Polymorphism, Subtyping, and Type Inference in MLsub

Stephen Dolan and Alan Mycroft November 8, 2016

Computer Laboratory University of Cambridge

The select function

select
$$p \ v \ d = if (p \ v)$$
 then v else d

In ML, select has type scheme

$$\forall \alpha. (\alpha \to \texttt{bool}) \to \alpha \to \alpha \to \alpha$$

2

Data flow in select

select $p \ v \ d = \text{if} \ (p \ v) \ \text{then} \ v \ \text{else} \ d$

Data flow in select

select $p \ v \ d = if (p \ v)$ then v else d

In MLsub, select has this type scheme:

$$\forall \alpha, \beta. (\alpha \to bool) \to \alpha \to \beta \to (\alpha \sqcup \beta)$$

3

The MLsub Type System

$\Gamma \vdash \mathsf{e} : au$

$\Gamma \vdash \mathsf{e} : \tau$

Expressions of MLsub

We have functions

$$x \lambda x.e e_1 e_2$$

... and records

$$\{\ell_1=e_1,\,\ldots,\,\ell_n=e_n\}\qquad e.\ell$$

... and booleans

true false if e_1 then e_2 else e_3

... and let

$$\hat{\mathbf{x}}$$
 let $\hat{\mathbf{x}} = e_1$ in e_2

,

Г⊢е: т

Typing rules of MLsub

MLsub is

9

Γ ⊢ e : *τ*

Constructing Types

The standard definition of types looks like:

$$\tau ::= \bot \mid \tau \to \tau \mid \top$$

(ignoring records and booleans for now)

Constructing Types

The standard definition of types looks like:

$$\tau ::= \bot \mid \tau \to \tau \mid \top$$

(ignoring records and booleans for now) with a subtyping relation like:

$$\frac{\tau_1' \le \tau_1 \quad \tau_2 \le \tau_2'}{\tau_1 \le \tau} \quad \frac{\tau_1' \le \tau_1 \quad \tau_2 \le \tau_2'}{\tau_1 \to \tau_2 \le \tau_1' \to \tau_2'}$$

Lattices

These types form a lattice:

- least upper bounds $\tau_1 \sqcup \tau_2$
- greatest lower bounds $\tau_1 \sqcap \tau_2$

Lattices

These types form a lattice:

- least upper bounds $\tau_1 \sqcup \tau_2$
- greatest lower bounds $\tau_1 \sqcap \tau_2$

$$\frac{e_1:\tau_1 \qquad e_2:\tau_2}{\text{if rand () then } e_1 \text{ else } e_2:\tau_1 \sqcup \tau_2}$$

Is this true, for all α ?

$$\alpha \to \alpha \le \bot \to \top$$

Is this true, for all α ?

$$\alpha \to \alpha \le \bot \to \top$$

How about this?

$$(\bot \to \top) \to \bot \le (\alpha \to \bot) \sqcup \alpha$$

Is this true, for all α ?

$$\alpha \to \alpha \le \bot \to \top$$

How about this?

$$(\bot \to \top) \to \bot \le (\alpha \to \bot) \sqcup \alpha$$

Yes, it turns out, by case analysis on α .

Is this true, for all α ?

$$\alpha \to \alpha < \bot \to \top$$

How about this?

$$(\bot \to \top) \to \bot \le (\alpha \to \bot) \sqcup \alpha$$

Yes, it turns out, by case analysis on α .

And only by case analysis.

Extensibility

Let's add a new type of function $\tau_1 \stackrel{\circ}{\to} \tau_2$.

Extensibility

Let's add a new type of function $\tau_1 \stackrel{\circ}{\to} \tau_2$.

It's a supertype of $au_1
ightarrow au_2$

"function that may have side effects"

Extensibility

Let's add a new type of function $\tau_1 \stackrel{\circ}{\to} \tau_2$.

