Package 'maftools'

February 26, 2018

Type Package
Title Summarize, Analyze and Visualize MAF Files
Version 1.4.25
Date 2015-12-14
Author Anand Mayakonda <anand_mt@hotmail.com></anand_mt@hotmail.com>
Maintainer Anand Mayakonda <anand_mt@hotmail.com></anand_mt@hotmail.com>
Description Analyze and visualize Mutation Annotation Format (MAF) files from large scale sequencing studies. This package provides various functions to perform most commonly used analyses in cancer genomics and to create feature rich customizable visualizations with minimal effort.
<pre>URL https://github.com/PoisonAlien/maftools</pre>
BugReports https://github.com/PoisonAlien/maftools/issues
License MIT + file LICENSE
LazyData TRUE
Depends R (>= 3.4)
Imports data.table, ggplot2(>= 2.0), cowplot, cometExactTest, RColorBrewer, NMF, ggrepel, methods, ComplexHeatmap, mclust, VariantAnnotation, Biostrings, Rsamtools, rjson, grid, wordcloud, grDevices, changepoint, gridExtra, survival
RoxygenNote 6.0.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
biocViews DataRepresentation, DNASeq, Visualization, DriverMutation, VariantAnnotation, FeatureExtraction, Classification, SomaticMutation, Sequencing, FunctionalGenomics, Survival
NeedsCompilation no
R topics documented:
annovarToMaf 3 clinicalEnrichment 4 coOncoplot 5 extractSignatures 6 forestPlot 7
1

51

Index

geneCloud	. 8
genesToBarcodes	
genotypeMatrix	. 9
getClinicalData	. 10
getCytobandSummary	. 10
getFields	. 11
getGeneSummary	. 12
getSampleSummary	. 12
GISTIC-class	
gisticBubblePlot	. 13
gisticChromPlot	. 14
gisticOncoPlot	. 15
icgcSimpleMutationToMAF	. 16
inferHeterogeneity	. 17
lollipopPlot	. 18
MAF-class	. 20
mafCompare	. 20
mafSummary	. 21
mafSurvival	. 22
math.score	. 23
mutCountMatrix	. 24
oncodrive	. 25
oncoplot	
oncostrip	
oncotate	
pancanComparison	. 30
pfamDomains	
plotApobecDiff	
plotCBSsegments	
plotClusters	
plotEnrichmentResults	
plotmafSummary	
plotOncodrive	
plotSignatures	
plotTiTv	
plotVaf	
prepareMutSig	
rainfallPlot	
read.maf	. 41
readGistic	. 43
signatureEnrichment	
somaticInteractions	
subsetMaf	
tcgaCompare	
titv	
trinucleotideMatrix	
write.GisticSummary	
write.mafSummary	
wite-indipending	. 50

annovarToMaf 3

annovarToMaf	Converts annovar annotations into MAF.

Description

Converts variant annotations from Annovar into a basic MAF.

Usage

```
annovarToMaf(annovar, Center = NULL, refBuild = "hg19", tsbCol = NULL,
  table = "refGene", basename = NULL, sep = "\t", MAFobj = FALSE,
  sampleAnno = NULL)
```

Arguments

2	
annovar	input annovar annotation file.
Center	Center field in MAF file will be filled with this value. Default NA.
refBuild	NCBI_Build field in MAF file will be filled with this value. Default hg19.
tsbCol	column name containing Tumor_Sample_Barcode or sample names in input file.
table	reference table used for gene-based annotations. Can be 'ensGene' or 'refGene'. Default 'refGene'
basename	If provided writes resulting MAF file to an output file.
sep	field seperator for input file. Default tab seperated.
MAFobj	If TRUE, returns results as an MAF object.
sampleAnno	annotations associated with each sample/Tumor_Sample_Barcode in input annovar file. If provided it will be included in MAF object. Could be a text file or a data.frame. Ideally annotation would contain clinical data, survival information and other necessary features associated with samples. Default NULL.

Details

Annovar is one of the most widely used Variant Annotation tools in Genomics. Annovar output is generally in a tabular format with various annotation columns. This function converts such annovar output files into MAF. This function requires that annovar was run with gene based annotation as a first operation, before including any filter or region based annotations. Please be aware that this function performs no transcript prioritization.

e.g, table_annovar.pl example/ex1.avinput humandb/ -buildver hg19 -out myanno -remove -protocol (refGene),cytoBand,dbnsfp30a -operation (g),r,f -nastring NA

This function mainly uses gene based annotations for processing, rest of the annotation columns from input file will be attached to the end of the resulting MAF.

Value

MAF table.

References

Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010).

4 clinicalEnrichment

Examples

```
var.annovar <- system.file("extdata", "variants.hg19_multianno.txt", package = "maftools")
var.annovar.maf <- annovarToMaf(annovar = var.annovar, Center = 'CSI-NUS', refBuild = 'hg19',
tsbCol = 'Tumor_Sample_Barcode', table = 'ensGene')</pre>
```

clinicalEnrichment

Performs mutational enrichment analysis for a given clinical feature.

Description

Performs paiwise and groupwise fisher exact tests to find differentially enriched genes for every factor within a clinical feature.

Usage

```
clinicalEnrichment(maf, clinicalFeature = NULL, annotationDat = NULL,
    minMut = 5, useCNV = TRUE)
```

Arguments

maf MAF object

clinicalFeature

columns names from 'clinical.data' slot of MAF to be analysed for.

tsv file with a column containing Tumor_Sample_Barcodes along with clinical

features. Default NULL.

minMut Consider only genes with minimum this number of samples mutated. Default 5.

useCNV whether to include copy number events. Only applicable when MAF is read

along with copy number data. Default TRUE if available.

Value

result list containing p-values

See Also

```
plotEnrichmentResults
```

```
laml.maf = system.file('extdata', 'tcga_laml.maf.gz', package = 'maftools')
laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools')
laml = read.maf(maf = laml.maf, clinicalData = laml.clin)
clinicalEnrichment(laml, 'FAB_classification')
```

coOncoplot 5

coOncoplot	Draw two oncoplots side by side for cohort comparision.	

Description

Draw two oncoplots side by side for cohort comparision.

Usage

```
coOncoplot(m1, m2, genes = NULL, m1Name = NULL, m2Name = NULL,
  clinicalFeatures1 = NULL, clinicalFeatures2 = NULL,
  annotationColor1 = NULL, annotationColor2 = NULL, colors = NULL,
  removeNonMutated = TRUE, geneNamefont = 10, showSampleNames = FALSE,
  SampleNamefont = 10, legendFontSize = 10, titleFontSize = 12,
  keepGeneOrder = FALSE, includeSyn = FALSE)
```

Arguments

m1 first MAF object m2 second MAF object

genes draw these genes. Default plots top 5 mutated genes from two cohorts.

m1Name optional name for first cohort m2Name optional name for second cohort

clinicalFeatures1

columns names from 'clinical.data' slot of m1 MAF to be drawn in the plot.

Dafault NULL.

clinicalFeatures2

columns names from 'clinical.data' slot of m2 MAF to be drawn in the plot.

Dafault NULL.

annotationColor1

list of colors to use for 'clinicalFeatures1' Default NULL.

annotationColor2

list of colors to use for 'clinicalFeatures2' Default NULL.

colors named vector of colors for each Variant_Classification.

removeNonMutated

Logical. If TRUE removes samples with no mutations in the oncoplot for better

visualization. Default TRUE.

geneNamefont font size for gene names. Default 10

 $\verb|showSampleNames||$

whether to show sample names. Defult FALSE.

SampleNamefont font size for sample names. Default 10

legendFontSize font size for legend. Default 10 titleFontSize font size for title. Default 12

keepGeneOrder force the resulting plot to use the order of the genes as specified. Default FALSE

includeSyn Set to TRUE to include silent variants. Default FALSE.

6 extractSignatures

Details

Draws two oncoplots side by side to display difference between two cohorts.

Value

Returns nothing. Just draws plot.

Examples

```
#' ##Primary and Relapse APL
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")
##Read mafs
primary.apl <- read.maf(maf = primary.apl)
relapse.apl <- read.maf(maf = relapse.apl)
##Plot
coOncoplot(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary APL', m2Name = 'Relapse APL')
dev.off()</pre>
```

extractSignatures

Extract mutational signatures from trinucletide context.

Description

Decompose a matrix of 96 substitution classes into n signatures.

Usage

```
extractSignatures(mat, n = NULL, nTry = 6, plotBestFitRes = FALSE,
    parallel = NULL)
```

Arguments

Input matrix of diemnsion nx96 generated by trinucleotideMatrix

n decompose matrix into n signatures. Default NULL. Tries to predict best value for n by running NMF on a range of values and chooses based on cophenetic correlation coefficient.

nTry tries upto this number of signatures before choosing best n. Default 6.

plotBestFitBes plots consensus heatman for range of values tried. Default FALSE

plotBestFitRes plots consensus heatmap for range of values tried. Default FALSE

parallel calls to .opt argument of nmf. e.g, 'P4' for using 4 cores. See note on nmf for

MAC users.

Details

This function decomposes a non-negative matrix into n signatures. Extracted signatures are compared against 30 experimentally validated signatures by calculating cosine similarity. See http://cancer.sanger.ac.uk/cosm for details.

Value

a list with decomposed scaled signatures, signature contributions in each sample and a cosine similarity table against validated signatures.

forestPlot 7

See Also

```
trinucleotideMatrix plotSignatures
```

Examples

```
## Not run:
laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'hg19.fa', prefix = 'chr',
add = TRUE, useSyn = TRUE)
laml.sign <- extractSignatures(mat = laml.tnm, plotBestFitRes = FALSE)
## End(Not run)</pre>
```

forestPlot

Draw forest plot for differences betweeen cohorts.

Description

Draw forest plot for differences betweeen cohorts.

Usage

```
forestPlot(mafCompareRes, pVal = 0.05, fdr = NULL, show = NULL,
  color = NULL, geneFontSize = 12, file = NULL, width = 5, height = 6)
```

Arguments

mafCompareRes	results from mafCompare
pVal	p-value threshold. Default 0.05.
fdr	fdr threshold. Default NULL. If provided uses adjusted pvalues (fdr).
show	can be either stat or pval
color	vector of colors for cohorts. Default NULL.
geneFontSize	Font size for gene symbols. Default 12
file	basename for output file. Plot will saved to an output pdf.
width	width of plot to be generated
height	height of plot to be generated

Details

Plots results from link{mafCompare} as a forest plot with x-axis as log10 converted odds ratio and differentially mutated genes on y-axis.

Value

ggplot object of the plot.

See Also

mafCompare

8 geneCloud

Examples

```
##Primary and Relapse APL
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")
##Read mafs
primary.apl <- read.maf(maf = primary.apl)
relapse.apl <- read.maf(maf = relapse.apl)
##Perform analysis and draw forest plot.
pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary',
m2Name = 'Relapse', minMut = 5)
forestPlot(mafCompareRes = pt.vs.rt, show = 'stat')</pre>
```

geneCloud

Plots wordcloud.

Description

Plots word cloud of mutated genes or altered cytobands with size proportional to the event frequency.

Usage

```
geneCloud(input, minMut = 3, col = NULL, top = NULL,
  genesToIgnore = NULL, ...)
```

Arguments

input an MAF or GISTIC object generated by read.maf or readGistic
minMut Minimum number of samples in which a gene is required to be mutated.
col vector of colors to choose from.
top Just plot these top n number of mutated genes.
genesToIgnore Ignore these genes.
... Other options passed to wordcloud

Value

nothing.

```
laml.input <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.input, useAll = FALSE)
geneCloud(input = laml, minMut = 5)</pre>
```

genesToBarcodes 9

genesToBarcodes	Extracts Tumor Sample Barcodes where the given genes are mutated.

Description

Extracts Tumor Sample Barcodes where the given genes are mutated.

Usage

```
genesToBarcodes(maf, genes = NULL, justNames = FALSE)
```

Arguments

maf an MAF object generated by read.maf

genes Hogo_Symbol for which sample names to be extracted.

justNames if TRUE, just returns samples names instead of summarized tables.

Value

list of data. tables with samples in which given genes are mutated.

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
genesToBarcodes(maf = laml, genes = 'DNMT3A')</pre>
```

genotypeMatrix

Creates a Genotype Matrix for every variant

Description

Creates a Genotype matrix using allele frequeies or by muatation status.

Usage

```
genotypeMatrix(maf, genes = NULL, tsb = NULL, includeSyn = FALSE, vafCol = NULL, vafCutoff = c(0.1, 0.75))
```

Arguments

maf an MAF object generated by read.maf

genes create matrix for only these genes. Define NULL

tsb create matrix for only these tumor sample barcodes/samples. Define NULL

includeSyn whether to include silent mutations. Default FALSE

vafCol specify column name for vaf's. Default NULL. If not provided simply assumes

all mutations are heterozygous.

vafCutoff specify minimum and maximum vaf to define mutations as heterozygous. De-

fault range 0.1 to 0.75. Mutations above maximum vafs are defined as homozy-

gous.

Value

matrix

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
genotypeMatrix(maf = laml, genes = "RUNX1")</pre>
```

 ${\tt getClinicalData}$

extract annotations from MAF object

Description

extract annotations from MAF object

Usage

```
getClinicalData(x)
## S4 method for signature 'MAF'
getClinicalData(x)
```

Arguments

Χ

An object of class MAF

Value

annotations associated with samples in MAF

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
getClinicalData(x = laml)</pre>
```

getCytobandSummary

extract cytoband summary from GISTIC object

Description

extract cytoband summary from GISTIC object

Usage

```
getCytobandSummary(x)
## S4 method for signature 'GISTIC'
getCytobandSummary(x)
```

getFields 11

Arguments

Х

An object of class GISTIC

Value

summarizied gistic results by altered cytobands.

Examples

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools")
laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFgetCytobandSummary(laml.gistic)</pre>
```

getFields

extract available fields from MAF object

Description

extract available fields from MAF object

Usage

```
getFields(x)
## S4 method for signature 'MAF'
getFields(x)
```

Arguments

Χ

An object of class MAF

Value

Field names in MAF file

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
getFields(x = laml)</pre>
```

12 getSampleSummary

getGeneSummary

extract gene summary from MAF or GISTIC object

Description

extract gene summary from MAF or GISTIC object

Usage

```
getGeneSummary(x)
## S4 method for signature 'MAF'
getGeneSummary(x)
## S4 method for signature 'GISTIC'
getGeneSummary(x)
```

Arguments

Х

An object of class MAF or GISTIC

Value

gene summary table

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
getGeneSummary(laml)</pre>
```

getSampleSummary

extract sample summary from MAF or GISTIC object

Description

extract sample summary from MAF or GISTIC object

Usage

```
getSampleSummary(x)
## S4 method for signature 'MAF'
getSampleSummary(x)
## S4 method for signature 'GISTIC'
getSampleSummary(x)
```

Arguments

Χ

An object of class MAF or GISTIC

GISTIC-class 13

Value

sample summary table

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
getSampleSummary(x = laml)</pre>
```

GISTIC-class

Class GISTIC

Description

S4 class for storing summarized MAF.

Slots

```
data data.table of summarized GISTIC file.
```

cnv. summary table containing alterations per sample

cytoband.summary table containing alterations per cytoband

gene. summary table containing alterations per gene

cnMatrix character matrix of dimension n*m where n is number of genes and m is number of samples

 $\label{eq:numericMatrix} numeric \ matrix \ of \ dimension \ n^*m \ where \ n \ is \ number \ of \ genes \ and \ m \ is \ number \ of \ samples$

gis.scores gistic.scores

summary table with basic GISTIC summary stats

classCode mapping between numeric values in numericMatrix and copy number events.

See Also

getGeneSummary getSampleSummary getCytobandSummary

gisticBubblePlot

Plot gistic results as a bubble plot

Description

Plots significantly altered cytobands as a function of number samples in which it is altered and number genes it contains. Size of each bubble is according to -log10 transformed q values.

Usage

```
gisticBubblePlot(gistic = NULL, color = NULL, markBands = NULL,
  fdrCutOff = 0.1, txtSize = 3, file = NULL, width = 6, height = 5)
```

14 gisticChromPlot

Arguments

gistic an object of class GISTIC generated by readGistic

color colors for Amp and Del events.

markBands any cytobands to label.

fdrCutOff fdr cutoff to use. Default 0.1

txtSize label size for bubbles.

file if given saves plot as a pdf.

width width of the file to be saved.
height height of the file to be saved.

Value

invisible ggplot2 object

Examples

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools")
laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesF
gisticBubblePlot(gistic = laml.gistic)</pre>
```

gisticChromPlot

Plot gistic results along linearized chromosome

Description

A genomic plot with segments highlighting signififcant Amplifications and Deletion regions.

Usage

```
gisticChromPlot(gistic = NULL, fdrCutOff = 0.1, markBands = NULL,
  markBandsCol = "purple", color = NULL, ref.build = "hg19",
  cytobandOffset = 0.01, file = NULL, width = 6, height = 5)
```

Arguments

gistic an object of class GISTIC generated by readGistic

fdrCutOff fdr cutoff to use. Default 0.1

markBands any cytobands to label. If 'all' labels all significantly altered cytobands (below

fdrCuoff)

markBandsCol color for highlighted region color colors for Amp and Del events.

ref. build reference build. Could be hg18, hg19 or hg38.

cytobandOffset if scores.gistic file is given use this to adjust cytoband size.

file if given saves plot as a pdf.
width width of the file to be saved.
height height of the file to be saved.

gisticOncoPlot 15

Value

nothing

Examples

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools")
laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFgisticChromPlot(laml.gistic)</pre>
```

gisticOncoPlot

Plot gistic results.

Description

takes output generated by readGistic and draws a plot similar to oncoplot.

Usage

```
gisticOncoPlot(gistic, top = NULL, showTumorSampleBarcodes = FALSE,
  clinicalData = NULL, clinicalFeatures = NULL, sortByAnnotation = FALSE,
  annotationColor = NULL, bandsToIgnore = NULL, removeNonAltered = FALSE,
  colors = NULL, fontSize = 10)
```

Arguments

gistic an GISTIC object generated by readGistic

top how many top cytobands to be drawn. defaults to all.

 $\verb|showTumorSampleBarcodes||$

logical to include sample names.

clinicalData data.frame with columns containing Tumor_Sample_Barcodes and rest of columns

with annotations.

clinicalFeatures

columns names from 'clinicalData' to be drawn in the plot. Dafault NULL.

sortByAnnotation

logical sort oncomatrix (samples) by provided 'clinicalFeatures'. Defaults to FALSE. column-sort

annotationColor

list of colors to use for clinicalFeatures. Default NULL.

bandsToIgnore do not show these bands in the plot Default NULL.

removeNonAltered

Logical. If TRUE removes samples with no mutations in the oncoplot for better

visualization. Default FALSE.

colors named vector of colors Amp and Del events.

fontSize font size for cytoband names. Default 10.

Details

Takes gistic file as input and plots it as a matrix. Any desired annotations can be added at the bottom of the oncoplot by providing annotation

Value

None.

See Also

oncostrip

Examples

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools")
laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFgisticOncoPlot(laml.gistic)</pre>
```

icgcSimpleMutationToMAF

Converts ICGC Simple Somatic Mutation format file to MAF

Description

Converts ICGC Simple Somatic Mutation format file to Mutation Annotation Format. Basic fields are converted as per MAF specifications, rest of the fields are retained as in the input file. Ensemble gene IDs are converted to HGNC Symbols. Note that by default Simple Somatic Mutation format contains all affected transcripts of a variant resuting in multiple entries of the same variant in same sample. It is hard to choose a single affected transcript based on annotations alone and by default this program removes repeated variants as duplicated entries. If you wish to keep all of them, set removeDuplicatedVariants to FALSE.

