## Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$ 

Example 2.

Case3: △<0

 $\triangle = -1764 < 0$ 

no f-intercepts.

q(0) = -490 q-intercept.

Case1: △>0  $f_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$  computes the f-intercepts of multiplicity 1.

Given a quadratic  $q(f) = a f^2 + b f + c$  compute its discriminant  $\triangle$ :

$$f_{1,2} = \frac{-0 \pm \sqrt{D^2 - 4 \text{ ac}}}{2a}$$
 computes the f-intercepts of multiplicity 1.   
  $q(0) = c$  computes the single q-intercept.

q(f)=3 f²+24 f-27 compute its discriminant 
$$\triangle$$
:  $\triangle$ =900>0 f<sub>1,2</sub>=1,-9

$$f_{1,2}=1,-9$$
  
 $q(0)=-27$  q-intercept.



## $q(f) = 2 f^2 + 32 f + 128$ compute its discriminant $\triangle$ :

△=0  $f_{1,2} = -8, -8$ q(0) = 128 q - intercept.800 600 400 200 f-intercept 1,2 q-intercept

However there is a q-intercept.   
**Example 3.** 
$$q(f) = -9 f^2 - 126 f - 490 \text{ compute its discriminant } \triangle$$
:

 $\sqrt{\,\mathsf{b}^2\,_-\,\mathsf{4}\,\mathsf{ac}}$  has no value in Real Numbers. Therefore there are

