Projekt US Bank Wages

Is there a wage gap between genders?

Farzan Mirzada

Background / Motivation

- Policymakers are thinking about implementing new regulations for the finance sector.
- One policymaker claims that the finance sector is male-dominated and needs to close the wage gap between males and females. He also believes that minorities get payed less.
- Now he needs quantitative evidence to persuade other policymakers.

Data

- We analyse a sample from a us bank with 474 observations.
- The response/target variable is yearly salary in \$
- Features = education, yearly salary in first year, gender(dummy), minority (dummy) and the jobcatagory of the employee (administrative position, custodial position, management position)

Hypothesis

- 1.) We expect positive estimators for a)education, b)gender and c)salbegin.
 - better education leads to higher salary
 - higher first salary (salbegin) leads to higher salary
 - we expect higher incomes for males than females

Thus, for educ, salbin and gender we have the following hypothesis:

$$H_0:eta_i=0$$
 vs. $H_1:eta_i>0$, where $ext{i}= ext{educ}$, salbegin or gender

- 2.) We should have a negative estimator for the minority feature
 - we expect higher income for non-minorities than minorities

For the minority feature we have the following hypothesis: $H_0:eta_{minority}=0$ vs. $H_1:eta_{minority}<0$

Visualisation

Histograms

- right-taled distributions for salary and salbegin.
- hard to assume normal distribution for any feature.
- salbegin might have a non-linear relation with salary.
- Better use natural logarithm for salary values.

log reduces outliers

Categorizing Education

- We can split education values into degree categories
- A university degree seems to have a higher impact on the salary than a high school or junior high degree.

Correlation Matrix

1.00

- 0.75

- 0.50

-0.25

-0.00

- -0.25

- -0.50

- -0.75

-1.00

Isalary row is crucial for us:

- minority and employees with custodial position have a negative correlation with log(salary)
- educ, log(salbegin) and management position is positively correlated with log(salary)
- support for hypothesis 1) and 2)

Linear Regression

Summary statistics using OLS

							_	
OLS Regression Results								
Dep. Variable:			lsalary	R-squared:			0.825	
Model:			0LS	Adj. R-squared:			0.823	
Method:		Least	Squares	F-statistic:			366.9	
Date:		Wed, 17 Feb 2021		<pre>Prob (F-statistic):</pre>			5.39e-173	
Time:		15:32:23		Log-Likelihood:			179.14	
No. Observations:			473			AIC:	-344.3	
Df Residuals:			466			BIC:	-315.2	
Df Model:		6						
Covariance Type:		nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
const	4.1233	0.415	9.947	0.000	3.309	4.938		
educ	0.0247	0.004	6.258	0.000	0.017	0.032		
lsalbegin	0.6027	0.046	13.234	0.000	0.513	0.692		
gender	0.0593	0.020	2.959	0.003	0.020	0.099		
minority	-0.0431	0.019	-2.227	0.026	-0.081	-0.005		
jobcat_2	0.1285	0.037	3.443	0.001	0.055	0.202		
jobcat_3	0.2386	0.034	6.919	0.000	0.171	0.306		

	0.1							
	OLS Regression Results							
Dep. Variable:		lsala	ary		R-sc	uared:	0.8	327
Model:		C	DLS	P	ldj. R-so	uared:	0.8	324
Method:	Lea	ast Squar	es		F-stat	istic:	27	5.9
Date:	Wed,	17 Feb 20	21	Prob	(F-stati	stic):	2.56e-	171
Time:		14:44:	13	L	.og-Likel	ihood:	181	.23
No. Observations:		4	173			AIC:	-34	4.5
Df Residuals:		4	164			BIC:	-30	7.0
Df Model:			8					
Covariance Type:		nonrobu	ıst					
		coef	st	d err	t	P> t	[0.025	0.975]
Inte	ercept	4.2430		0.418	10.148	0.000	3.421	5.065
C(jobcat)	[T.2]	0.1032		0.049	2.127	0.034	0.008	0.199
C(jobcat)	[T.3]	0.2327		0.035	6.741	0.000	0.165	0.301
	educ	0.0256		0.004	6.454	0.000	0.018	0.033
g	gender	0.0619		0.020	3.087	0.002	0.022	0.101
lsal	begin	0.5892		0.046	12.818	0.000	0.499	0.679
mir	ority	-0.0576		0.021	-2.761	0.006	-0.099	-0.017
C(jobcat)[T.2]:mir	ority	0.0641		0.067	0.950	0.342	-0.068	0.197
C(jobcat)[T.3]:min	ority	0.1654		0.089	1.859	0.064	-0.009	0.340

Inference

After all, the combination of AIC, BIV and R^2 imply the following as the the best model:

 $log(salary) = 4.123 + 0.603*x_{lsalbegin} + 0.025*x_{educ} + 0.059*x_{male} - 0.0431*x_{minority} + 0.239*x_{management} + 0.129*x_{custodial}$

Conclusion: We can know reject all our null hypothesis from the hypothesis 1) and 2), i.e. our assumptions are supported by the data after the OLS method

Forecasting Model 1

		OLC D	ograccia	n Bocul	tc		
Dan Va	ni ahla.	ULS K		n Results			0.015
Dep. Variable:			lsalary	R-squared:			0.815
	Model:		0LS	Adj. R-squared:			0.812
Method:		Least	Squares	F-statistic:			238.0
Date:		Wed, 17 Feb 2021		<pre>Prob (F-statistic):</pre>			1.56e-115
Time:		16:53:37		Log-Likelihood:			126.17
No. Observa	ations:	331				AIC:	-238.3
Df Res	iduals:	324				BIC:	-211.7
Df	Model:	6					
Covariance	e Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	3.8226	0.507	7.533	0.000	2.824	4.821	
educ	0.0230	0.005	4.850	0.000	0.014	0.032	
lsalbegin	0.6362	0.056	11.385	0.000	0.526	0.746	
gender	0.0612	0.024	2.536	0.012	0.014	0.109	
minority	-0.0421	0.023	-1.818	0.070	-0.088	0.003	
jobcat_2	0.1254	0.044	2.834	0.005	0.038	0.213	
jobcat_3	0.1901	0.043	4.382	0.000	0.105	0.275	

holding other var constant, males earn about 6,12 % more/ minorities earn about 4,21 % less

Forecasting Model 2 (minority is dropped)

holding other var constant, males earn about 5,3% more

Inference

- Model is better according to the RMSE
 - Root Mean Squared Error Model 1(RMSE):0.16899098463207346
 - Root Mean Squared Error Model 2(RMSE):
 0.16993043057879956
- AIC is smaller in model 1
- R-squared is larger in model 1