1. Let $P(x) = \sum_{i=0}^{n} a_i x^i$ be a polynomial of even degree n, such that a_n is positive and a_0 is negative. Prove that P(x) has at least one positive real root and one negative real root.

Proof. Recall that $\lim_{x\to\pm\infty} 1/x = 0$. By limit laws, $\lim_{x\to\pm\infty} \sum_{i=0}^n a_i x^{i-n} = 0$. Therefore, there exists M>0 so $a_n>\sum_{i=0}^{n-1} -a_i M^{i-n}$. That is, P(M)>0. Since P(0)<0 and all polynomials are continuous, there is a positive root of P(y)=0 by the Intermediate Value Theorem. Similarly there is also a negative root.