

Big Data

Módulo 1: Análise Estatística de Dados

Aula 3: Análise Exploratória de Dados

Roteiro

Análise Estatística dos Dados

- Medidas de Tendência Central
- Tabela de Frequência e Histograma
- Distribuição dos Dados

Medidas de Tendência Central e

Medidas de Dispersão

Introdução

- Medidas de Tendência Central ou Estimativa de Parâmetro
 - Média Aritmética
 - Mediana
 - Valor máximo e mínimo
- Medida de Dispersão ou Estimativa de Variabilidade
 - Desvio em relação à média
 - Variância
 - Desvio Padrão

Identificar a localização dos dados (ou seja, a sua tendência central). A seguir, os principais conceitos-chave:

- Média: a soma de todos os valores dividido pelo número de valores.
 - Sinônimo: average, mean
 - Ex: Seja A = {3, 5, 1, 2}, média = (3+5+1+2)/4 = 11/4 = 2.75
 - x-barra é a média amostral da população

Mean
$$= \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

- Média ponderada: cada item da amostra estará associado a um peso.
 - Sinônimo: weighted mean
 - Ex: Seja A = $\{(10,1), (7,2), (8,3)\},\$
 - Média ponderada = ((10*1) + (7*2) + (8*3)) / (1+2+3) = (10 +14 + 24) / 6 = 8

Em *data science*, na prática, algumas *features* (atributos) são mais relevantes do que outras e, portanto, precisamos destacar a relevância desses atributos;

Weighted mean =
$$\overline{x}_w = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

- Mediana: é o número central de uma lista ordenada de valores.
 - Sinônimo: Median, 50th percentile.
 - A mediana é mais interessante que a média pois seu resultado não é influenciado por outlier.
 - Numa lista que contém n valores:
 - se n é ímpar: obtém-se o valor do meio;
 - se n é par: obtém-se a média dos dois valores centrais.

Exemplo: Seja uma lista contendo os seguintes valores: {2, 2, 3, 3, 5, 7, 8, 130}.

Mediana: (3 + 5)/2 = 4

A mediana representa muito melhor o comportamento dos dados do que a média.

- Outlier: o valor de um item que é muito diferente das outras amostras.
 - Na prática, um outlier PODE ser um erro na entrada ou coleta dos dados:
 - o Ex: erro de digitação, erro no funcionamento de um sensor, etc.

No exemplo anterior, a lista {2, 2, 3, 3, 5, 7, 8, 130} contém um *outlier*.

Um exemplo de outlier no R2:

Estimativa de parâmetro é apenas uma das dimensões para resumir um atributo;

Uma segunda dimensão, <u>variabilidade</u>, também referida como <u>dispersão</u>, serve para <u>identificar o quão agrupados ou distantes estão os dados</u>.

As estimativas de variabilidade mais usadas são baseadas nas diferenças, ou desvios, entre a estimativa de parâmetro e o dado observado.

- <u>Desvio</u>: a diferença entre o valor observado e a estimativa de parâmetro selecionada.
 - Sinônimo: erro, deviation, residuals. $(x \overline{x})$
- Desvio Absoluto Médio (ou Média do Desvio Absoluto):

Mean Absolution Deviation =
$$\frac{\sum_{i=1}^{N} |x_i - \bar{x}|}{N}$$

Exemplo: seja o conjunto de dados {1, 4, 4}.

- Suponha que cada valor representa o número de curtidas de uma foto;
- A média desse conjunto é 3 e a mediana é 4;
- Os desvios são dados por 1-3 = -2, 4-3 = 1 e 4-3 = 1.
- Estes resultados, (-2,1,1), nos dizem o quão dispersos estão os dados do valor central.
- Podemos também gerar o módulo desse resultado, (2, 1, 1), e calcular a <u>desvio absoluto</u>
 <u>médio</u>:
 - (2 + 1 + 1) / 3 = 1.33.
- Como interpretar esse valor?
 - Na média, cada foto ficou em torno de 1.33 "curtidas" distante da média.

- <u>Variância</u>: a soma dos erros (*deviations*) da média dividida por N-1 onde N é o número de dados.
 - Sinônimo: Erro Quadrado Médio

Variance =
$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

- Desvio padrão: raiz quadrada da variância.
 - Sinônimo: Norma-l2, norma Euclidiana

Standard deviation =
$$s = \sqrt{\text{Variance}}$$

Exemplo: seja o conjunto de dados {1, 4, 4}.

