Sprawozdanie nr 3

Data zajęć: 19.10.2023

Data wykonania sprawozdania: 25.10.2023

Autor: Szymon Turkiewicz

Cele laboratorium:

- 1. Zaznajomienie się ze środowiskiem MATLAB
- 2. Ćwiczenie umiejętności:
- · tworzenia wykresów
- automatyzacji pracy (m-skrypty) i programowania w środowisku MATLAB.
- typy danych środowiska MATLAB

Zadanie 1

a) Utwórz m-skrypt wczytujący dane z pliku daneP.csv a następnie realizującego wizualizację danych na wykresie typu plot (każda zmienna na osobnym wykresie). Dodaj do każdego wykresu osobny tytuł.

```
clear
dane = readtable("daneP.csv");%wczytanie danych jako tabeli
dane1 = dane{:, 1};
dane2 = dane{:, 2};
dane3 = dane{:, 3};
%rozdzielenie wczytanych danych na pojedyńcze wektory
figure
plot(dane1)
title("Dane 1")
```



```
figure
plot(dane2)
title("Dane 2")
```



```
figure
plot(dane3)
title("Dane 3")
```


b) Z zaimportowanych danych wybierz taki fragment, na którym widoczny jest sygnał okresowy. Utwórz nową zmienną zawierającą wybrany fragment sygnału i zwizualizuj ją na osobnym oknie wykresu.

```
okresowe2 = dane2(180:220); % Wybierz fragment sygnału okresowe2
figure
plot(okresowe2)
title("Wycięty fragment sygnału")
```


c) Z wybranego fragmentu sygnału, usuń trend poprzez dopasowanie krzywej wielomianowej. Dobierz stopień wielomianu jak najmniejszego stopnia przy zachowaniu jak najmniejszego błędu dopasowania (funkcja norm). Do wykresu z poprzedniego punktu dodaj linię dopasowanego trendu (inny kolor). Utwórz nowy wykres zawierający sygnał z usuniętym trendem.

```
[x] = length(okresowe2);
x=1:1:x;
%wyzaczenie długości fragmentu sygnału oraz stworzenie wektora o takiej
%długości z skokiem 1
n=ones(10,1);
for i=1:1:10
    [p, ~, mu] = polyfit(x, okresowe2, i);
    y=polyval(p,x,[],mu);
    n(i)=norm(okresowe2-y);
    %ta petla sprawdza dpoasowanie wielomianów stopni od 1 do 10
    %do podanego fragmentu sygnału, jenak wszystkie elementy mają bardzo
   %niskie dopasowanie (n ma te same wartościn dla kazdego indexu więc
    %wyznaczony wielomian nie jest dokładnie dopasowany
end
[p, ~, mu] = polyfit(x, okresowe2,i);
y= polyval(p,x,[],mu);
hold on
plot(x,okresowe2,"r")
title("G")
plot(x,y,'b')
```

```
xlabel("x")
ylabel("y")
hold off
```


d) Znajdź częstotliwość charakterystyczną sygnału. Sformatuj wykres dodając do niego w sposób programowy: opisy osi x,y i tytuł wykresu. Dodaj do wykresu punkt w miejscu maksimum (częstotliwość charakterystyczna) oraz opis informujący o wartości częstotliwości tego maksimum.

```
Fs=295*2;%częstotliwość próbkowania
T=1/Fs;%okres próbkowania
L=numel(okresowe2); % długość sygnału
t=(0:L-1)*T;
y=y-y(1);
Y=fft(y);%otzrymana transformata
P2=abs(Y/L);
P1=P2(1:L/2+1);
```

Warning: Integer operands are required for colon operator when used as index.

```
% poprzez podanie indexu do f
figure
plot(f, P1);%całość wykkresu
hold on;
plot(czestotliwosc_max, P1(idx), 'ro');%zaznaczenie punktu maksymalnego
text(czestotliwosc_max, P1(idx), sprintf('Maksimum: %.2f Hz', czestotliwosc_max), 'VerticalAlig
xlabel('Częstotliwość (Hz)');
ylabel('Amplituda');
title('Transformata Fouriera fragmentu sygnału');
xlim([0 300])%dostosowanie osi wykresu do otrzymanych danych
ylim([0 0.5])
```


Zadnie 2

a) Przy pomocy polecenia randn wygeneruj tablicę 3x3 liczb pseudolosowych R o rozkładzie normalnym (średnia 0 i odchylenie standardowe). Następnie utwórz zmienną A jako typ UINT32, zawierającą liczbę 100. Pomnóż zmienną R przez A, odpowiednio dostosowując typy danych. Rezultat (zmienna B) powinna być typu UINT32. Zwróć uwagę czy rezultaty mnożenia są poprawne ! W sprawozdaniu zanotuj liczbę bajtów potrzebną do zapamiętania jednej liczby typu double oraz jednej liczby typu UINT32

```
R =randn(3,3);
A=uint32(100);
R=uint32(R);
%przy przekształceniu macierzy na macierz typu uint32 elementy
%tej maicerzy przestają być floatami a wartości ujemne zamieniają się w 0
%powoduje to że wyniki mnożenia nie są poprawne mimo tego, że mnożenie
```

```
%zachodzi poprwanie, a otrzymany wynik jest mnożeniem otrzymanej po
%przekształceniu macierzy oraz skalara A
B=A*R;
```

