Introduction to Computer Graphics 3. Viewing in 3D

I-Chen Lin

National Chiao Tung University

Textbook: E.Angel, D. Shreiner Interactive Computer Graphics, 6th Ed., Pearson Ref: D.D. Hearn, M. P. Baker, W. Carithers, Computer Graphics with OpenGL, 4th Ed., Pearson

Outline

Classical views

Computer viewing

Projection matrices

Classical Viewing

- Viewing requires three basic elements
 - One or more objects
 - A viewer with a projection surface
 - Projectors that go from the object(s) to the projection surface

- Each object is assumed to constructed from flat principal faces
 - ▶ Buildings, polyhedra, manufactured objects

Planar Geometric Projections

Standard projections project onto a plane.

- Projectors are lines that either
 - converge at a center of projection
 - are parallel
- Such projections preserve lines
 - but not necessarily angles
- When do we need non-planar projections?

Classical Projections

Plan oblique

Three-point perspective

Perspective vs. Parallel

- Classical viewing developed different techniques for drawing each type of projection
- Mathematically parallel viewing is the limit of perspective viewing
- Computer graphics treats all projections the same and implements them with a single pipeline

Taxonomy of Planar Geometric Projections

Perspective Projection

Parallel Projection

Orthographic Projection

Projectors are orthogonal to projection surface

Multi-view Orthographic Projection

- Projection plane parallel to principal faces
- Usually form front, top, side views

isometric (not multiview orthographic view)

in CAD and architecture, we often display three multiviews plus isometric

top

Advantages and Disadvantages

- Preserves both distances and angles
 - Shapes preserved
 - ► Can be used for measurements
 - Building plans
 - Manuals
- Cannot see what object really looks like because many surfaces hidden from view
 - Often we add the isometric

Axonometric Projections

Allow projection plane to move relative to object

θ

classify by how many angles of a corner of a projected cube are the same

none: trimetric

two: dimetric

three: isometric

Types of Axonometric Projections

Advantages and Disadvantages

- Lines are scaled (foreshortened) but can find scaling factors
- Lines preserved but angles are not
 - Projection of a circle in a plane not parallel to the projection plane is an ellipse

- Does not look real because far objects are scaled the same as near objects
- Used in CAD applications

Oblique Projection

Arbitrary relationship between projectors and projection plane

Advantages and Disadvantages

- Can pick the angles to emphasize a particular face
 - Architecture: plan oblique, elevation oblique
- Angles in faces parallel to projection plane are preserved while we can still see "around" side

 In physical world, cannot create with simple camera; possible with bellows camera or special lens (architectural)

Perspective Projection

Projectors coverage at center of projection

Vanishing Points

- Parallel lines (not parallel to the projection plan):
 - converge at a single point in the projection (the vanishing point)
- Drawing simple perspectives by hand uses these vanishing point(s)

Three-Point Perspective

- No principal face parallel to projection plane
- ► Three vanishing points for cube

Two-Point Perspective

- On principal direction parallel to projection plane
- ► Two vanishing points for cube

One-Point Perspective

- One principal face parallel to projection plane
- One vanishing point for cube

Advantages and Disadvantages

- Diminution:
 - Objects further from viewer are projected smaller (Looks realistic)
- Nonuniform foreshortening:
 - Equal distances along a line are not projected into equal distances
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand than parallel projections

Computer Viewing

Computer Viewing

- ► Three aspects of the viewing process implemented in the pipeline:
 - Positioning the camera
 - ► Setting the *model-view matrix*
 - Selecting a lens
 - ► Setting the *projection matrix*
 - Clipping
 - ► Setting the *view volume*

The OpenGL Camera

- In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction

- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity

Pipeline View

Let's skip the clipping details temporarily!

Moving the Camera Frame

- If we want to visualize object with both positive and negative z values we can either
 - ▶ Move the camera in the positive z direction
 - ▶ Translate the camera frame
 - Move the objects in the negative z direction
 - ► Translate the world frame
- Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation (glTranslatef(0.0,0.0,-d);)
 - \rightarrow d \rightarrow 0

Moving Camera back from Origin

default frames frames after translation by -d d > 0 y, y_c -x, x_c (a) (b)

Moving the Camera

We can move the camera to any desired position by a sequence of rotations and translations

- Example: side view
 - Rotate the camera
 - Move it away from origin
 - ► Model-view matrix C = TR

gluLookAt

glLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)