- Suponha que cada valor representa o número de curtidas de uma foto;
- A média desse conjunto é 3 e a mediana é 4;
- Os desvios são dados por:
 - $(1-3)^2 = 4$
 - $(4-3)^2 = 1$
 - $(4-3)^2 = 1$
- Variância = (4 + 1 + 1) / (3-1) = 6/2 = 3
- Desvio Padrão = $\sqrt{3}$ = 1.73

Estimativa Baseada em Percentis

Em um conjunto de dados, o percentil P é um valor tal que pelo menos P por cento dos valores assumem esse valor ou menos, e pelo menos (100-P) por cento dos valores assumem esse valor ou mais.

Estimando Percentil P:

$$100 * \frac{j}{n} \le P < 100 * \frac{j+1}{n}$$

Estimativa Baseada em Percentis

Em um conjunto de dados, o percentil P é um valor tal que pelo menos P por cento dos valores assumem esse valor ou menos, e pelo menos (100-P) por cento dos valores assumem esse valor ou mais.

- Exemplo: sejam os valores (3, 1, 5, 3, 6, 7, 2, 9)
 - Ordenando esses conjunto, temos: (1, 2, 3, 3, 5, 6, 7, 9)
 - Iremos calcular o 25th e 75th percentil, ou seja:
 - (25*n)/100 = (25*8)/100 = 2, ou seja, posição 2 e (2+1) 3 para tirar a média (2.5)
 - \blacksquare (75*n)/100 = (75*8)/100 = 6, ou seja, posição 6 e (6+1) 7 para tirar a média (6.5)
 - O 25th percentil é 2.5, pois (1, 2, 3, 3, 5, 6, 7, 9) implica que (2+3)/2 = 2.5
 - \circ O 75th percentil é 6.5, pois (1, 2, 3, 3, 5, **6, 7**, 9), implica que (6+7)/2 = 6.5
 - A diferença entre o 25th e o 75th é chamada de IQR = 6.5 2.5 = 4 (range)
 - IQR = 75th 25th

Considerações

- Cada uma das estimativas descritas anteriormente resume os dados em um único número para descrever a localização ou variabilidade dos dados;
- Também é útil explorar como os dados são distribuídos em geral.
- Caso haja remoção de outlier, verificar novamente as estimativas, pois a maioria são sensíveis a outliers:
 - Em muitos casos recomenda-se não remover os outliers (principalmente se estes não frem comprovadamente um erro na entrada de dados).

Explorar a distribuição dos dados é explorar como são os dados em sua totalidade.

- <u>Boxplot</u>: maneira rápida de visualização da distribuição dos dados.
 - Sinônimo: Whiskers plot
 - Informa percentis (25th, 50th, 75th) e quartis;
 - Informa mediana;
 - Informa máximos e mínimos;
 - o Informa outliers.

Boxplot

Boxplot: Exemplo

Na Tabela a seguir temos as medidas da altura de 20 hastes. Faça o boxplot correspondente.

Dados da usinagem									
903,88 1036,92 1098,04 1011,2									
1020,70	915,38	1014,53	1097,79						
934,52	1214,08	993,45	1120,19						
860,41	1039,19	950,38	941,83						
936,78	1086,98	1144,94	1066,12						

Boxplot: Exemplo

Agora um resumo estatístico no boxplot:

Dados da usinagem									
903,88	1011,26								
1020,70	915,38	1014,53	1097,79						
934,52	1214,08	993,45	1120,19						
860,41	1039,19	950,38	941,83						
936,78	1086,98	1144,94	1066,12						

Tabela de Frequência e Histograma

Introdução

- Para dados quantitativos contínuos, geralmente resultante de medições de características de qualidade (por exemplo: de peças ou produtos), dividimos a faixa de variação dos dados em intervalos de classes;
- Abaixo, uma ilustração do processo de geração de tabela de frequência e histograma:

	Tabela de Frequências									
Classe	Frequência	Freq. Rel.	Freq. Perc.	Freq. Acum.	Densidades	Ponto Médio				
[4,2;4,4)	6	0,06	6	6	0,3	4,3				
[4,4;4,6)	8	0,08	8	14	0,4	4,5				
[4,6;4,8)	15	0,15	15	29	0,75	4,7				
[4,8;5)	33	0,33	33	62	1,65	4,9				
[5;5,2)	18	0,18	18	80	0,9	5,1				
[5,2;5,4)	13	0,13	13	93	0,65	5,3				
[5,4;5,6)	5	0,05	5	98	0,25	5,5				
[5,6;5,8)	2	0,02	2	100	0,1	5,7				

