```
Seminar 2 - LHDE with court coeff.
        · x1+cx=0
                                                                                           Lecture 3. (82) \ - find the roots \ \( \sigma \) \ - gen solution
       \infty \infty 100
  To remember:
1.4.2

p) e st
         e-3t_s root
                                                                                                                                                 J=P (12+3)(12-5)=0

If the characteristic ep.
          est -> r=5 root
                                                                                                                                                                       12-22-15=0
                                                                                                                                    => x"-2x'-15x=0.
                                                                                                                                                                                   the diffee
            The solution:

12=C1e-3t+c2est, C1, CeCR
(b) 5e^{-3t} and -3e^{5t}

5e^{-3t} = sol (=) e^{-3t} = sol = sol
```

c) $5e^{-3t} - 3e^{5t}$ who of a LDHE with const coef $2=3e^{-3t}$ and e^{5t} solutions =0 (e) = (a)d) 5 te 3t and -3et rol $\frac{1}{e^{-3t}} + e^{-3t} = 100$ $e^{-3t} = 100$ ri=-3 plouble root; r2=5 simple root (of the characteristic graation) => the characteristic eq: (k+3) (k-5)=0. $(-)(2^2+62+9)(6-5)=0$ (=) 23+622+92-522-302-45=0 (=) 23+22-212-45=0 5c''' + x'' - 21 x' - 45x = 0.=> The LDHE: $x = c_1 e^{-3t} + c_2 + e^{-3c} + c_3 e^{3t}$ The solution: $c_1, c_2, c_3 \in \mathbb{R}$. f) $(5-3t)e^{-3t} = 5e^{-3t} - 3te^{-3t} = solution$ L=) e-3t pond te-3t solutions =) /2=-3 plansle =D The charact-eg: (12+3)2=0 たった49=0 = P The diff. eg. x'' + 6x' + 9x = 0. The gen. ml: $x(t) = c_1e^{-3t} + c_2te^{-3t}$, $c_1c_2 \in \mathbb{R}$

b) sin 3t = sol (=) h₁₁₂ = ± 3i roots of the charact ep The characteristie ep: (12-3i)(14-3i)=0. $\chi^2 - (3i)^2 = 0$ 2+9=0 the diff. eg: x'' + 9x = 0The general solution: $x = -(-1)\cos 3t + (-2)\sin 3t$, $x \in \mathbb{R}$ o) (t-1) solution (=) t2-2t+1 = solution UFP 1, t, to are solutions (=) r=0 is a triple root => the characteristic eg: $t^3=0$. => the diff og: \int =0. the general solution: x=C1+C2+C3+2 C1, C2, C3 E R.

$$(2) \begin{cases} x'' + \pi^2 x = 0 \\ x(o) = 0 \end{cases} \qquad (n \in \mathbb{R}) \text{ find perametel}$$

$$x'' + \pi^2 x = 0 \qquad =) \qquad x = c_1 \cos(\pi t) + c_2 \sin(\pi t) + c_3 \sin(\pi t) + c_4 \sin(\pi t) + c_4 \sin(\pi t) + c_5 \cos(\pi t)$$

$$\begin{array}{lll} \frac{1}{1} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

=> Gen. sol:

 $\begin{array}{l} b) \int x'' + x = 0 \\ \chi(0) = \chi(1) = 0 \\ \\ \downarrow \chi(0) = C_1 \text{ sin } 0 + K_2 \text{ cas } 0 = 0 \\ \\ \chi(1) = C_1 \text{ sin } 1 = 0 = 0 \\ \\ \chi(1) = C_1 \text{ sin } 1 = 0 = 0 \\ \end{array}$ =D Cy=Ce=O. =) 2=0 the unique solution of the BUP. 1.4.6 $\lambda \in \mathbb{R}$, $\lambda = ?$ such that the equation: $\chi'' + \lambda \chi = 0$ has non-null $2\bar{u}$ -periodic solutions. Solution: 20"+ 2x=0 -the characteristic ep: 12+2=0. (1) 12=-2

Case 1: 20, 12=±i12 -> cos (1/2+)

Lase 1: 20, 11:2=±i12 -> cos (1/2+) => The general solution: sc=q.cos (JIt) + re sin (Jot) The main period of cos (Vat) is $\frac{2u}{\sqrt{x}}$ $\frac{2u}{\sqrt{x}}$. In , $\frac{2u}{\sqrt{x}}$. Thus any period has the form: $\frac{2u}{\sqrt{x}}$. In , $\frac{2u}{\sqrt{x}}$. Thus hugh there is $\frac{2u}{\sqrt{x}}$. : T = 21 = period From hyphothesis $=) \sqrt{\lambda} = M =)(\lambda m = m^2), m \in \mathbb{N}$ = 24. M = 20

Case 2:
$$\lambda = 0$$
 =) $x'' = 0$ =) $h^2 = 0$ =) $h_{12} = 0$.

double not

 $\frac{1}{2} + \frac{1}{2} + \frac{$

1.4,+. $\mu \in \mathbb{R}$, $\omega > 0$, $\chi'' + \mu \chi' + \omega^2 \chi = 0$ p=? such that the equation has non-sull periodic solutions. Solution: The characteristic equation: $r^2 + \mu r + \omega^2 = 0$.

The characteristic equation: $r^2 + \mu r + \omega^2 = 0$. $\Delta > 0$, $r_1, r_2 \in \mathbb{R}$, $r_1 \neq r_2 \longrightarrow e^{r_1 t}$; $e^{r_2 t}$. $r_{1/2} \in \mathbb{R}$, $r_1 = r_2$ (double) $\rightarrow e^{rt}$; te^{rt} . e \[\square = 0 , Miz=x+ip &R -> extcospt; extsimpt A second order LHDE with constant coefficients has periodic solutions <=> D<0 and Re(root)=0. Here, in our case $\Delta = \mu^2 - 4\omega^2 < 0$ => $\lambda_{1/2} = x \pm i\beta$ $\lambda_{1/2} = 2x = 0$, but $\lambda_{1} + \lambda_{2} = -\mu$ (Viete) Tollows that the equation has periodic sol =D x 4 + co 2c =0

$\frac{1.4.8}{2}$ $\mu \in \mathbb{R}$, $\omega > 0$ $2^{1} + \mu 2^{1} + \omega^{2} x = 0$.
$\frac{1.4.8}{\mu=?} \mu \in \mathbb{R}, \omega \geq 0 \int x'' + \mu x' + \omega^2 x = 0.$ $\mu=? \omega = ? \text{such that } \lim_{k \to \infty} x(t) = 0 \text{for } \forall \text{ sol } x.$
Solutieu:
From hypothesis: line x(t)=0 + sol x.
$\Delta 70$, $\lambda_1 co; \lambda_2 co.$
$\int_{A} \Delta = 0 \qquad , & < 0 \qquad .$
$\sqrt{\Delta co}$, \sqrt{co} .
$\frac{\text{Vie'te}}{\text{Mie'te}} \begin{cases} \gamma_4 + \gamma_2 = -\mu \\ \gamma_4 \gamma_2 = \omega > 0 \end{cases}$
Case 1: $\Delta > 0$ and $h_1 < 0$, $h_2 < 0$ (=) - $\mu < 0$ (=) $\mu > 0$ Case 2: $\Delta = 0$ and $h_4 = h_2 = h_4 < 0$ (=) - $\mu < 0$ (=) $\mu > 0$
Case 2; $\Delta = 0$ and $\lambda_1 = /22 = /2$
$(=) \begin{cases} x_1 + x_2 = 2x < 0 \\ x_1 \cdot x_2 = x + x^2 = 0 \end{cases}$
D'Conclusion: any sol - 20 (=) M >0