Decision Surfaces & Functions

For some decision surface $g(\overline{x}) = \overline{w} \bullet \overline{x} = b$ in an n-dimensional dot product space \mathbb{R}^n we can always construct the decision function,

$$\hat{f}(\overline{x}) = \begin{cases} +1 & \text{if } g(\overline{x}) - b \ge 0, \\ -1 & \text{if } g(\overline{x}) - b < 0, \end{cases}$$

for all $\overline{x} \in \mathbb{R}^n$. Or in more compact form,

$$\hat{f}(\overline{x}) = \operatorname{sign}(\overline{w} \bullet \overline{x} - b),$$

with $\overline{w}, \overline{x} \in \mathbb{R}^n$, $b \in \mathbb{R}$, and

$$\operatorname{sign}(k) = \begin{cases} +1 & \text{if } k \ge 0, \\ -1 & \text{if } k < 0, \end{cases}$$

for all $k \in \mathbb{R}$.

Let's investigate a simple algorithm that actually computes a decision surface for our training set

$$D = \{ (\overline{x}_1, y_1), (\overline{x}_2, y_2), \dots, (\overline{x}_l, y_l) \},\$$

with $\overline{x}_i \in \mathbb{R}^2$ and $y_i \in \{+1, -1\}$. Here we relax the restriction that the decision surface has to go through the origin but we still assume that D is linearly separable.

Step 1.

Compute the mean vectors, \overline{c}_+ and \overline{c}_- , for each class, respectively:

$$\overline{c}_{+} = \frac{1}{l_{+}} \sum_{(\overline{x}_{i},+1) \in D} \overline{x}_{i},$$

$$\overline{c}_{-} = \frac{1}{l_{-}} \sum_{(\overline{x}_{i},-1) \in D} \overline{x}_{i},$$

where

$$\begin{array}{ll} l_+ &=& |\{(\overline{x},y)\mid (\overline{x},y)\in D \text{ and } y=+1\}|,\\ l_- &=& |\{(\overline{x},y)\mid (\overline{x},y)\in D \text{ and } y=-1\}|. \end{array}$$

Step 2.

Next, we construct the vector \overline{d} such that $\overline{c}_+ = \overline{c}_- + \overline{d}$ or,

$$\overline{d} = \overline{c}_+ - \overline{c}_-.$$

Step 3.

Compute the midpoint, \overline{c} , between the two means \overline{c}_+ and \overline{c}_- such that

$$\overline{c} = \frac{1}{2}(\overline{c}_+ + \overline{c}_-).$$

Step 4.

We translate the vector \overline{d} so that it is rooted in the average object \overline{c} and we construct a line perpendicular to \overline{d} through \overline{c} . We can now interpret this line as a decision surface $\overline{w} \bullet \overline{x} = b$ with with $\overline{w} = \overline{d}$ and $b = \overline{d} \bullet \overline{c}$, graphically,

Putting this all together.

Step 5.

Finally, given our decision surface above we obtain the model,

$$\hat{f}(\overline{x}) = \operatorname{sign}(\overline{d} \bullet \overline{x} - \overline{d} \bullet \overline{c})
= \operatorname{sign}\left((\overline{x} - \overline{c}) \bullet \overline{d}\right)
= \operatorname{sign}\left(|\overline{x} - \overline{c}||\overline{d}|\cos\gamma\right),$$

for all $\overline{x} \in \mathbb{R}^2$.

We can illustrate this with a point \overline{a} ,

$$\hat{f}(\overline{a}) = \operatorname{sign}\left(|\overline{a} - \overline{c}||\overline{d}|\cos\gamma\right),$$

$$\hat{f}(\overline{a}) = \begin{cases} +1 & \text{if } \gamma \le 90^{\circ} \\ -1 & \text{if } \gamma > 90^{\circ} \end{cases}$$

We can derive an algebraic form of our model from the definitions of \overline{c} and \overline{d} ,

$$\hat{f}(\overline{x}) = \operatorname{sign}\left((\overline{x} - \overline{c}) \bullet \overline{d}\right)$$

$$= \operatorname{sign}\left(\left[\overline{x} - \frac{1}{2}(\overline{c}_{+} + \overline{c}_{-})\right] \bullet (\overline{c}_{+} - \overline{c}_{-})\right).$$

This shows that the model uses the class means in order to classify unknown points.

Limitations.

Outliers can distort the orientation of the decision surface which leads to misclassification errors.