Tabela de Frequência

- Primeiro, com os dados que desejamos gerar a tabela de frequência, precisamos calcular o número de classes (grupos) para agrupar alguns valores.
- Para calcular o número de grupos necessários, existem duas opções:
 - k = sqrt(n), onde sqrt() é a raiz quadrada e "n" o tamanho do dataset;
 - Fórmula de Sturges: $k = \lceil 1 + 3,3 \log_{10}(n) \rceil$, onde "n" é o tamanho do dataset.

- A partir daí precisamos gerar os grupos:
 - O menor valor do grupo é denominado limite inferior (I;)
 - O maior valor do grupo é denominado limite superior (L_i)

Seja a seguinte tabela:

A seguir, iremos construir sua tabela de frequência. Atente-se a alguns detalhes que serão discutidos.

	Diametro do Eixo de 100 motores										
4,8	4,2	5,1	5,2	4,8	4,7	4,9	4,5	4,9	4,5		
4,9	5,1	4,8	4,9	4,8	5	5,3	4,9	5,5	5,2		
5,1	4,6	4,9	4,8	5,1	4,6	4,3	4,9	4,7	5,2		
4,8	4,4	5,6	5	5	5	4,8	5,2	4,5	5,1		
5,1	4,9	4,8	4,8	5	4,8	5,1	5,4	4,2	5,1		
4,9	4,6	5,4	4,9	4,3	4,6	4,7	4,7	5,3	4,4		
4,7	4,8	5,2	4,5	5,1	4,6	5,8	4,9	5,2	4,8		
4,9	4,9	4,4	4,7	4,8	5,1	5,4	5	4,4	5,1		
4,9	4,9	5,1	5,2	4,7	4,8	4,6	5,2	5,5	5,2		
4,2	4,9	4,9	4,8	4,2	5,2	4,7	4,8	4,6	5,2		

- O intervalo das classes pode ser representado das seguintes maneiras:
 - (I_i) |- (L_i): o limite inferior da classe é incluído na contagem da frequência absoluta, mas o superior não;
 - (I_i) -| (L_i): o limite superior da classe é incluído na contagem da frequência absoluta, mas o inferior não.
- Na tabela de distribuição de frequência, acrescentamos uma coluna com os pontos médios de cada intervalo de classe, denominado por x_i (média dos pontos), onde x_i = (I_i + L_i)/2

- Na medida do possível, as classes deverão ter amplitudes iguais;
 - \circ Amplitude = A = $(L_i I_i)/k$
- Escolher os limites dos intervalos entre duas possíveis observações;
- Escolher os limites dos intervalos entre duas possíveis observações;
- O número de intervalos não deve ultrapassar 20;
- Escolher limites que facilitem o agrupamento;
- Marcar os pontos médios dos intervalos.

	Diametro do Eixo de 100 motores										
4,8	4,2	5,1	5,2	4,8	4,7	4,9	4,5	4,9	4,5		
4,9	5,1	4,8	4,9	4,8	5	5,3	4,9	5,5	5,2		
5,1	4,6	4,9	4,8	5,1	4,6	4,3	4,9	4,7	5,2		
4,8	4,4	5,6	5	5	5	4,8	5,2	4,5	5,1		
5,1	4,9	4,8	4,8	5	4,8	5,1	5,4	4,2	5,1		
4,9	4,6	5,4	4,9	4,3	4,6	4,7	4,7	5,3	4,4		
4,7	4,8	5,2	4,5	5,1	4,6	5,8	4,9	5,2	4,8		
4,9	4,9	4,4	4,7	4,8	5,1	5,4	5	4,4	5,1		
4,9	4,9	5,1	5,2	4,7	4,8	4,6	5,2	5,5	5,2		
4,2	4,9	4,9	4,8	4,2	5,2	4,7	4,8	4,6	5,2		

