Problem 1

Let x and y be two elements of a group G. Assume that each of the elements x, y, xy has order 2. Prove that the set $H = \{1, x, y, xy\}$ is a subgroup of G, and it has order 4.

Proof. • We already have the identity $1 \in H$.

- As x, y, xy are defined to be of order 2, thus they happen to be their own inverses. As $x^2 = xx = 1$, $y^2 = yy = 1$ and $(xy)^2 = xyxy = 1$. And 1 is also the inverse of itself but it is *not* of order 2.
- Now we have to check that the multiplication is closed in H. One can make a Cayley multiplication table for this, but trivially,

$$1x = x1 = x \in H$$

$$1y = y1 = y \in H$$

$$xx = 1 \in H$$

$$yy = 1 \in H$$

$$xyy = x \in H$$

$$xxy = y \in H$$

$$1xy = xy1 = xy \in H$$

Thus, indeed the multiplication is closed in H.

• And this is satisfied if we can show that all the elements of H are distinct. Assume x=1 or y=1, then xx=1x must be 1 as x has an order of 2, but that's not the case since 1x=x. Asssume x=y, then yx=yy is contradictory since yy=1 and x already is the inverse of itself. Now, for the last case, assume x=xy or y=xy, now this is again impossible because if you multiply both the equations by y and x respectively, you get xy=xyy which is contradictory beause xyy=x1=x and 1 is the unique identity. Similarly it's impossible for xy=xxy. Thus all the elements of the set are unique. Making $H \subset G$ a well-defined subgroup and |H|=4.

Problem 2

Let G be a group and let $a \in G$ have order k. If p is a prime divisor of k, and if there is $x \in G$ with $x^p = a$, prove that x has order pk.

Proof.

Problem 3

Let G be a group in which $x^2 = 1$ for every $x \in G$, prove that G must be abelian.

Proof. As $x^2 = 1 \quad \forall x \in G$, thus x is the inverse of itself. So for two distinct elements $x, y \in G \quad x \neq y$ we have,

$$(xy)^{-1} = y^{-1}x^{-1} = yx \implies xyyx = 1$$

So, yx is the inverse of xy. But also as we have assosciativity under this group, xyxy = xxyy = 1, making xy to be the inverse of itself, but as we know that in a well-defined groupo, the inverse of each element has to be unique so $yx = xy \quad \forall x, y \in G$, proving G to be abelian. \Box

Problem 4

If G is a group with an even number of elements, prove that the number of elements in G of order 2 is odd. In particular, G must contain an element of order 2.

Proof.

Problem 5

Let H be a subgroup of G and $C(H) = \{g \in G : gh = hg \quad \forall h \in H\}$ Prove that C(H) is a subgroup of G. This is known as the *centralizer* of H in G.

Proof. \bullet Let $g_1, g_2 \in C(H)$ with $g_2h_1 = h_2g_1$ and $g_2h_2 = h_2g_2$ for some $h_1, h_2 \in H$. Multiplying these two equations we get, $g_1g_2h_1h_2 = h_1h_2g_1g_2 \implies g_1g_2 \in C(H)$. Thus, the closure property is satisfied.

- The identity in G would be the identity in H, thus for $1 \in H$ $1h = h1 \quad \forall h \in H$. Thus $1 \in G$. So the identity is well-defined.
- The inverses also exist, for $g \in C(H)$ we have gh = hg, for some $h \in H$. We have the inverse $g^{-1} \in H \subset G$. We first multiply this inverse on the left side, so we have $ghg^{-1} = hgg^{-1}$. Now we again multiply the inverse on the right side, so $g^{-1}ghg^{-1} = g^{-1}hgg^{-1} \implies hg^{-1} = g^{-1}h$. Thus $g^{-1} \in C(H)$.

Problem 6

Let G be a group, let X be a set, and let $f: G \to X$ be a bijection. Show that there is a unique operation on X, so that X is a group and f is an isomorphism.

Proof. As G is a group so we can define an operation on it such as : $m_G: G \times G \to G$. And similarly for $X, m_X: X \times X \to X$. And as we have $f: G \to X$ is a bijection thus it induces another bijection, namely : $f \times f: G \times G \to X \times X$. Thus,

$$G \times G \xrightarrow{f \times f} X \times X$$

$$\downarrow^{m_G} \qquad \qquad \downarrow^{m_X}$$

$$G \xrightarrow{f} X$$

Thus, for X to be a group, m_G has to be unique and f would be a bijective group homomorphism, i.e an isomorphism.

Problem 7

Determine the center of $GL_n(\mathbb{R})$.

Proof.

Problem 8

Suppose given on E an (associative and commutative) addition under which all the elements of E are invertible and a multiplication which is non-associative but commutative and doubly distributive with respect to addition. Suppose further that $n \in \mathbb{Z}, n \neq 0$ and $nx = 0 \implies x = 0$ in E. Show hat if, writing [xy, y, z] = (xy)z - z(yz), the identity

$$[xy, u, z] + [yz, u, z] + [zx, u, y] = 0$$

holds, then $x^{m+n} = x^m x^n$ for all x (show, by induction on p, the identity $[x^q, y, x^{p-q}] = 0$ holds for $1 \le q < p$).

Proof.