Ewentualne potrzebne pliki: www.code.kopernik-leszno.pl/zbiorzadan/pliki.zip

Zadanie 69.

Wiązka zadań Geny

Informację genetyczną (genotyp) każdego osobnika z galaktyki Madgen opisuje słowo (napis), w którym występują litery ze zbioru {A, B, C, D, E}. Obowiązują przy tym następujące zasady:

- 1. Organizmy żyjące na Madgen tworzą gatunki g_1 , g_2 , g_3 , ..., gdzie g_i to zbiór osobników o długości genotypu równej i.
- 2. W skład genotypu mogą wchodzić geny. Pierwszy gen rozpoczyna się pierwszą występującą w genotypie sekwencją AA, a kończy się najbliższą napotkaną po niej sekwencją BB. Każdy kolejny gen rozpoczyna się pierwszą sekwencją AA, występującą za końcem poprzedniego genu, i analogicznie kończy się najbliższą napotkaną sekwencją BB.
- Geny nazywamy częścią kodującą genotypu, pozostałe fragmenty tworzą część niekodującą.

Przykład 1.

Genotyp <u>AACDBABB</u>BCD<u>AABCBB</u>AAE

zawiera geny AACDBABB oraz AABCBB. Zwróćmy uwagę, że:

- ciąg AA występujący za genem AABCBB nie jest początkiem genu, ponieważ nie występuje za nim ciąg BB kończący gen;
- część kodująca genotypu <u>AACDBABBBCD**AABCBB**</u>AAE jest równa AACDBABB**AABCBB**.

Przykład 2.

Genotyp AADBAADDDDEEEBBEE

zawiera gen AADBAADDDDEEEBB. Zwróćmy uwagę, że:

• pierwsze pojawienie się ciągu AA determinuje początek genu, dlatego w powyższym genotypie występuje gen AADBAADDDEEEBB, a nie gen AADDDDEEEBB.

Plik dane_gen.txt zawiera genotypy 1000 osobników z galaktyki Madgen. Każdy wiersz pliku zawiera genotyp jednego osobnika o długości nie większej niż 500 znaków.

Przykład

ABAEACBAADAACAABBABCDA ABAEACBADEADACACABBABCDA

Napisz program(-y), który poda odpowiedzi na pytania postawione w poniższych zadaniach. Odpowiedzi zapisz w pliku wyniki_gen.txt. Odpowiedź do każdego zadania rozpocznij w nowym wierszu, poprzedzając ją numerem zadania.

69.1.

Podaj liczbę wszystkich gatunków, których genotypy zapisane są w pliku dane_gen.txt. Podaj największą liczbę osobników reprezentujących ten sam gatunek.

69.2.

Występowanie w jakimkolwiek **genie** ciągu **BCDDC** oznacza mutację powodującą małą odporność osobnika na zmęczenie. Podaj, ile osobników spośród tych, których genotypy zapisane są w pliku, ma tę mutacje.

Przykład

Osobnik o genie AACBCDDCBBACDE ma mutację BCDDC (ciąg BCDDC występuje w obrębie podkreślonego genu), natomiast osobnik o genie CBCDDCBBAACDEBB nie ma tej mutacji, gdyż występujący ciąg BCDDC nie jest ulokowany w żadnym genie.

69.3.

Wyznacz i podaj największą liczbę genów występujących u jednego osobnika. Podaj też największą długość genu zapisanego w całym pliku.

Przykład

Rozważmy plik składający się z genotypów:

EAABCDBBDCBAAEBCDBBEE
EAABCDBBECAAB

Pierwszy osobnik ma jeden gen (AABCDBB), drugi ma dwa geny (AABCDBB i AAEBCDBB), a trzeci osobnik ma jeden gen (AABCDBB). Zatem największa liczba genów u jednego osobnika wynosi 2, a największa długość genu to 8 (gen AAEBCDBB ma tę długość).

Publikacja opracowana przez zespół koordynowany przez **Renatę Świrko** działający w ramach projektu *Budowa banków zadań* realizowanego przez Centralną Komisję Egzaminacyjną pod kierunkiem Janiny Grzegorek.

Autorzy

dr Lech Duraj dr Ewa Kołczyk Agata Kordas-Łata dr Beata Laszkiewicz Michał Malarski dr Rafał Nowak Rita Pluta Dorota Roman-Jurdzińska

Komentatorzy

prof. dr hab. Krzysztof Diks prof. dr hab. Krzysztof Loryś Romualda Laskowska Joanna Śmigielska

Opracowanie redakcyjne

Jakub Pochrybniak

Redaktor naczelny

Julia Konkołowicz-Pniewska

Zbiory zadań opracowano w ramach projektu Budowa banków zadań,
Działanie 3.2 Rozwój systemu egzaminów zewnętrznych,
Priorytet III Wysoka jakość systemu oświaty,
Program Operacyjny Kapitał Ludzki

69.4.

Genotyp odczytywany z materiału biologicznego może być odkodowany w kierunku od strony lewej do prawej lub odwrotnie: od strony prawej do lewej. Genotyp nazywać będziemy *odpornym*, jeśli czytany od strony lewej do prawej oraz od strony prawej do lewej ma dokładnie taką samą część kodującą. Natomiast genotyp *silnie odporny* to taki, który czytany od strony lewej do prawej oraz od strony prawej do lewej daje dokładnie ten sam napis. (Inaczej mówiąc, genotyp jest silnie odporny, gdy jest palindromem).

Przykład

Rozważmy genotypy:

EAABCDBBDCBAAEBCDEE EAABCDBBECAAB

Genotyp EAABCDBBDCBAAE jest silnie odporny (jest palindromem). Genotyp EAAB-CDBBDCBAAEBCDEE nie jest silnie odporny (nie jest palindromem), ale jest odporny, gdyż czytany od strony lewej do prawej, jak i od strony prawej do lewej ma taką samą część kodującą: AABCDBB. Natomiast genotyp EAABCDBBECAAB nie jest silnie odporny (nie jest palindromem), nie jest też odporny, gdyż czytany od strony lewej do prawej daje część kodującą AABCDBB, a czytany od strony prawej do lewej ma część kodującą równą AACEBB.

Wyznacz liczbę genotypów odpornych oraz liczbę genotypów silnie odpornych.

Zadanie 70.

Wiązka zadań Zasłona

Pani Binarna dostała zlecenie na uszycie zasłony. Na rysunku poniżej przedstawiono zasłonę, która jest ograniczona:

- od góry prostą $y = 19 \frac{61}{125}$,
- od dołu prostą $y = -32\frac{2}{3}$,
- z lewej strony prostą x = 2,
- z prawej strony dwoma krzywymi: $f(x) = \frac{x^4}{500} \frac{x^2}{200} \frac{3}{250}$ oraz

$$g(x) = -\frac{x^3}{30} + \frac{x}{20} + \frac{1}{6}$$
.

Uwaga: Zauważ, że $f(10) = 19 \frac{61}{125}$, zaś $g(10) = -32 \frac{2}{3}$.

Rysunek pomocniczy: