1

Problems in Linear Algebra

CONTENTS

1 Introduction

1.1 Points

1. Find the distance between

$$\mathbf{P} = \begin{pmatrix} -2\\4 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} 3\\-5 \end{pmatrix} \tag{1.1.1}$$

Solution: Two point are $P(x_1, y_1)$ and $Q(x_2, y_2)$. The distance between both points is d.

$$\mathbf{Z} = \mathbf{P} - \mathbf{Q} \tag{1.1.1}$$

Then the distance between P and Q is given

by:

$$d = ||\mathbf{Z}|| \tag{1.1.1}$$

$$d = ||\mathbf{P} - \mathbf{Q}|| \tag{1.1.1}$$

So, the distance between given points P and Q is:

$$d = \sqrt{(-2-3)^2 + (4-(-5))^2}$$
 (1.1.1)

$$d = \sqrt{25 + 81} \tag{1.1.1}$$

$$d = \sqrt{106} \tag{1.1.1}$$

So, the distance between P(-2,4) and Q(3,-5) is :

$$d = \sqrt{106} \tag{1.1.1}$$

2. Find the length of PQ for

a)
$$\mathbf{P} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 and $\mathbf{Q} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$;
b) $\mathbf{P} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and $\mathbf{Q} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$;
c) $\mathbf{P} = \begin{pmatrix} a \\ b \end{pmatrix}$ and $\mathbf{Q} = \begin{pmatrix} -b \\ a \end{pmatrix}$.

Fig. 1.1.1: Line between two points

Solution:

a) The distance between **P** and **Q** is given by:

$$d = ||\mathbf{P} - \mathbf{Q}|| \tag{1.1.2}$$

$$= \sqrt{(-1-2)^2 + (1+1)^2}$$
 (1.1.2)

$$= \sqrt{9+4} = 3.6055 \tag{1.1.2}$$

b)

$$\mathbf{R} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} - \begin{pmatrix} -2 \\ 2 \end{pmatrix} \tag{1.1.2}$$

$$= \begin{pmatrix} 6\\1 \end{pmatrix} \tag{1.1.2}$$

The desired distance between **P** and **Q** is

$$d = ||\mathbf{P} - \mathbf{O}|| \tag{1.1.2}$$

From (1.1.2) and (1.1.2)

$$d = ||\mathbf{R}|| \tag{1.1.2}$$

$$=\sqrt{37}$$
 (1.1.2)

3. Using direction vectors, show that $\binom{2}{1}$, $\binom{4}{7}$, $\binom{5}{4}$ and $\binom{1}{4}$ are the vertices of a parallelogram. **Solution:** Two lines are parallel if their respective

directional vectors are in the same ratio. Let the points be denoted by:

$$\mathbf{A} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{1.1.3}$$

$$\mathbf{B} = \begin{pmatrix} 5\\4 \end{pmatrix} \tag{1.1.3}$$

$$\mathbf{C} = \begin{pmatrix} 4 \\ 7 \end{pmatrix} \tag{1.1.3}$$

$$\mathbf{D} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \tag{1.1.3}$$

The directional vector of **AB** is

$$\begin{pmatrix} 2-5\\1-4 \end{pmatrix} = \begin{pmatrix} -3\\-3 \end{pmatrix} \tag{1.1.3}$$

The directional vector of **BC** is

$$\begin{pmatrix} 5 - 4 \\ 4 - 7 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$
(1.1.3)

The directional vector of **CD** is

$$\begin{pmatrix} 4-1\\7-4 \end{pmatrix} = \begin{pmatrix} 3\\3 \end{pmatrix}$$
 (1.1.3)

The directional vector of **AD** is

$$\begin{pmatrix} 2-1\\1-4 \end{pmatrix} = \begin{pmatrix} 1\\-3 \end{pmatrix}$$
 (1.1.3)

The directional vector of **AC** is

$$\begin{pmatrix} 2-4\\1-7 \end{pmatrix} = \begin{pmatrix} -2\\-6 \end{pmatrix} \tag{1.1.3}$$

Since the directional vectors of **AB** and **CD** are in the same ratio, so **AB** and **CD** are parallel and also opposite to each other.

Similarly, the directional vectors of **BC** and **AD** are in the same ratio,hence **BC** and **AD** are parallel and opposite.

Since the two pairs of opposite sides are parallel, the given points are the vertices of the parallelogram.

