que tiene el bit más significativo ahora es –(2ⁿ⁻¹) y el resto de los bits con "pesos" positivos (como siempre):

Ejemplo:

$$111000000 = -1x2^{7} + 1x2^{6} + 1x2^{5}$$
$$= -128 + 64 + 32 = -32$$

Resumen propiedades del CA2

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- Hay un solo cero
- Hay un negativo más
- > El intervalo es asimétrico
- ➢ Hay 2ⁿ números distintos

Técnica de Exceso

➤ La representación de un número A en exceso E es la que corresponde de sumar al número A un valor constante, denominado Exceso E.

Exceso E de A = A + E

▶ Dado un número A representado en exceso E, el número A se obtiene <u>RESTANDO</u> al número en exceso el valor constante E (exceso).

$$A = (Exceso E de A) - E$$

> El signo del número A es el que se obtiene de la resta.

Representación en Exceso 2ⁿ-1

Ejemplo

Supongamos que:

n=6

y:

$$E = 2^n - 1 = 2^5 = 32$$

Número en E

Número decimal

0000002

 $=0-32=-32_{10}=\underline{-2^{(6-1)}}$

••••••

••••••

 $= 32 - 32 = 0_{10}$

100000₂

.....

111111,

 $= 63 - 32 = 31_{10} = 2^{(6-1)} - 1$

Representación en Exceso 2ⁿ-1

Rango de representación de E 2ⁿ -1

$$-2^{(n-1)} \le x \le 2^{(n-1)} - 1$$

- Una sola representación del 0.
- ➤ No sigue la regla de las representaciones anteriores: los positivos empiezan con 1, y los negativos con 0.
- Rango asimétrico.

Sistemas Posicionales

$$3574_{10} = 3000 + 500 + 70 + 4$$

= $3 \times 10^3 + 5 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$

3 unidades de mil + 5 centenas + 7 decenas + 4 unidades

Teorema Fundamental de la Numeración

$$N^{\circ} = \sum_{i=-m} (digito)_i \times (base)^i$$

... +
$$x_4 \times B^4 + x_3 \times B^3 + x_2 \times B^2 + x_1 \times B^1 + x_0 \times B^0 + x_{-1} \times B^{-1} + x_{-2} \times B^{-2} + ...$$

<u>Ejemplo en Base 10</u>

Dígitos {0,1,2,3,4,5,6,7,8,9}

$$3,1416_{10} = 3x10^{0} + 1x10^{-1} + 4x10^{-2} + 1x10^{-3} + 6x10^{-4}$$

... +
$$x_4 \times B^4 + x_3 \times B^3 + x_2 \times B^2 + x_1 \times B^1 + x_0 \times B^0 + x_{-1} \times B^{-1} + x_{-2} \times B^{-2} + ...$$

Sistema posicional base binario

<u>Ejemplo en Base 2</u>

Dígitos {0,1}

$$1001,1_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1}$$

$$= 8 + 0 + 0 + 1 + 0,5$$

$$= 9,5_{10}$$

Sistema posicional base hexadecimal

<u>Ejemplo en Base 16</u>

```
Dígitos \{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}
10,11,12,13,14,15
2CA,8_{16} = 2 \times 16^{2} + C \times 16^{1} + A \times 16^{0} + 8 \times 16^{-1}
= 512 + 192 + 10 + 0,5
= 714,5_{10}
```

- Los sistemas numéricos de punto fijo son sistemas de representación de números reales, que consideran que todos los números a representar tienen exactamente la misma cantidad de dígitos, y la coma fraccionaria está siempre ubicada en el mismo lugar.
- En el sistema decimal, los números podrían tener el siguiente formato de punto fijo:

0,23

5,12

9,11

En los 3 ejemplos anteriores, cada número tiene tres dígitos, y la coma está a la derecha del más significativo.

54

En el sistema binario, los números podrían tener el siguiente formato de punto fijo:

11,10
$$\longrightarrow$$
 (3,5)₁₀
01,10 \longrightarrow (1,5)₁₀
00,11 \longrightarrow (0,75)₁₀

- Hay 4 dígitos y la coma está entre el 2do y 3er dígito.
- La diferencia principal entre la representación en el papel y su almacenamiento en computadora, en este último caso no se guarda la coma en ningún lugar, se supone que está en un lugar determinado.

Rango y resolución

- Rango: diferencia entre el número mayor y el menor.
- > Resolución: diferencia entre dos números consecutivos.

