

한이음(CT) 멘토링 2022 한이음 ICT 공모전

팀원: 김효진 전성현 최재영 박승렬 임종은

| 시장/기술 동향 분석

[표1] 분야별 피해실태

(단위:백만원)

연도	계	농작물	양식장	항공기	전력시설
2014	28,284	10,883	853	1,006	15,542
2015	23,644	10,672	532	215	12,225
2016	30,119	10,911	1,525	1,278	16,405
2017	37,653	12,676	995	6,424	17,558
2018	35,082	11,767	808	1,374	21,133

1) 야생동물에 의한 피해액은 지난 2014년 282억 8,400만원에서 2018년 350억 8,200만원으로 연 평균 5.5%의 높은 증가율을 나타 낸다.

2) 고에너지 먹이를 선호하는 멧돼지

와 고라니에 의한 농작물 피해 규

모는 매년 100억원 이상 발생한다.

[표3] 유해야생동물별 농작물 피해실태

(단위:백만원)

연도	계	멧돼지	고라니	꿩	까치	청설모	오리류	기타[주2]
2014	10,883	4,202	2,309	458	1,710	94	475	1,635
2015	10,672	4,701	2,055	300	1,588	138	353	1,537
2016	10,911	5,648	2,460	259	1,263	79	276	926
2017	12,676	7,850	2,269	259	1,276	62	260	700
2018	11,767	6,509	2,593	404	1,021	59	394	787

3) 현재의 유해 야생동물 퇴치 방법으로는 한계점이 많다.

[주2] 기타: 멧비둘기, 어치, 참새 등

개발 배경

기존방식	예시	한계점
포획과 사냥		정해진 기간에 허가 필요함, 매몰, 소각, 멸균 등의 <mark>처리방법이 까다로움.</mark> 실제로 수행되기에 위험하고 <mark>농촌 인력이 부족함, 환</mark> 경단체에서의 가혹성에 대 해 문제 제기.
전기철책	''' 충북 옥천 밭 전기 울타리에 감전…부녀 숨져	합선으로 인한 <mark>산불 위험</mark> , 감전으로 인한 <mark>인명피해</mark> 가 매년 발생.
철망		땅을 파고 침입할 <mark>많은 설치비용을</mark> 필요로 함.
설치형 퇴치기	등문헌오음향 (사이벤,메,녹대,총) 자동 변환 강력한 정별 품빛	<mark>감지 및 퇴치 범위의 한계로</mark> 인해 다수를 설치해야 하고 <mark>쉽게 적용하여</mark> 효과가 미비함.

개발 목표

- 좁은 감지 및 퇴치 범위
- 많은 설치비용
 - >> 삭도(RopeWay)로 주행하는 로봇
- 인명 피해
 - >> 소형 열화상 카메라, Web Cam으로 정확한 객체 판단
- 농촌 인력 부족
 - >> 지능형 로봇으로 실시간 일람을 전송하여 즉각적인 대처가능
- 적응
 - >> 천적의 울음소리, Power LED 발광하며 추적하여 퇴치 효과 극대화

한이음(11) 멘토링 제어기 및 제어회로의 특징

Jetson Nano 4GB

Open CR 1.0

로봇 구조

로봇 구조

Manipulator

로봇 구조

Gymbal

객체 판단 : 낮

Deep Learning으로 사람과 유해 야생동물 판단

- YOLOv4-tiny를 사용하여 학습
- 각 객체마다 1100장 이미지 데이터로 가중치모델 구축

객체 판단 : 밤

영상처리를 사용해 사람과 유해 야생동물 판단

- 열화상 카메라의 픽셀값 추출
- 2족 보행의 사람과 4족 보행의 동물의 가로 세로 비율 설정

열화상 카메라를 이용한 감지 결과

객체 판단 : 밤

야행성 동물 망막 뒤에 있는 역반사체 '휘판'을 야간 감지 방법으로 사용

객체 판단: 밤

영상처리를 사용해 사람과 유해 야생동물 인식

- 원 검출 일고리즘을 적용
- 어두운 주변 환경에서 안광의 원 모양 검출

LED를 이용한 휘판 빛 반사효과 감지 결과

객체 판단: 알람

A robot that uses a ropeway to combat harmful animals

기대효과

기술적 측면

- 기존 퇴치 방법의 한계를 뛰어넘는 시스템
- 삭도 주행 시 뒤집기, 꺾기 동작으로 공중에서의 자유로운 움직임

사회적 측면

- 무인 순찰 시스템을 도입하여 농촌 인구 감소화로 부족한 인력 대체
- 동물에게 해를 끼치지 않는 퇴치방법으로 동물 가혹성 문제 해결

경제적 측면

- 퇴치기 1대로 넓은 감지 및 퇴치 범위를 가질 수 있어 비용 절감
- 태양열 충전으로 영구적인 시스템을 운영할 수 있음

뒤집기 동작

꺾기 동작

로봇 센서 구성도

야생동물 퇴치 흐름도

3. 논 또는 밭에 7m 내로 접근시 PIR 센서 로 객체 판단함.

객체:사람

객체가 사람이기 때문에 퇴 치 동작을 수행하지 않음.

)) 객체 : 유해 야생동물

- 4. 객체 판단 일고리즘을 통해 객체가 유해 야생동물이라고 판단함.
- 5. 스피커에서 혐오소리 발생 및 LED 발광 등의 퇴치 동작을 수행함.
- 6. 퇴치 될 때 까지 객체를 추적함.

- 1. PIR센서에 객체가 탐지되기 전 까지 삭도를 순찰함.
- 2. 삭도를 주행하며 꺾기 및 뒤집 기 동작 수행함.

농민

- 7. 유해 야생동물 침입 시 실시간 영상과 시간, 위치를 농민에게 전송함.
- 8. 농민이 로봇의 웹캠을 조종하여 농작물의 상태를 확인함.

한이음(***) 멘토링 2022 한이음 ICT 공모전

팀원: 김효진 전성현 최재영 박승렬 임종은