Representación del Conocimiento basado

en Lógicas

Contenido

- Lógica para Representación Conocimiento: Porqué?
- Tipos de Lógica
 - Lógica Proposicional
 - Lógica de Predicados
 - Lógica Descriptiva
- Qué son las Lógicas Descriptivas Hoy?
- Tipos Lógica Descriptiva
- Ingredientes Lógica Descriptiva
- Sintaxis y Semántica Lógica Descriptiva

Lógica para Representación de Conocimiento: Porqué?

Lógica para Representación de Conocimiento: Porqué?

- La lógica (no hay una lógica única sino muchas) fue uno de los primeros formalismos usados por los investigadores de IA para representar estructuras de conocimiento
 - Permite expresar mediante un lenguaje formal el conocimiento sobre ciertos fenómenos o una cierta parte del mundo.
 - Considerando la semántica formal, se puede razonar sobre un conocimiento dado, y mostrar qué conocimiento es una consecuencia lógica del conocimiento dado.

Lógica Formal: semántica y lógica matemática

<u>Teoría de Modelos</u> ejecuta la interpretación semántica de un lenguaje artificial "identificando el significado con una interpretación exacta y formalmente definida de un modelo"

Ej. Semántica Teoría de Modelos Lógica Proposicional

- Asignar valores de verdad V o F a las proposiciones simples
- Descripción de las conectivas lógicas con tablas de verdad

Alfred Tarski (1901-1983)

Tipos de Lógica

Lenguaje	Qué hay en mi	Qué puedo saber respecto a algo
	abstracción del mundo	
L. Proposicional	Hechos	Verdadero/falso/desconocido
L. Primer Orden	Hechos, objetos,	Verdadero/falso/desconocido
	relaciones	
L. Temporal	Hechos, objetos,	Verdadero/falso/desconocido
	relaciones, tiempos	
L. Probabilística	Hechos	Grado de certeza € [0,1]
L. Diffusa	Grado de verdad	Grado de certeza € [0.1]

Lógica Proposicional

El mundo consiste simplemente en hechos y nada más (declaraciones de afirmaciones)

Las declaraciones pueden ser verdaderas o falsas

Lógica Proposicional: Sintaxis

Alfabeto:

- Constantes: V, F
- Conectivas = $\{\neg, \land, \lor, \rightarrow, \longleftrightarrow, (,)\}$,
- Variables o letras proposiciones. p, q, r, s....

Sintaxis de las fórmulas proposicionales.

- todas las fórmulas atómicas son proposiciones (todos las letras proposicionales, V, F)
- si p es una proposición, entonces también ¬p
- si p y q son proposiciones,
 luego también p∧q, p∨q, p → q, p↔q

Lógica Proposicional: Prioridad

Prioridad: \neg antes de \land , \lor antes de \rightarrow , \leftrightarrow

$$\neg p \lor q \rightarrow p \land r$$

se reconocería como: $((\neg p) \lor q) \rightarrow (p \land r)$

Lógica Proposicional: Negación

Operación unitaria que se aplica a una proposición y tiene el efecto de revertir el valor de verdad

p	$\neg p$
V	F
F	V

$$A^c = \{x \in \mathcal{U} \mid x \notin A\}.$$

Lógica Proposicional: Conjunción

p	\boldsymbol{q}	$p \wedge q$
V	V	V
V	F	F
F	V	F
$\boldsymbol{\mathit{F}}$	F	F

$$A \cap B = \{ x \mid x \in A \text{ y } x \in B \}.$$

Lógica Proposicional: Disyunción

p	q	$p \vee q$
V	V	V
V	F	V
F	V	V
F	F	F

$$A \cup B = \{x \mid x \in A \text{ o } x \in B\}$$

Lógica Proposicional: Implicación o Condicional

"si se cumple p entonces se cumple q"

p	q	$p \Rightarrow q$
V	V	V
V	F	F
${\it F}$	V	V
\boldsymbol{F}	F	V

En una implicación p \rightarrow q, p es la condición suficiente para q y q es la condición necesaria para p

Lógica Proposicional: Bicondicional o doble implicación

p si y solo si q El bicondicional p ↔ q puede pensarse también como la proposición compuesta

$$(p \Rightarrow q) \land (q \Rightarrow p).$$

p	q	$p \Leftrightarrow q$
V	V	V
V	\boldsymbol{F}	F
F	V	F
F	F	V

Lógica Proposicional: ¿Cómo modelar hechos?

