

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет им. Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА: КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ: 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по домашнему заданию

Тема: Поток в транспортной сети. Алгоритм Форда-Фалкерсона

Дисциплина: Дискретная математика

 Студент
 ИУ6-43Б (группа)
 Установатель
 В.К. Залыгин (И.О. Фамилия)

 Преподаватель
 (Подпись, дата)
 И.Б. Трамов (И.О. Фамилия)

Задание

Сеть в виде взвешенного орграфа задана матрицей Ω пропускных способностей ориентированных ребер. При помощи алгоритма Форда — Фалкерсона определить максимальный поток φmax , доставляемый от источника s=x1 к стоку t=x12 и указать минимальный разрез, отделяющий t от s.

Оптимизационную часть алгоритма реализовать в виде коррекции потока хотя бы на одном увеличивающем маршруте.

	x_1	\boldsymbol{x}_2	x_3	x_4	x 5	x_6	x_7	x_8	x_9	<i>x</i> ₁₀	<i>x</i> ₁₁	x_{12}
x_1	_	40	21	7	14	-	-	-	-	_	_	_
\boldsymbol{x}_2	_	_	20	_	_	_	43	_	_	_	_	-
x_3	_	_	_	_	-	61	12	_	_	_	_	_
x_4	_	_	45	_	8	-	_	ı	-	18	_	_
x ₅	_	_	_	_	_	_	_	12	_	_	-	-
<i>x</i> ₆	_	_	_	_	_	_	_	_	_	_	-	5
x 7	_	-	-	38	-	30	-	ı	46	_	-	-
<i>x</i> ₈	_	_	_	64	_	_	_	_	_	6	23	-
x_9	_	_	_	_	_	14	_	_	_	28	-	23
x ₁₀	_	-	-	-	-	-	11	-	-	_	33	10
x ₁₁	_	_	_	_	_	_	_	_	_	_	_	56
x ₁₂	-	_	-	_	_	_	_	_	_	_	_	-

Рисунок 1 -Матрица Ω

Базовые теоретические сведения

Сетью называется связный, ориентированный, взвешенный граф G(X,U,C) без петель, в котором ровно 1 вершина $s \in X$ не имеет входящих дуг — источник, ровно 1 вершина $t \in X$ не имеет исходящих дуг — сток. Дуга сети — ребро.

На множестве дуг сети определена функция $\phi = (x_i, x_j)$, называемая потоком, для которой верно неравенство $0 \le \phi(x_i, x_j) \le c(x_i, x_j)$.

Для всех вершин сети кроме источника и стока должно выполняться условие баланса потока: $\sum_{x_k \in \Gamma^{-1} x_i} \phi(x_k, x_i) = \sum_{x_k \in \Gamma x_i} \phi(x_k, x_i)$. Для всей сети должно выполняться условие баланса в сети: $\sum_{x_k \in X\{s\}} \phi(x_k, x_i) = \sum_{x_k \in X\{t\}} \phi(x_i, t)$.

Разрез связного графа — множество дуг, удаление которых из графа делает его несвязным. Ориентированный разрез графа — множество дуг, имеющих начало в X и окончание в X.

Для выполнения задания необходимо использовать алгоритм Форда-Фалкерсона. В данном алгоритме используются 4 теоремы.

Теорема 1: если $(s,x_n,...,x_k,t)$ — путь от источника к стоку, состоящий только из ненасыщенных дуг, то значение потока на всех его дугах можно увеличить на δ^* = $\min_{\text{по всем дугам пути}} \{\delta(x_i, x_j)\} = \min_{\text{по всем дугам пути}} \{c(x_i, x_j) - \phi(x_i, x_j)\}$. При этом величина потока в сети возрастет на δ^* .

Теорема 2: если $(s,x_n,...,x_k,t)$ — увеличивающий маршрут, то значение потока на его прямых дугах можно увеличить, а на обратных — уменьшить на величину $\varepsilon^* = \min\{\delta^*, \phi^*\}$, где $\delta^* = \min_{\Pi o \; \Pi p \text{ЯМЫМ} \; Дугам} \{\delta(x_i, x_j)\} = \min_{\Pi o \; \Pi p \text{ЯМЫМ} \; Дугам} \{c(x_i, x_j) - \phi(x_i, x_j)\}$, $\phi^* = \min_{\Pi o \; O \text{братным} \; Дугам} \{\phi(x_i, x_j)\}$. При этом величина потока в сети возрастает на ε^* .

