Правительство Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики»

Факультет компьютерных наук Департамент программной инженерии

Отчет к домашнему заданию по дисциплине «Архитектура вычислительных систем»

Работу выполнил:

Студент группы БПИ-195 Гуницкий Р.Я.

СОДЕРЖАНИЕ

1.	ТЕКСТ ЗАДАНИЯ	4
2.	ПРИМЕНЯЕМЫЕ РАСЧЕТНЫЕ МЕТОДЫ	4
3.	ТЕСТИРОВАНИЕ ПРОГРАММЫ	5
ИС	ТОЧНИКИ	8
ПР	иложение 1	9
КО	Л ПРОГРАММЫ	9

1. ТЕКСТ ЗАДАНИЯ

Определить ранг матрицы. Входные данные: целое положительное число n, произвольная матрица A размерности n x n. Количество потоков является входным параметром, при этом размерность матриц может быть не кратна количеству потоков.

2. ПРИМЕНЯЕМЫЕ РАСЧЕТНЫЕ МЕТОДЫ

Для вычисления ранга матрицы, матрица приводится к ступенчатому виду методом Гауса, после чего подсчитывается количество ее ненулевых строк. В программе реализована парадигма итеративного параллелизма. Данный метод был выбран для ускорения вычислений новых строк матрицы путем реализации алгоритма Гаусса.

На вход программе подается размерность матрицы и количество потоков, которые будут работать над задачей.

Программа работает следующим образом: считывается размер матрицы и количество потоков, которые будут приводить ее к ступенчатому виду, после чего запускается цикл в котором находится первая строка с минимальным индексом ведущего элемента. Далее выбираются строки индекс ведущего элемента которых равен индексу ведущего элемента выбранной строки и из элементов этих строк вычитаются элементы выбранной строки, умноженные на ведущий элемент строки из которой производится вычитание и поделенный на ведущий элемент выбранной строки. Таким образом в итоге получается ступенчатая матрица и количество ее ненулевых строк равно ее рангу.

3. ТЕСТИРОВАНИЕ ПРОГРАММЫ

🚯 Консоль отладки Microsoft Visual Studio									
Введите	размер	матрицы	[1, 20]:	5					
42	76	11	75	69					
50	25	57	14	84					
34	8	18	49	47					
21	76	92	6	24					
25	93	53	94	24					
Введите	количес	тво пото	ков:5						
Приведен	ная к с	тупенчат	ому виду	матрица:					
42	0	0	0	0					
0	-65.48	0	0	0					
0	0	-26.78	0	0					
0	0	0	-75.19	0					
0	0	0	0	-16.29					
Ранг матрицы: 5									

Рисунок 1 – Нахождение ранга матрицы 5 на 5 с 5 потоками

		матрицы																	
	86		85		86	.0	29	28	13	26	46	80	91	63	33	20			34
	94		56	.95	90		18	78		94	13	24	48		79	93			
		33	38				58	11	91		64		24		425	58			
					10	62	0	95	40	91	66	5m	75		91	16	35	6	16
	98	94	45		88		39	37	95			77	85		52	53	51	4	51
	37	69	48	54	38	48	28	72			44	88	36	39		38		85	58
			10	0.0	92		66	95	93	90	13.		99	94	41			34	18
	83	98	98	IIE.	63	87	56		62	39.	7£		87	26	410			58:	
	67	98	63			28		85	98		94	25	8#	83	94	24	58	86	14
	65	98	43	22		66			85	56	28	51		78	B3	84	9	82	
	0	57	58				36	75	46	52	70	14	34		97	88	44.	33	14
	78	69	99	6t	24	76	93	20	66	83	62	58	28	53	86	0		15	
	42	29	49	24	92	39	39	34	88		64		10	41	97	58		38	15
		77	99	40	30	26	50	98	92	66		78	10	291	39		39	94	85
	23			66	22	37	64	73	34			87	18	91	15	98	63	21	46
	54	15	35	62	34	96	68	97	0	21	75	20	76	69	35.	52	85	72	41
		58:		42			92	72	66	1.6		48	69	54	24	24	39	38	64
		52	0	10	59	84		26	28		19	94			53		80		73
	19	25		76	73	91		80	8	e	62	72	37		74	44	24	76	
	P		48		43			18		13				95	58	58	81		39
		TEG HOTO																	
мведен	MAR E C	тупенчать	эму виду	матрица															
	8	6	8	e	.0	8		е.		0	8		.0	8	99			0	
	5,98	0	0	e e	6	0					Ð				98	0		0	
	6	251.29		0				0	8		9			0.	90	6.	0	0	
	0	0	-46.59	0	0	0	0	0	0	0		0			00	0	0	0	
	0	0	0	131						6			0		90	0		0	
	0	0			-100-15		0	0	B	0		9	Ð		90	Ð	9	0	
	0	0	0		0	-116.33				0	0				00	0		0	
	0	0		0	0	0	55.32	0		0		8		0	00	0.	0	0	
	0	6	0	0	.0	0	0	10.07	9	0		0	.0	9	90	0	· e		
	0.	0	9	.0		0	0	0	138.31	.0			0	0	80	0	0.	-	
	0	0			0	0	0	0	0	15.41	0	.0	0	.0	0.0	0	0		
	8	8			8	9	8			8	126,82	8	. 0		98	8-		0.7	
	6	6	B	0	0	.0	e.	0		8	Ð	622.75	. 0	9	98	9	8	0.	
	0	0		0	0	0	0	0.1	0	0		0	-58.68	0	0.0	0	0		
		e		-8			8	8	8	8		.0	.0	154.36		0		8	
	6	9						8	8				8		-6.22	8	0		9
	0:									0					8-223			0	
					-0	0		0		0	0				00	260.49			
															80:		-203,38		
				0.	0	an .	6	a	R		an .		-0	0	88	0.1	-0	-100.85	

