3.9 Linear Approximation

Thursday, October 26, 2023

Objectives:

1. Introduce linear approximations

Recell: Finding tengent line equation at a point given f(x).

Given y = f(x) and point (x_1, y_1) . the tangent line at point (x_1, y_1) of f(x) is

where $m = f^{l}(x_{i})$.

Another way of writing tangent line equation

Given a function y=f(x), find trugent line at x=0.

We have a point $(a, f(a)) = (x, y_i)$ on the function y = f(x).

$$y - y_1 = m(x-x_1)$$

$$y - f(a) + f'(a)(x-a)$$

$$y = f(a) + f'(a)(x-a)$$

$$y - y_1 = m(x-x_1)$$

Example:

1. Determine the linear approximation for $f(x) = \sqrt[3]{x}$ at x = 8.

Use the linear approximation to approximate the value of $\sqrt[3]{8.05}$ and $\sqrt[3]{25}$.

$$f'(y) = \frac{1}{3} x^{-\frac{3}{3}} = \frac{1}{3\sqrt[3]{x^2}}$$
, $f(8) = 2$, $f'(8) = \frac{1}{12}$

$$L(x) = 2 + \frac{1}{12}(x-8) = \frac{1}{12}x + \frac{4}{3}$$

