Dart Aerospace Ltd. Tuesday, 8/21/2007 3:43:40 PM . 75 Kim Johnston **Process Sheet** : 02.250 SUPPORT : CU-DAR001 Dart Helicopters Services **Drawing Name** Customer Job Number 34188 12920 **Estimate Number** : D28911UP **Part Number** : NIA P.O. Number D2891 REV A1 This Issue : 8/21/2007 **Drawing Number** : N/A Project Number Prsht Rev. **Drawing Revision** First Issue : NA Material **Previous Run** : 9/20/2007 12 Um: **Due Date** Written By Checked & Approved By New Issue 07-07-04 JLM : Est Rev:A Comment **Additional Product** Job Number: Description: Seq. #: Machine Or Operation: **PURCHASING** 1.0 Comment: PURCHASING cho7/08/23 Issue P/O: Description: D6104-003 Material: 17-4 PH SS (AMS 5643 OR AISI 630) as per Dwg D6104 Material release note required. Blank size makes (2) D2891-1 17-4 SS Roundbar 3.25"OD D6104003 Comment: Qty.: 12.0000 Each(s) 1.0000 Each(s)/Unit Total: Support 2.25 dia PACKAGING RESOURCE #1 3.0 Comment: PACKAGING RESOURCE #1 Recieive & Inspect for Transit Damage Ensure Material Release Note is attached 4.0

MORI SEIKI

Comment: MORI SEIKI LATHE

5.0

Turn blank for Haas as per Folio FA046

INSPECT ALL DIM TO DIM SHEET



Comment: INSPECT ALL DIM TO DIM SHEET



Each

| Dart Aerospace I | Ltd |
|------------------|-----|
|------------------|-----|

| W/O:    |      |        | ✓ WORK ORDER CHANGES |    |        |                    |                                                |                                     |                          |  |  |  |
|---------|------|--------|----------------------|----|--------|--------------------|------------------------------------------------|-------------------------------------|--------------------------|--|--|--|
| DATE    | STEP | PRO    | CEDURE CHANGE        |    | Ву     | Date               | Qty                                            | Approval<br>Chief Eng /<br>Prod Mgr | Approval<br>QC Inspector |  |  |  |
|         | ~    |        |                      |    |        |                    |                                                |                                     |                          |  |  |  |
|         |      | · .    | •                    |    |        |                    |                                                |                                     |                          |  |  |  |
| Part No | ):   | PAR #: | Fault Category:      | NC | R: Yes | MO DQ<br>N/C Close | A: <u>,                                   </u> | Date:                               | <u> </u>                 |  |  |  |

| NCR:    |      | W                         | ORK OR    | DER NON-CONFORMANCI         | E (NCR)                      |                |                                         |                    |                         |
|---------|------|---------------------------|-----------|-----------------------------|------------------------------|----------------|-----------------------------------------|--------------------|-------------------------|
|         |      | Description of NC         |           | Corrective Action Section B | Verification                 | Annessal       | * * * * * * * * * * * * * * * * * * * * |                    |                         |
| DATE    | STEP |                           | Section A | Initial<br>Chief Eng        | Action Description Chief Eng | Sign &<br>Date | Section C                               | Approval Chief Eng | Approval<br>QC Inspecto |
| 2/0/29  | 4.0  | 1 piece too short of .007 | SP        | Partacceptuble.             | and                          |                | 9                                       |                    |                         |
| ) 41013 |      |                           | 67. N.30  |                             | 02/10/30                     |                | 9.16.30<br>pu QSI UTZ                   | PA-10-30           |                         |
| <u></u> |      |                           | 05/042    |                             |                              | 07/10/30       | 951042                                  |                    |                         |
|         |      |                           |           |                             | ,                            |                | ٠                                       |                    |                         |
|         |      |                           |           |                             |                              | _              |                                         |                    |                         |
|         |      |                           |           |                             |                              |                |                                         |                    |                         |
|         |      |                           |           |                             |                              |                |                                         |                    |                         |
|         |      |                           |           |                             |                              |                |                                         |                    |                         |
|         |      |                           |           |                             |                              |                |                                         |                    |                         |

