Calcolo Numerico ed Elementi di	Prof. P.F. Antonietti	Firma leggibile dello studente	
Analisi	Prof. L. Dedè		
CdL Ingegneria Aerospaziale	Prof. M. Verani		
Appello			
26 giugno 2017			
Cognome:	Nome:	Matricola:	

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 3h.

SPAZIO RISERVATO AL DOCENTE

	PART	ΈΙ	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	PART	E II	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	FINA	LE	

Parte I - Pre Test

1. (1 punto) Determinare il più piccolo numero (positivo) x_{min} rappresentabile nell'insieme $\mathbb{F}(2,3,-2,5)$; riportare il risultato in base decimale.

- 2. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 5 & 4 & 1 \\ 5 & 8 & 1 \\ 10 & 4 & 0 \end{bmatrix}$ e si determini la sua fattorizzazione LU senza pivoting. Riportare il valore dell'elemento $l_{32} = (L)_{32}$ della matrice triangolare inferiore L.
- **3.** (2 punti) Siano $\alpha \in (-1,8)$ e $\beta \in (-1,6)$. Determinare i valori di α e β per cui esiste unica la fattorizzazione LU (senza pivoting) della seguente matrice

$$A = \left[\begin{array}{ccc} \alpha & \alpha + \beta & 0 \\ \alpha + \beta & 2\beta & 0 \\ 0 & 0 & -1 \end{array} \right]$$

4. (1 punto) Si consideri la funzione $f(x) = (x-4)^4 \sin(x-4)$. Qual è l'ordine di convergenza p atteso applicando il metodo di Newton per l'approssimazione dello zero $\alpha=4$ per un'iterata iniziale $x^{(0)}$ "sufficientemente" vicina ad α ?

- 5. (1 punto) Sia $\phi(x) = \frac{1}{6}x + 6$ una funzione di iterazione con un unico punto fisso $\alpha \in \mathbb{R}$. Si determini per quali valori dell'iterata iniziale $x^{(0)} \in \mathbb{R}$, il metodo delle iterazioni di punto fisso converge ad α .
- **6.** (1 punto) Si consideri la funzione $f(x) = \sin(3x)$ e si scriva la funzione di iterazione $\phi_N(x)$ associata al metodo di Newton.

Perchè?				
	Parte I -	Esercizi		
. Inoltre, si conside 1 punto) Si riporti la	onsideri il sistema lineare zeri la soluzione di tale siste a condizione necessaria e serione $B \in \mathbb{R}^{n \times n}$ (si definiso	ema lineare mediant ufficiente per la conv	e un metodo iterativ vergenza di un metod	VO.
enza del metodo ite	i che la condizione di cui a erativo per ogni iterata inicata $\mathbf{x}^{(k)}$).			
enza del metodo ite	erativo per ogni iterata ini			
genza del metodo ite	erativo per ogni iterata ini			
genza del metodo ite	erativo per ogni iterata ini			
enza del metodo ite	erativo per ogni iterata ini			
genza del metodo ite	erativo per ogni iterata ini			
genza del metodo ite	erativo per ogni iterata ini			
	erativo per ogni iterata ini			

, , -	oresenti il criterio d'arresto per sive. Inoltre, se ne discuta la su	un metodo iterativo basato sulla differenza tra due na affidabilità.
	consideri il metodo di Gauss–Se pritmo in forma matriciale.	eidel per la soluzione del sistema lineare $A \mathbf{x} = \mathbf{b}$; si
GaussSeidel	.m (si usi il comando "back-sla	Seidel in forma matriciale in Matlab $^{\mathbb{R}}$ nella funzione sh" di Matlab $^{\mathbb{R}}$ \ laddove necessario). Si utilizzi un detto anche residuo normalizzato). La struttura della
	function $[x,Nit] = Ga$	nussSeidel(A,b,x0,nmax,tol).
iniziale; nmax	x, il numero massimo di iterazion	ssegnata; b, il termine noto assegnato; x0, l'iterata ni consentite; to1, la tolleranza sul criterio d'arresto approssimata; Nit, il numero di iterazioni effettuate
	funzione GaussSeidel.m per ap $\cdots 1)^T \in \mathbb{R}^{10}$ e $A \in \mathbb{R}^{10 \times 10}$ def	oprossimare la soluzione del sistema lineare $A \mathbf{x} = \mathbf{b}$ inita come
	$A = ext{trie}$	diag(-1, 10, 2);
numero N di		lleranza tol= 10^{-3} e nmax= 1000. Si riportino: il componente della soluzione approssimata $\mathbf{x}^{(N)}$, ossia elativo $r_{rel}^{(N)}$.
N =	$x_2^{(N)} =$	$r^{(N)} =$

