PERFORMANCE TESTING

Project Name	WEB PHISHING DETECTION
Team ID	PNT2022TMID33847

Model Performance Testing:

)	Parameter	Values	Screenshot				
	Metrics	Classification Model: Random					
		Forest Classifier.	Random Forest Classifier Algorithm				
			<pre>In [32]: # model building from sklearn.ensemble import RandomForestClassifier rf=RandomForestClassifier(n_estimators=15,max_depth=3)</pre>				
			In [33]: rf.fit(X_train,y_train)				
			Out[33]: RandomForestClassifier(max_depth=3, n_estimators=15)				
			<pre>In [34]: test_pred = rf.predict(X_test)</pre>				
			<pre>In [35]: train_pred = rf.predict(X_train)</pre>				
	Evaluation Metrics: Confusion Matrix - Accuracy Score- &	<pre>In [39]: print(classification_report(y_test,test_pred))</pre>					
		Classification Report.	-1 0.92 0.89 0.91 1498				
			1 0.91 0.94 0.92 1819				
			accuracy 0.92 3317				
			macro avg 0.92 0.91 0.91 3317 weighted avg 0.92 0.92 0.92 3317				
			macro avg 0.92 weighted avg 0.92				

EVALUATION METRICS:

<pre>In [39]: print(classi</pre>	print(classification_report(y_test,test_pred))						
	precision	recall	f1-score	support			
-1	0.92	0.89	0.91	1498			
1	0.91	0.94	0.92	1819			
accuracy			0.92	3317			
macro avg	0.92	0.91	0.91	3317			
weighted avg	0.92	0.92	0.92	3317			

COMPARING PERFORMANCE OF DIFFERENT ML MODELS:

Comparing all the algorithms using boxplot

```
In [63]: from sklearn import model_selection
In [64]: # prepare models
             models = []
            models = []
models.append(('LR', LogisticRegression()))
models.append(('DC', DecisionTreeClassifier()))
models.append(('RF', RandomForestClassifier()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('NB', GaussianNB()))
# evaluate each model in turn
possults = []
            results = []
names = []
scoring = 'accuracy'
             —⊸results.append(cv_results)
             -->print(msg)
            # boxplot algorithm comparison
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
             ax = fig.add_subplot(111)
             plt.boxplot(results)
             ax.set xticklabels(names)
            plt.show()
             import warnings
             warnings.simplefilter(action='ignore', category=FutureWarning)
            LR: 0.925463 (0.006803)
DC: 0.961457 (0.020589)
RF: 0.972407 (0.010678)
KNN: 0.947983 (0.013020)
```


FROM BOX PLOT RESULTS IT IS CLEAR THAT 'RANDOM FOREST CLASSIFIER' HAS THE GREATEST ACCURACY. 'RANDOM FOREST CLASSIFIER' ALGORITHM IS THE BEST MACHINE LEARNING ALGORITHM. FITTING THE BEST MODEL.