Розділ 7

7. Змінний електричний струм.

Змінним електричним струмом називається такий струм, величина і напрям якого змінюється за гармонічним законом.

Такий струм можна отримати, якщо виток дроту рівномірно обертати в однорідному магнітному полі відносно осі, перпендикулярної до напряму ліній магнітної індукції (рис. 7.1).

Магнітний потік, який пронизує контур рамки, визначається так:

$$\mathbf{\Phi} = \mathbf{B} \cdot \mathbf{S} \cdot \cos \alpha = \mathbf{\Phi}_0 \cos \omega t \tag{7.1}$$

де $\alpha = (\vec{n}, \vec{B}) = \omega t$ - кут між напрямом нормалі \vec{n} до площини рамки і напрямом вектора \vec{B} ; $\omega = 2\pi f$ - кутова швидкість обертання рамки; f- частота обертання; S – площа рамки; Φ_0 – максимальне значення магнітного потоку (при $\alpha = 0$).

В основі виникнення змінної ЕРС покладене явище електромагнітної індукції. Величина ЕРС, що виникає у рамці дорівнює:

$$\mathcal{E} = -\frac{d\Phi}{dt} = \Phi_0 \mathbf{\omega} \sin \omega t = \mathcal{E}_0 \sin \omega t \tag{7.2}$$

де ϵ_0 –амплітудне значення ЕРС 3 даної формули випливає, що ЕРС, яка виникає у рамці, що обертається з постійною кутовою швидкістю ω в магнітному полі змінюється за синусоїдальним законом з циклічною частотою $\omega = 2\pi f$. Таким чином кутова швидкість обертання рамки є одночасно циклічною частотою коливання ЕРС і сили змінного струму. З формул (7.1) і (7.2) видно, що коли магнітний потік максимальний, то ЕРС мінімальна і навпаки. Якщо кінці рамки приєднати до мідних кілець, до яких притиснуті вугільні контакти (щітки), а до них – споживач \mathbf{R} , то в колі буде протікати

змінний струм $\mathbf{i}(\mathbf{t}) = \frac{\mathbf{E}_0}{\mathbf{R} + \mathbf{r}} \cdot \sin \omega \mathbf{t} = \mathbf{I}_0 \sin \omega \mathbf{t}$, де $\mathbf{R} + \mathbf{r}$ — повний опір кола, $\mathbf{i}(\mathbf{t})$ — миттєве, \mathbf{I}_0 — амплітудне значення сили струму.

Амперметр і вольтметр у колі змінного струму показують не миттєві і не максимальні значення струму і напруги, а ефективні. Діюче, або ефективне, значення величини змінного струму І дорівнює величині такого постійного струму, який,

протікаючи по тому самому провіднику що і змінний струм виділяє в ньому за один і той же проміжок часу таку саму кількість теплоти.

Діючі значення струму і напруги визначаються за формулами: $\mathbf{I} = \frac{\mathbf{I}_0}{\sqrt{2}} = \mathbf{0,707} \mathbf{I}_0$ і $\mathbf{U} = \frac{\mathbf{U}_0}{\sqrt{2}} = \mathbf{0,707} \mathbf{U}_0$ відповідно. \mathbf{I}_0 , \mathbf{U}_0 – амплітудні значення струму і напруги.

7.1 Коло змінного струму з активним опором.

Розглянемо ділянку електричного кола, в якому протікає змінний струм (рис. 7.2а).

Нехай коло складається тільки з резистора опором R, до кінців якого прикладена змінна напруга

$$\mathbf{u} = \mathbf{U}_{\mathbf{0}} \sin \omega \mathbf{t} \tag{7.3}$$

В колі циркулюватиме струм:

$$\mathbf{i} = \frac{\mathbf{u}}{\mathbf{R}} = \frac{\mathbf{U_0}}{\mathbf{R}} \sin \omega \mathbf{t} = \mathbf{I_0} \sin \omega \mathbf{t}$$
 (7.4)

де $\mathbf{I_0} = \frac{\mathbf{U_0}}{\mathbf{R}}$ - амплітудне значення струму.

З аналізу формул (7.3) і (7.4) видно, що напруга і струм змінюється в однакових фазах, тобто зсув фаз між струмом і напругою дорівнює нулю. Напруга і струм досягають одночасно максимальних і мінімальних значень (рис. 7.2,б). На векторній діаграмі, де опорною віссю служить вісь струмів, вектор, що зображає амплітуду коливань напруги, збігається з віссю струмів (рис.7.2,в).