It's a supertype of $au_1
ightarrow au_2$

"function that may have side effects"

Now we have a counterexample:

$$\alpha = (\top \stackrel{\circ}{\to} \bot) \stackrel{\circ}{\to} \bot$$

Extensible type systems

Two techniques give us an extensible system:

 Add explicit type variables as indeterminates gets rid of case analysis

Extensible type systems

Two techniques give us an extensible system:

- Add explicit type variables as indeterminates gets rid of case analysis
- Require a distributive lattice gets rid of vacuous reasoning

Combining types

How to combine different types into a single system?

$$\tau ::= \mathsf{bool} \mid \tau_1 \to \tau_2 \mid \{\ell_1 : \tau_1, \ldots, \ell_n : \tau_n\}$$

Combining types

How to combine different types into a single system?

$$\tau ::= \mathsf{bool} \mid \tau_1 \to \tau_2 \mid \{\ell_1 : \tau_1, \ldots, \ell_n : \tau_n\}$$

We should read '|' as coproduct

Concrete syntax

Build an actual syntax for types, by writing down all the operations on types:

$$\tau ::= \mathsf{bool} \mid \tau_1 \to \tau_2 \mid \{\ell_1 : \tau_1, \dots, \ell_n : \tau_n\} \mid$$
$$\alpha \mid \top \mid \bot \mid \tau \sqcup \tau \mid \tau \sqcap \tau$$

Concrete syntax

Build an actual syntax for types, by writing down all the operations on types:

$$\tau ::= \mathsf{bool} \mid \tau_1 \to \tau_2 \mid \{\ell_1 : \tau_1, \dots, \ell_n : \tau_n\} \mid$$
$$\alpha \mid \top \mid \bot \mid \tau \sqcup \tau \mid \tau \sqcap \tau$$

then quotient by the equations of distributive lattices, and the subtyping order.

Resulting types

We end up with all the standard types

Resulting types

We end up with all the standard types

... with the same subtyping order

Resulting types

We end up with all the standard types

... with the same subtyping order

... but we identify fewer of the weird types

$$\{foo: bool\} \sqcap (\top \rightarrow \top) \not\leq bool$$

Principality

$\Gamma \vdash \mathsf{e} : \tau$

Principality in ML

Intuitively,

For any e typeable under Γ , there's a best type τ

Principality in ML

Intuitively,

For any e typeable under Γ , there's a best type τ

but it's a bit more complicated than that:

For any e typeable under Γ , there's a τ and a substitution σ such that every possible typing of e under Γ is a substitution instance of $\sigma\Gamma$, τ .

Reformulating the typing rules

The complexity arises because Γ is part question, part answer.

Reformulating the typing rules

The complexity arises because Γ is part question, part answer.

Instead, split Γ:

- Δ maps λ -bound x to a type τ
- Π maps let-bound $\hat{\mathbf{x}}$ to a *typing schemes* $[\Delta]\tau$

 $\Pi \Vdash e : [\Delta]\tau$

Subsumption

Define \leq^{\forall} as the least relation closed under:

- Instatiation, replacing type variables with types
- Subtyping, replacing types with supertypes

Principality in MLsub

A principal typing scheme for e under Π is a $[\Delta]\tau$ that subsumes any other.

choose takes two values and returns one of them:

choose :
$$\forall \alpha.\alpha^1 \rightarrow \alpha^2 \rightarrow \alpha^3$$

choose takes two values and returns one of them:

choose :
$$\forall \alpha.\alpha^1 \rightarrow \alpha^2 \rightarrow \alpha^3$$

In ML, $\alpha^1 = \alpha^2 = \alpha^3$.

With subtyping, $\alpha^1 \leq \alpha^3$, $\alpha^2 \leq \alpha^3$, but α^1 and α^2 may be incomparable.

choose takes two values and returns one of them:

choose :
$$\forall \alpha.\alpha^1 \rightarrow \alpha^2 \rightarrow \alpha^3$$

In ML,
$$\alpha^1 = \alpha^2 = \alpha^3$$
.

With subtyping, $\alpha^1 \leq \alpha^3$, $\alpha^2 \leq \alpha^3$, but α^1 and α^2 may be incomparable.

choose :
$$\forall \alpha \beta. \alpha \rightarrow \beta \rightarrow \alpha \sqcup \beta$$

choose takes two values and returns one of them:

choose :
$$\forall \alpha.\alpha^1 \rightarrow \alpha^2 \rightarrow \alpha^3$$

In ML,
$$\alpha^1 = \alpha^2 = \alpha^3$$
.

