CMPE362 Homework 2

Stock Trading Using DSP Techniques

Overview

In this homework, you will assume the role of a quant developer tasked with designing a simple stock trading algorithm. You will use **MATLAB** to analyze historical stock price data and implement **Digital Signal Processing (DSP)** techniques to extract meaningful trends. These trends will then inform a basic trading strategy.

You are provided with daily stock price data (use VWAP column) for four Indian banks, covering the period from **January 1**, **2000 to April 30**, **2021**. The data is provided in four separate CSV files.

Note that you are allowed to pre-process this data to be better imported into MATLAB environment if you choose (as long as you do not alter the values).

Part 1: Signal Processing for Trend Extraction (60 Points)

Your goal in this part is to use signal processing tools to uncover underlying patterns in the stock data.

1.1 Simple Moving Average (FIR Filter) – 18 Points

- Implement a Simple Moving Average (SMA) filter.
- Choose and justify a window size (e.g., 10, 20, or 50 days).
- Apply the filter to each of the four stock series.
- Plot the SMA with the original data (see Report section).
- Comment on delays and smoothing effects.

1.2 Exponential Moving Average (IIR Filter) – 18 Points

- Implement an Exponential Moving Average (EMA) filter.
- Choose and justify a smoothing factor (α) .
- Compare responsiveness to the SMA.
- Plot and analyze outputs.

1.3 Your Suggested Method – 24 Points

Propose and implement a method of your choice. It must belong to DSP or quantitative finance, and it should help uncover trends or trading signals. Some suggestions:

• Frequency-based methods (e.g., STFT, wavelets)

- Band-pass filters for volatility detection
- MACD, RSI, or Kalman filters
- FIR/IIR designs with dynamic windows
- Energy or zero-crossing analysis

You must explain the method and:

- Discuss your reasoning if you designed it.
- If it's a known method, explain why it's suitable.
- Plot the output of your method for the last 1000 days of each stock.

Part 2: Trading Strategy Design (20 Points)

Using the information obtained from Part 1, develop a basic algorithmic trading strategy.

Instructions

- Apply your strategy to the last 600 days of data for each stock.
- Start with 10,000 currency units.
- You may buy/sell fractional shares.
- Simulate day-by-day decisions with **no lookahead**.

Output

• A text file logging actions, e.g.,

```
Day 1: BUY 500 currency of Stock A
Day 3: SELL 250 currency of Stock A
```

- A report of your **final net worth**.
- Commentary on strategy logic and performance.

Note: Profitability is not required (you will not be graded based on the performance of your strategy). What matters is a clear, data-driven strategy using outputs from Part 1.

Report Guidelines (20 Points)

Prepare a comprehensive report including the following:

Part 1.1 & 1.2 – Moving Averages

For each stock:

- Create one plot showing:
 - Original stock price Blue
 - Simple Moving Average Red
 - Exponential Moving Average Green
- \bullet Use the last **1000 days** only.
- Include brief discussion on:
 - Differences between SMA and EMA
 - Observed delays, smoothing, or trends

Part 1.3 – Your Method

- Describe and explain your chosen method.
- Include rationale (designed or literature-based).
- Provide visualizations (last 1000 days for all banks).

Part 2 – Trading Strategy

- Describe your trading logic in plain English or pseudocode.
- Explain how Part 1 outputs are used to make decisions.
- Optional: include diagrams or flowcharts.
- Comment on performance:
 - Was it profitable?
 - What worked well?
 - What could be improved?

Submission Checklist

- MATLAB code for calculations, plotting, strategy (well-commented). You can submit multiple .m files.
- Trading log text file
- Final report (PDF)

Bonus Ideas (Optional)

For the curious, consider the following. Note that those who apply these **will not** be subjected to extra points.

- Adding a risk management system
- Comparing strategies to a baseline (e.g., buy-and-hold). For example: How much profit does "just buying equally from 4 banks at the beginning of 600 days and selling at the end of 600 days" generate? Were you able to do better?
- Performing inter-stock correlation analysis