SOLUTION FOR INDUSTRIAL CAMERA AUTOFOCUSING

Kim Jihyeong

(kjhricky@gmail.com)

INTRODUCTION

There are two devices:

ROS Robots and Industrial Camera,
and the camera can't auto focus an object
itself.

How about making a moving robot with auto-focusing industrial camera?

FOCUSED POINTS

MACHINE LEARNING

Image learning using 2000+ images

01

02

ON-BOARD LEARNING

Process with online streaming data with NVIDIA TX2 board

ROS-BASED ROBOT

, which enables to move industrial camera

03

04

HW/SW MODULARIZATION

by developing a ROS package in a docker container

SYSTEM ARCHITECTURE

Robot with Industrial Camera

:::ROS

Image Crawler

2000+ Captured

+0008 Rotate/Cropped **Images**

:::ROS Image Analyzer

Optimal Values of

- Aperture
- Focal Length
- Moving Distance

THEN, MOVE!

HARDWARE SETUP

TURTLEBOT3 WAFFLE / NVIDIA TX2 BOARD

HARDWARE SPECS

Here's specifications of hardware used:

- Basler ACE acA2500-14gm
 - 2592 x 1944 5MP resolution
 - MONO tone
 - 14fps
- Turtlebot3 Waffle
 - 281 x 306 x 141 mm
 - 30kg maximum payload
 - SBC: Raspberry Pi 3 Model B+
 - OpenCR Arduino + Dynamixel Motor 2EA

Here's specifications of hardware used:

- **NVIDIA Jetson TX2**
 - ARM A57 with CUDA GPU
 - 8GB DDR + 64GB Flash
 - 32GB eMMC
 - Linux for Tegra
- Open ManipulatorX
 - **Injection Molding Parts**
 - Aluminum-frame arms

CUSTOM PARTS

- 1. GEARS
 - various size from 5:1 to 10:1
 - MDF / ABS
- 2. Extra Dynamixels
 - to move lens
 - 2EA

LEARNING MODEL DESIGN

with Keras + Scikit Learn

02

OBJECTIVES

CONSTRAINTS

01 | 9

ONLINE STREAMING IMAGES

14fps live streaming via

gigE + ROS subscribers

02

BUT NOT WHEN CHANGING LENS

stop capturing when changing aperture/focal length values

03

IMPRECISE LENS CONTROLLING

04

NOT FULLY ROTATING ARMS

lacking exactness of rolling lens

openManipulatorX arms lacks fully-rotating angles

INPUT

01

CAPTURED IMAGES

self-captures images from self-designed robot, which contains various size of QR Codes

02

CURRENT VALUES

current aperture and focal length values subscribed by ros packages

rospy.Subscriber("/status",
get_status, StdMsg)

Labeling images & analyze:

INPUTS

- Images w QR codes
- Current aperture
- Current focal_length

IMAGE ANALYZER

- Standard Deviation
- Mean
- Canny-edged histogram
- QR CODE values[5]
- QR CODE sizes[5]
- QR CODE scores btw 0~5

INFORMATION

differential vaules of
 histogram – equalized histogram

- five discrete values which tells if the image is focused
- "isOptimized" value == if expected QR score

Getting optimal values by machine learning:

OUTPUTS

INFORMATION

differential vaules of
 histogram – equalized histogram

five discrete values which tells
 if the image is focused

QR Code Encryption

Version 1 QR Code (21×21 modules)

The module size is approx. 0.5mm

The module size is approx. 1.0mm

QR in Captured images

Each QR_CODE contains

CORMORANT_1cm

CORMORANT_2cm

CORMORANT_3cm

CORMORANT_4cm

CORMORANT_5cm

COMPARISON

Calculating available detecting distance

	1x1	2x2	3x3	4x4	5x5
Size per dots	0.047mm	0.095mm	1.428mm	1.904mm	2.380mm
Aval. Distance for 3MP Cam	100mm	200mm	300mm	400mm	500mm
Exp. Distance for 5MP Industrial Cam	400mm	800mm	1200mm	1600mm	2000mm

Getting optimal values by machine learning:

Used for deep learning

 Used for other various machine learning model

Getting optimal values by machine learning:

4 Feed-forward models + 1 Deep learning model

ML #1: Optimal Aperture

ML #2: Optimal Focal length

ML #3: Desired Distance

Each machine learning will use these models:

- Random Forest
- Decision Tree
- k-Nearest Neighbors
- Linear Regression
- Deep Learning with 2 hidden layers

Getting optimal values by machine learning:

IMAGE CRAWLING & LABELING

with custom image crawler

03

OVERVIEW

- A captured image should include:
 - 5 QR Codes
 - Current focal length
 - Current aperture
 - Current distance
 - Environment id

 Almost IMPOSSIBLE to take thousands of images MANUALLY!

