

分子动力学概 要

晶格振动与分 子动力学

/= # /\ -- -- | |

. ..---

经典分于初刀字间分

动力学简介

绝热近

似: Hellmann-Feynman 定理

含时密度泛函理设

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输送 文件格式

LAMMPS 命令

分子动力学概要

北京市计算中心 云平台事业部

2023.11

Outline

分子动力学标 要

晶格振动与分 子动力学

经典分子动力 学提要

第一原理分子

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DET)

LAMMPS **软件基础** LAMMPS 软件 LAMMPS 的输入 文件格式 1 晶格振动与分子动力学

■晶格振动与简谐振动

2 经典分子动力学提要

• 经典分子动力学简介

3 第一原理分子动力学简介

- 绝热近似: Hellmann-Feynman 定理与电-声耦合
- 含时密度泛函理论 (TD-DFT)
- 4 LAMMPS 软件基础
 - LAMMPS 软件
 - LAMMPS 的输入文件格式
 - LAMMPS 命令

原子间相互作用力的表示

分子动力学概 要

晶格振动与分 子动力学

经典分子动力 学提要 ^{经典分子动力学简介}

动力学简介 绝热近 似: Hellmann-Feynman 定理与 电声耦合 含时密度泛函理论

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式

AMMPS 的物/ 件格式 AMMPS 命令 分子动力学模拟中影响结果最主要因素之一是<mark>原子间相互作用力</mark>的 准确度

■ 经典分子动力学模拟中,原子间相互作用力是根据经验势函数得到的¹。构建一套高精度的经验势函数代价很高,而且经验势函数一般不具备可移植性

当动力学过程必须考虑量子效应 (如电子影响的贡献不可忽略时), 必须采用第一原理分子动力学 (Ab initio MD, AIMD)

■ 所谓第一原理分子动力学,就是在计算原子运动时,将电子结构变化的贡献考虑进来,因此在每一时间步长,体系实时构型下的原子受力计算,都必须伴随电子结构计算

一般电子结构计算采用 DFT 计算,不难想见,第一原理分子动力学模拟的代价极高

¹经验势函数也称为力场,是参数化形式给出的原子间相互作用,一般通过对实验数据拟合或小体系的 第一原理计算得到

晶格振动

分子动力学 要

晶格振动与分 子动力学

晶格振动与简谐振动

^圣典分子动力 学提要

经典分子动力学能

弗一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输*)* 文件格式 **LAMMPS** 命令 晶体中的格点表示原子的平衡位置,晶格振动是原子在格点附近的 振动

Fig.: Schematic diagrams of the crystal structures and longitudinal optical lattice vibration modes (LO modes) of diamonds. (a) Crystal structure of a diamond. (b) 3D view of a LO mode. (c) Top view of a LO mode.

简谐近似

分子动力学标 要

晶格振动与分 子动力学

经典分子动力 学提要

第一原理分子动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

ATT 基 WU LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

- 红外、Raman 光谱、中子衍射谱,热容、热导,电阻、超导和电-声耦合等都与晶格振动有关
- 绝热近似下,原子核是在电子能量函数 $E(\mathbf{R})$ 构成的势能面上运动

含有 N 个原子,平衡位置是 \mathbf{R}_i^0 ,偏移位置矢量 $\mu_i(t)$,体系的势能函数在平衡位置作 Taylor 级数展开

$$V = V_0 + \sum_{i=1}^{3N} \left(\frac{\partial V}{\partial \mu_i} \right)_0 \mu_i + \frac{1}{2} \sum_{i,j=1}^{3N} \left(\frac{\partial^2 V}{\partial \mu_i \partial \mu_j} \right)_0 \mu_i \mu_j + 高阶项$$

平衡位置 $\left(\frac{\partial V}{\partial \mu_i}\right)_0 = 0$ 简谐近似保留到 μ_i 的二次项引入高阶项,则势函数可以包括非简谐近似的贡献

简谐振动与简正坐标

分子动力学标 要

晶格振动与分 子动力学 晶格振动与简谐振动

经典分子动力 学提要

第一原理分子

动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 N 原子体系的动能函数

$$T = \frac{1}{2} \sum_{i=1}^{3N} m_i \dot{\mu}_i^2$$

引入简正坐标,与原子位移坐标 μ_i 正交变换

$$\sqrt{m_i}\mu_i = \sum_{j=1}^{3N} a_{ij}Q_j$$

目的: 系统的势能函数与动能函数有简单形式 (只有平方项)

$$T = \frac{1}{2} \sum_{i=1}^{3N} \dot{Q}_i^2 \quad V = \frac{1}{2} \sum_{i=1}^{3N} \omega_i^2 Q_i^2$$

由此可得谐振方程

$$\ddot{Q}_i + \omega_i^2 Q_i = 0 \quad i = 1, 2, 3, \cdots, 3N$$

简谐振动与振动模式

分子动力学标 要

晶格振动与分 子动力学

晶格振动与简谐振动

7提安

经典分子动力学简

第一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

任意简正坐标解

$$Q_i = A\sin(\omega_i t + \delta)$$

由此得到原子位移坐标

$$\mu_i = \frac{a_{ij}}{\sqrt{m_i}} A \sin(\omega_i t + \delta)$$

Fig.: Schematic example of vibration model of dimethyl.

简谐振动不表示某个原子的振动,表示整个体系所有原子参与的振动。这种体系中所有原子一起参加的集体运动常称为振动模

简谐振动与振动模式

分子动力学概 要

晶格振动与分 子动力学

晶格振动与简谐振动

经典分子动力 学提要

经典分子动力学简

动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输*》* 文件格式 B_{1u} A_{1g} B_{3g} B_{2u}

 $\textbf{Fig.:} \ \, \textbf{Schematic example of the symmetry of vibration model}.$

一维单原子链

晶格振动与简谐振动

Fig.: Schematic example of vibration of 1D-atomic chain.

单原子链可以视为最简单的晶格,平衡时相邻原子距离为 a,原子 限制在沿链方向运动,偏离格点位置用 \cdots , X_{n-1} , X_n , X_{n+1} , \cdots , 原子的振动可以表示为

$$\mu_{nq} = A e^{i(\omega t - qx)}$$

其中振幅 A 是常数, ω 是圆频率, $q=\frac{2\pi}{2}$ 是波数, λ 是波长 根据量子理论,每种简谐振动的能量是量子化的,可以用声子表示

$$\varepsilon_{nq} = \left(n + \frac{1}{2}\right)\hbar\omega_q$$

谐振子模型

分子动力学 要

晶格振动与分 子动力学

晶格振动与简谐振动

经典分子动力

经典分子动力学篇

第一原理分子

绝热近 似: Hellmann-Feynman 定理与

电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入

LAMMPS 命令

Fig.: Schematic example of quantization of harmonic oscillator model,

双原子链与光学支和声学支

分子动力学根 要

晶格振动与分 子动力学

经典分子动力 学提要

第一原理分子 动力学简介

^{42,RKLL} 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

(2n-2) (2n-1) 2n (2n+1) (2n+2)

Fig.: Schematic example of vibration of 1D-diatomic chain.

一维双原子链是最简单的复式晶格,平衡时相邻原子间距为 a,每个原胞含有两个不同原子 P 和 Q,质量分别是 m 和 M,原子现在在沿链方向运动,偏离位移用 \cdots , μ_{2n} , μ_{2n+1} , \cdots 原子的运动方程

P 原子:
$$m\ddot{\mu}_{2n} = -\beta(2\mu_{2n} - \mu_{2n+1} - \mu_{2n-1})$$

Q 原子: $M\ddot{\mu}_{2n+1} = -\beta(2\mu_{2n+1} - \mu_{2n+2} - \mu_{2n})$

可得关于振动频率 ω 的两组解

$$\omega^2 \left\langle \frac{\sim \omega_+^2}{\searrow \omega_-^2} \right\rangle = \beta \frac{m+M}{mM} \left\{ 1 \pm \left[1 - \frac{4mM}{(m+M)^2} \sin^2 aq \right]^{1/2} \right\}$$

光学支和声学支的长波极限

晶格振动与简谐振动

- 光学支: 属于频率 ω_+ 的晶格简谐振动
- 声学支: 属于频率 ω_ 的晶格简谐振动

Fig.: The acoustic branch and optical branch.

声学支的长波极限 $(q \rightarrow 0)$:

$$\omega_{-} pprox a \sqrt{rac{2 eta}{m+M}} q$$
 一维链看成连续介质的弹性波

光学支的长波极限 $(q \rightarrow 0)$:

$$\omega_{+}pprox a\sqrt{rac{2eta}{\left(rac{mM}{m+M}
ight)}}$$
 两种原子具有相反的相位,质心保持不动

声子振动模式的横向传播与纵向传播

晶格振动与简谐振动

λ/2 0000 0 0 0 0 TO mode 0 0 0 Diatomic chain Unit cell

Fig. Schematic examples of transverse optical to and longitudinal optical phonons in 1d diatomic lattice.

声学支和光学支的长波极限

分子动力学概 要

晶格振动与分 子动力学 晶格振动与简谐振动

经典分子动力 学提要

经典分子动力学简

第一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS **软件基础** LAMMPS 软件 LAMMPS 的输; 文件格式 Acoustic mode Optic mode

Fig.: Representation of the difference between acoustic and optic modes in the limit of wave vector $\vec{q} \to 0$ for the model diatomic chain: acoustic (in-phase) and optic (out-of-phase) modes.

经典三维振动模式

分子动力学校 要

晶格振动与分 子动力学 晶格振动与简谐振动

第一原理分子 动力学简介

始然近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 位于 $\mathbf{R}_I(t)$ 的原子核运动的经典力学描述

$$M_I \frac{\partial^2 \mathbf{R}_I}{\partial t^2} = \vec{F}_I(\mathbf{R}) = -\frac{\partial}{\partial \mathbf{R}_I} E(\mathbf{R})$$

晶格平衡位置 $\{\mathbf{R}_I^0\} = \mathbf{R}^0$ 由原子核受力平衡确定

$$\vec{F}_I(\mathbf{R}^0) = 0$$

对平衡位置偏移的受力方程为

$$C_{I,\alpha;J,\beta} = \frac{\partial^2 E(\mathbf{R})}{\partial \mathbf{R}_{I,\alpha} \partial \mathbf{R}_{J,\beta}}$$

其中 $\alpha, \beta \cdots$ 是 cartesian 坐标 谐振子近似下,频率为 ω 的谐振模式下,晶格对平移位置的偏移为

$$\mathbf{u}_I(t) = \mathbf{R}_I(t) - \mathbf{R}_I^0 \equiv \mathbf{u}_I e^{\mathrm{i}\omega t}$$

三维晶格振动模式

分子动力学校 要

晶格振动与分 子动力学 晶格振动与简谐振动

经典分子动力 学提要

经典分子动力学简单

* E-m/>

第一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命今 对位于 I 的原子核 (质量为 M_I),有

$$-\omega^2 M_I u_{I\alpha} = -\sum_{J\beta} C_{I,\alpha;J\beta} u_{J\beta}$$

因此振动频率 ω , 由经典谐振方程确定

$$\det \left| \frac{1}{\sqrt{M_s M_{s'}}} C_{s,\alpha;s'\alpha'} - \omega_{i\vec{k}}^2 \right| = 0$$

这里原子标记 $s=1,\cdots,s$,对应的谐振模式 $i=1,\cdots,3s$ 每个 \vec{k} 的约化力常数矩阵可表示为

$$C_{s,\alpha;s'\alpha'}(\vec{k}) = \sum_{\vec{T}_n} e^{i\vec{k}\cdot\vec{T}_n} \frac{\partial^2 E(\mathbf{R})}{\partial \mathbf{R}_{s,\alpha}(0)\partial \mathbf{R}_{s',\alpha'}(\vec{T}_n)}$$
$$= \frac{\partial^2 E(\mathbf{R})}{\partial \mathbf{u}_{s,\alpha}(\vec{k})\partial \mathbf{u}_{s',\alpha'}(\vec{k})}$$

分子动力学 (MD)

分子动力学概 要

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

经典分子动力 学提要

第一原理分子 动力学简介 ^{绝热近}

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

次件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 分子动力学 (Molecular dynamics, MD) 主要用于各类化学反应、合金与复杂材料状态方程研究,着重关注体系的反应或状态随温度、压力变化规律和动力学性质

分子动力学模拟的基本框架

- 结构优化: 根据体系的初始构型 (initial configuration), 遵从 能量最低原理,得到体系基态结构 (确定基态时原子的位置)
- 原子运动计算: 在一定环境 (温度、压力等) 条件下,计算各原子的受力,并依据运动方程得到设定时间步长下的原子的运动,进而获得得体系的当前构型
- 径迹计算: 在设定的时间范围内,根据原子运动和体系构型的变化,组合成体系随时间演化的径迹 (the trajectory of time evolution)
- 结果分析:分析体系的径迹变化规律,得到体系的动力学和热力学性质

经典分子动力学

分子动力学概 要

晶格振动与分子动力学 晶格振动与简谐振动

经典分子动力 学提要

经典分子动力学简介

第一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 装有 N 个经典粒子的 $L_1 \times L_2 \times L_3$ 容器内,假设粒子间只有简单的二体相互作用 $^2\vec{F}(r)$,力的大小仅与粒子间间距 r 相关

$$\vec{F}(R_i) = \sum_{\substack{j=1\\j\neq i}}^N F(|\vec{r}_i - \vec{r}_j|) \hat{\vec{r}}_{ij}$$

这里 R 代表全部原子坐标 \vec{r}_i , $\hat{\vec{r}}_{ij}$ 是表示粒子 i 指向粒子 j 的矢量 $(\vec{r}_j-\vec{r}_i)$ 的单位矢量 在经典力学框架下,粒子 i 的受力运动方程是:

$$\frac{\mathrm{d}^2 \vec{r_i}(t)}{\mathrm{d}t^2} = \frac{\vec{F_i}(R)}{m_i}$$

粒子i的质量是 m_i

经典分子动力学,就是应用数值模拟对大量粒子求解该方程,基于 统计力学原理,研究物质的状态和热力学性质

²二体作用是粒子间多体相互作用的简化,只考虑粒子两两间彼此相互作用 🖘 🤊

经典分子动力学力场

分子动力学标 要

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

经典分子动力 学提要

经典分子动力学简介

第一原理分子 动力学简介

^{细放近} 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS

LAMMPS 软件 LAMMPS 的输入 文件格式 原子间受力一般用<mark>力场(Force Field,也就是"相互作用势")描述,</mark>力场的形式有很多种,典型力场的有

■ Lennard-Jones 对势

$$U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

这里 ε 和 σ 是和原子有关的参数 L-J 势能的最低点在 $r_{\min}=2^{(1/6)}\sigma\approx 1.12\sigma$, $r< r_{\min}$ 时为排斥力, $r> r_{\min}$ 时为吸引力

Fig.: The Lennard-Jones Potential.

经典分子动力学力场 (cont.)

分子动力学根 要

晶格振动与分 子动力学

经典分子动力 学提要

经典分子动力学简介

第一原理分子动力学简介

絕热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 ■ Morse 势

$$U(r) = -D_{e} + D_{e} \left(1 - e^{-a(r-r_{e})}\right)^{2}$$

这里 $D_{\rm e}$ 是 Morse 势的势阱深,参数 a 确定势阱宽度, $r_{\rm e}$ 是原子处于平衡位置的平衡键长

Fig.: The Morse potential (blue) and harmonic oscillator potential (green).

经典分子动力学力场 (cont.)