Usage

```
icgcSimpleMutationToMAF(icgc, basename = NA, MAFobj = FALSE,
  clinicalData = NULL, removeDuplicatedVariants = TRUE,
  addHugoSymbol = FALSE)
```

Arguments

icgc Input data in ICGC Simple Somatic Mutation format. Can be gz compressed.

basename If given writes to output file with basename.

MAFobj If TRUE returns results as an MAF object.

clinicalData Clinical data associated with each sample/Tumor_Sample_Barcode in MAF.

Could be a text file or a data.frame. Default NULL.

removeDuplicatedVariants

removes repeated variants in a particuar sample, mapped to multiple transcripts

of same Gene. See Description. Default TRUE.

addHugoSymbol If TRUE replaces ensemble gene IDs with Hugo_Symbols. Default FALSE.

inferHeterogeneity 17

Details

ICGC Simple Somatic Mutattion format specififcation can be found here: http://docs.icgc.org/submission/guide/icgc-simple-somatic-mutation-format/

Value

tab delimited MAF file.

Examples

```
esca.icgc <- system.file("extdata", "simple_somatic_mutation.open.ESCA-CN.sample.tsv.gz", package = "maftoolesca.maf <- icgcSimpleMutationToMAF(icgc = esca.icgc)</pre>
```

inferHeterogeneity

Clusters variants based on Variant Allele Frequencies (VAF).

Description

takes output generated by read.maf and clusters variants to infer tumor heterogeneity. This function requires VAF for clustering and density estimation. VAF can be on the scale 0-1 or 0-100. Optionally if copy number information is available, it can be provided as a segmented file (e.g, from Circular Binary Segmentation). Those variants in copy number altered regions will be ignored.

Usage

```
inferHeterogeneity(maf, tsb = NULL, top = 5, vafCol = NULL,
  segFile = NULL, ignChr = NULL, minVaf = 0, maxVaf = 1,
  dirichlet = FALSE)
```

Arguments

maf	an MAF object generated by read.maf
tsb	specify sample names (Tumor_Sample_Barcodes) for which clustering has to be done.
top	if tsb is NULL, uses top n number of most mutated samples. Defaults to 5.
vafCol	manually specify column name for vafs. Default looks for column 't_vaf'
segFile	path to CBS segmented copy number file. Column names should be Sample, Chromosome, Start, End, Num_Probes and Segment_Mean (log2 scale).
ignChr	ignore these chromosomes from analysis. e.g, sex chromsomes $\text{chr} X$, $\text{chr} Y$. Default NULL.
minVaf	filter low frequency variants. Low vaf variants maybe due to sequencing error. Default 0 . (on the scale of 0 to 1)
maxVaf	filter high frequency variants. High vaf variants maybe due to copy number alterations or impure tumor. Default 1. (on the scale of 0 to 1)
dirichlet	Deprecated! No longer supported. uses nonparametric dirichlet process for clustering. Default FALSE - uses finite mixture models.

18 lollipopPlot

Details

This function clusters variants based on VAF to estimate univariate density and cluster classification. There are two methods available for clustering. Default using parametric finite mixture models and another method using nonparametric inifinite mixture models (Dirichlet process).

Value

list of clustering tables.

References

Chris Fraley and Adrian E. Raftery (2002) Model-based Clustering, Discriminant Analysis and Density Estimation Journal of the American Statistical Association 97:611-631

Jara A, Hanson TE, Quintana FA, Muller P, Rosner GL. DPpackage: Bayesian Semi- and Nonparametric Modeling in R. Journal of statistical software. 2011;40(5):1-30.

Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5(4):557-72.

See Also

```
plotClusters
```

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
TCGA.AB.2972.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA-AB-2972', vafCol = 'i_TumorVAF_WU')</pre>
```

lollipopPlot

Draws lollipop plot of amino acid changes on to Protein structure.

Description

Draws lollipop plot of amino acid changes.

Usage

```
lollipopPlot(maf, gene = NULL, AACol = NULL, labelPos = NULL,
  labPosSize = 3, showMutationRate = TRUE, fn = NULL,
  showDomainLabel = TRUE, cBioPortal = FALSE, refSeqID = NULL,
  proteinID = NULL, repel = FALSE, collapsePosLabel = TRUE,
  legendTxtSize = 10, labPosAngle = 0, domainLabelSize = 2.5,
  axisTextSize = c(9, 12), printCount = FALSE, colors = NULL,
  domainColors = NULL, labelOnlyUniqueDoamins = TRUE, defaultYaxis = TRUE,
  titleSize = c(12, 10), pointSize = 1.5)
```

lollipopPlot 19

Arguments

maf an MAF object generated by read.maf

gene HGNC symbol for which protein structure to be drawn.

AACol manually specify column name for amino acid changes. Default looks for fields

'HGVSp_Short', 'AAChange' or 'Protein_Change'. Changes can be of any format i.e, can be a numeric value or HGVSp annotations (e.g; p.P459L, p.L2195Pfs*30

or p.Leu2195ProfsTer30)

labelPos Amino acid positions to label. If 'all', labels all variants.

labPosSize Text size for labels. Default 3

showMutationRate

Default TRUE

fn basename for plot file to be saved. If provided a pdf will be generated. Default

NULL.

showDomainLabel

Label domains within the plot. Default TRUE. If FALSE they will be annotated

in legend.

cBioPortal Adds annotations similar to cBioPortals MutationMapper and collapse Variants

into Truncating and rest.

refSeqID RefSeq transcript identifier for gene if known.

proteinID RefSeq protein identifier for gene if known.

repel If points are too close to each other, use this option to repel them. Default

FALSE. Warning: naive method, might make plot ugly in case of too many

variants!

collapsePosLabel

Collapses overlapping labels at same position. Default TRUE

legendTxtSize Text size for legend. Default 10

labPosAngle angle for labels. Defaults to horizonal 0 degree labels. Set to 90 for vertical; 45

for diagonal labels.

domainLabelSize

text size for domain labels. Default 2.

axisTextSize text size x and y tick labels. Default c(9,12).

printCount If TRUE, prints number of summarized variants for the given protein.

colors named vector of colors for each Variant_Classification. Default NULL.

domainColors Manual colors for protein domains

labelOnlyUniqueDoamins

Default TRUE only labels unique doamins.

titleSize font size for title and subtitle. Default c(12, 10)

pointSize size of lollipop heads. Default 1.5

Details

This function by default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change' in maf file. One can also manually specify field name containing amino acid changes.

20 mafCompare

Value

ggplot object of the plot, which can be futher modified.

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
lollipopPlot(maf = laml, gene = 'KIT', AACol = 'Protein_Change')</pre>
```

MAF-class

Class MAF

Description

S4 class for storing summarized MAF.

Slots

```
data data.table of MAF file containing all non-synonymous variants.

variants.per.sample table containing variants per sample

variant.type.summary table containing variant types per sample

variant.classification.summary table containing variant classification per sample

gene.summary table containing variant classification per gene

summary table with basic MAF summary stats

maf.silent subset of main MAF containing only silent variants

clinical.data clinical data associated with each sample/Tumor_Sample_Barcode in MAF.
```

See Also

getGeneSummary getSampleSummary getFields

 ${\tt mafCompare}$

compare two cohorts (MAF).

Description

```
compare two cohorts (MAF).
```

Usage

```
mafCompare(m1, m2, m1Name = NULL, m2Name = NULL, minMut = 5,
  useCNV = TRUE)
```

mafSummary 21

Arguments

m1	first MAF object
m2	second MAF object

m1Name optional name for first cohort m2Name optional name for second cohort

minMut Consider only genes with minimum this number of samples mutated in atleast

one of the cohort for analysis. Helful to ignore single mutated genes. Default 5.

useCNV whether to include copy number events to compare MAFs. Only applicable

when MAF is read along with copy number data. Default TRUE if available.

Details

Performs fisher test on 2x2 contigency table generated from two cohorts to find differentially mutated genes.

