Solution Section 3.1 – Maxima and Minima

Exercise

Find the absolute maximum and minimum values of the function. Then graph the function. Identify the points on the graph where the absolute extrema occur, and include their coordinates.

$$f(x) = \frac{2}{3}x - 5 \qquad -2 \le x \le 3$$

Solution

$$f'(x) = \frac{2}{3}$$

 \therefore No Critical **P**oints (CP) or (CN).

$$f(-2) = \frac{2}{3}(-2) - 5 = -\frac{19}{3}$$

$$f(3) = \frac{2}{3}(3) - 5 = -3$$

Absolute Maximum: (3, -3)

Absolute Minimum: $\left(-2, -\frac{19}{3}\right)$

Exercise

Find the absolute maximum and minimum values of the function. Then graph the function. Identify the points on the graph where the absolute extrema occur, and include their coordinates.

$$f(x) = x^2 - 1 \qquad -1 \le x \le 2$$

Solution

$$f'(x) = 2x = 0 \implies x = 0$$
 (CN)

$$f(-1) = (-1)^2 - 1 = 0$$

$$f(0) = (0)^2 - 1 = -1$$

$$f(2) = (2)^2 - 1 = 3$$

Abs. Maximum: (2, 3)

Abs. Minimum: (0, -1)

Find the absolute maximum and minimum values of the function. Then graph the function. Identify the points on the graph where the absolute extrema occur, and include their coordinates.

$$f(x) = -\frac{1}{x^2} \qquad 0.5 \le x \le 2$$

Solution

 $f'(x) = \frac{1}{2x^3}$ Which it is not in the

domain

No critical point.

$$f(0.5) = -\frac{1}{(0.5)^2} = -4$$

$$f(2) = -\frac{1}{(2)^2} = -0.25$$

Abs. Max: (2, -0.25)

Abs. Min: (0.5, -4)

Exercise

Find the absolute maximum and minimum values of the function. Then graph the function. Identify the points on the graph where the absolute extrema occur, and include their coordinates.

$$f(x) = \sqrt{4 - x^2} \qquad -2 \le x \le 1$$

Solution

$$f(x) = (4 - x^{2})^{1/2}$$

$$f'(x) = \frac{1}{2}(4 - x^{2})^{-1/2}(-2x)$$

$$= \frac{-x}{\sqrt{4 - x^{2}}} = 0 \quad \Rightarrow \begin{cases} x = 0 \\ 4 - x^{2} = 0 \Rightarrow x = \pm 2 \end{cases}$$

Critical points: x = 0, -2

$$f(-2) = \sqrt{4 - (-2)^2} = 0$$

 $f(0) = \sqrt{4 - (0)^2} = 2$

$$f(1) = \sqrt{4 - (1)^2} = \sqrt{3}$$

Abs. Max: (0, 2)

Abs. Min: (-2, 0)

Find the absolute maximum and minimum values of the function. Then graph the function. Identify the points on the graph where the absolute extrema occur, and include their coordinates.

$$f(\theta) = \sin \theta$$
 $-\frac{\pi}{2} \le \theta \le \frac{5\pi}{6}$

Solution

$$f'(\theta) = \cos \theta = 0 \implies \theta = \frac{\pi}{2} (CN)$$

$$f\left(-\frac{\pi}{2}\right) = \sin\left(-\frac{\pi}{2}\right) = -1$$

$$f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

$$f\left(\frac{5\pi}{6}\right) = \sin\left(\frac{5\pi}{6}\right) = \frac{1}{2}$$
Abs. Min: $\left(-\frac{\pi}{2}, -1\right)$
Abs. Max: $\left(\frac{\pi}{2}, 1\right)$

Exercise

Find the absolute maximum and minimum values of the function. Then graph the function. Identify the points on the graph where the absolute extrema occur, and include their coordinates.

