Lezione del 30 aprile

Definizione 0.1. Sia dim V = n + 1 e sia $\{e_0, \ldots, e_n\}$ una base di V. Diremo che $\{e_0, \ldots, e_n\}$ è un **riferimento proiettivo**

Fissato un riferimento proiettivo $\{e_0, \ldots, e_n\}$ sia $v \in V \setminus \{0\}$ allora

$$P = [v] = \{\lambda v \mid \lambda \in \mathbb{K}\} \in \mathbb{P}(V)$$

Si ha che $v = x_0 e_0 + \cdots + x_n e_n$. Chiamiamo x_0, \ldots, x_n le **coordinate omogenee** di P rispetto al riferimento proiettivo $\{e_0, \ldots, e_n\}$, per notazione $P = [x_0, \ldots, x_n]$

Chiamiamo i **punti fondamentali** rispetto al riferimento proiettivo fissato, i seguenti punti dello spazio proiettivo

$$F_0 = [e_0] \dots F_n = [e_n]$$

Il punto unità rispetto al riferimento fissato

$$U = [e_0 + \dots + e_n]$$

Osservazione 1. Le coordinate omogenee non sono uniche.

 $\forall \mu \in \mathbb{K}, \ \mu \neq 0 \text{ si ha } [v] = [\mu v] \in \mathbb{P}(R) \text{ dunque}$

$$v = x_0 e_0 + \dots + x_n e_n \quad \Rightarrow \quad \mu v = (\mu x_0) e_0 + \dots + (\mu x_n) e_n$$

dunque sia x_0, \ldots, x_n che $\mu x_0, \ldots, \mu x_n$ sono coordinate omogenee del punto [v].

 $\forall \mu \in \mathbb{K}^*$ si ha $\{\mu e_0, \dots, \mu w_n\}$ è ancora una base di V, in particolare, le 2 basi danno luogo allo stesso sistema di coordinate omogenee

Definizione 0.2. Nel caso in cui $V = \mathbb{K}^{n+1}$ chiamiamo riferimento proiettivo standard di $\mathbb{P}(V)$ quello dato dalla base canonica di \mathbb{K}^{n+1} .

Se $P = [x_0, \ldots, x_n] \in \mathbb{P}(V)$ chiamiamo x_0, \ldots, x_n coordinate projettive standard di O

Definizione 0.3. Sia W un sottospazio vettoriale di V, chiamiamo $\mathbb{P}(W)$ il sottospazio proiettivo associato a W.

Estendiamo la notazione di dimensione anche a $\mathbb{P}(W)$ ponendo

$$\dim \mathbb{P}(W) = \dim W - 1$$

Nel caso in cui

- Se dim $\mathbb{P}(W) = 0$ allora $\mathbb{P}(W)$ lo denotiamo punto proiettivo
- Se dim $\mathbb{P}(W) = 1$ allora $\mathbb{P}(W)$ lo denotiamo retta proiettiva
- Se dim $\mathbb{P}(W) = 2$ allora $\mathbb{P}(W)$ lo denotiamo piano proiettivo
- Se dim $\mathbb{P}(W) = 1 \dim \mathbb{P}(V)$ allora $\mathbb{P}(W)$ lo denotiamo iperpiano proiettivo

Osservazione 2. Il vuoto ha dimensione pari a -1

Osservazione 3. Sia $\{e_0, \ldots, e_n\}$ una base di V e siano $a_0, \ldots, a_n \in \mathbb{K}$ con $(a_0, \ldots, a_n) \neq (0, \ldots, 0)$.

Consideriamo l'equazione omogenea

$$a_0 X_0 + \dots + a_n X_n = 0 \tag{1}$$

Tale equazione definisce un sottospazio vettoriale W di V che è un iperpiano.

Notiamo che i punti $P = [v] \in \mathbb{P}(V)$ le cui coordinate omogenee soddisfano l'equazione 1 sono esattamente quelle per cui $v \in W$ dunque l'equazione 1 è l'equazione dell'iperpiano $\mathbb{P}(W)$

Definizione 0.4. Nel caso in cui $V = \mathbb{K}^n$ per ogni i = 0, ..., n definiamo l'i-esimo iperpiano coordinato H_i di p(V) l'iperpiano definito da $X_i = 0$

Esempio 0.1. Consideriamo i seguenti punti in $\mathbb{P}^2(\mathbb{R})$

$$P = \begin{bmatrix} \frac{1}{2}, 1, 1 \end{bmatrix}$$
 $Q = \begin{bmatrix} 1, \frac{1}{3}, \frac{4}{3} \end{bmatrix}$ $R = [2, -1, 2]$

esiste una retta proiettiva che li contiene?

Osserviamo che le rette sono iperpiani in $\mathbb{P}^2(\mathbb{R})$.