$x_3^{(1)} = $	$x_3^{(2)} = $
Esercizio 2. Si consideri il metodo modulo minimo $\lambda_n(A)$ di una matrice	o delle potenze inverse per l'approssimazione dell'autovalore di e $A\in\mathbb{R}^{n\times n}.$
(a) (3 punti) Si riporti l'algoritmo de lizzata.	elle potenze inverse definendo in modo preciso la notazione uti-
tenze inverse confrontandolo con	a sinteticamente il costo computazionale del metodo delle po- quello del metodo delle potenze dirette. Inoltre, si proponga rategia computazionalmente efficiente per l'implementazione del-

Infine, utilizzando opportunamente la funzione GaussSeidel.m, si riportino i valori della terza componente delle iterate $\mathbf{x}^{(1)}$ e $\mathbf{x}^{(2)}$, ossia $x_3^{(1)}$ e $x_3^{(2)}$.

10 punti

)	(2 punti) Si consideri la matrice $A = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$	$egin{array}{cccc} 0 & 0 & 0 \ -1 & 2 & 0 \ 4 & 1 & 0 \ 0 & 0 & 1 \ \end{array}.$
	Utilizzando il comando Matlab [®] eig, si calcol commenti l'applicabilità del metodo delle pote modulo minimo di A.	$0 0 -1$] dino e si riportino gli autovalori $\{\lambda_i(A)\}_{i=1}^4$ di A . enze inverse per l'approssimazione dell'autovalore $\lambda_2(A) = \underline{\hspace{1cm}}$ $\lambda_4(A) = \underline{\hspace{1cm}}$

$$\mathbf{y}^{(1)} = \underline{\hspace{1cm}}$$

$$y^{(2)} =$$

(e) (1 punto) Sulla base delle informazioni ottenute al punto (c) per la matrice A, si immagini di applicare il metodo delle potenze inverse con shift. Quale autovalore $\lambda_i(A)$ della matrice A verrà approssimato con il metodo delle potenze inverse usando un valore di shift s = 2.9?

$$\lambda_i(A) = \underline{\hspace{1cm}}$$

Parte II - Pre Test

1. (1 punto) Assegnati i nodi $x_0 = 0$, $x_1 = 4$ e $x_2 = 6$ si consideri il polinomio caratteristico di Lagrange $\varphi_0(x)$. Si riporti il valore di $\varphi_0(3)$.

2. (2 punti) Assegnati i nodi $x_0 = 0$, $x_1 = 1$ $x_2 = 3$ e $x_3 = 7$ e i dati corrispondenti $y_0 = 6$, $y_1 = 0$, $y_2 = 0$ e $y_3 = 1$, si consideri il polinomio $\Pi_3(x)$ interpolante tali dati ai nodi. Si riporti il valore di $\Pi_3(6)$.

3. (1 punto) Sia $f(x) = 3x^3$. Si approssimi $\int_1^5 f(x) dx$ con la formula semplice del punto medio. Si riporti l'approssimazione I_{PM} ottenuta.