$$g(x) = \sec x$$
 $-\frac{\pi}{3} \le x \le \frac{\pi}{6}$

$$g'(x) = \sec x \tan x = 0 \implies \boxed{x = 0}$$
 (CN)

$$g\left(-\frac{\pi}{3}\right) = \sec\left(-\frac{\pi}{3}\right) = 2$$

$$g(0) = \sec(0) = 1$$

$$g\left(\frac{\pi}{6}\right) = \sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$$

Abs. Max:
$$\left(-\frac{\pi}{3}, 2\right)$$

Abs. Min:
$$(0, 1)$$

Find the absolute maximum and minimum values of $f(x) = x^{4/3}$, $-1 \le x \le 8$

Solution

$$f'(x) = \frac{4}{3}x^{1/3} = 0 \implies \boxed{x = 0}$$
 (CN)

$$f(-1)=1$$

$$f(0) = 0$$

$$f(8) = 16$$

Abs. Min:
$$(0, 0)$$

Exercise

Find the absolute maximum and minimum values of $f(\theta) = \theta^{3/5}$, $-32 \le \theta \le 1$

Solution

$$f'(\theta) = \frac{3}{5}\theta^{-2/5} = 0 \implies \boxed{\theta = 0}$$
 (CN)

$$f\left(-32\right) = -8$$

$$f(0) = 0$$

$$f(1)=1$$

Abs. Max: (1, 1)

Abs. Min: (-32, -8)

Exercise

Find the absolute maximum and minimum values of $f(x) = 2^x \sin x$ [-2, 6]

Solution

$$f'(x) = 2^{x} (\ln 2) \sin x + 2^{x} \cos x$$

$$= 2^{x} (\ln 2 \sin x + \cos x) = 0$$

$$\cos x = -\ln 2 \sin x$$

$$\frac{\sin x}{\cos x} = -\frac{1}{\ln 2} = \tan x$$

$$\ln 2 \sin x + \cos x = 0; \quad 2^x \neq 0$$

$$\cos x = -\ln 2 \sin x$$

$$\frac{\sin x}{\cos x} = -\frac{1}{\ln 2} = \tan x$$

$$x = \tan^{-1}(-\ln 2) \approx -.96468$$

$$x = -.96468 + \pi \approx 2.1769$$

$$x = -.96468 + 2\pi \ \underline{\approx 5.3185}$$

(since it is *periodic*)

$$f\left(-2\right) = -0.227$$

$$f(-.96468) \approx -0.4211$$

$$f(2.1769) \approx 3.7164$$

$$f(5.3185) \approx -32.7968$$

$$f(6) = -17.88$$

Abs. Max: (2.1769, 3.7164)

Abs. Min: (5.3185, -32.7968)

Exercise

Find the absolute maximum and minimum values of $f(x) = \sec x$ $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$

Solution

$$f'(x) = \sec x \tan x = 0 \implies \boxed{x = 0}$$
 (CN)

$$f\left(-\frac{\pi}{4}\right) = \sqrt{2}$$

$$f(0)=1$$

$$f\left(\frac{\pi}{4}\right) = \sqrt{2}$$

Abs. Max: $\left(-\frac{\pi}{4}, \sqrt{2}\right) \& \left(\frac{\pi}{4}, \sqrt{2}\right)$

Abs. Min: (0, 1)

Find the absolute maximum and minimum values of $f(x) = x^3 e^{-x}$ [-1, 5]

Solution

$$f'(x) = 3x^{2}e^{-x} - x^{3}e^{-x}$$

$$= x^{2}e^{-x}(3-x) = 0$$

$$\to x = 0, 3 \quad (CN)$$

$$f(-1) = -e \approx -2.718$$

$$f(0) = 0$$

$$f(3) = 27e^{-3} \approx 1.344$$

$$f(5) = 125e^{-5} \approx 0.842$$

Abs. Max: $(3, 27e^{-3})$

Abs. Min: (-1, -e)

Exercise

Find the absolute maximum and minimum values of $f(x) = x \ln(\frac{x}{5})$ [0.1, 5]

