Classification of simple weight modules for the Neveu-Schwarz algebra with a finite-dimensional weight space

Xiufu Zhang ¹, Zhangsheng Xia ²

- 1. School of Mathematical Sciences, Xuzhou Normal University, Xuzhou 221116, China
 - 2. School of Sciences, Hubei University for Nationalities, Enshi 445000, China

Abstract

We show that the support of a simple weight module over the Neveu-Schwarz algebra, which has an infinite-dimensional weight space, coincides with the weight lattice and that all non-trivial weight spaces of such module are infinite-dimensional. As a corollary we obtain that every simple weight module over the Neveu-Schwarz algebra, having a non-trivial finite-dimensional weight space, is a Harish-Chandra module (and hence is either a highest or lowest weight module, or else a module of the intermediate series). This result generalizes a theorem which was originally given on the Virasoro algebra.

2000 Mathematics Subject Classification: 17B10, 17B65, 17B68

Keywords: Neveu-Schwarz algebra, weight module, Harish-Chandra module.

1. Introduction

It is well known that the Virasoro algebra Vir plays a fundamental role in twodimensional conformal quantum field theory. As the super-generalization, there are two super-Virasoro algebras called the Neveu-Schwarz algebra and the Ramondalgebra corresponding to $N=\frac{1}{2}$ and N=1 super-conformal field theory respectively. Let $\theta=\frac{1}{2}$ or 0 which corresponds to the Neveu-Schwarz case or the Ramond case respectively. The super-Virasoro algebra $SVir(\theta)$ is the Lie superalgebra $SVir(\theta)=SVir_{\bar{1}}$, where $SVir_{\bar{0}}$ has a basis $\{L_n,c\mid n\in\mathbb{Z}\}$ and $SVir_{\bar{1}}$ has a basis

^{*} Supported by the National Natural Science Foundation of China (No. 10931006).

^{**} Email: xfzhang@xznu.edu.cn; xzsw8577@163.com

 $\{G_r \mid r \in \theta + \mathbb{Z}\}\$, with the commutation relations

$$[L_m, L_n] = (n - m)L_{n+m} + \delta_{m+n,0} \frac{m^3 - m}{12}c,$$

$$[L_m, G_r] = (r - \frac{m}{2})G_{m+r},$$

$$[G_r, G_s] = 2L_{r+s} + \frac{4r^2 - 1}{12}\delta_{r+s,0}c,$$

$$[SVir_{\bar{0}}, c] = 0 = [SVir_{\bar{1}}, c],$$

for $m, n \in \mathbb{Z}, r, s \in \theta + \mathbb{Z}$.

The subalgebra $\mathfrak{h} = \mathbb{C}L_0 \oplus \mathbb{C}c$ is called the *Cartan subalgebra* of $SVir(\theta)$. An \mathfrak{h} -diagonalizable $SVir(\theta)$ -module is usually called a weight module. If M is a weight module, then M can be written as a direct sum of its weight spaces, $M = \bigoplus M_{\lambda}$, where $M_{\lambda} = \{v \in M | L_0v = \lambda(L_0)v, cv = \lambda(c)v\}$. We call $\{\lambda | M_{\lambda} \neq 0\}$ the support of M and is denoted by supp(M). A weight module is called Harish-Chandra module if each weight space is finite-dimensional.

In [1], [2], [3], [7], the unitary modules, the Verma modules, the Fock modules and the Harish-Chadra modules over $SVir(\theta)$ are studied. In this paper, we try to give the classification of simple weight modules for the Neveu-Schwarz algebra with a finite-dimensional weight space. Our main result generalizes a theorem which was originally given on the Virasoro algebra in [6].

For convenience, we denote the Neveu-Schwarz algebra by NS instead of $SVir(\frac{1}{2})$ and we define

$$E_k = \begin{cases} L_k, & \text{if } k \in \mathbb{Z}, \\ G_k, & \text{if } k \in \frac{1}{2} + \mathbb{Z}. \end{cases}$$

Suppose M is a simple weight NS-module, then c acts on M by a scalar and M can be written as a direct sum of its weight spaces, $M = \bigoplus M_{\lambda}$, where $M_{\lambda} = \{v \in M | L_0 v = \lambda v\}$. Obviously, if $\lambda \in \text{supp}(M)$, then $\text{supp}(M) \subseteq \{\lambda + k | k \in \frac{\mathbb{Z}}{2}\}$, the weight lattice. Two elements $i, j \in \{\lambda + k | k \in \frac{\mathbb{Z}}{2}\}$ are called adjacent if $|i - j| = \frac{1}{2}$, otherwise, unadjacent.

