10

15

25

30

MANNOSIDASE STRUCTURES

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

The present invention relates to crystal structures. In particular, the invention relates to crystals comprising a mannosidase II ligand binding domain (LBD), optionally having a ligand which is associated therewith. The structures may be used to determine mannosidase homologues and information about the secondary and tertiary structures of polypeptides which are as yet structurally uncharacterised. The structures may also be used to identify ligands which are capable of binding the ligand binding domain. Such ligands may be capable of acting as modulators of mannosidase II activity.

BACKGROUND

20 Mannosidase II enzymes

There has been widespread interest in mannosidases in recent years, largely due to their role in a multitude of biological systems and, as a result, their potential as therapeutic targets. In particular, mammalian Golgi α -mannosidase II is involved in glycoprotein biosynthesis (especially in the maturation of N-linked oligosaccharides on newly synthesized glycoproteins) and is currently an important therapeutic target for the development of anticancer agents (Goss et al (1995) Clin. Cancer Res. 1:935-944).

Golgi α-mannosidase II (mannosyl oligosaccharide 1,3-1,6-α-mannosidase II, EC 3.2.1.114; also referred to herein as "GMII") belongs to the glycosyl hydrolase family 38 (Henrissat, 1991; Coutinho and Henrissat, 1999) and is central to the Golgi processing pathway, as it specifically trims two mannose residues from the branched GlcNAcMan₅GlcNAc₂ mannose

intermediate (Figure 8A) to form the core GlcNAcMan₃GlcNAc₂ glycosyl structure, an essential precursor for the further addition of *N*-acetyl-glucosamine units. GMII is a Type II transmembrane protein, approximately 125 kD in size, composed of a short N-terminal cytoplasmic tail, a single-span transmembrane domain and a large lumenal C-terminal catalytic portion (Moremen and Touster, 1985, 1986). The enzyme is highly specific for the presence of the single GlcNAc attached in a α1,2 linkage to the Man α1,3-Man arm of the GlcNAcMan₅GlcNAc₂-Asn-X substrate (Harpaz and Schachter, 1980). It removes the dimannose branch (M6, M7; Figure 8A) by hydrolysis of both glycosidic bonds with net retention of sugar anomeric configuration, resulting in the final tri-mannose GlcNAcMan₃GlcNAc₂ core. There is little or no experimental evidence to date addressing whether the two bonds are cleaved in separate binding sites or sequentially in the same binding site, nor whether or not the singly-hydrolyzed product is released from the enzyme between the two cleavage events.

Mammalian lysosomal-mannosidase has significant sequence similarity to the GM II enzyme and is responsible for glycoprotein degradation (Moremen *et al* (1994) Glycobiology 4 113-125; Liao et al (1996) J. Biol. Chem. 271:28348-28358). In particular, lysosomal α-mannosidase II is involved in the catabolism of N-linked glycoproteins through the sequential degradation of high mannose, hybrid and complex oligosaccharides.

20

25

30

5

10

Mutations in the gene encoding mannosidase II cause α -mannosidosis, an autosomal recessive lysosomal storage disease (Ockermann (1967) Lancet 2:239-241).

A number of mannosidase II genes have been characterised from different sources, including the Drosophila gene (Foster et al (1995) Gene 154:183-186; Rabouille et al (1999) J. Cell Sci. 112:3319-3330), rat gene (Spiro et al (1997) J. Biol. Chem. 272:29356-29363) and human, mouse, bovine and feline genes (Beccari et al (1999) Bioscience reports 19:158-162). These mannosidases have been categorized as class II mannosidases, based on sequence alignment, and belong to family 38 in Henrissat's glycosidase classification (Moremen et al (1994) as above, Henrissat and Bairoch (1996) Biochem J. 316:695-696).

To date there have been significant problems with high level expression of these enzymes, which has impeded structural and mechanistic studies. Indeed, problems with expression have meant that α-mannosidase from Jack Bean (*Canavalia ensiformis*) has been used as a model enzyme for structural and functional characterisation (Howard et al (1998) J. Biol. Chem. 273:2067-2072; Kimura et al (1999) Eur. J. Biochem. 164:168-175). In view of the potential therapeutic application of mannosidase inhibitors, there is a need for direct structural characterisation of these enzymes.

10 Swainsonine

Swainsonine (SW) is an indolizidine alkaloid found in Australian Swainsona canescens (Colegate et al., Aust J Chem 32:2257-2264, 1979), North American plants of the genera Astragalus and (Molyneux R J and James L F., Science 215:190-191, 1981), and also the fungus Rhizoctonia leguminicola (Schneider et al., Tetrahedron 39;29-31, 1983).

15

20

5

Swainsonine is a potent and specific inhibitor of the lysosomal and golgi forms of alphamannosidase (Cenci di Bello et al., Biochem. J. 215, 693 (1983); Tulsiani et al., J. Biol. Chem. 257, 7936 (1982)). It has potential therapeutic value as an antimetastatic (Humpheries et al., Cancer Res. 48, 1410 (1988)), and tumor-proliferative (Dennis, Cancer Res. 46, 5131 (1986)), or immunoregulatory agent (Kino et al., J. Antibiot. 38, 936 (1985)). Swainsonine has also been shown to have positive effects on cellular immunity in mice (reviewed in Humphries M. J. and Olden K., Pharmacol Ther. 44:85-105, 1989, and Olden et al., Pharmacol Ther 50:285-290, 1991)).

25

Structural information about the interaction between swainsonine and mannosidase II enzymes would provide a basis for rational modification of swainsonine derivatives with altered activities. It would also provide a framework on which new ligands could be designed which mimic some of the swainsonine:mannosidase atomic interactions.

10

15

20

25

30

SUMMARY OF THE INVENTION

The present invention is based on the finding that, after extensive modifications to the protocol, it is possible to express mannosidase II in appreciable quantities. The present invention is also based on the finding that it is possible to crystallize the protein mannosidase II, both alone and in combination with a selection of different ligands. More particularly, it has been possible to identify the specific sites of mannosidase II which are associated with binding to swainsonine and the mannose-like compound deoxymannojirimycin (DMNJ). The structure was also shown to exhibit a previously unobserved folding pattern enabling the design of novel GMII-specific inhibitors.

Binding domains are of significant utility in drug discovery. The association of natural ligands and substrates with the binding domains of mannosidases is the basis of many biological mechanisms. In addition, many drugs (e.g. swainsonine) exert their effects through association with the binding domains of mannosidases. The associations may occur with all or any parts of a binding domain. An understanding of these associations will lead to the design and optimization of drugs having more favorable associations with their target enzyme and thus provide improved biological effects. Therefore, information about the shape and structure of mannosidases and their ligand-binding domains is invaluable in designing potential modulators of mannosidases for use in treating diseases and conditions associated with or modulated by the mannosidases.

Thus, according to a first aspect of the invention, there is provided a crystal comprising a mannosidase II ligand-binding domain. In a preferred embodiment the crystal is a crystal of a mannosidase II enzyme. The structure of a crystal of mannosidase II has been solved and is set forth in Table 1, Table 2, or Table 8.

The crystal may comprise a complex between a mannosidase II ligand-binding domain and at least one ligand, for example an inhibitor of mannosidase II. In a particularly preferred embodiment that crystal comprises a complex between mannosidase II and swainsonine. The

structure of a crystal of a complex between mannosidase II and swainsonine has been solved, and is set forth in Table 2 or Table 8.

In a second aspect, the present invention provides a crystal comprising swainsonine or a derivative thereof. In a preferred embodiment, the crystal comprises a complex between swainsonine (or a derivative thereof) and a mannosidase II ligand-binding domain. The structure of a crystal of a complex between mannosidase II and swainsonine has been solved, and is set forth in Table 2, or Table 8.

According to a third aspect of the invention, there is provided a model of at least part of a mannosidase II, made using a crystal according to the first aspect of the invention. In a preferred embodiment, the model comprises the mannosidase II ligand-binding domain. There is also provided a model of swainsonine or a derivative thereof made using a crystal according to the second aspect of the invention.

15

20

25

30

5

The crystal of the first and second aspect of the invention and a model of the third aspect of the invention may be provided in the form of a computer readable medium.

The crystals and models of earlier aspects of the invention may provide information about the atomic contacts involved in the interaction between the enzyme and a known ligand, which can be used to screen for unknown ligands. According to a fourth aspect of the invention, there is provided a method of screening for a ligand capable of binding a mannosidase II ligand binding domain, comprising the use of a crystal according to the first or second aspects of the invention or a model according to the third aspect of the invention. For example, the method may comprise the step of contacting the ligand binding domain with a test compound, and determining if said test compound binds to said ligand binding domain.

In a fifth aspect, the present invention provides a ligand identified by a screening method of the fourth aspect of the invention. Preferably the ligand is a modulator that is capable of modulating the activity of a mannosidase II enzyme. A crystal and/or model of the invention may be used to design, evaluate, and identity modulators of a mannosidase II or homologues thereof other than ligands that associate with a mannosidase II. The modulators may be based on the shape and structure of a mannosidase II, or a ligand binding domain or atomic interaction, or atomic contacts thereof. Therefore modulators may be derived from ligand binding domains or analogues or parts thereof.

Modulators (e.g. ligands) which are capable of modulating the activity of mannosidase II enzymes have considerable therapeutic and prophylactic potential. In a sixth aspect, the present invention provides the use of a modulator of the invention in the manufacture of a medicament to treat and/or prevent a disease in a mammalian patient. There is also provided a pharmaceutical composition comprising a modulator and a method of treating and/or preventing a disease comprising the step of administering such a modulator or pharmaceutical composition to a mammalian patient.

15

10

5

A potential modulator of a mannosidase II identified by a method of the present invention may be confirmed as a modulator by synthesizing the compound, and testing its effect on the enzymatic activity of mannosidase II in an assay. Such assays are known in the art.

- Therefore, the methods of the invention for identifying ligands or modulators may comprise one or more of the following additional steps:
 - (a) testing whether the modulator or ligand is a modulator of the activity of a mannosidaseII, preferably testing the activity of the modulator or ligand in cellular assays and animal model assays;
- 25 (b) modifying the modulator or ligand;
 - (c) optionally rerunning steps (a) or (b); and
 - (d) preparing a pharmaceutical composition comprising the modulator or ligand.

Steps (a), (b) (c) and (d) may be carried out in any order, at different points in time, and they need not be sequential.

10

The crystal structures and models described above also provide information about the secondary and tertiary structure of mannosidase II enzymes. This can be used to gleen structural information about other, previously uncharacterised polypeptides. According to a seventh aspect of the invention there is provided a method of determining the secondary and/or tertiary structures of polypeptides with unknown (or only partially known) structure comprising the step of using such a crystal or model. The polypeptide under investigation is preferably structurally or functionally related to the mannosidase II enzyme. For example, the polypeptide may show a degree of homology over some or all parts of the primary amino acid sequence. Alternatively, the polypeptide may perform an analogous function or be suspected to show a similar catalytic mechanism to the mannosidase II enzyme.

Aspects of the invention are presented in the accompanying claims and in the following description, drawings, and Tables.

15 DESCRIPTION OF THE FIGURES AND TABLES

The present invention will now be described only by way of example and with reference to the accompanying figures and tables, wherein:

20 Figure 1 shows the active site of mannosidase II.

Figure 2 shows the secondary structure of Drosophila Golgi α -mannosidase II. Helices are in blue and β sheets are in red.

Figure 3 shows the Drosophila golgi α-mannosidase II molecule with the colours representing where it is identical to human GMII. The red and blue represent deletions or insertions with respect to the human sequence. The green is a disulphide bond.

20

25

30

Figure 4 shows the whole Drosophila golgi α -mannosidase II molecule in sticks with residues that are identical in the lysosomal manII as coloured balls (red or blue depending whether they are in the N-terminal or C-terminal part of the molecule).

5 Figure 5 shows the active site of a Drospholiga mannosidase.

Figure 6 shows the DNA sequence of an expressed Drosophila mannosidase.

Figure 7 shows an alignment of expressed secreted Drosophila mannosidase with human mannosidase.

Figure 8 shows A). Schematic representation of the high mannose GlcNAcMan₅GlcNAc₂ substrate of dGMII. B) Ribbon representation of the dGMII structure, top-view, C) side-view. The loop formed by residues 527-540 is shown in yellow. All molecular images were prepared using MOLSCRIPT (Kraulis, 1991) and rendered using Raster3D (Merritt and Bacon, 1997)

Figure 9 shows a molecular surface representation of the convex face (A) and the planar face (B) of the dGMII molecule. Molecular surface images are colored for electrostatic potential (red for negative, blue for positive). C) Molecular surface representation of the planar face of dGMII, colored for homology with the sequence of human Golgi α-mannosidase II (dark-green for identical, light-green for homologous, yellow for similar, and white for different residues). Alignment of human and *Drosophila* Golgi α-mannosidase II sequences (SwissProt accession numbers Q16706 and Q24451, respectively) was performed using the GAP program of the Wisconsin package (Version 10, Genetics Computer Group) using the default parameters without any manual intervention. The scores were used to colour the molecular surface. All molecular surface images were produced using GRASP (Nicholls et al., 1991).

Figure 10 shows stereo views of the active site of dGMII with bound Tris (A), DMNJ (B), and swainsonine (C) molecules. The active site zinc ion is shown in turquoise, the bound inhibitor

10

molecules are rendered in gold and water molecules are represented as transparent red spheres. Hydrogen bonds are shown as blue dashed lines.

Figure 11 shows A) Molecular surface representation of dGMII showing the position of the active site bound Tris molecule and the 2-methyl-2,4-pentanediol (MPD) binding site. B) Molecular surface representation of dGMII with the GlcNAcMan₅GlcNAc₂ substrate modeled into the binding pocket. The substrate molecule is positioned into the binding pocket with α 1,6-linked mannose M6 (shown in green) docked into the active site and β 1,2-GlcNAc residue G3 (shown in black) placed in the MPD binding site. Individual mannose residues of the substrate are colored according to the coloring scheme used in Figure 8A. C) Representation of the sequential trimming of the α 1,6 (M6) and α 1,3-linked (M7) mannose residues. Figure 11A was produced using LIGPLOT (Wallace et al., 1995). All molecular surface images were produced using GRASP (Nicholls et al., 1991).

Table 1 shows the structural coordinates of a Drosophila Golgi α -mannosidase II.

Table 2 shows the structural coordinates of a Drosophila Golgi α -mannosidase II with swainsonine.

Table 3 shows the ligand binding domain (active site) of a mannosidase II.

Table 4 shows the intermolecular contacts of a Drosophila Golgi α -mannosidase II swainsonine complex.

Table 5 shows crystallographic refinement statistics for the native Drosophila Golgi mannosidase II.

Table 6 shows crystallographic refinement statistics for Drosophila Golgi mannosidase II associated with swainsonine.

Table 7 shows a list of Mannosidase II enzymes.

Table 8 shows the structural coordinates of a Drosophila Golgi α -mannosidase II with swainsonine, a zinc ion, Tris molecule and an N-glycan.

5

Table 9 shows data collection statistics for MAD (Se-Met) of dGMII and native dGMII.

Table 10 shows refinement statistics of dGMII, dGMII-swainsonine complex, and dGMII-DMNJ complex.

10

15

25

In Tables 1, 2, and 8 from the left, the second column identifies the atom number; the third identifies the atom type; the fourth identifies the amino acid type; the sixth identifies the residue number; the seventh identifies the x coordinates; the eighth identifies the y coordinates; the ninth identifies the z coordinates; the tenth identifies the occupancy; and the eleventh identifies the temperature factor.

DETAILED DESCRIPTION OF THE INVENTION

Unless otherwise indicated, all terms used herein have the same meaning as they would to one skilled in the art of the present invention. Practitioners are particularly directed to Current Protocols in Molecular Biology (Ansubel) for definitions and terms of the art. Abbreviations for amino acid residues are the standard 3-letter and/or 1-letter codes used in the art to refer to one of the 20 common L-amino acids.

In a first aspect, the present invention relates to a crystal comprising a mannosidase II ligand binding domain.

Crystal

As used herein, the term "crystal" means a structure (such as a three dimensional (3D) solid aggregate) in which the plane faces intersect at definite angles and in which there is a regular

5

10

15

20

structure (such as internal structure) of the constituent chemical species. Thus, the term "crystal" can include any one of: a solid physical crystal form such as an experimentally prepared crystal, a crystal structure derivable from the crystal (including secondary and/or tertiary and/or quaternary structural elements), a 2D and/or 3D model based on the crystal structure, a representation thereof such as a schematic representation thereof or a diagrammatic representation thereof, or a data set thereof for a computer.

In one aspect, the crystal is usable in X-ray crystallography techniques. Here, the crystals used can withstand exposure to X-ray beams used to produce a diffraction pattern data necessary to solve the X-ray crystallographic structure. A crystalline form of a mannosidase, may be characterized as being capable of diffracting x-rays in a pattern defined by one of the crystal forms depicted in Blundel et al 1976, Protein Crystallography, Academic Press.

A crystal of the invention includes a mannosidase II or part thereof (e.g. ligand binding domain) in association with one or more moieties, including heavy-metal atoms i.e. a derivative crystal, a metal cofactor, or one or more ligands or substrates i.e. a co-crystal.

The term "associate", "association" or "associating" refers to a condition of proximity between a moiety (i.e. chemical entity or compound or portions or fragments thereof), and a mannosidase II, or parts or fragments thereof (e.g. binding sites or domains). The association may be non-covalent i.e. where the juxtaposition is energetically favoured by for example, hydrogen-bonding, van der Waals, or electrostatic or hydrophobic interactions, or it may be covalent.

The term "heavy-metal atoms" refers to an atom that can be used to solve an x-ray crystallography phase problem, including but not limited to a transition element, a lanthanide metal, or an actinide metal. Lanthanide metals include elements with atomic numbers between 57 and 71, inclusive. Actinide metals include elements with atomic numbers between 89 and 103, inclusive.

Multiwavelength anomalous diffraction (MAD) phasing may be used to solve protein structures using selenomethionyl (SeMet) proteins. Therefore, a complex of the invention may comprise a crystalline mannosidase II or part thereof (e.g. ligand binding domain) with selenium associated with the methionine residues of the protein.

5

In an embodiment of the invention, a ligand binding domain is in association with a metal cofactor in the crystal. A "metal cofactor" refers to a metal required for mannosidase activity and/or stability. For example, the metal cofactor may be zinc, and other similar atoms or metals. In a preferred embodiment a LBD is in association with Zn²⁺.

10

A ligand binding domain in a complex with a cofactor preferably comprises one or more of the residues involved in coordination of a Zn^{2+} ion, namely: aspartate residues 92 and 204, and histidines 90 and 471.

15

The crystal may comprise a complex between a ligand-binding domain and one or more ligands. In other words the ligand binding domain may be associated with one or more ligands in the crystal. The ligand may be any compound which is capable of interacting stably and specifically with the ligand binding domain. The ligand may, for example, be an inhibitor of mannosidase II, including but not limited to swainsonine and the mannose-like compound deoxymannojirimycin (DMNJ).

20

25

In a preferred embodiment the ligand associated with said mannosidase II ligand binding domain is swainsonine, or an analogue or derivative thereof. Swainsonine is an indolizidine alkaloid found in a variety of sources (Colegate et al., (1979); Molyneux and James (1981); and Schneider et al. (1983) all as above) which has been known to be an inhibitor of mannosidase II enzymes for some time. Derivatives of swainsonine are also known in the art, for example US 5962467, US 5,650,413, and U.S. 6,048,870, describe various derivatives of swainsonine, processes for their preparation and their use as therapeutic agents.

10

15

20

In an embodiment a crystal of the invention comprises a ligand binding domain of a mannosidase II in association with swainsonine. These complexes may have the structural coordinates shown in Table 2, or Table 8.

In a second aspect, the present invention also provides a crystal comprising swainsonine or a derivative thereof. Preferably the swainsonine molecule has the three dimensional structure defined by the relevant structural coordinates shown in Table 2, or Table 8.

The crystal may also comprise a complex between mannosidase II (or part thereof) and a substrate, or analogue thereof. The term "substrate" refers to molecules that associate with a mannosidase II as it hydrolyzes linkages between mannose residues. Mannosidases II enzymes release α -D-mannose as a first formed product and they follow a double-displacement mechanism in which a glycosyl-enzyme intermediate is formed and hydrolyzed via oxocarbenium ion-like transition states. The formation of the intermediate is assisted by general acid catalysis from a carboxylic acid located in the active site. The residue also serves as the general base catalyst for the second deglycosylation step. A second carboxylic acid serves as the nucleophile that forms the covalent intermediate. Thus, the substrate molecule may comprise molecules such as the glycosyl moiety that forms an intermediate with the enzyme. (See Howard, S. et al, J. Biol. Chem. (1998) 273. 2067-2072 and references 11, 12, 14, 15, and 16 therein). An analogue of a substrate is one which mimics the substrate binding in the LBD, but which is incapable (or has a significantly reduced capacity) to take part in the catalytic reaction.

A number of substrates for Golgi α -mannosidase II are known including the artificial substrate PNP-mannose (Rabouille et al (1999) as above). Lysosomal mannosidase II is involved in glycoprotein degradation. In particular lysosomal mannosidase II hydrolyses $\alpha(1,2)$ $\alpha(1,3)$ and $\alpha(1,6)$ linkages between mannose residues. Substrates for this enzyme are thought to include high mannose, hybrid and complex oligosaccharides.

In an embodiment, the substrate comprises GlcNAcMan₅GlcNAc₂-Asn-.

25

15

25

A complex may comprise one or more of the intermolecular interactions identified in Table 4. A structure of a complex of the invention may be defined by selected intermolecular contacts, preferably the intermolecular contacts as defined in Table 4.

5 A crystal of the invention may be characterized by an N-terminal α/β domain, a C-terminal portion comprising a three-helical bundle, and an all-β C-terminal domain, connected by 5 internal disulfide bonds and stabilized by a zinc binding site (Figure 8B).

The N-terminal α/β domain is characterized as follows:

- (a) comprising an inner core of three β-sheets (A, B and C, Figure 8B) consisting of 11, mostly parallel β-strands, surrounded by 16 α-helices;
- (b) comprising a GlcNAc residue at a consensus N-glycosylation site (Asn-194), located at the N-terminus of helix 7.
- (c) stabilized by three disulfide bonds: between Cys-31 and Cys-1032 connecting the N and C-terminal extremes of dGMII; Cys-275 and Cys-282 linking helices 10 and 11; Cys-283 and Cys-297 linking helix 11 with a loop between helix 13 and the core of parallel β-sheets.

The C-terminal portion is characterized as follows:

- 20 (a) a three-helix bundle comprises helices 18, 20 and 21 connected to the N-terminal α/β-domain via a zinc binding site.
 - (b) a zinc ion coordinated in a T₅-square-based pyramidal geometry involving residues: Asp-90, His-92, Asp-204 and His-471.
 - (c) two immunoglobulin-like domains: a small β -sandwich consisting of 12 anti-parallel strands from β -sheets D and E, and a large 21-strand structure involving β -sheets F and G.
 - (d) a barrel formed by the three-helix bundle, helix-23, and the two β -sandwich structures providing a narrow pore in the center of the C-terminal domain.

The barrel in the C-terminal portion is lined by six arginine residues: Arg-540, 565, 617, 770, 777 and 893, contributing to the overall positive charge of the pore (Figure 9A). A hairpin loop, connecting two strands of β -sheet D (Figure 8B and C, residues 527-540, shown in yellow) protrudes into the center of the barrel on the planar side of the molecule. Arginine residue 530, located at the tip of the type-I β -turn in this loop, plugs the pore preventing an open channel through the protein. The resulting crater-like cavity on the convex side of the molecule is 20Å deep, with a diameter of 20Å funneling to 8Å at the bottom of the cavity. The loop has a higher degree of flexibility compared to the rest of the structure (average B-factor values: ~33Å² and ~15Å², respectively).

10

5

A crystal of the invention may enable the determination of structural data for a ligand or substrate. In order to be able to derive structural data for the ligand or substrate, it is necessary for the molecule to have sufficiently strong electron density to enable a model of the molecule to be built using standard techniques. For example, there should be sufficient electron density to allow a model to be built using XTALVIEW (McRee 1992 J. Mol. Graphics. 10 44-46).

Preferably, the crystal of the invention belongs to space group P2₁2₁2₁

20

15

The term "space group" refers to the lattice and symmetry of the crystal. In a space group designation the capital letter indicates the lattice type and the other symbols represent symmetry operations that can be carried out on the contents of the asymmetric unit without changing its appearance.

25

Preferably, a crystal of said complex comprises a unit cell having the following unit dimensions: $a=69 (\pm 5) \text{ Å}$, $b=110 (\pm 5) \text{ Å}$, $c=139 (\pm 5) \text{ Å}$.

The

The term "unit cell" refers to the smallest and simplest volume element (i.e. parallelpiped-shaped block) of a crystal that is completely representative of the unit of pattern of the crystal. The unit cell axial lengths are represented by a, b, and c. Those of skill in the art understand

10

15

20

that a set of atomic coordinates determined by X-ray crystallography is not without standard error.

In a highly preferred embodiment, the crystal comprises the structural coordinates as shown in Table 1, Table 2, or Table 8.

As used herein, the term "structural coordinates" refer to a set of values that define the position of one or more amino acid residues with reference to a system of axes. The term refers to a data set that defines the three dimensional structure of a molecule or molecules (e.g. Cartesian coordinates, temperature factors, and occupancies). Structural coordinates can be slightly modified and still render nearly identical three dimensional structures. A measure of a unique set of structural coordinates is the root-mean-square deviation of the resulting structure. Structural coordinates that render three dimensional structures (in particular a three dimensional structure of an SGC domain) that deviate from one another by a root-mean-square deviation of less than 5 Å, 4 Å, 3 Å, 2 Å, or 1.5 Å may be viewed by a person of ordinary skill in the art as very similar.

Variations in structural coordinates may be generated because of mathematical manipulations of the structural coordinates of a mannosidase described herein. For example, the structural coordinates of Table 1, 2, or 8 may be manipulated by crystallographic permutations of the structural coordinates, fractionalization of the structural coordinates, integer additions or substractions to sets of the structural coordinates, inversion of the structural coordinates or any combination of the above.

Variations in the crystal structure due to mutations, additions, substitutions, and/or deletions of the amino acids, or other changes in any of the components that make up the crystal may also account for modifications in structural coordinates. If such modifications are within an acceptable standard error as compared to the original structural coordinates, the resulting structure may be the same. Therefore, a ligand that bound to a ligand binding domain of a mannosidase would also be expected to bind to another ligand binding domain whose

structural coordinates defined a shape that fell within the acceptable error. Such modified structures of a ligand binding domain thereof are also within the scope of the invention.

Various computational analyses may be used to determine whether a molecule or the ligand binding domain thereof is sufficiently similar to all or parts of a ligand binding domain thereof. Such analyses may be carried out using conventional software applications and methods as described herein.

The crystal may also be specifically characterised by the refinement statistics set out in Tables 5, 6, or 10.

MANNOSIDASE II

The term "mannosidase II" refers to eukaryotic mannosidases involved in the biosynthesis of glycoproteins, glycolipids, glycosylphosphatidylinositols and other complex glycoconjugates, and prokaryotic mannosidases involved in the synthesis of carbohydrate structures of bacteria and viruses. In particular, the term refers to the class of mannosidases categorized as class II mannosidases, based on sequence alignment, belonging to family 38 in Henrissat's glycosidase classification (Moremen, K.W. et al (1994) GlycoBiology 4, 113-125; Henrissat, B. and Bairoch A. (1996) Biochem J. 316, 695-696; Henrissat, B. and Bairoch A. (1993) Biochem J. 293, 781-788; Henrissat, B. and Bairoch A. (1991) Biochem J. 280, 309-316). Examples of mannosidase II enzymes include those listed in Table 7 (from http://afmb.cnrs-mrs.fr/~pedro/CAZY/ghf_38.html).

The invention generally relates to mannosidase II enzymes and parts thereof. Mannosidase II enzymes catalyze the first committed step in the biosynthesis of complex N-glycans and they control conversion of high mannose to complex N-glycans.

Mannosidases are derivable from a variety of sources, including viruses, bacteria, fungi, plants, and animals. In a preferred embodiment the glycosyltransferase is derivable from an

animal, preferably a mammal including but not limited to bovine, ovine, porcine, murine equine, most preferably a human. The enzyme may be from any source, whether natural, synthetic, semi-synthetic, or recombinant.

5 A mannosidase or part thereof in the present invention may be a wild type enzyme, or part thereof, or a mutant, variant or homologue of such an enzyme.

The term "wild type" refers to a polypeptide having a primary amino acid sequence which is identical with the native enzyme (for example, the mammalian enzyme).

10

The term "mutant" refers to a polypeptide having a primary amino acid sequence which differs from the wild type sequence by one or more amino acid additions, substitutions or deletions. Preferably, the mutant has at least 90% sequence identity with the wild type sequence. Preferably, the mutant has 20 mutations or less over the whole wild-type sequence. More preferably the mutant has 10 mutations or less, most preferably 5 mutations or less over

15

the whole wild-type sequence.

The term "variant" refers to a naturally occurring polypeptide which differs from a wild-type sequence. A variant may be found within the same species (i.e. if there is more than one isoform of the enzyme) or may be found within a different species. Preferably the variant has at least 90% sequence identity with the wild type sequence. Preferably, the variant has 20 mutations or less over the whole wild-type sequence. More preferably, the variant has 10 mutations or less, most preferably 5 mutations or less over the whole wild-type sequence.

20

25 The term "part" indicates that the polypeptide comprises a fraction of the wild-type amino acid sequence. It may comprise one or more large contiguous sections of sequence or a plurality of small sections. In an embodiment, the "part" comprises a wild type mannosidase enzyme with the cytosolic and transmembrane domains and most of the stalk region eliminated, preferably the "part" comprises amino acid residues 31-1044 of Golgi αmannosidase. The "part" may comprise a ligand binding domain as described herein. The

30

polypeptide may also comprise other elements of sequence, for example, it may be a fusion protein with another protein (such as one which aids isolation or crystallisation of the polypeptide). Preferably the polypeptide comprises at least 50%, more preferably at least 65%, most preferably at least 80% of the wild-type sequence.

5

The term "homologue" means a polypeptide having a degree of homology with the wild-type amino acid sequence. The term "homology" can be equated with "identity".

10

In the present context, an homologous sequence is taken to include an amino acid sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the wild-type sequence. Typically, the homologues will comprise the same sites (for example ligand binding domain) as the subject amino acid sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present invention it is preferred to express homology in terms of sequence identity.

15

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences.

20

Percentage homology may be calculated over contiguous sequences, i.e. one sequence is aligned with the other sequence and each amino acid in one sequence is directly compared with the corresponding amino acid in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues.

25

30

Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion will cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed. Consequently, most

sequence comparison methods are designed to produce optimal alignments that take into consideration possible insertions and deletions without penalising unduly the overall homology score. This is achieved by inserting "gaps" in the sequence alignment to try to maximise local homology.

However, these more complex methods assign "gap penalties" to each gap that occurs in the alignment so that, for the same number of identical amino acids, a sequence alignment with as few gaps as possible - reflecting higher relatedness between the two compared sequences - will achieve a higher score than one with many gaps. "Affine gap costs" are typically used that charge a relatively high cost for the existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties will of course produce optimised alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use the default values when using such software for sequence comparisons. For example when using the GCG Wisconsin Bestfit package the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension.

Calculation of maximum % homology therefore firstly requires the production of an optimal alignment, taking into consideration gap penalties. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A.; Devereux *et al.*, 1984, Nucleic Acids Research 12:387). Examples of other software than can perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel *et al.*, 1999 ibid – Chapter 18), FASTA (Atschul *et al.*, 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel *et al.*, 1999 ibid, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program. A new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequence (see FEMS Microbiol Lett 1999 174(2): 247-50; FEMS Microbiol Lett 1999 177(1): 187-8 and tatiana@ncbi.nlm.nih.gov).

Although the final % homology can be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pairwise comparison based on chemical similarity or evolutionary distance. An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.

10

15

5

Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

pro sul hyd sec 20 am

The sequences may have deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent enzyme. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the secondary binding activity of the substance is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine.

Conservative substitutions may be made, for example according to the Table below. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

ALIPHATIC	Non-polar	GAP
		ILV
	Polar – uncharged	CSTM
		NQ
	Polar - charged	DE
		KR
AROMATIC		HFWY

The polypeptide may also have a homologous substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue, with an alternative residue) i.e. like-for-like substitution such as basic for basic, acidic for acidic, polar for polar etc. Non-homologous substitution may also occur i.e. from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyriylalanine, thienylalanine, naphthylalanine and phenylglycine.

Replacements may also be made by unnatural amino acids include; alpha* and alpha-disubstituted* amino acids, N-alkyl amino acids*, lactic acid*, halide derivatives of natural amino acids such as trifluorotyrosine*, p-Cl-phenylalanine*, p-Br-phenylalanine*, p-I-phenylalanine*, L-allyl-glycine*, β-alanine*, L-α-amino butyric acid*, L-γ-amino butyric acid*, L-α-amino isobutyric acid*, L-ε-amino caproic acid*, 7-amino heptanoic acid*, L-methionine sulfone**, L-norleucine*, L-norvaline*, p-nitro-L-phenylalanine*, L-hydroxyproline*, L-thioproline*, methyl derivatives of phenylalanine (Phe) such as 4-methyl-Phe*, pentamethyl-Phe*, L-Phe (4-amino)*, L-Tyr (methyl)*, L-Phe (4-isopropyl)*, L-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxyl acid)*, L-diaminopropionic acid * and L-Phe (4-benzyl)*. The notation * has been utilised for the purpose of the discussion above (relating to

25

homologous or non-homologous substitution), to indicate the hydrophobic nature of the derivative whereas # has been utilised to indicate the hydrophilic nature of the derivative, #* indicates amphipathic characteristics.

5 Variant amino acid sequences may include suitable spacer groups that may be inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or β-alanine residues. A further form of variation, involving the presence of one or more amino acid residues in peptoid form, will be well understood by those skilled in the art. For the avoidance of doubt, "the peptoid form" is used to refer to variant amino acid residues wherein the α-carbon substituent group is on the residue's nitrogen atom rather than the α-carbon. Processes for preparing peptides in the peptoid form are known in the art, for example Simon RJ et al., PNAS (1992) 89(20), 9367-9371 and Horwell DC, Trends Biotechnol. (1995) 13(4), 132-134.

15 LIGAND-BINDING DOMAIN

As used herein, the term "ligand binding domain (LBD)" refers to a region of a molecule or molecular complex that as a result of its shape, favourably associates with a ligand or a part thereof. For example, it may be a region of a mannosidase that is responsible for binding a substrate or modulator (e.g. swainsonine). With reference to the crystal of the present invention residues in the LBD may be defined by their spatial proximity to the ligand (for example swainsonine or substrate) in the crystal structure.

"Ligand" refers to a compound or entity that associates with a ligand binding domain, including substrates or analogues or parts thereof, or modulators of a mannosidase including inhibitors. A ligand may be designed rationally by using a model according to the present invention.

The term "ligand binding domain (LBD)" also includes a homologue of the ligand binding domain or a portion thereof.

10

15

20

30

As used herein, the term "homologue" in reference to a ligand binding domain refers to ligand binding domain or a portion thereof which may have deletions, insertions or substitutions of amino acid residues as long as the binding specificity of the molecule is retained. In this regard, deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the binding specificity of the ligand binding domain is retained.

As used herein, the term "portion thereof" means the structural coordinates corresponding to a sufficient number of amino acid residues of the mannosidase II LBD (or homologues thereof) that are capable of interacting with a test compound capable of binding to the LBD. This term includes mannosidase II ligand binding domain amino acid residues having an amino acid residues from about 4Å to about 5Å of a bound compound or fragment thereof. Thus, for example, the structural coordinates provided in the crystal structure may contain a subset of the amino acid residues in the LBD which may be useful in the modelling and design of compounds that bind to the LBD.

A ligand binding domain may be defined by its association with a ligand. With reference to a crystal of the present invention, residues in the LBD may be defined by their spatial proximity to a ligand in the crystal structure. For example, such may be defined by their proximity to a substrate or modulator (e.g. swainsonine).

The active site of a mannosidase II crystal of the invention may be characterized as follows:

- (a) a small cavity lined by aromatic residues Trp-95, Phe-206, Tyr-269 and Tyr-727;
- 25 (b) a zinc ion binding site within the cavity characterized by a T₅-square-based pyramidal geometry and 'elec-His-Zn motifs'.

A binding domain for a GMII inhibitor such as swainsonine and DMNJ, comprises one or more of Trp-95, Phe-206 and Tyr-727 which form a binding cavity for the inhibitor. The inhibitor ring structures can be stacked against Trp-95, and stabilized by hydrogen bonds and

10

15

25

interactions with the zinc ion. When bound to an inhibitor the zinc ion binding domain of the GMII can be transformed into T₆-octahedral coordination. The binding domain allows for the formation of a hydrogen bond between the zinc-coordinating OD1 oxygen of Asp-204 and the N4 nitrogen at the fusion of the five and six-membered rings of swainsonine. The zinc coordinating oxygen atoms of the inhibitors are involved in hydrogen bond interactions with the neighboring metal binding residues of the enzyme.

The position of the inhibitor molecules is stabilized in the active site by hydrogen bonds between carboxylic oxygens OD1 and OD2 of residue Asp-472 and hydroxyl oxygens O3 and O4 (O5 in swainsonine) of the inhibitors. DMNJ is involved in additional hydrogen bonds, via water molecules, with the NH₂ nitrogen of Arg-228, the hydroxyl oxygen of Tyr-269, the backbone carbonyl oxygen of Arg-876, and the OD1 oxygen of Asp-204.

In an embodiment, a ligand binding domain comprises one or more of the following amino acid residues: His 471, His 90, and Asp 92, and Asp 204; or a homologue thereof

In a second embodiment, a ligand binding domain comprises one or more of the following amino acid residues: Trp-95, Phe-206, Tyr-269, and Tyr-727.

In another embodiment, a ligand binding domain comprises one or more of the following amino acid residues: Asp-92, Asp-204, His-90, His-471.

In still another embodiment, a ligand binding domain comprises one or more of the following amino acid residues: His 471, Asp 204, Asp 341, His 90, Asp 92, Asp 472, Phe 206, Tyr 727 and Trp 95; or a homologue thereof

In yet another embodiment a ligand binding domain comprises one or more of the following groups:

30 (a) GVWKQG (residues 60-65)

- (b) VFVVPHSHND (residues 83-92)
- (c) WAIDPFGH (residues 201-208)
- (d) HMMPFYSYDIPHTCGPDPK^V/₁CCQFDFKR (residues 262-289)
- (e) LL¹/_APLGDDFR (residues 334-343):

In an aspect of the invention, a ligand binding domain comprises one or more of the enzyme residues shown in Table 3 and/or Table 4.

A crystal of a binding domain may be defined by selected atomic contacts.

10

In an embodiment, the binding site of the mannosidase II inhibitor swainsonine is described in Table 3, and details of the atomic interactions of the binding site are set out in Table 4. In the swainsonine binding site there are direct hydrogen bonds between the inhibitor and the enzyme. Atomic contacts on the enzyme comprise Trp-95, Phe-206, Tyr-727, Asp-472, Asp 204 (see Table 4, Figures 1 and 5).

15

20

In a particular embodiment of the invention, a secondary or three-dimensional structure of a binding domain of a mannosidase II that associates with an inhibitor of a mannosidase II is provided comprising at least two or three atomic contacts of the atomic interactions in Table 4, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the inhibitor, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the mannosidase II (i.e. enzyme atomic contact). Preferably, the binding domain is defined by the atoms of the enzyme atomic contacts having the structural coordinates for the atoms listed in Table 1, 2, or 8.

25

30

METHOD OF MAKING A CRYSTAL

The present invention also provides a method of making a crystal according to the invention.

The crystal may be formed from an aqueous solution comprising a purified polypeptide comprising a mannosidase II or part or fragment thereof (e.g. a catalytic portion, ligand

binding domain). A method may utilize a purified polypeptide comprising a mannosidase II ligand binding domain to form a crystal

The term "purified" in reference to a polypeptide, does not require absolute purity such as a homogenous preparation rather it represents an indication that the polypeptide is relatively purer than in the natural environment. Generally, a purified polypeptide is substantially free of other proteins, lipids, carbohydrates, or other materials with which it is naturally associated, preferably at a functionally significant level for example at least 85% pure, more preferably at least 95% pure, most preferably at least 99% pure. A skilled artisan can purify a polypeptide comprising a mannosidase II using standard techniques for protein purification. A substantially pure polypeptide comprising a mannosidase II will yield a single major band on a non-reducing polyacrylamide gel. The purity of the mannosidase II can also be determined by amino-terminal amino acid sequence analysis.

A polypeptide used in the method may be chemically synthesized in whole or in part using techniques that are well-known in the art. Alternatively, methods are well known to the skilled artisan to construct expression vectors containing the native or mutated mannosidase II coding sequence and appropriate transcriptional/translational control signals. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* recombination/genetic recombination. See for example the techniques described in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press (1989)), and other laboratory textbooks. (See also Sarker et al, Glycoconjugate J. 7:380, 1990; Sarker et al, Proc. Natl. Acad, Sci. USA 88:234-238, 1991, Sarker et al, Glycoconjugate J. 11: 204-209, 1994; Hull et al, Biochem Biophys Res Commun 176:608, 1991 and Pownall et al, Genomics 12:699-704, 1992).

Crystals may be grown from an aqueous solution containing the purified mannosidase II polypeptide by a variety of conventional processes. These processes include batch, liquid, bridge, dialysis, vapor diffusion, and hanging drop methods. (See for example, McPherson, 1982 John Wiley, New York; McPherson, 1990, Eur. J. Biochem. 189: 1-23; Webber. 1991,

10

15

20

25

30

Adv. Protein Chem. 41:1-36). Generally, the native crystals of the invention are grown by adding precipitants to the concentrated solution of the mannosidase II polypeptide. The precipitants are added at a concentration just below that necessary to precipitate the protein. Water is removed by controlled evaporation to produce precipitating conditions, which are maintained until crystal growth ceases.

Derivative crystals of the invention can be obtained by soaking native crystals in a solution containing salts of heavy metal atoms. A complex of the invention can be obtained by soaking a native crystal in a solution containing a compound that binds the polypeptide, or they can be obtained by co-crystallizing the polypeptide in the presence of one or more compounds. In order to obtain co-crystals with a compound which binds deep within the tertiary structure of the polypeptide it is necessary to use the second method.

Once the crystal is grown it can be placed in a glass capillary tube and mounted onto a holding device connected to an X-ray generator and an X-ray detection device. Collection of X-ray diffraction patterns are well documented by those skilled in the art (See for example, Ducruix and Geige, 1992, IRL Press, Oxford, England). A beam of X-rays enter the crystal and diffract from the crystal. An X-ray detection device can be utilized to record the diffraction patterns emanating from the crystal. Suitable devices include the Marr 345 imaging plate detector system with an RU200 rotating anode generator.

Methods for obtaining the three dimensional structure of the crystalline form of a molecule or complex are described herein and known to those skilled in the art (see Ducruix and Geige 1992, IRL Press, Oxford, England). Generally, the x-ray crystal structure is given by the diffraction patterns. Each diffraction pattern reflection is characterized as a vector and the data collected at this stage determines the amplitude of each vector. The phases of the vectors may be determined by the isomorphous replacement method where heavy atoms soaked into the crystal are used as reference points in the X-ray analysis (see for example, Otwinowski, 1991, Daresbury, United Kingdom, 80-86). The phases of the vectors may also be determined by molecular replacement (see for example, Naraza, 1994, Proteins 11:281-296). The

10

15

20

25

30

amplitudes and phases of vectors from the crystalline form of a mannosidase II determined in accordance with these methods can be used to analyze other related crystalline polypeptides.

The unit cell dimensions and symmetry, and vector amplitude and phase information can be used in a Fourier transform function to calculate the electron density in the unit cell i.e. to generate an experimental electron density map. This may be accomplished using the PHASES package (Furey, 1990). Amino acid sequence structures are fit to the experimental electron density map (i.e. model building) using computer programs (e.g. Jones, TA. et al, Acta Crystallogr A47, 100-119, 1991). This structure can also be used to calculate a theoretical electron density map. The theoretical and experimental electron density maps can be compared and the agreement between the maps can be described by a parameter referred to as R-factor. A high degree of overlap in the maps is represented by a low value R-factor. The R-factor can be minimized by using computer programs that refine the structure to achieve agreement between the theoretical and observed electron density map. For example, the XPLOR program, developed by Brunger (1992, Nature 355:472-475) can be used for model refinement.

A three dimensional structure of a molecule or complex may be described by atoms that fit the theoretical electron density characterized by a minimum R value. Files can be created for the structure that defines each atom by coordinates in three dimensions.

MODEL

A crystal structure of the present invention may be used to make a model of the mannosidase II or a part thereof, (e.g.a ligand-binding domain). A model may, for example, be a structural model (or a representation thereof), or a computer model. A model may represent the secondary, tertiary and/or quaternary structure of the mannosidase II. The model itself may be in two or three dimensions. It is possible for a computer model to be in three dimensions despite the constraints imposed by a conventional computer screen, if it is possible to scroll along at least a pair of axes, causing "rotation" of the image.

Thus, for example, the structural coordinates provided in the crystal structure and/or model structure may comprise the amino acid residues of the mannosidase II LBD, or a portion of the mannosidase II LBD or a homologue thereof useful in the modelling and design of test compounds capable of binding to the mannosidase II LBD.

As used herein, the term "modelling" includes the quantitative and qualitative analysis of molecular structure and/or function based on atomic structural information and interaction models. The term "modelling" includes conventional numeric-based molecular dynamic and energy minimization models, interactive computer graphic models, modified molecular mechanics models, distance geometry and other structure-based constraint models.

Preferably, modelling is performed using a computer and may be further optimized using known methods. This is called modelling optimisation.

15

10

5

Overlays and super positioning with a three dimensional model of the mannosidase II LBD, and/or a portion thereof, can also be used for modelling optimisation. Additionally, alignment and/or modelling can be used as a guide for the placement of mutations on the mannosidase II LBD surface to characterise the nature of the site in the context of a cell.

20

25

30

The three dimensional structure of a new crystal may be modelled using molecular replacement. The term "molecular replacement" refers to a method that involves generating a preliminary model of a molecule or complex whose structural coordinates are unknown, by orienting and positioning a molecule whose structural coordinates are known within the unit cell of the unknown crystal, so as best to account for the observed diffraction pattern of the unknown crystal. Phases can then be calculated from this model and combined with the observed amplitudes to give an approximate Fourier synthesis of the structure whose coordinates are unknown. This, in turn, can be subject to any of the several forms of refinement to provide a final, accurate structure of the unknown crystal. Lattman, E., "Use of the Rotation and Translation Functions", in Methods in Enzymology, 115, pp. 55-77 (1985);

10

15

20

25

M. G. Rossmann, ed., "The Molecular Replacement Method", Int. Sci. Rev. Ser., No. 13, Gordon & Breach, New York, (1972).

Commonly used computer software packages for molecular replacement are X-PLOR (Brunger 1992, Nature 355: 472-475), AMORE (Navaza, 1994, Acta Crystallogr. A50:157-163), the CCP4 package (Collaborative Computational Project, Number 4, "The CCP4 Suite: Programs for Protein Crystallography", Acta Cryst., Vol. D50, pp. 760-763, 1994), the MERLOT package (P.M.D. Fitzgerald, J. Appl. Cryst., Vol. 21, pp. 273-278, 1988) and XTALVIEW (McCree et al (1992) J. Mol. Graphics 10: 44-46. It is preferable that the resulting structure not exhibit a root-mean-square deviation of more than 3 Å.

The quality of the model may be analysed using a program such as PROCHECK or 3D-Profiler [Laskowski et al 1993 J. Appl. Cryst. 26:283-291; Luthy R. et al, Nature 356: 83-85, 1992; and Bowie, J.U. et al, Science 253: 164-170, 1991]. Once any irregularities have been resolved, the entire structure may be further refined.

Other molecular modelling techniques may also be employed in accordance with this invention. See, e.g., Cohen, N. C. et al, "Molecular Modelling Software and Methods for Medicinal Chemistry", J. Med. Chem., 33, pp. 883-894 (1990). See also, Navia, M. A. and M. A. Murcko, "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

Using the structural coordinates of the crystal complexes provided by this invention, molecular modelling may be used to determine the structure coordinates of a crystalline mutant or homologue of mannosidase II LBD or of a related protein. By the same token, a crystal of the second aspect of the invention can be used to provide a model of swainsonine. Modelling techniques can then be used to approximate the three dimensional structure of swainsonine derivatives and other compounds which may be able to mimic the atomic contacts between swainsonine and the LBD.

10

15

30

COMPUTER FORMAT OF CRYSTALS/MODELS

Information derivable from the crystal of the present invention (for example the structural coordinates) and/or a model of the present invention may be provided in a computer-readable format.

Therefore, the invention provides a computer readable medium or a machine readable storage medium which comprises the structural coordinates of a mannosidase II including all or any parts of the mannosidase II (e.g ligand-binding domain), ligands including portions thereof, or substrates including portions thereof. Such storage medium or storage medium encoded with these data are capable of displaying on a computer screen or similar viewing device, a three-dimensional graphical representation of a molecule or molecular complex which comprises the enzyme or ligand binding domains or similarly shaped homologous enzymes or ligand binding domains. Thus, the invention also provides computerized representations of a crystal of the invention, including any electronic, magnetic, or electromagnetic storage forms of the data needed to define the structures such that the data will be computer readable for purposes of display and/or manipulation.

- In an aspect the invention provides a computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises a mannosidase II or ligand binding domain thereof defined by structural coordinates of mannosidase II amino acids or a ligand binding domain thereof, or comprises structural coordinates of atoms of a ligand or substrate, or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said computer comprises:
 - (a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates of a mannosidase II amino acids according to Table 1, 2, or 8 or a ligand binding domain thereof, or a ligand (e.g. swainsonine) according to Table 2, or Table 8;
 - (b) a working memory for storing instructions for processing said machine-readable data;

- (c) a central-processing unit coupled to said working memory and to said machinereadable data storage medium for processing said machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

A homologue may comprise a mannosidase II or ligand binding domain thereof, or ligand or substrate that has a root mean square deviation from the backbone atoms of not more than 1.5 angstroms.

10

5

The invention also provides a computer for determining at least a portion of the structural coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex wherein said computer comprises:

15

- (a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates according to Table 1, 2, or 8;
- (b) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;

20

(c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);

(d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structural coordinates; and

25

(e) a display coupled to said central-processing unit for displaying said structural coordinates of said molecule or molecular complex.

10

15

20

25

STRUCTURAL DETERMINATIONS

The present invention also provides a method for determining the secondary and/or tertiary structures of a polypeptide by using a crystal, or a model according to the present invention. The polypeptide may be any polypeptide for which the secondary and or tertiary structure is uncharacterised or incompletely characterised. In a preferred embodiment the polypeptide shares (or is predicted to share) some structural or functional homology to the mannosidase II crystal. For example, the polypeptide may show a degree of structural homology over some or all parts of the primary amino acid sequence. For example the polypeptide may have one or more domains which shows homology with a mannosidase II domain (Kapitonov and Yu (1999) Glycobiology 9(10): 961-978).

The polypeptide may be a mannosidase II with a different specificity for a ligand or substrate. The polypeptide may be a mannosidase II which requires a different metal cofactor. Alternatively (or in addition) the polypeptide may be a mannosidase II from a different species.

The polypeptide may be a mutant of the wild-type mannosidase II. A mutant may arise naturally, or may be made artificially (for example using molecular biology techniques). The mutant may also not be "made" at all in the conventional sense, but merely tested theoretically using the model of the present invention. A mutant may or may not be functional.

Thus, using the model of the present invention, the effect of a particular mutation on the overall two and/or three dimensional structure of a mannosidase II and/or the interaction between the enzyme and a ligand or substrate can be investigated. Alternatively, the polypeptide may perform an analogous function or be suspected to show a similar catalytic mechanism to the mannosidase II enzyme. For example the polypeptide may remove, transport, or add on a sugar residue.

The polypeptide may also be the same as the polypeptide of the crystal, but in association with a different ligand (for example, modulator or inhibitor) or cofactor. In this way it is possible to investigate the effect of altering a ligand or compound with which the polypeptide is associated on the structure of the LBD.

5

Secondary or tertiary structure may be determined by applying the structural coordinates of the crystal or model of the present invention to other data such as an amino acid sequence, X-ray crystallographic diffraction data, or nuclear magnetic resonance (NMR) data. Homology modeling, molecular replacement, and nuclear magnetic resonance methods using these other data sets are described below.

Homology modeling (also known as comparative modeling or knowledge-based modeling)

methods develop a three dimensional model from a polypeptide sequence based on the structures of known proteins (i.e. mannosidase II of the crystal). The method utilizes a

computer model of the crystal of the present invention (the "known structure"), a computer

representation of the amino acid sequence of the polypeptide with an unknown structure, and standard computer representations of the structures of amino acids. The method in particular

comprises the steps of; (a) identifying structurally conserved and variable regions in the

known structure; (b) aligning the amino acid sequences of the known structure and unknown

structure (c) generating coordinates of main chain atoms and side chain atoms in structurally

conserved and variable regions of the unknown structure based on the coordinates of the

10

15

20

25

known structure thereby obtaining a homology model; and (d) refining the homology model to obtain a three dimensional structure for the unknown structure. This method is well known to those skilled in the art (Greer, 1985, Science 228, 1055; Bundell et al 1988, Eur. J. Biochem. 172, al., 1992, 258:130-135, 513: Knighton et Science http://biochem.vt.edu/courses/modeling/homology.htn). Computer programs that can be used in homology modeling are Quanta and the Homology module in the Insight II modelling package distributed by Molecular Simulations Inc, or MODELLER (Rockefeller University, www.iucr.ac.uk/sinris-top/logical/prg-modeller.html).

10

15

20

25

30

In step (a) of the homology modeling method, the known mannosidase II structure is examined to identify the structurally conserved regions (SCRs) from which an average structure, or framework, can be constructed for these regions of the protein. Variable regions (VRs), in which known structures may differ in conformation, also must be identified. SCRs generally correspond to the elements of secondary structure, such as alpha-helices and beta-sheets, and to ligand- and substrate-binding sites (e.g. acceptor and donor binding sites). The VRs usually lie on the surface of the proteins and form the loops where the main chain turns.

Many methods are available for sequence alignment of known structures and unknown structures. Sequence alignments generally are based on the dynamic programming algorithm of Needleman and Wunsch [J. Mol. Biol. 48: 442-453, 1970]. Current methods include FASTA, Smith-Waterman, and BLASTP, with the BLASTP method differing from the other two in not allowing gaps. Scoring of alignments typically involves construction of a 20x20 matrix in which identical amino acids and those of similar character (i.e., conservative substitutions) may be scored higher than those of different character. Substitution schemes which may be used to score alignments include the scoring matrices PAM (Dayhoff et al., Meth. Enzymol. 91: 524-545, 1983), and BLOSUM (Henikoff and Henikoff, Proc. Nat. Acad. Sci. USA 89: 10915-'0919, 1992), and the matrices based on alignments derived from three-dimensional structures including that of Johnson and Overington (JO matrices) (J. Mol. Biol. 233: 716-738, 1993).

Alignment based solely on sequence may be used; however, other structural features also may be taken into account. In Quanta, multiple sequence alignment algorithms are available that may be used when aligning a sequence of the unknown with the known structures. Four scoring systems (i.e. sequence homology, secondary structure homology, residue accessibility homology, CA-CA distance homology) are available, each of which may be evaluated during an alignment so that relative statistical weights may be assigned.

When generating coordinates for the unknown structure, main chain atoms and side chain atoms, both in SCRs and VRs need to be modeled. A variety of approaches known to those

The first of the f

skilled in the art may be used to assign coordinates to the unknown. In particular, the coordinates of the main chain atoms of SCRs will be transferred to the unknown structure. VRs correspond most often to the loops on the surface of the polypeptide and if a loop in the known structure is a good model for the unknown, then the main chain coordinates of the known structure may be copied. Side chain coordinates of SCRs and VRs are copied if the residue type in the unknown is identical to or very similar to that in the known structure. For other side chain coordinates, a side chain rotamer library may be used to define the side chain coordinates. When a good model for a loop cannot be found fragment databases may be searched for loops in other proteins that may provide a suitable model for the unknown. If desired, the loop may then be subjected to conformational searching to identify low energy conformers if desired.

Once a homology model has been generated it is analyzed to determine its correctness. A computer program available to assist in this analysis is the Protein Health module in Quanta which provides a variety of tests. Other programs that provide structure analysis along with output include PROCHECK and 3D-Profiler [Luthy R. et al, Nature 356: 83-85, 1992; and Bowie, J.U. et al, Science 253: 164-170, 1991]. Once any irregularities have been resolved, the entire structure may be further refined. Refinement may consist of energy minimization with restraints, especially for the SCRs. Restraints may be gradually removed for subsequent minimizations. Molecular dynamics may also be applied in conjunction with energy minimization.

Molecular replacement involves applying a known structure to solve the X-ray crystallographic data set of a polypeptide of unknown structure. The method can be used to define the phases describing the X-ray diffraction data of a polypeptide of unknown structure when only the amplitudes are known. Thus in an embodiment of the invention, a method is provided for determining three dimensional structures of polypeptides with unknown structure by applying the structural coordinates of the crystal of the present invention to provide an X-ray crystallographic data set for a polypeptide of unknown structure, and (b) determining a low energy conformation of the resulting structure.

Molecular replacement computer programs generally involve the following steps: (1) determining the number of molecules in the unit cell and defining the angles between them (self rotation function); (2) rotating the known structure against diffraction data to define the orientation of the molecules in the unit cell (rotation function); (3) translating the known structure in three dimensions to correctly position the molecules in the unit cell (translation function); (4) determining the phases of the X-ray diffraction data and calculating an R-factor calculated from the reference data set and from the new data wherein an R-factor between 30-50% indicates that the orientations of the atoms in the unit cell have been reasonably determined by the method; and (5) optionally, decreasing the R-factor to about 20% by refining the new electron density map using iterative refinement techniques known to those skilled in the art (refinement).

In an embodiment of the invention, a method is provided for determining three dimensional structures of polypeptides with unknown structure (e.g. additional native or mutated mannosidase II enzymes) by applying the structural coordinates of a mannosidase II structure to provide an X-ray crystallographic data set for a polypeptide of unknown structure, and (b) determining a low energy conformation of the resulting structure.

The structural coordinates of the crystal of the present invention may be applied to nuclear magnetic resonance (NMR) data to determine the three dimensional structures of polypeptides with uncharacterised or incompletely characterised sturcture. (See for example, Wuthrich, 1986, John Wiley and Sons, New York: 176-199; Pflugrath et al., 1986, J. Molecular Biology 189: 383-386; Kline et al., 1986 J. Molecular Biology 189:377-382). While the secondary structure of a polypeptide may often be determined by NMR data, the spatial connections between individual pieces of secondary structure are not as readily determined. The structural coordinates of a polypeptide defined by X-ray crystallography can guide the NMR spectroscopist to an understanding of the spatial interactions between secondary structural elements in a polypeptide of related structure. Information on spatial interactions between secondary structural elements can greatly simplify Nuclear Overhauser Effect (NOE) data

from two-dimensional NMR experiments. In addition, applying the structural coordinates after the determination of secondary structure by NMR techniques simplifies the assignment of NOE's relating to particular amino acids in the polypeptide sequence and does not greatly bias the NMR analysis of polypeptide structure.

5

10

15

30

In an embodiment, the invention relates to a method of determining three dimensional structures of polypeptides with unknown structures, by applying the structural coordinates of a crystal of the present invention to nuclear magnetic resonance (NMR) data of the unknown structure. This method comprises the steps of: (a) determining the secondary structure of an unknown structure using NMR data; and (b) simplifying the assignment of through-space interactions of amino acids. The term "through-space interactions" defines the orientation of the secondary structural elements in the three dimensional structure and the distances between amino acids from different portions of the amino acid sequence. The term "assignment" defines a method of analyzing NMR data and identifying which amino acids give rise to signals in the NMR spectrum.

SCREENING METHOD

The present invention also provides a method of screening for a ligand that associates with a ligand binding domain and/or modulates the function of mannosidase II, by using a crystal or a model according to the present invention. The method may involve investigating whether a test compound is capable of associating with or binding a ligand binding domain.

In accordance with an aspect of the present invention, a method is provided for screening for a ligand capable of binding to a ligand binding domain, wherein said method comprises the use of a crystal or model according to the invention.

In another aspect, the invention relates to a method of screening for a ligand capable of binding to a ligand binding domain, wherein the ligand binding domain is defined by the amino acid residue structural coordinates given herein, the method comprising contacting the

15

20

25

30

ligand binding domain with a test compound and determining if said test compound binds to said ligand binding domain.

In one embodiment, the present invention provides a method of screening for a test compound capable of interacting with a key amino acid residue of the ligand binding domain of mannosidase II.

Another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
 - (c) preparing a quantity of said one or more ligands.

A further aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
- (c) preparing a pharmaceutical composition comprising said one or more ligands.

Once a test compound capable of interacting with a key amino acid residue in a mannosidase II LBD has been identified, further steps may be carried out either to select and/or to modify compounds and/or to modify existing compounds, to modulate the interaction with the key amino acid residues in the mannosidase II LBD.

Yet another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain;
- (c) modifying said one or more ligands capable of binding to a ligand binding domain;
- (d) performing said method of screening for a ligand as described above;
- (e) optionally preparing a pharmaceutical composition comprising said one or more ligands.

As used herein, the term "test compound" means any compound which is potentially capable of associating with a ligand binding domain. If, after testing, it is determined that the test compound does bind to the LBD, it is known as a "ligand".

5

10

15

A "test compound" includes, but is not limited to, a compound which may be obtainable from or produced by any suitable source, whether natural or not. The test compound may be designed or obtained from a library of compounds which may comprise peptides, as well as other compounds, such as small organic molecules and particularly new lead compounds. By way of example, the test compound may be a natural substance, a biological macromolecule, or an extract made from biological materials such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic test compound, a semi-synthetic test compound, a carbohydrate, a monosaccharide, an oligosaccharide or polysaccharide, a glycolipid, a glycopeptide, a saponin, a heterocyclic compound, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised test compound, a peptide cleaved from a whole protein, or a peptides synthesised synthetically (such as, by way of example, either using a peptide synthesizer or by recombinant techniques or combinations thereof), a recombinant test compound, a natural or a non-natural test compound, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof.

20

The test compound may be screened as part of a library or a data base of molecules. Data bases which may be used include ACD (Molecular Designs Limited), NCI (National Cancer Institute), CCDC (Cambridge Crystallographic Data Center), CAST (Chemical Abstract Service), Derwent (Derwent Information Limited), Maybridge (Maybridge Chemical Company Ltd), Aldrich (Aldrich Chemical Company), DOCK (University of California in San Francisco), and the Directory of Natural Products (Chapman & Hall). Computer programs such as CONCORD (Tripos Associates) or DB-Converter (Molecular Simulations Limited) can be used to convert a data set represented in two dimensions to one represented in three dimensions.

25

Test compounds may be tested for their capacity to fit spatially into a mannosidsase II LBD. As used herein, the term "fits spatially" means that the three-dimensional structure of the test compound is accommodated geometrically in a cavity or pocket of the mannosidase II LBD. The test compound can then be considered to be a ligand.

5

A favourable geometric fit occurs when the surface areas of the test compound is in close proximity with the surface area of the cavity or pocket without forming unfavorable interactions. A favourable complementary interaction occurs where the test compound interacts by hydrophobic, aromatic, ionic, dipolar, or hydrogen donating and accepting forces. Unfavourable interactions may be steric hindrance between atoms in the test compound and

10 atoms in the binding site.

If a model of the present invention is a computer model, the test compounds may be positioned in an LBD through computational docking. If, on the other hand, the model of the present invention is a structural model, the test compounds may be positioned in the LBD by, for example, manual docking.

20

15

As used herein the term "docking" refers to a process of placing a compound in close proximity with a mannosidase II LBD, or a process of finding low energy conformations of a test compound/glycosyltransferase complex.

A screening method of the present invention may comprise the following steps:

generating a computer model of a mannosidase II or a selected site thereof (i) using a crystal according to the first aspect of the invention;

25

- (ii) docking a computer representation of a test compound with the computer model;
- (iii) analysing the fit of the compound in the mannosidase II or selected site.

In an aspect of the invention a method is provided comprising the following steps:

- (a) docking a computer representation of a structure of a test compound into a computer representation of a binding domain of a mannosidase II defined in accordance with the invention using a computer program, or by interactively moving the representation of the test compound into the representation of the binding domain;
- (b) characterizing the geometry and the complementary interactions formed between the atoms of the binding domain and the compound; optionally
- (c) searching libraries for molecular fragments which can fit into the empty space between the compound and binding domain and can be linked to the compound; and
- (d) linking the fragments found in (c) to the compound and evaluating the new modified compound.

In an embodiment of the invention a method is provided which comprises the following steps:

- (a) docking a computer representation of a test compound from a computer data base with a computer representation of a selected site (e.g. the inhibitor binding domain) on a mannosidase II structure defined in accordance with the invention to obtain a complex;
- (b) determining a conformation of the complex with a favourable geometric fit and favourable complementary interactions; and
- (c) identifying test compounds that best fit the selected site as potential modulators of the mannosidase II.

A method of the invention may be applied to a plurality of test compounds, to identify those that best fit the selected site.

The model used in the screening method may comprise the ligand-binding domain of a mannosidase II enzyme either alone or in association with one or more ligands and/or cofactors. For example, the model may comprise the ligand-binding domain in association with a substrate or analogue thereof.

15

10

5

20

25

30

If the model comprises an unassociated ligand binding domain, then the selected site under investigation may be the LBD itself. The test compound may, for example, mimic a known substrate for the enzyme in order to interact with the LBD. The selected site may alternatively be another site on the enzyme.

If the model comprises an associated LBD, for example an LBD in association with a substrate molecule or analogue thereof, the selected site may be the LBD or a site made up of the LBD and the complexed ligand, or a site on the ligand itself. The test compound may be investigated for its capacity to modulate the interaction with the associated molecule.

A test compound (or plurality of test compounds) may be selected on the basis of its similarity to a known ligand for the mannosidase II. For example, the screening method may comprise the following steps:

- (i) generating a computer model of the LBD of a mannosidase II in complex with a ligand;
- (ii) searching for a test compound with a similar three dimensional structure and/or similar chemical groups; and
- (iii) evaluating the fit of the test compound in the LBD.

20

25

30

15

5

10

Searching may be carried out using a database of computer representations of potential compounds, using methods known in the art.

The present invention also provides a method for designing ligands for a mannosidase II. It is well known in the art to use a screening method as described above to identify a test compound with promising fit, but then to use this test compound as a starting point to design a ligand with improved fit to the model. A known modulator can also be modified to enhance its fit with a model of the invention. Such techniques are known as "structure—based ligand design" (See Kuntz et al., 1994, Acc. Chem. Res. 27:117; Guida, 1994, Current Opinion in Struc. Biol. 4: 777; and Colman, 1994, Current Opinion in Struc. Biol. 4: 868, for reviews of

structure-based drug design and identification; and Kuntz et al 1982, J. Mol. Biol. 162:269; Kuntz et al., 1994, Acc. Chem. Res. 27: 117; Meng et al., 1992, J. Compt. Chem. 13: 505; Bohm, 1994, J. Comp. Aided Molec. Design 8: 623 for methods of structure-based modulator design).

5

Examples of computer programs that may be used for structure-based ligand design are CAVEAT (Bartlett et al., 1989, in "Chemical and Biological Problems in Molecular Recognition", Roberts, S.M. Ley, S.V.; Campbell, N.M. eds; Royal Society of Chemistry: Cambridge, pp 182-196); FLOG (Miller et al., 1994, J. Comp. Aided Molec. Design 8:153); PRO Modulator (Clark et al., 1995 J. Comp. Aided Molec. Design 9:13); MCSS (Miranker and Karplus, 1991, Proteins: Structure, Function, and Genetics 8:195); and, GRID (Goodford, 1985, J. Med. Chem. 28:849).

The method may comprise the following steps:

15

20

25

10

- (i) docking a model of a test compound with a model of a selected site;
- (ii) identifying one or more groups on the test compound which may be modified to improve their fit in the selected site;
- (iii) replacing one or more identified groups to produce a modified test compound model; and
- (iv) docking the modified test compound model with the model of the selected site.

Evaluation of fit may comprise the following steps:

- (a) mapping chemical features of a test compound such as by hydrogen bond donors or acceptors, hydrophobic/lipophilic sites, positively ionizable sites, or negatively ionizable sites; and
- (b) adding geometric constraints to selected mapped features.

The fit of the modified test compound may then be evaluated using the same criteria.

The chemical modification of a group may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the test compound and the key amino acid residue(s) of the selected site. Preferably the group modifications involve the addition, removal, or replacement of substituents onto the test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of the selected site.

Identified groups in a test compound may be substituted with, for example, alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo groups. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided.

If a modified test compound model has an improved fit, then it may bind to the selected site and be considered to be a "ligand". Rational modification of groups may be made with the aid of libraries of molecular fragments which may be screened for their capacity to fit into the available space and to interact with the appropriate atoms. Databases of computer representations of libraries of chemical groups are available commercially, for this purpose.

A test compound may also be modified "in situ" (i.e. once docked into the potential binding site), enabling immediate evaluation of the effect of replacing selected groups. The computer representation of the test compound may be modified by deleting a chemical group or groups, replacing chemical groups, or by adding a chemical group or groups. After each modification to a compound, the atoms of the modified compound and potential binding site can be shifted in conformation and the distance between the modulator and the active site atoms may be scored on the basis of geometric fit and favourable complementary interactions between the molecules. This technique is described in detail in Molecular Simulations User Manual, 1995 in LUDI.

Examples of ligand building and/or searching computer include programs in the Molecular Simulations Package (Catalyst), ISIS/HOST, ISIS/BASE, and ISIS/DRAW (Molecular Designs Limited), and UNITY (Tripos Associates).

5

10

15

The "starting point" for rational ligand design may be a known ligand for the enzyme. For example, in order to identify potential modulators of the mannosidase II, a logical approach would be to start with a known ligand (for example a substrate molecule or inhibitor) to produce a molecule which mimics the binding of the ligand. Such a molecule may, for example, act as a competitive inhibitor for the true ligand, or may bind so strongly that the interaction (and inhibition) is effectively irreversible.

Such a method may comprise the following steps:

(i) generating a computer model of a LBD of a mannosidase II in complex with a ligand;

(ii) replacing one or more groups on the ligand model to produce a modified ligand; and

(iii) evaluating the fit of the modified ligand in the LBD.

20 The replacement groups could be selected and replaced using a compound construction program which replaces computer representations of chemical groups with groups from a computer database, where the representations of the compounds are defined by structural coordinates.

In an embodiment, a screening method is provided for identifying a ligand of a mannosidase II comprising the step of using the structural coordinates of a substrate molecule or swainsonine or component thereof, defined in relation to its spatial association with a mannosidase II structure or a ligand binding domain of the invention, to generate a compound that is capable of associating with the mannosidase II or ligand binding domain.

In an embodiment of the invention, a screening method is provided for identifying a ligand of a mannosidase II comprising the step of using the structural coordinates of swainsonine listed in Table 2 or 8 to generate a compound for associating with a ligand binding domain of a mannosidase II as described herein. The following steps are employed in a particular method of the invention: (a) generating a computer representation of swainsonine, defined by its structural coordinates listed in Table 2 or 8; (b) searching for molecules in a data base that are structurally or chemically similar to the defined swainsonine, using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

10

15

5

The screening methods of the present invention may be used to identify compounds or entities that associate with a molecule that associates with a mannosidase II enzyme (for example, a substrate molecule).

Compounds and entities (e.g. ligands) of mannosidase II identified using the above-described methods may be prepared using methods described in standard reference sources utilized by those skilled in the art. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill.

20

25

30

Test compounds and ligands which are identified using a crystal or model of the present invention can be screened in assays such as those well known in the art. Screening can be, for example, *in vitro*, in cell culture, and/or *in vivo*. Biological screening assays preferably centre on activity-based response models, binding assays (which measure how well a compound binds to the receptor), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity-high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity. The biological assay, may also be an assay for the ligand binding activity of a compound that selectively binds to the LBD compared to other nuclear receptors.

10

15

LIGANDS/COMPOUNDS/MODULATORS

The present invention provides a ligand or compound or entity identified by a screening method of the present invention. A ligand or compound may have been designed rationally by using a model according to the present invention. A ligand or compound identified using the screening methods of the invention specifically associate with a target compound. In the present invention the target compound may be the mannosidase II enzyme or a molecule that is capable of associating with the mannosidase II enzyme (for example a substrate molecule).

In a preferred embodiment the ligand is capable of binding to the LBD of a mannosidase II.

A ligand or compound identified using a screening method of the invention may act as a "modulator", i.e. a compound which affects the activity of a mannosidase II. A modulator may reduce, enhance or alter the biological function of a mannosidase II. For example a modulator may modulate the capacity of the enzyme to hydrolyse mannose residues. An alteration in biological function may be characterised by a change in specificity. For example, a modulator may cause the enzyme to accept a different substrate molecule, to transfer a different sugar, or to work with a different metal cofactor. In order to exert its function, the modulator commonly binds to the ligand binding domain.

20

25

30

A "modulator" which is capable of reducing the biological function of the enzyme may also be known as an inhibitor. Preferably an inhibitor reduces or blocks the capacity of the enzyme to hydrolyse mannose residues. The inhibitor may mimic the binding of a substrate molecule, for example, it may be a substrate analogue. A substrate analogue may be designed by considering the interactions between the substrate molecule and the enzyme (for example by using information derivable from the crystal of the invention) and specifically altering one or more groups (as described above).

In a highly preferred embodiment, a modulator acts as an inhibitor of the mannosidase II and is capable of inhibiting N-glycan biosynthesis. In another embodiment, a modulator enhances mannosidase II activity and is capable of regulating the immune system.

The present invention also provides a method for modulating the activity of a mannosidase II within a cell using a modulator according to the present invention. It would be possible to monitor the expression of N-glycans on the cell surface following such treatment by a number of methods known in the art (for example by detecting expression with an N-glycan specific antibody).

In another preferred embodiment, the modulator modulates the catalytic mechanism of the enzyme.

10

15

25

30

5

A modulator may be an agonist, partial agonist, partial inverse agonist or antagonist of the mannosidase II.

As used herein, the term "agonist" means any ligand, which is capable of binding to a ligand binding domain and which is capable of increasing a proportion of the enzyme that is in an active form, resulting in an increased biological response. The term includes partial agonists and inverse agonists.

As used herein, the term "partial agonist" means an agonist that is unable to evoke the maximal response of a biological system, even at a concentration sufficient to saturate the specific receptors.

As used herein, the term "partial inverse agonist" is an inverse agonist that evokes a submaximal response to a biological system, even at a concentration sufficient to saturate the specific receptors. At high concentrations, it will diminish the actions of a full inverse agonist.

The invention relates to a mannosidase II ligand binding domain antagonist, wherein said ligand binding domain is that defined by the amino acid structural coordinates described herein. For example the ligand may antagonise the inhibition of mannosidase by swainsonine.

10

15

20

25

30

As used herein, the term "antagonist" means any agent that reduces the action of another agent, such as an agonist. The antagonist may act at the same site as the agonist (competitive antagonism). The antagonistic action may result from a combination of the substance being antagonised (chemical antagonism) or the production of an opposite effect through a different receptor (functional antagonism or physiological antagonism) or as a consequence of competition for the binding site of an intermediate that links receptor activation to the effect observed (indirect antagonism).

As used herein, the term "competitive antagonism" refers to the competition between an agonist and an antagonist for a receptor that occurs when the binding of agonist and antagonist becomes mutually exclusive. This may be because the agonist and antagonist compete for the same binding site or combine with adjacent but overlapping sites. A third possibility is that different sites are involved but that they influence the receptor macromolecules in such a way that agonist and antagonist molecules cannot be bound at the same time. If the agonist and antagonist form only short lived combinations with the receptor so that equilibrium between agonist, antagonist and receptor is reached during the presence of the agonist, the antagonism will be surmountable over a wide range of concentrations. In contrast, some antagonists, when in close enough proximity to their binding site, may form a stable covalent bond with it and the antagonism becomes insurmountable when no spare receptors remain.

As mentioned above, an identified ligand or compound may act as a ligand model (for example, a template) for the development of other compounds. A modulator may be a mimetic of a ligand or ligand binding domain. A mimetic of a ligand may compete with a natural ligand for a mannosidase II and antogonize a physiological effect of the enzyme in an animal. A mimetic of a ligand may be an organically synthesized compound. A mimetic of a ligand binding domain, may be either a peptide or other biopharmaceutical (such as an organically synthesized compound) that specifically binds to a natural substrate molecule for a mannosidase II and antagonize a physiological effect of the enzyme in an animal.

10

15

20

25

30

A modulator may be one or a variety of different sorts of molecule. For example, a modulator may be a peptide, member of random peptide libraries and combinatorial chemistry-derived molecular libraries, phosphopeptide (including members of random or partially degenerate, directed phosphopeptide libraries), a carbohydrate, a monosaccharide, an oligosaccharide or polysaccharide, a glycolipid, a glycopeptide, a saponin, a heterocyclic compound antibody, carbohydrate, nucleoside or nucleotide or part thereof, and small organic or inorganic molecule. A modulator may be an endogenous physiological compound, or it may be a natural or synthetic compound. The modulators of the present invention may be natural or synthetic. The term "modulator" also refers to a chemically modified ligand or compound, and includes isomers and racemic forms.

Once a ligand has been optimally selected or designed, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit to the mannosidase II LBD by the same computer methods described above.

Preferably, positions for substitution are selected based on the predicted binding orientation of a ligand to the mannosidase II LBD.

A technique suitable for preparing a modulator will depend on its chemical nature. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill. Peptides can be synthesized by solid phase techniques (Roberge JY *et al* (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Once cleaved from the resin, the peptide may be

purified by preparative high performance liquid chromatography (e.g., Creighton (1983) Proteins Structures and Molecular Principles, WH Freeman and Co, New York NY). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, *supra*).

5

If a modulator is a nucleotide, or a polypeptide expressable therefrom, it may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH *et al* (1980) Nuc Acids Res Symp Ser 215-23, Horn T *et al* (1980) Nuc Acids Res Symp Ser 225-232), or it may be prepared using recombinant techniques well known in the art.

10

Direct synthesis of a ligand or mimetics thereof can be performed using various solid-phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Additionally, the amino acid sequences obtainable from the ligand, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with a sequence from other subunits, or any part thereof, to produce a variant ligand.

20

15

In an alternative embodiment of the invention, the coding sequence of a ligand or mimetics thereof may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH *et al* (1980) Nuc Acids Res Symp Ser 215-23, Horn T *et al* (1980) Nuc Acids Res Symp Ser 225-232).

25

A wide variety of host cells can be employed for expression of the nucleotide sequences encoding a ligand of the present invention. These cells may be both prokaryotic and eukaryotic host cells. Suitable host cells include bacteria such as *E. coli*, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the expression products to produce an appropriate mature polypeptide. Processing includes but is

not limited to glycosylation, ubiquitination, disulfide bond formation and general posttranslational modification.

In an embodiment of the present invention, the ligand may be a derivative of, or a chemically modified ligand. The term "derivative" or "derivatised" as used herein includes the chemical modification of a ligand.

A chemical modification of a ligand and/or a key amino acid residue of a ligand binding domain of the present invention may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the ligand and the key amino acid residue(s) of the mannosidase II LBD. By way of example, steric hinderance is a common means of changing the interaction of the mannosidase II LBD binding domain with the activation domain.

Preferably such modifications involve the addition of substituents onto a test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of mannosidase II LBD of the present invention. Typical modifications may include, for example, the replacement of a hydrogen by a halo group, an alkyl group, an acyl group or an amino group.

The invention also relates to classes of modulators of mannosidase II based on the structure and shape of a substrate, defined in relation to the substrate's molecule's spatial association with a mannosidase II structure of the invention or part thereof. Therefore, a modulator may comprise a substrate molecule having the shape or structure, preferably the structural coordinates, of a substrate molecule in the active site binding pocket of a reaction catalyzed by a mannosidase II. In an embodiment, the substrate comprises GlcNAcMan₅GlcNAc₂-Asn-

A modulator may be an inhibitor of a mannosidase II such as swainsonine or a derivative or mimetic thereof.

20

25

30

5

10

15

A class of modulators of mannosidase II enzymes may comprise a compound containing a structure of swainsonine, and having one or more, preferably all, of the structural coordinates of swainsonine of Table 2 or 8. Functional groups in the swainsonine modulators may be substituted with, for example, alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo, or they may be modified using techniques known in the art. Substituents will be selected to optimize the activity of the modulator.

PHARMACEUTICAL COMPOSITION

10

5

The present invention also provides the use of a ligand or modulator according to the invention, in the manufacture of a medicament to treat and/or prevent a disease in a mammalian patient. There is also provided a pharmaceutical composition comprising such a ligand or modulator and a method of treating and/or preventing a disease comprising the step of administering such a modulator or pharmaceutical composition to a mammalian patient.

15

In an embodiment, the invention relates to a pharmaceutical composition which comprises a crystal structure of the invention or a part thereof (e.g. a binding domain), or a modulator of the invention in an amount effective to regulate one or more of the conditions described herein (e.g. tumor growth or metastasis) and a pharmaceutically acceptable carrier, diluent or excipient.

20

The pharmaceutical compositions may be for human or animal usage in human and veterinary medicine and will typically comprise a pharmaceutically acceptable carrier, diluent, excipient, adjuvant or combination thereof.

25

Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985). The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard

30

pharmaceutical practice. The pharmaceutical compositions may comprise as - or in addition to - the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s).

A pharmaceutical composition of the invention can be administered to a subject in an appropriate carrier or diluent, co-administered with enzyme inhibitors or in an appropriate carrier such as microporous or solid beads or liposomes. Liposomes include water-in-oil-in-water emulsions as well as conventional liposomes (Strejan et al., (1984) J. Neuroimmunol 7:27).

10

25

Preservatives, stabilizers, dyes and even flavouring agents may be provided in the pharmaceutical composition. Examples of preservatives include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. Antioxidants and suspending agents may also be used.

The routes for administration (delivery) include, but are not limited to, one or more of: oral (e.g. as a tablet, capsule, or as an ingestable solution), topical, mucosal (e.g. as a nasal spray or aerosol for inhalation), nasal, parenteral (e.g. by an injectable form), gastrointestinal, intraspinal, intraperitoneal, intramuscular, intravenous, intrauterine, intraocular, intradermal, intracranial, intratracheal, intravaginal, intracerebroventricular, intracerebral, subcutaneous, ophthalmic (including intravitreal or intracameral), transdermal, rectal, buccal, vaginal, epidural, sublingual.

Where the pharmaceutical composition is to be delivered mucosally through the gastrointestinal mucosa, it should be able to remain stable during transit through the gastrointestinal tract; for example, it should be resistant to proteolytic degradation, stable at acid pH and resistant to the detergent effects of bile.

It is to be understood that not all of the agent need be administered by the same route.

10

Where appropriate, the pharmaceutical compositions can be administered by inhalation, in the form of a suppository or pessary, topically in the form of a lotion, gel, hydrogel, solution, cream, ointment or dusting powder, by use of a skin patch, orally in the form of tablets containing excipients such as starch or lactose or chalk, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intravenously, intramuscularly or subcutaneously. For parenteral administration, the compositions may be best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. The aqueous solutions should be suitably buffered (preferably to a pH of from 3 to 9), if necessary. The preparation of suitable parenteral formulations under sterile conditions is readily accomplished by standard pharmaceutical techniques well-known to those skilled in the art.

If the agent of the present invention is administered parenterally, then examples of such administration include one or more of: intravenously, intra-arterially, intraperitoneally, intrathecally, intraventricularly, intraurethrally, intrasternally, intracranially, intramuscularly or subcutaneously administering the agent; and/or by using infusion techniques.

For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

The tablets may contain excipients such as microcrystalline cellulose, lactose, sodium citrate, calcium carbonate, dibasic calcium phosphate and glycine, disintegrants such as starch (preferably corn, potato or tapioca starch), sodium starch glycollate, croscarmellose sodium and certain complex silicates, and granulation binders such as polyvinylpyrrolidone, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC), sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, stearic acid, glyceryl behenate and talc may be included.

25

5

10

15

20

25

Solid compositions of a similar type may also be employed as fillers in gelatin capsules. Preferred excipients in this regard include lactose, starch, cellulose, milk sugar or high molecular weight polyethylene glycols. For aqueous suspensions and/or elixirs, the agent may be combined with various sweetening or flavouring agents, colouring matter or dyes, with emulsifying and/or suspending agents and with diluents such as water, ethanol, propylene glycol and glycerin, and combinations thereof.

As indicated, a therapeutic agent of the present invention can be administered intranasally or by inhalation and is conveniently delivered in the form of a dry powder inhaler or an aerosol spray presentation from a pressurised container, pump, spray or nebuliser with the use of a suitable propellant, dichlorodifluoromethane. e.g. trichlorofluoromethane. dichlorotetrafluoroethane, a hydrofluoroalkane such as 1,1,1,2-tetrafluoroethane (HFA 134ATM) or 1,1,1,2,3,3,3-heptafluoropropane (HFA 227EATM), carbon dioxide or other suitable gas. In the case of a pressurised aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. The pressurised container, pump, spray or nebuliser may contain a solution or suspension of the active compound, e.g. using a mixture of ethanol and the propellant as the solvent, which may additionally contain a lubricant, e.g. sorbitan trioleate. Capsules and cartridges (made, for example, from gelatin) for use in an inhaler or insufflator may be formulated to contain a powder mix of the agent and a suitable powder base such as lactose or starch.

Therapeutic administration of polypeptide modulators may also be accomplished using gene therapy. A nucleic acid including a promoter operatively linked to a heterologous polypeptide may be used to produce high-level expression of the polypeptide in cells transfected with the nucleic acid. DNA or isolated nucleic acids may be introduced into cells of a subject by conventional nucleic acid delivery systems. Suitable delivery systems include liposomes, naked DNA, and receptor-mediated delivery systems, and viral vectors such as retroviruses, herpes viruses, and adenoviruses.

10

15

20

25

30

APPLICATIONS

The modulators and compositions of the invention may be used to modulate the biological activity of a mannosidase II in a cell, including modulating a pathway in a cell regulated by the mannosidase II or modulating a mannosidase II with inappropriate activity in a cellular organism. In addition, a mannosidase II structure of the invention may be used to devise protocols to modulate the biological activity of a mannosidase II in a cell.

Cellular assays, as well as animal model assays *in vivo*, may be used to test the activity of a potential modulator of a mannosidase II as well as diagnose a disease associated with inappropriate mannosidase II activity. *In vivo* assays are also useful for testing the bioactivity of a potential modulator designed by the methods of the invention.

The invention further provides a method of treating a mammal, the method comprising administering to a mammal a modulator or pharmaceutical composition of the present invention.

Typically, a physician will determine the actual dosage which will be most suitable for an individual subject and it will vary with the age, weight and response of the particular patient and severity of the condition. The dosages below are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited.

The specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the individual undergoing therapy. By way of example, the pharmaceutical composition of the present invention may be administered in accordance with a regimen of 1 to 10 times per day, such as once or twice per day.

15

20

25

30

For oral and parenteral administration to human patients, the daily dosage level of the agent may be in single or divided doses.

The modulators (e.g. inhibitors) identified using the methods of the invention may be useful in the treatment and prophylaxis of tumor growth and metastasis of tumors. Anti-metastatic effects of inhibitors can be demonstrated using a lung colonization assay. For example, melanoma cells treated with an inhibitor may be injected into mice and the ability of the melanoma cells to colonize the lungs of the mice may be examined by counting tumor nodules on the lungs after death. Suppression of tumor growth in mice by the inhibitor administered orally or intravenously may be examined by measuring tumor volume.

An inhibitor identified using the invention may have particular application in the prevention of tumor recurrence after surgery i.e. as an adjuvant therapy.

An inhibitor may be especially useful in the treatment of various forms of neoplasia such as leukemias, lymphomas, melanomas, adenomas, sarcomas, and carcinomas of solid tissues in patients. In particular, inhibitors can be used for treating malignant melanoma, pancreatic cancer, cervico-uterine cancer, ovarian cancer, cancer of the kidney such as metastatic renal cell carcinoma, stomach, lung, rectum, breast, bowel, gastric, liver, thyroid, head and neck cancers such as unresectable head and neck cancers, lymphangitis carcinamatosis, cancers of the cervix, breast, salivary gland, leg, tongue, lip, bile duct, pelvis, mediastinum, urethra, bronchogenic, bladder, esophagus and colon, non-small cell lung cancer, and Karposi's Sarcoma which is a form of cancer associated with HIV-infected patients with Acquired Immune Deficiency Syndrome (AIDS). The inhibitors may also be used for other anti-

An inhibitor identified in accordance with the present invention may be used to treat immunocompromised subjects. For example, they may be used in a subject infected with HIV, or other viruses or infectious agents including bacteria, fungi, and parasites, in a subject

proliferative conditions such as bacterial and viral infections, in particular AIDS.

10

15

20

25

undergoing bone marrow transplants, and in subjects with chemical or tumor-induced immune suppression.

Inhibitors may be used as hemorestorative agents and in particular to stimulate bone marrow cell proliferation, in particular following chemotherapy or radiotherapy. The myeloproliferative activity of an inhibitor of the invention may be determined by injecting the inhibitor into mice, sacrificing the mice, removing bone marrow cells and measuring the ability of the inhibitor to stimulate bone marrow proliferation by directly counting bone marrow cells and by measuring clonogenic progenitor cells in methylcellulose assays. The inhibitors can also be used as chemoprotectants, and in particular to protect mucosal epithelium following chemotherapy.

An inhibitor identified in accordance with the invention also may be used as an antiviral agent in particular on membrane enveloped viruses such as retroviruses, influenza viruses, cytomegaloviruses and herpes viruses. An inhibitor may also be used to treat bacterial, fungal, and parasitic infections. An inhibitor may also be used in the treatment of inflammatory diseases such as rheumatoid arthritis, asthma, inflammatory bowel disease, and atherosclerosis.

An inhibitor may also be used to augment the anti-cancer effects of agents such as interleukin-2 and poly-IC, to augment natural killer and macrophage tumoricidal activity, induce cytokine synthesis and secretion, enhance expression of LAK and HLA class I specific antigens; activate protein kinase C, stimulate bone marrow cell proliferation including hematopoietic progenitor cell proliferation, and increase engraftment efficiency and colony-forming unit activity, to confer protection against chemotherapy and radiation therapy (e.g. chemoprotective and radioprotective agents), and to accelerate recovery of bone marrow cellularity particularly when used in combination with chemical agents commonly used in the treatment of human diseases including cancer and acquired immune deficiency syndrome (AIDS). For example, an inhibitor can be used as a chemoprotectant in combination with anti-

10

15

20

25

30

cancer agents including doxorubicin, 5-fluorouracil, cyclophosphamide, and methotrexate, and in combination with isoniazid or NSAID.

Alpha-mannosidosis may also be amendable to treatment or prophylaxis by the method of the present invention.

The loss of mannosidase II has been found to alter N-glycan branching and attenuate the immune system's ability to maintain self-tolerance (Chui et al, PNAS 98(3):1142-1147, 2001). Therefore, the structures, modulators, compositions, and methods of the invention may be useful in the treatment or prophylaxis of autoimmune disease including systemic lupus erythematosus.

The present invention thus provides a method for treating the above-mentioned conditions in a subject comprising administering to a subject an effective amount of a modulator of the invention. The invention also contemplates a method for stimulating or inhibiting tumor growth or metastasis in a subject comprising administering to a subject an effective amount of a modulator of the invention.

The following non-limiting examples are illustrative of the present invention.

EXAMPLES

Example 1

Drosophila Mannosidase II preparation and structure determination

Expression Plasmids

Constructs designed to expressed dGMII in *Drosophila* Schneider (S2) cells were based on the DES expression system available from *InVitrogen* with extensive modifications. Expression plasmids were constructed which had the dGMII under the control either of the inducible metallothioneine (MT) promoter or the strong constitutive actin 5.1 promoter (AC5). Amino terminal purification tags were inserted in place of the C-terminal tags in the commercially available vectors. Earlier attempts, to truncate the mouse enzyme from at the C-terminus resulted in inactive protein, as had also been noted with the GlcNAc-transferases. Thus, it was elected to keep the C-terminus free. Expression vectors were created with either a 6His-tag, for purification on metal chelate columns such as Ni-NTA (*Qiagen*) or cobalt based Talon columns (*Clontech*), or with a Strep-tag for purification on streptavidin-Sepharose. These affinity tags are initially non-cleavable and add approximately 8-10 residues to the end

10

15

of the protein. Finally, constructs were made either lacking or containing the Bip secretion sequence to direct the expressed protein into the cells or medium respectively.

Blasticidin Selection

Initial attempts at stable transfection with the recommended hygromycin selection system were unsuccessful. Therefore a new selection plasmid, pCopBlast was created which encodes blasticidin S deaminase under the control of the constitutive *copia* promoter. Blasticidin S has been used for stable transfectants of mammalian and plant cells, as well as yeast. Commercially available control plasmids expressing MT-induced secreted green fluorescent protein (GFP), or constitutive and MT-induced unsecreted bacterial β-galactosidase (LacZ) were used to test the suitability of blasticidin selection in S2 cells, and to optimize conditions for transfection, selection, and metallothionein induction. Stable transfectants could be selected with 16 μg/ml blasticidin in Schneider's S2 medium containing 10% fetal bovine serum. Copper and cadmium were the only metals found to activate the MT promoter; copper favoured internally expressed proteins and cadmium, secreted proteins. Maintenance of the altered phenotype was also demonstrated for many weeks in the absence of the selective pressure of blasticidin demonstrating that these were indeed stably transfected cell lines.

Creation of Stably Expressing dGMH cell lines.

Starting with the pProtA expression plasmid from initial published studies [Rabouille *et al*, 1999], the mannosidase coding region was excised, and inserted into an in-frame *EcoRI* site immediately at the end of the affinity tag in the new plasmids. The position of a unique 3' restriction site outside the coding region meant that 100-200 bp of extra sequence was added between the stop codon and the SV40 polyadenylation site. This extra sequence was removed with a short PCR amplification using a unique internal restriction site. Both ends of the constructs were sequenced to verify proper reading frame and lack of PCR errors. The resulting constructs consist of the dGMII catalytic region with a short length of the stalk region, in a variety of "flavours" of promoter, affinity tag, and expression location.

10

15

20

25

Co-transfection of the pCopBlast selection plasmid with the mannosidase expression plasmids, followed by selection for blasticidin resistance allowed stable expressing cell lines after approximately one month. Mannosidase activity was measured using PNP-mannoside, in a microtitre plate assay. Protein was detected on Western blots using anti-PentaHis antibody (*Qiagen*). Only the secreted products showed activity, with similar levels in the constitutive and MT-promoter constructs. No difference in mannosidase activity was seen between His or Strep tagged protein. All subsequent work was carried out with the secreted constructs.

Insect cells do not grow at low population densities. Therefore, the initial population of selected cells was a mixed population with each cell in the culture having somewhat different levels of incorporated expression plasmid. To select individual cells with high levels of expression the stably transfected population was diluted to single cells in a 50:50 mix of conditioned medium and fresh medium with blasticidin. These were then plated in 96-well culture plates. After five weeks, about 10% of the wells showed growths of colonies large enough to transfer, of which roughly 30% had activity. The highest expressors had approximately 5 times the activity of the initial population in the MT-inducible strains. High-expressing clones of the constitutively expressed dGMII, were obtained suggesting that the continued production mannosidase by the cells may be detrimental, especially under the stressful conditions of single-cell selection.

Expression and purification of dGMII.

The availability of a stable clones expressing considerable amounts of mannosidase allowed optimization of induction, expression and purification conditions. In contrast to mammalian cells, insect cells are not highly adherent and will grow to high cell densities in a variety of culture vessels including roller bottles, spinners, fermentors and shake flasks. No CO₂ is required, and temperatures in the range of 25-28°C are optimal. With stably transfected cells, the difficulties that accompany baculoviral infection do not arise.

Initial experiments were carried out in S2 medium containing 10% bovine serum. Metal concentrations used to induce and time of induction were optimized for dGMII production. 10-20 μ M cadmium proved optimal for induction. Although copper (at approximately 500-1000 μ M) is generally used in the literature for induction, the sensitivity of dGMII to inhibition by copper (IC₅₀ = 25 μ M,[26]) precluded its use. Cadmium has been reported to be detrimental to the growth of cells. However, at the concentrations used here, the cells continued to grow and maintain greater than 90% viability (as assessed by Trypan blue exclusion) until the end of the induction period. Cells were maintained in the continous presence of cadmium for up to three passages.

10

5

As the dGMII was secreted into the medium, it was badly contaminated with bovine serum albumin (BSA). Attempts to remove the impurity by Blue Agarose or Ni-NTA chromatography were unsuccessful. To circumvent this contamination problem a number of serum-free media were evaluated for growth and expression levels. There are very few serum-free media developed for *Drosophila* cells so ones that have been used with baculovirus expression systems were evaluated. Ultimately the Excel420 medium from JRH Biosciences was successful.

20

15

A further advantage to this medium is the incorporation of seleno-methionine in place of methionine for crystallographic phasing purposes. A custom preparation of this medium was purchased from JRH free of Met and Cu. Inclusion of 50 µg/ml of SeMet resulted in the production of protein with high enough incorporation (approximately 50% by mass spectrometry) for accurate phasing.

25

30

Cells were adapted to serum-free growth by gradual dilution with CCM3 medium and then they were switched into the other media for the expression studies. Excel420, CCM3 and SFX-Insect were clearly superior for maintaining healthy growth, though CCM3 provided slightly lower levels of expression. Levels of cadmium required for induction were optimized for each medium and were considerably lower than those required in S2 medium. For unknown reasons, constitutive expression of dGMII was much lower in serum-free medium.

10

15

20

Therefore, all subsequent scale-up and purifications were carried out with the MT-inducible 6His tagged constructs.

To scale-up protein expression cells were first grown as suspensions in spinner cultures. These were subsequently put into 2.8 litre Fernbach flasks (1 litre Excel 420/flask) shaken at 100 rpm at 28°C. Cells were induced for 72 hours with 10 µM cadmium. After this time the medium was asceptically harvested and the cells are placed in the same volume of fresh medium for a further round of induction. This can be repeated at least one more time without significant cell death or loss of protein expression. Based on activity measurements up to 50 mg/litre of medium can be expressed every three days. This is approximately 1000 fold greater than in initial expression experiments in CHOP cells [Rabouille *et al*, 1999]. This procedure requires about 2 weeks of dedicated time in an incubator/shaker.

Purification is effected by batch binding first to Blue-Agarose, with elution by 350 mM NaCl, and then to Ni-NTA resin, with elution by 50 mM imidizole. Initial, secreted protein from the medium of the serum-free grown cells was loaded in batch to Blue-Agarose. The beads were then loaded into a column and washed with 20 column volumes of 50 mM NaCl in 20 mM Tris pH8. The majority of the mannosidase was eluted with 350 mM NaCl. This pooled eluant was loaded onto NiNTA, washed with low imidizole, and eluted with 50 mM imidizole to achieve crystallization purity. The protein is then dialysed extensively against 10 mM Tris, pH 8.3 and 100 mM NaCl and concentrated (to greater than 20 mg/ml) for crystallization trials. All crystallization has been carried out from a single protein preparation.

Crystallization

25 Crystals of Drosophila Mannosidase II and complexes of the enzyme with various inhibitors were grown at room temperature using vapor diffusion and micro-batch crystallization techniques. Crystals were obtained under a wide variety of conditions. Polyethylene glycol (PEG) was used as a precipitant (with sizes: 4000; 6000; 8000; 10000; and 20000) at concentrations varying from 5-20%, in the presence of 5% 2,4-methyl-pentanediol (MPD) or 0-30% glycerol. Crystallization solutions were buffered at pH 7-7.5 using 100 mM buffer

10

15

25

solutions of Tris, Hepes or Mes. The crystals belong to the orthorhombic space group $P2_12_12_1$ with cell dimensions: a=69Å; b=110Å; c=139Å; $\alpha=90^\circ$; $\beta=90^\circ$; $\gamma=90^\circ$. For the initial structure determination Seleno-Methionine-derivatized Mannosidase II crystals were grown in 8.5% PEG 6000, 5% MPD and 100 mM Tris pH 7.0, using micro seeds obtained from wild-type enzyme crystals. Data were collected from crystals that were frozen in liquid nitrogen after a stepwise increase of the MPD concentration in the crystallization solution from 5% to 25%.

A crystal of the invention is illustrated in the Figures. In particular, Figure 1 shows the active site of a mannosidase II. Figure 2 shows the secondary structure of Drosophila Golgi α -mannosidase II. Helices are in blue and β sheets are in red. Figure 3 shows the Drosophila golgi α -mannosidase II molecule with the colours representing where it is identical to human GMII. The red and blue represent deletions or insertions with respect to the human sequence. The green is a disulphide bond. Figure 4 shows the whole Drosophila golgi α -mannosidase II molecule in sticks with residues that are identical in the lysosomal manII as coloured balls (red or blue depending whether they are in the N-terminal or C-terminal part of the molecule). Figure 5 shows the active site of a Drospholiga mannosidase. Figure 6 shows the DNA sequence of an expressed Drosophila mannosidase. Figure 7 shows an alignment of expressed secreted Drosophila mannosidase with human mannosidase.

20 Example 2

Experimental Procedures

Protein Overexpression and Purification

Expression, purification and crystallization of the dGMII will be described in detail elsewhere. Briefly, the cDNA was inserted behind an inducible promoter, and used to stably transfect *Drosophila* S2 cells. Single cell clones secreting high levels of dGMII were chosen and adapted to serum-free medium. Unlabelled dGMII was isolated from the supernatants of cells grown in Fernbach flasks by batch binding to Blue-Agarose (Sigma). The protein was eluted from the Blue-Agarose using NaCl and further purified by Ni-NTA chromatography (Qiagen). EDTA (5 mM) was added to scavenge any free nickel. The protein was extensively

dialyzed against 10 mM Tris pH 8 containing 100 mM NaCl, concentrated to 25 mg/ml, and stored in aliquots at -80 °C.

For seleno-methionine labeling, a custom batch of Ex-Cell 420 (#006140E JRH Biosciences, Lenexa KS) was used which lacked any added methionine or copper. Cells were grown to high cell density in a spinner flask in standard medium, resuspended in the "methionine-free" medium and allowed to starve for 4 hours prior to the addition of 50 mg/l of seleno-methionine (Sigma). After 70 hrs of induction the protein was purified from the supernatant as outlined above except that 5 mM β-mercaptoethanol was present throughout the purification.

10

15

20

25

5

Crystallization and Data Collection

Crystals of Drosophila Mannosidase II and complexes of the enzyme with various inhibitors were grown at room temperature using vapor diffusion and micro-batch crystallization techniques. Crystals were obtained under a wide variety of conditions. Polyethylene glycol (PEG) was used as a precipitant (with sizes: 4000; 6000; 8000; 10000; and 20000) at concentrations varying from 5-20%, in the presence of 5% 2,4-methyl-pentane-diol (MPD) or 0-30% glycerol. Crystallization solutions were buffered at pH 7-7.5 using 100 mM buffer solutions of Tris, Hepes or Mes. The crystals belong to the orthorhombic space group P2₁2₁2₁ with cell dimensions: a=69Å; b=110Å; c=139Å; $\alpha=90^\circ$; $\beta=90^\circ$; $\gamma=90^\circ$. For the initial structure determination Seleno-Methionine-derivatized Mannosidase II crystals were grown in 8.5% PEG 6000, 5% MPD and 100 mM Tris pH 7.0, using micro seeds obtained from wild-type enzyme crystals. Data were collected from crystals that were frozen in liquid nitrogen after a stepwise increase of the MPD or glycerol concentration in the crystallization solution from 5% to 25%. Data collection was performed at the Advanced Photon Source facility at Argonne National Laboratories, Argonne, Illinois. Beam line BM14D was used for collection of multiple wavelength anomalous dispersion data and BM14C for collection of highresolution data.

Structure Determination

The structure of uncomplexed dGMII was determined by MAD phasing at the Selenium absorption edge with datasets collected at an absorption peak wavelength of 0.9786 Å. inflection wavelength of 0.9790Å and a remote wavelength of 0.9770 Å. Initial positions of 26 out of 28 Selenium atoms were determined with the program Solve (Terwilliger et al., 1987) with an initial Figure of Merit (FOM) of 0.67. The experimental map obtained after density modification, using the program DM of the CCP4 program package (Cowtan, 1994), showed continuous density of very high quality for the whole molecule. The structure was traced using the program O (Jones et al., 1991) using the density modified experimental map. The model was refined using the program CNS (Brünger et al., 1998).

10

15

5

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)

The metal content in dGMII samples was analyzed by inductively coupled plasma atomic emission spectroscopy using the ICP-AES model 'Optima 3000 DV' (Dual View) from Perkin Elmer. The zinc content in the protein samples was determined relative to an equivalent amount of dGMII assay buffer.

RESULTS AND DISCUSSION

Protein expression

- 20 The cDNA for *Drosophila* GMII is predicted to encode a protein of 1108 amino acids. For protein expression in *Drosophila* cells the first 75 amino acids consisting of the cytosolic and transmembrane domains and most of the stalk region were eliminated. The remaining cDNA was cloned in-frame behind a secretion signal.
- 25 Numbering of our construct starts at the point where the expressed protein is expected to be cleaved, by signal peptidase, from the secretion signal. Three extra amino terminal residues, a 6-histidine tag, and a glycine, glutamine and phenylalanine were added in cloning. The first aspartate (D13) of the construct corresponds to aspartate 76 of the native protein. The first residue seen in the structure (C31) corresponds to C94, and the final residue S1044 to S1107, of the full-length sequence.

30

10

15

20

25

Structure Determinations

The structure of Drosophila Golgi α-mannosidase II has been determined by the multi-wavelength anomalous dispersion (MAD) phasing method using a data set collected from a crystal of Seleno-methionine derivatized enzyme (Table 9). This is the first reported structure of a Se-Met substituted enzyme produced in a Drosophila overexpression system. The native dGMII structure has been refined to a resolution of 1.76Å with some data to 1.4Å resolution (see refinement statistics presented in Table 10). The model contains residues 31-1044 of the recombinant enzyme (numbered as described above), as well as a zinc ion, an N-glycan residue, a molecule of the cryo-protectant, 2-methyl-2,4-pentanediol (MPD), and a tris(hydroxymethyl)-aminomethane (Tris) molecule. The presence of the enzyme-bound zinc ion was confirmed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The final structure of the dGMII-swainsonine complex has been refined at 1.87Å resolution and the dGMII-DMNJ complex to 1.69Å resolution, with some data to 1.5Å resolution.

Overall Architecture of dGMII

The structure of dGMII reveals a previously unobserved protein fold consisting of an N-terminal α/β domain, a three-helical bundle and an all- β C-terminal domain forming a single compact entity, connected by 5 internal disulfide bonds and stabilized by a zinc binding site (Figure 8B). The oval shaped molecule has two distinct faces (Figure 8C). The N-terminal face of the molecule is convex, whereas the opposing face of the enzyme has a planar surface. N-terminal residue Cys-31 is the last residue of the so-called stalk region, the linkage between the catalytic domain and the transmembrane domain. Cys-31 is located at the convex face of the molecule, indicating that this surface of the molecule presumably faces the inner side of the Golgi membrane, while the planar surface, containing the active site cavity (see below), faces the Golgi lumen.

The N-terminal α/β domain is comprised of an inner core of three β -sheets (A, B and C, 30 Figure 8B) consisting of 11, mostly parallel β -strands, surrounded by 16 α -helices. This

domain contains a GlcNAc residue found in the electron density map at a consensus N-glycosylation site (Asn-194), located at the N-terminus of helix 7. The α/β domain is stabilized by three disulfide bonds: between Cys-31 and Cys-1032 connecting the N and C-terminal extremes of dGMII; Cys-275 and Cys-282 linking helices 10 and 11; Cys-283 and Cys-297 linking helix 11 with a loop between helix 13 and the core of parallel β -sheets. The cysteines forming the latter two disulfide-bonds are conserved in the human Golgi α -mannosidase II sequence.

The C-terminal half of the protein contains a three-helix bundle, comprised of helices 18, 20 and 21, and is connected to the N-terminal α/β -domain via a zinc binding site. The zinc ion is coordinated in a T₅-square-based pyramidal geometry involving residues: Asp-90, His-92, Asp-204 and His-471. Furthermore, the C-terminal domain contains two immunoglobulin-like domains: a small β -sandwich consisting of 12 anti-parallel strands from β -sheets D and E, and a large 21-strand structure involving β -sheets F and G.

15

20

25

10

5

A barrel formed by the three-helix bundle and helix-23 together with the two β -sandwich structures result in a narrow pore in the center of the C-terminal domain. The pore is lined by six arginine residues: Arg-540, 565, 617, 770, 777 and 893, contributing to the overall positive charge of the pore (Figure 9A). A hairpin loop, connecting two strands of β -sheet D (Figure 8B and C, residues 527-540, shown in yellow) protrudes into the center of the barrel on the planar side of the molecule. Arginine residue 530, located at the tip of the type-I β -turn in this loop, plugs the pore preventing an open channel through the protein. The resulting crater-like cavity on the convex side of the molecule is 20Šdeep, with a diameter of 20Šfunneling to 8Šat the bottom of the cavity. B-factor values of residues within the loop indicate a higher degree of flexibility compared to the rest of the structure (average B-factor values: ~33Ų and ~15Ų, respectively).

Active Site

5

10

15

20

25

30

The molecular surface representation of the planar face of dGMII reveals an extended pocket in the N-terminal α/β -domain, formed primarily by acidic residues (Figure 9B). These same residues form the core of a large, contiguous, surface-exposed patch, of highly conserved amino acids, in comparison with the human GMII sequence (Figure 9C). The active site of the enzyme is located in a small cavity in the side of this conserved, negatively charged region. The cavity is lined by aromatic residues Trp-95, Phe-206, Tyr-269 and Tyr-727, which are involved in hydrophobic and hydrogen-bond interactions with a bound Tris molecule in the unliganded structure (Figure 10A). Tris is known to inhibit dGMII activity (Rabouille et al., 1999). Additional hydrophobic and hydrogen bond interactions are observed with Asp-92 and Asp-204. At the open side of the cavity the Tris molecule hydrogen bonds with Arg-228, Tyr-269 and Asp-341 (not shown) via water molecules.

A key feature of the active site is the coordination of the zinc ion by the Tris hydroxyl group O2. In the enzyme-Tris complex the zinc ion is bound in a T₅-square-based pyramidal geometry, coordinated by the OD1 oxygen moieties of aspartate residues 92 and 204; the NE2 nitrogens of histidines 90 and 471; and the hydroxyl oxygen O2 of the bound Tris molecule, as represented in Figure 10A. The T₅ geometry is further stabilized by hydrogen bonds between the zinc coordinating atoms and the existence of H-bonds between the ND1 nitrogen atoms of the histidines 90 and 471 with the carbonyl oxygen of seleno-methionine 167 and a water molecule, respectively (not shown). The presence of these, so called, 'elec-His-Zn motifs' is believed to increase the basicity and the ligand strength of the histidine and arrange it correctly for interaction with the metal (Alberts et al., 1998). In an uninhibited enzyme, Tris would likely be replaced by a coordinating water molecule. As discussed below, this arrangement has implications for substrate binding and transition state stabilization.

The occurrence of zinc in Family 38 glycosyl hydrolases has been described by Snaith (1975) in Jack-bean α -mannosidase. A possible role for zinc in catalysis was indicated by inactivation of the enzyme by chelating agents and bivalent metal ions such as Cu²⁺. Copper

has also been shown to effectively inactivate *Drosophila* and mouse GMII (Rabouille et al., 1999).

Inhibitor Binding

5

10

15

20

25

The structures of dGMII in complex with the inhibitors DMNJ and swainsonine show that both compounds bind to the same active site in a similar manner (Figure 10B and C). The binding of both inhibitors involves a large contribution of hydrophobic interactions involving aromatic residues Trp-95, Phe-206 and Tyr-727, forming the walls of the cavity. The inhibitor ring structures are stacked against Trp-95, a feature seen in several carbohydrate binding and hydrolyzing proteins (see Boraston et al., 2000 and review papers therein), and stabilized by hydrogen bonds and interactions with the zinc ion. In the complexes of dGMII with either DMNJ or swainsonine the T₅ geometry of the bound zinc ion, as seen in the Tris-bound enzyme, is transformed into T₆-octahedral coordination. In both the dGMII complexes the inhibitor O2 hydroxyl oxygen replaces the O2 oxygen of Tris and the O3 hydroxyl oxygen forms the apex of the second pyramid. In order to obey the restraints of the T₆ geometry, the plane of the swainsonine ring structure is tilted with respect to the saccharide-like ring of the bound DMNJ molecule. This enables the formation of a hydrogen bond between the zinccoordinating OD1 oxygen of Asp-204 and the N4 nitrogen at the fusion of the five and sixmembered rings of swainsonine. As in the Tris-bound enzyme, the zinc coordinating oxygen atoms of the inhibitors are involved in hydrogen bond interactions with the neighboring metal binding residues of the enzyme.

The position of the DMNJ and swainsonine molecules is stabilized in the active site by hydrogen bonds between carboxylic oxygens OD1 and OD2 of residue Asp-472 and hydroxyl oxygens O3 and O4 (O5 in swainsonine) of the inhibitors, analogous to the O1 and O2 interactions seen in the enzyme-Tris complex. As in the Tris-bound enzyme, DMNJ is involved in additional hydrogen bonds, via water molecules, with the NH2 nitrogen of Arg-228, the hydroxyl oxygen of Tyr-269, the backbone carbonyl oxygen of Arg-876 (not shown) and the OD1 oxygen of Asp-204.

The displacement of the Tris molecule by either of the inhibitors only slightly affects the zinc binding site by weakening the internal hydrogen bonds between Asp-204 and histidines 90 and 471. No major conformational changes are observed between the Tris-bound and the inhibitor-bound mannosidase molecules as their backbones are virtually superimposable, with root-mean-square-deviations between $C\alpha$ atoms of 0.068Å (dGMII-DMNJ complex) and 0.087Å (dGMII-swainsonine complex).

Catalytic mechanism

Golgi α-mannosidase II is a retaining mannosyl hydrolase, which cleaves the linkage between the C1 atom of M7 and M6 (Figure 8A) and, respectively, the O3 and O6 atom of the α1,6-linked mannosyl branch (M4) of GlcNAcMan₅GlcNAc₂. The catalytic mechanism is proposed to follow a very similar path to the corresponding retaining β-glycosidases (Braun et al., 1995; White and Rose, 1997). This is a two-stage reaction that usually involves two carboxylic acids, one acting as a nucleophile attacking the glycosidic bond, and the other as a general acid/base catalyst. Nucleophilic attack of one carboxylic acid results in glycosylation of the enzyme by forming a covalent intermediate followed by a second deglycosylation step, each step passing through an oxocarbonium ion-like transition state.

Based on the structure of the dGMII-inhibitor complexes we speculate that the mannose residues on the α 1,6-linked mannosyl branch (M4) bind to the enzyme at the same site and in the same manner as mannose-like inhibitor DMNJ. Coordination of the zinc ion with the O2 and O3 hydroxyl oxygens thereby contributes to the enzyme's specificity for mannose. Four acidic amino acid residues, Asp-92, Asp-204, Asp-341 and Asp-472, are candidates for catalytic side chains based on their proximity to the active site (Figure 10C). Results from a recent study on the mechanism of catalysis in Jack-bean α -mannosidase by Withers and coworkers, using reagents that trap the glycosyl-enzyme intermediate, identified an aspartate residue as the catalytic nucleophile in that enzyme (Howard et al., 1998). Comparison of the highly conserved sequence region surrounding this aspartate in Jack-bean α -mannosidase with the same sequence region in dGMII suggests that aspartate residue 204 in dGMII is the catalytic nucleophile that attacks the glycosidic linkage. For this reaction it is required that

10

15

20

25

30

Asp-204 is close to the anomeric carbon of the mannose substrate. In the dGMII-DMNJ complex, however, the equivalent anomeric carbon is located 4.6Å from the nucleophile. Binding of the C2 and C3 substituent hydroxyl oxygens of the flattened five-membered ring in swainsonine causes the inhibitor molecule to tilt, bringing its bridgehead nitrogen N4, in the analogous position to C1 in the substrate, significantly closer to the putative nucleophilic Asp-204 (3.2Å). This tilted binding mode, stabilized by a hydrogen bond between N4 and Asp-204 and by van der Waals stacking interactions between the 6-membered ring of swainsonine and Phe-206, may resemble the mode of binding of the ring-flattened transition state mannosyl cation. Thus, Phe-206 would stabilize the transition state by compensating for the loss of stacking interactions of the substrate with Trp-95. The highly complementary shape of swainsonine with the active site of dGMII, and its structural analogy with the skewed boat transition state conformation, could therefore explain its 10,000 times higher binding affinity for the enzyme, compared to the substrate-mimic DMNJ (data not shown).

The OD1 oxygen of Asp-204, the putative nucleophile, directly coordinates the zinc ion, implicating a role for the zinc in positioning the nucleophile and in the stabilization of protonation states of the reacting partners. It is tempting to speculate that the change of zinc coordination from T5 to the less favored T6 state (Alberts et al., 1998) on substrate binding may also contribute to the mechanism. From the Tris and DMNJ structures, it is predicted that the coordination would revert to T5 on product release. If so, this transition may energetically facilitate the deglycosylation step. Such evidence of direct zinc involvement in the catalytic mechanism of a glycosyl hydrolase is unprecedented. Arg-288 positions Asp-204 for nucleophilic attack by virtue of hydrogen bond interactions between its NE and NH2 nitrogens and the OD2 oxygen of Asp-204 (Figure 10C). Based on the expected distance between the two catalytic residues (~5.5Å, Davies and Henrissat, 1995) likely candidates for the catalytic base are Asp-341 and Asp-472 (preliminary indications are that the D341N mutant is catalytically inactive, DAK unpublished results). Recent data suggest that other residues, such as tyrosines, possibly play a role in glycosidic bond cleavage (Davies and Henrissat, 1995). Tyrosine residues 269 are 727 are positioned to help stabilize the transition state.

10

15

20

25

Substrate Binding and Cleavage

The function of GMII is dependent on the presence of β 1,2-GlcNAc (G3, Figure 8A), added to α 1,3-linked mannose (M5) by GlcNAc transferase I (see reviews: Kornfeld and Kornfeld, 1985; Moremen et al., 1994). This β 1,2-GlcNAc dependence suggests the presence of an additional saccharide-binding site in GMII. Evidence for such a binding site is provided by the observation of an MPD molecule in the structure of dGMII, in the vicinity of the active site cavity. MPD was used as a cryo-protectant during the procedure of flash-freezing of the crystal, prior to data collection (see experimental procedures). The replacement of MPD by the alternative cryo-protectant glycerol resulted in the occupation of this same position by a glycerol molecule. Glycerol has been shown to mimic saccharide binding in structures of glycosyl hydrolases (Schmidt et al., 1998, Vallée et al., 2000).

The observation of the binding of MPD and glycerol near dGMII's active site (Figure 11A) enables a hypothesis regarding the binding and cleavage of α 1,6 and α 1,3-linked mannoses on the α 1,6-linked mannose branch of the GlcNAcMan₅GlcNAc₂ oligosaccharide. In this hypothesis, the MPD binding site is suggested to be the putative site of interaction for β1,2-GlcNAc (G3, Figure 8A), enabling anchoring of the oligosaccharide substrate in the conserved negatively charged pocket. In Figure 11B a model is shown of a GlcNAcMan₅GlcNAc₂ structure with the β1,2-GlcNAc residue placed in the MPD binding site and the \alpha 1,6-linked M6 mannose docked into the active site, with its hydroxyl oxygens O2 and O3 coordinating the zinc ion. As required, the asparagine linked \(\beta_1.4\)-GlcNAc residues G1 and G2 extend away from the surface of the molecule (into the Golgi lumen). Both M4 and the second substrate α 1,3-linked M7 mannose are located within the conserved negatively charged pocket pointing away from the active site cavity. In this orientation it can be easily visualized that after cleavage of the α1,6-linked M6 the second, α1,3-linked M7 can be brought into the active site cavity by a ~180° rotation, through the extended pocket, around the flexible α 1,6-linkage of M4 (see Figure 11C). In addition to the dependence of GMII's action on the presence of the G3 \(\beta_1,2\)-GlcNAc, this model provides a mechanism for the

cleavage of both mannose residues without major conformational change of the enzyme, and more importantly, without release of the polypeptide-carbohydrate complex, anchored by the stationary GlcNAc, between the two cleavage events. Finally, this model suggests that the α 1,6-linked M6 mannose is preferentially cleaved first, enabling the shorter α 1,3-linked M7 residue to rotate through the pocket with minimal steric hindrance; according to our model, the proposed 'swivel' mechanism would be slightly hampered should the M7 mannose be cleaved first. This is supported by data reported for α -mannosidase II from mung bean seedlings, Xenopus liver, Rat liver Golgi and for enzyme-activity in homogenates of insect cells, showing preferential hydrolytic activity on the M6 mannosyl residue (Kaushal et al., 1990; Altmann and Martz, 1995; Ren et al., 1997).

Conclusions

The structure of the catalytic domain of Golgi α -mannosidase II provides the basis for its zinc ion mediated specificity for mannose, as well as insight into its reaction mechanism. In addition, the result illustrates the structural basis for the mechanism of inhibition by the anticancer agent swainsonine, which we propose mimics aspects of the transition state binding. This understanding is critical for the rational design of swainsonine variants and/or novel mechanism-based compounds as specific α -mannosidase II inhibitors, for the treatment of several forms of cancer. A bound MPD molecule identifies a putative GlcNAc binding pocket, located near the active site and enables a hypothesis explaining the enzyme's dependency on the single GlcNAc substitution of the GlcNAcMan₅GlcNAc₂ substrate for binding. Furthermore, it suggests a novel mechanism for successive hydrolysis of the α 1,6 and α 1,3-linked mannose residues, resulting in the tri-mannose core glycosyl structure. Finally, it opens the door to the design of novel highly specific inhibitors linking together functional sites in the enzyme.

15

20

10

5

Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in chemistry or biology or related fields are intended to be covered by the present invention. All publications mentioned in the above specification are herein incorporated by reference.

Structural coordinates of a Drosophila Golgi α-mannosidase II.

```
REMARK coordinates from simulated annealing refinement
     REMARK refinement resolution: 500.0 - 1.4 A
     REMARK starting r= 0.1816 free r= 0.2003
     REMARK final
                     r= 0.1894 free_r= 0.2063
     REMARK rmsd bonds= 0.004594 rmsd angles= 1.32379
     REMARK wa initial= 0.264577 wa dynamics= 0.28954 wa_final= 0.28836
     REMARK target= mlf md-method= torsion annealing schedule= slowcool
10
     REMARK starting temperature= 1000 total md steps= 40 * 6
     REMARK sg= P2(1)2(1)2(1) a= 68.865 b= 109.718 c= 138.599 alpha= 90 beta= 90
     gamma= 90
     REMARK parameter file 1 : CNS TOPPAR:protein_rep.param
                              : CNS TOPPAR:water_rep.param
     REMARK parameter file 2
15
     REMARK parameter file 3
                              : CNS_TOPPAR:ion.param
     REMARK parameter file 4
                              : trs.par
     REMARK parameter file 5
                              : mpd.par
     REMARK parameter file 6
                              : cis_peptide.param
                             : CNS TOPPAR: carbohydrate.param
     REMARK parameter file 7
20
     REMARK molecular structure file: dgmllcgen.mtf
     REMARK input coordinates: dgmllcgen.pdb
     REMARK reflection file= ../semetHiR.cv
     REMARK ncs= none
     REMARK B-correction resolution: 6.0 - 1.4
     REMARK initial B-factor correction applied to fobs:
     REMARK
              B11=
                     0.609 B22= -0.765 B33=
                                  0.000 B23 =
     REMARK
              B12 =
                     0.000 B13=
                                               0.000
     REMARK B-factor correction applied to coordinate array B:
                                                                   0.042
     REMARK bulk solvent: density level= 0.35999 e/A^3, B-factor= 42.8385 A^2
30
     REMARK reflections with |Fobs|/sigma F < 0.0 rejected
     REMARK reflections with |Fobs| > 10000 * rms(Fobs) rejected
     REMARK theoretical total number of refl. in resol. range:
                                                                  206243 (100.0%)
                                                                    59797 (29.0%)
     REMARK number of unobserved reflections (no entry or |F|=0):
                                                                        0 (0.0%)
     REMARK number of reflections rejected:
35
                                                                   146446 (71.0%)
     REMARK total number of reflections used:
                                                                   139067 (67.4%)
     REMARK number of reflections in working set:
                                                                     7379 (3.6%)
     REMARK number of reflections in test set:
              68.865 109.718 138.599 90.00 90.00 90.00 P 21 21 21
     CRYST1
     REMARK FILENAME="dgmllcan2 1.pdb"
40
     REMARK DATE:13-Jul-2000 03:16:24
                                             created by user: jvdelsen
     REMARK VERSION: 0.9a
               1
                             31
                                     41.938
                                             37.136 -18.751
                                                             1.00 22.64
                                                                              Α
     MOTA
                 С
                      CYS A
     MOTA
               2
                  0
                      CYS A
                             31
                                     41.423
                                             36.540 -19.699
                                                             1.00 22.74
                                                                              Α
     MOTA
               3
                  CB CYS A
                             31
                                     43.833
                                             38.473 -19.585
                                                             1.00 22.94
                                                                              Α
45
               4
                  SG
                     CYS A
                             31
                                     45.532
                                             39.110 -19.452
                                                             1.00 23.66
                                                                              A
     MOTA
     MOTA
               5
                  N
                      CYS A
                             31
                                     44.185
                                             36.072 -19.063
                                                             1.00 24.03
                                                                              Α
     MOTA
               6
                  CA CYS A
                             31
                                     43.449
                                             37.310 -18.673
                                                              1.00 23.18
                                                                              Α
               7
                      GLN A
                                             37.666 -17.760
                                                              1.00 22.29
     MOTA
                  N
                             32
                                     41.229
                                                                              Α
               8
                                             37.591 -17.754
                                                              1.00 22.06
                                                                              Α
     ATOM
                  CA GLN A 32
                                     39.775
50
                                                                              Α
               9
                                             38.061 -16.417
                                                              1.00 24.01
     ATOM
                 CB GLN A 32
                                     39.196
                                                                              Α
                                             37.126 -15.248
                                                             1.00 27.12
     MOTA
              10
                 CG
                     GLN A 32
                                     39.409
                      GLN A 32
                                     38.470
                                             37.442 -14.098
                                                              1.00 28.66
                                                                              A
     MOTA
              11
                  CD
                                     37.252 37.307 -14.224
              12
                  OE1 GLN A 32
                                                             1.00 29.78
     MOTA
```

N N į, nik

31

ļ::1:

		ATOM	13	NE2	GLN A	32	39.031	37.872 -12.973	1.00 29.39	Α
		MOTA	14	С	GLN A	32	39.230	38.498 -18.848	1.00 20.52	Α
		ATOM	15	0	GLN A	32	39.817	39.534 -19.162	1.00 19.74	Α
		ATOM	16	N	ASP A	33	38.109	38.096 -19.432	1.00 19.11	Α
	5	ATOM	17	CA	ASP A	33	37.460	38.885 -20.470	1.00 17.47	Α
		ATOM	18	CB	ASP A	33	36.651	37.955 -21.384	1.00 18.06	Α
		MOTA	19	CG	ASP A	33	35.993	38.681 -22.540	1.00 19.46	Α
		ATOM	20		ASP A	33	35.738	38.020 -23.570	1.00 20.28	Α
		ATOM	21		ASP A	33	35.714	39.893 -22.421	1.00 19.63	A
	10	ATOM	22	С	ASP A	33	36.554	39.839 -19.692	1.00 16.94	A
		ATOM	23	Ō	ASP A	33	35.614	39.407 -19.033	1.00 18.06	Α
		ATOM	24	N	VAL A	34	36.854	41.132 -19.748	1.00 13.82	А
		ATOM	25	CA	VAL A	34	36.076	42.121 -19.007	1.00 12.33	A
		ATOM	26	CB	VAL A	34	36.982	43.291 -18.536	1.00 11.75	A
	15	ATOM	27		VAL A	34	38.158	42.744 -17.744	1.00 12.48	Α
	10	ATOM	28		VAL A	34	37.485	44.093 -19.737	1.00 11.56	Α
		ATOM	29	C	VAL A	34	34.912	42.692 -19.806	1.00 11.58	A
		ATOM	30	0	VAL A	34	34.227	43.610 -19.350	1.00 11.18	A
41100		ATOM	31	N	VAL A	35	34.668	42.129 -20.986	1.00 11.40	A
الجوا	20	ATOM	32	CA	VAL A	35	33.601	42.623 -21.847	1.00 11.88	A
ŧ.	20	ATOM	33	CB	VAL A	35	34.164	43.016 -23.234	1.00 11.64	A
		ATOM	34		VAL A	35	33.031	43.463 -24.159	1.00 11.96	A
171		ATOM	35		VAL A	35	35.199	44.113 -23.082	1.00 11.54	A
		ATOM	36	C	VAL A	35	32.422	41.689 -22.106	1.00 12.53	A
191	25	ATOM	37	0	VAL A	35	31.268	42.100 -22.012	1.00 12.16	A
	20	ATOM	38	N	GLN A	36	32.719	40.434 -22.422	1.00 13.91	A
		ATOM	39	CA	GLN A	36	31.685	39.471 -22.796	1.00 15.60	A
		ATOM	40	СВ	GLN A	36	32.217	38.631 -23.955	1.00 15.34	A
E)		ATOM	41	CG	GLN A	36	32.986	39.457 -24.972	1.00 16.14	A
	30	ATOM	42	CD	GLN A	36	33.458	38.641 -26.151	1.00 16.81	A
ij.	00	ATOM	43	OE1		36	32.699	38.388 -27.084	1.00 18.19	A
10		ATOM	44		GLN A	36	34.714	38.214 -26.110	1.00 16.46	A
] L .		ATOM	45	С	GLN A	36	31.077	38.548 -21.748	1.00 17.41	A
		ATOM	46	0	GLN A	36	30.128	37.825 -22.048	1.00 19.27	А
	35	ATOM	47	N	ASP A	37	31.609	38.557 -20.532	1.00 18.41	A
•	•	ATOM	48	CA	ASP A	37	31.080	37.700 -19.475	1.00 18.97	А
		ATOM	49	СВ	ASP A	37	32.190	36.818 -18.885	1.00 21.17	А
		ATOM	50	CG	ASP A	37	32.759	35.834 -19.891	1.00 22.94	А
		ATOM	51		ASP A	37	31.965	35.181 -20.599	1.00 24.67	A
	40	ATOM	52		ASP A	37	34.000	35.707 -19.963	1.00 24.47	A
	-0	ATOM	53	C	ASP A	37	30.444	38.513 -18.351	1.00 18.35	Α
		ATOM	54	0	ASP A	37	31.145	39.128 -17.548	1.00 20.02	A
		ATOM	55	N	VAL A	38	29.117	38.511 -18.294	1.00 17.12	А
		ATOM	56	CA	VAL A	38	28.404	39.242 -17.250	1.00 16.29	Α
	45	ATOM	57	СВ	VAL A	38	26.902	39.362 -17.579	1.00 16.90	А
	10	ATOM	58		VAL A	38	26.180	40.114 -16.468	1.00 16.50	А
		ATOM	59		VAL A	38	26.721	40.074 -18.915	1.00 16.46	А
		ATOM	60	C	VAL A	38	28.559	38.512 -15.917	1.00 15.90	A
		ATOM	61	Õ	VAL A	38	28.108	37.377 -15.763	1.00 15.86	A
	50	ATOM	62	N	PRO A	39	29.204	39.157 -14.933	1.00 15.02	A
	50	ATOM	63	CD	PRO A	39	29.892	40.459 -14.998	1.00 14.29	A
		ATOM	64	CA	PRO A	39	29.399	38.531 -13.623	1.00 14.23	A
		ATOM	65	CB	PRO A	39	30.154	39.603 -12.836	1.00 14.74	A
		ATOM	66	CG	PRO A	39	30.927	40.321 -13.901	1.00 13.83	A
	55	ATOM	67	C	PRO A	39	28.089	38.150 -12.949	1.00 14.68	Α
	<i>J J</i>	ATOH	0,		INO A	J J	20.007	55.150 12.545	1.00 17.00	••

								20 066 12 0:5	1 00 11 60	_
		ATOM	68	0	PRO A	39	27.092	38.866 -13.045	1.00 14.60	A
		ATOM	69	N	ASN A	40	28.095	37.009 -12.270	1.00 15.48	A
		ATOM	70	CA	ASN A	40	26.913	36.557 -11.557	1.00 16.28	A
		MOTA	71	CB	ASN A	40	26.727	35.048 -11.725	1.00 18.96	Α
	5	MOTA	72	CG	ASN A	40	25.614	34.501 -10.855	1.00 21.26	A
		ATOM	73	OD1	ASN A	40	24.500	35.026 -10.847	1.00 24.33	A
		ATOM	74		ASN A	40	25.909	33.437 -10.119	1.00 23.94	A
		ATOM	75	С	ASN A	40	27.113	36.899 -10.089	1.00 15.67	Α
		ATOM	76	Ö	ASN A	40	27.902	36.259 -9.396	1.00 15.97	A
	10	ATOM	77	N	VAL A	41	26.408	37.922 -9.623	1.00 14.19	Α
	10	ATOM	78	CA	VAL A	41	26.522	38.347 -8.232	1.00 12.77	A
		ATOM	79	CB	VAL A	41	27.144	39.764 -8.126	1.00 11.76	A
			80		VAL A	41	28.584	39.738 -8.606	1.00 12.95	A
		ATOM					26.328	40.755 -8.946	1.00 12.33	A
	15	ATOM	81		VAL A	41			1.00 12.22	A
	15	ATOM	82	С	VAL A	41	25.162		1.00 12.71	A
		ATOM	83	0	VAL A	41	24.125	38.479 -8.198		
		ATOM	84	N	ASP A	42	25.171	38.217 -6.226	1.00 11.92	A
		ATOM	85	CA	ASP A	42	23.934	38.211 -5.461	1.00 12.46	A
1,22	••	MOTA	86	CB	ASP A	42	24.210	37.791 -4.017	1.00 13.55	A
. 🗇	20	ATOM	87	CG	ASP A	42	24.708	36.366 -3.913	1.00 14.63	A
. 25		ATOM	88		ASP A	42	24.009	35.457 -4.416	1.00 16.11	Α
		ATOM	89	OD2	ASP A	42	25.788	36.144 -3.327	1.00 14.87	Α
4,8 € .		MOTA	90	С	ASP A	42	23.261	39.576 -5.480	1.00 11.96	A
Hand Const.		MOTA	91	0	ASP A	42	22.036	39.675 -5.540	1.00 12.50	A
10,0	25	ATOM	92	N	VAL A	43	24.066	40.632 -5.419	1.00 10.49	A
		MOTA	93	CA	VAL A	43	23.537	41.987 -5.434	1.00 10.78	A
		ATOM	94	СВ	VAL A	43	23.693	42.686 -4.056	1.00 10.05	A
£1		ATOM	95	CG1	VAL A	43	23.072	44.078 -4.105	1.00 10.79	A
g rest		ATOM	96		VAL A	43	23.042	41.848 -2.955	1.00 10.64	A
	30	ATOM	97	С	VAL A	43	24.291	42.806 -6.471	1.00 9.86	A
الوارة. معم		ATOM	98	0	VAL A	43	25.515	42.922 -6.414	1.00 10.17	A
		ATOM	99	N	GLN A	44	23.559	43.336 -7.443	1.00 9.59	A
l.d.		ATOM	100	CA	GLN A	44	24.158	44.174 -8.471	1.00 9.74	A
		ATOM	101	СВ	GLN A	44	23.920	43.576 -9.860	1.00 9.50	A
100	35	ATOM	102	CG	GLN A	44	24.977	43.983 -10.869	1.00 9.04	А
-	00	ATOM	103	CD	GLN A	44	25.078	45.482 -11.000	1.00 10.11	А
		ATOM	104	OE1		44	24.107	46.144 -11.348	1.00 10.00	A
		ATOM	105	NE2		44	26.255	46.028 -10.708	1.00 9.62	A
		ATOM	106	C	GLN A	44	23.409	45.489 -8.282	1.00 9.74	А
	40	ATOM	107	0	GLN A	44	22.203	45.562 -8.488	1.00 9.41	A
	70		107		MSE A	45	24.125	46.526 -7.866	1.00 9.19	A
		ATOM	109	N Cn	MSE A	45	23.488	47.795 -7.559	1.00 9.37	A
		ATOM		CA			24.531	48.784 -7.035	1.00 10.21	A
		ATOM	110	CB	MSE A	45		48.353 -5.699	1.00 10.21	A
	45	ATOM	111	CG	MSE A	45	25.149			A
	45	ATOM	112	SE	MSE A	45	23.842	47.932 -4.319	1.00 18.05	
		ATOM	113	CE	MSE A	45	23.146	49.711 -4.052	1.00 15.91	A
		ATOM	114	С	MSE A	45	22.606	48.459 -8.606	1.00 8.92	A
		ATOM	115	0	MSE A	45	21.614	49.094 -8.245	1.00 9.44	A
		ATOM	116	N	LEU A	46	22.942	48.327 -9.886	1.00 9.08	A
	50	ATOM	117	CA	LEU A	46	22.108	48.933 -10.923	1.00 9.97	Α
		ATOM	118	CB	LEU A	46	22.793	48.872 -12.294	1.00 10.46	Α
		MOTA	119	CG	LEU A	46	22.050	49.591 -13.430	1.00 10.75	A
		ATOM	120	CD1	LEU A	46	22.054	51.101 -13.186	1.00 11.00	А
		ATOM	121	CD2	LEU A	46	22.706	49.268 -14.760	1.00 10.73	A
	55	ATOM	122	С	LEU A	46	20.783	48.174 -10.974	1.00 10.31	Α

		T	100	_		1.0	10 716	40 773	-11.109	1.00 9.89	n
		ATOM	123	0	LEU A	46	19.716				A
		ATOM	124	N	GLU A	47	20.860	46.853	-10.848	1.00 11.31	Α
		ATOM	125	CA	GLU A	47	19.662	46.020	-10.880	1.00 12.80	A
		ATOM	126	СВ	GLU A	47	20.050	44.538	-10.943	1.00 13.61	A
	5	ATOM	127	CG	GLU A	47	18.875		-11.181	1.00 16.25	А
	3							43.257	-9.920	1.00 18.05	A
		ATOM	128	CD	GLU A	47	18.100				
		ATOM	129		GLU A	47	16.963		-10.042	1.00 20.21	Α
	•	MOTA	130	OE2	GLU A	47	18.622	43.479	-8.809	1.00 18.69	A
		ATOM	131	C	GLU A	47	18.810	46.295	-9.648	1.00 12.80	A
	10	ATOM	132	0	GLU A	47	17.586	46.385	-9.736	1.00 12.50	Α
		ATOM	133	N	LEU A	48	19.460	46.444	-8.499	1.00 12.14	А
		ATOM	134	CA	LEU A	48	18.740	46.716	-7.263	1.00 12.63	A
										1.00 14.14	A
		ATOM	135	CB	LEU A	48	19.705	46.729	-6.076		
		ATOM	136	CG	LEU A	48	19.055	46.870	-4.697	1.00 15.25	A
	15	ATOM	137	CD1	LEU A	48	18.053	45.745	-4.474	1.00 16.69	A
		ATOM	138	CD2	LEU A	48	20.130	46.847	-3.620	1.00 16.69	Α
		ATOM	139	С	LEU A	48	18.019	48.057	-7.367	1.00 12.34	A
		ATOM	140	0	LEU A	48	16.863	48.187	-6.966	1.00 12.49	А
2105.		ATOM	141	N	TYR A	49	18.704	49.054	-7.918	1.00 11.81	А
	20	ATOM	142	CA	TYR A	49	18.113	50.376	-8.081	1.00 12.23	A
٠Ū	20								-8.666	1.00 11.90	A
120. 11.5		ATOM	143	CB	TYR A	49	19.149	51.349			
		ATOM	144	CG	TYR A	49	19.709	52.296	-7.630	1.00 10.96	A
ą́,β ii avi z ,		ATOM	145		TYR A	49	20.175	51.815	-6.403	1.00 10.54	A
Ę,		ATOM	146	CE1	TYR A	49	20.626	52.679	-5.416	1.00 10.82	A
	25	MOTA	147	CD2	TYR A	49	19.719	53.674	-7.847	1.00 10.08	А
		MOTA	148	CE2	TYR A	49	20.170	54.552	-6.863	1.00 10.64	A
M		ATOM	149	CZ	TYR A	49	20.617	54.046	-5.649	1.00 9.91	Α
		ATOM	150	ОН	TYR A	49	21.025	54.902	-4.653	1.00 10.90	A
##			151	C		49	16.874	50.330	-8.972	1.00 12.98	A
	30	ATOM			TYR A				-8.740	1.00 12.30	A
٠Ō	30	ATOM	152	0	TYR A	49	15.900	51.047			
		ATOM	153	N	ASP A	50	16.910	49.470	-9.983	1.00 13.83	A
		MOTA	154	CA	ASP A	50	15.793		-10.910	1.00 15.90	A
		MOTA	155	CB	ASP A	50	16.187	48.407	-12.060	1.00 16.89	Α
		ATOM	156	CG	ASP A	50	15.410	48.680	-13.334	1.00 18.91	A
100	35	ATOM	157	OD1	ASP A	50	15.524	47.869	-14.279	1.00 21.08	A
•		ATOM	158		ASP A	50	14.698		-13.401	1.00 19.63	А
		ATOM	159	C	ASP A	50	14.555		-10.194	1.00 16.66	А
			160	0	ASP A	50	13.430		-10.484	1.00 16.29	A
		ATOM									
	40	ATOM	161	N	ARG A	51	14.772	47.882	-9.248	1.00 17.87	A
	4 0	MOTA	162	CA	ARG A	51	13.678	47.256	-8.501	1.00 19.68	A
		ATOM	163	CB	ARG A	51			-8.075		A
		MOTA	164	CG	ARG A	51	14.210	44.853	-9.219	1.00 26.10	A
		ATOM	165	CD	ARG A	51	14.327	43.409	-8.730	1.00 29.22	A
		ATOM	166	NE	ARG A	51	15.547	43.159	-7.964	1.00 31.13	Α
	45	ATOM	167	CZ	ARG A	51	15.681	43.377	-6.659	1.00 32.25	А
	10	ATOM	168		ARG A	51	14.665	43.851	-5.950	1.00 33.45	А
					ARG A	51	16.838	43.121	-6.063	1.00 32.60	A
		ATOM	169								
		ATOM	170	С	ARG A	51	13.182	48.008	-7.267	1.00 19.33	A
		ATOM	171	0	ARG A	51	11.999	47.938	-6.935	1.00 20.01	Α
	50	ATOM	172	N	MSE A	52	14.080	48.708	-6.582	1.00 19.03	A
		ATOM	173	CA	MSE A	52	13.722	49.450	-5.374	1.00 19.27	Α
		ATOM	174	СВ	MSE A	52	14.976	50.053	-4.742	1.00 20.66	A
		ATOM	175	CG	MSE A	52	15.912	49.042	-4.122	1.00 22.65	Α
		ATOM	176	SE	MSE A	52	17.569	49.884	-3.600	1.00 27.63	A
	55	ATOM	177	CE	MSE A	52	16.866	51.229	-2.405	1.00 24.75	A
	55	ATOM	1//	CE	MOE A	32	10.000	J1.429	-2.403	1.00 29.73	п

		ATOM	178	С	MSE	Δ	52		12.698	50.557	-5.597	1.00 18.62	А
		ATOM	179	0	MSE		52		12.690	51.209	-6.640	1.00 18.85	A
							53		11.850	50.777	-4.595	1.00 18.04	A
		ATOM	180	N	SER								
	_	ATOM	181	CA	SER		53		10.814	51.805	-4.673	1.00 18.07	A
	5	ATOM	182	CB	SER		53		9.525	51.291	-4.028	1.00 19.37	A
		ATOM	183	OG	SER		53		9.062	50.124	-4.689	1.00 21.66	А
		MOTA	184	С	SER	A	53		11.233	53.118	-4.010	1.00 17.33	А
		MOTA	185	0	SER	Α	53	-	10.615	54.158	-4.235	1.00 17.18	A
		ATOM	186	N	PHE	Α	54		12.276	53.058	-3.188	1.00 16.61	Α
	10	ATOM	187	CA	PHE	Α	54		12.800	54.229	-2.488	1.00 16.04	А
		ATOM	188	CB	PHE	Α	54		13.474	55.196	-3.474	1.00 15.36	A
		MOTA	189	CG	PHE	A	54		14.708	54.642	-4.140	1.00 13.72	Α
		ATOM	190	CD1	PHE		54		14.604	53.800	-5.242	1.00 13.06	A
		ATOM	191		PHE		54		15.973	54.979	-3.672	1.00 13.80	А
	15	ATOM	192		PHE		54		15.745	53.301	-5.874	1.00 13.32	Α
	10	ATOM	193		PHE		54		17.121	54.488	-4.294	1.00 13.91	A
		ATOM	194	CZ	PHE		54		17.006	53.646	-5.400	1.00 13.56	A
		ATOM	195	C	PHE		54		11.760	55.008	-1.680	1.00 16.83	A
a char										56.228	-1.555	1.00 16.55	A
digit from the forth first first	20	ATOM	196	0	PHE		54		11.858				
ij	20	ATOM	197	N	LYS		55		10.768	54.319	-1.126	1.00 17.41	A
1		ATOM	198	CA	LYS		55		9.757	55.016	-0.337	1.00 19.14	A
165		ATOM	199	CB	LYS		55		8.554	54.107	-0.078	1.00 19.64	A
2 (************************************		ATOM	200	CG	LYS		55		7.836	53.664	-1.343	1.00 20.85	A
₹- ;-# 1611	25	ATOM	201	CD	LYS		55		7.418	54.851	-2.206	1.00 22.09	А
14:	25	MOTA	202	CE	LYS		55		6.676	54.383	-3.454	1.00 23.32	A
IŲ.		MOTA	203	NZ	LYS		55		6.271	55.511	-4.340	1.00 24.17	A
M		ATOM	204	С	LYS	Α	55		10.354	55.486	0.985	1.00 19.50	A
R:		ATOM	205	0	LYS	A	55		11.028	54.726	1.679	1.00 20.05	A
		ATOM	206	N	ASP	Α	56		10.102	56.745	1.324	1.00 19.60	А
	30	MOTA	207	CA	ASP	Α	56		10.622	57.341	2.549	1.00 20.15	A
िहेक्की संस्कृत		MOTA	208	СВ	ASP		56		11.139	58.753	2.240	1.00 19.39	A
William I		ATOM	209	CG	ASP		56		11.741	59.441	3.450	1.00 19.05	A
₽ s ‡ .		ATOM	210		ASP		56		12.273	58.744	4.338	1.00 19.04	А
		ATOM	211		ASP		56		11.697	60.689	3.503	1.00 19.38	А
į. <u></u>	35	ATOM	212	C	ASP		56		9.551	57.383	3.635	1.00 20.95	A
•	00	ATOM	213	0	ASP		56		8.972	58.432	3.912	1.00 21.55	A
		ATOM	214	N	ILE		57		9.295	56.236	4.254	1.00 21.88	A
			215	CA			57		8.283	56.158	5.301	1.00 21.00	A
		ATOM			ILE						5.141	1.00 22.03	A
	40	ATOM	216	CB	ILE		57 57		7.404	54.895 54.823	3.723	1.00 24.55	A
	40	MOTA	217		ILE				6.848				
		MOTA			ILE				8.224			1.00 25.50	A
		ATOM	219		ILE		57		7.404	52.363	5.446	1.00 26.92	A
		ATOM	220	С	ILE		57		8.897	56.146	6.695	1.00 22.59	A
	4.5	ATOM	221	0	ILE		57		10.038	55.722	6.881	1.00 22.42	A
	45	MOTA	222	N	ASP		58		8.128	56.623	7.669	1.00 22.17	A
		MOTA	223	CA	ASP		58		8.566	56.667	9.059	1.00 21.75	A
		ATOM	224	CB	ASP	Α	58		7.605	57.538	9.873	1.00 22.45	A
		ATOM	225	CG	ASP	Α	58		8.017	57.674	11.327	1.00 23.28	А
		MOTA	226	OD1	ASP	Α	58		7.417	58.514	12.033	1.00 24.70	А
	50	MOTA	227		ASP		58		8.929	56.948	11.771	1.00 22.76	А
		ATOM	228	С	ASP		58		8.580	55.243	9.604	1.00 21.36	А
		ATOM	229	Ō	ASP		58		7.528	54.637	9.801	1.00 20.84	A
		ATOM	230	N	GLY		59		9.775	54.712	9.842	1.00 19.94	А
		ATOM	231	CA	GLY		59		9.887	53.355	10.346	1.00 19.09	A
	55	ATOM	232	CA			59		9.859	53.221	11.858	1.00 19.09	A
		AIUM	232	C	GLY	H	ング		5.009	JJ.221	11.000	1.00 10.34	А

		ATOM	233	0	GLY A	A	59	10.062	52.128	12.383	1.00 18.39	А
		ATOM	234	N	GLY	A	60	9.605	54.321	12.559	1.00 17.94	А
		ATOM	235	CA	GLY Z	Α	60	9.567	54.280	14.012	1.00 17.49	Α
		ATOM	236	С	GLY A	A	60	10.801	54.927	14.615	1.00 16.45	Α
	5	ATOM	237	0	GLY A	A	60	11.318	55.898	14.062	1.00 17.23	Α
		ATOM	238	N	VAL A	A	61	11.273	54.405	15.747	1.00 16.17	Α
		ATOM	239	CA	VAL	A	61	12.464	54.962	16.383	1.00 15.12	Α
		ATOM	240	CB	VAL	A	61	12.836	54.209	17.683	1.00 15.83	Α
		ATOM	241	CG1	VAL A	A	61	11.775	54.473	18.746	1.00 15.81	A
	10	ATOM	242	CG2	VAL A	A	61	12.964	52.721	17.418	1.00 16.10	Α
		ATOM	243	С	VAL A		61	13.618	54.907	15.385	1.00 14.48	A
		ATOM	244	0	VAL	A	61	14.481	55.784	15.373	1.00 13.96	Α
		ATOM	245	N	TRP A	A	62	13.641	53.863	14.561	1.00 14.06	A
		ATOM	246	CA	TRP Z	A	62	14.645	53.770	13.507	1.00 13.87	Α
	15	ATOM	247	СB	TRP A	Ą	62	15.020	52.316	13.194	1.00 13.36	A
		ATOM	248	CG	TRP I	A.	62	15.986	52.190	12.037	1.00 12.76	Α
		MOTA	249	CD2	TRP A	A	62	16.349	50.990	11.343	1.00 12.39	Α
		ATOM	250	CE2	TRP A	A	62	17.259	51.355	10.322	1.00 12.49	Α
100		ATOM	251	CE3	TRP A	A	62	15.994	49.640	11.483	1.00 11.15	A
	20	ATOM	252	CD1	TRP A	A	62	16.676	53.205	11.427	1.00 12.72	A
1:44* . P4:		MOTA	253	NE1	TRP A	A	62	17.438	52.711	10.396	1.00 12.59	A
J		MOTA	254	CZ2	TRP A	A	62	17.817	50.420	9.444	1.00 12.40	Α
1,82		ATOM	255	CZ3	TRP A	A	62	16.550	48.708	10.610	1.00 12.01	Α
		ATOM	256	CH2	TRP A	A	62	17.452	49.105	9.602	1.00 11.99	Α
e din	25	ATOM	257	С	TRP A	A	62	13.846	54.378	12.361	1.00 14.13	Α
14		MOTA	258	0	TRP	A.	62	13.164	53.677	11.615	1.00 14.64	A
M		MOTA	259	N	LYS A	A	63	13.923	55.700	12.255	1.00 14.09	A
81		ATOM	260	CA	LYS A	A	63	13.170	56.456	11.262	1.00 14.88	A
1,22		ATOM	261	CB	LYS A	A	63	13.613	57.922	11.290	1.00 15.30	A
	30	ATOM	262	CG	LYS A	A.	63	13.218	58.676	12.559	1.00 18.82	Α
		MOTA	263	CD	LYS A	A	63	11.705	58.848	12.658	1.00 20.72	A
		ATOM	264	CE	LYS A	A	63	11.305	59.678	13.873	1.00 23.06	A
i mar.		ATOM	265	NZ	LYS A	A	63	11.653	59.027	15.170	1.00 24.73	А
i rest.		ATOM	266	С	LYS A	A	63	13.187	55.954	9.826	1.00 14.71	А
	35	ATOM	267	0	LYS A	Ą	63	12.175	56.038	9.129	1.00 15.50	А
		MOTA	268	N	GLN A	A	64	14.320	55.430	9.378	1.00 13.97	A
		ATOM	269	CA	GLN A	A	64	14.419	54.964	8.001	1.00 13.67	A
		ATOM	270	CB	GLN A	A	64	15.635	55.615	7.344	1.00 13.23	Α
		ATOM	271	CG	GLN A	Ą	64	15.555	57.133	7.373	1.00 12.86	А
	40	MOTA	272	CD	GLN A	A	64	16.908	57.787	7.211	1.00 11.84	Α
		MOTA	273	OE1	GLN A	A	64	17.851	57.465	7.933		A
		ATOM	274	NE2	GLN Z	Ą	64	17.011	58.718	6.265	1.00 12.04	А
		ATOM	275	С	GLN A	A	64	14.472	53.449	7.856	1.00 13.24	А
		ATOM	276	0	GLN A	Ą	64	14.847	52.929	6.805	1.00 13.10	А
	45	MOTA	277	N	GLY A	Ą	65	14.076	52.749	8.915	1.00 13.24	А
		MOTA	278	CA	GLY A	Ą	65	14.064	51.297	8.887	1.00 13.74	A
		ATOM	279	С	GLY A	Ą	65	12.710	50.744	9.298	1.00 14.46	A
		ATOM	280	0	GLY A	Ą	65	11.687	51.085	8.703	1.00 14.40	А
		ATOM	281	N	TRP A	Ą	66	12.709	49.889	10.316	1.00 14.87	Α
	50	ATOM	282	CA	TRP A	A	66	11.482	49.283	10.830	1.00 15.41	Α
		ATOM	283	CB	TRP A	A	66	11.106	48.058	9.987	1.00 15.37	A
		ATOM	284	CG	TRP A	Ą	66	12.040	46.889	10.153	1.00 15.33	Α
		ATOM	285	CD2	TRP A	4	66	13.248	46.644	9.422	1.00 15.00	А
		MOTA	286	CE2	TRP A	Ą	66	13.804	45.445	9.923	1.00 14.98	А
	55	MOTA	287	CE3	TRP A	Ą	66	13.915	47.321	8.391	1.00 14.47	A

		ATOM	288	CD1	TRP A	66	11.918	45.861	11.043	1.00 15.31	Α
		ATOM	289		TRP A	66	12.972	44.988	10.911	1.00 16.13	А
		ATOM	290		TRP A	66	14.998	44.907	9.429	1.00 14.84	A
		ATOM	291		TRP A	66	15.105	46.785	7.900	1.00 14.49	A
	5	ATOM	292		TRP A	66	15.633	45.589	8.421	1.00 14.85	A
	5										
		ATOM	293	С	TRP A	66	11.751	48.864	12.271	1.00 15.70	A
		ATOM	294	0	TRP A	66	12.888	48.946	12.734	1.00 15.45	A
		ATOM	295	N	ASN A	67	. 10.717	48.428	12.985	1.00 16.28	A
	- 0	ATOM	296	CA	ASN A	67	10.899	47.991	14.368	1.00 16.95	А
	10	ATOM	297	CB	ASN A	67	9.564	47.958	15.119	1.00 19.00	A
		ATOM	298	CG	ASN A	67	8.948	49.331	15.270	1.00 20.01	Α
		ATOM	299	OD1	ASN A	67	9.638	50.304	15.574	1.00 22.02	Α
		ATOM	300	ND2	ASN A	67	7.637	49.417	15.071	1.00 22.35	Α
		ATOM	301	С	ASN A	67	11.517	46.599	14.371	1.00 16.92	A
	15	ATOM	302	0	ASN A	67	10.837	45.604	14.111	1.00 16.93	Α
		MOTA	303	N	ILE A	68	12.809	46.533	14.669	1.00 16.90	Α
		ATOM	304	CA	ILE A	68	13.518	45.262	14.681	1.00 17.11	A
		MOTA	305	CB	ILE A	68	15.043	45.472	14.801	1.00 16.47	A
2120E		ATOM	306		ILE A	68	15.759	44.130	14.753	1.00 17.44	A
	20	MOTA	307		ILE A	68	15.538	46.370	13.664	1.00 17.44	A
1	20							46.764	13.794	1.00 15.35	A
Ę		ATOM	308		ILE A	68	17.000				
,		MOTA	309	С	ILE A	68	13.066	44.365	15.824	1.00 18.00	A
		ATOM	310	0	ILE A	68	12.954	44.804	16.968	1.00 17.72	A
192	0=	MOTA	311	N	LYS A	69	12.804	43.106	15.497	1.00 19.17	A
W W	25	ATOM	312	CA	LYS A	69	12.387	42.127	16.488	1.00 20.70	А
IJ		MOTA	313	CB	LYS A	69	10.977	41.616	16.171	1.00 22.97	А
iji L		ATOM	314	CG	LYS A	69	9.890	42.661	16.395	1.00 25.78	A
ř.		ATOM	315	CD	LYS A	69	8.500	42.137	16.054	1.00 28.76	А
		ATOM	316	CE	LYS A	69	8.355	41.859	14.566	1.00 29.99	Α
	30	ATOM	317	NZ	LYS A	69	6.952	41.507	14.203	1.00 31.16	A
1,8±5. BNS B.		ATOM	318	С	LYS A	69	13.386	40.981	16.465	1.00 20.51	Α
14		ATOM	319	0	LYS A	69	13.944	40.659	15.416	1.00 20.04	A
la.		ATOM	320	N	TYR A	70	13.630	40.378	17.623	1.00 20.85	А
		ATOM	321	CA	TYR A	70	14.568	39.268	17.702	1.00 21.35	A
į.4.	35	ATOM	322	CB	TYR A	70	15.959	39.770	18.116	1.00 20.92	A
•	50		323	CG	TYR A	70	16.035	40.362	19.508	1.00 20.32	A
		ATOM							20.634	1.00 20.50	A
		ATOM	324		TYR A	70	16.151	39.544			
		ATOM	325		TYR A	70	16.223	40.089	21.915	1.00 20.34	A
	40	ATOM	326		TYR A	70	15.989	41.741	19.700	1.00 20.52	A
	40	ATOM	327		TYR A	70	16.059	42.295	20.974	1.00 20.68	A
		MOTA		CZ	TYR A	70		41.466			A
		ATOM	329	ОН	TYR A	70	16.238	42.018	23.334	1.00 21.78	A
		MOTA	330	С	TYR A	70	14.082	38.215	18.685	1.00 22.16	А
		ATOM	331	0	TYR A	70	13.295	38.506	19.587	1.00 22.38	A
	45	MOTA	332	N	ASP A	71	14.548	36.988	18.493	1.00 23.35	A
		ATOM	333	CA	ASP A	71	14.179	35.885	19.366	1.00 24.52	А
		ATOM	334	CB	ASP A	71	14.123	34.585	18.560	1.00 25.65	Α
		ATOM	335	CG	ASP A	71	13.887	33.368	19.431	1.00 26.58	А
		ATOM	336		ASP A	71	13.235	33.505	20.487	1.00 27.68	A
	50	ATOM	337		ASP A	71	14.345	32.271	19.047	1.00 28.15	A
	50					71	15.219	35.792	20.477	1.00 25.08	A
		ATOM	338	С	ASP A						
		ATOM	339	0	ASP A	71	16.368	35.427	20.234	1.00 25.05	A
		ATOM	340	N	PRO A	72	14.825	36.126	21.716	1.00 25.93	A
		MOTA	341	CD	PRO A	72	13.445	36.362	22.173	1.00 25.99	A
	55	ATOM	342	CA	PRO A	72	15.746	36.077	22.855	1.00 26.65	A

		MOTA	343	CB	PRO A	72	14.839	36.385	24.048	1.00 26.60	Α
		MOTA	344	CG	PRO A	72	13.502	35.879	23.600	1.00 26.93	A
		ATOM	345	С	PRO A	72	16.481	34.750	23.002	1.00 26.94	Α
		ATOM	346	0	PRO A	72	17.587	34.701	23.540	1.00 27.06	Α
	5	ATOM	347	N	LEU A	73	15.869	33.679	22.507	1.00 27.10	А
	•	MOTA	348	CA	LEU A	73	16.465	32.353	22.595	1.00 27.36	A
					LEU A	73	15.371	31.285	22.502	1.00 28.10	A
		ATOM	349	CB				31.343	23.599	1.00 28.89	A
		ATOM	350	CG	LEU A	73	14.303				
	10	ATOM	351		LEU A	73	13.227	30.303	23.328	1.00 29.29	A
	10	MOTA	352		LEU A	73	14.951	31.109	24.958	1.00 29.04	A
		MOTA	353	С	LEU A	73	17.522	32.105	21.521	1.00 27.02	Α
		ATOM	354	0	LEU A	73	18.121	31.031	21.468	1.00 26.79	A
		ATOM	355	N	LYS A	74	17.756	33.099	20.669	1.00 26.77	А
		ATOM	356	CA	LYS A	74	18.748	32.960	19.611	1.00 27.29	А
	15	MOTA	357	CB	LYS A	74	18.743	34.193	18.707	1.00 28.07	Α
		MOTA	358	CG	LYS A	74	19.729	34.113	17.553	1.00 29.63	Α
		ATOM	359	CD	LYS A	74	19.556	35.284	16.603	1.00 30.36	Α
		ATOM	360	CE	LYS A	74	20.482	35.162	15.405	1.00 31.13	Α
:≔		ATOM	361	NZ	LYS A	74	20.256	36.260	14.427	1.00 31.11	А
₹:₩	20	ATOM	362	C	LYS A	74	20.141	32.762	20.200	1.00 27.08	Α
الولايا الولايا	20	ATOM	363	0	LYS A	74	20.942	31.990	19.678	1.00 26.39	A
		ATOM	364	N	TYR A	75	20.428	33.470	21.286	1.00 27.82	A
1,75		ATOM	365	CA	TYR A	75 75	21.724	33.347	21.936	1.00 28.44	A
April April April April April April						75 75	22.359	34.730	22.130	1.00 28.35	A
111	25	MOTA	366	CB	TYR A			35.420	20.821	1.00 28.28	A
191	23	MOTA	367	CG	TYR A	75 75	22.677				
2 12		ATOM	368	CD1		75 75	21.796	36.346	20.261	1.00 28.89	A
m		ATOM	369	CE1	TYR A	75	22.058	36.931	19.021	1.00 28.65	A
Ħ.		ATOM	370	CD2		75	23.832	35.098	20.111	1.00 28.33	A
	20	MOTA	371	CE2	TYR A	75	24.101	35.673	18.872	1.00 29.04	A
	30	MOTA	372	CZ	TYR A	75	23.211	36.585	18.333	1.00 28.89	A
M		MOTA	373	OH	TYR A	75	23.471	37.131	17.095	1.00 29.25	A
14		MOTA	374	С	TYR A	75	21.577	32.634	23.274	1.00 29.07	A
31,222		ATOM	375	0	TYR A	75	20.599	32.840	23.992	1.00 29.15	А
[_]		MOTA	376	N	ASN A	76	22.547	31.782	23.591	1.00 29.40	А
	35	ATOM	377	CA	ASN A	76	22.533	31.029	24.839	1.00 30.49	A
		ATOM	378	CB	ASN A	76	21.742	29.729	24.668	1.00 31.72	A
		MOTA	379	CG	ASN A	76	22.463	28.717	23.804	1.00 32.78	А
		ATOM	380	OD1	ASN A	76	22.765	28.979	22.643	1.00 33.93	A
		ATOM	381	ND2	ASN A	76	22.746	27.550	24.372	1.00 34.66	Α
	40	MOTA	382	С	ASN A	76	23.962	30.710	25.265	1.00 30.43	Α
		ATOM	383	0	ASN A	76	24.919	31.143	24.626	1.00 29.75	Α
		ATOM	384	N	ALA A	77	24.101	29.945	26.343	1.00 30.87	А
		ATOM	385	CA	ALA A	77	25.416	29.580	26.857	1.00 31.38	А
		ATOM	386	CB	ALA A	77	25.264	28.622	28.033	1.00 31.94	А
	45		387	СВ	ALA A	77	26.316	28.957	25.794	1.00 31.58	A
	40	MOTA	388			77	27.535	29.119	25.834	1.00 31.89	А
		ATOM		0	ALA A			28.252	24.841	1.00 31.69	A
		ATOM	389	N	HIS A	78 70	25.715		23.785	1.00 31.63	A
		MOTA	390	CA	HIS A	78	26.481	27.599			
	50	MOTA	391	CB	HIS A	78	25.811	26.278	23.399	1.00 33.87	A
	50	ATOM	392	CG	HIS A	78	25.580	25.359	24.557	1.00 35.97	A
		ATOM	393		HIS A	78	24.448	24.784	25.028	1.00 36.95	A
		ATOM	394		HIS A	78	26.597	24.938	25.388	1.00 37.02	A
		ATOM	395		HIS A	78	26.101	24.144	26.320	1.00 37.60	A
		ATOM	396	NE2	HIS A	78	24.799	24.034	26.124	1.00 37.80	A
	55	ATOM	397	С	HIS A	78	26.646	28.470	22.545	1.00 30.07	A

		MOTA	398	0	HIS A	78	27.360	28.103	21.612	1.00 30.09	А
		ATOM	399	N	HIS A	79	25.989	29.625	22.541	1.00 27.75	A
		ATOM	400	CA	HIS A	79	26.066	30.541	21.409	1.00 25.19	A
		ATOM	401	CB	HIS A	79	25.030	30.141	20.354	1.00 25.68	A
	5	ATOM	402	CG	HIS A	79	25.122	30.926	19.082	1.00 25.61	A
	5	ATOM	402		HIS A	79	25.873	30.737	17.971	1.00 25.84	A
										1.00 25.84	
		MOTA	404		HIS A	79	24.386	32.069	18.856		A
		MOTA	405		HIS A	79	24.679	32.549	17.661	1.00 25.96	A
	10	ATOM	406		HIS A	79	25.579	31.759	17.103	1.00 25.37	Α
	10	ATOM	407	С	HIS A	79	25.822	31.965	21.897	1.00 22.98	A
		ATOM	408	0	HIS A	79	24.692	32.449	21.906	1.00 22.36	A
		ATOM	409	N	LYS A	80	26.899	32.626	22.307	1.00 20.90	A
		ATOM	410	CA	LYS A	80	26.821	33.985	22.825	1.00 19.06	A
		ATOM	411	CB	LYS A	80	27.850	34.187	23.937	1.00 20.08	A
	15	ATOM	412	CG	LYS A	80	27.757	33.211	25.095	1.00 21.73	А
		ATOM	413	CD	LYS A	80	28.851	33.513	26.106	1.00 23.84	А
		ATOM	414	CE	LYS A	80	28.813	32.556	27.283	1.00 25.02	А
		ATOM	415	NZ	LYS A	80	29.906	32.856	28.253	1.00 26.36	Α
್ಷೀಮ್ರಾ		ATOM	416	С	LYS A	80	27.071	35.042	21.761	1.00 17.49	Α
	20	ATOM	417	0	LYS A	80	27.679	34.772	20.726	1.00 17.57	A
1		MOTA	418	N	LEU A	81	26.596	36.251	22.035	1.00 14.89	A
۱ Д		ATOM	419	CA	LEU A	81	26.796	37.376	21.134	1.00 13.66	Α
		ATOM	420	СВ	LEU A	81	25.622	38.352	21.223	1.00 13.09	А
		ATOM	421	CG	LEU A	81	25.728	39.609	20.349	1.00 12.56	A
W.	25	ATOM	422		LEU A	81	25.752	39.205	18.874	1.00 13.02	A
		MOTA	423		LEU A	81	24.553	40.541	20.631	1.00 14.10	A
1 tal		MOTA	424	C	LEU A	81	28.075	38.067	21.594	1.00 14.00	A
		MOTA	425	0	LEU A	81	28.161	38.525	22.733	1.00 13.98	A
81		ATOM	426	N	LYS A	82	29.070	38.121	20.714	1.00 13.30	A
	30	ATOM	427	CA	LYS A	82	30.344	38.759	21.028	1.00 12.74	A
J	50								20.328	1.00 15.38	
		ATOM	428	CB	LYS A	82	31.487	38.017			A
ļ.		ATOM	429	CG	LYS A	82	31.631	36.570	20.782	1.00 19.55	A
		ATOM	430	CD	LYS A	82	32.517	35.748	19.852	1.00 22.61	A
	25	MOTA	431	CE	LYS A	82	33.960	36.225	19.859	1.00 24.15	A
į,d.	35	MOTA	432	NZ	LYS A	82	34.815	35.366	18.989	1.00 26.27	A
		ATOM	433	С	LYS A	82	30.253	40.191	20.533	1.00 12.63	A
		ATOM	434	0	LYS A	82	30.047	40.427	19.343	1.00 13.50	A
		ATOM	435	N	VAL A	83	30.399	41.142	21.451	1.00 11.19	A
	10	MOTA	436	CA	VAL A	83	30.296	42.553	21.112	1.00 11.54	A
	40	MOTA	437	CB	VAL A	83	29.237	43.245	22.000	1.00 10.36	A
		MOTA			VAL A			44.708		1.00 10.99	А
		ATOM	439	CG2	VAL A	83	27.911	42.516	21.873	1.00 11.60	A
		ATOM	440	C	VAL A	83	31.613	43.300	21.260		А
		ATOM	441	0	VAL A	83	32.242	43.278	22.318	1.00 11.88	A
	45	ATOM	442	N	PHE A	84	32.023	43.969	20.187	1.00 10.64	A
		MOTA	443	CA	PHE A	84	33.247	44.753	20.206	1.00 11.09	A
		ATOM	444	CB	PHE A	84	34.150	44.394	19.025	1.00 12.04	A
		MOTA	445	ÇG	PHE A	84	34.799	43.048	19.144	1.00 12.77	А
		ATOM	446	CD1	PHE A	84	34.299	41.954	18.450	1.00 13.33	Α
	50	ATOM	447	CD2	PHE A	84	35.915	42.876	19.955	1.00 14.39	А
		ATOM	448		PHE A	84	34.903	40.702	18.561	1.00 15.01	А
		ATOM	449		PHE A	84	36.528	41.632	20.076	1.00 14.37	А
		ATOM	450	CZ	PHE A	84	36.020	40.542	19.375	1.00 14.86	А
		ATOM	451	C	PHE A	84	32.901	46.234	20.135	1.00 10.24	A
	55	ATOM	452	0	PHE A	84	32.378	46.706	19.125	1.00 10.64	A
				~		~ .	52.5.0				

												_
		ATOM	453	N	VAL A	85	33.172	46.952	21.222	1.00	9.19	A
		ATOM	454	CA	VAL A	85	32.933	48.389	21.287	1.00	9.61	Α
		ATOM	455	СВ	VAL A	85	32.563	48.823	22.718	1.00	8.87	Α
			456		VAL A	85	32.403	50.334	22.787		10.61	A
	-	ATOM										
	5	ATOM	457		VAL A	85	31.269	48.132	23.138		10.27	Α
		ATOM	458	С	VAL A	85	34.258	49.012	20.865	1.00	8.92	Α
		ATOM	459	0	VAL A	85	35.274	48.855	21.546	1.00	9.82	А
		ATOM	460	N	VAL A	86	34.236	49.716	19.735	1.00	7.99	А
								50.310	19.161		8.62	A
	10	ATOM	461	CA	VAL A	86	35.438			1.00		
	10	ATOM	462	CB	VAL A	86	35.561	49.893	17.675	1.00	8.93	A
		ATOM	463	CG1	VAL A	86	36.882	50.390	17.093	1.00	9.60	Α
		ATOM	464	CG2	VAL A	86	35.458	48.373	17.557	1.00	10.05	A
		ATOM	465	С	VAL A	86	35.499	51.833	19.267	1.00	7.68	A
		ATOM	466	Ō	VAL A	86	34.862	52.551	18.489	1.00	7.87	А
	15								20.230		8.07	
	15	ATOM	467	N	PRO A	87	36.282	52.348		1.00		A
		MOTA	468	CD	PRO A	87	36.951	51.612	21.316	1.00	8.47	А
		ATOM	469	CA	PRO A	87	36.420	53.795	20.423	1.00	8.11	Α
		MOTA	470	CB	PRO A	87	37.274	53.896	21.690	1.00	8.31	A
4177		ATOM	471	CG	PRO A	87	36.939	52.630	22.428	1.00	9.52	А
	20	ATOM	472	C	PRO A	87	37.109	54.437	19.222	1.00	8.18	A
	20											
. T.		ATOM	473	0	PRO A	87	38.100	53.906	18.716	1.00	7.38	A
		ATOM	474	N	HIS A	88	36.580	55.568	18.766	1.00	7.67	А
1,5 E		MOTA	475	CA	HIS A	88	37.169	56.267	17.630	1.00	8.52	Α
		ATOM	476	CB	HIS A	88	36.613	55.709	16.308	1.00	8.65	Α
and the second	25	MOTA	477	CG	HIS A	88	35.167	56.015	16.077	1.00	9.36	Α
IJ		ATOM	478		HIS A	88	34.045	55.391	16.505	1.00	9.20	A
3 %# 3 %#												
m		MOTA	479		HIS A	88	34.744	57.098	15.335	1.00	8.08	A
Ξť.		ATOM	480		HIS A	88	33.423	57.126	15.317	1.00	8.99	А
i Par		ATOM	481	NE2	HIS A	88	32.974	56.102	16.021	1.00	9.70	A
11-22.	30	ATOM	482	С	HIS A	88	36.927	57.765	17.718	1.00	9.68	A
		ATOM	483	0	HIS A	88	36.108	58.238	18.512	1.00	8.71	A
		ATOM	484	N	SER A	89	37.661	58.511	16.904	1.00	8.64	A
j.d			485	CA	SER A	89	37.551	59.958	16.889	1.00	8.97	A
		MOTA										
1,22	0~	ATOM	486	CB	SER A	89	38.657	60.562	17.758	1.00	9.29	A
į.L	35	MOTA	487	OG	SER A	89	38.626	61.978	17.733	1.00	9.37	A
		ATOM	488	C	SER A	89	37.708	60.408	15.449	1.00	8.81	Α
		ATOM	489	0	SER A	89	38.771	60.233	14.856	1.00	8.86	A
		MOTA	490	N	HIS A	90	36.648	60.971	14.881	1.00	8.95	А
		ATOM	491	CA	HIS A	90	36.714	61.427	13.499	1.00	8.92	A
	40											
	40	MOTA	492	CB	HIS A	90	35.313	61.494	12.895	1.00	9.62	A
		ATOM		CG	HIS A	90	35.310		11.434			А
		MOTA	494	CD2	HIS A	90	34.836	62.880	10.757	1.00	9.62	A
		ATOM	495	ND1	HIS A	90	35.874	60.977	10.491	1.00	9.09	А
		ATOM	496	CE1	HIS A	90	35.748	61.523	9.295	1.00	9.31	А
	45	ATOM	497		HIS A	90	35.122	62.679	9.430	1.00	8.59	А
	10						37.391	62.792	13.418	1.00	8.62	A
		ATOM	498	C	HIS A	90						
		ATOM	499	0	HIS A	90	36.849	63.799	13.883	1.00	9.74	А
		ATOM	500	N	ASN A	91	38.584	62.817	12.829	1.00	9.20	Α
		ATOM	501	CA	ASN A	91	39.354	64.052	12.706	1.00	9.16	A
	50	ATOM	502	СВ	ASN A	91	40.744	63.867	13.317	1.00	9.59	Α
		ATOM	503	CG	ASN A	91	40.703	63.716	14.822	1.00	9.87	A
											12.09	
		ATOM	504		ASN A	91	40.092	62.787	15.351			A
		ATOM			ASN A	91	41.353	64.633	15.521		7.48	Α
		MOTA	506	С	ASN A	91	39.504	64.516	11.266		10.50	A
	55	ATOM	507	0	ASN A	91	40.300	63.969	10.503	1.00	11.67	A

		7.00.4	E 0.0		100	70	0.0	20 720	65.534	10.900	1.00	9.47	ת
		MOTA	508	N	ASP		92	38.738					A
		ATOM	509	CA	ASP		92	38.796	66.078	9.551	1.00	9.42	A
		ATOM	510	CB	ASP		92	37.562	66.934	9.282	1.00	9.14	A
	_	ATOM	511	CG	ASP		92	36.314	66.113	9.149		10.48	A
	5	ATOM	512	OD1	ASP	Α	92	36.328	65.197	8.310		10.31	Α
		ATOM	513	OD2	ASP	Α	92	35.328	66.372	9.873	1.00	12.87	Α
		ATOM	514	С	ASP	A	92	40.034	66.930	9.337	1.00	9.30	Α
		ATOM	515	0	ASP	Α	92	40.256	67.890	10.067	1.00	9.36	Α
		ATOM	516	N	PRO		93	40.864	66.582	8.338	1.00	9.43	A
	10	MOTA	517	CD	PRO	Α	93	40.895	65.288	7.638	1.00	8.82	Α
		ATOM	518	CA	PRO		93	42.078	67.351	8.048	1.00	9.47	A
		ATOM	519	СВ	PRO		93	42.877	66.416	7.140	1.00	9.10	A
		ATOM	520	CG	PRO		93	42.378	65.052	7.507		11.35	A
		ATOM	521	C	PRO		93	41.655	68.632	7.336		10.26	A
	15	ATOM	522				93	42.020	68.883	6.182		10.84	A
	15			0	PRO						1.00	9.66	A
		ATOM	523	N	GLY		94	40.859	69.424	8.048			
		ATOM	524	CA	GLY		94	40.336	70.663	7.516		10.36	A
		MOTA	525	С	GLY		94	38.862	70.516	7.177		10.89	A
<u> </u>	20	MOTA	526	0	GLY		94	38.440	69.492	6.634		10.38	A
. 🖰	20	MOTA	527	N	TRP		95	38.082	71.528	7.538		10.58	A
Ţ		MOTA	528	CA	TRP		95	36.653	71.588	7.245		10.62	A
1,640		ATOM	529	CB	TRP		95	35.854	70.479	7.948		10.51	A
1,51		MOTA	530	CG	TRP	Α	95	34.387	70.607	7.634		11.04	А
ine.		ATOM	531	CD2	TRP	Α	95	33.288	70.466	8.545		11.08	Α
	25	ATOM	532	CE2	TRP	Α	95	32.109	70.765	7.825	1.00	11.49	А
Ŋ		ATOM	533	CE3	TRP	Α	95	33.184	70.120	9.901	1.00	11.93	A
ij.		ATOM	534	CD1	TRP	Α	95	33.840	70.963	6.431	1.00	10.57	Α
		MOTA	535	NE1	TRP	Α	95	32.475	71.065	6.539	1.00	10.89	Α
31:44E		ATOM	536		TRP		95	30.839	70.731	8.415	1.00	12.07	A
	30	ATOM	537		TRP		95	31.918	70.086	10.487		12.97	A
		ATOM	538		TRP		95	30.765	70.391	9.741		13.12	А
W		ATOM	539	С	TRP		95	36.151	72.968	7.669		11.53	А
<u>.</u>		ATOM	540	Ö	TRP		95	36.063	73.865	6.834		10.86	A
		ATOM	541	N	ILE		96	35.829	73.151	8.947		11.91	A
g sales	35	ATOM	542	CA	ILE		96	35.389	74.467	9.405		13.09	A
31-44-	55	ATOM	543	CB	ILE		96	34.240	74.389	10.434		14.40	A
		ATOM	544		ILE		96	32.993	73.840	9.758		15.73	A
					ILE			34.656	73.549	11.638		16.78	A
		ATOM	545				96			12.798		18.96	A
	40	ATOM	546		ILE		96	33.689	73.638			12.25	
	40	ATOM	547	С	ILE		96	36.579	75.207	10.007			A
		ATOM	548	0	ILE		96	36.486	76.378	10.374		13.34	A
		ATOM	549	N	GLN		97	37.698	74.496	10.102		11.48	A
		ATOM	550	CA	GLN		97	38.960	75.042	10.585		10.81	A
	45	ATOM	551	CB	GLN		97	39.239	74.617	12.030		13.00	А
	45	ATOM	552	ÇG	GLN		97	38.316	75.252	13.059		15.72	A
		MOTA	553	CD	GLN	A	97	38.781	75.011	14.481		18.59	A
		ATOM	554	OE1	GLN	A	97	39.922	75.320	14.834		21.45	Α
		ATOM	555	NE2	GLN	Α	97	37.899	74.460	15.309	1.00	20.61	A
		ATOM	556	С	GLN	Α	97	40.007	74.431	9.660	1.00	9.61	A
	50	ATOM	557	0	GLN	Α	97	39.740	73.424	9.007	1.00	9.16	A
		ATOM	558	N	THR		98	41.185	75.037	9.580	1.00	9.03	Α
		ATOM	559	CA	THR		98	42.238	74.487	8.732	1.00	8.85	А
		ATOM	560	СВ	THR		98	43.363	75.495	8.486	1.00	9.21	А
		ATOM	561		THR		98	43.987	75.813	9.736	1.00	9.92	A
	55	ATOM	562		THR		98	42.818	76.769	7.854	1.00	8.60	A
		0	J U L	J J Z	- 1111		, ,						• •

		MOTA	563	С	THR	Α	98	42.862	73.289	9.437	1.00 8.61	A
		ATOM	564	0	THR	Α	98	42.598	73.039	10.617	1.00 8.91	A
		ATOM	565	N	PHE	Α	99	43.686	72.552	8.704	1.00 8.51	Α
		ATOM	566	CA	PHE	Α	99	44.377	71.395	9.255	1.00 8.31	Α
	5	ATOM	567	CB	PHE	Α	99	45.359	70.837	8.220	1.00 8.62	Α
		ATOM	568	CG	PHE	Α	99	46.236	69.737	8.745	1.00 8.46	Α
		MOTA	569	CD1	PHE	A	99	45.831	68.407	8.668	1.00 8.79	Α
		ATOM	570		PHE		99	47.469	70.031	9.322	1.00 9.06	A
		ATOM	571		PHE		99	46.642	67.383	9.156	1.00 9.28	А
	10	ATOM	572		PHE		99	48.286	69.020	9.813	1.00 9.90	Α
		ATOM	573	CZ	PHE		99	47.873	67.687	9.730	1.00 8.95	А
		ATOM	574	C	PHE		99	45.144	71.809	10.509	1.00 8.94	А
		ATOM	575	Ō	PHE		99	45.011	71.193	11.566	1.00 8.71	A
		ATOM	576	N	GLU			45.948	72.861	10.386	1.00 9.46	A
	15	ATOM	577	CA	GLU			46.756	73.331	11.505	1.00 10.17	A
	10	ATOM	578	CB	GLU			47.739	74.405	11.026	1.00 10.59	A
		ATOM	579	CG	GLU			48.778	74.836	12.059	1.00 12.88	A
		ATOM	580	CD	GLU			49.649	73.692	12.552	1.00 14.60	A
1,700		ATOM	581		GLU			49.825	72.698	11.812	1.00 14.74	A
	20	ATOM	582		GLU			50.177	73.797	13.680	1.00 15.45	A
Ų	20	ATOM	583	C	GLU			45.921	73.854	12.668	1.00 10.39	A
۱.		ATOM	584		GLU			46.275	73.630	13.828	1.00 10.59	A
17				0					74.537	12.369	1.00 10.05	A
		ATOM	585	N	GLU			44.816			1.00 10.03	A
	25	ATOM	586	CA	GLU			43.952	75.059	13.429	1.00 10.07	A
8 3eF	23	ATOM	587	CB	GLU			42.822	75.918	12.845	1.00 10.88	
100		ATOM	588	CG	GLU			43.287	77.260	12.266		A
		MOTA	589	CD	GLU			42.154	78.075	11.658	1.00 14.64	A
E1		ATOM	590		GLU			41.250	77.481	11.036	1.00 13.48	A
	30	ATOM	591		GLU			42.176	79.319	11.788	1.00 17.65	A
, D	30	ATOM	592	С	GLU			43.366	73.901	14.234	1.00 9.98	A
14		ATOM	593	0	GLU			43.383	73.920	15.468	1.00 9.79	A
[a		ATOM	594	N	TYR			42.846	72.892	13.539	1.00 9.17	A
		ATOM	595	CA	TYR			42.286	71.726	14.222	1.00 9.45	A
inal Inal	25	ATOM	596	CB	TYR			41.704	70.719	13.231	1.00 9.69	A
1 :- C	35	ATOM	597	CG	TYR			40.295	70.970	12.749	1.00 9.66	A
		ATOM	598	CD1				39.247	71.205	13.643	1.00 10.46	A
		ATOM	599		TYR			37.928	71.319	13.188	1.00 9.87	A
		ATOM	600		TYR			39.989	70.865	11.392	1.00 9.78	A
	40	MOTA	601		TYR			38.688	70.973	10.934	1.00 10.12	A
	40	MOTA	602	CZ	TYR			37.661	71.197	11.830	1.00 10.79	A
		ATOM	603	OH	TYR			36.374	71.266	11.352	1.00 10.63	A
		ATOM	604	C	TYR			43.375	71.009	15.008	1.00 10.28	A
		ATOM	605	0	TYR			43.138	70.515	16.112	1.00 9.91	А
	45	ATOM	606	N	TYR			44.567	70.926	14.429	1.00 10.93	А
	45	MOTA	607	CA	TYR			45.656	70.245	15.108	1.00 11.21	А
		MOTA	608	CB	TYR			46.920	70.226	14.250	1.00 11.30	A
		MOTA	609	CG	TYR			48.077	69.577	14.968	1.00 11.06	A
		ATOM	610		TYR			48.080	68.207	15.224	1.00 11.12	A
		ATOM	611		TYR			49.103	67.614	15.954	1.00 10.89	А
	50	ATOM	612		TYR			49.137	70.342	15.460	1.00 11.87	А
		ATOM	613	CE2	TYR	A	103	50.164	69.760	16.195	1.00 11.51	А
		MOTA	614	CZ	TYR	A	103	50.141	68.397	16.440	1.00 11.95	Α
		MOTA	615	ОН	TYR	Α	103	51.145	67.818	17.187	1.00 13.54	A
		ATOM	616	C	TYR	Α	103	45.971	70.909	16.440	1.00 11.40	А
	55	ATOM	617	0	TYR	Α	103	46.092	70.240	17.462	1.00 11.11	А

		ATOM	618	N	GLN	Α	104	46.099	72.231	16.422	1.00 11.78	Α
		ATOM	619	CA	GLN			46.419	72.981	17.631	1.00 13.08	Α
		ATOM	620	CB	GLN	Α	104	46.770	74.427	17.271	1.00 12.77	Α
		ATOM	621	CG	GLN	A	104	48.091	74.597	16.541	1.00 13.19	Α
	5	MOTA	622	CD	GLN	Α	104	49.268	74.058	17.336	1.00 14.03	Α
		ATOM	623	OE1	GLN	Α	104	49.305	74.172	18.564	1.00 14.60	Α
		MOTA	624		GLN			50.242	73.483	16.640	1.00 14.23	Α
		MOTA	625	С	GLN			45.301	72.992	18.667	1.00 14.02	Α
		ATOM	626	0	GLN			45.552	72.849	19.863	1.00 14.69	Α
	10	ATOM	627	N	HIS			44.067	73.152	18.202	1.00 14.24	Α
		MOTA	628	CA	HIS			42.912	73.235	19.091	1.00 15.29	Α
		ATOM	629	ÇВ	HIS			41.796	74.035	18.412	1.00 18.09	A
		ATOM	630	CG	HIS	Α	105	42.228	75.377	17.907	1.00 21.36	Α
		MOTA	631	CD2	HIS			43.322	76.126	18.181	1.00 23.58	Α
	15	ATOM	632		HIS			41.481	76.105	17.005	1.00 23.59	Α
		ATOM	633		HIS			42.098	77.244	16.744	1.00 24.20	Α
		MOTA	634		HIS			43.217	77.281	17.445	1.00 24.69	Α
		MOTA	635	С	HIS			42.330	71.905	19.552	1.00 15.14	Α
1:24		ATOM	636	0	HIS			41.815	71.807	20.665	1.00 15.70	Α
	20	MOTA	637	N	ASP			42.416	70.880	18.712	1.00 13.68	Α
1,6 ₄ 4 , ≥24		MOTA	638	CA	ASP			41.818	69.600	19.064	1.00 13.41	Α
T.		ATOM	639	СВ	ASP			40.556	69.386	18.221	1.00 15.33	Α
131		MOTA	640	CG	ASP	Α	106	39.513	70.461	18.449	1.00 17.76	Α
		ATOM	641		ASP			38.857	70.435	19.509	1.00 18.23	Α
	25	ATOM	642		ASP			39.359	71.337	17.570	1.00 19.51	Α
######################################		MOTA	643	С	ASP			42.673	68.346	18.960	1.00 12.48	Α
		ATOM	644	0	ASP			42.942	67.684	19.957	1.00 11.86	Α
El .		ATOM	645	N	THR			43.095	68.025	17.745	1.00 11.48	Α
		ATOM	646	CA	THR			43.845	66.805	17.490	1.00 10.31	Α
	30	MOTA	647	СВ	THR			44.169	66.694	15.991	1.00 9.81	Α
1,4 ₄₄ 21, 21€ 12,		ATOM	648	OG1	THR			42.964	66.919	15.247	1.00 9.72	Α
Hann .		ATOM	649		THR			44.710	65.302	15.656	1.00 9.56	Α
Į		MOTA	650	С	THR			45.100	66.517	18.305	1.00 10.15	A
frank frank		MOTA	651	0	THR	Α	107	45.309	65.377	18.722	1.00 9.55	Α
ģ, Ł	35	ATOM	652	N	LYS			45.940	67.515	18.555	1.00 10.06	Α
		MOTA	653	CA	LYS	A	108	47.142	67.223	19.323	1.00 10.48	Α
		MOTA	654	СВ	LYS			48.109	68.416	19.322	1.00 11.26	Α
		ATOM	655	CG	LYS	Α	108	47.753	69.597	20.206	1.00 12.62	Α
		MOTA	656	CD	LYS			48.842	70.661	20.066	1.00 13.56	A
	40	MOTA	657	CE	LYS	Α	108	48.632	71.837	21.000	1.00 14.90	Α
		ATOM		NZ	LYS	Α	108	49.762	72.815	20.901	1.00 16.47	A
		MOTA	659	С	LYS			46.777	66.809	20.744	1.00 10.06	Α
		MOTA	660	0	LYS			47.483	66.013	21.364	1.00 10.31	Α
		ATOM	661	N	HIS			45.663	67.330	21.246	1.00 10.31	Α
	45	MOTA	662	CA	HIS			45.210	66.985	22.590	1.00 10.51	Α
		ATOM	663	СВ	HIS			44.215	68.031	23.086	1.00 12.57	Α
		ATOM	664	CG	HIS			44.791	69.410	23.154	1.00 14.27	Α
		ATOM	665		HIS			44.510	70.530	22.448	1.00 16.35	Α
		ATOM	666		HIS			45.821	69.743	24.008	1.00 16.64	A
	50	ATOM	667		HIS			46.148	71.010	23.825	1.00 16.26	Α
		ATOM	668		HIS			45.368	71.510	22.884	1.00 16.75	Α
		MOTA	669	C	HIS			44.578	65.598	22.594	1.00 10.63	A
		ATOM	670	0	HIS			44.765	64.824	23.530	1.00 10.59	A
		ATOM	671	N	ILE			43.832	65.283	21.543	1.00 10.70	Α
	55	ATOM	672	CA	ILE			43.202	63.975	21.426	1.00 10.48	Α
		12.1 Ot.1	012	CIA	1111	11	110		00.0.0	21.120		

									00 105	1 00 10 10	
		ATOM	673	СВ	ILE A		42.369	63.881	20.125	1.00 10.18	A
		MOTA	674		ILE A		41.950	62.435	19.864	1.00 10.02	A
		ATOM	675	CG1	ILE A	110	41.151	64.802	20.229	1.00 10.13	Α
		ATOM	676	CD1	ILE A	110	40.395	64.989	18.921	1.00 10.58	Α
	5	ATOM	677	С	ILE A	110	44.279	62.889	21.407	1.00 10.11	Α
		ATOM	678	0	ILE A	110	44.187	61.892	22.125	1.00 9.62	А
		ATOM	679	N	LEU A	111	45.307	63.087	20.591	1.00 10.21	Α
		ATOM	680	CA	LEU A	111	46.382	62.112	20.490	1.00 10.24	Α
		ATOM	681	CB	LEU A		47.233	62.400	19.245	1.00 9.69	Α
	10	ATOM	682	CG	LEU A		46.511	62.066	17.933	1.00 10.41	А
		ATOM	683		LEU A		47.335	62.524	16.739	1.00 10.20	Α
		ATOM	684		LEU A		46.261	60.566	17.865	1.00 11.30	Α
		ATOM	685	C	LEU A		47.253	62.049	21.741	1.00 10.20	А
		ATOM	686	0	LEU A		47.695	60.971	22.138	1.00 10.28	А
	15	ATOM	687	N	SER A		47.490	63.196	22.371	1.00 10.82	Α
	10	MOTA	688	CA	SER A		48.305	63.227	23.579	1.00 12.22	A
		ATOM	689	CB	SER A		48.593	64.668	23.993	1.00 13.20	A
			690	OG	SER A		49.388	64.701	25.165	1.00 16.62	A
artes.		ATOM	691	C	SER A		47.586	62.502	24.710	1.00 11.85	A
	20	ATOM			SER A		48.193	61.735	25.464	1.00 11.03	A
ŧ.	20	MOTA	692	0			46.195	62.737	24.830	1.00 11.71	A
ij		ATOM	693	N	ASN A				25.886	1.00 12.34	A
(M.		ATOM	694	CA	ASN A		45.535	62.080		1.00 12.54	A
1192		ATOM	695	CB	ASN A		44.252	62.858	26.187		
	25	ATOM	696	CG	ASN A		44.546	64.218	26.802	1.00 14.17	A
# 9 #	25	ATOM	697		ASN A		45.603	64.414	27.404	1.00 16.67	A
19		MOTA	698		ASN A		43.620	65.155	26.663	1.00 15.15	A
		ATOM	699	С	ASN A		45.254	60.616	25.558	1.00 12.29	A
#;		ATOM	700	0	ASN A		45.082	59.797	26.460	1.00 12.15	A
	20	ATOM	701	N	ALA A		45.230	60.275	24.272	1.00 11.71	A
	30	ATOM	702	CA	ALA A		45.014	58.885	23.885	1.00 11.74	A
W.		MOTA	703	CB	ALA A		44.847	58.773	22.373	1.00 10.96	A
1.±		ATOM	704	С	ALA A		46.240	58.097	24.332	1.00 11.77	A
1422 1-20		ATOM	705	0	ALA A		46.129	56.983	24.846	1.00 11.90	A
		ATOM	706	N	LEU A		47.415	58.688	24.139	1.00 12.06	A
ij≈ ≟ .	35	ATOM	707	CA	LEU A		48.663	58.045	24.517	1.00 12.83	A
		MOTA	708	CB	LEU A		49.854	58.922	24.114	1.00 13.32	A
		ATOM	709	CG	LEU A		51.247	58.411	24.497	1.00 13.43	Α
		ATOM	710		LEU A		51.472	57.025	23.924	1.00 13.50	А
	_	ATOM	711	CD2	LEU A	115	52.301	59.368	23.984	1.00 14.02	А
	40	ATOM	712	C	LEU A		48.696	57.788	26.019	1.00 13.61	A
		ATOM	713	0	LEU A	115	49.035	56.692		1.00 13.52	А
		ATOM	714	N	ARG A	116	48.328	58.801	26.792	1.00 14.73	А
		ATOM	715	CA	ARG A	116	48.323	58.683	28.243	1.00 16.31	А
		ATOM	716	CB	ARG A	116	48.074	60.057	28.870	1.00 20.55	А
	45	ATOM	717	CG	ARG A	116	49.189	61.051	28.594	1.00 27.46	Α
		ATOM	718	CD	ARG A	116	48.820	62.464	29.011	1.00 32.63	A
		ATOM	719	NE	ARG A	116	49.890	63.410	28.707	1.00 36.87	А
		ATOM	720	CZ	ARG A	116	49.786	64.728	28.840	1.00 39.09	А
		ATOM	721		ARG A		48.654	65.265	29.274	1.00 40.46	А
	50	ATOM	722		ARG A		50.815	65.510	28.542	1.00 40.54	А
		ATOM	723	C	ARG A		47.289	57.684	28.753	1.00 15.28	А
		ATOM	724	0	ARG A		47.615	56.783	29.529	1.00 14.55	А
		ATOM	725	N	HIS A		46.045	57.833	28.311	1.00 14.65	A
		ATOM	726	CA	HIS A		44.978	56.946	28.758	1.00 14.93	A
	55	ATOM	727	CB	HIS A		43.626	57.505	28.326	1.00 15.81	A
	55	ATOM	121	CD	итэ А	111	43.020	5,.505	20.220	1.00 10.01	.,

	ATOM	728	CG	HIS A	43.174	58.659	29.164	1.00 18.36	А
	MOTA	729		HIS A	43.285	59.995	28.977	1.00 19.28	A
	ATOM	730		HIS A	42.608	58.492	30.411	1.00 18.96	A
_	ATOM	731		HIS A	42.394	59.677	30.957	1.00 19.96	Α
5	ATOM	732		HIS A	42.797	60.605	30.108	1.00 19.61	Α
	ATOM	733	С	HIS A	45.120	55.494	28.337	1.00 14.42	А
	ATOM	734	0	HIS A	44.809	54.598	29.113	1.00 13.52	A
	ATOM	735	N	LEU A	45.585	55.248	27.119	1.00 13.01	А
10	ATOM	736	CA	LEU A	45.769	53.876	26.669	1.00 13.05	А
10	ATOM	737	CB	LEU A	46.041	53.838	25.161	1.00 12.57	A
	ATOM	738	CG	LEU A	44.841	54.238	24.292	1.00 14.54	A
	ATOM	739		LEU A	45.260	54.333	22.832	1.00 14.69	А
	ATOM	740		LEU A	43.728	53.215	24.456	1.00 14.25	А
15	ATOM	741	С	LEU A	46.930	53.265	27.445	1.00 12.95	A
15	ATOM	742	0	LEU A	46.867	52.112	27.877	1.00 13.64	A
	ATOM	743	N	HIS A	47.988	54.044	27.639	1.00 13.37	А
	ATOM	744	CA	HIS A	49.140	53.560	28.383	1.00 13.90	A
	MOTA	745	CB	HIS A	50.209	54.657	28.465	1.00 15.67	Α
20	MOTA	746	CG	HIS A	51.375	54.311	29.338	1.00 18.23	A
20	ATOM	747		HIS A	52.589	53.792	29.039	1.00 19.68	A
	ATOM	748		HIS A	51.363	54.493	30.705	1.00 20.08	A
	ATOM	749		HIS A	52.521	54.104	31.209	1.00 20.46	A
	ATOM	750	NE2	HIS A	53.283	53.673	30.219	1.00 20.35	A
25	ATOM	751	C	HIS A	48.716	53.131	29.788	1.00 14.72	A
23	ATOM	752	0	HIS A	49.100	52.061	30.255	1.00 15.00	A
	ATOM	753	N	ASP A	47.901	53.954	30.444	1.00 14.48	A
	ATOM	754	CA	ASP A	47.453	53.664	31.808	1.00 14.75	A
	ATOM	755 756	CB	ASP A	47.077	54.964	32.523	1.00 15.77	A
30	ATOM ATOM	756 757	CG	ASP A	48.267	55.877	32.737 32.760	1.00 16.92 1.00 19.17	A
50	ATOM	757		ASP A	49.409	55.375 57.097	32.700	1.00 19.17	A
	ATOM	759	C	ASP A	48.060 46.305	52.666	31.976	1.00 19.89	A A
	ATOM	760	0	ASP A	46.051	52.201	33.090	1.00 14.84	A
	ATOM	761	N	ASN A	45.613	52.340	30.888	1.00 14.02	A
35	ATOM	762	CA	ASN A	44.492	51.402	30.937	1.00 13.52	A
00	ATOM	763	CB	ASN A	43.171	52.152	30.762	1.00 13.80	A
	ATOM	764	CG	ASN A	42.971	53.227	31.815	1.00 13.90	A
	ATOM	765		ASN A	43.327	54.394	31.615	1.00 15.49	A
	ATOM	766		ASN A	42.416	52.833	32.957	1.00 13.19	A
40	ATOM	767	С	ASN A	44.673	50.374	29.827	1.00 14.09	A
	ATOM	768	0	ASN A	44.160	50.534	28.721	1.00 13.05	A
	MOTA	769	И	PRO A	45.406	49.290	30.121	1.00 14.55	A
	ATOM	770	CD	PRO A	45.858	48.944	31.481	1.00 15.39	A
	ATOM	771	CA	PRO A	45.704	48.200	29.187	1.00 14.85	А
45	MOTA	772	СВ	PRO A	46.410	47.169	30.072	1.00 15.58	A
	ATOM	773	CG	PRO A	45.853	47.446	31.436	1.00 17.22	А
	ATOM	774	С	PRO A	44.565	47.592	28.371	1.00 15.15	А
	ATOM	775	0	PRO A	44.795	47.126	27.254	1.00 15.89	A
	ATOM	776	N	GLU A	43.348	47.588	28.908	1.00 15.16	А
50	ATOM	777	CA	GLU A	42.218	47.015	28.179	1.00 15.87	А
	ATOM	778	CB	GLU A	41.214	46.386	29.150	1.00 18.34	А
	ATOM	779	CG	GLU A	41.622	45.016	29.679	1.00 23.44	А
	ATOM	780	CD	GLU A	42.880	45.055	30.520	1.00 26.21	Α
	MOTA	781	OE1	GLU A	42.873	45.729	31.571	1.00 28.94	А
55	ATOM	782		GLU A	43.877	44.409	30.131	1.00 29.25	А

		ATOM	783	С	GLU	Α	123	41.490	48.004	27.269	1.00	14.24	A
		ATOM	784	0	GLU	Α	123	40.654	47.603	26.460	1.00	14.23	Α
		ATOM	785	N	MSE	Α	124	41.798	49.290	27.401		12.95	Α
		ATOM	786	CA	MSE	А	124	41.158	50.303	26.566		12.17	Α
	5	ATOM	787	CB	MSE	A	124	41.390	51.699	27.153		13.28	Α
		ATOM	788	CG	MSE			40.655	52.810	26.411		14.49	А
		ATOM	789	SE	MSE			38.739	52.530	26.354		19.78	А
		ATOM	790	CE	MSE			38.233	54.129	25.400		15.56	А
		ATOM	791	С	MSE	A	124	41.740	50.220	25.155		12.04	A
	10	ATOM	792	0	MSE			42.918	49.903	24.983		11.44	А
		ATOM	793	N	LYS			40.904	50.504	24.157		10.65	A
		ATOM	794	CA	LYS			41.310	50.451	22.751		11.22	А
		ATOM	795	CB	LYS			40.634	49.267	22.056		12.76	А
		ATOM	796	CG	LYS			40.903	47.921	22.714		15.07	А
	15	ATOM	797	CD	LYS			42.347	47.489	22.541		17.58	A
		ATOM	798	CE	LYS			42.641	46.222	23.336		19.16	А
		ATOM	799	NZ	LYS			41.712	45.118	22.986		20.18	А
		ATOM	800	С	LYS			40.933	51.742	22.029		11.10	A
	•	ATOM	801	0	LYS			40.101	52.512	22.513		10.44	A
13	20	ATOM	802	N	PHE			41.527	51.963	20.858	1.00	9.90	A
: 🗖		ATOM	803	CA	PHE			41.268	53.180	20.091	1.00	9.14	A
		ATOM	804	CB	PHE			42.037	54.340	20.751	1.00	9.51	A
		ATOM	805	CG	PHE			41.681	55.714	20.236	1.00	8.79	A
1:4±2 1:43 3	0.5	ATOM	806		PHE			40.364	56.163	20.235	1.00	9.46	A
	25	ATOM	807		PHE			42.689	56.594	19.837	1.00	9.29	A
		ATOM	808		PHE			40.053	57.473	19.852	1.00	9.45	A
		ATOM	809	CE2	PHE			42.392	57.901	19.452	1.00	9.40	A
41		ATOM	810	CZ	PHE			41.069	58.343	19.461	1.00	8.66	A
	20	ATOM	811	С	PHE			41.759	52.968	18.657	1.00	9.49	A
ĻŢ	30	ATOM	812	0	PHE			42.823	52.385	18.448	1.00	9.51	A
		ATOM	813	N	ILE			40.982	53.413	17.673	1.00	8.68	A
fist.		ATOM	814	CA	ILE			41.420	53.291	16.282	1.00	8.06 8.73	A A
		ATOM	815	CB	ILE			40.391	52.546	15.381 15.821	1.00	9.17	A
la.	35	ATOM	816	CG2	ILE			40.280	51.089 53.238	15.621	1.00	8.60	A
	33	ATOM	817	CG1				39.027	52.674	14.387	1.00	9.58	A
		ATOM	818		ILE			38.045 41.690	54.679	15.706	1.00	8.78	A
		ATOM	819 820	С	ILE			41.069	55.664	16.120	1.00	8.81	A
		ATOM	821	O N	TRP			42.631	54.757	14.770	1.00	8.59	A
	40	ATOM ATOM	822	CA	TRP			42.997	56.029	14.156	1.00	8.27	A
	40	ATOM	823	CB	TRP			44.323	56.530	14.724	1.00	8.26	A
		ATOM	824	CG	TRP			44.564	57.952	14.381	1.00	8.27	A
		ATOM	825		TRP			44.001	59.084	15.044	1.00	8.03	A
		ATOM	826		TRP			44.411	60.233	14.332	1.00	8.27	A
	45	MOTA	827		TRP			43.181	59.241	16.172	1.00	8.19	A
	40	MOTA	828		TRP			45.282	58.440	13.324	1.00	8.35	A
		ATOM	829		TRP			45.192	59.812	13.287	1.00	8.32	A
		ATOM	830		TRP			44.031	61.525	14.711	1.00	9.09	A
		ATOM	831		TRP			42.802	60.525	16.549	1.00	8.49	A
	50	ATOM	832		TRP			43.229	61.651	15.817	1.00	9.77	A
	50	ATOM	833	C	TRP			43.115	55.889	12.644	1.00	8.27	A
		ATOM	834	0	TRP			43.754	54.958	12.153	1.00	8.12	A
		ATOM	835	N	ALA			42.534	56.839	11.912	1.00	8.70	A
		ATOM	836	CA	ALA			42.549	56.784	10.449	1.00	9.71	A
	55	ATOM	837	CB	ALA			41.125	56.886	9.932		10.43	A
			J J .			• •							=

		ATOM	838	С	ALA A	129	43.414	57.791	9.694	1.00 10.28	A
		ATOM	839	0	ALA A		44.088	57.422	8.734	1.00 11.35	А
										1.00 10.58	
		ATOM	840	N	GLU A		43.387	59.054	10.114		Α
		ATOM	841	CA	GLU A	130	44.116	60.124	9.426	1.00 10.04	Α
	5	ATOM	842	CB	GLU A	130	43.411	61.461	9.678	1.00 11.26	А
		ATOM	843	CG	GLU A		41.913	61.457	9.368	1.00 11.65	А
			844	CD	GLU A		41.064	60.935	10.515	1.00 13.66	A
		ATOM									
		ATOM	845		GLU A		41.629	60.582	11.573	1.00 14.42	А
		ATOM	846	OE2	GLU A	130	39.823	60.885	10.361	1.00 15.28	A
	10	ATOM	847	С	GLU A	130	45.596	60.259	9.770	1.00 10.03	Α
		ATOM	848	Ō	GLU A		45.962	60.900	10.755	1.00 9.29	А
		ATOM	849	N	ILE A		46.454	59.692	8.927	1.00 9.13	A
		ATOM	850	CA	ILE A	131	47.890	59.737	9.176	1.00 9.11	A
		ATOM	851	CB	ILE A	131	48.618	58.700	8.292	1.00 9.01	A
	15	ATOM	852	CG2	ILE A	131	50.109	58.686	8.606	1.00 9.14	A
		ATOM	853		ILE A		48.019	57.311	8.555	1.00 8.24	А
									10.038	1.00 9.81	
		ATOM	854		ILE A		47.979	56.917			A
		MOTA	855	С	ILE A		48.518	61.127	9.030	1.00 9.70	А
		ATOM	856	0	ILE A	131	49.559	61.401	9.632	1.00 9.54	A
() () () () () () () () () ()	20	ATOM	857	N	SER A	132	47.900	62.012	8.251	1.00 7.89	Α
الم		ATOM	858	CA	SER A		48.432	63.369	8.125	1.00 8.13	А
									7.254	1.00 8.35	A
471		ATOM	859	CB	SER A		47.508	64.231			
देश्यक्षः दश्यकः		ATOM	860	OG	SER A		46.173	64.210	7.732	1.00 9.16	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ATOM	861	С	SER A	132	48.546	63.970	9.532	1.00 8.70	A
Ting.	25	ATOM	862	0	SER A	132	49.561	64.576	9.878	1.00 8.62	A
		ATOM	863	N	TYR A		47.507	63.785	10.342	1.00 8.09	A
		ATOM	864	CA	TYR A		47.495	64.289	11.715	1.00 8.79	A
9.7 F.											
8 1		ATOM	865	CB	TYR A		46.093	64.185	12.317	1.00 8.24	A
		ATOM	866	CG	TYR A	133	45.175	65.342	12.002	1.00 7.35	A
	30	ATOM	867	CD1	TYR A	133	43.908	65.117	11.476	1.00 8.15	A
"(eF)		ATOM	868	CE1	TYR A	133	43.035	66.165	11.223	1.00 9.16	A
		ATOM	869		TYR A		45.556	66.659	12.271	1.00 8.71	A
									12.020		A
		ATOM	870		TYR A		44.688	67.722			
	~-	ATOM	871	CZ	TYR A		43.430	67.466	11.497	1.00 9.62	A
nd.	35	MOTA	872	OH	TYR A	133	42.562	68.503	11.238	1.00 10.12	A
		MOTA	873	С	TYR A	133	48.449	63.512	12.616	1.00 9.14	Α
		ATOM	874	0	TYR A		49.164	64.103	13.430	1.00 9.28	А
		ATOM	875	N	PHE A		48.452	62.189	12.485	1.00 8.42	A
	40	MOTA	876	CA	PHE A		49.312	61.379	13.335	1.00 9.57	A
	4 0	ATOM	877	CB	PHE A		49.070	59.889	13.112	1.00 8.94	A
		MOTA	878	CG	PHE A	134	49.609	59.032	14.222	1.00 9.95	A
		ATOM	879		PHE A		48.867	58.831	15.384	1.00 9.54	Α
		ATOM	880		PHE A		50.885	58.487	14.139	1.00 10.64	А
										1.00 10.04	A
	4.	ATOM	881		PHE A		49.393	58.101	16.448		
	45	MOTA	882	CE2	PHE A	134	51.420	57.756	15.198	1.00 10.36	Α
		ATOM	883	CZ	PHE A	134	50.672	57.565	16.354	1.00 9.82	Α
		ATOM	884	С	PHE A	134	50.786	61.689	13.115	1.00 10.39	Α
		ATOM	885	0	PHE A		51.559	61.757	14.070	1.00 10.24	A
								61.876		1.00 10.93	
	EO	ATOM	886	N	ALA A		51.177		11.859		A
	50	ATOM	887	CA	ALA A		52.567	62.186	11.551	1.00 11.81	Α
		ATOM	888	CB	ALA A	135	52.786	62.166	10.042	1.00 11.65	A
		ATOM	889	С	ALA A	135	52.921	63.560	12.129	1.00 12.73	Α
		ATOM	890	0	ALA A		54.002	63.745	12.689	1.00 14.32	Α
			891				52.006	64.514	11.991	1.00 14.32	A
	55	ATOM		N	ARG A						
	55	ATOM	892	CA	ARG A	136	52.213	65.868	12.510	1.00 13.88	А

		ATOM	893	СВ	ARG A	13	50.9	30 66.73	5 12.225	1.00 14.42	A
		ATOM	894	CG	ARG A					1.00 15.79	А
		ATOM	895	CD	ARG A	13				1.00 17.40	А
		ATOM	896	NE	ARG A	13				1.00 17.54	А
	5	ATOM	897	CZ	ARG A					1.00 17.89	
	•	ATOM	898		ARG A					1.00 18.15	А
		ATOM	899		ARG A					1.00 16.63	A
		ATOM	900	C	ARG A					1.00 14.79	A
		ATOM	901	0	ARG A					1.00 16.05	A
	10	ATOM	902	N	PHE A					1.00 13.05	A
	10	ATOM	903	CA	PHE A					1.00 13.03	A
		ATOM	904	CB	PHE A					1.00 13.23	A
		ATOM	905	CG	PHE A					1.00 13.13	A
		ATOM	906		PHE A					1.00 13.65	A
	15	ATOM	907		PHE A					1.00 13.03	A
	15									1.00 14.25	A
		MOTA	908		PHE A					1.00 14.73	A
		MOTA	909		PHE A					1.00 13.02	
		ATOM	910	CZ	PHE A						A
	20	ATOM	911	C	PHE A					1.00 13.44	A
	20	ATOM	912	0	PHE A					1.00 14.03	A
		ATOM	913	N	TYR A					1.00 13.77	A
		ATOM	914	CA	TYR A					1.00 14.96	A
		ATOM	915	CB	TYR A					1.00 14.56	A
Paradi RARB	2E	ATOM	916	CG	TYR A					1.00 14.71	A
40	25	ATOM	917		TYR A					1.00 14.96	A
W.		ATOM	918	CE1	TYR A					1.00 15.31	A
		ATOM	919		TYR A					1.00 15.19	A
81		ATOM	920	CE2	TYR A					1.00 15.16	A
11.0	20	ATOM	921	CZ	TYR A					1.00 15.51	A
	30	MOTA	922	ОН	TYR A					1.00 17.55	A
W		ATOM	923	С	TYR A					1.00 16.54	A
		ATOM	924	0	TYR A					1.00 16.24	A
		MOTA	925	N	HIS A					1.00 17.34	A
	25	MOTA	926	CA	HIS A					1.00 19.15	A
j.s. .	35	MOTA	927	СВ	HIS A					1.00 19.96	A
		MOTA	928	CG	HIS A					1.00 21.16	A
		MOTA	929		HIS A					1.00 21.41	A
		MOTA	930		HIS A					1.00 21.98	A
	40	MOTA	931		HIS A					1.00 22.61	A
	40	MOTA	932	NE2	HIS A	_				1.00 21.85	A
		MOTA	933	С	HIS A					1.00 19.75	A
		ATOM	934	0	HIS A					1.00 20.84	A
		ATOM	935	N	ASP A					1.00 18.81	A
	. –	ATOM	936	CA	ASP A					1.00 18.99	А
	45	ATOM	937	CB	ASP A					1.00 20.32	A
		ATOM	938	CG	ASP A					1.00 21.99	A
		MOTA	939		ASP A					1.00 23.53	А
		MOTA	940	OD2	ASP A	140	54.90	69.78	6 16.894	1.00 22.73	А
		ATOM	941	C	ASP A	140	56.85	5 66.07	8 19.080	1.00 18.52	А
	50	MOTA	942	0	ASP A	140	57.15	4 66.78	1 20.048	1.00 18.42	А
		ATOM	943	N	LEU A	143	56.69	2 64.76	2 19.166	1.00 18.16	А
		ATOM	944	CA	LEU A	14	56.85	1 64.04	3 20.426	1.00 18.15	А
		MOTA	945	CB	LEU A			1 62.67	4 20.355	1.00 17.96	A
		MOTA	946	CG	LEU A				7 20.381	1.00 17.86	A
	55	MOTA	947	CD1	LEU A					1.00 17.13	А

		MOTA	948		LEU			54.097	63.154	21.662	1.00 17.42	A
		MOTA	949	С	LEU			58.306	63.816	20.805	1.00 19.03	A
		ATOM	950	0	LEU			59.168	63.651	19.943	1.00 18.72	A
	-	MOTA	951	N	GLY			58.569	63.802	22.108	1.00 20.19	A
	5	ATOM	952	CA	GLY			59.913	63.545	22.585	1.00 21.21	A
		ATOM	953	С	GLY			60.161	62.057	22.424	1.00 22.12	A
		ATOM	954	0	GLY			59.209	61.283	22.295	1.00 21.38	A
		MOTA	955	N	GLU			61.425	61.646	22.437	1.00 23.15	A
	- 0	ATOM	956	CA	GLU			61.772	60.239	22.267	1.00 24.67	A
	10	MOTA	957	CB	GLU			63.287	60.052	22.381	1.00 27.38	A
		MOTA	958	CG	GLU	Α	143	63.763	58.660	21.997	1.00 30.77	Α
		MOTA	959	CD	GLU			63.303	58.253	20.609	1.00 32.52	A
		ATOM	960	OE1	GLU	Α	143	63.586	58.993	19.643	1.00 33.98	A
		ATOM	961	OE2				62.656	57.192	20.484	1.00 33.85	А
	15	ATOM	962	С	GLU	Α	143	61.066	59.311	23.252	1.00 24.07	A
		ATOM	963	0	GLU	Α	143	60.625	58.225	22.880	1.00 23.09	A
		ATOM	964	N	ASN	Α	144	60.958	59.736	24.506	1.00 23.61	A
		ATOM	965	CA	ASN	Α	144	60.302	58.924	25.525	1.00 23.85	Α
£ (A228)		MOTA	966	CB	ASN	A	144	60.329	59.652	26.874	1.00 25.76	A
	20	ATOM	967	CG	ASN	Α	144	59.589	58.897	27.967	1.00 27.79	Α
1,54		MOTA	968	OD1	ASN	Α	144	58.360	58.797	27.949	1.00 28.98	Α
T please		ATOM	969	ND2	ASN	Α	144	60.338	58.359	28.923	1.00 28.61	Α
171		ATOM	970	С	ASN	Α	144	58.864	58.610	25.124	1.00 22.68	Α
		ATOM	971	0	ASN	Α	144	58.425	57.462	25.202	1.00 22.15	Α
Ų	25	ATOM	972	N	LYS	Α	145	58.139	59.634	24.682	1.00 21.73	Α
ig.		ATOM	973	CA	LYS	Α	145	56.749	59.470	24.270	1.00 20.84	Α
		ATOM	974	СВ	LYS	Α	145	56.073	60.837	24.132	1.00 22.57	Α
		ATOM	975	CG	LYS			55.854	61.561	25.455	1.00 24.93	A
E) Erang		MOTA	976	CD	LYS			54.914	60.778	26.361	1.00 27.02	A
134	30	ATOM	977	CE	LYS			54.640	61.523	27.661	1.00 28.49	A
	_	ATOM	978	NZ	LYS			55.882	61.756	28.449	1.00 29.61	A
IŲ.		ATOM	979	C	LYS			56.617	58.689	22.965	1.00 19.52	A
[al		ATOM	980	0	LYS			55.654	57.940	22.784	1.00 18.64	A
		ATOM	981	N	LYS			57.571	58.866	22.054	1.00 18.73	A
j.d.	35	ATOM	982	CA	LYS			57.535	58.137	20.788	1.00 17.79	A
-	•	ATOM	983	CB	LYS			58.730	58.502	19.898	1.00 17.55	Α
		MOTA	984	CG	LYS			58.589	59.813	19.139	1.00 17.75	A
		MOTA	985	CD	LYS			59.758	60.012	18.181	1.00 18.32	A
		ATOM	986	CE	LYS			59.592	61.275	17.344	1.00 18.96	Α
	40	ATOM	987	NZ	LYS			60.778	61.526	16.481	1.00 22.20	Α
	10	ATOM	988	C			146		56.647		1.00 17.36	А
		ATOM	989	Ö	LYS			56.859	55.856	20.487	1.00 16.67	А
		ATOM	990	N	LEU			58.419	56.273	22.055	1.00 17.41	А
		ATOM	991	CA	LEU			58.557	54.880	22.461	1.00 17.08	А
	45	ATOM	992	CB	LEU			59.735	54.727	23.429	1.00 18.23	А
	10	ATOM	993	CG	LEU			61.111	54.969	22.802	1.00 19.30	A
		MOTA	994		LEU			62.186	54.935	23.876	1.00 19.92	A
		MOTA	995		LEU			61.380	53.909	21.741	1.00 20.31	A
		ATOM	996	C	LEU			57.273	54.362	23.103	1.00 16.49	A
	50							56.855	53.235	22.841	1.00 15.40	A
	50	ATOM	997	O N	LEU				55.179	23.944	1.00 15.40	A
		ATOM	998	N	GLN			56.645 55.395	54.769	24.572	1.00 16.83	A
		ATOM	999	CA	GLN						1.00 18.73	A
		ATOM	1000	CB	GLN			54.917	55.815	25.581	1.00 18.73	A
	5=	MOTA	1001	CG	GLN			55.746	55.891	26.849		A
	55	MOTA	1002	CD	GLN	Α	148	55.121	56.796	27.894	1.00 23.21	н

		ATOM	1003	OE1	GLN A	148	55.652	56.951	28.996	1.00 25.13	Α
		ATOM	1003		GLN A		53.986	57.397	27.556	1.00 24.08	A
		ATOM	1005	C	GLN A		54.333	54.585	23.491	1.00 16.17	A
		ATOM	1005	0	GLN A		53.519	53.666	23.556	1.00 16.06	A
	5						54.350	55.462	22.493	1.00 15.44	A
	3	ATOM	1007	N	MSE A			55.375	21.409	1.00 15.44	A
		ATOM	1008	CA	MSE A		53.380				A
		MOTA	1009	CB	MSE A		53.494	56.595	20.492	1.00 17.35	
		ATOM	1010	CG	MSE A		52.475	56.619	19.359	1.00 19.00	A
	40	ATOM	1011	SE	MSE A		50.649	56.669	19.994	1.00 24.67	A
	10	ATOM	1012	CE	MSE A		50.424	58.578	20.144	1.00 23.17	A
		ATOM	1013	С	MSE A		53.589	54.099	20.601	1.00 15.13	A
		MOTA	1014	0	MSE A		52.633	53.397	20.281	1.00 13.65	A
		ATOM	1015	N	LYS A		54.840	53.796	20.270	1.00 15.43	A
		MOTA	1016	CA	LYS A	150	55.128	52.594	19.498	1.00 15.61	A
	15	MOTA	1017	CB	LYS A		56.620	52.516	19.155	1.00 16.35	A
		ATOM	1018	CG	LYS A	150	57.081	53.610	18.200	1.00 19.37	A
		ATOM	1019	CD	LYS A	150	58.582	53.563	17.941	1.00 22.38	A
		ATOM	1020	CE	LYS A	150	58.987	52.322	17.169	1.00 24.63	А
		MOTA	1021	NZ	LYS A	150	60.441	52.335	16.840	1.00 26.82	Α
. 7	20	ATOM	1022	С	LYS A	150	54.702	51.349	20.266	1.00 14.98	А
nder. Pfi		ATOM	1023	0	LYS A	150	54.265	50.365	19.672	1.00 15.43	A
1,5±5. 4464:		ATOM	1024	N	SER A	151	54.806	51.400	21.591	1.00 15.45	Α
i i		ATOM	1025	CA	SER A		54.438	50.257	22.415	1.00 15.79	Α
		ATOM	1026	СВ	SER A	151	54.936	50.450	23.851	1.00 17.27	А
IŲ.	25	ATOM	1027	OG	SER A		54.181	51.437	24.526	1.00 21.28	A
ting the first first first first the		MOTA	1028	С	SER A		52.936	49.975	22.422	1.00 15.04	А
		ATOM	1029	0	SER A		52.530	48.818	22.315	1.00 15.10	А
ä i		MOTA	1030	N	ILE A		52.105	51.010	22.545	1.00 14.25	A
		ATOM	1031	CA	ILE A		50.666	50.771	22.554	1.00 13.46	A
1:00F	30	ATOM	1032	СВ	ILE A		49.857	51.979	23.115	1.00 14.01	A
The Man Said Will	-	ATOM	1033		ILE A		50.228	52.203	24.577	1.00 14.32	A
14		ATOM	1034		ILE A		50.103	53.243	22.295	1.00 13.78	A
		MOTA	1035		ILE A		49.179	54.395	22.676	1.00 13.84	A
ij.		ATOM	1036	С	ILE A		50.149	50.383	21.172	1.00 13.41	A
ing.	35	ATOM	1037	0	ILE A		49.048	49.856	21.044	1.00 13.62	A
		ATOM	1038	N	VAL A		50.942	50.642	20.136	1.00 12.90	A
		ATOM	1039	CA	VAL A		50.548	50.253	18.786	1.00 13.40	А
		ATOM	1040	СВ	VAL A		51.242	51.122	17.709	1.00 13.08	А
		ATOM	1041		VAL A		51.050	50.501	16.322	1.00 13.04	А
	40	MOTA	1042		VAL A		50.665	52.530	17.737	1.00 13.27	А
	-10	ATOM	1043	C	VAL A		50.965	48.798	18.610	1.00 14.30	А
		ATOM	1043	0	VAL A		50.195	47.970	18.121	1.00 14.16	A
		ATOM	1044	N	LYS A		52.182	48.487	19.038	1.00 14.99	A
		ATOM	1045	CA	LYS A		52.696	47.130	18.926	1.00 16.69	A
	45				LYS A		54.157	47.079	19.383	1.00 17.97	A
	43	ATOM	1047	CB			54.867	45.775	19.034	1.00 21.07	A
		ATOM	1048	CG	LYS A			45.789	19.466	1.00 23.29	A
		ATOM	1049	CD	LYS A		56.327			1.00 25.47	A
		ATOM	1050	CE	LYS A		56.476	45.645	20.976	1.00 25.47	A
	50	ATOM	1051	NZ	LYS A		55.866	46.770	21.737		
	50	ATOM	1052	С	LYS A		51.859	46.146	19.745	1.00 16.92	A
		ATOM	1053	0	LYS A		51.667	45.003	19.328	1.00 17.42	A
		MOTA	1054	N	ASN A		51.351	46.587	20.895	1.00 16.90	A
		ATOM	1055	CA	ASN A		50.546	45.712	21.752	1.00 17.32	A
		MOTA	1056	CB	ASN A		50.651	46.135	23.226	1.00 19.11	A
	55	ATOM	1057	CG	ASN A	155	49.813	47.363	23.557	1.00 20.16	A

	ATOM	1058	OD1	ASN	A	155		49.021	47.831	22.743	1.00	21.67	Α
	ATOM	1059	ND2	ASN	Α	155		49.980	47.883	24.772	1.00	20.93	А
	ATOM	1060	С	ASN	A	155		49.076	45.635	21.341	1.00	17.02	А
	MOTA	1061	0	ASN				48.293	44.909	21.949		18.03	А
5	ATOM	1062	N	GLY	Α	156		48.700	46.404	20.324		15.86	Α
	MOTA	1063	CA	GLY	Α	156		47.332	46.359	19.837	1.00	15.20	А
	MOTA	1064	С	GLY	Α	156		46.276	47.254	20.463		14.17	Α
	ATOM	1065	0	GLY	Α	156		45.097	47.107	20.146		15.09	А
	ATOM	1066	N	GLN	A	157		46.663	48.172	21.344		12.63	A
10	ATOM	1067	CA	GLN				45.672	49.058	21.953		11.77	A
	ATOM	1068	CB	GLN				46.214	49.694	23.225		11.96	A
	ATOM	1069	CG	GLN				46.326	48.750	24.399		12.30	А
	ATOM	1070	CD	GLN				46.581	49.503	25.680		11.07	А
	ATOM	1071	OE1					45.677	50.125	26.244		14.09	A
15	ATOM	1072	NE2	GLN				47.823	49.477	26.136		11.57	A
	ATOM	1073	С	GLN				45.255	50.160	20.985		10.91	A
	MOTA	1074	0	GLN				44.077	50.484	20.880		10.65	A
	ATOM	1075	N	LEU				46.238	50.747	20.308		11.05	A
20	MOTA	1076	CA	LEU				45.987	51.788	19.320		10.93	A
20	MOTA	1077	СВ	LEU				46.989	52.935	19.479		12.25	A
	MOTA	1078	CG	LEU				46.895	54.117	18.507		14.64	A
	MOTA	1079		LEU				47.377	53.725	17.123		17.13	A
	MOTA	1080		LEU				45.471	54.612	18.461		15.49	A
OF.	ATOM	1081	C	LEU				46.177	51.111	17.971		11.18	A
25	ATOM	1082	0	LEU				47.258	50.600	17.671		11.17	A
	ATOM	1083	N	GLU				45.126	51.102	17.161	1.00	9.90	A
	ATOM	1084	CA	GLU				45.201	50.456	15.861	1.00	9.47	A A
	MOTA	1085	CB	GLU				44.247	49.263	15.829		10.02 10.65	A
30	ATOM	1086	CG	GLU				44.206 43.223	48.531 47.383	14.506 14.527		12.18	A
30	ATOM	1087 1088	CD OE1	GLU GLU				43.223	46.369	15.209		11.96	A
	ATOM ATOM	1088	OE2	GLU				42.168	47.502	13.209		11.42	A
	ATOM	1009	C	GLU				44.864	51.409	14.732	1.00	8.85	A
	ATOM	1090	0	GLU				43.871	52.133	14.786	1.00	9.51	A
35	ATOM	1091	N	PHE				45.707	51.409	13.709	1.00	8.61	A
33	ATOM	1093	CA	PHE			•	45.475	52.259	12.557	1.00	8.11	A
	ATOM	1094	CB	PHE				46.802	52.613	11.881	1.00	8.37	A
	ATOM	1095	CG	PHE				47.698	53.447	12.743	1.00	8.91	A
	ATOM	1096	CD1	PHE				48.761	52.872	13.437	1.00	9.51	А
40	ATOM	1097		PHE				47.444	54.801	12.906	1.00	9.15	А
	ATOM	1098		PHE				49.555	53.643	14.284	1.00	9.60	А
	MOTA	1099		PHE				48.233	55.581	13.754	1.00	9.20	A
	ATOM	1100	CZ	PHE				49.288	54.997	14.442	1.00	10.42	А
	ATOM	1101	С	PHE				44.553	51.558	11.576	1.00	8.64	A
45	MOTA	1102	0	PHE	Α	160		44.726	50.374	11.270	1.00	8.99	A
	ATOM	1103	N	VAL	Α	161		43.551	52.293	11.111	1.00	8.21	А
	ATOM	1104	CA	VAL	Α	161		42.603	51.767	10.147	1.00	8.58	А
	MOTA	1105	CB	VAL	Α	161		41.147	51.874	10.679	1.00	7.15	A
	ATOM	1106	CG1	VAL	Α	161		40.961	50.891	11.846	1.00	8.25	Α
50	ATOM	1107	CG2	VAL	Α	161		40.848	53.290	11.153	1.00	8.29	A
	MOTA	1108	С	VAL				42.815	52.542	8.847	1.00	8.27	A
	ATOM	1109	0	VAL	Α	161		42.899	53.774	8.848	1.00	8.98	A
	ATOM	1110	N	THR	Α	162		42.926	51.788	7.755	1.00	8.30	A
	MOTA	1111	CA	THR	Α	162		43.203	52.294	6.403	1.00	8.76	A
55	ATOM	1112	CB	THR	A	162		42.296	53.473	5.984	1.00	8.95	А

		ATOM	1113	OG1	THR	Α	162	40.920	53.089	6.084	1.00 10.09	А
		MOTA	1114	CG2	THR	Α	162	42.580	53.855	4.532	1.00 10.53	Α
		MOTA	1115	C	THR	Α	162	44.656	52.759	6.347	1.00 8.36	Α
		ATOM	1116	0	THR	A	162	45.478	52.184	5.633	1.00 8.75	Α
	5	ATOM	1117	N	GLY	Α	163	44.972	53.800	7.107	1.00 8.59	A
		ATOM	1118	CA	GLY	Α	163	46.338	54.286	7.133	1.00 8.14	А
		ATOM	1119	С	GLY	A	163	46.702	55.259	6.032	1.00 7.44	Α
		ATOM	1120	0	GLY	A	163	47.880	55.450	5.747	1.00 8.02	A
		ATOM	1121	N	GLY	Α	164	45.699	55.864	5.405	1.00 6.59	A
	10	ATOM	1122	CA	GLY			45.975	56.836	4.364	1.00 7.84	А
		ATOM	1123	С	GLY	A	164	46.278	58.189	4.979	1.00 7.81	A
		ATOM	1124	0	GLY			46.015	58.419	6.160	1.00 7.64	А
		ATOM	1125	N	TRP	Α	165	46.845	59.092	4.188	1.00 6.53	A
		ATOM	1126	CA	TRP			47.159	60.428	4.678	1.00 6.64	A
	15	ATOM	1127	CB	TRP			47.767	61.255	3.545	1.00 6.57	A
		ATOM	1128	CG	TRP	A	165	48.563	62.437	4.001	1.00 7.87	Α
		ATOM	1129		TRP	A	165	49.760	62.414	4.791	1.00 9.42	Α
		MOTA	1130		TRP			50.184	63.753	4.945	1.00 9.13	Α
ğ (-222)		ATOM	1131	CE3	TRP	Α	165	50.517	61.392	5.383	1.00 9.09	А
	20	ATOM	1132		TRP			48.316	63.748	3.717	1.00 9.06	А
1,520 100		ATOM	1133		TRP			49.286	64.546	4.281	1.00 9.55	А
1,4		ATOM	1134		TRP			51.334	64.100	5.670	1.00 10.93	А
		MOTA	1135		TRP			51.662	61.738	6.103	1.00 11.93	А
		ATOM	1136		TRP			52.056	63.080	6.238	1.00 11.13	А
The state of the s	25	ATOM	1137	С	TRP			45.854	61.061	5.163	1.00 5.76	А
(Links		ATOM	1138	0	TRP			45.838	61.822	6.138	1.00 6.45	A
		ATOM	1139	N	VAL			44.766	60.720	4.477	1.00 5.84	А
1F"		ATOM	1140	CA	VAL			43.430	61.215	4.800	1.00 6.47	А
		ATOM	1141	CB	VAL			43.033	62.406	3.882	1.00 6.49	
	30	ATOM	1142		VAL			44.041	63.541	4.018	1.00 7.93	
Name of		ATOM	1143		VAL			42.956	61.943	2.426	1.00 7.01	А
T.		ATOM	1144	С	VAL			42.414	60.096	4.560	1.00 6.42	А
w.		ATOM	1145	0	VAL			42.787	58.962	4.258	1.00 7.28	А
		ATOM	1146	N	MSE			41.137	60.424	4.743	1.00 6.92	A
į.	35	ATOM	1147	CA	MSE			40.022	59.517	4.458	1.00 7.79	
		ATOM	1148	СВ	MSE			39.001	59.533	5.590	1.00 10.16	A
		ATOM	1149	CG	MSE			37.784	58.669	5.322	1.00 10.68	A
		ATOM	1150	SE	MSE			36.562	58.804	6.790	1.00 17.10	A
		ATOM	1151	CE	MSE			37.703	58.023	8.131	1.00 10.95	Α
	40	MOTA	1152	C	MSE			39.494	60.275	3.245	1.00 7.78	Α
		MOTA	1153	0	MSE			38.701	61.204	3.368	1.00 7.60	Α
		ATOM	1154	N	PRO			39.919	59.870	2.045	1.00 6.75	А
		ATOM	1155	CD	PRO			40.680	58.649	1.716	1.00 6.63	А
		ATOM	1156	CA	PRO			39.499	60.558	0.829	1.00 7.01	А
	45	MOTA	1157	СВ	PRO			40.437	59.975	-0.219	1.00 7.18	А
		ATOM	1158	CG	PRO			40.514	58.546	0.200	1.00 7.01	А
		MOTA	1159	C	PRO			38.070	60.528	0.355	1.00 6.98	А
		ATOM	1160	Ō	PRO			37.304	59.615	0.657	1.00 7.17	А
		MOTA	1161	N	ASP			37.732	61.572	-0.395	1.00 6.85	A
	-50	ATOM	1162	CA	ASP			36.439	61.673	-1.043	1.00 7.10	A
		MOTA	1163	CB	ASP			36.341	63.006	-1.790	1.00 7.46	A
		ATOM	1164	CG	ASP			35.205	63.039	-2.791	1.00 7.67	A
		ATOM	1165		ASP			34.118	62.511	-2.486	1.00 8.52	A
		ATOM	1166		ASP			35.399	63.609	-3.885	1.00 8.86	A
	55	ATOM	1167	C	ASP			36.529	60.520	-2.035	1.00 7.30	A
	55	LI ON	1101	\sim	1101	1.7	103	20.363	00.020	2.000	1.00 7.50	• •

	АТОМ	1168	0	ASP A	169	37.622	60.171	-2.484	1.00	7.72	А
											A
											A
_											A
3											A
											Α
											A
	ATOM		OE2				55.640		1.00		A
	ATOM	1176	С	GLU A	170	34.678	59.144	-4.607	1.00	6.58	Α
10	ATOM	1177	0	GLU A	170	34.651	58.338	-5.532	1.00	6.89	Α
	ATOM	1178	N	ALA A	171	34.116	60.348	-4.689	1.00	6.82	A
	ATOM		CA				60.760	-5.887	1.00	7.07	A
								-5.496	1.00	7.61	A
			С						1.00	7.36	A
15											А
											А
											A
											A
											A
20											A
20											A
											A
											A
ar.											A
25											A
											A
											A
	ATOM	1195	C	SER A	173						A
	ATOM	1196	0	SER A	173	38.714					A
30	ATOM	1197	N	HIS A	174	40.660	61.201	-8.206	1.00		A
	ATOM	1198	CA	HIS A	174	41.154	60.349	-9.276	1.00	5.24	A
	MOTA	1199	CB	HIS A	174	42.168	61.096	-10.130	1.00	5.98	A
	ATOM	1200	CG	HIS A	174	42.448	60.421	-11.429	1.00	6.54	A
	ATOM	1201	CD2	HIS A	174	42.041	60.711	-12.686	1.00	6.89	A
35	ATOM	1202	ND1	HIS A	174	43.161	59.244	-11.516	1.00	7.16	A
	ATOM	1203	CE1	HIS A	174	43.175	58.837	-12.772	1.00	7.66	A
							59.709	-13.501	1.00	8.19	A
									1.00		А
									1.00		A
40										4.96	A
										5.44	A
											A
											A
											A
45											A
40											A
											A
											A
" 0											A
50											A
											A
			С								A
	MOTA		0			44.277					А
	ATOM		N			44.434	57.665	-9.152	1.00		A
55	ATOM	1222	CA	ARG A	176	45.868	57.866	-8.983	1.00	6.21	A
	5 10 15 20 25 30 35 40 45 50	10 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 1169 ATOM 1170 ATOM 1171 ATOM 1172 ATOM 1173 ATOM 1174 ATOM 1175 ATOM 1176 ATOM 1176 ATOM 1177 ATOM 1178 ATOM 1178 ATOM 1179 ATOM 1180 ATOM 1181 ATOM 1182 ATOM 1183 ATOM 1184 ATOM 1185 ATOM 1186 ATOM 1187 ATOM 1188 ATOM 1189 ATOM 1191 ATOM 1191 ATOM 1193 ATOM 1193 ATOM 1194 ATOM 1195 ATOM 1196 ATOM 1197 ATOM 1198 ATOM 1197 ATOM 1200 ATOM 1201 ATOM 1201 ATOM 1202 ATOM 1203 ATOM 1204 ATOM 1205 ATOM 1206 ATOM 1207 ATOM 1208 ATOM 1209 ATOM 1207 ATOM 1210 ATOM 1211 ATOM 1212 ATOM 1213 ATOM 1214 ATOM 1215 ATOM 1216 ATOM 1217 ATOM 1218 ATOM 1219 ATOM 1219 ATOM 1210 ATOM 1211 ATOM 1211 ATOM 1212 ATOM 1213 ATOM 1214 ATOM 1215 ATOM 1216 ATOM 1217 ATOM 1218 ATOM 1220 ATOM 1220 ATOM 1221 ATOM 1220 ATOM 1221 ATOM 1221 ATOM 1221 ATOM 1221 ATOM 1222 ATOM 1220 ATOM 1221 ATOM 1220 ATOM 1221	ATOM 1169 N ATOM 1170 CA ATOM 1171 CB ATOM 1172 CG ATOM 1173 CD ATOM 1174 OE1 ATOM 1175 OE2 ATOM 1176 C ATOM 1177 O ATOM 1178 N ATOM 1179 CA ATOM 1180 CB ATOM 1180 CB ATOM 1181 C ATOM 1182 O ATOM 1183 N ATOM 1184 CA ATOM 1185 CB ATOM 1186 CG ATOM 1187 OD1 ATOM 1188 ND2 ATOM 1189 C ATOM 1190 O ATOM 1191 N 25 ATOM 1191 N 25 ATOM 1192 CA ATOM 1193 CB ATOM 1194 OG ATOM 1195 C ATOM 1196 O 30 ATOM 1197 N ATOM 1198 CA ATOM 1199 CB ATOM 1199 CB ATOM 1199 CB ATOM 1200 CG ATOM 1201 CD2 35 ATOM 1201 CD2 35 ATOM 1202 ND1 ATOM 1203 CE1 ATOM 1204 NE2 ATOM 1205 C ATOM 1206 O ATOM 1207 N ATOM 1208 CA ATOM 1209 CB ATOM 1209 CB ATOM 1209 CB ATOM 1207 N ATOM 1208 CA ATOM 1209 CB ATOM 1207 N ATOM 1208 CA ATOM 1207 N ATOM 1208 CA ATOM 1209 CB ATOM 1207 N ATOM 1208 CA ATOM 1207 N ATOM 1208 CA ATOM 1207 N ATOM 1208 CA ATOM 1207 CCS ATOM 1208 CA ATOM 1209 CB ATOM 1211 CD2 ATOM 1212 CE2 ATOM 1212 CE2 ATOM 1213 CE3 ATOM 1214 CD1 ATOM 1215 NE1 ATOM 1216 CZ2 ATOM 1217 CZ3 ATOM 1218 CH2 ATOM 1219 C ATOM 1220 O ATOM 1220 O ATOM 1221 N	ATOM 1169 N GLU A ATOM 1170 CA GLU A ATOM 1171 CB GLU A ATOM 1171 CB GLU A ATOM 1173 CD GLU A ATOM 1174 OE1 GLU A ATOM 1175 OE2 GLU A ATOM 1176 C GLU A ATOM 1177 O GLU A ATOM 1177 O GLU A ATOM 1178 N ALA A ATOM 1180 CB ALA A ATOM 1181 C ALA A ATOM 1181 C ALA A ATOM 1182 O ALA A ATOM 1183 N ASN A ATOM 1184 CA ASN A ATOM 1185 CB ASN A ATOM 1186 CG ASN A ATOM 1187 OD1 ASN A ATOM 1188 ND2 ASN A ATOM 1189 C ASN A ATOM 1190 O ASN A ATOM 1191 N SER A ATOM 1192 CA SER A ATOM 1193 CB SER A ATOM 1194 OG SER A ATOM 1195 C SER A ATOM 1196 O SER A ATOM 1197 N HIS A ATOM 1198 CA HIS A ATOM 1199 CB HIS A ATOM 1199 CB HIS A ATOM 1190 CG HIS A ATOM 1201 CD2 HIS A ATOM 1202 ND1 HIS A ATOM 1203 CE1 HIS A ATOM 1204 NE2 HIS A ATOM 1206 O HIS A ATOM 1207 N TRP A ATOM 1208 CA TRP A ATOM 1209 CB TRP A ATOM 1201 CD2 HIS A ATOM 1201 CD2 HIS A ATOM 1201 CD2 HIS A ATOM 1201 CD2 TRP A ATOM 1201 CD2 TRP A ATOM 1216 CZZ TRP A ATOM 1216 CZZ TRP A ATOM 1217 CZZ TRP A ATOM 1218 CHZ TRP A ATOM 1218 CHZ TRP A ATOM 1216 CZZ TRP A ATOM 1217 CZZ TRP A ATOM 1218 CHZ TRP A ATOM 1219 C TRP A ATOM 1210 CG TRP A ATOM 1211 CDZ TRP A ATOM 1211 CDZ TRP A ATOM 1212 CEZ TRP A ATOM 1213 CEZ TRP A ATOM 1214 CD1 TRP A ATOM 1215 NE1 TRP A ATOM 1216 CZZ TRP A ATOM 1217 CZZ TRP A ATOM 1218 CHZ TRP A ATOM 1219 C TRP A ATOM 1210 C TRP A ATOM 1210 C TRP A ATOM 1211 C CZZ TRP A ATOM 1212 C CZZ TRP A ATOM 1213 C CZZ TRP A ATOM 1214 CD1 TRP A ATOM 1215 NE1 TRP A ATOM 1216 C CZZ TRP A ATOM 1217 C CZZ TRP A ATOM 1218 CHZ TRP A ATOM 1219 C TRP A ATOM 1210 C C TRP A ATOM 1210 C C TRP A ATOM 1220 O TRP A ATOM 1221 N ARG	ATOM 1169 N GLU A 170 ATOM 1171 CB GLU A 170 ATOM 1171 CB GLU A 170 ATOM 1173 CD GLU A 170 ATOM 1174 OE1 GLU A 170 ATOM 1175 OE2 GLU A 170 ATOM 1176 C GLU A 170 ATOM 1177 OE1 GLU A 170 ATOM 1177 OE2 GLU A 170 ATOM 1177 O GLU A 170 ATOM 1178 N ALA A 171 ATOM 1179 CA ALA A 171 ATOM 1180 CB ALA A 171 ATOM 1181 C ALA A 171 ATOM 1181 C ALA A 171 ATOM 1182 O ALA A 171 ATOM 1183 N ASN A 172 ATOM 1184 CA ASN A 172 ATOM 1186 CG ASN A 172 ATOM 1187 OD1 ASN A 172 ATOM 1188 ND2 ASN A 172 ATOM 1188 ND2 ASN A 172 ATOM 1188 ND2 ASN A 172 ATOM 1189 C ASN A 172 ATOM 1190 O ASN A 172 ATOM 1191 N SER A 173 ATOM 1191 N SER A 173 ATOM 1192 CA SER A 173 ATOM 1195 C SER A 173 ATOM 1196 O SER A 173 ATOM 1197 N HIS A 174 ATOM 1198 CA HIS A 174 ATOM 1199 CB HIS A 174 ATOM 1199 CB HIS A 174 ATOM 1199 CB HIS A 174 ATOM 1200 CG HIS A 174 ATOM 1201 CD2 HIS A 174 ATOM 1201 CD2 HIS A 174 ATOM 1202 ND1 HIS A 174 ATOM 1203 CE1 HIS A 174 ATOM 1204 NE2 HIS A 174 ATOM 1205 C HIS A 174 ATOM 1206 C HIS A 174 ATOM 1207 N TRP A 175 ATOM 1208 CA TRP A 175 ATOM 1209 CB TRP A 175 ATOM 1201 CD2 TRP A 175 ATOM 1210 CG TRP A 175 ATOM 1211 CD2 TRP A 175 ATOM 1212 CE2 TRP A 175 ATOM 1213 CE3 TRP A 175 ATOM 1214 CD1 TRP A 175 ATOM 1215 NEI TRP A 175 ATOM 1216 CZ2 TRP A 175 ATOM 1217 CZ3 TRP A 175 ATOM 1218 CH2 TRP A 175 ATOM 1216 CZ2 TRP A 175 ATOM 1217 CZ3 TRP A 175 ATOM 1218 CH2 TRP A 175 ATOM 1216 CZ2 TRP A 175 ATOM 1217 CZ3 TRP A 175 ATOM 1218 CH2 TRP A 175 ATOM 1216 CZ2 TRP A 175 ATOM 1217 CZ3 TRP A 175 ATOM 1216 CZ2 TRP A 175 ATOM 1217 CZ3 TRP A 175 ATOM 1218 CH2 TRP A 175 ATOM 1217 CZ3 TRP A 175 ATOM 1218 CH2 TRP A 175 ATOM 1217 CZ3 TRP A 175 ATOM 1218 CH2 TRP A 175 ATOM 1210 CG TRP A 175 ATOM 1211 CD2 TRP A 175 ATOM 1212 CC2 TRP A 175 ATOM 1210 CG TRP A 175 ATOM 1211 CD2 TRP A 175 ATOM 1211 CD2 TRP A 175 ATOM 1210 CG TRP A 175 ATOM 1211 CD2 TRP A 175	## ATOM	ATOM 1169 N GLU A 170 35.397 59.917 ATOM 1171 CB GLU A 170 35.402 58.807 ATOM 1171 CB GLU A 170 35.402 58.807 ATOM 1173 CB GLU A 170 35.628 57.106 ATOM 1174 OE1 GLU A 170 35.628 57.106 ATOM 1174 OE1 GLU A 170 35.628 57.106 ATOM 1175 OE2 GLU A 170 35.405 55.683 ATOM 1176 OE2 GLU A 170 34.335 55.098 ATOM 1177 O GLU A 170 34.678 59.144 ATOM 1177 O GLU A 170 34.678 59.144 ATOM 1178 N ALA A 171 34.616 60.348 ATOM 1180 CB ALA A 171 32.181 61.600 ATOM 1181 C ALA A 171 34.235 61.531 ATOM 1181 C ALA A 171 34.235 61.531 ATOM 1181 C ALA A 171 34.266 61.190 ATOM 1183 N ASN A 172 35.711 63.440 ATOM 1185 CB ASN A 172 35.711 63.440 ATOM 1186 CG ASN A 172 35.711 63.440 ATOM 1187 OD1 ASN A 172 33.384 65.645 ATOM 1188 ND2 ASN A 172 33.784 65.645 ATOM 1188 ND2 ASN A 172 33.784 65.645 ATOM 1189 C ASN A 172 33.784 65.645 ATOM 1190 O ASN A 172 37.176 63.059 ATOM 1191 N SER A 173 37.678 62.276 ATOM 1191 N SER A 173 37.678 62.276 ATOM 1190 O SER A 173 39.470 60.970 ATOM 1191 N SER A 173 39.470 60.970 ATOM 1190 O SER A 173 39.470 60.970 ATOM 1191 N SER A 173 39.470 60.970 ATOM 1191 N SER A 173 37.678 62.276 ATOM 1190 O SER A 173 39.470 60.970 ATOM 1191 N SER A 173 39.470 60.970 ATOM 1193 CB SER A 173 39.470 60.970 ATOM 1194 OG SER A 173 39.470 60.970 ATOM 1195 C SER A 173 39.470 60.970 ATOM 1196 O SER A 173 39.470 60.970 ATOM 1197 N HIS A 174 40.660 61.201 ATOM 1198 CA HIS A 174 42.646 61.096 ATOM 1201 CD2 HIS A 174 42.646 61.096 ATOM 1202 CG HIS A 174 42.646 61.991 ATOM 1204 NE2 HIS A 174 42.646 65.99.321 ATOM 1206 CG HIS A 174 42.646 65.99.321 ATOM 1207 N TRP A 175 44.502 59.709 ATOM 1208 CA TRP A 175 44.502 59.709 ATOM 1201 CD2 TRP A 175 44.502 59.709 ATOM 1202 CG TRP A 175 44.502 59.709 ATOM 1203 CE HIS A 174 42.646 61.995 ATOM 1204 NE2 HIS A 174 42.646 61.995 ATOM 1207 N TRP A 175 44.502 59.321 ATOM 1208 CA TRP A 175 44.502 59.321 ATOM 1208 CA TRP A 175 44.502 59.322 ATOM 1211 CD2 TRP A 175 44.502 59.332 ATOM 1212 CC2 TRP A 175 44.509 55.505 ATOM 1212 CC2 TRP A 175 44.609 55.506 ATOM 1212 CC2 TRP A 175 44.609 55.506 ATOM 1212 CC3	ATOM	ATOM	ATOM 1169 N GLU A 170

		ATOM	1223	СВ	ARG A	46.434		-10.195	1.00	7.10	A
		ATOM	1224	CG	ARG A	46.488		-11.429	1.00	7.74	Α
		ATOM	1225	CD	ARG A	46.454		-12.698	1.00	9.22	A
	_	MOTA	1226	NE	ARG A	47.557		-12.790	1.00	9.75	Α
	5	ATOM	1227	CZ	ARG A	47.708		-13.801	1.00		Α
		ATOM	1228		ARG A	46.825		-14.791	1.00		A
		MOTA	1229		ARG A	48.729		-13.817		11.03	A
		ATOM	1230	С	ARG A	46.178	58.617	-7.690	1.00	5.98	A
	10	MOTA	1231	0	ARG A	47.167	58.317	-7.011	1.00	7.04	A
	10	MOTA	1232	N	ASN A	45.329	59.579	-7.335	1.00	5.86	A
		ATOM	1233	CA	ASN A	45.551	60.343	-6.110	1.00	5.50	A
		MOTA	1234	CB	ASN A	44.900	61.723	-6.208	1.00	6.39	A
		MOTA	1235	CG	ASN A	45.571	62.590	-7.241	1.00	8.49	A
	1 -	ATOM	1236		ASN A	46.756	62.416	-7.528	1.00	7.81	A
	15	ATOM	1237		ASN A	44.825	63.533	-7.806	1.00	9.47	A
		MOTA	1238	С	ASN A	45.065	59.598	-4.877	1.00	5.82	A
		ATOM	1239	0	ASN A	45.568	59.814	-3.768	1.00	5.55	A
		ATOM	1240	N	VAL A	44.086	58.721	-5.059	1.00	5.11	A
	20	ATOM	1241	CA	VAL A	43.619	57.922	-3.934	1.00	5.43	A
	20	ATOM	1242	CB	VAL A	42.405	57.054	-4.310	1.00	5.87	A
, 15E		ATOM	1243		VAL A	42.125	56.045	-3.199	1.00	6.99	A
1132		MOTA	1244		VAL A	41.189	57.933	-4.523	1.00	7.19	A
: * S		MOTA	1245	C	VAL A	44.794	57.013	-3.570	1.00	5.88	A
1,00€ 618.6	25	ATOM	1246	0	VAL A	45.102	56.816	-2.396	1.00	6.98	A
	25	MOTA	1247	N	LEU A	45.463	56.469	-4.581	1.00	6.29	A
i i		ATOM	1248	CA	LEU A	46.609	55.606	-4.321	1.00	6.10	A
		ATOM	1249	CB	LEU A	47.081	54.914	-5.610	1.00	6.48	A
2)		ATOM	1250	CG	LEU A	48.388	54.104	-5.494	1.00	6.83	A
Secretary of the second	30	ATOM	1251		LEU A	48.249	52.970	-4.471	1.00	7.54	A
The first training the	50	ATOM	1252 1253	CD2	LEU A	48.737	53.534 56.409	-6.862 -3.720	1.00	7.81 6.01	A A
		ATOM	1253		LEU A	47.760 48.436	55.947	-2.801	1.00	5.97	A
l _{in}		ATOM ATOM	1255	O, N	LEU A	47.971	57.619	-2.801	1.00	5.99	A
		ATOM	1256	CA	LEU A	47.971	58.476	-3.751	1.00	5.46	A
ļ.	35	ATOM	1257	CB	LEU A	49.047	59.816	-4.493	1.00	6.21	A
g:-22 .	55	ATOM	1258	CG	LEU A	50.171	60.777	-4.137	1.00	8.11	A
		ATOM	1259		LEU A	51.464	60.276	-4.762	1.00	8.40	A
		ATOM	1260		LEU A	49.844	62.174	-4.644	1.00	8.88	A
		MOTA	1261	C	LEU A	48.917	58.733	-2.259	1.00	5.49	A
	40	ATOM	1262	0	LEU A	49.873	58.539	-1.504	1.00	6.38	A
	10	ATOM	1263	N	GLN A	47.732	59.147	-1.823	1.00	5.36	A
		ATOM	1264	CA	GLN A	47.558	59.450	-0.408	1.00	6.03	A
		ATOM	1265	CB	GLN A	46.263	60.243	-0.177	1.00	6.02	A
		ATOM	1266	CG	GLN A	44.963	59.508	-0.445	1.00	7.15	A
	45	ATOM	1267	CD	GLN A	44.584	58.572	0.681	1.00	6.82	A
	10	ATOM	1268		GLN A	44.809	58.871	1.858	1.00	7.67	A
		ATOM	1269		GLN A	43.983	57.445	0.330	1.00	8.04	A
		ATOM	1270	C	GLN A	47.616	58.203	0.466	1.00	5.96	A
		ATOM	1271	0	GLN A	48.110	58.257	1.593	1.00	6.48	A
	50	ATOM	1272	N	LEU A	47.137	57.073	-0.052	1.00	5.92	A
		ATOM	1273	CA	LEU A	47.190	55.826	0.709	1.00	5.60	A
		ATOM	1274	CB	LEU A	46.467	54.701	-0.037	1.00	6.36	A
		ATOM	1275	CG	LEU A	46.529	53.321	0.626	1.00	6.42	A
		ATOM	1276		LEU A	45.774	53.341	1.957	1.00	7.96	A
	55	ATOM	1277		LEU A	45.924	52.275	-0.313	1.00	7.27	A
				002		 	32.2.3	0.010			• • •

		ATOM	1278	С	LEU A	182	48.654	55.448	0.900	1.00 6.22	. A
		MOTA	1279	0	LEU A		49.071	55.048	1.986	1.00 6.59	8 A
		ATOM	1280	N	THR A		49.437	55.590	-0.163	1.00 6.40	
								55.254	-0.103	1.00 6.70	
	_	ATOM	1281	CA	THR A		50.854				
	5	ATOM	1282	CB	THR A		51.488	55.323	-1.510	1.00 7.61	
		ATOM	1283	OG1			50.795	54.429	-2.392	1.00 6.66	
		ATOM	1284	CG2	THR A	183	52.948	54.924	-1.453	1.00 8.69	
		ATOM	1285	С	THR A	183	51.601	56.197	0.843	1.00 6.95	A
		ATOM	1286	0	THR A	183	52.477	55.773	1.594	1.00 6.77	A
	10	ATOM	1287	N	GLU A	184	51.248	57.477	0.815	1.00 6.54	A
		MOTA	1288	CA	GLU A		51.907	58.454	1.678	1.00 7.23	
		ATOM	1289	СВ	GLU A		51.345	59.852	1.399	1.00 8.96	
		ATOM	1290	CG	GLU A		52.194	61.013	1.919	1.00 10.85	
								61.053	1.324	1.00 10.53	
	15	ATOM	1291	CD	GLU A		53.598				
	15	ATOM	1292		GLU A		53.778	60.668	0.149	1.00 13.38	
		ATOM	1293		GLU A		54.523	61.490	2.037	1.00 14.02	
		ATOM	1294	С	GLU A	184	51.704	58.082	3.148	1.00 7.89	
		ATOM	1295	0	GLU A	184	52.651	58.072	3.938	1.00 8.95	
		ATOM	1296	N	GLY A	185	50.465	57.767	3.506	1.00 7.49	A
و مراد الم	20	ATOM	1297	CA	GLY A	185	50.165	57.395	4.876	1.00 7.51	A
1,000		ATOM	1298	С	GLY A		50.754	56.056	5.292	1.00 7.61	. A
		MOTA	1299	0	GLY A		51.324	55.934	6.379	1.00 7.79	
ijT		ATOM	1300	N	GLN A		50.638	55.045	4.437	1.00 7.55	
		ATOM	1301	CA	GLN A		51.154	53.732	4.803	1.00 7.94	
ių.	25							52.653	3.890	1.00 7.79	
W.	23	ATOM	1302	CB	GLN A		50.573				
\$ (55%).		ATOM	1303	CG	GLN A		49.075	52.469	4.067	1.00 9.35	
		ATOM	1304	CD	GLN A		48.647	51.045	3.819	1.00 10.10	
81		ATOM	1305		GLN A		49.239	50.349	2.999	1.00 12.28	
		MOTA	1306	NE2	GLN A		47.615	50.598	4.525	1.00 9.16	
	30	MOTA	1307	С	GLN A	186	52.670	53.652	4.802	1.00 8.34	A
191		MOTA	1308	0	GLN A	186	53.251	52.893	5.575	1.00 7.45	A
g .		ATOM	1309	N	THR A	187	53.322	54.417	3.937	1.00 8.73	Α
ļ.		ATOM	1310	CA	THR A		54.776	54.393	3.914	1.00 8.31	Α
		ATOM	1311	СВ	THR A		55.313	55.199	2.723	1.00 8.96	
.4	35	ATOM	1312	OG1	THR A		54.836	54.603	1.510	1.00 8.94	
		ATOM	1313	CG2			56.839	55.194	2.709	1.00 9.08	
		ATOM	1314	C	THR A		55.280	54.966	5.239	1.00 8.89	
								54.451	5.826	1.00 8.76	
		MOTA	1315	0	THR A		56.236				
	40	MOTA	1316	N	TRP A		54.620	56.016	5.720	1.00 8.63	
	40	MOTA	1317	CA	TRP A		54.992	56.628	6.989	1.00 8.92	
		ATOM	1318	CB	TRP A		54.131	57.863	7.265	1.00 9.67	
		MOTA	1319	CG	TRP A		54.583	58.643	8.464	1.00 9.58	
		MOTA	1320	CD2	TRP A	188	54.248	58.383	9.834	1.00 9.95	
		ATOM	1321	CE2	TRP A	188	54.973	59.304	10.622	1.00 10.10	
	45	ATOM	1322	CE3	TRP A	188	53.409	57.458	10.472	1.00 9.95	А
		ATOM	1323	CD1	TRP A	188	55.466	59.685	8.477	1.00 10.29	А
		ATOM	1324		TRP A		55.708	60.086	9.770	1.00 10.60	
		ATOM	1325		TRP A		54.888	59.328	12.018	1.00 9.73	
		ATOM	1326		TRP A		53.325	57.480	11.866	1.00 10.52	
	50		1327		TRP A		54.062	58.411	12.621	1.00 10.61	
	50	ATOM									
		ATOM	1328	C	TRP A		54.773	55.604	8.104		
		ATOM	1329	0	TRP A		55.635	55.399	8.958	1.00 8.79	
		ATOM	1330	N	LEU A		53.614	54.955	8.097	1.00 8.25	
		MOTA	1331	CA	LEU A		53.323	53.962	9.126	1.00 9.12	
	55	ATOM	1332	СВ	LEU A	189	51.918	53.387	8.936	1.00 8.95	A

		ATOM	1333	CG	LEU A	189	50.76	7 54.284	9.391	1.00 8.	.34 A
		ATOM	1334	CD1	LEU A	189	49.43	8 53.610	9.072	1.00 9.	. 27 A
		ATOM	1335		LEU A		50.88		10.894	1.00 9.	.17 A
		ATOM	1336	C	LEU A		54.33			1.00 9.	.47 A
	5	ATOM	1337	Ö	LEU F		54.73			1.00 10.	
	3		1338	N	LYS A		54.74				.83 A
		ATOM								1.00 10.	
		ATOM	1339	CA	LYS A		55.69				
		ATOM	1340	CB	LYS A		55.90			1.00 11.	
	- 0	ATOM	1341	CG	LYS A		56.76			1.00 14.	
	10	ATOM	1342	CD	LYS A		56.88			1.00 18.	
		ATOM	1343	CE	LYS A	190	57.59			1.00 20.	
		MOTA	1344	NZ	LYS A		58.94	2 47.678	5.649	1.00 22.	
		MOTA	1345	С	LYS A	190	57.03	7 51.682	8.543	1.00 11.	
		MOTA	1346	0	LYS A	190	57.65	0 50.964	9.333	1.00 11.	. 22 A
	15	ATOM	1347	N	GLN A	191	57.47	9 52.872	8.157	1.00 11.	.65 A
		ATOM	1348	CA	GLN A	191	58.75	3 53.396	8.625	1.00 14.	.13 A
		ATOM	1349	СВ	GLN A		59.13		7.836	1.00 15.	.24 A
		ATOM	1350	CG	GLN A		60.46			1.00 19.	
1,27		ATOM	1351	CD	GLN A		60.87			1.00 21.	
fjær	20	ATOM	1352		GLN A		61.90			1.00 24.	
ı,J	20	ATOM	1353		GLN A		60.06			1.00 22.	
1,1		MOTA	1354	C	GLN F		58.79			1.00 14.	
ijī.										1.00 14.	
		ATOM	1355	0	GLN F		59.75			1.00 10.	
ij.	25	ATOM	1356	N	PHE A		57.76				
i i	25	MOTA	1357	CA	PHE A		57.76			1.00 13.	
112		ATOM	1358	СВ	PHE F		57.33			1.00 13.	
		ATOM	1359	CG	PHE P		58.23		11.433	1.00 13.	
F1		ATOM	1360		PHE A		57.91			1.00 13.	
	• •	ATOM	1361		PHE A		59.41			1.00 14.	
ij	30	MOTA	1362		PHE A		58.76			1.00 13.	
Ñ		MOTA	1363		PHE P		60.27			1.00 14.	
į.d.		ATOM	1364	CZ	PHE F	192	59.95	2 58.887	10.040	1.00 14.	
		ATOM	1365	С	PHE F	192	56.97	1 53.908	13.040	1.00 14.	01 A
1,02		MOTA	1366	0	PHE F	192	57.33	8 53.864	14.216	1.00 15.	.20 A
ļak.	35	ATOM	1367	N	MSE F	193	55.90	1 53.248	12.598	1.00 12.	52 A
		ATOM	1368	CA	MSE A		55.09	3 52.408	13.496	1.00 13.	30 A
		ATOM	1369	СВ	MSE A		53.58		13.337	1.00 15.	39 A
		ATOM	1370	CG	MSE A		53.00		14.029	1.00 17.	
		MOTA	1371	SE	MSE F		53.50		15.886	1.00 27.	
	40	ATOM	1372	CE	MSE F		54.84		15.340		.34 A
		MOTA	1373	C	MSE F		55.31			1.00 13.	
		ATOM	1374	Ö	MSE F		54.88			1.00 13.	
		ATOM	1375	N	ASN A		55.95			1.00 12.	
			1376		ASN A		56.20			1.00 12.	
	45	ATOM		CA						1.00 12.	
	43	ATOM	1377	CB	ASN A		57.14				
		ATOM	1378	CG	ASN A		57.60			1.00 15.	
		MOTA	1379		ASN A		57.77			1.00 16.	
		ATOM	1380	ND2	ASN A		57.80		13.258	1.00 16.	
		MOTA	1381	С	ASN A		54.90			1.00 12.	
	50	MOTA	1382	0	ASN A	194	54.80		12.114	1.00 12.	
		ATOM	1383	N	VAL A		53.89		10.998	1.00 11.	
		ATOM	1384	CA	VAL A	195	52.61	6 48.353	10.806	1.00 12.	
		ATOM	1385	СВ	VAL A	195	51.59	9 48.684	11.937	1.00 12.	.67 A
		ATOM	1386	CG1	VAL A		52.14	8 48.252	13.288	1.00 14.	48 A
	55	ATOM	1387		VAL F		51.26		11.935	1.00 12.	78 A

		ATOM	1388	С	VAL	Α	195	52.000	48.793	9.486	1.00 11.41	A
		ATOM	1389	0	VAL			52.227	49.914	9.029	1.00 10.81	A
	5	MOTA	1390	N	THR			51.230	47.894	8.882	1.00 10.57	A
								50.536	48.171	7.627	1.00 10.52	A
		MOTA	1391	CA	THR						1.00 10.52	
		ATOM	1392	СВ	THR			51.191	47.438	6.429		A
		MOTA	1393	OG1	THR			52.554	47.862	6.288	1.00 11.89	A
		MOTA	1394	CG2	THR	A	196	50.440	47.753	5.143	1.00 11.97	A
		ATOM	1395	С	THR	Α	196	49.096	47.680	7.785	1.00 10.00	А
		ATOM	1396	0	THR	А	196	48.838	46.476	7.812	1.00 10.58	А
	10	ATOM	1397	N	PRO			48.137	48.610	7.903	1.00 9.62	A
		ATOM	1398	CD	PRO			48.314	50.068	8.022	1.00 9.15	Α
		MOTA	1399	CA	PRO			46.727	48.245	8.060	1.00 9.26	A
								46.024	49.600	8.096	1.00 9.55	A
		ATOM	1400	CB	PRO						1.00 9.10	A
	4.5	MOTA	1401	CG	PRO			47.040	50.487	8.717		
	15	ATOM	1402	С	PRO			46.192	47.375	6.929	1.00 9.50	A
		ATOM	1403	0	PRO	А	197	46.534	47.579	5.762	1.00 9.51	A
		ATOM	1404	N	THR	Α	198	45.355	46.404	7.279	1.00 9.16	A
		ATOM	1405	CA	THR	Α	198	44.743	45.540	6.278	1.00 9.69	A
		ATOM	1406	CB	THR	Α	198	45.125	44.060	6.466	1.00 10.81	A
1,22€ 1954	20	ATOM	1407	OG1	THR			44.660	43.600	7.739	1.00 11.74	Α
1,12		ATOM	1408	CG2	THR			46.635	43.887	6.368	1.00 11.84	A
			1409	C	THR			43.229	45.682	6.363	1.00 8.80	A
411		ATOM								5.671	1.00 8.81	A
		MOTA	1410	0	THR			42.491	44.986			
14	0.5	ATOM	1411	N	ALA			42.776	46.586	7.227	1.00 8.53	A
	25	MOTA	1412	CA	ALA			41.353	46.865	7.387	1.00 8.67	A
Ŋ.		ATOM	1413	CB	ALA	А	199	40.887	46.477	8.790	1.00 9.80	A
iji.		ATOM	1414	С	ALA	Α	199	41.146	48.360	7.157	1.00 8.79	A
21		ATOM	1415	0	ALA	Α	199	41.870	49.182	7.721	1.00 8.61	A
1170		ATOM	1416	N	SER	Α	200	40.162	48.707	6.332	1.00 8.10	A
Tetraff. Fortg	30	MOTA	1417	CA	SER	Α	200	39.873	50.102	6.023	1.00 8.52	A
		ATOM	1418	CB	SER			39.724	50.280	4.511	1.00 8.51	Α
		ATOM	1419	OG	SER			39.498	51.638	4.174	1.00 10.82	А
!.			1420	C	SER			38.620	50.603	6.740	1.00 8.16	А
		ATOM									1.00 8.18	A
jed:	25	ATOM	1421	0	SER			37.663	49.854	6.951		
i hear	35	ATOM	1422	N	TRP			38.646	51.882	7.101	1.00 8.42	A
		MOTA	1423	CA	TRP			37.563	52.539	7.827	1.00 8.34	A
		ATOM	1424	CB	TRP			38.057	52.782	9.263	1.00 8.58	A
		MOTA	1425	CG	TRP	Α	201	37.224	53.618	10.202	1.00 8.17	A
		MOTA	1426	CD2	TRP	Α	201	36.231	53.144	11.123	1.00 9.44	A
	40	MOTA	1427	CE2	TRP	Α	201	35.838	54.245	11.919	1.00 9.61	A
		ATOM	1428	CE3	TRP	Α	201	35.641	51.896	11.359	1.00 10.07	A
		ATOM	1429		TRP			37.375	54.950	10.461	1.00 9.35	А
		ATOM	1430		TRP			36.552	55.333	11.492	1.00 9.72	А
		ATOM	1431		TRP			34.882	54.135	12.935	1.00 9.92	A
	4 =										1.00 10.54	A
	45	ATOM	1432		TRP			34.688	51.784	12.372		
		ATOM	1433		TRP			34.321	52.900	13.147	1.00 10.12	A
		ATOM	1434	С	TRP			37.220	53.844	7.111	1.00 8.73	A
		MOTA	1435	0	TRP	A	201	37.995	54.796	7.144	1.00 9.70	A
		MOTA	1436	N	ALA	Α	202	36.066	53.873	6.447	1.00 8.52	A
	50	MOTA	1437	CA	ALA	Α	202	35.617	55.062	5.716	1.00 8.40	А
	-	ATOM	1438	СВ	ALA			35.678	54.808	4.211	1.00 9.54	A
		ATOM	1439	C	ALA			34.192	55.400	6.144	1.00 8.89	A
		ATOM	1440	0	ALA			33.220	55.018	5.495	1.00 8.55	A
									56.134	7.242	1.00 8.07	A
	EE	ATOM	1441	N	ILE			34.082				
	55	ATOM	1442	CA	ILE	Α	203	32.785	56.484	7.800	1.00 8.51	A

		MOTA	1443	CB	ILE	Α	203	32.842	56.503	9.354	1.00	8.05	Α
		ATOM	1444	CG2	ILE	Α	203	33.116	55.091	9.885	1.00	8.11	Α
		ATOM	1445	CG1	ILE	Α	203	33.907	57.500	9.832	1.00	9.39	A
	5	ATOM	1446	CD1	ILE	Α	203	33.900	57.737	11.341	1.00	8.65	Α
		ATOM	1447	С	ILE	Α	203	32.186	57.806	7.348	1.00	8.80	Α
		ATOM	1448	0	ILE	Α	203	31.025	58.073	7.648	1.00	8.92	А
		ATOM	1449	N	ASP	A	204	32.939	58.621	6.609	1.00	8.61	A
		ATOM	1450	CA	ASP			32.408	59.923	6.216		9.22	A
		ATOM	1451	СВ	ASP			33.146	61.022	6.987		8.73	А
	10	ATOM	1452	CG	ASP			32.240	62.188	7.356		9.80	А
		ATOM	1453		ASP			32.765	63.280	7.652		9.95	Α
		ATOM	1454		ASP			31.004	62.019	7.370	1.00 1		Α
		MOTA	1455	С	ASP			32.318	60.338	4.739	1.00	9.40	Α
		ATOM	1456	0	ASP			31.638	61.318	4.433	1.00 1	0.33	A
	15	ATOM	1457	N	PRO			33.009	59.641	3.815	1.00	9.27	Α
		ATOM	1458	CD	PRO			34.005	58.559	3.926	1.00 1		Α
		ATOM	1459	CA	PRO			32.872	60.086	2.418		9.44	Α
		ATOM	1460	СВ	PRO			33.667	59.040	1.641	1.00 1	0.86	Α
ê Ti		ATOM	1461	CG	PRO			34.756	58.679	2.611	1.00 1	1.93	Α
	20	ATOM	1462	С	PRO			31.384	60.090	2.055		9.61	Α
J		ATOM	1463	0	PRO			30.629	59.244	2.530	1.00 1		Α
164		ATOM	1464	N	PHE			30.964	61.032	1.214		9.55	А
17		ATOM	1465	CA	PHE			29.544	61.153	0.867		9.41	Α
		ATOM	1466	СВ	PHE			29.220	62.618	0.553		9.27	Α
	25	ATOM	1467	CG	PHE			30.037	63.607	1.354		9.04	Α
		ATOM	1468		PHE			30.301	63.389	2.705		8.94	A
		ATOM	1469		PHE			30.555	64.749	0.748		9.10	Α
21		ATOM	1470		PHE			31.074	64.294	3.440	1.00	8.93	A
		ATOM	1471	CE2	PHE			31.326	65.660	1.475		9.22	А
::::::::::::::::::::::::::::::::::::::	30	ATOM	1472	CZ	PHE			31.587	65.431	2.821		9.28	A
		ATOM	1473	С	PHE			29.169	60.246	-0.301	1.00	9.31	Α
iliaan ala		ATOM	1474	0	PHE			28.950	60.696	-1.427	1.00	9.75	А
ļut.		ATOM	1475	N	GLY			29.062	58.958	-0.005	1.00	8.61	А
		ATOM	1476	CA	GLY			28.775	57.982	-1.037	1.00	8.81	А
[.4·	35	ATOM	1477	С	ĢLY			30.072	57.210	-1.191	1.00	8.17	А
		ATOM	1478	0	GLY	A	207	31.137	57.730	-0.858	1.00	8.29	A
		ATOM	1479	N	HIS			30.001	55.990	-1.712	1.00	7.51	А
		ATOM	1480	CA	HIS	A	208	31.190	55.155	-1.851	1.00	7.28	А
		ATOM	1481	CB	HIS	Α	208	31.135	54.027	-0.819	1.00	7.61	A
	40	ATOM	1482	CG	HIS	Α	208	31.256	54.505	0.596	1.00	8.45	Α
		MOTA	1483	CD2	HIS	Α	208	30.314	54.797	1.523	1.00	8.55	A
		ATOM	1484	ND1	HIS	Α	208	32.471	54.778	1.185	1.00	9.69	A
		ATOM	1485	CE1	HIS	A	208	32.273	55.218	2.415	1.00 1	0.15	A
		MOTA	1486	NE2	HIS	Α	208	30.973	55.240	2.645	1.00	9.28	A
	45	MOTA	1487	С	HIS	Α	208	31.401	54.574	-3.242	1.00	7.09	A
		MOTA	1488	0	HIS	A	208	30.449	54.248	-3.960	1.00	7.30	A
		MOTA	1489	N	SER	A	209	32.673	54.429	-3.600	1.00	6.59	A
		ATOM	1490	CA	SER	A	209	33.068	53.925	-4.907	1.00	6.62	A
		ATOM	1491	CB	SER	Α	209	33.960	54.960	-5.598	1.00	6.86	Α
	50	ATOM	1492	OG	SER			34.520	54.434	-6.790		6.54	A
		ATOM	1493	С	SER			33.813	52.599	-4.864		7.08	A
		MOTA	1494	0	SER			34.622	52.360	-3.972		6.40	A
		MOTA	1495	N	PRO			33.548	51.717	-5.841		7.03	A
		ATOM	1496	CD	PRO			32.525	51.830	-6.895		7.72	А
	55	MOTA	1497	CA	PRO			34.221	50.415	-5.898		7.22	A

		ATOM	1498	СВ	PRO	A 210	33.456	49.675	-6.997	1.00 7.15	A
		ATOM	1499	CG		A 210		50.795	-7.889	1.00 7.88	А
		ATOM	1500	C		A 210		50.582	-6.211	1.00 7.12	А
		ATOM	1501	Ō		A 210		49.620	-6.181	1.00 6.74	A
	5	ATOM	1502	N		A 211		51.806	-6.529	1.00 6.80	
	Ū	ATOM	1503	CA		A 211		52.044	-6.793	1.00 7.50	
		ATOM	1504	CB		A 211		53.482	-7.288	1.00 7.37	A
		ATOM	1505	OG1		A 211		53.596	-8.613	1.00 8.05	A
		ATOM	1506	CG2		A 211		53.833	-7.292	1.00 8.53	A
	10	ATOM	1507	C		A 211		51.800	-5.510	1.00 7.51	A
	10	ATOM	1508	0		A 211		51.420	-5.554	1.00 7.20	A
			1509	N		A 211		52.017	-4.365	1.00 7.20	A
		MOTA	1510			A 212		51.801	-3.087	1.00 8.67	A
		MOTA MOTA	1511	CA CB		A 212		52.311	-1.933	1.00 11.85	A
	15							53.803	-2.011	1.00 16.12	A
	13	MOTA	1512	CG		A 212			-2.346	1.00 25.32	A
		MOTA	1513	SE		A 212		54.895			
		ATOM	1514	CE		A 212		54.743	-0.621	1.00 21.14 1.00 8.11	A A
		ATOM	1515	С		A 212		50.333	-2.883		
	20	ATOM	1516	0		A 212		50.025	-2.667	1.00 7.43	A
ı,İ	20	ATOM	1517	N		A 213		49.403	-2.937	1.00 7.29	A
ı,Ö		ATOM	1518	CD		A 213		49.497	-2.956	1.00 7.20	A
ijħ.		ATOM	1519	CA		A 213		48.014	-2.751	1.00 7.53	A
Ü		ATOM	1520	CB		A 213		47.222	-2.776	1.00 8.34	A
100	25	ATOM	1521	CG		A 213		48.141	-3.484	1.00 7.20	A
14. 161	25	ATOM	1522	C		A 213		47.581	-3.843	1.00 7.60	A
		ATOM	1523	0		A 213		46.734	-3.609	1.00 7.87	A
		ATOM	1524	N		A 214		48.166	-5.034	1.00 7.06	A
ă <u>i</u>		ATOM	1525	CA		A 214		47.822	-6.131	1.00 8.43	A
	0.0	ATOM	1526	CB		A 214		48.668	-7.367	1.00 8.58	A
	30	ATOM	1527	CG		A 214		48.408	-8.538	1.00 9.57	A
191		ATOM	1528	CD1		A 214		47.332	-9.398	1.00 11.97	A
		MOTA	1529	CE1		A 214			-10.507	1.00 12.57	A
		MOTA	1530	CD2		A 214		49.264	-8.808	1.00 8.93	A
	25	MOTA	1531	CE2		A 214		49.063	-9.908	1.00 10.94	A
ž ses	35	MOTA	1532	CZ		A 214			-10.757	1.00 11.50	A
		MOTA	1533	ОН		A 214			-11.874	1.00 13.46	A
		MOTA	1534	С		A 214		48.078	-5.705	1.00 8.88	A
		MOTA	1535	0		A 214		47.190	-5.783	1.00 9.14	A
	40	ATOM	1536	N		A 215		49.305	-5.262	1.00 7.76	A
	4 0	ATOM	1537	CA		A 215		49.702	-4.825	1.00 7.71	A
		ATOM	1538	СВ		A 215	43.060	51.229	-4.594	1.00 7.35	A
		ATOM	1539			A 215		51.616	-3.975	1.00 7.15	A
		ATOM	1540			A 215		51.961	-5.920	1.00 8.07	A
	45	ATOM	1541			A 215		53.466	-5.778	1.00 10.41	A
	45	ATOM	1542	С		A 215		48.990	-3.536	1.00 7.79	A
		MOTA	1543	0		A 215		48.491	-3.424	1.00 7.37	A
		MOTA	1544	N		A 216		48.931	-2.571	1.00 7.76	А
		ATOM	1545	CA		A 216		48.298	~1.290	1.00 7.87	A
		ATOM	1546	CB		A 216		48.452	-0.338	1.00 7.69	А
	50	ATOM	1547	CG		A 216		49.889	0.065	1.00 9.45	A
		MOTA	1548			A 216		49.897	0.863	1.00 10.13	A
		MOTA	1549	CD2		A 216		50.495	0.876	1.00 10.14	A
		MOTA	1550	С		A 216		46.823	-1.419	1.00 8.19	Α
		MOTA	1551	0		A 216		46.371	-0.823	1.00 7.52	А
	55	MOTA	1552	N	GLN .	A 217	42.392	46.081	-2.201	1.00 8.30	Α

		ATOM	1553	CA	GLN	Α	217	42.639	44.654	-2.381	1.00 8.72	A
		MOTA	1554	CB	GLN			41.504	44.043	-3.210	1.00 10.69	A
		MOTA	1555	CG	GLN			41.475	42.521	-3.264	1.00 11.14	Α
		MOTA	1556	CD	GLN			42.430	41.960	-4.290	1.00 13.44	Α
	5	ATOM	1557		GLN			42.639	42.561	-5.342	1.00 14.29	А
	·	ATOM	1558	NE2	GLN			43.002	40.796	-4.001	1.00 14.07	А
		ATOM	1559	C	GLN			44.002	44.415	-3.035	1.00 9.26	А
		ATOM	1560	0	GLN			44.649	43.394	-2.792	1.00 10.31	A
		ATOM	1561	N	LYS			44.442	45.367	-3.854	1.00 8.72	A
	10	ATOM	1562	CA	LYS			45.738	45.277	-4.522	1.00 8.85	A
	10		1563	CB	LYS			45.673	45.974	-5.884	1.00 9.16	A
		ATOM ATOM	1564					44.893	45.182	-6.925	1.00 9.85	A
				CG	LYS			44.693	45.996	-8.195	1.00 3.03	A
		MOTA	1565	CD	LYS			44.002	45.113	-9.372	1.00 11.30	A
	15	ATOM	1566	CE	LYS			43.099	44.252	-9.372 -9.123	1.00 11.30	A
	15	ATOM	1567	NZ	LYS						1.00 12.83	A
		ATOM	1568	С	LYS			46.837	45.899	-3.657		
		ATOM	1569	0	LYS			47.991	46.024	-4.079 -2.441	1.00 8.66	A A
		ATOM	1570	N	SER			46.469	46.286		1.00 8.09 1.00 8.36	A
	20	ATOM	1571	CA	SER			47.414	46.886	-1.513		A
	20	ATOM	1572	CB	SER			47.055	48.354	-1.260		A
ă		MOTA	1573	OG	SER			47.135	49.106	-2.464		A
M		MOTA	1574	C	SER			47.467	46.119	-0.192		A
		ATOM	1575	0	SER			47.783	46.688	0.852		
9. ≈≠ 9 949.9:	25	ATOM	1576	N	GLY			47.144	44.828	-0.256		A
192	25	MOTA	1577	CA	GLY			47.196	43.969	0.918	1.00 8.94 1.00 9.36	A A
		ATOM	1578	C	GLY			45.996	43.912	1.847		
M		ATOM	1579	0	GLY			45.996	43.126	2.794	1.00 9.85 1.00 9.14	A A
f)		ATOM	1580	N	PHE			44.971	44.717	1.593	1.00 9.14	A
	30	MOTA	1581	CA	PHE			43.805	44.721	2.471 2.198	1.00 7.99	A
. <u>"</u>	30	MOTA	1582	CB	PHE			42.925	45.940		1.00 7.33	A
M		MOTA	1583	CG	PHE			43.475	47.212	2.752		A
1.4		ATOM	1584		PHE			44.593	47.813	2.176 3.858	1.00 7.00 1.00 7.00	A
		MOTA	1585		PHE			42.881	47.812 48.993	2.695	1.00 7.00	A
ine.	25	ATOM	1586		PHE			45.112		4.387	1.00 7.19	A
	35	ATOM	1587		PHE			43.389	48.990 49.587	3.804	1.00 7.13	A
		MOTA	1588	CZ	PHE			44.511		2.388	1.00 7.27	A
		MOTA	1589	C	PHE			42.945	43.475 42.812	1.354	1.00 9.31	A
		ATOM	1590	0	PHE LYS			42.883	42.812	3.493	1.00 9.34	A
	40	ATOM	1591	N CA	LYS			42.269 41.393	42.024	3.575	1.00 3.34	A
	40	MOTA	1592							4.568	1.00 13.29	A
		ATOM	1593	CB	LYS			41.963 43.259	41.009 40.373	4.095	1.00 13.25	A
		ATOM	1594	CG	LYS				39.319	5.065	1.00 17.13	A
		ATOM	1595	CD	LYS			43.759			1.00 21.70	A
	45	ATOM	1596	CE	LYS			44.853	38.475 39.310	4.430 3.898	1.00 25.71	A
	43	ATOM	1597	ΝZ	LYS			45.964			1.00 23.38	A
		ATOM	1598	C	LYS			39.976	42.409	3.988 3.817	1.00 9.41	A
		ATOM	1599	0	LYS			39.045	41.623			
		MOTA	1600	N	ASN			39.810	43.618	4.520	1.00 7.78 1.00 8.74	A A
	50	MOTA	1601	CA	ASN			38.493	44.072	4.963		A
	50	MOTA	1602	CB	ASN			38.245	43.690	6.428	1.00 8.42	A A
		ATOM	1603	CG	ASN			38.351	42.205	6.680	1.00 9.69 1.00 12.33	A
		ATOM	1604		ASN			39.393	41.707	7.120		A A
		ATOM	1605		ASN			37.277	41.485	6.397		
	EF	ATOM	1606	C	ASN			38.326	45.577	4.865	1.00 8.67	A
	55	ATOM	1607	0	ASN	Α	223	39.296	46.321	4.958	1.00 8.40	А

		ATOM	1608	N	MET	Α	224	37.084	46.017	4.696	1.00 8.46	А
		ATOM	1609	CA	MET	Α	224	36.789	47.440	4.639	1.00 8.92	A
		ATOM	1610	CB	MET	Α	224	36.907	47.985	3.205	1.00 9.87	Α
		MOTA	1611	CG	MET			35.838	47.523	2.223	1.00 10.12	Α
	5	MOTA	1612	SD	MET			36.006	48.350	0.600	1.00 7.76	Α
	-	ATOM	1613	CE	MET			35.537	49.942	1.024	1.00 11.95	А
		ATOM	1614	С	MET			35.402	47.725	5.204	1.00 9.03	А
		ATOM	1615	Ō	MET			34.516	46.857	5.208	1.00 9.02	А
		ATOM	1616	N	LEU			35.232	48.942	5.704	1.00 8.45	A
	10	ATOM	1617	CA	LEU			33.968	49.371	6.274	1.00 7.61	А
	10	ATOM	1618	CB	LEU			34.106	49.510	7.795	1.00 7.96	A
		ATOM	1619	CG	LEU			32.908	50.089	8.556	1.00 8.82	A
		ATOM	1620		LEU			32.890	49.535	9.972	1.00 9.70	A
		ATOM	1621		LEU			32.974	51.612	8.562	1.00 8.60	A
	15	ATOM	1622	C	LEU			33.548	50.702	5.662	1.00 8.09	A
	10	ATOM	1623	0	LEU			34.374	51.600	5.483	1.00 7.68	A
		ATOM	1624	N	ILE			32.262	50.814	5.340	1.00 7.66	A
		ATOM	1625	CA	ILE			31.702	52.033	4.768	1.00 8.84	A
jai.		ATOM	1626	CB	ILE			31.376	51.846	3.266	1.00 8.66	A
	20	ATOM	1627	CG2				32.658	51.514	2.510	1.00 9.89	A
1,5	20	ATOM	1628		ILE			30.349	50.730	3.069	1.00 8.55	A
ŧ₫.		ATOM	1629	CD1	ILE			29.922	50.548	1.617	1.00 10.07	A
ijĪ.		ATOM	1630	C	ILE			30.453	52.428	5.557	1.00 8.74	A
13		ATOM	1631	0	ILE			29.889	51.610	6.291	1.00 8.14	A
(Ling	25	ATOM	1632	N	GLN			30.021	53.676	5.412	1.00 9.54	A
	2.5	ATOM	1633	CA	GLN			28.873	54.172	6.168	1.00 9.75	A
M		ATOM	1634	CB	GLN			29.391	54.976	7.372	1.00 9.88	A
		ATOM	1635	CG	GLN			28.464	56.067	7.921	1.00 11.96	A
ili Alema		ATOM	1636	CD	GLN			27.124	55.547	8.407	1.00 12.75	A
9	30	ATOM	1637	OE1	GLN			27.124	54.398	8.836	1.00 14.70	A
J	50	MOTA	1638	NE2	GLN			26.108	56.404	8.362	1.00 13.56	A
E)		ATOM	1639	C	GLN			27.846	55.006	5.405	1.00 10.51	A
4		ATOM	1640	Ö	GLN			26.645	54.738	5.481	1.00 10.31	A
		ATOM	1641	N	ARG			28.299	56.021	4.679	1.00 10.20	A
į.	35	ATOM	1642	CA	ARG			27.355	56.876	3.982	1.00 9.98	A
•	55	ATOM	1643	CB	ARG			27.947	58.273	3.781	1.00 9.92	A
		ATOM	1644	CG	ARG			28.069	59.090	5.065	1.00 10.20	A
			1645	CD	ARG			28.533	60.505	4.744	1.00 10.13	A
		MOTA MOTA	1646	NE	ARG			28.804	61.332	5.918	1.00 10.21	A
	40	ATOM	1647	CZ	ARG			27.894	62.037	6.585	1.00 10.21	A
	1 0	ATOM	1648		ARG			26.622	62.022	6.208	1.00 12.48	A
		ATOM	1649		ARG			28.268	62.786	7.616	1.00 12.71	A
			1650		ARG			26.817	56.352	2.666	1.00 10.13	A
		ATOM ATOM	1651	С	ARG			27.382	56.593	1.597	1.00 10.13	A
	45	ATOM	1652	O N	THR			25.714	55.621	2.770	1.00 11.44	A
	43	ATOM	1653	N CA	THR			25.025	55.072	1.617	1.00 9.89	A
					THR			25.125	53.531	1.560	1.00 10.00	A
		ATOM	1654	CB				24.514	52.964	2.724	1.00 10.00	A
		MOTA	1655	OG1							1.00 10.90	A
	50	MOTA	1656	CG2				26.583	53.096 55.490	1.493 1.778	1.00 10.02	A
	50	MOTA	1657	С	THR			23.569				A
		MOTA	1658	0	THR			23.106	55.742	2.894	1.00 11.00	
		ATOM	1659	N	HIS			22.856	55.573	0.661	1.00 9.52	A A
		ATOM	1660	CA	HIS			21.450	55.979	0.642	1.00 9.76	A
	S.F.	ATOM	1661	CB	HIS			20.883	55.708	-0.754	1.00 10.27	A
	55	ATOM	1662	CG	HIS	А	230	19.595	56.415	-1.043	1.00 10.51	А

		ATOM	1663	CD2	HIS	Α	230	19.286	57.353	-1.969	1.00 11.88	А
		ATOM	1664		HIS			18.427	56.153	-0.359	1.00 11.10	A
		ATOM	1665		HIS			17.454	56.899	-0.852	1.00 11.36	А
		MOTA	1666		HIS			17.949	57.636	-1.830	1.00 11.11	А
	5	MOTA	1667	С	HIS			20.637	55.234	1.704	1.00 9.83	Α
	·	ATOM	1668	Ö	HIS			20.735	54.018	1.826	1.00 10.51	A
		ATOM	1669	N	TYR			19.827	55.963	2.466	1.00 10.15	A
		ATOM	1670	CA	TYR			19.030	55.327	3.511	1.00 10.13	A
		ATOM	1671	CB	TYR			18.178	56.372	4.246	1.00 10.68	A
	10	ATOM	1672	CG	TYR			17.197	57.136	3.381	1.00 11.51	A
	10	MOTA	1673		TYR			15.910	56.648	3.151	1.00 10.48	A
		MOTA	1674	CE1	TYR			14.997	57.361	2.372	1.00 10.40	A
		ATOM	1675	CD2				17.552	58.359	2.805	1.00 11.02	A
		ATOM	1676	CE2	TYR			16.649	59.079	2.022	1.00 11.23	A
	15	ATOM	1677	CZ	TYR			15.373	58.573	1.813	1.00 11.02	A
	10	ATOM	1678	OH	TYR			14.470	59.278	1.054	1.00 12.91	A
		MOTA	1679	C	TYR			18.155	54.188	2.984	1.00 12.31	A
		MOTA	1680	0	TYR			17.897	53.220	3.699	1.00 12.09	A
\$ 1000 <u>0</u>		MOTA	1681	N	SER			17.710	54.288	1.736	1.00 10.94	A
	20	ATOM	1682	CA	SER			16.876	53.238	1.155	1.00 10.94	A
Ų	20	ATOM	1683	CB	SER			16.257	53.708	-0.163	1.00 12.92	A
ij.		ATOM	1684	OG	SER			15.307	54.731	0.063	1.00 12.32	A
		ATOM	1685	C	SER			17.692	51.976	0.915	1.00 13.20	A
		ATOM	1686		SER			17.176	50.861	1.025	1.00 11.64	A
W.	25	ATOM	1687	O N	VAL			18.967	52.158	0.580	1.00 11.60	A
finit finit	2.5	ATOM	1688	CA	VAL			19.868	51.038	0.336	1.00 11.31	A
197		ATOM	1689	CB	VAL			21.197	51.527	-0.295	1.00 10.85	A
ai		ATOM	1690		VAL			22.222	50.406	-0.300	1.00 10.33	A
		ATOM	1691		VAL			20.945	51.999	-1.724	1.00 11.98	A
	30	MOTA	1692	C	VAL			20.152	50.315	1.653	1.00 11.38	A
46.5	50	ATOM	1693	0	VAL			20.166	49.085	1.706	1.00 11.15	A
1000		ATOM	1694	N	LYS			20.379	51.080	2.716	1.00 10.86	A
į.		ATOM	1695	CA	LYS			20.632	50.477	4.020	1.00 10.69	A
		ATOM	1696	СВ	LYS			20.862	51.563	5.075	1.00 10.64	A
ŀŦ	35	ATOM	1697	CG	LYS			22.199	52.286	4.946	1.00 11.25	A
	00	ATOM	1698	CD	LYS			22.250	53.516	5.841	1.00 11.31	A
		ATOM	1699	CE	LYS			23.624	54.189	5.810	1.00 10.54	A
		ATOM	1700	NZ	LYS			24.597	53.574	6.772	1.00 10.11	A
		ATOM	1701	C	LYS			19.443	49.609	4.424	1.00 11.48	A
	40	ATOM	1702	Ō	LYS			19.619	48.484	4.884	1.00 11.20	А
		ATOM	1703	N	LYS			18.236	50.135	4.238	1.00 11.59	А
		ATOM	1704	CA	LYS			17.024	49.400	4.595	1.00 12.69	А
		ATOM	1705	СВ	LYS			15.789	50.286	4.401	1.00 13.05	А
		ATOM	1706	CG	LYS			14.479	49.630	4.827	1.00 13.80	A
	45	ATOM	1707	CD	LYS			13.312	50.593	4.692	1.00 14.78	A
	20	ATOM	1708	CE	LYS			12.016	49.963	5.174	1.00 16.08	A
		ATOM	1709	NZ	LYS			10.853	50.872	4.963	1.00 18.03	A
		ATOM	1710	C	LYS			16.878	48.122	3.775	1.00 12.66	А
		ATOM	1711	0	LYS			16.596	47.056	4.322	1.00 13.44	A
	50	MOTA	1712	N	GLU			17.084	48.230	2.467	1.00 13.43	A
	0.0	MOTA	1713	CA	GLU			16.962	47.085	1.572	1.00 13.76	A
		ATOM	1714	CB	GLU			17.160	47.531	0.119	1.00 15.66	A
		ATOM	1715	CG	GLU			16.930	46.435	-0.919	1.00 19.35	A
		ATOM	1716	CD	GLU			15.454	46.120	-1.139	1.00 21.36	A
	55	ATOM	1717		GLU			15.157	45.192	-1.921	1.00 23.68	A
	-				220	- •						

	ATOM	1718	OE2	GLU	Α	236	14.594	46.799	-0.539	1.00	23.54	А
	ATOM	1719	С	GLU	Α	236	17.963	45.983	1.908	1.00	13.53	Α
	ATOM	1720	0	GLU	Α	236	17.596	44.817	2.035	1.00	13.84	А
	ATOM	1721	N	LEU	Α	237	19.232	46.346	2.051	1.00	12.28	А
5	MOTA	1722	CA	LEU	Α	237	20.251	45.355	2.364	1.00	11.83	Α
	ATOM	1723	CB	LEU	Α	237	21.649	45.952	2.180	1.00	11.01	А
	ATOM	1724	CG	LEU	Α	237	21.993	46.436	0.767	1.00	12.53	А
	ATOM	1725	CD1	LEU	Α	237	23.396	47.036	0.776	1.00	13.20	А
	ATOM	1726	CD2	LEU	Α	237	21.905	45.280	-0.227	1.00	12.87	Α
10	ATOM	1727	С	LEU	Α	237	20.094	44.808	3.781	1.00	11.90	Α
	MOTA	1728	0	LEU	Α	237	20.376	43.640	4.032	1.00	12.05	А
	ATOM	1729	N	ALA	Α	238	19.641	45.647	4.706	1.00	12.02	А
	ATOM	1730	CA	ALA	Α	238	19.456	45.205	6.084	1.00	12.54	А
	ATOM	1731	СВ	ALA	Α	238	19.050	46.380	6.962	1.00	12.67	А
15	ATOM	1732	С	ALA	Α	238	18.389	44.115	6.146	1.00	13.90	A
	ATOM	1733	0	ALA	Α	238	18.547	43.120	6.853	1.00	13.71	Α
	ATOM	1734	N	GLN	Α	239	17.309	44.304	5.396	1.00	14.65	A
	ATOM	1735	CA	GLN	Α	239	16.216	43.335	5.391	1.00	16.12	A
	ATOM	1736	СВ			239	15.050	43.858	4.544	1.00	17.16	Α
20	ATOM	1737	CG			239	14.476	45.180	5.040	1.00	20.68	A
	ATOM	1738	CD	GLN	Α	239	13.320	45.684	4.193	1.00	21.84	Α
	MOTA	1739	OE1	GLN			13.385	45.678	2.962	1.00	24.34	А
	ATOM	1740	NE2			239	12.258	46.139	4.852	1.00	23.09	А
	ATOM	1741	С			239	16.649	41.959	4.888	1.00	16.39	А
25	ATOM	1742	0			239	16.067	40.944	5.267	1.00	16.74	А
	ATOM	1743	N	GLN	A	240	17.673	41.923	4.042	1.00	15.26	A
	ATOM	1744	CA			240	18.164	40.661	3.493		15.33	А
	ATOM	1745	СВ			240	18.389	40.803	1.986		17.66	А
	MOTA	1746	CG			240	17.204	41.396	1.241	1.00	20.48	А
30	ATOM	1747	CD			240	15.975	40.514	1.292	1.00	22.28	A
	ATOM	1748	OE1	GLN			14.857	40.979	1.065		25.19	А
	ATOM	1749	NE2			240	16.173	39.232	1.579		23.21	А
	ATOM	1750	С			240	19.471	40.250	4.155		14.44	А
	ATOM	1751	0			240	20.100	39.274	3.748	1.00	13.55	А
35	ATOM	1752	N			241	19.863	40.991	5.187	1.00	13.13	А
	ATOM	1753	CA			241	21.115	40.740	5.889	1.00	12.19	А
	ATOM	1754	СВ			241	21.053	39.430	6.684		13.02	А
	ATOM	1755	CG			241	20.025	39.457	7.810		15.06	А
	ATOM	1756	CD			241	20.249	38.323	8.798	1.00	16.85	A
40	ATOM	1757	NE	ARG	Α	241	20.265	37.021	8.141		19.77	А
	ATOM	1758	CZ	ARG			20.649	35.894	8.732		20.67	А
	ATOM	1759		ARG			21.049	35.910	9.997		21.43	A
	ATOM	1760		ARG			20.641	34.754	8.056		21.54	А
	ATOM	1761	С			241	22.254	40.694	4.876		11.37	A
45	ATOM	1762	0			241	23.069	39.774	4.863		10.26	А
	ATOM	1763	N			242	22.290	41.706	4.016		11.13	А
	ATOM	1764	CA			242	23.323	41.811	2.995		10.98	A
•	ATOM	1765	CB			242	22.682	41.863	1.602		11.23	A
	ATOM	1766	CG			242	21.894	40.607	1.237		11.67	A
50	ATOM	1767	CD			242	21.187	40.729	-0.098		11.70	A
	ATOM	1768		GLN			20.617	41.770	-0.412		13.37	A
	ATOM	1769		GLN			21.208	39.656	-0.884		12.95	A
	ATOM	1770	C			242	24.178	43.055	3.233		10.67	A
	ATOM	1771	0			242	24.176	43.651	2.289		10.60	A
55		1772	N			242	24.093	43.440	4.500		10.44	A
	ATOM	1112	TA	ULU	~	647	64.366	47.440	4.500	1.00	10.44	n

		ATOM	1773	CA	LEU	Α	243	25.128	44.606	4.852	1.00	9.93	А
		ATOM	1774	СВ	LEU			24.704	45.154	6.216	1.00	10.62	А
		ATOM	1775	CG	LEU			23.328	45.826	6.244	1.00	11.00	А
		ATOM	1776		LEU			22.896	46.028	7.688	1.00	11.97	Α
	5	ATOM	1777		LEU			23.370	47.158	5.490		11.86	A
	•	ATOM	1778	C	LEU			26.613	44.260	4.853		10.25	A
		ATOM	1779	0	LEU			27.465	45.144	4.827		10.36	A
		ATOM	1780	N	GLU			26.922	42.969	4.911	1.00	9.67	A
		ATOM	1781	CA	GLU			28.306	42.519	4.841	1.00	8.98	A
	10	ATOM	1782	CB	GLU			28.693	41.695	6.073	1.00	9.51	A
	10	ATOM	1783	CG	GLU			28.875	42.595	7.291		10.20	A
		ATOM	1784	CD	GLU			29.326	41.864	8.538		10.20	A
		ATOM	1785		GLU			28.790	40.773	8.818		11.28	A
		ATOM	1786		GLU			30.207	40.773	9.249		10.96	A
	15	ATOM	1787	C	GLU			28.339	41.703	3.569	1.00	9.24	A
	15											10.29	
		ATOM	1788	0	GLU			27.536	40.788	3.386			A
		ATOM	1789	N	PHE			29.260	42.053	2.680	1.00	8.67	A
1.700		ATOM	1790	CA	PHE			29.337	41.396	1.389	1.00	8.89	A
	20	ATOM	1791	CB	PHE			28.379	42.114	0.431	1.00	8.55	A
١Ū	20	ATOM	1792	CG	PHE			28.521	43.615	0.444	1.00	8.85	A
1,2		ATOM	1793		PHE			29.493	44.250	-0.327	1.00	8.41	A
M		ATOM	1794		PHE			27.689	44.392	1.245	1.00	8.58	A
Ann dall		ATOM	1795		PHE			29.631	45.646	-0.300	1.00	8.68	A
166	0=	ATOM	1796		PHE			27.817	45.782	1.283	1.00	8.53	A
	25	MOTA	1797	CZ	PHE			28.790	46.409	0.509	1.00	8.54	A
100		ATOM	1798	С	PHE			30.730	41.382	0.793	1.00	8.60	A
1,31		ATOM	1799	0	PHE			31.619	42.115	1.235	1.00	8.82	A
¥?		ATOM	1800	N	LEU			30.917	40.532	-0.212	1.00	8.87	A
	20	ATOM	1801	CA	LEU			32.187	40.446	-0.913	1.00	8.06	А
ŧ,Ū	30	ATOM	1802	CB	LEU			32.466	39.001	-1.333	1.00	9.53	А
ng.		ATOM	1803	CG	LEU			32.800	38.076	-0.154		11.53	А
lah .		ATOM	1804		LEU			32.772	36.626	-0.602		13.79	A
		ATOM	1805		LEU			34.166	38.447	0.402		13.15	А
		ATOM	1806	С	LEU			32.033	41.364	-2.120	1.00	8.24	A
₿. ± .	35	ATOM	1807	0	LEU			31.392	41.019	-3.115	1.00	8.61	A
		MOTA	1808	N	TRP	Α	247	32.611	42.552	-2.002	1.00	7.63	A
		MOTA	1809	CA	TRP	Α	247	32.522	43.574	-3.037	1.00	7.37	А
		ATOM	1810	СВ	TRP	A	247	32.718	44.947	-2.388	1.00	7.55	А
		MOTA	1811	CG	TRP	Α	247	32.238	46.118	-3.199	1.00	7.27	A
	4 0	ATOM	1812	CD2	TRP	Α	247	32.240	47.492	-2.791	1.00	7.02	A
		ATOM	1813	CE2	TRP	Α	247	31.685	48.247	-3.850	1.00	7.18	A
		MOTA	1814	CE3	TRP	A	247	32.659	48.160	-1.631	1.00	7.47	A
		ATOM	1815	CD1	TRP	Α	247	31.699	46.093	-4.455	1.00	7.86	A
		ATOM	1816		TRP			31.363	47.371	-4.853	1.00	7.55	A
	45	MOTA	1817		TRP			31.538	49.638	-3.784	1.00	8.05	A
		ATOM	1818		TRP			32.514	49.542	-1.565	1.00	6.90	А
		ATOM	1819		TRP			31.958	50.267	-2.636	1.00	7.34	А
		MOTA	1820	С	TRP			33.546	43.372	-4.145	1.00	7.92	А
		ATOM	1821	0	TRP			34.749	43.559	-3.939	1.00	8.05	А
	50	ATOM	1822	N	ARG			33.062	42.993	-5.326	1.00	7.42	A
		MOTA	1823	CA	ARG			33.932	42.786	-6.477	1.00	7.87	A
		ATOM	1824	CB	ARG .			33.690	41.415	-7.109	1.00	8.53	A
		ATOM	1825	CG	ARG .			32.327	41.413	- 7.775	1.00	8.64	A
		MOTA	1826	CD	ARG .			32.236	39.987	-8.581		10.45	A
	55	ATOM	1827	NE	ARG .			32.236	38.807	-7.727		11.08	A
		A I OP	1021	INC	ANG .	~	240	JZ. JZ 0	50.007	"1.121	1.00	11.00	n

		ATOM	1828	CZ	ARG A	248	32.317	37.558 -8.185	1.00 12.28	Α
		ATOM	1829	NH1	ARG A	248	32.228	37.330 -9.488	1.00 13.21	Α
		MOTA	1830	NH2	ARG A	248	32.382	36.537 -7.339	1.00 12.78	A
		ATOM	1831	С	ARG A	248	33.645	43.856 -7.521	1.00 7.64	Α
	5	MOTA	1832	0	ARG A	248	32.605	44.515 -7.474	1.00 7.91	A
		ATOM	1833	N	GLN A	249	34.560	44.010 -8.472	1.00 7.42	Α
		ATOM	1834	CA	GLN A	249	34.389	44.994 -9.531	1.00 7.77	Α
		MOTA	1835	CB	GLN A	249	35.713	45.188 -10.272	1.00 8.10	Α
		ATOM	1836	CG	GLN A	249	36.832	45.675 -9.353	1.00 8.22	Α
	10	MOTA	1837	CD	GLN A	249	36.448	46.940 -8.598	1.00 8.40	Α
		ATOM	1838	OE1	GLN A	249	36.432	46.970 -7.358	1.00 10.28	Α
		ATOM	1839	NE2	GLN A	249	36.136	47.993 -9.341	1.00 7.14	A
		MOTA	1840	С	GLN A	249	33.280	44.546 -10.480	1.00 8.70	Α
		ATOM	1841	0	GLN A	249	33.042	43.349 -10.654	1.00 9.20	A
	15	MOTA	1842	N	ILE A		32.600	45.511 -11.093	1.00 9.12	Α
		MOTA	1843	CA	ILE A		31.480	45.200 -11.979	1.00 9.19	Α
		ATOM	1844	CB	ILE A		30.791	46.503 -12.492	1.00 9.85	Α
		MOTA	1845	CG2	ILE A		30.175	47.259 -11.313	1.00 10.38	A
\$1 220 }		ATOM	1846		ILE A		31.797	47.390 -13.227	1.00 11.20	Α
and the trip the	20	MOTA	1847		ILE A		31.197	48.698 -13.725	1.00 11.47	Α
1,5,5		ATOM	1848	С	ILE A		31.780	44.286 -13.169	1.00 10.02	A
1, <u>1</u>		ATOM	1849	0	ILE A		30.878	43.622 -13.675	1.00 10.72	A
Į,T		ATOM	1850	N	TRP A		33.037	44.231 -13.594	1.00 10.74	Α
		ATOM	1851	CA	TRP A		33.428	43.399 -14.736	1.00 12.59	Α
120	25	ATOM	1852	СВ	TRP A		34.414	44.165 -15.611	1.00 12.54	A
A Company		ATOM	1853	CG	TRP A		35.724	44.337 -14.919	1.00 14.60	Α
M		ATOM	1854		TRP A		36.151	45.478 -14.175	1.00 14.42	Α
		ATOM	1855		TRP A		37.400	45.159 -13.599	1.00 15.03	A
}; ;: ~ *;		ATOM	1856		TRP A		35.597	46.742 -13.934	1.00 14.69	Α
	30	ATOM	1857		TRP A		36.708	43.397 -14.775	1.00 15.34	A
1,55		ATOM	1858		TRP A		37.715	43.882 -13.982	1.00 15.12	Α
		ATOM	1859		TRP A		38.107	46.058 -12.795	1.00 15.07	A
j _e £		ATOM	1860		TRP A		36.299	47.636 -13.136	1.00 15.29	A
		ATOM	1861		TRP A		37.541	47.288 -12.577	1.00 15.76	Α
1.1	35	ATOM	1862	С	TRP A		34.096	42.089 -14.328	1.00 13.99	A
-		ATOM	1863	0	TRP A		34.429	41.268 -15.182	1.00 13.91	A
		ATOM	1864	N	ASP A		34.301	41.903 -13.030	1.00 13.53	A
		ATOM	1865	CA	ASP A		34.982	40.719 -12.509	1.00 14.68	A
		ATOM	1866	CB	ASP A		35.582	41.062 -11.142	1.00 13.69	A
	40	ATOM	1867	CG	ASP A		36.337	39.907 -10.523	1.00 15.31	A
		ATOM						38.929 -11.241	1.00 16.51	Α
		ATOM	1869		ASP A		36.637	39.988 -9.313	1.00 15.02	Α
		ATCM	1870	C	ASP A		34.111	39.469 -12.413	1.00 15.48	А
		ATOM	1871	Ō	ASP A		33.357	39.291 -11.459	1.00 15.34	А
	45	ATOM	1872	N	ASN A		34.239	38.587 -13.398	1.00 16.95	A
		ATOM	1873	CA	ASN A		33.440	37.371 -13.420	1.00 18.55	Α
		ATOM	1874	СВ	ASN A		33.378	36.815 -14.844	1.00 20.21	Α
		ATOM	1875	CG	ASN A		32.069	36.113 -15.132	1.00 22.48	А
		ATOM	1876		ASN A		31.805	35.031 -14.615	1.00 24.09	A
	50	ATOM	1877		ASN A		31.231	36.740 -15.950	1.00 23.35	A
	50	ATOM	1878	C	ASN A		33.948	36.293 -12.466	1.00 23.33	A
		ATOM	1879	0	ASN A		33.158	35.532 -11.911	1.00 10.73	A
		ATOM	1880	N	LYS A		35.261	36.235 -12.269	1.00 19.53	A
					LYS A		35.850	35.229 -11.388	1.00 19.33	A
	55	ATOM	1881	CA			37.322	35.010 -11.751	1.00 23.00	A
	<i>JJ</i>	ATOM	1882	CB	LYS A	234	31.342	55.010 -11.751	1.00 23.00	A

				~~	T.1/0 =	25.	22 051	22 705	11 101	1 00 05 67	70
		MOTA	1883	CG	LYS A		37.954		-11.101	1.00 25.67	A
		MOTA	1884	CD	LYS A		39.370		-11.616	1.00 27.42	A
		ATOM	1885	CE	LYS A		39.961		-11.089	1.00 28.32	Α
		MOTA	1886	NZ	LYS A		40.034	32.228	-9.602	1.00 28.78	Α
	5	MOTA	1887	С	LYS A	254	35.730	35.616	-9.916	1.00 20.23	Α
		ATOM	1888	0	LYS A	254	35.481	34.762	-9.061	1.00 20.70	Α
		MOTA	1889	N	GLY A	255	35.914	36.901	-9.624	1.00 19.06	Α
		ATOM	1890	CA	GLY A	255	35.811	37.372	-8.253	1.00 17.83	А
		ATOM	1891	С	GLY A		37.130	37.609	-7.534	1.00 17.06	А
	10	MOTA	1892	0	GLY A		37.140	37.810	-6.320	1.00 16.43	A
		ATOM	1893	N	ASP A		38.239	37.608	-8.268	1.00 16.71	Α
		ATOM	1894	CA	ASP A		39.548	37.818	-7.652	1.00 17.09	
		ATOM	1895	СВ	ASP A		40.670	37.546	-8.658	1.00 20.30	А
		ATOM	1896	CG	ASP A		40.680	36.113	-9.147	1.00 22.97	А
	15	MOTA	1897		ASP A		40.535	35.196	-8.309	1.00 25.34	A
	10	ATOM	1898		ASP A		40.844		-10.368	1.00 25.26	A
		ATOM	1899	C	ASP A		39.738	39.212	-7.059	1.00 15.66	A
		ATOM	1900	0	ASP A		40.640	39.426	-6.253	1.00 15.19	A
Jito.		ATOM	1901	N	THR A		38.900	40.163	-7.457	1.00 13.15	A
	20	MOTA	1901	CA	THR A		39.010	41.523	-6.926	1.00 13.00	A
ŧ,Ū	20	ATOM	1902	CB	THR A		38.501	42.579	-7.926	1.00 12.11	A
‡ 📮		ATOM	1903	OG1	THR A		37.112	42.348	-8.194	1.00 12.11	A
477		ATOM	1904	CG2	THR A		39.303	42.528	-9.218	1.00 12.56	A
			1905		THR A		38.204	41.716	-5.644	1.00 12.50	A
	25	ATOM		C			38.301	42.759	-5.000	1.00 12.37	A
	23	MOTA	1907	O	THR A		37.420	40.707	-5.277	1.00 13.02	A
		ATOM	1908	N	ALA A		36.568	40.785	-4.096	1.00 10.47	A
		ATOM	1909	CA	ALA A		35.819	39.475	-3.907	1.00 10.47	A
#1 		ATOM	1910	CB					-2.794	1.00 10.09	A
	30	ATOM	1911	C	ALA A		37.262 38.349	41.162 40.675	-2.481	1.00 10.03	A
ı,Q	30	ATOM	1912	0	ALA A		36.608	42.038	-2.401	1.00 11.10	A
M.		ATOM	1913	N	LEU A				-2.041	1.00 9.11	A
į.a.		MOTA	1914	CA	LEU A		37.106 37.709	42.486 43.889	-0.747	1.00 9.11	A
install in the second		ATOM	1915	CB	LEU A				0.416	1.00 8.75	A
	35	ATOM	1916	CG	LEU A		38.434	44.373	0.416	1.00 8.30	A
#	33	MOTA	1917				39.634	43.466	0.702	1.00 10.21	A
		ATOM	1918		LEU A		38.890	45.818			A
		ATOM	1919	C	LEU A		35.923	42.506	0.211	1.00 8.64	A
		MOTA	1920	0	LEU A		34.890	43.119	-0.074	1.00 8.01 1.00 8.58	A
	40	ATOM	1921	N	PHE A		36.068	41.829	1.347	1.00 8.58	A
	40	ATOM	1922	CA	PHE A		34.997		2.333		A
		MOTA	1923	CB	PHE A		35.405	40.932	3.533		
		ATOM	1924	CG	PHE A		34.301	40.738	4.529	1.00 9.48	A
		ATOM	1925		PHE A		33.310	39.786	4.310	1.00 11.03	A
	4.5	MOTA	1926		PHE A		34.233	41.523	5.670	1.00 9.44	A
	45	ATOM	1927		PHE A		32.269	39.619	5.217	1.00 10.46	A
		ATOM	1928		PHE A		33.194	41.366	6.587	1.00 10.60	A
		ATOM	1929	CZ	PHE A		32.210	40.413	6.358	1.00 10.54	A
		ATOM	1930	С	PHE A		34.669	43.198	2.800	1.00 7.96	A
	50	MOTA	1931	0	PHE A		35.548	43.943	3.240	1.00 8.25	A
	50	ATOM	1932	N	THR A		33.393	43.555	2.723	1.00 7.64	A
		ATOM	1933	CA	THR A		32.951	44.887	3.098	1.00 7.65	A
		ATOM	1934	CB	THR A		32.467	45.656	1.849	1.00 8.01	A
		ATOM	1935		THR A		33.522	45.707	0.881	1.00 8.64	A
		ATOM	1936	CG2	THR A		32.039	47.064	2.212	1.00 8.16	A
	55	ATOM	1937	С	THR A	261	31.817	44.875	4.111	1.00 7.68	А

		ATOM	1938	0	THR	A	261	30.870	44.096	3.992	1.00	8.41	А
		ATOM	1939	N	HIS	A	262	31.922	45.758	5.100	1.00	6.93	Α
		MOTA	1940	CA	HIS			30.901	45.912	6.123	1.00	7.90	Α
		MOTA	1941	CB	HIS	Α	262	31.519	45.801	7.522	1.00	8.17	A
	5	MOTA	1942	CG	HIS	Α	262	30.578	46.163	8.632	1.00	8.05	A
		ATOM	1943		HIS			30.160	47.368	9.091	1.00	8.34	A
		MOTA	1944		HIS			29.948	45.218	9.414	1.00	8.69	A
		MOTA	1945		HIS			29.185	45.825	10.308	1.00	8.74	Α
		MOTA	1946	NE2	HIS			29.296	47.130	10.134	1.00	9.13	A
	10	MOTA	1947	С	HIS			30.274	47.293	5.964	1.00	8.58	A
		MOTA	1948	0	HIS			30.973	48.307	6.012	1.00	8.10	A
		MOTA	1949	N	MSE			28.965	47.333	5.747	1.00	8.26	A
		MOTA	1950	CA	MSE			28.257	48.600	5.633	1.00	9.29	A
		MOTA	1951	СВ	MSE	A	263	27.263	48.572	4.469		10.58	A
	15	ATOM	1952	CG	MSE			26.474	49.869	4.305		10.98	A
		ATOM	1953	SE	MSE			24.989	49.720	3.067		16.18	A
		ATOM	1954	CE	MSE			25.986	49.431	1.449		13.27	A
		MOTA	1955	С	MSE			27.493	48.822	6.935	1.00	9.90	A
		MOTA	1956	0	MSE			26.734	47.949	7.372		10.15	A
1	20	MOTA	1957	N	MSE			27.709	49.973	7.567	1.00	9.48	A
ij		ATOM	1958	CA	MSE			27.000	50.294	8.800		11.38	A
1,77		MOTA	1959	CB	MSE			27.599	51.544	9.434		13.97	А
		MOTA	1960	CG	MSE	A	264	28.998	51.276	9.969		18.24	A
9,mm25 5:8 €		MOTA	1961	SE	MSE			29.922	52.842	10.605		30.43	А
14	25	ATOM	1962	CE	MSE			28.649	53.434	11.918		25.37	A
		MOTA	1963	С	MSE			25.544	50.473	8.391		10.63	A
1,11		ATOM	1964	0	MSE			25.254	50.951	7.296		10.87	А
5 }		MOTA	1965	N	PRO			24.605	50.109	9.274		10.69	А
	20	MOTA	1966	CD	PRO			24.819	49.543	10.620		10.66	A
	30	ATOM	1967	CA	PRO			23.177	50.203	8.973		11.01	A
14		MOTA	1968	CB	PRO			22.610	49.052	9.785		10.51	A
jus.		MOTA	1969	CG	PRO			23.392	49.183	11.069		10.95	A
		MOTA	1970	С	PRO			22.390	51.468	9.232		11.27	A
	0.5	ATOM	1971	0	PRO			21.302	51.635	8.681		11.33	A
i de	35	ATOM	1972	N	PHE			22.929	52.361	10.048		11.35	A
		ATOM	1973	CA	PHE			22.177	53.540	10.421		11.37	A
		ATOM	1974	СВ	PHE			22.134	53.589	11.952		10.85	A
		MOTA	1975	CG	PHE			21.602	52.310	12.573		10.84	A
	40	MOTA	1976		PHE			22.225	51.740	13.679		10.84	A
	40	MOTA	1977		PHE			20.487	51.669	12.031		11.07	A
		ATOM	1978		PHE			21.748	50.551	14.236		10.63	A
		ATOM	1979		PHE			20.001	50.481	12.580		10.14	A
		ATOM	1980	CZ	PHE			20.633	49.921	13.682	1.00	9.88	A
	4 =	ATOM	1981	С	PHE			22.564	54.885	9.812		11.36	A
	45	MOTA	1982	0	PHE			23.495	54.988	9.017		11.87	A
		ATOM	1983	N	TYR			21.812	55.907	10.203		11.40	A
		ATOM	1984	CA	TYR			21.949	57.273	9.709		11.71	A
		ATOM	1985	CB	TYR			20.814	58.099	10.319		12.66	A
	50	ATOM	1986	CG	TYR			20.908	59.594	10.143		12.67	A
	50	ATOM	1987		TYR			20.575	60.204	8.934		13.51	A
		ATOM	1988		TYR			20.613	61.597	8.798		14.20	A
		MOTA	1989		TYR			21.288	60.406	11.211		13.73	A
		ATOM	1990		TYR			21.330	61.786	11.085		14.05	A
	- F	ATOM	1991	CZ	TYR			20.990	62.376	9.882		15.05	A
	55	ATOM	1992	ОН	TYR	A	267	21.017	63.747	9.784	1.00	16.91	A

	ATOM	1993	С	TYR	А	267	23.284	57.987	9.916	1.00 11.75	А
	ATOM	1994	0	TYR	A	267	23.685	58.807	9.085	1.00 11.62	А
	MOTA	1995	N	SER			23.973	57.684	11.008	1.00 11.53	А
_	MOTA	1996	CA	SER	A	268	25.240	58.346	11.299	1.00 10.96	А
5	MOTA	1997	CB	SER	Α	268	24.975	59.572	12.178	1.00 11.47	A
	ATOM	1998	OG	SER			26.180	60.184	12.600	1.00 13.03	A
	ATOM	1999	С	SER			26.236	57.432	11.992	1.00 10.90	A
	MOTA	2000	0	SER			25.891	56.329	12.417	1.00 10.38	A
	ATOM	2001	N	TYR			27.480	57.892	12.094	1.00 10.75	A
10	MOTA	2002	CA	TYR			28.514	57.127	12.775	1.00 10.42	A
	MOTA	2003	CB	TYR			29.872	57.282	12.069	1.00 10.68	A
	ATOM	2004	CG	TYR			30.306	58.714	11.844	1.00 10.71	A
	ATOM	2005	CD1	TYR	Α	269	30.698	59.529	12.909	1.00 10.21	·A
	MOTA	2006	CE1	TYR	A	269	31.055	60.864	12.702	1.00 11.28	A
15	ATOM	2007		TYR			30.288	59.265	10.565	1.00 10.99	A
	ATOM	2008	CE2	TYR	Α	269	30.642	60.595	10.348	1.00 10.95	А
	ATOM	2009	CZ	TYR	Α	269	31.020	61.387	11.420	1.00 11.31	A
	ATOM	2010	OH	TYR	Α	269	31.331	62.711	11.209	1.00 11.28	Α
	MOTA	2011	С	TYR	A	269	28.627	57.587	14.227	1.00 10.96	A
20	ATOM	2012	0	TYR	Α	269	29.444	57.060	14.981	1.00 10.70	A
	ATOM	2013	N	ASP	Α	270	27.816	58.570	14.625	1.00 10.74	A
	ATOM	2014	CA	ASP	Α	270	27.879	59.042	16.006	1.00 10.41	A
	ATOM	2015	СВ	ASP	Α	270	27.196	60.416	16.178	1.00 11.57	A
	MOTA	2016	CG	ASP	A	270	25.710	60.404	15.861	1.00 11.76	A
25	ATOM	2017	OD1	ASP	Α	270	25.095	59.320	15.799	1.00 12.51	A
	ATOM	2018	OD2	ASP	Α	270	25.150	61.513	15.693	1.00 14.61	А
	ATOM	2019	С	ASP	Α	270	27.292	57.998	16.950	1.00 10.60	A
	ATOM	2020	0	ASP	Α	270	26.684	57.020	16.511	1.00 10.31	A
	ATOM	2021	N	ILE			27.492	58.192	18.246	1.00 10.34	А
30	ATOM	2022	CA	ILE	A	271	27.027	57.212	19.214	1.00 10.55	А
	ATOM	2023	СВ	ILE	Α	271	27.536	57.588	20.622	1.00 10.92	А
	ATOM	2024	CG2	ILE	Α	271	27.035	56.589	21.659	1.00 10.05	A
	ATOM	2025	CG1	ILE			29.071	57.563	20.602	1.00 11.08	А
	ATOM	2026	CD1	ILE			29.745	58.096	21.846	1.00 11.63	A
35	ATOM	2027	С	ILE			25.518	56.956	19.185	1.00 10.58	А
	ATOM	2028	0	ILE	Α	271	25.083	55.807	19.260	1.00 10.41	А
	ATOM	2029	N	PRO			24.700	58.011	19.057	1.00 10.98	А
	ATOM	2030	CD	PRO	Α	272	24.985	59.453	19.156	1.00 11.33	A
	ATOM	2031	CA	PRO	Α	272	23.255	57.758	19.022	1.00 10.92	А
40	MOTA	2032	CB	PRO			22.665	59.160	18.878	1.00 11.04	А
	ATOM	2033	CG	PRO			23.659	60.016	19.626	1.00 11.74	А
	ATOM	2034	С	PRO			22.826	56.829	17.876	1.00 11.69	А
	ATOM	2035	0	PRO			21.785	56.180	17.959	1.00 11.90	А
	ATOM	2036	N	HIS			23.629	56.750	16.815	1.00 10.74	А
45	ATOM	2037	CA	HIS			23.278	55.908	15.672	1.00 10.78	А
	ATOM	2038	СВ	HIS			23.224	56.767	14.405	1.00 10.02	А
	ATOM	2039	CG	HIS			22.235	57.887	14.491	1.00 11.26	А
	ATOM	2040		HIS			22.380	59.169	14.901	1.00 9.55	Α
	ATOM	2041		HIS			20.897	57.727	14.202	1.00 12.40	А
50	ATOM	2042		HIS			20.261	58.862	14.433	1.00 9.52	A
	ATOM	2043		HIS			21.137	59.753	14.859	1.00 13.79	A
	ATOM	2044	C	HIS			24.195	54.711	15.456	1.00 11.09	A
	ATOM	2045	0	HIS			24.260	54.165	14.353	1.00 11.15	A
	ATOM	2046	N	THR			24.891	54.287	16.508	1.00 11.34	A
55	ATOM	2047	CA	THR			25.782	53.140	16.385	1.00 11.09	A
	011		011					22.1.0			

	ATOM	2048	СВ	THR	Д	274	27.269	53.578	16.377	1.00 12.31	А
	ATOM	2049	OG1				27.513	54.504	17.442	1.00 11.45	А
	ATOM	2050	CG2	THR			27.620	54.224	15.053	1.00 11.39	А
	ATOM	2051	C	THR			25.598	52.033	17.425	1.00 11.88	А
5	ATOM	2052	Ö	THR			26.215	50.976	17.311	1.00 12.79	A
Ū	ATOM	2053	N			275	24.752	52.250	18.429	1.00 11.97	A
	ATOM	2054	CA			275	24.543	51.214	19.445	1.00 12.65	A
	ATOM	2055	С			275	23.361	50.321	19.105	1.00 12.65	A
	ATOM	2056	0			275	23.291	49.169	19.536	1.00 12.89	A
10	ATOM	2057	CB			275	24.315	51.845	20.824	1.00 13.02	A
10		2058	SG			275	22.586	51.943	21.413	1.00 13.02	A
	ATOM	2059				276	22.433	50.865	18.329	1.00 13.25	A
	MOTA		N			276	21.243	50.130	17.954	1.00 12.83	A
	ATOM	2060	CA						17.139	1.00 12.82	A
15	ATOM	2061	С			276	20.329	51.021		1.00 12.23	
15	ATOM	2062	0			276	20.704	52.149	16.813		A
	MOTA	2063	N			277	19.113	50.558	16.812	1.00 11.60	A
	ATOM	2064	CD			277	18.595	49.229	17.187	1.00 11.96	A
	MOTA	2065	CA			277	18.123	51.294	16.021	1.00 12.04	A
20	ATOM	2066	CB			277	17.119	50.208	15.650	1.00 12.10	A
20	ATOM	2067	CG			277	17.116	49.352	16.885	1.00 10.84	A
	ATOM	2068	С			277	17.435	52.502	16.652	1.00 11.83	A
	ATOM	2069	0			277	16.844	53.310	15.938	1.00 12.62	A
	ATOM	2070	N	ASP			17.500	52.628	17.973	1.00 12.62	A
0-	ATOM	2071	CA			278	16.834	53.741	18.650	1.00 13.37	A
25	ATOM	2072	СВ			278	15.969	53.213	19.799	1.00 13.54	A
	ATOM	2073	CG			278	15.045	54.274	20.368	1.00 14.93	A
	ATOM	2074		ASP			15.194	55.456	20.004	1.00 15.72	A
	MOTA	2075		ASP			14.168	53.925	21.185	1.00 15.70	А
• •	ATOM	2076	С			278	17.814	54.773	19.194	1.00 13.23	A
30	ATOM	2077	0			278	18.426	54.568	20.241	1.00 13.99	A
	ATOM	2078	N			279	17.962	55.908	18.493	1.00 13.69	A
	ATOM	2079	CD			279	17.262	56.315	17.263	1.00 13.30	A
	ATOM	2080	CA			279	18.886	56.952	18.944	1.00 13.86	A
	ATOM	2081	CB			279	18.834	57.975	17.809	1.00 13.40	А
35	ATOM	2082	CG	PRO	Α	279	17.448	57.815	17.269	1.00 13.26	A
	ATOM	2083	С			279	18.537	57.555	20.302	1.00 14.31	A
	ATOM	2084	0	PRO	Α	279	19.415	58.042	21.011	1.00 14.71	А
	ATOM	2085	N	LYS	Α	280	17.260	57.518	20.669	1.00 15.00	А
	ATOM	2086	CA	LYS	Α	280	16.841	58.061	21.957	1.00 16.46	А
4 0	ATOM	2087	СВ	LYS	Α	280	15.316	58.029	22.084	1.00 17.95	A
	ATOM	2088	CG	LYS	Α	280	14.798	58.566	23.413	1.00 20.74	А
	ATOM	2089	CD	LYS	Α	280	13.277	58.545	23.472	1.00 23.13	A
	ATOM	2090	CE	LYS	Α	280	12.733	57.124	23.426	1.00 25.35	А
	ATOM	2091	NZ	LYS	Α	280	13.197	56.302	24.586	1.00 27.48	А
45	ATOM	2092	С	LYS	Α	280	17.469	57.244	23.080	1.00 16.31	A
	ATOM	2093	0			280	17.770	57.771	24.152	1.00 17.31	А
	ATOM	2094	N	VAL			17.669	55.953	22.828	1.00 15.76	А
	ATOM	2095	CA	VAL			18.276	55.067	23.814	1.00 14.99	A
	ATOM	2096	СВ	VAL			17.837	53.598	23.602	1.00 15.83	А
50	ATOM	2097		VAL			18.565	52.687	24.585	1.00 15.97	Α
- •	ATOM	2098		VAL			16.328	53.475	23.775	1.00 15.53	А
	ATOM	2099	C			281	19.797	55.132	23.720	1.00 14.77	А
	ATOM	2100	0	VAL			20.488	55.285	24.725	1.00 13.51	A
	ATOM	2101	N			282	20.317	55.021	22.503	1.00 13.87	A
55	ATOM	2102	CA			282	21.759	55.056	22.296	1.00 13.58	A
	ATON	£ 1 V L	O.A.	010	. 1	_02	21.133	33.030	,		• •

				_		0.0.0				1 00 12 00	
		ATOM	2103	С	CYS A		22.40			1.00 13.26	A
		ATOM	2104	0	CYS A	282	23.52	24 56.32	20 23.308	1.00 12.92	A
		MOTA	2105	CB	CYS A	282	22.08	36 54.88	34 20.814	1.00 13.80	Α
		ATOM	2106	SG	CYS A	282	21.70	7 53.24	13 20.122	1.00 13.83	Α
	5	ATOM	2107	N	CYS A		21.69		8 22.673	1.00 12.97	A
	•	ATOM	2108	CA	CYS A		22.2			1.00 13.37	А
		ATOM	2109	C	CYS A		22.5			1.00 13.10	А
					CYS A		23.43			1.00 12.57	A
		ATOM	2110	0						1.00 12.37	A
	10	MOTA	2111	СВ	CYS A		21.2				
	10	ATOM	2112	SG	CYS A		22.12			1.00 17.02	A
		ATOM	2113	N	GLN A		21.80			1.00 12.91	A
		MOTA	2114	CA	GLN A	284	22.00			1.00 13.67	A
		ATOM	2115	CB	GLN A	284	20.82	21 57.00		1.00 14.14	А
		ATOM	2116	CG	GLN A	284	19.49	96 57.71		1.00 15.49	A
	15	MOTA	2117	CD	GLN A	284	18.33	38 56.90	5 27.790	1.00 15.23	Α
		ATOM	2118	OE1	GLN A	284	18.3	56.53	30 28.962	1.00 17.22	Α
		ATOM	2119		GLN A		17.3	72 56.62	22 26.929	1.00 16.85	Α
		ATOM	2120	С	GLN A		23.29			1.00 13.15	A
41,404;		ATOM	2121	0	GLN A		23.6			1.00 13.79	A
	20	MOTA	2122	N	PHE A		23.9			1.00 12.56	А
ı,D	20	ATOM	2123	CA	PHE A		25.20			1.00 12.06	A
Ü			2123	CB	PHE A		25.0			1.00 12.17	A
m		ATOM	2124		PHE A		24.0			1.00 12.29	A
		ATOM		CG						1.00 12.23	A
ij	25	MOTA	2126	CD1	PHE A		24.48			1.00 12.70	A
# 1545 #15 5.	25	ATOM	2127	CD2			22.72				
19		MOTA	2128		PHE A		23.50			1.00 13.11	A
1,5 5		ATOM	2129	CE2			21.80			1.00 14.38	A
51		MOTA	2130	CZ	PHE A		22.2			1.00 13.55	A
		ATOM	2131	С	PHE A		26.4			1.00 11.90	A
	30	MOTA	2132	0	PHE A	285	27.40			1.00 11.81	Α
		ATOM	2133	N	ASP A	286	26.23	33 57.76		1.00 11.70	Α
		MOTA	2134	CA	ASP A	286	27.30	3 58.63	39 25.038	1.00 11.79	A
į, ak		ATOM	2135	CB	ASP A	286	26.8	14 59.53	33 23.889	1.00 11.90	А
		ATOM	2136	CG	ASP A	286	27.9	14 60.46	54 23.414	1.00 11.44	Α
[.d.	35	ATOM	2137	OD1	ASP A	286	28.9	66 60.56	59 24.128	1.00 12.21	А
		ATOM	2138		ASP A		27.79	0 61.09	22.347	1.00 11.77	A
		ATOM	2139	С	ASP A		27.49			1.00 11.97	А
		ATOM	2140	Ō	ASP A		26.8			1.00 11.60	A
		ATOM	2141	N	PHE A		28.3			1.00 11.38	А
	40	ATOM	2142	CA	PHE A		28.6			1.00 12.39	A
	40				PHE A		29.3			1.00 12.11	A
		ATOM	2143	CB			28.6			1.00 12.28	A
		ATOM	2144	CG	PHE A					1.00 12.20	A
		ATOM	2145		PHE A		28.82			1.00 12.95	A
	4.5	ATOM	2146		PHE A		27.7				
	45	ATOM	2147		PHE A		28.0			1.00 13.22	A
		MOTA	2148		PHE A		26.9			1.00 12.89	A
		ATOM	2149	CZ	PHE A		27.1			1.00 13.07	A
		ATOM	2150	С	PHE A	287	29.20			1.00 13.59	A
		ATOM	2151	0	PHE A	287	29.40	05 61.69		1.00 14.01	A
	50	ATOM	2152	N	LYS A	288	29.48	32 61.62	20 27.227	1.00 14.45	Α
		ATOM	2153	CA	LYS A	288	30.0	23 62.9	70 27.149	1.00 15.44	A
		ATOM	2154	СВ	LYS A		30.9		28 25.924	1.00 15.21	Α
		ATOM	2155	CG	LYS A		31.6			1.00 14.15	А
		ATOM	2156	CD	LYS A		32.5			1.00 13.96	А
	55	ATOM	2157	CE	LYS A		33.4			1.00 13.29	А
	55	A I OF	2131		א כינו	200	77.4			1100 10.00	

	ATOM	2158	NZ	LYS			34.359	66.002	23.603	1.00 14.76 1.00 16.58	A A
	ATOM	2159	С	LYS			28.866	63.968	27.060	1.00 16.38	A
	ATOM	2160	0	LYS			29.080	65.176	27.059	1.00 17.84	A
_	ATOM	2161	N	ARG			27.637	63.461	27.007	1.00 17.84	
5	ATOM	2162	CA	ARG			26.471	64.335	26.894		A A
	MOTA	2163	CB	ARG			25.498	63.776	25.852	1.00 18.53	
	MOTA	2164	CG	ARG			26.110	63.516	24.487	1.00 16.64	A
	MOTA	2165	CD	ARG			25.021	63.230	23.477	1.00 15.80	A
4.0	MOTA	2166	NĒ	ARG			25.545	62.852	22.168	1.00 13.90	A
10	MOTA	2167	CZ			289	25.094	63.347	21.021	1.00 14.07	A
	MOTA	2168		ARG			24.119	64.248	21.023	1.00 14.29	A
	ATOM	2169		ARG			25.603	62.931	19.871	1.00 13.78	A
	MOTA	2170	С	ARG			25.701	64.571	28.193	1.00 23.25	A
	MOTA	2171	0	ARG			24.473	64.635	28.174	1.00 23.38	A
15	MOTA	2172	N	MSE			26.398	64.717	29.314	1.00 27.14	A
	MOTA	2173	CA	MSE			25.691	64.930	30.572	1.00 30.56	A
	ATOM	2174	CB	MSE			26.309	64.067	31.681	1.00 33.87	A
	MOTA	2175	CG	MSE			26.223	62.573	31.377	1.00 37.48	A
	MOTA	2176	SE	MSE			26.343	61.383	32.902	1.00 42.06	A
20	ATOM	2177	CE			290	28.253	61.093	32.905	1.00 40.46	A
	MOTA	2178	С			290	25.578	66.389	31.019	1.00 30.92	A
	MOTA	2179	0	MSE	Α	290	24.852	66.690	31.971	1.00 31.50	A
	MOTA	2180	N			291	26.278	67.294	30.338	1.00 30.12	A
	MOTA	2181	CA			291	26.182	68.701	30.698	1.00 28.34	A
25	MOTA	2182	С			291	27.455	69.531	30.733	1.00 27.01	A
	MOTA	2183	0			291	27.560	70.545	30.040	1.00 27.30	А
	MOTA	2184	N	SER	Α	292	28.422	69.108	31.541	1.00 24.80	A
	MOTA	2185	CA	SER	Α	292	29.682	69.831	31.686	1.00 21.72	A
	MOTA	2186	CB			292	30.552	69.152	32.744	1.00 22.53	А
30	MOTA	2187	OG	SER	Α	292	30.886	67.833	32.350	1.00 22.82	A
	ATOM	2188	С	SER	Α	292	30.488	69.984	30.396	1.00 20.05	А
	ATOM	2189	0	SER	Α	292	31.362	70.848	30.311	1.00 18.67	A
	ATOM	2190	N	PHE	Α	293	30.202	69.151	29.399	1.00 18.19	А
	ATOM	2191	CA	PHE	A	293	30.919	69.220	28.128	1.00 17.46	А
35	ATOM	2192	CB	PHE	Α	293	31.136	67.819	27.546	1.00 16.98	A
	ATOM	2193	CG	PHE	Α	293	32.049	66.956	28.361	1.00 15.98	A
	ATOM	2194	CD1	PHE	Α	293	31.535	66.066	29.295	1.00 16.38	А
	ATOM	2195	CD2	PHE	Α	293	33.427	67.032	28.191	1.00 15.50	A
	ATOM	2196	CE1	PHE	Α	293	32.383	65.258	30.050	1.00 16.47	A
40	MOTA	2197	CE2	PHE	Α	293	34.284	66.230	28.939	1.00 16.29	A
	ATOM	2198	CZ	PHE	А	293	33.760	65.342	29.870	1.00 16.44	A
	ATOM	2199	С	PHE	Α	293	30.197	70.070	27.095	1.00 17.55	A
	ATOM	2200	0	PHE	Α	293	30.658	70.200	25.960	1.00 16.94	A
	ATOM	2201	N	GLY	Α	294	29.064	70.644	27.484	1.00 17.08	A
45	ATOM	2202	CA	GLY	Α	294	28.314	71.471	26.557	1.00 17.66	A
	ATOM	2203	С	GLY	Α	294	27.592	70.671	25.489	1.00 17.59	А
	ATOM	2204	0	GLY	Α	294	27.302	71.181	24.407	1.00 18.62	A
	ATOM	2205	N			295	27.309	69.409	25.788	1.00 17.46	А
	ATOM	2206	CA	LEU	Α	295	26.604	68.543	24.854	1.00 17.07	A
50	ATOM	2207	СВ			295	27.514	67.400	24.392	1.00 17.17	Α
	ATOM	2208	CG			295	28.783	67.787	23.625	1.00 17.32	A
	ATOM	2209		LEU			29.647	66.554	23.406	1.00 17.83	А
	ATOM	2210		LEU			28.405	68.418	22.290	1.00 17.46	A
	ATOM	2211	С			295	25.379	67.972	25.552	1.00 17.33	А
55	ATOM	2212	Ō			295	25.344	67.869	26.777	1.00 18.00	А

	ATOM	2213	N	SER	Δ	296	24.371	67.610	24.769	1.00 17.40	А
	ATOM	2214	CA			296	23.147	67.047	25.319	1.00 18.18	A
	ATOM	2215	CB			296	22.162	68.167	25.679	1.00 18.23	A
	ATOM	2216	OG			296	21.859	68.973	24.553	1.00 19.31	A
5	ATOM	2217	C			296	22.518	66.101	24.310	1.00 18.33	А
Ŭ	ATOM	2218	Ö			296	23.031	65.931	23.203	1.00 17.91	А
	ATOM	2219	N	CYS			21.415	65.476	24.708	1.00 18.81	А
	ATOM	2220	CA	CYS			20.698	64.549	23.842	1.00 19.38	А
	ATOM	2221	C	CYS			19.429	65.212	23.322	1.00 19.86	А
10	ATOM	2222	Ö	CYS			18.542	65.562	24.098	1.00 20.21	А
10	ATOM	2223	СВ	CYS			20.355	63.268	24.609	1.00 19.22	А
	ATOM	2224	SG	CYS			21.786	62.162	24.797	1.00 20.14	А
	ATOM	2225	N	PRO			19.332	65.400	21.997	1.00 19.98	А
	ATOM	2226	CD	PRO			20.330	65.059	20.966	1.00 20.03	А
15	ATOM	2227	CA	PRO			18.154	66.031	21.395	1.00 20.06	А
	ATOM	2228	CB	PRO			18.557	66.189	19.929	1.00 20.76	А
	ATOM	2229	CG	PRO			19.494	65.041	19.709	1.00 20.96	A
	ATOM	2230	C	PRO			16.863	65.237	21.571	1.00 19.89	Α
	ATOM	2231	0	PRO			15.772	65.778	21.399	1.00 20.14	А
20	ATOM	2232	N			299	16.991	63.961	21.921	1.00 19.23	Α
	ATOM	2233	CA			299	15.827	63.105	22.124	1.00 19.96	А
	ATOM	2234	CB			299	16.196	61.644	21.833	1.00 19.20	А
	ATOM	2235	CG			299	16.531	61.437	20.381	1.00 18.35	A
	ATOM	2236	CD2	TRP			17.834	61.499	19.781	1.00 18.02	A
25	ATOM	2237	CE2	TRP			17.662	61.346	18.388	1.00 18.44	A
	ATOM	2238	CE3	TRP	Α	299	19.130	61.674	20.286	1.00 18.03	A
	ATOM	2239	CD1	TRP			15.650	61.248	19.355	1.00 18.36	A
	ATOM	2240	NE1	TRP	Α	299	16.321	61.193	18.155	1.00 19.07	A
	ATOM	2241	CZ2	TRP	Α	299	18.738	61.363	17.492	1.00 18.17	Α
30	MOTA	2242	CZ3	TRP	Α	299	20.200	61.691	19.396	1.00 18.03	А
	ATOM	2243	CH2	TRP	Α	299	19.994	61.536	18.014	1.00 17.94	А
	ATOM	2244	С	TRP	Α	299	15.247	63.270	23.530	1.00 21.12	A
	ATOM	2245	0	TRP	Α	299	14.351	62.531	23.937	1.00 21.04	A
	ATOM	2246	N	LYS	Α	300	15.783	64.242	24.265	1.00 22.23	A
35	MOTA	2247	CA	LYS	Α	300	15.306	64.591	25.606	1.00 23.37	A
	ATOM	2248	CB			300	13.795	64.829	25.552	1.00 25.08	А
	ATOM	2249	CG	LYS			13.400	65.978	24.643	1.00 26.56	A
	ATOM	2250	CD	LYS			11.890	66.085	24.505	1.00 28.74	A
	ATOM	2251	CE	LYS			11.497	67.267	23.632	1.00 29.78	A
40	ATOM	2252	ΝZ	LYS	A	300	11.893	68.565	24.247		А
	ATOM	2253	С	LYS			15.628		26.806	1.00 23.29	А
	ATOM	2254	0	LYS			15.248		27.930	1.00 23.45	A
	ATOM	2255	N	VAL			16.304	62.579	26.591	1.00 22.63	A
	ATOM	2256	CA	VAL			16.669	61.717	27.709	1.00 22.92	A
45	ATOM	2257	CB	VAL			16.100	60.282	27.553	1.00 23.50	. A
	ATOM	2258		VAL			14.582	60.328	27.567	1.00 24.41	A
	ATOM	2259		VAL			16.582	59.652	26.267	1.00 24.91	A
	ATOM	2260	С	VAL			18.191	61.686	27.783	1.00 22.38	A
	ATOM	2261	0	VAL			18.858	61.129	26.913	1.00 22.87	A
50	ATOM	2262	N			302	18.761	62.302	28.827	1.00 21.66	A
	ATOM	2263	CD			302	18.069	63.041	29.901	1.00 21.57	A
	ATOM	2264	CA			302	20.211	62.357	29.013	1.00 21.07	A
	ATOM	2265	CB			302	20.375	63.492	30.014	1.00 21.45	A
	MOTA	2266	CG			302	19.184	63.292	30.899	1.00 21.82	A
55	ATOM	2267	С	PRO	А	302	20.851	61.072	29.513	1.00 20.23	A

			0000	_		200	00 170	60 100	20 050	1 00 10 52	70
		MOTA	2268	0	PRO A		20.179	60.190	30.050	1.00 19.53	A
		MOTA	2269	N	PRO A		22.170	60.941	29.323	1.00 19.82	A
		ATOM	2270	CD	PRO A	303	23.105	61.819	28.596	1.00 19.67	А
		MOTA	2271	CA	PRO A	303	22.835	59.730	29.798	1.00 19.97	Α
	5	ATOM	2272	CB	PRO A	303	24.204	59.800	29.126	1.00 19.91	Α
		ATOM	2273	CG	PRO A	303	24.451	61.270	29.009	1.00 20.65	Α
		ATOM	2274	С	PRO A	303	22.919	59.817	31.318	1.00 20.45	Α
		ATOM	2275	0	PRO A		22.892	60.912	31.885	1.00 19.95	A
		ATOM	2276	N	ARG A		22.992	58.667	31.974	1.00 20.89	А
	10	ATOM	2277	CA	ARG A		23.089	58.624	33.424	1.00 22.04	А
	10	ATOM	2278	СВ	ARG A		21.800	58.056	34.028	1.00 25.18	A
		ATOM	2279	CG	ARG A		20.672	59.076	34.134	1.00 29.57	A
		ATOM	2280	CD	ARG A		19.369	58.432	34.585	1.00 33.21	A
		ATOM	2281	NE	ARG A		18.778	57.601	33.540	1.00 36.53	A
	15	ATOM	2282	CZ	ARG A		18.380	58.058	32.355	1.00 37.94	A
	10	ATOM	2283		ARG A		18.509	59.345	32.057	1.00 38.71	A
		ATOM	2284		ARG A		17.851	57.229	31.466	1.00 38.86	A
		ATOM	2285	C	ARG A		24.279	57.777	33.837	1.00 20.49	A
		ATOM	2286	0	ARG A		24.479	56.674	33.323	1.00 20.45	A
	20		2287	N	THR A		25.074	58.306	34.760	1.00 19.34	A
1,5	20	ATOM	2288		THR A		26.251	57.607	35.253	1.00 19.33	A
1,70		ATOM	2289	CA CB	THR A		26.231	58.378	36.418	1.00 18.40	A
m		ATOM	2290		THR A		27.312	59.671	35.955	1.00 20.18	A
		ATOM	2290		THR A		28.108	57.629	36.957	1.00 20.10	A
194	25	ATOM	2291	C	THR A		25.864	56.216	35.729	1.00 13.03	A
	23	ATOM	2292	0	THR A		24.914	56.056	36.495	1.00 17.72	A
ii iigii		ATOM	2293		ILE A		26.598	55.210	35.268	1.00 16.09	A
ijĦ.		ATOM		N			26.396	53.837	35.654	1.00 16.08	A
ži		ATOM	2295	CA	ILE A		27.031	52.829	34.738	1.00 15.03	A
	30	ATOM	2296 2297	CB	ILE A		26.627	51.403	35.113	1.00 13.93	A
	30	ATOM	2297		ILE A		26.689	53.110	33.271	1.00 14.91	A
		ATOM	2299		ILE A		25.204	53.110	32.943	1.00 14.74	A
ļab.		ATOM	2300	CDI	ILE A		26.717	53.579	37.101	1.00 17.29	A
		ATOM	2300		ILE A		27.793	53.989	37.539	1.00 17.23	A
i.e.	35	MOTA		0	SER A		25.844	52.898	37.839	1.00 17.38	A
il town .	33	ATOM	2302	N			26.094	52.571	39.238	1.00 20.08	A
		ATOM	2303 2304	CA	SER A		25.339	53.539	40.151	1.00 20.08	A
		ATOM	2304	CB OG	SER A		23.939	53.426	39.962	1.00 20.03	A
		ATOM	2306	C	SER A		25.605	51.154	39.496	1.00 20.03	A
	40	ATOM			SER F		24.856	50.600	38.696		A
	40	MOTA	2307	O N	ASP A		26.029	50.569	40.612	1.00 20.70	A
		ATOM	2308 2309	N CA	ASP A		25.604	49.219	40.012	1.00 24.81	A
		ATOM		CB			26.243	48.800	42.292	1.00 24.01	A
		ATOM	2310		ASP A		27.729	48.532	42.292	1.00 20.28	A
	45	ATOM	2311 2312	CG			28.388	49.190	41.333	1.00 27.47	A
	40	ATOM			ASP A		28.244	47.669	42.907	1.00 28.87	A
		ATOM	2313	C C	ASP A		24.085	49.210	41.099	1.00 25.44	A
		ATOM	2314						40.908	1.00 23.44	A
		MOTA	2315	0	ASP A		23.432	48.185		1.00 24.73	A
	50	ATOM	2316	N	GLN A		23.538	50.378	41.412		
	50	ATOM	2317	CA	GLN A		22.107	50.564	41.600	1.00 27.19	A
		ATOM	2318	CB	GLN A		21.883	51.841	42.418	1.00 29.43	A
		ATOM	2319	CG	GLN A		20.482	52.415	42.375	1.00 31.19	A
		ATOM	2320	CD	GLN A		20.365	53.699	43.180	1.00 32.48	A
	EE	ATOM	2321		GLN A		19.472	54.514	42.948	1.00 32.65	A
	55	ATOM	2322	NE2	GLN A	309	21.266	53.880	44.138	1.00 32.90	А

		MOTA	2323	_	GLN	7	300	21.283	50.609	40.311	1.00 26.61	А
				C								
		ATOM	2324	0	GLN			20.108	50.240	40.314	1.00 27.21	A
		MOTA	2325	N	ASN			21.882	51.052	39.209	1.00 24.42	A
	_	MOTA	2326	CA	ASN			21.139	51.128	37.954	1.00 22.88	Α
	5	MOTA	2327	CB	ASN	A	310	21.008	52.585	37.493	1.00 22.90	Α
		MOTA	2328	CG	ASN	Α	310	22.346	53.205	37.122	1.00 22.75	A
		ATOM	2329	OD1	ASN	Α	310	23.261	52.516	36.676	1.00 21.47	Α
		ATOM	2330		ASN			22.455	54.519	37.287	1.00 22.83	А
		ATOM	2331	С	ASN			21.733	50.314	36.810	1.00 21.49	Α
	10	ATOM	2332	0	ASN			21.148	50.254	35.731	1.00 20.97	A
	10		2333	N				22.881	49.687	37.042	1.00 20.37	A
		ATOM			VAL						1.00 20.33	
		ATOM	2334	CA	VAL			23.546	48.921 48.332	35.991		A
		ATOM	2335	CB	VAL			24.889		36.490	1.00 18.91	A
	15	ATOM	2336		VAL			24.640	47.246	37.520	1.00 18.96	A
	15	MOTA	2337		VAL			25.696	47.800	35.307	1.00 18.47	Α
		MOTA	2338	С	VAL			22.694	47.804	35.389	1.00 19.05	Α
		MOTA	2339	0	VAL	A	311	22.771	47.546	34.189	1.00 17.89	Α
		MOTA	2340	N	ALA			21.876	47.146	36.205	1.00 17.91	А
		MOTA	2341	CA	ALA			21.035	46.073	35.685	1.00 17.95	A
ı Pa	20	ATOM	2342	СВ	ALA	Α	312	20.285	45.386	36.828	1.00 18.00	Α
, PA		MOTA	2343	С	ALA	Α	312	20.046	46.609	34.652	1.00 17.45	A
		ATOM	2344	0	ALA	Α	312	19.895	46.033	33.574	1.00 17.13	Α
1,9 5		ATOM	2345	N	ALA			19.377	47.712	34.979	1.00 17.23	A
		ATOM	2346	CA	ALA			18.402	48.316	34.074	1.00 17.36	Α
14,1	25	ATOM	2347	СВ	ALA			17.579	49.367	34.813	1.00 17.23	А
		ATOM	2348	C	ALA			19.075	48.946	32.858	1.00 17.38	A
		ATOM	2349	0	ALA			18.564	48.854	31.741	1.00 17.13	А
		ATOM	2350	N	ARG			20.215	49.591	33.079	1.00 17.13	A
23 31 205 ,		ATOM	2351	CA	ARG			20.213	50.228	31.989	1.00 17.33	A
	30	MOTA	2352	CB	ARG			22.158	50.220	32.533	1.00 17.17	A
:5	50									33.433	1.00 17.21	A
Ŋ		ATOM	2353	CG	ARG			21.830	52.175			
[i.d.		ATOM	2354	CD	ARG			21.503	53.431	32.635	1.00 19.04	A
		MOTA	2355	NE	ARG			20.138	53.446	32.120	1.00 19.31	A
j.d.	25	ATOM	2356	CZ	ARG			19.659	54.381	31.306	1.00 19.35	A
ÿ.·••·	35	ATOM	2357		ARG			20.439	55.377	30.905	1.00 19.82	А
		MOTA	2358		ARG			18.396	54.338	30.908	1.00 19.86	Α
		ATOM	2359	С	ARG			21.420	49.160	31.010	1.00 17.18	А
		ATOM	2360	О	ARG	A	314	21.331	49.334	29.794	1.00 16.68	Α
		MOTA	2361	N	SER			21.921	48.053	31.552	1.00 16.39	Α
	4 0	ATOM	2362	CA	SER	A	315	22.412	46.949	30.730	1.00 16.91	A
		ATOM	2363	CB	SER	Α	315	23.072	45.879	31.605	1.00 15.94	A
		ATOM	2364	OG	SER	Α	315	24.251	46.372	32.217	1.00 16.96	A
		ATOM	2365	С	SER	A	315	21.284	46.319	29.929	1.00 17.74	А
		ATOM	2366	0	SER	Α	315	21.459	45.971	28.762	1.00 17.97	А
	45	MOTA	2367	N	ASP			20.123	46.170	30.556	1.00 18.36	A
		ATOM	2368	CA	ASP			18.985	45.573	29.875	1.00 19.21	A
		ATOM	2369	СВ	ASP			17.793	45.468	30.828	1.00 20.93	А
		ATOM	2370	CG	ASP			16.731	44.517	30.321	1.00 22.66	A
		ATOM	2371		ASP			17.092	43.388	29.924	1.00 24.08	A
	50	ATOM	2372		ASP			15.541	44.894	30.324	1.00 24.17	A
	50											
		ATOM	2373	C	ASP			18.611	46.398	28.645	1.00 18.91	A
		ATOM	2374	0	ASP			18.301	45.845	27.590	1.00 18.46	A
		ATOM	2375	N	LEU .			18.653	47.720	28.778	1.00 18.38	A
	CE	ATOM	2376	CA	LEU			18.328	48.606	27.664	1.00 18.01	A
	55	ATOM	2377	CB	LEU	A	317	18.223	50.057	28.145	1.00 19.46	А

	ATOM	2378	CG	LEU	Α	317	16.873	50.535	28.682	1.00 20.53	А
	ATOM	2379	CD1	LEU			17.023	51.923	29.288	1.00 21.52	A
	ATOM	2380		LEU			15.855	50.552	27.550	1.00 20.96	Α
	ATOM	2381	С	LEU			19.376	48.523	26.560	1.00 16.98	Α
5	ATOM	2382	0	LEU			19.041	48.400	25.382	1.00 16.42	Α
	ATOM	2383	N	LEU			20.645	48.583	26.949	1.00 15.99	А
	ATOM	2384	CA	LEU			21.740	48.541	25.985	1.00 15.31	Α
	ATOM	2385	СВ	LEU			23.067	48.836	26.687	1.00 14.88	A
	ATOM	2386	CG	LEU			24.286	48.971	25.768	1.00 15.10	Α
10	ATOM	2387		LEU			24.029	50.057	24.731	1.00 14.72	A
	ATOM	2388		LEU			25.514	49.305	26.600	1.00 14.28	Α
	ATOM	2389	С	LEU			21.840	47.217	25.237	1.00 15.11	A
	ATOM	2390	Ō	LEU			21.967	47.198	24.012	1.00 15.57	A
	ATOM	2391	N	VAL			21.786	46.108	25.967	1.00 14.42	Α
15	ATOM	2392	CA	VAL			21.871	44.799	25.331	1.00 13.85	А
	ATOM	2393	СВ	VAL			21.846	43.664	26.380	1.00 13.47	А
	ATOM	2394		VAL			21.744	42.313	25.690	1.00 13.87	Α
	ATOM	2395		VAL			23.113	43.716	27.219	1.00 14.11	А
	ATOM	2396	C	VAL			20.719	44.611	24.346	1.00 14.16	А
20	ATOM	2397	0	VAL			20.881	43.986	23.298	1.00 13.52	А
	ATOM	2398	N	ASP			19.554	45.153	24.683	1.00 14.86	А
	ATOM	2399	CA	ASP			18.398	45.047	23.802	1.00 15.02	А
	ATOM	2400	СВ	ASP			17.170	45.680	24.462	1.00 16.85	А
	ATOM	2401	CG	ASP			15.951	45.656	23.568	1.00 16.80	А
25	ATOM	2402		ASP			15.498	46.742	23.155	1.00 17.63	А
	ATOM	2403		ASP			15.448	44.551	23.276	1.00 18.36	A
	ATOM	2404	C	ASP			18.709	45.740	22.474	1.00 14.37	A
	ATOM	2405	0	ASP			18.373	45.231	21.404	1.00 13.82	A
	ATOM	2406	N	GLN			19.351	46.903	22.547	1.00 13.70	А
30	ATOM	2407	CA	GLN			19.722	47.639	21.343	1.00 12.86	А
00	ATOM	2408	СВ	GLN			20.332	48.994	21.711	1.00 11.83	А
	ATOM	2409	CG	GLN			19.315	50.024	22.159	1.00 12.86	А
	ATOM	2410	CD	GLN			18.279	50.298	21.088	1.00 14.18	А
	ATOM	2411	OE1	GLN			18.612	50.718	19.980	1.00 14.25	А
35	ATOM	2412	NE2	GLN			17.013	50.059	21.412	1.00 14.45	А
00	ATOM	2413	C	GLN			20.735	46.829	20.542	1.00 12.45	A
	ATOM	2414	Ö	GLN			20.627	46.707	19.321	1.00 12.50	А
	ATOM	2415	N	TRP			21.722	46.277	21.240	1.00 12.86	А
	ATOM	2416	CA	TRP			22.749	45.475	20.590	1.00 12.89	А
40	ATOM	2417	СВ	TRP			23.773		21.609	1.00 11.98	А
10	ATOM	2418	CG	TRP			24.703	46.009	22.163	1.00 12.42	A
	ATOM	2419		TRP			25.605		23.261	1.00 11.60	А
	ATOM	2420		TRP			26.321	47.050	23.404	1.00 11.77	А
	ATOM	2421		TRP			25.879	44.782	24.138	1.00 12.07	A
45	ATOM	2422		TRP			24.899	47.279	21.696	1.00 11.63	A
40	ATOM	2423		TRP			25.871	47.911	22.438	1.00 12.67	A
	ATOM	2423		TRP			27.297	47.233	24.393	1.00 12.70	A
		2425		TRP			26.850	44.963	25.122	1.00 12.73	A
	ATOM ATOM	2425		TRP			27.545	44.903	25.122	1.00 12.23	A
50	ATOM	2426	CHZ	TRP			27.343	44.278	19.859	1.00 12.09	A
50				TRP			22.130	43.988	18.722	1.00 13.39	A
	ATOM	2428	O N	LYS			21.236	43.575	20.511	1.00 13.20	A
	ATOM	2429	N CA	LYS			20.632		19.890	1.00 12.54	A
	ATOM	2430	CA				19.855		20.930	1.00 13.34	A
55	ATOM	2431	CB	LYS			20.799		20.930	1.00 14.32	A
55	ATOM	2432	CG	LYS	A	263	۷0.133	40.071	21.000	1.00 13.70	Δ

	ATOM	2433	CD	LYS	Α	323	2	20.079	40.005	22.904	1.00	17.29	А
	ATOM	2434	CE	LYS			:	21.086	39.198	23.708	1.00	18.79	A
	MOTA	2435	NZ	LYS	Α	323	2	20.428	38.323	24.710	1.00	21.17	Α
	MOTA	2436	С	LYS	Α	323	:	19.762	42.766	18.700	1.00	13.15	Α
5	MOTA	2437	0	LYS	Α	323		19.599	41.968	17.780		13.47	Α
	ATOM	2438	N	LYS	Α	324	:	19.207	43.970	18.706	1.00	13.05	Α
	ATOM	2439	CA	LYS	Α	324	:	18.406	44.406	17.570	1.00	12.21	Α
	MOTA	2440	CB	LYS	Α	324		17.600	45.655	17.930		12.37	Α
	ATOM	2441	CG	LYS	Α	324		16.388	45.327	18.789	1.00	13.50	Α
10	MOTA	2442	CD	LYS	Α	324		15.678	46.561	19.319	1.00	13.76	Α
	ATOM	2443	CE	LYS	Α	324		14.437	46.144	20.106	1.00	15.09	Α
	MOTA	2444	NZ	LYS	Α	324		13.801	47.285	20.820	1.00	16.19	A
	MOTA	2445	С	LYS	Α	324		19.353	44.685	16.407	1.00	12.02	A
	MOTA	2446	0	LYS	Α	324		19.080	44.304	15.270	1.00	11.97	A
15	ATOM	2447	N	LYS	A	325	2	20.476	45.339	16.691	1.00	11.78	Α
	ATOM	2448	CA	LYS	Α	325	:	21.447	45.624	15.639	1.00	11.37	Α
	MOTA	2449	CB	LYS	Α	325	2	22.614	46.454	16.191	1.00	10.87	Α
	ATOM	2450	CG	LYS	Α	325	2	23.515	47.051	15.105	1.00	10.75	A
	ATOM	2451	CD	LYS	Α	325	2	24.642	47.893	15.698	1.00	11.00	Α
20	ATOM	2452	CE	LYS	Α	325	:	25.433	48.604	14.603	1.00	11.39	Α
	ATOM	2453	NZ	LYS	Α	325	2	26.585	49.360	15.164	1.00	12.31	Α
	ATOM	2454	С	LYS	Α	325	2	21.978	44.304	15.077	1.00	11.90	Α
	ATOM	2455	0	LYS	Α	325	2	22.136	44.147	13.865	1.00	11.75	A
	ATOM	2456	N	ALA	Α	326	2	22.240	43.351	15.968		11.87	Α
25	ATOM	2457	CA	ALA	Α	326	2	22.760	42.047	15.567		12.64	A
	ATOM	2458	CB	ALA	Α	326	2	23.024	41.192	16.804	1.00	12.66	А
	ATOM	2459	С	ALA	Α	326	2	21.839	41.299	14.603	1.00	13.43	Α
	MOTA	2460	0	ALA	Α	326		22.294	40.453	13.831		13.86	А
	MOTA	2461	N	GLU	Α	327	- 2	20.545	41.599	14.653		13.80	A
30	MOTA	2462	CA	GLU	Α	327		19.584	40.942	13.770		14.81	A
	MOTA	2463	CB	GLU	Α	327		18.153	41.327	14.152	1.00	16.43	A
	ATOM	2464	CG	GLU	Α	327		17.575	40.504	15.277		18.89	A
	MOTA	2465	CD	GLU	Α	327		17.577	39.020	14.960		18.94	A
	ATOM	2466	OE1	GLU	А	327		16.918	38.609	13.979		20.74	A
35	MOTA	2467	OE2	GLU	Α	327		18.244	38.265	15.691		20.08	A
	ATOM	2468	С	GLU	Α	327		19.810	41.296	12.308		14.28	A
	ATOM	2469	0			327		19.367	40.581	11.409		15.39	A
	ATOM	2470	N	LEU				20.504	42.404	12.075		13.70	A
	ATOM	2471	CA	LEU				20.764	42.860	10.718		12.00	Α
4 0	ATOM		CB	LEU					44.384	10.707		12.41	A
	ATOM	2473	CG	LEU				19.833	45.202	11.399		12.20	A
	ATOM	2474		LEU				20.108	46.687	11.208		13.82	A
	MOTA	2475		LEU				18.465	44.838	10.828		13.12	A
	ATOM	2476	С	LEU				21.984	42.206	10.075		12.08	A
45	ATOM	2477	0	LEU				22.240	42.411	8.888		12.28	A
	ATOM	2478	N			329		22.731	41.422	10.851		11.18	A
	MOTA	2479	CA			329		23.930	40.758	10.344		11.25	A
	MOTA	2480	CB			329		25.175	41.342	11.018		11.22	A
	ATOM	2481	CG	TYR				25.376	42.809	10.695		11.53	A
50	MOTA	2482		TYR				24.786	43.808	11.477		11.42	A
	MOTA	2483		TYR				24.917	45.157	11.147		12.31	A
	ATOM	2484		TYR				26.106	43.197	9.573		11.20	A
	ATOM	2485		TYR				26.241	44.545	9.233		11.91	A
	ATOM	2486	CZ			329		25.643	45.516	10.023		11.77	A
55	ATOM	2487	ОН	TYR	A	329		25.764	46.845	9.678	1.00	12.68	A

		ATOM	2488	С	TYR A	329	23.890	39.240	10.492	1.00 12.08	А
		ATOM	2489	0	TYR A		23.029	38.703	11.188	1.00 12.83	А
		ATOM	2490	N	ARG A		24.835	38.553	9.857	1.00 12.23	Α
		ATOM	2491	CA	ARG A		24.839	37.094	9.864	1.00 12.24	Α
	5	ATOM	2492	СВ	ARG A		25.202	36.589	8.465	1.00 11.88	А
	•	ATOM	2493	CG	ARG A		24.278	37.129	7.393	1.00 11.69	А
		ATOM	2494	CD	ARG A		24.531	36.502	6.035	1.00 12.77	Α
		ATOM	2495	NE	ARG A		23.611	37.062	5.052	1.00 12.25	А
		ATOM	2496	CZ	ARG A		23.371	36.544	3.852	1.00 14.24	А
	10	ATOM	2497		ARG A		23.986	35.437	3.461	1.00 15.29	Α
	10	ATOM	2498		ARG A		22.503	37.137	3.043	1.00 14.59	А
		ATOM	2499	C	ARG A		25.649	36.311	10.894	1.00 12.88	А
		ATOM	2500	0	ARG A		25.425	35.109	11.046	1.00 14.62	А
		ATOM	2501	N	THR A		26.584	36.950	11.588	1.00 12.94	А
	15	ATOM	2501	CA	THR A		27.372	36.225	12.584	1.00 12.09	Α
	13	ATOM	2502	CB	THR A		28.890	36.471	12.418	1.00 11.53	A
			2504	OG1			29.216	37.792	12.869	1.00 11.21	A
		ATOM		CG2			29.298	36.310	10.956	1.00 12.94	A
		ATOM	2505	CGZ	THR A		26.990	36.640	13.996	1.00 12.54	A
ii.	20	ATOM	2506		THR A		26.150	37.516	14.188	1.00 13.43	A
	20	ATOM	2507	0			27.615	36.001	14.100	1.00 12.33	A
		MOTA	2508	N	ASN A		27.359	36.315	16.382	1.00 12.94	A
ì		ATOM	2509	CA	ASN A		27.323	35.028	17.218	1.00 13.86	A
l		ATOM	2510	CB	ASN A		28.676	34.344	17.310	1.00 15.72	A
i.	3 E .	MOTA	2511	CG	ASN A		29.431	34.298	16.342	1.00 17.44	A
r B	25	MOTA	2512		ASN A			33.789	18.481	1.00 17.44	A
ř S		ATOM	2513		ASN A		28.979		16.907	1.00 17.43	A
•		ATOM	2514	С	ASN A		28.433	37.264 37.300	18.105	1.00 12.03	A
		ATOM	2515	0	ASN A		28.721	38.027	15.990	1.00 13.10	A
į.	20	ATOM	2516	N	VAL A		29.024 30.055	39.005	16.323	1.00 11.89	A
2	30	ATOM	2517	CA	VAL A		31.356	38.731	15.536	1.00 11.05	A
1		ATOM	2518	CB	VAL A			39.733	15.937	1.00 12.37	A
		ATOM	2519		VAL A		32.431	37.312	15.796	1.00 13.46	A
ì		ATOM	2520		VAL A		31.827	40.363	15.790	1.00 13.40	A
	2=	ATOM	2521	C	VAL A		29.491	40.582	14.752	1.00 11.55	A
4	35	ATOM	2522	0	VAL A		29.179 29.368	41.273	16.880	1.00 10.67	A
		ATOM	2523	N	LEU A		28.789	42.584	16.618	1.00 10.61	A
		ATOM	2524	CA	LEU A		27.590	42.796	17.550	1.00 10.01	A
		ATOM	2525	CB	LEU A		26.775	44.076	17.330	1.00 10.05	A
	40	ATOM	2526	CG CD1			26.045		16.036	1.00 10.50	A
	4 0	ATOM	2527		LEU A		25.780	44.025	18.514	1.00 10.50	A
		ATOM	2528		LEU A		29.759	43.750	16.770	1.00 10.02	A
		ATOM	2529	C	LEU A		30.512	43.730	17.739	1.00 10.77	A
		ATOM	2530	0	LEU A		29.724	44.663	15.805	1.00 10.77	A
	45	ATOM	2531	N	LEU A		30.585	45.839	15.827	1.00 9.42	A
	45	MOTA	2532	CA			31.087	46.154	14.418	1.00 8.92	A
		ATOM	2533	CB	LEU A		31.857	47.471	14.284	1.00 9.26	A
		ATOM	2534	CG CD1	LEU A		33.158		15.065	1.00 11.05	A
		ATOM	2535		LEU A			47.388 47.755	12.813	1.00 11.05	A
	ΕO	ATOM	2536		LEU A		32.128	47.733	16.351	1.00 11.20	A
	50	ATOM	2537	С	LEU A		29.812		15.800	1.00 10.12	A
		ATOM	2538	0	LEU A		28.774	47.405	17.412	1.00 10.12	A
		ATOM	2539	N	ILE A		30.324	47.654		1.00 9.16	A
		ATOM	2540	CA	ILE A		29.686	48.824	17.996		A
	E F	ATOM	2541	CB	ILE A		29.152	48.535	19.424 20.024	1.00 9.68 1.00 10.04	A
	55	MOTA	2542	CG2	ILE A	. 336	28.562	49.805	20.024	1.00 10.04	n

		ATOM	2543	CG1	ILE A	336	28.089	47.432	19.383	1.00 9.33	A
		ATOM	2544		ILE A		26.848	47.786	18.595	1.00 10.48	А
		ATOM	2545	C	ILE A		30.674	49.988	18.074	1.00 8.75	Α
								50.087	19.018	1.00 9.03	A
	_	ATOM	2546	0	ILE A		31.454				A
	5	ATOM	2547	N	PRO A		30.674	50.871	17.061		
		ATOM	2548	CD	PRO A		29.982	50.807	15.763	1.00 8.96	A
		MOTA	2549	CA	PRO A		31.598	52.008	17.104	1.00 9.22	Α
		MOTA	2550	CB	PRO A	337	31.359	52.702	15.764	1.00 8.51	Α
		ATOM	2551	CG	PRO A	337	30.921	51.585	14.871	1.00 8.89	Α
	10	ATOM	2552	С	PRO A	337	31.217	52.913	18,271	1.00 8.95	A
		ATOM	2553	0	PRO A	337	30.039	53.021	18.609	1.00 10.28	A
		ATOM	2554	N	LEU A		32.210	53.548	18.886	1.00 8.46	А
		ATOM	2555	CA	LEU A		31.956	54.462	19.994	1.00 8.68	Α
		ATOM	2556	СВ	LEU A		32.335	53.815	21.329	1.00 9.38	А
	15	ATOM	2557	CG	LEU A		31.988	54.674	22.549	1.00 10.48	А
	15	ATOM	2558		LEU A		30.481	54.631	22.801	1.00 11.37	Α
			2559		LEU A		32.732	54.160	23.768	1.00 11.85	A
		ATOM					32.732	55.727	19.775	1.00 9.16	A
		MOTA	2560	С	LEU A		33.925	55.823	20.220	1.00 9.47	A
	20	ATOM	2561	0	LEU A			56.695	19.079	1.00 9.47	A
Ü	20	ATOM	2562	N	GLY A		32.194				A
. 7		MOTA	2563	CA	GLY A		32.914	57.926	18.807		
		ATOM	2564	С	GLY A		32.105	58.931	18.017	1.00 9.65	A
State ditter		MOTA	2565	0	GLY A		30.938	58.694	17.703	1.00 9.88	A
1		MOTA	2566	N	ASP A		32.739	60.054	17.690	1.00 9.87	A
T.	25	MOTA	2567	CA	ASP A		32.103	61.130	16.943	1.00 9.83	Α
L		MOTA	2568	CB	ASP A	340	31.101	61.863	17.841	1.00 10.38	A
		MOTA	2569	CG	ASP A	340	30.001	62.568	17.062	1.00 11.64	А
8)		MOTA	2570	OD1	ASP A	340	30.195	62.883	15.865	1.00 11.74	Α
		ATOM	2571	OD2	ASP A	340	28.937	62.826	17.667	1.00 12.92	А
	30	MOTA	2572	С	ASP A	340	33.214	62.090	16.518	1.00 10.19	Α
1,5 <u>22</u> 1,635		MOTA	2573	0	ASP A	340	34.401	61.792	16.683	1.00 9.86	А
W.,		ATOM	2574	N	ASP A	341	32.825	63.244	15.991	1.00 10.61	Α
į.L		MOTA	2575	CA	ASP A		33.785	64.242	15.532	1.00 10.48	Α
		ATOM	2576	CB	ASP A		33.048	65.413	14.884	1.00 12.00	Α
ļaL	35	ATOM	2577	CG	ASP A		32.468	65.055	13.534	1.00 13.27	A
•	00	ATOM	2578		ASP A		32.494	63.861	13.173	1.00 13.14	A
		ATOM	2579		ASP A		31.984	65.972	12.832	1.00 17.12	A
		ATOM	2580	C	ASP A		34.694	64.765	16.637	1.00 10.31	A
		ATOM	2581	0	ASP A		34.221	65.254	17.664	1.00 11.01	A
	40		2582	N	PHE A		36.000	64.657	16.404	1.00 9.63	A
	40	ATOM					37.018	65.114	17.342	1.00 9.96	A
		ATOM	2583	CA	PHE A				17.204	1.00 10.12	A
		ATOM	2584	CB	PHE A		37.207	66.632		1.00 10.12	A
		ATOM	2585	CG	PHE A		37.737	67.057	15.856		
		ATOM	2586		PHE A		36.873	67.462	14.838	1.00 10.88	A
	45	MOTA	2587		PHE A		39.106	67.025	15.598	1.00 9.64	A
		ATOM	2588		PHE A		37.367	67.828	13.583	1.00 10.53	A
		MOTA	2589	CE2	PHE A	342	39.608	67.387	14.354	1.00 9.71	A
		MOTA	2590	CZ	PHE A	342	38.737	67.790	13.342	1.00 9.85	Α
		MOTA	2591	С	PHE A	342	36.746	64.731	18.800	1.00 10.16	A
	50	MOTA	2592	0	PHE A	342	36.911	65.543	19.721	1.00 11.34	Α
		ATOM	2593	N	ARG A		36.339	63.482	19.002	1.00 9.86	A
		ATOM	2594	CA	ARG A		36.068	62.981	20.345	1.00 10.14	A
		ATOM	2595	СВ	ARG A		35.056	61.830	20.306	1.00 9.08	Α
		ATOM	2596	CG	ARG A		33.613	62.266	20.104	1.00 9.69	Α
	55	ATOM	2597	CD	ARG A		33.191	63.269	21.172	1.00 10.14	A
							- -				

		ATOM	2598	NE	ARG A	343	31.763	63.572	21.122	1.00 11.19	А
		ATOM	2599	CZ	ARG A		30.818	62.853	21.722	1.00 10.93	A
		MOTA	2600		ARG A		31.135	61.774	22.427	1.00 10.27	А
		ATOM	2601		ARG A		29.550	63.226	21.630	1.00 10.56	А
	5	ATOM	2602	С	ARG A		37.340	62.510	21.041	1.00 11.10	А
	9	ATOM	2603	Ö	ARG A		38.410	62.413	20.427	1.00 10.83	А
		ATOM	2604	N	PHE A		37.203	62.220	22.331	1.00 12.00	A
							38.306	61.762	23.168	1.00 12.90	A
		ATOM	2605	CA	PHE A			60.398	22.681	1.00 12.98	A
	10	ATOM	2606	CB	PHE A		38.806		22.851	1.00 12.50	A
	10	MOTA	2607	CG	PHE A		37.794	59.305			
		MOTA	2608	CD1			36.975	58.922	21.796	1.00 12.67	A
		ATOM	2609		PHE A		37.608	58.710	24.095	1.00 13.77	A
		ATOM	2610		PHE A		35.981	57.966	21.975	1.00 12.90	A
		MOTA	2611		PHE A	344	36.617	57.752	24.286	1.00 13.51	A
	15	MOTA	2612	CZ	PHE A	344	35.801	57.379	23.224	1.00 12.69	A
		MOTA	2613	С	PHE A	344	39.432	62.784	23.222	1.00 14.41	A
		ATOM	2614	0	PHE A	344	40.609	62.458	23.059	1.00 14.24	А
		MOTA	2615	N	LYS A	345	39.040	64.027	23.486	1.00 15.81	A
1,100 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00		MOTA	2616	CA	LYS A	345	39.960	65.152	23.566	1.00 18.16	Α
1:00 : 24:	20	MOTA	2617	СВ	LYS A	345	39.298	66.388	22.959	1.00 19.39	Α
J		ATOM	2618	CG	LYS A		40.104	67.660	23.093	1.00 21.38	A
١Д		MOTA	2619	CD	LYS A		39.333	68.841	22.535	1.00 23.37	А
M		ATOM	2620	CE	LYS A		40.093	70.139	22.721	1.00 24.23	А
		MOTA	2621	NZ	LYS A		39.320	71.293	22,183	1.00 24.71	Α
	25	ATOM	2622	C	LYS A		40.388	65.463	24.997	1.00 19.45	А
	2.0	MOTA	2623	0	LYS A		41.571	65.661	25.268	1.00 21.28	A
			2624	N	GLN A		39.419	65.514	25.903	1.00 20.22	A
Ţ		MOTA	2625	CA	GLN A		39.691	65.820	27.303	1.00 20.84	A
ā;		ATOM					38.539	66.640	27.879	1.00 23.49	A
	30	ATOM	2626	CB	GLN A			67.921	27.116	1.00 27.90	A
ŧ,	30	ATOM	2627	CG	GLN A		38.262	68.547	27.110	1.00 27.90	A
m,		ATOM	2628	CD	GLN A		36.943			1.00 30.08	A
		MOTA	2629	OE1			36.708	68.850	28.673		
		MOTA	2630	NE2			36.068	68.742	26.522	1.00 31.15	A
i (ess ²	0=	ATOM	2631	С	GLN A		39.882	64.562	28.142	1.00 20.09	A
1.4	35	MOTA	2632	0	GLN A		39.241	63.540	27.902	1.00 18.93	A
		MOTA	2633	N	ASN A		40.763	64.647	29.135	1.00 19.30	A
		MOTA	2634	CA	ASN A		41.021	63.515	30.015	1.00 18.58	A
		MOTA	2635	СВ	ASN A		42.034	63.896	31.098	1.00 20.07	A
		ATOM	2636	CG	ASN A		43.427	64.081	30.546	1.00 21.88	А
	40	MOTA	2637	OD1	ASN A	347	43.973	63.181	29.909	1.00 22.61	А
		MOTA	2638	ND2	ASN A	347	44.014	65.250	30.787	1.00 23.12	A
		MOTA	2639	С	ASN A	347	39.725	63.067	30.669	1.00 17.30	А
		MOTA	2640	0	ASN A	347	39.459	61.873	30.780	1.00 16.74	A
		ATOM	2641	N	THR A	348	38.919	64.036	31.094	1.00 16.16	A
	45	MOTA	2642	CA	THR A		37.647	63.738	31.737	1.00 15.64	A
		ATOM	2643	СВ	THR A		36.932	65.032	32.191	1.00 16.49	A
		ATOM	2644	OG1			36.836	65.945	31.090	1.00 17.92	А
		ATOM	2645		THR A		37.702	65.692	33.332	1.00 17.02	Α
		ATOM	2646	C	THR A		36.732	62.956	30.803	1.00 14.77	A
	50	ATOM	2647	0	THR A		35.929	62.139	31.256	1.00 14.29	A
	50		2648		GLU A		36.851	63.207	29.501	1.00 12.93	A
		ATOM		N CA			36.033	62.497	28.523	1.00 12.93	A
		MOTA	2649	CA	GLU A				27.142	1.00 12.36	A
		ATOM	2650	CB	GLU A		36.149	63.146	26.079	1.00 12.36	A
	EE	ATOM	2651	CG	GLU A		35.352	62.407			
	55	ATOM	2652	CD	GLU A	349	35.495	62.998	24.691	1.00 12.49	A

		ATOM	2653	OE1	GLU	A	349	34.930	62.400	23.754	1.00 13.64	Α
		ATOM	2654	OE2	GLU	Α	349	36.158	64.044	24.535	1.00 13.87	A
		ATOM	2655	С	GLU	Α	349	36.469	61.037	28.437	1.00 12.59	А
		ATOM	2656	0	GLU	Α	349	35.632	60.134	28.384	1.00 12.35	Α
	5	ATOM	2657	N	TRP	Α	350	37.778	60.804	28.414	1.00 12.37	Α
		ATOM	2658	CA	TRP	Α	350	38.283	59.438	28.361	1.00 11.74	А
		ATOM	2659	СВ			350	39.816	59.412	28.372	1.00 10.85	А
		ATOM	2660	CG			350	40.438	59.655	27.030	1.00 10.74	А
		ATOM	2661	CD2	TRP			40.744	58.664	26.042	1.00 11.29	А
	10	ATOM	2662	CE2	TRP			41.266	59.341	24.919	1.00 11.06	А
		MOTA	2663	CE3	TRP			40.625	57.269	25.997	1.00 12.34	A
		ATOM	2664	CD1				40.780	60.861	26.482	1.00 11.42	Α
		ATOM	2665	NE1				41.279	60.679	25.215	1.00 11.21	A
		ATOM	2666	CZ2				41.668	58.669	23.759	1.00 11.09	A
	15	ATOM	2667	CZ3				41.025	56.601	24.844	1.00 12.75	А
		ATOM	2668		TRP			41.539	57.303	23.740	1.00 12.45	Α
		ATOM	2669	С	TRP			37.752	58.675	29.569	1.00 12.68	Α
		ATOM	2670	0			350	37.269	57.552	29.443	1.00 12.87	A
		ATOM	2671	N	ASP			37.828	59.300	30.739	1.00 13.49	Α
	20	ATOM	2672	CA	ASP			37.357	58.670	31.965	1.00 14.43	А
,		ATOM	2673	СВ	ASP			37.669	59.542	33.184	1.00 15.49	A
		ATOM	2674	CG	ASP			39.148	59.628	33.482	1.00 18.09	A
		ATOM	2675		ASP			39.866	58.633	33.250	1.00 19.99	A
		ATOM	2676		ASP			39.588	60.690	33.970	1.00 20.85	A
	25	ATOM	2677	C	ASP			35.864	58.374	31.960	1.00 13.60	A
		ATOM	2678	0	ASP			35.451	57.260	32.286	1.00 14.13	A
		ATOM	2679	N	VAL			35.053	59.362	31.598	1.00 13.66	A
		ATOM	2680	CA	VAL			33.612	59.165	31.609	1.00 13.97	A
		ATOM	2681	СВ	VAL			32.855	60.483	31.278	1.00 15.02	А
	30	ATOM	2682		VAL			32.894	60.769	29.791	1.00 15.28	A
		ATOM	2683		VAL			31.429	60.401	31.788	1.00 16.97	A
		ATOM	2684	C	VAL			33.160		.30.675	1.00 14.02	A
		ATOM	2685	0	VAL			32.286	57.256	31.031	1.00 14.06	A
		ATOM	2686	N	GLN			33.757	57.947	29.491	1.00 12.99	А
	35	ATOM	2687	CA	GLN			33.367	56.888	28.569	1.00 12.34	А
		ATOM	2688	СВ	GLN			33.887	57.187	27.154	1.00 11.41	А
		ATOM	2689	CG	GLN			33.348	58.484	26.546	1.00 11.76	Α
		ATOM	2690	CD	GLN			31.900	58.381	26.080	1.00 11.91	A
		ATOM	2691		GLN			31.080	57.703	26.698	1.00 12.30	A
	40	MOTA	2692		GLN			31.578	59.072	24.991	1.00 11.88	А
		ATOM	2693	С	GLN			33.890	55.528	29.042	1.00 12.28	A
		ATOM	2694	0	GLN			33.130	54.561	29.132	1.00 12.59	A
		ATOM	2695	N	ARG			35.179	55.455	29.365	1.00 11.64	А
		ATOM	2696	CA	ARG			35.775	54.192	29.799	1.00 12.41	A
	45	MOTA	2697	СВ	ARG			37.286	54.340	29.993	1.00 12.29	А
		ATOM	2698	CG	ARG			37.955	53.065	30.508	1.00 12.77	А
		ATOM	2699	CD	ARG			39.456	53.247	30.716	1.00 14.15	А
		ATOM	2700	NE	ARG			39.768	54.280	31.702	1.00 15.21	A
		ATOM	2701	CZ	ARG			39.593	54.156	33.016	1.00 15.91	A
	50	ATOM	2702		ARG			39.104	53.032	33.526	1.00 16.33	A
		ATOM	2703		ARG			39.912	55.158	33.824	1.00 16.46	A
		ATOM	2704	C	ARG			35.183	53.595	31.069	1.00 12.83	A
		ATOM	2705	0	ARG			34.817	52.422	31.089	1.00 12.74	A
		ATOM	2706	N	VAL			35.102	54.395	32.128	1.00 12.88	A
	55	ATOM	2707	CA	VAL			34.577	53.912	33.401	1.00 13.28	A
				~- ·				- · · · · ·		· •		

						_	255	24 650	rr 000	34 405	1 00	12 60	70
		ATOM	2708	CB	VAL			34.650	55.009	34.485		13.60	А
		ATOM	2709	CG1	VAL	Α	355	34.053	54.498	35.789		16.28	A
		MOTA	2710	CG2	VAL	Α	355	36.100	55.418	34.706		14.36	Α
		ATOM	2711	С	VAL	Α	355	33.146	53.399	33.313	1.00	12.98	Α
	5	ATOM	2712	0	VAL	Α	355	32.836	52.322	33.826	1.00	13.34	Α
		ATOM	2713	N	ASN	Α	356	32.270	54.162	32.670	1.00	13.08	A
		ATOM	2714	CA	ASN			30.886	53.740	32.550	1.00	12.48	А
		ATOM	2715	СВ	ASN			30.035	54.877	31.990		12.67	А
		ATOM	2716	CG	ASN			29.735	55.928	33.036		13.47	A
	10	ATOM	2717		ASN			29.056	55.647	34.029		13.87	A
	10				ASN			30.250	57.138	32.835		13.69	A
		ATOM	2718									12.85	A
		ATOM	2719	С	ASN			30.751	52.472	31.716			
		MOTA	2720	0	ASN			29.980	51.576	32.066	1.00		A
	4.5	ATOM	2721	N	TYR			31.504	52.370	30.627		12.12	A
	15	MOTA	2722	CA	TYR			31.415	51.162	29.823	1.00		A
		ATOM	2723	CB	TYR	A	357	32.072	51.358	28.451		12.21	А
		MOTA	2724	CG	TYR	Α	357	31.083	51.882	27.439		11.70	A
		MOTA	2725	CD1	TYR	A	357	30.894	53.251	27.261	1.00		Α
ŧ		ATOM	2726	CE1	TYR	Α	357	29.917	53.736	26.393	1.00	11.52	Α
:	20	ATOM	2727	CD2	TYR	Α	357	30.273	51.004	26.718	1.00	12.23	Α
i,		ATOM	2728		TYR			29.291	51.477	25.850	1.00	12.04	А
ř		ATOM	2729	CZ	TYR			29.118	52.842	25.693	1.00	11.95	A
ì		ATOM	2730	ОН	TYR			28.142	53.306	24.847		12.56	А
ļ		ATOM	2731	C	TYR			32.015	49.970	30.558	1.00		А
	25	ATOM	2732	0	TYR			31.524	48.848	30.430		12.97	A
	20	ATOM	2733	N	GLU			33.064	50.206	31.341		13.29	A
;									49.118	32.104		13.40	A
•		ATOM	2734	CA	GLU			33.669				15.40	A
		ATOM	2735	СВ	GLU			34.871	49.612	32.910			
ì.	20	ATOM	2736	CG	GLU			36.138	49.838	32.092		16.80	A
į	30	ATOM	2737	CD	GLU			37.310	50.270	32.956		18.32	A
		ATOM	2738		GLU			37.115	50.453	34.176		20.90	A
		MOTA	2739	OE2	GLU			38.426	50.430	32.421		18.81	A
:		ATOM	2740	С	GLU	Α	358	32.631	48.526	33.059	1.00	13.69	А
		ATOM	2741	0	GLU	Α	358	32.554	47.312	33.221	1.00	13.52	A
	35	ATOM	2742	N	ARG	Α	359	31.833	49.387	33.686	1.00	13.66	Α
		ATOM	2743	CA	ARG	Α	359	30.804	48.920	34.616	1.00	14.36	A
		ATOM	2744	СВ	ARG			30.150	50.103	35.327	1.00	14.85	A
		ATOM	2745	CG	ARG			31.061	50.815	36.303	1.00	17.92	А
		ATOM	2746	CD	ARG			30.433	52.125	36.740	1.00		А
	40	ATOM	2747	NE	ARG			31.315	52.896	37.608	1.00		A
	10	ATOM	2748	CZ	ARG			31.333	54.224	37.653	1.00		A
		ATOM	2749		ARG			30.516	54.926	36.874	1.00		A
		ATOM	2750		ARG			32.168	54.850	38.473	1.00		A
								29.737	48.108	33.893	1.00		A
	4 =	ATOM	2751	C	ARG						1.00		A
	45	ATOM	2752	0	ARG			29.218	47.130	34.432			
		ATOM	2753	N	LEU			29.406	48.517	32.672		13.60	A
		ATOM	2754	ÇA	LEU			28.410	47.803	31.886	1.00		A
		ATOM	2755	CB	LEU			28.031	48.621	30.645		12.99	A
		ATOM	2756	CG	LEU			27.200	49.878	30.934		13.00	A
	50	ATOM	2757	CD1	LEU	Α	360	27.222	50.806	29.731		14.39	А
		ATOM	2758	CD2	LEU	Α	360	25.771	49.481	31.276	1.00	14.37	A
		ATOM	2759	С	LEU			28.945	46.431	31.480	1.00	13.93	A
		ATOM	2760	0	LEU			28.239	45.430	31.585	1.00	14.58	A
		ATOM	2761	N	PHE			30.198	46.385	31.032	1.00		A
	55	ATOM	2762	CA	PHE			30.825	45.130	30.618	1.00		Α
			2.02	···		• •							

		ATOM	2763	CB	PHE A	361	32.254	45.375	30.115	1.00 13.34	Α
		ATOM	2764	CG	PHE A	361	32.338	46.176	28.843	1.00 12.91	Α
		ATOM	2765		PHE A		33.535	46.793	28.485	1.00 13.34	А
		ATOM	2766		PHE A		31.238	46.310	28.002	1.00 12.77	А
	5	ATOM	2767		PHE A		33.636	47.537	27.307	1.00 13.11	A
	9		2768		PHE A		31.329	47.052	26.819	1.00 13.11	A
		ATOM									
		ATOM	2769	CZ	PHE A		32.531	47.665	26.474	1.00 12.92	A
		ATOM	2770	С	PHE A		30.889	44.134	31.774	1.00 14.49	A
	4.0	ATOM	2771	0	PHE A		30.559	42.959	31.614	1.00 14.15	А
	10	ATOM	2772	N	GLU A		31.329	44.601	32.939	1.00 15.28	Α
		MOTA	2773	CA	GLU A		31.441	43.712	34.089	1.00 15.96	А
		MOTA	2774	CB	GLU A	362	31.969	44.459	35.316	1.00 18.25	А
		MOTA	2775	CG	GLU A	362	32.329	43.518	36.464	1.00 22.03	Α
		ATOM	2776	CD	GLU A	362	32.708	44.244	37.740	1.00 24.32	Α
	15	MOTA	2777	OE1	GLU A	362	33.483	45.218	37.667	1.00 25.76	Α
		MOTA	2778	OE2	GLU A	362	32.238	43.829	38.821	1.00 26.40	A
		MOTA	2779	С	GLU A		30.095	43.084	34.427	1.00 15.98	А
		ATOM	2780	0	GLU A		30.010	41.886	34.691	1.00 16.22	А
1122		MOTA	2781	N	HIS A	_	29.044	43.894	34.417	1.00 15.25	А
	20	ATOM	2782	CA	HIS A		27.717	43.387	34.732	1.00 15.49	А
Ü	_0	ATOM	2783	CB	HIS A		26.727	44.537	34.914	1.00 16.71	A
THE REAL WAY		MOTA	2784	CG	HIS A		25.345	44.085	35.267	1.00 17.92	A
		ATOM	2785		HIS A		24.204	44.054	34.539	1.00 17.32	A
							25.034	43.533	36.491	1.00 18.73	A
Ŋ	25	ATOM	2786		HIS A						A
1949 1849	23	MOTA	2787		HIS A		23.761	43.180	36.502	1.00 18.19 1.00 19.23	
		ATOM	2788		HIS A		23.234	43.484	35.330		A
ij.		ATOM	2789	С	HIS A		27.199	42.450	33.650	1.00 15.11	A
B!		MOTA	2790	0	HIS A		26.834	41.309	33.925	1.00 15.10	A
	20	ATOM	2791	N	ILE A		27.168	42.937	32.415	1.00 14.72	A
h 175	30	ATOM	2792	CA	ILE A		26.679	42.146	31.297	1.00 14.52	A
		MOTA	2793	CB	ILE A		26.810	42.932	29.975	1.00 13.45	A
1 25		MOTA	2794	CG2	ILE A		26.416	42.043	28.795	1.00 13.94	A
! - !		MOTA	2795	CG1	ILE A		25.914	44.172	30.027	1.00 13.32	Α
		ATOM	2796	CD1	ILE A	364	26.170	45.165	28.912	1.00 13.44	А
la.	35	ATOM	2797	С	ILE A	364	27.388	40.807	31.141	1.00 14.67	A
		ATOM	2798	0	ILE A	364	26.741	39.769	30.996	1.00 15.31	A
		ATOM	2799	N	ASN A	365	28.715	40.822	31.175	1.00 15.38	А
		ATOM	2800	CA	ASN A	365	29.480	39.594	31.005	1.00 15.76	Α
		ATOM	2801	CB	ASN A	365	30.957	39.917	30.771	1.00 15.37	A
	40	ATOM	2802	CG	ASN A	365	31.177	40.768	29.533	1.00 15.04	Α
		ATOM	2803	OD1	ASN A	365	30.276	40.935	28.710	1.00 14.73	А
		ATOM	2804		ASN A		32.383	41.305	29.393	1.00 13.53	A
		ATOM	2805	С	ASN A		29.348	38.609	32.162	1.00 17.60	A
		ATOM	2806	0	ASN A		29.662	37.430	32.005	1.00 17.46	А
	45	ATOM	2807	N	SER A		28.879	39.087	33.313	1.00 19.18	A
	10	ATOM	2808	CA	SER A		28.717	38.226	34.484	1.00 21.16	A
		ATOM	2809	CB	SER A		29.114	38.976	35.761	1.00 21.81	A
			2810		SER A			40.039	36.033	1.00 21.01	
		MOTA		OG C			28.220			1.00 22.80	A
	50	ATOM	2811	С	SER A		27.287	37.714	34.622		A
	50	ATOM	2812	0	SER A		27.020	36.810	35.414	1.00 22.66	A
		MOTA	2813	N	GLN A		26.373	38.299	33.854	1.00 23.09	A
		ATOM	2814	CA	GLN A		24.968	37.903	33.877	1.00 24.10	A
		ATOM	2815	CB	GLN A		24.064	39.132	33.749	1.00 25.62	A
		MOTA	2816	CG	GLN A		24.086	40.044	34.963	1.00 28.14	A
	55	ATOM	2817	CD	GLN A	367	23.515	39.374	36.195	1.00 29.20	Α

		ATOM	2818	OE1	GLN	A	367	22.337	39.015	36.229	1.00 30.22	А
		ATOM	2819	NE2	GLN	Α	367	24.348	39.197	37.215	1.00 30.01	Α
		ATOM	2820	С	GLN	Α	367	24.693	36.942	32.726	1.00 23.83	Α
		ATOM	2821	0	GLN	Α	367	24.413	37.363	31.604	1.00 23.81	Α
	5	ATOM	2822	N	ALA			24.765	35.649	33.019	1.00 23.74	Α
		ATOM	2823	CA	ALA			24.549	34.608	32.020	1.00 23.29	А
		ATOM	2824	СВ	ALA			24.533	33.244	32.700	1.00 23.52	А
		ATOM	2825	C	ALA			23.293	34.771	31.165	1.00 23.34	A
		ATOM	2826	0	ALA			23.315	34.476	29.970	1.00 22.74	A
	10	ATOM	2827	N	HIS			22.202	35.238	31.767	1.00 23.07	A
	10	ATOM	2828	CA	HIS			20.948	35.400	31.036	1.00 22.88	A
			2829	CB	HIS			19.854	35.924	31.977	1.00 24.69	A
		ATOM									1.00 24.09	
		ATOM	2830	CG	HIS			20.074	37.327	32.448	1.00 25.69	A A
	15	ATOM	2831		HIS			20.553	37.810	33.619		
	15	ATOM	2832		HIS			19.795	38.427	31.666	1.00 26.84	A
		ATOM	2833		HIS			20.090	39.527	32.335	1.00 26.51	A
		ATOM	2834		HIS			20.553	39.180	33.523	1.00 27.03	A
		ATOM	2835	С	HIS			21.064	36.299	29.803	1.00 21.99	A
Par.	00	MOTA	2836	0	HIS			20.220	36.245	28.908	1.00 22.01	А
	20	MOTA	2837	N	PHE			22.110	37.119	29.755	1.00 21.21	A
ं (बर्व) हरक्क		MOTA	2838	CA	PHE			22.329	38.006	28.615	1.00 19.78	A
		MOTA	2839	CB	PHE			23.266	39.156	28.998	1.00 21.09	Α
(1)		MOTA	2840	CG	PHE	Ą	370	22.592	40.279	29.736	1.00 21.42	A
		ATOM	2841	CD1	PHE	A	370	23.168	40.813	30.883	1.00 22.09	А
ı Li	25	ATOM	2842	CD2	PHE	A	370	21.401	40.826	29.267	1.00 22.35	Α
		ATOM	2843	CE1	PHE	Α	370	22.571	41.879	31.553	1.00 22.54	А
m		ATOM	2844	CE2	PHE	Α	370	20.795	41.894	29.931	1.00 22.87	Α
		ATOM	2845	CZ	PHE	Α	370	21.384	42.420	31.076	1.00 22.18	A
ei grang		ATOM	2846	С	PHE			22.953	37.235	27.456	1.00 18.22	A
1,000	30	ATOM	2847	0	PHE			22.673	37.515	26.288	1.00 17.08	А
		ATOM	2848	N	ASN			23.802	36.268	27.791	1.00 16.98	A
143		ATOM	2849	CA	ASN			24.498	35.463	26.794	1.00 15.64	А
i ada		ATOM	2850	CB	ASN			23.500	34.613	26.004	1.00 16.15	A
		ATOM	2851	CG	ASN			22.826	33.565	26.870	1.00 16.71	A
	35	ATOM	2852		ASN			23.483	32.668	27.401	1.00 18.32	A
\$* ·		ATOM	2853		ASN			21.513	33.679	27.024	1.00 17.75	A
		ATOM	2854	C	ASN			25.281	36.383	25.865	1.00 15.24	A
		ATOM	2855	0	ASN			25.259	36.232	24.640	1.00 15.41	A
		ATOM	2856	N	VAL			25.973	37.340	26.478	1.00 14.72	A
	40	MOTA	2857	CA	VAL			26.784	38.318	25.763	1.00 14.72	A
	40	MOTA	2858						39.723		1.00 14.11	A
			2859						40.780	25.264	1.00 13.94	A
		MOTA			VAL VAL			27.095	39.720	24.964	1.00 13.94	A
		MOTA	2860					24.847	38.447	26.407	1.00 14.50	
	45	ATOM	2861	C	VAL .			28.161				A
	45	ATOM	2862	0	VAL .			28.302	38.339	27.624	1.00 14.25	A
		ATOM	2863	N	GLN .			29.172	38.661	25.573	1.00 14.04	A
		MOTA	2864	CA	GLN			30.539	38.877	26.031	1.00 14.11	A
		MOTA	2865	CB	GLN			31.452	37.713	25.631	1.00 14.92	A
	50	MOTA	2866	CG	GLN .			32.933	37.914	25.971	1.00 16.67	A
	50	ATOM	2867	CD	GLN			33.172	38.273	27.432	1.00 17.93	A
		MOTA	2868		GLN .			32.509	37.754	28.329	1.00 19.36	A
		ATOM	2869		GLN .			34.136	39.154	27.675	1.00 17.77	A
		ATOM	2870	С	GLN .	A	373	30.946	40.155	25.307	1.00 13.61	Α
		ATOM	2871	0	GLN .			31.222	40.141	24.106	1.00 13.94	Α
	55	MOTA	2872	N	ALA .	A	374	30.950	41.263	26.040	1.00 12.65	A

			00.00	~ -			21 00	40 550	05 466	1 00 10 16	
		ATOM	2873	CA	ALA A	3/4	31.28		25.466	1.00 12.16	A
		MOTA	2874	CB	ALA A	374	30.183	3 43.553	25.800	1.00 11.40	Α
		ATOM	2875	С	ALA A		32.623		25.949	1.00 12.23	Α
	_	MOTA	2876	0	ALA A		33.012		27.094	1.00 11.95	A
	5	MOTA	2877	N	GLN A	375	33.323	3 43.796	25.074	1.00 11.84	Α
		ATOM	2878	CA	GLN A	375	34.619	9 44.356	25.432	1.00 12.49	Α
		ATOM	2879	СВ	GLN A		35.689		25.461	1.00 14.15	A
		ATOM	2880	CG	GLN A		35.80		24.160	1.00 17.09	A
		ATOM	2881	CD	GLN A	375	34.95	7 41.211	24.165	1.00 19.74	Α
	10	ATOM	2882	OE1	GLN A	375	35.187	7 40.302	24.964	1.00 21.17	Α
		ATOM	2883		GLN A		33.97		23.274	1.00 20.69	А
		MOTA	2884	C	GLN A		35.059		24.448	1.00 11.84	A
		ATOM	2885	0	GLN A	375	34.518	3 45.526	23.348	1.00 11.73	A
		ATOM	2886	N	PHE A	376	36.032	46.232	24.859	1.00 11.18	A
	15	ATOM	2887	CA	PHE A		36.579		23.969	1.00 10.74	А
	10										
		ATOM	2888	CB	PHE A		37.519		24.720	1.00 10.14	A
		MOTA	2889	CG	PHE A	376	36.814		25.681	1.00 10.91	Α
		MOTA	2890	CD1	PHE A	376	37.163	3 49.120	27.028	1.00 11.12	Α
11744		ATOM	2891		PHE A		35.807		25.243	1.00 11.24	A
	20									1.00 11.39	A
.D	20	ATOM	2892		PHE A		36.518		27.927		
. =		ATOM	2893	CE2	PHE A	376	35.158		26.138	1.00 11.60	А
i dadi		ATOM	2894	CZ	PHE A	376	35.516	50.821	27.482	1.00 11.57	А
		MOTA	2895	С	PHE A	376	37.386	46.450	22.954	1.00 11.25	А
		ATOM	2896	0	PHE A		38.015		23.297	1.00 10.76	A
FG E	25						37.364		21.702	1.00 11.05	A
# 14	23	ATOM	2897	N	GLY A						
		MOTA	2898	CA	GLY A	377	38.121		20.693	1.00 10.92	A
ijŦ		ATOM	2899	С	GLY A	377	38.524	47.092	19.565	1.00 10.93	А
		ATOM	2900	0	GLY A	377	38.196	48.277	19.577	1.00 10.75	А
E1		ATOM	2901	N	THR A		39.257		18.600	1.00 10.49	А
fire.	30										A
	30	MOTA	2902	CA	THR A		39.674		17.447	1.00 11.19	
Ũ		MOTA	2903	CB	THR A	378	41.187		17.182	1.00 11.98	A
# ***		MOTA	2904	OG1	THR A	378	41.508	3 45.860	16.845	1.00 11.89	A
i di		ATOM	2905	CG2	THR A	378	41.981	47.640	18.411	1.00 12.75	A
		ATOM	2906	С	THR A		38.924		16.228	1.00 10.71	А
	35									1.00 10.80	A
11-220	33	MOTA	2907	0	THR A		38.233		16.296		
		ATOM	2908	N	LEU A		39.059		15.111	1.00 10.53	А
		MOTA	2909	CA	LEU A	379	38.386	47.101	13.888	1.00 9.83	A
		MOTA	2910	CB	LEU A	379	38.605	48.160	12.803	1.00 9.72	A
		MOTA	2911	CG	LEU A		37.862		11.483	1.00 9.77	A
	40		2912		LEU A		36.357		11.748	1.00 10.37	A
	40	ATOM									
		ATOM	2913	CD2	LEU A	3/9				1.00 10.95	A
		ATOM	2914	С	LEU A	379	38.879	45.738	13.399	1.00 10.38	А
		MOTA	2915	0	LEU A	379	38.083	3 44.878	13.017	1.00 10.10	А
		ATOM	2916	N	GLN A		40.193		13.415	1.00 10.27	А
	45								12.964	1.00 10.67	A
	43	ATOM	2917	CA	GLN A		40.764				
		ATOM	2918	CB	GLN A		42.292		13.003	1.00 11.35	A
		ATOM	2919	CG	GLN A	380	42.975	43.119	12.410	1.00 14.06	Α
		ATOM	2920	CD	GLN A	380	42.611	42.913	10.957	1.00 15.62	А
		ATOM	2921		GLN A		42.678		10.155	1.00 16.75	А
	EΛ										
	50	MOTA	2922		GLN A		42.228		10.604	1.00 17.08	A
		ATOM	2923	С	GLN A		40.262		13.825	1.00 10.55	A
		MOTA	2924	0	GLN A	380	40.008	42.021	13.316	1.00 11.04	A
		ATOM	2925	N	GLU A		40.117		15.127	1.00 10.91	А
		ATOM	2926	CA	GLU A		39.633		16.016	1.00 11.75	A
	EE										
	55	ATOM	2927	CB	GLU A	381	39.657	42.768	17.473	1.00 13.13	А

		ATOM	2928	CG	GLU A	381	41.06	3 43.061	17.981	1.00 16.73	А
		ATOM	2929	CD	GLU A		41.10		19.465	1.00 19.29	А
		ATOM	2930		GLU A		40.26		19.941	1.00 18.94	А
		ATOM	2931		GLU A		41.99			1.00 22.67	А
	5	ATOM	2932	С	GLU A		38.21			1.00 10.96	А
	Ū	ATOM	2933	0	GLU A		37.88			1.00 12.22	A
		ATOM	2934	N	TYR A		37.39			1.00 10.23	A
		ATOM	2935	CA	TYR A		36.03			1.00 9.86	A
		ATOM	2936	CB	TYR A		35.27			1.00 10.34	A
	10	ATOM	2937	CG	TYR A		33.96			1.00 10.34	A
	10	ATOM	2938		TYR A		32.89			1.00 9.54	A
					TYR A					1.00 9.35	A
		ATOM	2939				31.70			1.00 10.35	A
		ATOM	2940		TYR A		33.82			1.00 10.33	A
	15	ATOM	2941		TYR A		32.63				
	15	ATOM	2942	CZ	TYR A		31.58			1.00 10.11 1.00 10.25	A A
		ATOM	2943	ОН	TYR A		30.41				
		ATOM	2944	C	TYR A		36.06			1.00 10.29	A
		ATOM	2945	0	TYR A		35.43			1.00 10.12	A
122	20	MOTA	2946	N	PHE A		36.77			1.00 9.08	A
Q	20	ATOM	2947	CA	PHE A		36.85			1.00 9.53	A
		ATOM	2948	CB	PHE A		37.65			1.00 9.49	A
m		ATOM	2949	CG	PHE A		36.89			1.00 9.73	A
		ATOM	2950		PHE A		37.40			1.00 9.70	A
	25	MOTA	2951		PHE A		35.67			1.00 10.22	A
5 9aF 548 5	25	ATOM	2952		PHE A		36.70			1.00 10.19	A
Ŋ.		MOTA	2953		PHE A		34.97			1.00 11.04	A
ijŦ.		ATOM	2954	CZ	PHE A		35.49			1.00 11.28	A
81		MOTA	2955	C	PHE A		37.44			1.00 9.84	A
	20	ATOM	2956	0	PHE A		36.97			1.00 10.29	A
	30	ATOM	2957	N	ASP A		38.46			1.00 10.93	A
		MOTA	2958	CA	ASP A		39.06			1.00 12.16	A
l.4		ATOM	2959	CB	ASP A		40.23			1.00 13.63	A
		ATOM	2960	CG	ASP A		41.48			1.00 14.89	A
ing.	25	ATOM	2961		ASP A		41.57			1.00 16.13	A
Ž4	35	ATOM	2962		ASP A		42.38			1.00 17.90	A
		ATOM	2963	C	ASP A		38.01			1.00 11.66	A
		ATOM	2964	0	ASP A		37.91			1.00 11.92	A
		ATOM	2965	N	ALA A		37.22			1.00 11.48	A
	40	ATOM	2966	CA	ALA A		36.18		15.957	1.00 11.44	A A
	40	ATOM	2967	CB	ALA A		35.57				
		ATOM	2968	C	ALA A		35.09		13.765	1.00 11.73	A
		ATOM	2969	0	ALA A		34.60			1.00 11.52	A
		ATOM	2970	N	VAL A		34.71		12.912	1.00 11.15	A
	45	ATOM	2971	CA	VAL A		33.69			1.00 11.93	A
	4 5	ATOM	2972	CB	VAL A		33.42		11.042	1.00 11.54	A
		ATOM	2973		VAL A		32.58		9.826	1.00 12.39	A
		ATOM	2974		VAL A		32.71		11.874	1.00 12.20	A
		ATOM	2975	С	VAL A		34.11			1.00 12.29	A
	- 0	ATOM	2976	0	VAL A		33.33			1.00 12.49	A
	50	ATOM	2977	N	HIS A		35.35			1.00 12.25	A
		ATOM	2978	CA	HIS A		35.83			1.00 12.83	A
		ATOM	2979	CB	HIS A		37.09			1.00 12.37	A
		ATOM	2980	CG	HIS A		36.82			1.00 13.26	A
		ATOM	2981		HIS A		37.28		7.909	1.00 13.42	A
	55	ATOM	2982	ND1	HIS A	387	35.95	0 36.916	6.886	1.00 14.23	А

		7.00	2002	001			207	25 071	20 060	6 245	1 00 14 01	75
		ATOM	2983		HIS			35.871	38.069	6.245	1.00 14.01	
		ATOM	2984	NE2	HIS A			36.668	38.934	6.846	1.00 13.21	А
		ATOM	2985	С	HIS A	4	387	36.049	34.111	10.331	1.00 13.93	Α
		ATOM	2986	0	HIS A	A.	387	35.995	33.050	9.708	1.00 13.04	Α
	5	MOTA	2987	N	GLN I	Ą	388	36.281	34.166	11.639	1.00 14.93	A
	_	ATOM	2988	CA	GLN			36.446	32.944	12.413	1.00 17.07	А
		ATOM	2989	CB	GLN A			36.914	33.272	13.833	1.00 18.68	A
		ATOM	2990	CG	GLN A			38.403	33.574	13.937	1.00 22.09	
	40	ATOM	2991	CD	GLN A			38.764	34.330	15.206	1.00 24.01	A
	10	ATOM	2992		GLN A			38.272	34.020	16.291	1.00 26.13	
		MOTA	2993	NE2	GLN I	4	388	39.637	35.324	15.075	1.00 25.42	A
		ATOM	2994	С	GLN A	A	388	35.081	32.260	12.443	1.00 17.56	Α
		ATOM	2995	0	GLN A	Ą	388	34.983	31.039	12.342	1.00 17.57	Α
		ATOM	2996	N	ALA A			34.027	33.063	12.566	1.00 18.15	А
	15	ATOM	2997	CA	ALA A			32.663	32.543	12.594	1.00 19.02	А
	10	ATOM	2998	CB	ALA A			31.688	33.647	12.990	1.00 18.44	A
										11.215	1.00 20.03	A
		ATOM	2999	C	ALA A			32.310	31.996			
		MOTA	3000	0	ALA I			31.630	30.976	11.093	1.00 20.84	A
	20	MOTA	3001	N	GLU A			32.776	32.688	10.178	1.00 20.86	A
·T	20	ATOM	3002	CA	GLU A			32.535	32.278	8.800	1.00 22.27	A
Ü		ATOM	3003	CB	GLU A	Ą	390	33.109	33.326	7.839	1.00 21.67	А
",≟⊒" ,,		ATOM	3004	CG	GLU A	F	390	33.223	32.874	6.390	1.00 22.55	A
		ATOM	3005	CD	GLU Z	A	390	33.774	33.964	5.491	1.00 22.57	Α
		ATOM	3006		GLU A			34.653	34.722	5.953	1.00 22.88	А
IŲ.	25	ATOM	3007		GLU A			33.341	34.057	4.323	1.00 23.67	A
W	40	ATOM	3008	C	GLU A			33.181	30.920	8.544	1.00 23.75	A
										7.960	1.00 23.78	A
ą,a r		ATOM	3009	0	GLU A			32.563	30.028			
a:		ATOM	3010	N	ARG A			34.426	30.769	8.984	1.00 25.19	A
	20	ATOM	3011	CA	ARG A			35.147	29.514	8.810	1.00 27.32	A
	30	ATOM	3012	CB	ARG A			36.609	29.675	9.233	1.00 28.48	А
M		MOTA	3013	CG	ARG A	J.	391	37.457	30.466	8.248	1.00 30.71	A
E 125		ATOM	3014	CD	ARG A	4	391	38.898	30.573	8.723	1.00 32.35	Α
[al.		ATOM	3015	NE	ARG A	Ą	391	39.021	31.418	9.907	1.00 34.70	A
		ATOM	3016	CZ	ARG A			40.147	31.591	10.591	1.00 35.47	A
al.	35	ATOM	3017		ARG A			41.259	30.973	10.212	1.00 36.35	А
_		ATOM	3018		ARG A			40.165	32.386	11.652	1.00 36.12	A
		ATOM	3019	C	ARG A			34.488	28.403	9.621	1.00 27.87	A
					ARG A					9.250	1.00 27.07	A
		ATOM	3020	0				34.553	27.230		1.00 28.32	
	40	ATOM	3021	N	ALA A			33.855	28.774	10.729		A
	40	ATOM	3022	CA	ALA A			33.174	27.798	11.572	1.00 29.34	A
		ATOM		CB	ALA A			32.808		12.913		A
		ATOM	3024	С	ALA A	Ą	392	31.918	27.334	10.843	1.00 29.94	А
		ATOM	3025	0	ALA A	A.	392	31.238	26.404	11.278	1.00 30.20	А
		ATOM	3026	N	GLY A	Į	393	31.621	27.997	9.729	1.00 30.21	A
	45	MOTA	3027	CA	GLY A			30.459	27.647	8.936	1.00 30.73	A
		ATOM	3028	С	GLY A			29.137	28.156	9.476	1.00 30.90	Α
		ATOM	3029	Ö	GLY A			28.089	27.583	9.186	1.00 30.72	A
			3030		GLN A			29.167	29.230	10.258	1.00 30.72	A
		ATOM		N								
	E0.	ATOM	3031	CA	GLN A			27.926	29.762	10.803	1.00 31.55	A
	50	ATOM	3032	CB	GLN A			28.125	30.254	12.243	1.00 32.81	A
		MOTA	3033	CG	GLN A			28.869	31.566	12.379	1.00 34.09	Α
		MOTA	3034	CD	GLN A	Ą	394	28.756	32.150	13.777	1.00 34.34	Α
		ATOM	3035	OE1	GLN A	Ą	394	29.246	31.573	14.749	1.00 34.56	Α
		ATOM	3036		GLN A			28.099	33.299	13.883	1.00 33.78	A
	55	ATOM	3037	С	GLN A			27.373	30.892	9.944	1.00 30.68	Α
			505.	_	J 1	•		,,,,	J J			

								100					
		MOTA	3038	0	GLN .	Α.:	394	26.308	31.434	10.233	1.00	31.18	Α
		MOTA	3039	N	ALA			28.091	31.242	8.880	1.00	29.36	А
		ATOM	3040	CA	ALA .			27.644	32.311	7.998		28.11	Α
		ATOM	3041	СВ	ALA			27.939	33.667	8.639		28.51	Α
	5	ATOM	3042	C	ALA .			28.263	32.253	6.607		27.07	A
	J	ATOM	3042	Ö	ALA			29.413	31.849	6.434		26.55	A
		ATOM	3044	N	GLU .			27.472	32.656	5.618		26.11	A
		ATOM	3045	CA	GLU			27.902	32.701	4.227		25.01	A
			3045	CB	GLU .			27.081	31.731	3.372		28.19	A
	10	ATOM						26.403	30.616	4.156		32.27	A
	10	ATOM	3047	CG	GLU .				31.055	4.780		34.46	A
		ATOM	3048	CD	GLU .			25.087				35.47	
		ATOM	3049		GLU .			25.079	32.035	5.558		35.90	A
		ATOM	3050		GLU .			24.054	30.414	4.491			A
	15	ATOM	3051	C	GLU .			27.610	34.134	3.804		22.25	A
	15	ATOM	3052	0	GLU A			26.559	34.675	4.147		22.54	A
		ATOM	3053	N	PHE .			28.528	34.756	3.075		18.45	A
		ATOM	3054	CA	PHE .			28.313	36.134	2.661		15.02	A
		MOTA	3055	CB	PHE .			29.530	36.988	3.024		14.03	A
	20	MOTA	3056	CG	PHE .			29.830	37.014	4.493		11.87	A
ū	20	MOTA	3057		PHE .			30.916	36.315	5.008		12.64	A
J		MOTA	3058		PHE .			29.010	37.718	5.367		11.17	A
15		MOTA	3059		PHE .			31.181	36.318	6.379		12.60	A
942 2		MOTA	3060	CE2	PHE .	Α :	397	29.267	37.725	6.737		11.98	A
		MOTA	3061	CZ	PHE .	Α.	397	30.354	37.024	7.240		12.05	А
11	25	ATOM	3062	С	PHE .	Α	397	27.998	36.295	1.181		13.50	A
IJ		MOTA	3063	0	PHE .	A :	397	28.549	35.592	0.334		13.62	A
Ţ		ATOM	3064	N	PRO .	Α :	398	27.090	37.227	0.857	1.00	11.54	A
31		MOTA	3065	CD	PRO .	A .	398	26.315	38.064	1.791	1.00	11.74	A
		ATOM	3066	CA	PRO .	Α :	398	26.694	37.491	-0.526		11.19	A
	30	MOTA	3067	CB	PRO .	A :	398	25.417	38.302	-0.361	1.00	11.18	А
119		ATOM	3068	CG	PRO .	Α :	398	25.711	39.107	0.873	1.00	10.73	A
15		ATOM	3069	С	PRO .	A :	398	27.765	38.267	-1.284	1.00	10.60	A
į.L		ATOM	3070	0	PRO .	A :	398	28.606	38.941	-0.684	1.00	10.78	А
		ATOM	3071	N	THR .	Α :	399	27.729	38.150	-2.604	1.00	10.12	A
, est	35	ATOM	3072	CA	THR .	Α :	399	28.663	38.849	-3.473	1.00	9.51	А
		ATOM	3073	CB	THR .	A :	399	29.072	37.968	-4.661	1.00	9.66	A
		ATOM	3074	OG1	THR .	Α :	399	27.897	37.527	-5.358	1.00	11.62	A
		ATOM	3075	CG2	THR .	A. (399	29.846	36.754	-4.165	1.00	10.14	A
		ATOM	3076	С	THR .	Α :	399	27.932	40.085	-3.980	1.00	9.58	A
	40	MOTA	3077	0	THR .	Α :	399	26.713	40.071	-4.128	1.00	9.11	A
		ATOM	3078	N	LEU .			28.671	41.155	-4.245	1.00	8.68	A
		ATOM	3079	CA	LEU .			28.042	42.383	-4.705	1.00	8.59	A
		ATOM	3080	СВ	LEU			27.656	43.250	-3.492	1.00	9.30	А
		ATOM	3081	CG	LEU			27.037	44.646	-3.685	1.00	8.82	А
	45	ATOM	3082		LEU .			26.267	45.023	-2.424		10.19	А
	10	ATOM	3083		LEU			28.113	45.690	-3.995	1.00	9.06	A
		ATOM	3084	C	LEU			28.958	43.169	-5.618	1.00	8.59	A
		ATOM	3085	0	LEU			30.178	43.136	-5.467	1.00	8.00	A
		ATOM	3086	N	SER I			28.359	43.150	-6.584	1.00	8.67	A
	50							29.117	44.717	-7.481	1.00	8.41	A
	50	MOTA	3087	CA	SER /				44.717	-8.838	1.00	9.45	A
		MOTA	3088	CB	SER .			29.371		-8.838 -9.694	1.00	9.45	A
		ATOM	3089	OG C	SER I			28.244	44.125				
		ATOM	3090	С	SER .			28.281	45.975	-7.661 -7.462	1.00	8.49	A n
	55	ATOM	3091	0	SER I			27.063	45.955	-7.462	1.00	7.41	A
	55	MOTA	3092	N	GLY .	4 4	402	28.943	47.069	-8.021	1.00	7.28	A

		ATOM	3093	CA	GLY	Α	402	28.252	48.332	-8.222	1.00 7.95	A
		MOTA	3094	С	GLY	A	402	28.860	49.410	-7.346	1.00 8.13	A
		MOTA	3095	0	GLY	Α	402	29.905	49.190	-6.724	1.00 8.75	Α
		ATOM	3096	N	ASP	Α	403	28.220	50.575	-7.297	1.00 7.93	Α
	5	ATOM	3097	CA	ASP	Α	403	28.720	51.670	-6.473	1.00 8.03	Α
		MOTA	3098	CB	ASP	Α	403	29.229	52.815	-7.360	1.00 8.33	Α
		MOTA	3099	CG	ASP	Α	403	28.112	53.578	-8.037	1.00 10.13	Α
		MOTA	3100	OD1	ASP	Α	403	26.994	53.039	-8.160	1.00 12.44	A
		ATOM	3101	OD2	ASP	Α	403	28.363	54.724	-8.460	1.00 12.35	А
	10	ATOM	3102	С	ASP	Α	403	27.623	52.162	-5.541	1.00 8.91	А
		MOTA	3103	0	ASP	Α	403	26.516	51.609	-5.521	1.00 8.76	A
		MOTA	3104	N	PHE	Α	404	27.933	53.192	-4.761	1.00 7.11	A
		ATOM	3105	CA	PHE	Α	404	26.967	53.740	-3.827	1.00 7.03	A
		ATOM	3106	CB	PHE	Α	404	27.338	53.341	-2.391	1.00 7.25	Α
	15	ATOM	3107	CG	PHE	Α	404	27.292	51.852	-2.163	1.00 7.96	Α
		MOTA	3108	CD1	PHE	Α	404	28.457	51.092	-2.183	1.00 8.45	A
		MOTA	3109	CD2	PHE	A	404	26.070	51.203	-1.994	1.00 8.79	Α
		ATOM	3110	CEl	PHE	A	404	28.407	49.702	-2.042	1.00 8.99	Α
1124		ATOM	3111	CE2	PHE	Α	404	26.010	49.813	~1.853	1.00 8.46	Α
	20	ATOM	3112	CZ	PHE	Α	404	27.180	49.064	-1.877	1.00 9.11	A
1,4		MOTA	3113	С	PHE	Α	404	26.785	55.247	-3.957	1.00 5.97	A
Ü		MOTA	3114	0	PHE	Α	404	26.922	55.998	-2.994	1.00 6.84	Α
(7)		ATOM	3115	N	PHE	Α	405	26.470	55.664	-5.180	1.00 7.41	А
		ATOM	3116	CA	PHE	Α	405	26.190	57.059	-5.512	1.00 8.36	А
# F	25	ATOM	3117	CB	PHE	Α	405	27.228	57.624	-6.494	1.00 7.18	A
74		MOTA	3118	CG	PHE	Α	405	28.618	57.725	-5.930	1.00 7.06	A
m		MOTA	3119	CD1	PHE	Α	405	29.676	57.062	-6.542	1.00 8.48	A
ā1		ATOM	3120	CD2	PHE	A	405	28.875	58.492	-4.797	1.00 7.69	А
		ATOM	3121	CE1	PHE	A	405	30.975	57.159	-6.033	1.00 7.72	Α
	30	MOTA	3122	CE2	PHE	Α	405	30.171	58.595	-4.280	1.00 7.86	А
1 Augs EGS		MOTA	3123	CZ	PHE	Α	405	31.221	57.926	-4.901	1.00 7.74	A
Ŋ.		MOTA	3124	С	PHE	Α	405	24.832	56.989	-6.216	1.00 9.74	A
į.d.		ATOM	3125	0	PHE	Α	405	24.548	56.000	-6.894	1.00 11.55	А
		ATOM	3126	N	THR	Α	406	23.989	58.009	-6.080	1.00 10.20	А
14	35	MOTA	3127	CA	THR	Α	406	24.266	59.205	-5.302	1.00 9.22	А
		MOTA	3128	CB	THR	Α	406	23.738	60.449	-6.047	1.00 8.18	Α
		MOTA	3129	OG1	THR	Α	406	24.579	60.693	-7.179	1.00 10.10	A
		ATOM	3130	CG2	THR	Α	406	23.724	61.677	-5.149	1.00 8.41	А
		ATOM	3131	С	THR	Α	406	23.638	59.107	-3.918	1.00 9.23	А
	40	MOTA	3132	0	THR			22.478	58.721	-3.761	1.00 10.33	A
		ATOM	3133	N	TYR	A	407	24.433	59.462	-2.918	1.00 9.08	Α
		ATOM	3134	CA	TYR			24.030	59.418	-1.520	1.00 9.23	A
		ATOM	3135	CB	TYR	А	407	25.276	59.650	-0.660	1.00 9.83	A
		ATOM	3136	CG	TYR	А	407	25.047	59.828	0.824	1.00 10.11	A
	45	ATOM	3137	CD1	TYR	A	407	24.571	58.779	1.614	1.00 9.79	A
		MOTA	3138		TYR			24.448	58.918	2.997	1.00 10.83	A
		ATOM	3139	CD2	TYR	A	407	25.383	61.024	1.453	1.00 9.98	A
		ATOM	3140	CE2	TYR	А	407	25.265	61.175	2.833	1.00 9.66	Α
		ATOM	3141	CZ	TYR	А	407	24.802	60.119	3.600	1.00 9.91	А
	50	ATOM	3142	OH	TYR	A	407	24.732	60.257	4.967	1.00 10.51	Α
		MOTA	3143	С	TYR	A	407	22.954	60.423	-1.129	1.00 10.35	Α
		ATOM	3144	0	TYR	Α	407	22.947	61.559	-1.593	1.00 10.39	А
		ATOM	3145	N	ALA	A	408	22.043	59.976	-0.272	1.00 10.77	А
		ATOM	3146	CA	ALA	Α	408	20.980	60.809	0.279	1.00 10.56	А
	55	ATOM	3147	CB	ALA	A	408	19.652	60.549	-0.432	1.00 12.09	A

		ATOM	3148	С	ALA A	408	20.900	60.360	1.732	1.00 10.90	Α
		ATOM	3149	0	ALA A		20.748	59.165	1.999	1.00 10.68	A
		ATOM	3150	N	ASP A		21.031	61.296	2.671	1.00 10.55	A
		ATOM	3151	CA	ASP A		20.971	60.933	4.084	1.00 11.69	A
	5							61.795	4.920	1.00 11.03	A
	3	ATOM	3152	CB	ASP A		21.946			1.00 10.60	A
		ATOM	3153	CG	ASP A		21.643	63.292	4.869		
		ATOM	3154		ASP A		21.024	63.770	3.898	1.00 11.47	A
		ATOM	3155		ASP A		22.065	64.004	5.811	1.00 12.60	A
		MOTA	3156	С	ASP A		19.549	60.987	4.641	1.00 12.81	A
	10	MOTA	3157	0	ASP A		19.258	60.388	5.680	1.00 14.02	A
		MOTA	3158	N	ARG A		18.662	61.683	3.935	1.00 13.88	A
		MOTA	3159	CA	ARG A		17.263	61.785	4.343	1.00 15.32	A
		ATOM	3160	CB	ARG A	410	17.128	62.574	5.652	1.00 17.28	A
		ATOM	3161	CG	ARG A	410	17.637	64.009	5.620	1.00 20.04	A
	15	ATOM	3162	CD	ARG A	410	17.627	64.579	7.035	1.00 23.14	Α
		ATOM	3163	NE	ARG A	410	18.215	65.913	7.135	1.00 26.24	Α
		ATOM	3164	CZ	ARG A	410	17.598	67.038	6.787	1.00 28.17	Α
		ATOM	3165	NH1	ARG A	410	16.359	67.004	6.310	1.00 28.33	A
2:574		MOTA	3166	NH2	ARG A	410	18.219	68.201	6.924	1.00 28.66	A
	20	MOTA	3167	С	ARG A	410	16.407	62.426	3.256	1.00 15.93	Α
1. D		ATOM	3168	0	ARG A		16.911	63.174	2.416	1.00 15.40	A
J		ATOM	3169	N	SER A		15.115	62.110	3.282	1.00 15.97	А
		ATOM	3170	CA	SER A		14.141	62.624	2.320	1.00 16.02	А
		ATOM	3171	СВ	SER A		13.602	63.984	2.787	1.00 17.79	А
	25	ATOM	3172	OG	SER A		14.647	64.906	3.039	1.00 20.12	А
1 547 14 5		ATOM	3173	C	SER A		14.673	62.723	0.892	1.00 15.26	A
W		ATOM	3174	Ö	SER A		15.124	61.725	0.322	1.00 15.04	A
		MOTA	3175	N	ASP A		14.615	63.919	0.313	1.00 13.50	A
31		ATOM	3176	CA	ASP A		15.089	64.133	-1.052	1.00 13.01	A
	30	ATOM	3177	CB	ASP A		14.052	64.937	-1.848	1.00 13.83	A
	50	ATOM	3178	CG	ASP A		13.911	66.369	-1.354	1.00 14.01	A
		ATOM	3179		ASP A		14.388	66.672	-0.241	1.00 13.33	A
		ATOM	3180		ASP A		13.310	67.196	-2.077	1.00 15.12	A
		ATOM	3181	C	ASP A		16.423	64.871	-1.054	1.00 13.12	A
isat.	35	ATOM	3182	0	ASP A		16.822	65.439	-2.071	1.00 12.37	A
	33				ASP A		17.108	64.857	0.087	1.00 12.57	A
		ATOM	3183	N			18.393	65.538	0.215	1.00 11.03	A
		MOTA	3184	CA	ASN A				1.683	1.00 11.09	A
		MOTA	3185	CB	ASN A		18.703	65.851	2.271	1.00 11.71	A
	40	ATOM	3186	CG	ASN A		17.804	66.933			
	4 0	ATOM	3187		ASN A		18.069	67.432	3.364	1.00 12.21	A
		ATOM	3188		ASN A					1.00 11.39	A
		ATOM	3189	C	ASN A		19.536	64.709	-0.365	1.00 11.02	A
		ATOM	3190	0	ASN A		20.261	64.039	0.373	1.00 11.48	A
	45	ATOM	3191	N	TYR A		19.688	64.758	-1.687	1.00 10.66	A
	45	ATOM	3192	CA	TYR A		20.757	64.029	-2.367	1.00 10.00	A
		MOTA	3193	CB	TYR A		20.335	63.638	-3.787	1.00 10.30	A
		MOTA	3194	CG	TYR A		19.333	62.505	-3.824	1.00 10.55	A
		ATOM	3195	CD1	TYR A	414	17.974	62.741	-3.616	1.00 10.75	A
		ATOM	3196		TYR A		17.055	61.688	-3.606	1.00 10.98	A
	50	ATOM	3197	CD2	TYR A	414	19.752	61.191	-4.025	1.00 10.20	А
		ATOM	3198	CE2	TYR A	414	18.844	60.134	-4.016	1.00 10.67	A
		ATOM	3199	CZ	TYR A	414	17.502	60.390	-3.806	1.00 10.80	А
		ATOM	3200	OH	TYR A	414	16.609	59.340	-3.796	1.00 10.77	А
		ATOM	3201	С	TYR A	414	22.008	64.899	-2.419	1.00 10.13	А
	55	ATOM	3202	0	TYR A		21.942	66.075	-2.778	1.00 10.53	A

		ATOM	3203	N	TRP	A 415	5 2	3.142	64.302	-2.072	1.00	9.52	A
		ATOM	3204	CA	TRP	A 41	5 2	4.416	65.010	-2.030	1.00	9.26	A
		ATOM	3205	СВ		A 415		5.320	64.366	-0.971	1.00	9.67	А
		ATOM	3206	CG		A 41		4.786	64.442	0.441	1.00	9.03	А
	5	ATOM	3207		TRP			5.545	64.689	1.632	1.00	9.61	А
	•	ATOM	3208		TRP			4.650	64.605	2.725	1.00	9.55	A
		ATOM	3209		TRP			6.896	64.972	1.882	1.00	9.25	A
		ATOM	3210		TRP			3.494	64.225	0.851	1.00	9.72	A
		ATOM	3211	NE1		A 41		3.408	64.321	2.220	1.00	9.57	A
	10		3212		TRP			5.064	64.794	4.051	1.00	9.83	A
	10	MOTA						7.309	65.158	3.201	1.00	9.05	A
		ATOM	3213		TRP							9.98	
		ATOM	3214	CH2		A 415		6.393	65.068	4.270	1.00		A
		ATOM	3215	С		A 41!		5.140	65.041	-3.372	1.00	9.53	A
	4 F	ATOM	3216	0		A 415		6.251	64.528	-3.495		10.20	A
	15	ATOM	3217	N		A 41		4.514	65.639	-4.379	1.00	9.04	A
		ATOM	3218	CA		A 41		5.143	65.724	-5.690	1.00	8.92	A
		ATOM	3219	CB		A 416		4.144	65.357	-6.798	1.00	8.51	A
		ATOM	3220	OG	SER	A 41		2.870	65.939	-6.574	1.00	8.91	A
		MOTA	3221	С	SER	A 410		5.728	67.110	-5.933	1.00	8.58	A
, File	20	ATOM	3222	0	SER	A 41	5 2	6.388	67.346	-6.939	1.00	8.72	A
in in the second		MOTA	3223	N	GLY	A 41	7 2	5.504	68.023	-4.995	1.00	8.72	A
		ATOM	3224	CA	GLY	A 41	7 2	6.035	69.361	-5.155	1.00	9.16	A
		ATOM	3225	С	GLY	A 41	7 2	7.549	69.389	-5.084	1.00	8.20	Α
i		ATOM	3226	0	GLY	A 41	7 2	8.194	70.109	-5.846	1.00	8.68	A
	25	ATOM	3227	N	TYR	A 418	3 2	8.125	68.591	-4.187	1.00	8.03	Α
144		MOTA	3228	CA	TYR	A 418	3 2	9.575	68.583	-4.018	1.00	7.87	A
n		ATOM	3229	СВ	TYR	A 418	3 2	9.955	67.891	-2.699	1.00	7.48	A
		ATOM	3230	CG		A 418		0.086	66.390	-2.762	1.00	7.93	А
183 41 28		ATOM	3231	CD1		A 418		1.328	65.794	-2.973	1.00	7.95	А
	30	ATOM	3232	CE1		A 418		1.467	64.414	-2.997	1.00	7.84	А
4.CI		ATOM	3233		TYR			8.978	65.563	-2.583	1.00	8.11	А
Company of the control of the contro		ATOM	3234	CE2		A 418		9.104	64.177	-2.608	1.00	8.06	А
[at		ATOM	3235	CZ		A 418		0.354	63.611	-2.813	1.00	7.96	A
		ATOM	3236	ОН		A 418		0.501	62.248	-2.817	1.00	8.02	А
	35	ATOM	3237	C		A 418		0.346	67.988	-5.199	1.00	7.88	A
ā. · · ·	50	ATOM	3238	0		A 418		1.576	67.989	-5.208	1.00	7.86	A
		ATOM	3239	N		A 419		9.627	67.477	-6.194	1.00	7.67	A
		ATOM	3240	CA		A 419		0.282	66.952	-7.388	1.00	7.72	A
		ATOM	3241	CB		A 419		9.290	66.179	-8.265	1.00	7.93	A
	40		3242	CG		A 419		8.676	64.947	-7.644	1.00	7.53	A
	40	ATOM ATOM	3242					7.487	64.416	-8.152	1.00	7.43	A
					TYR				63.261	- 7.619	1.00	8.40	A
		ATOM	3244		TYR			6.926				7.84	A
		ATOM	3245		TYR				64.285	-6.579	1.00		
	45	ATOM	3246		TYR				63.123	-6.041	1.00	8.37	A
	45	MOTA	3247	CZ		A 419		7.553	62.619	-6.567	1.00	8.35	A
		ATOM	3248	ОН		A 41		6.995	61.474	-6.047	1.00	8.31	A
		ATOM	3249	С		A 41		0.803	68.150	-8.190	1.00	7.72	A
		ATOM	3250	0		A 419		1.616	67.988	-9.103	1.00	8.10	A
		ATOM	3251	N		A 420		0.338	69.348	-7.832	1.00	7.79	A
	50	ATOM	3252	CA		A 420			70.574	-8.531	1.00	7.63	A
		ATOM	3253	CB		A 420		9.503	71.111	-9.333	1.00	7.52	Α
		ATOM	3254	OG1	THR	A 420		9.016		-10.199	1.00	8.69	A
		ATOM	3255	CG2		A 420		9.889	72.330	-10.171	1.00	9.65	A
		ATOM	3256	С	THR	A 420) 3	1.261	71.712	-7.658	1.00	8.05	A
	55	ATOM	3257	0	THR	A 420) 3	2.050	72.52 7	-8.131	1.00	8.13	А

		ATOM	3258	N	SER	Α	421	30	0.844	71.771	-6.396	1.00	8.23	А
		MOTA	3259	CA	SER				1.277	72.840	-5.491	1.00	8.39	Α
		ATOM	3260	СВ	SER				0.894	72.488	-4.054	1.00	8.23	А
		ATOM	3261	OG			421		9.493	72.328	-3.942	1.00	9.95	А
	5	ATOM	3262	C			421		2.766	73.172	-5.553	1.00	8.54	А
	-	ATOM	3263	0	SER				3.612	72.276	-5.532	1.00	8.31	А
		ATOM	3264	N	ARG				3.076	74.468	-5.600	1.00	8.47	А
		MOTA	3265	CA	ARG				1.457	74.944	-5.683	1.00	8.89	А
		ATOM	3266	CB	ARG				5.200	74.655	-4.373	1.00	9.32	А
	10	ATOM	3267	CG	ARG				5.001	75.708	-3.275	1.00	8.93	A
	-0	ATOM	3268	CD	ARG				3.541	75.915	-2.854	1.00	8.00	A
		ATOM	3269	NE	ARG				3.480	76.889	-1.761	1.00	8.83	A
		ATOM	3270	CZ	ARG				3.533	76.580	-0.468	1.00	9.12	A
		ATOM	3271		ARG				3.622	75.316	-0.081		10.31	А
	15	ATOM	3272		ARG				3.565	77.545	0.444	1.00	9.63	A
	10	ATOM	3273	C	ARG				5.174	74.285	-6.865	1.00	8.93	A
		ATOM	3274	0	ARG				5.201	73.616	-6.705	1.00	8.08	A
		ATOM	3275	N	PRO				1.648	74.485	-8.081	1.00	8.34	A
4,700		ATOM	3275	CD	PRO				3.511	75.348	-8.449	1.00	8.14	A
	20	ATOM	3277	CA	PRO				5.258	73.887	-9.272	1.00	8.20	A
ij.	20		3277	CB	PRO				1.248		-10.372	1.00	7.99	A
ij		ATOM	3279						3.720	75.542	-9.940	1.00	8.18	A
m		ATOM		CG	PRO PRO					74.342	-9.606	1.00	8.42	A
		ATOM	3280	C					5.679				7.85	
1:ar	25	ATOM	3281	0	PRO				7.406		-10.300	1.00		A
	23	MOTA	3282	N	TYR				7.086	75.512	-9.125	1.00	8.22	A
BA₽ Jana		ATOM	3283	CA	TYR				3.440	75.987		1.00	8.69 8.94	A
iji		ATOM	3284	CB	TYR				3.678	77.357		1.00		A
E)		ATOM	3285	CG	TYR				0.056	77.929	-9.021	1.00	9.20	A
He. Com Carl Carl	20	ATOM	3286	CD1					0.304		-10.156		10.09	A
j	30	ATOM	3287		TYR				1.569		-10.411		11.78	A
M		ATOM	3288		TYR				1.117	77.693	-8.144	1.00	9.18	A
		ATOM	3289		TYR				2.388	78.211	-8.392		11.36	A
Ö		ATOM	3290	CZ	TYR				2.606	78.976	-9.527		11.41	A
	25	ATOM	3291	OH	TYR				3.854	79.513	-9.774		13.60	A
ļ÷.	35	ATOM	3292	С	TYR				9.446	74.997	-8.818	1.00	8.12	A
		ATOM	3293	0	TYR				0.409	74.605	-9.477	1.00	8.51	A
		MOTA	3294	N	HIS				9.204	74.588	-7.578	1.00	8.00	A
		ATOM	3295	CA	HIS).102	73.672	-6.884	1.00	7.92	A
	40	ATOM	3296	CB	HIS				9.841	73.793	-5.390	1.00	8.82	A
	40	ATOM	3297	CG	HIS				9.830	75.214	-4.928	1.00	9.54	A
		ATOM	3298		HIS				3.817	76.107	-4.842	1.00	8.63	A
		MOTA	3299		HIS).985	75.917	-4.659		11.50	Α
		ATOM	3300		HIS).684	77.184	-4.433	1.00	9.24	А
	4 ==	ATOM	3301		HIS				3.376	77.326	-4.540		12.26	A
	45	ATOM	3302	С	HIS	Α	425		9.982	72.242	-7.382	1.00	7.65	A
		ATOM	3303	0	HIS).937	71.470	-7.298	1.00	6.25	A
		ATOM	3304	N	LYS	Α	426	38	3.809	71.891	-7.900	1.00	6.92	А
		ATOM	3305	CA	LYS	А	426	38	3.601	70.566	-8.474	1.00	7.10	A
		ATOM	3306	CB	LYS	Α	426	37	7.130	70.386	-8.863	1.00	7.64	А
	50	ATOM	3307	CG	LYS	Α	426	36	5.233	69.957	-7.707	1.00	7.33	А
		ATOM	3308	CD	LYS			34	1.758	69.974	-8.108	1.00	8.18	Α
		ATOM	3309	CE	LYS				3.893	69.112	-7.180	1.00	7.20	A
		ATOM	3310	NZ	LYS	A	426		3.897	69.564	-5.757	1.00	8.35	А
		MOTA	3311	С	LYS				.500	70.461	-9.711	1.00	6.80	A
	55	ATOM	3312	0	LYS).130	69.429	-9.950	1.00	7.71	A

		ATOM	3313	N	ARG A	427	39.562	71.536	-10.493	1.00	6.95	Α
		ATOM	3314	CA	ARG A		40.403	71.558		1.00	7.61	А
		ATOM	3315	СВ	ARG A		40.055	72.780		1.00	7.49	А
		ATOM	3316	CG	ARG A		41.045	73.105		1.00	8.69	А
	5	MOTA	3317	CD	ARG A		41.239	71.986		1.00	9.36	A
	3		3317	NË	ARG A		42.275	72.376			11.26	A
		ATOM			ARG A		43.047	71.530			11.18	A
		ATOM	3319	CZ			42.911	70.220			11.18	A
		ATOM	3320		ARG A							A
	10	ATOM	3321		ARG A		43.985	72.004			11.85	
	10	MOTA	3322	С	ARG A		41.871	71.587		1.00	7.82	A
		ATOM	3323	0	ARG A		42.708	70.901		1.00	7.39	A
		MOTA	3324	N	MSE A		42.179	72.370		1.00	7.89	A
		ATOM	3325	CA	MSE A		43.550	72.457	-9.729	1.00	7.92	Α
		MOTA	3326	CB	MSE A	428	43.613	73.415	-8.542	1.00	9.64	A
	15	MOTA	3327	CG	MSE A		45.022	73.778	-8.109	1.00	9.04	A
		ATOM	3328	SE	MSE A	428	44.978	75.197	-6.818		16.90	A
		MOTA	3329	CE	MSE A	428	46.844	75.667	-6.794	1.00	10.50	A
		ATOM	3330	C	MSE A	428	44.058	71.072	-9.319	1.00	7.61	А
int.		ATOM	3331	0	MSE A	428	45.223	70.741	-9.528	1.00	6.75	Α
tasafi .pre	20	ATOM	3332	N	ASP A	429	43.173	70.264	-8.742	1.00	7.36	A
		ATOM	3333	CA	ASP A	429	43.532	68.915	-8.323	1.00	6.76	A
IJ		ATOM	3334	CB	ASP A	429	42.302	68.199	-7.764	1.00	7.80	A
M		ATOM	3335	CG	ASP A	429	42.567	66.742	-7.454	1.00	7.25	А
S		ATOM	3336		ASP A		42.305	65.877	-8.322	1.00	7.35	А
M.	25	ATOM	3337		ASP A		43.050	66.464	-6.339	1.00	8.83	A
Target and the second		ATOM	3338	C	ASP A		44.110	68.101	-9.477	1.00	6.82	Α
ijĦ.		ATOM	3339	Ö	ASP A		45.126	67.426	-9.324	1.00	6.20	А
		ATOM	3340	N	ARG A		43.465	68.174		1.00	6.28	А
Et an es		ATOM	3341	CA	ARG A		43.925	67.415		1.00	6.60	А
	30	ATOM	3342	CB	ARG A		42.864	67.436		1.00	7.13	А
	30	MOTA	3343	CG	ARG A		41.575	66.745		1.00	6.81	A
ΠŢ		ATOM	3344	CD	ARG A		41.821	65.302		1.00	7.18	A
1.1		ATOM	3345	NE	ARG A		40.578	64.536		1.00	7.42	A
			3346	CZ	ARG A		39.899	64.186		1.00	7.01	A
	35	ATOM	3340		ARG A		40.329	64.520		1.00	6.58	A
Ē.,	33	ATOM					38.770	63.504		1.00	7.28	A
		ATOM	3348		ARG A			67.938		1.00	6.64	A
		ATOM	3349	С	ARG A		45.247	67.164		1.00	6.98	A
		ATOM	3350	0	ARG A		46.071	69.246		1.00	6.93	A
	40	ATOM	3351	N	VAL A		45.448	69.838		1.00	7.00	A
	40	ATOM	3352	CA	VAL A		46.693	-			7.25	
		ATOM	3353	CB	VAL A		46.613	71.381		1.00	7.23	A
		ATOM	3354		VAL A		47.966	71.984		1.00		A
		ATOM	3355		VAL A		45.553	71.856		1.00	7.34	A
	45	ATOM	3356	С	VAL A		47.835	69.361		1.00	7.33	A
	45	MOTA	3357	0	VAL A		48.867	68.890		1.00	6.53	A
		ATOM	3358	N	LEU A		47.648	69.477		1.00	6.42	A
		ATOM	3359	CA	LEU A		48.683	69.051	-9.574	1.00	7.15	A
		ATOM	3360	CB	LEU A		48.314	69.449	-8.144	1.00	7.42	Α
		ATOM	3361	CG	LEU A		49.320	69.099	-7.040	1.00	7.44	А
	50	MOTA	3362	CD1	LEU A	432	50.706	69.655	-7.368	1.00	7.97	A
		ATOM	3363	CD2	LEU A	432	48.815	69.674	-5.718	1.00	7.95	А
		MOTA	3364	С	LEU A	432	48.906	67.545	-9.676	1.00	6.90	A
		ATOM	3365	0	LEU A	432	50.031	67.073	-9.538	1.00	7.14	А
		ATOM	3366	N	MSE A	433	47.839	66.789	-9.921	1.00	6.62	A
	55	ATOM	3367	CA	MSE A	433	47.973	65.343	-10.071	1.00	6.77	A

		ATOM	3368	CB	MSE	A	433	46.650	64.728	-10.520	1.00	7.49	A
		ATOM	3369	ÇG	MSE	A	433	46.765		-10.899	1.00	7.23	A
		MOTA	3370	SE	MSE	Α	433	45.147	62.554	-11.645	1.00	14.77	Α
		MOTA	3371	CE	MSE	А	433	45.309	63.312	-13.420		11.03	A
	5	MOTA	3372	С	MSE	A	433	49.030		-11.130	1.00	6.61	А
		MOTA	3373	0	MSE	Α	433	49.915	64.198	-10.933	1.00	5.99	A
		ATOM	3374	N	HIS	Α	434	48.926	65.732	2 -12.255	1.00	5.72	А
		MOTA	3375	CA	HIS	A	434	49.855		-13.352	1.00	6.68	A
		ATOM	3376	CB	HIS	Α	434	49.340		3 -14.620	1.00	7.17	А
	10	MOTA	3377	CG	HIS	А	434	50.306		-15.755	1.00	6.69	A
		MOTA	3378	CD2	HIS	A	434	50.676		-16.524	1.00	6.66	A
		MOTA	3379		HIS			51.107		2 -16.134	1.00	9.42	A
		MOTA	3380		HIS			51.932		-17.086	1.00	6.23	A
		MOTA	3381	NE2	HIS	A	434	51.692		-17.339	1.00	9.56	A
	15	MOTA	3382	С	HIS			51.259		-13.054	1.00	6.95	A
		ATOM	3383	0	HIS	Α	434	52.242		-13.414	1.00	6.29	Α
		MOTA	3384	N	TYR			51.353		3 -12.417	1.00	6.61	A
		MOTA	3385	CA	TYR			52.656		-12.082	1.00	8.18	A
		MOTA	3386	CB	TYR			52.500		5 -11.431	1.00	9.43	A
Peradi. Li™a	20	MOTA	3387	CG	TYR			52.370		3 -12.385		12.33	A
		MOTA	3388		TYR			51.432		-13.417		12.80	A
1, <u>1,2</u> 1.		MOTA	3389		TYR			51.272		-14.251		13.62	A
Ę Ę Ę		MOTA	3390		TYR			53.151		-12.211		14.28	A
		MOTA	3391		TYR			53.001		2 -13.034		15.81	A
	25	MOTA	3392	CZ	TYR			52.059		-14.050		15.15	A
W.		ATOM	3393	OH	TYR			51.896		3 -14.841		17.94	A
(T		ATOM	3394	С	TYR			53.414		-11.128	1.00	6.75	A
3)		MOTA	3395	0	TYR			54.636		-11.226	1.00	7.81	A
	20	ATOM	3396	N	VAL			52.700		-10.195	1.00	5.90	A
	30	ATOM	3397	CA	VAL			53.355	65.305		1.00	6.76 6.54	A
		ATOM	3398	CB	VAL			52.382	64.850		1.00	7.70	A A
		ATOM	3399		VAL			52.963	63.665		1.00	6.54	A
		ATOM	3400		VAL			52.132	66.009		1.00	6.75	A
	25	ATOM	3401	C	VAL			53.892	63.698	-10.034 -9.857	1.00	6.38	A
i.≰.	35	ATOM	3402	0	VAL			55.041 53.069		2 -10.905	1.00	5.91	A
		ATOM	3403	N	ARG			53.518		3 -11.693	1.00	6.53	A
		ATOM	3404	CA CB	ARG			52.406		2 -12.621	1.00	6.39	A
		ATOM	3405 3406	CG	ARG ARG			52.904		5 -13.674	1.00	7.38	A
	40	ATOM	3400	CD	ARG			51.779		3 -14.552	1.00	7.95	A
	40	ATOM	3407	NE	ARG			52.287		-15.735	1.00	6.99	A
		ATOM ATOM	3409	CZ	ARG			51.550		-16.486	1.00	7.60	A
		ATOM	3410		ARG			50.282) -16.170	1.00	8.52	A
		ATOM	3411		ARG			52.075		-17.559	1.00	7.42	A
	45	ATOM	3412	C	ARG			54.743		-12.528	1.00	6.68	A
	43	ATOM	3413	0	ARG			55.725		-12.558	1.00	6.83	А
		ATOM	3414	N	ALA			54.682		2 -13.217	1.00	6.53	A
		ATOM	3415	CA	ALA			55.790		-14.066	1.00	7.02	A
		MOTA	3416	CB	ALA			55.385		14.887	1.00	7.20	A
	50	MOTA	3417	C	ALA			57.061		3 -13.269	1.00	6.87	A
	50	ATOM	3418	0	ALA			58.165		-13.702	1.00	8.03	А
		ATOM	3419	N	ALA			56.909	•	-12.110	1.00	7.12	A
		ATOM	3420	CA	ALA			58.061		-11.276	1.00	6.67	А
		ATOM	3421	CB	ALA			57.637		-10.123	1.00	7.46	A
	55	ATOM	3422	С	ALA			58.708		-10.741	1.00	7.35	А
		M I OU	2766	\sim	TULL	7.7	100	55.700	JJ.				

	ATOM	3423	0	ALA	A	439	59.930	64.141	-10.770	1.00	6.65	А
	ATOM	3424	N	GLU			57.897	63.360	-10.248	1.00	6.24	Α
	ATOM	3425	CA	GLU			58.458	62.116	-9.739	1.00	7.04	A
	ATOM	3426	СВ	GLU	Α	440	57.382	61.279	-9.041	1.00	7.73	Α
5	MOTA	3427	CG	GLU			56.853	61.911	-7.762	1.00	8.18	A
	ATOM	3428	CD	GLU			56.186	60.904	-6.843	1.00	10.22	A
	ATOM	3429	OE1	GLU			55.089	60.406	-7.173	1.00	10.17	А
	ATOM	3430	OE2	GLU			56.773	60.603	-5.787	1.00	10.50	A
	ATOM	3431	С	GLU			59.112	61.292	-10.851	1.00	6.93	A
10	MOTA	3432	0	GLU			60.152	60.676	-10.639	1.00	7.92	A
	ATOM	3433	N	MSE	Α	441	58.517	61.285	-12.040	1.00	6.93	A
	ATOM	3434	CA	MSE	Α	441	59.084	60.513	-13.141	1.00	7.41	A
	ATOM	3435	СВ	MSE	А	441	58.068	60.378	-14.277	1.00	8.35	A
	MOTA	3436	CG	MSE	Α	441	58.580	59.571	-15.465	1.00	8.46	А
15	MOTA	3437	SE	MSE	Α	441	57.255	59.396	-16.865	1.00	13.95	A
	MOTA	3438	CE	MSE	Α	441	56.081	58.134	-15.968	1.00	10.73	A
	ATOM	3439	С	MSE	Α	441	60.377	61.120	-13.677	1.00	7.44	Α
	ATOM	3440	0	MSE	Α	441	61.381	60.423	-13.818	1.00	8.04	A
	ATOM	3441	N	LEU	Α	442	60.354	62.416	-13.979	1.00	7.67	A
20	MOTA	3442	CA	LEU	Α	442	61.539	63.085	-14.509	1.00	8.05	A
	ATOM	3443	СВ	LEU	A	442	61.233	64.553	-14.813	1.00	8.28	А
	MOTA	3444	CG	LEU	A	442	60.557	64.823	-16.161	1.00	8.01	А
	MOTA	3445	CD1	LEU	Α	442	59.999	66.236	-16.193	1.00	9.63	A
	MOTA	3446	CD2	LEU	A	442	61.564	64.612	-17.283		10.08	А
25	MOTA	3447	C	LEU	A	442	62.750	62.999	-13.592	1.00	8.72	A
	ATOM	3448	0	LEU	Α	442	63.881	62.855	-14.060	1.00	8.81	A
	MOTA	3449	N	SER	A	443	62.523	63.074	-12.284	1.00	8.42	A
	MOTA	3450	CA	SER	A	443	63.635		-11.346	1.00	8.63	А
	ATOM	3451	CB	SER	A	443	63.306		-10.077	1.00	8.25	А
30	MOTA	3452	OG	SER	A	443	62.192	63.273	-9.387	1.00	8.38	А
	MOTA	3453	С	SER	Α	443	64.038		-10.975	1.00	9.17	А
	MOTA	3454	0	SER			65.105		-10.399		10.14	A
	MOTA	3455	N	ALA			63.201		-11.324	1.00	8.08	A
	MOTA	3456	CA	ALA			63.488		-11.004	1.00	8.59	A
35	ATOM	3457	CB	ALA			62.237		-11.202	1.00	9.58	A
	MOTA	3458	С	ALA			64.629		-11.833	1.00	9.05	A
	MOTA	3459	0	ALA			65.268		-11.416	1.00	9.90	A
	ATOM	3460	N	TRP			64.886		-13.002	1.00	9.47	A
40	ATOM	3461	CA	TRP			65.939		-13.869		10.27	A
4 0	MOTA	3462	СВ	TRP			65.943		-15.210	1.00	9.48	A
	ATOM	3463	CG	TRP			64.665		-15.975	1.00	8.72	A
	MOTA	3464		TRP			64.211		-16.648	1.00	8.20	A
	ATOM	3465		TRP			62.926		-17.163	1.00	7.89	A
45	MOTA	3466		TRP			64.763		-16.862	1.00	9.03	A
45	ATOM	3467		TRP			63.670		-16.112	1.00	9.25	A
	MOTA	3468		TRP			62.623		-16.821	1.00	8.67	A
	MOTA	3469		TRP			62.181		-17.881	1.00	7.85	A
	MOTA	3470		TRP			64.024		-17.575	1.00	9.31	A
ΕO	ATOM	3471		TRP			62.744		-18.076	1.00	8.54	A
50	ATOM	3472	С	TRP			67.329		-13.251		10.91	A
	ATOM	3473	0	TRP			68.195		-13.594		12.14	A
	ATOM	3474	N	HIS			67.541		-12.348		11.75	A
	ATOM	3475	CA	HIS			68.836		-11.691		12.74	A A
EE	ATOM	3476	CB	HIS			69.470		-11.985		14.40	A A
55	ATOM	3477	CG	HIS	Α	446	69.853	01.443	-13.413	1.00	15.98	А

		ATOM	3478	CD2	HIS	Α	446	71.011	61.196	-14.070	1.00	17.49	A
		MOTA	3479	ND1	HIS	Α	446	69.000	62.008	-14.336	1.00	16.71	A
		MOTA	3480	CE1	HIS	Α	446	69.618	62.103	-15.500	1.00	17.82	Α
		MOTA	3481	NE2	HIS	Α	446	70.838	61.618	-15.365	1.00	17.18	Α
	5	ATOM	3482	С	HIS	Α	446	68.734	59.775	-10.181	1.00	12.44	Α
		ATOM	3483	0	HIS	Α	446	67.658	59.891	-9.595	1.00	12.19	A
		MOTA	3484	N	SER	А	447	69.887	59.573	-9.559	1.00	13.41	А
		ATOM	3485	CA	SER	Α	447	69.984	59.553	-8.115	1.00	13.93	А
		ATOM	3486	СВ	SER			71.047	58.549	-7.667	1.00	15.77	A
	10	ATOM	3487	OG	SER	Α	447	71.107	58.470	-6.255	1.00	19.30	A
		MOTA	3488	С	SER			70.452	60.989	-7.864	1.00	14.00	A
		MOTA	3489	0	SER	Α	447	71.316	61.492	-8.586	1.00	14.59	A
		MOTA	3490	N	TRP	Α	448	69.874	61.665	-6.878	1.00	13.08	А
		ATOM	3491	CA	TRP			70.259	63.045	-6.614	1.00	13.81	Α
	15	ATOM	3492	CB	TRP			69.037	63.961	-6.688	1.00	13.00	A
		ATOM	3493	CG	TRP			68.381	63.979	-8.032	1.00	11.48	A
		ATOM	3494	CD2	TRP			68.523	64.987	-9.035	1.00	10.99	Α
		ATOM	3495	CE2				67.738	64.590	-10.140	1.00	10.00	A
		ATOM	3496		TRP			69.238	66.192	-9.108	1.00	11.04	A
1.32 1.32	20	ATOM	3497		TRP			67.541	63.035	-8.551	1.00	11.29	A
Ţ		ATOM	3498	NE1				67.150	63.395	-9.818	1.00	10.64	Α
		MOTA	3499		TRP			67.646		-11.306	1.00	11.20	А
n		ATOM	3500	CZ3	TRP			69.147		-10.270	1.00	10.82	А
inazi inazi		ATOM	3501	CH2	TRP			68.355		-11.353		11.03	A
	25	ATOM	3502	С	TRP			70.945	63.261	-5.278	1.00	15.52	А
W.		ATOM	3503	0	TRP			70.609	62.621	-4.283		15.44	A
Manage of the second		ATOM	3504	N·	ASP			71.905	64.180	-5.270		17.52	А
		ATOM	3505	CA	ASP			72.627	64.520	-4.055		19.65	A
Ħ!		ATOM	3506	CB	ASP			73.780	65.473	-4.380		22.50	A
1,000	30	ATOM	3507	CG	ASP			74.655	65.764	-3.177		25.00	А
ij		MOTA	3508		ASP			74.191	66.458	-2.248		26.37	А
		ATOM	3509		ASP			75.811	65.290	-3.161		27.45	А
i.		ATOM	3510	C	ASP			71.627	65.202	-3.128		19.63	А
3:35		ATOM	3511	0	ASP			70.729	65.909	-3.589		19.29	А
	35	ATOM	3512	N	GLY			71.780	64.985	-1.826		20.01	А
ğınığı.	00	ATOM	3513	CA	GLY			70.870	65.581	-0.864		20.00	А
		ATOM	3514	C	GLY			70.735	67.089	-0.962		20.23	A
		MOTA	3515	0	GLY			69.690	67.646	-0.616		19.88	A
		MOTA	3516	N	MET			71.786	67.755	-1.432		20.10	А
	40	ATOM	3517	CA	MET			71.768	69,209	-1.561		20,63	А
	10	ATOM	3518	CB	MET			73.166	69.735	-1.896	1.00	23.63	A
		ATOM	3519	CG	MET			74.203	69.506	-0.815		27.14	А
		ATOM	3520	SD	MET			75.744	70.366	-1.188		32.31	A
		ATOM	3521	CE	MET			76.487	69.235	-2.362		29.66	А
	45	ATOM	3522	C	MET			70.787	69.704	-2.616		18.82	A
	10	ATOM	3523	0	MET			70.419	70.877	-2.622		18.97	A
		MOTA	3524	N	ALA			70.373	68.814	-3.512		17.14	A
		ATOM	3525	CA	ALA			69.433	69.181	-4.564		16.09	A
		MOTA	3526	CB	ALA			69.469	68.149	-5.682		15.55	A
	50		3527					68.019	69.307	-4.006		15.58	A
	50	ATOM	352 <i>1</i> 3528	C	ALA ALA			67.134	69.862	-4.655		15.31	A
		ATOM	3528 3529	O N				67.816	68.780	-2.802		14.93	A
		ATOM		N CA	ARG			66.520	68.844	-2.133		15.12	A
		ATOM	3530	CA	ARG				70.296	-2.133 -1.757		16.65	A
	55	ATOM	3531	CB	ARG			66.209				19.15	A
	55	ATOM	3532	CG	ARG	А	453	67.260	70.927	-0.853	1.00	17.13	А

				_									
		ATOM	3533	CD			453	67.014	72.415	-0.653		21.70	A
		ATOM	3534	NE			453	65.762	72.680	0.047		23.84	A
		MOTA	3535	CZ	ARG	Α	453	65.266	73.896	0.255		25.33	A
	_	ATOM	3536		ARG			65.917	74.967	-0.187	1.00	25.98	А
	5	MOTA	3537	NH2	ARG	Α	453	64.120	74.043	0.905	1.00	25.91	Α
		ATOM	3538	С	ARG	Α	453	65.376	68.269	-2.967	1.00	13.88	Α
		ATOM	3539	0	ARG	Α	453	64.232	68.701	-2.843	1.00	14.25	Α
		ATOM	3540	N	ILE	Α	454	65.683	67.289	-3.810	1.00	11.74	A
		ATOM	3541	CA	ILE	Α	454	64.666	66.666	-4.648	1.00	11.41	A
	10	ATOM	3542	СВ			454	65.310	65.691	-5.662	1.00	11.24	А
		ATOM	3543		ILE			64.225	64.960	-6.447		12.28	A
		ATOM	3544		ILE			66.260	66.456	-6.594		12.69	A
		ATOM	3545	CD1				65.605	67.562	-7.396		13.45	А
		ATOM	3546	C			454	63.633	65.910	-3.804		11.43	A
	15	ATOM	3547	Ö			454	62.429	66.142	-3.936		10.95	A
		ATOM	3548	N	GLU			64.100	65.013	-2.939		11.35	A
		ATOM	3549	CA	GLU			63.196	64.234	-2.092		11.75	A
		ATOM	3550	СВ	GLU			63.981	63.274	-1.188		12.29	A
		ATOM	3551	CG	GLU			64.595	62.071	-1.896		12.76	A
	20	ATOM	3552	CD	GLU			65.938	62.375	-2.539		13.14	A
J	20	MOTA	3553		GLU			66.381	63.541	-2.473		14.41	A
Q		ATOM	3554		GLU			66.544	61.441	-3.108		12.50	A
m					GLU				65.153	-1.230		11.49	
1,5 H		MOTA	3555	C				62.337					A
124	25	ATOM	3556	0	GLU			61.145	64.907	-1.025		11.26	A
W.	25	ATOM	3557	N	GLU			62.948	66.218	-0.729		12.01	A
		ATOM	3558	CA	GLU			62.249	67.183	0.107		12.19	A
		ATOM	3559	CB	GLU			63.216	68.281	0.545		14.58	A
91		ATOM	3560	CG	GLU			62.624	69.300	1.494		17.19	A
3:00	20	ATOM	3561	CD	GLU			63.514	70.515	1.653		18.91	A
. F	30	MOTA	3562		GLU			64.749	70.360	1.554		20.97	A
Anna Ar ding		ATOM	3563		GLU			62.982	71.621	1.887		20.95	A
14		ATOM	3564	С	GLU			61.072	67.817	-0.635		11.41	A
ļ. 4		MOTA	3565	0	GLU			59.950	67.859	-0.126		11.43	A
£1:00	25	ATOM	3566	N	ARG			61.332	68.321	-1.836		11.00	A
<u>.</u>	35	ATOM	3567	CA	ARG			60.286	68.964	-2.622		10.38	A
		MOTA	3568	CB	ARG			60.898	69.660	-3.847		11.74	A
		ATOM	3569	CG	ARG			61.302	71.116	-3.608		14.55	A
		ATOM	3570	CD	ARG			62.235	71.277	-2.416		17.43	А
	40	ATOM	3571	NE	ARG			62.539	72.681	-2.130		19.26	A
	40	ATOM	3572	CZ	ARG			63.355	73.442	-2.855		21.10	A
		ATOM	3573		ARG			63.963	72.944	-3.924		21.18	А
		ATOM	3574	NH2	ARG			63.566	74.706	-2.507		21.77	А
		ATOM	3575	С	ARG			59.191	67.995	-3.054	1.00	9.31	А
		ATOM	3576	0	ARG	А	457	58.013	68.348	-3.048	1.00	8.43	А
	45	ATOM	3577	N	LEU	А	458	59.575	66.776	-3.421	1.00	8.92	A
		ATOM	3578	CA	LEU	Α	458	58.594	65.783	-3.844	1.00	9.14	A
		ATOM	3579	CB	LEU	Α	458	59.293	64.572	-4.465	1.00	8.78	А
		ATOM	3580	CG	LEU	Α	458	59.992	64.878	-5.799	1.00	8.90	А
		ATOM	3581	CD1	LEU	Α	458	60.677	63.624	-6.313	1.00	9.97	Α
	50	ATOM	3582		LEU			58.970	65.395	-6.825	1.00	9.94	Α
		ATOM	3583	С	LEU			57.706	65.350	-2.685	1.00	9.64	А
		ATOM	3584	0	LEU			56.511	65.124	-2.872		10.33	А
		ATOM	3585	N	GLU			58.277	65.243	-1.487		9.21	А
		ATOM	3586	CA	GLU			57.481	64.852	-0.328	1.00		A
	55	ATOM	3587	СВ	GLU			58.372	64.654	0.902		11.30	A

		ATOM	3588	CG	GLU	Α	459	57.603	64.225	2.146	1.00	13.61	Α
		MOTA	3589	CD	GLU	Α	459	58.497	63.617	3.213	1.00	15.23	Α
		ATOM	3590		GLU			59.217	64.371	3.897	1.00	18.32	A
		ATOM	3591		GLU			58.482	62.377	3.358		17.20	A
	5									-0.059	1.00	9.87	
	3	ATOM	3592	C	GLU			56.445	65.940				A
		ATOM	3593	0	GLU			55.279	65.653	0.205	1.00	8.53	Α
		ATOM	3594	N	GLN	A	460	56.874	67.197	-0.137	1.00	8.94	Α
		MOTA	3595	CA	GLN	Α	460	. 55.962	68.312	0.083	1.00	9.46	Α
		ATOM	3596	CB	GLN	Α	460	56.706	69.640	-0.067	1.00	11.33	Α
	10	ATOM	3597	CG	GLN	A	460	55.828	70.862	0.130	1.00	14.48	А
		ATOM	3598		GLN			56.541	72.153	-0.221	1.00	16.73	Α
		ATOM	3599		GLN			56.024	73.242	0.020		20.84	A
					GLN			57.729	72.036	-0.803		18.45	A
		ATOM	3600										
	15	ATOM	3601	С	GLN			54.823	68.246	-0.937	1.00	9.40	A
	15	ATOM	3602	0	GLN			53.651	68.330	-0.580	1.00	8.87	A
		MOTA	3603	N	ALA			55.169	68.081	-2.210	1.00	8.69	A
		MOTA	3604	CA	ALA	Α	461	54.146	68.023	-3.247	1.00	8.76	Α
		ATOM	3605	CB	ALA	Α	461	54.796	67.910	-4.622	1.00	8.72	A
		ATOM	3606	С	ALA	Α	461	53.160	66.877	-3.034	1.00	8.44	Α
	20	ATOM	3607	0	ALA			51.947	67.073	-3.113	1.00	8.84	Α
J		MOTA	3608	N	ARG			53.678	65.684	-2.763	1.00	7.93	A
Ū		MOTA	3609	CA	ARG			52.812	64.529	-2.548	1.00	7.87	A
7,5 <u>4</u> 5								53.629	63.255	-2.292	1.00	7.57	A
17		ATOM	3610	CB	ARG								
	25	ATOM	3611	CG	ARG			54.346	62.679	-3.515	1.00	7.40	A
	25	ATOM	3612	CD	ARG			54.815	61.252	-3.233	1.00	7.74	Α
		MOTA	3613	NE	ARG	A	462	55.726	61.190	-2.089	1.00	7.74	A
		MOTA	3614	CZ	ARG	Α	462	57.043	61.352	-2.169	1.00	8.73	A
		ATOM	3615	NH1	ARG	A	462	57.621	61.578	-3.344	1.00	8.89	A
21		ATOM	3616	NH2	ARG	Α	462	57.787	61.303	-1.070	1.00	9.62	А
	30	ATOM	3617	С	ARG			51.882	64.747	-1.365	1.00	8.16	A
		MOTA	3618	0	ARG			50.707	64.389	-1.416	1.00	7.32	А
W		ATOM	3619	N	ARG			52.399	65.344	-0.298	1.00	8.35	A
ļ.		ATOM	3620	ÇA	ARG			51.576	65.546	0.884	1.00	9.21	A
											1.00	9.46	A
	25	ATOM	3621	CB	ARG			52.473	65.823	2.093			
	35	ATOM	3622	CG	ARG			53.219	64.564	2.500	1.00	9.86	A
		MOTA	3623	CD	ARG			54.152	64.737	3.681		11.93	A
		ATOM	3624	NE	ARG	Α	463	54.673	63.433	4.075		13.77	A
		ATOM	3625	CZ	ARG	A	463	55.453	63.216	5.128	1.00	14.71	Α
		ATOM	3626	NH1	ARG	Α	463	55.815	64.225	5.906	1.00	15.88	Α
	40	MOTA	3627	NH2	ARG	Α	463	55.857	61.982	5.405	1.00	15.92	А
		MOTA	3628	С	ARG	А	463	50.485	66.599	0.742	1.00	9.13	Α
		ATOM	3629	0	ARG			49.386	66.420	1.266	1.00	8.63	A
		ATOM	3630	N	GLU			50.760	67.681	0.020	1.00	8.86	A
		ATOM	3631	CA	GLU			49.743	68.712	-0.149	1.00	8.79	A
	45											10.23	A
	43	MOTA	3632	CB	GLU			50.359	69.995	-0.719			
		MOTA	3633	CG	GLU			51.526	70.535	0.118		12.65	A
		ATOM	3634	CD	GLU			51.115	71.035	1.501		15.53	A
		ATOM	3635		GLU			50.127	70.527	2.075		15.74	A
		ATOM	3636	OE2	GLU	Α	464	51.802	71.936	2.027	1.00	18.42	А
	50	MOTA	3637	С	GLU			48.638	68.193	-1.064	1.00	8.27	Α
		ATOM	3638	0	GLU			47.459	68.460	-0.830	1.00	8.83	A
		ATOM	3639	N	LEU			49.012	67.449	-2.102	1.00	8.19	А
		ATOM	3640	CA	LEU			48.008	66.887	-3.000	1.00	7.76	А
					LEU			48.666	66.269	-4.240	1.00	7.54	A
	55	ATOM	3641	CB									
	55	MOTA	3642	CG	LEU	А	465	47.706	65.594	-5.231	1.00	7.30	Α

		ATOM	3643	CD1	LEU	Α	465	46.652	66.591	-5.710	1.00	8.29	A
		ATOM	3644		LEU			48.502	65.043	-6.405	1.00	8.63	Α
		ATOM	3645	С	LEU			47.219	65.817	-2.241	1.00	7.24	A
		ATOM	3646	0	LEU	Α	465	45.995	65.720	-2.368	1.00	7.02	А
	5	MOTA	3647	N	SER	Α	466	47.920	65.014	-1.444	1.00	6.60	A
		MOTA	3648	CA	SER	Α	466	47.258	63.972	-0.670	1.00	7.04	Α
		ATOM	3649	CB	SER	Α	466	48.284	63.145	0.106	1.00	7.46	A
		ATOM	3650	OG			466	49.039	62.325	-0.766	1.00	8.02	А
		ATOM	3651	С	SER			46.249	64.567	0.303	1.00	6.94	A
	10	ATOM	3652	0	SER			45.140	64.053	0.443	1.00	6.64	Α
		ATOM	3653	N	LEU			46.638	65.649	0.969	1.00	6.68	A
		ATOM	3654	CA	LEU			45.759	66.306	1.922	1.00	7.53	A
		ATOM	3655	CB	LEU			46.462	67.522	2.532	1.00	7.48	A
		ATOM	3656	CG	LEU			45.653	68.259	3.601	1.00	9.74	А
	15	ATOM	3657	CD1	LEU			45.493	67.369	4.816	1.00	11.77	Α
		ATOM	3658		LEU			46.359	69.555	3.975	1.00	11.14	Α
		ATOM	3659	С	LEU			44.462	66.753	1.251	1.00	7.29	Α
		MOTA	3660	0	LEU			43.381	66.624	1.826	1.00	7.06	Α
andre.		MOTA	3661	N	PHE			44.570	67.270	0.029	1.00	6.97	Α
	20	MOTA	3662	CA	PHE			43.392	67.756	-0.680	1.00	6.88	A
		ATOM	3663	CB	PHE			43.800	68.553	-1.925	1.00	7.64	А
		ATOM	3664	CG	PHE			42.688	69.391	-2.491	1.00	7.18	Α
Ţ		ATOM	3665	CD1	PHE	Α	468	42.039	70.331	-1.695	1.00	7.53	Α
		MOTA	3666	CD2	PHE	Α	468	42.264	69.221	-3.804	1.00	7.39	A
	25	MOTA	3667	CE1	PHE	Α	468	40.979	71.089	-2.198	1.00	7.30	A
A Second		MOTA	3668		PHE			41.204	69.972	-4.314	1.00	7.16	A
M		ATOM	3669	CZ	PHE			40.561	70.907	-3.510	1.00	7.44	A
		ATOM	3670	С	PHE	Α	468	42.402	66.662	-1.069	1.00	6.45	A
21 48 2		ATOM	3671	0	PHE	Α	468	41.259	66.964	-1.413	1.00	7.00	A
	30	ATOM	3672	N	GLN	Α	469	42.829	65.401	-1.018	1.00	6.03	А
J		MOTA	3673	CA	GLN	Α	469	41.931	64.302	-1.352	1.00	6.57	A
ii.		MOTA	3674	CB	GLN	Α	469	42.707	62.998	-1.542	1.00	6.70	A
ĝ.Ł.		MOTA	3675	CG	GLN	Α	469	43.795	63.094	-2.600	1.00	7.58	A
		ATOM	3676	CD	GLN	Α	469	43.304	63.745	-3.878	1.00	7.69	Α
į.	35	MOTA	3677	OE1	GLN	Α	469	43.860	64.748	-4.329	1.00	9.02	Α
•		ATOM	3678	NE2	GLN	Α	469	42.258	63.184	-4.465	1.00	5.38	A
		MOTA	3679	С	GLN	Α	469	40.898	64.121	-0.250	1.00	6.50	Α
		MOTA	3680	0	GLN	А	469	39.927	63.383	-0.416	1.00	7.49	Α
		MOTA	3681	N	HIS	Α	470	41.119	64.792	0.878	1.00	6.70	Α
	40	MOTA	3682	CA	HIS	А	470	40.195	64.727	2.004	1.00	7.12	Α
		ATOM	3683	CB	HIS	Α	470	40.563	65.781	3.047	1.00	7.31	Α
		MOTA	3684	CG	HIS	А	470	39.594	65.852	4.183	1.00	7.78	Α
		MOTA	3685	CD2	HIS	Α	470	38.969	64.869	4.872	1.00	7.00	А
		MOTA	3686	ND1	HIS	Α	470	39.144	67.041	4.715	1.00	9.94	Α
	45	MOTA	3687	CE1	HIS	A	470	38.281	66.786	5.683	1.00	6.65	Α
		MOTA	3688	NE2	HIS	Α	470	38.157	65.476	5.797	1.00	10.50	А
		MOTA	3689	С	HIS	Α	470	38.758	64.969	1.537	1.00	6.99	Α
		ATOM	3690	0	HIS	Α	470	38.527	65.722	0.587	1.00	6.65	Α
		ATOM	3691	N	HIS	Α	471	37.793	64.351	2.215	1.00	7.65	Α
	50	ATOM	3692	CA	HIS	Α	471	36.398	64.503	1.824	1.00	7.92	Α
		ATOM	3693	CB	HIS	A	471	35.532	63.380	2.417	1.00	7.70	Α
		MOTA	3694	CG	HIS	A	471	35.636	63.249	3.901	1.00	7.25	Α
		MOTA	3695	CD2	HIS	A	471	34.904	63.802	4.894	1.00	8.79	Α
		ATOM	3696	ND1	HIS	Α	471	36.612	62.493	4.515	1.00	8.77	Α
	55	ATOM	3697	CE1	HIS	A	471	36.476	62.589	5.825	1.00	8.02	А

		7.004	2600		r	471	25 440	(2 277	c 000	1 00 0 27	70
		ATOM	3698		HIS A		35.448	63.377	6.080	1.00 8.27	A
		ATOM	3699	С	HIS A		35.775	65.873	2.102	1.00 8.28	Α
		ATOM	3700	0	HIS A	471	34.566	66.039	1.965	1.00 8.06	Α
		ATOM	3701	N	ASP A	472	36.598	66.839	2.510	1.00 8.09	А
	5	ATOM	3702	CA	ASP A	472	36.138	68.219	2.681	1.00 8.05	Α
		ATOM	3703	СВ	ASP A	472	36.134	68.660	4.144	1.00 9.12	Α
		ATOM	3704	CG	ASP A		35.001	68.046	4.927	1.00 8.91	А
		ATOM	3705		ASP A		33.837	68.191	4.490	1.00 10.33	A
		ATOM	3706		ASP A		35.274	67.426	5.974	1.00 9.95	A
	10									1.00 8.31	
	10	ATOM	3707	C	ASP A		37.083	69.111	1.880		A
		ATOM	3708	0	ASP A		36.989	70.341	1.921	1.00 8.71	A
		ATOM	3709	N	GLY A		37.991	68.476	1.143	1.00 7.76	A
		ATOM	3710	CA	GLY A		38.941	69.214	0.329	1.00 6.95	A
	- -	ATOM	3711	С	GLY A	473	38.449	69.319	-1.098	1.00 6.25	Α
	15	MOTA	3712	0	GLY A	473	37.781	70.286	-1.461	1.00 7.15	Α
		MOTA	3713	N	ILE A	474	38.753	68.306	-1.904	1.00 7.12	Α
		ATOM	3714	CA	ILE A	474	38.345	68.297	-3.302	1.00 7.43	Α
		ATOM	3715	CB	ILE A	474	38.883	67.023	-4.011	1.00 6.98	Α
and.		ATOM	3716	CG2	ILE A	474	38.271	65.774	-3.383	1.00 7.56	Α
f.ad	20	ATOM	3717	CG1	ILE A	474	38.604	67.097	-5.514	1.00 7.17	A
ŧ۵		ATOM	3718		ILE A		39.279	65.983	-6.308	1.00 9.11	A
٠.D		ATOM	3719	С	ILE A		36.824	68.408	-3.468	1.00 8.30	A
		ATOM	3720	Ö	ILE A		36.334	68.865	-4.500	1.00 8.97	A
		ATOM	3721	N	THR A		36.087	68.009	-2.436	1.00 7.83	A
ij.	25	ATOM	3722	CA	THR A		34.625	68.054	-2.440	1.00 8.11	A
26 E	20	ATOM	3723	CB	THR A		34.025	67.378	-1.189	1.00 8.53	A
Ŋ.			3723	OG1	THR A		34.589	68.053	-0.038	1.00 8.85	A
(71.		ATOM						65.905	-1.139	1.00 9.50	A
21		ATOM	3725		THR A		34.458				
	20	ATOM	3726	С	THR A		34.067	69.482	-2.456	1.00 8.06	A
Ţ	30	ATOM	3727	0	THR A		32.906	69.702	-2.817	1.00 8.47	A
		ATOM	3728	N	GLY A		34.888	70.448	-2.051	1.00 7.78	A
		MOTA	3729	CA	GLY A		34.435	71.828	-2.020	1.00 8.58	A
ļ.		ATOM	3730	С	GLY A		33.424	72.078	-0.914	1.00 8.79	А
		ATOM	3731	0	GLY A		32.534	72.917	-1.062	1.00 8.66	А
į.	35	ATOM	3732	N	THR A	477	33.558	71.354	0.195	1.00 8.54	А
-		ATOM	3733	CA	THR A	477	32.634	71.502	1.315	1.00 9.22	A
		ATOM	3734	CB	THR A	477	32.012	70.134	1.700	1.00 8.79	Α
		ATOM	3735	OG1	THR A	477	33.053	69.184	1.974	1.00 8.67	Α
		MOTA	3736	CG2	THR A	477	31.150	69.610	0.558	1.00 9.58	Α
	40	ATOM	3737	С	THR A	477	33.239	72.144	2.567	1.00 9.40	А
		MOTA	3738	0	THR A	477	32.671	72.034	3.655	1.00 10.45	А
		MOTA	3739	N	ALA A		34.374	72.826	2.417	1.00 9.36	A
		ATOM	3740	CA	ALA A		35.022	73.479	3.558	1.00 9.20	А
		ATOM	3741	СВ	ALA A		36.535	73.254	3.501	1.00 10.02	А
	45	MOTA	3742	C	ALA A		34.722	74.979	3.619	1.00 9.62	A
	10	ATOM	3743	0	ALA A		34.225	75.572	2.657	1.00 8.69	A
		ATOM	3744		LYS A		35.016	75.598	4.759	1.00 9.96	A
				N			34.775	77.030	4.888	1.00 10.67	A
		MOTA	3745	CA	LYS A						
	50	ATOM	3746	CB	LYS A		34.961	77.492	6.337	1.00 12.18	A
	50	ATOM	3747	CG	LYS A		33.942	76.890	7.300	1.00 15.03	A
		MOTA	3748	CD	LYS A		34.018	77.529	8.677	1.00 18.09	A
		ATOM	3749	CE	LYS A		33.187	78.798	8.755	1.00 20.24	A
		ATOM	3750	NZ	LYS A		31.717	78.517	8.701	1.00 19.56	A
		MOTA	3751	С	LYS A		35.746	77.761	3.972	1.00 10.66	А
	55	MOTA	3752	0	LYS A	479	36.793	77.225	3.607	1.00 10.46	Α

							110					
	ATOM	3753	N	THR	Α	480	35.393	78.984	3.603	1.00	11.10	А
	MOTA	3754	CA	THR	Α	480	36.214	79.784	2.707	1.00	11.50	Α
	ATOM	3755	СВ	THR	Α	480	35.646	81.208	2.584	1.00	13.37	Α
	ATOM	3756	OG1	THR	Α	480	34.331	81.139	2.021	1.00	14.84	Α
5	ATOM	3757	CG2	THR	Α	480	36.529	82.068	1.683	1.00	13.82	Α
	ATOM	3758	С	THR	Α	480	37.696	79.870	3.059	1.00	11.02	Α
	MOTA	3759	0	THR	Α	480	38.548	79.651	2.192	1.00	10.46	A
	ATOM	3760	N	HIS	Α	481	38.025	80.179	4.310	1.00	10.35	А
	ATOM	3761	CA	HIS	Α	481	39.437	80.296	4.655	1.00	9.50	A
10	ATOM	3762	CB	HIS	Α	481	39.621	80.983	6.023	1.00	10.43	А
	ATOM	3763	CG	HIS	Α	481	39.453	80.077	7.204	1.00	10.15	Α
	ATOM	3764	CD2	HIS	Α	481	40.366	79.556	8.057	1.00	10.66	А
	MOTA	3765	ND1	HIS	Α	481	38.223	79.632	7.641	1.00	11.08	A
	ATOM	3766	CE1	HIS	Α	481	38.387	78.878	8.712	1.00	11.48	A
15	MOTA	3767	NE2	HIS	Α	481	39.678	78.816	8.986	1.00	10.90	А
	MOTA	3768	С	HIS	Α	481	40.169	78.955	4.610	1.00	9.97	А
	ATOM	3769	0	HIS	A	481	41.390	78.914	4.454	1.00	10.08	Α
	MOTA	3770	N	VAL	Α	482	39.423	77.859	4.726	1.00	9.90	Α
	ATOM	3771	CA	VAL	Α	482	40.030	76.534	4.671	1.00	9.55	Α
20	ATOM	3772	CB	VAL	Α	482	39.103	75.471	5.296	1.00	8.77	A
	MOTA	3773	CG1	VAL	Α	482	39.771	74.101	5.263	1.00	8.62	Α
	MOTA	3774	CG2	VAL	Α	482	38.794	75.852	6.744	1.00	9.85	Α
	MOTA	3775	С	VAL	А	482	40.327	76.206	3.206	1.00	9.39	A
	ATOM	3776	0	VAL	Α	482	41.374	75.646	2.886	1.00	9.70	А
25	ATOM	3777	N	VAL	Α	483	39.405	76.568	2.319	1.00	9.35	A
	MOTA	3778	CA	VAL	Α	483	39.612	76.356	0.893	1.00	9.49	A
	ATOM	3779	CB	VAL	A	483	38.412	76.872	0.075	1.00	9.54	А
	MOTA	3780	CG1	VAL	Α	483	38.728	76.821	-1.412		10.64	A
••	MOTA	3781		VAL	А	483	37.182	76.023	0.377		10.55	A
30	MOTA	3782	С	VAL			40.873	77.126	0.487	1.00	9.63	Α
	MOTA	3783	0	VAL			41.693	76.636	-0.290	1.00	9.14	A
	ATOM	3784	N	VAL			41.034	78.328	1.037		10.23	A
	ATOM	3785	CA	VAL			42.203	79.142	0.734		10.83	А
٥.	MOTA	3786	CB	VAL			42.112	80.524	1.410		10.78	Α
35	MOTA	3787		VAL			43.445	81.261	1.292		11.71	A
	ATOM	3788		VAL			41.009	81.333	0.754		11.99	A
	MOTA	3789	C	VAL			43.477	78.442	1.187		10.65	A
	ATOM	3790	0	VAL			44.488	78.473	0.484		11.13	A
40	ATOM	3791	N	ASP			43.431	77.809	2.357	1.00	9.92	A
40	ATOM	3792	CA	ASP			44.596	77.094	2.862	1.00		A
	ATOM	3793	CB	ASP			44.331	76.550	4.271		10.28	A
	ATOM	3794	CG	ASP			45.571	75.944	4.904		10.84	A
	ATOM	3795		ASP			45.531	74.760	5.291		11.04	A
45	ATOM	3796		ASP			46.592	76.657	5.013		13.22	A
45	ATOM	3797	С	ASP			44.960	75.945	1.922	1.00	8.24	A
	ATOM	3798	0	ASP			46.131	75.739	1.613	1.00	8.35	A
	ATOM	3799	N	TYR			43.959	75.192	1.474	1.00	8.00	A
	ATOM	3800	CA	TYR			44.211	74.088	0.550	1.00	8.25	A
EO	ATOM	3801	CB	TYR			42.912	73.357	0.205	1.00	8.89	A
50	ATOM	3802	CG	TYR			42.326	72.506	1.311	1.00	8.67	A
	ATOM	3803		TYR			40.953	72.504	1.542	1.00	8.68	A
	ATOM	3804		TYR			40.386	71.694	2.520	1.00	8.58	A
	ATOM	3805		TYR			43.131	71.669	2.095	1.00	9.01	A
EE	ATOM	3806		TYR			42.567	70.848	3.085	1.00	9.81	A
55	ATOM	3807	CZ	TYR	Α	486	41.192	70.872	3.284	1.00	9.19	Α

							14	,			
		ATOM	3808	ОН	TYR A	486	40.607	70.075	4.245	1.00 10.42	А
		ATOM	3809	C		486		74.618	-0.740	1.00 9.13	A
		ATOM	3810	Ō	TYR A			74.009	-1.283	1.00 8.83	A
		ATOM	3811	N	GLU A			75.748	-1.229	1.00 9.52	A
	5	ATOM	3812	CA	GLU A			76.345	-2.456	1.00 10.36	A
	•	ATOM	3813	CB	GLU A			77.563	-2.865	1.00 11.32	A
		ATOM	3814	CG	GLU A			78.044	-4.282	1.00 13.08	A
		ATOM	3815	CD	GLU A			79.300	-4.677	1.00 15.53	A
		ATOM	3816		GLU A			79.441	-4.310	1.00 16.78	A
	10	ATOM	3817		GLU A		44.163	80.147	-5.377	1.00 17.62	А
		ATOM	3818	С	GLU A			76.771	-2.293	1.00 11.00	A
		ATOM	3819	0	GLU A		47.125	76.522	-3.168	1.00 10.62	A
		ATOM	3820	N	GLN A		46.601	77.423	-1.175	1.00 11.10	A
		MOTA	3821	CA	GLN A		47.962	77.875	-0.910	1.00 12.20	A
	15	ATOM	3822	CB	GLN A		48.031	78.621	0.425	1.00 15.17	А
		MOTA	3823	CG	GLN A	488	47.343	79.970	0.426	1.00 19.59	Α
		ATOM	3824	CD	GLN A		47.395	80.642	1.782	1.00 21.97	· A
		MOTA	3825	OE1	GLN A	488	47.075	81.821	1.912	1.00 25.37	A
±eræ;		ATOM	3826	NE2	GLN A	488	47.795	79.890	2.804	1.00 24.06	А
₹,;;;} ::=	20	MOTA	3827	С	GLN A	488	48.904	76.684	-0.865	1.00 11.05	Α
		ATOM	3828	0	GLN A	488	50.000	76.727	-1.421	1.00 10.97	A
ų.		MOTA	3829	N	ARG A	489	48.473	75.621	-0.190	1.00 9.60	A
177		ATOM	3830	CA	ARG A	489	49.278	74.416	-0.083	1.00 9.37	A
Constitution of the second		MOTA	3831	CB	ARG A	489	48.571	73.385	0.804	1.00 9.55	Α
4	25	ATOM	3832	CG	ARG A	489	48.601	73.714	2.294	1.00 10.40	A
		ATOM	3833	CD	ARG A		47.660	72.790	3.063	1.00 10.86	А
ijħ		MOTA	3834	NE	ARG A		47.738	72.969	4.513	1.00 11.17	A
ñ)		ATOM	3835	CZ	ARG A		48.620	72.361	5.302	1.00 12.00	A
	20	MOTA	3836		ARG P		49.513	71.522	4.792	1.00 13.64	A
	30	ATOM	3837		ARG A		48.606	72.593	6.610	1.00 12.68	A
1668 888		MOTA	3838	С	ARG F		49.528	73.835	-1.472	1.00 9.02	A
14 1.:		ATOM	3839	0	ARG A		50.656	73.468	-1.801	1.00 8.75	A
		ATOM	3840	N	MSE A		48.487	73.766	-2.297	1.00 9.23	A
J	25	ATOM	3841	CA	MSE A		48.666	73.224	-3.639	1.00 9.79	A
ļ _a j.	35	ATOM	3842	CB	MSE A		47.314	72.964	-4.314 -3.719	1.00 10.83	A
		ATOM	3843 3844	CG SE	MSE F		46.571 45.198	71.768 71.045	-3.719 -4.876	1.00 11.89	A A
		MOTA MOTA	3845	CE	MSE A		43.196	72.317	-4.470	1.00 13.98	A
		ATOM	3846	C	MSE F		49.539	74.117	-4.519	1.00 10.09	A
	40	ATOM	3847	0	MSE A		50.254	73.620	-5.387	1.00 9.19	A
	40	ATOM	3848	N	GLN F		49.490	75.427	-4.300	1.00 10.39	A
		ATOM	3849	CA	GLN F		50.314	76.332	-5.093	1.00 12.11	A
		ATOM	3850	CB	GLN F		49.972	77.790	-4.786	1.00 14.32	A
		ATOM	3851	CG	GLN F		50.755	78.791	-5.620	1.00 19.08	A
	45	ATOM	3852	CD	GLN A		50.647	78.520	-7.109	1.00 21.56	A
	10	ATOM	3853		GLN A		51.427	77.746	-7.676	1.00 23.81	A
		ATOM	3854		GLN A		49.669	79.145	-7.750	1.00 23.81	A
		ATOM	3855	С	GLN A		51.779	76.064	-4.769	1.00 11.74	A
		ATOM	3856	Ō	GLN A		52.630	76.040	-5.658	1.00 10.95	A
	50	MOTA	3857	N	GLU A		52.068	75.851	-3.489	1.00 11.42	A
		ATOM	3858	CA	GLU A		53.432	75.570	-3.066	1.00 12.73	A
		ATOM	3859	СВ	GLU A		53.511	75.506	-1.536	1.00 15.62	A
		ATOM	3860	CG	GLU A		52.957	76.743	-0.844	1.00 21.31	A
		ATOM	3861	CD	GLU A		53.040	76.666	0.668	1.00 24.20	А
	55	ATOM	3862		GLU A		52.577	75.660	1.249	1.00 26.61	A

		ATOM	3863	OE2	GLU	Α	492	53.564	77.622	1.280	1.00	27.33	А
		ATOM	3864	C	GLU			53.863	74.236	-3.669		10.97	Α
		ATOM	3865	Õ	GLU			55.014	74.065	-4.073		11.10	A
								52.929	73.292	-3.734	1.00	9.75	A
	5	ATOM	3866	N	ALA								
	3	ATOM	3867	CA	ALA			53.215	71.979	-4.301	1.00	8.02	A
		ATOM	3868	CB	ALA			52.018	71.048	-4.097	1.00	8.73	A
		ATOM	3869	С	ALA	Ą	493	53.544	72.100	-5.792	1.00	8.05	A
		ATOM	3870	0	ALA	Α	493	54.453	71.436	-6.290	1.00	7.12	А
		ATOM	3871	N	LEU	Α	494	52.802	72.948	-6.501	1.00	8.32	Α
	10	MOTA	3872	CA	LEU	Α	494	53.046	73.145	-7.925	1.00	9.14	A
		MOTA	3873	СВ	LEU	Α	494	51.979	74.069	-8.530	1.00	9.65	Α
		MOTA	3874	CG	LEU			50.611	73.420	-8.773	1.00	10.02	A
		ATOM	3875		LEU			49.579	74.489	-9.132		10.77	Α
		ATOM	3876		LEU			50.729	72.390	-9.889		10.73	A
	15	ATOM	3877	C	LEU			54.437	73.726	-8.145	1.00	9.07	A
	15	ATOM	3878	0	LEU			55.158	73.720	-9.043	1.00	9.80	A
												9.88	A
		ATOM	3879	N	LYS			54.816	74.694	-7.315 -7.427	1.00		A
		ATOM	3880	CA	LYS			56.137	75.307			10.44	
	20	ATOM	3881	CB	LYS			56.260	76.494	-6.467		12.88	A
	20	ATOM	3882	CG	LYS			55.346	77.657	-6.831		16.66	A
[™] ikai ™ak		ATOM	3883	CD	LYS			55.583	78.879	-5.955		19.89	A
Ü		ATOM	3884	CE	LYS			55.238	78.611	-4.501		21.23	А
M		ATOM	3885	ΝZ	LYS	А	495	55.445	79.824	-3.656		23.31	Α
j		MOTA	3886	С	LYS	А	495	57.221	74.273	-7.138		10.02	Α
ĩŲ	25	MOTA	3887	0	LYS	Α	495	58.268	74.260	-7.788	1.00	10.29	А
14		MOTA	3888	N	ALA	Α	496	56.965	73.397	-6.170	1.00	8.63	Α
ijħ.		ATOM	3889	CA	ALA	Α	496	57.923	72.351	-5.832	1.00	8.27	A
		ATOM	3890	CB	ALA	Α	496	57.433	71.564	-4.613	1.00	9.05	A
ER ADREA		ATOM	3891	С	ALA	Α	496	58.094	71.419	-7.037	1.00	8.71	A
	30	ATOM	3892	0	ALA			59.211	71.028	-7.387	1.00	8.19	A
Ü		ATOM	3893	N	CYS			56.982	71.068	-7.676	1.00	8.28	А
		ATOM	3894	CA	CYS			57.032	70.192	-8.838	1.00	8.42	А
[l.		ATOM	3895	СВ	CYS			55.618	69.845	-9.313	1.00	7.83	A
		MOTA	3896	SG	CYS			54.759	68.649	-8.261	1.00	8.61	A
les.	35	ATOM	3897	C	CYS			57.813	70.848	-9.970	1.00	8.81	A
3 (322)	55	ATOM	3898	0	CYS			58.639		-10.615	1.00	8.25	A
					GLN			57.550		-10.013	1.00	8.64	A
		ATOM	3899	N									
		ATOM	3900	CA	GLN			58.248		-11.272		10.15	A
	40	ATOM	3901	CB	GLN			57.765		-11.355		11.26	A
	40	ATOM	3902	CG	GLN			58.576		-12.335		14.98	A
		ATOM	3903	CD	GLN			58.111				17.06	A
		ATOM	3904		GLN			58.033		-11.412		19.34	A
		ATOM	3905		GLN			57.814		-13.636		16.12	А
		MOTA	3906	C	GLN	А	498	59.755		-11.040		10.31	А
	45	MOTA	3907	0	GLN	Α	498	60.532	72.590	-11.966	1.00	9.65	А
		ATOM	3908	N	MSE	Α	499	60.165	73.080	-9.801	1.00	9.78	А
		ATOM	3909	CA	MSE	A	499	61.580	73.090	-9.457	1.00	11.48	А
		ATOM	3910	СВ	MSE	Α	499	61.751	73.411	-7.968	1.00	15.37	А
		MOTA	3911	CG	MSE	A	499	63.163	73.223	-7.420	1.00	19.93	А
	50	MOTA	3912	SE	MSE			64.512	74.312	-8.276	1.00	30.03	А
		ATOM	3913	CE	MSE			63.919	76.038	-7.664		24.23	А
		ATOM	3914	C	MSE			62.226	71.748	-9.783		10.06	A
		MOTA	3915	0	MSE			63.261		-10.445	1.00	9.59	A
		ATOM	3916	N	VAL			61.602	70.665	-9.328	1.00	9.10	A
	55	ATOM	3917	CA	VAL			62.134	69.336	-9.572	1.00	8.89	A
		A I OU	2211	CA	۸ЧТ	ч	500	06.134	07.330	1.316	1.00	0.07	1-1

		ATOM	3918	CB	VAL .	A 50	0	61.310	68.274		1.00	8.59	A
		MOTA	3919	CG1	VAL	A 50	0	61.761	66.871		1.00	8.21	А
		MOTA	3920	CG2	VAL .	A 50	0	61.473	68.486	-7.316	1.00		А
		ATOM	3921	С	VAL .	A 50	0	62.156	69.009	-11.062	1.00	8.51	Α
	5	MOTA	3922	0	VAL .	A 50	0	63.149	68.495	-11.573	1.00	9.06	A
		ATOM	3923	N	MSE .	A 50	1	61.063	69.307	-11.752	1.00	8.86	A
		MOTA	3924	CA	MSE	A 50	1	60.975	69.037	-13.181	1.00	8.89	Α
		MOTA	3925	CB	MSE	A 50	1	59.589	69.427	-13.698	1.00	11.27	A
		ATOM	3926	CG	MSE .	A 50	1	58.472	68.543	-13.164	1.00	12.53	Α
	10	ATOM	3927	SE	MSE .	A 50	1	56.723	69.312	-13.426	1.00	20.16	Α
		ATOM	3928	CE	MSE .			56.544	69.004	-15.314	1.00	15.92	A
		ATOM	3929	С	MSE.	A 50	1	62.051	69.751	-13.993	1.00	8.69	A
		MOTA	3930	0	MSE .	A 50	1	62.750	69.124	-14.793	1.00	8.53	A
		ATOM	3931	N	GLN .			62.193	71.057	-13.793	1.00	9.61	A
	15	ATOM	3932	CA	GLN			63.183	71.813	-14.551	1.00	9.86	Α
		ATOM	3933	СВ	GLN			62.972	73.318	-14.351	1.00	10.38	Α
		ATOM	3934	CG	GLN			63.229		-12.958	1.00	10.99	A
		ATOM	3935	CD	GLN			64.644		-12.798	1.00		A
21225		ATOM	3936		GLN .			65.370		-13.782	1.00	11.67	А
the training the	20	ATOM	3937		GLN			65.042		-11.563	1.00		A
Q		ATOM	3938	C	GLN			64.620		-14.236	1.00		Α
Ü		ATOM	3939	Ö	GLN .			65.463		-15.131	1.00	9.31	А
197		ATOM	3940	N	GLN			64.909		-12.980	1.00	9.34	А
		ATOM	3941	CA	GLN			66.260		-12.642	1.00		A
W	25	MOTA	3942	CB	GLN			66.408		-11.135	1.00		A
	20	ATOM	3943	CG	GLN			66.626		-10.285	1.00		A
		ATOM	3944	CD	GLN			67.985		-10.503	1.00		A
ijī.		MOTA	3945		GLN			68.979		-10.775	1.00		A
Ξį		ATOM	3946		GLN .			68.035		-10.354	1.00		A
	30	ATOM	3947	C	GLN .			66.520		-13.374	1.00	9.96	A
	50	MOTA	3948	0	GLN			67.617		-13.876	1.00		A
i.T		ATOM	3949	N	SER			65.502		-13.425	1.00	9.59	A
Į.a.		MOTA	3950	CA	SER			65.628		-14.085	1.00	9.96	A
		ATOM	3951	CB	SER			64.380		-13.824	1.00		A
tradi Įada.	35	ATOM	3952	OG	SER .			64.243		-12.440	1.00	9.72	A
1:22:	55		3953	C	SER			65.848		-15.584	1.00	9.31	A
		ATOM ATOM		0	SER .			66.690		-16.159	1.00	8.89	A
			3954		VAL			65.089		-16.219	1.00	9.28	A
		MOTA	3955	N CA	VAL			65.229		-17.655	1.00	9.59	A
	40	ATOM	3956 3957	CB	VAL .			64.202		-18.175	1.00	9.08	A
	40	ATOM			VAL					-19.618			A
		MOTA								-18.095	1.00	9.95	A
		ATOM	3959		VAL			62.800				9.71	A
		ATOM	3960	C	VAL			66.640		-17.987	1.00		
	45	ATOM	3961	0	VAL			67.260		-18.940	1.00		A
	45	MOTA	3962	N	TYR .			67.154		-17.193	1.00	9.87	A
		MOTA	3963	CA	TYR			68.492		-17.438	1.00		A
		MOTA	3964	CB	TYR			68.830		-16.423	1.00		A
		MOTA	3965	CG	TYR			70.105		-16.747	1.00		A
		MOTA	3966		TYR			70.239		-17.951	1.00		A
	50	ATOM	3967		TYR			71.413		-18.275	1.00		A
		MOTA	3968		TYR			71.184		-15.868	1.00		Α
		MOTA	3969	CE2	TYR			72.375		-16.185	1.00		Α
		ATOM	3970	CZ	TYR	A 50	16	72.475		-17.390	1.00		Α
		MOTA	3971	ОН	TYR	A 50	16	73.631	74.107	-17.715	1.00	19.63	Α
	55	ATOM	3972	С	TYR	A 50	16	69.536	69.173	-17.370	1.00	11.07	Α

											_
		MOTA	3973	0	TYR	Α	506	70.433	69.091 -18.208	1.00 11.91	Α
		ATOM	3974	N	ARG	Α	507	69.409	68.297 -16.381	1.00 10.61	Α
		MOTA	3975	CA	ARG	А	507	70.360	67.198 -16.233	1.00 10.72	Α
		ATOM	3976	СВ	ARG			70.183	66.538 -14.863	1.00 11.26	Α
	5				ARG				65.498 -14.526	1.00 12.91	A
	5	MOTA	3977	CG				71.244			
		ATOM	3978	CD	ARG			71.069	64.994 -13.106	1.00 13.23	Α
		ATOM	3979	NE	ARG	Α	507	72.063	63.986 -12.746	1.00 15.07	Α
		ATOM	3980	CZ	ARG	Α	507	72.164	63.442 -11.536	1.00 15.08	А
		MOTA	3981	NH1	ARG	Α	507	71.334	63.813 -10.572	1.00 15.72	Α
	10	ATOM	3982		ARG			73.081	62.514 -11.294	1.00 16.84	Α
		ATOM	3983	C	ARG			70.219	66.148 -17.339	1.00 10.75	A
								71.211	65.609 -17.829	1.00 10.91	A
		ATOM	3984	0	ARG						
		ATOM	3985	N	LEU			68.983	65.863 -17.734	1.00 9.85	A
		ATOM	3986	CA	LEU	A	508	68.726	64.865 -18.769	1.00 10.20	A
	15	MOTA	3987	CB	LEU	A	508	67.242	64.483 -18.766	1.00 9.54	A
		ATOM	3988	CG	LEU	Α	508	66.755	63.648 -17.574	1.00 9.24	Α
		MOTA	3989	CD1	LEU	Α	508	65.238	63.747 -17.461	1.00 9.92	Α
		ATOM	3990		LEU			67.205	62.206 -17.737	1.00 10.33	A
J. 1072.		ATOM	3991	C	LEU			69.120	65.287 -20.182	1.00 9.83	Α
	20	ATOM	3992	Ö	LEU			69.387	64.434 -21.035	1.00 10.94	A
ı, 💆	20									1.00 10.54	A
Took with the took took		MOTA	3993	N	LEU			69.159	66.593 -20.436	- 1	
1975 1975		MOTA	3994	CA	LEU			69.484	67.089 -21.768	1.00 10.38	A
Aga a Jerra		ATOM	3995	CB	LEU	A	509	68.299	67.893 -22.320	1.00 9.95	Α
		MOTA	3996	CG	LEU	A	509	67.025	67.078 -22.584	1.00 8.90	Α
ij	25	ATOM	3997	CD1	LEU	Α	509	65.900	68.010 -23.009	1.00 8.36	Α
W		MOTA	3998	CD2	LEU	Α	509	67.289	66.029 -23.659	1.00 10.74	A
Ţ		ATOM	3999	С	LEU			70.763	67.910 -21.897	1.00 11.19	Α
		ATOM	4000	0	LEU			70.928	68.652 -22.863	1.00 11.27	А
£:		ATOM	4001	N	THR			71.673	67.781 -20.938	1.00 11.02	A
	30								68.516 -21.011	1.00 11.02	A
	30	ATOM	4002	CA	THR			72.930			
131		ATOM	4003	CB	THR			73.089	69.481 -19.814	1.00 11.70	A
1 1		MOTA	4004	OG1	THR			72.005	70.417 -19.815	1.00 10.96	A
ia.		ATOM	4005	CG2	THR			74.408	70.253 -19.904	1.00 11.60	A
		ATOM	4006	С	THR	A	510	74.092	67.533 -21.029	1.00 12.46	A
14	35	ATOM	4007	0	THR	Α	510	74.105	66.568 -20.266	1.00 12.49	A
		ATOM	4008	N	LYS			75.055	67.772 -21.915	1.00 13.67	A
		ATOM	4009	CA	LYS			76.217	66.897 -22.012	1.00 15.49	A
		ATOM	4010	СВ	LYS			77.275	67.512 -22.930	1.00 17.27	A
				CG	LYS			78.509	66.643 -23.110	1.00 20.21	A
	40	ATOM	4011							1.00 20.21	A
	40	ATOM	4012	CD	LYS			79.482	67.269 -24.092		
		MOTA	4013	CE	LYS				66.388 -24.290		A
		ATOM	4014	ΝZ	LYS	Α	511	81.639	66.957 -25.300	1.00 26.86	A
		MOTA	4015	С	LYS	Α	511	76.774	66.718 -20.608	1.00 15.51	Α
		ATOM	4016	0	LYS	Α	511	77.049	67.692 -19.908	1.00 14.86	A
	45	MOTA	4017	N	PRO			76.943	65.460 -20.175	1.00 16.19	А
		ATOM	4018	CD	PRO			76.648	64.242 -20.952	1.00 16.95	А
		ATOM	4019	CA	PRO			77.457	65.111 -18.849	1.00 16.40	А
									63.620 -18.983	1.00 10.40	A
		ATOM	4020	CB	PRO			77.744			
	E0	MOTA	4021	CG	PRO			76.652	63.172 -19.886	1.00 17.83	A
	50	ATOM	4022	С	PRO			78.669	65.890 -18.347	1.00 16.31	Α
		ATOM	4023	0	PRO			78.664	66.387 -17.223	1.00 16.51	Α
		ATOM	4024	N	SER	Α	513	79.701	66.000 -19.177	1.00 16.07	Α
		ATOM	4025	CA	SER			80.920	66.701 -18.778	1.00 16.40	Α
		ATOM	4026	СВ	SER			82.074	66.309 -19.708	1.00 16.21	А
	55	ATOM	4027	OG	SER			81.769	66.605 -21.058	1.00 17.37	A
	55	ATON	7041	00	JER	rs		01.102	JJ. JJJ 21. JJJ	2.00 11.01	1.3

		MOTA	4028	Ç	SER A	1 513	80.796	68.221	-18.727	1.00 16.15	Α
		ATOM	4029	0	SER A	513	81.738	68.910	-18.335	1.00 16.45	Α
		ATOM	4030		ILE A		79.637		-19.121	1.00 15.99	A
				N							
	_	ATOM	4031	CA	ILE A		79.391		-19.110	1.00 15.87	Α
	5	ATOM	4032	CB	ILE A	514	78.813	70.659	-20.468	1.00 16.66	A
		ATOM	4033	CG2	ILE A	514	78.339	72.106	-20.355	1.00 17.47	Α
		ATOM	4034	CG1	ILE A		79.874		-21.563	1.00 17.94	А
				CD1			79.427		-22.933	1.00 19.29	A
		MOTA	4035		ILE A						
		ATOM	4036	С	ILE A		78.410		-17.993	1.00 15.13	A
	10	ATOM	4037	0	ILE A	514	78.466	71.630	-17.428	1.00 14.53	Α
		ATOM	4038	N	TYR A	515	77.522	69.601	-17.679	1.00 14.27	A
		ATOM	4039	CA	TYR A	515	76.510	69.778	-16.638	1.00 13.78	Α
		ATOM	4040	CB	TYR A		75.831		-16.389	1.00 13.76	A
										1.00 13.70	A
	15	ATOM	4041	CG	TYR A		74.793	68.410			
	15	MOTA	4042	CD1			73.628	69.168		1.00 12.14	Α
		ATOM	4043	CE1	TYR A	515	72.649	69.112	-14.395	1.00 12.51	A
		ATOM	4044	CD2	TYR A	515	74.961	67.598	-14.177	1.00 13.33	Α
		ATOM	4045		TYR A		73.999	67.534	-13.182	1.00 12.19	Α
		ATOM	4046	CZ	TYR A		72.846	68.290		1.00 12.93	A
	20							68.211		1.00 12.33	A
h i ii	20	ATOM	4047	ОН	TYR A		71.893				
		ATOM	4048	С	TYR A		77.104	70.331		1.00 13.79	A
H.S.E.		ATOM	4049	0	TYR A	515	77.937	69.687	-14.703	1.00 13.97	А
m		ATOM	4050	N	SER A	516	76.669	71.528	-14.951	1.00 14.47	А
		ATOM	4051	CA	SER A	516	77.152	72.183	-13.733	1.00 15.55	A
ĵŪ	25	ATOM	4052	СВ	SER A		78.192	73.248		1.00 16.76	А
3 % a 5 848 E	20	ATOM		OG			78.809	73.768		1.00 18.55	A
100			4053		SER A						
į,Ti		ATOM	4054	С	SER A		75.948	72.833		1.00 16.14	A
£ŧ		MOTA	4055	0	SER A	516	75.719	74.037		1.00 16.36	A
		ATOM	4056	N	PRO A	517	75.166	72.037	-12.315	1.00 16.21	A
	30	ATOM	4057	CD	PRO A	517	75.323	70.583	-12.117	1.00 16.72	А
١.D	-	ATOM	4058	CA	PRO A		73.971	72.522		1.00 16.81	А
		ATOM	4059	CB	PRO F		73.208	71.234		1.00 16.87	A
į. <u>.</u>											
		ATOM	4060	CG	PRO F		74.317	70.294		1.00 16.68	A
		ATOM	4061	С	PRO F		74.067	73.387		1.00 17.01	A
14	35	ATOM	4062	0	PRO F	517	74.914	73.182	-9.513	1.00 18.50	А
		ATOM	4063	N	ASP F	518	73.169	74.364	-10.331	1.00 17.32	A
		ATOM	4064	CA	ASP A	518	72.998	75.251	-9.191	1.00 17.65	A
		ATOM	4065	СВ	ASP A		72.942	76.716	-9.619	1.00 18.97	А
		ATOM	4066	CG	ASP A		72.657	77.650	-8.454	1.00 20.40	A
	40										
	40	ATOM	4067		ASP A		72.026	77.206	-7.469	1.00 20.68	A
		ATOM	4068	OD2	ASP F		73.048	78.833	-8.523	1.00 21.51	A
		MOTA	4069	С	ASP F	518	71.597	74.788	-8.807	1.00 16.83	Α
		ATOM	4070	0	ASP A	518	70.624	75.139	-9.471	1.00 16.54	Α
		ATOM	4071	N	PHE F		71.495	73.982	-7.757	1.00 16.46	A
	45	MOTA	4072	CA	PHE F		70.205	73.440	-7.348	1.00 16.01	Α
	10							72.389	-6.256	1.00 15.82	
		MOTA	4073	CB	PHE P		70.415				A
		MOTA	4074	CG	PHE P		71.267	71.229	-6.697	1.00 15.47	A
		MOTA	4075	CD1	PHE F	519	70.980	70.553	-7.881	1.00 15.02	Α
		MOTA	4076	CD2	PHE P	519	72.352	70.811	-5.932	1.00 15.53	Α
	50	MOTA	4077		PHE P		71.759	69.481	-8.298	1.00 14.89	Α
		ATOM	4078		PHE P		73.138	69.736	-6.341	1.00 15.39	A
								69.071	-7.525	1.00 15.53	A
		ATOM	4079	CZ	PHE P		72.841				
		MOTA	4080	С	PHE P		69.136	74.442	-6.925	1.00 16.61	A
		MOTA	4081	0	PHE P		68.004	74.057	-6.638	1.00 16.65	A
	55	MOTA	4082	N	SER A	520	69.479	75.724	-6.898	1.00 17.10	Α

		ATOM	4083	CA	SER A	A 520	68.510	76.751	-6.523	1.00 17.76	Α
		ATOM	4084	CB		A 520	69.097	77.672	-5.453	1.00 18.35	Α
		ATOM	4085	OG	SER A	A 520	70.142	78.465	-5.993	1.00 20.78	Α
		ATOM	4086	С		A 520	68.138	77.588	-7.744	1.00 17.75	Α
	5	ATOM	4087	0		A 520	67.238	78.427	-7.683	1.00 18.10	А
		ATOM	4088	N		A 521	68.829	77.340	-8.852	1.00 17.53	А
		ATOM	4089	CA		A 521	68.620	78.085		1.00 17.29	A
		ATOM	4090	СВ		A 521	69.929	78.114		1.00 17.61	A
		ATOM	4091	CG		A 521	69.910	79.058		1.00 18.36	A
	10	MOTA	4092		PHE A		69.988	80.433		1.00 19.34	A
	10	ATOM	4093		PHE A		69.797	78.574		1.00 13.34	A
										1.00 10.70	A
		MOTA	4094		PHE A		69.953	81.313		1.00 19.83	
		ATOM	4095		PHE A		69.762	79.445			A
	15	MOTA	4096	CZ		521	69.839	80.818		1.00 19.85	A
	15	ATOM	4097	C	PHE A		67.504	77.534		1.00 16.99	A
		MOTA	4098	0	PHE A		67.261	76.328		1.00 17.26	A
		ATOM	4099	N	SER A		66.833	78.434		1.00 16.98	A
		MOTA	4100	CA		A 522	65.759	78.052		1.00 16.45	A
\$1 44	20	ATOM	4101	CB		522	64.590	79.036		1.00 18.00	A
	20	MOTA	4102	OG	SER A		63.937	78.923 ·		1.00 21.58	A
1,54		ATOM	4103	С	SER A		66.282	78.028		1.00 14.76	A
		MOTA	4104	0	SER A	522	66.362	79.066		1.00 15.51	A
		MOTA	4105	N	TYR A	523	66.646	76.839	-14.503	1.00 13.04	A
		ATOM	4106	CA	TYR A	1 523	67.155	76.676	-15.860	1.00 12.11	А
n.	25	MOTA	4107	CB	TYR A	A 523	67.879	75.338 -	-16.003	1.00 12.66	A
W.		ATOM	4108	CG	TYR A	523	69.152	75.276	-15.205	1.00 12.36	A
		MOTA	4109	CD1	TYR A	523	69.172	74.722	-13.926	1.00 11.48	A
		MOTA	4110	CE1	TYR A	523	70.337	74.718	-13.167	1.00 13.82	A
11 24 5		MOTA	4111	CD2	TYR A	523	70.331	75.824	-15.707	1.00 12.94	A
	30	ATOM	4112	CE2	TYR A	A 523	71.497	75.828	-14.957	1.00 13.68	Α
ų.		MOTA	4113	CZ	TYR A		71.493	75.275 -	-13.688	1.00 14.52	A
W		ATOM	4114	ОН	TYR A		72.642	75.297 -		1.00 15.63	А
نه اِ		MOTA	4115	С	TYR A		66.028	76.753 -		1.00 12.04	Α
		ATOM	4116	0	TYR A		66.232	77.175 -		1.00 11.26	A
	35	MOTA	4117	N	PHE A		64.840	76.332 -		1.00 11.79	Α
i tomas .		ATOM	4118	CA	PHE A		63.664	76.371 -		1.00 11.61	А
		ATOM	4119	СВ	PHE A		63.287	74.984 -		1.00 11.49	A
		ATOM	4120	CG	PHE A		64.319	74.353 -		1.00 10.85	A
		ATOM	4121		PHE A		65.356	73.609		1.00 11.04	A
	40	ATOM	4122		PHE A		64.241	74.482		1.00 11.26	A
	10	ATOM			PHE A		66.300			1.00 11.78	A
		ATOM	4124		PHE A		65.179	73.876		1.00 10.39	A
		ATOM	4125	CZ	PHE A		66.211	73.132 -		1.00 11.02	A
		ATOM	4126	C	PHE A		62.466	76.873 -		1.00 11.02	A
	45				PHE A			76.701 -		1.00 13.17	
	40	ATOM	4127	0			62.380				A
		ATOM	4128	N Cn	THR A		61.540 60.298	77.479 - 77.967 -		1.00 14.04	A
		ATOM	4129	CA	THR A					1.00 15.95	A
		MOTA	4130	CB	THR A		60.069	79.455 -		1.00 17.37	. A
	50	ATOM	4131		THR A		61.109	80.242 -		1.00 21.08	A
	50	MOTA	4132		THR A		58.725	79.917 -		1.00 20.26	A
		ATOM	4133	С	THR A		59.206	77.138 -		1.00 14.82	A
		ATOM	4134	0	THR A		59.222	76.953 -		1.00 14.60	A
		ATOM	4135	N	LEU A		58.276	76.616 -		1.00 14.08	Α
		MOTA	4136	CA	LEU A		57.184	75.830 -		1.00 14.04	Α
	55	ATOM	4137	CB	LEU A	526	56.468	75.030 -	-16.029	1.00 14.91	А

		ATOM	4138	CG	LEU	A	526	56.977	73.638	-15.661	1.00	16.17	Α
		ATOM	4139	CD1	LEU	Α	526	56.169	73.104	-14.483	1.00	17.46	A
		ATOM	4140	CD2	LEU	Α	526	56.844	72.710	-16.858	1.00	16.37	Α
		ATOM	4141	С	LEU	Α	526	56.176	76.754	-17.785	1.00	13.66	Α
	5	ATOM	4142	0	LEU			55.864	77.825	-17.265	1.00	15.13	Α
	_	ATOM	4143	N	ASP			55.675	76.339	-18.941	1.00	12.47	A
		ATOM	4144	CA	ASP			54.671		-19.644	1.00	12.88	Α
		ATOM	4145	СВ	ASP			55.142		-21.055	1.00	13.45	Α
		ATOM	4146	CG	ASP			54.139		-21.797		15.23	A
	10	ATOM	4147		ASP			53.873		-21.335		15.10	A
	10	ATOM	4148		ASP			53.612		-22.837		16.86	A
			4149	C	ASP			53.444		-19.715		12.90	A
		ATOM			ASP			53.486		-20.315		14.82	A
		ATOM	4150	0								12.04	A
	15	ATOM	4151	N	ASP			52.363		-19.079			A
	15	ATOM	4152	CA	ASP			51.126		-19.064		11.43	
		MOTA	4153	СВ	ASP			50.757		-17.622		11.67	A
		MOTA	4154	ÇG	ASP			49.732		-17.538		11.75	A
		MOTA	4155		ASP			48.723		-18.271		11.28	A
1:22		MOTA	4156		ASP			49.935		-16.729		11.32	A
Taradi Sala	20	MOTA	4157	С	ASP	Α	528	50.039		-19.687		11.92	Α
		MOTA	4158	0	ASP			49.701		-19.157		10.88	Α
Ų		ATOM	4159	N	SER	Α	529	49.489	76.300	-20.811		12.60	А
m		MOTA	4160	CA	SER	Α	529	48.468	77.083	-21.491	1.00	13.59	Α
		ATOM	4161	CB	SER	Α	529	48.470	76.759	-22.988	1.00	15.60	Α
111	25	ATOM	4162	OG	SER			48.039	75.431	-23.218	1.00	20.83	Α
		ATOM	4163	С	SER			47.057	76.912	-20.940	1.00	12.92	Α
1 % A		MOTA	4164	0	SER			46.164		-21.287	1.00	14.25	A
(F		MOTA	4165	N	ARG			46.843		-20.074	1.00	11.90	A
£:		ATOM	4166	CA	ARG			45.501		-19.549		12.42	A
The state of the state	30	ATOM	4167	СВ	ARG			44.964		-20.060		11.67	А
Ü	00	ATOM	4168	CG	ARG			44.887		-21.581		12.07	A
111		ATOM	4169	CD	ARG			44.248		-22.123		12.73	A
â.J.		ATOM	4170	NE	ARG			44.981		-21.729		12.73	A
3175E								44.758		-22.240		13.69	A
	35	ATOM	4171	CZ	ARG			43.821		-23.164		13.80	A
fire.	33	ATOM	4172		ARG					-21.832		14.84	A
		ATOM	4173		ARG			45.476				12.87	A
		ATOM	4174	C	ARG			45.327		-18.041			
		ATOM	4175	0	ARG			44.268		-17.507		14.42	A
	40	MOTA	4176	N	TRP			46.365		-17.354		12.16	A
	40	MOTA	4177	CA	TRP			46.272		-15.915		12.56	A
		MOTA	4178	CB	TRP			46.546		-15.115	_	13.21	A
		MOTA	4179	CG	TRP			46.479		-13.647		13.89	A
		MOTA	4180		TRP			45.292		-12.853		15.00	A
		MOTA	4181	CE2	TRP	Α	531	45.683		-11.570		14.42	A
	45	MOTA	4182	CE3	TRP	Α	531	43.934	75.385	-13.103		14.98	A
		ATOM	4183	CD1	TRP	Α	531	47.516	75.883	-12.831		14.62	Α
		ATOM	4184	NE1	TRP	Α	531	47.045	76.214	-11.585	1.00	16.00	Α
		ATOM	4185	CZ2	TRP	Α	531	44.763	76.275	-10.537	1.00	15.89	Α
		ATOM	4186		TRP			43.019	75.598	-12.078	1.00	15.43	Α
	50	ATOM	4187		TRP			43.440		-10.811		15.65	A
		ATOM	4188	C	TRP			47.239		-15.454		13.17	A
		ATOM	4189	0	TRP			48.436		-15.708		13.12	A
		ATOM	4190	N	PRO			46.728		-14.753		13.97	A
		ATOM	4191	CD	PRO			47.581		-14.016		14.36	A
	55	ATOM	4192	CA	PRO			45.319		-14.388		14.97	A
	55	MIOM	4176	CH	E KU	C.	JJ2	47.713	,0.750	14.500	1.00	~ 1	**

	ATOM	4193	СВ	PRO	Δ	532	45.360	80.011 -13.4	72 1	.00	14.79	А
	ATOM	4194	CG			532	46.709	79.897 -12.8			14.98	A
	ATOM	4195	C			532	44.433	79.009 -15.6			16.32	A
	ATOM	4196	Ö	PRO			43.214	78.863 -15.5			16.43	A
5	ATOM	4197	N			533	45.058	79.363 -16.7			18.09	A
	ATOM	4198	CA			533	44.313	79.573 -17.9			20.35	A
	ATOM	4199	C			533	44.110	81.021 -18.3			22.43	A
	ATOM	4200	Ö			533	44.136	81.924 -17.5			21.90	А
	ATOM	4201	N	SER			43.908	81.236 -19.6			24.34	A
10	ATOM	4202	CA	SER			43.684	82.574 -20.1			26.30	А
	ATOM	4203	CB	SER			43.577	82.517 -21.7			27.62	А
	ATOM	4204	OG	SER			43.326	83.801 -22.2			29.22	А
	ATOM	4205	C	SER	-		42.396	83.135 -19.5			26.95	А
	ATOM	4206	Ō	SER			41.366	82.461 -19.5			27.04	А
15	ATOM	4207	N	GLY			42.458	84.369 -19.1			27.48	А
	ATOM	4208	CA	GLY			41.282	84.985 -18.5		.00	28.19	А
	ATOM	4209	С	GLY			41.168	84.676 -17.0		.00	28.77	Α
	ATOM	4210	0	GLY			40.300	85.208 -16.3		.00	28.75	Α
	ATOM	4211	N	VAL			42.047	83.805 -16.5	51 1	.00	28.86	А
20	ATOM	4212	CA	VAL	Α	536	42.054	83.429 -15.1		.00	29.39	А
	ATOM	4213	СВ			536	42.205	81.900 -14.9	73 1	.00	29.14	A
	ATOM	4214	CG1	VAL			42.127	81.526 -13.5	00 1	.00	28.72	A
	ATOM	4215	CG2	VAL			41.120	81.183 -15.7	59 1	.00	28.88	A
	ATOM	4216	С			536	43.222	84.126 -14.4		.00	30.17	Α
25	ATOM	4217	0	VAL			43.062	84.745 -13.4	05 1	.00	29.60	А
	MOTA	4218	N	GLU			44.399	84.026 -15.0	65 1	.00	31.25	A
	ATOM	4219	CA	GLU	A	537	45.595	84.651 -14.5	17 1	.00	32.73	A
	ATOM	4220	СВ	GLU	Α	537	46.093	83.859 -13.3	03 1	.00	33.69	A
	ATOM	4221	CG	GLU			47.378	84.400 -12.6	90 1	.00	35.24	A
30	ATOM	4222	CD	GLU	Α	537	47.769	83.681 -11.4	11 1	.00	36.16	A
	ATOM	4223	OE1	GLU	Α	537	48.825	84.023 -10.8	36 1	.00	36.68	А
	ATOM	4224	OE2	GLU	Α	537	47.023	82.777 -10.9	77 1	.00	36.57	A
	MOTA	4225	С	GLU	Α	537	46.702	84.738 -15.5	60 1	.00	33.20	A
	ATOM	4226	0	GLU	Α	537	47.132	83.720 -16.1			33.31	Α
35	ATOM	4227	N	ASP	Α	538	47.156	85.953 -15.8			33.93	А
	MOTA	4228	CA	ASP	Α	538	48.236	86.131 -16.8			34.52	A
	ATOM	4229	СВ	ASP			48.368	87.600 -17.2			36.03	А
	ATOM	4230	CG	ASP			49.455	87.816 -18.2			37.32	A
	MOTA	4231		ASP			49.350	87.232 -19.3			37.91	A
4 0	ATOM	4232	OD2	ASP			50.414	88.565 -17.9			38.51	А
	ATOM	4233	С	ASP			49.500	85.677 -16.1			33.98	A
	MOTA	4234	0	ASP			50.185	86.474 -15.4			34.26	Α
	ATOM	4235	N			539	49.798	84.388 -16.2			32.86	A
	ATOM	4236	CA	SER			50.958	83.813 -15.5			31.79	A
45	MOTA	4237	CB			539	50.523	82.598 -14.7			31.81	A
	ATOM	4238	OG			539	49.889	81.634 -15.5			32.64	A
	ATOM	4239	C .	SER			52.093	83.405 -16.4			30.65	Α
	MOTA	4240	0			539	53.264	83.579 -16.1			30.92	A
	ATOM	4241	N	ARG			51.755	82.858 -17.6			29.09	A
50	MOTA	4242	CA	ARG			52.784	82.416 -18.5			26.85	A
	MOTA	4243	СВ	ARG			52.164	81.572 -19.6			26.27	A
	MOTA	4244	CG	ARG			50.972	82.187 -20.3			24.91	A
	MOTA	4245	CD	ARG			50.198	81.126 -21.1			21.40	A
	MOTA	4246	NE			540	51.053	80.373 -22.0			18.78	A
55	ATOM	4247	CZ	ARG	Α	540	50.621	79.799 -23.2	03 1	.00	18.16	Α

		MOTA	4248	NH1	ARG	Α	540	49.343	79.892 -23.549	1.00 17.98	Α
		MOTA	4249	NH2	ARG	Α	540	51.468	79.143 -23.983	1.00 17.24	Α
		ATOM	4250	С	ARG	Α	540	53.627	83.550 -19.139	1.00 25.67	Α
		ATOM	4251	0	ARG	Α	540	53.131	84.638 -19.438	1.00 26.07	Α
	5	ATOM	4252	N	THR	Α	541	54.919	83.275 -19.269	1.00 23.91	A
		ATOM	4253	CA	THR	Α	541	55.877	84.246 -19.767	1.00 22.62	Α
		ATOM	4254	СВ	THR			57.299	83.885 -19.316	1.00 23.68	Α
		ATOM	4255	OG1	THR			57.696	82.662 -19.945	1.00 24.78	Α
		ATOM	4256	CG2	THR			57.352	83.702 -17.808	1.00 23.48	Α
	10	ATOM	4257	C	THR			55.887	84.337 -21.283	1.00 20.98	Α
	10	MOTA	4258	0	THR			55.492	83.405 -21.982	1.00 21.78	A
		ATOM	4259	N	THR			56.345	85.477 -21.782	1.00 18.43	A
		ATOM	4260	CA	THR			56.448	85.695 -23.211	1.00 16.38	A
		ATOM	4261	CB	THR			56.098	87.151 -23.592	1.00 16.52	A
	15	ATOM	4262	OG1				54.729	87.420 -23.269	1.00 16.56	A
	15	ATOM	4263	CG2	THR			56.322	87.383 -25.081	1.00 16.03	A
		ATOM	4264	C	THR			57.900	85.445 -23.577	1.00 14.95	A
		ATOM	4265	_	THR			58.808	85.888 -22.870	1.00 14.70	A
		ATOM	4265	0	ILE			58.124	84.710 -24.658	1.00 13.40	A
100	20		4267	N CA	ILE			59.482	84.463 -25.110	1.00 13.40	A
	20	MOTA		CB	ILE			59.553	83.220 -26.014	1.00 12.30	A
. 25		MOTA	4268		ILE			60.943	83.095 -26.627	1.00 12.36	A
197		MOTA	4269	CG2	ILE			59.200	81.973 -25.190	1.00 12.30	A
Stranti		ATOM	4270	CG1				59.200	80.694 -25.997	1.00 12.14	A
	25	ATOM	4271	CD1	ILE				85.723 -25.893	1.00 11.44	A
14	25	MOTA	4272	C	ILE			59.838 59.273	85.990 -26.954	1.00 13.68	A
1		MOTA	4273	0	ILE			60.753	86.510 -25.340	1.00 13.31	A
		MOTA	4274	N CA	ILE			61.158	87.762 -25.958	1.00 13.31	A
E.		MOTA	4275	CB				61.448	88.825 -24.875	1.00 13.70	A
	30	MOTA MOTA	4276 4277		ILE			61.862	90.134 -25.521	1.00 14.30	A
	50			CG2				60.192	89.038 -24.022	1.00 15.13	A
Ų		MOTA	4278 4279	CD1	ILE			60.192	90.045 -22.898	1.00 13.13	A
į.d.		MOTA	4279	CDI	ILE			62.370	87.590 -26.862	1.00 17.55	A
112		ATOM	4281	0	ILE			63.464	87.254 -26.407	1.00 14.06	A
S	35	ATOM	4282	N	LEU			62.148	87.812 -28.153	1.00 14.60	A
j.d.	33	MOTA						63.195	87.691 -29.157	1.00 14.96	A
		MOTA	4283	CA	LEU				86.592 -30.162	1.00 14.72	A
		MOTA	4284	CB	LEU			62.841	85.197 -29.596	1.00 14.72	A
		MOTA	4285	CG	LEU LEU			62.557 62.158	84.259 -30.725	1.00 14.25	A
	40	ATOM	4286					63.792	84.672 -28.877	1.00 14.23	A
	40	ATOM	4287		LEU				89.019 -29.887	1.00 15.93	
		ATOM	4288	C	LEU			63.345	89.791 -29.988	1.00 15.87	A
		ATOM	4289	0	LEU			62.393			A
		ATOM	4290	N	GLY			64.544	89.275 -30.395	1.00 16.68	A
	4 =	ATOM	4291	CA	GLY			64.795	90.512 -31.111	1.00 18.01	A
	45	ATOM	4292	C	GLY			66.227	90.584 -31.597	1.00 19.27	A
		ATOM	4293	0	GLY			67.138	90.083 -30.942	1.00 17.83	A
		ATOM	4294	N	GLU			66.426	91.220 -32.745	1.00 21.14	A
		MOTA	4295	CA	GLU			67.754	91.359 -33.334	1.00 23.92	A
	EO	ATOM	4296	CB	GLU			67.679	92.234 -34.586	1.00 27.11	A
	50	MOTA	4297	CG	GLU			66.677	91.771 -35.625	1.00 32.07	A
		ATOM	4298	CD	GLU			66.480	92.796 -36.725	1.00 34.39	A
		ATOM	4299		GLU			67.457	93.089 -37.449	1.00 35.80	A
		MOTA	4300		GLU			65.350	93.314 -36.862	1.00 35.52	A
		ATOM	4301	С	GLU			68.756	91.980 -32.368	1.00 23.56	A
	55	ATOM	4302	0	GLU	A	547	69.926	91.600 -32.342	1.00 24.12	A

						_				21 574		00 01	
		ATOM	4303	N	ASP			68.291		-31.574		22.91	Α
		ATOM	4304	CA	ASP	Α	548	69.159	93.634	-30.630	1.00	22.77	Α
		MOTA	4305	CB	ASP	Α	548	68.772	95.114	-30.561	1.00	23.80	Α
		ATOM	4306	CG	ASP	Α	548	68.956	95.830	-31.884	1.00	24.78	Α
	5	ATOM	4307		ASP				95.863		1.00	26.00	Α
	•	ATOM	4308		ASP			67.959	96.363			25.77	A
		MOTA	4309	С	ASP			69.159	93.058			22.13	A
		ATOM	4310	0	ASP			69.669	93.692			22.21	A
		ATOM	4311	N	ILE	A	549	68.600	91.866	-29.039		20.62	A
	10	ATOM	4312	CA	ILE	A	549	68.570	91.286	-27.702	1.00	19.69	Α
		ATOM	4313	CB	ILE	Α	549	67.253	91.667	-26.967	1.00	20.73	Α
		ATOM	4314	CG2	ILE	А	549	66.047	91.126	-27.720	1.00	20.71	A
		ATOM	4315		ILE			67.280	91.132			21.62	A
		ATOM	4316		ILE			68.364	91.745			23.70	A
	15								89.771			18.85	A
	13	ATOM	4317	С	ILE			68.758					
		MOTA	4318	0	ILE			69.579	89.276			18.42	A
		ATOM	4319	N	LEU			68.011	89.038			17.47	Α
		ATOM	4320	CA	LEU			68.104	87.580		1.00	16.89	A
4122.		ATOM	4321	CB	LEU	Α	550	67.420	87.014	-27.227	1.00	17.32	Α
1.20	20	ATOM	4322	CG	LEU	Α	550	67.461	85.495	-27.058	1.00	17.26	А
4.(J)		MOTA	4323	CD1	LEU			68.903	85.039	-26.909	1.00	17.29	A
,		ATOM	4324		LEU			66.649	85.096		1.00	17.14	Α
M		ATOM	4325	C	LEU			67.444	87.015			16.51	A
								66.238	87.160			16.78	A
म् _{रिक्क}	25	ATOM	4326	0	LEU								
	25	MOTA	4327	N	PRO			68.226	86.351			16.11	A
Contract of the Contract of th		MOTA	4328	CD	PRO			69.696	86.234			16.87	A
197		ATOM	4329	CA	PRO	Α	551	67.675	85.783			15.76	A
83		ATOM	4330	CB	PRO	А	551	68.915	85.591	-32.688		16.77	А
		ATOM	4331	CG	PRO	Α	551	69.962	85.248	-31.690	1.00	18.35	А
	30	MOTA	4332	С	PRO	Α	551	66.849	84.502	-31.705	1.00	14.86	Α
ij		MOTA	4333	0	PRO			65.944	84.279	-32.509	1.00	15.49	Α
Market Francis		ATOM	4334	N	SER			67.152	83.661		1.00	13.64	A
į.		ATOM	4335	CA	SER			66.415	82.407			12.75	A
144		ATOM	4336	CB	SER			67.084	81.317			13.26	A
รีเล ะ	35								81.018			15.05	A
14	33	MOTA	4337	OG	SER			68.373					
		MOTA	4338	С	SER			66.276	81.919			11.84	A
		MOTA	4339	0	SER			66.931	82.422			11.84	A
		ATOM	4340	N	LYS	А	553	65.422	80.917			10.82	A
		ATOM	4341	CA	LYS	Α	553	65.153	80.350	-27.667	1.00	11.24	A
	40	ATOM	4342	CB	LYS	Α	553	63.958	81.071	-27.037	1.00	11.54	A
		MOTA	4343	CG	LYS	Α	553	63.441	80.440	-25.742	1.00	12.80	A.
		ATOM	4344	CD	LYS			64.467	80.532			13.25	A
		ATOM	4345	CE	LYS			64.703	81.972			13.22	А
		ATOM	4346	NZ	LYS			65.871	82.085			14.05	A
	45								78.861			10.65	A
	43	ATOM	4347	C	LYS			64.843					
		MOTA	4348	0	LYS			64.058	78.422			10.51	A
		ATOM	4349	N	HIS			65.464	78.088			10.75	A
		MOTA	4350	CA	HIS			65.211	76.656			11.14	Α
		MOTA	4351	CB	HIS	Α	554	66.426	75.894	-26.282	1.00	12.98	A
	50	MOTA	4352	CG	HIS			67.562	75.806		1.00	14.49	Α
	-	ATOM	4353		HIS			68.093	76.726			16.00	Α
		ATOM	4354		HIS			68.315	74.662			17.03	A
		ATOM	4355		HIS			69.261	74.883			14.97	A
													A
	E E	MOTA	4356		HIS			69.148	76.128			18.38	
	55	MOTA	4357	С	HIS	Α	554	64.028	76.358	-25.906	1.00	10.44	A

		ATOM	4358	0	HIS	Α	554	63.874	76.972 -24.848	1.00	10.76	Α
		ATOM	4359	N	VAL			63.194	75.422 -26.340	1.00	10.09	А
		ATOM	4360	CA	VAL			62.049	74.971 -25.562	1.00	9.37	А
		ATOM	4361	СВ	VAL			60.697	75.425 -26.165	1.00	9.28	Α
	5	ATOM	4362		VAL			60.560	76.934 -26.045	1.00	9.53	A
	J	ATOM	4363		VAL			60.584	74.987 -27.613	1.00	9.57	A
		ATOM	4364	C	VAL			62.123	73.452 -25.554	1.00	9.23	A
		ATOM	4365		VAL			62.656	72.849 -26.485	1.00	9.24	A
		ATOM	4365	O N	VAL			61.601	72.836 -24.499	1.00	7.97	A
	10		4367	CA	VAL			61.629	71.385 -24.368	1.00	7.89	A
	10	ATOM ATOM	4367	CB	VAL			62.664	70.944 -23.299	1.00	7.99	A
			4369		VAL			62.584	69.440 -23.078	1.00	7.88	A
		MOTA						64.066	71.352 -23.717	1.00	9.27	A
		MOTA	4370		VAL				70.857 -23.940	1.00	7.33	A
	15	ATOM	4371	C	VAL			60.266	71.443 -23.940	1.00	7.50	A
	13	ATOM	4372	0	VAL			59.616	69.757 -24.551	1.00	7.30	A
		MOTA	4373	N	MSE			59.840		1.00	8.38	A
		ATOM	4374	CA	MSE			58.571	69.130 -24.197 68.912 -25.433	1.00	9.38	A
		ATOM	4375	CB	MSE			57.688			12.19	A
	20	ATOM	4376	CG	MSE			56.636	69.984 -25.676 71.731 -25.960		17.55	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	ATOM	4377	SE	MSE			57.378				
Horse trail and fall first fall		ATOM	4378	CE	MSE			58.381	71.378 -27.570		13.47	A
tile# at#h.		ATOM	4379	С	MSE			58.824	67.782 -23.543	1.00	8.15 8.86	A A
11 mm		ATOM	4380	0	MSE			59.712	67.037 -23.955	1.00		
	25	ATOM	4381	N	HIS			58.040	67.482 -22.515	1.00	7.51 6.67	A A
	23	ATOM	4382	CA	HIS			58.134	66.204 -21.823	1.00	7.78	A
M)		ATOM	4383	CB	HIS			58.318	66.401 -20.318			
197		ATOM	4384	CG	HIS			58.239	65.129 - 19.529 63.999 - 19.577	1.00	7.30 7.61	A A
91		MOTA	4385		HIS			58.985 57.301	64.926 -18.539	1.00	7.80	A
	30	ATOM	4386 4387		HIS HIS			57.473	63.727 -18.012	1.00	7.28	A
i F	30	ATOM			HIS			58.489	63.143 -18.623	1.00	7.93	A
igar. ESE		ATOM	4388		HIS			56.845	65.433 -22.061	1.00	7.17	A
ja.		ATOM	4389 4390	C 0	HIS			55.757	66.011 -22.049	1.00	6.98	A
		ATOM ATOM	4390		ASN			56.976	64.129 -22.283	1.00	6.57	A
	35	ATOM	4391	N CA	ASN			55.832	63.253 -22.511	1.00	6.63	A
į.	55		4393	CB	ASN			55.926	62.621 -23.905	1.00	7.17	A
		ATOM ATOM	4393	CG	ASN			54.910	61.516 -24.119	1.00	7.78	A
		ATOM	4394		ASN			53.821	61.540 -23.550	1.00	8.71	A
		ATOM	4396		ASN			55.261	60.542 -24.960	1.00	8.27	A
	40	ATOM	4397	C	ASN			55.857	62.165 -21.443	1.00	6.46	A
	40	ATOM	4398	_	ASN			56.619	61.210 -21.545	1.00	7.32	A
		MOTA	4399	O N	THR			55.015	62.306 -20.425	1.00	6.42	A
		ATOM	4400	CA	THR			54.983	61.336 -19.335	1.00	7.03	A
		ATOM	4400	CB	THR			54.219	61.925 -18.120	1.00	6.72	A
	45	ATOM	4401		THR			54.541	61.177 -16.940	1.00	6.98	A
	43			CG2				52.720	61.877 -18.350	1.00	7.05	A
		ATOM	4403		THR			54.390	59.969 -19.714	1.00	7.51	A
		ATOM	4404	C	THR				58.982 -18.999	1.00	7.07	A
		ATOM	4405	0	THR			54.588	59.904 -20.835	1.00	7.49	A
	50	ATOM	4406	N	LEU			53.674			7.43	
	50	ATOM	4407	CA	LEU			53.065	58.646 -21.273	1.00		A A
		MOTA	4408	CB	LEU			51.904	58.925 -22.233	1.00	8.47 9.12	A A
		ATOM	4409	CG	LEU			50.776	59.818 -21.701		9.12	A A
		ATOM	4410		LEU			49.724	60.008 -22.787	1.00		
	SE.	ATOM	4411		LEU			50.147	59.187 -20.462	1.00	7.91	A
	55	ATOM	4412	С	LEU	A	201	54.089	57.728 -21.949	1.00	7.77	А

		ATOM	4413	0	LEU	Α	561	54.993	58.196 -22	.649	1.00	8.16	Α
		ATOM	4414	N	PRO	Α	562	53.943	56.404 -21	.765	1.00	8.25	A
		ATOM	4415	CD	PRO	Α	562	52.970	55.743 -20	.872	1.00	7.40	Α
		ATOM	4416	CA	PRO	Α	562	54.862	55.419 -22	. 346	1.00	8.17	Α
	5	ATOM	4417	CB	PRO	Α	562	54.675	54.212 -21	. 439	1.00	8.14	Α
		MOTA	4418	CG	PRO			53.202	54.266 -21	. 158	1.00	8.36	Α
		MOTA	4419	С	PRO	Α	562	54.705	55.064 -23	.821	1.00	8.36	Α
		ATOM	4420	0	PRO			54.825	53.902 -24	. 205	1.00	9.39	Α
		ATOM	4421	N	HIS			54.422	56.058 -24	649	1.00	8.47	A
	10	ATOM	4422	CA	HIS			54.322	55.820 -26	.081	1.00	9.07	Α
		MOTA	4423	CB	HIS			52.926	55.308 -26	. 493	1.00	9.42	Α
		MOTA	4424	CG	HIS			51.790	56.182 -26	.058	1.00	10.44	A
		ATOM	4425		HIS	Α	563	51.289	57.326 -26	. 582	1.00	9.83	Α
		ATOM	4426	ND1	HIS	А	563	50.998	55.881 -24	. 972	1.00	10.12	A
	15	MOTA	4427		HIS			50.056	56.799 -24	.846	1.00	10.52	Α
		MOTA	4428		HIS			50.210	57.688 -25	.811	1.00	10.71	Α
		ATOM	4429	С	HIS			54.643	57.118 -26	.790	1.00	9.23	A
		ATOM	4430	0	HIS			54.465	58.197 -26	. 224	1.00	10.26	Α
1177		ATOM	4431	N	TRP	Α	564	55.157	57.014 -28	.010	1.00	9.71	Α
	20	MOTA	4432	CA	TRP			55.470	58.210 -28	.775	1.00	9.67	Α
٠J		MOTA	4433	CB	TRP	Α	564	55.966	57.858 -30	.177	1.00	10.28	Α
		MOTA	4434	CG	TRP			57.389	57.435 -30	.214	1.00	10.78	Α
91		MOTA	4435		TRP			58.527	58.285 -30	. 382	1.00	12.00	Α
		ATOM	4436	CE2	TRP	A	564	59.674	57.461 -30	. 328	1.00	11.44	A
10	25	ATOM	4437		TRP			58.692	59.667 -30	.572	1.00	12.35	A
		MOTA	4438	CD1	TRP	Α	564	57.872	56.169 -30	.069	1.00	11.14	A
e e		ATOM	4439	NE1	TRP	А	564	59.243	56.175 -30	.137	1.00	11.65	A
		ATOM	4440		TRP			60.972	57.971 -30	458	1.00	12.05	A
S):		ATOM	4441		TRP			59.982	60.174 -30	.702	1.00	12.66	А
	30	ATOM	4442		TRP			61.105	59.326 -30	. 645	1.00	13.34	А
		MOTA	4443	С	TRP			54.198	59.018 -28	.889	1.00	9.59	A
14		ATOM	4444	0	TRP			53.116	58.466 -29	.107	1.00	10.25	Α
et.		ATOM	4445	N	ARG	Α	565	54.314	60.327 -28	.725	1.00	9.71	А
		ATOM	4446	CA	ARG	Α	565	53.134	61.160 -28	.818	1.00	10.44	A
ļ.	35	MOTA	4447	CB	ARG			52.547	61.423 -27	.418	1.00	10.22	Α
# V		MOTA	4448	CG	ARG	Α	565	51.315	62.336 -27	. 437	1.00	12.89	Α
		ATOM	4449	CD	ARG	Α	565	50.491	62.296 -26	.146	1.00	12.46	Α
		ATOM	4450	NE	ARG	Α	565	51.287	62.544 -24	. 949	1.00	12.69	A
		ATOM	4451	CZ	ARG	Α	565	50.804	63.063 -23	.823	1.00	12.00	Α
	40	MOTA	4452	NH1	ARG	Α	565	49.521	63.401 -23	.736		11.76	A
		ATOM	4453	NH2	ARG	Α	565	51.603	63.240 -22	.782	1.00	10.34	A
		ATOM	4454	С	ARG	Α	565	53.396	62.477 -29	.515	1.00	10.54	A
		ATOM	4455	0	ARG	A	565	54.441	63.104 -29	. 327		11.41	Α
		MOTA	4456	N	GLU	Α	566	52.443	62.865 -30	. 352	1.00	11.57	Α
	45	MOTA	4457	CA	GLU	Α	566	52.500	64.139 -31	.048	1.00	12.67	A
		ATOM	4458	CB	GLU	Α	566	52.281	63.976 -32	.551	1.00	14.55	A
		ATOM	4459	CG	GLU	Α	566	53.360	63.207 -33	. 265	1.00	16.81	Α
		ATOM	4460	CD	GLU	A	566	53.167	63.239 -34	.765	1.00	18.39	A
		MOTA	4461	OE1	GLU	А	566	52.025	63.017 -35	.219	1.00	20.87	Α
	50	ATOM	4462	OE2	GLU	Α	566	54.155	63.483 -35	. 487	1.00	20.56	Α
		ATOM	4463	С	GLU			51.352	64.949 -30	.469	1.00	12.51	A
		ATOM	4464	0	GLU			50.280	64.414 -30	.183	1.00	13.17	A
		ATOM	4465	N	GLN	A	567	51.584	66.238 -30	.280	1.00	11.15	А
		MOTA	4466	CA	GLN			50.559	67.117 -29	.744	1.00	11.24	А
	55	MOTA	4467	СВ	GLN			50.489	67.000 -28	.217	1.00	12.08	A

		MOTA	4468	CG	GLN A	. 567	49.477	67.948 -27.579	1.00 11.81	Α
		ATOM	4469	CD	GLN A	. 567	49.819	68.294 -26.141	1.00 12.83	A
		ATOM	4470	OE1	GLN A	567	49.777	67.441 -25.255	1.00 11.48	Α
		ATOM	4471	NE2	GLN A	567	50.171	69.553 -25.905	1.00 14.01	A
	5	ATOM	4472	С	GLN A		50.941	68.533 -30.116		А
	Ū	ATOM	4473	Ö	GLN A		52.122	68.879 -30.126		A
		ATOM	4474	N	LEU A		49.951	69.349 -30.451	1.00 10.33	A
							50.247	70.734 -30.766	1.00 10.33	A
		ATOM	4475	CA	LEU A					
	10	ATOM	4476	CB	LEU A		49.051	71.439 -31.410	1.00 11.28	A
	10	ATOM	4477	CG	LEU A		48.657	71.080 -32.842	1.00 11.61	A
		MOTA	4478		LEU A		47.653	72.113 -33.339		Α
		MOTA	4479		LEU A		49.884	71.073 -33.745		Α
		MOTA	4480	С	LEU A		50.568	71.426 -29.452	1.00 10.03	A
		MOTA	4481	0	LEU A	568	49.926	71.171 -28.430	1.00 10.24	A
	15	ATOM	4482	N	VAL A	569	51.581	72.279 -29.477	1.00 8.96	A
		ATOM	4483	CA	VAL A	569	51.965	73.042 -28.300	1.00 9.33	A
		ATOM	4484	СВ	VAL A	569	53.331	72.585 -27.724	1.00 8.58	Α
		ATOM	4485	CG1	VAL A		53.201	71.179 -27.135	1.00 9.88	Α
J street.		MOTA	4486		VAL A		54.402	72.607 -28.808	1.00 9.77	Α
122	20	MOTA	4487	C	VAL A		52.046	74.503 -28.716	1.00 9.59	А
۱.I		MOTA	4488	Ö	VAL A		52.314	74.815 -29.877	1.00 10.28	A
		ATOM	4489	N	ASP A		51.790	75.405 -27.779		A
n		ATOM	4490	CA	ASP A		51.846	76.820 -28.108	1.00 10.77	A
स्थानम् सम्बद्धाः							50.434		1.00 10.77	
122	25	ATOM	4491	CB	ASP A			77.409 -28.195		A
W.	25	ATOM	4492	CG	ASP A		49.759	77.514 -26.841	1.00 16.24	A
		ATOM	4493		ASP A		49.620	76.479 -26.159	1.00 20.02	A
131		MOTA	4494		ASP A		49.367	78.635 -26.459	1.00 20.35	A
#1		MOTA	4495	С	ASP A		52.662	77.594 -27.093	1.00 10.43	A
	•	ATOM	4496	0	ASP A		52.761	77.208 -25.928	1.00 11.33	А
	30	MOTA	4497	N	PHE A		53.267	78.681 -27.558	1.00 10.09	A
1,1 <u>1,2</u> 1		ATOM	4498	CA	PHE A	571	54.069	79.546 -26.704	1.00 10.04	Α
and the state of t		ATOM	4499	CB	PHE A	571	55.569	79.321 -26.929	1.00 10.14	A
jal.		MOTA	4500	CG	PHE A	571	56.064	77.980 -26.482	1.00 9.15	A
		ATOM	4501	CD1	PHE A	571	56.053	76.891 -27.344	1.00 8.69	Α
1,1	35	ATOM	4502	CD2	PHE A	571	56.544	77.809 -25.190	1.00 9.56	A
2		ATOM	4503	CE1	PHE A	571	56.517	75.645 -26.921	1.00 9.22	A
		ATOM	4504		PHE A		57.006	76.570 -24.758	1.00 8.84	Α
		ATOM	4505	CZ	PHE A		56.991	75.489 -25.628	1.00 9.29	А
		ATOM	4506	С	PHE A		53.761	80.984 -27.075	1.00 10.51	А
	40	ATOM	4507	0	PHE A		53.379	81.263 -28.212	1.00 11.02	A
		MOTA		N	TYR A			81.890 -26.114		A
		ATOM	4509	CA	TYR A		53.721	83.308 -26.381	1.00 11.05	A
		ATOM	4510	CB	TYR A		53.298	84.069 -25.123	1.00 12.13	A
			4511	CG	TYR A		51.862	83.889 -24.686	1.00 12.13	A
	45	ATOM						83.376 -25.550		
	43	ATOM	4512		TYR A		50.897		1.00 14.81	A
		MOTA	4513		TYR A		49.562	83.266 -25.154	1.00 15.92	A
		MOTA	4514		TYR A		51.461	84.286 -23.412	1.00 16.47	A
		MOTA	4515		TYR A		50.135	84.184 -23.009	1.00 16.38	А
		MOTA	4516	CZ	TYR A		49.191	83.676 -23.882	1.00 16.81	Α
	50	ATOM	4517	ОН	TYR A		47.874	83.592 -23.481	1.00 17.51	A
		ATOM	4518	С	TYR A	572	55.078	83.839 -26.826	1.00 11.07	А
		ATOM	4519	0	TYR A	572	56.094	83.557 -26.188	1.00 10.80	Α
		MOTA	4520	N	VAL A		55.096	84.596 -27.920	1.00 10.87	Α
		ATOM	4521	CA	VAL A		56.335	85.174 -28.438	1.00 11.44	Α
	55	ATOM	4522	СВ	VAL A		56.782	84.475 -29.745	1.00 11.72	Α
					• •					• •

		ATOM	4523	CG1	VAL A	1 573	57.329	83.084 -29.	429	1.00 11.99	
		ATOM	4524	CG2	VAL A	573	55.613	84.371 -30.	710	1.00 12.32	. A
		ATOM	4525	C	VAL A		56.135	86.667 -28.		1.00 11.37	
	_	MOTA	4526	0	VAL A		55.021	87.107 -28.		1.00 12.01	
	5	MOTA	4527	N	SER A	574	57.218	87.435 -28.		1.00 12.19	
		ATOM	4528	CA	SER A	574	57.156	88.885 -28.	817	1.00 13.05	A
		ATOM	4529	СВ	SER A	574	58.338	89.554 -28.	117	1.00 13.31	. A
		ATOM	4530	OG	SER A		59.566	89.132 -28.		1.00 13.02	
	4.0	MOTA	4531	С	SER A		57.116	89.347 -30.		1.00 13.99	
	10	MOTA	4532	0	SER A		57.090	90.550 -30.		1.00 15.54	
		ATOM	4533	N	SER A	575	57.120	88.402 -31.	203	1.00 14.20) A
		ATOM	4534	CA	SER A	575	57.071	88.732 -32.	621	1.00 14.88	A
		ATOM	4535	СВ	SER A		58.483	88.846 -33.	197	1.00 15.07	Α
		ATOM	4536	OG	SER A		58.440	88.996 -34.		1.00 16.15	
	15										
	15	MOTA	4537	С	SER A		56.312	87.661 -33.		1.00 14.98	
		ATOM	4538	0	SER A		56.349	86.488 -33.		1.00 14.24	
		ATOM	4539	N	PRO A	576	55.599	88.055 -34.	450	1.00 15.06	A
		ATOM	4540	CD	PRO A	576	55.309	89.435 -34.	884	1.00 15.77	A
		ATOM	4541	CA	PRO A		54.845	87.084 -35.		1.00 14.91	. А
	20	ATOM	4542	CB	PRO I		53.797	87.950 -35.		1.00 15.59	
. Fi	20										
		MOTA	4543	CG	PRO A		54.558	89.221 -36.		1.00 16.60	
Tribuii.		MOTA	4544	С	PRO A		55.763	86.385 -36.		1.00 14.44	
		ATOM	4545	0	PRO A	576	55.411	85.360 -36.	821	1.00 14.89) A
1.4. 1.4.		ATOM	4546	N	PHE A	577	56.951	86.948 -36.	443	1.00 14.84	A
IJ	25	MOTA	4547	CA	PHE A	577	57.912	86.400 -37.	390	1.00 15.08	A
		ATOM	4548	СВ	PHE A		58.680	87.546 -38.		1.00 16.28	
7.0							57.790	88.549 -38.		1.00 18.45	
		ATOM	4549	CG	PHE A						
21		ATOM	4550		PHE A		58.042	89.913 -38.		1.00 19.42	
		ATOM	4551	CD2	PHE A	577	56.699	88.131 -39.		1.00 18.51	
Hattari Park	30	ATOM	4552	CE1	PHE A	577	57.218	90.847 -39.	243	1.00 20.70) A
1		MOTA	4553	CE2	PHE A	577	55.867	89.059 -40.	119	1.00 20.04	A
W.		ATOM	4554	CZ	PHE A		56.129	90.418 -39.	995	1.00 20.44	А
į, ala		ATOM	4555	C	PHE A		58.870	85.440 -36.		1.00 14.78	
										1.00 14.56	
	25	MOTA	4556	0	PHE A		60.053	85.728 -36.			
1	35	MOTA	4557	N	VAL A		58.335	84.288 -36.		1.00 14.00	
		MOTA	4558	CA	VAL A		59.112	83.268 -35.		1.00 14.21	
		ATOM	4559	CB	VAL A	578	58.641	83.116 -34.	172	1.00 14.17	' A
		MOTA	4560	CG1	VAL A	578	59.412	82.000 -33.	481	1.00 14.20) A
		ATOM	4561		VAL A		58.840	84.429 -33.		1.00 14.11	. A
	40	ATOM	4562	C	VAL A		58.971	81.932 -36.		1.00 13.94	
	40			-						1.00 14.31	
		MOTA	4563	0	VAL A		57.887	81.567 -36.			
		MOTA	4564	N	SER A		60.083	81.218 -36.		1.00 14.83	
		ATOM	4565	CA	SER A	579	60.096	79.920 -37.		1.00 14.80	
		ATOM	4566	CB	SER A	579	60.997	79.956 -38.	356	1.00 16.06	5 A
	45	MOTA	4567	OG	SER A		62.294	80.415 -38.	032	1.00 19.90) A
		ATOM	4568	C	SER A		60.588	78.875 -36.		1.00 14.00	
										1.00 13.81	
		MOTA	4569	0	SER A		61.340	79.188 -35.			
		MOTA	4570	N	VAL A		60.157	77.637 -36.		1.00 12.34	
		ATOM	4571	CA	VAL A	X 580	60.528	76.542 -35.		1.00 12.09	
	50	ATOM	4572	CB	VAL A	580	59.269	75.835 -34.	898	1.00 11.61	. А
		ATOM	4573		VAL A	580	59.662	74.778 -33.	871	1.00 11.03	B A
		ATOM	4574		VAL A		58.321	76.858 -34.		1.00 10.91	
							61.388	75.498 -36.		1.00 12.49	
		MOTA	4575	C	VAL A						
		ATOM	4576	0	VAL A		61.185	75.192 -37.		1.00 13.11	
	55	ATOM	4577	N	THR A	581	62.347	74.956 -35.	402	1.00 12.19) A

		ATOM	4578	CA	THR	Α	581	63.236	73.911	-35.894	1.00	13.34	A
		ATOM	4579	СВ	THR	Α	581	64.618	74.470	-36.315	1.00	13.96	Α
		ATOM	4580	OG1	THR	Α	581	65.119	75.344	-35.295	1.00	15.16	Α
		ATOM	4581	CG2	THR	Α	581	64.516	75.220	-37.632	1.00	13.79	A
	5	ATOM	4582	С	THR	Α	581	63.465	72.918	-34.762	1.00	14.12	Α
		ATOM	4583	0	THR	Α	581	63.316	73.269	-33.593	1.00	13.78	Α
		MOTA	4584	N	ASP	Α	582	63.791	71.676	-35.104	1.00	15.79	Α
		ATOM	4585	CA	ASP	Α	582	64.086	70.687	-34.075	1.00	17.41	Α
		ATOM	4586	СВ	ASP	Α	582	63.674	69.271	-34.522	1.00	17.61	A
	10	ATOM	4587	CG	ASP	Α	582	64.382	68.801	-35.782	1.00	17.96	A
		ATOM	4588	OD1	ASP	Α	582	63.942	67.774	-36.345	1.00	19.58	Α
		ATOM	4589	OD2	ASP	Α	582	65.367	69.434	-36.205	1.00	17.28	Α
		ATOM	4590	С	ASP	Α	582	65.592	70.831	-33.866	1.00	19.39	А
		MOTA	4591	0	ASP	Α	582	66.209	71.675	-34.512	1.00	18.93	A
	15	ATOM	4592	N	LEU			66.205	70.052	-32.983	1.00	21.85	A
		ATOM	4593	CA	LEU	Α	583	67.636	70.251	-32.777	1.00	23.92	A
		ATOM	4594	CB	LEU			68.138	69.489	-31.549	1.00	25.99	Α
		ATOM	4595	CG	LEU	Α	583	69.423	70.140	-31.024	1.00	27.28	Α
a green		MOTA	4596	CD1	LEU			69.104	71.550	-30.548	1.00	28.01	Α
Q	20	ATOM	4597	CD2	LEU	Α	583	70.019	69.329	-29.898	1.00	28.61	Α
		MOTA	4598	С	LEU			68.491	69.897	-33.988	1.00	24.12	Α
		ATOM	4599	0	LEU			69.615	70.385	-34.120	1.00	25.14	A
M		ATOM	4600	N	ALA	Α	584	67.965	69.055	-34.873	1.00	23.00	Α
i a		ATOM	4601	CA	ALA			68.703	68.680	-36.074	1.00	21.20	Α
	25	ATOM	4602	CB	ALA			68.157	67.380	-36.649	1.00	21.31	Α
iğ.		MOTA	4603	С	ALA			68.561	69.808	-37.091	1.00	20.45	A
		ATOM	4604	0	ALA	Α	584	68.994	69.693	-38.237	1.00	19.17	A
		ATOM	4605	N	ASN			67.944	70.901	-36.651	1.00	20.39	Α
91 		ATOM	4606	CA	ASN			67.725	72.075	-37.487	1.00	20.49	A
	30	ATOM	4607	CB	ASN			69.052	72.580	-38.058	1.00	22.80	А
ĻĮ.		ATOM	4608	CG	ASN			69.389	73.979	-37.585	1.00	24.67	Α
ių.		ATOM	4609	OD1	ASN			68.643	74.928	-37.833	1.00	25.57	A
		MOTA	4610	ND2	ASN	Α	585	70.514	74.114	-36.891	1.00	26.67	A
		ATOM	4611	С	ASN	A	585	66.727	71.848	-38.616	1.00	19.93	A
	35	MOTA	4612	0	ASN	Α	585	66.715	72.592	-39.603	1.00	20.20	A
a .		ATOM	4613	N	ASN	Α	586	65.894	70.822	-38.473	1.00	18.43	A
		ATOM	4614	CA	ASN	Α	586	64.872	70.525	-39.471	1.00	17.78	A
		ATOM	4615	CB	ASN	Α	586	64.329	69.101	-39.317	1.00	18.38	A
		ATOM	4616	CG	ASN	Α	586	65.396	68.045	-39.465	1.00	18.83	Α
	40	MOTA	4617	OD1	ASN	A	586	66.205	68.089	-40.388	1.00	18.59	Α
		ATOM	4618	ND2	ASN	A	586	65.392	67.073	-38.560	1.00	18.31	Α
		ATOM	4619	С	ASN	Α	586	63.720	71.492	-39.241	1.00	17.17	A
		ATOM	4620	0	ASN	Α	586	63.244	71.640	-38.118	1.00	15.87	A
		ATOM	4621	N	PRO	Α	587	63.261	72.173	-40.296	1.00	16.47	A
	45	ATOM	4622	CD	PRO	A	587	63.673	72.155	-41.710	1.00	17.25	A
		ATOM	4623	CA	PRO	A	587	62.149	73.099	-40.080	1.00	15.85	A
		MOTA	4624	CB	PRO	Α	587	61.983	73.762	-41.447	1.00	16.75	A
		ATOM	4625	CG	PRO	Α	587	62.443	72.697	-42.400	1.00	17.77	Α
		ATOM	4626	С	PRO	Α	587	60.894	72.354	-39.630	1.00	14.91	Α
	50	ATOM	4627	0	PRO	Α	587	60.666	71.203	-40.009	1.00	15.09	Α
		ATOM	4628	N	VAL			60.096		-38.795	1.00	13.83	Α
		ATOM	4629	CA	VAL			58.857		-38.298	1.00	13.91	Α
		ATOM	4630	СВ	VAL			58.902	72.242	-36.764	1.00	14.00	А
		MOTA	4631		VAL			57.570		-36.263		14.23	А
	55	ATOM	4632		VAL			60.028		-36.390	1.00	13.60	Α

		N III ON A	4622	C	1171	71	500	E .	7.733	73 305	-38.655	1 00	13.82	А
		ATOM	4633	С	VAL			_			-38.371		13.34	A
		ATOM	4634	0	VAL				7.829					
		MOTA	4635	N	GLU				6.677		-39.282		14.01	A
	_	ATOM	4636	CA	GLU				5.559		-39.666		14.78	A
	5	ATOM	4637	CB	GLU				4.492		-40.417		16.78	A
		ATOM	4638	CG			589		3.508		-41.153		20.93	А
		ATOM	4639	CD	GLU				2.338		-41.743		22.74	А
		MOTA	4640	OE1	GLU	Α	589	5	2.543		-42.229		25.02	Α
		ATOM	4641	OE2	GLU	Α	589	5	1.213		-41.733		24.68	А
	10	MOTA	4642	С	GLU	Α	589	5	4.940	74.370	-38.428	1.00	14.21	Α
		ATOM	4643	0	GLU	A	589	5	4.679	73.688	-37.436	1.00	13.85	Α
		ATOM	4644	N	ALA	Α	590	5	4.703	75.673	-38.491	1.00	13.29	A
		ATOM	4645	CA	ALA				4.130	76.387	-37.365	1.00	12.68	А
		ATOM	4646	СВ	ALA				5.215		-36.643	1.00	12.81	A
	15	MOTA	4647	C	ALA				3.026		-37.804		12.30	Α
	10	ATOM	4648	Ö	ALA				2.925		-38.979		12.10	А
		ATOM	4649	N	GLN				2.196		-36.842		11.58	А
		ATOM	4650	CA	GLN				1.099		-37.079		10.88	A
		ATOM	4651	CB	GLN				9.746		-37.004		11.34	A
(2	20	MOTA	4652	CG	GLN				8.551		-37.069		11.63	A
	20		4653	CD	GLN				7.220		-36.836		11.31	A
್ಯಾಪ್ಟ್ ಚಿತ್ರ		ATOM			GLN				6.948		-37.416		12.28	A
اليون 1976ء		ATOM	4654								-35.993		11.76	A
1,5 5		ATOM	4655		GLN				6.380		-36.007		11.70	A
	25	ATOM	4656	С	GLN				1.140				11.93	A
4 76	25	ATOM	4657	0	GLN				1.335		-34.825		10.29	
14		ATOM	4658	N	VAL				0.978		-36.416			A
m		ATOM	4659	CA	VAL				0.960		-35.461		11.22	A
		ATOM	4660	СВ			592		1.983		-35.831		11.59	A
51 2122	•	ATOM	4661		VAL				1.742		-34.990		12.13	A
	30	ATOM	4662		VAL				3.399		-35.584		11.16	A
1.3		ATOM	4663	С			592		9.550		-35.433		11.38	A
		MOTA	4664	0			592		8.935		-36.477		12.01	A
14		MOTA	4665	N			593		9.038		-34.227		12.29	A
100		ATOM	4666	CA			593		7.704		-34.020		12.41	Α
į.d.	35	ATOM	4667	CB			593		6.757		-33.444		12.53	A
3		MOTA	4668	OG	SER	Α	593		6.554		-34.339		13.81	А
		MOTA	4669	С	SER	Α	593	4	7.833		-33.018		12.72	A
		ATOM	4670	0	SER	Α	593	4	8.828		-32.297		13.46	A
		ATOM	4671	N	PRO	Α	594	4	6.831	85.415	-32.959		12.94	A
	40	ATOM	4672	CD	PRO	Α	594	4.	5.693		-33.877		12.56	A
		ATOM	4673	CA	PRO	Α	594	4	6.909	86.523	-32.004	1.00	12.57	A
		MOTA	4674	CB	PRO	Α	594	4	5.802	87.471	-32.471	1.00	13.02	A
		ATOM	4675	CG	PRO	Α	594	4	5.560	87.083	-33.915	1.00	12.90	A
		ATOM	4676	С	PRO	Α	594	4	6.641	86.038	-30.583	1.00	12.82	A
	45	ATOM	4677	0	PRO	Α	594	4	6.185	84.913	-30.374	1.00	12.85	A
		ATOM	4678	N			595		6.943	86.882	-29.605	1.00	11.95	A
		ATOM	4679	CA			595		6.650		-28.221		12.90	A
		ATOM	4680	СВ			595		7.761		-27.249		12.80	Α
		ATOM	4681		VAL				7.280		-25.811		13.35	А
	50	ATOM	4682		VAL				9.020		-27.467		13.76	A
	50	ATOM	4683	C			595		5.366		-27.927		13.06	A
			4684	0			595		5.369		-27.845		14.57	A
		ATOM	4685	N			596		4.264		-27.805		13.30	A
		ATOM							2.967		-27.539		14.05	A
	55	MOTA	4686	CA			596						13.01	A
	55	ATOM	4687	CB	TRP	A	596	4	1.879	00.322	-28.391	1.00	13.01	n

	ATOM	4688	CG	TRP	Α	596	42.037	86.706	-29.862	1.00	13.11	А
	ATOM	4689	CD2	TRP	Α	596	41.728	87.883	-30.615	1.00	13.30	Α
	ATOM	4690	CE2	TRP	Α	596	42.009	87.600	-31.969	1.00	13.52	Α
	MOTA	4691	CE3	TRP	Α	596	41.241	89.153	-30.275	1.00	13.42	A
5	ATOM	4692	CD1	TRP	Α	596	42.483	85.780	-30.765	1.00	13.06	Α
	ATOM	4693		TRP			42.467	86.310	-32.034	1.00	13.17	А
	ATOM	4694		TRP			41.818	88.541	-32.987	1.00	13.38	А
	ATOM	4695		TRP			41.050		-31.288		13.71	А
	ATOM	4696	CH2			596	41.339		-32.627		14.26	Α
10	ATOM	4697	C			596	42.567		-26.078		15.30	A
10	ATOM	4698	Ö			596	42.741		-25.456		15.31	A
		4699	N			597	42.027		-25.540		16.68	A
	ATOM								-24.164		18.42	A
	ATOM	4700	CA			597	41.559				19.42	A
15	ATOM	4701	CB			597	42.486		-23.298			
15	ATOM	4702	OG			597	42.563		-23.797		21.78	A
	MOTA	4703	С			597	40.160		-24.185		18.74	A
	MOTA	4704	0			597	39.907		-24.892		19.83	A
	MOTA	4705	N			598	39.249		-23.425		18.70	A
	MOTA	4706	CA			598	37.881		-23.377		19.40	Α
20	ATOM	4707	CB	TRP	Α	598	36.896	87.515	-23.328		16.72	A
	MOTA	4708	CG	TRP	Α	598	36.870		-24.603	1.00	14.05	А
	ATOM	4709	CD2	TRP	Α	598	35.866	86.791	-25.621	1.00	13.09	Α
	MOTA	4710	CE2	TRP	Α	598	36.272	85.922	-26.656	1.00	12.49	A
	ATOM	4711	CE3	TRP	Α	598	34.660	87.494	-25.760	1.00	12.76	А
25	ATOM	4712					37.817	85.859	-25.048	1.00	13.40	A
	ATOM	4713		TRP			37.466	85.366	-26.281	1.00	12.12	A
	ATOM	4714		TRP			35.516		-27.816	1.00	12.90	A
	ATOM	4715		TRP			33.907		-26.917		12.25	А
	ATOM	4716		TRP			34.341		-27.929		12.83	А
30	ATOM	4717	C			598	37.673		-22.183		21.86	А
50	ATOM	4718	Ö			598	38.185		-21.093		22.28	A
	ATOM	4719	N			599	36.917		-22.397		25.14	A
	ATOM	4720	CA			599	36.662		-21.341		29.11	A
			CB			599	37.513		-21.575		30.89	A
35	ATOM	4721				599			-21.638		32.98	A
33	ATOM	4722	CG				38.982		-21.636		33.68	A
	ATOM	4723	CD2	HIS			39.844				33.67	A
	ATOM	4724		HIS			39.722		-20.531			
	ATOM	4725		HIS			40.977		-20.890		34.01	A
40	ATOM	4726		HIS			41.078		-22.190		34.05	A
40	ATOM	4727	С	HIS			35.197		-21.262		31.06	A
	ATOM	4728	0	HIS			34.520		-22.281		30.43	A
	ATOM	4729	N			600	34.712		-20.037		33.98	A
	ATOM	4730	CA	HIS	Α	600	33.333		-19.818		37.06	А
	ATOM	4731	CB	HIS	Α	600	32.835	92.083	-18.463		38.91	А
45	ATOM	4732	CG	HIS	Α	600	31.366	92.279	-18.250	1.00	40.97	А
	ATOM	4733	CD2	HIS	Α	600	30.390	91.404	-17.910	1.00	41.66	А
	ATOM	4734	ND1	HIS	Α	600	30.750	93.504	-18.389	1.00	41.78	А
	ATOM	4735	CE1	HIS	Α	600	29.458	93.376	-18.145	1.00	42.26	А
	ATOM	4736		HIS			29.213		-17.852		42.52	Α
50	ATOM	4737	С			600	33.339		-19.837		37.98	А
	ATOM	4738	Ö	HIS			33.560		-18.811		38.39	A
	ATOM	4739	N	ASP			33.113		-21.016		39.04	A
	ATOM	4740	CA	ASP			33.108		-21.185		40.24	А
	ATOM	4740	CB	ASP					-22.660		41.10	A
55		4741	CG	ASP			33.283		-22.976		42.18	A
55	ATOM	4142	CG	nor	А	001	22.202	21.300	22.910	1.00	12.10	11

TOOKIDDE OPTOR

		MOTA	4743	OD1	ASP	Α	601	32.722	98.825	-22.344	1.00	42.37	А
		ATOM	4744		ASP			34.139	98.112	-23.862	1.00	42.54	A
		ATOM	4745	С	ASP			32.010	96.768	-20.344	1.00	40.49	Α
		ATOM	4746	Ö	ASP			30.829		-20.675		40.39	A
	5	ATOM	4747	N	THR			32.413		-19.254		40.63	A
	Ū	ATOM	4748	CA	THR			31.476		-18.352		40.68	A
		ATOM	4749	CB	THR			32.200		-17.102		41.47	A
				OG1				32.869		-16.429		42.23	A
		ATOM	4750		THR .								
	10	ATOM	4751	CG2	THR.			31.204		-16.146		42.22	A
	10	ATOM	4752	C	THR .			30.762		-19.039		39.69	A
		ATOM	4753	0	THR.			29.652		-18.656		40.04	A
		MOTA	4754	N	LEU .			31.404		-20.056		38.12	A
		ATOM	4755	CA	LEU .				100.927			36.37	A
		ATOM	4756	CB	LEU				101.732			37.67	A
	15	ATOM	4757	CG	LEU .	A	603		102.554			38.43	A
		ATOM	4758		LEU .				103.570			38.88	Α
		ATOM	4759	CD2	LEU .	Α	603	33.665	101.640	-19.659	1.00	39.02	A
		ATOM	4760	С	LEU .	A	603	29.800	100.499	-21.825	1.00	34.34	A
		MOTA	4761	0	LEU .	Α	603	28.645	100.915	-21.763	1.00	33.94	A
	20	MOTA	4762	N	THR	Α	604	30.217	99.667	-22.775	1.00	31.91	Α
:I		ATOM	4763	CA	THR .	A	604	29.321	99.199	-23.828	1.00	29.56	Α
ī		ATOM	4764	CB	THR .			30.110	98.674	-25.040	1.00	29.91	А
1111		ATOM	4765	OG1	THR			30.920		-24.639		30.03	A
9,51 ti g155 4 5		ATOM	4766	CG2	THR .			31.004		-25.608	1.00	29.97	А
127	25	ATOM	4767	C	THR			28.385		-23.355		27.84	А
		ATOM	4768	0	THR			27.447		-24.060		27.19	A
unit unit		ATOM	4769	N	LYS			28.642		-22.162		26.35	A
		ATOM	4770	CA	LYS			27.819		-21.605		25.31	A
ii.		ATOM	4771	CB	LYS			26.381		-21.411		25.79	A
	30	ATOM	4772	CG	LYS .			26.247		-20.418		26.37	A
Ţ.	30							26.700		-19.028		26.73	A
4,5±€.		MOTA	4773	CD	LYS .							26.90	A
		ATOM	4774	CE	LYS .			26.600		-18.038			
.4		ATOM	4775	NZ	LYS .			27.012		-16.669		27.43	A
	25	ATOM	4776	C	LYS .			27.831		-22.507		24.34	A
į.L	35	ATOM	4777	0	LYS .			26.802		-22.708		24.15	A
•		MOTA	4778	N	THR .			29.000		-23.055		22.88	A
		MOTA	4779	CA	THR .			29.157		-23.925		21.84	A
		MOTA	4780	CB	THR .			29.277		-25.412		22.73	A
		MOTA	4781	OG1	THR .			30.419		-25.584		23.70	A
	40	ATOM	4782	CG2	THR .	A	606	28.024		-25.873		23.17	А
		ATOM	4783	С	THR .			30.417		-23.545		20.46	A
		ATOM	4784	0	THR .	A	606	31.310		-22.893	1.00	20.36	A
		ATOM	4785	N	ILE .	A	607	30.473	91.775	-23.948	1.00	19.22	A
		ATOM	4786	CA	ILE .	A	607	31.627	90.930	-23.678	1.00	18.27	А
	45	ATOM	4787	CB	ILE .	A	607	31.194	89.579	-23.081	1.00	18.14	A
		MOTA	4788	CG2	ILE .	Α	607	32.419	88.737	-22.744	1.00	18.10	A
		MOTA	4789		ILE .			30.362	89.819	-21.818	1.00	18.82	Α
		MOTA	4790		ILE .			29.723		-21.261	1.00	20.02	A
		ATOM	4791	C	ILE			32.291		-25.032		17.90	А
	50	ATOM	4792	Ö	ILE .			31.746		-25.891		17.34	A
		ATOM	4793	N	HIS			33.458		-25.229		17.94	A
		ATOM	4794	CA	HIS .			34.155		-26.498		18.20	A
			4795	CB	HIS .			33.909		-27.365		19.84	A
		ATOM								-26.792		21.38	A
	55	ATOM	4796	CG	HIS.			34.468					
	55	ATOM	4797	CD2	HIS .	А	₽U¤	35.447	94.494	-27.238	1.00	22.64	A

		ATOM ATOM	4798 4799	CE1	HIS A	608	34.012 34.686 35.563	94.225 -25.614 95.332 -25.360 95.518 -26.330	1.00 22.82 1.00 22.93 1.00 23.21	A A A
		ATOM ATOM	4800 4801	NE2	HIS A		35.563	90.949 -26.317	1.00 23.21	A
	5	ATOM	4801	0	HIS A		36.212	91.246 -25.262	1.00 17.34	A
	3	ATOM	4803	N	PRO A		36.313	90.423 -27.355	1.00 17.04	A
		ATOM	4804	CD	PRO A		35.716	89.852 -28.578	1.00 15.98	A
		ATOM	4805	CA	PRO A		37.748	90.148 -27.310	1.00 16.72	A
		ATOM	4806	CB	PRO A		37.873	88.927 -28.203	1.00 16.83	A
	10	ATOM	4807	CG	PRO A		36.923	89.270 -29.305	1.00 16.57	A
	20	ATOM	4808	c	PRO A		38.648	91.279 -27.784	1.00 17.16	A
		ATOM	4809	0	PRO A		38.322	92.003 -28.725	1.00 18.05	Α
		ATOM	4810	N	GLN A		39.789	91.408 -27.118	1.00 17.75	A
		ATOM	4811	CA	GLN A		40.785	92.408 -27.464	1.00 19.28	Α
	15	ATOM	4812	СВ	GLN A		41.057	93.346 -26.285	1.00 22.02	Α
		ATOM	4813	CG	GLN A	610	39.869	94.195 -25.867	1.00 26.25	A
		MOTA	4814	CD	GLN A	610	40.254	95.277 -24.875	1.00 28.59	Α
		MOTA	4815	OE1	GLN A	610	40.799	94.992 -23.808	1.00 30.20	Α
4:52		MOTA	4816	NE2	GLN A	610	39.973	96.527 -25.225	1.00 30.13	Α
	20	MOTA	4817	С	GLN A		42.048	91.633 -27.802	1.00 18.53	Α
Ų		MOTA	4818	0	GLN A		42.391	90.671 -27.116	1.00 17.85	Α
١,D		MOTA	4819	N	GLY A		42.732	92.043 -28.863	1.00 18.19	Α
ijī.		MOTA	4820	CA	GLY A		43.945	91.355 -29.257	1.00 18.07	Α
	25	MOTA	4821	С	GLY A		45.190	92.105 -28.840	1.00 18.33	A
	25	MOTA	4822	0	GLY A		45.206	93.335 -28.816	1.00 18.55	A
13		ATOM	4823	N	SER A		46.236	91.362 -28.498	1.00 18.22	A
		MOTA	4824	CA	SER A		47.497	91.969 -28.091	1.00 18.50	A
91		MOTA	4825	CB	SER A		48.366	90.941 -27.365	1.00 17.71	A
	20	ATOM	4826	OG	SER A		49.646	91.474 -27.077	1.00 17.75	A
j	30	ATOM	4827	C	SER A		48.247	92.494 -29.308	1.00 18.79	A
) <u></u>		ATOM	4828	0	SER A		48.194	91.904 -30.385 93.608 -29.134	1.00 18.12 1.00 20.66	A A
IV		ATOM	4829	N	THR A		48.951	94.193 -30.229	1.00 20.00	A
		ATOM	4830	CA	THR A		49.713 49.428	95.704 -30.370	1.00 22.22	A
	35	ATOM ATOM	4831 4832	CB OG1	THR A		49.420	96.385 -29.187	1.00 23.24	A
].	55	ATOM	4833	CG2	THR A		47.939	95.952 -30.571	1.00 23.40	A
		ATOM	4834	C	THR A		51.212	94.001 -30.007	1.00 22.80	A
		ATOM	4835	Ö	THR A		52.030	94.545 -30.749	1.00 23.76	A
		ATOM	4836	N	THR A		51.568	93.216 -28.992	1.00 22.98	A
	40	ATOM	4837	CA	THR A		52.974	92.972 -28.672	1.00 23.21	A
	20	ATOM	4838	СВ	THR A		53.417	93.818 -27.469	1.00 23.94	А
		ATOM	4839		THR A		52.563	93.541 -26.352	1.00 24.76	Α
		ATOM	4840		THR A		53.353	95.302 -27.803	1.00 25.13	А
		ATOM	4841	С	THR A		53.288	91.514 -28.349	1.00 22.57	Α
	45	ATOM	4842	0	THR A		54.453	91.130 -28.253	1.00 22.85	A
		ATOM	4843	N	LYS A		52.247	90.709 -28.176	1.00 21.12	Α
		ATOM	4844	CA	LYS A		52.404	89.297 -27.849	1.00 20.03	Α
		MOTA	4845	CB	LYS A		51.862	89.040 -26.439	1.00 22.00	Α
		ATOM	4846	CG	LYS A		51.894	87.593 -25.987	1.00 24.67	Α
	50	ATOM	4847	CD	LYS A		51.077	87.399 -24.711	1.00 25.80	Α
		MOTA	4848	CE	LYS A		51.569	88.291 -23.581	1.00 25.99	Α
		ATOM	4849	NZ	LYS A		50.774	88.097 -22.330	1.00 26.04	Α
		ATOM	4850	С	LYS A		51.629	88.463 -28.863	1.00 18.41	A
		MOTA	4851	0	LYS A		50.534	88.846 -29.270	1.00 17.64	A
	55	ATOM	4852	N	TYR A		52.194	87.328 -29.271	1.00 16.73	А

		****	4053		m11.D	_	C 1 C	F 2 F 2 2	06 450 20 0		1 00	15 50	70
		ATOM	4853	CA	TYR			51.533	86.452 -30.23			15.58	A
		ATOM	4854	CB	TYR .	A	616	52.100	86.679 -31.6	41	1.00	15.83	А
		ATOM	4855	CG	TYR .	Α	616	52.139	88.135 -32.02	28	1.00	18.36	Α
		ATOM	4856	CD1	TYR .	Α	616	53.209	88.945 -31.65	51	1.00	18.36	Α
	5	ATOM	4857	CE1	TYR .	Α	616	53.216	90.304 -31.93	37	1.00	20.30	Α
		ATOM	4858		TYR .			51.074	88.722 -32.70)9	1.00	18.83	А
		ATOM	4859	CE2	TYR			51.069	90.080 -33.00			20.65	A
		ATOM	4860	CZ	TYR			52.142	90.864 -32.63			20.53	A
		ATOM	4861	OH				52.141	92.210 -32.89			23.34	A
	10				TYR .							14.72	
	10	MOTA	4862	C	TYR .			51.707	84.992 -29.84				A
		MOTA	4863	0	TYR .			52.623	84.652 -29.10			13.98	A
		MOTA	4864	N	ARG .			50.821	84.134 -30.34			13.93	A
		MOTA	4865	CA	ARG .			50.896	82.705 -30.04			13.86	A
		MOTA	4866	CB	ARG .			49.503	82.116 -29.80	00	1.00	15.40	A
	15	MOTA	4867	CG	ARG .	Α	617	48.803	82.533 -28.52	27	1.00	16.68	А
		MOTA	4868	CD	ARG .	Α	617	47.417	81.885 -28.46	53	1.00	17.77	Α
		ATOM	4869	NE	ARG .	A.	617	47.486	80.424 -28.44	11	1.00	17.57	Α
		ATOM	4870	CZ	ARG .	Α	617	46.805	79.622 -29.25	8	1.00	17.88	А
		MOTA	4871	NH1	ARG .	A	617	45.993	80.130 -30.13	76	1.00	17.64	Α
	20	MOTA	4872		ARG .			46.941	78.307 -29.16	55		17.23	А
t LI		MOTA	4873	С	ARG			51.497	81.932 -31.23			13.44	А
h in		ATOM	4874	Ō	ARG			51.022	82.049 -32.33			14.13	A
		ATOM	4875	N	ILE			52.544	81.154 -30.95			11.96	A
1,5 E		ATOM	4876	CA	ILE			53.097	80.331 -32.01			11.92	A
	25	MOTA	4877	CB	ILE			54.629	80.488 -32.17			11.58	A
	20				ILE .			55.359	80.077 -30.91			12.31	A
Comp.		ATOM	4878	CG2									A
M		ATOM	4879	CG1	ILE .			55.083	79.644 -33.37			12.90	
5t		ATOM	4880	CD1	ILE			56.396	80.078 -33.97			13.57	A
	20	ATOM	4881	C	ILE /			52.721	78.900 -31.65			11.14	A
	30	MOTA	4882	0	ILE A			52.845	78.490 -30.49			11.79	Α
		MOTA	4883	N	ILE A			52.238	78.162 -32.64			11.17	А
ing.		ATOM	4884	CA	ILE A			51.767	76.791 -32.46			11.40	А
1.1		ATOM	4885	CB	ILE A			50.259	76.713 -32.77	19	1.00	12.11	A
1:52 1:52 1:53		ATOM	4886	CG2	ILE A	A	619	49.728	75.327 -32.45	55	1.00	14.03	А
1:3	35	ATOM	4887	CG1	ILE A	A	619	49.507	77.804 -32.01	.7	1.00	13.46	Α
5.77		ATOM	4888	CD1	ILE A	Α	619	48.191	78.193 -32.67	0	1.00	13.83	A
		ATOM	4889	С	ILE A	A	619	52.468	75.823 -33.40	9	1.00	11.42	A
		ATOM	4890	0	ILE A	A	619	52.636	76.113 -34.59	94	1.00	11.66	А
		MOTA	4891	N	PHE 2			52.864	74.665 -32.89	95	1.00	10.46	A
	40	ATOM	4892	CA	PHE A			53.509	73.672 -33.74		1.00	9.92	А
		ATOM	4893	СВ	PHE A			54.987	74.019 -33.96		1.00	9.89	A
		ATOM	4894	CG	PHE 2			55.842	73.914 -32.73		1.00	8.70	A
		ATOM	4895		PHE A			56.487	72.719 -32.41			10.02	A
		ATOM	4896		PHE A			56.025	75.017 -31.90		1.00	9.02	A
	45	MOTA	4897		PHE A			57.309	72.627 -31.28		1.00	9.45	A
	10	ATOM	4898		PHE A			56.843	74.934 -30.77			10.10	A
												10.10	
		ATOM	4899	CZ	PHE A			57.486	73.737 -30.47				A
		ATOM	4900	C	PHE A			53.362	72.290 -33.13			10.23	A
	EO	ATOM	4901	0	PHE A			53.096	72.152 -31.93			10.39	A
	50	ATOM	4902	N	LYS A			53.519	71.268 -33.96			10.49	A
		MOTA	4903	CA	LYS			53.382	69.900 -33.49			11.17	A
		ATOM	4904	CB	LYS A			52.896	69.007 -34.64			12.49	A
		ATOM	4905	CG	LYS A			52.656	67.559 -34.24			14.18	Α
		MOTA	4906	CD	LYS I			51.816	66.822 -35.28			16.44	Α
	55	ATOM	4907	CE	LYS A	Ą	621	52.483	66.793 -36.64	8	1.00	17.70	Α

		ATOM	4908	NZ	LYS	Α	621	51.667	66.023 -37.636	1.00 19.59	Α
		ATOM	4909	C	LYS	Α	621	54.685	69.362 -32.926	1.00 10.69	А
		ATOM	4910	0	LYS	Α	621	55.711	69.322 -33.605	1.00 11.83	Α
		MOTA	4911	N	ALA	Α	622	54.648	68.972 -31.656	1.00 10.33	Α
	5	ATOM	4912	CA	ALA	Α	622	55.825	68.413 -31.008	1.00 9.91	Α
		ATOM	4913	СВ	ALA			55.932	68.924 -29.568	1.00 9.70	Α
		ATOM	4914	С	ALA			55.684	66.896 -31.012	1.00 10.39	А
		ATOM	4915	0	ALA			54.596	66.371 -30.780	1.00 11.60	Α
		ATOM	4916	N	ARG			56.777	66.201 -31.308	1.00 10.44	Α
	10	ATOM	4917	CA	ARG			56.792	64.741 -31.313	1.00 11.01	Α
		ATOM	4918	СВ	ARG			57.229	64.207 -32.680	1.00 12.30	А
		ATOM	4919	CG	ARG			57.263	62.690 -32.746	1.00 14.39	А
		ATOM	4920	CD	ARG			57.233	62.180 -34.181	1.00 16.76	А
		ATOM	4921	NE	ARG			57.497	60.744 -34.244	1.00 18.23	Α
	15	ATOM	4922	CZ	ARG			58.706	60.204 -34.134	1.00 19.11	Α
	10	ATOM	4923		ARG			59.771	60.976 -33.964	1.00 20.24	Α
		ATOM	4924	NH2				58.851	58.889 -34.182	1.00 20.27	A
		ATOM	4925	C	ARG			57.795	64.364 -30.232	1.00 10.32	А
		ATOM	4926	0	ARG			58.981	64.682 -30.334	1.00 10.86	A
	20	ATOM	4927	N	VAL			57.306	63.687 -29.197	1.00 9.90	A
ı,I	_0	ATOM	4928	CA	VAL			58.121	63.333 -28.040	1.00 9.26	A
		ATOM	4929	CB	VAL			57.547	64.045 -26.794	1.00 8.57	A
		ATOM	4930		VAL			58.547	64.015 -25.651	1.00 8.67	A
161 - 1625		ATOM	4931	CG2				57.158	65.476 -27.160	1.00 9.69	A
	25	MOTA	4932	C	VAL			58.191	61.831 -27.770	1.00 9.00	A
(J)	20	ATOM	4933	0	VAL			57.189	61.130 -27.868	1.00 9.09	A
113		ATOM	4934	N	PRO			59.381	61.325 -27.401	1.00 9.44	A
134		ATOM	4935	CD	PRO			60.665	62.037 -27.290	1.00 10.05	A
51			4936	CA	PRO			59.555	59.895 -27.121	1.00 9.16	A
	30	ATOM ATOM	4937	CB	PRO			61.054	59.765 -26.851	1.00 10.20	A
	30	ATOM	4937	CG	PRO			61.654	60.942 -27.563	1.00 10.52	A
igi i		ATOM	4939	C	PRO			58.754	59.432 -25.911	1.00 10.32	A
14.					PRO			58.307	60.249 -25.100	1.00 8.82	A
		ATOM	4940 4941	O N	PRO			58.571	58.111 -25.769	1.00 0.02	A
	35	ATOM ATOM			PRO			59.055	57.027 -26.644	1.00 9.11	A
].	33		4942 4943	CD CA	PRO			57.824	57.575 -24.628	1.00 8.73	A
		ATOM	4943	CB	PRO			57.916	56.063 -24.830	1.00 8.19	A
		ATOM	4945	CG	PRO			58.096	55.913 -26.329	1.00 9.53	A
		ATOM ATOM	4946	C	PRO			58.566	58.008 -23.364	1.00 8.14	A
	40	ATOM	4947	0	PRO			59.786	57.847 -23.286	1.00 9.15	A
	40		4947	N	MSE			57.847	58.564 -22.390	1.00 7.51	A
		MOTA	4949	CA	MSE			58.460	59.002 -21.130	1.00 8.21	A
		ATOM ATOM			MSE			58.747	57.783 -20.250	1.00 10.53	A
			4950	CB				57.500	56.983 -19.914	1.00 10.53	A
	45	ATOM	4951	CG	MSE			57.871	55.262 -19.133	1.00 10.03	A
	40	MOTA	4952	SE	MSE MSE				55.837 -17.415	1.00 20.00	A
		ATOM	4953	CE				58.495	59.755 -21.414	1.00 13.13	A
		ATOM	4954	С	MSE			59.755	59.584 -20.712		
		ATOM	4955	0	MSE			60.759			A A
	50	ATOM	4956	N C7	GLY			59.718	60.602 -22.442		
	50	ATOM	4957	CA	GLY			60.908	61.329 -22.841	1.00 8.72	A
		ATOM	4958	C	GLY			60.819	62.826 -23.028	1.00 8.56	A
		ATOM	4959	0	GLY			59.847	63.470 -22.627	1.00 7.33	A
		ATOM	4960	N	LEU			61.853	63.366 -23.663	1.00 7.72	A
	~-	ATOM	4961	CA	LEU			61.972	64.797 -23.912	1.00 8.61	A
	55	ATOM	4962	CB	LEU	Α	629	63.027	65.391 -22.979	1.00 8.59	Α

		ATOM	4963	CG	LEU F	629	62.778	65.233 -21.480	1.00 9.21	Α
		ATOM	4964	CD1	LEU A	629	64.046	65.560 -20.708	1.00 9.45	Α
		ATOM	4965	CD2	LEU A	629	61.632	66.140 -21.064	1.00 9.65	Α
		ATOM	4966	С	LEU F	629	62.382	65.079 -25.347	1.00 8.71	Α
	5	ATOM	4967	0	LEU A	629	63.088	64.284 -25.966	1.00 9.28	Α
		ATOM	4968	N	ALA A	630	61.931	66.212 -25.871	1.00 8.74	Α
		ATOM	4969	CA	ALA A	630	62.276	66.625 -27.229	1.00 9.15	A
		ATOM	4970	CB	ALA A	630	61.157	66.286 -28.197	1.00 9.76	Α
		ATOM	4971	C ·	ALA A	630	62.514	68.126 -27.201	1.00 9.28	Α
	10	ATOM	4972	0	ALA A	630	61.702	68.884 -26.663	1.00 8.90	Α
		ATOM	4973	N	THR A	631	63.632	68.548 -27.784	1.00 9.16	Α
		ATOM	4974	CA	THR F	631	64.020	69.955 -27.810	1.00 9.71	А
		ATOM	4975	CB	THR P	631	65.524	70.096 -27.498	1.00 10.27	А
		MOTA	4976	OG1	THR A	631	65.823	69.394 -26.284	1.00 10.07	A
	15	ATOM	4977	CG2	THR A	631	65.914	71.559 -27.344	1.00 10.84	Α
		ATOM	4978	С	THR A	631	63.754	70.623 -29.155	1.00 9.81	Α
		MOTA	4979	0	THR A	631	64.015	70.038 -30.205	1.00 10.56	Α
		MOTA	4980	N	TYR A	632	63.226	71.844 -29.108	1.00 9.56	A
žioni:		ATOM	4981	CA	TYR A	632	62.958	72.628 -30.310	1.00 9.78	Α
tud . ==	20	ATOM	4982	СВ	TYR A	632	61.457	72.724 -30.597	1.00 10.51	Α
!		ATOM	4983	CG	TYR A	632	60.827	71.415 -31.011	1.00 10.25	А
		ATOM	4984		TYR A		60.461	70.466 -30.058	1.00 9.79	А
1,37		MOTA	4985	CE1	TYR A	632	59.891	69.256 -30.432	1.00 11.56	Α
		MOTA	4986		TYR A		60.608	71.116 -32.356	1.00 9.93	Α
	25	MOTA	4987	CE2	TYR A	632	60.042	69.906 -32.743	1.00 11.41	А
IJ		MOTA	4988	CZ	TYR A	632	59.686	68.981 -31.774	1.00 10.98	A
M		ATOM	4989	OH	TYR A		59.133	67.779 -32.152	1.00 12.83	A
1). 1)		MOTA	4990	С	TYR A		63.528	74.027 -30.123	1.00 9.80	Α
ing.		ATOM	4991	0	TYR A	632	63.821	74.449 -29.001	1.00 9.66	А
inasi. List	30	MOTA	4992	N	VAL A	633	63.680	74.749 -31.227	1.00 9.77	Α
		ATOM	4993	CA	VAL A	633	64.226	76.096 -31.188	1.00 10.76	А
IŲ.		ATOM	4994	CB	VAL A	633	65.618	76.152 -31.867	1.00 11.04	A
ļ _i a b		MOTA	4995		VAL A		66.193	77.557 -31.768	1.00 13.11	A
	2-	ATOM	4996		VAL A		66.556	75.144 -31.225	1.00 12.71	A
į.	35	ATOM	4997	С	VAL A		63.304	77.076 -31.906	1.00 10.49	A
•		MOTA	4998	0	VAL A		62.811	76.786 -32.995	1.00 10.92	Α
		ATOM	4999	N	LEU A		63.060	78.220 -31.277	1.00 11.11	A
		ATOM	5000	CA	LEU A		62.227	79.265 -31.866	1.00 12.07	А
	40	MOTA	5001	CB	LEU A		61.213	79.800 -30.853	1.00 12.58	A
	40	ATOM	5002	CG	LEU A		60.244	78.792 -30.237	1.00 15.79	Α
		ATOM	5003		LEU A		59.242	79.541 -29.371	1.00 15.32	A
		MOTA	5004		LEU A		59.527	78.022 -31.322	1.00 17.18	A
		ATOM	5005	С	LEU A		63.181	80.379 -32.269	1.00 12.31	А
	45	ATOM	5006	0	LEU A		63.947	80.872 -31.443	1.00 12.05	Α
	45	MOTA	5007	N	THR A		63.135	80.768 -33.540	1.00 12.28	A
		ATOM	5008	CA	THR A		64.018	81.804 -34.059	1.00 13.14	A
		ATOM	5009	CB	THR A		64.983	81.207 -35.099	1.00 12.77	A
		MOTA	5010		THR A		65.667	80.086 -34.522	1.00 13.31	A
	F 0	ATOM	5011		THR A		66.004	82.244 -35.542	1.00 12.18	A
	50	MOTA	5012	С	THR A		63.238	82.943 -34.706	1.00 13.84	A
		MOTA	5013	0	THR A		62.285	82.718 -35.449	1.00 13.21	A
		ATOM	5014	N	ILE A		63.655	84.171 -34.424	1.00 15.47	A
		ATOM	5015	CA	ILE A		62.982	85.334 -34.985	1.00 16.90	A
		MOTA	5016	CB	ILE A		63.064	86.544 -34.022	1.00 17.25	A
	55	MOTA	5017	CG2	ILE A	636	64.492	87.069 -33.958	1.00 17.16	А

