Job No.:
 2202041
 Address:
 12 Waitapu Rd, Takaka, New Zealand
 Date:
 9/6/2022

 Latitude:
 -40.848462
 Longitude:
 172.808343
 Elevation:
 7 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N2	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.6 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	38.22 m/s
Wind Pressure	0.88 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High				

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp,i = -0.563

For roof CP,e from 0 m To 1.65 m Cpe = -0.9258 pe = -0.59 KPa pnet = -1.09 KPa

For roof CP,e from 1.65 m To 3.30 m Cpe = -0.8871 pe = -0.57 KPa pnet = -1.07 KPa

For wall Windward Cp, i = 0.6531 side Wall Cp, i = -0.563

For wall Windward and Leeward CP,e from 0 m To 18 m Cpe = 0.7 pe = 0.55 KPa pnet = 1.09 KPa

For side wall CP,e from 0 m To 3.30 m Cpe = pe = -0.51 KPa pnet = 0.38 KPa

Maximum Upward pressure used in roof member Design = 1.09 KPa

Maximum Downward pressure used in roof member Design = 0.70 KPa

Maximum Wall pressure used in Design = 1.09 KPa

Maximum Racking pressure used in Design = 0.39 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 5800 mm Try Purlin 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet

First Page

condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.54 S1 Downward =12.68 S1 Upward =22.76

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.28 Kn-m	Capacity	3.51 Kn-m	Passing Percentage	274.22 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	3.78 Kn-m	Capacity	4.67 Kn-m	Passing Percentage	123.54 %
$M_{0.9D\text{-W}nUp}$	-3.27 Kn-m	Capacity	-3.26 Kn-m	Passing Percentage	99.69 %
V _{1.35D}	0.88 Kn	Capacity	12.06 Kn	Passing Percentage	1370.45 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.61 Kn	Capacity	16.08 Kn	Passing Percentage	616.09 %
$ m V_{0.9D ext{-}WnUp}$	-2.26 Kn	Capacity	-20.10 Kn	Passing Percentage	889.38 %

Deflections

Modulus of Elasticity = 8000 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 15.28 mm Limit by AS1170.0 Table C1 Span/250 = 23.20 mm

Deflection under Dead and Service Wind = 21.64 mm Limit by AS1170.0 Table C1 Span/120 = 48.33 mm

Reactions

Maximum downward = -2.61 kn Maximum upward = -2.26 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 5250 mm Internal Rafter Span = 6050 mm Try Rafter 2x240x63 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 4.59 S1 Upward = 4.59

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Second page

M1.35D	8.11 Kn-m	Capacity	31.28 Kn-m	Passing Percentage	385.70 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	24.02 Kn-m	Capacity	41.72 Kn-m	Passing Percentage	173.69 %
$M_{0.9D\text{-W}nUp}$	-20.78 Kn-m	Capacity	-52.14 Kn-m	Passing Percentage	250.91 %
V _{1.35D}	5.36 Kn	Capacity	51.54 Kn	Passing Percentage	961.57 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	15.88 Kn	Capacity	68.72 Kn	Passing Percentage	432.75 %
$ m V_{0.9D ext{-}WnUp}$	-13.74 Kn	Capacity	-85.9 Kn	Passing Percentage	625.18 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 17.08 mm Limit by AS1170.0 Table C1 Span/250 = 24.80 mm Deflection under Dead and Service Wind = 26.885 mm Limit by AS1170.0 Table C1 Span/120 = 51.67 mm

Reactions

Maximum downward = 15.88 kn Maximum upward = -13.74 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 126 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 29.11 Kn > -13.74 Kn

Rafter Design External

External Rafter Load Width = 3000 mm External Rafter Span = 6029 mm Try Rafter 240x63 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.78 S1 Upward = 9.78