7.2 Коло змінного струму з активним опором та індуктивністю

Увімкнемо в коло змінного струму послідовно лампу розжарення (резистор) і котушку індуктивності. Тепер активний опір складається з опору лампи і опору дроту

котушки. Якщо вставити всередину котушки залізне осердя, збільшивши її індуктивність, то яскравість нитки лампи зменшиться. Отже, індуктивність чинить опір змінному струму (позначимо індуктивний опір $\mathbf{X}_{\mathbf{L}}$).

Розглянемо два випадки

1) Якщо **R**<< **X**_L.

Тоді активним опором провідників і котушки можна знехтувати і вважати, що такого кола визначається лише реактивним опором котушки індуктивності (рис. 7.3).

Під впливом змінного магнітного поля в котушці виникає змінна ЕРС самоїндукції $\mathbf{\mathcal{E}_L} = \mathbf{L} \frac{\mathbf{di}}{\mathbf{dt}}$. Знак мінус в попередній формулі, згідно з правилом Ленца, означає, що

електрорушійна сила \mathcal{E}_L завжди має такий напрям, при якому вона протидіє всякій зміні струму, що її породжує. Таким чином наявність електрорушійної сили самоіндукції створює додатковий опір для протікання змінного струму в колі, яке містить індуктивність. Якщо і змінюється за законом синуса (рис. 7.3 б), то залежність \mathcal{E}_L від часу \mathbf{t} має вигляд косинусоїди з від'ємним значенням в початковий момент часу $\mathbf{t} = \mathbf{0}$. Для того, щоб струм міг протікати через котушку індуктивності необхідно, щоб прикладена напруга \mathbf{U} зрівноважувала \mathcal{E}_L , тобто $\mathbf{U} = -\mathcal{E}_L$. З рис. 7.3б і векторної діаграми (рис. 7.36) бачимо, що діюче значення напруги \mathbf{U} на кінцях котушки випереджає струм на $\frac{\pi}{2}$. Доведемо це аналітично. Нехай внаслідок приєднання котушки до зовнішнього джерела неї подається напруга $\mathbf{u}_{\text{дж}} = \mathbf{U}_0 \mathbf{Sin}(\omega \mathbf{t})$, яка породжує в колі струм $\mathbf{i}(\mathbf{t}) = \mathbf{I}_0 \mathbf{Sin}(\omega \mathbf{t})$

Тоді в котушці виникає ЕРС самоіндукції

$$\mathcal{E}_{L} = -L \frac{di}{dt} = I_{0} \omega L \cos \omega t = I_{0} \omega t \sin(\omega t + \frac{\pi}{2}). \tag{7.5}$$

3 формули (7.5) отримаємо:

$$\mathbf{u(t)} = \mathbf{E}_{L} = \mathbf{I}_{0} \omega \mathbf{L} \sin(\omega t + \frac{\pi}{2})$$
 (7.6)

3 отриманого виразу випливає, що струм в індуктивності відстає за фазою від напруги на $\frac{\pi}{2}$. З формули (7.6) амплітудне значення напруги на котушці індуктивності

рівне $\mathbf{U_0} = \mathbf{I_0} \omega \mathbf{L}$. Якщо амплітудні значення напруги і сили струму замінити на діючі, то отримаємо вираз $\mathbf{I} = \frac{\mathbf{U}}{\omega \mathbf{L}}$, з якого видно, що величина $\omega \mathbf{L} = \mathbf{X_L}$ являє собою реактивний, індуктивний опір в колі змінного струму.

2) Активний опір **R** кола за величиною близький до індуктивного опору \mathbf{X}_{L} (Рис. 7.4 a).

Векторна діаграма спадів напруг на ділянці кола, що містить індуктивність і активний опір приведена на рис 7.4 ε . Згідно з цією діаграмою амплітудне значення спаду напруги **U**₀ на ділянці кола можна визначити за теоремою Піфагора

$$U_0 = \sqrt{U_{0R}^2 + U_{0L}^2} \ .$$

Оскільки $\mathbf{U_{0R}} = \mathbf{I_0R}$, а $\mathbf{U_{0L}} = \boldsymbol{\omega L I_0}$, то $\mathbf{U_0} = \mathbf{I_0} \sqrt{\mathbf{R^2 + (\omega L)^2}}$. З останньої формули випливає, що вираз $\mathbf{Z} = \sqrt{\mathbf{R^2 + (\omega L)^2}}$ є с повним опором ділянки кола, показаної на рис. 7.4a.

