

Estrutura de Dados

Ordenação: Shellsort e MergeSort

Professores: Anisio Lacerda

Wagner Meira Jr.

Shellsort

- Proposto por Donald Shell em 1959
- É uma extensão do InsertionSort
- Problemas com o InsertionSort: sempre troca elementos vizinhos
- O método do Shell permite a troca de elementos distantes
- Trocamos itens separados por h posições.
- Vamos reduzindo o valor de h até chegar em 1.

Shellsort: ideia

Reorganizar o vetor de entrada tal que cada *h*-ésima posição produza uma subsequência ordenada

Após essa reorganização temos um vetor *h-sorted h* subsequências ordenadas independentes,

intercaladas

© Profs. Anisio e Wagner

45	56	12	43	95	19	8	67
----	----	----	----	----	----	---	----

45 | 56 | 12 | 43 | 95 | 19 | 8 | 67

h = 4

45 | 56 | 12 | 43 | **95** | 19 | 8 | 67

45	56	12	43	95	19	8	67
45	19	12	43	95	56	8	67

45 56 12	43 95	19 8	67
----------	-------	------	----

45	56	12	43	95	19	8	67
45	19	12	43	95	56	8	67
45	19	8	43	95	56	12	67

45 56 12	43 95	19 8	67
----------	-------	------	----

45	56	12	43	95	19	8	67
45	19	12	43	95	56	8	67
45	19	8	43	95	56	12	67
45	19	8	43	95	56	12	67

45	56	12	43	95	19	8	67
----	----	----	----	----	----	---	----

45 19 8 43 95 56 12 67
--

45	19	8	43	95	56	12	67
8	19	12	43	45	56	95	67

45 56 1	2 43 95	19 8	67
---------	---------	------	----

45	19	8	43	95	56	12	67
8	19	12	43	45	56	95	67
8	19	12	43	45	56	95	67

45 56 12	43 95	19 8	67
----------	-------	------	----

45	19	8	43	95	56	12	67
8	19	12	43	45	56	95	67
8	19	12	43	45	56	95	67
8	19	12	43	45	56	95	67

45 | 56 | 12 | 43 | 95 | 19 | 8 | 67

45 56 12	43 95	19 8	67
----------	-------	------	----

8 1	19 12	43	45	56	95	67
-----	-------	----	----	----	----	----

45	56 12	43	95	19	8	67
----	-------	----	----	----	---	----

8	19	12	43	45	56	95	67
8	19	12	43	45	56	95	67

45 56 1	2 43 95	19 8	67
---------	---------	------	----

8	19	12	43	45	56	95 67	
8	19	12	43	45	56	95	67
8	12	19	43	45	56	67	95

Shellsort

 Uma escolha simples de sequência para h é n/2ⁱ.

```
void shellSort(int array[], int n) {
  for (int h = n / 2; h > 0; h /= 2) {
    for (int i = h; i < n; i += 1) {
      int temp = array[i];
      int j;
      for (j = i; j >= h && array[j-h] > temp; j-= h) {
         array[j] = array[j - h];
      }
      array[j] = temp;
    }
}
```

- A complexidade de tempo depende da escolha da sequência.
- Para a sequência n/2ⁱ o Shellsort é O(n²).
- Existem sequências conhecidas as quais conseguimos obter complexidade um pouco melhor.
- A complexidade para algumas sequências utilizadas ainda é um problema em aberto.

É estável utilizando a sequência n/2ⁱ?

É estável utilizando a sequência n/2ⁱ?

2 6 5 5

É estável utilizando a sequência n/2ⁱ?

É estável utilizando a sequência n/2ⁱ?

Não!

Shellsort

Pior caso em comparações: O(N^{3/2})

Não existe prova do caso médio

Tempo de execução aceitável para vetores moderadamente grandes

Pequeno quantidade de código código em hardware ou sistemas embarcados

Não usa espaço extra

Mergesort

Mergesort

Python sort

Timsort (2.3 - 3.10), Powersort (3.11)

Java sort for objects

Perl

Firefox JavaScript

First Draft of a Report on the EDVAC

John von Neumann

Mergesort - Ideia

Divide o vetor em duas metades

Recursivamente ordena cada metade

Une (merge) as duas metades

input	M	Е	R	G	Ε	S	0	R	Т	Е	Χ	Α	М	Р	L	Ε
sort left half	Ε	Ε	G	М	0	R	R	S	Т	Ε	X	Α	M	P	L	Ε
sort right half	Е	Е	G	M	0	R	R	S	Α	Ε	Ε	L	М	Р	Т	X
merge results	Α	Ε	Ε	Ε	Ε	G	L	M	M	0	Р	R	R	S	Т	X

