Note Title 03-09-2011 Performance Equation. Compiler Organization 9 = Program = Program x # insts x # cycles
second # insts # cycles # second IPC 9 & IPCXf f → technology, design style. IPC > Organization.

#insts : Compiler.
Program

Moore's Law: Approximately every two years the number of transistors double.

Pacv²f (Paf³) (approx)

Temperature is a very socious problem.
Hence,
we connot increese power

dissi pation

High bemperature => exponential decrease in reliability. Thermal paste Silicon Amdahl's Law Any program i parallel portion (f) - serial portion. (1-1)

n- number of processors. 1= 1-f + f/n 4/3 1.6 *

Chapter - 3

Addition, Subtraction.

<u> </u>	
	Corry Select
4 4 4	Adder
<u> </u>	-
	C=0 C=1
7= 4 + n/4 O(n)	Change the block size (m)
	T= \in + \mathre{\gamma}{\pi}
	$= O(\sqrt{n})$

2 bt
$$G_{2}$$
 G_{2} G_{2}

lookahead adder is called Kogge stone adder.

Wednesday.			
			How long does it lake to add m n-bit numbers?
	m n-bit numbers?		