Математическое моделирование и методы оптимизации Часть 2.

Тремба Андрей Александрович Москва, к.ф.-м.н., с.н.с. Институт проблем управления РАН

21 июня 2019 г., Иннополис

Вторая часть

Теория: «геометрия», формулы и методы

- Выпуклость
- Градиент и градиентные методы (безусловная минимизация)
- Безградиентные методы
- А также
 - Определение типа задачи
 - Фундаментальные идеи и подходы
 - Выбор подходящего метода решения
 - Немного об эффективности методов
 - Преобразование задач

Выпуклость и минимумы

Выпуклые и невыпуклые

Некоторые задачи существенно неразрешимы*:

$$2\sin x - x \to \min_{x}$$

Некоторые задачи решаются эффективно

$$x^2 - 2x \to \min_x$$

В чём разница?

Выпуклая оптимизация и глобальная оптимизация.

Выпуклые множества

$${\cal Q}$$
 выпукло

$$\updownarrow$$

Для любых
$$x,z\in Q$$

$$\alpha x + (1 - \alpha)z \in Q, \ \alpha \in [0, 1]$$

Примеры выпуклых множеств

- шары в любых нормах $\{x: \|x\| \le 1\}$
- аффинные множества $\{x \in \mathbb{R}^n : x^0 + Az, \ z \in \mathbb{R}^m\}$
- полупространства $\{x:(c,x)\leq c_0\}$
- пересечение выпуклых множеств (не объединение!)
- аффинные преобразования выпуклых множеств $\{Ax + b : x \in Q\}$

Примеры выпуклых множеств (продолжение)

- выпуклые конусы $C: \forall x^a, x^b \in C o \lambda_1 x^a + \lambda_2 x^b \in C, \ \lambda_i \geq 0$
- выпуклая оболочка множества $conv(Q) = \{\lambda x + (1-\lambda)z, \ x,z \in Q, \lambda \in [0,1]\}$
- выпуклая оболочка точек $conv(x^1,x^2,...,x^m)=\{\sum_{i=1,m}\lambda_ix^i,\ \lambda_i\geq 0,\ \sum_i\lambda_i=1\}$

Свойства выпуклых множеств

• Отделимость:

Если выпуклые множества $Q_1 \cap Q_2 = \emptyset$, то $\exists c, \alpha : (c, x) \leq \alpha, \forall x \in Q_1, \ (c, x) \geq \alpha, \forall x \in Q_2$

• Существование опорной гиперплоскости к любой точке границы

$$\forall x \in \partial Q, \exists c, \alpha : (c, x) = \alpha, \ (c, z) \le \alpha, \ z \in Q$$

Определение с помощью опорных гиперплоскостей:

$$Q = \bigcap_{c \in \mathbb{R}^n, ||c|| = 1} \{x : (c, x) \le S_Q(c)\}$$

Выпуклые функции

«Нулевое» определение: надграфик функции является выпуклым множеством.

epi
$$f = \{(x, t) : f(x) \le t\}$$

Эквивалентные определения

$$(\forall \alpha \in [0,1], \ x,y \in \mathbf{dom} \ f)$$
:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

$$f(\frac{x+y}{2}) \le \frac{f(x)+f(y)}{2}$$

3

4

5

Определения минимума

Точка x^* называется локальным минимумом, если $\exists \varepsilon > 0$:

$$f(x) \ge f(x^*), \quad \forall x : ||x - x^*|| \le \varepsilon$$

Определения минимума

Точка x^* называется локальным минимумом, если $\exists \varepsilon > 0$:

$$f(x) \ge f(x^*), \ \forall x : ||x - x^*|| \le \varepsilon$$

 x^* называется глобальным минимумом, если

$$f(x) \geq f(x^*), \;\; \forall x \in \mathbb{R}^n \;\; ($$
или $\forall x \in Q)$

Определения минимума

Точка x^* называется локальным минимумом, если $\exists \varepsilon > 0$:

$$f(x) \ge f(x^*), \ \forall x : ||x - x^*|| \le \varepsilon$$

 x^{st} называется глобальным минимумом, если

$$f(x) \geq f(x^*), \;\; \forall x \in \mathbb{R}^n \;\; ($$
или $\forall x \in Q)$

Для выпуклых функций каждый* локальный минимум является глобальным.