7.3 Коло змінного струму з конденсатором.

Якщо на деякій ділянці електричного кола ϵ конденсатор, то постійний струм по такій ділянці протікати не може, оскільки обкладки конденсатора розділені шаром діелектрика. Тому фактично електричне коло, до якого входить конденсатор, для постійного струму ϵ розімкнуте.

Змінний струм здатний протікати по колу, до якого входить конденсатор. У цьому можна легко переконатися на простому досліді. Під'єднаємо послідовно з'єднані конденсатор і лампу до джерела змінної напруги і побачимо, що лампа засвітиться. Це означає, що змінний струм протікаючи по колу, до якого входить конденсатор, нагріває нитку розжарення лампи викликаючи її свічення.

Протікання змінного струму через конденсатор пов'язане з його перезаряджанням. Якщо в початковий момент часу конденсатор максимально заряджений і заряд на одній з його пластин має максимальне значення, то протягом першої четверті періоду коливання

його величина зменшується до нуля. Протягом наступної четверті періоду відбувається накопичення заряду протилежного знаку, після чого процес повторюється у зворотному напрямку. В результаті перезаряджання конденсатора струм в колі протягом першої половини періоду протікає в одному напрямку, а протягом другої - в протилежному. Встановимо як змінюється з плином часу сила струму в колі, до якого входить конденсатор, коли опором провідників і пластин конденсатора можна знехтувати.

Напруга на конденсаторі

$$\mathbf{U} = \mathbf{\phi_1} - \mathbf{\phi_2} = \frac{\mathbf{q}}{\mathbf{C}} \tag{7.7}$$

дорівнює вхідній напрузі на кінцях кола (Рис. 7.5а). Отже

$$q = CU_m \sin(\omega t). \tag{7.8}$$

Сила струму визначається через похідну від заряду за часом

$$i(t) = U_{m}C\omega\cos(\omega t) = U_{m}C\omega\sin(\omega t + \frac{\pi}{2}). \tag{7.9}$$

Отже коливання сили струму у колі випереджують коливання напруги на конденсаторі на $\frac{\pi}{2}$ (Рис. 7.56).

Векторна діаграма коливань напруги і струму в колі з конденсатором показана на Рис.7.5*в*.

Амплітуда сили струму

$$I_m = U_m \omega C$$
.

Якщо позначити

$$\frac{1}{\omega C} = X_c$$

і замість амплітуди струму і напруги ввести їх діючі значення, то можна записати

$$\mathbf{I} = \frac{\mathbf{U}}{\mathbf{X}_{\mathbf{C}}} = \mathbf{U}\boldsymbol{\omega}\mathbf{C}. \tag{7.10}$$

3 цього рівняння випливає, що величина \mathbf{X}_{C} обернена до добутку циклічної частоти **і** ємності конденсатора має розмірність опору і називається ємнісним опором.

Рис. 7.5

7.4 Коло змінного струму з активним опором і ємністю

Розглянемо коло, яке складається з резистора опором \mathbf{R} і конденсатора ємністю \mathbf{C} , з'єднаних послідовно, і джерела змінної напруги $\mathbf{u} = \mathbf{U_0} \sin(\omega t)$ (Рис.7.6а). У колі виникає змінний струм тієї ж частоти $\boldsymbol{\omega}$, амплітудне значення якого, а також зсув фаз між ним та напругою визначаються параметрами кола \mathbf{R} і \mathbf{C} . Для визначення $\mathbf{I_0}$ і $\mathbf{U_0}$ скористаємося методом векторних діаграм. За опорну вісь оберемо вісь струмів (Рис.7.6б), оскільки з'єднання елементів кола послідовне і струм в усіх ділянках кола однаковий.

Змінний струм викликає спад напруги на резисторі \mathbf{R} , амплітуда якої дорівнює $\mathbf{U}_{0_R} = \mathbf{I}_0 \mathbf{R}$, а величини \mathbf{u}_R і і коливаються в однаковій фазі. Тому на осі струмів відкладаємо вектор \mathbf{U}_{0_R} , що відповідає в певному масштабі величині $\mathbf{I}_0 \mathbf{R}$. Коливання напруги на ємності відстають від струму на $\frac{\pi}{2}$, тому вектор \mathbf{U}_{0_C} повернутий відносно струму на кут $\frac{\pi}{2}$ за рухом стрілки годинника. Сумарний спад напруги в колі \mathbf{U}_0 дорівнює векторній сумі спадів напруг \mathbf{U}_{0_R} і \mathbf{U}_{0_C} .

