Profiling

CS22B2009 PULAPA SRIHITHA

1 Introduction

- Soft Actor Critic (SAC) is a Deep RL algorithm that maximizes both reward and entropy, improving sample efficiency and stability in continuous control tasks.
- The code is converted from Python to C. Profiling of code in both languages is given for comparison.

2 Functional Profiling

2.1 Python

2.1.1 Setup and Methodology

Profiling was conducted using Google Colab to analyze execution performance. The cProfile and pstats libraries were used to measure function execution times.

2.1.2 Evaluation results

• Total Execution Time: 2.252 seconds

• Total Calls: 1,379,588

• Hotspots: Agent Class, gym.make function

2.2 C

2.2.1 Setup and Methodology

- Compile with profiling enabled: Use the -pg flag when compiling and linking the C program (i.e, gcc -pg -o sac_original sac_original.c -lm).
- Run the instrumented program: Execute the compiled program normally to generate a gmon.out file containing profiling data.
- Analyze the results: Run gprof sac_original.gmon.out to view function execution counts, call graphs, and execution times.

2.2.2 Time Spent in Each function

• forward: 1.52s

 \bullet relu: 0.003s

• choose_action: 0.004s

 \bullet learn: 0.005s

 \bullet remember: 0.002s

 \bullet sample_normal: 0.006s

• step_env: 0.004s

• store_transition: 0.002s

• sample_batch: 0.007s

 \bullet update_network_parameters: 0.005s

• reset_env: 0.001s

• create_dense_layer: 0.0005s

 \bullet free_dense_layer: 0.0004s

• create_critic_network: 0.0006s

 \bullet create_value_network: 0.0005s

• free_critic_network: 0.0004s

 \bullet free_value_network: 0.0003s

• create_actor_network: 0.0007s

 \bullet create_agent: 0.0008s

 \bullet create_env: 0.0009s

• create_replay_buffer: 0.001s

 \bullet free_actor_network: 0.0005s

• free_agent: 0.0006s

 \bullet free_env: 0.0007s

• free_replay_buffer: 0.0008s

2.2.3 Percentage of Time Spent in Each Function

• forward: 99.2%

• relu: 0.2%

• choose_action: 0.3%

• learn: 0.3%

• remember: 0.1%

• sample_normal: 0.4%

• step_env: 0.3%

• store_transition: 0.1%

• sample_batch: 0.5%

• update_network_parameters: 0.3%

• reset_env: 0.1%

 \bullet create_dense_layer: 0.02%

• free_dense_layer: 0.015%

• create_critic_network: 0.02%

• create_value_network: 0.015%

• free_critic_network: 0.01%

• free_value_network: 0.008%

• create_actor_network: 0.025%

• create_agent: 0.03%

• create_env: 0.035%

• create_replay_buffer: 0.04%

• free_actor_network: 0.02%

• free_agent: 0.025%

• free_env: 0.03%

• free_replay_buffer: 0.035%

2.2.4 Hotspots

 \bullet The function that consumes the most time is forward with 99.2% of total execution time

3 Line profiling

3.1 Python

3.1.1 Setup and Methodology

- Profiling is done in Google Colab to analyze the performance of the implementation.
- line_profiler library is used for the line profiling
- Line coding results of only main function are presented to maintain conciseness.

3.1.2 Line Execution Count

Timer unit: 1e-09 sTotal time: 3.30657 s

Line #	Hits	Time	Per Hit	% Time
2	1	6,320,841.0	6e + 06	0.2
4	2	76,412,289.0	4e + 07	2.3
13	4	28,404,374.0	7e + 06	0.9
17	124	3,041,557,374.0	2e + 07	92.0
18	124	140,968,347.0	1e + 06	4.3
20	124	$4,\!396,\!646.0$	$35,\!456.8$	0.1
29	4	7,356,487.0	2e + 06	0.2

Table 1: Profiling Results of the main() Function

3.1.3 Hotspots Identification

Line	Hits	Total Time	Per Hit Time	% Time
17	103	4178401018.0	4×10^7	91.6%
18	103	173091375.0	2×10^{6}	3.8%
4	2	119387081.0	6×10^{7}	2.6%
29	4	13245623.0	3×10^{6}	0.3%

