# **TESIS:** Teoria dos Sistemas



#### **Controladores PID**

Manuel Silva: mss@isep.ipp.pt

# **Controladores PID**



- 1. Formas de controlo de sistemas realimentados
  - 1. controlo proporcional
  - 2. controlo proporcional e integral
    - 1. saturação por efeito da acção integral
  - 3. acção diferencial
- 2. Sintonia do controlador
  - 1. métodos em malha aberta
  - 2. métodos em malha fechada
- 3. Controlo em cascata e por "Feedforward"
  - 1. controlo em cascata
  - 2. controlo por "Feedforward"

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



- Formas de controlo de sistemas realimentados
  - existem três acções básicas de controlo
    - acção proporcional
    - acção integral
    - acção diferencial ou derivativa

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

# **Controladores PID**



- Formas de controlo de sistemas realimentados
  - estas três acções de controlo, quando juntas, levam ao controlador PID, de acordo com a expressão

PID 
$$m(t) = K \left( e + \frac{1}{T_i} \int_{0}^{t} e(t') dt' + T_d \frac{de}{dt} \right)$$

onde K,  $T_i$ ,  $T_d$  são parâmetros a ajustar

• nota: e = r - c, se r = constante, vem  $m(t) = K \left( e + \frac{1}{T_i} \int_0^t e(t') dt' - T_d \frac{dc}{dt} \right)$ 

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



isep

Controlo proporcional

$$m(t) = K \left( \frac{e}{t} + \frac{1}{T_i} \int_0^t e(t') dt' + T_d \frac{de}{dt} \right)$$

• se  $T_d$  = 0 e  $T_i$  =  $\infty$  tem-se um controlador proporcional

$$m(t) = Ke(t)$$

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

# **Controladores PID**



- Controlo proporcional
  - viu-se anteriormente que este tipo de controlador é incapaz de eliminar  $e_{ss}$  de sistemas tipo zero, para uma referência em degrau, R(s) = 1/s

$$e_{ss} = \frac{1}{1+K}$$

- para diminuir  $e_{ss}$  é necessário aumentar K
  - em geral, esta estratégia origina um aumento do tempo de estabelecimento e, eventualmente, a instabilidade

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



• Controlo proporcional e integral

$$m(t) = K\left(\frac{e}{t} + \frac{1}{T_i} \int_{0}^{t} e(t') dt' + T_d \frac{de}{dt}\right)$$

• se  $T_d$  = 0 tem-se um controlador PI

$$m(t) = K\left(e + \frac{1}{T_i} \int_0^t e(t') dt'\right)$$

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

### **Controladores PID**



- Controlo proporcional e integral
  - acção integral produz uma função de transferência com um pólo na origem
  - erro em regime permanente, ao degrau de entrada, é nulo desde que o sistema seja estável

$$m(t) = K\left(e + \frac{1}{T_i} \int_0^t e(t') dt'\right)$$

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



- Controlo proporcional e integral
  - parâmetro  $T_i$  (tempo integral) quantifica a razão de variação da saída do controlador PI quando a entrada é um degrau
    - tempo necessário para que a contribuição da parte integral seja igual à contribuição da parte proporcional

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

## **Controladores PID**



Controlo proporcional e integral



- muitos fabricantes exprimem  $T_i$  em unidades min/repetições ou repetições/min
- tipicamente
  - 0,02 repetições/min ≤ T<sub>i</sub> ≤ 50 repetições/min

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



- Saturação por efeito da acção integral
  - os actuadores têm um intervalo limitado de funcionamento linear e a maioria exibe uma característica entrada-saída não-linear do tipo "saturação"
  - assim, quando o controlador produz valores de saída elevados, a adopção de modelos lineares pode conduzir a conclusões erradas
  - este fenómeno é particularmente importante quando ocorrem variações significativas da referência ou da carga (perturbações)
  - em ambos os casos, existe um erro e(t) elevado que pode conduzir à saturação do actuador

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

#### **Controladores PID**



• Saturação por efeito da acção integral



TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



- Saturação por efeito da acção integral
  - no caso de ocorrer saturação, a variável de saída c(t)demora mais tempo a atingir o valor desejado
  - a acção integral tem mais tempo para integrar o erro e aumenta até um valor elevado (integral windup) até que o erro muda de sinal e, então, começa a decrescer
  - devido ao elevado valor atingido, a saída do controlador demora mais tempo a mudar de sinal e, consequentemente, até isso se verificar a variável de saída c(t) continua a crescer
  - como consequência ocorre uma sobreelongação elevada