3 рис. 7.6б видно, що

$$\mathbf{U_0} = \sqrt{\mathbf{U_{0_R}^2 + U_{0_C}^2}} = \sqrt{(\mathbf{I_0}R)^2 + \left(\frac{\mathbf{I_0}}{\omega C}\right)^2} = \mathbf{I_0}Z, \qquad (7.11)$$

звідки

$$I_0 = \frac{U_0}{\sqrt{R^2 + \left(\frac{1}{\omega C}^2\right)}} = \frac{U_0}{Z},$$
(7.12)

де величина $\mathbf{Z} = \sqrt{\mathbf{R}^2 + \left(\frac{1}{\omega \mathbf{C}}\right)^2}$ називається повним опором ділянки кола змінного струму, що містить активний опір і ємність. Оскільки $\mathbf{U_0} = \mathbf{U}\sqrt{\mathbf{2}}$ і $\mathbf{I_0} = \mathbf{I}\sqrt{\mathbf{2}}$, то у співвідношенні (7.12) амплітудні значення $\mathbf{U_0}$ і $\mathbf{I_0}$ можна замінити на їх діючі значення \mathbf{U} і \mathbf{I} . Вираз (7.12) називають законом Ома для кола змінного струму, що містить \mathbf{R} і \mathbf{C} , який

можна сформулювати таким чином : величина змінного струму прямо пропорційна напрузі, прикладеній до ділянки кола і обернено пропорційна її повному опору.

7.5 Потужність у колі змінного струму.

Протікаючи по провіднику, змінний струм, так само як і постійний зумовлює нагрівання цього провідника. *Кількість енергії*, що витрачається за одиницю часу на нагрівання провідника називається активною потужністю. Активна потужність, що виділяється на ділянці кола, яке містить лише активний опір (Рис.7.2*a*) **R** визначається за формулою

$$P = IU = I^2R. (7.13)$$

Враховуючи, що ${\bf U}=\frac{{\bf U_0}}{\sqrt{2}}\,\,{\rm i}\,\,{\bf I}=\frac{{\bf I_0}}{\sqrt{2}}$, активну потужність ${\bf P}$ можна виразити через

амплітудні значення струму і напруги

$$P = \frac{I_0 U_0}{2} = \frac{I_0^2}{2} R. (7.14)$$

Якщо ділянка кола крім активного опору містить ще й реактивний опір \mathbf{X}_L (Рис. 7.4*a*), або \mathbf{X}_C (Рис. 7.6*a*), то згідно з приведеними векторними діаграмами (Рис. 7.4*b*) і (Рис. 7.6*b*) між коливаннями напруги і струму в таких ділянках існує зсув фаз $\boldsymbol{\varphi}$. З векторних діаграм випливає, що $\mathbf{U}_R = \mathbf{Ucos} \boldsymbol{\varphi}$. Тоді активна потужність, що виділяється на ділянці кола, яка містить реактивний опір визначається за формулою

$$P = U_p I = UI \cos \varphi \tag{7.15}$$

Зсув фаз між коливаннями сили струму і напруги визначається співвідношенням

$$\cos \phi = \frac{I_0 R}{U_0} = \frac{R}{Z} = \frac{R}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}}.$$
 (7.16)

Величина **соѕ**ф формулі (7.15) називається коефіцієнтом потужності в колі змінного струму. Коефіцієнт потужності в колі змінного струму можна визначити з (7.15) за відомими значеннями потужності і діючими значеннями струму і напруги

$$\cos \varphi = \frac{\mathbf{P}}{\mathbf{IU}}.\tag{7.17}$$

Лабораторні роботи (Змінний струм)

Лабораторна робота №13 Визначення коефіцієнта потужності і перевірка закону Ома для кола змінного струму

Мета роботи: визначити коефіцієнт потужності та перевірити закон Ома для змінного струму при наявності ємності в електричному колі.

Перед виконанням роботи необхідно вивчити теоретичний матеріал поданий у розділах 7.4 та 7.5

Прилади та обладнання: амперметр, вольтметр, ватметр, герцметр, конденсатори, реостат, провідники.

Порядок виконання роботи.

1. Зібрати схему, як показано на рис. 7.7.

