Programming & Computational Thinking

Abstraction & Generalization

Computational Thinking

Remember talking about computational thinking and these key principles?

- abstraction
- generalization
- composition & decomposition
- creativity
- data and information
- algorithms

Review - Abstraction

We discussed abstraction last week.

- What does it mean?
- How is it used in everyday examples?
- How about with computer or IT examples?

Generalization

This week we'll talk about generalization.

What does it mean to generalize?

Definition

- 1. a. To reduce to a general form, class, or law.
 - b. To render indefinite or unspecific.
- 2. a. To infer from many particulars.
 - b. To draw inferences or a general conclusion from.
- 3. a. To make generally or universally applicable.
 - b. To popularize.

~American Heritage Dictionary

Data Types

The data we work with in computing is grouped by type. We have:

- numeric data
- text or character data
- date / time data

Different systems and languages may use and define these types in different ways.

Numeric Data Types

Different types of numbers:

- Integers
 - Examples: 1, 2, 4, 0, -10
- Floating point (have a decimal point)
 - Examples: 1.2, 4.5, -3.0

Different ways to represent them:

binary, hex, decimal

Character Data Types

Ways to represent a single character:

- o EBCDIC, ASCII, Unicode
- o All go back to a numeric value
- Words and sentences are just strings or sequences of individual characters.
- Number 1 is different from a character 1.

Objects

Represent more complex data and systems For example a generic Course has a:

- Course name
- Department
- Course number
- Section number
- Number of credits
- Description

Generalizing Actions

Data types & objects are things or *nouns*

We can also generalize behaviors.

- morning routine
- registering a student for a class
- making a sandwich

Sandwiches for lunch

My school lunches includes a nice variety of sandwiches:

- ham (almost always)
- turkey (often)
- chicken (sometimes)
- meatloaf (increasingly rare)

Sandwich recipes

Let's look at my mom's sandwich recipes:

- 1. Ham Sandwich: Take a slice of bread, add 2 slices of ham, top it with another slice of bread.
- 2. Turkey Sandwich: Take a slice of bread, add 2 slices of turkey, top it with another slice of bread.
- 3. Chicken Sandwich: Take a slice of bread, add some bits of chicken, top it with another slice of bread.
- 4. Meatloaf Sandwich: Take a slice of bread, add 2 slices of meatloaf, top it with another slice of bread.

Are these really 4 different recipes?

Sandwich recipes

Let's look at my mom's sandwich recipes:

- 1. Ham Sandwich: Take a slice of bread, add 2 slices of ham, top it with another slice of bread.
- 2. Turkey Sandwich: Take a slice of bread, add 2 slices of turkey, top it with another slice of bread.
- 3. Chicken Sandwich: Take a slice of bread, add some bits of chicken, top it with another slice of bread.
- 4. Meatloaf Sandwich: Take a slice of bread, add 2 slices of meatloaf, top it with another slice of bread.

They look very similar, so let's generalize.

General Sandwich recipe

The only difference is the meat:

- 1. Take a slice of bread
- 2. Add some meat
- 3. Top it with another slice of bread.

What benefits do you see in making the recipe generic?

Functions

A function is a way to generalize an action Examples might be:

- making a sandwich (I'm sure somewhere robots do this...)
- adding two numbers
- saying hello to someone in the chat room (Slackbot)
- drawing a shape

Lab Example - Shapes

Last week we looked at drawing shapes.

We made a generalized solution by:

- repeating commands
- looking for patterns between shapes
- using the pattern to build a general draw polygon block.

Draw a square

Let's look at some *Snap!* code to draw a

square.

These block should look familiar from last week.

```
move 30 steps

turn 90 degrees

move 30 steps

Second side

turn 90 degrees

move 30 steps

Third side

turn 90 degrees

move 30 steps

Third side

turn 90 degrees

move 30 steps

Fourth side

pen up
```

Generalize with Repeat

We do the same thing to draw each of the 4 sides of the square.

So we can generalize by repeating the steps for drawing one side 4 times.

```
pen down
repeat 4
move 30 steps
turn 90 degrees
```

Making it bigger...

What if we want to draw bigger squares?

```
pen down
repeat 4
move 30 steps
turn 2 30 steps
turn 2 30 steps
turn 3 30 degrees
pen up
The only
difference is
the number
of steps to
move!
```

This is somewhat similar to our sandwich recipe.

Instead of a different meat, we have a different number of steps to move.

Generalize with Functions

Here we have a "draw square" block that takes a *variable* number for the side length.

```
+ draw + square + of + len + size +

pen down
repeat 4

move len steps

turn 2 90 degrees

pen up
```

```
draw square of 30 size
draw square of 50 size
draw square of 80 size
```

Making other shapes

To generalize, look at specific examples. Look for what is the same and what is different.

Square: pen down repeat 4 move 30 steps turn 2 90 degrees pen up

Triangle: We only need 3 sides

```
move 30 steps
turn 2 120 degrees

pen up

The angle is larger
```

Draw polygon

Once we discovered the pattern, we made a more general block to draw any polygon.

```
+draw+polygon+with+sides+sides+and+(length)+size+
pen down
repeat sides
move (length) steps
turn (2000) / sides degrees
pen up
```

Good functions

A good function has a few characteristics:

- descriptively named
- it is generalized repeatable & reusable
- conceptually, it does a single thing
- it is independent testable in isolation

Composition

When you have a function that does one thing, you might want to use it as part of another function that does something bigger.

Using one function inside of another function is composition.

Composition Example

- The "make sandwich" function might be used by the "make lunch" function
- The "make lunch" function might also be used by the "get ready for school" function
- It's even possible the "get ready for school" function does nothing but use other functions.

Lab Example

Draw flower uses the draw square block:

```
+ draw + square-leaved + flower + with + petals + petals + and + size + size + repeat petals | draw square size | turn (*) (360) / petals | degrees
```

```
+ draw + square + size +
pen down
repeat 4
move size steps
turn 2 90 degrees
pen up
```