Mergesort overview

Merge Sort – Visão Geral

Ideia geral:

Dividir → Ordena os pares → Combina ordenando

Merge Sort - Pseudocódigo

```
MergeSort (e, d)
  if (e < d)
     meio = (e+d)/2;
     MergeSort(e, meio);
                                Divide
     MergeSort(meio+1, d);
     Merge(e, meio, d);
```

Como juntar?

- Quando acabo de dividir o vetor, chego na situação em que cada vetor tem apenas 1 elemento, então começo a juntar
- Como juntar 2 elementos?

Se eu tiver 2 vetores de 2 elementos ordenados, como criar um novo vetor de 4 elementos ainda ordenado?


```
int *merge(int *valuesL, int *valuesR, int nl int nr) {
  int *result = (int *) malloc((nl+nr) * sizeof(int));
 //...
  return result
       *result
                                                            nl = 2;
                                                            nr = 2;
                            *valuesR
  *valuesL
```

Estruturas de Dados – 2024-2 Material cedido pelo Prof. F. Figueiredo

Merge - Código

- Copia o menor de cada lado
- Até não ter mais de onde copiar de 1 dos lados
- Podemos ficar com elementos restantes

```
while (i < nl && j < nr) {
          (valuesL[i]
  valuesR[j]) {
              result[k]
  valuesL[i];
     i++;
  } else {
              result[k]
  valuesR[j];
     j++;
  k++;
```


if (k < nl + nr) {</pre>

if (k < nl + nr) {</pre>

Função Merge

```
int *merge(int *valuesL, int
*valuesR, int nl, int nr) {
  int *result = (int *)
malloc((nl+nr) * sizeof(int));
  int i = 0;
  int j = 0;
  int k = 0;
  while (i < nl && j < nr) {
    if (valuesL[i] < valuesR[j]) {</pre>
      result[k] = valuesL[i];
      i++;
    } else {
      result[k] = valuesR[j];
      j++;
    k++;
```

```
if (k < nl + nr) {</pre>
    for(; i < nl; i++) {</pre>
      result[k] = valuesL[i];
      k++;
    for(; j < nr; j++) {</pre>
      result[k] = valuesR[j];
      k++;
  return result;
```

Visualização do passo a passo: http://pythontutor.com/c.html#mode=edit

MERGESORT - ANÁLISE

Mergesort - análise empírica

Estimativas de tempo de execução:

Laptop: 10⁸ comparações/sec

Supercomputador: 10¹² comparações/sec

	insertion sort (N²)			mergesort (N log N)		
computer	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min
super	instant	1 second	1 week	instant	instant	instant

Algoritmos eficientes são melhores que supercomputadores!

O método é estável?

Vamos ver um exemplo...

Mergesort - Características

- O algoritmo é estável?
 - Sim, pois se os elementos forem iguais, eles não são trocados de ordem

- O algoritmo é adaptável?
 - Não, ele executa o mesmo número de comparações, independente da entrada.

MergeSort - Análise de Complexidade

- MergeSort
 - Para n = 1, T(1) = 0
 - □ Para n > 1,
 - Uma vez para n/2 elementos
 - Uma vez para n/2 elementos

2 vezes

Análise de Complexidade

Assuma N sendo uma potência de 2, D(1) = 0

MergeSort – Análise de Complexidade

- MergeSort
 - Para n = 1, T(1) = 0
 - □ Para n > 1,
 - Uma vez para n/2 elementos
 - Uma vez para n/2 elementos

2 vezes

- Operação de Merge
 - Custo linear: n

• Logo: $T(n) = 2T(n/2) + n = O(n \log n)$

Com o Teorema Mestre

Formato da Equação de Recorrência:

$$T(n) = aT(n/b) + f(n)$$

onde $a \ge 1, b > 1$ e $f(n)$ positiva

• Para: T(n) = 2T(n/2) + n

Qual caso se aplica?