- 2. Замкнути коло, встановити за допомогою реостата величину струму у колі, вказану на робочому місці.
- 3. Виміряти потужність ватметром, силу струму і напругу відповідно, амперметром та вольтметром. Прилади вимірюють діючі значення струму і напруги. Під'єднання вольтметра для визначення напруги на різних ділянках кола, показано на схемі пунктирними лініями.
- 4. Розрахувати **(cos \phi)**₁ за формулою (7.17). Результати вимірів занести в таблицю 1 і 2.
- 5. Виміряти напругу на активному опорі вольтметром і вирахувати **R** за формулою $R = \frac{U_R}{I}$.
- 6. Виміряти напругу на конденсаторі і обчислити його опір $R_c = \frac{1}{\omega C} = \frac{U_c}{I}$.

Розрахувати ємність конденсатора $\mathbf{C} = \frac{\mathbf{I}}{\omega \mathbf{U}_{\mathbf{C}}}$.

- 7. Виміряти герцметром частоту змінного струму **f** і обчислити циклічну частоту ω .
- 8. За формулою (7.16) розрахувати ($\cos \varphi$)₂ і порівняти це значення з отриманим раніше.
- 9. Використовуючи формулу $\mathbf{U'} = \sqrt{\mathbf{U_R^2 + U_C^2}}$ обчислити значення $\mathbf{U'}$, за виміряними раніше $\mathbf{U_R}$ і $\mathbf{U_C}$. Порівняти обчислене значення $\mathbf{U'}$ з виміряним \mathbf{U} .
- 10. Вимірювання повторити при інших значеннях активного опору.
- 11. Визначити похибку вимірювання **соѕ**ф, обчисливши її за формулою (7.17).

											Таблиця 1	
No	Р	I	U	(cos φ) ₁	U_R	R	U _c	С	f	ω	$(\cos \varphi)_2$	U′
$\Pi \backslash \Pi$												
1												
2												
3												

Таблиця 2

ви	Границя вимірювання приладів			Клас точності приладів		δW	δΙ	δU	δcosφ	Δcosφ
W	Α	V	W	Α	V					

Контрольні запитання

- 1. Що таке **соѕ** ?
- 2. При яких умовах совф дорівнює одиниці, при яких нулю?
- 3. Як залежить потужність в колі змінного струму від **Coso**?
- 4. Яке значення струму називається діючим або ефективним?
- 5. Вивести закон Ома для кола змінного струму, яке складається з послідовно з'єднаних активного опору та ємності.
- 6. Пояснити, чому коливання напруги на конденсаторі відстають за фазою на $\frac{\pi}{2}$ від коливань струму, що протікає через цей конденсатор.

7.

Правила техніки безпеки

- 1. Збирати схему і здійснювати перемикання тільки при вимкнутих розетках "220 В".
- 2. Без перевірки викладача схему не вмикати.
- 3. Під час роботи з реостатом повзунок переміщати лише однією рукою, інша рука при цьому не повинна торкатися інших приладів з металевими поверхнями.
- 4. Не торкатись виводів конденсатора "С".
- 5. Під час роботи не торкатись контактів руками.
- 6. Після закінчення роботи від'єднати схему.

Лабораторна робота № 15

Перевірка закону Ома для електричного кола змінного струму з **R** і **C**. Мета роботи: перевірити закон Ома для кола змінного струму.

Перед виконанням роботи необхідно вивчити теоретичний матеріал з розділу 7.4

Прилади і обладнання : реостат, батарея конденсаторів, амперметр, вольтметр, частотомір, джерело змінної напруги.

Згідно з формулою (7.12), закон Ома для ділянки кола АВ (Рис. 7.8) запишемотак:

$$I = \frac{U'}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}} = \frac{U'}{\sqrt{R_1^2 + X_c^2}},$$
 (7.18)

де **U'** - спад напруги на ділянці АВ кола змінного струму (рис. 7.8);

 \mathbf{R}_1 - активний опір;

ω = 2πf - циклічна частота;

С – електрична ємність конденсатора.

Сила струму, який протікає через послідовне з'єднання активного опору та конденсатора;

$$I = \frac{U_{R_1}}{R_1}$$

або

$$I = \frac{U_c}{X_c}$$

звідки знайдемо, що

$$\mathbf{R}_{1} = \frac{\mathbf{U}_{\mathbf{R}_{1}}}{\mathbf{I}},\tag{7.19}$$

$$X_{c} = \frac{1}{2\pi fC} = \frac{U_{c}}{I}, \qquad (7.20)$$

де $\mathbf{U}_{\mathbf{R}_1}$ і $\mathbf{U}_{\mathbf{C}}$ - відповідно, спади напруг на активному опорі і на конденсаторі.