Solution

$$f'(x) = \ln\left(\frac{x}{5}\right) + x\left(\frac{1}{5} \div \frac{x}{5}\right)$$
$$= \ln\left(\frac{x}{5}\right) + 1 = 0$$

$$\ln\left(\frac{x}{5}\right) = -1 \rightarrow \underline{x = 5e^{-1}} (CN)$$

$$f(0.1) = \frac{1}{10} \ln \frac{1}{50} = -\frac{1}{2} \ln 50$$

$$f\left(\frac{5}{e}\right) = \frac{5}{e} \ln \frac{1}{e} = -\frac{5}{e}$$

$$f(5)=0$$

Abs. Max: (5, 0)

Abs. Min: $\left(\frac{5}{e}, -\frac{5}{e}\right)$

Find the absolute extrema of $f(x) = x^{8/3} - 16x^{2/3}$ [-1, 8]

Solution

$$f'(x) = \frac{8}{3}x^{5/3} - \frac{32}{3}x^{-1/3}$$
$$= \frac{8}{3} \left(x^{5/3} - \frac{4}{x^{1/3}} \right)$$
$$= \frac{8}{3} \left(\frac{x^2 - 4}{x^{1/3}} \right) = 0$$
$$CN : \boxed{x = \pm 2}$$

$$x \neq -2 \notin [-1, 8]$$

The derivative is *undefined* at x = 0

	150-				
	125				
	100-		/		
	75 -		/		
	50-				
	25 -				
-2	-25+	1	6	8	

200

$$\begin{array}{c|cc}
x & f(x) \\
-1 & -15 \\
0 & 0 \\
2 & -19.05 \\
8 & 192 \\
\end{array}$$

Abs. max: (8, 192)

Abs. Min (2, -19.05)

Exercise

Find the minimum and maximum values of $f(x) = x^2 - 8x + 10$ [0, 7]

Solution

$$f'(x) = 2x - 8 = 0$$

$$\Rightarrow x = 4 \quad (CN)$$

$$\rightarrow y = 16 - 32 + 10 = -6$$

$$\begin{cases} x = 0 \rightarrow y = 10 \\ x = 7 \rightarrow y = 3 \end{cases}$$

Abs. Maximum (0, 10)

Abs. Minimum (4, -6)

Find the absolute extrema of the function on the closed interval f(x) = 2(3-x), [-1, 2]

Solution

$$f(-1) = 2(3-(-1)) = 8$$

$$f(2) = 2(3-2) = 2$$

Abs. Max: (-1, 8)

abs Min: (2, 2)

Exercise

Find the absolute extrema of the function on the closed interval $f(x) = x^3 - 3x^2$, [0, 4]

Solution

$$f'(x) = 3x^2 - 6x = 0$$

$$3x(x-2)=0 \rightarrow x_{1,2}=0, 2$$

$$f(0) = 0^3 - 3(0)^2 = 0$$

$$f(2) = 2^3 - 3(2)^2 = -4$$

$$f(4) = 4^3 - 3(4)^2 = 16$$

Abs. Max: (4, 16)

LMIN: (2, -4)

Exercise

Find the absolute extrema of the function on the closed interval

$$f(x) = \frac{1}{3}x^3 - 2x^2 + 3x - 4$$
, [-2, 5]

$$f'(x) = x^2 - 4x + 3 = 0 \rightarrow x_{1,2} = 1, 3$$

$$f(-2) = -\frac{8}{3} - 8 - 6 - 4 = -\frac{62}{3}$$

$$f(1) = \frac{1}{3}(1)^3 - 2(1)^2 + 3(1) - 4 = -\frac{8}{3}$$

$$f(3) = \frac{1}{3}(3)^3 - 2(3)^2 + 3(3) - 4 = -4$$

$$f(5) = \frac{1}{3}(5)^3 - 2(5)^2 + 3(5) - 4 = \frac{8}{3}$$

Abs. max:
$$\left(5, \frac{8}{3}\right)$$

Abs. min:
$$\left(-2, -\frac{62}{3}\right)$$

Find the absolute extrema of the function on the closed interval $f(x) = \frac{1}{x+2}$, [-4, 1]

Solution

$$x + 2 \neq 0 \rightarrow x \neq -2$$
 (Asymptote)

$$f'(x) = -\frac{1}{(x+2)^2} \neq 0$$

There is **no** Relative Extrema.