4. (2 punti) Si consideri la formula dei trapezi composita per l'approssimazione di $\int_0^1 \sin(\pi x) dx$. Senza applicare esplicitamente la formula, si stimi il numero M di sottointervalli equispaziati di [0,1] tali per cui l'errore di quadratura è inferiore alla tolleranza $tol = 10^{-5}$.

5. (1 punto) Si consideri la funzione $f(x) = 5x^2 - 4x + 4$. Si riporti l'errore associato all'approssimazione di $f'(\overline{x})$ in un generico valore $\overline{x} \in \mathbb{R}$ mediate le differenze finite in avanti, ovvero $E_+f(\overline{x}) = f'(\overline{x}) - \delta_+f(\overline{x})$, usando il passo $h = \frac{1}{4}$.

6. (1 punto) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = 2t^3 + 2y(t) & t \in (0,5], \\ y(0) = 5. \end{cases}$$

Utilizzando il metodo di Eulero Implicito con passo h = 0.1 e $u_0 = y_0 = 5$ si calcoli u_1 , ovvero l'approssimazione di $y(t_1)$.

$\begin{cases} y'(t) = f(t, y(t)) & t \in (t_0, t_f], \\ y(t_0) = y_0. \end{cases}$
Utilizzando il metodo di Eulero Esplicito con passo $h>0$ si ottiene l'approssimazione $u_1^{EE}=6$ di $y(t_1)$, mentre con il metodo di Eulero Implicito si ottiene $u_1^{EI}=7,333333$. Si riporti il valore dell'approssimazione corrispondente u_1^{CN} ottenuta mediante il metodo di Crank-Nicolson.
Parte II - Esercizi
SERCIZIO 1. $(3 \ punti)$ Sia $f:[a,b] \to \mathbb{R}$ una funzione continua. Si definisca e si fornisca l'espressione del polinomio interpolante composito lineare $\Pi^1_H f$ considerando $N+1$ nodi equispaziati nell'intervallo $[a,b]$, ovvero $x_0 = a, x_1, \ldots, x_N = b$, con passo $H = (b-a)/N$. Si riporti inoltre il risultato (teorema) di convergenza dell'interpolazione composita lineare.

11 punti

7. (2 punti) Si consideri il problema di Cauchy:

(b) (2 nunti) Utiliz	zzando la funzione i nter	rp1 di Matlab® , si appross	imi la funzione
		$(x+1)^2$ definita in $[a,b] = 1$	
piezza $H = 0$.	linomio interpolante com	posito lineare $\Pi^1_H f$ su nodi riportino, al variare di H	equispaziati con passi di am, i valori delle approssimant
	per $H = 0.1$	$\Pi^1_H f(\bar{x}) = \underline{\hspace{1cm}}$	
	per H = 0.05	$\Pi^1_H f(\bar{x}) = \underline{\hspace{1cm}}$	
	per H = 0.025	$\Pi^1_H f(\bar{x}) = \underline{\hspace{1cm}}$	
	per $H = 0.0125$	$\Pi^1_H f(\bar{x}) = \underline{\hspace{1cm}}$	
		luce della stima teorica dell $E_H(f) = \underline{\hspace{1cm}}$	_ , ,
	_		
		$E_H(f) = \underline{\hspace{1cm}}$	
		$E_H(f) = \underline{\hspace{1cm}}$	
	per $H = 0.0125$	$E_H(f) = \underline{\hspace{1cm}}$	

		zione determina <i>p</i>			
			$p_1(1,1), (2,8), (3,27)$ ep $p_1(x)$ che approssima t		ĺ
	p_1 ($(x) = \underline{\hspace{1cm}}$			
sercizio 2. S	i consideri il proble	ma a valori ai lim	uiti (di Poisson)		
	_		,		
	$\begin{cases} u \\ u \end{cases}$	$-u''(x) = f(x) \text{ i}$ $u(a) = \alpha,$ $u(b) = \beta.$	ii (a,o),	(1)	11
(3 nunti) Si app			no schema alle differentiati $\{x_i\}_{i=0}^{N+1}$, con x_0 =		

