Relatório do Trabalho 2 - Memória Virtual Paginada Sob Demanda

- · Davi Ludvig,
- João Paulo Oliveira e
- Gibram Goulart.

Introdução

Este documento reúne um apanhado de informações acerca da solução dos discentes autores para resolver o enunciado do trabalho 2 da disciplina INE5412.

1. Objetivo

O objetivo deste trabalho é implementar um sistema de memória virtual paginada sob demanda em espaço de usuário, compreendendo a mecânica do tratamento de faltas de página e avaliando o desempenho de diferentes algoritmos de substituição de páginas (FIFO, RANDOM e um algoritmo personalizado). A implementação foi baseada no projeto do Prof. Douglas Thain (Universidade de Notre Dame), adaptado para o ambiente proposto em aula e disponibilizado pelo professor Giovani Gracioli.

2. Ambiente Experimental

• Máquina utilizada:

Sistema Operacional: Ubuntu 24.04 LTS

Compilador: g++

Make: GNU Make 4.3 compilado para x86_64-pc-linux-gnu

• Execução dos testes:

Para cada programa (alpha, beta, gamma, delta), os seguintes comandos podem ser executados com variações:

```
./virtmem 10 10 rand alpha
./virtmem 10 10 fifo beta
./virtmem 10 10 custom gamma
...
```

3 Arquitetura

3.1 Estrutura Basica

O projeto foi dividido nas seguintes classes:

- Page_Table: Interface com a tabela de páginas.
- Disk: Simulação de um disco secundário.

PROF

- Page_Replacement: Gerencia o estado dos frames físicos (livres/ocupados) e realiza as substituições de páginas.
- Program: Classe responsável por gerenciar os programas utilizados nas execuções (alpha, beta, gamma e delta). Ela coordena o fluxo das instruções, realiza acessos à memória virtual e simula os diferentes padrões de uso de memória definidos para os testes.

3.2 Funcionamento do Tratador de Page Faults:

Passos:

- 1. Detecta a falta de página.
- 2. Se for a primeira falta, inicializa os frames.
- 3. Verifica por um frame livre:
 - Se disponível, lê a página do disco.
 - Se não, aplica o algoritmo de substituição:
 - Se a página vítima foi modificada, escreve-a no disco.
 - Libera o frame e invalida a entrada anterior.
- 4. Carrega a nova página no frame.
- 5. Atualiza a entrada na tabela de páginas.
- 6. Caso seja FIFO, adiciona à fila.
- 7. Se já estiver na memória mas com permissão insuficiente, ativa o bit de escrita.

Estatísticas de execução (page faults, disk reads/writes) são coletadas automaticamente.

4. Algoritmos de Substituição de Página

4.1. RANDOM

Seleciona aleatoriamente uma página para substituição.

4.2. FIFO (First-In, First-Out)

Mantém uma fila das páginas carregadas. A página mais antiga (a que entrou primeiro) é removida.

4.3 CUSTOM

- Como algoritmo personalizado custom construído pelo grupo, foi decidido implementar uma versão do algoritmo de substituição de páginas LRU (Least Recently Used).
- Na inicialização da classe Page_Replacement, são definidos dois atributos:

PROF

- 2. O inteiro tempo_atual, que é incrementado a cada vez que uma página é acessada, servindo como um contador de tempo global.
- Dentro do método Page_Replacement::select_frame_to_be_removed, é feita a checagem do algoritmo. Se for custom, aplica os seguintes passos:
- 1. Define o tempo mínimo como o maior inteiro possível.
- 2. Define o frame a ser removido como -1. (Nenhum frame)
- 3. Para cada frame, faça
 - 1. Se o tempo de acesso do frame for menor que o tempo mínimo, defina que o frame a ser removido é o atual.
- 4. Retorne o frame a ser removido.

4.3.1 Comparações

Rand

- O algoritmo rand seleciona um frame aleatoriamente para remoção, o que pode levar a uma alta taxa de faltas de página, especialmente em cenários onde as páginas acessadas recentemente são necessárias novamente.
- Nesse cenário, existirão diversas possibilidades do custom se sair melhor que o rand, pois o custom prioriza a remoção de páginas que não foram acessadas recentemente, enquanto o rand não considera o histórico de acesso.

