TP RX 2: ABSORPTION DES RAYONS X

MP S2 - Année universitaire 2017/2018

Quentin Barthélemy, doctorant au LPS Orsay

Contact: quentin.barthelemy@u-psud.fr

Page personnelle: https://escobart.github.io/

Motivations

On veut pouvoir:

- Sélectionner les composantes utiles du rayonnement X
 (sélectionner les photons X issus d'une désexcitation particulière).
- Préserver au maximum le flux de photons X depuis le tube de production jusqu'au détecteur.
- Se protéger du rayonnement. Barthelemy
 Pour se faire, on utilise la matière tantôt comme filtre, tantôt comme fenêtre.

On a vu pendant le TP1 que le rayonnement X était un rayonnement ionisant : un photon X peut ioniser un atome s'il a une énergie suffisante (supérieure au seuil d'absorption). On parle d'auto-absorption (AA) quand l'anode du tube à RX est ionisée par les photons X qu'elle a elle-même produit.

Énergie ntin Bartnelemy Configuration électronique stable.

On a vu pendant le TP1 que le rayonnement X était un rayonnement ionisant : un photon X peut ioniser un atome s'il a une énergie suffisante (supérieure au seuil d'absorption). On parle d'auto-absorption (AA) quand l'anode du tube à RX est ionisée par les photons X qu'elle a elle-même produit.

On a vu pendant le TP1 que le rayonnement X était un rayonnement ionisant : un photon X peut ioniser un atome s'il a une énergie suffisante (supérieure au seuil d'absorption). On parle d'auto-absorption (AA) quand l'anode du tube à RX est ionisée par les photons X qu'elle a elle-même produit.

Énergie ntin Bartnelemy Trou Configuration excitée.

- La configuration électronique est caractéristique d'un élément : deux atomes différents n'ont pas les mêmes niveaux d'énergie. Ainsi, un photon X d'énergie donnée pourra ioniser certains atomes, mais pas d'autres.
- En d'autres termes, si l'on considère un rayonnement X de longueur d'onde donnée, on peut séparer les éléments de la classification périodique en deux groupes : ceux qui y sont transparents (pas d'absorption) et ceux qui l'absorbent.
- En terme d'intensité, l'absorption du rayonnement X par un élément suit la loi de Beer-Lambert : $I(x) = I_0 \exp(-\mu \rho x)$.

 μ : coefficient d'absorption massique en cm². g⁻¹ ρ : masse volumique en g. cm⁻³

Propriétés des coefficients d'absorption massiques :

• À Z fixé, μ augmente avec λ .

• À λ fixée, μ augmente avec Z.

n Barthélemy

Les valeurs de μ sont tabulées pour chaque couple (Z, λ) .

Monochromatisation

- Monochromatisation = sélection d'une longueur d'onde dans le rayonnement d'émission de l'anticathode. En général, on veut sélectionner la raie $K\alpha_1\alpha_2$ (qui est la plus intense) au détriment de la raie $K\beta$.
- Solution : utilisation d'un filtre K β .

Monochromatisation

Monochromatisation (Préambule)

- Anticathodes en Vanadium ($Z^{\rm V}=23$), en Chrome ($Z^{\rm Cr}=24$), en Fer ($Z^{\rm Fe}=26$), en Cobalt ($Z^{\rm Co}=27$) et en Cuivre ($Z^{\rm Cu}=29$).
- Pour quelle(s) anticathode(s) un filtre en Nickel ($Z^{Ni} = 28$) est adapté ?
- Quel est le meilleur filtre pour chaque anticathode ?
- Rappel condition de filtrage : $\lambda(K\beta_1 \text{ de l'AC}) \leq \lambda(AAK \text{ du filtre}) \leq \lambda(K\alpha_1 \text{ de l'AC})$.

A	ntica	nthode	Bar	thélen	tre /	
Élément	Z	$\lambda(Keta_1)$ (Å)	$\lambda(K\alpha_1)$ (Å)	Élément	Z	λ(AAK) (Å)
V	23					
Cr	24					
Fe	26					
Со	27					
Cu	29					

Monochromatisation (Préambule)

- Anticathodes en Vanadium ($Z^{\rm V}=23$), en Chrome ($Z^{\rm Cr}=24$), en Fer ($Z^{\rm Fe}=26$), en Cobalt ($Z^{\rm Co}=27$) et en Cuivre ($Z^{\rm Cu}=29$).
- Pour quelle(s) anticathode(s) un filtre en Nickel ($Z^{Ni} = 28$) est adapté?
- Quel est le meilleur filtre pour chaque anticathode ?
- Rappel condition de filtrage : $\lambda(K\beta_1 \text{ de l'AC}) \leq \lambda(AAK \text{ du filtre}) \leq \lambda(K\alpha_1 \text{ de l'AC})$.

A	ntica	thode	Bar	théle	Filtre	e/	
Élément	Z	$\lambda(Keta_1)$ (Å)	$\lambda(K\alpha_1)$ (Å)	Élémen	t	Z	λ (AAK) (Å)
V	23	2.28434	2.50348				
Cr	24	2.08480	2.28962				
Fe	26	1.75653	1.93597				
Со	27	1.62075	1.78892				
Cu	29	1.39217	1.54050				

Monochromatisation (Préambule)

- Anticathodes en Vanadium ($Z^{\rm V}=23$), en Chrome ($Z^{\rm Cr}=24$), en Fer ($Z^{\rm Fe}=26$), en Cobalt ($Z^{\rm Co}=27$) et en Cuivre ($Z^{\rm Cu}=29$).
- Pour quelle(s) anticathode(s) un filtre en Nickel ($Z^{Ni} = 28$) est adapté ?
- Quel est le meilleur filtre pour chaque anticathode ?
- Rappel condition de filtrage : $\lambda(K\beta_1 \text{ de l'AC}) \leq \lambda(AAK \text{ du filtre}) \leq \lambda(K\alpha_1 \text{ de l'AC})$.

	ntica	thode	Bar	thélerfit	re/	
Élément	Z	$\lambda(Keta_1)$ (Å)	$\lambda(K\alpha_1)$ (Å)	Élément	Z	λ (AAK) (Å)
V	23	2.28434	2.50348	Titane (Ti)	22	2.4973
Cr	24	2.08480	2.28962	V	23	2.2690
Fe	26	1.75653	1.93597	Manganèse (Mn)	25	1.8964
Со	27	1.62075	1.78892	Fe	26	1.7433
Cu	29	1.39217	1.54050	Nickel (Ni)	28	1.4880

Z(filtre adéquat) = Z(anticathode)-1

# raie	Ordre n	heta mesuré (°)	λ calculée (Å)	λ tabulée (Å)	Indexation
1	1	31.2			
2		34.7	Rarth	álem	/
Abs. edge	XUC	21.8	Dartii	CICITI	y

# raie	Ordre n	heta mesuré (°)	λ calculée (Å)	λ tabulée (Å)	Indexation
1	1	31.2	2.0825	2.0848	1CrK eta_1
2		34.7	2.2885	2.28962	1CrK $lpha_1$
Abs. edge	XUC	21.8	1.4929	1.488	AAKNi

# raie	Ordre n	heta mesuré (°)	λ calculée (Å)	λ tabulée (Å)	Indexation
1	1	31.2	2.0825	2.0848	1CrK eta_1
2		34.7	2.2885	2.28962	1CrK α_1
Abs. edge	XUC	21.8	1.4929	1.488	AAKNi

- Anticathode de Chrome (Cr) et filtre de Nickel (Ni).
- La raie $1\text{CrK}\beta_1$ reste intense \rightarrow le filtre n'est pas efficace.
- C'est normal puisque les deux conditions de filtrage :
 - $\triangleright \lambda(K\beta_1 \text{ de l'AC}) \leq \lambda(AAK \text{ du filtre}) \leq \lambda(K\alpha_1 \text{ de l'AC})$
 - > Z(filtre) = Z(anticathode) 1

ne sont pas respectées!

# raie	Ordre n	heta mesuré (°)	λ calculée (Å)	λ tabulée (Å)	Indexation
1	1	23.8			
2		26.4	Rarth	álem	/
Abs. edge	XUC	25.7		GIGITI	y

# raie	Ordre n	heta mesuré (°)	λ calculée (Å)	λ tabulée (Å)	Indexation
1	1	23.8	1.6223	1.62075	1СоК eta_1
2		26.4	1.7874	1.78892	1CoK $lpha_1$
Abs. edge	XUC	25.7	1.7433	1.7433	AAKFe

# raie	Ordre n	heta mesuré (°)	λ calculée (Å)	λ tabulée (Å)	Indexation
1	1	23.8	1.6223	1.62075	1СоК eta_1
2		26.4	1.7874	1.78892	1СоК α_1
Abs. edge	XUC	25.7	1.7433	1.7433	AAKFe

- Anticathode de Cobalt (Co) et filtre de Fer (Fe).
- La raie $1\text{CoK}\beta_1$ est très peu intense \rightarrow le filtre est efficace.
- C'est normal puisque les deux conditions de filtrage :
 - $\triangleright \lambda(K\beta_1 \text{ de l'AC}) \leq \lambda(AAK \text{ du filtre}) \leq \lambda(K\alpha_1 \text{ de l'AC})$
 - > Z(filtre) = Z(anticathode) 1

sont respectées!

