Unsupervised Learning: Clustering

Prof. Mingkui Tan

SCUT Machine Intelligence Laboratory (SMIL)

Contents

- 1 Introduction
- ² Clustering
- 3 K-means Clustering
- 4 Hierarchical Agglomerative Clustering
- 5 Conclusion

Contents

- 1 Introduction
- ² Clustering
- 3 K-means Clustering
- 4 Hierarchical Agglomerative Clustering
- 5 Conclusion

Supervised Learning

- Data $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots (\mathbf{x}_n, \mathbf{y}_n)\}$ has target values
- Supervised Learning methods: linear regression, logistic regression, Naive Bayes, Neural Nets, SVMs. etc.

Unsupervised Learning

- Data $\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$. No target values
- Typical goals: understand data, summarize data, identify concepts

Application: Clustering Animals by Features

Data set of 50 animals,85 binary features (e.g. longneck, smelly)

Application: Clustering Image Data

Application: Understanding Gene Regulation

Contents

- 1 Introduction
- ² Clustering
- 3 K-means Clustering
- 4 Hierarchical Agglomerative Clustering
- 5 Conclusion

Clustering

- **Description:** Simple idea for discovering structure
- Find groups of similar samples:
 - 1) To understand the data
 - 2) For dimensionality reduction
 - 3) To preprocess unlabeled data, find concepts to use for supervised learning

Today's lecture:

- K-means clustering
- Hierarchical Agglomerative Clustering(HAC)

Example 1: How Would You Cluster These Points

Example 2: How Would You Cluster These Points

Clustering

■ Input: Data $\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$

Number of clusters K (may not be given)

Output: assignment of each sample to a cluster

What is Good Clustering?

- Samples are "more similar" to the samples in their cluster than to examples in other clusters.
- How to measure the similarity?
 - \triangleright the similarity between one sample **x** to another $\hat{\mathbf{x}}$?
 - > the similarity between one group of samples to another?

For data in \mathbb{R}^m , a typical approach is L_2 metric:

$$d(\mathbf{x}, \hat{\mathbf{x}}) = \|\mathbf{x} - \hat{\mathbf{x}}\| = \sqrt{\sum_{j} (x_j - \hat{x}_j)^2}$$

Can also use specialized metrics, e.g., edit distance for strings or DNA sequences, the Hamming distance for bit vectors

Contents

- 1 Introduction
- ² Clustering
- 3 K-means Clustering
- 4 Hierarchical Agglomerative Clustering
- 5 Conclusion

K-means Objective

Defined data in \mathbb{R}^m

- Associate each cluster with a prototype $\mu_k \in \mathbb{R}^m$, for $k \in \{1, \dots, K\}$
- Make an assignment \mathbf{r}_{ik} of each sample to \mathbf{x}_i a cluster

Objective: find prototypes and an assignment to minimize

$$L(\{r\}, \{\mu\}) = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} ||\mathbf{x}_i - \mu_k||$$

Where $r_{ik} \in \{0, 1\}$, $r_{ik} = 1$ denotes \mathbf{x}_i belongs to the cluster k, $r_{ik} = 0$ otherwise, n is the number of samples

This is highly non-convex, with lots of local minima

K-means Clustering Algorithm (Lloyd's Algorithm)

- Initialize prototypes μ_1, \dots, μ_K
- Repeat until converged:

Step 1: Assign each sample to the closest prototype

$$k^* = \underset{k \in \{1, \dots, K\}}{\operatorname{argmin}} \|\mathbf{x}_i - \mathbf{\mu}_k\|, r_{ik} = \begin{cases} 1, & k = k^* \\ 0, otherwise \end{cases}$$

Step 2: For each k, set μ_k to the centroid of assigned samples

$$\mathbf{\mu}_k = \frac{1}{n_k} \sum_{i=1}^n r_{ik} \mathbf{x}_i$$

where
$$n_k = \sum_i r_{ik}$$

Typical to run this multiple times, with different initial conditions

Example: K-means on Old Faithful Eruptions

Note: Linear Decision Boundaries

Example: K-means on Oranges and Lemons(1 of 4)

(a) Initialization

(b) Iteration 1

Example: K-means on Oranges and Lemons(2 of 4)

(b) Iteration 1

(c) Iteration 2

Example: K-means on Oranges and Lemons(3 of 4)

(c) Iteration 2

(d) Iteration 3

Example: K-means on Oranges and Lemons(4 of 4)

