Kapitel II

Projektive Varietäten

§ 8 Varietäten im projektiven Raum

Erinnerung 8.1 Sei \mathbb{K} ein Körper, $n \in \mathbb{N}_0$.

(i) Der projektiven Raum ist

$$\mathbb{P}^n(\mathbb{K}) := \mathbb{K}^{n+1}/_{\sim}$$

mit

$$(x_0,\ldots,x_n) \sim (y_0,\ldots,y_n) \iff es \ ex. \ \lambda \in \mathbb{K}^\times \ mit \ \lambda x_i = y_i \ f\"{u}r \ alle \ 0 \leqslant i \leqslant n$$

Anschaulich sind die Elemente des projektiven Raums gerade die Ursprungsgeraden des \mathbb{K}^{n+1} . Schreibeweise: Es sei $(x_0:\ldots:x_n)\in\mathbb{P}^n(\mathbb{K})$ die Äquivalenzklasse von $(x_0,\ldots,x_n)\in\mathbb{K}^{n+1}$.

(ii) $F\ddot{u}r \ i \in \{0, \dots, n\} \ sei$

$$U_i := \{(x_0 : \dots x_n) \in \mathbb{P}^n(\mathbb{K}) \mid x_i \neq 0\}$$

Es gilt $\mathbb{P}^n(\mathbb{K}) = U_0 \cup \ldots \cup U_n$. Für ein festes $i \in \{0, \ldots, n\}$ betrachte

$$\psi_i: \mathbb{K}^n \longrightarrow \mathbb{P}^n(\mathbb{K}), \quad (y_1, \dots, y_n) \mapsto (y_1: \dots y_i: 1: y_{i+1}: \dots y_n)$$

Offenbar ist ψ_i injektiv mit $Bild(\psi_i) = U_i$. Die Umkehrabbildung ist

$$\phi_i: U_i \longrightarrow \mathbb{K}^n, \quad (x_0: \dots : x_n) \mapsto \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

(iii) Die Abbildung

$$\rho_i: \mathbb{P}^n(\mathbb{K}) \backslash U_i \longrightarrow \mathbb{P}^{n-1}(\mathbb{K}), \quad (x_0: \ldots : x_n) \mapsto (x_0: \ldots x_{i-1}: x_{i+1}: \ldots x_n)$$

ist bijektiv. Induktiv erhalten wir

$$\mathbb{P}^n(\mathbb{K}) = \mathbb{K}^n \cup \mathbb{K}^{n-1} \cup \cdots \cup \mathbb{K}^2 \cup \mathbb{K} \cup \{\infty\}$$

wobei die Wahl von ∞ willkürlich ist. Insbesondere gilt also

$$\mathbb{P}^1(\mathbb{K}) = \mathbb{K} \cup \{\infty\}$$

(iv) $\mathbb{P}^n(\mathbb{R})$ und $\mathbb{P}(\mathbb{C})$ sind n-dmensionale Mannigfaltigkeiten.

Definition + **Bemerkung 8.2** Sei \mathbb{K} ein Körper, $n \in \mathbb{N}_0$.

(i) Ein Polynom

$$f = \sum_{(i_0...i_n) \in \mathbb{N}_0^{n+1}}^{\infty} a_{i_0...i_n} X_0^{i_0} \dots X_n^{i_n} \in \mathbb{K}[X_0, \dots, X_n]$$

heißt homogen von Grad $d \ge 0$, falls für alle nichtverschwindenden Koeffizienten der Gesamtgrad konstant ist, also

$$a_{i_0...i_n} \neq 0 \implies i_0 + ... + i_n = d$$
 für alle i

(ii) Ist $f \in \mathbb{K}[X_0, \dots, X_n]$ homogen von Grad d, so gilt für alle $x = (x_0, \dots x_n) \in \mathbb{K}^{n+1}$ und $\lambda \in \mathbb{K}^{\times}$:

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n)$$

(iii) Ist $f \in \mathbb{K}[X_1, \dots, X_n]$ homogen, so ist die Nullstellenmenge $V(f) \subseteq \mathbb{P}^n(\mathbb{K})$ wohldefiniert.

Definition 8.3 Ein Teilmenge $V \subset \mathbb{P}^n(\mathbb{K})$ heißt *projektive Varietät*, wenn es eine Menge $\mathcal{F} \subseteq \mathbb{K}[X_0, \dots, X_n]$ von homogenen Polynomen gibt, sodass

$$V = \{x = (x_0, \dots, x_n) \in \mathbb{P}^n(\mathbb{K}) \mid f(x) = 0 \text{ für alle } f \in \mathcal{F}\}$$

Beispiel 8.4 (i) Für $i \in \{0, \ldots, n\}$ ist

$$V(X_i) = \mathbb{P}^n(\mathbb{K}) \backslash U_i \cong \mathbb{P}^{n-1}(\mathbb{K})$$

eine projektive Varietät.

(ii) Es gilt $V(X_0, \ldots, X_n) = \emptyset$.

Bemerkung 8.5 Ist $V \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät, so ist

$$\phi_i(V \cap U_i) \subseteq \mathbb{A}^n(\mathbb{K})$$

affine Varietät für alle $i \in \{0, ..., n\}$.

Beweis. Es genügt, die Aussage für V(f), $f \in \mathbb{K}[X_0, \dots, X_n]$ homogen zu zeigen, denn:

$$V(\mathcal{F}) = \bigcap_{f \in \mathcal{F}} V(f) \quad \Longrightarrow \quad \phi_i(V \cap U_i) = \bigcap_{f \in \mathcal{F}} \phi_i(V(f) \cap U_i)$$

Sei nun

$$\tilde{f} := f(X_0, \dots, X_{i-1}, 1, X_{i+1}, \dots, X_n) \in \mathbb{K}[X_0, \dots, X_{i-1}, X_{i+1}, \dots, X_n] = \mathbb{K}[Y_1, \dots, Y_n]$$

Beh. (1) Es gilt $V(\tilde{f}) = \phi_i(V(f) \cap U_i)$.