Épaisseur du filtre:

Loi de Beer-Lambert :
$$I(x) = I_0 \exp(-\mu \rho x)$$
.

Application aux raies
$$K\alpha$$
 et $K\beta$:
$$\begin{cases} I[K\alpha](x) = I_0[K\alpha] \exp(-\mu[K\alpha]\rho x); \\ I[K\beta](x) = I_0[K\beta] \exp(-\mu[K\beta]\rho x). \end{cases}$$

L'atténuation de la raie K β pour une épaisseur de filtre donnée d peut s'exprimer

comme le rapport :
$$\frac{I[\mathsf{K}\beta](d)}{I[\mathsf{K}\alpha](d)} = \frac{I_0[\mathsf{K}\beta]\exp(-\mu[\mathsf{K}\beta]\rho d)}{I_0[\mathsf{K}\alpha]\exp(-\mu[\mathsf{K}\alpha]\rho d)} = \frac{I_0[\mathsf{K}\beta]}{I_0[\mathsf{K}\alpha]}\exp\{-(\mu[\mathsf{K}\beta] - \mu[\mathsf{K}\alpha])\rho d\}.$$

On a donc:

$$\ln\left(\frac{I[\mathsf{K}\beta](d)}{I[\mathsf{K}\alpha](d)}\frac{I_0[\mathsf{K}\alpha]}{I_0[\mathsf{K}\beta]}\right) = (\mu[\mathsf{K}\alpha] - \mu[\mathsf{K}\beta])\rho d.$$

Soit:

$$d = \frac{1}{(\mu[\mathsf{K}\alpha] - \mu[\mathsf{K}\beta])\rho} ln \left(\frac{I[\mathsf{K}\beta](d)}{I[\mathsf{K}\alpha](d)} \frac{I_0[\mathsf{K}\alpha]}{I_0[\mathsf{K}\beta]} \right).$$

<u>Épaisseur du filtre :</u>

On a donc une expression de l'épaisseur du filtre pour une atténuation donnée de la raie $K\beta$ par rapport à la raie $K\alpha$:

$$d = \frac{1}{(\mu[\mathsf{K}\alpha] - \mu[\mathsf{K}\beta])\rho} ln \left(\frac{I[\mathsf{K}\beta](d)}{I[\mathsf{K}\alpha](d)} \frac{I_0[\mathsf{K}\alpha]}{I_0[\mathsf{K}\beta]} \right).$$

On veut déterminer l'épaisseur du filtre de Fer pour avoir une atténuation de 1/600 de la raie $K\beta$ par rapport à la raie $K\alpha$ du Cobalt (ABS A2).

Données:

$$\frac{I_0[K\alpha]}{I_0[K\beta]} = 8.03;$$

$$\rho[Fe] = 7.86g. \text{ cm}^{-3};$$

$$\lambda[K\beta_1] = 1.62075\text{Å};$$

$$\lambda[K\alpha] = \frac{2}{3}\lambda[K\alpha_1] + \frac{1}{3}\lambda[K\alpha_2] = 1.79021\text{Å};$$

Pour faire l'application numérique, il faut connaître les coefficients d'absorption massiques du Fer ($\mu[K\alpha]$ et $\mu[K\beta]$).

Épaisseur du filtre:

Cependant, il y a un hic! Les valeurs tabulées ne correspondent pas exactement à nos longueurs d'ondes. Il faut donc faire une extrapolation en supposant que le coefficient d'absorption massique varie linéairement entre deux points de la table.

λ (Å)	1.60	1.66	1.79	1.93
μ(Fe)	348	397	+ 60	em

• Pour $\lambda[K\beta_1] = 1.62075\text{Å}$:

$$a = \frac{397 - 348}{1.66 - 1.60} = 816.67$$
 et $b = 348 - 816.67 \times 1.60 = -958.67$,

Donc
$$\mu[K\beta] = 816.67 \times 1.62075 - 958.67 = 364.95 \text{cm}^2.\text{g}^{-1}$$
.