NOTE: Date & initial all entries

Date: ' Tuesday, 8/21/2007 3:43:41 PM User: Kim Johnston **Process Sheet** Drawing Name: 02.250 SUPPORT Customer: CU-DAR001 Dart Helicopters Services Part Number: D28911UP Job Number: 34188 Job Number: Seq. #: Description: **Machine Or Operation:** HAAS CNC VERTICAL MACHINING #1 6.0 HAAS1 8. 5 or/11/17 d Comment: HAAS Machine as per Folio FA046 Tumble & Deburr INSPECT PARTS AS THEY COME OFF MACHINE 7.0 QC2 Comment: INSPECT PARTS AS THEY COME OFF MACHINE SECOND CHECK 8.0 QC8 Comment: SECOND CHECK PACKAGING RESOURCE #1 9.0 PACKAGING ' Comment: PACKAGING RESOURCE #1 Identify and Stock Location: FINAL INSPECTION/W/O RELEASE 10.0 Comment: FINAL INSPECTION/W/O RELEASE

Job Completion



N 89.11.19

## **Dart Aerospace Ltd**

| W/O:    |      |        | WORK OF           | RDER CHANGES |          |            |     |                                     |                          |
|---------|------|--------|-------------------|--------------|----------|------------|-----|-------------------------------------|--------------------------|
| DATE    | STEP | PROC   | EDURE CHANGE      | ·            | Ву       | Date       | Qty | Approval<br>Chief Eng /<br>Prod Mgr | Approval<br>QC Inspector |
|         |      |        |                   |              |          |            |     |                                     |                          |
|         | ;    |        |                   |              |          | N (c)      | :   |                                     |                          |
|         |      |        |                   |              |          |            |     |                                     |                          |
|         |      |        |                   | ·            | -        |            |     |                                     |                          |
| Part No | :    | PAR #: | _ Fault Category: | •            | NCR: Yes | No DQA     | Ä:  | _ Date: _                           |                          |
|         |      | •      |                   |              | QA:      | N/C Closed | l:  | _ Date: _                           |                          |

| NCR: | -    | WORK ORDER NON-CONFORMANCE (NCR) |                      |                                          |              |              |                       | WORK ORDER NON-CONFORMANCE (NCR) |  |  |  |  |  |
|------|------|----------------------------------|----------------------|------------------------------------------|--------------|--------------|-----------------------|----------------------------------|--|--|--|--|--|
|      |      | Description of NC                |                      | Corrective Action Section B              |              | Verification | Amment                | Ammana                           |  |  |  |  |  |
| DATE | STEP | Section A                        | Initial<br>Chief Eng | Action Description Significant Chief Eng | gn &<br>Date | Section C    | Approval<br>Chief Eng | Approval<br>QC Inspecto          |  |  |  |  |  |
|      |      |                                  |                      |                                          |              |              |                       |                                  |  |  |  |  |  |
| •    |      |                                  |                      |                                          |              | ļ            |                       |                                  |  |  |  |  |  |
|      |      |                                  |                      |                                          |              |              | -                     |                                  |  |  |  |  |  |
|      |      |                                  |                      |                                          |              | . *.         | , .                   |                                  |  |  |  |  |  |
|      |      |                                  |                      |                                          |              |              |                       |                                  |  |  |  |  |  |
|      |      |                                  |                      |                                          |              | :            |                       |                                  |  |  |  |  |  |
|      |      |                                  |                      |                                          |              |              |                       |                                  |  |  |  |  |  |
|      |      |                                  |                      |                                          |              |              |                       |                                  |  |  |  |  |  |
|      |      |                                  |                      |                                          |              |              |                       |                                  |  |  |  |  |  |
|      |      |                                  |                      |                                          |              |              |                       | -                                |  |  |  |  |  |
|      |      |                                  |                      | · ]                                      |              |              |                       |                                  |  |  |  |  |  |

