Unit 3: Descriptive Statistics for Continuous Data Statistics for Linguists with R - A SIGIL Course

Designed by Marco Baroni¹ and Stefan Evert²

¹Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

²Institute of Cognitive Science (IKW) University of Osnabrück, Germany

Copyright © 2007-2010 Baroni & Evert

SIGIL (Baroni & Evert)

3a. Continuous Data: Description

sigil.r-forge.r-project.org

Introduction Categorical vs. numerical variables

Outline

Introduction

Categorical vs. numerical variables

Random variables & expectations

Outline

Introduction

Categorical vs. numerical variables Scales of measurement

Descriptive statistics

Characteristic measures Histogram & density Random variables & expectations

Continuous distributions

The shape of a distribution The normal distribution (Gaussian)

Introduction Categorical vs. numerical variables

Reminder: the library metaphor

- ▶ In the library metaphor, we took random samples from an infinite population of tokens (words, VPs, sentences, ...)
- ▶ Relevant property is a binary (or categorical) classification
 - active vs. passive VP or sentence (binary)
 - ▶ instance of lemma TIME vs. some other word (binary)
 - subcategorisation frame of verb token (itr, tr, ditr, p-obj, ...)
 - part-of-speech tag of word token (50+ categories)
- ▶ Characterisation of population distribution is straightforward
 - **binomial**: true proportion $\pi = 10\%$ of passive VPs, or relative frequency of TIME, e.g. $\pi=2000$ pmw
 - alternatively: specify redundant proportions $(\pi, 1 \pi)$, e.g. passive/active VPs (.1, .9) or TIME/other (.002, .998)
 - multinomial: multiple proportions $\pi_1 + \pi_2 + \cdots + \pi_K = 1$, e.g. $(\pi_{noun} = .28, \pi_{verb} = .17, \pi_{adj} = .08,...)$

SIGIL (Baroni & Evert)

sigil.r-forge.r-project.org

sigil.r-forge.r-project.org

Categorical vs. numerical variables

Categorical vs. numerical variables

Numerical properties

In many other cases, the properties of interest are numerical:

Population census

Wikipedia articles

height	weight	shoes	sex
178.18	69.52	39.5	f
160.10	51.46	37.0	f
150.09	43.05	35.5	f
182.24	63.21	46.0	m
169.88	63.04	43.5	m
185.22	90.59	46.5	m
166.89	47.43	43.0	m
162.58	54.13	37.0	f

tokens	types	TTR	avg len.
696	251	2.773	4.532
228	126	1.810	4.488
390	174	2.241	4.251
455	176	2.585	4.412
399	214	1.864	4.301
297	148	2.007	4.399
755	275	2.745	3.861
299	171	1.749	4.524

SIGIL (Baroni & Evert)

sigil.r-forge.r-project.org

Descriptive vs. inferential statistics

Two main tasks of "classical" statistical methods (numerical data):

1. Descriptive statistics

- compact description of the distribution of a (numerical) property in a very large or infinite population
- often by characteristic **parameters** such as mean, variance, ...
- this was the original purpose of statistics in the 19th century

2. Inferential statistics

- ▶ infer (aspects of) population distribution from a comparatively small random sample
- accurate estimates for level of uncertainty involved
- often by testing (and rejecting) some **null hypothesis** H_0

Introduction Scales of measurement

Outline

Introduction

Scales of measurement

Random variables & expectations

Introduction Scales of measurement

Statisticians distinguish 4 scales of measurement

Categorical data

- 1. Nominal scale: purely qualitative classification
 - ▶ male vs. female, passive vs. active, POS tags, subcat frames
- 2. Ordinal scale: ordered categories
 - school grades A–E, social class, low/medium/high rating

Numerical data

- 3. Interval scale: meaningful comparison of differences
 - temperature (°C), plausibility & grammaticality ratings
- 4. Ratio scale: comparison of magnitudes, absolute zero
 - time, length/width/height, weight, frequency counts

Additional dimension: discrete vs. continuous numerical data

- ▶ discrete: frequency counts, rating (1, ..., 7), shoe size, ...
- continuous: length, time, weight, temperature, . . .