Value

result list

See Also

forestPlot

Examples

```
primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")
primary.apl <- read.maf(maf = primary.apl)
relapse.apl <- read.maf(maf = relapse.apl)
pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary',
m2Name = 'Relapse', minMut = 5)</pre>
```

mafSummary

Summary statistics of MAF

Description

Summarizes genes and samples irrespective of the type of alteration. This is different from getSampleSummary and getGeneSummary which returns summaries of only non-synonymous variants.

Usage

```
mafSummary(maf)
```

Arguments

maf an MAF object generated by read.maf

Details

This function takes MAF object as input and returns summary table.

22 mafSurvival

Value

Returns a list of summarized tables

See Also

```
getGeneSummary getSampleSummary
```

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
mafSummary(maf = laml)</pre>
```

mafSurvival

Performs survival analysis

Description

Performs survival analysis by grouping samples from maf based on mutation status of given gene(s) or manual grouping of samples.

Usage

```
mafSurvival(maf, genes = NULL, samples = NULL, clinicalData = NULL,
  time = "Time", Status = "Status", groupNames = c("Mutant", "WT"),
  showConfInt = TRUE, addInfo = TRUE, col = c("maroon", "royalblue"),
  isTCGA = FALSE, textSize = 12, fn = NULL, width = 6, height = 6)
```

Arguments

maf an MAF object generated by read.maf

genes gene names for which survival analysis needs to be performed.
samples samples to group by. Genes and samples are mutually exclusive.

clinicalData dataframe containing events and time to events. Default looks for clinical data

in annotation slot of MAF.

time column name contining time in clinicalData

Status column name containing status of patients in clinicalData. must be logical or

numeric. e.g, TRUE or FALSE, 1 or 0.

groupNames names for groups. Should be of length two. Default c("Mutant", "WT")

showConfInt TRUE. Whether to show confidence interval in KM plot.

addInfo TRUE. Whether to show survival info in the plot.

col colors for plotting.

isTCGA FALSE. Is data is from TCGA. textSize Text size for surv table. Default 7.

fn NULL. If provided saves pdf plot with basename fn.

width width of plot to be saved. Default 6 height height of plot to be saved. Default 6

math.score 23

Details

This function takes MAF file and groups them based on mutation status associated with given gene(s) and performs survival analysis. Requires dataframe containing survival status and time to event. Make sure sample names match to Tumor Sample Barcodes from MAF file.

Value

Survival plot

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml.clin <- system.file("extdata", "tcga_laml_annot.tsv", package = "maftools")
laml <- read.maf(maf = laml.maf, clinicalData = laml.clin)
mafSurvival(maf = laml, genes = 'DNMT3A', time = 'days_to_last_followup', Status = 'Overall_Survival_Status'</pre>
```

math.score

calculates MATH (Mutant-Allele Tumor Heterogeneity) score.

Description

calcuates MATH scores from variant allele frequencies. Mutant-Allele Tumor Heterogeneity (MATH) score is a measure of intra-tumor genetic heterogeneity. High MATH scores are related to lower survival rates. This function requies vafs.

Usage

```
math.score(maf, vafCol = NULL, sampleName = NULL, vafCutOff = 0.075)
```

Arguments

maf an MAF object generated by read.maf

vafCol manually specify column name for vafs. Default looks for column 't_vaf'

sample name for which MATH score to be calculated. If NULL, calculates for

all samples.

vafCutOff minimum vaf for a variant to be considered for score calculation. Default 0.075

Value

 ${\tt data.table\ with\ MATH\ score\ for\ every\ Tumor_Sample_Barcode}$

References

Mroz, Edmund A. et al. Intra-Tumor Genetic Heterogeneity and Mortality in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas. Ed. Andrew H. Beck. PLoS Medicine 12.2 (2015): e1001786.

24 mutCountMatrix

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
laml.math <- math.score(maf = laml, vafCol = 'i_TumorVAF_WU',
sampleName = c('TCGA-AB-3009', 'TCGA-AB-2849', 'TCGA-AB-3002', 'TCGA-AB-2972'))</pre>
```

mutCountMatrix

Generates count matrix of mutations.

Description

Generates a count matrix of mutations. i.e, number of mutations per gene per sample.

Usage

```
mutCountMatrix(maf, includeSyn = FALSE, countOnly = NULL,
  removeNonMutated = TRUE)
```

Arguments

maf an MAF object generated by read.maf

 $include {\tt Syn} \qquad \text{whether to include sysnonymous variants in output matrix. Default FALSE}$

countOnly Default NULL - counts all variants. You can specify type of 'Variant_Classification'

to count. For e.g, countOnly = 'Splice_Site' will generates matrix for only

Splice_Site variants.

removeNonMutated

Logical Default TRUE, removes samples with no mutations from the matrix.

Value

Integer Matrix

See Also

```
getFields getGeneSummary getSampleSummary
```

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
##Generate matrix
mutCountMatrix(maf = laml)
##Generate count matrix of Splice_Site mutations
mutCountMatrix(maf = laml, countOnly = 'Splice_Site')</pre>
```

oncodrive 25

oncodrive	Detect cancer driver genes based on positional clustering of variants.

Description

Clusters variants based on their position to detect disease causing genes.

Usage

```
oncodrive(maf, AACol = NULL, minMut = 5, pvalMethod = "zscore",
    nBgGenes = 100, bgEstimate = TRUE, ignoreGenes = NULL)
```

Arguments

_	
maf	an MAF object generated by read.maf
AACol	manually specify column name for amino acid changes. Default looks for field 'AAChange'
minMut	minimum number of mutations required for a gene to be included in analysis. Default 5.
pvalMethod	either zscore (default method for oncodriveCLUST), poisson or combined (uses lowest of the two pvalues).
nBgGenes	minimum number of genes required to estimate background score. Default 100. Do not change this unless its necessary.
bgEstimate	If FALSE skips background estimation from synonymous variants and uses predifined values estimated from COSMIC synonymous variants.
ignoreGenes	Ignore these genes from analysis. Default NULL. Helpful in case data contains large number of variants belonging to polymorphic genes such as mucins and TTN.

Details

This is the re-implimentation of algorithm defined in OncodriveCLUST article. Concept is based on the fact that most of the variants in cancer causing genes are enriched at few specific loci (aka hotspots). This method takes advantage of such positions to identify cancer genes. Cluster score of 1 means, a single hotspot hosts all observed variants. If you use this function, please cite OncodriveCLUST article.

Value

data table of genes ordered according to p-values.

References

Tamborero D, Gonzalez-Perez A and Lopez-Bigas N. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013; doi: 10.1093/bioinformatics/btt395s

See Also

```
plotOncodrive
```

26 oncoplot

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
laml.sig <- oncodrive(maf = laml, AACol = 'Protein_Change', minMut = 5)</pre>
```

oncoplot

draw an oncoplot

Description

takes output generated by read.maf and draws an oncoplot

Usage

```
oncoplot(maf, top = 20, genes = NULL, mutsig = NULL, mutsigQval = 0.1,
   drawRowBar = TRUE, drawColBar = TRUE, clinicalFeatures = NULL,
   annotationDat = NULL, annotationColor = NULL, genesToIgnore = NULL,
   showTumorSampleBarcodes = FALSE, removeNonMutated = TRUE, colors = NULL,
   sortByMutation = FALSE, sortByAnnotation = FALSE,
   annotationOrder = NULL, keepGeneOrder = FALSE, GeneOrderSort = TRUE,
   sampleOrder = NULL, writeMatrix = FALSE, fontSize = 10,
   SampleNamefontSize = 10, titleFontSize = 15, legendFontSize = 12,
   annotationFontSize = 12, annotationTitleFontSize = 12)
```

Arguments

maf an MAF object generated by read.maf

top how many top genes to be drawn. defaults to 20. genes Just draw oncoplot for these genes. Default NULL.

mutsig Mutsig resuts if availbale. Usually file named sig_genes.txt If provided plots

significant genes and correpsonding Q-values as side row-bar. Default NULL.

mutsigQval Q-value to choose significant genes from mutsig results. Default 0.1

drawRowBar logical plots barplot for each gene. Default TRUE.

drawColBar logical plots barplot for each sample. Default TRUE.

clinicalFeatures

columns names from 'clinical.data' slot of MAF to be drawn in the plot. Dafault

NULL.

annotationDat If MAF file was read without clinical data, provide a custom data.frame with

a column containing Tumor_Sample_Barcodes along with rest of columns with annotations. You can specify which columns to be drawn using 'clinicalFea-

tures' argument.

annotationColor

list of colors to use for 'clinicalFeatures'. Must be a named list. Default NULL.

genesToIgnore do not show these genes in Oncoplot. Default NULL.

showTumorSampleBarcodes

logical to include sample names.

oncoplot 27

removeNonMutated

Logical. If TRUE removes samples with no mutations in the oncoplot for better

visualization. Default TRUE.

colors named vector of colors for each Variant_Classification.

sortByMutation Force sort matrix according mutations. Helpful in case of MAF was read along

with copy number data. Default FALSE.

sortByAnnotation

logical sort oncomatrix (samples) by provided 'clinicalFeatures'. Sorts based on

first 'clinicalFeatures'. Defaults to FALSE. column-sort

annotationOrder

Manually specify order for annotations. Works only for first 'clinicalFeatures'.

Default NULL.

keepGeneOrder logical whether to keep order of given genes. Default FALSE, order according

to mutation frequency

GeneOrderSort logical this is applicable when 'keepGeneOrder' is TRUE. Default TRUE

sampleOrder Manually speify sample names for oncolplot ordering. Default NULL.

writeMatrix writes character coded matrix used to generate the plot to an output file. This

can be used as an input for ComplexHeatmap oncoPrint function if you wish to

customize the plot.

fontSize font size for gene names. Default 10.

 ${\tt SampleNamefontSize}$

font size for sample names. Default 10

titleFontSize font size for title. Default 15

legendFontSize font size for legend. Default 12

annotationFontSize

font size for annotations. Default 12

 $annotation \\ Title \\ Font \\ Size$

font size for annotation title. Default 12

Details

Takes maf file as input and plots it as a matrix. Any desired clincal features can be added at the bottom of the oncoplot by providing clinicalFeatures. Oncoplot can be sorted either by mutations or by clinicalFeatures using arguments sortByMutation and sortByAnnotation respectively.

Value

None.

See Also

```
oncostrip
```

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
oncoplot(maf = laml, top = 3)</pre>
```

28 oncostrip

oncostrip	draw an oncostrip similar to cBioportal oncoprinter output.
•	

Description

draw an oncostrip similar to cBioportal oncoprinter output.