NOTE: Date & initial all entries

| DART AEROSPACE LTD            | Work Order:  | 34188       |
|-------------------------------|--------------|-------------|
| Description: Ø2.250 Support   | Part Number: | D2891-1     |
| Inspection Dwg: D2891 Rev. A1 |              | Page 1 of 1 |

Inspect dimensions highlighted on inspection sheet drawing D2891 Rev.A1/DSK076 Rev.A and record below:

| Cauge   Caug   |     |              |          |        | Re       | corded Actu | al Dimensi | ons   |     |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|----------|--------|----------|-------------|------------|-------|-----|------|
| A 2.274 2.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dim | Min          | Max      |        | 1        | 2           | 3          | 4     | Ву  | Date |
| B   3.702   3.722   3.695   3.711   3.714   3.714   3.714   C   2.564   2.584   2.575   2.549   2.571   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.572   2.57   |     |              |          |        | Lathe    | Section     |            |       |     |      |
| B 3.702 3.722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A   | 2.274        | 2.279    |        | 2.277    | 2,278       | 2,276      | 2.277 |     |      |
| D 0.718 0.738 0.738 0.727 0.727 0.727 0.727 E 0.090 0.110 0.099 0.101 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0. | В   | 3.702        | 3.722    |        | 3.695    | 3.711       |            | 3.714 |     |      |
| D 0.718 0.738 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.727 0.72 | C . |              | 2.584    |        |          | 2.569       | 2.571      | 2,572 |     |      |
| F 2.464 2.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D   |              | 0.738    |        | 0.727    | 0.729       | 0.727      |       | · . |      |
| F 2.464 2.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E   |              | 0.110    |        | 0.099    | 0.100       | 0.101      |       |     |      |
| G 2.029 2.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F   | 2.464        | 2.484    |        | 2.477    | 2.470       | 2,476      | 2-476 |     |      |
| H 2.964 2.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G   |              | 2.049    |        |          | 2035        | 2.033      | 2.035 |     |      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H   |              |          |        |          | 2.973       | 2.972      | 2.972 |     |      |
| J   0.022   0.042   0.033   0.032   0.032   0.032   0.032   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.090   0.095   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.058   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055      |     |              |          |        |          | 0.921       | 0.922      | 0.927 |     |      |
| HAAS Section  HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section HAAS Section H | j   |              |          |        | 0.03     |             | 1.032      | 0.032 |     |      |
| HAAS Section  AA 0.188 0.193 DT8706 0.129 187 188 188 188 188 188 189 189 189 189 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |              |          | ***    | 0.099    |             | 0.099      |       |     |      |
| HAAS Section  AA 0.188 0.193 DT8706 0.189 .187 .188  AB 0.240 0.260 0.250 .250 .249 .249  AC 0.115 0.150 0.125 .130 .127 .124  AD 0.040 0.060 0.055 .055 .058 .055  AE 0.010 0.020 0.010 .00 .00 .00  AF 0.240 0.260 0.250 .250 .250 .250  AG 0.290 0.310 0.298 .397 .290 .300  AH 0.115 0.150 0.138 .140 .H0 .40  AI 0.454 0.474 0.454 .499 .457 .470  AJ 2.779 2.789 2.782 2.783 2.783 2.783 2.782  AK 0.240 0.260 0.250 .250 .250 .250  AL 1.002 1.042 1.042 1.040 1.042 1.040 1.042  AM 0.053 0.073 0.063 .063 .063  AN 0.257 0.262 DT8683 0.258 .257 .257 .258  AN 0.253 0.073 0.063 .063 .063  AN 0.053 0.073 0.073 0.063 .063 .063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |              |          |        | <u> </u> |             |            |       |     |      |