Область определения функции

Область определения $\operatorname{\mathbf{dom}} f$ это множество, где функция «определена»

$$\operatorname{\mathbf{dom}} f \subseteq \mathbb{R}^n$$

а) как неявные ограничения («естественная» область определения) $f(x) = x - \log x : \mathbf{dom} \ f = ?$

б) как часть определения
$$f(x) = x^2, x \in [1, 3) \cup [4, +\infty) \subset \mathbb{R}.$$

Расширенная числовая прямая

Функция со значениями в $\mathbb{R} \cup \{+\infty\}$,

$$\overline{f}: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$$

$$\overline{f}(x) = \begin{cases} f(x), & x \in \operatorname{dom} f, \\ +\infty, & \text{иначе} \end{cases}$$

$$\min_{x \in \mathbf{dom}\, f} f(x) \Leftrightarrow \min \overline{f}(x)$$

$$f(x)$$
 – выпуклая $\Leftrightarrow \overline{f}(x)$ – выпуклая

Внимание, нюанс с постановкой задачи!

$$\operatorname{\mathbf{dom}} \overline{f} = ?$$

Внимание, нюанс с постановкой задачи!

$$\operatorname{\mathbf{dom}} \overline{f} = \mathbb{R}^n$$

$$\min \overline{f}(x) \Leftrightarrow \min_{x \in \operatorname{dom} f} f(x)$$

Задача без ограничений может быть «скрыто» ограничена:

$$\min_{x} f(x), \quad \mathbf{dom} f \neq \mathbb{R}^n \Leftrightarrow \min_{x \in \mathbf{dom} f} f(x)$$

В безусловной оптимизацией подразумевается

$$\operatorname{\mathbf{dom}} f = \mathbb{R}^n$$

Операции, сохраняющие выпуклость

- $\sum_i \lambda_i f_i(x)$
- ullet -f(x), если f вогнутая
- f(Ax+b)
- $\max_i f_i(x)$
- $\sup_a f_a(x)$

Правила композиции (скалярные)

$$f(x)=h(g(x))$$
 $h:\mathbb{R} o\mathbb{R},\ g:\mathbb{R}^n o\mathbb{R}$ $\mathbf{dom}\,f=\{x\in\mathbf{dom}\,(g):g(x)\in\mathbf{dom}\,h\}$ выпуклая, если:

- ullet h выпуклая, \overline{h} неубывающая, g выпуклая
- ullet h выпуклая, \overline{h} невозрастающая, g вогнутая
- ullet h выпуклая, g_i аффинная
- ...

Правила композиции (векторные)

$$f(x)=h(g(x))=h(g_1(x),\ldots,g_m(x))$$
 $h:\mathbb{R}^m o \mathbb{R}, \ g:\mathbb{R}^n o \mathbb{R}^m$ $\mathbf{dom}\ f=\{x\in \mathbf{dom}\ (g):g(x)\in \mathbf{dom}\ h\}$ выпуклая, если для каждой компоненты $(i ext{-}m{ ilde{u}})$:

- ullet h выпуклая, \overline{h} неубывающая по i-й компоненте и g_i выпуклая
- ullet h выпуклая, \overline{h} невозрастающая по i-й компоненте и g_i вогнутая
- ullet h выпуклая, g_i аффинная

16 / 69

Строгая выпуклость

Для множеств:

если
$$\widehat{x}\in \,\mathrm{bnd}\,Q$$
, то $ot \, Z x,y\in Q: \widehat{x}=rac{x+y}{2}$

Для функций:

$$f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y), \quad \alpha \in (0,1)$$

Theorem

Минимум строго выпуклой функции единственный.

Сильная выпуклость

Константа $\mu > 0$.

Эквивалентные определения

$$(\forall \alpha \in [0,1], \ x,z \in \mathbf{dom} \ f)$$
:

- $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y) \mu \frac{\alpha(1 \alpha)}{2} ||x y||^2$
- $f(\frac{x+y}{2}) \le \frac{f(x)+f(y)}{2} \frac{\mu}{8} ||x-y||^2$
- 3
- 4
- 5

Градации выпуклости

- Выпуклая функция:
 локальный минимум* = глобальный.
- Строго выпуклая функция: минимум* единственный.
- Сильно выпуклая функция:
 - Если существует (*), то минимум единственный,
 - Существует и единственный, если $\mathbf{dom} f = \mathbb{R}^n$.

