제2장 화폐의 시간적 가치

이 장의 개요

- ❖ 화폐의 시간적 가치와 이자율
- ❖ 미래가치의 개념과 복리계산
- ❖ 현재가치의 개념과 할인
- ❖ 동일한 현금흐름의 가치평가: 연금과 영구연금
- ❖ 연실효이자율과 연표시이자율

화폐의 시간적 가치(time value of money)

[예]	0시점(현재)	20년후
A 투자안	10억	0
B 투자안	0	10억

• 동일한 1원이라도 오늘의 1원이 내일의 1원보다 보다 가치가 있다. 그 이유는? 유동성 선호 현상(liquidity preference)

화폐의 시간적 가치(time value of money)

- -동일한 금액(CF)이라도 발생시점이 다르면 가치가 다르다
- → 동일한 시점의 CF으로 환산해야 비교가 가능
 - ① 미래가치 계산

▶ 환산율 → 시장이자율

- ② 현재가치 계산
- ③ 연금의 미래가치 계산
- ④ 연금의 현재가치 계산

화폐의 시간적 가치와 이자율

- 현재가치(present value)
 - 미래의 일정금액과 동일한 가치를 가지는 현재의 금액
- 미래가치(future value)
 - 현재의 금액을 미래시점에서 평가한 가치
- 이자율(interest rate)
 - 현재의 금액과 미래에 받을 금액의 교환율
 - 화폐의 시간적 가치를 나타내는 척도

화폐의 시간적 가치와 이자율

이자율은 다음가 같은 표현을 갖고 있기도 하다.

- 이자율(interest rate)
 - 현재시점의 금액을 미래의 금액으로 환산할 때
- 할인율(discount rate)
 - 미래의 금액을 현재의 금액으로 환산할 때
- 자본비용 (cost of capital)
 - 기업이 조달한 자금에 대하여 지불해야 하는 비용
- 요구수익률(required rate of return)
 - 자본을 공급한 사람들이 요구하는 수익률

미래가치니

- 연12% 수익률을 갖는 일년 짜리 투자안에 100만원을 투자했다고 하자.
 일 년 후 투자금액의 미래가치는 얼마인가?
 - 이자 = 100만원 x 0.12 = 12만원
 - 1년 후의 가치 = 원금(principal) + 이자(interest)

- 미래가치 (FV₁) = 100만원 x (1 + 0.12) =
- 일년 더 돈을 투자했다고 가정하자. 지금으로부터 2년 뒤의 금액은 얼마가 되겠는가?
 - 미래가치(FV₂) =

미래가치: 일반 공식

미래가치와 복리계산과정

미래가치: $FV_n = PV_0(1+r)^n = PV_0 \times FVIF_{r,n}$

(1+r)ⁿ: FVIF_{r,n}미래가치이자요소(future-value interest factor)

부표-1 (292쪽)

