ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ	2
ВВЕДЕНИЕ	3
1 ОБЗОР ЛИТЕРАТУРЫ	
1.1 Станок с ЧПУ	4
1.2 Состав устройства	4
1.3 Шаговый электродвигатель	4
1.4 Драйвер шагового двигателя	6
1.5 Лазерный диод	
1.6 Микроконтроллер	8
1.7 Обзор аналогов	9
1.7.1 Лазерный гравер Sculpfun S9	9
1.7.2 Промышленные лазерные граверы	9
1.7.3 Любительские лазерные граверы	
1.7.4 Требования для разработки	. 10
2 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ	. 11
2.1 Постановка задачи	.11
2.2 Определение компонентов структуры устройства	.11
2.3 Взаимодействие компонентов устройства	.11
3 РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ	. 13
3.1 Контроллер Arduino Nano	. 13
3.2 Драйверы шагового двигателя А4988	. 13
3.3 Лазерный модуль	
4 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ	. 15
4.1 Микроконтроллер	. 15
4.2 Лазерный модуль	. 15
4.3 Модули драйверов шаговых двигателей	. 15
4.4 Расчет мощности элементов схемы	. 15
ЗАКЛЮЧЕНИЕ	. 17
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	. 18
ПРИЛОЖЕНИЕ А	. 19
ПРИЛОЖЕНИЕ Б	. 20
ПРИЛОЖЕНИЕ В	. 21
ПРИЛОЖЕНИЕ Г	. 22
ПРИЛОЖЕНИЕ Д	. 23
ПРИЛОЖЕНИЕ Е	. 24

ВВЕДЕНИЕ

Целью курсовой работы является проектирование и реализация лазерного гравера с ЧПУ для гравировки изображений и резки материала.

В будущем данный гравер можно применять для изготовления сувенирной продукции, домашнего декора и других изделий.

В роли основного вычислительного устройства будет использовано Arduino nano, а также драйверы шаговых двигателей A4988. Такие комплектующие были выбраны так, как они были в наличии и соответствовали всем необходимым требованиям для реализации проекта.

В данном проекте рассмотрено проектирование и сборка станка. Реализация ПО и связи компьютера с микроконтроллером рассматривается в другом проекте.

1 ОБЗОР ЛИТЕРАТУРЫ

1.1 Станок с ЧПУ

Станки с ЧПУ — это станки с компьютерным управлением. До ЧПУ станки управлялись вручную механиками. С помощью ЧПУ компьютер управляет сервоприводами, которые приводят машину в действие. Таким образом, постоянного человеческого внимания не требуется. Примерная структурная схема станка ЧПУ представлена на рисунке 1.1.

Рис. 1.1 – структурная схема станка ЧПУ.

Для ЧПУ пишут программы обработки деталей, используя специальный язык программирования G-Code. Программа обработки детали создается либо посредством написания кода с нуля, либо с помощью специального ПО, которое преобразовывает чертеж детали, созданных в программах для работы с векторными изображениями, в G-код.

1.2 Состав устройства

Устройство осуществляет такие функции, как перемещение лазерного модуля по оси X и Y, гравировка и резка при помощи лазера. Для проектирования разрабатываемого устройства необходимы следующие составляющие:

- микроконтроллер Arduino nano
- 2 драйвера шагового двигателя А4988
- 3 шаговых двигателя
- лазерный модуль
- блок питания

1.3 Шаговый электродвигатель

Шаговый электродвигатель — это вращающийся электродвигатель с дискретными угловыми перемещениями ротора, осуществляемыми за счет импульсов сигнала управления.

Шаговые (импульсные) двигатели непосредственно преобразуют управляющий сигнал виде последовательности импульсов В пропорциональный числу импульсов и фиксированный угол поворота вала или линейное перемещение механизма без датчика обратной связи. Это обстоятельство упрощает систему привода и заменяет замкнутую систему следящего привода (сервопривода) разомкнутой, обладающей такими преимуществами, как снижение стоимости устройства (меньше элементов) и увеличение точности в связи с фиксацией ротора шагового двигателя при отсутствии импульсов сигнала.

