ECE 3030 Spring 2025 HOMEWORK ASSIGNMENT NO. 9 DUE: Thursday, April 10th 11.59 pm SpeedGrader.

- 1. Assume that the JFET shown in Lecture 31, slide 7 is Si and has p^+ regions doped with 10^{18} acceptors/cm³ and a channel with 10^{16} donors/cm³. The channel half-width a is 1 um. Calculate the pinch-off voltage V_P and the built-in voltage V_{bi} , that is, the contact potential V_0 . What voltage V_{GD} is required to cause pinch-off when V_0 is included? Note: $-V_{GD}$ (pinch-off) is defined as the "threshold voltage" V_T . With $V_G = -3$ V, at what value of V_D does the current saturate? [Hint: New Gate Voltage $V_G \rightarrow V_G V_0$]
- 2. If the ratio Z/L = 10 for the JFET of Problem 1 and $\mu_n = 1000$ cm²/V-s, calculate $I_D(sat)$ for $V_G = 0$, -2, -4, and -6 V. Plot $I_D(sat)$ vs. $V_D(sat)$.
- 3. For the JFET of Problem 2, plot I_D vs. V_D for the same four values of V_G . Terminate each plot at the point of saturation.
- 4. (Extra Credit: 15 Points) Use the expressions for I_D and $I_D(sat.)$ on slides 10 and 11 of Lecture 31 respectively to calculate and plot ($I_D(V_D, V_G)$ at 300 K for a Si JFET with a=1000 Å, $N_D=7$ x 10^{17} cm⁻³, Z=100 μm , and L=5 μm . Allow V_D to range from 0 to 5 V, and allow V_G to take on the values 0, -1, -2, -3, -4, and -5 V.
- 5. Find the maximum depletion width, minimum capacitance C_i , and threshold voltage for an *ideal* MOS capacitor with a 10-nm gate oxide (SiO₂) on p-type Si with $N_a = 10^{16}$ cm⁻³.
- 6. (Extra Credit: 15 Points) An Al-gate p-channel MOS transistor is made on an n-type Si substrate with $N_d = 5 \times 10^{17} \text{ cm}^{-3}$. The SiO₂ thickness is 100 Å in the gate region, and the effective interface charge Q_i is $5 \times 10^{10} \text{ qC/cm}^2$.
 - (a) Find W_m , V_{FB} , and V_T .
 - (b) Sketch the C-V curve for this device and give important numbers for the scale.