Exercise

Find the absolute extrema of the function on the closed interval $f(x) = (x^2 + 4)^{2/3}$, [-2, 2]

Solution

$$f'(x) = \frac{2}{3} (2x) \left(x^2 + 4\right)^{2/3 - 1}$$
$$= \frac{4x}{3} \left(x^2 + 4\right)^{-1/3}$$

$$f' = \frac{4x}{3} \left(x^2 + 4 \right)^{-1/3} = 0; \quad x^2 + 4 \neq 0$$

$$CN: \underline{x=0}$$

$$f(x = -2) = ((-2)^2 + 4)^{2/3} = 4$$

$$f(x=0) = ((0)^2 + 4)^{2/3} = \sqrt[3]{16}$$

$$f(x=2) = ((2)^2 + 4)^{2/3} = 4$$

RMAX: $(-2, 4) \cup (2, 4)$ **RMIN**: $(0, \sqrt[3]{6})$

Find the absolute maximum and minimum values of each function (if they exist).

$$f(x) = \sin 2x + 3$$
 on $[-\pi, \pi]$

Solution

$$f'(x) = 2\cos 2x = 0 \rightarrow 2x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}$$

$$x = \pm \frac{\pi}{4}, \quad \pm \frac{3\pi}{4} \quad (CN)$$

x	f(x)
$-\pi$	3
$-\frac{3\pi}{4}$	4
$-\frac{\pi}{4}$	2
$\frac{\pi}{4}$	4
$\frac{3\pi}{4}$	2
π	3

Abs. Min:
$$\left(-\frac{\pi}{4}, 2\right) \left(\frac{3\pi}{4}, 2\right)$$

Abs. Max:
$$\left(-\frac{3\pi}{4}, 4\right) \left(\frac{\pi}{4}, 4\right)$$

Exercise

Find the absolute maximum and minimum values of each function (if they exist).

$$f(x) = 2x^3 - 3x^2 - 36x + 12$$
 on $(-\infty, \infty)$

Solution

$$f'(x) = 6x^2 - 6x - 36 = 0$$

$$x^2 - x - 3 = 0$$

$$CN: x = -2, 3$$

There is no absolute Max. or Min.

since
$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

Find the absolute maximum and minimum values of each function (if they exist).

$$f(x) = 4x^{1/2} - x^{5/2}$$
 on $[0, 4]$

$$f'(x) = 2x^{-1/2} - \frac{5}{2}x^{3/2} = 0$$

$$(2x^{1/2} \times) \quad 2x^{-1/2} - \frac{5}{2}x^{3/2} = 0 \quad (x \neq 0)$$

$$4 - 5x^2 = 0$$

$$CN: \quad x = \pm \frac{2}{\sqrt{5}}, \quad 0$$

х	f(x)
0	0
$\frac{2}{\sqrt{5}}$	$4\left(\frac{2}{\sqrt{5}}\right)^{1/2} - \left(\frac{2}{\sqrt{5}}\right)^{5/2} = 4\left(\frac{2}{\sqrt{5}}\right)^{1/2} - \frac{4}{5}\left(\frac{2}{\sqrt{5}}\right)^{1/2} = \frac{16}{5}\left(\frac{2}{\sqrt{5}}\right)^{1/2}$
4	$4(4)^{1/2} - (4)^{5/2} = 8 - 32 = -24$

Abs. Min:
$$(4, -24)$$

Abs. Max:
$$\left(\frac{2}{\sqrt{5}}, \frac{16}{5} \left(\frac{2}{\sqrt{5}}\right)^{1/2}\right)$$

Find the absolute maximum and minimum values of each function (if they exist).

$$f(x) = 2x \ln x + 10 \quad on \quad (0, 4)$$

Solution

$$f'(x) = 2 \ln x + 2 = 0 \rightarrow \ln x = -1$$

$$CN: x = e^{-1}$$

$$f\left(\frac{1}{e}\right) = \frac{2}{e}\ln e^{-1} + 10 = \frac{10 - \frac{2}{e}}{e}$$