| AB 0.240 0.260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |              |          |        | HAAS     | Section     |            |       |     |      |
| AB 0.240 0.260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AA  | 0.188        | 0.193    | DT8706 | 0.189    | ,188        | .184       | .188  |     |      |
| AC 0.115 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AB  |              | 0.260    | 111    | 0.250    | 250         | ,249       |       |     |      |
| AD 0.040 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AC  |              | 0.150    | 1      |          |             |            | .128  |     |      |
| AE 0.010 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AD  |              |          |        |          |             | 058        | .055  |     |      |
| AF 0.240 0.260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AE  |              |          |        |          |             |            | ,0(0  |     |      |
| AG 0.290 0.310 0.298 .397 .380 .300 AH 0.115 0.150 0.138 .140 .H0 .740 AI 0.454 0.474 0.4754 .489 .459 .470 AJ 2.779 2.789 2.783 2.783 2.783 2.783 2.782 AK 0.240 0.260 0.250 .250 .250 .250 AL 1.002 1.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AF  |              |          |        |          | .250        | ,250       |       |     |      |
| AH 0.115 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AG  |              |          | 4      |          | 297         | 280        | 300   |     |      |
| AI 0.454 0.474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AH  |              |          | 1.     | 0.138    |             |            | , 140 |     |      |
| AJ 2.779 2.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Al  |              |          |        |          |             | .459       |       |     |      |
| AK 0.240 0.260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AJ  |              |          |        |          |             | 2.783      |       |     |      |
| AL 1.002 1.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AK  |              |          |        |          |             |            |       |     |      |
| AM 0.053 0.073 0.063 .063 .063 .063 AN 0.257 0.262 DT8683 0.258 .357 .257 .258 AO 1.663 1.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AL  |              |          | ***    |          |             |            |       |     |      |
| AN 0.257 0.262 DT8683 0.258 .357 .257 .258<br>AO 1.663 1.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AM  |              |          | 3 1    |          |             |            |       |     |      |
| AO 1.663 1.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AN  |              |          |        |          |             |            | .25-8 |     |      |
| AP 0.053 0.073 0.063 .063 .063 AQ 0.022 0.042 0.032 .032 .032 .032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AO  |              |          |        |          |             | 1.683      | 1,683 |     |      |
| AQ 0.022 0.042 0.032 0.32 0.32 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AP  |              |          |        |          |             | .063       |       |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AQ  |              |          |        |          |             |            |       |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AR  | J.J          |          |        | U. U = 3 |             |            |       |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AS  | <del> </del> |          |        |          |             |            |       |     |      |
| Accept/Reject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | Acc          | ept/Reie | ct     |          |             |            |       |     |      |