Підставивши у формулу (7.18) співвідношення (7.19) і (7.20), отримаємо

$$I = \frac{U'}{\sqrt{\left(\frac{U_{R_1}}{I}\right)^2 + \left(\frac{U_C}{I}\right)^2}} = \frac{IU'}{\sqrt{U_{R_1}^2 + U_C^2}}.$$
 (7.21)

Звідси

$$\mathbf{U'} = \sqrt{\mathbf{U}_{R_1}^2 + \mathbf{U}_{C}^2} \ . \tag{7.22}$$

3 формули (7.20) знайдемо

$$\mathbf{C} = \frac{\mathbf{I}}{2\pi \mathbf{f} \mathbf{U}_{\mathbf{C}}}.\tag{7.23}$$

Порядок виконання роботи

- 1. Скласти електричне коло відповідно до схеми Рис. 7.8
- 2. Замкнути коло і встановити з допомогою реостата силу струму в колі, яка вказана на робочому місці.
- 3. За допомогою вольтметра виміряти:
 - а) спад напруги U_R на опорі R;
 - б) спад напруги U_c на клемах конденсатора C;

№ п/п	U ' _{вим} (В)	U _{R1} (B)	U (B)	U'(B)	Δ U' (B)

в) спад напруги ${\bf U}$ на ділянці AB, яка складається із послідовно з'єднаних активного опору ${\bf R}$ і конденсатора ${\bf C}$.

Результати вимірювань записати в таблицю 1.

- 4. Виміряти частоту змінного струму, використовуючи частотомір.
- 5. Використовуючи формулу (7.22), обчислити **U** за отриманими результатами вимірювань \mathbf{U}_{R} і \mathbf{U}_{C} .Порівняти обчислене значення **U** з виміряним. Результати записати в таблицю1.
- 6. Використовуючи формулу (7.23), обчислити ємність конденсатора **C** за отриманими результатами вимірювань **f** і **U**_C . Порівняти обчислене значення ємності з даним в роботі. Результати записати в таблицю 2.
- 7. Змінюючи реостатом опір ділянки кола AB, виконати 3 аналогічних вимірювання при різних значеннях сили струму (вказані на робочому місці) і перевірити для кожного вимірювання виконання співвідношення (7.22) і (7.23).
- 8. Визначити абсолютні похибки при вимірюванні величин **U** і **C**.

Таблиця 1

№ п/п	I(A)	f (Гц)	Свирах. (Ф)	С _{дан.} (Ф)	ΔC

Контрольні запитання

- 1. У чому відмінність між вільними і вимушеними електричними коливаннями?
- 2. За яких умов в електричному колі виникають вимушені електричні коливання?
- 3. Що таке амплітудне і миттєве значення сили струму і напруги?
- 4. Як пов'язані між собою сила змінного струму і напруга в колі з активним опором?
- 5. Як пов'язані між собою сила струму і напруга на конденсаторі у колі змінного струму?
- 6. Пояснити причину відставання по фазі на $\frac{\pi}{2}$ спаду напруги на ємності від сили струму, який протікає через ємність.
- 7. Вивести закон Ома для кола змінного струму, яке складається із послідовно з'єднаного активного опору і ємності.

Лабораторна робота № 12. Вивчення лічильника змінного струму.

Мета роботи: Вивчення принципу роботи лічильника змінного струму.

Прилади і обладнання: електричний лічильник, амперметр, вольтметр, секундомір, набір електричних ламп розжарення.

Будова приладів індукційної системи і принцип їх роботи, описані в розділі 1 п.11. Будова електричного лічильника змінного струму показана на рис.1.8 (див. Розділ 1. п.11е.).

На кожному лічильнику вказана його постійна ${\bf C}$, величина її визначається кількістю енергії, при споживанні якої в колі диск лічильника здійснює один оберт. Тоді ${\bf W} = {\bf CN}$. За допомогою амперметра, вольтметра та секундоміра можна визначити ${\bf I}$, ${\bf U}$ та ${\bf t}$, а значить, визначити споживану енергію при активному навантажені в електричному колі:

$$W' = IUt$$
.

