CSCI 210: Computer Architecture Lecture 9: Computer Representation of MIPS instructions 2

Stephen Checkoway

Oberlin College

Mar. 9, 2022

Slides from Cynthia Taylor

Announcements

Problem Set 2 due Friday

Lab 1 due Sunday

• Office Hours Friday 13:30 – 14:30

Representing Instructions

- MIPS instructions
 - Encoded as 32-bit instruction words
 - Small number of formats encoding operation code (opcode), register numbers, ...
 - Regularity!

	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
R-type	opcode	rs	rt	rd	sa	funct
I-type	opcode	rs	rt	immediate		
J-type	opcode	target				

MIPS Instruction Formats

	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
R-type	opcode	rs	rt	rd	sa	funct
I-type	opcode	rs	rt	immediate		
J-type	opcode	target				

Which row contains correct examples of instructions with

the given types?

	R-type	I-type
Α	addi	SW
В	addi	sub
С	add	SW
D	add	sub
Е	None of the	above

MIPS Instruction Fields

MIPS fields are given names to make them easier to refer to

op rs	rt	rd	shamt	funct
-------	----	----	-------	-------

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result's destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

MIPS Arithmetic Instructions Format

R-format Example

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

add \$t0, \$s1, \$s2

				1/2	
CORE INSTRUCT	ION SE	Т			OPCODE
		FOR-			/ FUNCT
NAME, MNEMO	NIC	MAT	OPERATION (in Verilog)		(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	$0/20_{hex}$
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$

	,	,,
NAME	NUMBER	USE
\$zero	0	The Constant Value 0
\$at	1	Assembler Temporary
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation
\$a0-\$a3	4-7	Arguments
\$t0-\$t7	8-15	Temporaries
\$s0-\$s7	16-23	Saved Temporaries
\$t8-\$t9	24-25	Temporaries
\$k0-\$k1	26-27	Reserved for OS Kernel
\$gp	28	Global Pointer
\$sp	29	Stack Pointer
\$fp	30	Frame Pointer
\$ra	31	Return Address

Convert this MIPS machine instruction to assembly: 000000 01110 10001 10010 00000 100010

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

Selection	Instruction
Α	add \$s2, \$t7, \$s4
В	add \$s1, \$t6, \$s3
С	sub \$t6, \$s1, \$s2
D	sub \$s2, \$t6, \$s1
E	None of the above

MIPS I-format Instructions

- Immediate arithmetic and load/store instructions
 - rt: destination or source register number
 - Constant: -2^{15} to $+2^{15}-1$ (or 0 to $2^{16}-1$ for some instructions)

offset: offset added to base address in rs

Machine Language – I Format

• Load/Store Instruction Format:

Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30 _{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16^{\circ}b0\}$		f_{hex}
Load Word	1w	I	R[rt] = M[R[rs]+SignExtImm]	(2)	23 _{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}

NAME	NUMBER	USE
\$zero	0	The Constant Value 0
\$at	1	Assembler Temporary
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation
\$a0-\$a3	4-7	Arguments
\$t0-\$t7	8-15	Temporaries
\$s0-\$s7	16-23	Saved Temporaries
\$t8-\$t9	24-25	Temporaries
\$k0-\$k1	26-27	Reserved for OS Kernel
\$gp	28	Global Pointer
\$sp	29	Stack Pointer
\$fp	30	Frame Pointer
\$ra	31	Return Address

Machine Language – I Format

• Immediate Addition Instruction Format:

addi \$t0, \$s3, 26

			3/	V
ION SE	Т			OPCODE
	FOR-			/ FUNCT
ONIC	MAT	OPERATION (in Verilog)		(Hex)
add	R	R[rd] = R[rs] + R[rt]	(1)	$0/20_{hex}$
addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9_{hex}
addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$
	ONIC add addi addiu	$egin{array}{ll} {\sf ONIC} & {\sf MAT} \ & {\sf add} & {\sf R} \ & {\sf addiu} & {\sf I} \ & {\sf I} \ & {\sf addiu} \ & {\sf addiu} & {\sf I} \ & {\sf addiu} \ & {\sf a$	FOR- ONIC MAT OPERATION (in Verilog) add R $R[rd] = R[rs] + R[rt]$ addi I $R[rt] = R[rs] + SignExtImm$ I addiu I $R[rt] = R[rs] + SignExtImm$	FOR- ONIC MAT OPERATION (in Verilog) add R $R[rd] = R[rs] + R[rt]$ (1) addi I $R[rt] = R[rs] + SignExtImm$ (1,2) I addiu I $R[rt] = R[rs] + SignExtImm$ (2)

	,	,,
NAME	NUMBER	USE
\$zero	0	The Constant Value 0
\$at	1	Assembler Temporary
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation
\$a0-\$a3	4-7	Arguments
\$t0-\$t7	8-15	Temporaries
\$s0-\$s7	16-23	Saved Temporaries
\$t8-\$t9	24-25	Temporaries
\$k0-\$k1	26-27	Reserved for OS Kernel
\$gp	28	Global Pointer
\$sp	29	Stack Pointer
\$fp	30	Frame Pointer
\$ra	31	Return Address

Convert this MIPS assembly instruction to machine code

sw \$t0, 32(\$s6)

Selection	Instruction
Α	010101 11011 00100 0000 0000 0010 0000
В	101011 01000 10110 0000 0000 0010 0000
С	101011 10110 01000 0000 0000 0010 0000
D	000000 00010 00000 1010 1110 1100 1000
E	None of the above

Sign-extend vs. zero-extend

- The immediate field of an I-format instruction is either signextended or zero-extended
 - sign extension: the sign bit (bit 15) is copied into bits 31–16
 - zero extension: 0 is placed into bits 31–16
- Opcode determines
 which occurs

Add Immediate	addi	Ι	$R[rt] = R[rs] + \frac{SignExtImm}{}$
Add Imm. Unsigned	addiu	I	$R[rt] = R[rs] + \frac{SignExtImm}{}$
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]
And	and	R	R[rd] = R[rs] & R[rt]
And Immediate	andi	I	$R[rt] = R[rs] \& \frac{ZeroExtImm}{}$

(1,2)

(3)

 $0/21_{hex}$

 $0/24_{hex}$

Disassemble the MIPS instruction 0xA20CFFE0

Hint: Convert to binary, break into fields, and convert

```
A. sb $s0, 65504($t4)
B. sb $s0, -32($t4)
C. sb $t4, 65504($s0)
D. sb $t4, -32($s0)
E. sb $t4($s0), 0xFFE0
```

What's the mnemonic for the MIPS instruction 0x012A4025

- A. add
- B. addi
- C. or
- D. ori
- E. nor

Reading

- Next lecture: Bit Level Operations
 - Section 2.6

Problem Set 2 due Friday

Lab 1 due Sunday