In this paper, our main result is the following theorem:

Theorem 1. Let M be a simple weight NS-module. Assume that there exists $\lambda \in \mathbb{C}$ such that $\dim M_{\lambda} = \infty$. Then $supp(M) = \lambda + \frac{\mathbb{Z}}{2}$ and for each $k \in \frac{\mathbb{Z}}{2}$ we have $\dim(M_{\lambda+k}) = \infty$.

In [7], Y. Su proved the following result which generalizes a theorem originally given as a conjecture by Kac in [4] on the Virasoro algebra and proved by Mathieu in [5].

Theorem 2. A Harish-Chandra module over $SVir(\theta)$ is either a highest or lowest weight module, or else a module of the intermediate series.

By Theorem 1 and 2, we get the following corollaries immediately:

Corrollary 3. Let M be a simple weight NS—module. Assume that there exists $\lambda \in \mathbb{C}$ such that $0 < \dim M_{\lambda} < \infty$. Then M is a Harish-Chandra module. Consequently, M is either a highest or lowest weight module, or else a module of the intermediate series.

A weight NS-module, M, is called *mixed* module if there exist $\lambda \in \mathbb{C}$ and $k \in \frac{\mathbb{Z}}{2}$ such that $\dim M_{\lambda} = \infty$ and $\dim M_{\lambda+k} < \infty$.

Corrollary 4. There are no simple mixed NS-modules.

2. Proof of the Theorem 1

Noting that $\{G_{-\frac{3}{2}}, G_{-\frac{1}{2}}, G_{\frac{1}{2}}, G_{\frac{3}{2}}\}$ is a set of generators of NS, we have the following fact immediately:

Principal Fact: Assume that there exists $\mu \in \mathbb{C}$ and $0 \neq v \in M_{\mu}$, such that $G_{\frac{1}{2}}v = G_{\frac{3}{2}}v = 0$ or $G_{-\frac{1}{2}}v = G_{-\frac{3}{2}}v = 0$. Then M is a Harish-Chandra NS-module.

Lemma 1. If there are $\mu, \mu' \in \{\lambda + k | k \in \frac{\mathbb{Z}}{2}\}$ such that $\dim M_{\mu} < \infty$ and $\dim M_{\mu'} < \infty$, then μ, μ' are adjacent.

Proof. Suppose that there exist two unadjacent elements in $\{\lambda + k | k \in \frac{\mathbb{Z}}{2}\}$ correspond to finite-dimensional weight spaces or trivial vector spaces in M. Without loss of generality, we may assume that $\dim M_{\lambda+\frac{1}{2}} < \infty$ and $\dim M_{\lambda+k} < \infty$, where $k \in \{\frac{3}{2}, 2, \frac{5}{2}, 3, \cdots\}$. Let V denote the intersection of the kernels of the linear maps:

$$G_{\frac{1}{2}}: M_{\lambda} \to M_{\lambda + \frac{1}{2}},$$

and

$$E_k: M_{\lambda} \to M_{\lambda+k}$$
.

Since $\dim M_{\lambda}=\infty, \dim M_{\lambda+\frac{1}{2}}<\infty$, we know that the kernel $kerG_{\frac{1}{2}}$ of $G_{\frac{1}{2}}:M_{\lambda}\to M_{\lambda+\frac{1}{2}}$ is infinite dimensional. Since $\dim M_{\lambda+k}<\infty$, we also have that the kernel of $E_k|_{kerG_{\frac{1}{2}}}:kerG_{\frac{1}{2}}\to M_{\lambda+k}$ is infinite dimensional. That is $\dim V=\infty$.

Since

$$[G_{\frac{1}{2}}, E_l] = \begin{cases} 2L_{\frac{1}{2}+l}, & \text{if } l \in \frac{1}{2} + \mathbb{N}, \\ (\frac{l}{2} - \frac{1}{2})G_{\frac{1}{2}+l}, & \text{if } l \in \mathbb{Z}_+ \setminus \{1\} \end{cases}$$

is nonzero, we get that

$$E_l V = 0, \ \forall l = \frac{1}{2}, k, k + \frac{1}{2}, k + 1, \cdots$$
 (1)

If $k = \frac{3}{2}$ then there exists $0 \neq v \in V$ such that $G_{\frac{3}{2}}v = 0$, and M would be a Harish-Chandra module by the Principal Fact, a contradiction. Thus $k > \frac{3}{2}$ and $\dim G_{\frac{3}{2}}V = \infty$. Since $\dim M_{\lambda + \frac{1}{2}} < \infty$, there exists $0 \neq w \in G_{\frac{3}{2}}V$ such that $L_{-1}w = 0$.

