Simulation and Analysis of 1D Wave Propagation under Various Physical Models

Dario Liotta

Dipartimento di Fisica e Astronomia Galileo Galilei

 $\begin{array}{c} {\rm September~6th~2025} \\ {\rm Course~of~{\bf Quantum~Information~and~{\bf Computing}}} \\ {\rm Academic~Year~2024/2025} \end{array}$

Numerical methods for differential equations

2 / 4

Numerical methods for differential equations

2 / 4

Introduction to the problem

Solving a **PDE** means to find a function u such that

$$\mathcal{L}u = f$$

where \mathcal{L} is a differential operator and f is a source term.

The equation holds in a domain Ω and is completed by prescribing boundary conditions on $\partial\Omega$.

Weak formulation

Galerkin methods rely on a weak formulation