Neural networks for time series analysis

Oleksandr Honchar | University of Verona March 2018

Day 3: overfitting, convolutional and recurrent nets

Introduction to machine learning and time series analysis

Data preparation and feedforward neural networks

Convolutional, recurrent neural networks and overfitting

Building a trading strategy and further applications

overfitting

data augmentation

regularization

L1 Regularization

$$Cost = \sum_{i=1}^{N} (y_i - \sum_{i=1}^{M} x_i)$$

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{N} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{N} |W_j|$$
L2 Regularization

dropout

Training time

noise augmentation

convolutional neural nets

$$(fst g)(x) \ \stackrel{ ext{def}}{=} \ \int\limits^\infty f(y)\,g(x-y)\,dy = \int\limits^\infty f(x-y)\,g(y)\,dy.$$

recurrent neural nets

 b^0 is fed to next layer

