Interazione e Multimedia

26 gennaio 2009

Sia data la seguente matrice 5x5

20	220	244	200	13
50	256	13	16	27
20	250	233	213	21
23	230	24	14	24
24	213	25	11	21

DOMANDA 1

1. [1] Tale matrice può essere considerata una immagine a colori? Perché?

No, perché ogni pixel non è espresso mediante una terna di valori, ma da un valore solamente. E'
una immagine a scala di grigi. Ecco la sua visualizzazione:

2. [2] Scrivere le singole componenti RGB dell'immagine di input.

R				G						В						
20	220	244	200	13		20	220	244	200	13		20	220	244	200	13
50	256	13	16	27		50	256	13	16	27		50	256	13	16	27
20	250	233	213	21		20	250	233	213	21		20	250	233	213	21
23	230	24	14	24		23	230	24	14	24		23	230	24	14	24
24	213	25	11	21		24	213	25	11	21		24	213	25	11	21

3. [1] Se si visualizzasse l'immagine RGB appena ottenuta, quale colore sarebbe predominante? L'immagine è vista come se fosse in scala di grigi.

DOMANDA 2

1. [1] Se si applicasse un operatore puntuale quanti pixel in input sarebbero necessari per determinare il valore del singolo pixel in output?

Un solo valore di input determina il valore di output.

Facendo riferimento all'immagine RGB ottenuta nel punto precedente, dire:

2. [2] Applicare l'operatore soglia (soglia=128) alla matrice R. Disegnare la LUT relativa. La LUT è un "gradino" che vale 0 prima del valore 128 e vale 255 dopo.

- 3. [3] Applicare l'operatore logaritmo alla matrice G. Disegnare la LUT relativa. L'operatore è del tipo $L'=log_{10}(L+1)$. La LUT è una classica LUT del logaritmo.
- 4. [3] Applicare l'operatore di potenza con Gamma=3 alla matrice B. Disegnare la LUT relativa. L'operatore è del tipo L'=L^3. La LUT è la classica LUT dell'operatore di potenza.

Riportare i relativi valori nella seguente tabella:

```
R

0 255 255 255 0
0 255 0 0 0
0 255 255 255 0
0 255 0 0 0
0 255 0 0 0
```

G (con il log in base 10)

1.3222	2.3444	2.3892	2.3032	1.1461
1.7076	2.4099	1.1461	1.2304	1.4472
1.3222	2.3997	2.3692	2.3304	1.3424
1.3802	2.3636	1.3979	1.1761	1.3979
1.3979	2.3304	1.4150	1.0792	1.3424

В

2197	8000000	14526784	10648000	8000
19683	4096	2197	16777216	125000
9261	9663597	12649337	15625000	8000
13824	2744	13824	12167000	12167
9261	1331	15625	9663597	13824

DOMANDA 3

- 1. [1] eventuali valori fuori range nell'immagine del punto 2, come possono essere aggiustati? Si usa l'operazione di normalizzazione: L'=255*(L-min_osservato)/(max_osservato-min_osservato).
- 2. [3] eseguire tali calcoli e riportare i risultati:

```
R
               0
 0 255 255 255
       0 0
 0
   255
                0
              0
 0 255 255 255
       0 0 0
 0 255
 0 255
G
   242
       251 235
               13
120 255
       13
          29
               71
 47 253 247 240
               50
       61 19 61
64 0 50
    246
 61 240
 0 162
       221 122
 2 255
        0
           0
              0
 0 237
       192 147
           0
   185
        0
       0
 0 147
```

Ecco l'immagine ottenuta

DOMANDA 4

1. [2] Cambiando opportunamente lo spazio di colori, è possibile estrarre l'immagine a scala di grigio. Come si esegue tale operazione?

Se si passa allo spazio luminanza-crominanza, la componente Y=0,30*R+0,60*G+0,10*B è l'immagine in scala di grigio.

2. [3] Riportare la nuova matrice a scala di grigio:

28	238	249	230	8
72	255	8	17	43
28	252	244	235	30
35	243	37	11	37
37	235	38	0	30

Che corrisponde a:

DOMANDA 5

- 1. [2] Che cosa è l'istogramma di una immagine?

 L'istogramma è un grafico che ci da informazioni statistiche su i pixel di una immagine.
- 2. [3] Disegnare l'istogramma dell'immagine di input e quello dell'immagine finale del punto 4.

Istogramma di input

Istogramma di output

3. [3] Calcolare il PSNR tra l'immagine di input e l'immagine finale del punto 4. *Il valore è PSNR=25,57.*