

High Performance Quadratic Classifier and the Application On PenDigits Recognition

ZhengYi John ZHAO, Jie SUN, Shuzhi Sam GE

Dept. of Electrical & Computer Engineering National University of Singapore

Contents

- I. Introduction
- II. Why choose generalized quadratic model
- III. How to formulate and solve the quadratic classifier
- IV. Benchmark on pen-digits recognition
- V. Conclusions

Introduction

- Pattern Classification
 - Preprocessing (Data Sampling, Noise reduction, Scaling, ...)
 - Learning
 - Testing
- Current Models for Learning & Testing
 - Linear Classifier (Fisher)
 - K-NN
 - Gaussian-Bayesian

Why choose non PSD quadratic model

A sample case hard to classify by any of current models

Why choose non PSD quadratic model

It can be classified by general quadratic model

National University of Singapore

- intuition from Gauss Bayes

• Mean and variance of samples in class-k

$$\mu_k = \frac{\sum_{i:c_i = \omega_k} \mathbf{s}_i}{n(\omega_k)}$$

$$\Sigma_k = \frac{1}{n(\omega_k) - 1} \sum_{i:c_i = \omega_k} (\mathbf{s}_i - \mu_k) (\mathbf{s}_i - \mu_k)^T (2)$$

PDF (Probability Density Function) assumption of Gaussian distribution

$$p(\mathbf{x}|\omega_k) = \frac{e^{\left(-\frac{1}{2}(\mathbf{x}-\mu_k)^T \Sigma_k^{-1}(\mathbf{x}-\mu_k)\right)}}{(2\pi)^{d/2} |\Sigma_k|^{1/2}}$$
(3)

National University of Singapore

- intuition from Gauss Bayes

Bayesian Decision Rule

$$P(\omega_k|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_k)P(\omega_k)}{p(\mathbf{x})}$$
(4)

$$k^* = \operatorname{argmax}\{P(\omega_k|\mathbf{x}) : k = 1, ..., K\}$$
 (5)

- B1: The prior probability $P(\omega_k)$ is computed by $\frac{n(\omega_k)}{N}$.
- B2: $p(\mathbf{x})$ is common in all posterior functions, $\{P(\omega_k|\mathbf{x}): k=1,...,K\}$.
- B3: The relative values of the posteriori are more important for decision making, for the final decision prefers the relatively largest one in (5).

PSD

National University of Singapore

- Further build Likelihood Function

$$L_{k}(\mathbf{x}) = P(\omega_{k}|\mathbf{x})p(\mathbf{x}) = p(\mathbf{x}|\omega_{k})P(\omega_{k})$$
$$= p(\mathbf{x}|\omega_{k})\frac{n(\omega_{k})}{N}$$

K functions defined for each class {k: 1,2, ..., K}

$$L_k^G(\mathbf{x}) = \frac{e^{\left(-\frac{1}{2}(\mathbf{x} - \mu_k)^T \sum_k^{-1} (\mathbf{x} - \mu_k)\right)}}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \cdot \frac{n(\omega_k)}{N}$$
(6)

Substitute Gaussian PDF

$$\ln(L_k^G(\mathbf{x})) = -\frac{1}{2}(\mathbf{x} - \mu_k)^T \Sigma_k^{-1}(\mathbf{x} - \mu_k) + \ln(T_k)$$

$$= -\frac{1}{2}\mathbf{x}^T \left(\Sigma_k^{-1}\right) \mathbf{x} + \left(\mu_k^T \Sigma_k^{-1}\right) \mathbf{x}$$

$$-\frac{1}{2}\mu_k^T \left(\Sigma_k^{-1}\right) \mu_k + \ln(T_k)$$
order,
$$1^{\text{st}} \text{ order}$$

Constant

$$T_k = \frac{n(\omega_k)}{N(2\pi)^{d/2} |\Sigma_k|^{1/2}}.$$

$$\ln(L_{k1}^G(\mathbf{x})) > \ln(L_{k2}^G(\mathbf{x})) \equiv L_{k1}^G(\mathbf{x}) > L_{k2}^G(\mathbf{x})$$

Ln() is monotonic

- a generalized quadratic model

$$L_k^Q(\mathbf{x}) = \mathbf{x}^T \mathcal{M}_k \mathbf{x} + \mathbf{p}_k^T \mathbf{x} + q_k \tag{7}$$

- K functions defined for each class {k: 1,2, ..., K} $\mathcal{M}_k \in \mathbf{R}^{d \times d}$ is symmetric matrix
- May not be PSD (Positive Semi-Definite)
- Q1: $L_k^Q(\mathbf{x}) \ge 1$, if \mathbf{x} belongs to class k. Q2: $L_k^Q(\mathbf{x}) \le -1$, if \mathbf{x} doesnot belong to class k.
- Q3: $-1 < L_k^Q(\mathbf{x}) < 1$, if not clear whether \mathbf{x} belongs to class k or not.
- Q4: $L_{k1}^Q(\mathbf{x}) > L_{k2}^Q(\mathbf{x})$, if it is more likely that \mathbf{x} belongs to class k1 than that x belongs to class k2.

How to solve

- Second Order Cone Programming

$$\min_{\mathbf{M}_k, \mathbf{p}_k, q_k, e_i, \epsilon} \qquad \epsilon + C \sum_{i=1}^N e_i$$

subject to

$$\mathcal{M}_{k}(m,n) = \mathcal{M}_{k}(n,m), \forall m < n, \text{and } m, n \in \{1,2,...,d\}$$

$$\epsilon \geq \sqrt{\sum_{1 \leq i \leq j \leq d} \mathcal{M}_{k}(i,j)^{2} + \sum_{1 \leq i \leq d} \mathbf{p}_{k}(i)^{2}}$$

$$\mathbf{s}_{i}^{T} \mathcal{M}_{k} \mathbf{s}_{i} + \mathbf{p}_{k}^{T} \mathbf{s}_{i} + q_{k} \geq 1 - e_{i}, \text{ if } c_{i} = \omega_{k}, \forall i \in \{1,2,...,N\}$$

$$\mathbf{s}_{j}^{T} \mathcal{M}_{k} \mathbf{s}_{j} + \mathbf{p}_{k}^{T} \mathbf{s}_{j} + q_{k} \leq -1 + e_{j}, \text{ if } c_{j} \neq \omega_{k}, \forall j \in \{1,2,...,N\}$$

$$e_{i} \geq 0, \forall i \in \{1,2,...,N\}$$

Solution to Sample Problem

Likelihood functions

Benchmark on pen-digits recognition

- Database from ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits/
- 7494 samples: each sample is 16 dimension array $\{(x_1,y_1), (x_2,y_2),..., (x_8,y_8)\}$, totally 10 classes $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Solution Likelihood Function

• Learning Result for first 80 samples

Solution Performance

• Testing with remaining 7414 (=7494-80) Samples

Solution Likelihood Function

• Learning Result for 1000 samples

Solution Performance

• Testing with remaining 6414 (=7494-1000) Samples

Improved Performance with Increasing Number of Learning Samples

Total Failure Percentage, Quadratic Classifier

Compared with Other Classifiers

Best performance with lowest failure rate

Num. Training Samples

Tradeoff and Further Research

- The computation time is the longest
- Further research
 - Parallel computing
 - Robust classifier

Thanks!