		ATOM	5018	CG1	ILE	Α	636	62.120	87.653 -34.495	1.00 16.98	A
		ATOM	5019	CD1	ILE	Α	636	62.027	88.831 -33.538	1.00 17.62	Α
		ATOM	5020	С	ILE	Α	636	63.610	85.712 -36.321	1.00 18.42	Α
		ATOM	5021	0	ILE	Α	636	64.781	85.430 -36.570	1.00 17.70	Α
	5	MOTA	5022	N	SER	A	637	62.811	86.330 -37.184	1.00 20.09	Α
		ATOM	5023	CA	SER	Α	637	63.275	86.780 -38.492	1.00 22.79	Α
		MOTA	5024	CB	SER	A	637	62.850	85.797 -39.587	1.00 23.81	A
		ATOM	5025	OG	SER	Α	637	61.442	85.665 -39.645	1.00 26.10	Α
		ATOM	5026	С	SER	Α	637	62.651	88.149 -38.739	1.00 24.15	Α
	10	MOTA	5027	0	SER			61.724	88.545 -38.035	1.00 23.27	Α
		ATOM	5028	N	ASP	A	638	63.160	88.874 -39.730	1.00 26.58	Α
		MOTA	5029	CA	ASP			62.641	90.203 -40.034	1.00 28.99	A
		ATOM	5030	CB	ASP			63.643	90.978 -40.897	1.00 31.15	A
		MOTA	5031	CG	ASP			63.893	90.317 -42.240	1.00 33.16	A
	15	ATOM	5032		ASP			62.934	90.185 -43.030	1.00 34.91	A
		MOTA	5033		ASP			65.050	89.930 -42.507	1.00 34.82	A
		ATOM	5034	С	ASP			61.289	90.154 -40.737	1.00 29.32	A
		ATOM	5035	0	ASP			60.477	91.070 -40.599	1.00 30.07	A
1.00	20	MOTA	5036	N	SER			61.046	89.080 -41.482	1.00 28.95	A
1122 1122	20	ATOM	5037	CA	SER			59.793	88.930 -42.210	1.00 28.76	A
		ATOM	5038	CB	SER			60.020	89.203 -43.699	1.00 28.80	A
1.64F		ATOM	5039	OG	SER			60.995	88.324 -44.232	1.00 29.52	A
4,5 E		ATOM	5040	С	SER			59.192	87.542 -42.029	1.00 28.41	A
	25	ATOM	5041	0	SER			59.794	86.670 -41.403	1.00 27.60	A
	25	ATOM	5042	N	LYS			58.002	87.343 -42.586	1.00 27.73 1.00 27.72	A
		ATOM	5043	CA	LYS			57.315	86.063 -42.481		A A
ii.		ATOM	5044	CB	LYS			56.025	86.081 -43.305 87.094 -42.820	1.00 29.03 1.00 31.44	A
81		ATOM	5045	CG	LYS			55.001	86.941 -43.539	1.00 31.44	A
	30	ATOM	5046 5047	CD CE	LYS LYS			53.668 53.799	87.189 -45.032	1.00 32.05	A
ij	50	ATOM ATOM	5047	NZ	LYS			52.485	87.169 - 45.032	1.00 34.46	A
M.		ATOM	5049	C	LYS			58.186	84.897 -42.928	1.00 26.49	A
.		MOTA	5050	0	LYS			58.627	84.839 -44.076	1.00 26.60	A
		ATOM	5051	N	PRO			58.453	83.950 -42.014	1.00 25.24	A
14	35	ATOM	5052	CD	PRO			58.068	83.956 -40.592	1.00 25.03	A
a -		ATOM	5053	CA	PRO			59.275	82.780 -42.327	1.00 24.06	А
		ATOM	5054	СВ	PRO			59.570	82.191 -40.951	1.00 24.74	А
		ATOM	5055	CG	PRO			58.346	82.531 -40.181	1.00 25.06	Α
		ATOM	5056	С	PRO			58.544	81.804 -43.246	1.00 23.11	А
	40	MOTA	5057	0	PRO	A	641	57.314	81.732 -43.250	1.00 22.10	A
		ATOM	5058	N	GLU	A	642	59.316	81.052 -44.019	1.00 22.60	Α
		ATOM	5059	CA	GLU	Α	642	58.772	80.090 -44.969	1.00 22.59	A
		ATOM	5060	CB	GLU	Α	642	59.920	79.413 -45.725	1.00 24.75	А
		ATOM	5061	CG	GLU	A	642	59.482	78.292 -46.655	1.00 27.41	А
	45	MOTA	5062	CD	GLU	A	642	60.650	77.630 -47.364	1.00 29.34	А
		ATOM	5063	OE1	GLU	A	642	60.415	76.662 -48.118	1.00 30.70	Α
		MOTA	5064	OE2				61.801	78.077 -47.167	1.00 30.38	A
		ATOM	5065	С	GLU			57.863	79.011 -44.387	1.00 21.56	A
		ATOM	5066	0	GLU			56.864	78.641 -45.001	1.00 22.04	A
	50	ATOM	5067	N	HIS			58.202	78.511 -43.204	1.00 20.18	Α
		ATOM	5068	CA	HIS			57.427	77.434 -42.597	1.00 18.61	A
		MOTA	5069	CB	HIS			58.391	76.385 -42.044	1.00 19.22	A
		ATOM	5070	CG	HIS			59.281	75.789 -43.088	1.00 19.81	A
		ATOM	5071		HIS			60.558	76.071 -43.437	1.00 19.90	A
	55	ATOM	5072	ND1	HIS	A	643	58.851	74.816 -43.963	1.00 20.57	А

		MOTA	5073	CE1	HIS	Α	643	59.825	74.523 -44.806	1.00	20.30	A
		ATOM	5074	NE2	HIS	Α	643	60.871	75.272 -44.509	1.00	19.73	Α
		ATOM	5075	С	HIS	Α	643	56.421	77.828 -41.527	1.00	17.54	Α
		MOTA	5076	0	HIS	Α	643	55.958	76.978 -40.764	1.00	16.42	Α
	5	ATOM	5077	N	THR	Α	644	56.079	79.110 -41.474	1.00	15.71	А
		MOTA	5078	CA	THR	A	644	55.110	79.598 -40.503	1.00	15.08	А
		MOTA	5079	CB	THR	Α	644	55.752	80.606 -39.524	1.00	14.66	Α
		ATOM	5080	OG1				56.816	79.964 -38.808	1.00	14.87	А
		ATOM	5081	CG2	THR	Α	644	54.719	81.122 -38.524	1.00	14.03	A
	10	MOTA	5082	С	THR			53.957	80.279 -41.236	1.00	15.17	A
		ATOM	5083	0	THR	Α	644	54.177	81.138 -42.092		15.67	A
		ATOM	5084	N	SER	Α	645	52.733	79.874 -40.909		14.18	A
		MOTA	5085	CA	SER	Α	645	51.535	80.448 -41.514		13.57	Α
		ATOM	5086	CB	SER	А	645	50.586	79.347 -41.989	1.00	14.13	А
	15	ATOM	5087	OG	SER	Α	645	50.085	78.600 -40.892		14.02	А
		MOTA	5088	С	SER	Α	645	50.836	81.303 -40.467		13.45	А
		MOTA	5089	0	SER	Α	645	51.140	81.213 -39.276		13.19	А
		MOTA	5090	N	TYR			49.896	82.129 -40.910		13.22	A
3142	••	ATOM	5091	CA	TYR			49.167	83.006 -40.003		13.22	A
	20	ATOM	5092	CB	TYR			49.536	84.464 -40.279		14.27	А
		MOTA	5093	CG	TYR			51.011	84.707 -40.096		14.12	А
Ų		MOTA	5094		TYR			51.917	84.400 -41.110		14.67	A
		ATOM	5095		TYR			53.287	84.520 -40.910		15.68	А
	25	MOTA	5096		TYR			51.513	85.150 -38.875		14.12	А
W.	25	ATOM	5097		TYR			52.882	85.274 -38.664		14.90	A
Ų		ATOM	5098	CZ	TYR			53.762	84.954 -39.685		14.72	А
M		ATOM	5099	ОН	TYR			55.119	85.045 -39.472		16.28	А
		ATOM	5100	С	TYR			47.665	82.815 -40.107		13.24	A
er er	20	ATOM	5101	0	TYR			47.098	82.807 -41.198		14.84	A
Ü.	30	ATOM	5102	N	ALA			47.025	82.670 -38.954		12.63	A
		ATOM	5103	CA	ALA			45.590	82.463 -38.900		12.30	A
IJ.		ATOM	5104	CB	ALA			45.187	82.017 -37.497		12.86	A
<u>}</u> 12 3 ±.		ATOM	5105	С	ALA			44.795	83.697 -39.288		12.48	A
	25	ATOM	5106	0	ALA			45.230	84.832 -39.085		12.90	A
ļu.	35	ATOM	5107	N	SER			43.624	83.464 -39.862		12.72	A
		ATOM	5108	CA	SER			42.742	84.556 -40.223		12.98	A
		ATOM	5109	CB	SER			41.901	84.192 -41.448		14.58 17.12	A
		ATOM	5110	OG	SER			41.117	83.036 -41.214			A
	40	ATOM	5111	С	SER			41.851	84.716 -38.998 83.770 -38.222		12.22	A A
	40	ATOM	5112 5113	0	SER			41.676	85.906 -38.812		11.83	
		ATOM	5113	N	ASN			41.300	86.163 -37.672		11.16	A A
		ATOM		CA	ASN			40.434			11.10	A
		ATOM	5115	CB	ASN			41.183	86.971 -36.609			A
	45	ATOM ATOM	5116 5117	CG	ASN ASN			42.355 42.188	86.208 -36.017 85.394 -35.105		12.08 11.76	A
	40	ATOM	5117		ASN			43.547	86.456 -36.544		12.65	A
		ATOM	5119	C	ASN			39.200	86.917 -38.132		12.07	A
		ATOM	5120	0	ASN			39.300	87.899 -38.870		12.58	Ā
		ATOM	5121	N	LEU			38.041	86.445 -37.692		11.67	A
	50		5122								11.94	A
	50	ATOM ATOM	5122	CA CB	LEU LEU			36.763 35.995	87.046 -38.053 86.099 -38.976		11.82	A
		ATOM	5123	CG	LEU			34.550	86.449 -39.334		11.91	A
		ATOM	5124		LEU			34.509	87.731 -40.159		12.74	A
		ATOM	5126		LEU			33.941	85.294 -40.117		13.05	A
	55	ATOM	5127	C	LEU			35.941	87.314 -36.796		12.84	A
		AION	1121	C	LEU	u	0.50	JJ. 34 1	07.514 -50.790	1.00	12.04	Д

								2.0						
		ATOM	5128	0	LEU	Α	650	35.635	86.390	-36.040	1.00	12.29	А	
		ATOM	5129	N	LEU			35.609	88.579	-36.574	1.00	13.28	A	
		MOTA	5130	CA	LEU			34.828	88.972	-35.410	1.00	13.95	Α	
		ATOM	5131	CB	LEU	Α	651	35.427	90.233	-34.775	1.00	15.51	Α	
	5	ATOM	5132	CG	LEU	Α	651	34.996	90.608	-33.352	1.00	17.09	A	
		ATOM	5133	CD1	LEU	Α	651	33.573	91.118	-33.352	1.00	18.83	А	
		ATOM	5134	CD2	LEU	Α	651	35.144	89.403	-32.434	1.00	17.37	А	
		MOTA	5135	С	LEU	Α	651	33.396	89.227	-35.860	1.00	14.48	A	
		ATOM	5136	0	LEU	Α	651	33.128	90.156	-36.624	1.00	15.41	A	
	10	ATOM	5137	N	LEU			32.481	88.391	-35.383	1.00	14.89	A	
		ATOM	5138	CA	LEU			31.079	88.497	-35.747	1.00	15.05	А	
		ATOM	5139	СВ	LEU			30.513	87.104	-36.041	1.00	14.75	А	
		ATOM	5140	CG	LEU			31.240	86.327	-37.142	1.00	14.59	A	
		MOTA	5141	CD1	LEU			30.672	84.919	-37.249	1.00	14.90	A	
	15	ATOM	5142		LEU			31.101		-38.471	1.00	14.78	A	
		ATOM	5143	С	LEU			30.230	89.179	-34.684	1.00	16.72	A	
		ATOM	5144	0	LEU			30.096	88.687	-33.560	1.00	15.79	А	
		ATOM	5145	N	ARG			29.668	90.324	-35.050	1.00	18.41	A	
		MOTA	5146	CA	ARG			28.800	91.083	-34.164	1.00	21.34	A	
	20	MOTA	5147	СВ	ARG			29.502		-32.848	1.00	22.76	А	
		ATOM	5148	CG	ARG			30.545	92.524	-32.929		25.26	А	
		ATOM	5149	CD	ARG			30.599		-31.595	1.00	27.66	А	
		ATOM	5150	NE	ARG			31.884		-31.338	1.00	29.57	А	
		ATOM	5151	CZ	ARG			32.159		-30.235		30.35	A	
	25	ATOM	5152		ARG			31.235		-29.295		30.94	A	
		ATOM	5153		ARG			33.361		-30.064		31.04	А	
		ATOM	5154	С	ARG			28.365		-34.838		22.58	A	
		ATOM	5155	0	ARG			28.976		-35.811		22.35	А	
		ATOM	5156	N	LYS			27.300		-34.314		24.79	А	
	30	ATOM	5157	CA	LYS			26.787		-34.841	1.00	26.87	А	
		ATOM	5158	СВ	LYS			25.297		-34.518		28.87	А	
		ATOM	5159	CG	LYS			24.403		-35.251		31.28	А	
		ATOM	5160	CD	LYS			23.517		-36.275		33.37	А	
,		ATOM	5161	CE	LYS			24.341		-37.315		34.26	A	
	35	ATOM	5162	NZ	LYS			23.486		-38.259		35.77	A	
	••	MOTA	5163	С	LYS			27.567		-34.186		27.13	А	
		ATOM	5164	Ō	LYS			28.051	95.207	-33.063		27.36	A	
		ATOM	5165	N	ASN			27.696		-34.893		27.40	А	
		ATOM	5166	CA	ASN			28.411		-34.376		27.55	А	
	40	MOTA	5167		ASN			27.671		-33.165		29.06	A	
	10	ATOM	5168	CG	ASN			26.166		-33.353	1.00	30.72	А	
		ATOM	5169		ASN			25.651		-34.327	1.00	31.94	А	
		ATOM	5170		ASN			25.451		-32.419		31.37	А	
		ATOM	5171	С	ASN			29.843		-33.978		26.37	А	
	45	ATOM	5172	Ö	ASN			30.257		-32.841		26.45	A	
		ATOM	5173	N	PRO			30.621		-34.911		25.13	A	
		ATOM	5174	CD	PRO			30.269		-36.276		24.78	А	
		ATOM	5175	CA	PRO			32.003		-34.595		23.93	А	
		ATOM	5176	CB	PRO			32.340		-35.678		23.98	A	
	50	ATOM	5177	CG	PRO			31.621		-36.863		24.37	A	
	-0	ATOM	5178	C	PRO			32.939		-34.637		23.11	A	
		MOTA	5179	0	PRO			32.640		-35.267		22.26	A	
		ATOM	5180	N	THR			34.067		-33.948		22.32	A	
		ATOM	5181	CA	THR			35.079		-33.930		21.57	A	
	55	ATOM	5182	CB	THR			35.217		-32.534		21.87	A	
	<i>J</i> J	AION	2102	CD	THE	n	031	33.211	JJ.11J	26.334	1.00	21.0		

													_
		MOTA	5183		THR			35.326		-31.536		22.67	А
		MOTA	5184	CG2	THR			34.010		-32.237		21.99	A
		ATOM	5185	С	THR	Α	657	36.392	97.807	-34.329		21.08	A
		ATOM	5186	0	THR	Α	657	36.543	96.589	-34.210	1.00	20.93	A
	5	MOTA	5187	N	SER	Α	658	37.335	98.609	-34.806	1.00	20.46	Α
		ATOM	5188	CA	SER	Α	658	38.626	98.099	-35.249	1.00	20.63	A
		MOTA	5189	CB	SER	Α	658	39.533	99.255	-35.660	1.00	20.97	А
		ATOM	5190	OG	SER	Α	658	39.882	100.035	-34.531	1.00	21.67	Α
		ATOM	5191	С	SER			39.337		-34.197	1.00	20.59	Α
	10	ATOM	5192	0	SER			39.126		-32.997	1.00	20.25	A
		ATOM	5193	N	LEU			40.186		-34.670		20.47	A
		ATOM	5194	CA	LEU			40.954		-33.800		21.02	А
		ATOM	5195	CB	LEU			40.294		-33.719		21.51	A
		ATOM	5196	CG	LEU			38.979		-32.941		21.80	A
	15	ATOM	5197		LEU			38.354		-33.155		22.38	A
	10	ATOM	5198		LEU			39.243		-31.466		21.76	A
		ATOM	5199	C	LEU			42.372		-34.340		21.00	A
		ATOM	5200	0	LEU			42.695		-35.019		21.34	A
ر س ارخ								43.235		-34.061		21.33	A
	20	ATOM	5201	N	PRO					-33.295		21.66	A
1,I	20	ATOM	5202	CD	PRO			42.965		-34.526		21.08	A
		ATOM	5203	CA	PRO			44.625				21.58	A
()"1		MOTA	5204	CB	PRO			45.129		-34.179			
		MOTA	5205	CG	PRO			44.359		-32.941		22.16	A
ių.	25	MOTA	5206	С	PRO			45.405		-33.812		20.87	A
ij	25	MOTA	5207	0	PRO			45.139		-32.649		20.82	A
		ATOM	5208	N	LEU			46.365		-34.510		21.59	A
in in		ATOM	5209	CA	LEU			47.158		-33.931		22.22	A
E;		MOTA	5210	CB	LEU			46.761		-34.573		21.97	A
A. 4 C. A	20	MOTA	5211	CG	LEU			45.311		-34.360		22.01	A
3	30	MOTA	5212		LEU			45.039		-35.154		21.83	A
900) 1000		MOTA	5213	CD2	LEU			45.061		-32.878		21.98	A
		ATOM	5214	С	LEU			48.661		-34.079		23.14	А
		MOTA	5215	0	LEU			49.430		-34.137		22.28	А
		MOTA	5216	N	GLY			49.076		-34.143		24.28	A
E 1222	35	MOTA	5217	CA	GLY			50.490		-34.276		25.42	A
		MOTA	5218	С	GLY			51.141		-35.517		26.28	А
		MOTA	5219	0	GLY			50.702		-36.639		26.88	A
		MOTA	5220	N	GLN			52.189		-35.313		26.82	A
		MOTA	5221	CA	GLN			52.925		-36.416		27.25	A
	40	MOTA	5222	CB	GLN	Α	663	54.290		-35.926		29.76	A
		MOTA	5223	CG	GLN			55.126		-35.235		32.87	A
		MOTA	5224	CD	GLN	Α	663	56.472	93.350	-34.796	1.00	34.37	A
		MOTA	5225	OE1	GLN	Α	663	57.304	92.975	-35.624	1.00	34.97	A
		ATOM	5226	NE2	GLN	Α	663	56.692	93.302	-33.486	1.00	35.06	A
	45	MOTA	5227	С	GLN	Α	663	52.211	92.147	-37.097	1.00	25.74	A
		ATOM	5228	0	GLN	Α	663	52.647	91.685	-38.151	1.00	25.61	A
		ATOM	5229	N	TYR			51.122	91.669	-36.502	1.00	24.78	А
		MOTA	5230	CA	TYR			50.390		-37.077	1.00	23.54	A
		ATOM	5231	СВ	TYR			49.099		-36.296		21.17	A
	50	ATOM	5232	CG	TYR			48.511		-36.523		18.46	А
		ATOM	5233		TYR			49.099		-35.959		17.21	A
		ATOM	5234		TYR			48.558		-36.167		16.14	A
		ATOM	5235		TYR			47.369		-37.304		16.89	A
		ATOM	5236		TYR			46.824		-37.520		16.07	A
	55	ATOM	5237	CZ	TYR			47.421		-36.949		15.48	A
	55	A I ON	١٤٦١	C 2	111	п	004	77.741	00.501	50.545	1.00	10.40	**

						1/0				
	ATOM	5238	ОН	TYR	A 664	46.871	85.138	-37.157	1.00 14.24	А
	ATOM	5239	С	TYR	A 664	50.077	90.788	-38.556	1.00 23.88	Α
	ATOM	5240	0	TYR	A 664	49.453	91.787	-38.917	1.00 23.82	Α
	ATOM	5241	N	PRO	A 665	50.511	89.865	-39.430	1.00 24.84	Α
5	MOTA	5242	CD		A 665	51.277	88.674	-39.021	1.00 24.79	Α
	ATOM	5243	CA		A 665	50.341	89.881	-40.887	1.00 25.24	Α
	ATOM	5244	СВ		A 665	50.859	88.507		1.00 25.87	Α
	ATOM	5245	CG		A 665	51.930	88.253		1.00 25.62	A
	ATOM	5246	C		A 665	48.947		-41.450	1.00 25.71	Α
10	MOTA	5247	0		A 665	48.771		-42.249	1.00 26.69	А
10	ATOM	5248	N		A 666	47.960		-41.048	1.00 25.11	A
	ATOM	5249	CA		A 666	46.609		-41.575	1.00 24.71	A
	ATOM	5250	CB		A 666	45.952		-41.804	1.00 26.60	A
			CG			44.712		-42.688	1.00 20.00	A
15	ATOM	5251			A 666	44.712		-43.159	1.00 30.79	A
13	MOTA	5252	CD		A 666			-43.13 <i>9</i>	1.00 30.75	A
	ATOM	5253			A 666	45.049			1.00 32.40	A
	ATOM	5254			A 666	43.026		-42.997 -40.728	1.00 31.43	A
	ATOM	5255	C		A 666	45.689				
20	ATOM	5256	0		A 666	45.671		-39.501	1.00 22.63	A
20	ATOM	5257	N		A 667	44.916		-41.406	1.00 21.36	A
	ATOM	5258	CA		A 667	43.984		-40.741	1.00 19.98	A
	MOTA	5259	CB		A 667	43.616		-41.674	1.00 22.14	A
	ATOM	5260	CG		A 667	44.833		-42.205	1.00 24.02	A
05	MOTA	5261			A 667	45.630		-41.387	1.00 25.50	A
25	ATOM	5262			A 667	44.993		-43.443	1.00 26.55	A
	MOTA	5263	С		A 667	42.713		-40.332	1.00 17.30	A
	MOTA	5264	0		A 667	42.220		-41.060	1.00 16.65	A
	ATOM	5265	N		A 668	42.189		-39.163	1.00 16.72	A
	MOTA	5266	CA		A 668	40.967		-38.668	1.00 15.69	A
30	ATOM	5267	CB		A 668	40.652		-37.226	1.00 15.77	A
	ATOM	5268	CG1		A 668	39.311		-36.772	1.00 15.98	Α
	MOTA	5269	CG2	VAL .	A 668	41.761		-36.286	1.00 15.95	А
	ATOM	5270	С	VAL .	A 668	39.803		-39.576	1.00 15.77	А
	MOTA	5271	0		A 668	39.730		-40.068	1.00 16.20	А
35	ATOM	5272	N		A 669	38.903		-39.800	1.00 15.11	А
	ATOM	5273	CA	LYS .	A 669	37.729	90.772	-40.640	1.00 16.26	A
	MOTA	5274	CB	LYS .	A 669	37.589	89.626	-41.643	1.00 18.36	A
	ATOM	5275	CG	LYS .	A 669	38.834	89.429	-42.500	1.00 22.33	А
	ATOM	5276	CD	LYS .	A 669	38.865	88.069	-43.178	1.00 25.02	А
40	MOTA	5277	CE	LYS .	A 669	40.204	87.847	-43.872	1.00 26.17	Α
	ATOM	5278	NZ	LYS .	A 669	40.319	86.492	-44.474	1.00 27.07	Α
	ATOM	5279	С	LYS	A 669	36.501	90.841	-39.738	1.00 15.79	A
	ATOM	5280	0	LYS .	A 669	36.484	90.250	-38.656	1.00 15.00	А
	MOTA	5281	N	PHE	A 670	35.477	91.565	-40.177	1.00 15.18	А
45	MOTA	5282	CA	PHE.	A 670	34.263	91.707	-39.386	1.00 15.33	А
	ATOM	5283	СВ		A 670	34.122	93.150	-38.881	1.00 15.50	A
	ATOM	5284	CG		A 670	35.310	93.637	-38.100	1.00 15.57	A
	ATOM	5285			A 670	36.455		-38.755	1.00 16.30	А
	MOTA	5286			A 670	35.301	93.612		1.00 16.26	A
50	ATOM	5287			A 670	37.577	94.493		1.00 15.93	A
50	ATOM	5288			A 670	36.417	94.020		1.00 16.44	A
	ATOM	5289	CZ		A 670	37.558		-36.645	1.00 16.10	A
	MOTA	5290	C		A 670	33.019		-40.168	1.00 15.07	A
	ATOM	5291	0		A 670	33.052		-41.392	1.00 15.07	A
55		5291			A 670	31.921		-39.450	1.00 15.25	A
99	ATOM	2626	N	GTI.	M 0/1	31.761	21.IUI	22.420	1.00 10.47	1-1

							170	O			
	ATOM	5293	CA	GLY	Α	671	30.675	90.729	-40.097	1.00 15.1	0 A
	ATOM	5294	С			671	29.551		-39.097	1.00 15.2	
	ATOM	5295	Ō			671	29.796		-37.897	1.00 14.1	
	ATOM	5296	N			672	28.311		-39.575	1.00 15.6	
5	ATOM	5297	CA			672	27.181		-38.676	1.00 16.9	
•	ATOM	5298	CB			672	25.855		-39.358	1.00 18.4	
	ATOM	5299	CG			672	25.741		-39.695	1.00 20.1	
	ATOM	5300		ASP			26.285		-38.942	1.00 20.1	
	ATOM	5301		ASP			25.085		-40.707	1.00 22.0	
10	ATOM	5301	C			672	27.137		-38.271	1.00 22.0	
10	ATOM	5302	0			672	27.137		-39.002	1.00 17.1	
										1.00 10.4	
	ATOM	5304	N			673	26.565		-37.094		
	ATOM	5305	CD			673	25.975		-36.095	1.00 17.6	
15	ATOM	5306	CA			673	26.483		-36.647	1.00 17.7	
15	ATOM	5307	CB			673	25.575		-35.428	1.00 17.7	
	ATOM	5308	CG			673	25.920		-34.858	1.00 18.2	
	ATOM	5309	C	PRO			25.883		-37.750	1.00 17.6	
	ATOM	5310	0			673	24.986		-38.479	1.00 17.6	
20	ATOM	5311	N	ARG			26.393		-37.881	1.00 17.4	
20	MOTA	5312	CA	ARG			25.901		-38.887	1.00 17.6	
	MOTA	5313	CB	ARG			26.367		-40.289	1.00 18.4	
	MOTA	5314	CG	ARG			27.866		-40.540	1.00 19.7	
	MOTA	5315	CD	ARG	Α	674	28.155		-42.038	1.00 21.7	
	MOTA	5316	NE	ARG			29.545	84.220	-42.371	1.00 23.1	
25	MOTA	5317	CZ	ARG	Α	674	30.535	85.107	-42.374	1.00 23.9	9 A
	ATOM	5318	NH1	ARG	Α	674	30.301	86.375	-42.059	1.00 24.7	
	ATOM	5319	NH2	ARG	Α	674	31.763	84.727	-42.703	1.00 24.8	1 A
	MOTA	5320	С	ARG	Α	674	26.422	82.792	-38.575	1.00 17.5	4 A
	ATOM	5321	0	ARG	Α	674	27.386	82.639	-37.825	1.00 17.0	
30	MOTA	5322	N	GLU	Α	675	25.780	81.779	-39.144	1.00 18.3	1 A
	ATOM	5323	CA	GLU	Α	675	26.218	80.413	-38.919	1.00 19.0	5 A
	MOTA	5324	CB	GLU	Α	675	25.157	79.420	-39.396	1.00 21.1	7 A
	MOTA	5325	CG	GLU	Α	675	23.805	79.621	-38.744	1.00 23.2	4 A
	MOTA	5326	CD	GLU	Α	675	22.959	78.368	-38.757	1.00 25.1	9 A
35	ATOM	5327	OE1	GLU	Α	675	22.873	77.713	-39.816	1.00 26.1	1 A
	ATOM	5328	OE2	GLU	Α	675	22.373	78.042	-37.704	1.00 26.6	5 A
	ATOM	5329	С	GLU	Α	675	27.519	80.198	-39.679	1.00 19.0	7 A
	ATOM	5330	0	GLU	Α	675	27.723	80.767	-40.754	1.00 19.2	0 A
	MOTA	5331	N	ILE	Α	676	28.403	79.384	-39.115	1.00 18.7	2 A
40	ATOM	5332	CA	ILE	A	676	29.686	79.113	-39.745	1.00 19.4	5 A
	ATOM	5333	CB	ILE	Α	676	30.816	79.902	-39.066	1.00 21.2	0 A
	MOTA	5334	CG2	ILE	Α	676	30.544	81.398	-39.162	1.00 23.13	2 A
	ATOM	5335		ILE			30.934	79.469	-37.605	1.00 22.0	4 A
	ATOM	5336		ILE			32.131		-36.886	1.00 23.6	
45	MOTA	5337	С	ILE			30.042	77.637	-39.665	1.00 18.83	
	ATOM	5338	0	ILE			29.551	76.914	-38.796	1.00 18.4	
	ATOM	5339	N	SER			30.905		-40.577	1.00 18.4	
	MOTA	5340	CA	SER			31.370		-40.630	1.00 18.8	
	ATOM	5341	СВ	SER			30.769		-41.842	1.00 20.5	
50	ATOM	5342	OG	SER			31.231		-41.925	1.00 24.0	
20	MOTA	5343	C	SER			32.889		-40.743	1.00 18.5	
	ATOM	5344	0	SER			33.451		-41.474	1.00 18.5	
	ATOM	5344	N	LEU			33.554		-40.019	1.00 17.2	
									-40.019	1.00 17.2	
55	ATOM	5346	CA	LEU			35.009				
55	ATOM	5347	CB	LEU	А	p/8	35.587	15.588	-38.802	1.00 18.7	4 A

		ATOM	5348	CG	LEU A		35.405 35.871	77.100 -38.669 77.548 -37.292	1.00 19.72 1.00 20.83	A A
		ATOM	5349		LEU A			77.808 -39.759	1.00 20.83	A
		ATOM	5350		LEU A		36.192	73.465 -40.075	1.00 21.03	A
	=	ATOM	5351	С	LEU A		35.522		1.00 17.34	A
	5	ATOM	5352	0	LEU A		34.862	72.544 -39.591	1.00 10.09	
		ATOM	5353	N	ARG A		36.708	73.295 -40.650 71.990 -40.733		A A
		MOTA	5354	CA	ARG A		37.344		1.00 18.44 1.00 20.29	A
		ATOM	5355	CB	ARG A		36.912	71.248 -42.001	1.00 20.29	A
	10	ATOM	5356	CG	ARG A		37.461	69.829 -42.063	1.00 25.74	A
	10	ATOM	5357	CD	ARG A		37.211	69.164 -43.403		
		ATOM	5358	NE	ARG A		37.627	67.765 -43.377	1.00 28.32 1.00 29.41	A n
		MOTA	5359	CZ	ARG A		37.683	66.979 -44.446		A
		ATOM	5360		ARG A		37.352	67.455 -45.639	1.00 30.45 1.00 30.28	A A
	10	ATOM	5361		ARG A		38.068	65.716 -44.322		
	15	ATOM	5362	C	ARG A		38.860	72.146 -40.741	1.00 18.22	A A
		ATOM	5363	0	ARG A		39.412	72.892 -41.548 71.447 -39.831	1.00 17.86	A
		ATOM	5364	N	VAL A		39.528		1.00 17.40 1.00 17.92	A
1 (RM)		ATOM	5365	CA	VAL A		40.980	71.489 -39.755 71.762 -38.312	1.00 17.32	A
	20	MOTA	5366	CB	VAL A		41.460	71.762 -36.312	1.00 17.20	A
الينارة	20	ATOM	5367		VAL A		42.967		1.00 17.12	A
i, 🚅		ATOM	5368		VAL A		41.041	73.163 -37.888	1.00 13.30	A
		ATOM	5369	C	VAL A		41.514	70.141 -40.222	1.00 19.22	A
1,000		ATOM	5370	0	VAL A		41.033	69.095 -39.788	1.00 19.39	A
Cin Cin	25	ATOM	5371	N	GLY A		42.500	70.173 -41.115 68.943 -41.634	1.00 20.72	A
	25	ATOM	5372	CA	GLY A		43.071		1.00 22.99	A
(F		ATOM	5373	С	GLY A		42.000	68.071 -42.262 68.571 -42.937	1.00 24.42	A
		ATOM	5374	0	GLY A		41.101	66.763 -42.046	1.00 24.25	A
ži Ži		ATOM	5375	N	ASN A		42.098	65.828 -42.580	1.00 28.26	A
	30	ATOM	5376	CA	ASN A		41.116	64.595 -43.165	1.00 20.20	A
	30	ATOM	5377	CB	ASN A		41.809	64.879 -44.493	1.00 30.23	A
ĬŲ.		ATOM	5378	CG	ASN A		42.484 43.151	64.013 -45.058	1.00 32.03	A
ju l		ATOM	5379 5380		ASN A		42.308	66.093 -45.003	1.00 34.30	A
		MOTA		ND2			40.174	65.411 -41.461	1.00 33.43	A
å.±.	35	ATOM ATOM	5381 5382	0	ASN A		39.468	64.408 -41.564	1.00 27.37	A
	55		5383	N	GLY A		40.172	66.198 -40.389	1.00 26.89	A
		ATOM ATOM	5384	CA	GLY A		39.320	65.909 -39.254	1.00 24.95	A
		ATOM	5385	CA	GLY A		37.859	66.178 -39.547	1.00 23.15	A
		ATOM	5386	0	GLY A		37.475	66.319 -40.708	1.00 23.65	A
	40	ATOM	5387	N	PRO A		37.475	66.260 -38.508	1.00 21.20	A
	40	ATOM	5388	CD	PRO A		37.343	66.081 -37.081	1.00 21.32	A
		ATOM	5389	CA	PRO A		35.584	66.515 -38.685	1.00 19.81	A
		ATOM	5390	CB	PRO A		35.007	66.164 -37.319	1.00 20.16	A
		ATOM	5391	CG	PRO A		36.099	66.605 -36.391	1.00 20.87	A
	45	ATOM	5392	C	PRO A		35.272	67.951 -39.088	1.00 18.75	A
	40	ATOM	5393	0	PRO A		36.086	68.853 -38.905	1.00 18.07	A
		MOTA	5394	N	THR A		34.087	68.147 -39.651	1.00 17.24	A
		ATOM	5395	CA	THR A		33.634	69.470 -40.051	1.00 16.41	A
		ATOM	5396	CB	THR A		33.020	69.452 -41.462	1.00 16.39	A
	50	ATOM	5397	OG1			34.041	69.153 -42.420	1.00 17.54	A
	50	ATOM	5398		THR A		32.400	70.804 -41.791	1.00 16.76	A
		ATOM	5399	C	THR A		32.573	69.863 -39.034	1.00 15.52	A
		ATOM	5400	0	THR A		31.573	69.166 -38.872	1.00 16.19	A
		ATOM	5400	N	LEU A		32.801	70.971 -38.338	1.00 14.31	A
	55°	ATOM	5401	CA	LEU A		31.865	71.429 -37.321	1.00 14.02	A
	55	A I OF	3402	CU	TOO A	500	J1.00J		1.00 102	• •

		ATOM	5403	CB	LEU A		32.612		1.00 14.5	
		MOTA	5404	CG	LEU A		33.527	70.713 -	1.00 16.3	
		ATOM	5405		LEU A		34.004	71.202 -	1.00 15.6	
		ATOM	5406	CD2	LEU A	. 686	32.796	69.394 -	1.00 16.3	
	5	ATOM	5407	С	LEU A		31.073	72.646 -	1.00 13.5	
		ATOM	5408	0	LEU A	. 686	31.625	73.570 -	1.00 13.8	
		MOTA	5409	N	ALA A	. 687	29.778	72.638 -	1.00 12.6	
		MOTA	5410	CA	ALA A		28.898	73.746 -	1.00 12.8	
		ATOM	5411	CB	ALA A		27.683	73.236 -	1.00 12.6	
	10	ATOM	5412	С	ALA A		28.454	74.430 -	1.00 12.4	
		ATOM	5413	0	ALA A		28.133	73.763 -	1.00 12.4	
		ATOM	5414	N	PHE A		28.436	75.761 -	1.00 12.1	
		ATOM	5415	CA	PHE A		28.042	76.535 -	1.00 11.5	
	4-	MOTA	5416	CB	PHE A		29.215	77.384 -	1.00 11.9	
	15	MOTA	5417	CG	PHE A		30.453	76.596 -	1.00 11.6	
		MOTA	5418		PHE A		31.252	76.122 -	1.00 11.5	
		MOTA	5419		PHE A		30.810	76.310 -	1.00 11.5	
		MOTA	5420		PHE A		32.394	75.369 -	1.00 11.6	
	00	ATOM	5421		PHE A		31.950	75.558 -	1.00 11.4	
Ę	20	MOTA	5422	CZ	PHE A		32.743	75.087 -	1.00 11.4	
		MOTA	5423	С	PHE A		26.876	77.460 -	1.00 12.0	
m		ATOM	5424	0	PHE A		26.697	77.900 -	1.00 13.3	
		MOTA	5425	N	SER A		26.091	77.756 -	1.00 12.4	
il.	25	ATOM	5426	CA	SER A		24.955	78.662 -	1.00 13.4	
3	25	MOTA	5427	CB	SER A		24.022	78.518 -	1.00 13.7	
142 164		ATOM	5428	OG	SER A		24.633	79.032 -	1.00 14.5	
M		ATOM	5429	С	SER A		25.518	80.081 -	1.00 14.4	
I:		ATOM	5430	0	SER A		26.713	80.282 -	1.00 14.7 1.00 15.3	
	30	ATOM	5431	N	GLU A		24.665	81.066 -: 82.447 -:	1.00 15.3	
Ü	30	ATOM	5432	CA	GLU A		25.133		1.00 18.1	
IJ		ATOM	5433	CB CG	GLU A		24.073 22.813	83.539 -	1.00 18.4	
]. <u>4</u> .		ATOM ATOM	5434 5435	CD	GLU A		21.855	84.530 -	1.00 21.3	
		ATOM	5436		GLU A		21.335	84.233 -	1.00 25.2	
j _a .	35	MOTA	5437		GLU A		21.632	85.608 -	1.00 25.5	
2.	55	ATOM	5438	C	GLU A		25.493	82.926 -	1.00 16.1	
		ATOM	5439	0	GLU A		25.997	84.035 -	1.00 15.3	
		ATOM	5440	N	GLN A		25.232	82.084 -	1.00 15.9	
		ATOM	5441	CA	GLN A		25.554	82.413 -	1.00 16.3	
	40	ATOM	5442	СВ	GLN A		24.451	81.913 -	1.00 18.3	
		ATOM	5443	CG	GLN A		23.129	82.632 -	1.00 21.6	
		ATOM	5444	CD	GLN A		21.940		1.00 24.2	
		ATOM	5445		GLN A		21.755	81.289 -	1.00 25.4	
		ATOM	5446		GLN A		21.125	81.495 -	1.00 25.3	
	45	ATOM	5447	С	GLN A		26.892	81.783 -	1.00 14.9	
		ATOM	5448	0	GLN A		27.304	81.830 -	1.00 16.1	
		ATOM	5449	N	GLY A		27.557	81.187 -	1.00 13.7	
		ATOM	5450	CA	GLY A		28.856	80.576 -	1.00 13.4	
		ATOM	5451	С	GLY A		28.843	79.231 -	1.00 12.8	4 A
	50	ATOM	5452	0	GLY A		29.870	78.788 -	1.00 12.8	7 A
		ATOM	5453	N	LEU A		27.690	78.572 -	1.00 12.5	
		ATOM	5454	CA	LEU A		27.563	77.270 -	1.00 12.9	
		ATOM	5455	СВ	LEU A		26.332	77.257 -	1.00 14.4	
		ATOM	5456	CG	LEU A		26.373		1.00 15.5	
	55	ATOM	5457		LEU A		24.963		1.00 16.9	

						 	an 404 a=		_
		ATOM	5458		LEU A	27.294	77.606 -27.143	1.00 16.14	A
		ATOM	5459	С	LEU A	27.460	76.141 -31.347	1.00 12.58	A
		ATOM	5460	0	LEU A	26.797	76.269 -32.377	1.00 13.69	A
	_	ATOM	5461	N	LEU A	28.121	75.030 -31.045	1.00 12.10	A
	5	ATOM	5462	CA	LEU A	28.107	73.868 -31.921	1.00 12.19	A
		ATOM	5463	CB	LEU A	28.833	72.702 -31.246	1.00 11.89	A
		MOTA	5464	CG	LEU A	29.022	71.436 -32.082	1.00 12.29	A
		ATOM	5465		LEU A	29.975	71.722 -33.223	1.00 12.88	A
	10	ATOM	5466		LEU A	29.583	70.320 -31.207	1.00 12.25	A
	10	ATOM	5467	С	LEU A	26.681	73.445 -32.261	1.00 12.42	A
		ATOM	5468	0	LEU A	25.807	73.430 -31.397	1.00 12.36	A
		MOTA	5469	N	LYS A	26.460	73.101 -33.527	1.00 13.99	A
		MOTA	5470	CA	LYS A	25.146	72.662 -33.989	1.00 15.49	A
	4 -	MOTA	5471	CB	LYS A	24.586	73.660 -35.011	1.00 18.76	A
	15	ATOM	5472	CG	LYS A	23.323	73.196 -35.720	1.00 23.70	A
		MOTA	5473	CD	LYS A	22.622	74.345 -36.438	1.00 25.84	A
		ATOM	5474	CE	LYS A	22.035	75.337 -35.442	1.00 27.62	A
g seems		ATOM	5475	NZ	LYS A	21.248	76.413 -36.105	1.00 29.16 1.00 14.81	A
	20	MOTA	5476	С	LYS A	25.195	71.266 -34.601 70.509 -34.502	1.00 14.81	A A
ų_i	20	ATOM	5477	0	LYS A	24.228		1.00 13.17	A A
ų.		ATOM	5478	N	SER A	26.316	70.923 -35.228		
		ATOM	5479	CA	SER A	26.461	69.612 -35.854 69.574 -37.189	1.00 14.25 1.00 15.32	A A
		ATOM	5480	CB	SER A	25.703		1.00 15.32	A
	25	ATOM	5481	OG	SER A	26.328	70.388 -38.168 69.232 -36.092	1.00 16.47	A
Line Comments	23	MOTA	5482	С	SER A	27.917	70.093 -36.124	1.00 14.55	A
		MOTA	5483	0	SER A	28.802 28.151	67.932 -36.256	1.00 13.92	A
717 . 71		ATOM	5484	N	ILE A	29.483	67.393 -36.508	1.00 13.30	A
71 11 12 12 12 12 12 12 12 12 12 12 12 12 1		ATOM	5485	CA CB	ILE A	30.032	66.600 -35.293	1.00 14.22	A
್ಯೆಸಚ್ , ಜಿಡ್ಡ	30	ATOM	5486 5487	CG2		31.390	66.011 -35.637	1.00 13.70	A
10	30	ATOM ATOM	5488	CG2		30.148	67.504 -34.066	1.00 13.05	A
, Cin		ATOM	5489		ILE A	30.618	66.766 -32.813	1.00 12.78	A
1:4.		MOTA	5490	CDI	ILE A	29.424	66.422 -37.683	1.00 15.65	A
100		ATOM	5491	0	ILE A	28.589	65.518 -37.700	1.00 16.00	A
į.	35	ATOM	5492	N	GLN A	30.306	66.614 -38.658	1.00 15.69	A
	00	ATOM	5493	CA	GLN A	30.370	65.729 -39.816	1.00 17.15	A
		ATOM	5494	CB	GLN A	30.268	66.519 -41.123	1.00 18.03	A
		ATOM	5495	CG	GLN A	29.969	65.629 -42.324	1.00 19.29	А
		ATOM	5496	CD	GLN A	30.226	66.307 -43.654	1.00 20.84	А
	40	ATOM	5497	OE1	GLN A	29.680	65.904 -44.683	1.00 22.50	A
		ATOM	5498		GLN A	31.073	67.327 -43.647	1.00 20.89	Α
		ATOM	5499	С	GLN A	31.726	65.043 -39.743	1.00 17.98	A
		ATOM	5500	0	GLN A	32.758	65.675 -39.957	1.00 17.04	A
		ATOM	5501	N	LEU A	31.725	63.748 -39.440	1.00 19.25	A
	45	ATOM	5502	CA	LEU A	32.970	63.000 -39.306	1.00 21.55	A
		ATOM	5503	СВ	LEU A	32.673	61.570 -38.841	1.00 21.34	A
		MOTA	5504	CG	LEU A	32.002	61.458 -37.469	1.00 21.19	Α
		ATOM	5505	CD1	LEU A	31.836	59.991 -37.098	1.00 20.78	Α
		ATOM	5506		LEU A	32.844	62.180 -36.426	1.00 20.96	Α
	50	ATOM	5507	С	LEU A	33.829	62.966 -40.564	1.00 23.75	Α
		ATOM	5508	0	LEU A	35.041	63.176 -40.498	1.00 23.54	Α
		ATOM	5509	N	THR A	33.205	62.700 -41.706	1.00 26.14	А
		ATOM	5510	CA	THR A	33.930	62.644 -42.969	1.00 29.36	Α
		MOTA	5511	CB	THR A	34.070	61.192 -43.472	1.00 29.32	Α
	55	ATOM	5512		THR A	32.770	60.641 -43.717	1.00 29.71	А

	ATOM	5513	CG2	THR	A	700	34.790	60.339	-42.439		29.80	А
	ATOM	5514	С	THR	Α	700	33.214		-44.034		31.01	А
	ATOM	5515	0	THR	Α	700	32.058		-43.863		31.06	А
_	MOTA	5516	N			701	33.908		-45.135		33.87	Α
5	ATOM	5517	CA	GLN	Α	701	33.334		-46.223		36.58	A
	ATOM	5518	CB	GLN	Α	701	34.371		-47.331		38.30	A
	MOTA	5519	CG	GLN	Α	701	35.669	65.340	-46.849		40.75	А
	ATOM	5520	CD			701	36.609		-47.985		42.07	A
	ATOM	5521	OE1	GLN	Α	701	36.275		-48.852		42.75	A
10	ATOM	5522		GLN			37.793		-47.985		42.60	A
	MOTA	5523	С			701	32.096		-46.793		37.22	A
	ATOM	5524	0			701	31.206		-47.333		37.80	A
	ATOM	5525	N			702	32.045		-46.659		37.89	A
4-	MOTA	5526	CA			702	30.924		-47.164		38.35	A
15	MOTA	5527	CB			702	31.383		-47.477		39.66	A
	MOTA	5528	CG			702	32.727		-48.174		40.51	А
	MOTA	5529		ASP			32.854		-49.267		40.84	A
	MOTA	5530		ASP			33.659		-47.624		41.15	A
•	MOTA	5531	С			702	29.784		-46.152		37.81	A
20	ATOM	5532	0			702	28.623		-46.492		38.20	A
	MOTA	5533	N			703	30.130		-44.907		36.53	A
	ATOM	5534	CA			703	29.155		-43.829		34.85	A
	ATOM	5535	СВ			703	29.877		-42.498		35.05	A
0.5	MOTA	5536	OG			703	30.729		-42.191		34.27	A
25	ATOM	5537	С			703	28.242		-43.715		33.65	A
	MOTA	5538	0			703	28.536		-44.256		33.57	A
	ATOM	5539	N			704	27.109		-43.008		32.60	A
	ATOM	5540	CD			704	26.549		-42.547		32.80	A
20	ATOM	5541	CA			704	26.141		-42.816		31.41	A
30	ATOM	5542	CB			704	24.836		-42.613		32.30	A
	ATOM	5543	CG			704	25.286		-41.823		32.47	A
	MOTA	5544	С			704	26.468		-41.632		30.08	A
	ATOM	5545	0			704	27.347		-40.824		29.54	A
25	ATOM	5546	N	HIS			25.750		-41.543		28.15	A
35	ATOM	5547	CA	HIS			25.939		-40.461		26.08	A
	ATOM	5548	CB			705	25.513		-40.917		27.16	A
	ATOM	5549	CG			705	26.327		-42.051		28.61	A
	ATOM	5550		HIS			26.004		-43.343 -41.921		29.18	A
40	ATOM	5551		HIS			27.659	•			28.94	A
4 0	ATOM	5552		HIS					-43.084			A
	ATOM	5553		HIS			27.138		-43.964		29.86	A
	ATOM	5554	С	HIS			25.107		-39.259		24.00	A
	ATOM	5555	0	HIS			23.914		-39.178		23.98	A
45	MOTA	5556	N			706	25.747		-38.322		21.51	A
43	ATOM	5557	CA	VAL			25.063		-37.132		18.99	A
	ATOM	5558	CB	VAL			25.909		-36.407		18.10 17.35	A
	ATOM	5559		VAL			25.145		-35.214			A
	ATOM	5560		VAL			26.273		-37.370 -36.141		18.04	A
50	ATOM	5561	С	VAL			24.745				18.65	A
50	ATOM	5562	0	VAL			25.638		-35.695		17.89	A
	ATOM	5563	N	PRO			23.462		-35.787 -36.380		17.80	A
	ATOM	5564 5565	CD	PRO			22.283		-36.380		18.52	A A
	MOTA	5565	CA	PRO			23.053		-34.838		17.47	A
55	MOTA	5566	CB	PRO			21.532		-34.802		18.04	A
55	ATOM	5567	CG	PKO	А	707	21.209	00.424	-36.175	1.00	18.64	A

		ATOM	5568	С	PRO	Α	707	23.678	66.892	-33.455	1.00	16.45	Α
		ATOM	5569	0	PRO			23.489	65.860	-32.809	1.00	16.71	А
		ATOM	5570	N	VAL			24.441	67.891	-33.025	1.00	15.43	Α
		ATOM	5571	CA	VAL			25.093	67.896	-31.719	1.00	14.68	Α
	5	ATOM	5572	СВ	VAL			26.551		-31.802	1.00	14.15	А
	•	ATOM	5573		VAL			27.195		-30.417		13.61	Α
		ATOM	5574		VAL			26.579		-32.361		14.23	А
		ATOM	5575	C	VAL			25.070		-31.323		14.72	А
		ATOM	5576	Ö	VAL			25.855		-31.831		15.38	А
	10	ATOM	5577	N	HIS			24.153		-30.431		14.54	А
	10	ATOM	5578	CA	HIS			23.990		-30.011		15.48	A
		ATOM	5579	CB	HIS			22.525		-30.163		17.30	A
		ATOM	5580	CG	HIS			22.015		-31.568		20.53	A
		ATOM	5581		HIS			21.881		-32.429		21.41	A
	15	ATOM	5582		HIS			21.546		-32.233		22.57	A
	10	ATOM	5583		HIS			21.144		-33.442		22.45	A
		ATOM	5584		HIS			21.337		-33.587		21.98	A
		ATOM	5585	C	HIS			24.421		-28.586		14.93	A
21 10\$.					HIS			24.001		-27.647		14.53	A
lad m	20	MOTA	5586	O N	PHE			25.258		-28.435		13.24	A
J	20	ATOM	5587	N	PHE			25.707		-27.123		13.07	A
		MOTA	5588 5589	CA				27.122		-27.123		13.58	A
M		ATOM		CB	PHE					-27.132		13.26	A
		ATOM	5590	CG	PHE			28.199				14.61	
19.1	25	ATOM	5591		PHE			29.349		-27.484			A
191	25	ATOM	5592		PHE			28.075		-25.516		13.82	A
iji		ATOM	5593		PHE			30.364		-27.043		14.19	A
		ATOM	5594		PHE			29.084		-25.067		13.68	A
51		ATOM	5595	CZ	PHE			30.228		-25.832		14.33	A
Į.	20	ATOM	5596	C	PHE			24.727		-26.676		13.63	A
	30	ATOM	5597	0	PHE			24.308		-27.473		13.76	A
ij		ATOM	5598	N	LYS			24.359		-25.404		13.07	A
ļ.i.		ATOM	5599	CA	LYS			23.427		-24.847		14.24	A
		ATOM	5600	CB	LYS			21.991		-24.992		16.69	A
	25	ATOM	5601	CG	LYS			20.926		-24.410		18.89	A
	35	MOTA	5602	CD	LYS			19.534		-24.516		20.95	A
		MOTA	5603	CE	LYS			19.101		-25.964		21.44	A
		ATOM	5604	ΝZ	LYS			17.747		-26.067		22.65	A
		MOTA	5605	С	LYS			23.751		-23.378		14.02	A
	40	ATOM	5606	0	LYS			24.144		-22.678		14.38	A
	4 0	MOTA	5607	N	PHE			23.609		-22.917		12.94	A
		ATOM	5608	CA	PHE			23.861		-21.521		12.60	A
		MOTA	5609	CB	PHE			24.859		-21.384		13.19	A
		ATOM	5610	CG	PHE			26.279		-21.691		12.74	A
		MOTA	5611		PHE			26.761		-22.996		12.90	A
	45	ATOM	5612		PHE			27.125		-20.675		12.44	A
		MOTA	5613		PHE			28.066		-23.288		13.16	A
		ATOM	5614	CE2	PHE			28.428		-20.953		12.13	A
		MOTA	5615	CZ	PHE	A	712	28.903		-22.262		12.53	A
		ATOM	5616	С	PHE	Α	712	22.549		-20.838		12.78	А
	50	MOTA	5617	0	PHE	Α	712	21.752		-21.365	1.00	12.67	Α
		ATOM	5618	N	LEU	A	713	22.324	76.401	-19.672	1.00	12.69	А
		MOTA	5619	CA	LEU	Α	713	21.105	76.643	-18.916		12.88	А
		ATOM	5620	CB	LEU	Α	713	20.166	75.435	-19.013	1.00	13.49	А
		MOTA	5621	CG	LEU			19.790	74.962	-20.421	1.00	13.72	А
	55	ATOM	5622	CD1	LEU	A	713	20.763	73.884	-20.883	1.00	14.92	А

	ATOM	5623	CD2	LEU	Α	713	18.365	74.407	-20.414	1.00 14.75	А
	ATOM	5624	С	LEU	Α	713	21.447	76.915	-17.461	1.00 13.49	А
	MOTA	5625	0	LEU	Α	713	22.605	76.806	-17.054	1.00 13.14	Α
	MOTA	5626	N	LYS	Α	714	20.441	77.274	-16.674	1.00 13.55	Α
5	MOTA	5627	CA	LYS	Α	714	20.676	77.554	-15.270	1.00 14.74	Α
	MOTA	5628	CB	LYS	Α	714	20.715	79.066	-15.034	1.00 17.89	Α
	ATOM	5629	CG	LYS	Α	714	19.463	79.798	-15.483	1.00 20.78	А
	ATOM	5630	CD	LYS	Α	714	19.519	81.279	-15.113	1.00 23.52	A
	ATOM	5631	CE	LYS	Α	714	20.706	81.976	-15.763	1.00 25.00	А
10	MOTA	5632	NZ	LYS	Α	714	20.789	83.418	-15.394	1.00 26.77	Α
	MOTA	5633	С	LYS	Α	714	19.637	76.933	-14.354	1.00 14.83	A
	ATOM	5634	0	LYS	Α	714	18.448	76.890	-14.674	1.00 15.62	A
	ATOM	5635	N	TYR	Α	715	20.108	76.429	-13.220	1.00 13.72	Α
	MOTA	5636	CA	TYR	Α	715	19.234	75.853	-12.212	1.00 12.72	A
15	MOTA	5637	CB	TYR	Α	715	19.814	74.563	-11.624	1.00 12.76	Α
	MOTA	5638	CG	TYR	Α	715	19.709	73.345	-12.507	1.00 11.86	A
	MOTA	5639	CD1	TYR	Α	715	20.797	72.912	-13.266	1.00 11.71	Α
	ATOM	5640	CE1	TYR	Α	715	20.717	71.766	-14.053	1.00 10.85	А
	ATOM	5641	CD2	TYR	Α	715	18.530	72.601	-12.561	1.00 11.46	Α
20	MOTA	5642		TYR			18.438	71.453	-13.345	1.00 12.03	A
	ATOM	5643	CZ	TYR	Α	715	19.535	71.039	-14.088	1.00 11.99	A
	MOTA	5644	ОН	TYR	Α	715	19.452	69.898	-14.853	1.00 12.00	A
	MOTA	5645	С	TYR	Α	715	19.149	76.884	-11.097	1.00 13.26	A
	MOTA	5646	0	TYR	Α	715	20.106	77.619	-10.848	1.00 13.06	A
25	MOTA	5647	N	GLY	Α	716	18.004	76.934	-10.429	1.00 13.36	А
	ATOM	5648	CA	GLY	Α	716	17.832	77.871	-9.338	1.00 13.61	A
	MOTA	5649	С	GLY	Α	716	17.746	77.146	-8.010	1.00 15.27	A
	ATOM	5650	0	GLY	Α	716	18.096	75.965	-7.906	1.00 15.61	А
	ATOM	5651	N	VAL	Α	717	17.270	77.858	-6.997	1.00 15.67	A
30	MOTA	5652	CA	VAL	Α	717	17.123	77.316	-5.655	1.00 16.91	A
	ATOM	5653	CB	VAL	Α	717	18.060	78.055	-4.672	1.00 16.38	A
	MOTA	5654	CG1	VAL	Α	717	17.825	77.577	-3.252	1.00 17.56	A
	MOTA	5655	CG2	VAL	Α	717	19.512	77.823	-5.076	1.00 16.85	A
	ATOM	5656	С	VAL	Α	717	15.670	77.474	-5.217	1.00 17.83	A
35	MOTA	5657	0	VAL	Α	717	14.981	78.398	-5.650	1.00 18.06	A
	ATOM	5658	N	ARG	Α	718	15.204	76.569	-4.364	1.00 18.88	A
	MOTA	5659	CA	ARG	Α	718	13.826	76.607	-3.889	1.00 20.57	A
	ATOM	5660	CB	ARG			13.470	75.274	-3.232	1.00 19.83	A
	MOTA	5661	CG	ARG			13.580	74.112	-4.198	1.00 19.14	A
40	MOTA	5662	CD	ARG	Α	718	13.483		-3.511	1.00 18.32	А
	ATOM	5663	NE	ARG	Α	718	13.768	71.695	-4.460	1.00 17.75	A
	ATOM	5664	CZ	ARG			13.765		-4.161	1.00 17.53	A
	MOTA	5665		ARG			13.485	69.999	-2.928	1.00 17.28	A
	MOTA	5666	NH2	ARG	Α	718	14.048	69.508	-5.101	1.00 17.74	A
45	ATOM	5667	С	ARG	Α	718	13.562	77.753	-2.924	1.00 22.46	А
	MOTA	5668	0	ARG			14.398	78.078	-2.085	1.00 22.85	A
	MOTA	5669	N	SER	Α	719	12.391	78.365	-3.059	1.00 24.66	А
	MOTA	5670	CA	SER	Α	719	12.000	79.475	-2.201	1.00 27.21	А
	MOTA	5671	CB	SER	Α	719	11.082	80.431	-2.966	1.00 27.33	A
50	ATOM	5672	OG	SER	Α	719	9.936	79.751	-3.447	1.00 28.77	Α
	MOTA	5673	С			719	11.280	78.942	-0.969	1.00 28.70	А
	MOTA	5674	0			719	10.976	79.690	-0.039	1.00 29.02	А
	ATOM	5675	N	HIS	Α	720	11.009	77.641	-0.977	1.00 30.58	A
	MOTA	5676	CA			720	10.328	76.981	0.128	1.00 32.12	A
55	ATOM	5677	CB	HIS	Α	720	8.873	76.683	-0.246	1.00 34.89	А

		ATOM	5678	CG	HIS	A 7	720	8.133	77.865	-0.791	1.00	37.77	Α
		ATOM	5679		HIS	A 7	720	7.534	78.066	-1.989	1.00	38.94	A
		ATOM	5680		HIS			7.945	79.024	-0.069	1.00	39.13	Α
		ATOM	5681		HIS			7.262	79.888	-0.799	1.00	39.81	Α
	5	MOTA	5682		HIS			7.001	79.331	-1.968		39.76	А
	Ū	ATOM	5683	С	HIS			11.042	75.670	0.443		31.40	А
		ATOM	5684	0	HIS			11.506	74.977	-0.462		31.75	А
		ATOM	5685	N	GLY			11.133	75.337	1.726		30.13	A
			5686	CA	GLY			11.782	74.100	2.119		28.34	A
	10	MOTA						13.299	74.148	2.131		26.81	A
	10	MOTA	5687	С	GLY				75.210	2.278		26.70	A
		MOTA	5688	0	GLY			13.900					
		ATOM	5689	N	ASP			13.912	72.980	1.964		24.89	A
		ATOM	5690	CA	ASP			15.365	72.837	1.970		22.79	A
	4	ATOM	5691	CB	ASP			15.726	71.351	1.955		21.90	A
	15	MOTA	5692	CG	ASP			15.174	70.607	3.158		22.17	A
		ATOM	5693		ASP			15.057	69.367	3.086		21.82	А
		MOTA	5694	OD2	ASP	A 7	722	14.865	71.261	4.179		21.77	A
		ATOM	5695	С	ASP	A 7	722	16.045	73.544	0.801	1.00	21.36	A
ra.		ATOM	5696	0	ASP	A 7	722	15.605	73.440	-0.343		20.27	А
=	20	ATOM	5697	N	ARG	A 7	723	17.127	74.257	1.102		20.52	A
다. 독.		ATOM	5698	CA	ARG	A 7	723	17.880	74.988	0.089	1.00	20.03	A
		ATOM	5699	СВ	ARG	A 7	723	18.196	76.408	0.572	1.00	22.97	Α
		ATOM	5700	CG	ARG			17.039	77.396	0.483	1.00	27.93	A
₽		ATOM	5701	CD	ARG			15.997	77.176	1.566	1.00	31.86	A
	25	ATOM	5702	NE	ARG			14.917	78.157	1.468	1.00	35.16	A
Ĩ		ATOM	5703	CZ	ARG			13.956	78.314	2.374		36.54	А
7		ATOM	5704	NH1	ARG			13.931	77.555	3.462		37.74	А
		ATOM	5705		ARG			13.019	79.236	2.194		37.45	А
m,		ATOM	5706	C	ARG			19.188	74.300	-0.286		18.02	A
Fift sinh	30	ATOM	5707	0	ARG			19.798	73.602	0.528		16.96	A
4	30		5708	N	SER			19.612	74.508	-1.528		16.11	A
# ·		ATOM			SER			20.857	73.940	-2.017		14.57	A
ż		MOTA	5709	CA					74.174	-3.521		14.09	A
i i		ATOM	5710	CB	SER			20.993		-4.227		13.67	A
1.	25	ATOM	5711	OG	SER			19.919	73.589				A
	35	ATOM	5712	С	SER			22.023	74.610	-1.302		13.51	
		MOTA	5713	0	SER			21.949	75.786	-0.932		14.47	A
		MOTA	5714	N	GLY			23.101	73.855	-1.120		12.12	A
		ATOM	5715	CA	GLY			24.286	74.378	-0.466		10.74	A
	40	ATOM	5716	С	GLY			25.497	73.661	-1.030	1.00	9.87	A
	40	ATOM	5717	0	GLY			25.408	73.054	-2.093		10.42	A
		ATOM	5718	N	ALA			26.623	73.718	-0.325		10.23	A
		ATOM	5719	CA	ALA			27.844	73.068	-0.785	1.00	9.51	A
		ATOM	5720	CB	ALA	A 7	726	28.981	73.331	0.200		10.07	А
		MOTA	5721	С	ALA	A 7	726	27.696	71.564	-1.004	1.00	10.03	A
	45	ATOM	5722	0	ALA	A 7	726	28.359	70.995	-1.876	1.00	9.75	Α
		ATOM	5723	N	TYR	A 7	727	26.839	70.918	-0.216	1.00	9.25	А
		ATOM	5724	CA	TYR			26.648	69.475	-0.343	1.00	9.04	Α
		ATOM	5725	СВ	TYR			26.434	68.811	1.025	1.00	9.17	А
		MOTA	5726	CG	TYR			27.431	69.165	2.099	1.00	9.57	A
	50	ATOM	5727	CD1				27.306	70.345	2.833		10.21	A
		ATOM	5728		TYR			28.201	70.656	3.851		10.74	Α
		ATOM	5729		TYR			28.486	68.305	2.407		10.18	A
		ATOM	5730	CE2	TYR			29.386	68.609	3.422		10.51	A
		ATOM	5731	CZ	TYR			29.237	69.783	4.142		10.60	A
	55								70.075	5.170		11.18	A
	<i>JJ</i>	ATOM	5732	ОН	TYR	H	121	30.101	70.075	3.110	1.00	11.10	L1

		ATOM	5733	С	TYR A	727	25.456	69.084	-1.200	1.00	9.43	Α
		ATOM	5734	0	TYR A	727	25.570	68.247	-2.096	1.00	9.80	Α
		ATOM	5735	N	LEU A	728	24.314	69.695	-0.907	1.00	9.86	Α
		ATOM	5736	CA	LEU A	728	23.060	69.371	-1.576	1.00	10.29	Α
	5	MOTA	5737	СВ	LEU A	728	21.906	69.519	-0.581	1.00	10.54	Α
		ATOM	5738	CG	LEU A		22.078	68.918	0.817	1.00	9.48	А
		MOTA	5739		LEU A		20.799	69.151	1.618	1.00	11.57	Α
		ATOM	5740		LEU A		22.398	67.434	0.725	1.00		А
		ATOM	5741	C	LEU A		22.687	70.135	-2.836	1.00		A
	10	ATOM	5742	Ō	LEU A		22.895	71.343	-2.938	1.00		Α
	20	ATOM	5743	N	PHE A		22.115	69.399	-3.786	1.00		A
		ATOM	5744	CA	PHE A		21.625	69.956	-5.040	1.00		A
		ATOM	5745	CB	PHE A		22.157	69.154	-6.233	1.00		A
		ATOM	5746	CG	PHE A		21.677	69.653	-7.576	1.00		A
	15	ATOM	5747		PHE A		21.609	68.783	-8.659	1.00		A
	10	ATOM	5748		PHE A		21.322	70.990	-7.766	1.00		A
		ATOM	5749		PHE A		21.194	69.228	-9.910	1.00		A
		ATOM	5750	CE2	PHE A		20.906	71.447	-9.020	1.00		A
\$:00E		MOTA	5751	CZ	PHE A		20.843		-10.092	1.00		A
	20	ATOM	5752	C	PHE A		20.109	69.792	-4.940	1.00		A
البيارة	20	ATOM	5753	0	PHE A		19.589	68.682	-5.040	1.00		A
			5754		LEU A		19.408	70.900	-4.725	1.00		A
iji		ATOM		N	LEU A		17.955	70.886	-4.592	1.00		A
		ATOM	5755 5756	CA			17.564	71.222	-3.151	1.00		A
100 A	25	MOTA	5756 5757	CB CG	LEU A		17.304	70.185	-2.104	1.00		A
	23	ATOM			LEU A			70.183	-0.712	1.00		A
15		ATOM	5758		LEU A		17.919	68.961	-2.208	1.00		A
		ATOM	5759		LEU A		17.095		-5.552	1.00		A
31 4:855		ATOM	5760	С	LEU A		17.371	71.910	-5.139	1.00		A
	30	ATOM	5761 5762	O N	LEU A PRO A		16.881 17.414	72.961 71.607	-6.857	1.00		A
	50	ATOM	5762	CD	PRO A		17.414	70.324	-7.455	1.00		A
		ATOM	5764	CA			16.893	70.324	-7.433	1.00		A
ļ. .		ATOM			PRO A			72.313	-9.177	1.00		A
		ATOM	5765	CB	PRO A		17.232	70.346	-8.782	1.00		A
1.4	35	ATOM	5766	CG	PRO A		17.111	72.819	-7.769	1.00		A
-	55	MOTA	5767	С	PRO A		15.409 14.627	72.015	-7.257	1.00		A
		ATOM	5768	0			15.033	73.998	-8.249	1.00		A
		ATOM	5769	N	ASN A		13.640			1.00		A
		ATOM	5770	CA				74.412	-8.242	1.00		
	40	ATOM	5771	CB	ASN A		13.531	75.915	-7.954			A
	40	ATOM	5772	CG	ASN A		14.202	76.766	-9.013	1.00		A
		ATOM	5773		ASN A		15.289	76.446	-9.485	1.00		A
		ATOM	5774		ASN A		13.559	77.871	-9.380	1.00		A
		ATOM	5775	С	ASN A		13.084	74.075	-9.620	1.00		A
	4 =	ATOM	5776	0	ASN A		12.561		-10.330	1.00		A
	45	ATOM	5777	N	GLY A		13.222	72.806	-9.993	1.00		A
		ATOM	5778	CA	GLY A		12.737		-11.281	1.00		A
		MOTA	5779	С	GLY A		13.820		-12.340	1.00		A
		ATOM	5780	0	GLY A		14.979		-12.084	1.00		A
	- 0	ATOM	5781	N	PRO A		13.475		-13.546	1.00		A
	50	ATOM	5782	CD	PRO A		12.159		-13.935	1.00		A
		ATOM	5783	CA	PRO A		14.433		-14.646	1.00		A
		ATOM	5784	CB	PRO A		13.565		-15.801	1.00		А
		ATOM	5785	CG	PRO A		12.510		-15.106	1.00		А
		MOTA	5786	С	PRO A		15.091		-14.953	1.00		A
	55	ATOM	5787	0	PRO A	734	14.519	74.042	-14.691	1.00	14.97	А

			_							
		ATOM	5788	N	ALA A	735	16.288	72.926 -15.525	1.00 15.31	A
		ATOM	5789	CA	ALA A		17.041	74.128 -15.856	1.00 15.45	Α
		ATOM	5790	CB	ALA A	735	18.440	73.745 -16.324	1.00 15.38	Α
		MOTA	5791	С	ALA A	735	16.355	74.991 -16.910	1.00 16.40	Α
	5	MOTA	5792	0	ALA A	735	15.641	74.488 -17.777	1.00 16.52	Α
		ATOM	5793	N	SER A	736	16.584	76.298 -16.816	1.00 17.32	Α
		MOTA	5794	CA	SER A	736	16.019	77.265 -17.747	1.00 18.50	A
		ATOM	5795	СВ	SER A	73.6	15.387	78.427 -16.978	1.00 19.12	A
		ATOM	5796	OG	SER A		14.401	77.959 -16.074	1.00 22.89	A
	10	ATOM	5797	С	SER A		17.158	77.779 -18.622	1.00 19.11	А
		ATOM	5798	Ō	SER A		18.259	78.019 -18.134	1.00 18.19	А
		ATOM	5799	N	PRO A		16.907	77.955 -19.928	1.00 19.88	A
		ATOM	5800	CD	PRO A		15.659	77.671 -20.656	1.00 20.64	А
		ATOM	5801	CA	PRO A		17.943	78.443 -20.845	1.00 20.87	Α
	15	ATOM	5802	СВ	PRO A		17.215	78.502 -22.188	1.00 21.48	A
	10	ATOM	5803	CG	PRO A		16.162	77.441 -22.058	1.00 21.45	A
		ATOM	5804	C	PRO A		18.504	79.803 -20.441	1.00 21.50	A
		ATOM	5805	0	PRO A		17.764	80.685 -20.004	1.00 21.33	A
21 22		ATOM	5806	N	VAL A		19.816	79.966 -20.577	1.00 22.39	A
	20	ATOM	5807	CA	VAL A		20.456	81.234 -20.254	1.00 23.03	A
1,5	20	ATOM	5808	CB	VAL A		21.993	81.082 -20.119	1.00 22.73	A
Ų		ATOM	5809		VAL A		22.645	82.456 -19.993	1.00 22.73	A
171		ATOM	5810		VAL A		22.332	80.229 -18.903	1.00 22.43	A
			5811	C	VAL A		20.162	82.191 ~21.407	1.00 24.47	A
141	25	ATOM ATOM	5812	0	VAL A		20.162	81.834 -22.570	1.00 24.47	A
	23						19.692	83.392 -21.088	1.00 24.12	A
M		MOTA	5813	N	GLU A			84.380 -22.121	1.00 25.02	A
		MOTA	5814	CA	GLU A		19.398	85.546 -21.531	1.00 28.81	A
E) .51 00		ATOM	5815	CB	GLU A		18.604	85.155 -21.066	1.00 28.81	A
	30	ATOM	5816	CG	GLU A		17.210		1.00 32.07	A
ı,Çİ	30	ATOM	5817	CD	GLU A		16.327	84.675 -22.205	1.00 35.84	A
		ATOM	5818		GLU A		15.194	84.226 -21.932		
1.1		ATOM	5819		GLU A		16.763	84.749 -23.374	1.00 34.81	A
		MOTA	5820	С	GLU A		20.731	84.866 -22.671	1.00 26.25	A
	35	ATOM	5821	0	GLU A		21.498	85.525 -21.971	1.00 25.93	Α.
#	33	ATOM	5822	N	LEU A		20.996	84.537 -23.931	1.00 26.09	A
		ATOM	5823	CA	LEU A		22.257	84.889 -24.574	1.00 25.99	A
		ATOM	5824	CB	LEU A		22.631	83.803 -25.583	1.00 26.19	A
		ATOM	5825	CG	LEU A		22.563	82.362 -25.073	1.00 25.97	A
	40	ATOM	5826		LEU A		22.900	81.411 -26.208	1.00 25.89	A
	40	MOTA	5827		LEU A			82.179 -23.905		A
		ATOM	5828	С	LEU A		22.304	86.240 -25.273	1.00 26.32	A
		ATOM	5829	0	LEU A		23.384	86.795 -25.463	1.00 25.85	A
		ATOM	5830	N	GLY A		21.146	86.767 -25.656	1.00 26.45	A
	4=	MOTA	5831	CA	GLY A		21.127	88.040 -26.353	1.00 26.72	A
	45	MOTA	5832	С	GLY A		21.822	87.872 -27.692	1.00 26.42	A
		ATOM	5833	0	GLY A		21.597	86.883 -28.387	1.00 27.17	A
		MOTA	5834	N	GLN A		22.666	88.831 -28.060	1.00 26.36	A
		MOTA	5835	CA	GLN A		23.407	88.766 -29.318	1.00 25.57	A
		ATOM	5836	CB	GLN A		23.036	89.953 -30.214	1.00 29.15	Α
	50	MOTA	5837	CG	GLN A		21.557	89.999 -30.588	1.00 33.16	Α
		MOTA	5838	CD	GLN A		21.200	91.197 -31.449	1.00 35.56	A
		MOTA	5839		GLN A		21.723	91.366 -32.551	1.00 37.11	A
		ATOM	5840	NE2	GLN A		20.299	92.036 -30.948	1.00 36.79	А
		MOTA	5841	С	GLN A		24.895	88.800 -28.977	1.00 23.07	Α
	55	ATOM	5842	0	GLN A	742	25.555	89.829 -29.113	1.00 22.79	А

		ATOM	5843	N	PRO I	4 743	25.444	87.660	-28.530	1.00	20.48	А
		MOTA	5844	CD	PRO A	4 743	24.783	86.343	-28.449	1.00	19.61	А
		MOTA	5845	CA	PRO A	A 743	26.857	87.558	-28.157	1.00	18.31	Α
		MOTA	5846	CB	PRO A	A 743	26.946	86.164	-27.544	1.00	18.28	Α
	5	ATOM	5847	CG	PRO A	A 743	25.961	85.390	-28.358	1.00	18.15	Α
		ATOM	5848	С	PRO A	A 743	27.871	87.760	-29.277	1.00	16.88	А
		ATOM	5849	0		A 743		87.516	-30.449	1.00	16.70	А
		ATOM	5850	N	VAL A			88.218	-28.893	1.00	14.74	А
		ATOM	5851	CA	VAL A		30.139		-29.840	1.00	13.49	Α
	10	ATOM	5852	СВ	VAL A		31.149		-29.296	1.00	12.90	А
		ATOM	5853		VAL A		32.284		-30.287		12.99	А
		ATOM	5854		VAL A				-29.030	1.00	13.89	А
		ATOM	5855	C	VAL A		30.842		-30.070		12.96	А
		ATOM	5856	0	VAL A				-29.117		12.48	A
	15	ATOM	5857	N	VAL A				-31.338		11.61	А
	10	ATOM	5858	CA	VAL A				-31.717		11.18	А
		ATOM	5859	СВ	VAL A		30.755		-32.615		10.82	A
		ATOM	5860		VAL A				-32.981		11.01	A
4170 7 7		MOTA	5861		VAL A				-31.904		10.80	A
1,000	20	ATOM	5862	C	VAL A				-32.463		11.19	A
4	20	ATOM	5863	0	VAL A				-33.403		11.51	A
j.		ATOM	5864	N	LEU A				-32.041		10.48	A
		ATOM	5865	CA	LEU A				-32.662		10.17	A
S		ATOM	5866	CB	LEU A				-31.611		11.05	A
IJ	25	MOTA	5867	CG	LEU A				-32.087		11.54	A
, man	23		5868		LEU A				-33.153		13.05	A
Ţ		ATOM			LEU A				-30.900		13.86	A
		ATOM	5869						-33.347		10.30	A
ii Jorga		ATOM	5870	C	LEU A				-32.718		10.42	A
D D	30	ATOM	5871	0	LEU A				-34.639		10.42	A
Ü	30	MOTA	5872	N	VAL						10.40	A
Ŋ		ATOM	5873	CA	VAL				-35.412 -36.658		10.40	A
[.d.		ATOM	5874	CB	VAL						10.83	A
		ATOM	5875		VAL A				-37.385		10.25	A
fal.	25	ATOM	5876		VAL				-36.248		11.25	
3.77	35	ATOM	5877	C	VAL A				-35.878		11.23	A
		ATOM	5878	0	VAL A				-36.592		10.82	A
		ATOM	5879	N		A 748			-35.458			A
		ATOM	5880	CA		A 748			-35.866		12.00 12.71	A
	40	ATOM	5881	CB		A 748	41.047		-34.646			A
	40	ATOM			THR A				-33.853			A
		MOTA	5883		THR A				-35.089		13.11	A
		ATOM	5884	C		A 748			-36.715		12.53	A
		ATOM	5885	0		748			-36.273		12.33	A
	4 =	ATOM	5886	N	LYS A				-37.949		11.99	A
	45	ATOM	5887	CA	LYS A				-38.868		12.97	A
		MOTA	5888	CB	LYS A				-40.140		14.41	A
		MOTA	5889	CG	LYS A				-41.176		17.12	A
		ATOM	5890	CD	LYS A				-42.384		19.62	A
		ATOM	5891	CE	LYS A				-43.438		21.33	Α
	50	ATOM	5892	ΝZ	LYS A				-44.648		24.55	A
		ATOM	5893	С	LYS A				-39.230		12.94	A
		MOTA	5894	0	LYS A				-39.797		12.59	A
		MOTA	5895	N	GLY A				-38.903		12.38	А
		ATOM	5896	CA	GLY A				-39.196		12.98	А
	55	ATOM	5897	С	GLY A	A 750	44.621	76.977	-39.796	1.00	13.35	А

		ATOM	5898	0	GLY A	750	43.726	76.130	-39.752	1.00	14.37	A
		ATOM	5899	N	LYS A	751	45.802	76.755	-40.362	1.00	13.85	Α
		ATOM	5900	CA	LYS A	751	46.122	75.474	-40.976	1.00	14.48	Α
		ATOM	5901	СВ	LYS A		47.423	75.588	-41.774	1.00	17.11	Α
	5	ATOM	5902	CG	LYS F	751	47.355	76.562	-42.939	1.00	21.85	А
		ATOM	5903	CD	LYS A		46.358	76.094	-43.990	1.00	25.31	A
		ATOM	5904	CE	LYS A	751	46.339	77.030		1.00	26.61	A
		ATOM	5905	NZ	LYS A		45.405	76.557			28.25	А
		ATOM	5906	С	LYS F		46.264	74.370			13.47	А
	10	ATOM	5907	0	LYS A		45.878	73.228			13.67	A
		ATOM	5908	N	LEU A		46.812	74.718			12.85	А
		MOTA	5909	CA	LEU F		47.018	73.741			12.63	A
		MOTA	5910	СВ	LEU A		48.386	73.957			12.95	A
		ATOM	5911	CG	LEU A		49.612	73.940			13.92	A
	15	ATOM	5912		LEU F		50.867	74.114			14.66	A
	10	ATOM	5913		LEU A		49.663	72.635			15.60	A
		ATOM	5914	C	LEU A		45.947	73.781			12.32	A
		ATOM	5915	0	LEU A		45.616	72.756			11.49	A
12		MOTA	5916	N	GLU P		45.403	74.964			11.65	A
	20	ATOM	5917	CA	GLU A		44.400	75.109			11.90	A
1,6±27 . 1=5	20	ATOM	5918	CB	GLU A		45.087	75.426			12.47	A
		ATOM	5919	CG	GLU A		44.140	75.575			14.62	A
		ATOM	5920		GLU A		44.140	76.044			16.59	A
			5921	CD	GLU A			77.241			19.53	A
ig.	25	ATOM	5921				45.201				19.34	A
Ŋ	23	MOTA			GLU A		45.072	75.211				
		ATOM	5923	С	GLU A		43.399	76.207			11.79	A
51		ATOM	5924	0	GLU A		43.776	77.308			12.11	A
		ATOM	5925	N	SER A		42.124	75.896			10.70	A
Rasafi, .j=€e	30	ATOM	5926	CA	SER A		41.050	76.850			10.81	A
1	30	ATOM	5927	CB	SER A		40.227	76.458			11.07	A
141		ATOM	5928	OG	SER A		40.988	76.604			10.80	A
j.d.		ATOM	5929	С	SER A		40.172	76.842			10.66	A
		ATOM	5930	0	SER A		40.221	75.902			10.36	A
ļ.d:	35	ATOM	5931	N	SER A		39.373	77.884			10.33	A
· .	33	ATOM	5932	CA	SER A		38.506	77.934			11.56	A
		ATOM	5933	CB	SER A		39.317	78.274			12.90	A
		ATOM	5934	OG	SER A		39.816	79.597			15.50	A
		ATOM	5935	C	SER A		37.378	78.934			10.74	A
	40	MOTA	5936	0	SER A		37.442	79.877			10.96	A
	40	ATOM	5937	N	VAL A		36.335	78.701		1.00	9.84	A
		ATOM	5938	CA	VAL A		35.177	79.574			10.44	A
		MOTA	5939	CB	VAL A		33.920	78.891			10.20	A
		ATOM	5940		VAL A		32.716	79.801			10.96	А
	45	ATOM	5941		VAL A		34.127	78.554			12.18	А
	45	MOTA	5942	С	VAL A		34.967	79.869			10.58	Α
		ATOM	5943	0	VAL A		34.764	78.953 ·			10.80	A
		ATOM	5944	N	SER A		35.041	81.143			10.27	А
		MOTA	5945	CA	SER A		34.864	81.546			10.99	A
		ATOM	5946	CB	SER A		36.148	82.187			11.96	А
	50	ATOM	5947	OG	SER A		37.258	81.326 -	-28.808	1.00	14.85	Α
		MOTA	5948	С	SER A		33.724	82.542 -			10.89	А
		ATOM	5949	0	SER A		33.579	83.411 -			11.64	А
		ATOM	5950	N	VAL A	758	32.918	82.423 -	-28.015	1.00	10.48	A
		ATOM	5951	CA	VAL A	758	31.801	83.335 -	-27.827	1.00	11.21	Α
	55	ATOM	5952	СВ	VAL A	758	30.471	82.678 -	-28.285	1.00	11.67	А

		ATOM	5953	CG1	VAL A 758	30.239	81.372 -27.535	1.00 12.22	Α
		MOTA	5954		VAL A 758	29.315	83.636 -28.067	1.00 11.35	Α
		ATOM	5955	С	VAL A 758	31.691	83.790 -26.376	1.00 11.49	Α
		ATOM	5956	0	VAL A 758	31.858	82.995 -25.446	1.00 11.17	А
	5	ATOM	5957	N	GLY A 759	31.429	85.081 -26.196	1.00 11.26	А
	_	ATOM	5958	CA	GLY A 759	31.295	85.645 -24.867	1.00 11.72	Α
		ATOM	5959	С	GLY A 759	29.854	85.610 -24.396	1.00 11.97	А
		ATOM	5960	0	GLY A 759	29.064	86.505 -24.696	1.00 12.26	А
		ATOM	5961	N	LEU A 760	29.509	84.560 -23.661	1.00 12.65	А
	10	ATOM	5962	CA	LEU A 760	28.160	84.388 -23.139	1.00 13.29	Α
	10	MOTA	5963	СВ	LEU A 760	27.776	82.905 -23.171	1.00 13.33	A
		ATOM	5964	CG	LEU A 760	27.892	82.180 -24.513	1.00 13.38	A
		ATOM	5965		LEU A 760	27.612	80.696 -24.316	1.00 15.19	A
		MOTA	5966		LEU A 760	26.920	82.785 -25.518	1.00 14.79	A
	15	ATOM	5967	C	LEU A 760	28.107	84.883 -21.701	1.00 13.87	A
	10	ATOM	5968	0	LEU A 760	29.143	85.085 -21.068	1.00 14.41	A
		ATOM	5969	N	PRO A 761	26.897	85.102 -21.168	1.00 14.84	A
		ATOM	5970	CD	PRO A 761	25.570	85.177 -21.802	1.00 15.39	A
3 prose_			5971	CA	PRO A 761	26.844	85.569 -19.781	1.00 14.68	A
	20	MOTA	5972	CB	PRO A 761	25.349	85.777 -19.544	1.00 15.73	A
	20	MOTA	5973	CG	PRO A 761	24.850	86.157 -20.905	1.00 15.81	A
		MOTA MOTA	5974	C	PRO A 761	27.429	84.489 -18.867	1.00 14.74	A
m.			5975	0	PRO A 761	26.973	83.343 -18.879	1.00 15.36	A
ing ing		ATOM	5976		SER A 762	28.451	84.864 -18.104	1.00 13.55	A
Will Hill	25	ATOM		N	SER A 762	29.122	83.967 -17.166	1.00 13.03	A
14.5	23	ATOM	5977	CA	SER A 762	28.093	83.188 -16.337	1.00 13.70	A
17		ATOM	5978 5979	CB OG	SER A 762	27.255	84.053 -15.597	1.00 15.66	A
		ATOM		C	SER A 762	30.080	82.961 -17.794	1.00 13.00	A
2) 2006)		ATOM	5980 5981		SER A 762	30.784	82.252 -17.074	1.00 12.23	A
1975 1925	30	ATOM		O N	VAL A 763	30.784	82.888 -19.120	1.00 12.24	A
100	30	ATOM	5982 5983	N CA	VAL A 763	30.993	81.911 -19.760	1.00 11.70	A
		ATOM		CB	VAL A 763	30.250	80.563 -19.992	1.00 12.39	A
fal:		ATOM	5984 5985		VAL A 763	31.211	79.528 -20.572	1.00 12.05	A
100		ATOM ATOM	5986		VAL A 763	29.642	80.057 -18.700	1.00 13.13	A
g nabi	35	ATOM	5987	C	VAL A 763	31.566	82.298 -21.111	1.00 11.77	A
	33	ATOM	5988	0	VAL A 763	30.822	82.642 -22.021	1.00 11.80	A
		ATOM	5989	N	VAL A 763	32.889	82.258 -21.237	1.00 10.33	A
		MOTA	5990	CA	VAL A 764	33.497	82.488 -22.536	1.00 10.30	A
		MOTA	5991	CB	VAL A 764	34.865	83.201 -22.449	1.00 10.08	A
	40	ATOM	5992		VAL A 764	35.489	83.291 -23.844	1.00 11.18	A
	40	ATOM	5993		VAL A 764	34.684	84.601 -21.868	1.00 11.72	A
		ATOM	5994	C	VAL A 764	33.675	81.038 -23.000	1.00 10.11	A
		ATOM	5995	0	VAL A 764	34.513	80.296 -22.470	1.00 9.72	A
		MOTA	5996	N	HIS A 765	32.843	80.638 -23.957	1.00 9.99	A
	45	ATOM	5997	CA	HIS A 765	32.814	79.281 -24.502	1.00 9.87	A
	10	ATOM	5998	CB	HIS A 765	31.361	78.921 -24.825	1.00 9.62	A
		ATOM	5999	CG	HIS A 765	31.172	77.533 -25.348	1.00 9.93	A
			6000		HIS A 765	31.366	76.329 -24.762	1.00 7.55	A
		MOTA MOTA	6001		HIS A 765	30.686	77.271 -26.611	1.00 11.37	A
	50		6001		HIS A 765	30.586	75.965 -26.779	1.00 8.86	A
	30	ATOM					75.370 -25.671	1.00 11.67	A
		ATOM	6003		HIS A 765 HIS A 765	30.992 33.684	79.178 -25.750	1.00 10.43	A
		ATOM	6004	С		33.546	79.975 -26.674	1.00 10.43	A
		ATOM	6005	O N	HIS A 765	34.569	78.189 -25.787	1.00 9.10	A
	55	ATOM	6006	N	GLN A 766		78.041 -26.917	1.00 10.36	A
	55	ATOM	6007	CA	GLN A 766	35.473	70.041 -20.917	1.00 10.30	n

		ATOM	6008	CB	GLN	А	766	36.886	78.461	-26.503	1.00	11.74	A
		ATOM	6009	CG	GLN	А	766	36.963	79.777	-25.740	1.00	16.65	Α
		ATOM	6010	CD	GLN	Α	766	38.093	79.787	-24.720	1.00	18.99	Α
		ATOM	6011	OE1	GLN	Α	766	39.248	79.518	-25.054	1.00	20.56	Α
	5	ATOM	6012	NE2	GLN	Α	766	37.761	80.098	-23.465	1.00	19.49	Α
		ATOM	6013	С	GLN	Α	766	35.534	76.617	-27.450	1.00	9.67	Α
		ATOM	6014	0	GLN	A	766	35.657	75.664	-26.679	1.00	9.31	Α
		ATOM	6015	N	THR	A	767	35.447	76.481	-28.770	1.00	9.57	A
		ATOM	6016	CA	THR	Α	767	35.537	75.184	-29.427	1.00	9.97	Α
	10	ATOM	6017	CB	THR	Α	767	34.326	74.909	-30.336	1.00	9.80	Α
		MOTA	6018	OG1	THR	Α	767	33.124	74.986	-29.567	1.00	10.60	Α
		MOTA	6019	CG2	THR	Α	767	34.423	73.518	-30.943	1.00	10.52	Α
		MOTA	6020	С	THR	Α	767	36.797	75.248	-30.277	1.00	10.72	Α
		MOTA	6021	0	THR	Α	767	36.890	76.064	-31.201	1.00	10.96	A
	15	ATOM	6022	N	ILE	Α	768	37.767	74.397	-29.955	1.00	10.84	A
		ATOM	6023	CA	ILE	Α	768	39.044	74.374	-30.659	1.00	11.39	Α
		ATOM	6024	CB	ILE	Α	768	40.207	74.474	-29.653	1.00	11.17	Α
		ATOM	6025	CG2	ILE	Α	768	41.536	74.614	-30.391	1.00	12.50	Α
12		ATOM	6026	CG1	ILE	Α	768	39.986	75.679	-28.739	1.00	12.86	А
, _	20	ATOM	6027	CD1	ILE	A	768	40.930	75.727	-27.552	1.00	14.09	Α
Ü		ATOM	6028	С	ILE	Α	768	39.210	73.114	-31.499		11.59	Α
		ATOM	6029	0	ILE	A	768	38.924	72.006	-31.044	1.00	11.70	Α
1 (1 mg)		ATOM	6030	N	MSE	Α	769	39.679	73.295	-32.729	1.00	11.90	А
Stand? SS E.		ATOM	6031	CA	MSE	Α	769	39.878	72.190	-33.662	1.00	12.55	A
ming com	25	MOTA	6032	CB	MSE	Α	769	39.004	72.403	-34.898	1.00	15.34	А
		ATOM	6033	CG	MSE	A	769	37.519	72.393	-34.597	1.00	16.83	A
		ATOM	6034	SE	MSE	Α	769	36.503	73.347	-35.920	1.00	26.54	A
Eş.		MOTA	6035	CE	MSE	Α	769	36.555	75.086	-35.079	1.00	19.56	А
		MOTA	6036	С	MSE	А	769	41.336	72.068	-34.088	1.00	12.98	A
	30	MOTA	6037	0	MSE	A	769	41.948	73.040	-34.531		12.06	A
T.		ATOM	6038	N	ARG	Α	770	41.891	70.868	-33.960		13.68	A
l.d.		MOTA	6039	CA	ARG	Α	770	43.275	70.640			15.07	A
- بالمدر الوروز		MOTA	6040	CB	ARG	A	770	44.140	70.474			17.11	A
ist ist		MOTA	6041	CG	ARG	Α	770	44.074	71.679			20.18	Α
g News	35	MOTA	6042	CD	ARG			44.923	71.491			23.42	A
		ATOM	6043	NE	ARG	Α	770	44.600	72.493			26.56	A
		ATOM	6044	CZ	ARG			45.160	72.556			27.92	A
		ATOM	6045		ARG			46.084	71.671			28.57	A
		ATOM	6046	NH2	ARG			44.790	73.500			28.79	A
	40	ATOM	6047	C	ARG			43.435	69.434			15.19	A
		ATOM	6048	0	ARG			44.541	68.934			15.98	А
		ATOM	6049	N	GLY			42.325	68.968			15.00	А
		ATOM	6050	CA	GLY			42.390	67.836			15.83	A
	4.5	ATOM	6051	С	GLY			41.638	66.602			16.49	A
	45	ATOM	6052	0	GLY			41.371	65.706			18.18	A
		ATOM	6053	N	GLY			41.310	66.543			15.66	A
		ATOM	6054	CA	GLY			40.581	65.404			15.30	A
		ATOM	6055	С	GLY			39.374	65.872			13.91	A
	50	ATOM	6056	0	GLY			38.767	66.886			13.73	A
	50	ATOM	6057	N	ALA			39.012	65.135			13.00	A
		MOTA	6058	CA	ALA			37.877	65.525			12.18	A
		MOTA	6059	CB	ALA			37.699	64.549			12.99	A
		ATOM	6060	С	ALA			38.162	66.921			11.57	A
		MOTA	6061	0	ALA			39.277	67.216			12.06	A
	55	ATOM	6062	N	PRO	A	774	37.161	67.804	-31.273	1.00	11.20	A

		*****	6060	-	DD0 1	774	25 702	(7 (7)	-31.775	1 00	11 21	70
		MOTA	6063	CD	PRO P		35.782		_		11.31	A
		MOTA	6064	CA	PRO P		37.409		-30.761		10.53	А
		ATOM	6065	CB	PRO P	774	36.142		-31.153		11.51	A
		MOTA	6066	CG	PRO P	774	35.089	68.847	-31.110	1.00	12.74	Α
	5	MOTA	6067	С	PRO P	774	37.660	69.219	-29.262	1.00	10.06	Α
		ATOM	6068	0	PRO P	774	37.322	68.300	-28.507	1.00	9.96	Α
		ATOM	6069	N	GLU A	775	38.287	70.311	-28.849	1.00	9.33	А
		ATOM	6070	CA	GLU A		38.550		-27.445	1.00	9.07	А
		ATOM	6071	СВ	GLU A		39.992		-27.213	1.00	9.95	А
	10	ATOM	6072	CG	GLU A		40.302		-25.738		12.24	A
	10		6072	CD	GLU P		41.714		-25.499		15.25	A
		MOTA					42.609		-26.314		19.42	A
		ATOM	6074		GLU A							A
		ATOM	6075	OE2	GLU A		41.934		-24.478		16.73	
	15	ATOM	6076	С	GLU A		37.608		-27.096	1.00	9.08	A
	15	ATOM	6077	0	GLU A		37.431		-27.886	1.00	9.71	A
		ATOM	6078	N	ILE A		36.988		-25.931	1.00	9.14	A
		ATOM	6079	CA	ILE A		36.083		-25.491	1.00	9.39	A
		ATOM	6080	CB	ILE A		34.696		-25.114		10.30	A
		ATOM	6081		ILE A		33.749		-24.785		11.43	A
ŧ.T	20	ATOM	6082		ILE A		34.154		-26.240		12.19	Α
. Fi.		ATOM	6083	CD1	ILE A	776	34.033		-27.587	1.00	13.48	A
		ATOM	6084	С	ILE A	776	36.683	73.295	-24.245	1.00	8.89	A
114 2 5		ATOM	6085	0	ILE A	776	37.173	72.585	-23.369	1.00	8.86	A
125		ATOM	6086	N	ARG A	777	36.670	74.622	-24.177	1.00	9.64	A
1014	25	ATOM	6087	CA	ARG A		37.178	75.329	-23.007	1.00	9.16	A
114		ATOM	6088	CB	ARG A		38.486	76.062	-23.306	1.00	10.34	А
		ATOM	6089	CG	ARG A		39.647		-23.655	1.00	10.26	A
91		ATOM	6090	CD	ARG A		40.943		-23.759		11.46	A
197		ATOM	6091	NE	ARG A		42.013		-24.308		12.09	А
	30	ATOM	6092	CZ	ARG A		43.198		-24.697		13.87	A
قىپىۋر∓ دەدە	00	ATOM	6093		ARG A		43.482		-24.593		15.34	A
Ų		ATOM	6094		ARG A		44.090		-25.221		15.77	A
į.4.		ATOM	6095	C	ARG A		36.139		-22.589	1.00	8.98	A
			6096	0	ARG A		35.619		-23.423	1.00	9.21	A
	35	ATOM					35.821		-21.303	1.00	8.45	A
•	33	ATOM	6097	N	ASN A							
		ATOM	6098	CA	ASN A		34.863		-20.756	1.00	8.73 9.56	A
		MOTA	6099	CB	ASN A		33.672		-20.098	1.00		A
		ATOM	6100	CG	ASN A		32.726		-21.094		10.18	A
	40	ATOM	6101		ASN A		32.682		-22.261		10.34	A
	40	MOTA			ASN A				-20.629			A
		MOTA	6103	С	ASN A		35.529		-19.684	1.00	8.82	A
		MOTA	6104	0	ASN A		36.000		-18.683	1.00	8.41	A
		ATOM	6105	N	LEU A		35.586		-19.891	1.00	9.10	A
		ATOM	6106	CA	LEU A	. 779	36.133		-18.868	1.00	9.56	А
	45	ATOM	6107	CB	LEU A		36.792		-19.487		11.11	A
		MOTA	6108	CG	LEU A	779	37.363	82.583	-18.484	1.00	12.38	A
		ATOM	6109	CD1	LEU A	779	38.443	81.931	-17.637	1.00	13.74	А
		ATOM	6110	CD2	LEU A	779	37.924	83.779	-19.242	1.00	14.30	А
		ATOM	6111	С	LEU A	779	34.869	80.723	-18.112	1.00	9.41	А
	50	MOTA	6112	0	LEU A		34.092		-18.563		10.31	A
		ATOM	6113	N	VAL A		34.659		-16.969	1.00	8.89	А
		ATOM	6114	CA	VAL A		33.457		-16.178	1.00	9.72	А
		ATOM	6115	СВ	VAL A		32.948		-15.610	1.00	9.29	А
		ATOM	6116		VAL A		31.607		-14.917		10.76	A
	55	ATOM	6117		VAL A		32.827		-16.735	1.00	9.53	A
	55	011	U 4 4 1	J J L	٠ ٢		32.02/					• •

		ATOM	6118	С	VAL A 780		81.290 -15.036	1.00 10.33	A
		ATOM	6119	0	VAL A 780	34.404	81.090 -14.123	1.00 10.64	А
		ATOM	6120	N	ASP A 783	32.832	82.368 -15.105	1.00 11.16	А
		ATOM	6121	CA	ASP A 783	32.838	83.401 -14.076	1.00 11.93	A
	5	ATOM	6122	CB	ASP A 783	33.522	84.670 -14.583	1.00 14.09	Α
		ATOM	6123	CG	ASP A 783	33.596	85.750 -13.522	1.00 15.28	Α
		ATOM	6124	OD1	ASP A 783	34.106	86.850 -13.823	1.00 18.04	A
		ATOM	6125		ASP A 783		85.499 -12.384	1.00 15.28	Α
		ATOM	6126	C	ASP A 783		83.693 -13.748	1.00 12.36	Α
	10	MOTA	6127	0	ASP A 783		84.548 -14.372	1.00 11.82	A
		ATOM	6128	N	ILE A 782		82.962 -12.770	1.00 13.05	Α
		ATOM	6129	CA	ILE A 782		83.088 -12.348	1.00 15.17	A
		MOTA	6130	CB	ILE A 782		81.918 -11.399	1.00 15.24	Α
		ATOM	6131	CG2			82.136 -10.032	1.00 15.58	А
	15	ATOM	6132		ILE A 782		81.776 -11.289	1.00 15.55	A
		MOTA	6133		ILE A 782		80.458 -10.671	1.00 15.33	Α
		ATOM	6134	С	ILE A 782		84.437 -11.680	1.00 16.86	Α
		ATOM	6135	0	ILE A 782		84.759 -11.341	1.00 18.15	Α
i ====		ATOM	6136	N	GLY A 783		85.224 -11.503	1.00 17.28	Α
	20	ATOM	6137	CA	GLY A 783		86.545 -10.908	1.00 19.48	Α
i deeli . Pfa		ATOM	6138	С	GLY A 783		86.621 -9.646	1.00 20.51	А
البيارة		ATOM	6139	Ō	GLY A 783		85.895 -8.682	1.00 21.41	Α
1,11		ATOM	6140	N	SER A 784		87.503 -9.649	1.00 22.21	А
4,30		ATOM	6141	CA	SER A 78		87.675 -8.483	1.00 23.63	А
Į.	25	MOTA	6142	CB	SER A 784		89.160 -8.128	1.00 24.57	A
Ų		ATOM	6143	OG	SER A 784		89.896 -9.180	1.00 26.76	А
ijŤ.		ATOM	6144	C	SER A 78		87.086 -8.649	1.00 24.17	А
El		ATOM	6145	0	SER A 784		87.470 -7.934	1.00 24.52	А
		ATOM	6146	N	LEU A 785		86.158 -9.589	1.00 24.17	А
7,au# _ 1=4	30	ATOM	6147	CA	LEU A 78		85.520 -9.819	1.00 24.30	Α
45 45 45 45 45 45 45 45 45 45 45 45 45 4		ATOM	6148	СВ	LEU A 785		84.756 -11.147	1.00 25.03	Α
ij		ATOM	6149	CG	LEU A 785		85.570 -12.444	1.00 26.37	Α
		ATOM	6150		LEU A 785		86.490 -12.492	1.00 27.91	Α
		ATOM	6151		LEU A 785		84.623 -13.631	1.00 27.18	А
ļ.da.	35	ATOM	6152	С	LEU A 785		84.554 -8.678	1.00 24.04	А
		MOTA	6153	0	LEU A 785		83.364 -8.760	1.00 24.23	Α
		ATOM	6154	N	ASP A 786		85.068 -7.620	1.00 23.21	А
		ATOM	6155	CA	ASP A 78		84.247 -6.460	1.00 22.19	А
		MOTA	6156	CB	ASP A 78		85.130 -5.302	1.00 24.01	Α
	40	ATOM	6157	CG	ASP A 786	23.851	86.245 -4.993	1.00 25.65	Α
		ATOM	6158		ASP A 786		85.955 -4.776	1.00 24.91	A
		MOTA	6159		ASP A 780		87.417 -4.968	1.00 26.93	Α
		ATOM	6160	С	ASP A 786		83.188 -6.747	1.00 20.42	А
		ATOM	6161	0	ASP A 786		83.368 -7.604	1.00 20.14	A
	45	MOTA	6162	N	ASN A 78		82.085 -6.012	1.00 18.59	A
		MOTA	6163	CA	ASN A 78		80.971 -6.145	1.00 17.29	A
		ATOM	6164	СВ	ASN A 78		81.341 -5.522	1.00 18.36	Α
		MOTA	6165	CG	ASN A 78		81.678 -4.054	1.00 19.72	Α
		ATOM	6166		ASN A 78		80.936 -3.292	1.00 20.47	Α
	50	ATOM	6167		ASN A 78		82.799 -3.646	1.00 22.13	Α
		ATOM	6168	С	ASN A 78		80.536 -7.590	1.00 16.22	А
		ATOM	6169	Ö	ASN A 78		80.387 -8.077	1.00 15.49	А
		ATOM	6170	N	THR A 788		80.321 -8.266	1.00 14.90	A
		ATOM	6171	CA	THR A 788		79.901 -9.656	1.00 13.74	А
	55	ATOM	6172	CB	THR A 788		81.081 -10.594	1.00 15.15	А
			-						

		ATOM	6173		THR A		21.782	82.145 -10.380	1.00 15.54	A
		MOTA	6174		THR A		22.649	80.646 -12.053	1.00 14.91	A
		MOTA	6175	С	THR A		23.427	78.817 -9.874	1.00 12.17	A
	_	ATOM	6176	0	THR F		24.516	78.872 -9.306	1.00 12.24	A
	5	MOTA	6177	N	GLU A		23.075	77.823 -10.679	1.00 11.16	A
		ATOM	6178	CA	GLU F		23.993	76.750 -11.021	1.00 10.70	A
		ATOM	6179	CB	GLU A		23.523	75.417 -10.417	1.00 10.65	A
		ATOM	6180	CG	GLU P		23.410	75.468 -8.893	1.00 11.01	A
	40	MOTA	6181	CD	GLU A		23.467	74.103 -8.230	1.00 10.75	Α
	10	ATOM	6182		GLU P		24.244	73.242 -8.700	1.00 11.43	A
		MOTA	6183		GLU A		22.751	73.900 -7.224	1.00 11.36	Α
		MOTA	6184	С	GLU A		23.977	76.717 -12.545	1.00 10.53	A
		MOTA	6185	0	GLU A		22.925	76.541 -13.159	1.00 12.21	A
	4-	ATOM	6186	N	ILE A		25.141	76.929 -13.151	1.00 9.89	A
	15	MOTA	6187	CA	ILE P		25.258	76.951 -14.603	1.00 11.05	A
		MOTA	6188	CB	ILE A		26.356	77.928 -15.063	1.00 11.53	Α
		ATOM	6189		ILE A		26.444	77.932 -16.584	1.00 11.91	A
		ATOM	6190		ILE A		26.048	79.335 -14.545	1.00 14.02	A
	20	MOTA	6191		ILE A		27.164	80.331 -14.786	1.00 16.91	A
ı,C	20	ATOM	6192	С	ILE A		25.601	75.577 -15.143	1.00 10.36	A
		MOTA	6193	0	ILE A		26.590	74.967 -14.735	1.00 10.51	A
		MOTA	6194	N	VAL A		24.783	75.096 -16.070	1.00 10.03	A
(1125) (1225)		ATOM	6195	CA	VAL A		25.003	73.790 -16.664	1.00 10.13	A
	25	ATOM	6196	CB	VAL A		23.792	72.848 -16.409	1.00 10.46	A
	25	MOTA	6197		VAL A		22.582	73.304 -17.224	1.00 11.49	A
i ve		ATOM	6198		VAL A		24.163	71.414 -16.760	1.00 11.24	A
i'b u		ATOM	6199	C	VAL A		25.239	73.873 -18.166	1.00 9.93	A
ii ma		MOTA	6200	0	VAL A		24.653	74.714 -18.860	1.00 10.16	A
	20	ATOM	6201	N	MSE A		26.128	73.022 -18.662	1.00 9.51	A
	30	ATOM	6202	CA	MSE A		26.394	72.954 -20.092	1.00 9.67	A
		ATOM	6203	CB	MSE A		27.892	72.921 -20.392	1.00 11.43	A
ļs.		ATOM	6204	CG	MSE A		28.185	72.769 -21.881	1.00 12.60	A
		ATOM	6205	SE	MSE A		30.059	72.856 -22.319	1.00 18.80	A
į.d.	25	ATOM	6206	CE	MSE A		30.632	71.215 -21.499	1.00 14.20	A
•	35	ATOM	6207	С	MSE A		25.749	71.657 -20.559	1.00 9.89 1.00 10.12	A
		ATOM	6208	0	MSE A		26.063	70.581 -20.046		A A
		ATOM	6209	N	ARG A		24.843	71.760 -21.524 70.589 -22.027	1.00 9.88 1.00 9.40	A
		ATOM	6210	CA	ARG A		24.143	70.756 -21.786	1.00 9.40	A
	40	ATOM	6211 6212	CB CG	ARG A		22.636 21.775	69.579 -22.249	1.00 9.08	A
	40	ATOM			ARG A				1.00 9.24	A
		ATOM	6213	CD	ARG A		20.300	69.905 -20.504	1.00 10.28	A
		ATOM	6214 6215	NE	ARG A		20.051 18.958	70.427 -19.959	1.00 11.04	A
		ATOM		CZ	ARG A			70.427 -19.939	1.00 10.72	A
	45	MOTA	6216		ARG A		17.995	70.473 -18.640	1.00 12.36	A
	43	MOTA	6217		ARG A		18.832			
		ATOM	6218	С	ARG A		24.396 24.593	70.333 -23.503 71.264 -24.286	1.00 9.92	A
		ATOM	6219	0	ARG A			69.055 -23.866	1.00 10.28 1.00 10.51	A
		ATOM	6220	N	LEU A		24.393		1.00 10.31	A
	50	ATOM	6221	CA	LEU A		24.563	68.618 -25.248		A
	50	MOTA	6222	CB	LEU A		25.730	67.633 -25.370	1.00 11.42 1.00 11.51	A
		MOTA	6223	CG CD1	LEU A		27.129	68.240 -25.492 67.207 -25.131	1.00 11.31	A A
		ATOM	6224		LEU A		28.180		1.00 12.30	A A
		ATOM	6225		LEU A		27.336	68.748 -26.914	1.00 13.24	
	55	MOTA	6226	С	LEU A		23.265	67.921 -25.643		A
	55	ATOM	6227	0	LEU A	. 194	22.789	67.038 -24.931	1.00 10.91	А

		ATOM	6228	N	GLU A	795	22.686	68.330 -26.766	1.00 11.83	A
		ATOM	6229	CA	GLU A	795	21.444	67.731 -27.244	1.00 13.21	A
		ATOM	6230	СВ	GLU A	795	20.373	68.814 -27.427	1.00 13.79	A
		ATOM	6231	CG	GLU A		20.156	69.665 -26.184	1.00 16.95	A
	5	MOTA	6232	CD	GLU A		19.134	70.774 -26.382	1.00 18.99	Α
	_	ATOM	6233		GLU A		19.138	71.404 -27.460	1.00 21.87	A
		ATOM	6234	OE2			18.339	71.029 -25.452	1.00 20.56	A
		ATOM	6235	C	GLU A		21.716	67.018 -28.565	1.00 13.30	А
		ATOM	6236	0	GLU A		22.259	67.609 -29.500	1.00 13.97	A
	10	ATOM	6237	N	THR A		21.352	65.741 -28.637	1.00 12.67	A
	10	ATOM	6238	CA	THR A		21.577	64.957 -29.846	1.00 13.15	A
		ATOM	6239	CB	THR A		22.771	63.991 -29.688	1.00 13.13	A
		ATOM	6240	OG1			22.372	62.859 -28.900	1.00 12.00	A
		ATOM	6241	CG2			23.935	64.687 -29.002	1.00 13.25	A
	15						20.369	64.101 -30.203	1.00 13.25	A
	15	ATOM	6242	С	THR A		19.355	64.101 -30.203	1.00 16.03	A
		MOTA	6243	0	THR A		20.511	63.341 -31.284	1.00 15.53	A
		ATOM	6244	N C?				62.444 -31.764	1.00 15.33	A
11:00		ATOM	6245	CA	HIS A		19.465	62.542 -33.283	1.00 18.40	A
	20	MOTA	6246	CB	HIS A		19.343		1.00 18.40	A
J	20	ATOM	6247	CG	HIS A		18.639	63.775 -33.747	1.00 18.85	A
ų.		MOTA	6248		HIS A		17.877	64.669 -33.075	1.00 10.65	
##F		ATOM	6249		HIS A		18.669	64.204 -35.056		A
		ATOM	6250		HIS A		17.956	65.310 -35.169	1.00 19.23	A
	25	MOTA	6251		HIS A		17.465	65.613 -33.981	1.00 18.80	A
i,	25	MOTA	6252	С	HIS A		19.762	61.006 -31.381	1.00 17.12	A
ij.		ATOM	6253	0	HIS A		19.058	60.087 -31.799	1.00 18.02	A
		ATOM	6254	N	ILE A		20.814	60.809 -30.595	1.00 15.17	A
2:∞ .		ATOM	6255	CA	ILE A		21.190	59.473 -30.158	1.00 14.07	A
	20	ATOM	6256	CB	ILE A		22.492	59.525 -29.330	1.00 13.19	A
₹ <u>;</u>	30	ATOM	6257		ILE A		22.845	58.132 -28.802	1.00 12.33	A
ij		ATOM	6258		ILE A		23.623	60.070 -30.207	1.00 13.23	A
ļ.¥		ATOM	6259		ILE A		24.934	60.303 -29.468	1.00 13.56	A
		ATOM	6260	C	ILE A		20.047	58.887 -29.331	1.00 13.73	A
į.	25	ATOM	6261	0	ILE A		19.554	59.518 -28.399	1.00 13.69	A
-	35	ATOM	6262	N	ASP A		19.617	57.681 -29.697	1.00 14.35	A
		MOTA	6263	CA	ASP A		18.519	57.009 -29.013	1.00 14.00	A
		ATOM	6264	CB	ASP A		17.849	56.018 -29.970	1.00 15.90	A
		MOTA	6265	CG	ASP A		16.539	55.485 -29.436	1.00 17.22	A
	40	ATOM	6266		ASP A		16.007	54.522 -30.025	1.00 18.99	A
	40	MOTA	6267		ASP A	-	16.036	56.028 -28.434	1.00 19.56	A
		ATOM	6268	С	ASP A		19.031	56.270 -27.780	1.00 13.90	A
		ATOM	6269	0	ASP A		18.965	55.045 -27.701	1.00 13.45	A
		ATOM	6270	N	SER A		19.529	57.031 -26.812	1.00 13.23	A
	4.5	MOTA	6271	CA	SER A		20.077	56.462 -25.587	1.00 12.57	A
	45	MOTA	6272	CB	SER A		21.039	57.466 -24.943	1.00 12.35	A
		ATOM	6273	OG	SER A		20.372	58.671 -24.618	1.00 11.94	A
		MOTA	6274	С	SER A		19.021	56.038 -24.570	1.00 11.90	A
		ATOM	6275	0	SER A		19.303	55.237 -23.679	1.00 11.76	A
		MOTA	6276	N	GLY A		17.812	56.576 -24.694	1.00 11.77	А
	50	ATOM	6277	CA	GLY A		16.751	56.225 -23.766	1.00 11.64	Α
		ATOM	6278	С	GLY A		16.994	56.750 -22.367	1.00 11.57	Α
		MOTA	6279	0	GLY A		17.063	57.956 -22.157	1.00 12.52	A
		ATOM	6280	N	ASP A		17.118	55.840 -21.406	1.00 11.43	А
		MOTA	6281	CA	ASP A	802	17.358	56.225 -20.021	1.00 11.22	A
	55	ATOM	6282	CB	ASP A	802	16.274	55.636 -19.107	1.00 13.10	А

		ATOM	6283	CG	ASP .	A 802	16.173	54.118 -19.201	1.00 13.45	Α
		ATOM	6284	OD1	ASP 2	A 802	15.264	53.554 -18.553	1.00 15.07	А
		ATOM	6285	OD2	ASP	A 802	16.990	53.486 -19.908	1.00 15.03	Α
		ATOM	6286	С	ASP :	A 802	18.736	55.771 -19.556	1.00 10.91	A
	5	ATOM	6287	0	ASP I	A 802	19.041	55.807 -18.362	1.00 10.76	A
		ATOM	6288	N	ILE	803 A	19.571	55.370 -20.507	1.00 9.82	A
		ATOM	6289	CA	ILE A	803	20.910	54.888 -20.197	1.00 9.93	A
		ATOM	6290	CB	ILE A	803	21.208	53.572 -20.958	1.00 9.82	
		MOTA	6291	CG2	ILE A	803 A	22.634	53.103 -20.670	1.00 9.69	A
	10	MOTA	6292	CG1	ILE A	E08 A	20.191	52.496 -20.564	1.00 9.60	
		ATOM	6293	CD1	ILE A	803	20.226	52.125 -19.093	1.00 10.76	
		ATOM	6294	С	ILE	E08 A	22.020	55.872 -20.537	1.00 9.64	
		MOTA	6295	0		803	21.969	56.562 -21.556	1.00 9.87	
		ATOM	6296	N	PHE I	A 804	23.020	55.940 -19.662	1.00 9.22	
	15	MOTA	6297	CA	PHE A	A 804	24.188	56.776 -19.889	1.00 8.73	
		MOTA	6298	CB	PHE A	A 804	23.913	58.265 -19.583	1.00 8.57	
		MOTA	6299	CG		A 804	23.561	58.572 -18.151	1.00 8.50	
		ATOM	6300		PHE A		24.496	59.178 -17.311	1.00 8.09	
	20	MOTA	6301		PHE		22.272	58.351 -17.667	1.00 8.51	
1,	20	MOTA	6302		PHE A		24.152	59.568 -16.016	1.00 8.03	
		ATOM	6303		PHE A		21.917	58.738 -16.370	1.00 9.55	
		MOTA	6304	CZ		A 804	22.862	59.351 -15.546	1.00 9.47	
		ATOM	6305	С		A 804	25.324	56.208 -19.059	1.00 8.03	
raer PS B	05	ATOM	6306	0		A 804	25.100	55.363 -18.192	1.00 8.86	
Guii (Cili	25	MOTA	6307	N		4 805	26.543	56.636 -19.346	1.00 7.73	
₽ % 48 4 6		ATOM	6308	CA		805 A	27.696	56.117 -18.635	1.00 7.16	
		ATOM	6309	CB		A 805	28.558	55.279 -19.582	1.00 7.36	
₩.		MOTA	6310	CG		A 805	27.858	54.059 -20.133	1.00 8.65	
	20	ATOM	6311	CD1		A 805	26.873	54.174 -21.117	1.00 9.16	
	30	ATOM	6312	CE1		A 805	26.232	53.047 -21.626	1.00 8.73	
		ATOM	6313		TYR A		28.184	52.786 -19.669	1.00 8.73	
L		ATOM	6314	CE2		A 805	27.547	51.651 -20.171	1.00 9.56 1.00 10.03	
		ATOM	6315	CZ		A 805	26.576	51.792 -21.149 50.674 -21.664	1.00 10.03	
į	35	ATOM ATOM	6316 6317	OH C		4 805 4 805	25.956 28.536	57.232 -18.052	1.00 10.71	
	55	ATOM	6318	0		A 805	28.700	58.275 -18.675	1.00 7.37	
		ATOM	6319	N		4 806	29.046	57.011 -16.844	1.00 7.62	
		ATOM	6320	CA		4 806	29.908	57.985 -16.187	1.00 7.02	
		MOTA	6321	CB		806	29.179	58.741 ~15.060	1.00 7.06	
	40	ATOM	6322	OG1	THR A		28.822	57.829 -14.016	1.00 8.45	
	10	ATOM	6323		THR A		27.922	59.398 -15.586	1.00 7.42	
		ATOM	6324	C		806	31.062	57.188 -15.599	1.00 7.29	
		ATOM	6325	Ö		4 806	30.936	55.986 -15.368	1.00 7.37	
		ATOM	6326	N		A 807	32.195	57.834 -15.366	1.00 7.07	
	45	ATOM	6327	CA	ASP A		33.319	57.096 -14.820	1.00 7.59	
		ATOM	6328	СВ	ASP A		34.632	57.567 -15.444	1.00 8.85	A
		ATOM	6329	CG	ASP A		35.082	58.908 -14.912	1.00 9.02	
		ATOM	6330		ASP A		36.215	58.983 -14.389	1.00 10.87	А
		ATOM	6331		ASP A		34.310	59.883 -15.013	1.00 9.58	А
	50	ATOM	6332	C	ASP A		33.418	57.207 -13.313	1.00 7.31	А
		ATOM	6333	Ō	ASP A		32.801	58.069 -12.686	1.00 7.29	
		ATOM	6334	N	LEU A		34.193	56.299 -12.742	1.00 7.26	
		ATOM	6335	CA	LEU A		34.435	56.291 -11.315	1.00 6.64	А
		ATOM	6336	СВ	LEU A		33.996	54.960 -10.697	1.00 7.52	А
	55	ATOM	6337	CG	LEU A		32.480	54.762 -10.576	1.00 7.74	А

	MOTA	6338	CD1	LEU	Α	808	32.171	53.301	-10.300	1.00	9.05	A
	ATOM	6339	CD2	LEU	Α	808	31.927	55.646	-9.466	1.00	8.74	A
	ATOM	6340	С	LEU	Α	808	35.931	56.493	-11.120	1.00	7.13	Α
	ATOM	6341	0	LEU	Α	808	36.740	55.662	-11.537	1.00	6.82	А
5	MOTA	6342	N	ASN	Α	809	36.284	57.635	-10.536	1.00	6.18	A
	ATOM	6343	CA			809	37.671	57.976	-10.229	1.00	6.39	Α
	ATOM	6344	СВ			809	38.141	57.084	-9.077	1.00	5.55	А
	ATOM	6345	CG	ASN			37.154	57.061	-7.935	1.00	6.45	А
	ATOM	6346		ASN			37.176	57.931	-7.051	1.00	8.57	A
10	ATOM	6347		ASN			36.259	56.083	-7.957	1.00	4.53	A
10							38.643		-11.401	1.00	6.62	A
	ATOM	6348	С			809						
	ATOM	6349	0	ASN			39.830		-11.202	1.00	6.76	A
	MOTA	6350	N			810	38.144		-12.618	1.00	6.22	A
1 -	ATOM	6351	CA	GLY			38.998		-13.795	1.00	7.72	A
15	MOTA	6352	С	GLY			39.568		-14.038	1.00	8.56	A
	ATOM	6353	0	GLY			40.536		-14.788	1.00	9.54	Α
	ATOM	6354	N	LEU	Α	811	38.950		-13.420	1.00	7.78	A
	ATOM	6355	CA	LEU	Α	811	39.410	54.225	-13.532	1.00	8.21	A
	ATOM	6356	CB	LEU	Α	811	39.541		-12.127	1.00	8.72	A
20	ATOM	6357	CG	LEU	Α	811	39.955	52.154	-12.012	1.00	10.15	Α
	ATOM	6358	CD1	LEU	Α	811	41.366	51.988	-12.539	1.00	11.19	A
	ATOM	6359	CD2	LEU	Α	811	39.874	51.707	-10.559	1.00	10.32	А
	ATOM	6360	С	LEU			38.520	53.312	-14.370	1.00	9.02	A
	ATOM	6361	0	LEU			39.015		-15.108	1.00	10.92	А
25	ATOM	6362	N	GLN			37.212		-14.262	1.00	8.03	А
	ATOM	6363	CA			812	36.264	_	-14.962	1.00	8.29	А
	ATOM	6364	CB	GLN			35.907		-14.056	1.00	9.25	A
	ATOM	6365	CG	GLN			35.335		-12.710		10.20	A
	ATOM	6366	CD	GLN			35.023		-11.756		12.79	A
30	ATOM	6367		GLN			34.052		-11.938		13.30	A
50				GLN			35.851		-10.727		13.55	A
	MOTA	6368							-15.298	1.00	8.35	A
	ATOM	6369	С	GLN			34.992			1.00	7.86	A
	ATOM	6370	0	GLN			34.680		-14.671			
25	ATOM	6371	N			813	34.260		-16.291	1.00	7.68	A
35	ATOM	6372	CA			813	32.993		-16.656	1.00	7.67	A
	MOTA	6373	CB			813	32.926		-18.155	1.00	7.05	A
	ATOM	6374	CG	PHE			33.686		-18.546	1.00	7.39	A
	ATOM	6375		PHE			35.072		-18.646	1.00	7.39	A
4.0	ATOM	6376		PHE			33.019		-18.741	1.00	8.36	A
40	ATOM	6377	CE1	PHE	A	813	35.788		-18.932	1.00	9.02	Α
	MOTA	6378	CE2	PHE			33.725		-19.027	1.00	8.21	А
	ATOM	6379	CZ	PHE	Α	813	35.115		-19.121	1.00	8.05	A
	ATOM	6380	С	PHE	Α	813	31.876	52.583	-16.240	1.00	7.95	A
	ATOM	6381	0	PHE	Α	813	31.884	51.387	-16.561	1.00	8.99	А
45	ATOM	6382	N	ILE	Α	814	30.921	53.140	-15.509	1.00	7.80	Α
	ATOM	6383	CA	ILE	A	814	29.799	52.379	-14.990	1.00	8.05	A
	ATOM	6384	CB	ILE			29.720	52.552	-13.450	1.00	7.86	A
	ATOM	6385		ILE			29.397	53.998	-13.102	1.00	8.17	А
	ATOM	6386	CG1	ILE			28.668		-12.851	1.00	8.21	А
50	ATOM	6387		ILE			28.763		-11.329	1.00	8.23	А
	ATOM	6388	C	ILE			28.490		-15.646	1.00	7.18	А
	ATOM	6389	0	ILE			28.262		-15.900	1.00	6.96	A
	ATOM	6390	N	LYS			27.641		-15.933	1.00	7.64	A
		6391	CA	LYS			26.355		-16.557	1.00	8.17	A
55	ATOM		CB				25.764		-17.078	1.00	9.06	A
))	ATOM	6392	CB	LYS	А	013	25.704	30.767	-11.078	1.00	5.00	Λ

									_
		ATOM	6393	CG	LYS A 815	24.457	50.909 -17.845	1.00 11.44	A
		ATOM	6394	CD	LYS A 815	24.060	49.539 -18.389	1.00 13.34	Α
		ATOM	6395	CE	LYS A 815	22.850	49.609 -19.297	1.00 16.25	Α
		MOTA	6396	NZ	LYS A 815	22.538	48.269 -19.879	1.00 18.48	Α
	5	ATOM	6397	С	LYS A 815	25.392	52.744 -15.572	1.00 7.90	Α
	-	ATOM	6398	ō	LYS A 815	25.240	52.288 -14.437	1.00 7.72	Α
		ATOM	6399	N	ARG A 816	24.752	53.817 -16.016	1.00 7.58	А
						23.779	54.533 -15.205	1.00 7.54	A
		ATOM	6400	CA	ARG A 816				A
	10	ATOM	6401	CB	ARG A 816	24.133	56.023 -15.103		
	10	MOTA	6402	CG	ARG A 816	25.524	56.341 -14.580	1.00 8.73	A
		ATOM	6403	CD	ARG A 816	25.718	55.751 -13.203	1.00 9.16	A
		ATOM	6404	NE	ARG A 816	26.879	56.317 -12.522	1.00 8.38	A
		MOTA	6405	CZ	ARG A 816	27.259	55.952 -11.304	1.00 8.64	А
		MOTA	6406	NH1	ARG A 816	26.567	55.027 -10.654	1.00 7.99	A
	15	MOTA	6407	NH2	ARG A 816	28.311	56.519 -10.728	1.00 8.64	Α
		MOTA	6408	С	ARG A 816	22.419	54.436 -15.874	1.00 8.06	Α
		ATOM	6409	0	ARG A 816	22.327	54.376 -17.099	1.00 7.94	Α
		ATOM	6410	N	ARG A 817	21.366	54.419 -15.066	1.00 8.58	Α
(33)		ATOM	6411	CA	ARG A 817	20.016	54.403 -15.606	1.00 9.41	Α
	20	MOTA	6412	CB	ARG A 817	19.302	53.073 -15.330	1.00 9.62	A
i interior		ATOM	6413	CG	ARG A 817	17.830	53.098 -15.749	1.00 11.25	Α
5.1mg ²		ATOM	6414	CD	ARG A 817	17.123	51.758 -15.571	1.00 13.10	А
		ATOM	6415	NE	ARG A 817	17.649	50.728 -16.460	1.00 13.49	A
1,24		ATOM	6416	CZ	ARG A 817	18.408	49.713 -16.062	1.00 14.00	A
and France	25	ATOM	6417		ARG A 817	18.736	49.588 -14.781	1.00 13.99	A
i,	25					18.838	48.820 -16.942	1.00 15.05	A
M		ATOM	6418		ARG A 817				A
		ATOM	6419	С	ARG A 817	19.249	55.539 -14.953	1.00 9.86	
9 E.		ATOM	6420	0	ARG A 817	19.118	55.586 -13.731	1.00 10.49	A
	20	ATOM	6421	N	ARG A 818	18.780	56.475 -15.772	1.00 9.41	A
	30	ATOM	6422	CA	ARG A 818	18.003	57.598 -15.276	1.00 11.11	A
China China		MOTA	6423	CB	ARG A 818	17.653	58.548 -16.422	1.00 12.00	A
j.a.		ATOM	6424	CG	ARG A 818	16.996	59.843 -15.967	1.00 12.11	A
		ATOM	6425	CD	ARG A 818	16.321	60.572 -17.123	1.00 13.88	A
		ATOM	6426	NE	ARG A 818	15.045	59.954 -17.470	1.00 16.57	A
i ali	35	MOTA	6427	CZ	ARG A 818	14.776	59.370 -18.634	1.00 15.90	Α
		MOTA	6428	NH1	ARG A 818	15.694	59.317 -19.591	1.00 15.20	Α
		MOTA	6429	NH2	ARG A 818	13.580	58.832 -18.837	1.00 17.09	A
		ATOM	6430	С	ARG A 818	16.723	57.005 -14.703	1.00 11.22	A
		ATOM	6431	0	ARG A 818	16.058	56.209 -15.366	1.00 12.29	Α
	40	ATOM	6432	N	LEU A 819	16.382	57.384 -13.477	1.00 11.61	А
		ATOM	6433	CA	LEU A 819	15.179	56.873 -12.829	1.00 12.56	Α
		ATOM	6434	CB	LEU A 819	15.545	56.177 -11.517	1.00 13.02	A
		ATOM	6435	CG	LEU A 819	16.481	54.969 -11.645	1.00 13.25	A
		ATOM	6436		LEU A 819	16.901	54.493 -10.260	1.00 13.84	A
	45				LEU A 819	15.787	53.856 -12.420	1.00 13.04	A
	45	ATOM	6437						
		ATOM	6438	С	LEU A 819	14.210	58.013 -12.554	1.00 13.08	A
		MOTA	6439	0	LEU A 819	14.459	58.857 -11.696	1.00 12.85	A
		ATOM	6440	N	ASP A 820	13.101	58.037 -13.281	1.00 14.34	A
	- 0	ATOM	6441	CA	ASP A 820	12.130	59.097 -13.088	1.00 14.92	A
	50	ATOM	6442	CB	ASP A 820	11.147	59.133 -14.261	1.00 16.01	Α
		ATOM	6443	CG	ASP A 820	11.841	59.387 -15.586	1.00 17.37	Α
		MOTA	6444	OD1	ASP A 820	12.852	60.123 -15.596	1.00 17.51	Α
			C 4 4 5	000	ASP A 820	11.378	58.862 -16.619	1.00 19.76	Α
		MOTA	6445	ODZ	ASE A GZO	11.370		1.00 15.70	Δ.
	55	ATOM ATOM	6445	C C	ASP A 820	11.378	58.964 -11.757	1.00 13.70	Ā

						_			55 004 11	000	1 00		-
		MOTA	6448	N	LYS	A	821	11.559	57.824 -11			14.77	A
		ATOM	6449	ÇA	LYS	Α	821	10.913	57.630 -9	.795	1.00	14.66	Α
		MOTA	6450	CB	LYS	Α	821	10.826	56.138 -9	.445	1.00	14.60	Α
		ATOM	6451	CG	LYS			12.163	55.452 -9	.211	1.00	14.35	Α
	5	ATOM	6452	ÇD	LYS			11.997		.154		14.29	A
	J									.952		14.37	A
		MOTA	6453	CE	LYS			13.335					
		MOTA	6454	NZ	LYS			13.215		.110		13.74	A
		MOTA	6455	С	LYS	A	821	11.699		.723		14.86	A
		ATOM	6456	0	LYS	Α	821	11.250	58.520 -7	.586	1.00	15.44	A
	10	MOTA	6457	N	LEU	Α	822	12.873	58.882 -9	.102	1.00	14.33	A
		ATOM	6458	CA	LEU	Α	822	13.718	59.644 -8	.188	1.00	13.96	А
		ATOM	6459	СВ	LEU			15.136		.157	1.00	13.85	Α
		ATOM	6460	CG	LEU			15.292		.720		14.60	A
								16.770		.716		14.62	A
	15	ATOM	6461		LEU								
	15	ATOM	6462		LEU			14.682		.338		14.91	A
		ATOM	6463	Ç	LEU			13.771		.666		14.06	A
		ATOM	6464	0	LEU			13.600		.854		14.20	Α
		ATOM	6465	N	PRO	Α	823	14.007	62.040 -7	.747	1.00	13.37	Α
		ATOM	6466	CD	PRO	Α	823	14.170	61.894 -6	.290	1.00	13.31	A
	20	ATOM	6467	CA	PRO			14.073	63.450 -8	.146	1.00	13.08	Α
Tolerand State		ATOM	6468	СВ	PRO			14.109		.810		13.38	A
ı,D		ATOM	6469	CG	PRO			14.794		.902		14.39	A
477					PRO			15.287		.026		12.91	A
1122		ATOM	6470	С									
ij	25	ATOM	6471	0	PRO			16.253		.050		12.74	A
248.5	25	ATOM	6472	N	LEU			15.222		.749		12.02	A
		ATOM	6473	CA	LEU			16.284	65.262 -10			11.44	А
M		MOTA	6474	CB	LEU	Α	824	16.019	66.702 -11	.119	1.00	11.62	Α
£į.		ATOM	6475	CG	LEU	Α	824	16.802	67.283 -12	.297	1.00	11.24	A
100		ATOM	6476	CD1	LEU	Α	824	16.058	68.500 -12	.841	1.00	11.66	А
	30	ATOM	6477		LEU			18.217	67.649 -11		1.00	11.13	Α
7,5 ₄ ,5		ATOM	6478	C	LEU			17.692	65.146 -10			11.55	А
		ATOM	6479	0	LEU			18.583	64.559 -10			11.18	A
į.												11.18	A
		ATOM	6480	N	GLN			17.884		.870			
ist.	25	MOTA	6481	CA	GLN			19.197		.226		10.79	A
\$150	35	ATOM	6482	CB	GLN			19.175		. 931		11.13	А
		ATOM	6483	CG	GLN			18.246		.846		10.84	А
		ATOM	6484	CD	GLN	Α	825	16.829	66.517 -5	.952	1.00	11.30	A
		ATOM	6485	OE1	GLN	Α	825	16.400	66.980 -7	.011	1.00	12.37	А
		ATOM	6486		GLN			16.092	66.450 -4	.850	1.00	11.42	А
	40	ATOM	6487	С	GLN			19.741		. 934	1.00	11.24	A
		ATOM	6488	0	GLN			20.953		.778		11.09	A
		ATOM	6489		ALA			18.855		.866		10.37	A
				N									
		ATOM	6490	CA	ALA			19.278		.597		10.73	A
	4 =	ATOM	6491	CB	ALA			18.088		.131		10.59	A
	45	MOTA	6492	C	ALA			19.884		.851		10.42	A
		ATOM	6493	0	ALA	Α	826	20.657		.776	1.00	11.05	Α
		ATOM	6494	N	ASN	Α	827	19.532	61.857 -10	.008	1.00	9.96	A
		ATOM	6495	CA	ASN	Α	827	20.039	61.349 -11	.272	1.00	9.71	A
		ATOM	6496	CB	ASN			18.964	61.489 -12			10.42	A
	50	ATOM	6497	CG	ASN			17.836	60.490 -12			11.62	A
	50											11.81	A
		ATOM	6498		ASN			18.050	59.282 -12				
		MOTA	6499		ASN			16.639	60.986 -11			12.88	A
		ATOM	6500	С	ASN			21.343	62.005 -11		1.00	9.32	A
		MOTA	6501	0	ASN			21.849	61.765 -12		1.00	9.65	A
	55	MOTA	6502	N	TYR	A	828	21.883	62.834 -10	.807	1.00	9.16	Α

							_					_
		ATOM	6503	CA	TYR A		23.160	63.484 -1		1.00	8.54	A
		MOTA	6504	CB	TYR A		23.222	64.852 -1		1.00	8.84	A
		ATOM	6505	CG	TYR A	828	23.250	65.996 -1	11.363	1.00	9.15	А
		MOTA	6506	CD1	TYR A	828	22.189	66.211 -1	12.243	1.00	8.96	A
	5	MOTA	6507	CE1	TYR A	828	22.235	67.235 -3		1.00	9.56	A
		ATOM	6508	CD2	TYR A	828	24.357	66.839 -1	11.447	1.00	9.13	A
		MOTA	6509	CE2	TYR A	828	24.412	67.863 -1	12.384	1.00	10.20	A
		ATOM	6510	CZ	TYR A	828	23.351	68.055 -1	13.252	1.00	9.60	А
		ATOM	6511	ОН	TYR A		23.418	69.048 -1	14.198	1.00	10.53	A
	10	ATOM	6512	С	TYR A	828	24.224	62.573 -1	LO.459	1.00	8.13	A
		ATOM	6513	0	TYR A	828	24.041	62.030 -	-9.370	1.00	9.32	A
		ATOM	6514	N	TYR A	829	25.324	62.398 -1	11.182	1.00	7.92	A
		ATOM	6515	CA	TYR A		26.414	61.550 -1	LO.726	1.00	7.93	A
		MOTA	6516	СВ	TYR A	829	26.458	60.251 -1	11.533	1.00	7.94	A
	15	ATOM	6517	CG	TYR A		25.293	59.338 -1	11.271	1.00	8.32	A
		ATOM	6518		TYR A		24.122	59.432 -1		1.00	8.62	A
		ATOM	6519		TYR A		23.028	58.613 - 1		1.00	8.83	Α
		ATOM	6520		TYR A		25.346	58.402 -1		1.00	7.20	Α
\$1,000		ATOM	6521		TYR A		24.258		-9.958	1.00	8.66	A
and the first first	20	ATOM	6522	CZ	TYR A		23.103	57.690 -3	10.717	1.00	8.09	A
		MOTA	6523	OH	TYR A		22.023	56.884 -1		1.00	9.63	Α
₩		ATOM	6524	С	TYR A		27.745	62.257 -1		1.00	7.92	Α
ij.		ATOM	6525	Ō	TYR A		27.848	63.264 -1		1.00	8.32	А
		ATOM	6526	N	PRO A		28.787	61.740 -1		1.00	7.99	A
14	25	ATOM	6527	CD	PRO A		28.853		-9.286	1.00	9.08	А
		ATOM	6528	CA	PRO A		30.085	62.395 -1		1.00	8.33	A
Ţ,		ATOM	6529	СВ	PRO A		30.971		-9.355	1.00	10.29	А
B)		MOTA	6530	CG	PRO A		30.008		-8.414	1.00	10.63	A
		ATOM	6531	С	PRO A		30.588	62.134 -1	11.797	1.00	7.87	A
	30	ATOM	6532	0	PRO A		30.367	61.050 -1	12.345	1.00	7.95	A
P _e led app a		ATOM	6533	N	ILE A		31.225	63.128 -1	12.406	1.00	7.13	A
ığ.		ATOM	6534	CA	ILE A		31.816	62.946 -1	13.728	1.00	7.22	A
j.4.		MOTA	6535	CB	ILE A		31.253	63.925 -1	14.791	1.00	7.38	A
Ş		ATOM	6536		ILE A	831	31.722	63.484 -1	16.179	1.00	7.54	А
	35	MOTA	6537		ILE A		29.715	63.962 -1	14.744	1.00	7.69	A
		ATOM	6538		ILE A		29.019	62.634 -3	15.056	1.00	7.75	A
		ATOM	6539	С	ILE A		33.285	63.274 -1	L3.468	1.00	7.77	A
		ATOM	6540	0	ILE A		33.774	64.351 -1	13.821	1.00	7.24	A
		ATOM	6541	N	PRO A		34.007	62.353 -1	12.810	1.00	7.31	A
	40	MOTA	6542	CD	PRO A	832	33.562	61.108 -1	L2.159	1.00	7.92	A
		ATOM	6543	CA	PRO A		35.417	62.626 -3	12.525	1.00	8.14	A
		ATOM	6544	СВ	PRO A		35.821	61.469 -1	11.600	1.00	7.96	A
		ATOM	6545	CG	PRO A		34.862	60.381 -3	11.944	1.00	8.53	А
		ATOM	6546	С	PRO A		36.322	62.793 -1	13.739	1.00	8.42	А
	45	ATOM	6547	0	PRO A		37.307	63.523 -1	13.665	1.00	10.36	A
		ATOM	6548	N	SER A		35.996	62.142 -1	14.853	1.00	7.99	A
		MOTA	6549	CA	SER A		36.822	62.293 -1	16.049	1.00	7.57	Α
		ATOM	6550	СВ	SER A		38.028	61.346 -1		1.00	9.46	A
		ATOM	6551	OG	SER A		37.664	60.014 -1			11.27	A
	50	ATOM	6552	C	SER A		36.082	62.103 -1		1.00	7.78	Α
		ATOM	6553	Ō	SER A		36.607	62.443 -1		1.00	6.86	А
		ATOM	6554	N	GLY A		34.868	61.570 -1		1.00	6.96	А
		ATOM	6555	CA	GLY A		34.156	61.391 -1		1.00	7.42	А
		ATOM	6556	C	GLY A		32.773	60.792 -1		1.00	6.62	A
	55	ATOM	6557	0	GLY A		32.394	60.209 -1		1.00	8.20	А
		011	233,	_	11							

		ATOM	6558	N	MSE	Α	835	32.012	60.942	-19.556	1.00 6.6	
		ATOM	6559	CA	MSE	Α	835	30.658		-19.609	1.00 7.4	1 A
		ATOM	6560	СВ	MSE	Α	835	29.691	61.418	-18.964	1.00 9.50	A C
		ATOM	6561	CG	MSE	Α	835	29.580	62.740	-19.725	1.00 10.7	б А
	5	ATOM	6562	SE	MSE	Α	835	28.541	64.091	-18.811	1.00 18.0	6 A
		ATOM	6563	CE	MSE	Α	835	26.954	63.069	-18.482	1.00 14.5	1 A
		ATOM	6564	С	MSE	Α	835	30.281	60.220	-21.071	1.00 7.2	9 A
		ATOM	6565	0			835	30.833	60.874	-21.960	1.00 7.5	5 A
		ATOM	6566	N	PHE	Α	836	29.358	59.302	-21.329	1.00 7.6	1 A
	10	ATOM	6567	CA			836	28.914	59.098	-22.697	1.00 8.2	4 A
		ATOM	6568	СВ			836	29.939		-23.501	1.00 7.7	B A
		MOTA	6569	CG			836	30.090		-23.057	1.00 8.6	9 A
		ATOM	6570		PHE			29.230		-23.536	1.00 8.1	9 A
		ATOM	6571		PHE			31.148		-22.232	1.00 9.2	
	15	ATOM	6572		PHE			29.428		-23.205	1.00 10.5	2 A
		ATOM	6573		PHE			31.353		-21.896	1.00 9.6	
		ATOM	6574	CZ			836	30.490		-22.388	1.00 9.9	2 A
		ATOM	6575	C			836	27.529		-22.795	1.00 9.1	
171		MOTA	6576	0			836	27.011		-21.832	1.00 8.9	
100 100 100 100 100 100 100 100 100 100	20	ATOM	6577	N			837	26.912		-23.956	1.00 9.2	
7 12.E		ATOM	6578	CA			837	25.604		-24.257	1.00 9.7	
		ATOM	6579	СВ			837	24.474		-24.341	1.00 9.3	
116 2. 1∫3 5.		ATOM	6580		ILE			24.046		-22.947	1.00 10.5	
		MOTA	6581		ILE			24.907		-25.208	1.00 9.4	
State guille State guille State State	25	ATOM	6582		ILE			23.765		-25.552	1.00 9.7	
14		MOTA	6583	C			837	25.766		-25.616	1.00 9.4	
ijħ		ATOM	6584	0			837	26.618		-26.413	1.00 9.3	
E1		ATOM	6585	N			838	24.968		-25.881	1.00 9.3	
Ü		ATOM	6586	CA			838	25.068		-27.155	1.00 10.00	
	30	ATOM	6587	CB			838	26.232		-27.114	1.00 10.0	
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00	MOTA	6588	CG	GLU			25.991		-26.121	1.00 11.8	
14		ATOM	6589	CD			838	27.115		-26.066	1.00 12.9	
		ATOM	6590		GLU			26.983		-25.296	1.00 15.20	
		ATOM	6591		GLU			28.121		-26.784	1.00 15.1	
ļ.	35	ATOM	6592	C			838	23.805		-27.484	1.00 10.7	
	00	ATOM	6593	0	GLU			22.957		-26.626	1.00 10.4	
		ATOM	6594	N	ASP			23.675		-28.754	1.00 11.7	
		MOTA	6595	CA	ASP			22.577		-29.192	1.00 12.0	
		ATOM	6596	CB	ASP			21.508		-30.004	1.00 12.0	
	40	ATOM	6597		ASP			22.056			1.00 11.8	
	10	ATOM	6598		ASP			23.063		-31.810	1.00 13.5	
		ATOM	6599		ASP			21.440		-31.629	1.00 15.0	
		ATOM	6600	C			839	23.267		-30.014	1.00 12.3	
		ATOM	6601	0	ASP			24.476		-29.891	1.00 11.9	
	45	MOTA	6602	N	ALA			22.525		-30.846	1.00 12.9	
	40	ATOM	6603	CA	ALA			23.136		-31.634	1.00 13.5	
		ATOM	6604	CB			840	22.058		-32.427	1.00 13.5	
		ATOM	6605	С	·ALA			24.245		-32.579	1.00 13.4	
		ATOM	6606	0			840	25.205		-32.815	1.00 14.9	
	50				ASN			24.138		-33.100	1.00 13.2	
	50	ATOM ATOM	6607 6608	N CA			841	25.118		-34.073	1.00 13.2	
			6609					24.404		-35.377	1.00 12.3	
		ATOM		CB	ASN					-35.927	1.00 14.7	
		MOTA	6610	CG OD1			841	23.583			1.00 13.4	
	55	ATOM	6611		ASN			24.092		-36.136 -36.167	1.00 17.8	
	55	ATOM	6612	NDZ	ASN	Α	841	22.301	J∠.56U	-36.167	1.00 17.8	, A

									54 050 00 00	1 00	10.00	76
		ATOM	6613	С	ASN			26.011	54.258 -33.718		12.20	A
		ATOM	6614	0	ASN .			27.100	54.389 -34.274		12.69	A
		ATOM	6615	N	THR .			25.557	55.111 -32.810		11.81	A
	_	ATOM	6616	CA	THR .			26.317	56.307 -32.485		11.57	A
	5	MOTA	6617	CB	THR			25.569	57.557 -33.001		11.76	A
		MOTA	6618	OG1	THR .			25.148	57.338 -34.354		13.92	A
		ATOM	6619	CG2				26.470	58.786 -32.954		11.70	A
		ATOM	6620	С	THR .			26.594	56.505 -31.005		10.99	A
		ATOM	6621	0	THR .			25.796	56.123 -30.154		11.90	A
	10	MOTA	6622	N	ARG			27.738	57.116 -30.712		10.93	A
		MOTA	6623	CA	ARG			28.110	57.411 -29.338	1.00	9.78	A
		ATOM	6624	CB	ARG .			29.132	56.403 -28.801		10.05	A
		MOTA	6625	CG	ARG			29.601	56.731 -27.380	1.00	9.72	A
	45	ATOM	6626	CD	ARG			30.786	55.880 -26.941	1.00	9.07	A
	15	ATOM	6627	NE	ARG			30.421	54.502 -26.612	1.00	9.80	A
		ATOM	6628	CZ	ARG .			31.241	53.644 -26.011	1.00	9.80	A
		ATOM	6629		ARG			32.469	54.019 -25.675	1.00	9.81	A
1:32.		ATOM	6630		ARG .			30.833	52.415 -25.731		10.05	A
122	20	ATOM	6631	C	ARG .			28.713	58.805 -29.262	1.00	9.19	A
1	20	MOTA	6632	0	ARG			29.414	59.245 -30.179	1.00	8.90 8.29	A A
1,5		ATOM	6633	N	LEU .			28.409	59.501 -28.175	1.00	7.96	A
1,34		ATOM	6634	CA	LEU			28.956	60.826 -27.930	1.00	8.76	A
1,50		ATOM	6635	CB	LEU .			27.871	61.908 -27.944 63.319 -27.799	1.00	9.51	A
141	25	ATOM	6636	CG	LEU .			28.466	63.614 -28.981		10.57	A
N	25	ATOM	6637		LEU			29.388	64.350 -27.716		11.46	A
		ATOM	6638		LEU .			27.353 29.597	60.755 -26.555	1.00	7.93	A
		ATOM	6639	C	LEU .			28.924	60.463 -25.561	1.00		A
at. ≟⇔ ag		ATOM	6640	O N	LEU			30.900	61.007 -26.516	1.00	8.37	A
	30	ATOM	6641 6642	N CA	THR THR			31.647	60.968 -25.268	1.00	8.30	A
1.0	30	ATOM ATOM	6643	CB	THR			32.823	59.975 -25.346	1.00		A
114		ATOM	6644	OG1				32.344	58.688 -25.762	1.00	7.36	A
Įsā.		ATOM	6645		THR			33.494	59.837 -23.988	1.00	8.08	A
		ATOM	6646	C	THR			32.220	62.342 -24.949	1.00	8.06	А
, 15	35	ATOM	6647	Ö	THR			32.815	62.996 -25.807	1.00		A
	00	ATOM	6648	N	LEU			32.025	62.777 -23.713	1.00	8.51	А
		ATOM	6649	CA	LEU			32.552	64.054 -23.264	1.00	7.79	A
		ATOM	6650	СВ	LEU			31.444	64.924 -22.667	1.00	8.89	А
		ATOM	6651	CG	LEU			31.893	66.296 -22.158	1.00	9.02	Α
	40	ATOM	6652		LEU			32.337	67.159 -23.333	1.00	9.99	Α
		ATOM	6653		LEU			30.751	66.964 -21.402	1.00	11.17	A
		ATOM	6654	С	LEU			33.583	63.733 -22.193	1.00	7.73	A
		ATOM	6655	0	LEU			33.241	63.165 -21.155	1.00	7.34	А
		MOTA	6656	N	LEU	Α	847	34.843	64.057 -22.467	1.00	7.27	A
	45	ATOM	6657	CA	LEU	A	847	35.919	63.824 -21.509	1.00	6.61	А
		ATOM	6658	CB	LEU			37.194	63.357 -22.214	1.00	7.48	А
		ATOM	6659	CG	LEU	Α	847	37.177	62.018 -22.965	1.00		А
		ATOM	6660	CD1	LEU	Α	847	36.564	60.942 -22.078	1.00		А
		MOTA	6661	CD2	LEU	Α	847	36.393	62.144 -24.267	1.00		Α
	50	ATOM	6662	С	LEU	A	847	36.181	65.138 -20.786	1.00		Α
		ATOM	6663	0	LEU			36.068	66.214 -21.389	1.00	7.43	А
		ATOM	6664	N	THR			36.531	65.058 -19.503	1.00	6.70	А
		ATOM	6665	CA	THR			36.781	66.268 -18.716			А
		ATOM	6666	СВ	THR	A	848	35.796	66.393 -17.537	1.00	9.99	А
	55	ATOM	6667	OG1	THR	Α	848	36.158	65.457 -16.510	1.00	12.32	А

		ATOM	6668	CG2	THR	А	848	34.383	66.109 -17.986	1.00 10.74	A
		ATOM	6669	С	THR			38.183	66.365 -18.127	1.00 8.03	A
		ATOM	6670	0	THR			38.852	65.354 -17.886	1.00 8.97	А
		ATOM	6671	N	GLY			38.620	67.598 -17.891	1.00 7.93	
	5	ATOM	6672	CA	GLY			39.923	67.822 -17.298	1.00 7.56	
		ATOM	6673	C	GLY			39.761	68.195 -15.836	1.00 7.38	
		ATOM	6674	0	GLY			40.708	68.628 -15.182	1.00 7.22	
		ATOM	6675	N	GLN			38.544	68.027 -15.328	1.00 6.67	A
		ATOM	6676	CA	GLN			38.219	68.334 -13.940	1.00 7.10	
	10	ATOM	6677	CB	GLN			38.021	69.847 -13.759	1.00 7.43	
	10		6678	CG	GLN			36.891	70.455 -14.612	1.00 7.11	A
		ATOM			-				70.552 -16.086	1.00 7.11	
		ATOM	6679	CD	GLN			37.239			
		ATOM	6680		GLN			38.338	70.967 -16.454		
	15	ATOM	6681		GLN			36.289	70.183 -16.945	1.00 7.13	
	15	MOTA	6682	C	GLN			36.939	67.601 -13.543	1.00 7.56	
		ATOM	6683	0	GLN			36.058	67.387 -14.375	1.00 7.52	
		MOTA	6684	N	PRO			36.827	67.194 -12.269	1.00 6.72	A
		MOTA	6685	CD	PRO			37.849	67.209 -11.207	1.00 6.45	A
		MOTA	6686	CA	PRO			35.619	66.492 -11.829	1.00 6.46	A
ı.D	20	ATOM	6687	CB	PRO			36.060	65.825 -10.525	1.00 6.15	A
		MOTA	6688	CG	PRO			37.056	66.810 -9.976	1.00 6.55	
		ATOM	6689	С	PRO	A	851	34.473	67.474 -11.623	1.00 7.19	
9,6 E		ATOM	6690	0	PRO	Α	851	34.643	68.516 -10.982	1.00 7.03	A
		ATOM	6691	N	LEU	Α	852	33.316	67.144 -12.190	1.00 7.54	А
Carino Carino	25	ATOM	6692	CA	LEU	А	852	32.120	67.977 -12.083	1.00 8.39	A
L		ATOM	6693	CB	LEU	Α	852	32.022	68.920 -13.290	1.00 8.88	A
		ATOM	6694	CG	LEU	Α	852	33.166	69.925 -13.485	1.00 8.62	Α
S}		MOTA	6695	CD1	LEU	Α	852	33.096	70.522 -14.891	1.00 9.44	A
		ATOM	6696	CD2	LEU	Α	852	33.089	71.015 -12.431	1.00 8.95	A
	30	ATOM	6697	С	LEU	Α	852	30.905	67.055 -12.048	1.00 8.99	A
Pitali Pitali		ATOM	6698	0	LEU			31.022	65.872 -12.351	1.00 10.89	А
19		ATOM	6699	N	GLY			29.750	67.593 -11.673	1.00 7.59	А
į.		ATOM	6700	CA	GLY			28.545	66.781 -11.619	1.00 7.39	А
		ATOM	6701	C	GLY			27.827	66.774 -12.955	1.00 7.76	
	35	MOTA	6702	0	GLY			27.871	67.760 -13.699	1.00 7.36	А
		ATOM	6703	N	GLY			27.157	65.672 -13.273	1.00 6.90	A
		ATOM	6704	CA	GLY			26.458	65.610 -14.543	1.00 8.09	
		ATOM	6705	C	GLY			25.406	64.527 -14.623	1.00 7.89	
		ATOM	6706	0	GLY			25.239	63.734 -13.695	1.00 8.50	
	40	ATOM	6707	N	SER			24.703	64.480 -15.749	1.00 8.37	A
	10	ATOM	6708	CA	SER			23.649	63.494 -15.931	1.00 9.33	A
		MOTA	6709	CB	SER			22.461	63.853 -15.032	1.00 10.99	A
		ATOM	6710	OG	SER			21.407	62.906 -15.128	1.00 10.64	A
		ATOM	6711	C	SER			23.186	63.483 -17.378	1.00 10.04	A
	45							23.755	64.156 -18.237	1.00 9.01	A
	40	ATOM	6712	0	SER						A
		ATOM	6713	N	SER			22.153	62.687 -17.629	1.00 9.89 1.00 10.04	
		ATOM	6714	CA	SER			21.502	62.599 -18.933		A
		ATOM	6715	CB	SER			21.872	61.313 -19.670	1.00 9.85	A
	Ε0	ATOM	6716	OG	SER			21.144	61.223 -20.889	1.00 10.25	A
	50	ATOM	6717	С	SER			20.041	62.560 -18.515	1.00 10.83	A
		ATOM	6718	0	SER			19.507	61.496 -18.203	1.00 11.04	A
		ATOM	6719	N	LEU			19.405	63.729 -18.491	1.00 11.03	A
		ATOM	6720	CA	LEU			18.020	63.834 -18.051	1.00 11.33	A
		MOTA	6721	CB	LEU			17.776	65.233 -17.475	1.00 12.21	A
	55	ATOM	6722	CG	LEU	A	857	18.613	65.514 -16.224	1.00 12.41	А

		MOTA	6723	CD1	LEU A 8	57	18.420	66.959	-15.772	1.00		А
		ATOM	6724	CD2	LEU A 8	57	18.213	64.538	-15.117	1.00	13.38	Α
		ATOM	6725	С	LEU A 8	57	16.970	63.499	-19.099	1.00	11.41	Α
		ATOM	6726	0	LEU A 8	57	15.775	63.478	-18.800	1.00	12.16	A
	5	ATOM	6727	N	ALA A 8		17.422	63.235	-20.320	1.00	10.23	A
	Ū	ATOM	6728	CA	ALA A 8		16.532		-21.417	1.00		А
		ATOM	6729	CB	ALA A 8		15.852		-21.999	1.00		A
					ALA A 8		17.333		-22.494	1.00		A
		ATOM	6730	C								A
	10	ATOM	6731	0	ALA A 8		18.530		-22.655	1.00		
	10	ATOM	6732	N	SER A 8		16.667		-23.226	1.00		A
		ATOM	6733	CA	SER A 8		17.314		-24.287	1.00		A
		ATOM	6734	CB	SER A 8		16.265		-25.077	1.00		A
		ATOM	6735	OG	SER A 8		16.863		-26.094	1.00		A
		MOTA	6736	С	SER A 8		18.063		-25.218	1.00		A
	15	ATOM	6737	0	SER A 8	59	17.535		-25.612	1.00	12.09	A
		ATOM	6738	N	GLY A 8	60	19.299	61.101	-25.542	1.00	11.53	A
		ATOM	6739	CA	GLY A 8	60	20.117	61.904	-26.435	1.00	11.19	Α
		ATOM	6740	С	GLY A 8	60	20.846	63.073	-25.798	1.00	11.05	A
		ATOM	6741	0	GLY A 8	60	21.585	63.780	-26.483	1.00	10.94	A
12	20	ATOM	6742	N	GLU A 8		20.665	63.276	-24.496	1.00	10.54	А
ij.		ATOM	6743	CA	GLU A 8		21.318	64.390	-23.812	1.00	10.72	A
°dest°.		ATOM	6744	CB	GLU A 8		20.309		-22.981	1.00		A
M		ATOM	6745	CG	GLU A 8		19.143		-23.742	1.00		А
		ATOM	6746	CD	GLU A 8		18.277		-22.863	1.00		A
193	25	ATOM	6747		GLU A 8		18.521		-21.638	1.00		A
	20	ATOM	6748		GLU A 8		17.348		-23.395	1.00		A
			6749	C	GLU A 8		22.460		-22.874	1.00		A
		ATOM							-22.357	1.00		A
ai≈e ai		MOTA	6750	0	GLU A 8		22.543					
	20	ATOM	6751	N	LEU A 8		23.333		-22.665	1.00		A
Ü	30	ATOM	6752	CA	LEU A 8		24.455		-21.736	1.00	9.88	A
in in in in in in in in in in in in in i		MOTA	6753	CB	LEU A 8		25.775		-22.451	1.00	9.80	A
ļ.		ATOM	6754	CG	LEU A 8		26.088		-22.990	1.00	9.38	A
		ATOM	6755		LEU A 8		27.467		-23.644	1.00	8.93	A
lya.		MOTA	6756	CD2	LEU A 8		26.054		-21.852	1.00		A
i ****	35	ATOM	6757	С	LEU A 8		24.553		-21.143	1.00	9.97	A
		ATOM	6758	0	LEU A 8	62	24.420	67.272	-21.865	1.00		A
		MOTA	6759	N	GLU A 8	63	24.748		-19.838	1.00	9.17	A
		ATOM	6760	CA	GLU A 8	63	24.905	67.705	-19.243	1.00	8.61	А
		ATOM	6761	CB	GLU A 8	63	23.562	68.289	-18.791	1.00	9.86	Α
	40	ATOM	6762	CG	GLU A 8	63	22.976	67.732	-17.514	1.00	9.77	Α
		ATOM	6763	CD	GLU A 8	63	21.678	68.431	-17.154	1.00	10.41	Α
		ATOM	6764	OE1	GLU A 8	63	21.570	68.956	-16.028	1.00	10.63	A
		ATOM	6765		GLU A 8		20.764	68.458	-18.008	1.00	11.95	A
		ATOM	6766	С	GLU A 8		25.878		-18.090	1.00	9.12	А
	45	ATOM	6767	0	GLU A 8		25.975		-17.408	1.00	7.97	A
	20	ATOM	6768	N	ILE A 8		26.612		-17.887	1.00	9.26	А
		ATOM	6769	CA	ILE A 8		27.608		-16.835	1.00	9.59	A
		ATOM	6770	CB	ILE A 8		28.987		-17.416	1.00	9.91	A
									-18.541	1.00		A
	50	ATOM	6771		ILE A 8		29.401					
	50	ATOM	6772		ILE A 8		30.040		-16.308	1.00		A
		MOTA	6773		ILE A 8		31.299		-16.735	1.00		A
		ATOM	6774	С	ILE A 8		27.649		-16.234	1.00	9.24	A
		ATOM	6775	0	ILE A 8		27.713		-16.956	1.00	9.45	A
		MOTA	6776	N	MSE A 8		27.580		-14.908	1.00	8.75	A
	55	ATOM	6777	CA	MSE A 8	65	27.580	71.496	-14.193	1.00	9.06	А

		ATOM	6778	CD	MSE	ת	065	27.176	71.269	-12 733	1.00 11.05	А
				CB								
		ATOM	6779	CG	MSE			26.538	72.478		1.00 11.46	A
		ATOM	6780	SE	MSE			24.827	72.915		1.00 18.59	A
	_	MOTA	6781	CE	MSE			23.751	71.627		1.00 12.98	Α
	5	MOTA	6782	С	MSE	Α	865	28.936	72.200	-14.257	1.00 9.30	A
		ATOM	6783	0	MSE	Α	865	29.984	71.569	-14.105	1.00 9.37	A.
		MOTA	6784	N	GLN	Α	866	28.903	73.514	-14.467	1.00 9.20	A
		ATOM	6785	CA	GLN			30.121	74.316	-14.581	1.00 8.74	А
		ATOM	6786	СВ	GLN			29.942	75.368		1.00 9.56	A
	10	ATOM	6787	CG	GLN			29.577	74.765		1.00 9.63	А
	10	ATOM	6788	CD	GLN			30.598	73.749		1.00 9.75	A
								31.725	74.097		1.00 10.41	A
		MOTA	6789	OE1					72.479		1.00 10.41	A
		ATOM	6790		GLN			30.215				
	15	ATOM	6791	С	GLN			30.513	74.986			A
	15	ATOM	6792	0	GLN			31.686	75.021		1.00 9.31	A
		ATOM	6793	N	ASP			29.529	75.549		1.00 9.02	A
		ATOM	6794	CA	ASP			29.770	76.177		1.00 9.28	A
		ATOM	6795	CB	ASP	Α	867	30.539	77.495		1.00 9.80	A
		MOTA	6796	CG	ASP	Α	867	31.224	77.920		1.00 9.59	A
ij	20	ATOM	6797	OD1	ASP	Α	867	31.051	77.242	-9.089	1.00 9.81	Α
ı		ATOM	6798	OD2	ASP	Α	867	31.944	78.937	-10.144	1.00 11.47	A
		ATOM	6799	С	ASP	Α	867	28.430	76.428	-10.630	1.00 9.67	А
		ATOM	6800	0	ASP	Α	867	27.381	76.361	-11.281	1.00 10.05	А
fired no.4		ATOM	6801	N	ARG			28.470	76.705	-9.335	1.00 10.02	А
M.	25	ATOM	6802	CA	ARG			27.263	76.958	-8.573	1.00 10.34	A
		ATOM	6803	СВ	ARG			26.748	75.646	-7.969	1.00 10.15	A
(M		ATOM	6804	CG	ARG			27.773	74.880	-7.138	1.00 10.84	A
ä;		ATOM	6805	CD	ARG			27.464	73.380	-7.140	1.00 10.25	A
			6806	NE	ARG			26.101	73.108	-6.696	1.00 9.69	A
i terii.	30	ATOM							72.818	-5.444	1.00 9.26	A
10	30	ATOM	6807	CZ	ARG			25.761			1.00 9.20	A
i j		MOTA	6808		ARG			26.687	72.743	-4.496		
[.d.		ATOM	6809		ARG			24.486	72.628	-5.136	1.00 9.51	A
		MOTA	6810	С	ARG			27.570	77.977	-7.486	1.00 10.82	A
	0-	ATOM	6811	0	ARG			28.606	77.901	-6.825	1.00 11.25	A
5	35	MOTA	6812	N	ARG			26.671	78.944	-7.333	1.00 10.70	A
		MOTA	6813	CA	ARG			26.816	80.003	-6.337	1.00 11.61	A
		MOTA	6814	CB	ARG			26.990	81.357	-7.037	1.00 11.61	А
		MOTA	6815	CG	ARG	Α	869	27.262	82.532	-6.103	1.00 12.74	А
		ATOM	6816	CD	ARG	Α	869	27.557	83.804	-6.889	1.00 13.91	А
	40	MOTA	6817	NE	ARG	Α	869	27.739	84.974	-6.029	1.00 15.08	A
		ATOM	6818	CZ	ARG	Α	869	28.853	85.263	-5.364	1.00 15.70	A
		ATOM	6819	NH1	ARG	Α	869	29.911	84.470	-5.451	1.00 16.09	А
		ATOM	6820		ARG			28.907	86.351	-4.605	1.00 17.21	А
		ATOM	6821	С	ARG			25.525	79.962	-5.531	1.00 12.83	А
	45	ATOM	6822	0	ARG			24.445	80.221	-6.061	1.00 12.65	А
	10	ATOM	6823	N	LEU			25.650	79.610	-4.255	1.00 13.19	А
		ATOM	6824	CA	LEU			24.505	79.472	-3.357	1.00 14.88	A
			6825	CB	LEU			24.395	78.012	-2.934	1.00 14.84	A
		ATOM							77.060	-4.132	1.00 14.04	A
	EΩ	ATOM	6826	CG	LEU			24.440		-3.659		A
	50	ATOM	6827		LEU			24.778	75.671		1.00 16.16	
		ATOM	6828		LEU			23.116	77.092	-4.880	1.00 15.69	A
		MOTA	6829	С	LEU			24.603	80.362	-2.123	1.00 15.84	A
		ATOM	6830	0	LEU			25.596	80.333	-1.396	1.00 15.42	A
		ATOM	6831	N	ALA			23.548	81.131	-1.877	1.00 17.32	A
	55	ATOM	6832	CA	ALA	A	871	23.521	82.055	-0.752	1.00 19.19	А

	ATOM	6833	CB	ALA	Α	871						
	MOTA	6834	С	ALA	Α	871		23.250	81.427	0.611	1.00 20.12	Α
		6835	0	ALA	Α	871		23.687	81.954	1.634	1.00 21.06	А
											1.00 20.24	Α
5												
9												
10												
10												
		6844	CB									
	ATOM	6845	CG	ASP	А	873						
	MOTA	6846	OD1	ASP	Α	873		23.546	75.332		1.00 19.80	A
15	ATOM	6847	OD2	ASP	Α	873		25.602	75.505	6.214		
	ATOM	6848	С	ASP	Α	873		22.697	75.779	3.979	1.00 18.67	A
	ATOM	6849	0	ASP	Α	873		21.488	75.985	4.077	1.00 18.83	А
			N						74.568	3.752	1.00 17.49	Α
										3.602	1.00 16.56	Α
20												
25												
23												
20												A
30												
	ATOM		OE2									
	MOTA	6865	С					22.977			1.00 17.56	
	ATOM	6866	0	GLU	Α	875		22.499	70.160	8.109	1.00 17.20	A
35	MOTA	6867	N	ARG	Α	876		24.226	71.130	7.051		
	ATOM	6868	CA	ARG	Α	876		25.091	69.980	7.285	1.00 15.68	A
		6869	СВ	ARG	Α	876		25.519	69.343	5.955	1.00 14.98	A
				ARG	Α	876		24.365	68.665	5.196	1.00 14.42	A
								23.701	67.581	6.046	1.00 13.74	А
40											1.00 13.11	Α
												А
45												
43												
			0									
50			N									
	ATOM	6883	CA									
	ATOM	6884	CB					29.168				
	ATOM	6885	CG	LEU	Α	878		30.078	74.997	4.782		
	MOTA	6886	CD1	LEU	A	878		31.532	74.844	5.224	1.00 15.22	A
55	ATOM	6887	CD2	LEU	Α	878		29.928	74.663	3.308	1.00 15.32	А
	5 10 15 20 25 30 35 40 45 50	5 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5 ATOM 6834 ATOM 6835 ATOM 6836 ATOM 6837 ATOM 6838 ATOM 6839 ATOM 6840 ATOM 6841 10 ATOM 6842 ATOM 6844 ATOM 6845 ATOM 6846 15 ATOM 6846 ATOM 6851 ATOM 6851 ATOM 6851 ATOM 6852 ATOM 6853 ATOM 6853 ATOM 6854 ATOM 6855 ATOM 6856 ATOM 6856 ATOM 6860 ATOM 6861 ATOM 6861 ATOM 6861 ATOM 6861 ATOM 6863 ATOM 6863 ATOM 6863 ATOM 6863 ATOM 6866 ATOM 6863 ATOM 6866 ATOM 6867 ATOM 6867 ATOM 6867 ATOM 6870 ATOM 6870 ATOM 6871 ATOM 6881 ATOM 6881 ATOM 6881 ATOM 6881 ATOM 6885 ATOM 6885 ATOM 6885	## ATOM	ATOM 6834 C ALA ATOM 6835 O ALA ATOM 6836 N SER ATOM 6837 CA SER ATOM 6839 OG SER ATOM 6839 OG SER ATOM 6840 C SER ATOM 6841 O SER ATOM 6841 O SER ATOM 6842 N ASP ATOM 6843 CA ASP ATOM 6844 CB ASP ATOM 6846 OD1 ASP ATOM 6846 OD1 ASP ATOM 6848 C ASP ATOM 6848 C ASP ATOM 6850 N ASP ATOM 6851 CA ASP ATOM 6851 CA ASP ATOM 6850 CA ASP ATOM 6855 OD2 ASP ATOM 6855 OD2 ASP ATOM 6855 OD2 ASP ATOM 6855 OD2 ASP ATOM 6856 C ASP ATOM 6856 C ASP ATOM 6856 C ASP ATOM 6856 C ASP ATOM 6866 C B GLU ATOM 6866 O GLU ATOM 6866 C G GLU ATOM 6866 O GLU ATOM 6866 C G GLU ATOM 6866 C G GLU ATOM 6866 C G GLU ATOM 6866 C G GLU ATOM 6866 C G GLU ATOM 6867 N ARG ATOM 6868 CA ARG ATOM 6867 N ARG ATOM 6867 N ARG ATOM 6867 N ARG ATOM 6868 CA ARG ATOM 6867 C G ARG ATOM 6867 C G ARG ATOM 6867 N ARG ATOM 6867 N ARG ATOM 6867 N ARG ATOM 6867 C G ARG ATOM 6867 C G ARG ATOM 6867 C ARG ATOM 6870 CG ARG ATOM 6871 CD ARG ATOM 6871 CD ARG ATOM 6870 CG ARG ATOM 6871 CD ARG ATOM 6871 CD ARG ATOM 6871 CD ARG ATOM 6871 CD ARG ATOM 6871 CD ARG ATOM 6872 NE ARG ATOM 6871 CD ARG ATOM 6872 NE ARG ATOM 6872 NE ARG ATOM 6872 NE ARG ATOM 6884 CB LEU ATOM 6884 CB LEU ATOM 6885 CG LEU ATOM 6886 CD LEU ATOM 6886 CD LEU ATOM 6886 CD LEU ATOM 6886 CD LEU	ATOM 6834 C ALA A ATOM 6835 O ALA A ATOM 6836 N SER A ATOM 6837 CA SER A ATOM 6838 CB SER A ATOM 6839 OG SER A ATOM 6840 C SER A ATOM 6841 O SER A ATOM 6841 O SER A ATOM 6842 N ASP A ATOM 6845 CG ASP A ATOM 6846 OD1 ASP A ATOM 6846 OD1 ASP A ATOM 6847 OD2 ASP A ATOM 6849 O ASP A ATOM 6850 N ASP A ATOM 6850 N ASP A ATOM 6850 CB ASP A ATOM 6851 CA ASP A ATOM 6850 CB ASP A ATOM 6855 OD2 ASP A ATOM 6855 OD2 ASP A ATOM 6856 C ASP A ATOM 6856 C ASP A ATOM 6856 C ASP A ATOM 6856 C ASP A ATOM 6856 C ASP A ATOM 6850 N ASP A ATOM 6856 C ASP A ATOM 6856 C ASP A ATOM 6856 C ASP A ATOM 6856 C ASP A ATOM 6856 C ASP A ATOM 6856 C ASP A ATOM 6866 O GLU A ATOM 6866 O GLU A ATOM 6866 O GLU A ATOM 6866 CD GLU A ATOM 6866 CA ARG A ATOM 6867 N ARG A ATOM 6867 N ARG A ATOM 6868 CA ARG A ATOM 6867 CG ARG A ATOM 6868 CG ARG A ATOM 6868 CG ARG A ATOM 6868 CG ARG A ATOM 6868 CG ARG A ATOM 6868 CG ARG	ATOM 6834 C ALA A 871 ATOM 6835 O ALA A 872 ATOM 6837 CA SER A 872 ATOM 6837 CA SER A 872 ATOM 6838 CB SER A 872 ATOM 6839 OG SER A 872 ATOM 6841 O SER A 873 ATOM 6841 O SER A 873 ATOM 6842 N ASP A 873 ATOM 6844 CB ASP A 873 ATOM 6845 CG ASP A 873 ATOM 6845 CG ASP A 873 ATOM 6846 OD1 ASP A 873 ATOM 6847 OD2 ASP A 873 ATOM 6848 C ASP A 873 ATOM 6850 N ASP A 873 ATOM 6851 CA ASP A 874 ATOM 6851 CA ASP A 874 ATOM 6851 CA ASP A 874 ATOM 6850 N ASP A 874 ATOM 6850 CB ASP A 874 ATOM 6850 CB ASP A 874 ATOM 6850 CB ASP A 874 ATOM 6850 CB ASP A 874 ATOM 6850 CB ASP A 874 ATOM 6850 CB ASP A 874 ATOM 6850 CB ASP A 874 ATOM 6850 CD ASP A 874 ATOM 6850 CD ASP A 875 ATOM 6850 CD ASP A 874 ATOM 6850 CD ASP A 874 ATOM 6850 CD ASP A 874 ATOM 6850 CD ASP A 874 ATOM 6850 CD ASP A 874 ATOM 6850 CD ASP A 874 ATOM 6850 CD ASP A 874 ATOM 6850 CD ASP A 874 ATOM 6860 CB GLU A 875 ATOM 6860 CB GLU A 876 ATOM 6860 CB GLU A 876 ATOM 6870 CG ARG A 876 ATOM 6880 CC GLU A 878 ATOM 6880 CC GLU A 878 ATOM 6880 CD GLU A 878 ATOM 6880 CD GLU A 878 ATOM 6880 CD GLU A 878 ATOM 6880 CD GLU A 878 ATOM 6880 CD GLU A 878	## ATOM 6834	ATOM 6834 C ALA A 871 23.250 ATOM 6835 O ALA A 871 23.667 ATOM 6836 N SER A 872 22.546 ATOM 6837 CA SER A 872 22.227 ATOM 6838 CB SER A 872 20.729 ATOM 6840 C SER A 872 20.354 ATOM 6841 O SER A 872 23.016 ATOM 6841 O SER A 872 23.016 ATOM 6842 N ASP A 873 23.609 ATOM 6844 CB ASP A 873 23.609 ATOM 6845 CG ASP A 873 24.046 ATOM 6846 OD1 ASP A 873 24.046 ATOM 6846 OD1 ASP A 873 23.5602 ATOM 6848 C ASP A 873 23.546 ATOM 6849 O ASP A 873 22.697 ATOM 6850 N ASP A 873 22.697 ATOM 6850 N ASP A 874 22.318 ATOM 6850 N ASP A 874 23.201 ATOM 6850 CA ASP A 874 22.318 ATOM 6850 CA ASP A 874 22.318 ATOM 6850 CA ASP A 874 22.678 ATOM 6850 CA ASP A 874 22.678 ATOM 6850 CA ASP A 874 22.219 ATOM 6850 CA ASP A 874 22.2126 ATOM 6850 CA ASP A 874 22.2126 ATOM 6850 CA ASP A 874 22.2139 ATOM 6850 CA ASP A 874 22.226 ATOM 6850 CA ASP A 874 22.226 ATOM 6850 CA ASP A 874 22.2139 ATOM 6850 CA ASP A 874 22.2139 ATOM 6850 CA ASP A 874 22.2139 ATOM 6850 CA ASP A 874 22.226 ATOM 6850 CA ASP A 874 22.2139 ATOM 6850 CA ASP A 874 22.226 ATOM 6850 CA ASP A 874 22.226 ATOM 6850 CA ASP A 874 22.2139 ATOM 6850 CA ASP A 874 22.2139 ATOM 6850 CA ASP A 874 22.226 ATOM 6850 CA ASP A 874 22.2139 ATOM 6860 CB GLU A 875 22.370 ATOM 6860 CB GLU A 875 22.132 ATOM 6860 CB GLU A 875 19.741 ATOM 6860 CB GLU A 875 19.741 ATOM 6860 CB GLU A 875 19.741 ATOM 6860 CB GLU A 875 19.741 ATOM 6860 CB GLU A 875 19.0741 ATOM 6860 CB GLU A 875 19.0741 ATOM 6860 CB GLU A 875 19.0741 ATOM 6860 CB ARG A 876 25.091 ATOM 6860 CB ARG A 876 25.091 ATOM 6860 CB ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6870 CG ARG A 876 25.091 ATOM 6880 CC LV A 877 26.249 ATOM 6880 CC LV A 877 29.340 ATOM 6880 CC LV A 878 29.299 ATOM 6880 CD LV A 878 29.299 ATOM 6880 CD LV A 878 29.299	ATOM 6835 C ALA A 871	ATOM	ATOM

		ATOM	6888	C	LEU	70	070	29.134	75.543	7.630	1 00	15.66	А
				С									
		ATOM	6889	0	LEU			30.119	76.257	7.823		15.76	A
		ATOM	6890	N	GLY			27.888	75.957	7.843		15.47	Α
	_	ATOM	6891	CA	GLY			27.631	77.293	8.355		16.15	Α
	5	ATOM	6892	С	GLY			27.788	78.428	7.361	1.00		Α
		ATOM	6893	0	GLY	Α	879	27.968	79.580	7.755	1.00	17.29	А
		ATOM	6894	N	GLN	A	880	27.729	78.108	6.074	1.00	16.52	Α
		ATOM	6895	CA	GLN			27.843	79.125	5.035	1.00	16.57	А
		ATOM	6896	СВ	GLN			29.284	79.648	4.919	1.00		А
	10	ATOM	6897	CG	GLN			30.329	78.599	4.526		17.13	A
	10												A
		ATOM	6898	CD	GLN			31.561	79.211	3.873	1.00		
		ATOM	6899	OE1	GLN			31.577	79.470	2.665		18.68	A
		MOTA	6900		GLN			32.594	79.458	4.668		15.41	A
		ATOM	6901	С	GLN			27.415	78.556	3.696	1.00		A
	15	ATOM	6902	0	GLN	Α	880	27.350	77.338	3.519	1.00	17.17	Α
		ATOM	6903	N	GLY	Α	881	27.104	79.447	2.762	1.00	17.12	A
		ATOM	6904	CA	GLY			26.725	79.010	1.436	1.00	16.41	Α
		ATOM	6905	С	GLY			28.008	78.947	0.634	1.00		А
1700		ATOM	6906	Õ	GLY			29.092	78.817	1.203	1.00		A
	20	ATOM	6907	N	VAL			27.893	79.037	-0.682	1.00		A
P _e legii mes	20												
ųĮ.		ATOM	6908	CA	VAL			29.060	79.011	-1.552	1.00		A
47		MOTA	6909	CB	VAL			28.998	77.814	-2.520	1.00		Α
1 (22) 1 (22)		ATOM	6910	CG1				30.185	77.843	-3.463	1.00		A
997		ATOM	6911	CG2	VAL	Α	882	28.987	76.517	-1.726	1.00	14.87	A
15	25	ATOM	6912	С	VAL	Α	882	29.029	80.320	-2.328	1.00	13.86	A
		ATOM	6913	0	VAL	Α	882	28.353	80.432	-3.348	1.00	13.36	A
1 101		ATOM	6914	N	LEU	Α	883	29.755	81.312	-1.823	1.00	13.97	А
91		MOTA	6915	CA	LEU			29.791	82.635	-2.440	1.00		А
		ATOM	6916	СВ	LEU			29.119	83.650	-1.505	1.00		A
j	30	ATOM	6917	CG	LEU			27.615	83.481	-1.256	1.00		A
Trice!	50								84.299	-0.052	1.00		A
Paris I		ATOM	6918		LEU			27.175					
[1 4		ATOM	6919		LEU			26.859	83.928	-2.490	1.00		A
1124		ATOM	6920	С	LEU			31.209	83.100	-2.761	1.00		A
ļ.d.	0.5	MOTA	6921	0	LEU			31.432	84.280	-3.044	1.00		A
3,:	35	ATOM	6922	N	ASP			32.162	82.174	-2.723	1.00		А
		ATOM	6923	CA	ASP	Α	884	33.555	82.500	-2.998	1.00		A
		ATOM	6924	CB	ASP	Α	884	34.458	81.898	-1.918	1.00	14.38	A
		ATOM	6925	CG	ASP	A	884	34.250	80.402	-1.737	1.00	15.01	Α
		ATOM	6926	OD1	ASP	Α	884	34.925	79.826	-0.858	1.00	16.17	A
	40	ATOM	6927		ASP			33.421	79.803	-2.461	1.00		А
		ATOM	6928	C	ASP			34.021	82.044	-4.376	1.00		A
		MOTA	6929		ASP			35.193	81.721	-4.570	1.00		A
				0									
		ATOM	6930	N	ASN			33.095	82.024	-5.329	1.00		A
	4.5	ATOM	6931	CA	ASN			33.404	81.620	-6.695	1.00		A
	45	MOTA	6932	CB	ASN	A	885	32.163	81.746	-7.579	1.00		Α
		ATOM	6933	CG	ASN.	A	885	30.973	81.001	-7.024	1.00		А
		MOTA	6934	OD1	ASN.	Α	885	30.700	79.860	-7.403	1.00	13.90	А
		MOTA	6935	ND2	ASN	Α	885	30.257	81.640	-6.109	1.00	12.56	А
		ATOM	6936	С	ASN			34.499	82.493	-7.289	1.00	12.83	А
	50	ATOM	6937	0	ASN			34.643	83.666	-6.936	1.00		А
	00	MOTA	6938	N	LYS			35.265	81.910	-8.202	1.00		A
		ATOM	6939	CA	LYS .			36.329	82.624	-8.887	1.00		A
		ATOM	6940	CB	LYS .			37.657	82.454	-8.140	1.00		A
		MOTA	6941	CG	LYS			38.096	81.015	-7.938	1.00		A
	55	ATOM	6942	CD	LYS	A	886	39.235	80.913	-6.924	1.00	20.54	А

		ATOM	6943	CE	LYS	Α	886	40.472	81.669	-7.386	1.00	21.34	А
		MOTA	6944	NZ	LYS	Α	886	41.570	81.615	-6.383	1.00	22.47	Α
		ATOM	6945	С	LYS	Α	886	36.420	82.055	-10.295	1.00	12.96	Α
		ATOM	6946	0	LYS	Α	886	36.052	80.903	-10.534		12.96	Α
	5	MOTA	6947	N	PRO	Α	887	36.890	82.859	-11.256		12.00	A
		ATOM	6948	CD	PRO	Α	887	37.275		-11.160	1.00	12.17	Α
		ATOM	6949	CA	PRO	Α	887	37.002	82.378	-12.633	1.00	10.97	A
		MOTA	6950	CB	PRO	A	887	37.687	83.537	-13.348	1.00	11.84	А
		MOTA	6951	CG	PRO	Α	887	37.179	84.731	- 12.593		12.42	Α
	10	ATOM	6952	С	PRO	Α	887	37.805	81.087	-12.734	1.00	10.67	Α
		MOTA	6953	0	PRO	Α	887	38.866	80.951	-12.129	1.00	11.60	Α
		ATOM	6954	N	VAL	Α	888	37.282	80.137	-13.498	1.00	9.48	A
		ATOM	6955	CA	VAL	Α	888	37.955	78.867	-13.692	1.00	8.96	Α
		ATOM	6956	CB	VAL	Α	888	37.335	77.755	-12.797	1.00	9.00	Α
	15	ATOM	6957	CG1	VAL	Α	888	35.836	77.648	-13.048	1.00	9.81	Α
		ATOM	6958	CG2	VAL	Α	888	38.021	76.424	-13.064	1.00	9.13	Α
		MOTA	6959	С	VAL	Α	888	37.852		-15.153	1.00	8.88	Α
		ATOM	6960	0	VAL	Α	888	36.823		-15.802	1.00	8.91	A
		ATOM	6961	N	LEU	Α	889	38.928	77.890	-15.677	1.00	7.75	Α
	20	MOTA	6962	CA	LEU	Α	889	38.935	77.435	-17.058	1.00	8.80	А
		ATOM	6963	СВ	LEU	Α	889	40.257	77.794	-17.745	1.00	9.25	A
		MOTA	6964	CG	LEU	Α	889	40.336	77.379	-19.223	1.00	9.85	Α
		ATOM	6965	CD1	LEU	Α	889	39.386	78.245	-20.050	1.00	11.06	Α
		ATOM	6966	CD2	LEU	Α	889	41.766	<i>7</i> 7.529	-19.728	1.00	12.10	А
	25	ATOM	6967	С	LEU	Α	889	38.731	75.924	-17.113	1.00	8.95	Α
		ATOM	6968	0	LEU	Α	889	39.648	75.150	-16.820	1.00	9.54	А
		ATOM	6969	N	HIS	Α	890	37.519	75.508	-17.462	1.00	7.95	А
		ATOM	6970	CA	HIS	Α	890	37.214	74.086	-17.580	1.00	8.10	A
		ATOM	6971	СВ	HIS	Α	890	35.725	73.824	-17.360	1.00	7.90	А
	30	ATOM	6972	CG	HIS	Α	890	35.281	73.998	-15.944	1.00	8.99	А
		ATOM	6973	CD2	HIS	Α	890	34.112	74.441	-15.426	1.00	9.25	A
•		ATOM	6974	ND1	HIS	Α	890	36.066	73.637	-14.870	1.00	9.76	Α
		ATOM	6975	CE1	HIS	Α	890	35.399	73.851	-13.751	1.00	9.66	A
		ATOM	6976	NE2	HIS	Α	890	34.210	74.339	-14.060		10.10	A
	. 35	ATOM	6977	С	HIS	Α	890	37.584	73.618	-18.977	1.00	7.85	А
		ATOM	6978	0	HIS	Α	890	37.361	74.335	-19.952	1.00	8.19	А
		ATOM	6979	N	ILE	Α	891	38.136	72.415	-19.079	1.00	7.06	А
		ATOM	6980	CA	ILE	Α	891	38.519	71.885	-20.376	1.00	7.02	А
		ATOM	6981	CB	ILE	Α	891	40.055		-20.507	1.00	6.50	A
	4 0	ATOM	6982	CG2	ILE	Α	891	40.666		-20.267	1.00	9.58	A
		ATOM	6983	CG1	ILE	Α	891	40.627		-19.492	1.00	7.14	А
		ATOM	6984	CD1	ILE	Α	891	42.131		-19.644	1.00	7.48	A
		ATOM	6985	С	ILE	Α	891	37.886		-20.633	1.00	6.87	A
		ATOM	6986	0	ILE	Α	891	37.640	69.751	-19.699	1.00	6.90	Α
	45	ATOM	6987	N	TYR	Α	892	37.619		-21.905	1.00	6.24	A
		ATOM	6988	CA	TYR	Α	892	36.982	68.996	-22.326	1.00	6.85	A
		ATOM	6989	CB	TYR	Α	892	35.454	69.156	-22.391	1.00	6.74	А
		ATOM	6990	CG	TYR	Α	892	34.795		-21.224	1.00	6.68	A
		ATOM	6991	CD1	TYR	Α	892	34.759		-21.128	1.00	7.35	А
	50	MOTA	6992	CE1	TYR	Α	892	34.141		-20.048	1.00	6.58	A
		MOTA	6993	CD2	TYR	Α	892	34.200		-20.214	1.00	7.90	A
		ATOM	6994	CE2	TYR	A	892	33.589	69.699	-19.136	1.00	8.12	Α
		ATOM	6995	CZ	TYR	A	892	33.560	71.080	-19.054	1.00	7.15	А
		MOTA	6996	ОН	TYR	A	892	32.959		-17.970	1.00	8.40	A
	55	ATOM	6997	С	TYR	A	892	37.395	68.586	-23.731	1.00	7.49	А

		ATOM	6998	0	TYR A	892	38.014	69.349 -24.463	1.00 7.08	Α
		MOTA	6999	N	ARG A	. 893	37.038	67.355 -24.091	1.00 7.23	A
		ATOM	7000	CA	ARG A	893	37.233	66.847 -25.449	1.00 7.84	Α
		ATOM	7001	CB	ARG A	893	38.323	65.771 -25.534	1.00 8.25	Α
	5	ATOM	7002	CG	ARG A		39.761	66.292 -25.460	1.00 9.07	А
		ATOM	7003	CD	ARG A		40.094	67.317 -26.556	1.00 8.68	A
		ATOM	7003	NE	ARG A		40.144	66.752 -27.905	1.00 10.22	A
		ATOM	7005	CZ	ARG A		41.105	65.951 -28.358	1.00 10.22	A
									1.00 11.22	
	10	ATOM	7006		ARG A		42.118	65.605 -27.570		A
	10	ATOM	7007		ARG A		41.058	65.496 -29.603	1.00 12.32	A
		ATOM	7008	С	ARG A		35.867	66.244 -25.776	1.00 8.20	A
		ATOM	7009	0	ARG A		35.258	65.580 -24.933	1.00 8.49	A
		MOTA	7010	N	LEU A		35.374	66.502 -26.984	1.00 8.73	Α
	4.5	MOTA	7011	CA	LEU A		34.071	65.995 -27.402	1.00 9.10	A
	15	ATOM	7012	CB	LEU A		33.175	67.152 -27.847	1.00 10.48	Α
		MOTA	7013	CG	LEU A	894	31.735	66.780 ~28.215	1.00 11.47	Α
		MOTA	7014	CD1	LEU A	894	31.013	66.238 -26.992	1.00 12.94	Α
		MOTA	7015	CD2	LEU A	894	31.013	68.001 -28.757	1.00 12.24	A
127		ATOM	7016	С	LEU A	894	34.275	65.019 -28.550	1.00 8.70	A
F Ingli	20	ATOM	7017	0	LEU A	894	34.684	65.410 -29.642	1.00 9.47	A
1,623 . ≥%		MOTA	7018	N	VAL A	895	33.977	63.749 -28.296	1.00 8.58	A
		MOTA	7019	CA	VAL A	895	34.173	62.699 -29.284	1.00 8.99	Α
111		ATOM	7020	СВ	VAL A		35.094	61.598 -28.705	1.00 9.22	Α
1,22g		ATOM	7021		VAL A		35.461	60.598 -29.786	1.00 10.34	A
	25	ATOM	7022		VAL A		36.340	62.229 -28.102	1.00 9.86	A
		ATOM	7023	C	VAL A		32.892	62.033 -29.790	1.00 10.00	A
Will.		ATOM	7023	0	VAL A		32.234	61.289 -29.057	1.00 10.19	A
		MOTA	7024	N	LEU A		32.546	62.310 -31.045	1.00 10.27	A
5 i		ATOM	7025	CA	LEU A		31.376	61.699 -31.677	1.00 10.27	A
	30		7027	CB			30.666	62.688 -32.607	1.00 10.03	A
ı,Q	30	ATOM			LEU A					
Ŋ		ATOM	7028	CG	LEU A		29.525	62.085 -33.436	1.00 12.15	A
[:≈ 1 :		ATOM	7029		LEU A		28.370	61.713 -32.528	1.00 12.66	A
		ATOM	7030		LEU A		29.061	63.089 -34.479	1.00 12.63	A
inter	25	ATOM	7031	C	LEU A		31.938	60.545 -32.501	1.00 11.72	A
20 42 0	35	MOTA	7032	0	LEU A		32.880	60.731 -33.269	1.00 11.16	A
		ATOM	7033	N	GLU A		31.371	59.354 -32.339	1.00 11.32	A
		ATOM	7034	CA	GLU A		31.869	58.189 -33.065	1.00 13.03	A
		ATOM	7035	CB	GLU A		32.844	57.397 -32.192	1.00 14.50	A
	40	ATOM	7036	CG	GLU A		34.027	58.161 -31.656	1.00 16.78	A
	40	MOTA	7037	CD	GLU A		34.778	57.365 -30.601	1.00 16.72	Α
		ATOM	7038		GLU A		34.184	57.079 -29.539	1.00 18.39	А
		MOTA	7039	OE2	GLU A	897	35.955	57.027 -30.838	1.00 19.39	A
		ATOM	7040	С	GLU A	897	30.770	57.228 -33.478	1.00 12.78	А
		ATOM	7041	О	GLU A	897	29.699	57.192 -32.873	1.00 12.49	A
	45	ATOM	7042	N	LYS A	898	31.056	56.441 -34.509	1.00 14.12	Α
		ATOM	7043	CA	LYS A	898	30.134	55.415 -34.967	1.00 15.19	A
		MOTA	7044	CB	LYS A	898	30.283	55.175 -36.470	1.00 16.61	A
		ATOM	7045	CG	LYS A		29.981	56.394 -37.328	1.00 19.37	A
		ATOM	7046	CD	LYS A		28.614	56.986 -37.004	1.00 21.68	А
	50	ATOM	7047	CE	LYS A		27.500	55.967 -37.189	1.00 23.36	A
		ATOM	7048	NZ	LYS A		26.169	56.541 -36.865	1.00 24.72	A
		ATOM	7048	C	LYS A		30.596	54.186 -34.192	1.00 24.72	A
			7049					53.885 -34.154	1.00 13.30	A
		ATOM		O N	LYS A		31.791			
	55	ATOM	7051	N	VAL A		29.666	53.482 -33.562	1.00 14.35	A
	55	ATOM	7052	CA	VAL A	899	30.038	52.318 -32.773	1.00 14.25	А

		ATOM	7053	СВ	VAL	7	800	29.804	52.590 -31.270 1.00 14.32 A	
					VAL			30.809	53.622 -30.771 1.00 15.02 A	
		ATOM	7054							
		MOTA	7055		VAL			28.386		
	_	MOTA	7056	С	VAL			29.305	51.043 -33.173 1.00 14.59 A	
	5	ATOM	7057	0	VAL			29.321	50.056 -32.441 1.00 14.07 A	
		ATOM	7058	N	ASN	A	900	28.675	51.060 -34.341 1.00 15.09 A	
		ATOM	7059	CA	ASN	Α	900	27.941	49.893 -34.813 1.00 16.30 A	L
		ATOM	7060	CB	ASN	Α	900	27.189	50.229 -36.105 1.00 17.35 A	L
		ATOM	7061	CG	ASN	Α	900	28.098	50.780 -37.182 1.00 18.71 A	ı
	10	ATOM	7062		ASN			28.719	51.830 -37.011 1.00 21.26 A	
		ATOM	7063		ASN			28.182	50.073 -38.304 1.00 20.56 A	
		ATOM	7064	C	ASN			28.841	48.677 -35.041 1.00 16.24 A	
		ATOM	7065	0	ASN			28.366	47.541 -35.023 1.00 16.99 A	
		ATOM	7066	N	ASN			30.135	48.907 -35.243 1.00 15.40 A	
	15							31.073	47.810 -35.477 1.00 15.76 A	
	13	ATOM	7067	CA	ASN					
		ATOM	7068	CB	ASN			32.054	48.177 -36.592 1.00 17.95 A	
		ATOM	7069	CG	ASN			31.405	48.194 -37.955 1.00 20.12 A	
117CE.		ATOM	7070		ASN			30.737	47.238 -38.345 1.00 22.38 A	
	••	ATOM	7071		ASN			31.606	49.280 -38.694 1.00 21.62 A	
Ö	20	ATOM	7072	С	ASN			31.867	47.398 -34.246 1.00 15.11 A	
1,52		MOTA	7073	0	ASN	Α	901	32.655	46.454 -34.300 1.00 15.56 A	
M		MOTA	7074	N	CYS	Α	902	31.667	48.100 -33.138 1.00 14.34 A	
		ATOM	7075	CA	CYS	Α	902	32.398	47.784 -31.916 1.00 14.62 A	
ficadi sus s		ATOM	7076	С	CYS			31.829	46.594 -31.165 1.00 13.93 A	
14	25	ATOM	7077	0	CYS			30.616	46.407 -31.101 1.00 14.93 A	
the state of the s		ATOM	7078	СВ	CYS			32.394	48.968 -30.954 1.00 16.27 A	
ijŦ.		ATOM	7079	SG	CYS			33.091	50.528 -31.570 1.00 18.03 A	
11		ATOM	7080	N	VAL			32.717	45.798 -30.584 1.00 13.19 A	
		ATOM	7081	CA	VAL			32.294	44.656 -29.789 1.00 13.49 A	
ने अध्याने ्राम्बर्	30		7081	CB	VAL			33.403	43.584 -29.706 1.00 12.99 A	
,	30	MOTA						32.985	42.466 -28.755 1.00 14.69 A	
141		MOTA	7083		VAL					
[,4 <u>.</u>		MOTA	7084		VAL			33.674	43.021 -31.095 1.00 14.28 A	
		MOTA	7085	C	VAL			32.024	45.228 -28.400 1.00 13.60 A	
ļ, d.	0-	MOTA	7086	0	VAL			32.952	45.524 -27.646 1.00 15.18 A	
# 1	35	ATOM	7087	N	ARG			30.749	45.409 -28.078 1.00 13.74 A	
		ATOM	7088	CA	ARG	Α	904	30.361	45.971 -26.792 1.00 13.73 A	
		ATOM	7089	CB	ARG	А	904	29.311	47.066 -27.001 1.00 14.82 A	
		ATOM	7090	CG	ARG	Α	904	29.874	48.318 -27.644 1.00 15.86 A	
		MOTA	7091	CD	ARG	Α	904	28.816	49.366 -27.921 1.00 17.64 A	
	40	MOTA	7092	NE	ARG	Α	904	28.022	49.029 -29.095 1.00 18.11 A	
		MOTA	7093	CZ	ARG	Α	904	27.057	49.799 -29.589 1.00 18.82 A	
		ATOM	7094		ARG			26.763	50.955 -29.007 1.00 19.22 A	
		ATOM	7095		ARG			26.390	49.414 -30.668 1.00 19.04 A	
		ATOM	7096	C	ARG			29.814	44.929 -25.829 1.00 12.99 A	
	45	ATOM	7097	0	ARG			29.454	43.817 -26.232 1.00 13.24 A	
	10	ATOM	7098		PRO			29.758	45.273 -24.533 1.00 12.45 A	
				N					46.482 -23.890 1.00 12.91 A	
		ATOM	7099	CD	PRO			30.305		
		MOTA	7100	CA	PRO			29.236	44.339 -23.533 1.00 12.91 A	
	=0	MOTA	7101	СВ	PRO			29.412	45.099 -22.220 1.00 12.51 A	
	50	MOTA	7102	CG	PRO			30.581	45.995 -22.491 1.00 12.54 A	
		ATOM	7103	С	PRO			27.764	44.086 -23.835 1.00 13.36 A	
		ATOM	7104	0	PRO	A	905	27.128	44.879 -24.531 1.00 13.15 A	
		ATOM	7105	N	SER	Α	906	27.224	42.987 -23.318 1.00 14.23 A	
		ATOM	7106	CA	SER	Α	906	25.817	42.679 -23.540 1.00 16.23 A	
	55	ATOM	7107	СВ	SER			25.479	41.285 -23.014 1.00 17.70 A	

	ATOM	7108	OG	SER	Α	906	25.354	41.297	-21.605	1.00	19.81	A
	ATOM	7109	С	SER	Α	906	24.969	43.712	-22.808	1.00	16.91	Α
	MOTA	7110	0	SER	А	906	25.478	44.485	-21.993		16.27	Α
	ATOM	7111	N	LYS	Α	907	23.673		-23.093		18.02	Α
5	MOTA	7112	CA	LYS			22.745		-22.484		19.95	Α
	ATOM	7113	CB	LYS			21.350		-23.085		22.55	A
	ATOM	7114	CG	LYS			21.266		-24.569		26.38	A
	ATOM	7115	CD	LYS			19.889		-25.136		28.71	А
	ATOM	7116	CE	LYS			18.782		-24.396		30.39	Α
10	MOTA	7117	NZ	LYS			18.936		-24.487		31.53	Α
	ATOM	7118	С	LYS			22.663		-20.967		18.84	A
	MOTA	7119	0	LYS			22.262		-20.287		20.33	A
	ATOM	7120	N	LEU			23.047		-20.434		17.98	A
	ATOM	7121	CA	LEU			22.982		-18.993		17.30	A
15	ATOM	7122	CB	LEU			22.520		-18.704		18.78	A
	ATOM	7123	CG	LEU			21.150		-19.284		19.88	A
	MOTA	7124		LEU			20.846		-18.980		19.94	A
	ATOM	7125		LEU			20.070		-18.701		20.79	A
	MOTA	7126	С	LEU			24.289		-18.255		15.70	A
20	ATOM	7127	0	LEU			24.341		-17.028		15.90	A
	ATOM	7128	N	HIS			25.340		-18.992		14.37	A
	ATOM	7129	CA	HIS			26.628		-18.365		12.69	A
	ATOM	7130	CB	HIS			27.737		-19.415		12.14	A
05	MOTA	7131	CG	HIS			29.101		-18.842		10.96	A
25	ATOM	7132		HIS			29.934		-18.912		11.76	A
	MOTA	7133		HIS			29.752		-18.079		10.65	A
	MOTA	7134		HIS			30.928		-17.706		11.60	A
	ATOM	7135		HIS			31.063		-18.199		11.85	A
20	ATOM	7136	C	HIS			26.572		-17.704		11.79	A
30	ATOM	7137	0	HIS			26.102		-18.304		12.37	A
	MOTA	7138	N	PRO			27.053		-16.455		10.34	A
	ATOM	7139	CD	PRO			27.391		-15.540		11.26	A A
	MOTA	7140	CA	PRO			27.037		-15.734		10.21	A
25	ATOM	7141	CB	PRO			27.184		-14.268		11.48	A
35	ATOM	7142	CG	PRO			26.839		-14.242 -16.116	1.00	9.86	A
	ATOM	7143	С	PRO			28.118 28.100		-15.631	1.00	9.94	A
	ATOM	7144	0	PRO					-16.957	1.00	9.55	A
	MOTA	7145	N	ALA ALA			29.061 30.138		-17.342	1.00	9.81	A
40	MOTA MOTA	7146 7147	CA CB	ALA			31.482		-17.070		9.39	A
40			СБ	ALA			30.088		-18.786	1.00	9.68	A
	ATOM ATOM	7148 7149	0	ALA			29.354		-19.614		10.29	A
	ATOM	7150	N	GLY			30.893		-19.064	1.00	9.71	A
	ATOM	7151	CA	GLY			31.022		-20.397	1.00	9.40	A
45	MOTA	7152	CA	GLY			32.504		-20.589	1.00	9.56	A
40	ATOM	7153	0	GLY			33.244		-19.607	1.00	9.93	А
	ATOM	7154	N	TYR			32.943		-21.838	1.00	9.13	A
	ATOM	7155	CA	TYR			34.351		-22.132	1.00	9.27	A
	ATOM	7156	CB	TYR			35.042		-22.547	1.00	8.76	A
50	ATOM	7157	CG	TYR			35.014		-21.470	1.00	8.89	A
50	ATOM	7158		TYR			34.036		-21.460		10.18	A
	MOTA	7159		TYR			33.962		-20.423		10.05	A
	ATOM	7160		TYR			35.923		-20.418	1.00		A
	ATOM	7161		TYR			35.858		-19.376			A
55	ATOM	7162	CZ	TYR			34.875		-19.383		10.29	А
				`	•							

		MOTA	7163	ОН	TYR Z	A 913	34.789	45.897	-18.341	1.00	10.44	Α
		ATOM	7164	С	TYR A	A 913	34.548	52.013	-23.230	1.00	9.23	A
		MOTA	7165	0	TYR	A 913	33.759	52.093	-24.173	1.00	9.94	Α
		ATOM	7166	N	LEU A	A 914	35.617	52.790	-23.101	1.00	9.01	Α
	5	MOTA	7167	CA	LEU A	A 914	35.946	53.811	-24.082	1.00	8.49	Α
		MOTA	7168	CB	LEU A	A 914	36.951	54.809	-23.507	1.00	8.20	A
		MOTA	7169	CG	LEU A	A 914	36.543	55.679	-22.326	1.00	8.55	A
		MOTA	7170	CD1	LEU A	A 914	37.659	56.679	-22.057	1.00	8.59	Α
		MOTA	7171	CD2	LEU A	A 914	35.240	56.408	-22.635	1.00	8.59	A
	10	MOTA	7172	С	LEU A	A 914	36.568	53.215	-25.332	1.00	8.86	A
		ATOM	7173	0	LEU A	A 914	37.033	52.075	-25.337	1.00	9.04	А
		ATOM	7174	N	THR A	A 915	36.570	54.021	-26.387	1.00	9.49	Α
		MOTA	7175	CA	THR A	A 915	37.187	53.656	-27.647		10.01	А
		MOTA	7176	CB	THR A	A 915	36.498	54.345	-28.831	1.00	11.05	Α
	15	MOTA	7177	OG1	THR A	A 915	36.474	55.758	-28.590	1.00	12.54	А
		MOTA	7178	CG2	THR A	A 915	35.080	53.833	-29.011	1.00	12.14	А
		ATOM	7179	С	THR A	915	38.593	54.237	-27.542	1.00	10.47	А
		ATOM	7180	0	THR A	915	38.879		-26.641		10.28	Α
i seed		MOTA	7181	N	SER A	916	39.464		-28.465	1.00	11.05	Α
	20	ATOM	7182	CA	SER A	916	40.828	54.357	-28.482	1.00	11.00	Α
1,500 1000		MOTA	7183	CB	SER A	916	41.574		-29.690	1.00	12.42	А
1,55		ATOM	7184	OG	SER A	916	42.793	54.485	-29.888	1.00	16.48	A
ijĪ.		ATOM	7185	С	SER A	916	40.857		-28.539	1.00	10.98	Α
		MOTA	7186	0	SER A	916	41.572		-27.776	1.00	10.02	А
Marin Sarah	25	MOTA	7187	N	ALA A	4 917	40.069		-29.442	1.00	10.04	А
111		ATOM	7188	CA	ALA A	917	40.040	57.903	-29.593	1.00	9.89	A
ijŦ,		MOTA	7189	CB		917	39.119		-30.738		10.71	А
B1		MOTA	7190	С		917	39.612		-28.319	1.00	9.48	А
	••	ATOM	7191	0		917	40.199		-27.950	1.00	9.99	A
	30	ATOM	7192	N		4 918	38.592		-27.644	1.00	9.40	A
1,6 20 1. 918.8		MOTA	7193	CA		918	38.110		-26.420	1.00	8.86	А
		ATOM	7194	СВ		918	36.788		-25.988	1.00	9.92	Α
		ATOM	7195	С	ALA A		39.141		-25.300	1.00	8.91	A
	0.5	ATOM	7196	0		918	39.331		-24.524	1.00	7.94	A
in.	35	MOTA	7197	N		919	39.799		-25.210	1.00	8.73	A
		MOTA	7198	CA		1 919	40.818		-24.189	1.00	8.75	A
		ATOM	7199	CB		4 919	41.320		-24.211	1.00	9.47	A
		MOTA	7200	CG		919	42.438		-23.249		10.68	A
	40	ATOM	7201		HIS A		42.499		-21.901		12.48	A
	40	ATOM	7202		HIS A		43.689		-23.656		13.04	A
		ATOM	7203		HIS A		44.473		-22.599		12.08	A
		ATOM	7204		HIS A		43.776		-21.523		13.28	A
		ATOM	7205	С	HIS A		41.979		-24.430	1.00	8.59	A
	45	ATOM	7206	0	HIS A		42.459		-23.503	1.00	8.31	A
	45	ATOM	7207	N	LYS A		42.429		-25.675	1.00	7.96	A
		ATOM	7208	CA	LYS A		43.528		-25.969	1.00	9.08	A
		ATOM	7209	CB	LYS A		44.009		-27.411		10.76	A
		ATOM	7210	CG	LYS A		44.880		-27.582		13.02	A
	ΕO	ATOM	7211	CD	LYS A		45.559		-28.938		14.64	A
	50	ATOM	7212	CE	LYS A		46.493		-29.030		15.02	A
		ATOM	7213	NZ	LYS A		47.658		-28.103		15.98	A
		ATOM	7214	C	LYS A		43.116		-25.701	1.00	8.52	A
		ATOM	7215	0	LYS A		43.928		-25.236	1.00	8.56	A
	EE	ATOM	7216	N	ALA A		41.855		-25.972	1.00	8.30	A
	55	ATOM	7217	CA	ALA A	921	41.372	62.380	-25.729	1.00	8.01	А

		MOTA	7218	CB	ALA A	021	39.947	62.540 -26.263	1.00 7.47	А
				CB						
		MOTA	7219	С	ALA A		41.421	62.667 -24.227	1.00 7.72	A
		MOTA	7220	0	ALA A		41.770	63.772 -23.801	1.00 8.39	Α
		MOTA	7221	N	SER A		41.076	61.670 -23.417	1.00 7.17	Α
	5	MOTA	7222	CA	SER A	922	41.120	61.854 -21.969	1.00 7.27	Α
		MOTA	7223	CB	SER A	922	40.549	60.627 -21.251	1.00 7.70	A
		ATOM	7224	OG	SER A	922	40.649	60.781 -19.841	1.00 7.96	Α
		ATOM	7225	С	SER A		42.565	62.083 -21.532	1.00 7.89	А
		ATOM	7226	Ō	SER A		42.839	62.944 -20.698	1.00 8.87	A
	10	ATOM	7227	N	GLN A		43.494	61.321 -22.104	1.00 8.46	A
	10		7228		GLN A		44.904	61.476 -21.760	1.00 8.76	A
		ATOM		CA						
		MOTA	7229	CB	GLN A		45.744	60.379 -22.423		A
		MOTA	7230	CG	GLN A		45.466	58.979 -21.895	1.00 8.79	A
		MOTA	7231	CD	GLN A		46.396	57.936 -22.495	1.00 10.09	A
	15	ATOM	7232		GLN A		46.537	57.847 -23.715	1.00 11.44	Α
		MOTA	7233	NE2	GLN A	923	47.028	57.133 -21.635	1.00 9.11	A
		MOTA	7234	С	GLN A	923	45.435	62.849 -22.163	1.00 9.21	Α
		MOTA	7235	0	GLN A	923	46.318	63.396 -21.501	1.00 9.10	А
		ATOM	7236	N	SER A		44.886	63.417 -23.236	1.00 8.93	Α
en en en	20	ATOM	7237	CA	SER A		45.333	64.729 -23.703	1.00 9.54	А
. 75		ATOM	7238	СВ	SER A		44.733	65.048 -25.081	1.00 10.43	A
n in the second		ATOM	7239	OG	SER A		43.373	65.457 -24.987	1.00 11.08	A
4,3 H		ATOM	7240	C	SER A		44.941	65.819 -22.709	1.00 9.66	A
			7240	0	SER A		45.572	66.874 -22.648	1.00 10.68	A
Ann ann	25	ATOM							1.00 10.00	A
	23	ATOM	7242	N	LEU A		43.898	65.554 -21.931		
4,51		ATOM	7243	CA	LEU A		43.412	66.508 -20.941		A
		ATOM	7244	CB	LEU A		41.904	66.335 -20.738	1.00 8.40	A
21. 21.≈=5.		ATOM	7245	CG	LEU A		40.991	66.609 -21.938	1.00 7.47	A
J	•	MOTA	7246		LEU A		39.556	66.255 -21.569	1.00 8.87	A
ı,J.	30	MOTA	7247	CD2	LEU A		41.094	68.077 -22.349	1.00 8.87	A
rg.		ATOM	7248	C	LEU A	925	44.106	66.351 -19.593	1.00 9.08	А
10		ATOM	7249	0	LEU A	925	44.532	67.333 -18.984	1.00 9.69	А
		ATOM	7250	N	LEU A	926	44.236	65.110 -19.141	1.00 8.72	A
		ATOM	7251	CA	LEU A	926	44.837	64.834 -17.842	1.00 8.73	A
₽.	35	MOTA	7252	СВ	LEU A		44.287	63.518 -17.291	1.00 9.50	А
		ATOM	7253	CG	LEU A		42.771	63.509 -17.070	1.00 10.76	Α
		ATOM	7254		LEU A		42.339	62.149 -16.537	1.00 11.48	A
		ATOM	7255		LEU A		42.388	64.618 -16.095	1.00 12.65	A
		ATOM	7256	C	LEU A		46.356	64.804 -17.790	1.00 8.63	A
	40							65.189 -16.783	1.00 8.46	A
	40	ATOM	7257	0	LEU A		46.946			
		ATOM	7258	N	ASP A		46.989	64.340 -18.861	1.00 7.51	A
		ATOM	7259	CA	ASP A		48.444	64.262 -18.891	1.00 8.28	A
		ATOM	7260	СВ	ASP A		48.891	62.819 -18.644	1.00 7.75	A
		ATOM	7261	CG	ASP A		48.570	62.350 -17.234	1.00 8.29	A
	45	MOTA	7262		ASP A		49.295	62.740 -16.293	1.00 8.68	А
		MOTA	7263	OD2	ASP A	927	47.580	61.609 -17.067	1.00 9.56	А
		ATOM	7264	С	ASP A	927	49.008	64.787 -20.204	1.00 8.04	A
		MOTA	7265	0	ASP A	927	49.595	64.049 -20.995	1.00 7.83	A
		ATOM	7266	N	PRO A		48.830	66.088 -20.452	1.00 8.56	Α
	50	ATOM	7267	CD	PRO A		48.226	67.103 -19.569	1.00 9.25	А
	- 5	ATOM	7268	CA	PRO A		49.334	66.697 -21.683	1.00 8.71	A
		ATOM	7269	CB	PRO A		48.708	68.088 -21.649	1.00 9.22	A
		ATOM	7270	CG	PRO A		48.717	68.403 -20.190	1.00 10.86	A
			7270	C	PRO A		50.855	66.770 -21.665	1.00 10.30	A
	55	ATOM								A
))	ATOM	7272	0	PRO A	サ ∠ ℧	51.492	66.449 -20.661	1.00 9.15	А

	ATOM	7273	N	LEU	7\	929	51.446	67 178	-22.778	1.00	8.33	А
	ATOM	7274	CA	LEU			52.891		-22.810	1.00	7.61	A
	ATOM	7275	CB	LEU			53.368		-24.221	1.00	8.02	A
	ATOM	7276	CG	LEU			53.200		-25.351	1.00	8.18	A
5	ATOM	7277		LEU			53.766		-26.632	1.00	8.11	A
•	ATOM	7278		LEU			53.934		-25.012	1.00	7.77	А
	ATOM	7279	C	LEU			53.234		-21.887	1.00	8.11	А
	ATOM	7280	0	LEU			52.452		-21.748	1.00	9.64	А
	ATOM	7281	N	ASP			54.394		-21.248	1.00	7.51	А
10	ATOM	7282	CA	ASP			54.841		-20.390	1.00	7.84	А
	ATOM	7283	СВ	ASP			55.582		-19.182	1.00	8.72	А
	ATOM	7284	CG	ASP			54.742	68.005	-18.411	1.00	9.94	А
	ATOM	7285		ASP			53.688		-17.903	1.00	12.39	A
	ATOM	7286		ASP			55.121	66.818	-18.334	1.00	9.76	A
15	ATOM	7287	С	ASP			55.767	70.394	-21.237	1.00	8.70	A
	ATOM	7288	0	ASP			56.531	69.870	-22.055	1.00	9.26	A
	ATOM	7289	N	LYS			55.702	71.705	-21.047	1.00	8.39	Α
	ATOM	7290	CA	LYS			56.517	72.627	-21.831	1.00	8.99	A
	ATOM	7291	СВ	LYS			55.605	73.584	-22.605	1.00	10.48	А
20	ATOM	7292	CG	LYS			54.622	72.897	-23.547	1.00	11.73	Α
	ATOM	7293	CD	LYS	Α	931	53.708	73.912	-24.221	1.00	14.44	A
	ATOM	7294	CE	LYS			52.828	74.625	-23.206	1.00	16.26	А
	ATOM	7295	NZ	LYS	Α	931	52.017	75.703	-23.824	1.00	16.66	Α
	ATOM	7296	С	LYS	Α	931	57.479	73.425	-20.963	1.00	9.43	А
25	ATOM	7297	0	LYS	Α	931	57.081	74.021	-19.959	1.00	9.83	A
	ATOM	7298	N	PHE	Α	932	58.747	73.439	-21.362	1.00	8.58	А
	ATOM	7299	CA	PHE	Α	932	59.781	74.160	-20.633	1.00	8.60	A
	ATOM	7300	CB	PHE	Α	932	60.852		-20.124	1.00	8.76	А
	ATOM	7301	CG	PHE	Α	932	60.326	72.107	-19.229	1.00	9.77	A
30	ATOM	7302	CD1	PHE	Α	932	59.725	70.970	-19.760	1.00	10.21	A
	ATOM	7303	CD2	PHE	Α	932	60.450	72.216	-17.849		10.48	А
	ATOM	7304	CE1	PHE	Α	932	59.259	69.952	-18.926		10.04	A
	ATOM	7305	CE2	PHE	Α	932	59.986		-17.004		10.11	A
	ATOM	7306	CZ			932	59.391		-17.545		10.61	A
35	ATOM	7307	С			932	60.451		-21.530	1.00	9.09	A
	MOTA	7308	0			932	60.755		-22.684	1.00	9.97	A
	ATOM	7309	N			933	60.674		-20.993	1.00	9.13	A
	ATOM	7310	CA			933	61.331		-21.739	1.00	9.38	A
40	MOTA	7311	CB			933	60.531		-21.666	1.00	9.33	A
40	MOTA	7312		ILE			61.247		-22.472	1.00	9.12	A
	ATOM	7313		ILE			59.108		-22.194	1.00		A
	MOTA	7314		ILE			58.197		-21.970	1.00		A
	ATOM	7315	С			933	62.685		-21.080		10.17	A
4 =	ATOM	7316	0	ILE			62.743		-19.888	1.00		A
45	MOTA	7317	N	PHE			63.772		-21.836	1.00		A
	ATOM	7318	CA			934	65.094		-21.258		11.19	A
	ATOM	7319	CB			934	66.193		-22.278		11.54	A
	ATOM	7320	CG	PHE			67.570		-21.682		12.50	A A
50	ATOM	7321		PHE			67.947		-20.835		13.12 13.26	A A
50	ATOM	7322		PHE			68.486		-21.949			
	ATOM	7323		PHE			69.216		-20.263 -21.385		14.59 14.88	A A
	ATOM	7324		PHE			69.754		-21.385 -20.539		15.40	A
	ATOM	7325 7326	CZ			934	70.122				12.24	A
EE	MOTA	7326	С			934	65.182		-20.800 -21.563		12.24	A
55	ATOM	7327	0	PHE	А	934	64.892	00.105	-21.303	1.00	11.44	А

	ATOM	7328	N			935	65.586		-19.552		13.19	А
	MOTA	7329	CA			935	65.662		-18.987		14.58	Α
	MOTA	7330	CB			935	65.718		-17.466		15.65	A
_	MOTA	7331	C			935	66.808		-19.492		16.26	A
5	MOTA	7332	0	ALA	Α	935	66.590	82.825	-19.891	1.00	17.74	Α
	MOTA	7333	N	GLU	Α	936	68.022	81.136	-19.467	1.00	16.39	А
	ATOM	7334	CA	GLU	Α	936	69.211	81.867	-19.898	1.00	17.74	A
	ATOM	7335	CB	GLU	Α	936	70.467	81.103	-19.468	1.00	20.01	A
	ATOM	7336	CG	GLU	Α	936	70.634	80.978	-17.957	1.00	22.92	Α
10	ATOM	7337	CD	GLU	Α	936	71.701	79.965	-17.566	1.00	24.26	A
	ATOM	7338	OE1	GLU	Α	936	71.485	78.753	-17.782	1.00	25.07	А
	ATOM	7339		GLU			72.757	80.381	-17.048		25.95	А
	ATOM	7340	C			936	69.246		-21.404		17.36	А
	ATOM	7341	0			936	68.448		-22.154		16.51	A
15	ATOM	7342	N	ASN			70.182		-21.847		17.29	A
10	ATOM	7343	CA	ASN			70.292		-23.267		17.24	A
	ATOM	7343	CB	ASN			71.132		-23.481		17.86	A
									-22.963		19.51	A
	ATOM	7345	CG	ASN			70.445		-23.065			
20	ATOM	7346		ASN			69.224				19.45	A
20	MOTA	7347		ASN			71.224		-22.415		20.71	A
	ATOM	7348	С	ASN			70.872		-24.083		17.18	A
	ATOM	7349	0	ASN			70.477		-25.231		17.44	A
	MOTA	7350	N	GLU			71.808		-23.498		17.86	A
0.5	MOTA	7351	CA	GLU			72.420		-24.200		18.98	A
25	MOTA	7352	CB	GLU			73.815		-24.706		21.93	A
	MOTA	7353	CG	GLU			74.555		-25.356		25.69	Α
	ATOM	7354	CD	GLU			75.752		-26.169	1.00	27.97	A
	MOTA	7355	OE1	GLU	Α	938	76.636	80.591	- 25.613		29.35	A
	ATOM	7356	OE2	GLU	Α	938	75.809	79.563	-27.369	1.00	29.44	A
30	MOTA	7357	С	GLU	Α	938	72.512	78.991	-23.337	1.00	17.94	A
	MOTA	7358	0	GLU	Α	938	72.883	79.055	-22.167	1.00	17.89	A
	ATOM	7359	N	TRP	Α	939	72.172	77.855	-23.935	1.00	17.52	A
	ATOM	7360	CA	TRP	Α	939	72.205	76.566	-23.254	1.00	16.76	A
	ATOM	7361	СВ	TRP	Α	939	70.869	75.847	-23.479	1.00	15.33	A
35	ATOM	7362	CG	TRP	A	939	70.741	74.489	-22.850	1.00	13.31	A
	ATOM	7363	CD2	TRP			69.654	73.575	-23.030	1.00	12.28	А
	ATOM	7364	CE2	TRP			69.933		-22.250		12.13	А
	ATOM	7365	CE3	TRP			68.469		-23.776	1.00		А
	ATOM	7366		TRP			71.615		-21.991		13.47	А
40	ATOM	7367	NE1	TRP			71.135		-21.627		12.39	A
10	ATOM	7368		TRP			69.068		-22.196	1.00		A
	ATOM	7369		TRP			67.609		-23.723		11.55	A
	ATOM	7370		TRP			67.915		-22.938		12.10	A
	ATOM	7371	C	TRP			73.362		-23.814		17.70	A
45		7372	0	TRP			73.302		-24.836		18.81	A
40	ATOM										18.72	
	ATOM	7373	N	ILE			74.509		-23.144		19.32	A
	ATOM	7374	CA	ILE			75.690		-23.583			A
	ATOM	7375	СВ	ILE			76.958		-22.879		20.59	A
50	ATOM	7376		ILE			78.178		-23.335		21.55	A
50	ATOM	7377		ILE			77.143		-23.194		21.42	A
	MOTA	7378		ILE			78.336		-22.506		22.42	Α
	ATOM	7379	С	ILE			75.553		-23.302	1.00		A
	MOTA	7380	0	ILE	Α	940	75.154		-22.209		18.75	А
	ATOM	7381	N	GLY	А	941	75.880		-24.298		17.98	Α
55	ATOM	7382	CA	GLY	Α	941	75.795	71.327	-24.131	1.00	16.47	Α

	ATOM	7383	С	GLY	Α	941	74.396	70.764	-24.300	1.00	16.11	А
	ATOM	7384	0	GLY	Α	941	74.140	69.610	-23.953	1.00	14.65	А
	ATOM	7385	N	ALA			73.490	71.572	-24.839	1.00	15.44	Α
	ATOM	7386	CA	ALA			72.112	71.147	-25.047	1.00	15.43	А
5	ATOM	7387	СВ	ALA			71.295	72.300	-25.618	1.00	15.09	A
	ATOM	7388	C	ALA			72.002		-25.967	1.00	15.86	А
	ATOM	7389	0	ALA			72.715		-26.964		16.24	A
	ATOM	7390	N	GLN			71.098		-25.619		15.50	A
	ATOM	7391	CA	GLN			70.853		-26.410	1.00	15.78	A
10	ATOM	7392	СВ	GLN			71.049	66.571	-25.553		16.41	А
	ATOM	7393	CG	GLN			72.424	66.493	-24.914	1.00	19.58	А
	ATOM	7394	CD	GLN			72.627		-24.123	1.00	20.93	A
	ATOM	7395	OE1	GLN			71.773		-23.326	1.00	22.95	А
	ATOM	7396	NE2				73.764		-24.333		22.03	А
15	ATOM	7397	С	GLN			69.422		-26.934		15.16	Α
	ATOM	7398	0	GLN			68.554		-26.302		14.93	Α
	ATOM	7399	N	GLY			69.171		-28.080		14.52	А
	ATOM	7400	CA	GLY			67.853		-28.677		14.66	A
	ATOM	7401	C	GLY			66.789		-28.261		14.61	А
20	ATOM	7402	0	GLY			65.615	66.576	-28.569		14.40	А
	ATOM	7403	N	GLN			67.169		-27.551		14.07	Α
	ATOM	7404	CA	GLN			66.180		-27.168		14.57	А
	ATOM	7405	СВ	GLN			65.814		-28.412	1.00	15.05	А
	ATOM	7406	CG	GLN			64.863		-28.204	1.00	17.81	Α
25	ATOM	7407	CD	GLN			64.575		-29.503	1.00	18.96	Α
	ATOM	7408	OE1	GLN	Α	945	63.803		-30.341	1.00	21.23	A
	ATOM	7409	NE2	GLN			65.208		-29.684	1.00	20.13	А
	ATOM	7410	С	GLN			66.620		-26.049		13.74	А
	ATOM	7411	0	GLN			67.812	63.171	-25.838	1.00	14.42	A
30	ATOM	7412	N	PHE			65.637	62.874	-25.320	1.00	12.42	А
	ATOM	7413	CA	PHE			65.871	61.913	-24.249	1.00	11.92	А
	ATOM	7414	СВ	PHE			65.816	62.565	-22.866	1.00	11.65	А
	ATOM	7415	CG	PHE	Α	946	65.710	61.567	-21.742	1.00	11.33	A
	ATOM	7416	CD1	PHE	Α	946	66.766	60.708	-21.455	1.00	11.76	А
35	MOTA	7417	CD2	PHE	A,	946	64.532	61.447	-21.013	1.00	11.56	A
	ATOM	7418	CE1	PHE	А	946	66.648	59.735	-20.456	1.00	12.23	A
	MOTA	7419	CE2	PHE	Α	946	64.402	60.481	-20.016	1.00	11.37	A
	ATOM	7420	CZ	PHE	Α	946	65.463	59.623	-19.738	1.00	11.69	А
	ATOM	7421	С	PHE	Α	946	64.765	60.872	-24.338	1.00	11.81	A
40	ATOM	7422	0	PHE	Α	946	63.599	61.216	-24.522	1.00	11.13	A
	ATOM	7423	N	GLY	Α	947	65.134	59.600	-24.222	1.00	11.32	А
	MOTA	7424	CA	GLY	Α	947	64.146	58.536	-24.270	1.00	12.34	A
	ATOM	7425	С	GLY	Α	947	63.815	57.963	-25.631	1.00	12.93	A
	ATOM	7426	0	GLY	A	947	62.848	57.213	-25.763	1.00	12.03	А
45	ATOM	7427	N	GLY	Α	948	64.604	58.306	-26.644	1.00	14.12	А
	ATOM	7428	CA	GLY	Α	948	64.346	57.786	-27.973	1.00	15.63	А
	ATOM	7429	С	GLY	Α	948	64.401	56.271	-28.021	1.00	17.10	А
	MOTA	7430	0	GLY	Α	948	63.854	55.652	-28.934	1.00	18.33	A
	ATOM	7431	N	ASP	Α	949	65.055	55.671	-27.033	1.00	18.00	А
50	ATOM	7432	CA	ASP			65.183		-26.973		18.53	А
	ATOM	7433	СВ	ASP			66.614	53.841	-26.570	1.00	20.30	А
	ATOM	7434	CG	ASP			66.955		-25.154	1.00	22.70	А
	ATOM	7435	OD1	ASP			66.613	55.400	-24.764	1.00	24.14	А
	MOTA	7436		ASP			67.577		-24.430		25.19	A
55	ATOM	7437	С	ASP			64.179	53.573	-26.019	1.00	17.78	А

		ATOM	7438	0	ASP A	949	64.194	52.356 -25.834	1.00 18.75	А
		ATOM	7439	N	HIS A		63.310	54.380 -25.411	1.00 16.45	А
		ATOM	7440	CA	HIS A		62.297	53.841 -24.503	1.00 14.81	Α
		MOTA	7441	СВ	HIS A		61.548	54.952 -23.758	1.00 13.22	A
	5	ATOM	7442	CG	HIS A		62.378	55.720 -22.778	1.00 12.93	A
	_	ATOM	7443		HIS A		62.106	56.855 -22.095	1.00 10.00	A
		ATOM	7444		HIS A		63.630	55.316 -22.365	1.00 13.22	A
		ATOM	7445		HIS A		64.091	56.172 -21.469	1.00 10.93	A
		ATOM	7446		HIS A		63.185	57.115 -21.287	1.00 13.26	A
	10	ATOM	7447	C	HIS A		61.263	53.076 -25.326	1.00 14.43	A
	10	ATOM	7448	0	HIS A		60.886	53.508 -26.414	1.00 15.25	A
		ATOM	7449	N	PRO A		60.788	51.931 -24.818	1.00 15.24	A
		ATOM	7450	CD	PRO A		61.323	51.140 -23.696	1.00 16.21	A
		ATOM	7451	CA	PRO A		59.788	51.164 -25.566	1.00 14.93	A
	15	ATOM	7452	CB	PRO A		59.614	49.906 -24.715	1.00 14.33	A
	15	ATOM	7453	CG	PRO A		60.975	49.727 -24.112	1.00 16.13	A
		ATOM	7454	C	PRO A		58.484	51.952 -25.692	1.00 10.75	A
		ATOM	7455	0	PRO A		58.084	52.657 -24.762	1.00 14.33	A
		ATOM	7456	N	SER A		57.832	51.849 -26.845	1.00 14.20	A
	20	ATOM	7450	CA	SER A		56.566	52.538 -27.064	1.00 13.71	A
Ţ,	20	ATOM	7458	CB	SER A		56.500	53.103 -28.484	1.00 13.35	A
1.1								54.013 -28.630	1.00 13.33	A
		ATOM	7459	OG C	SER A		55.421 55.489	51.482 -26.851	1.00 14.37	A
		MOTA	7460	C	SER A SER A					
	25	MOTA	7461	0			55.179	50.696 -27.752	1.00 13.71	A
######################################	25	ATOM	7462	N	ALA A		54.933	51.473 -25.643 50.504 -25.236	1.00 13.61	A
		ATOM	7463	CA	ALA A		53.924		1.00 13.14	A
M		ATOM	7464	CB	ALA A		53.755	50.556 -23.719	1.00 13.24	A
ēi .		ATOM	7465	С	ALA A		52.562	50.619 -25.902	1.00 13.16	A
	30	ATOM	7466	0	ALA A		52.190	51.671 -26.421	1.00 12.81	A
ı, Çî	30	ATOM	7467	N	ARG A		51.824	49.511 -25.877	1.00 13.06	A
191		ATOM	7468	CA	ARG A		50.486	49.452 -26.446	1.00 14.74	A
į.		ATOM	7469	CB	ARG A		49.857	48.094 -26.142	1.00 18.83	A
		ATOM	7470	CG	ARG A		48.477	47.891 -26.737	1.00 25.14	A
	25	ATOM	7471	CD	ARG A		48.371	46.517 -27.377	1.00 30.81	A
ğ.A	35	ATOM	7472	NE	ARG A		46.988	46.066 -27.486	1.00 35.73	A
		MOTA	7473	CZ	ARG A		46.241	45.713 -26.447	1.00 38.06	A
		ATOM	7474		ARG A		46.748	45.760 -25.224	1.00 39.95	Α
		ATOM	7475		ARG A		44.990	45.309 -26.628	1.00 39.73	A
	40	MOTA	7476	С	ARG A		49.658	50.583 -25.837	1.00 12.99	A
	40	ATOM	7477	0	ARG A		49.792	50.893 -24.651		A
		MOTA	7478	N	GLU A		48.792	51.178 -26.652	1.00 12.43	А
		MOTA	7479	CA	GLU A			52.320 -26.241	1.00 12.31	Α
		ATOM	7480	СВ	GLU A		47.073	52.751 -27.400	1.00 13.73	А
	4-	ATOM	7481	CG	GLU A		45.904	51.825 -27.665	1.00 16.19	A
	45	ATOM	7482	CD	GLU A		45.042	52.303 -28.814	1.00 17.59	A
		MOTA	7483		GLU A		44.870	53.531 -28.958	1.00 20.32	А
		MOTA	7484	OE2	GLU A		44.528	51.454 -29.567	1.00 19.35	А
		ATOM	7485	С	GLU A	955	47.140	52.203 -24.970	1.00 11.08	А
		MOTA	7486	0	GLU A	955	46.859	53.216 -24.326	1.00 10.87	Α
	50	ATOM	7487	N	ASP A	956	46.734	50.992 -24.602	1.00 10.57	Α
		MOTA	7488	CA	ASP A	956	45.919	50.829 -23.403	1.00 11.30	А
		ATOM	7489	СВ	ASP A	956	44.937	49.656 -23.567	1.00 12.11	Α
		ATOM	7490	CG	ASP A	956	45.624	48.339 -23.887	1.00 13.69	А
		ATOM	7491	OD1	ASP A		46.860	48.317 -24.078	1.00 14.76	A
	55	ATOM	7492		ASP A			47.313 -23.949	1.00 15.09	А

	ATOM	7493	С	ASP	Α	956	46.731	50.665	-22.124	1.00	10.25	A
	ATOM	7494	0	ASP			46.164		-21.042	1.00	11.79	A
	ATOM	7495	N	LEU			48.053	50.704	-22.244	1.00	9.84	A
	ATOM	7496	CA	LEU			48.922	50.558	-21.080	1.00	9.73	Α
5	MOTA	7497	СВ	LEU			50.052	49.567	-21.387	1.00	11.24	Α
	ATOM	7498	CG	LEU	Α	957	50.977	49.172	-20.230	1.00	12.99	Α
	ATOM	7499	CD1	LEU	A	957	50.171	48.464	-19.144	1.00	14.77	Α
	ATOM	7500	CD2	LEU	Α	957	52.086	48.257	-20.742	1.00	13.87	Α
	MOTA	7501	С	LEU	Α	957	49.524	51.894	-20.668	1.00	9.37	Α
10	ATOM	7502	0	LEU	Α	957	49.927	52.694	-21.512	1.00	10.03	А
	ATOM	7503	N	ASP	Α	958	49.582	52.139	-19.366	1.00	8.45	A
	ATOM	7504	CA	ASP	Α	958	50.169	53.374	-18.876	1.00	7.96	Α
	ATOM	7505	CB	ASP	Α	958	49.071	54.379	-18.495	1.00	8.11	А
	ATOM	7506	CG	ASP	Α	958	49.620	55.761	-18.179	1.00	7.70	А
15	MOTA	7507	OD1	ASP	Α	958	50.731	56.094	-18.644	1.00	8.38	Α
	ATOM	7508	OD2	ASP	Α	958	48.925	56.526	-17.472	1.00	9.30	A
	ATOM	7509	С	ASP	Α	958	51.054	53.100	-17.672	1.00	7.71	Α
	ATOM	7510	0	ASP	Α	958	50.831	52.145	-16.922	1.00	7.72	Α
	ATOM	7511	N	VAL	Α	959	52.090	53.917	-17.529	1.00	7.93	Α
20	ATOM	7512	CA	VAL	Α	959	52.982	53.840	-16.381	1.00	7.45	A
	ATOM	7513	СВ	VAL	Α	959	54.446	54.104	-16.769	1.00	8.17	А
	MOTA	7514	CG1	VAL	Α	959	55.310	54.221	-15.508	1.00	8.69	A
	ATOM	7515	CG2	VAL	Α	959	54.957	52.963	-17.649	1.00	9.44	А
	ATOM	7516	С	VAL	Α	959	52.435	54.981	-15.529	1.00	7.71	A
25	MOTA	7517	0	VAL	Α	959	52.868	56.131	-15.641	1.00	7.48	A
	MOTA	7518	N	SER	Α	960	51.437	54.651	-14.717	1.00	8.00	A
	ATOM	7519	CA	SER	Α	960	50.759	55.617	-13.860	1.00	8.19	А
	ATOM	7520	СВ	SER	Α	960	49.654	54.919	-13.065	1.00	8.71	A
	MOTA	7521	OG			960	48.832	54.137	-13.917	1.00	9.90	А
30	MOTA	7522	С			960	51.708		-12.901	1.00	8.29	Α
	ATOM	7523	0	SER	Α	960	51.571		-12.626	1.00	7.81	А
	MOTA	7524	N	VAL	Α	961	52.664		-12.391	1.00	8.17	А
	MOTA	7525	CA	VAL			53.641		-11.447	1.00	8.74	A
	ATOM	7526	CB	VAL			53.272	55.682	-9.984	1.00	9.01	А
35	ATOM	7527		VAL			54.391	56.118	-9.037	1.00	8.99	А
	MOTA	7528		VAL			51.954	56.332	-9.576	1.00	9.73	A
	MOTA	7529	С	VAL			55.039		-11.685	1.00	8.56	A
	MOTA	7530	0	VAL			55.211		-11.966	1.00	8.35	A
40	ATOM	7531	N	MSE			56.025		-11.601	1.00	7.97	A
40	ATOM	7532	CA	MSE			57.426		-11.672	1.00	7.71	A
	ATOM	7533	CB	MSE			58.105		-12.982	1.00	9.07	A
	MOTA	7534	CG	MSE			59.572		-12.957		10.29	A
	ATOM	7535	SE	MSE			60.468		-14.600		16.74	A
45	ATOM	7536	CE	MSE			62.233		-14.146		11.26	A
45	ATOM	7537	C	MSE			58.024		-10.533	1.00	8.28	A
	ATOM	7538	0	MSE			57.996		-10.553	1.00	8.57	A
	ATOM	7539	N	ARG			58.547	56.125	-9.528	1.00	7.92	A
	MOTA	7540	CA	ARG			59.101	56.792	-8.357	1.00	8.31	A
	MOTA	7541	CB	ARG			58.032	56.827	-7.253	1.00	8.77	A
50	ATOM	7542	CG	ARG			58.504	57.343	-5.892	1.00	9.81	A
	ATOM	7543	CD	ARG			57.395	57.201	-4.839	1.00	9.72	A
	ATOM	7544	NE	ARG			56.184	57.886	-5.277	1.00	7.97	A
	ATOM	7545	CZ	ARG			54.952	57.396	-5.169	1.00	7.38	A
	MOTA	7546		ARG			54.737	56.207	-4.615	1.00	7.56	A
55	ATOM	7547	NH2	ARG	A	963	53.932	58.084	-5.670	1.00	7.55	А

	ATOM	7548	С	ARG	А	963	60.	339	56.101	-7	.815	1.0	0 7.62	А
	ATOM	7549	0			963	60.		54.920		.493	1.0		
	ATOM	7550	N			964	61.		56.828		.716	1.0		
	ATOM	7551	CA			964	62.		56.225		.145	1.0		
5	ATOM	7552	СВ			964	63.		57.089		. 404	1.0		
-	ATOM	7553	CG			964	65.		56.450		.869	1.0		
	ATOM	7554	CD			964	66.		57.176		.367		0 10.27	
	ATOM	7555	NE			964	66.		57.011		.807	1.0		
	ATOM	7556	CZ			964	67.		56.134		. 362		0 10.80	
10	ATOM	7557		ARG			68.		55.324		. 605		0 12.81	А
	ATOM	7558		ARG			67.		56.070		. 684		0 12.53	
	ATOM	7559	С			964	62.		56.156		. 655	1.0		А
	ATOM	7560	Ō			964	61.		57.143		.057	1.0		А
	ATOM	7561	N			965	62.		54.987		.066	1.0		
15	ATOM	7562	CA			965	62.		54.754		. 663	1.0		A
	ATOM	7563	СВ			965	61.		53.367		. 524		0 10.58	А
	ATOM	7564	CG			965	60.		53.090		. 442		0 10.29	
	ATOM	7565		LEU			60.		51.612		.420		0 10.06	А
	ATOM	7566		LEU			59.		53.929		.000		0 11.47	
20	ATOM	7567	C			965	63.		54.869		.695		0 10.70	
	ATOM	7568	0			965	63.		54.816		.478		0 11.63	
	ATOM	7569	N			966	64.		55.037		. 234		0 10.63	Α
	ATOM	7570	CA			966	65.		55.136		. 413		0 11.37	А
	ATOM	7571	СВ			966	66.		54.007		.762		0 11.25	A
25	ATOM	7572	OG1			966	66.		53.906		.186		0 10.62	A
	ATOM	7573	CG2			966	66.		52.678		. 204		0 11.27	А
	ATOM	7574	С			966	66.		56.454		. 599		0 11.74	А
	ATOM	7575	Ō			966	66.		57.045		. 678		0 11.44	А
	ATOM	7576	N			967	67.		56.907		.540		0 12.38	А
30	ATOM	7577	CA			967	67.		58.129		. 591		0 13.90	
	MOTA	7578	СВ			967	68.		58.758		. 202		0 15.59	
	ATOM	7579	CG			967	66.		59.377		. 312	1.0	0 18.36	А
	ATOM	7580	CD			967	67.		60.147		. 600		0 20.78	А
	ATOM	7581	CE			967	65.	797	60.856		.074	1.0	0 22.33	А
35	ATOM	7582	NZ			967	66.	063	61.668	3	. 296	1.0	0 24.16	А
	ATOM	7583	С			967	69.	361	57.728		.129	1.0	0 14.35	А
	ATOM	7584	0	LYS	Α	967	69.	669	56.541	-2	.218	1.0	0 13.76	А
	MOTA	7585	N			968	70.	180	58.713	-2	.482	1.0	0 15.21	А
	ATOM	7586	CA	SER	Α	968	71.	497	58.452	-3	.061	1.0	0 16.60	А
40	MOTA	7587	СВ	SER	Α	968	72.	183	59.776	-3	. 415	1.0	0 17.31	А
	ATOM	7588	OG			968	72.	434	60.550		. 257		0 19.84	А
	ATOM	7589	С			968	72.	464	57.592	-2	. 250	1.0	0 16.96	А
	ATOM	7590	0	SER	Α	968	73.	327	56.931	-2	.826	1.0	0 18.10	А
	ATOM	7591	N			969	72.	320	57.593	-0	. 929	1.0	0 17.39	А
45	ATOM	7592	CA	SER	Α	969	73.	214	56.819	-0	. 065	1.0	0 18.70	А
	ATOM	7593	СВ	SER	Α	969	73.	108	57.320	1.	.376	1.0	0 19.87	А
	ATOM	7594	OG	SER	Α	969	71.	782	57.194	1.	862	1.0	0 23.45	А
	ATOM	7595	С			969	72.	999	55.306	-0	. 089	1.00	0 18.31	А
	ATOM	7596	0			969	73.8		54.552		408	1.0	0 18.36	Α
50	ATOM	7597	N	ALA	Α	970	71.8		54.856	-0	662	1.00	0 17.75	А
	ATOM	7598	CA			970	71.		53.427		.723		0 17.78	Α
	ATOM	7599	СВ			970	70.		53.207		. 997		0 17.81	А
	ATOM	7600	С			970	72.		52.697		.772		0 18.18	А
	ATOM	7601	0	ALA			72.		53.027		959		0 18.06	А
55	ATOM	7602	N	LYS			73.		51.696	-1	328	1.00	0 18.93	Α

	ATOM	7603	CA	LYS	Α	971	74.021	50.905	-2.226	1.00	19.90	А
	ATOM	7604	CB	LYS	Α	971	74.726	49.793	-1.447	1.00	21.65	А
	ATOM	7605	CG	LYS	A	971	75.912	50.260	-0.619	1.00	24.85	А
	ATOM	7606	CD	LYS	Α	971	76.437	49.145	0.278	1.00	25.97	Α
5	ATOM	7607	CE	LYS	Α	971	76.653	47.850	-0.495	1.00	26.95	А
	ATOM	7608	NZ	LYS			77.570	48.023	-1.653	1.00	27.59	Α
	ATOM	7609	C	LYS			73.185	50.290	-3.341	1.00	18.94	А
	ATOM	7610	Ō	LYS			73.598	50.269	-4.500	1.00	20.08	А
	ATOM	7611	N	THR			72.013	49.778	-2.982		18.05	А
10	ATOM	7612	CA	THR			71.116	49.182	-3.961		16.90	А
10	ATOM	7613	CB	THR			70.563	47.820	-3.483		17.94	A
	ATOM	7614	OG1				71.649	46.913	-3.252		19.39	A
		7614	CG2				69.641	47.222	-4.538		18.08	A
	ATOM							50.135	-4.183		15.14	A
15	ATOM	7616	С	THR			69.949	50.133	-3.298		14.90	A
15	ATOM	7617	0	THR			69.116					
	ATOM	7618	N	GLN			69.903	50.746	-5.361		13.21	A
	ATOM	7619	CA	GLN			68.832	51.678	-5.688		12.53	A
	ATOM	7620	CB	GLN			69.267	52.585	-6.841		11.85	A
••	ATOM	7621	CG	GLN			70.371	53.557	-6.466		11.87	A
20	MOTA	7622	CD	GLN			69.924	54.569	-5.432		12.68	A
	ATOM	7623	OE1				70.548	54.720	-4.377		14.40	A
	MOTA	7624		GLN			68.840	55.275	-5.731		10.57	A
	MOTA	7625	С	GLN			67.565	50.923	-6.062		11.92	A
	ATOM	7626	0	GLN	A	973	67.623	49.851	-6.656		12.62	A
25	MOTA	7627	N	ARG	Α	974	66.415	51.485	-5.706		11.58	A
	ATOM	7628	CA	ARG	Α	974	65.143	50.856	-6.022	1.00	11.62	A
	ATOM	7629	CB	ARG	Α	974	64.485	50.318	-4.750	1.00	12.80	A
	ATOM	7630	CG	ARG	Α	974	65.324	49.299	-3.994	1.00	14.41	А
	ATOM	7631	CD	ARG	Α	974	64.713	48.990	-2.633	1.00	15.71	A
30	ATOM	7632	NE	ARG	Α	974	63.450	48.264	-2.738	1.00	19.08	A
	ATOM	7633	CZ	ARG	Α	974	62.310	48.656	-2.176	1.00	18.19	А
	ATOM	7634		ARG			62.263	49.776	-1.466	1.00	19.24	А
	ATOM	7635	NH2	ARG	Α	974	61.217	47.919	-2.317	1.00	19.09	A
	ATOM	7636	С	ARG			64.215	51.865	-6.685	1.00	10.37	А
35	ATOM	7637	Ō	ARG			64.117	53.012	-6.246	1.00	11.02	А
	ATOM	7638	N	VAL			63.547	51.436	-7.750		10.47	A
	ATOM	7639	CA	VAL			62.612	52.300	-8.458		10.13	A
	ATOM	7640	СВ	VAL			63.130	52.680	-9.860		10.67	A
	MOTA	7641		VAL			62.104		-10.579		10.06	A
40	ATOM	7642		VAL			64.450	53.423	-9.736		10.88	A
10	ATOM	7643	C	VAL			61.287	51.567	-8.594		10.08	A
	ATOM	7644	0	VAL			61.232	50.423	-9.063	1.00	9.41	A
	ATOM	7645	N	GLY			60.217	52.232	-8.178	1.00	9.67	A
		7646	CA	GLY			58.904	51.622	-8.247	1.00	9.24	A
45	ATOM	7647	CA	GLY			58.067	52.121	-9.405	1.00	8.66	A
40	ATOM			GLY			58.142	53.290	-9.793	1.00	8.68	A
	ATOM	7648	0						-9.958	1.00	8.45	A
	ATOM	7649	N	TYR			57.268	51.218				
	ATOM	7650	CA	TYR			56.390		-11.072	1.00	8.07	A
50	ATOM	7651	СВ	TYR			56.874		-12.374	1.00	8.64	A
50	ATOM	7652	CG	TYR			58.271		-12.791	1.00	8.17	A
	MOTA	7653		TYR			59.371		-12.312	1.00	8.99	A
	ATOM	7654		TYR			60.664		-12.706	1.00	9.30	A
	ATOM	7655		TYR			58.496		-13.673	1.00	8.85	A
	MOTA	7656		TYR			59.773		-14.068		10.31	A
55	ATOM	7657	CZ	TYR	A	977	60.855	51.947	-13.586	1.00	9.76	A

	ATOM	7658	ОН	TYR A	977	62.125	52.302 -13.980	1.00 11.36	А
	ATOM	7659	С	TYR A	977	54.993	51.012 -10.822	1.00 7.74	Α
	ATOM	7660	0	TYR A	977	54.828	49.906 -10.307	1.00 8.14	A
_	ATOM	7661	N	VAL A	978	53.987	51.807 -11.174	1.00 7.18	А
5	MOTA	7662	CA	VAL A		52.613	51.346 -11.084	1.00 7.63	Α
	ATOM	7663	CB	VAL A		51.693	52.298 -10.300	1.00 7.48	Α
	MOTA	7664		VAL A		50.250	51.818 -10.418	1.00 8.22	A
	ATOM	7665		VAL A		52.098	52.321 -8.837	1.00 8.52	A
	ATOM	7666	С	VAL A		52.168	51.312 -12.537	1.00 7.85	А
10	MOTA	7667	0	VAL A		52.203	52.333 -13.225	1.00 8.22	А
	ATOM	7668	N	LEU A		51.794	50.126 -13.000	1.00 8.70	A
	MOTA	7669	CA	LEU A	979	51.350	49.919 -14.369	1.00 10.20	A
	MOTA	7670	CB	LEU A	979	52.084	48.724 -14.982	1.00 12.54	A
	MOTA	7671	CG	LEU A	979	53.417	48.976 -15.684	1.00 16.22	Α
15	MOTA	7672		LEU A		53.139	49.476 -17.089	1.00 16.69	Α
	ATOM	7673	CD2	LEU A	979	54.262	49.969 -14.897	1.00 16.92	Α
	MOTA	7674	С	LEU A		49.856	49.663 -14.417	1.00 9.64	Α
	ATOM	7675	0	LEU A		49.343	48.787 -13.724	1.00 10.75	Α
	ATOM	7676	N	HIS A		49.152	50.435 -15.233	1.00 9.35	A
20	MOTA	7677	CA	HIS A	980	47.724	50.240 -15.370	1.00 9.64	A
	ATOM	7678	CB	HIS A	980	46.926	51.443 -14.863	1.00 9.78	A
	MOTA	7679	CG	HIS A		45.447	51.254 -14.994	1.00 9.39	Α
	ATOM	7680		HIS A		44.602	50.431 -14.332	1.00 7.39	A
	ATOM	7681		HIS A		44.693	51.871 -15.969	1.00 10.35	A
25	MOTA	7682		HIS A		43.448	51.432 -15.903	1.00 7.04	Α
	ATOM	7683		HIS A		43.367	50.555 -14.918	1.00 10.79	A
	MOTA	7684	С	HIS A		47.348	50.005 -16.817	1.00 10.11	A
	MOTA	7685	0	HIS A		47.788	50.728 -17.705	1.00 11.06	Α
• •	ATOM	7686	N	ARG A		46.537	48.984 -17.052	1.00 9.65	A
30	MOTA	7687	CA	ARG A		46.076	48.711 -18.397	1.00 10.37	A
	ATOM	7688	CB	ARG A		46.436	47.295 -18.832	1.00 12.59	A
	MOTA	7689	CG	ARG A		46.052	46.995 -20.272	1.00 16.41	A
	ATOM	7690	CD	ARG A		46.568	45.634 -20.691	1.00 19.84	A
25	ATOM	7691	NE	ARG A		46.118	45.254 -22.024	1.00 23.55	A
35	ATOM	7692	CZ	ARG A		46.338	44.058 -22.564	1.00 25.07	A
	ATOM	7693		ARG A		47.001	43.135 -21.880	1.00 25.67	A
	MOTA	7694		ARG A		45.890	43.780 -23.782	1.00 26.12	A
	ATOM	7695	C	ARG A		44.572	48.872 -18.360	1.00 9.55	A
40	ATOM	7696	0	ARG A		43.892	48.218 -17.576	1.00 9.46	A
4 0	ATOM		N	THR A			49.770 -19.185		A
	ATOM	7698	CA	THR A		42.621	49.990 -19.245	1.00 9.61	A
	ATOM	7699	СВ	THR A		42.322	51.447 -19.679	1.00 9.52	A
	ATOM	7700		THR A		40.921	51.716 -19.547	1.00 9.48	A
45	MOTA	7701		THR A		42.772	51.685 -21.120	1.00 10.43	A
45	ATOM	7702	С	THR A		42.095	48.993 -20.280	1.00 10.60	A
	ATOM	7703	0	THR A		42.833	48.111 -20.716	1.00 11.44	A
	ATOM	7704	N	ASN A		40.824	49.100 -20.642	1.00 9.38	A
	ATOM	7705	CA ·			40.261	48.211 -21.652	1.00 10.07	A
50	MOTA	7706	CB	ASN A		39.252	47.227 -21.057	1.00 9.79	A
50	ATOM	7707	CG	ASN A		38.746	46.233 -22.088	1.00 9.90	A
	ATOM	7708		ASN A		39.470	45.322 -22.493	1.00 11.26	A
	ATOM	7709		ASN A		37.510	46.418 -22.535	1.00 11.73	A
	ATOM	7710	C	ASN A		39.560	49.077 -22.682	1.00 10.88	A
c C	MOTA	7711	0	ASN A		38.624	49.811 -22.359	1.00 10.83	A
55	ATOM	7712	N	LEU A	984	40.029	48.994 -23.920	1.00 11.31	А

		ATOM	7713	CA	LEU A	984	39.461	49.778 -25.003	1.00 13.01	A
		MOTA	7714	CB	LEU A	984	40.574	50.464 -25.790	1.00 13.38	A
		ATOM	7715	CG	LEU A	984	41.532	51.306 -24.945	1.00 13.55	Α
		ATOM	7716	CD1	LEU A	984	42.655	51.828 -25.825	1.00 14.92	A
	5	ATOM	7717	CD2	LEU A	984	40.774	52.448 -24.282	1.00 13.40	Α
		ATOM	7718	С	LEU A		38.674	48.868 -25.919	1.00 14.57	А
		ATOM	7719	0	LEU A		39.067	47.731 -26.167	1.00 14.53	Α
		ATOM	7720	N	MSE A		37.557	49.371 -26.422	1.00 16.64	А
		ATOM	7721	CA	MSE A		36.724	48.579 -27.307	1.00 20.14	Α
	10	ATOM	7722	СВ	MSE A		35.417	49.300 -27.593	1.00 22.91	А
	10	ATOM	7723	CG	MSE A		34.540	49.482 -26.392	1.00 26.23	A
		ATOM	7724	SE	MSE A		32.730	49.389 -26.975	1.00 32.71	A
		ATOM	7725	CE	MSE A		32.637	51.060 -27.940	1.00 29.41	A
		MOTA	7726	C	MSE A		37.403	48.274 -28.625	1.00 21.11	A
	15	ATOM	7727	0	MSE A		38.127	49.101 -29.178	1.00 21.04	A
	10	ATOM	7728	N	GLN A		37.169	47.070 -29.124	1.00 22.25	A
		ATOM	7729	CA	GLN A		37.721	46.669 -30.403	1.00 23.97	A
		ATOM	7730	CB	GLN A		38.052	45.174 -30.389	1.00 26.84	A
i tumii			7731	CG	GLN A		36.990	44.298 -29.749	1.00 20.04	A
Frank Comp	20	ATOM	7732	CD	GLN A		37.548	42.971 -29.263	1.00 30.30	Ā
1,14	20	ATOM			GLN A			42.126 -28.750	1.00 32.21	A
		ATOM	7733				36.814	42.785 -29.416	1.00 33.31	A
ijĪ.		ATOM	7734		GLN A		38.856	46.995 -31.407	1.00 33.24	A
		ATOM	7735	С	GLN A		36.626		1.00 23.34	A
Cres Cris	25	ATOM	7736	0	GLN A		35.513	46.474 -31.314		
	25	ATOM	7737	N	CYS A		36.929	47.885 -32.346	1.00 22.85	A
M		MOTA	7738	CA	CYS A		35.944	48.289 -33.338	1.00 23.08	A
		ATOM	7739	С	CYS A		36.405	48.051 -34.771	1.00 24.34	A
11 		MOTA	7740	0	CYS A		35.897	48.679 -35.701	1.00 24.34	A
	20	ATOM	7741	CB	CYS A		35.592	49.767 -33.160	1.00 22.10	A
·Q	30	MOTA	7742	SG	CYS A		35.108	50.279 -31.476	1.00 21.61	A
W)		ATOM	7743	N	GLY A		37.371	47.156 -34.949	1.00 25.32	A
		MOTA	7744	CA	GLY A		37.845	46.849 -36.287	1.00 28.05	A
		MOTA	7745	С	GLY A		39.102	47.560 -36.744	1.00 29.88	A
	2-	MOTA	7746	0	GLY A		39.416	47.558 -37.937	1.00 29.77	A
ğ.—	35	MOTA	7747	N	THR A		39.826	48.170 -35.813	1.00 31.64	A
		ATOM	7748	CA	THR A		41.057	48.868 -36.159	1.00 33.74	A
		ATOM	7749	CB	THR A		41.213	50.170 -35.354	1.00 33.53	A
		MOTA	7750		THR A		40.077	51.012 -35.584	1.00 34.03	A
		ATOM	7751		THR A		42.472	50.909 -35.781	1.00 33.57	A
	40	MOTA	7752	Ċ	THR A	989		47.967 -35.875		A
		ATOM	7753	0	THR A		42.463	47.537 -34.741	1.00 35.26	A
		MOTA	7754	N	PRO A		43.052	47.666 -36.912	1.00 37.38	A
		MOTA	7755	CD	PRO A	990	42.900	48.144 -38.298	1.00 37.60	А
		ATOM	7756	CA	PRO A	990	44.236	46.810 -36.788	1.00 39.24	А
	45	ATOM	7757	CB	PRO A	990	44.979	47.076 -38.090	1.00 38.87	А
		ATOM	7758	CG	PRO A	990	43.853	47.242 -39.061	1.00 38.12	А
		ATOM	7759	С	PRO A	990	45.087	47.105 -35.553	1.00 41.21	A
		ATOM	7760	0	PRO A	990	45.363	46.205 -34.759	1.00 41.51	Α
		MOTA	7761	N	GLU A	991	45.499	48.360 ~35.395	1.00 43.24	A
	50	ATOM	7762	CA	GLU A	991	46.316	48.756 -34.250	1.00 45.36	А
		ATOM	7763	СВ	GLU A		45.471	48.710 -32.975	1.00 46.82	Α
		ATOM	7764	CG	GLU A		44.233	49.595 -33.029	1.00 48.73	A
		ATOM	7765	CD	GLU A		43.276	49.336 -31.881	1.00 49.86	А
		ATOM	7766		GLU A		43.701	49.450 -30.713	1.00 50.20	А
	55	ATOM	7767		GLU A		42.097	49.018 -32.149	1.00 50.38	A

		ATOM	7768	С	GLU A		47.513	47.816 -34.12		
		ATOM	7769	0	GLU A		47.428	46.774 -33.47		
		MOTA	7770	N	GLU A		48.630	48.193 -34.73		
	_	MOTA	7771	CA	GLU A		49.825	47.359 -34.70		
	5	MOTA	7772	CB	GLU A	992	50.172	46.919 -36.13	0 1.00 47.94	А
		MOTA	7773	CG	GLU A	992	49.080	46.124 -36.82	5 1.00 49.54	Α
		MOTA	7774	CD	GLU A	992	49.384	45.880 -38.29	1 1.00 50.48	А
		MOTA	7775	OE1	GLU A	992	50.469	45.341 -38.59		А
		MOTA	7776	OE2	GLU A	992	48.534	46.226 -39.14	0 1.00 51.09	Α
	10	ATOM	7777	С	GLU A	992	51.052	48.015 -34.07	5 1.00 46.42	Α
		MOTA	7778	0	GLU A	992	50.947	48.832 -33.16	1 1.00 46.39	Α
		ATOM	7779	N	HIS A	993	52.214	47.625 -34.59	3 1.00 45.82	A
		ATOM	7780	CA	HIS A	993	53.526	48.105 -34.16	7 1.00 44.90	А
		ATOM	7781	CB	HIS A	993	54.113	49.027 -35.24	9 1.00 46.12	A
	15	MOTA	7782	CG	HIS A	993	53.206	50.144 -35.66	8 1.00 47.42	A
		ATOM	7783	CD2	HIS A	993	52.148	50.721 -35.04	9 1.00 47.85	Α
		ATOM	7784	ND1	HIS A	993	53.364	50.818 -36.86	0 1.00 47.77	Α
		MOTA	7785	CE1	HIS A	993	52.442	51.758 -36.95	9 1.00 48.01	Α
		ATOM	7786	NE2	HIS A	993	51.691	51.721 -35.87	3 1.00 48.09	A
	20	ATOM	7787	С	HIS A	993	53.669	48.760 -32.79	4 1.00 43.41	Α
. 7		ATOM	7788	0	HIS A	993	53.618	49.983 -32.66		
J		ATOM	7789	N	THR A	994	53.858	47.923 -31.77	6 1.00 41.20	Α
91 222 6'9 p		ATOM	7790	CA	THR A	994	54.058	48.377 -30.40	1 1.00 38.33	А
		ATOM	7791	CB	THR A	994	52.741	48.405 -29.59	2 1.00 38.20	
(C)	25	MOTA	7792	OG1	THR A		52.211	47.079 -29.48		
N		ATOM	7793	CG2			51.721	49.307 -30.26		А
1,11		ATOM	7794	С	THR A		55.028	47.405 -29.73		А
B}-		ATOM	7795	0	THR A		54.980	46.200 -29.98		
	• •	ATOM	7796	N	GLN A	995	55.908	47.931 -28.88		
Ü	30	ATOM	7797	CA	GLN A		56.899	47.105 -28.21		
IJ		ATOM	7798	CB	GLN A		58.227	47.851 -28.12		
į.		ATOM	7799	CG	GLN A		58.693	48.461 -29.42		
		MOTA	7800	CD	GLN A		59.846	49.417 -29.21		
	0.5	ATOM	7801	OE1			60.953	49.009 -28.86		
E 1/200	35	ATOM	7802		GLN A		59.589	50.703 -29.42		
		MOTA	7803	С	GLN A		56.467	46.719 -26.80		
		MOTA	7804	0	GLN A		55.719	47.446 -26.15		
		ATOM	7805	N	LYS A		56.952	45.573 -26.34		
	40	MOTA	7806	CA	LYS A		56.639	45.110 -25.00		
	40	ATOM	7807	CB	LYS A		57.143	43.678 -24.79		
		ATOM	7808	CG	LYS A		56.424	42.636 -25.63		
		ATOM	7809	CD	LYS A		54.951	42.545 -25.26		
		ATOM	7810	CE	LYS A		54.246	41.461 -26.06		
	45	MOTA	7811	NZ	LYS A		54.837	40.117 -25.81		
	45	MOTA	7812	С	LYS A		57.333	46.045 -24.02		
		ATOM	7813	0	LYS A		58.498	46.399 -24.21		
		ATOM	7814	N	LEU A		56.613	46.456 -22.98		
		MOTA	7815	CA	LEU A		57.183	47.350 -21.99		
	ΕO	ATOM	7816	CB	LEU A		56.180	48.443 -21.62		
	50	ATOM	7817	CG	LEU A		56.621	49.367 -20.48		
		MOTA	7818		LEU A		57.859	50.141 -20.90		
		ATOM	7819		LEU A		55.493	50.316 -20.12		
		ATOM	7820	С	LEU A		57.582	46.588 -20.74		
	EE	MOTA	7821	0	LEU A		56.732	46.021 -20.06		
	55	MOTA	7822	N	ASP A	998	58.880	46.566 -20.46	7 1.00 16.19	А

	ATOM	7823	CA		A 998	59.399	45.910 -19.273	1.00 15.60	А
	ATOM	7824	CB		A 998	60.500	44.912 -19.633	1.00 16.76	A
	ATOM	7825	CG	ASP	A 998	61.145	44.295 -18.408	1.00 17.89	Α
	ATOM	7826	OD1	ASP	A 998	62.170	43.600 -18.564	1.00 18.83	Α
5	MOTA	7827	OD2	ASP	A 998	60.626	44.503 -17.289	1.00 17.40	Α
	ATOM	7828	С	ASP	A 998	59.976	47.028 -18.414	1.00 14.75	A
	MOTA	7829	0		A 998	61.117	47.447 -18.609	1.00 14.20	А
	ATOM	7830	N		A.999	59.185	47.521 -17.469	1.00 14.42	A
	MOTA	7831	CA		A 999	59.642	48.617 -16.628	1.00 14.11	A
10	ATOM	7832	CB	VAL	A 999	58.532	49.089 -15.655	1.00 13.61	A
	MOTA	7833	CG1	VAL	A 999	57.346	49.614 -16.447	1.00 14.23	A
	ATOM	7834	CG2	VAL	A 999	58.109	47.955 -14.738	1.00 14.31	A
	ATOM	7835	С	VAL	A 999	60.897	48.299 -15.827	1.00 14.57	А
	ATOM	7836	0	VAL	A 999	61.669	49.195 -15.494	1.00 14.03	A
15	ATOM	7837	N	CYS	A1000	61.116	47.027 -15.527	1.00 15.40	A
	ATOM	7838	CA	CYS	A1000	62.288	46.673 -14.750	1.00 16.88	Α
	MOTA	7839	С	CYS	A1000	63.609	46.871 -15.487	1.00 16.40	Α
	ATOM	7840	0	CYS	A1000	64.666	46.894 -14.864	1.00 16.72	A
	ATOM	7841	СВ	CYS	A1000	62.159	45.245 -14.220	1.00 17.93	Α
20	MOTA	7842	SG	CYS	A1000	61.365	45.181 -12.575	1.00 21.77	A
	ATOM	7843	N	HIS	A1001	63.555	47.033 -16.806	1.00 16.66	A
	MOTA	7844	CA	HIS	A1001	64.779	47.258 -17.569	1.00 17.02	А
	MOTA	7845	СВ	HIS	A1001	64.903	46.251 -18.720	1.00 17.37	A
	ATOM	7846	CG	HIS	A1001	65.459	44.925 -18.303	1.00 18.58	A
25	ATOM	7847	CD2	HIS	A1001	66.716	44.427 -18.368	1.00 18.89	A
	MOTA	7848	ND1	HIS	A1001	64.693	43.951 -17.698	1.00 18.64	A
	MOTA	7849	CE1	HIS	A1001	65.455	42.911 -17.408	1.00 19.12	A
	MOTA	7850	NE2	HIS	A1001	66.687	43.174 -17.804	1.00 19.79	A
	ATOM	7851	С	HIS	A1001	64.896	48.684 -18.109	1.00 17.08	A
30	MOTA	7852	0	HIS	A1001	65.742	48.962 -18.960	1.00 17.52	A
	ATOM	7853	N	LEU	A1002	64.053	49.588 -17.615	1.00 16.75	A
	MOTA	7854	CA	LEU	A1002	64.101	50.981 -18.057	1.00 16.76	A
	ATOM	7855	СВ	LEU	A1002	62.885	51.754 -17.545	1.00 16.55	A
	ATOM	7856	CG	LEU	A1002	61.597	51.523 -18.337	1.00 15.47	A
35	ATOM	7857	CD1	LEU	A1002	60.434	52.218 -17.648	1.00 15.32	А
	ATOM	7858	CD2	LEU	A1002	61.775	52.056 -19.754	1.00 16.05	Α
	ATOM	7859	С		A1002	65.380	51.646 -17.566	1.00 17.51	A
	MOTA	7860	0	LEU	A1002	65.901	52.561 -18.205	1.00 18.66	A
	ATOM	7861	N	LEU	A1003	65.869	51.190 -16.418	1.00 17.61	A
40	MOTA	7862	CA	LEU	A1003	67.108	51.704 -15.847	1.00 18.02	A
	ATOM	7863	СВ		A1003	66.906	52.109 -14.387	1.00 18.59	A
	ATOM	7864	CG		A1003	66.180	53.442 -14.184	1.00 20.43	А
	ATOM	7865	CD1	LEU	A1003	65.881	53.644 -12.717	1.00 20.90	A
	ATOM	7866			A1003	67.041	54.581 -14.716	1.00 20.41	A
45	ATOM	7867	С		A1003	68.135	50.583 -15.957	1.00 18.42	А
	ATOM	7868	0		A1003	67.802	49.409 -15.805	1.00 17.92	A
	ATOM	7869	N		A1004	69.399	50.930 -16.229	1.00 18.76	А
	ATOM	7870	CD		A1004	69.943	52.285 -16.433	1.00 19.13	А
	ATOM	7871	CA		A1004	70.453	49.923 -16.364	1.00 18.84	Α
50	ATOM	7872	СВ		A1004	71.580	50.708 -17.022	1.00 19.50	Α
50	ATOM	7873	CG		A1004	71.443	52.046 -16.377	1.00 19.67	А
	ATOM	7874	C		A1004	70.903	49.252 -15.071	1.00 19.22	А
	ATOM	7875	0		A1004	70.568	49.692 -13.968	1.00 18.35	А
	ATOM	7876	N		A1004	71.658	48.168 -15.233	1.00 19.25	A
55	ATOM	7877	CA		A1005	72.210	47.420 -14.112	1.00 19.59	A
	ATON	, , , ,	CA	MCM	41000	, 2 . 2 10	1.1.120 14.112		

		MOTA	7878	CB	ASN	A1005	73.166	48.321 -13.330	1.00 20.66	Α
		ATOM	7879	CG	ASN	A1005	74.151	49.043 -14.231	1.00 21.46	Α
		MOTA	7880	OD1	ASN	A1005	74.441	50.223 -14.030	1.00 23.60	Α
		ATOM	7881	ND2	ASN	A1005	74.673	48.336 -15.225	1.00 22.61	Α
	5	MOTA	7882	С	ASN	A1005	71.156	46.857 -13.163	1.00 19.34	Α
		ATOM	7883	0	ASN	A1005	71.314	46.933 -11.945	1.00 19.19	Α
		ATOM	7884	N	VAL	A1006	70.087	46.291 -13.713	1.00 19.06	A
		ATOM	7885	CA	VAL	A1006	69.036	45.723 -12.876	1.00 19.31	Α
		MOTA	7886	CB	VAL	A1006	67.747	45.434 -13.693	1.00 19.18	Α
	10	ATOM	7887	CG1	VAL	A1006	68.019	44.404 -14.773	1.00 19.81	Α
		MOTA	7888	CG2	VAL	A1006	66.639	44.957 -12.764	1.00 19.49	Α
		MOTA	7889	С	VAL	A1006	69.545	44.435 -12.230	1.00 19.15	A
		MOTA	7890	0	VAL	A1006	70.094	43.563 -12.906	1.00 19.87	А
		ATOM	7891	N	ALA	A1007	69.368	44.331 -10.916	1.00 18.45	А
	15	MOTA	7892	CA	ALA	A1007	69.817	43.169 -10.154	1.00 18.81	Α
		MOTA	7893	CB	ALA	A1007	70.580	43.629 -8.919	1.00 18.61	Α
		MOTA	7894	С	ALA	A1007	68.652	42.272 -9.748	1.00 19.17	Α
		ATOM	7895	0	ALA	A1007	68.836	41.086 -9.472	1.00 19.63	Α
Signal Si		ATOM	7896	N	ARG	A1008	67.455	42.844 -9.695	1.00 19.17	A
	20	MOTA	7897	CA	ARG	A1008	66.265	42.078 -9.349	1.00 19.29	Α
Ü		ATOM	7898	CB	ARG	A1008	66.261	41.696 -7.863	1.00 22.65	Α
ijī.		ATOM	7899	CG	ARG	A1008	66.156	42.852 -6.896	1.00 27.30	Α
		MOTA	7900	CD	ARG	A1008	66.010	42.347 -5.466	1.00 31.10	Α
		MOTA	7901	NE	ARG	A1008	67.134	41.503 -5.065	1.00 34.46	Α
13	25	MOTA	7902	CZ	ARG	A1008	68.392	41.924 -4.962	1.00 36.16	Α
1995 1941		MOTA	7903	NHl	ARG	A1008	68.699	43.187 -5.228	1.00 37.00	А
1,51		MOTA	7904	NH2	ARG	A1008	69.347	41.078 -4.596	1.00 37.06	Α
B1		MOTA	7905	С	ARG	A1008	65.003	42.855 -9.688	1.00 17.93	А
iner.		ATOM	7906	0	ARG	A1008	65.010	44.085 -9.738	1.00 17.30	А
	30	MOTA	7907	N	CYS	A1009	63.927	42.118 -9.933	1.00 16.65	A
		MOTA	7908	CA	CYS	A1009	62.636	42.698 -10.276	1.00 16.67	Α
i di		MOTA	7909	C		A1009	61.592	41.996 -9.427	1.00 15.78	А
		ATOM	7910	0	CYS	A1009	61.519	40.768 -9.412	1.00 15.09	Α
		MOTA	7911	CB		A1009	62.339	42.464 -11.753	1.00 18.24	А
n	35	MOTA	7912	SG	CYS	A1009	60.816	43.242 -12.385	1.00 21.28	A
		MOTA	7913	N	GLU	A1010	60.776	42.775 -8.727	1.00 14.67	Α
		MOTA	7914	CA		A1010	59.761	42.197 -7.866	1.00 14.58	Α
		MOTA	7915	СВ		A1010	60.174	42.376 -6.401	1.00 15.93	A
	40	MOTA	7916	CG		A1010	61.501	41.712 -6.045	1.00 18.90	Α
	4 0	MOTA	7917	CD		A1010	62.107	42.248 -4.760	1.00 20.54	A
		ATOM	7918			A1010	62.440	43.452 -4.712	1.00 22.00	A
		ATOM	7919			A1010	62.255	41.466 -3.796	1.00 22.46	Α
		MOTA	7920	С		A1010	58.394	42.827 -8.075	1.00 13.40	A
	4.	ATOM	7921	0		A1010	58.284	44.024 -8.347	1.00 13.98	A
	45	MOTA	7922	N		A1011	57.354	42.009 -7.970	1.00 12.76	A
		ATOM	7923	CA		A1011	55.991	42.512 -8.072	1.00 12.10	A
		MOTA	7924	CB		A1011	55.034	41.430 -8.573	1.00 13.80	Α
		MOTA	7925	CG		A1011	53.614	41.929 -8.812	1.00 18.17	Α
	50	MOTA	7926	CD		A1011	52.618	40.774 -8.865	1.00 22.69	A
	50	MOTA	7927	NE		A1011	52.950	39.783 -9.883	1.00 27.58	A
		MOTA	7928	CZ		A1011	52.911	40.010 -11.192	1.00 28.97	A
		ATOM	7929			A1011	52.554	41.203 -11.651	1.00 30.64	A
		ATOM	7930			A1011	53.224	39.040 -12.044	1.00 29.56	A
		MOTA	7931	С		A1011	55.666	42.853 -6.621	1.00 11.53	A
	55	ATOM	7932	0	ARG	A1011	55.977	42.076 -5.712	1.00 11.37	А

		MOTA	7933	N	THR	A1012	55.062	44.012	-6.397	1.00	10.37	Α
		MOTA	7934	CA		A1012	54.734	44.446	-5.045	1.00	9.85	Α
		ATOM	7935	СВ		A1012	55.624	45.631	-4.618	1.00	11.29	А
		ATOM	7936	OG1		A1012	55.297	46.777	-5.421		10.95	А
	5	ATOM	7937	CG2		A1012	57.097	45.301	-4.810	1.00		A
	9	ATOM	7938	C		A1012	53.295	44.931	-4.955		10.13	А
			7939	0		A1012 A1012	52.595	45.038	-5.961	1.00	9.43	A
		ATOM					52.858	45.216	-3.733	1.00	9.30	A
		ATOM	7940	N		A1013			-3.522	1.00	9.02	A
	10	ATOM	7941	CA		A1013	51.532	45.772	-2.024		9.03	A
	10	ATOM	7942	CB		A1013	51.229	45.899		1.00	8.79	A
		ATOM	7943			A1013	52.399	46.365	-1.344	1.00		
		ATOM	7944			A1013	50.809	44.553	-1.442		10.35	A
		ATOM	7945	С		A1013	51.622	47.164	-4.163	1.00	8.71	A
	4 -	ATOM	7946	0		A1013	52.721	47.685	-4.366	1.00	8.56	A
	15	ATOM	7947	N		A1014	50.484	47.776	-4.469	1.00	8.27	A
		ATOM	7948	CA		A1014	50.504	49.082	-5.133	1.00	7.70	A
		ATOM	7949	CB		A1014	49.085	49.520	-5.491	1.00	7.86	A
		ATOM	7950	CG		A1014	48.309	48.581	-6.414	1.00	7.61	A
		MOTA	7951			A1014	47.005	49.264	-6.789	1.00	8.33	A
ıĪ	20	MOTA	7952	CD2		A1014	49.116	48.242	-7.667	1.00	8.06	A
		MOTA	7953	С		A1014	51.197	50.205	-4.376	1.00	7.40	A
		MOTA	7954	0	LEU	A1014	51.552	51.228	-4.964	1.00	7.36	A
4,5 A		ATOM	7955	N	THR	A1015	51.382	50.011	-3.076	1.00	7.72	А
		ATOM	7956	CA	THR	A1015	52.037	50.991	-2.220	1.00	7.89	А
1	25	ATOM	7957	CB	THR	A1015	51.511	50.885	-0.794	1.00	8.20	А
		ATOM	7958	OG1	THR	A1015	51.649	49.527	-0.362	1.00	8.50	A
		ATOM	7959	CG2	THR	A1015	50.045	51.287	-0.724	1.00	8.31	Α
5)		MOTA	7960	C	THR	A1015	53.544	50.741	-2.166	1.00	8.46	Α
		MOTA	7961	0	THR	A1015	54.274	51.501	-1.528	1.00	9.16	Α
	30	MOTA	7962	N	PHE	A1016	53.988	49.668	-2.823	1.00	8.59	А
1:22 1:0 fi		MOTA	7963	CA	PHE	A1016	55.402	49.273	-2.867	1.00	9.00	Α
Ü		ATOM	7964	CB	PHE	A1016	56.298	50.457	-3.263	1.00	9.48	А
jadi ma		MOTA	7965	CG	PHE	A1016	55.972	51.061	-4.598	1.00	8.69	А
		MOTA	7966	CD1	PHE	A1016	55.795	52.438	-4.718	1.00	8.66	А
	35	MOTA	7967	CD2	PHE	A1016	55.877	50.270	-5.738	1.00	8.29	Α
		MOTA	7968			A1016	55.528	53.016	-5.956	1.00	8.19	А
		ATOM	7969			A1016	55.609	50.841	-6.981	1.00	9.07	Α
		MOTA	7970	CZ		A1016	55.435	52.213	-7.089	1.00	9.64	Α
		MOTA	7971	C		A1016	55.899	48.744	-1.523	1.00	9.84	Α
	40	ATOM	7972	0		A1016	57.089	48.470	-1.368	1.00	10.75	А
		ATOM	7973	N		A1017	54.996	48.579	-0.562	1.00	10.15	А
		ATOM	7974	CA		A1017	55.400	48.144	0.773	1.00	10.97	A
		ATOM	7975	СВ		A1017	54.430	48.717	1.808		10.65	А
		ATOM	7976	CG		A1017	54.380	50.250	1.792	1.00	9.95	А
	45	ATOM	7977			A1017	53.336	50.737	2.780		10.62	А
	10	ATOM	7978			A1017	55.749	50.828	2.133		11.90	А
		MOTA	7979	C		A1017	55.607	46.655	1.024	1.00		А
		ATOM	7980	0		A1017	56.252	46.289	2.006		13.86	A
		ATOM	7981	N		A1018	55.066	45.794	0.169		12.59	А
	50	ATOM	7982	CA		A1018	55.262	44.359	0.352		14.35	A
	50	ATOM	7983	CB		A1018	54.001	43.689	0.912		16.37	A
			7984	CG		A1018	54.001	42.192	1.161		19.20	A
		ATOM					52.916	41.454	1.503	1.00		A
		ATOM	7985	CD OF 1		A1018	52.916	40.236	1.694		23.07	A
	55	ATOM	7986			A1018					21.22	A
	55	ATOM	7987	NLZ	GΓN	A1018	51.809	42.182	1.578	1.00	41.64	М

	MOTA	7988	С		A1018	55.634	43.680	-0.959	1.00 14.71	A
	MOTA	7989	0		A1018	55.018	43.933	-1.995	1.00 14.64	А
	MOTA	7990	N		A1019	56.647	42.819	-0.914	1.00 15.34	А
_	MOTA	7991	CA		A1019	57.069	42.092	-2.104	1.00 16.71	Α
5	MOTA	7992	CB	ASN	A1019	58.536	41.665	-1.989	1.00 17.63	A
	MOTA	7993	CG	ASN	A1019	59.475	42.847	-1.852	1.00 19.02	А
	MOTA	7994	OD1	ASN	A1019	59.322	43.858	-2.540	1.00 19.65	A
	ATOM	7995	ND2	ASN	A1019	60.462	42.722	-0.971	1.00 19.85	Α
	MOTA	7996	С	ASN	A1019	56.178	40.867	-2.253	1.00 17.34	A
10	ATOM	7997	0	ASN	A1019	56.054	40.063	-1.327	1.00 18.14	A
	ATOM	7998	N		A1020	55.564	40.727	-3.422	1.00 17.74	A
	ATOM	7999	CA		A1020	54.657	39.618	-3.685	1.00 18.66	А
	MOTA	8000	CB		A1020	53.373	40.144	-4.331	1.00 18.41	А
	ATOM	8001	CG		A1020	52.582	41.198	-3.551	1.00 17.65	А
15	ATOM	8002			A1020	51.433	41.703	-4.405	1.00 18.32	A
10	ATOM	8003			A1020	52.064	40.602	-2.251	1.00 17.91	A
	ATOM	8004	CDZ		A1020	55.249	38.527	-4.571	1.00 17.31	A
	ATOM	8005	0		A1020	54.851	37.363	-4.474	1.00 19.02	· A
			N		A1020	56.190	38.900	-5.432	1.00 20.85	A
20	ATOM	8006							1.00 20.83	
20	ATOM	8007	CA		A1021	56.808	37.942	-6.347		A
	ATOM	8008	CB		A1021	55.947	37.778	-7.601	1.00 24.55	A
	ATOM	8009	CG		A1021	54.627	37.066	-7.415	1.00 27.54	A
	ATOM	8010	CD		A1021	53.845	36.990	-8.713	1.00 29.04	A
25	ATOM	8011			A1021	54.450	36.632	-9.746	1.00 29.72	A
25	MOTA	8012			A1021	52.631	37.283	-8.701	1.00 30.41	Α
	MOTA	8013	С		A1021	58.207	38.331	-6.804	1.00 22.88	А
	MOTA	8014	0		A1021	58.474	39.494	-7.100	1.00 21.59	A
	ATOM	8015	N	HIS	A1022	59.093	37.343	-6.870	1.00 23.24	А
	ATOM	8016	CA	HIS	A1022	60.451	37.559	-7.348	1.00 24.68	А
30	MOTA	8017	CB	HIS	A1022	61.438	36.663	-6.595	1.00 25.87	А
	ATOM	8018	CG	HIS	A1022	62.860	36.831	-7.032	1.00 27.45	А
	MOTA	8019	CD2	HIS	A1022	63.768	35.930	-7.477	1.00 28.54	A
	MOTA	8020	ND1	HIS	A1022	63.500	38.052	-7.033	1.00 28.74	A
	ATOM	8021	CE1	HIS	A1022	64.740	37.896	-7.460	1.00 29.03	A
35	ATOM	8022	NE2	HIS	A1022	64.929	36.618	-7.736	1.00 29.19	A
	ATOM	8023	С	HIS	A1022	60.359	37.146	-8.813	1.00 24.90	А
	ATOM	8024	0	HIS	A1022	60.105	35.982	-9.122	1.00 25.14	А
	ATOM	8025	N		A1023	60.549	38.104	-9.711	1.00 25.03	A
	ATOM	8026	CA	LEU	A1023	60.432	37.846	-11.140	1.00 26.27	A
40	ATOM	8027	СВ		A1023	59.975	39.124	-11.843	1.00 25.95	А
	ATOM	8028	CG		A1023	58.679	39.705	-11.267	1.00 25.51	A
	ATOM	8029			A1023	58.382		-11.901	1.00 25.87	А
	ATOM	8030			A1023	57.537		-11.506	1.00 26.07	А
	ATOM	8031	C		A1023	61.685		-11.816	1.00 27.30	А
45	ATOM	8032	0		A1023	62.747		-11.778	1.00 26.61	A
10	ATOM	8033	N		A1024	61.546		-12.443	1.00 29.41	А
	ATOM	8034	CA		A1024	62.659		-13.143	1.00 31.40	A
	ATOM	8035	CB		A1024	62.283		-13.582	1.00 31.40	A
								-12.424		
50	ATOM	8036	CG		A1024	62.251			1.00 34.34 1.00 35.68	A A
50	ATOM	8037			A1024	61.961		-12.661		A
	ATOM	8038			A1024	62.521		-11.278	1.00 35.28	A
	ATOM	8039	С		A1024	63.049		-14.358	1.00 32.07	A
	ATOM	8040	0		A1024	62.202		-14.985	1.00 32.21	A
EE	ATOM	8041	N		A1025	64.336		-14.686	1.00 32.46	A
55	ATOM	8042	CA	GLY	A1025	64.816	37.080	-15.821	1.00 33.39	А

		ATOM	8043	С	GLY	A1025	64.726	38.564 -15.534	1.00 33.83	Α
		ATOM	8044	0	GLY	A1025	65.055	39.392 -16.382	1.00 33.62	Α
		ATOM	8045	N	MSE	A1026	64.277	38.894 -14.326	1.00 34.40	Α
		ATOM	8046	CA	MSE	A1026	64.133	40.281 -13.904	1.00 35.14	Α
	5	ATOM	8047	CB	MSE	A1026	65.504	40.943 -13.809	1.00 38.95	Α
		ATOM	8048	CG	MSE	A1026	66.467	40.210 -12.900	1.00 43.37	Α
		MOTA	8049	SE		A1026	68.190	41.048 -12.869	1.00 48.57	Α
		ATOM	8050	CE		A1026	68.959	40.193 -14.422	1.00 46.31	А
		ATOM	8051	C		A1026	63.260	41.041 -14.890	1.00 33.31	А
	10	ATOM	8052	0		A1026	63.493	42.218 -15.166	1.00 32.52	A
		ATOM	8053	N		A1027	62.254	40.358 -15.420	1.00 31.46	A
		ATOM	8054	CA		A1027	61.348	40.965 -16.380	1.00 30.23	A
		ATOM	8055	CB		A1027	61.201	40.088 -17.639	1.00 30.01	A
		ATOM	8056			A1027	60.185	40.706 -18.591	1.00 29.55	A
	15	ATOM	8057			A1027	62.547	39.942 -18.326	1.00 29.41	A
	10	ATOM	8058	C		A1027	59.969	41.185 -15.778	1.00 29.79	A
		ATOM	8059	Ö		A1027	59.340	40.252 -15.280	1.00 29.23	A
		ATOM	8060	N		A1028	59.508	42.430 -15.821	1.00 28.92	A
J 10000.		ATOM	8061	CA		A1028	58.194	42.773 -15.298	1.00 28.80	A
المحراة	20	ATOM	8062	CB		A1028	58.184	44.213 -14.799	1.00 28.67	A
ŧ,Ľ	20	ATOM	8063	С		A1028	57.189	42.600 -16.428	1.00 28.40	A
		ATOM	8064	0		A1028	57.167	43.387 -17.373	1.00 28.55	A
m		ATOM	8065	N		A1020	56.354	41.554 -16.353	1.00 20.33	A
		MOTA	8066	CD		A1029	56.301	40.519 -15.304	1.00 27.70	A
N	25	ATOM	8067	CA		A1029	55.350	41.298 -17.390	1.00 27.31	A
Con the	20	ATOM	8068	CB		A1029	54.858	39.895 -17.047	1.00 27.71	A
(F)		ATOM	8069	CG		A1029	54.958	39.870 -15.559	1.00 28.02	A
		ATOM	8070	C		A1029	54.226	42.329 -17.378	1.00 20.02	A
E)		ATOM	8071	0		A1029	53.868	42.859 -16.327	1.00 27.12	A
	30	MOTA	8072	N		A1030	53.674	42.618 -18.551	1.00 27.02	A
Ų	00	ATOM	8073	CA		A1030	52.591	43.585 -18.643	1.00 24.92	A
		ATOM	8074	CB		A1030	52.275	43.902 -20.106	1.00 24.32	A
];= 1 :		ATOM	8075	CG		A1030	53.484	44.338 -20.920	1.00 25.00	A
		ATOM	8076	CD		A1030	53.107	44.817 -22.307	1.00 25.45	A
	35	ATOM	8077			A1030	52.177	44.237 -22.903	1.00 25.43	A
	33	MOTA	8078			A1030	53.749	45.765 -22.806	1.00 24.53	A
		ATOM	8079	C		A1030	51.357	43.019 -17.953	1.00 24.33	A
		ATOM	8080	0		A1030	51.256	41.810 -17.731	1.00 25.08	A
		ATOM	8081	N		A1030	50.418	43.896 -17.618	1.00 23.66	A
	40	ATOM	8082			A1031	49.204			A
	40	ATOM	8083	CB		A1031	48.801	44.515 -15.860	1.00 20.01	A
		MOTA	8084			A1031	49.925	44.673 -14.851	1.00 21.36	A
		ATOM	8085			A1031	48.487	45.847 -16.508	1.00 21.70	A
		ATOM	8086	CGZ		A1031	48.022	43.257 -17.869	1.00 20.47	A
	45	ATOM	8087	0		A1031	48.063	43.621 -19.044	1.00 19.13	A
	43	ATOM	8088	N		A1031	46.974	42.649 -17.326	1.00 13.47	A
			8089	CA		A1032	45.755	42.352 -18.069	1.00 17.07	A
		ATOM								
		ATOM	8090	С		A1032	44.838	43.566 -18.141	1.00 14.35	A
	50	ATOM	8091	O CD		A1032	45.002	44.520 -17.384	1.00 12.80	A
	50	ATOM	8092	CB		A1032	44.989	41.225 -17.384	1.00 17.91	A
		ATOM	8093	SG		A1032	45.736	39.571 -17.486	1.00 21.70	A
		ATOM	8094	N		A1033	43.854	43.544 -19.056	1.00 13.48	A
		ATOM	8095	CD		A1033	43.599	42.542 -20.108	1.00 13.27	A
	5 5	ATOM	8096	CA		A1033	42.927	44.672 -19.176	1.00 12.75	A
	55	MOTA	8097	CB	PKO	A1033	41.964	44.212 -20.270	1.00 13.14	А

	ATOM	8098	CG	PRO	A1033	42.837	43.346	-21.136	1.00 13.23	Α
	ATOM	8099	С	PRO	A1033	42.210	44.914	-17.844	1.00 12.09	A
	MOTA	8100	0	PRO	A1033	41.721	43.974	-17.209	1.00 11.14	А
	MOTA	8101	N	MSE	A1034	42.161	46.181	-17.442	1.00 11.64	Α
5	ATOM	8102	CA	MSE	A1034	41.531	46.631	-16.201	1.00 12.45	Α
	MOTA	8103	CB	MSE	A1034	40.099	46.099	-16.084	1.00 12.75	А
	ATOM	8104	CG	MSE	A1034	39.156	46.629	-17.161	1.00 13.48	Α
	ATOM	8105	SE	MSE	A1034	39.229	48.559	-17.394	1.00 18.29	А
	MOTA	8106	CE	MSE	A1034	38.290	49.085	-15.785	1.00 15.04	А
10	ATOM	8107	С	MSE	A1034	42.320	46.266	-14.950	1.00 13.04	A
	MOTA	8108	0	MSE	A1034	41.844	46.460	-13.833	1.00 15.57	A
	ATOM	8109	N	GLU	A1035	43.530	45.753	-15.139	1.00 12.47	А
	ATOM	8110	CA	GLU	A1035	44.379	45.385	-14.016	1.00 12.77	А
	MOTA	8111	CB	GLU	A1035	45.068	44.040	-14.282	1.00 15.80	Α
15	MOTA	8112	CG	GLU	A1035	46.248	43.751	-13.359	1.00 20.78	A
	ATOM	8113	CD	GLU	A1035	46.741	42.316	-13.450	1.00 22.65	Α
	ATOM	8114	OE1	GLU	A1035	47.035	41.843	-14.571	1.00 23.74	Α
	ATOM	8115			A1035	46.841		-12.390	1.00 24.85	Α
	MOTA	8116	С	GLU	A1035	45.429		-13.773	1.00 11.49	A
20	ATOM	8117	0		A1035	45.795		-14.680	1.00 10.22	A
	ATOM	8118	N		A1036	45.893		-12.531	1.00 10.28	А
	ATOM	8119	CA		A1036	46.919		-12.125	1.00 9.92	А
	ATOM	8120	СВ		A1036	46.343	48.607	-11.245	1.00 9.77	Α
	ATOM	8121	OG1		A1036	45.278		-11.937	1.00 10.21	А
25	ATOM	8122			A1036	47.418		-10.914	1.00 10.57	A
	ATOM	8123	С		A1036	47.906		-11.293	1.00 9.13	A
	ATOM	8124	0		A1036	47.502		-10.400	1.00 10.16	A
	ATOM	8125	N		A1037	49.192		-11.594	1.00 9.44	A
	ATOM	8126	CA		A1037	50.225		-10.865	1.00 9.72	A
30	ATOM	8127	СВ		A1037	50.747		-11.705	1.00 10.95	A
	ATOM	8128	C		A1037	51.361		-10.537	1.00 9.84	A
	ATOM	8129	0		A1037	51.516		-11.177	1.00 10.76	A
	ATOM	8130	N		A1038	52.152	46.693	-9.533	1.00 9.36	A
	ATOM	8131	CA		A1038	53.283	47.515	-9.144	1.00 8.90	A
35	ATOM	8132	CB		A1038	53.203	48.080	-7.747	1.00 8.87	A
00	ATOM	8133	C		A1038	54.534	46.656	-9.180	1.00 8.90	A
	ATOM	8134	0		A1038	54.497	45.481	-8.813	1.00 7.98	A
	ATOM	8135	N		A1030	55.634	47.245	-9.635	1.00 9.04	A
	ATOM	8136	CA		A1039	56.903	46.540	-9.707	1.00 10.18	A
40	ATOM	8137			A1039				1.00 10.13	A
10	ATOM	8138	CG		A1039	56.243		-11.837	1.00 11.78	A
	ATOM	8139			A1039	55.324		-12.746	1.00 12.61	A
	ATOM	8140			A1039	54.405		-13.394	1.00 14.80	A
	ATOM	8141			A1039	56.216		-11.589	1.00 12.35	A
45	ATOM	8142			A1039	55.301		-12.228	1.00 12.33	A
40	ATOM	8143	CZ		A1039	54.401		-13.131	1.00 15.71	A
		8144	OH		A1039	53.508		-13.783	1.00 13.21	A
	ATOM		С			58.009	47.422	-9.164	1.00 17.83	
	ATOM	8145			A1039					A
50	MOTA	8146	O N		A1039	57.950	48.644	-9.269	1.00 11.19	A
30	ATOM	8147	N		A1040	59.019	46.795	-8.575	1.00 10.57	A
	MOTA	8148	CA		A1040	60.158	47.529	-8.058	1.00 10.83	A
	ATOM	8149	CB		A1040	60.223	47.503	-6.513	1.00 10.80	A
	ATOM	8150			A1040	61.527	48.144	-6.034	1.00 10.81	A
E.E.	ATOM	8151			A1040	59.039	48.259	-5.934	1.00 11.19	A
55	ATOM	8152	С	VAL	A1040	61.414	46.884	-8.615	1.00 11.68	А

	ATOM	8153	0	VAL	A1040	61.6	34 45.681	-8.454	1.00	12.74	A
	ATOM	8154	N	SER	A1041	62.2	21 47.680	-9.303		11.34	Α
	ATOM	8155	CA	SER	A1041	63.4	65 47.174	-9.855		12.00	Α
	MOTA	8156	CB	SER	A1041	63.6	79 47.700	-11.281		12.02	Α
5	ATOM	8157	OG	SER	A1041	63.6	74 49.114	-11.326		13.73	А
	ATOM	8158	С	SER	A1041	64.6	00 47.627	-8.947	1.00	12.06	А
	ATOM	8159	0	SER	A1041	64.6	08 48.759	-8.464		11.83	Α
	ATOM	8160	N		A1042		44 46.726	-8.695	1.00	12.11	Α
	ATOM	8161	CA		A1042		96 47.038	-7.858	1.00	12.84	A
10	ATOM	8162	СВ		A1042			-6.793	1.00	11.51	А
	ATOM	8163	OG		A1042				1.00	14.87	А
	ATOM	8164	C		A1042			-8.772	1.00	13.04	А
	ATOM	8165	Ō		A1042				1.00	14.12	A
	ATOM	8166	N		A1043					14.49	A
15	ATOM	8167	CA		A1043				1.00	15.99	Α
10	ATOM	8168	СВ		A1043			-10.193		15.32	A
	ATOM	8169	CG		A1043			-10.922		14.89	Α
	ATOM	8170			A1043			-10.514		13.91	А
	ATOM	8171			A1043			-12.199		14.17	А
20	ATOM	8172			A1043			-12.547		15.10	А
20	ATOM	8173			A1043			-11.540		14.41	А
	ATOM	8174	C		A1043					17.89	А
	ATOM	8175	0		A1043					17.26	A
	ATOM	8176	N		A1044					20.49	A
25	ATOM	8177	CA		A1044					23.36	A
20	ATOM	8178	CB		A1044					23.82	А
	ATOM	8179	OG		A1044					25.95	A
		8180	C		A1044					24.24	A
	ATOM	8181	0		A1044					24.99	A
30	ATOM	8182	OXT		A1044					25.64	A
30	ATOM		OH2							6.41	W
	ATOM	8183		WAT				-19.873		8.14	W
	ATOM	8184		WAT				-19.106		7.97	M
	ATOM	8185								8.40	W
35	ATOM	8186		WAT						8.30	W
33	ATOM	8187		WAT						10.14	W
	ATOM	8188		TAW TAW						9.31	W
	ATOM	8189		WAT						9.61	W
	ATOM	8190		WAT						9.53	W
40	ATOM	8191						-14.778			W
40	ATOM		OH2							7.85	W
	ATOM	8193		WAT						8.41	W
	ATOM	8194		WAT						10.25	W
	ATOM	8195		WAT						8.83	W
45	ATOM	8196		WAT						9.77	W
45	MOTA	8197		WAT				17.242 3 -13.680		9.92	W
	ATOM	8198		WAT						11.68	W
	ATOM	8199		WAT				-21.093			
	ATOM	8200		WAT						7.76	W
50	ATOM	8201		WAT				-11.748		8.84	W
50	ATOM	8202		TAW						9.52	W
	MOTA	8203		WAT						11.28	W
	ATOM	8204		TAW				-15.391		16.11	W
	ATOM	8205		TAW						9.59	W
	ATOM	8206		TAW						12.47	W
55	ATOM	8207	OH2	WAT	W 26	26.3	340 48.895	-10.998	1.00	9.95	W