Теорема 3: величина потока в сети является максимальной тогда и только тогда, когда в сети не существует увеличивающего маршрута.

Теорема 4 (Форда-Фалкерсона): для любой сети с одним источником и одним стоком величина максимального потока в сети, доставляемого от источника к стоку, равна пропускной способности минимального разреза $\Phi_{\text{max}} = c_{\text{min}}$.

Решение

1 Присвоение начального значения потока в сети

Пусть начальное значение на всех дугах равно нулю. Тогда начальная величина потока в сети: $\phi = \phi(x_6, x_{12}) + \phi(x_9, x_{12}) + \phi(x_{10}, x_{12}) + \phi(x_{11}, x_{12}) = 0.$

На рисунке 2 представлена сеть, построенная по матрице Ω . Каждая дуга имеет 2 числа — поток на данный момент решения и пропускная способность.

Рисунок 2 – Начальные значения сети

2 Нахождение полного потока

По теореме 1 для нахождения полного потока необходимо увеличить потоки на путях от источника к стоку, состоящих из ненасыщенных дуг.

1) Выбран путь $(x_1, x_5, x_8, x_4, x_3, x_6, x_{12})$. Путь изображен на рисунке 3. Для данного пути $\delta^* = \min\{\delta(x_1, x_5), \delta(x_5, x_8), \delta(x_8, x_4), \delta(x_4, x_3), \delta(x_3, x_6), \delta(x_6, x_{12})\} = \min\{14-0, 12-0, 64-0, 45-0, 61-0, 5-0\} = \min\{14, 12, 64, 45, 61, 5\} = 5$. Тогда $\phi = 5$, а дуга (x_6, x_{12}) стала насыщенной.

Рисунок 3 – Первый путь

2) Выбран путь $(x_1, x_2, x_7, x_4, x_{10}, x_{12})$. Путь изображен на рисунке 4. Для данного пути $\delta^* = \min\{\delta(x_1, x_2), \delta(x_2, x_7), \delta(x_7, x_4), \delta(x_4, x_{10}), \delta(x_{10}, x_{12})\} = \min\{40, 43, 38, 18, 10\} = 10$. Тогда $\phi = 15$, а дуга (x_{10}, x_{12}) стала насыщенной.

Рисунок 4 – Второй путь

3) Выбран путь $(x_1, x_4, x_5, x_8, x_{10}, x_7, x_9, x_{12})$. Путь изображен на рисунке 5. Для данного пути $\delta^* = \min\{7, 8, 7, 6, 11, 46, 23\} = 6$. Тогда $\phi = 21$, а дуга (x_8, x_{10}) стала насыщенной.

Рисунок 5 – Третий путь

4) Выбран путь $(x_1, x_3, x_7, x_9, x_{12})$. Путь изображен на рисунке 6. Для данного пути $\delta^* = \min\{21, 12, 40, 17\} = 12$. Тогда $\phi = 33$, а дуга (x_3, x_7) стала насыщенной.

Рисунок 6 – Четвертый путь

5) Выбран путь $(x_1, x_2, x_7, x_9, x_{10}, x_{11}, x_{12})$. Путь изображен на рисунке 7. Для данного пути $\delta^* = \min\{30, 33, 28, 28, 33, 56\} = 28$. Тогда $\phi = 61$, а дуги (x_7, x_9) , (x_9, x_{10}) стали насыщенными.

Рисунок 7 – Пятый путь

6) Выбран путь $(x_1, x_5, x_8, x_4, x_{10}, x_{11}, x_{12})$. Путь изображен на рисунке 8. Для данного пути $\delta^* = \min\{9, 1, 59, 8, 5, 28\} = 1$. Тогда $\phi = 62$, а дуга (x_5, x_8) стала насыщенной.

Рисунок 8 – Шестой путь

7) Выбран путь $(x_1, x_4, x_{10}, x_{12})$. Путь изображен на рисунке 9. Для данного пути $\delta^* = \min\{1, 7, 4, 27\} = 1$. Тогда $\phi = 63$, а дуга (x_1, x_4) стала насыщенной.