With subtyping, $\alpha^1 \leq \alpha^3$, $\alpha^2 \leq \alpha^3$, but α^1 and α^2 may be incomparable.

choose :
$$\forall \alpha \beta. \alpha \rightarrow \beta \rightarrow \alpha \sqcup \beta$$

These are equivalent (\equiv^{\forall}): subsume each other

Type Inference with Polar Types

Input and output types

```
\tau \sqcup \tau': produces a value which is a \tau or a \tau' \tau \sqcap \tau': requires a value which is a \tau and a \tau'
```

 \sqcup is for outputs, and \sqcap is for inputs.

Input and output types

```
\tau \sqcup \tau': produces a value which is a \tau or a \tau' \tau \sqcap \tau': requires a value which is a \tau and a \tau'
```

 \sqcup is for outputs, and \sqcap is for inputs.

Divide types into

- output types τ^+
- input types τ^-

Polar types

$$\tau^{+} ::= \text{bool} \mid \tau_{1}^{-} \to \tau_{2}^{+} \mid \{\ell_{1} : \tau_{1}^{+}, \dots, \ell_{n} : \tau_{n}^{+}\} \mid$$

$$\alpha \mid \tau_{1}^{+} \sqcup \tau_{2}^{+} \mid \bot \mid \mu \alpha. \tau^{+}$$

$$\tau^{-} ::= \text{bool} \mid \tau_{1}^{+} \to \tau_{2}^{-} \mid \{\ell_{1} : \tau_{1}^{-}, \dots, \ell_{n} : \tau_{n}^{-}\} \mid$$

$$\alpha \mid \tau_{1}^{-} \sqcap \tau_{2}^{-} \mid \top \mid \mu \alpha. \tau^{-}$$

Cases of unification

In HM inference, unification happens in three situations:

Unifying two input types

Unifying two output types

 Using the output of one expression as input to another

Cases of unification

In HM inference, unification happens in three situations:

- Unifying two input types

 Introduce
- Unifying two output types

 Introduce □
- Using the output of one expression as input to another

$$\tau^+ \leq \tau^-$$
 constraint

Suppose we have an identity function

Suppose we have an identity function, which uses its argument as a τ

$$\alpha \to \alpha \mid \alpha = \tau$$

Suppose we have an identity function, which uses its argument as a τ

$$\alpha \to \alpha \mid \alpha = \tau$$
$$\equiv^\forall \tau \to \tau$$

Suppose we have an identity function, which uses its argument as a τ

$$\alpha \to \alpha \mid \alpha = \tau$$
$$\equiv^{\forall} \tau \to \tau$$

The substitution $[\tau/\alpha]$ solves the constraint $\alpha = \tau$

"solves?"

What does it mean to **solve** a constraint?

1. $[\tau/\alpha]$ trivialises the constraint $\alpha=\tau$ (it is a *unifier*), and all other unifiers are an instance of it (it is a *most general unifier*)

"solves?"

What does it mean to **solve** a constraint?

- 1. $[\tau/\alpha]$ trivialises the constraint $\alpha = \tau$ (it is a *unifier*), and all other unifiers are an instance of it (it is a *most general unifier*)
- 2. For any type τ' , the following sets agree: the instances of τ' , subject to $\alpha=\tau$ the instances of $[\tau/\alpha]\tau'$

Suppose we have an identity function, which uses its argument as a τ^- .

$$\alpha \to \alpha \mid \alpha \le \tau^-$$

Suppose we have an identity function, which uses its argument as a τ^- .

$$\alpha \to \alpha \mid \alpha \le \tau^{-}$$

$$\equiv^{\forall} (\alpha \sqcap \tau^{-}) \to (\alpha \sqcap \tau^{-})$$

Suppose we have an identity function, which uses its argument as a τ^- .

