Det Naturvidenskabelige Fakultet

To stikprøver, hypotesetest og t-teststørrelser

Anders Tolver
Institut for Matematiske Fag

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 1/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Overblik

Vi skal have "udfyldt" følgende skema over modeller (rækker) og statistiske begreber (søjler):

	Intro	Model	$Est. {+} SE$	KI	Test	Kontrol	Præd.
En stikprøve	✓	\checkmark	\checkmark	✓	nu	✓	
Ensidet ANOVA	✓	\checkmark	\checkmark	\checkmark	(nu)		
Lineær regr.	✓	(√)	(√)	(√)	nu		
To stikprøver	nu	nu	nu	nu	nu		
Multipel regr.							
Tosidet ANOVA							

Dagens program

Formiddag

- Lineær regression (slide 27-34 fra 16/9-2019)
- Tostikprøve-problemet: parrede vs. uparrede test
- Hypotesetest: introduceret via t-test
- Eksempel: t-test i forbindelse med lineær regression
- Eksempel: t-test i forbindelse med ensidet ANOVA

Eftermiddag

- Gennemgang af resultaterne for Quiz 2 (laves selv på forhånd i Absalon)
- Analyse af datasæt med gæt på antal punkter på en figur
 - Hypotesetest: Gætter man systematisk for højt/lavt?
 - Data er log-transformerede: betydning for fortolkning?
 - En del findes allerede i R program på kursushjemmesiden (forel190911_Rprog)

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

Dias 2/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Statistiske begreber

Statistiske grundbegreber indtil videre:

- Population og stikprøve
- Gennemsnit, stikprøvespredning, median, kvartiler
- Statistisk model og parametre
- Estimater og standard error (SE) for estimater
- Konfidensinterval
- Hypotesetest

Uparrede vs parrede stikprøver

Data: x_1, \ldots, x_{n_1} og y_1, \ldots, y_{n_2} . Den samme slags respons målt med både x og y, men under to forskellige "omstændigheder".

To stikprøver

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Uparrede vs parrede stikprøver

Data: x_1, \ldots, x_{n_1} og y_1, \ldots, y_{n_2} . Den samme slags respons målt med både x og y, men under to forskellige "omstændigheder".

Eksempel 1:

- 100 kvinders hhv. 42 mænds gæt på punktplot 1
- Interesseret i forskel på mænd og kvinder (om nogen)

Eksempel 2:

- 142 studerendes gæt på hhv. punktplot 1 og punktplot 2
- Interesseret i forskel på gæt mellem de to punktplot

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Uparrede vs parrede stikprøver

Data: x_1, \ldots, x_{n_1} og y_1, \ldots, y_{n_2} . Den samme slags respons målt med både x og y, men under to forskellige "omstændigheder".

Eksempel 1:

- ullet 100 kvinders hhv. 42 mænds gæt på punktplot 1
- Interesseret i forskel på mænd og kvinder (om nogen)

Eksempel 2:

- 142 studerendes gæt på hhv. punktplot 1 og punktplot 2
- Interesseret i forskel på gæt mellem de to punktplot

Der er en væsentlig forskel mellem de to situationer. Hvilken?

Opgave HS.16: Afgør hvilket set-up i tre forskellige situationer.

BENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

To uafhængige stikprøver

Egenskaber:

- Alle observationer kan antages at være uafhængige
- Man kan ændre rækkefølgen af x'er og y'er hver for sig uden at ændre datasættet
- Stikprøvestørrelserne kan være forskellige

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 7/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

To uafhængige stikprøver

Egenskaber:

- Alle observationer kan antages at være uafhængige
- Man kan ændre rækkefølgen af x'er og y'er hver for sig uden at ændre datasættet
- Stikprøvestørrelserne kan være forskellige

Under antagelse af **ens spredninger**: Ensidet ANOVA med k = 2

- Kan bruge 1m som i ANOVA
- Alternativ: t.test(x,y, var.equal=TRUE)

Kan godt analysere data **uden at antage ens spredninger**, se afsnit 5.4. R: t.test(x,y).

Se kommenteret eksempel i R-kode til i dag, forel190918_Rprog

To uafhængige stikprøver

Egenskaber:

- Alle observationer kan antages at være uafhængige
- Man kan ændre rækkefølgen af x'er og y'er hver for sig uden at ændre datasættet
- Stikprøvestørrelserne kan være forskellige

Under antagelse af **ens spredninger:** Ensidet ANOVA med k = 2

- Kan bruge 1m som i ANOVA
- Alternativ: t.test(x,y, var.equal=TRUE)

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

KØBENHAVNS UNIVERSITE

DET NATURVIDENSKABELIGE FAKULTET

To parrede stikprøver

Egenskaber:

- Observationerne kommer i **par.** Parrene, men ikke enkeltobservationerne, kan antages at være uafhængige
- Man kan ikke ændre rækkefølgen af x'er og y'er hver for sig uden at ændre datasættet
- Stikprøver er nødvendigvis lige store

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

To parrede stikprøver

Egenskaber:

- Observationerne kommer i **par**. Parrene, men ikke enkeltobservationerne, kan antages at være uafhængige
- Man kan ikke ændre rækkefølgen af x'er og y'er hver for sig uden at ændre datasættet
- Stikprøver er nødvendigvis lige store

Analyserer **forskellen** mellem x og y som **en enkelt stikprøve.**

- Kan bruge lm(x-y ~ 1)
- Alternativ: t.test(x,y, paired=TRUE) eller t.test(x-y)

Se kommenteret eksempel i R-kode til i dag, forel190918_Rprog

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Eksempel 6.1: Hormonkoncentration

Et forsøg skal vise om et nyt foder ændrer konc. af et hormon.

- Ni dyr har fået foderet i en periode. Hormonkoncentrationen målt ved forsøgets start og slutning. Enhed: $\mu g/ml$.
- Spørgsmål: Har foderet en effekt på hormonkonc.?

>	hormData						
	feed	initial	${\tt final}$				
1	1	207	216				
2	1	196	199				
9	1	190	182				

Parrede data!

t-test for en enkelt stikprøve og parrede stikprøver

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 9/39

KØBENHAVNS UNIVERSITE

DET NATURVIDENSKABELIGE FAKULTET

Foreløbig analyse af forskelle

Vi ser på **differenserne**, og betragter dem som en enkelt stikprøve:

$$y = diff = final - initial$$

Analyse:

- Statistisk model: y_1, \ldots, y_n uafhængige, normalfordelte med middelværdi μ og spredning σ .
- Fortolkning af μ ? Hvilken værdi er særligt interessant?
- Konfidensinterval? Fortolkning?

Konfidensintervallet svarer til en vis grad på vores spørgsmål, men man plejer at lave et **hypotesetest** i stedet.

Hypotese

Hvis foderet ikke har nogen effekt, så er der ikke systematisk forskel på "før og efter". Dette svarer til at $\mu=0$.

Vil derfor teste **hypotesen** (nulhypotesen)

$$H_0: \mu = 0$$

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 12/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Hvad passer bedst/dårligst?

Fire datasæt med hver 9 differencer. Hvilke datasæt stemmer bedst/dårligst med hvpotesen om. at middelværdien er 0?

- Sorte lodrette streger: stikprøvegennemsnit.
- Blå lodret streg: Hypoteseværdien (nul)

Hypotese

Hvis foderet ikke har nogen effekt, så er der ikke systematisk forskel på "før og efter". Dette svarer til at $\mu=0$.

Vil derfor teste **hypotesen** (nulhypotesen)

$$H_0: \mu = 0$$

Hypotesen er en restriktion på den statistiske model.

- Under modellen: $y_i \sim N(\mu, \sigma^2)$, uafhængige.
- Hvis H_0 er sand: $y_i \sim N(0, \sigma^2)$, uafhængige.