By Coordinate Transformations

$$\begin{bmatrix} x_{wc} \\ y_{wc} \\ z_{wc} \\ 1 \end{bmatrix} = \begin{bmatrix} u'_x & v'_x & w'_x & 0 \\ u'_y & v'_y & w'_y & 0 \\ u'_z & v'_z & w'_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'_{vc} \\ y'_{vc} \\ z'_{vc} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_y \\ 0 & 0 & 1 & -c_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{vc} \\ y_{vc} \\ z_{vc} \\ 1 \end{bmatrix}$$

Projections and Normalization

- ► The default projection in the eye (camera) frame is orthogonal
- ► For points within the default view volume

$$X_p = X$$

$$y_p = y$$

$$z_p = 0$$

- Most graphics systems use view normalization
 - ► All other views are converted to the default view by transformations that determine the projection matrix
 - ► Allows use of the same pipeline for all views

Homogeneous Coordinate Representation

default orthographic projection

|
$$\mathbf{x}_p = \mathbf{x}$$
 | $\mathbf{p}_p = \mathbf{M}\mathbf{p}$ | $\mathbf{p}_p = \mathbf{M}\mathbf{p}$ | $\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ | In practice, we can let $\mathbf{M} = \mathbf{I}$ and set the z term to zero later

the z term to zero later

Simple Perspective

- Center of projection at the origin
- Projection plane z = d, d < 0

Perspective Equations

$$x_{\rm p} = \frac{x}{7/d}$$

$$y_{\rm p} = \frac{y}{z/d}$$

$$z_{\rm p} = d$$

Homogeneous Coordinate Form

consider **q** = **Mp** where

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

$$\mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Rightarrow \mathbf{q} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

Perspective Division

- ► However $w \neq 1$, so we must divide by w to return from homogeneous coordinates
- ► This *perspective division* yields

$$x_{\rm p} = \frac{x}{z/d}$$
 $y_{\rm p} = \frac{y}{z/d}$ $z_{\rm p} = d$

the desired perspective equations

Taking Clipping into Account

► After the view transformation, a simple projection and viewport transformation can generate screen coordinate.

However, projecting all vertices are usually unnecessary.

Clipping with 3D volume.

Associating projection with clipping and normalization.

Orthogonal Viewing Volume

Ortho(left,right,bottom,top,near,far)

Orthogonal Normalization

glOrtho(left,right,bottom,top,near,far)

normalization ⇒ find transformation to convert specified clipping volume to default

Orthogonal Matrix

- Two steps
 - ▶ T: Move center to origin
 - S: Scale to have sides of length 2

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{xw_{\text{max}} - xw_{\text{min}}} & 0 & 0 & -\frac{xw_{\text{max}} + xw_{\text{min}}}{xw_{\text{max}} - xw_{\text{min}}} \\ 0 & \frac{2}{yw_{\text{max}} - yw_{\text{min}}} & 0 & -\frac{yw_{\text{max}} + yw_{\text{min}}}{yw_{\text{max}} + yw_{\text{min}}} \\ 0 & 0 & \frac{2}{z_{near} - z_{far}} & \frac{z_{near} + z_{far}}{z_{near} - z_{far}} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Final Projection

- \triangleright Set z = 0
- Equivalent to the homogeneous coordinate transformation

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

► Hence, general orthogonal projection in 4D is

$$P = M_{orth}ST$$

Clipping for Perspective Views

Perspective Viewing Volume

Normalization

▶ Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume.

► This strategy allows us to use *standard* transformations in the pipeline and makes for efficient clipping.

Normalization

Fig. from: M. Stamminger, G. Drettakis, Perspective Shadow Maps, Proc. ACM SIGGRAPH 2002.

Perspective-Projection Trans.

$$x_p = (1-u)x + ux_{prp}$$

 $y_p = (1-u)y + uy_{prp}$ $u = 0 \sim 1$

$$x_{p} = x \left(\frac{z_{prp} - z_{vp}}{z_{prp} - z}\right) + x_{prp} \left(\frac{z_{vp} - z}{z_{prp} - z}\right)$$
$$y_{p} = y \left(\frac{z_{prp} - z_{vp}}{z_{prp} - z}\right) + y_{prp} \left(\frac{z_{vp} - z}{z_{prp} - z}\right)$$

Given
$$x_{prp} = y_{prp} = z_{prp} = 0$$
, $z_{vp} = z_{near}$

$$x_{p} = x \left(\frac{-z_{near}}{-z} \right)$$
$$y_{p} = y \left(\frac{-z_{near}}{-z} \right)$$

Perspective-Projection Trans.

$$M_{pers} = \begin{bmatrix} -z_{near} & 0 & 0 & 0 \\ 0 & -z_{near} & 0 & 0 \\ 0 & 0 & S_z & t_z \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

After perspective division, the point (x,y,z,1) goes to

$$x_{p} = x \left(\frac{-z_{near}}{-z} \right)$$

$$y_{p} = y \left(\frac{-z_{near}}{-z} \right)$$

$$z_{p} = \frac{s_{z}z + t_{z}}{-z} = -\left(s_{z} + \frac{t_{z}}{z} \right)$$

To make $-1 \le z_p \le 1$

$$s_z = \frac{z_{near} + z_{far}}{z_{near} - z_{far}}$$

$$t_z = \frac{-2z_{near}z_{far}}{z_{near} - z_{far}}$$

Perspective-Projection Trans.

