I Restitution du cours

- 1- Donner la définition de la trace d'une matrice et énoncer le théorème d'interpolation de Lagrange.
- 2 Donner la définition d'un polynôme d'endomorphismes et des polynômes interpolateurs de Lagrange (ainsi que leurs expressions).
- 3 Donner la définition d'un polynôme annulateur d'un endomorphisme u ainsi que l'expression de la formule du déterminant de Vandermonde.

II Questions de cours

- 1 Montrer que la matrice $A=\begin{pmatrix}1&4\\-2&0\end{pmatrix}$ est inversible et exprimer son inverse comme combinaison linéaire de I_3 et A.
 - 2 Énoncer et démontrer le théorème d'interpolation de Lagrange.
 - 3 On étudie l'interpolation de Lagrange aux points $(a_0, a_1, a_2) = (-1, 1, 3)$.
- a) Expliciter les polynômes interpolateurs de Lagrange associés et vérifier que leur somme vaut 1.
- b) Décomposer le polynôme $P=X^2-X+3$ sur la base de $\mathbb{R}_2[X]$ constituées de ces polynômes interpolateurs.
- c) Déterminer l'équation d'une parabole passant par les points du plan A=(-1;0), B=(1;3) et C=(3;-1). Cette parabole est-elle unique?

III Exercices axés sur le calcul

Exercice 1: Soit
$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$
.

- 1 Vérifier que le polynôme $P = (X 1)\left(X \frac{1}{3}\right)$ annule A.
- 2 Pour tout $n \in \mathbb{N}$, exprimer A^n en fonction de A et I_3 .
- 3 Préciser $\lim_{n\to+\infty} A^n$.

Exercice 2:

Soit
$$A = \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

- 1 Montrer que A n'a pas de polynôme annulateur (non nul) de degré inférieur ou égal à 2.
- 2 Trouver un polynôme annulateur de A.
- 3 Montrer que A est inversible et préciser A^{-1} .

Exercice 3:

Soit $J \in \mathcal{M}_n(\mathbb{R})$ la matrice ne comportant que des 1.

Déterminer un polynôme annulateur pour J et en déduire la valeur de J^k pour $k \in \mathbb{N}$.

Exercice 4:

À l'aide d'une comparaison série-intégrale, montrer la divergence de la série $\sum_{n\geq 2} \frac{1}{n\ln(n)}$ et donner un équivalent de ses sommes partielles.

IV Exercices axés sur le raisonnement

Exercice 5:

Soient $n \in \mathbb{N} \setminus \{0; 1\}$, une ligne $L \in \mathcal{M}_{1,n}(\mathbb{K})$ et une colonne $C \in \mathcal{M}_{n,1}(\mathbb{K})$ non nulle. On note A la matrice de $\mathcal{M}_n(\mathbb{K})$ définie par A = CL. Montrer que $A^2 = \text{Tr}(A)A$.

Exercice 6:

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$.

- 1 Soit X une matrice de $\mathcal{M}_n(\mathbb{K})$. Préciser la trace de la matrice X + Tr(X)A.
- 2 Déterminer l'ensemble des solutions de l'équation d'inconnue X dans $\mathcal{M}_n(\mathbb{K})$:

$$X + \text{Tr}(X)A = B$$

On envisagera plusieurs cas selon la valeur de la trace de A.

Exercice 7:

Soient $\sum u_n$ et $\sum v_n$ deux séries convergentes à termes généraux positifs.

Montrer que la série de terme général $\sqrt{u_n v_n}$ est convergente.

V Exercices d'approfondissement

Exercice 8:

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

Trouver toutes les matrices $X \in \mathcal{M}_n(\mathbb{R})$ telles que $X + X^{\top} = \text{Tr}(X)A$.

Exercice 9:

Montrer que toutes familles finies $(x \longmapsto e^{c_1 x}, ..., x \longmapsto e^{c_n x})$ (où les $(c_i)_{i \in [\![1]; n]\!]}$ sont des nombres complexes deux à deux distincts) est libre.

Exercice 10:

Soit $f: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ injective.

Démontrer que $\sum_{n\geq 1} \frac{f(n)}{n^2}$ est divergente.