分子动力学概 要

晶格振动与分 子动力学

经典分子动力 学提要

经典分子动力学简介

第一原理分子 动力学简介

絡热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 ■ EAM 势

对于金属晶体,内能虽可以表示为对相互作用之和,但拟合原子 受力非常困难³:

从物理上说金属原子处于电子海洋中,电子密度来自多个原子的 贡献,这是自由电子气带来的多体效应

EAM 将金属中原子的势能表示为二体势和多体势之和

$$E_i = F_{\alpha} \left(\sum_{j \neq i} \rho_{\beta}(r_{ij}) \right) + \frac{1}{2} \sum_{j \neq i} \phi_{\alpha\beta}(\vec{r}_{ij})$$

- α 和 β 分别为位置 i、j 处的原子类型
- ϕ 是二体势,是原子 α 和 β 和原子间距 r_{ij} 的函数

F 是多体势,是其余原子在位置 i 处的电荷密度与位置 i 处原子 α 的相互作用能,由原子类型 α 和位置 i 处的电子密度确定

位置 j 原子在位置 i 处产生的电荷密度 ρ 只与位置 j 处原子类型 β 和原子间距 r_{ij} 有关,与方向无关

各类 EAM 势中, $\phi(r)$ 、 $\rho(r)$ 和 $F(\rho)$ 都不是解析的, 以数值形式存储

经典分子动力学与 Verlet 算法

分子动力学校 要

晶格振动与分子动力学 品格振动与简谐振动

经典分子动力 学提要

经典分子动力学简介

第一原理分子 动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 分子动力学模拟研究的对象是平衡态体系

- 初始化
- 开始分子运动模拟,直到模拟体系达到平衡
- 继续模拟体系的物理性质,保存计算结果

标准 Verlet 算法: 求解作用力 \vec{F} 下单个粒子运动的积分

$$\vec{r}(t+h) = 2\vec{r}(t) - \vec{r}(t-h) + h^2 \vec{F}(\vec{r}(t))/m$$

这里 h 是时间步长,t=nh 是模拟累积时间, $\vec{r}(t)$ 是粒子在时间 t 时的位置每个时间步长的误差为 h^4 ,在模拟时间范围内的累积误差是 h^2

如果已知模拟粒子的初始速度 \vec{v} 和时间,取初始态时间 t=0

$$\vec{r}(h) = \vec{r}(0) = h\vec{v}(0) + \frac{h^2}{2}\vec{F}[\vec{r}(t=0)]$$
 $(m \equiv 1)$

误差为 h^3 , 速度随时间变化的函数

$$\vec{v}(t) = \frac{\vec{r}(t+h) - \vec{r}(t-h)}{2h} + \mathcal{O}(h^2)$$

经典分子动力学与 Verlet 算法

分子动力学概 要

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

经典分子动力 学提要

经典分子动力学简介

第一原理分子 动力学简介

^{突然近} 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 Verlet 算法有两种被普遍应用的变体形式,相比于标准 Verlet 算法,这两种方法误差累积效应更小

■ 蛙跳 (Leap-Frog) 法

$$\vec{v}(t+h/2) = \vec{v}(t-h/2) + h\vec{F}[\vec{r}(t)]$$

 $\vec{r}(t+h) = \vec{r}(t) + h\vec{v}(t+h/2)$

■ 速度-Verlet 算法

$$\vec{v}(t) = \frac{\vec{r}(t+h) - \vec{r}(t-h)}{2h}$$

$$\vec{r}(t+h) = \vec{r}(t) + h\vec{v}(t) + h^2\vec{F}(t)/2$$

 $\vec{v}(r+h) = \vec{v}(t) + h[\vec{F}(t+h) + \vec{F}(t)]/2$

速度-Verlet 算法更稳定也更方便,但需要保存 $\vec{F}(t)$ 和 $\vec{F}(t+h)$ 两个力的数组

经典分子动力学与 Verlet 算法

分子动力学标 要

晶格振动与分 子动力学

经典分子动力 学提要

经典分子动力学简介

第一原理分子 动力学简介

^{紀然近} 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

文件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 以下算法与速度-Verlet 算法完全等价,但只需要保留 $\vec{F}(t)$ 一个数组

$$\begin{split} &\tilde{\vec{v}}(t) = \vec{v}(t) + h\vec{F}(t)/2 \\ &\vec{r}(t+h) = \vec{r}(t) + h\tilde{\vec{v}}(t) \\ &\vec{v}(t+h) = \tilde{\vec{v}}(t) + h\vec{F}(t+h)/2 \end{split}$$

而粒子受力 $\vec{F}(t+h)$ 则在第二步、第三步之间临时计算

一般地,作用在粒子 i 上的力,是所有与粒子 i 的相互作用的"合成"结果

$$\vec{F}_i(R) = -\frac{\partial U(\{\vec{r}_i\})}{\partial \vec{r}_i}$$

通常总的势能 $U(\{ec{r}_i\})$ 拆解为各部分贡献

$$U(\{\vec{r}_i\}) = \sum_i U_1(\vec{r}_i) + \sum_i \sum_{j>i} U_2(\vec{r}_i, \vec{r}_j) + \sum_i \sum_{j>i} \sum_{k>j} U_3(\vec{r}_i, \vec{r}_j, \vec{r}_k) + \cdots$$

这里 $U_1(\vec{r_i})$ 是单体势,一般是单个粒子在外场 (如重力场、电场) 中的势能,与材料性质无关 $U_2(\vec{r_i},\vec{r_j})$ 是双体势, $U_3(\vec{r_i},\vec{r_j},\vec{r_k})$ 是描述粒子间对相互作用的主要函数 在分子动力学计算中,力的计算需要更多的时间,因为其计算耗时 步数是 $\mathcal{O}(N^2)$,对于周期体系,这种力的计算尤其需要谨慎

第一原理分子动力学 AIMD 中的近似

分子动力学制 要

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

第一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

文件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 由于分子动力学模拟的复杂性,必须做出适当的近似。具体到第一原理分子动力学,一般有两类重要的近似:

- 绝热近似 (adiabatic approximation) 假设电子-原子核在能量层面上完全分离,彼此间没有能量传递
- Born-Oppenheimer 近似 假设电子和原子核的运动完全解耦,对应每个时间步长的原子构型,电子可以实时处于基态⁴

⁴B-O 近似也是一种绝热近似,但B-O 近似下的绝热强调电子对核运动的瞬时响应。讨论电子计算时,B-O 近似下假设原子核是固定不动的。在分子动力学讨论中,绝热近似强调的是电子-核运动在能量上的完整分离,而B-O 近似则明确要求电子-核运动彼此完全解调,且电子实时处于基态

第一原理分子动力学

分子动力学概 要

晶格振动与分 子动力学

第一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

次件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 ■ AIMD 将电子结构与原子和经典轨迹计算在同一基础上完成

- 每个原子运动步的受力都是在电子结构计算基础上获得的
- 基于 B-O 方法: 在计算原子运动径迹的每一步,都要求电子态都收敛到基态
- 扩展的 Lagrangian 方法: 根据体系几何结构构造体系波函数 Car-Parinello:

平面波基,构成分子轨道

Atom-centered Density Matrix Progation (ADMP): 原子中心基,构成密度矩阵

AIMD 计算内容

- 可用于复杂体系的电子结构计算
- 几何结构优化 (能量最小化)
- ■描述系统演化
- 模拟时长规模 $\approx ps(10^{-12}s)$ (经典分子动力学 $\approx ns(10^{-9}s)$)

绝热近似

分子动力学制 要

晶格振动与分 子动力学

经典分子动力 学提要

第一原理分子 动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

文件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 绝热近似下,电子-原子核的运动能量上完全分离,原子核运动的影响,在电子的本征态 (本征值 $E_i\{\mathbf{R}\}$, 波函数 $\Psi_i(\{\mathbf{r}\};\{\mathbf{R}\})$) 中表现为含有原子核位置参数 $\{\mathbf{R}\}$

如果考虑核与电子体系,Hamiltonian 算符可以写成

$$\hat{H} = \hat{T}_N + \hat{T}_e + \hat{U}$$

U 是全部相互作用,可由电子坐标 $\{\mathbf{r}\}$ 和原子核位置 $\{\mathbf{R}\}$ 表示电子态运动的本征态由下式确定

$$H_e(\mathbf{R})\psi_s(\{\mathbf{r};\mathbf{R}\}) = E_s(\mathbf{R})\psi_s(\{\mathbf{r};\mathbf{R}\})$$

这里 $s=1,2,3,\cdots$ 电子运动 Hamiltonian 可由本征态表示为

$$\langle \psi_m(\mathbf{r}; \mathbf{R}) | \hat{H}_e(\mathbf{R}) | \psi_n(\mathbf{r}; \mathbf{R}) \rangle = E_s(\mathbf{R}) \delta_{mn}$$

这里利用了电子本征态波函数的正交关系

$$\langle \psi_m(\mathbf{r}; \mathbf{R}) | \psi_n(\mathbf{r}; \mathbf{R}) \rangle = \delta_{mn}$$

Hellmann-Feynman 定理

分子动力学校 要

晶格振动与分 子动力学

经典分子动力 学提要

第一原理分子

绝热近 似: Hellmann-Feynman 定理与 电-声耦合

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 根据电子波函数的正交关系,电子波函数对参数 R 改变的响应有

$$\langle \frac{\partial}{\partial \mathbf{R}_i} \psi_m(\mathbf{r}; \mathbf{R}) | \psi_n(\mathbf{r}; \mathbf{R}) \rangle = - \langle \psi_m(\mathbf{r}; \mathbf{R}) | \frac{\partial}{\partial \mathbf{R}_i} \psi_n(\mathbf{r}; \mathbf{R}) \rangle$$

对 m=n 有

$$\langle \psi_m({f r};{f R})|rac{\partial}{\partial{f R}_i}\psi_m({f r};{f R})
angle=$$
纯虚数

类似地, Schrödinger 方程对参数 R 改变的响应有

$$\langle \frac{\partial \psi_m}{\partial \mathbf{R}_i} | H_e | \psi_n \rangle + \langle \psi_m | \frac{\partial H_e}{\partial \mathbf{R}_i} | \psi_n \rangle + \langle \psi_m | H_e | \frac{\partial \psi_n}{\partial \mathbf{R}_i} \rangle = \frac{\partial E_n}{\partial \mathbf{R}_i} \delta_{mn}$$

注意到 $\psi_m(\mathbf{r};\mathbf{R})$ 和 $\psi_n(\mathbf{r};\mathbf{R})$ 是 $H(\mathbf{R})$ 的本征态,本征值分别是 $E_m(\mathbf{R})$ 和 $E_n(\mathbf{R})$,因此有

$$\langle \psi_m | \frac{\partial H}{\partial \mathbf{R}_i} | \psi_n \rangle + [E_m - E_n] \langle \psi_m | H_e | \frac{\partial \psi_n}{\partial \mathbf{R}_i} \rangle = \frac{\partial E_n}{\partial \mathbf{R}_i} \delta_{mn}$$

Hellmann-Feynman 定理

Hellmann-Feynman 定理

分子动力学体 要

晶格振动与分 子动力学

^{经典分子动力学简介} **第一原理分子**

绝热近 似: Hellmann-Feynman 定理与 电-声耦合

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 当 m=n 时有 Hellmann-Feynman 定理

$$\langle \psi_m(\mathbf{r}; \mathbf{R}) | \frac{\partial H_e(\mathbf{R})}{\partial \mathbf{R}_i} | \psi_m(\mathbf{r}; \mathbf{R}) \rangle = \frac{\partial E_m(\mathbf{R})}{\partial \mathbf{R}_i}$$

电子态总能量 $E(\mathbf{R})$ 与原子位置 $\{\mathbf{R}_i\}$ 构成的函数称为<mark>势能</mark> $\overline{\mathbf{n}}$ (potential surface)

Hellmann-Feynman 定理表明,对于确定的势能面,能量对位置导数 (广义力) 可通过波函数和算符 $\partial H(\mathbf{R})/\partial \mathbf{R}_i$ 的期望值计算得到一般地,当势能面不包含任何简并态时,可以有 Epstein 广义

$$\langle \psi_m(\mathbf{r};\mathbf{R}) | \frac{\partial}{\partial \mathbf{R}_i} \psi_n(\mathbf{r};\mathbf{R}) \rangle = \frac{1}{E_n(\mathbf{R}) - E_m(\mathbf{R})} \langle \psi_m(\mathbf{r};\mathbf{R}) | \frac{\partial H_e(\mathbf{R})}{\partial \mathbf{R}_i} | \psi_n(\mathbf{r};\mathbf{R}) \rangle$$

绝热近似下的原子受力

分子动力学校 要

晶格振动与分 子动力学

经典分子动力 学提要

第一原理分子 动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础

ATT 金 WU LAMMPS 软件 LAMMPS 的輸入 文件格式 LAMMPS 命令 根据 Hellmann-Feynman 定理,在 Born-Oppenheimer 近似下,位于 \mathbf{R}_K 处的原子核的受力

$$\langle \psi({\bf r};{\bf R}) | \frac{\partial}{\partial {\bf R}_K} H_e({\bf R}) | \psi({\bf r};{\bf R}) \rangle = \frac{\partial E({\bf R})}{\partial {\bf R}_K}$$

这里 Hamiltonian 的梯度为

$$\frac{\partial}{\partial \mathbf{R}_K} H_e(\mathbf{R}) = -\frac{\partial}{\partial \mathbf{R}_K} \sum_i \frac{Z_K e^2}{\mathbf{r}_i - \mathbf{R}_K} + \frac{\partial}{\partial \mathbf{R}_K} \sum_{I(\neq K)} \frac{Z_I Z_K e^2}{\mathbf{R}_I - \mathbf{R}_K}$$

由此,原子受力可表示为

$$\vec{F}_K = -\frac{\partial E}{\partial \mathbf{R}_K} = \int n(\mathbf{r}; \mathbf{R}) \frac{\partial}{\partial \mathbf{R}_K} \frac{Z_K e^2}{\mathbf{r}_i - \mathbf{R}_K} d\mathbf{r} - \frac{\partial}{\partial \mathbf{R}_K} \sum_{I(\neq K)} \frac{Z_I Z_K e^2}{\mathbf{R}_I - \mathbf{R}_K}$$

原子核受力: 其余原子核的经典静电排斥和电子的电荷密度分布

绝热近似下的核运动

分子动力学校 要

晶格振动与分子动力学 品格振动与简谐振动

经典分子动力 学提要

经典分子动力学简介

动力学简介 ^{绝热近} 似: Hellmann-

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

ATT 金を買 LAMMPS 软件 LAMMPS 的輸入 文件格式 LAMMPS 命令 绝热近似下,原子核-电子的波函数可以表示为

$$\Psi(\{\mathbf{r};\mathbf{R}\}) = \sum_i \chi_{si}(\{\mathbf{R}\}) \psi_i(\{\mathbf{r}\};\{\mathbf{R}\})$$

原子核 $\chi_{si}(\{\mathbf{R}\})$ 在电子形成的势能面 $E_i(\{\mathbf{R}\})$ 上的运动方程

$$[T_N + E_i(\{\mathbf{R}\}) - E_s]\chi_{si}(\{\mathbf{R}\}) = -\sum_{ii'} C_{ii'}\chi_{si}(\{\mathbf{R}\})$$

这里
$$T_n = -\frac{1}{2}(\sum_J \nabla_J^2/M_J)$$
,矩阵元 $C_{ii'} = A_{ii'} + B_{ii'}$

$$A_{ii'}(\{\mathbf{R}\}) = \sum_{J} \frac{1}{M_J} \langle \psi_i(\{\mathbf{r}\}; \{\mathbf{R}\}) | \nabla_J | \psi_{i'}(\{\mathbf{r}\}; \{\mathbf{R}\}) \rangle \nabla_J$$

$$B_{ii'}(\{\mathbf{R}\}) = \sum_{J} \frac{1}{2M_J} \langle \psi_i(\{\mathbf{r}\}; \{\mathbf{R}\}) | \nabla_J^2 | \psi_{i'}(\{\mathbf{r}\}; \{\mathbf{R}\}) \rangle$$

