TAKENAKA

Data platform for Smart Building using BIM and WoT

❤ 竹中工務店

2021/10/11

Takashi Kasuya ex. Tokyo University Esaki Lab. Takenaka Corporation

Smart Building

Buildings that achieve more advanced energy-saving performance and improved comfort through IoT and service coordination

functions

- Safety and Security Functions (4)
- ② Energy-Efficiency Functions
- Comfort Functions[Ergonomics of the Building]
- 4 Higher-Level Management Functions
- 5 Display and Operating Functions [User Interface]

(Bali, Smart Building Design: Conception, Planning, Realization, and Operation, 2019)

ビル内データ量の増加と高度な設備制御

M.Mazzara, et.al, Reference architecture for smart and software-defined buildings, 2019

BACS: Building Automation and Control System

- Multi-vendor systems, consists of HVAC, Metering and so on.
- ② Increasing number of cases with the Internet due to the demand for IoT and AI applications
- 3 BACnet has high barriers to entry for non-specialized vendors and low interoperability (Especially in Japan)

. .

BACnetのデータモデル

Software Defined BACS

 While maintaining the functionality of BACS, which has a data platform with hardware abstraction and data management capabilities to exceed its functional limits.

Traditional BACS

Software Defined BACS

BIM (Building Information Modeling)

- A digital representation of the physical and functional characteristics of a facility, shared as a knowledge resource of facility information, and forming the basis of confidence for decision making throughout the life cycle of a facility
- BACS vendors rarely use BIM.

Lifecycle for BIM http://www.shoegnome.com/2014/10/30/openbim/

Issues for Smart Building Data Platform

- 1 Data Modeling
 - i. BIM and BACS point list
- 2 Support for practical use cases that consider IoT and AI
 - i. Lambda Architecture
 - ii. Web of things
- 3 Reduction of running costs
 - i. HDFS (Hadoop Distributed File System)
 - ii. PaaS (Platform as a Service) native

Proposed Method: Data modeling automation

Obtain spatial hierarchies from BIM and give relationships between spaces and devices

Extract Geometry / Metadata from BIM(IFC)

IFCのすべてを抽出することは不要なので、IFCのtypeを 参照しながら、適宜フィルタリングを実施

```
#2858= IFCSPACE('3q4P0iC9P33P2WOFzvBOXb',#41,'51',$,$,#2826,#2856,'\X2\X30C830A430EC\X0\Y',.ELEMENT.,.INTERNAL.,\$);
#2861= IFCPROPERTYSINGLEVALUE('Reference', $, IFCIDENTIFIER('\(\frac{1}{2}\)X2\(\frac{2}{3}\)OC830A430EC\(\frac{2}{3}\)X0\(\frac{1}{3}\),\(\frac{1}{3}\);
#2862= IFCPROPERTYSET('2FNT1K8tLDogItFDZWyAQR',#41,'Pset_SpaceCommon',$,(#2861));
#2864= IFCRELDEFINESBYPROPERTIES('24w Q7|$9AwOktuDm126SJ',#41,$,$,(#2858),#2862);
#2868= IFCAXIS2PLACEMENT3D(#6,$,$);
#2869= IFCLOCALPLACEMENT(#157,#2868)
#2870= IFCCARTESIANPOINT((540.,125.));
#2872= IFCCARTESIANPOINT((990.,125.));
#2874= IFCCARTESIANPOINT((990.,290.));
#2876= IFCCARTESIANPOINT((-1530.,290.));
#2878= IFCCARTESIANPOINT((-1530..-415.)):
#2880= IFCCARTESIANPOINT((540.,-415.));
#2882= IFCPOLYLINE((#2870,#2872,#2874,#2876,#2878,#2880,#2870));
#2884= IFCARBITRARYCLOSEDPROFILEDEF(.AREA.,$,#2882);
#2885= IFCCARTESIANPOINT((15850.57102928,2272.03669197011,0.));
#2887= IFCAXIS2PLACEMENT3D(#2885,$,$);
#2888= IFCEXTRUDEDAREASOLID(#2884,#2887,#19,3500.);
#2889= IFCSHAPEREPRESENTATION(#102,'Body','SweptSolid',(#2888));
#2891= IFCPRODUCTDEFINITIONSHAPE($,$,(#2889));
#2893= IFCSPACE('3q4P0iC9P33P2WOFzvBOXa',#41,'52',$,$,#2869,#2891,'\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}2
#2896= IFCPROPERTYSINGLEVALUE('Reference', $.IFCIDENTIFIER('\frac{1}{2}X2\frac{1}{2}90E85C4B\frac{1}{2}X0\frac{1}{2}S2'), $\frac{1}{2}S1', $\f
#2897= IFCPROPERTYSET('3mdLZOPPH8X8BQi8MpoMd8',#41,'Pset_SpaceCommon',$,(#2896));
#2899= IFCRELDEFINESBYPROPERTIES('1qD3InfW95EAp56XusjpCv',#41,$,$,(#2893),#2897);
#2903= IFCAXIS2PLACEMENT3D(#6,$,$);
```