MAKE A ROS PACKAGE for CRAWLING!

GITHUB PROJECT

GALAPAGOS CORMORANT

https://github.com/100kimch/galapagos_cormorant

This project includes:

- ROS package for image crawling / data processing
- Docker images for setting the environment (ROS + TF + Jupyter)
- 2000+ Self captured images
- Analyzed CSV files
- Customized Turtlebot3 + openManipulatorX drivers

PROCESS

Process for image crawling:

- 1. Put: 'roslaunch ml-learning image_crawling.roslaunch' on the industrial camera robot.
- 2. Put: 'roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch' on the QR Codes robot.
- 3. Place the QR barcodes in the fixed distance away from the industrial camera robot
- 4. Put the distances, current aperture & focal length values on the 'ml-learning' package
- 5. See rqt images on topic "/cormorant/cam_image" and the robots with the naked eye
- 6. When the all five QR codes are on the right pose, press space
- 7. Then the saved image can be seen on topic "cormorant/saved_image"

PROCESS

Labeling saved images:

5-codes

7 2r2-2

30-1.png

2r2-inf

7 4-2

3-codes

aperture: 2.8 distance: 30 focal length: 2 environment: 1

DATA PROCESSING

with custom image crawler

REVIEW

Labeling images & analyze:

INPUTS

- Images w QR codes
- Current aperture
- Current focal_length

IMAGE ANALYZER

- Standard Deviation
- Mean
- Canny-edged histogram
- QR CODE values[5]
- QR CODE sizes[5]
- QR CODE scores btw 0~5

INFORMATION

differential vaules of
 histogram – equalized histogram

- five discrete values which tells if the image is focused
- "isOptimized" value == if expected QR score

RESULTS

	× Welca		■ test.csv ■	Preview 'test.cs	v' ×									
	T	ls_optim	Path	Aperture T	Focal_length	Distance T	Env ⊤	Mean_cmp ▼	Stddev_cmp	Mean_eq ⊤	Stddev_eq T	Qr_score ⊤	Qr_data T	Qr_rect
	O	False	2r2-2/labeled/100-1.png	f/2.8	2	100		219.41	75.66	206.21	93.64	4	[2, 3, 4, 5]	[[1208, 403, 85, 86], [1371, 6
	1	False	2r2-2/labeled/145-1.png	f/2.8		145		224.69	71.28	213.96	88.76			[[1164, 487, 143, 144]]
	2	False	2r2-2/labeled/50-2.png	f/2.8	2	50		56.86	43.79	129.09	73.29	0		0
•	3	False	2r2-2/labeled/90-2.png	f/2.8	2	90	2	49.48	34.59	129.09	73.05	0	0	0
	4	False	2r2-2/labeled/145-2.png	f/2.8		145		49.46	30.63	129.03	73.32	0		0
	5	False	2r2-2/labeled/100-2.png	f/2.8		100		49.64	33.44	129.06	73.17			0
	6	False	2r2-2/labeled/50-1.png	f/2.8	2	50		206.37	79.28	183.79	101.08	2	[4, 5]	[[1387, 386, 350, 361], [88
	7	False	2r2-2/labeled/90-1.png	f/2.8				216.37	77.97	.202.17	95.69		[2, 3, 4, 5]	[[1194, 403, 97, 98], [1378,
	8	False	2r2-2/labeled/165-2.png	f/2.8	2	165	2	49.31	30.05	129.04	73.4	0	0	0
	9	False	2r2-2/labeled/120-2.png	f/2.8		120		49.59	31.81	129.12	73.27			
	10	False	2r2-2/labeled/35-1.png	f/2.8		35		206.13	73.5	176.87	101.57		[5]	[[797, 796, 684, 684]]
	11	False	2r2-2/labeled/70-1.png	f/2.8				207.62	83.37	191.4	99.61		[4, 5]	[[1323, 393, 249, 251], [97-
	12	False	2r2-2/labeled/120-1.png	f/2.8		120		222.61	73.09	210.88	90.86	3	[3, 4, 5]	[[1364, 570, 104, 104], [132
	13	False	2r2-2/labeled/165-1.png	1/2.8				225.67	70.4	215.56				[[1182, 477, 125, 125]]
	14	False	2r2-2/labeled/70-2.png	f/2.8	2	70	2	48.84	37.64	129.14	73	0		0
	15	False	2r2-2/labeled/35-2.png	f/2.8	2	35	2	73.7	53.62	128.72	73.28		[5]	[[734, 633, 642, 638]]
	16	False	2r2-2/labeled/75-1.png	f/2.8	2	75		211.24	81.3	195.66	98.32	3	[3, 4, 5]	[[1389, 675, 168, 170], [132
	17	False	2r2-2/labeled/30-1.png	f/2.8				208.98	69.12	174.17	101.56			[[736, 880, 820, 824]]
	18	False	2r2-2/labeled/125-2.png	f/2.8	2	125	2	49.6	31.54	129.09	73.27	0	0	0
	19	False	2r2-2/labeled/160-2.png	f/2.8				49.34	30.14	129.04	73.41			
	20	False	2r2-2/labeled/30-2.png	f/2.8	2	30	2	87.32	58.48	128.52	73.41	0	0	0
	21	False	2r2-2/labeled/75-2.png	f/2.8	2	75	2	48.82	36.64	129.15	73.03	0	0	0
	22	False	2r2-2/labeled/160-1.png	f/2.8	2	160		225.49	70.56	215.27	87.81		[5]	[[1181, 479, 127, 129]]
	23	False	2r2-2/labeled/125-1.png	f/2.8		125		223.22	72.58	211.78	90.28		[4, 5]	[[1324, 398, 132, 133], [113