Очевиден и недостаток привода с шаговым двигателем: при сбое импульса дальнейшее слежение происходит с ошибкой в угле, пропорциональной числу пропущенных импульсов.

Поэтому в задачах, где требуются высокие характеристики (точность, быстродействие) используются серводвигатели. В остальных же случаях из-за более низкой стоимости, простого управления и неплохой точности обычно используются шаговые двигатели. Шаговый двигатель, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор - неподвижная часть, ротор - вращающаяся часть. Устройство шагового электродвигателя приведено на рисунке 1.2:

Рис. 1.2 – Устройство шагового электродвигателя.

Одним из определяющих параметров шагового двигателя является шаг ротора, то есть угол поворота ротора, соответствующий одному импульсу. Шаговый двигатель делает один шаг в единицу времени в момент изменения импульсов управления. Величина шага зависит от конструкции двигателя: количества обмоток, полюсов и зубьев. В зависимости от конструкции двигателя величина шага может меняться в диапазоне от 90 до 0,75 градусов. С помощью системы управления можно еще добиться уменьшения шага пополам используя соответствующий метод управления.

1.4 Драйвер шагового двигателя

Шаговые двигатели применяются там, где требуется высокая точность перемещений. Примеры использования — принтеры, факсы и копировальные машины, станки с ЧПУ, 3D-принтеры. Для управления шаговыми двигателями используют специальные устройства — драйверы шаговых двигателей.

В проекте будут использованы драйверы шаговых двигателей на чипе А4988 на каждую ось. Они позволят управлять двигателями с точностью до 1/16 шага, а также задавать направление и скорость вращения.

Точность 1/16 является ключевым аспектом при выборе комплектующих, так как это напрямую влияет на точность гравировки.

Аналоги А4988 обладают лучшими характеристики, но в них нет необходимости в рамках данного проекта. Также драйверы А4988 более доступные по стоимости и возможности приобрести.

Таблица 1.1 — Сравнение драйверов шагового двигателя

Параметры сравнения	A4988	TMC2100	S6609
Деление микрошага	1/16	1/256	1/256
Напряжение питания логики (B)	3 - 5	3 - 5	3 - 5
Напряжение питания двигателя (B)	8 - 35	5,5 - 46	5,5 - 40
Максимальный фазный ток (A)	2	1,2	2
Защита от перегрева	да	да	да

Популярный драйвер шагового двигателя A4988 работает от напряжения 8 - 35 В и может обеспечить ток до 1 А на фазу без радиатора (и до 2 А с радиатором). Модуль A4988 имеет защиту от перегрузки и перегрева. Одним из параметров шаговых двигателей является количество шагов на один оборот 360°. Например, для шаговых двигателей Nema17 это 200 шагов на оборот, т.е 1 шаг равен 1.8°. Драйвер A4988 позволяет увеличить это значение за счёт возможности управления промежуточными шагами и имеет пять режимов микрошага (1(полный), 1/2, 1/4, 1/8 и 1/16).

Для работы в режиме микрошага необходим слабый ток. На модуле A4988 поддерживает тока можно ограничить находящимся на плате потенциометром. Драйвер очень чувствителен к скачкам напряжения по питанию двигателя, поэтому производитель рекомендует устанавливать электролитический конденсатор большой емкости по питанию VMOT для сглаживания скачков.

Рис. 1.3 – Выводы драйвера А4988.

1.5 Лазерный диод

Лазерный диод — полупроводниковый лазер, построенный на базе диода. Его работа основана на возникновении инверсии населённостей в области p-n-перехода при инжекции носителей заряда.

Когда на анод обычного диода подаётся положительный потенциал, то говорят, что диод смещён в прямом направлении. При этом электроны из nобласти инжектируются в р-область, а дырки из р-области инжектируются в побласть р-п-перехода полупроводника. Если электрон и дырка оказываются «вблизи» (на расстоянии, когда возможно туннелирование), TO они могут рекомбинировать с выделением энергии В виде фотона определённой длины волны (в силу сохранения и фонона (в силу сохранения импульса, потому что фотон уносит импульс). Такой процесс называется спонтанным излучением и является основным источником излучения в светодиодах.