Особенности задачи

Даже с выпуклыми функциями:

- нет минимума (неограниченная обл. опр.),
- нет сходимости по x (неограниченная область определения),
- нет сходимости f (неограниченные значения),
- нет минимума (ограниченная область опр.),
- не единственный минимум (для не строго/сильно выпуклых)
- может быть разрывной (на границе).

Визуализация функций: графики и множества Лебега.

Множества Лебега и линии уровня

$$Q(c) = \{x : f(x) \le c\}$$

- вложенность
- легко находить минимум
- выпуклые для выпуклых функций
- ограниченность

Линии уровня

$$\{x: f(x) = c\}$$

Методы!

Одномерная минимизация, основная структура и дифференцируемость.

Одномерная минимизация

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \in [a, b]$$

• Сеточный метод

Одномерная минимизация

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \in [a, b]$$

- Сеточный метод
- Метод золотого сечения
- Метод Фибоначчи

Сложность вычислений

- Сложность вычисления функции
- Число вычислений функций в одном шаге алгоритма
- Число шагов алгоритма:

N-arepsilon обозначения и $o(\cdot), O(\cdot)$ функции

Сложность вычислений

- Сложность вычисления функции
- Число вычислений функций в одном шаге алгоритма
- Число шагов алгоритма:

$$N-arepsilon$$
 обозначения и $o(\cdot), O(\cdot)$ функции

- $N(\varepsilon): f(x^{N(\varepsilon)}) f^* \le \varepsilon$
- $\epsilon(N) \ge f(x^N) f^*$

Скорость сходимости 1

$$\min_{x \in [a,b]} f(x)$$

Сеточный метод (1D) (для $|x^k - x^*| \le \varepsilon$):

$$N(\varepsilon) = \frac{2(b-a)}{\varepsilon} + 1 = O(\frac{1}{\varepsilon}), \ \varepsilon(N) = \frac{2(b-a)}{N-1} = o(\frac{1}{N})$$

Скорость сходимости 1

$$\min_{x \in [a,b]} f(x)$$

Сеточный метод (1D) (для $|x^k - x^*| \le \varepsilon$):

$$N(\varepsilon) = \frac{2(b-a)}{\varepsilon} + 1 = O(\frac{1}{\varepsilon}), \ \varepsilon(N) = \frac{2(b-a)}{N-1} = o(\frac{1}{N})$$

Сеточный метод (n-D) $(x \in \mathbb{R}^n, x_i \in [a,b])$:

$$N(\varepsilon) \approx \left(\frac{b-a}{\varepsilon}\right)^n, \quad \varepsilon(N) \approx \frac{b-a}{\sqrt[n]{N}}$$

Скорость сходимости 2

$$\min_{x \in [a,b]} f(x)$$

Метод золотого сечения (1D)

(для
$$|x^k - x^*| \le \varepsilon$$
):

$$\varepsilon(N) = \frac{(b-a)}{2}\phi^{N-1} = o(1,618^N)$$

$$N(\varepsilon) = \log_{\phi} \left(\frac{b-a}{2\varepsilon} \right) + 1 = O(\log \frac{1}{\varepsilon})$$

Разные скорости сходимости

• Сублинейная

$$f(x^{k+1}) - f^* \le q_k \cdot (f(x^k) - f^*), \ q_k < 1, q_k \to 1$$

• Линейная

$$f(x^{k+1}) - f^* \le q \cdot (f(x^k) - f^*), \quad q < 1$$

Квадратичная*

$$f(x^{k+1}) - f^* \le c \cdot (f(x^k) - f^*)^2$$

Общий метод, дифференцируемость.

Безусловная минимизация: общий метод

$$f(x) \to \min_{x}$$

(предполагается
$$\operatorname{\mathbf{dom}} f = \mathbb{R}^n$$
)

«Выбор направления + выбор длины шага»

$$x^{k+1} = x^k + \gamma_k p^k$$

Координатный спуск

$$x^{k+1} = x^k + \gamma_k p^k$$

Оси как направления: $p^k=e^{i_k}$

• циклический перебор

$$i_k = (k \bmod n) + 1$$

Скалярное произведение

• Симметричность $(\cdot,\cdot):V imes V o \mathbb{R}$

$$(y,x) = (x,y)$$

• Линейность по первому* аргументу $(ax,y) = a(x,y) \\ (x+z,y) = (x,y) + (z,y)$

• Положительная полуопределённость $(x,x) \geq 0$ $(x,x) = 0 \Leftrightarrow x = 0$

Стандартное скалярное произведение,

$$x, y \in \mathbb{R}^n$$
: $(x, y) = x^T y = \sum_{i=1,n} x_i y_i$

$$f: \mathbb{R}^n \to \mathbb{R}$$

Функция дифференцируема в точке x), если:

$$\exists p : f(x+z) = f(x) + (p,z) + o(\|z\|)$$

$$f: \mathbb{R}^n \to \mathbb{R}$$

Функция дифференцируема в точке x), если:

$$\exists p: f(x+z) = f(x) + (p,z) + o(\|z\|)$$

p(x) называется «производной» (f'(x)):

$$n = 1$$
: $f(x + z) = f(x) + f'(x)z + o(|z|)$

$$f: \mathbb{R}^n \to \mathbb{R}$$

Функция дифференцируема в точке x), если:

$$\exists p: f(x+z) = f(x) + (p,z) + o(\|z\|)$$

p(x) называется «производной» (f'(x)):

$$n = 1$$
: $f(x+z) = f(x) + f'(x)z + o(|z|)$

Для векторных функций (n>1) называется «градиент», обозначается $\nabla f(x)$.

- ullet Непрерывные функции: класс C^0
- Дифференцируемые функции
- Непрерывно дифференцируемые функции (гладкие функции): класс C^1
- Гладкие функции (бесконечно дифференцируемые): класс C^{∞}

Градиент и его свойства

- $f(x+z) = f(x) + (\nabla f(x), z) + o(||z||)$
- То же, что ряд Тейлора функции многих переменных

$$f(x + \Delta) = f(x) + \sum_{i=1,n} \frac{\partial f(x)}{\partial x_i} \Delta_i + \sum_{i=1,n} o(\Delta_i)$$

Градиент и его свойства

- $f(x+z) = f(x) + (\nabla f(x), z) + o(||z||)$
 - То же, что ряд Тейлора функции многих переменных

$$f(x + \Delta) = f(x) + \sum_{i=1,n} \frac{\partial f(x)}{\partial x_i} \Delta_i + \sum_{i=1,n} o(\Delta_i)$$

Полезные следствия:

•
$$\lim_{\|z\| \to 0} \frac{f(x+z) - f(x)}{\|z\|} = (\nabla f(x), \frac{z}{\|z\|})$$

•
$$f(y) = f(x) + (\nabla f(x), y - x) + o(||y - x||)$$

Формула Ньютона-Лейбница

Если f(x) дифференцируема, то верна точная формула

$$f(x+z) = f(x) + \int_0^1 \left(\nabla f(x+\tau z), z\right) d\tau,$$

и теорема о среднем значении:

$$f(x+z) = f(x) + \left(\nabla f(x+\widehat{\tau}z), z\right)$$

для некоторой $\widehat{\tau} \in (0,1)$.

Визуализация градиентов

$$f(x+z) = f(x) + (\nabla f(x),z) + o(\|z\|)$$

abla f(x) и касательная гиперплоскость

Исчисление градиентов

«линейность»

$$\nabla_x \Big(a f(x) \Big) = a \nabla f(x), \quad a \in \mathbb{R}$$
$$\nabla_x (f(x) + g(x)) = \nabla f(x) + \nabla g(x)$$

• дифференцируемость сложных функций (скалярных): $h: \mathbb{R} \to \mathbb{R}, \ g: \mathbb{R} \to \mathbb{R},$

$$h(g(x))'_x = h'(g(x))g'(x)$$

и векторных $h: \mathbb{R} \to \mathbb{R}, \ g: \mathbb{R}^n \to \mathbb{R},$

$$\nabla_x h(g(x)) = h'(g(x)) \nabla_x g(x)$$

ullet f(x)=g(Ax), to $abla_x f(x)=A^T
abla_y g(Ax)$

Выпуклые функции (обновление)

Эквивалентные определения $(\forall \alpha \in [0,1], x,y \in \mathbf{dom} f)$:

- $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y)$
- $f(\frac{x+y}{2}) \le \frac{f(x)+f(y)}{2}$
- $f(y) \ge f(x) + (\nabla f(x), y x)$ (дифференцируемые)
- $(\nabla f(x) \nabla f(y), x y) \ge 0$ (дифференцируемые)

Сильная выпуклость (обновление)

Константа $\mu > 0$.

Эквивалентные определения $(\forall \alpha \in [0,1], \ x,z \in \mathbf{dom} \ f)$:

- $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y) \mu \frac{\alpha(1 \alpha)}{2} ||x y||^2$
- $f(\frac{x+y}{2}) \le \frac{f(x)+f(y)}{2} \frac{\mu}{8} ||x-y||^2$
- $f(y) \geq f(x) + (\nabla f(x), y x) + \frac{\mu}{2} \|x y\|^2$
- $(\nabla f(x) \nabla f(y), x y) \ge \mu ||x y||^2$

Константа Липшица

Константа Липшица градиента

- 1
- 2
- $f(y) \le f(x) + (\nabla f(x), y x) + \frac{L}{2} ||x y||^2$
- $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$
- 5

Необходимое условие оптимальности (1го порядка, без ограничений)

Если x^* — точка экстремума, то

$$\nabla f(x^*) = 0$$

$$\ll x^*$$
 экстремальная точка» \Rightarrow $\nabla f(x^*) = 0$ \Downarrow

 $\ll x^*$ точка минимума» $\implies \nabla f(x^*) = 0$

Необходимые и достаточные условия оптимальности (1го порядка, без ограничений)

Для выпуклой функции без ограничений

$$\nabla f(x^*) = 0 \Leftrightarrow x^* \in \operatorname{Arg\,min} f$$

Использование условий оптимальности

Безусловная минимизация!

• Аналитическое решение или упрощение уравнения

$$\nabla f(x) = 0 \in \mathbb{R}^n$$

• Практический критерий остановки

$$\|\nabla f(x^k)\| \to 0$$

Пример: аппроксимация и метод наименьших квадратов

Дано: наборы точек $(x_j,y_j), \quad j=1,...,N$ Найти: аппроксимирующую функцию F(x).

Пример: аппроксимация и метод наименьших квадратов

Дано: наборы точек $(x_j, y_j), \quad j = 1, ..., N$ Найти: аппроксимирующую функцию F(x).

Дополнительно: модельные функции $\phi_i: \mathbb{R} \to \mathbb{R}, \;\; i=1,...,n$ и $F(x) = \sum_{i=1}^n w_i \phi_i(x)$

Пример: аппроксимация и метод наименьших квадратов

Дано: наборы точек $(x_j,y_j),\ j=1,...,N$ Найти: аппроксимирующую функцию F(x).

Дополнительно: модельные функции $\phi_i: \mathbb{R} \to \mathbb{R}, \;\; i=1,...,n$ и $F(x) = \sum_{i=1}^n w_i \phi_i(x)$

Задача:
$$\sum_{j=1}^N \left\| \sum_{i=1}^n w_i \phi_i(x_j) - y_j \right\|^2 o \min_w$$

$$\min \|Aw - b\|^2$$

Возвращаясь к общему методу

Выбор направления (1 часть)

$$x^{k+1} = x^k + \gamma_k p^k, \ \gamma_k \ge 0$$

• Градиентный спуск (скорейшего спуска)

$$p^k = -\nabla f(x^k)$$

Выбор направления (1 часть)

$$x^{k+1} = x^k + \gamma_k p^k, \ \gamma_k \ge 0$$

• Градиентный спуск (скорейшего спуска)

$$p^k = -\nabla f(x^k)$$

• Допустимые направления

$$p^k: (p^k, \nabla f(x^k)) < 0$$

Выбор направления (1 часть)

$$x^{k+1} = x^k + \gamma_k p^k, \ \gamma_k \ge 0$$

• Градиентный спуск (скорейшего спуска)

$$p^k = -\nabla f(x^k)$$

• Допустимые направления

$$p^k: (p^k, \nabla f(x^k)) < 0$$

• Покоординатный спуск (?):

$$p^k = e_{i_k}$$

• цикл $i_k = (k \mod n) + 1$

- цикл $i_k = (k \mod n) + 1$
- случайный выбор (равномерно):

$$P(i_k = j) = \frac{1}{n}$$

• цикл $i_k = (k \mod n) + 1$

• правило Гаусса-Саусвелла $i_k = rg \max_i |
abla f(x^k)_i|$

• цикл $i_k = (k \mod n) + 1$

• правило Гаусса-Саусвелла-Липшица $i_k = \arg\max_i \frac{|\nabla f(x^k)_i|}{\sqrt{L_i}}$

 \bullet цикл $i_k = (k \mod n) + 1$

$$P(i_k = j) = \frac{L_j}{\sum_{m=1,n} L_j}$$

- цикл $i_k = (k \mod n) + 1$
- случайный выбор (равномерно):

$$P(i_k = j) = \frac{1}{n}$$

- правило Гаусса-Саусвелла $i_k = \arg\max_i |\nabla f(x^k)_i|$
- правило Гаусса-Саусвелла-Липшица $i_k = \arg\max_i \frac{|\nabla f(x^k)_i|}{\sqrt{L_i}}$
 - ullet случайный выбор (правило $\overset{\iota}{\mathsf{Hecrepoba}}$)

$$\mathsf{P}(i_k = j) = \frac{L_j}{\sum_{m=1,n} L_j}$$

Выбор длины шага

$$h(\gamma) = f(x + \gamma p), \quad \gamma \in \mathbb{R} \text{ (or } \mathbb{R}_+)$$

- аналитический
- постоянный (learning rate)
- ullet одномерная оптимизация $f(x^k+lpha p^k)$
- правило Армихо

$$f(x+\gamma p) \leq f(x) + \alpha \gamma(\nabla f(x), p), \quad \alpha \in (0,1)$$

Выбор длины шага

$$h(\gamma) = f(x + \gamma p), \quad \gamma \in \mathbb{R} \text{ (or } \mathbb{R}_+)$$

- аналитический
- постоянный (learning rate)
- ullet одномерная оптимизация $f(x^k+lpha p^k)$
- правило Армихо $f(x+\gamma p) \leq f(x) + \alpha \gamma(\nabla f(x), p), \quad \alpha \in (0,1)$
- + правило Гольштейна $f(x+\gamma p) \geq f(x) + (1-\alpha)\gamma(\nabla f(x),p),$ $\alpha \in (0,1/2)$

Выбор длины шага

$$h(\gamma) = f(x + \gamma p), \quad \gamma \in \mathbb{R} \text{ (or } \mathbb{R}_+)$$

- аналитический
- постоянный (learning rate)
- ullet одномерная оптимизация $f(x^k+lpha p^k)$
- правило Армихо + поиск с возвратом $f(x+\gamma p) \leq f(x) + \alpha \gamma(\nabla f(x), p), \quad \alpha \in (0,1)$
- + правило Гольштейна $f(x+\gamma p) \geq f(x) + (1-\alpha)\gamma(\nabla f(x),p),$ $\alpha \in (0,1/2)$

Постоянный шаг. Теория

$$x^{k+1} = x^k - \gamma \nabla f(x^k)$$

Theorem

Пусть f(x) дифференцируема на \mathbb{R}^n , имеет липшицев градиент с константой L и ограничена снизу

$$f(x) \ge f^* > -\infty.$$

Тогда если $0<\gamma<\frac{2}{L}$, то a) $\lim_{k\to\infty} \nabla f(x^k)=0$, 6) $f(x^{k+1})< f(x^k)$, if $\nabla f(x^k)\neq 0$

Доказательство и свойства

Формула Ньютона-Лейбница

- теорема верна для невыпуклых функций
- для сходимости по $f(x^k)$ либо x^k нужны дополнительные свойства,
- ullet для выпуклых функций с ограниченным множеством Лебега сходимость по $f(x^k)$,
- ullet для сильно выпуклых функций $x^k o x^*$,
- «глобальная» сходимость,
- «медленная» сходимость.

Скорость сходимости градиентного метода

• Для выпуклой функции с липшицевым градиентом (L) - сублинейная:

$$f(x^k) - f^* \sim \frac{c}{k}$$

• Для сильно выпуклой (μ) функции с Липшицевым градиентом (L) - линейная:

$$||x^{k+1} - x^*|| \le \left(\frac{L-\mu}{L+\mu}\right) ||x^k - x^*||$$

Промежуточные итоги

- «Направление + шаг»
- Дифференцируемость
- Условия оптимальности
- Выбор направления: градиентный метод
- Выбор длины шага

Методы нулевого порядка

Безградиентные методы

- Одномерная минимизация
- Аппроксимация градиента (численная, конструктивная)
- Симплексный метод (Нилдера-Мида) не симплекс-метод!
- Метод имитации отжига

Метод Нилдера-Мида

Набор
$$n+1$$
 точек $\{x^i\}, i=0,\dots,n$

Параметр «отражения»
$$\alpha=1$$

Параметр «расширения»
$$\gamma=2$$

Параметр «сжатия вершины»
$$\beta_1=0.5$$

Параметр «сжатия симплекса»
$$\beta_2=0.5$$

Один шаг метода Нилдера-Мида

1. Вычислить $f(x^i)$ и отсортировать:

$$\mathbf{f}_{\ell} = f(x^{\ell}) \le \dots \le \mathbf{f}_g = f(x^g) \le \mathbf{f}_h = f(x^h),$$

Вычислить «центр масс» грани: $x^c = \frac{1}{n} \sum_{i \neq h} x^i$.

- 2. Отражение: $x^r = x^c + \alpha(x^c x^h)$, и $\mathbf{f}_r = f(x^r)$.
- 3. Принятие решения:

А. Если $\mathbf{f}_r < \mathbf{f}_\ell$, то выполнить Расширение $x^e = x^c + \gamma(x^r - x^c), \ \mathbf{f}_e = f(x^e).$ Если $\mathbf{f}_e < \mathbf{f}_r$, то установить $x^h \leftarrow x^e$, иначе $x^h \leftarrow x^r$, и перейти на Шаг 5.

Б. Если $\mathbf{f}_{\ell} < \mathbf{f}_r < \mathbf{f}_g$, то установить $x^h \leftarrow x^r$ и перейти на Шаг 5.

В. Если $\mathbf{f}_g < \mathbf{f}_r < \mathbf{f}_h$ попробовать Сжатие вершины $x^s = x^c + \beta_1(x^h - x^c), \ \mathbf{f}_s = f(x^s).$ Если $\mathbf{f}_s < \mathbf{f}_h$, установить $x^h \leftarrow x^s$, иначе* перейти на Шаг 5.

 \mathbf{D} . Если $\mathbf{f}_h < \mathbf{f}_r$, то на следующий шаг.

- 4. Сжатие симплекса $x^i\!=\!x^\ell\!+\!\beta_2(x^i-x^\ell),\;i\neq\ell$, и перейти на Шаг 1.
- 5. Проверить условия останова.

Случайный поиск и имитация отжига

- случайное направление и одномерный поиск
- имитация отжига
 - из x^k получить $\to x^+$ (случайную близкую точку)
 - ullet если $f(x^+) < f(x^k)$, then $x^{k+1} = x^+$, иначе

$$x^{k+1} = \left\{ egin{array}{ll} x^k, & \mbox{c вероятностью } p_k, \\ x^+, & \mbox{c вероятностью } 1-p_k, \end{array}
ight.$$

о перейти на Шаг 1.

Недифференцируемые функции

Дифференцируемое и недифференцируемое

Для непрерывных функций:

• Дифференцируемая функция (по Фреше)

$$f(x+\Delta x) = f(x) + (\nabla f(x), \Delta x) + o(\|\Delta x\|)$$

Производная по направлению (производная Гато)

$$f(x + \gamma d) = f(x) + \gamma Df(x, d) + o(\gamma), \ \gamma > 0$$

Субдифференциал

Для выпуклой дифференцируемой функции

$$f(x + \Delta x) \ge f(x) + (\nabla f(x), \Delta x), \quad \forall \Delta x$$

 $f(z) \ge f(x) + (\nabla f(x), z - x), \quad \forall z$

Субдифференциал

Для выпуклой дифференцируемой функции

$$f(x + \Delta x) \ge f(x) + (\nabla f(x), \Delta x), \quad \forall \Delta x$$
$$f(z) \ge f(x) + (\nabla f(x), z - x), \quad \forall z$$

Для выпуклой недифференцируемой функции

$$\partial f(x) = \{v : f(z) \ge f(x) + (v, z - x), \forall z\}$$

Субдифференциал

$$\partial f(x) = conv\{Df(x,d) : d \in \mathbb{R}^n\}$$

Элементы субдифференциала - субградиенты (тоже обозначаются как $\partial f(x)$).

