

Module 3 Lecture - Probability Topics

Introduction to Statistical Methods

Quinton Quagliano, M.S., C.S.P

Department of Educational Psychology

Ta	able of Contents	
1	1.1 Textbook Learning Objectives	2 2 2
2	2.1 Introduction32.2 Rapid Fire Vocabulary32.3 Calculating Probability42.4 OR Events52.5 AND Events6	3 3 4 5 6
3	3.1 Introduction	7 7 7 7 8
4	4.1 Introduction	3 3
5		
6	Conclusion 12 6.1 Recap	1

1 Overview and Introduction

1.1 Textbook Learning Objectives

- Understand and use the terminology of probability.
- Determine whether two events are mutually exclusive and whether two events are independent.
- Calculate probabilities using the Addition Rules and Multiplication Rules.
- Construct and interpret Contingency Tables.
- · Construct and interpret Venn Diagrams.
- · Construct and interpret Tree Diagrams.

1.2 Instructor Learning Objectives

the

- Begin to appreciate how probability connects back to the broader idea of statistics
- · Understand the emphasis of chance and probability, not certainty, in statistics

1.3	Introduction		
•	my class will respond - Chance and probabili	ny boots if it might rain to I well to this activity?	d) oday?, What are the chances that , and, if we introspect closely, it
₽	•	rith more examples of we	eighing probability in your own
•	Probability is a core part of in recognizing that level of a This is why you new	funcertainty ver really hear good sc	and our results are often phrases ientists say we have definitively yays room left for uncertainty
•	There is a lot of	(and math)	surrounding probability
	- You could take an en	tire semester long class	just talking about probability and

/math of it

[&]quot;I don't mind not knowing. It doesn't scare me." — Richard P. Feynman

- We'll try to stay centered on exploring it as relevant to statistics, though this module may initially feel very removed from statistics

Important

Even though we won't be 'in the weeds' as much with probability calculations later on, it will remain an important background subject!

Terminology

-						
2. 1		ntr	\sim	HC.	tin	n
	_		w	u	uu	

 Like with the last module, 	makes perfect
--	---------------

- Please use the various exercises in the book and visit GA and/or professor office hours!
- This is also a great time to embrace flashcards, if that historically works well for you

Rapid Fire Vocabulary

• In the context of probability, an experiment is som	е	controlled
and monitored action - similar to how we use the - If the experiment is not pre-determined , that is		sign
 then there is some amount of chance So if we call something a action that we are not sure of the outcome Classic example is a coin flip 	experiment, its so	ome controlled
Example of how probability is intuitive - what is the	e chance that I flip a	coin and it

lands on 'tails

- A) 25%
- B) 75%
- C) 50%
- D) 0%

Explanation:

 The final 	of the experiment is called an outcome
- The possibilities of	the different outcomes is called the
sample space (notation =Sample space isexample of these later	as a <i>list</i> , a tree, or Venn diagram; more
 Coin flip with possible hea 	ads (H)/tails (T) outcome example = $S=\{H,T\}$
An event is some	of outcome(s)
 Important to know that it of 	
than on described outcom — will	be defined as upper case letters like A,B,C , etc.
• The probability of a certain	occurring is described as the
long-term relative frequency	of said event
 What that means is that the 	he probability describes how a
	r if the experiment were to be completed an infinite ges on the law of large numbers
- The	of a certain event happening will be written as $P(x), ar{x}$
where x is whatever even $\star P(x)$ will always be	
• Example of coin toss, where exhead on a single toss, and B is	ment is equally likely , sometimes also said to be fair vent A is the likelihood of flipping with an outcome of s the likelihood of tails .0% chance to land on heads .0% chance to land on tails
	me set of bullets that I just did, but with a six-sided calculate it out in a second, but try to just do this

2.3 Calculating Probability

• In the scenario that we aim to calculate the probability of a single

in ar	n equally likely	space:
• Step	os to :	
 2. 	Determine all out, counting the number of possi a specific e	
3.	Assess how	outcomes match that events
4.	${\text{number of outcomes; }} \frac{\text{the number}}{P(x) = M}$	of outcomes that match the event by the total $latching/Total$
1. - - - 2. 3.	lands heads, dime lands heads at Event ${\cal A}$ of getting at only one he Two outcomes in the sample space	$\{HH,TH,HT,TT\} \text{ where}$ as land on heads, dime lands tail and nickel and nickel lands tails, both coints land on tails ads; could also be written as $A:n_H=1$ the match this criteria: $/TH,HT/$ calculated as $P(A)=2/4=0.50$
	uss: Trying doing the same full cald likely die.	culation process now, but now for a 6-sided
affe	ctically, many events are notcted by the person doing them, air This will be called unfair or biase	
2.4 OF	R Events	
• An (DR Event is when an event is writ event A or B	ten in such a manner that an outcome could
	This would be written as $A\cup B$ (Applying the above, we would hedetermining the outcome match $P(A\cup B)$	•