SIGIL (Baroni & Evert)

Introduction Scales of measurement

Quiz

Which scale of measurement / data type is it?

- subcategorisation frame
- reaction time (in psycholinguistic experiment)
- ▶ familiarity rating on scale 1,...,7
- room number
- ▶ grammaticality rating: "*", "??", "?" or "ok"
- magnitude estimation of plausibility (graphical scale)
- frequency of passive VPs in text
- relative frequency of passive VPs
- token-type-ratio (TTR) and average word length (Wikipedia)
- in this unit: continuous numerical variables on ratio scale

SIGIL (Baroni & Evert)

3a. Continuous Data: Description

sigil.r-forge.r-project.org

The task

- ▶ Census data from small country of *Ingary* with m = 502,202inhabitants. The following properties were recorded:
 - body height in cm
 - weight in kg
 - shoe size in Paris points (Continental European system)
 - ► sex (male, female)
- \blacktriangleright Frequency statistics for m=1,429,649 Wikipedia articles:
 - ▶ token count
 - type count
 - ► token-type ratio (TTR)
 - average word length (across tokens)
- Describe / summarise these data sets (continuous variables)
 - > library(corpora)
 - > FakeCensus <- simulated.census()
 - > WackypediaStats <- simulated.wikipedia()

Outline

Descriptive statistics

Characteristic measures

3a. Continuous Data: Description sigil.r-forge.r-project.org

Characteristic measures: central tendency

▶ How would you describe body heights with a single number?

mean
$$\mu = \frac{x_1 + \dots + x_m}{m} = \frac{1}{m} \sum_{i=1}^m x_i$$

▶ Is this intuitively sensible? Or are we just used to it?

> mean(FakeCensus\$height)

[1] 170.9781

> mean(FakeCensus\$weight)

Γ1] 65.28917

> mean(FakeCensus\$shoe.size)

[1] 41.49712

Characteristic measures: variability (spread)

- ► Average weight of 65.3 kg not very useful if we have to design an elevator for 10 persons or a chair that doesn't collapse: We need to know if everyone weighs close to 65 kg, or whether the typical range is 40–100 kg, or whether it is even larger.
- ▶ Measure of spread: minimum and maximum, here 30–196 kg
- ▶ We're more interested in the "typical" range of values without the most extreme cases
- \triangleright Average variability based on error $x_i \mu$ for each individual shows how well the mean μ describes the entire population

variance
$$\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu)^2$$

3a. Continuous Data: Description sigil.r-forge.r-project.org

Characteristic measures: variability (spread)

variance
$$\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu)^2$$

Do you remember how to calculate this in R?

- height: $\mu = 171.00$. $\sigma^2 = 199.50$. $\sigma = 14.12$
- weight: $\mu = 65.29$, $\sigma^2 = 306.72$, $\sigma = 17.51$
- shoe size: $\mu = 41.50$, $\sigma^2 = 21.70$, $\sigma = 4.66$
- ▶ Mean and variance are not on a comparable scale
 - \rightarrow standard deviation (s.d.) $\sigma = \sqrt{\sigma^2}$
- ▶ NB: still gives more weight to larger errors!

Characteristic measures: higher moments

- ▶ Mean based on $(x_i)^1$ is also known as a "first moment", variance based on $(x_i)^2$ as a "second moment"
- ► The third moment is called skewness

$$\gamma_1 = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{x_i - \mu}{\sigma} \right)^3$$

and measures the asymmetry of a distribution

- ▶ The fourth moment (kurtosis) measures "bulginess"
- ▶ How useful are these characteristic measures?
 - ► Given the mean, s.d., skewness, ..., can you tell how many people are taller than 190 cm, or how many weigh ≈ 100 kg?
 - ▶ Such measures mainly used for computational efficiency, and even this required an elaborate procedure in the 19th century

Descriptive statistics Histogram & density

Outline

Descriptive statistics

Histogram & density

Random variables & expectations

The shape of a distribution: discrete data

Discrete numerical data can be tabulated and plotted

Descriptive statistics Histogram & density

The shape of a distribution: histogram for continuous data Continuous data must be collected into bins → histogram

- ▶ Density scale is comparable for different numbers of bins
- ightharpoonup Area of histogram bar \equiv relative frequency in population

The shape of a distribution: histogram for continuous data

Continuous data must be collected into bins → histogram

▶ No two people have *exactly* the same body height, weight, . . .