• Pour $\lambda[K\alpha] = 1.79021\text{Å}$:

$$a = \frac{71-60}{1.93-1.79} = 78.57$$
 et $b = 71 - 78.57 \times 1.93 = -80.64$,

Donc
$$\mu[K\alpha] = 78.57 \times 1.79021 - 80.64 = 60.02 \text{cm}^2.\text{g}^{-1}$$
.

<u>Épaisseur du filtre :</u>

II ne reste plus qu'à faire l'application numérique !
$$d = \frac{LE + LI}{(60.02 - 364.95) \times 7.86} ln \left(\frac{LI}{600} \times 8.03\right) = 18 \mu m.$$

On veut se protéger du rayonnement K α provenant d'une anticathode de Cuivre. On dispose pour cela de 5 filtres d'épaisseur $d=20\mu m$: en Béryllium (Be, Z=4), en Fer (Fe, Z=26), en Molybdène (Mo, Z=42), en Tungstène (W, Z=74) et en Plomb (Pb, Z = 82).

On rappelle la loi de Beer-Lambert :

$$I[K\alpha](d) = I_0[K\alpha] \exp(-\mu[K\alpha]\rho d)$$
.

La longueur d'onde associée à la raie K
$$\alpha$$
 du Cuivre est : Chy
$$\lambda[\mathsf{K}\alpha] = \frac{2}{3}\lambda[\mathsf{K}\alpha_1] + \frac{1}{3}\lambda[\mathsf{K}\alpha_2] = 1.54178 \text{Å}.$$

De la même façon que précédemment, on calcule les coefficients d'absorption massiques pour chaque filtre.

Élément	$\lambda = 1.50$ Å	$\lambda = 1.60$ Å	$\mu[K\alpha] = a\lambda + b$
Be	1.40	1.65	$\mu[K\alpha] = 2.5\lambda - 2.35$
Fe	284	348	$\mu[K\alpha] = 640\lambda - 676$
Mo	151	178	$\mu[K\alpha] = 270\lambda - 254$
Pb	225	265	$\mu[K\alpha] = 400\lambda - 375$
W	155	186	$\mu[K\alpha] = 310\lambda - 310$

$$I[K\alpha](d)/I_0[K\alpha] = exp(-\mu[K\alpha]\rho d)$$
.

On peut donc remplir le tableau :

Élément	$\mu[K\alpha]$ (cm ² .g ⁻¹)	ho (g. cm ⁻³)	$I[K\alpha](d)/I_0[K\alpha]$
Béryllium	енин Б	art _{1.86} rer	ПУ
Fer		7.86	
Molybdène		10.2	
Plomb		11.34	
Tungstène		19.3	

$$I[K\alpha](d)/I_0[K\alpha] = exp(-\mu[K\alpha]\rho d)$$
.

On peut donc remplir le tableau :

Élément	$\mu[K\alpha]$ (cm ² .g ⁻¹)	ρ (g. cm ⁻³)	$I[K\alpha](d)/I_0[K\alpha]$
Béryllium	1E11.50 D	art _{1.86} rei	ПУ
Fer	310.74	7.86	
Molybdène	162.28	10.2	
Plomb	241.71	11.34	
Tungstène	167.95	19.3	

$$I[K\alpha](d)/I_0[K\alpha] = exp(-\mu[K\alpha]\rho d)$$
.

On peut donc remplir le tableau :

Élément	$\mu[K\alpha]$ (cm ² .g ⁻¹)	ρ (g. cm ⁻³)	$I[K\alpha](d)/I_0[K\alpha]$
Béryllium	1E11.50 D	art _{1.86} rei	0.9944
Fer	310.74	7.86	0.0076
Molybdène	162.28	10.2	0.0365
Plomb	241.71	11.34	0.0042
Tungstène	167.95	19.3	0.0015

Élément	$\mu[K\alpha]$ (cm ² .g ⁻¹)	ρ (g. cm ⁻³)	$I[K\alpha](d)/I_0[K\alpha]$
Béryllium	1.50	1.86	0.9944
Fer	310.74	7.86	0.0076
Molybdène	162.28	10.2	0.0365
Plomb	E 241.71 B	art _{11.3} 4 er	0.0042
Tungstène	167.95	19.3	0.0015

Conclusions:

- ➤ Le Tungstène est l'élément du tableau qui absorbe le plus le rayonnement (protection maximale). Cependant le Plomb est moins cher et assure une bonne protection aussi!
- Le Béryllium est l'élément du tableau qui absorbe le moins les rayons X. Les fenêtres du tube à RX et du collecteur sont donc faites de Béryllium, pour préserver au maximum le flux initial de photons X.