Data Science & Artificial Intelligence

Python For Data Science

Lecture No.- 03

Recap of Previous Lecture

Conditional Control Statements

-if

- Nested if

- if-else

- if-elif-else

- match - Cago

Topics to be Covered

- Looping Control Statements
 - while
- Jumping Statements
 - break
 - Continue
 - Pan

Count

#Q. The final value of count will be $\frac{-2}{2}$

```
i=1
count=0
                                                    1=3
                                     1=2
                   x=1
while i<4:
 match i:
                                 Count = Count >> 2 Count = Count - i
                  Count = 2
   case 1:
                  Count = 2<< 1
     count+=2
                                                          = 1-3
                                      = 4>>2
                       = 2 * 2
     count<<=i
   case 3:
     count-=i
   case _:
     count>>=i
 i=i+1
print(count)
```


#Q. How Many Times print statement executes in the below Code?

2 isnot 2 False

ANS: 3

#Q. The final value of count will be ______

$$1 < 5$$

Count = 1+5

= 6

 $5 < 10 \text{ T}$

Count = 6-1=5

 $7 < 10 \text{ T}$

Count = 5-1=4

 $9 < 10 \text{ T}$

Count = 4-1=3

 $J = 11$

$$10 < 11$$
 $13 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 < 11$
 $50 <$

Count= 8*2=18

a=4

#Q. The output printed by below code is __

a=1count=1 while a<5: while count<10: count<<=a a=a+1print(count)

#Q. The Output printed will be ____

i=1
while i<=3:
$$i=1$$

$$i=1$$

$$print(i+1)$$

$$i=i+1$$

$$2=2$$

$$3<=37sue$$

$$2=1$$

$$2=1$$

$$8<=37sue$$

$$2=1$$

$$8<=37sue$$

$$2=1$$

$$8<=37sue$$

$$2=1$$

$$2=1$$

$$8<=37sue$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=1$$

$$2=$$

- A) 222
- B) 234
- C) 23
- D) Infinite Execution

#Q. The Output printed will be _____

for i in range(3):
$$\frac{1}{2} = 0$$

$$i=1$$

$$i=1$$

$$print(i+1)$$

$$i=i+1$$

$$\frac{1}{2} = 0$$

$$\frac{1}$$

$$\frac{52 = 2}{53 = 1}$$
Print 2
 $\frac{1}{3} = 2$

D) Infinite Execution

#Q. The Output printed will be _____

$$a=1 \qquad \qquad \omega = 1$$

$$b=0 \qquad \qquad b=0 <= 1$$

$$count=1 \qquad \qquad Count = 1+0$$

$$while a <= 4: \qquad \qquad = 1$$

$$while b <= a: \qquad \qquad b=2$$

$$count=count+b$$

$$b=b+2$$

$$a=a+1$$

$$print(count)$$

#Q. Result Value at the end of execution will be 68


```
count=1
                                                       Wesult = 0-0=0
                                     Count = 1-1=0
                             2=0
for i in range(5):
                                                        regult = 4-1 = 3
 match i:
                                     Count:0+4=4
                             2-1
    case 1:
                                                        regult = 3-2=1
      count+=4
                                     Count = 4-1=3
                             1=2
    case 3:
                                                        result = 9-3=6
     count*=3
                                     Count = 3 * 3 = 9
                             1=3
    case 5:
      count//=2
                                                         degult = 8-4=4
    case _:
                                     Count = 9-1=8
                            2=4
      count-=1
result=count-i Vesult=4
for i in range(count):
                     2 in range (8)
  result=result+count
                         seaut=4+8+8+8+8+8+8+8+8
```

#Q. The final value of result will be

$$\frac{\text{result}=1}{\text{x}=2**10}$$

$$y=1$$

while x>1:

$$y=y*2$$

$$x=x>>3$$

while y>=1:

result=result+y

$$y=y//2$$

print(result)

$$=1024/8$$

 $=27=128$

$$y=1 \times 2=2$$

 $x=1024773$
 $=1024/3$
 $=1024/8$

$$y=8*2=16$$
 $x=2/2^3$

#Q. The Output will be

#Q. The Output will be	51		j=0	J=2	j=y	5=6 Pw 28+7-6
count=1 $\frac{1}{3}$ for i in range(10,1,-2): $\frac{1}{3}$	2=10	2=7	$\frac{\text{Count} = 1 + 7 - 0}{= 8}$ $\frac{\hat{j} = 1}{\text{Count} = 8 + 7 - 1}$ $= 14$	14+7-2 =19 5=3 19+7-3 =23	23+7-4 = 26]=5 26+7-5 = 28	= 29
for j in range(i): count=count+i-j print(count)	= 8	1=5	j=0 count = 29+5-0 = 34	j=1 (ount=34+5-1 = 38	j=2 Count=38t: =41	J=3 S-2 Count = 41+5-3 = 43
# 51	2=6	Court-	J=0 =44+3-0 J=1 47 =49	1=2-49+3-2		j=4 Count=43+5-4 =44
C: fox (2=10; 2>1; 2=2-2)	2=4	0 1=1)= D	= 50		
Python: for i in dange (10,1,-2)	£=2	2=-1 ji	n bange(-1) => N	101-Executed.		

#Q. The running time complexity of below code segment is _____

for i in range(n): $\implies n \text{ times}$ for j in range(i): $\implies n \text{ times}$ k=1

- A) $O(n^3)$ B) $O(n^2 * logn)$
- C) $O(n\log^2 n)$
- $D) O(n^2*2^n)$

$$2^{\circ}$$
 $2^{'}$ 2^{2} 2^{2

#Q. What gets printed by below code segment?


```
n = 5

for i in range(n):

if i < 2:

i+=1

if i > 2:

i-=2

else:

i-=1

print(i)
```

L=0	0<27rue 2=1	072 False 2=1-1=0	Print 0
2=1	1<2784e	172 F 2 = 2 -1 = 1	Point 1
2=2	2<2 False	272 False 2=2-1=1	Print 1
2=3	3<2F	372 True	Print
2=4	4<2F	1=3-2=1 472 True	Print P
		9-4-2=2	_

#Q. What gets printed by below code segment?

$$j=2$$
 $2=10$ $1=01$ $1=3$


```
#Q. Count Value at the end of execution will be _____
count=1
for i in range(5):
  for j in range(4):
    if i<j:
      count=j-count
    elif i>j:
      count=i-count
    else:
      break
print(count)
```


#Q. What does the following Python code segment print?

```
result=4
for i in range(3):
    i*=2
    for j in range(i):
        j+=2
        result=result+i+j
print(result)
```


#Q. The final value of count will be ____

```
a,b,c=1,2,0

count=1

for i in range(c,b,a):

b=b+1

for j in range(b):

count+=i+j
```



```
Count Value at the end of execution will be _____
#Q.
count=1
for i in range(5):
 match i:
   case 1:
      count+=1
      for i in range(count):
       count+=1
   case 2:
      count*=2
      for i in range(count):
        count+=1
   case 4:
      count//=2
      for i in range(count):
        count+=1
   case _:
      count-=1
      for i in range(count):
        count+=1
```


#Q. The Total number of times print statement executed is _____

```
i=len("GATE")
j=len("EXAMINATION")
while j!=i:
   print(i+j)
   j=j-1
else:
   print(i+j)
```


2 mins Summary

- Iterative Control Statements

Next Topic: Strings, Lists, Tuples*

THANK - YOU