

Guía de Ejercicios Nº 2: Juntura PN

Constante	Valor
q	$1,602 \times 10^{-19} \mathrm{C}$
m_0	$9{,}109 \times 10^{-31} \mathrm{kg}$
k	$1,381 \times 10^{-23} \mathrm{J/K} = 8,617 \times 10^{-5} \mathrm{eV} \mathrm{K}$
h	$6,626 \times 10^{-34} \mathrm{Js} = 4,136 \times 10^{-15} \mathrm{eVs}$
ϵ_0	$8.85 \times 10^{-12} \mathrm{F/m} = 88.5 \mathrm{fF/cm}$
$\epsilon_r(\mathrm{Si})$	11,7
$\epsilon_r(\mathrm{SiO}_2)$	3,9
$T_{ m amb}$	$27^{\circ}\text{C} = 300\text{K}$

Cuadro 1: Datos útiles.

Parte I: Electrostática de la juntura PN

- 1. Considere una juntura PN de silicio a 300 K.
 - a) Para $N_A = 10^{18} \, \mathrm{cm}^{-3}$ y $N_D = 10^{15} \, \mathrm{cm}^{-3}$ calcule el potencial de juntura (ϕ_B) .
 - b) Repita para $N_A = 10^{16} \,\mathrm{cm}^{-3} \,\mathrm{y} \,N_D = 10^{15} \,\mathrm{cm}^{-3}.$
 - c) Entre los puntos a) y b) el valor de N_A se ha reducido en cien veces. ¿En qué porcentaje varió el potencial de juntura? ¿Qué conclusión puede obtener?
- 2. Considere una juntura PN de silicio a 300 K con $N_A = 10^{16} \,\mathrm{cm}^{-3}$ y $N_D = 10^{15} \,\mathrm{cm}^{-3}$. Calcule:
 - a) El ancho de la zona de carga espacial.
 - b) El valor del campo eléctrico máximo.
- 3. Considere la juntura PN de silicio a 300K del problema 2 con una tensión aplicada $V_{PN} = V_P V_N$, donde V_P es la tensión aplicada al lado P y V_N la tensión aplicada al lado N. Calcular los siguientes parámetros cuando se tiene una polarización inversa de $V_{PN} = -5 \,\mathrm{V}$:
 - a) El ancho de la zona de carga espacial.
 - b) El valor del campo eléctrico máximo.
 - c) Repita los puntos anteriores considerando que ahora se encuentra polarizado en directa con una tensión $V_{\rm PN}=0.5\,{\rm V}.$
 - d) Compare estos resultados con los del problema 2.
- 4. Considere una juntura PN de silicio a $V_{\rm PN}=0.5\,\mathrm{V}$ con $N_A=10^{19}\,\mathrm{cm}^{-3}$ y $N_D=10^{17}\,\mathrm{cm}^{-3}$.
 - a) ¿Qué es la aproximación de vaciamiento? ¿Como sirve para obtener la distribución de carga en la juntura?
 - b) Para la condición de equilibrio térmico, y bajo la aproximación de vaciamiento, realice los diagramas de
 - I. concentración de dopantes N_A y N_D ,
 - II. concentración de portadores libres n_0 y p_0 (en escala lineal y semilogarítmica),
 - III. densidad de carga neta ρ ,
 - IV. campo eléctrico,
 - V. potencial electrostático.
 - c) Repita el punto anterior para tensiones de inversa de $-5 \,\mathrm{V}$ y $-10 \,\mathrm{V}$.

DISPOSITIVOS SEMICONDUCTORES

Última actualización: 2^{do} Cuatrimestre de 2022

- 5. Considere una juntura PN en equilibrio térmico ($T=300\,\mathrm{K}$) con las siguientes características: $\phi_B=536.2\,\mathrm{mV};\,x_n=251\,\mathrm{nm};\,x_p=2.51\,\mathrm{\mu m}.\,$ ¿Cuáles son los valores de las concentraciones de impurezas?
- 6. Considere una juntura PN de silicio a 300 K con $N_A = 10^{19} \, \mathrm{cm}^{-3}$ y $N_D = 10^{17} \, \mathrm{cm}^{-3}$. Si el campo eléctrico máximo admitido es $|E_{MAX}| = 5 \times 10^5 \, \mathrm{V/cm}$, ¿Cuál es el máximo valor de tensión en inversa admisible?

