

University Institute of Engineering AIT-CSE

Privacy and Security in IoT - CSD- 433

Topic –Security in Enabling IoT Technologies

Lecture -1.3

Delivered by

Er. Gaurav Soni (E9610)

Assistant Professor, AIT-CSE

DISCOVER. LEARN. EMPOWER

Privacy and Security in IoT

Course Objectives

CO Number	Title
CO1	To identify various privacy and security requirements in Internet of Things
CO2	To learn cryptographic techniques for a secure IoT system
CO3	To understand various Trust Models used in IoT

Privacy and Security in IoT

Course Outcome

СО	Title	Level
Number		
CO1	After successful completion of this course students will	Understand
	be able to understand the security requirements in IoT.	
CO2	After successful completion of this course students will	Understand
	be able to understand the authentication credentials and	
	access control.	
CO3	After successful completion of this course students will	implement
	be able to implement security algorithms to make a	
	secure IoT system.	

This will be covered in this lecture

To identify and track the data of things

To collect and process the data to detect the changes in the physical status of things To enhance the power of the network by devolving processing capabilities to different part of the network.

To make the smaller and smaller things have the ability to connect and interact.

Wireless Sensor Network

Cloud Computing

Big Data Analytics

Communication Protocols

Embedded Systems

Following are few technologies which makes IoT services enables:

RFID (Radio-Frequency Identification)

- A basic RFID system consists of an RFID reader and RFID tags.
- It has capability for identifying, tracing, and tracking.
- An RFID system could provide sufficient real-time information about

things in IoT,

Seven Types of Security Attacks on RFID Systems

- .1. Reverse Engineering
- 2. Power Analysis
- 3. Eavesdropping & Replay
- 4. Man-in-the-Middle Attack or Sniffing
- 5. Denial of Service
- 6. Cloning & Spoofing
- 7. Viruses

Types of Security Attacks on NFC Systems

- 1. Eavesdropping
- 2. Are You Using An Up-To-Date App?
- 3. Interception Attacks
- 4. Data Corruption
- 5. Data Manipulation
- 6. Data Insertion

Benefits of Cloud Computing

- It doesn't require you to maintain or manage it (no need to have an IT expert).
- 2. Effectively infinite size, so no need to worry about running out of capacity.
- You can access cloud based applications and services from anywhere(Device independent).

Flair

Bluetooth Role in The Future of IoT

Wi-Fi:

 The main intention of Wi-Fi protocol was to replace Ethernet using wireless communication over unlicensed bands and to provide offthe-shelf

ZigBee:

- Zigbee is the technology of transferring the data over wireless networks.
- Distributed nodes can be controlled remotely.
- The frequency used is 2.4Giga hertz worldwide.

Feature	WiFi (IEEE 802.11b)	Bluetooth (IEEE 802.15.1)	ZigBee (IEEE 802.15.4)
Radio	DSSS ^a	FHSS ^b	DSSS
Data rate	11 Mbps	1 Mbps	250 kbps
Nodes per master	32	7	64 000
Slave enumeration latency	Up to 3 s	Up to 10 s	30 ms
Data type	Video, audio, graphics, pictures, files	Audio, graphics, pictures, files	Small data packet
Range (m)	100	10	70
Extendibility	Roaming possible	No	Yes
Battery life	Hours	1 week	>1 year
Bill of material (US\$)	9	6	3
Complexity	Complex	Very complex	Simple

^a DSSS, Direct Sequence Spread Spectrum

^b FHSS, Frequency Hopping Spread Spectrum

^{*}Source: Wang et al., 2006

	Z-Wave	ZigBee	WeMo	Thread
Operating range	100 feet	35 feet	100 feet	100 feet (theoretical)
Max no. devices	232	65,000	Router- dependent	250-300
Data rate	9.6-100 kbps	40-250 kbps	Router- dependent	250 kbps
Frequency	908/916 MHz (U.S.)	915 MHz/2.4 GHz	2.4 GHz	2.4 GHz
Network type	Mesh	Mesh	Star	Mesh
Needs hub?	Yes	Yes	No	Yes

4G LTE:

- In IoT, 4G technology is most popularly used technology.
- It has a capacity of handling speeds till 1 gigabytes per seconds.
- Long-term Evolution (LTE) uses orthogonal frequency division multiplexing as its radio access technology together with advanced antenna technologies and is based on GSM technologies used by earlier-generation mobile networks.

Big data:

- Big data is the information gathered by the devices like sensors and actuators connected over internet.
- Fetching the data is as important as storing the data.
- Big data analytics make use of some complex algorithms and patterns to find the data of our interest.
- Managing large amount of data has become a big challenge. So big data has an important role in IoT.

References

- 1. Li Da Xu, Securing Internet of Things, Algorithms, and Implementations, Elsevier
- 2. Chintarlapallireddy Yaswanth Simha, "Enabling Technologies for Internet of Things & It's Security issues" ICICCS 2018

•

Home Assignment

- 1. Explore working of RFID.
- 2. Explore frequency specification of following technologies?
 - Wifi
 - LTE
 - Zigbee

For queries Email: gaurav.e9610@cumail.in