Гомоморфізми та факторкільця

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

1 березня 2023

Факторкільце

Нехай R — кільце, I — ідеал кільця R.

На факторгрупі

$$R/I = \{a + I \mid a \in R\}$$

можна визначити операцію множення

$$(a+I)(b+I) = ab+I.$$

Оскільки в R множення асоціативне, то в R/I також.

Ця операція дистрибутивна відносно додавання.

Отже, $\langle R/I, +, \cdot \rangle$ — кільце, яке називається факторкільцем кільця R за ідеалом I.

Позначається R/I.

Факторкільце: резюме

Нехай R — кільце, I — ідеал кільця R.

Множина: $R/I = \{a + I \mid a \in R\}$.

Дії:

- Додавання: (a + I) + (b + I) = a + b + I.
- Множення: (a+I)(b+I) = ab+I.

Нулем $\epsilon 0 + I$.

Якщо R — кільце з одиницею, то R/I — теж кільце з одиницею, одиницею є 1+I.

Факторкільце: приклад 1

$$R = \mathbb{Z}, \quad I = 6\mathbb{Z}$$

$$\mathbb{Z}/6\mathbb{Z} = \{6\mathbb{Z}, 1 + 6\mathbb{Z}, 2 + 6\mathbb{Z}, 3 + 6\mathbb{Z}, 4 + 6\mathbb{Z}, 5 + 6\mathbb{Z}\}$$

$$(2 + 6\mathbb{Z}) + (3 + 6\mathbb{Z}) = 5 + 6\mathbb{Z}$$

$$(2 + 6\mathbb{Z})(3 + 6\mathbb{Z}) = 6 + 6\mathbb{Z} = 6\mathbb{Z}$$

Факторкільце: приклад 2

$$R = \mathbb{R}[x], \quad I = (x^2 + 1) = \{(x^2 + 1)g(x) | g(x) \in \mathbb{R}[x]\}$$

Елементи цього факторкільця мають вигляд h(x) + I.

Які елементи є різними?

$$h_1(x) + I, h_2(x) + I \in R/I$$
:

$$h_1(x) + I = h_2(x) + I \Leftrightarrow h_1(x) - h_2(x) \in I \Leftrightarrow (x^2 + 1) | (h_1(x) - h_2(x)).$$

Розділимо з остачею на $(x^2 + 1)$:

$$h_1(x) = (x^2 + 1)q_1(x) + r_1(x), \quad h_2(x) = (x^2 + 1)q_2(x) + r_2(x).$$

Тому

$$(x^2 + 1) | (h_1(x) - h_2(x)) \Leftrightarrow r_1(x) = r_2(x).$$

Отже,

$$h_1(x) + I = h_2(x) + I \Leftrightarrow h_1(x) = h_2(x) \pmod{x^2 + 1}$$
.

$$\mathbb{R}[x]/(x^2+1) = \{ax+b+(x^2+1) | a, b \in \mathbb{R}\}.$$

Факторкільце: приклад 2

$$\mathbb{R}[x]/(x^2+1) = \{ax+b+(x^2+1) \mid a,b \in \mathbb{R}\}.$$

$$2x+1+(x^2+1), 3x+2+(x^2+1) \in \mathbb{R}[x]/(x^2+1):$$

$$(2x+1+(x^2+1))+(3x+2+(x^2+1)) = 5x+3+(x^2+1);$$

$$(2x+1+(x^2+1))\cdot(3x+2+(x^2+1)) = 6x^2+7x+2+(x^2+1) = x+2+(x^2+1).$$

Гомоморфізм кілець

Означення

Нехай R_1 , R_2 — кільця.

Відображення $f:R_1 \to R_2$ називається гомоморфізмом кілець, якщо

- ① f(x + y) = f(x) + f(y) для всіх $x, y \in R_1$;
- f(xy) = f(x)f(y) для всіх $x, y \in R_1$.

Приклади

Означення

Нехай $f: R_1 \to R_2$ — гомоморфізм кілець R_1 та R_2 .

Множина

$$Ker f = \{x \in R_1 | f(x) = 0_{R_2}\}$$

називається ядром гомоморфізму f.

Твердження

Нехай $f: R_1 \to R_2$ — гомоморфізм кілець R_1 та R_2 . Тоді $\operatorname{Ker} f \in \operatorname{ідеалом}$ кільця R_1 .

Доведення.

Очевидно $Ker f \triangleleft R_1$.

Нехай $x \in \text{Ker} f$, $y \in R_1$.

