The **FastTracks** GUI is intended to automate tracking of fluorescently labeled cells. This tutorial is meant to provide you with a quick overview of the main tracking and statistical features associated with the FastTracks GUI. Example TIFF files (low_density_culture.tif and high_density_culture.tif) and optimized parameter settings are provided to familiarize yourself with the layout before evaluating your own data.

GUI Interface:

Description of main GUI features

Numbers correspond to the red numerical labels in the above figure.

- 1. Name Experiment: name is appended to the file name for all exported data including cell tracks and statistics
- 2. Import Stack: Import 8-bit .tif stack into GUI

Nuclei Validation

- 3. Cell Diameter: average cell diameter for fluorescent nuclei (pixel units)
- **4. Threshold:** fluorescence threshold for imported image stack (alternatively this value is defined using the slide bar to the left of the displayed image) -- must be value between 1-255

Tracking Parameters

- 5. Minimum frames: minimum number of frames a cell will be tracked
- **6. Maximum displacement:** maximum displacement a cell will move between frames (pixel unit)
- 7. Memory: number of frames a cell can go untracked before its track will be resumed
- **8. Generate Tracks:** Initiate track.m algorithm to connect coordinate points that have been identified with 'Nuclei Validation' features

Analysis

- **9. 1 pixel =:** pixel conversion to unit of interest
- 10. Time interval: interval between consecutive frames in time-lapse image stack
- **11. Summary Analysis:** output of migratory statistics for generated tracks is displayed in the adjacent table clicking this pushbutton

FastTracks Tutorial:

Step 1 - Open the GUI panel: To display the GUI panel, type the title of the GUI (FastTracks) at the line prompt in the MATLAB workspace or double click the FastTracks.m file in the current MATLAB directory and press the run arrow in the pop-up Editor window

>> FastTracks

Step 2 - Import 8-bit .tif image stack: click the **Import Stack** button or alternatively select **File>Import>Import Stack** from the menu bar or use the **Ctrl+S** shortcut. The file selection window will appear, allowing you to navigate to **low_density_culture.tif** -- a time-lapse image stack of fluorescently labeled nuclei.

Step 3 - set nuclei validation parameters: Set Nuclei diameter = 12 and Threshold = 25.

Step 4 - set tracking parameters: Memory = 0; Minimum frames = 49; Max displacement = 30.

Step 5 generate tracks: Click the Generate Tracks button (wait several seconds for tracking to begin).

The figure window will display cell tracks overlaid on an image of the current frame. The tracks are numbered with each number appearing at the start of the tracks trajectory. Moving the slider positioned below the image allows the user to ensure the cell nuclei follows its designated track.

Step 6 – name experiment: In the **Name Experiment** edit box type the desired name of the experiment. This name will be appended to exported files contain the cell tracks data.

Step 7 - export tracks: Select **File>Export>Export Tracks**. You will be prompted to select a file of your choosing (.mat, .csv, .xls) that will contain the raw tracks data that will be deposited in the **FastTracksData** folder, located in the current directory, that wass created when the GUI is initiated. Exported file contains four columns containing x-coordinate, y-coordinate, frame #, and track ID data.

Summary Analysis Tutorial:

After acquiring cell tracks, some statistical features are available to provide an overview of the migratory behavior of your cells. The summary analysis is meant to provide a quick overview of the migratory phenotype of the tracked cell population. A more detailed statistical analysis for individual cells is also available within this GUI by selecting one of the options from the Statistics tab in the Menu bar.

Step 1 - set unit conversion and time lapse interval:

1 pixel = 2.54 microns

Time Interval = 15 minutes; one image in the test stack was acquired every 15 min

If a metric unit conversion is not known, entering a **1** will allow the same statistics to be calculated for a pixel unit.

Step 2 - click Summary Analysis: The number of cells analyzed is displayed along with the mean and standard deviation of the population's migratory phenotype

Variable	Description (see below for how values are calculated)
N	Number of cells tracked
Speed	Total distance traveled divided by total time
Distance	Total distance traveled
Displacement	Euclidean distance between initial and final
	position
yFMI	Persistence in the y direction
xFMI	Persistence in the x direction

Individual/Population Cell Statistics

Information relevant to individual cell tracks and the population can be exported to perform to create graphs and perform hypothesis tests.

Step 1 - **export individual cell statistics:** Navigate to the menu bar and click the **Statistics** tab followed by **Individual cells** in the dropdown menu.

A file of your choosing (.mat, .csv, .xls) will be generated in the **FastTracksData** folder that is created when the GUI is initiated.

Output of 'Population' spread sheet:

4	А	В	С	D	Е	F	G
1	Variable	N	Mean	SD	Median	Min	Max
2	Speed	9	0.542741575	0.272442931	0.510790483	0.191482927	1.135400887
3	Distance	9	692.3352416	308.7797985	665.6382888	275.7354155	1192.170931
4	Displacement	9	236.1112893	157.2891917	241.2395794	36.18419854	439.0303325
5	Persistence	9	0.32667112	0.163022181	0.368261229	0.060248655	0.5731607
6	YFMI	9	0.28807834	0.164793717	0.353661645	-0.005030778	0.495458626
7	XFMI	9	-0.091277287	0.129370701	-0.123736362	-0.288156101	0.102663401
8	Y-Displacement	9	212.8212391	150.2797596	240.3685514	-1.888710036	421.6251326
9	X-Displacement	9	-52.71058738	103.888381	-47.70613517	-191.8077342	122.3923218
10	Angle	9	106.2541581				

Output of 'Individual cells' spread sheet:

Description of statistics calculations:

$$YFMI = \frac{\Delta y}{L}$$

theta =
$$\cos^{-1} \frac{\Delta x}{D}$$

Variables	Descirption
Cell_number	Numerical identifier for cell track
Speed	Total distance traveled by a cell divided by total
	time (L/time)
Distance	Total distance traveled by a cell (L)
Displacement	Euclidean displacement of a cell (D)
Persistence	Displacement divided by Distance indicates the
	straightness of a cells trajectory (D/L)
Angle	Angular displacement of a cell with respect to a
	cell's initial and final positions
YFMI	Cell persistence along the y-axis
XFMI	Cells persistence along the x-axis
Y_displacement	Total displacement along the y-axis
X_displacement	Total displacement along the x-axis
frames	Total number of frames the cell was tracked

Acknowledgements:

The Matlab Particle Tracking Code Repository for providing functions necessary for particle tracking within FastTracks.

The **Graphical Data Selection Tool (File ID: # 13857)** by John D'Errico that is used in the Delete Tracks application of FastTracks.

Suggested practice settings for using the high_density_culture.tif (4h movies/5 min intervals):

Nuclei diameter = 10

Threshold = 10

Minimum Frames = 20

Maximum Displacement = 10