Нехай потягом часу \mathbf{t} диск виконав \mathbf{N}_1 обертів. Знайдемо постійну лічильника \mathbf{C}_1 як коефіцієнт пропорційності між кількістю енергії \mathbf{W}' і числом обертів диску \mathbf{N}_1 :

$$\mathbf{C}_{1} = \frac{\mathbf{W'}}{\mathbf{N}_{1}} = \frac{\mathbf{IUt}}{\mathbf{N}_{1}} \tag{7.24}$$

 (\mathbf{C}_1) відповідає кількості електричної енергії, при споживанні якої в колі диск лічильника здійснює один оберт).

Відносну похибку знаходимо згідно з рівнянням

$$\delta \mathbf{C} = \frac{\mathbf{C}_1 - \mathbf{C}}{\mathbf{C}} \tag{7.25}$$

Порядок виконання роботи.

- 1. Скласти схему за рис. 7.9. Увімкнути в електричне коло одну лампу.
- 2. Виміряти час \mathbf{t} , протягом якого лічильник виконає $\mathbf{N}_1 = 10\text{-}15$ повних обертів; записати покази амперметра і вольтметра; обчислити значення \mathbf{C}_1 за формулою (7.24).
- 3. Повторити вимірювання і обчислення при різних навантаженнях, вмикаючи в коло дві, три, чотири лампи; результати записати в таблицю.

№ п/п	I, A	U , B	N ₁ ,	t , c	С ₁ , Дж/об	С ,Дж/об	δ C , %
1							
2							
3							
4							

- 4. Визначити постійну лічильника: $\mathbf{C} = \frac{\mathbf{3.6 \cdot 10^6}}{\mathbf{N}}$, Дж/об, де \mathbf{N} число обертів диску лічильника, що відповідає значенню енергії в 1кВт.год (\mathbf{N} вказано на шкалі
- 5. Обчислити відносну похибку за формулою (7.25), а також за класом точності приладів.

Рис.7.9

Контрольні запитання

- 1. Як виникає обертовий момент, що діє на диск?
- 2. Як виникає гальмівний момент?

лічильника).

- 3. Який фізичний зміст постійної лічильника?
- 4. Написати формулу для обчислення енергії електричного струму.

Література

- 1. І.Є Лопатинський, І. Р.Зачек, І,М. Кравчук, Б. М. Романишин, В. М. Габа, Ф.М. Гончар. Курс Фізики, фізика для інженерів, підручник.. Львів, Афіша 2003.- 375 с.
- 2. И. В. Савельев. Кус физики, Т. 1, Механика, молекулярная физика . М. : Наука, 1989. 350 с.
- 3. И. В. Савельев. Кус физики, Т. 2, Электричество, колебания и волны, волновая оптика. М.: Наука, 1989. 462с.
- 4. А.А. Детлаф, Б. М. Яворский. Курс физики: Учебное пособие для втузов. М.: Высш. Шк. 1989. 608 с.
- 5. В. П. Черкашин. Физика Электричество и магнетизм: Лабораторные работы. К. : Вища шк. 1986. 167 с.
- 6. Физический практикум. Электричество и оптика / Под ред. Проф. В. И. Ивероновой. М.: Наука, 1968. 806 с.
- 7. Лабораторный практикум по физике : В 2ч. / И. А. Базакуца, Л. Г. Воинова, Н. И. Гнидаш и др. Х. : Изд во Харьк. Ун та, 1969. Ч. 1. 244 с.

Зміст

Розділ 1

1.	Основні в	вимірювальні прилади і деталі електричного кола
	Будова і г	принцип роботи основних електровимірювальних приладів
	a)	Магнітоелектрична система
	b)	Електромагнітна система
	c)	Електродинамічна система
	d)	Теплові прилади
	e)	Індукційна система
	f)	Вібраційна система
	g)	Електростатична система
	h)	Термостатична система
	i)	Дзеркальні гальванометри
	Межа вим	иірювань, ціна поділки та клас точності
	a)	Чутливість вимірювальних приладів
	b)	Ціна поділки шкали приладу
	c)	Клас точності
	1.3 Шунт	ги і додаткові опори
	a)	Амперметри
	b)	Вольтметри
	c)	Ватметри
	1.4 Джер	ела струму
	1.4.1	Гальванічні системи
	a)	Елемент Вольта
	b)	Елемент Лекланше
	c)	Елемент Грене
	(h	Елемент Ланіеля