b) Utwórz dwie tablice znakowe zawierające teksty: "ćwiczenie 2" oraz "laboratorium 1". Połącz te dwie tablice tak aby tablica wynikowa zawierała tekst jak poniżej

```
str1='ćwiczenie 2';
str2='laboratorium 1';
str3=strvcat(str1,str2)

str3 = 2×14 char array
   'ćwiczenie 2 '
   'laboratorium 1'

%funkcja ta łączy stringi, każdemu osobnemu stringowi przypisuje osobną
%linijkę
```

c) Utwórz tablicę znakową str1 zawierającą tekst "Krasnoludy przeszły przez rzekę w bród, nie zamoczywszy swych bród i do tego zmywszy ze swych nóg brud". Znajdź indeksy słów zaczynających się na literę "b", kończących na literę "d" i nie zawierających litery "u".

```
str1="Krasnoludy przeszły przez rzekę w bród," + ...
    " nie zamoczywszy swych bród i do tego zmywszy ze swych nóg brud"
str1 =
"Krasnoludy przeszły przez rzekę w bród, nie zamoczywszy swych bród i do tego zmywszy ze swych nóg brud"
str list=strsplit(str1, ' ')% rozbicie tekstu na liste zawierającą poszczególne słowa
str list = 1×18 string
"Krasnoludy" "przeszły"
                     "przez"
                                  "rzeke"
                                                        "bród,"
                                                                    "n • • •
wyrazenie_regexp = 'b[^u]*d';%wyrażenie które zostanie użyte jako argument funkcji regexp
indeksy=[];
for i=1:numel(str_list)
    if ~isempty(regexp(str_list{i}, wyrazenie_regexp,'once','ignorecase'))
        %funkcja sprawdza czy dane słowa spełniają nałożone ograniczenia
        indeksy= [indeksy,i];
```

```
indeksy = 1 \times 2
6 10
```

end

end
indeksy

d) Utwórz tablicę komórkową o rozmiarze 2x2 zawierającą następujące dane jak na rysunku poniżej. Wybierz z tablicy komórkowej, tablicę liczb pseudolosowych znajdującą się w komórce 2-wiersz, 1- kolumna, dodaj do niej wartość 100, a rezultat zapisz w to samo miejsce do tablicy komórkowej.

%jeżeli tak zapisuje ich indeksy w liscie słów

```
tablica= cell(2,2);
tablica{1,1}=123;
tablica{1,2}='abcd';
tablica{2,1} = randi(3,3);%prawdopodobnie najbardziej optymalne było by użycie randn ale
%macierz nie wyglądała by estetycznie w tabeli
tablica{2,2} = 0.1;
tablica{2,1}= tablica{2,1}*100
```

```
tablica = 2 \times 2 cell
```

	1	2
1	123	'abcd'
2	[100,100,100;300,100,200;100	0.1

e) Oblicz całkę oznaczoną w przedziale \in (-2,2) z funkcji () = 2 - 2 · + 4 i narysuj jej wykres dla tego przedziału.

```
fun = @(x) x.^2 -2*x+4;
q=integral(fun,-2,2)
```

```
q = 21.3333
```

```
figure
fplot(fun, [-2,2])%wykres funkcji
```



```
y=zeros(41,1);
```

```
x=-2:0.1:2;
for i = 1:1:41
    y(i)=integral(fun,-2,x(i));
end
y
```

```
y = 41×1
0
1.1703
2.2827
3.3390
4.3413
5.2917
6.1920
7.0443
7.8507
8.6130
```

```
figure
plot(x,y)%wykres całki
xlabel("x")
ylabel("y")
```


f) Utwórz typ danych tabelaryczny (table) zawierający dane jak na rysunku poniżej. Wyeksportuj dane z tabeli do pliku CSV.

```
imiona={'Rafał','Monika','Paweł','Elżbieta','Mirek'};
imiona = string(imiona);
matematyka = randi([30, 100], 1, 5);
fizyka = randi([0, 100], 1, 5);
chemia = randi([0, 100], 1, 5);
T=table(imiona',matematyka',fizyka',chemia','VariableNames',{'Imiona','Matematyka','Fizyka','Cl %aby ustawienie odpowiednich elementów było pionowe, a nie poziome należy %wszystkie listy użyć w funkcji jako transpozycje tych list writetable(T, 'Tabela.csv', 'Delimiter', ',');
disp(T)
```

Matematyka	Fizyka	Chemia
37	43	11
85	70	94
50	76	18
72	43	26
98	66	80
	37 85 50 72	37 43 85 70 50 76 72 43

Wnioski:

- 1. Matlab zawiera wiele funkcji matematycznych, które znacznie ułatwiają wykonywanie wielu obliczeń oraz reprezentację danych. Funkcje, takie jak *fft, integral, polyfit, polyval, norm, table,* działają również na wektorach, o ile wketory przekazywane są jako argumenty w odpowiedniej formie.
- 2. Oprogramowanie to pozwala także na zapisywanie danych w formie tabeli do osobnych plików za pomocą funkcji *writetable*. Warto również zwrócić uwagę, że wczytywanie danych z pliku jest możliwe, ale należy pamiętać o odpowiedniej komendzie w zależności od rodzaju pliku i danych, jakie ten plik zawiera. Można także skorzystać z wbudowanej właściwości Matlaba, znanej jako import wizard, która może napisać funkcję do wczytywania zaznaczonych przez nas danych.
- 3. Matlab posiada również funkcje służące do interpretowania tekstu jako dane, a także operowania na tak stworzonych danych np. *regexp, strsplit*
- 4. FFT czy Fast Fourier Transform to funkcja pozwalająca na dokonanie transformaty Fouriera na danych otrzymanych jako argument, polega to w rozłożeniu sygnałyu na składowe co pozwala określić, które częstotliwości są dominujące w tym sygnale