Usage

```
oncostrip(maf, genes = NULL, top = 5, colors = NULL, sort = TRUE,
    clinicalFeatures = NULL, annotationDat = NULL, sortByAnnotation = FALSE,
    annotationOrder = NULL, removeNonMutated = TRUE,
    showTumorSampleBarcodes = FALSE, annotationColor = NULL, fontSize = 10,
    titleFontSize = 15, legendFontSize = 12)
```

Arguments

maf an MAF object generated by read.maf

genes draw oncoprint for these genes. default NULL. Plots top 5 genes.

top how many top genes to be drawn. defaults to 5.

colors named vector of colors for each Variant_Classification.

sort logical sort oncomatrix for enhanced visualization. Defaults to TRUE.

clinicalFeatures

columns names from 'clinical.data' slot of MAF to be drawn in the plot. Dafault

NULL.

annotationDat If MAF file was read without annotations, provide a custom data.frame with

a column containing Tumor_Sample_Barcodes along with rest of columns with annotations. You can specify which columns to be drawn using 'clinicalFea-

tures' argument.

sortByAnnotation

logical sort oncomatrix (samples) by provided 'clinicalFeatures' Defaults to

FALSE. column-sort.

annotationOrder

Manually specify order for annotations. Works only for first 'clinicalFeatures'.

Default NULL.

removeNonMutated

Logical. If TRUE removes samples with no mutations in the oncoplot for better

visualization. Default TRUE.

 $\verb|showTumorSampleBarcodes| \\$

logical to include sample names.

annotationColor

list of colors to use for 'clinicalFeatures'. Must be a named list. Default NULL.

fontSize font size for gene names. Default 10.

titleFontSize font size for title. Default 15 legendFontSize font size for legend. Default 12

Value

None.

oncotate 29

See Also

```
oncoplot
```

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
dev.new()
oncostrip(maf = laml, genes = c('NPM1', 'RUNX1'))</pre>
```

oncotate

Annotates given variants using oncotator api.

Description

Takes input variants and annotates them using Broad's oncotator api (http://www.broadinstitute.org/oncotator/). Output is a dataframe of annotated variants in maf format.

Input should be tsv file or a data.frame with first five columns in the order chr, start, end, ref_allele, alt_allele (and so on, but only first five will used, rest will be attached to resulting maf file). Note: Time consuming if input is huge. Try to include necessary columns such as Tumor_Sample_Barcode along with above 5 fields. Only supports hg19/GRCh37 build.

Usage

```
oncotate(maflite, header = FALSE, basename = NULL)
```

Arguments

maflite input tsv file or a data.frame with chr, start, end, ref_allele, alt_allele columns.

(rest of the columns, if present will be attached to the output maf)

header logical. Whether input has a header line. Default is FALSE. Only applicable

when the input is a tsv file.

basename NULL. if basename is given, annotations will be written to <basename>.maf

file.

Value

returns a data.table in maf format.

```
sample.var = data.frame(chromsome = c('chr4', 'chr15'), Start = c(55589774, 41961117), end = c(55589774, 41961117), ref = c('A', 'TGGCTAA'), alt = c('G', '-'), Tumor_Sample_Barcode = c('fake_1', 'fake2')) write.table(sample.var, 'sampleVars.txt', sep='\t',quote = FALSE, row.names = FALSE) ##var.maf <- oncotate(maflite = 'sampleVars.txt', header = TRUE)
```

30 pancanComparison

pancanComparison Perform PacCancer analysis

Description

Takes MutSig results and compares them against PanCancer results.

Usage

```
pancanComparison(mutsigResults, qval = 0.1, cohortName = "input",
  inputSampleSize = NULL, label = 1, genesToLabel = NULL,
  normSampleSize = FALSE, file = NULL, width = 6, height = 6,
  pointSize = 3, labelSize = 3)
```

Arguments

mutsigResults MutSig results (usually sig_genes.txt). Can be gz compressed.

qvalue threshold to define SMG. Default 0.1

cohortName Input cohort name.

inputSampleSize

Sample size from MAF file used to generate mutSig results. Optional.

label Default 1. Can be 1, 2 or 3.

genesToLabel Default NULL. Exclusive with label argument.

normSampleSize normalizes gene sizes to draw bubble plot. Requires inputSampleSize. i.e, bub-

ble sizes proportional to fraction of samples in which the gene is mutated.

file basename for output file (both raw data and plot are saved)

width width of the file to be saved.
height height of the file to be saved.
pointSize size for scatter plot. Default 1.
labelSize label text size. Default 3

Details

This function takes MutSig results and compares them against panCancer cohort (~5000 tumor samples from 21 cancer types). This analysis can reveal novel genes exclusively mutated in input cohort.

Value

ggplot object

References

Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumor types. Nature. 2014;505(7484):495-501. doi:10.1038/nature12912.

```
laml.mutsig <- system.file("extdata", "LAML_sig_genes.txt.gz", package = "maftools")
pancanComparison(mutsigResults = laml.mutsig, qval = 0.1, cohortName = 'LAML', inputSampleSize = 200, label =</pre>
```

pfamDomains 31

pfamDomains	pfam domain annotation and summarization.	

Description

Summarizes amino acid positions and annotates them with pfam domain information.

Usage

```
pfamDomains(maf = NULL, AACol = NULL, summarizeBy = "AAPos", top = 5,
  domainsToLabel = NULL, baseName = NULL, varClass = "nonSyn",
  width = 5, height = 5, labelSize = 3)
```

Arguments

maf	an MAF object generated by read.maf
AACol	manually specify column name for a mino acid changes. Default looks for field 'AAChange' $$
summarizeBy	Summarize domains by amino acid position or conversions. Can be "AAPos" or "AAChange" $$
top	How many top mutated domains to label in the scatter plot. Defaults to 5.
${\tt domainsToLabel}$	Default NULL. Exclusive with top argument.
baseName	If given writes the results to output file. Default NULL.
varClass	which variants to consider for summarization. Can be nonSyn, Syn or all. Default nonSyn.
width	width of the file to be saved.
height	height of the file to be saved.
labelSize	font size for labels. Default 3.

Value

returns a list two tables summarized by amino acid positions and domains respectively. Also plots top 5 most mutated domains as scatter plot.

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
pfamDomains(maf = laml, AACol = 'Protein_Change')</pre>
```

32 plotApobecDiff

plotApobecDiff Plot differences between APOBEC enriched and non-APOBEC enriched samples.	plotApobecDiff	30
--	----------------	----

Description

Plots differences between APOBEC enriched and non-APOBEC enriched samples

Usage

```
plotApobecDiff(tnm, maf, title_size = 1.3)
```

Arguments

```
tnm output generated by trinucleotideMatrix
maf an MAF object used to generate the matrix
title_size size of title. Default 1.3
```

Details

Plots differences between APOBEC enriched and non-APOBEC enriched samples (TCW). Plot includes differences in mutations load, tCw motif distribution and top genes altered.

Value

list of table containing differenatially altered genes. This can be passed to forestPlot to plot results.

See Also

```
trinucleotideMatrix plotSignatures
```

```
## Not run:
laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'hg19.fa', prefix = 'chr',
add = TRUE, useSyn = TRUE)
plotApobecDiff(laml.tnm)
## End(Not run)</pre>
```

plotCBSsegments 33

Description

Plots segmented copy number data.

Usage

```
plotCBSsegments(cbsFile = NULL, maf = NULL, tsb = NULL, chr = NULL,
 savePlot = FALSE, width = 6, height = 3, labelAll = FALSE,
 genes = NULL, ref.build = "hg19", writeTable = FALSE,
 removeXY = FALSE, color = NULL)
```

Arguments

6	
cbsFile	CBS segmented copy number file. Column names should be Sample, Chromosome, Start, End, Num_Probes and Segment_Mean (log2 scale).
maf	optional MAF
tsb	If segmentation file contains many samples (as in gistic input), specify sample name here. Defualt plots all samples. If you are maping maf, make sure sample names in Sample column of segmentation file matches to those Tumor_Sample_Barcodes in MAF.
chr	Just plot this chromosome.
savePlot	If true plot is saved as pdf.
width	width of plot
height	height of plot

labelAll If true and if maf object is specified, maps all mutataions from maf onto seg-

ments. Default FALSE, maps only variants on copy number altered regions.

highlight only these variants genes

Reference build for chromosome sizes. Can be hg18, hg19 or hg38. Default ref.build

hg19.

writeTable If true and if maf object is specified, writes plot data with each variant and its

corresponding copynumber to an output file.

don not plot sex chromosomes. removeXY

color Manually specify color scheme for chromosomes. Default NULL. i.e, aletrnat-

ing Gray70 and midnightblue

Details

this function takes segmented copy number data and plots it. If MAF object is specified, all mutations are highlighted on the plot.

