Discrete Mathematics MT16: Problem Sheet 5

Chapters 8 (Orders) and Vacation Revision

- **5.1** Consider the set $A = \mathcal{P}(\{1, 2, 3, 4, 5, 6\})$, with the order \subseteq . In this order, an example of a chain is $\{\emptyset, \{1, 2\}, \{1, 2, 3, 4, 5\}\}$ and an example of an antichain is $\{\{1, 2\}, \{2, 3\}, \{3, 4\}\}\}$.
 - (i) Explain why any chain $\{B_1, B_2, \dots, B_n\}$ cannot have more than seven elements.
 - (ii) How many different chains are there with exactly seven elements?
 - (iii) The largest antichain has 20 elements, and there is only one such antichain. Describe it.
- **5.2** Which of the following relations are preorders, which are partial orders, and which are linear orders? For those which are partial orders, determine whether every pair of elements has a least upper bound: if they do, describe how the lub can be computed; otherwise, give an example of a pair with no lub.
 - (i) On $S = \{A \mid A \text{ is a finite set of real numbers}\}, A \leq B \text{ if } \max A \leq \max B.$
 - (ii) On $S = \{\text{all sequences of natural numbers}\}, (x_n) \leq (y_n) \text{ if } x_i \leq y_i \text{ for all } i \in \mathbb{N}.$
- (iii) On $S = \{1, 2, 3, \dots, 20\}$, the "divides" order |.
- (iv) On $(0, \infty)$, $x \leq y$ if $1/x \leq 1/y$.
- **5.3** Let $A = \{1, 2, 3, 6\}$ be ordered by |. Draw the Hasse diagram of this order, and of the derived lexicographic order on $A \times A$.

With respect to this lexicographic order on $A \times A$, compute the glb (a.k.a meet) of each of the pairs:

- (i) (1,2) and (1,3);
- (ii) (2,3) and (3,2);
- (iii) (6,2) and (3,3).
- **5.4** Let $A, B \subseteq \mathbb{R}$ be nonempty and suppose that lub A and lub B exist. Prove that

$$lub{a+b \mid a \in A \text{ and } b \in B} = lub A + lub B.$$

[Hint: \mathbb{R} is a linear order and it is best to use the alternative definition of lub found in the lecture notes: m = lub S if and only if (i) $x \leq m$ for all $x \in S$, and (ii) for all $y \in \mathbb{R}$, if y < m then there exists an element $x \in S$ with y < x.]

Revision Questions

- **5.5** Prove the following: S and T are disjoint if, and only if, $S \oplus T = S \cup T$. (The definition of $S \oplus T$ is $(S \setminus T) \cup (T \setminus S)$.)
- **5.6** If $m, n \in \mathbb{N}_+$ find a formula, in terms of m and n, for the number of m-digit positive integers (no leading zeros) which are divisible by n.

How many 4-digit positive integers are divisible by 6 and 15? How many are divisible by 6 or 15? How many by 6, 10, or 15?

5.7 Let $f: \mathbb{Z} \to \mathbb{Z}$ be a polynomial with integral coefficients, i.e.

$$f(n) = a_0 + a_1 n + a_2 n^2 + \ldots + a_k n^k$$

where $a_0, a_1, \ldots, a_k \in \mathbb{Z}$.

- (i) Prove that, for any distinct integers m and n, $n-m \mid f(n)-f(m)$.
- (ii) Prove that, if f(0) = f(3) = 0 then $1 \notin \text{Im}(f)$. Hint: Suppose that f(0) = f(3) = 0 and also that f(n) = 1 for some n; then use part (i) to find a contradiction.
- **5.8** The sequence of Catalan numbers (C_n) is defined by the recurrence

$$C_0 = 1$$
, $C_{n+1} = \frac{2(2n+1)}{n+2}C_n$.

- (i) Using the recurrence, compute C_1 , C_2 , C_3 , and C_4 .
- (ii) Prove, by induction on n, that $C_n = \frac{1}{n+1} {2n \choose n}$.
- (iii) Explain, using the formula in part (ii), why if p is a prime number, n > 1, and $p \mid C_n$ then p < 2n.
- (iv) Prove, by induction on n, that $C_n > 2n 1$ for $n \ge 4$.
- (v) Deduce that the only prime Catalan numbers are C_2 and C_3 .
- (vi) Using the fact that there exist nonzero constants b and c such that

$$bn^{n+\frac{1}{2}}\exp(-n) \le n! \le cn^{n+\frac{1}{2}}\exp(-n)$$

for all $n \in \mathbb{N}_+$ (the second of which was proved in Section 7.4 of the lecture notes), prove that

$$C_n = O(4^n n^{-3/2}).$$