Description of PSD code

V2 2020-08-06

Classes

There are four classes within the code: GWNode, GWGrid, DEM and River. These classes provide the basic functionality so that a groundwater head to be calculated at any point on a user defined grid. The classes and a brief description are presented in the table below:

Class	Description
GWNode	Groundwater node – contains the calculation method for change in
	groundwater head at a particular location. The method used is based on
	an Explicit solution of the 2D groundwater flow equation. The change in
	groundwater head resulting from a instantaneous change in stage is
	provided by the function "getGWHeadChange"
GWGrid	Groundwater grid – acts as a container for the groundwater nodes. Input
	data is read within the constructor. These data include the groundwater
	parameters (k, S) as well as recharge and the river node associated with
	each groundwater node. A function "getGWHeads" is provided to
	output the groundwater heads at any time to the file "GridTest.out"
River	Holds the location of a series of river nodes. The X and Y position is
	provided to other objects by two functions "getXpos" and "getYpos"
DEM	Contains the DEM at the same grid size as for the GWGrid. The DEM
	value is given via the function "getDEMValue".

Flowchart

Figure 1 illustrates the main flow through the PSD code, contained in PSDModel.cpp. First the text files used for input and output are created. Then the GWGrid object is instantiated which results in the data in "GridTest.in" being read and a grid of GWNode objects being created. After this the River object is instantiated which reads in the river node locations from "GridTestRiver.in". After this the DEM object is instantiated which reads in the river node locations from

"GridTestDEM.in". The model then enters the time step loop which means the groundwater head at each grid location is calculated for a given time and written to "GridTestHeads.out",

"GridTestFLows.out", and "GridTestHYdro.out", . Finally the input and output files are closed.

Methods in the main part of the code

The following table outlines the methods used to control the running of the model as well as enabling the state variable (groundwater heads) and input flux (recharge) to be interrogated and to be set to a value.

Method	Description
<pre>initialise_model();</pre>	Initialises model: opens all channels to read input files and write output files; instantiates objects for the River, DEM and
	Grids classes
<pre>run_model();</pre>	Runs the model one time step at a time (via do_timestep)
<pre>finalise_model();</pre>	Finalises model: closes all open files
<pre>do_timestep()</pre>	Updates the groundwater heads for the grid nodes
<pre>getGWHead(int valuei, int valuej)</pre>	Enables the groundwater head value to be interrogated at a node (i, j)
<pre>getRecharge(int valuei, int valuej)</pre>	Enables the recharge value to be interrogated at a node (i, j)
<pre>setGWHead(double valueGWHead, int valuei, int valuej)</pre>	Enables the groundwater head value to be set to a value at a node (i, j)
<pre>setRecharge(double valueRecharge, int valuei, int valuej)</pre>	Enables the recharge value to be set to a value at a node (i, j)

Input files

A simple example has been setup using a rectangular grid and a straight-line river. The parameterisation of this is used to provide a simple example to illustrate the input files.

The model time control is determined by <code>GridTestMain.in</code> which sets the initial time, time step and end time:

GridTestMain.in	Read by the main class
0.05	Time step (days)
1	start time (days
2	end time (days)

Three input files are required one for the setting up the grid of groundwater nodes, <code>GridTest.in</code> one, <code>GridTestRiver.in</code>, for setting the position of the river nodes and another one <code>GridTestDEM.in</code>, for setting up the DEM.

GridTest.in	Read by the constructor of the GWGrid class
5.	Hydraulic conductivity (m/d)
0.005	Specific storage (/m)
10.0	Saturated thickness (m)
0.001	Recharge rate (m/d)
10.5	Initial head (m)
10	River stage rise data
0 0	Number of days to discretise the surface water
1 1.	hydrograph
2 0.	Change in stage (m) for each day of the hydrograph
3 0.	Change in stage (iii) for each day of the hydrograph
4 0.	
5 0.	
6 0.	
7 0.	
8 0.	
10 0.	
10 11	
50 50	No. of nodes X direction, no. of nodes Y direction
4000 5000	DeltaX, DeltaY
0 0 0 0 0 1 0 0 0 0 0	XOffset, YOffset (X, Y of Top Right Hand Corner)
0 0 0 0 0 2 0 0 0 0 0	Grid of river nodes for each groundwater head node,
0 0 0 0 0 3 0 0 0 0 0	note this code corresponds to the river node specified
0 0 0 0 0 4 0 0 0 0 0	in "GridTestRiver.in"
0 0 0 0 0 5 0 0 0 0 0	
0 0 0 0 0 6 0 0 0 0 0	
0 0 0 0 0 7 0 0 0 0 0	
0 0 0 0 0 8 0 0 0 0	
0 0 0 0 0 9 0 0 0 0 0	
0 0 0 0 0 10 0 0 0 0	
0 0 0 0 0 11 0 0 0 0 0	
0 0 0 0 0 12 0 0 0 0 0	
0 0 0 0 0 13 0 0 0 0 0	
0 0 0 0 0 14 0 0 0 0 0	
0 0 0 0 0 15 0 0 0 0 0	

GridTestRiver.in	Read by the constructor of the River class
11	Number of river locations

1	4250 5050	River location ID, X, Y
2	4250 5100	
3	4250 5150	Note: These do not have to be in numerical
4	4250 5200	order, i.e. as long as there is the correct number
5	4250 5250	of River IDs and associated X and Y values
6	4250 5300	of tivel ibs and associated X and 1 values
7	4250 5350	
8	4250 5400	
9	4250 5450	
10	4250 5500	
11	4250 5550	

GridTestDE	M.in					Read by the constructor of the Dem class
1						Switch for surface-groundwater interaction (1
11 15						on; 0 off)
50 50						No. of nodes X direction, no. of nodes Y direction
4000 5000						DeltaX, DeltaY
50. 50. 50		50.	50.	50.	50.	XOffset, YOffset (X, Y of Top Right Hand Corner)
50. 50. 50						Grid of river nodes for each groundwater head
50. 50. 50		50.	50.	50.	50.	node, note this code corresponds to the river
50. 50. 50		F 0	F 0	- 0	F 0	node specified in "GridTestRiver.in"
50. 50. 50		50.	50.	50.	50.	Grid of surface elevations
50. 50. 50		ΕO	EΛ	ΕO	ΕO	
50. 50. 50		50.	50.	50.	50.	
50. 50. 50		50	50	50	50	
50. 50. 50		50.	50.	50.	50.	
50. 50. 50		50.	50.	50.	50.	
50. 50. 50						
50. 50. 50		50.	50.	50.	50.	
50. 50. 50						
50. 50. 50	. 50.	50.	50.	50.	50.	
50. 50. 50						
50. 50. 50		50.	50.	50.	50.	
50. 50. 50						
50. 50. 50		50.	50.	50.	50.	
50. 50. 50					- 0	
50. 50. 50		50.	50.	50.	50.	
50. 50. 50		ΕO	ΕO	ΕO	ΕΛ	
50. 50. 50 50. 50. 50		50.	50.	JU.	50.	
50. 50. 50		5.0	50	50	50	
50. 50. 50		JU.	50.	50.	JU.	
50. 50. 50		50	50	50	50.	
50. 50. 50		.	~ ·	.	J J •	
50. 50. 50		50.	50.	50.	50.	
50. 50. 50		- 1				

Finally GridTestHydro.in is used to specify the hydrographs output by the model at each time step.

GridTestHydro.in	Read by the main class	
2	Number of hydrographs (-)	
1 1	I, j of first hydrograph	
10 10	1, j of second hydrograph	

Output files

The code produces three output files:

- 1. GridTestHeads.out, which is the groundwater head calculated for a time t at all the nodes and written as a grid
- 2. GridTestFlows.out, which is the flows calculated for a time t at all the nodes and written as a grid
- 3. GridTestHydro.out, which is the groundwater head calculated at a point a time t at all the selected nodes in GridTestHydro.in

GridTestHeads.out	
[input is echoed first] Time is: 0.1 10.671 10.7543 10.8406	Time as a header Head (m) for each groundwater node
10.671 10.7543 10.8406 10.671 10.7543 10.8406 10.671 10.7543 10.8406	

GridTestFlows.out	
Time is: 0.1	Time as a header
0.61 0.75 0.84	Flows (m3/m2/d) for each groundwater node
0.61 0.75 0.84	
0.61 0.75 0.84	

GridTestHydro.out	
0.5,10.51,10.51,	Time, head1, head2,
1,10.52,10.9,	
1.5,10.53,11.3656,	
2,10.54,11.8155,	
2.5,10.55,12.2255,	
3,10.56,12.5924,	
3.5,10.5702,12.9198,	
4,10.5813,13.2127,	
4.5,10.5938,13.4758,	