┃부표-1┃ 복리표

					0	자 율				
기간	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
1	1,0100	1,0200	1.0300	1.0400	1.0500	1,0600	1.0700	1.0800	1.0900	1.1000
2	1,0201	1,0404	1,0609	1.0816	1.1025	1.1236	1.1449	1.1664	1.1881	1.2100
3	1,0303	1.0612	1.0927	1.1249	1.1576	1.1910	1.2250	1.2597	1.2950	1.3310
4	1.0406	1.0824	1,1255	1.1699	1,2155	1.2625	1,3108	1.3605	1.4116	1.4641
5	1.0510	1,1041	1.1593	1.2167	1.2763	1.3382	1.4026	1.4693	1,5386	1.6105
6	1.0615	1,1262	1.1941	1.2653	1.3401	1,4185	1.5007	1,5869	1.6771	1.7716
7	1.0721	1.1487	1,2299	1.3159	1.4071	1.5036	1.6058	1.7138	1.8280	1.9487
8	1.0829	1,1717	1.2668	1.3686	1,4775	1.5938	1.7182	1.8509	1.9926	2.1436
9	1.0937	1,1951	1.3048	1.4233	1.5513	1,6895	1.8385	1.9990	2.1719	2.3579
10	1.1046	1.2190	1.3439	1,4802	1.6289	1.7908	1.9672	2.1589	2.3674	2.5937
11	1.1157	1.2434	1.3842	1.5395	1.7103	1.8983	2.1049	2.3316	2.5804	2.8531
12	1.1268	1,2682	1,4258	1.6010	1.7959	2.0122	2.2522	2.5182	2,8127	3.1384
13	1,1381	1.2936	1.4685	1.6651	1.8856	2.1329	2.4098	2.7196	3.0658	3.4523
14	1.1495	1.3195	1,5126	1.7317	1.9799	2.2609	2.5785	2.9372	3.3417	3.7975
15	1.1610	1,3459	1.5580	1,8009	2.0789	2.3966	2.7590	3.1722	3,6425	4.1772
16	1.1726	1,3728	1.6047	1.8730	2.1829	2.5404	2.9522	3.4259	3.9703	4.5950
17	1.1843	1.4002	1,6528	1.9479	2.2920	2.6928	3.1588	3.7000	4.3276	5.0545
18	1.1961	1.4282	1.7024	2.0258	2.4066	2,8543	3.3799	3.9960	4.7171	5.5599
19	1.2081	1.4568	1,7535	2.1068	2,5270	3.0256	3.6165	4.3157	5.1417	6.1159
20	1.2202	1,4859	1,8061	2.1911	2.6533	3,2071	3.8697	4.6610	5.6044	6.7275
21	1.2324	1,5157	1.8603	2.2788	2.7860	3.3996	4.1406	5.0338	6.1088	7.4002
22	1.2447	1.5460	1.9161	2.3699	2.9253	3.6035	4.4304	5.4365	6.6586	8.1403
23	1.2572	1.5769	1.9736	2.4647	3.0715	3.8197	4.7405	5.8715	7.2579	8.9543
24	1.2697	1.6084	2.0328	2.5633	3.2251	4.0489	5.0724	6.3412	7.9111	9.8497
25	1.2824	1.6406	2.0938	2.6658	3.3864	4.2919	5.4274	6.8485	8.6231	10.835
30	1.3478	1,8114	2.4273	3.2434	4.3219	5.7435	7,6123	10.063	13,268	17.449
40	1,4889	2.2080	3.2620	4.8010	7.0400	10.286	14.974	21.725	31.409	45.259
50	1.6446	2.6916	4.3839	7.1067	11,467	18,420	29.457	46.902	74,358	117.39
50	1.8167	3.2810	5.8916	10.520	18.679	32,988	57.946	101,26	176.03	304.48

복리이자요소 $(CVIF_{r,n}) = (1+r)^n$

7171	이자율											
기간	12%	14%	15%	16%	18%	20%	24%	28%	32%	36%		
1	1.1200	1.1400	1.1500	1.1600	1.1800	1,2000	1.2400	1,2800	1,3200	1,360		
2	1.2544	1.2996	1.3225	1,3456	1.3924	1.4400	1,5376	1.6384	1.7424	1,849		
3	1.4049	1.4815	1.5209	1.5609	1.6430	1.7280	1.9066	2.0972	2,3000	2,515		
4	1.5735	1.6890	1.7490	1.8106	1.9388	2.0736	2.3642	2.6844	3,0360	3,421		
5	1.7623	1.9254	2.0114	2.1003	2.2878	2.4883	2.9316	3.4360	4.0075	4.652		
6	1.9738	2.1950	2.3131	2,4364	2.6996	2.9860	3,6352	4.3980	5.2899	6.327		
7	2.2107	2.5023	2.6600	2.8262	3.1855	3,5832	4.5077	5.6295	6.9826	8,605		
8	2.4760	2.8526	3,0590	3.2784	3.7589	4.2998	5.5895	7.2058	9,2170	11.70		
9	2.7731	3.2519	3.5179	3.8030	4.4355	5.1598	6.9310	9.2234	12.166	15.91		
10	3.1058	3.7072	4.0456	4.4114	5.2338	6.1917	8.5944	11.806	16.060	21.64		
11	3.4785	4.2262	4.6524	5.1173	6.1759	7.4301	10.657	15.112	21.199	29.43		
12	3.8960	4.8179	5.3503	5.9360	7.2876	8.9161	13.215	19.343	27.983	40.03		
13	4.3635	5.4924	6.1528	6.8858	8.5994	10.699	16.386	24.759	36.937	54.45		
14	4.8871	6.2613	7.0757	7.9875	10.147	12.839	20,319	31,691	48.757	74.05		
15	5.4736	7.1379	8,1371	9.2655	11.974	15.407	25.196	40.565	64.359	100.7		
16	6.1304	8.1372	9.3576	10.748	14.129	18,488	31.243	51.923	84.954	136.9		
17	6.8660	9.2765	10.761	12.468	16.672	22.186	38.741	66.461	112.14	186.2		
18	7.6900	10.575	12,375	14.463	19.673	26.623	48.039	85.071	148.02	253.3		
19	8.6128	12.056	14.232	16.777	23.214	31.948	59.568	108.89	195.39	344.5		
20	9.6463	13.743	16,367	19.461	27.393	38.338	73.864	139.38	257.92	468.5		
21	10,804	15.668	18,822	22.574	32.324	46.005	91.592	178.41	340.45	637.2		
22	12.100	17.861	21.645	26.186	38.142	55.206	113.57	228.36	449.39	866.6		
23	13.522	20,362	24.891	30.376	45.008	66.247	140.83	292.30	593.20	1178		
24	15.179	23.212	28.625	35,236	53.109	79.497	174.63	374.14	783.02	1603		
25	17,000	26.462	32.919	40.874	62.669	95.396	216.54	478.90	1033.6	2180		
30	29.960	50.950	66.212	85.850	143.37	237.38	634.82	1645.5	4142.1	1014		
40	93.051	188.88	267.86	378.72	750.38	1469.8	5455.9	19427.	66521.			
50	289.00	700.23	1083.7	1670.7	3927.4	9100.4	46890.	*	*	-		
60	897.60	2595.9	4384.0	7370.2	20555.	56348.	*	*	*			