Suppose $w = G_{\frac{3}{2}}u$ for some $u \in V$. For all $l \geq k > \frac{3}{2}$, using (1) we have

$$E_{l}w = E_{l}G_{\frac{3}{2}}u = \begin{cases} -G_{\frac{3}{2}}E_{l}u + [E_{l}, G_{\frac{3}{2}}]u = 0, & \text{if } k \in \frac{1}{2} + \mathbb{Z}_{+}, \\ G_{\frac{3}{2}}E_{l}u + [E_{l}, G_{\frac{3}{2}}]u = 0, & \text{if } k \in \mathbb{Z}_{+}. \end{cases}$$

Hence

$$E_l w = 0, \ \forall l = -1, k, k + \frac{1}{2}, k + 1. \cdots$$

Since $[L_{-1}, E_l] \neq 0$ for all $l \geq \frac{3}{2}$, inductively, we get

$$E_l w = 0, \ \forall l = \frac{1}{2}, 1, \frac{3}{2}, 2, \cdots.$$

Hence M is a Harish-Chandra module by the Principal Fact. A contradiction. Then the lemma follows.

By Lemma 1, we see that there exist at most two elements in $\{\lambda + k | k \in \frac{\mathbb{Z}}{2}\}$ which correspond to finite-dimensional weight spaces or trivial vector spaces in M. Moreover, if there are two, then they are adjacent.

Lemma 2. (i) Let $0 \neq v \in M$ be such that $G_{\frac{1}{2}}v = 0$. Then

$$(\frac{1}{2}L_1G_{\frac{1}{2}} - G_{\frac{3}{2}})G_{\frac{3}{2}}v = 0.$$

(ii) Let $0 \neq w \in M$ be such that $G_{-\frac{1}{2}}w = 0$. Then

$$\left(\frac{1}{2}L_{-1}G_{-\frac{1}{2}} + G_{-\frac{3}{2}}\right)G_{-\frac{3}{2}}w = 0.$$

Proof. Note that $L_1v = G_{\frac{1}{2}}G_{\frac{1}{2}}v = 0$, $L_{-1}w = G_{-\frac{1}{2}}G_{-\frac{1}{2}}w = 0$, we can easily check by a direct calculation that Lemma 2 holds.

Lemma 3. Let M be a simple weight NS-module satisfying $\dim M_{\mu} < \infty$ and $\dim M_{\mu+\frac{1}{2}} < \infty$. Then $\mu \in \{-1, \frac{1}{2}\}$.

Proof. Let V be the kernel of $G_{\frac{1}{2}}: M_{\mu-\frac{1}{2}} \to M_{\mu}$. Since $\dim M_{\mu-\frac{1}{2}} = \infty$ and $\dim M_{\mu} < \infty$, we see that $\dim V = \infty$. For any $0 \neq v \in V$, consider the element $G_{\frac{3}{2}}v$. By the Principal Fact, $G_{\frac{3}{2}}v = 0$ would imply that M is a Harish-Chandra module, a contradiction. Hence $G_{\frac{3}{2}}v \neq 0$, in particular, $\dim G_{\frac{3}{2}}V = \infty$. This implies that there exists $w \in G_{\frac{3}{2}}V$ such that $w \neq 0$ and $G_{-\frac{1}{2}}w = 0$ since $\dim M_{\mu+\frac{1}{2}} < \infty$. From Lemma 2 we have $(\frac{1}{2}L_1G_{\frac{1}{2}}-G_{\frac{3}{2}})w = 0$. In particular, we have $L_{-1}G_{-\frac{1}{2}}(\frac{1}{2}L_1G_{\frac{1}{2}}-G_{\frac{3}{2}})w = 0$. By a direct calculation we obtain

$$L_{-1}G_{-\frac{1}{2}}(\frac{1}{2}L_1G_{\frac{1}{2}} - G_{\frac{3}{2}}) \equiv 2L_0^2 - 3L_0 \mod U(NS)G_{-\frac{1}{2}}.$$

But $w \in M_{\mu+1}$, which means $L_0w = (\mu+1)w$ and hence

$$2(\mu+1)^2 - 3(\mu+1) = 0.$$

So $\mu \in \{-1, \frac{1}{2}\}.$

From Lemma 3 we know that if M has two finite dimension weight spaces, then they must be M_{-1} , $M_{-\frac{1}{2}}$ or $M_{\frac{1}{2}}$, M_1 .