sistema lineare	porti la contropa $A \mathbf{u} = \mathbf{b}$, forner noto \mathbf{b} e del	ndo l'espressio	ne dei coeffici		
sistema lineare	$A\mathbf{u} = \mathbf{b}$, forner	ndo l'espressio	ne dei coeffici		
sistema lineare	$A\mathbf{u} = \mathbf{b}$, forner	ndo l'espressio	ne dei coeffici		
sistema lineare	$A\mathbf{u} = \mathbf{b}$, forner	ndo l'espressio	ne dei coeffici		
sistema lineare	$A\mathbf{u} = \mathbf{b}$, forner	ndo l'espressio	ne dei coeffici		

$\beta = 0$ e $f(x) = -$ Si risolva tale pro	iderino ora i seguenti d $-4e^{-4x}$ (15 $\cos(x) + 8$ s oblema tramite il metod	$\sin(x)$). do di cui al punto (a	a), ovvero ris	solvendo il sistema	line
$\beta = 0$ e $f(x) = -$ Si risolva tale prodefinito al punto deri il comando "l	$-4e^{-4x} (15\cos(x) + 8s$	$\sin(x)$). do di cui al punto (x). $N = 9, 19, 39 e 79 e$ \). Sapendo che la s	a), ovvero ris (per risolvere soluzione esa	solvendo il sistema e il sistema lineare s tta del problema è c	line i cor data
$\beta = 0$ e $f(x) = -$ Si risolva tale prodefinito al punto deri il comando "l	$-4e^{-4x}$ (15 $\cos(x) + 8$ soblema tramite il metodo), per diversi valori di back-slash" di Matlab [®]	$\sin(x)$). do di cui al punto (x). $N = 9, 19, 39 e 79 e$ \). Sapendo che la s	a), ovvero ris (per risolvere soluzione esa i errori $E_N =$	solvendo il sistema e il sistema lineare s tta del problema è c = $\max_{i=0,,N+1} u_i $	line i cor data
$\beta = 0$ e $f(x) = -$ Si risolva tale prodefinito al punto deri il comando "l	oblema tramite il metodo (b), per diversi valori di back-slash" di Matlab [®] $s(x)$, si calcolino e si ripo	$\sin(x)$). do di cui al punto (a $N=9, 19, 39 e 79 e$). Sapendo che la sortino per ogni N gl $E_N=$	a), ovvero ris (per risolvere soluzione esati errori $E_N =$	solvendo il sistema e il sistema lineare s t ta del problema è c $=\max_{i=0,\dots,N+1} u_i-$	line i cor data
$\beta = 0$ e $f(x) = -$ Si risolva tale prodefinito al punto deri il comando "l	oblema tramite il metodo (b), per diversi valori di back-slash" di Matlab [®] $s(x)$, si calcolino e si ripo per $N=9$ per $N=19$	$\sin(x)$). do di cui al punto (a $N=9, 19, 39 e 79 e$). Sapendo che la sortino per ogni N gl $E_N=$	a), ovvero ris (per risolvere soluzione esati errori $E_N =$	solvendo il sistema e il sistema lineare se tta del problema è construccione $\max_{i=0,\dots,N+1} u_i-c_i $	line: i con data
$\beta = 0$ e $f(x) = -$ Si risolva tale prodefinito al punto deri il comando "l	oblema tramite il metodo (b), per diversi valori di pack-slash" di Matlab [®] $\mathbf{e}(x)$, si calcolino e si ripo $\mathbf{e}(x)$ per $N=9$ per $N=19$ per $N=39$	$\sin(x)$). do di cui al punto (a $N=9, 19, 39 e 79 e$). Sapendo che la sortino per ogni N gl $E_N=$	a), ovvero ris (per risolvere soluzione esati errori $E_N =$	solvendo il sistema e il sistema lineare se tta del problema è construccione $\max_{i=0,\dots,N+1} u_i-c_i $	line i con data
$\beta = 0$ e $f(x) = -1$ Si risolva tale prodefinito al punto deri il comando "l $u(x) = 4e^{-4x}$ cos $u(x) = 4e^{-4x}$ cos $u(x) = 4e^{-4x}$	oblema tramite il metodo (b), per diversi valori di pack-slash" di Matlab [®] $s(x)$, si calcolino e si ripo per $N=9$ per $N=19$ per $N=39$ per $N=79$ aver risposto al punto $(-a)/(N+1)$) riportano $(-a)/(N+1)$)	$\sin(x)$). do di cui al punto (a $N=9, 19, 39 e 79 e$). Sapendo che la sortino per ogni N gl $E_N = $ (d), si stimi l'ordine do sinteticamente la	a), ovvero ris (per risolvere soluzione esar i errori $E_N =$	solvendo il sistema e il sistema lineare si tta del problema è c $=\max_{i=0,,N+1} u_i-$	line i cor data $-u(x)$
$\beta = 0$ e $f(x) = -1$ Si risolva tale prodefinito al punto deri il comando "l $u(x) = 4e^{-4x}$ cos $u(x) = 4e^{-4x}$ cos $u(x) = 4e^{-4x}$	oblema tramite il metodo (b), per diversi valori di pack-slash" di Matlab [®] $s(x)$, si calcolino e si ripo per $N=9$ per $N=19$ per $N=39$ per $N=79$ aver risposto al punto $(-a)/(N+1)$) riportano $(-a)/(N+1)$)	$\sin(x)$). do di cui al punto (a $N=9, 19, 39 e 79 e$ $N=9, 19, 39 e 79 e$ $N=9, 19, 39 e 79 e$ $N=19, 19, 19, 19, 19, 19, 19, 19, 19, 19, $	a), ovvero ris (per risolvere soluzione esar i errori $E_N =$	solvendo il sistema e il sistema lineare si tta del problema è c $=\max_{i=0,,N+1} u_i-$	line i cor data $-u(x)$
$\beta = 0$ e $f(x) = -1$ Si risolva tale prodefinito al punto deri il comando "l $u(x) = 4e^{-4x}$ cos $u(x) = 4e^{-4x}$ cos $u(x) = 4e^{-4x}$	oblema tramite il metodo (b), per diversi valori di pack-slash" di Matlab [®] $s(x)$, si calcolino e si ripo per $N=9$ per $N=19$ per $N=39$ per $N=79$ aver risposto al punto $(-a)/(N+1)$) riportano $(-a)/(N+1)$)	$\sin(x)$). do di cui al punto (a $N=9, 19, 39 e 79 e$). Sapendo che la sortino per ogni N gl $E_N = $ (d), si stimi l'ordine do sinteticamente la	a), ovvero ris (per risolvere soluzione esar i errori $E_N =$	solvendo il sistema e il sistema lineare si tta del problema è c $=\max_{i=0,,N+1} u_i-$	line i cor data $-u(x)$
$\beta = 0$ e $f(x) = -1$ Si risolva tale prodefinito al punto deri il comando "l $u(x) = 4e^{-4x}$ cos $u(x) = 4e^{-4x}$ cos $u(x) = 4e^{-4x}$	oblema tramite il metodo (b), per diversi valori di pack-slash" di Matlab [®] $s(x)$, si calcolino e si ripo per $N=9$ per $N=19$ per $N=39$ per $N=79$ aver risposto al punto $(-a)/(N+1)$) riportano $(-a)/(N+1)$)	$\sin(x)$). do di cui al punto (a $N=9, 19, 39 e 79 e$). Sapendo che la sortino per ogni N gl $E_N = $ (d), si stimi l'ordine do sinteticamente la	a), ovvero ris (per risolvere soluzione esar i errori $E_N =$	solvendo il sistema e il sistema lineare si tta del problema è c $=\max_{i=0,,N+1} u_i-$	line: i cor data $-u(x)$