这里 $\langle \psi_i(\{\mathbf{r}\}; \{\mathbf{R}\}) | \hat{O} | \psi_{i'}(\{\mathbf{r}\}; \{\mathbf{R}\}) \rangle$ 表示对电子变量 $\{\mathbf{r}\}$ 积分

绝热近似下的核运动

分子动力学标 要

晶格振动与分 子动力学

经典分子动力 学提要

绝热近 似: Hellmann-Feynman 定理与 电-声耦合

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 绝热近似下,将忽略矩阵 $C_{ii'}$ 的全部非对角元,可有

- 电子能及时响应原子核的运动
- 电子由态 $i \rightarrow i'$ 的激发,不会影响原子核位置变量 $\{\mathbf{R}\}$
- $A_{ii'} = 0$ (波函数归一化要求)
- 核运动的势函数 $U_i(\{\mathbf{R}\}) = E_i(\{\mathbf{R}\}) + B_{ii}(\{\mathbf{R}\})$

核运动方程

$$\left[-\sum_{J} \frac{1}{2M_{J}} \nabla_{J}^{2} + U_{i}(\{\mathbf{R}\}) - E_{ni} \right] \chi_{ni}(\{\mathbf{R}\}) = 0$$

这里 $n = 1, 2, 3, \cdots$

如果忽略 B_{ii} 的贡献,即绝热近似下冻声子 (frozen phonon) 或微扰近似下的声子计算方案

电-声耦合

分子动力学 要

晶格振动与分 子动力学

学提要 经典分子动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合

LAMMPS 软件基础

次件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 电子-声子的来源: $C_{ii'}$ 的非对角元部分

- $C_{ii'}$ 的非对角元部分描述了原子核运动 (振动) 引起电子在不同态间跃迁
- $lacksymbol{\bullet}$ $C_{ii'}$ 的非对角元部分主要来自 $A_{ii'}$
 - 1 电子波函数 $\psi_i(\{\mathbf{r}\};\{\mathbf{R}\})$ 对原子核位置 $\{\mathbf{R}_j\}$ 的梯度
 - 2 梯度算符对原子核波函数 $\chi_{si}(\{\mathbf{R}\})$ 的贡献
- 电子在态 $i \rightarrow i'$ 跃迁将会激发或吸收一个声子

根据 Epstein 推广的 Hellmann-Feynman 定理线性近似下有

$$\langle \psi_i(\{\mathbf{r}\}; \{\mathbf{R}\}) | \nabla_J | \psi_i'(\{\mathbf{r}\}; \{\mathbf{R}\}) \rangle = \frac{\langle \psi_i(\{\mathbf{r}\}; \{\mathbf{R}\}) | \frac{\nabla_V}{\nabla_{\mathbf{R}_J}} | \psi_{i'}(\{\mathbf{r}\}; \{\mathbf{R}\}) \rangle}{E_{i'}(\{\mathbf{R}\}) - E_i(\{\mathbf{R}\})}$$

第一原理分子动力学: BOMD

分子动力学标 要

晶格振动与分 子动力学

第一原理分子 动力学简介

eemu 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 如果绝热近似和 Born-Oppenheimer 近似同时满足,称为 Born-Oppenheimer 分子动力学 (BOMD)

■ 原子核运动的势函数为 $E[\{\psi_i\};\mathbf{R}]$, 并且每个时间步长内, 势函数对 $\{\psi_i(\vec{r})\}$ 取极小值

$$L_{\text{BO}}(\{\psi_i\}; \mathbf{R}, \dot{\mathbf{R}}) = \frac{1}{2} \sum_{I=1}^{N} M_I \dot{\mathbf{R}}_I^2 - \min_{\{\psi_i\}} E[\{\psi_i\}; \mathbf{R}] + \sum_{i,j} \Lambda_{ij} (\langle \psi_i | \psi_j \rangle - \delta_{ij})$$

■ 运动方程 (Equations of Motion, EOM)

$$\begin{split} M_{I}\ddot{\mathbf{R}}_{I} &= -\nabla_{\mathbf{R}_{I}}\left[\min_{\{\psi_{i}\}} E[\{\psi_{i}\};\mathbf{R}]\bigg|_{\{\langle\psi_{i}|\psi_{j}\rangle = \delta_{ij}\}}\right] \\ &= -\frac{\partial E}{\partial\mathbf{R}_{I}} + \sum_{i,j} \Lambda_{ij} \frac{\partial}{\partial\mathbf{R}_{I}} \langle\psi_{i}|\psi_{j}\rangle - 2\sum_{i} \frac{\partial\langle\psi_{i}|}{\partial\mathbf{R}_{I}} \left[\frac{\delta E}{\delta\langle\psi_{i}|} - \sum_{i} \Lambda_{ij}|\psi_{j}\rangle\right] \\ &= -\frac{\partial E}{\partial\mathbf{R}_{I}} + \sum_{i,j} \Lambda_{ij} \frac{\partial}{\partial\mathbf{R}_{I}} \langle\psi_{i}|\psi_{j}\rangle - 2\sum_{i} \frac{\partial\langle\psi_{i}|}{\partial\mathbf{R}_{I}} \left[\frac{\delta E}{\delta\langle\psi_{i}|} - \sum_{i} \Lambda_{ij}|\psi_{j}\rangle\right] \\ &= -\frac{\partial E}{\partial\mathbf{R}_{I}} + \sum_{i,j} \Lambda_{ij} \frac{\partial}{\partial\mathbf{R}_{I}} \langle\psi_{i}|\psi_{j}\rangle - 2\sum_{i} \frac{\partial\langle\psi_{i}|}{\partial\mathbf{R}_{I}} \left[\frac{\delta E}{\delta\langle\psi_{i}|} - \sum_{i} \Lambda_{ij}|\psi_{j}\rangle\right] \\ &= -\frac{\partial E}{\partial\mathbf{R}_{I}} + \sum_{i,j} \Lambda_{ij} \frac{\partial}{\partial\mathbf{R}_{I}} \langle\psi_{i}|\psi_{j}\rangle - 2\sum_{i} \frac{\partial\langle\psi_{i}|}{\partial\mathbf{R}_{I}} \left[\frac{\delta E}{\delta\langle\psi_{i}|} - \sum_{i} \Lambda_{ij}|\psi_{j}\rangle\right] \\ &= -\frac{\partial E}{\partial\mathbf{R}_{I}} + \sum_{i,j} \Lambda_{ij} \frac{\partial}{\partial\mathbf{R}_{I}} \langle\psi_{i}|\psi_{j}\rangle - 2\sum_{i} \frac{\partial\langle\psi_{i}|}{\partial\mathbf{R}_{I}} \left[\frac{\delta E}{\delta\langle\psi_{i}|} - \sum_{i} \Lambda_{ij}|\psi_{j}\rangle\right] \\ &= -\frac{\partial E}{\partial\mathbf{R}_{I}} + \sum_{i,j} \Lambda_{ij} \frac{\partial}{\partial\mathbf{R}_{I}} \langle\psi_{i}|\psi_{j}\rangle - 2\sum_{i} \frac{\partial\langle\psi_{i}|}{\partial\mathbf{R}_{I}} \left[\frac{\delta E}{\delta\langle\psi_{i}|} - \sum_{i} \Lambda_{ij}|\psi_{i}\rangle\right] \\ &= -\frac{\partial E}{\partial\mathbf{R}_{I}} + \sum_{i,j} \Lambda_{ij} \frac{\partial}{\partial\mathbf{R}_{I}} \langle\psi_{i}|\psi_{j}\rangle - 2\sum_{i} \frac{\partial\langle\psi_{i}|}{\partial\mathbf{R}_{I}} \left[\frac{\delta E}{\delta\langle\psi_{i}|} - \sum_{i} \Lambda_{ij}|\psi_{i}\rangle\right] \\ &= -\frac{\partial E}{\partial\mathbf{R}_{I}} + \sum_{i} \frac{\partial}{\partial\mathbf{R}_{I}} \langle\psi_{i}|\psi_{j}\rangle - 2\sum_{i} \frac{\partial}{\partial\mathbf{R}_{I}} \left[\frac{\delta E}{\delta\langle\psi_{i}|} - \sum_{i} \frac{\partial}{\partial\mathbf{R}_{I}} \left[\frac{\delta E}{\delta\langle\psi_{i}|} - \sum_{i} \frac{\partial}{\partial\mathbf{R}_{I}} - \sum_{$$

第一原理分子动力学: BOMD

分子动力学校 要

晶格振动与分子动力学

经典分子动力 学提要

经典分子动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合

电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 • $\sum\limits_{i,j} \Lambda_{ij} rac{\partial}{\partial \mathbf{R}_I} \langle \psi_i | \psi_j \rangle$ 是 Pulay 力 \vec{F}_{WF}

源于电子波函数正交要求,且只有当基函数为局域函数 (依赖于 R 时) 才有贡献

源自非局域基 (如平面波),由于波函数非显式依赖 ${f R}$,因此展开系数 $c_{ij}({f R})$ 依赖于原子核位置

$$\psi_i(\mathbf{R}) = \sum_j c_{ij}(\mathbf{R}) \phi_i$$

前面 MOE 中的系数 2 源于 K-S 轨道波函数为实数时的简化表示

这一项的贡献比起 Γ_{HF} 小很多,只要当 $\psi_i(\mathbf{R})$ 是体系精确的电子的本征态波函数,该项就会消失 ——换言之,只有非完全自洽的电子计算,才需要考虑该项的贡献。显然,所有数值计算中,都将存在不等式

$$0\leqslant -\frac{\delta E}{\delta\langle\psi_i|}+\sum_j \Lambda_{ij}|\psi_j\rangle = -\hat{H_{\rm e}}\langle\psi_j|+\sum_j \Lambda_{ij}|\psi_j\rangle$$

第一原理分子动力学: BOMD

分子动力学概 要

晶格振动与分 子动力学

经典分子动力 学提要

第一原理分子 动力学简介 ^{绝热近} 似: Hellmann-

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

大件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 另一方面,如果忽略 $\vec{F}_{
m WF}$ 和 $\vec{F}_{
m NSC}$ 的贡献,仅对体系电子的非本征态波函数应用 m Hellmann-Feynman 定理,得到的结果和精确计算的原子受力

$$\vec{F} = \vec{F}_{\rm HF} + \vec{F}_{\rm WF} + \vec{F}_{\rm NSC}$$

计算相比, 也只有微小的偏差

这是因为在 DFT 框架下,能量是电荷密度的非线性函数,因此 $H_{\rm e}$ 必须通过迭代求解; 而原子受力的误差则随电荷密度线性变化 ——这也解释了为什么一般 BOMD 计算的原子受力比体系总能要精确得多

在 BOMD 中,Born-Oppenheimer 近似下核与电子的运动完全解耦,在此基础上考虑绝热近似,将不再有对动力学模拟的时间步长限制,相比于其它 AIMD 方法,BOMD 模拟允许的时间步长要长得多

第一原理分子动力学: CPMD

分子动力学概 要

晶格振动与分 子动力学

经典分子动力 学提要

第一原理分子 动力学简介

出版U 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 基于 Born-Oppenheimer 近似的原子-电子耦合的势能面计算,因每一原子步都需要完整的电子结构自洽迭代,故计算量非常可观。

1985 年,在 Car-Parrinello 给出的方案中,电子态将和原子核的运动一样,都用分子动力学算法处理

在该方案中,体系的电子态并未能达到当前正电荷环境的真实基态,但体系总能可以与真实基态更为接近

考虑电子态总能(即电子态有关能量+原子核静电相互作用能) 是作为电子波函数 ψ_k 和原子核坐标 ${f S}$ 的泛函

$$E_{\mathrm{tot}} = E_{\mathrm{tot}}(\{\psi_k\}, \mathbf{S})$$

如果波函数可用一套基组 $\{\chi_r\}$ 表示, 即

$$\psi_k(\vec{r}) = \sum_r C_{rk} \chi_r(\vec{r})$$

则体系总能可表示为

$$E_{\text{tot}} = E_{\text{tot}}(\{C_{rk}\}, \mathbf{S})$$

考虑到基函数常常选择以原子核为坐标原点,因此也依赖于 S

Car-Parrinello 方法通过变量 ψ_k (或 C_{rk}) 和原子核坐标 S 来完成 E_{tot} 的优化 (确定 E_{tot} 的极小值)

第一原理分子动力学: CPMD

分子动力学概 要

晶格振动与分 子动力学

圣典分子动力 対提要 ^{经典分子动力学简介}

第一原理分子 动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 到这里,能量最小化问题可以视为一个抽象的数学问题,原则上,任何一种最小化方法都适用 (如模拟退火方法 (simulated annealing method))

Car-Parrinello 要求原子核坐标随时间变化,还引入虚拟时间,要求波函数随虚拟时间变化,由此构造动态 Lagrangian 量 Lagrangian 量包括

- 电子态波函数 $\{\psi_k\}$
- 原子核坐标 { R̄_i }
- ullet 电子态波函数时间导数 $\dot{\psi}_k$ 和原子核坐标时间导数 $\{ \dot{ec{R}}_i \}$

电子态总能 E_{tot} 是该 Lagrangian 量的势能,形式上这是一个经典力学的问题

- 在经典力学体系的运动方程中引入阻尼项贡献,则 经过一段时间体系达到平衡态时,许可自由度的值对应体系 经典势能达到最小值态时的取值
- 在模拟体系在非零温下的运动时,可将阻尼项设为零

CPMD 的 Lagrangian

绝热䜣 似: Hellmann-Feynman 定理与 由-亩뫮合

根据 Car-Parrinello 定义的经典 Lagrangian 量

$$L_{\text{CP}}(\{\psi_i\}; \mathbf{R}, \dot{\mathbf{R}}) = \frac{1}{2} \mu \sum_{i} \langle \dot{\psi}_i | \dot{\psi}_i \rangle + \frac{1}{2} \sum_{I=1}^{N} M_I \dot{\mathbf{R}}_I^2$$
$$- \frac{E}{[\{\psi_i\}; \mathbf{R}]} + \sum_{ij} \Lambda_{ij} (\langle \psi_i | \psi_j \rangle - \delta_{ij})$$

在经典 Lagrangian 中考虑电子自由度,人为地引入了傀电子质量参数 μ 和傀轨道速度 $\dot{\psi}_i$ 上式最后一项是要求波函数 ψ_{k} 正交的约束条件, $\Lambda_{k,l}$ 是引入的 Lagrangian 乘子 μ 的选择原则:

- $\mathbf{1}$ $\mu \ll M$: 使得 Lagrangian 量中的电子动能项贡献足够小, 因此波函数能随时适应原 子核位置的变化
- 2 μ 的选择兼顾效率与精度:
 - 一旦在运动方程中引入阻尼,电子和原子核的动能都将为零,体系总能 (即 Lagrangian 量中的势能) 达到极小值,但选择不同的 μ ,计算过程中会有不同的收 敛谏度 マロメスタンマミンマミン ほ

CPMD 的运动方程

似: Hellmann-Feynman 定理与

由波函数正交约束,体系的 Euler-Lagrange 运动方程可表示为

$$\begin{split} \mu \ddot{\psi}_i(\vec{r},t) &= -\frac{\delta E}{\delta \langle \psi_i|} + \sum_j \Lambda_{ij} |\psi_j\rangle \\ &= -\hat{H}_{\rm e} \langle \psi_j| + \sum_j \Lambda_{ij} |\psi_j\rangle \\ M_I \ddot{\mathbf{R}}_I &= -\nabla_{\mathbf{R}_I} \left[E[\{\psi_i\}; \mathbf{R}] \bigg|_{\{\langle \psi_i | \psi_j \rangle = \delta_{ij}\}} \right] \\ &= -\frac{\partial E}{\partial \mathbf{R}_I} + \sum_{i,j} \Lambda_{ij} \frac{\partial}{\partial \mathbf{R}_I} \langle \psi_i |\psi_j \rangle \end{split}$$

- 电子态总能 E_{tot} 是波函数 ψ_k 和原子核位置 {R_I} 的函数 如果表示 ψ_k 的基函数不依赖原子核位置 \mathbf{R}_I ,则上述最后一个方程右侧最后一项消失
- 表示经典力学框架下的电子受力,用来描述分子动力学范畴内电子自由度随原子核运 动的情况只要电子态波函数的基函数可由原子核位置确定, μ 的数值受基函数影响不大

CPMD 的定态运动方程的求解

分子动力学制 要

晶格振动与分 子动力学

经典分子动力 学提要 ^{经典分子动力学简介}

ポー原理ガナ 动力学简介 绝热近 似: Hellmann-Feynman 定理与

Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

AMMPS 次件基础 LAMMPS 软件 LAMMPS 的輸入 文件格式 LAMMPS 命令 如果运动方程中引入阻尼项,则经过一段时间后,方程的解达到定态,前述运动方程等号左侧为零⁵,因此可有

- 电子态的运动方程与 Kohn-Sham 方程类似 $_{\rm 3hf}$ $_{\rm 5hf}$ $_{$
- Lagrange 参数 Λ_{kl} 是时间相关的 因此每个 MD 步必须重新计算 Λ_{kl} ,确保电子态波函数满足正交约束条件
- 应用具体的数值算法求解 Λ_{kl}: 应用 DFT 框架下的 Hamiltonian 量,有

$$\psi_k(t+h) = 2\psi_k(t) - \psi_k(t-h) - \frac{2h^2}{\mu}(H\psi_k - \sum_l \Lambda_{kl}\psi_l)$$

该方程表明: 电子基态也可通过各种优化方法直接求解

比如可用 Verlet 算法计算; Car-Parrinello 建议用迭代 SHAKE 算法计算

■ 对于搜索原子核的平衡位置问题,如果原子初始位置离平衡位置较远,很可能只得到体系的局域极小值

使用模拟退火方法, 使体系跃出局域极小点, 搜索全局极小值

⁵定态,意味着波函数和原子位置不再随时间变化

CPMD 的原子核受力

分子动力学概 要

晶格振动与分 子动力学 晶格振动与简谐振动

动力学简介 绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含TRD RET

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 原子核运动方程的求解主要围绕电子态总能对原子位置 \vec{R}_i 的求导,对求导有贡献的共三部分

- 原子核之间的 Coulomb 相互作用: 与原子核间距离反比: $1/R_{ij}$ $\vec{R}_{ij} = |\vec{R}_i - \vec{R}_j|$
- 电子 Hamiltonian 中包括的电子与核之间的 Coulomb 吸引势与原子核位置有关: $\vec{R_i}$
- 基函数 χ_r 对原子核位置 \vec{R}_i 的依赖 当基函数的中心选定在原子核 \vec{R}_i 上时,原子核位置的变化会 引起 Fock 矩阵和重叠矩阵的变化

因原子核位置变化引起基函数改变的贡献称为Pulay 力

Car-Parrinello 方法得到的结果与二体势 (力场) 方法结果等价计算得到位于 \vec{R}_i 的原子核受力,用于描述 Verlet 模拟原子核的运动状态

H 原子 AIMD 计算示例

分子动力学 要

晶格振动与分 子动力学

经典分子动力

公本ムスコード等か

一原理分子

动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式

波函数正交对计算的影响

分子动力学校 要

晶格振动与分子动力学 品格振动与简谐振动

经典分子动力学简介

第一原理分子 动力学简介

起放近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 Verlet 算法计算电子态波函数的运动方程

$$|\tilde{\psi}_k(t+h)\rangle = 2|\psi_k(t)\rangle - |\psi_k(t-h)\rangle - \frac{2h^2}{\mu}(H|\psi_k(t)\rangle - \sum_l \Lambda_{kl}\psi_l)$$

当体系含有多个电子,Langrage 乘子确保电子波函数彼此正交 graphick g

■ 一次 unitary 变换产生一套正交轨道

$$\psi_k' = \sum_l U_{kl} \psi_l$$

这里基组 $\{\psi_k'\}$ 是正交的

■ 一次波函数的 unitary 变化伴随 Lagtange 乘子的一次类似变换

$$\Lambda'_{kl} = \sum_{mn} U^{\dagger}_{km} \Lambda_{mn} U_{nl}$$

不同的正交方案对应张开的空间相同,但张开空间的函数有所旋转 不同的旋转方式 (不同的正交方案) 会对 Verlet 算法的执行效率产生很大的影响

CPMD 与平面波基

分子动力学标 要

晶格振动与分 子动力学

经典分子动力 学提要

经典分子动力学简:

第一原理分子

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 ■ 推导总能对轨道自由度的受力

$$\begin{split} \frac{\partial E_{\text{total}}}{\partial c_j^*(\vec{K})} &= \frac{K^2}{2} c_j(\vec{K}) + \sum_{\vec{K}'} V_{\text{loc}}^*(\vec{K} - \vec{K}') c_j(\vec{K}') \\ &+ \sum_n \sum_{lm} F_{jlm}^n \mathrm{e}^{-\mathrm{i}\vec{K} \cdot \vec{K}_n} Y_{lm}(\hat{\vec{K}}) h_{lm}^n p_m^l(K) \end{split}$$

这里 $V_{
m loc^{all}}$ 是总局域势

$$V_{loc}(\vec{K}) = \sum_{n} \Delta V_{loc}(\vec{K}) + V_{xc}(\vec{K}) + 4\pi \frac{n_{\text{tot}}(\vec{K})}{K^2}$$

■ 推导总能对原子核的受力:

总能对原子位置坐标的梯度包括

■ 局域赝势部分的贡献

$$\nabla_{\vec{R}n} E_{\rm local} = -\Omega \sum_{\vec{K}} \mathrm{i} \vec{K} V_{\rm local,n}(\vec{K}) \mathrm{e}^{-\mathrm{i} \vec{K} \cdot \vec{R}_n} \, n^*(\vec{K})$$

CPMD 与平面波基 (cont.)

分子动力学制 要

晶格振动与分 子动力学

经典分子动力

- ne sc

经典分子动力学简介

第一原理分子 动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合

LAMMPS 旋性基础

LAMMPS 软件 LAMMPS 的输入 文件格式

LAMMPS 命令

■ 非局域赝势部分的贡献

$$\nabla_{\vec{R}_n} E_{\text{nonlocal}} = \sum_j f_j \sum_{l,m \in n} [(F^n_{jlm})^* h^n_{lm} \nabla_{\vec{R}_n} F^n_{jlm} + \nabla_{\vec{R}_n} (F^n_{lm})^* h^n_{lm} F^n_{lm}]$$

■ 电子-核静电相互作用部分的贡献

$$\nabla_{\vec{R}_n} E_{\rm ES} = -\Omega \sum_{\vec{K}} \mathrm{i} \vec{K} \frac{n_{\rm tot}}{K^2} n_{\rm core}^n(\vec{K}) \mathrm{e}^{-\mathrm{i} \vec{K} \cdot \vec{R}_n} + \nabla_{\vec{R}_n} E_{\rm ovrl}$$

其中

$$\nabla_{\vec{K}_n} F^n_{lm} = -\frac{1}{\sqrt{\Omega}} \sum_{\vec{K}} \mathrm{i} \vec{K} \mathrm{e}^{-\mathrm{i} \vec{K} \cdot \vec{R}_n} \, c_j^*(\vec{K}) Y_{lm}(\hat{\vec{K}}) p_{lm}^l(\vec{K})$$

$$\begin{split} \nabla_{\vec{R}_n} E_{\text{ovrl}} &= \sum_{n'} \sum_{\vec{L}} \left\{ \frac{Z_n Z_{n'}}{|\vec{R}_n - \vec{R}_{n'} - \vec{L}|^3} \text{erfc} \bigg[\frac{|\vec{R}_n - \vec{R}_{n'} - \vec{L}|}{\sqrt{2(\xi_n^2 + \xi_{n'}^2)}} \bigg] \right. \\ &+ \frac{2}{\sqrt{\pi}} \frac{1}{\sqrt{\xi_n^2 + \xi_{n'}^2}} \frac{Z_n Z_{n'}}{|\vec{R}_n - \vec{R}_{n'} - \vec{L}|^2} \text{exp} \bigg[\frac{|\vec{R}_n - \vec{R}_{n'} - \vec{L}|}{\sqrt{2(\xi_n^2 + \xi_{n'}^2)}} \bigg] \bigg\} \\ &\times (\vec{R}_n - \vec{R}_{n'} - \vec{L}) \end{split}$$

CPMD 方法总结

分子动力学 要

晶格振动与分 子动力学

经典分子动力 学提要 ^{经典分子动力学简介}

第一原理分子 动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

K 計 本 価 LAMMPS 软件 LAMMPS 的输*入* 文件格式 LAMMPS 命令

Car-Parinello 方法基本思想

- 只对原子核位置考虑受力 $-rac{\partial E_{\mathrm{tot}}}{\partial ec{R}_{n}}$ 作用
- 电子结构是通过某种最小化方法确定能量泛函 $E_{\mathrm{tot}}[\rho(\vec{r})]$ 的极值得到,而非 Born-Oppenheimer 近似下的自洽迭代
- Verlet 算法确定核位移过程中,并不要求在每一步核位移时, 电子步充分弛豫到当前结构的基态

在 Car-Parinello 方法中,电子结构的计算变成经典的优化问题: 电子密度迭代过程中,约束条件下最小化问题

- 电子本征态波函数彼此正交约束下迭代对角化 (内循环): 子空间旋转: 不同的正交化方法对迭代计算的影响
- 电荷密度混合过程中电荷数守恒约束 (外循环)

$$\sum_{j=0}^{i} a_j = 1$$

CPMD 计算的特点

分子动力学标 要

晶格振动与分 子动力学

学提要

经典分子动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 ■ 计算成本大大节约 相比于 BOMD,CPMD 无需在每个分子动力学时间步长执行电子自洽计算

计算时间步长不能太长
 绝热近似要求电子-核运动能量彼此分离,声子最高频率ω_I 必须远小于傀电子最低振动频率ω_e

$$\omega_{\rm e} \propto \sqrt{\frac{\Delta E_{\rm gap}}{\mu}}$$

 $\Delta E_{
m gap}$ 是 K-S 单粒子的带隙,许可最大时间步长 $\Delta t_{
m max} < 1/\omega_{
m e}$,大小主 要由 $\sqrt{\mu}$ 确定

- ullet μ 物理上没有意义,但通过调节 μ 可以平衡 AIMD 的效率和精度,一般选取 μ 使得 $\omega_{\rm I} << \omega_{\rm I}$ 成立
- 对于金属/导体的 CPMD 计算,由于 $\Delta E_{\rm gap}=0$,必须要求 体系通过恒温条件平衡交换能或者泛函允许分数占据

其它 AIMD: PIMD 和 Ehrenfest MD

分子动力学概 要

一切刀字 晶格振动与简谐振动 经典分子动力 学提要

第一原理分子 动力学简介 绝热近 似: Hellmann-Feynman 定理与 电-声耦合 电-声耦合 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

- Path Integral MD (PIMD)⁶ PIMD 用量子力学计算电子和原子核运动,因此该方法比 BOMD 和 CPMD 方法精确,特别是对于含有轻元素体系 ——计算量也要大得多
- Ehrenfest MD
 电子自由度通过求解含时 (Time-dependent) Schrödinger 方程得到,当 Δt → 0,自由度变化对应于电子的幺正传播 (unitary propagation)⁷

CPMD 结合了 BOMD 与 Ehrenfest MD 的优点:

- 计算体系受力由总能对粒子位置的求导,并非求电子态的 $\langle \Psi_0 | \hat{H}_{\rm e} | \Psi_0 \rangle$ 极小值
- 因为选择平面波基, \vec{F}_{NSC} 自然为 0

⁶基于量子统计的第一原理路径积分称为 Feynman 路径积分 (path integrals)

TEhrenfest MD 的幺正变换确保波函数保持正交,但代价是积分时间步长必须极小,因此Ehrenfest MD 模拟时间尺度仅达 atto(10⁻¹⁸) 秒尺度

含时 Schrödinger 方程

分子动力学概 要

晶格振动与分 子动力学 晶格振动与简谐振动

经典分子动力 学提要

用一原理がす 动力学简介 ^{逸热近} 似: Hellmann-Feynman 定理与 电-声耦合 **含时密度泛函理论** (TD-DFT)

LAMMPS 次件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 对于核-电子体系,含时 Schrödinger 方程表示的动力学体系为

$$\hat{H}\Psi(\vec{r};\mathbf{R},t)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(\vec{t};\mathbf{R},t)$$

这里 $\vec{r}=\{\vec{r}_1,\vec{r}_2,\cdots,\vec{r}_n\}$ 和 $\mathbf{R}=\{\mathbf{R}_1,\mathbf{R}_2,\cdots,\mathbf{R}_I\}$ 分别表示电子 与核的位置

对于核-电子体系的动力学演化问题,同样需要考虑核-电子子体系和整体波函数的关系,对于电子体系,映射到无相互作用体系的思想就是含时 Kohn-Sham (TDKS) 方程为核心的 TD-DFT TD-DFT 分为两类

- LR (Linear Response)-TDDFT: 根据体系的电子结构得到体系的光谱信息: 不产生体系的动力 学演化信息
- rt (Real Time)-TDDFT: 可用于演化体系,实现动力学模拟

第一原理分子动力学: Enrenfest-MD

分子动力学概 要

晶格振动与分 子动力学

登典分子动力查提要☆ 表典分子动力学简介

第一原理分子 动力学简介 ^{绝热近}

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输*》* 文件格式 **LAMMPS** 命令 Ehrenfest 动力学要求体系总波函数 $\Psi(\vec{r};\mathbf{R},t)$ 随时间变化满足

$$\Psi(\vec{r}; \mathbf{R}, t) = \psi(\vec{r}, t) \chi(\mathbf{R}, t) \exp \left[\frac{\mathrm{i}}{\hbar} \int_{t_0}^t \mathrm{d}t' E_{el}(t') \right]$$

指数部分称为波函数的相位项, 写成

$$E_{el}(t) \iint d\vec{r} d\mathbf{R} \ \psi^*(\vec{r}, t) \chi^*(\mathbf{R}, t) H_{e,l}(\vec{r}; \mathbf{R}) \psi(\vec{r}, t) \chi(\mathbf{R}, t)$$

注意: 电子波函数 $\psi(\vec{r},t)$ 不依赖于原子核的位置 \mathbf{R} 电子核体系的演化的含时自治方程

$$\begin{split} & \mathrm{i}\hbar\frac{\partial\psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2}\sum_i\nabla_i^2\psi(\vec{r},t) + \left[\mathrm{d}\mathbf{R}\chi^*(\mathbf{R},t)\hat{V}(\vec{r};\mathbf{R})\chi(\mathbf{R},t)\right]\psi(\vec{r},t) \\ & \mathrm{i}\hbar\frac{\partial\chi(\mathbf{R},t)}{\partial t} = -\frac{\hbar^2}{2}\sum_{r}\frac{\nabla_\gamma^2\chi(\mathbf{R},t)}{M_\gamma^{-1}} + \left[\mathrm{d}\vec{r}\psi^*(\vec{r},t)H_e(\vec{r};\mathbf{R})\psi(\vec{r},t)\right]\chi(\vec{R},t) \end{split}$$

其中

$$\hat{V}(\vec{r};\mathbf{R}) = -\sum_{\gamma} \frac{\hbar^2}{2M_{\gamma}} \nabla_{\gamma}^2 + \sum_{i < j} \frac{1}{|\vec{r}_i - \vec{r}_j|} - \sum_{\gamma,i} \frac{Z_{\gamma}}{|\mathbf{R}_{\gamma} - \vec{r}_i|} + \sum_{\gamma < \zeta} \frac{Z_{\gamma} Z_{\zeta}}{|\mathbf{R}_{\gamma}| - |\mathbf{R}_{\zeta}|}$$

核运动方程

分子动力学的 要

晶格振动与分 子动力学

经典分子动力 学提要

^{经典分子动力学简介} 第一原理分子 动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 将原子核的波函数用极坐标形式表示

$$\chi(\mathbf{R},t) = A(\mathbf{R},t) \mathrm{exp} \bigg[\frac{\mathrm{i}}{\hbar} S(\mathbf{R},t) \bigg]$$

 ${f A}({f R},t)$ 是波函数的振幅, ${f S}({f R},t)/\hbar$ 是相位 代入原子核运动方程,在经典近似下 (即取 $\hbar \to 0$),有

$$\frac{\partial S(\mathbf{R},t)}{\partial t} = -\frac{1}{2} \sum_{\gamma} M_{\gamma}^{-1} (\nabla_{\gamma} S(\mathbf{R},t))^{2} - \left[\int dr \psi^{*}(\vec{r},t) H_{e}(\vec{r};\mathbf{R}) \psi(\vec{r},t) \right]$$

这是形如经典力学下的 Hamiloton-Jacobi (HJ) 方程 方程表明核运动的量子体系在空间的径迹,可以用 $\mathbf{S}(\mathbf{R},t)$ 在构象 空间的偏微分方程描述

核运动方程

含时密度泛函理论 (TD-DFT)

根据相空间中动量的定义 $\mathbf{P} = \nabla_{\mathbf{R}} S(\mathbf{R})$, 得到 $\nabla_{\mathcal{C}} \mathbf{S}/M_{\mathcal{C}} = \mathbf{v}_{\mathcal{C}}$ 形如 HJ 的方程两侧对 \mathbf{R}_{ζ} 取梯度 ∇_{ζ} , 并利用构象空间 (\mathbf{R},t) 中 Lagrangian 时间的全微分定义

$$\frac{\mathrm{d}}{\mathrm{d}t} \equiv \frac{\partial}{\partial t} + \sum_{\gamma} M_{\gamma}^{-1} \nabla_{\gamma} \mathbf{S} \cdot \nabla_{\gamma}$$

可得到形如 Newton 方程的运动方程

$$\frac{\mathrm{d}\mathbf{P}_{\gamma}(t)}{\mathrm{d}t} = -\nabla_{\gamma} \left[\int \mathrm{d}\vec{r} \psi^{*}(\vec{r}, t) H_{e}(\vec{r}; \mathbf{R}) \psi(\vec{r}, t) \right]$$

或更简单的

$$M_{\gamma}\ddot{\mathbf{R}}_{\gamma}(t) = -\nabla_{\gamma} \left\langle H_e(\vec{r}; \mathbf{R}(t)) \right\rangle$$

电子运动方程

分子动力学(要

晶格振动与分 子动力学

全典分子动力 ≱提要 ^{经典分子动力学简介}

动力学简介 绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS **软件基础** LAMMPS 软件 LAMMPS 的输入 文件格式 采用 Born-Oppenheimer 近似下,原子核波函数近似为

$$|\chi(\mathbf{R},t)|^2 = \prod_{\gamma} \delta(\mathbf{R}_{\gamma} - \mathbf{R}_{\gamma}(t))$$

电子体系的动力学演化方程

$$\mathrm{i}\hbar\frac{\partial\psi(\vec{r};\mathbf{R}(\mathbf{t}),t)}{\partial t}=H_{e}(\vec{r};\mathbf{R}(t))\psi(\vec{r};\mathbf{R}(t),t)$$

Hamiltonian $H_e(\vec{r};\mathbf{R}(t))$ 和电子波函数 $\psi(\vec{r};\mathbf{R}(\mathbf{t}),t)$ 参数化地依赖原子核位置 $\mathbf{R}(t)$,使得电子运动与原子核运动耦合

很多情况下,基于 DFT/TD-DFT 框架计算核-电子运动耦合方程中电子部分的 贡献是合适的选择

根据 Runge-Gross 理论,体系电子密度演化函数为

$$\mathbf{A}[\rho] = \int_{t_0}^{t_1} dt \left\langle \psi[\rho] \middle| i\hbar \frac{\partial}{\partial t} - \hat{T} - H_{ee} \middle| \psi[\rho] \right\rangle$$

这里 H_{ee} 表示电子间相互作用, $\psi[
ho](t)$ 是由电荷密度确定的含时电子态波函数

含时 Kohn-Sham 方程

分子动力学 要

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

第一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 电荷密度随时间演化函数用单电子 Kohn-Sham 波函数表示为

$$\begin{split} \mathbf{A}[\rho] &= \sum_{i} \int_{t_{0}}^{t_{1}} \mathrm{d}t \bigg\langle \phi_{i}(\vec{r},t) \bigg| \mathrm{i}\hbar \frac{\partial}{\partial t} + \frac{1}{2} \nabla^{2} \bigg| \phi_{i}(\vec{r},t) \bigg\rangle \\ &- H_{\mathrm{C}}[\rho(\vec{r},t)] + \mathbf{A}_{\mathrm{XC}}[\rho(\vec{r},t)] - \int \mathrm{d}\vec{r} \int_{t_{0}}^{t_{1}} \mathrm{d}t \ v_{\mathrm{ext}}(\vec{r},t) \rho(\vec{r},t) \end{split}$$

这里 $H_{\rm C}(\vec{r},t)$ 是 Hartree 能泛函

在约束条件 $\rho(\vec{r},t) = \sum_{i} |\phi_i(\vec{r},t)|^2$ 下,通过变分法可得含时

Kohn-Sham (TDKS) 方程

$$i\hbar \frac{\partial}{\partial t} \phi_i(\vec{r}, t) = -\frac{1}{2} \nabla^2 \phi_i(\vec{r}, t) + v_i[\phi, \psi_0](\vec{r}, t) \phi_i(\vec{r}, t) \qquad i = 1, 2, 3, \dots, N$$

$$v_i[\rho, \psi_0](\vec{r}, t) = v_{\text{ext}}(\vec{r}, t) + v_{\text{H}}(\vec{r}, t) + \frac{\delta \mathbf{A}_{\text{XC}}[\rho, \psi_0](\vec{r}, t)}{\delta \rho(\vec{r}, t)}$$

其中

$$v_{\mathrm{ext}}(\vec{r},t) = -\sum_{\gamma} \frac{Z_{\gamma}}{\vec{r} - \mathbf{R}_{\gamma}} + \delta_{\mathrm{app}}(\vec{r},t)$$

含时 Kohn-Sham 方程

分子动力学概 要

晶格振动与分 子动力学

经典分子动力 学提要 - ^{经典分子动力学简介}

第一原理分子 动力学简介 ^{绝热近}

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 次件基础 LAMMPS 软件 LAMMPS 的輸入 文件格式 LAMMPS 命令 对交换-相关项,考虑绝热近似8

$$\mathbf{A}_{\mathrm{XC}}[\rho] = \int \mathrm{d}r \int_{t_0}^{t_1} \mathrm{d}t \ \rho(\vec{r}, t) \epsilon_{\mathrm{XC}}[\rho(\vec{r})] \bigg|_{\rho(\vec{r}) \leftarrow \rho(\vec{r}, t)}$$

另外一种基于 DFT/TD-DFT 框架求解电子运动方程的方案,是用定态 Kohn-Sham 轨道 $\{\phi_p^{
m opt}(\vec r;{f R}(t))\}$ 来展开 TDKS 轨道,有

$$\phi_i(\vec{r}, t) = \sum_{j}^{\infty} c_{ip}(t) \phi_p^{\text{opt}}(\vec{r}; \mathbf{R}(t))$$

Ehrenfest-MD 的特点

- Ehrenfest-MD 是体系会在一个平均意义上的轨迹演化: 可能不在任何一个确定的势能面上, 而在某两个甚至多个势能 面加权的平均位置
- 不同状态的轨迹所对应的真实体系演化的物理图像相差很大: 平均的 Ehrenfest 的轨迹的物理意义就会变得模糊

⁸绝热近似下,交换-相关泛函不随时间变化

surface hopping-MD

分子动力学校 要

晶格振动与分 子动力学

第一原理分子 动力学简介 ^{绝热近}

ly: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 L**AMMPS** 命令 总波函数的分解形式并不唯一,除了 Ehrenfest-MD 的形式,还可以按照 Born-Huang 的表达式来分解:

$$\Psi(\vec{r};\mathbf{R},t) = \sum_{i}^{\infty} \chi_{i}(\mathbf{R},t) \psi_{i}(\vec{r};\mathbf{R})$$

这里 $\{\psi(\vec{r};\mathbf{R})\}$ 是一套完整的标准正交-归一的电子态波函数,是定态Schrödinger 方程的解

$$H_e(\vec{r}, \mathbf{R})\psi_i(\vec{r}; \mathbf{R}) = E_i^e(\mathbf{R})\psi_i(\vec{r}; \mathbf{R})$$

满足 $\langle \psi_j | \psi_i \rangle = \delta_{ij}$

因此,核-电子运动方程可以写成

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\chi_{j}(\mathbf{R},t) = \bigg[-\sum_{\gamma}\frac{\hbar^{2}}{2M_{\gamma}}\nabla_{\gamma}^{2} + E_{j}^{e}(\mathbf{R})\bigg]\chi_{j}(\mathbf{R},t) + \sum_{i}^{\infty}\mathbf{F}_{ji}\chi_{i}(\mathbf{R},t)$$

surface hopping-MD

分子动力学标 要

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

学提要

经典分子动力学简介

动力学简介 ^{绝热近} 似: Hellmann-Feynman 定理与 由-西细合

电-声耦合 含时密度泛函理论 (TD-DFT) LAMMPS

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的輸入 文件格式 LAMMPS 命令 其中

$$\mathbf{F}_{ji}(\mathbf{R}) = \int d\vec{r} \, \psi_j^*(\vec{r}; \mathbf{R}) \left[-\sum_{\gamma} \frac{\hbar^2}{2M_{\gamma}} \nabla_{\gamma}^2 \right] \psi_i(\vec{r}; \mathbf{R})$$

$$+ \sum_{\gamma} \frac{1}{M_{\gamma}} \left\{ d\vec{r} \psi_j^*(\vec{r}; \mathbf{R}) [-i\hbar \nabla_{\gamma}] \psi_i(\vec{r}; \mathbf{R}) \right\} \times [-i\hbar \nabla_{\gamma}]$$

是非绝热耦合 (nonadiabatic coupling, NACs) 的贡献:

- 第一项来自于核动能算符
- 第二项来自于动量算符

一般情况下, 当非对角元有贡献时, 可理解为<mark>原子核的运动引起不同电子态之间的</mark> 耦合(同时会伴随声子的吸收和释放)

 $\mathbf{F}_{ji}(\mathbf{R})$ 的表达式中还包含从电子态 i 到 j 的贡献,这两个电子态分别是能量 $E_i^e(\mathbf{R})$ 和 $E_j^e(\mathbf{R})$ 的电子本征态。这是该方法称为 surface hopping-MD 的原因

BOMD

含时密度泛函理论 (TD-DFT)

在 Born-Oppenheimer 近似下, $\mathbf{F}_{ii}(\mathbf{R})$ 仅对角项有贡献

$$\mathbf{F}_{jj}(\mathbf{R}) = \int d\vec{r} \; \psi_j^*(\vec{r}; \mathbf{R}) \left[-\sum_{\gamma} \frac{\hbar^2}{2M_{\gamma}} \nabla_{\gamma}^2 \right] \psi_i(\vec{r}; \mathbf{R})$$

因此核与电子运动完全解耦,核在电子贡献的势能面 $E_i^e(\mathbf{R})$ 上, **遵从单粒子运动方程**

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\chi_{j}(\mathbf{R},t) = \bigg[-\sum_{\gamma}\frac{\hbar^{2}}{2M_{\gamma}\nabla_{\gamma}^{2} + E_{j}^{e}(\mathbf{R}) + \mathbf{F}_{jj}(\mathbf{R})}\bigg]\chi_{j}(\mathbf{R},t)$$

 $\mathbf{F}_{ii}(\mathbf{R})$ 一般比较小,可以忽略

与 Ehrenfest-MD 中类似,如果核波函数表示为极坐标形式:

$$\chi_j(\mathbf{R}, t) = \mathbf{A}_j(\mathbf{R}, t) \exp\left[\frac{\mathrm{i}}{\hbar} \mathbf{S}_j(\mathbf{R}, t)\right]$$

BOMD 的核运动方程

分子动力学标 要

晶格振动与分 子动力学

经典分子动力 学提要

第一原理分子

绝热近 似: Hellmann-Feynman 定理与 电-声耦合

电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 核运动方程为

$$\frac{\partial \mathbf{S}_{j}(\mathbf{R},t)}{\partial t} = \frac{\hbar^{2}}{2} \sum_{\gamma} M_{\gamma}^{-1} \frac{\nabla_{\gamma}^{2} \mathbf{A}_{j}(\mathbf{R},t)}{\mathbf{A}_{j}(\mathbf{R},t)} - \frac{1}{2} \sum_{\gamma} M_{\gamma}^{-1} (\nabla_{\gamma} \mathbf{S}_{j}(\mathbf{R},t))^{2} - E_{j}^{e}(\mathbf{R})$$

$$\frac{\partial \mathbf{A}_j(\mathbf{R},t)}{\partial t} = -\sum_{\gamma} M_{\gamma}^{-1} \nabla_{\gamma} \mathbf{A}_j(\mathbf{R},t) \cdot \nabla_{\gamma} \mathbf{S}_j(\mathbf{R},t) - \frac{1}{2} \sum_{\gamma} M_{\gamma}^{-1} \mathbf{A}_j(\mathbf{R},t) \nabla_{\gamma}^2 \mathbf{S}(\mathbf{R},t)$$

经典近似下, 取 $\hbar \to 0$, 则有

$$\frac{\partial \mathbf{S}_{j}(\mathbf{R},t)}{\partial t} = -\frac{1}{2} \sum_{\gamma} M_{\gamma}^{-1} (\nabla_{\gamma} \mathbf{S}_{j}(\mathbf{R},t))^{2} - E_{j}^{e}(\mathbf{R})$$

取 $abla_{\gamma} \mathbf{S}_{j}|_{(\mathbf{R}(t))} = \mathbf{P}_{j}^{\gamma}(t)$ 得到经典的原子核在电子态 j 中演化的运动方程

$$\begin{split} M_{\gamma} \ddot{\mathbf{R}}_{j}^{\gamma}(t) &= - \nabla_{\gamma} E_{j}^{e}(\mathbf{R}(t)) \\ &= - \nabla_{\gamma} \left\langle \psi_{\gamma} | H_{e}(r,\mathbf{R}(t)) | \psi_{j} \right\rangle \end{split}$$

非绝热 Bohmian 动力学 (NABMD)

分子动力学标 要

晶格振动与分子动力学 晶格振动与简谐振动

第一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

大AMMPS 软件 LAMMPS 软件 LAMMPS 的輸入 文件格式 LAMMPS 命令 针对激发态,不能简单地采取 Born-Oppenheimer 近似核-电子耦合运动方程应写成

$$\begin{split} \mathrm{i}\hbar\frac{\partial\chi_{j}(\mathbf{R},t)}{\partial t} &= -\sum_{\gamma}\frac{\hbar^{2}}{2M_{\gamma}}\nabla_{\gamma}^{2}\chi_{j}(\mathbf{R},t) + E_{j}^{e}(\mathbf{R})\chi_{j}(\mathbf{R},t) \\ &+ \sum_{\gamma i}\frac{\hbar^{2}}{2M_{\gamma}}\mathbf{D}_{ji}^{\gamma}\chi_{i}(\mathbf{R},t) - \sum_{\gamma,i\neq j}\mathbf{d}_{ji}^{\gamma}(\mathbf{R})\cdot\nabla_{\gamma}\chi_{i}(\mathbf{R},t) \end{split}$$

这里

$$\mathbf{d}_{ji}^{\gamma}(\mathbf{R}) = \int d\vec{r} \; \psi_{j}^{*}(\vec{r}; \mathbf{R}) \nabla_{\gamma} \psi_{i}(\vec{r}; \mathbf{R})$$

是一阶非绝热耦合系数

$$\mathbf{D}_{ji}^{\gamma}(\mathbf{R}) = \int d\vec{r} \; \psi_{j}^{*}(\vec{r}; \mathbf{R}) \nabla_{\gamma}^{2} \psi_{i}(\vec{r}; \mathbf{R})$$

是二阶非绝热耦合系数因此核运动波函数的演化方程为

非绝热 Bohmian 动力学 (NABMD)

分子动力学标 要

晶格振动与分 子动力学

经典分子动力 学提要

经典分子动力学简介

动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式

LAMMPS 命令

根据核波函数的演化形式, 可有核运动的方程

$$\begin{split} \frac{\partial \mathbf{S}_{j}(\mathbf{R},t)}{\partial t} &= \sum_{\gamma} \frac{1}{2M_{\gamma}} (\nabla_{\gamma} \mathbf{S}_{j}(\mathbf{R},t))^{2} + E_{j}^{e}(\mathbf{R}) - \sum_{\gamma} \frac{\hbar^{2}}{2M_{\gamma}} \frac{\nabla_{\gamma}^{2} \mathbf{A}_{j}(\mathbf{R},t)}{\mathbf{A}_{j}(\mathbf{R},t)} \\ &+ \sum_{\gamma_{i}} \frac{\hbar^{2}}{2M_{\gamma}} \mathbf{D}_{ji}^{\gamma}(\mathbf{R}) \frac{\nabla_{\gamma}^{2} \mathbf{A}_{j}(\mathbf{R},t)}{\mathbf{A}_{j}(\mathbf{R},t)} \Re \bigg[\mathrm{e}^{\mathrm{i}\phi_{ij}(\mathbf{R},t)} \bigg] \\ &- \sum_{\gamma,i \neq j} \frac{\hbar^{2}}{M_{\gamma}} \cdot \frac{\nabla_{\gamma} \mathbf{A}_{i}(\mathbf{R},t)}{\mathbf{A}_{j}(\mathbf{R},t)} \Re \bigg[\mathrm{e}^{\mathrm{i}\phi_{ij}(\mathbf{R},t)} \bigg] \\ &+ \sum_{\gamma,i \neq j} \frac{\hbar}{M_{\gamma}} \frac{\mathbf{A}_{i}(\mathbf{R},t)}{\mathbf{A}_{j}(\mathbf{R},t)} \mathrm{d}_{ji}^{\gamma}(\mathbf{R}) \cdot \nabla_{\gamma} \mathbf{S}_{i}(\mathbf{R},t) \times \Im \bigg[\mathrm{e}^{\mathrm{i}\phi_{ij}(\mathbf{R},t)} \bigg] \\ \frac{\partial \mathbf{A}_{j}(\mathbf{R},t)}{\partial t} &= - \sum_{\gamma} \frac{\hbar}{M_{\gamma}} \nabla_{\gamma} \mathbf{A}_{j}(\mathbf{R},t) \cdot \nabla_{\gamma} \mathbf{S}_{j}(\mathbf{R},t) - \sum_{\gamma} \frac{\hbar}{2M_{\gamma}} \mathbf{A}_{j}(\mathbf{R},t) \nabla_{\gamma}^{2} \mathbf{S}(\mathbf{R},t) \\ &+ \sum_{\gamma_{i}} \frac{\hbar^{2}}{2M_{\gamma}} \mathbf{D}_{ji}^{\gamma}(\mathbf{R}) \mathbf{A}_{i}(\mathbf{R},t) \Im \bigg[\mathrm{e}^{\mathrm{i}\phi_{ij}(\mathbf{R},t)} \bigg] \\ &- \sum_{\gamma,i \neq j} \frac{\hbar^{2}}{M_{\gamma}} \mathbf{A}_{i}^{\gamma}(\mathbf{R},t) \mathrm{d}_{ji}^{\gamma}(\mathbf{R}) \cdot \nabla_{\gamma} \mathbf{A}_{i}(\mathbf{R},t) \Im \bigg[\mathrm{e}^{\mathrm{i}\phi_{ij}(\mathbf{R},t)} \bigg] \\ &- \sum_{\gamma,i \neq j} \frac{\hbar}{M_{\gamma}} \mathbf{A}_{i}(\mathbf{R},t) \mathrm{d}_{ji}^{\gamma}(\mathbf{R}) \cdot \nabla_{\gamma} \mathbf{S}_{i}(\mathbf{R},t) \times \Re \bigg[\mathrm{e}^{\mathrm{i}\phi_{ij}(\mathbf{R},t)} \bigg] \end{split}$$

非绝热 Bohmian 动力学 (NABMD)

分子动力学概 要

晶格振动与分 子动力学

第一原理分子 动力学简介 ^{绝热近} 似: Hellmann-

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 同样类似地,对相位 $\mathbf{S}(\mathbf{R},t)$,引入动量定义 $\nabla_{\beta}\mathbf{S}_{j}(\mathbf{R},t)|_{\mathbf{R}(\mathbf{t})}=\mathbf{P}_{j}^{\beta}(t)$,核波函数的相位演化方程可以写成

$$M_{\beta}\frac{\mathrm{d}^{2}\mathbf{R}_{\beta}(t)}{(\mathrm{d}t^{j})^{2}} = -\nabla_{\beta}\bigg[E_{j}^{e}(\mathbf{R}(t)) + \mathbf{Q}_{j}(\mathbf{R}(t),t) + \sum_{i}\mathbf{D}_{ji}(\mathbf{R}(t),t)\bigg]$$

该方程描述了群体变量 $\mathbf{R}(t)$ 构成的流体,其分量 \mathbf{R}_{β} 随时间的演化 其中全微分定义为

$$d/dt^{j} = \partial/\partial t + \sum_{\gamma} \nabla_{\gamma} \mathbf{S}_{j}(\mathbf{R}, t) / M_{\gamma} \cdot \nabla_{\gamma}$$

- $\mathbf{Q}_{j}(\mathbf{R}(t),t)$ 是量子势 它描述了单电子态下的量子效应,引入非局域属性
- \sum_{ji} $\mathbf{D}_{ji}(\mathbf{R}(t),t)$ 是非绝热量子势

它包含一阶和二阶非绝热耦合系数,使得电子态之间发生迁移

TSH 方法

分子动力学标 要

晶格振动与分 子动力学

经典分子动力 学提要

经典分子动力学简单

第一原理分子 动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

(TD-DFT) LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输*入* 文件格式 L**AMMPS** 命令 Tully 等将上述精确表达式保留到 $\mathcal{O}(\hbar)$ 到一阶则有

$$\begin{split} \frac{\partial \mathbf{S}_{j}(\mathbf{R},t)}{\partial t} &= \sum_{\gamma} \frac{1}{2M_{\gamma}} (\nabla_{\gamma} \mathbf{S}_{j}(\mathbf{R},t))^{2} + E_{j}^{e}(\mathbf{R}) \\ &+ \sum_{\gamma,i \neq j} \frac{\hbar}{M_{\gamma}} \frac{\mathbf{A}_{i}(\mathbf{R},t)}{\mathbf{A}_{j}(\mathbf{R},t)} \mathbf{d}_{ji}^{\gamma}(\mathbf{R}) \cdot \nabla_{\gamma} \mathbf{S}_{i}(\mathbf{R},t) \times \Im \left[\mathrm{e}^{\mathrm{i}\phi_{ij}(\mathbf{R},t)} \right] \\ \frac{\partial \mathbf{A}_{j}(\mathbf{R},t)}{\partial t} &= -\sum_{\gamma} \frac{\hbar}{M_{\gamma}} \nabla_{\gamma} \mathbf{A}_{j}(\mathbf{R},t) \cdot \nabla_{\gamma} \mathbf{S}_{j}(\mathbf{R},t) \\ &- \sum_{\gamma} \frac{\hbar}{2M_{\gamma}} \mathbf{A}_{j}(\mathbf{R},t) \nabla_{\gamma}^{2} \mathbf{S}_{j}(\mathbf{R},t) \\ &- \sum_{\gamma,i \neq j} \frac{\hbar}{M_{\gamma}} \mathbf{A}_{i}(\mathbf{R},t) \mathbf{d}_{ji}^{\gamma}(\mathbf{R}) \cdot \nabla_{\gamma} \mathbf{S}_{i}(\mathbf{R},t) \times \Re \left[\mathrm{e}^{\mathrm{i}\phi_{ij}(\mathbf{R},t)} \right] \end{split}$$

被称为 Trajectory Surface-Hopping (TSH) 方法

TSH 方法是介于完全绝热近似和完全精确的 NABDY 方法之间的处理方案

TSH 方法: 准经典部分

分子动力学制 要

晶格振动与分 子动力学

圣典分子动力 学提要 ^{经典分子动力学简}

动力学简介 绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛氮理论 (TD-DFT)

LAMMPS 次件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 核体系波函数演化过程的准经典部分构成构象空间 (\mathbf{R},t) 的轨迹 (trajectory) 在 TSH 方法中, $\mathbf{S}_j(\mathbf{R},t)$ 可以视为作用量,因此体系的轨迹由最小作用原理确定,即 $\mathbf{S}(\mathbf{R},\mathbf{P},t)=0$ 。与经典力学的相空间描述类似,假设不同初始态对应的粒子演化轨迹彼此独立 (\mathbf{t}_i) (机迹独立假设, \mathbf{ITA}),核波函数的概率密度 (\mathbf{t}_i) (振幅的平方)可用穿过单位空间微元的轨迹数量的比例来计算,即

$$\left(\mathbf{A}_{j}^{\mathrm{CL}}(\mathbf{R}(t),t)\right)^{2} = \frac{N_{j}(\mathbf{R}(t),\mathrm{d}V,t)}{N_{t}} \frac{1}{\mathrm{d}V}$$

其中 $N_j({f R}(t),{
m d}V,t)$ 表示穿过体积微元 ${
m d}V\equiv {
m d}^{3N_n}{f R}$ 的径迹总数注意: 这里给出的核经典轨迹由与非绝热耦合系数 ${
m d}_{ji}^\gamma({f R}(t))$ 无关部分确定因此可有

$$\begin{split} -\frac{\partial \mathbf{S}_{j}^{\mathrm{CL}}(\mathbf{R},t)}{\partial t} &= \sum_{\gamma} \frac{1}{2M_{\gamma}} (\nabla_{\gamma} \mathbf{S}_{j}(\mathbf{R},t))^{2} + E_{j}^{e}(\mathbf{R}) \\ \frac{\partial \mathbf{A}_{j}^{\mathrm{CL}}(\mathbf{R},t)}{\partial t} &= -\sum_{\gamma} \frac{1}{M_{\gamma}} \nabla_{\gamma} \mathbf{A}_{j}^{\mathrm{CL}}(\mathbf{R},t) \cdot \nabla_{\gamma} \mathbf{S}_{j}^{\mathrm{CL}}(\mathbf{R},t) \\ &- \sum_{\gamma} \frac{1}{2M_{\gamma}} \mathbf{A}_{j}^{\mathrm{CL}}(\mathbf{R},t) \nabla_{\gamma}^{2} \mathbf{S}_{j}^{\mathrm{CL}}(\mathbf{R},t) \end{split}$$

TSH 方法: 准经典部分

分子动力学制 要

晶格振动与分 子动力学

至典分子动力 対提要 ※典分子动力学節介

第一原理分子 动力学简介 ^{绝热近} 似: Hellmann-Feynman 定理与

Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 上述方程确定了核运动的相位准经典部分 $\mathbf{S}_{j}^{\mathrm{CL}}(\mathbf{R},t)$ 和振幅的准经典部分 $\mathbf{A}_{j}^{\mathrm{CL}}(\mathbf{R},t)$ 的演化过程,不难看出其与 Newton 运动方程等价

$$\frac{\mathrm{d}\mathbf{P}_{j}^{\beta}(t)}{\mathrm{d}t^{j}} = -\nabla_{\beta}E_{j}^{e}(\mathbf{R}(t))$$

其中

$$\mathbf{P}_{j}(t) = \nabla \mathbf{S}_{j}^{\mathrm{CL}}(\mathbf{R}, t)|_{\mathbf{R}(t)}$$

在此基础上,考虑非绝热耦合项的贡献,原子核将沿经典轨迹运动 时感受到量子效应引起的附加力

这种附加作用会使得经典概率密度 $\left(A_j^{\mathrm{CL}}(\mathbf{R}(t),t)\right)^2$ 在电子态间传播 (即体系可以在不同势能面之间跃迁)

TSH 方法: 量子部分

分子动力学制 要

晶格振动与分 子动力学

经典分子动力 学提要

经典分子动力学简介

第一原理分子 动力学简介

绝热近 似: Hellmann-

电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 定义核运动的量子相位 $\mathbf{S}_i^{\mathrm{QM}}(\mathbf{R}(t),t)$ 和量子振幅 $\mathbf{A}_j^{\mathrm{QM}}(\mathbf{R}(t),t)$,其演化方程由非决人耦合项贡献确定,即

$$\begin{split} -\frac{\partial \mathbf{S}_{j}^{\mathrm{QM}}(\mathbf{R},t)}{\partial t} = & E_{j}^{e}(\mathbf{R}) + \sum_{\gamma,i\neq j} \frac{\hbar}{M_{\gamma}} \frac{\mathbf{A}_{i}^{\mathrm{QM}}(\mathbf{R},t)}{\mathbf{A}_{j}^{\mathrm{QM}}(\mathbf{R},t)} \\ & \times \mathbf{d}_{ji}^{\gamma}(\mathbf{R}) \cdot \dot{\mathbf{R}}_{\gamma}(t) \Im \left[\mathrm{e}^{\mathrm{i}\phi_{ij}^{\mathrm{QM}}(\mathbf{R},t)} \right] \\ \frac{\partial \mathbf{A}_{j}^{\mathrm{QM}}(\mathbf{R},t)}{\partial t} = & -\sum_{\gamma,i\neq j} \frac{\hbar}{M_{\gamma}} \mathbf{A}_{i}^{\mathrm{QM}}(\mathbf{R},t) \\ & \times \mathbf{d}_{ji}^{\gamma}(\mathbf{R}) \cdot \dot{\mathbf{R}}_{\gamma}(\mathbf{R}(t)) \Re \left[\mathrm{e}^{\mathrm{i}\phi_{ij}^{\mathrm{QM}}(\mathbf{R},t)} \right] \end{split}$$

其中

$$\phi_{ij}^{\mathrm{QM}}(\mathbf{R}(\mathbf{t}),t) = \frac{1}{\hbar} \bigg(\mathbf{S}_i^{\mathrm{QM}}(\mathbf{R}(t),t) - \mathbf{S}_j^{\mathrm{QM}}(\mathbf{R}(t),t) \bigg)$$

这是极坐标形式下的 Tully-TSH 方程

TSH 方法: 量子部分

分子动力学制 要

晶格振动与分 子动力学

第一原理分子 动力学简介 ^{绝热近} 似: Hellmann-

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 次**件基础** LAMMPS 软件 LAMMPS 的輸入 文件格式 LAMMPS 命令 定义

$$C_j(\mathbf{R}(t), t) = \mathbf{A}_j^{\mathrm{QM}}(\mathbf{R}(t), t) \exp\left[\frac{\mathrm{i}}{\hbar} \mathbf{S}_j^{\mathrm{QM}}(\mathbf{R}(t), t)\right]$$

则有

$$\begin{split} \mathrm{i}\hbar \frac{\partial C_j(\mathbf{R}(t),t)}{\partial t} = & C_j(\mathbf{R}(t),t) E_n^e(\mathbf{R}(t)) \\ & - \mathrm{i}\hbar \sum_i (\mathbf{d_{ji}}(\mathbf{R}(t))) \cdot \dot{\mathbf{R}}(t) C_i(\mathbf{R}(t,t)) \end{split}$$

严格说,量子相位 $\mathbf{S}_j^{\mathrm{QM}(\mathbf{R}(t),t)}$,量子振幅 $\mathbf{A}_j^{\mathrm{QM}(\mathbf{R}(t),t)}$ 和 $C_j(\mathbf{R}(t,t))$ 都不是经典构象空间 (\mathbf{R},t) 的描述量,然而它们依然可以近似与经典轨迹相对应

在 TSH 动力学中,准经典部分和量子部分的方程同时求解,并认为只要统计轨迹足够多,将有

$$\left(\mathbf{A}_{j}^{\mathrm{CL}}(\mathbf{R},t),t\right)^{2}=\left(\mathbf{A}_{j}^{\mathrm{QM}}(\mathbf{R},t),t\right)^{2}$$

TSH 方法: 跃迁几率

分子动力学概 要

晶格振动与分子动力学 品格振动与简谐振动

第一原理分子 动力学简介 ^{绝热近} 似: Hellmann-Feynman 定理与

Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 Tully 给出 t 时刻统计随后 Δt 时间内由 j 向 i 跃迁几率的表达式

$$p_{i \leftarrow j}^{[\alpha]}(t, t + \Delta t) = -2 \int_{t}^{t + \Delta t} d\tau \frac{\Re \left[C_{i}^{[\alpha]}(\tau) C_{j}^{[\alpha]*}(\tau) \dot{\mathbf{R}}(\tau) \cdot \mathbf{d}_{ij}(\mathbf{R}(\tau)) \right]}{C_{j}^{[\alpha]}(\tau) C_{j}^{[\alpha]*}(\tau)}$$

实际计算中可采用 Monte-Carlo 的思想来确定态间跃迁,比如生成 随机数 $\zeta \in [0,1]$,只有当满足

$$\sum_{k\leqslant i-1}p_{k\leftarrow j}^{[\alpha]}<\zeta<\sum_{k\leqslant i}p_{k\leftarrow j}^{[\alpha]}$$

会认为体系中出现 j 向 $i(i \neq j)$ 的跃迁

TSH 是严格的 NABDY 的基础上引入假设:

- 每个电子态 j 下,核动力学可以分为经典分量和量子分量
- Tully 引入跃迁几率 $P_{i \leftarrow j}^{[lpha]}$,使得经典振幅和量子振幅的平方一致

平衡态统计基础

分子动力学概 要

晶格振动与分 子动力学

经典分子动力 学提要

和一原理力 动力学简介 绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 系综 (Ensembles) 是在一定的宏观条件下,由大量微观粒子组成的性质和结构完全相同的、处于各种运动状态的、各自独立的系统整体的集合。简言之,系综是给定宏观条件下,所有微观状态的集合。

等概率原理(Principle of equal weights):

一个热力学体系有相同的概率到达每个可能经历的微观态。
等概率原理导出 Boltzmann 分布

$$P_j = \frac{\mathrm{e}^{-\beta\varepsilon_j}}{Q}$$

这里 Q 称为配分函数 (partition function)

$$Q = \sum_{i} e^{(-\beta \varepsilon_{i})}$$
$$\beta = 1/k_{\rm B}T$$

物理量的系综平均

$$\langle A \rangle = \sum A_j e^{(-\beta \varepsilon_j)} / Q$$

常用统计系综

分子动力学的 要

晶格振动与分 子动力学

可刀字间介 绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 应用 Verlet 算法,完成单粒子运动的数值积分,可以得到动力学体系的 Hamiltonian 对应的能量,基于统计系综,可获得体系的宏观物理量

Fig.: The Statistical Ensembles.

- 微正则系综 (Mircocanonical Ensemble): NVE 皆为常数
- 正则系综 (Canonical Ensemble): NVT 皆为常数
- 巨正则系综 (Grandcanonical Ensemble): μVT 皆为常数,粒子数不固定
- 等压-等温系综 (Isobaric-Isothermal Ensemble): NPT 皆为常数
- 等焓-等压系综 (Isoenthalpic-Isobaric Ensemble): NPH 皆为常数
- 等张力-等温系综 (Isotension-Isothermal Ensemble): 容器形状可变

常用热力学量

分子动力学(要

晶格振动与分 子动力学 晶格振动与简谐振动

经典分子动力 学提要

经典分子动力学简介

第一原理分子 动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

FA IT 至Y山 LAMMPS 软件 LAMMPS 的輸*)* 文件格式 LAMMPS 命令 • 动能 $E_{\mathbf{k}} = \left\langle \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 \right\rangle$

• 势能 $E_{\mathbf{p}} = \left\langle \sum_{i=1}^{N} E_{\mathbf{p}i} \right\rangle$

■ 温度 $T=rac{1}{\mathrm{d}Nk_{\mathrm{B}}}igg\langle \sum\limits_{i=1}^{N}m_{i}v_{i}^{2}igg
angle$ 其中 d 是空间维度

• 压强 $p = \frac{k_{\mathrm{B}}TN}{V} + \frac{1}{\mathrm{d}V} \left\langle \sum\limits_{i < j} \vec{f}_{ij} \cdot \vec{r}_{ij} \right\rangle$

■ 焓 H = E + pV 相当于 NPT 下的有效总内能

• 熵 $S=k_{\mathrm{B}}\ln\Omega(N,V,E)$ Ω 是系统的总的微观状态数

■ Helmholtz 自由能: NVT 下的自由能

$$F = E - TS = -k_{\rm B}T \ln Q$$

■ Gibbs 自由能: NPT 下的自由能

$$G = F + pV = E - TS + pV$$

• 化学势
$$\mu = \frac{\partial G}{\partial N}\Big|_{T,p} = \frac{\partial F}{\partial N}\Big|_{T,p}$$

LAMMPS 简介

分子动力学根 要

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

カー 动力学简介 ^{绝热近} (W: Hellmann-

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

LAMMPS:

Large-scale Atomic/Molecular Massively Parallel Simulator 美国能源部的两个实验室和三个公司联合开发 由 Sandia 国家实验室发布

- 固态、液态、气态的经典分子动力学模拟
- 易于扩展: 方便引入新的力场、原子类型和边界条件
- 开发语言: C++-MPI/FFT
- 支持 GPU 计算,支持 OpenMP
- 脚本可支持一个或多个模拟进程

模型 (atom_style)

分子动力学标 要

晶格振动与分子动力学

学提要

经典分子动力学简介

第一原理分子 动力学简介

の (似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 ■ 原子或简单分子

■ 粗粒化粒子 (如有机高分子模型: 小球-弹簧模型)

■ United-atom 高分子或有机分子

■ 全原子高分子: 有机分子、蛋白质、DNA

■ 金属: 金属单质、合金

■ 颗粒物质

■ 粗粒化介观模型

■ 有限尺度球和椭球粒子

■ 有限尺度 line segment (2d) 与三角 (3d) 粒子

■ 偶极粒子

■ 硬球粒子

■ 上述模型的组合

各类力场

分子动力学标 要

晶格振动与分 子动力学

圣典分子动力 学提要 ^{经典分子动力学简介}

功力学简介 绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式

- 二体势: Lennard-Jones, Buckingham, Morse, Born-Mayer-Huggins, Yukawa, soft, COMPASS,hydrogen bond, tabulated
- 带点二体势: Coulomb 势, 点电荷-电偶极矩作用
- 多体势: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), embedded ion method (EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, AIREBO, ReaxFF, COMB
- 电子力场: eFF, AWPMD
- 粗粒化势: DPD, GayBerne, REsquared, colloidal, DLVO
- 介观势: granular, Peridynamics, SPH
- Bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)
- Angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, class 2 (COMPASS)

各类力场 (cont.)

分子动力学制 要

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

第一原理分子 动力学简介 ^{绝热近}

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

- Dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS
- Improper potentials: harmonic, cvff, umbrella, class
 2 (COMPASS)
- 高分子势: all-atom, united-atom, bead-spring, breakable
- 水分子势: TIP3P, TIP4P, SPC
- 隐含溶液势: hydrodynamic lubrication, Debye
- KIM archive of potentials
- 长程势: Ewald, Wolf, PPPM (similar to particle-mesh Ewald), Ewald/N for long-range Lennard-Jones
- 与常用力场 CHARMM, AMBER, DREIDING, OPLS, GROMACS, COMPASS 格式兼容

初始构型

分子动力学校 要

晶格振动与分 子动力学

学提要 经典分子动力学简介

6—原理分子

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 ■ read_data: 从构型文件中读入原子坐标

- lattice: 确定空间格子类型
- create_atoms: 在格点上摆放原子
- delete_atoms: 在给定构型上删除成组原子
- displace_atoms:移动已有原子位置
- replicate: 复制已有构型,可多次复制

系综与约束 (fix) 条件

分子动力学概 要

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

を 典分子 动力 を 提要 を 典分子 动力 を 持要 を 乗分子 动力学 筒介

第一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式

- 空间二维或三维的系统
- 正交或非正交晶系 (含三斜晶系)
- NVE, NVT, NPT, NPH, Parinello/Rahman 积分器
- 针对原子组群可以指定不同的热耦
- 通过 Nose/Hoover 或者 Berendsen 压耦控制压强
- 模拟容器的变形 (拉伸或剪切)
- 谐振函数约束的力 (回复力)
- 刚体约束,SHAKE 算法固定键长和键角
- 化学键的断裂、形成与交换
- 各类边界条件
- 非平衡态分子动力学模拟

积分算法

分子动力学(要

晶格振动与分子动力学 品格振动与简谐振动

学提要 经典分子动力学简介

第一原理分子 动力学简介

超然近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 ■ run:
运行 run 命令,执行(积分)模拟过程

■ run_style: 配套 run 命令使用,不一定需要

- velocity-Verlet 积分器
- Brown 运动积分
- 刚体积分
- minimize: 共轭梯度或最陡下降法进行能量优化
- rRESPA 多等级时间步长
- return: return 命令, 重新运行模拟过程

数据输出

分子动力学校 要

晶格振动与分子动力学 晶格振动与简谐振动

第一原理分子 h力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 ■ log: log 文件输出热力学信息 文本文件输出原子坐标、速度等基本信息

- restart: 二进制重启文件
- 并行输出的文件流
- 热力学量 (能量、压力等等状态函数)
- 用户定义的计算
- 热力学量的时间平均
- XYZ, XTC, DCD, CFG 和自定义格式的原子构型

LAMMPS 的文件

分子动力学制 要

晶格振动与分 子动力学

经典分子动力学简介

动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 ■ Input File: 文本文件 由 LAMMPS 完成模拟所执行的全部命令

- Log File: 文本文件 模拟过程中的热力学数据的输出
- Dump File: 原子的受力,也被称为原子性质快照 (sanapshot of atom properties)
- Restart File: 二进制文件 (binary checkpoint file) 包含重启模拟所需的全部数据
- Data File: 文本文件 包含用于启动计算或重启计算的数据

多重交换模型

分子动力学校 要

晶格振动与分子动力学

エザカナダルフ 学提要 ^{经典分子动力学節}

第一原理分子 动力学简介

(V: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

- Nudged elastic band: 寻找局域最优的反应路径
- Parallel replica dynamics:
 通过多个短模拟估算单个跃迁事件所需的时间
- Temperature accelerated dynamics:
 通过高温模拟以加速动力学过程
- Parallel tempering (replica exchange):
 同时执行不同问题的模拟,通过高温的模拟辅助低温模型提高采样效率

前后处理与可视化工具

分子动力学根 要

LAMMPS提供了各种串行的前后处理的工具软件

Pizzaa.py软件包:

包括创建输入文件、分析、绘制数据图和计算结果可视化等功能

分子构型绘图软件

- xmakemol:简单软件,方法绘制矢量图 (只能用 XYZ 格式的输入文件)
- VMD:
 UIUC 的 Klaus Schulten 组开发,与NAMD配套使用
 VMD 功能强大,有自己的 script 语言,能完成简单的 MD
 模拟辅助功能,特别适合针对生物体系的作图

第一原理分子 动力学简介 ^{绝热近} (M: Hellmann-

以: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式

LAMMPS 的特殊功能

分子动力学制 要

晶格振动与分 子动力学

第一原理分子 动力学简介

enmu 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

FA IT 本空 Wij LAMMPS 软件 LAMMPS 的輸入 文件格式 LAMMPS 命令 ■ 随机转动动力学

- 实时可视化和交互分子动力学模拟
- 有限元方法实现的原子与连续模型的耦合
- 通过 POEMS 库实现耦合刚体的积分
- 巨正则系综 μVT 的 Monte-Carlo 模拟插入和删除粒子
- 低密度流体的 Monte-Carlo 直接模拟
- Peridynamics: 应用近场动力学方法完成介观尺度粒子模拟
- Targeted MD 与 Steered MD

LAMMPS 不具备的功能

分子动力学根 要

晶格振动与分 子动力学 晶格振动与简谐振动

学提要

经典分子动力学简单

第一原理分子 动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

- 没有提供图形界面用以执行模拟命令
- 没有自带的分子模型建模工具
- 没有默认设定通用的力场参数
- 无法对复杂的模拟结果进行深入分析
- 没有自带的模拟结果可视化工具 必须借助诸如xmakemol或VMD等外部软件
- 无法对输出数据直接作图

构型文件

分子动力学标 要

晶格振动与分 子动力学 晶格振动与简谐振动

学提要 经典分子动力学简介

经典分子动力学简:

动力学简介 ^{绝热近}

以: Hellmann-Feynman 定理与 包-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 XXX atoms

XXX bonds

XXX angles

■ XXX dihedrals

XXX impropers

■ XXX atom types

XXX bond types

■ XXX angle types

■ XXX dihedral types

标题

体系的总原子数

体系的总键数

体系的总角度数

体系的总二面角数

体系的总 improper dihedral 数

体系的原子类型数

体系的化学键类型数

体系的键角类型数

体系的二面角类型数

构型文件 (cont.)

LAMMPS 的输入

■ XXX improper types

XXX XXX xlo xhi

■ XXX XXX ylo

XXX XXX zlozhi

Masses

{atom-type mass}

■ Pair Coeffs

 $\{\text{pair-type p1 p2 p3 p4}\}$

■ Bond Coeffs

 $\{\text{bond-type p1 p2}\}\$

体系的 improper dihedral 类型数

模拟盒子在 x 方向的范围

模拟盒子在 y 方向的范围

模拟盒子在 z 方向的范围

<ロト 4回り 4 重り 4 重り

构型文件 (cont.)

分子动力学校 要

晶格振动与分子动力学 晶格振动与简谐振动

经典分子动力 学提要

经典分子动力学简

第一原理分子 动力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

■ Angle Coeffs

{angle-type p1 p2}

■ Dihedral Coeffs

 $\{dihedral-type p1 p2 p3\}$

■ Improper Coeffs

{improper-type p1 p2 p3}

■ Atoms

 $\{atom-ID molecule-ID atom-type q x y z\}$

■ Velocities

{atom-ID vx vy vz}

构型文件 (cont.)