IFC(IFC2X3)データ

空間グラフを作成し、IFCから抽出した属性データや形状データ への参照(GUID)も付与する。

RDF(JSON-LD)

Space Graph/metadata

Geometries

Requirement / Design for Smart Building Platform

Architecture (**futaba**: Facility Unified digital-Twin Architecture for Building Automation)

Comparison of standards

Standardization	Standard Specification Range		
Standardization	Architecture	Transport	Data model
IEEE1888	規定あり	SOAP / HTTP	XML
oneM2M	TS-001	TS-0004	TS-0023 (Home Appliances)
ITU-T SG20	Y.4409/Y.2070	-	-
IIC	IIRA Connectivity Framework (Only concept)		vork (Only concept)
W3C	WoT Architecture	WoT Protocol Binding	WoT Things Description
Echonet Consortium		ECHONET Lite	オブジェクト詳細規定
Device WebAPI Consortium		OMA GotAPU	OMA DWAPI-PCH
IPSO Alliance	(Out of scope)	OMA LWM2M	Smart Object
KNX Association		KNX	Application Description
BACnet		RS485/TCP	規定あり
BACnet / WS	規定あり	REST / HTTP	規定あり
Oracle IoT Cloud	規定あり	REST / HTTP	Oracle device model
futaba	Lambda Architecture	MQTT	WoT Things Description

Data model / Endpoint using Web of Things

- 1. Point data is abstracted into a device-level data model and imported as a Thing.
- 2. Define inheritable class schemas with flexible telemetry formats, to support a variety of data types

Generation Flow of Thing Description (TD) instance

```
"#context": "https://www.example.schemaserver/schema"
"id": "RoomAirConditioner1",
"Stype": "AirHandlingUnit",
"tag": ["hvac"].
"properties"
    "RoomTemperature" (
       readOnly true
       "type": "number",
       "minimum": 8,
       "maximum": 68,
       "forms"
           "op": "readproperty"
       "descriptions": "温度取得"
   "SetTemparature" [
       "writeOnly": True
       "type": "number",
       "minimum": 0,
       "maximum": 48,
           "op": "writeproperty"
       "descriptions": "ARESE
   "DriveMode"
       readonly true
       "type": "Integer",
       "minimum": 0.
       "enue": ["蜀","申","强","名工字"],
               "readproperty",
               writeproperty
       "descriptions": "運転状態取得設定"
```

Class Schemas for TD

Big data processing

- ✓ Reduce server cluster startup time using PaaS (Databricks by Azure)
- ✓ The server cluster runs for about 13 seconds per month. (50,000 pt / min) Even if the data is stored for 4 months, it costs about 8,000 yen/month.

Use case (1): EQ House

https://www.takenaka.co.jp/eq_house/

Use case : EQ House (2)

Space Graph / Data Model

Metadata / Things Description (when accessed from a browser)

Use case : EQ House (3)

Remote control system using AI to improve comfort using PMV as an indicator.

Use case(2): Takenaka Research & Development Institute

- ① Al remote control of lighting and HVAC (27% reduction in lighting, 14.5% reduction in HVAC)
- 2 Display sensor information on the digital twin app based on the BIM.
- ③ various other apps are being developed and tested (robot collaboration, voice recognition, etc..)