Рисунок 2 - Нахождение ранга матрицы 20 на 20 с 7 потоками

консоль отладки Microsoft Visual Studio										
Введите	размер	матрицы	[1, 20]:1	10						
60	16	33	87	15	51	2	14	46	63	
70	78	47	27	28	73	7	24	94	26	
18	73	7	58	29	30	49	19	79	82	
29	28	51	65	78	32	36	74	83	10	
34	85	73	68	64	60	93	26	55	31	
77	70	14	22	85	42	91	98	80	98	
49	66	24	78	73	16	86	97	74	26	
41	23	72	2	42	28	72	78	16	35	
62	40	49	34	55	65	40	14	74	22	
89	54	21	39	58	27	55	84	31	54	
Введите	количес	тво пото	ков:7							
	ная к с	тупенчат	ому виду	матрица	:					
60	0	0	0	0	0	0	0	0	0	
0	59.33	0	0	0	0	0	0	0	0	
i 0	0	-12.67	0	0	0	0	0	0	0	
0	0	0	346.66	0	0	0	0	0	0	
0	0	0	0	-62.5	0	0	0	0	0	
0	0	0	0	0	-11.89	0	0	0	0	
0	0	0	0	0	0	-218.16	0	0	0	
0	0	0	0	0	0	0	-6.92	0	0	
0	0	0	0	0	0	0	0	28.26	0	
0	0	0	0	0	0	0	0	0	1038.79	
Ранг мат	грицы: 1	0								

Рисунок 3 — Нахождение ранга матрицы 10 на 10 с 7 потоками

велите	размер	матрицы	[1, 20]::	13								
2	12	75	99	82	84	29	45	89	75	44	77	20
10	46	12	37	68	2	58	4	44	45	4	68	38
Ĺ	45	39	85	45	12	14	64	76	96	53	65	1
7	71	74	22	70	70	76	95	80	60	44	10	38
31	83	53	98	85	0	27	47	36	52	91	86	52
35	81	90	46	11	90	35	25	43	22	67	63	16
8	4	28	80	90	76	76	22	53	9	32	45	15
9	81	10	4	17	16	13	62	20	33	58	12	74
1	53	20	69	13	50	11	38	70	7	6	97	38
7	46	62	36	20	81	74	78	10	67	18	53	38
LØ	67	35	42	86	71	13	94	8	23	48	64	41
3	81	7	77	68	89	8	68	69	82	89	97	88
13	99	62	96	4	63	43	51	14	95	2	81	92
Введите	количес	тво пото	ков:10									
Іриведеі	нная к с	тупенчат	ому виду	матрица								
52	0	0	0	0	0	0	0	0	0	0	0	0
)	41.38	0	0	0	0	0	0	0	0	0	0	0
)	0	55.79	0	0	0	0	0	0	0	0	0	0
)	0	0	-124.63	0	0	0	0	0	0	0	0	0
)	0	0	0	-97.11	0	0	0	0	0	0	0	0
)	0	0	0	0	65.37	0	0	0	0	0	0	0
)	0	0	0	0	0	-2.55	0	0	0	0	0	0
)	0	0	0	0	0	0	169.91	0	0	0	0	0
)	0	0	0	0	0	0	0	-7.37	0	0	0	0
)	0	0	0	0	0	0	0	0	567.48	0	0	0
	0	0	0	0	0	0	0	0	0	72.53	0	0
	0	0	0	0	0	0	0	0	0	0	66.04	0
)	0	0	0	0	0	0	0	0	0	0	0	47.2

