MA 503: Homework 14

Dane Johnson

November 4, 2020

Proposition 8 If f and g are nonnegative measurable functions, then:

- (i) $\int_E cf = c \int_E f$, c > 0.
- (ii) $\int_E (f+g) = \int_E f + \int_E g$
- (iii) If $f \leq g$ a.e., then $\int_E f \leq \int_E g$.

Problem 3 Let f be a nonnegative measurable function. Show that $\int f = 0$ implies f = 0 a.e.

For $n \in \mathbb{N}$, let $E_n = \{x : f(x) > 1/n\}$. If $x \in E_n$, then $f(x) > 1/n = 1/n\chi_{E_n}(x)$. If $x \notin E_n$, then $1/n\chi_{E_n}(x) = 0 \le f(x) \le 1/n$. So $f(x) \ge \chi_{E_n}$ for all x. By proposition 8 (iii),

$$0 = \int f \ge \int \frac{1}{n} \chi_{E_n} = \frac{1}{n} m(E_n) \implies 0 = m(E_n) .$$

Since $f \ge 0$, $\{x: f(x) \ne 0\} = \{x: f(x) > 0\}$. If f(x) > 0, then there is an $n \in \mathbb{N}$ such that f(x) > 1/n by the axiom of Archimedes. Conversely if f(x) > 1/n for some $n \in \mathbb{N}$ then f(x) > 0. Then $\{x: f(x) > 0\} = \bigcup_{n=1}^{\infty} \{x: f(x) > 1/n\} = \bigcup_{n=1}^{\infty} E_n$ from which it follows

$$m(\{x: f(x) \neq 0\}) = m(\{x: f(x) \neq 0\}) = m\left(\bigcup_{n=1}^{\infty} E_n\right) \leq \sum_{n=1}^{\infty} m(E_n) = \sum_{n=1}^{\infty} 0 = 0.$$

Conclude that f = 0 a.e.

By the way, the converse is also true. If f=0 a.e. then the set $E=\{x:f(x)>0\}=\{x:f(x)\neq0\}$ has measure zero. Let $f_n=n\chi_E$. If $x\in E$, then for each $k\in\mathbb{N}$, $\inf_{n\geq k}n\chi_E=k$ so that $\lim_{k\to\infty}\inf_{n\geq k}f_n(x)=\infty\geq f(x)$. If $x\not\in E$, then f(x)=0 and $\inf_{n\geq k}n\chi_E=0$. So for all x, $f(x)\leq \liminf_{n\geq k}f_n(x)$. Since $f\geq 0$, $f \geq 0$ 0 by proposition 8 (iii). Also using proposition 8 (iii) along with Fatou's Lemma,

$$0 \le \int f \le \int \liminf f_n \le \liminf \int f_n = \liminf \left(\frac{1}{n}m(E)\right) = \liminf 0 = 0 \implies \int f = 0$$
.