Por ejemplo, dado un número decimal de 3 dígitos, con la coma después del 1er dígito:

 \triangleright Rango = 0,00 a 9,99

es decir [0,00...9,99]

➤ Resolución = 0,01

porqué?

Porque la diferencia entre 2 puntos consecutivos de la representación es siempre la misma, y vale:

Ejemplo:

- Si mantenemos tres dígitos y desplazamos la coma hasta la derecha del último dígito, el rango y la resolución cambian de la siguiente manera:
 - > Rango = 000 a 999

es decir [000...999]

- Resolución = 1
- Aumenta el rango y disminuye la resolución. Es decir, dada una cantidad determinada de cifras en la representación, hay un compromiso entre rango y resolución.
- \triangleright En cualquier caso, siempre hay 10^3 números distintos.

Binario sin signo en punto fijo

4 dígitos parte entera0 dígitos parte fraccionaria

Rango: [0...15]Resolución: $0001 - 0000 = 0001_2 = 1_{10}$

Binario	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Binario sin signo en punto fijo

3 dígitos parte entera

1 dígito parte fraccionaria

---,-

Rango: [0...7,5]

Resolución: 000,1 - 000,0 =

 $000,1_2 = 0,5_{10}$

Binario	Decimal
000,0	0
000,1	0,5
001,0	1
001,1	1,5
010,0	2
010,1	2,5
011,0	3
011,1	3,5
100,0	4
100,1	4,5
101,0	5
101,1	5,5
110,0	6
110,1	6,5
111,0	7
111,1	7,5

Binario sin signo en punto fijo

7	1/2:4		
2	dígitos	parte	entera

2 dígitos parte fraccionaria

--,--

Rango: [0...3,75]

Resolución: $00,01 - 00,00 = 0,01_2 = 0,25_{10}$

Binario	Decimal
00,00	0
00,01	0,25
00,10	0,5
00,11	0,75
01,00	1
01,01	1,25
01,10	1,5
01,11	1,75
10,00	2
10,01	2,25
10,10	2,5
10,11	2,75
11,00	3
11,01	3,25
11,10	3,5
11,11	3,75

Binario sin signo en punto fijo

1 dígito parte entera

3 dígitos parte fraccionaria

-,---

Rango: [0...1,875]

Resolución: $0,001 - 0,000 = 0,001_2 = 0,125_{10}$

Binario	Decimal
0,000	0
0,001	0,125
0,010	0,25
0,011	0,375
0,100	0,5
0,101	0,625
0,110	0,75
0,111	0,875
1,000	1
1,001	1,125
1,010	1,25
1,011	1,375
1,100	1,5
1,101	1,625
1,110	1,75
1,111	1,875

Binario sin signo en punto fijo

0 dígitos parte entera4 dígitos parte fraccionaria- - - -

Rango: [0...0,9375]Resolución:, $0001 - ,0000 = ,0001_2 = 0,0625_{10}$

Binario	Decimal
,0000	0
,0001	0,0625
,0010	0,125
,0011	0,1875
,0100	0,25
,0101	0,3125
,0110	0,375
,0111	0,4375
,1000	0,5
,1001	0,5625
,1010	0,625
,1011	0,6875
,1100	0,75
,1101	0,8125
,1110	0,875
,1111	0,9375

Representación y error

- ➤ Al <u>convertir un número decimal a binario</u> tendremos 2 situaciones: <u>sin error y con error</u>.
- ➤ 1) Sin error: existe el número binario que representa exactamente el número decimal. Supongamos que queremos convertir el número decimal 3,125₁₀.
- Podemos tener o no restricciones en la cantidad de bits a usar
 - Sin restricción en la cantidad de bits a usar

$$3,125_{10} = 11,001_{2}$$

- 11,001₂ representa exactamente el número decimal 3,125₁₀.
 - Con restricción: se requieren 3 bits para parte entera y 4 bits para parte fraccionaria

$$3,125_{10} = 011,0010_2$$

Se deben completar con 0 los bits requeridos.