- Gerando tabela de distribuição de frequência:
 - 1º Passo: calculando o número de classes (grupos):
 - $k = \lceil 1 + 3,3 \log_{10}(100) \rceil = \lceil 7,6 \rceil = 8$
 - Menor valor do dataset (I_i): = 4,2
 - Maior valor do dataset (L_i) = 5,8
 - Amplitude (A) = $(L_i I_i)/k = (5.8 4.2)/8 = 0.2$
 - Intervalo de classe definido como fechado em l_i e aberto em L_i --> [l_i ; L_i) com range (amplitude) de 0.2

	Tabela de Frequências										
Classe	Frequência	Freq. Rel.	Freq. Perc.	Freq. Acum.	Densidades	Ponto Médio					
[4,2;4,4)	6	0,06	6	6	0,3	4,3					
[4,4;4,6)	8	0,08	8	14	0,4	4,5					
[4,6;4,8)	15	0,15	15	29	0,75	4,7					
[4,8;5)	33	0,33	33	62	1,65	4,9					
[5;5,2)	18	0,18	18	80	0,9	5,1					
[5,2;5,4)	13	0,13	13	93	0,65	5,3					
[5,4;5,6)	5	0,05	5	98	0,25	5,5					
[5,6;5,8)	2	0,02	2	100	0,1	5,7					

- Gerando tabela de distribuição de frequência:
 - 2º Passo: Calcular frequência (número de ocorrências dos valores naquele intervalo)

	Tabela de Frequências									
Classe	Frequência	Freq. Rel.	Freq. Perc.	Freq. Acum.	Densidades	Ponto Médio				
[4,2;4,4)	6	0,06	6	6	0,3	4,3				
[4,4;4,6)	8	0,08	8	14	0,4	4,5				
[4,6;4,8)	15	0,15	15	29	0,75	4,7				
[4,8;5)	33	0,33	33	62	1,65	4,9				
[5;5,2)	18	0,18	18	80	0,9	5,1				
[5,2;5,4)	13	0,13	13	93	0,65	5,3				
[5,4;5,6)	5	0,05	5	98	0,25	5,5				
[5,6;5,8)	2	0,02	2	100	0,1	5,7				

- Gerando tabela de distribuição de frequência:
 - 3º Passo: Calcular frequência relativa (número de ocorrências dos valores naquele intervalo dividido pelo tamanho do dataset)

Tabela de Frequências										
Classe	Frequência	Freq. Rel.	Freq. Perc.	Freq. Acum.	Densidades	Ponto Médio				
[4,2;4,4)	6	0,06	6	6	0,3	4,3				
[4,4;4,6)	8	0,08	8	14	0,4	4,5				
[4,6;4,8)	15	0,15	15	29	0,75	4,7				
[4,8;5)	33	0,33	33	62	1,65	4,9				
[5;5,2)	18	0,18	18	80	0,9	5,1				
[5,2;5,4)	13	0,13	13	93	0,65	5,3				
[5,4;5,6)	5	0,05	5	98	0,25	5,5				
[5,6;5,8)	2	0,02	2	100	0,1	5,7				

- Gerando tabela de distribuição de frequência:
 - 4º Passo: Calcular a frequência percentual: Frequência Relativa * 100

Tabela de Frequências										
Classe	Frequência	Freq. Rel.	Freq. Perc.	Freq. Acum.	Densidades	Ponto Médio				
[4,2;4,4)	6	0,06	6	6	0,3	4,3				
[4,4;4,6)	8	0,08	8	14	0,4	4,5				
[4,6;4,8)	15	0,15	15	29	0,75	4,7				
[4,8;5)	33	0,33	33	62	1,65	4,9				
[5;5,2)	18	0,18	18	80	0,9	5,1				
[5,2;5,4)	13	0,13	13	93	0,65	5,3				
[5,4;5,6)	5	0,05	5	98	0,25	5,5				
[5,6;5,8)	2	0,02	2	100	0,1	5,7				

- Gerando tabela de distribuição de frequência:
 - 5º Passo: Calcular a porcentagem acumulada

Tabela de Frequências										
Classe	Frequência	Freq. Rel.	Freq. Perc.	Freq. Acum.	Densidades	Ponto Médio				
[4,2;4,4)	6	0,06	6	6	0,3	4,3				
[4,4;4,6)	8	0,08	8	14	0,4	4,5				
[4,6;4,8)	15	0,15	15	29	0,75	4,7				
[4,8;5)	33	0,33	33	62	1,65	4,9				
[5;5,2)	18	0,18	18	80	0,9	5,1				
[5,2;5,4)	13	0,13	13	93	0,65	5,3				
[5,4;5,6)	5	0,05	5	98	0,25	5,5				
[5,6;5,8)	2	0,02	2	100	0,1	5,7				