Moreover the sum of the directional vectors of \mathbf{AB} and \mathbf{BC}

$$\begin{pmatrix} -3 \\ -3 \end{pmatrix} + \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -3 + 1 \\ -3 - 3 \end{pmatrix} = \begin{pmatrix} -2 \\ -6 \end{pmatrix}$$

Thus **AB** + **BC**= **AC**, which satisfy parallelogram law of vector addition i.e vector sum of two adjacent side of a parallelogram is the

Fig. 1.1.3: This is the 2D diagram of the parallelogram with the given vertices

diagonal vector of the parallelogram. See Fig. 1.1.3

4. Using Baudhayana's theorem, show that the points $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} -6 \\ 10 \end{pmatrix}$ are the vertices of a right-angled traingle. Repeat using orthogonality. **Solution:** Say there exists two points

Fig. 1.1.4: Right Angled Triangle

 $P(x_1, y_1)$ and $Q(x_2, y_2)$. The distance between the points is:

$$\mathbf{Z} = \mathbf{P} - \mathbf{O} \tag{1.1.4}$$

Distance between **P** and **Q** is given by

$$\|\mathbf{Z}\| = \|\mathbf{P} - \mathbf{Q}\| \tag{1.1.4}$$

Let
$$P = (-3, -4)$$
, $Q = (2, 6)$ and $R = (-6, 10)$.

a) Distance between P and Q is

$$\|\mathbf{P} - \mathbf{Q}\| = \sqrt{(-3-2)^2 + (-4-6)^2} = \sqrt{125}$$
(1.1.4)

b) Distance between **Q** and **R** is

$$\|\mathbf{Q} - \mathbf{R}\| = \sqrt{(2 - (-6))^2 + (6 - 10)^2} = \sqrt{80}$$
(1.1.4)

c) Distance between P and R is

$$\|\mathbf{P} - \mathbf{R}\| = \sqrt{(-3 - (-6))^2 + (-4 - 10)^2} = \sqrt{205}$$
(1.1.4)

Here, the largest distance is $\sqrt{205}$. To be vertices of a right angled triangle, we should have

$$\|\mathbf{P} - \mathbf{Q}\|^2 + \|\mathbf{Q} - \mathbf{R}\|^2 = \|\mathbf{R} - \mathbf{P}\|^2$$
 (1.1.4)

$$(\sqrt{205})^2 = (\sqrt{125})^2 + (\sqrt{80})^2$$
 (1.1.4)

$$205 = 205 \tag{1.1.4}$$

So, the condition is satisfied. So, using Baudhayana's theorem, it is proved that 3 points given are vertices of a right angled triangle. Now, for orthogonality,

$$(\mathbf{P} - \mathbf{Q})^T (\mathbf{Q} - \mathbf{R}) = 0 \tag{1.1.4}$$

We have

a)

$$\mathbf{P} - \mathbf{O} = (2 - (-3), 6 - (-4)) \tag{1.1.4}$$

$$\mathbf{P} - \mathbf{Q} = \begin{pmatrix} 5\\10 \end{pmatrix} \tag{1.1.4}$$

b)

$$\mathbf{O} - \mathbf{R} = (2 - (-6), 6 - 10)$$
 (1.1.4)

$$\mathbf{Q} - \mathbf{R} = \begin{pmatrix} 8 \\ -4 \end{pmatrix} \tag{1.1.4}$$

c)

$$\mathbf{P} - \mathbf{R} = (-3 - (-6), -4 - 10) \tag{1.1.4}$$

$$\mathbf{P} - \mathbf{R} = \begin{pmatrix} 3 \\ -14 \end{pmatrix} \tag{1.1.4}$$

For orthogonality, product of transpose of one

point and other must be 0. Here, checking for

$$\begin{pmatrix} 5 \\ 10 \end{pmatrix}^T \begin{pmatrix} 8 \\ -4 \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}^T \begin{pmatrix} 8 \\ -4 \end{pmatrix} = 0$$
 (1.1.4)

Hence, using orthogonality, it is proved that the points form a right angled triangle.