Abs. Min:
$$\left(\frac{1}{e}, 10 - \frac{2}{e}\right)$$

Exercise

Find the absolute maximum and minimum values of each function (if they exist).

$$f(x) = x\sin^{-1} x \quad on \quad [-1, 1]$$

Solution

$$f'(x) = \sin^{-1} x + \frac{x}{\sqrt{1 - x^2}} = 0$$

$$CN: x = 0$$

х	f(x)	
-1	$-\sin^{-1}\left(-1\right) = \frac{\pi}{2}$	
0	0	
1	$\sin^{-1}(1) = \frac{\pi}{2}$	

Abs. Min: (0, 0)

Abs. Max: $\left(\pm 1, \frac{\pi}{2}\right)$

Exercise

Determine all critical points of $y = x^2 - 6x + 7$

$$y' = 2x - 6 = 0 \implies \boxed{x = 3}$$
 (CN)

$$y \Big|_{x=3} = 3^2 - 6(3) + 7 = -2$$

Critical point: (3, -2)

Exercise

Determine all critical points of $g(x) = (x-1)^2 (x-3)^2$

Solution

$$g'(x) = 2(x-1)(x-3)^{2} + 2(x-1)^{2}(x-3)$$

$$= 2(x-1)(x-3)(x-3+x-1)$$

$$= 2(x-1)(x-3)(2x-4)$$
(uv)' = u'v + v'u

The *critical numbers* are: x = 1, 2, 3

$$g(1) = 0$$
 $g(2) = 1$ $g(3) = 0$

Critical points: (1, 0), (2, 1) and (3, 0)

Exercise

Determine all critical points of $f(x) = \frac{x^2}{x-2}$

Solution

$$f'(x) = \frac{2x(x-2) - x^2}{(x-2)^2}$$

$$= \frac{x^2 - 4x}{(x-2)^2} = 0$$

x = 2 is *not* in the domain.

The critical numbers are: x = 0, 4

$$f(0) = 0 \qquad \qquad f(4) = 8$$

Critical points: (0, 0), (4, 8)

Determine all critical points of $g(x) = x^2 - 32\sqrt{x}$

Solution

$$g'(x) = 2x - \frac{16}{\sqrt{x}} = \frac{2x^{3/2} - 16}{\sqrt{x}} = 0$$

$$\begin{cases} 2x^{3/2} - 16 = 0 \Rightarrow x^{3/2} = 8 \Rightarrow \boxed{x = 4} \\ \sqrt{x} = 0 \Rightarrow \boxed{x = 0} \end{cases}$$

The critical numbers are: x = 0, 4

$$g(0) = 0$$

$$g(4) = 16 - 32\sqrt{4} = 48$$

Critical points: (0,0), (4,48)

Exercise

Find the extreme values (absolute and local) of the function and where they occur $y = x^3 - 2x + 4$

Solution

$$y' = 3x^{2} - 2 = 0 \implies x = \pm \sqrt{\frac{2}{3}}$$

$$x = -\sqrt{\frac{2}{3}} \implies y = \left(-\sqrt{\frac{2}{3}}\right)^{3} - 2\left(-\sqrt{\frac{2}{3}}\right) + 4 = 5.089$$

$$x = \sqrt{\frac{2}{3}} \implies y = \left(\sqrt{\frac{2}{3}}\right)^{3} - 2\left(\sqrt{\frac{2}{3}}\right) + 4 = 2.911$$

$$LMAX: (-.816, 5.089)$$

$$LMIN: (.816, 2.911)$$

Exercise

Find the extreme values (absolute and local) of the function and where they occur $y = \sqrt{x^2 - 1}$

Solution

Domain: $x \le -1$ $x \ge 1$

$$y' = \frac{x}{\sqrt{x^2 - 1}} = 0 \implies x = X, \pm 1 \quad (CN)$$

$$y = \sqrt{\left(\pm 1\right)^2 - 1} = 0$$

LMIN: (-1, 0) & (1, 0)