Однако, при определённых условиях, электрон и дырка перед рекомбинацией могут находиться в одной области пространства достаточно долгое время (до микросекунд). Если в этот момент через эту область пространства пройдёт фотон нужной (резонансной) частоты, он может вызвать вынужденную рекомбинацию с выделением второго фотона, причём его направление, вектор поляризации и фаза будут в точности совпадать с теми же характеристиками первого фотона.

В лазерном диоде полупроводниковый кристалл изготавливают в виде очень тонкой прямоугольной пластинки. Такая пластинка по сути является оптическим волноводом, где излучение ограничено В относительно небольшом пространстве. Верхний слой кристалла легируется для создания побласти, а в нижнем слое создают р-область. В результате получается плоский р-п-переход большой площади. Две боковые стороны (торцы) кристалла полируются для образования гладких параллельных плоскостей, которые образуют оптический резонатор, называемый резонатором Фабри-Перо. Случайный фотон спонтанного излучения, испущенный перпендикулярно этим плоскостям, пройдёт через весь оптический волновод и несколько раз отразится от торцов, прежде чем выйдет наружу. Проходя вдоль резонатора,

он будет вызывать вынужденную рекомбинацию, создавая новые и новые фотоны с теми же параметрами, и излучение будет усиливаться (механизм вынужденного излучения). Как только усиление превысит потери, начнётся лазерная генерация. Внутреннее устройство лазерного диода приведено на рисунке 1.4

Рис. 1.4 – Внутреннее устройство лазерного диода.

В данном проекте будет использован лазер мощностью 5.5Вт для обеспечения достаточной мощности при гравировке.

1.6 Микроконтроллер

Arduino — это платформа для создания электроники своими руками. К печатной плате, которая является миниатюрным компьютером, можно подсоединять различные компоненты, например датчики, экраны, переключатели. Или даже другие платы со своими функциями.

«Мозг» любого конструктора Arduino — это собственно одноимённая плата. На ней есть процессор, модули памяти и порты ввода-вывода, к которым подключаются другие компоненты.

Есть большое количество разнообразных микроконтроллеров Arduino с различными характеристиками для выполнения различных задач. Для сравнения были выбраны микроконтроллеры Arduino Nano, Arduino Uno, Arduino Mega.

Таблица 1.2 — Сравнение микроконтроллеров

Параметры сравнения	Arduino Nano	Arduino UNO	Arduino Mega
Микроконтроллер	Atmega328	Atmega328	Atmega2560
Рабочее напряжение (В)	5	5	5
Цифровые входы/выходы	14	14	54

Аналоговые входы/выходы	8	6	16
Разъем подключения к пк	micro-USB	USB A-B	USB A-B

В данном курсовом проекте будет использоваться версия платформы под названием Arduino Nano. Платформа Nano, построенная на микроконтроллере ATmega328 (Arduino Nano 3.0) или ATmega168 (Arduino Nano 2.x), имеет небольшие размеры и может использоваться для решения большого спектра задач.

Так как в данном курсовом проекте критично важна эргономичность и небольшие размеры в целом, то выбор Nano как основы проекта выглядит оправдано.

Рис. 1.5 – Выводы платы Arduino Nano.

1.7 Обзор аналогов

1.7.1 Лазерный гравер Sculpfun S9

Данный аналог является самым близким по реализации и самым серьезным конкурентом разрабатываемого устройства. Данное устройство позволяет выполнять лазерную гравировку и резку высокого качества при небольших размерах устройства по сравнению с профессиональными станками промышленного уровня. Основные концепции конструкции схожи с разрабатываемым устройством. Однако данное устройство имеет большую стоимость, чем себестоимость разрабатываемого устройства.

1.7.2 Промышленные лазерные граверы

Промышленные лазерные граверы применяются для раскроя и гравировки (маркировки) материала. Они отличаются разнообразием обрабатываемого материала — стекло, акрил, дерево, пластик, шпон, ткань, кожа, резина, картон, искусственный камень и многое другое.