복리 계산의 효과

- 단리 (simple interest): 이자가 재투자 되지 않고 매기간마다 원금에 대해서만 이자가 발생하는 것.
- 복리 (compound interest) : 최초의 원금과 전번 기에 얻은 이자를 재투자한 것에 대해 얻는 이자
- 앞의 예를 통해 보면
 - 2년 후 단리로 계산한 미래가치 = 100 + 12 + 12 = 124만원
 - 2년 후 복리로 계산한 미래가치 = 100(1+0.12)² = 125만4,400원
 - 단리와 복리의 차이인 14,400원은 12만원(0.12) = 14,400원으로 이것은 첫 번째 해에 받은 **이자에 대한 이자**이다.

미래가치-

- 앞의 문제에서 100만원을 5년 동안 투자한다고 하면 얼마가 되겠는가?
 - $FV_5 =$
- 복리의 효과는 기간의 수가 적을 때는 작지만, 기간의 수가 증가할수록 커진다.
 (단리의 경우에 미래가치는 162,340원 적은 160만원이 될 것이다)

현재가치

- 미래에 어떤 크기의 금액을 얻기 위해 지금 얼마를 투자해야 하는가?
 - $FV_n = PV_0 (1 + r)^n$
 - 현재가치에 대해 다시 정리하면, $PV_0 = FV_n / (1 + r)^n$
- **할인한다**는 것은 미래 현금흐름에 대해서 그 현재가치를 구하는 과정을 의미한다.
- 어떤 것의 가치에 대해 얘기할 때, 특별히 미래가치라고 말하지 않는 경 우에는 언제나 현재가치를 말하는 것이다.

현재가치

현재가치와 할인계산과정

현재가치:
$$PV_0 = \frac{FV}{(1+r)^n} = FV_n \times PVIF_{r,n}$$

$$\frac{1}{(1+r)^n}$$
 : $PVIF_{r,n}$ 현가이자요소(present-value interest factor)

부표-3 (296쪽)

▮부표-3▮ 현가표

					이지	나율				
기간	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
1	0,9901	0.9804	0,9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091
2	0,9803	0.9612	0.9426	0.9246	0.9070	0.8900	0.8734	0.8573	0.8417	0.826
3	0.9706	0.9423	0.9151	0.8890	0.8638	0.8396	0.8163	0.7938	0.7722	0.7513
4	0.9610	0,9238	0,8885	0.8548	0.8227	0.7921	0.7629	0.7350	0.7084	0.683
5	0.9515	0.9057	0.8626	0.8219	0.7835	0.7473	0.7130	0.6806	0.6499	0.620
,	0.0/20	0 0000	0.8375	0.7903	0.7462	0.7050	0.6663	0,6302	0.5963	0.564
6	0.9420	0.8880	0.8131	0.7599	0.7107	0,6651	0.6227	0.5835	0,5470	0.513
7	0.9327	0.8706	0.7894	0.7307	0.6768	0.6274	0.5820	0.5403	0.5019	0.466
8	0.9235	0.8535		0.7026	0.6446	0,5919	0.5439	0.5002	0.4604	0.424
9	0.9143	0.8368	0.7664	0.6756	0.6139	0.5584	0.5083	0.4632	0.4224	0.385
11	0.8963	0,8043	0,7224	0.6496	0.5847	0.5268	0.4751	0.4289	0.3875	0.350
		0.7885	0.7224	0.6246	0,5568	0.4970	0.4440	0.3971	0.3555	0.318
12	0.8874	0.7730	0.6810	0.6006	0,5303	0,4688	0,4150	0.3677	0.3262	0.289
13	0.8700	0.7579	0.6611	0.5775	0.5051	0.4423	0.3878	0.3405	0.2992	0.263
14 15	0.8613	0.7430	0.6419	0.5553	0.4810	0.4173	0.3624	0.3152	0.2745	0.239
10	0,0010									
16	0.8528	0.7284	0.6232	0.5339	0,4581	0.3936	0.3387	0.2919	0.2519	0.21
17	0.8444	0.7142	0,6050	0.5134	0.4346	0.3714	0.3166	0.2703	0.2311	0.19
18	0.8360	0.7002	0.5874	0.4936	0.4155	0.3503	0.2959	0.2502	0.2120	0.17
19	0.8277	0.6864	0.5703	0.4746	0.3957	0,3305	0.2765	0.2317	0.1945	0.163
20	0.8195	0.6730	0.5537	0.4564	0.3769	0.3118	0.2584	0.2145	0.1784	0.14
21	0,8114	0.6598	0.5375	0.4388	0.3589	0.2942	0.2415	0.1987	0.1637	0.13
22	0,8034	0.6468	0.5219	0.4220	0.3418	0.2775	0.2257	0,1839	0.1502	0.12
23	0.7954	0.6342	0.5067	0.4057	0.3256	0.2618	0.2109	0.1703	0.1378	0.11
24	0.7876	0.6217	0.4919	0.3901	0.3101	0.2470	0.1971	0.1577	0.1264	0.10
25	0.7798	0.6095	0.4776	0.3751	0.2953	0.2330	0.1842	0.1460	0.1160	0.09
30	0.7419	0.5521	0.4120	0,3083	0,2314	0.1741	0.1217	0.0004	0.0754	0.05
40	0.6717	0.4529	0.3066	0.2083	0.1420		0.1314	0.0994		0.02
50	0.6080	0.3715	0,2281	0.2003	0.1420	0.0972	0.0668	0.0460	0.0318	0.00
	3.0000	0,0710	0,2201	0.1407	0.0072	0.0543	0.0339	0.0213	0,0134	0.00

^{*} 소수 넷째 자리까지 0임

현가이자요소 $(PVIF_{r,n}) = \frac{1}{(1+r)^n}$

					이자	율				
간	12%	14%	15%	16%	18%	20%	24%	28%	32%	36%
1	0.8929	0.8772	0.8696	0.8621	0.8475	0.8333	0.8065	0.7813	0.7576	0.7353
2	0.7972	0.7695	0.7561	0.7432	0.7182	0.6944	0.6504	0.6104	0.5739	0.5407
3	0.7118	0.6750	0.6575	0.6407	0.6086	0.5787	0.5245	0.4768	0,4348	0.3975
4	0.6355	0.5921	0.5718	0.5523	0.5158	0.4823	0,4230	0,3725	0.3294	0.2923
5	0.5674	0.5194	0.4972	0.4761	0.4371	0.4019	0.3411	0.2910	0.2495	0.2149
6	0.5066	0.4556	0.4323	0.4104	0.3704	0.3349	0,2751	0.2274	0.1890	0.1580
7	0.4523	0.3996	0.3759	0.3538	0.3139	0.2791	0.2218	0.1776	0,1432	0.1162
8	0.4039	0.3506	0.3269	0.3050	0.2660	0.2326	0.1789	0.1388	0.1085	0.0854
9	0.3606	0.3075	0.2843	0.2630	0.2255	0.1938	0.1443	0.1084	0.0822	0.0628
10	0.3220	0.2697	0.2472	0.2267	0.1911	0.1615	0.1164	0.0847	0.0623	0.046
11	0.2875	0.2366	0.2149	0.1954	0.1619	0.1346	0.0938	0.0662	0.0472	0.034
12	0.2567	0.2076	0.1869	0.1685	0.1372	0.1122	0.0757	0.0517	0.0357	0.025
13	0.2292	0.1821	0.1625	0.1452	0.1163	0.0935	0.0610	0.0404	0.0271	
14	0.2046	0.1597	0.1413	0.1252	0.0985	0.0779	0.0492	0.0316	0.0205	
15	0.1827	0.1401	0.1229	0.1079	0.0835	0.0649	0.0397	0.0247	0.0155	0.00
16	0.1631	0.1229	0.1069	0.0930	0.0708	0.0541	0.0320	0.0193		
17	0.1456	0.1078	0.0929	0.0802	0.0600	0.0451	0.0258	0.0150		
18	0,1300	0.0946	0.0808	0.0691	0.0508	0.0376	0.0208	0.0118		
19	0.1161	0.0829	0.0703	0.0596	0.0431	0.0313	0.0168			
20	0.1037	0.0728	0.0611	0.0514	0.0365	0.0261	0.013	5 0.007	2 0.003	9 0.00
21	0,0926	0.0638	0.0531	0.0443	0.0309	0.0217	7 0.010	9 0.005		
22		0.0560	0.0462	0.0382	0.0262	0.0181	0.008			
23			0.0402			0.015	0.007	1 0.003		
			0.0349			0.012	6 0.005	7 0.002		
25							5 0,004	6 0,002	1 0.001	0.00
30	0.0334	0.0196	0.0151	0.0116	6 0.0070	0.004				2 0.00
40						3 0.000	7 0.000	2 0.000	*	*
50						3 0.000	1 *			

현재가치-예1

- 1) 1년 뒤에 자동차 할부금으로 2,000만원이 필요하게 될 것 이라고 하자. 연 7%를 벌 수 있다면, 현재 얼마를 투자를 해야 하겠는가?
- PV =
- 2) 당신이 주택 마련을 위해 저축을 하려고 하는데 10년 후에 필요자금은 35,000만원으로 예상된다. 연 8%의 수익률을 확실히 얻을 수 있다면, 당신은 현재 얼마를 투자해야 하는가?
- PV =

현재가치-예2

• 현재가치이자요소(PVIF)를 이용한 현재가치 계산

신중해군은 금융기관으로부터 다음과 같은 제안을 받았다. 즉, 지금 1억원을 예치하면 5년 후에 2억원을 지급하겠다는 것이다. 만약 이자율이 14%라면 이러한 제안을 받아들이는 것이 유리하겠는가?

$$PV_0 = FV_5 \times PVIF_{14\%, 5}$$

현재가치- 중요한 관계 |

- 5년 후에 받을 500만원의 현재가치는 얼마인가? 10년 후에 받을 500만원의 현재가치는? 할인율은 10%라고 하자.
 - 5년 후 : PV = 500만원 / (1.1)⁵ = 310.46만원
 - 10년 후: PV = 500만원 / (1.1)¹⁰ = 192.77 만원

현재가치- 중요한 관계 ॥

- 5년 뒤에 받을 500만원의 현재가치는 이자율이 10%와 15%일 때 각각 얼마인가?
 - 할인율 = 10%: PV = 500만원 / (1.10)⁵ = 310.46만원
 - 할인율 = 15%; PV = 500만원 / (1.15)⁵ = 248.59만원

현재가치와 이자율 관계

서로 다른 기간과 이 자율에 따른 \$1의 현재가치

- 할인율이 동일할 경우 기간의 수가 많아지면 현재가치는 작아진다.(기간의 수와 현재가치는 반비례)
- 기간의 수가 동일할 경우 할인율이 높을수록 현재가치는 작아진다.(할인률과 현재가치는 반비례)

미래가치와 현재가치

여러시점 현금흐름의 가치 계산

- (물음1) 이 금융상품을 보유한 투자자는 3년 후에 총 얼마의 현금을 보유하는가?
- (물음2) 이 금융상품은 현재 얼마에 매입할 수 있는가?
- (물음3) (물음2)에서 구한 현재가치의 3년후 미래가치는 얼마인가?