	ATOM	8208	OH2	WAT	W	27	65.658	60.301	-7.681	1.00 9.86	W
	ATOM	8209	OH2	WAT	W	28	32.556	60.049	-1.797	1.00 9.32	W
	ATOM	8210	OH2	WAT	W	29	20.112	54.723	16.205	1.00 11.76	W
	MOTA	8211	OH2	WAT	W	30	23.748	55.505	-23.327	1.00 10.76	W
5	MOTA	8212	OH2	TAW	W	31	39.332	57.340	14.891	1.00 9.99	M
	ATOM	8213	OH2	WAT	W	32	20.372	58.804	-21.924	1.00 10.68	W
	MOTA	8214	OH2	WAT	W	33	28.005	60.998	19.501	1.00 12.43	W
	MOTA	8215	OH2	WAT	W	34	34.100	56.345	-26.283	1.00 8.61	W
	MOTA	8216	OH2	WAT	W	35	26.313	40.065	7.967	1.00 12.45	W
10	MOTA	8217	OH2	WAT	W	36	63.802	50.178	-14.014	1.00 12.29	W
	MOTA	8218	OH2	TAW	W	37	37.571	56.991	1.737	1.00 9.76	W
	MOTA	8219	OH2	TAW	W	38	24.021	41.933	6.905	1.00 11.36	W
	MOTA	8220	OH2	TAW	W	39	31.878	65.446	18.975	1.00 15.13	W
	MOTA	8221	OH2	WAT	W	40	51.480	56.691	-5.611	1.00 9.26	W
15	MOTA	8222		WAT		41	20.134	56.063	7.164	1.00 12.78	W
	ATOM	8223		WAT		42	28.304	43.888	13.163	1.00 9.88	W
	MOTA	8224		WAT		43	30.243	58.465	-11.811	1.00 8.09	W
	MOTA	8225		WAT		44	64.815	59.321	-3.585	1.00 13.31	M
	MOTA	8226		WAT		45	46.389	67.686	-15.597	1.00 13.23	W
20	ATOM	8227		WAT		46	60.782	58.212	-2.813	1.00 11.20	W
	ATOM	8228		WAT		47	60.514	62.158	-1.234	1.00 13.28	W
	ATOM	8229		WAT		48	53.646	59.923	-9.348	1.00 11.25	W
	MOTA	8230		WAT		49	18.643		-12.404	1.00 11.27	W
	ATOM	8231		WAT		50	28.831		-11.918	1.00 11.63	W
25	ATOM	8232		WAT		51	34.530	79.088	-9.168	1.00 11.13	W
	ATOM	8233		WAT		52	21.612	57.986	-7.797	1.00 10.97	W
	ATOM	8234		WAT		53	37.026	71.830	-4.514	1.00 9.38	W
	ATOM	8235		WAT		54	55.613		-11.500	1.00 8.74	W
	ATOM	8236		WAT		55	36.685	44.923	-5.472	1.00 11.75	W
30	ATOM	8237		WAT		56	51.323		-23.928	1.00 12.92	W
	ATOM	8238		WAT		57	35.162		-17.524	1.00 13.57	W
	MOTA	8239		WAT		58	60.531	54.758	-0.381	1.00 14.45	W
	ATOM	8240		WAT		59	42.905	56.765	6.206	1.00 11.63	W
	ATOM	8241		WAT		60	47.859		-25.663	1.00 13.35	W
35	ATOM	8242		WAT		61	37.863	73.312	-2.170	1.00 12.61	W
	ATOM	8243		WAT		62	19.405	55.246	11.583	1.00 14.08	W
	ATOM	8244		WAT		63	25.931	39.712	5.244	1.00 11.23	W
	ATOM	8245		WAT		64	23.345	54.021	-3.621	1.00 13.72	W
	ATOM	8246	OH2	WAT	W	65	34.262	52.377	-0.944	1.00 9.34	W
40	MOTA	8247	OH2	WAT	W	66	51.020	44.292	-8.032	1.00 10.74	W
	MOTA	8248	OH2	WAT	W	67	37.640	58.989	11.075	1.00 12.29	W
	ATOM	8249		WAT		68	16.554	49.007	24.070	1.00 15.16	W
	ATOM	8250		WAT		69	19.376	53.552	8.216	1.00 12.07	W
	ATOM	8251		WAT		70	11.858	51.549	14.335	1.00 16.74	W
45	ATOM	8252		WAT		72	17.143	56.270	10.273	1.00 13.60	W
	ATOM	8253		WAT		73	68.006	65.561	-3.446	1.00 12.60	W
	ATOM	8254		WAT		75	22.889		-24.420	1.00 14.72	W
	ATOM	8255		WAT		76	52.059	50.629	6.400	1.00 10.61	W
	ATOM	8256		WAT		77	17.622	52.779	6.356	1.00 11.97	W
50	ATOM	8257		WAT		78	68.809	58.261	-5.093	1.00 14.29	W
20	ATOM	8258		WAT		79	33.495		-10.195	1.00 8.82	W
	ATOM	8259		WAT		80	26.727		-13.197	1.00 12.70	W
	ATOM	8260		WAT		81	26.797	60.896	-3.250	1.00 10.29	W
	ATOM	8261		WAT		82	49.560	62.285	-8.627	1.00 9.52	W
55	ATOM	8262		WAT		83	41.032		-16.918	1.00 12.51	W
55	ATOM	0202	OπZ	MAY T	*4	0 3	41.032	32.300	10.910	1.00 12.31	**

	ATOM	8263	OH 2	WAT	W	84	31	.381	76.822	-6.32	2 1.00	12.79	W
	ATOM	8264		WAT		85		.389		-24.99		14.18	W
	ATOM	8265		WAT		86				-11.69		11.78	W
	ATOM	8266		WAT		87				-19.60		12.21	W
5	ATOM	8267		WAT		88		.275	62.699	6.04			W
3						89		.187		-24.50		14.89	W
	ATOM	8268		WAT) 15.24	W
	ATOM	8269		WAT		90		.548	41.856	-0.55			
	ATOM	8270		WAT		91				-31.68		14.89	W
10	ATOM	8271		WAT		92				-12.00		10.46	W
10	ATOM	8272		TAW		93				-30.69		15.15	W
	ATOM	8273		WAT		94			51.651	3.73		11.00	W
	ATOM	8274		WAT		95			62.268	8.37		12.20	W
	ATOM	8275		WAT		96			45.984	3.64		10.29	W
15	ATOM	8276		WAT		97				-35.91		18.29	W
15	ATOM	8277		TAW		98				-29.63		13.68	W
	ATOM	8278		WAT		99			38.924	17.24		16.44	W
	MOTA	8279		WAT					53.094	1.32		10.90	W
	MOTA	8280		WAT					60.026	5.14		14.27	W
20	ATOM	8281		WAT					57.133	5.11		12.46	W
20	MOTA	8282		TAW					48.058	11.25		12.39	W
	MOTA	8283		WAT		104			72.873	5.65		14.15	W
	MOTA	8284		WAT						-21.57		14.53	W
	MOTA	8285		WAT					78.599	-5.09		12.24	W
25	MOTA	8286		WAT					59.512			10.57	W
25	MOTA	8287		WAT					51.205	-9.47		11.34	W
	MOTA	8288		WAT					56.225	5.77		12.76	W
	ATOM	8289		WAT					59.725	-3.42		15.15	W
	ATOM	8290		WAT		111			53.575			11.58	W
••	ATOM	8291		WAT					63.646	17.05		19.25	W
30	MOTA	8292		WAT						-11.72		15.86	W
	ATOM	8293		WAT					48.549	11.51		16.31	W
	ATOM	8294		WAT					81.656			12.31	W
	ATOM	8295		WAT					51.712	-8.71		17.21	M
0.5	ATOM	8296		WAT					70.323			15.24	W
35	ATOM	8297		WAT		118			57.442	-5.24		10.52	W
	ATOM	8298		WAT		119			60.639	24.36		19.10	W
	ATOM	8299		WAT					68.365			14.40	W
	ATOM	8300		WAT					40.047	1.67		13.35	W
40	ATOM	8301		WAT					58.200	6.35		12.19	W
40	ATOM	8302		WAT						-20.03		17.38	W
	MOTA	8303		WAT					77.499			13.36	W
	MOTA	8304		TAW					58.921	-1.73		12.54	W
	ATOM	8305		WAT					49.566	13.81		12.59	M
	ATOM	8306		WAT					43.627	28.72		14.94	M
45	ATOM	8307		WAT					60.585	-6.23		11.38	W
	ATOM	8308		WAT					72.514			12.06	W
	MOTA	8309	OH2	WAT	W	130			53.989			14.19	W
	MOTA	8310		TAW			33.		36.626	-4.36		14.10	W
	ATOM	8311		WAT					63.854			15.65	W
50	MOTA	8312		WAT					42.987			16.31	W
	MOTA	8313	OH2	WAT	W	134	46.	.862	55.823	-25.40		15.03	W
	ATOM	8314	OH2	WAT	W	136			58.564			13.45	W
	ATOM	8315	OH2	WAT	W	137	49.	. 223	49.949	28.32		19.29	W
	MOTA	8316	OH2	WAT	M	138	26.	.323	37.326	29.41	6 1.00	19.14	W
55	ATOM	8317	OH2	WAT	W	139	51.	.830	46.524	1.29	5 1.00	12.33	W

		ATOM	8318	OH2	WAT	W	140	41.682	58.681	-16.050	1.00 12.26	W
		ATOM	8319	OH2	WAT	W	141	13.888	54.182	4.446	1.00 16.48	W
		ATOM	8320		WAT			67.770	78.875	-25.268	1.00 12.57	W
		ATOM	8321	OH2	WAT	W	143	42.134	75.232	-15.965	1.00 14.75	W
	5	MOTA	8322		TAW		144	23.116	55.996	30.863	1.00 16.59	W
	•	ATOM	8323		WAT		145	56.923	61.000	1.609	1.00 15.10	W
		ATOM	8324		WAT			20.034	74.341	-6.831	1.00 14.78	. W
		ATOM	8325					13.513	53.486	1.857	1.00 19.02	W
		ATOM	8326		WAT			34.238	34.360	16.148	1.00 20.31	W
	10	ATOM	8327		WAT			34.031		-32.287	1.00 13.24	M
	10				WAT			14.014	49.063	15.378	1.00 13.24	W
		ATOM	8328							-12.372	1.00 17.57	W
		ATOM	8329		WAT			30.347			1.00 20.00	W
		ATOM	8330		WAT			18.389	54.932	14.146		W
	4 =	MOTA	8331		WAT			15.531	60.384	15.495	1.00 15.81	
	15	ATOM	8332		WAT			16.835	74.574	-2.964	1.00 16.76	W
		ATOM	8333		WAT			56.537		-17.410	1.00 16.90	W
		MOTA	8334		TAW			45.674		-18.274	1.00 12.93	W
		ATOM	8335	OH2	WAT			28.029		-35.413	1.00 16.49	W
		ATOM	8336	OH2	WAT			73.011	65.045	-7.742	1.00 18.99	W
	20	ATOM	8337	OH2	WAT	W	159	73.834		-17.552	1.00 17.40	W
		ATOM	8338	OH2	WAT	W	160	59.358	49.999	-0.640	1.00 16.59	W
· :		MOTA	8339	OH2	WAT	W	161	23.060	78.311	-24.854	1.00 16.96	W
		ATOM	8340	OH2	WAT	W	162	14.343	54.351	-16.113	1.00 16.49	W
		ATOM	8341	OH2	WAT	W	163	43.420	73.075	5.809	1.00 11.62	W
	25	ATOM	8342	OH2	WAT	W	164	11.844	55.012	-12.346	1.00 15.84	W
		ATOM	8343	OH2	WAT			63.502	44.660	-6.843	1.00 14.23	W
		MOTA	8344		WAT		166	24.666		-24.012	1.00 13.46	W
		ATOM	8345	OH2	WAT		167	35.548		-27.375	1.00 19.03	W
		ATOM	8346	OH2	WAT			28.659		-24.380	1.00 17.39	W
	30	ATOM	8347		WAT			54.858		-23.538	1.00 13.45	W
	. 50	ATOM	8348		WAT			24.206	63.494	7.574	1.00 12.75	W
-		ATOM	8349		WAT			49.747	57.598	-7.598	1.00 10.26	W
			8350	OH2				45.989	70.940	0.068	1.00 14.02	W
		ATOM	8351		WAT		173	24.402	55.716	-1.779	1.00 13.43	W
	35	ATOM						28.620		-21.645	1.00 14.74	W
	33	ATOM	8352		TAW			37.102	45.554	27.479	1.00 13.25	W
		ATOM	8353				175			-17.611	1.00 13.25	W
		ATOM	8354		WAT			41.571			1.00 18.23	W
		ATOM	8355	OH2	WAT			40.223		-31.989	1.00 14.02	W
	40	MOTA	8356		WAT			49.238		-28.693		W
	40	ATOM	8357	OH2				64.381		-10.391	1.00 21.32	
		ATOM	8358		TAW			19.168	72.461	3.018	1.00 18.78	M
		ATOM	8359		WAT			17.075		-16.266	1.00 12.96	W
		ATOM	8360		WAT			9.392	52.493	16.921	1.00 23.15	W
		MOTA	8361		TAW			53.939		-36.857	1.00 13.91	W
	45	MOTA	8362		WAT			50.885		-23.550	1.00 16.66	W
		ATOM	8363		WAT			49.412	44.201	4.399	1.00 13.57	W
		ATOM	8364	OH2	WAT	W	186	59.279	68.219	2.499	1.00 19.23	W
		ATOM	8365	OH2	WAT	W	187	25.484	53.702	11.101	1.00 17.16	W
		MOTA	8366	OH2	WAT	W	188	69.101	61.416	-2.408	1.00 16.03	W
	50	ATOM	8367	OH2	WAT	W	189	58.277	77.322	-38.485	1.00 14.92	W
		ATOM	8368		WAT			44.347	46.042	9.977	1.00 14.65	W
		ATOM	8369		WAT			46.569		-18.708	1.00 13.28	W
		ATOM	8370		WAT			33.581		-10.326	1.00 15.89	W
		ATOM	8371		WAT			47.072		-30.250	1.00 17.11	W
	55	ATOM	8372		WAT			44.472		-15.367	1.00 16.02	W
	55	ATOM	0012	0112	**1.7.7	* *	177	11.7/2	55.545			

	ATOM	8373	OH2	አ መ ጥ	Ta7	105	1.3	3.135	66.8	01	-4.751	1 0	0 16.44	W
	ATOM	8374	OH2					1.508			-11.494		0 20.79	W
	ATOM	8375	OH2					1.658			-29.773		0 17.50	W
	ATOM	8376	OH2					7.188	41.3		13.298		0 15.13	W
5	ATOM	8377	OH2					2.058			-40.915		0 15.24	W
•	ATOM	8378	OH2					0.003			-12.626		0 14.74	W
	ATOM	8379	OH2					1.179			-35.248		0 14.07	W
	ATOM	8380	OH2					0.804	65.3		7.755		0 17.03	W
	ATOM	8381	OH2					1.345			-18.469		0 19.28	W
10	ATOM	8382	OH2					1.586	70.5		-8.728		0 13.10	W
10	ATOM	8383	OH2					5.042	40.0		14.311		0 17.71	W
	ATOM	8384	OH2					2.658			-33.219	1.0	0 18.83	W
	ATOM	8385	OH2					1.629	43.2		7.933		0 14.67	W
	ATOM	8386	OH2					0.931	51.8		47.478		0 16.92	W
15	ATOM	8387	OH2					1.310	50.3		33.238		0 20.76	W
10	ATOM	8388	OH2					5.951			-19.108		0 16.03	W
	ATOM	8389	OH2					1.426			-40.924		0 25.44	W
	ATOM	8390	OH2					5.622			-31.896		0 16.09	W
	ATOM	8391	OH2					2.541	56.2		5.425		0 17.15	W
20	ATOM	8392	OH2					2.523			-34.105	1.0	0 17.30	W
	ATOM	8393	OH2					3.796			-41.912	1.0	0 18.18	W
	ATOM	8394	OH2					1.637			-15.909		0 16.17	W
	ATOM	8395	OH2					1.266	81.7		0.557		0 18.18	W
	ATOM	8396	OH2					2.052			-30.316		0 20.40	W
25	ATOM	8397	OH2					7.201			-23.298	1.0	0 21.76	W
	ATOM	8398		WAT				7.700	46.9		29.873	1.0	0 18.65	W
	ATOM	8399	OH2					9.781	55.0	79	-29.054	1.0	0 18.35	W
	ATOM	8400	OH2				36	5.227	79.1	22	-4.990	1.0	0 18.76	W
	ATOM	8401	OH2				62	2.292	62.4	23	25.645	1.0	0 21.53	W
30	ATOM	8402	OH2	WAT	W	225	1:	1.410	53.1	22	6.820	1.0	0 16.14	W
	ATOM	8403	OH2	TAW	W	226	13	3.875	60.7	74	-22.493	1.0	0 17.65	W
	MOTA	8404	OH2	WAT	W	227	50	785	61.9	11	26.371	1.0	0 20.81	M
	ATOM	8405	OH2	TAW	W	228	68	3.609	78.7	46	-18.153	1.0	0 20.98	W
	MOTA	8406	OH2	WAT	W	229	8 4	1.248	68.2	54	-17.382	1.0	0 16.45	W
- 35	MOTA	8407	OH2	TAW	W	230	2	1.921	40.2	87	-8.763	1.0	0 25.24	W
	ATOM	8408	OH2	TAW	W	231	52	2.792	69.6	89	18.337	1.0	0 23.67	W
	MOTA	8409	OH2	WAT	W	233	4 2	2.635	53.3		35.623		0 21.27	W
	ATOM	8410	OH2	TAW	W	234	70	0.643			-12.652		0 19.68	W
	MOTA	8411	OH2					1.668	70.2		13.058		0 21.89	W
40	MOTA	8412	OH2	WAT	W	236	2	7.265	46.4	04	13.634		0 16.31	W
	MOTA	8413	OH2					1.320	49.7		19.854		0 16.31	W
	MOTA	8414	OH2				4.9	9.691			-21.732		0 21.90	W
	ATOM	8415	OH2				4 8	3.829	44.2		-6.153		0 18.55	W
	MOTA	8416	OH2					1.398			-39.730		0 19.88	W
45	ATOM	8417	OH2					2.807			-30.326		0 23.15	W
	MOTA	8418	OH2					3.596			-38.551		0 15.45	W
	MOTA	8419	OH2					5.783	77.4		-7.287		0 14.79	W
	ATOM	8420	OH2					1.815	68.2		21.838		0 19.19	W
	ATOM	8421	OH2					3.075	49.2		-1.108		0 19.95	W
50	ATOM	8422	OH2					1.280	47.7		15.537		0 20.36	W
	MOTA	8423	OH2					5.069	50.6		16.796		0 24.95	W
	ATOM	8424	OH2					9.430			-32.780		0 23.67	W
	MOTA	8425	OH2					2.569			-13.489		0 19.28	W
	ATOM	8426	OH2					7.180	55.2		0.972		0 14.46	W
55	ATOM	8427	OH2	WAT	W	251	4	7.980	44.0	00	-8.660	1.0	0 18.47	W

		MOTA	8428	OH2	WAT	W	252	2	26.921	87.79	-23.599	1.00	22.16	W
		MOTA	8429	OH2	WAT	W	253	1	18.923	48.496	37.716	1.00	19.77	W
		ATOM	8430	OH2	WAT	W	254	8	33.559	67.682	2 -22.775	1.00	25.26	W
		MOTA	8431	ОН2	WAT	W	255	4	12.958	59.618	3 -18.847	1.00	23.27	W
	5	ATOM	8432	OH2	WAT	W	256	4	7.414	79.105	-40.375	1.00	19.23	W
		ATOM	8433	ОН2	WAT	W	258		8.630	57.709	-6.814	1.00	21.71	W
		ATOM	8434	ОН2	WAT	W	259	5	54.925	90.238	3 -23.447	1.00	24.47	W
		ATOM	8435		WAT				27.570	36.487	7 -19.572	1.00	23.33	W
		MOTA	8436		WAT				72.138		-11.226		25.73	W
	10	ATOM	8437		TAW				34.255	67.576		1.00	16.16	W
		ATOM	8438		WAT				1.762	59.422			19.04	W
		ATOM	8439		WAT				23.706		-15.875		18.11	W
		ATOM	8440		WAT				0.139		3 -17.624		21.18	W
		ATOM	8441		WAT				15.026		-25.430	1.00	19.76	W
	15	ATOM	8442		WAT				6.075		-18.963	1.00	21.64	W
		ATOM	8443		WAT				20.115		3 -24.264	1.00	18.48	W
		ATOM	8444		WAT				9.537	76.497			18.23	W
		ATOM	8445		WAT				6.843		-27.172		20.64	W
4 (702)		ATOM	8446		TAW				88.606		-29.882		24.46	W
	20	ATOM	8447		WAT				0.396		-10.648		14.99	W
۱ <u>. </u>		ATOM	8448		WAT				2.125	48.704			17.97	W
		ATOM	8449		WAT				24.053	52.876			25.34	W
		ATOM	8450		WAT				3.271		2 -25.039		18.91	W
		ATOM	8451		WAT				32.411		-43.013		24.77	W
Armir Armir	25	ATOM	8452		WAT				36.026	36.057			19.29	W
W.		ATOM	8453		WAT				0.071		-29.789		21.14	W
M		ATOM	8454		WAT				9.683		-43.824		19.21	W
		MOTA	8455		WAT				8.342		-34.832		23.24	W
81 ∤:≅#_		MOTA	8456		WAT				9.226	46.817			20.39	W
	30	ATOM	8457		WAT				8.522	69.968			15.36	W
		ATOM	8458		WAT				4.166	68.276			18.68	W
		ATOM	8459		WAT				0.272	72.263			23.64	W
Ē.d.		ATOM	8460		WAT				39.675		-40.325		19.11	W
		ATOM	8461		WAT				8.646	65.114			17.93	W
į. <u></u>	35	ATOM	8462		WAT				1.705	58.754			21.41	W
•		ATOM	8463		WAT				2.597		-17.448		22.13	W
		MOTA	8464		WAT				8.473		-26.958		19.14	W
		MOTA	8465		TAW				4.625		-33.259		19.78	W
		ATOM	8466		WAT				6.100	80.964			17.11	W
	40	ATOM	8467		WAT				6.566		-28.155		19.52	W
		ATOM	8468		TAW				9.722		-17.892		28.58	W
		ATOM	8469		WAT			_	8.813	55.020			20.11	W
		ATOM	8470		WAT			4	6.636		-25.945		20.16	W
		ATOM	8471		WAT				2.898	82.218			24.94	W
	45	ATOM	8472		WAT				.0.335	50.645			25.27	W
		MOTA	8473		TAW				2.852	42.541			17.91	W
		ATOM	8474		TAW				5.895	45.124			20.00	W
		ATOM	8475		TAW				5.792		-11.626		21.01	W
		ATOM	8476		WAT				25.222		-20.840		23.20	W
	50	ATOM	8477		WAT				6.890	64.828			25.71	W
		ATOM	8478		WAT				88.567		-41.997		22.28	W
		ATOM	8479		WAT				34.734		-34.927		19.36	W
		ATOM	8480		WAT				33.032		-17.616		25.42	W
		ATOM	8481		WAT				20.752	42.619			17.80	W
	55	ATOM	8482		WAT				9.062	76.610			27.92	W
		LI ON	0402	UIIZ	*****	**	200	1		,0.010	7.004	1.00	-1.94	**

								00 700	5 014	1 00 00 00	
		MOTA	8483	OH2 W			43.300	80.722	5.014	1.00 22.89	
		MOTA	8484	OH2 W			32.873	85.309	-5.565	1.00 20.83	W
		ATOM	8485	OH2 W	AT W	311	31.185	33.495	2.792	1.00 24.76	W
		MOTA	8486	OH2 W	AT W	312	21.436	78.463	-1.341	1.00 20.14	W
	5	ATOM	8487	OH2 W			55.286	59.005	3.952	1.00 16.44	W
	•	ATOM	8488	OH2 W			13.406		-19.877	1.00 20.13	
		ATOM	8489	OH2 W			16.922		-19.239	1.00 24.71	
									-12.022	1.00 24.71	
		ATOM	8490	OH2 W			14.323				
	40	MOTA	8491	OH2 W			53.131		-21.375	1.00 24.00	
	10	ATOM	8492	OH2 W			70.984	49.511	-0.110	1.00 23.19	
		ATOM	8493	OH2 W	AT W	319	58.047	42.402	1.566	1.00 23.65	
		ATOM	8494	OH2 W	AT W	320	74.768	76.369	-14.340	1.00 27.79	W
		ATOM	8495	OH2 W	AT W	321	24.787	83.128	-16.877	1.00 20.99	W
		MOTA	8496	OH2 W	AT W	322	56.915	67.700	-35.396	1.00 21.88	W
	15	ATOM	8497	OH2 W			48.769		-29.520	1.00 24.35	W
		ATOM	8498	OH2 W			66.709	71.607	-6.852	1.00 19.70	
		ATOM	8499	OH2 W			28.790		-38.512	1.00 23.49	
			8500	OH2 W			32.509	64.768	-9.926	1.00 17.49	
		ATOM							-1.603	1.00 17.43	
	20	ATOM	8501	OH2 W			13.454	50.922			
179	20	ATOM	8502	OH2 W			39.346	49.244	30.155	1.00 19.73	
1942 1942		MOTA	8503	OH2 W			67.888		-24.054	1.00 19.93	
		MOTA	8504	OH2 W			20.779		-34.524	1.00 18.17	
1,5 8		ATOM	8505	OH2 W	AT W	332	37.550		-42.326	1.00 19.39	
		MOTA	8506	OH2 W	AT W	333	31.895		-35.392	1.00 20.49	
W.	25	MOTA	8507	OH2 W	AT W	334	12.860		-0.322	1.00 26.50	W
ij.		ATOM	8508	OH2 W	AT W	335	37.017	41.136	-24.664	1.00 26.87	W
ij.		ATOM	8509	OH2 W	AT W	336	19.245	42.748	-2.573	1.00 24.91	W
•		MOTA	8510	OH2 W	AT W	337	50.102	44.093	7.091	1.00 17.71	W
21 24==		MOTA	8511	OH2 W	AT W	338	37.447	45.431	-25.539	1.00 18.16	W
T die die die	30	ATOM	8512	OH2 W			75.300		-19.617	1.00 26.79	W
	•	ATOM	8513	OH2 W			50.344		-31.161	1.00 19.20	W
W.		ATOM	8514	OH2 W			42.877		-31.559	1.00 24.68	
<u> </u>		ATOM	8515	OH2 W			13.262	68.814	0.935	1.00 21.56	
		ATOM	8516	OH2 W			40.735		-31.321	1.00 26.31	
i.ar	35	MOTA	8517	OH2 W			27.084	52.281	22.512	1.00 28.70	
,	<i>5</i> 5		8518	OH2 W			12.534	66.379		1.00 20.41	
		ATOM							-15.769		
		ATOM	8519	OH2 W			42.619			1.00 22.12	
		MOTA	8520	OH2 W			48.091	48.434		1.00 17.55	
	40	ATOM	8521	OH2 W			11.547	46.877		1.00 24.28	
	40	MOTA	8522	OH2 W			16.474		-19.969	1.00 19.28	
		ATOM	8523	OH2 W			5.038	52.914		1.00 27.53	
		MOTA	8524	OH2 W	W TA	352	56.273		-25.706	1.00 22.05	
		ATOM	8525	OH2 W	AT W	353	39.139	83.260	-27.376	1.00 21.38	
		ATOM	8526	OH2 W	AT W	354	60.719	56.850	15.845	1.00 26.22	W
	45	ATOM	8527	OH2 W	AT W	355	13.419	51.471	21.730	1.00 19.40	W
		ATOM	8528	OH2 W	AT W	356	43.394	93.839	-37.655	1.00 21.87	W
		ATOM	8529	OH2 W			28.161	35.317	-6.921	1.00 20.76	W
		ATOM	8530	OH2 W			80.258		-21.537	1.00 25.16	
		ATOM	8531	OH2 W			51.563	45.062	9.678	1.00 28.77	
	50	ATOM	8532	OH2 W			21.446		~17.598	1.00 23.85	
	50						47.431		-20.273	1.00 25.46	
		ATOM	8533	OH2 W						1.00 23.40	
		ATOM	8534	OH2 W			21.320		-31.086		
		ATOM	8535	OH2 W			32.967	66.868		1.00 21.01	
		MOTA	8536	OH2 W			14.670		-14.512	1.00 20.46	
	55	MOTA	8537	OH2 W	AT W	365	50.391	13.726	-25.274	1.00 22.28	W

		ATOM	8538	OH2 V	TAW	₹ 366	41.946	79.336	-23.444	1.00 25.26	W
		MOTA	8539	OH2 V	TAW	N 367	40.090	45.369		1.00 22.87	W
		ATOM	8540			v 368	50.764	76.382	14.494	1.00 20.54	W
		ATOM	8541			₹ 369	38.488		-33.680	1.00 23.10	W
	5	ATOM	8542	OH2 V	TAW	₹ 370	61.315		-28.914	1.00 24.07	W
		ATOM	8543			V 371	53.733	46.764	23.505	1.00 28.94	W
		MOTA	8544	OH2 V	TAW	v 372	56.967		-20.141	1.00 24.44	W
		ATOM	8545			₹ 373	67.533		-18.257	1.00 21.67	W
		MOTA	8546			N 374	42.392		-31.723	1.00 29.17	W
	10	ATOM	8547			₹ 375	29.171		-39.774	1.00 22.24	W
		ATOM	8548			₹ 376	27.168	61.164	10.332	1.00 24.42	W
		ATOM	8549			v 377	45.832	45.100	23.009	1.00 26.77	W
		ATOM	8550			₹ 378	34.919	51.178	35.930	1.00 27.88	W
		MOTA	8551			N 379	57.740	62.410	7.853	1.00 25.59	W
	15	ATOM	8552			380	25.278	33.367	13.289	1.00 24.89	W
		MOTA	8553			v 381	27.478	59.295	8.589	1.00 20.20	W
		MOTA	8554			₹ 382	42.720		-30.466	1.00 30.57	W
		MOTA	8555			√ 383	13.949	58.005	-1.367	1.00 19.27	W
	•	MOTA	8556			V 384	49.207	76.417	5.694	1.00 28.48	W
ıΠ	20	ATOM	8557			₹ 385	27.814	67.606	28.196	1.00 26.23	W
, 7		MOTA	8558			₹ 386	41.984	39.094	16.733	1.00 24.84	W
M		ATOM	8559			₹ 387	58.873	46.425	-1.374	1.00 21.53	W
16 25		MOTA	8560			₹ 388	73.274		-18.311	1.00 26.55	M
	0.5	MOTA	8561			₹ 389	19.687	39.332	17.591	1.00 18.94	W
IJ.	25	MOTA	8562			₹ 390	39.662		-18.087	1.00 19.74	W
Manual Ma		ATOM	8563			₹ 391	28.147		-31.558	1.00 25.38	W
		MOTA	8564			₹ 392	68.586		-16.614	1.00 27.92	W
E)		MOTA	8565			393	66.468		-13.049	1.00 17.12	M
	20	MOTA	8566			V 394	26.521	75.061	2.145	1.00 22.89	W
. 3	30	MOTA	8567			₹ 395	40.061	39.148	9.051	1.00 24.66	M
		ATOM	8568			V 396	21.299	47.235	39.151	1.00 23.69	W
į.		ATOM	8569			₹ 397	42.155		-41.480	1.00 25.00	W
		ATOM	8570			√ 398 √ 398	14.628	55.293	27.232	1.00 32.51	W
lasel. Îgala	25	ATOM	8571			₹ 399 ₹ 400	28.625		-38.993 22.645	1.00 26.37 1.00 25.45	W W
Espain .	35	MOTA	8572			V 400	38.975	42.908	-22.427	1.00 23.43	W
		ATOM	8573			V 401	16.227	34.952	29.323	1.00 24.65	W
		ATOM	8574			V 402	27.322	80.720	-7.430	1.00 24.03	W
		ATOM	8575			V 403	17.137 48.222	41.802	3.682	1.00 23.21	W
	40	ATOM ATOM	8576 8577	OH2 V		404	73.340		-11.365	1.00 24.00	W
	40		8578			v 405	58.671		-22.208	1.00 22.00	M
		MOTA	8579			v 400	47.526		-18.523	1.00 22.00	W
		ATOM	8580			v 407	40.691		-37.372	1.00 21.41	W
		ATOM ATOM	8581			v 400	60.926	63.677		1.00 27.39	W
	45	ATOM	8582			v 409	59.335		-15.222	1.00 26.73	W
	40	ATOM	8583			V 410	20.923	30.305	17.732	1.00 29.75	W
		ATOM	8584			v 411	46.041		-43.820	1.00 21.70	W
		ATOM	8585			V 412	21.543		-19.119	1.00 29.10	W
		ATOM	8586			v 413	20.561	68.418	22.243	1.00 25.39	W
	50	ATOM	8587			v 415	45.142		-17.334	1.00 24.13	W
	50	ATOM	8588			v 415	17.330	70.661	6.541	1.00 31.13	W
		ATOM	8589			v 410	51.111		-28.613	1.00 21.15	W
		ATOM	8590			v 417	19.096		-25.745	1.00 29.17	W
		ATOM	8591			v 410	39.889		-21.853	1.00 23.17	W
	55	ATOM	8592			v 415	22.570	66.011	29.297	1.00 28.90	W
	55	VIOU	0392	Onz V	uvi ,	. 420	22.370	00.011	27.271	1.00 20.70	**

		ATOM	8593	OH2 WA			24.823		-36.234	1.00 28.15	W
		MOTA	8594	OH2 WA			58.331	34.694	-6.071	1.00 28.92	M
		ATOM	8595	OH2 WA	r W	423	50.546	79.034	-15.583	1.00 27.80	W
		ATOM	8596	OH2 WA	r W	424	17.745	68.564	24.329	1.00 32.50	W
	5	ATOM	8597	OH2 WA	r W	425	56.367	92.787	-29.437	1.00 24.61	W
		ATOM	8598	OH2 WA	r W	426	52.556	73.131	4.237	1.00 33.92	W
		MOTA	8599	OH2 WA	r w	427	28.063	67.208	7.740	1.00 24.95	W
		ATOM	8600	OH2 WA		428	22.030	36.775	0.168	1.00 21.71	W
		ATOM	8601	OH2 WA			40.079		-28.245	1.00 25.42	W
	10	ATOM	8602	OH2 WA			10.576	77.090	-5.015	1.00 30.97	W
		ATOM	8603	OH2 WA			27.152	65.194	9.060	1.00 25.26	W
		ATOM	8604	OH2 WA			72.751		-20.984	1.00 26.96	W
		ATOM	8605	OH2 WA		433	79.826		-17.648	1.00 28.48	W
		MOTA	8606	OH2 WA		434	66.841	74.355	-4.271	1.00 30.30	W
	15	ATOM	8607	OH2 WA		435	48.154		-28.370	1.00 22.20	W
	10	ATOM	8608	OH2 WA		436	42.519	39.358	-1.503	1.00 25.77	W
		ATOM	8609	OH2 WA		437	63.183		-31.749	1.00 27.22	W
		ATOM	8610	OH2 WA			24.165		-14.685	1.00 23.45	W
31 00 F		ATOM	8611	OH2 WA			27.758	50.897	13.213	1.00 19.47	W
	20	ATOM	8612	OH2 WA		440	38.638		-39.787	1.00 22.96	W
Ų	20	ATOM	8613	OH2 WA		441	76.697		-26.770	1.00 29.60	W
ĻŪ		ATOM	8614	OH2 WA		442	28.767	72.466	22.467	1.00 25.85	W
ijŦ.		ATOM	8615	OH2 WA		443	20.751		-35.607	1.00 31.09	W
104			8616	OH2 WA		444	24.098	57.242	38.823	1.00 24.73	W
Ñ	25	MOTA MOTA	8617	OH2 WA			38.190		-10.134	1.00 24.73	W
in the second	23		8618	OH2 WA		447	23.326		-40.633	1.00 30.23	W
iji.		ATOM		OH2 WA			17.246		-26.245	1.00 27.75	W
		ATOM	8619	OH2 WA			66.919		-22.218	1.00 27.73	W
RI		MOTA	8620 8621	OH2 WA		450	52.681		-27.991	1.00 41.60	W
	30	ATOM	8622	OH2 WA			20.704	68.074	8.597	1.00 41.60	W
ı,S	30	ATOM	8623	OH2 WA		451 452	61.634		-30.745	1.00 28.03	W
		ATOM				453	9.806	59.916	6.504	1.00 29.44	W
14		ATOM	8624	OH2 WA		454	31.630		-19.824	1.00 22.22	W
		MOTA	8625				28.063		-41.579	1.00 27.55	พ์
14	35	MOTA	8626 8627	OH2 WA		455 456	44.698		-30.429	1.00 20.68	W
£ .	33	ATOM					59.485		-34.677	1.00 26.13	W
		ATOM	8628	OH2 WA		457	70.244		-12.495	1.00 28.68	W
		ATOM	8629	OH2 WA		458	46.088	46.117	16.230	1.00 20.03	W
		ATOM	8630			459 460	46.004		-25.325	1.00 29.72	W
	40	ATOM	8631	OH2 WA			56.907		-20.060	1.00 25.72	พ
	40	MOTA	8632	OH2 WA					-5.829	1.00 23.77	W
		ATOM	8633	OH2 WA			73.660 19.646	74.098	33.835	1.00 25.00	W
		ATOM	8634	OH2 WA				43.105	-0.590	1.00 23.04	W
		ATOM	8635	OH2 WA			79.264	51.116	-3.282	1.00 21.30	W
	4 =	ATOM	8636	OH2 WA			66.047	45.418			W
	45	ATOM	8637	OH2 WA			48.396	78.020	-9.778	1.00 24.13 1.00 22.90	
		ATOM	8638	OH2 WA			29.998	34.084	-1.514		W
		MOTA	8639	OH2 WA			16.176		-24.051	1.00 31.88	W
		ATOM	8640	OH2 WA			17.617	39.367	35.721	1.00 38.09	W
	- 0	ATOM	8641	OH2 WA			22.534	31.157	29.484	1.00 28.54	W
	50	ATOM	8642	OH2 WA			33.369		-18.330	1.00 15.97	W
		ATOM	8643	OH2 WA			41.250		-39.511	1.00 24.39	W
		MOTA	8644	OH2 WA			44.232		-27.639	1.00 23.37	W
		ATOM	8645	OH2 WA			30.862	57.188	4.543	1.00 17.90	W
		MOTA	8646	OH2 WA			65.908	66.089	-0.376	1.00 24.05	W
	55	ATOM	8647	OH2 WA	T W	477	46.470	68.518	26.475	1.00 28.39	W

	ATOM	8648	OH2	WAT	W	478	70.032		-20.342	1.00 2		W
	ATOM	8649	OH2	TAW	W	479	23.576	90.884	-26.085	1.00 3	32.69	W
	MOTA	8650	OH2	WAT	W	480	25.257	71.144	22.415	1.00 2		W
	MOTA	8651	OH2	WAT	W	481	14.011	69.331	26.764	1.00 2	25.72	W
5	MOTA	8652	OH2	WAT	W	482	62.091	80.708	-18.944	1.00 2	2.51	W
	MOTA	8653	OH2	WAT	W	483	27.568	47.649	45.829	1.00 3	30.99	W
	MOTA	8654	OH2	WAT	W	484	24.924	34.183	0.541	1.00 3	31.69	W
	ATOM	8655	OH2	WAT	W	485	57.542	69.040	13.372	1.00 3	35.06	W
	MOTA	8656	OH2	WAT	W	486	7.964	48.092	11.826	1.00 2	4.78	W
10	ATOM	8657	OH2	WAT	W	487	71.310	59.790	1.011	1.00 3	0.00	W
	ATOM	8658		WAT			67.619		-23.404	1.00 2	4.62	W
	ATOM	8659		WAT			12.380		-13.498	1.00 2	9.76	W
	ATOM	8660		WAT			27.878	52.141	42.550	1.00 2	8.52	W
	ATOM	8661		WAT			22.024	62.686	33.804	1.00 2		W
15	ATOM	8662		WAT			59.396		-26.287	1.00 3		W
	ATOM	8663		WAT		493	34.320		-10.560	1.00 3		W
	ATOM	8664		WAT			30.216	36.445	29.080	1.00 2		W
	ATOM	8665		WAT			8.571	49.568	5.657	1.00 3		W
	ATOM	8666		WAT		498	41.955	67.344	29.326	1.00 2		W
20	ATOM	8667		WAT			72.402		-27.267	1.00 2		W
_0	ATOM	8668		WAT			8.848	44.348	12.960	1.00 2		W
	ATOM	8669		WAT			71.065		-15.336	1.00 3		W
	ATOM	8670		WAT			41.462		-24.401	1.00 2		W
	ATOM	8671		WAT		503	39.798	66.983	31.423	1.00 2		W
25	ATOM	8672		WAT		504	53.321	52.719	26.356	1.00 2		W
20	ATOM	8673		WAT			26.304		-27.111	1.00 2		W
	ATOM	8674		WAT			19.649		-27.061	1.00 2		M
	ATOM	8675		WAT			70.823		-34.949	1.00 2		W
	MOTA	8676		WAT			48.072		-25.801	1.00 2		W
30	MOTA	8677		TAW			44.452		-35.219	1.00 2		W
30	ATOM	8678		WAT		510	18.126	52.856	35.213	1.00 2		W
	ATOM	8679		WAT			83.591		-20.249	1.00 2		W
	ATOM	8680		WAT			43.836		-42.480	1.00 2		M
	ATOM	8681		WAT			22.688	62.534	16.084	1.00 2		W
35	ATOM	8682		WAT			45.760	79.249	-7.906	1.00 2		W
33	MOTA	8683		TAW			26.801	88.079	-4.103	1.00 2		M
	ATOM	8684		WAT			38.743		-22.199	1.00 3		W
	ATOM	8685		WAT			36.884	29.145	13.084	1.00 3		W
	ATOM	8686		WAT			20.410	65.507	27.349	1.00 3		W
4 0	ATOM	8687		WAT			6.729		2.971	1.00 3		W
40		8688							-12.932	1.00 2		W
	ATOM ATOM	8689		TAW TAW			28.095					W
									-25.576	1.00 2		W
	ATOM	8690		WAT			29.442			1.00 2		W
45	ATOM	8691		WAT			19.537	67.313		1.00 2		W
43	ATOM	8692		TAW			43.446		-7.635			
	ATOM	8693		WAT			48.643		-22.750	1.00 1		W
	ATOM	8694		TAW			26.385		-3.635	1.00 4		W
	ATOM	8695		TAW			35.767		-16.111	1.00 2		W
50	ATOM	8696		TAW			58.571	51.181		1.00 2		W
50	ATOM	8697		WAT			54.235	45.937		1.00 3		W
	ATOM	8698		TAW			46.524		-42.585	1.00 2		W
	ATOM	8699		WAT			71.643		-20.062	1.00 2		W
	ATOM	8700		WAT			61.128		-36.724	1.00 2		W
c r	MOTA	8701		TAW					16.453	1.00 3		W
55	ATOM	8702	OH2	WAT	W	534	58.573	34.864	-12.260	1.00 2	8./4	W

	n mond	0702	0112	r. z z m	F. 7	C 2 C	21 002	70 401	22 620	1 00 27 60	F-7
	ATOM	8703		TAW			21.002		-23.639	1.00 27.60	W
	ATOM	8704		TAW			51.295		-20.170	1.00 17.32	W
	MOTA	8705		WAT			32.081	85.225	-8.550	1.00 25.94	W
_	ATOM	8706		WAT			21.710	29.081		1.00 31.53	W
5	MOTA	8707	OH2	WAT	W	539	22.095	87.545	-7.194	1.00 35.62	W
	ATOM	8708	OH2	WAT	W	540	31.578	57.434	37.279	1.00 27.30	W
	ATOM	8709	OH2	WAT	W	541	17.488	81.399	-17.281	1.00 34.73	W
	ATOM	8710		WAT			51.884	58.999	6.332	1.00 41.97	W
	ATOM	8711		WAT			21.957	80.184		1.00 24.09	W
10	ATOM	8712		WAT			24.829	74.038	9.017	1.00 26.59	W
10	ATOM	8713		WAT				79.893	5.316	1.00 20.33	W
							21.438				
	ATOM	8714		WAT			48.301	94.016		1.00 32.94	W
	ATOM	8715		TAW			39.887	38.849	-3.487	1.00 22.74	W
4.5	MOTA	8716		TAW			39.630		-28.202	1.00 36.55	W
15	MOTA	8717	OH2	WAT	W	550	36.804		-15.757	1.00 29.05	M
	ATOM	8718	OH2	WAT	W	551	34.920	45.669	33.370	1.00 19.31	W
	ATOM	8719	OH2	WAT	W	552	55.621	77.953	-1.577	1.00 32.69	W
	MOTA	8720	OH2	TAW	W	553	70.242	61.953	-0.089	1.00 28.70	W
	ATOM	8721	OH2	WAT	W	554	46.112	74.216	22.600	1.00 30.69	W
20	ATOM	8722		WAT			48.424		-23.172	1.00 27.05	W
	ATOM	8723		TAW			60.520		-28.475	1.00 29.32	W
	ATOM	8724		WAT			37.929	62.300	35.419	1.00 28.02	W
										1.00 28.02	
	ATOM	8725		WAT		559	29.431		-37.425		W
25	MOTA	8726		TAW		560	61.433		-31.702	1.00 37.37	W
25	ATOM	8727		WAT		561	62.085		-38.287	1.00 25.83	W
	ATOM	8728		WAT		562	62.988		-20.951	1.00 25.61	W
	MOTA	8729		TAW		563	53.472	44.227	22.714	1.00 28.63	M
	ATOM	8730		WAT		564	30.645	34.628	-9.707	1.00 30.01	W
	ATOM	8731	OH2	WAT	W	565	29.635	31.443	21.942	1.00 30.77	W
30	MOTA	8732	OH2	TAW	W	566	78.625	69.011	-12.005	1.00 25.23	W
	MOTA	8733	OH2	WAT	W	567	31.369	69.210	-45.418	1.00 31.91	W
	ATOM	8734	OH2	WAT	W	568	73.477	82.280	-21.188	1.00 26.33	W
	MOTA	8735	OH2	WAT	W	569	47.244	71.014	-23.950	1.00 29.92	W
	ATOM	8736	OH2	WAT	W	570	20.446	37.879	12.137	1.00 27.15	W
35	ATOM	8737		WAT			34.990		-32.269	1.00 28.71	W
	ATOM	8738		WAT			17.230	41.552	9.181	1.00 29.09	W
	ATOM	8739		WAT		573	20.459		-33.664	1.00 36.30	W
	ATOM	8740		WAT		574	49.151		-24.092	1.00 27.95	W
	ATOM	8741		WAT			43.768	44.908	19.223	1.00 30.88	W
40		8742		WAT			21.182			1.00 30.52	W
40	ATOM										
	ATOM	8743		WAT			65.093		-24.138	1.00 28.32	W
	ATOM	8744		WAT			46.841		-21.480	1.00 24.30	W
	ATOM	8745		WAT			71.566		-27.060	1.00 31.49	W
	ATOM	8746		WAT			19.970	35.544	25.719	1.00 26.74	W
45	ATOM	8747		WAT			59.366		-45.758	1.00 30.58	W
	ATOM	8748	OH2	WAT	W	582	51.734	34.233	- 7.865	1.00 37.38	W
	ATOM	8749	OH2	WAT	W	583	56.216	78.991	-14.684	1.00 33.27	W
	ATOM	8750	OH2	WAT	W	584	28.884	69.807	-39.556	1.00 21.83	W
	ATOM	8751		WAT			45.187		-43.201	1.00 32.24	W
50	ATOM	8752		WAT			29.669		-42.870	1.00 30.89	W
- •	ATOM	8753		WAT			28.252		-42.596	1.00 28.76	W
	ATOM	8754		WAT			19.626		-28.580	1.00 37.20	W
	ATOM	8755		WAT			37.741		-30.667	1.00 37.20	W
	ATOM	8756		WAT			40.566		-31.708	1.00 35.50	M
55	ATOM	8757		WAT			21.114	41.599		1.00 33.31	W
55	MION	0131	Unz	AAL7 I	VV	331	C1.114	41.000	33.223	1.00 23.14	**

							500					
		ATOM	8758		WAT			39.247			1.00 38.89	W
		ATOM	8759				593	62.099		-22.844	1.00 28.21	W
		ATOM	8760		WAT			31.040			1.00 24.91	W
	_	MOTA	8761				595	27.896			1.00 35.64	W
	5	MOTA	8762				596	15.003		-25.860	1.00 25.42	W
		MOTA	8763				597	29.601			1.00 21.34	W
		MOTA	8764				599	61.559		-38.650	1.00 36.64	W
		ATOM	8765	он2				59.128			1.00 26.23	W
	4.0	ATOM	8766				602	51.205			1.00 23.39	W
	10	ATOM	8767		WAT			21.242			1.00 38.73	W
		ATOM	8768		WAT			59.833		-35.483	1.00 27.48	W
		ATOM	8769		WAT			24.014			1.00 26.81	W
		ATOM	8770		WAT			11.603			1.00 32.24	W
	a ==	MOTA	8771		WAT			55.226		-19.378	1.00 23.64	W
	15	ATOM	8772		WAT			16.743		-28.596	1.00 34.41	W
		MOTA	8773		WAT			40.872		-21.500	1.00 28.24	W
		ATOM	8774		WAT			28.668		-46.081	1.00 39.60	W
		ATOM	8775		WAT			40.006			1.00 24.43	W
	20	ATOM	8776		WAT			18.904		-11.812	1.00 29.72	W
	20	ATOM	8777		TAW		614	64.971			1.00 31.04	W
		MOTA	8778		WAT			72.774		-12.245	1.00 33.51	W
		MOTA	8779		TAW			13.009		-19.201	1.00 32.27	W
4,31.4 21344 <u>.</u>		ATOM	8780		TAW			57.062			1.00 23.61	W
		MOTA	8781		WAT			20.829			1.00 33.95	W
	25	ATOM	8782		WAT			50.615			1.00 30.34	W
114		ATOM	8783		TAW			28.468			1.00 36.42	W
177		MOTA	8784		TAW		621	23.139			1.00 24.96	W
\$i		ATOM	8785		TAW		622	33.385		-19.404	1.00 35.03	W
	20	MOTA	8786		WAT			33.787		-15.050	1.00 32.82	W
ı.D	30	MOTA	8787		TAW			29.449		-26.140	1.00 13.06	W
ių.		ATOM	8788		WAT			37.151			1.00 33.81	W
1.4		ATOM	8789		WAT			71.759		-18.009	1.00 27.73	W
		MOTA	8790		TAW			34.323		-44.782	1.00 32.70	W
	25	MOTA	8791	OH2			628	64.347			1.00 32.46	W
į.	35	MOTA	8792	OH2				35.947			1.00 41.57	W
		MOTA	8793		TAW			30.659			1.00 36.36	W
		ATOM	8794		WAT			54.265		-13.764	1.00 37.73	W
		ATOM	8795		WAT			21.136			1.00 34.03	W
	40	MOTA	8796		WAT			14.453			1.00 26.77	W
	40	ATOM	8797		WAT			25.475		-33.051	1.00 31.56	W
		ATOM	8798		TAW			73.185		-29.293	1.00 31.95	W
		ATOM	8799		WAT			55.875			1.00 35.90	W
		ATOM	8800		WAT			37.492			1.00 33.70	W
	45	ATOM	8801		TAW			45.485			1.00 31.21	W
	45	ATOM	8802		TAW			66.889		-11.141	1.00 29.67	W
		ATOM	8803		TAW			40.401		-19.494	1.00 34.59	W
		ATOM	8804		WAT			43.726			1.00 23.89	W
		ATOM	8805		TAW			56.389		-30.348	1.00 38.11	W
	EC	ATOM	8806		TAW			63.345			1.00 33.20	W
	50	MOTA	8807		WAT			62.132		-21.140	1.00 30.17	W
		ATOM	8808		WAT			62.795		-22.094	1.00 43.84	W
		ATOM	8809		WAT			39.839			1.00 38.17	W
		ATOM	8810		TAW			26.708		-27.698	1.00 27.71	W
		MOTA	8811		TAW			13.502			1.00 24.86	W
	55	MOTA	8812	OH2	TAW	W	652	60.670	78.924	-41.587	1.00 24.16	W

	ATOM	8813	OH2	WAT	ΙΛΙ	653	39.252	43.518	26.888	1.00	28.02	W
	ATOM	8814		WAT			11.931	70.822	2.485		31.13	W
	ATOM	8815		WAT			36.424		-38.251		29.44	W
	ATOM	8816		WAT			76.055	83.157			39.00	W
5						657	37.608	80.454	-0.581		23.73	W
3	ATOM	8817		TAW				53.378	35.765		33.39	W
	ATOM	8818		WAT			47.350					
	ATOM	8819		WAT			48.604		-33.661		29.32	W
	ATOM	8820		WAT			63.595		-45.655		33.19	W
40	ATOM	8821		WAT			60.081	71.509	0.342		33.30	W
10	ATOM	8822		WAT			41.130		-29.424		33.56	W
	ATOM	8823		WAT			55.384		-12.570		43.02	W
	ATOM	8824	OH2	WAT	W	664	74.977		-22.956		33.05	W
	ATOM	8825	OH2	WAT	M	665	63.406	52.047	-0.358	1.00	26.92	W
	ATOM	8826	OH2	WAT	W	666	37.221	36.481	18.964	1.00	39.54	W
15	ATOM	8827	OH2	WAT	W	667	57.641	36.009	-2.585	1.00	36.41	W
	ATOM	8828	OH2	WAT	W	668	23.115	48.814	-36.297	1.00	32.39	W
	ATOM	8829	OH2	WAT	W	669	17.636	71.546	-29.530	1.00	35.34	W
	ATOM	8830	OH2	WAT	W	670	30.674	40.378	38.143	1.00	36.19	W
	ATOM	8831	OH2	WAT	W	671	27.433	50.036	23.323	1.00	31.31	W
20	ATOM	8832		WAT			30.557	48.124	40.431		36.97	W
	ATOM	8833		WAT		673	59.855		-30.690		30.00	W
	ATOM	8834		WAT		674	44.853	40.592	13.345		29.68	W
	ATOM	8835		WAT			34.115	47.984	36.057		30.03	W
	ATOM	8836		WAT			27.358	82.247	3.089		28.86	M
25	ATOM	8837		WAT			58.497		-42.235		35.60	W
20	ATOM	8838		WAT			49.253		-37.624		38.08	W
									-16.924		25.65	W
	ATOM	8839		WAT			53.379				35.96	W
	ATOM	8840		WAT		680	57.626		-15.503			
20	MOTA	8841		WAT		681	28.297		-29.713		28.58	W
30	ATOM	8842		WAT		682	48.852		-38.154		36.59	W
	MOTA	8843		WAT		683	35.576		-43.062		29.02	W
	ATOM	8844		WAT		684	9.623	58.535	17.852		33.51	W
	MOTA	8845		WAT			61.093	45.523	-3.654		29.72	M
	MOTA	8846		WAT			65.483	78.684	-5.700		27.73	W
35	ATOM	8847		WAT		688	7.036	58.084	14.815		36.18	M
	MOTA	8848	OH2	WAT	W	689	49.432	50.626	32.574		27.09	W
	MOTA	8849	OH2	WAT	W	690	18.651	62.429	22.834	1.00	42.61	W
	ATOM	8850	OH2	WAT	W	691	30.258	34.015	21.108	1.00	34.14	W
	ATOM	8851	OH2	WAT	W	692	17.405	45.631	-14.008	1.00	26.24	W
40	ATOM	8852	OH2	WAT	W	693	28.725	55.316	39.985	1.00	27.55	W
	ATOM	8853	OH2	WAT	W	700	50.875	59.946	-8.928	1.00	11.46	W
	ATOM	8854		WAT			43.729		-28.635		10.90	W
	ATOM	8855		WAT			38.088		-31.356		11.61	W
	ATOM	8856		WAT			32.349		-4.925		10.69	W
45	ATOM	8857		WAT			60.345		-18.133		10.00	W
10	ATOM	8858		WAT			63.195	58.590			14.50	W
	ATOM	8859		WAT			60.694	60.822	-3.596		12.04	W
		8860		WAT			46.601	74.399			12.30	W
	ATOM							57.537			13.73	W
50	ATOM	8861		WAT			54.966		-0.483			W
50	ATOM	8862		WAT			30.225		-29.275		13.65	
	ATOM	8863		WAT			58.878	56.724	-1.422		11.48	W
	ATOM	8864		TAW			58.700	52.597			14.33	W
	ATOM	8865		WAT			63.107		-4.839		12.89	W
	ATOM	8866		TAW			27.955		12.047		17.48	W
55	ATOM	8867	OH2	WAT	W	717	66.623	56.169	-20.267	1.00	17.13	W

	ATOM	8868	OH2	WAT	W	718	19.9	36	46.755	-14.350	1.00	16.77	W
	ATOM	8869	OH2	WAT	W	719	38.6	527	69.291	-38.085	1.00	17.45	W
	ATOM	8870	OH2	WAT	W	720	33.6	504	60.216	23.237	1.00	13.28	W
	MOTA	8871	OH2	WAT	W	721	39.6	552	55.611	3.022	1.00	13.93	W
5	ATOM	8872	OH2	WAT	W	722	24.6	546	61.455	9.397		14.96	W
	MOTA	8873	OH2	WAT	W	723	16.7	774	57.081	13.004	1.00	14.37	W
	ATOM	8874	OH2	WAT	W	724	39.4	150	69.183	-35.373	1.00	14.13	W
	ATOM	8875	OH2	TAW	W	725	49.8		67.527	4.244	1.00	18.93	W
	ATOM	8876	OH2			726	27.6		53.307	20.113		14.50	W
10	MOTA	8877	OH2			728	29.7	774	83.030	2.442		22.49	W
	ATOM	8878	OH2	WAT	W	729	28.0			-25.245		18.36	W
	MOTA	8879	OH2	WAT	W	730	46.0		77.662	9.467		18.68	W
	MOTA	8880	OH2	WAT	W	732	12.5		49.413	17.711		22.37	W
	ATOM	8881	OH2	WAT	W	733	81.2			-11.410		22.16	W
15	MOTA	8882	OH2				41.4		44.788	-6.895		14.61	W
	MOTA	8883	OH2				45.5			-27.467		21.17	W
	MOTA	8884	OH2				14.2		50.502	24.242		21.49	W
	ATOM	8885	OH2			737	67.6		46.510	-1.449		22.53	W
	ATOM	8886	OH2				9.0		50.439	8.116		23.35	W
20	ATOM	8887	OH2				48.5		40.902	-1.043		22.37	W
	ATOM	8888	OH2				17.7		74.445	3.962		24.93	W
	ATOM	8889	OH2				44.9			-18.224		23.58	W
	MOTA	8890	OH2				83.4			-15.493		19.93	W
05	ATOM	8891	OH2				48.9			-36.939		23.36	W
25	MOTA	8892	OH2			744	51.6			-38.125		23.72	W
	ATOM	8893	OH2			745	29.6		72.422	34.299		24.92	W
	ATOM	8894	OH2				37.5			-32.436		21.97	W 1-7
	ATOM	8895	OH2				57.3		48.994	21.252		21.06	W W
20	ATOM	8896	OH2				42.9			-31.444		21.62 21.00	W
30	ATOM	8897	OH2				32.0		34.321	-3.215		21.00	W
	MOTA	8898	OH2				37.0		59.043	-33.539 14.822		24.82	W
	ATOM	8899 8900	OH2 OH2				61.4 40.1			-19.111		25.71	W
	ATOM ATOM	8901	OH2				47.5			-44.311		48.44	W
35	ATOM	8902	OH2				61.6			-10.460		21.23	W
33	ATOM	8903	OH2				79.3			-11.546		39.61	W
	ATOM	8904	OH2				37.6			-18.478		18.77	W
	ATOM	8905	OH2				25.6		52.103	13.079		23.59	W
	ATOM	8906	OH2			-	69.6			-28.517		25.13	W
40	ATOM	8907	OH2				73.0			-9.978			W
10	ATOM	8908	OH2				42.8		56.438	2.724		17.92	W
	ATOM	8909	OH2				56.0			-36.107		19.42	W
	ATOM	8910	OH2				17.8		66.012	27.868		26.73	W
	ATOM	8911	OH2				11.7			-16.941		21.03	W
45	ATOM	8912	OH2				35.2			-17.790	1.00	27.96	W
	ATOM	8913	OH2				9.8			-20.514	1.00	24.44	W
	ATOM	8914	OH2				11.5		48.702	-2.429	1.00	28.25	W
	ATOM	8915	OH2				40.6	533	56.964	31.024	1.00	28.09	W
	ATOM	8916	OH2				39.8	312	52.932	36.459	1.00	28.11	W
50	ATOM	8917	OH2				49.9	931	47.339	28.976	1.00	22.00	W
	ATOM	8918	OH2				24.0	98	34.395	15.460	1.00	23.97	W
	ATOM	8919	OH2	TAW	W	772	59.4	187	50.889	24.775	1.00	26.83	W
	ATOM	8920	OH2				38.0	30	83.105	-1.002		29.02	W
	ATOM	8921	OH2				12.9		51.685	-12.118		24.44	W
55	ATOM	8922	OH2	TAW	W	776	48.1	180	50.593	35.188	1.00	27.91	M

	ATOM	8923	ОН2	WAT	W	777	4	8.088	41.570	-5.478	1.00	25.82	W
	ATOM	8924		WAT				2.201		-11.309	1.00	22.86	W
	ATOM	8925	OH2					6.035	36.324	16.220	1.00	33.87	W
	ATOM	8926	OH2					2.449	68.096			25.52	W
5	ATOM	8927		WAT				2.144		-17.924		27.21	W
3		8928		WAT				0.774		-11.931		23.09	W
	ATOM							6.758	46.693			26.36	W
	ATOM	8929		TAW					63.844			25.35	W
	ATOM	8930		TAW				1.826				27.95	W
10	ATOM	8931		TAW				6.613	58.444				
10	ATOM	8932		TAW				7.457	58.417			28.29	W
	ATOM	8933		WAT				5.229		-16.398		25.10	W
	MOTA	8934		WAT				4.676		-23.121		24.85	W
	ATOM	8935		WAT				3.074		-15.015		26.93	W
	ATOM	8936		WAT				3.077		-25.010		28.53	W
15	ATOM	8937	OH2	WAT	W	791		3.191		-32.614		29.37	W
	ATOM	8938	OH2	WAT	W	792	6	6.312		-14.185		25.05	M
	MOTA	8939		WAT			4	7.318		-28.719		27.79	W
	ATOM	8940		\mathtt{WAT}			5	2.473	70.852			28.42	W
	ATOM	8941	OH2	WAT	W	795	4	0.973	55.861	-33.310	1.00	27.84	W
20	ATOM	8942	OH2	WAT	W	796	3	0.245	66.418	10.988	1.00	25.30	W
	ATOM	8943	OH2	WAT	W	797	3	9.668	39.709	19.992	1.00	28.66	W
	ATOM	8944	OH2	WAT	W	798	4	4.704	55.276	36.258	1.00	32.18	W
	ATOM	8945	OH2	WAT	W	799	1	3.966	62.480	14.594	1.00	26.13	W
	ATOM	8946	OH2	WAT	W	800	4	0.024	39.702		1.00	27.38	W
25	ATOM	8947		WAT			3	2.549	69.495	22.160	1.00	28.57	W
	ATOM	8948		WAT			4	1.883	44.124	-11.770	1.00	25.88	W
	ATOM	8949		WAT			2	6.947	41.616	-27.654	1.00	30.54	W
	ATOM	8950		WAT				9.843	41.627		1.00	25.74	W
	ATOM	8951		WAT			1	3.685	60.590	7.622	1.00	25.20	W
30	ATOM	8952		WAT				6.720	45.811		1.00	29.52	W
	ATOM	8953		WAT				2.921	68.593	-29.946	1.00	27.18	W
	ATOM	8954		WAT			2	4.412	53.888		1.00	33.09	W
	ATOM	8955		WAT			4	7.609		-16.650	1.00	25.75	W
	ATOM	8956		WAT				8.802		-27.521		28.20	W
35	ATOM	8957		WAT				1.338		-42.859		29.67	W
00	ATOM	8958		WAT				2.092		-13.217		24.02	W
	ATOM	8959		WAT				2.770		-23.358		26.46	W
	ATOM	8960		WAT				0.321	50.996			31.94	W
	ATOM	8961		WAT				0.777	56.054			27.67	W
40	ATOM	8962		WAT				9.477		-36.746		23.57	W
40		8963		WAT				0.153	49.938			54.57	W
	ATOM	8964		WAT				6.284	66.727			26.81	W
	ATOM	8965		WAT				1.971	41.446			29.18	W
	ATOM			WAT				9.267		-34.141		25.35	W
45	ATOM	8966							42.916			26.70	W
45	ATOM	8967		WAT				6.589				33.22	W
	ATOM	8968		WAT				5.924		-37.655			W
	ATOM	8969		WAT				4.054		-42.550		34.74	
	MOTA	8970		WAT				7.237		-14.386		32.76	M
F 0	MOTA	8971		TAW				7.157	37.518			29.99	W
50	ATOM	8972		WAT				1.214	66.642			21.97	W
	ATOM	8973		WAT				0.791	51.469			26.06	W
	ATOM	8974		WAT				0.338		-14.953		24.37	W
	ATOM	8975		WAT				2.244		-17.439		27.73	W
	ATOM	8976		WAT				8.355	76.393			29.41	W
55	ATOM	8977	OH2	WAT	W	833	2	9.663	76.034	10.889	1.00	28.76	W

	ATOM	8978	OH2	WAT	W	834	43.010	98.114	-37.134	1.00 31.	
	ATOM	8979	OH2	WAT	W	835	24.455	65.295		1.00 27.	
	MOTA	8980	OH2	WAT	W	836	64.682			1.00 26.	
	ATOM	8981	OH2	WAT	W	837	43.254	40.464	-22.987	1.00 27.	
5	ATOM	8982	OH2	WAT	W	838	59.455		2.200	1.00 31.	
	MOTA	8983	OH2	WAT	W	839	68.991	41.685	-17.211	1.00 28.	54 W
	ATOM	8984	OH2	WAT	W	840	24.783	71.648	-39.983	1.00 23.	
	ATOM	8985	OH2	WAT	W	841	23.732	48.420	-24.123	1.00 30.	
	ATOM	8986	OH2	WAT	W	842	46.974		-24.515	1.00 24.	
10	ATOM	8987	OH2	WAT	W	843	53.359	53.304	-30.034	1.00 30.	89 W
	ATOM	8988	OH2	WAT	W	844	24.825	34.332	35.789	1.00 31.	04 W
	ATOM	8989	OH2	WAT	W	845	13.297	52.427	25.888	1.00 29.	86 W
	ATOM	8990	OH2	WAT	W	846	51.677	44.456	2.991	1.00 29.	74 W
	ATOM	8991	OH2	WAT	W	847	21.471	55.374	39.891	1.00 35.	10 W
15	ATOM	8992		WAT			64.222	70.580	-5.272	1.00 32.	06 W
	ATOM	8993		WAT			46.741		-23.288	1.00 33.	91 W
	ATOM	8994		WAT			8.118	53.068	-7.667	1.00 30.	58 W
	ATOM	8995		WAT			22.086		-42.196	1.00 29.	19 W
	ATOM	8996		TAW			63.873		-30.493	1.00 41.	52 W
20	ATOM	8997		WAT			18.598		-19.927	1.00 32.	70 W
	ATOM	8998		WAT			59.272		-4.206	1.00 31.	52 W
	ATOM	8999		WAT			21.016		-12.178	1.00 32.	20 W
	ATOM	9000		WAT			55.515		13.403	1.00 41.	
	ATOM	9001		WAT			19.239		-31.228	1.00 36.	
25	ATOM	9002		WAT			67.372		-35.959	1.00 35.	
	ATOM	9003		WAT			29.632		22.211	1.00 25.	
	ATOM	9004		TAW			32.821		0.305	1.00 28.	
	ATOM	9005		WAT			45.757			1.00 29.	
	ATOM	9006		WAT			12.983		-2.298	1.00 27.	
30	ATOM	9007		WAT			25.739		13.712	1.00 27.	
00	ATOM	9008		WAT			28.531		32.152	1.00 30.	
	ATOM	9009		WAT			35.763		23.134	1.00 30.	
	ATOM	9010		WAT		867	31.861		17.240	1.00 35.	
	ATOM	9011		WAT			41.587		-2.302	1.00 34.	
35	ATOM	9012		WAT				100.019		1.00 38.	-
55	ATOM	9013		WAT			28.436		10.869	1.00 28.	
	ATOM	9014		WAT			54.801		-44.567	1.00 37.	
	ATOM	9015		WAT			69.905		-10.383	1.00 29.	
	ATOM	9016		WAT			36.928		-2.526	1.00 44.	
40	ATOM	9017		WAT			12.247			1.00 28.	
40	ATOM	9018		WAT			39.300			1.00 33.	
		9019		WAT			28.044			1.00 29.	
	ATOM			WAT			27.720		-22.666	1.00 23.	
	ATOM	9020		WAI			72.387		-31.128	1.00 30.	
45	ATOM	9021							-11.610	1.00 32.	
45	ATOM	9022		WAT			76.363		-38.837	1.00 34.	
	ATOM	9023		WAT			21.492			1.00 33.	
	ATOM	9024		WAT			23.344		-30.166 31.576	1.00 33.	
	ATOM	9025		WAT			20.850				
E 0	ATOM	9026		WAT			29.614		-28.740	1.00 39.	
50	ATOM	9027		TAW			42.804		-27.321	1.00 34.	
	MOTA	9028		WAT			55.814			1.00 30.	
	ATOM	9029		WAT			31.683		-40.938	1.00 50.	
	MOTA	9030		WAT			18.480			1.00 25.	
	ATOM	9031		WAT			62.075		-44.200	1.00 40.	
55	MOTA	9032	OH2	WAT	W	889	7.465	54.408	17.306	1.00 30.	35 W

	ATOM	9033	OH2	WAT	W	890	18.101	41.68	4 2	25.245	1.00	0 32.73	W
	ATOM	9034	OH2	WAT	W	891	27.429	82.56	2	5.738		0 36.27	W
	MOTA	9035	OH2	TAW	W	892	38.868	53.05	8	1.997	1.00	0 30.70	W
	ATOM	9036	OH2	WAT	W	893	12.036	67.25	8	2.652	1.00	0 42.94	W
5	ATOM	9037	OH2	WAT	W	894	4.469	56.61	0 -	-6.387	1.00	0 29.55	W
	ATOM	9038	OH2	WAT	W	895	21.857	76.78	2	8.689	1.00	0 31.52	W
	ATOM	9039	OH2	WAT	W	896	25.676	87.96	6 -4	12.799		0 39.01	W
	ATOM	9040	OH2	WAT	W	897	10.540	62.43	1 -:	12.196		0 31.66	W
	ATOM	9041	OH2	WAT	W	898	44.607	72.16	9 -4	14.474	1.00	0 32.45	W
10	MOTA	9042	OH2	TAW	W	899	37.212	39.89	8 2	26.577	1.00	34.20	W
	ATOM	9043	OH2	WAT	W	900	23.165	88.71	1 -3	37.906		0 35.10	W
	ATOM	9044		WAT			70.029	62.74	7 -2	24.229		35.37	W
	ATOM	9045	OH2	WAT	W	902	23.331	65.41	4	18.401	1.00	0 33.45	W
	ATOM	9046	OH2	WAT	W	903	67.038	38.54	3 -	-9.645	1.00	0 29.50	W
15	MOTA	9047	OH2	TAW	W	904	65.467	87.59	3 -4	11.084		36.40	W
	ATOM	9048	OH2	WAT	W	905	14.017	43.33		28.865	1.00	0 35.15	W
	ATOM	9049	OH2	WAT	W	906	13.469	48.25	4	1.397		0 37.34	W
	ATOM	9050	OH2	WAT	W	907	55.436	69.13	7 -:	37.827	1.00	0 30.40	W
	ATOM	9051	OH2	WAT	W	908	26.966	47.55	6 -2	23.954	1.00	0 29.40	W
20	MOTA	9052	OH2	TAW	W	909	69.728	82.02	3 -:	33.947	1.00	0 32.27	W
	ATOM	9053	OH2	WAT	W	910	11.998	62.18	3 2	22.815	1.00	0 38.70	W
	ATOM	9054	OH2	WAT	W	911	30.793	29.73	2	5.534		0 37.65	W
	ATOM	9055	OH2	WAT	W	912	19.179	36.45		22.322		0 40.49	W
	ATOM	9056	OH2	WAT	W	913	27.736	86.41	2 -:	14.732	1.00	0 31.73	W
25	ATOM	9057	OH2	WAT	W	914	66.117	50.41	6	0.413		0 30.39	W
	ATOM	9058	OH2	WAT	W	915	28.492	63.88	1 :	13.983		0 29.55	W
	ATOM	9059	OH2	WAT	W	916	51.974	60.10	5 2	28.076		0 30.69	W
	ATOM	9060	OH2	WAT	W	917	52.332	72.48	3 :	18.319		0 29.21	W
	ATOM	9061	OH2	WAT	W	918	47.072	74.94	7 -2	26.272		0 30.57	W
30	MOTA	9062	OH2	WAT	W	919	65.371	81.20	8 -	-4.746		0 32.50	W
	ATOM	9063	OH2	WAT	W	920	48.492	72.16	8 -2	26.185		0 32.28	W
	MOTA	9064		WAT			59.945			38.880		0 29.65	W
	ATOM	9065	OH2	WAT	W	922	22.864			16.984		0 38.49	W
	ATOM	9066		WAT			25.956			38.830		0 30.40	W
35	ATOM	9067		WAT			20.018			28.969		0 42.04	W
	ATOM	9068		WAT			59.188	55.42		27.104		0 33.12	W
	MOTA	9069		TAW			44.334			15.927		0 42.21	W
	MOTA	9070		WAT			64.029			10.494		0 32.61	W
	ATOM	9071		WAT			14.068	58.27		16.406		0 21.84	W
40	MOTA	9072		WAT			13.929			19.009		0 21.02	W
	ATOM	9073		WAT			24.125			11.562		0 29.26	W
	MOTA	9074		TAW			28.117			11.297		0 15.34	W
	ATOM	9075		WAT			28.948			35.632		0 24.97	W
4-	ATOM	9076		WAT			12.359			15.197		0 19.33	W
45	ATOM	9077		WAT			81.546			13.758		0 21.02	M
	MOTA	9078		WAT			59.050	58.10		0.971		0 20.10	W
	ATOM	9079		WAT			49.194			6.727		0 24.02	W
	MOTA	9080		WAT			68.412			28.528		0 22.06	W
	MOTA	9081		WAT			26.119			28.755		0 25.06	W
50	MOTA	9082		WAT			32.842	69.36		24.703		0 23.57	W
	ATOM	9083		WAT			27.842					0 26.24	Ŵ
	MOTA	9084		WAT			71.801			29.215		0 26.76	W
	ATOM	9085		TAW			79.342			-8.845		0 28.86	W
	MOTA	9086		TAW			37.052			-3.974		0 26.37	W
55	MOTA	9087	OH2	WAT	W]	1011	59.408	51.95	8	2.554	1.0	0 28.10	W

DOSCIDE DOST

	ATOM	9088	OH2	WAT	W1012	19.601	84.239	-18.370	1.00 28.43	W
	ATOM	9089	OH2	WAT	W1013	43.956	79.243	-21.470	1.00 32.67	W
	ATOM	9090	OH2	WAT	W1014	58.023	52.829	26.220	1.00 28.82	W
	ATOM	9091	OH2	WAT	W1015	17.061	57.454	-36.404	1.00 28.26	W
5	ATOM	9092	OH2	WAT	W1016	46.665	43.031	9.625	1.00 30.00	W
	ATOM	9093	OH2	WAT	W1017	27.197	72.121	34.046	1.00 34.22	W
	ATOM	9094	OH2	WAT	W1018	7.536	54.149	-10.230	1.00 25.55	W
	ATOM	9095	OH2	WAT	W1019	24.878	52.245	43.415	1.00 40.21	W
	ATOM	9096	OH2	WAT	W1020	49.909	46.879	-30.749	1.00 31.80	W
10	MOTA	9097	OH2	WAT	W1021	42.581	78.539	-29.540	1.00 35.27	M
	ATOM	9098	OH2	WAT	W1022	27.591	88.817	-12.263	1.00 30.74	W
	ATOM	9099	OH2	\mathtt{WAT}	W1023	56.603	89.918	-43.608	1.00 30.70	W
	ATOM	9100	OH2	WAT	W1024	13.964	44.811	26.794	1.00 36.36	W
	ATOM	9101	OH2	WAT	W1025	69.388		-35.992	1.00 27.38	W
15	ATOM	9102	OH2	WAT	W1026	57.993	93.302	-24.988	1.00 27.86	W
	ATOM	9103	OH2	WAT	W1027	64.598	70.559	-7.944	1.00 45.98	W
	ATOM	9104	OH2	WAT	W1028	46.112	39.784	-0.055	1.00 27.99	W
	ATOM	9105	OH2	WAT	W1029	37.083	37.317	25.012	1.00 33.64	W
	ATOM	9106	OH2	WAT	W1030	52.414	68.316	4.826	1.00 31.30	W
20	MOTA	9107	OH2	\mathtt{WAT}	W1031	17.744	50.810	38.215	1.00 29.84	W
	ATOM	9108	OH2	\mathtt{WAT}	W1032	15.243		-13.620	1.00 29.17	W
	ATOM	9109	OH2	WAT	W1033	20.102	39.479	-12.507	1.00 34.90	W
	ATOM	9110	OH2	WAT	W1034	49.415	45.555	31.017	1.00 29.53	W
	ATOM	9111	OH2	\mathbf{WAT}	W1035	46.778		-17.522	1.00 29.14	W
25	ATOM	9112	OH2	WAT	W1036	70.421		-26.052	1.00 28.22	W
	ATOM	9113			W1037	58.470	52.894	4.808	1.00 24.37	M
	ATOM	9114	OH2	TAW	W1038	35.575		-34.684	1.00 34.14	M
	MOTA	9115	OH2	TAW	W1039	41.336		-28.764	1.00 34.42	W
	MOTA	9116			W1040	47.748	66.115	26.835	1.00 30.73	W
30	ATOM	9117			W1041	28.436	68.129	11.340	1.00 30.03	W
	ATOM	9118			W1043	39.499		-21.986	1.00 34.41	W
	MOTA	9119			W1044	22.020	65.686	32.120	1.00 29.09	W
	ATOM	9120			W1045	58.777	48.905	18.951	1.00 31.31	W
	MOTA	9121			W1046	31.999	80.814	6.975	1.00 45.48	W
35	MOTA	9122			W1047	50.409		-24.885	1.00 35.65	W
	MOTA	9123			W1048	62.308	60.740	0.550	1.00 29.11	W
	MOTA	9124			W1049	67.874		-35.117	1.00 29.34	W
	ATOM	9125			W1050	23.178		-15.604	1.00 36.12	W
40	MOTA	9126			W1051	35.884		-29.986	1.00 34.46	W
40	MOTA	9127			W1052	73.994			1.00 30.75	W
	ATOM	9128			W1053	40.966	81.760	-3.585	1.00 34.92	W
	ATOM	9129			W1054	12.972	62.847	12.055	1.00 42.92	W
	ATOM	9130			W1055	56.938	75.884	0.308	1.00 32.67	W
45	MOTA	9131			W1056	74.294	52.058	1.453	1.00 31.78	W
45	MOTA	9132			W1057	22.310		-35.052	1.00 32.26	W
	ATOM	9133			W1058	77.454		-14.847	1.00 28.32	W
	ATOM	9134			W1059	17.651	41.747	32.191	1.00 47.09	W
	ATOM	9135			W1060	10.105		-15.140	1.00 33.54	W
F O	ATOM	9136			W1061	46.034	79.593	4.983	1.00 29.18	W
50	ATOM	9137			W1062	14.610	46.758	32.147	1.00 30.79	W
	ATOM	9138			W1063	34.557	77.270	12.439	1.00 27.02	W
	ATOM	9139			W1064	47.268	40.156		1.00 33.32	W Taj
	ATOM	9140			W1065	18.619	39.189		1.00 33.06	W
h h	ATOM	9141			W1066	26.043		-38.980	1.00 35.17	W
55	ATOM	9142	OH2	WAT	W1067	10.705	57.867	-20.854	1.00 35.84	W

	7 TOM	0142	0113	ייי אינה	W1069)	0 750	56 629	16.327	1.00 41.90	W
	ATOM	9143			W1068		8.759	56.628	-10.242	1.00 41.30	W
	ATOM	9144			W1069		78.041 24.072			1.00 35.75	W
	ATOM	9145			W1070			82.790	-3.954		
_	MOTA	9146			W107		44.516	40.813	7.609	1.00 39.23	W
5	ATOM	9147			W1072		35.419	62.216	34.108	1.00 29.33	W
	ATOM	9148			W1073		27.207		-31.767	1.00 34.55	W
	MOTA	9149			W1074		74.676		-20.637	1.00 34.22	W
	ATOM	9150			W1075		49.177	41.888	8.315	1.00 31.43	W
40	MOTA	9151			W1076		44.832		-25.355	1.00 33.39	W
10	MOTA	9152			W107		52.396	48.868	25.516	1.00 32.38	W
	MOTA	9153			W1078		9.675	53.484		1.00 29.84	M
	MOTA	9154			W1079		58.765	51.065	14.476	1.00 46.60	W
	ATOM	9155	OH2	WAT	W1080)	51.794	50.452	27.587	1.00 30.65	M
	MOTA	9156			W1083		25.081	88.824		1.00 31.67	M
15	MOTA	9157	OH2	TAW	W1082	2	7.589	58.168	0.166	1.00 32.04	W
	MOTA	9158	OH2	TAW	W1083	3	11.415	58.349	19.950	1.00 34.77	W
	ATOM	9159	OH2	WAT	W1084	l	18.559		-37.787	1.00 30.54	W
	ATOM	9160	OH2	WAT	W1085	; >	46.111	60.046	-31.330	1.00 34.66	M
	ATOM	9161	OH2	WAT	W1086	5	5.566	57.763	6.910	1.00 31.07	W
20	MOTA	9162	OH2	WAT	W1087	,	13.431	66.030	-11.696	1.00 39.54	M
	MOTA	9163	OH2	WAT	W1088	}	47.191	81.448	-17.052	1.00 31.72	M
	MOTA	9164	C1	NAG	C 2	-	58.272	44.933	12.939	1.00 54.15	С
	ATOM	9165	C2	NAG	C :		59.491	44.597	13.810	1.00 54.12	С
	ATOM	9166	N2	NAG	C :	_	60.574	45.520	13.526	1.00 56.17	C
25	MOTA	9167	С7	NAG	C :	_	60.706	46.633	14.241	1.00 68.32	С
	ATOM	9168	07	NAG	C :		60.206	47.706	13.905	1.00 84.10	С
	ATOM	9169	C8	NAG			61.520	46.545	15.522	1.00 55.90	С
	ATOM	9170	С3	NAG			59.957	43.162	13.548	1.00 55.37	С
	ATOM	9171	03	NAG		_	60.989	42.822	14.463	1.00 58.48	С
30	MOTA	9172	C4	NAG			58.791	42.186	13.705	1.00 51.27	С
	ATOM	9173	04	NAG			59.208	40.880	13.335	1.00 55.79	С
	ATOM	9174	C5	NAG			57.623	42.627	12.819	1.00 61.43	С
	ATOM	9175	05	NAG			57.227	43.975	13.158	1.00 49.30	С
	ATOM	9176	C6	NAG			56.402	41.745	12.991	1.00 77.13	С
35	ATOM	9177	06	NAG			56.268	40.837	11.908	1.00 60.25	С
•	ATOM	9178	C	TRS			31.353	66.569	7.597	1.00 15.84	Т
	ATOM	9179	C1	TRS			31.240	66.938	6.107	1.00 15.64	Т
	ATOM	9180	C2	TRS			32.708	66.586	7.995	1.00 15.85	T
	ATOM	9181	C3	TRS			30.629	65.227	7.717	1.00 16.29	\mathbf{T}
40	ATOM	9182	N	TRS			30.638	67.570	8.399	1.00 15.69	T
10	ATOM	9183	01	TRS			31.683	68.184	5.843	1.00 15.45	Т
	ATOM	9184	02	TRS			33.643	65.910	7.226	1.00 13.34	Т
	ATOM	9185	03	TRS			30.581	64.645	8.982	1.00 18.13	${f T}$
	ATOM	9186	C1	MPD			14.883	61.068	10.331	1.00 17.96	М
45	ATOM	9187	C2	MPD			16.351	61.254	10.649	1.00 18.97	М
10	ATOM	9188	02	MPD			16.957	60.096	9.890	1.00 19.78	М
	ATOM	9189	CM	MPD			17.188	62.371	10.051	1.00 19.99	М
		9190	C3	MPD			16.549	61.049	12.169	1.00 18.43	M
	ATOM							60.686	12.721	1.00 17.69	M
50	ATOM	9191	C4	MPD			17.848		13.729	1.00 17.69	M
50	ATOM	9192	04	MPD			17.567			1.00 16.03	M
	ATOM	9193	C5	MPD			18.419		13.429		Z
	ATOM	9194	ZN	ZN	Z :	-	34.680	64.059	7.920	1.00 9.96	۵
	END										

Table 2
Structural coordinates of a Drosophila Golgi α-mannosidase II with swainsonine.

```
REMARK coordinates from restrained individual B-factor refinement
5
    REMARK refinement resolution: 500.0 - 1.87 A
    REMARK starting r= 0.1835 free r= 0.2089
    REMARK final
                    r = 0.1801 free r = 0.2084
    REMARK B rmsd for bonded mainchain atoms= 0.707
                                                      target= 1.5
    REMARK B rmsd for bonded sidechain atoms= 1.139
                                                      target= 2.0
10
    REMARK B rmsd for angle mainchain atoms= 1.167
                                                     target= 2.0
     REMARK B rmsd for angle sidechain atoms= 1.765
                                                     target= 2.5
    REMARK wa= 1.14241
     REMARK rweight=0.269445
     REMARK target= mlf steps= 30
15
    REMARK sg= P2(1)2(1)2(1) a= 68.902 b= 110.015 c= 138.472 alpha= 90 beta= 90
    gamma= 90
     REMARK parameter file 1 : CNS TOPPAR:protein_rep.param
     REMARK parameter file 2 : CNS TOPPAR:water rep.param
     REMARK parameter file 3
                             : CNS TOPPAR:ion.param
20
    REMARK parameter file 4
                             : swainsonine2.par
    REMARK parameter file 5 : ../zntrmp/mpd.par
    REMARK parameter file 6 : cis_peptide.param
    REMARK parameter file 7 : CNS_TOPPAR:carbohydrate.param
    REMARK molecular structure file: swainsoninegen.mtf
25
    REMARK input coordinates: swainsonine ann 1.pdb
    REMARK reflection file= dqm2native rejmerge.cv
    REMARK ncs= none
    REMARK B-correction resolution: 6.0 - 1.87
    REMARK initial B-factor correction applied to fobs :
30
             B11=
                    0.513 B22= -0.085 B33= -0.428
    REMARK
                                              0.000
                                0.000 B23 =
    REMARK
             B12 =
                    0.000 B13=
    REMARK B-factor correction applied to coordinate array B:
    REMARK bulk solvent: density level= 0.353213 e/A^3, B-factor= 42.0423 A^2
    REMARK reflections with |Fobs|/sigma F < 0.0 rejected
35
    REMARK reflections with |Fobs| > 10000 * rms(Fobs) rejected
    REMARK theoretical total number of refl. in resol. range:
                                                                  87643 ( 100.0
     REMARK number of unobserved reflections (no entry or |F|=0):
                                                                    2814 (3.2%)
    REMARK number of reflections rejected:
                                                                       0 (0.0%)
40
    REMARK total number of reflections used:
                                                                   84829 (96.8%)
     REMARK number of reflections in working set:
                                                                   80543 (91.9%)
                                                                    4286 (4.9%)
    REMARK number of reflections in test set:
             68.902 110.015 138.472 90.00 90.00 90.00 P 21 21 21
    REMARK FILENAME="swainsonine ann lbi.pdb"
    REMARK DATE:15-Jul-2000 00:41:05
45
                                            created by user: jvdelsen
    REMARK VERSION: 0.9a
                                     41.925 37.251 -18.672 1.00 24.62
    ATOM
              1 C
                     CYS A
                            31
    MOTA
              2
                 0
                     CYS A 31
                                     41.435
                                            36.638 -19.619
                                                            1.00 24.13
              3 CB CYS A 31
                                     43.816 38.560 -19.547
                                                            1.00 23.99
    MOTA
                                                                            Α
50
              4 SG CYS A 31
                                     45.498 39.239 -19.413 1.00 23.62
    MOTA
                                                                            Α
              5 N
                     CYS A 31
                                     44.191 36.197 -18.869 1.00 25.37
    MOTA
              6 CA CYS A 31
                                     43.431 37.448 -18.573 1.00 24.59
    ATOM
```

	ATOM	7	N	GLN	Α	32	41.195	37.782 -	17.695	1.00	24.51	Α
	ATOM	8	CA	GLN		32	39.740	37.694 -	17.701	1.00	24.50	Α
	ATOM	9	СВ	GLN	Α	32	39.148	38.167 -	16.372	1.00	25.89	Α
	ATOM	10	CG	GLN	Α	32	39.164	37.148 -	15.257	1.00	28.92	Α
5	ATOM	11	CD	GLN	Α	32	38.247	37.547 -	14.117	1.00	30.46	Α
	ATOM	12	OE1	GLN	Α	32	37.028	37.625 -	14.286	1.00	31.32	Α
	ATOM	13	NE2	GLN	Α	32	38.827	37.811 -	12.951	1.00	31.69	Α
	ATOM	14	С	GLN	Α	32	39.201	38.595 -	18.801	1.00	23.50	Α
	MOTA	15	0	GLN	Α	32	39.787	39.632 -	19.112	1.00	22.91	А
10	MOTA	16	N	ASP	Α	33	38.084	38.194 -	19.389	1.00	22.48	Α
	ATOM	17	CA	ASP	Α	33	37.455	38.986 -	20.432	1.00	21.66	А
	MOTA	18	CB	ASP	Α	33	36.645	38.066 -		1.00	21.90	А
	ATOM	19	CG	ASP	Α	33	36.033	38.799 -2			23.08	Α
	ATOM	20	OD1	ASP	Α	33	35.768	38.140 -	23.553	1.00	22.70	Α
15	MOTA	21	OD2	ASP	Α	33	35.804	40.023 -	22.415	1.00	23.45	А
	ATOM	22	С	ASP	Α	33	36.554	39.956 -	19.671	1.00	20.60	Α
	ATOM	23	0	ASP	Α	33	35.617	39.536 -	18.999		21.58	Α
	MOTA	24	N	VAL	Α	34	36.846	41.250 -	19.759		18.58	Α
	ATOM	25	CA	VAL	Α	34	36.066	42.246 -	19.030		16.33	Α
20	MOTA	26	CB	VAL	Α	34	36.971	43.414 -			16.29	Α
	MOTA	27		VAL		34	38.137	42.869 -			16.34	Α
	MOTA	28		VAL		34	37.493	44.200 -			15.50	A
	MOTA	29	С	VAL		34	34.895	42.818 -			15.89	А
	ATOM	30	0	VAL		34	34.213	43.728 -			14.74	Α
25	MOTA	31	N	VAL		35	34.641	42.268 -			14.60	A
	MOTA	32	CA	VAL		35	33.559	42.769 -			15.46	A
	MOTA	33	CB	VAL		35	34.095	43.167 -			15.53	A
	MOTA	34		VAL		35	32.950	43.676 -2			15.86	A
20	MOTA	35		VAL		35	35.188	44.216 -2			14.85	A
30	MOTA	36	С	VAL		35	32.383	41.821 -3			16.31	A
	MOTA	37	0	VAL		35	31.225	42.207 -			15.61	A
	ATOM	38	N	GLN		36	32.692	40.579 -2			17.91	A
	ATOM	39	CA	GLN		36	31.673	39.590 -2			19.46	A
25	ATOM	40	CB	GLN		36	32.219	38.736 -2			19.69	A
35	ATOM	41	CG	GLN		36	32.976	39.558 -2			20.71	A
	ATOM	42	CD	GLN		36	33.442	38.735 -2			21.13	A
	ATOM	43		GLN		36	32.667	38.436 -2			22.57	A
	ATOM	44		GLN		36	34.714	38.355 -2 38.670 -2			21.31 20.47	A A
40	ATOM	45	С	GLN		36	31.065	37.948 -2			20.47	A
40	ATOM	46	0	GLN		36	30.117	38.674 -2			21.45	A
	ATOM	47	N	ASP		37	31.593	37.811 -			22.08	A
	ATOM	48	CA	ASP		37 27	31.051 32.147	36.912 -			23.31	A
	ATOM	49	CB	ASP		37 37	32.736	35.956 -			24.58	A
45	ATOM	50 51	CG OD1	ASP ASP		37	31.959	35.302 -2			25.48	A
43	ATOM	52		ASP		37	33.979	35.851 -1			25.49	A
	ATOM		C C	ASP		37	30.416	38.614 -			21.91	A
	ATOM	53 54	0	ASP		37	31.120	39.195 -			22.46	A
	ATOM	55		VAL		38	29.088	38.635 -			21.35	A
50	ATOM		N Ca				28.363	39.354 -			21.02	A
50	ATOM ATOM	56 57	CA CB	VAL VAL		38 38	26.860	39.448 -			21.79	A
	ATOM	58		VAL		38	26.122	40.191 -			21.12	A
	ATOM	59		VAL		38	26.669				21.34	A
	ATOM	60	CGZ	VAL		38	28.523				21.06	A
55	ATOM	61	0	VAL		38	28.042	37.511 -			20.07	A
	111011	01	~	- 1 1 1	••	2.0						

						_			00 0 = 5			00 5 4	_
		ATOM	62	N	PRO	Α	39	29.209		-14.951		20.56	А
		MOTA	63	CD	PRO	Α	39	29.929	40.552	-15.034	1.00	20.77	А
		ATOM	64	CA	PRO	Α	39	29.407	38.646	-13.640	1.00	20.50	Α
		ATOM	65	CB	PRO	Α	39	30.153	39.725	-12.858	1.00	20.74	Α
	5	ATOM	66	CG	PRO		39	30.950		-13.922	1.00	19.82	А
	•	ATOM	67	C	PRO		39	28.100		-12.962		20.83	A
								27.092		-13.066		20.74	A
		ATOM	68	0	PRO		39						
		ATOM	69	N	ASN		40	28.114		-12.273		21.49	A
	4.0	ATOM	70	CA	ASN		40	26.931		-11.555		21.21	А
	10	ATOM	71	CB	ASN	Α	40	26.737		-11.702		23.69	A
		ATOM	72	CG	ASN	Α	40	25.572	34.653	-10.881	1.00	25.91	A
		ATOM	73	OD1	ASN	Α	40	24.457	35.173	-10.971	1.00	28.05	A
		ATOM	74	ND2	ASN	Α	40	25.820	33.629	-10.073	1.00	27.66	A
		MOTA	75	С	ASN		40	27.119	37.023	-10.085	1.00	20.01	А
	15	ATOM	76	0	ASN		40	27.906	36.386	-9.384		19.40	А
		ATOM	77	N	VAL		41	26.405	38.040	-9.620		18.76	Α
		ATOM	7.8	CA	VAL		41	26.515	38.459	-8.227		17.66	A
								27.126	39.873	-8.117		17.28	A
		ATOM	79	CB	VAL		41						
1,24	20	ATOM	80		VAL		41	28.559	39.861	-8.627		17.55	A
ij	20	ATOM	81		VAL		41	26.291	40.860	-8.919		17.64	A
		ATOM	82	С	VAL		41	25.154	38.454	-7.545		16.81	A
155		ATOM	83	0	VAL		41	24.118	38.550	-8.202		16.76	A
in the second se		ATOM	84	N	ASP	Α	42	25.161	38.333	-6.223	1.00	16.37	Α
		ATOM	85	CA	ASP	Α	42	23.922	38.315	-5.459		16.16	A
Will.	25	ATOM	86	CB	ASP	Α	42	24.204	37.903	-4.012	1.00	17.05	A
IJ		ATOM	87	CG	ASP	A	42	24.742	36.488	-3.906	1.00	17.52	А
(Ti		ATOM	88	OD1	ASP	Α	42	24.073	35.565	-4.414	1.00	18.85	A
¥:		ATOM	89		ASP		42	25.824	36.297	-3.316	1.00	17.26	А
		ATOM	90	С	ASP		42	23.255	39.681	-5.484		16.06	A
fisad. ana	30	ATOM	91	Ö	ASP		42	22.029	39.786	-5.518		16.22	A
1 (1)	00	ATOM	92	N	VAL		43	24.071	40.729	-5.459		15.36	A
			93					23.563	42.092	-5.486		15.17	A
		ATOM		CA	VAL		43						
		ATOM	94	CB	VAL		43	23.726	42.788	-4.118		15.84	A
	25	ATOM	95		VAL		43	23.132	44.194	-4.175		15.15	A
Ĕ 1.00.	35	MOTA	96		VAL		43	23.059	41.968	-3.024		16.17	A
		MOTA	97	С	VAL		43	24.315	42.920	-6.521		14.54	A
		ATOM	98	0	VAL		43	25.540	43.030	-6.470		14.32	A
		MOTA	99	N	GLN		4 4	23.578	43.480	-7.472		13.35	Α
		MOTA	100	CA	GLN	Α	44	24.173	44.329	-8.497		13.57	A
	4 0	ATOM	101	CB	GLN	Α	44	23.958	43.724	-9.889	1.00	13.33	A
		ATOM	102	CG	GLN	Α	44	25.023	44.140	-10.898	1.00	12.33	A
		ATOM	103	CD	GLN	Α	44	25.129	45.649	-11.016	1.00	12.76	A
		ATOM	104		GLN		4 4	24.145		-11.302	1.00	12.19	А
		ATOM	105		GLN		44	26.325		-10.792		11.46	Α
	45	ATOM	106	С	GLN		44	23.413	45.642			13.24	А
	10	ATOM	107	0	GLN		44	22.210	45.717			13.21	A
		ATOM	108	N	MET		45	24.118	46.675	-7.874		13.15	A
								23.485	47.952	-7.577		13.00	A
		ATOM	109	CA	MET		45						
	E0	ATOM	110	CB	MET		45	24.536	48.945	-7.075		13.03	A
	50	MOTA	111	CG	MET		45	25.143	48.547	-5.728		13.17	A
		ATOM	112	SD	MET		45	23.891	48.155	-4.467		15.24	A
		ATOM	113	CE	MET		45	23.318	49.806	-4.040		14.85	Α
		MOTA	114	C	MET	Α	45	22.593	48.603	-8.632		12.70	Α
		ATOM	115	0	MET	Α	45	21.596	49.231	-8.278	1.00	12.29	A
	55	MOTA	116	N	LEU		46	22.929	48.469	-9.911	1.00	12.61	Α

		ATOM	117	CA	LEU A	46	22.087	49.066 -10.947	1.00 13.13	А
		ATOM	118	СВ	LEU A	46	22.778	49.012 -12.316	1.00 12.68	Α
		ATOM	119	CG	LEU A	46	22.021	49.708 -13.456	1.00 11.38	Α
			120		LEU A	46	21.998	51.215 -13.217	1.00 12.44	A
	5	ATOM								
	5	ATOM	121		LEU A	46	22.686	49.394 -14.788	1.00 12.03	Α
		ATOM	122	С	LEU A	46	20.770	48.290 -11.003	1.00 14.23	A
		ATOM	123	0	LEU A	46	19.687	48.876 -11.131	1.00 14.08	Α
		ATOM	124	N	GLU A	47	20.867	46.966 -10.895	1.00 15.02	Α
		ATOM	125	CA	GLU A	47	19.682	46.114 -10.929	1.00 16.69	Α
	10	ATOM	126	СВ	GLU A	47	20.087	44.635 -10.951	1.00 17.61	А
		ATOM	127	CG	GLU A	47	18.929	43.666 -11.196	1.00 20.72	А
		ATOM	128	CD	GLU A	47	18.124	43.357 -9.947	1.00 22.35	A
		ATOM	129	OE1	GLU A	47	17.009	42.805 -10.080	1.00 23.46	A
	4 -	MOTA	130	OE2		47	18.601	43.648 -8.831	1.00 23.19	A
	15	ATOM	131	С	GLU A	47	18.824	46.414 -9.705	1.00 16.45	A
		ATOM	132	0	GLU A	47	17.609	46.569 -9.812	1.00 17.05	Α
		MOTA	133	N	LEU A	48	19.465	46.511 -8.545	1.00 16.44	Α
		ATOM	134	CA	LEU A	48	18.755	46.809 -7.304	1.00 16.52	Α
41700,		ATOM	135	СВ	LEU A	48	19.737	46.869 -6.128	1.00 16.70	Α
	20	ATOM	136	CG	LEU A	48	19.127	47.139 -4.748	1.00 17.63	A
ij	_0	ATOM	137		LEU A	48	18.115	46.053 -4.415	1.00 19.01	A
į į			138		LEU A		20.225	47.188 -3.695	1.00 13.67	A
471		ATOM				48				
Total		ATOM	139	С	LEU A	48	18.019	48.141 -7.420	1.00 16.10	A
A _{stan} ii an a	0.5	ATOM	140	0	LEU A	48	16.859	48.254 -7.029	1.00 16.36	Α
	25	MOTA	141	N	TYR A	49	18.694	49.145 -7.968	1.00 15.59	A
Hilli		ATOM	142	CA	TYR A	49	18.093	50.466 -8.127	1.00 15.59	A
ijħ.		ATOM	143	CB	TYR A	49	19.121	51.445 -8.712	1.00 14.86	A
		ATOM	144	CG	TYR A	49	19.675	52.401 -7.678	1.00 14.18	Α
€} J:245,		ATOM	145	CD1		49	20.150	51.929 -6.451	1.00 13.14	A
	30	ATOM	146		TYR A	49	20.600	52.807 -5.464	1.00 13.25	A
۱ij		ATOM	147		TYR A	49	19.672	53.779 -7.899	1.00 13.52	A
							20.120	54.666 -6.920	1.00 13.32	A
		MOTA	148		TYR A	49				
1:25 1:25		MOTA	149	CZ	TYR A	49	20.578	54.175 -5.706	1.00 13.51	A
	0.5	ATOM	150	OH	TYR A	49	20.979	55.051 -4.723	1.00 13.85	A
	35	ATOM	151	С	TYR A	49	16.850	50.415 -9.009	1.00 16.60	A
		MOTA	152	0	TYR A	49	15.879	51.136 -8.779	1.00 15.53	A
		ATOM	153	N	ASP A	50	16.883	49.547 -10.012	1.00 17.82	Α
		ATOM	154	CA	ASP A	50	15.764	49.399 -10.931	1.00 20.30	Α
		MOTA	155	СВ	ASP A	50	16.153	48.440 -12.061	1.00 21.45	Α
	40	ATOM	156	CG	ASP A	50	15.329	48.645 -13.318	1.00 23.77	A
		ATOM	157		ASP A	50	15.403	47.778 -14.215	1.00 24.48	А
		MOTA	158		ASP A	50	14.626	49.674 -13.418	1.00 23.86	A
							14.526		1.00 23.00	
		ATOM	159	С	ASP A	50		48.868 -10.198		A
	4.5	ATOM	160	0	ASP A	50	13.403	49.294 -10.476	1.00 20.00	A
	45	MOTA	161	N	ARG A	51	14.741	47.951 -9.256	1.00 22.14	A
		MOTA	162	CA	ARG A	51	13.651	47.336 -8.494	1.00 23.40	Α
		ATOM	163	CB	ARG A	51	14.044	45.918 -8.059	1.00 25.60	Α
		MOTA	164	CG	ARG A	51	14.163	44.925 -9.192	1.00 28.61	A
		ATOM	165	CD	ARG A	51	14.338	43.491 -8.689	1.00 31.12	Α
	50	ATOM	166	NE	ARG A	51	15.625	43.263 -8.034	1.00 33.00	A
		MOTA	167	CZ	ARG A	51	15.868	43.467 -6.743	1.00 33.65	A
		ATOM	168		ARG A	51	14.908	43.906 -5.940	1.00 34.72	A
		ATOM	169		ARG A	51	17.077	43.228 -6.253	1.00 33.58	A
		ATOM	170	С	ARG A	51	13.156	48.096 -7.262	1.00 23.04	А
	55	ATOM	171	О	ARG A	51	11.979	48.014 -6.921	1.00 23.00	Α

		ATOM	172	N	MET A	52	14.047	48.820	-6.591	1.00 22.18	A
		ATOM	173	CA	MET A	52	13.680	49.564	-5.385	1.00 22.46	A
		ATOM	174	СВ	MET A	52	14.924	50.192	-4.757	1.00 22.88	Α
		ATOM	175	CG	MET A	52	15.886	49.195	-4.152	1.00 24.34	A
	5	ATOM	176	SD	MET A	52	17.406	50.015	-3.629	1.00 25.98	A
	•	ATOM	177	CE	MET A	52	16.778	51.075	-2.331	1.00 26.01	A
		ATOM	178	C	MET A	52	12.642	50.652	-5.617	1.00 21.82	A
		ATOM	179	0	MET A	52	12.606	51.271	-6.681	1.00 21.80	A
		ATOM	180	N	SER A	53	11.810	50.894	-4.606	1.00 21.18	A
	10	ATOM	181	CA	SER A	53	10.762	51.908	-4.696	1.00 21.22	A
	10	ATOM	182	CB	SER A	53	9.477	51.386	-4.048	1.00 21.76	A
		ATOM	183	OG	SER A	53	8.985	50.253	-4.745	1.00 23.57	A
		ATOM	184	C	SER A	53	11.156	53.238	-4.055	1.00 20.40	A
		ATOM	185	0	SER A	53	10.531	54.267	-4.311	1.00 20.31	A
	15	ATOM	186	N	PHE A	54	12.185	53.204	-3.214	1.00 19.97	A
	10	ATOM	187	CA	PHE A	54	12.686	54.399	-2.538	1.00 19.35	A
		ATOM	188	CB	PHE A	54	13.354	55.343	-3.545	1.00 18.86	A
		ATOM	189	CG	PHE A	54	14.600	54.784	-4.174	1.00 17.89	A
		ATOM	190		PHE A	54	14.522	53.912	-5.256	1.00 17.68	A
1122	20	ATOM	191		PHE A	54	15.852	55.127	-3.230	1.00 17.36	A
Ų	20	ATOM	192		PHE A	54	15.674	53.387	-5.837	1.00 17.30	A
Ü		ATOM	193	CE2		54	17.015	54.609	-4.247	1.00 17.70	A
		ATOM	193	CEZ	PHE A	54	16.929	53.736	-5.329	1.00 17.77	A
1,422 1,422 1,42		ATOM	195	C		54	11.644	55.188	-1.747	1.00 18.12	A
1,a⊒ 1881	25	ATOM	196	0	PHE A	54	11.729	56.414	-1.660	1.00 19.03	A
141	23		197	N	LYS A	55	10.664	54.504	-1.165	1.00 18.07	A
W.		ATOM	198	CA	LIS A	55	9.653	55.211	-0.387	1.00 19.83	A
M		ATOM				55		54.313	-0.134	1.00 20.73	A
š:		ATOM	199	CB	LYS A	55	8.437 7.748	53.848	-1.403	1.00 20.77	A
	30	ATOM	200 201	CG CD	LYS A	55	7.746	55.018	-2.284	1.00 20.88	A
11	30	ATOM	201		LYS A	55	6.699	54.527	-3.578	1.00 21.00	A
I.		ATOM	202	CE NZ	LYS A	55	6.215	55.652	-4.429	1.00 21.30	A
		ATOM ATOM	203	C	LYS A LYS A	55	10.265	55.652	0.936	1.00 21.47	A
		ATOM	205	0	LIS A	55	10.265	54.870	1.615	1.00 20.50	A
1,000	35	ATOM	206	N	ASP A	56	10.045	56.912	1.291	1.00 21.05	A
i sabi	33	MOTA	207	CA	ASP A	56	10.582	57.478	2.522	1.00 21.70	Ā
		ATOM	208	CB	ASP A	56	11.094	58.897	2.234	1.00 21.70	A
		ATOM	209	CG	ASP A	56	11.697	59.567	3.450	1.00 20.73	A
		ATOM	210		ASP A	56	12.238	58.861	4.324	1.00 20.27	A
	40	ATOM	211		ASP A	56	11.642	60.812	3.523	1.00 20.21	A
	40		212			56	9.520	57.493	3.622	1.00 20.23	A
		ATOM	213	С 0	ASP A ASP A	56	8.954	58.536	3.939	1.00 22.51	A
		ATOM					9.251	56.331	4.207	1.00 23.05	A
		ATOM	214	N	ILE A	57 57		56.249	5.259	1.00 23.05	
	45	ATOM	215	CA	ILE A	57 57	8.245		5.114	1.00 25.04	A A
	43	ATOM	216	CB	ILE A	57	7.368	54.981		1.00 23.04	
		ATOM	217		ILE A	57	6.858	54.859	3.681		A
		ATOM	218		ILE A	57	8.172	53.737	5.485	1.00 25.72	A
		MOTA	219		ILE A	57	7.335	52.480	5.564	1.00 27.21	A
	Ε0	MOTA	220	С	ILE A	57	8.869	56.250	6.647	1.00 23.45	A
	50	ATOM	221	0	ILE A	57	10.022	55.859	6.824	1.00 23.83	A
		ATOM	222	N	ASP A	58	8.091	56.698	7.627	1.00 23.42	A
		ATOM	223	CA	ASP A	58	8.528	56.758	9.017	1.00 23.11	A
		ATOM	224	СВ	ASP A	58	7.566	57.641	9.815	1.00 24.05	A
		MOTA	225	CG	ASP A	58	7.986	57.817	11.264	1.00 24.91	A
	55	ATOM	226	OD1	ASP A	58	7.391	58.677	11.948	1.00 26.86	Α

						_					1 00 0: 0:	_
		MOTA	227		ASP		58	8.898	57.102	11.725	1.00 24.36	A
		ATOM	228	С	ASP	Α	58	8.552	55.347	9.599	1.00 22.47	Α
		ATOM	229	0	ASP	Α	58	7.503	54.736	9.798	1.00 22.40	Α
		ATOM	230	N	GLY	Α	59	9.749	54.835	9.871	1.00 21.17	Α
	5	ATOM	231	CA	GLY	Α	59	9.870	53.491	10.411	1.00 20.10	Α
		ATOM	232	С	GLY	Α	59	9.836	53.398	11.926	1.00 18.92	Α
		ATOM	233	0	GLY		59	10.040	52.321	12.486	1.00 18.96	А
		ATOM	234	N	GLY		60	9.576	54.518	12.592	1.00 18.14	А
		ATOM	235	CA	GLY		60	9.529	54.523	14.045	1.00 18.27	A
	10	ATOM	236	C	GLY		60	10.796	55.130	14.620	1.00 17.46	A
	10	ATOM	237	0	GLY		60	11.352	56.062	14.038	1.00 17.61	A
		ATOM	238	N	VAL		61	11.264	54.612	15.752	1.00 17.48	A
		ATOM	239	CA	VAL		61	12.484	55.146	16.349	1.00 17.40	A
		ATOM	240	CB	VAL		61	12.865	54.402	17.653	1.00 16.73	A
	15											
	13	ATOM	241		VAL		61	11.824	54.706	18.728	1.00 16.60	A
		ATOM	242		VAL		61	12.957	52.904	17.413	1.00 16.85	A
		ATOM	243	С	VAL		61	13.613	55.075	15.321	1.00 16.90	A
		ATOM	244	0	VAL		61	14.443	55.981	15.244	1.00 16.19	A
/FEE	20	ATOM	245	N	TRP		62	13.651	53.998	14.537	1.00 16.72	A
	20	MOTA	246	CA	TRP		62	14.641	53.903	13.470	1.00 17.14	Α
, =		ATOM	247	CB	TRP		62	15.017	52.448	13.160	1.00 16.77	A
1,640 4,696		ATOM	248	CG	TRP		62	15.981	52.323	11.999	1.00 16.61	A
1,5 E.		ATOM	249		TRP		62	16.334	51.125	11.291	1.00 16.64	Α
		ATOM	250	CE2	TRP	Α	62	17.238	51.495	10.266	1.00 16.47	Α
Ŋ	25	ATOM	251	CE3	TRP	Α	62	15.974	49.776	11.421	1.00 16.05	Α
		ATOM	252	CD1	TRP	Α	62	16.671	53.339	11.393	1.00 16.29	Α
		MOTA	253	NE1	TRP	Α	62	17.424	52.850	10.351	1.00 16.78	A
E)		ATOM	254	CZ2	TRP	Α	62	17.786	50.565	9.376	1.00 15.87	A
		ATOM	255	CZ3	TRP	Α	62	16.518	48.849	10.537	1.00 15.80	A
	30	ATOM	256	CH2	TRP		62	17.416	49.249	9.525	1.00 16.42	Α
1,1,2		ATOM	257	С	TRP		62	13.854	54.516	12.319	1.00 17.81	Α
		ATOM	258	0	TRP		62	13.199	53.816	11.542	1.00 18.20	А
į.±		ATOM	259	N	LYS		63	13.904	55.841	12.241	1.00 18.39	A
		ATOM	260	CA	LYS		63	13.159	56.598	11.243	1.00 18.98	A
J.A.	35	ATOM	261	CB	LYS		63	13.590	58.066	11.290	1.00 20.04	A
=	-	ATOM	262	CG	LYS		63	13.128	58.814	12.549	1.00 22.71	A
		ATOM	263	CD	LYS		63	11.608	58.979	12.573	1.00 25.03	A
		ATOM	264	CE	LYS		63	11.129	59.810	13.761	1.00 26.33	A
		ATOM	265	NZ	LYS		63	11.459	59.217	15.099	1.00 28.40	A
	40	ATOM	266	C	LYS		63	13.180		9.800		A
	10	ATOM	267	0	LYS		63	12.175	56.225	9.090	1.00 18.80	A
		ATOM	268	N	GLN		64	14.302	55.557	9.358	1.00 17.70	A
			269				64	14.400	55.102	7.976	1.00 17.70	A
		ATOM		CA	GLN					7.320		
	45	ATOM	270	CB	GLN		64	15.610	55.768		1.00 16.66	A
	43	ATOM	271	CG	GLN		64	15.510	57.285	7.347	1.00 16.52	A
		ATOM	272	CD	GLN		64	16.850	57.969	7.152	1.00 16.43	A
		ATOM	273		GLN		64	17.818	57.674	7.859	1.00 16.22	A
		ATOM	274		GLN		64	16.910	58.894	6.198	1.00 15.17	Α
	-0	ATOM	275	С	GLN		64	14.461	53.586	7.817	1.00 16.51	Α
	50	ATOM	276	0	GLN		64	14.839	53.073	6.759	1.00 16.20	А
		ATOM	277	N	GLY		65	14.070	52.880	8.873	1.00 16.63	Α
		ATOM	278	CA	GLY		65	14.060	51.429	8.844	1.00 17.03	Α
		ATOM	279	С	GLY	A	65	12.713	50.881	9.284	1.00 17.98	А
		ATOM	280	0	GLY	Α	65	11.680	51.204	8.692	1.00 17.73	A
	55	ATOM	281	N	TRP	Α	66	12.722	50.052	10.324	1.00 18.46	Α

	ATOM	282	CA	TRP	A 66	11.495	49.454	10.852	1.00 19.30	Α
	ATOM	283	CB	TRP	A 66	11.101	48.231	10.012	1.00 18.93	Α
	ATOM	284	CG	TRP	A 66	12.024	47.045	10.179	1.00 18.71	Α
	ATOM	285	CD2	TRP	A 66	13.222	46.776	9.440	1.00 18.40	А
5	ATOM	286	CE2		A 66	13.768	45.575	9.950	1.00 18.17	Α
	ATOM	287	CE3			13.890	47.435	8.396	1.00 18.28	А
	ATOM	288	CD1	TRP		11.897	46.026	11.081	1.00 18.40	А
	ATOM	289	NE1	TRP		12.938	45.139	10.949	1.00 18.80	А
	ATOM	290	CZ2			14.952	45.015	9.452	1.00 18.67	A
10	ATOM	291	CZ3	TRP		15.067	46.881	7.901	1.00 18.13	A
10	ATOM	292	CH2	TRP		15.587	45.681	8.431	1.00 18.63	A
	ATOM	293	C	TRP .		11.768	49.028	12.289	1.00 19.82	A
	ATOM	294	0	TRP .		12.906	49.117	12.751	1.00 19.90	A
	ATOM	295	N	ASN .		10.735	48.581	13.000	1.00 13.30	A
15	ATOM	296	CA	ASN .		10.733	48.133	14.380	1.00 20.01	A
15						9.580	48.133	15.132	1.00 21.14	A
	ATOM	297	CB	ASN .					1.00 23.90	
	ATOM	298	CG	ASN .		9.005	49.469	15.382		A
	MOTA	299		ASN .		9.737	50.419	15.660	1.00 24.85	A
20	ATOM	300		ASN .		7.684	49.580	15.308	1.00 24.85	A
20	MOTA	301	С	ASN .		11.534	46.742	14.365	1.00 21.15	A
	MOTA	302	0	ASN .		10.859	45.751	14.076	1.00 20.49	A
	ATOM	303	N	ILE .		12.822	46.669	14.680	1.00 20.89	A
	ATOM	304	CA	ILE .		13.524	45.395	14.676	1.00 20.74	A
0=	ATOM	305	СВ	IĻE .		15.047	45.602	14.791	1.00 20.37	Α
25	MOTA	306	CG2	ILE .		15.754	44.256	14.762	1.00 20.22	A
	MOTA	307	CG1	ILE .		15.541	46.489	13.643	1.00 19.43	A
	ATOM	308	CD1	ILE .		16.996	46.907	13.771	1.00 18.98	A
	ATOM	309	С	ILE .		13.074	44.489	15.816	1.00 21.81	A
	ATOM	310	0	ILE .		12.958	44.923	16.961	1.00 21.06	A
30	ATOM	311	N	LYS .		12.820	43.227	15.486	1.00 22.54	A
	ATOM	312	CA	LYS .	A 69	12.402	42.240	16.472	1.00 23.75	A
	ATOM	313	CB	LYS .	A 69	10.990	41.731	16.154	1.00 25.70	Α
	ATOM	314	CG	LYS .	A 69	9.910	42.796	16.310	1.00 28.27	Α
	ATOM	315	CD	LYS .	A 69	8.529	42.293	15.899	1.00 30.99	Α
35	ATOM	316	CE	LYS .	A 69	8.470	41.949	14.415	1.00 32.58	A
	ATOM	317	NZ	LYS .	A 69	7.069	41.696	13.953	1.00 33.89	A
	ATOM	318	С	LYS	A 69	13.399	41.087	16.440	1.00 23.31	A
	ATOM	319	0	LYS .	A 69	13.965	40.779	15.394	1.00 22.08	Α
	ATOM	320	N	TYR	A 70	13.627	40.463	17.590	1.00 22.98	Α
4 0	ATOM	321	CA	TYR	A 70	14.558	39.347	17.659	1.00 23.39	Α
	ATOM	322	СВ	TYR .	A 70	15.955	39.838	18.069	1.00 22.09	Α
	MOTA	323	CG	TYR		16.033	40.441	19.454	1.00 21.39	A
	ATOM	324	CD1	TYR		16.250	39.641	20.577	1.00 21.26	А
	ATOM	325		TYR		16.301	40.193	21.854	1.00 21.28	А
45	ATOM	326		TYR Z		15.870	41.810	19.646	1.00 20.94	Α
	ATOM	327		TYR .		15.916	42.371	20.915	1.00 21.13	А
	ATOM	328	CZ	TYR		16.131	41.560	22.014	1.00 21.33	Α
	ATOM	329	ОН	TYR		16.160	42.120	23.270	1.00 21.29	А
	ATOM	330	C	TYR		14.067	38.291	18.639	1.00 24.36	A
50	ATOM	331	0	TYR		13.299	38.587	19.556	1.00 24.37	A
- 0	ATOM	332	N	ASP A		14.506	37.058	18.426	1.00 25.28	A
	ATOM	333	CA	ASP A		14.134	35.952	19.295	1.00 26.59	A
	ATOM	334	CB	ASP A		14.108	34.650	18.491	1.00 20.55	A
	ATOM	335	CG	ASP A		13.865	33.430	19.358	1.00 27.54	A
55	ATOM	336		ASP A		13.325	33.583	20.474	1.00 29.32	A
	A I ON	220	ODI	DOE I	n /1	10.040	55.505	20.7/3	1.00 67.36	Λ

		ATOM	337		ASP A	71	14.208	32.315	18.913	1.00 29.61	А
		MOTA	338	С	ASP A	71	15.166	35.878	20.414	1.00 27.11	A
		MOTA	339	0	ASP A	71	16.324	35.542	20.181	1.00 27.07	Α
		ATOM	340	N	PRO A	72	14.758	36.205	21.650	1.00 27.95	Α
	5	MOTA	341	CD	PRO A	72	13.382	36.467	22.102	1.00 28.09	Α
		ATOM	342	CA	PRO A	72	15.682	36.167	22.788	1.00 28.21	Α
		ATOM	343	СВ	PRO A	72	14.777	36.487	23.981	1.00 28.36	Α
		ATOM	344	CG	PRO A	72	13.431	36.001	23.536	1.00 29.13	Α
		ATOM	345	C	PRO A	72	16.430	34.848	22.949	1.00 28.47	А
	10	MOTA	346	Õ	PRO A	72	17.544	34.819	23.478	1.00 28.39	A
	10	ATOM	347	N	LEU A	73	15.831	33.761	22.476	1.00 28.12	A
			348	CA	LEU A	73 73	16.458	32.450	22.589	1.00 28.34	A
		ATOM				73 73	15.396	31.350	22.521	1.00 28.75	A
		ATOM	349	CB	LEU A				23.678	1.00 20.75	A
	15	ATOM	350	CG	LEU A	73	14.394	31.348		1.00 29.20	A
	15	ATOM	351		LEU A	73	13.386	30.228	23.480		
		ATOM	352		LEU A	73	15.137	31.176	24.999	1.00 30.07	A
		ATOM	353	С	LEU A	73	17.526	32.200	21.530	1.00 28.03	A
		ATOM	354	0	LEU A	73	18.172	31.155	21.531	1.00 27.41	A
112		ATOM	355	N	LYS A	74	17.717	33.159	20.629	1.00 27.84	A
	20	ATOM	356	CA	LYS A	74	18.719	33.010	19.580	1.00 28.11	Α
, j==;		MOTA	357	CB	LYS A	74	18.719	34.238	18.669	1.00 28.49	A
الوجازية 1986ء		MOTA	358	CG	LYS A	74	19.670	34.132	17.489	1.00 29.82	Α
4,9 1		ATOM	359	CD	LYS A	74	19.495	35.303	16.537	1.00 30.64	Α
		MOTA	360	CE	LYS A	74	20.364	35.143	15.302	1.00 31.81	Α
111	25	ATOM	361	NZ	LYS A	74	20.171	36.267	14.342	1.00 31.98	Α
14		ATOM	362	С	LYS A	74	20.107	32.821	20.188	1.00 28.09	Α
1,5		MOTA	363	0	LYS A	74	20.905	32.019	19.708	1.00 27.62	Α
		ATOM	364	N	TYR A	75	20.390	33.567	21.249	1.00 28.79	Α
हर श्रुष्टक्		ATOM	365	CA	TYR A	75	21.678	33.470	21.917	1.00 29.44	А
	30	ATOM	366	CB	TYR A	75	22.267	34.870	22.135	1.00 30.25	Α
1,4	00	ATOM	367	CG	TYR A	75	22.560	35.593	20.839	1.00 31.19	Α
		MOTA	368	CD1	TYR A	75	21.682	36.552	20.330	1.00 32.32	A
i .4.		ATOM	369	CE1	TYR A	75	21.919	37.167	19.097	1.00 32.54	A
		ATOM	370		TYR A	75 75	23.685	35.268	20.085	1.00 31.91	A
[*T.	35		371	CE2	TYR A	75 75	23.929	35.871	18.854	1.00 33.09	A
9	33	ATOM				75 75	23.929	36.816	18.365	1.00 33.05	A
		ATOM	372	CZ	TYR A		23.281	37.385	17.133	1.00 33.00	A
		ATOM	373	OH	TYR A	75 75				1.00 34.74	A
		MOTA	374	С	TYR A	75 75	21.533	32.738	23.246		A
	40	ATOM	375	0	TYR A	75 76	20.536	32.903	23.947	1.00 28.56	
	40	ATOM	376	N	ASN A	76	22.524	31.914	23.573	1.00 29.65	A
		ATOM	377	CA	ASN A	76	22.515	31.153	24.817	1.00 30.92	A
		ATOM	378	CB	ASN A	76	21.679	29.879	24.663	1.00 31.88	A
		ATOM	379	CG	ASN A	76	22.350	28.844	23.789	1.00 32.89	A
		MOTA	380		ASN A	76	22.597	29.077	22.610	1.00 34.45	Α
	45	ATOM	381	ND2	ASN A	76	22.652	27.686	24.368	1.00 35.12	A
		ATOM	382	С	ASN A	76	23.940	30.786	25.217	1.00 31.31	A
		ATOM	383	0	ASN A	76	24.898	31.163	24.544	1.00 31.17	Α
		ATOM	384	N	ALA A	77	24.071	30.042	26.311	1.00 31.88	Α
		MOTA	385	CA	ALA A	77	25.377	29.634	26.820	1.00 32.55	Α
	50	ATOM	386	CB	ALA A	77	25.197	28.651	27.972	1.00 33.07	Α
		ATOM	387	c	ALA A	77	26.297	29.028	25.763	1.00 33.01	Α
		ATOM	388	Ö	ALA A	77	27.516	29.186	25.831	1.00 33.48	А
		ATOM	389	N	HIS A	78	25.718	28.340	24.785	1.00 33.14	A
		ATOM	390	CA	HIS A	78	26.512	27.700	23.741	1.00 33.71	A
	55			CB		78	25.869	26.367	23.349	1.00 35.71	A
		ATOM	391	CD	HIS A	10	23.003	20.50/	23.343	1.00 33.33	L)

		ATOM	392	CG	HIS		78	25.613	25.459	24.511	1.00 37.19	Α
		ATOM	393	CD2	HIS	Α	78	24.467	24.910	24.978	1.00 37.95	Α
		ATOM	394	ND1	HIS	Α	78	26.616	25.029	25.354	1.00 38.44	A
		ATOM	395	CE1	HIS	Α	78	26.098	24.255	26.291	1.00 39.01	A
	5	ATOM	396	NE2	HIS	Α	78	24.796	24.166	26.085	1.00 38.98	Α
		ATOM	397	С	HIS	Α	78	26.689	28.570	22.501	1.00 32.69	Α
		ATOM	398	0	HIS	Α	78	27.445	28.221	21.594	1.00 32.79	Α
		ATOM	399	N	HIS		79	25.997	29.703	22.471	1.00 31.30	Α
		ATOM	400	CA	HIS		79	26.075	30.617	21.337	1.00 29.39	Α
	10	ATOM	401	СВ	HIS		79	25.026	30.220	20.294	1.00 29.56	А
		ATOM	402	CG	HIS		79	25.097	31.011	19.026	1.00 30.05	A
		ATOM	403		HIS		79	25.904	30.892	17.945	1.00 30.18	A
		ATOM	404		HIS		79	24.269	32.083	18.769	1.00 30.14	A
		ATOM	405		HIS		79	24.564	32.590	17.585	1.00 30.14	A
	15	ATOM	406		HIS		79	25.552	31.886	17.064	1.00 29.64	A
	15	ATOM	407	C	HIS		79 79	25.848	32.049	21.821	1.00 23.04	A
								24.724	32.546	21.821	1.00 27.72	
		ATOM	408	O N	HIS		79					A
		ATOM	409	N CA	LYS		80	26.929	32.701	22.239	1.00 25.74	A
	20	ATOM	410	CA	LYS		80	26.864	34.067	22.751	1.00 24.30	A
1	20	ATOM	411	CB	LYS		80	27.894	34.265	23.864	1.00 25.55	A
j		ATOM	412	CG	LYS		80	27.771	33.315	25.047	1.00 27.24	A
15		ATOM	413	CD	LYS		80	28.848	33.636	26.074	1.00 28.76	A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ATOM	414	CE	LYS		80	28.801	32.686	27.260	1.00 30.53	A
	25	ATOM	415	NZ	LYS		80	29.897	32.984	28.235	1.00 31.64	A
1 1	25	ATOM	416	С	LYS		80	27.117	35.130	21.687	1.00 23.05	A
ill fin		MOTA	417	0	LYS		80	27.735	34.861	20.655	1.00 21.91	A
ij.		MOTA	418	N	LEU		81	26.634	36.340	21.961	1.00 20.81	Α
Βŧ		ATOM	419	CA	LEU		81	26.826	37.476	21.069	1.00 19.46	A
J.	20	ATOM	420	СВ	LEU		81	25.639	38.444	21.163	1.00 18.84	A
.0	30	MOTA	421	CG	LEU		81	25.719	39.706	20.294	1.00 18.97	Α
w		ATOM	422		LEU		81	25.692	39.316	18.819	1.00 18.21	Α
ļ.d.		ATOM	423		LEU		81	24.558	40.637	20.616	1.00 18.43	А
		ATOM	424	С	LEU		81	28.097	38.179	21.532	1.00 19.09	А
	0.5	ATOM	425	0	LEU		81	28.168	38.669	22.660	1.00 18.47	А
i.	35	ATOM	426	N	LYS		82	29.108	38.198	20.670	1.00 18.24	A
		ATOM	427	CA	LYS		82	30.379	38.844	20.984	1.00 18.10	Α
		ATOM	428	CB	LYS		82	31.523	38.130	20.258	1.00 20.34	Α
		ATOM	429	CG	LYS	A	82	31.736	36.693	20.723	1.00 23.59	Α
		MOTA	430	CD	LYS	Α	82	32.626	35.899	19.769	1.00 26.71	Α
	40	ATOM	431	CE	LYS	Α	82	34.047	36.436	19.723	1.00 28.41	Α
		ATOM	432	ΝZ	LYS	Α	82	34.880	35.658	18.761	1.00 31.12	Α
		MOTA	433	С	LYS	Α	82	30.283	40.289	20.517	1.00 17.55	А
		ATOM	434	0	LYS	Α	82	30.112	40.550	19.327	1.00 16.98	А
		ATOM	435	N	VAL	Α	83	30.392	41.226	21.454	1.00 15.95	A
	45	ATOM	436	CA	VAL	Α	83	30.285	42.638	21.119	1.00 15.21	А
		ATOM	437	СВ	VAL		83	29.253	43.349	22.035	1.00 14.49	А
		ATOM	438	CG1	VAL		83	29.126	44.814	21.648	1.00 13.69	А
		MOTA	439		VAL		83	27.895	42.658	21.926	1.00 15.01	A
		ATOM	440	C	VAL		83	31.615	43.375	21.229	1.00 15.13	A
	50	ATOM	441	Ō	VAL		83	32.297	43.302	22.252	1.00 15.11	A
		ATOM	442	N	PHE		84	31.976	44.084	20.163	1.00 15.11	A
		ATOM	443	CA	PHE		84	33.207	44.868	20.142	1.00 14.60	A
		ATOM	444	CB	PHE		84	34.081	44.489	18.944	1.00 15.76	A
		ATOM	445	CG	PHE		84	34.765	43.163	19.085	1.00 17.05	A
	55	ATOM	446		PHE		84	34.703	42.055		1.00 17.03	A
		A I OM	440	CDI	rnc	M	04	34.341	42.000	10.211	1.00 1/./1	М

	ATOM	447	CD2	PHE	Α	84	3	5.859	43.021	19.935	1.00	18.34	А
	MOTA	448	CE1	PHE	Α	84	3	4.961	40.819	18.500	1.00	18.55	А
	ATOM	449	CE2	PHE	Α	84	3	6.507	41.795	20.073	1.00	18.71	Α
	ATOM	450	CZ	PHE	Α	84	3	6.058	40.690	19.354	1.00	19.03	Α
5	ATOM	451	С	PHE	Α	84	3	2.876	46.355	20.061	1.00	14.25	Α
	ATOM	452	0	PHE	Α	84	3	2.342	46.819	19.054	1.00	14.04	Α
	ATOM	453	N	VAL	Α	85	3	3.183	47.085	21.130		13.03	A
	ATOM	454	CA	VAL	Α	85	3	2.955	48.527	21.193	1.00	13.03	Α
	ATOM	455	СВ	VAL	Α	85	3	2.596	48.976	22.629	1.00	12.58	Α
10	ATOM	456	CG1	VAL	Α	85	3	2.408	50.493	22.680	1.00	13.25	Α
	ATOM	457	CG2	VAL	Α	85	3	1.318	48.272	23.072	1.00	13.56	Α
	ATOM	458	С	VAL	Α	85	3	4.267	49.165	20.762	1.00	11.93	A
	ATOM	459	0	VAL	Α	85	3	5.280	49.049	21.451	1.00	12.19	Α
	ATOM	460	N	VAL	Α	86	3	4.240	49.840	19.618	1.00	11.92	Α
15	MOTA	461	CA	VAL	Α	86	3	5.442	50.442	19.058	1.00	11.60	Α
	MOTA	462	CB	VAL	Α	86	3	5.580	50.032	17.571	1.00	12.47	Α
	MOTA	463	CG1	VAL	Α	86	3	6.907	50.523	17.002	1.00	11.40	Α
	ATOM	464	CG2	VAL	Α	86	3	5.458	48.511	17.442	1.00	13.05	Α
	MOTA	465	С	VAL	Α	86	3	5.508	51.967	19.168	1.00	11.18	A
20	ATOM	466	0	VAL	Α	86	3	4.875	52.683	18.393		10.78	Α
	ATOM	467	N	PRO	Α	87	3	6.292	52.478	20.133	1.00	10.83	Α
	MOTA	468	CD	PRO	Α	87	3	7.015	51.722	21.169		10.63	Α
	MOTA	469	CA	PRO	Α	87	3	6.448	53.923	20.344	1.00	10.81	Α
	MOTA	470	СВ	PRO	Α	87	3	7.307	54.000	21.610	1.00	10.48	A
25	MOTA	471	CG	PRO	Α	87	3	7.008	52.695	22.311		10.82	Α
	MOTA	472	С	PRO	Α	87	3	7.145	54.569	19.146	1.00	10.84	A
	MOTA	473	0	PRO	Α	87	3	8.123	54.023	18.624	1.00	10.85	A
	ATOM	474	N	HIS	Α	88	3	6.646	55.725	18.714	1.00	10.80	A
	MOTA	475	CA	HIS	Α	88	3	7.235	56.427	17.577	1.00	11.53	A
30	ATOM	476	CB	HIS	Α	88	3	6.662	55.885	16.257	1.00	10.95	A
	MOTA	477	CG	HIS	Α	88	3	5.211	56.191	16.051		11.87	A
	MOTA	478	CD2	HIS	Α	88	3	4.098	55.515	16.420		11.54	A
	ATOM	479	ND1	HIS	Α	88	3	4.773	57.323	15.397	1.00	10.84	A
	MOTA	480	CE1	HIS	Α	88	3	3.453	57.330	15.371		11.92	Α
35	MOTA	481	NE2	HIS	Α	88		3.018	56.244	15.986		11.27	A
	MOTA	482	С	HIS	A	88	3	7.015	57.933	17.666		12.18	A
	MOTA	483	0	HIS		88		6.203	58.417	18.459		11.77	A
	ATOM	484	N	SER	Α	89		7.753	58.670	16.845		11.89	A
	MOTA	485	CA	SER		89		7.671	60.122	16.833		11.62	A
40	MOTA	486	CB	SER		89		8.775	60.702	17.728		10.98	A
	MOTA	487	OG	SER		89		8.737	62.117	17.764		11.39	A
	ATOM	488	С	SER		89		7.852	60.577	15.393		11.91	A
	ATOM	489	0	SER	Α	89		8.928	60.417	14.815		12.41	A
	ATOM	490	N	HIS		90		6.792	61.130	14.814		11.46	A
45	ATOM	491	CA	HIS		90		6.835	61.592	13.432		11.67	А
	MOTA	492	CB	HIS		90		5.415	61.640	12.859		10.52	A
	MOTA	493	CG	HIS		90		5.368	61.922	11.391		10.05	A
	ATOM	494		HIS		90		4.794	62.930	10.695	1.00		A
	ATOM	495		HIS		90		5.986	61.116	10.460		10.72	A
50	MOTA	496		HIS		90		5.795	61.615	9.253		10.25	A
	ATOM	497	NE2	HIS	A	90		5.074	62.716	9.368	1.00		Α
	MOTA	498	С	HIS		90		37.491	62.969	13.355		11.84	A
	MOTA	499	0	HIS		90		6.912	63.971	13.787		11.75	A
	ATOM	500	N	ASN		91		88.704	63.005	12.809		11.84	Α
55	MOTA	501	CA	ASN	A	91	3	9.466	64.243	12.680	1.00	12.03	A

	ATOM	502	CB	ASN	Α	91	40.857	64.082	13.304	1.00 12.04	Α
	ATOM	503	CG	ASN	Α	91	40.812	63.945	14.810	1.00 12.39	Α
	ATOM	504	OD1	ASN	Α	91	40.213	63.011	15.348	1.00 14.18	Α
	ATOM	505	ND2	ASN	Α	91	41.451	64.877	15.503	1.00 10.68	Α
5	ATOM	506	С	ASN	Α	91	39.628	64.671	11.226	1.00 12.39	Α
	ATOM	507	0	ASN	Α	91	40.322	64.014	10.450	1.00 12.84	A
	ATOM	508	N	ASP		92	38.996	65.783	10.873	1.00 11.57	А
	ATOM	509	CA	ASP		92	39.063	66.308	9.517	1.00 12.43	А
	ATOM	510	СВ	ASP		92	37.827	67.155	9.224	1.00 11.83	А
10	ATOM	511	CG	ASP		92	36.555	66.377	9.378	1.00 12.30	A
	ATOM	512		ASP		92	36.335	65.462	8.565	1.00 12.29	A
	ATOM	513		ASP		92	35.791	66.671	10.319	1.00 13.77	A
	ATOM	514	C	ASP		92	40.293	67.168	9.282	1.00 13.77	A
	ATOM	515	0	ASP		92	40.522	68.136	10.005	1.00 12.14	A
15										1.00 12.65	
13	ATOM	516	И	PRO		93	41.115	66.810	8.284		A
	ATOM	517	CD	PRO		93	41.195	65.488	7.637	1.00 12.43	A
	ATOM	518	CA	PRO		93	42.311	67.603	7.988	1.00 12.86	A
	ATOM	519	CB	PRO		93	43.108	66.697	7.052	1.00 12.57	A
20	MOTA	520	CG	PRO		93	42.686	65.311	7.478	1.00 13.74	Α
20	MOTA	521	С	PRO		93	41.823	68.876	7.290	1.00 13.17	A
	ATOM	522	0	PRO		93	42.157	69.139	6.132	1.00 13.70	A
	ATOM	523	N	GLY		94	41.008	69.641	8.010	1.00 12.62	A
	MOTA	524	CA	GLY		94	40.446	70.868	7.481	1.00 11.94	Α
	ATOM	525	С	GLY	Α	94	38.965	70.725	7.160	1.00 12.22	Α
25	MOTA	526	0	GLY	Α	94	38.530	69.697	6.636	1.00 10.48	Α
	ATOM	527	N	TRP	Α	95	38.191	71.751	7.506	1.00 12.07	A
	ATOM	528	CA	TRP	Α	95	36.755	71.808	7.232	1.00 13.08	Α
	ATOM	529	CB	TRP	Α	95	35.964	70.737	7.996	1.00 12.61	А
	ATOM	530	CG	TRP	Α	95	34.480	70.807	7.674	1.00 12.37	A
30	ATOM	531	CD2	TRP	Α	95	33.381	70.521	8.556	1.00 12.36	Α
	ATOM	532	CE2	TRP	Α	95	32.191	70.701	7.812	1.00 11.92	А
	ATOM	533	CE3	TRP		95	33.285	70.128	9.900	1.00 12.35	А
	ATOM	534	CD1			95	33.923	71.138	6.469	1.00 12.10	А
	ATOM	535	NE1	TRP		95	32.551	71.079	6.545	1.00 12.46	А
35	ATOM	536		TRP		95	30.919	70.501	8.366	1.00 12.42	A
	ATOM	537	CZ3	TRP		95	32.015	69.928	10.453	1.00 12.35	A
	ATOM	538	CH2			95	30.853	70.116	9.684	1.00 12.53	A
	ATOM	539	C	TRP		95	36.241	73.191	7.623	1.00 13.99	A
	ATOM	540	0	TRP		95	36.115	74.066	6.770	1.00 13.09	A
40	ATOM	541	N	ILE		96	35.938	73.385		1.00 15.45	A
10	ATOM	542	CA	ILE		96	35.475	74.693	9.365	1.00 16.71	A
	ATOM	543	CB	ILE		96	34.333	74.533	10.399	1.00 18.64	A
	ATOM	544		ILE		96	33.083	74.028	9.719	1.00 18.36	A
									11.576	1.00 18.30	
45	ATOM	545		ILE		96	34.760	73.709			A
40	ATOM	546		ILE		96	33.740	73.664	12.692	1.00 23.56	A
	ATOM	547	С	ILE		96	36.658	75.456	9.955	1.00 16.73	A
	ATOM	548	0	ILE		96	36.567	76.644	10.261	1.00 16.70	A
	ATOM	549	N	GLN		97	37.768	74.741	10.107	1.00 16.15	A
F0	ATOM	550	CA	GLN		97	39.028	75.295	10.585	1.00 16.16	A
50	MOTA	551	CB	GLN		97	39.325	74.865	12.027	1.00 18.11	A
	MOTA	552	CG	GLN		97	38.431	75.503	13.087	1.00 22.05	A
	ATOM	553	CD	GLN		97	38.907	75.206	14.504	1.00 25.07	Α
	ATOM	554		GLN		97	40.041	75.525	14.872	1.00 27.71	Α
	ATOM	555	NE2	GLN	Α	97	38.041	74.592	15.306	1.00 27.57	Α
55	ATOM	556	С	GLN	Α	97	40.069	74.685	9.649	1.00 14.57	Α

						_			70	0 000	1 00 13 33	•
		ATOM	557	0	GLN		97	39.795	73.683	8.988	1.00 13.77	A
		ATOM	558	N	THR	Α	98	41.249	75.283	9.574	1.00 13.40	Α
		ATOM	559	CA	THR	Α	98	42.293	74.742	8.713	1.00 12.50	Α
		ATOM	560	СВ	THR	Α	98	43.402	75.763	8.456	1.00 12.05	Α
	5	ATOM	561	OG1	THR		98	44.038	76.073	9.700	1.00 13.52	Α
	•	ATOM	562	CG2	THR		98	42.841	77.040	7.836	1.00 11.40	Α
		ATOM	563	C	THR		98	42.942	73.551	9.411	1.00 12.44	A
							98	42.713	73.331	10.601	1.00 12.49	A
		ATOM	564	0	THR					8.666	1.00 12.43	A
	10	ATOM	565	N	PHE		99	43.754	72.810			
	10	ATOM	566	CA	PHE		99	44.462	71.665	9.221	1.00 12.23	A
		ATOM	567	CB	PHE		99	45.472	71.120	8.204	1.00 11.49	A
		ATOM	568	CG	PHE		99	46.350	70.017	8.745	1.00 12.06	A
		ATOM	569	CD1	PHE		99	45.941	68.687	8.686	1.00 11.94	A
		ATOM	570		PHE		99	47.589	70.312	9.314	1.00 11.54	Α
	15	MOTA	571	CE1	PHE	Α	99	46.752	67.663	9.182	1.00 12.73	Α
		ATOM	572	CE2	PHE	Α	99	48.408	69.298	9.814	1.00 12.59	A
		MOTA	573	CZ	PHE	Α	99	47.988	67.968	9.747	1.00 12.47	Α
		ATOM	574	С	PHE	Α	99	45.211	72.088	10.486	1.00 12.42	Α
ustra.		ATOM	575	0	PHE	Α	99	45.055	71.479	11.540	1.00 12.95	Α
	20	ATOM	576	N	GLU	Α		46.026	73.134	10.370	² 1.00 13.15	Α
ij.		ATOM	577	CA	GLU			46.818	73.617	11.502	1.00 14.12	Α
		ATOM	578	CB	GLU			47.789	74.708	11.034	1.00 14.54	Α
n.		ATOM	579	CG	GLU			48.842	75.113	12.062	1.00 15.92	А
		ATOM	580	CD	GLU			49.753	73.965	12.474	1.00 17.24	A
n.	25	ATOM	581	OE1	GLU			49.923	73.012	11.680	1.00 16.33	A
14J	23		582	OE2	GLU			50.316	74.028	13.591	1.00 18.05	A
Ŋ.		ATOM			GLU			45.973	74.135	12.666	1.00 14.27	A
155		ATOM	583	С						13.827	1.00 14.27	A
Bį.		ATOM	584	0	GLU			46.330	73.936		1.00 14.13	A
	20	ATOM	585	N	GLU			44.860	74.798	12.364		
, PE	30	MOTA	586	CA	GLU			43.989	75.313	13.420	1.00 14.32	A
"1242". 848 8-		MOTA	587	CB	GLU			42.850	76.150	12.823	1.00 15.58	A
IJ		ATOM	588	CG	GLU			43.314	77.445	12.156	1.00 16.71	A
į.		MOTA	589	CD	GLU			42.163	78.275	11.601	1.00 17.74	A
		ATOM	590	OE1	GLU			41.227	77.690	11.020	1.00 16.12	A
į.d	35	ATOM	591	OE2	GLU			42.205	79.518	11.736	1.00 18.27	A
		ATOM	592	С	GLU	Α	101	43.416	74.144	14.224	1.00 14.11	А
		ATOM	593	0	GLU	Α	101	43.411	74.169	15.456	1.00 13.45	Α
		ATOM	594	N	TYR	Α	102	42.930	73.120	13.526	1.00 13.09	Α
		ATOM	595	CA	TYR	Α	102	42.385	71.947	14.205	1.00 13.59	Α
	40	ATOM	596	СВ	TYR	Α	102	41.819	70.934	13.210	1.00 13.65	Α
		ATOM	597	CG	TYR			40.407	71.173	12.737	1.00 13.71	Α
		ATOM	598	CD1	TYR			39.354	71.343	13.641	1.00 14.39	A
		ATOM	599		TYR			38.030	71.454	13.190	1.00 14.14	A
		ATOM	600		TYR			40.106	71.131	11.376	1.00 13.81	A
	45	ATOM	601		TYR			38.806	71.240	10.921	1.00 13.84	А
	40	ATOM	602	CZ	TYR			37.771	71.399	11.826	1.00 13.69	A
			603	OH	TYR			36.487	71.490	11.343	1.00 13.18	A
		ATOM						43.482	71.490	14.999	1.00 13.10	A
		ATOM	604	C			102					
	ΕO	ATOM	605	0			102	43.258	70.795	16.123	1.00 12.77	A
	50	MOTA	606	N			103	44.663	71.136	14.402	1.00 13.52	A
		ATOM	607	CA			103	45.763	70.471	15.081	1.00 14.48	A
		ATOM	608	CB			103	47.024	70.464	14.217	1.00 13.22	A
		ATOM	609	CG			103	48.189	69.805	14.918	1.00 13.75	A
		ATOM	610		TYR			48.191	68.431	15.163	1.00 13.55	A
	55	MOTA	611	CE1	TYR	Α	103	49.230	67.827	15.867	1.00 13.28	A

		ATOM	612	CD2	TYR	Α	103	49.262	70.561	15.394	1.00	14.16	Α
		ATOM	613	CE2	TYR	Α	103	50.304	69.967	16.101	1.00	14.10	Α
		ATOM	614	CZ	TYR	Α	103	50.281	68.601	16.335	1.00	14.07	А
		MOTA	615	ОН	TYR	Α	103	51.301	68.009	17.045	1.00	14.60	Α
	5	ATOM	616	С	TYR	Α	103	46.083	71.148	16.407	1.00	15.20	Α
		MOTA	617	0	TYR	Α	103	46.206	70.489	17.438	1.00	15.39	A
		ATOM	618	N	GLN	Α	104	46.214	72.468	16.372	1.00	15.88	Α
		ATOM	619	CA	GLN	Α	104	46.546	73.233	17.568	1.00	16.71	Α
		MOTA	620	CB	GLN	A	104	46.905	74.676	17.189	1.00	17.21	А
	10	ATOM	621	CG	GLN	Α	104	48.221	74.831	16.436	1.00	16.37	А
		ATOM	622	CD	GLN	A	104	49.408	74.295	17.221	1.00	17.63	А
		ATOM	623	OE1	GLN	A	104	49.456	74.404	18.449	1.00	17.43	A
		ATOM	624	NE2	GLN	Α	104	50.378	73.722	16.514	1.00	16.09	A
		ATOM	625	С	GLN	Α	104	45.438	73.259	18.610	1.00	17.34	A
	15	ATOM	626	0	GLN	Α	104	45.702	73.153	19.805	1.00	17.27	А
		ATOM	627	N	HIS	Α	105	44.197	73.392	18.157	1.00	17.76	A
		ATOM	628	CA	HIS	Α	105	43.063	73.479	19.068	1.00	18.88	Α
		ATOM	629	CB	HIS	Α	105	41.928	74.271	18.408	1.00	21.57	A
		ATOM	630	CG	HIS	Α	105	42.350	75.595	17.851	1.00	24.72	A
	20	ATOM	631	CD2	HIS	Α	105	43.543	76.237	17.874	1.00	26.28	Α
		ATOM	632	ND1	HIS	A	105	41.486	76.419	17.161	1.00	26.75	A
		ATOM	633	CE1	HIS	Α	105	42.129	77.510	16.783	1.00	27.01	A
		ATOM	634	NE2	HIS	Α	105	43.378	77.424	17.203	1.00	27.01	A
		ATOM	635	С	HIS	Α	105	42.492	72.154	19.563	1.00	18.41	A
	25	ATOM	636	0	HIS	Α	105	42.010	72.076	20.692	1.00	18.04	A
		ATOM	637	N	ASP	Α	106	42.552	71.114	18.733	1.00	16.87	A
		ATOM	638	CA	ASP	Α	106	41.956	69.835	19.108	1.00	16.42	A
		ATOM	639	CB	ASP	Α	106	40.668	69.634	18.301	1.00	16.96	A
		ATOM	640	CG	ASP	Α	106	39.650	70.730	18.541	1.00	18.76	A
	30	ATOM	641	OD1	ASP	Α	106	38.962	70.684	19.579	1.00	19.47	A
		ATOM	642	OD2	ASP	Α	106	39.547	71.644	17.694	1.00	19.48	А
		ATOM	643	С	ASP	Α	106	42.792	68.567	18.978	1.00	15.43	Α
		ATOM	644	0	ASP	Α	106	43.061	67.885	19.965	1.00	15.33	A
*		ATOM	645	N	THR	Α	107	43.192	68.251	17.752	1.00	14.43	A
	35	ATOM	646	CA	THR	Α	107	43.931	67.027	17.470	1.00	13.03	Α
		ATOM	647	CB	THR	Α	107	44.290	66.949	15.982	1.00	13.11	A
		ATOM	648	OG1	THR	Α	107	43.104	67.149	15.203	1.00	11.86	Α
		ATOM	649	CG2	THR	A	107	44.876	65.574	15.648		12.11	Α
		ATOM	650	С	THR	Α	107	45.182	66.709	18.287	1.00	13.20	А
	40	ATOM	651	О	THR	Α	107	45.365	65.565	18.704		12.11	Α.
		ATOM	652	N	LYS	A	108	46.053	67.685	18.515		12.87	Α
		ATOM	653	CA	LYS	A	108	47.254	67.364	19.280	1.00	13.87	Α
		ATOM	654	CB	LYS	Α	108	48.252	68.534	19.277		14.10	А
		MOTA	655	CG	LYS			47.860	69.751	20.090		15.29	A
	45	ATOM	656	CD	LYS	A	108	48.944	70.823	19.971	1.00	15.77	A
		ATOM	657	CE	ĻYS	Α	108	48.719	71.975	20.937	1.00	16.23	А
		ATOM	658	NZ	LYS	A	108	49.829	72.973	20.871	1.00	16.57	Α
		MOTA	659	С	LYS	Α	108	46.891	66.964	20.706	1.00	13.55	A
		MOTA	660	0	LYS	A	108	47.588	66.169	21.330		13.59	A
	50	MOTA	661	N	HIS	Α	109	45.790	67.505	21.213		14.16	Α
		MOTA	662	CA	HIS	A	109	45.343	67.179	22.565	1.00	14.77	Α
		ATOM	663	CB	HIS	A	109	44.353	68.232	23.050	1.00	16.40	A
		ATOM	664	CG	HIS	Α	109	44.924	69.614	23.077	1.00	18.18	Α
		ATOM	665	CD2	HIS	Α	109	44.655	70.706	22.324		18.81	Α
	55	ATOM	666	ND1	HIS	A	109	45.937	69.981	23.939	1.00	19.58	Α

											_
		ATOM	667	CE1	HIS A	109	46.266	71.241	23.714	1.00 19.97	Α
		ATOM	668	NE2	HIS A	109	45.503	71.703	22.739	1.00 20.15	A
		ATOM	669	С	HIS A	109	44.699	65.797	22.571	1.00 14.18	Α
		ATOM	670	Ō	HIS A		44.864	65.024	23.515	1.00 13.72	Α
	5				ILE A		43.967	65.492	21.506	1.00 13.63	A
	3	MOTA	671	N							
		MOTA	672	CA	ILE A		43.319	64.195	21.376	1.00 12.97	A
		ATOM	673	CB	ILE A		42.494	64.121	20.072	1.00 13.70	Α
		ATOM	674	CG2	ILE A	110	42.039	62.686	19.822	1.00 13.17	A
		ATOM	675	CG1	ILE A	110	41.309	65.091	20.158	1.00 13.46	Α
	10	ATOM	676		ILE A		40.505	65.217	18.870	1.00 13.46	Α
		ATOM	677	C	ILE A		44.378	63.096	21.355	1.00 13.01	Α
			678	0	ILE A		44.259	62.088	22.053	1.00 12.30	A
		ATOM						63.295	20.557	1.00 12.30	A
		MOTA	679	N	LEU A		45.419				
	a ==	MOTA	680	CA	LEU A		46.479	62.303	20.455	1.00 13.22	Α
	15	ATOM	681	CB	LEU A	111	47.348	62.584	19.222	1.00 13.48	Α
		ATOM	682	CG	LEU A	111	46.624	62.258	17.910	1.00 13.21	Α
		MOTA	683	CD1	LEU A	111	47.448	62.722	16.714	1.00 12.52	Α
		ATOM	684		LEU A		46.359	60.755	17.848	1.00 13.63	Α
4:005		ATOM	685	C	LEU A		47.338	62.239	21.709	1.00 13.73	Α
	20	ATOM	686	0	LEU A		47.777	61.158	22.113	1.00 14.06	A
ij	20						47.573	63.388	22.332	1.00 14.00	A
ŧΦ		ATOM	687	N	SER A						
1975		MOTA	688	CA	SER A		48.381	63.412	23.545	1.00 14.98	A
Frank After		MOTA	689	CB	SER A		48.673	64.852	23.965	1.00 15.68	Α
f ₄ aaf		MOTA	690	OG	SER A	112	49.509	64.869	25.110	1.00 19.16	Α
enii Cuit	25	MOTA	691	С	SER A	112	47.665	62.675	24.676	1.00 15.17	Α
		MOTA	692	0	SER A	112	48.271	61.878	25.397	1.00 14.77	A
		ATOM	693	N	ASN A		46.371	62.935	24.833	1.00 14.95	А
		ATOM	694	CA	ASN A		45.623	62.269	25.887	1.00 15.42	А
ĒĘ.			695	СВ	ASN A		44.348	63.055	26.202	1.00 16.09	A
House Could House	30	ATOM								1.00 17.13	A
1,5	30	ATOM	696	CG	ASN A		44.661	64.407	26.829		
111		MOTA	697		ASN A		45.649	64.541	27.547	1.00 19.22	A
i		ATOM	698	ND2	ASN A		43.832	65.404	26.566	1.00 16.69	Α
		MOTA	699	С	ASN A	113	45.331	60.805	25.554	1.00 15.52	A
2		ATOM	700	0	ASN A	113	45.154	59.983	26.455	1.00 14.44	A
i.d.	35	MOTA	701	N	ALA A	114	45.306	60.470	24.265	1.00 15.03	Α
		MOTA	702	CA	ALA A		45.081	59.082	23.865	1.00 15.59	A
		ATOM	703	СВ	ALA A		44.906	58.977	22.348	1.00 15.62	Α
		ATOM	704	C	ALA A		46.296	58.272	24.308	1.00 15.90	A
			705					57.181	24.862	1.00 15.90	A
	40	ATOM		0	ALA A		46.160				
	4 0	ATOM	706	N	LEU A		47.487	58.814	24.061	1.00 15.81	A
		ATOM	707	CA	LEU A		48.725	58.142	24.443	1.00 16.69	Α
		MOTA	708	CB	LEU A	115	49.942	58.992	24.044	1.00 17.24	А
		ATOM	709	CG	LEU A	115	51.322	58.478	24.479	1.00 17.48	A
		MOTA	710	CD1	LEU A	115	51.533	57.062	23.962	1.00 17.85	Α
	45	ATOM	711		LEU A		52.412	59.402	23.963	1.00 17.89	А
		ATOM	712	С	LEU A		48.742	57.892	25.952	1.00 17.69	Α
			713				49.020	56.780	26.407	1.00 16.58	A
		ATOM		0	LEU A						
		MOTA	714	N	ARG A		48.426	58.927	26.720	1.00 18.38	A
		ATOM	715	CA	ARG A		48.416	58.816	28.173	1.00 20.26	Α
	50	MOTA	716	CB	ARG A	116	48.148	60.188	28.795	1.00 23.40	Α
		MOTA	717	CG	ARG A	116	49.265	61.185	28.545	1.00 28.54	Α
		ATOM	718	CD	ARG A		48.916	62.579	29.037	1.00 32.84	Α
		ATOM	719	NE	ARG A		50.016	63.516	28.816	1.00 36.19	Α
		ATOM	720	CZ	ARG A		49.955	64.819	29.078	1.00 38.16	Α
	55		721		ARG A		48.842	65.347	29.572	1.00 39.38	A
	55	ATOM	121	NUT	A DILA	110	30.042	00.047	27.312	1.00 37.00	

							51 000	65 504	20 051	1 00 20 25	7.
		ATOM	722		ARG A		51.009	65.594	28.851	1.00 39.35	A
		ATOM	723	С	ARG A		47.386	57.811	28.674	1.00 19.24	A
		ATOM	724	0	ARG A	116	47.713	56.895	29.433	1.00 18.59	Α
		ATOM	725	N	HIS A	117	46.142	57.974	28.240	1.00 18.94	Α
	5	ATOM	726	CA	HIS A	117	45.076	57.087	28.673	1.00 19.08	Α
		ATOM	727	CB	HIS A	117	43.731	57.653	28.237	1.00 20.04	A
		ATOM	728	CG	HIS A	117	43.239	58.738	29.140	1.00 22.31	Α
		ATOM	729		HIS A		43.367	60.084	29.070	1.00 23.10	A
		ATOM	730		HIS A		42.627	58.474	30.347	1.00 22.39	A
	10	ATOM	731		HIS A		42.403	59.610	30.984	1.00 23.51	A
		ATOM	732	NE2	HIS A		42.844	60.603	30.231	1.00 23.78	А
		ATOM	733	C	HIS A		45.208	55.630	28.267	1.00 18.21	А
		ATOM	734	0	HIS A		44.894	54.747	29.060	1.00 17.60	A
			735	N	LEU A		45.667	55.367	27.047	1.00 17.82	A
	15	ATOM						53.986	26.608	1.00 17.73	A
	13	ATOM	736	CA	LEU A		45.841	53.924	25.097	1.00 17.73	A
		ATOM	737	CB	LEU A		46.097				A
		ATOM	738	CG	LEU A		44.910	54.378	24.234	1.00 17.44	A
		ATOM	739		LEU A		45.295	54.362	22.762	1.00 17.28	
100	00	ATOM	740		LEU A		43.719	53.466	24.485	1.00 17.73	A
- 100 1100	20	MOTA	741	С	LEU A		47.014	53.375	27.368	1.00 18.47	A
		ATOM	742	0	LEU A		46.991	52.201	27.739	1.00 19.15	A
9,54 ² .		MOTA	743	N	HIS A		48.049	54.176	27.594	1.00 18.56	A
171		ATOM	744	CA	HIS A		49.212	53.702	28.324	1.00 19.21	Α
13		MOTA	745	CB	HIS A	119	50.264	54.817	28.413	1.00 20.87	A
	25	MOTA	746	CG	HIS A	119	51.429	54.483	29.292	1.00 23.01	Α
		ATOM	747	CD2	HIS A	119	52.607	53.873	29.019	1.00 24.14	A
(A		ATOM	748	ND1	HIS A	119	51.442	54.752	30.644	1.00 24.46	Α
		ATOM	749	CE1	HIS A	119	52.578	54.323	31.166	1.00 24.96	Α
fi arm		ATOM	750	NE2	HIS A	119	53.303	53.785	30.201	1.00 24.88	A
	30	ATOM	751	С	HIS A	119	48.795	53.248	29.725	1.00 19.46	Α
٩,۵		ATOM	752	0	HIS A		49.180	52.169	30.175	1.00 19.45	Α
rij		ATOM	753	N	ASP A		47.981	54.063	30.392	1.00 18.91	Α
i		ATOM	754	CA	ASP A		47.524	53.772	31.751	1.00 19.04	Α
		ATOM	755	СВ	ASP A		47.142	55.071	32.464	1.00 18.77	Α
	35	ATOM	756	CG	ASP A		48.325	55.994	32.666	1.00 19.47	Α
#		ATOM	757		ASP A		49.473	55.504	32.675	1.00 18.88	A
		ATOM	758		ASP A		48.102	57.212	32.830	1.00 21.58	А
		ATOM	759	С	ASP A		46.366	52.783	31.899	1.00 19.15	Α
		ATOM	760	0	ASP A		46.121	52.286	32.998	1.00 18.84	А
	40	ATOM	761	N	ASN A		45.655	52.504	30.809		Α
	10	ATOM	762	CA	ASN A		44.523	51.576	30.850	1.00 19.16	A
		ATOM	763	CB	ASN A		43.209	52.344	30.659	1.00 18.77	А
		ATOM	764	CG	ASN A		43.200	53.421	31.719	1.00 19.68	A
			765		ASN A		43.437	54.567	31.560	1.00 19.47	A
	45	ATOM	766		ASN A		42.343	53.052	32.812	1.00 17.58	A
	45	ATOM					44.681	50.515	29.761	1.00 17.30	A
		ATOM	767	C	ASN A			50.629	28.676	1.00 19.59	A
		ATOM	768	0	ASN A		44.107				
		ATOM	769	N	PRO A		45.452	49.452	30.052	1.00 20.58	A
	-0	MOTA	770	CD	PRO A		45.971	49.147	31.397	1.00 21.14	A
	50	MOTA	771	CA	PRO A		45.731	48.345	29.130	1.00 20.26	A
		ATOM	772	CB	PRO A		46.423	47.310	30.026	1.00 21.39	A
		ATOM	773	CG	PRO A		45.933	47.649	31.409	1.00 22.22	A
		ATOM	774	С	PRO A		44.581	47.752	28.314	1.00 20.19	A
		MOTA	775	0	PRO A		44.802	47.304	27.188	1.00 19.85	Α
	55	ATOM	776	N	GLU A	123	43.365	47.751	28.858	1.00 19.32	Α

		ATOM	777	CA	GLU	Α	123	42.224	47.190	28.133	1.00 19.92	Α
		ATOM	778	CB	GLU	Α	123	41.204	46.586	29.101	1.00 21.89	Α
		ATOM	779	CG	GLU	Α	123	41.481	45.143	29.478	1.00 26.85	Α
		ATOM	780	CD	GLU	Α	123	42.679	44.995	30.383	1.00 29.19	Α
	5	ATOM	781	OE1	GLU	Α	123	42.681	45.630	31.459	1.00 31.66	Α
		ATOM	782	OE2	GLU	Α	123	43.612	44.244	30.022	1.00 32.08	Α
		ATOM	783	С	GLU			41.504	48.168	27.213	1.00 18.82	Α
		ATOM	784	0	GLU			40.677	47.759	26.396	1.00 18.51	Α
		ATOM	785	N	MET			41.799	49.456	27.350	1.00 17.76	А
	10	ATOM	786	CA	MET			41.165	50.462	26.505	1.00 17.02	Α
		ATOM	787	СВ	MET			41.418	51.861	27.068	1.00 17.84	Α
		ATOM	788	CG	MET			40.641	52.961	26.357	1.00 17.84	Α
		ATOM	789	SD	MET			38.862	52.633	26.331	1.00 18.84	Α
		ATOM	790	CE	MET			38.252	54.142	25.567	1.00 17.66	Α
	15	ATOM	791	С	MET			41.744	50.351	25.092	1.00 16.66	Α
		ATOM	792	0	MET			42.921	50.022	24.922	1.00 15.61	Α
		ATOM	793	N	LYS			40.913	50.622	24.089	1.00 15.94	A
		ATOM	794	CA	LYS			41.328	50.543	22.691	1.00 15.72	Α
4975		ATOM	795	СВ	LYS			40.633	49.355	22.018	1.00 17.14	Α
	20	ATOM	796	CG	LYS			40.955	48.002	22.649	1.00 19.31	A
		ATOM	797	CD	LYS			42.349	47.527	22.274	1.00 20.94	Α
1,4		ATOM	798	CE	LYS			42.741	46.260	23.032	1.00 22.65	Α
		ATOM	799	NZ	LYS			41.809	45.126	22.787	1.00 22.71	Α
		ATOM	800	C	LYS			40.984	51.839	21.952	1.00 14.98	A
ii.j	25	ATOM	801	0	LYS			40.178	52.641	22.430	1.00 14.40	A
		ATOM	802	N	PHE			41.576	52.039	20.778	1.00 13.76	A
		ATOM	803	CA	PHE			41.328	53.263	20.017	1.00 12.78	А
		ATOM	804	СВ	PHE			42.085	54.418	20.695	1.00 12.49	A
2; 2;255.		ATOM	805	CG	PHE			41.714	55.796	20.199	1.00 12.62	А
	30	ATOM	806		PHE			40.391	56.230	20.210	1.00 12.40	Α
۱,D		ATOM	807		PHE			42.706	56.687	19.794	1.00 12.56	Α
ii.		ATOM	808		PHE			40.061	57.533	19.831	1.00 12.41	A
j.a.		ATOM	809		PHE			42.390	57.993	19.411	1.00 13.74	A
		ATOM	810	CZ	PHE			41.063	58.418	19.431	1.00 12.79	Α
į.	35	ATOM	811	С	PHE			41.825	53.079	18.582	1.00 12.52	Α
-		ATOM	812	0	PHE			42.898	52.523	18.365	1.00 12.34	Α
		ATOM	813	N	ILE			41.043	53.525	17.603	1.00 12.50	Α
		ATOM	814	CA	ILE			41.472	53.415	16.212	1.00 12.28	Α
		ATOM	815	СВ	ILE			40.427	52.685	15.341	1.00 12.64	Α
	40	ATOM	816		ILE	Α	127	40.257	51.258	15.844	1.00 13.41	Α
		ATOM	817		ILE			39.090	53.432	15.366	1.00 12.14	Α
		ATOM	818		ILE			38.065	52.865	14.402	1.00 11.36	Α
		ATOM	819	С	ILE			41.735	54.806	15.640	1.00 12.00	Α
		ATOM	820	0	ILE			41.066	55.777	16.016	1.00 12.38	Α
	45	ATOM	821	N	TRP			42.720	54.905	14.749	1.00 11.18	Α
		ATOM	822	CA	TRP			43.067	56.187	14.137	1.00 10.75	Α
		ATOM	823	СВ	TRP			44.379	56.714	14.713	1.00 10.60	Α
		ATOM	824	CG	TRP			44.614	58.143	14.353	1.00 11.47	A
		ATOM	825		TRP			44.052	59.285	15.004	1.00 11.70	Α
	50	ATOM	826		TRP			44.492	60.427	14.298	1.00 11.23	Α
	•	ATOM	827		TRP			43.214	59.455	16.117	1.00 11.54	A
		ATOM	828		TRP			45.353	58.620	13.307	1.00 12.07	Α
		ATOM	829		TRP			45.285	59.995	13.268	1.00 11.96	Α
		ATOM	830		TRP			44.122	61.726	14.670	1.00 11.49	А
	55	ATOM	831		TRP			42.847	60.747	16.484	1.00 11.63	Α

		ATOM	832	CH2	TRP A	128	43.302	61.865	15.761	1.00 11.38	А
		ATOM	833	С	TRP A	128	43.180	56.072	12.618	1.00 10.84	Α
		ATOM	834	0	TRP A	128	43.820	55.157	12.102	1.00 9.94	Α
		ATOM	835	N	ALA A		42.582	57.024	11.904	1.00 10.82	A
	5				ALA A		42.584	56.974	10.442	1.00 10.83	A
	5	ATOM	836	CA							
		ATOM	837	CB	ALA A		41.146	57.062	9.939	1.00 10.81	A
		ATOM	838	С	ALA A		43.439	57.982	9.675	1.00 11.28	A
		ATOM	839	0	ALA A	129	44.077	57.620	8.690	1.00 12.05	А
		ATOM	840	N	GLU A	130	43.450	59.234	10.122	1.00 11.63	Α
	10	ATOM	841	CA	GLU A	130	44.178	60.298	9.426	1.00 11.80	Α
	-	ATOM	842	СВ	GLU A		43.488	61.640	9.687	1.00 13.00	А
		ATOM	843	CG	GLU A		41.996	61.654	9.375	1.00 13.47	A
			844	CD	GLU A		41.150	61.054	10.488	1.00 14.76	A
		ATOM							11.564	1.00 13.75	A
	15	ATOM	845	OE1	GLU A		41.706	60.745			
	15	MOTA	846		GLU A		39.925	60.903	10.289	1.00 14.95	A
		ATOM	847	С	GLU A	130	45.663	60.422	9.756	1.00 12.54	Α
		ATOM	848	0	GLU A	130	46.044	61.043	10.751	1.00 11.25	Α
		ATOM	849	N	ILE A	131	46.507	59.871	8.889	1.00 12.10	Α
2 :000		ATOM	850	CA	ILE A	131	47.943	59.908	9.125	1.00 12.15	А
	20	MOTA	851	СВ	ILE A		48.672	58.902	8.205	1.00 12.97	А
٩,Ō		ATOM	852		ILE A		50.158	58.847	8.544	1.00 13.74	А
		ATOM	853		ILE A		48.058	57.509	8.395	1.00 12.19	A
1,57									9.859	1.00 12.13	A
1,8 B		ATOM	854		ILE A		47.933	57.084			
	25	MOTA	855	С	ILE A		48.564	61.303	9.002	1.00 12.69	A
M	25	ATOM	856	0	ILE A		49.597	61.571	9.622	1.00 12.44	А
		MOTA	857	N	SER A	132	47.944	62.192	8.226	1.00 11.77	A
M		MOTA	858	CA	SER A	132	48.462	63.553	8.087	1.00 12.31	А
		ATOM	859	CB	SER A	132	47.519	64.417	7.231	1.00 12.20	A
₹1 :•0≠		ATOM	860	OG	SER A	132	46.188	64.405	7.729	1.00 12.12	Α
	30	ATOM	861	С	SER A		48.606	64.161	9.485	1.00 12.41	А
ij		MOTA	862	Ö	SER A		49.629	64.772	9.809	1.00 11.98	А
IÙ		ATOM	863	N	TYR A		47.578	63.979	10.310	1.00 12.31	A
f.										1.00 12.31	A
237000		ATOM	864	CA	TYR A		47.588	64.481	11.682		
	25	ATOM	865	CB	TYR A		46.191	64.393	12.299	1.00 12.01	A
j.d	35	ATOM	866	CG	TYR A		45.288	65.569	12.000	1.00 11.67	A
		ATOM	867	CD1	TYR A		44.018	65.373	11.464	1.00 11.27	A
		ATOM	868	CE1	TYR A	133	43.172	66.448	11.205	1.00 11.78	Α
		ATOM	869	CD2	TYR A	133	45.699	66.875	12.274	1.00 11.66	Α
		ATOM	870	CE2	TYR A	133	44.864	67.959	12.022	1.00 12.29	Α
	40	ATOM	871	CZ	TYR A	133	43.603	67.738	11.488	1.00 12.81	Α
		ATOM	872	ОН	TYR A		42.772	68.809	11.248	1.00 13.96	А
		ATOM	873	C	TYR A		48.553	63.689	12.564		A
			874		TYR A		49.314	64.275	13.339	1.00 13.12	A
		ATOM		0						1.00 13.12	
	4 =	ATOM	875	N	PHE A		48.526	62.363	12.449		A
	45	MOTA	876	CA	PHE A		49.397	61.539	13.282	1.00 13.09	A
		ATOM	877	CB	PHE A		49.144	60.048	13.053	1.00 12.74	A
		ATOM	878	CG	PHE A	134	49.661	59.181	14.168	1.00 12.47	А
		ATOM	879	CD1	PHE A	134	48.915	59.008	15.332	1.00 12.84	Α
		ATOM	880	CD2	PHE A	134	50.921	58.600	14.090	1.00 12.46	А
	50	ATOM	881		PHE A		49.420	58.273	16.405	1.00 12.65	А
		ATOM	882		PHE A		51.437	57.864	15.155	1.00 12.74	A
			883	CZ	PHE A		50.684	57.702	16.318	1.00 12.74	A
		ATOM							13.055	1.00 12.03	A
		ATOM	884	С	PHE A		50.874	61.829			
		ATOM	885	0	PHE A		51.655	61.896	14.009	1.00 13.54	A
	55	ATOM	886	N	ALA A	135	51.261	61.990	11.793	1.00 14.28	A

	ATOM	887	CA	ALA	Α	135	52.653	62.271	11.466	1.00 15.41	А
	ATOM	888	СВ	ALA			52.841	62.273	9.955	1.00 14.73	А
	ATOM	889	C	ALA			53.065	63.619	12.062	1.00 16.07	
	ATOM	890	Ö	ALA			54.161	63.756	12.607	1.00 17.46	А
5	ATOM	891	N	ARG			52.178	64.604	11.954	1.00 15.92	
•	ATOM	892	CA			136	52.413	65.947	12.487	1.00 17.41	
	ATOM	893	CB	ARG			51.188	66.829	12.215	1.00 18.09	
	ATOM	894	CG	ARG			51.225	68.223	12.856	1.00 19.04	A
	ATOM	895	CD	ARG			51.950	69.249	11.986	1.00 20.59	
10	ATOM	896	NE	ARG			51.870	70.596	12.557	1.00 20.53	
10	ATOM	897	CZ	ARG			52.504	70.967	13.665	1.00 21.02	
	ATOM	898		ARG			53.268	70.094	14.309	1.00 21.09	
	ATOM	899		ARG			52.366	72.199	14.138	1.00 20.47	
	ATOM	900	C	ARG			52.659	65.866	13.997	1.00 20.47	A
15		901	0	ARG			53.552	66.521	14.536	1.00 17.71	
13	ATOM								14.556	1.00 17.71	
	ATOM	902	N	PHE			51.856	65.045			A
	ATOM	903	CA	PHE			51.948	64.856	16.109	1.00 16.04	
	ATOM	904	CB	PHE			50.730	64.065	16.589	1.00 16.01	A
20	MOTA	905	CG	PHE			50.711	63.815	18.066	1.00 16.01	
20	MOTA	906		PHE			50.393	64.839	18.952	1.00 16.16	
	MOTA	907		PHE			51.009	62.553	18.572	1.00 16.49	
	MOTA	908		PHE			50.370	64.611	20.323	1.00 16.36	
	MOTA	909		PHE			50.989	62.316	19.947	1.00 16.39	
05	MOTA	910	CZ	PHE			50.667	63.349	20.821	1.00 16.41	
25	MOTA	911	С	PHE			53.218	64.115	16.518	1.00 16.50	
	ATOM	912	0	PHE			54.012	64.600	17.329	1.00 15.50	
	MOTA	913	N	TYR			53.398	62.930	15.944	1.00 16.96	
	ATOM	914	CA	TYR			54.544	62.084	16.243	1.00 19.17	
20	MOTA	915	CB	TYR			54.547	60.866	15.323	1.00 18.81	A
30	MOTA	916	CG	TYR			55.577	59.830	15.706	1.00 19.98	
	ATOM	917	CD1	TYR			55.330	58.927	16.736	1.00 20.01	
	MOTA	918	CE1	TYR			56.272	57.965	17.093	1.00 21.20	
	MOTA	919	CD2	TYR			56.801	59.751	15.040	1.00 19.71	
0.5	MOTA	920	CE2	TYR			57.752	58.791	15.390	1.00 20.51	
35	MOTA	921	CZ	TYR			57.477	57.902	16.414	1.00 20.46	
	MOTA	922	ОН	TYR			58.393	56.934	16.753	1.00 21.98	
	MOTA	923	С	TYR			55.895	62.788	16.137	1.00 20.16	
	MOTA	924	0	TYR			56.737	62.662	17.030	1.00 19.95	
	ATOM	925	N	HIS			56.116	63.516	15.047	1.00 21.15	
40	ATOM	926	CA	HIS			57.391		14.870	1.00 23.05	
	ATOM	927	CB	HIS			57.491	64.788	13.459	1.00 23.52	
	MOTA	928	CG	HIS	Α	139	57.664	63.749	12.394	1.00 25.29	
	MOTA	929	CD2	HIS	Α	139	56.872	63.396	11.353	1.00 25.23	
	MOTA	930	ND1	HIS	A	139	58.766	62.922	12.333	1.00 26.05	
45	MOTA	931	CE1	HIS	Α	139	58.645	62.106	11.301	1.00 26.57	
	ATOM	932	NE2	HIS	Α	139	57.505	62.373	10.690	1.00 25.58	
	ATOM	933	С	HIS	Α	139	57.628	65.297	15.910	1.00 23.20	А
	ATOM	934	0	HIS	Α	139	58.763	65.722	16.121	1.00 23.77	
	MOTA	935	N	ASP	Α	140	56.559	65.743	16.560	1.00 23.11	A
50	ATOM	936	CA	ASP			56.663	66.772	17.590	1.00 23.35	
	MOTA	937	CB	ASP	Α	140	55.405	67.644	17.591	1.00 24.33	А
	ATOM	938	CG	ASP	Α	140	55.514	68.827	16.646	1.00 26.10	А
	ATOM	939		ASP			56.367	68.786	15.734	1.00 26.58	А
	ATOM	940		ASP			54.742	69.796	16.812	1.00 26.82	А
55	ATOM	941	С	ASP			56.879	66.164	18.980	1.00 22.72	А

											-
		ATOM	942	0	ASP A		57.232	66.868	19.925	1.00 22.14	A
		ATOM	943	N	LEU A	141	56.674	64.855	19.094	1.00 21.94	Α
		ATOM	944	CA	LEU A	141	56.850	64.155	20.366	1.00 22.28	Α
		ATOM	945	CB	LEU A	141	56.191	62.774	20.322	1.00 22.07	Α
	5	ATOM	946	CG	LEU A	141	54.673	62.622	20.389	1.00 22.20	Α
		ATOM	947	CD1	LEU A	141	54.324	61.135	20.279	1.00 21.62	Α
		ATOM	948	CD2	LEU A	141	54.144	63.195	21.695	1.00 21.60	Α
		ATOM	949	С	LEU A		58.308	63.959	20.747	1.00 22.47	А
		ATOM	950	Ō	LEU A		59.178	63.846	19.886	1.00 21.96	А
	10	ATOM	951	N	GLY A		58.567	63.916	22.050	1.00 23.34	А
	10	ATOM	952	CA	GLY A		59.918	63.687	22.524	1.00 24.09	A
		ATOM	953	C	GLY A		60.200	62.205	22.356	1.00 24.71	A
		ATOM	954	0	GLY A		59.268	61.410	22.220	1.00 24.43	A
			955		GLU A		61.473	61.826	22.371	1.00 25.38	A
	15	ATOM		N				60.432	22.196	1.00 26.27	A
	13	ATOM	956	CA	GLU A		61.861	60.432	22.130	1.00 20.27	A
		ATOM	957	CB	GLU A		63.379			1.00 27.38	A
		ATOM	958	CG	GLU A		63.922	58.940	21.884	1.00 29.88	
		ATOM	959	CD	GLU A		63.538	58.590	20.455		A
(2	20	ATOM	960		GLU A		63.736	59.433	19.555	1.00 33.17	A
	20	ATOM	961		GLU A		63.042	57.467	20.230	1.00 32.74	A
		ATOM	962	С	GLU A		61.170	59.477	23.166	1.00 26.12	A
i jegi ji garg		ATOM	963	0	GLU A		60.738	58.394	22.772	1.00 25.94	A
9,3 B		ATOM	964	N	ASN A		61.067	59.871	24.430	1.00 26.24	A
		ATOM	965	CA	ASN A		60.421	59.028	25.431	1.00 26.68	А
Hand H	25	ATOM	966	CB	ASN A	144	60.460	59.713	26.806	1.00 28.10	А
ı.		ATOM	967	CG	ASN A	144	59.674	58.953	27.866	1.00 30.54	А
		ATOM	968	OD1	ASN A	144	58.439	58.938	27.854	1.00 31.68	А
ā1		ATOM	969	ND2	ASN A	144	60.390	58.316	28.791	1.00 31.00	Α
g:===		ATOM	970	С	ASN A	144	58.977	58.725	25.031	1.00 25.49	А
	30	ATOM	971	0	ASN A	144	58.539	57.575	25.089	1.00 25.02	Α
1,4		ATOM	972	N	LYS A	145	58.249	59.757	24.613	1.00 24.88	Α
		ATOM	973	CA	LYS A	145	56.855	59.595	24.205	1.00 24.21	A
į.4.		ATOM	974	CB	LYS A	145	56.180	60.964	24.072	1.00 24.66	Α
		ATOM	975	CG	LYS A	145	55.898	61.642	25.410	1.00 26.34	A
1.4	35	ATOM	976	CD	LYS A		54.937	60.805	26.245	1.00 27.93	A
-		ATOM	977	CE	LYS A		54.660	61.433	27.608	1.00 29.60	A
		ATOM	978	NZ	LYS A		55.876	61.471	28.469	1.00 31.08	Α
		ATOM	979	С	LYS A		56.705	58.804	22.907	1.00 23.37	A
		ATOM	980	0	LYS A		55.740	58.055	22.745	1.00 22.99	Α
	40	ATOM	981	N	LYS A		57.648			1.00 22.74	Α
	10	ATOM	982	CA	LYS A		57.594	58.226	20.724	1.00 21.93	А
		ATOM	983	СВ	LYS A		58.764	58.599	19.804	1.00 22.03	А
		ATOM	984	CG	LYS A		58.632	59.956	19.126	1.00 22.74	A
		ATOM	985	CD	LYS A		59.765	60.194	18.136	1.00 23.91	A
	45	ATOM	986	CE	LYS A		59.607	61.537	17.437	1.00 24.86	A
	43	ATOM	987	NZ	LYS A		60.724	61.791	16.495	1.00 26.86	A
							57.652	56.735	21.034	1.00 20.30	A
		ATOM	988 989	С	LYS A		56.973	55.935	20.396	1.00 21.31	A
		ATOM		0	LYS A					1.00 20.71	
	E0	ATOM	990	N	LEU A		58.466	56.371	22.022		A n
	50	ATOM	991	CA	LEU A		58.612	54.978	22.427	1.00 20.24	A
		ATOM	992	CB	LEU A		59.790	54.829	23.396	1.00 21.06	A
		ATOM	993	CG	LEU A		61.170	55.069	22.769	1.00 21.23	A
		ATOM	994		LEU A		62.262	54.965	23.827	1.00 22.02	A
		ATOM	995		LEU A		61.405	54.044	21.668	1.00 22.53	A
	55	ATOM	996	С	LEU A	147	57.325	54.455	23.067	1.00 20.09	A

				_		_		5 5 5 5 5 7		00 706	1 00 10 00	_
		ATOM	997	0	LEU			56.907	53.330	22.796	1.00 19.03	A
		MOTA	998	N	GLN			56.699	55.260	23.920	1.00 20.05	Α
		ATOM	999	CA	GLN	Α	148	55.448	54.839	24.541	1.00 20.20	Α
		ATOM	1000	СВ	GLN	Α	148	54.951	55.874	25.553	1.00 21.98	Α
	5	ATOM	1001	CG	GLN	Α	148	55.697	55.876	26.873	1.00 26.14	Α
		ATOM	1002	CD	GLN	Α	148	55.039	56.771	27.910	1.00 28.69	Α
		ATOM	1003	OE1	GLN			55.477	56.830	29.061	1.00 30.91	А
		ATOM	1004		GLN			53.980	57.472	27.507	1.00 28.81	Α
		ATOM	1005	C	GLN			54.387	54.657	23.459	1.00 18.95	A
	10	ATOM	1006	Ö	GLN			53.566	53.743	23.527	1.00 18.96	A
	10	ATOM	1007	N	MET			54.410	55.533	22.462	1.00 17.60	A
		ATOM	1007	CA	MET			53.440	55.462	21.376	1.00 16.91	A
		ATOM	1000	CB	MET			53.563	56.690	20.471	1.00 10.31	A
										19.344		A
	15	MOTA	1010	CG	MET			52.539	56.743		1.00 17.23	
	15	ATOM	1011	SD	MET			50.830	56.820	19.927	1.00 19.29	A
		ATOM	1012	CE	MET			50.590	58.587	20.083	1.00 18.52	A
		ATOM	1013	C	MET			53.641	54.190	20.558	1.00 16.89	A
		ATOM	1014	0	MET			52.680	53.502	20.226	1.00 14.92	A
å :===	20	ATOM	1015	N	LYS			54.892	53.872	20.239	1.00 17.09	Α
	20	MOTA	1016	CA	LYS			55.171	52.675	19.458	1.00 18.24	Α
1 (test) 1745		ATOM	1017	CB	LYS			56.660	52.593	19.106	1.00 19.09	A
1,00		MOTA	1018	CG	LYS			57.130	53.715	18.192	1.00 22.02	A
		MOTA	1019	CD	LYS			58.638	53.704	17.997	1.00 24.66	Α
		ATOM	1020	CE	LYS	Α	150	59.093	52.476	17.234	1.00 26.81	Α
II.	25	ATOM	1021	NZ	LYS	Α	150	60.558	52.520	16.961	1.00 29.58	Α
141		MOTA	1022	С	LYS	Α	150	54.745	51.422	20.209	1.00 18.20	A
M		ATOM	1023	0	LYS	Α	150	54.317	50.446	19.597	1.00 18.07	A
		ATOM	1024	N	SER	Α	151	54.843	51.455	21.536	1.00 18.74	А
ei ed ea		ATOM	1025	CA	SER	Α	151	54.474	50.295	22.339	1.00 19.47	A
	30	ATOM	1026	CB	SER	Α	151	55.005	50.440	23.770	1.00 21.09	A
ŧ,□		MOTA	1027	OG	SER			54.283	51.425	24.481	1.00 24.31	A
IV.		ATOM	1028	С	SER			52.968	50.029	22.371	1.00 19.31	А
h ±.		MOTA	1029	0	SER			52.547	48.875	22.278	1.00 18.16	A
		ATOM	1030	N	ILE			52.150	51.073	22.499	1.00 18.86	Α
	35	ATOM	1031	CA	ILE			50.710	50.848	22.526	1.00 18.53	А
Ē		ATOM	1032	СВ	ILE			49.926	52.069	23.075	1.00 18.94	A
		ATOM	1033		ILE			50.259	52.272	24.547	1.00 19.11	A
		ATOM	1034		ILE			50.243	53.328	22.272	1.00 18.05	A
		ATOM	1035		ILE			49.361	54.503	22.647	1.00 19.59	A
	40	ATOM	1036					50.176			1.00 18.93	A
	10	ATOM	1037	0	ILE			49.071	49.940	21.026	1.00 18.92	A
		ATOM	1038	N	VAL			50.962	50.720	20.105		A
		ATOM	1030	CA	VAL			50.561	50.720	18.752	1.00 19.06	A
		ATOM	1039	CB	VAL			51.279	51.193	17.683	1.00 19.00	A
	45									16.295	1.00 19.20	
	40	ATOM	1041		VAL			51.069	50.589 52.617		1.00 18.93	A
		ATOM	1042		VAL			50.745		17.716		A
		ATOM	1043	С	VAL			50.959	48.878	18.580	1.00 19.85	A
		MOTA	1044	0	VAL			50.177	48.053	18.108	1.00 18.89	A
	FO	MOTA	1045	N	LYS			52.183	48.564	18.993	1.00 20.46	A
	50	ATOM	1046	CA	LYS			52.696	47.205	18.893	1.00 22.15	A
		ATOM	1047	CB	LYS			54.143	47.155	19.397	1.00 23.38	A
		ATOM	1048	CG	LYS			54.885	45.877	19.026	1.00 26.39	A
		MOTA	1049	CD	LYS			56.375	45.976	19.337	1.00 28.38	Α
		ATOM	1050	CE	LYS			56.662	45.794	20.822	1.00 30.74	А
	55	MOTA	1051	NZ	LYS	Α	154	55.974	46.793	21.694	1.00 32.22	Α

	ATOM	1052	С	LYS A	154	51.836	46.218	19.685	1.00 22.01	Α
	ATOM	1053	0	LYS A		51.608	45.090	19.236	1.00 22.53	Α
	ATOM	1054	N	ASN A		51.349	46.642	20.852	1.00 21.36	Α
	ATOM	1055	CA	ASN A		50.529	45.771	21.691	1.00 21.36	Α
5	ATOM	1056	СВ	ASN A		50.643	46.174	23.172	1.00 22.78	Α
	ATOM	1057	CG	ASN A		49.845	47.425	23.515	1.00 23.55	Α
	ATOM	1058		ASN A		49.106	47.954	22.687	1.00 24.96	Α
	ATOM	1059		ASN A		49.987	47.898	24.753	1.00 22.79	Α
	ATOM	1060	С	ASN A		49.054	45.709	21.285	1.00 20.96	Α
10	ATOM	1061	0	ASN A		48.271	44.991	21.899	1.00 20.84	Α
20	ATOM	1062	N	GLY A		48.672	46.476	20.267	1.00 20.22	Α
	ATOM	1063	CA	GLY A		47.298	46.431	19.790	1.00 19.12	Α
	ATOM	1064	C	GLY A		46.256	47.367	20.378	1.00 18.60	Α
	ATOM	1065	Ö	GLY A		45.082	47.270	20.011	1.00 18.18	А
15	ATOM	1066	N	GLN A		46.652	48.266	21.276	1.00 17.29	Α
10	ATOM	1067	CA	GLN A		45.689	49.195	21.871	1.00 16.05	A
	ATOM	1068	СВ	GLN A		46.242	49.809	23.150	1.00 16.21	Α
	ATOM	1069	CG	GLN A		46.297	48.867	24.333	1.00 16.29	A
	ATOM	1070	CD	GLN A		46.569	49.621	25.612	1.00 16.60	A
20	ATOM	1070	OE1	GLN A		45.672	50.249	26.178	1.00 18.00	A
20	ATOM	1071	NE2	GLN A		47.813	49.591	26.060	1.00 15.39	A
	ATOM	1072	C	GLN A		45.305	50.320	20.917	1.00 15.53	A
	ATOM	1073	0	GLN A		44.142	50.700	20.832	1.00 15.19	A
	ATOM	1074	N	LEU A		46.298	50.881	20.235	1.00 14.97	A
25	ATOM	1075	CA	LEU A		46.048	51.937	19.265	1.00 15.35	A
25		1076	CB	LEU A		47.045	53.089	19.439	1.00 16.96	A
	ATOM ATOM	1077	CG	LEU A		46.943	54.280	18.473	1.00 19.11	A
	ATOM	1078		LEU A		47.454	53.891	17.096	1.00 21.08	A
		1079	CD1	LEU A		45.509	54.763	18.388	1.00 20.07	A
30	ATOM ATOM	1080	CDZ	LEU A		46.229	51.276	17.907	1.00 14.83	A
30	ATOM	1081		LEU A		47.308	50.773	17.594	1.00 13.42	A
			O N	GLU A		47.300	51.273	17.107	1.00 13.42	A
	ATOM	1083	N	GLU A		45.227	50.636	15.802	1.00 13.04	A
	ATOM	1084	CA CB	GLU A		44.271	49.442	15.771	1.00 13.44	A
35	ATOM	1085	CG	GLU A		44.212	48.714	14.436	1.00 13.44	A
33	ATOM	1086 1087	CD	GLU A		43.265	47.531	14.476	1.00 12.56	A
	ATOM	1087	OE1	GLU A		43.203	46.533	15.152	1.00 13.30	A
	ATOM		OE2	GLU A		42.190	47.603	13.841	1.00 13.05	A
	ATOM	1089 1090	C C	GLU A		44.888	51.594	14.671	1.00 13.03	A
40	ATOM	1090	_			43.910	52.333	14.739	1.00 12.04	A
40	ATOM		O N	GLU A PHE A		45.709	51.578	13.632	1.00 12.70	A
	ATOM	1092	N CA			45.467	52.437	12.491	1.00 12.42	A
	ATOM	1093	CA	PHE A		46.782	52.437	11.807	1.00 12.20	A
	ATOM	1094	CB	PHE A		47.712	53.586	12.689	1.00 12.41	A
45	ATOM	1095	CG	PHE A		47.712	52.951	13.354	1.00 12.41	A
45	ATOM	1096		PHE A			54.947	12.897	1.00 12.02	A
	MOTA	1097		PHE A		47.512	53.661	14.216	1.00 12.79	A
	ATOM	1098		PHE A		49.589				
	ATOM	1099		PHE A		48.339	55.666	13.760	1.00 13.12 1.00 12.71	A A
EO	ATOM	1100	CZ	PHE A		49.375	55.020	14.418	1.00 12.71	A A
50	ATOM	1101	C	PHE A		44.546	51.734	11.515		A
	ATOM	1102	0	PHE A		44.719	50.549	11.216	1.00 11.96	A
	ATOM	1103	N	VAL A		43.546	52.470	11.047	1.00 12.03	A
	ATOM	1104	CA	VAL A		42.592	51.945	10.087	1.00 11.93	A
	ATOM	1105	CB	VAL A		41.139	52.092	10.605	1.00 11.85	A
55	ATOM	1106	CG1	VAL A	161	40.918	51.135	11.778	1.00 11.73	A

		ATOM	1107	CG2	VAL	A	161	40.874	. 5	3.526	11.059	1.00	11.37	Α
		ATOM	1108	С	VAL			42.807	5	2.720	8.792	1.00	12.32	Α
		ATOM	1109	0	VAL	Α	161	42.890	5	3.953	8.802	1.00	12.53	Α
		ATOM	1110	N	THR	Α	162	42.913	5	1.977	7.690	1.00	12.37	Α
	5	ATOM	1111	CA	THR			43.179	5	2.519	6.358	1.00	12.07	Α
		ATOM	1112	СВ	THR			42.266	5 5	3.716	5.990	1.00	11.93	Α
		ATOM	1113	OG1	THR			40.893	5	3.308	6.020	1.00	11.88	Α
		ATOM	1114	CG2	THR			42.591		4.204	4.576	1.00	11.95	Α
		ATOM	1115	С	THR			44.640	5	2.971	6.310	1.00	12.30	Α
	10	ATOM	1116	0	THR			45.448		2.416	5.565	1.00	12.72	Α
		ATOM	1117	N	GLY			44.981		3.973	7.112	1.00	11.76	A
		ATOM	1118	CA	GLY			46.356		4.444	7.144	1.00	11.74	Α
		ATOM	1119	С	GLY			46.722		5.405	6.032	1.00	12.16	Α
		ATOM	1120	0	GLY			47.895		5.554	5.698	1.00	11.80	Α
	15	ATOM	1121	N	GLY			45.718		6.049	5.449	1.00	11.89	Α
		ATOM	1122	CA	GLY			45.979		7.012	4.397	1.00	11.02	Α
		ATOM	1123	С	GLY			46.273		8.376	4.995	1.00	10.65	Α
		ATOM	1124	0	GLY			45.990		8.626	6.169	1.00	10.03	Α
		ATOM	1125	N	TRP			46.849		9.263	4.192	1.00	10.36	A
	20	ATOM	1126	CA	TRP			47.163		0.607	4.662	1.00	10.35	Α
		ATOM	1127	СВ	TRP			47.748		1.432	3.511	1.00	10.07	A
		ATOM	1128	CG	TRP			48.536	; 6	2.640	3.941	1.00	11.12	Α
		ATOM	1129		TRP			49.723		2.652	4.747	1.00	10.98	Α
		ATOM	1130	CE2				50.142	: 6	3.999	4.855	1.00	11.20	Α
	25	ATOM	1131		TRP			50.474	6	1.657	5.385	1.00	11.21	Α
		ATOM	1132		TRP			48.291	. 6	3.943	3.605	1.00	10.95	Α
		ATOM	1133		TRP			49.251	. 6	4.764	4.151	1.00	11.36	A
		ATOM	1134		TRP			51.282	. 6	4.378	5.580	1.00	11.19	Α
		ATOM	1135		TRP			51.611		2.036	6.106	1.00	12.25	A
	30	ATOM	1136		TRP			52.000		3.384	6.194	1.00	11.49	Α
		ATOM	1137	С	TRP			45.852	: 6	51.224	5.157	1.00	10.30	Α
		ATOM	1138	0	TRP			45.827	' 6	51.956	6.148	1.00	10.10	Α
		ATOM	1139	N	VAL			44.761	. 6	0.896	4.470	1.00	9.73	Α
•		ATOM	1140	CA	VAL			43.430) (51.395	4.824	1.00	10.15	Α
	35	ATOM	1141	СВ	VAL			43.021	. 6	2.605	3.929	1.00	9.63	Α
		MOTA	1142		VAL			44.055		3.729	4.045	1.00	9.13	A
		ATOM	1143		VAL			42.896	5 6	2.159	2.463	1.00	9.97	Α
		ATOM	1144	С	VAL	Α	166	42.400) (0.287	4.594	1.00	10.04	Α
		ATOM	1145	0	VAL	Α	166	42.758	5	9.151	4.295	1.00	10.65	A
	40	ATOM	1146	N	MET	Α	167	41.127	' 6	0.632	4.772		10.36	A
		MOTA	1147	CA	MET	Α	167	40.001		9.734	4.499	1.00	10.42	Α
		ATOM	1148	СВ	MET	Α	167	38.989	9 5	9.745	5.645	1.00	10.35	A
		ATOM	1149	CG	MET	Α	167	37.730) 5	8.933	5.360	1.00	10.42	А
		ATOM	1150	SD	MET	Α	167	36.561	. 5	8.990	6.731	1.00	11.54	А
	45	MOTA	1151	CE	MET	Α	167	37.552	2 5	8.165	8.029	1.00	10.43	A
		MOTA	1152	С	MET	Α	167	39.454	(0.498	3.298	1.00	10.44	Α
		MOTA	1153	0	MET	Α	167	38.655	6	51.425	3.444	1.00	10.65	A
		ATOM	1154	N	PRO	Α	168	39.878	3 6	50.111	2.086	1.00	10.26	Α
		ATOM	1155	CD	PRO	Α	168	40.630) 5	8.883	1.758	1.00	9.75	Α
	50	ATOM	1156	CA	PRO			39.445		0.792	0.868	1.00	9.97	A
		ATOM	1157	СВ	PRO			40.371		50.202	-0.189	1.00	9.78	A
		ATOM	1158	CG	PRO			40.438		8.762	0.240	1.00	9.78	Α
		ATOM	1159	С	PRO			38.004		50.763	0.400	1.00	10.51	А
		ATOM	1160	0	PRO			37.240		9.844	0.690	1.00	9.40	Α
	55	ATOM	1161	N	ASP			37.663	3 6	51.809	-0.344	1.00	10.38	Α

						_			61 015	0 001	1 00	10 54	70
		ATOM	1162	CA	ASP			36.370	61.915	-0.981		10.54	A
		ATOM	1163	CB	ASP	A	169	36.276	63.231	-1.755	1.00	9.36	Α
		MOTA	1164	CG	ASP	Α	169	35.158	63.227	-2.776	1.00	9.43	Α
		MOTA	1165	OD1	ASP	Α	169	34.069	62.705	-2.462	1.00	8.82	A
	5	ATOM	1166	OD2	ASP	A	169	35.363	63.758	-3.885	1.00	9.69	А
		MOTA	1167	С	ASP	Α	169	36.463	60.746	-1.959	1.00	11.05	А
		ATOM	1168	0	ASP	Α	169	37.565	60.380	-2.373	1.00	10.71	А
		ATOM	1169	N	GLU	Α	170	35.332	60.151	-2.322	1.00	11.08	А
		ATOM	1170	CA	GLU			35.369	59.027	-3.249	1.00	10.86	A
	10	ATOM	1171	СВ	GLU			34.767	57.779	-2.578	1.00	11.08	А
		ATOM	1172	CG	GLU			35.637	57.256	-1.428	1.00	10.82	А
		ATOM	1173	CD	GLU			35.030	56.067	-0.694		10.92	A
		ATOM	1174		GLU			34.242	55.321	-1.311	1.00	9.84	Α
		ATOM	1175	OE2				35.368	55.869	0.497		10.95	А
	15	ATOM	1176	C	GLU			34.668	59.325	-4.569		10.67	A
	13	ATOM	1177	0	GLU			34.655	58.491	-5.473		10.61	A
				N	ALA			34.116	60.529	-4.690		10.81	A
		ATOM	1178						60.914	-5.907		10.66	A
		ATOM	1179	CA	ALA			33.404		-5.542		11.39	A
i i	20	ATOM	1180	CB	ALA			32.167	61.722			10.93	A
	20	ATOM	1181	C	ALA			34.239	61.697	-6.920			
, icas.		ATOM	1182	0	ALA			34.284	61.351	-8.102		11.16	A
1,5±2 1975		ATOM	1183	N	ASN			34.893	62.753	-6.447		10.71	A
1,5 1		ATOM	1184	CA	ASN			35.689	63.633	-7.298	1.00	9.89	A
		ATOM	1185	CB	ASN			35.645	65.048	-6.723	1.00	9.48	A
ii.	25	ATOM	1186	CG	ASN			34.232	65.588	-6.609		10.62	A
14		ATOM	1187		ASN			33.575	65.848	-7.616		10.69	A
M		ATOM	1188		ASN			33.759	65.758	-5.377		10.40	A
E)		MOTA	1189	С	ASN			37.150	63.225	-7.459	1.00	9.84	A
41.FF		ATOM	1190	0	ASN			37.806	63.593	-8.431		10.10	A
	30	MOTA	1191	N	SER	Α	173	37.657	62.470	-6.498	1.00	9.67	Α
i,LF		ATOM	1192	CA	SER	Α	173	39.055	62.050	-6.511	1.00	9.66	A
in in		MOTA	1193	CB	SER	Α	173	39.378	61.359	-5.194	1.00	8.38	A
į,.L		ATOM	1194	OG	SER	Α	173	38.460	60.305	-4.959	1.00	9.36	A
		MOTA	1195	С	SER	Α	173	39.442	61.127	-7.659	1.00	9.64	A
], .	35	ATOM	1196	0	SER	Α	173	38.672	60.246	-8.050	1.00	8.79	A
-		MOTA	1197	N	HIS	Α	174	40.639	61.338	-8.203	1.00	9.71	Α
		ATOM	1198	CA	HIS	Α	174	41.126	60.477	-9.271	1.00	9.94	A
		ATOM	1199	CB	HIS	Α	174	42.138	61.215	-10.139	1.00	10.93	Α
		ATOM	1200	CG	HIS	Α	174	42.377	60.557	-11.458	1.00	10.84	Α
	40	ATOM	1201	CD2	HIS	Α	174	41.963	60.888	-12.704	1.00	10.41	A
		ATOM	1202	ND1	HIS	Α	174	43.054	59.362	-11.581	1.00	11.12	A
		ATOM	1203		HIS			43.043	58.984	-12.846	1.00	11.26	A
		ATOM	1204		HIS			42.387	59.891	-13.548	1.00	10.78	A
		ATOM	1205	С	HIS			41.791	59.294	-8.564	1.00	9.67	A
	45	ATOM	1206	0	HIS			42.422	59.477	-7.524	1.00	8.97	А
		ATOM	1207	N	TRP			41.651	58.088	-9.111	1.00	9.37	Α
		ATOM	1208	CA	TRP			42.233	56.920	-8.458	1.00	9.44	А
		ATOM	1209	CB	TRP			41.962	55.632		1.00	9.23	A
		ATOM	1210	CG	TRP			42.792	55.451		1.00	9.39	A
	50				TRP			44.084	54.836		1.00	9.59	A
	50	ATOM	1211					44.084	54.871		1.00	9.59	A
		ATOM	1212		TRP				54.871		1.00	9.58	A
		ATOM	1213		TRP			44.946			1.00	9.27	A
		ATOM	1214		TRP			42.465	55.828				
		ATOM	1215		TRP			43.475	55.481		1.00	9.38	A
	55	MOTA	1216	CZ2	TRP	Α	175	45.706	54.348	-12.384	1.00	9.09	А

	ATOM	1217	CZ3	TRP	Α	175	46.165	53.737	-10.080	1.00	9.89	А
	ATOM	1218	CH2	TRP			46.531	53.788	-11.442	1.00	10.05	А
	ATOM	1219	С	TRP			43.725	57.083	-8.223	1.00	9.46	А
	ATOM	1220	0	TRP			44.261	56.583	-7.233	1.00	9.08	Α
5	ATOM	1221	N	ARG	Α	176	44.401	57.788	-9.124	1.00	9.19	Α
	ATOM	1222	CA	ARG	Α	176	45.831	58.004	-8.973	1.00	9.28	А
	ATOM	1223	СВ	ARG			46.373	58.761	-10.191	1.00	9.85	A
	ATOM	1224	CG	ARG			46.429		-11.447	1.00	10.18	A
	ATOM	1225	CD	ARG			46.402		-12.722	1.00	10.64	Α
10	ATOM	1226	NE	ARG			47.500	59.666	-12.818	1.00	11.19	A
	ATOM	1227	CZ	ARG			47.662	60.500	-13.844	1.00	10.95	Α
	ATOM	1228	NH1	ARG			46.796	60.486	-14.853	1.00	11.00	Α
	ATOM	1229		ARG			48.679	61.348	-13.860	1.00	10.96	А
	ATOM	1230	С	ARG	Α	176	46.146	58.758	-7.676	1.00	9.20	A
15	ATOM	1231	0	ARG			47.117	58.435	-6.984	1.00	9.53	Α
	MOTA	1232	N	ASN			45.326	59.750	-7.335	1.00	8.80	Α
	ATOM	1233	CA	ASN			45.561	60.511	-6.108	1.00	8.75	Α
	ATOM	1234	СВ	ASN			44.906	61.894	-6.190	1.00	8.74	А
	ATOM	1235	CG	ASN			45.577	62.784	-7.217	1.00	10.06	А
20	ATOM	1236		ASN			46.762	62.622	-7.507	1.00	10.31	Α
	ATOM	1237		ASN			44.826	63.734	-7.766	1.00	11.06	Α
	ATOM	1238	С	ASN			45.077	59.759	-4.870	1.00	8.84	А
	ATOM	1239	0	ASN			45.578	59.981	-3.763	1.00	8.42	А
	ATOM	1240	N	VAL			44.100	58.876	-5.049	1.00	8.65	A
25	ATOM	1241	CA	VAL			43.623	58.075	-3.928	1.00	8.81	Α
	ATOM	1242	СВ	VAL			42.408	57.198	-4.329	1.00	9.88	А
	ATOM	1243		VAL			42.061	56.223	-3.200	1.00	10.00	A
	ATOM	1244		VAL			41.211	58.086	-4.645	1.00	9.98	A
	ATOM	1245	С	VAL	Α	178	44.804	57.173	-3.550	1.00	8.79	A
30	MOTA	1246	0	VAL	Α	178	45.104	56.982	-2.371	1.00	9.06	A
	ATOM	1247	N	LEU	Α	179	45.481	56.633	-4.564	1.00	8.48	Α
	MOTA	1248	CA	LEU			46.637	55.771	-4.325	1.00	8.63	А
	MOTA	1249	СВ	LEU	Α	179	47.104	55.103	-5.624	1.00	9.00	A
	MOTA	1250	CG	LEU	Α	179	48.406	54.287	-5.506	1.00	9.81	Α
35	ATOM	1251	CD1	LEU	Α	179	48.243	53.164	-4.479	1.00	9.86	A
	MOTA	1252	CD2	LEU	Α	179	48.764	53.714	-6.872	1.00	10.42	A
	ATOM	1253	С	LEU	Α	179	47.790	56.575	-3.739	1.00	8.69	Α
	ATOM	1254	0	LEU	Α	179	48.494	56.104	-2.839	1.00	9.30	Α
	ATOM	1255	N	LEU	Α	180	47.983	57.789	-4.250	1.00	8.07	Α
40	ATOM	1256	CA	LEU	Α	180	49.063	58.643	-3.765	1.00	8.58	Α
	MOTA	1257	CB	LEU	Α	180	49.064	59.980	-4.521	1.00	8.65	Α
	ATOM	1258	CG	LEU	Α	180	50.203	60.946	-4.175	1.00	9.33	А
	ATOM	1259	CD1	LEU	Α	180	51.511	60.398	-4.746	1.00	9.58	A
	ATOM	1260	CD2	LEU	Α	180	49.913	62.335	-4.735	1.00	9.53	А
45	ATOM	1261	С	LEU	Α	180	48.926	58.903	-2.262	1.00	8.44	Α
	ATOM	1262	0	LEU	Α	180	49.881	58.708	-1.501	1.00	9.34	A
	ATOM	1263	N	GLN	Α	181	47.743	59.329	-1.825	1.00	7.79	A
	ATOM	1264	CA	GLN	Α	181	47.550	59.623	-0.408	1.00	8.83	A
	ATOM	1265	СВ	GLN	Α	181	46.254	60.426	-0.184	1.00	8.07	Α
50	ATOM	1266	CG	GLN			44.935	59.689	-0.427	1.00	9.20	Α
	ATOM	1267	CD	GLN			44.568	58.748	0.710	1.00	9.64	А
	ATOM	1268	OE1	GLN	Α	181	44.834	59.035	1.884	1.00	10.23	Α
	ATOM	1269	NE2	GLN	Α	181	43.940	57.627	0.371	1.00	8.92	А
	ATOM	1270	C	GLN	Α	181	47.591	58.379	0.474	1.00	8.83	А
55	ATOM	1271	0	GLN	Α	181	48.063	58.448	1.607	1.00	9.20	Α

	ATOM	1272	N	LEU	Α	182	47.110	57.246	-0.035	1.00 8.67	А
	ATOM	1273	CA	LEU	Α	182	47.155	56.012	0.743	1.00 8.95	A
	ATOM	1274	CB	LEU	Α	182	46.432	54.871	0.011	1.00 8.61	Α
	MOTA	1275	CG	LEU	Α	182	46.498	53.481	0.664	1.00 8.86	Α
5	ATOM	1276	CD1	LEU	Α	182	45.753	53.482	1.997	1.00 8.49	Α
	ATOM	1277	CD2	LEU	Α	182	45.889	52.443	-0.283	1.00 9.99	Α
	MOTA	1278	С	LEU	Α	182	48.626	55.642	0.933	1.00 9.47	A
	ATOM	1279	0	LEU	A	182	49.058	55.298	2.033	1.00 9.33	A
	MOTA	1280	N	THR	Α	183	49.395	55.737	-0.149	1.00 9.38	A
10	MOTA	1281	CA	THR	Α	183	50.815	55.407	-0.113	1.00 10.00	А
	ATOM	1282	СВ	THR	Α	183	51.440	55.484	-1.537	1.00 10.83	А
	MOTA	1283	OG1	THR	Α	183	50.713	54.627	-2.430	1.00 9.77	Α
	ATOM	1284	CG2	THR	Α	183	52.906	55.045	-1.506	1.00 11.31	Α
	ATOM	1285	С	THR	Α	183	51.570	56.352	0.825	1.00 10.11	A
15	ATOM	1286	0	THR	Α	183	52.438	55.923	1.595	1.00 9.89	Α
	ATOM	1287	N			184	51.239	57.638	0.772	1.00 10.04	Α
	MOTA	1288	CA			184	51.914	58.613	1.624	1.00 10.88	А
	ATOM	1289	CB			184	51.370	60.019	1.345	1.00 11.50	А
	MOTA	1290	CG	GLU			52.226	61.167	1.881	1.00 12.25	А
20	ATOM	1291	CD	GLU			53.620	61.223	1.262	1.00 13.15	А
	ATOM	1292	OE1				53.768	60.907	0.063	1.00 12.76	А
	ATOM	1293	OE2				54.568	61.607	1.977	1.00 13.95	А
	ATOM	1294	C	GLU			51.714	58.248	3.099	1.00 10.59	A
	ATOM	1295	Ō	GLU			52.664	58.249	3.885	1.00 10.65	А
25	ATOM	1296	N			185	50.479	57.922	3.463	1.00 10.39	A
	ATOM	1297	CA			185	50.182	57.557	4.839	1.00 10.33	A
	ATOM	1298	C			185	50.768	56.222	5.268	1.00 10.94	A
	ATOM	1299	0			185	51.355	56.110	6.351	1.00 9.76	A
	ATOM	1300	N			186	50.622	55.200	4.430	1.00 10.45	A
30	ATOM	1301	CA			186	51.144	53.884	4.788	1.00 11.43	A
	ATOM	1302	CB			186	50.560	52.803	3.874	1.00 11.23	A
	ATOM	1303	CG			186	49.047	52.623	4.010	1.00 12.83	A
	ATOM	1304	CD			186	48.618	51.182	3.793	1.00 13.65	A
	ATOM	1305	OE1	GLN			49.190	50.479	2.965	1.00 15.03	A
35	ATOM	1306	NE2				47.602	50.741	4.528	1.00 13.28	A
33	ATOM	1307	C			186	52.668	53.800	4.781	1.00 13.20	A
	ATOM	1307	0			186	53.255	53.000	5.548	1.00 11.70	A
	ATOM	1309	N	THR			53.314	54.571	3.916	1.00 11.71	A
	ATOM	1310	CA	THR			54.770	54.548	3.875	1.00 11.50	A
40	ATOM	1311		THR			55.300			1.00 11.30	
40								54.733	1.460		
	ATOM	1312		THR			54.843	55.372	2.666	1.00 10.52 1.00 10.99	A
	MOTA	1313		THR			56.829				A
	ATOM	1314	C	THR			55.289	55.130	5.191	1.00 12.09 1.00 11.42	A
45	ATOM	1315	0	THR			56.252	54.627	5.770		A
43	ATOM	1316	N	TRP			54.632	56.180	5.674	1.00 12.12	A
	ATOM	1317	CA	TRP			55.033	56.792	6.936	1.00 12.70	A
	ATOM	1318	CB	TRP			54.184	58.034	7.236	1.00 13.41	A
	ATOM	1319	CG	TRP			54.647	58.790	8.456	1.00 14.39	A
F 0	ATOM	1320		TRP			54.293	58.517	9.818	1.00 14.53	A
50	ATOM	1321		TRP			55.038	59.403	10.630	1.00 15.63	A
	ATOM	1322		TRP			53.423	57.606	10.431	1.00 14.76	A
	ATOM	1323		TRP			55.562	59.807	8.495	1.00 14.92	A
	MOTA	1324		TRP			55.804	60.178	9.798	1.00 14.82	A
	ATOM	1325		TRP			54.940	59.402	12.025	1.00 14.74	A
55	ATOM	1326	CZ3	TRP	Α	188	53.327	57.604	11.824	1.00 15.69	А

	ATOM	1327	CH2	TRP	Α	188	54.081	58.497	12.602	1.00	15.84	Α
	MOTA	1328	С	TRP	Α	188	54.837	55.763	8.052	1.00	12.21	Α
	ATOM	1329	0	TRP	Α	188	55.725	55.555	8.875	1.00	12.03	Α
	ATOM	1330	N	LEU	Α	189	53.672	55.116	8.071	1.00	12.09	Α
5	ATOM	1331	CA			189	53.375	54.112	9.091	1.00	12.32	Α
	ATOM	1332	СВ			189	51.966	53.538	8.896	1.00	11.84	А
	ATOM	1333	CG			189	50.798	54.434	9.314	1.00		А
	ATOM	1334		LEU			49.475	53.718	9.013	1.00		A
	ATOM	1335		LEU			50.912	54.757	10.806	1.00		A
10	ATOM	1336	C			189	54.376	52.962	9.111	1.00		A
10	ATOM	1337	0			189	54.792	52.513	10.181	1.00		A
							54.757	52.473	7.936	1.00		A
	ATOM	1338	N			190						
	ATOM	1339	CA			190	55.709	51.370	7.882	1.00		A
15	ATOM	1340	CB			190	55.916	50.886	6.444	1.00		A
15	ATOM	1341	CG			190	56.750	49.605	6.350	1.00		A
	ATOM	1342	CD			190	56.958	49.174	4.906	1.00 2		Α
	ATOM	1343	CE			190	57.529	47.761	4.821	1.00 2		А
	ATOM	1344	NZ			190	58.713	47.598	5.708	1.00 2		Α
	MOTA	1345	С	LYS	Α	190	57.052	51.793	8.464	1.00		Α
20	MOTA	1346	0	LYS	Α	190	57.654	51.067	9.254	1.00		A
	ATOM	1347	N	GLN	Α	191	57.514	52.974	8.075	1.00	16.02	A
	ATOM	1348	CA	GLN	Α	191	58.794	53.477	8.548	1.00	17.78	A
	ATOM	1349	СВ	GLN	Α	191	59.199	54.722	7.750	1.00	19.02	A
	ATOM	1350	CG	GLN	Α	191	60.526	55.324	8.202	1.00 2	23.22	A
25	ATOM	1351	CD	GLN			60.944	56.540	7.390	1.00 2	24.68	Α
	ATOM	1352	OE1				61.989	57.140	7.651	1.00 2		A
	ATOM	1353		GLN			60.132	56.909	6.402	1.00 2		А
	ATOM	1354	C	GLN			58.848	53.800	10.041	1.00		A
	ATOM	1355	0	GLN			59.810	53.434	10.717	1.00		A
30	ATOM	1356	N			192	57.827	54.474	10.563	1.00		A
50	ATOM	1357	CA			192	57.841	54.854	11.974	1.00		A
	ATOM	1358	CB			192	57.419	56.320	12.116	1.00		A
	ATOM	1359	CG	PHE			58.324	57.279	11.402	1.00		A
		1360		PHE			58.020	57.717	10.115	1.00		A
35	ATOM							57.726	12.004	1.00		A
33	ATOM	1361		PHE			59.495					
	ATOM	1362		PHE			58.867	58.585	9.439	1.00 1		A
	ATOM	1363		PHE			60.354	58.598	11.334	1.00 1		A
	ATOM	1364	CZ	PHE			60.040	59.029	10.050	1.00		A
40	MOTA	1365	C	PHE			57.045	54.009	12.972	1.00 1		A
40	MOTA	1366	0	PHE			57.395	53.972	14.154	1.00 1		A
	MOTA	1367	N	MET			55.989	53.340	12.519	1.00 1		A
	ATOM	1368	CA	MET			55.170	52.518	13.418	1.00 1		A
	ATOM	1369	CB	MET			53.684	52.877	13.282	1.00 2		A
	ATOM	1370	CG	MET	Α	193	53.272	54.222	13.862	1.00 2		A
45	MOTA	1371	SD	MET	Α	193	53.652	54.404	15.629	1.00 2	25.98	А
	ATOM	1372	CE	MET	Α	193	54.978	55.547	15.464	1.00 2	22.14	Α
	MOTA	1373	С	MET	Α	193	55.336	51.022	13.153	1.00	19.68	A
	ATOM	1374	0	MET	Α	193	54.858	50.189	13.928	1.00 1	18.38	A
	ATOM	1375	N	ASN			56.001	50.693	12.050	1.00 2	20.20	Α
50	ATOM	1376	CA	ASN			56.234	49.306	11.662	1.00 2		Α
	ATOM	1377	СВ	ASN			57.165	48.627	12.676	1.00 2		A
	ATOM	1378	CG	ASN			57.617	47.247	12.225	1.00 3		A
	ATOM	1379		ASN			57.780	46.999	11.028	1.00 3		A
	ATOM	1380		ASN			57.832	46.357	13.191	1.00 3		A
55	ATOM	1380	C	ASN			54.929	48.517	11.534	1.00 2		A
55	ATON	1001		NCN	Д	T 24	J4.96J	10.31/	11.004	1.00 2	.0.50	

	ATOM	1382	0			194	54.833	47.373	11.978	1.00 19.15	А
	ATOM	1383	N			195	53.920	49.139	10.935	1.00 18.58	A
	ATOM	1384	CA			195	52.634	48.479	10.742	1.00 17.61	Α
	ATOM	1385	CB			195	51.628	48.794	11.888	1.00 17.65	Α
5	MOTA	1386	CG1	VAL	Α	195	52.173	48.301	13.227	1.00 19.15	Α
	MOTA	1387	CG2	VAL	Α	195	51.342	50.288	11.941	1.00 18.14	А
	MOTA	1388	С	VAL	Α	195	52.006	48.928	9.428	1.00 16.13	А
	MOTA	1389	0	VAL	Α	195	52.232	50.051	8.975	1.00 15.25	A
	MOTA	1390	N	THR	Α	196	51.229	48.034	8.825	1.00 14.72	A
10	ATOM	1391	CA	THR	Α	196	50.527	48.309	7.574	1.00 14.36	A
	MOTA	1392	CB	THR	Α	196	51.159	47.554	6.377	1.00 14.11	Α
	ATOM	1393	OG1	THR	Α	196	52.516	47.978	6.196	1.00 14.55	Α
	ATOM	1394	CG2	THR	Α	196	50.374	47.830	5.105	1.00 15.25	Α
	ATOM	1395	С	THR	Α	196	49.093	47.818	7.746	1.00 13.73	А
15	ATOM	1396	0			196	48.845	46.613	7.787	1.00 13.60	Α
	ATOM	1397	N			197	48.130	48.745	7.859	1.00 13.55	А
	MOTA	1398	CD			197	48.302	50.207	7.944	1.00 13.01	А
	ATOM	1399	CA			197	46.722	48.375	8.029	1.00 13.52	A
	ATOM	1400	СВ			197	46.014	49.726	8.085	1.00 13.17	Α
20	ATOM	1401	CG			197	47.057	50.632	8.681	1.00 12.88	Α
	ATOM	1402	C			197	46.181	47.507	6.898	1.00 13.94	A
	ATOM	1403	Ō			197	46.536	47.699	5.733	1.00 13.93	Α
	ATOM	1404	N			198	45.335	46.542	7.249	1.00 13.37	A
	ATOM	1405	CA			198	44.721	45.677	6.250	1.00 13.41	А
25	ATOM	1406	СВ			198	45.065	44.185	6.457	1.00 13.58	A
	ATOM	1407	OG1	THR			44.601	43.759	7.740	1.00 13.61	A
	ATOM	1408	CG2				46.567	43.963	6.342	1.00 14.13	A
	ATOM	1409	C			198	43.210	45.841	6.322	1.00 11.99	A
	ATOM	1410	Ö			198	42.473	45.152	5.623	1.00 11.91	A
30	ATOM	1411	N			199	42.760	46.757	7.179	1.00 11.92	A
00	ATOM	1412	CA			199	41.336	47.050	7.332	1.00 11.29	A
	ATOM	1413	CB			199	40.856	46.659	8.736	1.00 11.40	A
	ATOM	1414	C			199	41.110	48.547	7.092	1.00 11.77	A
	ATOM	1415	Ö			199	41.807	49.386	7.667	1.00 12.44	A
35	ATOM	1416	N			200	40.135	48.879	6.252	1.00 10.98	A
00	ATOM	1417	CA			200	39.844	50.276	5.937	1.00 11.61	A
	ATOM	1418	CB			200	39.680	50.459	4.426	1.00 11.69	A
	ATOM	1419	OG			200	39.531	51.830	4.097	1.00 12.70	A
	MOTA	1420	C			200	38.607	50.795	6.658	1.00 11.42	A
40	ATOM	1421	0			200	37.635	50.057	6.871	1.00 11.38	A
10	ATOM	1422	N	TRP			38.654	52.077	7.008	1.00 10.70	A
	ATOM	1423	CA			201	37.592	52.759	7.745	1.00 11.31	A
	ATOM	1423	CB			201	38.110	52.7997	9.176	1.00 11.10	A
	ATOM	1425	CG			201	37.296	53.856	10.113	1.00 12.37	A
45	ATOM	1425		TRP			36.309	53.406	11.051	1.00 12.43	A
40	ATOM	1427		TRP			35.917	54.529	11.819	1.00 13.19	A
	ATOM	1427		TRP			35.722	52.162	11.322	1.00 13.10	A
				TRP			37.448	55.199	10.338	1.00 13.10	A
	MOTA	1429		TRP				55.608	11.361	1.00 12.73	A
50	ATOM	1430					36.627				
50	MOTA	1431		TRP			34.964	54.444	12.841 12.344	1.00 12.77 1.00 13.70	A
	ATOM	1432		TRP			34.772	52.077			A A
	ATOM	1433		TRP			34.405	53.215	13.089	1.00 13.30	A
	ATOM	1434	С			201	37.225	54.074	7.040	1.00 11.37	A
==	ATOM	1435	0			201	37.995	55.031	7.058	1.00 12.26	A
55	MOTA	1436	N	ALA	А	202	36.053	54.102	6.408	1.00 11.54	А

TOGETPUE DOBIES

	ATOM	1437	CA	ALA A	A 202	35.578	55.285	5.686	1.00 11.82	Α
	ATOM	1438	СВ	ALA A		35.620	55.026	4.180	1.00 12.16	Α
	ATOM	1439	С	ALA A	A 202	34.152	55.613	6.129	1.00 11.83	Α
	MOTA	1440	0	ALA A	A 202	33.184	55.165	5.519	1.00 11.26	Α
5	ATOM	1441	N	ILE A		34.039	56.420	7.181	1.00 11.80	Α
	ATOM	1442	ÇA	ILE A		32.747	56.774	7.762	1.00 11.97	Α
	ATOM	1443	СВ	ILE A		32.830	56.770	9.311	1.00 12.02	A
	ATOM	1444		ILE A		33.134	55.350	9.821	1.00 12.31	A
	ATOM	1445		ILE A		33.914	57.756	9.772	1.00 12.87	A
10	ATOM	1446		ILE A		33.998	57.941	11.286	1.00 13.55	Α
10	ATOM	1447	C	ILE A		32.115	58.101	7.347	1.00 11.95	А
	ATOM	1448	Ö	ILE A		30.937	58.324	7.633	1.00 11.82	А
	ATOM	1449	N	ASP A		32.861	58.978	6.677	1.00 11.66	A
	ATOM	1450	CA	ASP A		32.278	60.269	6.305	1.00 12.21	A
15	ATOM	1451	CB	ASP A		32.986	61.406	7.053	1.00 11.72	A
13	ATOM	1451	CG	ASP A		32.058	62.589	7.336	1.00 11.72	A
				ASP A		32.557	63.712	7.559	1.00 12.03	A
	ATOM	1453		ASP A		30.823	62.401	7.351	1.00 12.03	A
	ATOM	1454					60.651	4.824	1.00 12.19	A
20	ATOM	1455	C	ASP A		32.162 31.420	61.580	4.496	1.00 12.13	A
20	ATOM	1456	0	ASP A			59.969	3.911	1.00 12.41	A
	ATOM	1457	N			32.888			1.00 12.00	A
	ATOM	1458	CD	PRO A		33.888	58.895	4.047 2.500	1.00 12.94	A
	MOTA	1459	CA	PRO A		32.739	60.366		1.00 12.01	
25	MOTA	1460	CB	PRO A		33.573	59.323	1.758		A A
25	MOTA	1461	CG	PRO A		34.666	59.017	2.747	1.00 13.56	A A
	MOTA	1462	C	PRO A		31.257	60.328	2.109	1.00 12.65	
	ATOM	1463	0		A 205	30.520	59.451	2.557	1.00 13.12	A
	MOTA	1464	N		A 206	30.828	61.266	1.267	1.00 12.48	A
00	ATOM	1465	CA		A 206	29.418	61.367	0.872	1.00 11.65	A
30	MOTA	1466	CB		A 206	29.094	62.829	0.542	1.00 10.97	A
	ATOM	1467	CG		A 206	29.933	63.823	1.310	1.00 11.31	A
	ATOM	1468		PHE A		30.170	63.652	2.673	1.00 10.59	A
	ATOM	1469		PHE A		30.497	64.926	0.668	1.00 11.93	A
	MOTA	1470		PHE A		30.957	64.559	3.385	1.00 10.69	A
35	MOTA	1471		PHE A		31.286	65.842	1.372	1.00 11.78	A
	MOTA	1472	CZ		A 206	31.518	65.656	2.734	1.00 10.49	A
	MOTA	1473	С		A 206	29.064	60.456	-0.306	1.00 11.76	A
	MOTA	1474	0		A 206	28.869	60.914	-1.431	1.00 11.63	A
	MOTA	1475	N	GLY A		28.946	59.164	-0.017	1.00 11.94	A
40	ATOM	1476	CA	GLY A		28.677	58.182	-1.053	1.00 11.86	Α
	ATOM	1477	С	GLY A	A 207	29.978	57.409	-1.186	1.00 11.58	A
	ATOM	1478	0	GLY A	A 207	31.034	57.942	-0.840	1.00 11.47	A
	ATOM	1479	N	HIS A	A 208	29.922	56.173	-1.681	1.00 11.57	A
	ATOM	1480	CA	HIS A	A 208	31.125	55.351	-1.800	1.00 11.22	A
45	MOTA	1481	CB	HIS A	A 208	31.074	54.238	-0.753	1.00 11.82	A
	ATOM	1482	CG	HIS A	A 208	31.157	54.741	0.654	1.00 12.72	A
	ATOM	1483	CD2	HIS A	A 208	30.195	54.971	1.578	1.00 12.86	А
	ATOM	1484	ND1	HIS A	A 208	32.349	55.099	1.245	1.00 13.33	A
	ATOM	1485		HIS A		32.118	55.527	2.473	1.00 13.14	Α
50	ATOM	1486		HIS A		30.819	55.460	2.700	1.00 12.64	А
•	ATOM	1487	С		A 208	31.364	54.757	-3.181	1.00 10.90	А
	ATOM	1488	0		A 208	30.421	54.409	-3.899	1.00 11.18	A
	ATOM	1489	N		A 209	32.638	54.629	-3.536	1.00 10.51	А
	ATOM	1490	CA		A 209	33.037	54.107	-4.841	1.00 10.62	А
55	ATOM	1491	СВ		A 209	33.915	55.137	-5.554	1.00 10.69	А
-	011			~			/			

									6 705	1 00 11 16	70
	ATOM	1492	OG	SER			34.484	54.588	-6.735	1.00 11.16	A
	MOTA	1493	С	SER			33.795	52.783	-4.783	1.00 10.51	A
	ATOM	1494	0	SER			34.600	52.561	-3.875	1.00 9.87	A
_	ATOM	1495	N	PRO			33.550	51.890	-5.762	1.00 10.42	A
5	MOTA	1496	CD	PRO			32.556	52.009	-6.845	1.00 10.36	A
	MOTA	1497	CA	PRO	Α	210	34.222	50.589	-5.820	1.00 10.49	Α
	ATOM	1498	CB	PRO	Α	210	33.452	49.846	-6.910	1.00 10.13	А
	ATOM	1499	CG	PRO	Α	210	33.024	50.951	-7.828	1.00 10.41	А
	ATOM	1500	С	PRO	Α	210	35.705	50.759	-6.147	1.00 10.64	А
10	ATOM	1501	0	PRO	Α	210	36.481	49.808	-6.066	1.00 10.74	Α
	ATOM	1502	N	THR			36.103	51.972	-6.523	1.00 9.89	А
	ATOM	1503	CA	THR			37.514	52.211	-6.792	1.00 10.11	Α
	ATOM	1504	CB	THR			37.772	53.661	-7.261	1.00 9.96	A
	ATOM	1505	OG1	THR			37.237	53.833	-8.578	1.00 9.80	А
15	ATOM	1506	CG2				39.270	53.961	-7.287	1.00 9.72	A
15	ATOM	1507	C	THR			38.309	51.956	-5.504	1.00 9.81	Α
	ATOM	1508	0	THR			39.479	51.571	-5.552	1.00 9.54	A
		1509	N	MET			37.672	52.156	-4.353	1.00 10.26	A
	ATOM						38.360	51.942	-3.080	1.00 10.69	A
20	ATOM	1510	CA	MET				52.455	-1.909	1.00 10.03	A
20	ATOM	1511	CB	MET			37.514	53.947	-1.963	1.00 13.25	A
	MOTA	1512	CG	MET			37.207			1.00 15.25	A
	MOTA	1513	SD	MET			38.667	54.999	-2.246		
	MOTA	1514	CE	MET			39.457	54.946	-0.633	1.00 14.30	A
0.5	MOTA	1515	С	MET			38.741	50.471	-2.866	1.00 10.61	A
25	ATOM	1516	0	MET			39.909	50.159	-2.623	1.00 10.52	A
	ATOM	1517	N			213	37.767	49.546	-2.935	1.00 10.33	A
	ATOM	1518	CD			213	36.300	49.654	-3.018	1.00 10.77	A
	ATOM	1519	CA			213	38.185	48.152	-2.736	1.00 10.25	A
	ATOM	1520	CB	PRO	Α	213	36.858	47.377	-2.754	1.00 10.19	Α
30	ATOM	1521	CG			213	35.918	48.291	-3.533	1.00 10.86	А
	ATOM	1522	С	PRO	Α	213	39.166	47.707	-3.824	1.00 10.35	A
	MOTA	1523	0	PRO	Α	213	40.033	46.865	-3.586	1.00 10.07	А
	ATOM	1524	N	TYR	Α	214	39.032	48.277	-5.021	1.00 10.06	А
	ATOM	1525	CA	TYR	Α	214	39.937	47.944	-6.120	1.00 10.18	A
35	ATOM	1526	СВ	TYR	Α	214	39.619	48.786	-7.349	1.00 10.58	Α
	ATOM	1527	CG			214	40.546	48.531	-8.519	1.00 11.85	А
	ATOM	1528	CD1	TYR			40.376	47.416	-9.343	1.00 12.70	A
	ATOM	1529	CE1				41.207		-10.446	1.00 13.49	A
	ATOM	1530		TYR			41.575	49.420	-8.820	1.00 11.15	Α
40	ATOM		CE2						-9.914	1.00 11.99	А
10	MOTA	1532	CZ	TYR			42.220		-10.726	1.00 12.95	А
	ATOM	1533	ОН			214	43.022		-11.836	1.00 13.94	А
	ATOM	1534	C			214	41.384		-5.705	1.00 10.67	А
	ATOM	1535	0			214	42.252	47.341	-5.808	1.00 10.14	А
45	ATOM	1536	N			215	41.634	49.435	-5.242	1.00 10.04	A
43						215	42.965	49.848	-4.809	1.00 10.06	A
	ATOM	1537	CA				43.005	51.384	-4.572	1.00 10.31	A
	ATOM	1538	CB			215			-3.971	1.00 10.31	A
	ATOM	1539		ILE			44.348	51.795			A
50	ATOM	1540		ILE			42.745	52.119	-5.890	1.00 11.37	
50	ATOM	1541		ILE			42.716	53.640	-5.753	1.00 12.28	A
	ATOM	1542	С			215	43.399	49.135	-3.523	1.00 10.17	A
	ATOM	1543	0			215	44.529	48.659	-3.413	1.00 9.97	A
	ATOM	1544	N			216	42.497	49.061	-2.552	1.00 10.00	A
_	ATOM	1545	CA			216	42.810	48.418	-1.277	1.00 9.82	A
55	ATOM	1546	СВ	LEU	A	216	41.638	48.595	-0.303	1.00 9.65	А

											_
		ATOM	1547	CG		216	41.248	50.040	0.047	1.00 10.00	A
		ATOM	1548		LEU A		39.930	50.050	0.812	1.00 9.64	A
		ATOM	1549		LEU A		42.361	50.692	0.874	1.00 11.22	A
	_	ATOM	1550	С		216	43.145	46.929	-1.417	1.00 10.48	Α
	5	ATOM	1551	0		1 216	44.115	46.449	-0.825	1.00 9.64	Α
		ATOM	1552	N	GLN A	217	42.344	46.204	-2.195	1.00 10.39	A
		MOTA	1553	CA	GLN A	217	42.565	44.773	-2.385	1.00 11.31	Α
		MOTA	1554	CB	GLN A	4 217	41.417	44.187	-3.216	1.00 13.02	Α
		MOTA	1555	ÇG	GLN A	217	41.367	42.662	-3.309	1.00 13.54	А
	10	ATOM	1556	CD		1 217	42.291	42.117	-4.371	1.00 14.73	Α
		ATOM	1557	OE1	GLN A		42.492	42.749	-5.406	1.00 16.14	A
		ATOM	1558	NE2	GLN A		42.849	40.934	-4.131	1.00 14.69	Α
		ATOM	1559	С		217	43.922	44.529	-3.050	1.00 11.72	A
		MOTA	1560	0	GLN A	A 217	44.561	43.499	-2.824	1.00 11.92	A
	15	ATOM	1561	N	LYS A	218	44.365	45.491	-3.857	1.00 11.23	Α
		MOTA	1562	CA	LYS I	A 218	45.655	45.397	-4.537	1.00 11.32	A
		ATOM	1563	CB	LYS I	1 218	45.589	46.102	-5.899	1.00 11.09	A
		MOTA	1564	CG		1 218	44.804	45.324	-6.959	1.00 12.02	Α
1,7997		ATOM	1565	CD		A 218	44.608	46.141	-8.238	1.00 11.87	A
1000	20	MOTA	1566	CE		1 218	44.232	45.257	-9.421	1.00 12.02	Α
		MOTA	1567	NZ		218	43.101	44.326	-9.148	1.00 12.06	A
		ATOM	1568	С		218	46.762	46.019	-3.679	1.00 11.45	A
M		ATOM	1569	0		A 218	47.904	46.154	-4.118	1.00 11.78	A
		MOTA	1570	N		1 219	46.412	46.397	-2.453	1.00 10.93	A
N.	25	MOTA	1571	CA		1 219	47.372	46.993	-1.533	1.00 11.29	A
M.		ATOM	1572	CB		A 219	47.014	48.460	-1.264	1.00 10.87	A
164 144		ATOM	1573	OG		1 219	47.094	49.223	-2.459	1.00 10.59	A
		ATOM	1574	С		A 219	47.434	46.213	-0.219	1.00 11.22	A
21 21200	•	MOTA	1575	0		A 219	47.748	46.768	0.836	1.00 10.76	A
	30	ATOM	1576	N		A 220	47.118	44.922	-0.296	1.00 11.64	A
ı,Ü		MOTA	1577	CA		A 220	47.176	44.066	0.878	1.00 12.01	A
		ATOM	1578	С		A 220	45.984	44.042	1.820	1.00 12.11	A
in in in		ATOM	1579	0		220	45.995	43.298	2.801	1.00 12.08	A
1100	25	ATOM	1580	N		A 221	44.947	44.825	1.541	1.00 12.32	A
[al	35	ATOM	1581	CA		221	43.794	44.844	2.435	1.00 11.98	A
•		ATOM	1582	CB		A 221	42.909	46.065	2.168	1.00 12.08	A
		MOTA	1583	CG		221	43.466	47.344	2.716	1.00 11.83 1.00 10.91	A
		ATOM	1584		PHE I		44.586	47.935	2.139 3.816	1.00 10.91	A A
	40	ATOM	1585		PHE		42.876 45.111	47.955 49.121	2.651		A
	40	ATOM	1586		PHE		43.394	49.121	4.338	1.00 10.48	A
		MOTA	1587		PHE		44.514	49.727	3.752	1.00 10.77	A
		MOTA	1588	CZ		221		43.593	2.363	1.00 10.34	A
		MOTA	1589	С		A 221	42.939 42.892	43.393	1.341	1.00 12.33	A
	45	ATOM	1590	0		A 221	42.257	42.915	3.466	1.00 12.04	A
	43	MOTA	1591	N		222	41.385	42.147	3.546	1.00 12.32	A
		MOTA	1592	CA		222	41.966	41.125	4.523	1.00 14.03	A
		ATOM	1593	CB		A 222 A 222	43.173	40.401	3.950	1.00 10.03	A
		ATOM	1594	CG		1 222	43.173	39.446	4.945	1.00 24.43	A
	50	ATOM	1595 1596	CD		A 222	44.802	38.537	4.250	1.00 25.85	A
	50	ATOM	1596	CE NZ		A 222	45.771	39.315	3.420	1.00 23.83	A
		ATOM ATOM	1597	NZ C		A 222	39.974	42.533	3.966	1.00 27.76	A
						1 222	39.043	41.745	3.804	1.00 13.76	A
		ATOM	1599	O NI		A 222 A 223	39.819	43.747	4.492	1.00 12.70	A
	55	ATOM	1600 1601	N CA		1 223	38.512	43.747	4.940	1.00 12.54	A
	$\mathcal{I}\mathcal{I}$	ATOM	1001	CH	NON I	223	30.312	77.44	3.730	1.00 12.09	4.1

	ATOM	1602	СВ	ASN	Α	223	38.274	43.836	6.404	1.00 12.58	Α
	ATOM	1603	CG	ASN	Α	223	38.364	42.345	6.641	1.00 13.38	Α
	ATOM	1604	OD1	ASN	Α	223	39.396	41.832	7.092	1.00 14.56	Α
	ATOM	1605	ND2	ASN	Α	223	37.286	41.637	6.336	1.00 10.53	Α
5	ATOM	1606	С	ASN	Α	223	38.345	45.738	4.826	1.00 11.96	Α
	ATOM	1607	0	ASN	Α	223	39.318	46.485	4.891	1.00 11.78	Α
	ATOM	1608	N	MET	Α	224	37.101	46.183	4.668	1.00 12.00	Α
	ATOM	1609	CA	MET	Α	224	36.800	47.609	4.598	1.00 12.07	Α
	ATOM	1610	СВ	MET	Α	224	36.915	48.134	3.165	1.00 12.02	Α
10	MOTA	1611	CG	MET	Α	224	35.849	47.631	2.207	1.00 12.35	Α
	ATOM	1612	SD			224	36.063	48.400	0.596	1.00 12.43	А
	ATOM	1613	CE	MET	Α	224	35.436	50.044	0.920	1.00 12.22	А
	ATOM	1614	С	MET	Α	224	35.402	47.892	5.142	1.00 12.41	Α
	ATOM	1615	0			224	34.516	47.029	5.113	1.00 11.89	Α
15	ATOM	1616	N			225	35.221	49.106	5.649	1.00 11.22	Α
-	ATOM	1617	CA			225	33.950	49.530	6.219	1.00 11.40	Α
	ATOM	1618	CB			225	34.090	49.648	7.738	1.00 10.91	Α
	ATOM	1619	CG			225	32.929	50.260	8.531	1.00 11.65	Α
	ATOM	1620		LEU			32.932	49.685	9.935	1.00 11.52	Α
20	ATOM	1621		LEU			33.046	51.798	8.559	1.00 11.31	A
	ATOM	1622	С			225	33.525	50.868	5.626	1.00 11.04	Α
	ATOM	1623	0			225	34.351	51.762	5.451	1.00 10.88	Α
	ATOM	1624	N			226	32.237	50.997	5.315	1.00 11.47	Α
	ATOM	1625	CA			226	31.699	52.232	4.747	1.00 11.81	Α
25	ATOM	1626	СВ			226	31.371	52.059	3.242	1.00 11.66	Α
	ATOM	1627	CG2			226	32.645	51.699	2.478	1.00 11.16	Α
	ATOM	1628	CG1			226	30.315	50.968	3.048	1.00 11.34	Α
	ATOM	1629	CD1			226	29.894	50.771	1.596	1.00 11.84	А
	ATOM	1630	С			226	30.441	52.632	5.516	1.00 12.31	. A
30	MOTA	1631	0			226	29.856	51.805	6.222	1.00 12.85	Α
	ATOM	1632	N			227	30.020	53.888	5.381	1.00 12.34	Α
	ATOM	1633	CA	GLN	Α	227	28.853	54.367	6.118	1.00 12.23	A
	ATOM	1634	СВ	GLN	Α	227	29.334	55.170	7.334	1.00 12.52	Α
•	MOTA	1635	CG	GLN	Α	227	28.376	56.253	7.845	1.00 12.98	Α
35	ATOM	1636	CD	GLN	Α	227	27.053	55.713	8.357	1.00 13.37	Α
	MOTA	1637	OE1	GLN	Α	227	26.951	54.552	8.753	1.00 14.02	Α
	MOTA	1638	NE2	GLN	Α	227	26.034	56.568	8.375	1.00 12.44	Α
	ATOM	1639	С	GLN	Α	227	27.814	55.187	5.351	1.00 12.86	Α
	MOTA	1640	0	GLN	Α	227	26.618	54.888	5.408	1.00 12.43	Α
40	MOTA	1641	N	ARG	Α	228	28.252	56.225	4.645	1.00 12.28	Α
	MOTA	1642	CA			228	27.303	57.070	3.941	1.00 12.28	Α
	MOTA	1643	CB	ARG	Α	228	27.893	58.470	3.726	1.00 12.59	А
	MOTA	1644	CG			228	28.063	59.258	5.022	1.00 12.49	A
	ATOM	1645	CD			228	28.404	60.729	4.772	1.00 12.20	A
45	MOTA	1646	NE	ARG	Α	228	28.640	61.461	6.022	1.00 12.35	Α
	ATOM	1647	CZ	ARG	Α	228	27.683	61.920	6.828	1.00 14.14	A
	MOTA	1648	NH1	ARG	Α	228	26.400	61.736	6.525	1.00 14.04	А
	ATOM	1649		ARG			28.007	62.554	7.951	1.00 13.35	Α
	ATOM	1650	С			228	26.759	56.523	2.628	1.00 12.67	А
50	MOTA	1651	0			228	27.323	56.744	1.557	1.00 12.03	Α
-	ATOM	1652	N			229	25.653	55.795	2.735	1.00 12.60	A
	ATOM	1653	CA			229	24.976	55.240	1.573	1.00 12.10	Α
	ATOM	1654	СВ			229	25.136	53.695	1.490	1.00 12.81	А
	ATOM	1655				229	24.559	53.075	2.648	1.00 12.19	А
55	ATOM	1656		THR			26.617	53.324	1.405	1.00 11.20	А

				_		_					1 00 10 60	
		MOTA	1657	С	THR			23.506	55.619	1.729	1.00 12.60	A
		ATOM	1658	0	THR	Α	229	23.035	55.849	2.848	1.00 13.73	Α
		ATOM	1659	N	HIS	Α	230	22.796	55.701	0.608	1.00 12.44	Α
		ATOM	1660	CA	HIS	Α	230	21.380	56.080	0.589	1.00 12.74	Α
	5	ATOM	1661	СВ	HIS	Α	230	20.803	55.794	-0.803	1.00 13.25	Α
	_	ATOM	1662	CG	HIS			19.545	56.546	-1.111	1.00 13.82	Α
		ATOM	1663		HIS			19.268	57.462	-2.070	1.00 14.52	Α
		ATOM	1664		HIS			18.382	56.384	-0.389	1.00 13.28	А
		ATOM	1665		HIS			17.443	57.169	-0.889	1.00 13.41	A
	10	ATOM	1666		HIS			17.954	57.834	-1.910	1.00 12.86	A
	10	ATOM	1667	C	HIS			20.570	55.343	1.656	1.00 12.53	A
					HIS				54.125	1.788	1.00 12.07	A
		ATOM	1668	0				20.672		2.413	1.00 12.07	A
		ATOM	1669	N	TYR			19.756	56.080			
	15	ATOM	1670	CA	TYR			18.958	55.453	3.463	1.00 13.53	A
	15	ATOM	1671	CB	TYR			18.105	56.499	4.200	1.00 13.42	A
		MOTA	1672	CG	TYR			17.122	57.268	3.337	1.00 14.84	A
		ATOM	1673		TYR			15.840	56.772	3.088	1.00 14.12	A
		MOTA	1674	CE1				14.934	57.484	2.305	1.00 14.51	A
15	••	ATOM	1675		TYR			17.474	58.500	2.776	1.00 14.31	A
	20	MOTA	1676	CE2	TYR	Α	231	16.576	59.217	1.992	1.00 14.26	Α
7 (162) ·		ATOM	1677	CZ	TYR	Α	231	15.308	58.704	1.761	1.00 14.26	Α
		ATOM	1678	OH	TYR	Α	231	14.421	59.409	0.982	1.00 14.93	Α
1,9		MOTA	1679	С	TYR	Α	231	18.081	54.316	2.936	1.00 14.05	Α
		MOTA	1680	0	TYR	Α	231	17.785	53.368	3.661	1.00 14.36	Α
and district the second	25	MOTA	1681	N	SER	Α	232	17.675	54.399	1.674	1.00 14.47	Α
way.		ATOM	1682	CA	SER			16.847	53.348	1.086	1.00 15.06	Α
ijī		ATOM	1683	СВ	SER			16.235	53.823	-0.233	1.00 15.79	Α
		ATOM	1684	OG	SER			15.246	54.811	-0.004	1.00 17.41	Α
£1 4:≅≅,		ATOM	1685	C	SER			17.650	52.071	0.854	1.00 14.95	Α
	30	ATOM	1686	Ŏ	SER			17.120	50.966	0.967	1.00 13.88	Α
ė	00	ATOM	1687	N	VAL			18.931	52.229	0.529	1.00 14.34	A
IJ.		ATOM	1688	CA	VAL			19.807	51.085	0.295	1.00 13.73	A
į.		ATOM	1689	CB	VAL			21.136	51.534	-0.355	1.00 13.36	A
i sar		ATOM	1690		VAL			22.122	50.372	-0.397	1.00 13.01	A
ina.	35	ATOM	1691		VAL			20.868	52.043	-1.769	1.00 13.01	A
Ē	33	ATOM	1692		VAL			20.001	50.364	1.616	1.00 13.20	A
				С	VAL			20.031	49.131	1.679	1.00 13.64	A
		ATOM	1693 1694	0	LYS			20.329	51.137	2.668	1.00 13.04	A
		ATOM		N	LYS			20.583	50.569	3.987	1.00 13.48	A
	40	MOTA	1695	CA							1.00 14.03	
	4 0	ATOM	1696		LYS			20.800		5.013		A
		MOTA	1697	CG	LYS			22.142	52.414	4.890	1.00 14.69	A
		ATOM	1698	CD	LYS			22.193	53.642	5.799	1.00 13.66	A
		ATOM	1699	CE	LYS			23.563	54.329	5.762	1.00 13.23	A
	4-	ATOM	1700	ΝZ	LYS			24.575	53.699	6.669	1.00 12.68	A
	45	ATOM	1701	С	LYS			19.392	49.706	4.405	1.00 14.10	A
		ATOM	1702	0	LYS			19.563	48.582	4.877	1.00 13.22	A
		ATOM	1703	N	LYS	Α	235	18.186	50.233	4.218	1.00 15.31	А
		ATOM	1704	CA	LYS	Α	235	16.973	49.502	4.584	1.00 16.19	Α
		ATOM	1705	CB	LYS	Α	235	15.739	50.378	4.359	1.00 17.38	Α
	50	ATOM	1706	CG	LYS	Α	235	14.446	49.778	4.897	1.00 17.88	Α
		ATOM	1707	CD	LYS			13.270	50.694	4.617	1.00 18.37	Α
		ATOM	1708	CE	LYS			11.979	50.115	5.171	1.00 20.00	Α
		ATOM	1709	NZ	LYS			10.809	50.963	4.811	1.00 20.45	Α
		ATOM	1710	C	LYS			16.846	48.212	3.780	1.00 16.38	Α
	55	ATOM	1711	Ö	LYS			16.594	47.143		1.00 16.89	A
		111 011		_				_ 0 . 0 , .				

						_		1.7. 0.01	40 314	0.460	1 00 17 01	7
		ATOM	1712	N	GLU			17.031	48.314	2.469	1.00 17.01	A
		ATOM	1713	CA	GLU			16.933	47.157	1.583	1.00 17.20	A
		ATOM	1714	CB	GLU			17.130	47.599	0.129	1.00 19.36	A
	_	ATOM	1715	CG	GLU			16.943	46.487	-0.894	1.00 22.75	A
	5	MOTA	1716	CD	GLU			15.493	46.037	-1.033	1.00 24.36	Α
		MOTA	1717		GLU			15.237	45.125	-1.844	1.00 26.15	Α
		MOTA	1718	OE2	GLU			14.610	46.592	-0.341	1.00 25.45	Α
		MOTA	1719	С	GLU	A	236	17.946	46.063	1.931	1.00 16.81	Α
		MOTA	1720	0	GLU	Α	236	17.585	44.895	2.078	1.00 16.28	А
	10	ATOM	1721	N	LEU	Α	237	19.216	46.433	2.064	1.00 15.97	A
		MOTA	1722	CA	LEU	Α	237	20.238	45.447	2.387	1.00 15.97	A
		MOTA	1723	CB	LEU	Α	237	21.635	46.048	2.220	1.00 15.23	Α
		MOTA	1724	CG	LEU	A	237	21.976	46.514	0.799	1.00 15.74	A
		MOTA	1725	CD1	LEU	Α	237	23.356	47.142	0.797	1.00 16.24	A
	15	MOTA	1726	CD2	LEU	Α	237	21.919	45.337	-0.173	1.00 16.31	A
		ATOM	1727	С	LEU	Α	237	20.066	44.898	3.800	1.00 15.86	Α
		ATOM	1728	0	LEU	A	237	20.324	43.719	4.047	1.00 16.07	A
		ATOM	1729	N	ALA			19.624	45.743	4.725	1.00 15.71	Α
1100		ATOM	1730	CA	ALA			19.420	45.302	6.099	1.00 16.72	Α
	20	MOTA	1731	СВ	ALA			18.976	46.473	6.968	1.00 14.76	A
اليابة حد		ATOM	1732	С	ALA			18.373	44.187	6.149	1.00 17.50	A
1,1		ATOM	1733	0	ALA			18.559	43.177	6.832	1.00 17.31	A
1,71		ATOM	1734	N	GLN			17.279	44.374	5.418	1.00 18.24	Α
		ATOM	1735	CA	GLN			16.199	43.391	5.394	1.00 19.52	Α
Ŋ	25	ATOM	1736	СВ	GLN			15.031	43.915	4.550	1.00 20.50	Α
i Li		ATOM	1737	CG	GLN			14.442	45.225	5.068	1.00 23.60	A
M		ATOM	1738	CD	GLN			13.275	45.728	4.235	1.00 25.24	A
E)		ATOM	1739		GLN			13.364	45.819	3.009	1.00 27.04	А
in sami		ATOM	1740		GLN			12.175	46.069	4.900	1.00 27.03	А
	30	ATOM	1741	C	GLN			16.652	42.028	4.872	1.00 19.61	Α
1,43		ATOM	1742	0	GLN			16.080	41.000	5.230	1.00 19.90	A
IJ.		ATOM	1743	N	GLN			17.679	42.018	4.029	1.00 19.18	А
į.		ATOM	1744	CA	GLN			18.189	40.768	3.472	1.00 18.91	A
		ATOM	1745	СВ	GLN			18.421	40.927	1.969	1.00 21.14	A
į.L	35	ATOM	1746	CG	GLN			17.200	41.421	1.212	1.00 23.97	A
		ATOM	1747	CD	GLN			16.065	40.422	1.230	1.00 25.55	A
		ATOM	1748		GLN			14.910	40.777	0.998	1.00 28.30	A
		ATOM	1749		GLN			16.387	39.160	1.494	1.00 26.14	A
		ATOM	1750	С	GLN			19.495	40.350	4.139	1.00 17.92	Α
	40	ATOM	1751	0	GLN			20.113	39.364	3.737	1.00 16.97	Α
		ATOM	1752	N	ARG			19.895	41.090	5.171	1.00 16.88	А
		ATOM	1753	CA	ARG			21.149	40.831	5.871	1.00 16.09	A
		ATOM	1754	СВ	ARG			21.084	39.521	6.668	1.00 17.31	A
		ATOM	1755	CG	ARG			20.052	39.549	7.792	1.00 18.25	А
	45	ATOM	1756	CD	ARG			20.258	38.407	8.776	1.00 19.71	А
	10	ATOM	1757	NE	ARG			20.252	37.106	8.114	1.00 21.50	А
		ATOM	1758	CZ	ARG			20.610	35.966	8.700	1.00 23.01	A
		ATOM	1759		ARG			21.004	35.962	9.969	1.00 23.30	A
		ATOM	1760		ARG			20.583	34.831	8.014	1.00 23.18	A
	50	ATOM	1761	C	ARG			22.284	40.784	4.853	1.00 15.76	A
	50	ATOM	1762	0	ARG			23.092	39.850	4.824	1.00 14.26	A
		ATOM	1762	N	GLN			22.327	41.807	4.004	1.00 14.20	A
		ATOM	1763	CA	GLN			23.360	41.912	2.979	1.00 14.63	A
			1764	CB	GLN			22.721	41.912	1.584	1.00 14.05	A
	55	ATOM		CG	GLN			21.909	40.704	1.233	1.00 14.70	A
	55	ATOM	1766	CG	GPIN	М	242	21.707	40.704	1.233	1.00 13.30	7

										1 00 17 07	_
		ATOM	1767	CD	GLN .			40.836	-0.096	1.00 15.32	А
		ATOM	1768	OE1	GLN .	A 242	20.643	41.892	-0.411	1.00 15.92	Α
		ATOM	1769	NE2	GLN .	A 242	21.170	39.759	-0.878	1.00 15.08	A
		ATOM	1770	С	GLN .	A 242	24.197	43.175	3.198	1.00 14.54	А
	5	ATOM	1771	0	GLN .	A 242	24.712	43.753	2.242	1.00 13.67	А
		ATOM	1772	N	LEU			43.594	4.458	1.00 13.82	А
		ATOM	1773	CA	LEU .			44.779	4.808	1.00 14.57	А
		ATOM	1774	CB	LEU			45.307	6.185	1.00 14.76	A
					LEU .			45.958	6.227	1.00 14.70	A
	10	ATOM	1775	CG					7.673		
	10	ATOM	1776		LEU .			46.231		1.00 16.58	A
		ATOM	1777		LEU .			47.258	5.413	1.00 16.24	A
		ATOM	1778	С	LEU .			44.455	4.786	1.00 14.27	A
		MOTA	1779	0	LEU .			45.352	4.712	1.00 14.53	A
		MOTA	1780	N	GLU .			43.168	4.875	1.00 13.75	A
	15	ATOM	1781	CA	GLU .	A 244		42.720	4.789	1.00 13.31	Α
		MOTA	1782	CB	GLU .	4 244		41.897	6.017	1.00 13.04	Α
		MOTA	1783	CG	GLU .	A 244	28.891	42.777	7.249	1.00 12.64	Α
		ATOM	1784	CD	GLU .	A 244	29.323	42.010	8.476	1.00 13.11	Α
g rang		ATOM	1785	OE1	GLU .	A 244	28.806	40.897	8.699	1.00 12.89	А
	20	ATOM	1786		GLU .			42.532	9.225	1.00 13.62	Α
اليطاء ؟ عدد		ATOM	1787	С	GLU .	A 244	28.326	41.893	3.522	1.00 13.46	Α
J		ATOM	1788	Ō	GLU			40.992	3.344	1.00 13.61	А
M		ATOM	1789	N	PHE .			42.215	2.631	1.00 13.16	А
		ATOM	1790	CA	PHE .			41.534	1.349	1.00 12.82	A
Ŋ	25	ATOM	1791	CB	PHE .			42.226	0.379	1.00 12.71	A
. W	20	ATOM	1792	CG	PHE .			43.731	0.367	1.00 13.34	A
					PHE .			44.358	-0.396	1.00 13.34	A
		ATOM	1793							1.00 13.20	A
£1		ATOM	1794		PHE .			44.518	1.152		
	20	ATOM	1795		PHE .			45.761	-0.377	1.00 14.25	A
, <u>J</u>	30	ATOM	1796		PHE .			45.915	1.181	1.00 13.45	A
Ŋ		MOTA	1797	CZ	PHE .			46.536	0.416	1.00 13.39	A
1.4		ATOM	1798	С	PHE .			41.529	0.759	1.00 12.74	A
		ATOM	1799	0	PHE .			42.268	1.202	1.00 12.98	A
		MOTA	1800	N	LEU .			40.676	-0.239	1.00 12.93	A
. 1	35	MOTA	1801	CA	LEU .			40.590	-0.931	1.00 12.80	A
		MOTA	1802	CB	LEU .	A 246		39.143	-1.352	1.00 14.15	A
		MOTA	1803	CG	LEU .	A 246	32.798	38.226	-0.162	1.00 15.44	A
		ATOM	1804	CD1	LEU .	A 246	32.721	36.755	-0.566	1.00 16.21	Α
		MOTA	1805	CD2	LEU .	A 246	34.186	38.567	0.356	1.00 16.84	A
	40	ATOM	1806	С	LEU .	A 246	32.062	41.506	-2.140	1.00 12.88	A
		ATOM	1807	0	LEU .	A 246	31.450	41.142	-3.143	1.00 12.86	А
		ATOM	1808	N	TRP .			42.709	-2.021	1.00 12.15	A
		ATOM	1809	CA	TRP .			43.725	-3.064	1.00 10.93	А
		ATOM	1810	СВ	TRP			45.109	-2.428	1.00 11.30	А
	45	ATOM	1811	CG	TRP .			46.275	-3.234	1.00 10.64	А
	10	ATOM	1812		TRP			47.653	-2.835	1.00 10.92	А
		ATOM	1813		TRP			48.394	-3.875	1.00 10.68	A
								48.333	-1.699	1.00 10.84	A
		ATOM	1814		TRP .						
	50	ATOM	1815		TRP .			46.237	-4.465	1.00 11.11	A
	50	ATOM	1816		TRP .			47.509	-4.858	1.00 10.24	A
		ATOM	1817		TRP .			49.783	-3.809	1.00 11.19	A
		ATOM	1818		TRP .			49.715	-1.635	1.00 10.19	A
		ATOM	1819		TRP .			50.424	-2.684		A
		MOTA	1820	С	TRP .			43.517	-4.181	1.00 11.11	A
	55	ATOM	1821	0	TRP .	A 24	34.749	43.713	-3.979	1.00 11.48	A

	ATOM	1822	N	ARG	Α	248	33.062	43.116	-5.355	1.00 10		Α
	ATOM	1823	CA	ARG	Α	248	33.929	42.905	-6.509	1.00 10	.77	Α
	ATOM	1824	СВ	ARG	Α	248	33.699	41.518	-7.123	1.00 11	.28	Α
	ATOM	1825	CG	ARG			32.347	41.360	-7.812	1.00 12	.39	Α
5	ATOM	1826	CD	ARG	Α	248	32.287	40.064	-8.622	1.00 12	.96	Α
	ATOM	1827	NE	ARG			32.307	38.877	-7.771	1.00 13	.78	Α
	ATOM	1828	CZ	ARG			32.297	37.627	-8.232	1.00 15	.01	Α
	ATOM	1829		ARG			32.272	37.396	-9.540	1.00 14	.24	Α
	ATOM	1830		ARG			32.303	36.603	-7.387	1.00 15		Α
10	ATOM	1831	С	ARG			33.618	43.973	-7.557	1.00 10		Α
10	ATOM	1832	0	ARG			32.565	44.613	-7.508	1.00 10		Α
	ATOM	1833	N	GLN			34.531	44.154	-8.504	1.00 10		Α
	ATOM	1834	CA	GLN			34.351	45.141	-9.560	1.00 11		A
	ATOM	1835	CB	GLN			35.678		-10.298	1.00 11		A
15	ATOM	1836	CG	GLN			36.810	45.827	-9.377	1.00 11		Α
15		1837	CD	GLN			36.444	47.085	-8.598	1.00 11		A
	ATOM							47.098	-7.361	1.00 12		A
	ATOM	1838		GLN			36.457	48.148	-9.320		.23	A
	ATOM	1839	NE2				36.111			1.00 12		A
20	ATOM	1840	С	GLN			33.256		-10.524	1.00 12		A
20	MOTA	1841	0	GLN			33.049		-10.725	1.00 11		A
	MOTA	1842	N	ILE			32.553		-11.122			
	MOTA	1843	CA			250	31.453		-12.026	1.00 13		A
	MOTA	1844	СВ	ILE			30.767		-12.572	1.00 13		A
0.5	ATOM	1845		ILE			30.103		-11.428	1.00 13		A
25	ATOM	1846		ILE			31.785		-13.296	1.00 13		A
	ATOM	1847	CD1	ILE			31.191		-13.837	1.00 14		A
	ATOM	1848	С			250	31.782		-13.208	1.00 14		A
	ATOM	1849	0			250	30.896		-13.721	1.00 14		A
	ATOM	1850	N	TRP			33.043		-13.626	1.00 15		A
30	ATOM	1851	CA	TRP			33.455		-14.761	1.00 16		A
	ATOM	1852	CB	TRP	Α	251	34.444		-15.625	1.00 16		Α
	ATOM	1853	CG	TRP	A	251	35.745		-14.923	1.00 17		A
	ATOM	1854	CD2	TRP	Α	251	36.159	45.669	-14.196	1.00 17		A
	ATOM	1855	CE2	TRP	Α	251	37.412	45.372	-13.618	1.00 17		Α
35	MOTA	1856	CE3	TRP	Α	251	35.591	46.929	-13.974	1.00 17		Α
	ATOM	1857	CD1	TRP	Α	251	36.738	43.585	-14.765	1.00 17		Α
	MOTA	1858	NE1	TRP	Α	251	37.740	44.091	-13.981	1.00 17	.65	Α
	MOTA	1859	CZ2	TRP	Α	251	38.108	46.289	-12.830	1.00 17	.71	Α
	ATOM	1860	CZ3	TRP	Α	251	36.282	47.842	-13.191	1.00 17		Α
40	MOTA	1861	CH2	TRP	Α	251	37.529	47.516	-12.628	1.00 18	.49	Α
	ATOM	1862	С	TRP	Α	251	34.121	42.234	-14.344	1.00 18	.00	Α
	ATOM	1863	0	TRP	Α	251	34.454	41.403	-15.194	1.00 18	.22	Α
	ATOM	1864	N	ASP			34.325	42.062	-13.043	1.00 18	.23	Α
	ATOM	1865	CA			252	34.996	40.883	-12.499	1.00 19	.34	Α
45	ATOM	1866	СВ			252	35.549	41.228	-11.110	1.00 18	.94	Α
	MOTA	1867	CG	ASP			36.320	40.084	-10.484	1.00 20	.28	Α
	ATOM	1868		ASP			36.654		-11.207	1.00 20	.52	Α
	MOTA	1869		ASP			36.596		-9.267	1.00 18	.06	Α
	ATOM	1870	C			252	34.121		-12.436	1.00 19	.79	Α
50	ATOM	1871	Õ			252	33.323		-11.520	1.00 19		Α
50	ATOM	1872	N			253	34.292		-13.417	1.00 21		Α
	ATOM	1873	CA			253	33.513		-13.487	1.00 22		A
	ATOM	1874	CB			253	33.580		-14.907	1.00 24		A
	ATOM	1875	CG			253	32.717		-15.085	1.00 25		A
55	ATOM	1876		ASN			33.192		-15.530	1.00 26		Α
55	AIOM	10/0	ODI	MON	M	433	JJ.174	34.004	13.330	1.00 20		••

	ATOM	1877	ND2	ASN	А	253	31.439	35.845	-14.744	1.00	25.84	А
	ATOM	1878	С	ASN			33.980		-12.490		22.75	А
	ATOM	1879	Ö	ASN			33.162		-11.903		23.28	А
	ATOM	1880	N	LYS			35.290		-12.295		23.59	А
5	ATOM	1881	CA	LYS			35.855		-11.385		24.65	А
J	ATOM	1882	СВ	LYS			37.324		-11.744		26.71	А
	ATOM	1883	CG	LYS			37.939		-11.070		28.98	А
	ATOM	1884	CD	LYS			39.324		-11.640		30.99	A
	ATOM	1885	CE	LYS			39.916		-11.055		31.41	A
10	ATOM	1886	NZ	LYS			40.115	32.383	-9.580		32.32	A
10	ATOM	1887	C	LYS			35.741	35.749	-9.912		24.07	A
	ATOM	1888	0	LYS			35.532	34.893	-9.048		23.89	A
		1889		GLY			35.888	37.040	-9.628		23.13	- A
	ATOM		N	GLY			35.788	37.510	-8.257		22.09	A
15	ATOM	1890	CA					37.715	-7.534		21.87	A
15	ATOM	1891	С			255	37.110		-6.313		21.29	A
	ATOM	1892	0	GLY			37.128	37.864	-8.270		21.62	A
	ATOM	1893	N	ASP			38.216	37.735	-7.648		21.86	A
	ATOM	1894	CA	ASP			39.525	37.919			25.21	
20	ATOM	1895	CB	ASP			40.647	37.613	-8.645		28.23	A
20	ATOM	1896	CG			256	40.638	36.171	-9.112			A
	ATOM	1897		ASP			40.472	35.269	-8.260		30.23	A
	ATOM	1898		ASP			40.808		-10.329		30.53	A
	ATOM	1899	С	ASP			39.741	39.319	-7.074		20.26	A
0.5	ATOM	1900	0	ASP			40.663	39.532	-6.291		19.39	A
25	ATOM	1901	N	THR			38.902	40.274	-7.465		17.90	A
	MOTA	1902	CA			257	39.037	41.639	-6.958		16.74	A
	MOTA	1903	CB			257	38.540	42.668	-7.985		16.55	A
	ATOM	1904	OG1	THR			37.135	42.482	-8.200		16.27	A
20	MOTA	1905	CG2				39.283	42.510	-9.303		16.66	A
30	ATOM	1906	С			257	38.233	41.848	-5.675		16.22	A
	ATOM	1907	0			257	38.341	42.894	-5.028		15.96	A
	ATOM	1908	N			258	37.434	40.847	-5.315		14.88	A
	ATOM	1909	CA			258	36.578	40.912	-4.137		14.24	A
	MOTA	1910	CB			258	35.847	39.583	-3.957		14.17	A
35	MOTA	1911	С			258	37.267	41.296	-2.831		13.50	A
	MOTA	1912	0	ALA			38.358	40.821	-2.524		13.51	A
	MOTA	1913	N			259	36.601	42.159	-2.068		12.70	А
	ATOM	1914	CA			259	37.092	42.610	-0.768		12.24	Α
_	MOTA	1915	CB	LEU	Α	259	37.696	44.016	-0.867		11.63	A
40	MOTA	1916	CG	LEU	Α	259	38.380	44.520			11.76	A
	ATOM	1917		LEU			39.562	43.608	0.743		11.66	A
	ATOM	1918	CD2	LEU	Α	259	38.849	45.963	0.220	1.00	12.00	A
	ATOM	1919	С			259	35.901	42.634	0.186		11.86	A
	ATOM	1920	0	LEU	Α	259	34.875	43.245	-0.111	1.00	11.05	A
45	MOTA	1921	N	PHE	Α	260	36.032	41.959	1.324	1.00	11.65	Α
	ATOM	1922	CA	PHE	Α	260	34.951	41.921	2.303	1.00	11.54	A
	ATOM	1923	CB	PHE	Α	260	35.345	41.055	3.501	1.00	11.54	А
	ATOM	1924	CG	PHE	Α	260	34.245	40.882	4.503	1.00	12.18	A
	ATOM	1925	CD1	PHE	Α	260	33.242	39.934	4.301	1.00	12.98	А
50	ATOM	1926		PHÉ			34.195	41.679	5.640	1.00	12.01	Α
	ATOM	1927		PHE			32.209	39.786	5.218		12.59	Α
	ATOM	1928		PHE			33.167	41.541	6.565		12.09	А
	ATOM	1929	CZ			260	32.170	40.593	6.355		12.78	Α
	ATOM	1930	C			260	34.627		2.773		11.53	А
55	ATOM	1931	0			260	35.507	44.076	3.222		11.50	Α
	0.,		-		- •							

	*****	1020		en	_	0.61	22 256	42 707	0 (00	1 00 11 5	4 2
	ATOM	1932	N			261	33.356	43.707	2.680	1.00 11.54	
	ATOM	1933	CA			261	32.931	45.044	3.061	1.00 11.72	
	ATOM	1934	CB			261	32.464	45.834	1.822	1.00 12.10	
_	ATOM	1935	OG1			261	33.510	45.841	0.842	1.00 12.08	
5	MOTA	1936	CG2	THR	Α	261	32.114	47.273	2.195	1.00 12.27	
	ATOM	1937	С	THR	Α	261	31.796	45.041	4.075	1.00 11.96	5 A
	ATOM	1938	0	THR	Α	261	30.841	44.275	3.954	1.00 11.93	L A
	ATOM	1939	N	HIS	Α	262	31.909	45.918	5.065	1.00 11.38	3 A
	ATOM	1940	CA			262	30.894	46.069	6.095	1.00 11.42	
10	ATOM	1941	СВ			262	31.522	45.971	7.485	1.00 12.15	
10	ATOM	1942	CG			262	30.589	46.339	8.598	1.00 12.10	
		1942						47.547	9.065	1.00 12.10	
	ATOM			HIS			30.188				
	MOTA	1944		HIS			29.950	45.398	9.376	1.00 11.76	
4.5	MOTA	1945		HIS			29.199	46.010	10.277	1.00 12.27	
15	ATOM	1946		HIS			29.327	47.314	10.111	1.00 12.08	
	ATOM	1947	С	HIS	Α	262	30.271	47.451	5.945	1.00 11.76	5 A
	ATOM	1948	0	HIS	Α	262	30.965	48.463	6.052	1.00 10.18	3 A
	ATOM	1949	N	MET	Α	263	28.968	47.491	5.689	1.00 11.17	7 A
	ATOM	1950	CA	MET	Α	263	28.267	48.759	5.561	1.00 12.18	3 A
20	ATOM	1951	СВ			263	27.257	48.715	4.410	1.00 11.99	A 6
	ATOM	1952	CG			263	26.484	50.024	4.207	1.00 12.03	
	ATOM	1953	SD			263	25.055	49.848	3.084	1.00 13.44	
	ATOM	1954	CE			263	25.884	49.600	1.504	1.00 12.15	
	ATOM	1955	C			263	27.520	48.990	6.868	1.00 12.19	
25											
23	ATOM	1956	0			263	26.764	48.122	7.314	1.00 11.94	
	MOTA	1957	N	MET			27.740	50.143	7.492	1.00 12.61	
	MOTA	1958	CA	MET			27.038	50.454	8.730	1.00 13.99	
	ATOM	1959	CB	MET			27.631	51.712	9.366	1.00 15.28	
	ATOM	1960	CG	MET	Α	264	29.035	51.450	9.916	1.00 17.24	
30	ATOM	1961	SD	MET	Α	264	29.953	52.918	10.450	1.00 22.77	7 A
	ATOM	1962	CE	MET	Α	264	28.945	53.487	11.811	1.00 21.46	5 A
	ATOM	1963	С	MET	Α	264	25.573	50.613	8.326	1.00 14.16	5 A
	ATOM	1964	0	MET			25.275	51.066	7.220	1.00 14.15	5 A
	ATOM	1965	N			265	24.640	50.241	9.216	1.00 13.83	
35	ATOM	1966	CD			265	24.882	49.677	10.559	1.00 13.64	
	MOTA	1967	CA			265	23.203	50.312	8.938	1.00 14.21	
	ATOM	1968	CB			265	22.661	49.173	9.787	1.00 14.20	
								49.173	11.058	1.00 14.20	
	ATOM	1969	CG			265	23.456			1.00 14.50	
40	ATOM	1970	C			265	22.424	51.589	9.194		
40	ATOM	1971	0			265	21.335	51.770	8.642	1.00 14.40	
	ATOM	1972	N	PHE			22.973	52.482	10.001	1.00 14.07	
	MOTA	1973	CA			266	22.229	53.671	10.359	1.00 14.30	
	ATOM	1974	CB	PHE	Α	266	22.185	53.727	11.889	1.00 12.76	
	ATOM	1975	CG	PHE	Α	266	21.650	52.451	12.517	1.00 13.20) A
4 5	ATOM	1976	CD1	PHE	Α	266	22.244	51.907	13.655	1.00 12.53	3 A
	ATOM	1977		PHE			20.555	51.792	11.957	1.00 12.83	3 A
	ATOM	1978		PHE			21.755	50.723	14.224	1.00 13.38	
	ATOM	1979		PHE			20.055	50.610	12.515	1.00 12.47	
	ATOM	1980	CZ			266	20.655	50.013	13.651	1.00 12.49	
50								55.025		1.00 14.18	
50	ATOM	1981	С			266	22.600		9.743		
	ATOM	1982	0	PHE			23.519	55.139	8.930	1.00 14.66	
	ATOM	1983	N	TYR			21.841	56.038	10.142	1.00 14.48	
	ATOM	1984	CA	TYR			21.956	57.413	9.655	1.00 14.39	
	MOTA	1985	CB	TYR			20.829	58.232	10.294	1.00 15.80	
55	ATOM	1986	CG	TYR	A	267	20.885	59.729	10.094	1.00 16.29) A

	ATOM	1987	CD1	TYR	A	267		.538	60.310		877		17.30	А
	ATOM	1988	CE1	TYR	Α	267	20	.534	61.705	8.	717		17.59	А
	ATOM	1989	CD2	TYR	Α	267	21	.239	60.571	11.	149	1.00	16.80	Α
	ATOM	1990	CE2	TYR	Α	267	21	.242	61.954	11.	001	1.00	17.38	A
5	ATOM	1991	CZ	TYR	Α	267	20	.887	62.514	9.	789	1.00	18.05	A
	ATOM	1992	ОН	TYR	Α	267	20	.876	63.883	9.	659	1.00	18.70	A
	ATOM	1993	С	TYR			23	.293	58.120	9.	861	1.00	14.81	Α
	ATOM	1994	Ō	TYR				. 699	58.943		035	1.00	13.98	А
	ATOM	1995	N			268		977	57.810		955	1.00	14.04	А
10	ATOM	1996	CA	SER				.247	58.465		242		14.27	А
10	ATOM	1997	СВ	SER				.980	59.724		075		14.25	А
	ATOM	1998	OG	SER				5.173	60.276		600		14.87	А
	ATOM	1999	C			268		5.230	57.559		972		13.84	A
	ATOM	2000	0			268		.871	56.468		426		13.95	A
15		2000	N			269		.477	58.011		072		13.39	A
15	ATOM							.503	57.255		773		12.49	A
	ATOM	2002	CA			269		.861	57.390		066		11.88	A
	ATOM	2003	CB			269					840		11.45	A
	ATOM	2004	CG			269		.310	58.820				10.84	A
20	ATOM	2005	CD1	TYR				728	59.623		903			
20	ATOM	2006	CE1	TYR				.110	60.956		698		12.04	A
	MOTA	2007		TYR				.288	59.378		560		11.68	A
	ATOM	2008	CE2	TYR				.666	60.704		343		12.15	A
	ATOM	2009	CZ			269		.070	61.487		411		11.80	A
	MOTA	2010	ОН			269		.402	62.805		190		12.70	A
25	ATOM	2011	С			269		.625	57.739		218		12.89	A
	ATOM	2012	0			269		.446	57.222		974		12.77	A
	ATOM	2013	N			270		.821	58.729		607		12.89	A
	ATOM	2014	CA			270		.897	59.218		984		12.80	А
	ATOM	2015	CB			270	27	.202	60.585		151		13.50	A
30	MOTA	2016	CG	ASP	Α	270	25	.709	60.549		862		14.42	A
	ATOM	2017	OD1	ASP	Α	270	25	.112	59.453		808		14.48	A
	ATOM	2018	OD2	ASP	Α	270	25	.129	61.649	15.	.708		15.21	A
	ATOM	2019	С	ASP	Α	270	27	.312	58.179	16.	936		13.07	A
	ATOM	2020	0	ASP	Α	270	26	6.657	57.232	16.	504		12.66	Α
35	ATOM	2021	N	ILE	Α	271	27	.556	58.343	18.	230		12.62	A
	ATOM	2022	CA	ILE	Α	271	27	.082	57.360	19.	192	1.00	12.36	A
	ATOM	2023	CB	ILE	Α	271	27	.586	57.716	20.	610	1.00	11.96	A
	ATOM	2024	CG2	ILE	Α	271	27	.051	56.718	21.	634	1.00	11.64	A
	ATOM	2025	CG1	ILE	Α	271	29	.120	57.666	20.	615	1.00	12.08	A
40	ATOM	2026	CD1	ILE	Α	271	29	.774	58.239	21.	866	1.00	12.93	А
	ATOM	2027	С			271	25	.570	57.113	19.	170	1.00	12.34	A
	ATOM	2028	0			271		.131	55.966	19.	244	1.00	12.60	А
	ATOM	2029	N			272		.754	58.172	19.	049	1.00	12.54	А
	ATOM	2030	CD			272		.057	59.612		135		12.73	А
45	ATOM	2031	CA			272		3.305	57.943		022		12.67	А
10	ATOM	2032	СВ			272		2.737	59.352		875		12.85	А
	ATOM	2033	CG			272		3.745	60.190		610		13.34	A
	ATOM	2033	C			272		2.856	57.017		881		13.24	A
		2034	0			272		.801	56.394		966		13.14	A
50	ATOM							3.661	56.918		825		12.69	A
50	ATOM	2036	N			273			56.077		678		13.21	A
	ATOM	2037	CA			273		3.313					13.21	A
	ATOM	2038	CB			273		3.273	56.938		412			
	ATOM	2039	CG			273		2.261	58.040		.473		14.15	A A
	ATOM	2040		HIS				2.363	59.319		. 904		13.91	A
55	ATOM	2041	ND1	HIS	A	213	20	.940	57.859	14.	.121	1.00	15.41	А

									4 4 222	1 00 13 45	70
	MOTA	2042		HIS			20.273	58.979	14.333	1.00 13.45	A
	MOTA	2043	NE2	HIS			21.112	59.881	14.809	1.00 16.34	A
	MOTA	2044	С	HIS			24.233	54.876	15.457	1.00 13.37	A
	MOTA	2045	0	HIS			24.334	54.360	14.339	1.00 12.85	A
5	ATOM	2046	N	THR			24.895	54.421	16.518	1.00 13.98	Α
	MOTA	2047	CA	THR	Α	274	25.788	53.276	16.395	1.00 13.68	A
	MOTA	2048	CB	THR	Α	274	27.274	53.726	16.415	1.00 13.90	A
	MOTA	2049	OG1	THR	Α	274	27.480	54.682	17.459	1.00 13.47	A
	MOTA	2050	CG2	THR	Α	274	27.656	54.346	15.079	1.00 12.79	A
10	ATOM	2051	С	THR	Α	274	25.586	52.153	17.420	1.00 14.02	A
	ATOM	2052	0	THR			26.143	51.069	17.257	1.00 14.90	A
	ATOM	2053	N	CYS			24.795	52.390	18.466	1.00 14.38	A
	ATOM	2054	CA	CYS			24.569	51.344	19.471	1.00 14.59	A
	ATOM	2055	С	CYS			23.380	50.457	19.110	1.00 14.87	А
15	ATOM	2056	0	CYS			23.303	49.298	19.525	1.00 14.62	Α
10	ATOM	2057	СВ	CYS			24.331	51.965	20.851	1.00 15.94	Α
	ATOM	2058	SG	CYS			22.592	52.094	21.403	1.00 16.28	А
	ATOM	2059	N	GLY			22.456	51.017	18.337	1.00 14.95	А
	ATOM	2060	CA	GLY			21.266	50.290	17.940	1.00 15.51	A
20			CA			276	20.345	51.178	17.124	1.00 15.57	A
20	ATOM	2061					20.714	52.312	16.811	1.00 15.76	A
	ATOM	2062	0			276	19.131	50.704	16.783	1.00 14.99	A
	ATOM	2063	И			277	18.615	49.379	17.174	1.00 14.33	A
	MOTA	2064	CD			277				1.00 15.17	A
25	ATOM	2065	CA	PRO			18.129	51.430	15.993	1.00 15.74	A
25	MOTA	2066	СВ			277	17.105	50.343	15.667		A
	MOTA	2067	CG			277	17.128	49.514	16.907	1.00 14.95	
	MOTA	2068	С			277	17.462	52.650	16.626	1.00 15.44	A
	MOTA	2069	0			277	16.880	53.468	15.915	1.00 15.14	A
0.0	MOTA	2070	N	ASP			17.536	52.777	17.948	1.00 15.72	A
30	MOTA	2071	CA	ASP			16.887	53.899	18.628	1.00 16.37	A
	ATOM	2072	CB	ASP			16.015	53.382	19.778	1.00 16.45	A
	MOTA	2073	CG	ASP			15.089	54.449	20.333	1.00 17.33	A
	ATOM	2074		ASP			15.253	55.635	19.972	1.00 17.28	A
	ATOM	2075	OD2	ASP			14.201	54.102	21.134	1.00 16.81	A
35	MOTA	2076	С			278	17.865	54.934	19.174	1.00 16.20	A
	ATOM	2077	0	ASP			18.482	54.729	20.219	1.00 15.93	A
	MOTA	2078	N			279	18.003	56.073	18.480	1.00 16.64	A
	MOTA	2079	CD	PRO	Α	279	17.320	56.464	17.234	1.00 16.82	A
	ATOM	2080	CA	PRO	Α	279	18.921	57.126	18.928	1.00 17.09	A
40	ATOM	2081	CB	PRO	Α	279	18.850			1.00 16.72	А
	ATOM	2082	CG	PRO	Α	279	17.464	57.968	17.253	1.00 17.23	Α
	MOTA	2083	С	PRO	Α	279	18.571	57.723	20.291	1.00 17.34	Α
	ATOM	2084	0	PRO	Α	279	19.447	58.221	20.996	1.00 17.37	Α
	ATOM	2085	N	LYS	Α	280	17.296	57.676	20.667	1.00 17.71	Α
45	ATOM	2086	CA	LYS	Α	280	16.887	58.217	21.960	1.00 18.13	Α
	ATOM	2087	СВ			280	15.363	58.214	22.097	1.00 19.17	Α
	ATOM	2088	CG			280	14.871	58.892	23.370	1.00 21.45	Α
	ATOM	2089	CD			280	13.358	58.837	23.491	1.00 23.26	Α
	ATOM	2090	CE			280	12.876	57.413	23.710	1.00 26.06	A
50	ATOM	2091	NZ			280	13.446	56.812	24.960	1.00 28.16	Α
50	ATOM	2091	C			280	17.500	57.389	23.081	1.00 17.62	A
	ATOM	2092	0			280	17.784	57.902	24.165	1.00 18.50	A
						281	17.704	56.102	22.819	1.00 17.07	A
	ATOM	2094	N Cn				18.299	55.215	23.810	1.00 17.07	A
==	ATOM	2095	CA			281		53.748	23.510	1.00 10.41	A
55	MOTA	2096	CB	VAL	Α	281	17.845	55.148	23.333	1.00 17.30	^

									A	1 00 10 -1	_
		MOTA	2097		VAL A		18.577	52.827	24.568	1.00 16.56	A
		MOTA	2098	CG2	VAL A	281	16.334	53.631	23.793	1.00 16.45	Α
		MOTA	2099	С	VAL A	281	19.824	55.281	23.705	1.00 16.33	Α
		ATOM	2100	0	VAL A	281	20.522	55.440	24.705	1.00 15.54	Α
	5	ATOM	2101	N	CYS A	282	20.337	55.163	22.484	1.00 15.75	Α
	•	ATOM	2102	CA	CYS A		21.780	55.198	22.266	1.00 16.11	А
		ATOM	2103	С	CYS A		22.426	56.483	22.773	1.00 16.13	Α
		ATOM	2104	Ö	CYS A		23.551	56.463	23.282	1.00 16.09	Α
		ATOM	2105	СВ	CYS A		22.096	55.029	20.780	1.00 15.93	A
	10	ATOM	2106	SG	CYS A		21.730	53.383	20.093	1.00 16.46	А
	10	ATOM	2100	N	CYS A		21.720	57.600	22.640	1.00 15.64	A
							22.271	58.870	23.088	1.00 16.03	A
		ATOM	2108	CA	CYS A			58.830	24.582	1.00 16.35	A
		ATOM	2109	C	CYS A		22.575			1.00 16.19	A
	4 =	MOTA	2110	0	CYS A		23.480	59.514	25.061		
	15	MOTA	2111	CB	CYS A		21.309	60.023	22.785	1.00 17.15	A
		ATOM	2112	SG	CYS A		22.169	61.628	22.845	1.00 17.80	A
		ATOM	2113	N	GLN A		21.820	58.019	25.315	1.00 16.07	A
		MOTA	2114	CA	GLN A		22.013	57.898	26.754	1.00 16.46	A
		MOTA	2115	CB	GLN A	284	20.823	57.169	27.382	1.00 16.54	A
	20	ATOM	2116	CG	GLN A	284	19.513	57.918	27.223	1.00 17.45	Α
Ü		ATOM	2117	CD	GLN A	284	18.334	57.129	27.737	1.00 17.46	Α
171		ATOM	2118	OE1	GLN A	284	18.291	56.743	28.907	1.00 18.95	Α
1,3 E		ATOM	2119	NE2	GLN A	284	17.367	56.880	26.865	1.00 18.72	Α
		ATOM	2120	С	GLN A		23.300	57.168	27.095	1.00 16.25	Α
	25	ATOM	2121	0	GLN A		23.680	57.077	28.262	1.00 16.37	Α
14		ATOM	2122	N	PHE A		23.978	56.654	26.075	1.00 15.74	A
197		ATOM	2123	CA	PHE A		25.216	55.938	26.309	1.00 15.95	A
E:		ATOM	2124	СВ	PHE P		25.060	54.495	25.821	1.00 16.02	А
		ATOM	2125	CG	PHE P		24.080	53.705	26.652	1.00 16.47	А
	30	ATOM	2126		PHE P		24.487	53.090	27.832	1.00 16.88	А
1,4	30		2127		PHE A		22.732	53.660	26.306	1.00 17.20	A
		ATOM	2128		PHE A		23.566	52.444	28.664	1.00 17.28	A
i		ATOM			PHE A		21.799	53.017	27.129	1.00 18.31	A
		ATOM	2129				22.220	52.409	28.312	1.00 18.03	A
i=	25	ATOM	2130	CZ	PHE P			56.637	25.730	1.00 15.58	A
7	35	ATOM	2131	C	PHE A		26.439		25.730	1.00 15.38	A
		ATOM	2132	0	PHE A		27.481	56.025		1.00 15.20	A
		MOTA	2133	N	ASP F		26.282	57.938	25.496	1.00 15.00	A
		MOTA	2134	CA	ASP F		27.365	58.802	25.039	1.00 15.26	A
	40	MOTA	2135	СВ	ASP F		26.926	59.691	23.875		
	40	MOTA	2136		ASP F		28.043			1.00 15.24	A
		MOTA	2137		ASP F		29.086	60.683	24.074	1.00 15.09	A
		MOTA	2138	OD2	ASP F		27.876	61.247	22.331	1.00 14.65	A
		MOTA	2139	С	ASP A	286	27.543	59.644	26.296	1.00 15.45	A
		MOTA	2140	0	ASP A	286	26.896	60.677	26.468	1.00 15.12	A
	45	MOTA	2141	N	PHE A	287	28.414	59.189	27.186	1.00 15.64	A
		ATOM	2142	CA	PHE A	287	28.606	59.873	28.449	1.00 16.17	А
		MOTA	2143	CB	PHE F	287	29.340	58.939	29.411	1.00 15.78	А
		MOTA	2144	CG	PHE A	287	28.596	57.652	29.661	1.00 15.58	А
		ATOM	2145		PHE A		28.811	56.538	28.856	1.00 14.97	Α
	50	ATOM	2146		PHE A		27.614	57.584	30.646	1.00 15.57	Α
	- •	ATOM	2147		PHE A		28.056	55.378	29.025	1.00 15.24	Α
		ATOM	2148		PHE A		26.852	56.428	30.821	1.00 15.22	А
		ATOM	2149	CZ	PHE A		27.074	55.323	30.008	1.00 15.06	А
		ATOM	2150	C	PHE A		29.236	61.258	28.424	1.00 17.09	A
	55			0	PHE P		29.471	61.850	29.471	1.00 16.59	A
		ATOM	2151	U	EUP P	201	23.411	01.030	60.711	1.00 10.00	• •

	ATOM	2152	N	LYS	А	288	29.493	61.788	27.232	1.00 17.81	Α
	ATOM	2153	CA			288	30.053	63.131	27.139	1.00 17.75	А
	MOTA	2154	СВ			288	30.972	63.261	25.912	1.00 17.97	Α
	ATOM	2155	CG			288	31.716	64.598	25.846	1.00 17.53	Α
5	ATOM	2156	CD	LYS			32.660	64.693	24.649	1.00 16.44	А
•	ATOM	2157	CE	LYS			33.438	66.003	24.686	1.00 17.49	Α
	ATOM	2158	NZ			288	34.386	66.162	23.535	1.00 17.95	А
	ATOM	2159	C			288	28.900	64.132	27.025	1.00 18.16	Α
	ATOM	2160	0			288	29.121	65.337	26.953	1.00 17.87	А
10	ATOM	2161	N			289	27.667	63.634	27.027	1.00 19.07	А
10	ATOM	2162	CA			289	26.507	64.513	26.891	1.00 20.41	А
	ATOM	2163	CB			289	25.549	63.961	25.830	1.00 19.03	A
	ATOM	2164	CG			289	26.173	63.698	24.468	1.00 17.69	A
	ATOM	2165	CD	ARG			25.092	63.465	23.431	1.00 17.66	A
15	ATOM	2166	NE	ARG			25.623	63.059	22.132	1.00 16.20	A
15	ATOM	2167	CZ			289	25.023	63.492	20.970	1.00 16.63	A
	ATOM	2168		ARG			24.132	64.353	20.949	1.00 15.95	A
	ATOM	2169		ARG			25.660	63.052	19.831	1.00 15.30	A
		2109	C			289	25.711	64.769	28.171	1.00 22.16	A
20	ATOM ATOM	2170	0			289	24.487	64.884	28.118	1.00 22.10	A
20		2171	N	MET			26.381	64.881	29.312	1.00 24.35	A
	ATOM					290	25.653	65.113	30.556	1.00 24.33	A
	ATOM	2173	CA			290	26.232	64.241	31.677	1.00 27.03	A
	MOTA	2174	CB					62.749	31.441	1.00 27.88	A
25	ATOM	2175	CG			290 290	26.008 26.517	61.649	32.787	1.00 27.88	A
25	ATOM	2176	SD			290	28.257	61.423	32.707	1.00 28.24	A
	ATOM	2177	CE					66.577	30.999	1.00 26.78	A
	ATOM	2178	С			290	25.566			1.00 28.04	A
	MOTA	2179	0			290	24.848	66.894	31.953 30.311	1.00 26.38	A
20	ATOM	2180	N			291	26.280	67.469		1.00 25.38	A
30	ATOM	2181	CA			291	26.213	68.879	30.666		
	ATOM	2182	C			291	27.500	69.688	30.697	1.00 24.62 1.00 23.97	A A
	ATOM	2183	0			291	27.636	70.675	29.967		
	ATOM	2184	N			292	28.442	69.282	31.546	1.00 22.93	A A
25	ATOM	2185	CA			292	29.711	69.989	31.691	1.00 21.82	
35	ATOM	2186	CB			292	30.584	69.289	32.734	1.00 22.87	A
	ATOM	2187	OG			292	30.945	67.989	32.304	1.00 23.87	A
	ATOM	2188	C			292	30.512	70.161	30.399	1.00 20.97	A
	MOTA	2189	0			292	31.381	71.032	30.321	1.00 19.65	A
40	MOTA	2190	N			293	30.231	69.333	29.394	1.00 19.55	A
4 0	ATOM	2191	CA			293	30.942	69.418	28.119	1.00 19.27	A
	MOTA	2192	CB			293	31.173	68.021	27.530	1.00 19.08	A
	ATOM	2193	CG			293	32.119	67.173	28.329	1.00 18.85	A
	ATOM	2194		PHE			31.641	66.288	29.286	1.00 19.32	A
	ATOM	2195		PHE			33.491	67.266	28.127	1.00 18.76	A
4 5	ATOM	2196		PHE			32.517	65.501	30.032	1.00 19.71	A
	ATOM	2197		PHE			34.379	66.487	28.866	1.00 19.38	Α
	MOTA	2198	CZ			293	33.892	65.601	29.821	1.00 19.67	A
	ATOM	2199	С			293	30.204	70.271	27.091	1.00 19.29	Α
	MOTA	2200	0			293	30.661	70.420	25.954	1.00 17.76	Α
50	MOTA	2201	N			294	29.063	70.825	27.489	1.00 19.35	Α
	MOTA	2202	CA	GLY	Α	294	28.295	71.652	26.576	1.00 19.35	Α
	ATOM	2203	С	GLY	Α	294	27.538	70.859	25.525	1.00 19.82	Α
	ATOM	2204	0	GLY	Α	294	27.101	71.414	24.515	1.00 20.44	Α
	ATOM	2205	N	LEU	Α	295	27.386	69.558	25.757	1.00 19.26	А
55	ATOM	2206	CA			295	26.670	68.694	24.826	1.00 18.91	Α

	ATOM	2207	CB	LEU	Α	295	27.576	67.555	24.344	1.00 19.27	А
	ATOM	2208	CG	LEU			28.849	67.928	23.578	1.00 19.09	A
	ATOM	2209	CD1	LEU	Α	295	29.678	66.677	23.321	1.00 19.10	А
	ATOM	2210	CD2	LEU	Α	295	28.479	68.607	22.261	1.00 19.06	А
5	ATOM	2211	С	LEU	Α	295	25.448	68.108	25.525	1.00 19.05	Α
	MOTA	2212	0	LEU	Α	295	25.417	68.003	26.749	1.00 19.27	A
	MOTA	2213	N			296	24.445	67.731	24.742	1.00 19.20	A
	ATOM	2214	CA	SER	Α	296	23.229	67.149	25.294	1.00 19.84	A
	ATOM	2215	CB	SER	Α	296	22.259	68.252	25.732	1.00 19.56	А
10	MOTA	2216	OG	SER	Α	296	21.869	69.062	24.637	1.00 19.91	A
	MOTA	2217	С	SER	Α	296	22.564	66.263	24.253	1.00 19.90	Α
	ATOM	2218	0	SER	Α	296	23.019	66.184	23.110	1.00 19.47	A
	ATOM	2219	N	CYS			21.488	65.597	24.661	1.00 20.34	A
	ATOM	2220	CA	CYS	Α	297	20.741	64.713	23.776	1.00 20.55	A
15	ATOM	2221	С			297	19.469	65.383	23.268	1.00 21.46	А
	ATOM	2222	0			297	18.579	65.721	24.047	1.00 22.22	A
	ATOM	2223	СВ			297	20.394	63.415	24.509	1.00 20.17	A
	ATOM	2224	SG			297	21.832	62.324	24.724	1.00 19.68	A
	ATOM	2225	N			298	19.368	65.583	21.946	1.00 21.80	A
20	ATOM	2226	CD			298	20.350	65.215	20.909	1.00 21.82	А
	ATOM	2227	CA			298	18.192	66.219	21.346	1.00 22.23	A
	ATOM	2228	CB			298	18.583	66.349	19.875	1.00 22.37	А
	ATOM	2229	CG			298	19.498	65.187	19.664	1.00 22.37	A
	ATOM	2230	C			298	16.892	65.441	21.541	1.00 22.49	А
25	ATOM	2231	0			298	15.805	66.004	21.411	1.00 22.25	А
20	ATOM	2232	N			299	17.006	64.153	21.856	1.00 22.24	А
	ATOM	2233	CA			299	15.829	63.316	22.069	1.00 22.85	А
	ATOM	2233	CB			299	16.174	61.845	21.781	1.00 21.59	А
	ATOM	2234	CG			299	16.531	61.619	20.329	1.00 20.98	A
30		2236	CD2			299	17.846	61.653	19.747	1.00 20.85	A
30	ATOM	2237		TRP			17.691	61.495	18.351	1.00 20.88	A
	ATOM	2237	CE3			299	19.137	61.808	20.270	1.00 20.11	A
	ATOM					299	15.660	61.438	19.288	1.00 20.52	A
	ATOM	2239	CD1				16.350	61.364	18.098	1.00 20.32	A
25	ATOM	2240	NE1			299 299	18.781	61.488	17.470	1.00 21.31	A
35	ATOM	2241	CZ2	TRP			20.221	61.801	19.394	1.00 21.02	A
	ATOM	2242					20.221	61.642	18.008	1.00 20.63	A
	ATOM	2243	CH2			299	15.264	63.495	23.483	1.00 23.67	A
	ATOM	2244	С			299 299	14.364	62.767	23.903	1.00 23.41	A
40	ATOM	2245	0					64.470		1.00 24.99	A
4 0	ATOM	2246				300			25.558	1.00 25.96	A
	ATOM	2247	CA			300	15.363	64.832 65.087	25.543	1.00 23.30	A
	ATOM	2248	CB			300	13.856		24.516	1.00 27.34	A
	ATOM	2249	CG			300	13.416	66.108		1.00 29.33	A
4.	ATOM	2250	CD			300	11.914	66.327	24.577 23.468	1.00 31.29	A
45	ATOM	2251	CE			300	11.454	67.255			
	MOTA	2252	ΝZ			300	12.209	68.536	23.490	1.00 34.20	
	ATOM	2253	С			300	15.686	63.912	26.735	1.00 25.72	
	MOTA	2254	0			300	15.271	64.187	27.859	1.00 25.71	
	ATOM	2255	N			301	16.401	62.821	26.493	1.00 25.17	
50	ATOM	2256	CA			301	16.765	61.917	27.576	1.00 24.82	
	ATOM	2257	CB			301	16.254	60.484	27.323	1.00 25.15	A
	ATOM	2258		VAL			16.543	59.615	28.533	1.00 24.99	
	ATOM	2259	CG2	VAL			14.760	60.506	27.034	1.00 25.25	
	ATOM	2260	С			301	18.287		27.672	1.00 24.84	A
55	ATOM	2261	0	VAL	Α	301	18.973	61.397	26.785	1.00 24.60	A

	ATOM	2262	N	PRO	Α	302	18.834	62.476	28.756	1.00 24.68	Α
	ATOM	2263	CD	PRO			18.109	63.142	29.855	1.00 24.61	A
	ATOM	2264	CA	PRO			20.280	62.547	28.976	1.00 24.22	Α
	ATOM	2265	СВ	PRO			20.403	63.655	30.009	1.00 24.42	Α
5	ATOM	2266	CG	PRO			19.207	63.391	30.875	1.00 24.71	А
Ū	ATOM	2267	С	PRO			20.904	61.253	29.470	1.00 23.88	Α
	ATOM	2268	Ō	PRO			20.224	60.390	30.019	1.00 23.34	Α
	ATOM	2269	N			303	22.219	61.096	29.264	1.00 23.79	Α
	ATOM	2270	CD			303	23.170	61.936	28.513	1.00 23.70	А
10	ATOM	2271	CA			303	22.853	59.867	29.740	1.00 23.66	Α
10	ATOM	2272	CB			303	24.212	59.884	29.043	1.00 23.89	А
	ATOM	2273	CG	PRO			24.507	61.346	28.915	1.00 24.48	A
	ATOM	2273	C	PRO			22.968	59.964	31.258	1.00 24.01	A
	ATOM	2274	0	PRO			23.011	61.065	31.815	1.00 23.16	A
15		2275	N	ARG			22.997	58.820	31.927	1.00 24.25	A
13	MOTA						23.115	58.801	33.378	1.00 25.17	A
	ATOM	2277	CA	ARG			21.833	58.251	34.013	1.00 26.88	A
	ATOM	2278	CB	ARG			20.700	59.270	34.013	1.00 29.46	A
	ATOM	2279	CG	ARG				58.630	34.533	1.00 23.40	A
20	ATOM	2280	CD	ARG			19.390	57.784	33.491	1.00 32.28	A
20	ATOM	2281	NE	ARG			18.811		32.304	1.00 34.83	A
	ATOM	2282	CZ	ARG			18.400	58.229		1.00 36.04	A
	ATOM	2283		ARG			18.501	59.518	32.000		A
	ATOM	2284		ARG			17.886	57.386	31.419	1.00 37.33	A
25	ATOM	2285	C	ARG			24.305	57.958	33.789	1.00 24.35	A
25	ATOM	2286	0	ARG			24.503	56.858	33.276	1.00 23.88	
	ATOM	2287	N			305	25.102	58.487	34.710	1.00 23.66	A
	ATOM	2288	CA	THR			26.276	57.779	35.194	1.00 23.22	A
	ATOM	2289	СВ			305	26.918	58.528	36.375	1.00 23.98	A
20	ATOM	2290	OG1	THR			27.347	59.823	35.934	1.00 25.33	A
30	ATOM	2291	CG2	THR			28.106	57.759	36.920	1.00 23.64	A
	MOTA	2292	С			305	25.866	56.385	35.643	1.00 22.81	A
	MOTA	2293	0			305	24.868	56.224	36.346	1.00 22.49	A
	MOTA	2294	N			306	26.628	55.378	35.227	1.00 22.00	A
	MOTA	2295	CA			306	26.327	54.000	35.597	1.00 21.93	A
35	MOTA	2296	СВ			306	27.073	52.991	34.696	1.00 21.54	A
	MOTA	2297	CG2	ILE			26.633	51.565	35.035	1.00 21.28	A
	MOTA	2298	CG1	ILE			26.803	53.301	33.220	1.00 20.62	A
	MOTA	2299	CD1			306	25.337	53.240	32.822	1.00 20.14	A
	MOTA	2300	С	ILE	Α	306	26.734	53.747	37.046	1.00 22.59	A
40	MOTA	2301	0			306	27.800	54.180	37.487	1.00 21.84	Α
	ATOM	2302	N			307	25.875	53.044	37.779	1.00 23.35	A
	MOTA	2303	CA	SER	Α	307	26.132	52.716	39.178	1.00 24.13	A
	MOTA	2304	СВ	SER	Α	307	25.371	53.675	40.094	1.00 23.72	A
	ATOM	2305	OG	SER	A	307	23.973	53.550	39.900	1.00 23.17	Α
45	MOTA	2306	С	SER	Α	307	25.659	51.292	39.443	1.00 24.92	А
	MOTA	2307	0	SER	Α	307	24.927	50.721	38.639	1.00 24.44	Α
	ATOM	2308	N	ASP	Α	308	26.079	50.719	40.567	1.00 26.08	Α
	MOTA	2309	CA	ASP	Α	308	25.669	49.363	40.922	1.00 27.21	A
	ATOM	2310	СВ	ASP	Α	308	26.296	48.955	42.257	1.00 28.74	Α
50	ATOM	2311	CG			308	27.785	48.707	42.148	1.00 30.44	А
	ATOM	2312		ASP			28.394	49.166	41.160	1.00 31.50	А
	ATOM	2313		ASP			28.351	48.060	43.055	1.00 32.13	Α
	ATOM	2314	C			308	24.152	49.325	41.040	1.00 26.58	А
	ATOM	2315	Ō			308	23.522	48.284	40.858	1.00 26.24	А
55	ATOM	2316	N			309	23.582	50.487	41.331	1.00 26.55	А
-											