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	4.60 Kn-m	Capacity	14.46 Kn-m	Passing Percentage	314.35 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	13.63 Kn-m	Capacity	19.28 Kn-m	Passing Percentage	141.45 %
$M_{0.9D\text{-W}nUp}$	-11.79 Kn-m	Capacity	-24.11 Kn-m	Passing Percentage	204.50 %
V _{1.35D}	3.05 Kn	Capacity	25.77 Kn	Passing Percentage	844.92 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	9.04 Kn	Capacity	34.36 Kn	Passing Percentage	380.09 %
$ m V_{0.9D ext{-}WnUp}$	-7.82 Kn	Capacity	-42.95 Kn	Passing Percentage	549.23 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 21.69 mm Limit by AS1170.0 Table C1 Span/250 = 24.80 mm Deflection under Dead and Service Wind = 30.73 mm Limit by AS1170.0 Table C1 Span/120 = 51.67 mm

Reactions

Maximum downward = 9.04 kn Maximum upward = -7.82 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 63 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -42.07 kn > -7.82 Kn

4/9

Single Shear Capacity under short term loads = -14.56 Kn > -7.82 Kn

Girt Design Front and Back

Girt's Spacing = 1000 mm Girt's Span = 6000 mm

Try Intermediate 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.64 S1 Downward = 11.27 S1 Upward = 20.58

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 2.45 Kn-m Capacity 2.56 Kn-m Passing Percentage 104.49 % V_{0.9D-WnUp} 1.64 Kn-m Capacity 16.08 Kn-m Passing Percentage 980.49 %

Deflections

Modulus of Elasticity = 8000 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 34.49 mm Limit by AS1170.0 Table C1 Span/120 = 50.00 mm Sag during installation = 65.81 mm

Reactions

Maximum = 1.64 kn

Girt Design Sides

Girt's Spacing = 900 mm Girt

Girt's Span = 6200 mm

Try Intermediate 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.63 S1 Downward =11.27 S1 Upward =20.92

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 2.36 Kn-m Capacity 2.50 Kn-m Passing Percentage 105.93 %

V_{0.9D-WnUp} 1.52 Kn-m Capacity 16.08 Kn-m Passing Percentage 1057.89 %

Deflections

Modulus of Elasticity = 8000 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 35.39 mm Limit by AS1170.0 Table C1 Span/120 = 51.67 mm Sag during installation = 75.04 mm

Reactions

Maximum = 1.52 kn

Middle Pole Design

Geometry

175 SED H5 (Minimum 225 dia. at Floor Level)	Dry Use	Height	3050 mm
Area	39741 mm2	As	29805.46875 mm2
Ix	125741821 mm4	Zx	1117705 mm3
Iy	125741821 mm4	Zx	1117705 mm3
Lateral Restraint	3050 mm c/c		

Loads

Total Area over Pole = 16.275 m^2

Dead	4.07 Kn	Live	4.07 Kn
Wind	11.39 Kn	Snow	0.00 Kn
Moment wind	Kn-m		
Phi	0.8	K8	0.95
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind 543.00 Kn PhiMnx Wind 30.80 Kn-m PhiVnx Wind 70.58 Kn

PhiNcx Dead 325.80 Kn PhiMnx Dead 18.48 Kn-m PhiVnx Dead 42.35 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.20 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.06 < 1 OK$

Deflection at top under service lateral loads = 6.58 mm < 40.67 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 600 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 4.96 Kn-m Shear Wind = 1.84 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.63 < 1 OK

End Pole Design

Geometry For End Bay Pole

Ds = 600 mm Pile Diameter

L= 1300 mm Pile embedment length

fl = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 9.3 m^2

Moment Wind = 2.84 Kn-m Shear Wind = 1.05 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.36 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 600 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 2.84 Kn-m Shear Wind = 1.05 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.36 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1300) x Ks(1.5) x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1300)

Skin Friction = 13.65 Kn

Weight of Pile + Pile Skin Friction = 16.82 Kn

Uplift on one Pile = 14.08 Kn

Uplift is ok