Modelado
p: juan estudia RC p

Afirmación Compuesta	Modelado
Si llueve, entonces la calle estará mojada	p: llueve q: la calle estará mojada p → q

Lógica Proposicional: Semántica

Interpretación I:

Una interpretación de una fórmula \mathbb{F} en lógica proposicional es una asignación de valores $\{v, f\}$ a cada una de las letras proposicionales de \mathbb{F} .

El valor de una proposición p bajo una interpretación I se denota como I (p).

Lógica Proposicional: reglas semánticas

Dada una fórmula F y una interpretación I, el valor de F bajo I, denotado por I (F) es:

- Si F está formada por una proposición p, entonces
 I (F) = I (p)
- Si \mathbb{F} es de la forma $\neg \mathbb{G}$ entonces \mathbb{I} (\mathbb{F}) = $\frac{\mathbf{V}}{\mathbf{F}} \frac{\text{si I}(\mathbb{G}) = \mathbf{F}}{\mathbf{F}} \frac{\mathbf{F}}{\text{si I}(\mathbb{G}) = \mathbf{V}}$
- Si F es de la forma G∧H
 entonces I (F) = V si I(G) = I(H) = V
 F en caso contrario

Lógica Proposicional: reglas semánticas

Dada una fórmula F y una interpretación I, el valor de F bajo I, denotado por I (F) es:

- Si F es de la forma $G \lor H$ entonces I (F) = F si I(G) = I(H) = FV en caso contrario
- Si F es de la forma G→H
 entonces I (F) = F si I(G) = V y I(H) = F
 v en caso contrario
- Si F es de la forma G↔H
 entonces I (F) = V si I(G) = I(H)
 F en caso contrario

Lógica Proposicional: ejemplo

Dada una fórmula F y una interpretación I, el valor de F bajo I, denotado por I (F) es:

F:
$$(\neg p \rightarrow q)$$

I	I(p)	I(d)	I(¬p)	I (¬p→q)
I ₁	v	V	f	V
I ₂	v	f	f	V
I ₃	f	v	v	V
I ₄	f	f	v	f

Lógica Proposicional: modelo

Una interpretación I es un **modelo** para una fórmula F si I(F) = V

Una interpretación I es un **contramodelo** para una fórmula F si I(F) = f

Lógica Proposicional: modelo

Las fórmulas proposicionales en función de los valores de las diferentes interpretaciones, se puede clasificar en:

Lógica Proposicional: Validez y Satisfacibilidad

- De las definiciones anteriores se pueden establecer las siguientes equivalencias
 - Una fórmula es válida sii
 - no tiene contramodelos
 - todas sus interpretaciones son modelos
 - todas sus interpretaciones la satisfacen
 - Una fórmula es una contradicción sii
 - · no tiene modelos
 - todas sus interpretaciones son contramodelos
 - es insatisfacible
 - Una fórmula es contingente sii
 - tiene modelos y contramodelos

Lógica Proposicional: ejemplo

Una interpretación I es un **modelo** para una fórmula F si I (F) = V

Modelos (
$$(\neg p \rightarrow q)$$
) = {I₁, I₂, I₃} F: $(\neg p \rightarrow q)$ es satisfacible

I	I(p)	I (q)	I(¬p)	I (¬p→q)
I ₁	٧	v	f	V
I ₂	v	f	f	V
I ₃	f	V	V	V
I ₄	f	f	V	f

Lógica Proposicional: ejemplo

Una interpretación I es un **modelo** para una fórmula F si I (F) = V

Modelos (
$$(p \land \neg p)$$
) = { Φ }
F: $(p \land \neg p)$ no es satisfacible

I	I(p)	I(¬p)	I (p∧¬p)
I ₁	v	f	f
I ₂	f	f	f

Lógica Proposicional: satisfacibilidad

Para conjuntos de fórmulas $\{A_1,...,A_n\}$, $Ai \in FBF_{LP}$ para todo i: $1 \le i \le n$:

Una interpretación I satisface $\{A_1,...,A_n\}$ sii $I(A_i)$ = v para todo i: $1 \le i \le n$

Lógica Proposicional: propiedades

- Consistente: todos los razonamientos que se demuestran son correctos
- Completo: todos los razonamientos correctos pueden demostrarse
- Expresividad: Muy poca.

Práctica 1