Рисунок 9 – Седьмой путь

8) Выбран путь $(x_1, x_2, x_7, x_4, x_{10}, x_{11}, x_{12})$. Путь изображен на рисунке 10. Для данного пути $\delta^* = \min\{2, 5, 28, 6, 30, 26\} = 2$. Тогда $\phi = 65$, а дуга (x_1, x_2) стала насыщенной.

Рисунок 10 – Восьмой путь

9) После перебора не осталось путей, которые бы не проходили через насыщенные дуги. Тогда полный поток через сеть становится $\phi = 65$. На рисунке 10 показана сеть с выделенными жирным насыщенными дугами.

Рисунок 11 – Сеть с найденным полным поток и насыщенными дугами

3 Достижение максимального потока

По теореме 2 необходимо выполнить максимизацию потока. Для этого нужно найти увеличивающие маршруты.

1) После разметки вершин по алгоритму до момента достижения стока найден увеличивающий маршрут $(x_1, x_5, x_4, x_{10}, x_{11}, x_{12})$. Маршрут показан на рисунке 12. Тогда переменные $\delta^*, \phi^*, \epsilon^*$ будут иметь следующие значения:

$$\begin{split} \delta^* &= \min_{\text{по прямым дугам}} \{\delta(x_1, x_5), \delta(x_4, x_{10}), \delta(x_{10}, x_{11}), \delta(x_{11}, x_{12})\} \\ &= \min\{14 - 6, 18 - 14, 33 - 32, 56 - 32\} = \min\{8, 4, 1, 24\} = 1 \\ \phi^* &= \min_{\text{по обратным дугам}} \{\phi(x_5, x_4)\} = \min(5) = 5 \\ \epsilon^* &= \min(\delta^*, \phi^*) = 1 \end{split}$$

Тогда все прямые дуги увеличивают поток на ϵ^* , а обратная дуга уменьшает поток на ϵ^* , а $\phi=66$. Причем дуга (\mathbf{x}_{10} , \mathbf{x}_{11}) стала насыщенной.

Рисунок 12 – Первый увеличивающий маршрут

2) После повторной разметки по алгоритму до момента достижения стока найден увеличивающий маршрут $(x_1, x_5, x_4, x_{10}, x_9, x_{12})$. Маршрут показан на рисунке 13. Тогда переменные $\delta^*, \phi^*, \epsilon^*$ будут иметь следующие значения:

$$\delta^* = \min_{\text{по прямым дугам}} \{\delta(x_1, x_5), \delta(x_9, x_{12}), \delta(x_9, x_{12})\} = \min\{14 - 7,18 - 15,23 - 18\}$$

$$= \min\{7,3,5\} = 3$$

$$\phi^* = \min_{\text{по обратным дугам}} \{\phi(x_5, x_4), \phi(x_{10}, x_9)\} = \min(5, 28) = 5$$

$$\epsilon^* = \min(\delta^*, \phi^*) = 3$$

Тогда все прямые дуги увеличивают поток на ϵ^* , а поток на обратных дугах уменьшается ϵ^* , а ϕ имеет значение $\phi=69$. Причем дуга (x₄,x₁₀) стала насыщенной.

Рисунок 13 – Второй увеличивающий маршрут

3) После повторной разметки по алгоритму до момента достижения стока найден увеличивающий маршрут $(x_1, x_3, x_4, x_7, x_{10}, x_9, x_{12})$. Маршрут показан на рисунке 14. Тогда переменные $\delta^*, \phi^*, \epsilon^*$ будут иметь следующие значения:

$$\delta^* = \min_{\text{по прямым дугам}} \{\delta(x_1, x_5), \delta(x_9, x_{12})\} = \min\{21 - 12, 23 - 21\} = \min\{9, 2\} = 2$$

$$\phi^* = \min_{\text{по обратным дугам}} \{\phi(x_3, x_4), \phi(x_4, x_7), \phi(x_7, x_{10}), \phi(x_{10}, x_9)\} = \min\{5, 12, 6, 25\}$$

$$= 5$$

$$\epsilon^* = \min(\delta^*, \phi^*) = 2$$

Тогда все прямые дуги увеличивают поток на ϵ^* , а поток на обратных дугах уменьшается ϵ^* , а ϕ имеет значение $\phi=71$. Причем дуга (x₉,x₁₂) стала насыщенной.

