Branch: Logica-Discreta 2022-08-15 15:50:50+02:00

CONTINUOUS LOGIC FOR THE CLASSICAL LOGICIAN

1. A CLASS OF STRUCTURES

- **1 Definition.** In these notes we deal with 3-sorted¹ structures of the form $\mathcal{M} = \langle \check{M}, M, \mathbb{R} \rangle$. The language and its interpretation are subject to the following conditions.
 - 1. Functions may only have one of the following sorts (for any $m, n \in \omega$)
 - a. $\mathbb{R}^n \to \mathbb{R}$
 - b. $\check{M}^n \times M^m \to \text{any of } \check{M}, M, \text{ or } \mathbb{R}$
 - 2. There is a symbol for very (total) continuous functions $\mathbb{R}^n \to \mathbb{R}$.
 - 3. The (functions that interpret the) terms of sort $\check{M}^n \to \mathbb{R}$ have *bounded* range.
 - 4. Every element of M is the image of some term of sort $\check{M}^n \to M$.
 - 5. There is only one predicate; it has sort \mathbb{R} and is interpreted as $x \leq 0$.

We call \check{M} the unit ball of \mathfrak{M} . The terminology is inspired by the example below.

The language is denoted by \mathbb{L} .

- **2 Definition.** We write $\mathbb{T}(A)$ for the set of terms of sort $\check{M}^n \times \mathbb{R}^m \to \mathbb{R}$ and parameters in $A \subseteq \check{M}$. Up to equivalence, these terms have the form f(t(x), y) where t(x) is a tuple of terms of sort $\check{M}^{|x|} \to \mathbb{R}$, the variables y have sort \mathbb{R} , and f is a function $\mathbb{R}^{|t|+|y|} \to \mathbb{R}$.
- **3 Definition.** We write $\mathbb{L}(A)$ for the set of formulas obtained inductively as follows
 - i. $\mathbb{L}(A)$ contains the atomic formula $t \leq 0$ for every term $t \in \mathbb{T}(A)$.
 - ii. It is closed under the Boolean connectives \land , \lor , and the quantifiers \forall , \exists of sort \check{M} .
 - iii. It is closed under the quantifier \forall of sort $\mathbb R$ relativized to any definable subset of $\mathbb R$.

Note that in iii, definability, is with respect to the full first order language. In particular, if $\varphi(x, \varepsilon) \in \mathbb{L}(A)$, also $\forall \varepsilon > 0$ $\varphi(x, \varepsilon) \in \mathbb{L}(A)$.

4 Example (Banach spaces). Given a Banach space M we define a structure $\mathcal{M} = \langle \check{M}, M, \mathbb{R} \rangle$ as follows. Let $\check{M} = \{a \in M : ||a|| \le 1\}$ be the closed unit ball of M. Besides the symbols mentioned above, \mathbb{L} contains a function symbol for the natural embedding id : $\check{M} \to M$. It also

In some examples it may be more natural to use (n+n'+1)-sorted structures $\mathcal{M} = \langle \check{M}_1, \dots, \check{M}_n, M_1, \dots, M_{n'}, \mathbb{R} \rangle$. The generalization is straightforeward.

contains a symbol for the norm $\|\cdot\|: M \to \mathbb{R}$. Finally, \mathbb{L} contains the usual symbols of the language of vector spaces. These have sort $M^n \to M$, for the appropriate $n \in \{0, 1, 2\}$. Note that conditions 3 and 4 of Definition 1 are immediatly satisfied.

If $\varphi \in \mathbb{L}(\mathbb{A})$ and $\varepsilon > 0$ we write φ_{ε} for the formula obtained by replacing in φ the atomic formulas $t \leq 0$ with $t - \varepsilon \leq 0$. Note that $\varphi \to \varphi_{\varepsilon}$.

2. Ultraproducts

We recall some standard definitions about limits. Let I be a non-empty set. Let F be a filter on I. If $f: I \to \mathbb{R}$ and $\lambda \in \mathbb{R} \cup \{\pm \infty\}$ we write

$$\lim_{i \to F} f(i) = \lambda$$

if $f^{-1}[A] \in F$ for every $A \subseteq \mathbb{R} \cup \{\pm \infty\}$ that is a neighborhood of λ . Such a λ is unique and, when F is an ultrafilter, it always exists. When f is bounded, $\lambda \in \mathbb{R}$.

Let I be an infinite set. Let $\langle \mathcal{M}_i : i \in I \rangle$ be a sequence of structures, say $\mathcal{M}_i = \langle \check{M}_i, M_i, \mathbb{R} \rangle$, that are uniformly bounded, that is, the bounds in 3 of Definition 1 are the same for all \mathcal{M}_i .