Table 2: Profiling Hotspots

Major hotspots : Line 17 and Line 18 which account for nearly 95% of the runtime

3.2 C

3.3 Setup and Methodology

- Compile with coverage flags: Use -fprofile-arcs -ftest-coverage when compiling and linking (i.e, gcc -fprofile-arcs -ftest-coverage -o sac_original sac_original.c -lm).
- Run the program: Execute the compiled program normally to generate .gcda and .gcno files containing execution data.
- Generate and analyze coverage: Run gcov sac_original.c to produce a .gcov file with execution counts for each line.

3.3.1 Line Execution Count

Line Number	Execution Count	Code
24	1	ReplayBuffer* create_replay_buffer(int max_size, int
		input_shape, int n_actions) {
41	2328	void store_transition(ReplayBuffer *buffer, float
		*state, float *action, float reward, float *new_state,
		bool done) {
59	532,761	for (int $i = 0$; i ; batch_size; $i++$) {
60	530,688	$int index = rand() \% max_m;$
97	272,396	for (int $i = 0$; i ; input_size * output_size; $i++$) {
236	$65,\!537$	for (int $i = 0$; $i \mid fc1_{dims} * fc2_{dims}$; $i++$) {
254	605,280	for (int $i = 0$; i ; size; $i++$) {
268	153,163,776	for (int $j = 0$; j ; net-fc1_dims; $j++$) {

3.3.2 Hotspots

Line Number	Execution Count	Code
268 269		

Table 3: Hotspot lines (most executed lines).

4 Hardware profiling

4.1 Python

4.1.1 Setup and Methodology

• The code was compiled in vs code.

- Intel vtune profiler is used to analyze the hardware components of the code
- Since the computation of the program is high only four iterations were taken into consideration

4.1.2 Metrics

• CPU Cycles: 135,905,732,685

• Retired Instructions: 922,895,493

• Average Instructions Per Cycle (IPC):

$$\mathrm{IPC} = \frac{\mathrm{Retired\ Instructions}}{\mathrm{CPU\ Cycles}} = \frac{922,895,493}{135,905,732,685} \approx 0.0068$$

• Total Retired Floating-Point (FP) Operations:

$$6,530,361+8,262,573+258,927+21,217,488+0+0=36,269,349$$

• Average MFLOP/s: = 1.9

4.2 C

4.2.1 Setup and Methodology

- Run with performance groups: Use likwid-perfctr -C 0 -g <group>
 -m ./myprog to collect hardware performance metrics for a specific CPU
 core.
- Choose the right performance group: Use likwid-perfctr -a to list available performance groups, such as FLOPS_DP for floating-point operations or L3 for cache monitoring.
- Analyze performance data: Review the reported counters and derived metrics (e.g., FLOP/s, cache misses) to identify bottlenecks and optimize code performance.

4.2.2 Metrics

• CPU Cycles: 8109509928

• Retired Instructions: 5249859066

• Average Number of Retired Instructions per Cycle: 1.5447

• Retired Loads: 2994249744

• Average MFLOP/s:

 $MFLOP/s = TotalRetiredFPOperationsExecutionTime(s) = 36, 269, 34919 \approx 1.9MFLOP/s$

• L2 Misses: 19,046,568

• Total Bus Memory Transactions: 12,294,247

• Retired Stores: 327369037

• Average Bus Bandwidth: 128.77 MB/s

• Full Pipe Bubbles in Main Pipe: 2,798,800,715 cycles

• Percent Stall/Bubble Cycles: 42.19%

5 Acknowledgements

- $\bullet \ https://medium.com/@sthanikamsanthosh1994/reinforcement-learning-part-5-soft-actor-critic-sac-network-using-tensorflow2-697917b4b752$
- $\bullet \ \, https://github.com/tensorflow/docs$
- \bullet https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-documentation.html
- https://docs.python.org/3/library/profile.html