Abstract

This document will summarise what my results are now that I have altered the code in an attempt to fix symmetry issues.

1 Noninteracting cases

The noninteracting cases now appear to be identical for the GPE code and the many-body code.

Figure 1: Similarity of output of many-body and GPE code for a 3×1 lattice with no interactions.

Note that the many-body graph no longer has "bumps" near its minima.

Figure 2: Similarity of output of many-body and GPE code for a 4×1 lattice with no interactions.

The similarity continues when we look at 2 dimensional noninteracting systems $\,$

Figure 3: Similarity of output of many-body and GPE code for a 3×3 lattice with no interactions.

We also appear to have gotten rid of the problems with symmetry that we faced before (which were present even in the noninteracting case).

T	• ,	• , •
Lattica	CITA	positions
Latitice	σ_{10}	positions

Column number	Row 1	Row 2	Row 3
1	0.273	0.078	0.023
2	0.078	0.094	0.078
3	0.023	0.078	0.274

Table 1: Symmetry in long term averages for a 3×3 system with 1 particle and $U_0 = 0$ with many-body code.

The symmetry is also there in the GPE case.

2 Interacting cases

Initially, just looking at 3×3 lattices. More can be added as simulations finish. For GPE, U=20 seems to agree with MB U=4 pretty well (they both keep the particles localised on the initial site).

Figure 4: GPE simulation with U=20.

Figure 5: Many-body simulation with U=4.

GPE U=0.1 disagrees quite dramatically with MB U=0.02, with the many body version converging to a uniform spread but the GPE one staying very localised, as it was previously.

Figure 6: GPE simulation with U=0.1.

Figure 7: Many-body simulation with U=0.02.

Symmetry is also not a problem with these simulations (averages not shown here, but they're always perfectly or almost-perfectly symmetric).

3 Next steps

- See what the properties we find for systems larger than 3x3 (especially for the weakly interacting GPE).
- Investigate the transition values of U again with the new code.
- Once fixed Fourier Transform code is completed, look at comparing momentum distributions.