TheNumbersBook.com 2010

Dummit & Foote 1.1 # 8, 22, 25, 26, 27, 31

- **1.1.8** Let $G = \{ z \in \mathbb{C} \mid z^n = 1 \text{ for some } n \in \mathbb{Z}^+ \}.$
 - (a) Prove that G is a group under multiplication (called the group of *roots of unity* in \mathbb{C}).
 - (b) Prove that *G* is not a group under addition.
- (a) First, note that for any $z,z' \in G$ such that $z^m = 1, z'^n = 1$, then $(zz')^{nm} = (z^m)^n (z'^n)^m = 1*1 = 1$. Thus $zz' \in G$ (closure under multiplication). Furthermore, $1 \in G$ is the identity and for any $z \in G$, we also have $z^{n-1} \in G$ (because $(z^{n-1})^n = (z^n)^{n-1} = 1$). But $z*z^{n-1} = z^n = 1$ so z^{n-1} is the inverse of z. Finally, note that for $z,z',z'' \in G$ we have (zz')z'' = z(z'z'') because $z,z',z'' \in \mathbb{C}$ (associativity holds under complex numbers).
- (b) The additive identity in \mathbb{C} is 0. But $0 \notin G$ as there is no natural number n such that $0^n = 1$.

1.1.22 If x and g are elements of the group G, prove that $|x| = |g^{-1}xg|$. Deduce that |ab| = |ba| for all $a, b \in G$.

Let g^{-1} , $x, g \in G$. Assume $|g^{-1}xg| = n$, then $(g^{-1}xg)^n = e$, by definition. We want to show that |x| = n. Then,

$$e = (g^{-1}xg)^n$$

$$= (g^{-1}xg)(g^{-1}xg) \cdots (g^{-1}xg)$$

$$= g^{-1}xgg^{-1}xg \cdots g^{-1}xg$$

$$= g^{-1}x(gg^{-1})x(g \cdots g^{-1})xg$$

$$= g^{-1}x^ng$$

$$g = x^ng$$

$$e = x^n$$

This shows that |x| = n. We now want to deduce that |ab| = |ba|. Let $a = g^{-1}x$ and b = g. Then,

$$|ab| = |(g^{-1}x)g| = |x| = |(gg^{-1}x)| = |g(g^{-1}x)| = |ba|$$

1.1.26 Assume H is a nonempty subset of (G, \star) which is closed under the binary operation on G and is closed under inverses, i.e., for all h and $k \in H$, hk and $h^{-1} \in H$. Prove that H is a group under the operation \star restricted to H (such a subset H is called a *subgroup* of G).

If $h, h^{-1} \in H$, then $hh^{-1} = 1 \in H$ because it is closed under operation of G. Thus, H has an identity element. Finally, for any $h, k, j \in H$, we have (hk)j = h(kj) since $h, k, j \in G$ and H is closed under operation of G. Thus, H is associative. The three axioms of a group are satisfied, so H is a *subgroup* of G.

1.1.27 Prove that if x is an element of the group G then $\{x^n \mid n \in \mathbb{Z}\}$ is a subgroup (cf. the preceding exercise) of G (called the *cyclic subgroup* of G generated by x).

From previous problem, it is sufficient to show H is non-empty, closed under operation and under inverses. H is clearly non-empty. Consider two $x^n, x^m \in H$. Then $x^n x^m = x^{n+m} \in H$ as $n+m \in \mathbb{Z}$. Also, for $x^n \in H$, $x^{-n} \in H$ (which is the inverse of x^n .

1.1.31 Prove that any finite group G of even order contains an element of order 2. [Let t(G) be the set $\{g \in G \mid g \neq g^{-1}\}$. Show that t(G) has an even number of elements and every nonidentity element of G - t(G) has order 2.]

Let $t(G) = \{g \in G \mid g \neq g^{-1}\}$. Since $g \neq g^{-1}$ then, similarly, $(g^{-1})^{-1} \neq g$ so t(G) creates a parity of elements that do not equal their own inverses. So t(G) is of even order. Since G is a finite group of even order, then G - t(G) is also a finite group of even order. Since $G - t(G) = \{g \in G \mid g = g^{-1}\}$ then $g = g^{-1}$ or $g^2 = e$ for a non-identity element g. This means that |g| = 2, as desired. Alternatively: we could have proved this problem using indeces.