Let F be an ultrafilter on I.

- **5 Definition.** We define a structure $\mathbb{N} = \langle \check{N}, N, \mathbb{R} \rangle$ that we call the ultraproduct of the models $\langle \mathcal{M}_i : i \in I \rangle$.
 - 1. \check{N} comprise the sequences $\hat{a}: I \to \bigcup_{i \in I} \check{M}_i$ such that $\hat{a}i \in \check{M}_i$.
 - 2. N comprise the sequences $t^{\mathbb{N}}(\hat{a})$ of the form $t^{\mathbb{M}_i}(\hat{a}i)$, where t(x) is a term of sort $\check{M}^n \to M$.
 - 3. If f is a function of sort $\check{M}^n \times M^m \to \check{M}$ then $f^{\mathcal{N}}(\hat{a}, t^{\mathcal{N}}(\hat{c}))$ is the sequence $f^{\mathcal{M}_i}(\hat{a}i, t^{\mathcal{M}_i}(\hat{c}i))$.
 - 4. Similarly when f is of sort $\check{M}^n \times M^m \to M$.
 - 5. If f is a function of sort $\check{M}^n \times M^m \to \mathbb{R}$ then

$$f^{\mathcal{N}}(\hat{a}, t^{\mathcal{N}}(\hat{c})) = \lim_{i \to F} f^{\mathcal{M}_i}(\hat{a}i, t^{\mathcal{M}_i}(\hat{c}i)).$$

As usual, if $\mathcal{M}_i = \mathcal{M}$ for all $i \in I$, we say that \mathcal{N} is an ultrapower of \mathcal{M} .

The limit in 5 of the definition above always exists because F is an ultrafilter. It is finite because all models \mathcal{M}_i have the same bounds.

The following fact is easily proved by induction on the syntax.

6 Fact. For every term of sort $\check{M}^n \times M^m \to \mathbb{R}$

$$f^{\mathcal{N}}(\hat{a}, t^{\mathcal{N}}(\hat{c})) = \lim_{i \to F} f^{\mathcal{N}_i}(\hat{a}i, t^{\mathcal{N}_i}(\hat{c}i)).$$

Finally, we prove

- **7 Proposition** (Łǒś Theorem). Let \mathbb{N} be as above and let $\varphi(x, y) \in \mathbb{L}(A)$. Let $\hat{a} \in \check{N}^{|x|}$. Then there is a function $u_-: \mathbb{R}^+ \to F$ such that for every $\lambda \in \mathbb{R}^{|y|}$
 - 1. $\mathbb{N} \models \varphi(\hat{a}, \lambda) \Rightarrow u_{\varepsilon} \subseteq \{i \in I : \mathbb{M}_i \models \varphi_{\varepsilon}(\hat{a}i, \lambda)\} \text{ for every } \varepsilon > 0.$
 - 2. $\mathbb{N} \not\models \varphi(\hat{a}, \lambda) \Rightarrow u_{\varepsilon} \subseteq \{i \in I : \mathcal{M}_i \not\models \varphi_{\varepsilon}(\hat{a}i, \lambda)\} \text{ for some } \varepsilon > 0.$

Proof. Without loss of generality, we can assume that Λ is compact. Suppose that $\varphi(x, y)$ is atomic, say

$$\varphi(x, y) = f(t(x), y) \le 0,$$

where t is a tuple of terms of sort $\check{M}^{|x|} \to \mathbb{R}$ and f is a continuous function $\mathbb{R}^{|t|+|y|} \to \mathbb{R}$.

Let Λ_0 be the set of those $\lambda \in \Lambda$ such that

$$\mathcal{N} \models f(t(\hat{a}), \lambda) \leq 0$$

or, equivalently, such that

$$\mathbb{N} \models f(\beta', \lambda) \leq 0,$$
 where $\beta' \in \mathbb{R}^{|t|}$ is such that $\lim_{i \to F} t(\hat{a}i)$.

As Λ_0 is compact, the function g defined below is continuous

$$g : \mathbb{R}^{|t|} \to \mathbb{R}$$
$$\beta \mapsto \sup_{\lambda \in \Lambda_0} f(\beta, \lambda).$$

Given $\varepsilon > 0$, let $B_{\varepsilon} = g^{-1}(-\infty, \varepsilon]$ and $u = \{i : \mathcal{M}_i \models g(t(\hat{a}i)) \le \varepsilon\}$. As B_{ε} is a neighborhood of β' , the set u belongs to F and for every $\lambda \in \Lambda_0$ and $i \in u$

2.
$$u_{\varepsilon} \subseteq \left\{i \; ; \; \mathcal{M}_{i} \models f(t(\hat{a}i), \; \lambda) \leq \varepsilon \right\}$$