Рисунок 4 – Нахождение ранга матрицы 13 на 13 с 10 потоками

C:\Us	ers\admin\s	ource\repos	\ConsoleAp	plication1\Debug
Введите	размер	матрицы	[1, 20]:	5
54	14	73	29	63
34	62	17	10	33
13	55	21	11	26
95	40	37	0	52
0	0	0	0	0
Введите	количес	тво пото	ков:3	
Приведен	ная к с	тупенчато	ому виду	матрица:
54	0	0	0	29.56
0	44.38	0	0	2.85
0	0	67.33	0	6.19
0	0	0	-51.02	-58.83
0	0	0	0	0
Ранг мат	грицы: 4			

Рисунок 5 – Нахождение ранга матрицы 5 на 5 с одной нулевой строкой с 3 потоками

🚯 Консоль отладки Microsoft Visual Studio										
Введите размер матрицы [1, 20]:-2										
Введенны	Введенны некорректные данные									
Попробуй	те ввест	и число	еще раз:	21						
Введенны										
Попробуй	те ввест	и число	еще раз:	6						
		24		3	95					
70	69	23	31	20	9					
80	26	18	38	94	54					
43	80	44	77	9	84					
9	13	15	39	0	23					
18	15	24	19	64	98					
Введите	количест	во поток	ов:20							
Введенны	некорре	ктные да	анные							
Попробуй	те ввест	и число	еще раз:	-9						
Введенны	некорре	ктные да	анные							
Попробуй	те ввест	и число	еще раз:	3						
Приведен	ная к ст	упенчато	ому виду	матрица:						
	0	0	0	0	0					
0	-446.45	0	0	0	0					
0	0	7.07	0	0	0					
0	0	0	77	0	0					
0	0	0	0	-4.56	0					
0	0	0	0	0	-187.6					
Ранг мат	рицы: 6									
	D									

Рисунок 6 – ввод некорректных данных

ИСТОЧНИКИ

- 1. SoftCraft, сайт по учебной дисциплине. [Электронный ресурс] http://softcraft.ru/
- 2. Парадигмы параллельного программирования. [Электронный ресурс] http://www.williamspublishing.com/PDF/5-8459-0388-2/part.pdf
- 3. Метод Гаусса. [Электронный ресурс] https://ru.wikipedia.org/wiki/% D0% 9C% D0% B5% D1% 82% D0% BE% D0% B4_% D0% 93% D0% B0% D1% 83% D1% 81% D1% 81% D0% B0