Reinforcement Learning Engine by HEROZ

Digital Twins Application

API

カテゴリ	機能	API	内容
HOT WoT WoT 拡張 建物メタデータ	WoT	TD取得	TD(Things Description)情報を取得
		Property取得	対象デバイスのプロパティ(ポイント)情報を取得
		Property書き込み	対象デバイスのプロパティ(ポイント)へ値をセット(書き込み)する
		Action 実行	メール送信等予め定義されたアクション(操作)を実行
		Eventサブスクライブ登録	API経由ではなく、メッセージングサービスからリアルタイムデータの受信を行う設定を登録
		Eventサブスクライブ状況取得	登録されたサブスクライブ情報を取得
		Eventサブスクライブ解除	登録済みサブスクライブ情報の解除(削除)
	WoT 拡張	Property拡張取得	対象プロパティの値情報だけではなく、プロパティ名情報も付加して取得
		Property一括取得	指定条件に合致する複数プロパティ情報を一括で取得
		Event一括サブスクライブ登録	指定条件に合致する複数プロパティ情報を一括でメッセージングサービスから取得する設定を登録
		Event一括サブスクライブ状況取得	登録されたサブスクライブ情報を取得
		Event一括サブスクライブ解除	登録済みサブスクライブ情報の解除(削除)
	建物メタデータ	建物メタデータ検索	条件を指定し、建物メタデータの検索と閲覧を行う
		建物メタデータ編集	建物メタデータ上の項目を編集(更新)する
	モデル学習	タスク作成	AIエンジン等等向けにモデル学習用のデータ生成タスクを要求する
		タスクキャンセル	モデル学習データ生成タスクのキャンセルを行う
		タスク詳細確認	登録済みモデル学習データ生成タスクの実行状況、スケジュール状況を確認する
		タスク有効変更	登録済みモデル学習データの有効化/無効化を行う
		Webhook登録	モデル学習データ生成結果をWebHookで取得する際の通知先WebHookアドレスを登録する
		Webhook解除	登録済みWebHookアドレスの削除を行う
	共有データ	共有データ追加	3rd Partyシステム間でAPIを介したデータの受渡を行う際のデータ登録を行う
		共有データ検索	登録されたデータの検索を行う
		共有データ削除	登録されたデータの削除を行う

WoT API (1) Authentication

Create ID / Secret

Request to Issue / Refresh an access token

Search Metadata and find TDs to be monitor or controlled

Obtain the target TDID from the metadata. GET or PUT properties by using them as keys.

```
/*Futaba librarryを利用したスクリプト*/
const futaba = require('./futaba.js');
const fs = require('fs');
let client = new futaba();
// コンフィグ(ID、シークレット、アクセストークンほか)
let obj = JSON.parse(fs.readFileSync('./data/config.json', 'utf8'));
// トークンの発行・更新
client.getAccessToken(obj)
  .then(res => {
   obj.access token = res.access token;
   obj.refresh_token = res.refresh_token;
   if (obj.access_token && obj.refresh token) {
     fs.writeFileSync('./data/config.json', JSON.stringify(obj));
   console.log(res);
  });
```

WoT API (2) Search Metadata

Create ID / Secret

Request to Issue / Refresh an access token

Search Metadata and find TDs to be monitor or controlled

Obtain the target TDID from the metadata. GET or PUT properties by using them as keys.

```
// 特定のTD(Thing Description)を検索し、プロパティを表示
let data = {
 building: 'R90/research',
 // odata または SPAROLで検索が可能
 query_type: 'odata',
 query: "$filter=startswith(title, '環境')" //Titleに合致するthingを検索
// 上記の検索クエリを用いて、TDのメタデータを検索
client.getThingsWithQuery(data)
  .then(res => {
     res.things.map(item => {
     client.getThingsPropertiesWithAlias(item.tdId)
       .then(d \Rightarrow {}
         console.log(item.title);
         console.log(d)
       });
   3)
  });
```

WoT API (3) Retrieve data

Create ID / Secret

Request to Issue / Refresh an access token

Search Metadata and find TDs to be monitor or controlled

Obtain the target TDID from the metadata. GET or PUT properties by using them as keys.

WoT API (4) Retrieve data

Create ID / Secret

Request to Issue / Refresh an access token

Search Metadata and find TDs to be monitor or controlled

Obtain the target TDID from the metadata. GET or PUT properties by using them as keys.

```
AHP-1-1
{ properties:
  { Status:
      { event time: '2020-12-02T22:06:45.0397985+00:00',
       values: 0,
       pointId: 'R90 000706' },
    Failure Alarm: { event time: null, values: null, pointId: 'R90_000701' },
    Emergency Alarm: { event time: null, values: null, pointId: 'R90 000702' },
    Temperature Out:
     { event time: '2020-12-03T09:03:08.0553487+00:00',
       values: 33.3,
       pointId: 'R90 000703' },
    Temperature In:
      { event time: '2020-12-03T09:03:08.5258212+00:00',
       values: 17.8,
       pointId: 'R90 000704' },
    Electricity Cum:
      { event time: '2020-12-03T09:02:48.4057225+00:00',
       values: 277958,
       pointId: 'R90 000705' },
    Integrated Flow Rate: { event time: null, values: null, pointId: 'R90 000707' },
    Water Flow Inst:
     { event time: '2020-12-03T09:03:09.8635685+00:00',
       values: 0.
       pointId: 'R90 000708' },
    Calorie Calc:
     { event time: '2020-12-03T09:03:08.0350386+00:00',
       values: 0,
       pointId: 'R90 000709' } },
 correlation id: '800005fa-0400-9600-b63f-84710c7967bb' }
```

Search for air conditioner (AHP) and get the result of the property

END

kasuya.takashi@takenaka.co.jp kasuya@hongo.wide.ad.jp