Seite 217 Nr. 4)

In einem Zeitungsbericht wird behauptet, dass sich nur 70% der Autofahrer angurten. Ein Autoklub behauptet, dass der Anteil in Wirklichkeit höher ist. Die Polizei meint dagegen, dass der Anteil in Wirklichkeit kleiner ist. Es wird ein Test der Nullhypothese $H_0: p=0,7$ (Stichprobenumfang 100; Signifikanzniveau 5%) durchgeführt.

a)

Welche Gegenhypothese H_1 und welchen Verwerfungsbereich geben der Autoklub bzw. die Polizei an?

X: "Anzahl angegurteter Autofahrer"

Für den Autoklub:

- $H_0: p = 0, 7$
- $H_1: p > 0, 7$

Es folgt ein rechtsseitiger Hypothesentest.

$$P(X \ge g_2) \le lpha \ P(X \ge g_2) \le 0,05 \ 1 - P(X \le g_2 - 1) \le 0,05 \ -P(X \le g_2 - 1) \le -0,95 \ P(X \le g_2 - 1) \ge 0,95 \ P(X \le k) \ge 0,95 \ \Rightarrow k = 77$$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$
 $|Sei: k = g_2 - 1| \ Binomial kumuliert im TR$

Für die Polizei:

- $H_0: p = 0, 7$
- $H_1: p < 0,7$

Es folgt ein linksseitiger Hypothesentest.

$$egin{aligned} P(X \leq g_1) \leq lpha \ P(X \leq g_1) \leq 0,05 \ P(X \leq 61) pprox 0.0340 \leq 0,05 \ g_1 = 61 \ \Rightarrow V_p = [0;61] \end{aligned} \hspace{0.5cm} \mid Binomial kumuliert \ im \ TR$$

b)

Die Stichprobe ergibt, dass 79 Fahrer angegurtet sind. Wie fällt die Entscheidung des Autoklubs bzw. der Polizei aus?

Eine Stichprobe von s=79 ist gegeben. Vergleichen wir s mit den Verwerfungsbereichen V_a und V_p :

Für den Autoklub:

- $H_0: p = 0, 7$
- $H_1: p > 0, 7$
- $V_a = [78; 100]$

Da s=79 Element des Verwerfungsbereiches V_a ist, so verwerfen wir die Nullhypothese $H_0:p=0,7$, weshalb wir nun $H_1:p>0,7$ annehmen können.

Für die Polizei:

- $H_0: p = 0, 7$
- $H_1: p < 0, 7$
- $V_p = [0;61]$

Da s=79 kein Element des Verwerfungsbereiches V_p ist, so können wir die Nullhypothese $H_0: p=0,7$ nicht verwerfen, weshalb wir diese weiterhin annehmen müssten.

Da in beiden Bespielen gegeben ist, dass $p\geq 0,7$ ist, könnten wir diese Aussage nun für diese Stichprobe annehmen.