```
Name – Anuj Koli
```

Roll no. 22102A0013

MV Assignment 1

1. Implement basic image manipulation and enhancement techniques using Python.

import cv2

import numpy as np

Load image

 $img = cv2.imread('C:\Users\anujk\Desktop\New_Start\MV \ assignments\1\\image.jpg')$

Resize image

resized_img = cv2.resize(img, (300, 300))

Convert to grayscale

gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Increase brightness

bright_img = cv2.convertScaleAbs(img, alpha=1.2, beta=50)

Alpha controls contrast, beta controls brightness

Save output

cv2.imwrite('resized_image.jpg', resized_img)

cv2.imwrite('gray_image.jpg', gray_img)

cv2.imwrite('bright_image.jpg', bright_img)

Original Image

Resized Image

Gray Image

Bright Image

1. Study and Implement advanced Image Manipulation and Enhancement techniques like Image Sharpening, Edge Enhancement, Noise Removal, Image Restoration, adding text and Watermarking in an image using python.

import cv2

import numpy as np

Load image

 $img = cv2.imread('C:\Users\anujk\Desktop\New_Start\MV assignments\2\image.jpg')$

Sharpen image using a kernel

kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])

sharpened_img = cv2.filter2D(img, -1, kernel)

```
# Noise removal using Gaussian Blur

denoised_img = cv2.GaussianBlur(img, (5, 5), 0)

# Add text watermark

watermarked_img = img.copy()

cv2.putText(watermarked_img, 'Watermark', (40, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)

# Save output

cv2.imwrite('sharpened_image.jpg', sharpened_img)

cv2.imwrite('denoised_image.jpg', denoised_img)
```

Original Image

cv2.imwrite('watermarked_image.jpg', watermarked_img)

Sharpened Image

Denoised Image

Watermarked Image

Watermark

import cv2

1. Study and Implement advanced Image Manipulation and Enhancement techniques like Image Sharpening, Edge Enhancement, Noise Removal, Image Restoration, adding text and Watermarking in an image using python.

```
import numpy as np
# Load image
img = cv2.imread("C:\\Users\\anujk\\Desktop\\New_Start\\MV assignments\\3\\image.jpg")
# Translation
rows, cols = img.shape[:2]
M_translate = np.float32([[1, 0, 50], [0, 1, 100]]) # Shift by 50, 100
translated_img = cv2.warpAffine(img, M_translate, (cols, rows))
# Rotation
```

M_rotate = cv2.getRotationMatrix2D((cols / 2, rows / 2), 45, 1) # 45 degrees

rotated_img = cv2.warpAffine(img, M_rotate, (cols, rows))

```
scaled_img = cv2.resize(img, None, fx=1.5, fy=1.5)
# Shearing
M_{shear} = np.float32([[1, 0.5, 0], [0.5, 1, 0]])
sheared img = cv2.warpAffine(img, M shear, (int(cols * 1.5), int(rows * 1.5)))
# Flip horizontally
flipped img = cv2.flip(img, 1)
# Affine transformation
pts1 = np.float32([[50, 50], [200, 50], [50, 200]])
pts2 = np.float32([[10, 100], [200, 50], [100, 250]])
M_affine = cv2.getAffineTransform(pts1, pts2)
affine img = cv2.warpAffine(img, M affine, (cols, rows))
# Save output
cv2.imwrite('translated img.jpg', translated img)
cv2.imwrite('rotated_img.jpg', rotated_img)
cv2.imwrite('scaled img.jpg', scaled img)
cv2.imwrite('sheared_img.jpg', sheared_img)
cv2.imwrite('flipped_img.jpg', flipped_img)
cv2.imwrite('affine_img.jpg', affine_img)
```

Original Image

Scaling

Rotated Image

Scaled Image

Sheared Image

Flipped Image

Affine Image