5 6 length (cm) 10 11 5 9 10 width (cm)

(d) Iteration 3

(e) Iteration 4

Example: K-means Clustering on Handwritten Digits

■ MNIST: 60,000 digits. 28x28 grayscale

(K=16. Cluster pick up on similar stroke patterns)

Example: K-means Clustering on Image Data

■ CIFAR-100 color. 50,000 images. 32x32x3 (RGB)

(K=16. Cluster pick up on low-freq color patterns)

Example: K-means Clustering on Documents

■ 30,991 articles from Grolier's Encyclopedia. Articles are represented via a count vector of most common word (m = 15276)

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6
education	south	war	war	art	light
united	population	german	government	century	energy
american	north	british	law	architecture	atoms
public	major	united	political	style	theory
world	west	president	power	painting	stars
social	mi	power	united	period	chemical
government	km	government	party	sculpture	elements
century	sq	army	world	form	electrons
schools	deg	germany	century	artists	hydrogen
countries	river	congress	military	forms	carbon
Cluster 7	Cluster 8	Cluster 9	Cluster 10	Cluster 11	Cluster 12
Cluster 7 energy	Cluster 8 god	Cluster 9 century	Cluster 10 city	Cluster 11 population	Cluster 12 cells
energy	god	century	city	population	cells
energy system	god world	century world	city american	population major	cells body
energy system radio	god world century	century world water	city american century	population major km	cells body blood
energy system radio space	god world century religion	century world water called	city american century world	population major km mi	cells body blood species
energy system radio space power	god world century religion jesus	century world water called time	city american century world war	population major km mi government	cells body blood species cell
energy system radio space power systems	god world century religion jesus religious	century world water called time system	city american century world war john	population major km mi government deg	cells body blood species cell called
energy system radio space power systems television	god world century religion jesus religious steel	century world water called time system form	city american century world war john life	population major km mi government deg sq	cells body blood species cell called plants
energy system radio space power systems television water	god world century religion jesus religious steel philosophy	century world water called time system form united	city american century world war john life united	population major km mi government deg sq north	cells body blood species cell called plants animals

(K=12)

Understanding Lloyd's Algorithm

Loss function:

$$L(\{\mathbf{r}\}, \{\mathbf{\mu}\}) = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \|\mathbf{x}_i - \mathbf{\mu}_k\|^2$$

- Solve this via coordinate descent:
 - Step 1: Fix $\{r\}$, update $\{\mu\}$: minimize loss by assigning each sample to the cluster that is closest

Step 2: Fix $\{\mu\}$, update $\{r\}$: work with squared distance

$$L = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} (\mathbf{x}_i - \mathbf{\mu}_k)^{\mathrm{T}} (\mathbf{x}_i - \mathbf{\mu}_k)$$

$$\frac{\partial L}{\partial \mathbf{\mu}_k} = -2 \sum_{i=1}^n r_{ik} \left(\mathbf{x}_i - \mathbf{\mu}_k \right) = 0$$

$$\leftrightarrow \sum_{i=1}^{n} r_{ik} \mathbf{x}_{i} = \mathbf{\mu}_{k} \sum_{i=1}^{n} r_{ik} \leftrightarrow \mathbf{\mu}_{k} = \frac{\sum_{i=1}^{n} r_{ik} \mathbf{x}_{i}}{\sum_{i=1}^{n} r_{ik}}$$

SMIL内部资料 请勿外泄

K-means Clustering

- Simple and popular method
- The effective number of parameters is $m \times K$, where m is sample dimension, K is number of clusters
- Not useful if linear decision boundaries fail

K-means Clustering

Computational complexity:

- Assignment step is O(nKm), since it compares each sample with K centers
- Centroid update is O(nm), since it calculates the centroid of each cluster
- lacksquare O(nKmT) time over T iterations (generally T << n)

K-means Clustering

Computational complexity:

- Assignment step is O(nKm), since it compares each sample with K centers
- Centroid update is O(nm), since it calculates the centroid of each cluster
- lacksquare O(nKmT) time over T iterations (generally T << n)

How to Set the Number of Cluster K

■ Smaller: may provide better interpretation

Larger: useful if clustering is being used for feature extraction

No principled way to do this. A heuristic approach is to plot loss against K, and look for a "Knee" in the plot

Contents

- 1 Introduction
- ² Clustering
- 3 K-means Clustering
- 4 Hierarchical Agglomerative Clustering
- 5 Conclusion

Hierarchical Agglomerative Clustering (HAC)