Lemma 4. $\mu \neq -1$ and $\mu \neq \frac{1}{2}$.

Proof. By the symmetry, we need only to prove that $\mu \neq \frac{1}{2}$. Let V be the kernel of $G_{\frac{1}{2}}: M_0 \to M_{\frac{1}{2}}$. Then $\dim V = \infty$. For $v \in V$, using $G_{\frac{1}{2}}v = L_0v = 0$, we have

$$G_{\frac{1}{2}}G_{-\frac{1}{2}}v = 2L_0v - G_{-\frac{1}{2}}G_{\frac{1}{2}}v = 0.$$
 (2)

If $G_{-\frac{1}{2}}V$ were infinite-dimensional, there would exists $0 \neq w \in G_{-\frac{1}{2}}V$ such that $G_{\frac{1}{2}}w = 0$ (by (2)) and $G_{\frac{3}{2}}w = 0$ (since $\dim M_1 < \infty$). Then the Principal Fact would then imply that M is a Harish-Chandra module, a contradiction. Hence

$$\dim G_{-\frac{1}{2}}V < \infty.$$

This means that the kernel W of the linear map

$$G_{-\frac{1}{2}}:V\to M_{-\frac{1}{2}}$$

is infinite-dimensional. For every $x \in W$ we have

$$G_{\frac{1}{2}}G_{-\frac{3}{2}}x = 2L_{-1}x - G_{-\frac{3}{2}}G_{\frac{1}{2}}x = 0.$$
(3)

If there exists $0 \neq x \in W$ such that $G_{-\frac{3}{2}}x = 0$, then we would have $G_{-\frac{3}{2}}x = G_{-\frac{1}{2}}x = 0$ and the Principal Fact would imply that M is a Harish-Chandra module, a contradiction. Thus

$$\dim G_{-\frac{3}{2}}W = \infty.$$

Let H denote the kernel of the linear map $L_2: G_{-\frac{3}{2}}W \to M_{\frac{1}{2}}$. Since $\dim G_{-\frac{3}{2}}W = \infty$ and $\dim M_{\frac{1}{2}} < \infty$, we have $\dim H = \infty$. For every $y \in H$, we also have $G_{\frac{1}{2}}y = 0$ by (3), implying by induction that $E_k H = 0$ for all $k = \frac{1}{2}, 1, 2, \frac{5}{2}, 3, \frac{7}{2}, 4, \cdots$. If $G_{\frac{3}{2}}h = 0$ for some $0 \neq h \in H$, then the Principal Fact implies that M is a Harish-Chandra module, a contradiction. Hence

$$\dim G_{\frac{3}{2}}H = \infty.$$

For every $h \in H$ and $k \geq 2$, we have

$$E_k G_{\frac{3}{2}} h = \begin{cases} 2L_{\frac{3}{2}+k} h - G_{\frac{3}{2}} G_k h = 0, & \text{if } k \in \frac{1}{2} + \mathbb{Z}_+, \\ (\frac{3}{2} - \frac{k}{2}) G_{\frac{3}{2}+k} h + G_{\frac{3}{2}} L_k h = 0, & \text{if } k \in \mathbb{Z}_+. \end{cases}$$

Hence

$$E_k G_{\frac{3}{2}} h = 0, \ \forall k = 2, \frac{5}{2}, 3, \frac{7}{2}, 4, \frac{9}{2}, \cdots$$
 (4)

Let, finally, K denote the infinite-dimensional kernel of the linear map

$$G_{\frac{1}{2}}: G_{\frac{3}{2}}H \to M_{\frac{1}{2}}.$$

If $G_{\frac{3}{2}}z=0$ for some $0 \neq z \in K$, then the Principal Fact implies that M is a Harish-Chandra module, a contradiction. Hence $G_{\frac{3}{2}}z \neq 0, \forall 0 \neq z \in K$. For every $z \in K$ and $k \geq 2$, by (4), we have $\dim G_{\frac{3}{2}}K = \infty$ and

$$E_k G_{\frac{3}{2}} z = \begin{cases} 2L_{\frac{3}{2}+k} z - G_{\frac{3}{2}} G_k z = 0, & \text{if } k \in \frac{1}{2} + \mathbb{Z}_+, \\ (\frac{3}{2} - \frac{k}{2}) G_{\frac{3}{2}+k} z + G_{\frac{3}{2}} L_k z = 0. & \text{if } k \in \mathbb{Z}_+. \end{cases}$$