Данные устройства имеют очень большие габариты и требует специальной техники для транспортировки. Их стоимость и сложность обслуживание не подходит любителям.

1.7.3 Любительские лазерные граверы

Любительские граверы имеют меньшие габариты и стоимость. Их проще обслуживать и использовать в домашних условиях.

1.7.4 Требования для разработки

Выявив главные минусы аналогов (в данном случае дороговизна устройства и трудности в транспортировке), можно выделить обязательные требования для данной разработки.

Устройство должно быть легко переносимым и дешёвым в разработке, при этом выполняющим свою задачу с высоким качеством. Лазерный гравер должен управляться при помощи компьютера и выполнять гравировку на основе выбранных на компьютере изображений.

2 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ

2.1 Постановка задачи

На данном этапе будет разработана и составлена структурная схема, в виде крупных блоков и связей между ними, на базе которых в дальнейшем будет строиться функциональная схема устройства.

В ходе данного курсового проекта необходимо сконструировать микропроцессорное устройство, способное передвигать лазерный модуль по осям X и Y. Разрабатываемое устройство должно выполнять следующие залачи:

- обработка полученного сигнала;
- перемещение лазерного модуля согласно полученным координатам и прожиг при помощи лазера.

2.2 Определение компонентов структуры устройства

Структурная схема должна состоять из блоков, обеспечивающих полную функциональность курсовой работы. В схеме будут обязательно использоваться следующие компоненты:

- контроллер Arduino nano;
- драйверы шагового двигателя;
- шаговые двигатели;
- лазерный модуль;
- резистор;
- конденсаторы;
- концевые выключатели.

В связи с этим, данную схему следует разделить на блоки, полностью соответствующие данным компонентам (т.е. такие блоки, в которых будет использоваться каждый из компонентов). Схема разработанного устройства, представленного в приложении A, состоит из следующих блоков:

- устройство управления;
- драйвер шагового двигателя (ось X);
- драйвер шагового двигателя (ось Y);
- шаговый двигатель (ось X);
- два шаговых двигателя (ось Y);
- лазерный модуль.

2.3 Взаимодействие компонентов устройства

Рассмотрим каждый блок в отдельности.

Устройством управления является контроллер Arduino Nano. Контроллер будет анализировать данные, приходящие с компьютера в форме G-кода и выполнять расчёты на основе этих данных. Сигнал с контроллера будет подаваться на два драйвера шагового двигателя и лазер.

Один из ключевых блоков - лазерный модуль, который отвечает за прожиг изображения на материале.

Драйверы шаговых двигателей на чипе A4988 применяются на каждую ось X и Y соответственно. Они позволят управлять двигателями с точностью до 1/16 шага, а также задавать направление и скорость вращения. Точность 1/16 является ключевым аспектом при выборе комплектующих, так как это напрямую влияет на точность гравировки. Сигнал с драйверов подаётся напрямую на шаговые двигатели.

Рабочая поверхность станка находится в двухмерном пространстве. Поэтому будут применяться два шаговых двигателя для позиционирования лазерного модуля по оси X и Y.

Данные блоки полностью обеспечивают функциональную составляющую курсового проекта, в связи с чем не будут заменяться в будущем. Также стоит отметить, что данную схему можно было бы реализовать гораздо сложнее, использовав большее количество элементов, однако в данной отрасли простота является также одним из важнейших качеств, которое учитывается при разработке схемы.

3 РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ

Данный раздел пояснительной записки является основным разделом, дающим ключ к пониманию работы проектируемого устройства и исчерпывающую информацию об обработке цифровых и аналоговых сигналов согласно назначению устройства. Функциональная схема устройства представлена в приложении Б.

3.1 Контроллер Arduino Nano

Одними из ключевых элементов схемы является контроллер Arduino. Arduino получает G-code с компьютера через micro-USB порт. На основе полученного G-кода, Arduino подает сигналы «dir» - направление и «step» — шаг, на соответствующие входы драйверов. А также подает разрешающий сигнал на лазерный модуль.

