Rotina FSOLVE

1.	De Santis ((1976)	deduziu	uma relação	para o factor	de com	pressibilidade	dos	gases	reais	da	forma
1.	De Danus (10101	ucuuziu	uma reração	para o ractor	uc com	prossibilidade	aos	gascs	LCars	ua	iorma.

$$z = \frac{1 + y + y^2 - y^3}{(1 - y)^3}$$

Considere z=0.892, use para aproximação inicial $y_1=0.5$.

- $y^* \approx$
- Iterações:
- Cálculos de função:

m-files e comandos			

2. Resolva o sistema

$$\left\{ \begin{array}{l} x^2+y^2=1\\ sen(\frac{\pi x}{2})+y^3=0 \end{array} \right.$$

Use para aproximação inicial o vetor $[1\ 1]$ e considere TolX= 10^{-10} , Tolfun= 10^{-20} .

- $\bullet\,$ Solução do sistema $\approx\,$
- Iterações:
- Convergiu? Justifique.

3.	Pretende-se construir um depósito semi-esférico, de raio r , para armazenar um líquido até uma altura
	h. Sabendo que o volume do referido líquido é dado pela expressão

$$V = \frac{\pi(2r^3 - 3r^2h + h^3)}{3}$$

qual o raio com que se deve construir? Considere $V=0.25m^3$ e h=2m. Use para aproximação inicial $r_1=1$.

- $\bullet \ r^* \approx$
- Iterações:
- Cálculos de função:

m-files e comandos

4. Resolva o sistema

$$\begin{cases} x = 0.7sen(x) + 0.2cos(y) \\ y = 0.7cos(x) - 0.2sen(y) \end{cases}$$

Use para aproximação inicial o vetor $[0.5\ 0.5]$ e considere TolX= 10^{-20} , Tolfun= 10^{-10} .

- $\bullet\,$ Solução do sistema $\approx\,$
- Iterações:
- Convergiu? Justifique.

m-files e comandos