Тоді

$$f(xy) = f(x)f(y) = 0$$
, $f(yx) = f(y)f(x) = 0$

- $\Rightarrow xy \in \text{Ker} f \text{ ta } yx \in \text{Ker} f$
- \Rightarrow Kerf ідеал.

Означення

Нехай $f: R_1 \to R_2$ — гомоморфізм кілець R_1 та R_2 .

Множина

$$Im f = \{f(x) | x \in R_1\}$$

називається образом гомоморфізму f.

Твердження

Нехай $f: R_1 \to R_2$ — гомоморфізм кілець R_1 та R_2 . Тоді $\text{Im } f \in \Pi$ підкільцем кільця R_2 .

Доведення.

Нехай $x', y' \in \text{Im} f \Rightarrow \exists x, y \in R_1 : f(x) = x', f(y) = y'.$

Тоді $x'y' = f(x)f(y) = f(xy) \Rightarrow x'y' \in \text{Im } f$.

Решта аксіом очевидні.

Теореми про гомоморфізм для кілець

Нехай I — ідеал кільця R.

3 теорії груп відомо, що відображення

$$\pi: R \to R/I: \quad a \mapsto a+I$$

є епіморфізмом адитивних груп.

Покажемо, що π зберігає множення:

$$\pi(ab) = ab + I = (a + I)(b + I) = \pi(a)\pi(b).$$

Отже, π є епіморфізмом кілець, який називається *канонічним* епіморфізмом кільця R на факторкільце R/I, або *канонічною проекцією* R на R/I.

Очевидно, що $\operatorname{Ker} \pi = I$.

Основна теорема про гомоморфізм для кілець

Теорема

Нехай $f: R_1 \to R_2$ — гомоморфізм кілець. Тоді

$$R_1/\operatorname{Ker} f \simeq \operatorname{Im} f$$
.

Більш точно, існує ізоморфізм

$$\varphi: \operatorname{Im} f \to R_1 / \operatorname{Ker} f: \quad b = f(a) \mapsto \pi(a) = a + \operatorname{Ker} f.$$

Доведення.

За теоремою (про гомоморфізм для груп) відображення ϕ є ізоморфізмом адитивних груп. Перевіримо, що воно зберігає множення.

Heхай
$$f(x) = u, f(y) = v$$
.

Тоді
$$f(xy) = uv$$
 та

$$\varphi(uv) = \pi(xy) = \pi(x)\pi(y) = \varphi(u)\varphi(v).$$

Приклади

○ Нехай P — поле, $c \in P$ — фіксований елемент. Відображення

$$f: P[x] \to P: g(x) \mapsto g(c)$$

є гомоморфізмом кілець.

За теоремою Безу його ядром ϵ всі многочлени, які діляться на x-c. Отже,

$$P[x]/(x-c)P[x] \simeq P.$$

② Нехай $t^2 + pt + q \in \mathbb{R}[t]$, $p^2 - 4q < 0$, $c \in \mathbb{C}$ — один з його уявних коренів. Відображення

$$f: \mathbb{R}[t] \to \mathbb{C}: g \mapsto g(c)$$

є гомоморфізмом кілець.

Для нього
$$\mathrm{Im} f = \mathbb{C}$$
, $\mathrm{Ker} f = \left\{\underbrace{(t-c)(t-\overline{c})}_{=t^2+pt+q}g(t)\,|\,g(t)\in\mathbb{R}[\,t\,]\right\}.$

Отже,

$$\mathbb{R}[t]/(t^2+pt+q)\mathbb{R}[t]\simeq\mathbb{C}.$$

Друга теорема про гомоморфізм

Теорема

Нехай A — підкільце і I — ідеал кільця R. Тоді A+I є підкільцем R, $A\cap I$ є ідеалом A і

$$(A+I)/I \simeq A/(A\cap I).$$

Третя теорема про гомоморфізм

Теорема

Нехай I та J — ідеали кільця R і $J\subseteq I$. Тоді I/J є ідеалом кільця R/J і

 $(R/J)/(I/J) \simeq R/I.$

Теорема про відповідність для кілець

Теорема

Нехай I — ідеал R. Відображення

 $A \longleftrightarrow A/I$

встановлює взаємно однозначну відповідність між множиною підкілець A з R, які містять I, і множиною підкілець в R/I.

Причому, $A \in \mathrm{i}$ деалом кільця R тоді і тільки тоді, коли $A/I \in \mathrm{i}$ деалом факторкільця R/I.