match theeve - If A matches $\{1,2\}$ and - If B matches $\{2,3,4\}$ then - $A \cup B$ matches $\{1,2,3,4\}$	I the set union of the two sets of outcomes that nts, example: $B \ \text{matches in step 4 of } \frac{\text{Calculating Probability}}{\text{Calculating Probability}}$
2.5 AND Events	
event A or B - This would be written as $A \cap B$ - Thus probability would be writte • To list the possible outcomes, we find that match the - If A matches $\{1,2,3\}$ and - If B matches $\{2,3,4\}$ then - $A \cap B$ matches $\{2,3\}$	
1 Important	
A mnemonic to remember caps and cup	s: cAps are for Ands
	of an outcome, e.g., A^\prime is the comal would be notated as $P(x^\prime)$ and all the outcomes that DO match the event,
we would list all the outcomes step 3 of Calculating Probability	
 Conditionals are the probability a c 	
another event has already happened – It is written as $P(A B)$, which to	$\overline{}$ anslates to probability of A given B (the vertical

– This is calculated via the following formula, assuming $P(B) \neq 0$:

bar is sometimes called a pipe)

$$P(A|B) = \frac{A \cap B}{B}$$

• Once again, try working through the problems and solutions in your book for all of these scenarios!

3 Independent and Mutually Exclusive Events

 We are often interested in how two possible 	e events are relate
or unrelated	
 We can investigate both the independ 	lence and mutually exclusivity of events
determine this	•
These are both	description
.2 Independence	
2 Independence	
Two events are considered to be independent	ent if they are unrelated/do not
one another	
 On the contrary, if they are somehow 	to one another, the
are said to be dependent	
The following are the	rules to show independence:
-P(A B) = P(A)	
-P(B A) = P(B)	
– $P(A \cap B) = P(A)P(B)$ (The "M	
 Only one of these conditions needs to 	· · · · · · · · · · · · · · · · · · ·
·	dence of events until independence ha
been established	
Sort of counter-intuitive!	
2.1 Connection to Sampling Process	
	la que i e e tla equetica III :
Recall that in a random sampling scenario, t	<u> </u>
chance for each member of the population	
 Effectively, random sampling is samp 	ning that is done equally likely

were made of one another

• Sampling can be done one of two ways, that impact whether sampling decisions

- Sampling can be done with replacement which means the same individual could be chosen ______ times this means the odds of being selected as a member of the population remain the same
- Sampling can also be done without replacement, meaning it is done in a manner that a person be chosen multiple times, thus reducing the outcomes by one and changing the odds for each subsequent selection

3.3 Mutually Exclusivity

 Events are mutually exclusive when they cannot occur at the same time and follow the "Addition Rule":

$$P(A\cap B) = 0.00$$

$$\text{until this rule is met}$$

4 Contingency Tables

4.1 Introduction

- The word "contingent" means to depend on, so contingency tables offer a nice view for displaying probabilities in such a way to dependence
- Important

Like with descriptive statistics, using graphical and tabular displays can make it much easier to navigate complex information, make sure you use them!

4.2 Example of a Contingency Table

	Speeding violation in the last year	No speeding violation in the last year	Total
Uses cell phone while driving	25	280	305
Does not use cell phone while driving	45	405	450
Total	70	685	755

Table 3.3

5 Tree and Venn Diagrams

5.1 Introduction

•	Just like with how descriptive statistics have several ways to graphically present, so			
	do probabilities!			
 Contingency tables are a great start, but we can add to them with 				
	diagrams and	diagrams		
•	For this section, I'll be a bit more brief only because these representations are not			
	super	in most applied statistics		

5.2 Tree Diagrams

5.3 Venn Diagrams

[&]quot;I don't mind not knowing. It doesn't scare me." — Richard P. Feynman

6 Conclusion

6.1 Recap

- Probability is a tough subject, but it is critical as a foundation topic prior to understanding inferential statistics!
- Understand that when we discuss statistical results going forward, it will always be in through the lens of probabilities and likelihood of outcomes.
- While "real" statistics won't often involve intensive hand calculation of probabilities, you should still have a foundation appreciation of how to do it - just like we did with standard deviation.

6.2 Lecture Check-in

- · Make sure to complete and submit the lecture check-in
- Also make sure to attend to additional SPSS and practical assignment this week!