(!) This quiz has been regraded; your score was affected.

Quiz 4

Due Apr 26 at 11:59pm **Points** 8 **Questions** 8

Available Apr 17 at 11:59pm - Apr 26 at 11:59pm 9 days Time Limit 15 Minutes

This quiz was locked Apr 26 at 11:59pm.

Attempt History

	Attempt	Time	Score	Regraded
LATEST	Attempt 1	15 minutes	5 out of 8	6 out of 8

Score for this quiz: **6** out of 8 Submitted Apr 26 at 3:20pm This attempt took 15 minutes.

	Question 1	1 / 1 pts		
	The RECURSIVE-ACTIVITY-SELECTOR			
	returns the minimum set of the subproblem			
	a nested conditional statement			
Correct!	return a maximum set of compatible activites for the subproblem			

Question 2 1/1 pts

A greedy algorithm

	Is the most effective method for every scenario to same run time				
Correct!	is looking for the best opportunity at the moment				
	Finds the solution to all sub-problems, and then finds the minimum or maximum value.				
	Optimizes problems dynamically				

Question 3 Original Score: 0 / 1 pts Regraded Score: 1 / 1 pts 1 This question has been regraded.

A greedy algorithm should include the following steps:

- find the set of candidate solutions,
- check if the candidate solutions are feasible,
- a discovery time of the shortest path
- a function element that finds the best unused candidate solution.
 - True

Correct! False

 a discovery time of the shortest path is not always true with greedy algorithms

Question 4 1 / 1 pts

The greedy-choice property is an optimal global solution that is achieved by making a locally optimal (greedy) choice.

Correct!

True

False

Question 5 0 / 1 pts

Consider a greedy approach for solving the knapsack problem, where we first calculate the value per weight unit for each item i; i.e., $v_i = b_i / w_i$, where b_i denotes the benefit of item i and w_i represents its weight. Then, we sort all values v_i in a decreasing order, and fill the knapsack from the beginning of the sorted list. Which of the following is correct?

ou Answered

This approach works only for 0-1 knapsack.

orrect Answer

- This approach works only for fractional knapsack.
- This approach works for both 0-1 and fractional knapsack.

Which of the following greedy strategies results in the least optimal solution for the activity selection problem? Select all that applies. Latest start time Earliest finish time

orrect Answer	Latest finish time		
Correct!	☑ Earliest start time		

Question 7 1 / 1 pts

Assume that we have the following frequencies for the characters in a text. Is the following a correct Huffman coding tree?

f:5 e:9 c:12 b:13 d:16 a:45

Correct!

- True
- False

Question 8 1 / 1 pts

A matroid is an ordered pair M = (S, I) where:

- 1. *S* is a finite set.
- 2. I is a non-empty family of subsets of S called the independent subsets of S, such that if $B \in I$ and $A \subseteq B$, then $A \in I$, making I hereditary.
- 3. If $A \in I$, $B \in I$, and |A| < |B| then there is exists some element $x \in B A$ such that $A \cup \{x\} \in I$, therefor M satisfies the exchange property.

						d	×
10.7	റ	m	m	0	C.	ľ	ı
-	w			w	w	ъ	-8

-		
	┰	
	l ri	IP

False

Quiz Score: 6 out of 8