3.2 Драйверы шагового двигателя А4988

Каждый драйвер отвечает за свою ось шаговых двигателей. Драйверы А4988 позволяют выставлять необходимую точность шага.

Назначения контактов драйвера А4988:

- ENABLE включение/выключение драйвера;
- MS1, MS2, MS3 контакты для установки микрошага;
- RESET сброс микросхемы;
- STEP генерация импульсов для движения двигателей (каждый импульс шаг), можно регулировать скорость двигателя;
 - DIR установка направление вращения;
 - VMOT питание для двигателя (8 35 B);
 - GND общий;
 - 2В, 2А, 1А, 1В для подключения обмоток двигателя;
 - VDD питание микросхемы (3.5 5B).

Технические характеристики драйвера А4988:

- напряжения питания: 8-35 В;
- режим микрошага: 1, 1/2, 1/4, 1/8, 1/16;
- напряжение логики: 3-5.5 В;
- защита от перегрева;
- максимальный ток на фазу: 2 А с радиатором;
- размер: 20 x 15 мм.

В данном проекте требуется наивысшая точность. Максимальная точность, которую может предоставить драйвер A4988 — 1/16 шага. Комбинации для выбора микрошага приведены на рисунке 3.1.

MS1	MS2	MS3	Microstep Resolution
Low	Low	Low	Full Step
High	Low	Low	1/2 Step
Low	High	Low	1/4 Step
High	High	Low	1/8 Step
High	High	High	1/16 Step

Примечание: Low - перемычки не установлены, High - перемычки установлены

Рис. 3.1 – Комбинация значений для выбора микрошага.

Для этого надо установить соответствующее значение на контактах драйвера, замкнув перемычками контакты MS1, MS2, MS3 на землю схемы. Шаговые двигатели подключаем к контактам A1, A2, B1, B2 драйвера. К контактам с обозначением «А» подключаются выходы одной катушки двигателя, к контактам с обозначением «В» - второй катушки двигателя. На контакты VDD и GND подаем питание через конденсаторы.

Соединение контроллера Arduino Nano с драйверами и шаговыми двигателями приведено на рисунке 3.2.

Рис. 3.2 – Соединение контроллера Arduino Nano с драйверами и шаговыми двигателями.

3.3 Лазерный модуль

Лазерный модуль отвечает за прожиг изображения на материале. Было принято решение использовать готовый лазерный модуль на 5.5Bт.

4 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ

Принципиальная схема является наиболее полной электрической схемой изделия, на которой изображают все электрические элементы и устройства, необходимые для осуществления и контроля в изделии заданных электрических процессов, все связи между ними, а также элементы подключения (разъемы, зажимы), которыми заканчиваются входные и выходные цепи. В данном разделе будут рассмотрены основные элементы схемы с последующим объяснением. Полученная принципиальная схема представлена в приложении В.

4.1 Микроконтроллер

Информация о выбранном микроконтроллере Arduino Nano представлена в пункте 3.1 раздела 3, а также в пункте 1.2 раздела 1.

Микроконтроллер соединен со всеми модулями схемы через цифровые входы и выходы. Питание на плату подаётся через micro-USB.

4.2 Лазерный модуль

Информация о выбранном устройстве приведена в пункте 1.5 раздела 1. Лазерный модуль подключается к цифровому выводу Arduino D2.

4.3 Модули драйверов шаговых двигателей

Информация о выбранном модуле приведена в пункте 1.4 раздела 4. Данные модули подключается к микроконтроллеру посредством пинов D8 - D11.

4.4 Расчет мощности элементов схемы

Таблица 4.1 – Расчет мощности элементов схемы устройства

Характеристики устройств	Ивх, В	Ітах,потр., А	Р,потр., Вт
Микроконтроллер Arduino Nano	5	0,04	0,2
Драйверы	5	0,5	2,5
Шаговые двигатели	12	1	12
Лазер	12	2	24
Суммарная мощность, Вт			38,7

Таким образом потребляемая мощность разрабатываемого устройства равна:

Для обеспечения надёжности закладывается 20% мощности, отсюда следует, что максимальная потребляемая мощность составляет 46,44Вт. Рассчитаем максимальный потребляемый ток:

$$I = P/U = 46,44/12 = 3,8A$$

Итоговая принципиальная схема приведена в приложении В.

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсового проекта был спроектирован, сконструирован и разработан лазерный гравер для лазерной гравировки изображений на материале при управлении компьютером.

Достоинства устройства:

- доступность элементной базы;
- простота конструкции и дешевизна проекта.

В дальнейшем возможна доработка проекта, исправление возможных ошибок, допущенных на момент первого проектирования и внесения корректировок. В дальнейшем возможно будет реализовать дополнительные интерфейсы для взаимодействия со станком.

Проектирование данного устройства дало представление об устройстве современной электроники и смогло дать основу в проектировании и реализации электрических схем.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. И.И. Глецевич, В.А. Прытков, А.В. Отвагин, Методические указания по дипломному проектированию для студентов специальности 40 02 01 «Вычислительные машины, системы и сети» всех форм обучения. Минск, 2019.
- 2. Документация Arduino [Электронный ресурс]. Режим доступа: https://www.arduino.cc/en/hardware#boards
- 3. Драйвер шагового двигателя A4988 [Электронный ресурс]. Режим доступа: https://3d-diy.ru/wiki/arduino-moduli/drajver-shagovogo-dvigatelya-a4988
- 4. AliExpress. (2021). 445nm 7W Blue Laser Module [Электронный ресурс]. Режим доступа: https://www.aliexpress.com/item/33033227669.html
- 5. Tindie. (2021). StepStick Stepper Motor Driver [Электронный ресурс]. Режим доступа: https://www.tindie.com/products/pololu/stepstick-a4988-stepper-motor-driver-carrier/
- 6. Adafruit Industries. (2021). Adafruit Metro Mini 328 Arduino Compatible 5V 16MHz [Электронный ресурс]. Режим доступа: https://www.adafruit.com/product/2590
- 7. Pololu. (2021). Pololu Electronics and Robotics [Электронный ресурс]. Режим доступа: https://www.pololu.com/
- 8. Instructables. (2021). Laser Cutter Start Slicing Stuff for Under 50 Dollars [Электронный ресурс]. Режим доступа: https://www.instructables.com/Laser-cutter-start-slicing-stuff-for-under-50-dol/
- 9. Jaycon Systems. (2021). Introduction to CNC Machines (Router, Milling Machine, Lathe, Laser Cutter) [Электронный ресурс]. Режим доступа: https://jayconsystems.com/blog/introduction-to-cnc-machines-router-milling-machine-lathe-laser-cutter
- 10. LulzBot. (2021). 3D Printer and CNC Machine Safety with Laser Safety Glasses [Электронный ресурс]. Режим доступа: https://www.lulzbot.com/learn/tutorials/3d-printer-and-cnc-machine-safety-laser-safety-glasses
- 11. SainSmart. (2021). SainSmart Genmitsu CNC Router 3018-PRO DIY Kit [Электронный ресурс]. Режим доступа: https://www.sainsmart.com/products/sainsmart-genmitsu-cnc-router-3018-pro-diy-kit
- 12. Zapmaker. (2021). Laser Controller [Электронный ресурс]. Режим доступа: http://zapmaker.org/projects/laser-controller/
- 13. Endurance Lasers. (2021). DIY laser engraver and cutter [Электронный ресурс]. Режим доступа: https://endurancelasers.com/diy-laser-engraver-and-cutter/
- 14. Instructables. (2021). DIY Mini Laser Cutter [Электронный ресурс]. Режим доступа: https://www.instructables.com/DIY-Mini-Laser-Cutter/

приложение а

(обязательное)

Схема структурная

приложение Б

(обязательное)

Схема функциональная

приложение в

(обязательное)

Схема принципиальная

приложение г

Схема изготовления печатной платы

приложение д

(обязательное)

Перечень элементов

приложение е

(обязательное)

Ведомость документов