- 1. (a) Normalize $R_{2,0}$ for hydrogen and construct the wavefunction $\psi_{2,0,0}$.
 - (b) Normalize $R_{2,1}$ for hydrogen and construct the wavefunction $\psi_{2,1,1}, \psi_{2,1,0}$, and $\psi_{2,1,-1}$.

- 2. (a) Determine $\langle r \rangle$ and $\langle r^2 \rangle$ for an electron in the ground state of the hydrogen atom. Express solutions in terms of the Bohr radius, a.
 - (b) Determine $\langle x \rangle$ and $\langle x^2 \rangle$ for an electron in the ground state of the hydrogen atom. If the symmetry of the ground state is exploited, there will not be any new integration for this calculation.
 - (c) Determine $\langle x^2 \rangle$ for an electron in a hydrogen atom in the state n=2, l=1, m=1. It is helpful to use the fact that $x=r\sin(\theta)\cos(\phi)$.

3. (a) Starting with $[r_i, p_j] = -[p_i, r_j] = i\hbar \delta_{ij}$ and $[r_i, r_j] = [p_i, p_j] = 0$, where the index i stands for x, y, or z, and $r_x = x$, $r_y = y$, $r_z = z$, work out the following commutator relations:

$$[L_z, x] = i\hbar y,$$
 $[L_z, y] = i\hbar x,$ $[L_z, z] = 0,$ $[L_z, p_x] = i\hbar p_y,$ $[L_z, p_y] = i\hbar p_x,$ $[L_z, p_z] = 0.$

(b) Use the results from part (a) and the definitions

$$L_x = yp_z - zp_y,$$

$$L_y = zp_x - xp_z,$$

$$L_z = xp_y - yp_x,$$

to obtain $[L_z, L_x] = i\hbar L_y$.

- (c) Evaluate the commutators $[L_z, r^2]$ and $[L_z, p^2]$, where $r^2 = x^2 + y^2 + z^2$ and $p^2 = p_x^2 + p_y^2 + p_z^2$.
- (d) Show that the Hamiltonian,

$$\hat{H} = \frac{\hat{p}^2}{2m} + \hat{V},$$

commutes with all three components of $\hat{\vec{L}}$ if \hat{V} depends only on r.