NB: Nullet i " H_0 " henviser **ikke** til nullet i " $\mu=0$ ". Nulhypotesen også havde været H_0 : $\mu=5$, hvis dette var intersessant.

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 12/39

KØBENHAVNS UNIVERSITE

DET NATURVIDENSKABELIGE FAKULTET

Ideen i et hypotesetest

Hypotese $H_0: \mu = 0$

Vi har estimatet — "bedste gæt" — $\hat{\mu} = \bar{y}$. Alt andet lige:

- Hvis $\hat{\mu} = \bar{y}$ ligger **langt fra nul**, tyder det på at H_0 er falsk.
- Hvis $\hat{\mu} = \bar{y}$ ligger **tæt på nul**, tyder det ikke på at H_0 er falsk.

Ideen i et hypotesetest

Hypotese $H_0: \mu = 0$

Vi har estimatet — "bedste gæt" — $\hat{\mu} = \bar{y}$. Alt andet lige:

- Hvis $\hat{\mu} = \bar{y}$ ligger langt fra nul, tyder det på at H_0 er falsk.
- Hvis $\hat{\mu} = \bar{y}$ ligger **tæt på nul**, tyder det ikke på at H_0 er falsk.

Men hvad er "langt fra" og hvad er "tæt på"?

- Værdien $\hat{\mu}=13.78$ alene er ikke nok! Hvis vi målte i $\mu g/I$ i stedet ville vi have fået 0.01378 i stedet. Det lyder lille, men er jo helt den samme forskel.
- Skal tage højde for variationen i data!

Skyldes forskellen i stikprøven en **reel effekt** eller blot **tilfældigheder?** Hvad hvis vi gentog eksperimentet?

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 14/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Ideen i et hypotesetest

Er data i overensstemmelse med hypotesen?

- Data stemmer godt med hypotesen, hvis hypotesen gør det sandsynligt at en gentagelse af eksperimentet resulterer i observationer, der passer dårligere med H₀ end dem vi har.
- Data stemmer dårligt med hypotesen, hvis hypotesen gør det usandsynligt at en gentagelse af eksperimentet resulterer i observationer, der passer dårligere med H₀ end dem vi har.

Ideen i et hypotesetest

Er data i overensstemmelse med hypotesen?

 Data stemmer godt med hypotesen, hvis hypotesen gør det sandsynligt at en gentagelse af eksperimentet resulterer i observationer, der passer dårligere med H₀ end dem vi har.

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Ideen i et hypotesetest

Er data i overensstemmelse med hypotesen?

- Data stemmer godt med hypotesen, hvis hypotesen gør det sandsynligt at en gentagelse af eksperimentet resulterer i observationer, der passer dårligere med H₀ end dem vi har.
- Data stemmer dårligt med hypotesen, hvis hypotesen gør det usandsynligt at en gentagelse af eksperimentet resulterer i observationer, der passer dårligere med H₀ end dem vi har.

Sandsynlighed for at en gentagelse passer dårligere kaldes *p*-værdien.

Troværdigheden af hypotesen måles vha. p-værdien.

Teststørrelse

Skal altså beregne sandsynligheden for at en gentagelse passer dårligere med hypotesen end de givne data — hvis hyp. er sand.

Skal have en metode til at måle hvor godt/dårligt data passer med hypotesen. Vi skal bruge en **teststørrelse** (eng.: test statistic).

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 16/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

T-teststørrelsen for en enkelt stikprøve

Statistisk model: $y_1, \ldots, y_n \sim N(\mu, \sigma^2)$

Husk:

- $\hat{\mu} = \bar{y}$ er normalford. med middelværdi μ og spredning σ/\sqrt{n} .
- Fra konstruktion fra konfidensinterval:

$$T = rac{\hat{\mu} - \mu}{\mathrm{SE}(\hat{\mu})} = rac{ar{y} - \mu}{s/\sqrt{n}} \sim t_{n-1}$$

Teststørrelse

Skal altså beregne sandsynligheden for at en gentagelse passer dårligere med hypotesen end de givne data — hvis hyp. er sand.