RESULTS

Labeling images & analyze:

INPUTS

• aperture: f/2.8

• focal length: 5

• distance: 45

IMAGE ANALYZER

• mean: 217.67

• stddev: 65.75

INFORMATION

• stddev_eq: 100.69

MACHINE LEARNING

with custom image crawler

05

PROGRESS CHECKLISTS

refer fuller	conden exists	
desay_ST (Desay)	(None, 22%, 224, 3)	32
Dating (Flating)	(fine, 119129)	
donor 10 (Dunie)	(fine, 101)	164641484
dropost_W i itracets	(9mm,) (14)	4
down 57 (Pryse)	18mm, 1284	131369
dragout, M. Lleegents	ibox. IIIs	
Chess 60 (Desse) Tital passes 160,275,181 Trainable passes 154,27 Ros-Cristalic passes 2	1,100	214

with 10000+ self images & rotated/cropped images in five models

LEARNING

distances to move robot with desired distance value

ESTIMATE

LEARNING

with 2000+ self captured images in five models

Training new model	
Spect street, saving model to month	Was 17 15
Epoch 2/25	

IMPROVING

models' accuracy and redesign data models

BRIEF RESULTS

VALIDATION ACCURACY

on 25 epoches, in Deep Learning Model

VALIDATION LOSS

on 25 epoches, in Deep Learning Model

IMPROVEMENT

on 10000+ images compared to 2000+ images

COMPARISON

	2000+ IMG	10000+ IMG
Random Forest	58.12	66.76
Decision Tree	54.24	66.76
k-Nearest Neighbors	57.34	59.12
Linear Regression	65.35	70.12
Deep Learning	69.12	76.12

ROBOT CONTROL

with custom image crawler

06

WHAT TO CONTROL

- 2 Dynamixel Motors for moving wheels
- 4 Dynamixel Motors for moving openMANIPULATORX arms
- 2 Dynamixel Motors for moving industrial camera aperture & focal length

WHAT TO USE

- ROBOTIS OpenManipulator-X e-Manual
- ROBOTIS Turtlebot3 > Manipulation e-Manual
- Moveit + Gazebo Simulator

- http://emanual.robotis.com/docs/en/platform/turtlebot3/manipulation/#manipulation
- http://emanual.robotis.com/docs/en/platform/openman ipulator x/mobile manipulation/#mobile-manipulation

CUSTOMIZE DRIVERS

- Based on the driver of "turtlebot3_with_open_manipulator_core":
 - removed gripper motor
 - added 2 extra motors to control lens
 - added 2 wheeling motors by adding codes of "turtlebot3_core"

PROBLEMS

- eManual documents of openManipulator-X is outdated!
- cannot launched emanual's ROS package due to the differences of version 1 & 2 of openManipulatorX!

SOLVING PROBLEMS

https://github.com/ROBOTIS-GIT/turtlebot3_manipulation/issues/21

- This issue was in progress (2020. Jan. 02 ~ 2020. Feb. 14)
- This issue seemed to be solved by the maintainer's comment in Feb. 14, but I haven't enough time to apply this method.