分子动力学校 要

晶格振动与分子动力学 晶格振动与简谐振动

> **全提要** 经典分子动力学简介

第一原理分子 加力学简介 ^{逸热近}

EMAL 以: Hellmann-Feynman 定理与 も-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 次件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

Bonds

{bond-ID bond-type atom-ID1 atom-ID2}

■ Angles

{angle-ID angle-type atom-ID1 atom-ID2 atom-ID3}

Dihedrals

 $\begin{array}{lll} \{ dihedral\text{-}ID & dihedral\text{-}type & atom\text{-}ID1 & atom\text{-}ID2 \\ atom\text{-}ID3 & atom\text{-}ID4 \} \end{array}$

■ Impropers

 $\label{lem:condition} \begin{tabular}{ll} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

参数文件


```
分子动力学!
要
```

晶格振动与分 子动力学

空典分于动力 学提要

经典分子动力学简单

第一原理分子 动力学简介

ez.Ku 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令 **#** ******

■ units ***

atom_style ***

■ boundary ***

pair_style ***

pair_modify * * *

bond_style ***

■ angle_style **

■ dihedral_modify ***

improper_style ***

标题

能量单位

原子构型格式

周期边界条件

非成键相互作用的函数形式

修改非成键相互作用的函数形式

化学键类型

键角类型

二面角类型

improper dihedral 类型

参数文件 (cont.)


```
分子动力学制
要
```

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

第一原理分子 动力学简介

^{突然近} 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式 LAMMPS 命令

```
kspace_style ***
```

- read_data ***
- neighbor ***
- neigh_modify ***
- timestep ***
- thermo_style * * *
- thermo XXX
- fix ***
- dump ***
- run XXX
- write restart ***

长程力算法

指定读入数据文件名

设定 neighbor list 参数

原子类型格式

时间步长; 单位取决于 units 的设置

输出文件的数据内容

输出数据间隔

设定模拟系综及参数等

设定输出构型文件名及参数

输运行的总步长

断点保存的文件名

LAMMPS 命令的特点和分类

分子动力学概 要

晶格振动与分 子动力学 ^{晶格振动与简谐振动}

圣典分子动力 対提要 ^{经典分子动力学简介}

も一原理ガザ **幼力学简介** 絶热近 似: Hellmann-Feynman 定理与 电-声耦合

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式

LAMMPS 命令的特点

- LAMMPS 采用逐行解释执行命令形式
- 命令都用小写字母表示,文件名和变量都用大写字母表示
- 特殊字符的含义: &: 续行; #: 注释; \$: 变量

LAMMPS 命令的分类

- 初始化命令: atom_modify,atom_style,boundary,dimension,newton, processors,units
- 初始构型命令:
 create_atoms,create_box,lattice,read_data,read_dump,
 read_restart,region,replicate

LAMMPS 命令的特点和分类 (cont.)

分子动力学校 要

晶格振动与分 子动力学 晶格振动与简谐振动

空典分士列刀 学提要 _{- 经典分子动力学简:}

第一原理分子 动力学简介

^{紀然近} 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式

LAMMPS 命令

力场命令:

angle_coeff,angle_style,bond_coeff,bond_style,dielectric, dihedral_coeff,dihedral_style,improper_coeff,improper_style, kspace_modify,kspace_style,pair_coeff,pair_style,pair_write, special_bonds

■ 设置命令:

 $communicate, group, mass, min_modify, min_style, neigh_modify, \\ neighbor, rest_timestep, run_style, set, timestep, velocity$

- Fix 命令: fix,fix_modify,unfix
- Compute 命令: compute,compute_modify,uncompute

LAMMPS 命令的特点和分类 (cont.)

分子动力学的 要

晶格振动与分子动力学 晶格振动与简谐振动

有一原理分子

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS

LAMMPS 软件 LAMMPS 的输 文件格式

LAMMPS 命令

■ 设置命令:

dump,dump_image,dump_modify,restart,thermo,thermo_modify,thermo_style,undump,write_restart

■ 运行命令:

 $\label{lem:delete_atoms,delete_bonds,displace_atoms,change_box,minimize, neb_prd,return,run,temper$

其它命令:

clear,echo,if,include,jump,label,log,next,print,shell,variable

分子动力学概 要

晶格振动与分 子动力学

经典分子动力

经典分子动力学简

动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

tammps 软件基础 Lammps 软件 Lammps 的输。

LAMMPS 命令

■ Fix命令: 设置模拟系综、算法、条件、参数等

An alphabetic list of all LAMMPS fix commands. Some styles have accelerated versions. This is indicated by additional letters in parenthesis: g = GPU, i = INTEL, k = KOKKOS, o = OPENMP, t = OPT.

accelerate/cos	acks2/reaxff (k)	adapt	adapt/fep	addforce
addtorque	alchemy	amoeba/bitorsion	amoeba/pitorsion	append/atoms
atc	atom/swap	ave/atom	ave/chunk	ave/correlate
ave/correlate/long	ave/grid	ave/histo	ave/histo/weight	ave/time
aveforce	balance	bocs	bond/break	bond/create
bond/create/angle	bond/react	bond/swap	box/relax	brownian
brownian/asphere	brownian/sphere	charge/regulation	cmap	colvars
controller	damping/cundall	deform (k)	deposit	dpd/energy (k)
drag	drude	drude/transform/direct	drude/transform/inverse	dt/reset (k)
edpd/source	efield	efield/tip4p	ehex	electrode/conp (i)
electrode/conq (i)	electrode/thermo (i)	electron/stopping	electron/stopping/fit	enforce2d (k)
eos/cv	eos/table	eos/table/rx (k)	evaporate	external
m	filter/corotate	flow/gauss	freeze (k)	gcmc
gld	gle	gravity (ko)	grem	halt
heat	heat/flow	hyper/global	hyper/local	imd
indent	ipi	langevin (k)	langevin/drude	langevin/eff
langevin/spin	latte	lb/fluid	lb/momentum	lb/viscous
lineforce	manifoldforce	mdi/qm	mdi/qmmm	meso/move
mol/swap	momentum (k)	momentum/chunk	move	mscg
msst	mvv/dpd	mvv/edpd	mvv/tdpd	neb
neb/spin	nph (ko)	nph/asphere (o)	nph/body	nph/eff

分子动力学制 要

晶格振动与分 子动力学

经典分子动力

经典分子动力学篇:

动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输 文件格式 LAMMPS 命令 ■ Compute命令: 设置实时运行中完成的数据处理运算

An alphabetic list of all LAMMPS compute commands. Some styles have accelerated versions. This is indicated by additional letters in parenthesis: g = GPU, i = INTEL, k = KOKKOS, o = OPENMP, t = OPT.

ackland/atom	adf	aggregate/atom		angle/local
		00 0	angle	• .
angmom/chunk	ave/sphere/atom (k)	basal/atom	body/local	bond
bond/local	born/matrix	centro/atom	centroid/stress/atom	chunk/atom
chunk/spread/atom	cluster/atom	cna/atom	cnp/atom	com
com/chunk	contact/atom	coord/atom (k)	damage/atom	dihedral
dihedral/local	dilatation/atom	dipole	dipole/chunk	dipole/tip4p
dipole/tip4p/chunk	displace/atom	dpd	dpd/atom	edpd/temp/atom
efield/atom	efield/wolf/atom	entropy/atom	erotate/asphere	erotate/rigid
erotate/sphere	erotate/sphere/atom	event/displace	fabric	fep
fep/ta	force/tally	fragment/atom	global/atom	group/group
gyration	gyration/chunk	gyration/shape	gyration/shape/chunk	heat/flux
heat/flux/tally	heat/flux/virial/tally	hexorder/atom	hma	improper
improper/local	inertia/chunk	ke	ke/atom	ke/atom/eff
ke/eff	ke/rigid	mliap	momentum	msd
msd/chunk	msd/nongauss	nbond/atom	omega/chunk	orientorder/atom (k)
pair	pair/local	pe	pe/atom	pe/mol/tally
pe/tally	plasticity/atom	pressure	pressure/alchemy	pressure/uef
property/atom	property/chunk	property/grid	property/local	ptm/atom
rdf	reduce	reduce/chunk	reduce/region	rigid/local
saed	slice	smd/contact/radius	smd/damage	smd/hourglass/error
smd/internal/energy	smd/plastic/strain	smd/plastic/strain/rate	smd/rho	smd/tlsph/defgrad

分子动力学标 要

晶格振动与分 子动力学

经典分子动力

经典分子动力学简:

动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 会时家康汙兩理论

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输, 文件格式

LAMMPS 命令

■ Pair_style: 非成键相互作用的设置

All LAMMPS pair_style commands. Some styles have accelerated versions. This is indicated by additional letters in parenthesis: g = GPU, i = INTEL, k = KOKKOS, o = OPENMP, t = OPT.

none	zero	hybrid (k)	hybrid/overlay (k)
hybrid/scaled	kim	list	tracker
adp (ko)	agni (o)	airebo (io)	airebo/morse (io)
amoeba (g)	atm	awpmd/cut	beck (go)
body/nparticle	body/rounded/polygon	body/rounded/polyhedron	bop
born (go)	born/coul/dsf	born/coul/dsf/cs	born/coul/long (go)
born/coul/long/cs (g)	born/coul/msm (o)	born/coul/wolf (go)	born/coul/wolf/cs (g)
born/gauss	bpm/spring	brownian (o)	brownian/poly (o)
buck (glko)	buck/coul/cut (giko)	buck/coul/long (giko)	buck/coul/long/cs
buck/coul/msm (o)	buck/long/coul/long (o)	buck/mdf	buck6d/coul/gauss/dsf
buck6d/coul/gauss/long	colloid (go)	comb (o)	comb3
cosine/squared	coul/cut (gko)	coul/cut/dielectric	coul/cut/global (o)
coul/cut/soft (o)	coul/debye (gko)	coul/diel (o)	coul/dsf (gko)
coul/exclude	coul/long (gko)	coul/long/cs (g)	coul/long/dielectric
coul/long/soft (o)	coul/msm (o)	coul/slater/cut	coul/slater/long
coul/shield	coul/streitz	coul/tt	coul/wolf (ko)
coul/wolf/cs	dpd (giko)	dpd/fdt	dpd/ext (ko)
dpd/ext/tstat (ko)	dpd/fdt/energy (k)	dpd/tstat (gko)	dsmc
e3b	drip	eam (gikot)	eam/alloy (gikot)
eam/cd	eam/cd/old	eam/fs (glkot)	eam/he
edip (o)	edip/multi	edpd	eff/cut

分子动力学制 要

晶格振动与分 子动力学

经典分子动力

, ,,c,

程典力于初月字间

动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS **软件基础** LAMMPS 软件 LAMMPS 的输,

LAMMPS 命令

■ Bond_style: 化学键的设置

All LAMMPS bond_style commands. Some styles have accelerated versions. This is indicated by additional letters in parenthesis: g = GPU, i = INTEL, k = KOKKOS, o = OPENMP, t = OPT.

none	zero	hybrid	
bpm/rotational	bpm/spring	class2 (ko)	fene (iko)
fene/expand (o)	fene/nm	gaussian	gromos (o)
harmonic (iko)	harmonic/restrain	harmonic/shift (o)	harmonic/shift/cut (o)
lepton (o)	mesocnt	mm3	morse (o)
nonlinear (o)	oxdna/fene	oxdna2/fene	oxrna2/fene
guartic (o)	special	table (o)	

■ Angle_style: 键角的设置

All LAMMPS angle_style commands. Some styles have accelerated versions. This is indicated by additional letters in parenthesis: g = GPU, I = INTEL, k = KOKKOS, o = OPENMP, t = OPT.

none	zero	hybrid	
amoeba	charmm (iko)	class2 (ko)	class2/p6
cosine (ko)	cosine/buck6d	cosine/delta (o)	cosine/periodic (o
cosine/shift (o)	cosine/shift/exp (o)	cosine/squared (o)	cross
dipole (o)	fourier (o)	fourier/simple (o)	gaussian
harmonic (iko)	lepton (o)	mesocnt	mm3
quartic (o)	spica (o)	table (o)	

LAMMPS 命令

■ Dihedral_style: 二面角的设置

All LAMMPS dihedral style commands. Some styles have accelerated versions. This is indicated by additional letters in parenthesis; g = GPU, i = INTEL, k = KOKKOS, o = OPENMP, t = OPT.

none	zero	hybrid	
charmm (iko)	charmmfsw	class2 (ko)	cosine/shift/exp (o
fourier (io)	harmonic (iko)	helix (o)	lepton (o)
multi/harmonic (o)	nharmonic (o)	opls (iko)	quadratic (o)
spherical	table (o)	table/cut	

■ Improper_style: Improper dihedral 的设置

All LAMMPS improper_style commands. Some styles have accelerated versions. This is indicated by additional letters in parenthesis: g = GPU, i = INTEL, k = KOKKOS, o = OPENMP, t = OPT.

none	zero	hybrid	
amoeba	class2 (ko)	cossq (o)	cvff (io)
distance	distharm	fourier (o)	harmonic (iko)
inversion/harmonic	ring (o)	sqdistharm	umbrella (o)

分子动力学制 要

晶格振动与分 子动力学

经典分子动力 受提要

经典分子动力学

B一原理分子 力力学简介

绝热近 似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论

LAMMPS 软件基础

LAMMPS 软件 LAMMPS 的输

LAMMPS 命令

■ Kspace_style长程力算法命令

All LAMMPS kspace_style solvers. Some styles have accelerated versions. This is indicated by additional letters in parenthesis: g = GPU, i = INTEL, k = KOKKOS, o = OPENMP, t = OPT.

ewald (o)	ewald/disp	ewald/disp/dipole	ewald/dipole
ewald/dipole/spin	ewald/electrode	msm (o)	msm/cg (o)
msm/dielectric	pppm (giko)	pppm/cg (o)	pppm/dipole
pppm/dipole/spin	pppm/dielectric	pppm/disp (io)	pppm/disp/tip4p (o)
pppm/disp/dielectric	pppm/stagger	pppm/tip4p (o)	pppm/dielectric
pppm/electrode (i)	scafacos		

■ 另外还有很多扩展命令: 对应于相应的扩展软件包

主要参考文献

分子动力学 要

晶格振动与分

经典分子动力

学提要 经典分子动力学简:

---原理分子

动力学简介

似: Hellmann-Feynman 定理与 电-声耦合 含时密度泛函理论 (TD-DFT)

LAMMPS 软件基础 LAMMPS 软件 LAMMPS 的输入 文件格式

LAMMPS 命令

- [1] G. Kresse and J. Furthmüller Comput. Mat. Sci., 6 (1996), 15
- [2] G. Kresse and J. Furthmüller Phys. Rev. B, **54** (1996), 11169
- [3] R. Car and M. Parrinello Phys. Rev. Lett., 55 (1985), 2471
- [4] B.J. Alder, T.E. Wainwright. J. Chem. Phys. 27 (1957), 1208
- [5] K. Laasonen and A. Pasquarello and R. Car and C. Lee and D. Vanderbilt Phys. Rev. B, $\bf 47$ (1993), 10142
- [6] [东汉] 王逸 撰. 楚辞章句 上海古籍出版社, 上海, 2017
- [7] Richard. M. Martin. Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, England, 2004)
- [8] J. M. Thijssen. Computational Physics (2nd Edition) (Cambridge University Press, Cambridge, England, 2007)
- [9] D. J. Singh. Plane Wave, PseudoPotential and the LAPW method (Kluwer Academic, Boston, USA, 1994)
- [10] 王延颋, LAMMPS 教程 中科院超算中心培训, 北京, 2012

分子动力学制 要

晶格振动与: 子动力学

公典公子計士

学提要

经典分于初刀字间2

第一原理分子

绝热近 似: Hellmann-

电-声耦合 含时密度泛函理设

LAMMP:

LAMMPS 软

LAMMPS 的输 文件格式

LAMMPS 命令

谢谢大家!