Course 12

2.9 Finite fields

Recall that the *characteristic* of a ring R (denoted by char(R)) is the order of the identity element 1 of R in the group (R, +). We have seen that the characteristic of a field is either a prime number or infinite. Throughout this section F will be a field.

Theorem 2.9.1 A finite field F of prime characteristic p contains p^n elements for some $n \in \mathbb{N}^*$.

Proof. Let $a_1 \in F^*$. We claim that $0 \cdot a_1, 1 \cdot a_1, \ldots, (p-1) \cdot a_1$ are pairwise distinct. Indeed, if $i \cdot a_1 = j \cdot a_1$ for some $0 \le i \le j \le p-1$, then $(j-i) \cdot a_1 = 0$ and $0 \le j-i \le p-1$. Since $\operatorname{char}(F) = p$, we have j-i=0, and thus i=j.

If $F = \{0 \cdot a_1, 1 \cdot a_1, \dots, (p-1) \cdot a_1\}$, we are done. Otherwise, let us choose $a_2 \in F \setminus \{0 \cdot a_1, 1 \cdot a_1, \dots, (p-1) \cdot a_1\}$. We claim that $k_1a_1 + k_2a_2$ are pairwise distinct for all $0 \le k_1, k_2 \le p-1$. Indeed, if $k_1a_1 + k_2a_2 = l_1a_1 + l_2a_2$ for some $0 \le k_1, k_2, l_1, l_2 \le p-1$, then we must have $k_2 = l_2$. Otherwise, we would have $a_2 = (l_2 - k_2)^{-1} (k_1 - l_1) a_1$. This contradicts the choice of a_2 . Since $k_2 = l_2$, we deduce that $k_1 = l_1$. As F has only finitely many elements, we can continue the procedure and obtain elements a_1, \dots, a_n such that

$$a_i \in F \setminus \{k_1 a_1 + \dots + k_{i-1} a_{i-1} \mid k_1, \dots, k_{i-1} \in \mathbb{Z}_p\}$$

for all $2 \le i \le n$, and consequently,

$$F = \{k_1 a_1 + \dots + k_n a_n \mid k_1, \dots, k_n \in \mathbb{Z}_p\}.$$

In the same manner, we can show that $k_1a_1+\cdots+k_na_n$ are pairwise distinct for all $k_i\in\mathbb{Z}_p, i=1,\ldots,n$. It follows that $|F|=p^n$.

Definition 2.9.2 A polynomial $f \in F[X]$ with $deg(f) \ge 1$ is called reducible over F if there are $g, h \in F[X]$ with $deg(g), deg(h) \ge 1$ such that $f = g \cdot h$. Also, f is called irreducible over F if it is not reducible over F.

Example 2.9.3 (a) $f = X^2 + 2 \in \mathbb{Z}_3[X]$ is reducible, because f(1) = 0.

(b)
$$f = X^4 + 2X^2 + 1 = (X^2 + 1)^2$$
 is reducible in $\mathbb{Z}_3[X]$, but f has no root in \mathbb{Z}_3 .

Theorem 2.9.4 Let $f \in F[X]$ be such that $deg(f) = n \ge 1$. Then the quotient ring

$$F[X]/(f) = \{g \bmod f \mid g \in F[X]\} = \{a_0 + a_1X + \dots + a_{n-1}X^{n-1} \mid a_0, a_1, \dots, a_{n-1} \in F\}$$

is a field if and only if f is irreducible.

Proof. Suppose first that F[X]/(f) is a field. Assume that f is reducible, say $f = g \cdot h$ for some $g, h \in F[X]$ with $deg(g), deg(h) \ge 1$. But then $g \cdot h = f = 0$ in F[X]/(f), which implies g = 0 or h = 0, contradiction. Hence f is irreducible.

Conversely, suppose that f is irreducible. Then for every $g \in F[X]/(f)$, f and g are relatively prime. As in the case of numbers, one may show that there are $u, v \in F[X]$ such that 1 = uf + vg. This implies that vg = 1 in F[X]/(f), hence g is invertible in F[X]/(f). Thus, F[X]/(f) is a field. \Box

Lemma 2.9.5 Let A be a subfield of F with |A| = q, and let $a \in F$. Then $a \in A$ if and only if $a^q = a$.