SUMMARY

of this project

DESIRED TIMELINE

ACCOMPLISHED TIMELINE

THERE ISN'T ENOUGH TIME TO IMROVE!

Slidesgo Flaticon Freepik

PATIENT MONITORING

PROCESS

Process for controlling robot:

- 1. Put: 'roslaunch ml-learning image_crawling.roslaunch' on the industrial camera robot.
- 2. Put: 'roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch' on the QR Codes robot.
- 3. Place the QR barcodes in the fixed distance away from the industrial camera robot
- 4. Put the distances, current aperture & focal length values on the 'ml-learning' package
- 5. See rqt images on topic "/cormorant/cam_image" and the robots with the naked eye
- 6. When the all five QR codes are on the right pose, press space
- 7. Then the saved image can be seen on topic "cormorant/saved_image"

IDENTIFYING INFORMATION

01

MERCURY

Mercury is the closest planet to the Sun and the smallest one in the Solar System—it's only a bit larger than the Moon

02

VENUS

Venus has a beautiful name and is the second planet from the Sun. It's terribly hot—even hotter than Mercury

PATIENT MEDICAL HISTORY

ABOUT THE PATIENT

You could enter a subtitle here if you need it

REVIEW OF SYSTEMS

JUPITER

It's the biggest planet in the Solar System

NEPTUNE

Neptune is the farthest planet from the Sun

VENUS

Venus has a beautiful name, but it's terribly hot

SATURN

Saturn is composed of hydrogen and helium

MERCURY

Mercury is the closest planet to the Sun

MARS

Despite being red, Mars is actually a cold place

PHYSICAL EXAMINATION

O1 MERCURY

Mercury is the closest planet to the Sun

O2 MARS

Despite being red, it's actually a cold place

O3 NEPTUNE
It's the farthest planet from the Sun

FINDINGS

To modify this graphs, click on it, follow the link, change the data and paste the resulting graph here

8,000

Saturn is the ringed one and a gas giant

44,000

Mercury is the closest planet to the Sun

DISCUSSION

Venus has a beautiful name and is the second planet from the Sun

> -Dr. HILDA BLUE

Jupiter is a gas giant and the biggest planet in the Solar System

-Dr. JOHN DOE

Despite being red, Mars is actually a cold place full of iron oxide dust

-Dr. INGRID ROE

AWESOME WORDS

DISCUSSION SUMMARY

- Mercury is the smallest planet in the Solar System
- 2. Saturn is composed of hydrogen and helium
- Venus has a beautiful name, but it's terribly hot

COMPARISON

	JUPITER	MERCURY	VENUS	MARS
Case 01	X	\checkmark	X	X
Case 02	X	X	√	\checkmark
Case 03	X	X	X	√
Case 04	✓	✓	X	X

DIAGNOSIS

NEPTUNE

Neptune is the farthest planet from the Sun

MERCURY

Mercury is the closest planet to the Sun

VENUS

Venus is the second planet from the Sun

TREATMENT

O1 | SATURN It's composed

It's composed mostly of hydrogen and helium

MARS
Despite being red, Mars

Despite being red, Mars is actually a cold place

NEPTUNE

It's the farthest planet from the Sun

4 VENUS

Venus is the second planet from the Sun

PATIENT MONITORING

PREVALENCE

CONTRAINDICATIONS & INDICATIONS

01	Here you can describe a reason to start the treatment	Here you can describe the reason to stop the treatment	<u>01</u>
02	Here you can describe a reason to start the treatment	Here you can describe the reason to stop the treatment	02
03	Here you can describe a reason to start the treatment	Here you can describe the reason to stop the treatment	03

CASE TIMELINE A

It's the biggest planet in the Solar System JUPITER Saturn is composed of hydrogen and helium **SATURN**

MERCURY

Neptune is the farthest planet from the Sun

VENUS

Venus has a beautiful name, but it's hot

CASE TIMELINE B

POST-PREVENTION

CONCLUSIONS

Venus has a beautiful name and is the second planet from the Sun. It's terribly hot—even hotter than Mercury—and its atmosphere is extremely poisonous. It's the second-brightest natural object in the night sky after the Moon

REFERENCES

- AUTHOR (YEAR). Title of the publication. Publisher

OUR TEAM

Everett Jamison

You can replace the image on the screen with your own

Laura Fisher

You can replace the image on the screen with your own

SNEAK PEEK

You can replace the image on the screen with your own work. Just move the filter aside, delete this picture, add yours and place the filter on top again

Slidesgo Flaticon Freepik

