Binomial Distribution or (Bernoulli's Dist")

The dist is concerned with towals of a repetitive nature in which only the occurrence or non-occurrence, success or failure, acceptance on rejection, les or no of a particular event is of Interest.

Let there be n independent touals in an experiment. Let a mondom variable x denote the no. of successes in these n truals. Let p be the prob. of a success l q that of a failure in a single trual so that p+q=1

we assume that there are n trials & the

happening of an event A is er times & it not happening is now times.

This may be shown as follows:

H times n-r times — (

A indicates its happening, \widehat{A} its not happening & P(A) = p and $P(\widehat{A}) = q$

=) pp--p 9.2--9 = pr gn-x -(2)

clearly O is merely one order of arranging of As

The publy of 0 = property No. of differ aurangements of MA's and (n-r) A's

.. Reg- Prob. ie. P(u) = n Cu pr gn-r

where p+q=1, M=0,1,2, --, n

* Remark! (i) n, the no. of truals is finite.

(ii) each teval has only two possible outcomes usually such failure

(iii) all the trials are independent.

(iv) Plong) is constant for all trials.

Mean of B.M.D:-

Mean $u = \underbrace{\mathcal{L}}_{\mathcal{A}} \mathcal{L}_{\mathcal{A}} \mathcal{L}_{\mathcal{A}} = \underbrace{\mathcal{L}}_{\mathcal{A}} \mathcal{L}_{\mathcal{A}} \mathcal{L}_{\mathcal{A}}$

= 0+1.nGqn-1p+2.nGp2qn-2+ - -. + nnCnpngo

= $np q^{n-1} + 2 \cdot \frac{n(n-1)}{2 \cdot 1} p^2 q^{n-2} + - + n \cdot p^n$

= $np \left[q^{n-1} + (n-1)q^{n-2} + - - + p^{n-1} \right]$

= np[n-169n-1+n-169n-2p+--+n-16n-1pn-1]

= $nP(Pt2)^{n-1} = nP$

Variance 02! = 2 42 P(x) - 12 = 2 [x+x(14-1)]P(x)-12

$$= \sum_{N=0}^{n} \mathcal{L} P(N) + \sum_{N=0}^{n} \mathcal{L}(N-1) P(N) - N^{2} = N + \sum_{N=2}^{n} \mathcal{L}(N-1)^{n} (n e^{n-2})^{n}$$

$$p^{n} - N^{2}$$

= u+n(n-1)p2-u2 [: p+2=1]

 $np + n(n-1)p^2 - n^2p^2$

= np[1+(n-1)p-np] = np[1-p] = npq. $[\sigma^2 = npq]$

Find the prob. of getting 4 heads in 6 tosses of a fair coin.

$$P(H) = {}^{n}C_{H} q^{n-H} p^{H}$$

 $P(H) = {}^{6}C_{4} q^{6-4} p^{4}$

$$= \frac{6 \times 5}{1 \times 2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{4} = \frac{15^{2}}{64}$$

(12)!- If 10% of bolts produced by a machine are defective; Determine the prob. that out of 10 botts chaden at mandom (i) 1 (ii) mone (iii) at most 2 bolts will be defective