Further Normalization

$$M_{normpers} = \begin{bmatrix} -z_{near} \frac{2}{xw_{max} - xw_{min}} & 0 & 0 & 0\\ 0 & -z_{near} \frac{2}{yw_{max} - yw_{min}} & 0 & 0\\ 0 & 0 & \frac{z_{near} + z_{far}}{z_{near} - z_{far}} & \frac{-2z_{near}z_{far}}{z_{near} - z_{far}}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Notes

Normalization let us clip against a simple cube regardless of type of projection

- Delay final "projection" until end
 - ► Important for *hidden-surface removal* to retain depth information as long as possible

Normalization and Hidden-Surface Removal

- if $z_1 > z_2$ in the original clipping volume then the for the transformed points $z_1' < z_2'$
- Hidden surface removal works if we first apply the normalization transformation
- However, the formula $z'' = -(s_z+t_z/z)$ implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small

Why do we do it this way?

- Normalization allows for *a single pipeline* for both perspective and orthogonal viewing
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
- Clipping is now "easiler".

Viewport Transformation

From the working coordinate to the coordinate of display device.

By 2D scaling and translation

Viewing in 3D

(Summary and Example)

Pipeline View

Loading an Object

$$(x_o, y_o, z_o, 1)^t$$

Modeling Transformation

 $(x_m, y_m, z_m, 1)^t = M_m(x_o, y_o, z_o, 1)^t$ where $M_m = T_m R_m S_m$

Put a Virtual Camera

Move a camera from the origin (by $T_v R_v$)

Virtual Camera's Coordinate

- Change the object's coordinate
- $(x_v, y_v, z_v, 1)^t = M_{view} (x_m, y_m, z_m, 1)^t$

Virtual Camera's Coordinate

Perspective Proj.

$$M_{pers} = \begin{bmatrix} -z_{near} & 0 & 0 & 0\\ 0 & -z_{near} & 0 & 0\\ 0 & 0 & \frac{z_{near} + z_{far}}{z_{near} - z_{far}} & \frac{-2z_{near}z_{far}}{z_{near} - z_{far}}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

This matrix is usually combined with the normalization matrix.

Projection + Normalization

Projection+ Normalization

- $M_{normpers} = \begin{bmatrix} -z_{near} \frac{2}{xw_{max} xw_{min}} & 0 & 0 & 0\\ 0 & -z_{near} \frac{2}{yw_{max} yw_{min}} & 0 & 0\\ 0 & 0 & \frac{z_{near} + z_{far}}{z_{near} z_{far}} & \frac{-2z_{near}z_{far}}{z_{near} z_{far}}\\ 0 & 0 & -1 & 0 \end{bmatrix}$
- $(x_h, y_h, z_h, h)^t = M_{normpers}(x_v, y_v, z_v, 1)^t$
- Don't divide h at this step.

Clipping

- Perform clipping with $(x_h, y_h, z_h, h)^t$
- Avoid unnecessary division $-h \le x_h \le h$, $-h \le y_h \le h$, $-h \le z_h \le h$
- Use parametric forms for intersection

$$x_h = x_{ha} + (x_{hb} - x_{ha})u$$

$$y_h = y_{ha} + (y_{hb} - y_{ha})u$$

$$z_h = z_{ha} + (z_{hb} - z_{ha})u$$

$$h = h_a + (h_b - h_a)u$$

Viewport Transformation

$$M_{viewport} = \begin{bmatrix} \frac{x_{d \max} - x_{d \min}}{2} & 0 & 0 & \frac{x_{d \max} + x_{d \min}}{2} \\ 0 & \frac{y_{d \max} - y_{d \min}}{2} & 0 & \frac{y_{d \max} + y_{d \min}}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(x_d, y_d, z_d, 1)^t = M_{viewport} (x_h, y_h, z_h, h)^t$$
OR

Rasterization

► Line drawing or polygon filling with

$$(x_d, y_d, z_d, 1)^t$$
 or $(x_d, y_d)^t$ and z_h

