Следствие 2.2. Из условия совпадения прямых: $l_1 = l_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \lambda \neq 0$ следует, что общее уравнение прямой определено с точностью до константы: l: Ax + By + C = 0 и $l: \lambda Ax + \lambda By + \lambda C = 0 \; (\lambda \neq 0)$.

НЕПОЛНОЕ УРАВНЕНИЕ ПРЯМОЙ

Определение 2.8. Общее уравнение прямой l: Ax + By + C = 0 ($A^2 + B^2 \neq 0$) называем НЕПОЛНЫМ если хотя бы один из коэффициентов A, B, C равен нулю.

Из-за условия $A^2 + B^2 \neq 0$ может быть пять случаев НЕПОЛНЫХ уравнений:

- (a) $A = 0, B, C \neq 0$;
- (b) $B = 0, A, C \neq 0$;
- (c) $C = 0, A, B \neq 0$;
- (d) $A, C = 0, B \neq 0$;
- (e) $B, C = 0, A \neq 0$.

Рассмотрим вопрос о взаиморасположении прямой l относительно системы координат OXY в каждом отдельном случае.

- (a) A=0 и $B, C \neq 0 \Rightarrow$ направляющий вектор $\bar{a}=\{-B,0\} \Rightarrow \bar{a} \parallel \bar{e}_1 \Rightarrow l \parallel OX;$
- (b) B=0 и $A, C \neq 0 \Rightarrow$ направляющий вектор $\bar{a} = \{0, A\} \Rightarrow \bar{a} \parallel \bar{e}_2 \Rightarrow l \parallel OY$;
- (c) C=0 и $A,B\neq 0\Rightarrow l$: $Ax+By=0\Rightarrow (\bullet)O(0,0)\in l\Rightarrow l$ проходит через начало координат;
 - (d) A, C = 0 и $B \neq 0$. Из (a) и (c) $\Rightarrow l$ совпадает с осью OX;
 - (e) B, C = 0 и $A \neq 0$. Из (b) и (c) $\Rightarrow l$ совпадает с осью OY.

2.3 Уравнение пучка прямых

Определение 2.9. Пучком прямых на плоскости называем множество <u>всех</u> прямых, проходящих через заданную точку $M_0(x_0, y_0)$, которую называем центром пучка (см. $puc.\ a$).

puc. a

puc. e

Пучок прямых можно также задать некоторыми двумя прямыми из пучка l_1 и l_2 :

$$l_1: A_1x + B_1y + C_1 = 0 \ (A_1^2 + B_1^2 \neq 0)$$

$$l_2: A_2x + B_2y + C_2 = 0 \quad (A_2^2 + B_2^2 \neq 0)$$

Т.к. l_1 , l_2 из пучка, то, очевидно, $l_1 \neq l_2$ и $l_1 \not \mid l_2$. Такие прямые иногда называют ОПРЕ-ДЕЛЯЮЩИМИ прямыми пучка (см. puc. e).

Описание всех прямых пучка доставляется теоремой

Теорема 2.2. Если l_1 , l_2 есть определяющие прямые пучка, то уравнение

$$\lambda(A_1x + B_1y + C_1) + \mu(A_2x + B_2y + C_2) = 0,$$

где $\lambda, \mu \in \mathbb{R}$ и $\lambda^2 + \mu^2 \neq 0$ (7)

задает любую прямую из пучка и только её.

Доказательство. 1° Необходимость. Доказываем, что (7) есть уравнение любой прямой из пучка.

(а) Сначала покажем, что (7) есть уравнение прямой. Для этого перепишем уравнение

$$(\lambda A_1 + \mu A_2)x + (\lambda B_1 + \mu B_2)y + (\lambda C_1 + \mu C_2) = 0 \quad (7)'$$

Вводим обозначения:

$$A = \lambda A_1 + \mu A_2;$$

$$B = \lambda B_1 + \mu B_2;$$

$$C = \lambda C_1 + \mu C_2;$$

Покажем, что $A^2 + B^2 \neq 0$, т.е. (7)' и, следовательно, (7) есть линейное уравнение и l – прямая. Предположим противное:

$$A = 0 \Rightarrow \lambda A_1 + \mu A_2 = 0 B = 0 \Rightarrow \lambda B_1 + \mu B_2 = 0$$

Рассмотрим это как систему двух уравнений с двумя неизвестными λ и μ . Определитель

системы
$$d = \begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix} \neq 0$$
. Действительно, в противном $A_1B_2 - A_2B_1 = 0 \Rightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} \Rightarrow l_1 \parallel l_2$

или $l_1 = l_2$. Противоречие с условием, что эти прямые из пучка. Следовательно $A^2 + B^2 \neq 0$, т.е. (7)' (и (7)) есть уравнение прямой.

(в) Докажем, что уравнение (7) описывает прямые из пучка. Действительно, если точка M_0 есть центр пучка: $M_0 = l_1 \cap l_2$, то

$$A_1x_0 + B_1y_0 + C_1 = 0$$

$$A_2x_0 + B_2y_0 + C_2 = 0$$

и получаем тожество: $\lambda(A_1x_0+B_1y_0+C_1)+\mu(A_2x_0+B_2y_0+C_2)=\lambda\cdot 0+\mu\cdot 0\equiv 0$, т.е. любая прямая l задаваемая (7) проходит через точку M_0 , что значит l принадлежит пучку.

2° Достаточность. Здесь доказываем что любую прямую из пучка можно записать в виде (7). Пусть l произвольная прямая из пучка, а l_1, l_2 определяющие прямые пучка.

$$l: Ax + By + C = 0$$
 $(A^2 + B^2 \neq 0)$ (a)

$$l_1: A_1x + B_1y + C_1 = 0 \quad (A_1^2 + B_1^2 \neq 0) \quad (b)$$

 $l_2: A_2x + B_2y + C_2 = 0 \quad (A_2^2 + B_2^2 \neq 0) \quad (c)$

$$l_2: A_2x + B_2y + C_2 = 0 \quad (A_2^2 + B_2^2 \neq 0) \quad (C_2^2)$$

Из (a) вычтем (b) и (c) умноженное на λ и μ , соответственно:

$$Ax + By + C - \lambda(A_1x + B_1y + C_1) - \mu(A_2x + B_2y + C_2) = 0$$
 \Longrightarrow

$$(A - \lambda A_1 - \mu A_2)x + (B - \lambda B_1 - \mu B_2)y + (C - \lambda C_1 - \mu C_2) = 0 \quad (*)$$

Определим вспомогательную систему:

$$\lambda A_1 + \mu A_2 = A
\lambda B_1 + \mu B_2 = B$$

Т.к. l_1 , l_2 определяющие прямые пучка ($l_1 \not\parallel l_2$, $l_1 \neq l_2$), то, как отметилось в 1°, определитель системы $d = A_1 B_2 - A_2 B_1 \neq 0$ и по Крамеру эта система имеет единственное решение $\lambda_0, \; \mu_0 \;$ и оно НЕ нулевое. Действительно, в противном: $\lambda_0 = \mu_0 = 0 \Rightarrow A = B = 0$, что противоречит условию $A^2+B^2 \neq 0$. По определению решения линейной системы:

$$\lambda_0 A_1 + \mu_0 A_2 = A$$
$$\lambda_0 B_1 + \mu_0 B_2 = B$$

Подставляем в (*): $(A - \lambda_0 A_1 - \mu_0 A_2)x + (B - \lambda_0 B_1 - \mu_0 B_2)y + (C - \lambda_0 C_1 - \mu_0 C_2) =$ $= 0 \cdot x + 0 \cdot y + (C - \lambda_0 C_1 - \mu_0 C_2) = C - \lambda_0 C_1 - \mu_0 C_2 = 0 \Rightarrow C = \lambda_0 C_1 + \mu_0 C_2.$

Итак, найдены такие λ_0 и μ_0 ($\lambda_0^2 + \mu_0^2 \neq 0$), что:

$$\lambda_0 A_1 + \mu_0 A_2 = A
\lambda_0 B_1 + \mu_0 B_2 = B
\lambda_0 C_1 + \mu_0 C_2 = C$$

Поэтому уравнение любой прямой из пучка можно записать в виде:

$$l\colon Ax+By+C=(\lambda_0A_1+\mu_0A_2)x+(\lambda_0B_1+\mu_0B_2)y+(\lambda_0C_1+\mu_0C_2)=0$$
 или

$$l: \lambda_0(A_1x + B_1y + C_1) + \mu_0(A_2x + B_2y + C_2) = 0,$$

т.е. показано, что любую прямую из пучка можно задать уравнением (7).

Уравнение пучка прямых (7) получено в предположении, что пучок задан определяющими прямыми l_1 и l_2 . Пусть теперь пучок определен координатами x_0,y_0 центра пучка

 $M_0(x_0; y_0)$. В этом случае уравнение пучка можно получить из (7) следующим образом. Пусть прямые $l_1 \parallel OY, l_2 \parallel OX$ и проходят через точку $M_0(x_0;y_0)$ (см. рис.) Общие уравнения этих прямых есть:

$$l_1$$
: $x - x_0 = 0$,

$$l_2$$
: $y - y_0 = 0$.

Считаем эти прямые образующими пучка и подставляем их уравнения в (7):

$$\lambda(x - x_0) + \mu(y - y_0) = 0.$$

В этой записи обычно полагают $\lambda = A$ и $\mu = B$. Тогда уравнение пучка прямых относительно заданного центра $M_0(x_0; y_0)$ записывают в виде:

$$A(x - x_0) + B(y - y_0) = 0$$
 (7)

Далее, если в $(\tilde{7})$ считать, что $B \neq 0$ то из $(\tilde{7})$ следует $y-y_0 = -\frac{A}{B}(x-x_0)$ и полагая $k = -\frac{A}{B}$ получаем

$$y - y_0 = k(x - x_0)$$
 ($\tilde{7}$)' – уравнение пучка «через угловой коэффициент».

Замечание 2.6. Уравнение пучка прямых «через угловой коэффициент» описывает все прямые из пучка кроме прямой $l_1 \colon x - x_0 = 0$ для которой B = 0. В уравнении $(\tilde{7})'$ смысл коэффициента k как k=tgarphi, где arphi – угол наклона прямой из пучка к оси OX, имеет смысл только для ПРЯМОУГОЛЬНОЙ системы OXY.

В рамках темы «уравнения прямой на плоскости» сформулируем следующую задачу:

 $\overline{\Pi ext{yctb}}$ в ПРЯМОУГОЛЬНОЙ декартовой системе координат $OXY \sim \{O, \overline{i}, \overline{j}\}$ задана прямая общим уравнением $l\colon Ax+By+C=0$ и некоторая точка $M^*(x^*,y^*)$ на плоскости. Требуется вывести формулу для расстояния d от точки M^* до прямой l.

Решение

Возьмем на l некоторую точку $M_0(x_0, y_0)$: $Ax_0 + By_0 + C = 0$. Направляющий вектор \bar{a} прямой есть: $\bar{a} = \{-B, A\}$. На векторах \bar{a} и $\overline{M_0 M^*}$ образуем параллелограмм (см. рис).

Пусть его площадь S. Тогда $d=\frac{S}{|\bar{a}|}.$ Значение S можно «вытащить» из 1-го свойства векторного произведения: $S=|[\bar{a},b]|$, но векторное произведение $[\bar{a},b]$ определенно для векторов в ПРО-СТРАНСТВЕ. Чтобы воспользоваться этим определением, будем считать, что векторы $\overline{M_0M^*}=\{x^*-x_0,y^*-y_0\}$ и $\bar{a}=\{-B,A\}$ рассматриваются в пространстве: $\overline{M_0M^*}=\{x^*-x_0,y^*-y_0,0\}$ и

$$ar{a} = \{-B, A, 0\}$$
. Тогда $[\overline{M_0 M^*}, ar{a}] = \begin{vmatrix} ar{i} & ar{j} & ar{k} \\ x^* - x_0 & y^* - y_0 & 0 \\ -B & A & 0 \end{vmatrix} = (A(x^* - x_0) + B(y^* - y_0))ar{k}$ и $S = |A(x^* - x_0) + B(y^* - y_0)| = |Ax^* + By^* + (-Ax_0 - By_0)| = |Ax^* + By^* + C|$

Т.к. $|\bar{a}| = \sqrt{A^2 + B^2}$ то искомая формула есть:

$$d = \frac{|Ax^* + By^* + C|}{\sqrt{A^2 + B^2}}$$