|              | _ 0.     |          |            |          |
|--------------|----------|----------|------------|----------|
| Measured by: | -Inc     | 125      | Audited by | T.F.:    |
| Date:        | 07/10/30 | 107/4/13 | Date:      | 07/11/18 |

| Rev | Date     | Change    | <br>Revised by | Approved |
|-----|----------|-----------|----------------|----------|
| Α   | 02.12.12 | New Issue | KJ/RF          | #-       |

| DART AEROSPACE LTD            | Work Order:  | 34188       |
|-------------------------------|--------------|-------------|
| Description: Ø2.250 Support   | Part Number: | D2891-1     |
| Inspection Dwg: D2891 Rev. A1 |              | Page 1 of 1 |

Inspect dimensions highlighted on inspection sheet drawing D2891 Rev.A1/DSK076 Rev.A and record below:

|               |       |          | grited on mape    | 1     |         | ıal Dimensi | ons   |    |      |
|---------------|-------|----------|-------------------|-------|---------|-------------|-------|----|------|
| Dim           | Min   | Max      | Go/No Go<br>Gauge | 1.5   | 26      | 27          | x8    | Ву | Date |
| Lathe Section |       |          |                   |       |         |             |       |    |      |
| Α             | 2.274 | 2.279    |                   | 2277  | 2,277   | 2.278       | 2,277 |    |      |
| В             | 3.702 | 3.722    | ,                 | 3.714 | 3.714   | 3.7/2       | 3.712 |    |      |
| С             | 2.564 | 2.584    |                   | 2,573 | 2.573   | 2,574       | 2.574 |    |      |
| D             | 0.718 | 0.738    |                   | 6.727 | 0.726   | 0.726       | 0.726 |    | 1.2  |
| E             | 0.090 | 0.110    |                   | 0.101 | 0.101   | 0,100       | 0.100 |    |      |
| F             | 2.464 | 2.484    |                   | 2.477 | 2.476   | 2.477       | 2,477 |    |      |
| G             | 2.029 | 2.049    |                   | 2.035 | 2.035   | 2.034       | 2,032 |    |      |
| Н             | 2.964 | 2.984    |                   | 2,973 | 2.973   | 2,974       | 2.972 |    |      |
| ·             | 0.913 | 0.933    | ٠,                | 0.925 | 0.927   | 0.927       | 0.929 |    |      |
| J             | 0.022 | 0.042    |                   | 0.032 | 0.032   | 0.032       | 0.032 |    |      |
| K             | 0.090 | 0.110    |                   | 0.099 | 0.099   | 0.100       | 0,100 |    |      |
| L             |       |          |                   |       |         |             |       |    |      |
|               |       | <u></u>  |                   | HAAS  | Section |             |       |    |      |
| AA            | 0.188 | 0.193    | DT8706            | .188  | 188     | .184        | 188   |    |      |
| AB            | 0.240 | 0.260    |                   | .252  | .250    | 258         | .255  |    |      |
| AC            | 0.115 | 0.150    |                   | 1128  | .128    | -127        | .122  |    |      |
| AD            | 0.040 | 0.060    |                   | 058   | .058    | 1058        | 060   |    |      |
| AE            | 0.010 | 0.020    |                   | 015   | ,015    | -015        | 2015  |    |      |
| AF            | 0.240 | 0.260    |                   | ,240  | .240    | .240        | .740  |    |      |
| AG            | 0.290 | 0.310    |                   | .300  | ,300    | .300        | ,300  |    |      |
| AH            | 0.115 | 0.150    |                   | .180  | 140     | 140         | .140  |    |      |
| ΑI            | 0.454 | 0.474    |                   | .460  | .460    | .460        | ,460  |    |      |
| AJ            | 2.779 | 2.789    |                   | 2.782 | ,2. KI  | 2.78        | 2-782 |    |      |
| AK            | 0.240 | 0.260    |                   | 250   | .750    | ,250        | ,200  |    |      |
| AL            | 1.002 | 1.042    |                   | 1.040 | 1.040   | 1.040       | 1.040 |    |      |
| AM            | 0.053 | 0.073    |                   | .063  | -063    | .063        | JOS 3 |    |      |
| AN            | 0.257 | 0.262    | DT8683            | .258  | , 258   | ,258        | ,258  |    |      |
| AO            | 1.663 | 1.683    |                   | 1.683 | 1-683   | 1681        | 1.681 |    |      |
| AP            | 0.053 | 0.073    |                   | . 263 | . 063   | ,063        | ,063  |    |      |
| AQ            | 0.022 | 0.042    |                   | .032  | ,632    | .032        | ,032  |    |      |
| AR            |       |          |                   |       |         |             |       |    |      |
| AS            |       |          |                   |       |         |             |       |    |      |
|               | Acc   | ept/Reje | ct                |       |         |             |       |    |      |

| Measured by:   | Audited by J.F. |
|----------------|-----------------|
| Date: 62/16/36 | Date: 07////8   |

| Rev | Date     | Change    | Revised by | Approved |
|-----|----------|-----------|------------|----------|
| Α   | 02.12.12 | New Issue | KJ/RF      | #        |

| DART AEROSPACE LTD            | % Work Order: | 34188       |
|-------------------------------|---------------|-------------|
| Description: Ø2.250 Support   | Part Number:  | D2891-1     |
| Inspection Dwg: D2891 Rev. A1 |               | Page 1 of 1 |

Inspect dimensions highlighted on inspection sheet drawing D2891 Rev.A1/DSK076 Rev.A and record below:

|     |          |          |                                       | Red   | All 1     |       |        |    |              |
|-----|----------|----------|---------------------------------------|-------|-----------|-------|--------|----|--------------|
| Dim | Min      | Max      | Go/No Go<br>Gauge                     | 2.9   | 2118      | 211   | 12/2   | Ву | Date         |
|     |          |          |                                       | Lathe | e Section |       |        |    |              |
| Α   | 2.274    | 2.279    |                                       | 2.278 | 2.277     | 2.278 | 2,279  |    |              |
| В   | 3.702    | 3.722    |                                       | 3.712 | 3.712     | 3.712 | 3.714  |    |              |
| С   | 2.564    | 2.584    |                                       | 2,574 | 2.574     | 2.574 | 2.574  |    |              |
| D   | 0.718    | 0.738    |                                       | 0.727 | 0.727     | 0.726 | 0,727  |    |              |
| E   | 0.090    | 0.110    | -                                     | 0.101 | 0.100     | 0,101 | 2.477  |    | J. 10        |
| F   | 2.464    | 2.484    |                                       | 2.47  | 2,478     | 2.477 | 2.477  |    |              |
| G   | 2.029    | 2.049    |                                       | 2,035 | 2.033     | 2.034 | 2.033  |    |              |
| Н   | 2.964    | 2.984    | ····                                  | 2.973 | 2.473     | 2.973 | 2.973  |    |              |
| 1   | 0.913    | 0.933    |                                       | 0.923 | 0.927     | 0.925 | 0.972  |    |              |
| J   | 0.022    | 0.042    | •                                     | 0.032 | 0.032     | 0.032 | 0.032  |    |              |
| K   | 0.090    | 0.110    |                                       | 0.100 | 0.100     | 0.100 | 0.106  |    |              |
| ·L  |          |          | ,                                     |       |           |       |        |    |              |
|     | <u> </u> |          |                                       | HAAS  | Section   |       |        |    |              |
| AA  | 0.188    | 0.193    | DT8706                                | .188  | .184      | 188   | . 188  |    |              |
| AB  | 0.240    | 0.260    |                                       | .255  | ,250      | 259   | 258    |    |              |
| AC  | 0.115    | 0.150    |                                       | 128   | 127       | :127  | 127    |    |              |
| AD  | 0.040    | 0.060    |                                       | .055  | 055       | -258  | 1053   |    |              |
| AE  | 0.010    | 0.020    |                                       | -015  | .015      | ,015  | 1015   |    |              |
| AF  | 0.240    | 0.260    |                                       | 250   | 250       | ,250  | ,250   |    |              |
| AG  | 0.290    | 0.310    |                                       | . 300 | - 300     | .290  | . 290  |    |              |
| AH  | 0.115    | 0.150    | · · · · · · · · · · · · · · · · · · · | 140   | -140      | -145  | -140   |    |              |
| ΑI  | 0.454    | 0.474    |                                       | , 460 | .460      | ,463  | - 460  |    |              |
| AJ  | 2.779    | 2.789    |                                       | 2 780 | 2780      | 2.780 | 2-780  |    |              |
| AK  | 0.240    | 0.260    |                                       | 250   | -250      | 1250  | .250   |    |              |
| AL  | 1.002    | 1.042    |                                       | 1.040 | 1.040     | 1.039 | 1,038  |    |              |
| AM  | 0.053    | 0.073    |                                       | 063   | ·053      | .063  | .063   | `  |              |
| AN  | 0.257    | 0.262    | DT8683                                | 25-7  | -257      | .257  | ~257   |    |              |
| ΑO  | 1.663    | 1.683    |                                       | 1.680 | 1.680     | 1.692 | : 1582 |    |              |
| AP  | 0.053    | 0.073    |                                       | ,063  | .063      | 1063  | .063   |    | · 64         |
| AQ  | 0.022    | 0.042    |                                       | ,032  | .03Z      | ,032  | .032   |    | = <b>x</b> . |
| AR  |          | ··-      |                                       |       | ,         |       |        |    |              |
| AS  |          |          |                                       |       |           |       |        |    |              |
|     | Acc      | ept/Reje | ct                                    |       |           |       |        |    |              |

| - A           |                         |
|---------------|-------------------------|
| Measured by:  | Audited by T.F. 07/1//8 |
| Date: 07/0/30 | Date:                   |

| Rev | Date     | Change    | Revised by | Approved |
|-----|----------|-----------|------------|----------|
| Α   | 02.12.12 | New Issue | KJ/RF      | #        |