i. 9 (non-defective) =
$$1-\frac{1}{10} = \frac{9}{10}$$

 $1 = 10$

$$P(x=1) = \frac{10C_{1}(b)^{1}2^{10-1}}{(0.9)^{9}} = \frac{10C_{$$

(ii)
$$91=0$$

 $P(x=0)= {}^{10}C_{0} p^{2}q^{10-0} = \left(\frac{9}{10}\right)^{10} = 0.3486$

(iii) It most 2 bolts will be defective
$$P(n \le 2) = P(0) + P(1) + P(2)$$

= 0.3486+ 0.3874+106 p2 g10-2 = 0.3486 + 0.3874 + 0.1937 = 0.9297

Ques! Fit a Binomial Dist. to the following fuequency data

1 30 62 46 10 2

2f = 150, 2fx = 192

Mean =
$$\frac{21x}{21} = \frac{192}{150} = 1.28$$

np= 1:28 => 4p=1:28 => p=0:32

2=1-p=1-0.32=0.64

M = 150

Hence binomial dist? is N(p+2)n = 150 (0.32+0.68)4. Ques! A binomial variable X satisfies the relation P(X=4) = P(X=2), when n=6, find the value of b & P(X=1). Soln! we know that P(X=x)=n(x pn gn-x P(X=4) = 6(4 b4 96-4 $P(x=2) = {}^{6}(2)^{2}9^{6-2}$ ATR 9 [6 (4 b 4 2 2] = 6 (2 b 2 24. $9b^2 = 9^2 = 9b^2 = (1-b)^2$ $\Rightarrow 9p^2 = 1 + p^2 - 2p \Rightarrow 8p^2 + 2p - 1 = 0$ コカニナッちョ) p=4 $P(x=1) = 64 p' 9^{6-1} = 64 (\frac{1}{4}) (\frac{3}{4})^5 = 0.3559.$

Voisson Distuibution

If the parameters n & p of a binomial dist. are known we can find the dist? But in situation where n is very large b p is very small, application of binomial distr is labourious. However if we assume that n→∞ l p→0 s·t. np is always remains finite say L

P(X=x) ie P(x)= EA Lor

Mean of Poisson's dist? = L Variance "

Applications of P.D.!

- Avuival pattern of defective vehicals in a workshop.
- No. of deaths in a district by name disease. No. of caus passing through a street in
- some time.

Quest 6 coins are tossed 6400 times Using the Poisson distribution, find the app. prob of getting 6 heads x. times

Soll" Prob. of getting one head with one coin = $\frac{1}{2}$. The Prob. of getting 6 heads with 6 coins = $\frac{1}{2}$)6 = $\frac{1}{64}$. Average no. of 6 heads with 6 coins in 6400 thuows = $np = 6400 \times \frac{1}{64} = 100$ The mean of the Poisson dist? = 100App. prob of getting 6 heads n times when the dist" is Poisson = $\frac{n}{4!} = \frac{100}{n} = \frac{100}{n}$

Object Suppose that a book of 600 pages contains & 40 printing mistakes. Assume that these Errors are randomly distributed throughout the book and is the number of Errors per page has a possion distributed is the probability that 10 Pages Selected at random will be free from Errors

$$Sol \quad p = \frac{49}{600} = \frac{1}{15}$$

$$N = 10$$

$$A = np = (10)(\frac{1}{15}) = \frac{2}{3}$$

$$P(1) = e^{\frac{1}{12}} = e^{\frac{1}{12}} = e^{\frac{1}{2}} = e^{\frac{1}{2}}$$

$$P(0) = e^{\frac{1}{12}} = e^{\frac{1}{12}} = e^{\frac{1}{2}} = 0.51.$$

Quest y the hobibility of a bad reaction from a Certain injection is 0.0002 determine the chance that out of 1000 individuals more than two will get a bad reaction.

Set
$$p = 0.0002$$
, $n = 1000$
 $\lambda = np = 0.0002 \times 1000 = 0.2$
 $P(\Lambda) = \frac{e^{2} A^{1}}{\Lambda!} = \frac{e^{-0.2}}{(0.2)^{2}}$
 $P(\Lambda \gamma \lambda) = 1 - P(\Lambda \xi \lambda)$
 $= 1 - [P(\Lambda \xi 0) + P(\Lambda = 1) + P(\Lambda = 2)]$
 $= 1 - [e^{-0.2} + e^{-0.2}(0.2) + e^{-0.2}(0.2)^{2}]$

1-[0.8187+0.1637+0.0164] = 0.0012

Ollest Six coins are tossed 6400 times. Using the Poisson distribution, determine the approximate probability Of getting Six heads & times.

(11) A poisson distribution has a double mode at X=3 and X=4. What is the Pubability that x will have one or the other of these two values

. Sof Probability of getting one head with one coin = 1 The Probability of getting Six heads with Six Coins

1 = 6400 x1 = 100

Approximate probability getting Six head x times when clist" is poisson

 $= \frac{1^{2} e^{7}}{21} = (100)^{2} e^{-100}$

Sol(1) Since two modes are given when his an integer modes one 1-1 and 1

Robability (When 8=3) = $e^{-4}(4)^3$ 1.1.t. (When 8=4) = $e^{-4}(4)^4$ regal hob P(1=3 or 1=4) P(1=3) + P(1=4)

$$= \frac{e^{4}(4)^{3}}{3!} + \frac{e^{4}(4)^{9}}{4!}$$

$$= \frac{69}{3}e^{4} = 0.39073.$$

Mean deviation about mean is (2) S.D.

