# Analisi III

#### Paolo Bettelini

# Contents

1 Successione di funzioni 1

2 Serie di funzioni 2

# 1 Successione di funzioni

#### Definizione Successione di funzioni

Una successione di funzioni è una famiglia di funzioni  $\{f_n\}_{n\in\mathbb{N}}$  definite su un dominio comune  $f_n\colon D\to\mathbb{R}$ .

#### Definizione Convergenza in un punto

Sia  $\{f_n\}_{n\in\mathbb{N}}$  una successione di funzioni. La successione converge in un punto  $x_0$  se

$$\lim_{n\to\infty} f_n(x_0) < \infty$$

### **Definizione** Convergenza puntuale

Sia  $\{f_n\}_{n\in\mathbb{N}}$  una successione di funzioni. La successione converge puntualmente ad una funzione  $f\colon D\to\mathbb{R}$  se

$$\forall x \in D, \lim_{n \to \infty} f_n(x) = f(x)$$

Quindi la successione converge in ogni punto, ma la velocità di convergenza può dipenderere dal punto.

## **Definizione** Convergenza uniforme

Sia  $\{f_n\}_{n\in\mathbb{N}}$  una successione di funzioni. La successione converge uniformemente ad una funzione  $f\colon D\to\mathbb{R}$  se

$$\sup_{x \in D} |f_n(x) - f(x)| \to 0$$

per  $n \to \infty$ .

Quindi la velocità di convergenza è la stessa in ogni punto.

## Definizione Convergenza uniformemente di Cauchy

Sia  $\{f_n\}_{n\in\mathbb{N}}$  una successione di funzioni. La successione è uniformemente di Cauchy se

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \mid \forall n, m > N, \sup_{x \in D} |f_n(x) - f_m(x)| < \varepsilon$$

A partire da un certo indice, tutte le funzioni della successione sono molto vicine tra loro in modo uniforme su tutto D, indipendentemente dalla funzione limite.

### Teorema Convergenza uniforme e convergenza uniformemente di Cauchy

Sia  $\{f_n\}_{n\in\mathbb{N}}$  una successione di funzioni. Se la successione è uniformemente di Cauchy allora è uniformemente convergente.

#### **Teorema**

Sia  $f_n \colon [a,b] \to \mathbb{R}$  una successione di funzioni R-integrabili dove  $f_n \to f$  in [a,b]. Allora f è R-integrabile e

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \int_{a}^{b} f(x) dx$$

#### **Teorema**

Sia  $f_n \colon [a,b] \to \mathbb{R}$  una successione di funzioni derivabili. Supponiamo che:

- 1.  $\exists x_0 \in [a, b]$  tale che  $f_n$  converge in  $x_0$ ;
- 2.  $f'_n$  converge uniformemente in g a [a, b].

Allora,

- 1.  $f_n$  converge uniformemente a f in [a, b];
- 2. f è derivabile;
- 3. f'(x) = g(x) per ogni  $x \in [a, b]$ .

# 2 Serie di funzioni

## **Definizione** Convergenza uniforme

La serie di funzioni  $\sum_{n=1}^{\infty} f_n(x)$  converge uniformemente ad una funzione S(x) se la successione delle somme parziali

$$S_N(x) = \sum_{n=1}^N f_n(x)$$

converge uniformemente a S(x), ovvero se

$$S_N(x) - S(x) \to 0$$

per  $N \to \infty$ .

È più forte della convergenza puntuale.

#### **Definizione** Convergenza totale

Una serie di funzioni  $\sum_{n=1}^{\infty} f_n(x)$  converge totalmente su un insieme D se la serie di norme

$$\sum ||f_n||_{\infty}$$

converge.

Ricordiamo che in generale la norma

$$||f||_p=\left(\int\limits_a^b|f(x)|^p\,dx\right)^{\frac{1}{p}},\quad 1\leq p<\infty$$
e per  $p=\infty$  
$$||f||_\infty=\sup_{x\in D}|f(x)|$$