여러시점 현금흐름의 가치 계산

여러시점 현금흐름의 가치 계산

연금의 가치계산

- 연금(annuity) 일정한 기간 동안 매번 동일한 금액으로 나타나는 현금흐름
 - 일반연금 : 첫번째 지불이 <u>기말</u>에 발생하는 경우
 - 선불연금 : 첫번째 지불이 기초에 발생하는 경우

$$PVA = \frac{C}{1+r} + \dots + \frac{C}{(1+r)^n} = C \left[\frac{1}{r} - \frac{1}{r(1+r)^n} \right] = C \times PVIFA_{r,n}$$

$$= C \times PVIFA_{r,n}$$

$$= C \times PVIFA_{r,n}$$

$$= C \times CVIFA_{r,n}$$

$$= C \times CVIFA_{r,n}$$

$$= C \times CVIFA_{r,n}$$

연금의 가치계산

영구연금의 현재가치(present value of a perpetuity: PVP

영구연금(Perpetuity): 매 기간말 동일한 현금흐름이 영구히 유입되는 연금

$$PVP = \frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots = \frac{C}{r}$$

연금의 가치계산

- 선불연금(annuity due) : 기초에 연금이 지급되는 경우 기말기준으로 계산된 연금(일반연금: ordinary annuity)의 현재가치 또는 미래가치에 각각 (1+r)을 곱하여 계산함
- 선불연금의 현가이자요소 = PVIFAr,n×(1+r)
- 선불연금의 복리이자요소 = CVIFAr,n×(1+r)

영구연금의 현재가치

- 예제) 1년 이자율이 10%일 때, 1년 말부터 1,000원씩 영구히
 지급되는 연금의 현재가치를 구하라.
 - PVP =

연금의 미래가치

- 연금의 미래가치 계산을 이용한 감채기금의 크기 결정.
- ㈜ 금오는 액면가 100억원의 회사채를 발행하였다. 회사채의 만기는 10년이며, 감채기금의 적립을 약속한 상태이다. 적립되는 감채기금에 적용될 이자율이 8%라면, 매년 불입해야 할 감채기금(C)의 크기는 얼마인가?

$$FVA = C \left[\frac{(1+r)^n - 1}{r} \right]$$

$$C = 100$$
억 $\times 0.08/[(1+0.08)^{10} -1]$

※ 감채기금은 채권을 발행한 기업으로 하여금 매년 일정 금액을 신용있는 기관에 미리적립하게 하여 채권 만기도래시 일시의 상환자금에 대한 부담을 경감시키고자 조성된자금이다.

연금의 미래가치

- 개인퇴직계좌에 매년 2000만원을 예금하는 것으로 퇴직을 대비한 저축을 시작했다고 하자. 만일 이자율이 7.5%라면 40년 뒤에 당신은 얼마를 가지게 되겠는가?
 - FVA =

예제2-8. 균등상환채무

- 1년도 말부터 3년 동안 매년 일정한 금액을 상환할 조건으로 1,000만원을 차입하였다. 시장이자율이 연6%일 경우 이와 같은 균등상환채무(amortized loan)에 대한 다음의 물음에 답하라.
 - 매년도 말 균등상환액은?

• 매년도 말 이자지급액 및 원금상환액을 각각 추정하라.

연도	연도 초 금액 (1)	균등상환액 (2)	이자지급액 (3)=(1)X0.06	원금상환액 (4)=(2)-(3)	연도 말 잔액 (5)=(1)-(4)
1	1,000.00				685.89
2					352.93
3					0.00
합계			122.33	1,000.00	

현재가치 기본등식 - 기억하기

- Amara Amara Banji
- $PV_0 = FV_n / (1 + r)^n$: 이 방정식에는 4개의 미지수가 있다.
 - PV(현재가치), FV(미래가치), r(할인율=이자율), n (기간)
 - 이 중 3개를 알면 나머지 하나의 값을 구할 수 있다.
- 재무계산기를 사용할 때 부호규약(+ 인지 –인지)을 확실히 입력하지 않는다면, r 이나 t 를 구할 때 에러가 나올 것이다.

