Assignment 8

Jiarong Ye

November 9, 2018

Q1

1. Greenhouse. Consider an experiment to study the effect of three types of fertilizer (F1, F2, and F3) on the growth of two species of plant (SppA and SppB). The data are as follows:

input data

Fert	Species	Height
control	SppA	21.0
control	SppA	19.5
control	SppA	22.5
control	SppA	21.5
control	SppA	20.5
control	SppA	21.0
control	SppB	23.7
control	SppB	23.8
control	SppB	23.8
control	SppB	23.7
control	SppB	22.8
control	SppB	24.4
f1	SppA	32.0
f1	SppA SppA	30.5
f1		25.0
f1	SppA	27.5
f1	SppA	28.0
1	SppA	
f1	SppA	28.6
f1	SppB	30.1
f1	SppB	28.9
f1	SppB	30.9
f1	SppB	34.4
f1	SppB	32.7
f1	SppB	32.7
f2	SppA	22.5
f2	SppA	26.0
f2	SppA	28.0
f2	SppA	27.0
f2	SppA	26.5
f2	SppA	25.2
f2	SppB	30.6
f2	SppB	31.1
f2	SppB	28.1
f2	SppB	34.9
f2	SppB	30.1
f2	SppB	25.5
f3	SppA	28.0
f3	SppA	27.5
f3	SppA	31.0
f3	SppA	29.5
f3	SppA	30.0
f3	SppA	29.2
f3	SppB	36.1
f3	SppB	36.6
f3	SppB	38.7
f3	SppB	37.1
f3	SppB	36.8
f3	SppB	37.1

(a)

Write out the 2-way complete model for this experiment.

$$Y_{ijt} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijt}, \ \epsilon_{ijt} \stackrel{iid}{\sim} N(0, \sigma^2)$$

$$i = control, f_1, f_2, f_3$$

$$j = SppA, SppB$$

$$t = 1, 2, 3, 4, 5, 6$$

(b)

Fit the model using R and examine the residuals. Transform the response if needed to address any problems with normality or constant error variance. If you transform the response, clearly show the residuals from the un-transformed response, and your best transformation, and describe why you chose the transformation you did.

Null hypothesis:

$$H_0: (\alpha \beta)_{ij} = 0$$
 for all i, j

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Fert	3	745.43750	248.47917	73.098232	2.765659e-16
Species	1	236.74083	236.74083	69.645020	2.706508e-10
Fert:Species	3	50.58417	16.86139	4.960326	5.080577e-03
Residuals	40	135.97000	3.39925	NA	NA

	Sum Sq	Df	F value	Pr(>F)
(Intercept)	2646.00000	1	778.407002	7.768919e-28
Fert	251.44000	3	24.656419	3.373242e-09
Species	21.87000	1	6.433772	1.520353e-02
Fert:Species	50.58417	3	4.960326	5.080577e-03
Residuals	135.97000	40	NA	NA

TRUE

Since the p value of Fert: Species are smaller than 0.05, hence we are able to reject the null hypothesis at significance level of $\alpha = 0.05$, assume that interaction effects are not zero.

check whether transformation is needed

From the Residual vs. Fitted plot we can see that for each vertical line of points representing a different treatment, the spread on the points does not appear to be equal. These 3 treatments do

not have the same variance, the 2nd treatment has slightly larger spread than the others. So the assumption of constant variance is violated.

From the QQ-plot above we could conclude that since not all the points fall on the dotted line, thus the residuals are not normal, it also appears to be slightly heavy tailed.

try transformation

square root

log

```
| Df| Sum Sq| Mean Sq| F value| Pr(>F)| |
|---|---|---|---|---|---|
|Fert | 3| 0.9902483| 0.3300828| 78.813105| 0.00000000|
```

```
| Species | 1 | 0.2791987 | 0.2791987 | 66.663622 | 0.0000000 | | Fert: Species | 3 | 0.0331922 | 0.0110641 | 2.641739 | 0.0624076 | | Residuals | 40 | 0.1675268 | 0.0041882 | NA | NA |
```


square

1		Df	Sum Sq	Mean Sql	F value	Pr(>F)
:	- -	: -	: -	: -	:	:
Fert		3	2362176.0	787392.01	67.49736	0.0000000
Species	-	1	842503.9	842503.91	72.22170	0.0000000
Fert:Species		3	282582.2	94194.08	8.07457	0.0002528
Residuals	1	40	466620.91	11665.52	NAI	NAI

However, it seems that after transformation, the residual vs. fitted value plot and the QQ plot still remains as similar to the original version without incurring much changes. Hence we could leave the Height parameter untransformed.