63

- 2) Con error: se debe usar el número binario más próximo posible (menor error) al número decimal. Supongamos que queremos convertir el número decimal 3,210.
 - Si se usan 3 bits para parte fraccionaria, se tiene:

$$\triangleright$$
 011,001₂ = 3,125₁₀

$$\triangleright 011,010_2 = 3,250_{10}$$

Error =
$$3.2_{10} - 3.125_{10} = 0.075_{10}$$

Error =
$$3.2_{10} - 3.25_{10} = -0.05_{10}$$

> Si se usan 4 bits para parte fraccionaria, se tiene:

$$\triangleright$$
 011,0011₂ = 3,1875₁₀

Error =
$$3.2_{10} - 3.1875_{10} = 0.0125_{10}$$

> Si se usan 5 bits para parte fraccionaria, se tiene:

$$\triangleright$$
 011,00111₂ = 3,21875₁₀

Por mas que se agreguen bits decimales no se puede conseguir eliminar el error de conversión.

- \triangleright En el ejemplo anterior, el número binario que debería usarse es $011,0011_2$ que es igual a $3,1875_{10}$.
- Es decir, en lugar de almacenar 3.2_{10} se deberá usar 3.1875_{10} , cometiéndose un error igual a 0.0125_{10} .

Suma y resta en binario

- Una suma en binario se realiza en forma similar a una suma decimal.
- Se suman dígito a dígito (es decir bit a bit) los n dígitos (los n bits) de cada número, empezando por el menos significativos (derecha), y considerando los arrastres hacia las posiciones siguientes a la izquierda.
- ➤ La resta en binario se realiza en forma similar a una suma decimal. A veces es más sencillo pasar el sustraendo a su complementario y luego sumar.

Suma y resta en binario

- Cuando se suman o restan 2 números es útil detectar ciertas situaciones resultantes de la operación.
- Por ejemplo:
 - > El resultado es cero?
 - El resultado es negativo?
 - > El resultado es correcto?
- Una situación que puede ocurrir es que el resultado no "entre" en la cantidad de bits usados para la representación.
- Que un resultado no "entre" en la representación significa que el resultado requiere más bits de los usados para poder representarlo. Esta situación es idéntica a la que ocurre cuando operamos en decimal.

Suma y resta en binario

Ejemplo: sumar 2 números decimales de 1 cifra

resultado entra en 1 cifra

resultado necesita 2 cifras (no entra en 1 cifra)

- Para atender las situaciones antes mencionadas el procesador usa unos bits internos denominados <u>BITS DE</u> <u>CONDICIÓN</u> (flags o banderas de estado) que reflejan el resultado de una operación aritmética previa.
- Sus valores ("estados") permiten tomar decisiones tales como decidir si se toma un camino u otro (transferencia de control), o relaciones entre números (mayor, menor, igual).
- ➤ Típicamente, los procesadores disponen de varias banderas de estado.

Bits (banderas) de condición

- Bandera de cero (Z)
 - Z = 1 si el resultado de la operación es igual a 0.
- Bandera de arrastre o "carry" (C)
 - En sumas: C = 1 si hay acarreo del bit más significativo
 - En restas C = 1 si hay pedido ('borrow') hacia el bit más significativo.

Observación: cuando la operación involucra números sin signo, C=1 indica una condición de desborde o fuera de rango (es decir, el resultado no entra en la cantidad de bits de la representación).

70

Bandera de negativo (N):

N = 1 si el bit más significativo del resultado es 1

Observación: la bandera supone que el número está en una representación con signo (típicamente CA2) donde el bit, más significativo identifica el signo del número.

71

Bandera de desborde u overflow (V)

V = 1 si el resultado está fuera de rango (desborde) en Ca2.

Observación: la bandera V indica que el resultado de una operación aritmética <u>en CA2</u> no se puede expresar con el número de bits utilizado ("no entra" en la cantidad de bits usados).

Hay 2 situaciones para identificar:

- 1) Suma
- 2) Resta

- Bandera de desborde en la suma
- Ocurre cuando al sumar 2 números, el resultado no entra en la cantidad de bits usados.
- Cuando hay Overflow en la suma?
 - Sumando dos números + y el resultado es –
 - Sumando dos números y el resultado es +
- Cuando NO hay Overflow en la suma?
 - Sumando números de distinto signo.

Bits (banderas) de condición

Lógica de la bandera V en operaciones de suma

- V = 1 (es decir hay overflow en la suma) si:
 - Suma de 2 números + y el resultado es –
 - Suma de 2 números y el resultado es +

y:

- V = 0 (es decir no hay overflow en la suma) si:
 - Suma de 2 números de distinto signo.

- Bandera de desborde en la resta
- Ocurre cuando al restar 2 números, el resultado no entra en la cantidad de bits usados.
- Cuando hay Overflow en la resta?
 - Restando a un número + un número y el resultado es –
 - Restando a un número un número + y el resultado es +
- Cuando NO hay Overflow en la resta?
 - Restando 2 números de igual signo.