HAC will work by maintaining an "active set" of clusters, and repeatedly merging cluster. (Forming a tree)

Compared with K-Means:

- Non parametric (instance based). Because of this, more flexible than K-means.
- Can generate arbitrary cluster shapes. (Can also over-fit!)
- Rather than a flat partition of data, it generates a hierarchy of clusters
- No need to specify the number of clusters up front
- Not randomized (This can be a problem with K-means)

HAC Example (1 of 5)

D Α Ε

A E C D B

HAC Example (2 of 5)

HAC Example (3 of 5)

В

HAC Example (4 of 5)

HAC Example (5 of 5)

HAC Algorithm

- Treat each sample as a cluster
- Merge two "closest" clusters
- Repeat until most clusters are merged

What is Closest to Cluster?

Max? Min? Average? Centroid?

HAC: Min and Max Group Distance

(a) min distance

(b) max distance

$$\min d(G, \widehat{G}) = \min_{\mathbf{x} \in G, \widehat{\mathbf{x}} \in \widehat{G}} ||\mathbf{x} - \widehat{\mathbf{x}}||$$

$$\max d(G, \widehat{G}) = \max_{\mathbf{x} \in G, \widehat{\mathbf{x}} \in \widehat{G}} ||\mathbf{x} - \widehat{\mathbf{x}}||$$

HAC: Average and Centroid Group Distances

(c) average distance

(d) centroid distance

$$\min d(G, \widehat{G}) = \frac{1}{|G||\widehat{G}|} \sum_{\mathbf{x} \in G, \widehat{\mathbf{x}} \in \widehat{G}} |\mathbf{x} - \widehat{\mathbf{x}}|$$

$$d_{centroid}(G, \widehat{G}) = \|\mathbf{\mu} - \widehat{\mathbf{\mu}}_{G}\|$$

Example: HAC with Min Distance (1 of 6)

Example: HAC with Min Distance (2 of 6)

Example: HAC with Min Distance (3 of 6)

В

Example: HAC with Min Distance (4 of 6)

В

Example: HAC with Min Distance (5 of 6)

Example: HAC with Min Distance (6 of 6)

Example: HAC with Centroid Distance (1 of 7)

B A E C D

Example: HAC with Centroid Distance (2 of 7)

Example: HAC with Centroid Distance (3 of 7)

Example: HAC with Centroid Distance (4 of 7)

В

Example: HAC with Centroid Distance (5 of 7)

Example: HAC with Centroid Distance (6 of 7)

Example: HAC with Centroid Distance (7 of 7)

Comparing HAC Group Distance Criteria

■ Which distance will tend to merge large clusters with each other?

A: min, because larger clusters are more likely to have a pair of sample that are close

■ Which distance will tend to have a "chain effect" and lead to long, string clusters?

A: min, since only one distance has to be small

Which distance will tend to prefer compact cluster?

A: max, since all distance have to be small to merge

Simple HAC Example

Simple HAC Example Max (1 of 2)

Simple HAC Example Max (2 of 2)

Example: HAC on Old Faithful Eruptions (1 of 2)

Example: HAC on Old Faithful Eruptions (2 of 2)

Example: HAC on Pinwheel example (1 of 2)

(a) min distance

(b) max distance

Example: HAC on Pinwheel Example (2 of 2)

(c) average distance

(d) centroid distance

HAC: Discussion

- Average and centroid distances provide a compromise between min and max
- Non-parametric. Can get arbitrary cluster shapes
- Can over-fit in high dimensional spaces that have irrelevant

Computational complexity is n(n-1)m to get pairwise distance between all examples, and then n^2T for T rounds since need to do pairwise check. $T \ll m$ and thus $O(n^2m)$. (c.f., O(nKmT) for K-means)

Curse of Dimensionality

 Histograms of inter-sample distance for 1000 samples in unit Hypercube

As dimensions increase, we get concentration of the distances relative to min (0) and $\max(\sqrt{m})$ distances (distance is sum of IID r.v.s)

Because of this, HAC suffers the "curse of dimensionality"

Becomes less useful as the dimensionality of the data grows

Contents

- 1 Introduction
- ² Clustering
- 3 K-means Clustering
- 4 Hierarchical Agglomerative Clustering
- 5 Conclusion

Clustering

A very natural, unsupervised learning problem

K-means and HAC are two simple, popular algorithms

■ HAC is more flexible, but has poor performance in high dimensional problems

Thank You