► Frequency counts (= y-axis scale) depend on number of bins

Descriptive statistics Histogram & density

Refining histograms: the density function

► Contour of histogram = density function

Descriptive statistics Random variables & expectations

Outline

Descriptive statistics

Histogram & density

Random variables & expectations

SIGIL (Baroni & Evert)

3a. Continuous Data: Description sigil.r-forge.r-project.org

Descriptive statistics Random variables & expectations

Working with random variables

- $\blacktriangleright X'(\omega) := (X(\omega) \mu)^2$ defines new r.v. $X' : \Omega \to \mathbb{R}$ any function f(X) of a r.v. is itself a random variable
- ► The expectation is a linear functional on r.v.:
 - ▶ E[X + Y] = E[X] + E[Y] for $X, Y : \Omega \to \mathbb{R}$
 - $ightharpoonup \mathbb{E}[r \cdot X] = r \cdot \mathbb{E}[X] \text{ for } r \in \mathbb{R}$
 - $ightharpoonup \mathbb{E}[a] = a$ for constant r.v. $a \in \mathbb{R}$ (additional property)
- ▶ These rules enable us to simplify the computation of σ_Y^2 :

$$\sigma_X^2 = \text{Var}[X] = E[(X - \mu_X)^2] = E[X^2 - 2\mu_X X + \mu_X^2]$$

= $E[X^2] - 2\mu_X \underbrace{E[X]}_{=\mu_X} + \mu_X^2 = E[X^2] - \mu_X^2$

▶ Random variables and probabilities: r.v. X describes outcome of picking a random $\omega \in \Omega \rightarrow \text{sampling distribution}$

$$\Pr(a \le X \le b) = \frac{1}{m} |\{\omega \in \Omega \mid a \le X(\omega) \le b\}|$$

Formal mathematical notation

- ▶ Population $\Omega = \{\omega_1, \omega_2, \dots, \omega_m\}$ with $m \approx \infty$
 - item ω_k = person, Wikipedia article, word (lexical RT), ...
- ▶ For each item, we are interested in several properties (e.g. height, weight, shoe size, sex) called random variables (r.v.)
 - ▶ height $X: \Omega \to \mathbb{R}^+$ with $X(\omega_k)$ = height of person ω_k
 - weight $Y: \Omega \to \mathbb{R}^+$ with $Y(\omega_k) =$ weight of person ω_k
 - weight $G: \Omega \to \{0,1\}$ with $G(\omega_k) = 1$ iff ω_k is a woman
 - formally, a r.v. is a (usually real-valued) function over Ω
- ▶ Mean, variance, etc. computed for each random variable:

$$\mu_X = \frac{1}{m} \sum_{\omega \in \Omega} X(\omega) =: E[X]$$
 expectation $\sigma_X^2 = \frac{1}{m} \sum_{\omega \in \Omega} (X(\omega) - \mu)^2 =: Var[X]$ variance $E[(X - \mu)^2]$

3a. Continuous Data: Description

Descriptive statistics Random variables & expectations

A justification for the mean

- $ightharpoonup \sigma_X^2$ tells us how well the r.v. X is characterised by μ_X
- ▶ More generally, $E[(X a)^2]$ tells us how well X is characterised by some real number $a \in \mathbb{R}$
- ▶ The best single value we can give for X is the one that minimises the average squared error:

$$\mathrm{E}\left[(X-a)^2\right] = \mathrm{E}[X^2] - 2a\underbrace{\mathrm{E}[X]}_{=\mu_X} + a^2$$

- ▶ It is easy to see that a minimum is achieved for $a = \mu_X$
 - The quadratic error term in our definition of σ_{x}^{2} guarantees that there is always a unique minimum. This would not have been the case e.g. with |X-a| instead of $(X-a)^2$.

