In this challenge, you will be given an array B and must determine an array A. There is a special rule: For all i,  $A[i] \leq B[i]$ . That is, A[i] can be any number you choose such that  $1 \leq A[i] \leq B[i]$ . Your task is to select a series of A[i] given B[i] such that the sum of the absolute difference of consecutive pairs of A is maximized. This will be the array's cost, and will be represented by the variable S below.

The equation can be written:

$$S=\sum_{i=2}^N |A[i]-A[i-1]|$$

For example, if the array B=[1,2,3], we know that  $1 \leq A[1] \leq 1$ ,  $1 \leq A[2] \leq 2$ , and  $1 \leq A[3] \leq 3$ . Arrays meeting those guidelines are:

```
[1,1,1], [1,1,2], [1,1,3]
[1,2,1], [1,2,2], [1,2,3]
```

Our calculations for the arrays are as follows:

```
|1-1| + |2-1| = 1 |1-1| + |3-1| = 2 |2-1| + |2-2| = 1 |2-1| + |3-2| = 2
|1-1| + |1-1| = 0
|2-1| + |1-2| = 2
```

The maximum value obtained is 2.

#### **Function Description**

Complete the *cost* function in the editor below. It should return the maximum value that can be obtained.

cost has the following parameter(s):

• B: an array of integers

#### **Input Format**

The first line contains the integer t, the number of test cases.

Each of the next t pairs of lines is a test case where:

- The first line contains an integer  $m{n}$ , the length of  $m{B}$
- The next line contains  $m{n}$  space-separated integers  $m{B}[m{i}]$

## **Constraints**

- $1 \le t \le 20$
- $1 < n \le 10^5$   $1 \le B[i] \le 100$

# **Output Format**

For each test case, print the maximum sum on a separate line.

# **Sample Input**

1 10 1 10 1 10

## **Sample Output**

36

# **Explanation**

The maximum sum occurs when A[1]=A[3]=A[5]=10 and A[2]=A[4]=1. That is |1-10|+|10-1|+|1-10|+|10-1|=36.