Figure 1.1.4 Right anlged triangle where A=P and B=Q and C=R

- 5. Plot the points $\binom{0}{2}$, $\binom{1}{1}$, $\binom{4}{4}$ and $\binom{3}{5}$ and prove that they are the vertices of a rectangle.
- 6. Show that $\mathbf{B} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$, $\mathbf{A} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ are the vertices of an isosceles triangle. **Solution:**

Define a matrix M such that,

$$\mathbf{M} = \begin{pmatrix} \mathbf{B} - \mathbf{A} & \mathbf{C} - \mathbf{A} \end{pmatrix}^T \tag{1.1.6}$$

$$\mathbf{M} = \begin{pmatrix} -1 & -4 \\ 4 & -1 \end{pmatrix} \tag{1.1.6}$$

Using matrix transformation,

$$\mathbf{M} = \begin{pmatrix} -1 & -4 \\ 4 & -1 \end{pmatrix} \xrightarrow{R_1 \leftarrow -R_1 - \frac{R_2}{4}} \begin{pmatrix} 0 & \frac{17}{4} \\ 4 & -1 \end{pmatrix} \quad (1.1.6)$$

$$\implies rank(\mathbf{M}) = 2 \quad (1.1.6)$$

Since the rank of matrix M is 2, the points form a triangle.

$$AB^{2} = (\mathbf{A} - \mathbf{B})^{T} (\mathbf{A} - \mathbf{B})$$
 (1.1.6)

$$= 17$$
 (1.1.6)

$$BC^{2} = (\mathbf{B} - \mathbf{C})^{T} (\mathbf{B} - \mathbf{C}) \qquad (1.1.6)$$

$$= 34$$
 (1.1.6)

$$CA^{2} = (\mathbf{C} - \mathbf{A})^{T} (\mathbf{C} - \mathbf{A}) \qquad (1.1.6)$$

$$= 17$$
 (1.1.6)

$$\implies AB = AC \tag{1.1.6}$$

Hence, the triangle is isosceles. See Fig. 1.1.6

7. In the last question, find the distance of the vertex **A** of the triangle from the middle point of the base *BC*.

Solution:

Fig. 1.1.6: Plot of the given points

From the given information,

$$a^2 = (\mathbf{B} - \mathbf{C})^T (\mathbf{B} - \mathbf{C}) \quad (1.1.7)$$

$$= 34$$
 (1.1.7)

$$c^2 = (\mathbf{A} - \mathbf{B})^T (\mathbf{A} - \mathbf{B}) \quad (1.1.7)$$

$$= 17$$
 (1.1.7)

$$b^2 = (\mathbf{C} - \mathbf{A})^T (\mathbf{C} - \mathbf{A}) \quad (1.1.7)$$

$$= 17$$
 (1.1.7)

$$\implies AB = AC \tag{1.1.7}$$

Thus, the required distance is AD where

$$\mathbf{D} = \frac{\mathbf{B} + \mathbf{C}}{2} = \begin{pmatrix} \frac{-1}{2} \\ \frac{-1}{2} \end{pmatrix} \tag{1.1.7}$$

and

Fig. 1.1.7: plot

$$AD = \|\mathbf{A} - \mathbf{D}\| \tag{1.1.7}$$

$$=\frac{\sqrt{34}}{2}$$
 (1.1.7)

- 8. Prove that the points $\begin{pmatrix} -1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\3 \end{pmatrix}$, $\begin{pmatrix} 3\\2 \end{pmatrix}$ and $\begin{pmatrix} 2\\-1 \end{pmatrix}$ are the vertices of a square.
- 9. Prove that the points $\mathbf{A} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$,

 $C = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $D = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are the vertices of a parallelogram. Find E, F, G, H, the mid points of AB, BC, CD, AD respectively. Show that EG and FH bisect each other.

Solution:

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \tag{1.1.9}$$

$$= -(\mathbf{C} - \mathbf{D}) \tag{1.1.9}$$

$$\mathbf{B} - \mathbf{C} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \mathbf{A} - \mathbf{D} \tag{1.1.9}$$

$$\implies AB \parallel CD,BC \parallel AD \tag{1.1.9}$$

Hence, ABCD is a parallelogram. Also,

$$\mathbf{E} = \frac{\mathbf{A} + \mathbf{B}}{2} = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} \tag{1.1.9}$$

$$\mathbf{F} = \frac{\mathbf{B} + \mathbf{C}}{2} = \begin{pmatrix} \frac{5}{2} \\ \frac{3}{2} \end{pmatrix} \tag{1.1.9}$$

$$\mathbf{G} = \frac{\mathbf{C} + \mathbf{D}}{2} = \begin{pmatrix} 0 \\ \frac{3}{2} \end{pmatrix} \tag{1.1.9}$$

$$\mathbf{H} = \frac{\mathbf{A} + \mathbf{D}}{2} = \begin{pmatrix} \frac{-3}{2} \\ \frac{1}{2} \end{pmatrix} \tag{1.1.9}$$

and

$$\frac{\mathbf{E} + \mathbf{G}}{2} = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} \tag{1.1.9}$$

$$=\frac{\mathbf{F}+\mathbf{H}}{2}\tag{1.1.9}$$

See Fig. 1.1.9.

