Enrollment No.:

3

7

Darshan Institute of Engineering & Technology B.Tech. | Sem-4 | Summer-2023

Course Code: 2101CS401Date: 10-04-2023Course Name: Design and Analysis of AlgorithmDuration: 150 MinutesTotal Marks: 70

Instructions:

- 1. Attempt all the questions.
- 2. Figures to the right indicates maximum marks.
- 3. Make suitable assumptions wherever necessary.
- Q.1 (A) Apply counting sort for the numbers <4, 1, 3, 1, 3> to sort in ascending order. 4
 - (B) Define Algorithm. Discuss key characteristics of algorithm.

OR

Define Big-oh and Theta notations with graph.

(C) Explain Selection Sort Algorithm and give its best case, worst case and average case complexity with suitable example.

ΩR

Arrange the given data into ascending order using heap sort. 34, 12, 42, 96, 56, 11, 78

- Q.2 (A) What is Divide and Conquer Technique? Give the use of it for Binary Searching4 Method. Also give its Time Complexity.
 - (B) Explain master theorem and find the recurrence for the equation: T(n) = 9T(n/3) + n

OR

Find the recurrence equation T(n)=T(n-1)+n using substitution method.

(C) Write quick sort algorithm and apply on array A = {2,7,3,5,1,9,4,8}. What is time **7** complexity of quick sort in best case, average case and worst case?

OF

Write merge sort algorithm and apply on array $A = \{2,7,3,5,1,9,4,8\}$. What is time complexity of merge sort in best case, average case and worst case?

- Q.3 (A) Write krushkal's algorithm for minimum spanning tree.
 - (B) Explain the general characteristics of Greedy algorithm? 3

OR

Solve the given Knapsack Problem using greedy method. Number of items = 7, capacity W = 15, weight = $\{2, 3, 5, 7, 1, 4, 1\}$ and profit = $\{10, 5, 15, 7, 6, 18, 3\}$.

(C) Find an optimal Huffman code for the given set of frequency. A:9, B:5, D:3, E:7, F:3, H:1, K:1, N:4, R:5, T:2, U:1, V:1

OR

Write Dijkstra's algorithm and find shorted distance of from node A to E.

- **Q.4** (A) Write a sequence of four steps for generalized solution for Dynamic programing.
 - (B) Find Longest Common Subsequence of two strings. S1:{N,E,E,L,A,M}, S2:{E,N,G,I,N,E,E,R,I,N,G}.

3

7

ΛR

Generate only solution table for Making Change problem using Dynamic Programming. (denominations: d1=1, d2=4, d3=6, change of Rs. 8).

(C) Write equation for Matrix Chain Multiplication using Dynamic programming. Evaluate the optimal sequence for: A1 [5×4], A2 [4×6], A3 [6×2], and A4 [2×7].

OR

Evaluate the following assembly line scheduling using dynamic programming.

Q.5 (A) Explain P, NP, NP complete and NP-Hard problems.

4

(B) Use DFS algorithm to traverse for following graph using DFS.

3

Define: Directed Graph, Articulation Point, and Finite Automata.

(C) With modulo q=13, how many spurious hits does the Rabin-Karp matcher encounter in the text T = 2359023141526739921 when looking for the pattern P = 31415?

OR

Explain Backtracking Method. What is N-Queens Problem? Write an algorithm for 4-Queens Problem using Backtracking Method.