Find the extreme values (absolute and local) of the function and where they occur $y = \frac{1}{\sqrt[3]{1-x^2}}$

Solution

Exercise

Find the extreme values (absolute and local) of the function and where they occur $y = x^2 \sqrt{3-x}$

(uv)' = u'v + v'u

$$y' = 2x\sqrt{3-x} + \frac{1}{2}\left(\frac{-1}{\sqrt{3-x}}\right)x^{2} \qquad (uv)' = u'v$$

$$= \frac{4x(3-x)-x^{2}}{2\sqrt{3-x}}$$

$$= \frac{4x(3-x)-x^{2}}{2\sqrt{3-x}}$$

$$= \frac{12x-5x^{2}}{2\sqrt{3-x}} = 0$$

$$CN: \quad x = \frac{5}{12}, \ 0, \ 3$$

$$y \Big|_{x=\frac{5}{12}} = 0.279$$

$$y \Big|_{x=0} = 0$$

$$y \Big|_{x=3} = 0$$

$$LMAX: \left(\frac{5}{12}, \ 0.279\right) \Big| \quad LMIN: \ (0, \ 0) \cup (3, \ 0)$$

$$\frac{2}{2}$$

$$\frac{2}{3}$$

$$\frac{2}{3}$$

$$\frac{1}{3}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{4}$$

$$\frac{1}{2}$$

$$\frac{1}{4}$$

$$\frac{1}{2}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

Find the extreme values (absolute and local) of the function and where they occur $y = \frac{x+1}{x^2+2x+2}$

Solution

$$y' = \frac{x^2 + 2x + 2 - (2x + 2)(x + 1)}{\left(x^2 + 2x + 2\right)^2} \qquad \left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

$$= \frac{x^2 + 2x + 2 - 2x^2 - 2x - 2x - 2}{\left(x^2 + 2x + 2\right)^2}$$

$$= \frac{-x^2 - 2x}{\left(x^2 + 2x + 2\right)^2} = 0$$

$$CN: \quad \underline{x = 0, -2}$$

$$y \Big|_{x=0} = \frac{1}{2}$$

$$y \Big|_{x=-2} = -2$$

$$LMAX: \left(0, \frac{1}{2}\right)$$

LMAX:
$$\left(0, \frac{1}{2}\right)$$
 LMIN: $\left(-2, -\frac{1}{2}\right)$

Exercise

Find the extreme values (absolute and local) of the function and where they occur $y = x^{2/3}(x+2)$

Solution

$$y' = \frac{2}{3}x^{-1/3}(x+2) + x^{2/3} \qquad (uv)' = u'v + v'u$$

$$= \frac{2}{3}\frac{x+2}{x^{1/3}} + x^{2/3}$$

$$= \frac{2x+4+3x}{x^{1/3}}$$

$$= \frac{5x+4}{\sqrt[3]{x}} = 0 \qquad CN: \quad \underline{x} = 0, \quad -\frac{4}{5}$$

$$y \Big|_{x=-\frac{4}{5}} = \left(-\frac{4}{5}\right)^{2/3} \left(-\frac{4}{5} + 2\right) = 1.034$$

$$y \Big|_{x=0} = 0$$

LMAX: $\left(-\frac{4}{5}, 1.034\right)$ *LMIN*: (0, 0)

Find the extreme values (absolute and local) of the function and where they occur $y = x\sqrt{4-x^2}$

