

Übung 13: Quellencodierung

Aufgabe 1: Huffmann-Algorithmus.

Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet $A = \{A,B,C\}$ und den Symbol-Wahrscheinlichkeiten $P_X(A)=2/3$, $P_X(B)=1/6$, $P_X(C)=1/6$.

a) Bestimmen Sie die Information pro Symbol H(X) der Quelle.

Wieviel Information tragen 2 aufeinander folgende Quellensymbole?

b) Entwerfen Sie einen binären Huffman-Code, mit dem Sie 1 Symbol codieren bzw. komprimieren können.

Wie gross ist die Coderate bzw. die mittlere Codewortlänge [bit/Symbol]?

c) Entwerfen Sie einen binären Huffman-Code, mit dem Sie 2 aufeinander folgende Symbole codieren bzw. komprimieren können.

Wie gross ist die Coderate bzw. die mittlere Codewortlänge [bit/Symbol] jetzt?

Aufgabe 2: BMS.

Betrachten Sie die folgende binäre, gedächtnisfreie Quelle (BMS).

a) Bestimmen Sie die Information bzw. die Entropie H(X) [bit / Quellensymbol].

Ein Quellencoder fasst jeweils 3 Symbole zusammen und codiert sie mit einem binären, präfixfreien Codewort variabler Länge, siehe Tabelle.

Eingang X[n]	Ausgang Y[n]	
0 0 0	0	
0 0 1	100	
0 1 0	101	
0 1 1	11100	
100	110	
101	11101	
110	11110	
111	11111	

b) Ist dieser Quellenencoder verlustlos?

Wenn ja, wie gut ist diese Datenkompression?

Hinweis

Bestimmen Sie die mittlere Codewortlänge und dann die mittlere Anzahl bit / Symbol.

c) Bestimmen Sie die Wahrscheinlichkeitsverteilung P_Y(y) am Ausgang des Quellenencoders.

Aufgabe 3: LZ77.

Komprimieren Sie mit der LZ77-Methode den folgenden Text:

FISCHERS FRITZ FISCHT FRISCHE FISCHE.

Der Vorschau-Buffer soll 6 Symbole (Bytes) und der Such-Buffer 32 Bytes lang sein.

Hinweis: Bestimmen Sie im Satz oben die Grenzen zwischen Such- und Vorschau-Buffer und markieren Sie sie mit Hoch-Kommas.

Bestimmen Sie zusätzlich die Kompressionsrate R.

Dekodieren Sie zum Schluss die Token-Folge und vergewissern Sie sich, dass der Dekoder sehr einfach zu realisieren ist.

Musterlösung

Aufgabe 1

a) $H(X) = 2/3 \cdot \log_2(3/2) + 2 \cdot 1/6 \cdot \log_2(6) = 1.2516$ bit / Symbol

Die Symbole einer DMS sind unabhängig. Deshalb gilt:

$$H(X[n-1],X[n]) = H(X[n-1]) + H(X[n]) = 2 \cdot H(X) = 2.5032 \text{ bit } / 2 \text{ Symbolen}$$

b) Binärer Huffman-Code für 1 Quellensymbol:

$$R = E[L] = 2/3.1 + 1/6.2 + 1/6.2 = 4/3 = 1.33 \text{ bit / Symbol} > H(X) = 1.2516 \text{ bit / Symbol}$$

c) Binärer Huffman-Code für 2 Quellensymbole:

R = E[L] =
$$4/9.1 + 2.1/9.3 + 2.1/9.4 + 4.1/36.5 = 2.5556$$
 bit / 2 Symbol = 1.2778 bit / Symbol > H(X) = 1.2516 bit / Symbol

Je mehr Symbole gleichzeitig codiert bzw. komprimiert werden, desto besser ist die Kompression, auf Kosten der Code-Komplexität.

Aufgabe 2

a) Um H(X) zu bestimmen, muss man zuerst $P_X(x)$ bestimmen.

Dem Ausgangsmuster kann man entnehmen: $P_X(x) = 0.75$ und $P_X(1) = 0.25$

Eigentlich müsste man noch mehr Ausgangssymbole betrachten.

Aus der Grafik der binären Entropiefunktion h(p) im Skript kann man für p=0.25 ablesen: => H(X) = 0.811 bit / Symbol

b) Um die Frage zu beantworten, ob der Quellencode verlustlos ist, müssen wir abklären, wie gross die mittlere Codewortlänge E[W] ist. Ist E[W]/3 ≥ H(X), so ist der Code verlustlos. Andernfalls werden die Quellensymbole zu stark komprimiert, so dass Information verloren geht.

Die mittlere Codewortlänge beträgt, siehe Tabelle unten:

 $E[W] = 0.4219 \cdot 1 + 3 \cdot 0.1406 \cdot 3 + 3 \cdot 0.0469 \cdot 5 + 0.0156 \cdot 5 = 2.4688 \text{ bit } / 3 \text{ Quellensymbole}$

Eingang X[n]	P(CW gesendet)	Länge Codewort [bit]
	= P(Eingang)	
000	$0.75^3 = 0.4219$	1
0 0 1	0.1406	3
0 1 0	0.1406	3
0 1 1	0.0469	5
100	0.1406	3
101	0.0469	5
110	0.0469	5
111	$0.25^3 = 0.0156$	5

=> E[W] / 3 = 0.8229 bit / Symbol > H(X)

Der Quellencode ist verlustlos und nahe am Optimum.

c) Es sollen z.B. 3000 Quellensymbole komprimiert werden.

Dazu sind 1000 Codeworte mit mittlerer Länge E[W]=2.4688 erforderlich

In diesen 1000 Codeworten sind

- => 422*1 Nullen (Eingang 000)
- => 141*2 Nullen (Eingang 001)
- => 141*1 Nullen (Eingang 010)
- => 47*2 Nullen (Eingang 011)
- => 141*1 Nullen (Eingang 100)
- => 47*1 Nullen (Eingang 101)
- => 47*1 Nullen (Eingang 110)

Daraus folgt, dass von 2469 Codebit ca. 422+4*141+4*47 Nullen sind.

Wie erwartet ist $P_Y(0) = 0.4755$ und damit fast 0.5. Der binäre Quellenencoder sollte am Ausgang ja fast keine Redundanz mehr enthalten und damit im Mittel fast gleich viele Nullen wie Einer aufweisen.

Aufgabe 3

F'I'S'C'H'E'R'S 'FR'IT'Z' FI'SCHT' FRIS'CHE 'FISCHE.'

 $\leq (0,0,F) (0,0,I) (0,0,S) (0,0,C) (0,0,H) (0,0,E) (0,0,R) (5,1, _) (9,1,R) (10,1,T) (0,0,Z) (6,2,I) (15,3,T) (13,4,S) (23,3, _) (30,6,.)$

Input: 37 Bytes, Output: 16 Tokens mit je 5+3+8 = 2 Bytes => R = 32/37 = 0.865 (kleine Kompression, für bessere Kompression müsste der Input viel länger sein)

Dekoder nach 7 Tokens: FISCHER
Dekoder nach 8 Tokens: FISCHERS_
Dekoder nach 9 Tokens: FISCHERS FR