Indian Institute of Technology Indore

MA 204 Numerical methods

(Spring Semester 2022)

Instructor: Dr. Mohd. Arshad

Tutorial Sheet 1

1. Solve the system

$$4x_1+3x_2+2x_3 + x_4 = 1$$

$$3x_1+4x_2+3x_3 + 2x_4 = 1$$

$$2x_1+3x_2+4x_3 + 3x_4 = -1$$

$$x_1+2x_2+3x_3 + 4x_4 = -1$$

by the Gauss elimination.

2. The exact solution of the system

$$0.003000x_1 + 59.14x_2 = 59.17$$
$$5.291x_1 - 6.130x_2 = 46.78$$

is $x_1 = 10$ and $x_2 = 1$. Solve this system by the Gauss elimination (a) without pivoting and (b) with partial pivoting using four-digit arithmetic with rounding. Observe the error in the solution in both the cases.

3. Verify that the exact solution of the system

$$6x_1 + 2x_2 + 2x_3 = -2$$
$$2x_1 + \frac{2}{3}x_2 + \frac{1}{3}x_3 = 1$$
$$x_1 + 2x_2 - x_3 = 0$$

is $x_1 = 13/5$, $x_2 = -19/5$, $x_3 = -5$. Solve this system by the Gauss elimination (a) without pivoting and (b) with partial pivoting using four-digit floating point arithmetic. Observe the error in the solution in both the cases.

4. For which three numbers k, the matrix

$$A = \begin{bmatrix} 2 & k & k \\ k & k & k \\ 8 & 7 & k \end{bmatrix}$$

is not invertible and why? Are there any other values of k for which the matrix A is not invertible?

5. Prove that the matrix

$$A = \begin{bmatrix} a & b & b \\ a & a & b \\ a & a & a \end{bmatrix}$$

is invertible if $a \neq 0$ and $a \neq b$. Assuming that these conditions are fulfilled, find A^{-1} without using the determinants and co-factors.

1

(Hint: Apply the Gauss elimination, and identify the pivots.)

6. Compute the inverse of the following matrix without using the determinants and co-factors.

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- 7. Write down all 3×3 permutation matrices.
- 8. Suppose a linear system Ax = b is to be solved by Gauss elimination method, where A is $n \times n$ matrix, and x and b are column vectors of order $n \times 1$ of unknowns and known values respectively. Show that
 - (a) the number of multiplications/divisions operations $\frac{2n^3+3n^2-5n}{6}$ is required in forward elimination.
 - (b) the number of additions/subtractions operations $\frac{n^3-n}{3}$ is required in forward elimination.
 - (c) the number of multiplications/divisions operations $\frac{n^2+n}{2}$ is required in backward substitution.
 - (d) the number of additions/subtractions operations $\frac{n^2-n}{2}$ is required in backward substitution.