

Problem 1:

1) elastic modulus
$$\overline{E} = \frac{6A - 60}{\mathcal{E}_A - \mathcal{E}_O} = 17 \text{ GPa}$$
. (6 = \overline{E} \mathcal{E})

2) Hill is three element model:

P.E: pass parallel element -> (corring passive face)

: contractile element) -> (active force)

$$Q = \frac{2\pi\Delta P}{4mL} \left[\left(\frac{d}{2} \right)^2 \frac{n^2}{2} - \frac{n^4}{4} \right]_0^{d/2} = \frac{2\pi\Delta P}{4mL} \left[\frac{1}{2} \left(\frac{d}{2} \right)^4 - \frac{1}{4} \left(\frac{d}{2} \right)^4 \right]$$

$$Q = \frac{\pi \Delta P}{8mL} \left(\frac{d}{2}\right)^4 = \frac{\pi \Delta P d^4}{128mL}$$

2)
$$v_i(\lambda=0) = \frac{\Delta P d^2}{16 \eta L} = v_0$$

$$\frac{Q}{V_0} = \frac{\overline{11} d^2}{8} = \frac{1}{2} \overline{11} \left(\frac{d}{2}\right)^2 = \frac{1}{2} A_{\text{New}}$$

Apris the area of the blood versel.

DATO	SIDE	
SIGN		

3)
$$\overline{G}_{ng} = O + 2\eta \frac{1}{2} (v_{3:n} + v_{n:3})$$

$$= \eta \frac{3v_3}{3n} = \pi = 0$$

4)
$$F$$
 at $\frac{d}{2}$?

the net force on the versel is due to the viscous force and the pressure differential at the ends:

$$P_{1} \prod \left(\frac{d}{2}\right)^{2} - P_{2} \left(\prod \frac{d^{2}}{2}\right) - F = 0$$

$$F = \Delta P \prod \frac{d^{2}}{2}$$

DATO SIDE

SIGN

problem 3:

$$\frac{600}{n_{i+\frac{1}{2}}} = \frac{P_i}{h} \qquad n_i > > h = > n_i + \frac{h}{2} \approx n_i$$

2)
$$\lambda_3 = 1$$
 => $\lambda_n = \frac{1}{\lambda_0}$
 $\lambda_1 = \lambda_1 + \frac{1}{\lambda_0} + \frac{1}{\lambda_0}$

3)
$$\delta_{00} = P$$
: $\frac{\lambda_0^2 R}{H}$ $\longrightarrow P$: $= \delta_{00} \frac{H}{\lambda_0^2 R}$;

5)
$$\delta_{nn} = 0$$
 $\Longrightarrow q = -2 \int (I_n) \lambda_n^2$

$$q = -2 \int (I_n) \frac{1}{\lambda_n^2}$$

$$\int_{0}^{\infty} \frac{d \sin x}{dx} = \int_{0}^{\infty} \frac{d \sin x}{dx} dx = \int_{0}^{\infty} \frac{d \sin x}{dx} dx$$

$$-\left[\frac{d \cos x}{dx}\right]_{0}^{\infty} = \int_{0}^{\infty} \frac{d \sin x}{dx} dx$$

$$+\left[0 + \rho_{i}\right] = \int_{0}^{\infty} \frac{d \sin x}{dx} dx$$