Data Science for Linguists

Session 4: Data Cleaning and Preparation

Johannes Dellert

17 November, 2023

Data Cleaning and Preparation

- in data science, data preparation (cleaning, transforming, and rearranging of real-world data) often comprises the majority of the work; a common figure is about 80% of an analyst's time
- ad hoc processing of data using a variety of tools (plain Python, Perl, R, Java, sed, awk) is still very common in science, but this approach has many disadvantages
- using Pandas in a Jupyter notebook for these tasks has the advantages of
 - ▷ a high-level, flexible, and fast set of tools that is very accessible to other researchers

Table of Contents

Handling Missing Data

Duplicate Removal, Value Replacement, and Renaming

Discretisation and Binning

Outlier Detection and Removal

Permutation and Random Sampling

Vectorised String Operations

NaN and None in Pandas

- due to their underlying implementation in NumPy, Pandas series represent missing values by means of different **sentinel values**, the choice of which depends on the datatype:
 - by for data with dtype float64, Pandas uses the floating-point value NaN (Not a Number) which is defined by the ISO standard (accessible via np.nan)
 - bython objects (including variable-length strings), it uses the special value None from standard Python (which is very slow to compute with!)
 - because these two options are the only ones available, series of integer datatypes are silently converted into floating point numbers as soon as missing values are inserted
- one of the goals of Pandas is to make working with missing data efficient and smooth
 - there is well-defined default behaviour for any functions executed on Pandas series with missing values; such values will never cause Pandas to throw an exception, though the defalt behaviour might not be extremely useful in some cases
 - many methods (such as the ones for descriptive statistics) are implemented to silently exclude missing data per default
 - it also provides a range of methods which abstract over the somewhat inconsistent underlying implementation of null values

Pandas Nullable Dtypes

- to add support for true integer arrays with missing data, Pandas provides nullable dtypes like pd.Int32 (distinguished from the default dtypes like pd.int32 by capitalisation)
- the null value in series of these types is represented by pd.NA
- the other null values will be normalised without triggering implicit typecasting:

 for more efficient handling of large amounts of string data, there is the specialised extension type pd.StringDtype()

Detecting Null Values

- null values of any kind can be detected using the method data.isnull(), which returns a
 Boolean mask over the data, with True in all positions where there is a null value
- data.notnull() returns a Boolean mask as well, but the opposite of the result of the previous method (False in all positions where there is a null value)
- data.isna() and data.notna() are aliases of data.isnull() and data.notnull(), both sentinel values are matched by both methods (unlike in the underlying implementation)

Dropping Null Values with dropna()

- data.dropna() is a convenience method which combines filtering for and then dropping the null values, i.e. a shorthand for data[data.notna()]
- if data is a Series, the result will simply be a shorter series
- if data is a DataFrame, we can only drop entire rows or columns
 - by default, data.dropna() will drop all rows which contain any null value
 - b to drop columns instead, we can provide the argument axis=1 or axis="columns"
- argument how="all" to only drop rows/columns which consist entirely of null values
- for more fine-grained control (e.g. only weeding out the most gappy records), we can also provide an argument thresh=k to specify that any row/column with at least knon-null values will be kept

7 |

Filling Null Values with fillna()

- data.fillna(x) is a convenience method which combines filtering for and then overwriting
 the null values with a default value x, i.e. a shorthand for data[data.isna()] = x
- x can be a dictionary providing different fill values by column index
- data.fillna(method="ffill") specifies a forward fill, i.e. empty values will be replaced by the previous non-null value (which therefore gets propagated forward)
 - b example: a series with data [1 <NA> 2 <NA> <NA> 3] will become [1 1 2 2 2 3]
- data.fillna(method="bfill") specifies a backward fill, i.e. empty values will be replaced by the subsequent non-null value (which therefore gets propagated backward)
 - b example: a series with data [1 <NA> 2 <NA> <NA> 3] will become [1 2 2 3 3 3]
- if no previous or subseqent value is available, ffill and bfill leave null values at the fringes!
- for a DataFrame, we can again switch to propagation through columns by specifying axis=1

Table of Contents

Handling Missing Data

Duplicate Removal, Value Replacement, and Renaming

Discretisation and Binning

Outlier Detection and Removal

Permutation and Random Sampling

Vectorised String Operations

Removing Duplicates

- data.duplicated() returns a Boolean Series indicating whether each row is a duplicate (all values equal to some previous row) or not
- data.drop_duplicates() returns a Series or DataFrame consisting of only those rows in data where data.duplicated() was False
- the subset argument allows to provide a list of column indices to specify which columns are relevant for duplicate detection (other columns are allowed to have different values)
- if the subset argument is used, the first variant of each duplicate will be used for the values in the irrelevant columns, keep="last" changes this

Replacing Values

- data.replace(oldvals, newvals) substitutes a set of values by replacements

 - b data.replace([-2, -1], 0) sets all cells with value -2 or -1 to 0
 - \triangleright data.replace([-2, -1], [-1, 0]) sets cells with value -2 or -1, and all with -1 to 0
- data.replace(dictionary) replaces each occurrence of a key with its value
- more complex element-wise transformation can be implemented as a function
 (e.g. transform_value(x)), and then executed on every cell by a call to
 data.map(transform value); this works with anonymous functions (lambda) as well

Renaming Axis Indexes

- the axes can be modified in place by executing the map method of their indices:
- data.rename() allows to create a transformed version of a dataset without modifying the original (simple example: data.rename(index=str.title, columns=str.upper))

Table of Contents

Handling Missing Data

Duplicate Removal, Value Replacement, and Renaming

Discretisation and Binning

Outlier Detection and Removal

Permutation and Random Sampling

Vectorised String Operations

Discretisation and Binning

- continuous data is often discretised or otherwise separated into bins for analyis
- pd.cut(data, k) returns a Categorical object which describes the k equal-length bins computed on the basis of the minimum and maximum values within the data
- pd.cut(data, cutoffs) returns a Categorical object which describes the bins computed from the data based on the specified cutoff values between the bins
- pd.qcut(data, k) bins the data into k quantiles (equally sized bins)
- pd.qcut(data, quantiles) bins the data into the provided quantiles (between 0 and 1)
- the argument labels=group names allows to override the default bin names
- a Categorical object cats has the following key applications:
 - > cats.codes returns an array containing the bin index for each datapoint
 - cats.categories shows an IntervalIndex object representing the bins
 - pd.value counts(cats) renders the counts of datapoints in each bin
- these functions will have central importance in Session 7 (aggregation and grouping)

Table of Contents

Handling Missing Data

Duplicate Removal, Value Replacement, and Renaming

Discretisation and Binning

Outlier Detection and Removal

Permutation and Random Sampling

Vectorised String Operations

Detecting and Filtering Outliers

- outlier detection and filtering is typically performed by combinations of simple array operations
- for a normally distributed Series of data, we might define our outliers as all rows where the value exceeds 3 in absolute value: data[data.abs() > 3]
- in a DataFrame full of normally distibuted values, we might be interested in the rows were any of the columns has such a value: data[(data.abs() > 3).any(axis="columns")] (Boolean DataFrame generated by the comparison, on which we apply the any() method)
- to remove the outliers by capping values to the range [-3, 3], we can just do data[data.abs() > 3] = np.sign(data) * 3

Handling Missing Data

Duplicate Removal, Value Replacement, and Renaming

Discretisation and Binning

Outlier Detection and Removal

Permutation and Random Sampling

Vectorised String Operations

Permutation and Random Sampling

- permutations are sampled using smp = np.random.permutation(k)
- data.take(smp) (= iloc-based indexing) is then a random permutation of the first k lines
- data.sample(n=k) selects a random subset of k rows without replacement
- data.sample(n=k, replace=True) samples k rows with replacement

Handling Missing Data

Duplicate Removal, Value Replacement, and Renaming

Discretisation and Binning

Outlier Detection and Removal

Permutation and Random Sampling

Vectorised String Operations

Vectorised String Operations: Equivalents of Basic Methods

- cleaning up a messy dataset often requires a lot of string manipulation, but simple element-wise application using data.map() will fail on the null values
- the Pandas Series offers array-oriented and null-aware string operations which are accessible via the str attribut; here is a small sample:
 - data.str.count to count occurrences of a pattern
 - b data.str.contains(s) returns a Boolean mask with the result of calls to s in value on each cell value, mixed with NaN values wherever a value was missing
 - data.str.len to compute the length of each string
 - data.str.strip to trim whitespace (including newlines) from both sides

Vectorised String Operations: Regular Expressions

- there are also vectorised and null-aware versions of the regex capabilities:
 - > matches = data.str.findall(r"somePattern")
 - p first_matches = matches.str.get(1)
- data.str.extract(pattern) returns the captured groups of the regular expression as a new DataFrame

Vectorised String Operations: Miscellaneous Methods

- several methods emulate the capabilities of Python string operations:
 - data.str.cat for element-wise concatenation (with optional delimiter)
 - data.str.get to index each string
 - data.str.repeat to repeat each string
 - data.str.slice for extracting slices from each string
- data.str.get and data.str.slice are also available through the normal indexing syntax (data.str[i] and data.str[i:j])

22 |

Table of Contents

Handling Missing Data

Duplicate Removal, Value Replacement, and Renaming

Discretisation and Binning

Outlier Detection and Removal

Permutation and Random Sampling

Vectorised String Operations

Assignment 4: Tasks

- 1) Read up on the CoNLL-U format for dependency treebanks.
- 2) Create a new Jupyter notebook and import pandas. Load the development set of the Basque UD corpus from the file eu_bdt-ud-dev.conllu into a DataFrame object, filtering out lines which are empty or start with #. Specify the CoNLL-U field names as a column index.
- 3) Convert all values consisting of an underscore into an appropriate missing data type, and remove all columns where more than 80% of the values are empty.
- 4) Reduce the dataset to all rows representing forms of the auxiliary *izan* ("to be").
- 5) Apply vectorised string operations which involve regular expressions to convert the morphological features into a more useful format (one new column per feature, feature values in each row; example: column Number[abs] with values Sing and Plur).
- 6) Query the database to see whether there is any syncretism in the paradigm of *izan*.
- (i.e. same form, different morphological features) [Hint: duplicate detection on different subsets]
- 7) How often does each form of *izan* occur in this development set? Create a new dataframe consisting of the form, the columns with the morphological features, and these counts.
- 8) Split the forms of *izan* attested in the corpus into ten bins of equal size, so that each bin groups together forms of roughly equal frequency. Detect and remove outliers if necessary.

Preliminary Course Plan

- 1 27/10 IPython and Jupyter
- 2 03/11 Introduction to NumPy
- 3 10/11 Pandas and Data Frames
- 4 17/11 Data Cleaning and Preparation
- 5 24/11 Linguistic Preprocessing
- 6 01/12 Data Wrangling: Join, Combine, Reshape
- 7 08/12 Data Aggregation and Grouping
- 8 15/12 Visualisation with Seaborn
- 9 22/12 Modeling and Prediction
- 10 12/01 Classification
- 11 19/01 Clustering
- 12 26/01 Pattern Extraction and Density Estimation
- 13 02/02 Statistical Inference
- 14 09/02 Data Science Projects

Questions

Questions?

Comments?

Suggestions?