# ESE 370: CIRCUIT-LEVEL OPTIMIZATION FOR DIGITAL SYSTEMS

# **Project 2 Milestone: FIFO Queue**

Mauricio Mutai, Jack Harkins

Instructor: Dr. Tania Khanna

TA: Martin Deng

Date: 11/26/16

### **Design Schematics**

### Top-Level Design



Figure 1: Queue top-level schematic

### Memory Cell Block



Figure 2: Memory block toplevel schematic



Figure 3: Memory block schematic in detail, decoder



Figure 4: Memory block schematic in detail, word slice

#### 6T SRAM Cell



Figure 5: SRAM cell schematic

#### **Control Block**



Figure 6: Control block toplevel schematic



Figure 7: Control block schematic in detail, FD, clock generator, and  $ENQ^*/DEQ^*$  generation



Figure 8: Control block schematic in detail, bitline driver and precharger



Figure 9: Control block schematic in detail, pointers, WL\_EN, and EMPTY/FULL generation

#### **Clock Generator**



Figure 10: Clock generator schematic

#### Force Dequeue (FD)



Figure 11: Force dequeue generation schematic

#### **Pointers**



Figure 12: Pointers toplevel schematic



Figure 13: Pointers schematic in detail, head/tail state



Figure 14: Pointers schematic in detail, inputs



Figure 15: Pointers schematic in detail, overflow handler

#### D Latch



Figure 16: D latch schematic

### D Register



Figure 17: D register schematic

#### 4-bit Register



Figure 18: 4-bit register schematic

#### Incrementer



Figure 19: Incrementer schematic

#### Comparator



Figure 20: Equality comparator schematic



Figure 21: Max schematic

#### **Mux Bitslice**



Figure 22: Mux bitslice schematic

#### Wordline Enable (WL\_EN)



Figure 23: Word line enable generator schematic

#### **ENQ\*/DEQ\*** Generator



Figure 24: ENQ\*/DEQ\* generator schematic

#### 4-bit Bitline Precharger



Figure 25: 4-bit bitline precharger schematic

#### 1-bit Bitline Precharger



Figure 26: 1-bit bitline precharger schematic

#### **Bitline Driver**



Figure 27: Bitline driver schematic

#### Inverter



Figure 28: Inverter schematic

#### NAND2



Figure 29: NAND2 gate schematic

#### AND2



Figure 30: AND2 gate schematic

#### AND4



Figure 31: AND4 gate schematic

### NOR2



Figure 32: NOR2 gate schematic

### Decoder



Figure 33: 4-to-16 decoder schematic

#### **Tri-State Buffer**



Figure 34: Tri-state buffer schematic

### Tri-State Inverter



Figure 35: Tri-state inverter schematic

# **Timing of Key Signals**

### **Memory Operation and Design Choices**

# **Breakdown of Energy Contributions**

### **Optimization of Energy**

### **Validation of Correctness**

# **Summary of Design Metrics**

### **Honor Pledge**

We, Jack Harkins and Mauricio Mutai, certify that we have complied with the University of

Pennsylvania's Code of Academic Integrity in completing this project.