Skal have en metode til at måle hvor godt/dårligt data passer med hypotesen. Vi skal bruge en teststørrelse (eng.: test statistic).

Teststørrelsen for en hypotese skal opfylde tre kriterier:

- Det er en talværdi, som kan beregnes udfra data.
- Den skal være et (godt) mål for hvor godt data stemmer med hypotesen.

Skal kunne skelne om hypotesen passer godt til data eller ej.

 Under forudsætning af at hypotesen er sand, skal teststørrelsens sandsynlighedsfordeling kunne bestemmes.

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 16/39

KØBENHAVNS UNIVERSITI

DET NATURVIDENSKABELIGE FAKULTE

T-teststørrelsen for en enkelt stikprøve

Statistisk model: $y_1, \ldots, y_n \sim N(\mu, \sigma^2)$

Husk:

- $\hat{\mu} = \bar{y}$ er normalford. med middelværdi μ og spredning σ/\sqrt{n} .
- Fra konstruktion fra konfidensinterval:

$$T = rac{\hat{\mu} - \mu}{\mathrm{SE}(\hat{\mu})} = rac{ar{y} - \mu}{s / \sqrt{n}} \sim t_{n-1}$$

Hypotese, H_0 : $\mu=0$. Hvis hypotesen er sand, kan vi erstatte μ med 0:

$$T = rac{\hat{\mu} - 0}{\mathrm{SE}(\hat{\mu})} = rac{ar{y} - 0}{s / \sqrt{n}} \sim t_{n-1}$$

Opfylder T kriterierne?

Kan *T* bruges som teststørrelse?

De tre kriterier:

- Det er en talværdi, som kan beregnes udfra data ✓
- Den skal være et godt mål for hvor godt data stemmer med hypotesen \checkmark

Værdier tæt på 0 passer godt, værdier langt fra 0 passer skidt

 Under forudsætning af at hypotesen er sand, skal teststørrelsens sandsynlighedsfordeling kunne beregnes √
 Hvis H₀ er sand vil T være t-fordelt med n − 1 frihedsgrader.

Tilsammen: Vi kan nu beregne ssh. for at få en *T*-værdi der passer dårligere med hypotesen end den vi fik fra vores data.

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 18/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

p-værdi for eksemplet med hormonkoncentration

Vi fik $\hat{\mu} = \bar{y} = 13.78$, s = 15.24 og har n = 9. Dermed

$$SE(\hat{\mu}) = \frac{15.24}{\sqrt{9}} = 5.08, \qquad T_{obs} = \frac{13.78 - 0}{5.08} = 2.71$$

p-værdien er sandsynligheden for at få en værdi af T der ligger lige så langt eller længere væk fra nul end det vi fik. **Se figur!**

$$p = P(|T| \ge |T_{\text{obs}}|) = P(|T| \ge 2.71) = 2 \cdot P(T \ge 2.71) = 0.026,$$

p-værdi for eksemplet med hormonkoncentration

Vi fik $\hat{\mu} = \bar{y} = 13.78$, s = 15.24 og har n = 9. Dermed

$$SE(\hat{\mu}) = \frac{15.24}{\sqrt{9}} = 5.08, \qquad T_{obs} = \frac{13.78 - 0}{5.08} = 2.71$$

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 19/39

KØBENHAVNS UNIVERSITI

DET NATURVIDENSKABELIGE FAKULTET

p-værdi for eksemplet med hormonkoncentration

Vi fik $\hat{\mu} = \bar{y} = 13.78$, s = 15.24 og har n = 9. Dermed

$$SE(\hat{\mu}) = \frac{15.24}{\sqrt{9}} = 5.08, \qquad T_{obs} = \frac{13.78 - 0}{5.08} = 2.71$$

p-værdien er sandsynligheden for at få en værdi af *T* der ligger lige så langt eller længere væk fra nul end det vi fik. **Se figur!**

$$p = P(|T| \ge |T_{\text{obs}}|) = P(|T| \ge 2.71) = 2 \cdot P(T \ge 2.71) = 0.026,$$

Hvis H_0 er sand er det altså ikke særligt sandsynligt at få en så stor værdi af T som vi fik $\to H_0$ virker ikke troværdig $\to H_0$ afvises.

p-værdi for eksemplet med hormonkoncentration

 $T_{\rm obs} = 2.71$ skal evalueres i *t*-fordelingen med 8 frihedsgrader.

P(T>2.71). Skal ganges med 2 for at få p-værdien > 1-pt(2.71,df=8)[1] 0.01332905

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 20/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Konventionelle grænser

Fra gamle dage med stat. tabeller har man tre signifikansgrænser:

- *** p < 0.001. Signifikans på 0.1% niveau. Meget stærk evidens mod hypotesen.
- ** p < 0.01. Signifikans på 1% niveau. Temmelig stærk evidens mod hypotesen.
- * p < 0.05. Signifikans på 5% niveau. Nogen evidens mod hypotesen.
- NS p > 0.05. Ikke signifikant (Not Significant). Ingen overbevisende evidens mod hypotesen.

p-værdi og konklusion på test

Forvirret...?

Så hold fast i følgende, som altid gælder:

- En (meget) lille p-værdi tyder (stærkt) på, at hypotesen er falsk, så vi **afviser** hypotesen
- En moderat eller stor p-værdi siger, at hypotesen stemmer godt med vores data, så vi afviser ikke hypotesen

Men hvor lille er lille?

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

DET NATURVIDENSKABELIGE FAKULTET

Konventionelle grænser

Fra gamle dage med stat. tabeller har man tre signifikansgrænser:

- *** p < 0.001. Signifikans på 0.1% niveau. Meget stærk evidens mod hypotesen.
- ** p < 0.01. Signifikans på 1% niveau. Temmelig stærk evidens mod hypotesen.
- * p < 0.05. Signifikans på 5% niveau. Nogen evidens mod hypotesen.
- NS p > 0.05. Ikke signifikant (Not Significant). Ingen overbevisende evidens mod hypotesen.

Grænser bruges stadig, selvom de er temmelig arbitrære.

Evidensen mod hypotesen er så godt som den samme for en p-værdi på 5.1% som for 4.9%. Angiv altid p-værdien.

Hormonkoncentration: Konklusion

Spørgsmål: Har foderet en effekt på hormonkoncentrationen?

- Hypotese, $H_0: \mu = 0$ hvor μ er den forventede ændring for et tilfældigt dyr (populationsgennemsnittet).
- Vi har med rimelig sikkerhed påvist, at hypotesen ikke holder, og dermed påvist en effekt af foderet (p = 0.026).
- Stigningen i hormonkoncentrationen estimeres til 13.78 med 95% konfidensinterval (2.06, 25.49).

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 23/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

R: Med 1m

R. "Manuelt"

```
> library(isdals)
> data(hormone)
> hormData <- subset(hormone, feed=="1")
> hormData <- transform(hormData, dif = final-initial)

> mean(hormData$dif)
[1] 13.77778
> sd(hormData$dif)
[1] 15.23793
> 13.77778 / 15.23793 * sqrt(9)
[1] 2.71253
> 2*(1 - pt(2.71253, df=8))
[1] 0.02655391
```

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

KØBENHAVNS UNIVERSITET

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

DET NATURVIDENSKABELIGE FAKULTET

R: t.test

```
> t.test(hormData$dif)
One Sample t-test

data: hormData$dif
t = 2.7125, df = 8, p-value = 0.02655
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
   2.06487 25.49069
sample estimates:
mean of x
   13.77778
```


Konfidensinterval og hypotesetest

I eksemplet gav konfidensintervallet og hypotesetestet samme konklusion:

- Nul ligger ikke i 95%-konfidensintervallet
- Vi afviser H_0 med en p-værdi mindre end 5%

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 27/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Hvad passer bedst/dårligst?

