•RATORY1990 EQ setting for Beyerdynamic DT900 Pro X SPL Frequency Response SPL Frequency Response without EQ with EQ 30 20 20 Sound Pressure Level [dBr] Ę Sound Pressur 0 -10 -10 larman AE/OE 2018 Target Harman AE/OE 2018 Target Compensated Frequency Respon Compensated Frequency Resp -20 -20 10 10 100 100 Frequency [Hz] Frequency [Hz] EQ Curve **EQ** Curve Individual Filters total 20 20 f2 105 Hz 10 10 Amplitude [dBr] 0 -10 f1 47 Hz f3 220 Hz -20 -20 10 1.000 10 100 Frequency [Hz] Frequency [Hz] Error Curve Histogram Error Curve Histogram without EQ with EQ 100% 100% 80% 80% Relative Statistic Frequency [%] Frequency [%] 60% 40% 40% 20% 20% -1 1 2 2 10 10 10 10 10 10

Filter Setti	Filter Type	Frequency	Gain	Q-Factor	BW
Band 1	PEAK	47 Hz	-2,1 dB	0,6	2,19
Band 2	LOW_SHELF	105 Hz	5,5 dB	0,71	1,89
Band 3	PEAK	220 Hz	-2,4 dB	0,5	2,54
Band 4	PEAK	2600 Hz	-1,8 dB	2,5	0,57
Band 5	PEAK	3800 Hz	2,2 dB	1,4	1,01
Band 6	PEAK	6350 Hz	-5,5 dB	2,0	0,71
Band 7	PEAK	9000 Hz	1,0 dB	2,0	0,71
Band 8 Band 9	HIGH_SHELF	11000 Hz	1,0 dB	0,71	1,89

Deviation [dB]

Before EQ After EQ

-20 -15

Adjust gain of band 2 to preference (bass) Adjust gain of band 3 to preference (warmth) Adjust gain of band 6 to preference (sharpness) Adjust gain of band 8 to preference (airiness)

Deviation [dB]

No, don't attempt to "fix" the notch at 4 kHz.

ess -20 -15 -10

^{*}preference rating prediction based on:
[1] S. Olive et al: "A Statistical Model That Predicts Listeners' Preference Ratings of In-Ear Headphones: Part 1" (2017)
[2] S. Olive et al: "A Statistical Model That Predicts Listeners' Preference Ratings of In-Ear Headphones: Part 2" (2017)
[3] S. Olive et al: "A Statistical Model That Predicts Listeners' Preference Ratings of Around-Ear and On-Ear Headphones" (2018)
The normalized preference ratings are used, where zero deviation from target equals a preference rating of 100