Handling Variance of Pretrained Language Models in Grading Evidence in the Medical Literature

Fajri Koto* and Biaoyan Fang*
The University of Melbourne

The 19th Annual Workshop of the Australasian Language Technology Association, 8-10 December 2021

I. Introduction

Evidence-Based Medicine (EBM):

clinical expertise

medical literatures

Strength of Recommendation Taxonomy (SORT) (Ebell et al., 2004)

- A: consistent and good quality patient-oriented evidence
- B: inconsisten
- C: other evidence, such as consensus guidelines, usual practice and opinion

Obtaining these grades on a wide-scale is expensive and requires in-depth medical expertise. We focus on classification model of SORT framework

II. Dataset

ALTA 2021 Shared-Task

	Train	Dev	Test	
Evidences	677	178	183	
in A	212	48	-	
in B	311 80		-	
in C	154	50	-	
Ave. resources per evidence	2.4	2.5	2.3	
Ave. words per abstract	269.9	262.6	274.1	
Ave. words per evidence	655.9	653.7	643.9	

- ALTA 2021 Shared-Task
- ~45% in train and development set are class B
- No significant differences in terms of number of resources and words between each dataset

III. Methods

Domain-specific pretrained models:

- Biomed BERT
- 2. Biomed RoBERTa
- Biomed RoBERTa (TAPT)
 → further pretrained with train set for 400 epochs

Domain-generic pretrained models:

- 1. RoBERTa
- 2. ELECTRA
- 3. ELECTRA (large)

Contains rich latent discourse rep. (Koto et al., 2021)

Optimized for medical literatures

Improved with filtered ensemble methods:

IV. Results

Results on **development** set over 100 random seeds:

Model	Accuracy				
1710401	Mean	Max	Min	Std	
Biomed BERT	58.7	66.9	52.8	2.9	
Biomed RoBERTa	59.5	67.4	55.11	2.5	
Biomed RoBERTa (TAPT)	58.3	65.7	52.8	2.6	
RoBERTa	59.1	64.6	53.9	2.2	
ELECTRA	59.2	65.7	44.9	3.6	
ELECTRA (large)	53.3	64.6	44.9	6.7	

High variance

Results on **development** set, filtered ensemble (majority voting)

Model	Filtered models (n)	Acc.
Baseline		
Naive Bayes (unigram+bigram)	_	46.1
Logistic Regression (unigram+bigram)	-	51.1
Ensemble method		
All 500 "base" models	8	69.7
Biomed BERT	11	68.5
Biomed RoBERTa	7	67.4
Biomed RoBERTa (TAPT)	11	66.3
RoBERTa	3	67.9
ELECTRA	6	70.2
ELECTRA (large)	18	67.4

Domain-generic models are better

Results on **test** set using filtered ensemble:

Model	Accuracy						
Note	Dev	Test					
All 500 "base" models	69.7	49.7					
ELECTRA		50.2 →					
ELECTRA (large)	67.4	53.6 →	rank 1	st	Gold Dev	Pred Dev	Pred Test
				125			
				100		103	
			-1	75		80	
Label dis		ion (Gol est) usir		50	8 44 40		50
•		RA (larg	-	25	40	Ш	31 34
				0 —	Α	В	С

V. Conclusions

- We show that morden pretrained language models suffer from high-variance issues on evidence grading task in medical literature.
- 2. We propose an ensemble method to handle the high-variance issues. With model filtering, we achieve competitive result