A FOC Controlled Smart Knob

WANG Junzhe, ZOU Hetai

ELEC3300 Group 5

May 8, 2023

Design Showcase Schematics and PCB

UI Design

FOC Algorithms

RTOS!

Figure: schematic 1

Design Showcase

Figure: schematic 2

PCB layout

Design Showcase 000

- •FOC Algorithm Close loop Controlled Motor as knob (Algorithm)
 - ·Magnetic Hall effect sensor feedback (SPI)
 - Brushless DC motor driver (Half Bridges Driver)
 - •Implement our own ESC
- •Bluetooth and usb-ttl controlled (UART)
- •Usb-C PD power delivery with buck converter (GPIO)
 - ·Power adc sampling
 - •WS2812 LEDs (PWM)
 - •IMU wake detection
 - LCD touch screen
- Smooth and Fast Refresh LII. (Double-Buffer DMA)
- •Humidity and Temperature Sensor

Figure: PCB Layout

UI Design

- DMA double buffer to increase frame rate
- Async parallel display flush
 - Rendering complete will trigger a callback
 - DMA will be used to flush to the display afterward
- LVGL UI elements design

FOC

Where is ESC for the knob? We implement our own ESC using Field Oriented Control!

Sine PWM (Good)

Figure: sine pwm

Sine PWM (Good)

1. Inverse Park transformation

- $U_{\alpha} = -U_q sin(\theta)$
- $U_{\beta} = U_{\alpha} cos(\theta)$
- 2. Inverse Clarke transformation.

$$u_a = U_{\alpha}$$

$$u_b = \frac{-U_\alpha + \sqrt{3}U_\beta}{2}$$

$$u_a = \frac{-U_{\alpha} - \sqrt{3}U_{\beta}}{2}$$

to SV PWM (Better)

Figure: SV pwm

to SV PWM (Better)

space vector modulation

$$s = \left| \frac{3}{\pi} \right| + \theta$$

$$T_1 = \sqrt{3}sin(s\frac{3}{\pi} - \theta)$$

$$T_2 = \sqrt{3}sin(\theta - (s-1)\frac{3}{\pi})$$

$$T_0 = 1 - T_1 - T_2$$

FreeRTOS

FreeRTOS to schedule the tasks

Figure: FreeRTOS Scheduler

That would be all

- Thank you!

