• Activités sur la représentation d'une suite de la forme $u_{n+1} = f(u_n)$

On considère la suite définie par la relation de récurrence suivante :

$$\begin{cases} u_0 = \frac{1}{4} \\ u_{n+1} = u_n^2 + \frac{1}{4} \end{cases}$$

1. Représenter u_0 , u_1 , u_2 et u_3 sur le graphique ci-dessus.

Pour déterminer les différentes valeurs de la suite sur l'axe des abscisses non procède toujours de la même manière. On place u_0 sur l'axe des abscisses, on se place sur le point $(u_0, f(u_0))$ avec $f(x) = x^2 + \frac{1}{4}$.

On rejoint, parallèlement à l'axe des abscisses, le point $(f(u_0), f(u_0))$ et à partir de ce point, on rejoint parrallèlement à l'axe des ordonnées le point $(f(u_0), 0)$: c'est le point u_1 sur l'axe des abscisses. En remplaçant u_2 par u_1 dans le processus précédent, on obtiendra u_2 et ,en continuant de la sorte, tous les termes de la suite.

2. Conjecturer quant à la limite de la suite (u_n) .

On se rend compte que les termes de la suite se rapproche de plus en plus de $\frac{1}{2}$ sur l'axe des abscisses : on peut conjecturer que ça sera la limite de la suite (u_n).

3. Déterminer le signe du trinôme $x^2 - x + \frac{1}{4}$.

On peut calculer le discrimant de $x^2 - x + \frac{1}{4} = 0$ pour trouver la solution :

$$\Delta = b^2 - 4ac = (-1)^2 - 4 \times \frac{1}{4} = 0$$

Comme le discrimant est nul et que a > 0, $x^2 - x + \frac{1}{4}$ est en fait un carré :

$$x^2 - x + \frac{1}{4} = \left(x - \frac{1}{2}\right)^2 \ge 0$$

Le trinôme $x^2 - x + \frac{1}{4}$ est donc positif.

4. En déduire les variations de la suite (u_n) .

Pour déterminer les variations de la suite (u_n) , on va étudier le signe de $u_{n+1} - u_n$:

$$u_{n+1} - u_n = u_n^2 - u_n + \frac{1}{4} = \left(u_n - \frac{1}{2}\right)^2 \ge 0$$

La suite est donc croissante.

5. Montrer par récurrence que la suite (u_n) est dans l'intervalle $[0; \frac{1}{2}]$.

Initialisation:

Le terme u_0 vaut $\frac{1}{4}$ qui est bien dans l'intervalle $[0;\frac{1}{2}]$: l'initialisation est démontrée. Hérédité:

On va supposer que la propriété est vraie pour un rang *n* plus grand que 0, c'est à dire :

$$0 \le u_n \le \frac{1}{2}$$

On va montrer que cet encadrement est encore vrai pour le rang n + 1.

$$0 \le u_n \le \frac{1}{2}$$

$$\Leftrightarrow 0 \le u_n^2 \le \frac{1}{4}$$

$$\Leftrightarrow 0 \le u_n^2 + \frac{1}{4} \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$\Leftrightarrow 0 \le u_{n+1} \le \frac{1}{2}$$

La propriété est donc vrai au rang n+1: l'hérédité est donc bien établie. Par conséquent, $\forall n \in \mathbb{N}, \ 0 \le u_n \le \frac{1}{2}$.

6. En déduire que la suite (u_n) converge et donner sa limite.

La suite (u_n) est croissante et majorée donc, par le théorème de convergence monotone, elle converge vers une limite finie l. On reprend l'égalité qui permet de définir la suite (u_n) par récurrence et on fait tendre n vers $+\infty$ à gauche et à droite de l'égalité :

$$l = l^2 + \frac{1}{4} \Leftrightarrow l^2 - l + \frac{1}{4} = 0 \Leftrightarrow \left(l - \frac{1}{2}\right)^2 = 0 \Leftrightarrow l = \frac{1}{2}$$