Fire datasæt med hver 9 differencer. Hvilke stemmer bedst/dårligst med hypotesen om, at middelværdien er 0?

- Blå lodret streg: Hypoteseværdien (nul)
- p-værdier: p = 0.00002, p = 0.022, p = 0.027, p = 0.28

Konfidensinterval og hypotesetest

I eksemplet gav konfidensintervallet og hypotesetestet samme konklusion:

- Nul ligger ikke i 95%-konfidensintervallet
- Vi afviser H_0 med en p-værdi mindre end 5%

Sådan er det altid for t-tests:

0 er ikke i 95%-konfidensinterval hvis og kun hvis hypotesen $H_0: \mu=0$ kan afvises på 5% signifikansniveau.

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 27/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Opsummering

t-test for hypotesen $\mathit{H}_0: \mu = 0$ i en enkelt stikprøve udføres sådan:

- Hypotese, $H_0: \mu = 0$
- Beregn t-teststørrelsen,

$$T_{\mathrm{obs}} = rac{\hat{\mu} - 0}{\mathrm{SE}(\hat{\mu})} = rac{\sqrt{n}(\bar{y} - 0)}{s}$$

- Sammenlign teststørrelsen med t-fordelingen med n-1 frihedsgrader og beregn p-værdien
- Konkludér

DET NATURVIDENSKABELIGE FAKULTET

Generel form for t-teststørrelser

T-teststørrelser har altid formen

$$T_{\rm obs} = \frac{{\sf estimat-hypotesev \& rdi}}{{\sf SE(estimat)}}$$

og skal vurderes i "den relevante" t-fordeling.

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 31/39

KØBENHAVNS UNIVERSITET

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 30/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Test i lineær regression

t-tests i andre situationer

• Er der faktisk en sammenhæng mellem kropsvægt og hjertevægt?

Data: Par $(x_1, y_1), \dots, (x_n, y_n)$

Test i lineær regression

Statistisk model:

- y_1, \ldots, y_n uafhængige
- y_i normalfordelt med middelværdi $\alpha + \beta x_i$ og spredning σ .

Hypotesen er at x ikke har nogen effekt på y, at der ikke er nogen sammenhæng mellem de to variable.

Hvordan kan det udtrykkes vha. α og/eller β ?

Test i lineær regression

Den relevante hypotese er ofte (men ikke altid) $H_0: \beta = 0$:

$$T_{\mathrm{obs}} = rac{\hat{eta} - 0}{\mathrm{SE}(\hat{eta})}$$

Skal vurderes i *t*-fordelingen med df = n - 2.

Eksempel: Der er data fra n = 144 katte:

$$T_{\rm obs} = rac{\hat{eta} - 0}{{
m SE}(\hat{eta})} = rac{4.0341}{0.2503} = 16.12$$

der skal vurderes i t_{142} . Dette giver en p-værdi $< 2 \cdot 10^{-16}$. Tegn!

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 34/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

R: sammenhæng mellem kropsvægt og hjertevægt for katte

Test i lineær regression

Den relevante hypotese er ofte (men ikke altid) $H_0: \beta = 0$:

$$T_{
m obs} = rac{\hat{eta} - 0}{{
m SE}(\hat{eta})}$$

Skal vurderes i *t*-fordelingen med df = n - 2.

Eksempel: Der er data fra n = 144 katte:

$$T_{\rm obs} = \frac{\hat{\beta} - 0}{\text{SE}(\hat{\beta})} = \frac{4.0341}{0.2503} = 16.12$$

der skal vurderes i t_{142} . Dette giver en p-værdi $< 2 \cdot 10^{-16}$. Tegn!

Konklusion: Der er meget stærk evidens mod hypotesen. Der **er** sammenhæng mellem kattes kropsvægt og hjertevægt.

