A Project Report on

SENSOR BASED IDENTIFICAION SYSTEM FOR VEHICLE COLLSION AVOIDENCE

Submitted in partial fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS & COMMUNICATION ENGINEERING

by

A. sailendra kumar 16A35A0410

P. Anjaneya varma 15A31A04B5

N. Vinod 15A31A04B3

B. Santhi Swaroop 15A31A0495

Under the esteemed guidance of Mr. K. Ajay Kiriti M. Tech
Associate Professor

DEPARTMENT OF ECE

DEPARTMENT OF ELECTRONICS&COMMUNICATION ENGINEERING

PRAGATI ENGINEERING COLLEGE

(Approved by AICTE, Permanently Affiliated to JNTUK, KAKINADA & Accredited by NAAC with 'A' Grade)

1-378, A.D.B. Road, Surampalem, Near Peddapuram,

PRAGATI ENGINEERING COLLEGE

(Approved by AICTE, Permanently Affiliated to JNTUK, KAKINADA & Accredited by NAAC with 'A' Grade) 1-378, A.D.B. Road, Surampalem, Near Peddapuram—533437

CERTIFICATE

DEPARTMENT OF ELECTRONICS& COMMUNICATION ENGINEERING

This is to certify that the Project Report entitled "SENSOR BASED IDENTIFICATION SYSTEM FOR VEHICLE COLLISION AVOIDANCE" is being submitted by A.sailendra kumar(16A35A0410), P. Anjaneya varma(15A31A04B5), N. Vinod (15A31A04B3), B. Santhi Swaroop (15A31A0495) in partial fulfillment for the award of the Degree of Bachelor of Technology in Electronics & Communication Engineering of Pragati Engineering College, for the record of bonafide work carried out by them.

Dr. K. SIVA KUMARA SWAMY M. Tech, Ph. D Professor & H.O.D ECE Mr. K. Ajay kiriti M. Tech Associate Professor

ACKNOWLEDGEMENT

We would like to express our profound gratitude towards Mr. K. Ajay Kiriti, Associate Professor of the department of electronics and communication engineering, who played a supervisory role to utmost perfection, enable us to seek through our B.Tech project and for guiding us as an internal guide and meticulously.

We are highly indebted to **Dr. K. SIVA KUMARA SWAMY, Professor & Head of the Department,** Electronics and Communication Engineering for providing the necessary support.

We are greatly obligated **to Dr .S. Sambu Prasad**, Principal, for permitting us to carry out our project work.

We render my deep sense of gratitude to **Dr. P. Krishna Rao**, Chairman, **Dr. G. Raghu Ram**, Director, **Late prof**, **K. Ananda Mohan**, Director(Admin), **Dr. A. Kailasa Rao and Sri. M. Harinatha babu**, Director(Management).

We would also like to thank Electronics and Communication Engineering Teaching and Non-teaching staff for leading their time to help me to complete our work successfully.

We would also thank our parents and friends for their enduring encouragement and assistance whenever required.

A.SAILENDRA 16A35A0410
P.ANJANEYA VARMA 15A31A04B5
N.VINOD 15A31A04B3
B. SANTHI SWAROOP 15A31A0495

ABSTRACT

As the number of vehicles increasing day by day, accidents are also increasing rapidly. These accidents can be due to false estimation of nearby vehicle, disturbance in mind of driver or any reasons due to which driver can't keep focus on driving. So, not only the distance estimation of other surrounding vehicle is required but also to take quick actions is necessary to avoid any kind of accidents. The project is about vehicle collision avoidance system using an Ultrasonic sensor for a vehicle. We use the application of Electronic Embedded System in automobile which is expected to minimum the vehicle accident disaster. This project concentrates on developing a model of rear end vehicle collision avoidance system that will detect the distance between two vehicles moving in the same lane, in the same direction alert the driver whenever he or she in danger range using a microcontroller. The distance is measured by an Ultrasonic sensor used to sense the obstacle ahead.

TABLE OF CONTENTS

CHAPTERS	PAGE NUMBERS
CHAPTER -1	
INTRODUCTION	1 - 6
1.1 Introduction to embedded systems	1
1.2 History	2
1.3 Embedded systems Special features	2
1.4 Applications	4
1.5 Over view of Embedded system	6
CHAPTER – 2	
LITERATURE SURVEY	9 - 11
CHAPTER-3	
RASPBERRY PI	12 - 24
3.1 Introduction to Raspberry Pi	12
3.2 Features	12
3.3 Required Materials	13
3.4 hardware overview	14
3.5 Main controller	20
3.6 Hardware assembly	23
3.7 Technical specifications	24
CHAPTER -4	
HARDWARE IMPLEMENTATION OF A PROECT	25-36
4.1 Block diagram	25

4.2 Description	25
4.3 Components Used	25
4.4 Ultrasoic sensor	27
4.5 Buzzer	29
4.6 Relay	30
4.7 Driving Relay	32
4.8 Motors	35
4.9 Parts of DC Motor	35
4.10 Circuit	35
4.11 Advantages	36
CHAPTER-5	
SOFTWARE IMPLEMENTATION OF A PROJECT	37-47
5.1 installing OS	37
5.2 Using Raspbian	39
5.3 Linux commands	41
5.4 Putty	42
5.5 Python	43
5.6 VNC Viewer	48
CHAPTER-6	51-52
RESULT	51
CONCLUSION AND FUTURESCOPE	53
BIBILOGRAPHY	54
APPENDIX	54 - 56

4.2 Description

LIST OF FIGURES:

1.1 Emb	oedded System Design	1
1.2 V Di	agram	1
1.3 Bloc	k Diagram	7
3.1 Rasp	oberry Pi zero W	13
3.2 Spar	kfun Raspberry Pi zero basic kit	13
3.3 Rasp	oberry Pi Board	
	a) Mini HDMI slot	14
	b) USB Port	15
	c) Power slot	16
	d) microSD Card Slot	16
	e) camera connector slot	17
	f) GPIO Pins	18
	g) Additional connectional pins	18
	h) Raspberry Pi board with all GPIO Pins	19
3.4 Main	Controller	20
3.5 Table	e	24
4.1 Block	k Diagram	25
4.2 Basic	operation principle of sensor	27
4.3 Ultra	sonic Sensor	28
4.4 Magı	netic transducer	29
4.5 Buzz	er	29
4.6 circu	it diagram of relay	30
4.7 Relay	y	30
4.8 DC n	notor	33
4.9 Parts	of DC Motor	34
4.10 circu	nit diagram	35
5.1 NOO	BS Box	37
5.2 Appl	e- pi Baker	38
5.3 Rasp	bian OS	39
5.4 Putty	⁷ Installation	43
5.5 Pytho	on Desktop	48
5.6 VNC	file	49
5.7 VNC	Viewer	50

5.8 PI Display	50
6.1 Result display	51
6.2 Side view of a circuit	51
6.3 VNC viewer Result	51
6.4 Result in the Web Browser	52

ABBREVATIONS

IOT - Internet Of Things

RPI - Raspberry Pi

ARM - Advanced RISC Machine

SoC - System on Chip

GPIO - General Purpose Input Output

JTAG - Joint Test Action Group

HDMI- High Definition Multimedia Interface

ADC - Analog to Digital Conversion

VGA - Video Graphics Array

LCD - Liquid Crystal Display

LAN - Local Area Network

GSM - Global System of Mobile communication

USB - Universal Serial Bus

LED - Light Emitting Diode

RFID - Radio Frequency Identification

CSI - Camera Serial Interface

DSI - Display Serial Interface

NOOBS- New Out Of Box Software

SIM - Subscriber Identity Module

IMEI - International Mobile Instrument Identity

BTS - Base Transceiver Station

BSC - Base Station Controller

MSC - Mobile Service Switching Center

HLR - Home Location Register

VLR - Visitant Location Register

EIR - Equipment Identity Register

MODEM - modulator and demodulator

RS - Recommended Standard

IC - Integrated Circuit

AC - Alternate Current

DC - Direct Current

DTE - Data Terminal Equipment

DCE - Data Communication Equipment

CMOS- Complementary Metal Oxide Semiconductor

PWR - Power Key

GUI - Graphical User Interface