	е) Нормальний елемент Вестона
	1.42 Акумулятори
	а) Кислотний (свинцевий) акумулятор
	b) Лужні залізо-нікелеві акумулятори
	1.5 Реостати, магазини опорів потенціометри
	Реостат з ковзним контактом
	1.5.2 Магазини опорів
	1.5.3 Потенціометри або подільники напруг
	1.6 Умовні позначення електричного кола
	1.7 Основні та похідні одиниці електрики та магнетизму
	1.8 Правила, поради та вказівки
	1.8.2 Правила техніки безпеки
	1.8.3 Поради та вказівки при виконанні робіт в електричній лабораторії
	1.8.4 Вказівки при оформленні звітів про виконання лабораторних робіт
	Розділ 2
2.	
۷٠	2.1 Взаємодія електричних зарядів. Закон Кулона
	2.2 Напруженість електричного поля. Графічне зображення електричного поля
	2.3 Теорема Остроградського- Гауса та її застосування
	2.4 Заряджання і розряджання конденсатора
	Лабораторні роботи (електростатика)
	Лабораторна робота № 1. "Вивчення властивостей електростатичного поля ."
	Лабораторна робота № 1а. "Моделювання електростатичного поля та вивчення
	його властивостей".
	Лабораторна робота № 2. "Визначення електроємності конденсаторів і перевірка
	законів електростатики."
	Лабораторна робота № 14. "Вивчення процесів заряджання і розряджання
	конденсатора через опір
	Розділ 3
3.	Постійний струм
	Закон Ома для ділянки кола. Опір провідників
	Розгалуження струму. Правила Кіргофа.
	Лабораторні роботи (постійний струм)
	Лабораторна робота № 3. "Перевірка закону Ома для постійного струму"
	Лабораторна робота № 4. Визначення опору провідників за допомогою містка
	постійного струму (містка Уітстона)
	Лабораторна робота № 5. "Перевірка правил Кірхгофа"
	Розділ 4.
4.	
	Явище термоелектронної емісії.
	Контактні явища
	Явище Зеебека.
	Явище Пельть ϵ
	Явище Томсона
	Лабораторні роботи (Термоелектричні та контактні явища)
	Лабораторна робота № 7. "Визначення роботи виходу електронів з металу за
	допомогою явища термоелектронної емісії."

	Лабораторна робота № 9. ,, Градуювання термопари і спостереження явища Пельтьє."
	Розділ 5.
5.	Магнітні явища
	Магнітне поле.
	Дія магнітного поля на електричний струм. Закон Ампера
	Магнітне поле постійного струму. Закон Біо-Савара-Лапласа
	Потік магнітної індукції.
	Робота струму в магнітному полі.
	Дія магнітного поля на рухомий електричний заряд.
	Ефект Холла.
	Рух електрона в однорідному електричному і магнітному полях. Визначення
питом	юго заряду елетрона.
Елект	ромагнітна індукція.
	Явище самоіндукції. Індуктивність контуру.
	Енергія магнітного поля струму. Густина енергії магнітного поля
	Лабораторні роботи (магнітні явища)
	Лабораторна робота № 10. "Вивчення явища електромагнітної індукції"
	Лабораторна робота № 11. "Визначення горизонтальної і вертикальної складових
	індукції магнітного поля Землі за допомогою земного індуктора
	Лабораторна робота № 27 ,, Дослідження властивостей напівпровідників методом
	ефекту Холла."
	Розділ 6.
6.	Електромагнітні коливання. Коливальний контур.
	Вільні електромагнітні коливання в коливальному контурі
	Вимушені електромагнітні коливання.
	Лабораторні роботи (Електромагнітні коливання)
	Лабораторна робота № 16. "Дослідження власних коливань у коливальному
	контурі."
	Лабораторна робота № 17. "Вивчення вимушених електричних коливань у
	коливальному контурі."
	Розділ 7.
7	Змінний електричний струм.
7.	1 17
	Коло змінного струму з активним опором Коло змінного струму з активним опором і індуктивністю
	Коло змінного струму з активним опором т індуктивністю.
	Коло змінного струму з конденсатором і ємністю
	Потужність у колі змінного струму.
	Лабораторні роботи (Змінний струм)
	Лабораторна робота № 13. "Визначення коефіцієнту потужності і перевірка закону
	Ома для кола змінного струму"
	Лабораторна робота № 15. "Перевірка закону Ома для електричного кола змінного
	лаоораторна росота № 13. "Перевірка закону Ома для електричного кола змінного струму з R і C ."
	Лабораторна робота № 12. "Вивчення лічильника змінного струму
	Література
	J1110pa1 ypa