Рисунок 14 – Третий увеличивающий маршрут

4) После повторной разметки по алгоритму до момента достижения стока найден увеличивающий маршрут $(x_1, x_3, x_4, x_8, x_{11}, x_{12})$. Маршрут показан на рисунке 15. Тогда переменные δ^* , ϕ^* , ϵ^* будут иметь следующие значения:

$$\delta^* = \min_{\text{по прямым дугам}} \{\delta(x_1, x_3), \delta(x_8, x_{11}), \delta(x_{11}, x_{12})\}$$

$$= \min\{21 - 14,23 - 0,56 - 33\} = \min\{7,23,23\} = 7$$
 $\phi^* = \min_{\text{по обратным дугам}} \{\phi(x_3, x_4), \phi(x_4, x_8)\} = \min(3,6) = 3$

$$\epsilon^* = \min(\delta^*, \phi^*) = 3$$

Тогда все прямые дуги увеличивают поток на ϵ^* , а поток на обратных дугах уменьшается ϵ^* , а ϕ имеет значение $\phi=74$.

Рисунок 15 – Четвертый увеличивающий маршрут

5) После повторной разметки по алгоритму до момента достижения стока найден увеличивающий маршрут $(x_1, x_5, x_4, x_8, x_{11}, x_{12})$. Маршрут показан на рисунке 14. Тогда переменные δ^* , ϕ^* , ϵ^* будут иметь следующие значения:

$$\delta^* = \min_{\text{по прямым дугам}} \{\delta(x_1, x_5), \delta(x_8, x_{11}), \delta(x_{11}, x_{12})\}$$

$$= \min\{14 - 10,23 - 3,56 - 36\} = \min\{4,20,20\} = 4$$

$$\phi^* = \min_{\text{по обратным дугам}} \{\phi(x_5, x_4), \phi(x_4, x_8)\} = \min(2,3) = 2$$

$$\epsilon^* = \min(\delta^*, \phi^*) = 2$$

Тогда все прямые дуги увеличивают поток на ϵ^* , а поток на обратных дугах уменьшается ϵ^* , а ϕ имеет значение $\phi=76$.

Рисунок 16 – Пятый увеличивающий маршрут

6) Наконец после повторной разметки достигнуть стока не удалось, увеличивающего маршрута нет. Следовательно, по теореме 3 текущий поток является максимальным $\phi_{max} = \phi = 76$. На рисунке 17 представлены результаты последней разметки.

Рисунок 17 – Шестая разметка

4 Построение минимального разреза

Для построение минимального разреза необходимо разделить вершины графа, помеченные в ходе последней попытки построения увеличивающего маршрута. Минимальный разрез содержит только насыщенные дуги. Тогда граф делится на 2 множества вершин $A = \{x_2, x_4, x_6, x_7, x_8, x_9, x_{11}, x_{12}\}$ и $A` = \{x_1, x_3, x_5\}$. Разрез показан на рисунке 18.

По теореме 4 пропускная способность минимального разреза c_{min} равна величине максимального потока ϕ_{max} . Пропускная способность сделанного разреза $(A \to A) = \{(x_1, x_2), (x_1, x_4), (x_3, x_7), (x_5, x_8), (x_6, x_{12})\}$ определяется таким образом:

$$C(A`->A) = C(x_1, x_2) + C(x_1, x_4) + C(x_3, x_7) + C(x_5, x_8) + C(x_6, x_{12})$$
$$= 40 + 7 + 12 + 12 + 5 = 76$$

Таким образом выполненный разрез действительно является минимальным.

Рисунок 18 – Минимальный разрез

Ответ

Максимальный поток $\phi = 76$.

Минимальный разрез:

$$(A \to A) = \{(x_1, x_2), (x_1, x_4), (x_3, x_7), (x_5, x_8), (x_6, x_{12})\}.$$

Вывол

На основе матрицы Ω было построено визуальное представление сети. С помощью алгоритма Форда – Фалкерсона определен сначала полный поток $\varphi = 65$, затем при помощи увеличивающих маршрутов найден максимальный поток $\varphi = 76$. Построен минимальный разрез для данной сети $(A` \to A) = \{(x_1, x_2), (x_1, x_4), (x_3, x_7), (x_5, x_8), (x_6, x_{12})\}$ и проведена проверка по теореме 4, что данный разрез действительно является минимальным.