Hence $E_k G_{\frac{3}{2}}K = 0$ for all $k \geq 2$. At the same time, since $\dim G_{\frac{3}{2}}K = \infty$ and $\dim M_1 < \infty$, we can choose some $0 \neq t \in G_{\frac{3}{2}}K$ such that $G_{-\frac{1}{2}}t = 0$, by induction, we get $E_i t = 0$ for all i > 0 and thus M is a Harish-Chandra module by the Principal Fact. This last contradiction completes the proof of lemma 4.

By lemma 1, Lemma 3 and Lemma 4, we get the following lemma immediately:

Lemma 5. There is at most one element $\mu \in \{\lambda + k | k \in \frac{\mathbb{Z}}{2}\}$ such that $\dim M_{\mu} < \infty$.

Now the proof of Theorem 1 follows from the following Lemma:

Lemma 6. There is no $\mu \in \{\lambda + k | k \in \frac{\mathbb{Z}}{2}\}$ such that $\dim M_{\mu} < \infty$.

Proof. Suppose that $\dim M_{\mu} < \infty$ and $\dim M_{\nu} = \infty$ for all $\mu \neq \nu \in \{\lambda + k | k \in \frac{\mathbb{Z}}{2}\}$. Define

$$V = ker(G_{\frac{1}{2}}: M_{\mu-\frac{1}{2}} \to M_{\mu}) \cap ker(G_{\frac{1}{2}}G_{-\frac{3}{2}}G_{\frac{3}{2}}: M_{\mu-\frac{1}{2}} \to M_{\mu}) \cap ker(L_{-1}G_{\frac{3}{2}}: M_{\mu-\frac{1}{2}} \to M_{\mu}),$$

$$W = ker(G_{-\frac{1}{2}}: M_{\mu + \frac{1}{2}} \to M_{\mu}) \cap ker(G_{-\frac{1}{2}}G_{\frac{3}{2}}G_{-\frac{3}{2}}: M_{\mu - \frac{1}{2}} \to M_{\mu}) \cap ker(L_1G_{-\frac{3}{2}}: M_{\mu - \frac{1}{2}} \to M_{\mu}).$$

Since $\dim M_{\mu-\frac{1}{2}}=\infty$ and $\dim M_{\mu}<\infty$, V is a vector subspace of finite codimension in $M_{\mu-\frac{1}{2}}$. Since $\dim M_{\mu+\frac{1}{2}}=\infty$ and $\dim M_{\mu}<\infty$, W is a vector subspace of finite codimension in $M_{\mu+\frac{1}{2}}$. In order not to get a direct contradiction using the Principal Fact, we assume that $G_{\frac{3}{2}}v\neq 0$ for all $0\neq v\in V$ and $G_{-\frac{3}{2}}w\neq 0$ for all $0\neq w\in W$. Then $\dim G_{\frac{3}{2}}V=\infty$ and $\dim G_{-\frac{3}{2}}W=\infty$.

Claim $\mu \neq \pm 1$. Moreover, for any $v \in V, w \in W$, we have

$$G_{\frac{1}{2}}G_{-\frac{1}{2}}G_{\frac{3}{2}}v = \tau G_{\frac{3}{2}}v, \tag{5}$$

$$G_{-\frac{1}{2}}G_{\frac{1}{2}}G_{-\frac{3}{2}}w = \tau'G_{-\frac{3}{2}}w, \tag{6}$$

where $\tau = \frac{(\mu+1)(2\mu-1)}{\mu-1}$ and $\tau' = \frac{(\mu-1)(2\mu+1)}{\mu+1}$.

Proof of the Claim. It can be checked directly that

$$L_{-1}G_{-\frac{1}{2}}(\frac{1}{2}L_{1}G_{\frac{1}{2}} - G_{\frac{3}{2}}) \equiv 2L_{0}^{2} - 3L_{0} - L_{0}G_{\frac{1}{2}}G_{-\frac{1}{2}} + 2G_{\frac{1}{2}}G_{-\frac{1}{2}} \mod U(NS)L_{-1},$$
 (7)

and

$$L_1 G_{\frac{1}{2}}(\frac{1}{2}L_{-1}G_{-\frac{1}{2}} + G_{-\frac{3}{2}}) \equiv -2L_0^2 - 3L_0 + L_0 G_{-\frac{1}{2}}G_{\frac{1}{2}} + 2G_{-\frac{1}{2}}G_{\frac{1}{2}} \mod U(NS)L_1.$$
 (8)