How to compute the expectation of a discrete variable

 Population distribution of a discrete variable is fully described by giving the relative frequency of each possible value $t \in \mathbb{R}$:

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} \frac{X(\omega)}{m} = \sum_{\substack{t \ \text{group by value of } X}} \frac{t}{m} = \sum_{t} t \sum_{X(\omega)=t} \frac{1}{m}$$

$$= \sum_{t} t \cdot \frac{|X(\omega) = t|}{m} = \sum_{t} t \cdot \pi_{t} = \sum_{t} t \cdot \Pr(X = t)$$

▶ The second moment $E[X^2]$ needed for Var[X] can also be obtained in this way from the population distribution:

$$\mathrm{E}[X^2] = \sum_t t^2 \cdot \Pr(X = t)$$

SIGIL (Baroni & Evert)

3a. Continuous Data: Description sigil.r-forge.r-project.org

Continuous distributions The shape of a distribution

Outline

Histogram & density Random variables & expectations

Continuous distributions

The shape of a distribution

How to compute the expectation of a continuous variable

- ▶ Population distribution of **continuous** variable can be described by its density function $g: \mathbb{R} \to [0, \infty]$
 - keep in mind that Pr(X = t) = 0 for almost every value $t \in \mathbb{R}$: nobody is exactly 172.3456789 cm tall!

Area under density curve between a and b =proportion of items $\omega \in \Omega$ with $a < X(\omega) < b$.

$$\Pr(a \le X \le b) = \int_a^b g(t) dt$$

Same reasoning as for discrete variable leads to:

$$\mathrm{E}[X] = \int_{-\infty}^{+\infty} t \cdot g(t) \, dt$$
 and $\mathrm{E}[f(X)] = \int_{-\infty}^{+\infty} f(t) \cdot g(t) \, dt$

3a. Continuous Data: Description sigil.r-forge.r-project.org

sigil.r-forge.r-project.org

ous distributions The shape of a distribution

Different types of continuous distributions

symmetric, bell-shaped

Different types of continuous distributions

Continuous distributions The shape of a distribution

Different types of continuous distributions

Different types of continuous distributions

Different types of continuous distributions

bimodal (mean & median misleading)

ous distributions The normal distribution (Gaussian)

Outline

Continuous distributions

The normal distribution (Gaussian)

SIGIL (Baroni & Evert)

3a. Continuous Data: Description sigil.r-forge.r-project.org

Continuous distributions The normal distribution (Gaussian)

▶ Idealised density function is given by simple equation:

$$g(t) = rac{1}{\sigma\sqrt{2\pi}}\mathrm{e}^{-(t-\mu)^2/2\sigma^2}$$

with parameters $\mu \in \mathbb{R}$ (location) and $\sigma > 0$ (width)

▶ Notation: $X \sim N(\mu, \sigma^2)$ if r.v. has such a distribution

▶ No coincidence: $E[X] = \mu$ and $Var[X] = \sigma^2$ (→ homework ;-)

The Gaussian distribution

▶ In many real-life data sets, the distribution has a typical "bell-shaped" form known as a Gaussian (or normal)

uous distributions The normal distribution (Gaussian)

Important properties of the Gaussian distribution

▶ Distribution is well-behaved: symmetric, and most values are relatively close to the mean μ (within 2 standard deviations)

$$\Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) = \int_{\mu - 2\sigma}^{\mu + 2\sigma} \frac{1}{\sigma\sqrt{2\pi}} e^{-(t - \mu)^2/2\sigma^2} dt$$
$$\approx 95.5\%$$

- ▶ 68.3% are within range $\mu \sigma \le X \le \mu + \sigma$ (one s.d.)
- ▶ The central limit theorem explains why this particular distribution is so widespread (sum of independent effects)
- Mean and standard deviation are meaningful characteristics if distribution is Gaussian or near-Gaussian
 - completely determined by these parameters

SIGIL (Baroni & Evert) 3a. Continuous Data: Description sigil.r-forge.r-project.org