INTRODUCTION

OBJECTIVE OF THE TASK

The objective of this report is to document the process of web scraping, data processing, and visualization undertaken as part of the **internship recruitment** task assigned by **Point Zero Solutions**. The report will detail the methods employed for scraping data from the web, the techniques used for cleaning and processing the collected data, and the visualizations created using Python and Jupyter Notebook. Additionally, the report will provide insights into the solutions implemented, and key findings derived from the analysis.

WEB SCRAPING

As the first step, I was tasked with writing a Python script to scrape data for the coordinates of various locations such as warehouses, malls, and parking lots. I was given the option to scrape data from any website that provides relevant information. I chose to scrape data from Google Maps.

Using the Selenium library in Python, I fetched the following important data:

- Name of the place
- Address
- Type of place
- Rating
- Number of reviews
- Contact number (if available)
- URL

Here is a screenshot of the code I used to fetch data in Python (Jupyter Notebook):

```
In [31]: 1 from selenium import webdriver
2 from selenium.webdriver.common.by import By
3 from selenium.webdriver.common.keys import Keys
4 from selenium.webdriver.chrome.service import Service as ChromeService
5 from selenium.webdriver.chrome.options import Options
                 from selenium.common.exceptions import StaleElementReferenceException from tqdm import tqdm
                  8 import time
                      import pandas as pd
                10 import os
                11
12 driver = webdriver.Chrome()
                driver.get('https://www.google.com/maps')
time.sleep(3)
                16 17 def fetch_place_details(driver, category):
                19
                20
21
                            location_elements = driver.find_elements(By.CLASS_NAME, 'Nv2PK')
                22
23
24
25
26
27
28
29
30
                            for element in location_elements:
                                   try:
                                         rating = element.find_element(By.CLASS_NAME,'MW4etd').text if len(element.find_elements(By.CLASS_NAME,'MW4etd'))
reviews = element.find_element(By.CLASS_NAME,'UY7F9').text if len(element.find_elements(By.CLASS_NAME,'UY7F9'))
contact = element.find_element(By.CLASS_NAME,'USdlk').text if len(element.find_elements(By.CLASS_NAME,'USdlk'))
                                          element.click()
                                         time.sleep(3)
name = driver.find_element(By.CLASS_NAME, 'DUwDvf').text if len(driver.find_elements(By.CLASS_NAME, 'DUwDvf')) >
                                         address = driver.find_element(By.CLASS_NAME, 'IO6YTe').text if len(driver.find_elements(By.CLASS_NAME, 'IO6YTe') url=driver.current_url
                31
32
                                         url=driver.currenc_ur
places.append({
   'name': name,
   'address': address,
   'type of place': category
                35
36
                                                'rating': rating,
'reviews': reviews,
'contact': contact,
                 38
                                                  'url':url
                41
                                          })
                43
44
                 45
                                   except StaleElementReferenceException as e:
                                          print(f"Stale element encountered")
                                           continue
                                   except Exception as e:
                                          print(f"NO INFORMATION FOR THIS LOCATION AVAILABLE")
time.sleep(1)
                                          continue
                             return places
```

To get more data, here is code I wrote to automate scroll in google maps interface:

```
import pyautogui
 2
   def scroll():
 3
        pyautogui.scroll(-5000)
4
        time.sleep(3)
 5
        pyautogui.scroll(-5000)
        time.sleep(3)
 6
 7
        pyautogui.scroll(-5000)
8
        time.sleep(3)
9
        pyautogui.scroll(-5000)
10
        time.sleep(3)
        pyautogui.scroll(-5000)
11
12
        time.sleep(3)
13
        pyautogui.scroll(-5000)
14
        time.sleep(3)
        pyautogui.scroll(-5000)
15
        time.sleep(3)
16
17
        pyautogui.scroll(-5000)
18
        time.sleep(3)
        pyautogui.scroll(-8000)
19
20
        time.sleep(3)
21
        pyautogui.scroll(-8000)
22
        time.sleep(3)
```

Here is code that I wrote to get all places data and store it in a list:

I saved the scraped data into a csv file with name 'map data.csv'. This is how data looked after scraping:

```
df = pd.DataFrame(all_places)
df

name address type_of_place rating reviews contact url
```