приложение 1

КОД ПРОГРАММЫ

```
#include <iostream>
#include<vector>
#include<thread>
#include<mutex>
#include<string>
#include<ctime>
#include<cmath>
std::mutex mtx1;
/// <summary>
/// Выводит матрицу в консоль
/// </summary>
/// <param name="matrix"></param>
/// <param name="size"></param>
void printMatrix(double** matrix, int size) {
       for (size_t i = 0; i < size; i++)</pre>
              for (size_t j = 0; j < size; j++)
                     std::cout << matrix[i][j] << "\t";</pre>
              std::cout << std::endl;</pre>
       }
/// <summary>
/// Создает случайную матрицу
/// </summary>
/// <param name="size"></param>
/// <returns></returns>
double** createMatrix(int size) {
       double** matrix = new double* [size];
       for (size_t i = 0; i < size; i++)</pre>
              matrix[i] = new double[size];
       for (size_t i = 0; i < size; i++)
              for (size_t j = 0; j < size; j++) {
                     matrix[i][j] = rand() % 100;
       return matrix;
}
/// <summary>
/// Удаляет матрицу
/// </summary>
/// <param name="matrix"></param>
/// <param name="sizeOfMatrix"></param>
void deleteMatrix(double** matrix, int sizeOfMatrix) {
       for (size_t i = 0; i < sizeOfMatrix; i++)</pre>
       {
              delete[] matrix[i];
       delete[] matrix;
}
/// <summary>
```

```
/// Считывает число
/// </summary>
/// <param name="num"></param>
/// <param name="minValue"></param>
/// <param name="maxValue"></param>
void ReadNumber(int& num, int minValue, int maxValue = INT_MAX) {
       std::cin >> num;
      while (num < minValue || num > maxValue) {
              std::cout << "Введенны некорректные данные . . ." << std::endl;
              std::cout << "Попробуйте ввести число еще раз:";
             std::cin >> num;
       }
}
/// <summary>
/// Вычетает из эелементов строк, индекс ведущего эелемента которых равен
/// индексу ведущего элемента выбранной строки, эелементы выбранной строки
/// умноженные на matrix[i][firstElemIndex] и деленные на matrix[lineInd][firstElemIndex]
/// </summary>
/// <param name="matrix">матрица</param>
/// <param name="size">размер матрицы</param>
/// <param name="lineInd">индекс выбранной строки</param>
/// <param name="elemInd">индекс элемента в этой строке</param>
/// <param name="firstElemIndex">индекс ведущего элемента выбранной строки</param>
void SubLines(double** matrix, int size, int lineInd, int elemInd, int firstElemIndex) {
      for (size_t i = 0; i < size; i++)
             if (i != lineInd && matrix[i][firstElemIndex] != 0)
                    mtx1.lock();
                    double elem1 = matrix[lineInd][elemInd];
                    double elem2 = matrix[i][firstElemIndex];
                    double elem3 = matrix[lineInd][firstElemIndex];
                    matrix[i][elemInd] -= floor((elem1 * elem2 / elem3) * 100.0 + 0.5) /
100.0;
                    if (abs(matrix[i][elemInd]) < 0.00001)</pre>
                           matrix[i][elemInd] = 0;
                    mtx1.unlock();
             }
void ThreadsSubs(double** matrix, int size, int lineInd, int firstElemIndex, int
startInd, int endInd) {
      for (int i = endInd - 1; i >= startInd; i--) {
             SubLines(matrix, size, lineInd, i, firstElemIndex);
       }
}
/// <summary>
/// Находит индекс ведущего элемента строки
/// </summary>
/// <param name="line">строка</param>
/// <param name="size">размер матрицы</param>
/// <returns></returns>
int FindStartIndex(double* line, int size) {
      for (size_t i = 0; i < size; i++)
             if (line[i] != 0)
                    return i;
      return -1;
}
/// <summary>
/// Находит ранг ступенчатой матрицы
/// </summary>
/// <param name="matrix"></param>
```

```
/// <param name="size"></param>
/// <returns></returns>
int Rg(double** matrix, int size) {
       int rg = size;
      for (int i = 0; i < size; ++i) {
              int countZeroes = 0;
              for (int j = 0; j < size; ++j) {
                     if (matrix[i][j] == 0)
                            countZeroes++;
              if (countZeroes == size)
                     rg--;
      return rg;
}
int main()
      setlocale(LC_ALL, "Russian");
      srand(time(0));
      std::cout << "Введите размер матрицы [1, 20]:";
       int sizeOfMatrix;
      ReadNumber(sizeOfMatrix, 1, 20);
      double** matrix = createMatrix(sizeOfMatrix);
      printMatrix(matrix, sizeOfMatrix);
       std::cout << "Введите количество потоков:";
       int countThread;
      ReadNumber(countThread, 1, sizeOfMatrix);
      int maxIndex = -1;
      for (size_t i = 0; i < sizeOfMatrix; i++)</pre>
              //Находим строку с минимальным индексом ведущего эелемента
              //и схохраняем ее индекс и индекс ее ведущего элемента
              int elemInd = sizeOfMatrix + 1; //индекс ведущего эелемента
              int lineInd = sizeOfMatrix + 1; //индекс строки
             for (size_t j = 0; j < sizeOfMatrix; j++)</pre>
                     int startInd = FindStartIndex(matrix[j], sizeOfMatrix);
                     if (startInd > maxIndex && startInd < elemInd)</pre>
                     {
                            lineInd = j;
                            elemInd = startInd;
                            maxIndex = startInd;
                     }
              //Если индекс ведущего элемента не изменился, то в матрице больше нет
              //ненудевых строк, поэтому выходим из цикла
              if (elemInd == sizeOfMatrix + 1)
                     break;
              if (countThread > sizeOfMatrix - elemInd)
                     countThread = sizeOfMatrix - elemInd;
             //Разбиваем задачу на потоки
              int countColumnsForThread = sizeOfMatrix / countThread;
              std::thread* threads = new std::thread[countThread];
              //Каждый поток занимается своей частью матрицы
              for (size_t i = 0; i < countThread; i++)</pre>
                     int startInd = i * countColumnsForThread;
```