CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 18 FEBBRAIO 2014

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Fornire la definizione di partizione di un insieme S.

Sia A un insieme. Se |A|=4, quante sono le partizioni F di A tali che |F|=2?

Esercizio 2. Siano α e β le relazioni binarie definite in \mathbb{Z} ponendo, per ogni $n, m \in \mathbb{Z}$

$$n \alpha m \iff (n = m \lor (rest(n,7) + rest(m,7) = 7));$$

 $n \beta m \iff (n \equiv_7 m \lor (rest(n,7) + rest(m,7) = 7)).$

Dimostrare che esattamente una tra α e β è una relazione di equivalenza. Quale? Con riferimento a questa equivalenza, descrivere in modo esplicito l'insieme quoziente e le classi di equivalenza. Quanti sono gli elementi dell'insieme quoziente?

Esercizio 3. Per ogni $n \in \mathbb{Z}$, sia $\pi(n) = \{p \in \mathbb{P} \mid p|n\}$, dove \mathbb{P} è l'insieme dei numeri interi primi positivi. Sia σ la relazione d'ordine in \mathbb{Z} definita da:

$$(\forall a, b \in \mathbb{Z})(a \ \sigma \ b \iff (a \le b \land \pi(a) \subseteq \pi(b))).$$

- (i) σ è totale?
- (ii) Determinare in (\mathbb{Z}, σ) gli eventuali elementi minimali, massimali, minimo, massimo.
- (iii) (\mathbb{Z}, σ) è un reticolo?
- (iv) Sia $A = \{10, 12\}$. Descrivere, in (\mathbb{Z}, σ) , l'insieme dei minoranti di A, e, se esiste, inf A. Sia $S = \{-1, 0, 1, 2, 3, 4, 10, 12, 30, 60\}$.
 - (v) Disegnare il diagramma di Hasse di (S, σ) .
 - (vi) (S,σ) è un reticolo? Nel caso lo sia, è distributivo? È complementato? È booleano?
 - (vii) Dimostrare che esiste un unico $x \in S$ tale che $(S \setminus \{x\}, \sigma)$ sia un reticolo. Questo reticolo è distributivo? È complementato? È booleano?
 - (viii) Esistono $x,y\in S$ tali che $(S\smallsetminus\{x,y\},\sigma)$ sia un reticolo booleano? Nel caso, trovare tali x e y.

Esercizio 4.

- (i) Trovare l'insieme delle soluzioni (in \mathbb{Z}) dell'equazione congruenziale $8x \equiv_{34} 2$.
- (ii) Per ogni $k \in \mathbb{Z}_{17}$, si consideri l'applicazione $f_k : \bar{n} \in \mathbb{Z}_{17} \mapsto \bar{n}(\bar{4}k \bar{1}) \in \mathbb{Z}_{17}$. Tenendo presente quanto al punto precedente, dire per quali, e quanti, valori di k l'applicazione f_k è iniettiva e per quali, e quanti, valori di k l'applicazione f_k è suriettiva.

Esercizio 5. Per ogni primo p sia f_p il polinomio $x^4 + 5x^3 - 10x^2 - 4x + 1 \in \mathbb{Z}_p[x]$. Fattorizzare in prodotto di polinomi irriducibili:

- (i) f_5 in $\mathbb{Z}_5[x]$;
- (ii) f_3 in $\mathbb{Z}_3[x]$;
- (iii) f_2 in $\mathbb{Z}_2[x]$. Tenere presente il fatto che $x^2 + x + 1$ è l'unico polinomio irriducibile di grado 2 in $\mathbb{Z}_2[x]$.

Si ricorda che è parte essenziale dell'esercizio la giustificazione del fatto che i fattori indicati come tali siano effettivamente irriducibili.