Travaux Dirigés de Mécanique Analytique

Série n°2-SMP5

Exercice 1:

Par rapport au repère orthonormé direct fixe et galiléen R_0 (O; \vec{x}_0 , \vec{y}_0 , \vec{z}_0) où $O\vec{z}_0$ est la verticale ascendante, on considère, dans le champ de pesanteur \vec{g} , le mouvement d'un cône homogène (S) autour de son sommet fixe O. Le solide (S) est de masse m, de centre d'inertie G et d'axe de symétrie de révolution $O\vec{z}$. On pose $O\vec{G} = a\vec{z}$ (a > 0) et on note A, A et C les moments principaux d'inertie de (S) en O. On introduit les repères orthonormés directs intermédiaires :

$$R_1 (O; \vec{u}, \vec{v}, \vec{z}_0)$$
 et $R_2 (O; \vec{u}, \vec{w}, \vec{z})$ et on note :

$$\psi = (O\vec{x}_0, O\vec{u}), \quad \theta = (O\vec{z}_0, O\vec{z})$$
 et ϕ

les angles de précession, de nutation et de rotation propre de (S) mesurés autour de O. A tout instant, on suppose :

- qu'une force connue, donnée par $\vec{F} = X \vec{u} + Y \vec{w} + Z \vec{z}$, est appliquée sur (S) en G
- et qu'un couple \vec{C} impose à (S) une précession : $\psi = \omega t + \psi_0$ (ω et ψ_0 constantes).

 Toutes les liaisons seront prises principales
- Donner, <u>dans la base associée au repère R</u>₂, les composantes des vecteurs rotation instantanée $\vec{\Omega}$ (S/R₀) de (S) par rapport à R₀ et vitesse \vec{V} (G/R₀) de G par rapport à R₀ compatibles avec les liaisons principales.
- Calculer l'énergie cinétique compatible T (S/R₀) de (S) par rapport à R₀.
- Donner l'énergie potentielle de pesanteur $U_p(S \, / \, R_0) \,$ de (S) par rapport à R_0 .
- Calculer les puissances virtuelles de la réaction \vec{R}_0 , du couple \vec{C} et de la force \vec{F} .
- Ecrire les équations de Lagrange du mouvement de (S) par rapport à R₀.

Exercice 2:

Dans le plan vertical fixe (O; \vec{x}_0 , \vec{y}_0) du repère orthonormé direct et galiléen R (O; \vec{x}_0 , \vec{y}_0 , \vec{z}_0) où O \vec{y}_0 est la verticale ascendante, on considère dans le champ de pesanteur \vec{g} , le mouvement du système (Σ) constitué :

- d'un cerceau (C) homogène de centre O, de masse M, de rayon R et d'axe O \vec{z}_0
- et d'une tige (AB) rectiligne, homogène, de masse m, de longueur 2 L et de centre d'inertie G

A tout instant, le cerceau (C) tourne sans frottement autour de son axe $O\vec{z}_0$ avec une vitesse angulaire constante ω ($\Theta = \omega$ t+ Θ_0 où Θ_0 est une constante). On appelle \vec{C} le moment du couple moteur qui impose cette rotation. La tige (AB) peut tourner sans frottement autour de son extrémité A fixée sur la circonférence de (C).

La liaison $\theta = \omega t + \theta_0$ sera prise complémentaire, toutes les autres liaisons de l'énoncé seront prises principales. On introduit les repères orthonormés directs :

$$Rc (O; \vec{a}, \vec{b}, \vec{z}_0)$$
 lié à (C) et $R_{AB} (A; \vec{u}, \vec{v}, \vec{z}_0)$ lié à (AB) et on pose : $\theta = (O\vec{x}_0, O\vec{a})$, $\psi = (A\vec{x}_0, A\vec{u})$

- Donner, dans la base associée à R_0 , les composantes des vecteurs vitesse réelle \vec{V} (G/ R_0) et vitesse virtuelle \vec{V} *(G) de G compatibles avec les liaisons principales.
- Calculer l'énergie cinétique compatible T (Σ / R_0) de (Σ) par rapport à R_0 .
- Donner l'énergie potentielle de pesanteur $U_{pesant}(\Sigma / R_0)$ de (Σ) par rapport à R_0 .
- Calculer la puissance virtuelle P* du couple moteur agissant sur le cerceau.
- Ecrire les équations de Lagrange du mouvement de (Σ) par rapport à R_0 .
- Donner l'expression du moment \vec{C} du couple agissant sur le cerceau.

Exercice 3:

Par rapport au repère orthonormé direct fixe et galiléen R_0 (O; \vec{x}_0 , \vec{y}_0 , \vec{z}_0) où $O\vec{z}_0$ est la verticale ascendante, on considère, dans le champ de pesanteur \vec{g} , le mouvement d'une sphère homogène (S) de centre G, de masse G, de rayon G et de moment central principal d'inertie G.

La sphère (S) roule et glisse sans frottement sur le plan horizontal fixe (O; \vec{x}_0 , \vec{y}_0) avec lequel elle est en contact ponctuel permanent en I.

On introduit les repères orthonormés directs intermédiaires suivants :

$$R_1 \ (G; \vec{u}, \vec{v}, \vec{z}_0)$$
 , $R_2 \ (G; \vec{u}, \vec{w}, \vec{z})$ et $R \ (G; \vec{x}, \vec{y}, \vec{z})$ lié à (S) , on pose $O\vec{G} = x \ \vec{x}_0 + y \ \vec{y}_0 + R \ \vec{z}_0$ et on note $\psi = (G\vec{x}_0, G\vec{u})$, $\theta = (G\vec{z}_0, G\vec{z})$ et ϕ

 ψ , θ et φ étant la précession, la nutation et la rotation propre de (S) mesurées autour de G.

On suppose, qu'à tout instant, un couple moteur \vec{C} impose à (S) la liaison: $\psi = \omega t + \psi_0$ où ω et ψ_0 sont des constantes).

Toutes les liaisons seront prises principales

- 1-Donner, <u>dans la base associée au repère R_2 </u>, les composantes du vecteur rotation instantanée $\vec{\Omega}$ (S/R₀) de (S) par rapport à R₀.
- 2- Donner, <u>dans la base associée à R_0 </u>, les composantes des vecteurs vitesses réelle \vec{V} (I E S/R_0) et virtuelle \vec{V} *(I E S) compatibles avec les liaisons principales.
- 3- Calculer l'énergie cinétique compatible T (S/R_0) de (S) par rapport à R_0 .
- 4- Donner l'énergie potentielle de pesanteur $U_p(S / R_0)$ de (S) par rapport à R_0 et la puissance virtuelle P^* des efforts de liaison.
- 5- Ecrire les équations de Lagrange du mouvement de (S) par rapport à R₀
- 6- Ecrire, après avoir justifié son existence, l'intégrale première de Painlevé pour (S) par rapport à R₀.
- 7- Par application du théorème de l'énergie cinétique à (S) par rapport à R_0 , donner l'expression du couple \vec{C}