

2019

Working

Calibration Protocol - Particle Standard Curve with Microspheres 👄

Richard Tennant¹, Paul Rutten¹

¹iGEM Measurement Committee

dx.doi.org/10.17504/protocols.io.zgjf3un

Richard Tennant 🚱

ABSTRACT

You will prepare a dilution series of monodisperse silica microspheres and measure the Abs₆₀₀ in your plate reader.

The size and optical characteristics of these microspheres are similar to cells, and there is a known amount of particles per volume. This measurement will allow you to construct a standard curve of particle concentration which can be used to convert 600 nm absorbance measurements into an estimated equivalent number of cells.

EXTERNAL LINK

https://2019.igem.org/Measurement

MATERIALS

NAME V	CATALOG #	VENDOR \vee	CAS NUMBER \vee RRID \vee
96 well plate			
double distilled water (ddH20)			
300µl Silica beads			
STEPS MATERIALS			
NAME Y	CATALOG #	VENDOR \vee	CAS NUMBER \vee RRID \vee
300µl Silica beads			
ddH20			

MATERIALS TEXT

 $300~\mu L$ Silica beads are provided in the iGEM Measurement Kit. The 96-well plate should preferably be black with a clear flat bottom.

BEFORE STARTING

Read through this entire protocol carefully before you start your experiment and prepare any materials you may need.

Prepare the Microsphere Stock Solution

Obtain the tube labeled "Silica Beads" from the Measurement Kit and vortex vigorously for 30 seconds.

protocols.io 05/06/2019 1

Microspheres should NOT be stored at 0°C or below, as freezing affects the properties of the microspheres. If you believe your microspheres may have been frozen, please contact the iGEM Measurement Committee for a replacement (measurement@igem.org).

- 2 Immediately pipet 100 μL microspheres into a 1.5 mL eppendorf tube
- 3 Add 900 μL of ddH₂O to the microspheres

Prepare the serial dilution of microspheres

5 Accurate pipetting is essential. Serial dilutions will be performed across columns 1-11. Column 12 must contain ddH₂O only.

Initially you will setup the plate with the microsphere stock solution in column 1 and an equal volume of 1x ddH₂O in columns 2 to 12.

You will perform a serial dilution by consecutively transferring 100 µl from column to column with good mixing.

- 6~ Add 100 μl of ddH $_2$ O $\,$ into wells A2, B2, C2, D2....A12, B12, C12, D12 $\,$
- 7 Vortex the tube containing the stock solution of microspheres vigorously for 10 seconds

8	Immediately add 200 μl of microspheres stock solution into A1
9	Transfer 100 μ l of microsphere stock solution from A1 into A2
10	Mix A2 by pipetting up and down 3x and transfer 100 μ l into A3
11	Mix A3 by pipetting up and down 3x and transfer 100 μ l into A4
12	Mix A4 by pipetting up and down 3x and transfer 100 μ l into A5
13	Mix A5 by pipetting up and down 3x and transfer 100 μl into A6
14	Mix A6 by pipetting up and down 3x and transfer 100 μl into A7
15	Mix A7 by pipetting up and down 3x and transfer 100 μl into A8
16	Mix A8 by pipetting up and down 3x and transfer 100 μl into A9
17	Mix A9 by pipetting up and down 3x and transfer 100 μl into A10
18	Mix A10 by pipetting up and down 3x and transfer 100 μl into A11
19	Mix A11 by pipetting up and down 3x and transfer 100 μ l into liquid waste
	Take care not to continue serial dilution into column 12
20	Repeat dilution series for rows B, C, D
21	IMPORTANT!
	Re-Mix (pipette up and down) each row of your plate immediately before putting in the plate reader! (This is important because the beads begin to settle to the bottom of the wells within about 10 minutes, which will affect the measurements.)

Take care to mix gently and avoid creating bubbles on the surface of the liquid

Measure OD

- 22 Measure OD₆₀₀ of all samples in instrument
- 23 Record the data in your notebook
- 24 Import data into this Excel sheet:
 - iGEM Data Analysis Template Particle Standard Curve v1.xlsx

Congratulations!

25 You have now completed this calibration protocol

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited