SmartCard Security MiFare Case

Charles GUILLEMET

Mifare - Disclaimer

Cracking Mifare is

Illegal

- The objective is to give an example of bad choices in designing security system
- This research has been done in my freetime

MIFARE example

Mifare use

- Widely used
 - Authentication:
 - Vigik system
 - access control
 - Transportation:
 - Oyster card (London)
 - IstanbulKart
 - •

Mifare Design

- Designed by NXP (Holland)
 - (old Philips Electronics)

- Use the 14443 Type A for communication
- Cheap circuit (few cents)
- Licensed

Mifare Design

- « Cryptography »:
 - Invented and maintained by NXP Semiconductor
 - Security by obscurity

This <u>always</u> fails: this time again

- Name of the algorithm: Crypto1
- More then 4 billions cards produced!
 Several hundreds of millions still used

- UID read only
- Mutual Authentication
- Crypto1 secrecy
- Hardware only implementation

Mifare Structure

- Sectors of 416-byte blocks (1K)
- 1st block contains
 UID, BCC and Data
 from the manufacturer
- Last block contains keys and access rights

Mifare reversed

- Partially reversed in 2007 by 2 german researchers
 - Crypto1 partially reversed
 - Weakness found
- 2008 : Radbond university fully reversed
- NXP tried to stop the discolosure of the article by judicial process
- The court allowed the disclosure

Mifare fully reversed

- Radbond university published the full specification of Crypto-1 as open source
- Since then, LOT of attacks found

- Reverse engineering on the circuit himself
- Acids and microscope

Mifare security: Crypto1

$$f_a^4 = 0x9E98 = (a+b)(c+1)(a+d)+(b+1)c+a$$

 $f_b^4 = 0xB48E = (a+c)(a+b+d)+(a+b)cd+b$

Tag IV

Serial is loaded first, then Reader IV

NFSR

	Tag		Reader
0		anti-c(uid)	
1		auth(block)	
2	picks n_T		
3		n _T	
4	$ks_1 \leftarrow cipher(K, uid, n_T)$		$ks_1 \leftarrow cipher(K, uid, n_T)$
5			picks n _R
6		2	$ks_2, ks_3 \ldots \leftarrow cipher(K, uid, n_T, n_R)$
7		$n_R \oplus ks_1, suc^2(n_T) \oplus ks_2$	
8	$ks_2, ks_3 \ldots \leftarrow cipher(K, uid, n_T, n_R)$		
9		$suc^3(n_T) \oplus ks_3$	

- Nt, Nr -> nonces picked by tag and reader
- ks1, ks2 and ks3 -> key stream generated by cipher (96
- bits total and 32 bits each).
- suc2(Nt) or {Ar} and suc3(Nt) or {At} -> bijective functions

• Keys with only 48 bit of length (Brute-force feasible – with FPGA aprox. 10h to recover one key)

YES: 48 bits

- The LFSR (Linear Feedback Shift Register) used by RNG is predictable (constant initial condition).
 - Each random number only depends of the quantity of clock cycles between: the time when the reader was turned up and the time when the random number is requested.
- Since an attacker controls the time of protocol, he is able to control the generated random numbers and that way recover the keys from communication.

- Attacks: Proxmark3
 - Open source Design and Embedded software
- Sniffing
 - Needs a valid card and reader communication
 - Able to retrieve keys of blocks involved
- Replay
- Emulation

- Attacks: MF Tools
 - Card only attack
 - MFOC + MFCUK (2009) (DarkSide and Nested)
- Nested: knowing 1 key!
 - Authenticate to the block with default key and read tag's Nt (determined by LFSR)
 - Authenticate to the same block with default key and read tag's Nt' (determined by LFSR) (this authentication is in an encrypted session)
 - Compute "timing distance" (number of LFSR shifts) Guess the next Nt value, calculate ks1, ks2 and ks3 and try authenticate to a different block.