(c)

Describe the effect of species and fertilizer on mean height. This description should use the results of hypothesis tests and p-values as described in class. Discuss any relevant interaction effects, main effects and pairwise differences between treatment means. Provide a plot that shows the means for all combinations of factor levels. Provide R code and output that supports your results.

Since we reject the null hypothesis and find a significant interaction effect between Fert and Species, so instead of looking at the levels of Factor Fert and Factor Species independently, we proceed directly to looking for significant differences between all possible combinations of treatments.

```
SE df t.ratio p.value
contrast
                              estimate
control, SppA - f1, SppA
                             -7.600000 1.064464 40
                                                     -7.140 <.0001
control, SppA - f2, SppA
                             -4.866667 1.064464 40
                                                     -4.572 0.0011
control,SppA - f3,SppA
                                                     -7.703 <.0001
                             -8.200000 1.064464 40
control,SppA - control,SppB
                             -2.700000 1.064464 40
                                                     -2.536 0.2101
control,SppA - f1,SppB
                            -10.616667 1.064464 40
                                                     -9.974 <.0001
control,SppA - f2,SppB
                             -9.050000 1.064464 40
                                                     -8.502 <.0001
control, SppA - f3, SppB
                            -16.066667 1.064464 40 -15.094
                                                             <.0001
f1,SppA - f2,SppA
                              2.733333 1.064464 40
                                                      2.568 0.1979
f1,SppA - f3,SppA
                             -0.600000 1.064464 40
                                                     -0.564 0.9991
f1,SppA - control,SppB
                              4.900000 1.064464 40
                                                      4.603 0.0010
f1,SppA - f1,SppB
                             -3.016667 1.064464 40
                                                     -2.834 0.1150
f1,SppA - f2,SppB
                                                     -1.362 0.8685
                             -1.450000 1.064464 40
f1,SppA - f3,SppB
                             -8.466667 1.064464 40
                                                     -7.954 <.0001
f2,SppA - f3,SppA
                             -3.333333 1.064464 40
                                                     -3.131
                                                             0.0585
f2,SppA - control,SppB
                              2.166667 1.064464 40
                                                      2.035 0.4722
f2,SppA - f1,SppB
                                                     -5.402 0.0001
                             -5.750000 1.064464 40
f2,SppA - f2,SppB
                             -4.183333 1.064464 40
                                                     -3.930
                                                             0.0072
f2,SppA - f3,SppB
                            -11.200000 1.064464 40 -10.522
                                                             <.0001
f3,SppA - control,SppB
                              5.500000 1.064464 40
                                                      5.167
                                                             0.0002
f3,SppA - f1,SppB
                             -2.416667 1.064464 40
                                                     -2.270
                                                             0.3345
f3,SppA - f2,SppB
                             -0.850000 1.064464 40
                                                     -0.799
                                                             0.9922
f3,SppA - f3,SppB
                             -7.866667 1.064464 40
                                                     -7.390
                                                             <.0001
control,SppB - f1,SppB
                             -7.916667 1.064464 40
                                                     -7.437
                                                             <.0001
control, SppB - f2, SppB
                             -6.350000 1.064464 40
                                                     -5.965
                                                             <.0001
control, SppB - f3, SppB
                            -13.366667 1.064464 40 -12.557
                                                             <.0001
f1,SppB - f2,SppB
                              1.566667 1.064464 40
                                                      1.472 0.8174
```

```
f1,SppB - f3,SppB -5.450000 1.064464 40 -5.120 0.0002 f2,SppB - f3,SppB -7.016667 1.064464 40 -6.592 <.0001
```

P value adjustment: tukey method for comparing a family of 8 estimates

	Fert	Species	lsmean	SE	df	lower.CL	upper.CL	.group
1	control	SppA	21.00000	0.7526896	40	19.47876	22.52124	1
5	control	SppB	23.70000	0.7526896	40	22.17876	25.22124	12
3	f2	SppA	25.86667	0.7526896	40	24.34542	27.38791	23
2	f1	SppA	28.60000	0.7526896	40	27.07876	30.12124	34
4	f3	SppA	29.20000	0.7526896	40	27.67876	30.72124	34
7	f2	SppB	30.05000	0.7526896	40	28.52876	31.57124	4
6	f1	SppB	31.61667	0.7526896	40	30.09542	33.13791	4
8	f3	SppB	37.06667	0.7526896	40	35.54542	38.58791	5

We could interpret the results of this analysis as follows:

• control-SppA has significantly lower mean than f1-SppA , f3-SppA, f1-SppB, f2-SppB, and f3-SppB.