FIFO

- O algoritmo fifo remove a página que foi carregada há mais tempo, o que pode levar a uma taxa de faltas de página alta se as páginas acessadas recentemente forem removidas.
- O custom pode se sair melhor que o fifo em cenários onde as páginas acessadas recentemente são necessárias novamente, pois o custom prioriza a remoção de páginas que não foram acessadas recentemente.
- Além disso, em cenários onde há uma alta taxa de acesso a páginas, o custom pode se sair melhor que o fifo, pois o fifo não considera o histórico de acesso das páginas, enquanto o custom prioriza a remoção de páginas que não foram acessadas recentemente. Isso pode ser perceptível também em cenários com bastante leitura.

Gráfico para entendimento

Foi constrúido o seguinte diagrama gráfico para melhor entendimento do algoritmo custom:

PROF

Primeiro, alocou-se ambos vetores que representam o frame e o tempo_acesso para cada frame (n). O vetor de frames inicia com todos os valores iguais a -1, indicando que nenhum frame está ocupado. O vetor de tempo_acesso inicia com todos os valores iguais a 0, indicando que nenhum frame foi acessado.

Em seguida, são requisitadas as páginas 0, 1, 2, ..., n-1, que ocupam todos os frames disponíveis. A cada requisição, o tempo atual é incrementado e o tempo de acesso do frame correspondente é atualizado para o valor do tempo atual.

Após isso, a página 1 é requisitada novamente, o que atualiza o tempo de acesso do frame correspondente para o valor do tempo atual (n+1).

Depois da requisição da página 1, as páginas n e n+1 são requisitadas. Como não há frames disponíveis, o algoritmo custom seleciona o frame com o menor tempo de acesso, que é o frame da página 0, e o substitui pela página n. E o frame que alocava a página 2 é substituído pela página n+1, pois o tempo de acesso do frame da página 2 é o menor dentre os disponíveis no momento.

Com isso, observamos que o algoritmo custom (LRU) remove sempre a página que está há mais tempo sem ser acessada, o que pode levar a uma taxa de faltas de página menor em cenários onde as páginas acessadas recentemente são necessárias novamente.

É perceptível que, neste caso, o algoritmo custom se sai melhor que o rand e o fifo, pois ele prioriza a remoção de páginas que não foram acessadas recentemente. Se fosse o caso de utilizar fifo, no tempo n+3, a página 1 seria removida, o que não é o ideal, pois ela foi acessada recentemente. Já o rand poderia remover qualquer página, sem considerar o histórico de acesso.

5. Resultados e Análises

A seguir, serão listados, para cada programa (alpha, beta, gamma e delta), uma sequência de gráficos que mostram os valores de page faults, disk reads e disk writes para cada algoritmo de substituição de página (rand, fifo e custom).

5.1 Alpha

- PROF
- O comportamento de alpha é caracterizado por acessos sequenciais a páginas, o que causa muitas faltas de página, especialmente quando o número de frames é baixo.
- Esse comportamento pode ser visto nos seguintes gráficos:

Leituras de disco

Escritas de disco

Faltas de página

5.2 Beta

Leituras de disco

Escritas de disco

Faltas de página

5.3 Gamma

Leituras de disco

Escritas de disco

Faltas de página

5.4 Delta

Leituras de disco

Escritas de disco

Faltas de página

Apêndice

Vazamento de memória

Durante toda a implementação do sistema, foram constantemente verificados os vazamentos de memória, utilizando o Valgrind. Dessa forma, foi possível garantir que não existam vazamentos de

memória no código final. A seguir, um exemplo de execução do Valgrind:

```
valgrind ./virtmem 10 10 rand alpha --leak-check=full
```

Que retorna o seguinte HEAP SUMMARY:

```
==815761==
==815761== HEAP SUMMARY:
==815761== in use at exit: 0 bytes in 0 blocks
==815761== total heap usage: 4 allocs, 4 frees, 75,328 bytes allocated
==815761==
==815761== All heap blocks were freed -- no leaks are possible
==815761==
==815761== For lists of detected and suppressed errors, rerun with: -s
==815761== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
```

Ou seja, não foram encontrados vazamentos de memória durante a execução do sistema e todas as alocações de memória foram devidamente liberadas.

+ 12 / 12 +