											_
	ATOM	2317	CA	GLN			22.147	50.651	41.504	1.00 26.62	A
	ATOM	2318	СВ	GLN			21.899	51.936	42.306	1.00 28.47	A
	ATOM	2319	CG	GLN			20.524	52.551	42.178	1.00 30.34	A
_	ATOM	2320	CD	GLN			20.373	53.799	43.039	1.00 32.12	A
5	MOTA	2321		GLN			19.548	54.672	42.757	1.00 32.61	A
	MOTA	2322	NE2				21.166	53.881	44.102	1.00 32.15	A
	ATOM	2323	С	GLN			21.331	50.654	40.210	1.00 25.60	A
	ATOM	2324	0	GLN			20.210	50.148	40.189	1.00 26.28	A
4.0	ATOM	2325	N	ASN			21.881	51.205	39.131	1.00 23.60	A
10	ATOM	2326	CA	ASN			21.142	51.251	37.870	1.00 22.29	A
	ATOM	2327	CB	ASN			20.991	52.700	37.388	1.00 21.33	A
	MOTA	2328	CG	ASN			22.324	53.345	37.034	1.00 20.86	A
	MOTA	2329		ASN			23.260	52.670	36.606	1.00 19.45	A
	MOTA	2330		ASN			22.407	54.661	37.195	1.00 20.66	A
15	ATOM	2331	С	ASN			21.744	50.429	36.734	1.00 21.87	A
	ATOM	2332	0	ASN			21.162	50.356	35.656	1.00 21.72	A
	MOTA	2333	N	VAL			22.897	49.811	36.970	1.00 21.87	A
	MOTA	2334	CA	VAL			23.572	49.035	35.929	1.00 21.29	A
	ATOM	2335	СВ	VAL			24.907	48.445	36.446	1.00 21.36	A
20	ATOM	2336		VAL			24.639	47.333	37.448	1.00 21.68	A
	MOTA	2337		VAL			25.746	47.940	35.270	1.00 20.87	A
	ATOM	2338	С			311	22.741	47.912	35.302	1.00 21.68	A
	ATOM	2339	0			311	22.857	47.652	34.104	1.00 20.40	A
05	ATOM	2340	N			312	21.906	47.247	36.095	1.00 20.96	A
25	ATOM	2341	CA			312	21.083	46.167	35.557	1.00 21.12	A
	MOTA	2342	CB			312	20.368	45.424	36.692	1.00 21.66	A
	ATOM	2343	С			312	20.065	46.698	34.552	1.00 21.29	A A
	ATOM	2344	0			312	19.860	46.103	33.493	1.00 21.31	
20	ATOM	2345	N			313	19.431	47.821	34.885	1.00 21.28	A
30	ATOM	2346	CA			313	18.431	48.434	34.014	1.00 21.25	A A
	ATOM	2347	CB			313	17.637	49.478	34.785	1.00 20.73 1.00 21.41	A
	ATOM	2348	С			313	19.078	49.077	32.789 31.679	1.00 21.41	A
	ATOM	2349	0			313	18.547	49.003 49.722	33.000	1.00 20.33	A
25	ATOM	2350	N			314	20.218		31.901	1.00 21.33	A
35	ATOM	2351	CA			314	20.934	50.365 51.139	32.444	1.00 21.63	A
	ATOM	2352	CB			314	22.138 21.790	52.300	33.368	1.00 21.03	A
	ATOM	2353	CG			314 314	21.790	53.566	32.596	1.00 22.71	A
	ATOM	2354	CD NE			314	20.076	53.563	32.081	1.00 23.17	A
40	ATOM	2355					19.589	54.488	31.260	1.00 23.56	A
40	ATOM	2356 2357	CZ	ARG		314	20.357	55.490	30.854	1.00 24.71	A
	ATOM	2358		ARG			18.330	54.422	30.855	1.00 23.76	A
	ATOM					314	21.406	49.299	30.911	1.00 21.67	А
	ATOM	2359 2360	С			314	21.304	49.476	29.695	1.00 21.54	A
15	ATOM		O N			315	21.912	48.190	31.441	1.00 21.71	A
45	ATOM	2361	N				22.399	47.088	30.612	1.00 22.55	A
	ATOM	2362	CA			315 315	23.062	46.016	31.481	1.00 21.53	A
	ATOM	2363	CB				24.246	46.507	32.082	1.00 21.43	A
	ATOM	2364	OG			315	21.266	46.461	29.815	1.00 23.17	A
50	ATOM	2365	С			315 315	21.200	46.461	28.637	1.00 23.17	A
50	ATOM	2366 2367	O N			316	20.118	46.287	30.459	1.00 23.47	A
	ATOM		N CA			316	18.971	45.694	29.789	1.00 24.11	A
	ATOM	2368 2369	CA			316	17.790	45.597	30.759	1.00 24.11	A
	ATOM		CB CG			316	16.723	44.632	30.733	1.00 28.47	A
55	ATOM	2370		ASP			17.060	43.467	29.973	1.00 29.91	A
<i>JJ</i>	ATOM	2371	ODI	HOP	А	210	17.000	43.407	27.7.5	1.00 20.01	••

		ATOM	2372	OD2	ASP A	316	1	5.544	45.037	30.226	1.00	29.93	A
		MOTA	2373	С	ASP A		1	8.604	46.543	28.573	1.00	23.57	А
		ATOM	2374	0	ASP A			8.309	46.012	27.502		23.16	А
		ATOM	2375	N	LEU A			8.635	47.863	28.737		22.39	А
	5	ATOM	2376	CA	LEU A			8.321	48.769	27.637		21.62	А
	•	ATOM	2377	CB	LEU A	-		8.253	50.217	28.132		22.62	A
		ATOM	2378	CG	LEU A			6.882	50.779	28.506		23.63	A
		ATOM	2379		LEU A			7.055	52.191	29.061		24.97	A
		ATOM	2380		LEU A			5.978	50.796	27.281		23.92	А
	10	ATOM	2381	C	LEU A			9.364	48.682	26.529		20.23	A
	10	ATOM	2382	0	LEU A			9.024	48.571	25.352		19.59	A
		ATOM	2383	N	LEU A			0.634	48.735	26.915		19.08	A
		ATOM	2384	CA	LEU A			1.726	48.690	25.948		18.36	A
		ATOM	2385	CB	LEU A			3.061	48.959	26.647		17.32	A
	15	ATOM	2386	CG	LEU A			4.279	49.101	25.727		17.28	A
	10	ATOM	2387		LEU A			4.040	50.232	24.732		16.94	A
		ATOM	2388		LEU A			5.527	49.370	26.563		16.17	A
		ATOM	2389	C	LEU A			1.797	47.361	25.208		18.02	A
41 77€;		ATOM	2390	0	LEU A			1.841	47.326	23.977		17.93	A
ine.	20	ATOM	2391	N	VAL A			1.816	46.265	25.958		17.30	A
	20	ATOM	2392	CA	VAL A			1.883	44.948	25.343		17.29	A
		ATOM	2393	CB	VAL A			1.822	43.835	26.408		17.01	A
		ATOM	2394		VAL A			1.644	42.479	25.742		17.97	A
		ATOM	2395		VAL A			3.103	43.843	27.232		17.03	A
	25	ATOM	2396	C	VAL A			0.743	44.768	24.345		16.94	A
	20	ATOM	2397	0	VAL A			0.925	44.167	23.289		17.15	A
1,37		ATOM	2398	N	ASP A			9.571	45.301	24.671		16.74	A
		ATOM	2399	CA	ASP A			8.422	45.186	23.776		16.82	A
11 11		ATOM	2400	CB	ASP A			7.181	45.794	24.433		18.14	A
	30	ATOM	2401	CG	ASP A			5.978	45.788	23.521		17.78	A
t [1]	00	ATOM	2402		ASP A			5.529	46.885	23.129		18.82	A
mun. Tunni		ATOM	2403		ASP A			5.482	44.690	23.195		19.23	A
l-4		ATOM	2404	C	ASP A			8.717	45.878	22.444		16.65	A
		ATOM	2405	0	ASP A			8.351	45.380	21.379		15.66	A
fires:	35	ATOM	2406	N	GLN A			9.377	47.031	22.508		16.01	A
	00	ATOM	2407	CA	GLN A			9.741	47.762	21.297		15.56	А
		ATOM	2408	СВ	GLN A			0.367	49.113	21.652		15.14	A
		ATOM	2409	CG	GLN A			9.358	50.150	22.095		15.99	А
		ATOM	2410	CD	GLN A			8.322	50.421	21.027		16.42	А
	40	ATOM	2411		GLN A			8.652	50.847	19.917		15.10	А
		ATOM	2412		GLN A			7.060	50.170	21.352		16.60	А
		ATOM	2413	С	GLN A			0.742	46.937	20.501		15.56	А
		ATOM	2414	0	GLN A			0.632	46.816	19.280		15.19	А
		ATOM	2415	N	TRP A			1.722	46.372	21.203		15.41	А
	45	ATOM	2416	CA	TRP A			2.742	45.550	20.565		15.95	А
		ATOM	2417	СВ	TRP A			3.751	45.031	21.594		15.32	А
		ATOM	2418	CG	TRP A			4.698	46.063	22.138		16.14	А
		ATOM	2419		TRP A			5.591	45.900	23.246		16.10	А
		ATOM	2420		TRP A			6.331	47.097	23.369		16.22	А
	50	ATOM	2421		TRP A			5.839	44.856	24.148		16.86	А
		ATOM	2422		TRP A			4.922	47.316	21.649		16.34	A
		ATOM	2423		TRP A			5.904	47.945	22.382		16.27	A
		ATOM	2424		TRP A			7.303	47.280	24.360		16.63	A
		ATOM	2425		TRP A			6.807	45.037	25.134		16.10	A
	55	ATOM	2426		TRP A			7.526	46.240	25.231		16.78	A
	55	0,1	- 120	-112			2						

	ATOM	2427	С	TRP	A	322	22.136	44.356	19.834	1.00 16.03	Α
	ATOM	2428	Ō	TRP			22.475	44.088	18.681	1.00 15.82	А
	ATOM	2429	N	LYS			21.249	43.632	20.510	1.00 15.91	Α
	ATOM	2430	CA	LYS			20.624	42.466	19.897	1.00 16.68	Α
5	ATOM	2431	СВ	LYS			19.824	41.683	20.942	1.00 16.48	Α
	ATOM	2432	CG	LYS			20.741	40.900	21.882	1.00 17.56	А
	ATOM	2433	CD	LYS			19.971	40.046	22.879	1.00 19.27	Α
	ATOM	2434	CE	LYS			20.935	39.208	23.709	1.00 19.50	A
	ATOM	2435	NZ	LYS			20.226	38.348	24.692	1.00 21.53	А
10	ATOM	2436	С	LYS			19.759	42.833	18.699	1.00 16.16	А
10	ATOM	2437	0	LYS			19.619	42.046	17.766	1.00 16.35	А
	ATOM	2438	N	LYS			19.183	44.029	18.713	1.00 16.26	A
	ATOM	2439	CA	LYS			18.377	44.460	17.579	1.00 15.66	А
	ATOM	2440	CB	LYS			17.549	45.694	17.943	1.00 15.63	А
15	ATOM	2441	CG	LYS			16.381	45.363	18.866	1.00 17.11	А
13	ATOM	2442	CD	LYS			15.589	46.597	19.275	1.00 17.10	А
	ATOM	2443	CE	LYS			14.397	46.197	20.148	1.00 17.89	A
	ATOM	2444	NZ	LYS			13.676	47.384	20.691	1.00 18.13	A
	ATOM	2445	C	LYS			19.312	44.757	16.412	1.00 15.66	A
20	ATOM	2445	0	LYS			19.040	44.376	15.273	1.00 15.11	A
20	ATOM	2447	N	LYS			20.429	45.422	16.696	1.00 14.87	A
				LYS			21.391	45.733	15.643	1.00 14.73	A
	ATOM	2448	CA CB	LYS			22.545	46.579	16.198	1.00 13.74	A
	ATOM	2449		LYS			23.442	47.177	15.118	1.00 13.46	A
25	ATOM	2450	CG	LYS			24.584	48.006	15.707	1.00 13.40	A
25	MOTA	2451	CD				25.403	48.663	14.600	1.00 13.37	A
	ATOM	2452	CE	LYS		325	26.596	49.381	15.126	1.00 13.83	A
	ATOM	2453	NZ				21.938	44.422	15.120	1.00 15.45	A
	ATOM	2454	C	LYS				44.422	13.862	1.00 15.46	A
20	ATOM	2455	0			325	22.105	43.464	15.862	1.00 15.77	A
30	ATOM	2456	N			326	22.202		15.570	1.00 15.77	A
	ATOM	2457	CA	ALA			22.733	42.159		1.00 16.30	A
	ATOM	2458	CB			326	22.977	41.306	16.812	1.00 16.30	A
	MOTA	2459	C			326	21.835	41.400	14.589	1.00 16.23	A
25	MOTA	2460	0			326	22.311	40.550	13.834	1.00 16.73	A
35	ATOM	2461	N			327	20.541	41.697	14.605		
	ATOM	2462	CA			327	19.601	41.030	13.706	1.00 16.62	A
	ATOM	2463	СВ			327	18.162	41.372	14.090	1.00 17.67	A
	ATOM	2464	CG			327	17.628	40.572	15.251	1.00 19.60	A
40	MOTA	2465	CD			327	17.582	39.087	14.945	1.00 19.61	A
40	ATOM	2466		GLU			16.906	38.699	13.970	1.00 20.21	A
	MOTA	2467		GLU			18.224	38.312	15.678	1.00 19.93	A
	MOTA	2468	С			327	19.820	41.409	12.247	1.00 16.26	A
	ATOM	2469	0			327	19.375	40.705	11.341	1.00 16.58	A
	MOTA	2470	N			328	20.505	42.525	12.022	1.00 15.87	A
45	ATOM	2471	CA	LEU			20.749	42.991	10.667	1.00 14.87	A
	ATOM	2472	CB			328	20.909	44.517	10.660	1.00 14.25	A
	ATOM	2473	CG			328	19.804	45.322	11.357	1.00 14.52	А
	ATOM	2474		LEU			20.035	46.811	11.130	1.00 13.79	Α
	MOTA	2475	CD2	LEU	Α	328	18.435	44.905	10.826	1.00 14.50	Α
50	MOTA	2476	С	LEU	Α	328	21.968	42.337	10.026	1.00 14.72	Α
	MOTA	2477	0	LEU	Α	328	22.224	42.542	8.840	1.00 15.39	A
	ATOM	2478	N	TYR	Α	329	22.713	41.550	10.803	1.00 14.33	A
	ATOM	2479	CA	TYR	A	329	23.906	40.874	10.292	1.00 14.79	А
	ATOM	2480	СВ	TYR	A	329	25.164	41.451	10.953	1.00 14.59	Α
55	ATOM	2481	CG	TYR	Α	329	25.358	42.921	10.635	1.00 14.92	Α

		ATOM	2482	CD1	TYR	A 32	24.740	43.912	11.404	1.00 14.49	
		ATOM	2483		TYR .			45.262	11.075	1.00 14.49	Α
		ATOM	2484	CD2	TYR	A 329	26.107	43.322	9.526	1.00 14.27	Α
		ATOM	2485	CE2	TYR .	A 32	26.233	44.668	9.188	1.00 14.38	Α
	5	ATOM	2486	CZ	TYR .	A 32	25.608	45.632	9.966	1.00 14.49	A
		ATOM	2487	ОН	TYR .	A 32	25.722	46.963	9.632	1.00 14.95	Α
		ATOM	2488	С	TYR .	A 32	23.844	39.351	10.451	1.00 15.24	А
		ATOM	2489	0	TYR .	A 32	9 22.958	38.826	11.131	1.00 15.30	
		ATOM	2490	N	ARG .	A 330	24.792	38.649	9.833	1.00 15.25	
	10	ATOM	2491	CA	ARG .	A 330	24.797	37.189	9.841	1.00 15.68	
		ATOM	2492	CB	ARG .	A 330	25.167	36.688	8.439	1.00 15.44	А
		ATOM	2493	CG	ARG .	A 330	24.273	37.268	7.350	1.00 15.40	
		ATOM	2494	CD	ARG .	A 330	24.497	36.617	5.990	1.00 15.70	
		ATOM	2495	NE	ARG .	A 330	23.578	37.185	5.008	1.00 16.37	
	15	MOTA	2496	CZ	ARG .	A 330	23.309	36.645	3.823	1.00 17.09	
		MOTA	2497	NH1	ARG .	A 330	23.889	35.509	3.454	1.00 16.94	A
		ATOM	2498	NH2	ARG .	A 330	22.446	37.239	3.007	1.00 16.97	
		ATOM	2499	С	ARG .			36.416	10.876	1.00 16.06	
i"î		ATOM	2500	0	ARG .	A 330	25.376	35.226	11.071	1.00 16.42	
. Fi	20	ATOM	2501	N	THR .	A 33	26.586	37.053	11.528	1.00 16.07	
		ATOM	2502	CA	THR .			36.329	12.521	1.00 15.58	
1,5±3 1,5±3		ATOM	2503	CB	THR .			36.578	12.352	1.00 15.84	A
4,3 A		ATOM	2504		THR .			37.895	12.813	1.00 14.68	
		ATOM	2505		THR .			36.436	10.888	1.00 15.90	
The state of	25	MOTA	2506	С	THR .			36.735	13.938	1.00 15.84	A
Ŋ		MOTA	2507	0	THR .			37.607	14.141	1.00 15.86	
(Ti		MOTA	2508	N	ASN .			36.100	14.915	1.00 16.04	
ā;		MOTA	2509	CA	ASN .			36.403	16.318	1.00 16.70	
	•	MOTA	2510	СВ	ASN.			35.108	17.151	1.00 17.69	
H	30	ATOM	2511	CG	ASN .			34.452	17.251	1.00 19.65	
		MOTA	2512		ASN.			34.447	16.295	1.00 19.62	
		ATOM	2513		ASN .			33.876	18.416	1.00 20.32	
inerii		ATOM	2514	С	ASN .			37.373	16.837	1.00 16.36	
	25	ATOM	2515	0	ASN .			37.454	18.041	1.00 16.17	
ļ.J	35	ATOM	2516	N	VAL .			38.106	15.911	1.00 15.18	
		ATOM	2517	CA	VAL .			39.094	16.253	1.00 14.95 1.00 15.34	
		ATOM	2518	CB	VAL .			38.846	15.476 15.866	1.00 15.34	
		ATOM	2519		VAL .			39.892	15.767	1.00 15.33	
	40	ATOM	2520		VAL .			37.448	15.767		
	4 0	ATOM			VAL .			40.433	14.691	1.00 14.77	
		MOTA	2522	0	VAL .			41.361	16.823	1.00 13.87	
		ATOM	2523	N C7				42.670	16.568	1.00 13.41	
		ATOM	2524	CA	LEU .			42.860	17.494	1.00 13.41	
	45	ATOM	2525 2526	CB CG	LEU			44.140	17.337	1.00 13.89	
	40	ATOM	2527		LEU			44.123	15.992	1.00 13.03	
		ATOM	2528		LEU			44.244	18.479	1.00 13.69	
		ATOM	2529	CDZ	LEU			43.865	16.720	1.00 13.04	
		ATOM ATOM	2530	0	LEU			43.981	17.713	1.00 12.82	
	50		2530	N	LEU			44.758	15.735	1.00 12.02	
	50	ATOM ATOM	2532	CA	LEU			45.954	15.759	1.00 12.73	
		ATOM	2532	CB	LEU			46.285	14.349	1.00 12.75	
		ATOM	2534	CG	LEU			47.608	14.216	1.00 12.34	
		ATOM	2534		LEU			47.533	14.210	1.00 12.28	
	55	ATOM	2536		LEU			47.900	12.749	1.00 12.78	
	55	A I OU	2000	CDZ	710		Je.107				• •

	ATOM	2537	С	LEU	Δ	335	29.795	47.144	16.299	1.00 12.79	А
	ATOM	2538	0	LEU			28.723	47.466	15.793	1.00 13.65	А
	ATOM	2539	N	ILE			30.337	47.797	17.324	1.00 12.68	A
	ATOM	2540	CA	ILE			29.694	48.961	17.925	1.00 12.47	Α
5	ATOM	2541	СВ	ILE			29.181	48.659	19.366	1.00 11.61	А
	ATOM	2542	CG2	ILE			28.538	49.904	19.969	1.00 12.59	Α
	ATOM	2543	CG1	ILE	Α	336	28.157	47.516	19.342	1.00 12.32	Α
	ATOM	2544	CD1	ILE			26.853	47.851	18.625	1.00 12.23	Α
	ATOM	2545	С	ILE			30.679	50.127	18.003	1.00 12.15	Α
10	ATOM	2546	0	ILE	Α	336	31.429	50.253	18.965	1.00 12.42	Α
	ATOM	2547	N	PRO	Α	337	30.710	50.981	16.970	1.00 12.21	А
	ATOM	2548	CD	PRO	Α	337	30.050	50.890	15.657	1.00 11.90	Α
	MOTA	2549	CA	PRO	Α	337	31.636	52.118	17.017	1.00 12.00	Α
	MOTA	2550	СВ	PRO	Α	337	31.406	52.809	15.674	1.00 11.62	Α
15	ATOM	2551	CG	PRO	Α	337	30.989	51.687	14.776	1.00 11.75	Α
	MOTA	2552	С	PRO	Α	337	31.255	53.032	18.181	1.00 11.64	Α
	MOTA	2553	0	PRO	Α	337	30.079	53.141	18.521	1.00 12.05	Α
	ATOM	2554	N	LEU	Α	338	32.247	53.678	18.789	1.00 11.36	Α
	ATOM	2555	CA	LEU	Α	338	31.991	54.601	19.894	1.00 12.19	Α
20	MOTA	2556	CB	LEU	A	338	32.392	53.982	21.239	1.00 11.63	А
	MOTA	2557	CG	LEU	Α	338	32.104	54.867	22.461	1.00 12.93	Α
	MOTA	2558	CD1	LEU	Α	338	30.602	54.924	22.705	1.00 12.80	A
	MOTA	2559	CD2	LEU	Α	338	32.820	54.318	23.695	1.00 12.39	A
	ATOM	2560	С	LEU			32.800	55.874	19.670	1.00 12.31	Α
25	ATOM	2561	0	LEU			33.941	55.967	20.107	1.00 13.27	A
	ATOM	2562	N	GLY			32.208	56.850	18.987	1.00 12.98	A
	ATOM	2563	CA	GLY			32.922	58.092	18.734	1.00 12.65	A
	ATOM	2564	С	GLY			32.129	59.114	17.943	1.00 13.02	A
	ATOM	2565	0	GLY			30.971	58.888	17.591	1.00 13.12	A
30	ATOM	2566	N	ASP			32.768	60.245	17.660	1.00 12.52	A
	MOTA	2567	CA	ASP			32.141	61.331	16.921	1.00 12.74	A
	MOTA	2568	CB	ASP			31.162	62.075	17.831	1.00 12.87	A
	MOTA	2569	CG	ASP			30.042	62.758	17.065	1.00 13.84	A
0.5	MOTA	2570		ASP			30.240	63.114	15.881	1.00 14.29	A
35	ATOM	2571		ASP			28.961	62.954	17.662	1.00 13.88	A A
	MOTA	2572	C	ASP			33.265	62.273	16.475	1.00 12.96	A
	ATOM	2573	0	ASP			34.445	61.955	16.636	1.00 12.55 1.00 12.80	A
	ATOM	2574	N	ASP			32.903	63.432 64.397	15.935 15.466	1.00 12.80	A
40	ATOM	2575	CA	ASP			33.898			1.00 13.10	A
40	ATOM		CB	ASP			33.214	65.232	13.494	1.00 12.71	A
	ATOM	2577	CG	ASP			32.535 32.480	64.029	13.170	1.00 12.01	A
	ATOM	2578		ASP			32.460	66.153	12.796	1.00 12.47	A
	ATOM	2579 2580		ASP ASP			34.809	64.909	16.573	1.00 12.47	A
45	ATOM	2580	C	ASP			34.341	65.381	17.611	1.00 13.34	A
40	ATOM		0	PHE			36.113	64.815	16.330	1.00 12.69	A
	ATOM	2582 2583	N CA	PHE			37.127	65.274	17.265	1.00 12.79	A
	ATOM	2584	CB	PHE			37.318	66.788	17.123	1.00 12.64	A
	ATOM	2585	CG	PHE			37.856	67.209	15.779	1.00 12.64	A
50	MOTA	2586		PHE			36.992	67.542	14.737	1.00 13.03	A
50	ATOM	2586		PHE			39.230	67.258	15.551	1.00 13.03	A
	ATOM	2588		PHE			37.487	67.920	13.486	1.00 13.23	A
	ATOM ATOM	2589		PHE			39.737	67.633	14.306	1.00 13.15	A
	ATOM	2590	CZ			342	38.863	67.965	13.271	1.00 13.13	A
55	ATOM	2591	C			342	36.831	64.917	18.718	1.00 13.53	A
33	AION	2 J J L	_	1116	n	J12	50.051	0			

	ATOM	2592	0	PHE	Д	342	36.970	65.752	19.618	1.00 12.9	91 A
	ATOM	2593	N	ARG			36.428	63.669	18.937	1.00 13.1	
	ATOM	2594	CA	ARG			36.133	63.188	20.279	1.00 14.7	
	ATOM	2595	СВ	ARG			35.127	62.032	20.227	1.00 14.2	
5	ATOM	2596	CG	ARG			33.681	62.469	20.032	1.00 15.0	
5	ATOM	2597	CD	ARG			33.260	63.441	21.137	1.00 14.9	
		2598		ARG			31.833	63.745	21.098	1.00 15.2	
	ATOM		NE				30.891	63.011	21.682	1.00 15.5	
	ATOM	2599	CZ	ARG				61.916	22.360	1.00 13.9	
10	ATOM	2600		ARG			31.216		21.592	1.00 15.6	
10	ATOM	2601		ARG			29.619	63.377		1.00 13.6	
	ATOM	2602	C	ARG			37.398	62.727	20.994		
	ATOM	2603	0	ARG			38.469	62.616	20.390	1.00 14.4	
	MOTA	2604	N	PHE			37.253	62.456	22.287	1.00 16.0	
4.5	MOTA	2605	CA	PHE			38.349	62.006	23.138	1.00 16.7	
15	MOTA	2606	CB	PHE			38.863	60.647	22.662	1.00 16.4	
	MOTA	2607	CG	PHE			37.857	59.550	22.817	1.00 16.5	
	MOTA	2608		PHE			37.093	59.128	21.735	1.00 15.8	
	MOTA	2609		PHE			37.624	58.979	24.067	1.00 16.9	
	MOTA	2610		PHE			36.110	58.157	21.893	1.00 16.3	
20	MOTA	2611		PHE			36.643	58.006	24.235	1.00 16.6	
	MOTA	2612	CZ	PHE			35.883	57.595	23.144	1.00 16.7	
	MOTA	2613	С	PHE			39.484	63.009	23.223	1.00 17.7	
	MOTA	2614	0	PHE			40.659	62.659	23.087	1.00 17.6	
	ATOM	2615	N	LYS			39.110	64.259	23.478	1.00 18.9	
25	MOTA	2616	CA	LYS	Α	345	40.055	65.358	23.593	1.00 20.9	
	ATOM	2617	CB	LYS	Α	345	39.408	66.638	23.064	1.00 21.4	
	MOTA	2618	CG	LYS			40.277	67.872	23.144	1.00 22.7	
	ATOM	2619	CD	LYS			39.499	69.088	22.660	1.00 24.2	
	ATOM	2620	CE	LYS			40.312	70.360	22.774	1.00 24.7	
30	MOTA	2621	NZ	LYS			39.503	71.536	22.349	1.00 26.6	
	MOTA	2622	С	LYS			40.500	65.568	25.041	1.00 21.8	
	MOTA	2623	0	LYS			41.691	65.570	25.333	1.00 23.1	
	ATOM	2624	N	GLN	A	346	39.539	65.734	25.943	1.00 22.4	
	ATOM	2625	CA	GLN			39.835	65.967	27.353	1.00 23.2	
35	MOTA	2626	CB	GLN			38.714	66.797	27.977	1.00 24.8	
	ATOM	2627	CG	GLN			38.454	68.110	27.271	1.00 27.8	
	MOTA	2628	CD	GLN			37.092	68.679	27.605	1.00 29.7	
	MOTA	2629		GLN			36.791	68.960	28.767	1.00 32.3	
	MOTA	2630	NE2	GLN	Α	346	36.253	68.847	26.585	1.00 30.4	
40	ATOM	2631	С	GLN	А	346	40.008		28.158	1.00 22.8	
	MOTA	2632	0	GLN	Α	346	39.354	63.675	27.887	1.00 21.7	
	ATOM	2633	N	ASN			40.887	64.725	29.156	1.00 22.8	
	ATOM	2634	CA	ASN	А	347	41.121	63.566	30.012	1.00 23.2	
	ATOM	2635	CB	ASN			42.124	63.903	31.120	1.00 25.0	
45	ATOM	2636	CG	ASN			43.495	64.219	30.584	1.00 27.2	
	ATOM	2637	OD1	ASN	Α	347	44.103	63.404	29.891	1.00 28.9	
	ATOM	2638	ND2	ASN	А	347	43.999	65.410	30.902	1.00 28.8	
	MOTA	2639	С	ASN	Α	347	39.804	63.156	30.651	1.00 21.9	
	ATOM	2640	0	ASN	Α	347	39.491	61.969	30.759	1.00 21.8	33 A
50	ATOM	2641	N	THR	Α	348	39.037	64.154	31.077	1.00 20.9	
	ATOM	2642	CA	THR	A	348	37.752	63.912	31.711	1.00 20.1	
	ATOM	2643	CB	THR	A	348	37.073	65.235	32.104	1.00 21.0	
	ATOM	2644	OG1	THR	Α	348	37.007	66.100	30.961	1.00 22.0	
	ATOM	2645	CG2	THR	Α	348	37.857	65.921	33.216	1.00 21.	
55	ATOM	2646	С	THR	A	348	36.837	63.129	30.781	1.00 19.3	30 A

	ATOM	2647	0	THR	A	348	36.039	62.306	31.233	1.00 18.30	А
	ATOM	2648	N	GLU	Α	349	36.960	63.381	29.479	1.00 17.43	Α
	ATOM	2649	CA	GLU	Α	349	36.142	62.674	28.500	1.00 17.07	А
	ATOM	2650	CB	GLU	Α	349	36.267	63.306	27.110	1.00 16.61	А
5	MOTA	2651	CG			349	35.463	62.551	26.052	1.00 16.75	Α
_	ATOM	2652	CD			349	35.593	63.135	24.657	1.00 15.83	А
	ATOM	2653	OE1			349	35.037	62.529	23.717	1.00 15.90	A
	ATOM	2654	OE2			349	36.242	64.188	24.498	1.00 16.08	A
								61.207	28.423	1.00 16.51	A
10	ATOM	2655	C			349	36.554				
10	MOTA	2656	0			349	35.700	60.323	28.379	1.00 16.14	A
	MOTA	2657	N			350	37.859	60.946	28.394	1.00 16.19	A
	ATOM	2658	CA			350	38.334	59.570	28.338	1.00 16.10	A
	ATOM	2659	CB	TRP	A	350	39.864	59.509	28.341	1.00 15.20	A
	MOTA	2660	CG	TRP	A	350	40.487	59.770	27.003	1.00 15.14	A
15	MOTA	2661	CD2	TRP	Α	350	40.782	58.797	25.996	1.00 15.64	Α
	ATOM	2662	CE2	TRP	Α	350	41.322	59.490	24.888	1.00 14.56	Α
	ATOM	2663	CE3	TRP	Α	350	40.643	57.404	25.920	1.00 15.02	A
	ATOM	2664		TRP			40.850	60.983	26.481	1.00 15.56	Α
	ATOM	2665		TRP			41.352	60.821	25.212	1.00 14.85	А
20	ATOM	2666		TRP			41.719	58.837	23.718	1.00 14.95	A
20	ATOM	2667	CZ3			350	41.039	56.754	24.754	1.00 15.06	A
	ATOM	2668	CH2			350	41.570	57.471	23.669	1.00 15.38	A
										1.00 15.58	
	ATOM	2669	С			350	37.798	58.801	29.539		A
ar.	ATOM	2670	0			350	37.298	57.683	29.404	1.00 15.92	A
25	ATOM	2671	N			351	37.901	59.411	30.714	1.00 17.32	A
	MOTA	2672	CA			351	37.428	58.774	31.937	1.00 18.70	A
	ATOM	2673	CB			351	37.735	59.641	33.162	1.00 19.65	А
	ATOM	2674	CG	ASP	Α	351	39.210	59.706	33.481	1.00 21.48	A
	ATOM	2675	OD1	ASP	Α	351	39.918	58.701	33.264	1.00 22.62	A
30	ATOM	2676	OD2	ASP	Α	351	39.656	60.762	33.970	1.00 23.82	A
	ATOM	2677	С	ASP	Α	351	35.938	58.481	31.931	1.00 18.28	А
	ATOM	2678	0	ASP	Α	351	35.519	57.360	32.238	1.00 18.60	А
	ATOM	2679	N			352	35.134	59.484	31.589	1.00 18.03	А
	ATOM	2680	CA			352	33.691	59.309	31.606	1.00 17.92	Α
35	ATOM	2681	CB			352	32.958	60.655	31.351	1.00 18.50	A
00	ATOM	2682		VAL			32.882	60.956	29.862	1.00 18.78	A
		2683		VAL			31.578	60.619	31.986	1.00 19.34	A
	ATOM									1.00 19.34	
	ATOM	2684	C			352	33.198	58.236	30.633		A
40	ATOM	2685	0			352	32.236	57.526	30.927	1.00 16.91	A
4 0	MOTA	2686	N	GLN			33.850	58.103	29.482	1.00 16.45	A
	ATOM	2687	CA			353	33.436	57.080	28.528	1.00 15.95	A
	MOTA	2688	CB	GLN	Α	353	33.941	57.415	27.114	1.00 16.08	A
	MOTA	2689	CG	GLN	Α	353	33.384	58.719	26.529	1.00 16.37	A
	ATOM	2690	CD	GLN	Α	353	31.939	58.608	26.049	1.00 17.19	A
45	ATOM	2691	OE1	GLN	Α	353	31.114	57.935	26.666	1.00 16.64	A
	ATOM	2692		GLN			31.626	59.291	24.948	1.00 16.97	Α
	ATOM	2693	С			353	33.960	55.705	28.964	1.00 15.87	А
	ATOM	2694	0			353	33.206	54.732	28.994	1.00 16.13	A
		2695		ARG			35.242	55.627	29.317	1.00 15.43	A
50	ATOM		N				35.242	54.356	29.732	1.00 15.45	A
50	ATOM	2696	CA	ARG							
	ATOM	2697	CB	ARG			37.353	54.498	29.916	1.00 15.77	A
	ATOM	2698	CG	ARG			38.025	53.234	30.454	1.00 16.60	A
	ATOM	2699	CD	ARG			39.527	53.419	30.652	1.00 17.32	A
	MOTA	2700	NE	ARG	A	354	39.844	54.426	31.664	1.00 18.44	Α
55	ATOM	2701	CZ	ARG	Α	354	39.642	54.276	32.971	1.00 18.97	А

		ATOM	2702	NH1	ARG A	354	39.118	53.153	33.444	1.00 18.45	А
		MOTA	2703		ARG A		39.974	55.248	33.810	1.00 18.25	A
		ATOM	2704	C	ARG A		35.247	53.756	31.006	1.00 16.32	A
		ATOM	2705	Ö	ARG A		34.881	52.581	31.029	1.00 15.52	A
	5	ATOM	2706	N	VAL A		35.159	54.560	32.064	1.00 16.75	A
	5		2707		VAL A		34.639	54.079	33.342	1.00 10.73	A
		ATOM		CA							
		ATOM	2708	CB	VAL A		34.705	55.184	34.422	1.00 18.19	A
		ATOM	2709		VAL A		34.034	54.706	35.705	1.00 18.85	A
	10	ATOM	2710	CG2			36.162	55.543	34.705	1.00 18.06	A
	10	ATOM	2711	С	VAL A		33.211	53.553	33.258	1.00 17.38	A
		ATOM	2712	0	VAL A		32.913	52.457	33.742	1.00 16.87	A
		MOTA	2713	N	ASN A		32.324	54.328	32.647	1.00 16.91	A
		ATOM	2714	CA	ASN A		30.942	53.899	32.527	1.00 16.67	Α
		MOTA	2715	CB	ASN A	356	30.091	55.030	31.957	1.00 16.65	А
	15	ATOM	2716	CG	ASN A		29.787	56.091	32.994	1.00 17.54	Α
		MOTA	2717	OD1	ASN A	356	29.078	55.830	33.970	1.00 17.65	Α
		ATOM	2718	ND2	ASN A	356	30.335	57.288	32.804	1.00 15.84	A
117000		ATOM	2719	С	ASN A	356	30.803	52.630	31.696	1.00 16.96	A
		ATOM	2720	О	ASN A	356	30.013	51.749	32.035	1.00 16.52	Α
	20	ATOM	2721	N	TYR A	357	31.572	52.519	30.616	1.00 16.22	Α
J		ATOM	2722	CA	TYR A	357	31.492	51.316	29.799	1.00 16.78	A
ijTi		ATOM	2723	CB	TYR A	357	32.144	51.539	28.427	1.00 15.91	A
		ATOM	2724	CG	TYR A		31.149	52.056	27.414	1.00 14.97	Α
		ATOM	2725	CD1	TYR A		30.957	53.424	27.222	1.00 14.35	Α
5 1 1	25	ATOM	2726	CE1			29.976	53.900	26.353	1.00 14.39	Α
		ATOM	2727		TYR A		30.334	51.172	26.707	1.00 15.07	Α
191		ATOM	2728	CE2			29.347	51.634	25.842	1.00 14.68	Α
21		ATOM	2729	CZ	TYR A		29.172	52.998	25.670	1.00 14.63	A
Ţ		ATOM	2730	ОН	TYR A		28.185	53.451	24.826	1.00 14.20	A
1	30	ATOM	2731	C	TYR A		32.098	50.107	30.507	1.00 16.81	A
	00	ATOM	2732	Ö	TYR A		31.640	48.979	30.320	1.00 17.35	A
		ATOM	2733	N	GLU A		33.118	50.331	31.328	1.00 17.12	A
31 <u>-27</u> 21-22		ATOM	2734	CA	GLU A		33.720	49.223	32.067	1.00 17.90	A
9:02		ATOM	2735	СВ	GLU A		34.941	49.692	32.860	1.00 17.33	A
i'T	35	ATOM	2736	CG	GLU A		36.183	49.960	32.018	1.00 20.36	A
	50	ATOM	2737	CD	GLU A		37.376	50.366	32.867	1.00 20.30	A
		ATOM	2738	OE1			37.230	50.442	34.106	1.00 23.37	A
		ATOM	2739		GLU A		38.462	50.442	32.302	1.00 23.37	A
		ATOM	2740	C	GLU A		32.677	48.647	33.032	1.00 22.02	A
	40		2740	0			32.622	47.436	33.251	1.00 18.18	A
	40	ATOM		_	GLU A						
		MOTA	2742	N	ARG A		31.853	49.516	33.610	1.00 18.25	A
		ATOM	2743	CA	ARG A		30.816	49.067	34.540	1.00 19.06	A
		ATOM	2744	CB	ARG A		30.148	50.262	35.217	1.00 20.23	A
	45	ATOM	2745	CG	ARG A		31.040	50.962	36.213	1.00 23.21	A
	45	MOTA	2746	CD	ARG A		30.417	52.260	36.691	1.00 25.64	A
		MOTA	2747	NE	ARG A		31.326	52.987	37.572	1.00 27.54	A
		MOTA	2748	CZ	ARG A		31.389	54.312	37.640	1.00 28.87	A
		MOTA	2749		ARG A		30.592	55.052	36.876	1.00 28.85	A
	50	ATOM	2750		ARG A		32.252	54.896	38.464	1.00 29.94	A
	50	MOTA	2751	С	ARG A		29.768	48.239	33.814	1.00 18.37	Α
		MOTA	2752	0	ARG A		29.294	47.224	34.333	1.00 16.91	Α
		MOTA	2753	N	LEU A		29.407	48.675	32.611	1.00 17.62	A
		MOTA	2754	CA	LEU A		28.423	47.960	31.811	1.00 18.02	А
		MOTA	2755	CB	LEU A		28.047	48.782	30.576	1.00 17.79	A
	55	ATOM	2756	CG	LEU A	360	27.214	50.040	30.849	1.00 17.79	А

	n πΩM	2757	CD1	LEU	Δ.	360	27.164	50.912	29.602	1.00 17	80	Α
	ATOM ATOM	2758		LEU			25.807	49.639	31.282	1.00 17		A
	ATOM	2759	C			360	28.950	46.590	31.392	1.00 18		A
	ATOM	2760	Ö			360	28.222	45.599	31.446	1.00 18		A
5	ATOM	2761	N			361	30.214	46.536	30.977	1.00 17		A
9	ATOM	2762	CA			361	30.831	45.277	30.562	1.00 18		A
	ATOM	2763	CB			361	32.253	45.518	30.038	1.00 17		A
	ATOM	2764	CG			361	32.313	46.324	28.768	1.00 16		A
	ATOM	2765		PHE			33.507	46.927	28.376	1.00 17		A
10	ATOM	2766		PHE			31.188	46.481	27.967	1.00 16		A
10	ATOM	2767		PHE			33.577	47.676	27.204	1.00 15		A
	ATOM	2768	CE2	PHE			31.247	47.229	26.790	1.00 16		A
	ATOM	2769	CZ			361	32.442	47.826	26.410	1.00 17		A
	ATOM	2770	C			361	30.900	44.265	31.708	1.00 18		A
15	ATOM	2771	o			361	30.568	43.091	31.528	1.00 17		A
10	ATOM	2772	N			362	31.344	44.711	32.881	1.00 19		A
	ATOM	2773	CA			362	31.455	43.798	34.016	1.00 20		A
	ATOM	2774	СВ			362	31.992	44.516	35.258	1.00 22		A
	ATOM	2775	CG			362	32.331	43.551	36.397	1.00 25		A
20	ATOM	2776	CD			362	32.723	44.256	37.683	1.00 27		A
20	ATOM	2777		GLU			33.457	45.262	37.608	1.00 29		A
	ATOM	2778	OE2			362	32.309	43.796	38.770	1.00 29		A
	ATOM	2779	C			362	30.105	43.171	34.343	1.00 20		A
	ATOM	2780	Ö			362	30.010	41.963	34.560	1.00 20		Α
25	ATOM	2781	N			363	29.060	43.990	34.373	1.00 20		Α
	ATOM	2782	CA			363	27.730	43.485	34.676	1.00 20		Α
	ATOM	2783	СВ			363	26.734	44.636	34.814	1.00 22		Α
	ATOM	2784	CG			363	25.352	44.191	35.182	1.00 23		Α
	ATOM	2785		HIS			24.204	44.156	34.463	1.00 24		Α
30	ATOM	2786		HIS			25.043	43.673	36.421	1.00 24		Α
	ATOM	2787		HIS			23.765	43.338	36.450	1.00 24		Α
	ATOM	2788		HIS			23.233	43.620	35.274	1.00 24	.25	Α
	ATOM	2789	С			363	27.233	42.531	33.596	1.00 19	.95	Α
	ATOM	2790	0			363	26.919	41.371	33.868	1.00 19	.76	Α
35	ATOM	2791	N			364	27.164	43.029	32.368	1.00 19	.34	Α
	ATOM	2792	CA	ILE	Α	364	26.681	42.237	31.248	1.00 19	.40	Α
	ATOM	2793	СВ	ILE	Α	364	26.783	43.031	29.929	1.00 18	.87	A
	ATOM	2794	CG2	ILE	Α	364	26.359	42.149	28.751	1.00 18	.65	Α
	ATOM	2795	CG1	ILE	Α	364	25.894	44.277	30.007	1.00 19	.23	Α
40	ATOM	2796	CD1	ILE	Α	364	26.025	45.203	28.816	1.00 19	.57	Α
	ATOM	2797	С			364	27.400	40.902	31.079	1.00 19	.15	Α
	ATOM	2798	0	ILE	Α	364	26.755	39.863	30.931	1.00 19	.49	A
	ATOM	2799	N	ASN	Α	365	28.728	40.921	31.112	1.00 18	.92	Α
	MOTA	2800	CA	ASN	A	365	29.491	39.691	30.934	1.00 20	.01	Α
45	ATOM	2801	CB	ASN	Α	365	30.970	40.010	30.701	1.00 18	.96	Α
	ATOM	2802	CG	ASN	Α	365	31.189	40.886	29.481	1.00 18	.43	А
	ATOM	2803	OD1	ASN	Α	365	30.294	41.044	28.652	1.00 18		Α
	ATOM	2804	ND2	ASN	A	365	32.385	41.452	29.362	1.00 17		A
	ATOM	2805	С	ASN	Α	365	29.356	38.697	32.088	1.00 21	.35	A
50	ATOM	2806	0	ASN	Α	365	29.670	37.519	31.928	1.00 21	.12	Α
	ATOM	2807	N	SER	Α	366	28.880	39.165	33.239	1.00 22		A
	ATOM	2808	CA	SER	Α	366	28.714	38.291	34.401	1.00 24		A
	ATOM	2809	СВ	SER	Α	366	29.198	38.999	35.674	1.00 24		A
	ATOM	2810	OG			366	28.384	40.117	35.978	1.00 24		A
55	ATOM	2811	С	SER	A	366	27.264	37.843	34.577	1.00 25	. 44	A

	ATOM	2812	0	SER	Α	366	26.956	37.046	35.460	1.00	25.76	Α	
	ATOM	2813	N	GLN			26.375	38.364	33.736	1.00	26.52	Α	
	MOTA	2814	CA	GLN			24.961	38.003	33.779	1.00	27.62	Α	
	ATOM	2815	CB	GLN	Α	367	24.083	39.251	33.640	1.00	28.64	Α	
5	ATOM	2816	CG	GLN	Α	367	24.113	40.174	34.850	1.00	30.61	Α	•
	ATOM	2817	CD	GLN	Α	367	23.525	39.520	36.088	1.00	32.01	A	
	ATOM	2818	OE1	GLN	Α	367	22.341	39.176	36.119	1.00	32.79	Α	
	ATOM	2819		GLN			24.352	39.340	37.113	1.00	32.51	Α	
	ATOM	2820	С	GLN			24.665	37.033	32.636	1.00	27.49	Α	
10	ATOM	2821	0	GLN			24.335	37.447	31.524	1.00	27.23	A	
20	ATOM	2822	N	ALA			24.778	35.740	32.926	1.00	27.43	A	
	ATOM	2823	CA	ALA			24.551	34.689	31.938	1.00	27.09	A	
	ATOM	2824	CB	ALA			24.531	33.327	32.633	1.00	27.33	A	
	ATOM	2825	C	ALA			23.291	34.851	31.087	1.00	26.68	A	
15	ATOM	2826	Ö	ALA			23.311	34.568	29.889		26.56	Α	
10	ATOM	2827	N			369	22.199	35.303	31.697		26.31	Α	
	ATOM	2828	CA			369	20.942	35.464	30.970		25.66	А	
	ATOM	2829	CB			369	19.852	35.981	31.916		27.03	А	
	ATOM	2830	CG			369	20.044	37.401	32.346		27.87	А	
20	ATOM	2831		HIS			20.642	37.928	33.441		28.21	A	
20	ATOM	2832		HIS			19.610	38.471	31.594		28.33	А	
	ATOM	2833		HIS			19.932	39.597	32.207		28.26	A	
	ATOM	2834		HIS			20.559	39.295	33.330		28.33	A	
	ATOM	2835	C			369	21.059	36.375	29.744		25.04	A	
25	ATOM	2836	0			369	20.210	36.340	28.853		24.82	A	
20	ATOM	2837	N			370	22.109	37.189	29.697		24.10	A	
		2838	CA			370	22.320	38.080	28.559		22.85	A	
	MOTA					370	23.235	39.247	28.944		23.57	A	
	ATOM	2839	CB CG			370	22.533	40.365	29.669		23.73	A	
30	MOTA	2840					23.086	40.915	30.819		24.30	A	
30	MOTA	2841		PHE				40.890	29.184		24.44	A	
	ATOM	2842		PHE			21.338 22.460	41.973	31.480		24.01	A	
	ATOM	2843		PHE				41.973	29.839		24.36	A	
	ATOM	2844		PHE			20.704		30.989		23.88	A	
25	ATOM	2845	CZ			370	21.270	42.490 37.308	27.414		21.51	A	
35	ATOM	2846	C			370	22.964 22.698	37.585	26.244		20.83	A	
	ATOM	2847	0			370			27.768		19.82	A	
	ATOM	2848	N	ASN			23.806	36.339	26.789		19.02	A	
	ATOM	2849	CA	ASN			24.521	35.528			19.65	A	
40	ATOM	2850	CB	ASN			23.538	34.661	26.007		20.03	A	
40	ATOM	2851	CG	ASN			22.892	33.599	26.877		20.03	A	
	ATOM	2852		ASN			23.573	32.718	27.405		20.28	A	
	ATOM	2853		ASN			21.578	33.682	27.038 25.850		18.66		
	ATOM	2854	C			371	25.316	36.430				A	
4 -	ATOM	2855	0			371	25.340	36.229	24.633		17.96	A	
45	ATOM	2856	N			372	25.969	37.424	26.447		18.22	A	
	MOTA	2857	CA			372	26.777	38.395	25.721		18.11	A	
	MOTA	2858	СВ			372	26.094	39.788	25.701		18.45	A	
	ATOM	2859		VAL			27.065	40.851	25.163		17.90	A	
5 0	ATOM	2860		VAL			24.834	39.739	24.855		18.52	A	
50	MOTA	2861	С			372	28.146	38.564	26.372		18.05	A	
	ATOM	2862	0			372	28.274	38.520	27.594		17.93	A	
	MOTA	2863	N			373	29.162	38.751	25.538		17.52	A	
	ATOM	2864	CA			373	30.528	38.982	25.995		17.49	A	
	ATOM	2865	CB			373	31.442	37.823	25.579		18.60	A	
55	ATOM	2866	CG	GLN	A	373	32.923	38.011	25.922	1.00	19.99	A	

	ATOM	2867	CD	GLN	Α	373	33.158	38.334	27.394	1.00 20.94	Α
	ATOM	2868	OE1	GLN	Α	373	32.526	37.756	28.279	1.00 21.70	Α
	MOTA	2869	NE2	GLN	Α	373	34.082	39.252	27.659	1.00 20.60	Α
	ATOM	2870	С	GLN	Α	373	30.935	40.270	25.282	1.00 17.32	А
5	ATOM	2871	0	GLN	Α	373	31.179	40.265	24.079	1.00 17.16	Α
	MOTA	2872	N	ALA	Α	374	30.984	41.371	26.023	1.00 16.74	А
	ATOM	2873	CA	ALA	Α	374	31.325	42.665	25.445	1.00 16.51	A
	MOTA	2874	СВ	ALA	Α	374	30.217	43.671	25.756	1.00 15.86	Α
	MOTA	2875	С	ALA	Α	374	32.662	43.202	25.940	1.00 16.97	Α
10	ATOM	2876	0			374	33.046	42.984	27.087	1.00 16.37	Α
	ATOM	2877	N	GLN	Α	375	33.364	43.920	25.070	1.00 16.76	Α
	MOTA	2878	CA	GLN	Α	375	34.650	44.498	25.440	1.00 17.48	А
	MOTA	2879	CB	GLN	Α	375	35.731	43.415	25.509	1.00 19.85	A
	ATOM	2880	CG	GLN	Α	375	35.933	42.644	24.205	1.00 23.52	A
15	ATOM	2881	CD			375	35.066	41.404	24.129	1.00 26.57	A
	ATOM	2882	OE1				35.214	40.486	24.939	1.00 27.84	A
	MOTA	2883		GLN			34.153	41.370	23.161	1.00 27.24	A
	MOTA	2884	С	GLN			35.085	45.548	24.431	1.00 16.70	A
•	MOTA	2885	0			375	34.534	45.632	23.335	1.00 15.55	A
20	ATOM	2886	N			376	36.069	46.356	24.814	1.00 15.17	A
	ATOM	2887	CA			376	36.602	47.358	23.904	1.00 14.46	A
	ATOM	2888	CB			376	37.543	48.320	24.637	1.00 13.95	А
	ATOM	2889	CG			376	36.848	49.228	25.610	1.00 14.70	A
0-	ATOM	2890		PHE			37.246	49.273	26.940	1.00 14.81	A
25	ATOM	2891		PHE			35.798	50.044	25.195	1.00 14.57	A
	ATOM	2892	CE1				36.610	50.117	27.848	1.00 15.62	A
	ATOM	2893	CE2				35.157	50.894	26.098	1.00 15.64	A
	ATOM	2894	CZ			376	35.567	50.928	27.428	1.00 14.70	A
20	ATOM	2895	С			376	37.396	46.567	22.877	1.00 13.69	A
30	ATOM	2896	0			376	38.028	45.566	23.214	1.00 13.20	A
	ATOM	2897	N	GLY			37.360	47.005	21.625	1.00 13.56	A
	ATOM	2898	CA	GLY			38.106	46.305	20.598	1.00 13.03	A
	ATOM	2899	С	GLY			38.537	47.240	19.490	1.00 13.47	A
35	ATOM	2900	0	GLY			38.226	48.432	19.519	1.00 12.17	A
33	ATOM	2901	N	THR			39.270	46.704	18.522	1.00 13.13	A
	ATOM	2902 2903	CA	THR			39.712	47.492 47.348	17.384 17.129	1.00 14.10 1.00 14.13	A A
	ATOM ATOM	2903	CB OG1			378	41.226 41.521	47.346	16.739	1.00 14.13	A
	ATOM	2904	CG2				42.012	47.697	18.385	1.00 15.10	A
40	ATOM	2906	C	THR			38.961	46.973	16.167	1.00 13.10	A
40	ATOM	2907	0	THR			38.278	45.945	16.238	1.00 13.55	A
	ATOM	2908	N	LEU			39.084	47.684	15.054	1.00 13.33	A
	ATOM	2909	CA	LEU			38.409	47.289	13.827	1.00 12.73	A
	ATOM	2910	CB	LEU			38.649	48.342	12.742	1.00 12.73	A
45	ATOM	2911	CG	LEU			37.870	48.131	11.445	1.00 12.37	A
10	ATOM	2912		LEU			36.372	48.184	11.741	1.00 12.37	A
	ATOM	2913		LEU			38.270	49.205	10.433	1.00 11.04	A
	ATOM	2914	C	LEU			38.896	45.924	13.338	1.00 13.00	A
	ATOM	2915	0	LEU			38.098	45.074	12.934	1.00 12.40	A
50	ATOM	2916	N	GLN			40.208	45.714	13.384	1.00 13.46	A
	ATOM	2917	CA			380	40.782	44.450	12.936	1.00 13.40	A
	ATOM	2918	CB	GLN			42.309	44.516	12.986	1.00 15.81	A
	ATOM	2919	CG	GLN			42.995	43.306	12.376	1.00 19.57	A
	ATOM	2920	CD	GLN			42.592	43.086	10.930	1.00 21.70	A
55	ATOM	2921		GLN			42.669	44.001	10.106	1.00 22.56	A

DDDBIDDE DDD11

	ATOM	2922	NE2	GLN	Α	380	42.	162	41.866	10.612	1.00	22.92	A
	ATOM	2923	С	GLN	Α	380	40.	285	43.285	13.791		14.48	А
	ATOM	2924	0	GLN	Α	380	40.	054	42.187	13.280	1.00	13.99	Α
	ATOM	2925	N	GLU	Α	381	40.	127	43.522	15.090	1.00	14.50	Α
5	ATOM	2926	CA	GLU	Α	381	39.	653	42.474	15.985	1.00	15.49	Α
_	ATOM	2927	СВ	GLU			39.	648	42.962	17.439	1.00	17.08	А
	ATOM	2928	CG	GLU			41.	038	43.325	17.957	1.00	21.28	А
	ATOM	2929	CD	GLU			41.		43.610	19.448	1.00	22.82	Α
	ATOM	2930	OE1	GLU			40.		44.415	19.921	1.00	22.89	Α
10	ATOM	2931	OE2				41.		43.032	20.148	1.00	27.14	А
10	ATOM	2932	C	GLU			38.		42.041	15.573	1.00	14.29	Α
	ATOM	2933	0	GLU			37.		40.853	15.571	1.00	13.97	А
	ATOM	2934	N	TYR			37.		43.011	15.227	1.00		А
	ATOM	2935	CA	TYR			36.		42.709	14.796		13.03	А
15	ATOM	2936	CB	TYR			35.		43.993	14.468		13.08	Α
15	ATOM	2937	CG	TYR			33.		43.722	13.763		13.27	A
	ATOM	2938	CD1	TYR			32.		43.096	14.430		13.48	A
	ATOM	2939	CE1	TYR			31.		42.766	13.764		11.84	A
	ATOM	2940	CD2	TYR			33.		44.020	12.407		12.53	A
20	ATOM	2940	CE2	TYR			32.		43.693	11.732		12.76	A
20	ATOM	2942	CZ			382	31.		43.062	12.419		12.40	A
	ATOM	2943	OH	TYR			30.		42.708	11.749		12.59	A
		2943	C			382	36.		41.820	13.554		13.04	A
	ATOM	2945	0	TYR			35.		40.761	13.522		12.38	A
25	ATOM ATOM	2945	N			383	36.		42.261	12.523		12.27	A
25	ATOM	2947	CA			383	36.		41.496	11.285		13.24	A
	ATOM	2948	CB			383	37.		42.281	10.227		13.43	A
	ATOM	2949	CG			383	36.		43.417	9.605		12.96	A
	ATOM	2950	CD1				37.		44.717	9.648		13.91	A
30	ATOM	2951		PHE			35.		43.181	8.968		14.11	A
50	ATOM	2952		PHE			36.		45.772	9.064		13.79	A
	ATOM	2953	CE2	PHE			34.		44.224	8.379		14.72	A
	ATOM	2954	CZ			383	35.		45.525	8.426		14.80	A
	ATOM	2955	C			383	37.		40.095	11.474		14.00	А
35	ATOM	2956	0			383	36.		39.129	10.873		13.60	A
33	ATOM	2957	N	ASP			38.		39.976	12.303	1.00		A
	ATOM	2958	CA	ASP			39.		38.662	12.540		15.43	A
	ATOM	2959	CB	ASP			40.		38.759	13.517		16.51	A
	ATOM	2960	CG	ASP			41.		39.384	12.898		17.75	A
40	ATOM	2961		ASP			41.		39.464	11.652		18.23	A
40	ATOM	2962		ASP			42.		39.782	13.666		19.50	A
	ATOM	2963	C	ASP			38.		37.710	13.116		15.26	A
	ATOM	2964	0	ASP			37.		36.553	12.704		15.46	A
	ATOM	2965	N			385	37.		38.206	14.064		14.92	A
45		2966	CA			385		226	37.398	14.696		15.13	A
40	ATOM	2967	CB			385	35.		38.161	15.866		14.89	A
	ATOM					385	35.		37.013	13.688		15.31	A
	ATOM	2968	С					693	35.868	13.657		15.33	A
	ATOM	2969	O N1			385	34.		37.969	12.863		15.18	A
EΩ	ATOM	2970	N			386			37.698	11.851		15.40	A
50	ATOM	2971	CA			386	33.		38.941	10.980		15.40	A
	ATOM	2972	CB			386		453 561	38.567	9.793		15.44	A
	ATOM	2973		VAL			32. 32.		40.022	11.819		15.00	A
	ATOM	2974		VAL					36.548	10.938		16.11	A
55	ATOM	2975	С			386		153		10.936		16.11	A
55	MOTA	2976	0	VAL	А	386	33.	387	35.610	10.030	1.00	10.01	Α.

	ATOM	2977	N	HIS	Α	387	35.382	36.613	10.443	1.00 16.13	А
	ATOM	2978	CA	HIS	Α	387	35.869	35.570	9.557	1.00 16.83	A
	ATOM	2979	CB	HIS	Α	387	37.129	36.053	8.840	1.00 16.93	Α
	ATOM	2980	CG	HIS	Α	387	36.860	37.172	7.881	1.00 17.54	Α
5	ATOM	2981	CD2	HIS	Α	387	37.271	38.462	7.874	1.00 17.35	Α
	ATOM	2982	ND1	HIS	Α	387	36.022	37.030	6.796	1.00 17.71	Α
	ATOM	2983	CE1	HIS	Α	387	35.926	38.186	6.163	1.00 17.77	Α
	ATOM	2984	NE2	HIS	Α	387	36.674	39.072	6.798	1.00 17.27	А
	ATOM	2985	С	HIS	Α	387	36.090	34.243	10.274	1.00 17.78	A
10	ATOM	2986	0	HIS	Α	387	36.055	33.181	9.651	1.00 16.94	Α
	ATOM	2987	N	GLN	Α	388	36.307	34.300	11.583	1.00 19.02	Α
	ATOM	2988	CA	GLN	Α	388	36.474	33.077	12.358	1.00 21.11	Α
	ATOM	2989	СВ	GLN	Α	388	36.943	33.402	13.780	1.00 23.11	Α
	ATOM	2990	CG	GLN	Α	388	38.439	33.692	13.900	1.00 25.90	А
15	ATOM	2991	CD	GLN	Α	388	38.804	34.341	15.230	1.00 28.63	Α
	ATOM	2992	OE1				38.246	34.000	16.275	1.00 30.49	A
	ATOM	2993		GLN			39.754	35.274	15.197	1.00 29.72	Α
	ATOM	2994	С	GLN			35.105	32.394	12.392	1.00 21.50	А
	ATOM	2995	0			388	35.005	31.169	12.304	1.00 21.80	Α
20	ATOM	2996	N			389	34.050	33.196	12.506	1.00 21.77	A
	ATOM	2997	CA			389	32.686	32.674	12.535	1.00 22.68	А
	ATOM	2998	СВ			389	31.707	33.781	12.912	1.00 22.05	А
	ATOM	2999	С			389	32.341	32.109	11.161	1.00 23.68	А
	ATOM	3000	0			389	31.684	31.069	11.045	1.00 23.65	A
25	ATOM	3001	N			390	32.791	32.808	10.124	1.00 24.67	A
	ATOM	3002	CA			390	32.564	32.406	8.741	1.00 26.15	А
	ATOM	3003	СВ			390	33.169	33.453	7.796	1.00 26.00	A
	ATOM	3004	CG			390	33.252	33.042	6.328	1.00 26.38	A
	ATOM	3005	CD			390	33.855	34.137	5.456	1.00 26.52	A
30	ATOM	3006	OE1	GLU			34.755	34.851	5.944	1.00 25.91	Α
	ATOM	3007	OE2	GLU			33.441	34.276	4.285	1.00 26.51	А
	MOTA	3008	С			390	33.195	31.042	8.483	1.00 27.33	Α
	ATOM	3009	0			390	32.571	30.157	7.895	1.00 27.52	A
	ATOM	3010	N			391	34.438	30.880	8.926	1.00 28.78	A
35	ATOM	3011	CA			391	35.157	29.626	8.751	1.00 30.39	A
	ATOM	3012	СВ	ARG	Α	391	36.623	29.794	9.160	1.00 31.73	A
	ATOM	3013	CG	ARG	Α	391	37.466	30.566	8.153	1.00 33.97	A
	ATOM	3014	CD	ARG	Α	391	38.899	30.722	8.640	1.00 35.57	Α
	ATOM	3015	NE	ARG	Α	391	38.987	31.640	9.770	1.00 38.15	A
40	ATOM	3016	CZ	ARG	Α	391	40.082	31.831	10.499	1.00 39.05	Α
	ATOM	3017		ARG			41.195	31.163	10.221	1.00 40.21	Α
	ATOM	3018	NH2	ARG	Α	391	40.065	32.693	11.506	1.00 39.40	A
	ATOM	3019	С	ARG	Α	391	34.516	28.505	9.564	1.00 30.59	A
	ATOM	3020	0	ARG			34.605	27.333	9.198	1.00 31.38	A
45	ATOM	3021	N	ALA			33.874	28.867	10.669	1.00 30.51	Α
	ATOM	3022	CA	ALA	Α	392	33.212	27.882	11.516	1.00 30.61	A
	ATOM	3023	CB	ALA			32.878	28.494	12.873	1.00 30.84	A
	ATOM	3024	С	ALA			31.939	27.415	10.819	1.00 30.66	Α
	ATOM	3025	0	ALA			31.261	26.495	11.283	1.00 30.52	Α
50	ATOM	3026	N	GLY			31.621	28.065	9.703	1.00 30.35	A
	ATOM	3027	CA			393	30.442	27.708	8.939	1.00 30.05	А
	ATOM	3028	C	GLY			29.130	28.249	9.475	1.00 29.86	Α
	ATOM	3029	0	GLY			28.073	27.679	9.208	1.00 29.53	A
	ATOM	3030	N	GLN			29.175	29.346	10.223	1.00 29.75	A
55	ATOM	3031	CA	GLN			27.939	29.902	10.755	1.00 29.86	А
					_			-			

	ATOM	3032	СВ	GLN	Δ	394	28.138	30.415	12.188	1.00 30.8	7 A
	ATOM	3032	CG			394	28.875	31.732	12.311	1.00 31.7	
	ATOM	3033	CD			394	28.756	32.326	13.706	1.00 32.3	
			OE1				29.228	31.747	14.687	1.00 32.5	
5	ATOM	3035								1.00 32.3	
3	ATOM	3036	NE2				28.113	33.485	13.800		
	MOTA	3037	С			394	27.375	31.015	9.878	1.00 29.2	
	MOTA	3038	0			394	26.319	31.567	10.178	1.00 29.4	
	MOTA	3039	N			395	28.067	31.336	8.789	1.00 28.5	
	MOTA	3040	CA			395	27.596	32.385	7.892	1.00 27.9	
10	MOTA	3041	CB			395	27.824	33.753	8.533	1.00 28.9	
	ATOM	3042	С			395	28.244	32.349	6.511	1.00 27.6	
	MOTA	3043	0	ALA	Α	395	29.419	32.013	6.367	1.00 27.2	
	ATOM	3044	N	GLU	Α	396	27.454	32.694	5.500	1.00 27.1	
	ATOM	3045	CA	GLU	Α	396	27.917	32.745	4.118	1.00 27.1	2 A
15	MOTA	3046	CB	GLU	Α	396	27.131	31.760	3.245	1.00 29.6	9 A
	ATOM	3047	CG	GLU	Α	396	26.527	30.582	4.002	1.00 34.1	4 A
	ATOM	3048	CD	GLU	Α	396	25.165	30.906	4.604	1.00 36.5	3 A
	ATOM	3049		GLU	Α	396	25.068	31.857	5.413	1.00 38.4	3 A
	ATOM	3050	OE2				24.187	30.204	4.263	1.00 38.4	6 A
20	ATOM	3051	С			396	27.613	34.173	3.685	1.00 25.1	
	ATOM	3052	Ö			396	26.524	34.680	3.958	1.00 25.8	
	ATOM	3053	N			397	28.557	34.830	3.023	1.00 22.1	
	ATOM	3054	CA			397	28.328	36.211	2.619	1.00 19.2	
	ATOM	3055	CB			397	29.530	37.079	2.998	1.00 18.4	
25	ATOM	3056	CG			397	29.776	37.147	4.476	1.00 17.1	
25	ATOM	3057		PHE			30.814	36.426	5.056	1.00 17.3	
	ATOM	3058	CD1				28.948	37.909	5.293	1.00 16.4	
	ATOM	3059					31.025	36.462	6.438	1.00 15.9	
							29.148	37.953	6.673	1.00 16.3	
30	ATOM	3060	CE2					37.227	7.245	1.00 15.9	
30	ATOM	3061	CZ			397	30.190			1.00 13.9	
	ATOM	3062	C			397	27.999	36.403	1.148		
	ATOM	3063	0			397	28.569	35.749	0.278	1.00 17.7	
	ATOM	3064	N			398	27.072	37.327	0.857	1.00 16.9	
25	ATOM	3065	CD			398	26.367	38.194	1.819	1.00 17.1	
35	ATOM	3066	CA			398	26.653	37.622	-0.512	1.00 16.5	
	MOTA	3067	СВ			398	25.390	38.446	-0.301	1.00 16.8	
	MOTA	3068	CG			398	25.741	39.246	0.916	1.00 16.8	
	ATOM	3069	С			398	27.726	38.392	-1.282	1.00 15.7	
	MOTA	3070	0			398	28.589	39.044	-0.684	1.00 15.2	
40	MOTA	3071	N			399	27.670	38.296		1.00 14.5	-
	MOTA	3072	CA	THR	Α	399	28.603	38.994	-3.481	1.00 13.8	
	MOTA	3073	CB	THR	Α	399	29.006	38.126	-4.684	1.00 13.6	
	ATOM	3074	OG1	THR	Α	399	27.828	37.691	-5.378	1.00 12.8	9 A
	ATOM	3075	CG2	THR	Α	399	29.803	36.920	-4.221	1.00 14.6	4 A
45	ATOM	3076	С	THR	Α	399	27.881	40.238	-3.986	1.00 13.3	5 A
	ATOM	3077	0	THR	Α	399	26.653	40.254	-4.082	1.00 13.1	2 A
	ATOM	3078	N	LEU			28.636	41.280	-4.311	1.00 12.5	5 A
	ATOM	3079	CA	LEU			28.019	42.517	-4.776	1.00 11.6	В А
	ATOM	3080	СВ	LEU			27.612	43.364	-3.559	1.00 11.7	
50	ATOM	3081	CG	LEU			26.954	44.740	-3.743	1.00 11.8	
	ATOM	3082		LEU			26.178	45.085	-2.489	1.00 11.8	
	ATOM	3083		LEU			28.002	45.812	-4.032	1.00 11.7	
	ATOM	3084	C	LEU			28.941	43.317	-5.678	1.00 11.8	
	ATOM	3085	0	LEU			30.160	43.294	-5.508	1.00 10.8	
55						400	28.354	43.294	-6.660	1.00 10.3	
55	ATOM	3086	N	SEK	Н	401	20.334	43.330	-0.000	1.00 11.7	, ,

		ATOM	3087	CA	SER A	401	29.117	44.857	-7.562	1.00 11.13	A
		ATOM	3088	CB	SER A		29.352	44.188	-8.924	1.00 11.81	А
		ATOM	3089	OG	SER A		28.186	44.215	-9.725	1.00 11.97	Α
		ATOM	3090	C	SER A		28.283	46.123	-7.739	1.00 11.29	Α
	5	ATOM	3091	Ö	SER A		27.062	46.092	-7.564	1.00 11.28	Α
	J						28.942	47.230	-8.072	1.00 10.51	A
		ATOM	3092	N	GLY A						A
		ATOM	3093	CA	GLY A		28.245	48.492	-8.256	1.00 11.12	
		ATOM	3094	С	GLY A		28.827	49.576	-7.362	1.00 11.67	A
	4.0	ATOM	3095	0	GLY A		29.852	49.361	-6.715	1.00 12.01	Α
	10	MOTA	3096	N	ASP A		28.183	50.739	-7.322	1.00 11.30	Α
		ATOM	3097	CA	ASP A	403	28.665	51.834	-6.489	1.00 11.42	A
		MOTA	3098	CB	ASP A	403	29.180	52.983	-7.367	1.00 11.48	A
		ATOM	3099	CG	ASP A	403	28.063	53.737	-8.067	1.00 12.11	Α
		ATOM	3100	OD1	ASP A	403	26.967	53.168	-8.236	1.00 13.59	Α
	15	ATOM	3101	OD2	ASP A	403	28.287	54.900	-8.461	1.00 12.95	Α
		ATOM	3102	С	ASP A		27.556	52.333	-5.569	1.00 11.75	Α
		ATOM	3103	0	ASP A		26.444	51.797	-5.570	1.00 11.42	Α
		ATOM	3104	N	PHE A		27.864	53.355	-4.780	1.00 11.12	Α
4:25		ATOM	3105	CA	PHE A		26.887	53.913	-3.865	1.00 11.24	Α
	20	ATOM	3106	СВ	PHE A		27.233	53.526	-2.424	1.00 11.12	A
ŧ.Ū	2.0	ATOM	3107	CG	PHE A		27.204	52.036	-2.184	1.00 11.08	A
1,5			3107		PHE A		28.377	51.288	-2.207	1.00 10.94	A
171		ATOM					25.993	51.378	-1.980	1.00 10.57	A
		ATOM	3109		PHE A					1.00 10.37	A
	25	ATOM	3110		PHE A		28.347	49.899	-2.030		
8 %±5" 8 48 48	25	ATOM	3111		PHE A		25.949	49.992	-1.802	1.00 10.67	A
		ATOM	3112	CZ	PHE A		27.126	49.250	-1.826	1.00 11.36	A
ijŦ		MOTA	3113	С	PHE A		26.737	55.422	-4.003	1.00 11.30	A
4)		MOTA	3114	0	PHE A		26.912	56.178	-3.046	1.00 10.08	A
	•	MOTA	3115	N	PHE A		26.420	55.835	-5.228	1.00 11.82	A
, M	30	MOTA	3116	CA	PHE A		26.172	57.230	-5.575	1.00 12.35	А
		MOTA	3117	CB	PHE A	405	27.235	57.750	-6.550	1.00 12.94	Α
IW		MOTA	3118	CG	PHE A	405	28.614	57.857	-5.958	1.00 13.35	Α
ļak am		MOTA	3119	CD1	PHE A	405	29.699	57.250	-6.585	1.00 13.75	A
		ATOM	3120	CD2	PHE A	405	28.837	58.584	-4.789	1.00 13.48	A
]:4:	35	MOTA	3121	CE1	PHE A	405	30.987	57.366	-6.057	1.00 12.89	A
		ATOM	3122	CE2	PHE A	405	30.126	58.706	-4.255	1.00 12.99	Α
		ATOM	3123	CZ	PHE A	405	31.198	58.095	-4.891	1.00 12.93	Α
		ATOM	3124	С	PHE A		24.817	57.170	-6.290	1.00 12.41	Α
		MOTA	3125	0	PHE A		24.539	56.187	-6.972	1.00 12.49	Α
	40	ATOM	3126	N	THR A		23.973	58.192	-6.153	1.00 12.18	Α
		ATOM	3127	CA	THR A		24.254	59.382	-5.364	1.00 12.39	А
		ATOM	3128	СВ	THR A		23.747	60.646	-6.108	1.00 12.21	А
		ATOM	3129		THR A		24.631	60.929	-7.201	1.00 13.40	Α
		ATOM	3130		THR A		23.683	61.848	-5.177	1.00 12.11	A
	45	ATOM	3131	C	THR A		23.611	59.280	-3.983	1.00 12.64	A
	40						22.440	58.915	-3.838	1.00 12.69	A
		ATOM	3132	0	THR A					1.00 12.09	A
		ATOM	3133	N	TYR A		24.404	59.604	-2.971		
		ATOM	3134	CA	TYR A		23.985	59.559	-1.578	1.00 12.99	A
	50	MOTA	3135	CB	TYR A		25.207	59.809	-0.697	1.00 12.23	A
	50	ATOM	3136	CG	TYR A		24.941	59.972	0.786	1.00 13.17	A
		MOTA	3137		TYR A		24.456	58.914	1.555	1.00 12.48	A
		MOTA	3138		TYR A		24.326	59.033	2.942	1.00 12.87	A
		MOTA	3139		TYR A		25.277	61.160	1.436	1.00 12.63	А
		ATOM	3140	CE2	TYR A	407	25.154	61.290	2.812	1.00 12.47	A
	55	MOTA	3141	CZ	TYR A	407	24.686	60.226	3.562	1.00 12.24	А

	ATOM	3142	ОН	TYR A	407	2	4.637	60.347	4.933	1.00		Α
	ATOM	3143	С	TYR A	407	2	2.890	60.554	-1.211	1.00		A
	ATOM	3144	0	TYR A	407	2	2.830	61.664	-1.742	1.00		Α
	ATOM	3145	N	ALA A	408	2	2.026	60.129	-0.294	1.00		A
5	ATOM	3146	CA	ALA A	408	2	0.942	60.948	0.234	1.00		Α
	ATOM	3147	CB	ALA A	408	1	9.632	60.667	-0.505	1.00		Α
	ATOM	3148	С	ALA A	408	2	0.839	60.506	1.685	1.00	14.52	A
	ATOM	3149	0	ALA A	408	2	0.688	59.313	1.956	1.00		A
	ATOM	3150	N	ASP A	409	2	0.955	61.444	2.622	1.00		A
10	ATOM	3151	CA	ASP A	409	2	0.881	61.082	4.031	1.00	14.91	Α
	ATOM	3152	CB	ASP A	409	2	1.835	61.956	4.870	1.00	14.46	А
	ATOM	3153	CG	ASP A	409	2	1.512	63.441	4.803	1.00		А
	ATOM	3154	OD1	ASP A	409	2	0.939	63.893	3.791	1.00	13.80	А
	ATOM	3155	OD2	ASP A	409	2	1.860	64.164	5.768	1.00		А
15	ATOM	3156	С	ASP A	409	1	9.455	61.135	4.573	1.00		A
	ATOM	3157	0	ASP A		1	9.159	60.546	5.610	1.00	15.51	A
	ATOM	3158	N	ARG A		1	8.573	61.825	3.853	1.00	16.53	Α
	ATOM	3159	CA	ARG A		1	7.167	61.927	4.240	1.00	17.84	A
	ATOM	3160	СВ	ARG A			7.008	62.732	5.535	1.00	19.59	Α
20	ATOM	3161	CG .	ARG A		1	7.450	64.188	5.475	1.00	22.30	Α
	ATOM	3162	CD	ARG A		1	7.305	64.806	6.861	1.00	25.55	Α
	ATOM	3163	NE	ARG A		1	7.958	66.105	7.004	1.00	28.63	Α
	ATOM	3164	CZ	ARG A			7.454	67.258	6.577	1.00	30.10	A
	ATOM	3165		ARG A			6.273	67.292	5.967	1.00	31.30	А
25	ATOM	3166		ARG A			8.131	68.383	6.772	1.00	29.89	A
	ATOM	3167	С	ARG A			6.320	62.559	3.139	1.00	17.93	А
	ATOM	3168	Ö	ARG A			6.824	63.314	2.305	1.00	17.10	A
	ATOM	3169	N	SER A			5.031	62.230	3.150	1.00	17.62	А
	ATOM	3170	CA	SER A			4.061	62.737	2.182	1.00		A
30	ATOM	3171	CB	SER F			3.513	64.094	2.647	1.00		Α
50	ATOM	3172	OG	SER F			4.555	65.020	2.893	1.00		А
	ATOM	3173	C	SER F			4.586	62.846	0.754	1.00		А
	ATOM	3174	0	SER F			5.010	61.850	0.162	1.00		А
	ATOM	3175	N	ASP A			4.538	64.053	0.198	1.00		А
35	ATOM	3176	CA	ASP F			5.002	64.289	-1.165	1.00		А
33	ATOM	3177	CB	ASP F			3.967	65.119	-1.939	1.00		А
	ATOM	3178	CG	ASP F			3.836	66.545	-1.408	1.00		А
	ATOM	3179		ASP F			4.311	66.820	-0.284	1.00		А
	ATOM	3180		ASP F			3.243	67.390	-2.117	1.00		А
40	ATOM		C				6.346					А
40	ATOM	3182	0	ASP F			6.756	65.550	-2.200	1.00		А
	ATOM	3183	N	ASN A			7.022		-0.029	1.00		A
	ATOM	3184	CA	ASN A			8.315	65.697	0.091	1.00		А
	ATOM	3185	CB	ASN A			8.632	66.010	1.557	1.00		A
45	ATOM	3186	CG	ASN A			7.723	67.078	2.155	1.00		A
40				ASN A			7.958	67.540	3.270	1.00		A
	ATOM	3187		ASN A			6.685	67.465	1.425	1.00		A
	ATOM	3188		ASN A			9.453	64.857	-0.488	1.00		A
	ATOM	3189	С	ASN A			20.151	64.161	0.252	1.00		A
50	ATOM	3190	O N				9.631	64.101	-1.806	1.00		A
50	ATOM	3191	N	TYR A			20.696	64.186	-2.478	1.00		A
	ATOM	3192	CA	TYR A			20.096	63.760	-3.886	1.00		A
	ATOM	3193	CB	TYR A				62.627	-3.894	1.00		A
	ATOM	3194	CG	TYR A			9.261		-3.619	1.00		A
<u></u>	ATOM	3195		TYR A			7.910	62.856	-3.601	1.00		A
55	MOTA	3196	CEI	TYR A	4 414	1	6.990	61.802	-3.601	1.00	13.24	n

	ATOM	3197	CD2	TYR	Α	414	19.669	61.316	-4.149	1.00 12.9	9 A
	ATOM	3198	CE2	TYR	Α	414	18.761	60.260	-4.129	1.00 12.6	8 A
	ATOM	3199	CZ	TYR	Α	414	17.425	60.508	-3.857	1.00 13.3	88 A
	ATOM	3200	ОН	TYR	Α	414	16.531	59.457	-3.848	1.00 12.5	69 A
5	MOTA	3201	С	TYR	Α	414	21.940	65.067	-2.554	1.00 12.8	3 A
	MOTA	3202	0	TYR	Α	414	21.867	66.235	-2.941	1.00 12.5	3 A
	MOTA	3203	N	TRP	Α	415	23.078	64.490	-2.188	1.00 12.4	6 A
	ATOM	3204	CA	TRP	Α	415	24.343	65.213	-2.152	1.00 12.7	
	ATOM	3205	CB	TRP	Α	415	25.250	64.590	-1.088	1.00 12.3	36 A
10	ATOM	3206	CG	TRP	Α	415	24.676	64.612	0.297	1.00 12.9	97 A
	MOTA	3207	CD2	TRP	Α	415	25.388	64.862	1.512	1.00 13.4	0 A
	ATOM	3208	CE2	TRP	Α	415	24.461	64.742	2.573	1.00 13.6	54 A
	ATOM	3209	CE3	TRP	Α	415	26.723	65.175	1.810	1.00 13.4	8 A
	MOTA	3210	CD1	TRP	Α	415	23.379	64.356	0.658	1.00 12.6	54 A
15	ATOM	3211	NE1	TRP	Α	415	23.242	64.434	2.024	1.00 13.0)4 A
	ATOM	3212	CZ2	TRP	Α	415	24.827	64.923	3.911	1.00 13.7	'2 A
	MOTA	3213	CZ3	TRP	Α	415	27.086	65.354	3.135	1.00 13.1	
	MOTA	3214	CH2	TRP	Α	415	26.139	65.227	4.174	1.00 13.7	'6 A
	ATOM	3215	С	TRP	Α	415	25.086	65.255	-3.482	1.00 12.3	
20	MOTA	3216	0	TRP	Α	415	26.224	64.805	-3.566	1.00 12.6	
	MOTA	3217	N	SER	A	416	24.453	65.795	-4.516	1.00 11.7	
	MOTA	3218	CA	SER	Α	416	25.102	65.878	-5.815	1.00 11.5	
	MOTA	3219	СВ	SER	Α	416	24.117	65.508	-6.932	1.00 11.2	
	MOTA	3220	OG	SER	Α	416	22.849	66.106	-6.727	1.00 10.8	
25	ATOM	3221	С	SER	Α	416	25.678	67.271	-6.046	1.00 11.2	
	ATOM	3222	0	SER	Α	416	26.311	67.526	-7.063	1.00 11.0	
	MOTA	3223	N	GLY	A	417	25.468	68.165	-5.085	1.00 12.1	
	ATOM	3224	CA	GLY	A	417	25.983	69.518	-5.214	1.00 12.2	
	ATOM	3225	С	GLY	Α	417	27.500	69.582	-5.147	1.00 12.1	
30	ATOM	3226	0	GLY	Α	417	28.130	70.296	-5.930	1.00 12.1	
	MOTA	3227	N			418	28.090	68.818	-4.230	1.00 11.6	
	ATOM	3228	CA	TYR			29.541	68.813	-4.051	1.00 11.1	
	MOTA	3229	CB			418	29.904	68.106	-2.738	1.00 10.7	
	MOTA	3230	CG			418	30.049	66.597	-2.808	1.00 11.1	
35	ATOM	3231	CD1	TYR			31.302	66.008	-2.993	1.00 10.9	
	ATOM	3232	CE1	TYR			31.456	64.616	-2.990	1.00 10.4	
	MOTA	3233	CD2	TYR			28.947	65.758	-2.632	1.00 11.7	
	ATOM	3234		TYR			29.090	64.360	-2.628	1.00 11.0	
40	MOTA	3235	CZ			418	30.348	63.803	-2.805	1.00 10.2	
40	ATOM	3236	ОН	TYR			30.511			1.00 11.2	
	ATOM	3237	С			418	30.313	68.207	-5.231	1.00 10.9	
	ATOM	3238	0			418	31.545	68.208	-5.250	1.00 10.3	
	ATOM	3239	N			419	29.591	67.683	-6.213	1.00 10.6	
4 =	ATOM	3240	CA			419	30.245	67.144	-7.399	1.00 10.3	
45	MOTA	3241	CB			419	29.247	66.380	-8.280	1.00 10.8	
	ATOM	3242	CG			419	28.624	65.146	-7.656	1.00 10.8	
	ATOM	3243		TYR			27.464	64.590	-8.198	1.00 11.0	
	ATOM	3244		TYR			26.897	63.438	-7.660	1.00 11.1	
Ε0	MOTA	3245		TYR			29.201	64.518	-6.555	1.00 10.4	
50	ATOM	3246		TYR			28.640	63.359	-6.008	1.00 10.8	
	ATOM	3247	CZ			419	27.489	62.827	-6.568	1.00 11.1	
	MOTA	3248	ОН			419	26.935	61.675	-6.051	1.00 10.7	
	MOTA	3249	C			419	30.766	68.351	-8.191	1.00 10.5	
	ATOM	3250	0			419	31.607	68.203	-9.083	1.00 11.0	
55	ATOM	3251	N	THR	Α	420	30.279	69.544	-7.843	1.00 10.2	27 A

											_
		MOTA	3252	CA	THR A		30.663	70.770	-8.548	1.00 9.65	A
		ATOM	3253	CB	THR A		29.458	71.312	-9.355	1.00 10.18	А
		ATOM	3254	OG1	THR A	420	28.971		-10.228	1.00 10.10	A
		ATOM	3255	CG2	THR A	420	29.859		-10.190	1.00 9.96	А
	5	MOTA	3256	С	THR A	420	31.224	71.918	-7.699	1.00 10.48	Α
		ATOM	3257	0	THR A	420	32.033	72.708	-8.187	1.00 10.35	A
		ATOM	3258	N	SER A	421	30.798	72.009	-6.440	1.00 10.65	А
		ATOM	3259	CA	SER A		31.240	73.077	-5.540	1.00 10.83	А
		ATOM	3260	СВ	SER A		30.851	72.737	-4.099	1.00 9.91	А
	10	MOTA	3261	OG	SER A		29.446	72.581	-3.991	1.00 11.04	A
		ATOM	3262	С	SER A		32.733	73.390	-5.607	1.00 10.88	А
		ATOM	3263	0	SER A		33.571	72.483	-5.612	1.00 10.61	А
		ATOM	3264	N	ARG A		33.051	74.685	-5.637	1.00 11.06	А
		ATOM	3265	CA	ARG A		34.434	75.158	-5.717	1.00 11.32	А
	15	MOTA	3266	СВ	ARG A		35.163	74.880	-4.400	1.00 12.09	A
	-0	ATOM	3267	CG	ARG A		34.966	75.954	-3.316	1.00 12.90	
		ATOM	3268	CD	ARG A		33.507	76.183	-2.913	1.00 13.25	Α
		ATOM	3269	NE	ARG A		33.436	77.150	-1.813	1.00 14.01	А
ģ: ~		ATOM	3270	CZ	ARG A		33.503	76.829	-0.524	1.00 14.36	А
	20	ATOM	3271		ARG A		33.619	75.563	-0.153	1.00 14.25	А
		ATOM	3272		ARG A		33.519	77.783	0.400	1.00 15.13	А
4 (mg)		ATOM	3273	С	ARG A		35.162	74.486	-6.885	1.00 11.33	
n		ATOM	3274	Ö	ARG A		36.178	73.804	-6.704	1.00 11.04	А
1,000		ATOM	3275	N	PRO A		34.660	74.700	-8.112	1.00 11.11	Α
	25	ATOM	3276	CD	PRO A		33.538	75.594	-8.455	1.00 10.63	A
14		ATOM	3277	CA	PRO A		35.249	74.111	-9.319	1.00 10.85	А
		ATOM	3278	СВ	PRO A		34.251		-10.410	1.00 11.30	А
81		ATOM	3279	CG	PRO A		33.748	75.829	-9.944	1.00 12.06	
		ATOM	3280	C	PRO A		36.678	74.541	-9.644	1.00 10.60	А
j	30	ATOM	3281	0	PRO A		37.405		-10.320	1.00 9.70	A
14	-	ATOM	3282	N	TYR A		37.082	75.717	-9.175	1.00 10.48	А
144		MOTA	3283	CA	TYR A		38.439	76.192	-9.433	1.00 11.22	
g sall.		ATOM	3284	СВ	TYR A		38.658	77.554	-8.769	1.00 12.13	А
		ATOM	3285	CG	TYR A		40.028	78.140	-9.029	1.00 12.96	А
<u>}:</u>	35	ATOM	3286	CD1			40.274		-10.170	1.00 13.38	А
		ATOM	3287		TYR A		41.533		-10.421	1.00 14.39	А
		MOTA	3288		TYR A		41.084	77.922	-8.138	1.00 13.80	A
		ATOM	3289		TYR A		42.355	78.450	-8.383	1.00 14.53	А
		ATOM	3290	CZ	TYR A		42.568	79.206	-9.526	1.00 14.85	A
	40	ATOM	3291	ОН	TYR A		43.812	79.745	-9.785	1.00 15.46	А
		ATOM	3292	C	TYR A		39.451	75.196	-8.863	1.00 11.15	А
		ATOM	3293	0	TYR A		40.402	74.787		1.00 10.39	
		ATOM	3294	N	HIS A		39.226	74.794	-7.617	1.00 10.48	
		ATOM	3295	CA	HIS A		40.125	73.872	-6.933	1.00 10.34	А
	45	ATOM	3296	CB	HIS A		39.876	73.985	-5.431	1.00 10.89	
	10	ATOM	3297	CG	HIS A		39.851	75.404	-4.959	1.00 11.17	
		ATOM	3298		HIS A		38.823	76.274	-4.820	1.00 10.14	А
		ATOM	3299		HIS A		41.000	76.127	-4.719	1.00 11.79	
		ATOM	3300		HIS A		40.682	77.382	-4.460	1.00 10.26	
	50	ATOM	3301		HIS A		39.368	77.499	-4.516	1.00 12.42	
		ATOM	3301	C	HIS A		39.985	72.437	-7.431	1.00 10.16	
		ATOM	3303	0	HIS A		40.941	71.660	-7.372	1.00 9.68	
		ATOM	3304	N	LYS A		38.800	72.088	-7.923	1.00 10.04	A
		ATOM	3304	CA	LYS A		38.581	70.752	-8.478	1.00 10.39	
	55	ATOM	3306	CB	LYS A		37.106	70.563		1.00 10.40	
		111001	5500	0.0	בי סיים	120	3,.100				

	ATOM	3307	CG	LYS	Α	426	3	36.193	70.161	-7.714	1.00	10.43	А
	ATOM	3308	CD	LYS	Α	426	3	34.724	70.107			10.31	Α
	ATOM	3309	CE	LYS	Α	426	3	33.871	69.281	-7.183	1.00	10.26	А
	ATOM	3310	NZ	LYS	Α	426	3	33.888	69.790	-5.777	1.00	10.85	Α
5	ATOM	3311	С	LYS	Α	426	3	39.470	70.629	-9.718	1.00	10.40	A
	ATOM	3312	0	LYS	Α	426	4	10.073	69.579	-9.969	1.00	10.72	А
	ATOM	3313	N	ARG	Α	427	3	39.549	71.711	-10.491	1.00	9.88	Α
	MOTA	3314	CA	ARG	Α	427	4	10.379	71.736	-11.691	1.00	10.35	А
	ATOM	3315	CB	ARG	Α	427	4	10.019	72.960	-12.549	1.00	11.69	A
10	ATOM	3316	CG	ARG	Α	427	4	10.997	73.290	-13.671	1.00	12.53	Α
	ATOM	3317	CD	ARG	Α	427	4	11.271	72.122	-14.618	1.00	12.72	A
	ATOM	3318	NE	ARG	Α	427	4	12.265	72.520	-15.613	1.00	12.83	A
	ATOM	3319	CZ	ARG	Α	427	4	13.039	71.683	-16.293	1.00	12.73	A
	MOTA	3320	NH1	ARG	Α	427	4	12.948	70.371	-16.103	1.00	12.04	A
15	ATOM	3321	NH2	ARG	Α	427	4	13.928	72.167	-17.152	1.00	13.32	A
	ATOM	3322	С	ARG	Α	427	4	11.849	71.774	-11.268	1.00	10.25	Α
	ATOM	3323	0	ARG	Α	427	4	12.695	71.101	-11.852	1.00	9.51	Α
	ATOM	3324	N			428		12.145	72.546	-10.230	1.00	10.68	A
	ATOM	3325	CA			428	4	13.514	72.644	-9.738	1.00	11.11	Α
20	ATOM	3326	СВ			428		13.571	73.614	-8.556	1.00	12.20	A
	ATOM	3327	CG			428		14.976	73.931		1.00	13.51	А
	ATOM	3328	SD			428	4	15.000	75.304		1.00	15.32	A
	ATOM	3329	CE			428		16.751	75.650			14.47	A
	ATOM	3330	C			428		14.019	71.258		1.00	10.53	А
25	ATOM	3331	Ō			428		15.199	70.934		1.00	9.33	A
	ATOM	3332	N			429		13.118	70.438		1.00	9.95	A
	ATOM	3333	CA			429		13.475	69.086		1.00	9.37	A
	ATOM	3334	СВ			429		12.251	68.358			10.10	А
	ATOM	3335	CG			429		12.535	66.894			10.35	А
30	ATOM	3336		ASP				12.230	66.024			10.71	А
	ATOM	3337		ASP				13.069	66.616		1.00	9.82	А
	ATOM	3338	C			429		14.063	68.268		1.00	9.63	A
	ATOM	3339	0			429		15.084	67.598		1.00	8.73	А
	ATOM	3340	N			430		13.417		-10.658	1.00	9.03	A
35	ATOM	3341	CA			430		3.876		-11.820	1.00	8.89	A
00	ATOM	3342	CB			430		12.805		-12.911	1.00	9.00	A
	ATOM	3343	CG			430		1.515		-12.507	1.00	9.05	A
	ATOM	3344	CD			430		11.750		-12.150	1.00	9.51	A
	ATOM	3345	NE			430		10.505		-12.128	1.00	9.34	A
40	ATOM	3346	CZ	ARG						-11.029			A
40	ATOM	3347		ARG				10.248	64.770		1.00		A
	ATOM	3348		ARG				88.683		-11.129		10.19	A
	ATOM	3349	C			430		15.201		-12.371	1.00		A
	ATOM	3350	0			430		6.020		-12.878	1.00		A
45		3351						15.407		-12.282	1.00	8.68	A
40	ATOM		N			431		16.652		-12.751		10.08	A
	ATOM	3352	CA			431		16.580		-12.726		10.23	A
	ATOM	3353	CB	VAL				17.954		-12.720		11.41	A
	ATOM	3354		VAL						-13.037	1.00	9.77	
50	ATOM	3355		VAL				15.556					A
50	ATOM	3356	С			431		17.790		-11.840	1.00	9.68	A
	ATOM	3357	0			431		18.822		-12.313	1.00	9.76	A
	ATOM	3358	N			432		17.595		-10.531	1.00	9.64	A
	ATOM	3359	CA			432		18.632	69.206		1.00	9.75	A
EE	ATOM	3360	CB			432		18.255	69.588		1.00	9.87	A
55	ATOM	3361	CG	LEU	Α	432	4	19.292	69.268	-7.079	1.00	9.92	А

											0.6
		ATOM	3362		LEU			50.657	69.850 -7.467		96 A
		ATOM	3363		LEU			48.825	69.849 -5.738		99 A
		MOTA	3364	С	LEU	Α	432	48.865	67.703 -9.698	1.00 9.	62 A
		ATOM	3365	0	LEU	Α	432	49.998	67.237 -9.587	1.00 10.	09 A
	5	ATOM	3366	N	MET	Α	433	47.795	66.945 -9.917	1.00 9.	73 A
		ATOM	3367	CA	MET			47.922	65.496 -10.058	1.00 9.	45 A
		ATOM	3368	CB	MET	Α	433	46.595	64.870 -10.494	1.00 8.	69 A
		ATOM	3369	CG	MET			46.732	63.414 -10.924	1.00 10.	44 A
		ATOM	3370	SD	MET			45.195	62.708 -11.557	1.00 11.	
	10	ATOM	3371	CE	MET			45.222	63.316 -13.250	1.00 10.	
	10	ATOM	3372	С	MET			48.972	65.188 -11.117		60 A
		ATOM	3373	0	MET			49.849	64.340 -10.918		52 A
			3374	N	HIS			48.876	65.885 -12.246		61 A
		ATOM						49.813	65.676 -13.342	1.00 9.	
	15	ATOM	3375	CA	HIS						95 A
	15	ATOM	3376	CB	HIS			49.298	66.325 -14.629	1.00 10.	
		ATOM	3377	CG	HIS			50.281	66.257 -15.752		
		MOTA	3378		HIS			50.721	65.207 -16.487		53 A
		MOTA	3379		HIS			51.018	67.347 -16.161	1.00 11.	
()	••	MOTA	3380		HIS			51.871	66.969 -17.098		32 A
ij	20	MOTA	3381	NE2	HIS			51.712	65.677 -17.313	1.00 11.	
Ţ		ATOM	3382	С	HIS	A	434	51.214	66.191 -13.048	1.00 10.	
		ATOM	3383	0	HIS	A	434	52.202	65.538 -13.391		05 A
\$150g)		MOTA	3384	N	TYR	A	435	51.301	67.370 -12.434	1.00 10.	
		MOTA	3385	CA	TYR	Α	435	52.599	67.943 -12.101	1.00 11.	
	25	MOTA	3386	CB	TYR	Α	435	52.436	69.314 -11.436	1.00 13.	23 A
14		MOTA	3387	CG	TYR	Α	435	52.318	70.480 -12.396	1.00 16.	34 A
M		ATOM	3388	CD1	TYR	Α	435	51.340	70.506 -13.391	1.00 17.	44 A
ã:		ATOM	3389	CE1	TYR	Α	435	51.199	71.613 -14.237	1.00 18.	75 A
		ATOM	3390		TYR			53.157	71.588 -12.270	1.00 18.	76 A
ij	30	ATOM	3391		TYR			53.027	72.695 -13.105	1.00 20.	26 A
1,5 <u>4</u> 6 941 9		ATOM	3392	CZ	TYR			52.045	72.703 -14.083	1.00 20.	16 A
		ATOM	3393	ОН	TYR			51.903	73.818 -14.884	1.00 22.	
		ATOM	3394	С	TYR			53.364	67.018 -11.161	1.00 11.	02 A
		ATOM	3395	0	TYR			54.578	66.868 -11.290	1.00 10.	
∦ ; ≟ :	35	ATOM	3396	N	VAL			52.658	66.400 -10.215		43 A
	30	ATOM	3397	CA	VAL			53.317	65.490 -9.280		55 A
		ATOM	3398	CB	VAL			52.341	65.008 -8.175		98 A
		ATOM	3399		VAL			52.921	63.811 -7.440	1.00 10.	
		ATOM	3400		VAL			52.094	66.145 -7.185		57 A
	4 0							53.885	64.295 -10.039		
	40	MOTA	3401					55.043	63.917 -9.849	1.00 10.	
		ATOM	3402	0	VAL				63.707 -10.914		63 A
		ATOM	3403	N	ARG			53.076		1.00 10.	
		ATOM	3404	CA	ARG			53.537	62.566 -11.696		
	45	ATOM	3405	CB	ARG			52.416	62.050 -12.607	1.00 10.	
	45	ATOM	3406	CG	ARG			52.915	61.118 -13.705	1.00 11.	
		ATOM	3407	CD	ARG			51.778	60.538 -14.544	1.00 11.	
		ATOM	3408	NE	ARG			52.288	59.867 -15.739	1.00 10.	
		MOTA	3409	CZ	ARG			51.558	59.068 -16.516	1.00 10.	
		ATOM	3410		ARG			50.285	58.831 -16.224	1.00 10.	
	50	ATOM	3411	NH2	ARG	Α	437	52.096	58.519 -17.597	1.00 10.	
		ATOM	3412	С	ARG	Α	437	54.751	62.935 -12.547	1.00 10.	
		ATOM	3413	0	ARG	A	437	55.736	62.194 -12.597	1.00 11.	
		ATOM	3414	N	ALA	Α	438	54.680	64.080 -13.220	1.00 10.	55 A
		ATOM	3415	CA	ALA			55.771	64.523 -14.086	1.00 10.	
	55	ATOM	3416	СВ	ALA			55.345	65.764 -14.879	1.00 10.	46 A
	-										

	n TOM	3417	C	ALA	Λ	138	57.053	64 807	-13.309	1.00 10.58	А
	ATOM ATOM	3417	C 0	ALA			58.150		-13.763	1.00 9.73	A
	ATOM	3419	N			439	56.914		-12.136	1.00 9.89	Α
	ATOM	3420	CA			439	58.074		-11.310	1.00 9.47	Α
5	ATOM	3421	CB			439	57.657		-10.141	1.00 8.79	Α
J	ATOM	3422	C			439	58.734		-10.785	1.00 9.84	Α
	ATOM	3423	Ō			439	59.956		-10.838	1.00 8.81	Α
	ATOM	3424	N			440	57.927		-10.270	1.00 9.60	Α
	ATOM	3425	CA			440	58.469	62.283	-9.757	1.00 10.28	Α
10	ATOM	3426	СВ			440	57.367	61.451	-9.089	1.00 10.51	А
10	ATOM	3427	CG			440	56.796	62.085	-7.833	1.00 11.25	Α
	MOTA	3428	CD			440	56.134	61.071	-6.918	1.00 11.92	A
	ATOM	3429		GLU			55.012	60.614	-7.222	1.00 12.12	Α
	ATOM	3430		GLU			56.753	60.718	-5.896	1.00 13.62	А
15	ATOM	3431	С			440	59.118	61.461	-10.872	1.00 10.35	Α
	ATOM	3432	0			440	60.171	60.851	-10.674	1.00 11.64	Α
	ATOM	3433	N			441	58.494	61.437	-12.045	1.00 10.26	Α
	ATOM	3434	CA			441	59.047	60.666	-13.158	1.00 10.07	Α
	ATOM	3435	СВ			441	58.010	60.511	-14.274	1.00 9.51	Α
20	ATOM	3436	CG	MET	Α	441	58.520	59.763	-15.507	1.00 9.93	Α
	ATOM	3437	SD	MET	Α	441	57.250	59.554	-16.783	1.00 10.71	Α
	ATOM	3438	CE	MET	Α	441	56.191	58.321	-16.011	1.00 11.36	Α
	MOTA	3439	С	MET	Α	441	60.325	61.281	-13.721	1.00 10.23	Α
	ATOM	3440	0	MET	Α	441	61.322	60.584	-13.913	1.00 9.58	A
25	ATOM	3441	N	LEU	Α	442	60.304	62.585	-13.982	1.00 10.26	А
	MOTA	3442	CA	LEU	Α	442	61.483		-14.529	1.00 11.10	A
	MOTA	3443	CB			442	61.175		-14.846	1.00 11.61	A
	MOTA	3444	CG			442	60.559		-16.226	1.00 12.48	A
	MOTA	3445		LEU			59.975		-16.271	1.00 12.40	A
30	MOTA	3446		LEU			61.614		-17.305	1.00 12.40	A
	MOTA	3447	С			442	62.697		-13.616	1.00 11.57	A
	MOTA	3448	0			442	63.826		-14.089	1.00 11.69	A
	ATOM	3449	N			443	62.474		-12.307	1.00 11.46	A
25	ATOM	3450	CA			443	63.590		-11.373	1.00 11.37	A A
35	ATOM	3451	СВ			443	63.257		-10.104	1.00 11.11 1.00 10.78	A
	ATOM	3452	OG			443	62.166	63.396		1.00 10.78	A
	ATOM	3453	С			443	64.003		-10.999 -10.403	1.00 11.34	A
	ATOM	3454	0			443 444	65.064 63.177		-10.403	1.00 11.73	A
40	ATOM	3455	N			444	63.458		-11.043	1.00 11.76	A
40	ATOM	3456	CA CB			444	62.204		-11.264	1.00 11.73	A
	ATOM ATOM	3457 3458	СВ			444	64.618		-11.846	1.00 12.36	A
	ATOM	3459	0			444	65.267		-11.402	1.00 12.49	A
		3460	N			445	64.880		-13.021	1.00 12.37	A
45	ATOM ATOM	3460	CA			445	65.948		-13.881	1.00 13.43	A
45	ATOM	3462	CB			445	65.945		-15.218	1.00 12.38	A
	ATOM	3463	CG			445	64.666		-15.968	1.00 12.06	А
	ATOM	3464		TRP			64.217		-16.645	1.00 11.74	А
	ATOM	3465		TRP			62.938		-17.171	1.00 11.42	А
50	ATOM	3466		TRP			64.772		-16.857	1.00 12.15	А
50	ATOM	3467		TRP			63.671		-16.109	1.00 11.63	А
	ATOM	3468		TRP			62.630		-16.829	1.00 11.30	А
	ATOM	3469		TRP			62.198		-17.901	1.00 11.44	А
	ATOM	3470				445	64.037		-17.581	1.00 12.95	А
55	ATOM	3471		TRP			62.762		-18.094	1.00 12.11	А

	ATOM	3472	С	трр	Δ	445	67.333	58 917	-13.252	1.00 14.15	А
	ATOM	3473	0			445	68.201		-13.561	1.00 14.34	A
	ATOM	3474	N	HIS			67.543		-12.375	1.00 14.87	A
	ATOM	3475	CA	HIS			68.831		-11.709	1.00 15.74	А
5	ATOM	3476	CB			446	69.462		-11.992	1.00 16.67	A
3	ATOM	3477	CG			446	69.875		-13.413	1.00 18.24	A
	ATOM	3478		HIS			71.044		-14.047	1.00 19.05	A
		3479		HIS			69.047		-14.350	1.00 18.92	A
	ATOM	3479		HIS			69.688		-15.501	1.00 19.41	A
10	ATOM			HIS			70.901		-15.345	1.00 19.48	A
10	ATOM	3481					68.711		-10.201	1.00 15.40	A
	MOTA	3482	C			446		60.071	-9.635	1.00 15.17	A
	ATOM	3483	0	HIS			67.625		-9.566	1.00 15.17	A
	ATOM	3484	N	SER			69.855	59.714		1.00 10.74	A
15	ATOM	3485	CA	SER			69.946	59.673	-8.120	1.00 17.03	A
15	ATOM	3486	CB	SER			70.995	58.647	-7.685		
	MOTA	3487	OG	SER			70.995	58.488	-6.280	1.00 20.59	A
	ATOM	3488	C	SER			70.432	61.099	-7.850	1.00 17.81	A
	ATOM	3489	0	SER			71.333	61.583	-8.538	1.00 18.00	A
20	ATOM	3490	N			448	69.832	61.789	-6.886	1.00 17.24	A
20	ATOM	3491	CA			448	70.232	63.165	-6.619	1.00 17.67	A
	ATOM	3492	CB			448	69.020	64.097	-6.707	1.00 16.94	A
	ATOM	3493	CG			448	68.372	64.127	-8.058	1.00 15.88	A
	MOTA	3494		TRP			68.520	65.144	-9.056	1.00 15.36	A
	ATOM	3495		TRP			67.742		-10.168	1.00 14.69	A
25	MOTA	3496		TRP			69.236	66.350	-9.120	1.00 14.92	A
	MOTA	3497	CD1	TRP			67.537	63.190	-8.587	1.00 15.27	A
	ATOM	3498	NE1	TRP			67.154	63.555	-9.854	1.00 14.78	A
	ATOM	3499		TRP			67.659		-11.332	1.00 14.71	A
	ATOM	3500	CZ3	TRP			69.154		-10.278	1.00 15.23	A
30	MOTA	3501		TRP			68.368		-11.370	1.00 14.57	A
	ATOM	3502	С	TRP	Α	448	70.919	63.392	-5.283	1.00 18.42	Α
	ATOM	3503	0			448	70.585	62.760	-4.284	1.00 17.49	А
	ATOM	3504	N	ASP	Α	449	71.880	64.312	-5.282	1.00 20.05	A
	ATOM	3505	CA			449	72.605	64.659	-4.068	1.00 21.64	A
35	ATOM	3506	CB	ASP	Α	449	73.759	65.612	-4.397	1.00 23.78	А
	MOTA	3507	CG	ASP	Α	449	74.633	65.915	-3.192	1.00 26.46	. А
	ATOM	3508	OD1	ASP	Α	449	74.187	66.658	-2.290	1.00 27.14	A
	ATOM	3509	OD2	ASP	Α	449	75.772	65.402	-3.146	1.00 28.75	A
	ATOM	3510	С	ASP	Α	449	71.607	65.344	-3.140	1.00 21.51	A
40	ATOM	3511	0	ASP	Α	449	70.723	66.066	-3.599	1.00 21.20	A
	ATOM	3512	N	GLY	Α	450	71.743	65.109	-1.839	1.00 21.76	А
	ATOM	3513	CA	GLY	Α	450	70.833	65.708	-0.881	1.00 21.96	A
	ATOM	3514	С	GLY	A	450	70.708	67.216	-0.997	1.00 22.35	A
	ATOM	3515	0	GLY	Α	450	69.662	67.782	-0.677	1.00 22.04	A
45	ATOM	3516	N	MET	Α	451	71.769	67.872	-1.454	1.00 21.87	A
	ATOM	3517	CA	MET	Α	451	71.756	69.323	-1.593	1.00 22.85	A
	ATOM	3518	СВ			451	73.156	69.840	-1.937	1.00 25.58	Α
	MOTA	3519	CG			451	74.196	69.618	-0.856	1.00 29.68	А
	ATOM	3520	SD			451	75.742	70.474	-1.245	1.00 35.87	А
50	ATOM	3521	CE			451	76.613	69.212	-2.205	1.00 33.78	А
23	ATOM	3522	C			451	70.773	69.820	-2.649	1.00 21.28	А
	ATOM	3523	Ō			451	70.398	70.990	-2.644	1.00 21.56	Α
	ATOM	3524	N			452	70.366	68.937	-3.554	1.00 20.19	А
	ATOM	3525	CA			452	69.434	69.314	-4.614	1.00 19.23	А
55	ATOM	3526	CB			452	69.452	68.267	-5.724	1.00 19.32	Α
	111011	3320	0.0		• •				- · · •		

	ATOM	3527	С	ALA	л	152	68.017	69.482	-4.077	1.00 18.38	А
		3528					67.146	70.024	-4.760	1.00 10.30	A
	ATOM		0	ALA						1.00 17.50	
	ATOM	3529	N	ARG			67.795	69.004	-2.856		A
_	ATOM	3530	CA	ARG			66.488	69.096	-2.207	1.00 17.01 1.00 18.00	A
5	ATOM	3531	CB	ARG			66.180	70.559	-1.870		A
	ATOM	3532	CG	ARG			67.249	71.225	-1.012	1.00 19.55	A
	ATOM	3533	CD	ARG			66.942	72.698	-0.774	1.00 21.42	A
	MOTA	3534	NE	ARG			65.716	72.891	-0.005	1.00 22.14	A
	MOTA	3535	CZ	ARG	Α	453	65.172	74.078	0.251	1.00 23.68	Α
10	MOTA	3536	NH1	ARG	Α	453	65.745	75.187	-0.202	1.00 24.14	Α
	MOTA	3537	NH2	ARG	Α	453	64.054	74.156	0.963	1.00 23.59	Α
	MOTA	3538	С	ARG	Α	453	65.360	68.510	-3.058	1.00 16.24	Α
	MOTA	3539	0	ARG	Α	453	64.227	68.987	-3.016	1.00 16.48	Α
	MOTA	3540	N	ILE	Α	454	65.673	67.471	-3.826	1.00 15.16	Α
15	MOTA	3541	CA	ILE			64.681	66.830	-4.679	1.00 14.83	Α
	ATOM	3542	СВ	ILE			65.349	65.848	-5.667	1.00 15.09	A
	ATOM	3543	CG2	ILE			64.286	65.111	-6.477	1.00 14.91	A
	ATOM	3544	CG1	ILE			66.312	66.611	-6.587	1.00 14.75	A
	MOTA	3545	CD1				65.660	67.697	-7.432	1.00 14.56	A
20	ATOM	3546	C	ILE			63.638	66.077	-3.852	1.00 14.81	A
20									-4.002	1.00 14.37	A
	ATOM	3547	0	ILE			62.438	66.309		1.00 14.37	A
	ATOM	3548	N	GLU			64.095	65.179	-2.981		
	MOTA	3549	CA	GLU			63.178	64.410	-2.142	1.00 14.75	A
25	MOTA	3550	CB	GLU			63.944	63.458	-1.212	1.00 15.34	A
25	MOTA	3551	CG	GLU			64.535	62.225	-1.883	1.00 14.65	A
	MOTA	3552	CD	GLU			65.880	62.484	-2.539	1.00 16.24	A
	MOTA	3553	OE1	GLU			66.344	63.646	-2.526	1.00 16.23	A
	MOTA	3554	OE2	GLU			66.473	61.518	-3.068	1.00 14.90	А
	MOTA	3555	С	GLU	Α	455	62.323	65.349	-1.299	1.00 14.60	A
30	MOTA	3556	0	GLU	Α	455	61.129	65.116	-1.103	1.00 13.65	А
	MOTA	3557	N	GLU	А	456	62.948	66.411	-0.800	1.00 14.87	Α
	MOTA	3558	CA	GLU	Α	456	62.258	67.394	0.025	1.00 15.38	Α
	ATOM	3559	CB	GLU	Α	456	63.229	68.502	0.432	1.00 17.41	A
	ATOM	3560	CG	GLU	Α	456	62.669	69.473	1.454	1.00 20.04	Α
35	MOTA	3561	CD	GLU	Α	456	63.543	70.699	1.627	1.00 21.34	Α
	ATOM	3562	OE1	GLU	Α	456	64.773	70.581	1.457	1.00 22.77	А
	ATOM	3563		GLU			63.002	71.780	1.941	1.00 22.99	А
	ATOM	3564	С	GLU			61.070	68.011		1.00 14.91	A
	ATOM	3565	0	GLU			59.940	67.995	-0.222	1.00 14.66	А
40	ATOM	3566	N	ARG			61.333			1.00 14.02	А
	ATOM	3567	CA	ARG			60.281	69.196	-2.686	1.00 13.76	А
	ATOM	3568	CB	ARG			60.895	69.878	-3.917	1.00 14.11	A
	ATOM	3569	CG	ARG			61.308	71.340	-3.700	1.00 15.77	A
	ATOM	3570	CD	ARG			62.227	71.524	-2.493	1.00 18.41	A
45		3570		ARG			62.485	72.936	-2.197	1.00 10.41	A
40	ATOM		NE								
	ATOM	3572	CZ	ARG			63.341	73.709	-2.864	1.00 20.83	A
	ATOM	3573		ARG			64.041	73.217	-3.879	1.00 20.68	A
	ATOM	3574		ARG			63.497	74.982	-2.515	1.00 21.40	A
	ATOM	3575	С	ARG			59.186	68.216	-3.110	1.00 12.75	A
50	ATOM	3576	0	ARG	Α	457	58.004	68.561	-3.105	1.00 11.81	A
	MOTA	3577	N	LEU			59.571	66.996	-3.470	1.00 11.91	А
	MOTA	3578	CA	LEU	Α	458	58.586	66.002	-3.886	1.00 12.47	A
	ATOM	3579	CB	LEU	Α	458	59.279	64.788	-4.511	1.00 12.02	А
	ATOM	3580	CG	LEU	Α	458	59.998	65.089	-5.834	1.00 11.94	А
55	ATOM	3581	CD1	LEU	Α	458	60.693	63.829	-6.341	1.00 11.69	Α

	MOTA	3582	CD2	LEU	Α	458	58.985	65.601	-6.866	1.00 11.22	Α
	ATOM	3583	С	LEU	Α	458	57.696	65.559	-2.727	1.00 12.74	Α
	ATOM	3584	0	LEU	Α	458	56.505	65.318	-2.917	1.00 12.98	Α
	ATOM	3585	N	GLU	Α	459	58.265	65.451	-1.530	1.00 12.29	Α
5	MOTA	3586	CA	GLU	Α	459	57.473	65.049	-0.374	1.00 13.18	Α
	MOTA	3587	СВ	GLU	Α	459	58.365	64.846	0.857	1.00 14.23	A
	ATOM	3588	CG	GLU	Α	459	57.595	64.361	2.088	1.00 16.92	Α
	ATOM	3589	CD	GLU	Α	45.9	58.497	63.766	3.159	1.00 18.01	Α
	ATOM	3590	OE1	GLU	Α	459	59.210	64.532	3.834	1.00 19.27	Α
10	ATOM	3591	OE2	GLU	Α	459	58.497	62.525	3.316	1.00 18.89	A
	ATOM	3592	С	GLU	Α	459	56.428	66.126	-0.096	1.00 12.90	A
	ATOM	3593	0	GLU	Α	459	55.259	65.824	0.153	1.00 11.83	A
	ATOM	3594	N	GLN	Α	460	56.847	67.388	-0.147	1.00 12.61	A
	ATOM	3595	CA	GLN	Α	460	55.921	68.490	0.081	1.00 13.10	A
15	MOTA	3596	СВ	GLN	Α	460	56.653	69.829	-0.041	1.00 15.39	Α
	ATOM	3597	CG	GLN	Α	460	55.765	71.037	0.211	1.00 17.90	Α
	ATOM	3598	CD	GLN	Α	460	56.432	72.346	-0.153	1.00 20.12	Α
	MOTA	3599		GLN			55.906	73.421	0.135	1.00 23.01	Α
	ATOM	3600	NE2	GLN			57.590	72.265	-0.799	1.00 20.79	А
20	ATOM	3601	С	GLN			54.788	68.428	-0.950	1.00 12.41	A
	ATOM	3602	0	GLN			53.612	68.505	-0.602	1.00 11.47	А
	ATOM	3603	N	ALA			55.145	68.278	-2.222	1.00 11.44	A
	ATOM	3604	CA	ALA			54.136	68.217	-3.275	1.00 10.82	A
	ATOM	3605	СВ	ALA			54.810	68.096	-4.646	1.00 10.93	А
25	ATOM	3606	C	ALA			53.147	67.069	-3.068	1.00 10.35	A
	ATOM	3607	0	ALA			51.935	67.270	-3.152	1.00 10.11	А
	ATOM	3608	N	ARG			53.659	65.869	-2.801	1.00 10.22	А
	ATOM	3609	CA	ARG			52.797	64.708	-2.587	1.00 10.59	А
	ATOM	3610	CB	ARG			53.630	63.443	-2.331	1.00 9.97	A
30	ATOM	3611	CG	ARG			54.383	62.883	-3.541	1.00 9.98	A
	ATOM	3612	CD	ARG			54.835	61.446	-3.254	1.00 10.20	A
	ATOM	3613	NE	ARG			55.747	61.380	-2.113	1.00 10.56	A
	ATOM	3614	CZ	ARG			57.066	61.530	-2.202	1.00 11.65	A
	ATOM	3615		ARG			57.635	61.749	-3.383	1.00 11.19	A
35	ATOM	3616		ARG			57.818	61.469	-1.110	1.00 11.26	A
00	ATOM	3617	C	ARG			51.860	64.925	-1.400	1.00 11.75	A
	ATOM	3618	0	ARG			50.680	64.581	-1.451	1.00 10.88	A
	ATOM	3619	N	ARG			52.390	65.498	-0.325	1.00 11.61	A
	ATOM	3620	CA	ARG			51.582	65.721	0.863	1.00 11.89	A
40	ATOM		CB	ARG				66.003		1.00 11.99	A
10	ATOM	3622	CG	ARG			53.276	64.751	2.436	1.00 12.82	A
	ATOM	3623	CD	ARG			54.199		3.623	1.00 14.07	A
	ATOM	3624	NE	ARG			54.724	63.620	4.023	1.00 15.02	A
	ATOM	3625	CZ	ARG			55.481	63.409	5.094	1.00 15.38	A
45	ATOM	3626		ARG			55.814	64.422	5.882	1.00 15.01	A
10	ATOM	3627		ARG			55.893	62.180	5.381	1.00 15.17	A
	ATOM	3628	C	ARG			50.497	66.787	0.730	1.00 13.17	A
	ATOM	3629	0	ARG			49.401	66.612	1.259	1.00 11.19	A
	ATOM	3630	N	GLU			50.777	67.881	0.024	1.00 11.13	A
50				GLU			49.755	68.913	-0.137	1.00 11.03	A
JU	ATOM	3631	CA				50.361	70.206	-0.137	1.00 11.07	
	ATOM	3632	CB	GLU							A A
	ATOM	3633	CG	GLU			51.509	70.752	0.158	1.00 14.44	A
	MOTA	3634	CD OE1	GLU			51.083	71.173	1.560	1.00 15.33	A
55	MOTA	3635		GLU			50.043	70.696	2.058	1.00 16.27	A
<i>JJ</i>	ATOM	3636	OE2	GLU	А	404	51.804	71.981	2.176	1.00 17.15	А

	P. (10.14	2627	~	CT 11		1.51	4.0	653	68.409	_ 1	.067	1 (30	10.16	А
	ATOM	3637	C	GLU GLU				.653 .481	68.714		.861			10.20	A
	ATOM	3638	0	LEU				.022	67.646		.094			10.06	A
	ATOM	3639	N					.022	67.101		.005			10.13	A
5	ATOM	3640	CA	LEU LEU				.668	66.476		.247	1.0		9.70	A
3	ATOM	3641	CB CG					.695	65.782		.215	1.0		9.35	A
	ATOM	3642		LEU					66.790		.716	1.0		9.18	A
	MOTA	3643		LEU				.662	65.178		.389	1.0		8.95	A
	ATOM	3644		LEU				.459	66.033		.263	1.0		9.87	A
10	ATOM	3645	C	LEU				.215	65.955		.400	1.0		9.64	A
10	ATOM	3646	0	LEU				.994				1.0		9.22	A
	ATOM	3647	N	SER				.905	65.218		.468			9.23	
	ATOM	3648	CA	SER				.237	64.161		.713	1.0			A A
	ATOM	3649	CB			466		.261	63.303		.038	1.0		9.47	A
15	MOTA	3650	OG	SER				.045	62.538		.864	1.0		9.64	A
15	ATOM	3651	С			466		.252	64.764		.279	1.0		9.71 9.34	A
	ATOM .	3652	0	SER				.148	64.249		.467	1.0			
	ATOM	3653	N	LEU				.656	65.861		.910	1.0		9.09 9.59	A A
	ATOM	3654	CA	LEU				.795	66.521		.879				
20	ATOM	3655	CB	LEU				.501	67.744		.473	1.0		9.34	A
20	MOTA	3656	CG	LEU				.771	68.418		.636			11.49	A
	ATOM	3657		LEU				.861	67.523		.867			12.53	A
	ATOM	3658		LEU				.389	69.786		.924			11.51	A
	MOTA	3659	С	LEU				.480	66.957		.233	1.0		9.10	A
0.5	ATOM	3660	0	LEU				.405	66.769		.809	1.0		8.58	A
25	ATOM	3661	N	PHE				.569	67.521		.032	1.0		8.59	A
	MOTA	3662	CA			468		.386	68.005		.672	1.0		9.47	A
	MOTA	3663	СВ			468		.792	68.803		.918	1.0		9.60	A
	MOTA	3664	CG			468		.667	69.600		.519			10.53	A
00	MOTA	3665		PHE				.953	70.514		.744			10.08	A
30	MOTA	3666		PHE				.310	69.434		.854	1.0		9.96	A
	MOTA	3667		PHE				.898	71.250		.291	1.0		9.64	A
	MOTA	3668		PHE				.256	70.166		.409	1.0		9.46	A
	MOTA	3669	CZ			468		.549	71.076		.622	1.0		8.13	A
0.5	ATOM	3670	С			468		.405	66.901		.060	1.0		9.54	A
35	ATOM	3671	0			468		.261	67.186		.400			10.30	A
	ATOM	3672	N			469		.843	65.644		.012	1.0		9.36	A
	ATOM	3673	CA			469		.951	64.536		.343	1.0		9.71	A
	MOTA	3674	CB			469		.743	63.243		.555	1.0		9.78	A
40	MOTA	3675	CG			469		.803	63.345		.645			10.20	A
40	MOTA	3676	CD	GLN				.265	63.975		.917			9.47	A
	MOTA	3677		GLN				.797	64.979		.397			12.79	A
	ATOM	3678	NE2	GLN				.207	63.394		.468	1.0		8.19	A
	ATOM	3679	С			469		.921	64.325		.234	1.0		9.75	A
	MOTA	3680	0			469		.977	63.545		.392			10.11	A
45	MOTA	3681	N			470		.111	65.023		.884	1.0		9.95	A
	MOTA	3682	CA			470		.200	64.937		.029	1.0		9.97	A
	MOTA	3683	CB			470		.571	65.989		.082			10.40	A
	ATOM	3684	CG			470		.592	66.076		.213			11.67	A
	ATOM	3685		HIS			38	.969	65.109		.926			11.04	A
50	ATOM	3686		HIS				.127	67.276		.709			13.03	A
	MOTA	3687	CE1	HIS	Α	470		258	67.043		.676			10.74	Α
	MOTA	3688	NE2	HIS				.144	65.736		.828			13.35	Α
	MOTA	3689	С	HIS	Α	470		.754	65.165		.583			10.37	Α
	MOTA	3690	0	HIS	Α	470		.511	65.900		.622	1.			А
55	ATOM	3691	N	HIS	A	471	37	.797	64.560	2	.289	1.	00	10.77	Α

ATOM 3693 CB HIS A 471 35.525 63.621 2.593 1.00 11.23 A A ATOM 3693 CB HIS A 471 35.686 63.532 4.078 1.00 11.19 A A ATOM 3695 CD HIS A 471 35.686 63.532 4.078 1.00 10.36 A A ATOM 3695 CD HIS A 471 35.686 63.532 4.078 1.00 10.36 A A ATOM 3697 CEI HIS A 471 36.545 62.853 5.990 1.00 10.31 A A ATOM 3698 NE2 HIS A 471 36.545 62.853 5.990 1.00 10.31 A A ATOM 3698 NE2 HIS A 471 35.555 63.683 6.263 1.00 9.966 A ATOM 3700 O HIS A 471 35.773 66.099 2.147 1.00 11.46 A A ATOM 3700 O HIS A 471 35.773 66.099 2.147 1.00 11.46 A A ATOM 3700 O HIS A 471 35.555 66.270 2.012 1.00 10.89 A A ATOM 3700 O HIS A 471 36.566 66.999 2.147 1.00 11.46 A A ATOM 3700 C A ASP A 472 36.606 67.080 2.502 1.00 11.51 A A ATOM 3700 C A ASP A 472 36.184 68.929 4.100 11.00 12.11 A A ATOM 3704 C C ASP A 472 36.184 68.929 4.108 1.00 12.11 A A ATOM 3704 C C ASP A 472 35.075 68.316 4.919 1.00 11.49 A A ATOM 3706 DOZ ASP A 472 35.075 68.316 4.919 1.00 11.49 A A ATOM 3706 DOZ ASP A 472 35.036 367.755 5.991 1.00 12.78 A ATOM 3708 DOZ ASP A 472 35.036 367.755 5.991 1.00 12.78 A ATOM 3708 DOZ ASP A 472 37.043 70.566 1.870 1.00 12.78 A ATOM 3708 DOZ ASP A 472 37.043 70.566 1.870 1.00 12.78 A ATOM 3708 DOZ ASP A 472 37.043 70.566 1.870 1.00 12.78 A ATOM 3708 DOZ ASP A 472 37.043 70.566 1.870 1.00 12.78 A ATOM 3710 C A GLY A 473 38.956 68.679 1.103 1.00 10.90 A ATOM 3711 C G GLY A 473 38.956 69.394 0.275 1.00 10.57 A ATOM 3712 D G GLY A 473 38.956 69.394 0.275 1.00 10.57 A ATOM 3713 N ILE A 474 38.396 68.679 1.103 1.00 10.079 A ATOM 3713 N ILE A 474 38.396 68.518 -3.375 1.00 10.079 A ATOM 3710 C G LILE A 474 38.986 68.518 -3.356 1.00 10.0 10.90 A ATOM 3710 C G LILE A 474 38.986 68.518 -3.556 1.00 10.0 1.79 A ATOM 3720 C G LILE A 474 38.986 68.518 -3.556 1.00 10.0 1.79 A ATOM 3720 C G LILE A 474 38.986 68.518 -3.536 1.00 10.0 10.90 A ATOM 3720 C G LILE A 474 38.986 68.518 -3.536 1.00 10.0 10.90 A ATOM 3720 C G LILE A 474 38.986 68.518 -3.536 1.00 10.0 10.90 A ATOM 3720 C G LILE A 474 38.986 69.394 0.2750 1.00 11.10 A ATOM 3720 C G LILE A 474 38.986 68.518 -3.536											1 00 11 00	
ATOM 3694 CG HIS A 471 35.686 63.532 4.078 1.00 10.36 A ATOM 3695 CD2 HIS A 471 35.001 64.122 5.066 1.00 10.59 A ATOM 3696 ND1 HIS A 471 36.646 62.744 4.678 1.00 10.71 A ATOM 3697 CEL HIS A 471 36.546 62.853 5.990 1.00 10.31 A ATOM 3698 CD2 HIS A 471 36.546 62.853 5.990 1.00 10.31 A ATOM 3698 CD2 HIS A 471 35.773 66.099 2.147 1.00 11.46 A ATOM 3700 0 HIS A 471 35.773 66.099 2.147 1.00 11.46 A ATOM 3700 0 HIS A 471 35.773 66.099 2.147 1.00 11.46 A ATOM 3700 0 HIS A 471 35.773 66.099 2.147 1.00 11.46 A ATOM 3701 N ASP A 472 36.660 67.080 2.502 1.00 19.89 A ATOM 3701 N ASP A 472 36.660 67.080 2.502 1.00 11.51 A ATOM 3701 CG ASP A 472 35.075 68.316 4.919 1.00 11.49 A ATOM 3704 CG ASP A 472 35.075 68.316 4.919 1.00 12.78 A ATOM 3705 ODZ ASP A 472 35.075 68.316 4.919 1.00 12.78 A ATOM 3706 ODZ ASP A 472 35.936 67.755 5.991 1.00 12.78 A ATOM 3706 ODZ ASP A 472 37.043 70.568 1.870 1.00 12.78 A ATOM 3706 ODZ ASP A 472 37.043 70.568 1.870 1.00 12.78 A ATOM 3708 O ASP A 472 37.043 70.568 1.870 1.00 12.78 A ATOM 3708 O ASP A 472 37.043 70.568 1.870 1.00 12.78 A ATOM 3708 O ASP A 473 38.956 69.394 0.275 1.00 10.57 A ATOM 3710 CG GLY A 473 38.956 69.394 0.275 1.00 10.57 A ATOM 3711 CG GLY A 473 38.956 69.394 0.275 1.00 10.79 A ATOM 3712 CG GLY A 473 38.956 69.394 0.275 1.00 10.79 A ATOM 3715 CB ILE A 474 38.905 66.598 5.3462 1.00 10.07 A ATOM 3716 CG ILE A 474 38.906 67.239 -1.906 1.00 10.32 A ATOM 3716 CG ILE A 474 38.904 67.239 -1.906 1.00 10.32 A ATOM 3719 CG ILE A 474 38.904 67.239 -1.906 1.00 10.32 A ATOM 3719 CG ILE A 474 38.614 67.314 -5.591 1.00 10.79 A ATOM 3719 CG ILE A 474 38.614 67.314 -5.591 1.00 10.79 A ATOM 3719 CG ILE A 474 38.614 67.314 -5.591 1.00 10.79 A ATOM 3719 CG ILE A 474 38.614 67.314 -5.591 1.00 10.79 A ATOM 3719 CG ILE A 474 38.614 67.314 -5.591 1.00 10.79 A ATOM 3719 CG ILE A 474 38.614 67.314 -5.591 1.00 10.79 A ATOM 3719 CG ILE A 474 38.614 67.314 -5.591 1.00 10.79 A ATOM 3719 CG ILE A 474 38.614 67.314 -5.591 1.00 10.79 A ATOM 3719 CG ILE A 474 38.614 67.314 -5.591 1.00 10.79 A ATOM 3719 CG ILE		ATOM	3692	CA	HIS	A	471	36.391	64.709	1.923		
5 ATOM 3695 CD HIS A 471 36.501 64.122 5.086 1.00 10.59 A ATOM 3697 CEL HIS A 471 36.546 62.744 4.678 1.00 10.71 A ATOM 3698 NEZ HIS A 471 36.545 62.853 5.990 1.00 10.31 A ATOM 3698 NEZ HIS A 471 35.555 63.683 6.263 1.00 9.96 A ATOM 3700 CHIS A 471 34.555 66.270 2.012 1.00 10.46 A ATOM 3700 O HIS A 471 34.555 66.270 2.012 1.00 10.46 A ATOM 3700 N ASP A 472 36.606 67.080 2.502 1.00 11.51 A ATOM 3701 N ASP A 472 36.163 68.467 2.651 1.00 11.161 A ATOM 3702 CA ASP A 472 35.075 68.316 4.919 1.00 11.16 A ATOM 3705 ODL ASP A 472 35.075 68.316 4.919 1.00 11.49 A ATOM 3705 ODL ASP A 472 35.075 68.316 4.919 1.00 11.49 A ATOM 3706 ODL ASP A 472 35.036 67.755 5.991 1.00 12.45 A ATOM 3707 C ASP A 472 37.112 69.337 1.834 1.00 11.63 A ATOM 3708 O ASP A 472 37.112 69.337 1.834 1.00 11.63 A ATOM 3709 N GLY A 473 38.005 68.679 1.103 1.00 10.90 A ATOM 3710 C GLY A 473 38.005 68.679 1.103 1.00 10.57 A ATOM 3712 O GLY A 473 38.946 69.511 -1.145 1.00 10.57 A ATOM 3712 O GLY A 473 38.946 69.511 -1.145 1.00 10.57 A ATOM 3716 CG ELF A 474 38.366 68.529 -1.976 1.00 10.57 A ATOM 3716 CG LY A 473 38.904 67.253 -1.00 10.05 A ATOM 3711 N ILE A 474 38.366 68.529 -1.976 1.00 10.57 A ATOM 3716 CG LY A 473 36.464 68.518 -3.375 1.00 10.22 A ATOM 3710 C GLY A 473 38.904 67.253 -1.00 10.05 A ATOM 3711 N ILE A 474 38.366 68.529 -1.976 1.00 10.32 A ATOM 3712 O GLY A 473 38.904 67.253 -1.00 10.057 A ATOM 3712 O GLY A 473 38.904 67.253 -1.00 10.07 A ATOM 3712 O GLY A 473 38.005 68.659 1.103 1.00 10.107 A ATOM 3712 O GLY A 473 38.904 67.253 -1.00 10.07 A ATOM 3712 O GLY A 473 38.904 67.253 -1.00 10.07 A ATOM 3712 O GLY A 473 38.904 67.253 -1.00 10.07 A ATOM 3712 O GLY A 473 38.904 67.250 -1.00 10.07 A ATOM 3712 O GLY A 473 38.904 67.250 -1.00 10.07 A ATOM 3712 O GLY A 473 38.904 67.250 -1.00 10.07 A ATOM 3712 O GLY A 473 38.904 67.250 -1.00 10.07 A ATOM 3713 O T HR A 474 38.368 68.529 -1.976 1.00 10.90 A ATOM 3713 O T HR A 474 38.904 67.260 -1.00 10.00 10.01 A ATOM 3713 O T HR A 474 38.904 67.260 -1.00 10.00 10.00 A ATOM 3713 O T HR A 474 38.904 67.260		ATOM	3693	CB	HIS	A	471	35.525	63.621	2.593		
ATOM 3695 CDZ HIS A 471		ATOM	3694	CG	HIS	Α	471	35.686	63.532	4.078	1.00 10.36	5 A
5 ATOM 3696 ND] HIS A 471 36.646 62.744 4.678 1.00 10.71 A ATOM 3697 CEI HIS A 471 36.545 62.853 5.990 1.00 10.31 A ATOM 3698 NEZ HIS A 471 35.755 63.683 6.263 1.00 9.966 A ATOM 3699 C HIS A 471 35.755 66.099 2.147 1.00 11.46 A ATOM 3700 O HIS A 471 35.755 66.270 2.012 1.00 11.46 A ATOM 3701 N ASP A 472 36.606 67.080 2.502 1.00 11.51 A ATOM 3702 CA ASP A 472 36.636 67.080 2.502 1.00 11.51 A ATOM 3704 CG ASP A 472 36.163 68.467 2.651 1.00 11.16 A ATOM 3705 ODJ ASP A 472 36.184 68.929 4.108 1.00 12.11 A ATOM 3706 ODZ ASP A 472 35.075 68.316 4.919 1.00 12.78 A ATOM 3706 ODZ ASP A 472 35.363 67.755 5.991 1.00 12.78 A ATOM 3707 O ASP A 472 35.363 67.755 5.991 1.00 12.78 A ATOM 3708 O ASP A 472 37.043 70.568 1.870 1.00 12.15 A ATOM 3708 O ASP A 472 37.043 70.568 1.870 1.00 12.78 A ATOM 3708 O ASP A 472 37.043 70.568 1.870 1.00 10.90 A ATOM 3710 CA GLY A 473 38.956 69.394 0.275 1.00 10.57 A ATOM 3711 C GLY A 473 38.445 69.511 -1.145 1.00 10.79 A ATOM 3712 C GLY A 473 38.465 68.529 -1.976 1.00 10.79 A ATOM 3713 N ILE A 474 38.783 68.529 -1.976 1.00 10.79 A ATOM 3716 CGZ ILE A 474 38.904 67.239 -4.090 1.00 1.01 A ATOM 3716 CGZ ILE A 474 38.904 67.239 -4.090 1.00 1.01 A ATOM 3718 CDI ILE A 474 38.606 68.518 -3.375 1.00 10.23 A ATOM 3718 CDI ILE A 474 38.606 68.518 -3.375 1.00 10.23 A ATOM 3710 CGI ILE A 474 38.904 67.239 -4.090 1.00 1.01 A ATOM 3720 C ILE A 474 38.644 68.618 -3.555 1.00 10.23 A ATOM 3720 C ILE A 474 38.644 68.618 -3.555 1.00 10.23 A ATOM 3721 CGI ILE A 474 38.644 68.618 -3.555 1.00 10.23 A ATOM 3722 CB THR A 475 34.656 68.256 -2.483 1.00 11.01 A ATOM 3722 CB THR A 475 34.649 68.312 -0.075 1.00 10.23 A ATOM 3731 CGI ILE A 474 38.644 69.060 -4.573 1.00 10.23 A ATOM 3720 C ILE A 474 38.644 68.618 -3.555 1.00 10.23 A ATOM 3732 CB THR A 475 34.649 68.312 -0.075 1.00 10.82 A ATOM 3733 C THR A 475 34.649 68.312 -0.075 1.00 10.23 A ATOM 3732 CB THR A 475 34.649 68.312 -0.075 1.00 11.04 A ATOM 3733 C THR A 477 32.089 70.369 1.618 1.00 11.05 A ATOM 3734 C C THR A 477 32.089 70.369 1.618 1.00 11.05 A ATOM 3734 C C				CD2				35.001	64.122	5.086	1.00 10.59	A
ATOM 3697 CE1 HIS A 471 36.545 62.853 5.990 1.00 10.31 A ATOM 3698 NEZ HIS A 471 35.555 63.683 6.263 1.00 9.96 A ATOM 3699 C HIS A 471 35.755 66.099 2.147 1.00 11.46 A ATOM 3700 O HIS A 471 35.773 66.099 2.147 1.00 11.46 A ATOM 3701 N ASP A 472 36.606 67.080 2.502 1.00 11.51 A ATOM 3702 CA ASP A 472 36.163 68.467 2.651 1.00 11.15 A ATOM 3703 CB ASP A 472 36.163 68.467 2.651 1.00 11.15 A ATOM 3704 CG ASP A 472 35.075 68.316 4.919 1.00 12.11 A ATOM 3703 CD ASP A 472 35.075 68.316 4.919 1.00 12.11 A ATOM 3706 ODD ASP A 472 35.075 68.316 4.919 1.00 12.78 A ATOM 3707 C ASP A 472 35.363 67.755 5.991 1.00 12.78 A ATOM 3708 ODD ASP A 472 37.112 69.337 1.834 1.00 11.53 A ATOM 3708 ODD ASP A 472 37.112 69.337 1.834 1.00 11.53 A ATOM 3708 CA GLY A 473 38.095 69.394 0.275 1.00 10.57 A ATOM 3711 CC GLY A 473 38.095 69.394 0.275 1.00 10.57 A ATOM 3711 CC GLY A 473 38.095 69.394 0.275 1.00 10.57 A ATOM 3712 O GLY A 473 38.456 69.511 -1.145 1.00 10.79 A ATOM 3713 CD GLY A 473 38.456 69.511 -1.145 1.00 10.79 A ATOM 3715 CB ILE A 474 38.368 68.518 -3.375 1.00 10.07 A ATOM 3715 CB ILE A 474 38.293 65.985 -3.462 1.00 10.22 A ATOM 3715 CB ILE A 474 38.293 65.985 -3.462 1.00 10.22 A ATOM 3715 CB ILE A 474 38.293 65.985 -3.462 1.00 10.22 A ATOM 3712 CG ILE A 474 38.293 65.985 -3.462 1.00 10.22 A ATOM 3712 CG ILE A 474 38.293 65.985 -3.462 1.00 10.22 A ATOM 3720 C ILE A 474 38.293 65.985 -3.462 1.00 10.22 A ATOM 3721 N THR A 475 36.144 69.6818 -3.575 1.00 10.66 A ATOM 3722 CG THR A 475 36.144 69.6818 -3.575 1.00 10.082 A ATOM 3722 CG THR A 475 34.493 66.133 -1.00 10.99 A ATOM 3723 CG THR A 475 34.493 66.133 -1.00 10.99 A ATOM 3723 CG THR A 475 34.493 66.133 -1.00 10.27 A ATOM 3728 N GLY A 476 33.508 72.291 -0.999 1.00 11.01 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.01 A ATOM 3731 C THR A 475 34.493 66.133 -1.123 1.00 10.22 A ATOM 3732 N THR A 475 34.696 68.132 -0.075 1.00 10.22 A ATOM 3733 C GLY A 476 33.508 72.291 -0.999 1.00 11.12 A ATOM 3733 C GLY A 476 33.508 72.291 -0.999 1.00 11.12 A ATOM 3733 C GLY A 476 33.508 72.29	5										1.00 10.71	. А
ATOM 3698 NE2 HIS A 471 35.555 63.683 6.263 1.00 9.96 A ATOM 3700 0 HIS A 471 35.555 63.683 6.263 1.00 9.96 A ATOM 3700 0 HIS A 471 34.555 66.270 2.012 1.00 10.69 A ATOM 3701 N ASP A 472 36.606 67.080 2.502 1.00 11.16 A ATOM 3702 CA ASP A 472 36.606 67.080 2.502 1.00 11.16 A ATOM 3703 CB ASP A 472 36.184 68.929 4.108 1.00 12.11 A ATOM 3705 CD1 ASP A 472 35.075 68.316 4.919 1.00 11.16 A ATOM 3705 CD1 ASP A 472 35.075 68.316 4.919 1.00 11.14 A ATOM 3705 CD1 ASP A 472 35.075 68.316 4.919 1.00 12.78 A ATOM 3706 CD2 ASP A 472 35.075 68.316 4.919 1.00 12.78 A ATOM 3707 C ASP A 472 37.012 69.337 1.814 1.00 12.78 A ATOM 3708 O ASP A 472 37.012 69.337 1.814 1.00 12.78 A ATOM 3708 O ASP A 472 37.013 70.568 1.870 1.00 11.58 A ATOM 3709 N GLY A 473 38.005 68.679 1.103 1.00 10.90 A ATOM 3710 CA GLY A 473 38.055 68.679 1.103 1.00 10.90 A ATOM 3711 C GLY A 473 38.445 69.511 -1.1145 1.00 10.77 A ATOM 3712 O GLY A 473 38.445 69.511 -1.145 1.00 10.77 A ATOM 3713 N ILE A 474 38.783 68.529 -1.976 1.00 10.77 A ATOM 3718 CD ILE A 474 38.904 67.239 -1.996 1.00 10.01 1.01 A ATOM 3718 CD ILE A 474 38.904 67.239 -1.996 1.00 10.02 A ATOM 3718 CD ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3710 CD ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3710 CD ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3710 CD ILE A 474 38.604 68.618 -3.536 1.00 11.29 A ATOM 3720 O ILE A 474 38.604 68.618 -3.536 1.00 11.29 A ATOM 3720 C ILE A 474 38.604 68.618 -3.536 1.00 11.02 A ATOM 3721 C ILE A 474 38.604 68.618 -3.536 1.00 11.02 A ATOM 3722 C A THR A 475 34.656 68.226 -2.483 1.00 11.01 A ATOM 3720 C ILE A 474 38.614 69.060 -4.573 1.00 10.92 A ATOM 3720 C ILE A 474 38.604 68.618 -3.536 1.00 11.02 A ATOM 3720 C ILE A 474 38.604 69.600 -4.573 1.00 10.92 A ATOM 3720 C ILE A 474 38.604 69.600 -4.573 1.00 10.92 A ATOM 3720 C ILE A 474 38.604 69.600 -4.573 1.00 10.92 A ATOM 3720 C ILE A 474 38.604 69.600 -4.573 1.00 10.92 A ATOM 3730 C THR A 475 34.606 68.326 -2.483 1.00 11.01 1.29 A ATOM 3731 C THR A 477 33.606 69.399 -9.899 -2.862 1.00 11.15 A ATOM 373	5											
ATOM 3700 O HIS A 471 35.773 66.099 2.147 1.00 11.46 A ATOM 3701 N ASP A 472 36.666 67.080 2.502 1.00 10.89 A ATOM 3701 N ASP A 472 36.666 67.080 2.502 1.00 11.51 A ATOM 3702 CA ASP A 472 36.666 67.080 2.502 1.00 11.51 A ATOM 3703 CB ASP A 472 36.163 68.467 2.651 1.00 11.16 A ATOM 3704 CG ASP A 472 36.163 68.467 2.651 1.00 11.16 A ATOM 3705 DD ASP A 472 35.075 68.316 4.919 1.00 12.11 A ATOM 3705 DD ASP A 472 35.075 68.316 4.919 1.00 12.78 A ATOM 3706 DD2 ASP A 472 35.363 67.755 5.991 1.00 12.78 A ATOM 3707 C ASP A 472 37.112 69.337 1.834 1.00 11.63 A ATOM 3708 O ASP A 472 37.112 69.337 1.834 1.00 11.63 A ATOM 3708 O ASP A 472 37.043 70.568 1.870 1.00 11.63 A ATOM 3708 O ASP A 472 37.043 70.568 1.870 1.00 11.63 A ATOM 3710 CA GLY A 473 38.056 69.394 0.275 1.00 10.57 A ATOM 3711 C GLY A 473 38.056 69.394 0.275 1.00 10.57 A ATOM 3712 O GLY A 473 38.455 69.511 -1.145 1.00 10.47 A ATOM 3713 N ILEA 474 38.386 69.511 -1.145 1.00 10.47 A ATOM 3713 C GLY A 473 37.745 70.464 -1.483 1.00 10.99 A ATOM 3711 C GLY A 473 38.456 69.511 -1.145 1.00 10.47 A ATOM 3713 C GLY A 473 38.783 68.529 -1.976 1.00 10.32 A ATOM 3716 CC2 ILE A 474 38.293 65.985 -3.462 1.00 10.23 A ATOM 3716 CC2 ILE A 474 38.293 65.985 -3.462 1.00 10.23 A ATOM 3718 C GLY A 473 38.094 67.314 -5.591 1.00 11.01 A ATOM 3718 C GLY A 473 38.614 67.314 -5.591 1.00 11.01 A ATOM 3718 C GLY A 474 38.293 65.985 -3.462 1.00 10.23 A ATOM 3719 C ILE A 474 38.293 65.985 -3.462 1.00 10.23 A ATOM 3719 C ILE A 474 38.293 65.985 -3.462 1.00 10.23 A ATOM 3719 C ILE A 474 38.614 67.314 -5.591 1.00 11.29 A ATOM 3720 C ILE A 474 38.614 67.314 -5.591 1.00 11.29 A ATOM 3720 C ILE A 474 38.614 67.314 -5.591 1.00 11.29 A ATOM 3721 C THR A 475 34.656 68.250 -2.483 1.00 11.29 A ATOM 3722 CA THR A 475 34.696 68.250 -2.495 1.00 11.29 A ATOM 3722 CA THR A 475 34.696 68.250 -2.495 1.00 11.29 A ATOM 3723 C C THR A 477 32.089 70.369 1.501 1.00 11.26 A ATOM 3733 C C THR A 477 32.089 70.369 1.501 1.00 11.26 A ATOM 3733 C C THR A 477 32.089 70.369 1.501 1.00 11.26 A ATOM 3733 C C THR A 477 32.08												
ATOM 3700												
10												
ATOM 3702 CA ASP A 472 36.163 68.467 2.651 1.00 11.16 A ATOM 3703 CB ASP A 472 36.184 68.929 4.108 1.00 12.11 ATOM 3704 CG ASP A 472 35.075 68.316 4.919 1.00 11.49 ATOM 3705 ODI ASP A 472 35.075 68.316 4.919 1.00 12.45 ATOM 3705 ODI ASP A 472 35.931 68.402 4.475 1.00 12.78 ATOM 3707 C ASP A 472 37.112 69.337 1.834 1.00 12.45 ATOM 3708 O ASP A 472 37.112 69.337 1.834 1.00 11.63 ATOM 3708 O ASP A 472 37.043 70.568 1.870 1.00 11.63 ATOM 3708 O ASP A 473 38.005 68.679 1.103 1.00 10.90 ATOM 3710 CA GLY A 473 38.005 68.679 1.103 1.00 10.90 ATOM 3710 CA GLY A 473 38.045 69.594 0.275 1.00 10.57 ATOM 3711 C GLY A 473 38.445 69.511 -1.145 1.00 10.47 ATOM 3712 O GLY A 473 38.445 68.529 -1.976 1.00 10.47 ATOM 3713 N ILE A 474 38.783 68.529 -1.976 1.00 10.32 ATOM 3715 CB ILE A 474 38.936 68.529 -1.976 1.00 10.32 ATOM 3716 CC2 ILE A 474 38.936 68.529 -1.976 1.00 10.23 ATOM 3716 CG2 ILE A 474 38.293 65.985 -3.462 1.00 10.23 ATOM 3718 CDI ILE A 474 38.614 67.314 -5.551 1.00 10.23 ATOM 3718 CDI ILE A 474 38.614 67.314 -5.551 1.00 10.23 ATOM 3718 CDI ILE A 474 38.614 67.314 -5.551 1.00 10.23 ATOM 3718 CDI ILE A 474 38.614 67.314 -5.551 1.00 10.23 ATOM 3718 CDI ILE A 474 36.844 68.618 -3.536 1.00 10.23 ATOM 3720 O ILE A 474 36.844 68.618 -3.536 1.00 10.23 ATOM 3720 O ILE A 474 36.844 69.600 -4.573 1.00 10.66 ATOM 3722 CA THR A 475 34.656 68.256 -2.495 1.00 10.92 ATOM 3721 N THR A 475 34.656 68.256 -2.495 1.00 10.92 ATOM 3722 CA THR A 475 34.696 68.312 -0.075 1.00 10.69 ATOM 3723 CB THR A 475 34.696 68.312 -0.075 1.00 10.92 ATOM 3725 CG THR A 475 34.696 68.312 -0.075 1.00 10.92 ATOM 3735 CG THR A 475 34.696 68.312 -0.075 1.00 10.92 ATOM 3730 C GLY A 476 34.990 69.899 -2.862 1.00 10.97 ATOM 3730 C GLY A 476 34.990 70.699 -2.146 1.00 11.97 ATOM 3733 CT THR A 477 32.489 71.728 1.00 11.61 ATOM 3733 CT THR A 477 32.696 70.399 1.905 1.00 11.45 ATOM 3733 CT THR A 477 32.696 70.399 1.905 1.00 11.45 ATOM 3733 CT THR A 477 32.696 70.399 1.905 1.00 11.46 ATOM 3734 CT THR A 477 32.699 70.369 1.905 1.00 11.46 ATOM 3735 CT THR A 477 32.696 70.3		ATOM		0								
ATOM 3703 CB ASP A 472 36.184 68.929 4.108 1.00 12.11 A ATOM 3705 OD1 ASP A 472 35.075 68.316 4.919 1.00 11.49 A ATOM 3705 OD1 ASP A 472 35.075 68.316 4.919 1.00 12.78 A ATOM 3706 OD2 ASP A 472 35.363 67.755 5.991 1.00 12.78 A ATOM 3707 C ASP A 472 37.112 69.337 1.834 1.00 11.58 A ATOM 3708 O ASP A 472 37.112 69.337 1.834 1.00 11.58 A ATOM 3709 N GLY A 473 38.005 68.679 1.103 1.00 10.05 A ATOM 3709 N GLY A 473 38.956 69.394 0.275 1.00 10.57 A ATOM 3711 C GLY A 473 38.956 69.394 0.275 1.00 10.57 A ATOM 3712 O GLY A 473 38.745 69.511 -1.145 1.00 10.47 A ATOM 3713 N ILE A 474 38.785 68.529 -1.976 1.00 10.32 A ATOM 3715 CB ILE A 474 38.783 68.529 -1.976 1.00 10.32 A ATOM 3715 CB ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3717 CGI ILE A 474 38.686 68.518 -3.375 1.00 10.66 A ATOM 3717 CGI ILE A 474 38.694 67.239 -4.090 1.00 11.01 A ATOM 3718 CDI ILE A 474 38.694 67.239 -4.090 1.00 11.01 A ATOM 3718 CDI ILE A 474 38.694 67.239 -4.090 1.00 11.01 A ATOM 3718 CDI ILE A 474 38.694 68.518 -3.536 1.00 10.23 A ATOM 3718 CDI ILE A 474 38.694 67.239 -3.462 1.00 10.23 A ATOM 3718 CDI ILE A 474 38.694 68.618 -3.536 1.00 10.82 A ATOM 3720 O ILE A 474 36.844 68.618 -3.536 1.00 10.82 A ATOM 3722 CA THR A 475 34.696 68.250 -2.495 1.000 11.29 A ATOM 3722 CC THR A 475 34.696 68.250 -2.495 1.00 10.82 A ATOM 3722 CC THR A 475 34.696 68.250 -2.495 1.00 10.92 A ATOM 3722 CC THR A 475 34.696 68.250 -2.495 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.696 68.312 -0.075 1.00 10.89 A ATOM 3728 N GLY A 476 34.900 72.034 -2.124 1.00 11.23 A ATOM 3732 N THR A 475 34.696 68.320 -2.495 1.00 11.97 A ATOM 3735 CG THR A 475 34.696 68.312 -0.075 1.00 10.89 A ATOM 3730 C GLY A 476 34.900 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 34.900 72.034 -2.124 1.00 11.45 A ATOM 3733 CA THR A 477 32.899 70.699 -2.862 1.00 11.97 A ATOM 3735 C THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3735 C THR A 477 33.656 71.569 0.110 1.00 11.26 A ATOM 3735 C THR A 477 33.656 71.569 0.110 1.00 11.26 A ATOM 3735 C THR A 477 33.656 71.569 0.110 1.00 11.26 A ATOM 3735 C	10	ATOM	3701	N	ASP	Α	472	36.606	67.080			
ATOM		ATOM	3702	CA	ASP	Α	472	36.163	68.467	2.651		
ATOM			3703	СВ	ASP	Α	472	36.184	68.929	4.108	1.00 12.11	. A
ATOM 3705 OD1 ASP A 472 33.913 68.402 4.475 1.00 12.78 A ATOM 3706 OD2 ASP A 472 35.363 67.755 5.991 1.00 12.45 A ATOM 3708 O ASP A 472 37.112 69.337 1.834 1.00 11.58 A ATOM 3709 N GLY A 473 38.005 68.679 1.103 1.00 10.90 A ATOM 3710 CA GLY A 473 38.956 68.679 1.103 1.00 10.57 A ATOM 3711 C GLY A 473 38.405 69.394 0.275 1.00 10.57 A ATOM 3711 C GLY A 473 38.445 69.511 -1.145 1.00 10.47 A ATOM 3713 N ILE A 474 38.783 68.529 -1.976 1.00 10.79 A ATOM 3714 CA ILE A 474 38.968 68.518 -3.375 1.00 10.32 A ATOM 3715 CB ILE A 474 38.968 66.518 -3.375 1.00 10.01 A ATOM 3716 CB ILE A 474 38.993 65.985 -3.462 1.00 10.23 A ATOM 3717 CGI ILE A 474 38.993 66.158 -3.375 1.00 10.23 A ATOM 3718 CDI ILE A 474 38.993 66.158 -3.356 1.00 10.23 A ATOM 3718 CDI ILE A 474 38.993 66.158 -3.356 1.00 10.23 A ATOM 3719 C ILE A 474 36.844 69.860 -4.573 1.00 10.23 A ATOM 3720 O ILE A 474 36.844 69.660 -4.573 1.00 10.82 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 10.27 A ATOM 3722 CB THR A 475 34.656 68.256 -2.483 1.00 10.92 A ATOM 3725 CB THR A 475 34.656 68.312 -0.075 1.00 10.82 A ATOM 3726 C THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3726 C THR A 475 34.649 68.312 -0.075 1.00 10.94 A ATOM 3726 C THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3727 C THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3727 C THR A 475 34.656 68.256 -2.483 1.00 10.66 A ATOM 3726 C THR A 475 34.656 68.312 -0.075 1.00 10.92 A ATOM 3726 C THR A 475 34.656 68.256 -2.483 1.00 10.06 A ATOM 3733 C GLY A 476 34.930 66.133 -1.123								35.075	68.316	4.919	1.00 11.49) A
15										4.475	1.00 12.78	3 A
ATOM 3707 C ASP A 472 37.112 69.337 1.834 1.00 11.58 A ATOM 3708 O ASP A 472 37.043 70.568 1.870 1.00 11.63 A ATOM 3708 O ASP A 473 38.095 68.679 1.103 1.00 10.90 A ATOM 3711 C GLY A 473 38.095 69.394 0.275 1.00 10.57 A ATOM 3712 O GLY A 473 38.455 69.511 -1.145 1.00 10.47 A ATOM 3713 N ILE A 474 38.386 69.511 -1.145 1.00 10.79 A ATOM 3713 N ILE A 474 38.386 68.518 -3.375 1.00 10.79 A ATOM 3714 CA ILE A 474 38.386 68.518 -3.375 1.00 10.66 A ATOM 3715 CB ILE A 474 38.980 66.529 -1.976 1.00 10.032 A ATOM 3716 CG2 ILE A 474 38.980 67.239 -4.090 1.00 11.01 A ATOM 3716 CG2 ILE A 474 38.993 65.985 -3.462 1.00 10.23 A ATOM 3718 CG1 ILE A 474 38.614 67.314 -5.591 1.00 11.39 A ATOM 3719 C ILE A 474 38.684 66.188 -3.536 1.00 11.29 A ATOM 3720 O ILE A 474 36.844 69.060 -4.573 1.00 10.27 A ATOM 3720 O ILE A 475 36.444 69.060 -4.573 1.00 10.27 A ATOM 3722 CA THR A 475 34.656 68.256 -2.485 1.00 10.66 A ATOM 3723 CB THR A 475 34.699 68.312 -0.075 1.00 10.92 A ATOM 3723 CB THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.649 68.312 -0.075 1.00 10.97 A A ATOM 3726 C THR A 475 34.649 68.312 -0.075 1.00 10.99 A A A A A A A A A	15											
ATOM 3708 O ASP A 472 37.043 70.568 1.870 1.00 11.63 A ATOM 3709 N GLY A 473 38.005 66.679 1.103 1.00 10.90 A ATOM 3710 CA GLY A 473 38.005 69.394 0.275 1.00 10.57 A ATOM 3711 C GLY A 473 38.956 69.511 -1.145 1.00 10.47 A ATOM 3712 O GLY A 473 37.745 70.464 -1.483 1.00 10.79 A ATOM 3713 N ILE A 474 38.783 68.529 -1.976 1.00 10.57 A ATOM 3713 N ILE A 474 38.783 68.529 -1.976 1.00 10.32 A ATOM 3716 CG2 ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3715 CG ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3717 CGI ILE A 474 38.904 67.314 -5.591 1.00 10.66 A ATOM 3718 CDI ILE A 474 38.614 67.314 -5.591 1.00 10.23 A ATOM 3719 C ILE A 474 36.844 68.618 -3.535 1.00 10.23 A ATOM 3719 C ILE A 474 36.844 68.618 -3.535 1.00 10.27 A ATOM 3720 O ILE A 474 36.844 68.618 -3.535 1.00 10.27 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 10.27 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 10.27 A ATOM 3723 CB THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3724 OGI THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3726 C THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3727 O THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3729 CA GLY A 476 34.90 66.133 -1.123 1.00 9.32 A ATOM 3729 CA GLY A 476 34.90 69.684 -2.520 1.00 11.97 A ATOM 3729 CA GLY A 476 34.90 69.684 -2.520 1.00 11.97 A ATOM 3729 CA GLY A 476 34.90 70.649 -2.146 1.00 10.97 A ATOM 3730 C GLY A 476 34.90 70.649 -2.146 1.00 10.97 A ATOM 3730 C GLY A 476 34.90 70.649 -2.146 1.00 10.97 A ATOM 3731 C GLY A 476 34.90 70.649 -2.146 1.00 10.97 A ATOM 3733 C GLY A 476 34.90 70.649 -2.146 1.00 11.97 A ATOM 3733 C GLY A 476 34.90 70.649 -2.146 1.00 11.97 A ATOM 3733 C GLY A 476 34.90 70.649 -2.146 1.00 11.97 A ATOM 3733 C GLY A 476 34.90 70.649 -2.146 1.00 11.97 A ATOM 3733 C GLY A 476 34.90 70.649 -2.146 1.00 11.97 A ATOM 3733 C GLY A 476 34.90 70.649 -2.146 1.00 11.91 A ATOM 3733 C GLY A 476 34.90 70.649 -2.146 1.00 11.01 1.00 11.26 A ATOM 3733 C GLY A 476 33.90 70.369 1.618 1.00 11.45 A ATOM 3733 C GLY A 476 33.90 70.369 1.618 1.00 11.46 A ATOM 3733 C GLY A 476 33	15											
ATOM 3710 CA GLY A 473 38.005 68.679 1.103 1.00 10.90 A ATOM 3711 C G GLY A 473 38.956 69.394 0.275 1.00 10.57 A ATOM 3712 C GLY A 473 38.445 69.511 1.145 1.00 10.47 A ATOM 3713 N ILE A 474 38.775 70.464 1.483 1.00 10.79 A ATOM 3713 N ILE A 474 38.783 68.529 1.976 1.00 10.79 A ATOM 3714 CA ILE A 474 38.868 68.529 1.976 1.00 10.66 A ATOM 3715 CB ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3716 CG2 ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3716 CG2 ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3717 CG1 ILE A 474 38.614 67.314 -5.591 1.00 10.52 A ATOM 3719 C ILE A 474 38.614 67.314 -5.591 1.00 11.29 A ATOM 3719 C ILE A 474 38.614 67.314 -5.591 1.00 11.29 A ATOM 3719 C ILE A 474 36.844 68.618 -3.536 1.00 11.29 A ATOM 3720 O ILE A 474 36.844 69.60 -4.573 1.00 10.82 A ATOM 3722 CA THR A 475 36.119 68.220 -2.495 1.00 10.66 A ATOM 3722 CB THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3725 CG2 THR A 475 34.656 68.256 -2.483 1.00 11.09 A ATOM 3725 CG2 THR A 475 34.656 68.256 -2.483 1.00 11.09 A ATOM 3725 CG2 THR A 475 34.656 68.256 -2.483 1.00 11.09 A ATOM 3725 CG2 THR A 475 34.656 68.256 -2.483 1.00 11.09 A ATOM 3725 CG2 THR A 475 34.656 68.256 -2.483 1.00 11.09 A ATOM 3728 N GLY A 476 34.493 66.133 -1.23 1.00 0.9.32 A ATOM 3728 N GLY A 476 34.493 66.133 -1.23 1.00 0.9.32 A ATOM 3728 N GLY A 476 34.490 70.649 -2.166 1.00 11.97 A ATOM 3731 O GLY A 476 34.590 70.649 -2.166 1.00 11.97 A ATOM 3733 CA THR A 477 32.689 70.369 1.00 1.00 11.28 A ATOM 3735 CG2 THR A 477 33.566 71.569 0.110 1.00 11.26 A ATOM 3733 CA THR A 477 32.689 70.369 1.00 1.00 11.26 A ATOM 3733 CA THR A 477 32.689 70.369 1.00 1.00 11.26 A ATOM 3733 CA THR A 477 32.689 70.369 1.00 1.00 11.26 A ATOM 3733 CA THR A 477 32.689 70.369 1.00 1.00 11.26 A ATOM 3733 CA THR A 477 32.689 70.369 1.00 1.00 1.00 11.21 A ATOM 3733 CA THR A 477 32.689 70.369 1.00 1.00 1.00 11.26 A ATOM 3733 CA THR A 477 33.300 69.399 1.905 1.00 11.20 A ATOM 373												
ATOM 3710 CA GLY A 473 38.956 69.394 0.275 1.00 10.57 A												
20 ATOM 3711 C GLY A 473 38.445 69.511 -1.145 1.00 10.47 A ATOM 3712 O GLY A 473 37.745 70.464 -1.483 1.00 10.79 A ATOM 3713 N ILE A 474 38.783 68.529 -1.976 1.00 10.32 A ATOM 3714 CA ILE A 474 38.368 68.518 -3.375 1.00 10.66 A ATOM 3715 CB ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3717 CG1 ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3717 CG1 ILE A 474 38.93 65.9585 -3.462 1.00 10.23 A ATOM 3717 CG1 ILE A 474 38.614 67.314 -5.591 1.00 11.39 A ATOM 3718 CD1 ILE A 474 38.614 67.314 -5.591 1.00 11.29 A ATOM 3718 CD1 ILE A 474 36.844 68.618 -3.576 1.00 10.27 A ATOM 3720 O ILE A 474 36.844 68.618 -3.576 1.00 10.27 A ATOM 3720 CO ILE A 474 36.344 69.060 -4.573 1.00 10.27 A ATOM 3723 CB THR A 475 34.656 68.256 -2.483 1.00 10.27 A ATOM 3723 CB THR A 475 34.696 68.256 -2.483 1.00 10.92 A ATOM 3723 CB THR A 475 34.696 68.256 -2.483 1.00 10.92 A ATOM 3723 CB THR A 475 34.696 68.312 -0.075 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.696 68.312 -0.075 1.00 10.92 A ATOM 3726 C THR A 475 34.696 68.312 -0.075 1.00 10.92 A ATOM 3727 O THR A 475 34.696 68.312 -0.075 1.00 10.92 A ATOM 3728 N GLY A 476 34.500 72.034 -2.124 1.00 11.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.97 A ATOM 3730 C GLY A 476 34.500 72.034 -2.124 1.00 11.97 A ATOM 3731 N THR A 477 32.697 70.699 -2.862 1.00 11.15 A ATOM 3731 N THR A 477 33.656 71.569 0.110 1.00 10.92 A ATOM 3733 CA THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 33.656 71.569 0.110 1.00 11.26 A ATOM 3735 CG2 THR A 477 33.656 71.569 0.110 1.00 11.26 A ATOM 3738 N THR A 477 33.656 71.569 0.110 1.00 11.26 A ATOM 3737 O THR A 477 33.666 71.569 0.110 1.00 11.26 A ATOM 3738 N THR A 477 33.666 71.569 0.110 1.00 11.26 A ATOM 3738 N THR A 477 33.666 71.569 0.110 1.00 11.26 A ATOM 3738 N THR A 477 33.666 71.569 0.110 1.00 11.26 A ATOM 3738 N THR A 477 33.666 71.569 0.110 1.00 11.26 A ATOM 3738 N THR A 477 33.660 75.809 1.00 10.63 A ATOM 3738 N THR A 477 33.660 75.809 1.00 10.01 1.00 11.26 A ATOM 3739 N ALA A 478 34.600 75.809 1.00 10.01.2.04 A ATOM 3740 CA ALA A												
ATOM 3712 O GLY A 473 37.745 70.464 -1.483 1.00 10.79 A ATOM 3713 N ILE A 474 38.386 68.529 -1.976 1.00 10.32 A ATOM 3715 CB ILE A 474 38.368 68.518 -3.375 1.00 10.66 A ATOM 3715 CB ILE A 474 38.3904 67.239 -4.090 1.00 11.01 A ATOM 3716 CC2 ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3717 CG1 ILE A 474 38.914 67.314 -5.591 1.00 10.23 A ATOM 3718 CD1 ILE A 474 38.923 65.985 -3.462 1.00 10.23 A ATOM 3718 CD1 ILE A 474 38.614 67.314 -5.591 1.00 11.39 A ATOM 3719 C ILE A 474 36.844 68.618 -3.536 1.00 11.29 A ATOM 3720 O ILE A 474 36.844 68.618 -3.536 1.00 11.29 A ATOM 3721 N THR A 475 36.119 68.220 -2.495 1.00 10.66 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.649 68.312 -0.075 1.00 10.99 A ATOM 3725 CG2 THR A 475 34.649 68.312 -0.075 1.00 10.99 A ATOM 3726 C THR A 475 34.649 68.312 -0.075 1.00 10.99 A ATOM 3728 N GLY A 476 34.940 70.649 -2.862 1.00 11.15 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 11.97 A ATOM 3730 C GLY A 476 34.940 70.649 -2.146 1.00 11.97 A ATOM 3731 O GLY A 476 34.940 70.649 -2.146 1.00 11.97 A ATOM 3731 C GLY A 476 34.940 70.649 -2.146 1.00 11.97 A ATOM 3733 C GLY A 476 34.940 70.649 -2.146 1.00 11.97 A ATOM 3733 C GLY A 476 34.940 70.649 -2.146 1.00 11.23 A ATOM 3733 C GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3733 C GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3733 C GLY A 476 32.622 73.137 -1.127 1.00 11.64 A ATOM 3733 C GLY A 476 32.622 73.137 -1.127 1.00 11.66 A ATOM 3735 C THR A 477 32.089 70.369 1.618 1.00 11.01 1.04 A ATOM 3737 C THR A 477 32.089 70.369 1.618 1.00 11.04 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.04 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.04 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.04 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.04 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.05 A ATOM 3738 O THR A 478 34.469 73.072 2.354 1.00 12.06 A ATOM 3734 C ALA A 478 34.840 75.889 72.890 1.00 12.06 A ATOM 3740 C ALA		MOTA		CA								
ATOM 3713 N ILE A 474 38.783 68.529 -1.976 1.00 10.32 A ATOM 3715 CB ILE A 474 38.368 68.518 -3.375 1.00 10.66 A ATOM 3715 CB ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3716 CG2 ILE A 474 38.904 67.239 -4.090 11.00 11.03 A ATOM 3717 CG1 ILE A 474 38.914 67.314 -5.591 1.00 10.23 A ATOM 3718 CD1 ILE A 474 38.614 67.314 -5.591 1.00 11.29 A ATOM 3719 C ILE A 474 36.844 68.618 -3.536 1.00 11.29 A ATOM 3719 C ILE A 474 36.844 68.618 -3.536 1.00 11.29 A ATOM 3720 O ILE A 474 36.844 69.060 -4.573 1.00 10.62 A ATOM 3721 N THR A 475 34.656 68.256 -2.495 1.00 10.67 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.666 68.256 -2.483 1.00 11.04 A ATOM 3725 CG2 THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3726 C THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3728 N GLY A 476 34.90 60.133 -1.123 1.00 9.32 A ATOM 3728 N GLY A 476 34.90 70.649 -2.146 1.00 11.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3731 O GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3732 N THR A 477 33.506 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 33.508 72.291 -0.999 1.00 11.45 A ATOM 3735 OG1 THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3735 OG1 THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3735 OG1 THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3735 OG1 THR A 477 33.506 671.569 0.110 1.00 11.28 A ATOM 3735 OG1 THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3735 OG1 THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3737 O THR A 477 33.506 71.569 0.110 1.00 11.46 A ATOM 3737 O THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3735 OG1 THR A 477 33.506 671.569 0.110 1.00 12.05 A ATOM 3735 OG1 THR A 477 32.649 72.140 3.601 1.00 12.05 A ATOM 3737 O THR A 477 33.506 671.569 0.110 1.00 12.05 A ATOM 3737 O THR A 477 32.649 72.140 3.601 1.00 12.05 A ATOM 3737 O THR A 477 32.649 72.140 3.601 1.00 12.05 A ATOM 3741 CB ALA A 478 34.602 73.785 75.780 2.620 1.00 12.05 A AT	20	ATOM	3711	С	GLY	Α	473	38.445				
ATOM 3714 CA ILE A 474 38.368 68.518 -3.375 1.00 10.66 A ATOM 3715 CB ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3716 CG2 ILE A 474 38.904 67.239 -4.090 1.00 10.23 A ATOM 3717 CG1 ILE A 474 38.614 67.314 -5.591 1.00 10.23 A ATOM 3718 CD1 ILE A 474 39.203 66.158 -6.393 1.00 11.29 A ATOM 3719 C ILE A 474 36.844 68.618 -3.536 1.00 10.82 A ATOM 3720 O ILE A 474 36.344 69.060 -4.573 1.00 10.27 A ATOM 3721 N THR A 475 36.119 68.220 -2.495 1.00 10.66 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 10.02 A ATOM 3724 OG1 THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3724 OG1 THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A ATOM 3726 C THR A 475 34.493 66.133 -1.123 1.00 9.32 A ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.15 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 11.97 A ATOM 3730 C GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3731 O GLY A 476 32.939 69.899 -2.862 1.00 11.61 A ATOM 3731 C GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3732 N THR A 477 32.686 71.569 0.110 1.00 11.28 A ATOM 3733 CB THR A 477 32.689 70.369 1.618 1.00 11.26 A ATOM 3733 CB THR A 477 32.689 70.369 1.618 1.00 11.26 A ATOM 3738 C THR A 477 32.889 70.369 1.618 1.00 11.26 A ATOM 3738 O THR A 477 32.889 70.369 1.618 1.00 11.26 A ATOM 3738 O THR A 477 32.889 70.369 1.618 1.00 11.26 A ATOM 3738 O THR A 477 32.889 70.369 1.618 1.00 11.26 A ATOM 3738 O THR A 477 32.889 70.369 1.618 1.00 11.26 A ATOM 3738 O THR A 477 32.889 70.369 1.00 12.05 A ATOM 3738 O THR A 477 32.889 70.369 1.018 1.00 12.10 A ATOM 3738 O THR A 477 32.889 70.369 1.018 1.00 12.10 A ATOM 3738 O THR A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3740 C ALA A 478 34.800 75.188 3.589 1.00 12.06 A ATOM 3741 CB ALA A 478 34.800 75.188 3.589 1.00 12.06 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.66 A ATOM 3744 N LYS A 479 35.099 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 35.099 75.805 4.740 1.00 13.47		MOTA	3712	0	GLY	Α	473	37.745	70.464	-1.483		
ATOM 3714 CA ILE A 474 38.368 68.518 -3.375 1.00 10.66 A ATOM 3715 CB ILE A 474 38.904 67.239 -4.090 1.00 11.01 A ATOM 3716 CG2 ILE A 474 38.923 65.985 -3.462 1.00 10.23 A ATOM 3717 CG1 ILE A 474 38.614 67.314 -5.591 1.00 11.39 A ATOM 3718 CD1 ILE A 474 39.203 66.158 -6.393 1.00 11.29 A ATOM 3719 C ILE A 474 36.844 68.618 -3.536 1.00 10.82 A ATOM 3720 O ILE A 474 36.844 69.060 -4.573 1.00 10.27 A ATOM 3722 CA THR A 475 36.319 68.220 -2.495 1.00 10.66 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3722 CB THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3724 OG1 THR A 475 34.649 68.312 -0.075 1.00 10.89 A ATOM 3725 CG2 THR A 475 34.649 68.312 -0.075 1.00 10.89 A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A ATOM 3726 C THR A 475 32.939 69.899 -2.862 1.00 11.157 A ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.157 A ATOM 3729 CA GLY A 476 33.590 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.61 A ATOM 3733 CA THR A 477 32.689 70.369 1.905 1.00 11.28 A ATOM 3733 CA THR A 477 32.689 70.369 1.905 1.00 11.28 A ATOM 3733 CA THR A 477 32.689 70.369 1.905 1.00 11.28 A ATOM 3733 CA THR A 477 32.689 70.369 1.905 1.00 11.28 A ATOM 3733 CA THR A 477 32.689 70.369 1.905 1.00 11.26 A ATOM 3733 CA THR A 477 32.689 70.369 1.905 1.00 11.26 A ATOM 3733 CA THR A 477 32.689 70.369 1.905 1.00 11.26 A ATOM 3733 CA THR A 477 32.689 70.369 1.905 1.00 11.26 A ATOM 3733 CA THR A 477 32.849 72.140 3.601 1.00 11.28 A ATOM 3733 CA THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3733 CA THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3733 CA THR A 477 32.849 72.140 3.601 1.00 12.205 A ATOM 3734 CB THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3733 CA ALA A 478 34.469 73.072 2.334 1.00 12.04 A ATOM 3734 CB ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3741 CB ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.832 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.009 75.805 4.740 1.00 13.47 A		ATOM	3713	N	ILE	Α	474	38.783	68.529	-1.976	1.00 10.32	2 A
## ATOM 3715 CB ILE A 474 38.904 67.239 -4.090 1.00 11.01 A A ATOM 3716 CG2 ILE A 474 38.293 65.985 -3.462 1.00 10.23 A A ATOM 3717 CG1 ILE A 474 38.214 67.314 -5.591 1.00 11.39 A A ATOM 3718 CD1 ILE A 474 39.203 66.158 -6.393 1.00 11.29 A A ATOM 3720 O ILE A 474 36.844 68.618 -3.536 1.00 10.82 A A ATOM 3721 N THR A 475 36.344 69.060 -4.573 1.00 10.27 A A ATOM 3722 CA THR A 475 34.656 68.256 -2.495 1.00 10.66 A A ATOM 3723 CB THR A 475 34.656 68.256 -2.495 1.00 10.92 A A ATOM 3724 OG1 THR A 475 34.649 68.312 -0.075 1.00 10.92 A A ATOM 3725 CG2 THR A 475 34.649 68.312 -0.075 1.00 10.92 A A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A A ATOM 3727 O THR A 475 34.493 66.133 -1.123 1.00 9.32 A A ATOM 3727 O THR A 475 34.940 70.649 -2.520 1.00 11.15 A A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A A ATOM 3728 C GLY A 476 34.940 70.649 -2.146 1.00 10.97 A A ATOM 3733 C GLY A 476 34.500 72.034 -2.124 1.00 11.23 A A ATOM 3733 C THR A 477 33.656 71.569 0.110 1.00 11.61 A A ATOM 3733 C THR A 477 32.748 71.529 1.00 11.45 A A ATOM 3733 C THR A 477 32.089 70.369 1.618 1.00 11.46 A A ATOM 3733 C THR A 477 32.089 70.369 1.618 1.00 11.46 A A ATOM 3735 C THR A 477 33.370 72.333 2.502 1.00 12.05 A A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3737 C THR A 478 34.469 73.072 2.354 1.00 12.10 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 37				CA				38.368	68.518	-3.375	1.00 10.66	5 A
25 ATOM 3716 CG2 ILE A 474 38.293 65.985 -3.462 1.00 10.23 A ATOM 3717 CG1 ILE A 474 38.614 67.314 -5.591 1.00 11.39 A ATOM 3718 CD1 ILE A 474 39.203 66.158 -6.393 1.00 11.29 A ATOM 3719 C ILE A 474 36.844 68.618 -3.536 1.00 10.27 A ATOM 3720 O ILE A 474 36.844 68.618 -3.536 1.00 10.27 A ATOM 3721 N THR A 475 36.119 68.220 -2.495 1.00 10.27 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3722 CB THR A 475 34.666 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.666 68.256 -2.483 1.00 10.92 A ATOM 3724 OG1 THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A ATOM 3726 C THR A 475 34.493 66.133 -1.123 1.00 9.32 A ATOM 3727 O THR A 475 34.99 69.899 -2.862 1.00 11.15 A ATOM 3728 N GLY A 476 34.900 70.649 -2.146 1.00 10.97 A ATOM 3730 C GLY A 476 34.900 70.649 -2.146 1.00 10.97 A ATOM 3730 C GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3731 O GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3732 CB THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3735 CG THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3735 CG THR A 477 33.656 71.569 0.110 1.00 11.06 A ATOM 3737 C THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3737 C THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3737 C THR A 477 33.3656 71.569 0.110 1.00 11.28 A ATOM 3738 CG THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3743 O ALA A 478 34.469 73.072 2.354 1.00 12.06 A ATOM 3743 O ALA A 478 34.690 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.690 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.890 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.890 75.805 4.740 1.00 12.05 A ATOM 3745 C ALA A 478 34.890 75.805 4.740 1.00 12.06 1.00 12.06 A ATOM 3743 O ALA A										-4.090	1.00 11.03	A
ATOM 3717 CG1 ILE A 474 39.203 66.158 -6.393 1.00 11.39 A ATOM 3718 CD1 ILE A 474 39.203 66.158 -6.393 1.00 11.29 A ATOM 3719 C ILE A 474 36.844 68.618 -3.536 1.00 10.82 A ATOM 3720 O ILE A 474 36.344 69.060 -4.573 1.00 10.27 A ATOM 3721 N THR A 475 36.119 68.220 -2.495 1.00 10.66 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.696 68.256 -2.483 1.00 11.04 A ATOM 3724 OG1 THR A 475 34.696 68.312 -0.075 1.00 10.89 A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.15 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3730 C GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3730 C GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3734 CB THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3735 CG THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3736 CG2 THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3737 C THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3738 O THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3740 CA ALA A 478 36.632 73.485 3.445 1.00 12.04 A ATOM 3740 CA ALA A 478 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA ALA A 478 34.800 75.188 3.589 1.00 12.76 AATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.65 AATOM 3744 N LYS A 479 35.049 75.805 4.760 1.00 13.47 A	25										1.00 10.23	3 A
ATOM 3718 CD1 ILE A 474 39.203 66.158 -6.393 1.00 11.29 A ATOM 3719 C ILE A 474 36.844 68.618 -3.536 1.00 10.82 A ATOM 3720 O ILE A 474 36.344 69.060 -4.573 1.00 10.27 A ATOM 3721 N THR A 475 36.119 68.220 -2.495 1.00 10.66 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3724 OG1 THR A 475 34.696 68.225 -2.483 1.00 10.92 A ATOM 3724 OG1 THR A 475 34.694 68.312 -0.075 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A ATOM 3726 C THR A 475 34.107 69.684 -2.520 1.00 11.15 A ATOM 3727 O THR A 475 34.904 70.649 -2.146 1.00 11.97 A ATOM 3728 N GLY A 476 34.904 70.649 -2.146 1.00 11.97 A ATOM 3729 CA GLY A 476 34.904 70.649 -2.146 1.00 10.97 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.23 A ATOM 3732 N THR A 477 32.622 73.137 -1.127 1.00 11.61 A ATOM 3733 CA THR A 477 32.622 73.137 -1.127 1.00 11.26 A ATOM 3733 CA THR A 477 32.788 71.728 1.241 1.00 11.26 A ATOM 3735 CG1 THR A 477 32.089 70.369 1.618 1.00 11.16 A ATOM 3737 C THR A 477 32.089 70.369 1.618 1.00 11.16 A ATOM 3737 C THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3737 C THR A 477 32.089 70.369 1.618 1.00 11.11 A ATOM 3738 O THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3738 O THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3738 O THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3738 O THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3738 O THR A 478 34.469 73.072 2.334 1.00 12.04 A ATOM 3739 N ALA A 478 34.469 73.072 2.334 1.00 12.04 A ATOM 3740 CA ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3742 C ALA A 478 34.469 73.072 2.354 1.00 12.06 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A	20											
ATOM 3719 C ILE A 474 36.844 68.618 -3.536 1.00 10.82 A ATOM 3720 O ILE A 474 36.344 69.060 -4.573 1.00 10.27 A ATOM 3721 N THR A 475 36.119 68.220 -2.495 1.00 10.66 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.666 68.256 -2.483 1.00 10.92 A ATOM 3724 OG1 THR A 475 34.649 68.312 -0.075 1.00 10.92 A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A ATOM 3726 C THR A 475 34.493 66.133 -1.123 1.00 9.32 A ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.15 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3733 CA THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CB THR A 477 32.089 70.369 1.001 10.126 A ATOM 3735 CG2 THR A 477 32.089 70.369 1.905 1.00 11.26 A ATOM 3736 CG2 THR A 477 32.089 70.369 1.905 1.00 10.63 A ATOM 3738 O THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3738 O THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3738 O THR A 477 32.089 70.369 1.905 1.00 10.63 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3738 O THR A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3738 O THR A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 34.469 73.072 2.3554 1.00 12.04 A ATOM 3743 O ALA A 478 34.469 73.072 2.3554 1.00 12.065 A ATOM 3743 O ALA A 478 34.880 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.880 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.880 75.188 3.589 1.00 12.65 A ATOM 3743 O ALA A 478 34.880 75.188 3.589 1.00 12.65 A ATOM 3743 O ALA A 478 34.880 75.188 3.589 1.00 12.65 A ATOM 3743 O ALA A 478 34.880 75.188 3.58												
ATOM 3720 O ILE A 474 ATOM 3721 N THR A 475 ATOM 3722 CA THR A 475 ATOM 3722 CA THR A 475 ATOM 3723 CB THR A 475 ATOM 3724 OGI THR A 475 ATOM 3725 CG2 THR A 475 ATOM 3726 CG THR A 475 ATOM 3727 O THR A 475 ATOM 3728 N GLY A 476 ATOM 3729 CA GLY A 476 ATOM 3729 CA GLY A 476 ATOM 3730 C GLY A 476 ATOM 3730 C GLY A 476 ATOM 3730 C GLY A 476 ATOM 3730 C GLY A 476 ATOM 3731 O GLY A 476 ATOM 3732 C GLY A 476 ATOM 3733 CA THR A 477 ATOM 3733 CA THR A 477 ATOM 3734 CB THR A 477 ATOM 3735 CGI THR A 477 ATOM 3736 CG THR A 477 ATOM 3737 C THR A 477 ATOM 3737 C THR A 477 ATOM 3738 O THR A 477 ATOM 3738 O THR A 477 ATOM 3738 O THR A 477 ATOM 3737 C THR A 477 ATOM 3738 O THR A 477 ATOM 3738 O THR A 477 ATOM 3738 O THR A 477 ATOM 3738 O THR A 477 ATOM 3738 O THR A 477 ATOM 3738 O THR A 477 ATOM 3737 C THR A 477 ATOM 3738 O THR A 478 ATOM 3740 CA ALA A 478 ATOM 3741 CB ALA A 478 ATOM 3743 O ALA A 478 ATOM 3743 O ALA A 478 ATOM 3744 N LYS A 479 ATOM 3744 N LYS A 479 ATOM 3744 N LYS A 479 ATOM 3745 CA LYS A 479 ATOM 3746 CA LYS A 479 ATOM 3747 O ALA A 478 ATOM 3748 O ALA A 478 ATOM 3748 O ALA A 478 ATOM 3748 O ALA A 478 ATOM 3749 O ALA A 478 ATOM 3740 O ALA A 478 ATOM 3741 CB ALA A 478 ATOM 3743 O ALA A 478 ATOM 3744 N LYS A 479 ATOM 3745 CA LYS A 479 ATOM 3745 CA LYS A 479 ATOM 3746 CA LYS A 479 ATOM 3747 O ALA A 478 ATOM 3748 O ALA A 478 ATOM 3748 O ALA A 478 ATOM 3749 O ALA A 478 ATOM 3749 O ALA A 478 ATOM 3740 O ALA A 478 ATOM 3741 O ALA A 478 ATOM 3743 O ALA A 478												
30 ATOM 3721 N THR A 475 36.119 68.220 -2.495 1.00 10.66 A ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.108 67.616 -1.205 1.00 10.92 A ATOM 3724 OG1 THR A 475 34.649 68.312 -0.075 1.00 10.89 A ATOM 3725 CG2 THR A 475 34.649 68.312 -0.075 1.00 10.89 A ATOM 3725 CG2 THR A 475 34.107 69.684 -2.520 1.00 11.15 A ATOM 3726 C THR A 475 32.939 69.899 -2.862 1.00 11.97 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3733 CA THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.089 70.369 1.618 1.00 11.26 A ATOM 3735 OG1 THR A 477 32.089 70.369 1.618 1.00 11.26 A ATOM 3737 C THR A 477 33.306 69.399 1.905 1.00 10.63 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 11.11 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3730 CA ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3734 CB ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3737 O ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3737 O ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3742 C ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 ATOM 3744 N LYS A 479 34.783 77.235 4.860 1.00 13.47 A ATOM 3744 N LYS A 479 34.783 77.235 4.860 1.00 13.47 A												
ATOM 3722 CA THR A 475 34.656 68.256 -2.483 1.00 11.04 A ATOM 3723 CB THR A 475 34.108 67.616 -1.205 1.00 10.92 A ATOM 3724 OG1 THR A 475 34.649 68.312 -0.075 1.00 10.89 A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A 35 ATOM 3726 C THR A 475 34.107 69.684 -2.520 1.00 11.15 A ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.97 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A 45 ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3740 CA ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3741 CB ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 35.049 75.805 4.740 1.00 13.47 A	•											
ATOM 3723 CB THR A 475 34.108 67.616 -1.205 1.00 10.92 A ATOM 3724 OG1 THR A 475 34.649 68.312 -0.075 1.00 10.89 A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A 35 ATOM 3726 C THR A 475 34.107 69.684 -2.520 1.00 11.15 A ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.97 A ATOM 3728 N GLY A 476 34.500 70.649 -2.146 1.00 10.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3731 CB ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3734 CB ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3734 CB ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3734 CB ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3734 CB ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3734 CB ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3741 CB ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3741 CB ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3741 CB ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3741 CB ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3741 CB ALA A 478 34.469 73.072 2.354 1.00 12.06 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 35.049 75.805 4.740 1.00 13.47 A	30	ATOM		N								
ATOM 3724 OG1 THR A 475 34.649 68.312 -0.075 1.00 10.89 A ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A 35 ATOM 3726 C THR A 475 34.107 69.684 -2.520 1.00 11.15 A ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.97 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3735 OG1 THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3736 CG2 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3737 C THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.05 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3731 CB ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3734 CB ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 37374 CB ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3741 CB ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3741 CB ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3741 CB ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 35.049 75.805 4.740 1.00 13.47 A		ATOM	3722	CA	THR	Α	475	34.656				
ATOM 3725 CG2 THR A 475 34.493 66.133 -1.123 1.00 9.32 A 35 ATOM 3726 C THR A 475 34.107 69.684 -2.520 1.00 11.15 A ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.97 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A 45 ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3741 CB ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 35.049 75.805 4.740 1.00 13.47		ATOM	3723	CB	THR	Α	475	34.108		-1.205		
35 ATOM 3726 C THR A 475 34.107 69.684 -2.520 1.00 11.15 A ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.97 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3730 C GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.45 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 10.63 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 11.11 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.05 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 34.469 73.072 2.354 1.00 12.48 A ATOM 3741 CB BALA A 478 34.800 75.188 3.589 1.00 12.48 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72		ATOM	3724	OG1	THR	Α	475	34.649	68.312	-0.075	1.00 10.89	9 A
35 ATOM 3726 C THR A 475 34.107 69.684 -2.520 1.00 11.15 A ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.97 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3731 O GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3733 CA THR A 477 33.656 71.569 0.110 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3737 C THR A 477 33.106 69.399 1.905 1.00 12.05		ATOM	3725	CG2	THR	Α	475	34.493	66.133	-1.123	1.00 9.32	2 A
ATOM 3727 O THR A 475 32.939 69.899 -2.862 1.00 11.97 A ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3741 CB ALA A 478 35.116 73.694 3.512 1.00 12.04 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 35.049 75.805 4.740 1.00 13.47 A	35				THR	Α	475	34.107	69.684	-2.520	1.00 11.15	5 A
ATOM 3728 N GLY A 476 34.940 70.649 -2.146 1.00 10.97 A ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 32.849 72.133 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3741 CB ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3741 CB ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.47 A								32.939	69.899	-2.862	1.00 11.9	7 A
ATOM 3729 CA GLY A 476 34.500 72.034 -2.124 1.00 11.23 A ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3740 CA ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A											1.00 10.9	7 A
ATOM 3730 C GLY A 476 33.508 72.291 -0.999 1.00 11.45 A ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.04 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72												
40 ATOM 3731 O GLY A 476 32.622 73.137 -1.127 1.00 11.61 A ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72												
ATOM 3732 N THR A 477 33.656 71.569 0.110 1.00 11.28 A ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 35.049 75.805 4.740 1.00 13.47 A	40											
ATOM 3733 CA THR A 477 32.748 71.728 1.241 1.00 11.26 A ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.04 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A	40											
ATOM 3734 CB THR A 477 32.089 70.369 1.618 1.00 11.46 A ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A												
ATOM 3735 OG1 THR A 477 33.106 69.399 1.905 1.00 10.63 A ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A		ATOM										
45 ATOM 3736 CG2 THR A 477 31.223 69.864 0.468 1.00 11.11 A ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A		ATOM	3734	CB	THR	Α	477					
ATOM 3737 C THR A 477 33.370 72.333 2.502 1.00 12.05 A ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A		ATOM	3735	OG1	THR	Α	477					
ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A	45	ATOM	3736	CG2	THR	Α	477		69.864			
ATOM 3738 O THR A 477 32.849 72.140 3.601 1.00 12.10 A ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A		ATOM	3737	С	THR	Α	477	33.370	72.333	2.502	1.00 12.0	
ATOM 3739 N ALA A 478 34.469 73.072 2.354 1.00 12.04 A ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A				0					72.140	3.601	1.00 12.10) A
ATOM 3740 CA ALA A 478 35.116 73.694 3.512 1.00 12.48 A ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A												
50 ATOM 3741 CB ALA A 478 36.632 73.485 3.445 1.00 11.99 A ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A												
ATOM 3742 C ALA A 478 34.800 75.188 3.589 1.00 12.76 A ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A	50											
ATOM 3743 O ALA A 478 34.332 75.780 2.620 1.00 12.65 A ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A	50											
ATOM 3744 N LYS A 479 35.049 75.805 4.740 1.00 13.47 A ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A												
ATOM 3745 CA LYS A 479 34.783 77.235 4.860 1.00 13.72 A												
Mon 3/13 on mid in 1/3												
55 ATOM 3746 CB LYS A 479 34.926 77.699 6.316 1.00 15.00 A		ATOM	3745	CA								
	55	ATOM	3746	СВ	LYS	A	479	34.926	77.699	6.316	1.00 15.0) A

ATOM 3748 CD LYS A 479 33.901 77.059 7.254 1.00 17.01 ATOM 3749 CE LYS A 479 33.941 77.653 8.660 1.00 18.59 ATOM 3749 CE LYS A 479 33.028 78.861 8.808 1.00 19.93 ATOM 3750 NZ LYS A 479 31.570 78.514 8.709 1.00 18.25 ATOM 3751 C LYS A 479 35.761 77.984 3.963 1.00 13.68 ATOM 3753 N THR A 480 35.390 79.202 3.591 1.00 13.68 ATOM 3754 CA THR A 480 35.390 79.202 3.591 1.00 13.88 ATOM 3755 CB THR A 480 35.608 81.462 2.643 1.00 14.71 ATOM 3756 OGI THR A 480 36.197 80.038 2.713 1.00 15.03 ATOM 3757 CGZ THR A 480 36.430 82.552 1.701 1.00 15.03 ATOM 3758 C THR A 480 36.430 82.552 1.701 1.00 15.03 ATOM 3758 C THR A 480 38.516 79.981 2.138 1.00 13.99 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3761 CA HIS A 481 38.039 80.400 4.220 1.00 13.65 ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3765 NDI HIS A 481 39.462 80.537 4.628 1.00 13.00 ATOM 3766 CEI HIS A 481 39.462 80.319 7.176 1.00 15.70 ATOM 3768 C HIS A 481 39.496 80.319 7.176 1.00 15.70 ATOM 3768 C HIS A 481 39.496 80.319 7.176 1.00 15.70 ATOM 3766 CEI HIS A 481 39.496 80.319 7.176 1.00 15.70 ATOM 3768 C HIS A 481 38.264 79.9667 7.626 1.00 15.70 ATOM 3768 C HIS A 481 39.496 80.319 7.176 1.00 15.70 ATOM 3768 C HIS A 481 39.496 80.319 7.176 1.00 15.70 ATOM 3768 C HIS A 481 39.496 80.319 7.176 1.00 15.70 ATOM 3769 O HIS A 481 38.264 79.109 8.693 1.00 16.85 ATOM 3769 O HIS A 481 39.497 79.051 8.949 1.00 11.50 ATOM 3768 C HIS A 481 39.497 79.051 8.949 1.00 11.50 ATOM 3768 C VAL A 482 39.497 79.104 4.445 1.00 11.50 ATOM 3778 C C VAL A 482 39.497 79.104 4.495 1.00 11.50 ATOM 3778 C C VAL A 482 39.497 79.104 4.495 1.00 11.50 ATOM 3778 C C VAL A 482 39.497 79.104 4.495 1.00 11.50 ATOM 3778 C C VAL A 482 39.496 77.366 0.447 1.00 13.68 ATOM 3780 C C VAL A 483 39.491 79.392 -1.432 1.00 13.36 ATOM 3780 C C VAL A 483 39.491 79.392 -1.432 1.00 13.36 ATOM 3780 C C VAL A 483 39.491 79.392 -1.432 1.00 13.46 ATOM 3780 C C VAL A 483 39.491 79.366 0.447 1.00 12.27 ATOM 3780 C C VAL A 483 39.491 79.366 0.447 1
ATOM 3749 CE LYS A 479 33.941 77.653 8.660 1.00 18.59 ATOM 3750 NZ LYS A 479 31.570 78.514 8.789 1.00 18.25 ATOM 3751 C LYS A 479 31.570 78.514 8.789 1.00 18.25 ATOM 3752 O LYS A 479 35.761 77.984 3.963 1.00 13.63 ATOM 3753 N THR A 480 35.390 79.202 3.591 1.00 13.63 ATOM 3755 C A THR A 480 35.390 79.202 3.591 1.00 13.88 ATOM 3755 C THR A 480 36.197 80.038 2.713 1.00 13.85 ATOM 3755 C THR A 480 36.197 80.038 2.713 1.00 13.85 ATOM 3756 CG THR A 480 36.494 81.386 2.162 1.00 12.01 ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.03 ATOM 3758 C THR A 480 37.667 80.141 3.033 1.00 13.99 ATOM 3750 N HIS A 481 38.516 79.981 2.138 1.00 13.75 ATOM 3761 CA HIS A 481 39.633 81.227 5.994 1.00 13.63 ATOM 3761 CA HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3766 CEI HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3766 CEI HIS A 481 39.633 81.227 5.994 1.00 14.69 ATOM 3766 CEI HIS A 481 39.633 81.227 5.994 1.00 15.63 ATOM 3766 CEI HIS A 481 39.639 80.600 4.290 1.00 13.63 ATOM 3766 CEI HIS A 481 39.639 80.537 4.628 1.00 15.70 ATOM 3766 CEI HIS A 481 39.639 80.537 4.628 1.00 15.70 ATOM 3766 CEI HIS A 481 39.639 80.537 4.628 1.00 15.85 ATOM 3767 NEZ HIS A 481 39.639 80.537 5.994 1.00 16.85 ATOM 3768 C HIS A 481 39.639 80.537 5.994 1.00 16.85 ATOM 3766 CEI HIS A 481 39.639 80.537 5.994 1.00 16.85 ATOM 3767 NEZ HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3767 NEZ HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3770 C VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3770 C VAL A 482 39.474 78.104 4.698 1.00 12.27 ATOM 3776 C VAL A 482 39.474 78.104 4.698 1.00 12.27 ATOM 3777 N VAL A 482 39.474 78.104 4.698 1.00 12.27 ATOM 3778 C C VAL A 482 39.836 74.327 5.235 1.00 16.85 ATOM 3777 N VAL A 482 39.474 78.104 4.698 1.00 12.27 ATOM 3778 C C VAL A 483 39.451 76.890 2.297 1.00 12.27 ATOM 3778 C C VAL A 483 39.451 76.890 2.297 1.00 12.27 ATOM 3781 C C VAL A 483 39.451 76.890 0.0336 1.00 12.67 ATOM 3786 C C VAL A 483 39.451 76.890 0.0353 1.00 16.368 ATOM 3787 C C VAL A 483 39.451 76.890 0.0366 1.00 13.46 ATOM 3788 C C VAL A 484 41.699 77.032
ATOM 3749 CE LYS A 479 33.028 78.861 8.808 1.00 19.93 ATOM 3751 C LYS A 479 35.761 77.984 3.963 1.00 13.63 ATOM 3752 C LYS A 479 35.761 77.984 3.963 1.00 13.63 ATOM 3753 N THR A 480 35.300 79.202 3.591 1.00 13.85 ATOM 3755 CB THR A 480 36.197 80.038 2.713 1.00 13.85 ATOM 3755 CB THR A 480 35.608 81.462 2.643 1.00 14.75 ATOM 3755 CG2 THR A 480 34.264 81.386 2.162 1.00 15.03 ATOM 3755 CG2 THR A 480 34.264 81.386 2.162 1.00 15.03 ATOM 3755 CG2 THR A 480 37.687 80.141 3.033 1.00 13.85 ATOM 3755 CG2 THR A 480 38.516 79.981 2.138 1.00 13.63 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.63 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3765 NDI HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3766 CEI HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3766 CEI HIS A 481 39.486 80.319 7.176 1.00 15.87 ATOM 3766 CEI HIS A 481 39.486 80.319 7.176 1.00 15.87 ATOM 3766 CEI HIS A 481 39.486 80.319 7.176 1.00 15.87 ATOM 3767 NEZ HIS A 481 39.486 80.319 7.176 1.00 15.87 ATOM 3767 NEZ HIS A 481 39.486 80.319 7.176 1.00 15.87 ATOM 3767 CB VAL A 482 39.467 79.194 4.445 1.00 12.69 ATOM 3770 N VAL A 482 39.474 78.104 4.468 1.00 12.69 ATOM 3775 C VAL A 482 39.467 77.316 6.699 1.00 12.56 ATOM 3776 CB VAL A 482 39.461 76.592 0.867 1.00 12.56 ATOM 3776 CB VAL A 482 39.461 76.592 0.867 1.00 12.56 ATOM 3776 CB VAL A 482 39.461 76.592 0.867 1.00 12.56 ATOM 3778 CB VAL A 483 39.461 76.592 0.867 1.00 12.56 ATOM 3786 CB VAL A 48
ATOM 3750 NZ LYS A 479 31.570 78.514 8.789 1.00 18.25
Taron Store Sto
ATOM 3752 O
ATOM 3753 N THR A 480 35.390 79.202 3.591 1.00 13.88 ATOM 3754 CA THR A 480 36.197 80.038 2.713 1.00 13.88 ATOM 3755 CB THR A 480 36.97 80.038 2.713 1.00 14.71 1.00 14.71 1.00 14.71 1.00 14.71 1.00 14.71 1.00 14.71 1.00 14.71 1.00 14.71 1.00 14.71 1.00 14.71 1.00 3756 CB THR A 480 34.264 81.386 2.162 1.00 15.03 ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.03 ATOM 3758 C THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 1.00 13.75 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3765 ND1 HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3765 ND1 HIS A 481 39.638 80.319 7.176 1.00 15.70 ATOM 3766 CEI HIS A 481 39.486 80.319 7.176 1.00 15.87 ATOM 3768 C HIS A 481 39.739 79.051 8.949 1.00 16.85 ATOM 3768 C HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3763 CG VAL A 482 39.467 79.109 8.693 1.00 16.85 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.11 ATOM 3779 CB VAL A 482 39.866 77.111 0.063 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.699 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.899 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.899 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.899 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.899 2.297 1.00 12.27 ATOM 3780 CG VAL A 483 39.451 76.899 2.297 1.00 12.27 ATOM 3780 CG VAL A 483 39.451 76.899 -2.971 1.00 12.27 ATOM 3781 CG2 VAL A 483 39.451 76.899 -2.971 1.00 12.27 ATOM 3780 CG VAL A 483 39.451 76.899 -2.971 1.00 12.27 ATOM 3780 CG VAL A 483 39.451 76.899 -2.971 1.00 12.27 ATOM 3780 CG VAL A 483 39.451 76.899 -0.353 1.00 13.36 ATOM 3780 CG VAL A 483 39.451 76.899 -0.353 1.00 13.36 ATOM 3785 CG VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3788 CG VAL A 484 41.053 78.562 1.00
10 ATOM 3754 CA THR A 480 36.197 80.038 2.713 1.00 13.85 ATOM 3755 CB THR A 480 35.608 81.462 2.643 1.00 14.71 10.0 15.03 ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.04 ATOM 3758 C THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 36.430 82.352 1.701 1.00 13.05 64 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.05 13.75 ATOM 3762 CB HIS A 481 39.452 80.537 4.628 1.00 13.00 13.45 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3764 CD2 HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 39.739 79.051 8.949 1.00 15.87 ATOM 3766 CE1 HIS A 481 39.739 79.051 8.949 1.00 15.87 ATOM 3769 O HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3769 O HIS A 481 40.412 79.7919 8.693 1.00 16.85 ATOM 3769 O HIS A 481 40.205 79.211 4.485 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.55 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3779 CB VAL A 482 39.836 74.327 5.235 1.00 12.27 ATOM 3779 CB VAL A 482 39.836 74.327 5.235 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.899 2.2844 1.00 12.15 ATOM 3779 CB VAL A 483 39.451 76.899 2.2844 1.00 12.57 ATOM 3779 CB VAL A 483 39.451 76.899 2.2844 1.00 12.57 ATOM 3780 CG1 VAL A 483 39.451 76.899 2.2844 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.899 2.2844 1.00 12.27 ATOM 3785 CA VAL A 483 39.451 76.899 -0.353 1.00 13.36 ATOM 3785 CA VAL A 483 39.451 76.899 -0.353 1.00 13.36 ATOM 3785 CA VAL A 483 39.451 76.899 -0.353 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.899 -0.353 1.00 13.36 ATOM 3780 CG1 VAL A 483 39.451 76.899 -0.353 1.00 13.36 ATOM 3785 CG VAL A 483 39.451 76.899 -0.353 1.00 13.36 ATOM 3785 CG VAL A 483 39.451 76.899 -0.353 1.00 13.36 ATOM 3785 CG VAL A 484 41.00 1.00 13.46 ATOM 3786 CB VAL A 4
10 ATOM 3755 CB THR A 480 35.608 81.462 2.643 1.00 14.71 ATOM 3756 CC THR A 480 34.264 81.386 2.162 1.00 15.03 ATOM 3757 CC THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.79 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.03 ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 15.04 ATOM 3764 CD2 HIS A 481 39.486 80.319 7.176 1.00 15.44 ATOM 3766 CD2 HIS A 481 39.486 80.319 7.176 1.00 15.74 ATOM 3766 CD2 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CD2 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3768 C HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3768 C HIS A 481 39.739 79.051 8.949 1.00 15.87 ATOM 3769 O HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3760 N VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3770 N VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3779 CB VAL A 482 39.836 74.327 5.235 1.00 12.24 ATOM 3779 CB VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3779 CB VAL A 482 40.381 76.450 3.176 1.00 12.25 ATOM 3777 N VAL A 482 40.381 76.450 3.176 1.00 12.26 ATOM 3779 CB VAL A 482 40.381 76.450 3.176 1.00 12.26 ATOM 3779 CB VAL A 483 38.466 77.111 0.063 1.00 12.26 ATOM 3779 CB VAL A 483 39.451 76.899 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.46 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.46 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.46 ATOM 3786 CB VAL A 483 38.709 77.032 -1.432 1.00 13.46 ATOM 3786 CB VAL A 484 44.053 78.562 1.004 1.00 12.27 ATOM 3786 CB VAL A 483 38.709 77.032 -1.432 1.00 13.46 ATOM 3787 CG1 VAL A 484 44.485 81.499 1.254 1.00 14.31 ATOM 3787 CG1 VAL A 484 44.485 81.499 1.254 1.00 14.31 ATOM 3787 CG1 VAL A 484 44.485 81.499 1.254 1.00 14.31 ATOM 3787 CG1 VAL A 484 44.485 81.499 1.254 1.00 14.40 14.40 ATOM 3787 CG1 VAL A 484 44.485 81.499 1.254 1.00 14.50 14.50 ATOM 3789 CG1 VAL A 484 44.485 81.499 1.254 1.00 14.50 14.50 ATOM 3789 CG1 VAL
10 ATOM 3756 OG1 THR A 480 34.264 81.386 2.162 1.00 15.03 ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.99 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 14.49 ATOM 3763 CG HIS A 481 39.452 80.537 4.628 1.00 14.49 ATOM 3763 CG HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3766 CB HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3766 CEI HIS A 481 38.264 79.867 7.626 1.00 15.70 ATOM 3766 CEI HIS A 481 38.2445 79.109 8.693 1.00 16.85 ATOM 3766 CEI HIS A 481 38.2445 79.109 8.693 1.00 16.85 ATOM 3768 CEI HIS A 481 39.438 80.319 7.176 1.00 15.85 ATOM 3769 O HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3767 CB VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3773 CGI VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 C VAL A 482 39.836 75.704 5.261 1.00 12.55 ATOM 3776 C VAL A 482 39.836 75.704 5.261 1.00 12.57 ATOM 3776 C VAL A 482 39.836 76.993 6.699 1.00 12.67 ATOM 3776 C VAL A 482 39.836 76.993 6.699 1.00 12.67 ATOM 3776 C VAL A 482 39.836 76.993 6.699 1.00 12.67 ATOM 3776 C VAL A 482 39.836 76.993 6.699 1.00 12.67 ATOM 3776 C VAL A 482 39.836 76.993 6.699 1.00 12.57 ATOM 3776 C VAL A 482 39.836 76.993 6.699 1.00 12.57 ATOM 3778 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 C VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3783 C VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3783 C VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3783 C VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3783 C VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3783 C VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3783 C VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3783 C VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3783 C VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3788 CC VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM
ATOM 3757 CG2 THR A 480 36.430 82.352 1.701 1.00 15.64 ATOM 3758 C THR A 480 37.687 8 1.41 3.033 1.00 13.99 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3763 CG HIS A 481 39.633 81.227 5.994 1.00 13.00 ATOM 3765 ND1 HIS A 481 39.633 81.227 5.994 1.00 15.14 ATOM 3765 ND1 HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3766 CEI HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3765 ND1 HIS A 481 39.633 81.227 5.994 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.70 ATOM 3766 CEI HIS A 481 38.264 79.867 7.626 1.00 15.85 ATOM 3768 C HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3773 CG VAL A 482 39.637 75.704 4.644 1.00 12.15 ATOM 3773 CG VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 CG VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10
ATOM 3758 C THR A 480 37.687 80.141 3.033 1.00 13.99 ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 14.49 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.70 ATOM 3766 CE1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 38.264 79.109 8.693 1.00 16.85 ATOM 3767 NEZ HIS A 481 38.38.445 79.109 8.693 1.00 15.87 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3772 CB VAL A 482 39.474 78.104 4.698 1.00 11.50 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 C VAL A 482 39.836 76.4327 5.235 1.00 9.91 ATOM 3777 N VAL A 482 39.836 76.375 5.235 1.00 9.91 ATOM 3777 CGZ VAL A 482 39.836 76.375 5.235 1.00 12.24 ATOM 3777 CGZ VAL A 482 39.836 76.4327 5.235 1.00 12.25 ATOM 3777 C VAL A 482 39.451 76.809 2.297 1.00 12.27 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3777 C VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.36 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.36 ATOM 3781 CG2 VAL A 483 39.451 76.809 2.297 1.00 12.36 ATOM 3783 CG VAL A 483 39.451 76.809 2.297 1.00 12.36 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.36 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.36 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.36 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 13.46 ATOM 3780 CGI VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3780 CGI VAL A 484 41.053 78.562 1.004 1.00 13.46 ATOM 3788 CG2 VAL A 484 41.053 78.562 1
ATOM 3759 O THR A 480 38.516 79.981 2.138 1.00 13.75 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3764 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 ATOM 3766 CE1 HIS A 481 38.264 79.867 7.626 1.00 15.85 ATOM 3766 CE1 HIS A 481 38.264 79.867 7.626 1.00 15.85 ATOM 3768 C HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.99 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3772 CB VAL A 482 39.467 79.504 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 O VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 CG2 VAL A 482 39.836 74.327 5.235 1.00 12.67 ATOM 3777 N VAL A 482 39.836 74.327 5.235 1.00 12.67 ATOM 3778 CG2 VAL A 482 39.836 74.327 5.235 1.00 12.67 ATOM 3778 CG2 VAL A 482 39.836 74.327 5.235 1.00 12.67 ATOM 3778 CG2 VAL A 482 39.836 74.327 5.235 1.00 12.67 ATOM 3778 CG2 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.24 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 -0.353 1.00 13.10 ATOM 3781 CG2 VAL A 483 39.451 76.809 -0.353 1.00 13.46 ATOM 3783 CG1 VAL A 483 39.451 76.809 -0.353 1.00 13.46 ATOM 3783 CG1 VAL A 484 41.053 78.562 1.004 1.00 12.27 ATOM 3783 CG2 VAL A 484 41.053 78.562 1.004 1.00 12.27 ATOM 3783 CG2 VAL A 484 41.053 78.562 1.004 1.00 12.27 ATOM 3783 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CG VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3789 CG2 VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3789 CG2 VAL A 484 41.053 78.562 1.004 1.00 14.08 ATOM 3789 C VAL A 484 41.056 81.5
15 ATOM 3760 N HIS A 481 38.039 80.400 4.290 1.00 13.63 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.433 81.227 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3765 ND1 HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 38.244 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3769 O HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 O VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3777 N VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3777 N VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3778 CG VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3778 CG VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3778 CG VAL A 483 39.451 76.809 2.297 1.00 12.24 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.451 76.809 0.297 1.00 12.33 ATOM 3780 CG1 VAL A 483 37.187 76.282 0.416 1.00 13.46 ATOM 3784 N VAL A 484 44.053 78.562 1.004 1.00 13.46 ATOM 3785 CA VAL A 484 44.053 78.562 1.004 1.00 13.46 ATOM 3786 CB VAL A 484 44.053 78.562 1.004 1.00 13.46 ATOM 3788 CG2 VAL A 484 44.053 78.562 1.004 1.00 13.46 ATOM 3788 CG2 VAL A 484 44.053 78.562 1.004 1.00 13.68 ATOM 3788 CG2 VAL A 484 44.053 78.562 1.004 1.00 14.08 ATOM 3789 C VAL A 484 44.053 78.562 1.004 1.00 14.08 ATOM 3789 C VAL A 484 44.006 81.573 0.726 1.00 14.59
15 ATOM 3761 CA HIS A 481 39.452 80.537 4.628 1.00 13.00 ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3764 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 38.445 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3769 O HIS A 481 41.429 79.211 4.588 1.00 12.69 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3772 CB VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3773 CGI VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.67 ATOM 3777 CB VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.27 ATOM 3777 CB VAL A 482 40.381 76.450 3.176 1.00 12.27 ATOM 3777 CB VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3777 CB VAL A 482 39.836 74.327 5.235 1.00 12.267 ATOM 3777 C VAL A 482 39.836 74.327 5.235 1.00 12.27 ATOM 3777 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3777 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3785 CA VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3785 CB VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3784 N VAL A 484 44.053 78.562 1.004 1.00 13.46 ATOM 3788 CG2 VAL A 484 44.055 79.382 0.696 1.00 14.31 40 ATOM 3788 CG2 VAL A 484 44.055 79.382 0.696 1.00 14.59 ATOM 3788 CG2 VAL A 484 44.489 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 44.489 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 44.489 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 44.489 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 44.489 78.674 1.144 1.00 14.08
ATOM 3762 CB HIS A 481 39.633 81.227 5.994 1.00 14.49 ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3764 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 38.245 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.597 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3772 CB VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.25 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.25 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.25 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.25 ATOM 3780 CGI VAL A 483 39.451 76.282 0.416 1.00 12.56 ATOM 3780 CGI VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CGI VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3784 N VAL A 483 38.426 77.111 0.063 1.00 12.25 ATOM 3788 CG2 VAL A 484 41.699 76.890 -0.353 1.00 13.10 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CGI VAL A 484 42.215 79.382 0.696 1.00 14.34 ATOM 3788 CG2 VAL A 484 42.215 79.382 0.696 1.00 14.59 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.487 78.663 0.430 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.663 0.430 1.00 14.59
ATOM 3763 CG HIS A 481 39.486 80.319 7.176 1.00 15.14 ATOM 3764 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 38.244 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3771 CA VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CGI VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.267 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.27 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CGI VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CGI VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3783 O VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3783 O VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3783 O VAL A 483 38.426 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3783 O VAL A 483 38.426 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 CGI VAL A 484 41.699 76.890 -0.353 1.00 14.14 ATOM 3786 CB VAL A 484 41.693 78.562 1.004 1.00 13.66 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3786 CGI VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.487 78.663 0.430 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.663 0.430 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.663 0.430 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.663 0.430 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.663 0.430 1.00 14.59 ATOM 3790 O VAL A 484 43.489 78.663 0.430 1.00 14.59
ATOM 3764 CD2 HIS A 481 40.412 79.799 8.016 1.00 15.70 ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 ATOM 3766 CE1 HIS A 481 38.445 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3770 CA VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.27 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.33 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.406 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.406 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3785 CA VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3787 CG1 VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3787 CG1 VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3787 CG1 VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3787 CG1 VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.455 81.499 1.254 1.00 14.08 ATOM 3788 CG2 VAL A 484 43.457 88.749 1.254 1.00 14.08 ATOM 3789 C VAL A 484 43.457 88.749 1.254 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3780 CG1 VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3780 CG1 VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3780 CG1 VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3780 CG1 VAL A 484 43.487 78
ATOM 3765 ND1 HIS A 481 38.264 79.867 7.626 1.00 15.87 20 ATOM 3766 CE1 HIS A 481 38.445 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 25 ATOM 3771 CA VAL A 482 39.474 78.104 4.698 1.00 11.97 ATOM 3772 CB VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3777 N VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3778 CA VAL A 483 39.641 76.859 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.641 76.899 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.641 76.899 2.297 1.00 12.33 ATOM 3779 CB VAL A 483 39.641 76.890 2.297 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.426 77.366 0.447 1.00 13.36 ATOM 3783 O VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 483 41.699 76.890 -0.353 1.00 13.46 ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.69 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.69 ATOM 3789 C VAL A 484 43.448 78.674 1.144 1.00 14.68 ATOM 3789 C VAL A 484 43.448 78.674 1.144 1.00 14.68 ATOM 3789 C VAL A 484 43.448 78.674 1.144 1.00 14.69
20 ATOM 3766 CE1 HIS A 481 38.445 79.109 8.693 1.00 16.85 ATOM 3767 NE2 HIS A 481 39.739 79.051 8.949 1.00 15.85 ATOM 3768 C HIS A 481 40.205 79.211 4.588 1.00 12.69 ATOM 3760 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.59 ATOM 3771 CA VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3776 O VAL A 482 40.381 76.450 3.176 1.00 12.67 ATOM 3777 N VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3780 CG1 VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3780 CG1 VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3781 CG2 VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.27 ATOM 3781 CG2 VAL A 483 38.426 77.111 0.063 1.00 12.37 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.36 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3789 C VAL A 484 43.447 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.448 78.674 1.144 1.00 14.59
ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3773 CG1 VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3774 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.67 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3787 CG1 VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.125 80.762 1.375 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.487 78.674 1.144 1.00 14.60 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08
ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3773 CG1 VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3774 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.67 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3787 CG1 VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.125 80.762 1.375 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.487 78.674 1.144 1.00 14.60 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08
ATOM 3769 O HIS A 481 41.429 79.194 4.445 1.00 11.59 ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3773 CG1 VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3774 CG2 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.67 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3786 CB VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3787 CG1 VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.125 80.762 1.375 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08
ATOM 3770 N VAL A 482 39.474 78.104 4.698 1.00 11.97 25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3783 O VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3783 O VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3784 N VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3780 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3780 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3780 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3780 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3780 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3780 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.59
25 ATOM 3771 CA VAL A 482 40.092 76.775 4.644 1.00 12.15 ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3777 N VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3779 CB VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3780 CG1 VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3781 CG2 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3782 C VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3783 O VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CG1 VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.08 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.59
ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.40 ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CG1 VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3788 CG2 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08
ATOM 3772 CB VAL A 482 39.162 75.704 5.261 1.00 11.50 ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.40 ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08
ATOM 3773 CG1 VAL A 482 39.836 74.327 5.235 1.00 9.91 ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.489 78.683 0.430 1.00 14.29
ATOM 3774 CG2 VAL A 482 38.828 76.093 6.699 1.00 12.67 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
30 ATOM 3775 C VAL A 482 40.381 76.450 3.176 1.00 12.24 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
30 ATOM 3776 O VAL A 482 41.426 75.892 2.844 1.00 12.15 ATOM 3777 N VAL A 483 39.451 76.809 2.297 1.00 12.27 ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3780 O VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3778 CA VAL A 483 39.641 76.592 0.867 1.00 12.33 ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3788 CG2 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3789 C VAL A 484 43.458 81.499 1.254 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3780 O VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3779 CB VAL A 483 38.426 77.111 0.063 1.00 12.56 ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3780 CG1 VAL A 483 38.709 77.032 -1.432 1.00 13.36 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
35 ATOM 3781 CG2 VAL A 483 37.187 76.282 0.416 1.00 12.27 ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3782 C VAL A 483 40.892 77.366 0.447 1.00 13.46 ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3783 O VAL A 483 41.699 76.890 -0.353 1.00 13.10 ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3784 N VAL A 484 41.053 78.562 1.004 1.00 13.68 ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3785 CA VAL A 484 42.215 79.382 0.696 1.00 14.31 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
40 ATOM 3786 CB VAL A 484 42.125 80.762 1.375 1.00 14.14 ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3787 CG1 VAL A 484 43.458 81.499 1.254 1.00 14.60 ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3788 CG2 VAL A 484 41.016 81.573 0.726 1.00 14.59 ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3789 C VAL A 484 43.487 78.674 1.144 1.00 14.08 ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
ATOM 3790 O VAL A 484 44.489 78.683 0.430 1.00 14.29
45 ATOM 3791 N ASP A 485 43.447 78.052 2.320 1.00 13.62
ATOM 3792 CA ASP A 485 44.614 77.332 2.819 1.00 13.11
ATOM 3793 CB ASP A 485 44.349 76.759 4.213 1.00 13.58
ATOM 3794 CG ASP A 485 45.597 76.167 4.841 1.00 14.32
ATOM 3795 OD1 ASP A 485 45.547 75.015 5.317 1.00 13.49
50 ATOM 3796 OD2 ASP A 485 46.636 76.861 4.858 1.00 15.48
ATOM 3797 C ASP A 485 44.987 76.189 1.870 1.00 12.92
ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22
ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22 ATOM 3799 N TYR A 486 43.990 75.426 1.428 1.00 12.46
ATOM 3798 O ASP A 485 46.162 75.995 1.549 1.00 12.22

	ATOM	3802	CG	TYR	Â	486	42.350	72.740	1.292	1.00 12.07	Α
	ATOM	3803	CD1	TYR	Α	486	40.969	72.713	1.490	1.00 12.29	Α
	ATOM	3804		TYR			40.385	71.892	2.465	1.00 12.35	Α
	ATOM	3805	CD2	TYR	Α	486	43.147	71.922	2.104	1.00 12.28	A
5	ATOM	3806	CE2			486	42.569	71.091	3.086	1.00 12.05	Α
	ATOM	3807	CZ	TYR	Α	486	41.185	71.086	3.253	1.00 11.64	А
	ATOM	3808	ОН	TYR	Α	486	40.587	70.270	4.193	1.00 12.66	Α
	ATOM	3809	С			486	44.869	74.836	-0.781	1.00 12.53	A
	ATOM	3810	0			486	45.795	74.229	-1.317	1.00 11.35	A
10	MOTA	3811	N			487	44.353	75.960	-1.278	1.00 13.10	A
	MOTA	3812	CA	GLU			44.861	76.552	-2.513	1.00 14.38	A
	ATOM	3813	CB			487	44.027	77.771	-2.929	1.00 15.28	A
	ATOM	3814	CG			487	44.305	78.207	-4.367	1.00 16.75	A
4 -	ATOM	3815	CD			487	43.592	79.489	-4.773	1.00 18.58	A
15	MOTA	3816		GLU			42.417	79.682	-4.394	1.00 19.25	A
	MOTA	3817		GLU			44.210	80.299	-5.494	1.00 19.30	A
	ATOM	3818	С	GLU			46.315	76.979	-2.350	1.00 14.58	A
	ATOM	3819	0			487	47.145	76.732	-3.223	1.00 14.02	A
20	ATOM	3820	N			488	46.617	77.633	-1.232	1.00 14.94	A
20	ATOM	3821	CA			488	47.980	78.083	-0.963	1.00 15.97	A
	ATOM	3822	СВ			488	48.044	78.836	0.372	1.00 18.36	A
	MOTA	3823	CG			488	47.367	80.199	0.341	1.00 23.16	A
	MOTA	3824	CD	-		488	47.381	80.895	1.691	1.00 25.38	A
O.F.	MOTA	3825	OE1				47.039	82.072	1.794	1.00 28.24	A
25	ATOM	3826		GLN			47.771	80.169	2.734	1.00 27.66	A
	ATOM	3827	С			488	48.923	76.888	-0.924	1.00 15.05	A
	ATOM	3828	0			488	50.023	76.938	-1.474	1.00 14.75 1.00 13.90	A A
	ATOM	3829	N			489	48.490	75.821	-0.259 -0.160	1.00 13.30	A
30	ATOM	3830	CA			489	49.290	74.607 73.575	0.731	1.00 13.12	A
30	ATOM	3831	CB			489	48.587	73.893	2.230	1.00 13.40	A
	ATOM	3832 3833	CG CD			489 489	48.624 47.686	72.965	3.003	1.00 14.37	A
	ATOM	3834	NE			489	47.765	73.149	4.453	1.00 16.44	A
	ATOM ATOM	3835	CZ			489	48.672	72.572	5.238	1.00 17.26	A
35	ATOM	3836	NH1				49.590	71.766	4.722	1.00 16.10	A
30	ATOM	3837		ARG			48.661	72.803	6.547	1.00 17.00	A
	ATOM	3838	C			489	49.526	74.009	-1.544	1.00 12.86	A
	ATOM	3839	Ö			489	50.640	73.596	-1.872	1.00 12.65	A
	ATOM	3840	N	MET			48.483	73.956	-2.366	1.00 11.94	A
40	ATOM	3841		MET					-3.701	1.00 12.39	А
	ATOM	3842	СВ	MET			47.304	73.153	-4.376	1.00 12.12	А
	ATOM	3843	CG	MET			46.539	71.985	-3.753	1.00 12.55	A
	ATOM	3844	SD			490	45.194	71.345	-4.782	1.00 14.61	А
	ATOM	3845	CE			490	43.883	72.493	-4.346	1.00 14.40	А
45	ATOM	3846	C			490	49.543	74.304	-4.558	1.00 12.54	A
	ATOM	3847	0	MET			50.291	73.825	-5.409	1.00 11.67	A
	ATOM	3848	N	GLN			49.476	75.609	-4.321	1.00 13.34	А
	ATOM	3849	CA	GLN			50.299	76.540	-5.085	1.00 15.37	А
	ATOM	3850	СВ	GLN			49.959	77.982	-4.711	1.00 17.37	А
50	ATOM	3851	CG	GLN			50.646	79.020	-5.577	1.00 21.77	Α
	ATOM	3852	CD	GLN			50.371	78.817	-7.057	1.00 23.84	Α
	ATOM	3853		GLN			51.076	78.066	-7.738	1.00 26.59	Α
	ATOM	3854		GLN			49.334	79.476	-7.559	1.00 25.84	Α
	MOTA	3855	С	GLN			51.771	76.257	-4.790	1.00 15.28	А
55	ATOM	3856	0	GLN	Α	491	52.610	76.245	-5.696	1.00 14.45	Α

	ATOM	3857	N	GLU	Α	492	52.081	76.022	-3.519	1.00 15.54	А
	ATOM	3858	CA	GLU	Α	492	53.451	75.730	-3.121	1.00 16.41	Α
	MOTA	3859	СВ	GLU	Α	492	53.551	75.675	-1.593	1.00 18.54	Α
	ATOM	3860	CG	GLU	Α	492	52.990	76.922	-0.915	1.00 23.76	Α
5	ATOM	3861	CD	GLU	Α	492	52.969	76.825	0.600	1.00 26.74	Α
	MOTA	3862	OE1	GLU	Α	492	52.527	75.783	1.134	1.00 28.59	A
	ATOM	3863	OE2	GLU	Α	492	53.380	77.801	1.261	1.00 30.17	Α
	ATOM	3864	С	GLU	Α	492	53.875	74.395	-3.733	1.00 15.06	Α
	ATOM	3865	0	GLU	Α	492	55.023	74.225	-4.143	1.00 15.14	Α
10	ATOM	3866	N	ALA	Α	493	52.940	73.451	-3.797	1.00 13.84	Α
	ATOM	3867	CA	ALA	Α	493	53.223	72.137	-4.374	1.00 12.38	Α
	ATOM	3868	СВ	ALA	Α	493	52.017	71.213	-4.194	1.00 11.33	Α
	ATOM	3869	С	ALA	Α	493	53.555	72.290	-5.859	1.00 12.51	Α
	ATOM	3870	0	ALA	Α	493	54.492	71.665	-6.366	1.00 11.30	Α
15	ATOM	3871	N	LEU	Α	494	52.783	73.118	-6.558	1.00 12.26	Α
	ATOM	3872	CA	LEU	Α	494	53.024	73.341	-7.981	1.00 13.51	Α
	ATOM	3873	СВ	LEU	Α	494	51.970	74.295	-8.563	1.00 13.59	Α
	ATOM	3874	CG	LEU			50.574	73.687	-8.745	1.00 14.46	Α
	ATOM	3875		LEU	Α	494	49.568	74.768	-9.146	1.00 14.29	A
20	ATOM	3876	CD2	LEU	Α	494	50.643	72.602	-9.807	1.00 14.76	Α
	ATOM	3877	С	LEU			54.425	73.904	-8.202	1.00 13.48	A
	ATOM	3878	0	LEU			55.142	73.456	-9.093	1.00 13.66	A
	ATOM	3879	N	LYS			54.813	74.875	-7.379	1.00 14.20	A
	ATOM	3880	CA	LYS			56.135	75.488	-7.483	1.00 14.70	Α
25	ATOM	3881	СВ	LYS			56.254	76.665	-6.507	1.00 17.34	Α
	ATOM	3882	CG	LYS			55.285	77.807	-6.813	1.00 20.77	Α
	ATOM	3883	CD	LYS			55.564	79.047	-5.969	1.00 23.82	А
	ATOM	3884	CE			495	55.371	78.781	-4.484	1.00 25.78	A
	ATOM	3885	NZ	LYS			55.661	79.995	-3.662	1.00 28.04	Α
30	ATOM	3886	С	LYS			57.222	74.454	-7.197	1.00 14.05	Α
	ATOM	3887	0	LYS			58.270	74.449	-7.847	1.00 12.58	Α
	ATOM	3888	N	ALA			56.966	73.578	-6.228	1.00 12.65	А
	ATOM	3889	CA	ALA			57.918	72.528	-5.884	1.00 12.33	A
	ATOM	3890	СВ	ALA			57.411	71.729	-4.687	1.00 12.48	A
35	ATOM	3891	С	ALA			58.099	71.606	-7.089	1.00 12.17	A
	ATOM	3892	0	ALA			59.220	71.230	-7.437	1.00 11.21	Α
	ATOM	3893	N	CYS			56.988	71.232	-7.717	1.00 11.95	Α
	ATOM	3894	CA	CYS			57.039	70.362	-8.885	1.00 11.78	A
	ATOM	3895	СВ	CYS			55.621	70.008	-9.358	1.00 11.55	А
40	ATOM	3896	SG	CYS			54.771	68.821	-8.280	1.00 11.22	Α
	ATOM	3897	С	CYS			57.816		-10.011	1.00 11.98	A
	ATOM	3898	0			497	58.656	70.404	-10.650	1.00 11.59	A
	ATOM	3899	N	GLN			57.546	72.314	-10.250	1.00 12.50	А
	ATOM	3900	CA	GLN			58.255		-11.305	1.00 13.65	А
45	ATOM	3901	СВ	GLN			57.775		-11.393	1.00 15.53	А
	ATOM	3902	CG	GLN			58.581		-12.375	1.00 18.75	А
	ATOM	3903	CD	GLN			58.080		-12.484	1.00 20.66	А
	ATOM	3904		GLN			57.903		-11.472	1.00 23.47	А
	ATOM	3905		GLN			57.861		-13.712	1.00 19.47	A
50	ATOM	3906	С	GLN			59.762		-11.054	1.00 13.54	А
	ATOM	3907	0	GLN			60.543		-11.969	1.00 13.09	A
	ATOM	3908	N	MET			60.172	73.291	-9.819	1.00 12.68	A
	ATOM	3909	CA	MET			61.597	73.298	-9.482	1.00 13.24	A
	ATOM	3910	CB			499	61.786	73.636	-7.998	1.00 14.75	A
55	ATOM	3911	CG	MET			63.220	73.501	-7.483	1.00 17.49	A
			~ •		- •						

				-					 	_
	ATOM	3912	SD	MET		64.441		-8.381	21.74	A
	ATOM	3913	CE		499	64.082		-7.740	19.60	A
	ATOM	3914	С	MET		62.250		-9.798	12.44	A
-	ATOM	3915	0	MET		63.302	71.892 -		11.75	A
5	ATOM	3916	N	VAL		61.621		-9.352	11.57	A
	ATOM	3917	CA	VAL		62.153		-9.593	 11.09	A
	ATOM	3918	СВ	VAL		61.322		-8.837	10.85	A
	ATOM	3919		VAL		61.748		-9.247	10.52	A
10	ATOM	3920		VAL		61.508		-7.331	11.06	A
10	ATOM	3921	С	VAL		62.168	69.200 -		11.35	A
	ATOM	3922	0	VAL		63.152	68.680 -		11.29	A
	ATOM	3923	N	MET		61.074	69.510 -		11.53	A
	ATOM	3924	CA	MET		60.976	69.232 -		11.54	A
15	ATOM	3925	СВ	MET		59.585	69.617 -		12.75	A
15	ATOM	3926	CG	MET		58.476	68.705 -:		13.12	A
	ATOM	3927	SD	MET		56.834	69.365 -		17.72	A
	ATOM	3928	CE	MET		56.676	69.003 -		16.00	A
	ATOM	3929	С	MET		62.048	69.951 -		12.05	A
20	ATOM	3930	0	MET		62.744	69.323 -		12.43	A
20	ATOM	3931	N	GLN		62.189	71.259 -		11.82	A
	ATOM	3932	CA	GLN		63.172	72.032 -		12.11	A
	ATOM	3933	CB	GLN		62.967	73.534 -:		12.25	A
	ATOM	3934	CG	GLN		63.209	74.023 -		12.56	A
25	ATOM	3935	CD	GLN		64.600	74.614 -		13.84	A
25	ATOM	3936	OE1			65.350	74.757 -		13.40	A
	ATOM	3937		GLN		64.944	74.972 -		13.18	A
	ATOM	3938	C	GLN		64.612	71.609 -		12.59	A
	ATOM	3939	0	GLN		65.449	71.571 -		11.57	A
30	ATOM	3940	N	GLN		64.906	71.286 -		12.09	A A
30	ATOM	3941	CA	GLN		66.254	70.824 -1 70.592 -1		13.27 13.43	A
	ATOM	3942	CB	GLN		66.392	71.849 -		15.82	A
	ATOM	3943	CG	GLN		66.600 67.951	72.502 -		16.04	A
	ATOM	3944 3945	CD OF 1	GLN GLN		68.944	71.820 -1		16.22	A
35	ATOM	3945		GLN		67.998	73.825 -		17.27	A
33	ATOM ATOM	3940	NEZ C	GLN		66.512	69.504 -		12.92	A
	ATOM	3948	0	GLN		67.598	69.276 -		13.19	A
	ATOM	3949	N	SER		65.505	68.632 -		12.21	A
	ATOM	3950	CA	SER		65.629	67.338 -		12.69	A
40	ATOM	3951	CB	SER		64.376	66.487 -		12.53	A
10	ATOM	3952	OG	SER		64.240	66.150 -		13.33	A
	ATOM	3953	C	SER		65.860	67.487 -		12.34	A
	ATOM	3954	Ö	SER		66.719	66.814 -		12.28	A
	ATOM	3955	N	VAL		65.091	68.363 -		12.19	A
45	ATOM	3956	CA	VAL		65.237	68.577 -		12.76	A
10	ATOM	3957	CB	VAL		64.228	69.624 -		12.70	A
	ATOM	3958		VAL		64.573	70.019 -		12.02	A
	ATOM	3959		VAL		62.811	69.051 -		12.78	A
	ATOM	3960	C	VAL		66.651	69.043 -		13.11	A
50	ATOM	3961	Ö	VAL		67.276	68.554 -1		13.42	A
	ATOM	3962	N	TYR		67.161	69.983 -		13.48	A
	ATOM	3963	CA	TYR		68.503	70.496 -1		14.99	A
	ATOM	3964	CB	TYR		68.825	71.593 -		16.52	A
	ATOM	3965	CG	TYR		70.166	72.239 -		18.96	А
55	ATOM	3966		TYR		70.475	72.822 -		20.22	A
	111 011	3,700							 	

							020					
	MOTA	3967	CE1	TYR	Α	506	71.722	73.393	-18.098	1.00	22.60	Α
	ATOM	3968	CD2	TYR	Α	506	71.139	72.244	-15.638	1.00	19.62	Α
	ATOM	3969	CE2	TYR			72.394	72.811	-15.864	1.00	22.32	Α
	ATOM	3970	CZ	TYR	Α	506	72.674	73.380	-17.097	1.00	22.77	Α
5	ATOM	3971	ОН	TYR	Α	506	73.914	73.929	-17.337	1.00	27.54	Α
	ATOM	3972	С	TYR	Α	506	69.561	69.385	-17.359	1.00	14.96	Α
	ATOM	3973	0	TYR	Α	506	70.468	69.325	-18.195	1.00	14.30	Α
	MOTA	3974	N	ARG	Α	507	69.435	68.499	-16.377	1.00	14.25	Α
	ATOM	3975	CA	ARG	A	507	70.384	67.399	-16.214	1.00	14.23	A
10	ATOM	3976	CB	ARG	Α	507	70.197	66.751	-14.837	1.00	14.62	Α
	ATOM	3977	CG	ARG	A	507	71.238	65.694	-14.492	1.00	15.49	Α
	ATOM	3978	CD	ARG	Α	507	71.041	65.175	-13.075	1.00	16.94	Α
	ATOM	3979	NE	ARG	A	507	72.055	64.190	-12.707	1.00	18.67	Α
	ATOM	3980	CZ	ARG	Α	507	72.170	63.649	-11.497	1.00	18.55	Α
15	ATOM	3981	NH1	ARG	Α	507	71.333	63.996	-10.527	1.00	18.82	Α
	ATOM	3982	NH2	ARG	Α	507	73.122	62.758	-11.256	1.00	19.58	Α
	ATOM	3983	С	ARG	Α	507	70.247	66.334	-17.310	1.00	13.93	Α
	ATOM	3984	0	ARG	Α	507	71.241	65.776	-17.776	1.00	12.93	Α
	ATOM	3985	N	LEU	Α	508	69.016	66.062	-17.723	1.00	13.04	Α
20	ATOM	3986	CA	LEU	Α	508	68.758	65.059	-18.752	1.00	13.40	Α
	ATOM	3987	CB	LEU	Α	508	67.274	64.669	-18.738		12.96	Α
	ATOM	3988	CG	LEU	Α	508	66.779		-17.588		12.57	Α
	ATOM	3989	CD1	LEU	Α	508	65.251	63.836	-17.521		12.21	А
	MOTA	3990	CD2	LEU	Α	508	67.264	62.354	-17.793		12.51	Α
25	ATOM	3991	С	LEU	A	508	69.139		-20.171		13.63	A
	ATOM	3992	0	LEU	Α	508	69.386	64.637	-21.031		13.67	A
	ATOM	3993	N	LEU	Α	509	69.188		-20.422		13.58	A
	MOTA	3994	CA	LEU			69.494		-21.763		13.53	A
	MOTA	3995	CB	LEU			68.302		-22.303		12.65	A
30	ATOM	3996	CG	LEU			67.030		-22.577		12.79	A
	ATOM	3997		LEU			65.914		-23.012		11.70	A
	MOTA	3998		LEU			67.301		-23.657		12.41	A
	ATOM	3999	С	LEU			70.766		-21.916		14.29	A
~=	ATOM	4000	0	LEU			70.915		-22.900		14.16	A
35	ATOM	4001	N	THR			71.680		2 -20.957		14.27	A
	ATOM	4002	CA	THR			72.938	_	-21.015		14.89	A
	ATOM	4003	CB	THR			73.083		-19.803		14.99	A
	ATOM	4004	OG1				71.994		-19.796		13.54	A
40	ATOM	4005	_	THR			74.400		-19.872		15.03	A
4 0	ATOM	4006	C	THR			74.100		-21.022		15.57	A
	MOTA	4007	0	THR			74.106		-20.252		14.99	A
	ATOM	4008	N	LYS			75.075		-21.900		16.82 18.12	A A
	ATOM	4009	CA	LYS			76.234		-21.972		19.84	A
45	ATOM	4010	CB	LYS			77.309		-22.902		22.03	A
45	ATOM	4011	CG	LYS			78.515		-23.058 -23.988		24.78	A
	ATOM	4012	CD	LYS			79.563				26.41	A
	ATOM	4013	CE	LYS			80.759		-24.094		28.84	A
	ATOM	4014	NZ	LYS			81.834		-24.969		17.91	A
ΕO	ATOM	4015	C	LYS			76.789		-20.564			
50	ATOM	4016	0	LYS			77.076		-19.879 -20.110		17.65 18.35	A A
	ATOM	4017	N	PRO			76.943		2 -20.110		18.80	A
	ATOM	4018	CD	PRO			76.675		3 -18.773		18.48	A
	ATOM	4019	CA	PRO			77.455				19.18	A
==	ATOM	4020	CB	PRO			77.711		-18.854		19.18	A
55	ATOM	4021	CG	PRO	А	512	76.629	03.3/5	-19.773	1.00	12.10	A

	л шом	4022	~	PRO	π	612	78.685	66 118	-18.299	1 00	18.38	А
	ATOM	4022 4023	С 0	PRO			78.698		-17.182		18.96	A
	ATOM			SER			79.714		-19.137		19.08	A
	ATOM	4024 4025	N CA	SER			80.938		-18.754		18.72	A
5	ATOM	4023	CB	SER			82.086		-19.694		19.04	A
3	ATOM	4020	OG	SER			81.770		-21.050		18.98	A
	ATOM						80.800		-18.701		18.92	A
	ATOM	4028	С	SER			81.720		-18.266		18.57	A
	ATOM	4029	0	SER ILE			79.651		-19.134		18.74	A
10	ATOM	4030	N				79.383		-19.131		19.04	A
10	MOTA	4031	CA	ILE					-20.495		20.04	A
	ATOM	4032	CB	ILE			78.787 78.309		-20.493		21.10	A
	ATOM	4033	CG2								21.10	A
	ATOM	4034	CG1				79.837		-21.598		22.47	A
15	ATOM	4035	CD1				79.333		-22.983			A
15	ATOM	4036	С	ILE			78.395		-18.016		18.79	
	ATOM	4037	0	ILE			78.419		-17.482		17.84	A
	ATOM	4038	N	TYR			77.531		-17.671		18.53	A
	ATOM	4039	CA	TYR			76.517		-16.629		18.27	A
20	ATOM	4040	СВ	TYR			75.828		-16.371		18.00	A
20	ATOM	4041	CG	TYR			74.789		-15.277		17.16	A
	ATOM	4042		TYR			73.637		-15.369		17.45	A
	ATOM	4043		TYR			72.658		-14.370		16.75	A
	MOTA	4044		TYR			74.940		-14.160		17.50	A
0-	MOTA	4045		TYR			73.977		-13.162		16.69	A
25	ATOM	4046	CZ	TYR			72.838		-13.270		17.17	A
	MOTA	4047	ОН	TYR			71.886		-12.276		17.04	A
	ATOM	4048	С	TYR			77.102		-15.330		18.11	A
	ATOM	4049	0	TYR			77.924		-14.674		18.22	A
00	ATOM	4050	N			516	76.671		-14.966		18.53	A
30	MOTA	4051	CA			516	77.146		-13.753		18.57	A
	ATOM	4052	CB			516	78.162		-14.129		18.96	A
	ATOM	4053	OG			516	78.760		-12.977		20.03	A
	ATOM	4054	С			516	75.936		-13.066		19.08	A
	ATOM	4055	0			516	75.689		-13.189		18.41	A
35	ATOM	4056	N	PRO			75.174		-12.314		19.04	A
	MOTA	4057	CD			517	75.364		-12.109		19.14	A
	MOTA	4058	CA	PRO			73.977		-11.615		19.54	A
	MOTA	4059	CB	PRO			73.238		-11.327		19.43	A
	MOTA	4060	CG	PRO			74.366		-10.998		19.51	A
40	MOTA	4061	С	PRO			74.075		-10.364			A
	MOTA	4062	0	PRO			74.933	73.362	-9.506		20.43	A
	ATOM	4063	N	ASP	Α	518	73.160		-10.296		20.28	A
	MOTA	4064	CA	ASP			72.983	75.411	-9.157		20.46	A
	MOTA	4065	CB	ASP	Α	518	72.984	76.879	-9.579		21.58	А
45	MOTA	4066	CG	ASP			72.662	77.813	-8.424		22.93	A
	MOTA	4067	OD1	ASP	А	518	72.006	77.366	-7.456		22.28	А
	MOTA	4068	OD2	ASP	А	518	73.048	78.999	-8.487		24.17	А
	MOTA	4069	С	ASP			71.562	74.998	-8.784		20.16	A
	MOTA	4070	0	ASP	Α	518	70.602	75.422	-9.426		19.99	A
50	MOTA	4071	N	PHE	Α	519	71.435	74.159	-7.764	1.00	20.05	A
	MOTA	4072	CA	PHE	Α	519	70.136	73.642	-7.354		19.70	Α
	ATOM	4073	CB	PHE	A	519	70.331	72.607	-6.247		19.92	Α
	MOTA	4074	CG	PHE	Α	519	71.195	71.445	-6.662		20.35	А
	MOTA	4075	CD1	PHE	Α	519	70.936	70.760	-7.848		20.35	A
55	MOTA	4076	CD2	PHE	Α	519	72.275	71.046	-5.882	1.00	20.06	A

		MOTA	4077	CE1	PHE A	519	71.741	69.694	-8.253	1.00 20.49	А
		ATOM	4078	CE2	PHE A	519	73.085	69.983	-6.276	1.00 20.68	А
		ATOM	4079	CZ	PHE A	519	72.818	69.306	-7.464	1.00 20.65	Α
		MOTA	4080	С	PHE A	519	69.073	74.656	-6.949	1.00 19.92	Α
	5	ATOM	4081	0	PHE A	519	67.926	74.283	-6.703	1.00 19.71	A
		MOTA	4082	N	SER A	520	69.438	75.932	-6.901	1.00 20.32	А
		ATOM	4083	CA	SER A	520	68.482	76.974	-6.534	1.00 20.88	Α
		ATOM	4084	CB	SER A	520	69.072	77.879	-5.452	1.00 21.33	A
		MOTA	4085	OG	SER A	520	70.122	78.674	-5.981	1.00 22.27	Α
	10	MOTA	4086	С	SER A	520	68.136	77.826	-7.753	1.00 21.21	А
		ATOM	4087	0	SER A	520	67.272	78.700		1.00 20.94	Α
		ATOM	4088	N	PHE A	521	68.816	77.558	-8.862	1.00 20.71	Α
		ATOM	4089	CA	PHE A	521	68.625		-10.096	1.00 20.88	А
		ATOM	4090	CB	PHE A	521	69.932		-10.897	1.00 22.15	А
	15	MOTA	4091	CG	PHE A	521	69.950		-12.034	1.00 23.36	Α
		MOTA	4092	CD1	PHE A	521	70.078		-11.787	1.00 24.36	Α
		ATOM	4093	CD2	PHE A	521	69.817		-13.349	1.00 23.34	A
		MOTA	4094	CE1	PHE A	521	70.071		-12.837	1.00 24.48	A
1199		ATOM	4095	CE2	PHE A	521	69.808		-14.405	1.00 23.79	Α
H	20	MOTA	4096	CZ	PHE A	521	69.936		-14.149	1.00 24.57	Α
		MOTA	4097	С	PHE A		67.497		-10.973	1.00 20.45	A
M		MOTA	4098	0	PHE A		67.238		-10.998	1.00 19.90	A
व्हुट म अस्टब्स्		ATOM	4099	N	SER A	522	66.828		-11.693	1.00 20.31	Α
lead sass		MOTA	4100	CA	SER A	522	65.746		-12.588	1.00 19.82	Α
W	25	ATOM	4101	CB	SER A	522	64.569		-12.474	1.00 20.87	Α
ĵų.		ATOM	4102	OG	SER A		63.902		-11.230	1.00 24.21	Α
(M		ATOM	4103	С	SER A		66.259		-14.023	1.00 18.66	A
Bi		MOTA	4104	0	SER A		66.316		-14.686	1.00 18.49	A
		ATOM	4105	N	TYR A		66.643		-14.495	1.00 17.51	A
, j	30	MOTA	4106	CA	TYR A		67.149		-15.854	1.00 16.64	A
E.		ATOM	4107	CB	TYR A		67.888		-16.013	1.00 17.45	A
i,≠		MOTA	4108	CG	TYR A		69.163		-15.213	1.00 19.19	A
		ATOM	4109	CD1			69.191		-13.949	1.00 18.97	A
ine jul	0-	ATOM	4110		TYR A		70.363		-13.189	1.00 20.14	A
ğ (- 1	35	ATOM	4111		TYR A		70.338		-15.701	1.00 19.40	A
		ATOM	4112		TYR A		71.503		-14.954	1.00 19.85	A
		ATOM	4113	CZ	TYR A		71.511		-13.700	1.00 20.28	A
		ATOM	4114	ОН	TYR A		72.669		-12.955	1.00 20.88	A
	40	ATOM	4115	С	TYR A		66.023		-16.865	1.00 16.16	A
	4 0	MOTA		0						1.00 15.44 1.00 15.23	A A
		ATOM	4117	N	PHE A		64.838		-16.452	1.00 15.23	A
		ATOM	4118	CA	PHE A		63.664		-17.313 -17.852	1.00 13.11	A
		MOTA	4119	CB	PHE A		63.294			1.00 14.27	A
	4 =	ATOM	4120	CG	PHE A		64.335		-18.724	1.00 13.80	A
	45	ATOM	4121		PHE A		65.403		-18.166	1.00 14.22	A
		ATOM	4122		PHE A		64.226		-20.112 -18.977	1.00 13.29	Ā
		MOTA	4123		PHE A		66.349		-20.932	1.00 14.00	A
		ATOM	4124		PHE A		65.166			1.00 12.89	Ā
	ΕO	ATOM	4125	CZ	PHE A		66.231		-20.360	1.00 15.48	A
	50	ATOM	4126	C	PHE A		62.461		-16.537 -15.314	1.00 15.93	Ā
		ATOM	4127	0	PHE A		62.394		-15.314 -17.274	1.00 15.29	A
		ATOM	4128	N	THR A		61.510		-17.274 -16.708	1.00 18.33	A
		MOTA	4129	CA	THR A		60.265 60.026		-17.050	1.00 18.21	A
	5E	ATOM	4130	CB	THR A				-17.030	1.00 18.09	A
	55	ATOM	4131	OGI	THR A	323	61.031	00.431	-10.419	1.00 22.30	A

		ATOM	4132	CG2	THR A	525		58.659	80.072 -		1.00		А
		ATOM	4133	С	THR A			59.181	77.308 -		1.00		A
		MOTA	4134	0	THR A	525		59.190	77.147 -		1.00		А
		MOTA	4135	N	LEU A	526		58.265	76.757 -		1.00		Α
	5	ATOM	4136	CA	LEU A			57.184	75.968 -		1.00		Α
		ATOM	4137	CB	LEU A	526		56.457	75.166 -		1.00		Α
		ATOM	4138	CG	LEU A	526		57.000	73.796 -		1.00		А
		ATOM	4139	CD1	LEU A	526		56.213	73.271 -		1.00		А
		MOTA	4140	CD2	LEU A			56.887	72.833 -		1.00		А
	10	ATOM	4141	С	LEU A	526		56.184	76.904 -		1.00		A
		ATOM	4142	0	LEU A	526		55.920	78.000 -			17.26	А
		ATOM	4143	N	ASP A	527		55.649	76.481 -		1.00		Α
		MOTA	4144	CA	ASP A	527		54.651	77.271 -		1.00		A
		ATOM	4145	CB	ASP A	527		55.124	77.631 -		1.00		Α
	15	MOTA	4146	CG	ASP A			54.133	78.520 - 3		1.00		A
		MOTA	4147	OD1	ASP A	527		53.867	79.640 -			18.47	Α
		ATOM	4148	OD2	ASP A			53.620	78.097 -			18.66	Α
		ATOM	4149	С	ASP A			53.409	76.396 -		1.00		A
		ATOM	4150	0	ASP A			53.434	75.340 -			17.71	A
ı	20	ATOM	4151	N	ASP A	.528		52.337	76.825 -			16.05	A
Ü		ATOM	4152	CA	ASP A			51.084	76.076 -			14.81	A
		MOTA	4153	CB	ASP A			50.703	75.718 -			14.73	A
3,0 °		ATOM	4154	CG	ASP A			49.663	74.612 -			14.72	A
		MOTA	4155	OD1	ASP A	528		48.648	74.677 -			13.92	Α
	25	ATOM	4156	OD2	ASP A	528		49.863	73.674 -			15.10	A
IJ		MOTA	4157	С	ASP A			50.009	76.963 -			15.02	A
ij.		MOTA	4158	0	ASP A			49.667	78.009 -			13.40	A
#1		MOTA	4159	N	SER A			49.471	76.546 -			15.55	A
		ATOM	4160	CA	SER A			48.462	77.355 -			17.05	A
1,13	30	MOTA	4161	CB	SER A			48.464	77.064 -			18.24	A
M		MOTA	4162	OG	SER A			47.861	75.815 -			23.59	A
į.		MOTA	4163	С	SER A			47.055	77.159 -			16.64	A
1000		MOTA	4164	0	SER A			46.149	77.913 -			16.93	A
ist.	0.5	MOTA	4165	N	ARG A			46.866	76.169 -			15.67	A
Ĭ:æ	35	MOTA	4166	CA	ARG A			45.533	75.927 -			16.21	A
		MOTA	4167	CB	ARG A			45.033	74.562 -			15.39	A
		ATOM	4168	CG	ARG A			44.928	74.520 -			15.38	A A
		MOTA	4169	CD	ARG A			44.291	73.247 -			15.32	A
	40	MOTA	4170	NE	ARG A			45.035	72.053 - 70.845 -			15.99 17.04	A
	40	ATOM	4171	CZ	ARG A			44.808	70.643 -			16.99	A
		ATOM	4172		ARG A			43.858	69.802 -			16.09	A
		MOTA	4173		ARG A			45.524				16.59	A
		ATOM	4174	С	ARG A			45.349	76.075 - 75.781 -			16.64	A
	45	MOTA	4175	0	ARG A			44.277				15.99	A
	4 5	ATOM	4176	N	TRP A			46.388	76.529 - 76.760 -			17.02	A
		ATOM	4177	CA	TRP A			46.277	75.489 -			16.79	A
		ATOM	4178	CB	TRP A			46.519	75.776 -			18.61	A
		ATOM	4179	CG	TRP A		•	46.420	75.854 -			18.70	A
	E0	ATOM	4180		TRP A			45.218				19.61	A
	50	ATOM	4181		TRP A			45.583	76.258 -			19.31	A
		ATOM	4182		TRP A			43.866	75.625 -			18.69	A
		ATOM	4183		TRP A			47.440	76.124 -			19.66	A
		ATOM	4184		TRP A			46.944	76.416 - 76.438 -			20.36	A
	E C	ATOM	4185		TRP A			44.642	76.438 - 75.806 -			19.92	A
	55	MOTA	4186	CZ3	TRP A	. 531		42.928	13.000 -	17.111	1.00	10.76	Λ

	ATOM	4187	CH2	TRP	A 531	43.323	76.207 -10.825	1.00 20.15	Α
	MOTA	4188	С	TRP	A 531	47.247	77.833 -15.433	1.00 17.11	A
	MOTA	4189	0	TRP .	A 531	48.445	77.745 -15.691	1.00 16.78	Α
	MOTA	4190	N	PRO .	A 532	46.740	78.855 -14.724	1.00 18.18	Α
5	MOTA	4191	CD	PRO .	A 532	47.581	79.813 -13.986	1.00 19.11	А
	MOTA	4192	CA	PRO	A 532	45.327	79.028 -14.362	1.00 19.02	A
	MOTA	4193	CB		A 532	45.353	80.248 -13.441	1.00 19.35	A
	MOTA	4194	CG	PRO .	A 532	46.705	80.142 -12.795	1.00 19.62	A
	MOTA	4195	С		A 532	44.421	79.230 -15.572	1.00 20.08	Α
10	MOTA	4196	0		A 532	43.202	79.077 -15.479	1.00 19.73	A
	ATOM	4197	N		A 533	45.024	79.574 -16.705	1.00 20.53	A
	MOTA	4198	CA	GLY .	A 533	44.257	79.769 -17.920	1.00 22.81	A
	MOTA	4199	С	GLY .	A 533	44.068	81.218 -18.320	1.00 24.62	A
	ATOM	4200	0	GLY .	A 533	44.043	82.113 -17.472	1.00 24.61	A
15	MOTA	4201	N	SER .	A 534	43.938	81.447 -19.624	1.00 26.45	A
	ATOM	4202	CA	SER .	A 534	43.739	82.791 -20.153	1.00 27.99	А
	ATOM	4203	CB	SER .	A 534	43.665	82.746 -21.682	1.00 29.27	Α
	MOTA	4204	OG	SER .	A 534	43.340	84.017 -22.215	1.00 31.07	A
	MOTA	4205	С	SER .	A 534	42.446	83.369 -19.588	1.00 28.53	А
20	MOTA	4206	0	SER .	A 534	41.402	82.714 -19.617	1.00 28.85	Α
	ATOM	4207	N	GLY .	A 535	42.518	84.592 -19.072	1.00 29.09	A
	MOTA	4208	CA		A 535	41.340	85.221 -18.504	1.00 29.80	A
	MOTA	4209	С		A 535	41.207	84.931 -17.019	1.00 30.59	A
	ATOM	4210	0	GLY .	A 535	40.349	85.496 -16.338	1.00 30.53	A
25	MOTA	4211	N		A 536	42.055	84.041 -16.516	1.00 31.00	A
	ATOM	4212	CA	VAL .	A 536	42.038	83.680 -15.104	1.00 31.98	A
	MOTA	4213	CB		A 536	42.135	82.145 -14.918	1.00 32.31	A
	MOTA	4214			A 536	42.095	81.791 -13.439	1.00 31.89	A
••	MOTA	4215		VAL .		40.997	81.459 -15.658	1.00 31.94	A
30	MOTA	4216	С		A 536	43.218	84.343 -14.400	1.00 32.83	A
	ATOM	4217	0	VAL .	A 536	43.080	84.894 -13.307	1.00 32.38	А
	MOTA	4218	N	GLU .	A 537	44.378	84.295 -15.045	1.00 33.97	A
	MOTA	4219	CA	GLU .	A 537	45.592	84.881 -14.495	1.00 35.29	А
	ATOM	4220	CB		A 537	46.085	84.034 -13.313	1.00 36.13	Α
35	MOTA	4221	CG		A 537	47.534	84.273 -12.900	1.00 37.68	A
	MOTA	4222	CD		A 537	47.933	83.477 -11.663	1.00 38.87	A
	ATOM	4223		GLU .		49.149	83.273 -11.450	1.00 39.08	A
	ATOM	4224		GLU .		47.035	83.062 -10.898	1.00 39.11	A
40	ATOM	4225	С		A 537	46.676	84.973 -15.566	1.00 35.63	A
40	ATOM	4226	0		A 537	47.086		1.00 35.88	Α -
	ATOM	4227	N		A 538		86.190 -15.860	1.00 35.94	A
	MOTA	4228	CA		A 538	48.183		1.00 35.97	A
	ATOM	4229	СВ		A 538	48.244		1.00 37.57	A
4 =	ATOM	4230	CG		A 538	49.235	88.037 -18.452	1.00 39.01	A
45	MOTA	4231		ASP .		49.150	87.297 -19.456	1.00 39.65	A
	ATOM	4232		ASP .		50.094	88.938 -18.344	1.00 40.23	A
	MOTA	4233	С		A 538	49.477	85.981 -16.154	1.00 35.09	A
	MOTA	4234	0		A 538	50.132	86.812 -15.524	1.00 35.01	A
FΩ	MOTA	4235	N		A 539	49.835		1.00 34.01	A
50	ATOM	4236	CA		A 539	51.026		1.00 32.93	A
	ATOM	4237	CB		A 539	50.633		1.00 32.75	A
	ATOM	4238	OG		A 539	50.056		1.00 33.31	A
	ATOM	4239	С		A 539	52.145		1.00 31.91	A
	MOTA	4240	0		A 539	53.321		1.00 32.02	A
55	ATOM	4241	N	ARG .	A 540	51.792	83.173 -17.683	1.00 30.71	A

												_
	ATOM	4242	CA			540	52.816		-18.596	1.00 29		A
	ATOM	4243	CB			540	52.187		-19.708	1.00 29		A
	ATOM	4244	CG			540	50.939		-20.335	1.00 27		A
_	MOTA	4245	CD			540	50.191		-21.111	1.00 26		A
5	ATOM	4246	NE			540	51.057		-22.049	1.00 23		A
	MOTA	4247	CZ			540	50.631		-23.182	1.00 23		A
	ATOM	4248		ARG			49.350		-23.520	1.00 21		A
	ATOM	4249	NH2	ARG			51.482		-23.983	1.00 22		А
	ATOM	4250	С			540	53.686		-19.170	1.00 28		A
10	ATOM	4251	0	ARG	Α	540	53.212		-19.490	1.00 28		A
	ATOM	4252	N	THR	Α	541	54.974		-19.278	1.00 26		A
	ATOM	4253	CA	THR	Α	541	55.951	84.452	-19.773	1.00 25	5.79	А
	ATOM	4254	CB	THR	Α	541	57.370	84.068	-19.319	1.00 26	5.95	A
	ATOM	4255	OG1	THR	Α	541	57.856	83.001	-20.142	1.00 28	3.25	А
15	ATOM	4256	CG2	THR	Α	541	57.362	83.600	-17.870	1.00 26	5.32	Α
	MOTA	4257	С	THR	Α	541	55.969	84.547	-21.288	1.00 24	1.23	А
	ATOM	4258	0	THR	Α	541	55.591	83.609	-21.991	1.00 24	1.17	Α
	ATOM	4259	N	THR	Α	542	56.411	85.697	-21.784	1.00 22	2.20	Α
	ATOM	4260	CA	THR	Α	542	56.523	85.917	-23.214	1.00 19	9.97	Α
20	ATOM	4261	СВ			542	56.167	87.371	-23.609	1.00 20	0.43	А
	ATOM	4262	OG1	THR	Α	542	54.789	87.630	-23.320	1.00 19	9.24	Α
	ATOM	4263	CG2			542	56.419	87.594	-25.098	1.00 19	9.35	Α
	ATOM	4264	С			542	57.978	85.679	-23.581	1.00 19	9.20	A
	ATOM	4265	0			542	58.884	86.149	-22.889	1.00 18	3.80	Α
25	ATOM	4266	N			543	58.207	84.921	-24.644	1.00 17	7.47	A
	ATOM	4267	CA			543	59.567	84.688	-25.097	1.00 17	7.03	A
	ATOM	4268	СВ			543	59.649	83.461	-26.023	1.00 16	5.71	A
	ATOM	4269	CG2	ILE			61.033	83.373	-26.666	1.00 16	5.10	А
	ATOM	4270	CG1	ILE	Α	543	59.335	82.194	-25.215	1.00 16	5.14	A
30	MOTA	4271	CD1	ILE	Α	543	59.378	80.913	-26.021	1.00 15	5.87	Α
	ATOM	4272	С	ILE	Α	543	59.899	85.962	-25.869	1.00 17	7.36	Α
	ATOM	4273	0	ILE	Α	543	59.317	86.225	-26.923	1.00 16	5.63	Α
	MOTA	4274	N	ILE	Α	544	60.808	86.763	-25.319	1.00 17	7.34	A
	MOTA	4275	CA	ILE	Α	544	61.189	88.025	-25.935	1.00 17	7.68	Α
35	ATOM	4276	СВ	ILE	Α	544	61.452	89.098	-24.854	1.00 18	3.33	Α
	ATOM	4277	CG2	ILE	Α	544	61.827	90.424	-25.504	1.00 18	3.51	Α
	ATOM	4278	CG1	ILE	Α	544	60.192	89.275	-24.000	1.00 19	9.26	A
	MOTA	4279	CD1	ILE	Α	544	60.307	90.343	-22.934	1.00 21	1.06	A
	ATOM	4280	С	ILE	Α	544	62.412	87.877	-26.832	1.00 17	7.90	Α
40	ATOM	4281	0	ILE	Α	544	63.518	87.601	-26.367	1.00 17	7.14	Α
	MOTA	4282	N			545	62.191	88.053	-28.129	1.00 17	7.81	Α
	MOTA	4283	CA	LEU	Α	545	63.253	87.941	-29.118	1.00 18	3.43	A
	ATOM	4284	СВ			545	62.913	86.836	-30.120	1.00 17	7.98	A
	ATOM	4285	CG	LEU	Α	545	62.603	85.454	-29.530	1.00 17	7.86	А
45	MOTA	4286	CD1	LEU			62.153	84.516	-30.640	1.00 17	7.14	A
	ATOM	4287		LEU			63.837		-28.819	1.00 17	7.14	A
	ATOM	4288	С			545	63.412	89.274	-29.847	1.00 19	9.23	А
	ATOM	4289	0			545	62.471	90.059	-29.926	1.00 18	3.84	A
	ATOM	4290	N			546	64.607		-30.372	1.00 19		А
50	ATOM	4291	CA			546	64.851		-31.087	1.00 20).96	Α
	ATOM	4292	C			546	66.276		-31.598	1.00 21		А
	ATOM	4293	Ō			546	67.199		-30.949	1.00 20		А
	ATOM	4294	N			547	66.456		-32.761	1.00 23		А
	ATOM	4295	CA			547	67.780		-33.361	1.00 25		А
55	ATOM	4296	СВ	GLU			67.702		-34.624	1.00 27		А
			_									

	ATOM	4297	CG	GLU	Δ	547	66.673	92.001	-35.642	1.00 31.94	А
	ATOM	4298	CD	GLU			66.538		-36.800	1.00 34.18	A
	ATOM	4299		GLU			67.521		-37.558	1.00 35.72	Α
	ATOM	4300		GLU			65.452		-36.946	1.00 35.67	А
5	ATOM	4301	C	GLU			68.771		-32.397	1.00 24.63	Α
Ü	ATOM	4302	Ö	GLU			69.950		-32.372	1.00 24.67	Α
	ATOM	4303	N	ASP			68.286		-31.605	1.00 23.96	А
	ATOM	4304	CA	ASP			69.138		-30.660	1.00 23.90	А
	ATOM	4305	СВ	ASP			68.716		-30.582	1.00 24.37	А
10	ATOM	4306	CG	ASP			68.902		-31.894	1.00 25.10	А
10	ATOM	4307		ASP			70.041		-32.403	1.00 25.66	А
	ATOM	4308		ASP			67.910	96.646	-32.417	1.00 26.21	А
	ATOM	4309	C	ASP			69.166		-29.250	1.00 23.40	А
	ATOM	4310	0	ASP			69.753		-28.349	1.00 23.41	А
15	ATOM	4311	N			549	68.556		-29.046	1.00 22.05	Α
10	ATOM	4312	CA			549	68.546		-27.707	1.00 21.36	A
	ATOM	4313	СВ			549	67.220		-26.966	1.00 21.60	Α
	ATOM	4314	CG2	ILE			66.031		-27.727	1.00 21.55	Α
	ATOM	4315	CG1	ILE			67.244		-25.545	1.00 23.19	А
20	ATOM	4316	CD1	ILE			68.321		-24.664	1.00 24.78	А
	ATOM	4317	C			549	68.766		-27.654	1.00 20.15	А
	ATOM	4318	Ō			549	69.594		-26.883	1.00 19.89	A
	ATOM	4319	N			550	68.038		-28.477	1.00 19.54	A
	ATOM	4320	CA			550	68.156		-28.483	1.00 19.00	A
25	MOTA	4321	СВ			550	67.484		-27.231	1.00 19.06	A
	ATOM	4322	CG			550	67.584		-27.011	1.00 18.75	A
	ATOM	4323		LEU			69.034		-26.760	1.00 18.02	A
	ATOM	4324					66.722	85.367	-25.827	1.00 17.92	A
	ATOM	4325	С	LEU			67.488	87.284	-29.729	1.00 18.70	А
30	ATOM	4326	0	LEU			66.286	87.448	-29.930	1.00 19.34	Α
	ATOM	4327	N			551	68.260	86.597	-30.582	1.00 18.21	А
	ATOM	4328	CD			551	69.734	86.532	-30.610	1.00 18.48	A
	ATOM	4329	CA	PRO	Α	551	67.687	86.029	-31.804	1.00 17.94	A
	ATOM	4330	СВ	PRO	Α	551	68.907	85.875	-32.709	1.00 18.38	А
35	MOTA	4331	CG	PRO	Α	551	69.995	85.562	-31.741	1.00 19.26	A
	ATOM	4332	С	PRO	Α	551	66.886	84.730	-31.679	1.00 17.64	А
	MOTA	4333	0	PRO	Α	551	65.933		-32.431	1.00 18.20	Α
	ATOM	4334	N	SER	Α	552	67.253	83.861	-30.743	1.00 16.28	Α
	ATOM	4335	CA	SER	Α	552	66.539	82.593	-30.604	1.00 15.64	А
40	ATOM	4336	CB	SER	Α	552	67.260		-31.393	1.00 15.46	A
	MOTA	4337	OG	SER	А	552	68.562		-30.881	1.00 16.20	A
	MOTA	4338	С	SER	Α	552	66.361		-29.164	1.00 14.77	A
	ATOM	4339	0	SER	Α	552	66.983		-28.246	1.00 14.68	А
	ATOM	4340	N	LYS	Α	553	65.509		-28.988	1.00 14.88	A
45	MOTA	4341	CA			553	65.204		-27.672	1.00 14.72	A
	MOTA	4342	CB			553	63.999		-27.082	1.00 15.55	A
	MOTA	4343	CG	LYS	Α	553	63.458		-25.780	1.00 16.12	А
	MOTA	4344	CD	LYS	Α	553	64.486		-24.659	1.00 16.06	A
	MOTA	4345	CE	LYS	Α	553	64.815		-24.273	1.00 17.14	A
50	MOTA	4346	NZ			553	65.918		-23.265	1.00 15.93	A
	MOTA	4347	С			553	64.898		-27.734	1.00 15.05	A
	MOTA	4348	0	LYS	Α	553	64.156		-28.602	1.00 13.66	A
	MOTA	4349	N			554	65.473		-26.806	1.00 15.49	A
	ATOM	4350	CA			554	65.231		-26.747	1.00 15.75	A
55	MOTA	4351	CB	HIS	A	554	66.446	76.155	-26.189	1.00 17.73	A

	ATOM	4352	CG	HIS	Α	554	67.584	76.035	-27.152		19.69	А
	ATOM	4353	CD2	HIS	Α	554	68.188	76.955	-27.939	1.00	20.84	Α
	ATOM	4354	ND1	HIS	A	554	68.259		-27.359		21.35	Α
	ATOM	4355	CE1	HIS	Α	554	69.231		-28.230		20.38	Α
5	ATOM	4356	NE2	HIS	Α	554	69.211	76.316	-28.597		21.79	Α
	ATOM	4357	С	HIS	Α	554	64.040	76.598	-25.851		15.45	А
	ATOM	4358	0	HIS	Α	554	63.872		-24.802		15.13	Α
	MOTA	4359	N	VAL	Α	555	·63.223		-26.280		14.33	Α
	ATOM	4360	CA	VAL	Α	555	62.062	75.193	-25.523		14.09	А
10	ATOM	4361	CB	VAL	Α	555	60.725	75.652	-26.153		13.60	Α
	ATOM	4362	CG1	VAL	Α	555	60.610	77.170	-26.086		15.20	Α
	ATOM	4363	CG2	VAL	Α	555	60.616	75.158	-27.584		13.42	Α
	ATOM	4364	С	VAL	A	555	62.110	73.670	-25.528		13.62	Α
	MOTA	4365	0	VAL	A	555	62.595	73.061	-26.487	1.00	14.40	Α
15	MOTA	4366	N	VAL	Α	556	61.606	73.058	-24.463	1.00	12.29	Α
	MOTA	4367	CA	VAL	Α	556	61.618	71.606	-24.346	1.00	11.85	Α
	ATOM	4368	CB	VAL	Α	556	62.659	71.151	-23.288	1.00	11.87	Α
	MOTA	4369	CG1	VAL	Α	556	62.602	69.634	-23.110	1.00	10.24	Α
	ATOM	4370	CG2	VAL	Α	556	64.056	71.590	-23.704	1.00	11.21	Α
20	ATOM	4371	С	VAL	Α	556	60.259	71.052	-23.929	1.00	11.36	Α
	ATOM	4372	0	VAL	Α	556	59.624	71.583	-23.022	1.00	10.98	Α
	ATOM	4373	N	MET	Α	557	59.819	69.985	-24.590	1.00	11.49	Α
	MOTA	4374	CA	MET	Α	557	58.553	69.343	-24.241	1.00	11.87	A
	ATOM	4375	СВ	MET	Α	557	57.681	69.128	-25.486	1.00	11.62	Α
25	ATOM	4376	CG	MET	Α	557	56.648	70.219	-25.752	1.00	12.29	A
	ATOM	4377	SD	MET	Α	557	57.365	71.858	-25.911		12.86	A
	MOTA	4378	CE	MET	Α	557	58.354	71.664	-27.421	1.00	12.75	A
	ATOM	4379	С	MET	Α	557	58.805	67.992	-23.572	1.00	11.62	A
	ATOM	4380	0	MET	Α	557	59.714	67.255	-23.958	1.00	11.99	A
30	ATOM	4381	N	HIS	Α	558	58.002	67.675	-22.562	1.00	11.19	A
	MOTA	4382	CA	HIS	Α	558	58.114	66.397	-21.864	1.00	10.78	A
	ATOM	4383	CB	HIS			58.316	66.610	-20.363	1.00	10.37	A
	ATOM	4384	CG	HIS	Α	558	58.227	65.348	-19.558		11.12	А
	ATOM	4385	CD2	HIS	Α	558	58.984	64.226	-19.570	1.00	10.73	A
35	ATOM	4386	ND1	HIS	Α	558	57.259	65.146	-18.596	1.00	10.46	А
	ATOM	4387	CE1	HIS	Α	558	57.426	63.955	-18.051		10.44	А
	MOTA	4388	NE2	HIS	Α	558	58.466		-18.623		11.40	A
	ATOM	4389	С	HIS	Α	558	56.828		-22.086		10.70	A
	ATOM	4390	0	HIS			55.738		-22.090		11.40	A
40	ATOM	4391	N	ASN	Α	559	56.962	64.299	-22.280	1.00		A
	ATOM	4392	CA	ASN	Α	559	55.820	63.413	-22.494		10.04	A
	ATOM	4393	CB	ASN	Α	559	55.880	62.807	-23.902	1.00	10.29	А
	ATOM	4394	CG	ASN	Α	559	54.865	61.692	-24.102		10.99	А
	ATOM	4395	OD1	ASN	Α	559	53.762		-23.557		10.85	А
45	ATOM	4396	ND2	ASN	Α	559	55.229	60.692	-24.901		11.25	A
	ATOM	4397	С	ASN	A	559	55.835	62.307	-21.439	1.00	9.59	А
	ATOM	4398	0	ASN	Α	559	56.575		-21.555	1.00	9.79	А
	ATOM	4399	N	THR	Α	560	55.012	62.455	-20.409	1.00	9.86	А
	ATOM	4400	CA	THR	Α	560	54.989	61.472	-19.331	1.00	10.97	А
50	ATOM	4401	СВ	THR	Α	560	54.244	62.042	-18.102	1.00	11.06	A
	MOTA	4402	OG1	THR	A	560	54.560	61.255	-16.949	1.00	10.92	А
	ATOM	4403	CG2	THR	Α	560	52.737	62.039	-18.336		10.12	А
	ATOM	4404	С	THR			54.391		-19.717		11.41	А
	ATOM	4405	0	THR			54.603	59.112	-19.017	1.00	11.04	А
55	ATOM	4406	N	LEU			53.667	60.069	-20.834	1.00	10.95	А

	ATOM	4407	CA	LEU A	561	53.043	58.828	-21.306	1.00 11.48	А
	ATOM	4408	CB	LEU A	561	51.918	59.153	-22.295	1.00 12.27	Α
	ATOM	4409	CG	LEU A	561	50.793	60.046	-21.747	1.00 12.97	Α
	ATOM	4410	CD1	LEU A	561	49.728	60.265	-22.818	1.00 12.43	Α
5	ATOM	4411	CD2	LEU A	561	50.176	59.389	-20.511	1.00 13.32	A
	ATOM	4412	С	LEU A	561	54.070		-21.957	1.00 11.68	Α
	ATOM	4413	0	LEU A	561	54.992	58.345	-22.641	1.00 11.40	А
	ATOM	4414	N	PRO A	562	53.912	56.569	-21.759	1.00 11.32	А
	ATOM	4415	CD	PRO A	562	52.919	55.940	-20.867	1.00 10.81	Α
10	ATOM	4416	CA	PRO A	562	54.824	55.562	-22.312	1.00 11.80	А
	ATOM	4417	CB	PRO A	562	54.605	54.367	-21.389	1.00 10.79	A
	ATOM	4418	CG	PRO A	562	53.137	54.455	-21.113	1.00 10.79	A
	ATOM	4419	С	PRO A	562	54.689	55.193	-23.788	1.00 12.65	А
	ATOM	4420	0	PRO A	562	54.855	54.029	-24.158	1.00 13.27	Α
15	ATOM	4421	N	HIS A	563	54.382	56.176	-24.628	1.00 12.72	Α
	ATOM	4422	CA	HIS A	563	54.294	55.951	-26.066	1.00 13.06	Α
	ATOM	4423	CB	HIS A	563	52.900	55.442	-26.495	1.00 12.83	Α
	MOTA	4424	CG	HIS A	563	51.757	56.313	-26.069	1.00 13.57	Α
	ATOM	4425	CD2	HIS A	563	51.235	57.434	-26.622	1.00 13.78	Α
20	ATOM	4426	ND1	HIS A	563	50.971	56.027	-24.972	1.00 13.58	Α
	ATOM	4427	CE1	HIS A	563	50.013	56.930	-24.871	1.00 13.87	A
	ATOM	4428	NE2	HIS A	563	50.151	57.796	-25.860	1.00 14.57	Α
	ATOM	4429	С	HIS A	563	54.628	57.248	-26.786	1.00 13.25	Α
	ATOM	4430	0	HIS A		54.463	58.332	-26.225	1.00 13.58	Α
25	ATOM	4431	N	TRP A		55.133	57.142	-28.009	1.00 13.21	А
	ATOM	4432	CA	TRP A		55.458	58.336	-28.772	1.00 13.90	А
	ATOM	4433	СВ	TRP A		55.932	57.978	-30.181	1.00 14.45	А
	ATOM	4434	CG	TRP A		57.363	57.568	-30.235	1.00 14.66	A
	MOTA	4435	CD2	TRP A		58.487		-30.411	1.00 15.15	A
30	ATOM	4436		TRP A		59.646	57.630	-30.351	1.00 15.51	А
	ATOM	4437		TRP A		58.628	59.814	-30.613	1.00 15.70	А
	ATOM	4438		TRP A		57.864		-30.081	1.00 15.38	A
	ATOM	4439		TRP A		59.238		-30.148	1.00 15.68	А
	ATOM	4440		TRP A		60.934		-30.484	1.00 15.36	Α
35	ATOM	4441		TRP A		59.911		-30.747	1.00 15.81	Α
~~	ATOM	4442	CH2	TRP A		61.046		-30.682	1.00 16.52	А
	ATOM	4443	C	TRP A		54.190		-28.866	1.00 13.86	А
	ATOM	4444	Ō	TRP A		53.104		-29.046	1.00 13.89	Α
	ATOM	4445	N	ARG A		54.317		-28.738	1.00 14.17	А
40	ATOM		CA	ARG A		53.135		-28.821	1.00 14.31	A
	ATOM	4447	СВ	ARG A		52.560		-27.419	1.00 14.39	А
	ATOM	4448	CG	ARG A		51.352		-27.424	1.00 15.52	А
	ATOM	4449	CD	ARG A		50.536		-26.128	1.00 15.96	А
	ATOM	4450	NE	ARG A		51.334		-24.940	1.00 15.97	А
45	ATOM	4451	CZ	ARG A		50.831		-23.796	1.00 15.92	А
10	ATOM	4452		ARG A		49.525		-23.685	1.00 15.90	А
	ATOM	4453		ARG A		51.631		-22.762	1.00 14.90	А
	ATOM	4454	C	ARG A		53.385		-29.525	1.00 14.40	A
	ATOM	4455	0	ARG A		54.436		-29.361	1.00 13.99	A
50	ATOM	4456	N	GLU A		52.413		-30.339	1.00 14.96	A
50	ATOM	4450	CA	GLU A		52.463		-31.044	1.00 15.90	A
	ATOM	4457	CB	GLU A		52.236		-32.546	1.00 17.55	A
	ATOM	4456	CG	GLU A		53.338		-33.277	1.00 17.33	A
	ATOM	4459	CD	GLU A		53.140		-34.783	1.00 20.96	A
55	ATOM	4460		GLU A		52.003		-35.238	1.00 20.30	A
33	ATOM	4401	OFI	ото н	. 500	32.003	00.1/1	33.230	1.00 21.00	

								_					
		ATOM	4462		GLU			54.119		-35.507	1.00 21.		4
		ATOM	4463	С	GLU			51.325		-30.456	1.00 16.		A
		ATOM	4464	0	GLU	Α	566	50.262		-30.137	1.00 16.		4
		ATOM	4465	N	GLN	Α	567	51.555	66.397	-30.294	1.00 15.		4
	5	ATOM	4466	CA	GLN	Α	567	50.547		-29.744	1.00 15.	_	4
		ATOM	4467	CB	GLN	Α	567	50.471	67.152	-28.216	1.00 17.	.10 P	Ĵ
		MOTA	4468	CG	GLN	Α	567	49.471		-27.571	1.00 17.		4
		ATOM	4469	CD	GLN	Α	567	49.793	68.433	-26.119	1.00 18.	.82 F	4
		ATOM	4470	OE1	GLN	Α	567	49.683	67.581	-25.238	1.00 17.	. 65 <i>F</i>	P
	10	ATOM	4471	NE2	GLN	Α	567	50.198	69.674	-25.868	1.00 19.	.30 <i>F</i>	Ą
		ATOM	4472	С	GLN			50.944	68.709	-30.090	1.00 15.	.02 A	P
		ATOM	4473	0	GLN			52.130		-30.065	1.00 14.	.23 F	F
		ATOM	4474	N	LEU			49.966		-30.429	1.00 14.	.97 <i>F</i>	Ą
		MOTA	4475	CA	LEU			50.278		-30.735	1.00 13.		Ą
	15	ATOM	4476	CB	LEU			49.096		-31.410	1.00 15.		Ą
	10	ATOM	4477	CG	LEU			48.672		-32.821	1.00 14.		Ą
		ATOM	4478		LEU			47.656		-33.352	1.00 15.		Ą
		ATOM	4479		LEU			49.885		-33.742	1.00 15.		
. ,144		ATOM	4480	C	LEU			50.585		-29.413	1.00 13.		Ā
	20			0	LEU			49.939		-28.398	1.00 12.		
ŧ۵	20	MOTA	4481		VAL			51.589		-29.427	1.00 12.		Ā
		MOTA	4482	N				51.969		-28.246	1.00 13.		À
(17)		MOTA	4483	CA	VAL			53.335		-27.681	1.00 14.		7
1000		ATOM	4484	CB	VAL VAL			53.202		-27.095	1.00 14.		7
1,7	25	MOTA	4485					54.389		-28.781	1.00 14.		J
Ŋ	25	ATOM	4486		VAL					-28.676	1.00 14.		Α.
9 %# #19##		ATOM	4487	С	VAL			52.070 52.362		-29.833	1.00 14.		7
Ţ		ATOM	4488	0	VAL			51.804		-27.762	1.00 14.		7
51		ATOM	4489	N	ASP					-28.107	1.00 14.		Α.
	30	ATOM	4490	CA	ASP			51.894		-28.263	1.00 13.		7
ij.	30	ATOM	4491	CB	ASP			50.491		-26.948	1.00 10.		4
34		ATOM	4492	CG	ASP			49.738			1.00 20.		A.
į.		ATOM	4493		ASP			49.536		-26.288 -26.577	1.00 23.		Α.
		ATOM	4494		ASP			49.343					
ļ.	25	MOTA	4495	С	ASP			52.699		-27.075	1.00 14.		Ą
i san	35	ATOM	4496	0	ASP			52.799		-25.915			Ą
		ATOM	4497	N	PHE			53.304		-27.520	1.00 13.		<i>y</i>
		ATOM	4498	CA	PHE			54.096		-26.651	1.00 14.		7
		MOTA	4499	CB	PHE			55.602		-26.833	1.00 13.		A n
	40	MOTA	4500	CG	PHE			56.069		-26.470	1.00 13.		Ą
	4 0	MOTA	4501		PHE			56.017			1.00 13.		Ą
		ATOM	4502		PHE			56.576		-25.201	1.00 13.		Α.
		MOTA	4503		PHE			56.468		-27.066	1.00 13.		4
		ATOM	4504		PHE			57.027		-24.860	1.00 13.		Ą
		ATOM	4505	CZ	PHE			56.972		-25.797	1.00 13.		Ą
	45	MOTA	4506	С	PHE			53.815		-27.040	1.00 14.		4
		ATOM	4507	0	PHE			53.459		-28.185	1.00 14.		4
		MOTA	4508	N	TYR			53.973		-26.089	1.00 14.		A
		MOTA	4509	CA	TYR	А	572	53.792		-26.376	1.00 15.		4
		MOTA	4510	CB	TYR			53.373		-25.122	1.00 16.		4
	50	MOTA	4511	CG	TYR	Α	572	51.938		-24.681	1.00 18.		A
		ATOM	4512	CD1	TYR	A	572	51.021		-25.468	1.00 18.		4
		ATOM	4513	CE1	TYR	Α	572			-25.072	1.00 19.		4
		ATOM	4514	CD2	TYR	A	572			-23.479	1.00 19.	.53 <i>I</i>	Ą
		ATOM	4515	CE2	TYR	Α	572	50.162		-23.075	1.00 20.		4
	55	ATOM	4516	CZ	TYR	Α	572	49.270	83.874	-23.876	1.00 20.	.05 <i>F</i>	4

	ATOM	4517	ОН	TYR	Α	572	47.956	83.742	-23.482	1.00 20.96	Α
	ATOM	4518	С			572	55.149	84.084	-26.832	1.00 15.16	А
	ATOM	4519	0	TYR	Α	572	56.165	83.783	-26.206	1.00 15.39	Α
	ATOM	4520	N	VAL	Α	573	55.166	84.857	-27.916	1.00 15.22	Α
5	ATOM	4521	CA	VAL	Α	573	56.405		-28.439	1.00 14.74	Α
	ATOM	4522	CB	VAL	Α	573	56.841	84.759	-29.763	1.00 15.15	Α
	ATOM	4523	CG1	VAL	Α	573	57.300		-29.493	1.00 14.52	Α
	ATOM	4524	CG2	VAL	Α	573	55.690	84.765	-30.754	1.00 14.39	Α
	ATOM	4525	С	VAL	Α	573	56.213		-28.683	1.00 15.63	Α
10	ATOM	4526	0	VAL	Α	573	55.102		-28.943	1.00 15.28	Α
	ATOM	4527	N	SER	Α	574	57.298		-28.602	1.00 16.43	Α
	ATOM	4528	CA	SER	Α	574	57.233		-28.783	1.00 17.10	А
	ATOM	4529	CB	SER	Α	574	58.410		-28.067	1.00 16.27	A
	ATOM	4530	OG	SER	Α	574	59.639		-28.675	1.00 15.14	Α
15	ATOM	4531	С	SER	Α	574	57.206		-30.241	1.00 18.36	A
	ATOM	4532	0	SER	Α	574	57.258		-30.525	1.00 18.70	A
	MOTA	4533	N	SER	Α	575	57.138		-31.162	1.00 18.80	A
	MOTA	4534	CA	SER	Α	575	57.088	88.968	-32.584	1.00 19.82	Α
	MOTA	4535	CB	SER	Α	575	58.496	89.096	-33.166	1.00 20.11	Α
20	ATOM	4536	OG	SER	Α	575	58.438	89.191	-34.582	1.00 19.88	Α
	ATOM	4537	С	SER	Α	575	56.345		-33.343	1.00 19.97	Α
	ATOM	4538	0	SER	Α	575	56.423		-32.997	1.00 20.29	А
	MOTA	4539	N	PRO	Α	576	55.601		-34.387	1.00 20.08	A
	MOTA	4540	CD	PRO	Α	576	55.277		-34.809	1.00 20.22	A
25	MOTA	4541	CA	PRO	Α	576	54.856		-35.179	1.00 19.56	A
	ATOM	4542	СВ			576	53.800		-35.866	1.00 20.22	A
	MOTA	4543	CG			576	54.552		-36.125	1.00 20.64	A
	ATOM	4544	С			576	55.785		-36.177	1.00 19.20	A
• •	MOTA	4545	0			576	55.448		-36.741	1.00 19.27	A
30	ATOM	4546	N			577	56.961		-36.380	1.00 18.89	A
	ATOM	4547	CA			577	57.938		-37.321	1.00 18.98	A
	ATOM	4548	CB			577	58.699		-37.969	1.00 20.18	A
	ATOM	4549	CG			577	57.805		-38.658	1.00 21.35	A
~-	MOTA	4550		PHE			58.050		-38.554	1.00 22.43	A
35	MOTA	4551		PHE			56.711		-39.404	1.00 21.36	A
	ATOM	4552		PHE			57.216		-39.183	1.00 23.04	A
	MOTA	4553		PHE			55.870		-40.038	1.00 22.22	A
	MOTA	4554	CZ			577	56.125		-39.925	1.00 22.87	A
40	MOTA	4555	C			577	58.907		-36.643	1.00 18.67	A
40	ATOM	4556				577	60.089			1.00 18.03	A
	MOTA	4557	N			578	58.387		-36.280	1.00 18.09	A
	ATOM	4558	CA			578	59.170		-35.607	1.00 18.08	A
	ATOM	4559	СВ			578	58.705		-34.135	1.00 17.94	A
4.5	MOTA	4560		VAL			59.526		-33.435	1.00 17.87	A
45	MOTA	4561		VAL			58.832		-33.404	1.00 18.13	A
	ATOM	4562	С			578	59.023		-36.326	1.00 17.84	A
	ATOM	4563	0			578	57.937		-36.786	1.00 17.94	A
	ATOM	4564	N			579	60.123		-36.428	1.00 18.30	A
F0	ATOM	4565	CA			579	60.110		-37.081	1.00 18.55	A A
50	ATOM	4566	CB			579	60.967		-38.353	1.00 19.76	A A
	ATOM	4567	OG			579	62.307		-38.069	1.00 22.42	A a
	ATOM	4568	C			579	60.627		-36.110	1.00 17.81	A A
	ATOM	4569	0			579	61.420		-35.218	1.00 18.62 1.00 16.54	A A
E E	ATOM	4570	N			580	60.173		-36.292 -35.423		A A
55	MOTA	4571	CA	VAL	Α	580	60.558	16.132	-35.423	1.00 16.12	А

	ATOM	4572	CB			580	59.304		-34.851	1.00 16		Α
	MOTA	4573		VAL			59.706		-33.825	1.00 15		A
	MOTA	4574		VAL			58.374		-34.231	1.00 14		Α
_	MOTA	4575	С			580	61.400		-36.148	1.00 16		A
5	ATOM	4576	0			580	61.194		-37.331	1.00 16		A
	MOTA	4577	N			581	62.348		-35.416	1.00 16		A
	MOTA	4578	CA	THR			63.231		-35.926	1.00 17		A
	MOTA	4579	CB			581	64.600		-36.369	1.00 17		A
	MOTA	4580	OG1	THR			65.180		-35.289	1.00 17		Α
10	MOTA	4581	CG2	THR	Α	581	64.450		-37.592	1.00 17		A
	MOTA	4582	С			581	63.491		-34.780		.67	A
	ATOM	4583	0			581	63.366		-33.611	1.00 17		A
	MOTA	4584	N			582	63.830		-35.105	1.00 19		A
	ATOM	4585	CA	ASP			64.150		-34.063	1.00 20		A
15	ATOM	4586	CB	ASP	Α	582	63.734		-34.475	1.00 20		Α
	MOTA	4587	CG	ASP	Α	582	64.403		-35.751	1.00 20		A
	MOTA	4588	OD1	ASP	Α	582	63.887		-36.337	1.00 21		A
	MOTA	4589	OD2	ASP			65.434		-36.164	1.00 18		A
	ATOM	4590	С			582	65.658		-33.842	1.00 22		A
20	MOTA	4591	0			582	66.294		-34.460	1.00 21		A
	MOTA	4592	N	LEU	Α	583	66.252		-32.981	1.00 23		A
	MOTA	4593	CA	LEU	Α	583	67.682		-32.759	1.00 25		A
	MOTA	4594	CB	LEU	Α	583	68.141		-31.482	1.00 27		A
	ATOM	4595	CG	LEU	A	583	69.400		-30.953	1.00 27		A
25	ATOM	4596		LEU			69.045		-30.536	1.00 27		A
	MOTA	4597	CD2	LEU			69.984		-29.789	1.00 28		A
	ATOM	4598	С			583	68.566		-33.926	1.00 25		A
	ATOM	4599	0	LEU	Α	583	69.760		-33.934	1.00 26		A
	ATOM	4600	N	ALA	Α	584	67.987		-34.909	1.00 25		A
30	ATOM	4601	CA	ALA	Α	584	68.746		-36.085	1.00 24		A
	ATOM	4602	CB	ALA	Α	584	68.185		-36.648	1.00 24		A
	ATOM	4603	С	ALA			68.630		-37.114	1.00 24		A
	ATOM	4604	0	ALA			69.059		-38.263	1.00 23		A
	ATOM	4605	N			585	68.039		-36.678	1.00 23		A
35	ATOM	4606	CA			585	67.838		-37.517	1.00 24		A
	MOTA	4607	CB	ASN	Α	585	69.160		-38.148	1.00 26		A
	ATOM	4608	CG	ASN	Α	585	69.451		-37.906	1.00 28		A
	ATOM	4609	OD1	ASN	Α	585	68.570		-38.038	1.00 28		A
	ATOM	4610	ND2	ASN	Α	585	70.695		-37.555	1.00 29		A
40	ATOM	4611	С	ASN	Α	585	66.805	71.987	-38.614	1.00 23		A
	MOTA	4612	0			585	66.774	72.719	-39.604	1.00 23		A
	ATOM	4613	N	ASN	Α	586	65.970	70.965	-38.451	1.00 21	.95	А
	ATOM	4614	CA	ASN	Α	586	64.931	70.690	-39.435	1.00 21		А
	MOTA	4615	CB	ASN	Α	586	64.356	69.280	-39.281	1.00 22	.27	А
45	ATOM	4616	CG	ASN	Α	586	65.392	68.199	-39.440	1.00 23	.42	А
	ATOM	4617	OD1	ASN	Α	586	66.173	68.203	-40.391	1.00 23		A
	ATOM	4618	ND2	ASN	Α	586	65.393	67.244	-38.511	1.00 22		А
	ATOM	4619	С	ASN	Α	586	63.797	71.674	-39.190	1.00 21	.19	А
	MOTA	4620	0	ASN	Α	586	63.369	71.861	-38.053	1.00 20		A
50	ATOM	4621	N	PRO	Α	587	63.296	72.318	-40.250	1.00 20	.95	Α
	ATOM	4622	CD	PRO	Α	587	63.704	72.279	-41.666	1.00 21	.61	A
	ATOM	4623	CA			587	62.197	73.264	-40.042	1.00 20	.35	A
	ATOM	4624	CB			587	62.034	73.914	-41.417	1.00 21	.29	Α
	ATOM	4625	CG			587	62.488	72.839	-42.360	1.00 21	.88	А
55	ATOM	4626	С			587	60.943	72.525	-39.583	1.00 19	.89	А

	ATOM	4627	0			587	60.727		-39.937		19.71	Α
	ATOM	4628	N	VAL			60.132		-38.773		18.78	A
	ATOM	4629	CA	VAL			58.897		-38.258		18.35	A
_	ATOM	4630	СВ	VAL			58.953		-36.721		18.72	Α
5	ATOM	4631		VAL			57.621		-36.202		18.58	A
	ATOM	4632	CG2	VAL			60.079		-36.338		17.83	A
	ATOM	4633	С	VAL			57.777		-38.617		18.17	A
	ATOM	4634	0	VAL			57.871		-38.325		17.36	A
	ATOM	4635	N	GLU			56.727		-39.259		18.10	A
10	ATOM	4636	CA	GLU			55.623		-39.646		18.70	Α
	ATOM	4637	СВ	GLU			54.571		-40.441		20.53	A
	ATOM	4638	CG	GLU	Α	589	53.667		-41.248		24.87	А
	ATOM	4639	CD	GLU	A	589	52.450	73.389	-41.801		27.02	A
	ATOM	4640	OE1	GLU	Α	589	52.585	72.232	-42.254		28.61	A
15	MOTA	4641	OE2	GLU	Α	589	51.357	73.999	-41.792		28.42	А
	ATOM	4642	С	GLU	Α	589	54.978		-38.410	1.00	17.96	А
	ATOM	4643	0	GLU	Α	589	54.703	73.860	-37.434	1.00	16.94	Α
	ATOM	4644	N	ALA	Α	590	54.733	75.861	-38.464	1.00	16.87	А
	ATOM	4645	CA	ALA	Α	590	54.134	76.569	-37.342	1.00	16.73	Α
20	ATOM	4646	CB	ALA	Α	590	55.209	77.342	-36.589	1.00	17.08	Α
	ATOM	4647	С	ALA	Α	590	53.041	77.522	-37.805	1.00	16.62	А
	ATOM	4648	0	ALA	Α	590	52.951	77.857	-38.985	1.00	16.45	А
	ATOM	4649	N	GLN	Α	591	52.211	77.946	-36.860	1.00	16.54	A
	ATOM	4650	CA	GLN	Α	591	51.120	78.876	-37.125	1.00	16.07	Α
25	ATOM	4651	СВ	GLN			49.766	78.159	-37.076	1.00	16.36	А
	ATOM	4652	CG	GLN			48.563	79.105	-37.142	1.00	15.76	A
	ATOM	4653	CD	GLN			47.238	78.402	-36.876	1.00	15.84	А
	ATOM	4654	OE1	GLN			46.964	77.337	-37.430	1.00	15.89	A
	ATOM	4655	NE2	GLN			46.407	79.003	-36.030	1.00	14.94	А
30	ATOM	4656	С	GLN			51.142		-36.038	1.00	16.10	Α
	ATOM	4657	Ō	GLN			51.308		-34.857	1.00	16.16	A
	ATOM	4658	N	VAL			50.987		-36.429		15.49	Α
	ATOM	4659	CA	VAL			50.959		-35.449		15.45	A
	ATOM	4660	CB	VAL			51.977		-35.785		15.57	Α
35	ATOM	4661		VAL			51.755		-34.869		15.47	А
00	ATOM	4662		VAL			53.398		-35.599		15.57	А
	ATOM	4663	C	VAL			49.551		-35.412		15.66	А
	ATOM	4664	Ö	VAL			48.917		-36.450		16.23	А
	ATOM	4665	N			593	49.057		-34.205		15.93	А
40	ATOM	4666		SER			47.728		-34.001			А
10	ATOM	4667	CB	SER			46.768		-33.434		16.33	A
	ATOM	4668	OG			593	46.591		-34.328		17.88	A
	ATOM	4669	C			593	47.868		-33.003		16.55	А
	ATOM	4670	0			593	48.875		-32.296		17.21	A
45	ATOM	4671	N			594	46.864		-32.931		16.44	A
40	ATOM	4672	CD			594	45.738		-33.863		16.46	A
		4673		PRO			46.941		-31.983		16.18	A
	ATOM		CA				45.831		-32.453		16.54	A
	ATOM	4674	CB			594 594			-32.433		16.24	A
50	ATOM	4675	CG				45.607		-30.561		16.50	A
50	ATOM	4676	С			594	46.676				16.26	A
	ATOM	4677	0			594	46.239		-30.350 -29.587		15.96	A
	ATOM	4678	N	VAL			46.955					
	ATOM	4679	CA	VAL			46.672		-28.199		16.67	A
EE	ATOM	4680	CB	VAL			47.782		-27.241		16.47	A
55	ATOM	4681	CGI	VAL	Α	595	47.348	87.080	-25.792	1.00	16.20	A

	ATOM	4682	CG2	VAL	Α	595	49.071	86.551	-27.516	1.00	17.31	A
	ATOM	4683	С	VAL	Α	595	45.382	87.572	-27.895	1.00	16.73	Α
	MOTA	4684	0	VAL	Α	595	45.386	88.794	-27.765		17.05	Α
	ATOM	4685	N	TRP	Α	596	44.277		-27.809		16.70	A
5	MOTA	4686	CA	TRP	A	596	42.979	87.441	-27.541		17.84	А
	ATOM	4687	CB	TRP	A	596	41.890		-28.400	1.00	17.13	A
	ATOM	4688	CG	TRP	Α	596	42.053	86.944	-29.878	1.00	17.49	А
	ATOM	4689	CD2	TRP	A	596	41.740		-30.649		17.58	А
	ATOM	4690	CE2	TRP	Α	596	42.029	87.810	-31.999	1.00	17.37	А
10	ATOM	4691	CE3	TRP	Α	596	41.243	89.383	-30.329		18.00	A
	ATOM	4692	CD1	TRP	Α	596	42.509	86.010	-30.766	1.00	17.26	А
	ATOM	4693	NE1	TRP	Α	596	42.494		-32.042		17.27	A
	ATOM	4694	CZ2	TRP	Α	596	41.837	88.734	-33.031	1.00	18.13	A
	ATOM	4695	CZ3	TRP	Α	596	41.050	90.305	-31.359	1.00	18.36	A
15	ATOM	4696	CH2	TRP	Α	596	41.348	89.974	-32.692		18.70	А
	ATOM	4697	С	TRP	Α	596	42.569		-26.077		18.84	А
	MOTA	4698	0	TRP	Α	596	42.689	86.267	-25.466	1.00	17.93	А
	ATOM	4699	N	SER	Α	597	42.084	88.434	-25.519	1.00	19.67	A
	ATOM	4700	CA	SER	Α	597	41.620	88.451	-24.137	1.00	21.40	А
20	ATOM	4701	СВ	SER	Α	597	42.561	89.280	-23.261	1.00	21.75	Α
	MOTA	4702	OG	SER	Α	597	42.699	90.589	-23.774		24.13	A
	ATOM	4703	С	SER	Α	597	40.221	89.055	-24.127		21.80	A
•	ATOM	4704	0	SER	Α	597	39.973		-24.764	1.00	22.44	A
	MOTA	4705	N	TRP	Α	598	39.306	88.411	-23.414	1.00	22.12	A
25	MOTA	4706	CA	TRP	Α	598	37.934	88.888	-23.343	1.00	23.28	A
	ATOM	4707	СВ	TRP	Α	598	36.967		-23.289	1.00	21.46	А
	MOTA	4708	CG	TRP	Α	598	36.940		-24.570	1.00	19.87	A
	MOTA	4709	CD2	TRP	Α	598	35.925		-25.577	1.00	19.13	А
	MOTA	4710	CE2	TRP	Α	598	36.334	86.122	-26.627	1.00	18.71	A
30	ATOM	4711	CE3	TRP	Α	598	34.708	87.662	-25.698	1.00	19.08	A
	ATOM	4712	CD1	TRP	Α	598	37.898	86.070	-25.033	1.00	19.36	A
	MOTA	4713	NE1	TRP	Α	598	37.540	85.581	-26.269	1.00	18.19	A
	ATOM	4714	CZ2	TRP	Α	598	35.569	85.934	-27.782		18.54	A
	ATOM	4715	CZ3	TRP	Α	598	33.947	87.475	-26.849		18.32	A
35	ATOM	4716	CH2	TRP	Α	598	34.382	86.617	-27.876		18.60	A
	ATOM	4717	С	TRP	Α	598	37.718		-22.149		25.15	A
	MOTA	4718	0	TRP	Α	598	38.204		-21.051		25.24	A
	MOTA	4719	N	HIS	Α	599	36.982		-22.374		27.74	A
	ATOM	4720	CA	HIS			36.728		-21.319		30.86	A
40	ATOM	4721	CB	HIS	A	599	37.605		-21.542		32.48	А
	MOTA	4722	CG	HIS			39.068		-21.604		34.54	A
	ATOM	4723	CD2	HIS	Α	599	39.934		-22.645		35.10	A
	ATOM	4724	ND1	HIS	A	599	39.793		-20.500		35.25	A
	MOTA	4725	CE1	HIS	A	599	41.042		-20.859		35.53	A
45	ATOM	4726	NE2	HIS	A	599	41.154		-22.156		35.52	Α
	ATOM	4727	С	HIS	A	599	35.271		-21.242		32.18	A
	ATOM	4728	0	HIS	Α	599	34.606		-22.264		31.64	A
	ATOM	4729	N	HIS	Α	600	34.779	92.420	-20.019		34.30	A
	ATOM	4730	CA	HIS	Α	600	33.407	92.846	-19.803		36.52	A
50	ATOM	4731	СВ			600	32.895		-18.449		38.40	Α
	ATOM	4732	CG	HIS	Α	600	31.437		-18.225		40.80	A
	ATOM	4733	CD2	HIS	Α	600	30.432		-17.852		41.76	A
	ATOM	4734	ND1	HIS	Α	600	30.868		-18.384		41.71	Α
	ATOM	4735		HIS			29.575		-18.120		42.34	Α
55	ATOM	4736		HIS			29.285		-17.794	1.00	42.76	Α

		MOTA	4737	С	HIS A		33.452		-19.820	1.00 36.92	А
		ATOM	4738	0	HIS A	600	33.792	94.996	-18.820	1.00 37.27	Α
		MOTA	4739	N	ASP A	601	33.128		-20.969	1.00 37.29	Α
		ATOM	4740	CA	ASP A	601	33.150	96.395	-21.125	1.00 37.97	Α
	5	ATOM	4741	CB	ASP A	601	32.959	96.763	-22.597	1.00 38.10	A
		ATOM	4742	CG	ASP A	601	33.355	98.194	-22.895	1.00 38.67	Α
		ATOM	4743	OD1	ASP A	601	32.854	99.111	-22.211	1.00 38.47	A
		ATOM	4744	OD2	ASP A	601	34.167	98.403	-23.819	1.00 39.33	A
		MOTA	4745	С	ASP A	601	32.062	97.056	-20.280	1.00 38.23	Α
	10	MOTA	4746	0	ASP A	601	30.881	97.001	-20.619	1.00 37.93	A
		MOTA	4747	N	THR A	602	32.474	97.682	-19.181	1.00 38.57	Α
		ATOM	4748	CA	THR A	602	31.548	98.357	-18.278	1.00 39.06	Α
		MOTA	4749	СВ	THR A	602	32.284	98.918	-17.040	1.00 39.91	Α
		MOTA	4750	OG1	THR A	602	32.925	97.847	-16,337	1.00 41.22	A
	15	MOTA	4751	CG2	THR A	602	31.302	99.616	-16.103	1.00 40.79	Α
		MOTA	4752	С	THR A	602	30.826	99.510	-18.965	1.00 38.24	A
		ATOM	4753	0	THR A	602	29.726	99.887	-18.565	1.00 38.57	Α
		ATOM	4754	N	LEU A	603	31.448	100.063	-20.001	1.00 37.19	Α
4*=4;		MOTA	4755	CA	LEU A	603	30.869	101.184	-20.733	1.00 36.14	Α
र्रश्यक्ती , हम्म्	20	ATOM	4756	CB	LEU A	603	31.974	102.006	-21.408	1.00 37.37	Α
i degli		ATOM	4757	CG	LEU A	603	32.946	102.778	-20.508	1.00 38.24	Α
		ATOM	4758	CD1	LEU A	603	32.160	103.719	-19.607	1.00 38.55	Α
IJ.		MOTA	4759	CD2	LEU A	603	33.775	101.811	-19.677	1.00 38.91	Α
1.₩		ATOM	4760	С	LEU A		29.840	100.766	-21.780	1.00 34.77	Α
(25	MOTA	4761	0	LEU A		28.693	101.207	-21.739	1.00 34.31	A
N		MOTA	4762	N	THR A	604	30.255	99.921	-22.717	1.00 32.64	Α
ijī.		MOTA	4763	CA	THR A	604	29.364	99.462	-23.778	1.00 30.71	Α
31 -		MOTA	4764	СВ	THR A	604	30.162	98.985	-25.002	1.00 30.78	Α
# TE		ATOM	4765	OG1	THR A	604	30.970	97.859	-24.632	1.00 30.69	A
r (mag)	30	MOTA	4766	CG2	THR A	604	31.059	100.102	-25.521	1.00 30.88	Α
		MOTA	4767	С	THR A	604	28.459	98.321	-23.329	1.00 29.37	Α
		ATOM	4768	0	THR A	604	27.567	97.901	-24.065	1.00 28.33	Α
		MOTA	4769	N	LYS A	605	28.693	97.821	-22.121	1.00 28.18	Α
		ATOM	4770	CA	LYS A	605	27.897	96.723	-21.582	1.00 27.68	Α
ia	35	MOTA	4771	CB	LYS A	605	26.457	97.185	-21.341	1.00 28.11	Α
		MOTA	4772	CG	LYS A	605	26.335	98.324	-20.344	1.00 28.53	Α
		MOTA	4773	CD	LYS A	605	26.807	97.904	-18.959	1.00 29.48	Α
		MOTA	4774	CE	LYS A	605	26.707	99.058	-17.972	1.00 29.77	Α
		ATOM	4775	NZ	LYS A	605	27.095	98.651	-16.595	1.00 30.78	Α
	40	MOTA	4776	C	LYS A	605	27.898		-22.511	1.00 27.31	Α
		MOTA	4777	0	LYS A	605	26.866	94.871	-22.710	1.00 26.97	Α
		MOTA	4778	N	THR A	606	29.058	95.206	-23.085	1.00 26.32	Α
		MOTA	4779	CA	THR A	606	29.202		-23.980	1.00 25.60	A
		ATOM	4780	CB	THR A	606	29.343	94.497	-25.457	1.00 26.18	А
	45	MOTA	4781	OG1	THR A	606	30.502	95.331	-25.602	1.00 26.47	Α
		MOTA	4782	CG2	THR A	606	28.109	95.259	-25.912	1.00 26.21	Α
		MOTA	4783	C	THR A	606	30.457	93.289	-23.604	1.00 24.69	Α
		MOTA	4784	0	THR A	606	31.376	93.839	-23.002	1.00 24.74	Α
		MOTA	4785	N	ILE A	607	30.484	92.006	-23.944	1.00 24.05	А
	50	MOTA	4786	CA	ILE A	607	31.644	91.171	-23.664	1.00 22.70	Α
		ATOM	4787	CB	ILE A	607	31.224	89.817	-23.069	1.00 22.67	А
		MOTA	4788	CG2	ILE A	607	32.460	88.983	-22.758	1.00 22.01	Α
		MOTA	4789	CG1	ILE A	607	30.404	90.044	-21.794	1.00 22.63	Α
		MOTA	4790		ILE A		29.720	88.803	-21.269	1.00 22.99	Α
	55	ATOM	4791	С	ILE A		32.333		-25.007	1.00 22.58	Α

	ATOM	4792	0	ILE	Α	607	31	1.809	90.	258	-25.87	6 :	1.00	21.18	Α
	ATOM	4793	N	HIS	Α	608	33	3.502	91.	564	-25.18			22.73	А
	ATOM	4794	CA	HIS	Α	608	34	1.219	91.	438	-26.44			23.11	A
	ATOM	4795	CB	HIS	Α	608	33	3.964			-27.32			24.32	A
5	MOTA	4796	CG	HIS	Α	608	34	1.488			-26.73			26.13	Α
	MOTA	4797	CD2	HIS	Α	608		5.450			-27.17			26.91	А
	ATOM	4798	ND1	HIS	Α	608	34	1.011			-25.56			27.07	А
	ATOM	4799	CE1	HIS	Α	608	34	1.656			-25.29			27.16	Α
	ATOM	4800	NE2	HIS	Α	608	35	5.535	95.	811	-26.25			28.09	А
10	ATOM	4801	С	HIS	Α	608	35	5.718			-26.27			22.57	A
	ATOM	4802	0	HIS	Α	608	36	5.291	91.	545	-25.22			23.04	A
	ATOM	4803	N	PRO	Α	609	36	5.378	90.	684	-27.30			22.03	А
	MOTA	4804	CD	PRO	Α	609	35	5.781	90.	110	-28.53			21.85	А
	ATOM	4805	CA			609	31	7.814	90.	419	-27.26			21.59	A
15	ATOM	4806	СВ	PRO	Α	609	37	7.950	89.	193	-28.14	7	1.00	21.45	Α
	ATOM	4807	CG	PRO	Α	609	36	5.992	89.	524	-29.25	8	1.00	21.74	Α
	ATOM	4808	С			609	38	3.708	91.	555	-27.73	2	1.00	21.64	Α
	ATOM	4809	0			609	38	3.364	92.	296	-28.65	3	1.00	21.84	A
	ATOM	4810	N			610	39	9.859	91.	678	-27.08	2	1.00	21.61	A
20	ATOM	4811	CA			610		0.851	92.	682	-27.43	4	1.00	22.66	A
	ATOM	4812	CB			610		1.132			-26.25		1.00	24.57	A
	ATOM	4813	CG			610	39	9.950			-25.83		1.00	28.22	A
	ATOM	4814	CD			610		0.335			-24.77		1.00	30.69	A
	ATOM	4815		GLN				0.844			-23.70		1.00	32.27	А
25	ATOM	4816		GLN				0.097			-25.07		1.00	31.93	А
	ATOM	4817	C			610		2.115			-27.78			21.64	A
	ATOM	4818	0			610		2.467			-27.09		1.00	21.23	А
	ATOM	4819	N			611		2.786			-28.85		1.00	21.34	А
	ATOM	4820	CA			611		3.999			-29.25		1.00	21.13	A
30	ATOM	4821	C			611		5.250			-28.84		1.00	21.53	A
30	ATOM	4822	Ö			611		5.275			-28.84			20.93	A
	ATOM	4823	N			612		6.292			-28.48			21.82	А
	ATOM	4824	CA			612		7.557			-28.08			22.69	А
	ATOM	4825	CB			612		3.436			-27.37			22.23	А
35	ATOM	4826	OG			612		9.741			-27.17		1.00	22.93	А
00	ATOM	4827	C			612		3.303			-29.30		1.00	23.02	А
	ATOM	4828	0			612		3.214			-30.39			22.36	А
	ATOM	4829	N			613		9.042			-29.12		1.00	24.55	А
	MOTA	4830	CA			613		9.816			-30.21		1.00	26.10	Α
40	ATOM		СВ			613		9.543			-30.36				Α
10	ATOM	4832		THR				9.906			-29.14			26.56	Α
	ATOM	4833		THR				8.069			-30.65			26.70	А
	ATOM	4834	C			613		1.315			-29.98			26.90	А
	ATOM	4835	0			613		2.137			-30.75			27.81	А
45	ATOM	4836	N			614		1.664			-28.92			27.11	А
40	ATOM	4837	CA			614		3.065			-28.58			26.76	А
	ATOM	4838	CB			614		3.473			-27.33			26.86	А
	ATOM	4839		THR				2.581			-26.25			27.69	А
	ATOM	4840		THR				3.423			-27.61			27.62	A
50	ATOM	4841	C			614		3.373			-28.30			26.34	A
50	ATOM	4842	0			614		4.538			-28.22			26.24	A
	ATOM	4843	N			615		2.327			-28.15			25.09	A
	ATOM	4844	CA			615		2.472			-27.85			24.09	A
			CB			615		1.954			-26.43			25.41	A
55	ATOM ATOM	4845 4846	CG			615		1.857			-26.01			27.19	A
))	AIOM	4040	CG	ціэ	М	010	,	1.03/	07.	5,0	20.01	•	00	,	••

	ATOM	4847	CD	LYS	Α	615		51.015	87.725	-24.744	1.00	27.93	A
	ATOM	4848	CE	LYS				51.588	88.525	-23.584	1.00	27.89	Α
	ATOM	4849	NZ	LYS				50.778		-22.342		27.53	Α
	ATOM	4850	C	LYS				51.685		-28.856		23.27	А
5	ATOM	4851	Ö	LYS				50.591		-29.270		22.28	A
J	ATOM	4852	N	TYR				52.245		-29.247		21.79	A
								51.587		-30.203		21.06	A
	ATOM	4853	CA	TYR								21.55	A
	ATOM	4854	CB	TYR				52.142		-31.612			
10	ATOM	4855	CG	TYR				52.149		-32.006		22.85	A
10	ATOM	4856	CD1	TYR				53.238		-31.703		23.03	A
	ATOM	4857	CE1	TYR				53.219		-31.980		24.34	A
	ATOM	4858	CD2	TYR				51.033		-32.608		23.49	Α
	MOTA	4859	CE2	TYR	Α	616		51.001		-32.889		24.46	A
	ATOM	4860	CZ	TYR	Α	616		52.096	91.109	-32.571	1.00	24.68	A
15	ATOM	4861	ОН	TYR	Α	616		52.071	92.459	-32.834	1.00	26.72	Α
	ATOM	4862	С	TYR	Α	616		51.763	85.225	-29.818	1.00	20.41	Α
	ATOM	4863	0	TYR	А	616		52.678	84.882	-29.074	1.00	19.70	Α
	ATOM	4864	N	ARG				50.877	84.369	-30.325	1.00	19.68	Α
	ATOM	4865	CA	ARG				50.935		-30.040	1.00	19.19	Α
20	ATOM	4866	СВ	ARG				49.532		-29.785		19.61	А
	ATOM	4867	CG	ARG				48.874		-28.463		20.82	А
	ATOM	4868	CD	ARG				47.484		-28.372		20.39	A
		4869	NE	ARG				47.535		-28.387		20.23	A
	MOTA							46.866		-29.242	-	20.36	A
25	ATOM	4870	CZ	ARG				46.089		-30.168		20.60	A
25	ATOM	4871		ARG								19.63	A
	ATOM	4872		ARG				46.972		-29.173			
	ATOM	4873	С	ARG				51.528		-31.208		18.48	A
	ATOM	4874	0	ARG				51.040		-32.331		19.11	A
•	ATOM	4875	N	ILE				52.578		-30.960		17.34	A
30	ATOM	4876	CA	ILE	A	618		53.132		-32.026		15.98	Α
	MOTA	4877	CB	ILE				54.666		-32.193		15.88	A
	MOTA	4878	CG2	ILE	Α	618		55.399	80.260	-30.938		15.95	А
	ATOM	4879	CG1	ILE	Α	618		55.116	79.898	-33.418		16.57	А
	ATOM	4880	CD1	ILE	Α	618		56.481	80.267	-33.950	1.00	16.76	A
35	ATOM	4881	С	ILE	Α	618		52.771	79.113	-31.666	1.00	15.58	A
	ATOM	4882	0	ILE	Α	618		52.940	78.687	-30.526	1.00	15.88	Α
	ATOM	4883	N	ILE				52.246	78.384	-32.643	1.00	15.22	А
	ATOM	4884	CA	ILE				51.802		-32.439	1.00	15.30	А
	ATOM	4885	СВ	ILE				50.287		-32.675	1.00	16.02	А
40	ATOM	4886	CG2	ILE				49.788		-32.309		17.07	А
***	ATOM	4887		ILE				49.568		-31.874	1.00	16.94	А
	ATOM	4888		ILE				48.223		-32.464		18.02	А
	ATOM	4889	C	ILE				52.484		-33.399		15.21	A
								52.638		-34.581		14.85	A
45	ATOM	4890	0	ILE									A
45	ATOM	4891	N	PHE				52.880		-32.891		14.42	
	ATOM	4892	CA	PHE			•	53.513		-33.736		14.06	A
	ATOM	4893	CB	PHE				54.991		-33.971		13.22	A
	ATOM	4894	CG	PHE				55.856		-32.747		13.06	A
	ATOM	4895		PHE				56.459		-32.416		13.53	A
50	MOTA	4896		PHE				56.093		-31.941		12.76	А
	ATOM	4897	CE1	PHE	Α	620		57.292	72.791	-31.299	1.00	12.66	А
	ATOM	4898	CE2	PHE	Α	620		56.925	75.125	-30.822	1.00	13.48	А
	ATOM	4899	CZ	PHE				57.525	73.904	-30.503	1.00	13.08	А
	ATOM	4900	C	PHE				53.366		-33.137	1.00	14.55	А
55	ATOM	4901	Ö	PHE				53.085		-31.951		14.92	A
			-		••			3 - 3 - 2			-		

	MOTA	4902	N	LYS			53.544		-33.970	1.00 15.26	Α
	ATOM	4903	CA	LYS			53.410		-33.525	1.00 16.30	А
	ATOM	4904	CB	LYS	Α	621	52.949		-34.697	1.00 17.42	А
	MOTA	4905	CG	LYS	A	621	52.734		-34.335	1.00 19.29	A
5	ATOM	4906	CD	LYS	Α	621	51.896	67.035	-35.388	1.00 20.90	A
	MOTA	4907	CE	LYS	Α	621	52.568	67.041	-36.747	1.00 22.97	A
	ATOM	4908	ΝZ	LYS	Α	621	51.720		-37.784	1.00 25.48	A
	MOTA	4909	С	LYS	Α	621	54.697		-32.935	1.00 15.54	A
	ATOM	4910	0	LYS	Α	621	55.717	69.466	-33.617	1.00 15.67	A
10	ATOM	4911	N	ALA	Α	622	54.652	69.178	-31.658	1.00 15.03	Α
	ATOM	4912	CA	ALA	Α	622	55.821	68.606	-31.006	1.00 15.03	Α
	ATOM	4913	CB	ALA	Α	622	55.934	69.116	-29.564	1.00 14.73	Α
	ATOM	4914	С	ALA	Α	622	55.682	67.086	-31.017	1.00 15.03	А
	ATOM	4915	0	ALA	Α	622	54.585	66.554	-30.851	1.00 15.48	A
15	ATOM	4916	N	ARG	Α	623	56.795	66.394	-31.237	1.00 15.27	Α
	ATOM	4917	CA	ARG	Α	623	56.811	64.936	-31.256	1.00 14.94	A
	MOTA	4918	СВ	ARG	Α	623	57.245	64.427	-32.636	1.00 16.29	A
	ATOM	4919	CG			623	57.267	62.912	-32.755	1.00 18.27	А
	MOTA	4920	CD			623	57.285	62.467	-34.216	1.00 20.74	А
20	ATOM	4921	NE	ARG			57.525		-34.338	1.00 22.01	А
	ATOM	4922	CZ			623	58.723		-34.232	1.00 23.12	Α
	ATOM	4923		ARG			59.796		-34.009	1.00 24.09	А
	ATOM	4924		ARG			58.847		-34.333	1.00 24.41	Α
	ATOM	4925	С			623	57.804		-30.176	1.00 14.36	А
25	MOTA	4926	Ō			623	58.992		-30.255	1.00 13.60	А
	ATOM	4927	N	VAL			57.308		-29.162	1.00 13.85	A
	ATOM	4928	CA	VAL			58.131		-28.021	1.00 13.51	A
	ATOM	4929	СВ	VAL			57.581		-26.747	1.00 13.54	А
	ATOM	4930		VAL			58.635		-25.645	1.00 13.13	A
30	ATOM	4931		VAL			57.128		-27.075	1.00 14.31	A
00	ATOM	4932	C	VAL			58.200		-27.775	1.00 12.85	А
	ATOM	4933	Ö	VAL			57.204		-27.906	1.00 12.59	A
	ATOM	4934	N			625	59.384		-27.396	1.00 13.31	A
	ATOM	4935	CD			625	60.665		-27.305	1.00 13.68	А
35	ATOM	4936	CA			625	59.574		-27.128	1.00 12.93	А
00	ATOM	4937	СВ			625	61.074		-26.850	1.00 13.69	A
	ATOM	4938	CG			625	61.660		-27.599	1.00 14.65	A
	ATOM	4939	C			625	58.758		-25.917	1.00 12.52	A
	ATOM	4940	Ō			625	58.333		-25.099	1.00 10.81	A
40	ATOM	4941	_			626	58.537		-25.787		А
10	ATOM	4942	CD			626	59.072		-26.600	1.00 11.95	А
	ATOM	4943	CA			626	57.773		-24.643	1.00 12.15	А
	ATOM	4944	CB			626	57.838		-24.818	1.00 12.36	А
	ATOM	4945	CG			626	58.103		-26.296	1.00 12.88	A
45	ATOM	4946	C			626	58.526		-23.384	1.00 12.11	A
40	ATOM	4947	0			626	59.747		-23.325	1.00 12.43	A
	ATOM	4948	N			627	57.812		-22.391	1.00 11.82	A
		4949	CA			627	58.444		-21.146	1.00 11.98	A
	ATOM ATOM	4949	CB			627	58.725		-20.268	1.00 11.30	A
50									-19.813	1.00 13.06	A
50	ATOM	4951	CG			627 627	57.458 57.753		-19.152	1.00 15.42	A
	ATOM	4952	SD						-17.601	1.00 15.42	A
	ATOM	4953	CE			627	58.563		-21.434	1.00 13.23	A
	ATOM	4954	С			627	59.745			1.00 11.93	A
<u> </u>	ATOM	4955	0			627	60.749		-20.736		
55	ATOM	4956	N	GLY	А	628	59.716	ου./3/	-22.453	1.00 11.85	A

							550	•				
	ATOM	4957	CA	GLY	А	628	60.917	61.460	-22.830	1.00	11.48	Α
	ATOM	4958	С	GLY			60.822	62.957	-23.040	1.00	11.99	А
	ATOM	4959	0	GLY			59.846	63.600	-22.646	1.00	11.25	Α
	ATOM	4960	N	LEU			61.854		-23.678	1.00	11.91	А
5	ATOM	4961	CA	LEU			61.943		-23.941	1.00		A
	ATOM	4962	СВ	LEU			62.964		-22.996	1.00		А
	ATOM	4963	CG	LEU			62.725		-21.500	1.00		A
	ATOM	4964		LEU			63.990		-20.726	1.00		A
	ATOM	4965		LEU			61.566		-21.047	1.00		A
10	ATOM	4966	C	LEU			62.372		-25.378	1.00		A
10	ATOM		0	LEU			63.074		-25.996	1.00		A
		4967							-25.899	1.00		A
	ATOM	4968	N	ALA			61.947			1.00		A
	ATOM	4969	CA	ALA			62.307		-27.250			
15	ATOM	4970	CB	ALA			61.203		-28.240	1.00		A
15	ATOM	4971	С	ALA			62.534		-27.218	1.00		A
	MOTA	4972	0	ALA			61.705		-26.697	1.00		A
	MOTA	4973	N	THR			63.660		-27.779	1.00		A
	ATOM	4974	CA	THR			64.035		-27.796	1.00		A
	ATOM	4975	CB	THR			65.534		-27.460	1.00		A
20	ATOM	4976	OG1	THR			65.822		-26.253	1.00		A
	MOTA	4977	CG2	THR	Α	631	65.910		-27.280	1.00	13.92	А
	ATOM	4978	С	THR	Α	631	63.782		-29.141	1.00		A
	MOTA	4979	0	THR	Α	631	64.048	70.237	-30.191	1.00	14.41	А
	ATOM	4980	N	TYR	Α	632	63.264	72.042	-29.097	1.00	13.91	A
25	MOTA	4981	CA	TYR	Α	632	63.023	72.822	-30.306	1.00	13.94	Α
	MOTA	4982	CB	TYR	Α	632	61.526	72.939	-30.614	1.00	13.86	A
	MOTA	4983	CG	TYR	Α	632	60.869	71.623	-30.964	1.00	14.19	А
	ATOM	4984	CD1	TYR			60.486	70.726	-29.967	1.00	14.07	A
	ATOM	4985	CE1				59.911	69.499	-30.286	1.00	14.45	А
30	ATOM	4986	CD2	TYR			60.658	71.260	-32.294	1.00	14.41	А
	ATOM	4987		TYR			60.083		-32.626	1.00	14.34	А
	ATOM	4988	CZ	TYR			59.715		-31.615	1.00		А
	ATOM	4989	ОН	TYR			59.163		-31.929	1.00		А
	ATOM	4990	C	TYR			63.618		-30.122	1.00		А
35	ATOM	4991	Ö	TYR			63.963		-29.007	1.00		А
00	ATOM	4992	N	VAL			63.739		-31.219	1.00		А
	ATOM	4993	CA	VAL			64.295		-31.175	1.00		A
	ATOM	4994	CB	VAL			65.691		-31.847	1.00		A
	ATOM	4995		VAL			66.245		-31.817	1.00		A
40	ATOM	4996		VAL			66.639		-31.138	1.00		A
40	ATOM	4997	CGZ	VAL			63.375		-31.894	1.00		A
		4998	0	VAL			62.889		-32.990	1.00		A
	ATOM									1.00		A
	ATOM	4999	N	LEU			63.121		-31.260			
4 =	ATOM	5000	CA	LEU			62.284		-31.860	1.00		A
45	ATOM	5001	CB	LEU			61.260		-30.855			A
	ATOM	5002	CG	LEU			60.337		-30.188	1.00		A
	ATOM	5003		LEU			59.245		-29.430	1.00		A
	ATOM	5004		LEU			59.723		-31.224	1.00		A
	MOTA	5005	С	LEU			63.225		-32.266	1.00		A
50	ATOM	5006	0	LEU			63.980		-31.440	1.00		Α
	ATOM	5007	N	THR			63.180		-33.539	1.00		A
	ATOM	5008	CA	THR	A	635	64.056		-34.054	1.00		A
	ATOM	5009	CB	THR	A	635	65.024		-35.095	1.00		A
	ATOM	5010	OG1	THR	Α	635	65.704	80.297	-34.529	1.00		Α
55	ATOM	5011	CG2	THR	Α	635	66.044	82.469	-35.528	1.00	15.17	Α

	ATOM	5012	С	THR	Α	635	63.260	83.132	-34.708	1.00 17.49	А
	ATOM	5013	0	THR	Α	635	62.313	82.883	-35.453	1.00 17.17	Α
	ATOM	5014	N			636	63.656	84.370	-34.434	1.00 18.82	Α
	ATOM	5015	CA	ILE	Α	636	62.970	85.524	-35.003	1.00 20.25	Α
5	MOTA	5016	CB	ILE	Α	636	63.010	86.730	-34.028	1.00 20.80	Α
	ATOM	5017	CG2	ILE	Α	636	64.445	87.193	-33.837	1.00 20.78	Α
	ATOM	5018	CG1	ILE	Α	636	62.156	87.881	-34.568	1.00 20.89	Α
	ATOM	5019	CD1	ILE	A	636	62.027	89.054	-33.608	1.00 22.07	Α
	ATOM	5020	С	ILE			63.628	85.922	-36.320	1.00 21.26	Α
10	ATOM	5021	0			636	64.806	85.647	-36.541	1.00 21.01	Α
	ATOM	5022	N	SER			62.854	86.548	-37.200	1.00 23.08	Α
	ATOM	5023	CA	SER			63.370		-38.484	1.00 24.95	А
	ATOM	5024	СВ	SER			63.007		-39.608	1.00 25.80	Α
	ATOM	5025	OG			637	61.607		-39.728	1.00 28.22	А
15	ATOM	5026	C	SER			62.765		-38.755	1.00 25.93	Α
10	ATOM	5027	Ö	SER			61.821		-38.081	1.00 25.09	А
	ATOM	5028	N	ASP			63.310		-39.729	1.00 27.88	A
	ATOM	5029	CA	ASP			62.805		-40.042	1.00 30.30	A
	ATOM	5030	CB	ASP			63.804		-40.928	1.00 32.47	A
20	ATOM	5031	CG	ASP			64.112		-42.221	1.00 35.12	A
20	ATOM	5032		ASP			63.169		-42.989	1.00 36.91	A
	ATOM	5032		ASP			65.304		-42.476	1.00 37.58	A
	ATOM	5034	C	ASP			61.438		-40.717	1.00 37.30	A
	ATOM	5034	0	ASP			60.624		-40.536	1.00 30.30	A
25	ATOM	5035				639	61.181		-41.479	1.00 31.30	A
23		5030	N				59.913		-42.184	1.00 30.20	A
	ATOM		CA	SER					-43.672	1.00 30.17	A
	ATOM	5038	CB	SER			60.112			1.00 30.34	A
	ATOM	5039	OG			639	61.072		-44.232		A
20	ATOM	5040	C	SER			59.313		-42.016	1.00 29.83	A
30	ATOM	5041	0	SER			59.906		-41.383	1.00 29.34	
	MOTA	5042	N	LYS			58.135		-42.598	1.00 29.49	A
	ATOM	5043	CA	LYS			57.448		-42.506	1.00 29.38	A
	ATOM	5044	CB	LYS			56.160		-43.334	1.00 30.45	A
25	ATOM	5045	CG	LYS			55.128		-42.825	1.00 32.56	A
35	ATOM	5046	CD	LYS			53.757		-43.449	1.00 34.03	A
	ATOM	5047	CE	LYS			53.763		-44.945	1.00 34.65	A
	ATOM	5048	NZ	LYS			52.396		-45.510	1.00 35.65	A
	ATOM	5049	С	LYS			58.303		-42.934	1.00 28.37	A
40	ATOM	5050	0	LYS			58.718		-44.088	1.00 28.39	A
4 0	ATOM	5051	N	PRO			58.581		-41.996	1.00 27.43	A
	ATOM	5052	CD	PRO			58.213		-40.571	1.00 27.24	Α
	ATOM	5053	CA	PRO			59.387		-42.288	1.00 26.57	A
	MOTA	5054	CB	PRO	Α	641	59.674	82.465	-40.901	1.00 27.13	A
	ATOM	5055	CG	PRO	Α	641	58.461	82.844	-40.132	1.00 27.56	A
45	ATOM	5056	С	PRO	Α	641	58.630	82.056	-43.187	1.00 25.67	Α
	ATOM	5057	0	PRO	Α	641	57.400	82.001	-43.176	1.00 24.50	Α
	ATOM	5058	N	GLU	Α	642	59.382	81.282	-43.958	1.00 25.02	Α
	ATOM	5059	CA	GLU	Α	642	58.813	80.318	-44.891	1.00 24.72	A
	ATOM	5060	CB	GLU	Α	642	59.945	79.622	-45.658	1.00 26.15	A
50	ATOM	5061	CG	GLU	Α	642	59.484	78.486	-46.562	1.00 27.49	A
	ATOM	5062	CD	GLU			60.635		-47.278	1.00 29.77	Α
	ATOM	5063		GLU			60.378		-47.977	1.00 30.73	Α
	ATOM	5064		GLU			61.791		-47.144	1.00 30.00	. A
	ATOM	5065	C	GLU			57.885		-44.303	1.00 24.21	A
55	ATOM	5066	0	GLU			56.865		-44.903	1.00 24.08	Α
			-	•	-						

	ATOM	5067	N	HIS A	643	58.223	78.728 -43.133	1.00 23.20	Α
	MOTA	5068	CA	HIS A	4 643	57.416	77.665 -42.538	1.00 22.09	A
	MOTA	5069	CB	HIS A	643	58.345	76.582 -41.992	1.00 23.02	Α
	ATOM	5070	CG	HIS A	643	59.256	76.004 -43.029	1.00 24.08	Α
5	ATOM	5071	CD2	HIS A	643	60.556	76.255 -43.312	1.00 24.46	Α
	ATOM	5072	ND1	HIS A	643	58.831	75.083 -43.961	1.00 25.14	A
	ATOM	5073	CE1	HIS A	643	59.830	74.789 -44.774	1.00 25.08	Α
	ATOM	5074	NE2	HIS A	643	60.888	75.487 -44.402	1.00 24.83	A
	MOTA	5075	С	HIS A	643	56.420	78.078 -41.464	1.00 21.26	А
10	ATOM	5076	0	HIS A	643	55.944	77.238 -40.697	1.00 20.11	A
	ATOM	5077	N	THR A	4 644	56.101	79.365 -41.411	1.00 20.08	A
	ATOM	5078	CA	THR A	4 644	55.146	79.865 -40.435	1.00 20.00	A
	MOTA	5079	CB	THR A		55.805	80.877 -39.475	1.00 20.19	A
	MOTA	5080	OG1	THR A	644	56.886	80.236 -38.782	1.00 19.60	A
15	MOTA	5081	CG2	THR A		54.791	81.395 -38.451	1.00 19.41	А
	MOTA	5082	С	THR A	4 644	53.986	80.542 -41.162	1.00 20.34	Α
	MOTA	5083	0	THR A	644	54.200	81.413 -42.009	1.00 20.31	Α
	ATOM	5084	N	SER A		52.765	80.121 -40.847	1.00 19.47	Α
	ATOM	5085	CA	SER A	4 645	51.576	80.702 -41.459	1.00 18.89	Α
20	ATOM	5086	CB	SER A	4 645	50.636	79.604 -41.977	1.00 19.65	А
	ATOM	5087	QG	SER A		50.103	78.821 -40.917	1.00 18.59	A
	MOTA	5088	С	SER A		50.859	81.556 -40.420	1.00 18.42	A
	MOTA	5089	0	SER A		51.124	81.445 -39.217	1.00 17.35	A
	MOTA	5090	N	TYR A		49.951	82.408 -40.882	1.00 17.29	A
25	MOTA	5091	CA	TYR A		49.211	83.278 -39.979	1.00 16.80	A
	MOTA	5092	CB	TYR A		49.590	84.737 -40.243	1.00 17.06	A
	ATOM	5093	CG	TYR A		51.069	84.965 -40.045	1.00 17.26	A
	MOTA	5094	CD1	TYR A		51.980	84.670 -41.059	1.00 17.65	A
20	MOTA	5095	CE1	TYR A		53.352	84.771 -40.843	1.00 17.99	A
30	MOTA	5096	CD2	TYR A		51.567	85.374 -38.811	1.00 17.57	A
	ATOM	5097	CE2			52.935	85.478 -38.584	1.00 17.55	A
	ATOM	5098	CZ	TYR A		53.820	85.173 -39.602	1.00 17.60 1.00 18.18	A A
	ATOM	5099	ОН	TYR A		55.174	85.253 -39.373 83.081 -40.097	1.00 16.18	A
35	ATOM	5100	C	TYR A		47.712 47.158	83.071 -41.194	1.00 16.23	A
33	ATOM	5101	O N	ALA A	4 646	47.138	82.916 -38.951	1.00 15.52	A
	ATOM ATOM	5102 5103	N CA	ALA A		45.627	82.699 -38.906	1.00 15.32	A
	ATOM	5103	CB	ALA A		45.219	82.251 -37.507	1.00 16.44	A
	ATOM	5104	C	ALA A		44.837	83.939 -39.290	1.00 15.45	A
4 0	ATOM	5106		ALA A		45.273	85.066 -39.072	1.00 15.26	А
10	ATOM	5107	N	SER A		43.669		1.00 16.15	А
	ATOM	5108	CA		4 648	42.802		1.00 16.33	А
	ATOM	5109	CB		A 648	41.952	84.479 -41.456	1.00 17.26	А
	ATOM	5110	OG		A 648	41.126	83.360 -41.194	1.00 18.74	А
45	ATOM	5111	C	SER A		41.914	84.985 -39.005	1.00 16.21	А
	ATOM	5112	0		A 648	41.754	84.037 -38.230	1.00 16.15	A
	ATOM	5113	N	ASN A		41.348	86.171 -38.815	1.00 15.76	Α
	MOTA	5114	CA	ASN A		40.481	86.413 -37.669	1.00 15.87	Α
	ATOM	5115	СВ	ASN A		41.216	87.235 -36.605	1.00 15.87	Α
50	ATOM	5116	CG		A 649	42.396	86.491 -36.000	1.00 15.98	Α
	ATOM	5117		ASN A		42.250	85.747 -35.027	1.00 15.07	А
	ATOM	5118		ASN A		43.573	86.684 -36.583	1.00 15.26	A
	ATOM	5119	С		A 649	39.236	87.156 -38.126	1.00 16.17	А
	ATOM	5120	0	ASN A		39.321	88.131 -38.877	1.00 15.97	А
55	ATOM	5121	N	LEU A		38.083	86.686 -37.666	1.00 16.93	A

	ATOM	5122	CA	LEU A	650	36.804	87.288 -38.020	1.00 17.30	Α
	ATOM	5123	СВ	LEU A	650	36.025	86.353 -38.946	1.00 16.88	Α
	ATOM	5124	CG	LEU A	650	34.612	86.785 -39.340	1.00 17.13	A
	ATOM	5125	CD1	LEU A	650	34.670	88.040 -40.202	1.00 17.16	Α
5	MOTA	5126	CD2	LEU A	650	33.933	85.649 -40.091	1.00 16.83	Α
	ATOM	5127	С	LEU A	650	35.985	87.567 -36.768	1.00 18.02	A
	ATOM	5128	0	LEU A	650	35.627	86.648 -36.025	1.00 17.29	Α
	ATOM	5129	N	LEU A	651	35.687	88.842 -36.540	1.00 18.59	A
	ATOM	5130	CA	LEU A		34.911	89.255 -35.380	1.00 19.22	Α
10	ATOM	5131	СВ	LEU A		35.512	90.534 -34.783	1.00 20.86	Α
	ATOM	5132	CG	LEU A		35.142	90.917 -33.345	1.00 21.95	Α
	ATOM	5133		LEU A		33.696	91.353 -33.262	1.00 23.51	Α
	ATOM	5134		LEU A		35.403	89.734 -32.429	1.00 22.19	A
	ATOM	5135	C	LEU A		33.473	89.500 -35.825	1.00 19.82	А
15	ATOM	5136	0	LEU A		33.191	90.449 -36.558	1.00 19.72	Α
	ATOM	5137	N	LEU A		32.565	88.639 -35.378	1.00 19.69	Α
	ATOM	5138	CA	LEU A		31.166	88.757 -35.755	1.00 19.98	Α
	ATOM	5139	СВ	LEU A		30.586	87.375 -36.052	1.00 19.30	Α
	ATOM	5140	CG	LEU A		31.315	86.605 -37.156	1.00 19.06	Α
20	ATOM	5141		LEU A		30.723	85.206 -37.283	1.00 18.94	А
20	ATOM	5142		LEU A		31.207	87.368 -38.477	1.00 18.77	А
	ATOM	5143	C	LEU A		30.320	89.449 -34.700	1.00 21.51	Α
	ATOM	5144	0	LEU A		30.212	88.988 -33.560	1.00 20.61	Α
	ATOM	5145	N	ARG A		29.726	90.570 -35.094	1.00 22.71	Α
25	ATOM	5146	CA	ARG A		28.865	91.332 -34.207	1.00 24.81	A
20	ATOM	5147	CB	ARG A		29.582	91.658 -32.901	1.00 25.37	А
	ATOM	5148	CG	ARG A		30.646	92.727 -33.008	1.00 27.04	A
	ATOM	5149	CD	ARG A		30.498	93.677 -31.839	1.00 29.21	А
	ATOM	5150	NE	ARG A		31.775	94.064 -31.261	1.00 30.48	A
30	ATOM	5150	CZ	ARG A		31.897	94.765 -30.141	1.00 31.74	A
30		5152		ARG A		30.814	95.156 -29.482	1.00 32.11	A
	ATOM			ARG A		33.100	95.072 -29.678	1.00 32.44	A
	ATOM	5153 5154	C	ARG A		28.435	92.626 -34.868	1.00 25.66	A
	ATOM			ARG A		29.062	93.087 -35.821	1.00 24.91	A
35	MOTA	5155	0	LYS A		27.360	93.207 -34.354	1.00 27.38	A
33	MOTA	5156	N C D			26.858	94.463 -34.879	1.00 27.30	A
	MOTA	5157	CA	LYS A			94.605 -34.568	1.00 20.40	A
	ATOM	5158	CB	LYS P		25.366 24.503	93.495 -35.159	1.00 30.33	A
	ATOM	5159	CG	LYS A		23.402	94.053 -36.050	1.00 32.00	A
40	ATOM	5160	CD					1.00 33.77	A
40	ATOM	5161	CE	LYS A		23.983	95.372 -38.117	1.00 34.37	A
	ATOM	5162	NZ	LYS A		22.917 27.645	95.580 -34.204	1.00 30.17	A
	ATOM	5163	С	LYS F			95.405 -33.097	1.00 20.00	A
	MOTA	5164	0	LYS F		28.156	96.718 -34.878	1.00 30.41	A
4 =	ATOM	5165	N	ASN A		27.751		1.00 30.31	A
45	ATOM	5166	CA	ASN A		28.470	97.865 -34.337	1.00 30.30	A
	ATOM	5167	CB	ASN A		27.714	98.427 -33.134	1.00 32.03	A
	ATOM	5168	CG	ASN A		26.223	98.526 -33.384		
	ATOM	5169		ASN A		25.784	99.111 -34.379	1.00 36.57	A
	ATOM	5170		ASN A		25.432	97.951 -32.482	1.00 35.70	A
50	ATOM	5171	С	ASN A		29.892	97.499 -33.920		A
	ATOM	5172	0	ASN A		30.272	97.657 -32.760	1.00 28.95	A
	ATOM	5173	N	PRO A		30.699	97.000 -34.867	1.00 28.12	A
	MOTA	5174	CD	PRO P		30.370	96.630 -36.257	1.00 27.68	A
	ATOM	5175	CA	PRO A		32.076	96.627 -34.544	1.00 27.59	A
55	ATOM	5176	CB	PRO A	656	32.417	95.634 -35.643	1.00 27.64	А

	λ ΨΩM	5177	CG	PRO	7\	656	31.728	96 247	-36.827	1.00 27.46	Α
	ATOM ATOM	5178	C	PRO			33.008		-34.570	1.00 27.27	A
	ATOM	5179	0	PRO			32.700		-35.180	1.00 26.04	A
	ATOM	5175	N	THR			34.143		-33.893	1.00 26.93	A
5	ATOM	5181	CA	THR			35.152		-33.864	1.00 27.12	A
	ATOM	5182	СВ	THR			35.302		-32.455	1.00 27.52	А
	ATOM	5183		THR			35.484		-31.489	1.00 27.21	А
	ATOM	5184		THR				100.186		1.00 27.48	А
	ATOM	5185	C	THR			36.462		-34.280	1.00 27.11	А
10	ATOM	5186	0	THR			36.618		-34.158	1.00 27.18	А
	ATOM	5187	N	SER			37.395		-34.779	1.00 26.83	А
	ATOM	5188	CA	SER			38.682		-35.229	1.00 26.73	А
	ATOM	5189	CB	SER			39.576	99.539	-35.671	1.00 26.98	А
	ATOM	5190	OG	SER			39.848	100.401	-34.581	1.00 27.98	А
15	MOTA	5191	С	SER			39.401	97.559	-34.159	1.00 26.39	Α
	MOTA	5192	0	SER	Α	658	39.191	97.753	-32.961	1.00 25.68	Α
	MOTA	5193	N	LEU	Α	659	40.246	96.639	-34.616	1.00 25.99	Α
	MOTA	5194	CA	LEU	Α	659	41.023	95.772	-33.739	1.00 25.88	A
	ATOM	5195	CB	LEU	Α	659	40.381	94.383	-33.649	1.00 26.05	Α
20	ATOM	5196	CG	LEU	Α	659	39.071	94.250	-32.868	1.00 25.86	Α
	MOTA	5197		LEU			38.453	92.874	-33.107	1.00 26.79	А
	MOTA	5198	CD2	LEU			39.342		-31.392	1.00 25.65	А
	MOTA	5199	С	LEU			42.437		-34.294	1.00 25.93	А
	MOTA	5200	0	LEU			42.758		-34.974	1.00 26.37	A
25	MOTA	5201	N	PRO			43.297		-34.030	1.00 25.74	A
	MOTA	5202	CD	PRO			43.052		-33.256	1.00 25.96	A
	MOTA	5203	CA	PRO			44.679		-34.520	1.00 25.77	A
	MOTA	5204	CB	PRO			45.195		-34.209	1.00 25.89	A
20	ATOM	5205	CG	PRO			44.463		-32.952	1.00 25.60	A
30	ATOM	5206	С	PRO			45.461		-33.793	1.00 25.59	A
	ATOM	5207	0	PRO			45.154		-32.649	1.00 25.45	A
	ATOM	5208	N	LEU			46.469		-34.453	1.00 26.17 1.00 26.47	A A
	ATOM	5209	CA	LEU			47.256		-33.846 -34.439	1.00 26.47	A
35	ATOM	5210	CB	LEU			46.827 45.373		-34.197	1.00 25.85	A
33	MOTA	5211 5212	CG CD1	LEU			45.053		-34.197	1.00 25.80	A
	ATOM ATOM	5212		LEU			45.148		-32.707	1.00 25.90	A
	ATOM	5213	CDZ	LEU			48.764		-34.013	1.00 26.80	A
	ATOM	5215	0	LEU			49.495		-34.217	1.00 26.97	A
40	ATOM	5216		GLY			49.228		-33.925	1.00 27.05	Α
10	ATOM	5217	CA	GLY			50.649		-34.066	1.00 27.15	А
	ATOM	5218	C	GLY			51.246		-35.356	1.00 27.55	А
	ATOM	5219	Ō	GLY			50.791		-36.447	1.00 27.88	A
	ATOM	5220	N	GLN			52.260		-35.228	1.00 27.70	А
45	ATOM	5221	CA	GLN			52.948		-36.383	1.00 27.75	А
	ATOM	5222	СВ	GLN			54.338		-35.972	1.00 29.23	Α
	MOTA	5223	CG	GLN			55.162	94.123	-35.205	1.00 31.06	Α
	MOTA	5224	CD	GLN			56.475	93.535	-34.733	1.00 31.96	Α
	MOTA	5225		GLN			57.324	93.155	-35.544	1.00 32.29	Α
50	MOTA	5226		GLN			56.647	93.445	-33.418	1.00 31.97	Α
	ATOM	5227	С			663	52.227		-37.063	1.00 26.71	A
	ATOM	5228	0			663	52.634	92.003	-38.140	1.00 26.75	A
	ATOM	5229	N	TYR	A	664	51.168	91.923	-36.445	1.00 26.28	Α
	ATOM	5230	CA	TYR	A	664	50.438		-37.020	1.00 25.87	А
55	MOTA	5231	CB	TYR	A	664	49.138	90.557	-36.251	1.00 24.54	Α

SOOKOPEK SIPETOT

	ATOM	5232	CG	TYR	Α	664	48.551	89.181	-36.475	1.00	22.88	А
	ATOM	5233		TYR			49.145		-35.915	1.00	22.04	А
	ATOM	5234		TYR			48.608	86.775	-36.124	1.00	21.08	А
	ATOM	5235		TYR			47.407		-37.254	1.00	21.95	А
5	ATOM	5236		TYR			46.866		-37.472		20.70	Α
•	ATOM	5237	CZ	TYR			47.469		-36.904		21.25	А
	ATOM	5238	OH	TYR			46.923		-37.114		19.20	Α
	ATOM	5239	C	TYR			50.146		-38.507		26.39	А
	ATOM	5240	Ö	TYR			49.503		-38.884		26.43	А
10	ATOM	5241	N	PRO			50.618		-39.367		27.21	А
10	ATOM	5242	CD	PRO			51.335		-38.908		26.98	A
	ATOM	5242	CA	PRO			50.490		-40.830		27.74	A
		5243	CB	PRO			51.064		-41.209		27.97	A
	MOTA MOTA	5244	CG	PRO			52.074		-40.153		27.69	A
15	ATOM	5245	C	PRO			49.111		-41.455		28.39	A
13			0	PRO			48.996		-42.463		28.61	A
	ATOM	5247	N	GLU			48.930		-40.881		28.52	A
	ATOM	5248		GLU			46.738		-41.461		28.27	A
	ATOM ATOM	5249	CA	GLU			46.736		-41.709		30.04	A
20		5250	CB	GLU			44.880		-42.593		33.21	A
20	ATOM	5251	CG						-42.333 -43.071		34.36	A
	ATOM	5252	CD OF1	GLU			44.407 45.226		-43.652		36.02	A
	ATOM	5253		GLU					-42.876		34.72	A
	MOTA	5254		GLU			43.214 45.770		-40.651		27.30	A
25	ATOM	5255	С	GLU							26.86	A
25	ATOM	5256	0	GLU			45.712		-39.425 -41.361		25.51	A
	ATOM	5257	N	ASP			45.003		-41.361		24.38	A
	ATOM	5258	CA	ASP			44.024				25.91	A
	ATOM	5259	CB	ASP			43.629		-41.715		27.61	A
20	ATOM	5260	CG	ASP			44.821		-42.220 -41.382		28.24	A
30	ATOM	5261		ASP			45.584				28.96	A
	ATOM	5262		ASP			44.993		-43.454 -40.324		22.12	A
	ATOM	5263	C	ASP			42.765				21.74	A
	ATOM	5264	0	ASP			42.275		-41.047		20.90	A
25	ATOM	5265	N	VAL			42.239		-39.159		20.90	A
35	ATOM	5266	CA	VAL			41.025		-38.662		19.83	A
	ATOM	5267	CB	VAL			40.715		-37.221		19.63	A
	ATOM	5268		VAL			39.392		-36.754			
	MOTA	5269		VAL			41.851		-36.291		19.72	A
40	MOTA	5270	С	VAL			39.863		-39.565		20.16	A
40	MOTA	5271	0	VAL			39.808		-40.053		19.96	A
	ATOM	5272	N	LYS			38.948		-39.792		19.66	A
	ATOM	5273	CA	LYS			37.770		-40.623		20.28	A
	ATOM	5274	СВ	LYS			37.615		-41.641		21.78	A
4 =	MOTA	5275	CG	LYS					-42.586		25.50	A
45	MOTA	5276	CD	LYS			38.919		-43.182		28.10	A
	ATOM	5277	CE	LYS			40.207		-43.992		29.47	A
	MOTA	5278	NZ	LYS			40.464		-44.414		29.99	A
	MOTA	5279	С	LYS			36.547		-39.713		19.68	A
	ATOM	5280	0	LYS			36.546		-38.631		18.99	A
50	ATOM	5281	N	PHE	A	670	35.513		-40.142		18.45	Α
	ATOM	5282	CA	PHE			34.303		-39.341		18.50	A
	ATOM	5283	CB	PHE			34.158		-38.824		18.47	A
	ATOM	5284	CG	PHE			35.344		-38.045		18.53	A
	ATOM	5285		PHE			36.476		-38.701		18.06	A
55	ATOM	5286	CD2	PHE	A	670	35.345	93.859	-36.655	1.00	18.27	А

	ATOM	5287	CE1	PHE	Α	670	37.593		-37.981		18.42	А
	MOTA	5288	CE2	PHE			36.457		-35.928		19.20	A
	ATOM	5289	CZ	PHE			37.583		-36.593		18.35	Α
_	ATOM	5290	С	PHE	Α	670	33.049		-40.121		18.27	Α
5	ATOM	5291	0	PHE	Α	670	33.090		-41.339		18.35	Α
	MOTA	5292	N	GLY	Α	671	31.937		-39.410		18.50	Α
	ATOM	5293	CA	GLY			30.687		-40.059		18.15	A
	MOTA	5294	С	GLY	Α	671	29.565		-39.062		18.46	А
	ATOM	5295	0	GLY	Α	671	29.804		-37.858		17.12	А
10	MOTA	5296	N	ASP			28.332		-39.553		18.63	A
	MOTA	5297	CA	ASP			27.196		-38.671		19.58	А
	MOTA	5298	CB	ASP			25.873		-39.376		21.20	А
	ATOM	5299	CG	ASP			25.692		-39.673		22.59	A
	MOTA	5300	OD1	ASP	A	672	26.358		-39.024		24.13	Α
15	MOTA	5301	OD2	ASP	Α	672	24.861		-40.547		23.78	А
	MOTA	5302	С	ASP	Α	672	27.189		-38.263		19.65	Α
	MOTA	5303	0	ASP			27.695		-38.987		18.43	Α
	MOTA	5304	N	PRO			26.618		-37.091		19.89	А
	ATOM	5305	CD	PRO			26.012		-36.111		20.15	A
20	MOTA	5306	CA	PRO	Α	673	26.557		-36.619		20.31	А
	MOTA	5307	CB	PRO	Α	673	25.659		-35.392		20.38	A
	MOTA	5308	CG	PRO	Α	673	25.978		-34.859		20.50	A
	MOTA	5309	С	PRO	Α	673	25.950		-37.705		20.50	A
	MOTA	5310	0	PRO	Α	673	25.009		-38.392		19.86	A
25	MOTA	5311	N	ARG	Α	674	26.499	-	-37.870		20.93	A
	MOTA	5312	CA	ARG	Α	674	25.997		-38.871		21.72	А
	MOTA	5313	CB	ARG			26.445		-40.276		21.99	A
	MOTA	5314	CG	ARG			27.941		-40.537		22.77	А
• •	MOTA	5315	CD	ARG			28.221		-42.033		24.81	A
30	MOTA	5316	NE	ARG			29.603		-42.369		26.31	A
	MOTA	5317	CZ	ARG			30.609		-42.367		27.19	A
	MOTA	5318	NH1				30.399		-42.046		28.25	A
	MOTA	5319		ARG			31.828		-42.701		27.77	A
25	ATOM	5320	С	ARG			26.516		-38.575		21.85	A
35	ATOM	5321	0	ARG			27.503		-37.859		21.35	A
	ATOM	5322	N	GLU			25.850		-39.120		22.23	A
	ATOM	5323	CA	GLU			26.294		-38.897		22.85	A
	ATOM	5324	CB	GLU			25.243		-39.378		24.28	A
40	ATOM	5325	CG	GLU			23.886		-38.724		25.01	A
40	ATOM	5326	CD	GLU			23.065		-38.738		27.02	A
	ATOM	5327		GLU			23.076		-39.769		26.65	A
	MOTA	5328		GLU			22.403		-37.716		27.89	A
	MOTA	5329	С	GLU			27.593		-39.655		23.14	A
45	MOTA	5330	0	GLU			27.812		-40.710		23.14	A
45	MOTA	5331	N	ILE			28.467		-39.106		22.54	A
	MOTA	5332	CA	ILE			29.740		-39.752		22.87	A
	ATOM	5333	CB	ILE			30.892		-39.105		24.28	A
	MOTA	5334		ILE			30.575		-39.112		25.64	A
-0	ATOM	5335		ILE			31.117		-37.677		24.43	A
50	MOTA	5336		ILE			32.453		-37.106		26.48	A
	MOTA	5337	С	ILE			30.086		-39.664		22.36	A
	MOTA	5338	0	ILE			29.569		-38.814		22.01	A
	ATOM	5339	N	SER			30.971		-40.555		21.98	A
	MOTA	5340	CA	SER			31.428		-40.606		22.60	A
55	ATOM	5341	CB	SER	A	677	30.861	75.404	-41.845	1.00	22.88	А

	ATOM	5342	OG	SER	Α	677	31.340	74.077	-41.939	1.00	25.66	А
	ATOM	5343	С	SER			32.949	76.128	-40.673	1.00	22.27	А
	ATOM	5344	0	SER	Α	677	33.528	77.004	-41.313	1.00	22.32	Α
	ATOM	5345	N	LEU	Α	678	33.594	75.178	-40.004	1.00	21.75	Α
5	MOTA	5346	CA	LEU	Α	678	35.050	75.113	-39.997	1.00	21.96	Α
	ATOM	5347	СВ	LEU	Α	678	35.613	75.741	-38.718	1.00	22.31	Α
	ATOM	5348	CG	LEU	Α	678	35.622	77.264	-38.562	1.00	22.76	Α
	ATOM	5349	CD1	LEU	Α	678	36.046	77.627	-37.146	1.00	22.99	Α
	ATOM	5350		LEU			36.579	77.875	-39.567	1.00	23.14	Α
10	ATOM	5351	С	LEU			35.551	73.681	-40.091	1.00	22.13	Α
	ATOM	5352	0	LEU	Α	678	34.892	72.748	-39.624	1.00	21.03	Α
	ATOM	5353	N	ARG	Α	679	36.723	73.524	-40.695	1.00	22.18	А
	MOTA	5354	CA	ARG			37.347	72.218	-40.834	1.00	23.61	A
	MOTA	5355	СВ	ARG			36.904	71.530	-42.127	1.00	24.89	Α
15	ATOM	5356	CG	ARG	Α	679	37.397	70.095	-42.210	1.00	27.40	Α
	MOTA	5357	CD	ARG			37.123	69.453	-43.555	1.00	29.86	Α
	ATOM	5358	NE	ARG			37.544	68.055	-43.546	1.00	32.30	Α
	ATOM	5359	CZ	ARG	Α	679	37.557	67.266	-44.615	1.00	33.42	Α
	ATOM	5360	NH1	ARG	Α	679	37.172	67.736	-45.795	1.00	34.22	Α
20	ATOM	5361		ARG			37.958	66.007	-44.502	1.00	34.11	Α
	ATOM	5362	С	ARG	Α	679	38.866	72.346	-40.837	1.00	23.38	Α
	ATOM	5363	0	ARG	A	679	39.440	73.049	-41.672	1.00	23.17	А
	ATOM	5364	N	VAL	Α	680	39.514	71.672	-39.893	1.00	22.77	Α
	ATOM	5365	CA	VAL	Α	680	40.967	71.692	-39.809	1.00	22.34	Α
25	ATOM	5366	CB	VAL	Α	680	41.439	71.950	-38.366	1.00		Α
	ATOM	5367	CG1	VAL	Α	680	42.954	71.866	-38.292	1.00		A
	ATOM	5368	CG2	VAL	Α	680	40.960	73.325	-37.906	1.00		A
	MOTA	5369	С	VAL	Α	680	41.500	70.342	-40.281	1.00		A
	ATOM	5370	0	VAL	Α	680	41.005		-39.866	1.00		A
30	MOTA	5371	N	GLY	Α	681	42.505	70.377	-41.152	1.00		А
	MOTA	5372	CA	GLY			43.078		-41.673	1.00		A
	ATOM	5373	С	GLY			42.009		-42.298	1.00		A
	MOTA	5374	0	GLY	A	681	41.084		-42.939	1.00		A
	ATOM	5375	N	ASN	Α	682	42.130		-42.113	1.00		A
35	MOTA	5376	CA	ASN	Α	682	41.152		-42.654	1.00		A
	MOTA	5377	CB	ASN			41.848		-43.220	1.00		A
	MOTA	5378	CG	ASN			42.620		-44.491	1.00		A
	MOTA	5379		ASN			43.168		-45.116	1.00		A
	MOTA	5380		ASN			42.666		-44.882	1.00		A
40	MOTA	5381	С	ASN			40.186		-41.556	1.00		A
	MOTA	5382	0	ASN			39.448		-41.702	1.00		A
	MOTA	5383	N			683	40.199		-40.456	1.00		A
	MOTA	5384	CA	GLY			39.329		-39.336	1.00		A
4 ***	ATOM	5385	С	GLY			37.867		-39.622	1.00		A
45	MOTA	5386	0	GLY			37.476		-40.782	1.00		A
	ATOM	5387	N	PRO			37.027		-38.578	1.00		A
	ATOM	5388	CD	PRO			37.354		-37.150	1.00		A
	MOTA	5389	CA	PRO			35.597		-38.759	1.00		A
50	ATOM	5390	СВ	PRO			35.014		-37.394	1.00		A
50	MOTA	5391	CG	PRO			36.104		-36.462	1.00		A
	ATOM	5392	С	PRO			35.298		-39.159	1.00		A
	ATOM	5393	0			684	36.136		-39.004	1.00		A
	MOTA	5394	N			685	34.103		-39.694	1.00		A
	ATOM	5395	CA			685	33.661		-40.091	1.00		A
55	ATOM	5396	СВ	THR	Α	685	33.047	69.649	-41.506	1.00	19.84	А

		ATOM	5397	OG1	THR A	685	34.051	69.284	-42.458	1.00 19.96	A
		ATOM	5398	CG2	THR A	685	32.495	71.029	-41.855	1.00 19.80	А
		ATOM	5399	С	THR P	685	32.596	70.041	-39.078	1.00 19.41	Α
		ATOM	5400	0	THR F	685	31.600	69.336	-38.918	1.00 19.79	Α
	5	ATOM	5401	N	LEU A	686	32.811		-38.388	1.00 18.82	Α
		ATOM	5402	CA	LEU P	686	31.872		-37.375	1.00 18.60	Α
		ATOM	5403	CB	LEU P	686	32.606		-36.061	1.00 18.99	A
		MOTA	5404	CG	LEU P		33.539		-35.466	1.00 20.30	A
		MOTA	5405		LEU F		33.969		-34.072	1.00 19.83	A
	10	MOTA	5406	CD2	LEU P	686	32.849	69.497	-35.393	1.00 20.32	A
		ATOM	5407	С	LEU P	686	31.109	72.856	-37.807	1.00 18.14	A
		MOTA	5408	0	LEU P	686	31.679		-38.397	1.00 17.46	Α
		MOTA	5409	N	ALA A	687	29.815	72.871	-37.505	1.00 17.55	A
		MOTA	5410	CA	ALA A	687	28.956	73.998	-37.841	1.00 18.33	A
	15	MOTA	5411	CB	ALA A	687	27.759		-38.658	1.00 18.09	A
		ATOM	5412	С	ALA A	687	28.483	74.653	-36.552	1.00 18.18	A
		ATOM	5413	0	ALA A	687	28.116	73.966	-35.596	1.00 18.07	A
		ATOM	5414	N	PHE F	688	28.488		-36.536	1.00 17.57	A
		MOTA	5415	CA	PHE A	688	28.073		-35.365	1.00 16.78	Α
- 2	20	ATOM	5416	CB	PHE F	688	29.242	77.575	-34.830	1.00 16.30	Α
		ATOM	5417	CG	PHE F	688	30.477	76.778	-34.526	1.00 15.14	Α
		ATOM	5418	CD1	PHE F	688	31.286	76.298	-35.552	1.00 14.69	Α
		MOTA	5419	CD2	PHE F	688	30.837	76.513	-33.208	1.00 15.04	Α
		ATOM	5420	CE1	PHE A	688	32.437	75.567	-35.271	1.00 14.91	А
- 2	25	MOTA	5421	CE2	PHE F	688	31.986	75.783	-32.915	1.00 14.60	А
		ATOM	5422	CZ	PHE F	4 688	32.788	75.309	-33.948	1.00 14.65	A
		ATOM	5423	С	PHE A	4 688	26.921	77.683	-35.689	1.00 17.40	A
		ATOM	5424	0	PHE A	4 688	26.760	78.119	-36.830	1.00 18.04	A
		ATOM	5425	N	SER A	4 689	26.129	78.002	-34.674	1.00 17.46	A
3	30	ATOM	5426	CA	SER A	689	25.006	78.916	-34.837	1.00 18.27	A
		ATOM	5427	CB	SER A	4 689	24.012	78.745	-33.689	1.00 17.90	Α
		ATOM	5428	OG	SER A	689	24.564	79.219	-32.473	1.00 17.73	A
		ATOM	5429	С	SER A	4 689	25.574	80.334	-34.815	1.00 18.53	A
		ATOM	5430	0	SER A	4 689	26.765	80.525	-34.561	1.00 17.93	A
(35	ATOM	5431	N	GLU A	4 690	24.729	81.326	-35.077	1.00 19.26	А
		ATOM	5432	CA	GLU A	690	25.188	82.709	-35.077	1.00 20.14	A
		ATOM	5433	СВ	GLU A		24.130	83.629	-35.697	1.00 22.21	A
		ATOM	5434	CG	GLU A		22.856	83.773	-34.890	1.00 24.08	A
		ATOM	5435	CD	GLU A		21.919	84.806	-35.489	1.00 26.32	A
4	40	ATOM	5436	OE1	GLU A	4 690	21.439	84.588	-36.623	1.00 26.83	A
		ATOM	5437		GLU A		21.670	85.838	-34.829	1.00 28.62	Α
		ATOM	5438	С	GLU A	4 690	25.539		-33.669	1.00 19.89	A
		ATOM	5439	0	GLU A		26.028	84.304	-33.490	1.00 19.45	A
		ATOM	5440	N	GLN A	A 691	25.279	82.347	-32.672	1.00 19.85	А
4	45	ATOM	5441	CA	GLN A		25.611	82.677	-31.289	1.00 20.01	A
		ATOM	5442	СВ	GLN A		24.519	82.182	-30.340	1.00 22.21	Α
		ATOM	5443	CG	GLN A		23.204		-30.479	1.00 25.23	Α
		ATOM	5444	CD	GLN A		22.014	81.998	-30.363	1.00 27.55	А
		ATOM	5445		GLN A		21.813		-29.336	1.00 28.65	Α
!	50	ATOM	5446		GLN A		21.215		-31.423	1.00 29.19	А
		ATOM	5447	С		A 691	26.948		-30.925	1.00 19.08	Α
		ATOM	5448	0	GLN A		27.359		-29.766	1.00 19.03	Α
		ATOM	5449	N		A 692	27.615		-31.925	1.00 18.05	A
		ATOM	5450	CA	GLY A		28.907		-31.702	1.00 17.80	А
	55	ATOM	5451	С	GLY A		28.877		-30.986	1.00 17.67	A
,				-	·						

	MOTA	5452	0	GLY			29.878		-30.409	1.00 18.07	A
	MOTA	5453	N	LEU	Α	693	27.735		-31.024	1.00 17.63	A
	ATOM	5454	CA	LEU			27.601		-30.368	1.00 17.63	Α
_	MOTA	5455	CB	LEU			26.369		-29.462	1.00 19.17	Α
5	MOTA	5456	CG	LEU			26.470		-28.239	1.00 20.12	A
	MOTA	5457		LEU			25.076		-27.735	1.00 22.01	Α
	MOTA	5458	CD2	LEU			27.290		-27.158	1.00 20.87	A
	ATOM	5459	С	LEU			27.503		-31.367	1.00 17.45	Α
	MOTA	5460	0	LEU	Α	693	26.901		-32.435	1.00 16.57	Α
10	MOTA	5461	N	LEU	Α	694	28.095		-31.008	1.00 17.12	A
	MOTA	5462	CA	LEU	A	694	28.085		-31.866	1.00 17.42	A
	MOTA	5463	СВ	LEU	Α	694	28.785		-31.164	1.00 17.16	Α
	MOTA	5464	CG	LEU	A	694	28.960	71.618	-31.993	1.00 16.87	Α
	MOTA	5465	CD1	LEU	Α	694	29.935	71.876	-33.132	1.00 16.72	Α
15	MOTA	5466	CD2	LEU	Α	694	29.480	70.495	-31.097	1.00 16.91	A
	MOTA	5467	С	LEU	Α	694	26.658	73.659	-32.223	1.00 17.52	Α
	MOTA	5468	0	LEU	Α	694	25.764	73.707	-31.380	1.00 16.45	Α
	ATOM	5469	N	LYS	Α	695	26.458	73.264	-33.478	1.00 18.82	Α
	MOTA	5470	CA	LYS	Α	695	25.147	72.847	-33.961	1.00 20.55	Α
20	MOTA	5471	СВ	LYS	Α	695	24.614	73.868	-34.971	1.00 22.63	Α
	ATOM	5472	CG	LYS	Α	695	23.347	73.447	-35.697	1.00 26.75	А
	MOTA	5473	CD	LYS	Α	695	22.670	74.641	-36.378	1.00 29.24	А
	MOTA	5474	CE	LYS	Α	695	22.138	75.631	-35.345	1.00 30.84	A
	ATOM	5475	NZ	LYS	Α	695	21.443	76.797	-35.961	1.00 32.11	A
25	ATOM	5476	С	LYS			25.197	71.466	-34.602	1.00 20.01	Α
	ATOM	5477	0	LYS	Α	695	24.230	70.710	-34.527	1.00 20.35	A
	MOTA	5478	N	SER	A	696	26.323	71.136	-35.230	1.00 19.98	А
	MOTA	5479	CA	SER	Α	696	26.470	69.838	-35.882	1.00 19.65	A
	ATOM	5480	СВ	SER			25.755	69.844	-37.238	1.00 19.79	A
30	MOTA	5481	OG	SER	Α	696	26.472	70.618	-38.188	1.00 19.06	Α
	ATOM	5482	С	SER	Α	696	27.926	69.450	-36.095	1.00 19.73	Α
	ATOM	5483	0	SER	Α	696	28.813	70.308	-36.131	1.00 19.51	А
	MOTA	5484	N	ILE	Α	697	28.157	68.148	-36.243	1.00 18.94	А
	ATOM	5485	CA	ILE	Α	697	29.488	67.599	-36.476	1.00 19.29	Α
35	MOTA	5486	СВ	ILE			30.004	66.795	-35.257	1.00 18.22	А
	ATOM	5487	CG2	ILE	Α	697	31.349	66.159	-35.584	1.00 17.95	A
	ATOM	5488	CG1	ILE			30.130	67.701	-34.032	1.00 17.15	A
	ATOM	5489	CD1	ILE			30.598	66.968	-32.782	1.00 16.28	А
	ATOM	5490	С	ILE			29.435	66.633	-37.660	1.00 20.96	А
40	ATOM	5491	0	ILE			28.591	65.734	-37.694	1.00 21.08	Α
	ATOM	5492	N	GLN			30.325	66.825	-38.627	1.00 22.27	Α
	ATOM	5493	CA	GLN			30.396	65.943	-39.786	1.00 23.77	А
	ATOM	5494	СВ	GLN			30.292	66.730	-41.096	1.00 24.36	А
	ATOM	5495	CG	GLN			29.972	65.833	-42.291	1.00 25.87	A
45	ATOM	5496	CD	GLN			30.216		-43.631	1.00 27.18	А
	ATOM	5497	OE1				29.671	66.083	-44.654	1.00 28.35	А
	ATOM	5498	NE2				31.046		-43.635	1.00 27.17	А
	ATOM	5499	С	GLN			31.743		-39.725	1.00 24.33	А
	ATOM	5500	Ö	GLN			32.788		-39.951	1.00 24.42	А
50	ATOM	5501	N	LEU			31.719		-39.423	1.00 25.41	А
20	ATOM	5502	CA	LEU			32.944		-39.301	1.00 26.65	A
	ATOM	5503	CB	LEU			32.615		-38.821	1.00 26.18	А
	ATOM	5504	CG	LEU			31.898		-37.467	1.00 25.56	A
	ATOM	5505		LEU			31.704		-37.076	1.00 24.95	A
55	ATOM	5506		LEU			32.713		-36.410	1.00 25.37	A
	A I OU	3300	CUZ	ni O	47		52.713	02.00,	505		

	ATOM	5507	С	LEU	Α	699	33.785		-40.569	1.00 28.22	Α
	ATOM	5508	0	LEU	А	699	35.008		-40.514	1.00 28.15	А
	MOTA	5509	N	THR			33.137		-41.711	1.00 30.08	Α
	MOTA	5510	CA	THR	Α	700	33.853	62.820	-42.979	1.00 32.39	Α
5	ATOM	5511	CB	THR	Α	700	33.986	61.360	-43.462	1.00 32.28	A
	MOTA	5512	OG1	THR	Α	700	32.682	60.798	-43.660	1.00 32.31	A
	MOTA	5513	CG2	THR	Α	700	34.740	60.531	-42.438	1.00 31.92	A
	ATOM	5514	С	THR	A	700	33.123	63.625	-44.045	1.00 33.91	A
	MOTA	5515	0	THR	Α	700	31.955	63.968	-43.878	1.00 33.85	A
10	MOTA	5516	N	GLN	Α	701	33.816	63.927	-45.137	1.00 36.39	А
	ATOM	5517	CA	GLN			33.222	64.698	-46.224	1.00 38.80	А
	ATOM	5518	СВ	GLN			34.245	64.908	-47.342	1.00 39.86	A
	ATOM	5519	CG	GLN			35.569	65.462	-46.860	1.00 41.67	A
	ATOM	5520	CD	GLN			36.454		-47.998	1.00 42.85	А
15	ATOM	5521		GLN			36.088		-48.753	1.00 43.40	A
10	ATOM	5522		GLN			37.628		-48.129	1.00 43.29	Α
	ATOM	5523	C	GLN			31.997		-46.782	1.00 39.49	А
	ATOM	5524	Ö	GLN			31.102		-47.343	1.00 40.50	A
	ATOM	5525	N	ASP			31.962		-46.615	1.00 40.44	Α
20	ATOM	5526	CA	ASP			30.854		-47.101	1.00 41.22	A
20	ATOM	5527	CB	ASP			31.325		-47.314	1.00 42.70	A
		5528	CG	ASP			32.717		-47.909	1.00 43.88	A
	ATOM	5529		ASP			32.906		-49.056	1.00 44.15	A
	MOTA	5530		ASP			33.624		-47.221	1.00 44.63	A
25	MOTA			ASP			29.698		-46.105	1.00 40.87	A
23	MOTA	5531	С				28.556		-46.457	1.00 41.18	A
	MOTA	5532	0	ASP			30.014		-44.859	1.00 39.98	A
	MOTA	5533	N			703 703	29.029		-43.786	1.00 38.58	A
	ATOM	5534	CA			703	29.739		-42.450	1.00 38.76	A
20	ATOM	5535	CB				30.659		-42.172	1.00 37.91	A
30	ATOM	5536	OG			703	28.147		-43.683	1.00 37.58	A
	ATOM	5537	C			703			-44.224	1.00 37.30	A
	ATOM	5538	0			703	28.471		-44.224	1.00 37.44	A
	MOTA	5539	N			704	27.009		-42.488	1.00 36.72	A
2=	ATOM	5540	CD	PRO			26.426		-42.400	1.00 35.60	A
35	ATOM	5541	CA			704	26.068			1.00 35.00	A
	ATOM	5542	CB			704	24.751		-42.571 -41.753	1.00 36.23	A
	ATOM	5543	CG			704	25.184			1.00 34.44	A
	ATOM	5544	С			704	26.434		-41.616		A
40	ATOM	5545	0			704	27.327		-40.832 -41.502	1.00 33.95 1.00 32.79	A
40	ATOM	5546	N			705	25.730				
	ATOM	5547	CA	HIS			25.946		-40.416	1.00 30.84	A
	MOTA	5548	СВ			705	25.500		-40.839	1.00 31.81	A
	ATOM	5549	CG			705	26.333		-41.932	1.00 33.35	A
	MOTA	5550		HIS			26.029		-43.212	1.00 34.15	A
45	MOTA	5551		HIS			27.664		-41.764	1.00 33.69	A
	MOTA	5552		HIS			28.145		-42.894	1.00 33.97	A
	MOTA	5553	NE2	HIS			27.173		-43.789	1.00 34.80	A
	MOTA	5554	С			705	25.136		-39.209	1.00 28.81	A
	ATOM	5555	0	HIS	A	705	23.952		-39.096	1.00 28.15	A
50	MOTA	5556	N			706	25.781		-38.310	1.00 26.49	A
	MOTA	5557	CA			706	25.109		-37.120	1.00 24.60	A
	MOTA	5558	СВ	VAL	Α	706	25.994	63.920	-36.384	1.00 23.73	A
	MOTA	5559	CG1	VAL	A	706	25.276	63.404	-35.148	1.00 23.27	A
	MOTA	5560	CG2	VAL	A	706	26.335		-37.320	1.00 23.50	A
55	ATOM	5561	С	VAL	A	706	24.757	66.075	-36.154	1.00 23.78	A

			_		706	25 622	CC 045 25 745	1 00 22 66	n
	ATOM	5562	0	VAL A		25.622	66.845 -35.745	1.00 23.66	A
	MOTA	5563	N	PRO F		23.473	66.187 -35.780	1.00 23.08	A
	ATOM	5564	CD	PRO F		22.320	65.469 -36.351	1.00 23.24	A
_	MOTA	5565	CA	PRO P		23.025	67.229 -34.853	1.00 22.31	A
5	ATOM	5566	CB	PRO P		21.507	67.042 -34.831	1.00 22.67	A
	MOTA	5567	CG	PRO F		21.213	66.478 -36.188	1.00 22.98	Α
	MOTA	5568	С	PRO P	707	23.635	67.086 -33.456	1.00 21.45	А
	ATOM	5569	0	PRO F	707	23.396	66.099 -32.761	1.00 21.52	А
	ATOM	5570	N	VAL A	708	24.433	68.073 -33.063	1.00 20.14	A
10	MOTA	5571	CA	VAL A	708	25.070	68.102 -31.748	1.00 18.90	Α
	ATOM	5572	СВ	VAL A		26.532	67.600 -31.807	1.00 18.48	Α
	ATOM	5573	CG1	VAL A		27.171	67.679 -30.422	1.00 17.73	A
	ATOM	5574		VAL A		26.569	66.170 -32.319	1.00 17.97	Α
	ATOM	5575	C	VAL A		25.046	69.571 -31.349	1.00 19.08	Α
15	ATOM	5576	Ö	VAL A		25.819	70.374 -31.863	1.00 18.79	Α
13	ATOM	5577	N	HIS F		24.142	69.922 -30.445	1.00 19.13	Α
	ATOM	5578	CA	HIS F		24.001	71.310 -30.030	1.00 19.46	A
		5579	CB	HIS F		22.541	71.758 -30.180	1.00 21.51	A
	ATOM					22.012	71.661 -31.577	1.00 24.16	A
20	ATOM	5580	CG	HIS A		21.797	70.590 -32.378	1.00 25.73	A
20	ATOM	5581		HIS A			72.764 -32.295	1.00 26.33	A
	ATOM	5582		HIS A		21.600		1.00 26.24	A
	MOTA	5583		HIS A		21.152	72.377 -33.477		
	MOTA	5584		HIS A		21.261	71.062 -33.552	1.00 25.69	A
2-	ATOM	5585	С	HIS A		24.441	71.580 -28.602	1.00 18.62	A
25	ATOM	5586	0	HIS A		24.065	70.857 -27.679	1.00 18.91	A
	MOTA	5587	N	PHE A		25.244	72.626 -28.435	1.00 17.43	A
	MOTA	5588	CA	PHE P		25.705	73.045 -27.120	1.00 16.63	A
	MOTA	5589	CB	PHE A	710	27.123	73.623 -27.195	1.00 16.26	A
	ATOM	5590	CG	PHE A		28.204	72.681 -26.716	1.00 16.17	A
30	MOTA	5591	CD1	PHE A	710	29.374	72.517 -27.451	1.00 16.64	Α
	ATOM	5592	CD2	PHE A	710	28.069	71.994 -25.512	1.00 16.37	A
	ATOM	5593	CE1	PHE A	710	30.398	71.682 -26.994	1.00 16.33	Α
	MOTA	5594	CE2	PHE A	710	29.086	71.157 -25.046	1.00 16.04	Α
	MOTA	5595	CZ	PHE A	710	30.251	71.003 -25.790	1.00 16.18	A
35	ATOM	5596	С	PHE A	710	24.730	74.130 -26.678	1.00 17.27	Α
	ATOM	5597	0	PHE A		24.296	74.963 -27.487	1.00 16.24	A
	MOTA	5598	N	LYS A		24.380	74.114 -25.399	1.00 16.58	A
	ATOM	5599	CA	LYS A		23.453	75.089 -24.854	1.00 18.02	Α
	MOTA	5600	СВ	LYS A		22.016	74.577 -25.000	1.00 19.78	A
40	MOTA	5601	CG	LYS A		20.960	75.492 -24.411	1.00 22.47	A
10	ATOM	5602	CD	LYS A		19.566	74.874 -24.524	1.00 24.01	A
	ATOM	5603	CE	LYS A		19.132	74.717 -25.973	1.00 24.28	А
	ATOM	5604	NZ	LYS A		17.796	74.059 -26.070	1.00 26.13	А
		5605	C	LYS A		23.776	75.309 -23.384	1.00 17.48	A
45	MOTA			LYS A		24.155	74.372 -22.681	1.00 17.60	A
43	MOTA	5606	O N				76.546 -22.926	1.00 16.29	A
	ATOM	5607	N	PHE A		23.636		1.00 15.83	A
	ATOM	5608	CA		712	23.898	76.862 -21.532		
	MOTA	5609	СВ		712	24.890	78.028 -21.413	1.00 15.72	A
	MOTA	5610	CG		712	26.312	77.644 -21.718	1.00 15.16	A
50	MOTA	5611		PHE A		26.800	77.689 -23.020	1.00 14.61	A
	MOTA	5612		PHE A		27.149	77.191 -20.703	1.00 14.74	A
	MOTA	5613		PHE A		28.103	77.286 -23.308	1.00 14.86	A
	ATOM	5614		PHE A		28.453	76.785 -20.977	1.00 14.53	A
	ATOM	5615	CZ		712	28.932	76.831 -22.282	1.00 14.63	A
55	ATOM	5616	С	PHE A	712	22.590	77.209 -20.845	1.00 15.49	A

	ATOM	5617	0	PHE	Α	712	21.8	01	78.000	-21.3	61	1.00	15.25	Α
	ATOM	5618	N	LEU	Α	713	22.3	147	76.594	-19.6			15.13	Α
	ATOM	5619	CA	LEU	Α	713	21.1	.22	76.853	-18.9	49		15.92	A
	ATOM	5620	СВ	LEU	Α	713	20.1	.65	75.654	-19.0	40		15.54	A
5	MOTA	5621	CG	LEU	Α	713	19.7	31	75.215				16.03	А
	ATOM	5622	CD1	LEU	Α	713	20.6	87	74.147	-20.9			16.71	A
	ATOM	5623	CD2	LEU	Α	713	18.3	310	74.655	-20.3			15.98	A
	ATOM	5624	С	LEU	Α	713	21.4	52	77.150	-17.4	95	1.00	16.60	A
	ATOM	5625	0	LEU	Α	713	22.6	15	77.106	-17.0	92	1.00	16.74	А
10	ATOM	5626	N	LYS	Α	714	20.4	32	77.469	-16.7	09	1.00	16.73	A
	ATOM	5627	CA	LYS	Α	714	20.6	48	77.766	-15.3	07	1.00	17.78	A
	ATOM	5628	СВ	LYS	Α	714	20.7	07	79.282	-15.0			20.35	Α
	ATOM	5629	CG	LYS	Α	714	19.5	21	80.049	-15.6	40	1.00	23.01	A
	ATOM	5630	CD	LYS	Α	714	19.5	45	81.517	-15.2	80	1.00	25.87	A
15	ATOM	5631	CE	LYS	Α	714	20.7	97	82.237	-15.6	93	1.00	27.66	Α
	ATOM	5632	NZ	LYS	Α	714	20.8	143	83.662	-15.2			29.31	Α
	ATOM	5633	С	LYS	Α	714	19.5	85	77.162	-14.4	05	1.00	17.94	A
	ATOM	5634	0	LYS	Α	714	18.3	199	77.120	-14.7	52	1.00	17.86	Α
	ATOM	5635	N	TYR	Α	715	20.0	34	76.668	-13.2	55	1.00	17.22	Α
20	MOTA	5636	CA	TYR			19.1	.53	76.093	-12.2	53	1.00	16.49	A
	MOTA	5637	СВ			715	19.7	38	74.804	-11.6	58	1.00	15.95	А
	ATOM	5638	CG	TYR	Α	715	19.6	44	73.582	-12.5	40	1.00	14.81	A
	ATOM	5639	CD1	TYR	Α	715	20.7	18	73.182	-13.3	34	1.00	15.39	Α
	MOTA	5640	CE1	TYR	Α	715	20.6	34	72.037	-14.1	42	1.00	14.36	A
25	ATOM	5641	CD2	TYR	Α	715	18.4	79	72.815	-12.5	72	1.00	14.77	Α
	MOTA	5642	CE2	TYR	Α	715	18.3	883	71.679	-13.3	72	1.00	14.23	A
	MOTA	5643	CZ	TYR	Α	715	19.4	159	71.294	-14.1	51	1.00	14.55	А
	ATOM	5644	ОН	TYR	Α	715	19.3	356	70.167	-14.9	36	1.00	13.86	A
	ATOM	5645	С	TYR	Α	715	19.0	68	77.128	-11.1	45	1.00	17.13	A
30	ATOM	5646	0	TYR	Α	715	20.0	21	77.874	-10.9	16	1.00	17.00	А
	ATOM	5647	N	GLY	Α	716	17.9	36	77.170	-10.4	55	1.00	17.07	A
	ATOM	5648	CA	GLY	Α	716	17.7	83	78.116	-9.3	68	1.00	16.98	A
	ATOM	5649	С	GLY	Α	716	17.6	85	77.390	-8.0	40	1.00	17.56	A
	ATOM	5650	0	GLY	Α	716	18.0	003	76.200	-7.9	43	1.00	17.72	A
35	MOTA	5651	N	VAL	Α	717	17.2	253	78.108	-7.0	12	1.00	17.71	А
	MOTA	5652	CA	VAL	Α	717	17.0	99	77.536	-5.6	83		18.46	А
	ATOM	5653	CB	VAL	Α	717	18.0	17	78.246	-4.6	71	1.00	18.67	А
	MOTA	5654	CG1	VAL	Α	717	17.8	305	77.675	-3.2	84	1.00	20.04	A
	ATOM	5655	CG2	VAL	Α	717	19.4	178	78.078	-5.0			18.36	A
40	ATOM	5656	С	VAL	Α	717	15.6	543	77.684	-5.2	53		19.21	А
	ATOM	5657	0	VAL	Α	717	14.9	963	78.622	-5.6	64		18.75	A
	ATOM	5658	N	ARG	Α	718	15.1	65	76.754	-4.4	35		19.97	A
	ATOM	5659	CA	ARG	Α	718	13.7	781	76.791	-3.9	76		21.50	A
	MOTA	5660	CB	ARG	Α	718	13.4	108	75.451	-3.3	35	1.00	20.47	А
45	ATOM	5661	CG	ARG	Α	718	13.4	189	74.288	-4.3	02		20.11	A
	ATOM	5662	CD	ARG	Α	718	13.3	385	72.943	-3.6	04	1.00	19.03	A
	ATOM	5663	NE	ARG	Α	718	13.6	556	71.860	-4.5	44		19.26	А
	ATOM	5664	CZ	ARG	Α	718	13.6	581	70.569	-4.2		1.00	19.63	A
	ATOM	5665		ARG	Α	718	13.4	149	70.180	-2.9	80		19.86	А
50	ATOM	5666		ARG			13.9		69.668	-5.1	64		19.58	A
	ATOM	5667	С			718	13.5		77.924	-2.9	92	1.00	22.88	A
	ATOM	5668	0			718	14.3		78.214	-2.1	30	1.00	22.82	A
	ATOM	5669	N			719	12.3		78.567	-3.1		1.00	25.26	А
	ATOM	5670	CA			719	12.0		79.666	-2.2		1.00	27.91	A
55	ATOM	5671	СВ			719	11.0		80.614	-2.9		1.00	28.09	Α

		ATOM	5672	00	CED »	710	9.875	79.922	-3.389	1.00 29.06	Α
				OG	SER A						
		ATOM	5673	С	SER A		11.346	79.111	-0.990	1.00 29.36	Α
		ATOM	5674	0	SER A		11.204	79.812	0.009	1.00 29.63	Α
	_	MOTA	5675	N	HIS A		10.952	77.841	-1.049	1.00 31.11	Α
	5	MOTA	5676	CA	HIS A	720	10.311	77.173	0.077	1.00 32.47	Α
		ATOM	5677	CB	HIS A	720	8.848	76.867	-0.252	1.00 34.68	Α
		MOTA	5678	CG	HIS A	720	8.066	78.062	-0.697	1.00 37.29	Α
		ATOM	5679		HIS A		7.384	78.304	-1.842	1.00 38.42	A
		ATOM	5680		HIS A		7.922	79.190	0.081	1.00 38.37	A
	10	ATOM	5681		HIS A		7.185	80.077	-0.565	1.00 38.97	A
	10	ATOM	5682	NE2			6.846	79.564	-1.734	1.00 39.06	A
											A
		ATOM	5683	C	HIS A		11.026	75.865	0.403	1.00 31.94	
		ATOM	5684	0	HIS A		11.453	75.142	-0.497	1.00 32.28	A
	15	MOTA	5685	N	GLY A		11.153	75.569	1.692	1.00 30.87	A
	15	MOTA	5686	CA	GLY A		11.798	74.335	2.105	1.00 29.22	Α
		MOTA	5687	С	GLY A		13.315	74.357	2.100	1.00 27.82	А
		MOTA	5688	0	GLY A		13.935	75.412	2.210	1.00 27.64	Α
		MOTA	5689	N	ASP A	722	13.906	73.172	1.966	1.00 26.07	A
41000		MOTA	5690	CA	ASP A	722	15.356	73.002	1.960	1.00 24.10	Α
1 (1) 22. 1 (1) 22. 1 (1) 22.	20	ATOM	5691	CB	ASP A	722	15.692	71.509	1.918	1.00 23.11	A
₽,Q		ATOM	5692	CG	ASP A	722	15.151	70.755	3.125	1.00 22.96	А
· <u>J</u>		ATOM	5693	OD1	ASP A	722	15.073	69.509	3.069	1.00 21.33	A
		ATOM	5694	OD2	ASP A	722	14.814	71.412	4.134	1.00 22.49	А
		ATOM	5695	С	ASP A		16.029	73.717	0.795	1.00 23.18	A
Marie Andrews	25	ATOM	5696	Ō	ASP A		15.590	73.611	-0.348	1.00 22.51	Α
1 % 1		ATOM	5697	N	ARG A		17.101	74.444	1.096	1.00 22.44	A
193		ATOM	5698	CA	ARG A		17.844	75.179	0.080	1.00 22.26	A
		ATOM	5699	CB	ARG A		18.173	76.595	0.567	1.00 24.76	A
21		ATOM	5700	CG	ARG A		17.039	77.606	0.440	1.00 29.74	A
	30				ARG A		15.975	77.422	1.506	1.00 23.74	A
J	50	ATOM	5701	CD							
M.		ATOM	5702	NE	ARG A		14.938	78.450	1.411	1.00 36.56	A
		ATOM	5703	CZ	ARG A		13.960	78.617	2.297	1.00 38.09	A
ļak		ATOM	5704		ARG A		13.874	77.822	3.358	1.00 39.31	A
	0.5	MOTA	5705		ARG A		13.067	79.584	2.126	1.00 39.06	A
	35	ATOM	5706	С	ARG A		19.144	74.486	-0.310	1.00 20.66	A
		MOTA	5707	0	ARG A		19.776	73.811	0.506	1.00 19.49	A
		MOTA	5708	N	SER A		19.537	74.665	-1.567	1.00 18.62	A
		ATOM	5709	CA	SER A	724	20.771	74.087	-2.075	1.00 17.82	А
		ATOM	5710	CB	SER A	724	20.882	74.309	-3.586	1.00 16.97	A
	40	ATOM	5711	OG	SER A	724	19.807	73.698	-4.279	1.00 17.89	Α
		ATOM	5712	С	SER A	724	21.947	74.763	-1.381	1.00 17.22	Α
		MOTA	5713	0	SER A	724	21.888	75.952	-1.053	1.00 17.26	Α
		ATOM	5714	N	GLY A		23.013	73.999	-1.164	1.00 16.49	A
		ATOM	5715	CA	GLY A		24.207	74.530	-0.526	1.00 14.92	А
	45	ATOM	5716	С	GLY A		25.428	73.840	-1.110	1.00 14.29	А
	10	ATOM	5717	0	GLY A		25.351	73.275	-2.201	1.00 14.17	A
		ATOM	5718	N	ALA A		26.548	73.871	-0.392	1.00 13.42	A
		MOTA	5719	CA	ALA A		27.778	73.241	-0.869	1.00 13.42	A
							28.916	73.496	0.126	1.00 12.02	
	50	MOTA	5720	CB	ALA A						A
	30	ATOM	5721	С	ALA A		27.624	71.736	-1.104	1.00 12.97	A
		ATOM	5722	0	ALA A		28.265	71.171	-1.994	1.00 13.34	A
		ATOM	5723	N	TYR A		26.777	71.088	-0.309	1.00 12.39	A
		ATOM	5724	CA	TYR A		26.574	69.647	-0.440	1.00 12.54	A
		MOTA	5725	CB	TYR A		26.372	68.993	0.930	1.00 12.25	A
	55	ATOM	5726	CG	TYR A	727	27.389	69.346	1.980	1.00 11.70	А

		MOTA	5727	CD1	TYR	A 72	27	27.230	70.474	2.785	1.00	11.79	Α
		MOTA	5728	CE1	TYR	A 72	27	28.162	70.785	3.776	1.00	12.23	Α
		MOTA	5729	CD2	TYR	A 72	27	28.506	68.539	2.185	1.00	10.95	A
		MOTA	5730	CE2	TYR	A 72	27	29.441	68.840	3.165	1.00	10.75	Α
	5	ATOM	5731	CZ	TYR	A 72	27	29.265	69.959	3.959	1.00	11.16	Α
		ATOM	5732	OH	TYR	A 72	27	30.175	70.230	4.950	1.00	11.14	A
		MOTA	5733	С	TYR	A 72	27	25.368	69.272	-1.287	1.00	12.80	А
		ATOM	5734	0	TYR	A 72	27	25.465	68.461	-2.210	1.00	12.13	А
		MOTA	5735	N	LEU	A 72	28	24.227	69.864	-0.948	1.00	13.19	A
	10	ATOM	5736	CA	LEU			22.965	69.563	-1.608	1.00		А
		MOTA	5737	CB	LEU			21.815	69.751	-0.611	1.00	13.85	А
		MOTA	5738	CG	LEU	A 72	28	21.981	69.108	0.769	1.00		А
		MOTA	5739		LEU .			20.719	69.334	1.599	1.00		A
		ATOM	5740	CD2	LEU	A 72	28	22.260	67.627	0.608	1.00		A
	15	MOTA	5741	С	LEU .	A 72	28	22.616	70.325	-2.879	1.00		A
		MOTA	5742	0	LEU			22.853	71.527	-2.992	1.00		Α
		MOTA	5743	N	PHE			22.038	69.592	-3.828	1.00		A
		ATOM	5744	CA	PHE			21.569	70.148	-5.089	1.00		A
1122	•	MOTA	5745	CB	PHE			22.097	69.338	-6.278	1.00		A
	20	MOTA	5746	CG	PHE			21.636	69.848	-7.624	1.00		A
ing terminal and the second of the second o		MOTA	5747		PHE			21.579	68.992	-8.719	1.00		A
		ATOM	5748		PHE.			21.280	71.186	-7.801	1.00		А
131		MOTA	5749		PHE			21.174	69.456	-9.973	1.00		A
1,122	25	MOTA	5750		PHE			20.875	71.661	-9.051	1.00		A
IJ	25	ATOM	5751	CZ	PHE			20.821		-10.137	1.00		A
		MOTA	5752	С	PHE			20.047	70.000	-4.997	1.00		A
		ATOM	5753	0	PHE			19.519	68.893	-5.089	1.00		A
Ē1		ATOM	5754	N	LEU			19.353	71.116	-4.794	1.00		A
J	20	ATOM	5755	CA	LEU			17.899	71.115	-4.673	1.00		A
. Fi	30	MOTA	5756	CB	LEU			17.504	71.461	-3.238	1.00		A
141		ATOM	5757	CG	LEU			17.891	70.417	-2.186	1.00		A
		ATOM	5758		LEU .			17.851	71.032	-0.800	1.00		A
ļ.		ATOM	5759		LEU			16.947	69.228	-2.281	1.00		A
	25	MOTA	5760	C	LEU			17.325	72.146	-5.631	1.00		A
ini.	35	ATOM	5761	0	LEU			16.851	73.203	-5.212	1.00		A
		ATOM	5762	N	PRO			17.353	71.843	-6.937 -7.522	1.00		A A
		ATOM	5763	CD	PRO PRO			17.697	70.533 72.752	-7.964	1.00		A
		ATOM ATOM	5764 5765	CA CB	PRO .			16.843 17.196	72.732	-7.964 -9.257	1.00		A
	40	ATOM	5766		PRO			17.190	70.590	-8.872	1.00		A
	40	ATOM	5767	C	PRO			15.356	73.060	-7.873	1.00		A
		ATOM	5768	0	PRO .			14.557	72.231	-7.429			A
		ATOM	5769	N	ASN			14.997	74.268	-8.294	1.00		A
		ATOM	5770	CA	ASN .			13.604	74.200	-8.298	1.00		A
	45	ATOM	5771	CB	ASN			13.494	76.193	-8.029	1.00 2		A
	40	ATOM	5772	CG	ASN			14.176	77.033	-9.092	1.00 2		A
		ATOM	5773		ASN			15.257	76.694	-9.569	1.00 2		A
		ATOM	5774		ASN			13.551	78.148	-9.457	1.00 2		A
		ATOM	5775	C	ASN .			13.051	74.335		1.00		A
	50	ATOM	5776	Ö	ASN			12.525		-10.389	1.00 2		A
	50	ATOM	5777	N	GLY			13.198		-10.038	1.00		A
		ATOM	5778	CA	GLY			12.711		-11.319	1.00		A
		ATOM	5779	CA	GLY			13.785		-12.384	1.00		A
		ATOM	5780	0	GLY			14.950		-12.126	1.00		A
	55	ATOM	5781	И	PRO			13.424		-13.596	1.00		A
		11100	5,01	.,	1110		•	10.727	.2.020	13.000	1.00		• •

		nmore	6700	CD	מ סממ	724	12 070	71.580 -14.004	1.00 19.27	А
		MOTA	5782	CD	PRO A		12.079			
		ATOM	5783	CA	PRO A		14.372	71.878 -14.704	1.00 18.72	A
		MOTA	5784	CB	PRO A	734	13.488	71.423 -15.864	1.00 18.91	Α
		ATOM	5785	CG	PRO A	734	12.381	70.691 -15.187	1.00 19.56	Α
	5	ATOM	5786	С	PRO A		15.040	73.216 -14.994	1.00 18.56	Α
	0		5787		PRO A		14.472	74.272 -14.716	1.00 17.70	A
		ATOM		0						
		MOTA	5788	N	ALA A		16.236	73.163 -15.569	1.00 18.32	A
		MOTA	5789	CA	ALA A	735	16.990	74.370 -15.885	1.00 18.62	Α
		MOTA	5790	CB	ALA A	735	18.389	73.996 -16.359	1.00 17.27	Α
	10	ATOM	5791	С	ALA A	735	16.298	75.230 -16.939	1.00 19.06	Α
		ATOM	5792	0	ALA A		15.526	74.731 -17.756	1.00 19.40	А
			5793		SER A		16.585	76.528 -16.902	1.00 19.80	A
		ATOM		N						A
		MOTA	5794	CA	SER A		16.024	77.488 -17.846	1.00 20.40	
		MOTA	5795	CB	SER A		15.392	78.664 -17.097	1.00 20.65	А
	15	MOTA	5796	OG	SER A	736	14.423	78.217 -16.164	1.00 23.95	Α
		MOTA	5797	С	SER A	736	17.168	78.000 -18.716	1.00 20.53	Α
		ATOM	5798	0	SER A		18.277	78.210 -18.229	1.00 19.37	Α
		ATOM	5799	N	PRO A		16.911	78.217 -20.013	1.00 21.05	Α
								78.006 -20.737	1.00 21.76	A
in the second	20	ATOM	5800	CD	PRO A		15.647			
inter File	20	MOTA	5801	CA	PRO A		17.955	78.705 -20.919	1.00 22.31	A
1,13		ATOM	5802	CB	PRO A		17.227	78.812 -22.261	1.00 22.46	A
ij.		ATOM	5803	CG	PRO A	737	16.133	77.790 -22.147	1.00 22.19	Α
n		ATOM	5804	С	PRO A	737	18.539	80.048 -20.489	1.00 22.95	Α
		ATOM	5805	0	PRO A		17.816	80.923 -20.015	1.00 22.83	А
1:22°	25	ATOM	5806	N	VAL A		19.851	80.205 -20.641	1.00 24.07	А
ij.	20				VAL A		20.498	81.466 -20.301	1.00 24.73	A
ij		ATOM	5807	CA					1.00 25.09	A
(Ji		MOTA	5808	СВ	VAL A		22.040	81.312 -20.194		
£5		MOTA	5809		VAL A		22.700	82.688 -20.102	1.00 24.86	A
7 testi		ATOM	5810	CG2	VAL A	738	22.403	80.477 -18.973	1.00 24.29	A
	30	ATOM	5811	С	VAL A	738	20.183	82.436 -21.441	1.00 25.95	Α
ı,Ş		ATOM	5812	0	VAL A	738	20.322	82.083 -22.610	1.00 25.41	Α
		ATOM	5813	N	GLU A		19.741	83.644 -21.102	1.00 26.97	A
fals.		ATOM	5814	CA	GLU A		19.428	84.650 -22.114	1.00 28.25	А
					GLU A		18.665	85.818 -21.488	1.00 30.01	А
	25	ATOM	5815	CB						
ļudr.	35	MOTA	5816	CG	GLU A		17.303	85.431 -20.940	1.00 33.60	A
		ATOM	5817	CD	GLU A		16.353	84.951 -22.022	1.00 35.66	А
		ATOM	5818	OE1	GLU A	739	15.220	84.545 -21.681	1.00 37.20	A
		ATOM	5819	OE2	GLU A	739	16.734	84.983 -23.213	1.00 37.11	Α
		ATOM	5820	С	GLU A		20.755	85.130 -22.681	1.00 27.58	Α
	40	ATOM	5821	0	GLU A		21.543	85.764 -21.981	1.00 27.38	А
	40			_			20.989	84.826 -23.952	1.00 27.14	A
		ATOM	5822	N	LEU A					
		ATOM	5823	CA	LEU A		22.244	85.170 -24.610	1.00 26.75	A
		ATOM	5824	CB	LEU A		22.579	84.100 -25.645	1.00 26.88	A
		MOTA	5825	CG	LEU A	740	22.553	82.653 -25.153	1.00 26.56	A
	45	ATOM	5826	CD1	LEU A	740	22.920	81.733 -26.304	1.00 26.17	A
		MOTA	5827		LEU A		23.520	82.479 -23.985	1.00 26.74	A
		ATOM	5828	C	LEU A		22.323	86.532 -25.282	1.00 26.81	А
								87.060 -25.475	1.00 26.49	A
		ATOM	5829	0	LEU A		23.419			
		MOTA	5830	N	GLY A		21.177	87.100 -25.642	1.00 26.45	A
	50	MOTA	5831	CA	GLY A	741	21.192	88.383 -26.318	1.00 26.66	A
		ATOM	5832	С	GLY A	741	21.866	88.202 -27.666	1.00 26.47	Α
		MOTA	5833	0	GLY A		21.623	87.211 -28.352	1.00 27.08	Α
		ATOM	5834	N	GLN A		22.713	89.150 -28.050	1.00 26.64	А
		ATOM	5835	CA	GLN A		23.431	89.070 -29.319	1.00 26.29	A
	55							90.256 -30.214	1.00 28.36	A
	55	ATOM	5836	СВ	GLN A	142	23.055	30.230 -30.214	1.00 20.30	Д

						334				
	ATOM	5837	CG	GLN A	742	21.562	90.324	-30.534	1.00 31.41	А
	ATOM	5838	CD	GLN A		21.193		-31.424	1.00 33.06	А
	ATOM	5839		GLN A		21.654		-32.562	1.00 35.27	А
	ATOM	5840		GLN A		20.353		-30.908	1.00 34.23	А
5	ATOM	5841	C	GLN A		24.924		-28.996	1.00 24.83	А
5		5842	0	GLN A		25.595		-29.149	1.00 25.14	A
	ATOM	5843	N	PRO A		25.460		-28.545	1.00 23.56	A
	ATOM			PRO A		24.758		-28.504	1.00 22.94	A
	ATOM	5844	CD	PRO A		26.869		-28.175	1.00 21.91	A
10	ATOM	5845	CA	PRO A		26.910		-27.629	1.00 22.16	A
10	ATOM	5846	CB	PRO A		25.902		-28.484	1.00 22.68	A
	ATOM	5847	CG	PRO A		27.886		-29.289	1.00 20.81	A
	ATOM	5848	C					-30.462	1.00 20.01	A
	ATOM	5849	0	PRO A		27.612			1.00 20.13	A
15	MOTA	5850	N	VAL A		29.068		-28.903 -29.849	1.00 17.97	A
15	ATOM	5851	CA	VAL A		30.146		-29.314	1.00 17.62	A
	MOTA	5852	CB	VAL A		31.143		-29.314 -30.280	1.00 17.02	A
	MOTA	5853	CG1			32.305			1.00 18.66	A
	MOTA	5854		VAL A		30.435		-29.124		A
20	MOTA	5855	С	VAL A		30.875		-30.078	1.00 17.11	
20	MOTA	5856	0	VAL A		31.257		-29.125	1.00 16.81	A
	MOTA	5857	N	VAL A		31.054		-31.344	1.00 15.64	A
	ATOM	5858	CA	VAL A		31.719		-31.712	1.00 14.94	A
	MOTA	5859	CB	VAL A		30.820		-32.634	1.00 13.94	A
05	MOTA	5860	CG1	VAL A		31.534		-33.011	1.00 14.63	A
25	MOTA	5861		VAL A		29.501		-31.943	1.00 14.28	A
	MOTA	5862	С	VAL A		33.033		-32.436	1.00 14.70	A
	ATOM	5863	0	VAL A		33.090		-33.375	1.00 14.58	A
	ATOM	5864	N	LEU A		34.089		-31.999	1.00 14.53	A
• •	MOTA	5865	CA	LEU A		35.402		-32.619	1.00 14.40	A
30	MOTA	5866	CB	LEU A		36.460		-31.573	1.00 14.29	A
	MOTA	5867	CG	LEU A		37.910		-32.082	1.00 14.37	A
	ATOM	5868		LEU A		38.105		-33.125	1.00 15.10	A
	MOTA	5869		LEU A		38.853		-30.908	1.00 15.27	A
0.5	MOTA	5870	С	LEU A		35.815		-33.315	1.00 14.39	A
35	ATOM	5871	0	LEU A		35.920		-32.683	1.00 13.94	A
	MOTA	5872	N	VAL A		36.066		-34.615	1.00 14.21	A
	ATOM	5873	CA	VAL A		36.467		-35.396	1.00 15.07	A
	MOTA	5874	CB	VAL A		35.556		-36.639	1.00 14.86	A
40	ATOM	5875		VAL A		35.974		-37.414	1.00 15.78	A
4 0	MOTA	5876		VAL A		34.098		-36.205	1.00 14.92	A
	ATOM	5877	С	VAL A		37.909		-35.861	1.00 15.47	A
	ATOM	5878	0	VAL A		38.272		-36.553	1.00 16.02	A
	MOTA	5879	N	THR A		38.736		-35.465	1.00 15.28	A
	MOTA	5880	CA	THR A		40.134		-35.861	1.00 16.46	A
45	MOTA	5881	CB	THR A	748	41.065		-34.627	1.00 16.60	A
	ATOM	5882	OG1			40.862		-33.869	1.00 16.45	A
	MOTA	5883	CG2	THR A	748	42.531		-35.056	1.00 16.62	A
	MOTA	5884	С	THR A	748	40.361		-36.696	1.00 17.60	A
	ATOM	5885	0	THR A	748	40.133		-36.228	1.00 17.28	A
50	ATOM	5886	N	LYS A	749	40.796		-37.938	1.00 18.35	A
	ATOM	5887	CA	LYS A	749	41.031		-38.829	1.00 19.29	А
	ATOM	5888	CB	LYS A	749	40.192	80.263	-40.099	1.00 21.29	А
	ATOM	5889	CG	LYS A	749	40.406		-41.100	1.00 23.49	А
	ATOM	5890	CD	LYS A	749	39.530	79.306	-42.328	1.00 26.20	A
55	ATOM	5891	CE	LYS A	749	39.772	78.172	-43.314	1.00 27.68	А

١,

	MOTA	5892	NZ	LYS	Α	749	38.949	78.318	-44.543	1.00	30.91	Α
	MOTA	5893	С	LYS	Α	749	42.498	79.971	-39.202	1.00	19.15	Α
	MOTA	5894	0	LYS	Α	749	43.095	80.878	-39.791	1.00	18.79	Α
	MOTA	5895	N	GLY	Α	750	43.069	78.821	-38.862	1.00	18.42	Α
5	ATOM	5896	CA	GLY	Α	750	44.465	78.568	-39.164	1.00	18.50	Α
	MOTA	5897	С			750	44.660	77.198	-39.774	1.00	18.80	Α
	ATOM	5898	0	GLY			43.759	76.354	-39.732	1.00	18.11	Α
	ATOM	5899	N	LYS			45.839		-40.346	1.00	19.14	A
	ATOM	5900	CA	LYS			46.161		-40.977		19.90	А
10	ATOM	5901	СВ	LYS			47.461		-41.777		22.12	А
10	ATOM	5902	CG	LYS			47.381		-42.990		26.04	А
	ATOM	5903	CD	LYS			46.556		-44.111		28.95	A
	ATOM	5904	CE	LYS			46.615		-45.385		29.97	A
	ATOM	5905	NZ	LYS			45.821		-46.492		31.69	A
15	ATOM	5906	C	LYS			46.315		-39.949		18.94	A
15	ATOM	5907	0	LYS			45.995		-40.227		18.88	A
		5908				752	46.805		-38.764		17.91	A
	MOTA		N	LEU			47.018		-37.709		17.62	A
	ATOM	5909	CA				48.396		-37.703		17.88	A
20	ATOM	5910	CB	LEU					-37.989		18.55	A
20	ATOM	5911	CG	LEU			49.624		-37.146			
	ATOM	5912		LEU			50.882				19.24	A A
	ATOM	5913		LEU			49.674		-38.753		19.87	
	MOTA	5914	С			752	45.957		-36.615		16.94	A
25	MOTA	5915	0	LEU			45.637		-36.010		16.36	A
25	MOTA	5916	N			753	45.415		-36.361		15.88	A
	ATOM	5917	CA			753	44.409		-35.322		16.00	A
	MOTA	5918	СВ			753	45.089		-33.986		16.54	A
	MOTA	5919	CG			753	44.133		-32.803		19.19	A
20	MOTA	5920	CD			753	44.826		-31.535		20.56	A
30	ATOM	5921	OE1	GLU			45.182		-31.454		21.29	A
	MOTA	5922	OE2	GLU			45.022		-30.619		22.13	A
	MOTA	5923	С			753	43.418		-35.648		16.08	A
	MOTA	5924	0			753	43.807		-36.049		15.51	A
	MOTA	5925	N			754	42.137		-35.474		15.21	A
35	ATOM	5926	CA			754	41.086		-35.710		14.74	A
	MOTA	5927	CB	SER			40.266		-36.945		15.36	A
	MOTA	5928	OG	SER			41.069		-38.111		15.30	A
	ATOM	5929	С	SER			40.205		-34.477		15.07	А
	MOTA	5930	0	SER			40.272		-33.707		15.07	A
40	MOTA	5931	N	SER			39.383		-34.277		14.22	Α
	MOTA	5932	CA	SER			38.510		-33.115		15.10	A
	ATOM	5933	CB			755	39.316		-31.848		16.03	А
	MOTA	5934	OG			755	39.812		-31.867		16.70	A
	MOTA	5935	С			755	37.378		-33.230		14.43	A
45	MOTA	5936	0	SER	Α	755	37.424		-34.038	1.00	14.90	А
	MOTA	5937	N	VAL	Α	756	36.354	78.898	-32.419	1.00	13.70	A
	MOTA	5938	CA	VAL	Α	756	35.208	79.784	-32.360	1.00	14.05	A
	ATOM	5939	CB	VAL	Α	756	33.937	79.117	-32.913	1.00	13.69	Α
	ATOM	5940	CG1	VAL	Α	756	32.736	80.036	-32.701	1.00	14.07	Α
50	ATOM	5941		VAL			34.122		-34.391	1.00	14.09	А
	ATOM	5942	С			756	35.019		-30.879	1.00	13.94	А
	ATOM	5943	Ō			756	34.833		-30.078	1.00	14.01	A
	ATOM	5944	N			757	35.085		-30.522		13.67	A
	ATOM	5945	CA			757	34.936		-29.136		14.33	А
55	ATOM	5946	СВ			757	36.245		-28.642		14.45	А

	ATOM	5947	OG	SER A	757	37.343	81.536 -28.866	1.00 17.98	А
	ATOM	5948	C	SER A		33.815	82.806 -29.029	1.00 13.90	А
	ATOM	5949	Ö	SER A		33.703	83.688 -29.872	1.00 14.57	А
	ATOM	5950	N	VAL A		32.985	82.690 -27.997	1.00 13.86	Α
5	ATOM	5951	CA	VAL A		31.883	83.633 -27.820	1.00 14.32	A
J	ATOM	5952	СВ	VAL A		30.539	83.031 -28.334	1.00 14.99	Α
	ATOM	5953		VAL A		30.255	81.697 -27.652	1.00 15.26	Α
	ATOM	5954		VAL A		29.400	84.010 -28.089	1.00 14.66	Α
	ATOM	5955	C	VAL A		31.737	84.071 -26.366	1.00 14.81	Α
10	ATOM	5956	Ö	VAL A		31.849	83.259 -25.439	1.00 14.83	А
10	ATOM	5957	N	GLY A		31.514	85.369 -26.176	1.00 14.65	А
	ATOM	5958	CA	GLY A		31.352	85.915 -24.843	1.00 15.14	А
	ATOM	5959	C	GLY A		29.902	85.865 -24.406	1.00 16.00	А
	ATOM	5960	Ö	GLY A		29.102	86.744 -24.738	1.00 15.45	A
15	ATOM	5961	N	LEU A		29.560	84.822 -23.663	1.00 15.97	А
10	ATOM	5962	CA	LEU A		28.205	84.640 -23.168	1.00 17.13	А
	ATOM	5963	СВ	LEU A		27.828	83.157 -23.228	1.00 17.83	Α
	ATOM	5964	CG	LEU A		27.974	82.466 -24.585	1.00 17.97	Α
	ATOM	5965		LEU A		27.745	80.971 -24.427	1.00 18.75	А
20	ATOM	5966		LEU A		26.981	83.061 -25.575	1.00 19.05	А
20	ATOM	5967	C	LEU A		28.147	85.117 -21.726	1.00 17.20	A
	ATOM	5968	Ö	LEU A		29.181	85.275 -21.076	1.00 17.55	Α
	ATOM	5969	N	PRO P		26.939	85.365 -21.203	1.00 17.67	А
	ATOM	5970	CD	PRO A		25.623	85.445 -21.859	1.00 17.96	А
25	ATOM	5971	CA	PRO A		26.863	85.817 -19.811	1.00 18.19	A
20	ATOM	5972	CB	PRO A		25.365	86.026 -19.600	1.00 18.69	А
	ATOM	5973	CG	PRO P		24.888	86.419 -20.969	1.00 18.84	A
	ATOM	5974	C	PRO P		27.434	84.735 -18.889	1.00 18.29	A
	ATOM	5975	0	PRO P		26.957	83.597 -18.892	1.00 18.07	A
30	ATOM	5976	N	SER A		28.464	85.094 -18.127	1.00 17.62	A
	ATOM	5977	CA	SER A		29.121	84.189 -17.182	1.00 17.31	А
	ATOM	5978	СВ	SER A		28.084	83.390 -16.379	1.00 17.41	А
	ATOM	5979	OG	SER A		27.237	84.229 -15.623	1.00 18.47	A
	ATOM	5980	С	SER A		30.094	83.196 -17.808	1.00 17.10	Α
35	MOTA	5981	0	SER A		30.812	82.493 -17.087	1.00 17.23	А
	MOTA	5982	N	VAL A		30.134	83.126 -19.134	1.00 16.20	А
	ATOM	5983	CA	VAL A		31.013	82.160 -19.782	1.00 16.03	Α
	ATOM	5984	CB	VAL A		30.283	80.805 -19.995	1.00 15.77	A
	ATOM	5985	CG1	VAL A		31.236	79.785 -20.606	1.00 15.66	Α
40	MOTA	5986		VAL P		29.720	80.290 -18.680	1.00 16.14	A
	ATOM	5987	С	VAL A		31.564	82.560 -21.140	1.00 15.81	A
	MOTA	5988	0	VAL A	763	30.815	82.958 -22.031	1.00 16.03	А
	MOTA	5989	N	VAL A		32.881	82.473 -21.288	1.00 14.86	Α
	ATOM	5990	CA	VAL A		33.496	82.722 -22.580	1.00 14.90	А
45	MOTA	5991	CB	VAL A	764	34.873	83.415 -22.464	1.00 15.02	А
	ATOM	5992	CG1	VAL A		35.533	83.497 -23.838	1.00 15.39	А
	ATOM	5993		VAL A		34.701	84.815 -21.888	1.00 14.57	А
	ATOM	5994	С	VAL A	764	33.666	81.276 -23.041	1.00 15.18	А
	ATOM	5995	0	VAL A		34.509	80.543 -22.518	1.00 14.33	Α
50	ATOM	5996	N	HIS A		32.818	80.872 -23.982	1.00 14.66	А
	ATOM	5997	CA	HIS A		32.788	79.515 -24.524	1.00 14.46	А
	ATOM	5998	СВ	HIS A		31.340	79.162 -24.895	1.00 14.53	Α
	ATOM	5999	CG	HIS A		31.153	77.751 -25.359	1.00 15.89	Α
	ATOM	6000	CD2	HIS A		31.423		1.00 14.81	А
55	ATOM	6001	ND1	HIS A	765	30.614	77.437 -26.589	1.00 16.76	А

		ATOM	6002	CE1	HIS	Α	765	30.562	76.124	-26.722	1.00	15.67	Α
		MOTA	6003	NE2	HIS	Α	765	31.048	75.575	-25.623	1.00	17.15	Α
		MOTA	6004	С	HIS	Α	765	33.684	79.424	-25.752	1.00	14.53	Α
		MOTA	6005	0	HIS	Α	765	33.570	80.235	-26.670	1.00	13.37	A
	5	ATOM	6006	N	GLN	Α	766	34.567	78.431	-25.775	1.00	14.08	Α
		MOTA	6007	CA	GLN	Α	766	35.490	78.280	-26.892	1.00	15.14	Α
		MOTA	6008	СВ	GLN			36.898	78.699	-26.460	1.00	16.53	Α
		ATOM	6009	CG	GLN			36.955	79.975	-25.632	1.00	20.12	Α
		ATOM	6010	CD	GLN			38.142	79.989	-24.678	1.00	23.07	Α
	10	ATOM	6011	OE1	GLN			39.288	79.816	-25.096	1.00	24.43	Α
		ATOM	6012	NE2	GLN			37.868		-23.386	1.00	22.97	A
		ATOM	6013	С	GLN			35.557		-27.435	1.00	14.87	А
		ATOM	6014	Ō	GLN			35.689		-26.671		14.51	А
		ATOM	6015	N	THR			35.464		-28.756		13.43	Α
	15	ATOM	6016	CA	THR			35.564		-29.411		13.83	A
	10	ATOM	6017	CB	THR			34.340		-30.303		13.86	Α
		ATOM	6018	OG1	THR			33.150		-29.513		14.60	A
		ATOM	6019	CG2	THR			34.444		-30.906		14.49	A
		ATOM	6020	C	THR			36.828		-30.262		14.12	A
	20	ATOM	6021	0	THR			36.919		-31.207		14.35	A
	20		6021	N	ILE			37.808		-29.913		14.54	A
		ATOM	6023	CA	ILE			39.088		-30.612		15.59	A
		ATOM ATOM	6023	CB	ILE			40.243		-29.599		15.69	A
			6025	CG2				41.561		-30.327		17.18	A
	25	ATOM			ILE			39.970		-28.648		17.37	A
	23	ATOM	6026	CG1				40.946		-27.489		18.23	A
		ATOM	6027	CD1	ILE					-31.448		15.73	A
:		MOTA	6028	С	ILE			39.274		-30.984		15.43	A
		ATOM	6029	0	ILE			39.008		-30.984		16.42	A
	20	ATOM	6030	N	MET			39.736				17.29	A
	30	ATOM	6031	CA	MET			39.938		-33.595			A
		ATOM	6032	CB	MET			39.030		-34.816		18.73 19.51	A
		ATOM	6033	CG	MET			37.549		-34.478		22.39	A
1		ATOM	6034	SD	MET			36.524		-35.794		22.33	A
	25	MOTA	6035	CE	MET			36.428		-35.246			
	35	MOTA	6036	С	MET			41.384		-34.050		17.69	A
		ATOM	6037	0	MET			42.004		-34.468		16.93	A
		MOTA	6038	N	ARG			41.914		-33.977		17.77	A
		ATOM	6039	CA	ARG			43.289		-34.378		18.83	A
	40	ATOM	6040	СВ	ARG			44.161		-33.137		19.71	A
	40	ATOM	6041	CG	ARG			44.144		-32.207		22.50	A
		ATOM	6042	CD	ARG			44.964		-30.951		24.80	A
		ATOM	6043	NE	ARG			44.861		-30.040		27.76	A
		ATOM	6044	CZ	ARG			45.414		-28.833		29.18	A
	4-	MOTA	6045		ARG			46.118		-28.379		29.75	A
	45	MOTA	6046		ARG			45.262		-28.078		30.25	A
		MOTA	6047	С	ARG			43.424		-35.305		18.94	A
		ATOM	6048	0	ARG			44.527		-35.528		19.08	A
		MOTA	6049	N	GLY			42.302		-35.839		19.13	A
		ATOM	6050	CA	GLY			42.346		-36.747		20.15	Α
	50	MOTA	6051	С	GLY			41.608		-36.274		20.51	Α
		ATOM	6052	0	GLY			41.376		-37.057		22.20	A
		MOTA	6053	N	GLY	Α	772	41.250		-34.995		20.11	A
		ATOM	6054	CA	GLY	Α	772	40.530		-34.468		19.12	A
		ATOM	6055	С	GLY	Α	772	39.341		-33.651		18.40	А
	55	ATOM	6056	0	GLY	Α	772	38.737	67.125	-33.957	1.00	17.47	А

						-				
	ATOM	6057	N	ALA A	773	38.994	65.334	-32.617	1.00 17.19	Α
	ATOM	6058	CA	ALA A	773	37.880	65.721	-31.770	1.00 16.28	А
	ATOM	6059	CB	ALA A	773	37.730	64.744	-30.609	1.00 16.74	Α
	ATOM	6060	С	ALA A	773	38.208		-31.249	1.00 15.85	Α
5	ATOM	6061	0	ALA A	773	39.344		-30.858	1.00 15.72	Α
	MOTA	6062	N	PRO P	774	37.220	68.021	-31.252	1.00 14.95	А
	ATOM	6063	CD	PRO A	774	35.834	67.870	-31.729	1.00 14.54	А
	ATOM	6064	CA	PRO P	774	37.465	69.382	-30.769	1.00 14.51	А
	ATOM	6065	CB	PRO P	774	36.203	70.128	-31.190	1.00 14.89	А
10	ATOM	6066	CG	PRO P	774	35.147	69.068	-31.100	1.00 15.90	А
	ATOM	6067	С	PRO F	774	37.696	69.461	-29.264	1.00 14.10	А
	ATOM	6068	0	PRO P	774	37.293	68.574	-28.509	1.00 13.79	А
	ATOM	6069	N	GLU P	775	38.366		-28.842	1.00 13.81	A
	ATOM	6070	CA	GLU F	775	38.613		-27.432	1.00 13.78	A
15	ATOM	6071	CB	GLU F	775	40.059	71.216	-27.187	1.00 14.79	А
	MOTA	6072	CG	GLU F	775	40.363	71.499	-25.712	1.00 17.46	А
	ATOM	6073	CD	GLU A	775	41.780	71.993	-25.473	1.00 19.38	A
	ATOM	6074	OE1	GLU P	775	42.685	71.613	-26.246	1.00 21.30	A
	MOTA	6075	OE2	GLU F	775	41.993	72.746	-24.496	1.00 20.86	Α
20	MOTA	6076	С	GLU F	775	37.664	71.902	-27.074	1.00 13.37	А
	ATOM	6077	0	GLU F	775	37.471	72.828	-27.863	1.00 13.38	Α
	MOTA	6078	N	ILE F	776	37.051	71.818	-25.904	1.00 13.11	A
	MOTA	6079	CA	ILE F	776	36.138		-25.469	1.00 13.46	A
	MOTA	6080	CB	ILE F	776	34.744	72.301	-25.117	1.00 14.14	А
25	ATOM	6081	CG2	ILE F	776	33.790	73.451	-24.809	1.00 14.86	A
	ATOM	6082	CG1	ILE A	776	34.217	71.423	-26.256	1.00 14.67	A
	MOTA	6083	CD1	ILE F	776	34.074		-27.589	1.00 15.09	A
	ATOM	6084	С	ILE F	776	36.717		-24.211	1.00 13.09	A
	MOTA	6085	0	ILE F	776	37.173		-23.313	1.00 12.40	А
30	ATOM	6086	N	ARG F	777	36.715		-24.155	1.00 13.21	A
	MOTA	6087	CA	ARG A		37.210		-22.981	1.00 12.69	А
	ATOM	6088	CB	ARG F	777	38.529		-23.285	1.00 13.71	A
	MOTA	6089	CG	ARG A	777	39.679		-23.657	1.00 13.57	A
	MOTA	6090	CD	ARG A	777	40.982		-23.811	1.00 14.60	A
35	MOTA	6091	NE	ARG I		42.053		-24.350	1.00 14.70	Α
	MOTA	6092	CZ	ARG F	777	43.222		-24.782	1.00 16.35	A
	MOTA	6093		ARG F		43.477		-24.737	1.00 17.89	A
	ATOM	6094	NH2	ARG F	777	44.133		-25.272	1.00 16.86	Α
	MOTA	6095	С	ARG A		36.165		-22.567	1.00 12.89	A
40	ATOM	6096	0	ARG A		35.654		-23.404	1.00 12.83	A
	MOTA	6097	N	ASN A		35.834		-21.281	1.00 12.52	A
	MOTA	6098	CA	ASN A		34.867		-20.740	1.00 12.48	A
	MOTA	6099	CB	ASN A		33.681		-20.080	1.00 13.02	A
	MOTA	6100	CG	ASN A		32.74		-21.080	1.00 12.77	A
45	MOTA	6101		ASN A		32.722		-22.259	1.00 12.70	A
	MOTA	6102	ND2	ASN A		31.94		-20.604	1.00 11.18	A
	MOTA	6103	С	ASN A	778	35.519		-19.677	1.00 13.06	A
	MOTA	6104	0	ASN A	778	35.991		-18.661	1.00 12.54	A
	MOTA	6105	N	LEU A		35.557		-19.907	1.00 12.87	А
50	MOTA	6106	CA	LEU A		36.100		-18.905	1.00 13.87	A
	ATOM	6107	CB	LEU A		36.749		-19.562	1.00 15.11	A
	MOTA	6108	CG	LEU A		37.24		-18.603	1.00 16.41	A
	MOTA	6109		LEU A		38.23		-17.610	1.00 17.15	A
	ATOM	6110	CD2	LEU A		37.882		-19.403	1.00 17.46	A
55	MOTA	6111	С	LEU A	779	34.85	80.992	-18.121	1.00 13.84	А

	ATOM	6112	0	TEII	73	779	34.120	81 89 <i>1</i>	-18.519	1.00 14	1 16	А
	ATOM	6113	N			780	34.627		-17.012	1.00 14		A
	MOTA	6114	CA			780	33.450		-16.181	1.00 14		A
			CB			780	32.975		-15.578	1.00 13		A
5	ATOM	6115										
3	ATOM	6116		VAL			31.658		-14.830	1.00 14		A
	ATOM	6117		VAL			32.813		-16.681	1.00 12		A
	ATOM	6118	С			780	33.612		-15.046	1.00 14		A
	MOTA	6119	0			780	34.436		-14.156	1.00 14		A
	ATOM	6120	N			781	32.810		-15.096	1.00 15		A
10	MOTA	6121	CA			781	32.824		-14.069	1.00 15		Α
	ATOM	6122	CB	ASP	Α	781	33.503	84.886	-14.582	1.00 16	5.51	Α
	MOTA	6123	CG	ASP	Α	781	33.578	85.975	-13.522	1.00 17	7.79	Α
	ATOM	6124	OD1	ASP	Α	781	34.045	87.088	-13.847	1.00 19	9.59	Α
	ATOM	6125	OD2	ASP	Α	781	33.174	85.718	-12.366	1.00 17	7.43	Α
15	ATOM	6126	С	ASP	Α	781	31.371	83.909	-13.738	1.00 19	5.21	Α
	ATOM	6127	Ó			781	30.736		-14.363	1.00 14		Α
	ATOM	6128	N			782	30.851		-12.758	1.00 15		Α
	ATOM	6129	CA			782	29.467		-12.344	1.00 16		A
	ATOM	6130	CB			782	29.075		-11.416	1.00 16		A
20	ATOM	6131	CG2			782	29.673		-10.025	1.00 15		A
20		6132	CG2			782			-11.348	1.00 16		A
	ATOM						27.555					
	ATOM	6133	CD1			782	27.095		-10.765	1.00 14		A
	ATOM	6134	C			782	29.203		-11.664	1.00 18		A
25	MOTA	6135	0			782	28.070		-11.311	1.00 19		A
25	ATOM	6136	N			783	30.257		-11.493	1.00 19		Α
	ATOM	6137	CA			783	30.117		-10.890	1.00 22		A
	ATOM	6138	С	GLY	Α	783	29.283	86.844	-9.624	1.00 23		A
	ATOM	6139	0	GLY	А	783	29.552	86.123	-8.663	1.00 23	3.43	А
	ATOM	6140	N	SER	Α	784	28.266	87.702	-9.616	1.00 24		A
30	ATOM	6141	CA	SER	Α	784	27.412	87.840	-8.439	1.00 26	5.45	Α
	ATOM	6142	CB	SER	Α	784	27.329	89.311	-8.014	1.00 27	7.09	Α
	ATOM	6143	OG	SER	Α	784	26.712	90.107	-9.012	1.00 29	9.22	Α
	ATOM	6144	С	SER	Α	784	26.002	87.274	-8.628	1.00 27	7.13	Α
	ATOM	6145	0			784	25.067	87.676	-7.933	1.00 27		Α
35	ATOM	6146	N			785	25.853	86.339	-9.563	1.00 26		А
-	ATOM	6147	CA			785	24.558	85.712	-9.820	1.00 26		Α
	ATOM	6148	СВ			785	24.587		-11.152	1.00 27		A
	ATOM	6149	CG			785	24.491		-12.461	1.00 28		A
	ATOM	6150		LEU			25.503		-12.478	1.00 29		A
40	ATOM	6151		LEU			24.729		-13.629	1.00 28		A
40		6152										
	ATOM		C			785	24.230	84.739	-8.691	1.00 26		A
	ATOM	6153	0			785	24.457	83.531		1.00 26		A
	ATOM	6154	N			786	23.688	85.265	-7.598	1.00 25		A
4.	ATOM	6155	CA			786	23.348	84.438	-6.446	1.00 24		A
45	ATOM	6156	CB	ASP			22.884	85.315	-5.281	1.00 26		A
	MOTA	6157	CG	ASP			23.875	86.409	-4.947	1.00 28		A
	MOTA	6158		ASP			25.073	86.102	-4.770	1.00 27		Α
	ATOM	6159	OD2	ASP	A	786	23.449	87.581	-4.863	1.00 30	.70	А
	ATOM	6160	С	ASP	Α	786	22.284	83.383	-6.731	1.00 22		Α
50	MOTA	6161	0	ASP	Α	786	21.401	83.573	-7.572	1.00 22	2.07	Α
	ATOM	6162	N	ASN			22.380	82.274	-6.006	1.00 21	.19	А
	ATOM	6163	CA	ASN			21.450	81.161	-6.135	1.00 20		A
	ATOM	6164	CB	ASN			20.110	81.522	-5.495	1.00 21		А
	ATOM	6165	CG	ASN			20.249	81.835	-4.020	1.00 23		A
55	ATOM	6166		ASN			20.912	81.103	-3.283	1.00 24		A
	111 011	0100	ODI	11011	1.7	, 0 ,	20.712	54.105	5.205	1.00 23		* *

	n mon	6167	MAG	T C N	70	707	10 (20	82.922	-3.580	1 00	24.91	А
	ATOM	6167		ASN			19.629		-7.583			
	ATOM	6168	С			787	21.261	80.749			19.69	A
	ATOM	6169	0			787	20.141	80.599	-8.070		19.17	A
_	ATOM	6170	N			788	22.381	80.556	-8.265		18.19	A
5	MOTA	6171	CA			788	22.365	80.155	-9.658		17.22	Α
	MOTA	6172	CB	THR	Α	788	22.704		-10.579	1.00	18.00	A
	MOTA	6173	OG1	THR	Α	788	21.749	82.399	-10.370	1.00	18.28	A
	ATOM	6174	CG2	THR	Α	788	22.669	80.926	-12.044	1.00	18.47	Α
	ATOM	6175	С	THR	Α	788	23.398	79.058	-9.886	1.00	15.98	A
10	ATOM	6176	0	THR	Α	788	24.492	79.096	-9.322	1.00	15.00	А
	ATOM	6177	N			789	23.030	78.074	-10.695	1.00	14.52	A
	ATOM	6178	CA			789	23.937		-11.045		14.59	А
	ATOM	6179	СВ			789	23.469		-10.433		14.05	А
	ATOM	6180	CG			789	23.440	75.701	-8.906		14.04	A
15	ATOM	6181	CD			789	23.457	74.328	-8.256		14.08	A
15		6182	OE1				24.222	73.453	-8.724		13.65	A
	ATOM								-7.262		13.58	A
	ATOM	6183	OE2				22.719	74.136				
	ATOM	6184	С			789	23.928		-12.565		14.52	A
20	ATOM	6185	0			789	22.884		-13.186		14.93	A
20	MOTA	6186	N			790	25.094		-13.160		13.89	A
	MOTA	6187	CA			790	25.228		-14.608		13.95	А
	ATOM	6188	CB			790	26.320		-15.056		14.54	A
	MOTA	6189	CG2				26.396		-16.576		15.34	A
	MOTA	6190	CG1	ILE	Α	790	26.012	79.547	-14.508	1.00	16.25	A
25	ATOM	6191	CD1	ILE	Α	790	27.135	80.551	-14.712	1.00	18.66	Α
	ATOM	6192	С	ILE	Α	790	25.574	75.778	-15.134	1.00	14.00	A
	ATOM	6193	0	ILE	Α	790	26.532	75.151	-14.680	1.00	13.91	A
	ATOM	6194	N	VAL	Α	791	24.791	75.304	-16.094	1.00	13.84	A
	ATOM	6195	CA	VAL	Α	791	25.024	73.991	-16.668	1.00	13.77	A
30	ATOM	6196	СВ			791	23.811	73.054	-16.417	1.00	14.65	А
	ATOM	6197		VAL			22.581		-17.164	1.00	14.60	А
	ATOM	6198		VAL			24.143	71.633	-16.854		13.66	А
	ATOM	6199	C			791	25.274		-18.167		14.13	А
	ATOM	6200	Ö			791	24.707		-18.853		14.03	А
35	ATOM	6201	N			792	26.153		-18.664		13.29	A
55	ATOM	6202	CA			792	26.438		-20.092		13.85	A
		6203	CB			792	27.941		-20.365		14.34	A
	ATOM						28.273		-21.841		14.06	A
	ATOM	6204	CG			792			-22.209		15.67	A
40	ATOM	6205	SD	MET			30.043				15.89	
40	ATOM	6206	CE	MET			30.667		-21.346			A
	MOTA	6207	С	MET			25.803		-20.564		13.88	A
	ATOM	6208	0			792	26.139		-20.067		13.81	A
	ATOM	6209	N			793	24.884		-21.518		14.28	A
. =	MOTA	6210	CA	ARG			24.184		-22.022		14.14	A
45	MOTA	6211	CB			793	22.674	70.941	-21.766		14.51	A
	ATOM	6212	CG	ARG	Α	793	21.804	69.766	-22.242	1.00	14.54	A
	ATOM	6213	CD	ARG	Α	793	20.322	70.029	-21.946	1.00	15.61	А
	MOTA	6214	NE	ARG	Α	793	20.062	70.132	-20.511	1.00	16.05	A
	ATOM	6215	CZ	ARG	Α	793	18.974	70.684	-19.982	1.00	16.93	A
50	ATOM	6216		ARG			18.031		-20.768		16.82	А
-	ATOM	6217		ARG			18.830		-18.662		17.05	А
	ATOM	6218	С			793	24.423		-23.503		14.27	А
	ATOM	6219	Ö			793	24.637		-24.285		14.21	А
	ATOM	6220	N	LEU			24.396		-23.873		14.02	A
55	ATOM	6221	CA	LEU			24.556		-25.257		14.74	A
	11100	0221	OF	220	4-1	, , , ,	2550	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20.20,	2.00		• •

	ATOM	6222	СВ	LEU	Α	794	25.730	67.857	-25.391	1.00	15.15	A
	ATOM	6223	CG	LEU	Α	794	27.138		-25.460	1.00	15.18	Α
	ATOM	6224	CD1	LEU	Α	794	28.176		-25.009	1.00	16.00	Α
	ATOM	6225	CD2	LEU	Α	794	27.414		-26.885		16.18	Α
5	ATOM	6226	С	LEU	Α	794	23.253	68.147	-25.658	1.00	15.38	Α
	MOTA	6227	0	LEU	Α	794	22.765	67.270	-24.941	1.00	14.50	Α
	ATOM	6228	N	GLU	Α	795	22.680	68.561	-26.787	1.00	15.73	А
	ATOM	6229	CA	GLU	Α	795	21.437	67.966	-27.274	1.00	16.52	А
	ATOM	6230	CB	GLU	Α	795	20.368	69.054	-27.464	1.00	17.12	А
10	ATOM	6231	CG	GLU	Α	795	20.156	69.921	-26.228		19.27	Α
	ATOM	6232	CD	GLU	Α	795	19.114	71.015	-26.423		21.04	Α
	ATOM	6233	OE1	GLU	Α	795	19.073	71.623	-27.515		22.12	А
	ATOM	6234	OE2	GLU	Α	795	18.348	71.281	-25.475		21.33	А
	ATOM	6235	С	GLU	Α	795	21.710	67.244	-28.597	1.00	16.30	А
15	MOTA	6236	0	GLU	Α	795	22.263	67.829	-29.526	1.00	16.34	A
	ATOM	6237	N	THR	Α	796	21.337	65.967	-28.673	1.00	16.19	Α
	ATOM	6238	CA	THR	Α	796	21.553	65.181	-29.883	1.00	16.65	Α
	ATOM	6239	CB	THR	Α	796	22.744	64.211	-29.737	1.00	16.82	А
	ATOM	6240	OG1	THR	Α	796	22.345	63.091	-28.932	1.00	16.53	Α
20	ATOM	6241	CG2	THR	Α	796	23.935	64.910	-29.086	1.00	16.74	Α
	ATOM	6242	С	THR	Α	796	20.333	64.329	-30.221	1.00	17.22	A
	ATOM	6243	0	THR	Α	796	19.332	64.347	-29.509	1.00	17.97	А
	ATOM	6244	N	HIS	Α	797	20.443	63.577	-31.312	1.00	19.17	А
	ATOM	6245	CA	HIS	Α	797	19.377	62.691	-31.769	1.00	20.27	Α
25	MOTA	6246	СВ	HIS	Α	797	19.235	62.775	-33.291	1.00	21.87	Α
	ATOM	6247	CG	HIS	A	797	18.600	64.043	-33.769		22.65	A
	ATOM	6248	CD2	HIS	Α	797	17.956	65.025	-33.097		22.75	A
	ATOM	6249	ND1	HIS	Α	797	18.574	64.407	-35.099	1.00	23.52	А
	ATOM	6250	CE1	HIS	Α	797	17.941	65.560	-35.223	1.00	23.34	A
30	ATOM	6251	NE2	HIS	Α	797	17.556	65.956	-34.023	1.00	22.42	А
	ATOM	6252	С	HIS	Α	797	19.677	61.251	-31.368	1.00	20.49	Α
	ATOM	6253	0	HIS	Α	797	18.952	60.332	-31.743	1.00	21.41	Α
	ATOM	6254	N	ILE	Α	798	20.749	61.059	-30.605	1.00	19.36	А
	ATOM	6255	CA	ILE	Α	798	21.132	59.724	-30.157	1.00	18.76	А
35	ATOM	6256	CB	ILE	Α	798	22.422	59.778	-29.302		18.71	A
	ATOM	6257	CG2	ILE	Α	798	22.770	58.384	-28.786	1.00	17.92	A
	ATOM	6258	CG1	ILE	Α	798	23.570	60.333	-30.154	1.00	18.53	Α
	ATOM	6259	CD1	ILE	Α	798	24.874		-29.395	1.00	17.95	A
	ATOM	6260	С	ILE	Α	798	19.997	59.105	-29.349	1.00	18.42	Α
40	MOTA	6261	0	ILE	Α	798	19.477	59.719	-28.418	1.00	17.56	А
	MOTA	6262	N	ASP	А	799	19.609		-29.723		18.81	A
	ATOM	6263	CA	ASP	Α	799	18.522	57.182	-29.056		18.57	Α
	ATOM	6264	CB	ASP	Α	799	17.872	56.196	-30.031		20.01	A
	ATOM	6265	CG	ASP	Α	799	16.543	55.678	-29.530		21.36	А
45	ATOM	6266	OD1	ASP	Α	799	16.070	54.651	-30.053	1.00	22.33	Α
	ATOM	6267	OD2	ASP	Α	799	15.968	56.302	-28.616	1.00	21.98	A
	ATOM	6268	С	ASP	Α	799	19.024	56.429	-27.828	1.00	18.37	A
	ATOM	6269	0	ASP	Α	799	18.977	55.199	-27.777	1.00	17.79	A
	ATOM	6270	N			800	19.493	57.175	-26.834	1.00	17.69	A
50	ATOM	6271	CA	SER			20.023	56.584	-25.610	1.00	17.20	Α
	ATOM	6272	СВ	SER	Α	800	21.013	57.556	-24.959	1.00	16.54	Α
	ATOM	6273	OG	SER			20.383	58.792	-24.673	1.00	16.23	Α
	MOTA	6274	С	SER			18.947	56.193	-24.597	1.00	16.97	Α
	ATOM	6275	0	SER			19.195	55.375	-23.711	1.00	16.98	Α
55	ATOM	6276	N	GLY	Α	801	17.760	56.780	-24.719	1.00	16.72	Α

	ATOM	6277	CA	GLY	Α	801	16.684		-23.798	1.00 16		Α
	ATOM	6278	С	GLY	Α	801	16.937		-22.387	1.00 15		Α
	ATOM	6279	0	GLY	Α	801	17.034		-22.162	1.00 16		Α
	ATOM	6280	N	ASP	Α	802	17.042	56.035	-21.433	1.00 19	5.86	Α
5	MOTA	6281	CA	ASP	Α	802	17.290	56.402	-20.042	1.00 15	5.52	Α
	ATOM	6282	CB	ASP	Α	802	16.203	55.808	-19.125	1.00 16	5.28	А
	ATOM	6283	CG	ASP	Α	802	16.093	54.290	-19.229	1.00 17	7.22	Α
	ATOM	6284		ASP			15.201	53.720	-18.559	1.00 17	7.37	Α
	ATOM	6285		ASP			16.884		-19.967	1.00 17	7.32	A
10	ATOM	6286	C	ASP			18.672		-19.571	1.00 15		А
10	ATOM	6287	Ö	ASP			18.969		-18.378	1.00 14		А
	ATOM	6288	N			803	19.514		-20.517	1.00 14		А
	ATOM	6289	CA			803	20.862		-20.207	1.00 14		А
	ATOM	6290	CB			803	21.166		-20.968	1.00 14		A
15		6291		ILE			22.583		-20.656	1.00 13		A
13	ATOM						20.139		-20.593	1.00 15		A
	ATOM	6292		ILE					-19.127	1.00 15		A
	ATOM	6293	CD1			803	20.150			1.00 14		A
	ATOM	6294	C			803	21.981		-20.540			A
20	ATOM	6295	0			803	21.923		-21.533	1.00 13		
20	MOTA	6296	N			804	22.998		-19.686	1.00 13		A
	ATOM	6297	CA			804	24.166		-19.915	1.00 13		A
	MOTA	6298	CB			804	23.886		-19.614	1.00 12		A
	MOTA	6299	CG			804	23.523		-18.184	1.00 12		A
	ATOM	6300	CD1				24.455		-17.327	1.00 12		A
25	MOTA	6301		PHE			22.231		-17.714	1.00 12		A
	MOTA	6302	CE1	PHE	Α	804	24.100		-16.025	1.00 12		A
	MOTA	6303	CE2	PHE	Α	804	21.866		-16.416	1.00 12		A
	MOTA	6304	CZ	PHE	Α	804	22.804		-15.569	1.00 13		А
	ATOM	6305	С	PHE	Α	804	25.304		-19.074	1.00 13		A
30	ATOM	6306	0	PHE	Α	804	25.084	55.547	-18.196	1.00 13	3.40	Α
	ATOM	6307	N	TYR	Α	805	26.523	56.804	-19.366	1.00 13	3.12	Α
	ATOM	6308	CA	TYR	Α	805	27.674	56.305	-18.633	1.00 12	2.37	A
	ATOM	6309	СВ	TYR	Α	805	28.549	55.447	-19.552	1.00 12	2.55	A
	ATOM	6310	CG	TYR	Α	805	27.851	54.219	-20.112	1.00 1	4.19	A
35	ATOM	6311	CD1	TYR	Α	805	26.860	54.335	-21.090	1.00 1	4.01	Α
	MOTA	6312	CE1	TYR	Α	805	26.225	53.203	-21.615	1.00 14	4.29	A
	ATOM	6313		TYR			28.190		-19.667	1.00 1	4.18	A
	ATOM	6314		TYR			27.560		-20.183	1.00 1	4.39	A
	ATOM	6315	CZ			805	26.583		-21.156	1.00 1		Α
40	ATOM	6316	ОН			805	25.973		-21.675	1.00 1		А
10	ATOM	6317	C			805	28.509		-18.050	1.00 13		А
	ATOM	6318	0			805	28.649		-18.657	1.00 1		A
	ATOM	6319	N			806	29.045		-16.858	1.00 1		A
		6320	CA			806	29.898		-16.180	1.00 1		A
45	ATOM					806	29.140		-15.055	1.00 1		A
45	ATOM	6321	CB						-14.032	1.00 13		A
	ATOM	6322	OG1			806	28.769			1.00 1		A
	MOTA	6323	CG2			806	27.877		-15.614	1.00 1		
	MOTA	6324	С			806	31.058		-15.605			A
F0	MOTA	6325	0			806	30.934		-15.407	1.00 1		A
50	MOTA	6326	N			807	32.189		-15.352	1.00 10		A
	ATOM	6327	CA			807	33.327		-14.822	1.00 10		A
	ATOM	6328	CB			807	34.630		-15.470	1.00 10		A
	MOTA	6329	CG			807	35.086		-14.953	1.00 10		A
	ATOM	6330		ASP			36.235		-14.480	1.00 1		А
55	MOTA	6331	OD2	ASP	A	807	34.308	60.061	-15.026	1.00 1	1.19	A

		ATOM	6332	С	ASP A		33.438		-13.314 -12.699	1.00	10.70 9.93	A A
		ATOM	6333	0	ASP A		32.855					
		ATOM	6334	N	LEU /		34.182		-12.729		10.38	A A
	-	ATOM	6335	CA	LEU A		34.418		-11.299			
	5	ATOM	6336	CB	LEU .		33.963		-10.676		10.91	A A
		ATOM	6337	CG	LEU A		32.445		-10.532			
		ATOM	6338		LEU .		32.126		-10.277		12.22 11.26	A A
		ATOM	6339		LEU A		31.917		-9.391		10.25	A A
	10	ATOM	6340	C	LEU .		35.910		-11.087		10.25	
	10	ATOM	6341	0	LEU .		36.722		-11.462	1.00	9.42	A A
		ATOM	6342	N	ASN A		36.261		-10.527 -10.219	1.00	9.42	A
		ATOM	6343	CA	ASN .		37.647			1.00	8.78	A
		ATOM	6344	CB	ASN .		38.121	57.262	-9.073 -7.933	1.00	8.98	A
	15	ATOM	6345	CG	ASN .		37.128	57.226			11.42	A
	15	ATOM	6346		ASN A		37.110	58.114	-7.073 -7.934	1.00	7.45	A
		ATOM	6347		ASN A		36.272		-11.386	1.00	9.64	A
		ATOM	6348	С	ASN A		38.623			1.00	9.79	A
		ATOM	6349	0	ASN A		39.807		-11.177		10.08	A
	20	ATOM	6350	N	GLY A		38.133		-12.604 -13.774		10.06	A
	20	ATOM	6351	CA	GLY A		38.997		-13.774		12.28	A
Nada , h=a		ATOM	6352	C	GLY .		39.586		-13.964		13.07	A
1,54		ATOM	6353	0	GLY .		40.611		-13.419		11.50	A
1,11		ATOM	6354	N	LEU .		38.923		-13.419		11.55	A
	25	ATOM	6355	CA	LEU .		39.384				11.82	A
	25	ATOM	6356	CB	LEU .		39.490		-12.085		13.81	A
frii Tu		ATOM	6357	CG	LEU .		39.816		-11.968 -12.510		14.31	A
M		ATOM	6358		LEU .		41.218		-12.510		13.02	A
žį.		ATOM	6359		LEU .		39.706 38.511		-10.313		11.64	A
	30	ATOM	6360	С	LEU .		39.022		-15.086		12.98	A
, PT	30	ATOM	6361	0	LEU .		37.197		-14.235		10.70	A
		ATOM	6362	N			36.261		-14.233		11.31	A
i L		ATOM	6363	CA CB	GLN .		35.885		-14.031		12.03	A
		ATOM	6364	CG	GLN .		35.287		-12.693		12.84	A
	35	ATOM	6365 6366	CD	GLN .		34.982		-11.722		14.63	A
į.	33	MOTA	6367		GLN .		33.988		-11.867		15.09	A
		ATOM ATOM	6368		GLN .		35.843		-10.723		14.88	A
		ATOM	6369	C	GLN .		34.995		-15.292		11.14	A
		ATOM	6370	0	GLN .		34.692		-14.670		11.87	A
	40	ATOM	6371		PHE .		34.259				10.54	A
	40	ATOM	6372	CA	PHE .		32.999		-16.666		10.98	A
		ATOM	6373	CB		A 813	32.957		-18.170		11.42	A
		ATOM	6374	CG	PHE		33.707		-18.544		11.91	A
		ATOM	6375		PHE .		35.098		-18.578		11.51	A
	45	ATOM	6376		PHE .		33.025		-18.795		12.99	A
	40	ATOM	6377		PHE .		35.803		-18.851		11.25	A
		ATOM	6378		PHE		33.722		-19.070		12.39	A
		ATOM	6379	CZ		A 813	35.114		-19.096		11.92	A
		ATOM	6380	C		A 813	31.876		-16.261		11.59	A
	50	ATOM	6381	Ö		A 813	31.889		-16.573		11.72	A
	50	ATOM	6382	N		A 814	30.914		-15.539		11.18	A
		ATOM	6383	CA		A 814	29.799		-15.037		11.06	A
		ATOM	6384	CB		A 814	29.722		-13.494		11.10	A
		ATOM	6385		ILE		29.416		-13.103		11.45	A
	55	ATOM	6386		ILE		28.669		-12.931		11.83	A
		AT OU	0000	COI			20.000	51.001	,	~		

	MOTA	6387	CD1	ILE	Α	814	28.662	51.592 -11	.402	1.00 1	1.69	Α
	ATOM	6388	С	ILE	Α	814	28.487	52.933 -15	.681	1.00 1	1.26	Α
	ATOM	6389	0	ILE	Α	814	28.261	54.118 -15		1.00 10	0.34	Α
	ATOM	6390	N	LYS	Α	815	27.629	51.960 -15	.967	1.00 1	1.46	Α
5	ATOM	6391	CA	LYS	Α	815	26.343	52.232 -16	.593	1.00 1	1.88	Α
	MOTA	6392	CB	LYS	Α	815	25.751	50.926 -17	.135	1.00 13	2.12	Α
	ATOM	6393	CG	LYS	Α	815	24.392	51.047 -17	.815	1.00 1	4.24	А
	ATOM	6394	CD	LYS	Α	815	23.997	49.696 -18		1.00 1	6.46	Α
	ATOM	6395	CE	LYS	Α	815	22.678	49.769 -19	.164	1.00 1	9.21	Α
10	ATOM	6396	NZ	LYS	Α	815	22.321	48.454 -19		1.00 20	0.77	Α
	ATOM	6397	С	LYS	А	815	25.384	52.879 -15	.603	1.00 1		Α
	ATOM	6398	0	LYS	Α	815	25.252	52.423 -14	.468	1.00 13		А
	MOTA	6399	N	ARG	Α	816	24.733	53.953 -16	.043	1.00 1	1.64	Α
	ATOM	6400	CA	ARG	Α	816	23.768	54.689 -15	.232	1.00 1	1.48	Α
15	ATOM	6401	CB	ARG	Α	816	24.129	56.178 -15	.165	1.00 1	1.74	Α
	MOTA	6402	CG	ARG	Α	816	25.517	56.492 -14	.641	1.00 13	2.05	Α
	MOTA	6403	CD	ARG	Α	816	25.687	55.935 -13	.245	1.00 1	2.44	Α
	ATOM	6404	NE	ARG	A	816	26.852	56.488 -12		1.00 1	1.57	Α
	ATOM	6405	CZ	ARG	Α	816	27.222	56.119 -11	.339	1.00 13	2.04	Α
20	ATOM	6406	NH1	ARG	Α	816	26.517	55.201 -10	.691	1.00 10	0.85	Α
; :	MOTA	6407	NH2	ARG	Α	816	28.281	56.672 -10	.764	1.00 10	0.30	Α
;	MOTA	6408	С	ARG	Α	816	22.400	54.586 -15	.884	1.00 1	1.32	Α
	ATOM	6409	0	ARG	Α	816	22.300	54.506 -17	.105	1.00 1	0.94	А
	ATOM	6410	N	ARG	Α	817	21.351	54.582 -15	.073	1.00 1	1.27	Α
25	MOTA	6411	CA	ARG	Α	817	20.000	54.551 -15	.615	1.00 13	2.22	Α
	ATOM	6412	CB	ARG	Α	817	19.293	53.210 -15	.334	1.00 13	2.89	А
	ATOM	6413	CG	ARG	Α	817	17.827	53.209 -15	.802	1.00 1	3.67	А
	ATOM	6414	CD	ARG	Α	817	17.111	51.865 -15	.632	1.00 1	4.62	A
	ATOM	6415	NE	ARG	Α	817	17.626	50.837 -16	.532	1.00 1	5.59	A
30	ATOM	6416	CZ	ARG	A	817	18.366	49.804 -16	.144	1.00 1	6.50	Α
	ATOM	6417	NH1	ARG	Α	817	18.682	49.654 -14	.864	1.00 1	7.15	Α
	ATOM	6418	NH2	ARG	Α	817	18.793	48.919 -17	.035	1.00 1	6.79	Α
	MOTA	6419	С	ARG	Α	817	19.213	55.687 -14	.981	1.00 13	2.55	А
	ATOM	6420	O	ARG	Α	817	19.037	55.724 -13	.764	1.00 1		Α
35	ATOM	6421	N	ARG	Α	818	18.778	56.636 -15	.805	1.00 1		A
-	MOTA	6422	CA	ARG	Α	818	17.983	57.752 - 15	.319	1.00 13		А
	ATOM	6423	CB	ARG	Α	818	17.625	58.699 -16	.469	1.00 1		A
	MOTA	6424	CG	ARG			16.925	59.978 -16		1.00 1		Α
_	MOTA	6425	CD	ARG			16.277	60.714 -17		1.00 1		A
4 0	MOTA	6426	NE	ARG			14.988	60.122 -17				A
	ATOM	6427	CZ	ARG	Α	818	14.714	59.543 -18		1.00 18		A
	MOTA	6428	NH1	ARG	Α	818	15.638	59.467 -19		1.00 1		А
	ATOM	6429	NH2	ARG	Α	818	13.508	59.034 -18		1.00 1		А
	ATOM	6430	С	ARG			16.705	57.143 -14		1.00 1		A
45	MOTA	6431	0	ARG			16.060	56.330 -15		1.00 1		A
	MOTA	6432	N	LEU			16.350	57.524 -13		1.00 1		A
	MOTA	6433	CA	LEU	Α	819	15.146	57.007 -12		1.00 1		A
	MOTA	6434	СВ	LEU			15.511	56.302 -11		1.00 1		A
	ATOM	6435	CG	LEU	Α	819	16.430	55.080 -11		1.00 1		Α
50	ATOM	6436		LEU			16.851	54.606 -10		1.00 1		A
	MOTA	6437	CD2	LEU			15.714	53.972 -12		1.00 1		Α
	ATOM	6438	С	LEU			14.180	58.150 -12		1.00 1		Α
	MOTA	6439	0	LEU			14.431	58.995 -11		1.00 1		Α
	ATOM	6440	N	ASP			13.068	58.176 -13		1.00 1		A
55	ATOM	6441	CA	ASP	Α	820	12.100	59.238 -13	.138	1.00 1	7.08	A

						_	_					10 00	-
		ATOM	6442	CB	ASP A					-14.306		18.98	A
		ATOM	6443	CG	ASP .					-15.635		20.10	A
		ATOM	6444		ASP .					-15.650		21.45	A
	_	ATOM	6445		ASP .					-16.665		22.62	A
	5	ATOM	6446	С	ASP .					-11.805		17.02	A
		ATOM	6447	0	ASP .					-11.360		16.56	A
		ATOM	6448	N	LYS .					-11.157		16.60	A
		ATOM	6449	CA	LYS .				57.756	-9.862		16.60	A
		ATOM	6450	CB	LYS				6.265	-9.505		17.21	A
	10	ATOM	6451	CG	LYS .				55.579	-9.317		17.29	A
		ATOM	6452	CD	LYS .				54.073	-9.157		16.45	A
		ATOM	6453	CE	LYS				53.374	-9.053		16.98	A
		ATOM	6454	NZ	LYS .				51.888	-9.114		15.59	A
		ATOM	6455	С	LYS .				8.516	-8.798		16.66	A
	15	MOTA	6456	0	LYS .				8.638	-7.655		16.84	A
		MOTA	6457	N	LEU .				59.030	-9.187		15.85	Α
		ATOM	6458	CA	LEU .				59.804	-8.274		15.43	A
		ATOM	6459	CB	LEU .				9.235	-8.234		14.68	A
	•	ATOM	6460	CG	LEU .				57.795	-7.723		14.77	A
	20	ATOM	6461		LEU .				57.370	-7.747		14.13	A
, RE		ATOM	6462		LEU .				57.704	-6.308		13.61	A
		ATOM	6463	С	LEU .				51.257	-8.742		15.52	A
enterior. Enterior		ATOM	6464	0	LEU .				51.538	-9.928		15.57	A
	~-	ATOM	6465	N	PRO .				52.202	-7.815		15.92	A
NJ.	25	ATOM	6466	CD	PRO .				52.039	-6.360		15.59	A
1,1,1		ATOM	6467	CA	PRO .				63.617	-8.200		15.73	A
ijħ.		ATOM	6468	СВ	PRO .				54.342	-6.857		15.56	A
EI .		ATOM	6469	CG	PRO .				53.362	-5.955		16.99	A
	20	ATOM	6470	С	PRO				53.927	-9.070		15.83	A
ı,D	30	ATOM	6471	0	PRO .				53.176	-9.086		16.38	A
W.		ATOM	6472	N	LEU .				55.043	-9.788		15.04	A
ļ.		ATOM	6473	CA	LEU .					-10.687		14.32	A
		ATOM	6474	CB	LEU .					-11.132		14.06	A
	25	ATOM	6475	CG	LEU .					-12.343		13.30	A
- 14 A	35	ATOM	6476		LEU .					-12.939		13.69	A
		ATOM	6477		LEU .					-11.931		12.50 14.34	A A
		ATOM	6478	C	LEU .					-10.101		13.76	A
		ATOM	6479	0	LEU .				55.903	-10.713 -8.917		13.89	A
	40	ATOM	6480	N	GLN .					-8.273			A
	4 0	ATOM	6481		GLN					-6.952		13.86	
		ATOM	6482	CB	GLN .				66.650			14.09	A A
		ATOM	6483	CG	GLN .				66.091	-5.922			A
		ATOM	6484	CD	GLN .				66.678	-6.045		13.72 14.70	A
	45	ATOM	6485		GLN .				67.096	-7.123 -4.939		12.85	A
	45	ATOM	6486		GLN .				56.697			14.39	A
		ATOM	6487	C	GLN .				64.473 64.283	-8.011 -7.905		13.92	A
		ATOM	6488	0	GLN .				63.494	-7.891		13.71	A
		ATOM	6489	N	ALA.					-7.640		13.79	A
	50	ATOM	6490	CA	ALA				52.120				A
	50	ATOM	6491	CB	ALA				51.283	-7.168 -9.903		14.08 13.92	A
		MOTA	6492	C	ALA .				51.510	-8.903 -8.836			A A
		ATOM	6493	O N	ALA .				50.563	-8.836 -10.058		14.14 13.45	A
		ATOM	6494	N C7	ASN .					-10.058			
	EE	ATOM	6495	CA	ASN .					-11.321		12.85	A
	55	ATOM	6496	CB	ASN .	4 85	21 18	.910	04.090	-12.412	1.00	14.30	А

		ATOM	6497	CG	ASN	Α	827	17.765	60.704	-12.234	1.00	15.77	А
		ATOM	6498	OD1	ASN	Α	827	17.962	59.491	-12.318	1.00	15.57	А
		ATOM	6499	ND2	ASN	Α	827	16.567	61.218	-11.972	1.00	16.77	А
		ATOM	6500	С	ASN	Α	827	21.290	62.200	-11.726	1.00	12.33	Α
	5	ATOM	6501	0	ASN	Α	827	21.813	61.956	-12.812	1.00	11.17	Α
		ATOM	6502	N	TYR	Α	828	21.820	63.046	-10.846	1.00	12.25	A
		ATOM	6503	CA	TYR	Α	828	23.109	63.677	-11.098	1.00	12.12	Α
		ATOM	6504	CB	TYR			23.200	65.057	-10.438	1.00	12.01	А
		ATOM	6505	CG	TYR	Α	828	23.230	66.205	-11.434	1.00	12.71	Α
	10	ATOM	6506		TYR			22.160	66.432	-12.297	1.00	11.49	A
		ATOM	6507		TYR			22.191	67.472	-13.230	1.00	12.16	А
		ATOM	6508		TYR			24.338	67.051	-11.522	1.00	11.99	A
		MOTA	6509		TYR			24.380	68.092	-12.450	1.00	12.59	A
		ATOM	6510	CZ	TYR			23.306	68.297	-13.300	1.00	11.81	A
	15	ATOM	6511	ОН	TYR			23.356	69.311	-14.231	1.00	12.90	А
		ATOM	6512	С	TYR			24.151	62.747	-10.485	1.00	11.84	Α
		ATOM	6513	0	TYR	Α	828	23.953	62.220	-9.387	1.00	11.86	A
		ATOM	6514	N	TYR	Α	829	25.246	62.540	-11.208	1.00	11.25	Α
ġ122 # ;		ATOM	6515	CA	TYR	Α	829	26.330	61.674	-10.759	1.00	11.17	Α
tapaf ,⊯ta	20	ATOM	6516	СВ	TYR	Α	829	26.365	60.376	-11.576	1.00	11.21	Α
: <u>U</u>		ATOM	6517	CG	TYR	Α	829	25.203	59.451	-11.315	1.00	11.79	A
Ü		ATOM	6518	CD1	TYR	Α	829	24.042	59.516	-12.087	1.00	11.45	Α
M		MOTA	6519	CE1	TYR	Α	829	22.945	58.691	-11.809	1.00	12.46	A
		ATOM	6520		TYR			25.248	58.540	-10.261	1.00	11.44	A
	25	ATOM	6521		TYR			24.165	57.718	-9.973	1.00	12.38	A
ij		MOTA	6522	CZ	TYR	Α	829	23.017	57.797	-10.745	1.00	12.11	A
₽.		MOTA	6523	ОН	TYR	Α	829	21.944	56.993	-10.433	1.00	12.60	A
EI		ATOM	6524	С	TYR	Α	829	27.676	62.365	-10.916	1.00	10.97	A
		MOTA	6525	0	TYR	Α	829	27.799	63.357	-11.630	1.00	10.60	A
	30	ATOM	6526	N	PRO	Α	830	28.708		-10.239	1.00	10.67	А
1,647. 149 II		MOTA	6527	CD	PRO	Α	830	28.721		-9.255	1.00	10.48	A
14		MOTA	6528	CA	PRO	Α	830	30.030	62.464	-10.363	1.00	10.76	A
		ATOM	6529	CB	PRO	Α	830	30.889	61.657	-9.386	1.00	11.38	A
		ATOM	6530	CG	PRO	Α	830	29.906	61.114	-8.396	1.00	11.76	A
į.	35	ATOM	6531	С	PRO	А	830	30.534		-11.796	1.00		A
		ATOM	6532	0	PRO	Α	830	30.317		-12.400	1.00		A
		ATOM	6533	N	ILE	Α	831	31.179		-12.348	1.00		A
		ATOM	6534	CA	ILE	A	831	31.765		-13.680	1.00		A
		ATOM	6535	CB	ILE			31.182		-14.704	1.00		A
	40	ATOM	6536	CG2	ILE	Α	831	31.702		-16.095	1.00		A
		ATOM	6537		ILE			29.648		-14.698	1.00		А
		ATOM	6538		ILE			29.035		-15.006	1.00		А
		ATOM	6539	С	ILE			33.240		-13.458	1.00		A
		ATOM	6540	0			831	33.725		-13.870	1.00		A
	45	ATOM	6541	N	PRO			33.974		-12.786	1.00		A
		ATOM	6542	CD	PRO			33.527		-12.135	1.00		A
		ATOM	6543	CA	PRO			35.393		-12.525	1.00		A
		MOTA	6544	CB			832	35.807		-11.632	1.00		A
		ATOM	6545	CG			832	34.817		-11.981	1.00		A
	50	ATOM	6546	С			832	36.286		-13.744	1.00		Α
		MOTA	6547	0			832	37.273		-13.678	1.00		A
		ATOM	6548	N	SER			35.954		-14.856	1.00		A
		ATOM	6549	CA	SER			36.783		-16.049	1.00		A
		ATOM	6550	CB	SER			37.996		-15.981	1.00		A
	55	MOTA	6551	OG	SER	А	833	37.643	60.273	-16.285	1.00	13.55	Α

										10 07	7
	ATOM	6552	С			833	36.051	62.330 -17.371		10.87	A
	ATOM	6553	0			833	36.581	62.672 -18.425		10.60	A
	MOTA	6554	N	GLY			34.845	61.769 -17.327		10.57	A
_	MOTA	6555	CA	GLY			34.120	61.548 -18.569		10.76	A
5	MOTA	6556	C	GLY			32.723	60.968 -18.454		10.80	A
	ATOM	6557	0	GLY			32.341	60.395 -17.430		10.04	A
	MOTA	6558	N			835	31.959	61.116 -19.532		11.25	A
	MOTA	6559	CA			835	30.591	60.621 -19.588		11.48	A
40	MOTA	6560	CB			835	29.642	61.643 -18.952		12.22	A
10	MOTA	6561	CG			835	29.507	62.945 -19.744		11.77	A
	MOTA	6562	SD			835	28.685	64.277 -18.832		13.73	A
	MOTA	6563	CE	MET			27.082	63.543 -18.510		12.36	A
	ATOM	6564	С	MET			30.216	60.421 -21.056		11.78	A
	MOTA	6565	0	MET			30.779	61.071 -21.945		11.10	Α
15	ATOM	6566	N			836	29.277	59.519 -21.318		11.62	A
	MOTA	6567	CA	PHE	Α	836	28.855	59.306 -22.693		12.03	Α
	MOTA	6568	CB	PHE	Α	836	29.915	58.499 -23.481		11.91	Α
	MOTA	6569	CG	PHE	Α	836	30.074	57.049 -23.058		14.00	A
	MOTA	6570		PHE			29.200	56.066 -23.525		14.04	A
20	MOTA	6571		PHE			31.144	56.659 -22.253		14.26	A
	ATOM	6572	CE1	PHE	Α	836	29.392	54.715 -23.202		16.21	A
	MOTA	6573	CE2	PHE	Α	836	31.347	55.308 -21.921		15.05	A
	MOTA	6574	CZ	PHE	Α	836	30.468	54.335 -22.398		15.74	A
	MOTA	6575	С	PHE	Α	836	27.488	58.670 -22.820		12.54	A
25	ATOM	6576	0			836	26.971	58.083 -21.869		11.76	A
	MOTA	6577	N	ILE	Α	837	26.887	58.848 - 23.993		11.64	A
	ATOM	6578	CA	ILE	Α	837	25.593	58.260 -24.303		12.13	A
	ATOM	6579	CB	ILE	Α	837	24.466	59.312 -24.403		11.63	A
	MOTA	6580	CG2	ILE	A	837	24.032	59.742 -23.007	1.00	11.57	A
30	ATOM	6581	CG1	ILE	Α	837	24.920	60.489 -25.270	1.00	11.04	A
	MOTA	6582	CD1	ILE	Α	837	23.771	61.408 -25.698	1.00	10.76	A
	ATOM	6583	С	ILE	Α	837	25.758	57.599 -25.660		12.23	A
	ATOM	6584	0	ILE	Α	837	26.612	58.006 -26.457		11.97	A
	MOTA	6585	N	GLU	Α	838	24.955	56.579 -25.928	1.00	13.26	Α
35	MOTA	6586	CA	GLU	Α	838	25.063	55.887 -27.203	1.00	13.21	A
	MOTA	6587	CB	GLU	Α	838	26.232	54.901 -27.153	1.00	14.34	А
	MOTA	6588	CG	GLU	Α	838	25.978	53.751 -26.166	1.00	15.15	A
	MOTA	6589	CD	GLU	Α	838	27.091	52.715 -26.120	1.00	16.72	Α
	ATOM	6590	OE1	GLU	Α	838	26.937	51.720 -25.382		18.45	Α
40	ATOM	6591	OE2	GLU	Α	838	28.114	52.884 -26.812	1.00	17.74	Α
	ATOM	6592	С	GLU	Α	838	23.807	55.100 -27.538	1.00	14.05	A
	ATOM	6593	0	GLU	Α	838	22.977	54.827 -26.671	1.00	13.44	A
	MOTA	6594	N	ASP	Α	839	23.655	54.773 -28.816	1.00	14.77	A
	ATOM	6595	CA	ASP	Α	839	22.561	53.913 -29.240	1.00	15.54	A
45	MOTA	6596	CB	ASP	Α	839	21.494	54.633 -30.085	1.00	15.80	A
	ATOM	6597	CG			839	22.061	55.405 -31.260	1.00	15.71	Α
	ATOM	6598	OD1	ASP			23.091	55.001 -31.838	1.00	15.80	Α
	ATOM	6599		ASP			21.434	56.424 -31.618	1.00	17.81	Α
	ATOM	6600	С			839	23.267	52.823 -30.028	1.00	16.22	А
50	MOTA	6601	0			839	24.471	52.624 -29.859		15.94	А
	ATOM	6602	N			840	22.545	52.114 -30.882		16.73	А
	ATOM	6603	CA	ALA			23.160	51.042 -31.645		17.26	А
	ATOM	6604	СВ			840	22.083	50.279 -32.418		18.36	А
	ATOM	6605	C			840	24.258	51.500 -32.603		17.43	А
55	ATOM	6606	0			840	25.200	50.749 -32.871		17.52	A
55	111011	5555	-		• •						

	ATOM	6607	N	ASN	Δ	841	24	. 164	52.733	3 -33.096	1.00	16.94	А
	ATOM	6608	CA	ASN				.136		-34.076		17.30	А
	ATOM	6609	CB	ASN				. 406		-35.377		18.50	A
	ATOM	6610	CG	ASN				. 592		-35.900		20.17	A
5		6611		ASN				. 122		-36.126		21.04	A
5	ATOM	6612		ASN				. 295		-36.092		19.98	A
	ATOM							.021		30.032		16.82	A
	ATOM	6613	С	ASN						33.723		16.18	A
	ATOM	6614	0	ASN				.129		34.234 32.850		16.36	A
10	ATOM	6615	N	THR				.542				16.16	A
10	MOTA	6616	CA			842		.298		32.517		16.66	A
	ATOM	6617	CB			842		.564		-33.075		17.07	A
	MOTA	6618	OG1					.204		-34.444			
	MOTA	6619	CG2	THR				. 452		32.999		16.18	A
	MOTA	6620	С			842		.547		-31.031		15.76	A
15	MOTA	6621	0			842		.713		-30.190		16.36	A
	ATOM	6622	N			843		.704		-30.718		14.94	A
	MOTA	6623	CA	ARG				.057		-29.335		13.57	A
	MOTA	6624	CB			843		.056		7 -28.775		13.32	A
	MOTA	6625	CG	ARG	Α	843		.577		3 -27.375		12.73	Α
20	MOTA	6626	CD			843		.764		5 -26.924		12.83	A
	ATOM	6627	NE			843		.395		5 - 26.606		12.99	A
	MOTA	6628	CZ			843		.216		-26.029		14.10	A
	MOTA	6629		ARG				.452		-25.705		13.39	A
	MOTA	6630	NH2	ARG	Α	843		.809		L -25.772		13.79	Α
25	MOTA	6631	С	ARG	A	843		. 685		1 -29.266		12.96	A
	MOTA	6632	0			843		.402		3 -30.177		12.57	A
	MOTA	6633	N	LEU	A	844		.396		5 -28.185		12.37	A
	MOTA	6634	CA	LEU	Α	844		.969		- 27.967		12.14	A
	ATOM	6635	CB	LEU	Α	844		.890		2 -27.967		11.38	A
30	MOTA	6636	CG	LEU	Α	844		.458		3 -27.823		11.36	A
	ATOM	6637		LEU				.375		3 -29.005		11.45	A
	MOTA	6638	CD2	LEU	Α	844		.334		3 -27.757		11.60	Α
	MOTA	6639	С			844		.624		2 -26.598		11.63	A
	ATOM	6640	0	LEU	Α	844	28	.958		2 -25.601		11.42	Α
35	MOTA	6641	N	THR	Α	845	30	.926		7 -26.553		11.41	А
	MOTA	6642	CA	THR	Α	845		.662		-25.295		11.95	A
	MOTA	6643	CB	THR	Α	845	32	.833		1 -25.357		12.35	A
	MOTA	6644	OG1	THR	Α	845	32	. 335		9 -25.721		13.45	A
	MOTA	6645	CG2	THR	Α	845		.537		L -24.003		12.11	A
40	ATOM	6646	С	THR	Α	845	32	.244	62.520	-24.965		11.55	A
	MOTA	6647	0	THR	Α	845	32	.867		2 -25.808		11.72	A
	ATOM	6648	N	LEU	Α	846	32	.037	62.962	2 -23.732		11.76	А
	MOTA	6649	CA	LEU	Α	846	32	.572		-23.290		11.18	A
	ATOM	6650	CB	LEU	Α	846	31	.454	65.12	7 -22.730	1.00	10.76	A
45	ATOM	6651	CG	LEU	Α	846	31	.881	66.48	L -22.148	1.00	12.31	A
	ATOM	6652	CD1	LEU	Α	846	32	.435	67.36	L -23.263	1.00	12.08	А
	ATOM	6653	CD2	LEU	Α	846	30	.693	67.16	1 -21.471	1.00	12.32	A
	ATOM	6654	С	LEU	Α	846	33	.584	63.92	4 -22.196	1.00	10.28	Α
	ATOM	6655	0			846		.226		l - 21.161		9.21	А
50	ATOM	6656	N			847		.847	64.26	L - 22.443	1.00	10.60	Α
-	ATOM	6657	CA			847		.917		3 -21.474		10.37	А
	ATOM	6658	СВ			847	37	.187	63.51	L - 22.175	1.00	10.15	Α
	ATOM	6659	CG			847		.166	62.16	4 -22.922	1.00	9.45	А
	ATOM	6660		LEU				.463		5 -22.070		8.42	А
55	ATOM	6661		LEU				.465		3 -24.268	1.00	9.43	А
-													

	ATOM	6662	С	LEU	Α	847	36.213	65.350 -20.774	1.00 11	.19	А
	ATOM	6663	0	LEU	Α	847	36.141	66.412 -21.401	1.00 10	.50	Α
	ATOM	6664	N	THR	Α	848	36.557	65.291 -19.487	1.00 9	9.84	Α
	ATOM	6665	CA	THR	Α	848	36.826	66.507 -18.722	1.00 10).43	Α
5	ATOM	6666	CB	THR	Α	848	35.864	66.642 -17.535	1.00 11	.02	Α
	ATOM	6667	OG1	THR	Α	848	36.281	65.757 -16.485	1.00 12	2.33	Α
	ATOM	6668	CG2	THR	Α	848	34.448	66.292 -17.953	1.00 11	23	Α
	MOTA	6669	С	THR	Α	848	38.233	66.590 -18.147	1.00 10	.77	А
	MOTA	6670	0	THR	Α	848	38.909	65.574 -17.958	1.00 10).97	А
10	ATOM	6671	N	GLY	Α	849	38.659	67.820 -17.869	1.00 10).37	Α
	ATOM	6672	CA	GLY	Α	849	39.968	68.042 -17.289	1.00 10	.72	Α
	ATOM	6673	С	GLY	Α	849	39.792	68.412 -15.828	1.00 10	.76	Α
	ATOM	6674	0	GLY	Α	849	40.719	68.881 -15.167	1.00 10).54	Α
	ATOM	6675	N	GLN	Α	850	38.580	68.198 -15.328	1.00 10	0.62	Α
15	ATOM	6676	CA	GLN	Α	850	38.250	68.497 -13.942	1.00 10).79	Α
	ATOM	6677	CB	GLN	Α	850	38.049	70.008 -13.758	1.00 10	.45	Α
	ATOM	6678	CG	GLN	Α	850	36.893	70.617 -14.578	1.00 10).58	Α
	MOTA	6679	CD	GLN	Α	850	37.197	70.722 -16.060	1.00 11	.77	Α
	ATOM	6680	OE1	GLN	Α	850	38.292	71.135 -16.453	1.00 12	2.48	Α
20	MOTA	6681	NE2	GLN	Α	850	36.220	70.365 -16.898	1.00 10).17	А
	MOTA	6682	С	GLN	Α	850	36.969	67.764 -13.552	1.00 11	1.10	Α
	MOTA	6683	0	GLN	Α	850	36.101	67.530 -14.394	1.00 10	.49	Α
	ATOM	6684	N	PRO	Α	851	36.838	67.380 -12.270	1.00 10	.84	Α
	ATOM	6685	CD	PRO	Α	851	37.835	67.430 -11.185	1.00 10	0.05	Α
25	ATOM	6686	CA	PRO	Α	851	35.624	66.678 -11.839	1.00 10	.83	Α
	ATOM	6687	CB	PRO	Α	851	36.051	66.010 -10.534	1.00 10	0.06	А
	MOTA	6688	CG	PRO	Α	851	37.021	67.017 -9.960	1.00 10).19	А
	ATOM	6689	С	PRO	Α	851	34.484	67.673 -11.637	1.00 11	1.55	Α
	ATOM	6690	0	PRO	Α	851	34.668	68.732 -11.021	1.00 10	0.88	А
30	MOTA	6691	N	LEU	Α	852	33.316	67.327 -12.171	1.00 11	1.38	Α
	MOTA	6692	CA	LEU	Α	852	32.122	68.164 -12.075	1.00 11	.58	А
	MOTA	6693	CB	LEU	Α	852	32.015	69.075 -13.305	1.00 11	.68	Α
	ATOM	6694	CG	LEU	Α	852	33.136	70.099 -13.523	1.00 11		A
	ATOM	6695	CD1	LEU	Α	852	33.028	70.713 -14.916	1.00 12		A
35	MOTA	6696	CD2	LEU			33.038	71.184 -12.458	1.00 11		A
	MOTA	6697	С	LEU	Α	852	30.902	67.247 -12.012	1.00 11		A
	ATOM	6698	0	LEU	Α	852	31.016	66.044 -12.247	1.00 12		Α
	MOTA	6699	N	GLY			29.739	67.807 -11.694	1.00 11		A
	ATOM	6700	CA	GLY	Α	853	28.537	66.994 -11.624	1.00 11		A
40	ATOM	6701	С	GLY			27.792	66.992 -12.949	1.00 11		А
	MOTA	6702	0	GLY			27.819	67.980 -13.682	1.00 11		Α
	MOTA	6703	N	GLY			27.116	65.891 -13.265	1.00 11		A
	ATOM	6704	CA	GLY			26.398	65.840 -14.528	1.00 12		A
	ATOM	6705	С	GLY			25.351	64.753 -14.623	1.00 12		A
45	ATOM	6706	0	GLY			25.157	63.980 -13.684	1.00 11		A
	ATOM	6707	N			855	24.680	64.686 -15.770	1.00 12		A
	ATOM	6708	CA			855	23.634	63.689 -15.976	1.00 13		A
	MOTA	6709	CB	SER	Α	855	22.441	64.003 -15.065	1.00 14		А
	MOTA	6710	OG			855	21.402	63.043 -15.195	1.00 14		A
50	ATOM	6711	С			855	23.162	63.680 -17.423	1.00 14		A
	MOTA	6712	0			855	23.716	64.374 -18.279	1.00 13		. A
	MOTA	6713	N			856	22.143	62.863 -17.675	1.00 14		A
	MOTA	6714	CA			856	21.492	62.752 -18.978	1.00 14		A
	MOTA	6715	CB			856	21.838	61.431 -19.665	1.00 15		A
55	ATOM	6716	OG	SER	A	856	21.175	61.330 -20.915	1.00 15	5.73	A

				_	955	_	0.5.6	20 005	CO 750 10 5CO	1.00 15.42	А
		ATOM	6717	С	SER			20.025	62.750 -18.560		A
		ATOM	6718	0	SER			19.469	61.702 -18.216	1.00 14.82	
		MOTA	6719	N	LEU			19.404	63.926 -18.570	1.00 14.83	A
	_	MOTA	6720	CA	LEU			18.023	64.041 -18.121	1.00 15.04	A A
	5	ATOM	6721	СВ	LEU			17.787	65.444 -17.555	1.00 15.79	
		ATOM	6722	CG	LEU			18.656	65.766 -16.335	1.00 15.73	A
		ATOM	6723		LEU			18.423	67.199 -15.903	1.00 16.46	A
		ATOM	6724		LEU			18.325	64.802 -15.193	1.00 16.82	A
	10	MOTA	6725	С	LEU			16.959	63.698 -19.153	1.00 15.01	A
	10	ATOM	6726	0	LEU			15.774	63.648 -18.831	1.00 16.21	A
		MOTA	6727	N	ALA			17.386	63.455 -20.384	1.00 14.17	A
		ATOM	6728	CA	ALA			16.476	63.095 -21.463	1.00 15.27	A
		MOTA	6729	CB	ALA			15.840	64.353 -22.080	1.00 14.55	A
	1.	MOTA	6730	С	ALA			17.287	62.348 -22.508	1.00 15.22 1.00 15.05	A A
	15	ATOM	6731	0	ALA			18.491	62.561 -22.631		A A
		MOTA	6732	N	SER			16.628	61.461 -23.247	1.00 15.43	
		ATOM	6733	CA	SER			17.300	60.690 -24.280	1.00 15.40	A
		ATOM	6734	CB	SER			16.272	59.883 -25.085	1.00 15.64	A
	20	ATOM	6735	OG	SER			16.898	59.143 -26.118	1.00 15.79	A A
	20	ATOM	6736	С	SER			18.067	61.626 -25.208	1.00 15.90 1.00 16.40	A
, F		ATOM	6737	0	SER			17.551	62.673 -25.612		A A
		ATOM	6738	N	GLY			19.300	61.249 -25.531	1.00 15.03 1.00 14.88	A
tana arama		ATOM	6739	CA	GLY			20.128	62.051 -26.416	1.00 14.88	A
	25	ATOM	6740	С	GLY			20.837	63.235 -25.778	1.00 14.74	A
	25	ATOM	6741	0	GLY			21.556	63.971 -26.461		A
, Ciri		ATOM	6742	N	GLU			20.657	63.427 -24.477	1.00 14.40 1.00 14.66	A
ijħ		ATOM	6743	CA	GLU			21.296	64.553 -23.802 65.343 -22.982	1.00 14.00	A
E)		ATOM	6744	CB	GLU			20.274		1.00 15.09	A
	20	ATOM	6745	CG	GLU			19.167	66.015 -23.771 66.866 -22.881	1.00 15.75	A
	30	ATOM	6746	CD	GLU			18.274	66.896 -21.648	1.00 16.20	A
		ATOM	6747		GLU			18.499 17.349	67.507 -23.410	1.00 16.56	A
i.		ATOM	6748		GLU			22.441	64.196 -22.864	1.00 10.50	A
		ATOM	6749	С	GLU			22.441	63.086 -22.338	1.00 13.85	A
	35	ATOM	6750 6751	0	GLU LEU			23.321	65.171 -22.668	1.00 13.03	A
i (main	33	ATOM		N				24.443	65.069 -21.740	1.00 14.26	A
		ATOM	6752	CA	LEU LEU			25.767	64.772 -22.452	1.00 13.73	A
		ATOM	6753 6754	CB CG	LEU			26.100	63.391 -23.028	1.00 13.73	A
		ATOM ATOM	6755		LEU			27.463	63.459 -23.706	1.00 12.07	A
	40	ATOM	6756		LEU				62.342 -21.933	1.00 13.40	A
	10	ATOM	6757	C	LEU			24.516	66.467 -21.156	1.00 14.16	A
		ATOM	6758	0	LEU			24.308	67.449 -21.870	1.00 14.09	A
		ATOM	6759	N	GLU			24.773	66.574 -19.862	1.00 13.64	A
		ATOM	6760	CA	GLU			24.902	67.893 -19.272	1.00 13.16	A
	45	ATOM	6761	CB	GLU			23.535	68.453 -18.860	1.00 13.14	А
	40	ATOM	6762	CG	GLU			23.007	68.027 -17.508	1.00 12.61	A
		ATOM	6763	CD	GLU			21.683	68.701 -17.191	1.00 13.43	А
		ATOM	6764		GLU			21.529	69.210 -16.061	1.00 14.53	A
		ATOM	6765		GLU			20.792	68.719 -18.071	1.00 14.31	A
	50		6766	C	GLU			25.851	67.819 -18.094	1.00 12.83	A
	50	ATOM	6767	0			863	25.918	66.807 -17.394	1.00 11.84	A
		ATOM ATOM	6768	N			864	26.600	68.894 -17.891	1.00 12.45	A
			6769	CA			864	27.574	68.942 -16.814	1.00 12.34	A
		ATOM	6770	CB			864	28.953	68.477 -17.355	1.00 13.29	A
	55	ATOM			ILE			29.406	69.390 -18.497	1.00 13.29	A
	55	ATOM	6771	CGZ	TTE	Н	004	27.400	07.570 10.497	1.00 10.00	• •

	ATOM	6772	CG1	ILE	Α	864	29.979	68.411	-16.226	1.00 12	.87	A
	ATOM	6773	CD1				31.255	67.696	-16.632	1.00 15	.03	Α
	ATOM	6774	С	ILE			27.626	70.363	-16.245	1.00 12	.28	Α
	ATOM	6775	Ö	ILE			27.749		-16.989	1.00 12	.71	Α
5	ATOM	6776	N	MET			27.506	70.466	-14.925	1.00 12	.05	Α
•	ATOM	6777	CA	MET			27.504		-14.229	1.00 12	.26	Α
	ATOM	6778	CB	MET			27.077	71.548	-12.773	1.00 12	.43	Α
	ATOM	6779	CG	MET			26.485		-12.127	1.00 11		A
	ATOM	6780	SD	MET			24.884		-12.872	1.00 13		Α
10	ATOM	6781	CE	MET			23.850		-12.046	1.00 12		Α
10	ATOM	6782	C	MET			28.872		-14.273	1.00 12		Α
	ATOM	6783	0	MET			29.903		-14.082	1.00 11		А
	ATOM	6784	N	GLN			28.869		-14.501	1.00 12		А
	ATOM	6785	CA	GLN			30.106		-14.592	1.00 12		А
15	ATOM	6786	CB	GLN			29.973		-15.694	1.00 12		A
15	ATOM	6787	CG			866	29.638		-17.037	1.00 13		A
	ATOM	6788	CD			866	30.648		-17.455	1.00 13		A
		6789		GLN			31.806		-17.750	1.00 13		A
	ATOM	6790		GLN			30.219		-17.468	1.00 12		A
20	ATOM					866	30.501		-13.279	1.00 12		A
20	MOTA	6791 6792	C			866	31.672		-12.910	1.00 12		A
	ATOM		O N	ASP			29.523		-12.595	1.00 12		A
	ATOM	6793	N	ASP			29.759		-11.303	1.00 12		A
	ATOM	6794	CA	ASP			30.532		-11.450	1.00 12		A
25	ATOM	6795	CB				31.204		-11.430 -10.147	1.00 12		A
23	MOTA	6796	CG	ASP				77.471	-9.115	1.00 12		A
	ATOM	6797		ASP			31.032 31.912		-10.157	1.00 12		A
	MOTA	6798		ASP					-10.137	1.00 12		A
	ATOM	6799	С			867	28.409		-10.004	1.00 13		A
20	ATOM	6800	0	ASP			27.371	76.024	-9.363	1.00 12		A
30	MOTA	6801	N			868	28.427	77.183	-8.618	1.00 13		A
	ATOM	6802	CA			868	27.210		-8.023	1.00 14		A
	ATOM	6803	CB			868	26.683	75.872	-7.172	1.00 13		A
	ATOM	6804	CG			868	27.697	75.114		1.00 13		A
25	ATOM	6805	CD			868	27.390	73.611 73.331	-7.182 -6.723	1.00 13		A
35	ATOM	6806	NE			868	26.035			1.00 12		A
	MOTA	6807	CZ			868	25.714	73.036	-5.467	1.00 12		A
	MOTA	6808		ARG			26.655	72.970	-4.534			
	ATOM	6809		ARG			24.445	72.822	-5.141	1.00 11		A
40	MOTA	6810	С			868	27.513	78.189	-7.519	1.00 14		A
40	ATOM	6811	0			868	28.536		-6.840	1.00 14		A
	MOTA	6812	N			869	26.627	79.167	-7.363	1.00 14		A
	ATOM	6813	CA			869	26.777	80.213	-6.352	1.00 14		A
	ATOM	6814	CB			869	26.938	81.578	-7.037	1.00 15		A
	ATOM	6815	CG			869	27.263	82.745	-6.104	1.00 16		A
45	MOTA	6816	CD			869	27.492	84.039	-6.890	1.00 18		A
	MOTA	6817	NE			869	27.678	85.202	-6.019	1.00 19		A
	ATOM	6818	CZ			869	28.805	85.495	-5.376	1.00 19		A
	MOTA	6819	NH1	ARG	Α	869	29.870	84.718	-5.500	1.00 19		A
	MOTA	6820	NH2	ARG	Α	869	28.865	86.569	-4.597	1.00 19		Α
50	ATOM	6821	С	ARG	Α	869	25.497	80.164	-5.521	1.00 15		Α
	ATOM	6822	0			869	24.416	80.479	-6.015	1.00 15		A
	MOTA	6823	N	LEU	A	870	25.629	79.749	-4.265	1.00 16		A
	MOTA	6824	CA	LEU	Α	870	24.490	79.609	-3.362	1.00 17		А
	ATOM	6825	СВ	LEU	A	870	24.396	78.153	-2.915	1.00 18		A
55	ATOM	6826	CG	LEU	Α	870	24.411	77.209	-4.122	1.00 19	.60	А

		ATOM	6827	CD1	LEU	Α	870	24.773	75.815	-3.688	1.00 20	0.54	А
		ATOM	6828	CD2	LEU	Α	870	23.056	77.244	-4.818	1.00 20	0.32	А
		ATOM	6829	С	LEU	A	870	24.583	80.530	-2.148	1.00 18	3.52	Α
		ATOM	6830	0	LEU	Α	870	25.576	80.523	-1.419	1.00 18		Α
	5	ATOM	6831	N	ALA	Α	871	23.529	81.308	-1.926	1.00 19		Α
		MOTA	6832	CA	ALA	Α	871	23.496	82.259	-0.823	1.00 2		А
		ATOM	6833	CB	ALA	Α	871	22.452	83.341	-1.109	1.00 20		Α
		MOTA	6834	С	ALA	Α	871	23.244	81.658	0.556	1.00 22		A
		MOTA	6835	0	ALA	Α	871	23.668	82.223	1.563	1.00 23	3.73	А
	10	MOTA	6836	N	SER	Α	872	22.567	80.518	0.617	1.00 2	1.91	А
		ATOM	6837	CA	SER	Α	872	22.272	79.922	1.914	1.00 2	1.65	A
		ATOM	6838	CB	SER	Α	872	20.769	79.658	2.034	1.00 23		Α
		ATOM	6839	OG	SER	Α	872	20.338	78.730	1.055	1.00 20		Α
		ATOM	6840	С	SER	Α	872	23.036	78.646	2.239	1.00 20		A
	15	ATOM	6841	0	SER	Α	872	23.617	78.005	1.364	1.00 19	9.55	А
		ATOM	6842	N	ASP	Α	873	23.031	78.301	3.522	1.00 19	9.61	A
		MOTA	6843	CA	ASP	Α	873	23.689	77.104	4.029	1.00 19		A
		ATOM	6844	CB	ASP	Α	873	24.112	77.329	5.482	1.00 19	9.04	Α
		ATOM	6845	CG	ASP	Α	873	24.577	76.059	6.156	1.00 19	9.71	А
	20	ATOM	6846	OD1	ASP	Α	873	23.811	75.502	6.971	1.00 19		А
		MOTA	6847	OD2	ASP	Α	873	25.706	75.612	5.863	1.00 20		A
		ATOM	6848	С	ASP	A	873	22.696	75.948	3.945	1.00 18		A
		ATOM	6849	0	ASP	Α	873	21.498	76.154	4.135	1.00 18		A
		ATOM	6850	N	ASP	Α	874	23.183	74.742	3.660	1.00 1		Α
	25	MOTA	6851	CA	ASP	Α	874	22.299	73.585	3.551	1.00 1		A
		ATOM	6852	CB	ASP	Α	874	22.635	72.762	2.297	1.00 1		A
		ATOM	6853	CG	ASP	Α	874	24.122	72.502	2.138	1.00 1		A
		ATOM	6854	OD1	ASP	Α	874	24.901	72.857	3.052	1.00 1		A
		ATOM	6855	OD2	ASP	Α	874	24.506	71.936	1.091	1.00 1		A
	30	MOTA	6856	С	ASP	Α	874	22.248	72.681	4.788	1.00 1		A
		ATOM	6857	0	ASP	Α	874	22.029	71.476	4.685	1.00 18		A
		MOTA	6858	N	GLU	Α	875	22.460	73.284	5.953	1.00 18		A
		MOTA	6859	CA	GLU			22.382	72.597	7.238	1.00 19		A
•		MOTA	6860	CB	GLU	Α	875	20.910	72.346	7.585	1.00 2		A
	35	ATOM	6861	CG	GLU	Α	875	20.038	73.592	7.559	1.00 2		A
		MOTA	6862	CD	GLU			18.589	73.289	7.885	1.00 2		A
		MOTA	6863	OE1				18.310	72.853	9.020	1.00 30		A
		MOTA	6864	OE2	GLU	Α	875	17.727	73.479	7.003	1.00 30		A
		MOTA	6865	С	GLU			23.150	71.295	7.451	1.00 18		A
	4 0	ATOM	6866	0	GLU	Α	875	22.627	70.367	8.070	1.00 1		A
		MOTA	6867	N			876	24.380	71.208	6.956	1.00 1		A
		ATOM	6868	CA			876	25.161	69.997	7.180	1.00 1		A
		MOTA	6869	CB			876	25.517	69.320	5.848	1.00 1		A
		ATOM	6870	CG	ARG			24.312	68.684	5.133	1.00 1		A
	45	ATOM	6871	CD	ARG	Α	876	23.606	67.656	6.027	1.00 1		А
		ATOM	6872	NE	ARG			22.518	66.949	5.348	1.00 1		A
		ATOM	6873	CZ			876	21.355	67.497	4.999	1.00 1		A
		MOTA	6874		ARG			21.107	68.776	5.259	1.00 12		A
		ATOM	6875	NH2	ARG			20.435	66.759	4.389	1.00 1		A
	50	ATOM	6876	С			876	26.420	70.301	7.995	1.00 1		A
		MOTA	6877	0			876	27.312	69.460	8.120	1.00 1		A
		ATOM	6878	N			877	26.483	71.511	8.552	1.00 1		А
		ATOM	6879	CA	GLY	A	877	27.619	71.887	9.375	1.00 1		Α
		ATOM	6880	С			877	28.605	72.908	8.829	1.00 1		А
	55	ATOM	6881	0	GLY	A	877	29.426	73.435	9.586	1.00 1	6.37	А

	ATOM	6882	N	LEU	Α	878	28.537	73.198	7.534	1.00 16.26	А
	ATOM	6883	CA			878	29.460	74.157	6.931	1.00 16.37	A
	ATOM	6884	CB			878	29.297	74.159	5.410	1.00 15.68	A
	ATOM	6885	CG			878	30.187	75.111	4.605	1.00 15.99	A
5	ATOM	6886		LEU			31.649	74.925	4.994	1.00 15.30	A
	ATOM	6887		LEU			29.992	74.846	3.123	1.00 14.75	A
	ATOM	6888	C			878	29.271	75.569	7.490	1.00 17.09	A
	ATOM	6889	Ö			878	30.240	76.308	7.672	1.00 16.41	A
	ATOM	6890	N			879	28.023	75.942	7.756	1.00 17.19	A
10	ATOM	6891	CA			879	27.757	77.257	8.315	1.00 18.15	А
	ATOM	6892	Ċ			879	27.833	78.419	7.342	1.00 18.91	A
	ATOM	6893	Ō			879	27.929	79.574	7.760	1.00 19.29	А
	ATOM	6894	N			880	27.798	78.122	6.047	1.00 18.66	А
	ATOM	6895	CA			880	27.838	79.162	5.028	1.00 18.43	А
15	ATOM	6896	СВ			880	29.244	79.774	4.910	1.00 18.45	А
	ATOM	6897	CG			880	30.361	78.774	4.586	1.00 18.67	Α
	ATOM	6898	CD			880	31.589	79.432	3.963	1.00 18.32	A
	ATOM	6899	OE1				31.611	79.730	2.764	1.00 20.47	Α
	ATOM	6900	NE2				32.609	79.670	4.776	1.00 16.53	Α
20	ATOM	6901	С			880	27.424	78.615	3.670	1.00 18.38	А
	ATOM	6902	0			880	27.389	77.399	3.455	1.00 18.09	А
	ATOM	6903	N	GLY	Α	881	27.095	79.527	2.763	1.00 18.10	Α
	ATOM	6904	CA			881	26.730	79.129	1.421	1.00 17.08	Α
	ATOM	6905	С			881	28.014	79.145	0.613	1.00 16.83	A
25	ATOM	6906	0			881	29.110	79.108	1.175	1.00 16.96	Α
	ATOM	6907	N	VAL	Α	882	27.887	79.203	-0.705	1.00 15.89	А
	MOTA	6908	CA	VAL	Α	882	29.045	79.236	-1.578	1.00 15.83	A
	ATOM	6909	CB	VAL	Α	882	29.014	78.059	-2.570	1.00 15.45	Α
	ATOM	6910	CG1	VAL	Α	882	30.229	78.105	-3.476	1.00 15.71	А
30	ATOM	6911	CG2	VAL	Α	882	28.974	76.746	-1.800	1.00 15.61	А
	ATOM	6912	С	VAL	Α	882	28.998	80.558	-2.330	1.00 15.96	A
	MOTA	6913	0	VAL	Α	882	28.308	80.684	-3.338	1.00 15.41	Α
	ATOM	6914	N	LEU	Α	883	29.727	81.542	-1.815	1.00 16.91	A
	MOTA	6915	CA	LEU	Α	883	29.761	82.872	-2.415	1.00 17.79	Α
35	ATOM	6916	CB	LEU	Α	883	29.092	83.874	-1.467	1.00 18.67	А
	ATOM	6917	CG			883	27.586	83.717	-1.225	1.00 19.39	A
	MOTA	6918		LEU			27.161	84.532	-0.011	1.00 20.65	Α
	ATOM	6919		LEU			26.829	84.178	-2.453	1.00 20.59	A
4.0	ATOM	6920	С	LEU			31.184	83.331	-2.726	1.00 17.96	A
4 0	ATOM	6921	0	LEU			31.420			1.00 19.51	А
	ATOM	6922	N	ASP			32.126	82.393	-2.745	1.00 17.04	А
	MOTA	6923	CA	ASP			33.521		-3.016	1.00 16.75	А
	ATOM	6924	CB	ASP			34.422	82.110	-1.934	1.00 17.01	A
4 ==	MOTA	6925	CG	ASP			34.187	80.623	-1.738	1.00 17.63	A
45	ATOM	6926		ASP			34.839	80.044	-0.842	1.00 17.95	A
	ATOM	6927		ASP			33.358	80.035	-2.471	1.00 16.72	A
	ATOM	6928	С	ASP			33.996	82.269	-4.395	1.00 16.25	А
	ATOM	6929	0	ASP			35.171	81.958	-4.590	1.00 16.24	A
-0	ATOM	6930	N	ASN			33.073	82.252	-5.350	1.00 15.54	A
50	ATOM	6931	CA	ASN			33.380	81.857	-6.719	1.00 15.55	A
	ATOM	6932	CB	ASN			32.129	81.978	-7.584	1.00 15.27	A
	ATOM	6933	CG	ASN			30.959	81.217	-7.014	1.00 16.04	A
	ATOM	6934		ASN			30.708	80.069	-7.383	1.00 17.31	A
EE	ATOM	6935		ASN			30.244	81.846	-6.089	1.00 14.69	A
55	MOTA	6936	С	ASN	A	885	34.464	82.737	-7.316	1.00 15.81	Α

	ATOM	6937	0	ASN	Α	885	34.593	83.910	-6.964	1.00	15.21	А
	ATOM	6938	N	LYS	Α	886	35.234	82.163	-8.231	1.00	15.55	Α
	ATOM	6939	CA	LYS	Α	886	36.291	82.891	-8.911	1.00	16.47	А
	ATOM	6940	СВ	LYS	Α	886	37.616	82.746	-8.154	1.00	18.07	Α
5	ATOM	6941	CG	LYS	Α	886	38.108	81.316	-8.023	1.00	18.63	Α
_	ATOM	6942	CD	LYS			39.241	81.199	-7.009	1.00	20.71	A
	ATOM	6943	CE	LYS			40.446	82.032	-7.408	1.00	20.48	A
	ATOM	6944	NZ	LYS			41.570	81.853	-6.454	1.00	21.54	Α
	ATOM	6945	С	LYS			36.402		-10.311	1.00	15.79	А
10	ATOM	6946	Ō	LYS			36.057		-10.535	1.00	16.23	Α
	ATOM	6947	N	PRO			36.870		-11.280	1.00	15.53	A
	ATOM	6948	CD	PRO			37.247		-11.189	1.00	15.01	Α
	ATOM	6949	CA	PRO			37.003		-12.652	1.00	14.09	Α
	ATOM	6950	CB	PRO			37.711		-13.363	1.00	15.12	Α
15	ATOM	6951	CG	PRO			37.187		-12.629	1.00	15.47	Α
10	ATOM	6952	C	PRO			37.793		-12.740		13.98	А
	ATOM	6953	0	PRO			38.849		-12.125		14.06	А
	ATOM	6954	N	VAL			37.261		-13.497		12.52	Α
	ATOM	6955	CA	VAL			37.927		-13.687		12.09	A
20	ATOM	6956	CB	VAL			37.300		-12.802		12.98	A
20	ATOM	6957		VAL			35.794		-13.026		13.02	А
	MOTA	6958		VAL			37.959		-13.117		12.38	A
	ATOM	6959	C	VAL			37.833		-15.155		12.38	А
	MOTA	6960	0	VAL			36.821		-15.815		12.49	Α
25	ATOM	6961	N	LEU			38.898		-15.670		11.73	A
20	ATOM	6962	CA	LEU			38.918		-17.056		11.82	А
	ATOM	6963	CB	LEU			40.252		-17.726		12.37	А
	ATOM	6964	CG	LEU			40.314		-19.208		12.93	А
	ATOM	6965		LEU			39.392		-20.017		13.51	А
30	ATOM	6966		LEU			41.745		-19.728		14.04	А
50	ATOM	6967	CDZ	LEU			38.712		-17.114		11.67	А
	ATOM	6968	0	LEU			39.629		-16.818		11.61	А
	ATOM	6969	N	HIS			37.503		-17.475		11.59	А
	ATOM	6970	CA	HIS			37.195		-17.595		11.80	А
35	ATOM	6971	CB	HIS			35.699		-17.405		11.62	А
33	ATOM	6972	CG	HIS			35.227		-15.995		12.11	А
	ATOM	6973		HIS			34.057		-15.495		11.32	A
	ATOM	6974		HIS			35.981		-14.909		12.14	А
	ATOM	6975		HIS			35.296		-13.800		12.02	. А
40	ATOM	6976		HIS			34.125		-14.128		12.08	А
40	ATOM	6977	C	HIS			37.582		-18.991		11.45	А
	ATOM	6978	0	HIS			37.374		-19.957		11.89	А
	ATOM	6979	N	ILE			38.129		-19.105		11.16	А
	ATOM	6980	CA	ILE			38.527		-20.409		10.51	А
45	ATOM	6981	CB	ILE			40.065		-20.529	1.00		A
40		6982		ILE			40.674		-20.275		10.29	A
	ATOM	6983		ILE			40.626		-19.515	1.00	9.60	A
	ATOM						42.118		-19.709	1.00		A
	ATOM	6984				891 891	37.910		-20.685		10.45	A
50	ATOM	6985	С			891	37.910		-19.764		11.02	A
50	ATOM	6986	0			891	37.644		-21.959	1.00		A
	ATOM	6987	N Cn	TYR					-21.939 -22.374		10.43	A
	MOTA	6988	CA			892	37.034		-22.374 -22.415		10.43	Ā
	ATOM	6989	CB			892	35.499		-22.413 -21.247		10.62	A
55	ATOM	6990	CG			892	34.838 34.810		-21.247 -21.142	1.00		A
55	ATOM	6991	CDI	TYR	Н	0 7 2	34.010	11.333	21.172	1.00	J. 0 4	**

	ATOM	6992	CE1	TYR	Α	892	34.193	72.021	-20.056	1.00	10.41	А
	ATOM	6993	CD2	TYR			34.234		-20.241		10.00	А
	ATOM	6994	CE2	TYR			33.620		-19.159		11.35	А
	ATOM	6995	CZ	TYR			33.601	71.242	-19.068	1.00	10.30	А
5	ATOM	6996	ОН	TYR			32.989	71.830	-17.986	1.00	10.40	Α
_	ATOM	6997	С	TYR			37.446	68.806	-23.781	1.00	10.21	A
	ATOM	6998	0	TYR			38.067	69.576	-24.505	1.00	9.47	А
	ATOM	6999	N	ARG			37.082	67.580	-24.151	1.00	11.39	A
	ATOM	7000	CA	ARG			37.275		-25.507	1.00	11.89	А
10	ATOM	7001	СВ	ARG			38.353		-25.595	1.00	11.65	А
	ATOM	7002	CG	ARG			39.800		-25.503	1.00	12.03	A
	ATOM	7003	CD	ARG			40.146		-26.559	1.00	12.81	Α
	ATOM	7004	NE	ARG			40.179		-27.929	1.00	13.22	А
	ATOM	7005	CZ	ARG			41.094		-28.402	1.00	13.50	А
15	ATOM	7006		ARG			42.072	65.734	-27.620	1.00	13.17	Α
	ATOM	7007		ARG			41.037	65.782	-29.666	1.00	13.35	А
	ATOM	7008	С	ARG			35.901	66.470	-25.809	1.00	12.56	Α
	ATOM	7009	0	ARG			35.315	65.801	-24.951	1.00	12.29	A
	MOTA	7010	N	LEU	Α	894	35.371	66.740	-26.999	1.00	12.89	Α
20	ATOM	7011	CA	LEU	Α	894	34.061	66.224	-27.387	1.00	13.29	Α
	ATOM	7012	СВ	LEU			33.136	67.373	-27.812	1.00	14.11	A
	ATOM	7013	CG	LEU			31.689	66.956	-28.119	1.00	13.84	Α
	ATOM	7014		LEU			31.050	66.397	-26.859	1.00	15.01	Α
	ATOM	7015		LEU			30.885	68.139	-28.631	1.00	14.69	А
25	ATOM	7016	С	LEU			34.254	65.245	-28.541	1.00	13.05	Α
	ATOM	7017	0	LEU	Α	894	34.643	65.635	-29.642	1.00	13.01	A
	MOTA	7018	N	VAL	Α	895	33.976	63.972	-28.278	1.00	13.11	Α
	ATOM	7019	CA	VAL	A	895	34.166	62.927	-29.273	1.00	14.21	A
	ATOM	7020	CB	VAL	Α	895	35.048	61.789	-28.711	1.00	14.02	А
30	ATOM	7021	CG1	VAL	Α	895	35.395	60.802	-29.822	1.00	13.83	A
	ATOM	7022	CG2	VAL	Α	895	36.304	62.361	-28.072	1.00	14.27	A
	ATOM	7023	С	VAL	Α	895	32.884	62.281	-29.788	1.00	14.24	А
	MOTA	7024	0	VAL	A	895	32.204	61.573	-29.047	1.00	14.21	A
	ATOM	7025	N	LEU	A	896	32.565	62.525	-31.056		14.43	Α
35	MOTA	7026	CA	LEU	Α	896	31.397		-31.690		15.16	A
	MOTA	7027	СВ	LEU	Α	896	30.692		-32.632		16.09	A
	MOTA	7028	CG	LEU			29.533		-33.441		16.60	A
	ATOM	7029		LEU			28.388		-32.507		16.94	A
	MOTA	7030		LEU			29.055		-34.489		17.67	А
40	ATOM	7031	С	LEU			31.967		-32.498		15.44	A
	MOTA	7032	0	LEU			32.934		-33.240		15.11	A
	MOTA	7033	N	GLU			31.382		-32.348		15.78	A
	MOTA	7034	CA	GLU			31.882		-33.052		16.64	Α
	MOTA	7035	CB	GLU .			32.838		-32.157		17.33	A
45	MOTA	7036	CG	GLU			34.005		-31.591		18.67	А
	MOTA	7037	CD	GLU			34.770		-30.583		18.78	A
	MOTA	7038		GLU			34.189		-29.530		20.08	A
	MOTA	7039		GLU			35.941		-30.850		20.18	A
	MOTA	7040	С	GLU			30.789		-33.455		16.86	A
50	MOTA	7041	0	GLU			29.731		-32.834		16.37	A
	MOTA	7042	N	LYS			31.070		-34.491		17.54	A
	ATOM	7043	CA	LYS			30.149		-34.935		18.69	A
	MOTA	7044	СВ	LYS			30.296		-36.438		19.99	A
	MOTA	7045	CG	LYS			29.903		-37.323		21.82	A
55	MOTA	7046	CD	LYS	A	898	28.480	56.982	-37.034	1.00	24.25	A

												_
	ATOM	7047	CE	LYS			27.461		-37.177		25.50	A
	MOTA	7048	NZ	LYS			26.080		-36.892		27.51	A
	ATOM	7049	С	LYS			30.619		-34.145		18.71	A
_	MOTA	7050	0	LYS			31.815		-34.095		19.42	A
5	ATOM	7051	N	VAL			29.691		-33.517		18.14	A
	MOTA	7052	CA	VAL			30.062		-32.720		17.77	A
	ATOM	7053	CB	VAL			29.804		-31.219		17.74	A
	ATOM	7054		VAL			30.749		-30.719		17.93	A
4.0	MOTA	7055		VAL			28.354		-31.009		17.25	A
10	MOTA	7056	С	VAL			29.329		-33.117		17.99	A
	ATOM	7057	0	VAL			29.343		-32.375		16.80	A
	ATOM	7058	N	ASN			28.696		-34.286		18.17	A
	MOTA	7059	CA	ASN			27.960		-34.727		19.54	A
	ATOM	7060	СВ	ASN			27.149		-35.993		21.01	A
15	MOTA	7061	CG	ASN			27.997		-37.096		22.59	A
	ATOM	7062		ASN			28.594		-36.935		24.04	A
	MOTA	7063	ND2	ASN	A	900	28.058		-38.230		23.54	A
	ATOM	7064	С	ASN			28.858		-34.979		19.41	A
	MOTA	7065	0	ASN			28.390		-34.950		19.92	A
20	MOTA	7066	N	ASN	A	901	30.142		-35.226		18.98	Α
	ATOM	7067	CA	ASN	A	901	31.067		-35.478		19.29	A
	MOTA	7068	CB	ASN	Α	901	32.053		-36.589		20.87	A
	MOTA	7069	CG	ASN	Α	901	31.401	48.359	-37.948		23.08	A
	ATOM	7070	OD1	ASN	Α	901	30.649	47.459	-38.315		24.77	Α
25	ATOM	7071	ND2	ASN	Α	901	31.695		-38.712		24.33	A
	ATOM	7072	С	ASN			31.855		-34.243		18.73	A
	ATOM	7073	0	ASN	Α	901	32.631	46.583	-34.288		18.51	A
	ATOM	7074	N	CYS	Α	902	31.660	48.251	-33.142		17.77	А
	ATOM	7075	CA	CYS	Α	902	32.382		-31.913		17.80	A
30	MOTA	7076	С	CYS	A	902	31.806		-31.162		17.57	Α
	ATOM	7077	0	CYS	Α	902	30.591	46.581	-31.087		18.35	A
	MOTA	7078	CB	CYS	Α	902	32.370	49.140	-30.963		18.11	A
	ATOM	7079	SG	CYS	Α	902	33.114	50.689	-31.563	1.00	18.40	A
	ATOM	7080	N	VAL	Α	903	32.688		-30.596		17.18	A
35	ATOM	7081	CA	VAL	Α	903	32.258	44.795	-29.809	1.00	16.95	A
	ATOM	7082	CB	VAL	Α	903	33.354	43.719	-29.739	1.00	16.42	Α
	ATOM	7083	CG1	VAL	Α	903	32.911		-28.820		16.29	Α
	ATOM	7084	CG2	VAL	Α	903	33.643	43.188	-31.134	1.00	16.61	Α
	ATOM	7085	С	VAL	Α	903	31.993		-28.411		17.40	Α
40	ATOM	7086	0	VAL	Α	903	32.924	45.634	-27.659		17.19	A
	ATOM	7087	N	ARG	Α	904	30.721		-28.076		17.57	Α
	ATOM	7088	CA	ARG	Α	904	30.339	46.054	-26.781		19.09	Α
	ATOM	7089	CB	ARG	Α	904	29.312	47.174	-26.985	1.00	19.60	A
	ATOM	7090	CG	ARG	Α	904	29.902	48.417	-27.636	1.00	20.55	A
45	ATOM	7091	CD	ARG	Α	904	28.834	49.450	-27.962	1.00	22.04	А
	ATOM	7092	NE	ARG	Α	904	28.034	49.070	-29.123	1.00	22.98	A
	ATOM	7093	CZ	ARG	Α	904	27.079	49.835	-29.649	1.00	24.10	Α
	ATOM	7094	NH1	ARG	Α	904	26.807	51.018	-29.114	1.00	23.36	Α
	MOTA	7095		ARG			26.402	49.421	-30.713	1.00	23.49	Α
50	ATOM	7096	С	ARG			29.778	45.010	-25.826	1.00	18.91	Α
-	ATOM	7097	0	ARG			29.445		-26.233	1.00	19.16	Α
	ATOM	7098	N	PRO			29.684		-24.531	1.00	18.86	Α
	ATOM	7099	CD	PRO			30.225		-23.885		18.98	Α
	ATOM	7100	CA	PRO			29.152		-23.530		18.75	А
55	ATOM	7101	СВ	PRO			29.356		-22.217		18.15	Α
			_		-		-					

		ATOM	7102	CG	PRO	Α	905	30.531	4	6.064	-22.503	1.00	18.29	Α
		ATOM	7103	C	PRO			27.677			-23.811	1.00	19.11	А
		ATOM	7104	0	PRO			27.020			-24.447		18.48	А
		ATOM	7105	N	SER			27.156			-23.339		19.65	А
	5	ATOM	7106	CA	SER			25.747			-23.548		20.62	Α
	9	ATOM	7107	CB	SER			25.405			-23.011		21.91	А
		ATOM	7108	OG	SER			25.224			-21.605		23.95	А
		ATOM	7109	C	SER			24.911			-22.809		20.80	A
		ATOM	7110	0	SER			25.427			-21.988		19.32	A
	10		7111	N	LYS			23.615			-23.095		21.12	A
	10	ATOM	7111	CA	LYS			22.692			-22.474		22.75	A
		ATOM	7112	CB	LYS			21.291			-23.063		25.21	A
		ATOM	7113	CG	LYS			21.187			-24.541		28.17	A
		ATOM	7114	CD	LYS			19.869			-25.156		30.78	A
	15	MOTA	7116	CE	LYS			18.652	•		-24.398		32.30	A
	15	ATOM	7117	NZ	LYS			18.558			-24.413		34.30	A
		ATOM ATOM	7118	C	LYS			22.631			-20.952		21.68	A
			7119	0	LYS			22.243			-20.272		22.39	A
		ATOM	7119	N	LEU			23.023			-20.417		20.87	A
	20	ATOM ATOM	7121	CA	LEU			22.972			-18.974		20.13	A
	20	ATOM	7121	CB	LEU			22.543			-18.686		21.33	A
į		ATOM	7123	CG	LEU			21.169			-19.238		22.83	A
È		ATOM	7123		LEU			20.891			-18.905		22.96	A
		ATOM	7124		LEU			20.031			-18.650		23.40	A
	25	ATOM	7125	CDZ	LEU			24.271			-18.226		18.65	A
*	25	ATOM	7127	0	LEU			24.307			-16.996		18.58	A
ì		ATOM	7128	N	HIS			25.330			-18.962		17.27	A
÷.		ATOM	7129	CA	HIS			26.618			-18.345		16.78	A
<u>.</u>		ATOM	7130	CB	HIS			27.719			-19.409		16.00	А
ř	30	ATOM	7131	CG	HIS			29.093			-18.857		16.16	A
ļ	50	ATOM	7132	CD2				29.923			-18.927		15.42	А
		MOTA	7132		HIS			29.764			-18.129		15.64	A
:		MOTA	7134		HIS			30.948			-17.776		16.06	А
		ATOM	7135		HIS			31.070			-18.249		16.03	А
:	35	ATOM	7136	C	HIS			26.535			-17.688		15.94	A
	00	ATOM	7137	0	HIS			26.027			-18.286		15.96	А
		ATOM	7138	N	PRO			27.028			-16.445		15.17	А
		ATOM	7139	CD	PRO			27.462			-15.561		15.87	A
		ATOM	7140	CA	PRO			27.004			-15.706		14.56	А
	40	ATOM	7141	СВ	PRO			27.193			-14.246			А
	10	ATOM	7142	CG	PRO			26.902			-14.247		15.77	А
		ATOM	7143	C	PRO			28.076			-16.108	1.00	13.94	А
		ATOM	7144	Ö	PRO			28.051			-15.642		14.38	А
		ATOM	7145	N	ALA			29.016			-16.952		13.17	А
	45	MOTA	7146	CA	ALA			30.095			-17.354		13.46	А
	10	ATOM	7147	СВ	ALA			31.445			-17.086		13.95	А
		ATOM	7148	C	ALA			30.049			-18.797		12.94	А
		ATOM	7149	Ō	ALA			29.284			-19.621		12.72	А
		ATOM	7150	N	GLY			30.898			-19.081		13.06	А
	50	ATOM	7151	CA	GLY			31.019			-20.415		13.02	А
		ATOM	7152	C	GLY			32.493			-20.614		13.32	Α
		ATOM	7153	0	GLY			33.223			-19.630		13.24	А
		ATOM	7154	N	TYR			32.941			-21.865		12.99	А
		ATOM	7155	CA	TYR			34.348			-22.148		13.02	A
	55	ATOM	7156	СВ	TYR			35.067			-22.546		13.52	A
						-		-						

	A TOM	7157	CC	TYR	n	012	35.020	48.754 -21.4	62	1.00 1	13 68	А
	ATOM		CG							1.00 1		A
	ATOM	7158		TYR .			34.023	47.782 -21.4				
	MOTA	7159		TYR			33.927	46.864 -20.4		1.00 1		A
_	ATOM	7160		TYR .			35.929	48.780 -20.4		1.00 1		Α
5	MOTA	7161		TYR .			35.842	47.868 -19.3		1.00 1		Α
	MOTA	7162	CZ	TYR	Α	913	34.835	46.916 -19.3		1.00 1	L4.91	Α
	ATOM	7163	OH	TYR	Α	913	34.717	46.030 -18.3	22	1.00 1	15.05	A
	ATOM	7164	С	TYR .	A	913	34.536	52.135 -23.2	43	1.00 1	12.69	Α
	ATOM	7165	0	TYR .			33.729	52.235 -24.1	64	1.00 1	12.95	A
10	MOTA	7166	N	LEU			35.614	52.904 -23.1		1.00 1		A
10	ATOM	7167	CA	LEU			35.934	53.934 -24.1		1.00 1		A
	ATOM	7168	CB	LEU			36.920	54.953 -23.5		1.00 1		A
								55.845 -22.3		1.00 1		A
	MOTA	7169	CG	LEU .			36.488					
4 F	ATOM	7170		LEU .			37.606	56.837 -22.0		1.00 1		A
15	MOTA	7171		LEU .			35.199	56.589 -22.7		1.00 1		Α
	MOTA	7172	С	LEU .	A	914	36.563	53.342 -25.3		1.00 1		Α
	ATOM	7173	0	LEU .	A	914	37.001	52.185 -25.3		1.00 1		А
	MOTA	7174	N	THR .	Α	915	36.594	54.162 -26.4	06	1.00 1	12.37	Α
	ATOM	7175	CA	THR .	A	915	37.207	53.810 -27.6	74	1.00 1	12.90	Α
20	ATOM	7176	СВ	THR .	Α	915	36.520	54.514 -28.8	50	1.00 1	13.18	A
	ATOM	7177	OG1	THR .	Α	915	36.487	55.923 -28.5	88	1.00 1	L4.07	A
	MOTA	7178	CG2				35.107	53.998 -29.0		1.00 1	13.81	А
	MOTA	7179	С	THR			38.609	54.390 -27.5		1.00 1		А
	ATOM	7180	Ö	THR			38.890	55.184 -26.6		1.00 1		A
25	ATOM	7181	N	SER			39.479	54.004 -28.4		1.00 1		A
20	ATOM	7182	CA	SER			40.846	54.504 -28.5		1.00 1		A
		7183		SER .			41.584	53.933 -29.7		1.00 1		A
	MOTA		CB					54.591 -29.9		1.00 1		A
	ATOM	7184	OG	SER .			42.822					
20	MOTA	7185	С	SER .			40.883	56.031 -28.5		1.00 1		A
30	MOTA	7186	0	SER .			41.628	56.672 -27.8		1.00 1		A
	MOTA	7187	N	ALA .			40.074	56.611 -29.4		1.00 1		A
	MOTA	7188	CA	ALA .			40.043	58.065 -29.6		1.00 1		A
	MOTA	7189	CB	ALA .			39.113	58.451 -30.7		1.00 1		А
	ATOM	7190	С	ALA .			39.609	58.771 -28.3		1.00 1		А
35	MOTA	7191	0	ALA .	A	917	40.201	59.779 -27.9		1.00 1		A
	MOTA	7192	N	ALA .	Α	918	38.569	58.248 -27.7	02	1.00 1	11.73	A
	ATOM	7193	CA	ALA .	A	918	38.060	58.851 -26.4	74	1.00 1	11.66	A
	ATOM	7194	СВ	ALA .			36.761	58.174 -26.0	62	1.00 1	11.10	A
	ATOM	7195	С	ALA			39.089	58.747 -25.3	53	1.00 1	11.78	А
40	ATOM	7196	Ō	ALA			39.261	59.675 -24.5		1.00 1	11.86	А
	ATOM	7197	N	HIS			39.773	57.612 -25.2		1.00 1	0.86	А
	MOTA	7198	CA	HIS			40.785	57.409 -24.2		1.00 1		A
	ATOM	7199	CB	HIS			41.281	55.959 -24.2		1.00 1		A
							42.386	55.683 -23.3		1.00 1		A
4 =	ATOM	7200	CG	HIS.								
45	MOTA	7201		HIS.			42.420	55.735 -21.9		1.00 1		A
	MOTA	7202		HIS			43.658	55.331 -23.7		1.00 1		A
	MOTA	7203		HIS .			44.427	55.180 -22.6		1.00 1		Α
	MOTA	7204	NE2	HIS.			43.701	55.420 -21.5		1.00 1		A
	ATOM	7205	С	HIS	A	919	41.952	58.376 -24.4		1.00 1		А
50	MOTA	7206	0	HIS.	Α	919	42.399	59.037 -23.5		1.00 1		Α
	ATOM	7207	N	LYS	Α	920	42.440	58.473 -25.7	06	1.00 1	11.97	A
	MOTA	7208	CA	LYS .			43.547	59.378 -25.9	79	1.00 1	2.11	А
	MOTA	7209	СВ	LYS			44.042	59.215 -27.4	21	1.00 1	13.63	А
	MOTA	7210	CG	LYS			44.909	57.967 -27.6		1.00 1		А
55	ATOM	7211	CD	LYS			45.591	57.946 -28.9		1.00 1		А
					•	. = -						

							•				
	ATOM	7212	CE	LYS	Α	920	46.543	56.769	-29.089	1.00 15.56	Α
	ATOM	7213	NZ	LYS			47.665	56.868	-28.111	1.00 16.03	Α
	ATOM	7214	С	LYS	Α	920	43.145	60.823	-25.712	1.00 11.83	Α
	ATOM	7215	0	LYS			43.962	61.623	-25.251	1.00 11.38	Α
5	ATOM	7216	N	ALA			41.886	61.154	-25.989	1.00 11.22	Α
	ATOM	7217	CA	ALA			41.399	62.513	-25.757	1.00 11.42	Α
	ATOM	7218	СВ	ALA			39.972		-26.297	1.00 10.82	А
	ATOM	7219	C	ALA			41.443		-24.256	1.00 11.71	А
		7220	0	ALA			41.803		-23.841	1.00 12.03	A
10	ATOM						41.005		-23.439	1.00 10.96	A
10	ATOM	7221	N	SER			41.120		-21.992	1.00 10.63	A
	MOTA	7222	CA	SER					-21.263	1.00 10.05	A
	MOTA	7223	CB	SER			40.574				
	ATOM	7224	OG	SER			40.661		-19.855	1.00 9.29	A
	ATOM	7225	С	SER			42.560		-21.547	1.00 10.95	A
15	MOTA	7226	0	SER			42.824		-20.709	1.00 11.72	A
	MOTA	7227	N	GLN			43.493		-22.113	1.00 11.31	A
	ATOM	7228	CA	GLN			44.897		-21.755	1.00 11.08	Α
	MOTA	7229	CB	GLN	Α	923	45.740	60.551	-22.404	1.00 11.10	A
	ATOM	7230	CG	GLN	Α	923	45.413	59.139	-21.923	1.00 10.78	Α
20	MOTA	7231	CD	GLN			46.344	58.104	-22.518	1.00 11.62	Α
	ATOM	7232	OE1	GLN	Α	923	46.500	58.031	-23.738	1.00 12.23	Α
	ATOM	7233	NE2	GLN	Α	923	46.973	57.294	-21.659	1.00 11.02	A
	ATOM	7234	С	GLN			45.433	63.023	-22.157	1.00 11.58	Α
	ATOM	7235	Ō	GLN			46.312		-21.486	1.00 11.23	Α
25	ATOM	7236	N	SER			44.902		-23.241	1.00 11.01	Α
20	ATOM	7237	CA	SER			45.343		-23.704	1.00 12.31	А
	ATOM	7238	CB	SER			44.727		-25.069	1.00 13.21	А
	ATOM	7239	OG	SER			43.363		-24.936	1.00 13.77	A
			C	SER			44.948		-22.702	1.00 12.26	A
20	MOTA	7240		SER			45.590		-22.625	1.00 13.44	A
30	ATOM	7241	0						-21.944	1.00 13.44	A
	ATOM	7242	N	LEU			43.886			1.00 11.70	A
	ATOM	7243	CA	LEU			43.408		-20.950	1.00 11.02	A
	MOTA	7244	CB	LEU			41.892		-20.759		A
0.5	ATOM	7245	CG	LEU			41.000		-21.977	1.00 11.95	
35	MOTA	7246		LEU			39.552		-21.645	1.00 11.65	A
	ATOM	7247		LEU			41.101		-22.387	1.00 12.24	A
	ATOM	7248	С	LEU			44.092		-19.593	1.00 11.32	A
	MOTA	7249	0	LEU			44.483		-18.962	1.00 11.10	A
	MOTA	7250	N	LEU	Α	926	44.240		-19.148	1.00 10.58	A
40	MOTA	7251	CA	LEU	Α	926	44.837		-17.843	1.00 10.87	A
	ATOM	7252	CB	LEU	Α	926	44.268	63.725	-17.257	1.00 10.32	Α
	ATOM	7253	CG	LEU	Α	926	42.756	63.720	-17.008	1.00 11.66	А
	ATOM	7254	CD1	LEU	Α	926	42.337	62.385	-16.410	1.00 11.49	A
	ATOM	7255		LEU			42.385	64.867	-16.070	1.00 12.14	Α
45	ATOM	7256	С			926	46.356	64.961	-17.808	1.00 11.34	А
10	ATOM	7257	0			926	46.962	65.305	-16.795	1.00 11.49	A
	ATOM	7258	N			927	46.975		-18.897	1.00 10.72	A
	ATOM	7259	CA			927	48.430		-18.928	1.00 11.43	А
						927	48.847		-18.666	1.00 10.70	A
50	ATOM	7260	CB				48.500		-17.260	1.00 11.69	A
50	ATOM	7261	CG			927			-16.315	1.00 11.03	A
	ATOM	7262		ASP			49.209				A
	MOTA	7263		ASP			47.509		-17.098	1.00 11.79	
	MOTA	7264	С			927	49.022		-20.238	1.00 10.90	A
	MOTA	7265	0			927	49.586		-21.015	1.00 10.70	A
55	MOTA	7266	N	PRO	A	928	48.900	66.220	-20.493	1.00 11.75	A

	ATOM	7267	CD	PRO	Α	928	48.353	67.244	-19.583	1.00	11.72	A
	ATOM	7268	CA	PRO	Α	928	49.418		-21.714	1.00	11.93	Α
	MOTA	7269	CB	PRO	Α	928	48.776	68.218	-21.688	1.00	12.47	A
	ATOM	7270	CG	PRO	Α	928	48.823	68.550	-20.232		12.77	Α
5	ATOM	7271	С	PRO	Α	928	50.932	66.928	-21.666	1.00	11.95	Α
	ATOM	7272	0	PRO	Α	928	51.550	66.661	-20.632	1.00	12.15	А
	ATOM	`7273	N	LEU	Α	929	51.531	67.305	-22.790	1.00	11.74	Α
	ATOM	7274	CA	LEU	Α	929	52.972	67.475	-22.829	1.00	11.78	Α
	MOTA	7275	СВ	LEU	Α	929	53.441	67.845	-24.238	1.00	11.20	A
10	ATOM	7276	CG	LEU	Α	929	53.239	66.863	-25.387	1.00	10.78	A
	ATOM	7277	CD1	LEU	Α	929	53.803	67.478	-26.667	1.00	10.05	A
	ATOM	7278	CD2	LEU	Α	929	53.945	65.545	-25.076	1.00	10.07	A
	ATOM	7279	С	LEU	Α	929	53.282	68.645	-21.904	1.00	11.69	А
	ATOM	7280	0	LEU	Α	929	52.479	69.568	-21.778	1.00	12.26	A
15	ATOM	7281	N	ASP			54.433	68.598	-21.245	1.00	11.94	A
	ATOM	7282	CA	ASP			54.852	69.694	-20.381	1.00	12.26	A
	ATOM	7283	СВ	ASP			55.596		-19.167	1.00	11.95	Α
	ATOM	7284	CG	ASP			54.766		-18.392	1.00	12.69	А
	ATOM	7285		ASP			53.734		-17.835	1.00	12.39	Α
20	ATOM	7286		ASP			55.134		-18.357		11.41	А
	ATOM	7287	C	ASP			55.778		-21.227	1.00	12.84	А
	ATOM	7288	Ö	ASP			56.532		-22.052		13.10	A
	ATOM	7289	N	LYS			55.723		-21.025		12.78	А
	ATOM	7290	CA	LYS			56.542		-21.807		13.16	A
25	ATOM	7291	CB	LYS			55.630		-22.600		13.75	А
20	ATOM	7292	CG	LYS			54.632		-23.505		13.74	А
	MOTA	7293	CD			931	53.724		-24.235		15.47	А
	ATOM	7294	CE			931	52.865		-23.260		16.58	A
	ATOM	7295	NZ	LYS			51.992		-23.944		16.56	A
30	ATOM	7296	C	LYS			57.512		-20.964		13,32	A
30	ATOM	7297	0			931	57.118		-19.985		13.84	A
	ATOM	7298	N			932	58.780		-21.371		13.15	A
		7299	CA			932	59.822		-20.659		12.96	A
	ATOM	7300	CB			932	60.893		-20.136		12.56	A
35	ATOM ATOM	7300	CG			932	60.359		-19.260		13.12	A
33	ATOM	7301		PHE			59.737		-19.814		13.77	A
		7302		PHE			60.501		-17.877		14.17	A
	ATOM	7303		PHE			59.266		-19.002		14.15	A
	MOTA MOTA	7304		PHE			60.035		-17.056		14.64	A
40	ATOM			PHE			59.416		-17.619		14.94	A
40		7306 7307				932	60.509		-21.544		12.75	A
	ATOM		С				60.875		-22.678		12.07	A
	ATOM	7308	O N			932	60.674		-21.018		12.97	A
	ATOM	7309	N			933	61.343		-21.750		12.57	A
4 =	ATOM	7310	CA			933			-21.685		12.77	A
4 5	ATOM	7311	CB			933	60.542		-22.486		11.64	A
	ATOM	7312		ILE			61.264					A
	ATOM	7313		ILE			59.118		-22.204		12.09	
	MOTA	7314		ILE			58.212		-22.024		12.14	A
Ε0	ATOM	7315	C			933	62.696		-21.084		13.11	A
50	ATOM	7316	0			933	62.749		-19.888		13.09	A
	ATOM	.7317	N			934	63.786		-21.842		13.10	A
	ATOM	7318	CA			934	65.107		-21.265		14.56	A
	ATOM	7319	CB			934	66.205		-22.286		14.68	A
	ATOM	7320	CG			934	67.580		-21.690		15.61	A
55	ATOM	7321	CD1	PHE	A	934	67.960	76.697	-20.828	1.00	15.02	A

										1 00	15 60	
	ATOM	7322		PHE			68.481		-21.952		15.60	A
	MOTA	7323	CE1	PHE			69.220		-20.227		16.49	Α
	MOTA	7324	CE2	PHE	Α	934	69.742		-21.360		16.52	A
	MOTA	7325	CZ	PHE	Α	934	70.113	77.730	-20.494		16.83	Α
5	ATOM	7326	С	PHE	Α	934	65.202	79.506	-20.808	1.00	15.07	Α
	ATOM	7327	0	PHE	Α	934	64.926	80.422	-21.581	1.00	14.45	A
	ATOM	7328	N	ALA			65.597	79.714	-19.554	1.00	16.05	Α
	ATOM	7329	CA	ALA			65.682		-18.978		17.74	А
	ATOM	7330	CB	ALA			65.734		-17.458		18.05	Α
10				ALA			66.825		-19.468		19.42	A
10	ATOM	7331	С									A
	ATOM	7332	0	ALA			66.605		-19.805		20.11	
	MOTA	7333	N	GLU			68.038		-19.500		19.30	A
	MOTA	7334	CA	GLU			69.213		-19.927		20.81	A
	MOTA	7335	CB	GLU			70.488		-19.485		21.98	A
15	MOTA	7336	CG	GLU	Α	936	70.651	81.309	-17.975		24.47	A
	MOTA	7337	CD	GLU	Α	936	71.765	80.343	-17.592	1.00	26.26	A
	ATOM	7338	OE1	GLU	Α	936	71.580	79.117	-17.761	1.00	26.72	Α
	ATOM	7339	OE2	GLU	Α	936	72.829	80.807	-17.131	1.00	27.77	A
	ATOM	7340	С	GLU			69.252	82.390	-21.437	1.00	20.69	А
20	ATOM	7341	0	GLU			68.439		-22.180	1.00	20.44	A
	ATOM	7342	N	ASN			70.204		-21.889		20.78	А
	ATOM	7343	CA	ASN			70.318		-23.311		21.36	А
	ATOM	7344	СВ	ASN			71.173		-23.544		22.75	А
	ATOM	7345	CG	ASN			70.505		-23.033		24.01	A
25	ATOM	7346		ASN			69.288		-23.152		23.86	A
23		7347		ASN			71.298		-22.477		25.45	A
	MOTA						70.888		-24.101		21.20	A
	ATOM	7348	C	ASN					-25.236		21.22	A
	ATOM	7349	0	ASN			70.477		-23.230		21.16	A
20	ATOM	7350	N	GLU			71.827					A
30	MOTA	7351	CA	GLU			72.426		-24.189		22.06	
	ATOM	7352	CB	GLU			73.828		-24.700		23.73	A
	MOTA	7353	CG	GLU			74.576		-25.276		26.61	A
	MOTA	7354	CD	GLU			75.794		-26.085		29.03	A
	ATOM	7355		GLU			76.633		-25.569		30.78	A
- 35	MOTA	7356	OE2				75.913		-27.238		30.10	A
	MOTA	7357	С	GLU	Α	938	72.501		-23.327		21.20	A
	MOTA	7358	0	GLU	Α	938	72.890		-22.159		21.04	A
	MOTA	7359	N	TRP	Α	939	72.122	78.058	-23.923	1.00	21.05	A
	ATOM	7360	CA	TRP	Α	939	72.140		-23.240	1.00	20.83	A
40	MOTA	7361	CB	TRP	Α	939	70.826	76.026	-23.509	1.00	19.37	A
	ATOM	7362	CG	TRP	Α	939	70.706	74.673	-22.853	1.00	17.33	A
	MOTA	7363	CD2	TRP			69.626	73.743	-23.011	1.00	16.09	А
	ATOM	7364		TRP			69.929		-22.225	1.00	16.09	А
	ATOM	7365		TRP			68.432		-23.743	1.00	15.61	A
45	ATOM	7366		TRP			71.596		-22.000		17.03	A
10	MOTA	7367		TRP			71.137		-21.618		16.57	А
	MOTA	7368		TRP			69.079		-22.150		15.03	А
		7369		TRP			67.585		-23.669		15.11	A
	ATOM								-22.876		14.62	A
EΩ	ATOM	7370		TRP			67.915				21.47	A
50	ATOM	7371	С	TRP			73.329		-23.764			
	MOTA	7372	0	TRP			73.244		-24.799		21.83	A
	MOTA	7373	N	ILE			74.442		-23.047		22.34	A
	MOTA	7374	CA	ILE			75.652		-23.449		23.09	A
	ATOM	7375	СВ	ILE			76.883		-22.715		23.89	A
55	MOTA	7376	CG2	ILE	A	940	78.139	75.154	-23.108	1.00	24.48	А

							302	-				
	ATOM	7377	CG1	ILE	Α	940	77.034	77.399	-23.064	1.00	24.81	А
	ATOM	7378	CD1				78.176		-22.348	1.00	25.61	А
	ATOM	7379	C	ILE			75.548		-23.178	1.00	22.56	А
	ATOM	7380	Ō	ILE			75.178	73.418	-22.083	1.00	23.32	А
5	ATOM	7381	N	GLY			75.865	73.032	-24.188	1.00	22.27	А
_	ATOM	7382	CA	GLY			75.806	71.589	-24.034	1.00	21.71	А
	ATOM	7383	С	GLY			74.420	71.002	-24.242	1.00	21.38	А
	ATOM	7384	0	GLY			74.192	69.822	-23.964	1.00	20.47	А
	ATOM	7385	N	ALA			73.497	71.819	-24.744	1.00	20.82	А
10	ATOM	7386	CA	ALA			72.127	71.379	-24.990	1.00	20.86	A
	ATOM	7387	СВ	ALA			71.307	72.534	-25.561	1.00	20.40	Α
	ATOM	7388	С	ALA			72.023	70.170	-25.920	1.00	20.97	Α
	ATOM	7389	0	ALA			72.756	70.062	-26.904	1.00	20.70	Α
	ATOM	7390	N	GLN			71.101	69.265	-25.600	1.00	20.56	A
15	MOTA	7391	CA	GLN	Α	943	70.868	68.071	-26.409	1.00	20.90	A
	ATOM	7392	СВ	GLN	Α	943	71.085	66.807	-25.575	1.00	21.74	Α
	ATOM	7393	CG	GLN	Α	943	72.449	66.764	-24.900		24.32	A
	MOTA	7394	CD	GLN	Α	943	72.713	65.453	-24.187	1.00	26.18	Α
	MOTA	7395	OE1	GLN	Α	943	71.852	64.939	-23.469	1.00	27.65	А
20	MOTA	7396	NE2	GLN	Α	943	73.912	64.908	-24.373		26.08	А
	ATOM	7397	С	GLN	Α	943	69.437	68.133	-26.936		20.33	А
	MOTA	7398	0	GLN	Α	943	68.570	68.759	-26.325		19.79	А
	ATOM	7399	N	GLY	А	944	69.184	67.475	-28.061		19.43	A
	MOTA	7400	CA	GLY	Α	944	67.862		-28.656		19.33	A
25	MOTA	7401	С	GLY	A	944	66.799		-28.246		19.13	A
	MOTA	7402	0	GLY			65.624		-28.546		18.88	A
	ATOM	7403	N	GLN	А	945	67.179		-27.557		18.55	A
	ATOM	7404	CA	GLN			66.181		-27.185		18.84	A
• •	MOTA	7405	СВ	GLN			65.800		-28.438		20.33	A
30	MOTA	7406	CG	GLN			64.869		-28.233		22.92	A
	MOTA	7407	CD	GLN			64.602		-29.534		24.47	A
	ATOM	7408	OE1	GLN			63.852		-30.393		25.99	A
	MOTA	7409	NE2				65.231		-29.693		25.24	A
2.5	ATOM	7410	C	GLN			66.631		-26.085		18.08	A A
35	MOTA	7411	0	GLN			67.823		-25.907		17.45 16.69	A
	ATOM	7412	N	PHE			65.653		-25.348		16.10	A
	ATOM	7413	CA	PHE			65.890		-24.288		16.10	A
	ATOM	7414	CB	PHE			65.869		-22.906 -21.774		16.43	A
40	ATOM	7415	CG CD1	PHE			65.756		-21.774 -21.518		16.58	A
4 0	ATOM	7416		PHE			66.783 64.595		-21.318 -21.008		16.91	A
	ATOM	7417		PHE			66.657		-21.000		17.50	A
	ATOM	7418		PHE PHE			64.454		-20.003		17.48	A
	ATOM	7419					65.489		-19.755		17.10	A
15	ATOM	7420	CZ			946	64.793		-24.345		15.93	A
45	ATOM	7421	С			946	63.613		-24.343		15.13	A
	ATOM	7422	O	GLY		946	65.189		-24.256		16.02	A
	ATOM	7423	N				64.226		-24.275		15.95	A
	ATOM	7424 7425		GLY			63.868		-25.635		16.90	A
50	ATOM	7425	С	GLY			62.901		-25.758		16.77	A
30	ATOM		0	GLY					-26.661		17.57	A
	ATOM	7427	N CA	GLY			64.634 64.347		-27.987		18.79	A
	ATOM	7428	CA	GLY GLY			64.347		-28.010		19.63	A
	ATOM	7429 7430	0			948	63.774		-28.879		20.35	A
55	ATOM						65.070		-27.043		20.59	A
55	ATOM	7431	N	ASP	М	949	05.070	JJ.0JI	21.043	1.00	20.33	ζ.)

									1 00 01 00	70
		MOTA	7432	CA	ASP A		65.182	54.381 -26.961	1.00 21.92	A
		ATOM	7433	CB	ASP A	949	66.603	53.991 -26.538	1.00 23.50	A
		MOTA	7434	CG	ASP A		66.942	54.453 -25.134	1.00 25.82	Α
		MOTA	7435	OD1	ASP A	949	66.489	55.550 -24.737	1.00 26.87	Α
	5	ATOM	7436	OD2	ASP A	949	67.673	53.726 -24.429	1.00 28.01	A
		ATOM	7437	С	ASP A	949	64.164	53.755 -26.007	1.00 21.81	Α
		ATOM	7438	0	ASP A	949	64.149	52.535 -25.829	1.00 22.12	Α
		ATOM	7439	N	HIS A	950	63.320	54.579 -25.387	1.00 20.91	Α
		ATOM	7440	CA	HIS A		62.304	54.051 -24.476	1.00 20.31	А
	10	ATOM	7441	СВ	HIS A		61.564	55.173 -23.741	1.00 19.60	А
		ATOM	7442	CG	HIS A		62.390	55.898 -22.725	1.00 18.82	А
		ATOM	7443		HIS A		62.137	57.027 -22.023	1.00 17.61	A
		ATOM	7444		HIS A		63.626	55.457 -22.308	1.00 19.62	А
		ATOM	7445		HIS A		64.101	56.285 -21.394	1.00 18.39	А
	15	ATOM	7446		HIS A		63.216	57.245 -21.203	1.00 19.83	А
	15	ATOM	7447	C	HIS A		61.279	53.276 -25.294	1.00 20.04	А
		ATOM	7448	0	HIS A		60.911	53.693 -26.389	1.00 20.31	A
			7449	N	PRO A		60.806	52.133 -24.776	1.00 20.23	A
2:35g		ATOM	7449	CD	PRO A		61.345	51.371 -23.634	1.00 20.95	A
	20	ATOM		CA	PRO A		59.813	51.343 -25.507	1.00 19.76	A
1,2	20	ATOM	7451				59.683	50.081 -24.655	1.00 20.56	A
		ATOM	7.452	CB	PRO A		61.048	49.953 -24.038	1.00 20.81	A
		ATOM	7453	CG			58.488	52.100 -25.622	1.00 19.07	A
1,000		ATOM	7454	С	PRO A		58.066	52.771 -24.679	1.00 18.22	A
1111	25	ATOM	7455	0			57.842	52.003 -26.780	1.00 18.29	A
IŲ.	23	MOTA	7456	N	SER A		56.561	52.670 -26.996	1.00 18.67	A
i/Fi		ATOM	7457	CA	SER A		56.487	53.235 -28.418	1.00 18.74	A
		ATOM	7458	CB	SER A		55.403	54.137 -28.564	1.00 18.74	A
Bi græng		ATOM	7459	OG	SER A		55.493	51.605 -26.791	1.00 19.01	A
	30	ATOM	7460	C	SER A		55.198	50.824 -27.701	1.00 19.67	A
J	30	ATOM	7461	0	SER A		54.920	51.581 -25.589	1.00 13.07	A
		ATOM	7462	N	ALA A			50.591 -25.214	1.00 10.23	A
i na		ATOM	7463	CA	ALA A		53.916 53.744	50.589 -23.699	1.00 17.70	A
1:2		ATOM	7464	СВ	ALA A		52.553	50.731 -25.874	1.00 17.59	A
į .	35	ATOM	7465	C	ALA A			51.804 -26.349	1.00 17.33	A
•	33	ATOM	7466	0	ALA A		52.178 51.813	49.625 -25.874	1.00 10.04	A
		ATOM	7467	N	ARG A			49.572 -26.443	1.00 17.23	A
		ATOM	7468	CA	ARG A		50.476	48.202 -26.170	1.00 13.11	A
		ATOM	7469	CB	ARG A		49.859	47.967 -26.832	1.00 21.07	A
	40	ATOM	7470	CG	ARG A		48.514			A
	40	MOTA	7471	CD	ARG A		48.386		1.00 23.24	A
		MOTA	7472	NE	ARG A		46.998	46.084 -27.381	1.00 32.43	A
		MOTA	7473	CZ	ARG A		46.192	45.838 -26.355		
		ATOM	7474		ARG A		46.641	45.975 -25.116	1.00 35.54	A
	4	ATOM	7475		ARG A		44.940	45.450 -26.565	1.00 35.55	A
	45	MOTA	7476	С	ARG A		49.641	50.689 -25.821	1.00 17.03	A
		MOTA	7477	0	ARG A		49.743	50.962 -24.620	1.00 15.07	A
		MOTA	7478	N	GLU A		48.809	51.319 -26.646	1.00 16.23	A
		ATOM	7479	CA	GLU A		47.995	52.460 -26.226	1.00 16.38	A
		MOTA	7480	CB	GLU A		47.110	52.917 -27.389	1.00 17.11	A
	50	MOTA	7481	CG	GLU A		45.917	52.024 -27.646	1.00 19.34	A
		MOTA	7482	CD	GLU A		45.092	52.493 -28.823	1.00 20.46	A
		ATOM	7483		GLU A		44.961	53.721 -29.014	1.00 22.05	A
		ATOM	7484		GLU P		44.564	51.632 -29.551	1.00 21.62	A
		ATOM	7485	С	GLU P		47.136	52.326 -24.971	1.00 15.39	A
	55	ATOM	7486	0	GLU A	955	46.846	53.328 -24.324	1.00 14.75	Α

	ATOM	7487	N	ASP	Α	956	46.722		-24.617		15.12	А
	ATOM	7488	CA	ASP	Α	956	45.892	50.957	-23.425		15.34	A
	ATOM	7489	CB	ASP	Α	956	44.895	49.793	-23.595	1.00	15.33	Α
	ATOM	7490	CG	ASP	Α	956	45.572	48.461	-23.883	1.00	16.25	Α
5	MOTA	7491	OD1	ASP	Α	956	46.815	48.419	-24.002	1.00	16.76	Α
	ATOM	7492		ASP			44.847	47.446	-23.995	1.00	16.97	Α
	ATOM	7493	С	ASP			46.714	50.777	-22.152	1.00	14.55	Α
	MOTA	7494	0	ASP			46.161	50.593	-21.067	1.00	15.14	Α
	ATOM	7495	N	LEU			48.035	50.847	-22.279	1.00	14.22	Α
)	ATOM	7496	CA	LEU			48.907	50.701	-21.119	1.00	13.40	Α
Ū	ATOM	7497	СВ	LEU			50.043	49.719	-21.421	1.00	14.46	A
	ATOM	7498	CG	LEU			50.898	49.274	-20.228	1.00	16.61	A
	ATOM	7499		LEU			50.032	48.511	-19.227	1.00	17.21	Α
	MOTA	7500		LEU			52.040	48.387	-20.711	1.00	16.91	Α
5	ATOM	7501	С	LEU			49.500	52.048	-20.724	1.00	12.80	Α
_	MOTA	7502	0	LEU			49.850	52.857	-21.582	1.00	12.44	Α
	ATOM	7503	N	ASP			49.607	52.289	-19.421	1.00	11.71	Α
	ATOM	7504	CA	ASP			50.186	53.535	-18.936	1.00	11.33	Α
	ATOM	7505	СВ	ASP			49.078	54.535	-18.566	1.00	11.55	Α
0	ATOM	7506	CG	ASP			49.623	55.918	-18.216	1.00	11.50	Α
	MOTA	7507		ASP			50.712	56.269	-18.710	1.00	10.43	Α
	ATOM	7508		ASP			48.952	56.657	-17.458	1.00	11.83	A
	MOTA	7509	С	ASP			51.060	53.274	-17.718	1.00	11.04	A
	MOTA	7510	0	ASP			50.828	52.322	-16.972	1.00	11.67	А
5	MOTA	7511	N	VAL	Α	959	52.095	54.091	-17.558	1.00	10.57	A
	MOTA	7512	CA	VAL	Α	959	52.967	54.015	-16.392	1.00	10.41	A
	MOTA	7513	CB	VAL	Α	959	54.442	54.315	-16.747	1.00	11.51	A
	MQTA	7514	CG1	VAL	Α	959	55.281	54.462	-15.461	1.00	11.36	A
	ATOM	7515	CG2	VAL	A.	959	55.003	53.187	-17.605	1.00	11.45	A
)	ATOM	7516	С	VAL	Α	959	52.401	55.148	-15.539	1.00	10.64	A
	MOTA	7517	0	VAL	Α	9 59	52.819	56.301	-15.655		10.64	A
	ATOM	7518	N	SER	Α	960	51.413		-14.715		10.31	A
	MOTA	7519	CA	SER	Α	960	50.737		-13.854		10.37	A
	ATOM	7520	CB	SER	A	960	49.642		-13.048	1.00	9.61	Α
5	AT OM	7521	OG	SER	Α	960	48.815		-13.899		10.39	A
	MOTA	7522	С	SER	Α	960	51.687	56.485	-12.899		10.61	А
	MOTA	7523	0	SER	A	960	51.541		-12.624		10.54	A
	ATOM	7524	N	VAL			52.649		-12.386		10.80	Α
	ATOM	7525	CA	VAL			53.624		-11.449		11.36	Α
9	MOTA	7526	CB	VAL	A	961	53.239	55.948	-9.971		11.55	Α
	MOTA	7527		VAL			54.337	56.447			12.60	A
	ATOM	7528	CG2	VAL			51.898	56.591	-9.615		10.23	A
	ATOM	7529	С	VAL			55.008		-11.680		11.90	A
_	MOTA	7530	0	VAL			55.159		-11.935		11.41	A
5	ATOM	7531	N	MET			56.008		-11.615		11.23	A
	ATOM	7532	CA	MET			57.402		-11.705		11.17	A
	ATOM	7533	CB	MET			58.056		-13.017		11.57	Α
	ATOM	7534	CG	MET			59.531		-13.042		13.15	A
_	ATOM	7535	SD	MET			60.354		-14.597		12.96	A
)	ATOM	7536	CE	MET			62.025		-14.249		13.82	A
	ATOM	7537	С	MET			58.006		-10.555		11.31	A
	ATOM	7538	0	MET			57.985		-10.561		11.39	A
	ATOM	7539	N	ARG			58.524	56.247	-9.559		11.55	A
_	ATOM	7540	CA	ARG			59.078	56.909			11.46	A
5	MOTA	7541	СВ	ARG	A	963	58.004	56.968	-7.285	1.00	12.00	А

	ATOM	7542	CG	ARG	Α	963	5	8.487	57.451	-5.911	1.00 12.00	6 A
	ATOM	7543	CD	ARG				7.365	57.332	-4.865	1.00 12.84	
	ATOM	7544	NE	ARG			5	6.177	58.061	-5.303	1.00 11.7	7 A
	ATOM	7545	CZ	ARG				4.932	57.600	-5.231	1.00 11.3	7 A
5	ATOM	7546	NH1	ARG			5	4.681	56.400	-4.719	1.00 10.90) A
	ATOM	7547		ARG			5	3.938	58.326	-5.723	1.00 9.6	7 A
	ATOM	7548	С	ARG			6	0.304	56.203	-7.846	1.00 11.53	3 A
	ATOM	7549	0	ARG				0.241	55.021	-7.522	1.00 11.39	9 A
	ATOM	7550	N	ARG			6	1.423	56.920	-7.756	1.00 12.3	1 A
10	MOTA	7551	CA	ARG				2.629	56.323	-7.191	1.00 12.88	3 A
	MOTA	7552	СВ	ARG	Α	964	6	3.861	57.200	-7.444	1.00 12.19	9 A
	ATOM	7553	CG	ARG	Α	964	6	5.153	56.591	-6.891	1.00 12.53	3 A
	ATOM	7554	CD	ARG			6	6.387	57.332	-7.390	1.00 12.58	3 A
	MOTA	7555	NE	ARG			6	6.594	57.155	-8.827	1.00 13.49	9 A
15	MOTA	7556	CZ	ARG			-6	7.474	56.317	-9.367	1.00 14.20	6 A
	MOTA	7557		ARG			6	8.246	55.561	-8.595	1.00 14.5	7 A
	MOTA	7558		ARG			6	7.597	56.245	-10.686	1.00 14.48	3 A
	MOTA	7559	С	ARG			6	2.314	56.255	-5.702	1.00 12.9	7 A
	ATOM	7560	0	ARG	Α	964	6	1.874	57.243	-5.109	1.00 13.4	5 A
20	ATOM	7561	N	LEU	Α	965	6	2.531	55.089	-5.104	1.00 12.82	2 A
	MOTA	7562	CA	LEU	Α	965	6	2.205	54.871	-3.697	1.00 12.5	l A
	ATOM	7563	CB	LEU	Α	965	6	1.550	53.494	-3.547	1.00 12.6	5 A
	MOTA	7564	CG	LEU	Α	965	6	0.338	53.224	-4.448	1.00 12.2	7 A
	ATOM	7565	CD1	LEU	Α	965	5	9.993	51.743	-4.424	1.00 11.69	
25	ATOM	7566	CD2	LEU	Α	965	5	9.151	54.071	-3.986	1.00 12.48	
	MOTA	7567	С	LEU	Α	965	6	3.382	54.975	-2.732	1.00 13.3	
	ATOM	7568	0	LEU	Α	965	6	3.197	54.895	-1.517	1.00 12.5	
	ATOM	7569	N	THR	Α	966	6	4.583	55.160	-3.271	1.00 12.8	
	ATOM	7570	CA	THR	Α	966	6	5.779	55.252	-2.444	1.00 14.4	
30	MOTA	7571	CB	THR	Α	966	6	6.766	54.113	-2.774	1.00 14.6	
	MOTA	7572	OG1	THR	Α	966	6	6.992	54.075	-4.189	1.00 15.1	
	MOTA	7573	CG2	THR	Α	966		6.214	52.770	-2.315	1.00 14.13	
	ATOM	7574	С			966		6.527	56.566	-2.619	1.00 15.2	
	MOTA	7575	0			966		6.504	57.166	-3.695	1.00 14.6	
35	MOTA	7576	N			967		7.187	57.005	-1.553	1.00 15.8	
	MOTA	7577	CA			967		7.984	58.221	-1.603	1.00 17.5	
	MOTA	7578	CB			967		8.095	58.847	-0.213	1.00 18.9	
	MOTA	7579	CG			967		6.756	59.361	0.317	1.00 21.3	
	MOTA	7580	CD			967		6.940	60.188	1.576	1.00 23.6	
4 0	MOTA	7581	CE	LYS				5.629	60.790	2.045	1.00 25.8	
	ATOM	7582	NZ			967		5.838	61.623	3.264	1.00 28.2	
	MOTA	7583	С			967		9.362	57.835	-2.151	1.00 17.80	
	MOTA	7584	0			967		9.672	56.649	-2.267	1.00 17.7	
4-	ATOM	7585	N			968		0.181	58.828	-2.484	1.00 18.4	
45	ATOM	7586	CA			968		1.495	58.576	-3.074	1.00 19.5	
	ATOM	7587	CB			968		2.170	59.903	-3.443	1.00 19.6	
	MOTA	7588	OG			968		2.503	60.649	-2.287	1.00 21.1	
	ATOM	7589	С			968		2.480	57.732	-2.263	1.00 20.0	
	ATOM	7590	0			968		3.350	57.084	-2.841	1.00 20.3	
50	ATOM	7591	N			969		2.348	57.726	-0.942	1.00 20.7	
	ATOM	7592	CA			969		3.271	56.961	-0.100	1.00 21.8	
	MOTA	7593	СВ			969		3.197	57.456	1.346	1.00 22.6	
	ATOM	7594	OG			969		1.899	57.264	1.880	1.00 25.7	
	ATOM	7595	C			969		3.054	55.447	-0.125	1.00 21.7	
55	MOTA	7596	0	SER	A	969	7	3.905	54.688	0.346	1.00 21.3	9 A

the fluid to start for the first term of the start term of the sta

	ATOM	7597	N	ALA	Α	970	71.926	55.008	-0.676	1.00 21.45	Α
	ATOM	7598	CA	ALA	Α	970	71.613	53.580	-0.741	1.00 21.30	Α
	ATOM	7599	CB	ALA	Α	970	70.122	53.385	-1.012	1.00 21.26	Α
	ATOM	7600	С	ALA	А	970	72.429	52.823	-1.786	1.00 21.32	A
5	MOTA	7601	0	ALA	Α	970	72.369	53.132	-2.979	1.00 21.38	Α
	ATOM	7602	N	LYS	Α	971	73.186	51.825	-1.334	1.00 21.84	А
	ATOM	7603	CA	LYS	A	971	74.003	51.011	-2.232	1.00 21.84	A
	ATOM	7604	CB	LYS	Α	971	74.683	49.874	-1.464	1.00 23.71	А
	MOTA	7605	CG	LYS	А	971	76.011	50.243	-0.817	1.00 26.65	A
10	ATOM	7606	CD	LYS	А	971	76.600	49.058	-0.056	1.00 27.50	Α
	ATOM	7607	CE	LYS	Α	971	76.656	47.801	-0.922	1.00 28.39	Α
	MOTA	7608	NZ	LYS	Α	971	77.431	47.996	-2.177	1.00 29.71	A
	ATOM	7609	С	LYS	Α	971	73.144	50.415	-3.335	1.00 21.02	A
	ATOM	7610	0	LYS	A	971	73.519	50.434	-4.506	1.00 20.93	A
15	MOTA	7611	N	THR	Α	972	71.997	49.862	-2.953	1.00 19.58	Α
	MOTA	7612	CA	THR	Α	972	71.087	49.279	-3.923	1.00 18.21	Α
	ATOM	7613	CB	THR	Α	972	70.526	47.917	-3.436	1.00 18.71	А
	MOTA	7614	OG1	THR	Α	972	71.604	46.985	-3.270	1.00 18.53	Α
	MOTA	7615	CG2	THR			69.545	47.345	-4.454	1.00 18.65	Α
20	MOTA	7616	С	THR	Α	972	69.936	50.252	-4.157	1.00 17.31	Α
	MOTA	7617	0	THR	Α	972	69.116	50.492	-3.266	1.00 16.03	Α
	MOTA	7618	N	GLN	A	973	69.895	50.830	-5.352	1.00 16.37	A
	MOTA	7619	CA	GLN	A	973	68.842	51.772	-5.699	1.00 16.12	A
	ATOM	7620	CB	GLN			69.288	52.673	-6.854	1.00 15.55	A
25	ATOM	7621	CG	GLN	A	973	70.386	53.651	-6.475	1.00 15.07	A
	MOTA	7622	CD	GLN	А	973	69.945	54.648	-5.422	1.00 15.76	А
	MOTA	7623	OE1	GLN			70.600	54.812	-4.389	1.00 17.45	A
	MOTA	7624	NE2				68.835	55.329	-5.680	1.00 14.14	А
• •	ATOM	7625	С			973	67.572	51.030	-6.086	1.00 15.69	Α
30	MOTA	7626	0	GLN			67.623	49.947	-6.670	1.00 15.91	Α
	ATOM	7627	N	ARG			66.432	51.621	-5.752	1.00 15.66	A
	MOTA	7628	CA	ARG			65.150	51.019	-6.067	1.00 15.61	A
	MOTA	7629	CB	ARG			64.501	50.477	-4.793	1.00 16.37	A
	MOTA	7630	CG	ARG			65.322	49.406	-4.075	1.00 18.08	A
35	ATOM	7631	CD	ARG			64.715	49.070	-2.711	1.00 19.28	A
	MOTA	7632	NE	ARG			63.449	48.345	-2.819	1.00 21.95	A
	MOTA	7633	CZ	ARG			62.324	48.706	-2.208	1.00 22.67	A
	MOTA	7634		ARG			62.297	49.790	-1.443	1.00 23.60	A
40	ATOM	7635		ARG			61.225	47.978	-2.353	1.00 22.90	A
40	ATOM	7636	С	ARG			64.226	52.034	-6.727	1.00 14.98	A
	MOTA	7637	0	ARG			64.137	53.191	-6.296	1.00 14.44	A
	ATOM	7638	N	VAL			63.547	51.594	-7.780	1.00 14.27	A
	MOTA	7639	CA	VAL			62.615	52.449	-8.500	1.00 13.77	A
4 =	ATOM	7640	CB	VAL			63.149	52.808	-9.908	1.00 14.20	A
45	ATOM	7641		VAL			62.161		-10.628	1.00 13.31	A
	ATOM	7642		VAL			64.502	53.493	-9.783	1.00 13.27	A
	ATOM	7643	C			975	61.295	51.706	-8.624	1.00 13.49	A
	ATOM	7644	0			975	61.251	50.561	-9.084	1.00 13.35	A
	ATOM	7645	N	GLY			60.220	52.360	-8.196	1.00 13.11	A
50	ATOM	7646	CA			976	58.911	51.741	-8.252	1.00 11.84	A
	ATOM	7647	С			976	58.063	52.232	-9.406	1.00 11.62	A
	ATOM	7648	0			976	58.130	53.404	-9.800	1.00 11.25	A
	ATOM	7649	N			977	57.263	51.324	-9.949	1.00 11.21	A
	ATOM	7650	CA			977	56.381		-11.062	1.00 11.69	A
55	ATOM	7651	CB	TYR	A	977	56.870	50.992	-12.362	1.00 11.44	А

		ATOM	7652	CG	TYR	Α	977	58.265	51.359 -12.787	1.00 12.42	А
		ATOM	7653	CD1				59.372	50.674 -12.286	1.00 12.45	Α
		ATOM	7654		TYR			60.669	51.011 -12.691	1.00 12.91	А
		ATOM	7655		TYR			58.482	52.390 -13.700	1.00 12.69	Α
	5		7656	CE2	TYR			59.764	52.735 -14.108	1.00 12.73	A
	5	ATOM						60.853	52.047 -13.604	1.00 13.25	A
		ATOM	7657	CZ	TYR						
		ATOM	7658	ОН	TYR			62.124	52.406 -14.009	1.00 12.80	A
		ATOM	7659	С	TYR			54.981	51.110 -10.823	1.00 11.50	A
	_	MOTA	7660	0	TYR			54.805	49.989 -10.347	1.00 11.45	A
	10	MOTA	7661	N	VAL	Α	978	53.985	51.921 -11.157	1.00 11.25	Α
		ATOM	7662	CA	VAL	Α	978	52.607	51.483 -11.058	1.00 11.69	Α
		MOTA	7663	CB	VAL	Α	978	51.729	52.453 -10.250	1.00 12.09	A
		ATOM	7664	CG1	VAL	Α	978	50.267	52.034 -10.360	1.00 11.83	Α
		ATOM	7665	CG2	VAL	Α	978	52.160	52.438 -8.784	1.00 11.63	Α
	15	MOTA	7666	С	VAL			52.148	51.447 -12.512	1.00 12.55	Α
	10	ATOM	7667	0	VAL			52.174	52.463 -13.209	1.00 11.76	Α
			7668	N	LEU			51.775	50.256 -12.968	1.00 12.63	A
		ATOM		CA	LEU			51.775	50.048 -14.337	1.00 14.77	A
31000		ATOM	7669						48.855 -14.957	1.00 14.77	A
	20	ATOM	7670	CB	LEU			52.064		1.00 10.74	A
ı,I	20	MOTA	7671	CG	LEU			53.380	49.107 -15.694		
٠.D		ATOM	7672		LEU			53.085	49.751 -17.036	1.00 20.58	A
M		MOTA	7673		LEU			54.293	49.986 -14.851	1.00 21.07	A
\$ (200) 4 (2		MOTA	7674	С	LEU			49.841	49.786 -14.406	1.00 14.34	A
		MOTA	7675	0	LEU			49.334	48.872 -13.760	1.00 14.54	Α
14	25	ATOM	7676	N	HIS	A	980	49.140	50.587 -15.196	1.00 13.95	Α
Hann Hann		ATOM	7677	CA	HIS	A	980	47.713	50.388 -15.347	1.00 13.39	A
M		MOTA	7678	CB	HIS	Α	980	46.922	51.586 -14.823	1.00 13.91	Α
Ξį		ATOM	7679	CG	HIS	Α	980	45.444	51.434 -14.999	1.00 14.48	Α
		MOTA	7680	CD2	HIS	Α	980	44.542	50.693 -14.315	1.00 13.79	A
	30	MOTA	7681	ND1	HIS	Α	980	44.752	52.011 -16.042	1.00 15.45	Α
1,5 52 243-2		ATOM	7682		HIS			43.488	51.631 -15.993	1.00 14.19	Α
		ATOM	7683		HIS			43.334	50.829 -14.955	1.00 15.58	A
<u>-1</u>		ATOM	7684	С	HIS			47.337	50.152 -16.798	1.00 13.58	А
		ATOM	7685	0	HIS			47.783	50.871 -17.689	1.00 13.07	Α
į, .	35	ATOM	7686	N	ARG			46.521	49.131 -17.026	1.00 13.43	Α
ŕ	00	ATOM	7687	CA	ARG			46.053	48.830 -18.367	1.00 14.40	А
		ATOM	7688	CB	ARG			46.438	47.411 -18.777	1.00 16.66	A
			7689	CG	ARG			46.067	47.071 -20.213	1.00 20.47	A
		ATOM			ARG			46.616	45.714 -20.602	1.00 22.48	A
	40	ATOM	7690	CD				46.190	45.316 -21.939	1.00 25.91	A
	40	MOTA	7691	NE	ARG					1.00 23.91	
		MOTA	7692	CZ	ARG			46.447	44.124 -22.475		A
		MOTA	7693		ARG			47.129	43.217 -21.787	1.00 27.99	A
		MOTA	7694		ARG			46.017	43.836 -23.698	1.00 28.19	A
		MOTA	7695	С	ARG			44.541	48.973 -18.351	1.00 13.60	A
	45	MOTA	7696	0	ARG	A	981	43.850	48.296 -17.592	1.00 14.15	A
		ATOM	7697	N	THR	A	982	44.031	49.881 -19.170	1.00 13.91	Α
		ATOM	7698	CA	THR	Α	982	42.597	50.105 -19.252	1.00 13.49	А
		MOTA	7699	CB	THR	A	982	42.303	51.560 -19.691	1.00 13.43	А
		MOTA	7700	OG1	THR	Α	982	40.900	51.825 -19.587	1.00 13.78	Α
	50	MOTA	7701		THR			42.764	51.791 -21.128	1.00 13.65	Α
	~ •	ATOM	7702	C	THR			42.074	49.117 -20.293	1.00 14.08	А
		ATOM	7703	Ö	THR			42.817	48.244 -20.743	1.00 13.64	А
		ATOM	7704	N	ASN			40.798	49.226 -20.652	1.00 13.57	A
		ATOM	7705	CA	ASN			40.236	48.346 -21.670	1.00 13.69	A
	55	ATOM	7706	CB	ASN			39.218	47.366 -21.084	1.00 13.01	A
	55	A I OM	1100	CB	MON	М	703	37.210	47.500 -21.004	1.00 15.01	п

	ATOM	7707	CG	ASN A	983	38.721	46.370 -	-22.119	1.00 13.68	А
	ATOM	7708	OD1	ASN A	983	39.472	45.510 -	-22.573	1.00 13.48	Α
	ATOM	7709	ND2	ASN A	983	37.456	46.497 -	-22.513	1.00 13.45	Α
	ATOM	7710	С	ASN A	983	39.542	49.212 -	-22.704	1.00 14.04	Α
5	ATOM	7711	0	ASN A	983	38.623	49.957 -	-22.378	1.00 13.01	Α
	ATOM	7712	N	LEU A	984	39.994	49.110 -	-23.949	1.00 14.70	A
	MOTA	7713	CA	LEU A	984	39.425	49.888 -	-25.040	1.00 16.23	Α
	ATOM	7714	CB	LEU A	984	40.536	50.572 -	-25.831	1.00 16.53	Α
	MOTA	7715	CG	LEU A	984	41.501	51.426 -	-25.003	1.00 17.01	Α
10	MOTA	7716	CD1	LEU A	984	42.580	51.988 -	-25.919	1.00 17.22	Α
	ATOM	7717	CD2	LEU A	984	40.735	52.542 -	-24.297	1.00 17.01	Α
	MOTA	7718	С	LEU A	984	38.640	48.976 -	-25.961	1.00 17.29	Α
	MOTA	7719	0	LEU A	984	39.058	47.854 -	-26.237	1.00 17.30	A
	MOTA	7720	N	MET A	985	37.500	49.458 -	-26.438	1.00 18.60	A
15	MOTA	7721	CA	MET A	985	36.673	48.656 -	-27.328	1.00 20.77	Α
	ATOM	7722	CB	MET A	985	35.347	49.356 -	-27.614	1.00 21.25	Α
	ATOM	7723	CG	MET A		34.437	49.491 -	-26.421	1.00 21.90	Α
	ATOM	7724	SD	MET A		32.759	49.775 -	-26.972	1.00 24.87	Α
	ATOM	7725	CE	MET A		32.919	51.381 -	-27.747	1.00 22.32	Α
20	ATOM	7726	С	MET A		37.352	48.365 -	-28.653	1.00 22.12	Α
	MOTA	7727	0	MET A		38.039	49.216 -	-29.220	1.00 22.17	Α
	MOTA	7728	N	GLN A		37.158	47.149	-29.142	1.00 23.89	Α
	ATOM	7729	CA	GLN A		37.712	46.758	-30.425	1.00 25.08	Α
	ATOM	7730	СВ	GLN A		38.079	45.271 -	-30.414	1.00 27.59	A
25	ATOM	7731	CG	GLN A		37.124	44.382	-29.638	1.00 30.79	A
	ATOM	7732	CD	GLN A		37.779	43.086 -	-29.186	1.00 32.59	A
	ATOM	7733	OE1	GLN A		37.146	42.246	-28.543	1.00 33.26	Α
	ATOM	7734		GLN A		39.059	42.923	-29.516	1.00 33.73	А
	ATOM	7735	С	GLN A		36.617	47.063		1.00 24.80	A
30	ATOM	7736	0	GLN A		35.529	46.483		1.00 24.42	A
	ATOM	7737	N	CYS A		36.899	48.003	-32.330	1.00 23.92	А
	ATOM	7738	CA	CYS A		35.922	48.412		1.00 24.36	A
	ATOM	7739	C	CYS A		36.386	48.179		1.00 26.38	Α
	ATOM	7740	Ō	CYS A		35.896	48.827		1.00 26.19	A
35	ATOM	7741	CB	CYS A		35.583	49.888		1.00 22.23	A
00	ATOM	7742	SG	CYS A		35.117	50.372		1.00 20.59	А
	ATOM	7743	N	GLY A		37.338	47.268		1.00 28.36	А
	ATOM	7744	CA	GLY A		37.814		-36.280	1.00 31.14	A
	ATOM	7745	C	GLY A		39.096	47.634		1.00 33.50	A
40	ATOM	7746	Ö	GLY A		39.502	47.474		1.00 33.42	A
10	ATOM	7747	N	THR A		39.733	48.391		1.00 35.82	А
	ATOM	7748	CA	THR A		40.981	49.060		1.00 38.40	А
	ATOM	7749	СВ	THR A		41.153	50.377		1.00 38.55	А
	ATOM	7750		THR A		40.093	51.277		1.00 39.22	A
45	ATOM	7751	CG2			42.486	51.026		1.00 38.94	A
43	ATOM	7752	C	THR A		42.158	48.140		1.00 40.35	А
	ATOM	7753	0	THR A		42.344	47.718		1.00 40.39	А
	ATOM	7754	N	PRO A		42.969	47.816		1.00 42.23	А
	ATOM	7755	CD	PRO A		42.821	48.277		1.00 42.52	A
50	ATOM	7756	CA	PRO A		44.139	46.943		1.00 43.92	A
50	ATOM	7757	CB	PRO A		44.879	47.172		1.00 43.82	A
	ATOM	7758	CG	PRO A		43.749	47.342		1.00 43.19	A
		7759	C	PRO A		45.011	47.221		1.00 45.81	A
	ATOM	7760	0	PRO A		45.322	46.301		1.00 46.16	A
55	ATOM			GLU A		45.406	48.479		1.00 47.49	A
33	ATOM	7761	N	GLU A	ンフユ	43.400	40.473	55.555	1.00 17.17	••

						007			
	ATOM	7762	CA	GLU A	991	46.240	48.856 -34.211	1.00 49.39	Α
	ATOM	7763	СВ	GLU A		45.384	48.904 -32.942	1.00 50.54	Α
	ATOM	7764	CG	GLU A		44.254	49.927 -33.000	1.00 52.51	Α
	ATOM	7765	CD	GLU A		43.249	49.762 -31.872	1.00 53.74	Α
5	ATOM	7766	OE1	GLU A		43.668	49.746 -30.695	1.00 54.22	А
	ATOM	7767	OE2	GLU A		42.037	49.649 -32.163	1.00 54.31	А
	ATOM	7768	C	GLU A		47.386	47.857 -34.034	1.00 49.78	A
		7769	0	GLU A		47.270	46.890 -33.280	1.00 49.97	A
	ATOM	7770		GLU A		48.495	48.103 -34.725	1.00 50.30	A
10	ATOM		N					1.00 50.80	A
10	ATOM	7771	CA	GLU A		49.640	47.202 -34.666	1.00 50.80	
	MOTA	7772	CB	GLU A		49.945	46.680 -36.073		A
	MOTA	7773	CG	GLU A		48.776	45.982 -36.751	1.00 53.22	A
	ATOM	7774	CD	GLU A		49.063	45.644 -38.204	1.00 54.07	A
	MOTA	7775	OE1	GLU A		50.053	44.926 -38.467	1.00 54.55	A
15	MOTA	7776	OE2			48.299	46.097 -39.083	1.00 54.47	Α
	ATOM	7777	С	GLU A		50.913	47.810 -34.077	1.00 50.44	Α
	MOTA	7778	0	GLU A		50.869	48.734 -33.264	1.00 50.69	A
	ATOM	7779	N	HIS A	993	52.042	47.259 -34.518	1.00 49.81	Α
	ATOM	7780	CA	HIS A	993	53.391	47.656 -34.116	1.00 48.87	Α
20	ATOM	7781	СВ	HIS A		54.081	48.396 -35.277	1.00 49.88	Α
	MOTA	7782	CG	HIS A		53.335	49.596 -35.779	1.00 51.14	А
	ATOM	7783		HIS A		52.287	50.283 -35.264	1.00 51.72	A
	ATOM	7784		HIS A		53.669	50.236 -36.954	1.00 51.70	А
	ATOM	7785		HIS A		52.860	51.263 -37.141	1.00 51.91	Α
25	ATOM	7786		HIS A		52.012	51.315 -36.130	1.00 52.16	А
20	ATOM	7787	C	HIS A		53.594	48.436 -32.815	1.00 47.56	A
	ATOM	7788	0	HIS A		53.594	49.669 -32.802	1.00 47.73	A
		7789		THR A		53.783	47.695 -31.725	1.00 45.51	A
	ATOM		N	THR A		54.036	48.275 -30.406	1.00 42.92	A
20	ATOM	7790	CA				48.419 -29.568	1.00 43.20	A
30	ATOM	7791	CB	THR A		52.744		1.00 43.29	A
	ATOM	7792	OG1	THR A		52.156	47.129 -29.359		A
	ATOM	7793	CG2	THR A		51.747	49.325 -30.277	1.00 42.99	
	ATOM	7794	С	THR A		55.006	47.354 -29.667	1.00 41.17	A
25	MOTA	7795	0	THR A		54.929	46.130 -29.788	1.00 41.12	A
35	MOTA	7796	N	GLN A		55.920	47.945 -28.905	1.00 38.56	A
	MOTA	7797	CA	GLN A		56.913	47.173 -28.171	1.00 35.93	A
	MOTA	7798	CB	GLN A		58.205	47.974 -28.040	1.00 36.57	A
	MOTA	7799	CG	GLN A	995	58.663	48.637 -29.320	1.00 37.34	A
	MOTA	7800	CD	GLN A	995	59.782	49.622 -29.072	1.00 38.00	A
4 0	ATOM	7801	OE1	GLN A	995	60.896	49.239 -28.706	1.00 38.62	A
	ATOM	7802	NE2	GLN A	995	59.488	50.904 -29.255	1.00 36.97	Α
	ATOM	7803	С	GLN A	995	56.442	46.789 -26.777	1.00 33.93	A
	ATOM	7804	0	GLN A	995	55.653	47.500 -26.154	1.00 33.07	Α
	MOTA	7805	N	LYS A	996	56.938	45.660 -26.289	1.00 31.39	A
45	ATOM	7806	CA	LYS A		56.590	45.209 -24.954	1.00 29.57	Α
10	ATOM	7807	СВ	LYS A		57.060	43.768 -24.736	1.00 30.91	A
	ATOM	7808	CG	LYS A		56.341	42.743 -25.602	1.00 32.81	А
	ATOM	7809	CD	LYS A		54.854	42.682 -25.265	1.00 34.20	A
	ATOM	7810	CE	LYS A		54.150	41.601 -26.067	1.00 31.20	A
50	ATOM	7811	NZ	LIS A		54.719	40.254 -25.779	1.00 34.70	A
JU							46.139 -23.981	1.00 33.31	A
	ATOM	7812	С	LYS A		57.299	46.462 -24.167	1.00 27.27	A
	ATOM	7813	0	LYS A		58.473			
	MOTA	7814	N	LEU A		56.585	46.584 -22.954	1.00 25.15	A
	MOTA	7815	CA	LEU A		57.181	47.470 -21.968	1.00 23.54	A
55	MOTA	7816	СВ	LEU A	997	56.211	48.595 -21.592	1.00 23.51	A

	ATOM	7817	CG	LEU	A 997	56.692	49.527 -20	.469	1.00	23.27	A
	ATOM	7818	CD1	LEU	A 997	57.965	50.247 -20	.895	1.00	23.38	A
	ATOM	7819	CD2	LEU	A 997	55.599	50.530 -20	.132	1.00	22.41	A
	ATOM	7820	С	LEU	A 997	57.573	46.705 -20	.716	1.00	22.50	A
5	ATOM	7821	0		A 997	56.723	46.139 -20	.032	1.00	22.25	A
•	ATOM	7822	N		A 998	58.871	46.683 -20	.433	1.00	21.36	A
	ATOM	7823	CA		A 998	59.398	46.018 -19		1.00	21.23	Α
	ATOM	7824	СВ		A 998	60.477	45.001 -19		1.00	21.93	Α
	ATOM	7825	CG		A 998	61.146	44.373 -18			22.40	Α
10	ATOM	7826			A 998	62.161	43.667 -18			22.65	A
10	ATOM	7827			A 998	60.658	44.581 -17			22.00	А
	ATOM	7828	C		A 998	60.009	47.121 -18			20.26	Α
	ATOM	7829	0		A 998	61.182	47.459 -18			19.78	Α
	ATOM	7830	N		A 999	59.210	47.689 -17			19.60	A
15	ATOM	7831	CA		A 999	59.687	48.774 -16			18.89	A
13		7832	CB		A 999	58.575	49.289 -15			18.56	A
	MOTA	7833			A 999	57.399	49.796 -16			18.40	A
	MOTA				A 999	58.136	48.191 -14			17.96	A
	ATOM	7834	CGZ		A 999	60.918	48.419 -15			19.06	A
20	ATOM	7835				61.682	49.303 -15			18.30	A
20	ATOM	7836	0		A 999 A1000	61.130	47.136 -15			19.10	A
	ATOM	7837	N		A1000	62.291	46.767 -14			20.40	A
	ATOM	7838	CA			63.615	46.972 -15			19.66	A
	ATOM	7839	C		A1000	64.669	46.995 -14			19.22	A
25	ATOM	7840	0		A1000	62.157	45.333 -14			21.94	A
25	MOTA	7841	CB		A1000	61.388	45.277 -12			25.12	A
	ATOM	7842	SG		A1000 A1001	63.566	47.136 -16			20.20	A
	ATOM	7843 7844	N CA		A1001 A1001	64.793	47.372 -17			20.55	A
	ATOM ATOM	7845	CB		A1001	64.928	46.373 -18			20.76	A
30	ATOM	7846	CG		A1001	65.456	45.039 -18			20.70	А
30	ATOM	7847			A1001	66.715	44.542 -18			20.88	А
	ATOM	7848			A1001	64.656	44.060 -17			20.78	A
	ATOM	7849	CE1		A1001	65.399	43.019 -17			20.46	А
	ATOM	7850			A1001	66.653	43.285 -17			21.10	А
35	ATOM	7851	C		A1001	64.903	48.800 -18			20.63	A
33	ATOM	7852	0		A1001	65.752	49.092 -18			21.06	A
		7853	N		A1001	64.048	49.693 -17			20.58	A
	ATOM ATOM	7854	CA		A1002	64.087	51.088 -18			20.34	A
	ATOM	7855	CB		A1002	62.875	51.855 -17			20.22	A
40	ATOM	7856	CG		A1002	61.592	51.670 -18			19.58	A
40	ATOM	7857			A1002	60.440	52.384 -17			18.77	A
	ATOM	7858			A1002	61.801	52.212 -19			19.29	A
		7859	C		A1002	65.371	51.737 -17			21.19	A
	ATOM	7860	0		A1002	65.920	52.622 -18			21.36	A
45	ATOM	7861			A1002	65.840	51.298 -16			21.04	A
43	MOTA	7862	N C D		A1003	67.087	51.802 -15			21.46	A
	MOTA		CA			66.902	52.223 -14			22.21	A
	MOTA	7863	CB		A1003	66.045	53.476 -14			23.70	A
	ATOM	7864	CG		A1003	65.966	53.806 -12			24.51	A
50	ATOM	7865			A1003	66.650	54.644 -14			25.02	A
50	ATOM	7866			A1003		50.677 -15			21.41	A
	ATOM	7867	С		A1003	68.111 67.774	49.503 -15			20.58	A
	ATOM	7868	0		A1003	69.376	51.021 -16			21.54	A
	ATOM	7869	N		A1004 A1004	69.376	52.386 -16			21.59	A
55	ATOM	7870 7871	CD CA		A1004 A1004	70.445	50.029 -16			21.82	A
55	ATOM	/6/1	CH	FKU	MIUU4	10.443	50.025 -10	. 500	1.00		••

	ATOM	7872	СВ	PPO	A1004	71.565	50 837	-17.005	1.00 22.03	А
	ATOM	7873	CG		A1004	71.412		-16.331	1.00 21.74	A
	ATOM	7874	C		A1004	70.901		-15.070	1.00 22.14	А
	ATOM	7875	0		A1004	70.577		-13.964	1.00 21.00	А
5	ATOM	7876	N		A1005	71.649		-15.235	1.00 22.33	Α
	ATOM	7877	CA		A1005	72.208		-14.114	1.00 22.54	А
	ATOM	7878	СВ		A1005	73.152		-13.333	1.00 24.42	A
	ATOM	7879	CG		A1005	74.150		-14.230	1.00 26.07	А
	ATOM	7880			A1005	74.346		-14.126	1.00 27.74	А
10	ATOM	7881			A1005	74.790		-15.115	1.00 25.81	А
10	ATOM	7882	C		A1005	71.165		-13.167	1.00 22.28	А
	ATOM	7883	0		A1005	71.360		-11.952	1.00 22.03	А
	ATOM	7884	N		A1006	70.065		-13.714	1.00 22.19	А
	ATOM	7885	CA		A1006.	69.022		-12.877	1.00 22.43	А
15	ATOM	7886	CB		A1006	67.735		-13.690	1.00 21.96	А
10	ATOM	7887	CG1		A1006	68.026		-14.810	1.00 21.98	А
	ATOM	7888			A1006	66.649		-12.768	1.00 21.52	А
	ATOM	7889	C		A1006	69.537		-12.239	1.00 22.76	A
	ATOM	7890	0		A1006	70.095		-12.920	1.00 23.29	A
20	ATOM	7891	N		A1007	69.361		-10.927	1.00 22.95	А
20	ATOM	7892	CA		A1007	69.813		-10.181	1.00 23.43	А
	ATOM	7893	CB		A1007	70.578	43.737	-8.935	1.00 23.72	А
	ATOM	7894	C		A1007	68.640	42.398	-9.793	1.00 23.92	А
	ATOM	7895	Ō		A1007	68.816	41.207	-9.533	1.00 23.84	А
25	ATOM	7896	N		A1008	67.445	42.975	-9.736	1.00 23.57	А
	ATOM	7897	CA		A1008	66.251	42.204	-9.413	1.00 24.00	A
	ATOM	7898	CB		A1008	66.236	41.782	-7.938	1.00 26.17	А
	ATOM	7899	CG		A1008	66.171	42.910	-6.933	1.00 29.81	А
	ATOM	7900	CD		A1008	66.045	42.358	-5.513	1.00 33.34	A
30	ATOM	7901	NE		A1008	67.188	41.524	-5.140	1.00 35.30	A
	ATOM	7902	CZ		A1008	68.436	41.969	-5.011	1.00 36.73	A
	ATOM	7903			A1008	68.718	43.249	-5.222	1.00 36.58	A
	ATOM	7904			A1008	69.409	41.129	-4.676	1.00 37.44	A
	ATOM	7905	С		A1008	64.983	42.973	-9.748	1.00 23.14	A
35	ATOM	7906	0		A1008	64.981	44.206	-9.811	1.00 22.18	A
	ATOM	7907	N		A1009	63.910	42.225	-9.979	1.00 22.25	А
	ATOM	7908	CA		A1009	62.617		-10.322	1.00 21.69	A
	ATOM	7909	С		A1009	61.572	42.099	-9.472	1.00 20.98	Α
	ATOM	7910	0	CYS	A1009	61.501	40.868	-9.453	1.00 19.71	Α
40	ATOM	7911	СВ	CYS	A1009	62.322	42.559	-11.799	1.00 23.19	A
	ATOM	7912	SG		A1009	60.805	43.356	-12.416	1.00 25.61	Α
	ATOM	7913	N		A1010	60.759	42.881	-8.771	1.00 19.93	А
	ATOM	7914	CA		A1010	59.743	42.307	-7.905	1.00 19.15	А
	ATOM	7915	СВ	GLU	A1010	60.178	42.459	-6.444	1.00 20.68	A
45	ATOM	7916	CG	GLU	A1010	61.488	41.748	-6.110	1.00 23.17	А
	ATOM	7917	CD	GLU	A1010	62.113	42.241	-4.819	1.00 24.63	A
	ATOM	7918	OE1	GLU	A1010	62.533	43.419	-4.773	1.00 25.13	A
	ATOM	7919			A1010	62.183	41.452	-3.849	1.00 25.95	А
	MOTA	7920	С		A1010	58.372	42.943	-8.091	1.00 18.57	Α
50	ATOM	7921	0		A1010	58.258	44.148	-8.334	1.00 17.62	Α
	ATOM	7922	N		A1011	57.333	42.122	-7.995	1.00 17.73	Α
	ATOM	7923	CA		A1011	55.970	42.623	-8.087	1.00 17.39	А
	ATOM	7924	СВ		A1011	55.009	41.537	-8.571	1.00 19.53	Α
	ATOM	7925	CG		A1011	53.590	42.048	-8.816	1.00 23.41	А
55	ATOM	7926	CD		A1011	52.581	40.910	-8.808	1.00 27.12	Α

	ATOM	7927	NE	ARG	A1011	52.897	39.879	-9.790	1.00 31.70	Α
	ATOM	7928	CZ		A1011	52.840		-11.107	1.00 33.53	Α
	ATOM	7929			A1011	52.477	41.229	-11.607	1.00 35.13	Α
	ATOM	7930			A1011	53.145		-11.925	1.00 34.20	Α
5	ATOM	7931	С		A1011	55.654	42.980	-6.637	1.00 16.18	А
•	ATOM	7932	Ō		A1011	55.992	42.226	-5.722	1.00 15.62	А
	ATOM	7933	N		A1012	55.021	44.126	-6.423	1.00 14.81	Α
	ATOM	7934	CA		A1012	54.702	44.562	-5.071	1.00 13.76	А
	ATOM	7935	СВ		A1012	55.600	45.742	-4.635	1.00 14.36	Α
10	ATOM	7936	0G1		A1012	55.252	46.904	-5.404	1.00 13.90	Α
20	ATOM	7937	CG2		A1012	57.072	45.422	-4.858	1.00 12.72	A
	ATOM	7938	C		A1012	53.268	45.060	-4.984	1.00 13.68	А
	ATOM	7939	0		A1012	52.568	45.170	-5.989	1.00 13.39	A
	ATOM	7940	N		A1013	52.838	45.355	-3.764	1.00 12.69	A
15	ATOM	7941	CA		A1013	51.518	45.915	-3.552	1.00 12.46	Α
10	ATOM	7942	CB		A1013	51.225	46.036	-2.046	1.00 12.35	Α
	MOTA	7943	OG1		A1013	52.406	46.482	-1.367	1.00 11.61	Α
	ATOM	7944	CG2		A1013	50.807	44.676	-1.472	1.00 12.82	Α
	ATOM	7945	C		A1013	51.611	47.303	-4.203	1.00 12.06	А
20	MOTA	7946	Ö		A1013	52.716	47.809	-4.424	1.00 11.69	Α
	ATOM	7947	N		A1014	50.473	47.920	-4.509	1.00 12.08	Α
	ATOM	7948	CA		A1014	50.479	49.228	-5.171	1.00 11.50	Α
	ATOM	7949	СВ		A1014	49.051	49.659	-5.504	1.00 11.09	Α
	ATOM	7950	CG		A1014	48.261	48.712	-6.406	1.00 10.82	А
25	ATOM	7951			A1014	46.957	49.394	-6.801	1.00 10.20	Α
	ATOM	7952			A1014	49.076	48.353	-7.647	1.00 10.52	А
	ATOM	7953	C		A1014	51.172	50.340	-4.404	1.00 11.34	Α
	ATOM	7954	0		A1014	51.532	51.368	-4.984	1.00 11.68	A
	ATOM	7955	N		A1015	51.360	50.133	-3.105	1.00 11.33	Α
30	MOTA	7956	CA		A1015	52.019	51.106	-2.240	1.00 11.07	Α
	ATOM	7957	СВ		A1015	51.500	51.004	-0.800	1.00 11.10	Α
	ATOM	7958	OG1		A1015	51.640	49.648	-0.353	1.00 11.46	Α
	ATOM	7959	CG2		A1015	50.032	51.427	-0.714	1.00 10.67	Α
	ATOM	7960	C		A1015	53.528	50.866	-2.193	1.00 11.04	А
35	ATOM	7961	Ō		A1015	54.262	51.636	-1.563	1.00 11.09	A
-	ATOM	7962	N		A1016	53.972	49.794	-2.850	1.00 11.39	A
	ATOM	7963	CA		A1016	55.388	49.408	-2.897	1.00 12.27	A
	ATOM	7964	СВ		A1016	56.271	50.604	-3.287	1.00 12.26	Α
	ATOM	7965	CG		A1016	55.966	51.184	-4.639	1.00 11.88	А
40	ATOM	7966	CD1		A1016	55.835	52.562	-4.797	1.00 12.08	Α
	ATOM	7967			A1016	55.823	50.366	-5.751	1.00 11.67	Α
	MOTA	7968			A1016	55.561	53.115	-6.046	1.00 11.87	Α
	ATOM	7969			A1016	55.549	50.912	-7.008	1.00 11.94	Α
	ATOM	7970	CZ		A1016	55.417	52.286	-7.152	1.00 11.93	A
45	ATOM	7971	С		A1016	55.881	48.879	-1.550	1.00 13.14	A
	ATOM	7972	0		A1016	57.067	48.584	-1.394	1.00 13.12	Α
	ATOM	7973	N		A1017	54.976	48.739	-0.585	1.00 13.12	A
	ATOM	7974	CA		A1017	55.369	48.299	0.751	1.00 13.58	А
	ATOM	7975	СВ		A1017	54.374	48.855	1.779	1.00 12.73	Α
50	ATOM	7976	CG		A1017	54.334	50.394	1.786	1.00 12.87	Α
	ATOM	7977			A1017	53.323	50.893	2.805	1.00 12.49	А
	ATOM	7978			A1017	55.720	50.950	2.105	1.00 12.43	А
	ATOM	7979	C		A1017	55.595	46.808	0.988	1.00 14.53	А
	ATOM	7980	Ō		A1017	56.271	46.437	1.946	1.00 15.09	А
55	ATOM	7981	N		A1018	55.042	45.949	0.137	1.00 15.38	А

The state and the state and state are state and state and state and state and state and

	ATOM	7982	CA	GLN	A1018	55.246	44.513	0.310	1.00 17.15	Α
	ATOM	7983	СВ		A1018	53.994	43.841	0.892	1.00 18.62	Α
	ATOM	7984	CG		A1018	54.187	42.336	1.128	1.00 21.17	Α
	ATOM	7985	CD		A1018	52.903	41.592	1.466	1.00 23.14	Α
5	ATOM	7986	OE1		A1018	52.917	40.373	1.668	1.00 25.29	Α
-	ATOM	7987	NE2		A1018	51.789	42.313	1.522	1.00 22.60	Α
	ATOM	7988	С		A1018	55.608	43.822	-1.003	1.00 17.88	Α
	ATOM	7989	Ō		A1018	54.975	44.054	-2.033	1.00 16.65	Α
	ATOM	7990	N		A1019	56.628	42.971	-0.963	1.00 18.66	Α
10	ATOM	7991	CA		A1019	57.036	42.238	-2.154	1.00 20.53	Α
	ATOM	7992	СВ	ASN	A1019	58.498	41.798	-2.043	1.00 21.07	A
	ATOM	7993	CG	ASN	A1019	59.446	42.971	-1.879	1.00 22.32	A
	ATOM	7994	OD1	ASN	A1019	59.313	43.991	-2.561	1.00 22.36	Α
	ATOM	7995	ND2	ASN	A1019	60.419	42.830	-0.982	1.00 22.05	A
15	ATOM	7996	С	ASN	A1019	56.127	41.022	-2.285	1.00 21.52	Α
	ATOM	7997	0	ASN	A1019	55.948	40.267	-1.330	1.00 22.36	Α
	ATOM	7998	N	LEU	A1020	55.548	40.838	-3.466	1.00 22.06	Α
	MOTA	7999	CA	LEU	A1020	54.639	39.725	-3.705	1.00 23.36	Α
	ATOM	8000	CB	LEU	A1020	53.345	40.233	-4.347	1.00 23.29	Α
20	ATOM	8001	CG	LEU	A1020	52.546	41.316	-3.618	1.00 23.35	Α
	ATOM	8002	CD1	LEU	A1020	51.427	41.815	-4.524	1.00 23.65	A
	ATOM	8003	CD2	LEU	A1020	51.983	40.763	-2.320	1.00 23.16	Α
	MOTA	8004	С	LEU	A1020	55.238	38.648	-4.600	1.00 24.39	Α
	MOTA	8005	0	LEU	A1020	54.876	37.474	-4.491	1.00 24.00	A
25	MOTA	8006	N	GLU	A1021	56.145	39.044	-5.488	1.00 25.74	A
	ATOM	8007	CA	GLU	A1021	56.759	38.093	-6.412	1.00 27.47	A
	MOTA	8008	CB		A1021	55.919	37.969	-7.684	1.00 28.95	A
	MOTA	8009	CG		A1021	54.604	37.243	-7.551	1.00 31.78	A
	MOTA	8010	CD		A1021	53.917	37.088	-8.897	1.00 33.30	A
30	ATOM	8011	OE1		A1021	54.587	36.643	-9.856	1.00 33.68	A
	ATOM	8012			A1021	52.712	37.408	-8.998	1.00 35.00	A
	MOTA	8013	С		A1021	58.174	38.440	-6.847	1.00 27.78	A
	ATOM	8014	0		A1021	58.484	39.599	-7.125	1.00 27.14	A
0.5	MOTA	8015	N		A1022	59.024	37.420	-6.915	1.00 28.61	A
35	ATOM	8016	CA		A1022	60.394	37.587	-7.377	1.00 29.85	A
	ATOM	8017	CB		A1022	61.343	36.652	-6.624	1.00 31.37	A
	ATOM	8018	CG		A1022	62.782	36.825	-6.999	1.00 32.90	A
	ATOM	8019			A1022	63.692	35.944	-7.480	1.00 33.73	A A
40	ATOM	8020			A1022	63.438	38.034	-6.897	1.00 33.99 1.00 34.21	A
4 0	ATOM	8021			A1022	64.688	37.890	-7.299 7.650	1.00 34.21	A
	ATOM	8022			A1022	64.868	36.631	-7.659 -8.847	1.00 34.14	A
	ATOM	8023	C		A1022	60.298	37.186		1.00 29.97	A
	ATOM	8024	0		A1022	60.054	36.022	-9.169 -9.732	1.00 29.00	A
45	ATOM	8025	N		A1023	60.477	38.159	-11.165	1.00 29.90	A
45	ATOM	8026	CA		A1023	60.354 59.901		-11.103	1.00 30.06	A
	ATOM	8027	CB		A1023 A1023	58.644		-11.194	1.00 30.00	A
	ATOM	8028	CG			58.367		-11.757	1.00 20.43	A
	ATOM	8029			A1023	57.466		-11.432	1.00 30.04	A
50	ATOM	8030			A1023 A1023	61.603		-11.452	1.00 23.01	A
30	ATOM	8031	С					-11.836	1.00 31.31	A
	MOTA	8032	O N		A1023	62.656 61.470		-12.470	1.00 30.70	A
	ATOM	8033	N CA		A1024 A1024	62.583		-13.179	1.00 32.74	A
	ATOM	8034	CA		A1024 A1024	62.202		-13.179	1.00 35.34	A
55	ATOM	8035 8036	CB CG		A1024 A1024	62.346		-12.547	1.00 38.17	A
55	MOTA	0030	CG	nor	W1074	02.540	22.103	12.54/	1.00 30.17	••

