

I claim:

1. A system for driving a caisson into the ground, comprising:
a plurality of vibratory devices, where each vibratory device
generates a vibratory force;
5 a clamp assembly for rigidly securing each of the vibratory devices
to one of a plurality of predetermined angularly spaced
locations about the caisson; and
a timing system operatively connecting the plurality of vibratory
10 devices to synchronize the vibratory forces generated
thereby.
2. A system as recited in claim 1, in which:
one of the vibratory devices is a master vibratory device;
15 another vibratory device is a slave vibratory device; and
the timing system causes the slave vibratory device to generate
vibratory forces based on the operation of the master
vibratory device.
- 20 3. A system as recited in claim 1, in which the timing system
comprises:
at least one gear box; and
a plurality of shafts; where
each shaft extends between one of the vibratory devices and the at
25 least one gear box; and
operation of one of the vibratory devices causes operation of
another of the vibratory devices through the at least one gear
box and the plurality of shafts such that the vibratory forces
generated by the vibratory devices are synchronized.
- 30 4. A system as recited in claim 1, further comprising:
a crane assembly; and

a suspension assembly connected between the crane assembly and the vibratory devices for inhibiting transmission of vibratory forces to the crane assembly.

5 5. A system as recited in claim 1, in which:
one of the vibratory devices is a master vibratory device;
the other vibratory devices are slave vibratory devices; and
the timing system causes the slave vibratory devices to generate
vibratory forces based on the operation of the master
vibratory device.
10

6. A system as recited in claim 5, in which the timing system comprises:
a plurality of gear boxes; and
15 a plurality of shafts; where
a first shaft extends from the master vibratory device to a first gear
box;
a second shaft extends from the first gear box to a first slave
vibratory device;
20 a third shaft extends from the first slave vibratory device to a
second gear box; and
a fourth shaft extends from the second gear box to a second slave
vibratory device; wherein
operation of the master vibratory device causes operation of the
25 first and second slave vibratory devices through the first and
second gear boxes and the first, second, third, and fourth
shafts such that the vibratory forces generated by the first
and second slave vibratory devices are synchronized with
the vibratory forces generated by the master vibratory
device.
30

7. A system as recited in claim 5, in which the timing system comprises:
first, second, and third gear boxes; and

a plurality of shafts; where
a first shaft extends from the master vibratory device to the first
5 gear box;
a second shaft extends from the first gear box to a first slave
vibratory device;
a third shaft extends from the first slave vibratory device to the
10 second gear box;
a fourth shaft extends from the second gear box to a second slave
vibratory device;
a fifth shaft extends from the second slave vibratory device to the
15 third gear box; and
a sixth shaft extends from the third gear box to a third slave
vibratory device; wherein
operation of the master vibratory device causes operation of the
20 first, second, and third slave vibratory devices through the
first, second, and third gear boxes and the first, second,
third, fourth, fifth, and sixth shafts such that the vibratory
forces generated by the first, second, and third slave
vibratory devices are synchronized with the vibratory forces
generated by the master vibratory device.

8. A system as recited in claim 1, in which the timing system
interconnects the vibratory devices in a daisy chain configuration to
synchronize the vibratory forces generated by the vibratory devices.
25

9. A system as recited in claim 1, in which:
each vibratory device comprises at least two eccentric weights; and
the timing system is operatively connected between the vibratory
30 devices such that the eccentric weights rotate at substantially
the same speed.

10. A system as recited in claim 9, in which the timing system
comprises:
at least one gear box; and

a plurality of shafts; where
each shaft is operatively connected between one of the eccentric
weights and the at least one gear box; and
the shafts are rotated with the eccentric weights such that the
eccentric weights rotate in synchrony with each other.

5

11. A system as recited in claim 5, in which:
each vibratory device comprises at least two eccentric weights; and
the timing system comprises

10

at least one gear box; and
a plurality of shafts; wherein
each shaft is operatively connected between one of the eccentric
weights and the at least one gear box; and
the shafts rotate based on rotation of the eccentric weights of the
15 master vibratory device such that the eccentric weights of the
slave vibratory devices rotate in synchrony with eccentric
weights of the master vibratory device.

15

12. A method of connecting a crane assembly to a caisson to
20 drive the caisson into the ground, comprising:

providing a plurality of vibratory devices for generating vibratory
forces;
connecting the plurality of vibratory devices to the crane assembly
such that transmission of vibratory forces from the vibratory
25 devices to the crane assembly is inhibited;
rigidly securing each of the vibratory devices to one of a plurality of
predetermined angularly spaced locations about the caisson;
operating each of the plurality of vibratory devices such that the
vibratory devices each generate a vibratory force;
30 operatively connecting the plurality of vibratory devices together to
synchronize the vibratory forces generated thereby.

30

13. A method as recited in claim 12, further comprising the steps
of:

5 identifying one of the vibratory devices as a master vibratory device;
and

identifying another vibratory device as a slave vibratory device;
wherein

10 the step of operatively connecting the plurality of vibratory devices
further comprises the step of operating the slave vibratory
device to generate vibratory forces based on the operation of
the master vibratory device.

14. A method as recited in claim 12, in which the step of
operatively connecting the plurality of vibratory devices further comprises
15 the step of interconnecting the vibratory devices in a daisy chain
configuration to synchronize the vibratory forces generated by the
vibratory devices.

16. A method as recited in claim 12, in which:
20 the step of providing the plurality of vibratory devices comprises the
step of providing at least two eccentric weights; and
the step of operatively connecting the plurality of vibratory devices
further comprises the step of operatively connecting the
vibratory devices such that the eccentric weights rotate at
25 substantially the same speed.

17. A method as recited in claim 15, in which the step of
operatively connecting the plurality of vibratory devices further comprises
the steps of:

30 providing at least one gear box;
providing a plurality of shafts;
operatively connecting each shaft between one of the eccentric
weights and the at least one gear box; and
rotating the shafts with the eccentric weights such that the eccentric

weights rotate in synchrony with each other.

17. A system for driving a large diameter caisson into the ground, comprising:

- 5 a plurality of vibratory devices, where each vibratory device comprises:
 - a housing; and
 - eccentric weights mounted within the housing, where rotating the eccentric weights in opposite directions generate vibratory forces;
- 10 a clamp assembly for rigidly securing each of the vibratory devices to one of a plurality of predetermined angularly spaced locations about the caisson;
- 15 a suspension assembly connected to the vibratory devices for inhibiting transmission of vibratory forces; and
- 20 a timing system comprising
 - at least one gear box, and
 - a plurality of shafts; whereeach shaft extends between the eccentric weights of one of the vibratory devices and the at least one gear box; and
- 25 rotation of the eccentric weights of one of the vibratory devices is transmitted to rotation of the eccentric weights of another of the vibratory devices through the at least one gear box and the plurality of shafts such that the vibratory forces generated by the vibratory devices are synchronized.

18. A system as recited in claim 17, in which:

- one of the vibratory devices is a master vibratory device;
- another vibratory device is a slave vibratory device; and
- 30 the timing system causes the slave vibratory device to generate vibratory forces based on the operation of the master vibratory device.

19. A system as recited in claim 18, in which the timing system interconnects the vibratory devices in a daisy chain configuration to synchronize the vibratory forces generated by the vibratory devices.