Value

ggplot object

34 plotClusters

Examples

```
tcga.ab.009.seg <- system.file("extdata", "TCGA.AB.3009.hg19.seg.txt", package = "maftools")
plotCBSsegments(cbsFile = tcga.ab.009.seg)</pre>
```

plotClusters

Plot density plots from clutering results.

Description

Plots results from inferHeterogeneity.

Usage

```
plotClusters(clusters, tsb = NULL, genes = NULL, showCNvars = FALSE,
    savePlot = FALSE, width = 6, height = 5, colors = NULL)
```

Arguments

clusters clustering results from inferHeterogeneity tsb sample to plot from clustering results. Default plots all samples from results. genes to highlight on the plot. Can be a vector of gene names, CN_altered to genes label copy number altered varinats. or all to label all genes. Default NULL. showCNvars show copy numbered altered variants on the plot. Default FALSE. savePlot If TRUE saves plot to output pdf width plot width. Default 6. height plot height. Default 5. colors manual colors for clusters. Default NULL.

Value

returns nothing.

See Also

inferHeterogeneity

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
seg = system.file('extdata', 'TCGA.AB.3009.hg19.seg.txt', package = 'maftools')
TCGA.AB.3009.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA-AB-3009',
segFile = seg, vafCol = 'i_TumorVAF_WU')
plotClusters(TCGA.AB.3009.clust, genes = c('NF1', 'SUZ12'), showCNvars = TRUE)</pre>
```

plotEnrichmentResults 35

 ${\tt plotEnrichment\,Results}\ \ {\it Plots\,results\,from\,clinicalEnrichment\,analysis}$

Description

Plots results from clinicalEnrichment analysis

Usage

```
plotEnrichmentResults(enrich_res, pVal = 0.05, cols = NULL,
   annoFontSize = 0.8, geneFontSize = 0.8, legendFontSize = 0.8,
   showTitle = TRUE)
```

Arguments

enrich_res	results from clinicalEnrichment or signatureEnrichment
pVal	Default 0.05
cols	named vector of colors for factor in a clinical feature. Default NULL
annoFontSize	cex for annotation font size. Default 0.8
geneFontSize	cex for gene font size. Default 0.8
${\tt legendFontSize}$	cex for legend font size. Default 0.8
showTitle	Default TRUE

See Also

 ${\tt clinicalEnrichment\ signatureEnrichment}$

plotmafSummary Plots maf summary.

Description

Plots maf summary.

Usage

```
plotmafSummary(maf, file = NULL, rmOutlier = TRUE, dashboard = TRUE,
  titvRaw = TRUE, width = 10, height = 7, addStat = NULL,
  showBarcodes = FALSE, fs = 10, textSize = 2, color = NULL,
  statFontSize = 3, titleSize = c(10, 8), titvColor = NULL, top = 10)
```

36 plotOncodrive

Arguments

maf an MAF object generated by read.maf
file If given pdf file will be generated.
rmOutlier If TRUE removes outlier from boxplot.

dashboard If FALSE plots simple summary instead of dashboard style.

titvRaw TRUE. If false instead of raw counts, plots fraction.

width plot parameter for output file. height plot parameter for output file.

addStat Can be either mean or median. Default NULL. showBarcodes include sample names in the top bar plot.

fs base size for text. Default 10.

textSize font size if showBarcodes is TRUE. Default 2.

color named vector of colors for each Variant_Classification.

statFontSize font size if addStat is used. Default 3.

titleSize font size for title and subtitle. Default c(10, 8)

titvColor colors for SNV classifications.

top include top n genes dashboard plot. Default 10.

Value

Prints plot.

See Also

```
read.maf MAF
```

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf, useAll = FALSE)
plotmafSummary(maf = laml, addStat = 'median')</pre>
```

plotOncodrive

Plots results from oncodrive

Description

Takes results from oncodrive and plots them as a scatter plot. Size of the gene shows number of clusters (hotspots), x-axis can either be an absolute number of variants accumulated in these clusters or a fraction of total variants found in these clusters. y-axis is fdr values transformed into -log10 for better representation. Labels indicate Gene name with number clusters observed.

Usage

```
plotOncodrive(res = NULL, fdrCutOff = 0.05, useFraction = FALSE,
  colCode = NULL, labelSize = 2)
```

plotSignatures 37

Arguments

res results from oncodrive

fdrCutOff fdr cutoff to call a gene as a driver.

useFraction if TRUE uses a fraction of total variants as X-axis scale instead of absolute

counts.

colCode Colors to use for indicating significant and non-signififcant genes. Default

NULL

labelSize font size for labelling genes. Default 2.

Value

a ggplot object which can be further modified.

See Also

oncodrive

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
laml.sig <- oncodrive(maf = laml, AACol = 'Protein_Change', minMut = 5)
plotOncodrive(res = laml.sig, fdrCutOff = 0.1)</pre>
```

plotSignatures

Plots decomposed mutational signatures

Description

Takes results from extractSignatures and plots decomposed mutational signatures as a barplot.

Usage

```
plotSignatures(nmfRes = NULL, contributions = FALSE, color = NULL,
    patient_order = NULL, title_size = 1.2, ...)
```

Arguments

nmfRes results from extractSignatures

contributions If TRUE plots contribution of signatures in each sample.

color colors for each Ti/Tv conversion class. Default NULL

patient_order User defined ordering of samples. Default NULL.

title_size size of title. Default 1.3

... further plot options passed to barplot

Value

ggplot object if contributions is TRUE

38 plotTiTv

See Also

trinucleotideMatrix plotSignatures

plotTiTv

Plot Transition and Trasnversion ratios.

Description

Takes results generated from titv and plots the Ti/Tv ratios and contributions of 6 mutational conversion classes in each sample.

Usage

```
plotTiTv(res = NULL, plotType = "both", file = NULL, width = 6,
height = 5, color = NULL, showBarcodes = FALSE, textSize = 2,
baseFontSize = 12, axisTextSize = c(9, 9))
```

Arguments

res results generated by titv
plotType Can be 'bar', 'box' or 'both'. Defaults to 'both'

file basename for output file name. If given pdf will be generated.

width width of the plot, in inches.
height height of the plot, in inches.

color named vector of colors for each coversion class.
showBarcodes Whether to include sample names for barplot
textSize fontsize if showBarcodes is TRUE. Deafult 2.

baseFontSize font size. Deafult 12.

axisTextSize text size x and y tick labels. Default c(9,9).

Value

None.

See Also

titv

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
laml.titv = titv(maf = laml, useSyn = TRUE)
plotTiTv(laml.titv)</pre>
```

plotVaf 39

|--|

Description

Plots vaf distribution of genes as a boxplot or violinplot.

Usage

```
plotVaf(maf, vafCol = NULL, genes = NULL, violin = FALSE, top = 10,
  orderByMedian = TRUE, flip = FALSE, fn = NULL, width = 6,
  height = 5)
```

Arguments

maf	an MAF object generated by read.maf
vafCol	manually specify column name for vafs. Default looks for column 't_vaf'
genes	specify genes for which plots has to be generated
violin	if TRUE plots violin plot
top	if genes is NULL plots top n number of genes. Defaults to 5.
orderByMedian	Orders genes by decreasing median VAF. Default TRUE
flip	if TRUE, flips axes. Default FALSE
fn	Filename. If given saves plot as a output pdf. Default NULL.
width	Width of plot to be saved. Default 6
height	TT 1 1 . C 1 1 1 1 1 1
11018110	Height of plot to be saved. Default 5

Value

ggplot object which can be further modified.

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
plotVaf(maf = laml, vafCol = 'i_TumorVAF_WU')</pre>
```

40 rainfallPlot

prepareMutSig

Prepares MAF file for MutSig analysis.

Description

Corrects gene names for MutSig compatibility.

Usage

```
prepareMutSig(maf, fn = NULL)
```

Arguments

maf an MAF object generated by read.maf

fn basename for output file. If provided writes MAF to an output file with the given

basename.

Details

MutSig/MutSigCV is most widely used program for detecting driver genes. However, we have observed that covariates files (gene.covariates.txt and exome_full192.coverage.txt) which are bundled with MutSig have non-standard gene names (non Hugo_Symbols). This discrepancy between Hugo_Symbols in MAF and non-Hugo_symbols in covariates file causes MutSig program to ignore such genes. For example, KMT2D - a well known driver gene in Esophageal Carcinoma is represented as MLL2 in MutSig covariates. This causes KMT2D to be ignored from analysis and is represented as an insignificant gene in MutSig results. This function attempts to correct such gene symbols with a manually curated list of gene names compatible with MutSig covariates list.

Value

returns a MAF with gene symbols corrected.

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
prepareMutSig(maf = laml)</pre>
```

rainfallPlot

Rainfall plot to display hyper mutated genomic regions.