Solution

$$y' = \sqrt{4 - x^2} + \left(\frac{1}{2} \frac{-2x}{\sqrt{4 - x^2}}\right)(x)$$

$$= \frac{4 - x^2 - x^2}{\sqrt{4 - x^2}}$$

$$= \frac{4 - 2x^2}{\sqrt{4 - x^2}} = 0$$

$$\begin{cases} 4 - 2x^2 = 0\\ 4 - x^2 = 0 \end{cases}$$

$$CN: \quad \underline{x} = \pm \sqrt{2}, \ \pm 2$$

$$y \Big|_{x = -\sqrt{2}} = -\sqrt{2}\sqrt{2} = -2$$

$$y \Big|_{x = \sqrt{2}} = 0$$

$$LMAX: \left(\sqrt{2}, 2\right)$$

$$LMIN: \left(-\sqrt{2}, -2\right)$$

Exercise

Find the extreme values (absolute and local) of the function and where they occur $f(x) = \frac{e^x + e^{-x}}{2}$

$$f'(x) = \frac{1}{2} \left(e^x - e^{-x} \right) = 0$$

$$e^x = e^{-x} \rightarrow \underline{x = 0} \quad (CN)$$

$$f(0) = \frac{1+1}{2} = 1$$

$$LMIN: (0, 1)$$

Find the extreme values (absolute and local) of the function and where they occur

$$f(x) = \frac{1}{8}x^3 - \frac{1}{2}x$$
 [-1, 3]

Solution

$$f'(x) = \frac{3}{8}x^2 - \frac{1}{2} = 0$$

$$x^2 = \frac{4}{3} \implies x = \frac{2}{\sqrt{3}} (<-1), \frac{2}{\sqrt{3}}$$

$$(CN)$$
: $x = \frac{2}{\sqrt{3}}$

$$f(-1) = -\frac{1}{8} + \frac{1}{2} = \frac{3}{8}$$

$$f(3) = \frac{27}{8} - \frac{3}{2} = \frac{15}{8}$$

$$f\left(\frac{2}{\sqrt{3}}\right) = \frac{1}{3\sqrt{3}} - \frac{1}{\sqrt{3}} = -\frac{2}{3\sqrt{3}}$$

Exercise

Find the extreme values (absolute and local) of the function and where they occur $f(x) = \frac{1}{x} - \ln x$

Solution

$$f\left(x\right) = -\frac{1}{x^2} - \frac{1}{x}$$

$$=-\frac{1+x}{x^2}=0$$

$$\underline{x=0, -1} \quad (CN)$$

Since the critical number are not within the domain; inside the log has to be positive.

No abs or local extreme

Exercise

Find the extreme values (absolute and local) of the function and where they occur

$$f(x) = \sin x \cos x \quad [0, 2\pi]$$

$$f'(x) = \cos^2 x - \sin^2 x = \cos 2x = 0$$

$$2x = \frac{\pi}{2} + k\pi$$

CN:
$$x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

$$f(0) = 0$$

$$f\left(\frac{\pi}{4}\right) = \frac{1}{2}$$

$$f\left(\frac{3\pi}{4}\right) = -\frac{1}{2}$$

$$f\left(\frac{5\pi}{4}\right) = \frac{1}{2}$$

$$f\left(\frac{7\pi}{4}\right) = -\frac{1}{2}$$

$$f(2\pi)=0$$

LMIN:
$$\left(\frac{3\pi}{4}, -\frac{1}{2}\right) & \left(\frac{7\pi}{4}, -\frac{1}{2}\right)$$

LMAX:
$$\left(\frac{\pi}{4}, \frac{1}{2}\right) & \left(\frac{5\pi}{4}, \frac{1}{2}\right)$$

Find the extreme values (absolute and local) of the function and where they occur $f(x) = x - \tan^{-1} x$

Solution

$$f'(x) = 1 - \frac{1}{1 + x^2} = 0$$

$$1+x^2=1$$

$$\rightarrow x = 0, 0$$

No extreme values

Let
$$f(x) = (x-2)^{2/3}$$

- a) Does f'(2) exist?
- b) Show the only local extreme value of f occurs at x = 2.
- c) Does the result in part (b) contradict the Extreme Value Theorem?

Solution

a)
$$f'(x) = \frac{2}{3}(x-2)^{-1/3}$$
 is undefined at $x = 2$

b)
$$f(x=2)=(2-2)^{2/3}=0$$
 and $f(x)>0$ $\forall x \neq 2$

c) No, f(x) domain is all real numbers and doesn't need to have a global maximum. Any restriction of f to a closed interval of the form [a, b] would have a maximum and minimum value on the interval.

