View parameters, plot waveform, compute and display spectrum. Verify that the frequency of the sinusoid (as measured using the FFT) is the expected frequency.

```
clear
```

Load .wav file

```
[x, Fs] = audioread('author_f.wav');
[nbits, opts] = audioread('author_f.wav');
whos
```

Name	Size	Bytes	Class	Attributes
Fs nbits opts x	1x1 25500x1 1x1 25500x1	8 204000 8 204000	double double double double	

Fs

Fs = 16000

nbits

```
nbits = 25500×1

0.915527343750000

0.305175781250000

0

0

0

0

-0.305175781250000

0

0
```

opts

```
opts = 16000
```

```
soundsc(x, Fs)
```

Plot waveform

```
figure(1)
clf
plot(x)
xlabel('Time (sample)')
```


Time axis in seconds

```
N = length(x);
t = (1:N)/Fs;

figure(1)
clf
plot(t, x)
xlabel('Time (sec)')
```


Zoom in to 50 msec

xlim(0.4 + [0 0.050])


```
%imp = [1 zero(1,N)];
%h = filter (x, imp)

%figure(1)
%clf
%stem(0:N,h)
%xlabel('Discrete time(n)')
%title('impulse response')
```

Frequency spectrum

Use Fast Fourier Transform (FFT)

```
% Use power of 2 for FFT efficiency
N = length(x)

N = 25500
```

```
Nfft = 131072
```

Compute Fourier transform

```
X = fft(x, Nfft);
k = 0:Nfft-1;  % FFT index

figure(1)
clf
plot(k, abs(X))
xlabel('FFT index')
title('Spectrum')
```


Center dc

```
X2 = fftshift(X);
k2 = -Nfft/2 : Nfft/2-1;

figure(1)
clf
plot(k2, abs(X2))
xlabel('FFT index')
title('Spectrum')
```


Normalized frequency

Normalized frequency is in units of [cycles per sample]

```
fn = ( -Nfft/2 : Nfft/2-1 ) / Nfft;

figure(1)
clf
plot(fn, abs(X2))
xlabel('Frequency (cycles/sample)')
title('Spectrum')
```


Frequency in Hz

```
f = fn * Fs;

figure(1)
clf
plot(f, abs(X2))
xlabel('Frequency (Hz)')
title('Spectrum')
```


Zoom to frequency band [200 350] Hz. Notice the sidelobes

xlim([200 350])

Fourier transform in dB

```
X_dB = 20*log10(abs(X2));
figure(1)
clf
plot(f, X_dB)
xlabel('Frequency (Hz)')
title('Spectrum (dB)')

xlim([0 Fs/2])
grid
```

