```
In [1]: # import libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

```
In [2]: df = pd.read_csv(r'C:\Users\user\Downloads\4_drug200 (1).csv')
df
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

Non-Null Count Dtype # Column -----0 200 non-null int64 Age 1 200 non-null object Sex 2 BP 200 non-null object 3 object Cholesterol 200 non-null 4 200 non-null float64 Na_to_K 5 Drug 200 non-null object dtypes: float64(1), int64(1), object(4)

memory usage: 9.5+ KB

In [4]: df.describe()

Out[4]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

In [5]: df.columns

Out[5]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')

In [6]: sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x2485e433520>

In [7]: | sns.distplot(df['Na_to_K'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[7]: <AxesSubplot:xlabel='Na_to_K', ylabel='Density'>

Out[8]:

	Age	Na_to_K
0	23	25.355
1	47	13.093
2	47	10.114
3	28	7.798
4	61	18.043
195	56	11.567
196	16	12.006
197	52	9.894
198	23	14.020
199	40	11.349

200 rows × 2 columns

```
In [9]: sns.heatmap(df1.corr())
```

Out[9]: <AxesSubplot:>

model building

Na_to_K

-0.15648

```
In [15]: prediction = lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[15]: <matplotlib.collections.PathCollection at 0x248606d4580>


```
In [16]: print(lr.score(x_test,y_test))
```

0.0025386490222192304

```
In [17]: prediction = lr.predict(x_test)
plt.scatter(y_test, prediction)
```

Out[17]: <matplotlib.collections.PathCollection at 0x24860726eb0>


```
In [18]: lr.score(x_test,y_test)
```

Out[18]: 0.0025386490222192304

```
In [19]: lr.score(x_train,y_train)
```

Out[19]: 0.004456740906168655