										_
		ATOM	8037	OD1	ASP	A1024	62.074	31.974 -12.818	1.00 40.17	А
		ATOM	8038	OD2	ASP	A1024	62.737	33.531 -11.417	1.00 39.44	Α
		ATOM	8039	С	ASP	A1024	63.001	36.454 -14.373	1.00 33.60	Α
		ATOM	8040	0		A1024	62.179	37.150 -14.973	1.00 33.92	Α
	5	ATOM	8041	N		A1025	64.284	36.393 -14.712	1.00 33.05	A
	5									
		MOTA	8042	CA		A1025	64.788	37.165 -15.832	1.00 32.63	A
		MOTA	8043	С		A1025	64.714	38.650 -15.547	1.00 32.42	Α
		ATOM	8044	0	GLY	A1025	65.062	39.474 -16.394	1.00 32.65	A
		ATOM	8045	N	MET	A1026	64.262	38.990 -14.344	1.00 31.91	Α
	10	ATOM	8046	CA		A1026	64.135	40.381 -13.932	1.00 31.78	A
	20	ATOM	8047	СВ		A1026	65.515	41.036 -13.860	1.00 32.40	А
						A1026	66.511	40.278 -13.002	1.00 33.57	A
		ATOM	8048	ÇG					1.00 35.37	
		MOTA	8049	SD		A1026	68.098	41.116 -12.885		A
		MOTA	8050	CE		A1026	68.895	40.532 -14.379	1.00 34.34	A
	15	ATOM	8051	С		A1026	63.254	41.135 -14.920	1.00 31.27	Α
		ATOM	8052	0	MET	A1026	63.496	42.302 -15.221	1.00 30.28	Α
		MOTA	8053	N	VAL	A1027	62.228	40.457 -15.422	1.00 30.91	Α
		MOTA	8054	CA	VAL	A1027	61.316	41.068 -16.377	1.00 31.71	Α
\$107 5 ;		ATOM	8055	СВ		A1027	61.178	40.212 -17.650	1.00 31.61	Α
₹;:±#	20	ATOM	8056			A1027	60.155	40.839 -18.589	1.00 32.07	A
اليابة	20					A1027	62.524	40.089 -18.340	1.00 32.07	A
		ATOM	8057							
m		MOTA	8058	С		A1027	59.929	41.273 -15.788	1.00 31.69	A
		MOTA	8059	0		A1027	59.295	40.327 -15.320	1.00 31.57	Α
ائوستى: «دادە		ATOM	8060	N	ALA	A1028	59.463	42.516 -15.814	1.00 31.73	Α
193	25	ATOM	8061	CA	ALA	A1028	58.140	42.839 -15.300	1.00 32.08	Α
ı,		ATOM	8062	CB	ALA	A1028	58.114	44.265 -14.754	1.00 32.15	A
		MOTA	8063	С		A1028	57.145	42.694 -16.441	1.00 31.91	A
RI		ATOM	8064	0		A1028	57.116	43.514 -17.361	1.00 32.68	А
		ATOM	8065	N		A1029	56.323	41.638 -16.405	1.00 31.39	A
j	30						56.223	40.615 -15.348	1.00 31.33	A
١.J	30	ATOM	8066	CD		A1029				
		MOTA	8067	CA		A1029	55.327	41.406 -17.454	1.00 31.08	A
[.d.		MOTA	8068	CB		A1029	54.819	40.005 -17.132	1.00 31.27	A
		ATOM	8069	CG	PRO	A1029	54.878	39.979 -15.639	1.00 31.48	Α
		ATOM	8070	С	PRO	A1029	54.217	42.454 -17.398	1.00 30.48	A
[,d:	35	ATOM	8071	0	PRO	A1029	53.919	42.995 -16.334	1.00 30.65	A
		ATOM	8072	N	GLU	A1030	53.612	42.743 -18.545	1.00 29.57	A
		MOTA	8073	CA	GLU	A1030	52.539	43.725 -18.595	1.00 28.77	Α
		ATOM	8074	СВ		A1030	52.224	44.094 -20.047	1.00 29.04	Α
		ATOM	8075	CG		A1030	53.447	44.504 -20.861	1.00 28.71	A
	40		8076				53.086			A
	40	ATOM				A1030				
		MOTA	8077			A1030	52.176	44.395 -22.867	1.00 29.16	A
		MOTA	8078	OE2		A1030	53.716	45.952 -22.738	1.00 27.83	Α
		ATOM	8079	С		A1030	51.300	43.153 -17.914	1.00 27.90	А
		ATOM	8080	0	GLU	A1030	51.190	41.939 -17.717	1.00 28.78	А
	45	ATOM	8081	N	VAL	A1031	50.366	44.026 -17.558	1.00 26.52	A
		ATOM	8082	CA	VAL	A1031	49.153	43.595 -16.883	1.00 24.32	A
		ATOM	8083	СВ		A1031	48.745	44.606 -15.791	1.00 25.20	А
		ATOM	8084			A1031	49.850	44.709 -14.752	1.00 25.47	A
	EO	ATOM	8085			A1031	48.466	45.961 -16.408	1.00 24.31	A
	50	ATOM	8086	С		A1031	47.977	43.388 -17.826	1.00 22.92	A
		MOTA	8087	O		A1031	48.032	43.752 -18.998	1.00 22.93	Α
		ATOM	8808	N	CYS	A1032	46.917	42.790 -17.295	1.00 21.33	Α
		ATOM	8089	CA	CYS	A1032	45.703	42.511 -18.051	1.00 20.05	Α
		ATOM	8090	С		A1032	44.804	43.740 -18.132	1.00 18.10	Α
	55	ATOM	8091	Ō		A1032	44.982	44.698 -17.381	1.00 17.38	А
		11100	0001	•	010			11.000		

	ħ TIOM	8092	CB	cve	A1032	44.923	41.377 -17.380	1.00 20.75	А
	ATOM	8093	CB SG		A1032	45.684	39.722 -17.453	1.00 22.84	A
	ATOM	8094	N N		A1032	43.820	43.727 -19.049	1.00 16.57	A
	ATOM	8095	CD		A1033	43.568	42.726 -20.104	1.00 16.27	A
5	ATOM	8096	CA		A1033	42.906	44.865 -19.183	1.00 16.00	A
3	ATOM					41.941	44.404 -20.275	1.00 15.70	A
	ATOM	8097	CB		A1033	42.811	43.529 -21.138	1.00 16.00	A
	ATOM	8098	CG		A1033	42.192	45.116 -17.853	1.00 15.35	A
	ATOM	8099	C		A1033 A1033	41.725	44.178 -17.206	1.00 13.33	A
10	ATOM	8100	0				46.385 -17.462	1.00 14.40	A
10	ATOM	8101	N		A1034	42.119	46.815 -16.221	1.00 15.28	A
	ATOM	8102	CA		A1034	41.482		1.00 15.40	A
	ATOM	8103	CB		A1034	40.041	46.308 -16.143 46.875 -17.223	1.00 15.40	A
	ATOM	8104	CG		A1034	39.132		1.00 16.32	A
15	ATOM	8105	SD		A1034	39.209	48.680 -17.336		
15	MOTA	8106	CE		A1034	38.245	49.170 -15.883	1.00 17.76	A
	ATOM	8107	C		A1034	42.246	46.391 -14.972	1.00 16.88	A
	ATOM	8108	0		A1034	41.726	46.484 -13.860	1.00 17.93	A
	MOTA	8109	N		A1035	43.477	45.930 -15.161	1.00 16.50	A
20	MOTA	8110	CA		A1035	44.318	45.517 -14.044	1.00 17.13	A
20	MOTA	8111	CB		A1035	44.989	44.166 -14.342	1.00 19.35	A
	ATOM	8112	CG		A1035	46.198	43.864 -13.453	1.00 23.20	A
	ATOM	8113	CD		A1035	46.687	42.421 -13.550	1.00 25.99	A
	ATOM	8114	OE1		A1035	46.973	41.943 -14.674	1.00 26.11	A
0=	MOTA	8115			A1035	46.794	41.766 -12.488	1.00 28.07	A
25	MOTA	8116	С		A1035	45.386	46.570 -13.765	1.00 16.00	A
	MOTA	8117	0		A1035	45.777	47.328 -14.652	1.00 14.36	A
	MOTA	8118	N		A1036	45.839	46.620 -12.518	1.00 15.22	A
	MOTA	8119	CA		A1036	46.881	47.554 -12.116	1.00 14.15	A
•	MOTA	8120	СВ		A1036	46.323	48.705 -11.253	1.00 13.96	A
30	MOTA	8121	OG1		A1036	45.285	49.383 -11.967	1.00 13.25	A
	MOTA	8122	CG2		A1036	47.427	49.701 -10.914	1.00 13.39	A
	MOTA	8123	С		A1036	47.877	46.768 -11.279	1.00 13.98	A
	MOTA	8124	0		A1036	47.487	46.031 -10.375	1.00 13.86	A
	MOTA	8125	N		A1037	49.159	46.912 -11.584	1.00 13.57	A
35	MOTA	8126	CA	ALA	A1037	50.186	46.213 -10.832	1.00 14.07	A
	MOTA	8127	CB		A1037	50.706	45.022 -11.626	1.00 14.55	A
	MOTA	8128	С		A1037	51.320	47.171 -10.526	1.00 14.09	A
	MOTA	8129	0		A1037	51.442	48.226 -11.149	1.00 14.87	A
	MOTA	8130	N		A1038	52.134	46.810 -9.544	1.00 13.48	A
40	MOTA	8131	CA	ALA	A1038		47.633 -9.164		A
	MOTA	8132	CB	ALA	A1038	53.066	48.207 -7.774	1.00 12.35	А
	MOTA	8133	С	ALA	A1038	54.512	46.766 -9.193	1.00 13.30	A
	MOTA	8134	0	ALA	A1038	54.468	45.590 -8.823	1.00 13.16	A
	MOTA	8135	N	TYR	A1039	55.612	47.347 -9.655	1.00 13.78	A
45	MOTA	8136	CA	TYR	A1039	56.879	46.642 -9.722	1.00 14.56	А
	ATOM	8137	CB	TYR	A1039	57.218	46.242 -11.160	1.00 14.67	А
	ATOM	8138	CG	TYR	A1039	56.188	45.367 -11.836	1.00 16.22	А
	ATOM	8139	CD1	TYR	A1039	55.247	45.914 -12.707	1.00 17.34	А
	ATOM	8140	CE1	TYR	A1039	54.306	45.111 -13.349	1.00 18.80	Α
50	ATOM	8141	CD2	TYR	A1039	56.162	43.990 -11.616	1.00 17.38	Α
	ATOM	8142			A1039	55.223	43.178 -12.253	1.00 18.40	Α
	ATOM	8143	CZ		A1039	54.301	43.745 -13.118	1.00 19.04	Α
	ATOM	8144	ОН		A1039	53.377	42.949 -13.758	1.00 21.01	Α
	ATOM	8145	С		A1039	57.979	47.546 -9.204	1.00 14.90	A
55	ATOM	8146	0		A1039	57.925	48.767 -9.362	1.00 14.95	Α

		MOTA	8147	N	VAL	A1040	58.977	46.936	-8.580	1.00 15.13	Α
		ATOM	8148	CA	VAL	A1040	60.115	47.674	-8.064	1.00 15.16	A
		MOTA	8149	CB	VAL	A1040	60.176	47.631	-6.521	1.00 15.50	Α
		MOTA	8150	CG1	VAL	A1040	61.472	48.281	-6.029	1.00 15.65	Α
	5	ATOM	8151	CG2	VAL	A1040	58.975	48.363	-5.937	1.00 14.36	A
		MOTA	8152	С	VAL	A1040	61.357	47.010	-8.635	1.00 16.26	А
		MOTA	8153	0	VAL	A1040	61.538	45.795	-8.510	1.00 16.39	Α
		MOTA	8154	N	SER	A1041	62.197	47.802	-9.291	1.00 16.31	A
		MOTA	8155	CA	SER	A1041	63.430	47.283	-9.860	1.00 17.09	А
	10	MOTA	8156	CB	SER	A1041	63.615		-11.299	1.00 16.94	A
		ATOM	8157	OG	SER	A1041	63.690		-11.352	1.00 16.34	A
		MOTA	8158	С	SER	A1041	64.585	47.755	-8.987	1.00 17.15	Α
		MOTA	8159	0	SER	A1041	64.618	48.910	-8.566	1.00 16.29	A
		ATOM	8160	N	SER	A1042	65.520	46.851	-8.706	1.00 17.84	Α
	15	MOTA	8161	CA	SER	A1042	66.690	47.171	- 7.890	1.00 18.46	Α
		MOTA	8162	СВ	SER	A1042	66.896	46.108	-6.810	1.00 18.36	Α
		MOTA	8163	OG	SER	A1042	65.761	46.045	-5.961	1.00 19.21	Α
		MOTA	8164	С	SER	A1042	67.905	47.240	-8.802	1.00 18.79	A
		MOTA	8165	0	SER	A1042	68.056	46.419	-9.707	1.00 18.69	Α
the traction that the first first first	20	MOTA	8166	N	.HIS	A1043	68.766	48.223	-8.563	1.00 19.78	A
Ď		MOTA	8167	CA	HIS	A1043	69.946	48.420	-9.397	1.00 20.82	A
195		MOTA	8168	CB	HIS	A1043	69.749		-10.234	1.00 19.47	A
457		MOTA	8169	CG	HIS	A1043	68.444		-10.966	1.00 18.50	А
Frank BASE		MOTA	8170	CD2	HIS	A1043	67.209		-10.569	1.00 17.78	Α
145 26 F	25	ATOM	8171	ND1	HIS	A1043	68.292		-12.236	1.00 17.74	А
14		MOTA	8172	CE1	HIS	A1043	67.021		-12.587	1.00 17.63	А
M		MOTA	8173	NE2	HIS	A1043	66.342		-11.593	1.00 18.16	A
E!		ATOM	8174	С		A1043	71.215	48.521	-8.565	1.00 22.62	A
		ATOM	8175	0	HIS	A1043	71.266	49.246	- 7.573	1.00 22.60	A
	30	MOTA	8176	N	SER	A1044	72.240	47.790	-8.987	1.00 24.94	A
rū		ATOM	8177	CA		A1044	73.509	47.767	-8.275	1.00 27.40	A
L		MOTA	8178	CB	SER	A1044	74.217	46.432	-8.532	1.00 28.13	A
		MOTA	8179	OG		A1044	74.193	46.096	-9.911	1.00 29.65	Α
ingi Lab		MOTA	8180	С		A1044	74.434	48.923	-8.632	1.00 28.23	A
1,221	35	MOTA	8181	0		A1044	74.039	49.786	-9.448	1.00 28.56	Α
		MOTA	8182			A1044	75.552	48.944	-8.077	1.00 29.86	A
		MOTA	8183		WAT		41.979	63.654	-7.156	1.00 8.05	W
		ATOM	8184		WAT		53.601		-19.784	1.00 11.44	W
		MOTA	8185		WAT		39.162		-19.188	1.00 9.94	W
	40	MOTA	8186				52.119			1.00 9.88	W
		MOTA	8187		WAT		56.136	53.559	-0.657	1.00 10.79	W
		MOTA	8188		TAW		31.383		-24.059	1.00 10.96	W
		MOTA	8189		WAT		49.858	48.630	1.284	1.00 12.86	W
		ATOM	8190		WAT		36.992	57.884	13.375	1.00 9.63	W
	45	MOTA	8191		WAT		26.755	69.172	-9.245	1.00 11.38	W
		ATOM	8192		WAT		39.324		-14.901	1.00 12.67	W
		ATOM	8193		TAW		34.198	58.783	-8.711	1.00 11.93	W
		ATOM	8194		WAT		60.950	59.827	-8.309	1.00 11.38	W
		ATOM	8195		WAT		36.628	72.825	0.199	1.00 11.49	W
	50	ATOM	8196		WAT		31.708	47.175	-8.092	1.00 10.89	W
		ATOM	8197		WAT		30.142	55.929	17.238	1.00 10.75	W
		ATOM	8198		WAT		26.117		-13.740	1.00 10.75	W
		ATOM	8199		WAT		37.632		-21.150	1.00 12.30	W
		ATOM	8200		WAT		33.010		0.153	1.00 10.82	W
	55	ATOM	8201	OH2	WAT	W 19	24.689	53.037	-11.753	1.00 11.02	W

									aa		1 00 10 10	
		MOTA	8202	OH2			20	63.105	61.515	-7.581	1.00 10.48	W
		ATOM	8203	OH2			21	41.285	59.153	13.532	1.00 12.85	W
		ATOM	8204	OH2	TAW	W	22	47.287		-15.370	1.00 14.81	W
	_	ATOM	8205	OH2			23	56.380	55.892	-2.106	1.00 8.54	W
	5	ATOM	8206	OH2			24	67.351	60.850	-5.664	1.00 14.58	W
		ATOM	8207	OH2			25	26.262		-10.894	1.00 13.65	W
		MOTA	8208	OH2	WAT	W	26	65.620	60.396	-7.599	1.00 14.15	W
		ATOM	8209	OH2			27	32.469	60.318	-1.870	1.00 10.93	W
		MOTA	8210	OH2			28	20.127	54.851	16.211	1.00 17.01	W
	10	MOTA	8211	OH2			29	23.824		-23.371	1.00 12.86	W
		ATOM	8212	OH2			30	39.335	57.550	14.798	1.00 11.81	W
		MOTA	8213	OH2			31	20.371		-21.881	1.00 12.24	W
		MOTA	8214	OH2			32	28.075	61.166	19.435	1.00 13.45	W
		ATOM	8215	OH2			33	34.058		-26.256	1.00 11.49	W
	15	MOTA	8216	OH2	TAW	W	34	26.341	40.112	7.993	1.00 15.36	W
		MOTA	8217	OH2	WAT	W	35	63.796		-14.022	1.00 12.67	W
		ATOM	8218	OH2	WAT	W	36	37.486	57.200	1.752	1.00 12.39	W
		MOTA	8219	OH2	WAT	W	37	24.088	42.135	6.847	1.00 14.18	W
		MOTA	8220	OH2	WAT	W	38	31.966	65.565	18.975	1.00 15.73	W
\$.I.B	20	MOTA	8221	OH2	WAT	W	39	51.492	56.797	-5.607	1.00 8.86	W
j		MOTA	8222	OH2			40	20.056	56.197	7.115	1.00 13.43	W
		MOTA	8223	OH2	WAT	W	41	28.261	43.988	13.133	1.00 11.93	W
(ag		MOTA	8224	OH2	WAT	W	42	30.237		-11.794	1.00 11.17	W
रैश्लाक्ट स्थास		MOTA	8225	OH2	WAT	W	43	64.887	59.396	-3.618	1.00 16.12	W
19	25	MOTA	8226	OH2	TAW	W	44	46.340		-15.581	1.00 15.57	W
W		ATOM	8227	OH2		W	45	60.698	58.457	-2.874	1.00 13.59	W
		MOTA	8228	OH2	TAW	M	46	60.499	62.267	-1.276	1.00 14.53	M
a }		ATOM	8229	OH2	TAW	W	47	53.593	60.068	-9.458	1.00 12.82	W
		MOTA	8230	OH2		W	48	18.566		-12.450	1.00 15.00	W
ij	30	MOTA	8231	OH2		W	49	28.876		-11.951	1.00 16.11	W
12		MOTA	8232			W	50	34.497	79.288	-9.194	1.00 12.70	W
1,1		MOTA	8233	OH2		W	51	21.521	58.048	-7.816	1.00 13.55	W
		MOTA	8234	OH2		W	52	36.974	72.026	-4.632	1.00 11.46	W
		ATOM	8235	OH2		W	53	55.633		-11.527	1.00 12.06	W
E 51480	35	ATOM	8236	OH2		W	54	36.685	44.992	-5.521	1.00 12.94	W
		ATOM	8237	OH2		W	55	51.282		-24.055	1.00 15.04	W
		MOTA	8238	OH2		W	56	35.178		-17.540	1.00 18.13	W
		ATOM	8239	OH2			57	60.506	54.958	-0.396	1.00 15.58	W
	40	MOTA	8240	OH2			58	42.909	56.986	6.187	1.00 11.90	W
	40	ATOM	8241	OH2			59	47.858		-25.679	1.00 15.94	W
		MOTA	8242	OH2			60	37.848	73.645	-2.364	1.00 13.96	W
		MOTA	8243	OH2			61	19.391	55.464	11.518	1.00 14.93	W
		MOTA	8244	OH2			62	25.911	39.813	5.195	1.00 11.56	W
	4-	ATOM	8245	OH2			63	23.258	54.236	-3.647	1.00 15.92	W
	45	ATOM	8246	OH2			64	34.294	52.614	-1.083	1.00 12.31	W
		ATOM	8247	OH2			65	50.997	44.377	-7.959	1.00 13.40	W
		ATOM	8248	OH2			66	37.875	59.168	11.062	1.00 12.70	W
		ATOM	8249	OH2			67	16.619	49.176	24.039	1.00 17.09	W
		MOTA	8250	OH2	WAT	W	68	19.392	53.623	8.170	1.00 14.32	W
	50	ATOM	8251	OH2			69	11.769	51.733	14.377	1.00 15.40	W
		ATOM	8252	OH2			70	17.139	56.383	10.249	1.00 14.93	W
		ATOM	8253	OH2			71	67.983	65.707	-3.476	1.00 14.66	W
		ATOM	8254	OH2			72	22.822		-24.440	1.00 18.17	W
		ATOM	8255	OH2			73	52.061	50.772	6.360	1.00 11.54	W
	55	ATOM	8256	OH2	WAT	W	74	17.596	52.950	6.333	1.00 13.94	M

		ATOM	8257	ОН2	WAT	W	75	68.801	58.401	-5.067	1.00 15.47	W
		ATOM	8258	OH2	WAT	W	76	33.510	48.227	-10.155	1.00 10.97	W
		ATOM	8259		WAT		77	26.793	41.647	-13.173	1.00 13.87	W
		ATOM	8260		WAT		78	26.744	61.077	-3.285	1.00 11.60	W
	5	ATOM	8261		WAT		79	49.480	62.451	-8.644	1.00 9.33	W
	0	ATOM	8262		WAT		80	41.021		-16.991	1.00 13.50	W
		ATOM	8263		WAT		81	31.434		-6.264	1.00 15.03	W
		ATOM	8264		WAT		82	43.379		-24.915	1.00 14.16	W
			8265		WAT		83	32.764		-11.715	1.00 13.97	W
	10	ATOM						20.523		-19.639	1.00 13.09	M
	10	ATOM	8266		WAT		84					M
		ATOM	8267		WAT		85	40.401	62.934	6.179	1.00 12.03	
		ATOM	8268		WAT		86	42.119		-24.559	1.00 17.53	W
		MOTA	8269		WAT		87	44.524	42.002	-0.591	1.00 19.33	W
		MOTA	8270		WAT		88	38.626		-31.696	1.00 13.53	W
	15	ATOM	8271		WAT		89	22.307		-11.945	1.00 12.50	W
		MOTA	8272	OH2	WAT	W	90	48.303		-30.628	1.00 20.34	W
		MOTA	8273	OH2	WAT	W	91	36.707	51.821	3.758	1.00 11.30	W
		MOTA	8274	OH2	WAT	W	92	38.733	62.443	8.416	1.00 13.40	W
		MOTA	8275	OH2	WAT	W	93	47.443	46.140	3.623	1.00 9.98	W
1144	20	MOTA	8276	OH2	WAT	W	94	33.576	57.296	-35.875	1.00 16.19	W
"ideal" ,;≔ng		ATOM	8277	OH2	WAT	W	95	32.312	77.752	-29.560	1.00 14.95	W
tion that the way that the fail		ATOM	8278	OH2	WAT	W	96	39.250	39.226	17.190	1.00 18.72	W
1,71		ATOM	8279		WAT		97	35.930	53.330	1.320	1.00 9.48	W
		ATOM	8280		WAT		98	14.447	60.154	5.058	1.00 17.17	W
ĩU	25	ATOM	8281		WAT		99	21.655	57.292	5.020	1.00 11.98	W
in in		ATOM	8282		WAT			43.040	48.234	11.162	1.00 12.84	W
M		ATOM	8283		WAT			26.080	73.018	5.559	1.00 14.30	W
		ATOM	8284		WAT			27.431		-21.557	1.00 22.43	W
Bi aras.		ATOM	8285		WAT			33.294		-4.985	1.00 13.70	W
الهجارة	30	ATOM	8286		WAT			49.992		-11.582	1.00 9.75	W
Ų	30				WAT			25.582		-9.530	1.00 14.63	W
Ŋ		ATOM	8287					40.201	56.515	5.849	1.00 11.03	W
F Con Con Con		ATOM	8288		TAW						1.00 11.03	W
		ATOM	8289		WAT			14.015	59.894	-3.431		W
	25	ATOM	8290		WAT			19.701		-11.750	1.00 14.70 1.00 21.71	W
<u> </u>	35	ATOM	8291		WAT			26.513	63.805	17.151	1.00 21.71	W
		ATOM	8292		TAW			19.778		-11.786		
		MOTA	8293		TAW			47.187	48.533	11.420	1.00 22.52	W
		ATOM	8294		WAT			67.813		-25.634	1.00 15.49	W
	40	MOTA	8295		WAT			22.910	51.833	-8.728	1.00 17.22	W
	40	MOTA	8296		WAT			46.597		-36.714	1.00 16.13	W
		MOTA	8297		TAW			20.543	57.579		1.00 11.86	W
		MOTA	8298		TAW			18.154		24.428	1.00 23.17	W
		ATOM	8299		TAW			41.280		-32.512	1.00 16.76	W
		ATOM	8300		TAW			38.328	40.122	1.665	1.00 12.98	W
	45	MOTA	8301	OH2	WAT	W	119	23.855	58.244	6.312	1.00 12.38	W
		ATOM	8302	OH2	TAW	W	120	18.101		-20.092	1.00 23.40	W
		MOTA	8303	OH2	WAT	W	121	41.276	77.738	-14.102	1.00 15.70	W
		ATOM	8304	OH2	TAW	W	122	52.842	59.201	-1.699	1.00 21.35	W
		ATOM	8305	OH2	WAT	W	123	47.942	49.607	13.775	1.00 12.65	W
	50	ATOM	8306		WAT			35.232	43.720	28.641	1.00 15.37	W
		ATOM	8307		WAT			59.499		-6.298	1.00 12.21	W
		ATOM	8308		WAT			53.661		-19.148	1.00 13.77	W
		ATOM	8309		WAT			39.796		-20.838	1.00 20.47	W
		ATOM	8310		WAT			33.113		-4.404	1.00 19.85	W
	55	ATOM	8311		WAT			14.324		-16.361	1.00 16.40	W
	55	AIOM	0.211	UNZ	MAT	VY	149	14.344	04.079	10.501	1.00 10.40	••

		ATOM	8312	он2	WAT	W	130	47.511	43.081	-2.434	1.00 16.15	W
		ATOM	8313	OH2	WAT	W	131	46.904	56.002	-25.485	1.00 17.18	W
		ATOM	8314	OH2	WAT	W	132	32.138	58.794	-28.468	1.00 18.35	W
		ATOM	8315	OH2	WAT	W	133	49.264	50.050	28.230	1.00 22.47	
	5	ATOM	8316	OH2	WAT	W	134	26.292	37.411	29.332	1.00 24.20	W
		ATOM	8317	OH2	WAT	W	135	51.883	46.667	1.206	1.00 12.72	W
		ATOM	8318	OH2	WAT	W	136	41.713	58.870	-16.022	1.00 14.58	W
		ATOM	8319	OH2	WAT	W	137	13.817	54.250	4.446	1.00 20.80	W
		ATOM	8320	OH2	WAT	W	138	67.797	79.183	-25.331	1.00 15.35	
	10	MOTA	8321	OH2	WAT	W	139	42.168	75.429	-16.021	1.00 16.13	W
		ATOM	8322	OH2	WAT	W	140	23.119	56.194	30.804	1.00 18.52	W
		ATOM	8323	OH2	WAT	W	141	56.988	61.152	1.554	1.00 17.70	W
		ATOM	8324	OH2	WAT	W	142	20.075	74.547	-6.879	1.00 14.89	
		ATOM	8325	OH2	WAT	W	143	13.378	53.661	1.806	1.00 17.64	W
	15	MOTA	8326	OH2	TAW	W	144	34.280	34.507	16.087	1.00 20.88	W
		ATOM	8327	OH2	WAT	W	145	33.932	64.705	-32.236	1.00 16.75	W
		ATOM	8328	OH2	TAW	W	146	14.061	49.293	15.438	1.00 16.25	
		ATOM	8329	OH2	WAT	W	147	30.384	35.313	-12.407	1.00 20.29	W
ì		ATOM	8330	OH2	WAT	W	148	18.403	55.006	14.038	1.00 14.99	W
<u>.</u>	20	MOTA	8331	OH2	WAT	W	149	15.636	60.472	15.465	1.00 21.47	
		ATOM	8332	OH2	WAT	W	150	16.791	74.875	-3.047	1.00 20.80	W
		ATOM	8333	OH2	WAT	W	151	56.518	46.319	-17.443	1.00 19.10	W
		MOTA	8334	OH2	WAT	W	152	45.628	60.100	-18.241	1.00 16.63	
		ATOM	8335	OH2	WAT	W	153	28.171	84.777	-35.426	1.00 18.35	
	25	MOTA	8336	OH2	WAT	W	154	73.029	65.246	-7.720	1.00 18.19	W
		ATOM	8337	OH2	WAT	W	155	73.770	66.211	-17.640	1.00 18.74	W
		ATOM	8338	OH2	TAW	W	156	59.259	50.047		1.00 17.63	
		ATOM	8339	OH2	WAT	W	157	23.044	78.525	-24.838	1.00 20.25	
		MOTA	8340	OH2	WAT	W	158	14.298	54.500	-16.068	1.00 18.13	
	30	MOTA	8341	OH2	WAT	W	159	43.558	73.338	5.809	1.00 12.80	
		ATOM	8342	OH2	TAW	W	160	11.895	55.194	-12.525	1.00 18.10	
		MOTA	8343	OH2	WAT	W	161	63.550	44.738	-6.929	1.00 16.10	
		MOTA	8344	OH2	WAT	W	162	24.753		-24.121	1.00 17.61	
		ATOM	8345	OH2	WAT	W	163	35.486		-27.380	1.00 17.74	W
	35	ATOM	8346	OH2	TAW	W	164	28.688		-24.414	1.00 21.74	W
		MOTA	8347	OH2				54.813		-23.474	1.00 17.16	
		ATOM	8348	OH2				23.604	63.804	7.820	1.00 20.53	
		ATOM	8349	OH2				49.744	57.760	-7.648	1.00 12.03	
		ATOM	8350	OH2	TAW	W	168	46.061	71.148	0.115	1.00 20.51	
	4 0	MOTA	8351	OH2				24.323			1.00 14.21	W
		ATOM	8352	OH2				28.647		-21.778	1.00 15.50	
		ATOM	8353	OH2				37.052		27.466	1.00 15.23	
		ATOM	8354	OH2				41.487		-17.622	1.00 17.68	
		ATOM	8355	OH2				40.305		-31.970	1.00 17.43	
	45	MOTA	8356	OH2				49.313		-28.687	1.00 16.29	
		ATOM	8357	OH2				64.386		-10.440	1.00 28.13	
		ATOM	8358	OH2				19.168	72.621		1.00 21.55	
		MOTA	8359	OH2				17.064		-16.407	1.00 15.86	
	50	MOTA	8360	OH2				9.518	52.618		1.00 29.64	
	50	ATOM	8361	OH2				53.879		-36.735	1.00 13.71	
		ATOM	8362	OH2				50.889		-23.486	1.00 16.09	
		ATOM	8363	OH2				49.384	44.309		1.00 15.10	
		MOTA	8364	OH2				59.367	68.444		1.00 21.67	
		ATOM	8365	OH2				25.439	53.900		1.00 15.64	
	55	ATOM	8366	OH2	TAW	W	184	69.086	61.568	-2.411	1.00 16.23	W

	ATOM	8367	OH2	WAT	W	185	58.341	77.603	-38.440	1.00	18.02	W
	ATOM	8368	OH2	WAT	W	186	44.390	46.220	9.936	1.00	17.37	W
	ATOM	8369	OH2	WAT	W	187	46.547	57.491	-18.779	1.00	13.56	W
	ATOM	8370	OH2	WAT	W	188	33.493	83.726	-10.384	1.00	16.90	W
5	ATOM	8371	OH2	WAT	W	189	47.052	68.688	-30.395	1.00	20.70	W
	ATOM	8372	OH2	WAT	W	190	44.386	56.163	-15.436	1.00	17.54	W
	ATOM	8373	OH2	WAT	W	191	13.141	67.021	-4.770	1.00	16.21	W
	ATOM	8374	OH2	WAT	W	192	24.512	39.271	-11.474	1.00	19.84	W
	ATOM	8375		TAW			41.591	61.284	-29.731	1.00	17.96	W
10	ATOM	8376		WAT			27.187	41.479	13.299	1.00	18.70	W
_ •	ATOM	8377		WAT			42.003	88.025	-40.833	1.00	20.34	W
	ATOM	8378		WAT			69.850	70.102	-12.637	1.00	18.95	W
	ATOM	8379		WAT			64.133	78.095	-35.174	1.00	15.70	W
	ATOM	8380	OH2	TAW	W	198	20.411	65.476	7.641	1.00	22.81	W
15	ATOM	8381		WAT			11.382	61.518	-18.592	1.00	24.08	W
	ATOM	8382		WAT			24.515	70.804	-8.824	1.00	12.95	W
	ATOM	8383		TAW			25.028	40.143	14.192	1.00	15.50	W
	ATOM	8384		TAW			22.728	63.442	-33.182	1.00	19.12	W
	ATOM	8385	OH2	WAT	W	203	41.675	43.431	7.944	1.00	16.39	W
20	ATOM	8386		TAW			21.035	51.916		1.00	21.06	W
	ATOM	8387		TAW			41.323	50.434	33.218	1.00	21.10	W
	ATOM	8388		WAT			45.961	52.944	-19.253	1.00	20.91	W
	ATOM	8389		WAT			51.427		-40.959	1.00	29.19	W
	ATOM	8390	OH2	TAW	W	208	25.701		-31.930	1.00	16.19	W
25	ATOM	8391		WAT			12.460	56.457	5.406	1.00	18.11	W
	ATOM	8392		WAT			22.528	56.988	-34.123	1.00	19.06	W
	ATOM	8393		WAT			43.856		-42.044	1.00	28.46	W
	ATOM	8394		WAT			44.594	58.887	-16.004	1.00	14.67	W
	ATOM	8395		WAT			31.327	81.894	0.496	1.00	18.34	W
30	ATOM	8396		WAT			51.990	56.524	-30.250	1.00	22.59	W
	ATOM	8397		WAT			17.291	70.212	-23.398	1.00	26.14	W
	ATOM	8398		WAT		216	37.674	47.140	29.767	1.00	18.64	W
	ATOM	8399		WAT			49.763		-28.946	1.00	20.75	W
	ATOM	8400		WAT			36.224	79.442	-5.010	1.00	20.29	W
35	ATOM	8401		WAT			62.253	62.767	25.731	1.00	18.51	W
•	ATOM	8402		WAT			11.367	53.252	6.826	1.00	16.35	W
	ATOM	8403	OH2	WAT	W	221	13.918	60.924	-22.492	1.00	17.57	W
	ATOM	8404		WAT			50.826	62.132	26.293	1.00	18.66	W
	ATOM	8405		WAT			68.567	79.132	-18.104	1.00	23.07	W
40	MOTA	8406	OH2	WAT	W	224	84.246	68.535	-17.436	1.00	18.57	W
	ATOM	8407		WAT			21.706	40.481			39.04	W
	ATOM	8408		WAT			52.774	69.943	18.294	1.00	29.32	W
	ATOM	8409		WAT			42.710	53.366	35.547	1.00	23.23	W
	ATOM	8410		WAT			70.573		-12.697	1.00	18.76	W
45	ATOM	8411		WAT			34.677	70.519		1.00	15.62	W
	ATOM	8412		WAT			27.183	46.437	13.610	1.00	17.02	M
	ATOM	8413		WAT			14.461	49.789	19.876	1.00	21.18	W
	ATOM	8414		WAT			49.677	73.603	-21.812	1.00	20.74	W
	ATOM	8415		WAT			48.689	44.397		1.00	23.27	W
50	ATOM	8416		WAT			61.411		-39.605		20.10	W
	ATOM	8417		WAT			22.867		-30.351		27.37	M
	ATOM	8418		WAT			43.608		-38.512		22.55	M
	ATOM	8419		WAT			35.757	77.729			14.57	W
	ATOM	8420		WAT			24.900	68.466			17.96	W
55	ATOM	8421		WAT			68.063		-1.100		22.72	W
	111 011	0121	0112		••				-			

		MOTA	8422	QH2	WAT	W	240	54.299	48.026	15.591	1.00 2	5.88	W
		ATOM	8423	OH2	WAT	W	241	55.049	50.600	16.690	1.00 2		W
		ATOM	8424	OH2	WAT	W	242	39.361	48.842	-32.770	1.00 2	5.18	W
		ATOM	8425	OH2	WAT	W	243	22.699	45.380	-13.467	1.00 2	1.72	W
	5	ATOM	8426	OH2	WAT	W	244	67.040	55.442	0.924	1.00 1	5.31	W
		ATOM	8427	OH2	WAT	W	245	47.931	44.056	-8.657	1.00 2	2.96	W
		ATOM	8428	OH2	WAT	W	246	26.926	87.957	-23.673	1.00 2	0.73	W
		ATOM	8429	OH2	WAT	W	247	18.939	48.658	37.726	1.00 2		W
		MOTA	8430	OH2	TAW	W	248	83.613	67.735	-22.892	1.00 2		W
	10	ATOM	8431	OH2	WAT	W	249	43.080	59.956	-19.011	1.00 2		W
		ATOM	8432	OH2	WAT	W	250	47.447	79.280	-40.381	1.00 2		W
		ATOM	8433	OH2	WAT	W	251	8.610	57.762	-6.870	1.00 2	7.88	W
		ATOM	8434	OH2	WAT	W	252	54.864	90.452	-23.484	1.00 2	8.07	W
		ATOM	8435	OH2	WAT	W	253	27.829	36.704	-19.683	1.00 2	4.79	W
	15	ATOM	8436	OH2	WAT	W	254	72.041	58.809	-11.211	1.00 2	3.82	W
		ATOM	8437	OH2	WAT	W	255	34.317	67.941	12.414	1.00 1	2.73	W
		ATOM	8438	OH2	WAT	W	256	11.689	59.501	-4.979	1.00 2	1.37	W
		ATOM	8439	OH2	WAT	W	257	23.547	46.199	-15.862	1.00 2	4.69	W
1		ATOM	8440	OH2	WAT	W	258	50.148	70.938	-17.614	1.00 1	9.04	W
	20	ATOM	8441	OH2	WAT	W	259	45.026	90.336	-25.359	1.00 2	3.05	W
r B		ATOM	8442	OH2	WAT	W	260	16.051	72.410	-19.141	1.00 1	8.99	W
f b		ATOM	8443	OH2	WAT	W	261	20.057	52.682	-24.371	1.00 1	8.41	M
Ē		ATOM	8444	OH2	TAW	W	262	59.525	76.638	-8.915	1.00 2	0.35	W
ř		ATOM	8445	OH2	WAT	W	263	67.003	60.112	-27.213	1.00 2		W
F	25	ATOM	8446	OH2	WAT	W	264	38.567	51.573	-29.906	1.00 1	9.02	W
-		ATOM	8447	OH2	WAT	W	265	40.324	83.008	-10.715	1.00 1	8.13	M
L E		MOTA	8448	OH2	WAT	W	266	42.243	48.804	31.283	1.00 1	8.64	M
		ATOM	8449	OH2	WAT	W	267	24.084	53.092	-6.116	1.00 1	7.16	W
		ATOM	8450	OH2	WAT	W	268	53.144	47.239	-24.933	1.00 2	0.15	W
	30	ATOM	8451	OH2	WAT	W	269	32.591	89.326	-43.014	1.00 2	5.83	W
•		ATOM	8452	OH2	WAT	W	270	35.918	36.131	-4.652	1.00 1		M
:		ATOM	8453	OH2	WAT	W	271	70.097	83.236	-29.819	1.00 2	5.99	W
		ATOM	8454	OH2	WAT	W	272	49.672	82.609	-43.732	1.00 2		W
		ATOM	8455	OH2	WAT	W	273	68.303	79.781	-34.802	1.00 2	5.72	W
•	35	ATOM	8456	OH2	WAT	W	274	29.275	46.925	37.053	1.00 2	4.15	W
		ATOM	8457	OH2	WAT	W	275	18.487	70.059	4.190	1.00 1	4.14	W
		MOTA	8458	OH2	TAW	W	276	14.136	68.374	-7.960	1.00 2		W
		ATOM	8459	OH2	TAW	W	277	50.303	72.617	9.138	1.00 3		M
		ATOM	8460	OH2	WAT	W	278	39.685		-40.177	1.00 2		W
	4 0	MOTA	8461	OH2	WAT	W	279	28.798		19.691	1.00 1		W
		MOTA	8462	OH2	WAT	W	280	11.686	58.802	7.875	1.00 2		W
		ATOM	8463	OH2	WAT	W	281	52.678		-17.312	1.00 2		W
		ATOM	8464	OH2	TAW	W	282	18.551		-27.061	1.00 2	4.87	M
		ATOM	8465	OH2	WAT	W	283	44.655	79.479	-33.163	1.00 2		W
	45	ATOM	8466	OH2	WAT	W	284	36.141	81.260	6.293	1.00 2	0.52	W
		ATOM	8467	OH2	WAT	W	285	16.704	60.781	-28.283	1.00 2		M
		MOTA	8468	OH2	WAT	W	286	29.546	87.479	-17.987	1.00 2		M
		ATOM	8469	OH2	WAT	W	287	8.873	55.123	-6.136	1.00 2	5.16	M
		ATOM	8470		WAT			46.657	61.790	-25.940	1.00 2		W
	50	MOTA	8471		WAT			42.933	82.357	-10.072	1.00 3	0.75	W
		MOTA	8472		WAT			10.304	50.828	18.854	1.00 2	2.62	W
		ATOM	8473		WAT			12.803	42.588	12.658	1.00 1	7.50	M
		ATOM	8474		WAT			35.953	45.284	30.852	1.00 2	1.96	W
		MOTA	8475		WAT			15.695		-11.773	1.00 2	8.82	W
	55	ATOM	8476		WAT			25.241	46.933	-20.851	1.00 2	6.50	W

	ATOM	8477	OH2	WAT	W	295		5.985	65.09		24.144		25.11	W
	MOTA	8478		WAT				3.666			-42.035		24.62	W
	MOTA	8479		WAT				.710			-34.933		22.62	W
	ATOM	8480		WAT				2.944			-17.505		26.13	W
5	MOTA	8481		WAT).657	42.76		-7.509		21.95	W
	MOTA	8482	OH2	WAT	W	300		.155	76.98		4.910		38.11	W
	MOTA	8483		WAT			43	3.373	80.84		4.965		24.73	W
	MOTA	8484	OH2	WAT	W	302		2.881	85.48		-5.464		21.36	W
	MOTA	8485	OH2	WAT	W	303		.104	33.60		2.777		24.21	W
10	MOTA	8486		WAT				396	78.74		-1.313		21.96	W
	MOTA	8487	OH2	WAT	W	305		5.254	59.21		4.036		21.45	W
	MOTA	8488	OH2	WAT	W	306		3.447			-19.982		20.72	W
	MOTA	8489		WAT		307		5.955			-19.284		29.66	W
	ATOM	8490	OH2	WAT	W	308	14	1.307			-12.146		18.26	W
15	MOTA	8491	OH2	WAT	W	309	53	3.317			-21.280		26.84	W
	MOTA	8492	OH2	WAT	W	310	70	.858	49.58		-0.140		24.53	W
	MOTA	8493	OH2	WAT	W	311		7.961	42.56		1.493		26.85	W
	ATOM	8494	OH2	WAT	W	312		1.694			-14.248		29.16	W
	MOTA	8495	OH2	WAT	W	313		1.860			-16.897		20.51	W
20	MOTA	8496	OH2	WAT	W	314	56	5.992			-35.378		23.70	W
	MOTA	8497	OH2	WAT	W	315		3.877			-29.576		27.22	W
	ATOM	8498		WAT				5.517	71.83		-6.772		20.99	W
	MOTA	8499	OH2	TAW	W	317	28	3.748			-38.371		26.19	W
	MOTA	8500	OH2	WAT	W	318	32	2.645			-10.052		16.14	W
25	MOTA	8501	OH2	WAT	W	319		3.378	51.12		-1.741		26.12	W
	MOTA	8502	OH2	TAW	W			9.215	49.39		30.134		22.80	W
	MOTA	8503		TAW		321		7.798			-23.988		20.43	W
	MOTA	8504		WAT		322).725			-34.517		19.35	W
• •	MOTA	8505		TAW		323		7.620			-42.374		22.17	W
30	MOTA	8506		WAT				L.748			-35.453		25.15	W
	ATOM	8507		WAT				3.024	71.44		-0.523		29.86	W
	MOTA	8508		WAT				5.937			-24.855		27.46	W
	ATOM	8509		WAT				9.245	42.68		-2.510		29.66	W
0.5	ATOM	8510		WAT		328		9.929	44.23		7.118		23.60	W
35	MOTA	8511		WAT		329		7.331			-25.526		26.02	W
	MOTA	8512		WAT		330		5.334			-19.598		24.04	M
	MOTA	8513		TAW				0.302			-31.180		20.21	W
	MOTA	8514		TAW				2.966			-31.510		28.63	M
40	MOTA	8515		WAT				3.218	68.99		0.963		23.46	W W
4 0	ATOM	8516		WAT				0.987			-31.356		27.25	
	ATOM	8517		WAT				5.940	52.51		22.434		28.73	W
	ATOM	8518		WAT				2.531	66.52		-9.404		21.80	W
	ATOM	8519		WAT				2.599			-15.832		27.01	W
4.5	MOTA	8520		WAT				3.048	48.44		16.333		19.47	W
45	ATOM	8521		WAT				1.378	46.85		17.807		30.09	W
	ATOM	8522		WAT				5.441			-19.971		21.87	W W
	MOTA	8523		WAT				5.169	52.9		-6.017		34.52	
	ATOM	8524		WAT				5.366			-25.691		22.25	W W
	ATOM	8525		WAT				9.138			-27.276		21.07	
50	ATOM	8526		WAT				0.932	57.02		15.691		33.10	W W
	ATOM	8527		WAT				3.476	51.60		21.683		23.52	W
	ATOM	8528		WAT				3.478			-37.697		26.37	W
	MOTA	8529		WAT				3.012	35.39		-6.915		24.58	W
	ATOM	8530		WAT				0.215			-21.465		25.69	W
55	MOTA	8531	OH2	WAT	W	349	5.	1.571	45.25	54	9.731	1.00	32.98	W

	7 mos.	0500	0110			250	,	21 425	46 360	17 460	1 00	20 25	Ta7
	ATOM	8532		TAW				21.425		-17.469		30.25	W
	ATOM	8533		TAW				47.390		-20.194		22.19	W
	ATOM	8534		TAW				21.553		-30.890		31.55	W
_	ATOM	8535		WAT				33.014	67.065			20.88	W
5	ATOM	8536		WAT				14.654		-14.551		20.03	W
	MOTA	8537		WAT				50.342		-25.133		24.70	W
	MOTA	8538		WAT				41.982		-23.663		24.72	W
	ATOM	8539		WAT		357		39.987	45.435	25.472		27.22	W
	MOTA	8540		TAW		358		50.966	76.620	14.400		25.22	M
10	MOTA	8541		WAT		359		38.560	45.243	-33.596		23.12	W
	ATOM	8542	OH2	WAT	W	360	(61.497	54.297	-28.826		32.75	M
	MOTA	8543	OH2	WAT	W	361	(53.745	46.872	23.471		27.63	W
	ATOM	8544	OH2	WAT	W	362	į	57.002	43.240	-20.162		26.84	W
	ATOM	8545	OH2	WAT	W	363	(67.620	54.903	-18.283	1.00	25.83	W
15	MOTA	8546	OH2	WAT	W	364		42.433	80.253	-31.603	1.00	35.61	W
	ATOM	8547		WAT		365	2	29.079	62.396	-39.782	1.00	28.70	W
	ATOM	8548	OH2	WAT	W	366		26.835	61.857	10.737	1.00	29.62	W
	ATOM	8549		WAT				45.820	45.105	22.830	1.00	32.71	W
	ATOM	8550		WAT			:	35.144	51.275	35.780	1.00	30.60	W
20	ATOM	8551		WAT				57.657	62.439		1.00	30.02	W
	ATOM	8552		WAT				25.335	33.634	13.186	1.00	24.09	W
	ATOM	8553		WAT				27.668	59.493	8.703		24.24	W
	ATOM	8554		WAT				42.896		-30.168		42.53	W
	ATOM	8555		WAT				13.858	58.126	-1.438		27.82	W
25	ATOM	8556		TAW		374		49.215	76.579	5.508		27.65	W
20	ATOM	8557		TAW				27.926	67.675	28.190		26.72	W
	ATOM	8558		WAT				41.928	39.313	16.708		34.69	W
	ATOM	8559		WAT				58.774	46.538	-1.484		18.42	W
	ATOM	8560		WAT				73.332	76.951			31.21	W
30	ATOM	8561		WAT		379		19.667	39.457	17.556		20.16	W
50	ATOM	8562		WAT		380		39.703		-18.068		17.51	W
				WAT				28.065		-31.490		27.85	W
	MOTA	8563						68.593		-16.564		25.08	W
	ATOM	8564		WAT WAT						-13.279		22.18	W
35	ATOM	8565						66.499				20.08	W
33	ATOM	8566		WAT				26.536	75.252	2.031		29.93	W
	ATOM	8567		WAT				39.980	39.135	9.175 39.117		28.17	W
	ATOM	8568		WAT		386		21.531	47.191	-41.376		29.68	W
	ATOM	8569		WAT		387		42.190				33.37	W
40	ATOM	8570		WAT				14.674	55.669	27.161		28.02	W
40	ATOM	8571		TAW				28.615		-39.093			
	ATOM	8572		WAT				39.193	43.075			29.86	W
	ATOM	8573		TAW				16.422		-22.476		34.66	W
	MOTA	8574		WAT				27.247	35.033			28.11	W
45	ATOM	8575		WAT				17.206	80.910			30.36	M.
45	ATOM	8576		WAT				48.207	41.926			28.31	W
	ATOM	8577		TAW				73.428		-11.339		36.34	W
	MOTA	8578		WAT				58.697		-22.198		22.68	W
	MOTA	8579		WAT				47.595		-18.600		24.41	W
	MOTA	8580		WAT				40.846	96.688	-37.242		26.13	W
50	MOTA	8581		WAT				61.087	63.855			28.95	W
	ATOM	8582	OH2	WAT	W	400	!	59.255		-15.381		33.77	M
	MOTA	8583	OH2	WAT	W	401		21.106		17.584		37.08	M
	ATOM	8584	OH2	WAT	W	402		46.149	97.302	-43.888		30.85	W
	ATOM	8585	ОН2	WAT	W	403		21.596	86.357	-19.077		33.24	W
55	ATOM	8586	OH2	WAT	W	404	:	20.559	68.440	22.185	1.00	27.53	W

	ATOM	8587	OH2	TAW	W	405	45.436	70.103	-18.246	1.00 28.94	W
	ATOM	8588	OH2	WAT	W	406	17.493	70.844	6.619	1.00 35.50	W
	MOTA	8589	OH2	WAT	W	407	51.184		-28.552	1.00 26.56	W
	ATOM	8590	OH2	WAT	W	408	19.132	83.539	-25.709	1.00 32.11	W
5	ATOM	8591	OH2	WAT	W	409	40.020	86.351	-21.792	1.00 26.97	W
	ATOM	8592	OH2	WAT	W	410	22.565	66.347	29.045	1.00 35.45	W
	ATOM	8593	OH2	WAT	W	411	24.909	59.408	-36.350	1.00 33.36	W
	ATOM	8594	OH2	WAT	W	412	58.513	34.945	-5.934	1.00 31.42	W
	MOTA	8595	OH2	WAT	W	413	50.569	79.331	-15.684	1.00 27.02	W
10	MOTA	8596	OH2	WAT	W	414	17.529	68.704	24.307	1.00 44.71	W
	ATOM	8597		WAT			56.496	93.001	-29.377	1.00 26.99	W
	ATOM	8598	OH2	WAT	W	416	52.554	73.396	4.320	1.00 35.30	W
	MOTA	8599		WAT			21.928	36.838	0.097	1.00 26.39	W
	MOTA	8600	он2	WAT	W	418	40.066	79.962	-28.061	1.00 30.33	W
15	ATOM	8601		WAT			10.502	77.343	-5.022	1.00 32.53	W
	ATOM	8602		WAT			26.186	64.608	8.450	1.00 14.74	W
	ATOM	8603		WAT			72.878	64.115	-21.052	1.00 28.29	W
	MOTA	8604		WAT			79.844	74.115	-17.720	1.00 34.35	W
	ATOM	8605		WAT			66.750	74.589	-4.406	1.00 29.82	W
20	ATOM	8606		WAT			48.124		-28.378	1.00 28.57	W
	ATOM	8607		WAT			42.583	39.574	-1.485	1.00 33.08	W
	ATOM	8608		WAT			63.043		-31.856	1.00 31.53	W
	ATOM	8609		WAT			24.135		-14.640	1.00 26.73	W
	ATOM	8610		WAT			27.597	50.981	13.326	1.00 22.07	W
25	ATOM	8611		WAT			38.642		-39.756	1.00 27.77	W
20	ATOM	8612		WAT			76.638		-26.811	1.00 31.44	W
	ATOM	8613		WAT			28.844	72.533		1.00 24.75	W
	ATOM	8614		WAT			20.733		-35.819	1.00 32.46	W
	ATOM	8615		WAT			24.102	57.306		1.00 32.79	W
30	ATOM	8616		WAT			38.103		-10.508	1.00 52.88	W
00	ATOM	8617		WAT			23.463		-40.699	1.00 25.30	W
	ATOM	8618		WAT			17.159		-26.028	1.00 32.43	M
	ATOM	8619		WAT			66.940		-22.088	1.00 39.61	W
	ATOM	8620		WAT			52.706		-28.075	1.00 53.96	W
35	ATOM	8621		WAT			20.674	68.515		1.00 31.64	W
00	ATOM	8622		WAT			61.511		-30.897	1.00 35.45	W
	ATOM	8623		WAT			9.843	60.222	6.745	1.00 31.89	W
	ATOM	8624		WAT			31.554		-19.875	1.00 28.33	W
	ATOM	8625		WAT			28.136		-41.587	1.00 32.96	W
40	ATOM	8626		WAT			44.810		-30.419	1.00 22.80	W
10	ATOM	8627		WAT			59.422		-34.536	1.00 27.17	W
	ATOM	8628		TAW			70.306		-12.670	1.00 30.28	W
	ATOM	8629		WAT			46.148	46.108		1.00 38.72	W
	ATOM	8630		WAT			46.024		-25.271	1.00 30.80	W
45	ATOM	8631		WAT			56.891		-19.945	1.00 30.66	W
40	ATOM	8632		WAT			73.703		-5.840	1.00 24.67	W
	MOTA	8633		WAT			19.765	43.348		1.00 26.93	W
	ATOM	8634		WAT			79.355	51.266		1.00 22.05	W
		8635		WAT			65.936	45.515		1.00 33.03	W
50	ATOM ATOM	8636		WAT			48.270	78.072		1.00 26.82	W
50		8637		WAT			30.106	34.247		1.00 20.82	W
	ATOM			WAT			16.244		-24.092	1.00 37.53	W
•	ATOM	8638 8639		WAT			17.587	39.584		1.00 37.33	W
	MOTA			WAT			22.585		29.286	1.00 43.47	W
55	MOTA	8640		WAI			33.432		-18.281	1.00 34.33	W
33	ATOM	8641	OHZ	WAI	W	433	33.432	04.505	10.201	1.00 10.32	**

												_			
	ATOM	8642		WAT				1.293			-39.456			30.13	W
	ATOM	8643		WAT				4.216			-27.693			29.54	W
	ATOM	8644		TAW				0.848	57.4		4.499			24.35	W
	ATOM	8645		WAT				5.858	66.3		-0.390			23.54	W
5	ATOM	8646	OH2	WAT	W	464	4	6.496	68.6		26.430			34.50	M
	ATOM	8647	OH2	WAT	W	465	70	0.058			-20.503			32.36	W
	MOTA	8648	OH2	WAT	W	466	23	3.603			-25.989		.00	36.74	W
	MOTA	8649	OH2	WAT	W	467	2.	5.313	71.2	229	22.334			35.00	W
	ATOM	8650	OH2	WAT	W	468	13	3.930	69.5	551	26.567	1	.00	25.16	W
10	ATOM	8651	OH2	WAT	W	469	62	2.150	80.9	957	-19.141	1	.00	29.07	W
	ATOM	8652	OH2	WAT	W	470	2	7.702	47.8	346	45.920	1	.00	36.32	W
	ATOM	8653	OH2	WAT	W	471	2	4.849	34.2	267	0.227	1	.00	38.79	W
	ATOM	8654		WAT			5	7.544	69.0	087	13.346	1	.00	41.68	W
	ATOM	8655		WAT			•	7.918	47.9	992	11.814	1	.00	26.20	W
15	ATOM	8656		WAT				1.374	59.9		0.845	1	.00	32.73	W
	ATOM	8657		WAT				7.611			-23.317		.00	26.99	W
	ATOM	8658		WAT				2.265			-13.600			38.45	W
	ATOM	8659		WAT				3.053	52.1		42.293			30.60	W
	ATOM	8660		WAT				2.099	62.9		33.586			29.07	W
20	ATOM	8661		WAT				9.364			-26.345			55.26	W
	ATOM	8662		WAT				4.109			-10.585			34.81	W
	ATOM	8663		WAT				0.244	36.5		29.055			26.04	W
	ATOM	8664		WAT				8.622	49.7		5.623			39.99	W
	ATOM	8665		WAT				1.947	67.4		29.311			29.88	W
25	ATOM	8666		WAT				2.522			-27.187			34.08	W
20	ATOM	8667		WAT				8.810	44.6		12.806			30.32	W
	ATOM	8668		WAT				1.081			-15.424			37.75	W
	ATOM	8669		WAT				1.603			-24.389			26.97	W
	ATOM	8670		WAT				9.942	66.9		31.389			33.16	W
30	ATOM	8671		WAT				3.330	52.7		26.220			30.83	W
00	ATOM	8672		WAT				6.012			-26.984			30.08	W
	ATOM	8673		WAT				9.614			-27.178			30.06	W
	ATOM	8674		WAT				1.069			-34.992			35.85	W
	ATOM	8675		WAT				7.995			-25.770			28.47	W
35	ATOM	8676		WAT				4.647			-35.193		.00	43.57	W
-	ATOM	8677		WAT				7.869	53.1		35.601			33.86	W
	ATOM	8678		WAT				3.555			-20.339			26.44	W
	ATOM	8679		WAT		497		3.886			-42.675			33.33	W
	ATOM	8680		WAT				2.649	62.7		16.163			30.46	W
40	ATOM	8681		WAT				5.787			-8.060		.00	26.37	W
10	ATOM	8682		WAT				6.612	88.2		-4.086			36.66	W
	ATOM	8683		WAT				8.568			-22.285			35.38	W
	ATOM	8684		WAT				6.970			12.903			40.61	W
	ATOM	8685		WAT				0.373	65.6		27.143			29.98	W
45	ATOM	8686		WAT				6.788	59.4		2.793			39.82	W
10	ATOM	8687		WAT				1.162			-12.985			26.24	W
	ATOM	8688		WAT				8.083	49.3		38.517			29.75	W
	MOTA	8689		WAT				9.143			-25.689			30.45	W
	ATOM	8690		WAT				9.441	67.5					31.10	W
50	ATOM	8691		WAT				3.421	41.8		-7.636			25.84	W
55	ATOM	8692		WAT				8.778			-22.650			24.48	W
	ATOM	8693		WAT				6.304			-3.669			59.92	W
	ATOM	8694		WAT				5.823			-16.238			34.57	W
	ATOM	8695		WAT				8.609			22.182			21.16	W
55	ATOM	8696		WAT				3.978	45.7		4.798			38.64	W
	VI OU	0090	Onz		**	214	J.				1	_			• •

								1 00 00 50	
		MOTA	8697	OH2 WAT		46.492	80.496 -42.683	1.00 36.59	W
		ATOM	8698	OH2 WAT		71.760	84.670 -19.901	1.00 26.72	W
		ATOM	8699	OH2 WAT	V 517	61.084	67.579 -36.593	1.00 31.75	W
		ATOM	8700	OH2 WAT	V 518	38.336	31.513 16.723	1.00 46.16	W
	5	ATOM	8701	OH2 WAT	V 519	58.345	34.917 -12.173	1.00 32.99	W
		ATOM	8702	OH2 WAT V	V 520	21.043	79.711 -23.638	1.00 26.06	W
		ATOM	8703	OH2 WAT V	V 521	51.272	71.528 -20.158	1.00 20.05	W
		MOTA	8704	OH2 WAT	V 522	32.016	85.400 -8.674	1.00 29.42	W
		ATOM	8705	OH2 WAT		21.535	29.268 27,784	1.00 34.66	W
	10	ATOM	8706	OH2 WAT		21.912	87.705 -6.947	1.00 46.50	W
	-0	ATOM	8707	OH2 WAT		31.620	57.576 37.407	1.00 24.48	W
		ATOM	8708	OH2 WAT		17.389	81.606 -17.144	1.00 43.70	W
		ATOM	8709	OH2 WAT		51.987	59.263 6.165	1.00 56.07	W
		ATOM	8710	OH2 WAT		22.039	80.414 -35.965	1.00 28.87	W
	15			OH2 WAT V		25.523	74.218 8.623	1.00 20.07	W
	13	ATOM	8711					1.00 13.22	W
		ATOM	8712	OH2 WAT V		21.682	80.087 5.339		
		MOTA	8713	OH2 WAT		48.616	94.265 -37.235	1.00 43.59	W
		ATOM	8714	OH2 WAT V		39.857	38.874 -3.549	1.00 31.28	W
	20	ATOM	8715	OH2 WAT		39.693	96.380 -28.089	1.00 44.71	W
	20	MOTA	8716	OH2 WAT V		36.699	35.085 -15.806	1.00 33.87	W
, Pi		MOTA	8717	OH2 WAT V		34.981	45.880 33.336	1.00 17.58	W
ÿejbagi gipidag		ATOM	8718	OH2 WAT		55.752	78.071 -1.645	1.00 36.67	M
1,5 a		MOTA	8719	OH2 WAT V	i 537	69.964	62.216 -0.087	1.00 33.47	W
		MOTA	8720	OH2 WAT V	V 538	46.113	74.500 22.679	1.00 31.71	M
14	25	MOTA	8721	OH2 WAT V	V 539	48.482	46.071 -23.200	1.00 33.97	W
141		MOTA	8722	OH2 WAT V	V 540	60.421	92.222 -28.586	1.00 34.39	M
17		ATOM	8723	OH2 WAT W	V 541	37.644	62.372 35.379	1.00 36.29	W
E)		MOTA	8724	OH2 WAT V	V 542	29.209	63.265 -37.460	1.00 56.13	W
-		MOTA	8725	OH2 WAT V	V 543	61.264	48.115 -31.707	1.00 49.40	W
j	30	ATOM	8726	OH2 WAT W	7 544	61.974	83.566 -38.096	1.00 31.08	W
1,5,5		ATOM	8727	OH2 WAT	V 545	62.940	42.943 -20.920	1.00 27.15	W
M.		ATOM	8728	OH2 WAT W	I 546	53.465	44.416 22.714	1.00 34.54	W
Ē:di		ATOM	8729	OH2 WAT V		30.815	34.793 -9.434	1.00 36.45	W
		ATOM	8730	OH2 WAT W		29.471	31.641 21.751	1.00 34.56	W
Ē:==	35	ATOM	8731	OH2 WAT V		78.607	69.017 -12.205	1.00 28.49	W
-		MOTA	8732	OH2 WAT V		31.429	69.250 -45.559	1.00 34.20	W
		ATOM	8733	OH2 WAT W		73.435	82.540 -21.336	1.00 27.02	W
		ATOM	8734	OH2 WAT V		47.327	71.323 -23.894	1.00 41.40	W
		ATOM	8735	OH2 WAT W		20.476	37.997 12.047	1.00 29.83	W
	40	ATOM	8736	OH2 WAT W		35.058	95.246 -32.227	1.00 34.09	W
	10	ATOM	8737	OH2 WAT W		17.108	41.547 9.120	1.00 36.08	W
		ATOM	8738	OH2 WAT V		20.640	80.355 -33.668	1.00 40.07	W
		ATOM	8739	OH2 WAT V		49.088	92.026 -24.040	1.00 33.71	W
			8740	OH2 WAT W		43.763	44.871 19.288	1.00 33.71	W
	45	ATOM				21.204	35.660 -5.134	1.00 34.33	W
	40	ATOM	8741	OH2 WAT V					
		ATOM	8742	OH2 WAT V		65.009	88.087 -24.210	1.00 29.80	W
		ATOM	8743	OH2 WAT W		46.916	53.996 -21.422	1.00 33.60	W
		MOTA	8744	OH2 WAT V		71.404	63.255 -27.114	1.00 40.61	W
		ATOM	8745	OH2 WAT W		20.015	35.616 25.763	1.00 30.97	W
	50	MOTA	8746	OH2 WAT W		59.355	87.240 -45.689	1.00 37.04	W
		MOTA	8747	OH2 WAT V		51.864	34.258 -7.762	1.00 49.22	W
		MOTA	8748	OH2 WAT W		56.208	79.437 -15.027	1.00 37.82	W
		MOTA	8749	OH2 WAT W		28.902	70.034 -39.462	1.00 28.91	W
		ATOM	8750	OH2 WAT W	1 568	45.154	83.397 -43.261	1.00 42.35	W
	55	MOTA	8751	OH2 WAT W	1 569	29.727	81.729 -42.805	1.00 41.68	W

	ATOM	8752	OH2	WAT	W	570	28.5	33 9	90.869	-42.6	04	1.00	31.64	W
	ATOM	8753	OH2	WAT	W	571	19.6	77 8	34.860	-28.4	86	1.00	44.44	W
	ATOM	8754	OH2	WAT	W	572	37.8	52 9	97.435	-30.6	34	1.00	44.72	W
	ATOM	8755	OH2	WAT	W	573	40.6	15 4	14.612	-31.5	97	1.00	42.55	W
5	ATOM	8756	OH2	WAT	W	574	21.0	22 4	11.654	35.1	02	1.00	36.46	W
	ATOM	8757	OH2	WAT	W	575	39.3	53 3	30.564	13.1			48.83	W
	ATOM	8758	OH2	WAT	W	576	62.1	89 8	35.929	-23.0	40	1.00	32.28	W
	ATOM	8759	OH2	WAT	W	577	31.0	76 6	58.489	14.0	56	1.00	15.60	W
	ATOM	8760	OH2	WAT	W	578	28.0	12 6	57.450	33.6			40.99	W
10	ATOM	8761	ОН2	WAT	W	579	14.9	20 €	53.590	-25.8	23	1.00	25.17	W
	ATOM	8762	OH2	WAT	W	580	29.7	79 7	72.346	12.2			14.98	W
	ATOM	8763	OH2	WAT	W	581	61.1	61 9	33.203	-38.5	80	1.00	45.25	W
	ATOM	8764	OH2	WAT	W	582	59.3	22 €	52.288	25.7	27	1.00	29.38	W
	ATOM	8765		WAT			51.2	08 7	79.524	-1.6	93	1.00	29.35	W
15	MOTA	8766		WAT			21.3	75 6	50.546	26.7	74	1.00	52.30	W
	ATOM	8767		WAT			59.4	22 9	91.535	-35.1	03	1.00	27.02	W
	MOTA	8768		WAT		586	24.2	46 6	50.834	35.9	94	1.00	32.50	W
	ATOM	8769		WAT		587	11.4		52.017	0.1	47	1.00	40.24	W
	ATOM	8770		WAT			55.1		30.683	-19.3	20	1.00	24.62	W
20	ATOM	8771		WAT			16.9		74.567			1.00	38.99	W
	MOTA	8772		WAT			40.7		10.703			1.00	30.96	W
	MOTA	8773		WAT			28.1		58.576			1.00	47.34	W
	ATOM	8774		WAT			40.0		35.508	11.3		1.00	23.27	W
	ATOM	8775		WAT			19.0		30.665	-11.8	61	1.00	31.12	W
25	ATOM	8776		WAT			64.9		30.063	-8.8		1.00	41.14	W
	ATOM	8777		WAT			72.9		13.604				34.73	W
	ATOM	8778		WAT			12.8		74.876			1.00	37.16	W
	ATOM	8779		WAT			57.0		75.724	-2.8			31.22	W
	ATOM	8780		WAT			20.9		58.561	37.8			38.60	W
30	ATOM	8781		WAT			50.7		77.525	2.1			40.85	W
00	ATOM	8782		WAT		600	28.3		15.572	40.7			44.08	W
	MOTA	8783		WAT		601	23.0		36.982	13.3		1.00	27.57	W
	ATOM	8784		WAT			33.2		39.668				45.50	W
	ATOM	8785		WAT			33.7		19.409				49.24	W
35	ATOM	8786		WAT			29.4		38.986				14.64	W
00	ATOM	8787		WAT			37.0		33.825	5.7		1.00	36.96	W
	ATOM	8788		WAT		606	71.8		52.869				33.45	W
	ATOM	8789		WAT		607	34.3		70.286				35.57	W
	ATOM	8790		WAT			64.2		77.372	0.3			41.73	W
40	ATOM	8791		WAT			35.7		55.966			1.00	61.84	W
10	ATOM	8792		WAT			30.7		51.359				41.26	W
	ATOM	8793		WAT			54.2		58.059				54.40	W
	ATOM	8794		WAT			21.0		54.609				38.62	W
	ATOM	8795		WAT			14.5		50.708				32.56	W
45	ATOM	8796		WAT			25.3		91.719				42.32	W
40	ATOM	8797		WAT			73.1		71.399				42.43	W
	ATOM	8798		WAT			55.7		38.604	0.9			44.24	W
	ATOM	8799		WAT			37.4		34.235	4.5			42.83	W
	ATOM	8800		WAT			45.6		55.261	10.2			45.85	W
50	ATOM	8801		WAT			67.0		31.358				31.78	W
50		8802		WAT			40.5		39.334				47.91	W
	ATOM	8803		WAT			43.7		56.722				27.63	W
	ATOM	8803		WAT			56.2		50.279				48.83	W
	MOTA			WAT			63.5		57.555				41.71	W
55	ATOM	8805					62.1		18.421				38.60	W
55	MOTA	8806	OH2	WAT	W	024	02.1	٠ ٥٠	10.421	-20.5	, , ,	1.00	50.00	**

	MOTA	8807	OH2	WAT	W	625	62.877	59.693	-22.146	1.00 60.99	W
	ATOM	8808	OH2	WAT	W	626	39.812	77.874	13.633	1.00 45.54	W
	MOTA	8809	OH2	WAT	W	627	26.711	91.998	-27.596	1.00 30.68	W
	MOTA	8810	OH2	WAT	W	628	13.505	70.317	-9.667	1.00 32.85	W
5	ATOM	8811	он2	WAT	W	629	60.642	79.086	-41.474	1.00 27.69	W
	MOTA	8812	OH2	WAT	W	630	39.181	43.469	26.620	1.00 39.36	W
	ATOM	8813	OH2	WAT	W	631	11.991	71.039	2.437	1.00 33.17	W
	ATOM	8814	OH2	WAT	W	632	36.447	62.759	-38.362	1.00 30.08	W
	ATOM	8815	OH2	WAT	W	633	75.969	83.252	-25.278	1.00 45.04	W
10	ATOM	8816	OH2	WAT	W	634	37.698	80.761	-0.575	1.00 24.24	W
	ATOM	8817	OH2	WAT	W	635	47.369	53.715	35.730	1.00 45.08	W
	MOTA	8818	OH2	WAT	W	636	48.732	98.012	-33.807	1.00 34.63	W
	ATOM	8819	OH2	WAT	W	637	63.265	75.050	-45.725	1.00 38.33	W
	ATOM	8820	OH2	WAT	W	638	60.032	71.956	0.252	1.00 44.76	W
15	ATOM	8821		WAT			40.988	48.143	-29.350	1.00 45.67	W
	ATOM	8822		WAT			55.258		-12.634	1.00 60.28	W
	ATOM	8823		WAT		641	75.283		-22.829	1.00 44.58	W
	ATOM	8824		WAT		642	63.431	52.143	-0.405	1.00 29.19	W
	ATOM	8825		WAT			37.172	36.738	19.246	1.00 53.77	W
20	ATOM	8826				644	57.876	36.061	-2.371	1.00 48.71	W
	ATOM	8827		WAT			23.212		-36.113	1.00 40.06	W
	ATOM	8828		WAT			18.060		-29.825	1.00 43.44	W
	MOTA	8829		WAT			30.795	40.421	38.172	1.00 47.17	W
	ATOM	8830		WAT			27.612	50.327	23.213	1.00 31.47	W
25	ATOM	8831		WAT		649	30.574	47.809	40.324	1.00 45.57	W
	ATOM	8832		WAT			59.939		-30.672	1.00 35.35	W
	ATOM	8833		WAT			44.795	40.676	13.160	1.00 33.50	W
	ATOM	8834		WAT			34.039	47.923	36.038	1.00 38.29	W
	ATOM	8835		WAT			27.160	82.334	3.179	1.00 31.70	W
30	ATOM	8836		WAT			58.512		-42.108	1.00 40.35	W
00	ATOM	8837			W	655	49.129		-37.841	1.00 44.78	W
	ATOM	8838				656	53.318		-16.915	1.00 25.96	W
	ATOM	8839		WAT			57.576		-15.538	1.00 50.70	W
	ATOM	8840		WAT		658	28.417		-29.609	1.00 36.13	W
35	ATOM	8841		WAT			49.113		-38.284	1.00 45.00	W
33	ATOM	8842		WAT			35.586		-43.101	1.00 33.39	W
	ATOM	8843		WAT			9.841	58.788	17.855	1.00 33.33	W
	ATOM	8844		WAT			61.026	45.578	-3.773	1.00 34.99	W
	ATOM	8845		WAT			65.493	78.967	-5.769	1.00 29.19	W
40			OH2				7.025	58.334		1.00 44.10	
40	ATOM			WAT			49.654	50.855	32.514	1.00 30.08	W
	ATOM	8847					18.545			1.00 50.00	W
	ATOM	8848		WAT					22.933	1.00 44.65	W
	ATOM	8849		WAT			30.379	34.204	-14.303	1.00 32.55	W
45	ATOM	8850		WAT			17.488	55.348		1.00 32.33	W
45	ATOM	8851		WAT			28.754		39.968	1.00 33.20	W
	ATOM	8852		WAT			50.808	60.080			W
	ATOM	8853		WAT			43.864		-28.667	1.00 10.75	
	ATOM	8854		WAT			38.132		-31.368	1.00 15.05	W
ΕO	ATOM	8855		WAT			32.332	39.227		1.00 11.43	W
50	ATOM	8856		WAT			60.350		-18.141	1.00 13.21	W
	ATOM	8857		WAT			63.171	58.710	-1.441	1.00 12.30	W
	ATOM	8858		WAT			60.719	61.106		1.00 11.61	W
	ATOM	8859		WAT			46.645	74.659		1.00 13.33	W
	ATOM	8860		WAT			54.976	57.679		1.00 13.83	W
55	MOTA	8861	OH2	TAW	W	679	30.171	75.105	-29.268	1.00 12.68	W

	ATOM	8862	OH2	WAT	W	680	58.910	56.848	-1.463		12.78	W
	ATOM	8863		WAT			58.707	52.780	-0.068		16.81	W
	MOTA	8864	OH2	WAT	W	682	63.035	61.198	-4.943		15.69	W
	MOTA	8865	OH2	WAT	W	683	27.871	48.752	12.133		14.85	W
5	ATOM	8866	OH2	WAT	W	684	66.593		-20.257		17.09	W
	MOTA	8867	OH2	WAT	W	685	19.823		-14.372		18.34	W
	MOTA	8868		WAT			38.651		-38.144		18.58	W
	MOTA	8869		WAT			33.756	60.443	23.244		16.84	W
	MOTA	8870		WAT			39.615	55.787	3.023		13.33	W
10	ATOM	8871		WAT			24.685	61.650	9.133		15.12	W
	ATOM	8872		WAT			16.852	57.351	13.005		17.76	W
	MOTA	8873		WAT			39.357		-35.452		16.14	W
	MOTA	8874	OH2	TAW	M	692	49.896	67.829	4.102		22.12	W
	MOTA	8875	OH2	WAT	W	693	27.767	53.520	20.006		16.13	W
15	MOTA	8876		TAW			29.589	83.211	2.374		17.47	W
	MOTA	8877	OH2	TAW	W	695	28.136		-25.283		18.51	W
	MOTA	8878	OH2	WAT	W	696	46.056	77.858	9.469		18.58	M
	MOTA	8879	OH2	WAT	W	697	12.598	49.461	17.773		23.12	W
	MOTA	8880	OH2	TAW	W	698	81.171		-11.423		23.28	W
20	ATOM	8881	OH2	WAT	W	699	41.447	44.917	-6.984		18.12	W
	MOTA	8882	OH2	TAW	W	700	45.659		-27.584		23.36	W
	MOTA	8883	OH2	WAT	W	701	14.273	50.690	24.204		20.19	M
	MOTA	8884		TAW			67.431	46.612	-1.390		27.25	W
	MOTA	8885		WAT		703	9.075	50.498	8.166		25.31	W
25	MOTA	8886		TAW		704	48.417	40.958	-1.139		23.15	W
	MOTA	8887		WAT		705	17.999	74.642	3.920		32.70	W
	MOTA	8888		TAW			44.829		-18.432		22.53	W
	MOTA	8889		WAT		707	83.508		-15.459		23.10	W
20	MOTA	8890		TAW			48.839		-36.856		22.09	W
30	MOTA	8891		WAT			51.752		-38.057		23.90	W
	MOTA	8892		WAT			29.658	72.517	34.348		30.12	W
	MOTA	8893		WAT			37.525		-32.546		23.53	W
	MOTA	8894		WAT		712	57.377	49.104	21.315		21.68	W
25	ATOM	8895		WAT			42.963		-31.428		23.43	W
35	ATOM	8896		TAW		714	31.988	34.471	-3.304		25.07	W
	MOTA	8897		WAT			37.084		-33.588		24.72	W
	ATOM	8898		TAW			61.591	59.246	14.600		28.80	W W
	ATOM	8899		WAT			40.198		-19.000		23.02 50.29	W
40	ATOM	8900		WAT			47.473		-44.201			W
40	ATOM	8901		TAW			61.734		-10.423		40.12	W
	ATOM	8902		TAW			79.475		-11.448		21.63	W
	ATOM	8903		WAT			37.556		-18.478			W
	ATOM	8904		TAW			25.699	52.296			19.81 28.25	M
45	MOTA	8905		TAW			69.562		-28.574		26.74	W
45	ATOM	8906		TAW			72.923		-10.029		32.14	W
	MOTA	8907		WAT			42.712 56.019	56.570			21.69	W
	ATOM	8908		WAT					-36.093			W
	ATOM	8909		TAW			17.870	66.389	28.045 -16.973		31.05 25.14	W
50	ATOM	8910		WAT			11.744					W
50	ATOM	8911		WAT			35.294		-17.918		29.79 28.25	W
	MOTA	8912		WAT			9.739		-20.395			W
	ATOM	8913		WAT			11.654	48.520	-2.460		33.38 26.07	W
	ATOM	8914		TAW			40.614	57.118	31.023			W
==	ATOM	8915		WAT			39.777	53.158	36.413		33.49 26.70	W
55	ATOM	8916	OH2	TAW	W	134	49.845	47.366	28.829	1.00	20.70	W

							0 15 004	1 00 00 67	7.7
		MOTA	8917	OH2 WAT W 7		24.110	34.457 15.334	1.00 29.67	W
		ATOM	8918	OH2 WAT W 7		59.490	51.073 24.831	1.00 29.86	W
		MOTA	8919	OH2 WAT W 7	37	38.054	83.336 -1.120	1.00 28.89	W
		MOTA	8920	OH2 WAT W 7		13.039	51.650 -12.216	1.00 30.21	W
	5	ATOM	8921	OH2 WAT W 7	139	48.500	50.823 35.082	1.00 34.12	W
		MOTA	8922	OH2 WAT W 7	40	47.989	41.707 -5.554	1.00 31.61	W
		MOTA	8923	OH2 WAT W 7	41	22.205	40.959 -11.330	1.00 33.16	W
		ATOM	8924	OH2 WAT W 7	42	16.134	36.485 16.269	1.00 29.31	W
		ATOM	8925	OH2 WAT W 7	43	22.480	68.170 20.286	1.00 24.77	W
	10	ATOM	8926	OH2 WAT W 7	44	72.049	47.322 -17.960	1.00 29.07	W
		ATOM	8927	OH2 WAT W 7	45	40.857	85.387 -11.973	1.00 23.51	W
		MOTA	8928	OH2 WAT W 7	46	56.744	46.789 15.703	1.00 28.26	W
		ATOM	8929	OH2 WAT W 7	47	51.904	64.105 24.543	1.00 27.18	W
		ATOM	8930	OH2 WAT W 7	48	56.575	58.583 1.344	1.00 31.09	W
	15	ATOM	8931	OH2 WAT W 7	49	57.373	58.561 5.484	1.00 29.43	W
		ATOM	8932	OH2 WAT W 7		75.104	64.410 -16.417	1.00 31.68	W
		ATOM	8933	OH2 WAT W 7		14.670	70.784 -23.138	1.00 25.91	W
		MOTA	8934	OH2 WAT W 7		12.911	52.355 -15.033	1.00 28.96	W
ine		ATOM	8935	OH2 WAT W 7		12.990	62.108 -25.006	1.00 33.01	W
	20	ATOM	8936	OH2 WAT W 7		23.345	87.363 -32.635	1.00 32.61	W
*it±# . 1995		ATOM	8937	OH2 WAT W 7		66.469	81.830 -14.265	1.00 24.46	W
N. H.		ATOM	8938			47.252	61.569 -28.848	1.00 30.46	W
111		ATOM	8939	OH2 WAT W		52.546	71.147 5.890	1.00 33.46	W
		ATOM	8940	OH2 WAT W 7		41.001	56.046 -33.215	1.00 27.40	W
M.	25	ATOM	8941	OH2 WAT W 7		39.617	39.925 19.990	1.00 31.20	W
14		ATOM	8942	OH2 WAT W 7		44.781	55.360 36.095	1.00 36.29	W
137		ATOM	8943			13.955	62.545 14.561	1.00 24.95	W
5 1		ATOM	8944			39.940	39.555 -0.351	1.00 33.58	W
1944 1944		ATOM	8945			32.665	69.642 22.088	1.00 26.34	W
ij.	30	ATOM	8946	OH2 WAT W 7		42.575	43.594 -11.934	1.00 31.73	W
7,1 7 545 E		ATOM	8947	OH2 WAT W		26.998	41.795 -27.476	1.00 34.79	W
W		ATOM	8948	OH2 WAT W		19.705	41.788 -5.040	1.00 30.18	W
į		ATOM	8949	OH2 WAT W 7		13.729	60.851 7.587	1.00 31.12	W
		ATOM	8950	OH2 WAT W		46.594	45.832 11.529	1.00 30.71	W
<u></u>	35	ATOM	8951			43.004	68.714 -30.001	1.00 34.08	W
		ATOM	8952			24.346	54.101 -8.362	1.00 40.20	W
		ATOM	8953	OH2 WAT W 7		47.715	70.196 -16.599	1.00 29.28	W
		ATOM	8954	OH2 WAT W		58.821	93.877 -27.444	1.00 33.88	W
		ATOM	8955	OH2 WAT W 7		31.148	79.112 -42.939	1.00 36.00	W
	40	ATOM	8956	OH2 WAT W		22.053	42.741 -13.266	1.00 29.08	W
		ATOM	8957	OH2 WAT W		52.877	92.345 -23.218	1.00 28.25	W
		ATOM	8958	OH2 WAT W		60.172	51.088 20.144	1.00 37.24	W
		ATOM	8959	OH2 WAT W		60.950	56.059 1.983	1.00 32.34	W
		ATOM	8960	OH2 WAT W		19.502	58.697 -36.820	1.00 28.69	W
	45	ATOM	8961	OH2 WAT W		30.076	50.066 12.361	1.00 66.40	W
	10	ATOM	8962	OH2 WAT W		26.320	66.838 19.785	1.00 20.83	W
		ATOM	8963	OH2 WAT W		12.032	41.651 19.833	1.00 27.28	W
		ATOM	8964	OH2 WAT W		69.452	77.231 -34.140	1.00 32.70	W
		ATOM	8965	OH2 WAT W		16.602	43.039 -2.678	1.00 24.99	W
	50	ATOM	8966	OH2 WAT W		35.764	60.018 -37.747	1.00 36.97	W
		ATOM	8967	OH2 WAT W		33.876	66.348 -42.439	1.00 39.91	W
		ATOM	8968	OH2 WAT W		57.127	36.355 -14.326	1.00 37.67	W
		ATOM	8969	OH2 WAT W		37.130	37.609 2.903	1.00 39.84	W
		ATOM	8970	OH2 WAT W		51.220	66.924 8.375	1.00 31.06	W
	55	ATOM	8971	OH2 WAT W		10.804	51.718 21.423	1.00 33.84	W
	00	111011	00,1	J					

							22 272	07.460	15 061	1 00	26.18	W
	ATOM	8972	OH2				30.270		-15.061			W
	ATOM	8973	OH2				41.988		-17.332		31.54	
	MOTA	8974	OH2			792	48.606	76.258	8.357		38.63	W
_	MOTA	8975	OH2				29.552	75.900	10.796		22.83	W
5	MOTA	8976	OH2	WAT	W	794	42.986		-37.052		36.49	W
	MOTA	8977	OH2	WAT	W	795	23.446	66.228	9.839		36.96	W
	MOTA	8978	OH2	WAT	W	796	64.807	79.091			32.76	W
	MOTA	8979	OH2	WAT	W	797	43.476	40.507	-22.892	1.00	31.16	W
	MOTA	8980	OH2	WAT	W	798	59.402	49.107	2.170	1.00	36.25	W
10	MOTA	8981	OH2	WAT	W	799	68.966	41.741	-17.222	1.00	33.61	W
	ATOM	8982		WAT			24.793	71.941	-39.851	1.00	21.86	W
	ATOM	8983		WAT			23.767	48.580	-24.246	1.00	34.92	W
	ATOM	8984		WAT			46.980	68.168	-24.735	1.00	26.18	W
	ATOM	8985		WAT			53.458		-29.972	1.00	28.69	W
15	ATOM	8986		WAT			24.862	34.453	35.634	1.00	36.72	W
10	ATOM	8987		WAT			13.428	52.674	25.889		33.75	W
		8988		WAT			51.562	44.638	2.845		28.99	W
	ATOM			WAT			21.377	55.670			40.73	W
	ATOM	8989					64.134	70.734			21.34	W
20	ATOM	8990		WAT					-23.163		38.24	W
20	ATOM	8991		TAW			46.972		-7.596		25.72	W
	ATOM	8992		TAW			8.000	53.174			30.13	W
	MOTA	8993		WAT			22.177		-42.182		44.49	W
	MOTA	8994		WAT			63.779		-30.505			
	ATOM	8995		TAW			18.366		-19.763		34.11	W
25	MOTA	8996		WAT			59.401	76.927			31.82	M
	ATOM	8997		WAT			21.046		-12.381		30.70	W
	MOTA	8998		WAT			55.643	67.386	13.253		42.99	W
	MOTA	8999		WAT			19.135		-31.528		43.38	W
	MOTA	9000		WAT			67.337		-35.938		31.07	W
30	MOTA	9001		WAT			29.637	75.151	22.301		26.35	W
	MOTA	9002	OH2	WAT	W	820	32.750	84.350	0.358		22.00	W
	MOTA	9003	OH2	WAT	W	821	45.598	65.481	-28.648		31.79	M
	MOTA	9004	OH2	WAT	W	822	12.768	62.241	-2.419		31.35	W
	ATOM	9005	OH2	WAT	W	823	25.799	63.445	13.810		32.36	W
35	ATOM	9006	OH2	WAT	W	824	28.556	34.999	32.201		37.91	W
	ATOM	9007		WAT			36.020	68.674	23.466	1.00	35.59	W
	ATOM	9008		WAT			31.938	33.896	17.286	1.00	39.46	W
	ATOM	9009		WAT			41.647	84.318	-2.417	1.00	41.96	W
	ATOM	9010		WAT				100.332	-31.852	1.00	43.82	W
40	ATOM		OH2				28.695	63.602	10.619	1.00	15.02	W
10	ATOM	9012		WAT			54.701		-44.566		41.37	W
	ATOM	9013		WAT			69.916		-10.485		30.03	W
		9014				832	36.974	79.509			47.01	W
	ATOM			WAT			12.230		-12.621		35.16	W
45	ATOM	9015		WAT			39.082				40.49	W
45	ATOM	9016							38.117		30.19	W
	ATOM	9017		WAT			27.965		-22.542		37.36	W
	ATOM	9018		WAT			27.787					
	MOTA	9019		WAT			72.305		-31.273		33.36	W W
- 2	ATOM	9020		WAT			76.326		-11.653		33.77	
50	ATOM	9021				839	21.477		-38.808		37.70	W
	ATOM	9022		TAW			23.074		-30.020		36.46	W
	ATOM	9023		TAW			20.982		31.644		41.44	W
	ATOM	9024		WAT			29.441		-28.737		51.18	W
	MOTA	9025				843	42.659		-27.313		40.92	W
55	ATOM	9026	OH2	WAT	W	844	55.868	51.887	27.288	1.00	31.92	W

		n mc: 4	0007	0110	1-17) T	f.7	0.45	31.328	50 707	-40.674	1.00 5	50 82	W
		ATOM	9027	OH2							1.00 2		W
		ATOM	9028	OH2				18.450	43.148	27.316	1.00 4		W
		ATOM	9029	OH2				62.202		-43.971	1.00 3		W
	_	ATOM	9030	OH2				7.623	54.625	17.516	1.00		W
	5	MOTA	9031	OH2				18.083	41.899	25.153 5.782	1.00		W
		ATOM	9032	OH2				27.414	82.738		1.00 2		W
		ATOM	9033	OH2				38.762	53.294	1.928			W
		ATOM	9034	OH2				11.930	67.467	2.674	1.00		W
	10	ATOM	9035	OH2				4.368	56.741	-6.545	1.00 3		W
	10	ATOM	9036	OH2				22.233	77.054	8.620			W
		ATOM	9037	OH2				25.877		-42.821	1.00 3		W
		ATOM	9038		TAW			10.521		-12.058	1.00		W
		ATOM	9039		TAW			44.573		-44.611 26.383	1.00		W
	1 -	ATOM	9040	OH2				37.290	40.005	-38.011	1.00		W
	15	ATOM	9041	OH2				23.430			1.00		W
		ATOM	9042	OH2				70.109		-24.295	1.00		W
		ATOM	9043	OH2				23.013	64.466	18.350	1.00		W
		ATOM	9044	OH2				67.076	38.608	-9.606	1.00 4		W
	20	ATOM	9045		WAT			65.523		-41.037	1.00		W
ı,Q	20	ATOM	9046		TAW			13.958	43.645	28.956 1.213	1.00		W
ij		ATOM	9047					13.521	48.352	-38.014	1.00		W
M		ATOM	9048		WAT			55.482		-36.014 -23.958	1.00		W
Ö		ATOM	9049		WAT		867	26.983			1.00		W
	OF.	ATOM	9050	OH2				69.691		-33.929 22.712	1.00		W
3	25	ATOM	9051		TAW			12.125	62.282	5.467	1.00		W
		ATOM	9052		TAW			30.789	29.802	22.415	1.00		W
9,5 0		ATOM	9053		TAW			19.363	36.418	-14.741	1.00		W
E)		ATOM	9054		WAT			27.591 66.334	50.435	0.529	1.00		W
	30	ATOM	9055		WAT			28.581	64.849	14.838	1.00		W
4,⊒	30	MOTA	9056		TAW TAW			52.012	60.259	28.144	1.00		W
N		ATOM	9057					52.497	72.590	18.443	1.00		W
		ATOM	9058		WAT			47.030		-26.288	1.00		W
		ATOM	9059 9060		WAT			65.356	81.557	-4.607	1.00		W
į.	35	ATOM	9060					48.561		-26.150	1.00		W
ħ.	33	ATOM	9062					59.811		-38.775	1.00		W
		MOTA	9062		WAT			22.852		-16.949	1.00		W
		MOTA MOTA	9064		WAT			25.845		-38.701	1.00		W
		ATOM	9065		WAT			20.344		-29.032	1.00		W
	40	ATOM	9066					59.348		27.039	1.00		W
	40	ATOM	9067		WAT			44.363		-15.598	1.00		W
		ATOM	9068		WAT			63.961		-40.514	1.00		W
		ATOM	9069		WAT			14.182	58.399		1.00		W
		ATOM	9070		WAT			14.005	57.801		1.00		W
	45	ATOM	9071		WAT			24.482	63.758		1.00		W
	40	ATOM	9072		WAT			28.177	39.811		1.00		W
		ATOM	9073		WAT			28.968		-35.705	1.00		W
		ATOM	9074		WAT			12.332		-15.108	1.00		W
		ATOM	9075		WAT			81.492		-13.707	1.00		W
	50	ATOM	9076		WAT			58.926	58.066		1.00		W
	50	ATOM	9077		WAT			49.226	68.465		1.00		W
		ATOM	9078		WAT			68.450		-28.527	1.00		W
			9078		WAT			26.056	32.722		1.00		W
		ATOM ATOM	9079		WAT			32.819			1.00		W
	55	ATOM	9080		TAW					-19.150	1.00		W
	55	A I OM	300T	UIL	*****	**	000	20.010	102.750	17.150			••

	ATOM	9082	OH2 WAT	W	900	71.696	73.995	-29.144	1.00	33.51	W
	ATOM	9083	OH2 WAT			79.298	50.626	-8.882	1.00		W
	ATOM	9084	OH2 WAT			37.121	83.790	-3.946	1.00	25.44	W
	ATOM	9085	OH2 WAT			59.411	52.085	2.463	1.00		W
5	ATOM	9086	OH2 WAT			19.832		-18.505	1.00		W
9	ATOM	9087	OH2 WAT			43.802		-21.515	1.00		W
	ATOM	9088	OH2 WAT			57.911	52.910	26.179	1.00		W
	ATOM	9089	OH2 WAT			16.938		-36.365	1.00		W
	ATOM	9090	OH2 WAT			46.724	42.921	9.610	1.00		W
10		9091	OH2 WAT			27.272	72.059	33.936	1.00		W
10	ATOM	9091	OH2 WAT			7.389		-10.032	1.00		W
	ATOM	9092	OH2 WAT			24.568	52.451	43.481	1.00		W
	ATOM	9093	OH2 WAT			49.865		-30.511	1.00		W
	ATOM		OH2 WAT			42.658		-29.502	1.00		W
15	ATOM	9095				27.537		-12.482	1.00		W
15	ATOM	9096	OH2 WAT			56.678		-43.614	1.00		W
	ATOM	9097	OH2 WAT				44.947	26.811		37.06	W
	ATOM	9098	OH2 WAT			14.006		-36.011	1.00		W
	ATOM	9099	OH2 WAT			69.590		-25.101	1.00		W
20	ATOM	9100	OH2 WAT			57.990			1.00		W
20	MOTA	9101	OH2 WAT			64.754	70.419	-8.091	1.00		W
	ATOM	9102	OH2 WAT			46.084	39.866	-0.054			W
	MOTA	9103	OH2 WAT			37.055	37.381	24.919	1.00		W
	ATOM	9104	OH2 WAT			52.320	68.585	4.797	1.00		W
25	ATOM	9105	OH2 WAT			17.923	51.020	38.034	1.00	35.62	W
25	ATOM	9106	OH2 WAT			15.320		-13.699		37.80	W
	MOTA	9107	OH2 WAT			20.069		-12.317	1.00		W
	MOTA	9108	OH2 WAT			49.621	45.620	30.973	1.00		W
	MOTA	9109	OH2 WAT			46.954		-17.610			W
20	MOTA	9110	OH2 WAT			70.522		-25.994	1.00	38.39	W
30	ATOM	9111	OH2 WAT			58.551	52.895	4.627			W
	ATOM	9112	OH2 WAT			35.513		-34.759	1.00		W W
	ATOM	9113	OH2 WAT			41.558		-28.845		40.90	
	MOTA	9114	OH2 WAT			48.127	66.178	26.914		36.07	W W
25	ATOM	9115	OH2 WAT			27.690	67.682	11.659		24.50	W
35	MOTA	9116			934	39.804		-21.936	1.00		
	MOTA	9117	OH2 WAT			22.224	65.770	32.279		31.60	W
	MOTA	9118	OH2 WAT			58.814	48.750	18.909		33.30	W
	MOTA	9119	OH2 WAT			31.849	80.994	7.175		45.53	W
4.0	MOTA	9120	OH2 WAT			50.363		-24.802	1.00		W
40	MOTA	9121	OH2 WAT			62.526	60.736	0.451		35,47	W
	MOTA	9122	OH2 WAT			67.854		-35.151	1.00		W 5.7
	MOTA	9123	OH2 WAT			23.138		-15.567		39.15	W
	MOTA	9124	OH2 WAT			35.976		-29.929		35.78	W
	ATOM	9125	OH2 WAT			73.983		-11.072		35.65	W
45	ATOM	9126	OH2 WAT			41.088	81.781	-3.482		41.37	W
	MOTA	9127	OH2 WAT			13.020	63.025	12.074		43.97	W
	ATOM	9128	OH2 WAT			56.714	76.086	0.096		33.32	W
	MOTA	9129	OH2 WAT			74.317	52.113	1.536		36.02	W
	MOTA	9130	OH2 WAT			22.014		-34.827		31.87	W
50	MOTA	9131	OH2 WAT			77.383		-15.067		27.69	W
	ATOM	9132	OH2 WAT			17.693	41.868	32.102		47.71	W
	ATOM	9133	OH2 WAT	. M	951	10.258		-15.051		35.09	W
	MOTA	9134	OH2 WAT	, M	952	45.905	79.926	4.885		35.52	W
	MOTA	9135	OH2 WAT	W	953	14.632	46.962	32.202		28.79	W
55	ATOM	9136	OH2 WAT	W	954	34.451	77.305	12.190	1.00	30.17	W

	MOTA	9137		WAT			47.521			1.00 34.52	W
	ATOM	9138	OH2	WAT	W	956	18.766			1.00 38.68	W
	ATOM	9139	OH2	WAT	W	957	25.886	59.107	-38.846	1.00 37.93	W
	ATOM	9140	OH2	WAT	W	958	10.640	57.926	-20.969	1.00 40.59	W
5	ATOM	9141	OH2	WAT	W	959	8.881	56.896	16.376	1.00 46.16	W
_	ATOM	9142		WAT			78.130	72.254	-10.221	1.00 30.28	W
	ATOM	9143		WAT			23.884	82.876	-3.966	1.00 52.89	W
	ATOM	9144		WAT			44.483			1.00 44.52	W
	ATOM	9145		TAW			35.403			1.00 31.32	W
10		9146		WAT		964	27.262		-31.713	1.00 39.79	W
10	ATOM			WAT		965	74.769		-20.732	1.00 39.11	W
	ATOM	9147								1.00 33.85	W
	ATOM	9148		WAT		966	49.100			1.00 36.65	W
	ATOM	9149		WAT		967	44.902		-25.044	1.00 35.34	W
4.5	MOTA	9150		TAW		968	52.476				
15	MOTA	9151		TAW			9.649		-12.194	1.00 30.57	W
	MOTA	9152		WAT			58.733			1.00 47.36	
	ATOM	9153		WAT		971	51.884			1.00 38.68	W
	ATOM	9154	OH2	WAT	W	972	25.020	89.138	-25.139	1.00 38.86	
	ATOM	9155	OH2	WAT	W	973	7.52	L 58.222	0.201	1.00 37.34	W
20	ATOM	9156	OH2	WAT	W	974	11.52	58.491	19.987	1.00 37.19	W
	ATOM	9157	OH2	WAT	W	975	18.598	3 60.943	-37.781	1.00 25.28	W
	MOTA	9158	OH2	WAT	W	976	46.002	2 60.113	-31.315	1.00 37.62	W
	ATOM	9159		WAT			5.368		6.783	1.00 33.43	W
	ATOM	9160		WAT			13.342		-11.623	1.00 59.42	W
25	ATOM	9161		WAT		979	47.205		-17.119	1.00 33.31	
20	ATOM	9162		WAT		981	29.41			1.00 21.92	
	ATOM	9163		WAT		982	28.559			1.00 31.51	
		9164		WAT		983	33.312			1.00 38.02	
	ATOM						58.32			1.00 46.25	
20	ATOM	9165	C1	NAG		1	59.55			1.00 48.64	
30	ATOM	9166	C2	NAG		1				1.00 40.04	
	ATOM	9167	N2	NAG		1	60.613				
	MOTA	9168	C7	NAG		1	60.818			1.00 51.53	
	MOTA	9169	07	NAG		1	60.26			1.00 53.37	
	MOTA	9170	C8	NAG		1	61.782			1.00 51.81	
35	MOTA	9171	C3	NAG		1	60.04			1.00 49.65	
	MOTA	9172	03	NAG	С	1	61.10			1.00 50.85	
	MOTA	9173	C4	NAG	С	1	58.90	5 42.304	13.689	1.00 49.25	
	MOTA	9174	04	NAG	С	1	59.34	5 40.999	13.344	1.00 50.57	
	ATOM	9175	C5	NAG	С	1	57.71			1.00 49.13	
40	ATOM	9176	05	NAG	С	1	57.29	5 44.050	13.123	1.00 47.36	С
	ATOM	9177	C6	NAG		1	56.518		13.024	1.00 48.96	
	ATOM	9178	06	NAG		1	55.51		12.052	1.00 50.02	С
	ATOM	9179	C1	SWA	-	1	31.06			1.00 9.68	
	ATOM	9180	01	SWA		1	31.59			1.00 11.09	
45	ATOM	9181	C3	SWA		1	31.29			1.00 10.48	
40			N4			1	30.73			1.00 10.85	
	ATOM	9182		SWA			29.27			1.00 10.14	
	ATOM	9183	C5	SWA		1				1.00 10.14	
	ATOM	9184	C6	SWA		1	28.97			1.00 9.14	
F.0	ATOM	9185	C2	SWA		1	29.53				
50	ATOM	9186	C9	SWA		1	31.26			1.00 11.70	
	ATOM	9187	C8	SWA		1	32.68			1.00 11.30	
	ATOM	9188		SWA		1	33.68			1.00 11.34	
	ATOM	9189	C7	SWA		1	32.76			1.00 10.44	
	ATOM	9190	011	SWA		1	33.67			1.00 10.67	
55	MOTA	9191	C1	MPD	Μ	1	14.79	7 61.266	10.322	1.00 23.09	M

	ATOM	9192	C2	MPD	M	1	16.264	61.479	10.614	1.00	23.60	М
	ATOM	9193	02	MPD	M	1	16.876	60.330	9.851	1.00	24.23	M
	ATOM	9194	CM	MPD	M	1	17.075	62.611	10.000	1.00	24.36	М
	ATOM	9195	C3	MPD	M	1	16.492	61.271	12.125	1.00	23.19	M
5	ATOM	9196	C4	MPD	M	1	17.813	60.945	12.649	1.00	23.12	M
	ATOM	9197	04	MPD	M	1	17.580	59.936	13.627	1.00	22.00	M
	MOTA	9198	C5	MPD	M	1	18.337	62.222	13.387	1.00	22.61	M
	MOTA	9199	ZN	ZN	Z	1	34.561	64.335	8.062	1.00	15.34	Z
	END											

Table 3

Structural Results: Active Site

5 From initial analysis of the crystal structure, based on the location of residues known to be involved in catalysis, the active site of the enzyme is located within a region composed of the following residues:

GLY	60	VAL	61	TRP	62	LYS	63	GLN	64	GLY	65
ILE	68	VAL	83	PHE	84	VAL	85	VAL	86	PRO	87
HIS	88	SER	89	HIS	90	ASN	91	ASP	92	TRP	95
ILE	110	met	124	PHE	126	ILE	127	TRP	128	ala	129
GLU	130	VAL	161	MET	167	TRP	201	ALA	202	ILE	203
ASP	204	PRO	205	PHE	206	GLY	207	HIS	208	LEU	225
ILE	226	GLN	227	ARG	228	thr	229	TYR	231	LYS	234
LEU	243	HIS	262	MET	263	MET	264	PRO	265	PHE	266
TYR	267	SER	268	TYR	269	ASP	270	ILE	271	PRO	272
HIS	273	THR	274	CYS	275	GLY	276	PRO	277	ASP	278
PRO	279	LYS	280	val	281	CYS	282	CYS	283	GLN	284
PHE	285	ASP	286	PHE	287	LYS	288	ARG	289	met	290
phe	293	gly	294	leu	295	ser	296	CYS	297	PRO	298
TRP	299	lys	300	VAL	301	PRO	302	PRO	303	leu	317
LEU	318	GLN	321	trp	322	LYS	324	LYS	325	ala	326
LEU	328	tyr	329	LEU	334	LEU	335	ile	336	PRO	337
LEU	338	GLY	339	ASP	340	ASP	341	PHE	342	ARG	343
phe	344	lys	345	GLU	349	val	352	GLN	353	arg	354
TYR	357	LEU	360	PHE	361	PHE	376	GLY	377	LEU	379
TYR	407	ALA	408	ASP	409	ARG	410	trp	415	HIS	471
ASP	472	TYR	727	ASP	874	glu	875	ARG	876	GLY	877
LEU	878										

10

Residues in lower case are not identical in the human Golgi ManII sequence, though many of those are conservative substitutions. In this sphere of 15Å around the catalytic center, there are only 21 non-identities among 121 residues, indicating that the human active site will be essentially identical to that observed for the *Drosophila* structure.

15

The numbering system in this and the accompanying Figures corresponds to the protein expressed in the system described herein, not to full length ManII.

Table 4
Intermolecular Interactions at an Active Site of a Mannosidase II Swainsonine Complex.

No. of Atomic Interaction	Swainsonine Atomic Contact	Enzyme Atomic Contact	Distance Between Atomic Contacts	Atomic Interaction Property
1	O1	His 471 NE2	3.3	НВ
2	N	Asp 204 OD1	2.9	HB
3	O2	Asp 341 OD2	3.4	НВ
4	O2	His 90 NE2	3.1	НВ
5	O2	Asp 92 OD1	2.9	НВ
6	O8	Asp 472 OD1	2.53	НВ
7	Ring	Phe 206 ring	3.55	VW
8	O8	Tyr 727 OH	2.6	НВ
9	ring	Trp 95	3.7	VW

HB: hydrogen bond interaction

5 VW Van der Waals

ļ.4.

Table 5

Crystallographic Refinement Statistics for the Native Drosophila Gogli Mannosidase II

```
5
    >>> input coordinates: dgm12_ann_lbi.pdb
    >>> molecular structure file: dgm12gen.mtf
    >>> parameter file 1 : CNS TOPPAR:protein rep.param
    >>> parameter file 2 : CNS TOPPAR:water rep.param
    >>> parameter file 3 : CNS TOPPAR:ion.param
    >>> parameter file 4 : trs.par
>>> parameter file 5 : mpdnew2.par
10
    >>> parameter file 6 : cis_peptide.param
    >>> parameter file 7 : CNS_TOPPAR:carbohydrate.param
    >>> reflection file= ../semetHiR.cv
    >>> spacegroup: P2(1)2(1)2(1)
15
    >>> cell dimensions: a= 68.865 b= 109.718 c= 138.599 alpha= 90 beta= 90
    gamma= 90
    >>> current wa= 0.311868 for target= mlf
    >>> ncs= none
    >>> initial B-factor correction applied to fobs :
20
          B11= 0.587 B22= -0.754 B33=
                                         0.167
    >>>
                             0.000 B23=
                                          0.000
               0.000 B13=
          B12 =
    >>> B-factor correction applied to coordinate array B:
                                                            0.088
    >>> B-correction resolution: 6.0 - 1.4
    >>> bulk solvent: density level= 0.359928 \text{ e/A}^3, B-factor= 43.085 \text{ A}^2
25
    ______
30
    resolution range: 500.0 - 1.4 A
      R-values:
                                                   r= 0.2348 free_r= 0.2361
      initial
      after B-factor and/or bulk solvent correction r= 0.1931 free_r= 0.2105
35
      Monitor for target "mlf" is R-value :
        working set= 0.1931 test set= 0.2105
                                                             0.16 A
                    luzzati coordinate error (5.0 - 1.4 A ):
    cross-validated luzzati coordinate error (5.0 - 1.4 A ):
                                                             0.18 A
                     sigmaa coordinate error (5.0 - 1.4 A ):
                                                             0.08 A
40
                                                             0.10 A
     cross-validated sigmaa coordinate error (5.0 - 1.4 A ):
     rmsd bonds= 0.004763 with 2 bond violations > 0.05
     rmsd angles= 1.32400 with 32 angle violations > 8.0
     rmsd dihedrals= 24.22585 with 4 angle violations > 60.0
45
     rmsd improper= 0.80790 with 38 angle violations >
     ======== B-factors
     50
     average B-factor= 15.7963
    minimum B-factor= 4.5681
    maximum B-factor= 57.2481
     B rmsd for bonded mainchain atoms= 0.660
```

```
B rmsd for bonded sidechain atoms= 1.229
        B rmsd for angle mainchain atoms= 1.131
        B rmsd for angle sidechain atoms= 1.777
        current rweight=
                         0.22677665
    5
        ======== diffraction data
        _____
        reflections with |Fobs|/sigma F < 0.0 rejected
   10
        reflections with |Fobs| > 10000 * rms(Fobs) rejected
        theoretical total number of refl. in resol. range:
                                                            206243 ( 100.0 % )
        number of unobserved reflections (no entry or |F|=0): 59797 ( 29.0 %)
                                                                      0.0 %)
                                                                0 (
        number of reflections rejected:
                                                            146446 (
                                                                     71.0 %)
        total number of reflections used:
   15
        number of reflections in working set:
                                                            139067 ( 67.4 % )
                                                              7379 (
                                                                      3.6 %)
        number of reflections in test set:
        =====> completeness
20
         Test set (test = 1):
         #bin | resolution range | #refl |
                                           0.0521
               3.02 500.01
                                  1113
                       3.02
                                  1042
                                           0.0501
            2
              2.39
W
    25
              2.09
                       2.39
                                  1048
                                           0.0508
            3
M
               1.90
                       2.09
                                 1000
                                           0.0485
            4
1.76
                                   989
                                           0.0482
            5
                       1.90
                                   822
                                           0.0401
            6
                1.66
                       1.76
3:
7
                       1.66
                                   584
                                            0.0285
                1.58
    30
            8
                1.51
                       1.58
                                   419
                                            0.0205
DU
            9
                       1.51
                                   265
                                           0.0130
                1.45
                                           0.0048
                       1.45
                                   97
           10
                1.40
Working set:
    35
         #bin | resolution range | #refl |
                3.02 500.01
                                 20201
                                            0.9460
            1
                2.39
                       3.02
                                 19732
                                            0.9491
            2
                                            0.9447
              2.09
                       2.39
                                 19506
            3
    40
                                           0.9316
              1.90
                       2.09
                                 19199
            5
               1.76
                       1.90
                                 18521
                                            0.9019
            6
                1.66
                       1.76
                                 15253
                                            0.7434
            7
                1.58
                       1.66
                                 11380
                                            0.5551
            8
                       1.58
                                  8211
                                            0.4018
                1.51
    45
            9
                       1.51
                                  5065
                                            0.2477
                1.45
           10
                1.40
                        1.45
                                  1999
                                            0.0980
         ======== R-values
    50
         =====> R-values with |Fobs|/sigma cutoff= 0.0
         Test set (test = 1):
    55
```

0.9411

0.9319

3971

3941

```
#bin | resolution range | #refl |
            3.02 500.01
                                1113
                                          0.1999
            2.39
                     3.02
                                1042
                                          0.2110
            2.09
                     2.39
                                1048
                                          0.2083
        3
5
            1.90
                     2.09
                                1000
                                          0.2137
        5
            1.76
                    1.90
                                 989
                                          0.2244
            1.66
                    1.76
                                822
                                          0.2302
        6
                                584
                                          0.2275
        7
            1.58
                    1.66
                                419
                                          0.2363
        8
            1.51
                    1.58
10
                                 265
                                          0.2186
        9
            1.45
                    1.51
                                 97
                                          0.2706
             1.40
                    1.45
       10
     Working set:
15
      #bin | resolution range | #refl |
                                          0.1858
            3.02 500.01
                              20201
                                          0.1989
            2.39
                     3.02
                              19732
                              19506
                                          0.1935
            2.09
                    2.39
                                         0.1922
            1.90
                    2.09
                              19199
20
                                          0.1934
                    1.90
         5
            1.76
                               18521
         6
            1.66
                    1.76
                              15253
                                          0.1973
                                          0.1989
         7
            1.58
                    1.66
                              11380
                                          0.2067
         8
            1.51
                    1.58
                               8211
                                5065
                                          0.2248
         9
            1.45
                    1.51
25
            1.40
                    1.45
                                1999
                                          0.2589
        10
     ======= sigmaa-values
       _____
     sigmaa calculated using cross-validated data (test set)
30
     number of bins for sigmaa calculation= 50
      #bin | resolution range | #refl |
             5.16 500.01
                                4426
                                          0.9319
35
                                          0.9576
         2
             4.09
                     5.16
                                4270
                                          0.9615
             3.58
                     4.09
                                4227
         3
             3.25
                     3.58
                                4196
                                          0.9632
         5
             3.02
                     3.25
                                4195
                                          0.9422
                                          0.9512
         6
            2.84
                     3.02
                                4177
40
                                          0.9369
         7
             2.70
                     2.84
                                4163
             2.58
                     2.70
                                4152
                                          0.9424
         9
             2.48
                     2.58
                                4156
                                          0.9486
                                          0.9448
        10
             2.39
                     2.48
                                4126
                                          0.9407
             2.32
                     2.39
                                4131
        11
45
        12
             2.25
                     2.32
                                4149
                                          0.9498
        13
             2.19
                     2.25
                                4101
                                          0.9417
        14
             2.14
                     2.19
                                4113
                                          0.9351
        15
             2.09
                     2.14
                                4060
                                          0.9459
        16
             2.05
                    2.09
                                4096
                                          0.9333
50
        17
             2.01
                    2.05
                                4078
                                          0.9552
             1.97
                     2.01
                                4005
                                          0.9445
        18
        19
            1.93
                     1.97
                                4001
                                          0.9443
            1.90
        20
                     1.93
                                4019
                                          0.9352
```

21 1.87

22

1.84

55

1.90

1.87

			1.81	1.84	39		.9360	
		24	1.79	1.81	38	60 0	.9480	
		25	1.76	1.79	37	92 0	.9213	
		26	1.74	1.76	363	32 0	.9184	
	5	27	1.72	1.74	34	58 0	.9382	
		28	1.70	1.72	31	91 0	.9414	
			1.68	1.70	299	94 0	.9275	
			1.66	1.68	280	0 00	.9268	
			1.64	1.66	26		.9303	
	10		1.62	1.64	250		.9388	
			1.61	1.62	23		.9506	
			1.59	1.61	22		.9402	
			1.58	1.59	21		.9270	
			1.56	1.58	200		.9365	
	15		1.55	1.56	18		.9184	
	10		1.53	1.55	170		.9072	
			1.52	1.53	15:		.9358	
			1.51	1.52	14		.9398	
2122			1.50	1.52	13:		.9433	
en en en en en er er en en en en en	20		1.48	1.50	11.		.9541	
ų]	20						.9419	
٠J			1.47	1.48	10			
(71			1.46	1.47			.9331	
			1.45	1.46			.9242	
	25		1.44	1.45			.9038	
141	25		1.43	1.44			.9371	
			1.42	1.43			.9387	
			1.41	1.42			.8914	
E3		50	1.40	1.41	1.	34 0	.8194	
	20							,
ŧ₫	30		=====			non-trans	pepti	aes
M.		===== =	====			==		
į. .						-	mun	
		cis-pept	ide:		resid=40			_
t:≠r	25			current	dihedral	value=	-0.01	U
31.7	35					_		
		cis-pept	ide:		resid=53			_
				current	dihedral	value=	-0.43	5
	40							
	40	======	====	======	========	== occupa	ncies	
		=======	====		=======	====		
		no atoms	have	e zero o	ccupancy			

Table 6

Crystallographic Refinement Statistics for the Drosophila Golgi Mannosidase II Associated with Swainsonine

```
5
        >>> input coordinates: swainsonine3 ann 1bi.pdb
        >>> molecular structure file: swainsoninegen3.mtf
   10
        >>> parameter file 1 : CNS TOPPAR:protein rep.param
        >>> parameter file 2 : CNS_TOPPAR:water_rep.param
        >>> parameter file 3 : CNS_TOPPAR:ion.param
        >>> parameter file 4 : swa.par
        >>> parameter file 5 : ../zntrmp/mpdnew2.par
   15
        >>> parameter file 6 : cis peptide.param
        >>> parameter file 7 : CNS TOPPAR:carbohydrate.param
        >>> reflection file= dgm2native rejmerge.cv
        >>> spacegroup: P2(1)2(1)2(1)
        >>> cell dimensions: a= 68.902 b= 110.015 c= 138.472 alpha= 90 beta= 90
   20
        gamma= 90
        >>> current wa= 0.632464 for target= mlf
        >>> ncs= none
        >>> initial B-factor correction applied to fobs :
        >>> B11= 0.551 B22= -0.116 B33= -0.435
   25
      >>> B12= 0.000 B13= 0.000 B23= 0.000
        >>> B-factor correction applied to coordinate array B:
        >>> B-correction resolution: 6.0 - 1.87
        >>> bulk solvent: density level= 0.354131 e/A^3, B-factor= 42.2797 A^2
   30
        resolution range: 500.0 - 1.87 A
jak.
         R-values:
   35
         initial
                                                   r = 0.2078 free r = 0.2371
         after B-factor and/or bulk solvent correction r= 0.1810 free r= 0.2090
         Monitor for target "mlf" is R-value :
           working set= 0.1810 test set= 0.2090
   40
                      luzzati coordinate error (5.0 - 1.87 A ):
        cross-validated luzzati coordinate error (5.0 - 1.87 A ):
                                                            0.22 A
                       sigmaa coordinate error (5.0 - 1.87 A ):
                                                             0.12 A
        cross-validated sigmaa coordinate error (5.0 - 1.87 A):
                                                            0.14 A
   45
        rmsd bonds= 0.005230 with 2 bond violations > 0.05
        rmsd angles= 1.31525 with 34 angle violations > 8.0
        rmsd dihedrals= 24.18605 with 4 angle violations > 60.0
        rmsd improper= 0.78741 with 34 angle violations > 3.0
   50
        ======= B-factors
        average B-factor= 19.441
```

```
minimum B-factor= 8.18268
        maximum B-factor= 64.5527
        B rmsd for bonded mainchain atoms= 0.699
        B rmsd for bonded sidechain atoms= 1.141
    5
        B rmsd for angle mainchain atoms= 1.167
        B rmsd for angle sidechain atoms= 1.747
        current rweight=
                          0.18691688
        ======= diffraction data
   10
        -----
        reflections with |Fobs|/sigma_F < 0.0 rejected
        reflections with |Fobs| > 10000 * rms(Fobs) rejected
        theoretical total number of refl. in resol. range:
                                                             87643 ( 100.0 % )
   15
        number of unobserved reflections (no entry or |F|=0):
                                                              2814 (
                                                                       3.2 % )
        number of reflections rejected:
                                                                 0 (
                                                                       0.0 %)
                                                             84829 (
                                                                      96.8 %)
        total number of reflections used:
                                                             80543 (
                                                                      91.9 %)
        number of reflections in working set:
        number of reflections in test set:
                                                              4286 (
                                                                      4.9 %)
20
        =====> completeness
         Test set (test = 1):
25
         #bin | resolution range | #refl |
N
                4.03
                     500.01
                                   452
                                            0.0493
            1
137
            2
                3.20
                        4.03
                                   488
                                            0.0550
            3
                2.79
                        3.20
                                   398
                                            0.0453
äŧ
                       2.79
                                   433
                                            0.0496
            4
                2.54
30
            5
                       2.54
                                   460
                                            0.0527
                2.36
ij
                2.22
                       2.36
                                   433
                                            0.0497
            6
E.
            7
                2.11
                       2.22
                                   417
                                            0.0480
į.d.
            8
                2.01
                       2.11
                                   402
                                            0.0464
            9
                1.94
                       2.01
                                   406
                                            0.0470
35
           10
                1.87
                       1.94
                                   397
                                            0.0457
         Working set:
         #bin | resolution range | #refl |
   40
                4.03 500.01
                                            0.9298
            1
                                  8521
                                            0.9385
                                  8330
            2
                3.20
                       4.03
                2.79
                                            0.9391
            3
                       3.20
                                  8244
                2.54
                       2.79
                                  8134
                                            0.9315
            4
                2.36
                       2.54
                                  8056
                                            0.9234
            5
   45
                       2.36
                                            0.9215
            6
                2.22
                                  8022
            7
                2.11
                       2.22
                                  7985
                                            0.9196
            8
                2.01
                                  7940
                                            0.9158
                       2.11
            9
                1.94
                       2.01
                                  7835
                                            0.9077
                                  7476
           10
                1.87
                       1.94
                                            0.8615
   50
        ======== R-values
        _____
   55
        =====> R-values with |Fobs|/sigma cutoff= 0.0
```

```
Test set (test = 1):
          #bin | resolution range | #refl |
     5
                                               0.2028
                 4.03
                      500.01
                                      452
             1
                         4.03
                                      488
                                               0.1836
                 3.20
             2
                 2.79
                         3.20
                                      398
                                               0.2059
             3
                 2.54
                         2.79
                                      433
                                               0.2246
             4
                                      460
             5
                 2.36
                         2.54
                                               0.2203
    10
                         2.36
                                      433
                                               0.2125
             6
                 2.22
             7
                                      417
                                               0.2304
                 2.11
                         2.22
             8
                 2.01
                         2.11
                                      402
                                               0.2066
                                      406
             9
                 1.94
                         2.01
                                               0.2154
            10
                                      397
                                               0.2693
                 1.87
                         1.94
    15
          Working set:
          #bin | resolution range | #refl |
                 4.03
                      500.01
                                     8521
                                               0.1673
20
                                               0.1704
             2
                 3.20
                         4.03
                                     8330
             3
                 2.79
                         3.20
                                     8244
                                               0.1861
             4
                 2.54
                         2.79
                                     8134
                                               0.1857
             5
                 2.36
                         2.54
                                     8056
                                               0.1830
0.1827
             6
                 2.22
                         2.36
                                     8022
    25
             7
                         2.22
                                     7985
                                               0.1894
                 2.11
Ŋ
             8
                 2.01
                         2.11
                                     7940
                                               0.1826
'n
                         2.01
             9
                 1.94
                                     7835
                                               0.1920
            10
                         1.94
                                     7476
                                               0.2320
                 1.87
Ŧ;
30
         _________
N
į
         sigmaa calculated using cross-validated data (test set)
number of bins for sigmaa calculation= 50
    35
          #bin | resolution range | #refl |
                                               0.9682
             1
                 6.89 500.01
                                     1778
                                               0.9324
                 5.47
                         6.89
                                     1834
             3
                 4.78
                         5.47
                                     1793
                                               0.9330
    40
                                               0.9551
             4
                 4.34
                         4.78
                                     1797
             5
                         4.34
                                     1771
                                               0.9634
                 4.03
                                               0.9700
             6
                 3.79
                         4.03
                                     1778
             7
                 3.60
                         3.79
                                     1751
                                               0.9563
                                               0.9651
             8
                 3.44
                         3.60
                                     1749
    45
             9
                                     1775
                                               0.9515
                 3.31
                         3.44
            10
                         3.31
                                     1765
                                               0.9589
                 3.20
            11
                 3.10
                         3.20
                                     1714
                                               0.9433
                                               0.9571
            12
                 3.01
                         3.10
                                     1746
                                               0.9545
            13
                 2.93
                         3.01
                                     1737
    50
                                               0.9457
            14
                 2.86
                         2.93
                                     1721
            15
                 2.79
                         2.86
                                     1724
                                               0.9391
                                               0.9327
            16
                 2.73
                         2.79
                                     1727
                                               0.9429
            17
                 2.68
                         2.73
                                     1708
            18
                 2.63
                         2.68
                                     1726
                                               0.9267
    55
            19
                 2.58
                         2.63
                                     1737
                                               0.9416
```

	\sim
7	

		20	2.54	2.58	1669	0.9385
		21	2.50	2.54	1705	0.9257
		22	2.46	2.50	1713	0.9444
		23	2.42	2.46	1721	0.9384
	5	24	2.39	2.42	1665	0.9456
	9	25	2.36	2.39	1712	0.9398
		26	2.33	2.36	1699	0.9427
		27	2.30	2.33	1675	0.9341
		28	2.27	2.30	1723	0.9324
	10	29	2.24	2.27	1653	0.9570
	10	30	2.24	2.24	1705	0.9355
		31	2.19	2.24	1711	0.9093
		32	2.19	2.22	1650	0.9188
		33	2.17	2.19	1659	0.9341
	15	34	2.13	2.15	1707	0.9520
	15	35	2.13	2.13	1675	0.9298
		36	2.09	2.11	1655	0.9446
		30 37	2.03	2.09	1691	0.9407
		38	2.05	2.07	1685	0.9234
	20	39	2.03	2.05	1631	0.9412
Ų	20	40	2.01	2.03	1680	0.9613
		41	2.00	2.03	1646	0.9423
i,Ti		42	1.98	2.00	1669	0.9395
Hing that the		43	1.97	1.98	1626	0.9240
	25	44	1.95	1.97	1693	0.9373
T.	20	45	1.94	1.95	1607	0.9534
		46	1.92	1.94	1634	0.9255
		47	1.91	1.92	1652	0.9181
11 4 ===		48	1.90	1.91	1616	0.9194
الوجرة معد	30	49	1.88	1.90	1597	0.9026
J	-	50	1.87	1.88	1374	0.8987
H. H.						
j.4		======	=====		===== non-t	rans peptides
		=======			=======	
<u> </u>	35					
		cis-per	otide:	segid=A	resid=406 res	name=THR
				current	dihedral valu	e= 0.298
		cis-pep	otide:		resid=532 res	
	40			current	dihedral valu	e= -0.154
		======			=======================================	cupancies
		======	==	=======		:
	45					

no atoms have zero occupancy

٠.

- Glycoside Hydrolase Classification

CAZy Family Glycoside Hydrolase Family 38

Known Activities α-mannosidase (EC 3.2.1.24) (EC 3.2.1.114).

Mechanism Retaining

Catalytic Asp

Catalytic Proton Donor Not known

3D Structure Status Not available

Relevant Links InterPro; PFAM

Statistics CAZy(48); GenBank/GenPept (108); Swissprot (31)

Protein	Organism	EC#	GenBank / GenPept SwissProt 3D
α-mannosidase (MLJ15.11)	Arabidopsis thallana	n.d.	AB026648 BAB01735.1 P94078 X98130 CAA66821.1 Q96239 Y11767 CAA72432.1
ORF F2G14_70	Arabidopsis thaliana	n.d.	AL391146 CAC01814.1 Q9LFR0 T51440
ORF K2A18.23	Arabidopsis thaliana	n.d.	AB011474 BAB10420.1
ORF MAC12.5	Arabidopsis thaliana	n.d.	AB005230 BAB11126.1
α-mannosidase	Aspergilius nidulans	n.d.	AF016850 AAB70514.1 013344
α-mannosidase (lysosomal)	Bos faurus	3.2.1.24	L31373 AAB67726.1 Q29451 U97686 AAC48763.1 Q02848 U97687 AAC48763.1 Q19138 U97688 AAC48763.1 U97689 AAC48763.1 U97690 AAC48763.1 U97691 AAC48763.1 U97692 AAC48763.1 U97693 AAC48763.1 U97693 AAC48763.1 U97694 AAC48763.1
ORF F48C1.1	Caenorhabditis elegans	n.d.	U97015 AAB52345.1 001574
ORF F55D10.1	Caenorhabditis elegans	n.d.	U40948 AAA81731 1 Q20829
ORF F58H1.1	Caenorhabditis elegans	n.d.	Z75954 CAB00104.1 Q21010
α-mannosidase	Canavalia ensiformis	3.2.1.24	
α-mannosidase	Dictyostelium discoideum	3.2.1.114	M82822 AAA33224.1 P34098
α-mannosidase (α-Man-llb)	Drosophila melanogaster	3.2.1.114	AE003710 AAF55228.1 AB018079 BAA75817.1
α-mannosidase 2 (α-Man-II) (CG18474)	Drosophila melanogaster	3.2.1.114	AE003682 AAF54375.1 Q24451 AE003682 AAF54376.1 AJ132715 CAA10755.1 X77652 CAA54732.1
ORF BcDNA.GH02419	Drosophila melanogaster	n.d.	AF145601 AAD38576.1 AE003628 AAF52958.1
ORF CG5322	Drosophila melanogaster	n.d.	AE003628 AAF52957.1
ORF CG9463	Drosophila melanogaster	n.d.	AE003622 AAF52708.1
ORF CG9465	Drosophila melanogaster	n.d.	AE003622 AAF52709.1
ORF CG9466	Drosophila melanogaster	n.đ.	AE003622 AAF52710.1
ORF CG9468	Drosophila melanogaster	n.d.	AE003622 AAF52711.1

ORF YbgB	Escherichia coli K12	n.d.	D90713 BAA35398.1	
ORF YbgG	Escherichia coli K12 / MG1655	n.d.	AE000176 AAC73826.1	P54746 P75753
α-mannosidase (lysosomal)	Felis catus	3.2.1.24	AF010191 AAB97672.1 AF010192 AAB97733.1	O46432
α-mannosidase	Homo saplens	3.2.1.114	U31520 AAC50302 1 D63998 BAA10017 1	Q16706 Q16767
α-mannosidase	Homo sapiens/	n.d.	U37248 AAC00568.1	Q13358
cmannosidase (lysosomal)	Homo sapiens	32.124	U05572 AAB03816 1 U60266 AAC34130.1 U68567 AAC50812.1 U60885 AAC51362.1 U60886 AAC51362.1 U60887 AAC51362.1 U60889 AAC51362.1 U60890 AAC51362.1 U60891 AAC51362.1 U60892 AAC51362.1 U60893 AAC51362.1 U60894 AAC51362.1 U60895 AAC51362.1 U60896 AAC51362.1	O00754 Q93094 Q16680 O15330
			U60897 AAC51362.1 U60898 AAC51362.1 U60899 AAC51362.1	
α-mannosidase (lysosomal)	Homo sapiens	3.2.1.24	U68382 AAC50811.1	Q93093
α-mannosidase 2	Homo sapiens	3.2.1.114	L28821 AAA92022.1 D55649 BAA09510.1	P49641 Q13754
α-mannosidase 6A8B	Homo sapiens	n.d.	AF044414 AAC00190.1	
ORF DKFZp434D175	Homo sapiens	n,d.	AL136876 CAB66810.1 T46931	
ORF KIAA0935	Homo sapiens	n.d.	AB023152 BAA76779.1	
α-mannosidase	Mus musculus	3.2.1.24	AB006458 BAA24266 1	O54782
α-mannosidase (lysosomal)	Mus musculus	3.2.1.24	U87240 AAC09470 1 U29947 AAC53369.1	O09159 Q64443
α-mannosidase (lysosomal)	Mus musculus		NM_010764 6754622 AF044174 AAC78560.1 AF044175 AAC78560.1 AF044176 AAC78560.1 AF044177 AAC78560.1 AF044178 AAC78560.1 AF044180 AAC78560.1 AF044181 AAC78560.1 AF044182 AAC78560.1 AF044183 AAC78560.1 AF044184 AAC78560.1 AF044185 AAC78560.1 AF044185 AAC78560.1 AF044186 AAC78560.1 AF044187 AAC78560.1 AF044188 AAC78560.1 AF044189 AAC78560.1 AF044189 AAC78560.1 AF044190 AAC78560.1 AF044191 AAC78560.1 AF044191 AAC78560.1	O55037
α-mannosidase 2	Mus musculus	re non incommunication (C.)	X61172 CAA43480.1	P27046
α-mannosidase llx ORF Rv0648	Mus musculus Mycobacterium tuberculosis H37Rv	n.d. n.d.	AF107018 AAD20813.1 Z92772 CAB07105.1	P96937
ORF PH0835	Pyrococcus horikoshii	n.d.	AP000003 BAA29929.1	O58565
α-mannosidase 1	Rattus norvegicus	3.2.1.24	M57547 AAA41565.1	P21139

α-mannosidas	Saccharomyces cerevísiae	3.2.1.24	M27809 AAA34423.1 M29146 AAA34423.1 Z48618 CAA88536.1 Z72678 CAA96868.1	P22855
ORF SPAC513.05	Schizosaccharomyces pombe	n.d.	AL122032 CAB58728.1	
α-mannosidase II	Spodoptera frugiperda	n.d.	AF005034 AAB62719.1	018497
ORF SCM11.03c	Streptomyces coelicolor A3(2)	n.d.	AL133278 CAB61914.1	
x-mannosidase	Sus scrofa	3.2.1.24	D28521 BAA05877.1	Q28949
ORF slr0323 (Ams1)	Synechocystis sp.	n.d.	D63999 BAA10023.1	Q55528
ORF TM1231	Thermotoga maritima	n.d.	AE001779 AAD36306.1	Q9X0V8
ORF TM1851	Thermologa maritima	n.d.	AE001822 AAD36913.1	Q9X2G6
x-mannosidase 1	Zea mays	3.2.1	D30744 BAA06405.1	Q43249

Table 8

		ATOM	1	N	CYS	A	31	44.192	36.201 -18.860	1.00	0.00	N	
	_	ATOM	2	CA	CYS	Α	31	43.432	37.453 -18.569	1.00	0.00	C	
	5	ATOM	3	С	CYS	Α	31	41.925	37.255 -18.672	1.00	0.00	C	
		ATOM	4	0	CYS	Α	31	41.437	36.646 -19.622	1.00	0.00	0	
		ATOM	5	CB	CYS	Α	31	43.821	38.563 -19.546	1.00	0.00	С	
		ATOM	6	SG	CYS	Α	31	45.504	39.239 -19.408	1.00	0.00	S	
		ATOM	7	N	GLN	Α	32	41.194	37.780 -17.693	1.00	0.00	N	
	10	ATOM	8	CA	GLN	Α	32	39.739	37.692 -17.702	1.00	0.00	C	
		ATOM	9	С	GLN	Α	32	39.199	38.594 -18.800	1.00	0.00	C	
		ATOM	10	0	GLN	Α	32	39.785	39.630 -19.113	1.00	0.00	0	
		MOTA	11	CB	GLN	Α	32	39.146	38.164 -16.373	1.00	0.00	C	
		ATOM	12	CG	GLN		32	39.160	37.145 -15.258	1.00	0.00	C	
	15	ATOM	13	CD	GLN		32	38.246	37.549 -14.118	1.00	0.00	C	
		ATOM	14		GLN		32	37.027	37.630 -14.285	1.00	0.00	0	
		ATOM	15		GLN		32	38.829	37.814 -12.955	1.00	0.00	N	
		ATOM	16	N	ASP		33	38.079	38.196 -19.384	1.00	0.00	N	
	20	ATOM	17	CA	ASP		33	37.449	38.989 -20.427	1.00	0.00	C	
i	20	ATOM	18	С	ASP		33	36.549	39.962 -19.668	1.00	0.00	C	
ì		ATOM	19	0	ASP		33	35.610	39.545 -18.998	1.00	0.00	0	
		ATOM	20	CB	ASP		33	36.638	38.070 -21.344	1.00	0.00	C	
		MOTA	21	CG	ASP		33	36.037	38.801 -22.524	1.00	0.00	0	
	OF.	MOTA	22		ASP		33	35.788	38.143 -23.557	1.00		0	
	25	ATOM	23		ASP		33	35.802	40.024 -22.416	1.00	0.00	N	
		ATOM	24	N	VAL		34	36.844	41.255 -19.757	1.00	0.00	C	
		ATOM	25	CA	VAL		34	36.065	42.254 -19.031 42.824 -19.820	1.00	0.00	C	
		ATOM	26	С	VAL		34	34.893	43.735 -19.354	1.00	0.00	Ö	
į	30	ATOM	27	0	VAL		34 34	34.211 36.969	43.425 -18.568	1.00	0.00	C	
	30	ATOM	28	CB CC1	VAL VAL		34	38.134	42.887 -17.755	1.00	0.00	C	
1		ATOM	29		VAL		34	37.491	44.203 -19.774	1.00	0.00	Ċ	
		ATOM ATOM	30 31	N	VAL		35	34.639	42.272 -21.001	1.00	0.00	N	
		ATOM	32	CA	VAL		35	33.557	42.772 -21.836	1.00	0.00	C	
•	35	ATOM	33	C	VAL		35	32.381	41.825 -22.061	1.00	0.00	Ċ	
:	00	ATOM	34	0	VAL		35	31.224	42.211 -21.898	1.00	0.00	C	
		ATOM	35	CB	VAL		35	34.092	43.170 -23.236	1.00	0.00	C	
		ATOM	36		VAL		35	32.946	43.675 -24.118	1.00	0.00	C	
		ATOM	37		VAL		35	35.181	44.222 -23.098	1.00	0.00	C	
	4 0	ATOM	38	N	GLN		36	32.688	40.584 -22.417	1.00	0.00	N	I
	10	ATOM	39	CA	GLN		36	31.668	39.594 -22.768	1.00	0.00	C	;
		MOTA	40	C	GLN		36	31.067	38.670 -21.719	1.00	0.00	C	;
		ATOM	41	0	GLN		36	30.128	37.936 -22.022	1.00	0.00	C)
		ATOM	42	СВ	GLN	Α	36	32.208	38.745 -23.915	1.00	0.00	C	;
	45	ATOM	43	CG	GLN		36	32.967	39.567 -24.944	1.00	0.00	C	:
		ATOM	44	CD	GLN	Α	36	33.436	38.744 -26.118	1.00	0.00	C	;
		ATOM	45		GLN		36	32.665	38.450 -27.029	1.00	0.00	C)
		MOTA	46	NE2	GLN	Α	36	34.705	38.357 -26.100	1.00	0.00	N	ĺ
		MOTA	47	N	ASP	Α	37	31.592	38.681 -20.501	1.00	0.00	N	
	50	ATOM	48	CA	ASP	Α	37	31.055	37.814 -19.457	1.00	0.00	C	
		ATOM	49	С	ASP	Α	37	30.419	38.615 -18.328	1.00	0.00	C	
		ATOM	50	0	ASP	Α	37	31.123	39.192 -17.501	1.00	0.00	C	
		ATOM	51	CB	ASP	Α	37	32.155	36.919 -18.869	1.00	0.00	C	
		ATOM	52	CG	ASP		37	32.746	35.967 -19.890	1.00	0.00	C	
	55	MOTA	53	OD1	ASP	Α	37	31.969	35.306 -20.608	1.00	0.00	C	
		MOTA	54	OD2	ASP		37	33.989	35.872 -19.964	1.00	0.00	C	
		ATOM	55	N	VAL		38	29.091	38.641 -18.294	1.00	0.00	N	
		MOTA	56	CA	VAL		38	28.365	39.359 -17.252	1.00	0.00	C	
		ATOM	57	С	VAL		38	28.525	38.640 -15.914	1.00	0.00	C	
	60	ATOM	58	0	VAL	Α	38	28.035	37.522 -15.734	1.00	0.00	C	,

	* * * * * * * * * * * * * * * * * * *	5.0	an		20	26.062	20 454 17 502	1.00	0.00	С
	MOTA	59	CB	VAL A	38 38	26.863 26.125	39.454 -17.582 40.198 -16.470	1.00	0.00	C
	ATOM	60		VAL A			40.164 -18.920	1.00	0.00	c
	ATOM	61		VAL A	38	26.672 29.218	39.272 -14.957	1.00	0.00	N
5	ATOM	62	N	PRO A	39		38.652 -13.645	1.00	0.00	C
3	ATOM	63	CA	PRO A	39	29.417	38.256 -12.969	1.00	0.00	c
	ATOM	64	С	PRO A	39	28.110	38.954 -13.076		0.00	0
	ATOM	65	0	PRO A	39	27.101		1.00		C
	ATOM	66	CB	PRO A	39	30.157	39.735 -12.863	1.00	0.00	c
10	ATOM	67	CG	PRO A	39	30.953	40.428 -13.925	1.00	0.00	c
10	MOTA	68	CD	PRO A	39	29.934	40.558 -15.041	1.00	0.00	
	MOTA	69	N	ASN A	40	28.126	37.122 -12.278	1.00	0.00	N C
	MOTA	70	CA	ASN A	40	26.943	36.673 -11.561	1.00	0.00	
	ATOM	71	C	ASN A	40	27.128	37.021 -10.091	1.00	0.00	С
15	MOTA	72	0	ASN A	40	27.913	36.385 -9.390	1.00	0.00	0
15	ATOM	73	CB	ASN A	40	26.752	35.164 -11.707	1.00	0.00	С
	ATOM	74	CG	ASN A	40	25.582	34.652 -10.891	1.00	0.00	С
	ATOM	75		ASN A	40	24.465	35.162 -10.999	1.00	0.00	0
	ATOM	76		ASN A	40	25.830	33.640 -10.068	1.00	0.00	N
20	ATOM	77	N	VAL A	41	26.411	38.038 -9.627	1.00	0.00	N
20	ATOM	78	CA	VAL A	41	26.518	38.457 -8.233	1.00	0.00	C
	ATOM	79	С	VAL A	41	25.157	38.452 -7.549	1.00	0.00	C
	MOTA	80	0	VAL A	41	24.120	38.549 -8.204	1.00	0.00	0
	MOTA	81	CB	VAL A	41	27.131	39.869 -8.120	1.00	0.00	C
٥-	ATOM	82	CG1	VAL A	41	28.573	39.851 -8.604	1.00	0.00	C
25	MOTA	83	CG2	VAL A	41	26.313	40.855 -8.941	1.00	0.00	C
	ATOM	84	N	ASP A	42	25.166	38.332 -6.228	1.00	0.00	N
	ATOM	85	CA	ASP A	42	23.928	38.315 -5.462	1.00	0.00	C
	ATOM	86	С	ASP A	42	23.258	39.679 -5.488	1.00	0.00	C
•	MOTA	87	0	ASP A	42	22.032	39.782 -5.528	1.00	0.00	0
30	ATOM	88	CB	ASP A	42	24.210	37.904 -4.016	1.00	0.00	C
	ATOM	89	CG	ASP A	42	24.747	36.489 -3.909	1.00	0.00	C
	MOTA	90	OD1	ASP A	42	24.078	35.565 -4.416	1.00	0.00	0
	ATOM	91	OD2	ASP A	42	25.830	36.300 -3.319	1.00	0.00	0
	MOTA	92	N	VAL A	43	24.072	40.729 -5.455	1.00	0.00	N
35	ATOM	93	CA	VAL A	43	23.564	42.091 -5.480	1.00	0.00	C
	MOTA	94	С	VAL A	43	24.314	42.921 -6.517	1.00	0.00	C
	MOTA	95	0	VAL A	43	25.540	43.034 -6.466	1.00	0.00	0
	MOTA	96	CB	VAL A	43	23.729	42.785 -4.111	1.00	0.00	C
	MOTA	97	CG1	VAL A	43	23.136	44.192 -4.164	1.00	0.00	С
40	MOTA	98	CG2	VAL A	43	23.063	41.963 -3.017	1.00	0.00	С
	MOTA	99	N	GLN A	44	23.576	43.479 -7.468	1.00	0.00	N
	ATOM	100	CA	GLN A	44	24.170	44.328 -8.493	1.00	0.00	С
	MOTA	101	С	GLN A	44	23.410	45.642 -8.320	1.00	0.00	С
	MOTA	102	0	GLN A	44	22.207	45.717 -8.577	1.00	0.00	0
45	MOTA	103	CB	GLN A	44	23.956	43.723 -9.884	1.00	0.00	С
	ATOM	104	CG	GLN A	44	25.020	44.138 -10.893	1.00	0.00	С
	ATOM	105	CD	GLN A	44	25.127	45.648 -11.011	1.00	0.00	С
	ATOM	106	OE 1	GLN A	44	24.143	46.324 -11.294	1.00	0.00	0
	ATOM	107	NE2	GLN A	44	26.325	46.181 -10.790	1.00	0.00	N
50	ATOM	108	N	MET A	45	24.115	46.675 -7.871	1.00	0.00	N
	MOTA	109	CA	MET A	45	23.483	47.954 -7.577	1.00	0.00	C
	ATOM	110	С	MET A	45	22.592	48.605 -8.632	1.00	0.00	С
	ATOM	111	0	MET A	45	21.596	49.236 -8.278	1.00	0.00	0
	MOTA	112	CB	MET A	45	24.535	48.947 -7.076	1.00	0.00	С
55	ATOM	113	CG	MET A	45	25.143	48.549 -5.728	1.00	0.00	С
	ATOM	114	SD	MET A	45	23.891	48.155 -4.467	1.00	0.00	S
	ATOM	115	CE	MET A	45	23.316	49.800 -4.038	1.00	0.00	С
	ATOM	116	N	LEU A	46	22.927	48.467 -9.910	1.00	0.00	N
	ATOM	117	CA	LEU A	46	22.087	49.063 -10.949	1.00	0.00	С
60	ATOM	118	C	LEU A	46	20.770	48.286 -11.009	1.00	0.00	С
55	ATOM	119	ŏ	LEU A	46	19.689	48.870 -11.150	1.00	0.00	0
	0.,		-		- 0	,				

	АТОМ	120	СВ	LEU A	46	22.781	49.009 -12.31	1.00	0.00	С
	MOTA	121	CG	LEU A	46	22.024	49.702 -13.45	1.00	0.00	C
	ATOM	122	CD1	LEU A	46	22.010	51.211 -13.22	3 1.00	0.00	С
	ATOM	123	CD2	LEU A	46	22.686	49.379 -14.79	1.00	0.00	С
5	ATOM	124	N	GLU A	47	20.868	46.963 -10.89	1.00	0.00	N
	ATOM	125	CA	GLU A	47	19.683	46.112 -10.92	1.00	0.00	С
	MOTA	126	С	GLU A	47	18.826	46.412 -9.70	1.00	0.00	С
	ATOM	127	0	GLU A	47	17.609	46.566 -9.80	7 1.00	0.00	0
	ATOM	128	CB	GLU A	47	20.086	44.632 -10.94		0.00	C
10	ATOM	129	CG	GLU A	47	18.929	43.665 -11.19	1.00	0.00	C
	ATOM	130	CD	GLU A	47	18.116	43.357 -9.95	2 1.00	0.00	С
	ATOM	131		GLU A	47	17.007	42.796 -10.093		0.00	0
	ATOM	132		GLU A	47	18.582	43.657 -8.832		0.00	0
	ATOM	133	N	LEU A	48	19.467	46.514 -8.542		0.00	N
15	ATOM	134	CA	LEU A	48	18.757	46.813 -7.302		0.00	C
	ATOM	135	C	LEU A	48	18.022	48.144 -7.41		0.00	С
	ATOM	136	ō	LEU A	48	16.861	48.258 -7.02		0.00	0
	ATOM	137	СВ	LEU A	48	19.737	46.869 -6.12		0.00	С
	ATOM	138	CG	LEU A	48	19.124	47.144 -4.74		0.00	С
20	ATOM	139		LEU A	48	18.094	46.072 -4.423		0.00	С
	ATOM	140		LEU A	48	20.216	47.174 -3.688		0.00	С
	ATOM	141	N	TYR A	49	18.698	49.149 -7.962		0.00	N
	ATOM	142	CA	TYR A	49	18.097	50.470 -8.120		0.00	С
	ATOM	143	C	TYR A	49	16.855	50.421 -9.002		0.00	С
25	MOTA	144	Ö	TYR A	49	15.883	51.141 -8.77		0.00	0
	ATOM	145	CB	TYR A	49	19.126	51.449 -8.70		0.00	С
	ATOM	146	CG	TYR A	49	19.677	52.405 -7.670		0.00	С
	ATOM	147		TYR A	49	20.153	51.934 -6.44		0.00	C
	ATOM	148		TYR A	49	19.672	53.783 -7.89		0.00	С
30	MOTA	149	CE1		49	20.602	52.812 -5.45		0.00	С
00	ATOM	150		TYR A	49	20.119	54.671 -6.91		0.00	С
	ATOM	151	CZ	TYR A	49	20.578	54.180 -5.70		0.00	C
	ATOM	152	ОН	TYR A	49	20.977	55.057 -4.71		0.00	0
	ATOM	153	N	ASP A	50	16.888	49.553 -10.00		0.00	N
35	ATOM	154	CA	ASP A	50	15.768	49.407 -10.92		0.00	С
00	MOTA	155	C	ASP A	50	14.532	48.872 -10.19		0.00	С
	ATOM	156	Ö	ASP A	50	13.409	49.299 -10.46		0.00	0
	ATOM	157	CB	ASP A	50	16.158	48.452 -12.05		0.00	С
	ATOM	158	CG	ASP A	50	15.327	48.653 -13.31		0.00	С
40	ATOM	159		ASP A	50	15.409	47.790 -14.212		0.00	0
	ATOM	160		ASP A	50	14.609	49.672 -13.40		0.00	0
	ATOM	161	N	ARG A	51	14.749	47.951 -9.25		0.00	N
	ATOM	162	CA	ARG A	51	13.660	47.333 -8.49		0.00	С
	ATOM	163	C	ARG A	51	13.163	48.089 -7.26		0.00	С
45	ATOM	164	Ö	ARG A	51	11.986	48.002 -6.920		0.00	0
10	ATOM	165	СВ	ARG A	51	14.057	45.914 -8.06		0.00	С
	ATOM	166	CG	ARG A	51	14.171	44.923 -9.198		0.00	С
	ATOM	167	CD	ARG A	51	14.347	43.487 -8.698		0.00	С
	ATOM	168	NE	ARG A	51	15.636	43.257 -8.04		0.00	N
50	MOTA	169	CZ	ARG A	51	15.881	43.459 -6.75		0.00	С
00	MOTA	170		ARG A	51	14.923	43.899 -5.95		0.00	N
	ATOM	171		ARG A	51	17.092	43.219 -6.26		0.00	N
	ATOM	172	N	MET A	52	14.050	48.818 -6.59		0.00	N
	ATOM	173	CA	MET A	52	13.680	49.560 -5.38		0.00	C
55		174	C	MET A	52	12.640	50.646 -5.61		0.00	C
55	ATOM ATOM	175	0	MET A	52	12.600	51.260 -6.68		0.00	ō
		176	СВ	MET A	52	14.923	50.187 -4.75		0.00	C
	ATOM	175			52 52	15.887	49.188 -4.15		0.00	C
	MOTA		CG	MET A		17.401	50.006 -3.610		0.00	S
60	ATOM	178	SD	MET A	52 52	16.765	51.029 -2.29		0.00	C
UU	ATOM	179	CE	MET A	52 53		50.891 -4.60		0.00	N
	ATOM	180	N	SER A	23	11.811	50.091 -4.60	1.00	0.00	14

	ATOM	181	CA	SER A	53	10.762	51.903	-4.696	1.00	0.00	С
	ATOM	182	C	SER A	53	11.154	53.233	-4.054	1.00	0.00	С
	ATOM	183	õ	SER A	53	10.522	54.260	-4.301	1.00	0.00	0
	ATOM	184	СВ	SER A	53	9.476	51.380	-4.049	1.00	0.00	С
5	ATOM	185	OG	SER A	53	8.986	50.248	-4.749	1.00	0.00	0
•	ATOM	186	N	PHE A	54	12.189	53.202	-3.220	1.00	0.00	N
	ATOM	187	CA	PHE A	54	12.689	54.396	-2.542	1.00	0.00	С
	ATOM	188	C	PHE A	54	11.648	55.183	-1.749	1.00	0.00	C
	ATOM	189	Ō	PHE A	54	11.735	56.409	-1.656	1.00	0.00	0
10	ATOM	190	СВ	PHE A	54	13.356	55.342	-3.549	1.00	0.00	С
10	ATOM	191	CG	PHE A	54	14.604	54.786	-4.178	1.00	0.00	С
	ATOM	192		PHE A	54	14.528	53.915	-5.262	1.00	0.00	С
	ATOM	193		PHE A	54	15.855	55.131	-3.681	1.00	0.00	С
	ATOM	194		PHE A	54	15.682	53.394	-5.843	1.00	0.00	C
15	ATOM	195		PHE A	54	17.019	54.617	-4.250	1.00	0.00	C
10	ATOM	196	CZ	PHE A	54	16.935	53.746	-5.334	1.00	0.00	С
	ATOM	197	N	LYS A	55	10.668	54.498	-1.170	1.00	0.00	N
	ATOM	198	CA	LYS A	55	9.657	55.203	-0.390	1.00	0.00	С
	ATOM	199	C	LYS A	55	10.267	55.646	0.934	1.00	0.00	С
20	ATOM	200	Ō	LYS A	55	10.922	54.863	1.617	1.00	0.00	0
	ATOM	201	СВ	LYS A	55	8.442	54.305	-0.139	1.00	0.00	С
	ATOM	202	CG	LYS A	55	7.755	53.841	-1.410	1.00	0.00	С
	ATOM	203	CD	LYS A	55	7.334	55.014	-2.285	1.00	0.00	C
	ATOM	204	CE	LYS A	55	6.694	54.526	-3.578	1.00	0.00	C
25	MOTA	205	NZ	LYS A	55	6.200	55.652	-4.420	1.00	0.00	N
	ATOM	206	N	ASP A	56	10.048	56.907	1.286	1.00	0.00	N
	ATOM	207	CA	ASP A	56	10.584	57.476	2.515	1.00	0.00	С
	ATOM	208	С	ASP A	56	9.524	57.491	3.618	1.00	0.00	С
	ATOM	209	0	ASP A	56	8.964	58.535	3.942	1.00	0.00	0
30	MOTA	210	СВ	ASP A	56	11.093	58.895	2.224	1.00	0.00	С
	ATOM	211	CG	ASP A	56	11.696	59.569	3.438	1.00	0.00	С
	ATOM	212	OD1	ASP A	56	12.224	58.863	4.320	1.00	0.00	0
	MOTA	213	OD2	ASP A	56	11.654	60.815	3.502	1.00	0.00	0
	ATOM	214	N	ILE A	57	9.250	56.327	4.198	1.00	0.00	N
35	ATOM	215	CA	ILE A	57	8.247	56.245	5.252	1.00	0.00	С
	ATOM	216	С	ILE A	57	8.873	56.247	6.640	1.00	0.00	C
	ATOM	217	0	ILE A	57	10.031	55.868	6.814	1.00	0.00	0
	ATOM	218	CB	ILE A	57	7.371	54.976	5.110	1.00	0.00	C
	MOTA	219	CG1	ILE A	57	8.178	53.733	5.479	1.00	0.00	C
40	ATOM	220	CG2	ILE A	57	6.855	54.854	3.679	1.00	0.00	C
	ATOM	221	CD1	ILE A	57	7.348	52.469	5.538	1.00	0.00	С
	ATOM	222	N	ASP A	58	8.091	56.683	7.622	1.00	0.00	N
	ATOM	223	CA	ASP A	58	8.527	56.744	9.013	1.00	0.00	C
	MOTA	224	С	ASP A	58	8.552	55.333	9.595	1.00	0.00	C
45	MOTA	225	0	ASP A	58	7.504	54.718	9.787	1.00	0.00	0
	MOTA	226	CB	ASP A	58	7.562	57.627	9.809	1.00	0.00	c
	MOTA	227	CG	ASP A	58	7.981	57.808	11.257	1.00	0.00	С
	MOTA	228		ASP A	58	7.386	58.671	11.938	1.00	0.00	0
50	MOTA	229	OD2	ASP A	58	8.892	57.094	11.723	1.00	0.00	0
50	MOTA	230	N	GLY A	59	9.749	54.825	9.876	1.00	0.00	N
	ATOM	231	CA	GLY A	59	9.871	53.482	10.418	1.00	0.00	C
	ATOM	232	С	GLY A	59	9.835	53.393	11.933	1.00	0.00	C
	ATOM	233	0	GLY A	59	10.035	52.318	12.497	1.00	0.00	0
	ATOM	234	N	GLY A	60	9.576	54.516	12.595	1.00	0.00	N
55	MOTA	235	CA	GLY A	60	9.527	54.525	14.048	1.00	0.00	C
	ATOM	236	С	GLY A	60	10.794	55.129	14.623	1.00	0.00	C
	ATOM	237	0	GLY A	60	11.352	56.059	14.041	1.00	0.00	0
	MOTA	238	N	VAL A	61	11.261	54.611	15.756	1.00	0.00	N
(0	ATOM	239	CA	VAL A	61	12.481	55.143	16.353	1.00	0.00	C
60	ATOM	240	C	VAL A	61	13.608	55.074	15.323	1.00	0.00	C
	MOTA	241	0	VAL A	61	14.432	55.985	15.240	1.00	0.00	0

											_
	ATOM	242	CB	VAL A	61	12.861	54.396	17.657	1.00	0.00	С
	ATOM	243	CG1	VAL A	61	11.816	54.694	18.731	1.00	0.00	С
	ATOM	244	CG2	VAL A	61	12.957	52.900	17.413	1.00	0.00	С
	ATOM	245	N	TRP A	62	13.652	53.995	14.545	1.00	0.00	N
5	ATOM	246	CA	TRP A		14.643	53.904	13.477	1.00	0.00	С
3							54.516	12.326	1.00	0.00	C
	ATOM	247	С	TRP A		13.855					
	ATOM	248	0	TRP A		13.198	53.816	11.552	1.00	0.00	0
	ATOM	249	CB	TRP A	62	15.022	52.450	13.165	1.00	0.00	С
	ATOM	250	CG	TRP A	62	15.979	52.328	11.998	1.00	0.00	C
10	ATOM	251		TRP A		16.663	53.346	11.388	1.00	0.00	С
	ATOM	252		TRP A		16.332	51.131	11.290	1.00	0.00	C
								10.343	1.00	0.00	N
	ATOM	253		TRP A		17.412	52.859				
	MOTA	254		TRP A		17.230	51.503	10.260	1.00	0.00	C
	MOTA	255	CE3	TRP A	. 62	15.978	49.781	11.423	1.00	0.00	С
15	ATOM	256	CZ2	TRP A	62	17.776	50.573	9.368	1.00	0.00	C
	ATOM	257	CZ3	TRP A		16.520	48.855	10.537	1.00	0.00	С
	ATOM	258		TRP A		17.412	49.257	9.520	1.00	0.00	С
						13.909	55.841	12.245	1.00	0.00	N
	ATOM	259	N	LYS A						0.00	C
20	MOTA	260	CA	LYS A		13.164	56.598	11.245	1.00		
20	ATOM	261	С	LYS A		13.183	56.106	9.802	1.00	0.00	С
	ATOM	262	0	LYS A	63	12.177	56.219	9.094	1.00	0.00	0
	ATOM	263	CB	LYS A	63	13.595	58.067	11.290	1.00	0.00	С
	ATOM	264	CG	LYS A		13.127	58.819	12.543	1.00	0.00	С
	ATOM	265	CD	LYS A		11.605	58.967	12.572	1.00	0.00	С
25								13.759	1.00	0.00	Č
25	MOTA	266	CE	LYS A		11.120	59.794				
	ATOM	267	NZ	LYS A		11.458	59.205	15.096	1.00	0.00	N
	MOTA	268	N	GLN A	64	14.305	55.556	9.358	1.00	0.00	N
	ATOM	269	CA	GLN A	64	14.401	55.101	7.976	1.00	0.00	C
	ATOM	270	С	GLN A	64	14.460	53.584	7.816	1.00	0.00	С
30	ATOM	271	0	GLN A		14.836	53.071	6.758	1.00	0.00	0
00	ATOM	272	СВ	GLN A		15.612	55.766	7.320	1.00	0.00	С
								7.347	1.00	0.00	C
	ATOM	273	CG	GLN A		15.512	57.283				C
	ATOM	274	CD	GLN A		16.853	57.968	7.160	1.00	0.00	
	ATOM	275	OE1	GLN A	64	17.819	57.669	7.868	1.00	0.00	0
35	ATOM	276	NE2	GLN A	64	16.917	58.896	6.210	1.00	0.00	N
	ATOM	277	N	GLY A	65	14.071	52.878	8.873	1.00	0.00	N
	ATOM	278	CA	GLY A		14.060	51.428	8.843	1.00	0.00	С
	ATOM	279	C	GLY A		12.713	50.880	9.283	1.00	0.00	С
						11.680	51.204	8.692	1.00	0.00	Ō
40	MOTA	280	0	GLY A							N
4 0	MOTA	281	N	TRP A		12.723	50.053	10.323	1.00	0.00	
	MOTA	282	CA	TRP A		11.497	49.453	10.849	1.00	0.00	C
	ATOM	283	С	TRP A	66	11.768	49.023	12.285	1.00	0.00	С
	ATOM	284	0	TRP A	66	12.907	49.101	12.745	1.00	0.00	0
	ATOM	285	CB	TRP A		11.104	48.234	10.005	1.00	0.00	С
45	ATOM	286	CG	TRP A		12.026	47.046	10.174	1.00	0.00	С
10						11.895	46.027	11.075	1.00	0.00	C
	ATOM	287	CD1								C
	MOTA	288		TRP A		13.225	46.775	9.437	1.00	0.00	
	ATOM	289	NE1	TRP A	66	12.934	45.137	10.944	1.00	0.00	N
	ATOM	290	CE2	TRP A	66	13.767	45.571	9.947	1.00	0.00	С
50	MOTA	291	CE3	TRP A	66	13.896	47.432	8.395	1.00	0.00	С
	ATOM	292		TRP A		14.950	45.009	9.450	1.00	0.00	С
				TRP A		15.073	46.874	7.901	1.00	0.00	С
	MOTA	293									c
	MOTA	294	CH2	TRP A		15.588	45.672	8.431	1.00	0.00	
	MOTA	295	N	ASN A	67	10.732	48.581	12.996	1.00	0.00	N
55	ATOM	296	CA	ASN A	67	10.908	48.128	14.375	1.00	0.00	С
	ATOM	297	С	ASN A		11.532	46.739	14.363	1.00	0.00	С
	ATOM	298	Õ	ASN A		10.861	45.746	14.070	1.00	0.00	0
							48.080	15.120	1.00	0.00	c
	ATOM	299	CB	ASN A		9.568					c
<i>(</i> 0	MOTA	300	CG	ASN A		8.998	49.458	15.390	1.00	0.00	
60	MOTA	301		ASN A		9.736	50.406	15.663	1.00	0.00	0
	MOTA	302	ND2	ASN A	67	7.676	49.572	15.337	1.00	0.00	N

	ATOM	303	N	ILE A	68	12.818	46.669	14.684	1.00	0.00	N
	ATOM	304	CA	ILE A	68	13.524	45.397	14.683	1.00	0.00	С
	ATOM	305	С	ILE A	68	13.074	44.490	15.822	1.00	0.00	С
	ATOM	306	ŏ	ILE A	68	12.961	44.922	16.968	1.00	0.00	0
5	ATOM	307	СВ	ILE A	68	15.046	45.608	14.799	1.00	0.00	С
J	ATOM	308	CG1		68	15.540	46.496	13.651	1.00	0.00	С
	ATOM	309		ILE A	68	15.757	44.265	14.772	1.00	0.00	C
					68	16.994	46.917	13.781	1.00	0.00	Č
	ATOM	310		ILE A				15.489	1.00	0.00	N
10	ATOM	311	N	LYS A	69	12.820	43.229				C
10	ATOM	312	CA	LYS A	69	12.402	42.239	16.474	1.00	0.00	
	ATOM	313	С	LYS A	69	13.403	41.090	16.443	1.00	0.00	C
	ATOM	314	0	LYS A	69	13.979	40.791	15.399	1.00	0.00	0
	ATOM	315	CB	LYS A	69	10.993	41.725	16.151	1.00	0.00	C
	ATOM	316	CG	LYS A	69	9.909	42.788	16.298	1.00	0.00	C
15	ATOM	317	CD	LYS A	69	8.531	42.278	15.885	1.00	0.00	С
	ATOM	318	CE	LYS A	69	8.478	41.927	14.402	1.00	0.00	С
	ATOM	319	NZ	LYS A	69	7.079	41.678	13.933	1.00	0.00	N
	ATOM	320	N	TYR A	70	13.622	40.458	17.590	1.00	0.00	N
	ATOM	321	CA	TYR A	70	14.556	39.344	17.658	1.00	0.00	С
20	ATOM	322	С	TYR A	70	14.071	38.289	18.641	1.00	0.00	С
	ATOM	323	Ō	TYR A	70	13.309	38.584	19.563	1.00	0.00	0
	ATOM	324	СВ	TYR A	70	15.952	39.840	18.063	1.00	0.00	С
	ATOM	325	CG	TYR A	70	16.034	40.442	19.449	1.00	0.00	С
	ATOM	326		TYR A	70	16.268	39.643	20.569	1.00	0.00	c
25				TYR A	70	15.859	41.810	19.645	1.00	0.00	c
23	ATOM	327						21.846	1.00	0.00	c
	ATOM	328		TYR A	70	16.326	40.194	20.914	1.00	0.00	c
	MOTA	329	CE2		70	15.912	42.369				C
	ATOM	330	CZ	TYR A	70	16.145	41.558	22.010	1.00	0.00	
00	MOTA	331	OH	TYR A	70	16.181	42.115	23.268	1.00	0.00	0
30	ATOM	332	N	ASP A	71	14.507	37.055	18.423	1.00	0.00	N
	ATOM	333	CA	ASP A	71	14.141	35.949	19.293	1.00	0.00	C
	MOTA	334	С	ASP A	71	15.173	35.882	20.413	1.00	0.00	C
	MOTA	335	0	ASP A	71	16.334	35.555	20.179	1.00	0.00	0
	MOTA	336	CB	ASP A	71	14.124	34.644	18.494	1.00	0.00	С
35	MOTA	337	CG	ASP A	71	13.869	33.427	19.361	1.00	0.00	С
	MOTA	338	OD1	ASP A	71	13.391	33.590	20.503	1.00	0.00	0
	MOTA	339	OD2	ASP A	71	14.142	32.303	18.890	1.00	0.00	0
	ATOM	340	N	PRO A	72	14.762	36.203	21.649	1.00	0.00	N
	ATOM	341	CA	PRO A	72	15.688	36.172	22.785	1.00	0.00	С
40	ATOM	342	С	PRO A	72	16.436	34.852	22.951	1.00	0.00	С
	ATOM	343	Ō	PRO A	72	17.546	34.824	23.486	1.00	0.00	0
	ATOM	344	СВ	PRO A	72	14.786	36.499	23.978	1.00	0.00	С
	ATOM	345	CG	PRO A	72	13.441	36.007	23.541	1.00	0.00	С
	ATOM	346	CD	PRO A	72	13.386	36.462	22.103	1.00	0.00	С
45	ATOM	347	N	LEU A	73	15.840	33.764	22.475	1.00	0.00	N
10	ATOM	348	CA	LEU A	73	16.466	32.453	22.591	1.00	0.00	C
			C	LEU A	73	17.534	32.200	21.533	1.00	0.00	C
	ATOM	349			73	18.181	31.155	21.537	1.00	0.00	Ö
	MOTA	350	0	LEU A					1.00	0.00	c
EO	ATOM	351	CB	LEU A	73	15.405	31.353	22.523	1.00	0.00	C
50	ATOM	352	CG	LEU A	73	14.411	31.339	23.687			
	MOTA	353		LEU A	73	13.407	30.215	23.488	1.00	0.00	С
	MOTA	354	CD2	LEU A	73	15.163	31.163	25.001	1.00	0.00	C
	ATOM	355	N	LYS A	74	17.724	33.156	20.630	1.00	0.00	N
	ATOM	356	CA	LYS A	74	18.726	33.006	19.581	1.00	0.00	С
55	ATOM	357	С	LYS A	74	20.113	32.816	20.190	1.00	0.00	С
	ATOM	358	0	LYS A	74	20.911	32.012	19.710	1.00	0.00	0
	MOTA	359	CB	LYS A	74	18.726	34.233	18.670	1.00	0.00	С
	ATOM	360	CG	LYS A	74	19.676	34.126	17.489	1.00	0.00	С
	ATOM	361	CD	LYS A	74	19.504	35.299	16.540	1.00	0.00	С
60	ATOM	362	CE	LYS A	74	20.369	35.138	15.303	1.00	0.00	С
	ATOM	363	NZ	LYS A	74	20.181	36.267	14.350	1.00	0.00	N
		505									

	ATOM	364	N	TYR	Δ	75	20.395	33.562	21.250	1.00	0.00	N
	ATOM	365	CA	TYR		75	21.683	33.466	21.919	1.00	0.00	С
		366	C	TYR		75	21.537	32.733	23.247	1.00	0.00	C
	MOTA									1.00	0.00	ō
_	MOTA	367	0	TYR		75	20.536	32.892	23.944			
5	ATOM	368	CB	TYR		75	22.270	34.865	22.138	1.00	0.00	C
	ATOM	369	CG	TYR	Α	75	22.564	35.588	20.841	1.00	0.00	С
	ATOM	370	CD1	TYR	Α	75	21.688	36.549	20.333	1.00	0.00	С
	ATOM	371	CD2	TYR	Α	75	23.689	35.261	20.087	1.00	0.00	С
	ATOM	372		TYR		75	21.926	37.164	19.100	1.00	0.00	C
10	ATOM	373				75	23.934	35.865	18.856	1.00	0.00	C
10				TYR								C
	MOTA	374	CZ	TYR		75	23.049	36.812	18.368	1.00	0.00	
	MOTA	375	ОН	TYR		75	23.288	37.383	17.137	1.00	0.00	0
	MOTA	376	N	ASN	Α	76	22.532	31.916	23.579	1.00	0.00	N
	ATOM	377	CA	ASN	Α	76	22.523	31.153	24.822	1.00	0.00	С
15	MOTA	378	С	ASN	Α	76	23.951	30.797	25.225	1.00	0.00	С
	ATOM	379	Ō	ASN		76	24.907	31.191	24.560	1.00	0.00	0
		380	СВ	ASN		76	21.699	29.873	24.662	1.00	0.00	C
	ATOM								23.806	1.00	0.00	C
	MOTA	381	CG	ASN		76	22.393	28.837				
•	MOTA	382		ASN		76	22.669	29.070	22.633	1.00	0.00	0
20	MOTA	383	ND2	ASN	Α	76	22.681	27.680	24.393	1.00	0.00	N
	MOTA	384	N	ALA	Α	77	24.086	30.042	26.312	1.00	0.00	N
	ATOM	385	CA	ALA	Α	77	25.396	29.645	26.818	1.00	0.00	С
	ATOM	386	С	ALA		77	26.311	29.029	25.761	1.00	0.00	C
	ATOM	387	Ö	ALA		77	27.532	29.175	25.830	1.00	0.00	0
25						77	25.226	28.673	27.981	1.00	0.00	C
25	MOTA	388	СВ	ALA								N
	MOTA	389	N	HIS		78	25.725	28.348	24.784	1.00	0.00	
	MOTA	390	CA	HIS	Α	78	26.512	27.701	23.738	1.00	0.00	C
	MOTA	391	С	HIS	Α	78	26.693	28.573	22.501	1.00	0.00	С
	ATOM	392	0	HIS	Α	78	27.455	28.229	21.597	1.00	0.00	0
30	ATOM	393	CB	HIS	Α	78	25.854	26.376	23.343	1.00	0.00	C
	ATOM	394	CG	HIS		78	25.590	25.467	24.502	1.00	0.00	· C
		395		HIS		78	26.591	25.016	25.336	1.00	0.00	N
	ATOM								24.974	1.00	0.00	C
	MOTA	396		HIS		78	24.438	24.936				C
0.5	MOTA	397		HIS		78	26.066	24.246	26.273	1.00	0.00	
35	ATOM	398	NE2	HIS	Α	78	24.761	24.181	26.076	1.00	0.00	N
	ATOM	399	N	HIS	Α	79	25.996	29.703	22.468	1.00	0.00	N
	ATOM	400	CA	HIS	Α	79	26.075	30.618	21.336	1.00	0.00	C
	ATOM	401	С	HIS		79	25.850	32.051	21.821	1.00	0.00	C
	MOTA	402	Ö	HIS		79	24.728	32.551	21.816	1.00	0.00	0
40		403		HIS		79	25.024	30.222	20.293	1.00	0.00	C
40	ATOM		CB									C
	ATOM	404	CG	HIS		79	25.102	31.005	19.020	1.00	0.00	
	MOTA	405		HIS		79	24.295	32.092	18.763	1.00	0.00	N
	MOTA	406	CD2	HIS	Α	79	25.902	30.865	17.937	1.00	0.00	C
	ATOM	407	CE1	HIS	Α	79	24.595	32.588	17 .5 75	1.00	0.00	С
45	ATOM	408	NE2	HIS	Α	79	25.567	31.862	17.054	1.00	0.00	N
	ATOM	409	N	LYS		80	26.932	32.699	22.244	1.00	0.00	N
	ATOM	410	CA	LYS		80	26.869	34.063	22.758	1.00	0.00	С
							27.123	35.126	21.695	1.00	0.00	C
	MOTA	411	C	LYS		80				1.00		Ö
~ 0	ATOM	412	0	LYS		80	27.749	34.859	20.667		0.00	
50	MOTA	413	CB	LYS		80	27.900	34.256	23.872	1.00	0.00	C
	ATOM	414	CG	LYS	Α	80	27.779	33.296	25.048	1.00	0.00	С
	ATOM	415	CD	LYS	Α	80	28.847	33.614	26.085	1.00	0.00	С
	ATOM	416	CE	LYS		80	28.795	32.656	27.266	1.00	0.00	С
	ATOM	417	NZ	LYS		80	29.862	32.967	28.268	1.00	0.00	N
55									21.963	1.00	0.00	N
33	ATOM	418	N	LEU		81	26.633	36.334				
	MOTA	419	CA	LEU		81	26.823	37.470	21.069	1.00	0.00	С
	ATOM	420	С	LEU	Α	81	28.096	38.173	21.528	1.00	0.00	C
	ATOM	421	0	LEU	Α	81	28.169	38.662	22.656	1.00	0.00	0
	ATOM	422	CB	LEU	Α	81	25.637	38.439	21.167	1.00	0.00	С
60	ATOM	423	CG	LEU		81	25.716	39.700	20.296	1.00	0.00	С
	ATOM	424		LEU		81	25.677	39.308	18.820	1.00	0.00	С
	013	123	201	220	••							

	ATOM	425	CD2	LEU A	81	24.561	40.635	20.625	1.00	0.00	С
	ATOM	426	N	LYS A		29.104	38.193	20.663	1.00	0.00	N
	ATOM	427	CA	LYS A		30.376	38.840	20.973	1.00	0.00	С
	ATOM	428	C.	LYS A		30.281	40.287	20.512	1.00	0.00	С
5	ATOM	429	Ö	LYS A		30.109	40.553	19.323	1.00	0.00	0
9		430	СВ	LYS A		31.519	38.128	20.243	1.00	0.00	С
	ATOM					31.750	36.697	20.717	1.00	0.00	Ċ
	ATOM	431	CG	LYS A			35.903	19.758	1.00	0.00	C
	ATOM	432	CD	LYS A		32.635				0.00	С
10	MOTA	433	CE	LYS A		34.048	36.457	19.683	1.00		N
10	MOTA	434	NZ	LYS A		34.871	35.692	18.703	1.00	0.00	
	ATOM	435	N	VAL A		30.395	41.220	21.453	1.00	0.00	N
	ATOM	436	CA	VAL A	83	30.291	42.634	21.125	1.00	0.00	С
	MOTA	437	С	VAL A	83	31.620	43.372	21.232	1.00	0.00	С
	ATOM	438	0	VAL A	83	32.304	43.299	22.253	1.00	0.00	0
15	ATOM	439	CB	VAL A	83	29.261	43.342	22.046	1.00	0.00	С
	ATOM	440	CG1	VAL A	83	29.131	44.810	21.662	1.00	0.00	С
	ATOM	441		VAL A		27.903	42.651	21.941	1.00	0.00	С
	ATOM	442	N	PHE A		31.978	44.084	20.168	1.00	0.00	N
	ATOM	443	CA	PHE A		33.208	44.868	20.147	1.00	0.00	С
20	ATOM	444	C	PHE A		32.880	46.356	20.069	1.00	0.00	С
20	ATOM	445	0	PHE A		32.350	46.823	19.062	1.00	0.00	0
						34.082	44.492	18.946	1.00	0.00	Ċ
	ATOM	446	CB	PHE A		34.769		19.083	1.00	0.00	С
	ATOM	447	CG	PHE A			43.166			0.00	C
OF.	ATOM	448		PHE A		34.331	42.061	18.361	1.00		C
25	ATOM	449		PHE A		35.862	43.023	19.934	1.00	0.00	
	ATOM	450		PHE A		34.976	40.826	18.482	1.00	0.00	С
	ATOM	451		PHE A		36.515	41.798	20.063	1.00	0.00	С
	ATOM	452	CZ	PHE A		36.072	40.697	19.337	1.00	0.00	С
	MOTA	453	N	VAL A	85	33.185	47.084	21.141	1.00	0.00	N
30	ATOM	454	CA	VAL A	85	32.958	48.527	21.204	1.00	0.00	С
	ATOM	455	С	VAL A	85	34.271	49.163	20.770	1.00	0.00	С
	ATOM	456	0	VAL A	85	35.285	49.045	21.458	1.00	0.00	0
	ATOM	457	СВ	VAL A		32.601	48.977	22.639	1.00	0.00	С
	ATOM	458		VAL A		32.411	50.495	22.688	1.00	0.00	С
35	ATOM	459		VAL A		31.325	48.272	23.086	1.00	0.00	С
00	ATOM	460	N	VAL A		34.242	49.839	19.627	1.00	0.00	N
	ATOM	461	CA	VAL A		35.442	50.443	19.064	1.00	0.00	С
	ATOM	462	C	VAL A		35.510	51.968	19.176	1.00	0.00	С
		463	0	VAL A		34.875	52.686	18.403	1.00	0.00	Ō
40	ATOM ATOM		CB	VAL A		35.577	50.032	17.576	1.00	0.00	Ċ
40		464					50.518	17.007	1.00	0.00	Č
	ATOM	465		VAL A		36.906			1.00	0.00	c
	ATOM	466		VAL A		35.451	48.512	17.445		0.00	N
	ATOM	467	N	PRO P		36.296	52.477	20.139	1.00		
4 -	ATOM	468	CA	PRO P		36.451	53.923	20.348	1.00	0.00	С
45	ATOM	469	С	PRO P		37.147	54.566	19.148	1.00	0.00	С
	MOTA	470	0	PRO P	87	38.123	54.017	18.626	1.00	0.00	0
	MOTA	471	CB	PRO P	87	37.309	54.003	21.613	1.00	0.00	С
	ATOM	472	CG	PRO P	87	37.009	52.698	22.318	1.00	0.00	С
	MOTA	473	CD	PRO F	87	37.018	51.724	21.177	1.00	0.00	С
50	MOTA	474	N	HIS F	88	36.649	55.722	18.715	1.00	0.00	N
	ATOM	475	CA	HIS A		37.237	56.421	17.576	1.00	0.00	С
	ATOM	476	С	HIS A		37.019	57.929	17.662	1.00	0.00	С
	ATOM	477	Ö	HIS A		36.206	58.414	18.452	1.00	0.00	0
		478	СВ	HIS F		36.662	55.876	16.258	1.00	0.00	С
55	ATOM	479	CG	HIS F		35.211	56.184	16.053	1.00	0.00	c
55	ATOM						57.311	15.390	1.00	0.00	N
	ATOM	480		HIS A		34.774			1.00	0.00	С
	ATOM	481		HIS A		34.097	55.513	16.430		0.00	C
	ATOM	482		HIS A		33.454	57.321	15.367	1.00		N
(0	MOTA	483		HIS A		33.018	56.241	15.990	1.00	0.00	
60	ATOM	484	N	SER A		37.757	58.664	16.841	1.00	0.00	N
	ATOM	485	CA	SER A	89	37.676	60.115	16.827	1.00	0.00	С

IOSESE ISSES

		MOTA	486	С	SER A	Α ε	39	37.857	60.572	15.387	1.00	0.00	С
		ATOM	487	0	SER A	A 6	39	38.933	60.414	14.809	1.00	0.00	0
		ATOM	488	CB	SER A		39	38.779	60.694	17.724	1.00	0.00	C
	_	MOTA	489	OG	SER A		39	38.743	62.109	17.760	1.00	0.00	0
	5	MOTA	490	N	HIS A		90	36.797	61.123	14.809	1.00	0.00	N
		MOTA	491	CA	HIS A		90	36.839	61.587	13.428	1.00	0.00	C C
		MOTA	492	С	HIS		90	37.494	62.965	13.354	1.00	0.00	0
		ATOM	493	0	HIS A		90	36.918	63.966	13.794	1.00	0.00	C
	10	ATOM	494	CB	HIS		90	35.419	61.634	12.856	1.00 1.00	0.00	C
	10	ATOM	495	CG	HIS		90	35.370	61.921 61.118	11.390 10.455	1.00	0.00	N
		ATOM	496		HIS A		90	35.986	62.931	10.433	1.00	0.00	C
		ATOM	497		HIS A		90	34.794 35.793	61.621	9.250	1.00	0.00	C
		ATOM	498		HIS A		90 90	35.793	62.721	9.370	1.00	0.00	N
	15	ATOM ATOM	499 500	NEZ N	ASN A		91	38.705	63.003	12.802	1.00	0.00	N
	13	ATOM	501	CA	ASN A		91	39.467	64.242	12.675	1.00	0.00	С
		ATOM	502	C	ASN A		91	39.630	64.672	11.223	1.00	0.00	Ċ
		ATOM	503	Ö	ASN A		91	40.326	64.019	10.446	1.00	0.00	0
		ATOM	504	СВ	ASN A		91	40.857	64.082	13.300	1.00	0.00	С
	20	ATOM	505	CG	ASN A		91	40.812	63.944	14.807	1.00	0.00	С
		ATOM	506		ASN		91	40.207	63.013	15.344	1.00	0.00	0
		ATOM	507		ASN		91	41.456	64.872	15.500	1.00	0.00	N
Ì		ATOM	508	N	ASP .		92	38.996	65.784	10.871	1.00	0.00	N
À		ATOM	509	CA	ASP I		92	39.064	66.310	9.515	1.00	0.00	С
ř	25	MOTA	510	Ċ	ASP A		92	40.293	67.170	9.280	1.00	0.00	С
E 1.		ATOM	511	0	ASP 2		92	40.522	68.138	10.002	1.00	0.00	0
		ATOM	512	CB	ASP A		92	37.828	67.157	9.224	1.00	0.00	C
		ATOM	513	CG	ASP .	A 9	92	36.556	66.379	9.378	1.00	0.00	C
		ATOM	514	OD1	ASP .	A 9	92	36.330	65.473	8.556	1.00	0.00	0
	30	ATOM	515	OD2	ASP .	A 9	92	35.799	66.665	10.327	1.00	0.00	0
•		ATOM	516	N	PRO .	A 9	93	41.114	66.812	8.281	1.00	0.00	N
		ATOM	517	CA	PRO .	A 9	93	42.311	67.605	7.983	1.00	0.00	С
		ATOM	518	С	PRO .	A 9	93	41.825	68.880	7.288	1.00	0.00	С
		ATOM	519	0	PRO .	A 9	93	42.162	69.148	6.133	1.00	0.00	0
	35	MOTA	520	CB	PRO .	A !	93	43.104	66.699	7.043	1.00	0.00	С
		MOTA	521	CG	PRO .	A !	93	42.681	65.313	7.468	1.00	0.00	С
		MOTA	522	CD	PRO .		93	41.191	65.492	7.633	1.00	0.00	С
		MOTA	523	N	GLY .		94	41.007	69.642	8.008	1.00	0.00	N
		MOTA	524	CA	GLY .		94	40.447	70.870	7.480	1.00	0.00	C
	4 0	ATOM	525	С	GLY .		94	38.966	70.728	7.157	1.00	0.00	Ċ
		MOTA	526	0	GLY .		94	38.529	69.702	6.631	1.00	0.00	0
		MOTA	527	N	TRP		95	38.193	71.753	7.507	1.00	0.00	N C
		ATOM	528	CA	TRP .		95	36.757	71.810	7.233	1.00	0.00	C
	45	ATOM	529	С	TRP		95	36.243	73.193	7.623	1.00	0.00	0
	45	ATOM	530	0	TRP		95	36.126	74.071 70.740	6.771 7.997	1.00	0.00	C
		MOTA	531	CB	TRP.		95 05	35.966			1.00	0.00	С
		MOTA	532	CG	TRP		95	34.484	70.809	7.673 6.467	1.00	0.00	C
		ATOM	533		TRP		95 05	33.929	71.139 70.522	8.552	1.00	0.00	C
	EΩ	ATOM	534		TRP		95 05	33.383	70.322	6.539	1.00	0.00	N
	50	ATOM	535		TRP		95 05	32.557	70.699	7.805	1.00	0.00	C
		MOTA	536		TRP		95 05	32.195 33.285	70.129	9.896	1.00	0.00	Ċ
		ATOM	537		TRP		95 05		70.129	8.356	1.00	0.00	c
		ATOM	538		TRP		95 95	30.922 32.015	69.927	10.445	1.00	0.00	C
	55	ATOM	539		TRP		95 95	30.854	70.112	9.674	1.00	0.00	C
	55	ATOM	540		TRP		95 96	35.929	73.385	8.903	1.00	0.00	N
		ATOM	541	N	ILE		96 96		74.693	9.363	1.00	0.00	C
		ATOM	542	CA	ILE		96 96	35.467 36.650	75.452	9.955	1.00	0.00	C
		ATOM	543	С	ILE			36.557	76.638	10.273	1.00	0.00	Ö
	60	ATOM	544	O	ILE ILE		96 96	34.325	74.584	10.273	1.00	0.00	Ċ
	UU	ATOM	545 546	CB CG1	ILE		96 96	34.748	73.707	11.571	1.00	0.00	Ċ
		ATOM	340	CGI	TTE	A	<i>5</i> 0	J4./40	, 3. , 0 ,	11.5,1	1.00	0.00	-

	ATOM	547	CG2	ILE	A	96	33.073	74.039	9.716	1.00	0.00	С
	ATOM	548	CD1	ILE	Α	96	33.731	73.670	12.689	1.00	0.00	C
	ATOM	549	N	GLN	Α	97	37.763	74.739	10.096	1.00	0.00	N
	ATOM	550	CA	GLN	Α	97	39.023	75.290	10.575	1.00	0.00	C
5	ATOM	551	С	GLN		97	40.065	74.682	9.640	1.00	0.00	С
_	ATOM	552	0	GLN		97	39.793	73.680	8.981	1.00	0.00	0
	ATOM	553	СВ	GLN		97	39.322	74.857	12.016	1.00	0.00	С
	ATOM	554	CG	GLN		97	38.430	75.493	13.081	1.00	0.00	С
	ATOM	555	CD	GLN		97	38.920	75.205	14.494	1.00	0.00	C
10		556		GLN		97	40.053	75.539	14.853	1.00	0.00	0
10	ATOM					97	38.069	74.580	15.303	1.00	0.00	N
	ATOM	557		GLN					9.566	1.00	0.00	N
	ATOM	558	N	THR		98	41.245	75.280				C
	MOTA	559	CA	THR		98	42.290	74.739	8.707	1.00	0.00	C
4 F	ATOM	560	С	THR		98	42.938	73.549	9.407	1.00	0.00	
15	MOTA	561	0	THR		98	42.706	73.310	10.597	1.00	0.00	0
	MOTA	562	CB	THR		98	43.398	75.760	8.450	1.00	0.00	C
	MOTA	563	OG1	THR	Α	98	44.036	76.068	9.692	1.00	0.00	0
	ATOM	564	CG2	THR	Α	98	42.836	77.039	7.834	1.00	0.00	С
	ATOM	565	N	PHE	Α	99	43.753	72.809	8.666	1.00	0.00	N
20	ATOM	566	CA	PHE	Α	99	44.461	71.664	9.223	1.00	0.00	C
	ATOM	567	С	PHE	Α	99	45.209	72.088	10.488	1.00	0.00	C
	ATOM	568	0	PHE	Α	99	45.049	71.481	11.543	1.00	0.00	0
	ATOM	569	СВ	PHE		99	45.471	71.119	8.208	1.00	0.00	C
	ATOM	570	CG	PHE		99	46.348	70.015	8.749	1.00	0.00	С
25	ATOM	571		PHE		99	45.937	68.685	8.690	1.00	0.00	С
	ATOM	572		PHE		99	47.589	70.307	9.315	1.00	0.00	С
	ATOM	573		PHE		99	46.748	67.659	9.185	1.00	0.00	C
	ATOM	574		PHE		99	48.408	69.290	9.813	1.00	0.00	С
			CZ	PHE		99	47.985	67.962	9.746	1.00	0.00	C
30	ATOM	575					46.028	73.131	10.372	1.00	0.00	N
50	ATOM	576	N	GLU			46.820	73.615	11.504	1.00	0.00	C
	ATOM	577	CA	GLU					12.667	1.00	0.00	C
	ATOM	578	C	GLU			45.975	74.134			0.00	0
	ATOM	579	0	GLU			46.332	73.937	13.829	1.00		c
25	ATOM	580	СВ	GLU			47.789	74.707	11.037	1.00	0.00	c
35	ATOM	581	CG	GLU			48.843	75.111	12.066	1.00	0.00	
	ATOM	582	CD	GLU			49.755	73.964	12.474	1.00	0.00	C
	ATOM	583		GLU			49.930	73.016	11.674	1.00	0.00	0
	MOTA	584	OE2	GLU			50.313	74.020	13.593	1.00	0.00	0
	ATOM	585	N	GLU	Α	101	44.862	74.798	12.364	1.00	0.00	N
40	MOTA	586	CA	GLU	Α	101	43.990	75.314	13.419	1.00	0.00	С
	MOTA	587	С	GLU	Α	101	43.417	74.144	14.223	1.00	0.00	С
	ATOM	588	0	GLU	Α	101	43.409	74.170	15.455	1.00	0.00	0
	ATOM	589	CB	GLU	A	101	42.850	76.149	12.821	1.00	0.00	С
	MOTA	590	CG	GLU	Α	101	43.310	77.447	12.156	1.00	0.00	С
45	ATOM	591	CD	GLU	Α	101	42.156	78.271	11.599	1.00	0.00	C
	ATOM	592		GLU			41.224	77.680	11.016	1.00	0.00	0
	ATOM	593		GLU			42.191	79.513	11.735	1.00	0.00	0
	ATOM	594	N	TYR			42.932	73.120	13.525	1.00	0.00	N
	ATOM	595	CA	TYR			42.386	71.947	14.205	1.00	0.00	С
50	ATOM	596	C	TYR			43.482	71.246	14.999	1.00	0.00	С
50		597		TYR			43.257	70.790	16.122	1.00	0.00	0
	MOTA		O				41.821	70.935	13.209	1.00	0.00	C
	ATOM	598	CB	TYR			40.409		12.734	1.00	0.00	C
	ATOM	599	CG	TYR				71.175			0.00	C
EE	ATOM	600		TYR			39.355	71.348	13.637	1.00		
55	ATOM	601		TYR			40.110	71.130	11.373	1.00	0.00	C
	MOTA	602		TYR			38.033	71.459	13.185	1.00	0.00	С
	ATOM	603		TYR			38.810	71.239	10.917	1.00	0.00	С
	ATOM	604	CZ	TYR			37.775	71.401	11.821	1.00	0.00	C
. ~	ATOM	605	OH	TYR	Α	102	36.493	71.491	11.335	1.00	0.00	0
60	ATOM	606	N	TYR	Α	103	44.664	71.137	14.403	1.00	0.00	N
	ATOM	607	CA	TYR	Α	103	45.764	70.470	15.080	1.00	0.00	С

		ATOM	608	С	TYR	Α	103	46.086	71.147	16.405	1.00	0.00	С
		ATOM	609	Õ	TYR			46.216	70.488	17.434	1.00	0.00	0
										14.216	1.00	0.00	c
		ATOM	610	CB	TYR			47.024	70.466				~
	_	ATOM	611	CG	TYR	Α	103	48.190	69.808	14.915	1.00	0.00	С
	5	ATOM	612	CD1	TYR	Α	103	48.194	68.433	15.158	1.00	0.00	С
		ATOM	613	CD2	TYR	Δ	103	49.262	70.565	15.392	1.00	0.00	С
				CE1				49.233	67.830	15.861	1.00	0.00	Ċ
		ATOM	614										
		ATOM	615	CE2				50.305	69.972	16.098	1.00	0.00	С
		ATOM	616	CZ	TYR	Α	103	50.284	68.605	16.330	1.00	0.00	С
	10	ATOM	617	ОН	TYR			51.305	68.014	17.037	1.00	0.00	0
	10				GLN			46.212	72.468	16.372	1.00	0.00	N
		ATOM	618	N									
		MOTA	619	CA	GLN	A	104	46.544	73.231	17.568	1.00	0.00	С
		MOTA	620	C	GLN	Α	104	45.438	73.258	18.611	1.00	0.00	С
		ATOM	621	0	GLN	Α	104	45.705	73.155	19.806	1.00	0.00	0
	15	ATOM	622	СВ	GLN			46.906	74.675	17.190	1.00	0.00	С
	10										1.00	0.00	Ċ
		ATOM	623	CG	GLN			48.224	74.829	16.440			~
		MOTA	624	CD	GLN	Α	104	49.410	74.290	17.225	1.00	0.00	С
		MOTA	625	OE1	GLN	Α	104	49.459	74.399	18.454	1.00	0.00	0
		ATOM	626	NE2	GLN	Α	104	50.378	73.714	16.518	1.00	0.00	N
	20				HIS			44.197	73.389	18.161	1.00	0.00	N
	20	ATOM	627	N									
\$ 17.7E		ATOM	628	CA	HIS			43.067	73.477	19.077	1.00	0.00	С
120. 1140.		ATOM	629	С	HIS	Α	105	42.492	72.152	19.566	1.00	0.00	С
4 14		ATOM	630	0	HIS	Α	105	42.010	72.070	20.694	1.00	0.00	0
ı,D		ATOM	631	СВ	HIS			41.935	74.279	18.426	1.00	0.00	С
442	25							42.367	75.595	17.856	1.00	0.00	C
1,71	25	ATOM	632	CG	HIS								
		ATOM	633		HIS			41.509	76.421	17.162	1.00	0.00	N
15.2		ATOM	634	CD2	HIS	Α	105	43.566	76.226	17.872	1.00	0.00	С
		MOTA	635	CE1	HIS	Α	105	42.161	77.503	16.774	1.00	0.00	С
1		MOTA	636		HIS			43.410	77.409	17.192	1.00	0.00	N
162	20											0.00	N
	30	ATOM	637	N	ASP			42.549	71.115	18.733	1.00		
Ēļ.		ATOM	638	CA	ASP	Α	106	41.951	69.837	19.104	1.00	0.00	С
		ATOM	639	С	ASP	Α	106	42.786	68.568	18.974	1.00	0.00	С
		ATOM	640	0	ASP			43.052	67.887	19.961	1.00	0.00	0
ij								40.662	69.641	18.296	1.00	0.00	С
2322	25	ATOM	641	CB	ASP								~
141	35	MOTA	642	CG	ASP	A	106	39.644	70.735	18.545	1.00	0.00	С
į. Į		ATOM	643	OD1	ASP	Α	106	38.958	70.682	19.585	1.00	0.00	0
		ATOM	644	OD2	ASP	Α	106	39.539	71.654	17.705	1.00	0.00	0
		ATOM	645	N	THR			43.188	68.252	17.749	1.00	0.00	N
į.=4.									67.027	17.469	1.00	0.00	С
\$	40	ATOM	646	CA	THR			43.928					
	40	MOTA	647	С	THR			45.179	66.710	18.286	1.00	0.00	С
		MOTA	648	0	THR	Α	107	45.365	65.565	18.702	1.00	0.00	0
		ATOM	649	CB	THR	Α	107	44.287	66.947	15.981	1.00	0.00	С
		ATOM	650	OG1	THR	Δ	107	43.103	67.152	15.199	1.00	0.00	0
					THR			44.868	65.570	15.648	1.00	0.00	С
	4.5	ATOM	651										
	45	ATOM	652	N	LYS			46.048	67.687	18.517	1.00	0.00	N
		MOTA	653	CA	LYS	Α	108	47.249	67.367	19.280	1.00	0.00	С
		ATOM	654	С	LYS	Α	108	46.887	66.969	20.707	1.00	0.00	С
		ATOM	655	0	LYS			47.585	66.176	21.331	1.00	0.00	0
										19.273	1.00	0.00	Ċ
	Ε0	MOTA	656	CB	LYS			48.247	68.537				
	50	ATOM	657	CG	LYS	А	108	47.856	69.754	20.088	1.00	0.00	С
		ATOM	658	CD	LYS	Α	108	48.942	70.826	19.973	1.00	0.00	С
		ATOM	659	CE	LYS			48.713	71.978	20.937	1.00	0.00	С
								49.823	72.978	20.873	1.00	0.00	N
		ATOM	660	NZ	LYS								
		ATOM	661	N	HIS			45.786	67.510	21.216	1.00	0.00	N
	55	ATOM	662	CA	HIS	Α	109	45.343	67.184	22.567	1.00	0.00	С
		ATOM	663	С	HIS	Α	109	44.701	65.802	22.575	1.00	0.00	С
		ATOM	664	Ö	HIS			44.871	65.029	23.518	1.00	0.00	0
		ATOM	665	CB	HIS			44.352	68.236	23.055	1.00	0.00	C
		MOTA	666	CG	HIS	Α	109	44.923	69.617	23.085	1.00	0.00	С
	60	ATOM	667	ND1	HIS	Α	109	45.939	69.982	23.944	1.00	0.00	N
	-	ATOM	668		HIS			44.652	70.711	22.335	1.00	0.00	С
		111 011	500	202			100						-

	ATOM	669	CE1	HIS A	109	46.26	8 71.2	243	23.721	1.00	0.00	С
	ATOM	670		HIS A		45.50		07	22.749	1.00	0.00	N
	ATOM	671	N	ILE A		43.96	6 65.4	96	21.513	1.00	0.00	N
	ATOM	672	CA	ILE A	110	43.31	9 64.1	98	21.382	1.00	0.00	С
5	ATOM	673	С	ILE A	110	44.37		99	21.355	1.00	0.00	С
	ATOM	674	0	ILE A		44.25	7 62.0	184	22.040	1.00	0.00	0
	ATOM	675	ĊВ	ILE A		42.49	2 64.1	.23	20.078	1.00	0.00	C
	ATOM	676	CG1	ILE A		41.30		86	20.167	1.00	0.00	С
	ATOM	677		ILE A		42.04			19.826	1.00	0.00	С
10	ATOM	678		ILE A		40.51			18.870	1.00	0.00	С
	ATOM	679	N	LEU A		45.42			20.562	1.00	0.00	N
	ATOM	680	CA	LEU A		46.48			20.456	1.00	0.00	C
	ATOM	681	C	LEU A		47.34			21.708	1.00	0.00	C
	ATOM	682	Ö	LEU A		47.78			22.105	1.00	0.00	o
15	ATOM	683	CB	LEU A		47.34			19.222	1.00	0.00	C
15	ATOM	684	CG	LEU A		46.62			17.911	1.00	0.00	C
		685		LEU A		47.44			16.715	1.00	0.00	C
	ATOM								17.845	1.00	0.00	C
	ATOM	686		LEU A		46.35			22.337	1.00	0.00	N
20	ATOM	687	N	SER A		47.57			23.549	1.00	0.00	C
20	ATOM	688	CA	SER A		48.38					0.00	c
	ATOM	689	С	SER A		47.66			24.679	1.00		
	ATOM	690	0	SER A		48.27			25.395	1.00	0.00	0
	ATOM	691	CB	SER A		48.67			23.971	1.00	0.00	С
25	MOTA	692	OG	SER A		49.50			25.113	1.00	0.00	0
25	MOTA	693	N	ASN A		46.37			24.838	1.00	0.00	N
	ATOM	694	CA	ASN A		45.62			25.891	1.00	0.00	C
	ATOM	695	С	ASN A		45.33			25.556	1.00	0.00	С
	MOTA	696	0	ASN A		45.14			26.457	1.00	0.00	0
20	MOTA	697	CB	ASN A		44.35			26.209	1.00	0.00	C
30	MOTA	698	CG	ASN A		44.66			26.833	1.00	0.00	C
	MOTA	699		ASN A		45.66			27.538	1.00	0.00	0
	ATOM	700	ND2	ASN A		43.82			26.582	1.00	0.00	N
	MOTA	701	N	ALA A	114	45.31			24.268	1.00	0.00	N
	MOTA	702	CA	ALA A	114	45.08			23.866	1.00	0.00	С
35	MOTA	703	С	ALA A	114	46.29	6 58.2	69	24.305	1.00	0.00	С
	MOTA	704	0	ALA A	114	46.16	0 57.1	.74	24.853	1.00	0.00	0
	ATOM	705	CB	ALA A	114	44.90	3 58.9	78	22.349	1.00	0.00	С
	MOTA	706	N	LEU A	115	47.48	7 58.8	114	24.064	1.00	0.00	N
	ATOM	707	CA	LEU A	115	48.72	5 58.1	.43	24.445	1.00	0.00	С
40	ATOM	708	С	LEU A	115	48.74	4 57.8	92	25.953	1.00	0.00	С
	MOTA	709	0	LEU A	115	49.02	9 56.7	82	26.408	1.00	0.00	0
	MOTA	710	CB	LEU A	115	49.94	2 58.9	95	24.046	1.00	0.00	C
	ATOM	711	CG	LEU A	115	51.32	2 58.4	85	24.481	1.00	0.00	С
	MOTA	712	CD1	LEU A		51.54	4 57.0	75	23.953	1.00	0.00	С
45	ATOM	713		LEU A		52.40	8 59.4	19	23.978	1.00	0.00	C
	MOTA	714	N	ARG A		48.42			26.721	1.00	0.00	N
	ATOM	715	CA	ARG A		48.41			28.173	1.00	0.00	С
	ATOM	716	С	ARG A		47.38			28.677	1.00	0.00	С
	ATOM	717	ō	ARG A		47.70			29.442	1.00	0.00	0
50	ATOM	718	СВ	ARG A		48.15			28.797	1.00	0.00	C
00	ATOM	719	CG	ARG A		49.26			28.533	1.00	0.00	C
	ATOM	720	CD	ARG A		48.93			29.033	1.00	0.00	C
	ATOM	721	NE	ARG A		50.03			28.802	1.00	0.00	N
	ATOM	722	CZ	ARG A		49.98			29.075	1.00	0.00	C
55						48.88			29.590	1.00	0.00	N
33	ATOM	723		ARG A							0.00	N
	ATOM	724		ARG A		51.03			28.838	1.00		
	ATOM	725	N	HIS A		46.13			28.236	1.00	0.00	N
	ATOM	726	CA	HIS A		45.07			28.670	1.00	0.00	C
40	ATOM	727	C	HIS A		45.20			28.265	1.00	0.00	C
60	ATOM	728	0	HIS A		44.89			29.059	1.00	0.00	0
	ATOM	729	CB	HIS A	117	43.72	6 57.6) D T	28.230	1.00	0.00	С

	ATOM	730	CG	HIS	A 117	43.233	58.737	29.130	1.00	0.00	С
	MOTA	731	ND1	HIS A	A 117	42.625	58.474	30.339	1.00	0.00	N
	ATOM	732	CD2	HIS A	A 117	43.355	60.083	29.054	1.00	0.00	С
	MOTA	733	CE1	HIS A	A 117	42.399	59.612	30.973	1.00	0.00	С
5	ATOM	734	NE2	HIS A	A 117	42.834	60.604	30.216	1.00	0.00	N
	MOTA	735	N	LEU 7	A 118	45.662	55.366	27.044	1.00	0.00	N
	ATOM	736	CA	LEU I	A 118	45.839	53.986	26.606	1.00	0.00	С
	ATOM	737	С	LEU A	A 118	47.012	53.379	27.368	1.00	0.00	С
	ATOM	738	0	LEU A	A 118	46.987	52.208	27.747	1.00	0.00	0
10	ATOM	739	СВ		A 118	46.099	53.924	25.095	1.00	0.00	С
	ATOM	740	CG		A 118	44.915	54.378	24.230	1.00	0.00	С
	ATOM	741	CD1	LEU Z		45.301	54.355	22.759	1.00	0.00	С
	ATOM	742		LEU Z		43.722	53.470	24.484	1.00	0.00	С
	ATOM	743	N		A 119	48.047	54.180	27.589	1.00	0.00	N
15	ATOM	744	CA		A 119	49.210	53.707	28.321	1.00	0.00	С
	ATOM	745	С		A 119	48.791	53.245	29.717	1.00	0.00	С
	ATOM	746	ō		A 119	49.170	52.160	30.159	1.00	0.00	0
	ATOM	747	СВ		A 119	50.257	54.826	28.422	1.00	0.00	C
	ATOM	748	CG		A 119	51.418	54.493	29.307	1.00	0.00	Č
20	ATOM	749		HIS		51.416	54.745	30.662	1.00	0.00	N
	ATOM	750		HIS A		52.603	53.897	29.036	1.00	0.00	C
	ATOM	751		HIS A		52.551	54.319	31.189	1.00	0.00	Č
	ATOM	752		HIS		53.289	53.799	30.224	1.00	0.00	N
	ATOM	753	N		A 120	47.984	54.060	30.391	1.00	0.00	N
25	ATOM	754	CA		A 120	47.527	53.762	31.750	1.00	0.00	C
20	ATOM	755	C		120	46.370	52.775	31.895	1.00	0.00	C
	ATOM	756	0		A 120	46.126	52.773	32.993	1.00	0.00	Ö
	ATOM	757	СВ		A 120	47.147	55.057	32.469	1.00	0.00	C
	ATOM	758	CG		A 120	48.324	55.989	32.653	1.00	0.00	C
30	ATOM	759		ASP A		49.475	55.505	32.673	1.00	0.00	0
50	ATOM	760		ASP A		48.094	57.207	32.793	1.00	0.00	o
	ATOM	761	N		A 121	45.656	52.501	30.807	1.00	0.00	N
	ATOM	762	CA	ASN A		44.523	51.574	30.849	1.00	0.00	C
	ATOM	763	C	ASN A		44.523	50.515	29.758	1.00	0.00	c
35	ATOM	764	0	ASN A		44.105	50.630	28.674	1.00	0.00	0
33	ATOM	765	CB		A 121	43.210	52.343	30.661	1.00	0.00	C
	ATOM	766	CG	ASN A		43.210	53.423	31.719	1.00	0.00	C
	ATOM	767		ASN A		43.448	54.567	31.558	1.00	0.00	0
		768		ASN A			53.059	32.813	1.00	0.00	N
40	ATOM	769	N N		121	42.348 45.454	49.452	30.046	1.00	0.00	N
40	ATOM ATOM	770	CA		122	45.732	48.346	29.122	1.00	0.00	C
	ATOM	771	C		A 122	44.580	47.753	28.311	1.00	0.00	C
	ATOM	772	0		122	44.798	47.733	27.184	1.00	0.00	0
					122	46.426		30.017	1.00	0.00	c
45	ATOM	773	CB				47.311			0.00	C
43	ATOM	774	CG		122	45.937	47.647	31.399	1.00	0.00	C
	ATOM	775	CD		122	45.974	49.145	31.389	1.00		
	ATOM	776	N		123	43.366	47.753	28.858	1.00	0.00	N C
	ATOM	777	CA		123	42.224	47.192	28.135	1.00	0.00	
50	ATOM	778	С		123	41.503	48.170	27.215	1.00	0.00	C
50	ATOM	779	0		123	40.678	47.759	26.398	1.00	0.00	0
	ATOM	780	CB		123	41.204	46.591	29.105	1.00	0.00	C
	ATOM	781	CG		123	41.476	45.145	29.477	1.00	0.00	C
	ATOM	782	CD	GLU A		42.676	44.989	30.375	1.00	0.00	C
	ATOM	783		GLU A		42.678	45.605	31.463	1.00	0.00	0
55	ATOM	784		GLU A		43.613	44.249	29.999	1.00	0.00	0
	ATOM	785	N	MET A		41.798	49.458	27.352	1.00	0.00	N
	ATOM	786	CA	MET A		41.165	50.464	26.506	1.00	0.00	С
	ATOM	787	С	MET A		41.742	50.354	25.092	1.00	0.00	C
60	ATOM	788	0	MET A		42.918	50.024	24.919	1.00	0.00	0
60	MOTA	789	СВ	MET A		41.418	51.864	27.068	1.00	0.00	С
	MOTA	790	CG	MET A	124	40.644	52.963	26.354	1.00	0.00	С

	ATOM	791	SD	MET A	124	38.864	52.639	26.329	1.00	0.00	S
	ATOM	792	CE	MET A		38.255	54.154	25.577	1.00	0.00	С
	ATOM	793	N	LYS A	125	40.908	50.624	24.090	1.00	0.00	N
	ATOM	794	CA	LYS A	125	41.322	50.546	22.691	1.00	0.00	С
5	ATOM	795	С	LYS A	125	40.980	51.842	21.954	1.00	0.00	С
	ATOM	796	0	LYS A	125	40.178	52.646	22.434	1.00	0.00	0
	ATOM	797	CB	LYS A	125	40.623	49.360	22.018	1.00	0.00	С
	ATOM	798	CG	LYS A		40.950	48.006	22.643	1.00	0.00	С
	ATOM	799	CD	LYS A		42.347	47.539	22.267	1.00	0.00	С
10	ATOM	800	CE	LYS A		42.747	46.273	23.022	1.00	0.00	С
	ATOM	801	NZ	LYS A		41.818	45.136	22.781	1.00	0.00	N
	ATOM	802	N	PHE A		41.569	52.039	20.778	1.00	0.00	N
	ATOM	803	CA	PHE A		41.324	53.264	20.016	1.00	0.00	С
	ATOM	804	C	PHE A		41.824	53.081	18.582	1.00	0.00	С
15	ATOM	805	Ō	PHE A		42.900	52.529	18.366	1.00	0.00	0
	ATOM	806	СВ	PHE A		42.077	54.418	20.698	1.00	0.00	С
	ATOM	807	CG	PHE A		41.706	55.797	20.203	1.00	0.00	С
	ATOM	808		PHE A		40.384	56.230	20.214	1.00	0.00	С
	ATOM	809		PHE A		42.699	56.689	19.802	1.00	0.00	С
20	MOTA	810		PHE A		40.054	57.536	19.838	1.00	0.00	С
	ATOM	811		PHE A		42.384	57.997	19.423	1.00	0.00	С
	ATOM	812	CZ	PHE A		41.057	58.422	19.442	1.00	0.00	С
	ATOM	813	N	ILE A		41.042	53.526	17.602	1.00	0.00	N
	ATOM	814	CA	ILE A		41.471	53.418	16.210	1.00	0.00	С
25	ATOM	815	C	ILE A		41.733	54.811	15.640	1.00	0.00	C
20	ATOM	816	Ö	ILE A		41.067	55.782	16.021	1.00	0.00	0
	ATOM	817	CB	ILE A		40.427	52.687	15.338	1.00	0.00	С
	ATOM	818		ILE A		39.089	53.433	15.363	1.00	0.00	C
	ATOM	819	CG2			40.258	51.260	15.840	1.00	0.00	С
30	ATOM	820		ILE A		38.066	52.870	14.392	1.00		С
	ATOM	821	N	TRP A		42.713	54.910	14.745	1.00	0.00	N
	ATOM	822	CA	TRP A		43.061	56.193	14.135	1.00	0.00	 С
	ATOM	823	C	TRP A		43.178	56.076	12.617	1.00	0.00	С
	ATOM	824	Ö	TRP A		43.820	55.161	12.105	1.00	0.00	0
35	ATOM	825	СВ	TRP A		44.372	56.719	14.716	1.00	0.00	С
00	ATOM	826	CG	TRP A		44.611	58.146	14.356	1.00	0.00	С
	ATOM	827		TRP A		45.351	58.621	13.309	1.00	0.00	С
	ATOM	828	CD2			44.053	59.290	15.006	1.00	0.00	С
	ATOM	829	NE1			45.287	59.995	13.269	1.00	0.00	N
40	ATOM	830	CE2			44.495	60.431	14.300	1.00	0.00	С
10	ATOM	831	CE3			43.216	59.464	16.120	1.00	0.00	С
	ATOM	832		TRP A		44.130	61.731	14.670	1.00	0.00	С
	ATOM	833	CZ3			42.852	60.758	16.486	1.00	0.00	С
	ATOM	834		TRP A		43.311	61.873	15.761	1.00	0.00	С
45	ATOM	835	N	ALA A		42.582	57.027	11.900	1.00	0.00	N
	ATOM	836	CA	ALA A		42.587	56.974	10.439	1.00	0.00	С
	ATOM	837	C	ALA A		43.438	57.984	9.672	1.00	0.00	С
	ATOM	838	Ö	ALA A		44.069	57.625	8.681	1.00	0.00	0
	ATOM	839	СВ	ALA A		41.150	57.054	9.933	1.00	0.00	С
50	ATOM	840	N	GLU A		43.454	59.234	10.123	1.00	0.00	N
00	ATOM	841	CA	GLU A		44.180	60.299	9.427	1.00	0.00	С
	ATOM	842	C	GLU A		45.665	60.421	9.757	1.00	0.00	С
	ATOM	843	0	GLU A		46.045	61.041	10.752	1.00	0.00	0
	ATOM	844	СВ	GLU A		43.492	61.641	9.688	1.00	0.00	C
55	ATOM	845	CG	GLU A		42.001	61.660	9.373	1.00	0.00	Č
	ATOM	846	CD	GLU A		41.151	61.055	10.480	1.00	0.00	Ċ
	ATOM	847		GLU A		41.701	60.758	11.563	1.00	0.00	Ö
	ATOM	848		GLU A		39.930	60.888	10.269	1.00	0.00	Ö
	ATOM	849	N N	ILE A		46.509	59.870	8.890	1.00	0.00	N
60	ATOM	850	CA	ILE A		47.945	59.908	9.128	1.00	0.00	C
00	ATOM	851	C	ILE A		48.564	61.304	9.007	1.00	0.00	Ċ
	AION	0.51	_	דחר ע	101	10.501	01.501	3.00			-

												_
	ATOM	852	0	ILE A	131	49	. 593	61.574	9.632	1.00	0.00	0
	MOTA	853	СВ	ILE A	131	48	. 676	58.906	8.207	1.00	0.00	C
	ATOM	854		ILE A			.061	57.512	8.393	1.00	0.00	С
								58.851	8.553	1.00	0.00	Ċ
_	MOTA	855		ILE A			.161					c
5	ATOM	856	CD1	ILE A		4 /	. 933	57.084	9.857	1.00	0.00	
	ATOM	857	N	SER A	132	47	.946	62.191	8.227	1.00	0.00	N
	ATOM	858	CA	SER A	132	48	. 462	63.553	8.088	1.00	0.00	С
	ATOM	859	C	SER A			. 604	64.160	9.488	1.00	0.00	С
												o
40	MOTA	860	0	SER A			. 626	64.771	9.813	1.00	0.00	
10	ATOM	861	CB	SER A	132	47	.516	64.416	7.234	1.00	0.00	С
	ATOM	862	OG	SER A	132	46	.188	64.403	7.740	1.00	0.00	0
	ATOM	863	N	TYR A			.575	63.980	10.312	1.00	0.00	N
							.588	64.482	11.684	1.00	0.00	C
	MOTA	864	CA	TYR A								
	ATOM	865	С	TYR A			.554	63.692	12.565	1.00	0.00	C
15	ATOM	866	0	TYR A	133	49	.316	64.278	13.339	1.00	0.00	0
	ATOM	867	CB	TYR A	133	46	.192	64.396	12.305	1.00	0.00	С
	ATOM	868	CG	TYR A			.288	65.570	12.003	1.00	0.00	С
								65.372	11.460	1.00	0.00	C
	ATOM	869		TYR A			.019					
	MOTA	870	CD2	TYR A			. 695	66.877	12.281	1.00	0.00	C
20	MOTA	871	CE1	TYR A	133	43	.172	66.447	11.200	1.00	0.00	С
	ATOM	872	CE2	TYR A	133	44	.858	67.959	12.027	1.00	0.00	С
	ATOM	873	CZ	TYR A	133	43	. 600	67.738	11.488	1.00	0.00	С
		874	OH				.769	68.808	11.250	1.00	0.00	0
	ATOM			TYR A								N
0=	MOTA	875	N	PHE A			.526	62.366	12.452	1.00	0.00	
25	MOTA	876	CA	PHE A	134	49	. 397	61.541	13.284	1.00	0.00	C
	MOTA	877	С	PHE A	134	50	.876	61.830	13.058	1.00	0.00	С
	MOTA	878	0	PHE A	134	51	. 655	61.898	14.012	1.00	0.00	0
	ATOM	879	СВ	PHE A			.143	60.050	13.054	1.00	0.00	С
										1.00	0.00	Č
20	MOTA	880	CG	PHE A			. 662	59.182	14.167			C
30	MOTA	881		PHE A			.923	59.015	15.335	1.00	0.00	C
	MOTA	882	CD2	PHE A	134	50	.920	58.594	14.082	1.00	0.00	С
	ATOM	883	CE1	PHE A	134	49	.431	58.279	16.406	1.00	0.00	C
***	ATOM	884		PHE A		51	.438	57.859	15.145	1.00	0.00	C
•		885	CZ	PHE A			.691	57.701	16.312	1.00	0.00	C
25	MOTA											N
35	MOTA	886	N	ALA A			.264	61.991	11.796	1.00	0.00	
	MOTA	887	CA	ALA A		52	. 656	62.270	11.469	1.00	0.00	С
	ATOM	888	С	ALA A	135	53	.070	63.619	12.060	1.00	0.00	C
	MOTA	889	0	ALA A		54	.171	63.759	12.598	1.00	0.00	0
	ATOM	890	CB	ALA A			.845	62.265	9.957	1.00	0.00	С
40							.181	64.602	11.958	1.00	0.00	N
40	MOTA	891	N	ARG A								
	MOTA	892	CA	ARG A			.417	65.945	12.489	1.00	0.00	C
	MOTA	893	С	ARG A	136	52	.660	65.867	13.998	1.00	0.00	C
	ATOM	894	0	ARG A	136	53	.548	66.527	14.540	1.00	0.00	0
	MOTA	895	CB	ARG A		51	.195	66.829	12.213	1.00	0.00	C
45		896		ARG A			. 232	68.221	12.856	1.00	0.00	С
40	MOTA		CG									c
	MOTA	897	CD	ARG A			.964	69.245	11.990	1.00	0.00	
	MOTA	898	NE	ARG A	136	51	.880	70.593	12.559	1.00	0.00	N
	ATOM	899	CZ	ARG A	136	52	.508	70.966	13.668	1.00	0.00	C
	ATOM	900		ARG A			. 269	70.095	14.318	1.00	0.00	N
50	ATOM	901		ARG A			.367	72.198	14.139	1.00	0.00	N
30												
	MOTA	902	N	PHE A			.858	65.044	14.665	1.00	0.00	N
	MOTA	903	CA	PHE A	137	51	.946	64.856	16.109	1.00	0.00	C
	ATOM	904	С	PHE A	137	53	.217	64.115	16.520	1.00	0.00	C
	ATOM	905	0	PHE A	137	54	.007	64.599	17.336	1.00	0.00	0
55	ATOM	906	СВ	PHE A			.729	64.065	16.587	1.00	0.00	C
55											0.00	C
	ATOM	907	CG	PHE A			. 707	63.817	18.063	1.00		
	ATOM	908	CD1	PHE A	137		.395	64.844	18.948	1.00	0.00	С
	MOTA	909	CD2	PHE A	137	50	. 998	62.555	18.572	1.00	0.00	C
	ATOM	910		PHE A			.369	64.619	20.319	1.00	0.00	С
60	ATOM	911		PHE A			.975	62.319	19.947	1.00	0.00	C
00										1.00	0.00	c
	ATOM	912	CZ	PHE A	13/	50	. 659	63.356	20.819	1.00	0.00	C

	ATOM	913	N	TYR A	138		53.400	62.933	15.943	1.00	0.00	N
	ATOM	914	CA	TYR A			54.546	62.088	16.241	1.00	0.00	С
	ATOM	915	C	TYR A			55.897	62.793	16.136	1.00	0.00	С
	ATOM	916	0	TYR A			56.738	62.665	17.028	1.00	0.00	0
5				TYR A			54.549	60.871	15.320	1.00	0.00	C
3	MOTA	917	CB					59.832	15.706	1.00	0.00	c
	ATOM	918	CG	TYR A			55.576			1.00	0.00	Č
	ATOM	919		TYR A			55.322	58.928	16.734			c
	MOTA	920		TYR A			56.800	59.752	15.043	1.00	0.00	
	ATOM	921	CE1	TYR A	138		56.261	57.964	17.091	1.00	0.00	C
10	ATOM	922	CE2	TYR A	138		57.748	58.789	15.395	1.00	0.00	С
	ATOM	923	CZ	TYR A	138		57.468	57.900	16.416	1.00	0.00	С
	ATOM	924	ОН	TYR A	138		58.383	56.930	16.757	1.00	0.00	0
	ATOM	925	N	HIS A	139		56.117	63.523	15.047	1.00	0.00	N
	ATOM	926	CA	HIS A			57.392	64.214	14.871	1.00	0.00	С
15	ATOM	927	C	HIS A			57.629	65.306	15.911	1.00	0.00	С
10	ATOM	928	Ö	HIS A			58.763	65.734	16.119	1.00	0.00	0
		929	СВ	HIS A			57.493	64.795	13.460	1.00	0.00	С
	MOTA						57.671	63.756	12.395	1.00	0.00	C
	MOTA	930	CG	HIS A				62.935	12.335	1.00	0.00	N
20	MOTA	931		HIS A			58.778		11.355	1.00	0.00	C
20	ATOM	932		HIS A			56.880	63.398				C
	ATOM	933		HIS A			58.661	62.118	11.302	1.00	0.00	
	ATOM	934	NE2	HIS A			57.519	62.378	10.691	1.00	0.00	N
	ATOM	935	N	ASP A			56.560	65.751	16.563	1.00	0.00	N
	MOTA	936	CA	ASP A	140		56.663	66.780	17.594	1.00	0.00	C
25	ATOM	937	С	ASP A	140		56.880	66.170	18.983	1.00	0.00	С
	ATOM	938	0	ASP A	140		57.237	66.873	19.929	1.00	0.00	0
	ATOM	939	CB	ASP A	140		55.403	67.649	17.596	1.00	0.00	С
	ATOM	940	CG	ASP A			55.510	68.833	16.652	1.00	0.00	С
	ATOM	941		ASP A			56.361	68.794	15.739	1.00	0.00	0
30	ATOM	942		ASP A			54.738	69.802	16.819	1.00	0.00	0
50	ATOM	943	N	LEU P			56.672	64.861	19.097	1.00	0.00	N
	ATOM	944	CA	LEU P			56.847	64.160	20.368	1.00	0.00	С
		945	C	LEU A			58.305	63.962	20.751	1.00	0.00	Ċ
	ATOM						59.176	63.851	19.892	1.00	0.00	Ō
25	ATOM	946	0	LEU A				62.779	20.321	1.00	0.00	Č
35	ATOM	947	CB	LEU F			56.188		20.321		0.00	c
	MOTA	948	CG	LEU F			54.670	62.624		1.00	0.00	c
	MOTA	949		LEU P			54.324	61.135	20.287	1.00		C
	MOTA	950		LEU F			54.132	63.209	21.679	1.00	0.00	
	ATOM	951	N	GLY F		•	58.563	63.916	22.054	1.00	0.00	N
40	ATOM	952	CA	GLY F	142		59.913	63.685	22.528	1.00	0.00	C
	ATOM	953	С	GLY F	142		60.196	62.205	22.351	1.00	0.00	С
	ATOM	954	0	GLY A	142		59.265	61.411	22.206	1.00	0.00	0
	ATOM	955	N	GLU F	143		61.469	61.825	22.370	1.00	0.00	N
	ATOM	956	CA	GLU A	143		61.856	60.431	22.188	1.00	0.00	С
45	MOTA	957	С	GLU A	143		61.169	59.473	23.159	1.00	0.00	С
	ATOM	958	Ō	GLU A			60.744	58.387	22.767	1.00	0.00	0
	ATOM	959	СВ	GLU F			63.375	60.289	22.308	1.00	0.00	С
	ATOM	960	CG	GLU F			63.914	58.936	21.867	1.00	0.00	С
			CD	GLU F			63.519	58.582	20.441	1.00	0.00	С
50	ATOM	961						59.422	19.537	1.00	0.00	Ō
50	ATOM	962		GLU A			63.713		20.224	1.00	0.00	0
	ATOM	963		GLU F			63.017	57.460		1.00		N
	ATOM	964	N	ASN A			61.059	59.871	24.421		0.00	
	ATOM	965	CA	ASN A			60.416	59.027	25.423	1.00	0.00	С
	ATOM	966	С	ASN A	144		58.972	58.723	25.026	1.00	0.00	С
55	MOTA	967	0	ASN A	144		58.536	57.572	25.082	1.00	0.00	0
	ATOM	968	СВ	ASN A	144		60.456	59.711	26.797	1.00	0.00	C
	ATOM	969	CG	ASN A	144		59.678	58.946	27.859	1.00	0.00	С
	ATOM	970		ASN A			58.443	58.917	27.845	1.00	0.00	0
	ATOM	971		ASN A			60.399	58.319	28.786	1.00	0.00	N
60	MOTA	972	N	LYS A			58.240	59.755	24.614	1.00	0.00	N
00	ATOM	973	CA	LYS A			56.847	59.590	24.210	1.00	0.00	С
	AION	,,,	O/A	D. O. F			55.51		•		-	

	ATOM	974	С	LYS A	145	56.698	58.798	22.912	1.00	0.00	С
	ATOM	975	0	LYS A	145	55.735	58.046	22.752	1.00	0.00	0
	ATOM	976	СВ	LYS A	145	56.168	60.958	24.078	1.00	0.00	С
	ATOM	977	CG	LYS A	145	55.887	61.635	25.417	1.00	0.00	С
5	ATOM	978	CD	LYS A	145	54.925	60.800	26.252	1.00	0.00	С
	ATOM	979	CE	LYS A	145	54.648	61.430	27.613	1.00	0.00	С
	ATOM	980	NZ	LYS A	145	55.860	61.462	28.478	1.00	0.00	N
	ATOM	981	N	LYS A	146	57.640	58.966	21.986	1.00	0.00	N
	ATOM	982	CA	LYS A	146	57.589	58.225	20.728	1.00	0.00	С
10	ATOM	983	С	LYS A		57.650	56.734	21.036	1.00	0.00	С
	ATOM	984	0	LYS A		56.967	55.935	20.401	1.00	0.00	0
	ATOM	985	CB	LYS A		58.761	58.602	19.810	1.00	0.00	С
	ATOM	986	CG	LYS A		58.624	59.956	19.127	1.00	0.00	С
	ATOM	987	CD	LYS A		59.760	60.201	18.141	1.00	0.00	C
15	ATOM	988	CE	LYS A		59.594	61.542	17.439	1.00	0.00	Ċ
10	ATOM	989	NZ	LYS A		60.713	61.808	16.502	1.00	0.00	N
	ATOM	990	N	LEU A		58.470	56.369	22.019	1.00	0.00	N
	ATOM	991	CA	LEU A		58.618	54.976	22.423	1.00	0.00	c
	ATOM	992	C	LEU A		57.332	54.452	23.064	1.00	0.00	c
20		993				56.913	53.328	22.792	1.00	0.00	ō
20	ATOM		0	LEU A		59.795	54.828	23.394	1.00	0.00	c
	ATOM	994	CB	LEU A						0.00	c
	ATOM	995	CG	LEU A		61.174	55.065	22.765	1.00		c
	MOTA	996		LEU A		62.267	54.955	23.819	1.00	0.00	
25	MOTA	997		LEU A		61.404	54.043	21.659	1.00	0.00	C
25	MOTA	998	N	GLN A		56.707	55.258	23.917	1.00	0.00	N
	MOTA	999	CA	GLN A		55.456	54.838	24.541	1.00	0.00	С
	ATOM	1000	С	GLN A		54.393	54.655	23.461	1.00	0.00	С
	MOTA	1001	0	GLN A		53.578	53.734	23.525	1.00	0.00	0
20	ATOM	1002	CB	GLN A		54.961	55.874	25.552	1.00	0.00	С
30	MOTA	1003	CG	GLN A		55.689	55.857	26.884	1.00	0.00	C
	ATOM	1004	CD	GLN A		55.020	56.743	27.922	1.00	0.00	C
	MOTA	1005		GLN A		55.426	56.768	29.086	1.00	0.00	0
	MOTA	1006		GLN A		53.990	57.477	27.505	1.00	0.00	N
~=	MOTA	1007	N	MET A		54.407	55.537	22.468	1.00	0.00	N
35	MOTA	1008	CA	MET A		53.434	55.467	21.385	1.00	0.00	С
	MOTA	1009	С	MET A		53.634	54.196	20.565	1.00	0.00	С
	ATOM	1010	0	MET A	149	52.673	53.508	20.232	1.00	0.00	0
	MOTA	1011	CB	MET A	149	53.554	56.697	20.481	1.00	0.00	С
	MOTA	1012	CG	MET A	149	52.533	56.747	19.352	1.00	0.00	С
40	MOTA	1013	SD	MET A	149	50.823	56.818	19.930	1.00	0.00	S
	MOTA	1014	CE	MET A	149	50.571	58.585	20.073	1.00	0.00	С
	MOTA	1015	N	LYS A	150	54.885	53.879	20.244	1.00	0.00	N
	ATOM	1016	CA	LYS A	150	55.161	52.682	19.462	1.00	0.00	С
	ATOM	1017	С	LYS A	150	54.741	51.429	20.215	1.00	0.00	С
45	ATOM	1018	0	LYS A	150	54.314	50.450	19.606	1.00	0.00	0
	ATOM	1019	CB	LYS A	150	56.650	52.601	19.104	1.00	0.00	C
	ATOM	1020	CG	LYS A		57.115	53.724	18.190	1.00	0.00	C
	ATOM	1021	CD	LYS A		58.623	53.714	17.990	1.00	0.00	С
	MOTA	1022	CE	LYS A		59.076	52.493	17.214	1.00	0.00	С
50	ATOM	1023	NZ	LYS A		60.543	52.537	16.948	1.00	0.00	N
• •	ATOM	1024	N	SER A		54.839	51.464	21.542	1.00	0.00	N
	ATOM	1025	CA	SER A		54.474	50.305	22.346	1.00	0.00	С
	ATOM	1026	C	SER A		52.969	50.036	22.373	1.00	0.00	C
	ATOM	1027	Ö	SER A		52.548	48.883	22.271	1.00	0.00	Ō
55	ATOM	1028	СВ	SER A		55.002	50.454	23.778	1.00	0.00	c
55		1029	OG			54.275	51.437	24.486	1.00	0.00	Ö
	ATOM			SER A		52.150	51.437	24.400	1.00	0.00	N
	ATOM	1030 1031	N C	ILE A		50.710	50.854	22.528	1.00	0.00	C
	ATOM		CA	ILE A				22.328	1.00	0.00	c
60	ATOM	1032	С	ILE A		50.178	50.469 49.948			0.00	0
00	ATOM	1033	O	ILE A		49.072		21.026	1.00		C
	MOTA	1034	CB	ILE A	132	49.924	52.074	23.075	1.00	0.00	C

	ATOM	1035	CG1	ILE A	152	50.245	53.334	22.274	1.00	0.00	С
	ATOM	1036	CG2	ILE A	152	50.249	52.274	24.549	1.00	0.00	С
	ATOM	1037		ILE A		49.359	54.507	22.645	1.00	0.00	С
	MOTA	1038	N	VAL A	153	50.965	50.723	20.106	1.00	0.00	N
5	ATOM	1039	CA	VAL A		50.562	50.343	18.753	1.00	0.00	С
•	ATOM	1040	С	VAL A		50.959	48.881	18.580	1.00	0.00	С
	ATOM	1041	ō	VAL A		50.178	48.057	18.103	1.00	0.00	0
		1041	СВ	VAL A		51.280	51.195	17.682	1.00	0.00	Ċ
	ATOM						50.590	16.295	1.00	0.00	c
10	ATOM	1043		VAL A		51.068				0.00	c
10	ATOM	1044		VAL A		50.746	52.618	17.715	1.00		
	ATOM	1045	N	LYS A		52.181	48.564	18.998	1.00	0.00	N
	MOTA	1046	CA	LYS A		52.692	47.203	18.897	1.00	0.00	C
	ATOM	1047	С	LYS A		51.832	46.218	19.692	1.00	0.00	C
	ATOM	1048	0	LYS A	154	51.604	45.088	19.244	1.00	0.00	0
15	ATOM	1049	CB	LYS A	154	54.141	47.153	19.395	1.00	0.00	С
	ATOM	1050	CG	LYS A	154	54.883	45.879	19.009	1.00	0.00	С
	ATOM	1051	CD	LYS A	154	56.371	45.971	19.327	1.00	0.00	С
	ATOM	1052	CE	LYS A		56.650	45.772	20.811	1.00	0.00	С
	ATOM	1053	NZ	LYS A		55.949	46.755	21.689	1.00	0.00	N
20	ATOM	1054	N	ASN A		51.344	46.643	20.857	1.00	0.00	N
20	ATOM	1055	CA	ASN A		50.524	45.773	21.697	1.00	0.00	C
						49.050	45.705	21.292	1.00	0.00	c
	ATOM	1056	С	ASN A				21.292	1.00	0.00	o
	ATOM	1057	0	ASN A		48.269	44.985				c
25	ATOM	1058	СВ	ASN A		50.637	46.177	23.178	1.00	0.00	
25	ATOM	1059	CG	ASN A		49.837	47.427	23.519	1.00	0.00	C
	ATOM	1060		ASN A		49.102	47.957	22.688	1.00	0.00	0
	MOTA	1061	ND2	ASN A	155	49.973	47.898	24.757	1.00	0.00	N
	MOTA	1062	N	GLY A	156	48.665	46.467	20.272	1.00	0.00	N
	ATOM	1063	CA	GLY A	156	47.291	46.417	19.798	1.00	0.00	С
30	ATOM	1064	С	GLY A	156	46.253	47.362	20.380	1.00	0.00	С
	MOTA	1065	0	GLY A	156	45.080	47.277	20.006	1.00	0.00	0
	ATOM	1066	N	GLN A		46.652	48.259	21.279	1.00	0.00	N
	ATOM	1067	CA	GLN A		45.695	49.195	21.872	1.00	0.00	C
	ATOM	1068	C	GLN A		45.308	50.318	20.916	1.00	0.00	С
35	ATOM	1069	Ö	GLN A		44.143	50.692	20.829	1.00	0.00	0
00	ATOM	1070	CB	GLN A		46.254	49.811	23.147	1.00	0.00	C
	ATOM	1070	CG	GLN A		46.313	48.867	24.328	1.00	0.00	C
						46.577	49.619	25.611	1.00	0.00	C
	ATOM	1072	CD	GLN A						0.00	0
40	ATOM	1073	OE1			45.676	50.244	26.173	1.00		И
40	ATOM	1074		GLN A		47.818	49.589	26.065	1.00	0.00	
	MOTA	1075	N	LEU A		46.299	50.884	20.236	1.00	0.00	И
	MOTA	1076	CA	LEU A		46.047	51.938	19.266	1.00	0.00	C
	MOTA	1077	С	LEU A	158	46.230	51.277	17.909	1.00	0.00	C
	MOTA	1078	0	LEU A	158	47.308	50.772	17.598	1.00	0.00	0
45	ATOM	1079	CB	LEU A	158	47.042	53.093	19.440	1.00	0.00	С
	ATOM	1080	CG	LEU A	158	46.941	54.281	18.471	1.00	0.00	С
	ATOM	1081	CD1	LEU A		47.444	53.885	17.092	1.00	0.00	C
	ATOM	1082		LEU A		45.508	54.766	18.392	1.00	0.00	C
	ATOM	1083	N	GLU A		45.171	51.274	17.107	1.00	0.00	N
50	ATOM	1084	CA	GLU A		45.230	50.638	15.801	1.00	0.00	С
50	ATOM	1085	C	GLU A		44.890	51.595	14.670	1.00	0.00	Ċ
						43.912	52.336	14.739	1.00	0.00	ō
	ATOM	1086	0	GLU A							C
	ATOM	1087	CB	GLU A		44.277	49.442	15.771	1.00	0.00	
	MOTA	1088	CG	GLU A		44.210	48.721	14.434	1.00	0.00	С
55	MOTA	1089	CD	GLU A		43.268	47.534	14.476	1.00	0.00	C
	ATOM	1090	OE1	GLU A	159	43.603	46.536	15.148	1.00	0.00	0
	ATOM	1091	OE2	GLU A	159	42.191	47.604	13.844	1.00	0.00	0
	MOTA	1092	N	PHE A		45.709	51.577	13.629	1.00	0.00	N
	ATOM	1093	CA	PHE A		45.466	52.437	12.488	1.00	0.00	С
60	ATOM	1094	С	PHE A		44.548	51.735	11.509	1.00	0.00	С
	ATOM	1095	ō	PHE A		44.727	50.552	11.202	1.00	0.00	0
	•••		-				-				

	ATOM	1096	СВ	PHE A	160	46.781	52.812	11.808	1.00	0.00	С
	ATOM	1097	CG	PHE P		47.707	53.593	12.692	1.00	0.00	С
	ATOM	1098	CD1	PHE A		48.747	52.959	13.367	1.00	0.00	С
	ATOM	1099	CD2	PHE P	160	47.508	54.956	12.892	1.00	0.00	С
5	ATOM	1100		PHE A		49.574		14.231	1.00	0.00	С
•	ATOM	1101		PHE P		48.331	55.677	13.757	1.00	0.00	С
	ATOM	1102	CZ	PHE A		49.362		14.425	1.00	0.00	Ċ
						43.543		11.048	1.00	0.00	N
	ATOM	1103	N	VAL A						0.00	C
10	ATOM	1104	CA	VAL A		42.591		10.087	1.00		c
10	ATOM	1105	С	VAL A		42.805		8.791	1.00	0.00	
	MOTA	1106	0	VAL A		42.882		8.800	1.00	0.00	0
	ATOM	1107	CB	VAL A		41.138		10.605	1.00	0.00	C
	MOTA	1108	CG1	VAL A	161	40.919		11.776	1.00	0.00	С
	MOTA	1109	CG2	VAL A	161	40.870	53.519	11.058	1.00	0.00	С
15	MOTA	1110	N	THR A	162	42.914	51.976	7.690	1.00	0.00	N
	MOTA	1111	CA	THR A	162	43.179	52.519	6.358	1.00	0.00	С
	ATOM	1112	С	THR A		44.641		6.314	1.00	0.00	С
	ATOM	1113	0	THR A		45.451		5.572	1.00	0.00	0
	ATOM	1114	СВ	THR A		42.268		5.993	1.00	0.00	С
20	ATOM	1115		THR A		40.894	53.310	6.017	1.00	0.00	0
20	ATOM	1116		THR A		42.598		4.583	1.00	0.00	C
								7.113	1.00	0.00	N
	ATOM	1117	N	GLY A		44.978				0.00	C
	ATOM	1118	CA	GLY A		46.351		7.147	1.00		C
25	ATOM	1119	С	GLY A		46.721	55.412	6.034	1.00	0.00	C
25	MOTA	1120	0	GLY P		47.895		5.705	1.00	0.00	0
	ATOM	1121	N	GLY A		45.718		5.446	1.00	0.00	N
	MOTA	1122	CA	GLY A		45.980		4.393	1.00	0.00	С
	MOTA	1123	С	GLY A	164	46.271		4.989	1.00	0.00	С
	ATOM	1124	0	GLY A	164	45.987	58.630	6.163	1.00	0.00	0
30	ATOM	1125	N	TRP A	165	46.847	59.267	4.186	1.00	0.00	N
	ATOM	1126	CA	TRP P	165	47.158	60.612	4.656	1.00	0.00	C
	ATOM	1127	С	TRP P	165	45.848	61.228	5.155	1.00	0.00	С
	ATOM	1128	0	TRP A		45.825	61.957	6.150	1.00	0.00	0
	ATOM	1129	СВ	TRP A		47.739		3.507	1.00	0.00	С
35	ATOM	1130	CG	TRP P		48.530		3.938	1.00	0.00	С
00	ATOM	1131		TRP A		48.290		3.600	1.00	0.00	С
	MOTA	1132		TRP F		49.717		4.745	1.00	0.00	C
		1132		TRP F		49.253		4.145	1.00	0.00	И
	ATOM			TRP P		50.141		4.851	1.00	0.00	C
40	ATOM	1134								0.00	C
40	ATOM	1135		TRP A		50.464		5.385	1.00		c
	ATOM	1136		TRP A		51.282		5.575	1.00	0.00	
	MOTA	1137		TRP P		51.602		6.107	1.00	0.00	C
	MOTA	1138		TRP A		51.995		6.193	1.00	0.00	C
4=	MOTA	1139	N	VAL A		44.756		4.467	1.00	0.00	N
45	ATOM	1140	CA	VAL A	166	43.425		4.822	1.00	0.00	С
	MOTA	1141	С	VAL A	166	42.395		4.591	1.00	0.00	C
	MOTA	1142	0	VAL A	166	42.755	59.158	4.290	1.00	0.00	0
	ATOM	1143	CB	VAL A	166	43.015	62.614	3.930	1.00	0.00	С
	ATOM	1144	CG1	VAL A	166	44.058		4.035	1.00	0.00	С
50	ATOM	1145	CG2	VAL A	166	42.873	62.167	2.465	1.00	0.00	С
	ATOM	1146	N	MET A		41.122		4.773	1.00	0.00	N
	ATOM	1147	CA	MET A		39.997		4.499	1.00	0.00	С
	ATOM	1148	C	MET A		39.453		3.296	1.00	0.00	C
								3.438	1.00	0.00	Ö
EE	ATOM	1149	0	MET A		38.657					
55	ATOM	1150	СВ	MET A		38.981		5.641	1.00	0.00	C
	ATOM	1151	CG	MET A		37.730		5.362	1.00	0.00	C
	ATOM	1152	SD	MET A		36.561		6.731	1.00	0.00	S
	MOTA	1153	CE	MET A		37.551		8.032	1.00	0.00	С
	MOTA	1154	N	PRO P	168	39.877	60.103	2.085	1.00	0.00	N
60	ATOM	1155	CA	PRO P	168	39.448	60.779	0.862	1.00	0.00	C
	ATOM	1156	С	PRO P		38.006	60.758	0.399	1.00	0.00	С

	ATOM	1157	0	PRO A	169	37.234	59.849	0.701	1.00	0.00	О
	ATOM	1158	СВ	PRO A		40.367	60.175	-0.193	1.00	0.00	С
	ATOM	1159	CG	PRO A		40.431	58.739	0.248	1.00	0.00	С
	ATOM	1160	CD	PRO A		40.629	58.872	1.763	1.00	0.00	С
5	ATOM	1161	N	ASP A		37.672	61.800	-0.353	1.00	0.00	N
9	ATOM	1162	CA	ASP A		36.378	61.911	-0.987	1.00	0.00	C
		1162	C	ASP A		36.468	60.745	-1.965	1.00	0.00	Ċ
	ATOM	1163	0	ASP A		37.569	60.379	-2.382	1.00	0.00	Ō
	ATOM			ASP A		36.285	63.228	-1.758	1.00	0.00	Č
10	ATOM	1165	CB	ASP A		35.167	63.227	-2.780	1.00	0.00	Č
10	MOTA	1166	CG			34.076	62.709	-2.465	1.00	0.00	ō
	ATOM	1167		ASP A			63.756	-3.890	1.00	0.00	Ö
	ATOM	1168		ASP A		35.374		-2.324	1.00	0.00	N
	ATOM	1169	N	GLU A		35.336	60.152	-3.250	1.00	0.00	c
15	ATOM	1170	CA	GLU A		35.367	59.028	-3.250 -4.566	1.00	0.00	c
15	ATOM	1171	С	GLU A		34.658	59.327	-5.467	1.00	0.00	0
	ATOM	1172	0	GLU A		34.630	58.489			0.00	c
	ATOM	1173	CB	GLU A		34.768	57.782	-2.575	1.00	0.00	C
	ATOM	1174	CG	GLU A		35.635	57.268	-1.417	1.00	0.00	c
20	ATOM	1175	CD	GLU A		35.037	56.070	-0.687	1.00		0
20	ATOM	1176		GLU A		34.240	55.330	-1.301	1.00	0.00	0
	MOTA	1177		GLU A		35.387	55.860	0.499	1.00	0.00	N
	ATOM	1178	N	ALA A		34.112	60.533	-4.687	1.00		C
	ATOM	1179	CA	ALA A		33.397	60.918	-5.901	1.00	0.00	c
25	ATOM	1180	С	ALA A		34.233	61.694	-6.920	1.00	0.00	
25	MOTA	1181	0	ALA A		34.279	61.342	-8.099	1.00	0.00	0
	MOTA	1182	CB	ALA A		32.164	61.733	-5.533	1.00	0.00	C
	MOTA	1183	N	ASN A		34.888	62.752	-6.452	1.00	0.00	N
	ATOM	1184	CA	ASN A		35.685	63.629	-7.305	1.00	0.00	C
20	MOTA	1185	С	ASN A		37.145	63.220	-7.465	1.00	0.00	C
30	MOTA	1186	0	ASN A		37.806	63.594	-8.432	1.00	0.00	0
	MOTA	1187	CB	ASN A		35.643	65.045	-6.733	1.00	0.00	C
	MOTA	1188	CG	ASN A		34.231	65.585	-6.613	1.00	0.00	C
	MOTA	1189		ASN A		33.572	65.854	-7.617	1.00	0.00	0
25	MOTA	1190		ASN A		33.760	65.746	-5.379	1.00	0.00	N
35	MOTA	1191	N	SER A		37.643	62.455	-6.508	1.00	0.00	N
	MOTA	1192	CA	SER A		39.040	62.031	-6.510	1.00	0.00	C
	MOTA	1193	С	SER A		39.432	61.111	-7.660	1.00	0.00	С
	ATOM	1194	0	SER A		38.671	60.220	-8.040	1.00	0.00	0
40	MOTA	1195	CB	SER A		39.349	61.327	-5.193	1.00	0.00	C
4 0	MOTA	1196	OG	SER A		40.734	61.020	-5.115	1.00	0.00	. 0
	MOTA	1197	N	HIS A		40.623	61.335	-8.215	1.00	0.00	N
	ATOM	1198	CA	HIS A		41.116	60.474	-9.282	1.00	0.00	C
	MOTA	1199	С	HIS A		41.786	59.293	-8.576	1.00	0.00	C 0
4.5	ATOM	1200	0	HIS A		42.429	59.480	-7.545	1.00	0.00	
4 5	ATOM	1201	CB	HIS A		42.127		-10.152	1.00	0.00	C
	MOTA	1202	CG	HIS A		42.377		-11.466	1.00	0.00	C
	MOTA	1203		HIS A		43.060		-11.576	1.00	0.00	N
	ATOM	1204		HIS A		41.972		-12.717	1.00	0.00	С
	ATOM	1205		HIS A		43.060		-12.840	1.00	0.00	C
50	ATOM	1206	NE2	HIS A		42.406		-13.552	1.00	0.00	N
	MOTA	120.7	N	TRP A		41.642	58.085	-9.115	1.00	0.00	N
	ATOM	1208	CA	TRP A		42.230	56.920	-8.461	1.00	0.00	C
	ATOM	1209	С	TRP A	175	43.722	57.085	-8.224	1.00	0.00	C
	ATOM	1210	0	TRP A	175	44.254	56.588	-7.233	1.00	0.00	0
55	MOTA	1211	CB	TRP A	175	41.964	55.628	-9.254	1.00	0.00	C
	MOTA	1212	CG	TRP A	175	42.795		-10.501	1.00	0.00	C
	MOTA	1213	CD1	TRP A	175	42.468		-11.774	1.00	0.00	C
	MOTA	1214		TRP A		44.088		-10.583	1.00	0.00	С
	ATOM	1215	NE1	TRP A	175	43.479		-12.646	1.00	0.00	Ŋ
60	ATOM	1216	CE2	TRP A	175	44.485		-11.939	1.00	0.00	С
	ATOM	1217	CE3	TRP A	175	44.951	54.258	-9.638	1.00	0.00	С

	ATOM	1218	CZ2	TRP A	175	45.711	54.348	-12.378	1.00	0.00	С
	ATOM	1219	CZ3			46.170	53.739	-10.072	1.00	0.00	С
	ATOM	1220	CH2	TRP A	175	46.537	53.789	-11.434	1.00	0.00	С
	ATOM	1221	N	ARG A	176	44.399	57.787	-9.126	1.00	0.00	N
5	ATOM	1222	CA	ARG A	176	45.830	58.000	-8.974	1.00	0.00	С
	ATOM	1223	С	ARG A	176	46.145	58.754	-7.679	1.00	0.00	С
	ATOM	1224	0	ARG A	176	47.118	58.433	-6.987	1.00	0.00	0
	ATOM	1225	CB	ARG A		46.374	58.756	-10.191	1.00	0.00	С
	ATOM	1226	CG	ARG A		46.436	57.886	-11.445	1.00	0.00	С
10	ATOM	1227	CD	ARG A		46.407	58.704	-12.723	1.00	0.00	С
	ATOM	1228	NE	ARG A		47.504		-12.820	1.00	0.00	N
	ATOM	1229	CZ	ARG A		47.662		-13.845	1.00	0.00	С
	ATOM	1230		ARG A		46.794		-14.852	1.00	0.00	N
	ATOM	1231		ARG A		48.677		-13.861	1.00	0.00	N
15	ATOM	1232	N	ASN A		45.325	59.747	-7.341	1.00	0.00	N
10	ATOM	1233	CA	ASN A		45.557	60.511	-6.116	1.00	0.00	С
	ATOM	1234	C	ASN A		45.077	59.759	-4.877	1.00	0.00	C
	ATOM	1235	Ö	ASN A		45.587	59.975	-3.773	1.00	0.00	0
	ATOM	1236	СВ	ASN A		44.894	61.891	-6.200	1.00	0.00	C
20	ATOM	1237	CG	ASN A		45.567	62.787	-7.220	1.00	0.00	Č
20		1237		ASN A		46.750	62.621	-7.515	1.00	0.00	ō
	ATOM					44.821	63.747	-7.758	1.00	0.00	N
	ATOM	1239		ASN A			58.882	-5.055	1.00	0.00	N
	ATOM	1240	N	VAL A		44.095		-3.935	1.00	0.00	C
25	ATOM	1241	CA	VAL A		43.618	58.078 57.175	-3.558	1.00	0.00	c
25	ATOM	1242	C	VAL A		44.797			1.00	0.00	0
	ATOM	1243	0	VAL A		45.095	56.980	-2.378			c
	ATOM	1244	CB	VAL A		42.404	57.198	-4.336	1.00	0.00	c
	ATOM	1245		VAL A		42.074	56.207	-3.215	1.00	0.00	c
20	ATOM	1246		VAL A		41.199	58.079	-4.631	1.00	0.00	
30	MOTA	1247	N	LEU A		45.476	56.634	-4.570	1.00	0.00	N C
	MOTA	1248	CA	LEU A		46.629	55.768	-4.326	1.00	0.00	
	MOTA	1249	С	LEU A		47.783	56.568	-3.739	1.00	0.00	С
	MOTA	1250	0	LEU A		48.484	56.096	-2.839	1.00	0.00	0
25	MOTA	1251	CB	LEU A		47.098	55.093	-5.622	1.00	0.00	C
35	MOTA	1252	CG	LEU A		48.400	54.279	-5.498	1.00	0.00	С
	MOTA	1253		LEU A		48.236	53.163	-4.463	1.00	0.00	C
	MOTA	1254		LEU A		48.759	53.699	-6.860	1.00	0.00	C
	ATOM	1255	N	LEU A		47.980	57.782	-4.250	1.00	0.00	N
40	MOTA	1256	CA	LEU A		49.060	58.635	-3.763	1.00	0.00	C
40	MOTA	1257	С	LEU A		48.922	58.898	-2.261	1.00	0.00	C
	MOTA	1258	0	LEU A		49.876	58.707	-1.499	1.00	0.00	0
	MOTA	1259	CB	LEU A		49.066	59.970	-4.521	1.00	0.00	С
	MOTA	1260	CG	LEU A	180	50.209	60.929	-4.169	1.00	0.00	C
	MOTA	1261	CD1	LEU A	180	51.515	60.375	-4.738	1.00	0.00	С
45	MOTA	1262	CD2	LEU A	180	49.928	62.322	-4.727	1.00	0.00	С
	MOTA	1263	N	GLN A	181	47.737	59.322	-1.825	1.00	0.00	N
	ATOM	1264	CA	GLN A	181	47.544	59.619	-0.409	1.00	0.00	С
	ATOM	1265	С	GLN A	181	47.588	58.377	0.476	1.00	0.00	С
	MOTA	1266	0	GLN A	181	48.068	58.446	1.605	1.00	0.00	0
50	MOTA	1267	CB	GLN A	181	46.247	60.419	-0.186	1.00	0.00	С
	MOTA	1268	CG	GLN A	181	44.931	59.680	-0.425	1.00	0.00	С
	MOTA	1269	CD	GLN A	181	44.567	58.741	0.714	1.00	0.00	С
	ATOM	1270	OE1	GLN A		44.821	59.037	1.887	1.00	0.00	0
	ATOM	1271		GLN A		43.956	57.610	0.377	1.00	0.00	N
55	ATOM	1272	N	LEU A		47.104	57.243	-0.029	1.00	0.00	N
	ATOM	1273	CA	LEU A		47.151	56.011	0.750	1.00	0.00	С
	ATOM	1274	C	LEU A		48.623	55.644	0.939	1.00	0.00	С
	ATOM	1275	Ö	LEU A		49.058	55.307	2.040	1.00	0.00	0
	ATOM	1276	СВ	LEU A		46.429	54.868	0.019	1.00	0.00	С
60	ATOM	1277	CG	LEU A		46.497	53.482	0.679	1.00	0.00	С
00	ATOM	1278		LEU A		45.750	53.491	2.011	1.00	0.00	C
	0.7	12.0								·	

											_
	ATOM	1279	CD2	LEU A	182	45.891	52.437	-0.261	1.00	0.00	С
	ATOM	1280	N	THR A	183	49.389	55.735	-0.145	1.00	0.00	N
	ATOM	1281	CA	THR A	183	50.810	55.408	-0.113	1.00	0.00	С
	MOTA	1282	С	THR A	183	51.569	56.350	0.825	1.00	0.00	С
5	ATOM	1283	0	THR A	183	52.437	55.919	1.592	1.00	0.00	0
	ATOM	1284	CB	THR A	183	51.431	55.489	-1.539	1.00	0.00	С
	ATOM	1285		THR A		50.708	54.626	-2.430	1.00	0.00	0
	ATOM	1286		THR A		52.899	55.060	-1.513	1.00	0.00	C
	ATOM	1287	N	GLU A		51.238	57.636	0.775	1.00	0.00	N
10	ATOM	1288	CA	GLU A		51.916	58.611	1.625	1.00	0.00	С
10		1289	C	GLU A		51.715	58.250	3.100	1.00	0.00	Ċ
	ATOM						58.257	3.888	1.00	0.00	ō
	ATOM	1290	0	GLU A		52.663				0.00	c
	MOTA	1291	CB	GLU A		51.376	60.017	1.342	1.00		
1 m	MOTA	1292	CG	GLU A		52.229	61.165	1.883	1.00	0.00	С
15	MOTA	1293	CD	GLU A		53.624	61.226	1.269	1.00	0.00	C
	MOTA	1294		GLU A		53.778	60.909	0.070	1.00	0.00	0
	MOTA	1295	OE2	GLU A	184	54.567	61.615	1.988	1.00	0.00	0
	ATOM	1296	N	GLY A	185	50.479	57.921	3.463	1.00	0.00	N
	MOTA	1297	CA	GLY A	185	50.182	57.560	4.840	1.00	0.00	С
20	MOTA	1298	С	GLY A	185	50.766	56.225	5.271	1.00	0.00	С
	MOTA	1299	0	GLY A	185	51.350	56.112	6.356	1.00	0.00	0
	ATOM	1300	N	GLN A		50.623	55.204	4.432	1.00	0.00	N
	ATOM	1301	CA	GLN A		51.142	53.886	4.788	1.00	0.00	С
	ATOM	1302	C	GLN A		52.666	53.803	4.781	1.00	0.00	С
25	MOTA	1302	Ö	GLN A		53.254	53.043	5.551	1.00	0.00	0
20		1303		GLN A		50.559	52.808	3.870	1.00	0.00	c
	ATOM		CB				52.631	4.004	1.00	0.00	c
	ATOM	1305	CG	GLN A		49.045		3.797	1.00	0.00	c
	MOTA	1306	CD	GLN A		48.614	51.190				o
20	ATOM	1307	OE1			49.190	50.476	2.981	1.00	0.00	N
30	MOTA	1308		GLN A		47.592	50.758	4.531	1.00	0.00	
	MOTA	1309	N	THR A		53.312	54.574	3.916	1.00	0.00	N
	MOTA	1310	CA	THR A		54.768	54.551	3.873	1.00	0.00	C
	MOTA	1311	С	THR A	187	55.289	55.132	5.188	1.00	0.00	C
	ATOM	1312	0	THR A	187	56.255	54.629	5.765	1.00	0.00	0
35	MOTA	1313	CB	THR A	187	55.297	55.355	2.673	1.00	0.00	С
	ATOM	1314	OG1	THR A	187	54.837	54.743	1.460	1.00	0.00	0
	MOTA	1315	CG2	THR A	187	56.827	55.373	2.664	1.00	0.00	С
	ATOM	1316	N	TRP A		54.631	56.179	5.675	1.00	0.00	N
	ATOM	1317	CA	TRP A		 55.034	56.790	6.937	1.00	0.00	С
40	ATOM	1318	С	TRP A		54.838	55.761	8.052	1.00	0.00	С
	ATOM	1319	Ō	TRP A		55.727	55.551	8.875	1.00	0.00	0
	ATOM	1320	СВ	TRP A		54.189	58.033	7.239	1.00	0.00	С
	ATOM	1321	CG	TRP A		54.655	58.785	8.461	1.00	0.00	С
		1322		TRP A		55.574	59.798	8.503	1.00	0.00	c
45	ATOM		CD1			54.297	58.513	9.823	1.00	0.00	c
43	ATOM	1323		TRP A					1.00	0.00	N
	ATOM	1324		TRP A		55.815	60.168	9.808		0.00	C
	MOTA	1325		TRP A		55.044	59.395	10.637	1.00		
	MOTA	1326		TRP A		53.422	57.605	10.434	1.00	0.00	С
	MOTA	1327		TRP A		54.942	59.394	12.032	1.00	0.00	C
50	MOTA	1328	CZ3	TRP A	188	53.322	57.603	11.826	1.00	0.00	C
	MOTA	1329	CH2	TRP A	188	54.079	58.492	12.607	1.00	0.00	С
	ATOM	1330	N	LEU A	189	53.672	55.115	8.071	1.00	0.00	N
	ATOM	1331	CA	LEU A	189	53.375	54.113	9.094	1.00	0.00	С
	MOTA	1332	С	LEU A	189	54.375	52.962	9.114	1.00	0.00	С
55	ATOM	1333	0	LEU A		54.793	52.515	10.185	1.00	0.00	0
	ATOM	1334	СВ	LEU A		51.965	53.542	8.901	1.00	0.00	С
	ATOM	1335	CG	LEU A		50.798	54.436	9.325	1.00	0.00	С
	ATOM	1336		LEU A		49.476	53.723	9.014	1.00	0.00	С
	ATOM	1337		LEU A		50.908	54.745	10.821	1.00	0.00	C
60	ATOM	1337	N N	LYS A		54.753	52.470	7.939	1.00	0.00	N
00						55.704	51.365	7.885	1.00	0.00	C
	MOTA	1339	CA	LYS A	190	55.704	J1.J0J	,.005	1.00	0.00	Č

	ATOM	1340	С	LYS A	190	57.047	51.789	8.466	1.00	0.00	С
	ATOM	1341	0	LYS A		57.646	51.066	9.261	1.00	0.00	0
	ATOM	1342	CB	LYS A	190	55.913	50.883	6.446	1.00	0.00	С
	ATOM	1343	CG	LYS A		56.747	49.601	6.350	1.00	0.00	С
5	ATOM	1344	CD	LYS A		56.968	49.178	4.906	1.00	0.00	C
Ū	ATOM	1345	CE	LYS A		57.527	47.761	4.815	1.00	0.00	С
	ATOM	1346	NZ	LYS A		58.685	47.571	5.732	1.00	0.00	N
	MOTA	1347	N	GLN A		57.511	52.967	8.071	1.00	0.00	N
						58.791	53.471	8.542	1.00	0.00	C
10	ATOM	1348	CA	GLN A			53.796	10.034	1.00	0.00	c
10	MOTA	1349	C	GLN A		58.847			1.00	0.00	0
	MOTA	1350	0	GLN A		59.810	53.431	10.710			c
	MOTA	1351	CB	GLN A		59.196	54.715	7.741	1.00	0.00	
	MOTA	1352	CG	GLN A		60.522	55.317	8.190	1.00	0.00	С
. ·	ATOM	1353	CD	GLN A		60.941	56.526	7.371	1.00	0.00	C
15	MOTA	1354		GLN A		61.982	57.132	7.635	1.00	0.00	0
	ATOM	1355	NE2	GLN A		60.135	56.883	6.373	1.00	0.00	N
	MOTA	1356	N	PHE A	192	57.826	54.471	10.556	1.00	0.00	N
	ATOM	1357	CA	PHE A	192	57.842	54.853	11.967	1.00	0.00	С
	ATOM	1358	С	PHE A	192	57.044	54.008	12.965	1.00	0.00	С
20	ATOM	1359	0	PHE A	192	57.394	53.969	14.146	1.00	0.00	0
	ATOM	1360	CB	PHE A		57.422	56.319	12.110	1.00	0.00	С
	ATOM	1361	CG	PHE A		58.327	57.278	11.395	1.00	0.00	С
	ATOM	1362		PHE A		58.024	57.716	10.108	1.00	0.00	С
	ATOM	1363		PHE A		59.497	57.727	11.997	1.00	0.00	С
25	ATOM	1364		PHE A		58.870	58.587	9.432	1.00	0.00	С
20	ATOM	1365		PHE A		60.355	58.601	11.329	1.00	0.00	C
	MOTA	1366	CZ	PHE A		60.041	59.032	10.044	1.00	0.00	c
	ATOM	1367	N	MET A		55.985	53.343	12.512	1.00	0.00	N
				MET A		55.165	52.521	13.410	1.00	0.00	C
30	ATOM	1368	CA				51.025	13.145	1.00	0.00	c
30	ATOM	1369	С	MET A		55.333			1.00	0.00	0
	ATOM	1370	0	MET A		54.859	50.190	13.920		0.00	C
	MOTA	1371	CB	MET A		53.679	52.880	13.274	1.00		c
	ATOM	1372	CG	MET A		53.268	54.222	13.862	1.00	0.00	
0.5	MOTA	1373	SD	MET A		53.639	54.388	15.631	1.00	0.00	S
35	MOTA	1374	CE	MET A		54.987	55.512	15.487	1.00	0.00	C
	MOTA	1375	N	ASN A		55.997	50.698	12.041	1.00	0.00	N
	MOTA	1376	CA	ASN A		56.234	49.312	11.654	1.00	0.00	C
	MOTA	1377	С	ASN A		54.932	48.521	11.530	1.00	0.00	C
	MOTA	1378	0	ASN A	194	54.839	47.377	11.975	1.00	0.00	0
4 0	ATOM	1379	CB	ASN A	194	57.168	48.640	12.669	1.00	0.00	С
	ATOM	1380	CG	ASN A	194	57.626	47.263	12.223	1.00	0.00	С
	ATOM	1381	OD1	ASN A	194	57.761	47.001	11.026	1.00	0.00	0
	ATOM	1382	ND2	ASN A	194	57.880	46.389	13.194	1.00	0.00	N
	ATOM	1383	N	VAL A	195	53.920	49.140	10.932	1.00	0.00	N
45	ATOM	1384	CA	VAL A	195	52.633	48.478	10.741	1.00	0.00	С
	ATOM	1385	C	VAL A		52.002	48.928	9.428	1.00	0.00	C
	ATOM	1386	0	VAL A		52.223	50.052	8.979	1.00	0.00	0
	ATOM	1387	CB	VAL A		51.631	48.789	11.891	1.00	0.00	С
	ATOM	1388		VAL A		52.186	48.303	13.228	1.00	0.00	С
50	ATOM	1389		VAL A		51.334	50.282	11.941	1.00	0.00	C
30	MOTA	1390	N N	THR A		51.230	48.032	8.821	1.00	0.00	N
			CA			50.528	48.308	7.570	1.00	0.00	C
	ATOM	1391		THR A				7.740	1.00	0.00	Č
	ATOM	1392	C	THR A		49.094	47.815				0
CC	ATOM	1393	0	THR A		48.847	46.611	7.778	1.00	0.00	
55	MOTA	1394	CB	THR A		51.159	47.554	6.373	1.00	0.00	C
	MOTA	1395		THR A		52.518	47.973	6.195	1.00	0.00	0
	MOTA	1396		THR A		50.377	47.837	5.099	1.00	0.00	C
	MOTA	1397	N	PRO A		48.130	48.743	7.852	1.00	0.00	N
	MOTA	1398	CA	PRO A		46.722	48.371	8.020	1.00	0.00	C
60	ATOM	1399	С	PRO A		46.182	47.503	6.889	1.00	0.00	C
	ATOM	1400	0	PRO A	197	46.539	47.693	5.724	1.00	0.00	0

	ATOM	1401	СВ	PRO	Α	197	46.013	49.722	8.078	1.00	0.00	Ç
	ATOM	1402	CG	PRO	Α	197	47.055	50.625	8.681	1.00	0.00	С
	MOTA	1403	CD	PRO	Α	197	48.302	50.203	7.946	1.00	0.00	Ç
	ATOM	1404	N	THR	Α	198	45.333	46.541	7.240	1.00	0.00	N
5	ATOM	1405	CA	THR	Α	198	44.717	45.674	6.244	1.00	0.00	С
	ATOM	1406	С	THR	Α	198	43.206	45.838	6.323	1.00	0.00	С
	ATOM	1407	0	THR	Α	198	42.465	45.141	5.634	1.00	0.00	0
	ATOM	1408	СВ	THR	Α	198	45.064	44.185	6.454	1.00	0.00	С
	ATOM	1409	OG1	THR	Α	198	44.607	43.763	7.741	1.00	0.00	0
10	ATOM	1410		THR			46.567	43.964	6.330	1.00	0.00	С
	MOTA	1411	N	ALA			42.760	46.761	7.175	1.00	0.00	N
	ATOM	1412	CA	ALA			41.337	47.054	7.332	1.00	0.00	С
	ATOM	1413	С	ALA			41.113	48.551	7.090	1.00	0.00	С
	ATOM	1414	0	ALA			41.811	49.389	7.665	1.00	0.00	0
15	ATOM	1415	CB	ALA	Α	199	40.862	46.664	8.738	1.00	0.00	С
	ATOM	1416	N	SER			40.140	48.882	6.248	1.00	0.00	N
	ATOM	1417	CA	SER			39.850	50.280	5.931	1.00	0.00	С
	ATOM	1418	C	SER			38.615	50.799	6.658	1.00	0.00	С
	ATOM	1419	ō	SER			37.648	50.059	6.881	1.00	0.00	0
20	ATOM	1420	CB	SER			39.676	50.458	4.421	1.00	0.00	С
	ATOM	1421	OG	SER			39.526	51.827	4.088	1.00	0.00	0
	ATOM	1422	N	TRP			38.658	52.083	7.003	1.00	0.00	N
	ATOM	1423	CA	TRP			37.596	52.760	7.743	1.00	0.00	С
	ATOM	1424	C	TRP			37.226	54.077	7.043	1.00	0.00	С
25	ATOM	1425	Ö	TRP			37.994	55.036	7.063	1.00	0.00	0
20	ATOM	1426	СВ	TRP			38.112	52.994	9.176	1.00	0.00	С
	ATOM	1427	CG	TRP			37.299	53.854	10.114	1.00	0.00	С
	ATOM	1428		TRP			37.455	55.195	10.339	1.00	0.00	С
	ATOM	1429		TRP			36.311	53.406	11.051	1.00	0.00	С
30	ATOM	1430		TRP			36.635	55.606	11.363	1.00	0.00	N
50	ATOM	1431		TRP			35.921	54.529	11.819	1.00	0.00	С
	ATOM	1431		TRP			35.719	52.163	11.320	1.00	0.00	С
	ATOM	1432		TRP			34.968	54.446	12.840	1.00	0.00	C
	ATOM	1433		TRP			34.769	52.080	12.340	1.00	0.00	C
35	ATOM	1434		TRP			34.404	53.219	13.087	1.00	0.00	C
55	ATOM	1435	N	ALA			36.055	54.104	6.410	1.00	0.00	N
	ATOM	1430	CA	ALA			35.580	55.290	5.691	1.00	0.00	С
	ATOM	1438	C	ALA			34.155	55.616	6.137	1.00	0.00	C
	ATOM	1430	0	ALA			33.186	55.168	5.527	1.00	0.00	0
40	ATOM	1440	CB	ALA			35.619	55.034	4.185	1.00	0.00	C
10	ATOM	1441	N	ILE			34.042	56.420	7.190	1.00	0.00	N
	ATOM	1442	CA	ILE			32.749	56.772	7.770	1.00	0.00	С
	ATOM	1443	C	ILE			32.117	58.098	7.354	1.00	0.00	C
	ATOM	1444	0	ILE			30.941	58.323	7.642	1.00	0.00	0
45	ATOM	1445	СВ	ILE			32.830	56.768	9.321	1.00	0.00	C
40	ATOM	1445		ILE			33.902	57.764	9.786	1.00	0.00	Ċ
	ATOM	1447		ILE			33.146	55.351	9.830	1.00	0.00	C
	ATOM	1447		ILE			33.140	57.955	11.299	1.00	0.00	C
	ATOM	1449	N	ASP			32.861	58.973	6.679	1.00	0.00	N
50				ASP			32.276	60.262	6.307	1.00	0.00	С
50	ATOM	1450	CA	ASP			32.270	60.645	4.827	1.00	0.00	C
	ATOM	1451	C				31.416	61.575	4.503	1.00	0.00	0
	MOTA	1452	0	ASP					7.056	1.00	0.00	С
	ATOM	1453	CB	ASP			32.981	61.400 62.585	7.330	1.00	0.00	С
==	ATOM	1454	CG	ASP			32.053					0
55	ATOM	1455		ASP			32.553	63.709	7.548 7.344	1.00	0.00	0
	MOTA	1456		ASP			30.819	62.398		1.00	0.00	И
	ATOM	1457	N	PRO			32.882	59.965	3.911		0.00	C
	ATOM	1458	CA	PRO			32.733	60.362	2.501	1.00	0.00	С
60	ATOM	1459	С	PRO			31.252	60.324	2.107	1.00	0.00	0
60	ATOM	1460	0	PRO			30.514	59.447	2.552	$1.00 \\ 1.00$	0.00	c
	ATOM	1461	CB	PRO	А	205	33.569	59.321	1.759	1.00	0.00	C

		ATOM	1462	CG	PRO	A 205	34.	661 5	9.016	2.749	1.00	0.00	C
		ATOM	1463	CD		A 205			8.890	4.046	1.00	0.00	Č
		MOTA	1464	N		A 206			1.265	1.266	1.00	0.00	N
	_	MOTA	1465	CA	PHE .	4 206	29.		31.368	0.866	1.00	0.00	C
	5	ATOM	1466	C	PHE .	A 206	29.	066 €	0.457	-0.311	1.00	0.00	C
		ATOM	1467	0	PHE	A 206	28.		0.914	-1.438	1.00	0.00	0
		ATOM	1468	СВ		A 206			2.830	0.533	1.00	0.00	C
		MOTA	1469	CG		A 206			3.822	1.306	1.00	0.00	C
		ATOM	1470		PHE				3.645	2.668	1.00	0.00	С
	10	ATOM	1471	CD2	PHE A	A 206	30.	494 6	4.931	0.669	1.00	0.00	С
		ATOM	1472	CE1	PHE	A 206	30.	958	4.549	3.383	1.00	0.00	С
		ATOM	1473	CE2					5.844	1.377	1.00	0.00	C
													c
		ATOM	1474	CZ		A 206			5.652	2.738	1.00	0.00	
	4-	MOTA	1475	N		A 207			9.165	-0.023	1.00	0.00	N
	15	MOTA	1476	CA	GLY A	A 207	28.	678	8.183	-1.058	1.00	0.00	C
		ATOM	1477	С	GLY Z	A 207	29.	978 5	7.408	-1.190	1.00	0.00	C
		ATOM	1478	0		A 207			7.938	-0.844	1.00	0.00	0
		ATOM	1479	N		A 208			6.173	-1.687	1.00	0.00	N
	20	ATOM	1480	CA		A 208			55.351	-1.806	1.00	0.00	С
	20	MOTA	1481	С	HIS A	A 208	31.	361 5	4.759	-3.187	1.00	0.00	С
g-Text.		ATOM	1482	0	HIS A	A 208	30.	419 5	4.418	-3.909	1.00	0.00	0
i spil		ATOM	1483	CB	HIS A	A 208	31.	070 5	4.238	-0.760	1.00	0.00	С
ı,D		ATOM	1484	CG		A 208			4.739	0.648	1.00	0.00	C
		ATOM	1485		HIS				5.086	1.236	1.00	0.00	N
i diranga Tanggar	25												
1,71	25	ATOM	1486		HIS A				4.976	1.575	1.00	0.00	C
		ATOM	1487		HIS A				5.513	2.466	1.00	0.00	С
ara h		ATOM	1488	NE2	HIS A	A 208	30.	834 5	5.457	2.696	1.00	0.00	N
ng j		ATOM	1489	N	SER A	A 209	32.	635 5	4.625	-3.537	1.00	0.00	N
		ATOM	1490	CA		A 209			4.106	-4.841	1.00	0.00	С
# 55% # 55%	30	ATOM	1491	C		A 209			2.783	-4.782	1.00	0.00	C
m	50												o
a:		ATOM	1492	0		209			2.560	-3.872	1.00	0.00	
		MOTA	1493	CB		A 209	33.		5.138	-5.551	1.00	0.00	C
1,1 22,0		ATOM	1494	OG	SER A	A 209	34.		4.592	-6.734	1.00	0.00	0
Ļ		MOTA	1495	N	PRO Z	A 210	33.	552 5	1.893	-5.764	1.00	0.00	N
W	35	MOTA	1496	CA	PRO A	210	34.	224 5	0.593	-5.819	1.00	0.00	С
		ATOM	1497	С		210	35.		0.764	-6.148	1.00	0.00	С
į.i		ATOM	1498	ō		210	36.		9.812	-6.074	1.00	0.00	0
									9.847		1.00	0.00	c
		ATOM	1499	CB		1 210	33.			-6.907			
į.	40	ATOM	1500	CG		210	33.		0.950	-7.830	1.00	0.00	С
	40	ATOM	1501	CD	PRO A		32.		2.014	-6.853	1.00	0.00	С
		ATOM	1502	N	THR A	211	36.	103 5	1.978	~6.518	1.00	0.00	N
		ATOM	1503	CA	THR A	211	37.	513 5	2.217	-6.789	1.00	0.00	С
		ATOM	1504	С	THR A		38.		1.961	-5.503	1.00	0.00	С
		ATOM	1505	Ō	THR A		39.		1.583	-5.553	1.00	0.00	Ō
	45		1506				37.					0.00	
	40	ATOM		CB	THR A				3.668	-7.260	1.00		C
		MOTA	1507		THR A		37.		3.835	-8.580	1.00	0.00	0
		ATOM	1508	CG2	THR A	1 211	39.		3.974	-7.280	1.00	0.00	С
		ATOM	1509	N	MET A	212	37.	671 5	2.153	-4.351	1.00	0.00	N
		ATOM	1510	CA	MET A	212	38.	360 5	1.938	-3.078	1.00	0.00	С
	50	ATOM	1511	С	MET A		38.		0.467	-2.866	1.00	0.00	С
	00		1512	0	MET A		39.		0.154	-2.630	1.00	0.00	Ö
		ATOM											
		ATOM	1513	CB	MET A		37.		2.452	-1.909	1.00	0.00	С
		MOTA	1514	CG	MET A	1 212	37.		3.944	-1.967	1.00	0.00	С
		ATOM	1515	ŞD	MET A	212	38.	661 5	5.001	-2.244	1.00	0.00	S
	55	ATOM	1516	CE	MET A		39.	452 5	4.939	-0.628	1.00	0.00	С
		ATOM	1517	N		213	37.		9.541	-2.930	1.00	0.00	N
						1 213			8.148	-2.733	1.00	0.00	C
		ATOM	1518	CA			38.						
		MOTA	1519	С	PRO A		39.		7.704	-3.822	1.00	0.00	C
		MOTA	1520	0	PRO A		40.		6.862	-3.583	1.00	0.00	0
	60	MOTA	1521	CB	PRO A	213	36.	862 4	7.371	-2.754	1.00	0.00	С
		MOTA	1522	CG	PRO A	213	35.	922 4	8.287	-3.530	1.00	0.00	С

	ATOM	1523	CD	PRO A	213	36.302	49.649	-3.011	1.00	0.00	С
	ATOM	1524	N	TYR A	214	39.038	48.274	-5.018	1.00	0.00	N
	ATOM	1525	CA	TYR A	214	39.944	47.943	-6.117	1.00	0.00	С
	ATOM	1526	С	TYR A		41.390	48.211	-5.698	1.00	0.00	С
5	ATOM	1527	Ō	TYR A		42.257	47.337	-5.793	1.00	0.00	0
J	ATOM	1528	СВ	TYR A		39.628	48.788	-7.346	1.00	0.00	С
		1529	CG	TYR A		40.553	48.531	-8.517	1.00	0.00	C
	ATOM					40.385	47.413	-9.335	1.00	0.00	Č
	ATOM	1530	CD1						1.00	0.00	Č
10	MOTA	1531		TYR A		41.579	49.422	-8.823			c
10	MOTA	1532	CE1			41.215		-10.439	1.00	0.00	
	ATOM	1533	CE2	TYR A		42.412	49.215	-9.918	1.00	0.00	С
	ATOM	1534	CZ	TYR A		42.224		-10.725	1.00	0.00	C
	MOTA	1535	OH	TYR A	214	43.026	47.934	-11.834	1.00	0.00	0
	MOTA	1536	N	ILE A	215	41.640	49.435	-5.241	1.00	0.00	N
15	ATOM	1537	CA	ILE A	215	42.969	49.848	-4.804	1.00	0.00	С
	ATOM	1538	С	ILE A	215	43.399	49.135	-3.516	1.00	0.00	С
	ATOM	1539	0	ILE A		44.529	48.660	-3.403	1.00	0.00	0
	ATOM	1540	СВ	ILE A		43.008	51.384	-4.567	1.00	0.00	С
	ATOM	1541	CG1	ILE A		42.745	52.118	-5.885	1.00	0.00	C
20	ATOM	1542		ILE A		44.352	51.797	-3.972	1.00	0.00	C
20	ATOM	1543		ILE A		42.721	53.637	-5.749	1.00	0.00	C
				LEU A		42.494	49.062	-2.548	1.00	0.00	N
	ATOM	1544	N				48.419	-1.273	1.00	0.00	C
	ATOM	1545	CA	LEU A		42.803			1.00	0.00	c
25	MOTA	1546	С	LEU A		43.141	46.932	-1.412			0
25	MOTA	1547	0	LEU A		44.108	46.452	-0.817	1.00	0.00	
	MOTA	1548	CB	LEU A		41.630	48.594	-0.300	1.00	0.00	C
	ATOM	1549	CG	LEU A		41.247	50.039	0.061	1.00	0.00	C
	MOTA	1550		LEU A		39.929	50.049	0.827	1.00	0.00	C
	MOTA	1551	CD2	LEU A	216	42.365	50.678	0.891	1.00	0.00	C
30	ATOM	1552	N	GLN A	217	42.347	46.207	-2.197	1.00	0.00	N
	ATOM	1553	CA	GLN A	217	42.568	44.776	-2.388	1.00	0.00	C
	ATOM	1554	С	GLN A	217	43.925	44.525	-3.051	1.00	0.00	C
	ATOM	1555	0	GLN A	217	44.556	43.490	-2.826	1.00	0.00	0
	ATOM	1556	СВ	GLN A		41.418	44.191	-3.218	1.00	0.00	С
35	ATOM	1557	CG	GLN A		41.365	42.669	-3.307	1.00	0.00	С
•••	ATOM	1558	CD	GLN A		42.293	42.120	-4.364	1.00	0.00	C
	ATOM	1559		GLN A		42.498	42.747	-5.401	1.00	0.00	0
	ATOM	1560		GLN A		42.849	40.938	-4.115	1.00	0.00	N
		1561	N	LYS A		44.376	45.485	-3.856	1.00	0.00	N
40	ATOM					45.666	45.386	-4.537	1.00	0.00	C
40	ATOM	1562	CA	LYS A				-3.681	1.00	0.00	C
	ATOM	1563	C	LYS A		46.763	46.022				0
	ATOM	1564	0	LYS A		47.906	46.170	-4.114	1.00	0.00	
	MOTA	1565	CB	LYS A		45.598	46.082	-5.904	1.00	0.00	C
4	MOTA	1566	CG	LYS A		44.800	45.307	-6.956	1.00	0.00	C
45	MOTA	1567	CD	LYS A		44.608	46.122	-8.238	1.00	0.00	C
	MOTA	1568	CE	LYS A	218	44.225	45.238	-9.419	1.00	0.00	С
	ATOM	1569	ΝZ	LYS A	218	43.094	44.308	-9.142	1.00	0.00	N
	ATOM	1570	N	SER A	219	46.401	46.396	-2.460	1.00	0.00	N
	ATOM	1571	CA	SER A		47.343	47.014	-1.541	1.00	0.00	C
50	ATOM	1572	С	SER A		47.419	46.231	-0.227	1.00	0.00	С
	ATOM	1573	0	SER A		47.749	46.782	0.827	1.00	0.00	0
	ATOM	1574	СВ	SER A		46.934	48.469	-1.288	1.00	0.00	С
	ATOM	1575	OG	SER A		47.797	49.081	-0.345	1.00	0.00	0
						47.102	44.940	-0.305	1.00	0.00	N
55	MOTA	1576	N	GLY A		47.102	44.079	0.865	1.00	0.00	C
55	MOTA	1577	CA	GLY A							C
	ATOM	1578	С	GLY A		45.984	44.045	1.810	1.00	0.00	
	ATOM	1579	0	GLY A		45.997	43.291	2.784	1.00	0.00	0
	MOTA	1580	N	PHE A		44.948	44.831	1.539	1.00	0.00	N
	MOTA	1581	CA	PHE A		43.795	44.848	2.433	1.00	0.00	C
60	ATOM	1582	С	PHE A		42.940	43.596	2.363	1.00	0.00	C
	ATOM	1583	0	PHE A	221	42.891	42.918	1.340	1.00	0.00	0

	ATOM	1584	CB	PHE	A	221	42.911	46.070	2.164	1.00	0.00	С
	ATOM	1585	CG	PHE	Α	221	43.469	47.350	2.709	1.00	0.00	С
	ATOM	1586	CD1	PHE	Α	221	44.587	47.941	2.127	1.00	0.00	С
	ATOM	1587	CD2	PHE	Α	221	42.883	47.961	3.813	1.00	0.00	C
5	ATOM	1588	CE1	PHE	Α	221	45.115	49.126	2.637	1.00	0.00	С
	ATOM	1589		PHE			43.404	49.150	4.334	1.00	0.00	С
	ATOM	1590	CZ			221	44.522	49.732	3.743	1.00	0.00	С
	ATOM	1591	N			222	42.262	43.305	3.468	1.00	0.00	N
	ATOM	1592	CA			222	41.390	42.147	3.550	1.00	0.00	C
10	ATOM	1593	C			222	39.978	42.530	3.970	1.00	0.00	C
10	ATOM	1594	Ö			222	39.048	41.741	3.810	1.00	0.00	Ō
	ATOM	1595	СВ	LYS			41.974	41.124	4.525	1.00	0.00	c
	ATOM	1596	CG			222	43.170	40.390	3.943	1.00	0.00	Č
	ATOM	1597	CD			222	43.812	39.451	4.940	1.00	0.00	c
15	ATOM	1598	CE	LYS			44.810	38.535	4.239	1.00	0.00	c
10	ATOM	1599	NZ	LYS			45.750	39.298	3.363	1.00	0.00	N
	ATOM	1600	N	ASN			39.819	43.746	4.493	1.00	0.00	N
	ATOM	1601	CA	ASN			38.511	44.222	4.940	1.00	0.00	c
	ATOM	1601	C	ASN			38.347	45.738	4.828	1.00	0.00	c
20		1602					39.322	46.483	4.892	1.00	0.00	0
20	ATOM		O	ASN						1.00	0.00	c
	ATOM	1604	CB	ASN			38.270 38.360	43.832	6.404 6.640	1.00	0.00	C
	ATOM	1605	CG OD1	ASN				42.340		1.00	0.00	0
	ATOM	1606		ASN			39.390	41.826	7.096			N
25	ATOM	1607		ASN			37.284 37.104	41.631	6.330	1.00	0.00	
23	ATOM	1608	N	MET				46.186	4.670	1.00	0.00	N C
	ATOM	1609	CA	MET			36.807	47.614	4.599	1.00		c
	ATOM	1610	C	MET			35.408	47.896	5.141	1.00	0.00	
	ATOM	1611	0	MET			34.522	47.035	5.108	1.00	0.00	O C
30	ATOM	1612	CB	MET			36.922	48.137	3.166	1.00	0.00	
30	ATOM	1613	CG	MET			35.850	47.637	2.214	1.00	0.00	C
	ATOM	1614	SD	MET			36.055	48.407	0.602	1.00	0.00	s C
	MOTA	1615	CE	MET			35.417	50.048	0.921	1.00	0.00	
	ATOM	1616	N	LEU			35.226	49.110	5.649	1.00	0.00	N
35	ATOM	1617	CA	LEU			33.955	49.534	6.219	1.00	0.00	C
33	ATOM	1618	C	LEU			33.527	50.873	5.628	1.00	0.00	c
	ATOM	1619	0	LEU			34.351	51.769	5.456	1.00	0.00	0
	ATOM	1620	CB	LEU			34.096	49.651	7.739	1.00	0.00	C
	MOTA	1621	CG	LEU			32.938	50.271	8.531	1.00	0.00	С
40	ATOM	1622		LEU			32940	49.699	9.937	1.00	0.00	С
4 0	ATOM	1623		LEU			33.064	51.808	8.553	1.00	0.00	C
	ATOM	1624	N	ILE			32.239	50.999	5.317	1.00	0.00	N
	ATOM	1625	CA	ILE			31.697	52.231	4.749	1.00	0.00	C
	ATOM	1626	С	ILE			30.439	52.632	5.518	1.00	0.00	C
45	ATOM	1627	0	ILE			29.857	51.808	6.228	1.00	0.00	0
45	ATOM	1628	CB	ILE			31.368	52.058	3.244	1.00	0.00	C
	ATOM	1629		ILE			30.308	50.972	3.049	1.00	0.00	C
	ATOM	1630		ILE			32.642	51.695	2.479	1.00	0.00	C
	ATOM	1631		ILE			29.889	50.776	1.595	1.00	0.00	C
EΛ	ATOM	1632	N	GLN			30.014	53.886	5.377	1.00	0.00	N
50	MOTA	1633	CA	GLN			28.848	54.367	6.115	1.00	0.00	C
	MOTA	1634	С	GLN			27.809	55.189	5.351	1.00	0.00	C
	ATOM	1635	0	GLN			26.613	54.893	5.409	1.00	0.00	0
	MOTA	1636	CB	GLN			29.332	55.171	7.330	1.00	0.00	С
	ATOM	1637	CG	GLN			28.377	56.258	7.841	1.00	0.00	С
55	MOTA	1638	CD	GLN			27.056	55.721	8.361	1.00	0.00	C
	MOTA	1639		GLN			26.954	54.563	8.765	1.00	0.00	0
	ATOM	1640	NE2	GLN			26.037	56.577	8.376	1.00	0.00	N
	MOTA	1641	N	ARG			28.249	56.227	4.646	1.00	0.00	N
	ATOM	1642	CA	ARG			27.298	57.072	3.944	1.00	0.00	С
60	ATOM	1643	С	ARG	A	228	26.756	56.523	2.632	1.00	0.00	С
	MOTA	1644	0	ARG	A	228	27.318	56.746	1.560	1.00	0.00	0

	ATOM	1645	СВ	ARG A	228	27.887	58.472	3.731	1.00	0.00	С
	ATOM	1646	CG	ARG A	228	28.057	59.260	5.029	1.00	0.00	С
	ATOM	1647	CD	ARG A	228	28.403	60.729	4.778	1.00	0.00	С
	ATOM	1648	NE	ARG A	228	28.639	61.461	6.027	1.00	0.00	N
5	ATOM	1649	CZ	ARG A	228	27.683	61.924	6.831	1.00	0.00	С
	ATOM	1650	NH1	ARG A		26.401	61.743	6.526	1.00	0.00	N
	ATOM	1651		ARG A		28.007	62.560	7.953	1.00	0.00	N
	ATOM	1652	N	THR A		25.652	55.791	2.739	1.00	0.00	N
	ATOM	1653	CA	THR A		24.977	55.233	1.579	1.00	0.00	С
10	ATOM	1654	C	THR A		23.509	55.617	1.731	1.00	0.00	C
10	ATOM	1655	Ö	THR A		23.038	55.854	2.849	1.00	0.00	0
		1656	CB	THR A		25.130	53.688	1.504	1.00	0.00	c
	MOTA					24.551	53.078	2.665	1.00	0.00	0
	ATOM	1657		THR A			53.310	1.419	1.00	0.00	c
15	MOTA	1658	CG2			26.609					N
15	MOTA	1659	N	HIS A		22.798	55.694	0.611	1.00	0.00	C
	MOTA	1660	CA	HIS A		21.383	56.077	0.594	1.00	0.00	С
	MOTA	1661	С	HIS A		20.573	55.338	1.661	1.00	0.00	
	MOTA	1662	0	HIS A		20.679	54.120	1.797	1.00	0.00	0
20	ATOM	1663	CB	HIS A		20.804	55.798	-0.799	1.00	0.00	C
20	ATOM	1664	CG	HIS A		19.543	56.549	-1.099	1.00	0.00	C
	ATOM	1665		HIS A		18.378	56.370	-0.385	1.00	0.00	N
	MOTA	1666	CD2	HIS A	230	19.265	57.476	-2.047	1.00	0.00	C
	MOTA	1667	CE1	HIS A	230	17.436	57.155	-0.879	1.00	0.00	С
	ATOM	1668	NE2	HIS A	230	17.948	57.837	-1.888	1.00	0.00	N
25	MOTA	1669	N	TYR A	231	19.756	56.074	2.415	1.00	0.00	N
	ATOM	1670	CA	TYR A	231	18.958	55.448	3.466	1.00	0.00	С
	MOTA	1671	С	TYR A	231	18.081	54.310	2.940	1.00	0.00	С
	ATOM	1672	0	TYR A	231	17.788	53.361	3.666	1.00	0.00	0
	ATOM	1673	CB	TYR A	231	18.105	56.497	4.200	1.00	0.00	C
30	ATOM	1674	CG	TYR A		17.122	57.265	3.336	1.00	0.00	C
	ATOM	1675	CD1	TYR A		15.842	56.767	3.085	1.00	0.00	С
	ATOM	1676		TYR A		17.473	58.497	2.777	1.00	0.00	C
	ATOM	1677	CE1			14.935	57.477	2.301	1.00	0.00	С
	ATOM	1678		TYR A		16.574	59.214	1.992	1.00	0.00	С
35	ATOM	1679	CZ	TYR A		15.308	58.698	1.758	1.00	0.00	С
	ATOM	1680	OH	TYR A		14.420	59.401	0.980	1.00	0.00	0
	ATOM	1681	N	SER A		17.673	54.395	1.679	1.00	0.00	N
	ATOM	1682	CA	SER A		16.846	53.345	1.089	1.00	0.00	С
	ATOM	1683	C	SER A		17.649	52.069	0.857	1.00	0.00	С
40	ATOM	1684	Õ	SER A		17.119	50.964	0.970	1.00	0.00	0
10	ATOM	1685	СВ	SER A		16.238	53.821	-0.233	1.00	0.00	С
	ATOM	1686	OG	SER A		15.249	54.809	-0.007	1.00	0.00	0
	ATOM	1687	N	VAL A		18.930	52.227	0.533	1.00	0.00	N
	ATOM	1688	CA	VAL A		19.807		0.298	1.00	0.00	C
45	ATOM	1689	C	VAL A		20.094	50.365	1.618	1.00	0.00	c
40						20.097	49.132	1.680	1.00	0.00	Ö
	ATOM	1690 1691	O	VAL A		21.134	51.537	-0.354	1.00	0.00	C
	ATOM		CB	VAL A				-0.405	1.00	0.00	C
	ATOM	1692		VAL A		22.119	50.375		1.00	0.00	C
E 0	MOTA	1693		VAL A		20.860	52.054	-1.763			
50	MOTA	1694	N	LYS A		20.327	51.140	2.670	1.00	0.00	N
	MOTA	1695	CA	LYS A		20.582	50.573	3.988	1.00	0.00	С
	MOTA	1696	С	LYS A		19.394	49.707	4.407	1.00	0.00	C
	MOTA	1697	0	LYS A		19.567	48.587	4.884	1.00	0.00	0
	MOTA	1698	CB	LYS A	234	20.799	51.695	5.013	1.00	0.00	C
55	MOTA	1699	CG	LYS A		22.143	52.414	4.889	1.00	0.00	C
	ATOM	1700	CD	LYS A		22.200	53.646	5.791	1.00	0.00	С
	ATOM	1701	CE	LYS A	234	23.575	54.324	5.751	1.00	0.00	С
	ATOM	1702	NZ	LYS A		24.576	53.708	6.681	1.00	0.00	N
	ATOM	1703	N	LYS A	235	18.186	50.229	4.213	1.00	0.00	N
60	ATOM	1704	CA	LYS A		16.974	49.497	4.578	1.00	0.00	C
	ATOM	1705	С	LYS A		16.845	48.206	3.777	1.00	0.00	С

	ATOM	1706	0	LYS A	235	16.595	47.138	4.337	1.00	0.00	0
	MOTA	1707	CB	LYS A	235	15.739	50.373	4.351	1.00	0.00	С
	MOTA	1708	CG	LYS A	235	14.445	49.774	4.890	1.00	0.00	С
	ATOM	1709	CD	LYS A	235	13.270	50.689	4.608	1.00	0.00	С
5	ATOM	1710	CE	LYS A	235	11.977	50.108	5.154	1.00	0.00	C
_	ATOM	1711	NZ	LYS A	235	10.807	50.957	4.792	1.00	0.00	N
	ATOM	1712	N	GLU A		17.025	48.307	2.464	1.00	0.00	N
	ATOM	1713	CA	GLU A		16.926	47.149	1.580	1.00	0.00	С
	ATOM	1714	C.	GLU A		17.941	46.058	1.928	1.00	0.00	С
10				GLU A		17.584	44.888	2.073	1.00	0.00	Ō
10	ATOM	1715	0				47.587	0.125	1.00	0.00	c
	MOTA	1716	CB	GLU A		17.121				0.00	C
	ATOM	1717	CG	GLU A		16.922	46.474	-0.897	1.00		
	MOTA	1718	CD	GLU A		15.468	46.035	-1.029	1.00	0.00	C
	MOTA	1719		GLU A		15.200	45.126	-1.840	1.00	0.00	0
15	MOTA	1720	OE2	GLU A	236	14.594	46.596	-0.332	1.00	0.00	0
	MOTA	1721	N	LEU A	237	19.210	46.432	2.063	1.00	0.00	N
	MOTA	1722	CA	LEU A	237	20.236	45.450	2.387	1.00	0.00	С
	ATOM	1723	С	LEU A		20.065	44.897	3.800	1.00	0.00	C
	ATOM	1724	0	LEU A		20.318	43.717	4.043	1.00	0.00	0
20	ATOM	1725	СВ	LEU A		21.632	46.056	2.220	1.00	0.00	C
20	ATOM	1726	CG	LEU P		21.974	46.530	0.802	1.00	0.00	C
		1727		LEU A		23.357	47.152	0.803	1.00	0.00	С
	ATOM					21.912	45.359	-0.178	1.00	0.00	C
	ATOM	1728		LEU P				4.729	1.00	0.00	N
25	ATOM	1729	N	ALA A		19.630	45.742				C
25	MOTA	1730	CA	ALA A		19.428	45.297	6.102	1.00	0.00	
	MOTA	1731	С	ALA F		18.379	44.184	6.150	1.00	0.00	С
	MOTA	1732	0	ALA A		18.564	43.172	6.833	1.00	0.00	0
	MOTA	1733	CB	ALA A	238	18.988	46.465	6.976	1.00	0.00	С
	MOTA	1734	N	GLN F	239	17.286	44.374	5.420	1.00	0.00	N
30	ATOM	1735	CA	GLN F	239	16.203	43.394	5.393	1.00	0.00	C
	ATOM	1736	С	GLN A	239	16.652	42.029	4.871	1.00	0.00	С
	ATOM	1737	0	GLN A	239	16.079	41.002	5.229	1.00	0.00	0
	ATOM	1738	СВ	GLN F	239	15.037	43.922	4.548	1.00	0.00	C
	ATOM	1739	CG	GLN A		14.452	45.234	5.069	1.00	0.00	С
35	ATOM	1740	CD	GLN A		13.274	45.734	4.248	1.00	0.00	С
50	ATOM	1741		GLN F		13.349	45.823	3.021	1.00	0.00	0
	ATOM	1742		GLN A		12.181	46.072	4.926	1.00	0.00	N
			N	GLN F		17.679	42.017	4.028	1.00	0.00	N
	MOTA	1743				18.187	40.766	3.472	1.00	0.00	C
40	ATOM	1744	CA	GLN F				4.138	1.00	0.00	c
40	ATOM	1745	С	GLN A		19.494	40.349			0.00	0
	ATOM	1746	0	GLN F		20.113	39.364	3.735	1.00		c
	MOTA	1747	CB	GLN F		18.416	40.921	1.968	1.00	0.00	
	MOTA	1748	CG	GLN A		17.193	41.409	1.212	1.00	0.00	C
	ATOM	1749	CD	GLN A		16.058	40.409	1.242	1.00	0.00	С
45	MOTA	1750	OE1	GLN F	240	14.902	40.762	1.011	1.00	0.00	0
	ATOM	1751	NE2	GLN A	240	16.382	39.149	1.514	1.00	0.00	N
	ATOM	1752	N	ARG A	241	19.894	41.088	5.170	1.00	0.00	N
	ATOM	1753	CA	ARG A	241	21.148	40.831	5.871	1.00	0.00	С
	ATOM	1754	С	ARG A	241	22.282	40.786	4.852	1.00	0.00	C
50	ATOM	1755	0	ARG A		23.090	39.853	4.821	1.00	0.00	0
00	ATOM	1756	СВ	ARG A		21.085	39.519	6.665	1.00	0.00	С
	ATOM	1757	CG	ARG A		20.051	39.539	7.786	1.00	0.00	С
		1758	CD	ARG A		20.262	38.400	8.770	1.00	0.00	C
	ATOM							8.113	1.00	0.00	N
	ATOM	1759	NE	ARG A		20.254	37.096				C
55	ATOM	1760	CZ	ARG A		20.626	35.960	8.699	1.00	0.00	
	MOTA	1761		ARG A		21.038	35.964	9.962	1.00	0.00	N
	MOTA	1762	NH2	ARG A		20.595	34.821	8.019	1.00	0.00	N
	MOTA	1763	N	GLN A	242	22.324	41.810	4.006	1.00	0.00	N
	MOTA	1764	CA	GLN A	242	23.355	41.916	2.980	1.00	0.00	С
60	ATOM	1765	С	GLN A	242	24.195	43.177	3.199	1.00	0.00	С
	ATOM	1766	0	GLN A		24.716	43.751	2.245	1.00	0.00	0

		ATOM	1767	СВ	GLN A	A 242	22	713	41.952	1.586	1.00	0.00	С
							_		40.708	1.238	1.00	0.00	C
		ATOM	1768	CG		A 242							
		ATOM	1769	CD	GLN A	A 242			40.834	-0.093	1.00	0.00	С
		ATOM	1770	OE1	GLN A	A 242	20.	633	41.885	-0.410	1.00	0.00	0
	5	ATOM	1771		GLN A		21.	179	39.756	-0.873	1.00	0.00	N
	•					A 243			43.596	4.460	1.00	0.00	N
		MOTA	1772	N									c
		ATOM	1773	CA	LEU A	A 243			44.779	4.810	1.00	0.00	
		ATOM	1774	С	LEU A	4 243	26.	598	44.454	4.787	1.00	0.00	С
		MOTA	1775	0	LEU	A 243	27.	441	45.351	4.712	1.00	0.00	0
	10								45.310	6.186	1.00	0.00	С
	10	MOTA	1776	CB		A 243							С
		MOTA	1777	CG	LEU A	A 243	23.		45.958	6.224	1.00	0.00	
		MOTA	1778	CD1	LEU A	A 243	22.	897	46.244	7.667	1.00	0.00	С
		MOTA	1779	CD2	LEU A	4 243	23.	319	47.251	5.397	1.00	0.00	С
		ATOM	1780	N		A 244			43.167	4.875	1.00	0.00	N
	15											0.00	С
	15	MOTA	1781	CA		A 244			42.720	4.788	1.00		
		ATOM	1782	С	GLU Z	A 244	28.	326	41.894	3.521	1.00	0.00	С
		ATOM	1783	0	GLU A	A 244	27.	502	40.995	3.340	1.00	0.00	0
		ATOM	1784	СВ		A 244			41.897	6.016	1.00	0.00	С
									42.775	7.251	1.00	0.00	С
	20	MOTA	1785	CG		A 244							C
	20	MOTA	1786	CD	GLU A	A 244			42.005	8.476	1.00	0.00	
		ATOM	1 7 87	OE1	GLU A	A 244	28.	809	40.891	8.697	1.00	0.00	0
		ATOM	1788	OE2	GLU Z	A 244	30.	175	42.526	9.227	1.00	0.00	0
		ATOM	1789	N		A 245			42.214	2.631	1.00	0.00	N
•											1.00	0.00	С
	0-	ATOM	1790	CA		A 245			41.533	1.349			
	25	MOTA	1791	С	PHE	A 245	30.	734	41.530	0.758	1.00	0.00	С
		MOTA	1792	0	PHE 2	A 245	31.	611	42.272	1.198	1.00	0.00	0
		ATOM	1793	СВ		A 245	28.	368	42.225	0.377	1.00	0.00	С
			1794	CG		A 245			43.730	0.370	1.00	0.00	С
,		MOTA											С
	• •	MOTA	1795		PHE				44.364	-0.388	1.00	0.00	_
	30	ATOM	1796	CD2	PHE .	A 245	27.	643	44.511	1.155	1.00	0.00	С
		ATOM	1797	CE1	PHE .	A 245	29.	610	45.767	-0.363	1.00	0.00	С
		ATOM	1798		PHE				45.907	1.190	1.00	0.00	С
									46.534	0.429	1.00	0.00	С
		ATOM	1799	CZ		A 245							
		ATOM	1800	N	LEU .	A 246			40.676	-0.238	1.00	0.00	N
	35	MOTA	1801	CA	LEU .	A 246	32.	211	40.590	-0.931	1.00	0.00	С
		ATOM	1802	С		A 246	32.	062	41.504	-2.141	1.00	0.00	С
			1803	Ö		A 246			41.138	-3.144	1.00	0.00	0
		ATOM										0.00	Ċ
		ATOM	1804	CB		A 246			39.143	-1.351	1.00		
		ATOM	1805	CG	LEU .	A 246	32.	796	38.222	-0.162	1.00	0.00	С
	40	ATOM	1806	CD1	LEU .	A 246	32.	737	36.755	-0.577	1.00	0.00	C
		ATOM	1807		LEU .				38.572	0.374	1.00	0.00	С
									42.707	-2.022	1.00	0.00	N
		ATOM	1808	N		A 247							С
		ATOM	1809	CA		A 247			43.724	-3.065	1.00	0.00	
		ATOM	1810	С	TRP .	A 247	33.		43.514	-4.182	1.00	0.00	С
	45	ATOM	1811	0	TRP .	A 247	34.	751	43.703	-3.977	1.00	0.00	0
		ATOM	1812	СВ		A 247			45.107	-2.429	1.00	0.00	С
									46.274	-3.234	1.00	0.00	С
		ATOM	1813	CG		A 247							
		MOTA	1814	CD1	TRP .	A 247			46.236	-4.465	1.00	0.00	С
		ATOM	1815	CD2	TRP	A 247	32.	233	47.651	-2.835	1.00	0.00	С
	50	ATOM	1816	NE.1	TRP	A 247	31.	266	47.507	-4.857	1.00	0.00	N
	00		1817		TRP				48.392	-3.874	1.00	0.00	С
		ATOM											Ċ
		ATOM	1818		TRP				48.331	-1.700	1.00	0.00	
		MOTA	1819	CZ2	TRP	A 247	31.	458	49.782	-3.809	1.00	0.00	С
		ATOM	1820	CZ3	TRP	A 247	32.	533	49.713	-1.636	1.00	0.00	С
	55	ATOM	1821		TRP			919	50.422	-2.685	1.00	0.00	С
									43.119	-5.358	1.00	0.00	N
		MOTA	1822	N		A 248							
		MOTA	1823	CA	ARG	A 248		929	42.908	-6.511	1.00	0.00	С
		MOTA	1824	С	ARG	A 248	33.	619	43.976	-7.558	1.00	0.00	С
		ATOM	1825	O		A 248			44.618	-7.509	1.00	0.00	0
	60		1826			A 248			41.521	-7.126	1.00	0.00	С
	oo	ATOM		CB							1.00	0.00	Ċ
		MOTA	1827	CG	ARG	A 248	32.	350	41.366	-7.822	1.00	0.00	~

