ame:	<u>Key</u>
	Chemistry 129.01 Spring 2012
	General Chemistry
Midter	m Examination:
E	quations, constants and periodic table are provided.
Y	ou may use a calculator.
s	how all your work!
page :	l:/24
page :	2:/18
page :	3:/18
page 4	4:/14
page !	5:/18
page (5:/14
page 5	':/14
page 8	3:/14
page 9):/17
Bonus:	/2
Total.	/150

- 1. (24 pts.) Consider the reaction of 107 g of Fe_2O_3 with 85.8 g of CO to produce Fe and CO_2 :
- a) Balance the chemical equation for this reaction. (2 pts.)

 $\underline{\qquad} \quad \text{Fe}_2\text{O}_3 \text{ (s)} \quad + \quad \underline{\qquad} \quad \text{CO}_\text{ (g)} \quad \rightarrow \quad \underline{\qquad} \quad \text{Fe}_\text{ (s)} \quad + \quad \underline{\qquad} \quad \text{CO}_\text{2} \text{ (g)}$

b) Determine the oxidation number of each element (in each reactant and product). Which element is reduced and which oxidized? Which are the oxidizing agent and reducing agent? (9 pts.)

Rea	actants	Products			
Element	Oxidation	Element	Oxidation Number		
Fe	+3	Fe	0		
0 (in Feet)) -2	С	+4		
С	+2	0	-2		
O (in CO)	-2				

Fe: $+3 \rightarrow 0$ reduced Fe₂D₃: oxidizing agent C: $+2 \rightarrow +4$ oxidized CO: reducing agent

c) Find the limiting reactant and the amount of Fe produced in grams. (10 pts.)

Fez O3 is limiting reagent. Theoretical Yield: 74.8 g Fe

d) If 15.3 g of Fe_3 are collected, what is the percent yield of the reaction? (3 pts.)

 $^{,\perp0}$ pts) Caffeine contains 49.5% C, 5.15% H, 28.9% N, and 16.5% O and has a molar mass of 195g/mol. Find its empirical and molecular formulas.

49.5 g C
$$\left(\frac{1 \text{ mol } C}{12.01 \text{ g C}}\right) = 4.12 \text{ mol } C$$

5.15 g H $\left(\frac{1 \text{ mol } H}{1.01 \text{ g H}}\right) = 5.10 \text{ mol } H$

28.9 g N $\left(\frac{1 \text{ mol } N}{14.01 \text{ g N}}\right) = 2.06 \text{ mol } N$

16.5 g) O $\left(\frac{1 \text{ mol } O}{16.00 \text{ g O}}\right) = 1.03 \text{ mol } O$

CyHsN₂O

Tempirical Formula (97.11 9/mol)

(8 pts.) Fill in the gaps in the following table. Each column may represent a neutral atom or an ion.

Symbol	$^{27}_{13}Al^{3+}$	96Mo
Protons	13	42
Neutrons	14	54
Electrons	10	42
Mass Number	27	96
Charge	3 ⁺	0

4. (10 pts) The energy of an orbit in the hydrogen atom is:

$$E_n = -2.18 \times 10^{-18} J \left(\frac{1}{n^2} \right)$$
 where $n = 1, 2, 3...$

(a) For an electron transition in the hydrogen atom from n=2 to n=3, what is the associated change in energy? Does this transition correspond to absorption or emission of energy? (5 pts.)

$$\Delta E = -2.18 \times 10^{18} J \left(\frac{1}{N_{F}^{2}} - \frac{1}{N_{L}^{2}} \right)$$

$$= -2.18 \times 10^{18} J \left(\frac{1}{3^{2}} - \frac{1}{2^{2}} \right) = 3.03 \times 10^{-19} J$$

$$h = 2 \longrightarrow h = 3 \quad Absorption$$

(b) What is the wavelength of light this energy change corresponds to? What type of electromagnetic radiation is this? (5 pts.)

$$\Delta E = \frac{hc}{\lambda}$$

$$\lambda = \frac{hc}{\Delta E} = \frac{(6.626 \times 10^{34} \text{ s})(3.00 \times 10^{8} \text{ m/s})}{3.03 \times 10^{-19} \text{ J}} = 6.56 \times 10^{7} \text{ m} = 656 \text{ nm}$$

$$\text{Visible Light}$$

5. (8 pts.) Fill in the gaps in the following table.

Name	Formula	Ionic or Covalent?		
copper (II) sulfate	CuSO4	ionic		
dinitrogen tetroxide	N ₂ O ₄	covalent		
iron (III) Chloride	FeCl ₃	ionic		
phosphorus trichloride	PC13	covalent		

6. (5 pts.) Predict which of the following molecules would have bond angles of 105°, 107°, and 109.5°. Explain.

They all have tetrahedral electron group geometries but the number of nonbonding groups and bonding groups are different. As the number of nonbonding increases, the bond angle decreases. A nonbonding group is more spread out in space and exerts greater repulsion.

