ADAM Enables Distributed Analyses Across Large Scale Genomic Datasets

Frank Austin Nothaft^{1,2,*}, Arun Ahuja³, Timothy Danford^{1,4}, Michael Heuer¹, Jey Kottalam¹, Matt Massie¹, Audrey Musselman-Brown⁵, Beau Norgeot^{5,6}, Ravi Pandya⁷, Justin Paschall¹, Hannes Schmidt⁵, Eric Tu¹, Ryan Williams³, Carl Yeksigian⁴, Michael Linderman³, Jeff Hammerbacher³, **Benedict Paten**^{5,*}, Uri Laserson^{3,9}, Gaddy Getz¹⁰, David Haussler⁵, Anthony D. Joseph¹, David A. Patterson^{1,2}

¹AMPLab, University of California, Berkeley, CA, ²ASPIRE Lab, University of California, Berkeley, CA, ³Icahn School of Medicine at Mount Sinai, New York, NY,

⁴Tamr, Inc., Cambridge, MA, ⁵Genome Informatics Lab, University of Californa, Santa Cruz, CA, ⁶Pharmaceutical Science and Pharmacogenomics, University of California, San Francisco, CA, ⁷Microsoft Research, Redmond, WA, ⁸GenomeBridge, Cambridge, MA, ⁹Cloudera, Inc., San Francisco, CA, ¹⁰The Broad Institute of MIT and Harvard, Cambridge, MA

** ** **Inothaft@berkeley.edu*, benedict@soe.ucsc.edu**

Background

Currently, it is hard to write analyses that scan across large genomic datasets:

- ullet High performance computing systems have poor I/O perf.
- Users frequently struggle with inconsistent file formats
- Current computational model is too low level

ADAM is a framework that allows for the efficient parallelism of genomic queries using Apache Spark. ADAM outperforms traditional tools on a single node, and can scale to hundreds of nodes.

Performance

- Compared to GATK, Picard, samtools, and Sambamba
- Evaluated core processing steps on 234GB NA12878 dataset
- Evaluated using 1 i2.8xlarge and 32–128 r3.2xlarge instances on EC2

See detailed numbers in Nothaft et al, "Rethinking data-intensive science using scalable analytics systems." In Proceedings of the International Conference on Management of Data, May 2015 (SIGMOD '15).

ADAM uses a decomposed stack model. This has important benefits:

- Queries are programmed against a schema. The user doesn't need to know the format of data on disk, or where data is physically stored.
- ADAM builds upon Apache Spark's RDD model. RDDs are parallel arrays, and all transformations to an RDD run in parallel.
- Most systems use lower level abstractions, like an iterator over the genome. ADAM queries are written with higher level primitives: duplicate marking maps to a groupBy, finding overlapping genomic objects is implemented as an optimized parallel join.

Architecture

Accuracy Against GATK Best Practices

- We evaluated ADAM by replacing the GATK "Best Practices" pre-processing stages with an ADAM based reimplementation
- GATK was run on a single i2.8xlarge node, ADAM was run on 16 r3.4xlarge nodes
- ullet The ADAM-based pipeline is 3.55 imes faster, and 2 imes cheaper
- The two pipelines generate statistically equivalent variant calls

 During this process, we identified two bugs in the GATK/Picard.

 Both of these issues are caused by sort order invariants necessitated by programming at a lower level of abstraction.

