1. (A) Find all equilibria (pure and mixed) in the following games, first analytically and then through plotting the best-response functions.

	Player 2			Player 2			
Н		L (q)	L (1-q)	-		L (q)	L (1-q)
/er	T (p)	3, 3	0, 0	er	T (p)	1, 1	0, 0
Play	B (1-p)	0, 0	4, 4	Play	B (1-p)	1, 0	2, 1

Hint: Find the probabilities q for which Player 1 is indifferent, e.g. $u_1(T,q) = u_1(B,q)$. and the probabilities p for which Player 2 is indifferent, e.g. $u_2(L,p) = u_2(R,p)$.

(a) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2		
\vdash		L (q)	L (1-q)	
layer	T (p)	3, 3	0, 0	
<u>∂</u>	B (1-p)	0, 0	4, 4	

Highlight the best responses in pure strategies.

(a) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

D	۱		-
Р	ıa١	/er	- 4

	L (q)	L (1-q)
T (p)	3, 3	0, 0
B (1-p)	0, 0	4, 4

For which values of q is Player 1 indifferent?

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1|T] = E[u_1|B]$$
$$=$$

(a) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2		
\vdash		L (q)	L (1-q)	
/er	T (p)	3, 3	0, 0	
Player	B (1-p)	0, 0	4, 4	

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1|T] = E[u_1|B]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

Write up all NE (pure and mixed).

$$NE = (p^*, q^*) =$$

(a) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Player 2

Н		L (q)	L (1-q)
layer	T (p)	3, 3	0, 0
) Ja	B (1-p)	0, 0	4, 4

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1|T] = E[u_1|B]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

Write up all NE (pure and mixed).

The players have symmetric payoffs, thus:

$$NE = (p^*, q^*) = \{(0, 0); (1, 1); ...\}$$

(a) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

$$BR_1(q) = \{$$

		Player 2		
Н		L (q)	R (1-q)	
layer	T (p)	3, 3	0, 0	
Play	B (1-p)	0, 0	4, 4	

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1|T] = E[u_1|B]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$\textit{NE} = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Write up Player 1's best-response (BR) function, $p^*(q)$

(a) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1|T] = E[u_1|B]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus: $NE = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$

Plot Player 1's best-response (BR) function, $p^*(q)$

Write up and plot the BR functions:

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

(a) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1|T] = E[u_1|B]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$NE = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Write up Player 2's BR function, $q^*(p)$

Write up and plot the BR functions:

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

$$BR_2(p) = \{$$

(a) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1|T] = E[u_1|B]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$\textit{NE} = (\rho^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Plot Player 2's BR function, $q^*(p)$

Write up and plot the BR functions:

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

$$BR_2(p) = \begin{cases} q = 0 & \text{if} \quad p < 4/7 \\ q \in [0, 1] & \text{if} \quad p = 4/7 \\ q = 1 & \text{if} \quad p > 4/7 \end{cases}$$

(a) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1|T] = E[u_1|B]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$\textit{NE} = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Write up and plot the BR functions:

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

$$\begin{cases} q = 0 & \text{if} \quad p < 4/7 \end{cases}$$