- Initially utilize the MFOC tool to test if the card utilize any default keys. (around 1 minute)
- If the card utilizes any of default keys the MFOC tool will perform the Nested attack utilizing.
- If the card haven't use any of the default keys, utilize the MFCUK to recover at least one key from any sector of card (few minutes)

mfoc / libnfc available in official repos

```
File Edit View Terminal Help
     ot: -# nfc-list
nfc-list use libnfc 1.4.2 (r891)
Connected to NFC device: ACS ACR122U 00 00 / ACR122U103 - PN532 v1.6 (0x07)
ISO14443A passive target(s) was found:
   ATQA (SENS RES):
     UID (NFCID1):
     SAK (SEL RES):
root@bt:~#
```

mfoc tries first the default keys

(Most of the time, unused sector have default keys)

```
× root@bt: ~
File Edit View Terminal Help
coot@bt:~# time mfoc -0 moj dump
Found MIFARE Classic 4K card with uid:
[Kev: a0a1a2a3a4a5] ->
[Key: b0b1b2b3b4b5] ->
[Key: 4d3a99c351dd] ->
[Key: la982c7e459a]
[Key: aabbccddeeff] ->
[Key: 714c5c886e97]
[Key: 587ee5f9350f] ->
[Key: a0478cc39091]
[Key: 533cb6c723f6]
[Key: 8fd0a4f256e9]
                Sector 00 - FOUND KEY
                         Sector 00 -
                                    UNKNOWN KEY [B]
Sector 01 - UNKNOWN KEY [A]
                         Sector 01 -
                                    UNKNOWN KEY [B]
Sector 02 - FOUND KEY
                         Sector 02 -
                                    UNKNOWN KEY
```

mfcuk


```
^ v × root@bt: ~
File Edit View Terminal Help
00 00 00 00
Block 06, type A, key b3de9843c86d :00 00 00
                                              00
                                                  00
                                                      00
                                           00
                                                         99
                                                                 00
00 00 00 00 00
Block 05, type A, key b3de9843c86d :00 00
                                       00
                                           00
                                              00
                                                  00
                                                      00
                                                         00
                                                             00
                                                                 00
                                                                    00
00 00 00 00 00
Block 04, type A, key b3de9843c86d :00 00
                                       00
                                              00
                                                  00
                                           99
                                                      00
                                                         00
                                                                 00
                                                             00
                                                                    00
00 00 00 00 00
Block 03, type A, key 533cb6c723f6 :00 00 00
                                           00
                                              ΘΘ
                                                 99
                                                      98
                                                         77
00 00 00 00
              00
Block 02, type A, key 533cb6c723f6 :49 4d 00 50 53 42 41 43
00 00 00 00 00
Block 01, type A, key 533cb6c723f6 :30 03 9e ea 01
                                                  00
                                                     01 00
2a a0 00 41 00
Block 00, type A, key 533cb6c723f6 : e4 98
                                                      02
                                                         00 64
                                                                 8f
13 61 70 34 10
real
      31m10.384s
user
       21m15.004s
       0m17.233s
SVS
```

- Needed:
 - Tag reader: ~30euros
 - UID writable Mifare Tags (Chinese tag): ~2euros
- Few minutes
- Can clone ANY MIFARE classic tag
- Once the key is discovered, it's possible to read any token within few ms

Mifare use

- Still widely used
 - Authentication:
 - Vigik system: still used
 - Default keys on unused sector
 - One sector used
 - => the key is on the picture
 - access control: still used

- Transportation:
 - Oyster card (London)
 - System changed due to fraud
 - IstanbulKart
 - System changed due to fraud

Mifare - Disclaimer

Cracking Mifare is

Illegal

Security by obscurity always fails

References

Freely inspired from

- Card-Only Attacks on MiFare Classic or How to Steal Your Oyster Card and Break into Buildings Worldwide (Nicolas Courtois)
- Hacking Mifare Classic Cards (Márcio Almeida)
- Practical Attacks on the MIFARE Classic by Wee Hon Tan (wht08)
- proxmark3: http://www.proxmark.org/
- nfc-tools : http://nfc-tools.org/