Sof
$$A = 1$$
 (given)
 $P(x = x) = \frac{A^x e^{-1}}{x!} = \frac{e^{-1}}{x!}$; $x = 0,1,2,---$

. Mean deviction about Mean 1 is

$$\frac{\partial}{\partial x} = \frac{|x-1|}{|x-2|} = e^{-\frac{1}{2}} \frac{\partial}{\partial x} = \frac{|x-1|}{|x|}$$

$$= e^{-\frac{1}{2}} \left[1 + \frac{1}{2!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{3!} + \frac{1}{3!} \right] + \frac{1}{2!} = \frac{nH-1}{(nH)!} = \frac{nH-1}{(nH)!}$$

$$= e^{-\frac{1}{2}} \left[1 + \left(1 - \frac{1}{2!} \right) + \left(\frac{1}{2!} - \frac{1}{3!} \right) + - \right]$$

$$= e^{-\frac{1}{2}} \left(1 + 1 \right)$$

Ones Ques e. Sp=1: A Car hire fum has two Cars, which it hires out day by day The number of demands for a Car on Each day a distributed as a poisson dist with mean 1.5. Calculate the proportion of days on which neither Car is used and the proportion of days on which Some demand is refused (e^{1.5} = 0.2231)

Sof
$$d=1.5$$
 (given)

i. Proportion of days on which red neither can is used
$$P(1=0) = \frac{e^{-1}}{1!} = \frac{e^{-1}}{0!} = e^{-1.5} = 0.2231$$

Proportion of days on which some demand is refused.

$$P(1/2) = 1 - P(1/2)$$

$$= 1 - \left[e^{7} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{2!}\right]$$

$$= 1 - e^{-1/5} \left[1 + 1.5 + (1.5)^{2}\right]$$

$$= 0.1912625$$

Other Suppose the number of tele phone Callson an operation received from 9:00 to 9:05 follow a poisson dist with a mean 3. find the Probability that

(i) The operator will receive no Calls in that time interval tomorrow

(i) In the next three days, the operator will receive a total of I call in that time interval (e-3= 0.04978)

(1)
$$P(\lambda=0) = \frac{10e^{-1}}{0!} = e^{-3} = 0.04978$$

(11) Rogal Prob :- P(0) P(0) P(1) + P(0) P(1) P(0) P(0) P(0)= $3 \left[\frac{e^{7} A^{0}}{0!} \right] \times \frac{e^{7} A^{1}}{1!}$ = $9 \left(e^{-3} \right)^{3} = 0.00111$ Quev. if the variance of the Pousson distribution is (3) 2, find the Probabilities for r=1,2,3,4 from the recurrence relation of the Poisson dist Also find P(X>,4)

Sol dis mean and variance of Possion distr.

$$P(\Lambda H) = \frac{\lambda}{\Lambda H} P(\Lambda)$$

$$= \frac{\partial}{\partial H} \frac{e^{\lambda} \Lambda^{2}}{\Lambda!}$$

$$\begin{cases}
 P(A) = \frac{e^{-1}A^{4}}{A!} \\
 P(0) = \frac{e^{-1}(A)^{0}}{0!} = e^{-2} = 0.1353
 \end{cases}$$

Put 1=0, 1,2,3,4.

$$P(1) = 9 P(0) = 9 \times 0.1353 = 0.2706$$

$$P(2) = \frac{9}{9} A(1) = 0.2706$$

$$P(3) = \frac{9}{3}P(2) = \frac{2}{3} \times 0.2706 = 0.1804.$$

$$P(14) = \frac{9}{4}P(3) = 0.8902.$$

$$P(X7,4) = P - P(X<4)$$

$$= 1 - [P(0) + P(1) + P(2) + P(3)]$$

$$= 1 - [0.1353 + 0.2706 + 0.2706 + 0.1804]$$

$$= 0.1431.$$