Exemplo:

(Adaptado de ADAMI; DORNELES filho; LORANDI, 2015, p. 53) André é um vendedor e recebe um salário mensal de R\$ 1.000,00 mais uma comissão de 8% sobre o valor total de vendas que ele realiza durante o mês.

- a. Determine quanto André deve vender para que receba um salário mensal de pelo menos R\$ 2.000,00.
- b. André recebeu a proposta de um novo emprego de vendedor em uma loja concorrente, cujo salário seria R\$ 1.500,00 mais 6% de comissão sobre as vendas realizadas. Supondo que André venda mensalmente ao menos R\$ 5.000,00 (independentemente da loja que esteja trabalhando), é aconselhável ele mudar de emprego? Justifique.

Função afim ou do primeiro grau

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to y = f(x) = ax + b$$

onde a e b constantes e $a \neq 0$

a: coeficiente angular

b: coeficiente linear

Observações:

- Se a = 0, então f(x)=b é chamada de **função constante.**
- Se a=1 e b=0, então f(x)=x é chamada de **função identidade.**

Propriedades de Inequações

- 1. Transitiva: Se a < b e b < c, então a < c;
- 2. Se a < b e $c \in \mathbb{R}^*$, então $a \pm c < b \pm c$;
- 3. Se a < b e $c \in \mathbb{R}_+^*$, então a.c < b.c;
- 4. Se a < b e $c \in \mathbb{R}_{-}^{*}$, então a.c > b.c;
- 5. Se a < b, com ambos positivos ou negativos, então $\frac{1}{a} > \frac{1}{b}$.

Exercício: Obtenha o conjunto solução das inequações abaixo.

1.
$$2 \le 4 - 3x < 7$$
 Solution is: $\left(-1, \frac{2}{3}\right]$

Definição*: Um **intervalo** (real) é um conjunto que contém cada número real entre dois extremos indicados, podendo ou não conter os próprios extremos.

Exemplo: um conjunto cujos elementos são maiores ou iguais a 0 e menores ou iguais a 1

$$[0,1] = \{x \in \mathbb{R}: 0 \le x \le 1\}$$

Notação de Intervalo	Notação de Conjuntos	Classificação
(a,b)	$\{x \in \mathbb{R} : a < x < b\}$	Finito; aberto
[a,b]	$\{x \in \mathbb{R} : a \le x \le b\}$	Finito; fechado
[a,b)	$\{x \in \mathbb{R} : a \le x < b\}$	Finito; semi-aberto à direita
		ou semi-fechado à esquerda
(a,b]	$\{x \in \mathbb{R} : a < x \le b\}$	Finito; semi-aberto à esquerda
		ou semi-fechado à direita
$(-\infty, b]$	$ \mid \{x \in \mathbb{R} : x \le b\} $	Infinito; fechado
$(-\infty,b)$	$\{x \in \mathbb{R} : x < b\}$	Infinito; aberto
$[a, +\infty)$	$\{x \in \mathbb{R} : x \ge a\}$	Infinito; fechado
$(a, +\infty)$	$\{x \in \mathbb{R} : x > a\}$	Infinito; aberto
$(-\infty, +\infty)$	\mathbb{R}	Infinito; aberto e fechado

^{* &}lt;a href="https://pt.wikipedia.org/wiki/Intervalo_(matem%C3%A1tica">https://pt.wikipedia.org/wiki/Intervalo_(matem%C3%A1tica). Acesso em: 02/03/2017

Propriedades de Inequações

- 1. Transitiva: Se a < b e b < c, então a < c;
- 2. Se a < b e $c \in \mathbb{R}^*$, então $a \pm c < b \pm c$;
- 3. Se a < b e $c \in \mathbb{R}_+^*$, então a.c < b.c;
- 4. Se a < b e $c \in \mathbb{R}_{-}^{*}$, então a.c > b.c;
- 5. Se a < b, com ambos positivos ou negativos, então $\frac{1}{a} > \frac{1}{b}$.

Exercício: Obtenha o conjunto solução das inequações abaixo.

- 1. $-6 \le 7 3x < 5$, Solution is: $\left(\frac{2}{3}, \frac{13}{3}\right]$
- 2. $-6 + 2x \le 7 3x < 5$, Solution is: $\left(-\infty, \frac{13}{5}\right] \cap \left(\frac{2}{3}, \infty\right)$
- 3. $\frac{5}{8-x} \ge 1$, Solution is: [3,8)
- 4. $\frac{x-2}{x} > \frac{x}{x-4}$, Solution is: $\left(\frac{4}{3}, 4\right) \cup (-\infty, 0)$