IN THE CLAIMS:

Amend the claims as follows.

- 1. (Original) A process for obtaining carbon nanotubes by growth, using the CVD method, on nanoscale/microscale supports, characterized in that it comprises:
- the addition of a compound as carbon source containing a catalyst, into a stream of inert gas and hydrogen.
- 2. (Original) The process as claimed in claim 1, characterized in that it also comprises:
- the heating, in a reaction chamber, of a nanoscale/microscale ceramic material or of carbon fibers, to a temperature of 600-1100°C, in a stream of inert gas;
 - the cooling of the chamber down to room temperature; and
 - the recovery of the product formed.
- 3. (Original) The process as claimed in claim 2, characterized in that the ceramic material is in the form of nanoscale/microscale particles or fibers.
- 4. (Original) The process as claimed in claim 3, characterized in that the ceramic material is formed from the following: carbon fibers; glass fibers; SiC, TiC, Al₂O₃, SiO₂ or B₄C particles and fibers; silica fume; clays (clay particles); or wires comprising a metallic material such as Fe, Ni, Co, Ti, Pt, Au, Y, Ru, Rh, Pd, Zr, Cr or Mn.

BAI et al. Appl. No. 10/587,546 January 5, 2007

- 5. (Currently Amended) The process as claimed in any one of claims 1 to 4 claim 1, characterized in that the compound as carbon source is chosen from the following: liquid hydrocarbons of the group comprising xylene, toluene and benzene; or n-pentane; or alcohols, such as ethanol and methanol; or ketones, such as acetone; or, as a variant, the compound as carbon source is a gaseous hydrocarbon such as acetylene, methane, butane, propylene, ethylene and propene; or the compound as carbon source is solid, such as for example camphor.
- 6. (Currently Amended) The process as claimed in any one of claims 1 to 5 claim 1, characterized in that the catalyst is chosen from the group comprising the following: an iron, cobalt or nickel metallocene; or else iron, cobalt or nickel nitrates, acetates or sulfates, especially Fe(II), phthalocyanine (FePc) and iron pentacarbonyl (Fe(CO)₅).
- 7. (Currently Amended) The process as claimed in any one of claims 1 to 6 claim 1, characterized in that the catalyst and the compound as carbon source are used in an amount from 0.001 to 0.1 g of catalyst per ml of compound.
- 8. (Currently Amended) The process as claimed in any one of claims 1 to 7 claim 1, characterized in that the ratio of inert gas to hydrogen is 5/95 to 50/50.
- 9. (Currently Amended) The process as claimed in any one of claims 1 to 8 claim 1, characterized in that, before said step of heating the support material, a siliconcontaining compound is used under conditions allowing silicon or a silicon derivative, such as SiC, SiO or SiO₂, to be deposited on the surface of the support material.

BAI et al. . Appl. No. 10/587,546 January 5, 2007

- 10. (Original) The process as claimed in claim 9, characterized in that the silicon-containing compound used is SiO or a silane, such as SiCl₄.
- 11. (Currently Amended) Products thus obtained by the process as claimed in any one of claims 1 to 10 claim 1, characterized in that they are multiscale composites formed from carbon nanotubes bonded to nanoscale/microscale carbon fiber or ceramic fiber support materials.
- 12. (Original) Multiscale composites, characterized in that they comprise carbon nanotubes bonded to nanoscale/microscale supports in a polymer, metal or ceramic matrix.