Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Методы оптимизации»

Авторы: Алиев Руслан Лыскин Данил Щелочков Александр

Факультет: ФИТиП

Санкт-Петербург 2021

Шаг 1: Реализация Алгоритмов и анализ зависимости числа итераций от выбранного метода одномерной минимизации для метода наискорейшего спуска

Список реализованных методов:

- метод градиентного спуска;
- метод наискорейшего спуска;
- метод сопряженных градиентов.

Анализ зависимости числа итераций от выбранного метода одномерной минимизации:

F(x)	ε	$(x_0; y_0)$	метод дихотомии	метод золотого сечения	метод Фибоначчи	метод парабол	метод Брента
$60x_1^2 + 40x_2^2 - 24x_1 + 10x_2 + 10$	10 ⁻⁵	(1;1)	814	330	352	47	183
$64x_1^2 + 40x_1x_2 + 64x_2^2 - 10x_1 + 30x_2 + 13$	10^{-5}	(-1; -1)	286	210	224	33	126
$1.5x_1^2 + 3.5x_2^2 - 10x_2$	10^{-5}	(1; -1)	550	240	256	35	115

Вывод: Для решения задачи поиска наилучшего шага лучше всего подошёл метод Парабол. Несмотря на то, что фактическое число итераций самих градиентных методов было примерно одинаковым, число итераций в задачах одномерной минимизации существенно разнилось, особенно это видно при сравнении метода парабол и дихотомии. Таким образом можно сделать вывод, что для поиска величины шага лучше всего использовать метод парабол.

Шаг 2: Анализ траектории методов для разных квадратичных функций

Функция 1: $20x_1^2 + 20x_2^2 + 7x_1x_2 + x_1 + 4x_2$

• Метод градиентного спуска

https://www.geogebra.org/calculator/kq4afwxr

• Метод наискорейшего спуска

https://www.geogebra.org/graphing/ctzptjxa

• Метод сопряженных градиентов

https://www.geogebra.org/graphing/ktqcxkqk

Функция 2: $200x_1^2 + 100x_2^2 - 2x_1x_2 + x_1 + x_2$ • Метод градиентного спуска https://www.geogebra.org/calculator/wq6rx2my

• Метод наискорейшего спуска https://www.geogebra.org/graphing/y4hqpuma

• Метод сопряженных градиентов https://www.geogebra.org/graphing/sexg8dxv

Вывод: как видно, направление движения обычного градиентного спуска является верным, но по сравнению с методом наискорейшего спуска и методом сопряженных градиентов, требуется куда большее число итераций. В методах наискорейшего спуска и сопряженного градиента мы выбираем оптимальный шаг на каждой итерации, за счёт этого и достигается ускорение сходимостию Однако в методе наискорейшего спуска вычисление оптимального шага занимает определенное время, так как за это отвечает одномерная минимизация.

Шаг 3: Анализ зависимости числа итераций от числа обусловленности k и размерности пространства n

• Метод градиентного спуска

• Метод наискорейшего спуска

• Метод сопряженных грариентов

Вывод: На основе графиков можно сделать вывод, что на определенных участках графиков наблюдается прямая зависимость числа итераций от числа обусловленности, причём можно заметить что участки отвечающие за спад показывают, что в определенные моменты зависимость приобретает периодичный характер. Так же можно заметить что метод сопряженных градиентов сходится в разы быстрее остальных рассмотренных методов градиентного спуска.

Вывод:

В итоге можно сделать вывод, что метод сопряженных градиентов показывает самую высокую скорость сходимости из представленных в этой лабораторной работе методов.

Приложение: Иерархия классов в проекте и исходники

Исходники: https://github.com/DanLys/MetOp/tree/master/src/lab2