DA BAY 077

|                          | ICIDIO<br>ICIGITY<br>In of Crucine Measure's Corporal | SYF         | ACUSE<br>V YORK 1320 | , ,        | C            | ERT              | IFIC/             | ATE       | OF T            | ES   | •                |            |
|--------------------------|-------------------------------------------------------|-------------|----------------------|------------|--------------|------------------|-------------------|-----------|-----------------|------|------------------|------------|
| s A M CAST               | LE, THE                                               |             | •                    | SHI        | A H          | CAS ILE          | L. Year           |           |                 |      | FU-LI33          |            |
| D 3400 N W<br>T FSANKLIN | CLF AD<br>FARK, I                                     | <u>ျ</u> ဆိ | 5131                 | 7<br>0     | 2680<br>BEDF | C MILE<br>ORD HE | ES RD<br>EIGHTS : | OM 4414   | ó               | ្ប   | 0//15/<br>غ//15/ | ATE<br>107 |
| CUSTOMER ORG             |                                                       | cu          | STOMER REQ.          | * DISTRICT |              | B FA             | SSONS             |           | SHIPPED<br>FROM |      | SYRACUSE         |            |
| AMC-3174<br>AMS-5643     | IPH RT A<br>I-10 REV<br>IG AISI                       | 7<br>630    | ASME-5A              | 17400      |              | 30 <u>.</u> - 1  |                   |           |                 |      |                  |            |
| HEAT NO.                 |                                                       |             |                      |            |              | CHEMIC           | CAL ANÁLYSIS      |           |                 |      |                  |            |
| A18939                   | 0<br>.037                                             | MN<br>.42   | .027                 | .022       | 3I<br>.63    | HI<br>4.09       | CR<br>15.28       | #0<br>•11 | €0<br>3.22      | . 29 |                  |            |
|                          |                                                       |             |                      |            |              |                  |                   |           |                 |      |                  |            |

CASTLE METALS CORP. DATE RCVD APPROVED BY

MECHANICAL PROPERTIES HEAT NO. QUANTITY BEDZAREAX HARDNESS XEL ONG GO TENSILE PSI YLD.2%FAI 1814 # A18737 EHN 356 3C 35 CAPABILITY PHYSICALS AFTER 900 DEG. F. - 1 HR. AIRCOGL: ELA MHG 51.1 174,050 12.3 203,000 MACRO TEST OR FERRITE 5 %

MAGNAFLUX F/S = 0/0

REBUCTION RATIO: 27.5:1 MATERIAL SOLUTION TREATED AT 1900 DEG. F. HELD 45 MINUTES AT TEMPERATURE -AIRCOGLED.

CAUCIBLE MATERIALS CORF. VENDOR \$15410. HATERIAL INGGT CAST. MAFTA - YES

THANK YOU FOR SELECTING A QUALITY PRODUCT MATERIAL FREE FROM MERCURY CONTAMINATION AT TIME OF SHIPMENT MANUFACTURED BY THE EMPLOYEES OF CRUCIBLE SPECIALTY METALS NO WELD REPAIR PERFORMED MATERIAL MELTED IN U.S.A. THE ABOVE MATERIAL WAS MANUFACTURED AND TESTED IN COOR

| THE THIS                               |   |           | WITH ABOVE SPECIFICATIONS AND IS IN CONFORMANCE WITH SPECIFICATION REQUIREMENTS. |
|----------------------------------------|---|-----------|----------------------------------------------------------------------------------|
| SWORN TO AND SUBSCRIBED BEFORE ME THIS | • |           | COLICIDI & MATERIAI & CORPORATION                                                |
| 20                                     |   | n ,       | ACTING BY AND THROUGH ITS SPECIALTY METALS DIVISION                              |
| DAY OF, 20                             |   |           | 11-7.64116                                                                       |
|                                        |   | CERTIFIED | 11-1,0000                                                                        |
|                                        | • | BY:       | QUALITY ASSURANCE REPRESENTATIVE                                                 |
| NOTARY PUBLIC                          |   |           |                                                                                  |