Description

Plots inter variant distance as a function of genomic locus.

```
rainfallPlot(maf, tsb = NULL, detectChangePoints = FALSE, seg_len = 5,
  ref.build = "hg19", color = NULL, savePlot = FALSE, width = 6,
  height = 3, fontSize = 12, pointSize = 1, ...)
```

read.maf 41

Arguments

maf an MAF object generated by read.maf. Required.

tsb specify sample names (Tumor_Sample_Barcodes) for which plotting has to be

done. If NULL, draws plot for most mutated sample.

detectChangePoints

If TRUE, detectes genomic change points where potential kataegis are formed.

Results are written to an output tab delimted file.

ref.build Reference build for chromosome sizes. Can be hg18, hg19 or hg38. Default

hg19.

color named vector of colors for each coversion class.

savePlot If TRUE plot is saved to output pdf. Default FALSE.

width width of plot to be saved.

height height of plot to be saved.

fontSize Default 12.
pointSize Default 2.

Details

If 'detectChangePoints" is set to TRUE, this method will use Change-Point detection method to identify genomic loci where average inter-mutation distance changes from the backgorund. Segments detected with less than 6 mutations are filtered out.

Value

returns ggplot object of the plot which can be further modified. Results are written to an output file with suffix changePoints.tsv

read.maf Read MAF files.

Description

Takes tab delimited MAF (can be plain text or gz compressed) file as an input and summarizes it in various ways. Also creates oncomatrix - helpful for visualization.

```
read.maf(maf, clinicalData = NULL, removeDuplicatedVariants = TRUE,
  useAll = TRUE, gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL,
  gisticDelGenesFile = NULL, gisticScoresFile = NULL, cnLevel = "all",
  cnTable = NULL, isTCGA = FALSE, vc_nonSyn = NULL, verbose = TRUE)
```

42 read.maf

Arguments

maf tab delimited MAF file. File can also be gz compressed. Required. Alterna-

tively, you can also provide already read MAF file as a dataframe.

clinicalData Clinical data associated with each sample/Tumor_Sample_Barcode in MAF.

Could be a text file or a data.frame. Default NULL.

removeDuplicatedVariants

removes repeated variants in a particuar sample, mapped to multiple transcripts

of same Gene. See Description. Default TRUE.

useAll logical. Whether to use all variants irrespective of values in Mutation_Status.

Defaults to TRUE. If FALSE, only uses with values Somatic.

gisticAllLesionsFile

All Lesions file generated by gistic. e.g; all_lesions.conf_XX.txt, where XX is

the confidence level. Default NULL.

gisticAmpGenesFile

Amplification Genes file generated by gistic. e.g; amp_genes.conf_XX.txt, where

XX is the confidence level. Default NULL.

gisticDelGenesFile

Deletion Genes file generated by gistic. e.g; del_genes.conf_XX.txt, where XX

is the confidence level. Default NULL.

gisticScoresFile

scores.gistic file generated by gistic. Default NULL

cnLevel level of CN changes to use. Can be 'all', 'deep' or 'shallow'. Default uses all

i.e, genes with both 'shallow' or 'deep' CN changes

cnTable Custom copynumber data if gistic results are not available. Input file or a

data.frame should contain three columns with gene name, Sample name and

copy number status (either 'Amp' or 'Del'). Default NULL.

isTCGA Is input MAF file from TCGA source. If TRUE uses only first 12 characters

from Tumor_Sample_Barcode.

vc_nonSyn NULL. Provide manual list of variant classifications to be considered as non-

synonymous. Rest will be considered as silent variants. Default uses Variant

Classifications with High/Moderate variant consequences. http://asia.ensembl.org/Help/Glossary?id=

"Frame_Shift_Del", "Frame_Shift_Ins", "Splice_Site", "Translation_Start_Site", "Nonsense_Mutation_Start_Site", "Nonsense_Mutation_Start_Site, "Nonsense_Mutation_Site, "Nons

"Nonstop_Mutation", "In_Frame_Del", "In_Frame_Ins", "Missense_Mutation"

verbose TRUE logical. Default to be talkative and prints summary.

Details

This function takes MAF file as input and summarizes them. If copy number data is available, e.g from GISTIC, it can be provided too via arguments gisticAllLesionsFile, gisticAmpGenesFile, and gisticDelGenesFile. Copy number data can also be provided as a custom table containing Gene name, Sample name and Copy Number status.

Note that if input MAF file contains multiple affected transcripts of a variant, this function by default removes them as duplicates, while keeping single unique entry per variant per sample. If you wish to keep all of them, set removeDuplicatedVariants to FALSE.

FLAGS - If you get a note on possible FLAGS while reading MAF, it means some of the top mutated genes are fishy. These genes are often non-pathogenic and passengers, but are frequently mutated in most of the public exome studies. Examples of such genes include TTN, MUC16, etc. This note can be ignored without any harm, it's only generated as to make user aware of such genes. See references for details on FLAGS.

readGistic 43

Value

An object of class MAF.

References

Shyr C, Tarailo-Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics 2014; 7: 64.

See Also

```
plotmafSummary write.mafSummary
```

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)</pre>
```

readGistic

Read and summarize gistic output.

Description

A little function to summarize gistic output files. Summarized output is returned as a list of tables.

Usage

```
readGistic(gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL,
  gisticDelGenesFile = NULL, gisticScoresFile = NULL, cnLevel = "all",
  isTCGA = FALSE)
```

Arguments

gisticAllLesionsFile

All Lesions file generated by gistic. e.g; all_lesions.conf_XX.txt, where XX is the confidence level. Required. Default NULL.

gisticAmpGenesFile

Amplification Genes file generated by gistic. e.g; amp_genes.conf_XX.txt, where XX is the confidence level. Default NULL.

gisticDelGenesFile

Deletion Genes file generated by gistic. e.g; del_genes.conf_XX.txt, where XX is the confidence level. Default NULL.

gisticScoresFile

scores.gistic file generated by gistic.

cnLevel level of CN changes to use. Can be 'all', 'deep' or 'shallow'. Default uses all

i.e, genes with both 'shallow' or 'deep' CN changes

isTCGA Is the data from TCGA. Default FALSE.

Details

Requires output files generated from GISTIC. Gistic documentation can be found here ftp://ftp.broadinstitute.org/pub/GIS

Value

A list of summarized data.

Examples

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools")
laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFile</pre>
```

 $\begin{tabular}{ll} signature Enrichment & Performs sample stratification based on signature contribution and enrichment analysis. \\ \end{tabular}$

Description

Performs k-means clustering to assign signature to samples and performs enrichment analysis.

Usage

```
signatureEnrichment(maf, sig_res, minMut = 5, useCNV = FALSE, fn = NULL)
```

Arguments

maf	an MAF object used for signature analysis.
sig_res	Signature results from extractSignatures
minMut	Consider only genes with minimum this number of samples mutated. Default 5.
useCNV	whether to include copy number events. Only applicable when MAF is read along with copy number data. Default TRUE if available.
fn	basename for output file. Default NULL.

Value

result list containing p-values

See Also

plotEnrichmentResults

somaticInteractions 45

somaticInteractions	Exact tests to detect mutually exclusive, co-occuring and altered gene-	
	sets.	

Description

Performs Pair-wise Fisher's Exact test to detect mutually exclusive or co-occuring events. Also identifies gene sets mutated significantly.

Usage

```
somaticInteractions(maf, top = 25, genes = NULL, pvalue = c(0.05, 0.01),
returnAll = FALSE, findPathways = TRUE, kMax = 3, fontSize = 0.8,
verbose = TRUE)
```

Arguments

maf	an MAF object generated by read.maf
top	check for interactions among top 'n' number of genes. Defaults to top 25. genes
genes	List of genes among which interactions should be tested. If not provided, test will be performed between top 25 genes.
pvalue	Default $c(0.05,0.01)$ p-value threshold. You can provide two values for upper and lower threshold.
returnAll	If TRUE returns test statistics for all pair of tested genes. Default FALSE, returns for only genes below pvalue threshold.
findPathways	Uses all mutually exclusive set of genes to further identify altered pathways. Default TRUE
kMax	Default 3. maximum gene set size if findPathways is TRUE. This is time consuming for > 3 .
fontSize	cex for gene names. Default 0.8
verbose	Default TRUE

Details

This function and plotting is inspired from genetic interaction analysis performed in the published study combining gene expression and mutation data in MDS. See reference for details.

Value

list of data.tables

References

Gerstung M, Pellagatti A, Malcovati L, et al. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nature Communications. 2015;6:5901. doi:10.1038/ncomms6901.