- 1. $T(n) = \Theta(n^{\log_b a})$, se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$,
- 2. $T(n) = \Theta(n^{\log_b a} \log n)$, se $f(n) = \Theta(n^{\log_b a})$,
- 3. $T(n) = \Theta(f(n))$, se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e todo n a partir de um valor suficientemente grande.

Com o Teorema Mestre

Formato da Equação de Recorrência:

$$T(n) = aT(n/b) + f(n)$$

onde $a \ge 1, b > 1$ e $f(n)$ positiva

• Para: T(n) = 2T(n/2) + n

Temos:
$$a = 2$$
 , $b = 2$, $f(n) = n$ e $n^{log_b a} = n^{log_2 2} = n$

Caso 2:

$$T(n) = \Theta(n^{\log_b a} \log n)$$
, se $f(n) = \Theta(n^{\log_b a})$

O caso 2 se aplica porque, $f(n) = \Theta(n^{\log_b a}) = \Theta(n)$, assim, $T(n) = \Theta(n \log n)$

Mergesort: memória

Mergesort usa espaço extra de memória

vetor result

proporcional a N

Def. Um algoritmo de ordenação é **in-place** se ele usa <= c log N memória extra

Ex: insertion sort, selection sort, shellsort

Desafio: Implementar mergesort in-place [Kronrod, 1969].

Mergesort: melhorias práticas

Usar o Insertion sort para pequenos sub-vetores Cutoff aprox. 7 itens

Parar se o vetor já está ordenado

O maior elemento da primeira metade é <= menor elemento da segunda metade?

```
A B C D E F G H I J M N O P Q R S T U V

A B C D E F G H I J M N O P Q R S T U V
```

Complexidade computacional. Arcabouço para estudar a eficiência de resolver um problema particular X

Problema: ordenação

Modelo computacional: operações permitidas

Modelo de custo: contador de operações

Limite superior: garantia de custo de algum alg. para X

Limite inferior: limite de custo provado de todo alg. para X

Algoritmo ótimo: algoritmo com o melhor custo possível para X

lower bound ~ upper bound

Ex: ordenação

- Modelo computacional: árvore de decisão
- Modelo de custo: # comparações
- Limite superior: ~ N Ig N from mergesort
- Limite inferior: ?
- Algoritmo ótimo: ?

Árvore de decisão (itens a, b, c)

Limite inferior da ordenação por comparação de chaves

Proposição. Qualquer algoritmo de ordenação por comparação de chaves usa pelo menos log(N!) ~ N lg N comparações no pior-caso

Prova.

- Assuma N valores distintos a₁ ... a_N
- No pior caso a altura da árvore de decisão é h
- Uma árvore binária de altura h tem no máximo 2h folhas
- N! diferentes ordenações => pelo menos N! folhas

Limite inferior da ordenação por comparação de chaves

Prova.

- . Assuma N valores distintos a₁ ... a_N
- . No pior caso a *altura* da árvore de decisão é *h*
- . Uma árvore binária de altura h tem no máximo 2h folhas
- N! diferentes ordenações => pelo menos N! folhas

Limite inferior da ordenação por comparação de chaves

Prova.

- . Assuma N valores distintos a₁ ... a_N
- . No pior caso a *altura* da árvore de decisão é *h*
- . Uma árvore binária de altura *h* tem no máximo *2h* folhas
- N! diferentes ordenações => pelo menos N! folhas

Modelo computacional: operações permitidas

Modelo de custo: contador de operações

Limite superior: garantia de custo de algum alg. para X

Limite inferior: limite de custo provado de todo alg. para X

Algoritmo ótimo: algoritmo com o melhor custo possível para X

lower bound ~ upper bound

Ex: ordenação

- Modelo computacional: árvore de decisão
- Modelo de custo: # comparações
- Limite superior: ~ N Ig N from mergesort
- Limite inferior: ~ N lg N
- Algoritmo ótimo: mergesort

Limite inferior não é válido se o algoritmo usa informação extra

Ordenação inicial da entrada Entrada ordenada: Insertion sort n-1 comparações

Distribuição das chaves Duplicatas: 3-way quicksort

Representação das chaves Dígitos/characters: radix sort

Mergesort: Considerações Finais

- Vantagens
 - Deve ser considerado quando alto custo de pior caso não pode ser tolerável.
 - É ótimo no número de comparações
- Desvantagens
 - Requer espaço extra proporcional a n.
 - Não é ótimo em complexidade de espaço
- Comumente adaptado para ordenação em memória secundária