- 7. (9 pts) The cyanate ion, NCO⁻, has three possible Lewis structures.
- (a) Draw these three Lewis structures, and assign formal charges to the atoms in each structure.

(b) What is the shape of the cyanate ion? Which Lewis structure is the preferred one? Why?

The cyanate ien is linear. Structures (1) and (2) have the smallest formal charges but structure (2) has the negative charge on the most electronegative atom. Structure (2) is the preferred one.

- 8. (12 pts.) Consider the following molecules: PCl₅, PCl₃. (i) Draw their Lewis structure, (ii) Determine the electron group and molecular geometries, (iii) Is the molecule polar or nonpolar?
- (a) PC15 40 e- ; c'i:

 'C' p C'!:

Electron Group Geometry: trigonal bipyramidal

Molecular Geometry: trigonal bipyramidal

Polar or Nonpolar?: nonpolar

(b) PCl₃ 26e⁻

: ci - p - ci:

Electron Group Geometry: tetrahedral

Molecular Geometry: trigonal pyramidal

Polar or Nonpolar?: polar

- 9. (6 pts) Using the periodic table as a reference, determine whether a bond between each of the following pairs of atoms is polar, nonpolar or ionic? Which is the most electronegative atom in each pair?
 - (a) N and F polar F is the most electroneoptive
 - (b) 0 and 0 nonpolar
 - (c) Na and Cl ienic cl is the most electronegative

10. (i) (8 pts) **Identify** each of the following orbitals, and give the n and 1 values and the orbital designation (e.i. 4f).

(in fourth shell)

(in fifth shell)

orbital:
$$0xy$$

n= $1=2$

designation: $1=3$

(ii) (2 pts) Tell whether the following combinations of quantum numbers are allowed or not allowed.

$$n = 3, 1 = 3, m_1 = -1$$

not allowed

$$n = 4$$
, $l = 2$, $m_S = 0$

not allowed

(iii) (4 pts) What is the maximum number of electrons that can have of the following quantum numbers?

$$n = 3, 1 = 2$$

10 e-s

$$n = 4$$
, $1 = 3$, $m_s = -\frac{1}{2}$

7 e-s

11. (i) (6 pts) Draw the orbital diagram of the atom with atomic number 14 and show the number of valence electrons, core electrons and unpaired electrons.

 $= \frac{1}{\frac{1}{3P}} \frac{1}{\frac{1}{3P}}$ $= \frac{1}{\frac{1\nu}{3S}} \frac{1}{\frac{1\nu}{2P}} \frac{1\nu}{\frac{1\nu}{2S}}$ $= \frac{1}{\frac{1\nu}{2S}} \frac{1}{\frac{1\nu}{1S}}$ $= \frac{1}{\frac{1\nu}{2S}} \frac{1}{\frac{1\nu}{1S}}$ $= \frac{1}{\frac{1\nu}{1S}} \frac{1}{\frac{$

(ii) (2 pts) Write the **full** electron configuration for **Br**.

(iii) (3pts) Arrange the following elements in order of increasing atomic radius: Cs, Ga, O, Al, C, K.

(iv) (3 pts) Arrange the following elements in order of increasing ionization energy: S, Rb, F, Ge, Ca.

12. (8 pts.) (a) What are the hybridizations of the four carbon atoms, the two oxygen atoms?

 C_2 : Sp^2

02: <u>SP³</u>

- C3: <u>SP</u>
- C4: SP

How many sigma bonds and pi bonds does the molecule have?

9 _____ sigma bonds _____ 9 ___ pi bonds

(c) (6 pts.) Draw the Lewis structure of the following and determine the hybridization of the central atom: XeF_4 and XeF_2 . How many sigma bonds and pi bonds do the molecules have?

- 13. (17 pts.) Using the molecular orbital energy diagram given below (for ALL electrons):
- a. (8 pts) Complete the <u>molecular orbital energy-level diagram</u> for O_2 and <u>write its electron configuration</u>. Label all the atomic orbitals and molecular orbitals. Sketch the shape of the σ_{1s} and σ_{1s} * molecular orbitals. $\sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2p}^{*2} \sigma_{2p}^{*2} \sigma_{2p}^{*2}$

b. (3 pts) Determine the bond order of O_2 . Is O_2 paramagnetic or diamagnetic? Why?

B-0. =
$$\frac{1}{2}$$
 (# bonding e - + antibonding e) = $\frac{1}{2}$ (10 - 6) = 2

D2 is paramagnetic because it has 2 unpaired electrons. c. (6 pts.) If two electrons are added from O_2 to form O_2^{2-} , how many unpaired electrons would O_2^{2-} have? Calculate the bond order of O_2^{2-} . Which would you expect to have a stronger bond, O_2 or O_2^{2-} ? Longer bond? Why?

 $B.0. = \frac{1}{2}(10-8) = 1$ O_2^2 has no unpaired electrons.

Oa has a stronger bond because it has a higher bond order. O_2^{2-} has a longer bond because it has a lower bond order.

Bonus: (2 pts)

Rank the following gases from least dense to most dense at 1 atm and 298K: Cl_2 , SO_2 , N_2O . Explain.

The density of a gas is directly proportional to its molar mass.

Equations, Constants and Conversion Factors

$$E = \frac{hc}{\lambda}$$
$$d = \frac{PM}{RT}$$
$$PV = nRT$$

$$1 \text{ nm} = 10^{-9} \text{ m}$$

$$h = 6.626 \times 10^{-34} J.s$$

$$c = 3.00 \times 10^8 \text{ m/s}$$

$$R = 0.0821 L.atm/(mol.K)$$

Chemistry Reference Sheet

California Standards Test

*	7	<u>თ</u>	Ċ١	4	ω	N	_1
If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.	87 Fr Francium (223)	55 CS Cesium 132.91	37 Rb Rubidium 85.47	19 X Potassium 39.10	1	Lithium 6.94	1A 1A 1 Hydrogen 1.01
If this number is in parentheses, the refers to the atomic mass of the most stable isotope.	88 Ra Radium (226)	56 Ba Barlum 137.33	38 Sr Strontlum 87.62	20 Ca Calcium 40.08	12 Mg Magnesium 24.31	Beryllium 9.01	2 _A
antheses, thass of the	89 Ac Actinium (227)	57 La Lanthanum 138.91	39 Y Yttrium 88.91	21 Sc Scandium 44.96	မ္သာ မ		•
ien	104 Pif Rutherfordium (261)	72 Hf Hafnlum 178,49	40 Zr Zirconlum 91.22	22 Ti Titanium 47.87	4 4		
58 Ce Cerium 140.12 90 Th Thorium 232.04	105 Db Dubnlum (262)	73 Ta Tantalum 180.95	41 Nb Nloblum 92.91	23 V Vanadlum 50.94	5 <u>B</u> 5		
59 Pr Prasoodymium 140.91 91 Pa Protactinium 231.04	106 Sg Seaborgium (266)	74 W Tungsten 183.84	42 Mo Molybdenum 95,94	24 Cr Chromium 52.00	68 22.99	Na Na	
60 Nd Neodymium 144.24 92 Uranium 238.03	107 Bh Bohrlum (264)	75 Re Rhenium 186.21	Tc Technetium (98)	Mar -	4 L		_
61 Pm Promethlum (145) 93 Np Neptunlum (237)	108 Hs Hassium (269)	76 OS Osmium 190.23	44 Ru Ruthenlum 101.07	26 To Iron 55.85	Average atomic mass* 8 9	Atomic number Element symbol Element name	Key
62 Sm Samarium 150.36 94 Putonium (244)	109 Mt Meltnerium (268)		45 Rh Rhodium 102,91	27 Co Cobalt 58.93	mic mass [†] — 9 — 8B—	nber mbol . *	
63 Eu Europium 151.96 95 Am Americium (243)		78 Pt Platinum 195.08	46 Pd Palladium 106.42	28 Ni Nickel 58.69	10		
64 Gd Gadollrium 157.25 96 96 Cm Curium (247)		79 Au Gold 196.97	47 Ag Silver 107.87	29 Cu Copper 63.55	1 1 1 1		
35 Tb Terbiun 158.93 97 97 BK Berkeliu (247)		80 Hg Mercury 200.59	48 Cd Cadmium 112.41	30 Zn Znc 65.39	12 2B		
66 Dy 1 Dysprosium Ho 3 162.50 1 9 98 Californium Ein- (251) (251)	:	81 T 1 Thatlium 204.38	49 In Indium 114.82	31 Ga Gallium 69.72	13 Al Atuminum 26.98	5 Boron	3 1 3 3 A
67 HO m Holmium Ensteinium Fel (252)		82 Pb Lead 207.2	50 Sn 118.71	32 Ge Germaniun 72.61	14 Silicon 28.09	Carbon	1 1 4 A A A A A A A A A A A A A A A A A
68 Er Erbium 167.26 100 Fm		83 Bi Bismuth 208.98	51 Sb Antimony 121.76	33 As Arsenic 74.92	15 Phosphorus 30,97	7 Nitrogen	5
69 Tm Thulium 168.93 101 Md Mendelevium (258)			inei, er costanome		16 Suffur 32.07	**	
70 Yb Yth ordum 173.04 102 No Nobellum (259)		85 At Astatine (210)	53 lodine 126.90	35 Br Bromine 79.90	17 Chlorine 35.45	Fluorine	17 7A
71 Lu Lutetium 174.97 103 Lr Lawrenclum (262)		86 Ra (222)	54 Xe Xenon 131.29	36 Krypton 83.80	18 Argon 39.95	Neon 2	18 8A 2 He Helium
		J					

Copyright © 2008 California Department of Education