$$\alpha \to \alpha \mid \alpha \le \tau^{-}$$

$$\equiv^{\forall} (\alpha \sqcap \tau^{-}) \to (\alpha \sqcap \tau^{-})$$

$$\equiv^{\forall} (\alpha \sqcap \tau^{-}) \to \alpha$$

Suppose we have an identity function, which uses its argument as a τ^- .

$$\alpha \to \alpha \mid \alpha \le \tau^{-}$$

$$\equiv^{\forall} (\alpha \sqcap \tau^{-}) \to (\alpha \sqcap \tau^{-})$$

$$\equiv^{\forall} (\alpha \sqcap \tau^{-}) \to \alpha$$

The bisubstitution $[\alpha \sqcap \tau^-/\alpha^-]$ solves $\alpha \leq \tau^-$

Decomposing constraints

We only need to decompose constraints of the form $\tau^+ < \tau^-$.

$$\tau_1 \sqcup \tau_2 \le \tau_3 \equiv \tau_1 \le \tau_3, \ \tau_2 \le \tau_3$$

$$\tau_1 \le \tau_2 \sqcap \tau_3 \equiv \tau_1 \le \tau_2, \ \tau_1 \le \tau_3$$

Thanks to the input/output type distinction, the hard cases of $\tau_1 \sqcap \tau_2 \leq \tau_3$ and $\tau_1 \leq \tau_2 \sqcup \tau_3$ can never come up.

Combining solutions

We solve a system of multiple constraints C_1 , C_2 by:

- Solving C_1 , giving a bisubstitution ξ
- Applying that to C_2
- Solving ξC_2 , giving a bisubstitution ζ

Then $\xi \circ \zeta$ solves the system C_1 , C_2 .

Putting it all together

biunify(C) takes a set of constraints C, and produces a bisubstitution solving them.

$$\begin{aligned} \operatorname{biunify}(\emptyset) &= [] \\ \operatorname{biunify}(\alpha \leq \alpha, C) &= \operatorname{biunify}(C) \\ \operatorname{biunify}(\alpha \leq \tau, C) &= \operatorname{biunify}(\theta_{\alpha \leq \tau} H; \ \theta_{\alpha \leq \tau} \ C) \circ \theta_{\alpha \leq \tau} \\ \operatorname{biunify}(\tau \leq \alpha, C) &= \operatorname{biunify}(\theta_{\tau \leq \alpha} H; \ \theta_{\tau \leq \alpha} \ C) \circ \theta_{\tau \leq \alpha} \\ \operatorname{biunify}(c, C) &= \operatorname{biunify}(\operatorname{decompose}(c), C) \end{aligned}$$

Putting it all together

biunify (C) takes a set of constraints C, and produces a bisubstitution solving them.

$$\begin{aligned} \operatorname{biunify}(\emptyset) &= [] \\ \operatorname{biunify}(\alpha \leq \alpha, C) &= \operatorname{biunify}(C) \\ \operatorname{biunify}(\alpha \leq \tau, C) &= \operatorname{biunify}(\theta_{\alpha \leq \tau} H; \ \theta_{\alpha \leq \tau} \ C) \circ \theta_{\alpha \leq \tau} \\ \operatorname{biunify}(\tau \leq \alpha, C) &= \operatorname{biunify}(\theta_{\tau \leq \alpha} H; \ \theta_{\tau \leq \alpha} \ C) \circ \theta_{\tau \leq \alpha} \\ \operatorname{biunify}(c, C) &= \operatorname{biunify}(\operatorname{decompose}(c), C) \end{aligned}$$

Replace the \leq with = and we have Martelli and Montanari's unification algorithm.

Summary

MLsub infers types by walking the syntax of the program, but must deal with subtyping constraints rather than just equalities. Thanks to:

- algebraically well-behaved types
- \bullet polar types, restricting occurrences of \sqcup and \sqcap
- a careful definition of "solves"

the biunify algorithm can always handle these constraints, producing a principal type.

Questions?

http://www.cl.cam.ac.uk/~sd601/mlsub stephen.dolan@cl.cam.ac.uk

Mutable references

References are generally considered "invariant".

Instead, consider ref a two-argument constructor

$$(\alpha,\beta)$$
 ref

with operations: