Monte Carlo Simulations

David Kun

November 13, 2013

Section 1

In the first three cases, the leader and follower have the same error covariance matrices, so:

$$Q_{(l)} = Q_{(f)} = Q$$

$$R_{(l)} = R_{(f)} = R$$

where, Q: state covariance error

R : sensor covariance error

$$\gamma > 1$$

The cases that were tested in this section are:

- $\bullet Q = R$
- $Q = R \times \gamma$
- $Q = R \times \frac{1}{\gamma}$

Leader Error = Follower Error State Error = Sensor Error

Section 2

In the next three cases, the leader has larger error covariance matrices than the follower, so:

$$Q_{(l)} = Q_{(f)} \times \gamma$$
$$R_{(l)} = R_{(f)} \times \gamma$$

where, Q: state covariance error

R: sensor covariance error

$$\gamma > 1$$

The cases that were tested in this section are:

- $Q_{(l)} = Q_{(f)} \times \gamma$, $R_{(l)} = R_{(f)}$
- $Q_{(l)} = Q_{(f)},$ $R_{(l)} = R_{(f)} \times \gamma$
- $Q_{(l)} = Q_{(f)} \times \gamma$, $R_{(l)} = R_{(f)} \times \gamma$

Leader State Error > Follower State Error

