

Learning to count photons

Resolving photon numbers from superconducting nanowire single-photon detector signals by machine learning.

Case description for QST-Hack 2025 DTU Physics

Most photodetectors

• 'Zero' / 'One or more'

• 'Lots'....

Photon-number resolving detectors – a holy grail of quantum optics

Universal optical quantum computing

Quantum-enhanced sensing

Secure quantum communication

We do have photodetectors that can resolve photon number!

Ideally...

...but really.....

CHALLENGE

Build a classifier that can reliably assign signal traces to photon numbers!

28 January 2025 DTU Physics

CHALLENGE

Build a classifier that can reliably assign signal traces to photon numbers!

Target performance

parameter	value	comment
p(0 0)	> 0.999	needs to be stringent as it incurs "dark count"
p(1 1)	> 0.99	relaxed from 0.999 as it only reduces detection efficiency
p(0 1) + p(1 1)	> 0.999	needs to be stringent to not mess up with multiphoton terms
p(2 2)	> 0.93	0.93 is better than the EU-tender MP-SNSPD
p(3 3)	> 0.70	
p(4 4)	??	

Where p(m|n) is the probability to output m when the true photon number is n.

Given

Generator of training data – i.e. simulated, noisy signal traces for known photon numbers.

(in Python)

Suggested tool

Python, PyTorch

28 January 2025 DTU Physics