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 34/39

KØBENHAVNS UNIVERSITI

DET NATURVIDENSKABELIGE FAKULTET

Lineær regression: Test for H_0 : $\beta = \beta_0$

Antag at en **teori** siger at 1 kg ekstra på kropsvægten i gennemsnit (i populationen af katte) fører til 4 g ekstra hjertevægt.

Dette svarer til **hypotesen** H_0 : $\beta = 4$.

Mere generelt: Hypotese H_0 : $\beta = \beta_0$ for en **præ-specificeret værdi** β_0 (kendt inden vi indsamlede data).

Lineær regression: Test for $H_0: \beta = \beta_0$

Antag at en **teori** siger at 1 kg ekstra på kropsvægten i gennemsnit (i populationen af katte) fører til 4 g ekstra hjertevægt.

Dette svarer til **hypotesen** H_0 : $\beta = 4$.

Mere generelt: Hypotese H_0 : $\beta = \beta_0$ for en **præ-specificeret** værdi β_0 (kendt inden vi indsamlede data).

Teststørrelse

$$T_{\text{obs}} = \frac{\hat{\beta} - \beta_0}{\text{SE}(\hat{\beta})} = \frac{4.0341 - 4}{0.2503} = 0.136.$$

Sammenligning med t_{142} giver p-værdien 0.89. **Tegn!**

Konklusion: Data er ikke i modstrid med hypotesen.

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 36/39

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Statistisk model

Data: y_1, \ldots, y_n fra k grupper med n_j obs. i gruppe j.

Statistisk model:

- y_1, \ldots, y_n uafhængige
- y_i normalfordelte med middelværdi $\alpha_{\sigma(i)}$ og spredning σ

Hypotese: $H_0: \alpha_{\mathsf{Con}} = \alpha_{\mathsf{Fen}}$

.

Sammenligning af to grupper i ensidet ANOVA

- Hæmmer Fenbendazole nedbrydningen af organisk materiale?
- Laver testet i modellen for alle data; ikke som to stikprøver

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Statistisk model

Data: y_1, \ldots, y_n fra k grupper med n_i obs. i gruppe j.

Statistisk model:

- y_1, \ldots, y_n uafhængige
- \bullet $\mathit{y_i}$ normalfordelte med middelværdi $\alpha_{\mathit{g(i)}}$ og spredning σ

Hypotese: $H_0: \alpha_{\mathsf{Con}} = \alpha_{\mathsf{Fen}}$

t-teststørrelse

Statistisk Dataanalyse 1, Kursusuge 3, onsdag

Dias 38/39

$$T_{\mathrm{obs}} = \frac{\hat{\alpha}_{\mathsf{Fen}} - \hat{\alpha}_{\mathsf{Con}}}{\mathrm{SE}(\hat{\alpha}_{\mathsf{Fen}} - \hat{\alpha}_{\mathsf{Con}})} = \frac{0.230}{0.070} = 3.27$$

Skal evaluereres i t_{28} . Dette giver *p*-værdien 0.0028.

Konklusion: Vi har med stor sikkerhed påvist at Fenbendazole hæmmer nedbrydningen.

R

```
> antibio$myType <- relevel(antibio$type, ref="Control")</pre>
```

- > model3 <- lm(org ~ myType, data=antibio)</pre>
- > summary(model3)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.60333	0.04970	52.379	< 2e-16	***
${\tt myTypeAlfacyp}$	0.29167	0.07029	4.150	0.000281	***
${\tt myTypeEnroflox}$	0.10667	0.07029	1.518	0.140338	
${\tt myTypeFenbenda}$	0.23000	0.07029	3.272	0.002834	**
myTypeIvermect	0.39833	0.07029	5.667	4.5e-06	***
${\tt myTypeSpiramyc}$	0.25167	0.07858	3.202	0.003384	**
Signif. codes:	0 '***	0.001 '**'	0.01 '*	0.05 '.	0.1 ' ' 1

Residual standard error: 0.1217 on 28 degrees of freedom

Statistisk Dataanalyse 1, Kursusuge 3, onsdag Dias 39/39