10. Prove that the points $\begin{pmatrix} 21 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 15 \\ 10 \end{pmatrix}$, $\begin{pmatrix} -5 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -12 \end{pmatrix}$ are the vertices of a rectangle, and find the coordinates of its centre.

Fig. 1.1.9

Fig. 1.1.10: plot

Solution: Let

$$\mathbf{A} = \begin{pmatrix} 21 \\ -2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 15 \\ 10 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} -5 \\ 0 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 1 \\ -12 \end{pmatrix}$$
(1.1.10)

Then,

$$\mathbf{A} - \mathbf{B} * = \begin{pmatrix} 6 \\ -12 \end{pmatrix} \tag{1.1.10}$$

$$\mathbf{B} - \mathbf{C} = \begin{pmatrix} 20\\10 \end{pmatrix} \tag{1.1.10}$$

$$\mathbf{C} - \mathbf{D} = \begin{pmatrix} -6\\12 \end{pmatrix} \tag{1.1.10}$$

$$\mathbf{D} - \mathbf{A} = \begin{pmatrix} -20 \\ -10 \end{pmatrix} \tag{1.1.10}$$

Since the directional vectors of **AB** and **CD** are in the same ratio, so **AB** and **CD** are parallel and also opposite to each other. Similarly, **BC** and **DA** are parallel and opposite. Hence ABCD is a parallelogram. Also,

$$(\mathbf{B} - \mathbf{A})^{\mathsf{T}} (\mathbf{C} - \mathbf{B}) = \begin{pmatrix} -6 & 12 \end{pmatrix} \begin{pmatrix} -20 \\ -10 \end{pmatrix} \quad (1.1.10)$$
$$= 0 \qquad (1.1.10)$$

Therefore, one of the angle is right angle and ABCD is a rectangle. The center

$$\mathbf{O} = \frac{\mathbf{A} + \mathbf{C}}{2} \tag{1.1.10}$$

$$= \begin{pmatrix} 8 \\ -1 \end{pmatrix} \tag{1.1.10}$$

This is verified in Fig. 1.1.10.

11. Find the lengths of the medians of the triangle

whose vertices are at the points $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ -2 \end{pmatrix}$.

- 12. Find the coordinates of the points that divide the line joining the points $\begin{pmatrix} -35 \\ -20 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ -10 \end{pmatrix}$ into four equal parts.
- 13. Find the coordinates of the points of trisection of the line joining the points \$\binom{-5}{5}\$ and \$\binom{25}{10}\$.
 14. Prove that the middle point of the line joining
- 14. Prove that the middle point of the line joining the points $\begin{pmatrix} -5 \\ 12 \end{pmatrix}$ and $\begin{pmatrix} 9 \\ -2 \end{pmatrix}$ is a point of trisection of the line joining the points $\begin{pmatrix} -8 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 7 \\ 10 \end{pmatrix}$. **Solution:**
- 15. The points $\binom{8}{5}$, $\binom{-7}{-5}$ and $\binom{-5}{5}$ are three of the vertices of a parallelogram. Find the coordinates of the remaining vertex which is to be taken as opposite to $\binom{-7}{-5}$.
- 16. The point $\binom{2}{6}$ is the intesection of the diagonals of a parallelogram two of whose vertices are at the points $\binom{7}{16}$ and $\binom{10}{2}$. Find the coordinates of the remaining vertices.
- 17. Find the area of the triangle whose vertices are the points \$\binom{2}{3}\$, \$\binom{-4}{7}\$ and \$\binom{5}{-2}\$.
 18. Find the coordinates of points which divide the
- 18. Find the coordinates of points which divide the join of $\binom{2}{3}$, $\binom{-4}{5}$ externally in the ratio 2:3,

and also externally in the ratio 3:2.

19. Prove the centroid of $\triangle ABC$ is

$$\mathbf{O} = \frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} \tag{1.1.19}$$