For any $0 \neq v \in V$, by Lemma 2(i) and (7), we have

$$2L_0^2 G_{\frac{3}{2}}v - 3L_0 G_{\frac{3}{2}}v - L_0 G_{\frac{1}{2}}G_{-\frac{1}{2}}G_{\frac{3}{2}}v + 2G_{\frac{1}{2}}G_{-\frac{1}{2}}G_{\frac{3}{2}}v = 0.$$

Then

$$(2(\mu+1)^2 - 3(\mu+1))G_{\frac{3}{2}}v - (\mu-1)G_{\frac{1}{2}}G_{-\frac{1}{2}}G_{\frac{3}{2}}v = 0.$$

If $\mu = 1$, then $G_{\frac{3}{2}}v = 0$, a contradiction. Thus $\mu \neq 1$, and (4) holds.

For any $0 \neq w \in W$, by Lemma 2(ii) and (8), we have

$$-2L_0^2G_{-\frac{3}{2}}w - 3L_0G_{-\frac{3}{2}}w + L_0G_{-\frac{1}{2}}G_{\frac{1}{2}}G_{-\frac{3}{2}}w + 2G_{-\frac{1}{2}}G_{\frac{1}{2}}G_{-\frac{3}{2}}w = 0.$$

Then

$$(2(\mu-1)^2+3(\mu-1))G_{-\frac{3}{2}}w-(\mu+1)G_{-\frac{1}{2}}G_{\frac{1}{2}}G_{-\frac{3}{2}}w=0.$$

If $\mu = -1$, then $G_{-\frac{3}{2}}w = 0$, a contradiction. Thus $\mu \neq -1$, and (6) holds. This completes the proof of the Claim.

By (4) and (6), we see that $G_{\frac{1}{2}}G_{-\frac{1}{2}}G_{\frac{3}{2}}v=0$ if and only if $\mu=\frac{1}{2},$ $G_{-\frac{1}{2}}G_{\frac{1}{2}}G_{-\frac{3}{2}}w=0$ if and only if $\mu=-\frac{1}{2}$. There only two cases may occur: $\mu\notin\{1,-1,\frac{1}{2}\}$ or $\mu\notin\{1,-1,-\frac{1}{2}\}$. Because of the symmetry of our situation, to complete the proof of the Theorem, it is enough to show that a contradiction can be derived when $\mu\notin\{1,-1,\frac{1}{2}\}$.

Suppose $\mu \notin \{1, -1, \frac{1}{2}\}$, then $\tau \neq 0$ and $G_{-\frac{1}{2}}G_{\frac{3}{2}}v \neq 0$ for any $0 \neq v \in V$. Set

$$S = G_{-\frac{1}{2}}G_{\frac{3}{2}}V \cap W.$$

Since both $G_{-\frac{1}{2}}G_{\frac{3}{2}}V$ and W have finite codimension in $M_{\mu+\frac{1}{2}}$, we have $\dim S=\infty$. Note that

$$G_{-\frac{3}{2}}(\frac{1}{2}L_1G_{\frac{1}{2}} - G_{\frac{3}{2}}) \equiv -G_{\frac{1}{2}}G_{-\frac{1}{2}} - \frac{1}{2}L_1G_{\frac{1}{2}}G_{-\frac{3}{2}} + G_{\frac{3}{2}}G_{-\frac{3}{2}} - \frac{2}{3}c \mod U(NS)L_{-1}.$$

For any $v \in V$, by Lemma 2(i), (4) and the definition of V, we have

$$G_{\frac{3}{2}}G_{-\frac{3}{2}}G_{\frac{3}{2}}v = G_{\frac{1}{2}}G_{-\frac{1}{2}}G_{\frac{3}{2}}v + \frac{2}{3}cG_{\frac{3}{2}}v = pG_{\frac{3}{2}}v, \text{ for some } p \in \mathbb{C}.$$
 (9)

Similarly, For any $w \in W$, by

$$G_{\frac{3}{2}}(\frac{1}{2}L_{-1}G_{-\frac{1}{2}}+G_{-\frac{3}{2}})\equiv G_{-\frac{1}{2}}G_{\frac{1}{2}}-\frac{1}{2}L_{-1}G_{-\frac{1}{2}}G_{\frac{3}{2}}-G_{-\frac{3}{2}}G_{\frac{3}{2}}+\frac{2}{3}c \bmod U(NS)L_{1},$$

