2. jesenski ispitni rok iz predmeta **"Elektronika 2"** 05.09.2018.

Zadatak 1 – 10 bodova

Za diferencijsko pojačalo sa slike zadano je $U_{DD}=U_{SS}=10~{\rm V}~,~R_{g1}=R_{g2}=1~{\rm k}\Omega~,~R_D=1~{\rm k}\Omega~{\rm i}~R_S=3~{\rm k}\Omega~.$ Tranzistori T_1 i T_2 imaju jednake parametre $I_{DSS}=8~{\rm m}\Lambda~{\rm i}~U_P=-4~{\rm V}~.$ Zanemariti porast struje odvoda u području zasićenja.

- a) Izračunati struje I_{DQ} i napone U_{DSQ} za oba tranzistora u statičkoj radnoj točki (3 boda).
- b) Odrediti naponska pojačanja zajedničkog i diferencijskog signala $A_{Vz} = u_{iz}/u_z$ i $A_{Vd} = u_{iz}/u_d$, te faktor potiskivanja ρ (5 bodova).

c) Izračunati izlazni napon ako je napon $u_g = 150 \sin \omega t$ mV (2 boda).

Zadatak 2 – 10 bodova

Za pojačalo na slici zadano je $U_{CC} = 15 \text{ V}$, $R_G = 100 \text{ k}\Omega$, $R_D = 1 \text{ k}\Omega$, $R_E = 4 \text{ k}\Omega$, $R_T = 1 \text{ k}\Omega$, $C_G = 200 \text{ nF}$ i $C_E = 2 \text{ \mu}F$. Parametri tranzistora su $I_{DSS} = 32 \text{ mA}$, $U_P = -2 \text{ V}$, $\beta \approx h_{fe} = 100 \text{ i } U_\gamma = 0.7 \text{ V}$. Zanemariti serijski otpor baze r_{bb} , te poraste struje odvoda s naponom u_{DS} u području zasićenja i struje kolektora s naponom u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

- a) Odrediti otpor R_S s kojim će se postići struja $I_{DQ} = 8 \text{ mA}$, te izračunati struju I_{CQ} i napone U_{DSQ} i U_{CEQ} u statičkoj radnoj točki (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_V = U_{iz}/U_{ul}$ na srednjim frekvencijama (2 boda).
- d) Izračunati donju graničnu frekvenciju pojačanja A_V (4 boda).

Zadatak 3 – 10 bodova

Za pojačalo na slici zadano je:

$$U_{CC} = 12 \text{ V}$$
, $R_g = 5 \text{ k}\Omega$,

$$C_B = 2 \mu F, R_1 = 40 k\Omega,$$

$$R_2 = 10 \text{ k}\Omega$$
, $R_C = 2 \text{ k}\Omega$,

$$R_E = 500 \Omega$$
, $C_E = 50 \mu F$,

$$C_C = 2 \mu \text{F} \text{ i } R_T = 500 \Omega$$
. Parametri

tranzistora su $\beta \approx h_{fe} = 100$,

$$U_{\gamma}=0.7\,\mathrm{V}\;,\;r_{bb'}=50\;\Omega\;,$$

$$C_{b'e} = 25 \text{ pF i } C_{b'c} = 2 \text{ pF}.$$

Zanemariti porast struje kolektora s

naponom u_{CE} normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

- b) Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu (2 boda).
- c) Izračunati pojačanje $A_{I_{e}}=I_{iz}/I_{e}$ na srednjim frekvencijama (2 boda).
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Ig} (4 boda).

Zadatak 4 – 12 bodova

Za pojačalo na slici zadano je $U_{CC}=12~{\rm V}$, $R_{C1}=3~{\rm k}\Omega$, $R_{B1}=100~{\rm k}\Omega$ i $R_{E2}=500~\Omega$. Parametri tranzistora su $\beta\approx h_{fe}=100~{\rm i}$ $U_{\gamma}=0.7~{\rm V}$. Zanemariti serijski otpor baze $r_{bb'}$ i porast struje kolektora s naponom u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_{T}=25~{\rm mV}$.

- a) Izračunati statičku radnu točku (2 boda).
- b) Odrediti tip povratne veze i nacrtati A-granu pojačala bez povratne veze za mali signal (2 boda).
- c) Odrediti pojačanje A-grane (4 boda).
- d) Odrediti koeficijent povratne veze β (2 boda).
- e) Odrediti pojačanja $A_{Vf} = u_{ir}/u_{ul}$ i $A_{If} = i_{ir}/i_{ul}$ (2 boda).

 R_C

 R_E

 C_E

 R_1

 I_{ul} C_B

 $u_{ul} R_2$

Zadatak 5 – 8 bodova

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze su

$$A(j\omega) = \frac{-10^4 (1 + j\omega/10^6)}{(1 + j\omega/10^4)(1 + j\omega/10^5)}, \qquad \beta(j\omega) = \frac{\beta_0}{1 + j\omega/10^4}.$$

Grafičkim postupkom crtanjem aproksimativnog Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O.=45^{\circ}$. Koliko je pri tome amplitudno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram – 4 boda, određivanje β_0 – 2 boda, A.O. – 2 boda)

Popis složenijih formula:

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2 \left(1 + \lambda u_{DS} \right)$$

$$i_C = \beta I_B \left(1 + \frac{u_{CE}}{U_A} \right)$$