Bits (banderas) de condición

Lógica de la bandera V en operaciones de resta

- V = 1 (es decir hay overflow en la resta) si:
 - Resta a un número + un y el resultado es -
 - Resta a un número un + y el resultado es +

y:

- V = 0 (es decir no hay overflow en la resta) si:
 - Resta de números de igual signo.

- √ Ca2: correcto
- ✓ BSS: correcto

$$+\frac{0101}{0111}$$
 $+\frac{1010}{+7}$
 $+\frac{+5}{+7}$
 $+\frac{+7}{+12}$

- ✓ Ca2: incorrectory
- ✓ BSS: correcto

- ✓ Ca2: correcto
- ✓ BSS: incorrecto

- ✓ Ca2: incorrect

 *
- ✓ BSS: incorrecto

- ✓ Ca2: incorrectory
- ✓ BSS: correcto

- √ Ca2: corrector
- ✓ BSS: incorrecto

Como sería una operación aritmética de números binarios con signo (BCS)?

Ejemplo: se tienen que sumar los siguientes números en BCS:

Como sería el algoritmo de suma?

Existen otras representaciones que se usan en sistemas de cómputo. Por ejemplo:

- > BCH
- > BCD
- Caracteres

Sistema hexadecimal codificado en binario (BCH)

Representación en BCH:

- En el sistema hexadecimal se tienen 16 dígitos (0-9, A, B, C, D, F).
- Cada dígito hexadecimal requiere 4 bits para representarlo en binario.
- Para pasar de hexadecimal a binario se convierte cada dígito hexadecimal en 4 bits.
- Por ejemplo:

ADF4₁₆ = 1010 1101 1111 0100₂

BCH

Dígito hexadecimal	Código BCH
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
В	1011
C	1100
D	1101
E	1110
F	1111

Sistema decimal codificado en binario (BCD)

Representación en BCD:

- En el sistema decimal se tienen 10 dígitos (0-9).
- ➤ Por lo tanto cada dígito decimal requiere 4 bits para representarlo en binario.
- ➤ El problema surge porque con 4 bits tengo 16 combinaciones (representaciones) distintas, de las cuales solo se están usando 10. El resto de las combinaciones no son números decimales (BCD).

BCD

Dígito decimal	Código BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

<u>BCD</u>

88

Hay 6 representaciones binarias que no se usan en la representación BCD:

```
1010 (A)
```

Eso significa que si aparece un número binario mayor a 9, no es BCD.

- BCD tiene dos ámbitos de aplicación:
- Operaciones de E/S y comunicaciones con periféricos
- Los números se codifican usando 8 bits por dígito (un byte) : BCD desempaquetado.
- En cálculos aritméticos

Los números se codifican usando 4 bits por dígito: BCD empaquetado.

- Por cada dígito se usan 8 bits
 - Los 4 bits menos significativos representan el número decimal (dígitos de 0 a 9).
 - Los 4 bits más significativos se completan con "1".

Ejemplo

834 = 111111000 111110011 111110100 = F8 F3 F4

- Por cada dígito se usan 8 bits
 - Los 4 bits menos significativos representan el número decimal (dígitos 0 al 9)
 - Los 4 bits más significativos del último dígito representan el signo:
 - C_{16} = 1100 representa al signo +
 - $\triangleright D_{16} = 1101$ representa al signo -

Ejemplo:

Los 4 bits que acompañan al último dígito indican el signo.

- Por cada dígito decimal se usan 4 bits.
- Si faltan bits para completar el byte se rellena con 0 en la posición más significativa.

Ejemplo:

```
+834 = 10000011 01001100 = 83 4C
```

-34 = 0000001101001101 = 034D

- De las 16 representaciones posibles con 4 bits, usamos 10 para los dígitos 0 al 9
- Nos sobran 6 combinaciones de 4 bits
- Al sumar dos dígitos BCD, se nos presentan dos casos :
 - la suma es ≤ 9
 - la suma es > 9

El resultado es correcto porque ambas cifras del resultado son menores que 9.

```
Suma > 9
decimal
                 BCD
                   111
  15
  42
                  no válido
```

- Dado que en BCD no existen las cifras mayores a 9, cuando la suma de algún dígito da >9 significa que el resultado está mal. La máquina operó en BCH sin tener en cuenta que los números eran BCD.
- Sin embargo se puede compensar (ajustar) el resultado para llevarlo a BCD, teniendo en cuenta la "distancia" entre las representaciones BCH y BCD. Esa distancia entre ambas representaciones es igual a 6.
- La corrección a BCD se consigue sumando 6 a las cifras que hayan resultado ser mayores que 9.
- Conclusión: cuando la suma de los dígitos es > 9 hay que sumar 6 en ese dígito.

Ejemplo 1:

Ejemplo 2:

Representación alfanumérica

- Letras (mayúsculas y minúsculas)
- Dígitos decimales (0, ..., 9)
- Signos de puntuación
- Caracteres especiales
- "Caracteres" u órdenes de control

Representación alfanumérica

```
A cada símbolo un código en binario:
Ejemplo: x, y, \alpha, \beta, #, @, [, ]
Si tengo 8 símbolos ¿Cuántos bits? ¿Por qué?
         000
         001
         010
               α
              β
         011
         100
              #
               @
         101
         110
         111
```

- > FIELDATA
 - 26 letras mayúsculas + 10 dígitos + 28 caracteres especiales
 - ► Total 64 combinaciones ⇒ Código de 6 bits
- > ASCII American Standard Code for Information Interchange
 - FIELDATA + minúsculas + ctrl
 - ► Total 128 combinaciones ⇒ Código de 7 bits

Algunos códigos

- > ASCII extendido
 - > ASCII + multinacional + semigráficos + matemática
 - Código de 8 bits
- EBCDIC Extended BCD Interchange Code
 - similar al ASCII pero de IBM
 - Código de 8 bits

Tabla ASCII

```
Dec Hx Oct Char
                                       Dec Hx Oct Html
                                                       Chr
                                                             Dec Hx Oct Html Chr
                                                                                 Dec Hx Oct Html Chr
                                                             64 40 100 @#64; 0
                                       32 20 040   Space
                                                                                 96 60 140 @#96;
    0 000 NUL (null)
                                       33 21 041 6#33; !
                                                              65 41 101 A A
                                                                                 97 61 141 6#97;
    1 001 SOH (start of heading)
                                       34 22 042 6#34: "
                                                              66 42 102 B B
                                                                                 98 62 142 6#98;
    2 002 STX (start of text)
                                       35 23 043 4#35; #
                                                              67 43 103 C C
                                                                                 99 63 143 4#99;
    3 003 ETX (end of text)
                                       36 24 044 4#36; $
                                                                                100 64 144 @#100; d
    4 004 EOT (end of transmission)
                                                                44 104 D D
                                       37 25 045 @#37; %
                                                              69 45 105 E E
                                                                                101 65 145 @#101; 6
    5 005 ENQ (enquiry)
                                       38 26 046 @#38; @
                                                              70 46 106 @#70; F
                                                                                102 66 146 f f
    6 006 ACK (acknowledge)
                                       39 27 047 @#39; '
                                                              71 47 107 @#71; G
                                                                                103 67 147 @#103; g
    7 007 BEL (bell)
                                       40 28 050 @#40; (
    8 010 BS
              (backspace)
                                                              72 48 110 @#72; H
                                                                                104 68 150 @#104; h
    9 011 TAB (horizontal tab)
                                       41 29 051 @#41; )
                                                              73 49 111 6#73; I
                                                                                105 69 151 @#105; 1
                                                              74 4A 112 @#74; J
                                                                                106 6A 152 @#106; j
    A 012 LF
              (NL line feed, new line)
                                       42 2A 052 @#42; *
    B 013 VT
              (vertical tab)
                                       43 2B 053 + +
                                                                4B 113 K K
                                                                                107 6B 153 @#107; k
    C 014 FF
              (NP form feed, new page)
                                       44 20 054 6#44;
                                                              76 4C 114 L L
                                                                                108 6C 154 @#108; 1
              (carriage return)
                                       45 2D 055 &#45: -
                                                              77 4D 115 @#77; M
                                                                                109 6D 155 @#109; m
    D 015 CR
    E 016 SO
              (shift out)
                                       46 2E 056 .
                                                              78 4E 116 @#78; N
                                                                                110 6E 156 n n
                                       47 2F 057 @#47; /
   F 017 SI
                                                                4F 117 @#79; 0
                                                                                111 6F 157 @#111; 0
              (shift in)
                                       48 30 060 4#48; 0
                                                              80 50 120 6#80; P
                                                                                112 70 160 @#112; p
16 10 020 DLE (data link escape)
17 11 021 DC1 (device control 1)
                                       49 31 061 6#49; 1
                                                              81 51 121 6#81; 0
                                                                                113 71 161 @#113; q
                                       50 32 062 4#50; 2
                                                              82 52 122 @#82; R
                                                                                114 72 162 @#114; r
18 12 022 DC2 (device control 2)
                                                              83 53 123 S S
19 13 023 DC3 (device control 3)
                                       51 33 063 4#51; 3
                                                                                |115 73 163 @#115; <mark>3</mark>
20 14 024 DC4 (device control 4)
                                       52 34 064 @#52: 4
                                                              84 54 124 T T
                                                                                116 74 164 @#116; t
                                       53 35 065 4#53; 5
                                                              85 55 125 U U
                                                                                117 75 165 u u
21 15 025 NAK (negative acknowledge)
22 16 026 SYN (synchronous idle)
                                       54 36 066 @#54; 6
                                                              86 56 126 V V
                                                                                118 76 166 v V
23 17 027 ETB (end of trans. block)
                                       55 37 067 4#55; 7
                                                              87 57 127 6#87; ₩
                                                                                119 77 167 @#119; ₩
                                       56 38 070 4#56; 8
                                                                58 130 X X
                                                                                120 78 170 @#120; X
24 18 030 CAN (cancel)
                                       57 39 071 4#57; 9
                                                              89 59 131 4#89; Y
                                                                                121 79 171 @#121; Y
25 19 031 EM
              (end of medium)
              (substitute)
                                       58 3A 072 @#58; :
                                                              90 5A 132 @#90; Z
                                                                                122 7A 172 @#122; Z
26 1A 032 SUB
                                                                                123 7B 173 @#123; {
27 1B 033 ESC (escape)
                                       59 3B 073 &#59; ;
                                                              91 5B 133 [ [
28 1C 034 FS
              (file separator)
                                       60 3C 074 < <
                                                              92 5C 134 @#92; \
                                                                                124 7C 174 @#124;
29 1D 035 GS
                                       61 3D 075 = =
                                                              93 5D 135 ] ]
                                                                                125 7D 175 } }
              (group separator)
                                       62 3E 076 > >
                                                              94 5E 136 @#94; ^
                                                                                126 7E 176 @#126; ~
30 1E 036 RS
              (record separator)
                                                             95 5F 137 _
                                                                                127 7F 177 @#127; DEL
31 1F 037 US
                                       63 3F 077 4#63; ?
              (unit separator)
```