Свойства субградиентов

ullet Если функция дифференцируема в x, то

$$\partial f(x) = \{ \nabla f(x) \}$$

• Сумма функций – сумма множеств

$$\partial \left(\sum_{i} \alpha_{i} f_{i}(x) \right) = \sum_{i} \alpha_{i} \partial f_{i}(x), \ \alpha_{i} \geq 0$$

 Максимум функций – выпуклая оболочка множеств

$$\partial \max_{i} f_{i}(x) = conv \Big(\partial f_{i}(x), i \in \operatorname{Arg} \max_{i} f_{i}(x) \Big)$$

Необходимые и достаточные условия оптимальности

Дифференцируемые функции

$$\nabla f(x) = 0$$

Недифференцируемые функции

$$\partial f(x) \ni 0$$

Методы?

Субградиентные метод

$$x^{k+1} = x^k - \gamma_k \partial f(x^k)$$

Типично

- $\gamma_k \geq 0$
- $\bullet \gamma_k \to 0$
- $\sum_{k} \gamma_k \to \infty$
- + дополнительные требования к задаче

Постоянная длина шага может не сработать!

Три способа выбора шага: первый

Theorem

Для выпуклой функции $f(\cdot)$, $\|\partial f(\cdot)\| \leq c$, $\exists x^*$, такой, что • $\gamma_k > 0$,

- ≥ 0
- $\bullet \gamma_k \to 0$,
- $\sum_{k} \gamma_k \to \infty$.

Тогда алгоритм

ритм
$$x^{k+1} = x^k - \gamma_k \frac{\partial f(x^k)}{\|\partial f(x^k)\|}$$

сходится $\varliminf_{k\to\infty} f(x^k) = f^*$

Три способа выбора шага: второй

Theorem

Для выпуклой функции $f(\cdot)$, $\exists x^*$

- $\gamma_k \geq 0$,
- $\bullet \gamma_k \to 0$,
- $\sum_{k} \gamma_{k} \to \infty,$ $\sum_{k} \gamma_{k}^{2} < \infty.$

—... Тогда алгоритм

ритм $x^{k+1} = x^k - \gamma_k \frac{\partial f(x^k)}{\|\partial f(x^k)\|}$

приводит к $f(x^k) o_{k o \infty} f^*, x^k o_{k o \infty} x^*$

Три способа выбора шага: третий

Theorem (шаг По́ляка)

Для выпуклой $f(\cdot)$, f^* существует и известно, $\exists x^*$. Тогда алгоритм

$$x^{k+1} = x^k - \gamma_k \partial f(x^k)$$

C

$$\gamma_k = \frac{f(x^k) - f^*}{\|\partial f(x^k)\|^2}$$

сходится

$$\underline{\lim}_{k\to\infty} f(x^k) = f^*$$

Приложение к линейным неравенствам

$$Ax \le b$$

$$(a^i, x) \le b_i, \quad i = 1, \dots, m$$

Положить $d_i(x) = [(a^i, x) - b_i]_+$ и минимизировать

$$f(x) = \max_{i} d_i(x)$$

$$\partial f(x) = ?$$

Приложения к линейным неравенствам (с выпуклым функциям)

 $\mathsf{H}\mathsf{a}\mathsf{reve{u}}\mathsf{T}\mathsf{u}$ x:

$$f_i(x) \le 0, \quad i = 1, \dots, m$$

Эквивалентная задача минимизации

$$f(x) = \max_{i} [f_i(x)]_+ \to \min_{x}$$

$$\partial f(x) = ?$$

$$x^{k+1} = x^k - \dots$$

Преобразование функций

$$\min_{x} f(x)$$

- Добавление константы
- Мажоранты
- Сдвиг по координатам
- Масштабирование
- Смена координат
- Модификация функции