Exercise

When a telephone wire is hung between two poles, the wire forms a U-shape curve called a Catenary. For instance, the function $y = 30 \left(e^{x/60} + e^{-x/60} \right)$ $-30 \le x \le 30$ models the shape of the telephone wire strung between two poles that are $60 \, ft$. apart (x & y are measured in ft.). Show that the lowest point on the wire is midway between two poles. How much does the wire sag between the two poles?

Solution

$$y' = 30 \left(\frac{1}{60} e^{x/60} - \frac{1}{60} e^{-x/60} \right)$$
$$= \frac{1}{2} \left(e^{x/60} - e^{-x/60} \right)$$

Critical number(s)

$$y' = 0$$

$$\frac{1}{2} \left(e^{x/60} - e^{-x/60} \right) = 0$$

$$e^{x/60} - e^{-x/60} = 0$$

$$e^{x/60} = e^{-x/60}$$

$$\frac{x}{60} = -\frac{x}{60}$$

$$\Rightarrow x = 0$$

$$y(x = -30) = 30 \left(e^{-30/60} + e^{-(-30)/60} \right) \approx 67.7 \text{ ft}$$

$$y(x = 0) = 30 \left(e^{0} + e^{0} \right) = 30(2) = 60 \text{ ft}$$

$$y(x = 30) = 30(e^{30/60} + e^{-(30)/60}) \approx 67.7 \text{ ft}$$

Sag: 67.7 ft

You are sitting in a classroom next to the wall looking at the blackboard at the front of the room. The blackboard is 12 *feet* long and starts 3 *feet* from the wall you are sitting next to.

- a) Show that your viewing angle is $\alpha = \cot^{-1} \frac{x}{15} \cot^{-1} \frac{x}{3}$ If you are *x feet* from the front wall
- b) Find x so that α is as large as possible

Solution

a)
$$\cot(wall) = \frac{x}{3} \implies \angle wall = \cot^{-1}\left(\frac{x}{3}\right)$$

 $\cot(\triangle) = \frac{x}{15} \implies \angle \triangle = \cot^{-1}\left(\frac{x}{15}\right)$

 α = Angle of the large triangle – Wall triangle angle

$$\alpha = \cot^{-1} \frac{x}{15} - \cot^{-1} \frac{x}{3}$$

b)
$$\frac{d\alpha}{dx} = -\frac{\frac{1}{15}}{1 + \left(\frac{x}{15}\right)^2} + \frac{\frac{1}{3}}{1 + \left(\frac{x}{3}\right)^2}$$

$$= -\frac{1}{15} \frac{1}{1 + \frac{x^2}{225}} + \frac{1}{3} \frac{1}{1 + \frac{x^2}{9}}$$

$$= -\frac{1}{15} \frac{225}{225 + x^2} + \frac{1}{3} \frac{9}{9 + x^2}$$

$$= -\frac{15}{225 + x^2} + \frac{3}{9 + x^2}$$

$$= \frac{-15\left(9 + x^2\right) + 3\left(225 + x^2\right)}{\left(225 + x^2\right)\left(9 + x^2\right)}$$

$$= \frac{-135 - 15x^2 + 675 + 3x^2}{\left(225 + x^2\right)\left(9 + x^2\right)}$$

$$= \frac{-12x^2 + 540}{\left(225 + x^2\right)\left(9 + x^2\right)} = 0$$

$$x^{2} = \frac{540}{12}$$
= 45
$$x = \pm 3\sqrt{5}$$

$$x = 3\sqrt{5} \approx 6.7082$$

$$\alpha \left(x = 3\sqrt{5}\right) = \cot^{-1} \frac{3\sqrt{5}}{15} - \cot^{-1} \frac{3\sqrt{5}}{3}$$

$$\approx 0.729728$$

$$\approx 41.8103^{\circ}$$

Local maximum of 41.8103° when $x \approx 6.7082$ ft.