- control-SppB has significantly lower mean than f1-SppB, f2-SppB, and f3-SppB.
- f2-SppA has significantly lower mean than f1-SppB, f2-SppB, and f3-SppB.
- f1-SppA has significantly lower mean than f3-SppB.
- f3-SppA has significantly lower mean than f3-SppB.
- f2-SppB has significantly lower mean than f3-SppB.
- f1-SppB has significantly lower mean than f3-SppB.
- No other comparisons are significantly different than zero.

Q2

2. Consider the following data, the result of a 2-factor factorial experiment with 5 replications for each combination of Factor A and Factor B. Treatment combinations were assigned at random to the 20 experimental units.

input data

A	В	resp
1	1	12.9
1	1	11.3
1	1	11.7
1	1	12.1
1	1	12.3
1	2	13.7
1	2	12.8
1	2	13.6
1	2	13.1
1	2	13.5
2	1	14.2
2	1	14.5
2	1	13.9
2	1	13.6
2	1	14.4
2	2	13.5
2	2	13.1
2	2	13.3
2	2	13.1
2	2	13.4

(a)

Write out the 2-way complete model for this experiment.

$$Y_{ijt} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijt}, \ \epsilon_{ijt} \stackrel{iid}{\sim} N(0, \sigma^2)$$

$$i = 1, 2$$

$$j = 1, 2$$

$$t = 1, 2, 3, 4, 5$$

(b)

Fit the model using R and examine the residuals. Transform the response if needed to address any problems with normality or constant error variance. If you transform the response, clearly show the residuals from the un-transformed response, and your best transformation, and describe why you chose the transformation you did.

Null hypothesis:

$$H_0: (\alpha\beta)_{ij} = 0$$
 for all i, j

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
A	1	5.000	5.000	29.411765	5.632385e-05
В	1	0.242	0.242	1.423529	2.502161e-01
A:B	1	5.618	5.618	33.047059	2.991163e-05
Residuals	16	2.720	0.170	NA	NA

	Sum Sq	Df	F value	Pr(>F)
(Intercept)	727.218	1	4277.75294	7.312780e-21
A	10.609	1	62.40588	6.528729e-07
В	4.096	1	24.09412	1.574407e-04
A:B	5.618	1	33.04706	2.991163e-05
Residuals	2.720	16	NA	NA

In [91]:
$$P_AB = 2.991163e-05$$

 $P_AB < 0.05$

TRUE

Since the p value of A:B are all smaller than 0.05, hence we are able to reject the null hypothesis at significance level of $\alpha=0.05$, assume that interaction effects are not zero.

check whether transformation is needed

```
In [92]: par(mfrow=c(2,2))
          plot(modelAB)
```


From the Residual vs. Fitted plot we can see that for each vertical line of points representing a different treatment, the spread on the points appear to be equal. So the assumption of constant variance is not violated.

From the QQ-plot above we could conclude that since basically all the points fall on the dotted line, thus the residuals are normal.

Thus no transformation needed in this case.

(c)

Describe the effect of Factors A and B on mean respnose. This description should use the results of hypothesis tests and p-values as described in class. Discuss any relevant interaction effects, main effects and pairwise differences between treatment means. Provide a plot that shows the means for all combinations of factor levels. Provide R code and output that supports your results.

Since we reject the null hypothesis and find a significant interaction effect between A and B, so instead of looking at the levels of Factor A and Factor B independently, we proceed directly to looking for significant differences between all possible combinations of treatments.

contrast	estimate	SE	df	t.ratio	p.value
1,1 - 2,1	-2.06	0.2607681	16	-7.900	<.0001
1,1 - 1,2	-1.28	0.2607681	16	-4.909	0.0008
1,1 - 2,2	-1.22	0.2607681	16	-4.678	0.0013
2,1 - 1,2	0.78	0.2607681	16	2.991	0.0389
2,1 - 2,2	0.84	0.2607681	16	3.221	0.0247
1,2 - 2,2	0.06	0.2607681	16	0.230	0.9955

P value adjustment: tukey method for comparing a family of 4 estimates

	A	В	lsmean	SE	df	lower.CL	upper.CL	.group	i
1	1	1	12.06	0.1843909	16	11.66911	12.45089	1	i
4	2	2	13.28	0.1843909	16	12.88911	13.67089	2	
3	1	2	13.34	0.1843909	16	12.94911	13.73089	2	
2	2	1	14.12	0.1843909	16	13.72911	14.51089	3	

We could interpret the results of this analysis as follows:

- A1-B1 has significantly lower mean than A2-B1, A1-B2, A2-B2.
- A2-B1 has significantly lower mean than A1-B2, A2-B2.
- No other comparisons are significantly different than zero.