Parte II: Capacidad de juntura

- 7. Suponga que la juntura PN del problema 2 tiene un área de $A = 10^{-4}$ cm². Calcule la capacidad de la juntura para una polarización inversa de -5 V.
- 8. Para una juntura PN simétrica con $\phi_B = 0.9 \,\mathrm{V}$, calcular C'_{i0} , $N_D \,\mathrm{y} \,N_A$.
- 9. Se conoce que la capacidad de una juntura P+N es $C'_{j0}=29\,\mathrm{nF/cm^2}$ y que $\phi_B=840\,\mathrm{mV}$. Hallar $\phi_n,\,\phi_p,\,N_A$ y N_D .
- 10. Dada una juntura P⁺N de silicio a 300K. Asuma que la intersección de la curva de la Fig. 1 con el eje horizontal corresponde a un potencial de juntura de $0.855\,\mathrm{V}$ y que la pendiente de la recta es $-10^{15}\,(\mathrm{F/cm^2})^{-2}/\mathrm{V}$. Calcule la concentración de impurezas N_A y N_D de la juntura.

Figura 1

Parte III: Ejercicios integradores

- 11. Se tiene una juntura PN de silicio de la cual se conocen las conductividades de la zona N ($\sigma_N = 48 \,\Omega^{-1} \mathrm{cm}^{-1}$) y zona P ($\sigma_P = 15,36 \times 10^{-3} \,\Omega^{-1} \mathrm{cm}^{-1}$), el campo eléctrico máximo $|E_0| = 6,7 \,\mathrm{kV/cm}$ y ancho de la zona de vaciamiento $x_{d0} = 2,17 \,\mathrm{\mu m}$.
 - a) ¿La juntura es simétrica, asimétrica o fuertemente asimétrica? ¿Por que? Justificar y mencionar cualquier aproximación usada.
 - b) Si la carga a ambos lados de la juntura es $7\,\mathrm{nC/cm^2}$ en valor absoluto, hallar las movilidades de huecos y electrones a ambos lados de la juntura.
- 12. Considere una juntura PN de silicio a 300 K con una concentración de $N_A = 10^{18} \, \mathrm{cm}^{-3}$.
 - a) ¿Cuáles son los límites de ϕ_B para una Juntura PN? ¿Por qué?
 - b) Teniendo en cuenta lo analizado en el punto anterior, determine la concentración N_D tal que para una tensión de inversa de $V_{PN} = -45 \,\mathrm{V}$ el campo eléctrico máximo sea $|E_{MAX}| = 3 \times 10^5 \,\mathrm{V/cm}$.

DISPOSITIVOS SEMICONDUCTORES

Última actualización: 2^{do} Cuatrimestre de 2022

- c) Si se desea que el campo eléctrico máximo no supere el valor $|E_{MAX}| = 3 \times 10^5 \,\text{V/cm}$, conservando $N_A = 10^{18} \,\text{cm}^{-3}$, el valor de N_D hallado en el punto a) ¿es una cota máxima o una cota mínima de concentración de dopantes donores?
- 13. Se tiene una juntura P⁺N donde se sabe que sin potencial aplicado, el máximo valor que alcanza el campo eléctrico es $|E_0| = 10 \,\text{kV/cm}$ y que $N_D = 4.5 \times 10^{14} \,\text{cm}^{-3}$ ($T = 300 \,\text{K}$).
 - a) ¿Cuál es la concentración N_A de la juntura?
 - b) Sabiendo que el campo eléctrico |E| no debe superar los 170 kV/cm, ¿cuál es el máximo valor de N_A que puede utilizarse en esta juntura?
 - c) Suponiendo ahora que $N_D = 10^{17} \,\mathrm{cm}^{-3}$, ¿cuál es el máximo valor de N_A que puede utilizarse en esta nueva juntura? (Considerar juntura P+N)
 - d) Explique la siguiente afirmación: "Dado que el valor de ϕ_B es siempre aproximadamente 1 V, mayores concentraciones de dopantes implicarán menores valores de x_p y x_n y en consiguiente obtener la misma diferencia de potencial en menor distancia implicará necesariamente un mayor valor de campo eléctrico en la juntura".
- 14. De una juntura muy asimétrica PN^+ con área $A=0.5\,\mathrm{mm^2}$, se tienen las siguientes mediciones de capacidad en polarización inversa:

V_{PN} [V]	C_j [pF]
-1	3,6
-2	2,6
-3	2,4

- a) ¿Por qué disminuye el valor de la capacidad a medida que aumenta la tensión inversa aplicada?
- b) Obtenga las concentraciones de impurezas N_A y N_D y el potencial de built-in (ϕ_B) .
- 15. Diseñe una juntura PN de silicio con un área de $A=5.5\times 10^{-4}~\rm cm^2$ tal que a 300 K y para una polarización inversa de $V_{\rm PN}=-1.2~\rm V$ verifique que el 10 % del total de la zona de carga espacial esté en la región N, y que su capacidad de juntura sea 3,5 pF.
 - a) Determine las concentraciones N_D y N_A necesarias.
 - b) Determine el potencial de juntura resultante.