Prima di tutto determiniamo la retta passante per P e Q, poi ci chiediamo se R è contenuta in tale retta.

Siano P = [v] e Q = [w]

 $P \neq Q \quad \Leftrightarrow \quad \not\exists \lambda \in \mathbb{K}^* \ w = \lambda v \quad \Leftrightarrow \quad v, w \ sono \ linearmente \ indipendenti$

Sia $W = Span_{\mathbb{R}}(v, w)$ dunque $\mathbb{P}(W)$ è la retta che passa per P, Q. Essendo i punti equivalenti a meno di scalari prendo v = (1, 2, 2) e w = (3, 1, 4). Sia $[x_0, x_1, x_2] \in \mathbb{P}^2(\mathbb{R})(V)$

 $[x_0, x_1, x_2] \in \mathbb{P}(W) \quad \Leftrightarrow \quad (x_0, x_1, x_2) \in W \quad \Leftrightarrow \quad v, w, (x_0, x_1, x_2) \text{ sono linearmente indipendenti}$

$$\Leftrightarrow \det \begin{pmatrix} x_0 & 1 & 3 \\ x_1 & 2 & 1 \\ x_2 & 2 & 4 \end{pmatrix} = 0 \quad \Leftrightarrow \quad 6x_0 + 2x_1 - 5x_2 = 0$$

Osserviamo che se R = [z] allora $z \in W$ dunque R appartiene alla retta, i 3 punti sono allineati

Osservazione 4. Più in generale, data una matrice $A \in M(t, n+1, \mathbb{K})$ possiamo definire un sistama lineare

$$A \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = 0 \tag{2}$$

Tali equazioni sono le equazioni cartesiane nella base $\{e_0, \ldots, e_n\}$ di un sottospazio vettoriale W di V e sono anche le equazioni cartesiane del sottospazio proiettivo $\mathbb{P}(W)$ nel riferimento proiettivo $\{e_0, \ldots, e_n\}$.

Osserviamo inoltre che dim $W = \dim V - rk(A)$ da cui dim $\mathbb{P}W = \dim \mathbb{P}V - rk(A)$

Attenzione: un sottospazio proiettivo non ammette un unico sistema di equazioni cartesiane. Ino

Lemma 0.2. Siano $\mathbb{P}(W_1)$ e $\mathbb{P}(W_2)$ sottospazi proiettivi di $\mathbb{P}(V)$.

$$\mathbb{P}(W_1) \cap \mathbb{P}(W_2) = \mathbb{P}(W_1 \cap W_2)$$

Dimostrazione. Fissato un riferimento proiettivo siano

$$A_1 \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = 0 \text{ un sistema di equazioni di } W_1$$

$$A_2 \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = 0$$
 un sistema di equazioni di W_2

Ora

$$P = [x_0, \dots, x_n] \in \mathbb{P}(W_1) \cap \mathbb{P}(W_2) \quad \Leftrightarrow \quad \left(\frac{A_1}{A_2}\right) \begin{pmatrix} x_0 \\ \vdots \\ x_n \\ \hline x_0 \\ \vdots \\ x_n \end{pmatrix} = 0 \quad \Leftrightarrow \quad v = x_0 e_0 + \dots + x_n e^n \in W_1 \cap W_2 \quad \Leftrightarrow \quad P \in \mathbb{P}(W_1 \cap W_2)$$

Esercizio 0.3. In $\mathbb{P}^2(\mathbb{C})$ consideriamo le rette

$$r_1: ax_1 - x_2 + 3ix_0 = 0$$
$$r_2: -iax_0 + x_1 = ix_2 = 0$$
$$r_3 = 3ix_2 + 5x_0 + x_1 = 0$$

Calcolare la loro intersezione al variare del parametro a Occorre calcolare il rango della matrice A e osservare che $\dim(r_1 \cap r_2 \cap r_3) = 2 - rk(A)$

$$A = \begin{pmatrix} 3i & a & -1 \\ -ia & 1 & i \\ 5 & 1 & 3i \end{pmatrix}$$

Definizione 0.5. Diciamo che due sottospazi $\mathbb{P}(W_1)$ e $\mathbb{P}(W_2)$ di $\mathbb{P}(V)$ sono

- incidenti se $\mathbb{P}(W_1) \cap \mathbb{P}(W_2) \neq \emptyset$
- sghembi se $\mathbb{P}(W_1) \cap \mathbb{P}(W_2) = \emptyset$

Osservazione 5. Similmente possiamo dare la seguente definizione:

Due sottospazi si dicono sghembi se $\dim(\mathbb{P}(W_1) \cap \mathbb{P}(W_2)) = -1$ e incidenti se tale dimensione è non negativa