할인율

- 우리는 종종 어떤 투자에 내재된(자체적으로 갖고 있는)
 이자율이 얼마인지 알기를 원한다.
- 현재가치 기본등식을 재배열하여 r 에 대해 정리하면 다음과 같다.
 - $FV = PV(1 + r)^n$
 - $r = (FV / PV)^{1/n} 1$

할인율 - 예 1

• $r = (1200 / 1000)^{1/5} - 1 = .03714 = 3.714\%$

할인율 - 예 2

72법칙이란?

● 72를 해당 기간의 이자율로 나누어주면 원금이 2배가 되는데 걸리는 기간의 수를 대략 알려준다.

기간의 수 x 기간당 이자율 = 72

● 따라서 원금이 2배로 되는 기간의 수는 72/r%로 대략 구해지고, 특정 기간의 수가 지난 후 원금이 2배가 되게 만드는 대략적인 이자율은 72/n(=기간의 수)로 구해진다. 이 법칙은 할인율이 5%~ 20% 경우에 비교적 정확하다.

연실효이자율과 연표시이자율

- 연실효이자율 (effective annual interest rate; EAR) 복리를 고려한 1년간의 실제 수익률
- 연표시이자율(annual percentage rate; APR) 1년 미만의 기간간 이자율을 연단위로 환산한 이자율

• 원금 10,000원에 대한 연이자율이 10%이다. 이자계산 횟수가 연 1회, 연 2회, 연 4회인 경우, 1년 후의 원금의 가치와 실효이자율은 얼마인가?

연실효이자율과 연표시이자율

• 복리계산횟수가 실효이자율에 미치는 영향

연간 이자계산 횟수(m)	0시점	3개월	6개월	9개월	1년	실효이자율(%)	1년후의 가치
1	100 -		10%	─	110.00		
2	100 _	5% 	105.00 _	5% →	110.25		
4	100 → 1	02.50 →	105.06→	≻ 107.69	> 110.38		
∞	100 -			·>	110.52		

$$FV_n = PV_0(1 + \frac{APR}{m})^{mn}$$

연실효이자율(Effective Annual Rate: EAR)

- 이것은 1년 동안 복리계산이 되는 횟수를 고려할 때 나타나는 실제적인 연이자율이다.
- 복리 계산되는 기간이 다른 두 가지 투자안을 비교하고자 할 때는, 각 투자안의 실효연이자율을 구해서 비교해야 한다.

$$EAR = (1 + \frac{APR}{m})^m - 1$$
 (m: 연간복리계산횟수),

연표시이자율(Annual Percentage Rate: APR

- 법에 의해 정해진 연이자율 표시방법
 - APR = 기간당 부과되는 이자율 X 1년 동안 발생하는 기간 수
- 기간당 부과되는 이자율을 얻기 위해 APR 식을 다시 정리하면 된다.
 - 기간당 부과되는 이자율
 - = 연퍼센트율(APR)/ 1년 동안 발생하는 기간의 수

스마트폰 재무계산기 애플리케이션

EXCEL의 활용 : 화폐의 시간적 가치 계산

계산하고자 하는 값	함수식
미래가치	=FV(rate, nper, pmt, pv, type)
이자율(할인율)	=RATE(nper, pmt, pv, fv, type)
투자기간(적립기간)	=NPER(rate, pmt, pv, fv, type)
현재가치	=PV(rate, nper, pmt, fv, type)
정기 적립액(연금수령액, 균등상환액)	=PMT(rate, nper, pv, fv, type)

- 주) 1. pmt, pv, fv는 각각 정기적립액, 현재가치, 미래가치를 나타냄.(지출되는 금액은 음수(-)로 표시하고, 받을 금액은 양수(+)로 표시함.)
 - 2. rate, nper는 각각 기간당 이자율, 투자기간을 나타냄.(이자율은 투자기간 단위와 일치해야 함. 예를 들어 투자기간 단위가 월이라면 이자율은 월간 이자율을 사용해야 함.)
 - 3. type은 정기적립액이 있는 경우 적립시점(기말: 0, 기초: 1)을 나타내며, type을 생략하면 0으로 간주됨.(현금흐름이 기말에 발생되는 것으로 간주됨.)

EXCEL의 활용 : 화폐의 시간적 가치 계산