Lemma 2(ii), (6) and the definition of W, we have

$$G_{-\frac{3}{2}}G_{\frac{3}{2}}G_{-\frac{3}{2}}w = G_{-\frac{1}{2}}G_{\frac{1}{2}}G_{-\frac{3}{2}}w + \frac{2}{3}cG_{-\frac{3}{2}}w = qG_{-\frac{3}{2}}w, \text{ for some } q \in \mathbb{C}.$$
 (10)

Choose $v \in V$ such that $0 \neq G_{-\frac{1}{2}}G_{\frac{3}{2}}v \in S$. Set

$$x = G_{\frac{3}{2}}v, y = G_{-\frac{1}{2}}x, h = G_{-\frac{3}{2}}x, z = G_{-\frac{3}{2}}y.$$
(11)

By the definitions of W, S and (10), we have

$$G_{-\frac{1}{2}}(G_{\frac{3}{2}}G_{-\frac{3}{2}}y - qy) = 0 - 0 = 0$$

and

$$G_{-\frac{3}{2}}(G_{\frac{3}{2}}G_{-\frac{3}{2}}y - qy) = G_{-\frac{3}{2}}G_{\frac{3}{2}}G_{-\frac{3}{2}}y - qG_{-\frac{3}{2}}y = 0.$$

So $G_{\frac{3}{2}}G_{-\frac{3}{2}}y-qy=0$ by the Principal Fact, and we get the formula:

$$G_{\frac{3}{2}}z = qy. (12)$$

Moreover, we have

$$G_{\frac{1}{2}}z = G_{\frac{1}{2}}G_{-\frac{3}{2}}y = (2L_{-1} - G_{-\frac{3}{2}}G_{\frac{1}{2}})y = 2G_{-\frac{1}{2}}^2y - G_{-\frac{3}{2}}G_{\frac{1}{2}}G_{-\frac{1}{2}}G_{\frac{3}{2}}v = -\tau G_{-\frac{3}{2}}x = -\tau h,$$

i.e.,

$$G_{\frac{1}{2}}z = -\tau h. \tag{13}$$

Let U_+ and U_- denote the subalgebras of U(NS), generated by $G_{\frac{1}{2}}, G_{\frac{3}{2}}$ and $G_{-\frac{1}{2}}, G_{-\frac{3}{2}}$, respectively. We want to prove that the following vector space

$$N = U_{+}x \oplus U_{+}y \oplus U_{-}z \oplus U_{-}h$$

is a proper weight submodule of M, which will derive a contradiction, as desired.

Since x,y,z and h are all eigenvectors for L_0 , we see that N decomposes into a direct sum of weight spaces which are obviously finite-dimensional. It remains to show that N is stable under the action of the following four operators: $G_{\frac{1}{2}}, G_{\frac{3}{2}}, G_{-\frac{1}{2}}$ and $G_{-\frac{3}{2}}$. That $G_{\frac{i}{2}}U_+x \subset U_+x$, $G_{\frac{i}{2}}U_+y \subset U_+y$, $G_{-\frac{i}{2}}U_-h \subset U_-h$ and $G_{-\frac{i}{2}}U_-z \subset U_-z$ is clear for i=1,3.

For any $a \in U_+, a' \in U_-$, there exists $a_{i,j}, b_{i,j}, c_{i,j} \in U_+$ and $a'_{i,j}, b'_{i,j}, c'_{i,j} \in U_-$ such that

$$G_{-\frac{1}{2}}a = aG_{-\frac{1}{2}} + \sum_{i,j} a_{i,j} L_0^i c^j,$$

$$G_{-\frac{3}{2}}a = aG_{-\frac{3}{2}} + \sum_{i,j} a_{i,j} L_0^i c^j + \sum_{i,j} b_{i,j} L_0^i c^j L_{-1} + \sum_{i,j} c_{i,j} L_0^i c^j G_{-\frac{1}{2}},$$

$$G_{\frac{1}{2}}a' = a'G_{\frac{1}{2}} + \sum_{i,j} a'_{i,j} L_0^i c^j,$$

$$G_{\frac{3}{2}}a' = a'G_{\frac{3}{2}} + \sum_{i,j} a'_{i,j}L_0^i c^j + \sum_{i,j} b'_{i,j}L_0^i c^j L_1 + \sum_{i,j} c'_{i,j}L_0^i c^j G_{\frac{1}{2}}.$$

