Special Topics on Basic EECS I Design Technology Co-Optimization Lecture 14

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

L14

NMOS cavity etch

- First, prepare a mask for PMOS part
 - -Then, etch the NMOS fins. Set the etch depth as 10 nm.

NMOS S/D

- Then, grow the epitaxial layer.
 - Keep the minimum distance between two fins. (In this example, 4 nm)

PMOS S/D

- A deeper cavity etch of 20 nm
 - -Then, grow the SiGe epitaxial layer.
 - -(Exact shapes may be different.)

NMOS

PMOS

Thermal process

- Dopants must be activated.
 - -Rapid thermal anneal (RTA)
 - -High temperature, typically 950 °C ~ 1050 °C
 - It must be performed before high-k/metal gate stack.

When 700 °C heat process is applied (the 2nd anneal), the device characteristics are heavily affected. (H. Wu et al., Peking University)

Salicide (self-aligned silicide)

• 10-nm-thick Ni deposition (anisotropic)

ILD0, inter-layer dielectric 0

- SiO₂ layer
 - -CMP down to the hard mask (Slightly over-etch)

```
cmp (position=215)
```


Gate cut

- Dummy gates are running over several logic gates.
 - For the "gate cut" region, etch the hard mask and dummy gate.
 - -Fill the cavity with SiO₂.
 - -CMP, again

Top view (With/without SiO₂)

```
mask (name="mask_gatecut") {
    rectangle (x0=0,y0=31,x1=162,y1=257)
}
```

Dummy gate removal

- Now, hard mask and dummy gate are removed.
 - Dummy dielectric is also etched.

High-k stack

- First, 1-nm-thick interfacial layer (Resolution limit)
 - -Only on silicon
 - -Then, 2-nm-thick high-k (HfO₂) layer

Spacers (Color changed)

GIST Lecture

Gate workfunction

• We need multiple threshold voltages (V_t s).

-Workfunction metal (WFM) was used.

– In these days, dipole-based multi- V_t integration with both n-type

and p-type dipoles

Six threshold voltage available in the N2 technology (TSMC)

GIST Lecture

TIAIN

Workfunction of TiN on HfO₂ is 4.8 ~ 5.0 eV.

-With Al, its workfunction on HfO₂ is reduced. (Suitable for

NMOSFETs)

Workfunction versus AIN/TiN ratio for TiN/AIN liminate devices (L. P. B. Lima et al., IMEC)

-(Not considered in this example)

GIST Lecture

Tungsten fill

- Now, fill the remaining cavity with tungsten.
 - -CMP, again

```
cmp (position=213)
```

 In this example, the ILD0 thickness is about 145 nm.

In reality, there are more layers between HfO_2 and tungsten to adjust V_t .

Side view

- Some comments
 - In order to prevent the merged S/D epi layers, they are not grown sufficiently.
 - -Fins seem to be a little short.

FEOL (Front-End-of-Line)

- All process steps up to the completion of the transistor itself
 - -Fin patterning (L9. Fins are already cut.) → STI (L9) → Dummy gate (L9) → Spacer (L10) → S/D epi (L13) → Salicide (L14) → Dummy gate removal (L14) → High-k (L14) → Gate fill (L14)
 - -What's the next? MOL

Homework#14

- Due: 08:00 on Nov. 5
- Submit a report through the GIST LMS system.
 - Throughout several lectures (from L6 to L15), we have covered the FEOL processed of a virtual ASAP7 FinFET. Follow the lecture progress.

Thank you!