1. 設置變異數表達式:

給定 $Z = \alpha X + (1 - \alpha)Y$,Z 的變異數為:

$$\operatorname{Var}(Z) = \operatorname{Var}(\alpha X + (1 - \alpha)Y)$$

2. 利用變異數性質展開:

根據變異數的線性組合性質,即 ${
m Var}(aX+bY)=a^2{
m Var}(X)+b^2{
m Var}(Y)+2ab\,{
m Cov}(X,Y)$,可以得到:

$$\mathrm{Var}(Z) = lpha^2 \sigma_X^2 + (1-lpha)^2 \sigma_Y^2 + 2lpha (1-lpha) \sigma_{XY}$$

其中
$$\sigma_X^2 = \operatorname{Var}(X)$$
, $\sigma_Y^2 = \operatorname{Var}(Y)$, 而 $\sigma_{XY} = \operatorname{Cov}(X,Y)$ 。

3. 展開並簡化:

展開 $(1-\alpha)^2\sigma_Y^2$ 和 $2\alpha(1-\alpha)\sigma_{XY}$:

$$\mathrm{Var}(Z) = lpha^2 \sigma_X^2 + (1 - 2lpha + lpha^2) \sigma_Y^2 + 2lpha (1 - lpha) \sigma_{XY}$$

簡化後得到:

$$\operatorname{Var}(Z) = lpha^2(\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}) + lpha(-2\sigma_Y^2 + 2\sigma_{XY}) + \sigma_Y^2$$

4. 對 α 求導數:

為了找到使得 $\operatorname{Var}(Z)$ 最小化的 α 值,對 α 求導並令其為零:

$$rac{d}{dlpha}{
m Var}(Z)=2lpha(\sigma_X^2+\sigma_Y^2-2\sigma_{XY})+(-2\sigma_Y^2+2\sigma_{XY})=0$$

5. 解出α:

整理方程:

$$lpha(\sigma_X^2+\sigma_Y^2-2\sigma_{XY})=\sigma_Y^2-\sigma_{XY} \ lpha=rac{\sigma_Y^2-\sigma_{XY}}{\sigma_X^2+\sigma_Y^2-2\sigma_{XY}}$$

這樣我們就推導出了公式 (5.6),並證明了此 lpha 可以最小化 Z=lpha X+(1-lpha)Y 的變異數。