Thus, to show $G_{-\frac{i}{2}}U_{+}x, G_{-\frac{i}{2}}U_{+}y, G_{\frac{i}{2}}U_{-}h, G_{\frac{i}{2}}U_{-}z \subset N$, we need only to show that $G_{-\frac{i}{2}}x, G_{-\frac{i}{2}}y, G_{\frac{i}{2}}h, G_{\frac{i}{2}}z, G_{-\frac{i}{2}}G_{\frac{j}{2}}x, G_{-\frac{i}{2}}G_{\frac{j}{2}}y, G_{\frac{i}{2}}G_{-\frac{j}{2}}h, G_{\frac{i}{2}}G_{-\frac{j}{2}}z \in N$ for i, j = 1, 3.

Now we can check the following formulas one by one via the definitions of V, W, S and (5)-(13):

$$G_{-\frac{1}{2}}x = y,$$

$$G_{-\frac{1}{2}}y = 0,$$

$$G_{-\frac{3}{2}}x = h,$$

$$G_{-\frac{3}{2}}y = z,$$

$$G_{\frac{1}{2}}h = G_{\frac{1}{2}}G_{-\frac{3}{2}}G_{\frac{3}{2}}v = 0,$$

$$G_{\frac{1}{2}}z = -\tau h,$$

$$G_{\frac{3}{2}}h = G_{\frac{3}{2}}G_{-\frac{3}{2}}G_{\frac{3}{2}}v = pG_{\frac{3}{2}}v = px,$$

$$G_{\frac{3}{2}}C_{-\frac{3}{2}}x = 0,$$

$$G_{\frac{3}{2}}G_{-\frac{3}{2}}x = px,$$

$$G_{\frac{1}{2}}G_{-\frac{3}{2}}y = -\tau h,$$

$$G_{\frac{3}{2}}G_{-\frac{3}{2}}y = -\tau h,$$

$$G_{\frac{3}{2}}G_{\frac{1}{2}}G_{-\frac{3}{2}}y = 0,$$

$$G_{\frac{3}{2}}G_{\frac{1}{2}}G_{-\frac{3}{2}}y = -\tau px,$$

$$L_{-1}x = G_{-\frac{1}{2}}^{2}x = 0,$$

$$L_{-1}y = G_{-\frac{1}{2}}^{2}y = 0,$$

$$G_{-\frac{1}{2}}G_{\frac{3}{2}}h = py,$$

$$G_{-\frac{3}{2}}G_{\frac{3}{2}}h = ph,$$

$$G_{-\frac{3}{2}}G_{\frac{3}{2}}h = ph,$$

$$G_{-\frac{3}{2}}G_{\frac{3}{2}}z = qz,$$

$$G_{-\frac{1}{2}}G_{-\frac{1}{2}}G_{\frac{3}{2}}h = 0,$$

$$G_{-\frac{3}{2}}G_{-\frac{1}{2}}G_{\frac{3}{2}}h = pz,$$

$$L_{1}h = G_{\frac{1}{2}}^{2}h = 0,$$

$$L_{1}z = G_{\frac{1}{2}}^{2}h = 0,$$

$$L_{1}z = G_{\frac{1}{2}}^{2}h = 0.$$

This completes the proof of Lemma 6 and then of Theorem 1.

References

- [1] Goddard, P., Kent, A. and Olive, D. Unitary representations of the Virasoro and super-Virasoro algebras. Commun. Math. Phys. 103(1986): 105-119.
- [2] Iohara, K., Koga, Y. Representation theory of Neveu-Schwarz and Remond algebras I: Verma modules. Adv. Math. 177(2003): 61-69.
- [3] Iohara, K., Koga, Y. Representation theory of Neveu-Schwarz and Remond algebras II: Fock modules. Ann. Inst. Fourier 53(2003): 1755C1818.
- [4] Kac, V. G.(1982). Some problems of infinite-dimensional Lie algebras and their representations. lecture notes in math. 933, Springer, New York, pp. 117-126.
- [5] Mathieu, O. Classification of Harish-Chandra modules over the Virasoro Lie algebra. Invent. Math. 107(1992): 225-234.
- [6] Mazorchuk, V. Zhao, K., Classification of simple weight Virasoro modules with a finite-dimensional weight space. J. Algebra, 307(2007): 209-214.
- [7] Su, Y. Classification of Harish-Chandra modules over the super-Virasoro algebras. Comm. Algegra 23(1995): 3653-3675.

Note This artical has been accepted by Communications in algebra in 24/03/2011.