<u>Compétence</u> : Calculer des volumes					
Lvl 1	Lvl 2	Lvl 3			
1 - 3	4 - 6				

Rappels : Le volume d'un prisme droit ou d'un cylindre est donné par la formule : $V = A \times h$ avec A l'aire de la base et h la hauteur.

Le volume d'une pyramide ou d'un cône est donné par la formule : $V=\frac{A\times h}{3}$ avec A l'aire de la base et h la hauteur

<u>Exercice 1</u>: Calculer le volume des solides suivants:

Exercice 2 : Prismes droit et cylindres
Calculer le volume des solides suivants :

<u>Exercice 3 : Pyramide et cônes</u>
Calculer le volume des pyramides
suivantes :

Aire de la base (B)	9 cm²	8,25 cm ²	80 cm ²	2 dm²
Hauteur (H)	4 cm	10 cm	141 mm	24 cm
Volume (V = B × H/3)				

Volumes

Calculer l'aire des cônes suivants :

	CONE 1	CONE 2	CONE 3	CONE 4
Rayon (R)	5 cm	6 cm	1,1 cm	12,5 cm
Aire de la base $(B = \pi \times R^2)$				
Hauteur (H)	4 cm	6,5 cm	10 cm	12,5 cm
Volume (V = B × H/3)				

Exercice 4:

Dans un cône de rayon 7 cm et de hauteur 10 cm, on creuse un cône de même base et de hauteur 4 cm. Calculer le volume du solide obtenu.

Exercice 5:

La borne kilométrique ci-dessous à la forme d'un pavé droit surmonté d'un demicylindre. Le demi-cylindre a pour hauteur 25 cm et pour diamètre 45 cm. Le pavé droit à pour hauteur 6 dm.

- Calculer une valeur approchée, au centimètre cube près, du volume de cette borne.
- 2) Cette borne est en béton. La masse d'un décimètre cube de béton est de 2,4 kg.

- a) Quelle est la masse de la borne cidessus ?
- b) Expliquer pourquoi ce type de borne a été remplacé par des bornes en plastique.

Exercice 6:

Une fois déplié, le tuyau d'arrosage ci-contre à la forme d'un cylindre. Sa longueur est de 25 m, son diamètre extérieur

est de 17 mm. Sa paroi en plastique est épaisse de 2 mm.

Quel est le volume de plastique a été utilisé pour fabriqué ce tuyau ?