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

#### **Controladores PID**



- Saturação por efeito da acção integral
  - resposta do sistema para um degrau de entrada r(t) com amplitude 10

$$K(s) = 1 + \frac{1}{s}$$

$$K(s) = 1 + \frac{1}{s}$$
$$W(s) = \frac{2}{s + 0, 1}$$





TESIS - Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



- Saturação por efeito da acção integral
  - se o controlador parar a integração quando ocorre a saturação (batch switch), o desempenho vem melhorado

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

## **Controladores PID**



- Acção diferencial
  - quando  $T_d \neq 0$  e  $T_i \neq \infty$  obtém-se um controlador PID

$$m(t) = K \left( \frac{e}{t} + \frac{1}{T_i} \int_0^t e(t') dt' + T_d \frac{de}{dt} \right)$$

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009





- Acção diferencial
  - inclusão da parcela  $T_d \cdot dc/dt$  (ou  $T_d \cdot de/dt$ ) ultrapassa as limitações das acções P e I
    - requerem, respectivamente, um erro elevado e um intervalo de tempo elevado, para produzir uma saída com valor apreciável
  - acção D responde à razão de variação da variável, possibilitando uma reacção mais rápida do controlador, mesmo para erros pequenos
  - parâmetro  $T_d$  é uma medida da capacidade de reacção

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

#### **Controladores PID**



- Acção diferencial
  - por exemplo, considerando r = 0 e c(t) a variar linearmente, as acções P e PD dão origem aos gráficos seguintes

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



Acção diferencial





$$r = 0, \quad e = r - c$$

$$m(t) = K\left(e + T_d \frac{de}{dt}\right)$$
 $m(t) = -K\left(c + T_d \frac{dc}{dt}\right)$ 

TESIS – Teoria dos Sistemas

SEP – Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

# **Controladores PID**



- Acção diferencial
  - note-se que para t ≥ t<sub>0</sub> a resposta da acção PD fica "avançada" de T<sub>d</sub> unidades de tempo face à resposta da acção P
  - acção D pode ser implementada como  $T_d$ .de/dt ou como  $-T_d$ .dc/dt
  - a adopção da variável de saída c evita que a saída do controlador "dê um salto" sempre que ocorre um degrau de variação na entrada
  - para sistemas com pólos/zeros no semi-plano esquerdo a acção D tende a estabilizar o sistema

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



- Sintonia do controlador
  - coloca-se agora a questão de seleccionar os valores mais apropriados para K, T<sub>i</sub> e T<sub>d</sub>, de forma a obter um desempenho satisfatório no controlo do sistema
  - para calcular os parâmetros é necessário um modelo matemático do sistema
    - identificação do sistema pode ser complexa e trabalhosa
    - problema simplificado se nos restringirmos a uma classe de modelos de ordem baixa

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

## **Controladores PID**



- Sintonia do controlador
  - experiência demonstrou que os dois modelos seguintes são adequados para a maioria dos processos industriais

$$W_1(s) = \frac{K_p e^{-sT}}{s\tau + 1}$$

$$W_2(s) = \frac{K'_p e^{-sT}}{s}$$

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



- Sintonia do controlador
  - uma técnica de sintonia consiste nas seguintes fases
    - um teste para estimar os parâmetros do modelo
    - um conjunto de fórmulas que relacionem os parâmetros do controlador (K, T<sub>i</sub>, T<sub>d</sub>) com o modelo, de forma a obter uma resposta com as características desejadas
  - técnicas de sintonia podem ser classificadas em métodos de malha aberta e métodos em malha fechada

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

#### **Controladores PID**



- Sintonia do Controlador Métodos em Malha Aberta
  - parâmetros {Kp, T, t} ou {K'p, T} estimados a partir da resposta c(t) do sistema a uma entrada em degrau com amplitude M

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009





- Sintonia do Controlador Métodos em Malha Aberta
  - $W_1(s)$ 
    - $Kp = M^{\circ}/M$
    - T obtém-se a partir do ponto de intersecção da recta tangente no ponto de declive máximo



TESIS – Teoria dos Sistemas

Manuel Silva: mss@isep.ipp.pt

# **Controladores PID**



- Sintonia do Controlador Métodos em Malha Aberta
  - $W_1(s)$ 
    - resposta de  $Kp/(\tau s+1)$  a um degrau aplicado em t=0, atinge 63,2% do valor final para  $t=\tau$  então  $\tau=t'-T$  onde c(t')=0,632M'



TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



- Sintonia do Controlador Métodos em Malha Aberta
  - $W_2(s)$ 
    - resposta em regime permanente, a um degrau de entrada de amplitude M, apresenta um declive MK'p
    - ponto de intersecção da recta dá o valor de T



TESIS – Teoria dos Sistemas

Manuel Silva: mss@isep.ipp.pt

#### **Controladores PID**



- Sintonia do Controlador Métodos em Malha Fechada
  - com o anel de realimentação fechado e com as acções I e D anuladas (i.e.,  $T_d = 0$ ,  $1/T_i = 0$ ) o ganho K é aumentado gradualmente até que a variável de saída oscile com amplitude constante
  - neste caso, tem-se o ganho final, Ku (ultimate gain) e o período final, Pu (ultimate period) de oscilação

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



- Sintonia do Controlador Métodos em Malha Fechada
  - este método é simples de aplicar mas muitos sistemas não toleram as oscilações, o que condiciona a sua aplicação
  - é também importante verificar que não haja saturação de um elemento do sistema, sob pena dos resultados não terem significado

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

# **Controladores PID**



- Sintonia do Controlador Métodos em Malha Fechada
  - as fórmulas para o ajuste dos parâmetros do controlador dependem da resposta desejada para um degrau na carga ou um degrau na referência
  - as fórmulas mais populares são as de Ziegler e Nichols, Shinskey, Cohen e Coon e o seu objectivo é determinar o conjunto de parâmetros que produzem uma razão de decaimento de um quarto

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009





 Sintonia do Controlador – Métodos em Malha Fechada



TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

## **Controladores PID**



- Sintonia do Controlador Métodos em Malha Fechada
  - dois primeiros métodos consideram o modelo do sistema  $W_2(s)$ , enquanto o terceiro considera o modelo  $W_1(s)$
  - em geral estas fórmulas originam valores distintos para os parâmetros  $\{K, T_i, T_d\}$  e não produzem exactamente a resposta desejada
    - valores obtidos são uma primeira estimativa para um processo de ajuste com várias iterações

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009



• Fórmulas para a Sintonia do Controlador

| Controller | Setting     | Ziegler-Nichols<br>(closed-loop) |                     | Ziegler-Nichols<br>(open-loop) | Cohen-Coon                                                      |
|------------|-------------|----------------------------------|---------------------|--------------------------------|-----------------------------------------------------------------|
| P          | K           | 0.5 K <sub>u</sub>               | 0.5 K <sub>u</sub>  | $\frac{1}{T R_r}$              | $\frac{\tau}{TK_{\rm p}}\left(1+0.33\frac{T}{\tau}\right)$      |
| PI         | K           | 0.45 K <sub>u</sub>              | 0.5 K <sub>u</sub>  | $\frac{0.9}{T R_r}$            | $\frac{\tau}{TK_p} \left( 0.9 + 0.082 \frac{T}{\tau} \right)$   |
|            | $T_{\rm i}$ | 0.833 P <sub>u</sub>             | 0.43 P <sub>u</sub> | 3.33 T                         | $T\left(\frac{3.33 + 0.3T/\tau}{1 + 2.2T/\tau}\right)$          |
| PID        | K           | 0.6 K <sub>u</sub>               | 0.5 K <sub>u</sub>  | $\frac{1.2}{T R_r}$            | $\frac{\tau}{TK_{\rm p}}\left(1.35 + 0.27\frac{T}{\tau}\right)$ |
|            | $T_{i}$     | 0.5 P <sub>u</sub>               | 0.34 P <sub>u</sub> | 2 T                            | $T\left(\frac{2.5 + 0.5T/\tau}{1 + 0.6T/\tau}\right)$           |
|            | $T_{\rm d}$ | 0.125 P <sub>u</sub>             | 0.08 P <sub>u</sub> | 0.5 T                          | $T\left(\frac{0.37}{1+0.2T/\tau}\right)$                        |

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009

Manuel Silva: mss@isep.ipp.pt

# **Controladores PID**



- Fórmulas para a Sintonia do Controlador
  - verifica-se que
    - introdução da acção I traduz-se por uma diminuição do ganho K para compensar o efeito destabilizador
    - introdução da acção D traduz-se pelo reforço das acções P e I
  - acção D tem um efeito adverso na resposta transitória de sistemas com um tempo de atraso predominante, isto é, onde a razão  $\tau/T$  é elevada
  - somente o método de Cohen e Coon avalia esta razão pelo que apresenta melhor desempenho

TESIS – Teoria dos Sistemas

ISEP - Ano Lectivo 2008 / 2009