- Gerando tabela de distribuição de frequência:
 - 6º Passo: Calcular a densidade: Frequência relativa dividida pela amplitude
 - Na prática isso corresponde à altura do retângulo no gráfico

	Tabela de Frequências									
Classe	Frequência	Freq. Rel.	Freq. Perc.	Freq. Acum.	Densidades	Ponto Médio				
[4,2;4,4)	6	0,06	6	6	0,3	4,3				
[4,4;4,6)	8	0,08	8	14	0,4	4,5				
[4,6;4,8)	15	0,15	15	29	0,75	4,7				
[4,8;5)	33	0,33	33	62	1,65	4,9				
[5;5,2)	18	0,18	18	80	0,9	5,1				
[5,2;5,4)	13	0,13	13	93	0,65	5,3				
[5,4;5,6)	5	0,05	5	98	0,25	5,5				
[5,6;5,8)	2	0,02	2	100	0,1	5,7				

- Gerando tabela de distribuição de frequência:
 - 7º Passo: Calcular o ponto médio (x_i) do grupo

	Tabela de Frequências									
Classe	Frequência	Freq. Rel.	Freq. Perc.	Freq. Acum.	Densidades	Ponto Médio				
[4,2;4,4)	6	0,06	6	6	0,3	4,3				
[4,4;4,6)	8	0,08	8	14	0,4	4,5				
[4,6;4,8)	15	0,15	15	29	0,75	4,7				
[4,8;5)	33	0,33	33	62	1,65	4,9				
[5;5,2)	18	0,18	18	80	0,9	5,1				
[5,2;5,4)	13	0,13	13	93	0,65	5,3				
[5,4;5,6)	5	0,05	5	98	0,25	5,5				
[5,6;5,8)	2	0,02	2	100	0,1	5,7				

Histograma

Por fim, o histograma (representada pela frequência ou pela densidade):

Histograma

Usando Matplotlib

Calculando o número ideal de bins k = \(\Gamma 1 + 3,3 \) log10(tamanho do dataset) \(\Gamma\)

```
In [4]: k = math.ceil(1 + 3.3 * math.log10( Data_df.size ))
k
Out[4]: 8
In [5]: import matplotlib.pyplot as plt
plt.hist(Data_df[0], bins=k)
plt.show()
```


Para gerar a distribuição de frequência, basta descobrir o número de classes/ grupos (bins) e enviar como parâmetro para função hist() junto com os dados.

Correlações

Dada duas variáveis X e Y (atributos, por exemplo), dizemos que:

- Se X e Y são **fortemente e positivamente correlacionadas**, então se X cresce, Y cresce;
- Se X e Y são **fortemente e negativamente correlacionadas**, então se X cresce, Y diminui;

• Se X e Y não possuem correlação, o comportamento de X não possui

associação com Y.

Correlações

- Coeficiente de correlação de *Pearson*:
 - Técnica Paramétrica: Usado para variáveis que possuem distribuição Normal (estudaremos distribuição dos dados mais adiante);
 - Serve para medir a correlação linear entre duas variáveis;
 - O coeficiente varia de -1 a 1:
 - -1 é correlação forte e negativa;
 - o 0 sem nenhuma correlação e
 - 1 correlação forte e positiva.

Correlações

- Coeficiente de correlação de Spearman:
 - Técnica Não-Paramétrica: <u>Não requer que as variáveis sigam uma distribuição</u> <u>específica</u> para ser aplicado;
 - Serve para medir a correlação não-linear entre duas variáveis;
 - o O coeficiente varia de -1 a 1, onde:
 - -1 é correlação forte e negativa,
 - o 0 sem nenhuma correlação e
 - 1 correlação forte e positiva.

Explorando duas ou mais variáveis

- Em caso de múltiplas variáveis independentes (atributos, features ou colunas) no qual contém distribuições Normal e não-Normal, pode-se aplicar Spearman em todas;
- 2. Pode também aplicar <u>Pearson</u>
 <u>somente nas colunas que</u>
 <u>apresentarem distribuição</u>
 <u>Normal</u> e analisá-las
 isoladamente das demais.