46 subsetMaf

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
somaticInteractions(maf = laml, top = 5)</pre>
```

subsetMaf

Subset MAF

Description

Subsets MAF based on given conditions.

Usage

```
subsetMaf(maf, tsb = NULL, genes = NULL, fields = NULL, query = NULL,
mafObj = FALSE, includeSyn = TRUE, isTCGA = FALSE, restrictTo = "all")
```

Arguments

maf	an MAF object generated by read.maf
tsb	subset by these samples (Tumor Sample Barcodes)
genes	subset by these genes
fields	include only these fields along with necessary fields in the output
query	query string. e.g, "Variant_Classification == 'Missense_Mutation'" returns only Missense variants.
maf0bj	returns output as MAF class MAF-class. Default FALSE
includeSyn	Default TRUE, only applicable when mafObj = FALSE. If mafObj = TRUE, synonymous variants will be stored in a seperate slot of MAF object.
isTCGA	Is input MAF file from TCGA source.
restrictTo	restrict subset operations to these. Can be 'all', 'cnv', or 'mutations'. Default 'all'. If 'cnv' or 'mutations', subset operations will only be applied on copynumber or mutation data respectively, while retaining other parts as is.

Value

subset table or an object of class MAF-class

See Also

```
getFields
```

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
##Select all Splice_Site mutations from DNMT3A and NPM1
subsetMaf(maf = laml, genes = c('DNMT3A', 'NPM1'),
query = "Variant_Classification == 'Splice_Site'")
##Select all variants with VAF above 30%
subsetMaf(maf = laml, query = "i_TumorVAF_WU > 30")
##Extract data for samples 'TCGA.AB.3009' and 'TCGA.AB.2933' but only include vaf filed.
subsetMaf(maf = laml, tsb = c('TCGA.AB.3009', 'TCGA.AB.2933'), fields = 'i_TumorVAF_WU')
```

tcgaCompare 47

tcgaCompare	Compare mutation load against TCGA cohorts
cegacompar e	Compare matation tout against 1 CON contons

Description

Compares mutation load in input MAF against all of 33 TCGA cohorts

Usage

```
tcgaCompare(maf, cohortName = NULL, primarySite = FALSE, col = c("gray70",
   "black"), medianCol = "red", fn = NULL, width = 8, height = 5,
   fontSize = 10)
```

Arguments

maf an MAF object generated by read.maf

cohortName name for the input MAF cohort. Default "Input"

primarySite If TRUE uses primary site of cancer as labels instead of TCGA project IDs.

Default FALSE.

col color vector for length 2 TCGA cohorts and input MAF cohort. Default gray70

and black.

medianCol color for median line. Default red.

fn If provided saves plot to output pdf with basename fn. Default NULL.

width width for output plot
height height of output plot
fontSize base fontsize. Default 10.

Value

ggplot object

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
tcgaCompare(maf = laml, cohortName = "AML")</pre>
```

titv

Classifies SNPs into transitions and transversions

Description

takes output generated by read.maf and classifies Single Nucleotide Variants into Transitions and Transversions.

```
titv(maf, useSyn = FALSE, plot = TRUE, file = NULL)
```

48 trinucleotideMatrix

Arguments

maf an MAF object generated by read.maf

useSyn Logical. Whether to include synonymous variants in analysis. Defaults to

FALSE.

plot plots a tity fractions. default TRUE.

file basename for output file name. If given writes summaries to output file. Default

NULL.

Value

list of data. frames with Transitions and Transversions summary.

See Also

```
plotTiTv
```

Examples

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
laml.titv = titv(maf = laml, useSyn = TRUE)</pre>
```

trinucleotideMatrix

Extract single 5' and 3' bases flanking the mutated site for de-novo signature analysis. Also estimates APOBEC enrichment scores.

Description

Extract single 5' and 3' bases flanking the mutated site for de-novo signature analysis. Also estimates APOBEC enrichment scores.

Usage

```
trinucleotideMatrix(maf, ref_genome, prefix = NULL, add = TRUE,
  ignoreChr = NULL, useSyn = TRUE, fn = NULL)
```

Arguments

maf an MAF object generated by read.maf ref_genome faidx indexed refrence fasta file.

prefix Prefix to add or remove from contig names in MAF file.

add If prefix is used, default is to add prefix to contig names in MAF file. If false

prefix will be removed from contig names.

ignoreChr Chromsomes to remove from analysis. e.g. chrM

useSyn Logical. Whether to include synonymous variants in analysis. Defaults to TRUE fn If given writes APOBEC results to an output file with basename fn. Default

NULL.

write.GisticSummary 49

Details

Extracts immediate 5' and 3' bases flanking the mutated site and classifies them into 96 substitution classes. This function loads reference genome into memeory. Typical human geneome occupies a peak memory of ~3 gb while extracting bases.

APOBEC Enrichment: Enrichment score is calculated using the same method described by Roberts et al.

```
E = (n_tcw * background_c) / (n_C * background_tcw) where, n_tcw = number of mutations within T[C>T]W and T[C>G]W context. (W -> A or T) n_C = number of mutated C and G
```

background_C and background_tcw motifs are number of C and TCW motifs occuring around +/-20bp of each mutation.

One-sided Fisher's Exact test is performed to determine the enrichment of APOBEC tcw mutations over background.

Value

list of 2. A matrix of dimension nx96, where n is the number of samples in the MAF and a table describing APOBEC enrichment per sample.

References

Roberts SA, Lawrence MS, Klimczak LJ, et al. An APOBEC Cytidine Deaminase Mutagenesis Pattern is Widespread in Human Cancers. Nature genetics. 2013;45(9):970-976. doi:10.1038/ng.2702.

See Also

```
{\tt extractSignatures\ plotApobecDiff}
```

Examples

```
## Not run:
laml.tnm <- trinucleotideMatrix(maf = laml, ref_genome = 'hg19.fa',
prefix = 'chr', add = TRUE, useSyn = TRUE)
## End(Not run)</pre>
```

write.GisticSummary

Writes GISTIC summaries to output tab-delimited text files.

Description

Writes GISTIC summaries to output tab-delimited text files.

```
write.GisticSummary(gistic, basename = NULL)
```

50 write.mafSummary

Arguments

gistic an object of class GISTIC generated by readGistic

basename basename for output file to be written.

Value

None. Writes output as tab delimited text files.

See Also

```
readGistic
```

Examples

```
all.lesions <- system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")

amp.genes <- system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")

del.genes <- system.file("extdata", "del_genes.conf_99.txt", package = "maftools")

scores.gistic <- system.file("extdata", "scores.gistic", package = "maftools")

laml.gistic = readGistic(gisticAllLesionsFile = all.lesions, gisticAmpGenesFile = amp.genes, gisticDelGenesFwrite.GisticSummary(gistic = laml.gistic, basename = 'laml')
```

write.mafSummary

Writes maf summaries to output tab-delimited text files.

Description

Writes maf summaries to output tab-delimited text files.

Usage

```
write.mafSummary(maf, basename = NULL)
```

Arguments

maf an MAF object generated by read.maf basename basename for output file to be written.

Value

None. Writes output as text files.

See Also

read.maf

```
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read.maf(maf = laml.maf)
write.mafSummary(maf = laml, basename = 'laml')</pre>
```

Index

annovarToMaf, 3	MAF (MAF-class), 20
	MAF-class, 20
barplot, 37	mafCompare, 7, 20
aliminalFuniahment 4 25	mafSummary, 21
clinicalEnrichment, 4, 35	mafSurvival, 22
coOncoplot, 5	math.score, 23
extractSignatures, 6, 37, 44, 49	mutCountMatrix, 24
forestPlot, $7, 21, 32$	nmf, 6
geneCloud, 8	oncodrive, 25, <i>37</i>
${\sf genesToBarcodes}, 9$	oncoplot, 26, 29
genotypeMatrix, 9	oncoPrint, 27
getClinicalData, 10	oncostrip, <i>16</i> , <i>27</i> , 28
getClinicalData,MAF-method	oncotate, 29
(getClinicalData), 10	
getCytobandSummary, 10, 13	pancanComparison, 30
<pre>getCytobandSummary,GISTIC-method</pre>	pfamDomains, 31
(getCytobandSummary), 10	plotApobecDiff, 32, 49
getFields, 11, 20, 24, 46	plotCBSsegments, 33
<pre>getFields,MAF-method(getFields), 11</pre>	plotClusters, 18, 34
getGeneSummary, 12, 13, 20-22, 24	plotEnrichmentResults, 4, 35, 44
getGeneSummary,GISTIC-method	plotmafSummary, 35, 43
(getGeneSummary), 12	plotOncodrive, 25, 36
getGeneSummary, MAF-method	plotSignatures, 7, 32, 37, 38
(getGeneSummary), 12	plotTiTv, 38, 48
getSampleSummary, 12, 13, 20-22, 24	plotVaf, 39
getSampleSummary,GISTIC-method	prepareMutSig, 40
(getSampleSummary), 12	
getSampleSummary, MAF-method	rainfallPlot, 40
(getSampleSummary), 12	read.maf, 8, 9, 17, 19, 21–26, 31, 36, 39–41,
GISTIC, 8, 15	41, 45–48, 50
GISTIC (GISTIC-class), 13	readGistic, <i>8</i> , <i>15</i> , 43, <i>50</i>
GISTIC-class, 13	
gisticBubblePlot, 13	signatureEnrichment, 35, 44
gisticChromPlot, 14	somaticInteractions, 45
gisticOncoPlot, 15	subsetMaf, 46
81001001100111011110	t
icgcSimpleMutationToMAF, 16	tcgaCompare, 47
inferHeterogeneity, 17, 34	titv, 38, 47
	trinucleotideMatrix, 6 , 7 , 32 , 38 , 48
lollipopPlot, 18	wordcloud, 8
MAE 2 5 8 0 16 17 10 21 22 25 26 29	write.GisticSummary, 49
MAF, 3-5, 8, 9, 16, 17, 19, 21-23, 25, 26, 28,	write.mafSummary, 43, 50
31–33, 36, 39–41, 44, 45, 47, 48, 50	wi ite.iiai Sullillai y, 73, 30