Proof. Suppose first that $a \in A$. If a = 0, then we clearly have $a^q = a$. Assume next that $a \neq 0$. Say $A^* = \{a_1, \ldots, a_{q-1}\}$. Note that we also have $A^* = \{aa_1, \ldots, aa_{q-1}\}$. Then $a_1 \cdots a_{q-1} = (aa_1) \cdots (aa_{q-1})$, which implies $a_1 \cdots a_{q-1} = a^{q-1}a_1 \cdots a_{q-1}$. Then $a^{q-1} = 1$, and so $a^q = a$.

Conversely, suppose that $a^q = a$. Let $f = X^q - X \in F[X]$. Then f has at most q roots in F. But all elements of A are roots of f and |A| = q, hence $A = \{\text{all roots of } f \text{ in } F\}$. So every $a \in F$ such that $a^q = a$ is a root of f, hence $a \in A$.

Theorem 2.9.6 For any prime p and $n \in \mathbb{N}^*$, there exists a unique finite field with $q = p^n$ elements. This is denoted by F_q or GF(q) (the Galois field with q elements).

Proof. (Existence) Let $f \in \mathbb{Z}_p[X]$ be irreducible with deg(f) = n (one may show that there exists such a polynomial!). Then

$$\mathbb{Z}_p/(f) = \{a_0 + a_1X + \dots + a_{n-1}X^{n-1} \mid a_0, a_1, \dots, a_{n-1} \in \mathbb{Z}_p\}$$

is a field with p^n elements.

(Uniqueness) Let F_1 and F_2 be two fields with p^n elements. Let F be the smallest field containing F_1 and F_2 , and let $f = X^{p^n} - X \in F[X]$. Then $F_1 = \{\text{all roots of } f \text{ in } F\} = F_2$.

Example 2.9.7 The fields with less than 20 elements are: $F_2 \cong \mathbb{Z}_2$, $F_3 \cong \mathbb{Z}_3$, F_4 , $F_5 \cong \mathbb{Z}_5$, $F_7 \cong \mathbb{Z}_7$, F_8 , F_9 , $F_{11} \cong \mathbb{Z}_{11}$, $F_{13} \cong \mathbb{Z}_{13}$, F_{16} , $F_{17} \cong \mathbb{Z}_{17}$, $F_{19} \cong \mathbb{Z}_{19}$.

One may also show that:

Theorem 2.9.8 If F is a finite field, then (F^*, \cdot) is a cyclic group.

Example 2.9.9 Let us construct $F_8 = F_{2^3}$.

Here p=2 and n=3, so that we need $f\in\mathbb{Z}_2[X]$ irreducible of degree 3.

For instance, $X^3 + 1$ is reducible, because it has the root 1.

Let us try

$$f = X^3 + X + 1 \in \mathbb{Z}_2[X]$$
.

If f were reducible, then f would be the product of a polynomial of degree 2 and a polynomial of degree 1, hence it would have a root in \mathbb{Z}_2 . But f(0) = 1 and f(1) = 1. Hence f is irreducible.

Now we have

$$F_8 = \mathbb{Z}_2[X]/(f) = \{a_0 + a_1X + a_2X^2 \mid a_0, a_1, a_2 \in \mathbb{Z}_2\}$$

= $\{0, 1, X, X + 1, X^2, X^2 + 1, X^2 + X, X^2 + X + 1\}.$ (2.1)

This is called the *polynomial representation* of the field and is convenient for addition and subtraction. We also know that (F_8^*, \cdot) is a cyclic group. Let us find a generator of it.

Since we work modulo $f \in \mathbb{Z}_2[X]$, we know that $X^3 + X + 1 = 0$.

Let us compute the powers of the first non-trivial element, namely X. In algorithms we compute $X^3 \mod f = X + 1$, $X^4 \mod f = X^2 + X$ etc. Here we use (i):

$$\begin{cases} X^3 = -X - 1 = X + 1 \\ X^4 = X^2 + X \\ X^5 = X^3 + X^2 = X^2 + X + 1 \\ X^6 = X^4 + X^3 = X^2 + X + X + 1 = X^2 + 1 \end{cases}$$

Since all are different, we have $F_8^* = \langle X \rangle$, hence

$$F_8 = \{0, 1, X, X^2, X^3, X^4, X^5, X^6\}. \tag{2.2}$$

This form is called the $power\ representation$ of the field and is convenient for multiplying and dividing.

The **Discrete Logarithm Problem** is to determine the correspondence between the forms (2.1) and (2,2) of a finite field. This is a difficult computational problem, and it is used in Cryptography.

Here we get the following table of discrete logarithms:

y	$\log_X y$
1	0
X	1
X+1	3
$X^2 + 1$	6
$X^2 + X$	4
$X^2 + X + 1$	5