Inadmissible equations [edit]

The following equations cannot be solved using the master theorem:[4]

$$\bullet \ T(n) = 2^n T\left(\frac{n}{2}\right) + n^n$$

a is not a constant; the number of subproblems should be fixed

•
$$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$$

non-polynomial difference between f(n) and $n^{\log_b a}$ (see below; extended version applies)

$$ullet$$
 $T(n)=0.5T\left(rac{n}{2}
ight)+n$ $a<1$ cannot have less than one sub problem

•
$$T(n) = 64T\left(\frac{n}{8}\right) - n^2 \log n$$

f(n), which is the combination time, is not positive

$$\bullet \ T(n) = T\left(\frac{n}{2}\right) + n(2-\cos n)$$

case 3 but regularity violation.

In the second inadmissible example above, the difference between f(n) and $n^{\log_b a}$ can be expressed with the ratio

 $\frac{f(n)}{n^{\log_6 a}} = \frac{n/\log n}{n^{\log_2 2}} = \frac{n}{n\log n} = \frac{1}{\log n}.$ It is clear that $\frac{1}{\log n} < n^{\epsilon}$ for any constant $\epsilon > 0$. Therefore, the difference is not polynomial and the basic form of the Master Theorem does not apply. The extended form (case 2b) does apply, giving the solution $T(n) = \Theta(n\log\log n)$.