P.O. BOX 977 SYRACUSE NEW YORK 13201

## CERTIFICATE OF TEST

|             | A Greater of Cruatio Manual Congruency                                                 | NEW YORK 13201          | OLITI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               | <b>O</b> , 1                                                                         |                                         |
|-------------|----------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|
|             | 4 M CASTLE: INC                                                                        |                         | S A H CASTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E. IND.                                                       | • • •                                                                                | FS-LL330                                |
| )<br>D<br>T | 3460 N WELF RD<br>FRANKLIN FARK, IL                                                    | 50131                   | P 26800 MIL<br>T BEDFORD H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ES RD<br>EIGHTS OH 44.                                        | ( <b>46</b>                                                                          | 0//16/0                                 |
|             | CUSTOMER ORDER # & DATE                                                                | CUSTOMER REQ.           | DISTRICT B FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RSONS                                                         | SHIPPED                                                                              | SYRACUSE                                |
| OE          | CRU 17-4PH RT A<br>AMC-3174-10 REV 7<br>AMS-56430 AISI                                 |                         | And the second of the second o | SIZE<br>3.250 RD<br>4STH <del>-A</del> S64-04                 | T630                                                                                 | •                                       |
|             |                                                                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                                      |                                         |
| <u>,</u>    |                                                                                        |                         | CHEMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAL ANALYSIS                                                  |                                                                                      |                                         |
| HE          | A18939 C<br>.037                                                                       | MN P<br>.42 .027 .      | 5 SI NI<br>022 .63- 4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR 20<br>15.28 .41                                            |                                                                                      | TA .012                                 |
|             |                                                                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE RC                                                       | LE METALS CO<br>VD 7/25/<br>2-17-0<br>ED BY 4                                        |                                         |
| QI.         | ANTITY HEAT NO.                                                                        |                         | MECHANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAL PROPERTIES                                                |                                                                                      |                                         |
| -           | LS14 # ALS939  CAPABILI  MACRO TEST OR FERRITE 5 % MAGNAFLUX F/S = 0                   | TY PHYSICALS<br>203.000 | PSI YLD.2%F5I<br>AFTER 900 DEG.<br>174.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ZELONG45<br>F 1 88. f<br>12.3                                 | SEDVAREAX<br>STRCOOL:<br>51,1                                                        | HARDNESS<br>BHN 356<br>30 38<br>BHN 415 |
| *           | REDUCTION RATIO:<br>MATERIAL BOLUTION<br>AIRCOOLED.                                    | 27.511<br>TREATED AT    | 1900 DEG. F. HE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LD 45 HINUTES                                                 | S AT TEN                                                                             | IPERATURE                               |
|             | CAUCIBLE MATERIAL<br>MATERIAL INDOT CA<br>MARTA - YES                                  | .5 CORF. VEND<br>Yer.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | :<br>:                                                                               |                                         |
| - 1         | WATERIAL FREE FROM MERCURY CO<br>NO WELD REPAIR PERFORMED<br>MATERIAL MELTED IN U.S.A. | NTAMINATION AT TIME OF  | F SHIPMENT THANK  1 BY THE EMPLOYE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YOU FOR SELEC<br>ES OF CRUCIE                                 | iting a qua<br>Le speciali<br>Managatur                                              | Y MEINLS                                |
|             | SWORN TO AND SUBSC                                                                     | RIBED BEFORE ME         | , 20 CER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WITH ABOVE SPE<br>SPECIFICATION RE<br>CRUC<br>ACTIN<br>TIFIED | CIFICATIONS AND IS<br>RIPERMENTS.<br>ISSUE MATERIALS CORPO<br>IG BY AND THEOLIGH ITS | IN CONFORMANCE 1                        |