Bew. (1) Wir haben

"\(\to \)" Sei $x \in V(f) \cap U_i$, $x = (x_0 | \dots | x_n)$. Dann gilt

$$x_i \neq 0, \quad \phi_i(x) = \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

Also

$$\tilde{f}(\phi_i(x)) = f\left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, 1, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right) = \frac{1}{x_i^d} f(x_0, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) = 0$$

" \subseteq " Sei nun $y = (y_1, \dots, y_n) \in V(\tilde{f})$. Dann gilt

$$\tilde{f}(y_1,\ldots,y_n) = f(y_1,\ldots,y_i,1,y_{i+1},\ldots,y_n) = 0$$

Also gilt $x := (y_1 : \ldots : y_i : 1 : y_{i+1} : \ldots : y_n) \in U_i \cap V(f)$ und $\phi_i(x) = y$, also gerade die Behauptung.

Beispiel 8.6 Betrachte $V = V(X_0X_2 - X_1^2) \subseteq \mathbb{P}^2(\mathbb{K})$. Es gilt

$$\phi_0(V \cap U_0) = V(X_2 - X1_1^2) \qquad Parabel$$

$$\phi_1(V \cap U_1) = V(X_0 X_2 - 1)$$
 Hyperbel

$$\phi_2(V \cap U_2) = V(X_0 - X_1^2)$$
 Parabel

Bemerkung 8.7 Zu jeder affine Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$ gibt es eine projektive Varietät $\tilde{V}_i \subseteq \mathbb{P}^n(\mathbb{K})$ mit $\phi_i(\tilde{V}_i \cap U_i) = V$.

Beweis. Sei ohne Einschränkung V = V(f) für ein $f \in \mathbb{K}[Y_1, \dots, Y_n]$. Schreibe

$$f = \sum_{k=0}^{d} f_k$$

mit homogenen Polynomen f_k von Grad k für $1 \le k \le d$, $d = \deg(f)$. Sei

$$F := \sum_{k=0}^{d} X_i^{d-k} f_k \in \mathbb{K}[Y_1, \dots, Y_i, X_i, Y_{i+1}, \dots, Y_n]$$

Dann ist F homogen von Grad d und es gilt:

Beh. (1) Es gilt $\phi_i(V(F) \cap U_i) = V(f)$.

Bew. (1) Wir haben

" \supseteq " Sei $y := (y_1, \dots, y_n) \in V(f)$, d.h es gilt f(y) = 0. Setze

$$x := \psi_i(y) = (y_1 : \dots : y_i : 1 : y_{i+1} : \dots : y_n) \in U_i, \quad \phi_i(x) = y.$$

Dann gilt

$$F(x) = \sum_{k=0}^{d} X_i^{d-k} f_k(y_1, \dots, y_n) = f(y) = 0.$$

" \subseteq " Sei nun $y \in \phi_i(V(F) \cap U_i)$, d.h. es gilt $y = \phi(x)$ mit $x \in V(F) \cap U_i$. Damit gilt $x = (x_1 : \ldots : x_i : 1 : x_{i+1} : \ldots : x_n)$ und

$$0 = F(x) = \sum_{k=0}^{d} f_k(x_1, \dots, x_n) = f(x_1, \dots, x_n) = f(\phi_i(x)) = f(y),$$

also $y \in V(f)$.

Definition + **Bemerkung 8.8** Sei \mathbb{K} ein Körper, $n \ge 1$.

(i) Für $i \in \{1, ..., n\}$ heißt die Abbildung

$$D_i: \mathbb{K}[X_0, \dots, X_n] \longrightarrow \mathbb{K}[X_0, \dots, X_{i-1}, X_{i+1}, \dots, X_n] \cong \mathbb{K}[Y_1, \dots, Y_n],$$

$$f(x_0, \dots, x_n) \mapsto f(x_0, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n)$$

Dehomogenisierung nach der i-ten Variable. D_i ist als Auswertung ein K-Algebren Homomorphismus.

(ii) Für $i \in \{1, ..., n\}$ heißt die Abbildung

$$H_i: \mathbb{K}[Y_1, \dots, Y_n] \longrightarrow \mathbb{K}[Y_1, \dots, Y_n, X_i] \cong \mathbb{K}[X_0, \dots, X_n]$$

$$f = \sum_{k=0}^d f_k \mapsto \sum_{k=0}^d X_i^{d-k} f_k$$

(i-te)Homogenisierung, wobei f_k homogene Polynoms von Grad k sind. Es gilt

$$H_i(fg) = H_i(f)H_i(g)$$

$$H_i(f+g) \neq H_i(f) + H_i(g),$$
 falls $\deg(f) \neq \deg(g)$

(iii) Es gilt

$$D_i \circ H_i = \mathrm{id}_{\mathbb{K}[Y_1, \dots, Y_n]}$$

$$(H_i \circ D_i)(f) = \frac{1}{X_i^e} f, \quad e = \max_{e \in \mathbb{N}_0} \{ X_i^e \mid X_i^e \mid f, X_i^{e+1} \nmid f \}, \quad \text{falls } f \text{ homogen.}$$

§ 9 Die Zariski Topologie auf $\mathbb{P}^n(\mathbb{K})$

Definition 9.1 Für $V \subseteq \mathbb{P}^n(\mathbb{K})$ sei $I(V) \leq \mathbb{K}[X_0, \dots, X_n]$ das von allen homogenen Polynomen $f \in \mathbb{K}[X_0, \dots, X_n]$ mit f(x) = 0 für alle $x \in V$ erzeugte Ideal. I(V) heißt Verschwindungsideal von V.

Definition + **Bemerkung 9.2** (i) Ein (kommutativer) Ring (mit 1) R heißt graduiert, falls es eine Zerlegung

$$R = \bigoplus_{d=0}^{\infty} R_d$$

in abelsche Gruppen R_d gibt, sodass für alle $f \in R_d, g \in R_e$ gilt: $f \cdot g \in R_{d+e}$.

(ii) eine \mathbb{K} -Algebra S heißt graduiert, wenn

$$S = \bigoplus_{d=0}^{\infty} S_d$$

graduierter Ring ist und $S_0 = \mathbb{K}$. Dies impliziert, dass die S_d sogar zu \mathbb{K} -Vektorräumen werden.

- (iii) Die Elemente in R_d bzw. S_d heißen homogen vom Grad d.
- (iv) Ein Ideal in R heißt homogen, wenn es von homogenen Elementen erzeugt werden kann.
- (v) Für ein Ideal $I \leq R$ sind äquivalent:
 - (a) I ist homogen.
 - (b) I besitzt eine Darstellung

$$I = \bigoplus_{d=0}^{\infty} (I \cap R_d)$$

(c) Für jedes $f \in I$ mit

$$f = \sum_{d=0}^{\infty} f_d, \quad f_d \in R_d$$

gilt bereits $f_d \in I$ für alle $d \in \mathbb{N}_0$.

(vi) Ist $I \leq R$ homogenes Ideal, so ist R/I graduiert mit

$$R/I = \bigoplus_{d=0}^{\infty} R_d / (R_d \cap I)$$

(vii) Summe, Produkt, Durchschnitt und Radikal von homogenen Idealen sind wieder homogen.

Beweis. (v) "(a) \Rightarrow (b)" " \supseteq " Klar.

" \subseteq " Seien $a_i, i \in J$ homogene Erzeuger von I. Es genügt zu zeigen:

$$r \cdot a_i \in \bigoplus_{d=0}^{\infty} I \cap R_d$$
 für alle $r \in R$

Schreibe

$$r = \sum_{d=1}^{n} r_d, \qquad r_d \in R_d$$

Dann gilt mit $d_i := \deg(a_i)$

$$r \cdot a_i = \sum_{d=1}^n r_d a_i, \quad r_d a_i \in R_{d+d_i} \cap I$$

also gerade die Behauptung.

 $"(b) \Rightarrow (c)"$ Klar.

$$(c)\Rightarrow(a)$$
 Klar.

(vi) Für jedes Ideal $I \leq R$ ist

$$\pi: \bigoplus_{d=0}^{\infty} R_d / (R_d \cap I) \longrightarrow R/I$$

surjektiv, denn für $d \in \mathbb{N}_0$ ist $R_d \longrightarrow R$ surjektiv. Für den Kern betrachte

$$\sum_{d=0}^n r_d \mod (R_d \cap I) \in \ker(\pi) \iff \sum_{d=0}^n r_d \in I \iff r_d \in I \iff \sum_{d=0}^n r_d \equiv 0 \mod (R_d \cap I)$$

Damit folgt die Behauptung.

(vii) Seien I_1, I_2 homogene Ideale, also mit homogenen Erzeugern $\{f_i\}, \{g_j\}.$

Dann wird $I_1 + I_2$ von $\{f_i + g_j\}$ erzeugt und I_1I_2 von $\{f_ig_j\}$. Durchschnitt. Für $I_1 \cap I_2$ verwende (v)(b):

$$\bigoplus_{d=0}^{\infty} ((I_1 \cap I_2) \cap R_d) = \bigoplus_{d=0}^{\infty} ((I_1 \cap R_d) \cap (I_2 \cap R_d)) = \bigoplus_{d=0}^{\infty} (I_1 \cap R_d) \cap \bigoplus_{d=0}^{\infty} I_2 \cap R_d = I_1 \cap I_2$$

Radikal. Sei nun I homogen, $x \in \sqrt{I}$. Schreibe

$$x = \sum_{d=0}^{n} x_d, \quad x_d \in R_d$$

Nach Voraussetzung existiert $m \ge 1$, sodass $x^m \in I$, also

$$I \ni \left(\sum_{d=0}^{n} d_d\right)^m = x_n^m + \mathcal{O}(x_n^{m-1})$$

Damit gilt $x_n^m \in I$ und somit $x_n \in \sqrt{I}$ und $(x - x_n) \in \sqrt{I}$.

Per Induktion über deg(x) folgt nun die Behauptung.

Proposition 9.3 (i) Für jede Teilmenge $V \subseteq \mathbb{P}^n(\mathbb{K})$ ist I(V) ein Radikalideal.

- (ii) Die projektiven Varietäten bilden die abgeschlossenen Mengen der Zariski-Topologie auf $\mathbb{P}^n(\mathbb{K})$.
- (iii) Eine projektive Varietät V ist irreduzibel genau dann, wenn I(V) ein Primadeal ist.
- (iv) Jede projektive Varietät ist endliche Vereinigung ihrer irreduziblen Komponenten.

Beweis. (i) Zu zeigen ist: $\sqrt{I(V)} \subseteq I(V)$.

Nach 9.2 (vii) ist $\sqrt{I(V)}$ ein homogenes Ideal. Sei also $f \in \sqrt{I(V)}$ homogen und $m \in \mathbb{N}$, sodass

$$f^m \in I(V) \quad \Longrightarrow \quad f(x)^m = 0 \text{ für alle } x \in V$$

Damit gilt $f \in I(V)$, also die Behauptung.

- (ii) Folgt wie im affine Fall aus 9.2 (vii).
- (iii) Wörtlich wie in 3.5 mit gelöster Übungsaufgabe.
- (iv) Wie in 3.6

Folgerung 9.4 Bezüglich der Einschränkung der Zariskitopologie von $\mathbb{P}^n(\mathbb{K})$ auf U_i ist die Bijektion $\phi_i: U_i \longrightarrow \mathbb{A}^n(\mathbb{K})$ ein Homoömorphismus.

Beweis. Folgt aus Bemerkung 8.4 und 8.5.

Bemerkung 9.5 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Vareität, $I = I(V) \leqslant \mathbb{K}[X_1, \dots, X_n]$ ihr Verschwindungsideal und $I^* \leqslant \mathbb{K}[X_0, \dots, X_n]$ das von den Homogenisierungen $H_0(f)$ aller $f \in I$ erzeugte Ideal. Dann ist $V(I^*) = \overline{V}$ der Zariski-Abschluss von V in $\mathbb{P}^n(\mathbb{K})$.

Beweis. Aus dem Beweis von Bemerkung 8.5 folgt $V(I^*) \cap U_0 = V$.

Sei $\tilde{V} \subseteq \mathbb{P}^n(\mathbb{K})$ abgeschlossen mit $V \subseteq \tilde{V}$. Zeige $V(I^*) \subseteq \tilde{V}$. Sei dazu $\tilde{V} = V(J)$ für ein homogenes Ideal J. Dann genügt es zu zeigen: $J \subseteq I^*$.

Sei dazu $f \in J$ homogen. Für $y \in \tilde{V}$ ist dann $D_0(f)(y) = 0$, also $D_0(f) \in I$. Per Definition ist dann $H_0(D_0(f)) \in I^*$. Es gilt aber $H_0(D_0(f)) = f \cdot X_0^{-e}$ für ein $e \ge 0$, es folgt also die Behauptung.

- **Definition** + **Bemerkung 9.6** (i) Eine Teilmenge $W \subseteq \mathbb{P}^n(\mathbb{K})$ heißt quasiprojektive Varietät, wenn W offene Teilmenge einer projektiven Varietät $V \subseteq \mathbb{P}^n(\mathbb{K})$ ist.
 - (ii) $W \subseteq \mathbb{P}^n(\mathbb{K})$ ist quasiprojektiv genau dann, wenn es eine offene Teilmenge $U \subseteq \mathbb{P}^n(\mathbb{K})$ und eine abgeschlossene Menge $V \subseteq \mathbb{P}^n(\mathbb{K})$ gibt, sodass gilt $W = U \cap V$.
 - (iii) Die Zariski-Topologie auf einer quasiprojektiven Varietät hat eine Basis aus (abstrakt) affine Varietäten.
 - (iv) Jede quasi-projektive Varietät ist kompakt.
- Beweis. (iii) Sei $W \subseteq \mathbb{P}^n(\mathbb{K})$ und $U \subseteq W$ offen. Dann ist $U \cap U_i$ offen für alle $i \in \{0, \dots, n\}$ und der Zariskiabschluss $\overline{U \cap U_i}$ von $U \cap U_i$ in U_i eine affine Varietät.

Nach Proposition 2.5 bilden die D(f) für $f \in \mathbb{K}[X_1, \dots, X_n]$ eine Basis der Zariski-Topologie auf $\overline{U \cap U_i}$, d.h. es existiert f mit $D(f) \subseteq U \cap U_i$. Nach 6.11 Ist D(f) isomorph zu einer affine Varietät, es folgt die Behauptung.

(iv) Nach Proposition 6.5(iii) ist $W \cap U_i$ kompakt für alle $i \in \{0, ..., n\}$. Also ist

$$W = \bigcup_{i=0}^{n} W \cap U_i$$

ebenfalls kompakt.

Definition + **Bemerkung 9.7** Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät, $V \neq \emptyset$.

(i) Der affine Kegel von V ist definiert als

$$\tilde{V} := \{(x_0, \dots, x_n) \in \mathbb{K}^{n+1} \mid (x_0 : \dots : x_n) \in V\} \cup \{(0, \dots, 0)\}$$

- (ii) \tilde{V} ist affine Varietät. Genauer gilt: Ist V = V(I) für ein homogenes Ideal $I \leq \mathbb{K}[X_0, \dots, X_n]$, so ist $\tilde{V} = V_{\text{aff}}(I)$ die Nullstellenmenge vom I in $\mathbb{A}^{n+1}(\mathbb{K})$.
- (iii) Falls \mathbb{K} unendlich ist, gilt $I(V) = I(\tilde{V})$.
- Beweis. (ii) Nach Definition ist $(x_0, \ldots, x_n) \in \tilde{V} \setminus \{(0, \ldots, 0)\}$ genau dann, wenn $(x_0 : \ldots : x_n) \in V$. Es bleibt also noch zu zeigen: $(0, \ldots, 0) \in V_{\text{aff}}(I)$.

Ist $f \in I$ homogen, so ist deg(f) > 0, also f(0, ..., 0) = 0.

(iii) Für jedes homogene $f \in \mathbb{K}[X_0, \dots, X_n]$ gilt:

$$f \in I(V) \iff f \in I(\tilde{V})$$

Zu zeigen ist also: $I(\tilde{V})$ ist homogen. Sei dazu

$$f = \sum_{i=0}^{d} f_i \in I(\tilde{V}), \qquad f_i \text{ homogen von Grad } i$$

Zu zeigen ist: $f_i \in I(\tilde{V})$ für alle $0 \leq i \leq d$.

Für jedes $x = (x_0, \dots, x_n) \in \tilde{V} \setminus \{(0, \dots, 0)\}$ und jedes $\lambda \in \mathbb{K}$ ist $(\lambda x_0, \dots, \lambda x_n) \in \tilde{V}$, also

$$0 = f(\lambda x_0, \dots, \lambda x_n) = \sum_{i=0}^{d} \lambda^i f_i(x_0, \dots, x_n)$$

Sind $\lambda_0, \ldots, \lambda_d$ verschiedene Elemente in \mathbb{K} , so hat das LGS

$$\begin{pmatrix} 1 & \lambda_0 & \dots & \lambda_0^d \\ 1 & \lambda_1 & \dots & \lambda_1^d \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_d & \dots & \lambda_d^d \end{pmatrix} \cdot \begin{pmatrix} f_0(x_0, \dots, x_n) \\ f_1(x_0, \dots, x_n) \\ \vdots \\ f_d(x_0, \dots, x_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

nur die triviale Läösung (Vandermonde-Matrix)

$$f_0(x_0,\ldots,x_n) = \ldots = f_d(x_0,\ldots,x_n) = 0,$$

woraus die Behauptung folgt.

Satz 9.8 (Projektiver Nullstellensatz) Sei \mathbb{K} algebraisch abgeschlossen, $n \ge 0$. Dann gilt für jedes homogene Radikalideal $I \le \mathbb{K}[X_0, \dots, X_n], I \ne \langle X_0, \dots, X_n \rangle$:

$$I(V(I)) = \sqrt{I} = I$$

Das Ideal $\langle X_0, \ldots, X_n \rangle$ heißt auch irrelevantes Ideal.

Beweis. Offenbar stimmt die Aussage für $I = \mathbb{K}[X_0, \dots, X_n]$. Sei nun also I ein echtes Ideal, also

$$I \subset \langle X_0, \dots, X_n \rangle$$

Seien $V_{\mathrm{aff}}(I) \subseteq \mathbb{A}^{n+1}(\mathbb{K})$ die affine und $V = V_{\mathrm{proj}}(I) \subseteq \mathbb{P}^n(\mathbb{K})$ die projektive Nullstellenmenge von I. Dann ist $\tilde{V} := V_{\mathrm{aff}}(I)$ der affine Kegel von V.

Da $I \neq \langle X_0, \dots, X_n \rangle$, ist nach HNS $V_{\text{aff}}(I) \neq \{0\}$, also $V \neq \emptyset$. Nach 9.7(iii) gilt dann

$$I(V(I)) = I(V) = I(\tilde{V}) = I(V_{\text{aff}}(I)) \stackrel{HNS}{=} I,$$

was zu zeigen war.

Beispiel 9.9 Es sei $E_0 := V(Y^2 - X^3 + X)$ und $E := \overline{E_0}$ der projektive Abschluss von E_0 in $\mathbb{P}^2(\mathbb{K})$, also

$$E = V(Y^2Z - X^3 + XZ^2)$$

Dann gilt

$$E \setminus E_0 = E \cap V(Z) = \{(0:1:0)\}\$$

Es sei nun $\mathbb{L} \subseteq \mathbb{P}^2(\mathbb{K})$ eine Gerade also L = V(aX + bY + cZ), wobei $(a, b, c) \neq (0, 0, 0)$.

Dann kann man zeigen: Unter der Bedingung, dass \mathbb{K} algebraisch abgeschlossen ist, Tangenten doppelt und Wendetangenten dreifach zählen, gilt

$$\#(L \cap E) = 3$$

Genauer folgt dies aus dem Satz von Bézout. Im folgenden möchten wir eine Gruppenstruktur auf E definieren. Sei hierzu

 $\tilde{\mu}: E \times E \longrightarrow E, \quad (P,Q) \mapsto \text{dritter Schnitter$ $punkt der Gerade durch P und Q}$

Zunächst einmal ist diese innere Verknüpfung wohldefiniert und kommutativ. Allerdings finden wir kein neutrales Element:

Denn gäbe es $P_0 \in E$ mit $\tilde{\mu}(P, P_0) = P$ für alle $P \in E$, so müssten alle Tangenten an E durch P_0 gehen. Das ist offenbar falsch, weshalb $\tilde{\mu}$ nicht der richtige Weg ist.

Wir nehmen nun folgende Modifikation vor: Für ein festes $P_0 \in E$ definieren wir eine Abbildung

$$\otimes_{P_0}: E \times E \longrightarrow E, \quad (P,Q) \mapsto P \otimes_{P_0} Q := \tilde{\mu}(P_0, \tilde{\mu}(P,Q))$$

Dann gilt:

- (i) Die Verknüpfung ist wohldefiniert
- (ii) P_0 ist das neutrale Element der Verknüpfung, d.h. es gilt

$$P \oplus_{P_0} P_0 = P$$
 für alle $P \in E$

- (iii) Die Verknüpfung \bigoplus_{P_0} ist assoziativ
- (iv) und kommutativ

Damit haben wir eine Gruppenstruktur auf unserer Varietät definiert. Nun stellt sich die Frage nach Elementen endlicher Ordnung? Gibt es sie? Ja!

- (i) Die drei Punkte mit senkrechter Tangente haben Ordnung 2, bilden mit P_0 also eine Klein'sche Vierergruppe.
- (ii) Die 8 Punkte mit Wendetangente (nur 2 sichtbar!) haben Ordnung 3.

§ 10 Reguläre Funktionen

Definition 10.1 Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät und I(V) das zugehörige Verschwindungsideal von V. Dann heißt

$$\mathbb{K}[V] := \mathbb{K}[X_0, \dots, X_n] / I(V)$$

homogener Koordinatenring von V. Nach 9.2 (vi) ist $\mathbb{K}[V]$ ein graduierter Ring.

Bemerkung 10.2 Sind $F,G \in \mathbb{K}[X_0,\ldots,X_n]$ homogen von gleichem Grad, so ist $\frac{F}{G}$ eine wohlbestimmte Funktion aus D(G).

Definition 10.3 Sei $W \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät, $f: W \longrightarrow \mathbb{K}$ eine Abbildung.

(i) f heißt $regul\"{a}r$ in $x \in W$, wenn es eine Umgebung $U_x \ni x, U_x \subseteq W$ und homogene Polynome $F, G \in \mathbb{K}[X_0, \dots, X_n]$ vom selben Grad gibt, sodass $U_x \subseteq D(G)$ und

$$f(y) = \frac{F}{G}(y)$$
 für alle $y \in U_x$

(ii) f heißt reguläre Funktion auf W, wenn f in jedem $x \in W$ regulär ist.

Bemerkung 10.4 Sei $W \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät, $f: W \longrightarrow \mathbb{K}$ Abbildung: Dann gilt

f ist regulär $\iff f|_{U_i \cap W} = f \circ \psi_i$ ist regulär im Sinne von 6.2 für alle $i \in \{0, \ldots, n\}$

Beweis. " \Rightarrow " Sei $x \in W \cap U_i$ für ein $i \in \{0, ..., n\}$ sowie $f = \frac{F}{G}$ in einer Umgebung U_x von x und homogenen Polynomen gleichen Grades $F, G \in \mathbb{K}[X_0, ..., X_n]$. Ohne Einschränkung sei $U_x \subseteq U_i$, ansonsten verkleinere U_x . Auf U_x gilt dann

$$(f \circ \psi_i)(x_1, \dots, x_n) = \frac{F}{G}(x_1 : \dots, x_i : 1 : x_{i+1} : \dots : x_n) = \frac{D_i(F)}{D_i(G)},$$

also ist $f \circ \psi_i$ regulär im Sinne von 6.2.

" \Leftarrow " Sei $x \in W \cap U_i$ sowie $f = \frac{g}{h}$ in einer Umgebung $x \ni U_x \subseteq U_i, f, g \in \mathbb{K}[X_0, \dots, X_{i-1}, X_{i+1}, \dots, X_n]$. Sei $G := H_i(g), H := H_i(h)$. Ohne Einschränkung sei deg $G \leqslant \deg H$. Dann ist

$$\frac{\tilde{G}}{H}$$
, $\tilde{G} := G \cdot X_i^{\deg H - \deg G}$

reguläre Funktion im Sinne von Definition 12.2 auf U_x mit $f = \frac{\tilde{G}}{H}$ auf U_x .

Definition + **Bemerkung 10.5** Sei $W \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät.

(i) Für $U \subseteq W$ offen sei

$$\mathcal{O}_W(U) := \{ f : U \longrightarrow \mathbb{K} \mid f \text{ ist regulär } \}$$

- (ii) $\mathcal{O}_W(U)$ ist K-Algebra.
- (iii) Die Zuordnung $U \mapsto \mathcal{O}_W(U)$ ist eine Garbe von \mathbb{K} -Algebren auf W.

Beispiel 10.6 Es gilt

$$\mathcal{O}_{\mathbb{P}^n(\mathbb{K})}(U_i) = \mathcal{O}_{U_i}(U_i) = \mathbb{K}[Y_1, \dots, Y_n]_{X_i}$$

via der Zuordnung

$$f\left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right) \leftarrow f$$

Ist zum Beispiel i = 0, n = 3, so haben wir

$$Y_1 Y_3^2 - 2 Y_2^2 \quad \longmapsto \quad \frac{X_1}{X_0} \left(\frac{X_3}{X_0} \right)^2 - 2 \left(\frac{X_2}{X_0} \right)^2 = \frac{X_1 X_3^2 - 2 X_2^2 X_0}{X_0^3}$$

Bemerke:

$$f\left(\frac{x_0}{x_i},\dots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\dots,\frac{x_n}{x_i}\right) = \frac{H_i(f)}{X_i^d}$$

mit $d = \deg(f)$. Damit erhalten wir

$$\mathcal{O}_{\mathbb{P}^n(\mathbb{K})}(U_i) = \left\{ \frac{H}{X_i^d} \mid H \in \mathbb{K}[X_0, \dots, X_n] \text{ homogen von Grad } d \right\}$$

Satz 10.7 (Homogene Lokalisierung) Sei \mathbb{K} algebraisch abgeschlossen, $V \subseteq \mathbb{P}^n(\mathbb{K})$ projektive Varietät.

(i) $F\ddot{u}r \ F \in \mathbb{K}[V]$ homogen von $Grad \deg F \geqslant 1$ gilt

$$\mathcal{O}_{V}(D(F)) = (\mathbb{K}[V]_{F})_{0} := \left\{ \frac{H}{F^{d}} \mid H \in \mathbb{K}[V] \text{ homogen von } Grad \operatorname{deg} H = d \cdot \operatorname{deg} F \right\}$$

(ii) Falls V zusammenhägend ist, gilt

$$\mathcal{O}_V(V) = \mathbb{K}$$

Beweis. (i) Definiere

$$\psi : \mathbb{K}[V]_F \longrightarrow \mathcal{O}_V(D(F)), \quad \frac{G}{F^d} \mapsto \left(x \mapsto \frac{G}{F^d}(x)\right)$$

Dann ist ψ wohldefinierter Homomorphismus von K-Algebren.

injektiv. Ist

$$\frac{G}{F^d}(x) = 0$$

für alle $x \in D(F)$, so gilt $D(F) \subseteq V(G)$, also $F \cdot G = 0$ auf V. Dann ist aber

$$\frac{G}{F^d} = 0 \quad \text{in } \mathbb{K}[V]_F,$$

also ψ injektiv.

surjektiv. Sei $h \in \mathcal{O}_V(D(F))$.

Für $i \in \{0, ..., n\}$ sei $f_i := D_i(F)$ die *i*-te Dehomogenisierung von F. Dann ist

$$D(F) \cap U_i = D(f_i)$$

Nach Satz 6.5 gibt es dann $G_i \in \mathbb{K}[Y_1, \dots, Y_n]$ und $d_i \ge 0$, sodass h(D(F)) regulär ist, also

$$h(D(F) \cap U_i) = \frac{g_i}{f_i^{d_i}}$$

Mit $G_i := H_i(g_i)$ ist dann

$$h|_{D(F)\cap U_i} = \frac{G_i}{F^{d_i}X_i^{e_i}}, \quad e_i \in \mathbb{Z}$$

Auf $D(F) \cap U_i \cap U_j$ ist weiter

$$\frac{G_i}{F^{d_i}X_i^{e_i}} = \frac{G_j}{F^{d_j}X_j^{e_j}}$$

also

$$G_j F^{d_j} X_i^{e_j} - G_j F^{d_i} X_i^{e_i} = 0$$

und schließlich

$$G_j F^{d_j+1} X_i^{e_j} X_i X_j - G_j F^{d_i+1} X_i^{e_i} X_i X_j = 0$$
 auf V (*)

Sei nun ohne Einschränkung $d_i = 1$ für $i \in \{0, ..., n\}$, da $V(F^{d_i}) = V(F)$ für alle $d_i \ge 1$. Da $\deg(F) \ge 1$ ist $F \in \langle X_0, ..., X_n \rangle$, also

$$F^m \in \langle X_0^{e_0+1}, \dots, X_n^{e_n+1} \rangle$$

für hinreichend großes m und wegen

$$F^{m+1} = F \cdot F^m \in \langle FX_0^{e_0+1}, \dots, FX_n^{e_n+1} \rangle$$

damit

$$F^{m+1} = \sum_{i=0}^{n} H_i F X_i^{e_i+1}, \quad H_i \in \mathbb{K}[X_0, \dots, X_n] \text{ homogen}$$

Beobachtung: Sei $I := \langle a_1, \dots, a_m \rangle$ mit homogenen a_i . Ist b homogen, so können wir b schreiben als

$$b = \sum_{i=1}^{n} r_i a_i$$
 mit geeigneten homogenen $r_i \in R$

(Man kann dies leicht durch Ausmultiplizieren und Koeffizientenvergleich einsehen).

Schreibe nun also

$$G = \sum_{i=0}^{n} H_i G_i$$

Dann ist

$$X_{j}F^{m+1}G_{j} = X_{j}\sum_{i=0}^{n} H_{i}FX_{i}^{e_{i}+1}G_{j} = \sum_{i=0}^{n} H_{i}G_{i}FX_{j}^{e_{j}+1}X_{i} = GFX_{j}^{e_{j}+1}$$

also

$$h(D(F) \cap U_j) = \frac{G_j}{FX_j^{e_j}} = \frac{G}{F^{m+1}}$$

Daraus folgt

$$\psi\left(\frac{G}{F^{m+1}}\right) = h,$$

also die Behauptung.

(ii) Sei V ohne Einschränkung irreduzibel. Denn dann ist $h \in \mathcal{O}_V(V)$ aus jeder irreduziblen Komponente konstant, und da V zusammenhängend ist, stimmen diese Konstanten überein.

Damit ist I(V) prim, der homogene Koordinatenring $\mathbb{K}[V]$ also nullteilerfrei.

Sei $\mathbb{L} := \operatorname{Quot}(\mathbb{K}[V]), f \in \mathcal{O}_V(V)$ und ohne Einschränkung $U_i \cap V \neq \emptyset$ für $i \in \{0, \dots, n\}$. Sei weiter $f_i := f|_{V \cap U_i}$. Nach (i) ist

$$f_i = \frac{G}{X_i^{d_i}}$$
 für ein homogenes $G_i \in \mathbb{K}[V], \deg(G_i) = d_i$

Beh. (1) f_i ist ganz über $\mathbb{K}[V]$.

Dann gibt es $m \ge 1, a_0, \dots, a_{m-1} \in \mathbb{K}[V]$ mit

$$f_i^m + \sum_{j=0}^{m-1} a_j f_i^j = 0 \qquad (I)$$

und durch Multiplikation mit $X_i^{d_i m}$

$$G_i^m + \sum_{j=0}^{m-1} a_j G_i^j X_i^{d_i(m-j)} \qquad (II)$$

Ohne Einschränkung gelte $a_j \in \mathbb{K}$, denn (II) muss im Grad $d_i m$ erfüllt sein.

Dann ist (I) mit $a_j \in \mathbb{K}$ erfüllt, f_i also ganz über \mathbb{K} . Da \mathbb{K} algebraisch abgeschlossen ist, ist f_i sogar konstant, es folgt also die Behauptung.

Bew. (1) Es gilt

$$f|_{U_i \cap V} = \frac{G}{X_i^{d_i}} \in \mathbb{L}$$

Setze

$$d := \sum_{i=0}^{n} d_i$$

und

$$\mathbb{K}[V]_d := \{ H \in \mathbb{K}[V] | H \text{homogen von Grad } d \}$$

Beh. (2) Es gilt $\mathbb{K}[V]_d f_i^j \subseteq \mathbb{K}[V]_d$ für alle $j \ge 0$.

Bew. (1) Dann ist $X_i^d f_i^j \in \mathbb{K}[V]$, also

$$f_i^j \in \frac{1}{X_i^d} \mathbb{K}[V] \implies \mathbb{K}[V][f_i] \subseteq \frac{1}{X_i^d} \mathbb{K}[V]$$

Da $\mathbb{K}[V]$ noethersch und endlich erzeugt ist, ist auch $\mathbb{K}[V][f_i]$ endliche erzeugter $\mathbb{K}[V]$ -Modul. Dann existiert $m \ge 1$, sodass f_i^m in dem von $1, f_i, \ldots, f_i^{m-1}$ erzeugten $\mathbb{K}[V]$ -Modul liegt. Damit folgt die Behauptung.

Bew. (2) $\mathbb{K}[V]_d$ wird als \mathbb{K} -Vektorraum von den Restklassen der Monome $X_o^{j_0},\dots,X_n^{j_n}$ mit

$$\sum_{i=0}^{n} j_i = d = \sum_{i=0}^{n} d_i$$

erzeugt. Für jedes solcher Monome gibt es einen Index i mit $j_i \ge d_i$, also

$$X_0^{j_0} \dots X_n^{j_n} \cdot f_i = X_0^{j_0} \cdots X_i^{j_i - d_i} \cdots X_n^{j_n} \cdot G_i \in \mathbb{K}[V]_d,$$

was zu zeigen war.

§ 11 Morphismen

Proposition + **Definiton 11.1** Seien $V \subseteq \mathbb{P}^n(\mathbb{K}), W \subseteq \mathbb{P}^m(\mathbb{K})$ quasiprojektive Vareitäten, $f: V \longrightarrow W$ eine Abbildung. Dann sind die folgenden Eigenschaften äquivalent:

(i) Für jedes $x \in V$ gibt es eine offene Umgebung U_x von x und homogene Polynoms $F_0, \ldots, F_m \in \mathbb{K}[X_0, \ldots, X_n]$ von gleichem Grad, sodass für alle $y \in U_x$ gilt:

$$f(y) = (F_0(y), \dots, F_m(y))$$

(ii) Für alle $i \in \{0, \dots, n\}$ und $j \in \{0, \dots, m\}$ mit $U_{ij} := U_i \cap f^{-1}(W \cap U_j) \neq \emptyset$ ist

$$f\left(U_i \cap f^{-1}(W \cap U_j)\right) : U_{ij} \longrightarrow W \cap U_j$$

Morphismus von quasiaffinen Varietäten.

(iii) f ist stetig und für jedes offene $U \subseteq W$ und jede reguläre Funktion $g \in \mathcal{O}_W(U)$ ist

$$g \circ f \in \mathcal{O}_V(f^{-1}(U))$$

Ist eine und damit alle jede der Bedingungen erfüllt, so heißt f Morphismus.

Beweis. "(ii) \Leftrightarrow (iii) " Folgt aus 10.4 und 6.9

"(i) \Rightarrow (iii)" Die Stetigkeit von f folgt wie im affinen Fall.

Ist $g \in \mathcal{O}_W(U)$ regulär, so gilt lokal $g = \frac{G}{H}$ mit homogenen Polynomen G, H von gleichem Grad. Damit ist

$$g \circ f = \frac{G(F_0(y), \dots, F_m(y))}{H(F_0(y), \dots, F_m(y))}$$

regulär auf einer geeigneten offenen Menge.

"(ii) \Rightarrow (i)" Sei j=0 und $x \in V \cap U_i$ und f in einer offenen Umgebung von x gegeben durch

$$f(y) = (f_1(y), \dots, f_m(y))$$

mit

$$f_k = \frac{g_k}{h_k}, \qquad g_k, h_k \in \mathbb{K}[Y_1, \dots, Y_n]$$

§ 11 MORPHISMEN 43

Durch Homogenisieren erhalten wir

$$f(y) = (1: f_1(y): \ldots: f_m(y))$$

Multiplizieren mit dem Hauptnenner und bei Bedarf mit einer Potenz von X_0 ergibt die gewünschten Polynome von gleichem Grad.