	name	address	type_of_place	rating	reviews	contact	url
0	Akhil India private limited 91-C warehouse jammu	Ratnuchak, Sanjay Nagar, Gujarbasti, Jammu, Ja	warehouses in india	4.7	(3)	N/A	https://www.google.com/maps/place/Akhil+India+
1	Safari Industries India Ltd	Camp Gurdwara, H No. 288, Ward No. 58, near Di	warehouses in india	4.3	(6)	N/A	https://www.google.com/maps/place/Safari+Indus
2	VI Warehouse Jammu	White House, Vodafone Idea Warehouse Anke Indu	warehouses in india	4.5	(2)	N/A	https://www.google.com/maps/place/VI+Warehouse
3	FastBeetle Warehouse Jammu	Dharap, Jammu, Jammu and Kashmir 181132	warehouses in india	3.6	(5)	N/A	https://www.google.com/maps/place/FastBeetle+W
4	Rani Bagh Warehouse	MRHR+RCF, RS Pura Rd, Raipur Satwari, Jammu, J	warehouses in india	4.5	(4)	094191 44732	https://www.google.com/maps/place/Rani+Bagh+Wa
213	La Trobe International India	201, 2nd Floor Galleria Mall [DLF, Mayur Vihar	Universities in india	5.0	(7)	N/A	https://www.google.com/maps/place/La+Trobe+Int
214	Arunachal Universities Of Studies	J9FP+MVF, E Block, Sector 63, Noida, Uttar Pra	Universities in india	4.2	(10)	N/A	https://www.google.com/maps/place/Arunachal+Un
215	Delhi Skill and Entrepreneurship University	G/Floor, Integrated Institute Of Technology, C	Universities in india	4.2	(554)	N/A	https://www.google.com/maps/place/Delhi+Skill+
216	School of Planning and Architecture (SPA)	4, Block B, Beside State Bank Of India, Indrap	Universities in india	4.5	(382)	011 2370 2382	https://www.google.com/maps/place/School+of+Pl
217	India of colleges	Pillar No.468,Bagga, Rithala, Rohini, New Delh	Universities in india	3.8	(343)	011 4108 8822	https://www.google.com/maps/place/India+of+col

218 rows × 7 columns

```
1 df.to_csv('map_data.csv',index=False)
```

DATA CLEANING & DATA PREPROCESSING

After saving the scraped data in a CSV format, I used Pandas to import the data into a new Jupyter Notebook for further processing. The first step was to extract the latitude and longitude coordinates from the URL column values in the dataset. Here is the code:

EXTRACTING LATITUDE AND LONGITUDE FROM URL

Next, I cleaned the data by handling the null values. Specifically, I had three columns with null values: **rating** (5 missing), **reviews** (5 missing), and **contact** (66 missing). Here is how I addressed these null values:

- For the **rating** column, I replaced the null values using the **statistics.mean** function to calculate the average rating from the available data.
- For the **reviews** column, I replaced the null values with **0**, assuming no reviews were left for those entries.
- For the **contact** column, which had a significant number of null values (66), I decided to delete this column as it was not critical for the analysis.

After cleaning the data, I performed additional data preprocessing. Specifically, I noticed that the **ratings** column had values in the format "(2)", "(32)", "(12)", which needed to be converted to float values for further analysis. I stripped the parentheses and converted these values to a standard numerical format like 2, 32, and 12.

DATA ANALYTICS AND VISUALIZATIONS

Here are the insights that I got from the data:

1. Average Ratings:

•	Average rating for warehouses is:	4.01
•	Average rating for malls is:	4.16
•	Average rating for hospitals is:	4.19
•	Average rating for parking-lots is:	3.95
•	Average rating for schools is:	4.22
•	Average rating for universities is:	4.27

2. Places with most number of reviews:

name	type_of_place	
DLF Mall of India	malls	147255.0
Nexus Elante Mall	malls	118809.0
VR Punjab	malls	42750.0
Vegas Mall	malls	37797.0
Aakash Healthcare Super Speciality Hospital	hospitals	19065.0
VR Ambarsar	malls	18793.0
BLK-Max Super Speciality Hospital Delhi	hospitals	16407.0
Omaxe Mall	malls	14898.0
Park Hospital	hospitals	12126.0
Venkateshwar Hospital	hospitals	12124.0

3. Places with highest ratings:

name	type_of_place	rating
Benevolence logistics	warehouses	5.0
Best Cancer Hospital in India	hospitals	5.0
Best Spine Surgery Hospital in India	hospitals	5.0
Central warehousing corporation	warehouses	5.0
CollegeSakha - Top Colleges, Universities & Institutes in india	Universities	5.0
La Trobe International India	Universities	5.0
My Care India Medical Tourism Health Tourism in India	hospitals	5.0
Pearl omax parking lot	parking-lots	5.0
RED Ambulances - RED.Health Gurgaon	hospitals	5.0
ServeXplus India Central Warehouse	warehouses	5.0

4. Total Count of places in the dataset:

- hospitals 42
 Universities 41
 schools 39
 malls 38
 warehouses 33
- parking-lots 25
- 5. A map showing the loca ons of the places with different markers for warehouses, malls, parking lots etc.:

CHALLENGES

The major challenge I faced during this project was during the web scraping phase. Here are the key difficulties and how I overcame them:

1. Scrolling with Selenium WebDriver:

- **Issue:** Initially, I struggled with implementing the scrolling functionality using Selenium WebDriver. The usual methods to scroll the page were not working as expected.
- **Solution:** After several attempts, I decided to use the **pyautogui** library to create an automated scroller. This library allowed me to simulate keyboard and mouse actions, which helped in scrolling the webpage effectively.

2. Fetching Latitude and Longitude:

- **Issue:** Google Maps does not provide latitude and longitude coordinates directly in the user interface, making it impossible to fetch them from the HTML code.
- Solution: After some investigation, I noticed that the coordinates were embedded in the URL of each location. I decided to extract the latitude and longitude values from these URLs.

By addressing these challenges with innovative solutions, I was able to successfully scrape and process the required data for further analysis and visualization.

Check my whole project here:

https://github.com/Rizwal/Google_Map_Scraper-Analysis