Una extensión al ASCII

128	Ç	144	É	160	á	176	1000 1000 1000	193	上	209	₹	225	ß	241	±
129	ü	145	æ	161	í	177	******	194	т	210	π	226	Γ	242	≥
130	é	146	Æ	162	ó	178	*****	195	ŀ	211	Ш	227_	π	243	≤
131	â	147	ô	163	ú	179		196	-	212	L	228	Σ	244	1
132	ä	148	ö	164	ñ	180	4	197	+	213	F	229	σ	245	1
133	à	149	ò	165	Ñ	181	4	198	ÆÌ	214	l m	230	μ	246	÷
134	å	150	û	166	•	182	1	199	ŀ	215	#	231	τ	247	æ
135	ç	151	ù	167	٥	183	en 🖢	200	L	216	+	232	Φ	248	۰
136	ê	152		168	ò	184	7	201	F	217	J	233	•	249	
137	ë	153	Ö	169		185	4	202	<u>JL</u>	218	Г	234	Ω	250	
138	è	154	Ü	170	A	186		203	īF	219		235	δ	251	V
139	ï	156	£	171	1/2	187	ī	204	ŀ	220		236	00	252	_
140	î	157	¥	172	1/4	188	ī	205	=	221		237	ф	253	2
141	ì	158	77.	173	i	189	Ш	206	#	222		238	ε	254	
142	Ä	159	f	174	«	190	4	207	<u></u>	223		239	\wedge	255	
143	Å	192	L	175	»	191	٦	208	Ш	224	α	240	=		

mayor información ...

- Capítulo 8: Aritmética del computador (8.1., 8.2., 8.3.) Stallings, 5ta Ed.
- Apéndice 8A: Sistemas de Numeración Stallings, 5ta Ed.
- Sistemas enteros y Punto fijo
- Apunte 1 de Cátedra
- Capítulo 3: Lógica digital y representación numérica Apuntes COC Ingreso 2013