Beispiel 11.2 Sei

$$f: \mathbb{P}^2(\mathbb{K})\backslash\{(0:1:0)\} \longrightarrow \mathbb{P}^1(\mathbb{K}), \quad (x:y:z) \mapsto (x:z)$$

Dann ist f Morphismus. Aber: f lässt sich nicht zum Morphismus $\mathbb{P}^2(\mathbb{K}) \longrightarrow \mathbb{P}^1(\mathbb{K})$ fortsetzen. Denn: Betrachte $f(\lambda : \mu : \lambda) = (1 : 1)$ für ein $\lambda \in \mathbb{K}^{\times}, \mu \in \mathbb{K}$. Es gilt

$$\{(\lambda:\mu:\lambda)\in\mathbb{P}^2(\mathbb{K})\mid\lambda\neq0\}=V(X-Z)\setminus\{(0:1:0)\}$$

das heißt, f ist konstant auf $V(X-Z)\setminus\{(0:1:0)\}$, also auch auf $\overline{V(X-Z)\setminus\{(0:1:0)\}}=V(X-Z)$, falls $\mathbb K$ unendlich ist.

Betrachte nun $f(\lambda : \mu : -\lambda) = (1 : -1)$ für ein $\lambda \in \mathbb{K}^{\times}, \mu \in \mathbb{K}$. Analog erhält man hier, dass f konstant auf V(X + Z) ist, also

$$f(V(X-Z)) = (1:1), \qquad f(V(X+Z)) = (1:-1)$$

Damit kann es eine solche Fortsetzung nicht geben.

Beispiel 11.3 Sei $E := V(Y^2Z - X^3 + XZ^2)$, Siehe Beispiel 9.9, und

$$f: E \setminus \{(0:1:0)\} \longrightarrow \mathbb{P}^1(\mathbb{K}), \quad (x:y:z) \mapsto (x:z)$$

Dann lässt sich f zum Morphismus $E \longrightarrow \mathbb{P}^1(\mathbb{K})$ fortsetzen.

Betrachte hierzu die Tangente an E in $P_{\infty} := (0:1:0)$ Diese ist die Gerade Z = 0, denn die Tangente ist gerade der lineare Term. Dann gilt $f|_{V(Z)} = (1:0)$. Setze nun $P_0 := (0:0:1)$ und

$$g(x:y:z) = \begin{cases} (x:z) & \text{für } (x:y:z) \in E \setminus \{P_{\infty}\} \\ (y^2 + xz:x^2) & \text{für } (x:y:z) \in E \setminus \{P_0\} \end{cases}$$

g ist Morphismus. Es bleibt zu zeigen: Für $(x:y:z)\in E\setminus\{P_0,P_\infty\}$ ist $(x:z)=(y^2+xz:x^2)$. Es gilt aber

$$y^2z + xz^2 = x^3 \quad \Longleftrightarrow \quad \frac{y^2 + xz}{x^2} = \frac{x}{z}$$

und damit

$$(x:z) = (x(y^2 + xz): z(y^2 + x^2)) \stackrel{(x:y:z) \in E}{=} (xy^2 + x^2z: x^3) \stackrel{x \neq 0}{=} (y^2 + xz: x^2)$$

Außerdem ist $y^2 + xz \neq 0$, da sonst $0 = y^2z - x^3 + xz^2 = (y^2 + xz)z - x^3 = -x^3$, also x = 0, also $(x : y : z) \in \{P_0, P_\infty\}$.

Proposition 11.4 Ist $f : \mathbb{P}^n(\mathbb{K}) \longrightarrow \mathbb{P}^m(\mathbb{K})$ Morphismus, so gibt es homogene Polynome F_0, \ldots, F_m von gleichem Grad, sodass gilt

$$f(x) = (F_0(x) : \dots : F_m(x))$$
 für alle $x \in \mathbb{P}^n(\mathbb{K})$

Beweis. Übung. Hauptgrund: $\mathbb{K}[X_0,\ldots,X_n]$ ist faktoriell.

Bemerkung 11.5 Für jede quasiprojektive Varietät V ist

$$Aut(V) := \{ f : V \longrightarrow V \mid f \text{ ist Isomorphismus } \}$$

eine Gruppe.

Beispiel 11.6 Es gilt Aut $(\mathbb{P}^1(\mathbb{K})) \cong \operatorname{GL}_2(\mathbb{K})/\mathbb{K}^{\times}I_2 \cong \mathbb{P}\operatorname{GL}_2(\mathbb{K})$ mit Isomorphismus

$$\phi: \operatorname{PGL}_2(\mathbb{K}) \longrightarrow \operatorname{Aut}\left(\mathbb{P}^1(\mathbb{K})\right), \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \left(\left(X_0: X_1\right) \mapsto \left(aX_0 + bX_1: cX_0 + dX_1\right)\right)$$

Analog ist

$$\operatorname{Aut}\left(\mathbb{P}^n(\mathbb{K})\right) \cong \operatorname{PGL}_{n+1}(\mathbb{K})$$

Beispiel 11.7 Sei wieder $E:=V(Y^2Z-X^3+XZ^2)$ wie in Beispiel 9.9. Wir haben bereits eine Gruppenstruktur auf E via

$$\oplus := \oplus_{P_0} : E \times E \longrightarrow E, \qquad (P,Q) \mapsto P \oplus_{P_0} Q$$

Mit den Formeln für \oplus , die man sich analytisch herleiten kann, sieht man: \oplus ist Morphismus. Für jedes $P \in E$ ist also

$$\mu_P: E \longrightarrow E, \qquad Q \mapsto P \oplus Q$$

ein Automorphismus. Damit enthält $\operatorname{Aut}(E)$ eine zu E isomorphe Untergruppe. Einen weiteren Automorphismus finden wir zum Beispiel via

$$X \mapsto -X, \quad Y \mapsto i \cdot Y, \quad Z \mapsto Z$$