

## Cedar Hills Retail Center

4800 West Cedar Hills Drive Cedar Hills, Utah 84062

# Storm Water Analysis



Prepared For:

Amsource 358 South Rio Grande, Suite 200 Salt Lake City, Utah 84101 (801) 741-4524 Anderson, Wahlen & Associates, Inc.

2010 North Redwood Road

Salt Lake City, Utah 84116

Phone: (801) 521-8529

Fax: (801) 521-9551

Date: March 13, 2014

## **Table of Contents**

| Introduction                          | <br> |
|---------------------------------------|------|
|                                       |      |
| Location                              | 1    |
|                                       | <br> |
| Methodology                           | 1    |
|                                       | <br> |
| Analysis                              | 1    |
| · · · · · · · · · · · · · · · · · · · |      |
| Conclusions                           | 1    |

### **Appendices**

- Vicinity Map
- **A** Rational Calculations
- Rainfall Data
- ❖ Basin Map

#### Introduction

Amsource is proposing a new commercial development called Cedar Hills Retail Center. The construction of this development will involve improvements to approximately 2.62 acres of land that is currently undeveloped and located at the corner of 4800 West Street and Cedar Hills Drive. The purposes of this report are to: (1) Determine the flows that will be generated by the proposed development and (2) Determine the required retention volume for the storm water runoff generated based on a rainfall intensities provided by the city of Cedar Hills.

#### Methodology

Rainfall intensities were provided by the city of Cedar Hills; and the 100 year intensities were utilized in this analysis. The rational method was used to determine the storage volume required for the site. The site was divided into two basins. Each basin was divided into one of three categories (landscape, roof, and impervious) for use in the rational method and in determining a composite runoff coefficient. Individual runoff coefficients of 0.1, 0.85 and 0.9 were used for landscape, roof and impervious surfaces respectively.

#### **Analysis**

All storm water will be detained on site in underground storage chambers. Storm water will be treated using a hydrodynamic separator prior to entering the chambers. An onsite geotechnical field investigation was conducted to determine the percolation rate for this site. The field test resulted in a percolation rate of 1.0 minute/inch however a conservative 5 minutes/ inch was used for this evaluation. Using this value a release rate was determined based on the footprint of the chambers. Basin 1 resulted in a required storage of 4,575 cubic feet and Basin 2 resulted in a required storage of 4,459 cubic feet. It should be noted that the evaluated area is greater than the parcel area to account for public improvements.

#### **Conclusions**

Adequate storage will be provided for each basin to retain the runoff produced in a 100 year storm. Each chamber system will hold 4,494 cubic feet of runoff. Basin 1 will also utilize catch basins and storm drain pipes to meet storage needs. Basin 1 storm drain network can accommodate an additional 453 cubic feet resulting in a total storage of 4,947 cubic feet.



Cedar Hills Retail Center:

4800 West Cedar Hills Drive Cedar Hills, Utah 84062

## Storm Water Calculations

Job Name: AFCU

Date: 3/10/2014 Prepared By: Shaun Young

Reviewed By:

Methodology: Rational

### **Developed Conditions**

#### Basin 1

| Area Type     | Area (ft^2) | <u>C</u> |
|---------------|-------------|----------|
| Roof          | 4948        | 0.85     |
| Hard Surfaces | 44450       | 0.9      |
| Landscape     | 21503       | 0.1      |
| Subtotal=     | 70901       |          |

**Total=** 1.627662994 acres

**C average=** 0.653884995

Percolation Rate = 0.000278 Feet / Second

Rentention Area = 2052 Feet<sup>2</sup>

Frequency: 100 Year Release Rate = 0.570 Feet<sup>3</sup>/Second

| Time (min) | Intensity (in/hr) | Acc.Vol (ft^3) | Rel.Vol (ft^3) | Req. Stor. (ft^3) |
|------------|-------------------|----------------|----------------|-------------------|
| 10         | 5.02              | 3206           | 342            | 2863              |
| 15         | 4.14              | 3966           | 513            | 3452              |
| 30         | 2.79              | 5345           | 1027           | 4318              |
| 60         | 1.73              | 6628           | 2054           | 4575              |
| 120        | 0.95              | 7280           | 4107           | 3173              |
| 180        | 0.65              | 7471           | 6161           | 1310              |
| 360        | 0.36              | 8276           | 12322          | -4046             |
| 720        | 0.22              | 10115          | 24644          | -14529            |
| 1440       | 0.12              | 11035          | 49287          | -38253            |

## Storm Water Calculations

Job Name: AFCU

Date: 3/10/2014 Prepared By: Shaun Young

Reviewed By:

Methodology: Rational

## **Developed Conditions**

#### Basin 2

Frequency:

| <u>Area Type</u> | Area (ft^2) | <u>C</u> |
|------------------|-------------|----------|
| Roof             | 13200       | 0.85     |
| Hard Surfaces    | 37246       | 0.9      |
| Landscape        | 8114        | 0.1      |
| Subtotal=        | 58560       |          |

**Total=** 1.344352617 acres

100 Year

**C average=** 0.777882514

Percolation Rate = 0.000278 Feet / Second Retention Area = 2052 Feet<sup>2</sup>

Release Rate = 0.570 Feet<sup>3</sup>/Second

| Time (min) | Intensity (in/hr) | Acc.Vol (ft^3) | Rel.Vol (ft^3) | Req. Stor. (ft^3) |
|------------|-------------------|----------------|----------------|-------------------|
| 10         | 5.02              | 3150           | 342            | 2808              |
| 15         | 4.14              | 3896           | 513            | 3383              |
| 30         | 2.79              | 5252           | 1027           | 4225              |
| 60         | 1.73              | 6513           | 2054           | 4459              |
| 120        | 0.95              | 7153           | 4107           | 3046              |
| 180        | 0.65              | 7341           | 6161           | 1180              |
| 360        | 0.36              | 8132           | 12322          | -4190             |
| 720        | 0.22              | 9939           | 24644          | -14705            |
| 1440       | 0.12              | 10842          | 49287          | -38445            |

## ESTIMATED RETURN PERIODS FOR SHORT DURATION PRECIPITATION (inches)

<u>Station</u>: Cedar Hills, UT <u>Elevation</u>: 4963 feet <u>Latitude</u>: 40.4138 N <u>Longitude</u>: 111.7543 W

#### Intensity (IN/HR)

| ARI*years | 10 min. | 15 min. | 30 min. | 1 Hr. | 2 Hr. | 3 Hr. | 6 Hr. | 12 Hr. | 24 Hr. |
|-----------|---------|---------|---------|-------|-------|-------|-------|--------|--------|
| 2         | 1.5     | 1.24    | 0.83    | 0.52  | 0.32  | 0.25  | 0.16  | 0.1    | 0.06   |
| 5         | 2.06    | 1.7     | 1.15    | 0.71  | 0.42  | 0.31  | 0.2   | 0.13   | 0.08   |
| 10        | 2.57    | 2.12    | 1.43    | 0.88  | 0.51  | 0.37  | 0.23  | 0.14   | 0.09   |
| 25        | 3.39    | 2.8     | 1.89    | 1.17  | 0.66  | 0.47  | 0.28  | 0.17   | 0.1    |
| 50        | 4.13    | 3.42    | 2.3     | 1.42  | 0.8   | 0.55  | 0.32  | 0.19   | 0.11   |
| 100       | 5.02    | 4.14    | 2.79    | 1.73  | 0.95  | 0.65  | 0.36  | 0.22   | 0.12   |

#### 9. Storm water quality criteria

#### A. Storm Water Treatment

Prior to discharging storm water; collected water must be treated in an attempt to prevent illicit discharges of sediment, oils, floatables and other pollutants.

#### B. Use of Best Management Practices

Cedar Hills City encourages the use of the BMP fact sheets included in PART 4, CONSTRUCTION AND POST CONSTRUCTION BEST MANAGEMENT PRACTICES. The following BMPs are required to be a part of all Construction Site Storm Water Management Plans:

| * BMP Inspection & Maintenance  | BMPIM |
|---------------------------------|-------|
| * Concrete Waste Management     | CWM   |
| * Dust Controls                 | DC    |
| * Grading Practices             | GP    |
| * Portable Toilets              | PT    |
| * Vehicle and Equipment Fueling | VEF   |

There is no list of BMPs that is required on all Post Construction Storm Water Management Plans.

In addition to the required BMPs listed above, other BMPs from PART 4 that apply to a given development should be used. Cedar Hills City also encourages the use of practices in addition to those contained in the Cedar Hills Storm Water Management Program that may be suitable for a given development.

W:\13-037\dwgs\13-037Basin.dwg, 3/13/2014 1:29:25 PM, shauny, Adobe PDF-13.pc3, 1:2.1727