	ATOM	1828	CD	ARG A	248	32.291	40.067 -8	. 632	1.00	0.00	С
	ATOM	1829	NE	ARG A		32.307	38.880 -7	.780	1.00	0.00	N
	ATOM	1830	CZ	ARG A	248	32.301	37.630 -8	.242	1.00	0.00	С
	ATOM	1831	NH1	ARG A	248	32.283	37.400 -9	.549	1.00	0.00	N
5	ATOM	1832	NH2	ARG A	248	32.302	36.607 -7	.396	1.00	0.00	N
	MOTA	1833	N	GLN A	249	34.532	44.156 -8	.506	1.00	0.00	N
	ATOM	1834	CA	GLN A	249	34.353	45.143 -9	.562	1.00	0.00	С
	MOTA	1835	С	GLN A	249	33.258	44.690 -10	.526	1.00	0.00	С
	ATOM	1836	0	GLN A	249	33.052	43.492 -10	.729	1.00	0.00	0
10	ATOM	1837	CB	GLN A	249	35.681	45.364 -10	.297	1.00	0.00	С
	MOTA	1838	CG	GLN A	249	36.810	45.825 -9	.372	1.00	0.00	С
	ATOM	1839	CD	GLN A		36.443	47.082 -8	.593	1.00	0.00	С
	MOTA	1840	OE1	GLN A		36.462	47.096 -7	.356	1.00	0.00	0
	MOTA	1841		GLN A		36.103	48.144 -9	.314	1.00	0.00	N
15	ATOM	1842	N	ILE A		32.554	45.649 -11	.122	1.00	0.00	N
	ATOM	1843	CA	ILE A		31.456	45.322 -12	.029	1.00	0.00	С
	ATOM	1844	С	ILE A		31.785	44.404 -13		1.00	0.00	С
	ATOM	1845	ō	ILE A		30.900	43.716 -13		1.00	0.00	0
	ATOM	1846	СВ	ILE A		30.772	46.604 -12		1.00	0.00	С
20	ATOM	1847		ILE A		31.792	47.486 -13		1.00	0.00	С
	ATOM	1848		ILE A		30.106	47.367 -11		1.00	0.00	С
	ATOM	1849		ILE A		31.199	48.778 -13		1.00	0.00	С
	ATOM	1850	N	TRP A		33.047	44.373 -13		1.00	0.00	N
	ATOM	1851	CA	TRP A		33.457	43.541 -14		1.00	0.00	С
25	ATOM	1852	C	TRP A		34.122	42.228 -14		1.00	0.00	С
	ATOM	1853	ŏ	TRP A		34.455	41.395 -15		1.00	0.00	0
	ATOM	1854	СВ	TRP A		34.445	44.316 -15		1.00	0.00	C
	ATOM	1855	CG	TRP A		35.745	44.505 -14		1.00	0.00	С
	ATOM	1856		TRP A		36.736	43.576 -14		1.00	0.00	С
30	ATOM	1857		TRP A		36.158	45.662 -14		1.00	0.00	C
00	ATOM	1858		TRP A		37.736	44.082 -13		1.00	0.00	N
	ATOM	1859		TRP A		37.407	45.362 -13		1.00	0.00	С
	ATOM	1860		TRP A		35.590	46.921 -13		1.00	0.00	С
	ATOM	1861		TRP A		38.102	46.279 -12		1.00	0.00	C
35	ATOM	1862		TRP A		36.278	47.834 -13		1.00	0.00	C
00	ATOM	1863		TRP A		37.523	47.506 -12		1.00	0.00	C
	ATOM	1864	N	ASP A		34.324	42.058 -13		1.00	0.00	N
	ATOM	1865	CA	ASP A		34.992	40.880 -12		1.00	0.00	С
	ATOM	1866	C	ASP A		34.118	39.626 -12		1.00	0.00	C
40	MOTA	1867	Ö	ASP A		33.322	39.448 -11		1.00	0.00	Ō
10	ATOM	1868	СВ	ASP A		35.539	41.225 -11		1.00	0.00	C
	ATOM	1869	CG	ASP A		36.312	40.084 -10		1.00	0.00	Ċ
	ATOM	1870		ASP A		36.635	39.111 -11		1.00	0.00	ŏ
	ATOM	1871		ASP A		36.601			1.00	0.00	ō
45	ATOM	1872	N N	ASN A		34.287	38.750 -13		1.00	0.00	N
40	ATOM	1873	CA	ASN A		33.508	37.520 -13		1.00	0.00	С
	ATOM	1874	C	ASN A		33.975	36.456 -12		1.00	0.00	C
		1875		ASN A		33.158	35.745 -11		1.00	0.00	o
	MOTA	1876	O	ASN A		33.579	36.958 -14		1.00	0.00	C
50	ATOM	1877	CB	ASN A		32.722	35.728 - 15		1.00	0.00	C
50	ATOM		CG			33.196	34.695 -15		1.00	0.00	0
	ATOM	1878		ASN A			35.832 -14		1.00	0.00	N
	ATOM	1879		ASN A		31.449			1.00	0.00	N
	ATOM	1880	N	LYS A		35.286	36.357 -12 35.358 -11		1.00	0.00	C
55	MOTA	1881	CA	LYS A		35.851				0.00	c
55	ATOM	1882	С	LYS A		35.733		.918	1.00		
	ATOM	1883	O	LYS A		35.510		.056	1.00	0.00	0 C
	ATOM	1884	CB	LYS A		37.321	35.106 -11		1.00	0.00	C
	ATOM	1885	CG	LYS A		37.939	33.885 -11		1.00	0.00	C
60	ATOM	1886	CD	LYS A		39.321	33.584 -11		1.00	0.00	C
60	ATOM	1887	CE	LYS A		39.916	32.308 -11		1.00	0.00	N
	MOTA	1888	NZ	LYS A	234	40.119	32.400 -9	.584	1.00	0.00	14

COCCERCE COPACE

	ATOM	1889	N	GLY A	255	35.891	37.039	-9.632	1.00	0.00	N
	ATOM	1890	CA	GLY A	255	35.788	37.509	-8.262	1.00	0.00	С
	ATOM	1891	С	GLY A		37.108	37.716	-7.535	1.00	0.00	С
	ATOM	1892	0	GLY A	255	37.122	37.866	-6.315	1.00	0.00	0
5	ATOM	1893	N	ASP A	256	38.216	37.737	-8.270	1.00	0.00	N
	MOTA	1894	CA	ASP A	256	39.525	37.923	-7.647	1.00	0.00	С
	ATOM	1895	С	ASP A	256	39.742	39.323	-7.075	1.00	0.00	С
	ATOM	1896	0	ASP A	256	40.667	39.537	-6.296	1.00	0.00	0
	ATOM	1897	CB	ASP A	256	40.648	37.616	-8.644	1.00	0.00	С
10	ATOM	1898	CG	ASP A	256	40.647	36.171	-9.100	1.00	0.00	С
	ATOM	1899	OD1	ASP A	256	40.503	35.273	-8.240	1.00	0.00	0
	ATOM	1900	OD2	ASP A	256	40.801	35.934	-10.317	1.00	0.00	0
	ATOM	1901	N	THR A	257	38.900	40.276	-7.460	1.00	0.00	N
	ATOM	1902	CA	THR A	257	39.037	41.641	-6.954	1.00	0.00	C
15	ATOM	1903	С	THR A	257	38.231	41.850	-5.672	1.00	0.00	С
	ATOM	1904	0	THR A	257	38.333	42.898	-5.027	1.00	0.00	0
	ATOM	1905	CB	THR A		38.545	42.670	-7.982	1.00	0.00	С
	MOTA	1906	OG1	THR A		37.141	42.487	-8.200	1.00	0.00	0
	ATOM	1907		THR A		39.290	42.506	-9.299	1.00	0.00	С
20	ATOM	1908	N	ALA A		37.437	40.845	-5.311	1.00	0.00	N
	ATOM	1909	CA	ALA A		36.579	40.907	-4.135	1.00	0.00	С
	ATOM	1910	С	ALA A		37.266	41.290	-2.828	1.00	0.00	С
	ATOM	1911	0	ALA A		38.355	40.813	-2.519	1.00	0.00	0
	ATOM	1912	CB	ALA A		35.852	39.576	-3.956	1.00	0.00	С
25	ATOM	1913	N	LEU A	259	36.600	42.154	-2.066	1.00	0.00	N
	ATOM	1914	CA	LEU A	259	37.091	42.605	-0.767	1.00	0.00	С
	MOTA	1915	С	LEU A	259	35.900	42.632	0.187	1.00	0.00	C
	ATOM	1916	0	LEU A	259	34.874	43.245	-0.110	1.00	0.00	0
	ATOM	1917	CB	LEU A	259	37.700	44.009	-0.866	1.00	0.00	С
30	MOTA	1918	CG	LEU A	259	38.382	44.511	0.410	1.00	0.00	С
	ATOM	1919	CD1	LEU A	259	39.566	43.601	0.743	1.00	0.00	С
	ATOM	1920	CD2	LEU A	259	38.849	45.957	0.226	1.00	0.00	C
	ATOM	1921	N	PHE A	260	36.030	41.957	1.326	1.00	0.00	N
	ATOM	1922	CA	PHE A	260	34.948	41.921	2.304	1.00	0.00	C
35	ATOM	1923	С	PHE A	260	34.625	43.336	2.774	1.00	0.00	С
	ATOM	1924	0	PHE A	260	35.505	44.075	3.225	1.00	0.00	0
	ATOM	1925	CB	PHE A	260	35.342	41.053	3.501	1.00	0.00	С
	ATOM	1926	CG	PHE A	260	34.242	40.879	4.503	1.00	0.00	C
_	MOTA	1927	CD1	PHE A	260	33.245	39.925	4.304	1.00	0.00	C
40	MOTA	1928	CD2	PHE A	260	34.187	41.681	5.636	1.00	0.00	С
	ATOM	1929	CE1	PHE A	260	32.211	39.775	5.220	1.00	0.00	C
	ATOM	1930	CE2	PHE A	260	33.158	41.542	6.560	1.00	0.00	С
	ATOM	1931	CZ	PHE A	260	32.166	40.588	6.353	1.00	0.00	С
	MOTA	1932	N	THR A		33.355	43.708	2.680	1.00	0.00	N
45	MOTA	1933	CA	THR A	261	32.931	45.046	3.062	1.00	0.00	С
	MOTA	1934	С	THR A		31.795	45.042	4.074	1.00	0.00	C
	MOTA	1935	0	THR A	261	30.841	44.277	3.952	1.00	0.00	0
	MOTA	1936	СВ	THR A	261	32.463	45.837	1.824	1.00	0.00	C
	MOTA	1937	OG1	THR A	261	33.507	45.842	0.841	1.00	0.00	0
50	MOTA	1938	CG2	THR A	261	32.117	47.277	2.198	1.00	0.00	С
	MOTA	1939	N	HIS A	262	31.908	45.919	5.066	1.00	0.00	N
	MOTA	1940	CA	HIS A		30.893	46.069	6.096	1.00	0.00	С
	MOTA	1941	С	HIS A	262	30.269	47.450	5.946	1.00	0.00	C
	ATOM	1942	0	HIS A	262	30.961	48.462	6.059	1.00	0.00	0
55	ATOM	1943	CB	HIS A	262	31.521	45.971	7.487	1.00	0.00	С
	ATOM	1944	CG	HIS A		30.584	46.329	8.600	1.00	0.00	С
	ATOM	1945	ND1	HIS A	262	29.955	45.381	9.378	1.00	0.00	N
	ATOM	1946	CD2	HIS A	262	30.172	47.532	9.069	1.00	0.00	С
	ATOM	1947	CE1	HIS A	262	29.200	45.984	10.280	1.00	0.00	С
60	ATOM	1948	NE2	HIS A		29.314	47.289	10.115	1.00	0.00	N
	ATOM	1949	N	MET A	263	28.968	47.491	5.684	1.00	0.00	N

	ATOM	1950	CA	MET A	263	28.269	48.760	5.556	1.00	0.00	С
	ATOM	1951	С	MET A	263	27.521	48.991	6.863	1.00	0.00	С
	ATOM	1952	0	MET A	263	26.763	48.125	7.308	1.00	0.00	0
	ATOM	1953	CB	MET A	263	27.259	48.717	4.404	1.00	0.00	С
5	ATOM	1954	CG	MET A		26.485	50.025	4.205	1.00	0.00	С
•	ATOM	1955	SD	MET A		25.054	49.854	3.084	1.00	0.00	S
		1956	CE	MET A		25.878	49.605	1.504	1.00	0.00	С
	ATOM					27.745	50.141	7.490	1.00	0.00	N
	ATOM	. 1957	N	MET A						0.00	C
10	ATOM	1958	CA	MET A		27.043	50.451	8.728	1.00		C
10	MOTA	1959	С	MET A		25.579	50.606	8.322	1.00	0.00	
	ATOM	1960	0	MET A	4 264	25.280	51.049	7.213	1.00	0.00	0
	ATOM	1961	CB	MET A	264	27.635	51.710	9.364	1.00	0.00	С
	MOTA	1962	CG	MET A	264	29.037	51.446	9.918	1.00	0.00	С
	ATOM	1963	SD	MET A	264	29.959	52.912	10.446	1.00	0.00	S
15	ATOM	1964	CE	MET A	264	28.964	53.477	11.815	1.00	0.00	С
	ATOM	1965	N		265	24.646	50.244	9.214	1.00	0.00	N
	ATOM	1966	CA		A 265	23.211	50.315	8.928	1.00	0.00	С
			C		4 265	22.429	51.590	9.187	1.00	0.00	C
	ATOM	1967					51.770	8.634	1.00	0.00	ō
20	MOTA	1968	0		265	21.340				0.00	c
20	MOTA	1969	CB		1 265		49.172	9.767	1.00		c
	MOTA	1970	CG		A 265		49.352	11.044	1.00	0.00	
	ATOM	1971	CD		A 265	24.879	49.679	10.558	1.00	0.00	С
	ATOM	1972	N	PHE A	A 266		52.480	10.000	1.00	0.00	N
	ATOM	1973	CA	PHE A	A 266	22.229	53.668	10.362	1.00	0.00	С
25	ATOM	1974	С	PHE A	A 266	22.601	55.022	9.747	1.00	0.00	С
	ATOM	1975	0		A 266		55.139	8.937	1.00	0.00	0
	ATOM	1976	СВ		A 266		53.722	11.892	1.00	0.00	С
	ATOM	1977	CG		A 266		52.446	12.521	1.00	0.00	С
	ATOM	1978		PHE A			51.906	13.661	1.00	0.00	С
30		1979		PHE A			51.785	11.959	1.00	0.00	C
30	ATOM						50.724	14.234	1.00	0.00	C
	ATOM	1980		PHE A						0.00	c
	ATOM	1981		PHE			50.604	12.522	1.00		c
	ATOM	1982	CZ		A 266		50.072	13.660	1.00	0.00	
	MOTA	1983	N		A 267		56.034	10.145	1.00	0.00	N
35	MOTA	1984	CA		A 267		57.410	9.659	1.00	0.00	С
	ATOM	1985	С	TYR	A 267	23.291	58.117	9.865	1.00	0.00	С
	MOTA	1986	0	TYR	A 267	23.696	58.941	9.040	1.00	0.00	0
	ATOM	1987	CB	TYR .	A 267	20.828	58.229	10.301	1.00	0.00	С
	ATOM	1988	CG		A 267		59.726	10.097	1.00	0.00	С
40	ATOM	1989		TYR			60.304	8.882	1.00	0.00	С
20	ATOM	1990		TYR			60.570	11.147	1.00	0.00	С
	ATOM	1991		TYR			61.698	8.719	1.00	0.00	C
	ATOM	1992		TYR			61.954	10.995	1.00	0.00	С
					A 267		62.510	9.785	1.00	0.00	С
45	ATOM	1993	CZ				63.879	9.651	1.00	0.00	Ö
45	ATOM	1994	ОН		A 267				1.00	0.00	N
	MOTA	1995	N		A 268		57.803	10.956			C
	MOTA	1996	CA		A 268		58.459	11.243	1.00	0.00	
	MOTA	1997	С		A 268		57.552	11.973	1.00	0.00	C
	ATOM	1998	0	SER .	A 268	25.868	56.461	12.425	1.00	0.00	0
50	ATOM	1999	CB	SER .	A 268	24.977	59.717	12.077	1.00	0.00	С
	ATOM	2000	OG	SER .	A 268	26.170	60.276	12.592	1.00	0.00	0
	ATOM	2001	N		A 269		58.007	12.076	1.00	0.00	N
	ATOM	2002	CA		A 269		57.252	12.778	1.00	0.00	С
		2002	C		A 269		57.740	14.221	1.00	0.00	С
55	ATOM						57.228	14.978	1.00	0.00	Ō
55	ATOM	2004	0		A 269					0.00	c
	MOTA	2005	CB		A 269		57.386	12.069	1.00		C
	MOTA	2006	CG		A 269		58.815	11.846	1.00	0.00	
	ATOM	2007		TYR			59.618	12.911	1.00	0.00	С
-	ATOM	2008		TYR .			59.374	10.567	1.00	0.00	C
60	MOTA	2009	CE1	TYR	A 269	31.104	60.950	12.708	1.00	0.00	С
	ATOM	2010		TYR			60.701	10.352	1.00	0.00	C
	-	-									

	ATOM	2011	CZ		A 269	31.068	61.482	11.422	1.00	0.00	С
	ATOM	2012	ОН	TYR A		31.402	62.800	11.205	1.00	0.00	0
	ATOM	2013	N	ASP A		27.817	58.731	14.605	1.00	0.00	N
	ATOM	2014	CA	ASP A	270	27.893	59.225	15.980	1.00	0.00	С
5	ATOM	2015	С	ASP A	270	27.310	58.186	16.933	1.00	0.00	C
	ATOM	2016	0	ASP A	A 270	26.658	57.236	16.501	1.00	0.00	0
	ATOM	2017	СВ	ASP A	270	27.196	60.591	16.144	1.00	0.00	С
	ATOM	2018	CG	ASP A	A 270	25.702	60.554	15.860	1.00	0.00	С
	ATOM	2019		ASP A		25.104	59.457	15.796	1.00	0.00	0
10	ATOM	2020		ASP A		25.120	61.655	15.721	1.00	0.00	0
	ATOM	2021	N		271	27.553	58.351	18.226	1.00	0.00	N
	ATOM	2022	CA	ILE A		27.080	57.366	19.187	1.00	0.00	C
	ATOM	2023	C	ILE A		25.567	57.124	19.164	1.00	0.00	Ċ
	ATOM	2023	0		271	25.124	55.979	19.239	1.00	0.00	Ö
15	ATOM	2025	CB	ILE A		27.585	57.718	20.606	1.00	0.00	c
15	ATOM	2026		ILE A		29.119	57.658	20.612	1.00	0.00	Č
						27.045	56.718	21.628	1.00	0.00	C
	ATOM	2027		ILE A		29.776		21.863	1.00	0.00	C
	ATOM	2028		ILE A			58.225			0.00	N
20	ATOM	2029	N	PRO A		24.755	58.187	19.043	1.00	0.00	C
20	ATOM	2030	CA	PRO A		23.306	57.961	19.013	1.00		
	ATOM	2031	С	PRO A		22.861	57.025	17.881	1.00	0.00	C
	ATOM	2032	0	PRO A		21.816	56.387	17.979	1.00	0.00	0
	ATOM	2033	CB	PRO A		22.740	59.369	18.856	1.00	0.00	C
25	ATOM	2034	CG	PRO A		23.741	60.208	19.599	1.00	0.00	С
25	MOTA	2035	CD	PRO A		25.059	59.627	19.135	1.00	0.00	C
	MOTA	2036	N	HIS A		23.653	56.937	16.812	1.00	0.00	N
	MOTA	2037	CA	HIS A		23.301	56.075	15.682	1.00	0.00	C
	MOTA	2038	С	HIS A		24.229	54.880	15.459	1.00	0.00	C
20	ATOM	2039	0	HIS A		24.338	54.373	14.338	1.00	0.00	0
30	ATOM	2040	CB	HIS A		23.217	56.901	14.391	1.00	0.00	С
	ATOM	2041	CG	HIS A		22.162	57.964	14.428	1.00	0.00	C
	MOTA	2042	ND1	HIS A	A 273	22.362	59.193	15.019	1.00	0.00	N
	MOTA	2043	CD2	HIS A	273	20.879	57.962	13.993	1.00	0.00	С
	MOTA	2044		HIS A		21.249	59.901	14.949	1.00	0.00	С
35	MOTA	2045	NE2	HIS A	A 273	20.333	59.176	14.330	1.00	0.00	N
	ATOM	2046	N	THR A	274	24.887	54.419	16.520	1.00	0.00	N
	MOTA	2047	CA	THR A	274	25.783	53.276	16.394	1.00	0.00	С
	MOTA	2048	С	THR A	274	25.588	52.156	17.423	1.00	0.00	С
	MOTA	2049	0	THR A	2.74	26.159	51.078	17.268	1.00	0.00	0
40	MOTA	2050	CB	THR A	274	27.269	53.727	16.409	1.00	0.00	C
	MOTA	2051	OG1	THR A	274	27.480	54.679	17.456	1.00	0.00	0
	MOTA	2052	CG2	THR A	274	27.646	54.350	15.074	1.00	0.00	С
	MOTA	2053	N	CYS A	275	24.786	52.388	18.462	1.00	0.00	N
	MOTA	2054	CA	CYS A	A 275	24.564	51.344	19.468	1.00	0.00	С
45	MOTA	2055	С	CYS A	275	23.375	50.457	19.108	1.00	0.00	С
	ATOM	2056	0	CYS A		23.299	49.296	19.521	1.00	0.00	0
	ATOM	2057	CB	CYS A		24.327	51.967	20.848	1.00	0.00	С
	ATOM	2058	SG	CYS A		22.589	52.094	21.403	1.00	0.00	S
	ATOM	2059	N	GLY A		22.450	51.016	18.338	1.00	0.00	N
50	ATOM	2060	CA	GLY A		21.260	50.288	17.941	1.00	0.00	С
•	ATOM	2061	С	GLY A		20.342	51.180	17.126	1.00	0.00	С
	ATOM	2062	0	GLY A		20.715	52.314	16.817	1.00	0.00	0
	ATOM	2063	N	PRO P		19.130	50.709	16.778	1.00	0.00	N
	ATOM	2064	CA	PRO A		18.130	51.438	15.988	1.00	0.00	C
55							52.657	16.624	1.00	0.00	Č
55	ATOM	2065	С	PRO I		17.466		15.916	1.00	0.00	0
	ATOM	2066	O CB	PRO A		16.883 17.103	53.477	15.662	1.00	0.00	C
	ATOM	2067	CB	PRO A			50.356			0.00	c
	ATOM	2068	CG	PRO A		17.124	49.525	16.904	1.00		
60	ATOM	2069	CD	PRO A		18.610	49.384	17.165	1.00	0.00	C
60	ATOM	2070	N	ASP A		17.543	52.782	17.946	1.00	0.00	N C
	ATOM	2071	CA	ASP A	4 2/8	16.896	53.903	18.630	1.00	0.00	C

	ATOM	2072	С	ASP	A 278	17.872	54.940	19.175	1.00	0.00	С
	ATOM	2073	0		A 278	18.487	54.739	20.221	1.00	0.00	0
	MOTA	2074	CB	ASP A	A 278	16.027	53.383	19.781	1.00	0.00	С
_	MOTA	2075	CG	ASP A	A 278	15.096	54.448	20.335	1.00	0.00	С
5	MOTA	2076	OD1	ASP A	A 278	15.253	55.634	19.970	1.00	0.00	0
	ATOM	2077	OD2	ASP 2	A 278	14.209	54.098	21.138	1.00	0.00	0
	ATOM	2078	N	PRO A	A 279	18.011	56.077	18.478	1.00	0.00	N
	ATOM	2079	CA	PRO A	A 279	18.927	57.132	18.925	1.00	0.00	C
	ATOM	2080	С	PRO I	A 279	18.575	57.727	20.289	1.00	0.00	C
10	ATOM	2081	0		A 279	19.450	58.222	20.997	1.00	0.00	0
	ATOM	2082	CB	PRO A	A 279	18.851	58.159	17.792	1.00	0.00	С
	MOTA	2083	CG		A 279	17.461	57.974	17.260	1.00	0.00	С
	ATOM	2084	CD		A 279	17.323	56.470	17.235	1.00	0.00	C
	ATOM	2085	N	LYS		17.299	57.678	20.662	1.00	0.00	N
15	ATOM	2086	CA	LYS		16.886	58.217	21.954	1.00	0.00	C
	ATOM	2087	C	LYS		17.499	57.389	23.077	1.00	0.00	C
	ATOM	2088	Ö	LYS		17.776	57.901	24.163	1.00	0.00	ō
	ATOM	2089	СВ	LYS		15.361	58.211	22.084	1.00	0.00	C
	ATOM	2090	CG	LYS A		14.861	58.895	23.350	1.00	0.00	Č
20	MOTA	2091	CD	LYS A		13.348	58.830	23.464	1.00	0.00	C
	ATOM	2092	CE	LYS A		12.876	57.405	23.700	1.00	0.00	c
	ATOM	2093	NZ	LYS		13.443	56.828	24.961	1.00	0.00	N
	ATOM	2093	N	VAL A		17.708	56.104	22.813	1.00	0.00	N
	ATOM	2094	CA	VAL A		18.306	55.217	23.804	1.00	0.00	C
25		2095	CA				55.282	23.699	1.00	0.00	C
20	ATOM	2096		VAL A		19.831 20.530	55.439	24.699	1.00	0.00	0
	MOTA		O						1.00		c
	ATOM	2098	CB	VAL		17.850	53.751	23.594 24.555		0.00	C
	MOTA	2099		VAL		18.589	52.829	23.801	1.00	0.00	C
30	ATOM	2100		VAL A		16.341	53.636		1.00		N
50	MOTA	2101	N	CYS		20.344	55.166	22.478	1.00	0.00	
	ATOM	2102	CA	CYS		21.786	55.201	22.261	1.00	0.00	C
	ATOM	2103	С	CYS Z		22.430	56.486	22.768	1.00	0.00	C
	ATOM	2104	0	CYS Z		23.555	56.468	23.277	1.00	0.00	0
35	ATOM	2105	CB	CYS A		22.100	55.031	20.775	1.00	0.00	C
33	ATOM	2106	SG	CYS A		21.727	53.385	20.093	1.00	0.00	S
	MOTA	2107	N	CYS A		21.721	57.603	22.638	1.00	0.00	N
	MOTA	2108	CA	CYS A		22.271	58.873	23.086	1.00	0.00	C
	MOTA	2109	С	CYS A		22.577	58.834	24.579	1.00	0.00	C
40	MOTA	2110	0	CYS A		23.485	59.515	25.055	1.00	0.00	0
4 0	MOTA	2111	CB	CYS A		21.307	60.025	22.785	1.00	0.00	C
	ATOM	2112	SG	CYS A		22.167	61.630	22.843	1.00	0.00	S
	ATOM	2113	N	GLN A		21.821	58.025	25.314	1.00	0.00	N
	ATOM	2114	CA	GLN A		22.015	57.904	26.752	1.00	0.00	C
45	ATOM	2115		GLN A		23.300	57.173	27.093		0.00	C
45	MOTA	2116	0	GLN A		23.679	57.080	28.261	1.00	0.00	0
	MOTA	2117	CB	GLN A		20.824	57.180	27.381	1.00	0.00	C
	ATOM	2118	CG	GLN A		19.513	57.927	27.217	1.00	0.00	С
	MOTA	2119	CD	GLN A		18.333	57.138	27.732	1.00	0.00	C
	MOTA	2120		GLN A		18.284	56.765	28.905	1.00	0.00	0
50	MOTA	2121	NE2	GLN A		17.372	56.876	26.855	1.00	0.00	N
	ATOM	2122	N	PHE A	285	23.978	56.657	26.074	1.00	0.00	N
	MOTA	2123	CA	PHE A	285	25.215	55.941	26.309	1.00	0.00	С
	ATOM	2124	С	PHE A	285	26.439	56.640	25.730	1.00	0.00	С
	MOTA	2125	0	PHE A	285	27.480	56.026	25.500	1.00	0.00	0
55	MOTA	2126	CB	PHE A	285	25.061	54.498	25.820	1.00	0.00	С
	MOTA	2127	CG	PHE A	285	24.076	53.709	26.645	1.00	0.00	С
	MOTA	2128	CD1	PHE A	285	24.474	53.103	27.833	1.00	0.00	С
	MOTA	2129	CD2	PHE A	285	22.732	53.652	26.285	1.00	0.00	С
	ATOM	2130	CE1	PHE A	285	23.549	52.454	28.657	1.00	0.00	С
60	MOTA	2131		PHE A		21.795	53.006	27.101	1.00	0.00	С
	ATOM	2132	ÇZ	PHE A		22.208	52.407	28.291	1.00	0.00	С

	ATOM	2133	N	ASP	A	286	26.283	57.942	25.498	1.00	0.00	N
	ATOM	2134	CA	ASP	Α	286	27.367	58.806	25.041	1.00	0.00	С
	ATOM	2135	С	ASP	Α	286	27.545	59.652	26.296	1.00	0.00	С
	ATOM	2136	0	ASP			26.904	60.688	26.462	1.00	0.00	0
5	ATOM	2137	CB	ASP			26.930	59.693	23.874	1.00	0.00	С
•	ATOM	2138	CG	ASP			28.047	60.605	23.391	1.00	0.00	С
	ATOM	2139		ASP			29.087	60.686	24.079	1.00	0.00	0
	ATOM	2140		ASP			27.884	61.248	22.331	1.00	0.00	0
	ATOM	2141	N	PHE			28.409	59.194	27.191	1.00	0.00	N
10	ATOM	2142	CA	PHE			28.601	59.879	28.454	1.00	0.00	С
10	ATOM	2143	C	PHE			29.236	61.263	28.424	1.00	0.00	С
	ATOM	2144	Ö	PHE			29.478	61.855	29.469	1.00	0.00	0
	ATOM	2145	СВ	PHE			29.331	58.946	29.419	1.00	0.00	C
	ATOM	2145	CG	PHE			28.591	57.654	29.657	1.00	0.00	C
15	ATOM	2147		PHE			28.815	56.544	28.847	1.00	0.00	С
15	ATOM	2148		PHE			27.605	57.575	30.638	1.00	0.00	C
		2149		PHE			28.066	55.379	29.007	1.00	0.00	C
	MOTA						26.849	56.414	30.805	1.00	0.00	c
	ATOM	2150		PHE			27.080	55.313	29.986	1.00	0.00	Č
20	MOTA	2151	CZ	PHE LYS			29.490	61.791	27.230	1.00	0.00	N
20	ATOM	2152	N				30.052	63.133	27.230	1.00	0.00	C
	ATOM	2153	CA	LYS				64.136	27.133	1.00	0.00	c
	ATOM	2154	С	LYS			28.900		26.963	1.00	0.00	ő
	ATOM	2155	0	LYS			29.122	65.341 63.262		1.00	0.00	c
25	MOTA	2156	CB	LYS			30.964		25.901	1.00	0.00	c
25	ATOM	2157	CG	LYS			31.708	64.601	25.832			C
	ATOM	2158	CD	LYS			32.650	64.698	24.634	1.00	0.00	C
	ATOM	2159	CE	LYS			33.439	66.003	24.683	1.00	0.00	N
	ATOM	2160	NZ	LYS			34.384	66.172	23.531	1.00		N
20	MOTA	2161	N	ARG			27.666	63.638	27.022	1.00	0.00	C
30	MOTA	2162	CA	ARG			26.507	64.517	26.890	1.00	0.00	С
	ATOM	2163	С	ARG			25.711	64.768	28.172	1.00	0.00	
	MOTA	2164	0	ARG			24.487	64.873	28.121	1.00	0.00	0 C
	MOTA	2165	CB	ARG			25.548	63.968	25.828	1.00	0.00	
0.5	MOTA	2166	CG	ARG			26.170	63.712	24.461	1.00	0.00	C
35	ATOM	2167	CD	ARG			25.088	63.468	23.427	1.00	0.00	C
	ATOM	2168	NE	ARG			25.617	63.061	22.127	1.00	0.00	N
	MOTA	2169	CZ	ARG			25.139	63.493	20.965	1.00	0.00	C
	ATOM	2170	NH1				24.128	64.355	20.942	1.00	0.00	N
40	MOTA	2171	NH2	ARG			25.656	63.052	19.826	1.00	0.00	N
40	ATOM	2172	N	MET			26.382	64.885	29.313	1.00	0.00	N
	MOTA	2173	CA	MET			25.652	65.113	30.557	1.00	0.00	С
	MOTA	2174	С	MET			25.566	66.574	31.008	1.00	0.00	C
	ATOM	2175	0	MET	Α	290	24.856	66.884	31.970	1.00	0.00	0
	MOTA	2176	CB	MET			26.226	64.236	31.676	1.00	0.00	C
45	ATOM	2177	CG	MET			26.001	62.746	31.437	1.00	0.00	C
	ATOM	2178	SD	MET	Α	290	26.499	61.651	32.789	1.00	0.00	S
	MOTA	2179	CE	MET	A	290	28.245	61.429	32.430	1.00	0.00	С
	ATOM	2180	N	GLY	Α	291	26.275	67.470	30.320	1.00	0.00	N
	ATOM	2181	CA	GLY	Α	291	26.209	68.878	30.684	1.00	0.00	C
50	ATOM	2182	С	GLY	Α	291	27.497	69.686	30.712	1.00	0.00	C
	ATOM	2183	0	GLY	Α	291	27.628	70.676	29.987	1.00	0.00	0
	MOTA	2184	N	SER	Α	292	28.444	69.274	31.551	1.00	0.00	N
	MOTA	2185	CA	SER			29.714	69.981	31.693	1.00	0.00	С
	ATOM	2186	. C	SER			30.514	70.153	30.400	1.00	0.00	С
55	ATOM	2187	0	SER			31.384	71.023	30.324	1.00	0.00	0
	ATOM	2188	СВ	SER			30.588	69.284	32.736	1.00	0.00	C
	ATOM	2189	OG	SER			30.964	67.989	32.302	1.00	0.00	0
	ATOM	2190	N	PHE			30.231	69.329	29.393	1.00	0.00	N
	ATOM	2191	CA	PHE			30.944	69.418	28.119	1.00	0.00	C
60	ATOM	2192	C	PHE			30.206	70.273	27.093	1.00	0.00	С
55	ATOM	2193	Ö	PHE			30.664	70.428	25.957	1.00	0.00	0
		-175	-		- •							

COCUME COMIN

	ATOM	2194	СВ	PHE	Α	293	31.178	68.023	27.525	1.00	0.00	С
	ATOM	2195	CG	PHE	Α	293	32.115	67.171	28.329	1.00	0.00	С
	ATOM	2196	CD1	PHE			31.628	66.289	29.285	1.00	0.00	С
	ATOM	2197		PHE			33.489	67.254	28.132	1.00	0.00	С
5	ATOM	2198		PHE			32.496	65.498	30.035	1.00	0.00	С
	ATOM	2199		PHE			34.369	66.470	28.875	1.00	0.00	C
	ATOM	2200	CZ	PHE			33.871	65.589	29.829	1.00	0.00	С
	ATOM	2201	N	GLY			29.064	70.823	27.492	1.00	0.00	N
								71.652	26.582	1.00	0.00	C
10	ATOM	2202	CA	GLY			28.294				0.00	C
10	ATOM	2203	С	GLY			27.536	70.859	25.532	1.00		
	MOTA	2204	0	GLY			27.094	71.414	24.524	1.00	0.00	0
	ATOM	2205	N	LEU			27.387	69.558	25.762	1.00	0.00	N
	MOTA	2206	CA	LEU	Α	295	26.670	68.692	24.833	1.00	0.00	С
	ATOM	2207	С	LEU	Α	295	25.448	68.107	25.530	1.00	0.00	С
15	ATOM	2208	0	LEU	Α	295	25.416	67.999	26.753	1.00	0.00	0
	ATOM	2209	CB	LEU	Α	295	27.577	67.554	24.351	1.00	0.00	С
	ATOM	2210	CG	LEU			28.842	67.930	23.573	1.00	0.00	С
	ATOM	2211		LEU			29.680	66.683	23.325	1.00	0.00	С
	ATOM	2212		LEU			28.458	68.592	22.251	1.00	0.00	С
20	ATOM	2213	N	SER			24.444	67.733	24.746	1.00	0.00	N
20	ATOM	2214	CA	SER			23.226	67.152	25.297	1.00	0.00	С
			C	SER			22.563	66.263	24.257	1.00	0.00	Ċ
	MOTA	2215						66.175	23.116	1.00	0.00	ŏ
	ATOM	2216	0	SER			23.024				0.00	c
25	ATOM	2217	CB	SER			22.255	68.256	25.729	1.00		0
25	MOTA	2218	OG	SER			21.872	69.065	24.630	1.00	0.00	
	ATOM	2219	N	CYS			21.483	65.602	24.661	1.00	0.00	N
	MOTA	2220	CA	CYS			20.739	64.719	23.775	1.00	0.00	C
	MOTA	2221	С	CYS			19.468	65.391	23.266	1.00	0.00	С
	ATOM	2222	0	CYS	A	297	18.582	65.737	24.045	1.00	0.00	0
30	ATOM	2223	CB	CYS	Α	297	20.391	63.420	24.506	1.00	0.00	С
	ATOM	2224	SG	CYS	Α	297	21.829	62.331	24.719	1.00	0.00	S
	ATOM	2225	N	PRO	Α	298	19.364	65.582	21.943	1.00	0.00	N
	ATOM	2226	CA	PRO	Α	298	18.188	66.220	21.347	1.00	0.00	С
	ATOM	2227	С	PRO	Α	298	16.889	65.440	21.539	1.00	0.00	С
35	ATOM	2228	0	PRO			15.801	66.000	21.407	1.00	0.00	0
00	ATOM	2229	СВ	PRO			18.578	66.356	19.876	1.00	0.00	C
	ATOM	2230	CG	PRO			19.481	65.186	19.659	1.00	0.00	С
	ATOM	2231	CD	PRO			20.337	65.201	20.903	1.00	0.00	С
		2232	N	TRP			17.005	64.152	21.853	1.00	0.00	N
40	ATOM						15.828	63.313	22.065	1.00	0.00	С
40	ATOM	2233	CA	TRP			15.265	63.491	23.480	1.00	0.00	c
	MOTA	2234	C	TRP							0.00	o
	ATOM	2235	0	TRP			14.368	62.761	23.903	1.00		c
	MOTA	2236	CB	TRP			16.174	61.842	21.775	1.00	0.00	
	MOTA	2237	CG	TRP			16.534	61.619	20.324	1.00	0.00	С
45	MOTA	2238		TRP			15.666	61.438	19.282	1.00	0.00	C
	MOTA	2239		TRP			17.850	61.656	19.745	1.00	0.00	С
	ATOM	2240	NE1	TRP	Α	299	16.357	61.367	18.093	1.00	0.00	N
	ATOM	2241	CE2	TRP	Α	299	17.697	61.499	18.348	1.00	0.00	С
	ATOM	2242	CE3	TRP	Α	299	19.140	61.812	20.270	1.00	0.00	С
50	ATOM	2243	CZ2	TRP	Α	299	18.789	61.494	17.469	1.00	0.00	С
	ATOM	2244		TRP			20.226	61.806	19.396	1.00	0.00	С
	ATOM	2245		TRP			20.041	61.649	18.009	1.00	0.00	С
	ATOM	2246	N	LYS			15.815	64.468	24.202	1.00	0.00	N
	ATOM	2247	CA	LYS			15.368	64.831	25.553	1.00	0.00	С
55			C	LYS			15.689	63.912	26.730	1.00	0.00	Ċ
55	ATOM	2248					15.274	64.190	27.853	1.00	0.00	Ö
	ATOM	2249	0	LYS						1.00	0.00	С
	ATOM	2250	CB	LYS			13.861	65.089	25.539			С
	MOTA	2251	CG			300	13.424	66.125	24.526	1.00	0.00	
	ATOM	2252	CD	LYS			11.918	66.321	24.569	1.00	0.00	C
60	MOTA	2253	CE	LYS			11.460	67.272	23.479	1.00	0.00	C
	ATOM	2254	NZ	LYS	A	300	12.177	68.571	23.564	1.00	0.00	N

	ATOM ATOM	2255 2256	N CA	VAL A		16.403 16.765	62.820 61.917	26.490 27.575	1.00	0.00	N C
		2250	C	VAL A		18.287	61.901	27.673	1.00	0.00	c
	ATOM		0	VAL A		18.971	61.383	26.790	1.00	0.00	Ö
5	ATOM	2258		VAL A		16.247	60.485	27.325	1.00	0.00	c
5	ATOM	2259	CB				59.618	28.538	1.00	0.00	c
	ATOM	2260		VAL A		16.525	60.515	27.028	1.00	0.00	c
	ATOM	2261		VAL A		14.754	62.477	28.752	1.00	0.00	N
	ATOM	2262	N	PRO A		18.836	62.546	28.976	1.00	0.00	C
10	ATOM	2263	CA	PRO A		20.281		29.467	1.00	0.00	C
10	ATOM	2264	С	PRO A		20.907	61.253	30.019	1.00	0.00	o
	ATOM	2265	0	PRO A		20.228	60.389	30.019	1.00	0.00	C
	ATOM	2266	CB	PRO A		20.403	63.653 63.392	30.872	1.00	0.00	c
	ATOM	2267	CG	PRO A		19.204 18.109	63.148	29.848	1.00	0.00	c
15	ATOM	2268	CD	PRO A			61.095	29.255	1.00	0.00	N
15	ATOM	2269	N	PRO A		22.221	59.866	29.729	1.00	0.00	C
	ATOM	2270	CA	PRO A		22.857	59.963	31.247	1.00	0.00	c
	MOTA	2271	С	PRO A		22.971	61.064	31.803	1.00	0.00	o
	ATOM	2272	0	PRO A		23.018	59.887	29.032	1.00	0.00	c
20	ATOM	2273	CB	PRO A		24.216	61.350	28.897	1.00	0.00	c
20	MOTA	2274	CG			24.506	61.932	28.494	1.00	0.00	c
	ATOM	2275	CD	PRO A		23.167 22.993	58.819	31.918	1.00	0.00	N N
	ATOM	2276 2277	N	ARG A		22.993	58.800	33.369	1.00	0.00	C
	ATOM		CA	ARG A		24.302	57.959	33.783	1.00	0.00	c
25	ATOM	2278	С	ARG A		24.502	56.862	33.765	1.00	0.00	o
23	ATOM	2279	0	ARG A		21.829	58.248	34.004	1.00	0.00	C
	ATOM	2280	CB	ARG A		20.698	59.268	34.084	1.00	0.00	c
	MOTA MOTA	2281 2282	CG CD	ARG A		19.388	58.628	34.528	1.00	0.00	c
	ATOM	2283	NE	ARG A		18.807	57.784	33.486	1.00	0.00	N
30	ATOM	2283	CZ	ARG A		18.401	58.230	32.299	1.00	0.00	C
50	ATOM	2285		ARG A		18.508	59.518	31.993	1.00	0.00	N
	ATOM	2286		ARG A		17.884	57.389	31.413	1.00	0.00	N
	ATOM	2287	N	THR A		25.093	58.485	34.712	1.00	0.00	N
	ATOM	2288	CA	THR A		26.268	57.780	35.198	1.00	0.00	C
35	ATOM	2289	C	THR A		25.862	56.384	35.646	1.00	0.00	С
00	ATOM	2290	Ö	THR A		24.863	56.219	36.348	1.00	0.00	0
	ATOM	2291	СВ	THR A		26.906	58.530	36.380	1.00	0.00	С
	ATOM	2292		THR A		27.329	59.828	35.942	1.00	0.00	0
	ATOM	2293		THR A		28.099	57.766	36.924	1.00	0.00	С
40	ATOM	2294	N	ILE A		26.628	55.380	35.231	1.00	0.00	N
	ATOM	2295	CA	ILE A		26.331	54.001	35.599	1.00	0.00	C
	ATOM	2296	С	ILE A		26.739	53.742	37.046	1.00	0.00	С
	ATOM	2297	0	ILE A		27.808	54.168	37.487	1.00	0.00	0
	ATOM	2298	СВ	ILE A		27.079	52.997	34.694	1.00	0.00	C
45	MOTA	2299	CG1	ILE A		26.813	53.315	33.219	1.00	0.00	С
	MOTA	2300		ILE A		26.639	51.569	35.023	1.00	0.00	C
	ATOM	2301		ILE A		25.349	53.255	32.815	1.00	0.00	С
	ATOM	2302	N	SER A		25.876	53.045	37.780	1.00	0.00	N
	ATOM	2303	CA	SER A		26.134	52.713	39.178	1.00	0.00	С
50	MOTA	2304	С	SER A	307	25.659	51.290	39.441	1.00	0.00	С
	ATOM	2305	0	SER A		24.931	50.720	38.634	1.00	0.00	0
	ATOM	2306	CB	SER A		25.379	53.673	40.097	1.00	0.00	С
	ATOM	2307	OG	SER A		23.980	53.548	39.909	1.00	0.00	0
	MOTA	2308	N	ASP A		26.073	50.718	40.568	1.00	0.00	N
55	MOTA	2309	CA	ASP A		25.661	49.361	40.923	1.00	0.00	С
	ATOM	2310	С	ASP A		24.145	49.323	41.039	1.00	0.00	С
	ATOM	2311	ŏ	ASP A		23.515	48.283	40.851	1.00	0.00	0
	ATOM	2312	СВ	ASP A		26.287	48.953	42.259	1.00	0.00	С
	ATOM	2313	CG	ASP A		27.775	48.703	42.152	1.00	0.00	С
60	ATOM	2314		ASP A		28.380	49.134	41.150	1.00	0.00	0
	ATOM	2315		ASP A		28.345	48.083	43.076	1.00	0.00	0

	ATOM	2316	N	GLN A	A 309	23.574	50.483	41.336	1.00	0.00	N
	ATOM	2317	CA	GLN A		22.140		41.508	1.00	0.00	C
	ATOM	2318	С	GLN A		21.326		40.213	1.00	0.00	С
	ATOM	2319	0	GLN A		20.203		40.191	1.00	0.00	0
5	ATOM	2320	СВ	GLN A		21.891		42.309	1.00	0.00	С
	ATOM	2321	CG	GLN A		20.521		42.168	1.00	0.00	С
	ATOM	2322	CD	GLN A		20.372		43.027	1.00	0.00	С
	ATOM	2323		GLN A		19.547		42.743	1.00	0.00	0
	ATOM	2324	NE2			21.166		44.089	1.00	0.00	N
10	MOTA	2325	N	ASN A		21.879		39.133	1.00	0.00	N
	ATOM	2326	CA	ASN A		21.144		37.871	1.00	0.00	С
	ATOM	2327	С	ASN A		21.748		36.736	1.00	0.00	С
	ATOM	2328	0	ASN A		21.164		35.660	1.00	0.00	0
	MOTA	2329	CB	ASN A		20.994		37.387	1.00	0.00	С
15	MOTA	2330	CG	ASN A		22.328		37.044	1.00	0.00	С
	MOTA	2331		ASN A		23.268		36.620	1.00	0.00	0
	MOTA	2332		ASN A		22.408		37.211	1.00	0.00	N
	ATOM	2333	N	VAL A		22.906		36.972	1.00	0.00	N
	ATOM	2334	CA	VAL A	311	23.582		35.931	1.00	0.00	С
20	MOTA	2335	С	VAL A	311	22.748	47.908	35.302	1.00	0.00	С
	ATOM	2336	0	VAL A	A 311	22.863	47.649	34.104	1.00	0.00	0
	ATOM	2337	CB	VAL A	311	24.913	48.433	36.453	1.00	0.00	С
	ATOM	2338	CG1	VAL A		24.639		37.448	1.00	0.00	С
	MOTA	2339	CG2	VAL A	311	25.756		35.278	1.00	0.00	С
25	MOTA	2340	N	ALA A	312	21.910	47.244	36.095	1.00	0.00	N
	MOTA	2341	CA	ALA A	312	21.083	46.167	35.557	1.00	0.00	С
	ATOM	2342	С	ALA A	312	20.067	46.703	34.550	1.00	0.00	С
	ATOM	2343	0	ALA A	312	19.868	46.114	33.486	1.00	0.00	0
	MOTA	2344	CB	ALA A	312	20.363	45.429	36.693	1.00	0.00	С
30	ATOM	2345	N	ALA A	313	19.431	47.823	34.887	1.00	0.00	N
	MOTA	2346	CA	ALA A	313	18.433	48.439	34.015	1.00	0.00	С
	MOTA	2347	С	ALA A	313	19.079	49.081	32.790	1.00	0.00	С
	MOTA	2348	0	ALA A	313	18.541	49.017	31.682	1.00	0.00	0
	ATOM	2349	CB	ALA A		17.641		34.787	1.00	0.00	С
35	MOTA	2350	N	ARG A		20.226		32.996	1.00	0.00	N
	MOTA	2351	CA	ARG A		20.941		31.896	1.00	0.00	C
	ATOM	2352	С	ARG A		21.411		30.907	1.00	0.00	С
	ATOM	2353	0	ARG A		21.307		29.691	1.00	0.00	0
40	MOTA	2354	CB	ARG A		22.147		32.435	1.00	0.00	C
40	MOTA	2355	CG	ARG A		21.805		33.365	1.00	0.00	С
	MOTA	2356	CD	ARG A		21.451		32.599	1.00	0.00	C
	MOTA	2357	NE	ARG A		20.085		32.090	1.00	0.00	N
	ATOM	2358	CZ	ARG A		19.594	54.486	31.276	1.00	0.00	C
45	ATOM	2359	NH1	ARG A		20.361	55.489	30.871	1.00	0.00	N
45	ATOM	2360		ARG A		18.334		30.875	1.00	0.00	N
	ATOM	2361	N	SER A		21.919		31.439	1.00	0.00	N
	ATOM	2362	CA	SER A		22.404		30.611	1.00	0.00	C
	ATOM	2363	С	SER A		21.270		29.815	1.00	0.00	С
50	ATOM	2364	0	SER A		21.425		28.636	1.00	0.00	0
50	ATOM	2365	CB	SER A		23.063		31.483	1.00	0.00	С
	ATOM	2366	OG	SER A		24.249		32.083	1.00	0.00	0
	ATOM	2367	N	ASP A		20.121		30.460	1.00	0.00	N
	ATOM	2368	CA	ASP A		18.974		29.788	1.00	0.00	C
55	ATOM	2369	С	ASP A		18.605		28.573	1.00	0.00	С
55	ATOM	2370	0	ASP A		18.311		27.501	1.00	0.00	0
	ATOM	2371	CB	ASP A		17.793		30.758	1.00	0.00	C
	ATOM	2372	CG	ASP A		16.715		30.268	1.00	0.00	C
	ATOM	2373		ASP A		17.040		29.946	1.00	0.00	0
60	ATOM	2374		ASP A		15.542		30.211 28.738	1.00	0.00	N
UU	ATOM	2375	N CA	LEU A		18.633 18.318		28.738	1.00	0.00	C
	ATOM	2376	CA	DEU F	3 31 /	10.310	10.700	27.000	1.00	0.00	C

	ATOM	2377	С	LEU A	317	19.362	48.680	26.531	1.00	0.00	С
	ATOM	2378	0	LEU A		19.024	48.567	25.353	1.00	0.00	0
	ATOM	2379	CB	LEU A		18.246	50.214	28.133	1.00	0.00	С
	ATOM	2380	CG	LEU A		16.879	50.764	28.537	1.00	0.00	Ċ
5	ATOM	2381		LEU A		17.049	52.176	29.092	1.00	0.00	C
9		2382		LEU A		15.952	50.777	27.330	1.00	0.00	Ċ
	ATOM			LEU A			48.738	26.918	1.00	0.00	N
	ATOM	2383	N			20.632				0.00	C
	MOTA	2384	CA	LEU A		21.725	48.693	25.952	1.00		
10	MOTA	2385	С	LEU A		21.791	47.364	25.212	1.00	0.00	С
10	MOTA	2386	0	LEU A		21.826	47.329	23.981	1.00	0.00	0
	MOTA	2387	CB	LEU A		23.061	48.957	26.653	1.00	0.00	С
	ATOM	2388	CG	LEU A	318	24.279	49.102	25.734	1.00	0.00	С
	MOTA	2389	CD1	LEU A	318	24.038	50.236	24.743	1.00	0.00	С
	ATOM	2390	CD2	LEU A	318	25.528	49.371	26.569	1.00	0.00	С
15	ATOM	2391	N	VAL A	319	21.815	46.268	25.962	1.00	0.00	N
	MOTA	2392	CA	VAL A	319	21.879	44.950	25.349	1.00	0.00	С
	ATOM	2393	С	VAL A		20.740	44.769	24.351	1.00	0.00	С
	ATOM	2394	Ō	VAL A		20.922	44.165	23.297	1.00	0.00	0
	ATOM	2395	CB	VAL A		21.820	43.839	26.417	1.00	0.00	С
20	ATOM	2396		VAL A		21.629	42.483	25.755	1.00	0.00	С
20	ATOM	2397		VAL A		23.107	43.842	27.230	1.00	0.00	Č
	ATOM	2398		ASP A		19.567	45.304	24.675	1.00	0.00	N
			N				45.187	23.779	1.00	0.00	c C
	ATOM	2399	CA	ASP A		18.420			1.00	0.00	c
25	ATOM	2400	C	ASP A		18.716	45.878	22.446		0.00	0
25	MOTA	2401	0	ASP A		18.350	45.378	21.382	1.00		
	MOTA	2402	СВ	ASP A		17.179	45.794	24.435	1.00	0.00	C
	ATOM	2403	CG	ASP A		15.976	45.789	23.522	1.00	0.00	C
	ATOM	2404		ASP A		15.527	46.886	23.133	1.00	0.00	0
-00	MOTA	2405	OD2	ASP A		15.481	44.692	23.191	1.00	0.00	0
30	ATOM	2406	N	GLN A		19.376	47.031	22.509	1.00	0.00	N
	ATOM	2407	CA	GLN A	321	19.741	47.761	21.298	1.00	0.00	С
	MOTA	2408	С	GLN A	321	20.740	46.935	20.501	1.00	0.00	С
	ATOM	2409	0	GLN A	321	20.630	46.816	19.279	1.00	0.00	0
	ATOM	2410	CB	GLN A	321	20.371	49.109	21.654	1.00	0.00	С
35	MOTA	2411	CG	GLN A	321	19.366	50.146	22.102	1.00	0.00	С
	ATOM	2412	CD	GLN A	321	18.323	50.413	21.040	1.00	0.00	С
	ATOM	2413	OE1	GLN A		18.645	50.834	19.926	1.00	0.00	0
	ATOM	2414		GLN A		17.062	50.164	21.375	1.00	0.00	N
	ATOM	2415	N	TRP A		21.718	46.368	21.203	1.00	0.00	N
40	ATOM	2416	CA	TRP A		22.738	45.544	20.568	1.00	0.00	С
	ATOM	2417	С	TRP A		22.133	44.351	19.837	1.00	0.00	С
	ATOM	2418	Ö	TRP A		22.476	44.081	18.685	1.00	0.00	0
	ATOM	2419	СВ	TRP A		23.744	45.027	21.600	1.00	0.00	C
	ATOM	2420	CG	TRP A		24.688	46.060	22.143	1.00	0.00	c
45		2420		TRP A		24.907	47.315	21.656	1.00	0.00	c
40	ATOM						45.898	23.249	1.00	0.00	c
	ATOM	2422		TRP A		25.583		22.390	1.00	0.00	N
	ATOM	2423		TRP A		25.887	47.945				
	ATOM	2424		TRP A		26.319	47.097	23.373	1.00	0.00	C
Ε0	ATOM	2425		TRP A		25.837	44.853	24.148	1.00	0.00	С
50	ATOM	2426		TRP A		27.292	47.281	24.363	1.00	0.00	C
	MOTA	2427		TRP A		26.805	45.034	25.132	1.00	0.00	C
	MOTA	2428	CH2	TRP A		27.520	46.240	25.230	1.00	0.00	С
	MOTA	2429	N	LYS A	323	21.246	43.627	20.512	1.00	0.00	N
	ATOM	2430	CA	LYS A	323	20.621	42.461	19.899	1.00	0.00	С
55	ATOM	2431	С	LYS A	323	19.759	42.830	18.699	1.00	0.00	С
	ATOM	2432	0	LYS A		19.625	42.046	17.763	1.00	0.00	0
	ATOM	2433	СB	LYS A		19.817	41.680	20.943	1.00	0.00	С
	ATOM	2434	CG	LYS A		20.730	40.891	21.882	1.00	0.00	С
	ATOM	2435	CD	LYS A		19.956	40.047	22.883	1.00	0.00	С
60	ATOM	2436	CE	LYS A		20.914	39.198	23.710	1.00	0.00	Ċ
55	ATOM	2430	NZ	LYS A		20.199	38.349	24.700	1.00	0.00	N
	ATOU	2401		ם.ט ה	525	20.177	20.517				

	ATOM	2438	N	LYS A	324	19.181	44.024	18.716	1.00	0.00	N
	ATOM	2439	CA	LYS A	324	18.376	44.457	17.581	1.00	0.00	С
	ATOM	2440	С	LYS A	324	19.313	44.754	16.415	1.00	0.00	С
	ATOM	2441	0	LYS A	324	19.041	44.373	15.276	1.00	0.00	0
5	ATOM	2442	CB	LYS A	324	17.551	45.693	17.945	1.00	0.00	С
	MOTA	2443	CG	LYS A	324	16.374	45.365	18.855	1.00	0.00	С
	ATOM	2444	CD	LYS A	324	15.586	46.600	19.267	1.00	0.00	С
	ATOM	2445	CE	LYS A	324	14.390	46.201	20.135	1.00	0.00	С
	ATOM	2446	NZ	LYS A	324	13.676	47.386	20.693	1.00	0.00	N
10	ATOM	2447	N	LYS A	325	20.430	45.417	16.700	1.00	0.00	N
	ATOM	2448	CA	LYS A	325	21.392	45.728	15.646	1.00	0.00	С
	MOTA	2449	С	LYS A	325	21.941	44.418	15.076	1.00	0.00	С
	ATOM	2450	0	LYS A		22.101	44.276	13.863	1.00	0.00	0
	ATOM	2451	CB	LYS A	325	22.545	46.576	16.200	1.00	0.00	С
15	ATOM	2452	CG	LYS A	325	23.439	47.172	15.117	1.00	0.00	C
	ATOM	2453	CD	LYS A	325	24.583	47.999	15.701	1.00	0.00	С
	ATOM	2454	CE	LYS A	325	25.399	48.653	14.588	1.00	0.00	С
	ATOM	2455	NZ	LYS A	325	26.594	49.372	15.107	1.00	0.00	N
	ATOM	2456	N	ALA A	326	22.212	43.461	15.961	1.00	0.00	N
20	ATOM	2457	CA	ALA A	326	22.746	42.157	15.566	1.00	0.00	С
	ATOM	2458	С	ALA A	326	21.847	41.398	14.587	1.00	0.00	С
	ATOM	2459	0	ALA A	326	22.321	40.548	13.831	1.00	0.00	0
	ATOM	2460	CB	ALA A	326	22.993	41.302	16.805	1.00	0.00	С
	ATOM	2461	N	GLU A	327	20.554	41.697	14.604	1.00	0.00	N
25	MOTA	2462	CA	GLU A	327	19.610	41.031	13.708	1.00	0.00	С
	MOTA	2463	С	GLU A	327	19.823	41.409	12.248	1.00	0.00	С
	ATOM	2464	0	GLU A	327	19.373	40.705	11.345	1.00	0.00	0
	ATOM	2465	CB	GLU A	327	18.173	41.375	14.099	1.00	0.00	С
•	ATOM	2466	CG	GLU A	327	17.644	40.575	15.262	1.00	0.00	C
30	ATOM	2467	CD	GLU A		17.587	39.091	14.952	1.00	0.00	С
	ATOM	2468		GLU A		16.900	38.710	13.981	1.00	0.00	0
	ATOM	2469	OE2	GLU A		18.231	38.310	15.676	1.00	0.00	0
	MOTA	2470	N	LEU A		20.510	42.523	12.020	1.00	0.00	N
25	MOTA	2471	CA	LEU A		20.750	42.989	10.663	1.00	0.00	C
35	ATOM	2472	С	LEU A		21.969	42.334	10.022	1.00	0.00	C
	ATOM	2473	0	LEU A		22.225	42.539	8.836	1.00	0.00	0
	ATOM	2474	CB	LEU A		20.910	44.515	10.654	1.00	0.00	С
	ATOM	2475	CG	LEU A		19.804	45.321	11.345	1.00	0.00	С
40	ATOM	2476		LEU A		20.034	46.810	11.114	1.00	0.00	C
40	ATOM	2477		LEU A		18.436	44.902	10.813	1.00	0.00	C
	ATOM	2478	N ~-	TYR A		22.713	41.549	10.800	1.00	0.00	N
	ATOM	2479	CA	TYR A		23.906	40.872	10.291	1.00	0.00	C
	MOTA	2480	С	TYR A		23.843	39.349	10.449	1.00	0.00	С
45	ATOM	2481	0	TYR A		22.952	38.823	11.121	1.00	0.00	0
45	ATOM	2482	CB	TYR A		25.163	41.451	10.956	1.00	0.00	C
	ATOM	2483	CG	TYR A		25.356	42.922	10.639	1.00	0.00	C
	ATOM	2484		TYR A		24.736	43.912	11.407	1.00	0.00	C
	ATOM	2485		TYR A		26.106	43.323	9.530	1.00	0.00	C
50	ATOM	2486		TYR A		24.857	45.263	11.077 9.192	1.00	0.00	c
50	ATOM	2487		TYR A		26.231	44.670		1.00	0.00	C
	ATOM	2488	CZ	TYR A		25.604	45.634	9.969	1.00	0.00	0
	ATOM	2489	OH	TYR A		25.717	46.965	9.634		0.00	N
	ATOM	2490	N	ARG A		24.795	38.648	9.837	1.00	0.00	C
55	ATOM	2491	CA	ARG A		24.799	37.188	9.845	1.00	0.00	c
33	ATOM	2492	C	ARG A		25.619	36.414	10.878	1.00		
	ATOM	2493	O CB	ARG A		25.375	35.225	11.076	1.00	0.00	0 C
	ATOM	2494	CB	ARG A		25.169	36.689	8.442	1.00	0.00	c
	ATOM	2495	CG	ARG A		24.273	37.270	7.356 5.994	1.00	0.00	C
60	ATOM	2496 2497	CD	ARG A		24.492 23.565	36.623 37.189	5.020	1.00	0.00	N
OO	ATOM	2497	NE CZ			23.295	36.657	3.831	1.00	0.00	C
	ATOM	2490	CZ	ARG A	330	43.433	50.057	2.031	1.00	0.00	C

	ATOM	2499		ARG A		23.88		5.530	3.450	1.00	0.00		N
	ATOM	2500	NH2	ARG A		22.42		7.251	3.024	1.00	0.00		N
	ATOM	2501	N	THR A	331	26.59	90 3	7.049	11.528	1.00	0.00		N
	ATOM	2502	CA	THR A	331	27.38	36 3	6.324	12.520	1.00	0.00		С
5	MOTA	2503	С	THR A	331	27.00	06 3	6.729	13.937	1.00	0.00	(С
	ATOM	2504	0	THR A		26.19		7.596	14.140	1.00	0.00		0
	ATOM	2505	СВ	THR A		28.90		6.579	12.352	1.00	0.00		С
	ATOM	2506	OG1			29.2		7.896	12.815	1.00	0.00		0
		2507		THR A		29.3		6.440	10.887	1.00	0.00		c
10	ATOM							6.099	14.914	1.00	0.00		N
10	ATOM	2508	N	ASN A		27.65							C
	MOTA	2509	CA	ASN A		27.3		6.403	16.316	1.00	0.00		
	ATOM	2510	С	ASN A		28.4		7.373	16.835	1.00	0.00		C
	ATOM	2511	0	ASN A		28.72		7.454	18.038	1.00	0.00		0
	ATOM	2512	CB	ASN A	332	27.3	79 3	5.109	17.150	1.00	0.00		С
15	ATOM	2513	CG	ASN A	332	28.7	46 3	4.448	17.254	1.00	0.00		С
	ATOM	2514	OD1	ASN A	332	29.52	27 3	4.446	16.302	1.00	0.00	(0
	ATOM	2515	ND2	ASN A	332	29.03	33 3	3.866	18.417	1.00	0.00	Ŋ	N
	ATOM	2516	N	VAL A		29.0		8.106	15.909	1.00	0.00	ľ	N
	ATOM	2517	CA	VAL A		30.0		9.094	16.248	1.00	0.00	(С
20	ATOM	2518	C	VAL A		29.5		0.454	15.850	1.00	0.00		С
20	ATOM	2519	Õ	VAL A		29.20		0.674	14.684	1.00	0.00		0
						31.4		8.843	15.472	1.00	0.00		C
	ATOM	2520	CB	VAL A						1.00	0.00		C
	ATOM	2521		VAL A		32.45		9.884	15.864				C
25	ATOM	2522		VAL A		31.92		7.442	15.761	1.00	0.00		
25	MOTA	2523	N	LEU A		29.40		1.361	16.817	1.00	0.00		N
	ATOM	2524	CA	LEU A		28.8		2.671	16.564	1.00	0.00		С
	ATOM	2525	С	LEU A		29.7		3.866	16.719	1.00	0.00		С
	ATOM	2526	0	LEU A	334	30.4		3.988	17.715	1.00	0.00		0
	ATOM	2527	CB	LEU A	334	27.60	09 4	2.859	17.488	1.00	0.00	(С
30	ATOM	2528	CG	LEU A	334	26.7	95 4	4.143	17.332	1.00	0.00	(С
	ATOM	2529	CD1	LEU A	334	26.0	72 4	4.128	15.988	1.00	0.00		С
	ATOM	2530	CD2	LEU A	334	25.7	97 4	4.254	18.475	1.00	0.00	(С
	ATOM	2531	N	LEU A		29.7		4.756	15.730	1.00	0.00	ì	N
	ATOM	2532	CA	LEU A		30.58	34 4	5.952	15.755	1.00	0.00	(С
35	ATOM	2533	С	LEU A		29.7		7.139	16.297	1.00	0.00		C
00	ATOM	2534	Ö	LEU A		28.7		7.455	15.796	1.00	0.00		0
	ATOM	2535	СВ	LEU A		31.0		6.287	14.346	1.00	0.00		C
	ATOM	2536	CG	LEU A		31.8		7.612	14.214	1.00	0.00		C
				LEU A		33.1		7.540	14.993	1.00	0.00		C
40	ATOM	2537							12.747	1.00	0.00		C
40	ATOM	2538		LEU A		32.13		7.903					N
	MOTA	2539	N	ILE A		30.3		7.797	17.318	1.00	0.00		
	ATOM	2540	CA	ILE A		29.69		8.959	17.922	1.00	0.00		С
	MOTA	2541	С	ILE A		30.6		0.123	18.003	1.00	0.00		C
	MOTA	2542	0	ILE A		31.43		0.244	18.965	1.00	0.00		0
45	MOTA	2543	CB	ILE A	336	29.1		8.652	19.360	1.00	0.00		С
	ATOM	2544	CG1	ILE A	336	28.1	60 4	7.507	19.331	1.00	0.00		С
	ATOM	2545	CG2	ILE A	336	28.5	37 4	9.895	19.965	1.00	0.00	(С
	ATOM	2546	CD1	ILE A	336	26.8	51 4	7.848	18.628	1.00	0.00	(С
	ATOM	2547	N	PRO A		30.7	11 5	0.981	16.974	1.00	0.00	1	N
50	ATOM	2548	CA	PRO A		31.6		2.119	17.017	1.00	0.00	(С
•	ATOM	2549	С	PRO A		31.2		3.035	18.179	1.00	0.00		С
	ATOM	2550	Õ	PRO A		30.0		3.150	18.515	1.00	0.00		0
				PRO A		31.4		2.807	15.672	1.00	0.00		С
	ATOM	2551	CB						14.778	1.00	0.00		C
	ATOM	2552	CG	PRO A		30.9		1.684					C
55	ATOM	2553	CD	PRO A		30.0		0.892	15.665	1.00	0.00		
	MOTA	2554	N	LEU A		32.2		3.678	18.789	1.00	0.00		N
	MOTA	2555	CA	LEU A		31.9		4.601	19.893	1.00	0.00		C
	MOTA	2556	С	LEU A	338	32.8		5.875	19.671	1.00	0.00		С
	ATOM	2557	0	LEU A	338	33.9		5.972	20.112	1.00	0.00		0
60	ATOM	2558	CB	LEU A	338	32.3	96 5	3.981	21.238	1.00	0.00		С
	MOTA	2559	CG	LEU A	338	32.10	08 5	4.865	22.461	1.00	0.00	(C

DOCCOM DOCTOR

	ATOM	2560	CD1	LEU F	338	30	.606	54.919	22.707	1.00	0.00	С
	ATOM	2561	CD2	LEU A	338	32	.827	54.315	23.693	1.00	0.00	С
	ATOM	2562	N	GLY A		32	.211	56.849	18.983	1.00	0.00	N
	ATOM	2563	CA	GLY A			.924	58.091	18.731	1.00	0.00	С
5	ATOM	2564	С	GLY A			.131	59.114	17.943	1.00	0.00	С
•	ATOM	2565	ō	GLY A			.970	58.889	17.596	1.00	0.00	0
		2566	N	ASP F			.769	60.244	17.658	1.00	0.00	N
	ATOM						.141	61.329	16.919	1.00	0.00	C
	ATOM	2567	CA	ASP F				62.270	16.472	1.00	0.00	č
10	MOTA	2568	С	ASP F			.265				0.00	0
10	ATOM	2569	0	ASP F			.445	61.949	16.626	1.00		
	ATOM	2570	CB	ASP A			.165	62.076	17.831	1.00	0.00	С
	MOTA	2571	CG	ASP A			.043	62.759	17.068	1.00	0.00	C
	MOTA	2572	OD1	ASP A	340	30	.242	63.118	15.886	1.00	0.00	0
	ATOM	2573	OD2	ASP A	340	28	.961	62.952	17.664	1.00	0.00	0
15	ATOM	2574	N	ASP A	341	32	.902	63.432	15.938	1.00	0.00	N
	ATOM	2575	CA	ASP A	341	33	.896	64.396	15.468	1.00	0.00	С
	ATOM	2576	С	ASP A		34	.810	64.907	16.574	1.00	0.00	С
	ATOM	2577	0	ASP A			.343	65.379	17.612	1.00	0.00	0
	ATOM	2578	СВ	ASP F			.211	65.593	14.803	1.00	0.00	С
20	ATOM	2579	CG	ASP F			.537	65.230	13.494	1.00	0.00	С
20		2580		ASP A			.491	64.027	13.165	1.00	0.00	0
	MOTA			ASP A			.053	66.150	12.799	1.00	0.00	ō
	ATOM	2581						64.813	16.330	1.00	0.00	N
	ATOM	2582	N	PHE A			.113		17.264	1.00	0.00	C
25	MOTA	2583	CA	PHE A			.128	65.274				C
25	MOTA	2584	С	PHE A			.835	64.915	18.717	1.00	0.00	
	MOTA	2585	0	PHE A			.977	65.748	19.619	1.00	0.00	0
	MOTA	2586	CB	PHE A			.314	66.788	17.125	1.00	0.00	C
	MOTA	2587	CG	PHE A	342		.850	67.213	15.781	1.00	0.00	C
	ATOM	2588	CD1	PHE A	342	36	.986	67.554	14.743	1.00	0.00	C
30	ATOM	2589	CD2	PHE A	342	39	.223	67.254	15.549	1.00	0.00	С
	ATOM	2590	CE1	PHE A	342	37	.478	67.932	13.492	1.00	0.00	С
	ATOM	2591	CE2	PHE A	342	39	.728	67.628	14.303	1.00	0.00	С
	ATOM	2592	CZ	PHE A			.853	67.969	13.272	1.00	0.00	С
	ATOM	2593	N	ARG A		36	.432	63.667	18.936	1.00	0.00	N
35	ATOM	2594	CA	ARG A			.138	63.187	20.278	1.00	0.00	C
00	ATOM	2595	C	ARG A			.402	62.725	20.993	1.00	0.00	C
	ATOM	2596	Ö	ARG A			.473	62.616	20.389	1.00	0.00	0
		2597	СВ	ARG A			.131	62.033	20.226	1.00	0.00	C
	ATOM						.686	62.471	20.031	1.00	0.00	C
40	ATOM	2598	CG	ARG A			.263		21.143	1.00	0.00	Č
40	ATOM	2599	CD	ARG A				63.432			0.00	N
	MOTA	2600	NE	ARG A			.836	63.740	21.103	1.00		C
	MOTA	2601	CZ	ARG A			.892	63.005	21.682	1.00	0.00	
	MOTA	2602		ARG A			.213	61.907	22.356	1.00	0.00	N
	MOTA	2603	NH2	ARG A			.621	63.374	21.591	1.00	0.00	N
45	MOTA	2604	N	PHE A	344		.256	62.451	22.285	1.00	0.00	N
	ATOM	2605	CA	PHE A	344	38	.351	61.999	23.136	1.00	0.00	С
	ATOM	2606	С	PHE A	344	39	.486	63.003	23.223	1.00	0.00	С
	MOTA	2607	0	PHE A	344	40	.661	62.653	23.089	1.00	0.00	0
	ATOM	2608	CB	PHE A	344	38	.864	60.640	22.660	1.00	0.00	С
50	ATOM	2609	CG	PHE A			.858	59.544	22.816	1.00	0.00	C
•	ATOM	2610		PHE A			.086	59.128	21.737	1.00	0.00	С
	ATOM	2611		PHE A			.633	58.968	24.064	1.00	0.00	С
		2612		PHE A			.103	58.158	21.896	1.00	0.00	С
	ATOM			PHE A			.650	57.996	24.234	1.00	0.00	Ċ
E E	ATOM	2613								1.00	0.00	Č
55	ATOM	2614	CZ	PHE A			.883	57.591	23.147			
	MOTA	2615	N		A 345		.111	64.253	23.475	1.00	0.00	N
	MOTA	2616	CA		A 345		.055	65.352	23.591	1.00	0.00	C
	MOTA	2617	С		345		.501	65.568	25.038	1.00	0.00	C
	MOTA	2618	0	LYS A	A 345	41	.691	65.581	25.328	1.00	0.00	0
60	MOTA	2619	CB		A 345	39	.411	66.631	23.056	1.00	0.00	С
	ATOM	2620	CG	LYS A	A 345	40	.278	67.865	23.145	1.00	0.00	С

		MOTA	2621	CD	IVC	20	345	39.504	69.083	22.658	1.00	0.00	•	С
									70.355	22.801	1.00	0.00		c
		ATOM	2622	CE	LYS			40.313	70.333	22.388	1.00	0.00		N
		ATOM	2623	NZ	LYS									
	_	ATOM	2624	N	GLN			39.540	65.728	25.941	1.00	0.00		N
	5	MOTA	2625	CA	GLN			39.839	65.965	27.350	1.00	0.00		C
		ATOM	2626	С			346	40.008	64.681	28.158	1.00	0.00		C
		MOTA	2627	0	GLN			39.352	63.676	27.889	1.00	0.00		0
		ATOM	2628	CB	GLN			38.722	66.800	27.973	1.00	0.00		С
	_	MOTA	2629	CG	GLN	Α	346	38.457	68.107	27.258	1.00	0.00		С
	10	ATOM	2630	CD	GLN	Α	346	37.101	68.683	27.604	1.00	0.00		С
		ATOM	2631	OE1	GLN	Α	346	36.814	68.969	28.768	1.00	0.00	(0
		ATOM	2632	NE2	GLN	Α	346	36.252	68.850	26.593	1.00	0.00	1	N
		ATOM	2633	N	ASN			40.887	64.724	29.156	1.00	0.00	1	N
		ATOM	2634	CA	ASN			41.120	63.566	30.012	1.00	0.00	(С
	15	ATOM	2635	C	ASN			39.804	63.156	30.655	1.00	0.00		С
	20	ATOM	2636	Ö	ASN			39.493	61.968	30.765	1.00	0.00		0
		MOTA	2637	СВ	ASN			42.127	63.900	31.117	1.00	0.00		c
								43.499	64.205	30.577	1.00	0.00		c
		ATOM	2638	CG	ASN				63.384	29.882	1.00	0.00		0
	20	ATOM	2639		ASN			44.098						N
	20	ATOM	2640		ASN			44.014	65.391	30.893	1.00	0.00		
4195		ATOM	2641	N	THR			39.036	64.153	31.079	1.00	0.00		N
		MOTA	2642	CA	THR			37.751	63.910	31.716	1.00	0.00		C
ı,D		MOTA	2643	С	THR			36.837	63.127	30.785	1.00	0.00		С
		MOTA	2644	0	THR	Α	348	36.042	62.300	31.237	1.00	0.00		0
4972	25	MOTA	2645	CB	THR	Α	348	37.070	65.234	32.110	1.00	0.00		С
diam.		MOTA	2646	OG1	THR	Α	348	36.994	66.095	30.965	1.00	0.00		0
		ATOM	2647	CG2	THR	Α	348	37.860	65.925	33.215	1.00	0.00		С
19		MOTA	2648	N	GLU	Α	349	36.957	63.383	29.484	1.00	0.00		N
Hund Hund		ATOM	2649	CA	GLU	Α	349	36.141	62.675	28.504	1.00	0.00	•	С
1 45±7	30	ATOM	2650	С	GLU	Α	349	36.553	61.209	28.426	1.00	0.00	(С
iji.		ATOM	2651	0	GLU			35.701	60.324	28.382	1.00	0.00		0
51		ATOM	2652	СВ			349	36.266	63.308	27.113	1.00	0.00	•	С
		ATOM	2653	CG	GLU			35.466	62.548	26.054	1.00	0.00		С
. 77		ATOM	2654	CD			349	35.592	63.132	24.659	1.00	0.00		С
Parties.	35	ATOM	2655		GLU			35.039	62.523	23.718	1.00	0.00		ō
	55		2656		GLU			36.237	64.188	24.499	1.00	0.00		Ō
į, i		MOTA	2657				350	37.859	60.950	28.396	1.00	0.00		N
		ATOM		N C A				38.334	59.575	28.339	1.00	0.00		C
		ATOM	2658	CA	TRP				58.804	29.539	1.00	0.00		С
ř.	40	ATOM	2659	С			350	37.800			1.00			0
	40	ATOM	2660	0			350	37.307	57.683	29.405		0.00		C
		MOTA	2661	CB	TRP			39.865	59.515	28.342	1.00	0.00		
		ATOM	2662	CG			350	40.489	59.775	27.004	1.00	0.00		С
		MOTA	2663		TRP			40.855	60.987	26.485	1.00	0.00		С
	4=	MOTA	2664		TRP			40.786	58.802	25,998	1.00	0.00		С
	45	MOTA	2665		TRP			41.361	60.825		1.00	0.00		N
		MOTA	2666	CE2	TRP	Α	350	41.329	59.495	24.892	1.00	0.00		С
		MOTA	2667	CE3	TRP	Α	350	40.643	57.409	25.920	1.00	0.00		C
		ATOM	2668	CZ2	TRP	Α	350	41.729	58.842	23.722	1.00	0.00		С
		ATOM	2669	CZ3	TRP	Α	350	41.042	56.759	24.754	1.00	0.00		С
	50	MOTA	2670	CH2	TRP	Α	350	41.578	57.477	23.672	1.00	0.00	•	С
		ATOM	2671	N	ASP			37.897	59.416	30.714	1.00	0.00	1	N
		ATOM	2672	CA				37.427	58.778	31.937	1.00	0.00		С
		ATOM	2673	C	ASP			35.936	58.483	31.935	1.00	0.00		С
		ATOM	2674	Ö	ASP			35.519	57.362	32.245	1.00	0.00		Ō
	55		2675	CB	ASP			37.737	59.641	33.163	1.00	0.00		C
	55	MOTA												С
		ATOM	2676	CG	ASP			39.211	59.698	33.484	1.00	0.00		
		ATOM	2677		ASP			39.917	58.694	33.255	1.00	0.00		0
		ATOM	2678		ASP			39.658	60.746	33.987	1.00	0.00		0
	(0	ATOM	2679	N			352	35.131	59.484	31.593	1.00	0.00		N
	60	MOTA	2680	CA	VAL			33.688	59.306	31.613	1.00	0.00		C
		ATOM	2681	С	VAL	Α	352	33.197	58.234	30.637	1.00	0.00	1	С

	ATOM	2682	0	VAL A		32.238	57.520	30.930	1.00	0.00	0
	MOTA	2683	CB	VAL A		32.951	60.650	31.362	1.00	0.00	C
	ATOM	2684		VAL A		32.874	60.957	29.875	1.00	0.00	С
_	ATOM	2685		VAL A		31.570	60.606	31.997	1.00	0.00	C
5	MOTA	2686	N	GLN A		33.848	58.106	29.484	1.00	0.00	N
	MOTA	2687	CA	GLN A		33.436	57.084	28.527	1.00	0.00	C
	ATOM	2688	С	GLN A		33.959	55.709	28.960	1.00	0.00	С
	ATOM	2689	0	GLN A		33.206	54.735	28.981	1.00	0.00	0
	ATOM	2690	CB	GLN A		33.942	57.422	27.114	1.00	0.00	С
10	ATOM	2691	CG	GLN A		33.383	58.725	26.528	1.00	0.00	С
	MOTA	2692	CD	GLN A	353	31.939	58.612	26.048	1.00	0.00	С
	MOTA	2693	OE1	GLN A	353	31.114	57.942	26.669	1.00	0.00	0
	ATOM	2694	NE2	GLN A	353	31.626	59.289	24.943	1.00	0.00	N
	MOTA	2695	N	ARG A	354	35.239	55.631	29.320	1.00	0.00	N
15	ATOM	2696	CA	ARG A	354	35.834	54.359	29.734	1.00	0.00	C
	MOTA	2697	С	ARG A	354	35.243	53.759	31.008	1.00	0.00	С
	ATOM	2698	0	ARG A		34.879	52.583	31.030	1.00	0.00	0
	ATOM	2699	CB	ARG A		37.351	54.501	29.922	1.00	0.00	С
	ATOM	2700	CG	ARG A		38.018	53.237	30.465	1.00	0.00	С
20	ATOM	2701	CD	ARG A		39.522	53.414	30.657	1.00	0.00	C
	ATOM	2702	NE	ARG A		39.847	54.424	31.664	1.00	0.00	N
	ATOM	2703	CZ	ARG A		39.646	54.280	32.972	1.00	0.00	С
	ATOM	2704		ARG A		39.117	53.161	33.449	1.00	0.00	N
	ATOM	2705		ARG A		39.983	55.254	33.806	1.00	0.00	N
25	ATOM	2706	N	VAL A		35.155	54.563	32.065	1.00	0.00	N
	ATOM	2707	CA	VAL A		34.634	54.082	33.343	1.00	0.00	C
	ATOM	2708	C	VAL A		33.207	53.555	33.256	1.00	0.00	c
	ATOM	2709	0	VAL A		32.910	52.458	33.738	1.00	0.00	o
	ATOM	2710	CB	VAL A		34.696	55.187	34.423	1.00	0.00	c
30	ATOM	2711		VAL A		34.025	54.705	35.705	1.00	0.00	c
50						36.151	55.549	34.709	1.00	0.00	c
	ATOM	2712 2713		VAL A		32.321	54.331	32.647	1.00	0.00	N
	ATOM		N	ASN A		30.940	53.901	32.525	1.00	0.00	C
	MOTA	2714	CA	ASN A			52.631	31.696	1.00	0.00	c
35	ATOM	2715	C	ASN A		30.803			1.00	0.00	0
33	MOTA	2716	0	ASN A		30.020	51.746	32.042			C
	ATOM	2717	CB	ASN A		30.091	55.033	31.953	1.00	0.00	c
	ATOM	2718	CG	ASN A		29.785	56.094	32.990	1.00	0.00	
	ATOM	2719		ASN A		29.072	55.834	33.962	1.00	0.00	0
40	MOTA	2720		ASN A		30.338	57.290	32.803	1.00	0.00	N
40	MOTA	2721	N	TYR A		31.568	52.522	30.613	1.00	0.00	N
	MOTA	2722	CA	TYR A		31.490	51.317	29.797	1.00	0.00	C
	MOTA	2723	С	TYR A		32.099	50.109	30.507	1.00	0.00	С
	ATOM	2724	0	TYR A		31.646	48.980	30.318	1.00	0.00	0
4.5	MOTA	2725	CB	TYR A		32.144	51.538	28.427	1.00	0.00	C
45	MOTA	2726	CG	TYR A		31.150	52.056	27.413	1.00	0.00	C
	MOTA	2727		TYR A		30.957	53.425	27.225	1.00	0.00	C
	ATOM	2728	CD2	TYR A		30.339	51.172	26.701	1.00	0.00	С
	ATOM	2729	CE1			29.978	53.901	26.355	1.00	0.00	С
	MOTA	2730	CE2	TYR A		29.355	51.635	25.835	1.00	0.00	С
50	MOTA	2731	CZ	TYR A		29.177	52.999	25.666	1.00	0.00	С
	MOTA	2732	OH	TYR A	357	28.192	53.452	24.820	1.00	0.00	0
	MOTA	2733	N	GLU A	358	33.115	50.339	31.330	1.00	0.00	N
	ATOM	2734	CA	GLU A	358	33.719	49.235	32.072	1.00	0.00	С
	ATOM	2735	С	GLU A	358	32.679	48.654	33.037	1.00	0.00	С
55	ATOM	2736	0	GLU A		32.625	47.443	33.252	1.00	0.00	0
	ATOM	2737	CB	GLU A		34.938	49.712	32.863	1.00	0.00	С
	ATOM	2738	CG	GLU A		36.196	49.918	32.026	1.00	0.00	С
	ATOM	2739	CD	GLU A		37.382	50.357	32.867	1.00	0.00	С
	ATOM	2740		GLU A		37.246	50.416	34.108	1.00	0.00	0
60	ATOM	2741		GLU A		38.453	50.640	32.293	1.00	0.00	0
	ATOM	2742	N	ARG A		31.853	49.521	33.617	1.00	0.00	N
	0.,		••								

ATOM													
ATOM		ATOM	2743	CA	ARG A	359	30.816	49.068	34.545	1.00	0.00		С
ATOM 2746 CB CB ARG A 359 30.145 SO.263 35.222 1.00 CB ATOM 2747 CG ARG A 359 31.033 SO.954 36.27 1.00 CB ATOM 2749 NE ARG A 359 31.033 SO.258 36.699 1.00 CB ATOM 2750 CZ ARG A 359 31.405 S4.303 37.560 1.00 CB ATOM 2751 NIE ARG A 359 31.406 S4.303 37.560 1.00 CB ATOM 2752 NIE ARG A 359 30.608 S5.050 36.895 1.00 CB ATOM 2753 NIE ARG A 359 30.608 S5.050 36.895 11.00 CB ATOM 2753 NIE ARG A 359 32.278 S4.80 38.471 1.00 CB ATOM 2755 CLEU A 360 28.429 47.965 31.810 1.00 CB ATOM 2756 CLEU A 360 28.953 46.595 31.810 1.00 CB ATOM 2757 CB LEU A 360 28.251 45.606 31.441 1.00 CB ATOM 2758 CG LEU A 360 27.224 50.045 30.89 10.00 CB ATOM 2750 CD LEU A 360 27.244 50.045 30.30 30.975 10.00 CB ATOM 2763 CD LEU A 360 27.244 50.045 30.30 30.975 10.00 CB ATOM 2763 CD LEU A 360 27.245 50.045 30.30 30.975 10.00 CB ATOM 2765 CB PHE A 361 30.217 46.537 30.075 10.00 CB ATOM 2765 CB		ATOM	2744	С	ARG A	359	29.770	48.240	33.816	1.00	0.00		С
ATOM		ATOM	2745	0	ARG A	359	29.298	47.222	34.331	1.00	0.00		0
ATOM 2748 CD ARG A 359 30.421 52.528 36.699 1.00 CD ATOM 2750 CZ ARG A 359 31.337 52.979 37.576 1.00 CD ATOM 2751 NH1 ARG A 359 30.608 55.050 36.895 1.00 CD ATOM 2752 NH2 ARG A 359 30.608 55.050 36.895 1.00 CD ATOM 2752 NH2 ARG A 359 30.608 55.050 36.895 1.00 CD ATOM 2753 N LEU A 360 29.412 48.679 32.613 1.00 CD ATOM 2755 CA LEU A 360 29.412 48.679 32.613 1.00 CD ATOM 2755 CA LEU A 360 28.429 47.965 31.389 1.00 CD ATOM 2755 CD LEU A 360 28.923 46.595 31.389 1.00 CD ATOM 2756 CD LEU A 360 28.923 46.595 31.389 1.00 CD ATOM 2757 CB LEU A 360 28.058 48.789 30.576 1.00 CD ATOM 2757 CD LEU A 360 27.224 50.045 30.849 1.00 CD ATOM 2759 CD LEU A 360 27.224 50.045 30.849 1.00 CD ATOM 2750 CD LEU A 360 27.168 50.914 29.600 1.00 CD ATOM 2760 CD LEU A 360 27.168 50.914 29.600 1.00 CD ATOM 2760 CD LEU A 360 27.168 50.914 29.600 1.00 CD ATOM 2760 CD LEU A 360 27.168 50.914 29.600 1.00 CD ATOM 2760 CD LEU A 360 27.168 50.914 29.600 1.00 CD ATOM 2760 CD LEU A 360 30.217 46.537 30.975 1.00 CD ATOM 2765 CB PHE A 361 30.896 44.266 31.706 1.00 CD ATOM 2765 CB PHE A 361 30.896 44.266 31.706 1.00 CD ATOM 2765 CB PHE A 361 30.896 44.266 31.706 1.00 CD ATOM 2765 CB PHE A 361 30.557 43.094 31.530 1.00 CD ATOM 2766 CD PHE A 361 33.554 42.263 30.035 1.00 CD ATOM 2766 CD PHE A 361 33.510 46.923 28.376 1.00 CD ATOM 2768 CD PHE A 361 33.584 47.674 27.206 1.00 CD ATOM 2770 CE2 PHE A 361 33.584 47.674 27.206 1.00 CD ATOM 2770 CE2 PHE A 361 33.584 47.674 27.206 1.00 CD ATOM 2770 CE2 PHE A 361 33.584 47.674 27.206 1.00 CD ATOM 2770 CB GUU A 362 31.346 44.712 32.876 1.00 CD ATOM 2770 CB GUU A 362 31.346 44.712 32.876 1.00 CD ATOM 2770 CB GUU A 362 31.346 44.712 32.876 1.00 CD ATOM 2770 CB GUU A 362 31.346 44.712 32.876 1.00 CD ATOM 2770 CB GUU A 362 31.346 44.712 32.876 1.00 CD ATOM 2770 CB GUU A 362 31.346 44.712 32.876 1.00 CD ATOM 2770 CB GUU A 362 31.346 44.712 32.876 1.00 CD ATOM 2770 CB GUU A 362 31.346 44.713 34.341 1.00 CD ATOM 2770 CB GUU A 362 31.345 43.833 38.809 1.00 CD ATOM 2775 CB GUU A 362 31.345 43.833 38.809 37.809 1.00 CD ATOM 2		ATOM	2746	CB	ARG A	359	30.145	50.263	35.222	1.00	0.00		С
ATOM	5	ATOM	2747	CG	ARG A	359	31.033	50.954	36.227	1.00	0.00	(С
ATOM		ATOM	2748	CD			30.421	52.258	36.699	1.00	0.00	(С
ATOM 2750 C2 ARG A 359 31.406 54.303 37.650 1.00 C ATOM 2751 NH1 ARG A 359 30.608 55.050 36.895 1.00 C ATOM 2753 N LEU A 360 29.412 48.679 32.613 1.00 C ATOM 2755 C LEU A 360 29.412 48.679 32.613 1.00 C ATOM 2755 C LEU A 360 28.429 47.965 31.389 1.00 C ATOM 2755 C LEU A 360 28.953 46.595 31.389 1.00 C ATOM 2756 C LEU A 360 28.953 46.595 31.389 1.00 C ATOM 2759 CD LEU A 360 28.958 48.789 30.576 1.00 C ATOM 2759 CD LEU A 360 27.224 50.045 30.849 1.00 C ATOM 2759 CD LEU A 360 27.168 50.914 29.600 1.00 C ATOM 2760 CD LEU A 360 27.168 50.914 29.600 1.00 C ATOM 2761 N PHE A 361 30.217 46.537 30.975 1.00 C ATOM 2762 CA PHE A 361 30.217 46.537 30.975 1.00 C ATOM 2765 CB PHE A 361 30.830 45.276 30.579 1.00 C ATOM 2765 CB PHE A 361 30.557 43.094 31.530 1.00 C ATOM 2766 CC PHE A 361 30.557 43.094 31.530 1.00 C ATOM 2766 CB PHE A 361 30.557 43.094 31.530 1.00 C ATOM 2767 CD PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2766 CB PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2767 CD PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2767 CD PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2767 CD PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2767 CD PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2767 CD PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2767 CD PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2770 CC PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2771 CZ PHE A 361 33.514 47.872 26.787 1.00 C ATOM 2770 CG GU A 362 31.346 43.93 34.013 1.00 C ATOM 2771 CZ PHE A 361 33.257 47.232 26.787 1.00 C ATOM 2779 CB GU A 362 31.346 43.933 34.341 1.00 C ATOM 2779 CB GU A 362 31.346 43.933 31.00 G ATOM 2770 CB GU A 362 31.346 43.933 31.00 G ATOM 2771 CC PHE A 361 32.451 47.828 26.410 1.00 C ATOM 2780 CB GU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 CB GU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 CB GU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 CB GU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 CB GU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 CB HIS A 363 27.394 44.280 37.669 1.00 C ATOM 2780 CB HIS A 363 27.394 44.280 37.669 1.00 C ATOM 2780 CB HIS A 363 27.394 44.							31.337	52.979	37.576	1.00	0.00	1	N
ATOM								54.303		1.00	0.00	(С
ATOM										1.00	0.00	I	N
ATOM 2753 N LEU A 360	10										0.00	1	N
ATOM											0.00	ı	N
ATOM 2755 C LEU A 360 28.953 46.595 31.389 1.00 C ATOM 2756 O LEU A 360 28.221 45.606 31.441 1.00 C ATOM 2757 CB LEU A 360 28.058 48.789 30.576 1.00 C ATOM 2759 CD1 LEU A 360 27.168 50.914 29.600 1.00 C ATOM 2759 CD1 LEU A 360 27.168 50.914 29.600 1.00 C ATOM 2760 CD2 LEU A 360 27.168 50.914 29.600 1.00 C ATOM 2761 N PHE A 361 30.817 46.537 30.975 1.00 C ATOM 2762 CA PHE A 361 30.830 45.276 30.559 1.00 C ATOM 2762 CA PHE A 361 30.896 44.266 31.706 1.00 C ATOM 2765 CB PHE A 361 30.896 44.266 31.706 1.00 C ATOM 2765 CB PHE A 361 30.557 43.094 31.530 1.00 C ATOM 2766 CG PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2766 CG PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2766 CG PHE A 361 32.316 46.321 28.766 1.00 C ATOM 2767 CD1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2769 CE1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2769 CE1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2770 CE2 PHE A 361 31.253 47.232 26.787 100 C ATOM 2771 C2 PHE A 361 31.253 47.232 26.787 100 C ATOM 2773 CA GLU A 362 31.366 44.712 32.876 1.00 C ATOM 2777 CC PHE A 362 31.456 44.712 32.876 1.00 C ATOM 2777 CC GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2777 CG GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2777 CG GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2777 CG GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2777 CG GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2777 CG GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2778 CD GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2788 CD GLU A 362 30.012 41.966 33.598 1.00 C ATOM 2788 CD GLU A 362 32.334 43.8567 36.38.7669 1.00 C ATOM 2789 CEI GLU A 362 32.334 43.836 38.761 1.00 C ATOM 2780 CD GLU A 362 32.334 43.836 38.761 1.00 C ATOM 2780 CD GLU A 362 30.012 41.996 34.554 1.00 C ATOM 2780 CD GLU A 362 32.334 43.836 38.761 1.00 C ATOM 2780 CD GLU A 362 32.334 43.836 38.761 1.00 C ATOM 2780 CD GLU A 362 32.334 43.836 38.761 1.00 C ATOM 2780 CD GLU A 362 32.334 43.836 38.761 1.00 C ATOM 2780 CD GLU A 362 32.334 43.836 38.761 1.00 C ATOM 2780 CD GLU A 362 32.334 43.835 38.761 1.00 C ATOM 2780 CD GLU A 362 32.334 43.837 33.993 1.00											0.00		С
ATOM											0.00		Č
15 ATOM 2757 CB LEU A 360											0.00		Ō
ATOM 2758 CG LEU A 360 27.168 50.045 30.849 1.00 C ATOM 2760 CD2 LEU A 360 27.168 50.914 29.600 1.00 C ATOM 2760 CD2 LEU A 360 25.818 49.640 31.287 1.00 C ATOM 2761 N PHE A 361 30.217 46.537 30.975 1.00 C ATOM 2762 CA PHE A 361 30.217 46.537 30.975 1.00 C ATOM 2763 C PHE A 361 30.830 45.276 30.559 1.00 C ATOM 2765 CB PHE A 361 30.830 45.276 30.559 1.00 C ATOM 2765 CB PHE A 361 30.557 43.094 31.530 1.00 C ATOM 2766 CG PHE A 361 30.557 43.094 31.530 1.00 C ATOM 2766 CG PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2767 CD PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2767 CD PHE A 361 33.510 46.923 28.766 1.00 C ATOM 2768 CD PHE A 361 33.510 46.923 28.766 1.00 C ATOM 2769 CE1 PHE A 361 33.510 46.923 28.766 1.00 C ATOM 2770 C2 PHE A 361 33.594 47.674 27.206 1.00 C ATOM 2770 C2 PHE A 361 33.594 47.674 27.206 1.00 C ATOM 2771 C2 PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 C2 PHE A 361 32.451 47.828 26.410 1.00 C ATOM 2773 CA GLU A 362 31.3456 43.803 34.013 1.00 C ATOM 2773 CA GLU A 362 31.3456 43.803 34.013 1.00 C ATOM 2773 CA GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2775 CB GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2776 CB GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2776 CB GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2779 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2779 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2779 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 CD GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 CD GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 CD GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 CD GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 CD GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 CD GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 CD GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 CD GLU A 362 32.739 44.280 37.569 1.00 C ATOM 2780 CD GLU A 362 32.739 44.280 37.569 1.00 C ATOM 2780 CD GLU A 363 22.739 44.280 37.569 1.00 C ATOM 2780 CD GLU A 363 22.739 44.280 37.569 1.00 C ATOM 2780 CD GLU A 363 22.739 44.280 37.569 1.00 C ATO	15										0.00		C
ATOM 2759 CD1 LEU A 360	10										0.00		C
ATOM 2760 CD2 LEU A 360											0.00		c
20 ATOM 2761 N PHE A 361 30.217 46.537 30.975 1.00 C ATOM 2762 CA PHE A 361 30.830 45.276 30.559 1.00 C ATOM 2763 C PHE A 361 30.830 45.276 30.559 1.00 C ATOM 2763 C PHE A 361 30.850 44.266 31.706 1.00 C ATOM 2765 CB PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2765 CB PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2766 CG PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2767 CD1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2769 CE1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2769 CE1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2769 CE1 PHE A 361 33.584 47.674 27.206 1.00 C ATOM 2770 CE2 PHE A 361 33.584 47.674 27.206 1.00 C ATOM 2771 CZ PHE A 361 33.545 47.222 26.787 1.00 C ATOM 2771 CZ PHE A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2775 O GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2775 O GLU A 362 30.012 41.966 34.554 1.00 C ATOM 27776 CB GLU A 362 30.012 41.966 34.554 1.00 C ATOM 27778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 OE2 GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2784 O HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2784 O HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2785 CB HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2786 CG HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2789 CEI HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2789 CEI HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2789 CEI HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2789 CEI HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2799 CEI HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2799 CEI HIS A 363 23.236 43.324 22.55 44.197 35.187 1.00 C ATOM 2799 CEI HIS A 363 23.236 43.324 22.55 44.197 35.187 1.00 C ATOM 2799 CEI HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2799 CEI HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2799 CEI HIS A											0.00		С
20											0.00		N
ATOM 2763 C PHE A 361 30.896 44.266 31.706 1.00 C ATOM 2765 CB PHE A 361 30.557 43.094 31.530 1.00 C ATOM 2765 CB PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2766 CG PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2768 CD2 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2768 CD2 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2769 CE1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2769 CE1 PHE A 361 33.584 47.674 27.206 1.00 C ATOM 2770 CE2 PHE A 361 33.584 47.674 27.206 1.00 C ATOM 2771 CZ PHE A 361 33.584 47.674 27.206 1.00 C ATOM 2771 CZ PHE A 361 33.2451 47.828 26.787 1.00 C ATOM 2771 CZ PHE A 361 32.451 47.828 26.410 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2775 O GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2777 CG GLU A 362 30.106 43.174 34.331 1.00 C ATOM 2777 CG GLU A 362 30.106 43.174 34.331 1.00 C ATOM 2777 CG GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 OE2 GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 OE2 GLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C BLU A 363 27.731 43.499 34.375 1.00 C ATOM 2780 C BLU A 364 26.751 39.871 39.991 31.00 C ATOM 2799 N N LLE A 364 26.751 39.871 39.993 11.00 C ATOM 279	20										0.00		C
ATOM 2764 O PHE A 361 30.557 43.094 31.530 1.00 C ATOM 2765 CB PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2766 CG PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2766 CG PHE A 361 32.316 46.321 28.766 1.00 C ATOM 2768 CD2 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2769 CE1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2769 CE1 PHE A 361 33.584 47.674 27.206 1.00 C ATOM 2770 CE2 PHE A 361 31.191 46.482 27.963 1.00 C ATOM 2770 CE2 PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 32.451 47.828 26.410 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2775 C G GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2775 C G GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 C G GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 C G GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2776 C B GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2779 C G GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2779 C G GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2779 C G GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 C D GLU A 362 32.334 43.863 38.761 1.00 C ATOM 2780 C ATOM 2780 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2784 O HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2784 O HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2785 C B HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2789 C HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 C HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 C HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2792 C A ILE A 364 26.735 44.611 34.89 34.679 1.00 C ATOM 2790 NE2 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2799 N ILE A 364 26.751 39.871 30.393 1.00 C ATOM 2799 C C ILE A 364 26.751 39.871 30.393 1.00 C ATOM 2799 C C ILE A 364 26.751 39.871 30.393 1.00 C ATOM 2799 C C ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 C C ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 C C ILE A 364 26.751 39.871 30.939 1.00 C ATOM 2799 C C ILE A 364 26.751 39.871 30.993 1.00 C ATOM 2799 C C	20												C
ATOM 2765 CB PHE A 361 32.252 45.513 30.035 1.00 C ATOM 2766 CG PHE A 361 32.316 46.321 28.766 1.00 C ATOM 2767 CD1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2768 CD2 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2769 CE1 PHE A 361 31.191 46.482 27.963 1.00 C ATOM 2770 CE2 PHE A 361 31.191 46.482 27.963 1.00 C ATOM 2770 CE2 PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 32.451 47.828 26.410 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2774 C GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2775 O GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2776 CB GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2776 CB GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2776 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2781 N HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2781 N HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2788 C HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 C HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2788 C B HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 C B HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 C B HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 C B HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2795 C B HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2795 C B HIS A 364 25.893 44.286 30.006 1.00 C ATOM 2795 C B HIS A 364 25.893 44.286 30.006 1.00 C ATOM 2795 C B HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 C B HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 C B HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 C B HIS A 364 26.052 45.206 28.813 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C											0.00		
25 ATOM 2766 CG PHE A 361 32.316 46.321 28.766 1.00 C ATOM 2767 CD1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2768 CD2 PHE A 361 31.91 46.482 27.963 1.00 C ATOM 2769 CE1 PHE A 361 31.91 46.482 27.963 1.00 C ATOM 2770 CE2 PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 32.451 47.828 26.410 1.00 C ATOM 2772 N GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2775 O GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2775 O GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 O GLU A 362 30.102 41.966 34.554 1.00 C ATOM 2776 CB GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2777 CG GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2781 N HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2783 C HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2785 CB HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2785 CB HIS A 363 26.735 44.641 33.817 1.00 C ATOM 2788 CC HIS A 363 26.735 44.641 33.817 1.00 C ATOM 2788 CC HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2789 CE1 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 23.236 43.624 35.283 1.00 C ATOM 2795 CB HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB HIS A 364 26.751 39.871 30.935 1.00 C ATO											0.00		0
25 ATOM 2767 CD1 PHE A 361 33.510 46.923 28.376 1.00 C ATOM 2768 CD2 PHE A 361 31.191 46.482 27.963 1.00 C ATOM 2770 CE2 PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2770 CE2 PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2775 C GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 C GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2776 CB GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2776 CB GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2777 CG GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2779 OE1 GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2779 OE1 GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 OE2 GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 C HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2780 C HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2785 CB HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2785 CB HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2780 CB HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2780 CB HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2790 NE2 HIS A 363 23.236 43.624 35.283 1.00 C ATOM 2790 NE2 HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.0											0.00		С
ATOM 2768 CD2 PHE A 361 31.191 46.482 27.963 1.00 C ATOM 2769 CE1 PHE A 361 33.584 47.674 27.206 1.00 C ATOM 2770 CE2 PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 32.451 47.822 26.787 1.00 C ATOM 2771 CZ PHE A 361 32.451 47.822 26.410 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2774 C GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2775 O GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 O GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2776 CB GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2777 CG GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2779 OE1 GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2781 N HIS A 363 27.331 43.489 34.679 1.00 C ATOM 2782 CA HIS A 363 27.331 43.489 34.679 1.00 C ATOM 2785 CB HIS A 363 27.331 43.489 34.679 1.00 C ATOM 2785 CB HIS A 363 27.331 43.489 34.679 1.00 C ATOM 2785 CB HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2785 CB HIS A 363 25.354 44.641 34.817 1.00 C ATOM 2785 CB HIS A 363 25.354 44.611 34.817 1.00 C ATOM 2785 CB HIS A 363 25.354 44.611 34.817 1.00 C ATOM 2785 CB HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2785 CB HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2785 CB HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2785 CB HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2785 CB HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2785 CB HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2780 NE2 HIS A 363 23.236 43.624 35.283 1.00 C ATOM 2790 NE2 HIS A 363 23.236 43.624 35.283 1.00 C ATOM 2790 NE2 HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2790 NE2 HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2790 NE2 HIS A 364 26.751 39.871 30.935 1.00 C ATOM 2790 CG1 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2790 CG1 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2790 CG1 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2790 CG1 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2790 CG1 ILE A 364 26.752 39.893 30.993 30.993 30.993 30.993 30.993 30.993 30.993 30.993 30.	25										0.00	(C
ATOM 2769 CE1 PHE A 361 33.584 47.674 27.206 1.00 C ATOM 2771 CE2 PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2772 N GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2774 C GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2775 O GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 O GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 O GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2777 CG GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 ODE GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 OE2 GLU A 362 32.331 43.836 38.761 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2782 CA HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2785 CB HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2785 CB HIS A 363 26.735 44.611 34.817 1.00 C ATOM 2786 CG HIS A 363 25.554 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.554 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.554 44.197 35.187 1.00 C ATOM 2789 CE1 HIS A 363 25.554 44.197 35.187 1.00 C ATOM 2789 CE1 HIS A 363 25.554 44.197 35.187 1.00 C ATOM 2780 CE1 HIS A 363 25.554 44.197 35.187 1.00 C ATOM 2790 NE2 HIS A 363 23.264 43.524 35.283 1.00 C ATOM 2790 NE2 HIS A 363 23.264 43.524 35.283 1.00 C ATOM 2790 NE2 HIS A 364 26.677 42.245 31.250 1.00 C ATOM 2790 NE2 HIS A 364 26.677 42.245 31.250 1.00 C ATOM 2797 CG2 ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2797 CG2 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 NANA 365 28.224 40.929 31.119 1.00 C ATOM 2799 NANA 365 28.224 40.929 31.119 1.00 C ATOM 2799 NANA 365 28.224 40.929 31.119 1.00 C ATOM 2790 NE2 HIS A 364 26.6782 43.039 29.931 1.00 C ATOM 2799 CD1 ILE A 364 26.6782 43.039 29.931 1.00 C ATOM 2799 CD1 ILE A 364 26.6782 43.039 29.931 1.00 C ATOM 2799 CD1 ILE A 364 26.6782 43.039 29.931 1.00 C ATOM 2799 NANA 365 28.224 40.929 31.119 1.00 C ATOM 2	25										0.00	(С
ATOM 2770 CE2 PHE A 361 31.253 47.232 26.787 1.00 C ATOM 2771 CZ PHE A 361 32.451 47.828 26.410 1.00 C ATOM 2772 N GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2775 CA GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2775 CA GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2776 CB GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2776 CB GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2777 CG GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2777 CG GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 CD GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 CD GLU A 363 29.062 43.994 34.375 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2783 C HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2784 O HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2785 CB HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2788 CD HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2788 CD HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2788 CD HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2788 CD HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2788 CD HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2790 NE2 HIS A 363 23.236 43.624 35.283 1.00 C ATOM 2791 N ILE A 364 27.396 40.910 31.084 1.00 C ATOM 2792 CA ILE A 364 27.396 40.910 31.084 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 CG2 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 CG2 ILE A 364 26.782 43.039 29.931 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 31.119 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 31.199 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 31.199 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 31.199 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 31.199 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 31.199 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 31.190 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 31.190 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 31.190 1.00 C ATOM 2800											0.00		C
ATOM 2771 CZ PHE A 361 32.451 47.828 26.410 1.00 C ATOM 2772 N GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2774 C GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 O GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 O GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2776 CB GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2777 CG GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2779 OE1 GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 OE2 GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 C A HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2782 CA HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2782 CA HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2785 CB HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2785 CB HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2780 CE1 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2780 CE1 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2780 CE1 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2780 CE1 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2780 CE1 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2780 CE1 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2790 NE2 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2790 NE2 HIS A 363 23.266 43.624 35.283 1.00 C ATOM 2790 NE2 HIS A 364 26.677 42.245 31.250 1.00 C ATOM 2790 NE2 HIS A 364 26.677 42.245 31.250 1.00 C ATOM 2790 C A ILE A 364 26.6751 39.871 30.935 1.00 C ATOM 2790 C A ILE A 364 26.6782 43.039 29.931 1.00 C ATOM 2790 C ATOM 2											0.00		С
30 ATOM 2772 N GLU A 362 31.346 44.712 32.876 1.00 C ATOM 2773 CA GLU A 362 31.456 43.803 34.013 1.00 C ATOM 2774 C GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 O GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2776 CB GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2777 CG GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2779 OE1 GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2779 OE1 GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2783 C HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2783 C HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2784 O HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2785 CB HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2786 CG HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2787 ND1 HIS A 363 25.354 44.197 33.869 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 33.869 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 33.869 1.00 C ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2790 NE2 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 C ATOM 2792 CA ILE A 364 27.396 40.910 31.084 1.00 C ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 C ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2800 CA ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2800 CA ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2800 CA ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2800 CA ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2800 CA ASN A 365 29.351 38.702 32.094 1.00 C ATOM 28											0.00		С
ATOM 2773 CA GLU A 362 31.456 43.803 34.013 1.00 CA ATOM 2774 C GLU A 362 30.106 43.174 34.341 1.00 CA ATOM 2775 O GLU A 362 30.012 41.966 34.554 1.00 CA ATOM 2776 CB GLU A 362 31.991 44.526 35.252 1.00 CA ATOM 2777 CG GLU A 362 32.334 43.567 36.393 1.00 CA ATOM 2778 CD GLU A 362 32.334 43.567 36.393 1.00 CA ATOM 2779 OE1 GLU A 362 32.739 44.280 37.669 1.00 CA ATOM 2780 OE2 GLU A 362 33.486 45.274 37.581 1.00 CA ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 CA ATOM 2781 N HIS A 363 27.731 43.489 34.679 1.00 CA ATOM 2782 CA HIS A 363 27.232 42.536 33.598 1.00 CA ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 CA ATOM 2785 CB HIS A 363 26.919 41.376 33.869 1.00 CA ATOM 2786 CG HIS A 363 25.354 44.641 34.817 1.00 CA ATOM 2786 CG HIS A 363 25.354 44.641 34.817 1.00 CA ATOM 2788 CD2 HIS A 363 25.354 44.641 34.817 1.00 CA ATOM 2788 CD2 HIS A 363 25.354 44.197 35.187 1.00 CA ATOM 2789 CD2 HIS A 363 25.354 44.197 35.187 1.00 CA ATOM 2789 CD2 HIS A 363 25.354 44.197 35.187 1.00 CA ATOM 2789 CD2 HIS A 363 25.354 44.197 35.187 1.00 CA ATOM 2789 CD2 HIS A 363 23.769 43.343 36.458 1.00 CA ATOM 2790 NE2 HIS A 364 26.677 42.245 31.250 1.00 CA ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 CA ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 CA ATOM 2795 CB ILE A 364 26.782 43.037 32.371 1.00 CA ATOM 2795 CB ILE A 364 26.782 43.037 32.371 1.00 CA ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A	20										0.00		С
ATOM 2774 C GLU A 362 30.106 43.174 34.341 1.00 C ATOM 2775 O GLU A 362 30.012 41.966 34.554 1.00 C ATOM 2776 CB GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2777 CG GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2777 CG GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2779 OE1 GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2782 CA HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2785 CB HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2786 CG HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2785 CB HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2789 CE1 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2789 CE1 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 23.769 43.343 36.428 1.00 C ATOM 2789 CE1 HIS A 363 23.266 43.624 35.283 1.00 C ATOM 2790 NE2 HIS A 363 23.266 43.624 35.283 1.00 C ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2795 CB ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2799 CG2 ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2799 CG2 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 CG2 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 CG2 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 CG2 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C	30										0.00		N
ATOM 2775 O GLU A 362 30.012 41.966 34.554 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											0.00		С
35 ATOM 2776 CB GLU A 362 31.991 44.526 35.252 1.00 C ATOM 2777 CG GLU A 362 32.334 43.567 36.393 1.00 C ATOM 2778 CD GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2779 OE1 GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2782 CA HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2784 O HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2785 CB HIS A 363 25.354 44.641 34.817 1.00 C ATOM 2785 CB HIS A 363 25.354 44.641 34.817 1.00 C ATOM 2787 ND1 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2790 NE2 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2790 NE2 HIS A 363 23.236 43.624 35.283 1.00 C ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 C ATOM 2793 C ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2794 O ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2797 CG2 ILE A 364 26.782 43.039 29.931 1.00 C ATOM 2798 CD1 ILE A 364 26.782 43.039 29.931 1.00 C ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 C ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 C ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 C ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 C		MOTA		С							0.00		С
35 ATOM 2777 CG GLU A 362 32.334 43.567 36.393 1.00 CA ATOM 2778 CD GLU A 362 32.739 44.280 37.669 1.00 CA ATOM 2779 OE1 GLU A 362 32.739 44.280 37.669 1.00 CA ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 CA ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 CA ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 CA ATOM 2782 CA HIS A 363 27.731 43.489 34.679 1.00 CA ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 CA ATOM 2784 O HIS A 363 26.919 41.376 33.869 1.00 CA ATOM 2785 CB HIS A 363 26.919 41.376 33.869 1.00 CA ATOM 2785 CB HIS A 363 25.354 44.197 35.187 1.00 CA ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 CA ATOM 2787 ND1 HIS A 363 25.047 43.680 36.428 1.00 CA ATOM 2788 CD2 HIS A 363 25.047 43.680 36.428 1.00 CA ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 CA ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 CA ATOM 2790 NE2 HIS A 363 23.236 43.624 35.283 1.00 CA ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 CA ATOM 2793 C ILE A 364 27.159 43.037 32.371 1.00 CA ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 CA ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 CA ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 CA ATOM 2797 CG2 ILE A 364 26.751 39.871 30.935 1.00 CA ATOM 2797 CG2 ILE A 364 26.751 39.871 30.935 1.00 CA ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 CA ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 CA ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 CA ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 CA ATOM 2800 CA ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.351		MOTA	2775	0	GLU A	362					0.00		0
ATOM 2778 CD GLU A 362 32.739 44.280 37.669 1.00 C ATOM 2779 OE1 GLU A 362 33.486 45.274 37.581 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2782 CA HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2783 C HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2785 CB HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2785 CB HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2790 NE2 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 C ATOM 2793 C ILE A 364 27.159 43.037 32.371 1.00 C ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2795 CB ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2796 CG1 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 C ATOM 2798 CD1 ILE A 364 26.360 42.157 28.753 1.00 C ATOM 2799 CG2 ILE A 364 26.360 42.157 28.753 1.00 C ATOM 2799 CG2 ILE A 364 26.360 42.157 28.753 1.00 C ATOM 2799 CG2 ILE A 364 26.360 42.157 28.753 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C A		MOTA	2776	CB	GLU A	362					0.00		С
ATOM 2779 OE1 GLU A 362 33.486 45.274 37.581 1.00 C ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 C ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 C ATOM 2782 CA HIS A 363 27.731 43.489 34.679 1.00 C ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2785 CB HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2786 CG HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2786 CG HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 24.205 44.159 34.469 1.00 C ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2790 NE2 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 C ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2796 CG1 ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2797 CG2 ILE A 364 26.752 43.039 29.931 1.00 C ATOM 2798 CD1 ILE A 364 26.752 43.039 29.931 1.00 C ATOM 2797 CG2 ILE A 364 26.752 43.039 29.931 1.00 C ATOM 2799 N ASN A 365 25.893 44.286 30.006 1.00 C ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2802 O ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2802 O ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2802 O ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2802 O ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2802 O ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2802 O ASN	35	MOTA	2777	CG	GLU A	362	32.334				0.00		С
ATOM 2780 OE2 GLU A 362 32.321 43.836 38.761 1.00 0 ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 0 ATOM 2782 CA HIS A 363 27.731 43.489 34.679 1.00 0 ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 0 ATOM 2784 O HIS A 363 26.919 41.376 33.869 1.00 0 ATOM 2785 CB HIS A 363 26.735 44.641 34.817 1.00 0 ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 0 ATOM 2787 ND1 HIS A 363 25.047 43.680 36.428 1.00 0 ATOM 2788 CD2 HIS A 363 24.205 44.159 34.469 1.00 0 ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 0 ATOM 2790 NE2 HIS A 363 23.769 43.343 36.458 1.00 0 ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 0 ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 0 ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 0 ATOM 2794 O ILE A 364 26.751 39.871 30.935 1.00 0 ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2796 CG1 ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2797 CG2 ILE A 364 26.6782 43.039 29.931 1.00 0 ATOM 2798 CD1 ILE A 364 26.360 24.255 29.931 1.00 0 ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 0		ATOM	2778	CD	GLU A	362	32.739	44.280			0.00		С
40 ATOM 2781 N HIS A 363 29.062 43.994 34.375 1.00 0 ATOM 2782 CA HIS A 363 27.731 43.489 34.679 1.00 0 ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 0 ATOM 2784 O HIS A 363 26.919 41.376 33.869 1.00 0 ATOM 2785 CB HIS A 363 26.735 44.641 34.817 1.00 0 ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 0 ATOM 2787 ND1 HIS A 363 25.354 44.197 35.187 1.00 0 ATOM 2788 CD2 HIS A 363 25.047 43.680 36.428 1.00 0 ATOM 2788 CD2 HIS A 363 24.205 44.159 34.469 1.00 0 ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 0 ATOM 2790 NE2 HIS A 363 23.769 43.343 36.458 1.00 0 ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 0 ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 0 ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 0 ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 0 ATOM 2796 CG1 ILE A 364 26.751 39.871 30.935 1.00 0 ATOM 2797 CG2 ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2798 CD1 ILE A 364 26.360 42.157 28.753 1.00 0 ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 0 ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 0		MOTA	2779	OE1	GLU A	362	33.486				0.00		0
40 ATOM 2782 CA HIS A 363 27.731 43.489 34.679 1.00 CA ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 CA ATOM 2784 O HIS A 363 26.919 41.376 33.869 1.00 CA ATOM 2785 CB HIS A 363 26.735 44.641 34.817 1.00 CA ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 CA ATOM 2787 ND1 HIS A 363 25.047 43.680 36.428 1.00 CA ATOM 2788 CD2 HIS A 363 24.205 44.159 34.469 1.00 CA ATOM 2790 NE2 HIS A 363 23.769 43.343 36.458 1.00 CA ATOM 2792 CA ILE A 364 27.159 43.037 32.371 1.00 CA ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 CA ATOM 2794 O ILE A 364 26.677 42.245 31.250 1.00 CA ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 CA ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2796 CG1 ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2797 CG2 ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2798 CD1 ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2799 N ASN A 365 25.893 44.286 30.006 1.00 CA ATOM 2799 N ASN A 365 25.893 44.286 30.006 1.00 CA ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA		MOTA	2780	OE2	GLU A	362		43.836		1.00	0.00		0
ATOM 2783 C HIS A 363 27.232 42.536 33.598 1.00 C ATOM 2784 O HIS A 363 26.919 41.376 33.869 1.00 C ATOM 2785 CB HIS A 363 26.735 44.641 34.817 1.00 C ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2787 ND1 HIS A 363 25.354 44.197 35.187 1.00 C ATOM 2788 CD2 HIS A 363 25.047 43.680 36.428 1.00 C ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2790 NE2 HIS A 363 23.769 43.343 36.458 1.00 C ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 C ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 C ATOM 2793 C ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2796 CG1 ILE A 364 26.782 43.039 29.931 1.00 C ATOM 2797 CG2 ILE A 364 26.782 43.039 29.931 1.00 C ATOM 2798 CD1 ILE A 364 26.360 42.157 28.753 1.00 C ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 C ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 C		ATOM	2781	N	HIS A	363	29.062	43.994		1.00	0.00		N
ATOM 2784 O HIS A 363 26.919 41.376 33.869 1.00 0 ATOM 2785 CB HIS A 363 26.735 44.641 34.817 1.00 0 ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 0 ATOM 2787 ND1 HIS A 363 25.047 43.680 36.428 1.00 0 ATOM 2788 CD2 HIS A 363 24.205 44.159 34.469 1.00 0 ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 0 ATOM 2790 NE2 HIS A 363 23.236 43.624 35.283 1.00 0 ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 0 ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 0 ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 0 ATOM 2794 O ILE A 364 26.751 39.871 30.935 1.00 0 ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2796 CG1 ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 0 ATOM 2798 CD1 ILE A 364 26.360 42.157 28.753 1.00 0 ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 0 ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 0	40	MOTA	2782	CA	HIS A	363	27.731		34.679	1.00	0.00		С
ATOM 2785 CB HIS A 363 26.735 44.641 34.817 1.00 CA ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 CA ATOM 2787 ND1 HIS A 363 25.047 43.680 36.428 1.00 CA ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 CA ATOM 2791 N ILE A 364 26.751 39.871 30.935 1.00 CA ATOM 2792 CA ILE A 364 26.751 39.871 30.935 1.00 CA ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2796 CG1 ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2798 CD1 ILE A 364 26.360 42.157 28.753 1.00 CA ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 CA ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2801 C ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 CA ASN A		ATOM	2783	С	HIS A	363	27.232	42.536	33.598	1.00	0.00		С
ATOM 2786 CG HIS A 363 25.354 44.197 35.187 1.00 CA ATOM 2787 ND1 HIS A 363 25.047 43.680 36.428 1.00 CA ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 CA ATOM 2790 NE2 HIS A 363 23.236 43.624 35.283 1.00 CA ATOM 2791 N ILE A 364 26.751 39.871 30.935 1.00 CA ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2796 CG1 ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 CA ATOM 2798 CD1 ILE A 364 26.360 42.157 28.753 1.00 CA ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 CA ATOM 2799 N ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2800 CA ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2801 C ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 CA ASN		ATOM	2784	0	HIS A	363	26.919	41.376	33.869	1.00	0.00		0
45 ATOM 2787 ND1 HIS A 363 25.047 43.680 36.428 1.00 0 ATOM 2788 CD2 HIS A 363 24.205 44.159 34.469 1.00 0 ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 0 ATOM 2790 NE2 HIS A 363 23.236 43.624 35.283 1.00 0 ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 0 ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 0 ATOM 2793 C ILE A 364 27.396 40.910 31.084 1.00 0 ATOM 2794 O ILE A 364 26.751 39.871 30.935 1.00 0 ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2796 CG1 ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 0 ATOM 2798 CD1 ILE A 364 26.360 42.157 28.753 1.00 0 ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 0 ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 0 ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 0 ATOM 2802 O ASN A 365 29.6		ATOM	2785	CB	HIS A	363	26.735	44.641	34.817	1.00	0.00		С
ATOM 2788 CD2 HIS A 363		ATOM	2786	CG	HIS A	363	25.354	44.197	35.187	1.00	0.00	(C
ATOM 2788 CD2 HIS A 363	45	ATOM	2787	ND1	HIS A	363	25.047	43.680	36.428	1.00	0.00	1	N
ATOM 2789 CE1 HIS A 363 23.769 43.343 36.458 1.00 CA ATOM 2790 NE2 HIS A 363 23.236 43.624 35.283 1.00 CA ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 CA ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 CA ATOM 2793 C ILE A 364 26.677 42.245 31.250 1.00 CA ATOM 2795 CB ILE A 364 26.751 39.871 30.935 1.00 CA ATOM 2796 CG1 ILE A 364 26.782 43.039 29.931 1.00 CA ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 CA ATOM 2798 CD1 ILE A 364 26.360 42.157 28.753 1.00 CA ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA		ATOM	2788	CD2	HIS A	363	24.205	44.159	34.469	1.00	0.00		С
ATOM 2790 NE2 HIS A 363 23.236 43.624 35.283 1.00 0 ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 0 ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 0 ATOM 2793 C ILE A 364 27.396 40.910 31.084 1.00 0 ATOM 2794 O ILE A 364 26.751 39.871 30.935 1.00 0 ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2796 CG1 ILE A 364 25.893 44.286 30.006 1.00 0 ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 0 ATOM 2798 CD1 ILE A 364 26.022 45.206 28.813 1.00 0 ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 0 ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 0		ATOM	2789				23.769	43.343	36.458	1.00	0.00	(С
ATOM 2791 N ILE A 364 27.159 43.037 32.371 1.00 0 ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 0 ATOM 2793 C ILE A 364 27.396 40.910 31.084 1.00 0 ATOM 2794 O ILE A 364 26.751 39.871 30.935 1.00 0 ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2796 CG1 ILE A 364 25.893 44.286 30.006 1.00 0 ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 0 ATOM 2798 CD1 ILE A 364 26.022 45.206 28.813 1.00 0 ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 0 ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 0								43.624	35.283	1.00	0.00	I	N
50 ATOM 2792 CA ILE A 364 26.677 42.245 31.250 1.00 0 ATOM 2793 C ILE A 364 27.396 40.910 31.084 1.00 0 ATOM 2794 O ILE A 364 26.751 39.871 30.935 1.00 0 ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2796 CG1 ILE A 364 25.893 44.286 30.006 1.00 0 ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 0 ATOM 2798 CD1 ILE A 364 26.022 45.206 28.813 1.00 0 ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2801 C ASN A 365 29.489 39.699 30.943 1.00 0 <								43.037	32.371	1.00	0.00	ì	N
ATOM 2793 C ILE A 364 27.396 40.910 31.084 1.00 C ATOM 2794 O ILE A 364 26.751 39.871 30.935 1.00 C ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 C ATOM 2796 CG1 ILE A 364 25.893 44.286 30.006 1.00 C ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 C ATOM 2798 CD1 ILE A 364 26.022 45.206 28.813 1.00 C ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 C	50							42.245		1.00	0.00	(С
ATOM 2794 O ILE A 364 26.751 39.871 30.935 1.00 0 ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 0 ATOM 2796 CG1 ILE A 364 25.893 44.286 30.006 1.00 0 ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 0 ATOM 2798 CD1 ILE A 364 26.022 45.206 28.813 1.00 0 ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 0 ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 0											0.00		С
ATOM 2795 CB ILE A 364 26.782 43.039 29.931 1.00 C ATOM 2796 CG1 ILE A 364 25.893 44.286 30.006 1.00 C ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 C ATOM 2798 CD1 ILE A 364 26.022 45.206 28.813 1.00 C ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 C ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 C ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 C ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 C											0.00		0
ATOM 2796 CG1 ILE A 364 25.893 44.286 30.006 1.00 CA ASN A 365 ATOM 2802 C ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 C ASN A 365 29.660 37.523 31.929 1.											0.00		С
55 ATOM 2797 CG2 ILE A 364 26.360 42.157 28.753 1.00 CA ATOM 2798 CD1 ILE A 364 26.022 45.206 28.813 1.00 CA ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 CA ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O A											0.00		С
ATOM 2798 CD1 ILE A 364 26.022 45.206 28.813 1.00 0 ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 0 ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 0	55										0.00		C
ATOM 2799 N ASN A 365 28.724 40.929 31.119 1.00 0 ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 0 ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 0 ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 0	55										0.00		Ċ
ATOM 2800 CA ASN A 365 29.489 39.699 30.943 1.00 CA ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 CA ATOM 2802 O											0.00		N
ATOM 2801 C ASN A 365 29.351 38.702 32.094 1.00 0 ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 0											0.00		C
60 ATOM 2802 O ASN A 365 29.660 37.523 31.929 1.00 0											0.00		C
	60										0.00		0
ATOM 2003 CD ASM A 303 30.900 40.020 30.714 1.00 C	00										0.00		C
		AIOM	2003	CB	дои А	303	30.300	70.020	JU./14	1.00	0.00	`	_

	ATOM	2804	CG	ASN A	365	31.1	189	40.887	29.488	1.00	0.00	С
	ATOM	2805		ASN A		30.2		11.042	28.658	1.00	0.00	0
	ATOM	2806		ASN A		32.3		11.452	29.366	1.00	0.00	N
	ATOM	2807	N		366	28.8		39.167	33.247	1.00	0.00	N
5	ATOM	2808	CA	SER A		28.7		38.292	34.407	1.00	0.00	С
5								37.837	34.581	1.00	0.00	c
	MOTA	2809	С		366	27.2					0.00	0
	MOTA	2810	0		366	26.9		37.032	35.458	1.00		
	ATOM	2811	CB	SER A		29.1		39.001	35.682	1.00	0.00	C
4.0	MOTA	2812	OG	SER A		28.3		10.123	35.976	1.00	0.00	0
10	ATOM	2813	N	GLN A		26.3		38.361	33.745	1.00	0.00	N
	ATOM	2814	CA	GLN A	367	24.9	956	37.997	33.786	1.00	0.00	С
	ATOM	2815	С	GLN A	367	24.6	661	37.028	32.642	1.00	0.00	С
	ATOM	2816	0	GLN A	367	24.3	324	37.443	31.532	1.00	0.00	0
	ATOM	2817	СВ	GLN A	367	24.0	077 :	39.244	33.646	1.00	0.00	С
15	ATOM	2818	CG	GLN A		24.1		40.172	34.852	1.00	0.00	С
	ATOM	2819	CD	GLN A		23.5		39.525	36.092	1.00	0.00	С
	ATOM	2820		GLN A		22.3		39.171	36.121	1.00	0.00	0
	ATOM	2821		GLN A		24.3		39.362	37.122	1.00	0.00	N
		2822		ALA A		24.7		35.735	32.928	1.00	0.00	N
20	ATOM		N			24.5			31.937	1.00	0.00	C
20	MOTA	2823	CA	ALA A				34.686				C
	ATOM	2824	С	ALA A		23.2		34.849	31.087	1.00	0.00	
	MOTA	2825	0	ALA A		23.3		34.571	29.888	1.00	0.00	0
	ATOM	2826	CB	ALA A		24.5		33.323	32.629	1.00	0.00	С
	ATOM	2827	N	HIS A		22.2		35.296	31.699	1.00	0.00	N
25	MOTA	2828	CA	HIS A	369	20.9	946	35.458	30.973	1.00	0.00	С
	ATOM	2829	С	HIS A	369	21.0	064	36.370	29.748	1.00	0.00	С
	ATOM	2830	0	HIS A	369	20.2	220	36.328	28.852	1.00	0.00	0
	ATOM	2831	CB	HIS A	369	19.8	356	35.973	31.920	1.00	0.00	С
	MOTA	2832	CG	HIS A	369	20.0	040	37.396	32.344	1.00	0.00	С
30	MOTA	2833		HIS A		19.5	595	38.460	31.589	1.00	0.00	N
	ATOM	2834		HIS A		20.6		37.932	33.435	1.00	0.00	С
	ATOM	2835		HIS		19.9		39.590	32.198	1.00	0.00	С
	ATOM	2836		HIS A		20.5		39.298	33.319	1.00	0.00	N
	ATOM	2837	N		370	22.3		37.193	29.707	1.00	0.00	N
35		2838	CA	PHE A		22.3		38.085	28.569	1.00	0.00	С
33	ATOM					22.9		37.314	27.422	1.00	0.00	С
	ATOM	2839	С	PHE A					26.254		0.00	o
	ATOM	2840	0	PHE A		22.6		37.593		1.00		С
	ATOM	2841	CB		370	23.2		39.252	28.952	1.00	0.00	
40	ATOM	2842	CG		370			40.372	29.675	1.00	0.00	C
4 0	ATOM	2843		PHE A		23.0		40.916	30.829	1.00	0.00	C
	MOTA	2844		PHE A		21.3		40.903	29.188	1.00	0.00	С
	ATOM	2845		PHE A		22.4		41.975	31.490	1.00	0.00	C
	MOTA	2846	CE2	PHE A	370	20.7		41.964	29.842	1.00	0.00	С
	MOTA	2847	CZ	PHE A	370	21.2	277	12.499	30.995	1.00	0.00	С
45	ATOM	2848	N	ASN A	371	23.	795	36.342	27.773	1.00	0.00	N
	ATOM	2849	CA	ASN A	371	24.5	506	35.530	26.791	1.00	0.00	С
	ATOM	2850	С	ASN A		25.3	303	36.431	25.854	1.00	0.00	С
	ATOM	2851	0	ASN A		25.3		36.231	24.637	1.00	0.00	0
	ATOM	2852	СВ	ASN A		23.5		34.669	26.007	1.00	0.00	С
50	ATOM	2853	CG	ASN A		22.8		33.607	26.875	1.00	0.00	С
00	ATOM	2854		ASN A		23.5		32.725	27.405	1.00	0.00	0
		2855		ASN A		21.5		33.692	27.031	1.00	0.00	N
	ATOM								26.451	1.00	0.00	N
	ATOM	2856	N	VAL		25.9		37.421				С
	ATOM	2857	CA	VAL		26.		38.390	25.725	1.00	0.00	
55	MOTA	2858	С	VAL A		28.3		38.559	26.374	1.00	0.00	C
	MOTA	2859	0	VAL		28.2		38.515	27.597	1.00	0.00	0
	MOTA	2860	CB		372	26.0		39.785	25.702	1.00	0.00	С
	ATOM	2861	CG1	VAL A	372	27.0		40.845	25.161	1.00	0.00	С
	ATOM	2862	CG2	VAL	372	24.8	830	39.736	24.858	1.00	0.00	С
60	ATOM	2863	N	GLN A		29.	157	38.748	25.539	1.00	0.00	N
	ATOM	2864	CA	GLN A	373	30.9	523	38.980	25.997	1.00	0.00	С

	ATOM	2865	С	GLN A	373	30.933	40.267	25.284	1.00	0.00	С
	ATOM	2866	Ō	GLN A		31.176	40.262	24.081	1.00	0.00	0
	ATOM	2867	СВ	GLN A		31.438	37.822	25.583	1.00	0.00	С
	ATOM	2868	CG	GLN A		32.919	38.014	25.925	1.00	0.00	С
5	ATOM	2869	CD	GLN A		33.155	38.334	27.398	1.00	0.00	С
•	ATOM	2870		GLN A		32.519	37.757	28.281	1.00	0.00	0
	ATOM	2871		GLN A		34.082	39.248	27.665	1.00	0.00	N
	ATOM	2872	N	ALA A		30.985	41.369	26.025	1.00	0.00	N
	ATOM	2873	CA	ALA A		31.329	42.660	25.444	1.00	0.00	С
10	ATOM	2874	C	ALA A		32.665	43.201	25.939	1.00	0.00	C
10	ATOM	2875	o	ALA A		33.048	42.987	27.087	1.00	0.00	0
		2876				30.221	43.668	25.747	1.00	0.00	C
	ATOM		CB	ALA A		33.369	43.000	25.068	1.00	0.00	N
	ATOM	2877	N GP	GLN A			44.500	25.437	1.00	0.00	C
15	ATOM	2878	CA	GLN A		34.653			1.00	0.00	c
15	ATOM	2879	С	GLN A		35.084	45.552	24.429			0
	ATOM	2880	0	GLN A		34.526	45.641	23.336	1.00	0.00	c
	MOTA	2881	CB	GLN A		35.739	43.421	25.506	1.00	0.00	
	MOTA	2882	CG	GLN A		35.930	42.638	24.209	1.00	0.00	C
20	MOTA	2883	CD	GLN A		35.048	41.409	24.145	1.00	0.00	С
20	MOTA	2884		GLN A		35.186	40.494	24.962	1.00	0.00	0
	ATOM	2885	NE2	GLN A		34.131	41.379	23.180	1.00	0.00	N
	MOTA	2886	N	PHE A	376	36.070	46.359	24.810	1.00	0.00	. N
	MOTA	2887	CA	PHE A	376	36.600	47.362	23.900	1.00	0.00	С
	MOTA	2888	С	PHE A	376	37.395	46.571	22.874	1.00	0.00	С
25	ATOM	2889	0	PHE A	376	38.023	45.567	23.212	1.00	0.00	0
	ATOM	2890	CB	PHE A	376	37.540	48.327	24.630	1.00	0.00	С
	ATOM	2891	CG	PHE A	376	36.846	49.231	25.606	1.00	0.00	С
	ATOM	2892	CD1	PHE A	376	37.245	49.273	26.936	1.00	0.00	С
	ATOM	2893	CD2	PHE A	376	35.797	50.049	25.194	1.00	0.00	С
30	MOTA	2894	CE1	PHE A	376	36.611	50.114	27.846	1.00	0.00	С
	ATOM	2895	CE2	PHE A	376	35.156	50.896	26.100	1.00	0.00	С
	ATOM	2896	CZ	PHE A		35.567	50.926	27.429	1.00	0.00	С
	ATOM	2897	N	GLY A	377	37.366	47.011	21.622	1.00	0.00	N
	ATOM	2898	CA	GLY A	377	38.115	46.309	20.598	1.00	0.00	С
35	ATOM	2899	С	GLY A		38.540	47.242	19.486	1.00	0.00	С
	ATOM	2900	0	GLY A		38.222	48.431	19.510	1.00	0.00	0
	ATOM	2901	N	THR A		39.277	46.706	18.521	1.00	0.00	N
	ATOM	2902	CA	THR A		39.716	47.493	17.380	1.00	0.00	С
	ATOM	2903	C	THR A		38.965	46.972	16.164	1.00	0.00	С
40	ATOM	2904	Ö	THR A		38.287	45.940	16.235	1.00	0.00	0
10	ATOM	2905	СВ	THR A		41.229	47.347	17.123	1.00	0.00	С
	ATOM	2906		THR A		41.521	46.002	16.731	1.00	0.00	0
	ATOM	2907		THR A		42.017	47.693	18.379	1.00	0.00	C
	ATOM	2908	N	LEU A		39.082	47.684	15.052	1.00	0.00	N
45	ATOM	2909	CA	LEU A		38.408	47.287	13.825	1.00	0.00	C
40	ATOM	2910	C	LEU A		38.898	45.923	13.337	1.00	0.00	C
	ATOM	2911	0	LEU A		38.102	45.072	12.931	1.00	0.00	0
		2912		LEU A		38.645	48.338	12.739	1.00	0.00	C
	ATOM		CB			37.862	48.125	11.447	1.00	0.00	C
50	ATOM	2913	CG	LEU A			48.180	11.746	1.00	0.00	Č
50	ATOM	2914		LEU A		36.364		10.432	1.00	0.00	C
	ATOM	2915		LEU A		38.261	49.198			0.00	N
	ATOM	2916	N	GLN A		40.211	45.714	13.383	1.00	0.00	C
	ATOM	2917	CA	GLN A		40.783	44.449	12.936	1.00		C
	MOTA	2918	С	GLN A		40.287	43.287	13.794	1.00	0.00	
55	MOTA	2919	0	GLN A		40.051	42.189	13.287	1.00	0.00	0
	MOTA	2920	CB	GLN A		42.311	44.512	12.982	1.00	0.00	С
	MOTA	2921	CG	GLN A		42.989	43.294	12.377	1.00	0.00	C
	MOTA	2922	CD	GLN A		42.587	43.071	10.931	1.00	0.00	С
	MOTA	2923		GLN A		42.667	43.983	10.104	1.00	0.00	0
60	MOTA	2924	NE2	GLN A		42.156	41.851	10.616	1.00	0.00	N
	ATOM	2925	N	GLU A	381	40.133	43.527	15.094	1.00	0.00	N

	ATOM	2926	CA	GLU	А	381	39.659)	42.481	15.990	1.00	0.00	С
	ATOM	2927	С	GLU			38.258		42.049	15.576	1.00	0.00	С
	ATOM	2928	0	GLU	Α	381	37.941		40.862	15.576	1.00	0.00	0
	ATOM	2929	CB	GLU	Α	381	39.653	}	42.969	17.444	1.00	0.00	С
5	ATOM	2930	CG	GLU			41.045		43.317	17.967	1.00	0.00	С
	MOTA	2931	CD	GLU			41.068	}	43.599	19.460	1.00	0.00	С
	ATOM	2932		GLU	Α	381	40.251		44.411	19.931	1.00	0.00	0
	ATOM	2933		GLU			41.919		43.012	20.161	1.00	0.00	0
	ATOM	2934	N	TYR			37.420		43.019	15.225	1.00	0.00	N
10	ATOM	2935	CA	TYR			36.065		42.716	14.794	1.00	0.00	С
	ATOM	2936	С	TYR			36.081		41.821	13.554	1.00	0.00	С
	ATOM	2937	0	TYR			35.454		40.762	13.530	1.00	0.00	0
	ATOM	2938	СВ	TYR			35.300		43.999	14.464	1.00	0.00	С
	ATOM	2939	CG	TYR			33.991		43.723	13.760	1.00	0.00	С
15	ATOM	2940		TYR			32.937		43.095	14.429	1.00	0.00	С
	ATOM	2941		TYR			33.830		44.020	12.405	1.00	0.00	С
	ATOM	2942		TYR			31.754		42.762	13.764	1.00	0.00	С
	ATOM	2943		TYR			32.654		43.691	11.731	1.00	0.00	С
	ATOM	2944	CZ	TYR			31.622		43.058	12.418	1.00	0.00	С
20	ATOM	2945	ОН	TYR			30.469		42.701	11.750	1.00	0.00	0
	ATOM	2946	N	PHE			36.791		42.257	12.519	1.00	0.00	N
	ATOM	2947	CA	PHE			36.859		41.488	11.282	1.00	0.00	С
	ATOM	2948	C	PHE			37.454		40.088	11.470	1.00	0.00	С
	ATOM	2949	Ō	PHE			36.976		39.122	10.870	1.00	0.00	0
25	ATOM	2950	CB	PHE			37.648		42.269	10.220	1.00	0.00	С
	ATOM	2951	CG	PHE			36.872		43.407	9.599	1.00	0.00	С
	ATOM	2952		PHE			37.365		44.705	9.641	1.00	0.00	С
	ATOM	2953		PHE			35.655		43.173	8.962	1.00	0.00	С
	ATOM	2954		PHE			36.662		45.762	9.057	1.00	0.00	С
30	ATOM	2955		PHE			34.938		44.218	8.372	1.00	0.00	С
	ATOM	2956	CZ	PHE			35.444		45.518	8.419	1.00	0.00	С
	ATOM	2957	N	ASP			38.490)	39.968	12.297	1.00	0.00	N
	MOTA	2958	CA	ASP			39.094		38.655	12.535	1.00	0.00	С
	ATOM	2959	С	ASP			38.050)	37.702	13.109	1.00	0.00	С
35	ATOM	2960	0	ASP	Α	384	37.958	1	36.545	12.699	1.00	0.00	0
	ATOM	2961	CB	ASP	Α	384	40.266	;	38.753	13.514	1.00	0.00	С
	ATOM	2962	CG	ASP	Α	384	41.499)	39.382	12.897	1.00	0.00	С
	ATOM	2963	OD1	ASP	Α	384	41.577		39.469	11.652	1.00	0.00	0
	ATOM	2964	OD2	ASP	Α	384	42.400		39.775	13.667	1.00	0.00	0
40	ATOM	2965	N	ALA	Α	385	37.261		38.198	14.057	1.00	0.00	N
	ATOM	2966	CA	ALA	Α	385	36.223	}	37.391	14.691	1.00	0.00	С
	ATOM	2967	С	ALA	Α	385	35.143	,	37.007	13.684	1.00	0.00	С
	MOTA	2968	0	ALA	Α	385	34.686	,	35.863	13.652	1.00	0.00	0
	MOTA	2969	CB	ALA	A	385	35.605)	38.155	15.862	1.00	0.00	С
45	MOTA	2970	N	VAL	A	386	34.731		37.965	12.862	1.00	0.00	N
	ATOM	2971	CA	VAL	A	386	33.715	•	37.695	11.851	1.00	0.00	С
	ATOM	2972	С	VAL	A	386	34.149		36.546	10.939	1.00	0.00	С
	ATOM	2973	. 0	VAL	A	386	33.385)	35.608	10.689	1.00	0.00	0
=0	MOTA	2974	CB	VAL			33.447		38.938	10.982	1.00	0.00	С
50	ATOM	2975	CG1	VAL	A	386	32.555		38.564	9.794	1.00	0.00	С
	ATOM	2976	CG2	VAL			32.782		40.018	11.823	1.00	0.00	С
	ATOM	2977	N	HIS	A	387	35.379		36.612	10.447	1.00	0.00	N
	MOTA	2978	CA	HIS	A	387	35.867		35.570	9.562	1.00	0.00	С
	MOTA	2979	С	HIS			36.092		34.244	10.280	1.00	0.00	С
55	ATOM	2980	0	HIS			36.062		33.181	9.657	1.00	0.00	0
	MOTA	2981	CB	HIS	Α	387	37.125		36.055	8.843	1.00	0.00	С
	ATOM	2982	CG	HIS			36.852		37.170	7.882	1.00	0.00	С
	ATOM	2983		HIS			36.009		37.024	6.800	1.00	0.00	N
	MOTA	2984		HIS			37.263		38.461	7.867	1.00	0.00	С
60	MOTA	2985		HIS			35.912		38.177	6.162	1.00	0.00	С
	MOTA	2986	NE2	HIS	A	387	36.663		39.065	6.790	1.00	0.00	N

		ATOM	2987	N	GLN	A 38	88	36.304	34.303	11.590	1.00	0.00	N
		ATOM	2988	CA	GLN	A 38	88	36.474	33.083	12.367	1.00	0.00	С
		ATOM	2989	С	GLN			35.105	32.397	12.401	1.00	0.00	С
		ATOM	2990	Ō	GLN			35.007	31.173	12.317	1.00	0.00	0
	5	ATOM	2991	CB	GLN			36.943	33.411	13.789	1.00	0.00	С
	J	MOTA	2992	CG	GLN			38.442	33.684	13.910	1.00	0.00	Ċ
			2993		GLN			38.816	34.342	15.235	1.00	0.00	C
		ATOM		CD						16.281	1.00	0.00	Ö
		ATOM	2994		GLN			38.248	34.024				
	10	ATOM	2995		GLN			39.783	35.256	15.194	1.00	0.00	N
	10	ATOM	2996	N	ALA			34.049	33.199	12.508	1.00	0.00	N
		MOTA	2997	CA	ALA			32.686	32.674	12.536	1.00	0.00	С
		MOTA	2998	С	ALA	A 38	89	32.342	32.106	11.163	1.00	0.00	С
		ATOM	2999	0	ALA	A 38	89	31.688	31.064	11.050	1.00	0.00	0
		MOTA	3000	CB	ALA	3E A	89	31.705	33.780	12.911	1.00	0.00	С
	15	MOTA	3001	N	GLU	A 39	90	32.792	32.803	10.125	1.00	0.00	N
		ATOM	3002	CA	GLU			32.565	32.398	8.743	1.00	0.00	С
		ATOM	3003	С	GLU			33.197	31.033	8.487	1.00	0.00	С
		ATOM	3004	Ö	GLU			32.569	30.144		1.00	0.00	0
		ATOM	3005	СВ	GLU			33.168	33.445	7.798	1.00	0.00	C
	20	ATOM	3006	CG	GLU			33.255	33.036	6.331	1.00	0.00	Č
	20								34.133	5.464	1.00	0.00	c
31976 31976		ATOM	3007	CD	GLU			33.859					0
₹ ₁₌₃ 1		ATOM	3008		GLU			34.757	34.847	5.956	1.00	0.00	
		ATOM	3009		GLU			33.447	34.275	4.292	1.00	0.00	0
	0.5	ATOM	3010	N	ARG			34.443	30.876	8.921	1.00	0.00	N
455	25	MOTA	3011	CA	ARG			35.163	29.622	8.746	1.00	0.00	С
9,8 S		MOTA	3012	С	ARG	A 39	91	34.519	28.504	9.560	1.00	0.00	С
		ATOM	3013	0	ARG	A 39	91	34.611	27.330	9.200	1.00	0.00	0
M		ATOM	3014	CB	ARG	A 39	91	36.628	29.790	9.160	1.00	0.00	С
141		MOTA	3015	CG	ARG	A 39	91	37.475	30.565	8.159	1.00	0.00	С
1 (20)	30	ATOM	3016	CD	ARG	A 39	91	38.908	30.719	8.652	1.00	0.00	С
M		ATOM	3017	NE	ARG	A 39	91	38.993	31.636	9.785	1.00	0.00	N
B}		ATOM	3018	CZ	ARG			40.086	31.827	10.515	1.00	0.00	С
		ATOM	3019		ARG			41.201	31.162	10.238	1.00	0.00	N
		ATOM	3020		ARG			40.066	32.688	11.524	1.00	0.00	N
1	35	ATOM	3021	N	ALA			33.870	28.871	10.660	1.00	0.00	N
îŲ	50	ATOM	3022	CA	ALA			33.204	27.891	11.510	1.00	0.00	C
[.			3023					31.932	27.419	10.814	1.00	0.00	Ċ
inar.		ATOM		C	ALA					11.281	1.00	0.00	0
		ATOM	3024	0	ALA			31.255	26.500				C
	40	ATOM	3025	CB	ALA			32.870	28.508	12.863	1.00	0.00	
	40	ATOM	3026	N	GLY			31.612	28.064	9.695	1.00	0.00	N
		ATOM	3027	CA	GLY			30.432	27.701	8.935	1.00	0.00	C
		ATOM	3028	С	GLY			29.122	28.243	9.473	1.00	0.00	С
		ATOM	3029	0	GLY	A 39	93	28.063	27.676	9.206	1.00	0.00	0
		MOTA	3030	N	GLN	A 39	94	29.170	29.338	10.225	1.00	0.00	N
	45	ATOM	3031	CA	GLN	A 39	94	27.937	29.897	10.760	1.00	0.00	С
		ATOM	3032	С	GLN	A 39	94	27.377	31.012	9.883	1.00	0.00	С
		ATOM	3033	0	GLN			26.321	31.566	10.180	1.00	0.00	0
		ATOM	3034	СВ	GLN			28.140	30.410	12.191	1.00	0.00	С
		ATOM	3035	CG	GLN			28.877	31.728	12.312	1.00	0.00	С
	50	ATOM	3036	CD	GLN			28.757	32.324	13.707	1.00	0.00	С
	50		3037		GLN			29.229	31.746	14.689	1.00	0.00	Ō
		ATOM								13.799	1.00	0.00	N
		MOTA	3038		GLN			28.114	33.483				
		ATOM	3039	N	ALA			28.072	31.333	8.795	1.00	0.00	N
	F- F-	MOTA	3040	CA	ALA			27.606	32.383	7.898	1.00	0.00	C
	55	MOTA	3041	С	ALA			28.251	32.344	6.517	1.00	0.00	С
		ATOM	3042	0	ALA			29.421	31.995	6.369	1.00	0.00	0
		ATOM	3043	CB	ALA	A 39	95	27.840	33.750	8.538	1.00	0.00	С
		ATOM	3044	N	GLU			27.463	32.700	5.509	1.00	0.00	N
		ATOM	3045	CA	GLU			27.921	32.752	4.126	1.00	0.00	С
	60	ATOM	3046	С	GLU			27.614	34.180	3.696	1.00	0.00	С
		ATOM	3047	Ō	GLU			26.528	34.688	3.980	1.00	0.00	0
		017	551,	9	-10	· · J ·					•		

	ATOM	3048	СВ	GLU A		27.135	31.766	3.256	1.00	0.00	C
	MOTA	3049	CG	GLU A		26.450	30.641	4.026	1.00	0.00	C
	MOTA	3050	CD	GLU A	396	25.095	31.053	4.591	1.00	0.00	С
_	MOTA	3051	OE1	GLU A	396	25.037	32.008	5.400	1.00	0.00	0
5	MOTA	3052	OE2	GLU A	396	24.083	30.417	4.221	1.00	0.00	0
	MOTA	3053	N	PHE A	397	28.553	34.835	3.025	1.00	0.00	N
	MOTA	3054	CA	PHE A	397	28.321	36.215	2.620	1.00	0.00	С
	ATOM	3055	С	PHE A	397	27.997	36.401	1.147	1.00	0.00	С
	ATOM	3056	0	PHE A	397	28.569	35.744	0.281	1.00	0.00	0
10	ATOM	3057	CB	PHE A	397	29.520	37.087	2.999	1.00	0.00	С
	ATOM	3058	CG	PHE A	397	29.773	37.145	4.477	1.00	0.00	С
	ATOM	3059	CD1	PHE A	397	30.811	36.417	5.047	1.00	0.00	С
	ATOM	3060		PHE A		28.952	37.905	5.303	1.00	0.00	C
	ATOM	3061		PHE A		31.030	36.444	6.429	1.00	0.00	С
15	ATOM	3062		PHE A		29.160	37.940	6.682	1.00	0.00	С
	ATOM	3063	CZ	PHE A		30.201	37.206	7.245	1.00	0.00	C
	ATOM	3064	N	PRO A		27.070	37.322	0.849	1.00	0.00	N
	ATOM	3065	CA	PRO A		26.654	37.611	-0.522	1.00	0.00	С
	MOTA	3066	C	PRO A		27.725	38.385	-1.291	1.00	0.00	С
20	ATOM	3067	ō	PRO A		28.587	39.037	-0.692	1.00	0.00	0
0	ATOM	3068	СВ	PRO A		25.386	38.428	-0.318	1.00	0.00	С
	ATOM	3069	CG	PRO A		25.728	39.233	0.898	1.00	0.00	С
	ATOM	3070	CD	PRO A		26.358	38.190	1.806	1.00	0.00	C
	ATOM	3071	N	THR A		27.666	38.294	-2.616	1.00	0.00	N
25	ATOM	3072	CA	THR A		28.598	38.994	-3.490	1.00	0.00	C
20	ATOM	3072	C	THR A		27.876	40.240	-3.990	1.00	0.00	Č
	ATOM	3074	Ö	THR A		26.647	40.260	-4.077	1.00	0.00	ō
	ATOM	3075	CB	THR A		29.000	38.127	-4.694	1.00	0.00	Č
	MOTA	3076	OG1			27.821	37.692	-5.387	1.00	0.00	Ō
30	ATOM	3077	CG2	THR A		29.798	36.923	-4.231	1.00	0.00	C
50	ATOM	3077	N N	LEU A		28.632	41.280	-4.318	1.00	0.00	N
	ATOM	3079	CA	LEU A		28.017	42.519	-4.779	1.00	0.00	C
		3079	CA	LEU A		28.941	43.319	-5.680	1.00	0.00	č
	ATOM	3081	0	LEU A		30.160	43.292	-5.511	1.00	0.00	Ō
35	ATOM	3082		LEU A		27.615	43.364	-3.560	1.00	0.00	Č
55	ATOM	3082	CB CG	LEU A		26.959	44.742	-3.738	1.00	0.00	Č
	ATOM					26.173	45.078	-2.487	1.00	0.00	c
	MOTA	3084		LEU A		28.008	45.816	-4.013	1.00	0.00	Č
	ATOM	3085		LEU A		28.354	44.003	-6.659	1.00	0.00	N
40	MOTA	3086	N C D	SER A		29.115	44.862	-7.562	1.00	0.00	C
40	ATOM	3087	CA	SER A		29.113	46.126	-7.742	1.00	0.00	c
	MOTA	3088	C	SER A			46.120	-7.574	1.00	0.00	ō
	MOTA	3089	0	SER A		27.057		-8.922	1.00	0.00	c
	ATOM	3090	CB	SER A		29.352	44.191 44.208	-9.721	1.00	0.00	0
15	ATOM	3091	OG	SER A		28.184					
45	ATOM	3092	N	GLY A		28.937	47.234	-8.073	1.00	0.00	N C
	ATOM	3093	CA	GLY A		28.238	48.495	-8.259		0.00	C
	ATOM	3094	C	GLY A		28.819	49.577	-7.364	1.00	0.00	0
	ATOM	3095	0	GLY A		29.842	49.360	-6.715	1.00		
50	ATOM	3096	N	ASP A		28.178	50.741	-7.325	1.00	0.00	N C
50	ATOM	3097	CA	ASP A		28.661	51.833	-6.489	1.00	0.00	
	ATOM	3098	С	ASP A		27.554	52.332	-5.568	1.00	0.00	С
	MOTA	3099	0	ASP A		26.442	51.795	-5.567	1.00	0.00	0
	MOTA	3100	СВ	ASP A		29.179	52.983	-7.364	1.00	0.00	С
	MOTA	3101	CG	ASP A		28.065	53.735	-8.070	1.00	0.00	С
55	MOTA	3102		ASP A		26.966	53.170	-8.232	1.00	0.00	0
	MOTA	3103	OD2	ASP A		28.294	54.893	-8.475	1.00	0.00	0
	ATOM	3104	N	PHE A		27.862	53.355	-4.780	1.00	0.00	N
	MOTA	3105	CA	PHE A		26.886	53.913	-3.863	1.00	0.00	C
	ATOM	3106	С	PHE A		26.735	55.422	-4.002	1.00	0.00	С
60	ATOM	3107	0	PHE A		26.906	56.178	-3.046	1.00	0.00	0
	ATOM	3108	CB	PHE A	404	27.234	53.526	-2.421	1.00	0.00	С

	ATOM	3109	CG	PHE A	404	27.207	52.036	-2.182	1.00	0.00	С
	ATOM	3110		PHE A		28.380	51.288	-2.212	1.00	0.00	С
	ATOM	3111	CD2	PHE A	404	25.997	51.378	-1.976	1.00	0.00	С
	ATOM	3112	CE1	PHE A	404	28.350	49.899	-2.041	1.00	0.00	С
5	ATOM	3113	CE2	PHE A	404	25.953	49.990	-1.804	1.00	0.00	C
	ATOM	3114	CZ	PHE A		27.130	49.249	-1.836	1.00	0.00	С
	MOTA	3115	N	PHE A	405	26.421	55.834	-5.228	1.00	0.00	N
	ATOM	3116	CA	PHE A		26.172	57.229	-5.575	1.00	0.00	C
	ATOM	3117	С	PHE A	405	24.818	57.168	-6.290	1.00	0.00	С
10	ATOM	3118	0	PHE A		24.541	56.185	-6.975	1.00	0.00	0
	ATOM	3119	СВ	PHE A		27.236	57.749	-6.549	1.00	0.00	C
	ATOM	3120	CG	PHE A		28.613	57.857	-5.955	1.00	0.00	С
	ATOM	3121	CD1	PHE A		29.700	57.254	-6.584	1.00	0.00	С
	ATOM	3122		PHE A		28.834	58.583	-4.786	1.00	0.00	С
15	ATOM	3123		PHE A		30.988	57.373	-6.055	1.00	0.00	C
	ATOM	3124		PHE A		30.121	58.707	-4.251	1.00	0.00	С
	ATOM	3125	CZ	PHE A		31.196	58.101	-4.888	1.00	0.00	С
	ATOM	3126	N	THR A		23.973	58.189	-6.153	1.00	0.00	N
	ATOM	3127	CA	THR A		24.252	59.380	-5.363	1.00	0.00	С
20	MOTA	3128	С	THR A		23.610	59.282	-3.982	1.00	0.00	C
	ATOM	3129	0	THR A		22.440	58.917	-3.834	1.00	0.00	0
	ATOM	3130	СВ	THR A		23.746	60.643	-6.110	1.00	0.00	С
	ATOM	3131	OG1	THR A		24.634	60.928	-7.200	1.00	0.00	0
	ATOM	3132		THR A		23.673	61.847	-5.180	1.00	0.00	С
25	ATOM	3133	N	TYR A		24.405	59.608	-2.971	1.00	0.00	N
	ATOM	3134	CA	TYR A		23.987	59.564	-1.577	1.00	0.00	С
	MOTA	3135	С	TYR A		22.894	60.561	-1.209	1.00	0.00	С
	MOTA	3136	0	TYR A		22.834	61.669	-1.742	1.00	0.00	0
	MOTA	3137	CB	TYR A		25.209	59.811	-0.696	1.00	0.00	С
30	MOTA	3138	CG	TYR A	407	24.941	59.975	0.786	1.00	0.00	С
	MOTA	3139	CD1	TYR A	407	24.453	58.918	1.554	1.00	0.00	С
	MOTA	3140	CD2	TYR A	407	25.277	61.163	1.437	1.00	0.00	С
	MOTA	3141	CE1	TYR A	407	24.321	59.037	2.941	1.00	0.00	С
	ATOM	3142	CE2	TYR A	407	25.151	61.293	2.813	1.00	0.00	С
35	MOTA	3143	CZ	TYR A	407	24.681	60.229	3.562	1.00	0.00	С
	ATOM	3144	OH	TYR A	407	24.630	60.348	4.932	1.00	0.00	0
	MOTA	3145	N	ALA A	408	22.032	60.137	-0.291	1.00	0.00	N
	ATOM	3146	CA	ALA A	408	20.950	60.958	0.239	1.00	0.00	С
	ATOM	3147	С	ALA A	408	20.844	60.512	1.689	1.00	0.00	C
40	MOTA	3148	0	ALA A	408	20.689	59.319	1.956	1.00	0.00	0
	MOTA	3149	CB	ALA A	408	19.640	60.684	-0.502	1.00	0.00	C
	MOTA	3150	N	ASP A	409	20.959	61.449	2.626	1.00	0.00	N
	MOTA	3151	CA	ASP A	409	20.881	61.086	4.035	1.00	0.00	C
	ATOM	3152	С	ASP A		19.456	61.137	4.575	1.00	0.00	С
45	ATOM	3153	0	ASP A		19.160	60.548	5.613	1.00	0.00	0
	MOTA	3154	CB	ASP A		21.834	61.959	4.877	1.00	0.00	C
	MOTA	3155	CG	ASP A		21.513	63.444	4.808	1.00	0.00	C
	ATOM	3156		ASP A		20.928	63.893	3.802	1.00	0.00	0
	MOTA	3157	OD2	ASP A		21.875	64.169	5.765	1.00	0.00	0
50	MOTA	3158	N	ARG A		18.574	61.824	3.853	1.00	0.00	N
	MOTA	3159	CA	ARG A		17.167	61.928	4.238	1.00	0.00	C
	MOTA	3160	С	ARG A		16.320	62.561	3.137	1.00	0.00	C
	MOTA	3161	0	ARG A		16.824	63.319	2.306	1.00	0.00	0
	ATOM	3162	CB	ARG A	410	17.008	62.732	5.533	1.00	0.00	С
55	ATOM	3163	CG	ARG A	410	17.450	64.189	5.473	1.00	0.00	С
	MOTA	3164	CD	ARG A		17.319	64.801	6.863	1.00	0.00	C
	ATOM	3165	NE	ARG A		17.959	66.107	7.001	1.00	0.00	N
	MOTA	3166	CZ	ARG A		17.440	67.255	6.578	1.00	0.00	C
	MOTA	3167		ARG A		16.255	67.277	5.977	1.00	0.00	N
60	MOTA	3168		ARG A		18.108	68.386	6.768	1.00	0.00	N
	MOTA	3169	N	SER A	411	15.031	62.230	3.146	1.00	0.00	N

		ATOM	3170	CA	SER	Δ	411	14.062	62.737	2.179	1.00	0.00	С
		ATOM	3171	C	SER			14.587	62.849	0.751	1.00	0.00	Č
										0.160	1.00	0.00	Ö
		ATOM	3172	0	SER			15.017	61.855				
	_	ATOM	3173	CB	SER			13.512	64.094	2.645	1.00	0.00	С
	5	ATOM	3174	OG	SER	Α	411	14.555	65.012	2.916	1.00	0.00	0
		ATOM	3175	N	ASP	Α	412	14.534	64.055	0.195	1.00	0.00	N
		MOTA	3176	CA	ASP	Α	412	15.000	64.292	-1.166	1.00	0.00	С
		ATOM	3177	С	ASP			16.345	65.016	-1.175	1.00	0.00	С
		ATOM	3178	Ö	ASP			16.756	65.551	-2.200	1.00	0.00	0
	10				ASP			13.966	65.122	-1.941	1.00	0.00	Ċ
	10	ATOM	3179	CB									c
		ATOM	3180	CG	ASP			13.832	66.548	-1.410	1.00	0.00	
		ATOM	3181		ASP			14.316	66.826	-0.291	1.00	0.00	0
		MOTA	3182	OD2	ASP	Α	412	13.228	67.389	-2.114	1.00	0.00	0
		ATOM	3183	N	ASN	Α	413	17.022	65.027	-0.030	1.00	0.00	N
	15	ATOM	3184	CA	ASN	Α	413	18.316	65.699	0.088	1.00	0.00	С
		ATOM	3185	С	ASN			19.452	64.858	-0.492	1.00	0.00	С
		ATOM	3186	Ö	ASN			20.149	64.160	0.248	1.00	0.00	0
				CB	ASN			18.637	66.012	1.553	1.00	0.00	Ċ
		ATOM	3187							2.156	1.00	0.00	c
	20	ATOM	3188	CG	ASN			17.727	67.076				
	20	ATOM	3189		ASN			17.963	67.536	3.272	1.00	0.00	0
		ATOM	3190	ND2	ASN			16.687	67.464	1.429	1.00	0.00	N
1. T		ATOM	3191	N	TYR	Α	414	19.631	64.928	-1.809	1.00	0.00	N
1 (1577).		ATOM	3192	CA	TYR	Α	414	20.696	64.187	-2.483	1.00	0.00	С
		ATOM	3193	С	TYR			21.940	65.067	-2.556	1.00	0.00	С
1 1	25	ATOM	3194	Ō	TYR			21.869	66.235	-2.942	1.00	0.00	0
	20	ATOM	3195	СВ	TYR			20.264	63.763	-3.891	1.00	0.00	C
g,y s								19.261	62.630	-3.900	1.00	0.00	C
i		ATOM	3196	CG	TYR							0.00	С
		ATOM	3197	CD1				17.909	62.859	-3.628	1.00		
W.	20	MOTA	3198		TYR			19.668	61.319	-4.152	1.00	0.00	C
15	30	ATOM	3199	CE1	TYR	А	414	16.989	61.806	-3.609	1.00	0.00	С
15		ATOM	3200	CE2	TYR	Α	414	18.760	60.262	-4.132	1.00	0.00	С
21		ATOM	3201	CZ	TYR	Α	414	17.423	60.511	-3.861	1.00	0.00	С
		ATOM	3202	ОН	TYR	Α	414	16.528	59.462	-3.852	1.00	0.00	0
		ATOM	3203	N	TRP			23.078	64.488	-2.190	1.00	0.00	N
٠ <u>, ۳</u>	35	ATOM	3204	CA	TRP			24.343	65.211	-2.153	1.00	0.00	С
	00	ATOM	3205	C	TRP			25.086	65.255	-3.482	1.00	0.00	C
i ter									64.807	-3.568	1.00	0.00	0
1		ATOM	3206	0			415	26.225				0.00	С
		ATOM	3207	CB	TRP			25.251	64.586	-1.092	1.00		
į.	4.0	ATOM	3208	CG	TRP			24.680	64.608	0.294	1.00	0.00	С
5	40	ATOM	3209	CD1	TRP	Α	415	23.384	64.351	0.658	1.00	0.00	С
		ATOM	3210	CD2	TRP	Α	415	25.394	64.860	1.507	1.00	0.00	С
		ATOM	3211	NE1	TRP	Α	415	23.251	64.428	2.023	1.00	0.00	N
		ATOM	3212	CE2	TRP	Α	415	24.470	64.738	2.570	1.00	0.00	С
		ATOM	3213		TRP			26.729	65.175	1.802	1.00	0.00	С
	45	ATOM	3214		TRP			24.837	64.920	3.907	1.00	0.00	С
	10	ATOM	3215		TRP			27.095	65.355	3.128	1.00	0.00	Ċ
									65.226	4.167	1.00	0.00	C
		MOTA	3216		TRP			26.150					
		MOTA	3217	N			416	24.452	65.796	-4.516	1.00	0.00	N
		ATOM	3218	CA			416	25.100	65.881	-5.814	1.00	0.00	С
	50	MOTA	3219	С	SER	Α	416	25.676	67.274	-6.048	1.00	0.00	С
		MOTA	3220	0	SER	Α	416	26.310	67.528	-7.065	1.00	0.00	0
		ATOM	3221	CB	SER	Α	416	24.115	65.510	-6.931	1.00	0.00	С
		MOTA	3222	OG			416	22.842	66.097	-6.719	1.00	0.00	0
		ATOM	3223	N	GLY			25.465	68.171	-5.089	1.00	0.00	N
	55		3224	CA	GLY			25.979	69.524	-5.223	1.00	0.00	С
	55	ATOM											C
		ATOM	3225	С			417	27.495	69.591	-5.153	1.00	0.00	
		ATOM	3226	0			417	28.126	70.313	-5.928	1.00	0.00	0
		MOTA	3227	N			418	28.084	68.821	-4.241	1.00	0.00	N
		MOTA	3228	CA	TYR	A	418	29.534	68.815	-4.057	1.00	0.00	С
	60	ATOM	3229	С	TYR	Α	418	30.308	68.208	-5.234	1.00	0.00	С
		ATOM	3230	0	TYR			31.539	68.209	-5.250	1.00	0.00	0
					•	_	-						

	ATOM	3231	СВ	TYR A	418	29.894	68.109	-2.743	1.00	0.00	С
	ATOM	3232	CG	TYR A	418	30.042	66.601	-2.814	1.00	0.00	С
	ATOM	3233	CD1	TYR A	418	31.295	66.014	-2.998	1.00	0.00	С
	ATOM	3234	CD2	TYR A	418	28.941	65.760	-2.636	1.00	0.00	С
5	ATOM	3235		TYR A		31.452	64.622	-2.993	1.00	0.00	С
_	ATOM	3236		TYR A		29.087	64.363	-2.631	1.00	0.00	С
	ATOM	3237	CZ	TYR A		30.346	63.808	-2.807	1.00	0.00	С
	ATOM	3238	OH	TYR A		30.509	62.440	-2.778	1.00	0.00	0
	ATOM	3239	N	TYR A		29.588	67.682	-6.218	1.00	0.00	N
10		3240	CA	TYR A		30.247	67.143	-7.400	1.00	0.00	C
10	ATOM		C			30.767	68.352	-8.190	1.00	0.00	Ċ
	ATOM	3241		TYR A			68.207	-9.082	1.00	0.00	ō
	MOTA	3242	0	TYR A		31.607				0.00	C
	ATOM	3243	CB	TYR A		29.255	66.377	-8.286	1.00	0.00	c
15	MOTA	3244	CG	TYR A		28.627	65.145	-7.665	1.00		c
15	MOTA	3245		TYR A		27.472	64.589	-8.213	1.00	0.00	c
	ATOM	3246		TYR A		29.197	64.518	-6.557	1.00	0.00	
	MOTA	3247		TYR A		26.900	63.439	-7.677	1.00	0.00	С
	MOTA	3248	CE2	TYR A		28.633	63.362	-6.012	1.00	0.00	С
	MOTA	3249	CZ	TYR A		27.485	62.829	-6.580	1.00	0.00	C
20	ATOM	3250	OH	TYR A	419	26.927	61.678	-6.064	1.00	0.00	0
	MOTA	3251	N	THR A	420	30.279	69.544	-7.840	1.00	0.00	N
	MOTA	3252	CA	THR A	420	30.661	70.770	-8.546	1.00	0.00	С
	ATOM	3253	С	THR A	420	31.221	71.919	-7.697	1.00	0.00	С
	ATOM	3254	0	THR A	420	32.026	72.712	-8.187	1.00	0.00	0
25	ATOM	3255	CB	THR A	420	29.455	71.310	-9.354	1.00	0.00	C
	ATOM	3256	OG1			28.971	70.281	-10.227	1.00	0.00	0
	MOTA	3257	CG2	THR A		29.854	72.529	-10.190	1.00	0.00	С
	ATOM	3258	N	SER A		30.800	72.008	-6.436	1.00	0.00	N
	ATOM	3259	CA	SER A		31.242	73.076	-5.536	1.00	0.00	С
30	ATOM	3260	С	SER A		32.735	73.389	-5.606	1.00	0.00	С
00	ATOM	3261	Ō	SER A		33.572	72.482	-5.614	1.00	0.00	0
	ATOM	3262	СВ	SER A		30.857	72.735	-4.094	1.00	0.00	С
	ATOM	3263	OG	SER A		29.453	72.577	-3.981	1.00	0.00	. 0
	ATOM	3264	N	ARG A		33.053	74.684	-5.635	1.00	0.00	N
35	ATOM	3265	CA	ARG A		34.435	75.157	-5.717	1.00	0.00	С
00	ATOM	3266	C	ARG A		35.159	74.483	-6.885	1.00	0.00	С
	ATOM	3267	0	ARG A		36.171	73.796	-6.706	1.00	0.00	0
	ATOM	3268	СВ	ARG A		35.165	74.882	-4.399	1.00	0.00	C
		3269	CG	ARG A		34.962	75.955	-3.314	1.00	0.00	C
40	ATOM			ARG A		33.503	76.181	-2.910	1.00	0.00	C
40	ATOM	3270	CD	ARG A			77.149	-1.812	1.00	0.00	N
	ATOM	3271	NE			33.428	76.833	-0.522	1.00	0.00	C
	ATOM	3272	CZ	ARG A		33.509		-0.322	1.00	0.00	N
	ATOM	3273		ARG A		33.643	75.570 77.790	0.400	1.00	0.00	N
45	ATOM	3274		ARG A		33.518					
45	MOTA	3275	N	PRO A		34.657	74.698	-8.111	1.00	0.00	N
	ATOM	3276	CA	PRO A		35.246	74.107	-9.316	1.00	0.00	C
	ATOM	3277	С	PRO A		36.676	74.537	-9.638	1.00	0.00	C
	MOTA	3278	0	PRO A		37.406	73.810		1.00	0.00	0
	MOTA	3279	CB	PRO A		34.249		-10.409	1.00	0.00	C
50	ATOM	3280	CG	PRO A		33.751	75.827	-9.945	1.00	0.00	C
	MOTA	3281	CD	PRO A	423	33.540	75.596	-8.457	1.00	0.00	C
	ATOM	3282	N	TYR A	424	37.077	75.717	-9.175	1.00	0.00	N
	ATOM	3283	CA	TYR A	424	38.434	76.193	-9.433	1.00	0.00	С
	ATOM	3284	С	TYR A	424	39.447	75.199	-8.863	1.00	0.00	С
55	ATOM	3285	0	TYR A		40.399	74.793	-9.536	1.00	0.00	0
	MOTA	3286	CB	TYR A		38.654	77.556	-8.770	1.00	0.00	С
	ATOM	3287	CG	TYR A		40.023	78.142	-9.032	1.00	0.00	C
	ATOM	3288		TYR A		40.264		-10.171	1.00	0.00	С
	ATOM	3289		TYR A		41.082	77.922	-8.146	1.00	0.00	С
60	ATOM	3290		TYR A		41.522		-10.425	1.00	0.00	С
55	ATOM	3291		TYR A		42.351	78.452	-8.393	1.00	0.00	C
	711 011	J2 J1	252								_

COSCIPSE COSTO

	ATOM	3292	CZ	TYR A	121	42.561	79.212	-9.536	1.00	0.00	С
	ATOM	3293	OH	TYR A		43.801	79.754	-9.797	1.00	0.00	Ō
	ATOM	3294	N	HIS A		39.223	74.798	-7.617	1.00	0.00	N
	ATOM	3295	CA	HIS A		40.121	73.876	-6.933	1.00	0.00	С
5	ATOM	3296	C.	HIS A		39.983	72.441	-7.433	1.00	0.00	С
J	ATOM	3297	Ö	HIS A		40.940	71.665	-7.375	1.00	0.00	0
	ATOM	3298	СВ	HIS A		39.872	73.988	-5.432	1.00	0.00	С
	ATOM	3299	CG	HIS A		39.848	75.407	-4.958	1.00	0.00	С
	ATOM	3300		HIS A		40.997	76.127	-4.708	1.00	0.00	N
10	ATOM	3301		HIS A		38.821	76.281	-4.824	1.00	0.00	С
	ATOM	3302		HIS A		40.681	77.382	-4.446	1.00	0.00	С
	ATOM	3303		HIS A		39.367	77.503	-4.511	1.00	0.00	N
	ATOM	3304	N	LYS A		38.799	72.091	-7.925	1.00	0.00	N
	ATOM	3305	CA	LYS A		38.581	70.755	-8.480	1.00	0.00	С
15	ATOM	3306	C	LYS A		39.470	70.629	-9.719	1.00	0.00	С
	ATOM	3307	ō	LYS A		40.072	69.577	-9.968	1.00	0.00	0
	ATOM	3308	CB	LYS A		37.107	70.563	-8.870	1.00	0.00	С
	ATOM	3309	CG	LYS A		36.195	70.152	-7.716	1.00	0.00	С
	ATOM	3310	CD	LYS A		34.725	70.105	-8.148	1.00	0.00	С
20	ATOM	3311	CE	LYS A		33.869	69.286	-7.178	1.00	0.00	С
	ATOM	3312	NZ	LYS A		33.884	69.803	-5.776	1.00	0.00	N
	ATOM	3313	N	ARG A		39.551	71.709		1.00	0.00	N
	ATOM	3314	CA	ARG A		40.382	71.732		1.00	0.00	С
	ATOM	3315	C	ARG A		41.850		-11.269	1.00	0.00	С
25	ATOM	3316	0	ARG A		42.695		-11.852	1.00	0.00	0
	ATOM	3317	СВ	ARG A		40.024	72.955	-12.555	1.00	0.00	C
	ATOM	3318	CG	ARG A		41.003	73.283	-13.676	1.00	0.00	С
	ATOM	3319	CD	ARG A		41.277	72.113	-14.624	1.00	0.00	С
	ATOM	3320	NE	ARG A		42.272	72.510	-15.617	1.00	0.00	N
30	ATOM	3321	CZ	ARG A		43.045	71.672	-16.298	1.00	0.00	С
	ATOM	3322	NH1			42.951	70.361	-16.110	1.00	0.00	N
	ATOM	3323	NH2	ARG A	427	43.936	72.155	-17.155	1.00	0.00	N
	ATOM	3324	N	MET A	428	42.145	72.544	-10.233	1.00	0.00	N
	ATOM	3325	CA	MET A	428	43.514	72.641	-9.739	1.00	0.00	C
35	ATOM	3326	С	MET A	428	44.018	71.255	-9.321	1.00	0.00	C
	ATOM	3327	0	MET A	428	45.196	70.928	-9.507	1.00	0.00	0
	MOTA	3328	CB	MET A	428	43.570	73.610	-8.555	1.00	0.00	С
	ATOM	3329	CG	MET A	428	44.976	73.929	-8.088	1.00	0.00	С
	MOTA	3330	SD	MET A	428	45.002	75.301	-6.918	1.00	0.00	S
40	ATOM	3331	CE	MET A	428	46.758	75.634	-6.852	1.00	0.00	C
	MOTA	3332	N	ASP A		43.117	70.438	-8.775	1.00	0.00	N
	MOTA	3333	CA	ASP A		43.473	69.085	-8.348	1.00	0.00	C
	MOTA	3334	С	ASP A		44.061	68.268	-9.492	1.00	0.00	C
4 ***	MOTA	3335	0	ASP A		45.083	67.600	-9.328	1.00	0.00	0
45	MOTA	3336	СВ	ASP A		42.247	68.356	-7.785	1.00	0.00	C
	ATOM	3337	CG	ASP A		42.531	66.893	-7.463	1.00	0.00	C
	MOTA	3338		ASP A		42.221	66.022	-8.309	1.00	0.00	0
	MOTA	3339		ASP A		43.071	66.617	-6.370	1.00	0.00	0
Γ0	ATOM	3340	N	ARG A		43.415		-10.653	1.00	0.00	И
50	ATOM	3341	CA	ARG A		43.874		-11.817	1.00	0.00	C C
	MOTA	3342	С	ARG A		45.199		-12.368	1.00	0.00	
	ATOM	3343	0	ARG A		46.017		-12.877	1.00	0.00	0
	ATOM	3344	CB	ARG A		42.803		-12.907	1.00	0.00	C
	ATOM	3345	CG	ARG A		41.512		-12.504	1.00	0.00	C C
55	ATOM	3346	CD	ARG A		41.748		-12.150	1.00	0.00	
	ATOM	3347	NE	ARG A		40.503		-12.126	1.00	0.00	N
	ATOM	3348	CZ	ARG A		39.819		-11.027	1.00	0.00	C N
	ATOM	3349		ARG A		40.252		-9.832	1.00	0.00	N
60	ATOM	3350		ARG A		38.683		-11.126 -12.278	1.00	0.00	N
60	ATOM	3351	N	VAL A		45.407		-12.278 -12.748	1.00	0.00	C
	ATOM	3352	CA	VAL A	431	46.651	03.703	12.740	1.00	0.00	C

	ATOM	3353	С	VAL	Α	431	47.789	69.514 -	11.840	1.00	0.00	С
	ATOM	3354	0	VAL	A	431	48.817	69.038 -	12.315	1.00	0.00	0
	ATOM	3355	CB	VAL	A	431	46.579	71.536 -		1.00	0.00	C
	ATOM	3356	CG1	VAL	A	431	47.951	72.135 ~		1.00	0.00	С
5	ATOM	3357	CG2	VAL			45.550	72.024 -		1.00	0.00	С
	ATOM	3358	N	LEU	Α	432	47.599	69.630 -		1.00	0.00	N
	ATOM	3359	CA	LEU			48.635		-9.595	1.00	0.00	C
	MOTA	3360	С	LEU			48.864		-9.699	1.00	0.00	C
	ATOM	3361	0	LEU	Α	432	49.996		-9.588	1.00	0.00	0
10	MOTA	3362	CB	LEU			48.258		-8.160	1.00	0.00	C
	ATOM	3363	CG	LEU			49.291	• • •	-7.078	1.00	0.00	C
	MOTA	3364	CD1	LEU	Α	432	50.658		-7.461	1.00	0.00	С
	MOTA	3365	CD2	LEU	Α	432	48.823		-5.736	1.00	0.00	С
	MOTA	3366	N	MET			47.792		-9.918	1.00	0.00	N
15	ATOM	3367	CA	MET			47.919	65.497 -		1.00	0.00	C
	ATOM	3368	С	MET			48.970	65.194 -		1.00	0.00	С
	MOTA	3369	0	MET			49.852	64.351 -		1.00	0.00	0
	MOTA	3370	CB	MET			46.594	64.873 -		1.00	0.00	C
••	MOTA	3371	CG	MET			46.728	63.412 -		1.00	0.00	C
20	MOTA	3372	SD	MET			45.192	62.708 -		1.00	0.00	S
	MOTA	3373	CE	MET			45.225	63.322 -		1.00	0.00	C
	MOTA	3374	N	HIS			48.869	65.886 -		1.00	0.00	N
	MOTA	3375	CA	HIS			49.806	65.680 -		1.00	0.00	C
05	ATOM	3376	С	HIS			51.207	66.194 -		1.00	0.00	c
25	ATOM	3377	0	HIS			52.196	65.539 -		1.00	0.00	0
	ATOM	3378	CB	HIS			49.293	66.333 -		1.00	0.00	C C
	ATOM	3379	CG	HIS			50.274	66.259 -		1.00	0.00	
	MOTA	3380		HIS			51.015	67.345 -		1.00	0.00	N C
20	ATOM	3381		HIS			50.712	65.205 -		1.00	0.00	C
30	ATOM	3382		HIS			51.869	66.961 -		1.00	0.00	N
	MOTA	3383		HIS			51.707	65.668 - 67.372 -		$\frac{1.00}{1.00}$	0.00	N
	ATOM	3384	N	TYR			51.294	67.943 -		1.00	0.00	C
	ATOM	3385	CA	TYR			52.593	67.019 -		1.00	0.00	c
35	ATOM	3386	С	TYR			53.359 54.573	66.871 -		1.00	0.00	Ö
33	ATOM	3387	0	TYR			52.432	69.315 -		1.00	0.00	Ċ
	ATOM	3388	CB	TYR TYR			52.432	70.482 -		1.00	0.00	Ċ
	ATOM	3389	CG CD1	TYR			51.335	70.513 -		1.00	0.00	Ċ
	ATOM	3390 3391		TYR			53.160	71.587 -		1.00	0.00	Č
40	MOTA	3391		TYR			51.193	71.624 -		1.00	0.00	C
1 0	ATOM ATOM	3393		TYR			53.028	72.697 -		1.00	0.00	C
	ATOM	3394	CZ	TYR			52.043	72.711 -		1.00	0.00	Ċ
	ATOM	3395	OH	TYR			51.898	73.830 -		1.00	0.00	O
	ATOM	3396	N	VAL			52.656	66.400 -		1.00	0.00	N
45	ATOM	3397	CA	VAL			53.317		-9.282	1.00	0.00	С
40	ATOM	3398	C	VAL			53.886	64.293 -		1.00	0.00	С
	ATOM	3399	0	VAL			55.042		-9.841	1.00	0.00	0
	ATOM	3400	СВ	VAL			52.345		-8.173	1.00	0.00	С
	ATOM	3401		VAL			52.927		-7.437	1.00	0.00	С
50	ATOM	3402		VAL			52.098		-7.186	1.00	0.00	С
00	ATOM	3403	N	ARG			53.079	63.708 -		1.00	0.00	N
	ATOM	3404	CA	ARG			53.540	62.566 -		1.00	0.00	С
	ATOM	3405	C	ARG			54.754	62.934 -		1.00	0.00	С
	ATOM	3406	Ö	ARG			55.739	62.194 -		1.00	0.00	0
55	ATOM	3407	СВ	ARG			52.420	62.048 -		1.00	0.00	С
00	ATOM	3408	CG	ARG			52.918	61.115 -		1.00	0.00	С
	ATOM	3409	CD	ARG			51.782	60.539 -		1.00	0.00	С
	ATOM	3410	NE	ARG			52.290	59.871 -		1.00	0.00	N
	ATOM	3411	CZ	ARG			51.563	59.066 -		1.00	0.00	С
60	ATOM	3412		ARG			50.293	58.819 -		1.00	0.00	N
	ATOM	3413		ARG			52.099	58.518 -		1.00	0.00	N
	0.,	3.13			•	-		-				

	ATOM	3414	N	ALA A		54.681	64.077 -13.221	1.00	0.00	N
	ATOM	3415	CA	ALA A	438	55.772	64.522 -14.086	1.00	0.00	C
	ATOM	3416	С	ALA A	438	57.053	64.806 -13.308	1.00	0.00	С
	ATOM	3417	0	ALA A	438	58.149	64.467 -13.760	1.00	0.00	0
5	ATOM	3418	CB	ALA A	438	55.345	65.762 -14.878	1.00	0.00	С
	ATOM	3419	N	ALA A		56.914	65.418 -12.136	1.00	0.00	N
	ATOM	3420	CA	ALA A		58.074	65.737 -11.311	1.00	0.00	С
	ATOM	3421	C	ALA A	439	58.733	64.462 -10.786	1.00	0.00	С
	ATOM	3422	Ō	ALA A		59.954	64.318 -10.837	1.00	0.00	0
10	ATOM	3423	СВ	ALA A		57.660	66.644 -10.143	1.00	0.00	С
10	ATOM	3424	N	GLU A		57.925	63.538 -10.274	1.00	0.00	И
	ATOM	3425	CA	GLU A		58.468	62.282 -9.761	1.00	0.00	С
	ATOM	3426	C	GLU A		59.121	61.460 -10.875	1.00	0.00	C
	ATOM	3427	Ö	GLU A		60.177	60.855 -10.676	1.00	0.00	0
15	ATOM	3428	СВ	GLU A		57.366	61.449 -9.094	1.00	0.00	C
10	ATOM	3429	CG	GLU A		56.798	62.084 -7.836	1.00	0.00	Č
	ATOM	3430	CD	GLU A		56.139	61.070 -6.918	1.00	0.00	c
	ATOM	3431	OE1			55.013	60.619 -7.215	1.00	0.00	Ō
		3432		GLU A		56.765	60.712 -5.903	1.00	0.00	Ö
20	ATOM						61.433 -12.048	1.00	0.00	N
20	ATOM	3433	N	MET A		58.497	60.662 -13.160	1.00	0.00	C
	ATOM	3434	CA	MET A		59.050	61.279 -13.723	1.00	0.00	C
	ATOM	3435	С	MET A		60.327			0.00	0
	ATOM	3436	0	MET A		61.326	60.583 -13.915	1.00	0.00	C
25	ATOM	3437	CB	MET A		58.013	60.508 -14.275 59.759 -15.507	1.00	0.00	C
23	ATOM	3438	CG	MET A		58.521			0.00	s
	ATOM	3439	SD	MET A		57.249	59.561 -16.783	1.00		C
	MOTA	3440	CE	MET A		56.178	58.340 -16.009	1.00	0.00	N
	MOTA	3441	N	LEU A		60.305	62.583 -13.984	1.00	0.00	C
20	ATOM	3442	CA	LEU A		61.483	63.250 -14.531	1.00	0.00	c
30	MOTA	3443	С	LEU A		62.698	63.167 -13.620	1.00	0.00	
	ATOM	3444	0	LEU A		63.827	63.032 -14.095	1.00	0.00	0 C
	MOTA	3445	CB	LEU A		61.173	64.718 -14.844	1.00	0.00	
	ATOM	3446	CG	LEU A		60.550	64.989 -16.219	1.00	0.00	C
25	MOTA	3447		LEU A		59.972	66.398 -16.256	1.00	0.00	C C
35	ATOM	3448		LEU A		61.598	64.811 -17.305	1.00	0.00	
	ATOM	3449	N		443	62.477	63.228 -12.310	1.00	0.00	N
	MOTA	3450	CA	SER A		63.594	63.173 -11.377	1.00	0.00	C
	MOTA	3451	С	SER A		64.002	61.750 -10.998	1.00	0.00	С
40	MOTA	3452	0	SER A		65.058	61.546 -10.393	1.00	0.00	0
4 0	MOTA	3453	CB	SER A		63.263	63.971 -10.110	1.00	0.00	С
	MOTA	3454	OG	SER A		62.172	63.400 -9.410	1.00	0.00	0
	MOTA	3455	N	ALA A		63.178	60.770 -11.364	1.00	0.00	N
	ATOM	3456	CA	ALA A		63.458	59.370 -11.041	1.00	0.00	C
4.5	MOTA	3457	С	ALA A		64.616	58.781 -11.845	1.00	0.00	C
45	MOTA	3458	0	ALA A		65.262	57.832 -11.403	1.00	0.00	0
	MOTA	3459	CB	ALA A		62.203	58.522 -11.254	1.00	0.00	С
	MOTA	3460	N		445	64.878	59.345 -13.020	1.00	0.00	N
	MOTA	3461	CA	TRP A	445	65.947	58.844 -13.881	1.00	0.00	C
	MOTA	3462	С	TRP A		67.332	58.915 -13.252	1.00	0.00	С
50	MOTA	3463	0	TRP A	445	68.198	58.093 -13.560	1.00	0.00	0
	MOTA	3464	CB	TRP A	4445	65.943	59.593 - 15.218	1.00	0.00	С
	ATOM	3465	CG	TRP A	445	64.664	59.428 -15.968	1.00	0.00	С
	ATOM	3466	CD1	TRP A	445	63.670	60.354 -16.109	1.00	0.00	С
	ATOM	3467	CD2	TRP A	445	64.213	58.248 -16.644	1.00	0.00	С
55	ATOM	3468	NE1	TRP A	445	62.628	59.823 -16.829	1.00	0.00	N
	ATOM	3469		TRP A		62.934	58.532 -17.170	1.00	0.00	С
	ATOM	3470		TRP A		64.766	56.976 -16.856	1.00	0.00	С
	ATOM	3471		TRP A		62.193	57.588 -17.898	1.00	0.00	С
	ATOM	3472		TRP A		64.030	56.036 -17.578	1.00	0.00	С
60	ATOM	3473		TRP A		62.755	56.351 -18.091	1.00	0.00	С
-	ATOM	3474	N		446	67.545	59.895 -12.379	1.00	0.00	N

															_
		MOTA	3475	CA	HIS	Α	446		68.834	60.044	-11.714	1.00	0.00		С
		ATOM	3476	С	HIS	Α	446		68.713	59.940	-10.206	1.00	0.00	(С
		ATOM	3477	Ö	HIS				67.626	60.069	-9.640	1.00	0.00		0
	_	MOTA	3478	CB	HIS				69.467		-11.997	1.00	0.00		С
	5	ATOM	3479	CG	HIS	Α	446		69.879	61.623	-13.418	1.00	0.00		С
		ATOM	3480	ND1	HIS	Α	446		69.050	62.200	-14.354	1.00	0.00	ì	N
		ATOM	3481		HIS				71.048	61 370	-14.053	1.00	0.00	(С
												1.00	0.00		Č
		MOTA	3482		HIS				69.691		-15.505				
		ATOM	3483	NE2	HIS	Α	446		70.905		-15.350	1.00	0.00		N
	10	ATOM	3484	N	SER	Α	447		69.856	59.712	-9.568	1.00	0.00	l	N
		ATOM	3485	CA	SER				69.944	59.672	-8.122	1.00	0.00	(С
											-7.855	1.00	0.00		c
		MOTA	3486	С	SER				70.427	61.099					
		MOTA	3487	0	SER	Α	447		71.319	61.587	-8.551	1.00	0.00		0
		ATOM	3488	CB	SER	Α	447		70.993	58.649	-7.680	1.00	0.00	(С
	15	ATOM	3489	OG	SER	Α	447		71.002	58.509	-6.273	1.00	0.00	(0
	10	ATOM	3490	N	TRP				69.834	61.784	-6.883	1.00	0.00		N
		MOTA	3491	CA	TRP				70.231	63.161	-6.617	1.00	0.00		С
		MOTA	3492	С	TRP	Α	448		70.916	63.388	-5.281	1.00	0.00		С
		MOTA	3493	0	TRP	Α	448		70.587	62.751	-4.284	1.00	0.00	(0
	20	ATOM	3494	СВ	TRP				69.017	64.090	-6.706	1.00	0.00		С
	20											1.00	0.00		c
JUNEAU.		ATOM	3495	CG	TRP				68.374	64.123	-8.059				
		MOTA	3496	CD1	TRP	Α	448		67.544	63.184	-8.594	1.00	0.00		С
. 75		ATOM	3497	CD2	TRP	Α	448		68.520	65.144	-9.052	1.00	0.00	(С
		ATOM	3498		TRP				67.163	63.554	-9.860	1.00	0.00	1	N
٤.	25				TRP				67.747		-10.167	1.00	0.00		С
	23	MOTA	3499												
417 -		MOTA	3500		TRP				69.232	66.353	-9.108	1.00	0.00		С
		ATOM	3501	CZ2	TRP	Α	448		67.664	65.528	-11.327	1.00	0.00		С
'IL		ATOM	3502	CZ3	TRP	Α	448		69.149	67.124	-10.262	1.00	0.00	(С
543 E		ATOM	3503		TRP				68.369		-11.358	1.00	0.00		С
	30											1.00	0.00		N
M	30	ATOM	3504	N	ASP				71.873	64.312	-5.277				
465.2		ATOM	3505	CA	ASP	Α	449		72.598	64.661	-4.062	1.00	0.00		С
33		MOTA	3506	С	ASP	Α	449		71.600	65.348	-3.135	1.00	0.00	(С
		MOTA	3507	0	ASP	A	449		70.718	66.072	-3.594	1.00	0.00	(0
ing.			3508		ASP				73.754	65.610	-4.393	1.00	0.00		С
ı,Ü	25	MOTA		CB											
IJ	35	MOTA	3509	CG	ASP				74.627	65.915	-3.187	1.00	0.00		С
1 2		MOTA	3510	OD1	ASP	Α	449		74.188	66.678	-2.297	1.00	0.00		0
į.		MOTA	3511	OD2	ASP	Α	449		75.756	65.381	-3.128	1.00	0.00	(0
		ATOM	3512	N	GLY				71.737	65.113	-1.835	1.00	0.00	1	N
₹:: :::: *											-0.876	1.00	0.00		C
<u>[.4</u>	40	ATOM	3513	CA	GLY			-	70.828	65.713					
	40	ATOM	3514	С	GLY				70.704	67.221	-0.991	1.00	0.00		С
		ATOM	3515	0	GLY	Α	450		69.661	67.788	-0.664	1.00	0.00	(0
		ATOM	3516	N	MET	Α	451		71.764	67.875	-1.454	1.00	0.00	î	N
		ATOM	3517	CA	MET				71.752	69.327	-1.593	1.00	0.00	(С
												1.00	0.00		C
	4 =	ATOM	3518	C	MET				70.770	69.822	-2.650				
	45	MOTA	3519	0	MET	Α	451		70.391	70.992	-2.647	1.00	0.00		0
		ATOM	3520	CB	MET	Α	451		73.153	69.842	-1.937	1.00	0.00		С
		ATOM	3521	CG	MET				74.196	69.602	-0.862	1.00	0.00	(С
									75.755	70.439	-1.246	1.00	0.00		S
		ATOM	3522	SD	MET										
		MOTA	3523	CE	MET				76.604	69.173	-2.220	1.00	0.00		С
	50	ATOM	3524	N	ALA	Α	452		70.367	68.937	-3.557	1.00	0.00		N
		MOTA	3525	CA	ALA	Α	452		69.436	69.308	-4.618	1.00	0.00	(С
		ATOM	3526	С	ALA				68.020	69.480	-4.080	1.00	0.00		С
		MOTA	3527	0	ALA				67.151	70.027	-4.762	1.00	0.00		0
		ATOM	3528	CB	ALA	Α	452		69.451	68.253	-5.719	1.00	0.00		С
	55	ATOM	3529	N	ARG	А	453		67.797	69.002	-2.859	1.00	0.00	1	N
		ATOM	3530	CA	ARG				66.490	69.099	-2.211	1.00	0.00		С
		ATOM	3531	С	ARG				65.363	68.513	-3.062	1.00	0.00		С
		MOTA	3532	0	ARG	Α	453		64.230	68.994	-3.023	1.00	0.00		0
		ATOM	3533	CB	ARG				66.186	70.564	-1.878	1.00	0.00	(С
	60	ATOM	3534	CG	ARG				67.256	71.230	-1.023	1.00	0.00		С
	00									72.701	-0.782	1.00	0.00		c
		ATOM	3535	CD	ARG	А	433		66.948	12.101	-0.762	1.00	0.00	,	U

	ATOM	3536	NE	ARG	Α	453	65.729	72.891	-0.001	1.00	0.00		N
	ATOM	3537	CZ	ARG			65.185	74.075	0.262	1.00	0.00		С
	ATOM	3538		ARG			65.752	75.186	-0.196	1.00	0.00		N
	ATOM	3539		ARG			64.074	74.150	0.985	1.00	0.00		N
5													
3	MOTA	3540	N	ILE			65.674	67.471	-3.825	1.00	0.00		N
	ATOM	3541	CA	ILE	A	454	64.682	66.828	-4.679	1.00	0.00		С
	ATOM	3542	С	ILE	Α	454	63.639	66.076	-3.851	1.00	0.00	1	С
	ATOM	3543	0	ILE	Α	454	62.439	66.311	-3.999	1.00	0.00	4	0
	ATOM	3544	СВ	ILE			65.351	65.845	-5.665	1.00	0.00		С
10										1.00	0.00		C
10	ATOM	3545		ILE			66.318	66.606	-6.583				
	ATOM	3546		ILE			64.288	65.109	-6.477	1.00	0.00		С
	ATOM	3547	CD1	ILE	Α	454	65.670	67.696	-7.424	1.00	0.00		С
	ATOM	3548	N	GLU	Α	455	64.095	65.176	-2.983	1.00	0.00	1	N
	ATOM	3549	CA	GLU	Α	455	63.178	64.407	-2.143	1.00	0.00		С
15	ATOM	3550	С	GLU			62.324	65.346	-1.298	1.00	0.00		С
10										1.00	0.00		Ö
	ATOM	3551	0	GLU			61.130	65.114	-1.102				
	MOTA	3552	CB	GLU			63.945	63.453	-1.215	1.00	0.00	(С
	MOTA	3553	CG	GLU	Α	455	64.533	62.220	-1.890	1.00	0.00	(С
	MOTA	3554	CD	GLU	Α	455	65.881	62.476	-2.542	1.00	0.00	•	С
20	ATOM	3555	OE1	GLU			66.349	63.636	-2.525	1.00	0.00	•	0
	ATOM	3556		GLU			66.472	61.509	-3.072	1.00	0.00		o
				GLU					-0.799		0.00		N
	MOTA	3557	N				62.948	66.408		1.00			
	ATOM	3558	CA	GLU			62.257	67.390	0.026	1.00	0.00		С
	MOTA	3559	С	GLU	Α	456	61.070	68.007	-0.712	1.00	0.00		С
25	ATOM	3560	0	GLU	Α	456	59.938	67.988	-0.222	1.00	0.00	(0
	ATOM	3561	CB	GLU	Α	456	63.227	68.499	0.435	1.00	0.00	(С
	ATOM	3562	CG	GLU			62.661	69.474	1.449	1.00	0.00		С
	ATOM	3563	CD	GLU			63.537	70.699	1.626	1.00	0.00		c
20	MOTA	3564		GLU			64.769	70.575	1.481	1.00	0.00		0
30	MOTA	3565	OE2	GLU	Α	456	62.995	71.785	1.922	1.00	0.00		0
	MOTA	3566	N	ARG	Α	457	61.333	68.560	-1.892	1.00	0.00		N
	MOTA	3567	CA	ARG	Α	457	60.282	69.192	-2.685	1.00	0.00	(С
	MOTA	3568	С	ARG			59.187	68.212	-3.109	1.00	0.00		С
	ATOM	3569	Ö	ARG			58.004	68.555	-3.101	1.00	0.00		ō
35													c
33	ATOM	3570	CB	ARG			60.895	69.875	-3.917	1.00	0.00		
	ATOM	3571	CG	ARG			61.309	71.336	-3.699	1.00	0.00		С
	ATOM	3572	CD	ARG	Α	457	62.238	71.517	-2.498	1.00	0.00		С
	ATOM	3573	NE	ARG	Α	457	62.497	72.929	-2.200	1.00	0.00	1	N
	ATOM	3574	CZ	ARG	А	457	63.347	73.705	-2.870	1.00	0.00	(С
40	ATOM	3575		ARG			64.041	73.217	-3.892	1.00	0.00		N
10		3576						74.977	-2.517	1.00	0.00		N
	MOTA			ARG			63.504						
	ATOM	3577	N	LEU			59.573	66.992	-3.471	1.00	0.00		N
	MOTA	3578	CA	LEU	A	458	58.590	65.997	-3.888	1.00	0.00		С
	ATOM	3579	С	LEU	Α	458	57.697	65.554	-2.730	1.00	0.00	(С
45	ATOM	3580	0	LEU	Α	458	56.508	65.309	-2.921	1.00	0.00	(0
	MOTA	3581	СВ	LEU			59.284	64.783	-4.509	1.00	0.00		С
	ATOM	3582	CG	LEU			60.000	65.079	-5.836	1.00	0.00		Ċ
													C
	ATOM	3583		LEU			60.686	63.816	-6.345	1.00	0.00		
=0	ATOM	3584	CD2	LEU	A	458	58.986	65.597	-6.865	1.00	0.00		С
50	MOTA	3585	N	GLU	Α	459	58.263	65.452	-1.531	1.00	0.00		N
	ATOM	3586	CA	GLU	Α	459	57.471	65.050	-0.375	1.00	0.00	(С
	ATOM	3587	С	GLU			56.427	66.128	-0.094	1.00	0.00		С
	ATOM	3588	ō	GLU			55.260	65.827	0.163	1.00	0.00		Ō
	ATOM	3589	CB	GLU			58.364	64.842	0.855	1.00	0.00		С
55	MOTA	3590	CG	GLU	A	459	57.595	64.349	2.085	1.00	0.00		С
	MOTA	3591	CD	GLU	Α	459	58.499	63.761	3.158	1.00	0.00	(С
	ATOM	3592	OE1	GLU	Α	459	59.213	64.532	3.828	1.00	0.00	(0
	ATOM	3593		GLU			58.500	62.522	3.323	1.00	0.00		0
	ATOM	3594		GLN			56.846	67.388	-0.153	1.00	0.00		N
60			N										
60	MOTA	3595	CA	GLN			55.924	68.493	0.079	1.00	0.00		C
	ATOM	3596	С	GLN	A	460	54.787	68.432	-0.949	1.00	0.00	(С

DOSCOS SECONDA

	ATOM	3597	0	GI.N	А	460	53.612	68.514	-0.598	1.00	0.00	0
	ATOM	3598	СВ			460	56.660	69.829	-0.045	1.00	0.00	c
	ATOM	3599	CG			460	55.777	71.040	0.210	1.00	0.00	c
	ATOM	3600	CD			460	56.444	72.346	-0.167	1.00	0.00	C
5								73.423	0.127	1.00	0.00	ő
9	ATOM	3601	OE1			460	55.924					
	ATOM	3602	NE2			460	57.592	72.261	-0.830	1.00	0.00	N
	ATOM	3603	N			461	55.141	68.279	-2.222	1.00	0.00	N
	ATOM	3604	CA	ALA	Α	461	54.130	68.220	-3.273	1.00	0.00	С
4.0	ATOM	3605	С	ALA	Α	461	53.140	67.071	-3.069	1.00	0.00	С
10	ATOM	3606	0	ALA	Α	461	51.929	67.271	-3.161	1.00	0.00	0
	ATOM	3607	CB	ALA	Α	461	54.802	68.103	-4.645	1.00	0.00	С
	ATOM	3608	N	ARG	Α	462	53.653	65.872	-2.800	1.00	0.00	N
	MOTA	3609	CA	ARG	Α	462	52.793	64.709	-2.589	1.00	0.00	С
	ATOM	3610	C			462	51.856	64.925	-1.402	1.00	0.00	С
15	ATOM	3611	Ö			462	50.674	64.585	-1.453	1.00	0.00	0
10	ATOM	3612	CB			462	53.628	63.444	-2.332	1.00	0.00	c
								62.881	-3.541	1.00	0.00	c
	ATOM	3613	CG			462	54.381					c
	ATOM	3614	CD			462	54.829	61.444	-3.251	1.00	0.00	
20	ATOM	3615	NE			462	55.740	61.374	-2.109	1.00	0.00	N
20	MOTA	3616	CZ			462	57.059	61.524	-2.195	1.00	0.00	С
	ATOM	3617	NH1	ARG	Α	462	57.631	61.746	-3.374	1.00	0.00	N
	ATOM	3618	NH2	ARG	Α	462	57.810	61.459	-1.102	1.00	0.00	N
	ATOM	3619	N	ARG	Α	463	52.389	65.494	-0.327	1.00	0.00	N
	ATOM	3620	CA	ARG	Α	463	51.584	65.717	0.863	1.00	0.00	С
25	MOTA	3621	С	ARG	A	463	50.499	66.784	0.729	1.00	0.00	С
	ATOM	3622	0	ARG	Α	463	49.402	66.609	1.255	1.00	0.00	0
	ATOM	3623	CB	ARG	Α	463	52.503	66.000	2.054	1.00	0.00	С
	ATOM	3624	CG			463	53.280	64.748	2.436	1.00	0.00	С
	ATOM	3625	CD			463	54.193	64.919	3.631	1.00	0.00	С
30	ATOM	3626	NE			463	54.722	63.619	4.032	1.00	0.00	N
00	ATOM	3627	CZ			463	55.484	63.411	5.100	1.00	0.00	C
							55.817	64.426	5.885	1.00	0.00	N
	ATOM	3628		ARG								
	ATOM	3629		ARG			55.900	62.184	5.388	1.00	0.00	N
25	ATOM	3630	N			464	50.780	67.879	0.025	1.00	0.00	N
35	ATOM	3631	CA	GLU			49.760	68.912	-0.139	1.00	0.00	C
	MOTA	3632	С	GLU			48.655	68.409	-1.067	1.00	0.00	C
	ATOM	3633	0	GLU	Α	464	47.483	68.718	-0.861	1.00	0.00	0
	ATOM	3634	CB	GLU			50.368	70.203	-0.691	1.00	0.00	С
	ATOM	3635	CG	GLU	Α	464	51.515	70.747	0.153	1.00	0.00	С
40	MOTA	3636	CD	GLU	Α	464	51.087	71.173	1.552	1.00	0.00	С
	ATOM	3637	OE1	GLU	Α	464	50.050	70.691	2.054	1.00	0.00	0
	ATOM	3638	OE2	GLU	Α	464	51.804	71.989	2.163	1.00	0.00	0
	ATOM	3639	N	LEU	Α	465	49.022	67.644	-2.092	1.00	0.00	N
	ATOM	3640	CA			465	48.016	67.098	-3.003	1.00	0.00	С
45	ATOM	3641	C	LEU		-	47.212	66.032	-2.262	1.00	0.00	С
	ATOM	3642	ō	LEU			45.991	65.956	-2.398	1.00	0.00	0
	ATOM	3643	CB			465	48.669	66.473	-4.244	1.00	0.00	c
	ATOM	3644	CG			465	47.699	65.779	-5.215	1.00	0.00	c
										1.00	0.00	c
50	ATOM	3645		LEU			46.661	66.785	-5.708			c
50	ATOM	3646		LEU			48.464	65.186	-6.393	1.00	0.00	
	ATOM	3647	N			466	47.902	65.214	-1.468	1.00	0.00	N
	ATOM	3648	CA			466	47.234	64.157	-0.712	1.00	0.00	С
	MOTA	3649	С	SER	Α	466	46.247	64.759	0.277	1.00	0.00	С
	ATOM	3650	0	SER	Α	466	45.140	64.247	0.459	1.00	0.00	0
55	ATOM	3651	CB	SER	Α	466	48.257	63.301	0.043	1.00	0.00	С
	ATOM	3652	OG	SER	Α	466	49.052	62.542	-0.854	1.00	0.00	0
	ATOM	3653	N			467	46.653	65.852	0.914	1.00	0.00	N
	ATOM	3654	CA	LEU			45.791	66.512	1.883	1.00	0.00	C
	ATOM	3655	C	LEU			44.478	66.949	1.238	1.00	0.00	c
60			0	LEU			43.402	66.757	1.810	1.00	0.00	0
00	ATOM	3656 3657							2.477	1.00	0.00	C
	ATOM	3657	CB	LEU	Н	101	46.500	67.735	2.411	1.00	0.00	C

		ATOM	3658	CG	LEU	Α	467	45.768	68.414	3.635	1.00	0.00	С
		ATOM	3659		LEU		467	45.862	67.528	4.870	1.00	0.00	С
			3660		LEU		467	46.382	69.786	3.914	1.00	0.00	Ċ
		MOTA											
	_	MOTA	3661	N	PHE			44.570	67.521	0.040	1.00	0.00	N
	5	ATOM	3662	CA	PHE	Α		43.389	68.009	-0.664	1.00	0.00	С
		ATOM	3663	С	PHE	Α	468	42.411	66.905	-1.057	1.00	0.00	С
		ATOM	3664	0	PHE	Α	468	41.270	67.190	-1.406	1.00	0.00	0
		ATOM	3665	CB	PHE	Α	468	43.797	68.809	-1.908	1.00	0.00	C
		ATOM	3666	CG	PHE			42.672	69.607	-2.511	1.00	0.00	С
	10	ATOM	3667		PHE			41.955	70.518	-1.736	1.00	0.00	C
	10										1.00	0.00	C
		MOTA	3668		PHE			42.318	69.443	-3.847			C
		MOTA	3669				468	40.901	71.254	-2.284	1.00	0.00	C
		MOTA	3670	CE2	PHE		468	41.264	70.173	-4.402	1.00	0.00	С
		ATOM	3671	CZ	PHE	Α	468	40.554	71.081	-3.617	1.00	0.00	С
	15	ATOM	3672	N	GLN	Α	469	42.849	65.648	-1.003	1.00	0.00	N
		MOTA	3673	CA	GLN	Α	469	41.959	64.540	-1.337	1.00	0.00	С
		ATOM	3674	С	GLN			40.929	64.328	-0.229	1.00	0.00	С
		ATOM	3675	Ō	GLN			39.989	63.544	-0.387	1.00	0.00	0
		ATOM	3676		GLN			42.753	63.248	-1.548	1.00	0.00	C
	20			CB									c
	20	MOTA	3677	CG	GLN			43.806	63.349	-2.645	1.00	0.00	
4 PER		ATOM	3678	CD	GLN			43.261	63.986	-3.912	1.00	0.00	C
f, and		ATOM	3679		GLN			43.797	64.987	-4.395	1.00	0.00	0
		ATOM	3680	NE2	GLN	Α	469	42.193	63.414	-4.453	1.00	0.00	N
1 11		ATOM	3681	N	HIS	Α	470	41.112	65.030	0.887	1.00	0.00	N
51595 11595	25	ATOM	3682	CA	HIS	Α	470	40.198	64.941	2.029	1.00	0.00	С
1,2 =		ATOM	3683	С	HIS			38.752	65.169	1.583	1.00	0.00	С
		ATOM	3684	Ö	HIS			38.509	65.904	0.621	1.00	0.00	0
			3685	CB	HIS			40.569	65.988	3.087	1.00	0.00	C
252		MOTA										0.00	c
10	20	MOTA	3686	CG	HIS			39.589	66.071	4.217	1.00		
i Pi	30	MOTA	3687		HIS			39.121	67.270	4.715	1.00	0.00	N
		ATOM	3688		HIS		470	38.967	65.102	4.928	1.00	0.00	С
E)		MOTA	3689	CE1	HIS	Α	470	38.251	67.033	5.681	1.00	0.00	С
		ATOM	3690	NE2	HIS	Α	470	38.140	65.725	5.830	1.00	0.00	N
		ATOM	3691	N	HIS	Α	471	37.796	64.566	2.292	1.00	0.00	N
	35	ATOM	3692	CA	HIS		471	36.389	64.715	1.928	1.00	0.00	С
14		ATOM	3693	С	HIS			35.769	66.104	2.151	1.00	0.00	С
ĝ:=\$:		ATOM	3694	Ö	HIS			34.551	66.274	2.017	1.00	0.00	O
					HIS			35.525	63.626	2.600	1.00	0.00	C
		ATOM	3695	CB			471						c
	40	MOTA	3696	CG	HIS			35.692	63.533	4.084	1.00	0.00	
	4 0	ATOM	3697		HIS			36.653	62.743	4.678	1.00	0.00	N
		ATOM	3698		HIS			35.010	64.121	5.096	1.00	0.00	C
		ATOM	3699	CE1	HIS	Α	471	36.556	62.848	5.992	1.00	0.00	C
		ATOM	3700	NE2	HIS	Α	471	35.568	63.678	6.270	1.00	0.00	N
		ATOM	3701	N	ASP	Α	472	36.603	67.085	2.505	1.00	0.00	N
	45	ATOM	3702	CA	ASP	Α	472	36.161	68.473	2.654	1.00	0.00	С
		ATOM	3703	С	ASP			37.108	69.343	1.835	1.00	0.00	С
		ATOM	3704	Ö	ASP			37.035	70.574	1.867	1.00	0.00	0
								36.183	68.934	4.111	1.00	0.00	c
		ATOM	3705	CB	ASP								c
	E 0	MOTA	3706	CG	ASP			35.075	68.320	4.922	1.00	0.00	
	50	MOTA	3707		ASP			33.912	68.411	4.480	1.00	0.00	0
		MOTA	3708	OD2	ASP	Α	472	35.363	67.755	5.993	1.00	0.00	0
		ATOM	3709	N	GLY	Α	473	38.002	68.685	1.104	1.00	0.00	N
		MOTA	3710	CA	GLY	Α	473	38.952	69.400	0.275	1.00	0.00	С
		ATOM	3711	С	GLY	Α	473	38.444	69.513	-1.147	1.00	0.00	С
	55	ATOM	3712	0	GLY			37.751	70.468	-1.490	1.00	0.00	0
	00	ATOM	3713	N	ILE			38.779	68.526	-1.971	1.00	0.00	N
					ILE			38.367	68.511	-3.370	1.00	0.00	C
		ATOM	3714	CA							1.00	0.00	c
		ATOM	3715	С	ILE			36.844	68.613	-3.530			
	40	MOTA	3716	0	ILE			36.345	69.057	-4.566	1.00	0.00	0
	60	ATOM	3717	CB	ILE			38.898	67.230	-4.082	1.00	0.00	C
		MOTA	3718	CG1	ILE	Α	4/4	38.613	67.307	-5.584	1.00	0.00	С

	ATOM	3719	CG2	ILE A	474	38.277	65.980	-3.457	1.00	0.00	С
	ATOM	3720	CD1	ILE A	474	39.204	66.157	-6.386	1.00	0.00	С
	ATOM	3721	N	THR A	475	36.118	68.214	-2.490	1.00	0.00	N
	ATOM	3722	CA	THR A	475	34.656	68.252	-2.480	1.00	0.00	С
5	ATOM	3723	С	THR A	475	34.109	69.681	-2.518	1.00	0.00	С
	ATOM	3724	0	THR A	475	32.942	69.898	-2.861	1.00	0.00	0
	ATOM	3725	CB	THR A	475	34.102	67.611	-1.205	1.00	0.00	С
	ATOM	3726	OG1	THR A	475	34.637	68.306	-0.072	1.00	0.00	0
	ATOM	3727	CG2	THR A	475	34.484	66.130	-1.124	1.00	0.00	С
10	ATOM	3728	N	GLY A		34.944	70.645	-2.144	1.00	0.00	N
	MOTA	3729	CA	GLY A	476	34.506	72.030	-2.124	1.00	0.00	С
	ATOM	3730	С	GLY A	476	33.510	72.287	-1.002	1.00	0.00	Ç
	MOTA	3731	0	GLY A	476	32.618	73.126	-1.136	1.00	0.00	0
	ATOM	3732	N	THR A	477	33.660	71.572	0.110	1.00	0.00	N
15	ATOM	3733	CA	THR A	477	32.750	71.731	1.237	1.00	0.00	C
	ATOM	3734	С	THR A		33.371	72.333	2.499	1.00	0.00	С
	ATOM	3735	0	THR A		32.853	72.135	3.598	1.00	0.00	0
	ATOM	3736	СВ	THR A		32.088	70.375	1.613	1.00	0.00	С
	ATOM	3737		THR A		33.102	69.404	1.907	1.00	0.00	0
20	ATOM	3738		THR A		31.224	69.871	0.461	1.00	0.00	С
	ATOM	3739	N	ALA A		34.469	73.075	2.351	1.00	0.00	N
	ATOM	3740	CA	ALA A		35.117	73.695	3.508	1.00	0.00	С
	ATOM	3741	C	ALA A		34.800	75.188	3.586	1.00	0.00	C
	ATOM	3742	Õ	ALA A		34.330	75.780	2.617	1.00	0.00	Ō
25	ATOM	3743	СВ	ALA A		36.634	73.486	3.439	1.00	0.00	Ċ
	ATOM	3744	N	LYS A		35.049	75.805	4.737	1.00	0.00	N
	ATOM	3745	CA	LYS A		34.783	77.235	4.858	1.00	0.00	C
	ATOM	3746	C	LYS A		35.761	77.985	3.960	1.00	0.00	C
	ATOM	3747	Ö	LYS A		36.826	77.471	3.621	1.00	0.00	Ō
30	ATOM	3748	CB	LYS A		34.923	77.698	6.314	1.00	0.00	C
50	ATOM	3749	CG	LYS A		33.900	77.052	7.251	1.00	0.00	C
	ATOM	3750	CD	LYS A		33.934	77.645	8.658	1.00	0.00	C
	ATOM	3751	CE	LYS A		33.032	78.863	8.800	1.00	0.00	c
	ATOM	3752	NZ	LYS A		31.571	78.531	8.775	1.00	0.00	N
35	ATOM	3753	N N	THR A		35.391	79.204	3.589	1.00	0.00	N
33	ATOM	3754	CA	THR A		36.199	80.040	2.712	1.00	0.00	C
	ATOM	3755	C	THR A		37.690	80.143	3.032	1.00	0.00	Č
	ATOM	3756	0	THR A		38.520	79.985	2.137	1.00	0.00	Ö
	ATOM	3757	СВ	THR A		35.612	81.464	2.643	1.00	0.00	Č
40	ATOM	3758		THR A		34.266	81.390	2.164	1.00	0.00	Ö
10		3759		THR A		36.433	82.353	1.701	1.00	0.00	Č
	ATOM	3760		HIS A		38.042	80.400	4.290	1.00	0.00	N
	MOTA		N					4.628	1.00	0.00	C
	ATOM	3761 3762	CA	HIS A		39.454	80.536 79.209	4.586	1.00	0.00	C
45	ATOM		C	HIS A		41.431		4.444	1.00	0.00	o
40	ATOM	3763	0	HIS A		39.635	79.192	5.993	1.00	0.00	C
	ATOM	3764	CB	HIS A			81.226	7.176	1.00	0.00	C
	ATOM	3765	CG	HIS A		39.481	80.320		1.00	0.00	N
	ATOM	3766		HIS A		38.258	79.860	7.614			
50	ATOM	3767		HIS A		40.402	79.806	8.025	1.00	0.00	C C
50	ATOM	3768		HIS A		38.432	79.103	8.682	1.00	0.00	
	ATOM	3769		HIS A		39.724	79.053	8.952	1.00	0.00	N
	ATOM	3770	N	VAL A		39.475	78.103	4.694	1.00	0.00	N
	MOTA	3771	CA	VAL A		40.090	76.774	4.640	1.00	0.00	С
	ATOM	3772	С	VAL A		40.382	76.450	3.172	1.00	0.00	C
55	MOTA	3773	0	VAL A		41.427	75.894	2.840	1.00	0.00	0
	ATOM	3774	CB	VAL A		39.157	75.705	5.255	1.00	0.00	C
	MOTA	3775		VAL A		39.828	74.327	5.231	1.00	0.00	C
	MOTA	3776	CG2	VAL A		38.819	76.096	6.693	1.00	0.00	C
60	MOTA	3777	N	VAL A		39.452	76.808	2.292	1.00	0.00	N
60	MOTA	3778	CA	VAL A		39.645	76.592	0.862	1.00	0.00	C
	ATOM	3779	С	VAL A	483	40.898	77.365	0.446	1.00	0.00	С

	ATOM	3780	0	VAL .	A 48	3 41.707	76.888	-0.353	1.00	0.00	0
	MOTA	3781	CB	VAL	A 48	38.432	77.112	0.057	1.00	0.00	С
	ATOM	3782	CG1	VAL .	A 48	38.716	77.030	-1.437	1.00	0.00	С
	ATOM	3783	CG2	VAL	A 48	37.191	76.285	0.411	1.00	0.00	С
5	ATOM	3784	N	VAL .	A 48	41.059	78.560	1.003	1.00	0.00	N
	ATOM	3785	CA	VAL .	A 48	42.224	79.379	0.698	1.00	0.00	С
	ATOM	3786	С	VAL			78.670	1.147	1.00	0.00	Ċ
	ATOM	3787	Ö	VAL			78.678	0.434	1.00	0.00	Ō
	ATOM	3788	CB	VAL			80.759	1.377	1.00	0.00	č
10										0.00	c
10	ATOM	3789		VAL			81.500	1.252	1.00		C
	ATOM	3790		VAL .			81.568	0.730	1.00	0.00	
	MOTA	3791	N	ASP			78.047	2.323	1.00	0.00	N
	MOTA	3792	CA	ASP .			77.326	2.822	1.00	0.00	C
4 -	ATOM	3793	С	ASP .	4 48		76.185	1.870	1.00	0.00	С
15	ATOM	3794	0	ASP A	4 48	46.166	75.996	1.541	1.00	0.00	0
	ATOM	3795	CB	ASP .	A 48	44.354	76.751	4.215	1.00	0.00	C
	ATOM	3796	CG	ASP .	48	45.600	76.156	4.843	1.00	0.00	C
	ATOM	3797	OD1	ASP .	A 48	45.549	75.002	5.314	1.00	0.00	0
	ATOM	3798	OD2	ASP .	A 48	46.640	76.850	4.866	1.00	0.00	0
20	ATOM	3799	N	TYR .			75.418	1.434	1.00	0.00	N
	ATOM	3800	CA	TYR			74.307	0.515	1.00	0.00	С
	ATOM	3801	C	TYR			74.832	-0.777	1.00	0.00	C
	ATOM	3802	Ö	TYR			74.228	-1.314	1.00	0.00	Ö
	ATOM	3803	СВ	TYR			73.571	0.174	1.00	0.00	c
25				TYR			72.736	1.291	1.00	0.00	Č
20	ATOM	3804	CG CD1								C
	ATOM	3805		TYR .			72.715	1.492	1.00	0.00	
	ATOM	3806		TYR			71.917	2.101	1.00	0.00	C
	ATOM	3807		TYR			71.897	2.469	1.00	0.00	С
20	ATOM	3808		TYR			71.090	3.086	1.00	0.00	C
30	ATOM	3809	CZ	TYR .			71.090	3.257	1.00	0.00	C
	ATOM	3810	OH	TYR .			70.278	4.200	1.00	0.00	0
	ATOM	3811	N	GLU A	48	44.357	75.958	-1.270	1.00	0.00	N
	MOTA	3812	CA	GLU A	4 48	44.865	76.552	-2.505	1.00	0.00	С
	ATOM	3813	С	GLU .	48	46.320	76.979	-2.341	1.00	0.00	С
35	ATOM	3814	0	GLU	A 48	7 47.149	76.727	-3.213	1.00	0.00	0
	ATOM	3815	CB	GLU A	A 48	44.030	77. 772	-2.920	1.00	0.00	С
	ATOM	3816	CG	GLU	48	44.302	78.202	-4.361	1.00	0.00	С
	ATOM	3817	CD	GLU :	A 48	43.595	79.487	-4.766	1.00	0.00	С
	ATOM	3818	OE1	GLU	A 48		79.694	-4.372	1.00	0.00	0
40	ATOM	3819		GLU			80.286	-5.502	1.00	0.00	0
	ATOM	3820	N	GLN			77.636	-1.226	1.00	0.00	N
	ATOM	3821	CA	GLN			78.084	-0.957	1.00	0.00	C
	ATOM	3822	C	GLN			76.888	-0.920	1.00	0.00	c
	ATOM	3823	0	GLN A			76.937	-1.472	1.00	0.00	ő
45							78.833	0.380	1.00	0.00	c
40	ATOM	3824	CB	GLN					1.00	0.00	c
	ATOM	3825	CG	GLN			80.189	0.363			
	ATOM	3826	CD	GLN			80.884	1.713	1.00	0.00	C
	ATOM	3827		GLN			82.054	1.825	1.00	0.00	0
F O	ATOM	3828		GLN A			80.165	2.746	1.00	0.00	N
50	MOTA	3829	N	ARG A			75.822	-0.253	1.00	0.00	N
	ATOM	3830	CA	ARG A	48	49.295	74.606	-0.155	1.00	0.00	С
	MOTA	3831	С	ARG A	A 48	49.530	74.010	-1.540	1.00	0.00	С
	ATOM	3832	0	ARG A	A 48	50.643	73.593	-1.867	1.00	0.00	0
	ATOM	3833	CB	ARG A	48	48.591	73.574	0.735	1.00	0.00	С
55	ATOM	3834	CG	ARG	48	48.625	73.891	2.233	1.00	0.00	С
	ATOM	3835	CD	ARG			72.954	3.006	1.00	0.00	Ċ
	ATOM	3836	NE	ARG			73.139	4.455	1.00	0.00	N
	ATOM	3837	CZ	ARG			72.571	5.244	1.00	0.00	C
	ATOM	3838		ARG A			72.371	4.730	1.00	0.00	N
60							72.806	6.552	1.00	0.00	N N
00	ATOM	3839		ARG A							N
	ATOM	3840	N	MET	1 49	48.487	73.962	-2.363	1.00	0.00	IN

	ATOM	3841	CA	MET	Α	490	48.662	73.406	-3.699	1.00	0.00	С
	ATOM	3842	С	MET	A	490	49.544	74.308	-4.558	1.00	0.00	С
	ATOM	3843	0	MET	Α	490	50.285	73.827	-5.414	1.00	0.00	0
	ATOM	3844	CB	MET	A	490	47.305	73.159	-4.373	1.00	0.00	С
5	ATOM	3845	CG	MET	Α	490	46.539	71.993	-3.748	1.00	0.00	С
	ATOM	3846	SD	MET	Α	490	45.205	71.339	-4.786	1.00	0.00	S
	ATOM	3847	CE	MET	Α	490	43.887	72.488	-4.381	1.00	0.00	С
	ATOM	3848	N	GLN	A	491	49.482	75.613	-4.319	1.00	0.00	N
	ATOM	3849	CA	GLN			50.303	76.543	-5.084	1.00	0.00	С
10	ATOM	3850	С	GLN			51.775	76.263	-4.790	1.00	0.00	С
	ATOM	3851	Ō	GLN			52.615	76.259	-5.694	1.00	0.00	0
	ATOM	3852	СВ	GLN			49.960	77.985	-4.713	1.00	0.00	c
	MOTA	3853	CG	GLN			50.638	79.023	-5.585	1.00	0.00	Č
	ATOM	3854	CD	GLN			50.355	78.817	-7.062	1.00	0.00	c
15	ATOM	3855		GLN			51.044	78.050	-7.741	1.00	0.00	0
15							49.329	79.493	-7.564	1.00	0.00	N
	ATOM	3856		GLN								
	ATOM	3857	N	GLU			52.083	76.020	-3.520	1.00	0.00	N
	ATOM	3858	CA	GLU			53.453	75.728	-3.123	1.00	0.00	C
20	ATOM	3859	C	GLU			53.874	74.393	-3.737	1.00	0.00	С
20	ATOM	3860	0	GLU			55.019	74.223	-4.154	1.00	0.00	0
	ATOM	3861	CB	GLU			53.554	75.674	-1.595	1.00	0.00	C
	MOTA	3862	CG	GLU			52.993	76.921	-0.916	1.00	0.00	C
	MOTA	3863	CD	GLU			52.973	76.826	0.599	1.00	0.00	С
0.5	MOTA	3864	OE1				52.545	75.780	1.135	1.00	0.00	0
25	ATOM	3865	OE2	GLU			53.372	77.810	1.259	1.00	0.00	0
	ATOM	3866	N	ALA			52.939	73.448	-3.798	1.00	0.00	N
	ATOM	3867	CA	ALA			53.219	72.135	-4.376	1.00	0.00	C
	MOTA	3868	С	ALA			53.553	72.289	-5.861	1.00	0.00	С
••	MOTA	3869	0	ALA	A	493	54.494	71.668	-6.365	1.00	0.00	0
30	MOTA	3870	CB	ALA	A	493	52.010	71.212	-4.199	1.00	0.00	C
	MOTA	3871	N	LEU	A	494	52.781	73.115	-6.562	1.00	0.00	N
	MOTA	3872	CA	LEU	A	494	53.024	73.336	-7.986	1.00	0.00	С
	MOTA	3873	С	LEU	A	494	54.425	73.900	-8.208	1.00	0.00	С
	ATOM	3874	0	LEU	Α	494	55.142	73.453	-9.098	1.00	0.00	0
35	ATOM	3875	CB	LEU	Α	494	51.971	74.287	-8.573	1.00	0.00	C
	ATOM	3876	CG	LEU	A	494	50.574	73.683	-8.752	1.00	0.00	С
	MOTA	3877	CD1	LEU	Α	494	49.569	74.769	-9.145	1.00	0.00	С
	ATOM	3878	CD2	LEU	Α	494	50.636	72.601	-9.818	1.00	0.00	С
	ATOM	3879	N	LYS	Α	495	54.812	74.872	-7.385	1.00	0.00	N
40	MOTA	3880	CA	LYS	Α	495	56.134	75.484	-7.487	1.00	0.00	С
	MOTA	3881	С	LYS	Α	495	57.221	74.450	-7.200	1.00	0.00	С
	ATOM	3882	0	LYS			58.269	74.443	-7.850	1.00	0.00	0
	ATOM	3883	CB	LYS	A	495	56.253	76.660	-6.510	1.00	0.00	С
	ATOM	3884	CG	LYS			55.284	77.803	-6.812	1.00	0.00	С
45	ATOM	3885	CD	LYS			55.563	79.039	-5.960	1.00	0.00	С
	ATOM	3886	CE	LYS			55.364	78.767	-4.477	1.00	0.00	C
	MOTA	3887	NZ	LYS			55.650	79.976	-3.647	1.00	0.00	N
	ATOM	3888	N	ALA			56.966	73.577	-6.228	1.00	0.00	N
	ATOM	3889	CA	ALA			57.917	72.528	-5.881	1.00	0.00	С
50	ATOM	3890	C	ALA			58.100	71.602	-7.084	1.00	0.00	C
50	ATOM	3891	0	ALA			59.221	71.220	-7.426	1.00	0.00	Ö
	ATOM	3892	СВ	ALA			57.410	71.732	-4.682	1.00	0.00	č
	ATOM	3893	N	CYS			56.991	71.732	-7.719	1.00	0.00	N
									-8.886	1.00	0.00	C
55	ATOM	3894	CA	CYS			57.045	70.362				c
55	ATOM	3895	С	CYS			57.821	71.035		1.00	0.00	
	ATOM	3896	0	CYS			58.659	70.405		1.00	0.00	0
	ATOM	3897	CB	CYS			55.628	70.003	-9.359	1.00	0.00	C
	ATOM	3898	SG	CYS			54.775	68.818	-8.281	1.00	0.00	S
60	ATOM	3899	N	GLN			57.551	72.316		1.00	0.00	N
60	ATOM	3900	CA	GLN			58.258	73.039		1.00	0.00	C
	ATOM	3901	С	GLN	A	498	59.766	73.017	-11.055	1.00	0.00	С

	ATOM	3902	0	GLN	A	498	60.545	72.760	-11.971	1.00	0.00	0
	ATOM	3903	CB	GLN	Α	498	57.780	74.492	-11.385	1.00	0.00	С
	ATOM	3904	CG	GLN .	Α	498	58.583	75.337	-12.367	1.00	0.00	С
_	MOTA	3905	CD	GLN .	A	498	58.076	76.764	-12.475	1.00	0.00	С
5	ATOM	3906	OE1	GLN .	Α	498	57.891	77.449	-11.464	1.00	0.00	0
	MOTA	3907	NE2	GLN	Α	498	57.859	77.225	-13.704	1.00	0.00	N
	ATOM	3908	N	MET	Α	499	60.178	73.292	-9.820	1.00	0.00	N
	ATOM	3909	CA	MET .	Α	499	61.603	73.297	-9.484	1.00	0.00	C
	MOTA	3910	С	MET .	Α	499	62.252	71.947	-9.800	1.00	0.00	C
10	ATOM	3911	0	MET .	Α	499	63.304	71.887	-10.435	1.00	0.00	0
	ATOM	3912	CB	MET .	Α	499	61.793	73.633	-8.000	1.00	0.00	C
	MOTA	3913	CG	MET	A	499	63.226	73.497	-7.485	1.00	0.00	С
	MOTA	3914	SD	MET .	Α	499	64.443	74.506	-8.376	1.00	0.00	S
	ATOM	3915	CE	MET .	Α	499	64.087	76.121	-7.718	1.00	0.00	C
15	ATOM	3916	N	VAL .	Α	500	61.623	70.865	-9.351	1.00	0.00	N
	MOTA	3917	CA	VAL .	Α	500	62.153	69.528	-9.595	1.00	0.00	C
	MOTA	3918	С	VAL .	Α	500	62.167	69.199	-11.085	1.00	0.00	С
	MOTA	3919	0	VAL	Α	500	63.152	68.682	-11.609	1.00	0.00	0
	ATOM	3920	CB	VAL	Α	500	61.321	68.466	-8.837	1.00	0.00	С
20	ATOM	3921	CG1	VAL .	A	500	61.744	67.065	-9.250	1.00	0.00	C
	ATOM	3922	CG2	VAL .	A	500	61.513	68.647	-7.332	1.00	0.00	С
	MOTA	3923	N	MET .	Α	501	61.072	69.508	-11.767	1.00	0.00	N
	MOTA	3924	CA	MET .	A	501	60.975	69.229	-13.194	1.00	0.00	С
	ATOM	3925	С	MET .	Α	501	62.047	69.947	-14.007	1.00	0.00	C
25	MOTA	3926	0	MET .	Α	501	62.746	69.318	-14.806	1.00	0.00	0
	MOTA	3927	CB	MET .	Α	501	59.585	69.612	-13.705	1.00	0.00	С
	ATOM	3928	CG	MET .	Α	501	58.475	68.709	-13.191	1.00	0.00	С
	MOTA	3929	SD	MET .	Α	501	56.838	69.371	-13.539	1.00	0.00	S
	MOTA	3930	CE	MET .	A	501	56.676	68.974	-15.250	1.00	0.00	С
30	MOTA	3931	N	GLN .	Α	502	62.186	71.256	-13.802	1.00	0.00	N
	MOTA	3932	CA	GLN .	Α	502	63.171	72.028	-14.555	1.00	0.00	C
	ATOM	3933	С	GLN .	Α	502	64.610	71.604	-14.253	1.00	0.00	C
	ATOM	3934	0	GLN	A	502	65.447	71.561	-15.159	1.00	0.00	0
	MOTA	3935	CB	GLN	Α	502	62.967	73.530	-14.317	1.00	0.00	С
35	MOTA	3936	CG	GLN .	Α	502	63.208	74.016	-12.900	1.00	0.00	C
	MOTA	3937	CD	GLN .	Α	502	64.597	74.611	-12.726	1.00	0.00	С
	ATOM	3938	OE1	GLN .	A	502	65.348	74.753	-13.697	1.00	0.00	0
	ATOM	3939	NE2	GLN	A	502	64.938	74.974	-11.494	1.00	0.00	N
	ATOM	3940	N	GLN .	Α	503	64.905	71.287	-12.995	1.00	0.00	N
40	MOTA	3941	CA	GLN .	A	503	66.253	70.825	-12.650	1.00	0.00	С
	ATOM	3942	С	GLN .			66.510	69.504	-13.381	1.00	0.00	С
	MOTA	3943	0	GLN .	A	503	67.595	69.277	-13.914	1.00	0.00	0
	MOTA	3944	CB	GLN .			66.389		-11.141	1.00	0.00	С
	MOTA	3945	CG	GLN .					-10.301		0.00	C
45	MOTA	3946	CD	GLN A	A	503	67.940		-10.549	1.00	0.00	С
	MOTA	3947	OE1	GLN	A	503	68.935	71.833	-10.818	1.00	0.00	0
	MOTA	3948	NE2	GLN			67.982		-10.442	1.00	0.00	N
	ATOM	3949	N	SER	A	504	65.503		-13.398	1.00	0.00	N
50	MOTA	3950	CA	SER	A	504	65.625		-14.067	1.00	0.00	С
50	ATOM	3951	С	SER			65.855	67.486	-15.567	1.00	0.00	С
	MOTA	3952	0	SER !	A	504	66.715		-16.138	1.00	0.00	0
	MOTA	3953	CB	SER A	A	504	64.369		-13.829	1.00	0.00	С
	ATOM	3954	OG	SER			64.235		-12.460	1.00	0.00	0
	ATOM	3955	N	VAL .			65.087		-16.206	1.00	0.00	N
55	ATOM	3956	CA	VAL .	Α	505	65.233		-17.643	1.00	0.00	С
	ATOM	3957	С	VAL			66.647		-17.974	1.00	0.00	С
	ATOM	3958	0	VAL			67.269		-18.921	1.00	0.00	0
	ATOM	3959	CB	VAL	A	505	64.224		-18.165	1.00	0.00	С
(0	ATOM	3960		VAL			64.569		-19.605	1.00	0.00	C
60	ATOM	3961	CG2	VAL			62.805		-18.105	1.00	0.00	С
	ATOM	3962	N	TYR	A	506	67.160	69.977	-17.187	1.00	0.00	N

	ATOM	3963	CA	TYR	ת	506	68.501	70.490 -17.425	1.00	0.00	С
	ATOM	3964	C	TYR			69.557	69.378 -17.364	1.00	0.00	Ċ
	ATOM	3965	Ö	TYR			70.458	69.313 -18.206	1.00	0.00	0
	ATOM	3966	СВ	TYR			68.827	71.584 -16.407	1.00	0.00	c
5		3967	CG	TYR			70.168	72.230 -16.641	1.00	0.00	c
3	ATOM						70.100	72.804 -17.875	1.00	0.00	Ċ
	ATOM	3968		TYR				72.252 -15.641	1.00	0.00	c
	ATOM	3969		TYR			71.138				c
	ATOM	3970	CE1				71.717	73.382 -18.109	1.00	0.00	c
10	ATOM	3971	CE2	TYR			72.388	72.826 -15.868	1.00	0.00	
10	MOTA	3972	CZ	TYR			72.667	73.387 -17.106	1.00	0.00	С
	MOTA	3973	ОН	TYR			73.900	73.948 -17.349	1.00	0.00	0
	MOTA	3974	N	ARG			69.435	68.498 -16.378	1.00	0.00	N
	MOTA	3975	CA	ARG			70.383	67.397 -16.214	1.00	0.00	C
	MOTA	3976	С	ARG	Α	507	70.247	66.332 -17.310	1.00	0.00	С
15	MOTA	3977	0	ARG	Α	507	71.241	65.774 -17.775	1.00	0.00	0
	ATOM	3978	CB	ARG	Α	507	70.196	66.750 -14.837	1.00	0.00	С
	ATOM	3979	CG	ARG	Α	507	71.242	65.699 -14.490	1.00	0.00	С
	ATOM	3980	CD	ARG	Α	507	71.042	65.179 -13.074	1.00	0.00	С
	ATOM	3981	NE	ARG	Α	507	72.059	64.198 -12.700	1.00	0.00	N
20	ATOM	3982	CZ	ARG	Α	507	72.170	63.659 -11.489	1.00	0.00	C
	ATOM	3983	NH1	ARG	Α	507	71.327	64.004 -10.524	1.00	0.00	N
	ATOM	3984		ARG			73.124	62.772 -11.242	1.00	0.00	N
	ATOM	3985	N	LEU			69.016	66.061 -17.725	1.00	0.00	N
	ATOM	3986	CA	LEU			68.760	65.056 -18.752	1.00	0.00	С
25	ATOM	3987	C	LEU			69.143	65.484 -20.172	1.00	0.00	С
	ATOM	3988	Ö	LEU			69.398	64.634 -21.029	1.00	0.00	0
	ATOM	3989	СВ	LEU			67.277	64.664 -18.739	1.00	0.00	С
	ATOM	3990	CG	LEU			66.779	63.779 -17.590	1.00	0.00	C
	ATOM	3991		LEU			65.251	63.830 -17.527	1.00	0.00	C
30	ATOM	3992		LEU			67.265	62.350 -17.791	1.00	0.00	Ċ
50		3993	N	LEU			69.186	66.788 -20.424	1.00	0.00	N
	ATOM ATOM	3994	CA	LEU			69.493	67.277 -21.765	1.00	0.00	C
		3995	CA	LEU			70.764	68.106 -21.916	1.00	0.00	č
	ATOM						70.704	68.842 -22.897	1.00	0.00	0
35	ATOM	3996	0	LEU			68.302	68.073 -22.304	1.00	0.00	c
33	ATOM	3997	CB	LEU				67.270 -22.573	1.00	0.00	c
	ATOM	3998	CG	LEU			67.026			0.00	c
	ATOM	3999		LEU			65.915	68.213 -23.013	1.00		C
	MOTA	4000		LEU			67.292	66.218 -23.646	1.00	0.00	N
40	ATOM	4001	N	THR			71.679	67.988 -20.960	1.00	0.00	C
40	ATOM	4002	CA	THR			72.936	68.728 -21.017	1.00	0.00	C
	ATOM	4003	С	THR			74.098	67.740 -21.024	1.00	0.00	
	MOTA	4004	0	THR			74.104	66.782 -20.251	1.00	0.00	0
	MOTA	4005	CB	THR			73.082	69.672 -19.803	1.00	0.00	С
4.5	ATOM	4006	OG1	THR			71.994	70.604 -19.794	1.00	0.00	0
45	MOTA	4007	CG2	THR			74.400	70.447 -19.870	1.00	0.00	C
	ATOM	4008	N	LYS			75.073	67.961 -21.902	1.00	0.00	N
	MOTA	4009	CA	LYS			76.231	67.068 -21.971	1.00	0.00	C
	MOTA	4010	С	LYS			76.783	66.906 -20.562	1.00	0.00	C
	MOTA	4011	0	LYS	Α	511	77.065	67.890 -19.875	1.00	0.00	0
50	MOTA	4012	CB	LYS	Α	511	77.309	67.641 -22.900	1.00	0.00	С
	ATOM	4013	CG	LYS	Α	511	78.522	66.738 -23.040	1.00	0.00	С
	ATOM	4014	CD	LYS	Α	511	79.568	67.314 -23.977	1.00	0.00	C
	ATOM	4015	CE	LYS	Α	511	80.772	66.384 -24.062	1.00	0.00	С
	MOTA	4016	NZ	LYS	Α	511	81.836	66.903 -24.963	1.00	0.00	N
55	ATOM	4017	N	PRO	Α	512	76.940	65.653 -20.107	1.00	0.00	N
	ATOM	4018	CA	PRO			77.450	65.348 -18.768	1.00	0.00	С
	ATOM	4019	С	PRO			78.682	66.121 -18.299	1.00	0.00	C
	ATOM	4020	Ö			512	78.699	66.639 -17.184	1.00	0.00	0
	ATOM	4021	СВ	PRO			77.698	63.843 -18.834	1.00	0.00	С
60	ATOM	4022	CG			512	76.615	63.379 -19.750	1.00	0.00	С
	ATOM	4023	CD			512	76.668	64.412 -20.855	1.00	0.00	С
					•	• •					

	ATOM	4024	N	SER A	513	79.709	66.198	-19.139	1.00	0.00	N
	ATOM	4025	CA	SER A		80.935	66.896	-18.759	1.00	0.00	С
	ATOM	4026	С	SER A	513	80.800	68.418	-18.706	1.00	0.00	С
	ATOM	4027	0	SER A	513	81.724	69.111	-18.279	1.00	0.00	0
5	ATOM	4028	CB	SER A		82.081	66.499	-19.701	1.00	0.00	С
	MOTA	4029	OG	SER A	513	81.760	66.759	-21.056	1.00	0.00	0
	ATOM	4030	N	ILE A	514	79.647	68.931	-19.131	1.00	0.00	N
	ATOM	4031	CA	ILE A	514	79.380	70.369	-19.127	1.00	0.00	С
	ATOM	4032	С	ILE A		78.389	70.727	-18.014	1.00	0.00	С
10	ATOM	4033	0	ILE A		78.412	71.836	-17.481	1.00	0.00	0
	ATOM	4034	СВ	ILE A		78.790		-20.492	1.00	0.00	С
	ATOM	4035		ILE A		79.849		-21.589	1.00	0.00	С
	MOTA	4036		ILE A		78.302		-20.401	1.00	0.00	С
	ATOM	4037		ILE A		79.354		-22.974	1.00	0.00	С
15	ATOM	4038	N	TYR A		77.525	69.775	-17.671	1.00	0.00	N
	ATOM	4039	CA	TYR A		76.511		-16.630	1.00	0.00	С
	ATOM	4040	C	TYR A		77.099		-15.330	1.00	0.00	C
	ATOM	4041	Ō	TYR A		77.925		-14.681	1.00	0.00	0
	ATOM	4042	СВ	TYR A		75.817		-16.373	1.00	0.00	С
20	ATOM	4043	CG	TYR A		74.779		-15.276	1.00	0.00	С
	ATOM	4044		TYR A		73.625		-15.369	1.00	0.00	С
	ATOM	4045		TYR A		74.936		-14.157	1.00	0.00	C
	ATOM	4046	CE1			72.648	69.359	-14.368	1.00	0.00	С
	ATOM	4047	CE2		515	73.974		-13.157	1.00	0.00	С
25	ATOM	4048	CZ	TYR A		72.832	68.533	-13.265	1.00	0.00	С
	ATOM	4049	ОН	TYR A		71.881		-12.270	1.00	0.00	0
	ATOM	4050	N	SER A		76.665	71.728	-14.959	1.00	0.00	N
	ATOM	4051	CA	SER A	516	77.141	72.404	-13.746	1.00	0.00	С
	ATOM	4052	С	SER A		75.931	73.040	-13.062	1.00	0.00	С
30	ATOM	4053	0	SER A		75.685	74.243	-13.188	1.00	0.00	0
	ATOM	4054	CB	SER A		78.159	73.485	-14.121	1.00	0.00	С
	ATOM	4055	OG	SER A		78.766	74.044	-12.969	1.00	0.00	0
	ATOM	4056	N	PRO A	517	75.166	72.236	-12.310	1.00	0.00	N
	MOTA	4057	CA	PRO A	517	73.967	72.700	-11.614	1.00	0.00	С
35	ATOM	4058	С	PRO A	517	74.064	73.562	-10.365	1.00	0.00	С
	ATOM	4059	0	PRO A	517	74.917	73.360	-9.503	1.00	0.00	0
	ATOM	4060	CB	PRO A	517	73.229	71.399	-11.323	1.00	0.00	С
	MOTA	4061	CG	PRO A	517	74.356	70.483	-10.991	1.00	0.00	С
	MOTA	4062	CD	PRO A	517	75.355	70.788	-12.102	1.00	0.00	С
40	MOTA	4063	N	ASP A	518	73.153	74.528	-10.303	1.00	0.00	И
	ATOM	4064	CA	ASP A	518	72.978	75.418	-9.164	1.00	0.00	С
	ATOM	4065	С	ASP A	518	71.560	74.999	-8.789	1.00	0.00	С
	ATOM	4066	0	ASP A	518	70.597	75.413	-9.434	1.00	0.00	0
	ATOM	4067	CB	ASP A	518	72.969	76.885	-9.586	1.00	0.00	С
45	ATOM	4068	CG	ASP A	518	72.657	77.819	-8.426	1.00	0.00	С
	ATOM	4069	OD1	ASP A	518	72.003	77.372	-7.457	1.00	0.00	0
	MOTA	4070	OD2	ASP A	518	73.051	79.001	-8.487	1.00	0.00	0
	ATOM	4071	N	PHE A	519	71.437	74.166	-7.764	1.00	0.00	N
	ATOM	4072	CA	PHE A	519	70.141	73.644	-7.352	1.00	0.00	C
50	ATOM	4073	С	PHE A	519	69.077	74.654	-6.947	1.00	0.00	С
	ATOM	4074	0	PHE A	519	67.931	74.279	-6.698	1.00	0.00	0
	ATOM	4075	CB	PHE A		70.341	72.608	-6.246	1.00	0.00	С
	ATOM	4076	CG	PHE A	.519	71.207	71.448	-6.664	1.00	0.00	С
	ATOM	4077	CD1	PHE A	519	70.948	70.765	-7.851	1.00	0.00	С
55	ATOM	4078	CD2	PHE A	519	72.287	71.049	-5.884	1.00	0.00	С
	ATOM	4079		PHE A		71.754	69.700	-8.257	1.00	0.00	С
	ATOM	4080	CE2	PHE A	519	73.098	69.987	-6.280	1.00	0.00	С
	MOTA	4081	CZ	PHE A	519	72.832	69.311	-7.469	1.00	0.00	С
	MOTA	4082	N	SER A	520	69.439	75.931	-6.902	1.00	0.00	N
60	MOTA	4083	CA	SER A		68.483	76.973	-6.535	1.00	0.00	С
	ATOM	4084	C	SER A	520	68.133	77.823	-7.754	1.00	0.00	С

	ATOM	4085	0	SER A	520	67.260	78.688 -7.691	1.00	0.00	0
	ATOM	4086	СВ	SER F		69.073	77.879 -5.453	1.00	0.00	С
	ATOM	4087	OG	SER F	520	70.132	78.665 -5.978	1.00	0.00	0
	MOTA	4088	N	PHE P	521	68.822	77.565 -8.860	1.00	0.00	N
5	ATOM	4089	CA	PHE F	521	68.629	78.317 -10.095	1.00	0.00	С
	MOTA	4090	С	PHE P		67.500	77.774 -10.970	1.00	0.00	С
	ATOM	4091	0	PHE F		67.237	76.574 -10.990	1.00	0.00	0
	ATOM	4092	СВ	PHE F		69.936	78.319 -10.895	1.00	0.00	С
	ATOM	4093	CG	PHE F		69.952	79.299 -12.034	1.00	0.00	С
10	ATOM	4094		PHE F		70.084	80.664 -11.790	1.00	0.00	С
	ATOM	4095		PHE F		69.812	78.862 -13.348	1.00	0.00	С
	ATOM	4096		PHE F		70.075	81.583 -12.842	1.00	0.00	Ċ
	MOTA	4097		PHE F		69.801	79.768 -14.406	1.00	0.00	Ċ
	ATOM	4098	CZ	PHE F		69.932	81.133 -14.152	1.00	0.00	C
15	ATOM	4099	N	SER F		66.837	78.671 -11.697	1.00	0.00	N
10	ATOM	4100	CA	SER A		65.753	78.280 -12.590	1.00	0.00	C
	ATOM	4101	C	SER F		66.264	78.252 -14.027	1.00	0.00	Č
		4101	0	SER F		66.320	79.286 -14.692	1.00	0.00	o
	MOTA MOTA	4102		SER A		64.580	79.261 -12.477	1.00	0.00	c
20			CB			63.927	79.133 -11.224	1.00	0.00	Ö
20	ATOM	4104	OG	SER A			77.070 -14.497	1.00	0.00	N
	MOTA	4105	N	TYR A		66.645	76.919 -15.857		0.00	C
	MOTA	4106	CA	TYR F		67.149		1.00		C
	ATOM	4107	С	TYR A		66.025	77.000 -16.868	1.00	0.00	
25	ATOM	4108	0	TYR A		66.228	77.440 -18.002	1.00	0.00	0
25	ATOM	4109	CB	TYR F		67.885	75.586 -16.013	1.00	0.00	C
	ATOM	4110	CG	TYR F		69.160	75.523 -15.211	1.00	0.00	C
	ATOM	4111		TYR F		69.188	74.932 -13.949	1.00	0.00	C
	ATOM	4112		TYR F		70.335	76.106 -15.695	1.00	0.00	C
20	MOTA	4113		TYR F		70.358	74.926 -13.187	1.00	0.00	С
30	ATOM	4114		TYR F		71.498	76.108 -14.945	1.00	0.00	С
	ATOM	4115	CZ	TYR F		71.506	75.519 -13.693	1.00	0.00	C
	MOTA	4116	OH	TYR F		72.660	75.542 -12.944	1.00	0.00	0
	MOTA	4117	N	PHE F		64.840	76.559 -16.456	1.00	0.00	N
0.5	MOTA	4118	CA	PHE F		63.665	76.603 -17.316	1.00	0.00	C
35	ATOM	4119	С	PHE F		62.464	77.104 -16.539	1.00	0.00	C
	MOTA	4120	0	PHE F		62.401	76.986 -15.315	1.00	0.00	0
	ATOM	4121	CB	PHE A		63.293	75.221 -17.857	1.00	0.00	C
	ATOM	4122	CG	PHE P		64.335	74.593 -18.726	1.00	0.00	C
40	MOTA	4123		PHE P		65.402	73.902 -18.165	1.00	0.00	C
4 0	MOTA	4124		PHE P		64.226	74.654 -20.114	1.00	0.00	C
	MOTA	4125		PHE P		66.348	73.276 -18.972	1.00	0.00	C
	ATOM	4126		PHE P	524	65.166	74.031 -20.931	1.00	0.00	С
	MOTA	4127	CZ	PHE F	524	66.230	73.338 -20.355	1.00	0.00	С
4 ==	ATOM	4128	N	THR A		61.509	77.656 -17.275	1.00	0.00	N
45	MOTA	4129	CA	THR F	525	60.265	78.139 -16.707	1.00	0.00	С
	ATOM	4130	С	THR P	525	59.180	77.306 -17.378	1.00	0.00	С
	MOTA	4131	0	THR A	525	59.191	77.145 -18.598	1.00	0.00	0
	ATOM	4132	CB	THR F	525	60.028	79.623 -17.042	1.00	0.00	С
	ATOM	4133	OG1	THR F	525	61.030	80.423 -16.402	1.00	0.00	0
50	MOTA	4134	CG2	THR P	525	58.659	80.065 -16.561	1.00	0.00	С
	ATOM	4135	N	LEU F	526	58.262	76.758 -16.590	1.00	0.00	N
	ATOM	4136	CA	LEU A	526	57.180	75.972 -17.164	1.00	0.00	С
	ATOM	4137	С	LEU A		56.183	76.911 -17.838	1.00	0.00	С
	ATOM	4138	0	LEU F	526	55.925	78.011 -17.348	1.00	0.00	0
55	ATOM	4139	СВ	LEU A		56.452	75.170 -16.079	1.00	0.00	С
•	ATOM	4140	CG	LEU P		57.008	73.807 -15.666	1.00	0.00	С
	ATOM	4141		LEU F		56.224	73.280 -14.470	1.00	0.00	C
	ATOM	4142		LEU P		56.907	72.838 -16.833	1.00	0.00	Ċ
	ATOM	4143	N	ASP A		55.642	76.483 -18.973	1.00	0.00	N
60	ATOM	4144	CA	ASP A		54.646	77.274 -19.676	1.00	0.00	C
00	ATOM	4145	C	ASP F		53.404	76.400 -19.756	1.00	0.00	Č
	017	1110	Ü	IIOE P	. 52,	55.404	. 0 00 27. 100			J

	ATOM	4146	0			527	53.425	75.350 -20.389	1.00	0.00	0
	MOTA	4147	CB			527	55.121	77.635 -21.086	1.00	0.00	С
	ATOM	4148	CG			527	54.134	78.528 -21.818	1.00	0.00	С
_	ATOM	4149		ASP			53.867	79.646 -21.324	1.00	0.00	0
5	ATOM	4150		ASP			53.622	78.110 -22.881	1.00	0.00	0
	ATOM	4151	N			528	52.337	76.824 -19.089	1.00	0.00	N
	ATOM	4152	CA			528	51.084	76.075 -19.076	1.00	0.00	С
	MOTA	4153	С			528	50.010	76.962 -19.688	1.00	0.00	С
10	MOTA	4154	0			528	49.667	78.007 -19.139	1.00	0.00	0
10	ATOM	4155	CB			528	50.704	75.713 -17.637	1.00	0.00	С
	ATOM	4156	CG			528	49.666	74.605 -17.564	1.00	0.00	С
	MOTA	4157	OD1	ASP	Α	528	48.653	74.670 -18.294	1.00	0.00	0
	MOTA	4158	OD2	ASP			49.865	73.667 -16.766	1.00	0.00	0
4-	MOTA	4159	N			529	49.474	76.548 -20.827	1.00	0.00	N
15	ATOM	4160	CA	SER	Α	529	48.465	77.358 -21.491	1.00	0.00	С
	ATOM	4161	С	SER	Α	529	47.059	77.161 -20.935	1.00	0.00	С
	MOTA	4162	0	SER	Α	529	46.154	77.916 -21.277	1.00	0.00	0
	ATOM	4163	CB			529	48.469	77.071 -22.995	1.00	0.00	С
	MOTA	4164	OG	SER	Α	529	47.890	75.810 -23.261	1.00	0.00	0
20	MOTA	4165	N	ARG	Α	530	46.869	76.167 -20.071	1.00	0.00	N
	ATOM	4166	CA	ARG	Α	530	45.536	75.925 -19.536	1.00	0.00	С
	MOTA	4167	С	ARG	Α	530	45.351	76.074 -18.030	1.00	0.00	С
	MOTA	4168	0	ARG	Α	530	44.280	75.778 -17.502	1.00	0.00	0
	ATOM	4169	CB	ARG	Α	530	45.036	74.560 -20.015	1.00	0.00	С
25	ATOM	4170	CG	ARG	Α	530	44.929	74.517 -21.531	1.00	0.00	С
	MOTA	4171	CD	ARG	Α	530	44.292	73.244 -22.057	1.00	0.00	С
	MOTA	4172	NE	ARG	Α	530	45.038	72.051 -21.670	1.00	0.00	N
	MOTA	4173	CZ	ARG	Α	530	44.816	70.843 -22.178	1.00	0.00	С
	MOTA	4174	NH1	ARG	Α	530	43.869	70.678 -23.093	1.00	0.00	N
30	MOTA	4175	NH2	ARG	Α	530	45.535	69.801 -21.771	1.00	0.00	N
	MOTA	4176	N	TRP	Α	531	46.389	76.531 -17.337	1.00	0.00	N
	ATOM	4177	CA	TRP	Α	531	46.277	76.764 -15.901	1.00	0.00	С
	ATOM	4178	C	TRP	Α	531	47.246	77.837 -15.433	1.00	0.00	С
	MOTA	4179	0	TRP	Α	531	48.444	77.753 -15.695	1.00	0.00	0
35	ATOM	4180	CB	TRP	Α	531	46.519	75.493 -15.085	1.00	0.00	С
	ATOM	4181	CG	TRP	Α	531	46.418	75.781 -13.618	1.00	0.00	С
	ATOM	4182	CD1	TRP	Α	531	47.438	76.128 -12.773	1.00	0.00	С
	ATOM	4183	CD2	TRP	A	531	45.215	75.860 -12.846	1.00	0.00	С
	ATOM	4184	NE1	TRP	Α	531	46.941	76.422 -11.524	1.00	0.00	N
40	ATOM	4185	CE2	TRP	Α	531	45.580	76.265 -11.542	1.00	0.00	C
	MOTA	4186	CE3	TRP	Α	531	43.864	75.631 -13.130	1.00	0.00	С
	ATOM	4187	CZ2	TRP	Α	531	44.638	76.446 -10.522	1.00	0.00	С
	ATOM	4188	CZ3	TRP	Α	531	42.925	75.813 -12.114	1.00	0.00	С
	ATOM	4189	CH2	TRP	Α	531	43.319	76.216 -10.828	1.00	0.00	C
45	MOTA	4190	N	PRO	Α	532	46.738	78.857 -14.722	1.00	0.00	N
	ATOM	4191	CA	PRO	Α	532	45.325	79.023 -14.358	1.00	0.00	С
	ATOM	4192	С	PRO	Α	532	44.419	79.228 -15.567	1.00	0.00	С
	ATOM	4193	0	PRO	Α	532	43.200	79.075 -15.473	1.00	0.00	0
	ATOM	4194	CB	PRO	Α	532	45.348	80.240 -13.433	1.00	0.00	С
50	ATOM	4195	CG	PRO	A	532	46.700	80.135 -12.787	1.00	0.00	С
	ATOM	4196	CD	PRO	Α	532	47.576	79.816 -13.980	1.00	0.00	С
	ATOM	4197	N	GLY	Α	533	45.022	79.572 -16.700	1.00	0.00	N
	ATOM	4198	CA	GLY	Α	533	44.255	79.771 -17.914	1.00	0.00	С
	MOTA	4199	С			533	44.067	81.220 -18.313	1.00	0.00	С
55	ATOM	4200	0	GLY			44.049	82.116 -17.466	1.00	0.00	0
	ATOM	4201	N	SER			43.933	81.449 -19.616	1.00	0.00	N
	ATOM	4202	CA	SER			43.734	82.792 -20.147	1.00	0.00	C
	ATOM	4203	C	SER			42.442	83.369 -19.578	1.00	0.00	Č
	ATOM	4204	Ō	SER			41.400	82.711 -19.598	1.00	0.00	ō
60	ATOM	4205	СВ	SER			43.655	82.744 -21.675	1.00	0.00	Ċ
	ATOM	4206	OG	SER			43.324	84.013 -22.208	1.00	0.00	ō
											· ·

DOSCHE BEST

									0.00	
	ATOM	4207	N	GLY A	A 535	42.514	84.595 -19.069	1.00	0.00	N
	ATOM	4208	CA	GLY A	535	41.337	85.223 -18.498	1.00	0.00	С
										С
										C
	ATOM	4210	0	GLY A	1 535	40.351	85.491 -16.330	1.00	0.00	0
5	MOTA	4211	N	VAL.	536	42.056	84.035 -16.516	1.00	0.00	N
Ū										
										С
	ATOM	4213	С	VAL A	1 536	43.218	84.336 -14.400	1.00	0.00	C
	ΔΤΩМ	4214	Ω	VAT.	536	43 078	84 885 -13 307	1.00	0.00	0
4.0	ATOM		CB	VAL	1 536			1.00		С
10	ATOM	4216	CG1	VAL A	536	42.091	81.774 -13.448	1.00	0.00	С
		1217					81 443 -15 682	1 00	0.00	С
	MOTA	4218	N	GLU A	1 537	44.378			0.00	N
	ATOM	4219	CA	GLU A	537	45.590	84.883 -14.495	1.00	0.00	С
	ΔΨΩΜ	4220	C	CUU	537	46 675	84 972 -15 565	1.00	0.00	С
15										
15	ATOM		O							0
	MOTA	4222	CB	GLU A	x 537	46.083	84.040 -13.310	1.00	0.00	С
	ΑΤΌΜ	4223	CG			47 529	84.290 -12.893	1.00	0.00	С
										Ċ
	ATOM	4225	OE1	GLU A	537	49.153	83.284 -11.457	1.00	0.00	0
20	MOTA	4226	OE2	GLU Z	537	47.042	83.058 -10.902	1.00	0.00	0
										N
	ATOM	4228	CA	ASP A	1 538	48.182	86.365 -16.855	1.00	0.00	С
	ATOM	4229	C	ASP A	538	49.474	85.975 -16.153	1.00	0.00	С
										0
05										
25	ATOM	4231	CB	ASP A	538	48.247	87.822 -17.326	1.00	0.00	С
	ATOM	4232	CG	ASP A	538	49.236	88.022 -18.463	1.00	0.00	С
										0
	ATOM	4234	OD2	ASP A	1 538	50.100	88.919 -18.35/	1.00	0.00	0
	ATOM	4235	N	SER A	539	49.832	84.700 -16.261	1.00	0.00	N
30								1 00	0 00	С
50										
	ATOM	4237	С	SER A	539	52.142	83.720 -16.521	1.00	0.00	С
	ATOM	4238	0	SER A	539	53.318	83.855 -16.183	1.00	0.00	0
										С
	ATOM	4240	OG	SER A	1 539			1.00		0
35	ATOM	4241	N	ARG A	540	51.790	83.166 -17.676	1.00	0.00	N
	ΔΤОМ	4242	$C\Delta$	ARC I	540		82 682 -18 591	1 00	0.00	С
	ATOM		C							C
	ATOM	4244	0	ARG A	540	53.211	84.890 -19.469	1.00	0.00	0
	ATOM	4245	CB	ARG A	540	52.184	81.839 -19.706	1.00	0.00	С
40										C
40										~
	ATOM	4247	CD	ARG A	540	50.190		1.00	0.00	С
	ATOM	4248	NE	ARG A	540	51.054	80.613 -22.053	1 00	0.00	N
	MOTA	4249								
	WI On		C7	APC 7	5/10	50 624			0.00	C
	3		CZ	ARG A		50.624	80.055 -23.181	1.00	0.00	C
	MOTA	4250		ARG A		50.624 49.342			0.00	N
45		4250	NH1	ARG A	540		80.055 -23.181 80.137 -23.515	1.00		
45	MOTA	4250 4251	NH1 NH2	ARG A	540 540	49.342 51.474	80.055 -23.181 80.137 -23.515 79.423 -23.978	1.00 1.00 1.00	0.00	N N
45	MOTA MOTA	4250 4251 4252	NH1 NH2 N	ARG A ARG A THR A	540 540 541	49.342 51.474 54.971	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280	1.00 1.00 1.00 1.00	0.00 0.00 0.00	N N N
45	MOTA MOTA MOTA	4250 4251 4252 4253	NH1 NH2 N CA	ARG A ARG A THR A	540 540 541 541	49.342 51.474 54.971 55.945	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773	1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00	N N N C
45	MOTA MOTA	4250 4251 4252	NH1 NH2 N	ARG A ARG A THR A	540 540 541 541	49.342 51.474 54.971	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280	1.00 1.00 1.00 1.00	0.00 0.00 0.00	N N N
45	ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254	NH1 NH2 N CA C	ARG ATHR ATHR ATHR A	540 540 541 541 541	49.342 51.474 54.971 55.945 55.965	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00	N N C C
	MOTA MOTA MOTA MOTA	4250 4251 4252 4253 4254 4255	NH1 NH2 N CA C	ARG ARG ATHR ATHR ATHR ATHR A	540 540 541 541 541 541	49.342 51.474 54.971 55.945 55.965 55.590	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992	1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00	N N C C
45 50	ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256	NH1 NH2 N CA C O CB	ARG AARG AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	540 540 541 541 541 541 541	49.342 51.474 54.971 55.945 55.965 55.590 57.366	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00	N N C C O
	MOTA MOTA MOTA MOTA	4250 4251 4252 4253 4254 4255 4256	NH1 NH2 N CA C O CB	ARG ARG ATHR ATHR ATHR ATHR A	540 540 541 541 541 541 541	49.342 51.474 54.971 55.945 55.965 55.590 57.366	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992	1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00	N N C C
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257	NH1 NH2 N CA C O CB OG1	ARG ATHR ATHR ATHR ATHR ATHR ATHR ATHR ATHR	540 540 541 541 541 541 541 541	49.342 51.474 54.971 55.945 55.965 55.590 57.366 57.867	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	и и С С О С
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258	NH1 NH2 N CA C O CB OG1 CG2	ARG ATHR ATHR ATHR ATHR ATHR ATHR ATHR ATHR	540 540 541 541 541 541 541 541	49.342 51.474 54.971 55.945 55.965 57.366 57.867 57.356	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	и и с с о с о
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257	NH1 NH2 N CA C O CB OG1	ARG ATHR ATHR ATHR ATHR ATHR ATHR ATHR ATHR	540 540 541 541 541 541 541 541	49.342 51.474 54.971 55.945 55.965 57.366 57.867 57.356 56.405	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N N C C O C O C
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258 4259	NH1 NH2 N CA C O CB OG1 CG2	ARG ATHR ATHR ATHR ATHR ATHR ATHR ATHR ATHR	540 540 541 541 541 541 541 541 541 541	49.342 51.474 54.971 55.945 55.965 57.366 57.867 57.356	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N N C C O C O C
50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260	NH1 NH2 N CA C O CB OG1 CG2 N CA	ARG ATHR ATHR ATHR ATHR ATHR ATHR ATHR ATHR	540 540 541 541 541 541 541 541 541 541 542	49.342 51.474 54.971 55.945 55.965 57.366 57.867 57.356 56.405 56.517	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783 85.919 -23.213	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N N C C O C O C N C
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261	NH1 NH2 N CA C O CB OG1 CG2 N CA C	ARG ATHR ATHR ATHR ATHR ATHR ATHR ATHR ATHR	540 540 541 541 541 541 541 541 541 542 542 542	49.342 51.474 54.971 55.945 55.965 57.366 57.867 57.356 56.405 56.517 57.974	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783 85.919 -23.213 85.685 -23.579	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N N C C O C O C N C C
50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262	NH1 NH2 N CA C O CB OG1 CG2 N CA	ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	540 540 541 541 541 541 541 541 541 542 542 542 542	49.342 51.474 54.971 55.945 55.965 57.366 57.867 57.356 56.405 56.517 57.974 58.879	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783 85.919 -23.213 85.685 -23.579 86.159 -22.889	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N N C C O C O C N C C O
50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261	NH1 NH2 N CA C O CB OG1 CG2 N CA C	ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	540 540 541 541 541 541 541 541 541 542 542 542 542	49.342 51.474 54.971 55.945 55.965 57.366 57.867 57.356 56.405 56.517 57.974	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783 85.919 -23.213 85.685 -23.579	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N N C C O C O C N C C
50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263	NH1 NH2 N CA C O CB OG1 CG2 N CA C O	ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	540 540 5541 5541 5541 5541 5541 5541 55	49.342 51.474 54.971 55.945 55.965 57.366 57.867 57.356 56.405 56.517 57.974 58.879 56.159	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783 85.919 -23.213 85.685 -23.579 86.159 -22.889 87.373 -23.610	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N N C C O C O C N C C O C
50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264	NH1 NH2 N CA C O CB OG1 CG2 N CA C O CB	ARG A ARG A THR A	540 540 541 541 541 541 541 541 541 542 542 542 542 542 542 542	49.342 51.474 54.971 55.945 55.965 57.366 57.356 56.405 56.517 57.974 58.879 56.159 54.781	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783 85.919 -23.213 85.685 -23.579 86.159 -22.889 87.373 -23.610 87.629 -23.322	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N N C C O C O C O C O C O C O C O C O C
50 55	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265	NH1 NH2 N CA C O CB OG1 CG2 N CA C O CB	ARG ARG ATHR ATHR ATHR ATHR ATHR ATHR ATHR ATHR	540 540 541 541 541 541 541 541 542 542 542 542 542 542 542 542 542 542	49.342 51.474 54.971 55.945 55.965 57.366 57.867 57.356 56.405 56.517 57.974 58.879 56.159 54.781 56.411	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783 85.919 -23.213 85.685 -23.579 86.159 -22.889 87.373 -23.610 87.629 -23.322 87.593 -25.099	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N N C C O C O C O C O C
50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264	NH1 NH2 N CA C O CB OG1 CG2 N CA C O CB	ARG A ARG A THR A	540 540 541 541 541 541 541 541 542 542 542 542 542 542 542 542 542 542	49.342 51.474 54.971 55.945 55.965 57.366 57.356 56.405 56.517 57.974 58.879 56.159 54.781	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783 85.919 -23.213 85.685 -23.579 86.159 -22.889 87.373 -23.610 87.629 -23.322	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N N C C O C O C O C O C O C O C O C O C
50 55	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265	NH1 NH2 N CA C O CB OG1 CG2 N CA C O CB	ARG ARG ATHR ATHR ATHR ATHR ATHR ATHR ATHR ATHR	540 540 5541 5541 5541 5541 5541 5541 55	49.342 51.474 54.971 55.945 55.965 57.366 57.867 57.356 56.405 56.517 57.974 58.879 56.159 54.781 56.411	80.055 -23.181 80.137 -23.515 79.423 -23.978 83.497 -19.280 84.453 -19.773 84.548 -21.289 83.610 -21.992 84.077 -19.317 83.026 -20.151 83.592 -17.874 85.699 -21.783 85.919 -23.213 85.685 -23.579 86.159 -22.889 87.373 -23.610 87.629 -23.322 87.593 -25.099	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N N C C O C O C O C O C
	5 10 15 20 25 30 35 40	10 ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 4208 ATOM 4210 ATOM 4211 ATOM 4211 ATOM 4213 ATOM 4214 ATOM 4215 ATOM 4216 ATOM 4217 ATOM 4218 ATOM 4219 ATOM 4220 ATOM 4221 ATOM 4222 ATOM 4223 ATOM 4224 ATOM 4225 ATOM 4225 ATOM 4225 ATOM 4226 ATOM 4227 ATOM 4228 ATOM 4230 ATOM 4230 ATOM 4230 ATOM 4231 ATOM 4231 ATOM 4233 ATOM 4233 ATOM 4233 ATOM 4233 ATOM 4233 ATOM 4233 ATOM 4233 ATOM 4233 ATOM 4233 ATOM 4233 ATOM 4234 ATOM 4235 ATOM 4236 ATOM 4237 ATOM 4238 ATOM 4238 ATOM 4239 ATOM 4238 ATOM 4239 ATOM 4240 ATOM 4241 ATOM 4242 ATOM 4242 ATOM 4243 ATOM 4243 ATOM 4244 ATOM 4245 ATOM 4245 ATOM 4245 ATOM 4246 ATOM 4247 ATOM 4248	ATOM 4208 CA ATOM 4209 C ATOM 4210 O ATOM 4211 N ATOM 4211 CA ATOM 4213 C ATOM 4214 O ATOM 4215 CB ATOM 4216 CG1 ATOM 4217 CG2 ATOM 4218 N ATOM 4219 CA ATOM 4220 C ATOM 4221 O ATOM 4221 CB ATOM 4222 CB ATOM 4222 CB ATOM 4224 CD ATOM 4224 CD ATOM 4225 OE1 ATOM 4227 N ATOM 4227 N ATOM 4228 CA ATOM 4229 C ATOM 4229 C ATOM 4230 O ATOM 4230 CG ATOM 4231 CB ATOM 4231 CB ATOM 4231 CB ATOM 4232 CG ATOM 4231 CB ATOM 4233 OD1 ATOM 4233 OD1 ATOM 4234 OD2 ATOM 4235 N ATOM 4235 N ATOM 4236 CA ATOM 4237 C ATOM 4238 O ATOM 4237 C ATOM 4238 O ATOM 4239 CB ATOM 4231 CB ATOM 4234 OD2 ATOM 4234 OD2 ATOM 4235 N ATOM 4234 OD2 ATOM 4235 CG ATOM 4234 OD2 ATOM 4235 CB ATOM 4236 CA ATOM 4237 C ATOM 4238 O ATOM 4236 CA ATOM 4237 C ATOM 4238 O ATOM 4236 CA ATOM 4237 C ATOM 4241 N ATOM 4242 CA ATOM 4243 C ATOM 4244 O ATOM 4245 CB ATOM 4245 CB ATOM 4245 CB ATOM 4245 CB ATOM 4246 CG ATOM 4247 CD	ATOM 4208 CA GLY A ATOM 4209 C GLY A ATOM 4210 O GLY A ATOM 4211 N VAL A ATOM 4211 CA VAL A ATOM 4213 C VAL A ATOM 4214 O VAL A ATOM 4215 CB VAL A ATOM 4216 CG1 VAL A ATOM 4217 CG2 VAL A ATOM 4218 N GLU A ATOM 4219 CA GLU A ATOM 4220 C GLU A ATOM 4221 O GLU A ATOM 4221 O GLU A ATOM 4222 CB GLU A ATOM 4222 CB GLU A ATOM 4223 CG GLU A ATOM 4224 CD GLU A ATOM 4224 CD GLU A ATOM 4225 OE1 GLU A ATOM 4226 OE2 GLU A ATOM 4227 N ASP A ATOM 4228 CA ASP A ATOM 4229 C ASP A ATOM 4230 O ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4231 CB ASP A ATOM 4233 OD1 ASP A ATOM 4234 OD2 ASP A ATOM 4235 N SER A ATOM 4236 CA SER A ATOM 4237 C SER A ATOM 4238 O SER A ATOM 4238 CB SER A ATOM 4240 OG SER A ATOM 4241 N ARG A ATOM 4242 CA ARG A ATOM 4242 CA ARG A ATOM 4243 C ARG A ATOM 4244 O ARG A ATOM 4245 CB ARG A ATOM 4244 O ARG A ATOM 4245 CB ARG A ATOM 4247 CD ARG A ATOM 4247 CD ARG A ATOM 4248 NE ARG A	ATOM 4208 CA GLY A 535 ATOM 4209 C GLY A 535 ATOM 4210 O GLY A 535 ATOM 4211 N VAL A 536 ATOM 4211 CA VAL A 536 ATOM 4213 C VAL A 536 ATOM 4214 O VAL A 536 ATOM 4215 CB VAL A 536 ATOM 4216 CG1 VAL A 536 ATOM 4217 CG2 VAL A 536 ATOM 4218 N GLU A 537 ATOM 4219 CA GLU A 537 ATOM 4221 O GLU A 537 ATOM 4222 CB GLU A 537 ATOM 4222 CB GLU A 537 ATOM 4222 CB GLU A 537 ATOM 4222 CB GLU A 537 ATOM 4224 CD GLU A 537 ATOM 4225 OE1 GLU A 537 ATOM 4226 OE2 GLU A 537 ATOM 4226 OE2 GLU A 537 ATOM 4227 N ASP A 538 ATOM 4228 CA ASP A 538 ATOM 4229 C ASP A 538 ATOM 4230 O ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4232 CG ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4232 CG ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4231 CB ASP A 538 ATOM 4234 OD2 ASP A 538 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4238 O SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4238 O SER A 539 ATOM 4238 O SER A 539 ATOM 4236 CA SER A 539 ATOM 4237 C SER A 539 ATOM 4238 O SER A 539 ATOM 4238 O SER A 539 ATOM 4236 CA SER A 539 ATOM 4236 CA SER A 539 ATOM 526 CB SER A 539 ATOM 526 CB SER A 539 ATOM 526 CB SER A 539 ATOM 526 CB SER A 539 ATO	ATOM 4208 CA GLY A 535 41.337 ATOM 4209 C GLY A 535 41.207 ATOM 4211 N VAL A 536 42.056 ATOM 4211 N VAL A 536 42.056 ATOM 4213 C VAL A 536 43.218 ATOM 4214 O VAL A 536 43.218 ATOM 4215 CB VAL A 536 42.041 ATOM 4216 CG1 VAL A 536 42.091 ATOM 4217 CG2 VAL A 536 42.091 ATOM 4218 N GLU A 537 44.378 ATOM 4219 CA GLU A 537 45.590 ATOM 4221 O GLU A 537 46.675 ATOM 4221 O GLU A 537 46.675 ATOM 4222 CB GLU A 537 46.083 ATOM 4223 CG GLU A 537 47.086 ATOM 4226 CD GLU A 537 47.936 ATOM 4227 N ASP A 538 47.126 ATOM 4228 CA ASP A 538 49.147 ATOM 4229 C ASP A 538 49.474 ATOM 4231 CB ASP A 538 49.474 ATOM 4231 CB ASP A 538 49.474 ATOM 4232 CG ASP A 538 49.474 ATOM 4231 CB ASP A 538 49.474 ATOM 4232 CG ASP A 538 49.474 ATOM 4233 CG ASP A 538 49.474 ATOM 4234 OD2 ASP A 538 49.147 ATOM 4237 C SER A 539 50.100 ATOM 4238 CA SER A 539 51.021 ATOM 4237 C SER A 539 50.100 ATOM 4238 CA SER A 539 50.100 ATOM 4237 C SER A 539 50.051 ATOM 4238 CA SER A 539 50.051 ATOM 4239 CB SER A 539 50.051 ATOM 4230 CG ASP A 538 50.100 ATOM 4231 CB ASP A 538 50.100 ATOM 4232 CG ASP A 538 50.100 ATOM 4234 OD2 ASP A 538 50.100 ATOM 4234 OD2 ASP A 538 50.100 ATOM 4235 N SER A 539 50.051 ATOM 4236 CA SER A 539 50.051 ATOM 4237 C SER A 539 50.051 ATOM 4238 C SER A 539 50.051 ATOM 4239 CB SER A 539 50.051 ATOM 4230 CB SER A 539 50.051 ATOM 4231 CB ASP A 538 50.100 ATOM 4234 OD2 ASP A 538 50.100 ATOM 4235 N SER A 539 50.051 ATOM 4236 CA SER A 539 50.051 ATOM 4237 C SER A 539 50.051 ATOM 4238 C SER A 539 50.051 ATOM 4239 CB SER A 539 50.051 ATOM 4230 CB SER A 539 50.051 ATOM 4231 CB ASP A 538 539 50.051 ATOM 4234 OD2 ASP A 538 50.100 ATOM 4236 CA SER A 539 50.051 ATOM 4237 C SER A 539 50.051 ATOM 4236 CA SER A 539 50.051 ATOM 4237 C SER A 539 50.051 ATOM 4236 CA SER A 539 50.051 ATOM 4237 C SER A 539 50.051 ATOM 4238 O SER A 539 50.051 ATOM 4240 OG SER A 539 50.051 ATOM 4241 N ARG A 540 50.1100 ATOM 5245 CB ARG A 540 50.1100	ATOM 4208 CA GLY A 535 41.337 85.223 -18.498 ATOM 4209 C GLY A 535 41.207 84.928 -17.014 ATOM 4210 O GLY A 535 40.351 85.491 -16.330 ATOM 4211 N VAL A 536 42.056 84.035 -16.516 ATOM 4212 CA VAL A 536 42.040 83.669 -15.105 ATOM 4213 C VAL A 536 43.218 84.336 -14.400 ATOM 4215 CB VAL A 536 43.218 84.336 -14.400 ATOM 4215 CB VAL A 536 42.047 82.134 -14.925 ATOM 4216 CG1 VAL A 536 42.091 81.774 -13.448 ATOM 4217 CG2 VAL A 536 42.091 81.774 -13.448 ATOM 4218 N GLU A 537 45.590 84.883 -14.495 ATOM 4219 CA GLU A 537 45.590 84.883 -14.495 ATOM 4220 C GLU A 537 45.590 84.883 -14.495 ATOM 4221 O GLU A 537 46.675 84.972 -15.565 ATOM 4222 CB GLU A 537 47.086 83.956 -16.126 ATOM 4223 CG GLU A 537 47.086 83.956 -16.126 ATOM 4224 CD GLU A 537 47.086 83.956 -16.126 ATOM 4225 OE1 GLU A 537 47.086 83.956 -16.126 ATOM 4226 OE2 GLU A 537 47.094 83.2084 -11.457 ATOM 4227 N ASP A 538 47.126 86.188 -15.863 ATOM 4228 CA ASP A 538 47.126 86.188 -15.863 ATOM 4229 C ASP A 538 47.126 86.188 -15.863 ATOM 4220 C ASP A 538 49.147 85.975 -16.153 ATOM 4231 CB ASP A 538 49.147 85.975 -16.153 ATOM 4232 CG ASP A 538 49.147 87.822 -17.326 ATOM 4231 CB ASP A 538 49.246 86.066 -15.521 ATOM 4232 CG ASP A 538 49.247 87.822 -17.326 ATOM 4231 CB ASP A 538 49.247 87.822 -17.326 ATOM 4232 CG ASP A 538 49.247 87.822 -17.326 ATOM 4233 OD1 ASP A 538 49.247 87.822 -17.326 ATOM 4234 OD2 ASP A 538 49.247 87.822 -17.326 ATOM 4235 N SER A 539 50.051 81.962 -16.521 ATOM 4236 CA SER A 539 50.051 81.962 -15.450 ATOM 4239 CB SER A 539 50.051 81.962 -15.450 ATOM 4230 C SER A 539 50.051 81.962 -15.450 ATOM 4231 C ARG A 540 52.814 82.682 -18.591 ATOM 4234 C ARG A 540 52.814 82.682 -18.591 ATOM 4243 C ARG A 540 53.614 83.775 -19.160 ATOM 4244 O ARG A 540 53.614 83.775 -19.160 ATOM 4244 C CD ARG A 540 50.945 82.418 -20.342 ATOM 4247 C D ARG A 540 50.945 82.418 -20.342 ATOM 4247 C D ARG A 540 50.945 82.418 -20.342 ATOM 4247 C D ARG A 540 50.945 82.418 -20.342	ATOM 4208 CA GLY A 535 41.337 85.223 -18.498 1.00 ATOM 4209 C GLY A 535 41.207 84.928 -17.014 1.00 ATOM 4210 O GLY A 535 40.351 85.491 -16.330 1.00 ATOM 4211 N VAL A 536 42.056 84.035 -16.516 1.00 ATOM 4212 CA VAL A 536 42.040 83.669 -15.105 1.00 ATOM 4213 C VAL A 536 43.078 84.885 -13.307 1.00 ATOM 4214 O VAL A 536 43.078 84.885 -13.307 1.00 ATOM 4215 CB VAL A 536 42.040 83.669 -15.105 1.00 ATOM 4216 CGI VAL A 536 42.040 83.669 -15.105 1.00 ATOM 4217 CG2 VAL A 536 42.041 82.134 -14.925 1.00 ATOM 4218 N GLU A 537 44.378 84.292 -15.046 1.00 ATOM 4219 CA GLU A 537 44.378 84.292 -15.046 1.00 ATOM 4210 C GLU A 537 45.590 84.883 -14.495 1.00 ATOM 4221 O GLU A 537 46.675 84.972 -15.565 1.00 ATOM 4222 CB GLU A 537 47.086 83.956 -16.126 1.00 ATOM 4223 CG GLU A 537 47.086 83.956 -16.126 1.00 ATOM 4224 CD GLU A 537 47.086 83.485 -11.665 1.00 ATOM 4225 OEI GLU A 537 47.086 83.485 -11.665 1.00 ATOM 4226 OE2 GLU A 537 47.936 83.485 -11.665 1.00 ATOM 4227 N ASP A 538 47.128 84.290 -12.893 1.00 ATOM 4226 OE2 GLU A 537 47.936 83.485 -11.665 1.00 ATOM 4227 N ASP A 538 49.153 83.284 -11.457 1.00 ATOM 4228 CA ASP A 538 49.153 83.284 -11.457 1.00 ATOM 4229 C SAP A 538 49.153 83.284 -11.457 1.00 ATOM 4220 C SAP A 538 49.174 87.822 -17.326 1.00 ATOM 4223 O O ASP A 538 49.174 87.822 -17.326 1.00 ATOM 4230 O SAP A 538 49.474 85.975 -16.153 1.00 ATOM 4231 CB ASP A 538 49.474 87.822 -17.326 1.00 ATOM 4233 OD ASP A 538 49.474 87.822 -17.326 1.00 ATOM 4234 OD2 ASP A 538 49.177 87.822 -17.326 1.00 ATOM 4234 OD2 ASP A 538 50.100 88.919 -18.463 1.00 ATOM 4237 C SER A 539 51.021 84.179 -15.598 1.00 ATOM 4238 O SER A 539 51.021 84.179 -15.598 1.00 ATOM 4230 CB SER A 539 50.051 81.962 -15.455 1.00 ATOM 4234 OD ASP A 538 50.100 88.919 -19.466 1.00 ATOM 4234 OD ASP A 538 50.100 88.919 -19.466 1.00 ATOM 4234 OD ASP A 538 50.100 88.919 -19.466 1.00 ATOM 4234 OD ASP A 538 50.100 88.919 -19.466 1.00 ATOM 4234 CD ARG A 540 51.790 83.166 -17.676 1.00 ATOM 4242 CA ARG A 540 51.790 83.166 -17.676 1.00 ATOM 4243 C ARG A 540 50.5184 81.839 -19.706 1.00 ATO	ATOM 4208 CA GLY A 535 41.337 85.223 - 18.498 1.00 0.00

	ATOM	4268	С	ILE A	543	59.896	85.966 -25.866	1.00	0.00	С
	ATOM	4269	0	ILE A	543	59.314	86.226 -26.921	1.00	0.00	0
	ATOM	4270	CB	ILE A	543	59.647	83.466 -26.017	1.00	0.00	С
	ATOM	4271	CG1	ILE A	543	59.334	82.200 -25.208	1.00	0.00	С
5	MOTA	4272	CG2	ILE A	543	61.031	83.380 -26.659	1.00	0.00	С
	ATOM	4273	CD1	ILE A	543	59.377	80.920 -26.014	1.00	0.00	С
	ATOM	4274	N	ILE A	544	60.803	86.769 -25.318	1.00	0.00	N
	ATOM	4275	CA	ILE A		61.184	88.030 -25.937	1.00	0.00	С
	ATOM	4276	С	ILE A		62.405	87.881 -26.835	1.00	0.00	С
10	ATOM	4277	Ö	ILE A		63.512	87.604 -26.371	1.00	0.00	0
	ATOM	4278	СВ	ILE A		61.448	89.105 -24.857	1.00	0.00	C
	ATOM	4279		ILE A		60.187	89.289 -24.007	1.00	0.00	Č
	MOTA	4280		ILE A		61.833	90.427 -25.508	1.00	0.00	Č
						60.306	90.354 -22.939	1.00	0.00	c
15	ATOM	4281		ILE A					0.00	N
15	ATOM	4282	N GP	LEU A		62.183	88.057 -28.132	1.00	0.00	C
	MOTA	4283	CA	LEU A		63.245	87.944 -29.121	1.00		c
	MOTA	4284	С	LEU A		63.407	89.277 -29.850	1.00	0.00	
	MOTA	4285	0	LEU A		62.465	90.060 -29.937	1.00	0.00	0
20	MOTA	4286	CB	LEU A		62.902	86.840 -30.124	1.00	0.00	C
20	MOTA	4287	CG	LEU A		62.592	85.457 -29.537	1.00	0.00	C
	ATOM	4288		LEU A		62.141	84.522 -30.649	1.00	0.00	C
	MOTA	4289	CD2	LEU A		63.828	84.901 -28.829	1.00	0.00	C
	MOTA	4290	N	GLY A	546	64.604	89.530 -30.368	1.00	0.00	N
	MOTA	4291	CA	GLY A	546	64.852	90.770 -31.083	1.00	0.00	С
25	ATOM	4292	С	GLY A	546	66.276	90.850 -31.597	1.00	0.00	C
	MOTA	4293	0	GLY A	546	67.201	90.370 -30.949	1.00	0.00	0
	MOTA	4294	N	GLU A	547	66.454	91.465 -32.761	1.00	0.00	N
	MOTA	4295	CA	GLU A	547	67.777	91.600 -33.364	1.00	0.00	С
	ATOM	4296	С	GLU A	547	68.770	92.241 -32.401	1.00	0.00	С
30	ATOM	4297	0	GLU A	547	69.947	91.881 -32.373	1.00	0.00	0
	MOTA	4298	CB	GLU A	547	67.696	92.459 -34.628	1.00	0.00	C
	MOTA	4299	CG	GLU A	547	66.676	91.990 -35.651	1.00	0.00	C
	MOTA	4300	CD	GLU A		66.538	92.962 -36.812	1.00	0.00	С
	ATOM	4301	OE1	GLU A		67.527	93.141 -37.558	1.00	0.00	0
35	ATOM	4302		GLU A		65.444	93.551 -36.972	1.00	0.00	0
	ATOM	4303	N	ASP A		68.287	93.193 -31.611	1.00	0.00	N
	ATOM	4304	CA	ASP A		69.140	93.901 -30.667	1.00	0.00	С
	ATOM	4305	С	ASP A		69.165	93.319 -29.256	1.00	0.00	C
	ATOM	4306	Ö	ASP A		69.748	93.923 -28.353	1.00	0.00	0
40	MOTA	4307	CB	ASP A		68.720	95.372 -30.590	1.00	0.00	C
	ATOM	4308	CG	ASP A		68.921	96.106 -31.900	1.00	0.00	С
	ATOM	4309		ASP A		70.067	96.147 -32.390	1.00	0.00	0
	ATOM	4310		ASP A		67.933	96.644 -32.439	1.00	0.00	0
	ATOM	4311					92.153 -29.055			N
45	ATOM	4312	CA	ILE A		68.541	91.570 -27.716	1.00	0.00	C
40	ATOM	4313	C	ILE A		68.763	90.060 -27.658	1.00	0.00	Č
				ILE A		69.592		1.00	0.00	ō
	ATOM	4314	0				91.912 -26.980	1.00	0.00	Č
	ATOM	4315	CB	ILE A		67.213	91.348 -25.557	1.00	0.00	C
50	ATOM	4316		ILE A		67.234		1.00	0.00	C
50	ATOM	4317		ILE A		66.027	91.351 -27.743		0.00	C
	ATOM	4318		ILE A		68.310	91.944 -24.678	1.00		
	ATOM	4319	N	LEU A		68.034	89.310 -28.477	1.00	0.00	N
	MOTA	4320	CA	LEU A		68.152	87.853 -28.478	1.00	0.00	C
CC	MOTA	4321	С	LEU A		67.488	87.279 -29.724	1.00	0.00	С
55	ATOM	4322	0	LEU A		66.284	87.430 -29.923	1.00	0.00	0
	MOTA	4323	CB	LEU A		67.479	87.283 -27.226	1.00	0.00	C
	ATOM	4324	CG	LEU A		67.571	85.771 -27.006	1.00	0.00	С
	MOTA	4325		LEU A		69.021	85.384 -26.764	1.00	0.00	C
	MOTA	4326	CD2	LEU A		66.715	85.372 -25.817	1.00	0.00	С
60 .	MOTA	4327	N	PRO A		68.265	86.600 -30.578	1.00	0.00	N
	MOTA	4328	CA	PRO A	551	67.694	86.028 -31.799	1.00	0.00	С

	ATOM	4329	С	PRO .	A 55	1 66.889	84.732	-31.671	1.00	0.00	С
	MOTA	4330	0	PRO .	A 55	1 65.930	84.529	-32.415	1.00	0.00	0
	ATOM	4331	CB	PRO .	A 55	1 68.916	85.867	-32.700	1.00	0.00	С
_	MOTA	4332	CG	PRO .	A 55	1 70.002		-31.730	1.00	0.00	С
5	ATOM	4333	CD	PRO .	A 55	1 69.739		-30.606	1.00	0.00	С
	ATOM	4334	N	SER .				-30.740	1.00	0.00	N
	MOTA	4335	CA	SER .	A 55	2 66.543		-30.601	1.00	0.00	С
	MOTA	4336	С	SER .	A 55	2 66.366	82.135	-29.161	1.00	0.00	С
	ATOM	4337	0	SER .			82.659	-28.243	1.00	0.00	0
10	ATOM	4338	CB	SER .	A 55	2 67.258	81.496	-31.392	1.00	0.00	С
	ATOM	4339	OG	SER	A 55	2 68.563	81.285	-30.886	1.00	0.00	0
	ATOM	4340	N	LYS	A 55	3 65.508	81.135	-28.985	1.00	0.00	N
	ATOM	4341	CA	LYS	A 55	3 65.204	80.589	-27.670	1.00	0.00	С
	ATOM	4342	С	LYS	A 55	3 64.897	79.092	-27.735	1.00	0.00	C
15	ATOM	4343	0	LYS	A 55	3 64.152	78.633	-28.602	1.00	0.00	0
	ATOM	4344	CB	LYS A	A 55	3 63.999		-27.078	1.00	0.00	C
	MOTA	4345	CG	LYS A	A 55	3 63.465		-25.773	1.00	0.00	С
	MOTA	4346	CD	LYS A			80.803	-24.656	1.00	0.00	С
	MOTA	4347	CE	LYS I				-24.264	1.00	0.00	С
20	MOTA	4348	NZ	LYS A				-23.268	1.00	0.00	N
	ATOM	4349	N	HIS			78.334	-26.812	1.00	0.00	N
	ATOM	4350	CA	HIS I	A 55			-26.752	1.00	0.00	С
	MOTA	4351	С	HIS	A 55			-25.857	1.00	0.00	С
0.5	MOTA	4352	0	HIS				-24.808	1.00	0.00	0
25	MOTA	4353	CB	HIS				-26.186	1.00	0.00	С
	ATOM	4354	CG	HIS				-27.143	1.00	0.00	С
	MOTA	4355		HIS A				-27.375	1.00	0.00	N
	ATOM	4356		HIS				-27.904	1.00	0.00	C
20	MOTA	4357		HIS				-28.236	1.00	0.00	C
30	MOTA	4358		HIS				-28.572	1.00	0.00	N
	ATOM	4359	N	VAL				-26.286	1.00	0.00	N
	ATOM	4360	CA	VAL				-25.530	1.00	0.00	C
	ATOM	4361	C	VAL				-25.532	1.00	0.00	С
25	ATOM	4362	0	VAL				-26.490	1.00	0.00	0
35	ATOM	4363	CB	VAL				-26.160	1.00	0.00	C
	ATOM	4364		VAL				-26.092	1.00	0.00	C
	ATOM	4365		VAL A				-27.591 -24.466	1.00	0.00	C N
	ATOM	4366	N G7	VAL A				-24.466	1.00	0.00	C
40	MOTA	4367 4368	CA	VAL				-24.344	1.00	0.00	C
40	ATOM		C	VAL				-23.923	1.00	0.00	0
	MOTA MOTA	4369 4370	O CB	VAL A				-23.286	1.00	0.00	c
	ATOM	4370		VAL				-23.200	1.00	0.00	C
	ATOM	4372		VAL				-23.704	1.00		c
45	ATOM	4372	N N	MET A				-24.591	1.00	0.00	N
40	ATOM	4374	CA	MET A				-24.244	1.00	0.00	c
	ATOM	4375	C	MET A				-23.576	1.00	0.00	c
	ATOM	4376	0	MET A				-23.966	1.00	0.00	Ö
	ATOM	4377	CB	MET A				-25.492	1.00	0.00	c
50	ATOM	4378	CG	MET A				-25.760	1.00	0.00	c
00	ATOM	4379	SD	MET A				-25.908	1.00	0.00	S
	ATOM	4380	CE	MET A				-27.418	1.00	0.00	Č
	ATOM	4381	N	HIS				-22.564	1.00	0.00	N
	ATOM	4382	CA	HIS A				-21.866	1.00	0.00	C
55	ATOM	4383	C	HIS				-22.085	1.00	0.00	Č
-	ATOM	4384	Ö	HIS				-22.082	1.00	0.00	Ō
	ATOM	4385	СВ	HIS				-20.364	1.00	0.00	Č
	ATOM	4386	CG	HIS				-19.558	1.00	0.00	Č
	ATOM	4387		HIS				-18.599	1.00	0.00	N
60	ATOM	4388		HIS				-19.570	1.00	0.00	Ċ
	ATOM	4389		HIS				-18.054	1.00	0.00	C
				•					-		