FDA Homework 2

Seokjun Choi

October 18, 2019

1 Chapter 10

1.1 Problem 2

Show that in any inner product space, the function $y \to \langle x, y \rangle$ is continuous where x is arbitary element of that inner product space.

Let \mathcal{H} be an inner product space, $\{f_n\}$ be a sequence in \mathcal{H} such that converges to $f \in \mathcal{H}$ in norm sense. For $x \in \mathcal{H}$, consider below relation.

$$|\langle x, f_n \rangle - \langle x, f \rangle|^2 = |\langle x, f_n - f \rangle|^2 \le ||x||^2 ||f_n - f||^2$$

Last inequality comes from Cauchy-Schwartz inequality. Then when $n \to \infty$, by our setting $||f_n - f|| \to 0$, so

$$\lim_{n \to \infty} |\langle x, f_n \rangle - \langle x, f \rangle|^2 \le 0$$

Then

$$\lim_{n \to \infty} \langle x, f_n \rangle - \langle x, f \rangle = 0$$

Thus, $\lim_{n\to\infty} \langle x, f_n \rangle = \langle x, f \rangle$ and the inner product operator is preserve the limit. It is equivalent statement that inner product operator is continuous.

1.2 Problem 6

Suppose $\{e_j, j \geq 1\}$ is a complete orthonormal sequence in a Hilbert space. Show that if $\{f_j, j \geq 1\}$ is an orthonormal sequence satisfying

$$\sum_{j=1}^{\infty} ||e_j - f_j||^2 < 1$$

then $\{f_j, j \geq 1\}$ is also complete.

Firstly, I claim that e_j and f_j are not orthogonal.

Consider a simple case that only one component of fixed j index are different e_j from f_j . then, If e_j , f_j are orthonormal, the by Pythagorean theorem, $||e_j - f_j||^2 = ||e_j||^2 + ||f_j||^2 = 1 + 1 = 2$ since e_j and f_j are unit elements. But under our assumption

$$||e_j - f_j||^2 = \langle e_j - f_j, e_j - f_j \rangle = \langle e_j, e_j \rangle - \langle e_j, f_j \rangle - \langle f_j, e_j \rangle + \langle f_j, f_j \rangle$$

$$= ||e_j||^2 + ||f_j||^2 - (\langle e_j, f_j \rangle + \langle f_j, e_j \rangle) = 2 - (\langle e_j, f_j \rangle + \langle f_j, e_j \rangle) < 1$$

so in our case, $||e_j - f_j||^2$ always cannot have the value 2, and

$$< e_j, f_j > + < f_j, e_j > = < e_j, f_j > + \overline{< e_j, f_j >} = 2Re(< e_j, f_j >)$$

cannot become 0, neither can $\langle e_j, f_j \rangle$. Both viewing norm value and inner product value show that they are not orthogonal. Thus the claim is proved for simple case.

Next, consider many j-th components can be different e_j from f_j . But above claim still holds, because $\sum_{j=1}^{\infty} ||e_j - f_j||^2 < 1$ and all norm values must be nonnegative, none of j-th component of $||e_j - f_j||$ can be greater then 1 like the simple case, and $\langle e_j, f_j \rangle + \langle f_j, e_j \rangle = 2Re(\langle e_j, f_j \rangle)$ cannot be 0 for all j. So above claim is proved for whole case.

Then from the result of claim, if we express f_j as the linear combination of $\{e_i\}$, then f_j always has e_j component with nonzero coefficient. (More precisely, use Gram-Schmidt process, or just project f_j onto e_j . then since f_j is not orthogonal to e_j , by property of separable Hilbert space's orthonormal basis, we get e_j component of nonzero coefficient.)

So, if we express whole space as $\mathcal{H} = span\{e_1, e_2, ..., e_j, ...\}$, then we can also re-express \mathcal{H} as $\mathcal{H} = span\{e_1, e_2, ..., f_j, ...\}$. Then for each j, we replace e_j to f_j inductively from j = 1 to ∞ for above span expression. Then consequently we get $\mathcal{H} = span\{f_1, f_2, ..., f_j, ...\}$ for $\{f_j, j \geq 1\}$, it's what we want.

1.3 Problem 10

Suppose $\{e_j, j >= 1\}$ and $\{f_i, i >= 1\}$ are orthonormal bases in \mathcal{H} . Show that for any Hilbert-Schmidt operators Ψ, Φ

$$\sum_{i=1}^{\infty} <\Psi(f_i), \Phi(f_i) > = \sum_{j=1}^{\infty} <\Psi(e_j), \Phi(e_j) >$$

Firstly note that $f_i = \sum_{j=1}^{\infty} \langle f_i, e_j \rangle e_j$, and since Φ are Hilbert-Schmidt, there exists adjoint operator Φ^* . Using these facts,

$$\sum_{i=1}^{\infty} <\Psi(f_i), \Phi(f_i)> = \sum_{i=1}^{\infty} <\Phi^*\Psi(f_i), f_i> = \sum_{i=1}^{\infty} <\Phi^*\Psi\sum_{j=1}^{\infty} < f_i, e_j>e_j, \sum_{k=1}^{\infty} < f_i, e_k>e_j> = \sum_{i=1}^{\infty} <\Phi^*\Psi(f_i), \Phi(f_i)> = \sum_{i=1}^{\infty} <\Phi^*\Psi(f_i)> = \sum_{i=1}^{\infty} <\Phi^*\Psi(f_i)>$$

then

$$= \sum_{i=1} \sum_{j=1} \sum_{k=1} < f_i, e_j > \overline{< f_i, e_k >} < \Phi^*\Psi(e_j), e_k > = \sum_{i=1} \sum_{j=1} \sum_{k=1} < f_i, e_j > < e_k, f_i > < \Phi^*\Psi(e_j), e_k > = \sum_{i=1} \sum_{j=1} \sum_{k=1} < f_i, e_j > < e_k, f_i > < \Phi^*\Psi(e_j), e_k > = \sum_{i=1} \sum_{j=1} \sum_{k=1} < f_i, e_k > < \Phi^*\Psi(e_j), e_k > = \sum_{i=1} \sum_{j=1} \sum_{k=1} < f_i, e_k > < e_k, f_i > < \Phi^*\Psi(e_j), e_k > = \sum_{i=1} \sum_{j=1} \sum_{k=1} < f_i, e_k > < e_k, f_i > < \Phi^*\Psi(e_j), e_k > = \sum_{i=1} \sum_{j=1} \sum_{k=1} < f_i, e_k > < e_k, f_i > < \Phi^*\Psi(e_j), e_k > < e_k, f_i > < e_k,$$

Since the operaters are Hilbert-Schmidt, the value of absolute summation is bounded and we can interchange the summation order. then

$$= \sum_{j=1} \sum_{k=1} <\Phi^* \Psi(e_j), e_j > (\sum_{i=1} < f_i, e_j > < e_k, f_i >)$$

If we think the linear operator $L: \mathcal{H} \to \mathcal{H}$ such that maps each f_i to e_i , then since both $\{f_i\}, \{e_i\}$ are orthonormal, $LL^* = L^*L$ is identity operator. It means that, for $j \neq k$, the last summation term becomes 0, and for only j = k cases remain with value 1 because of using orthonormal set.

So we rewrite above equation as

$$= \sum_{j=1} <\Phi^*\Psi(e_j), e_j> = \sum_{j=1} <\Psi(e_j), \Phi(e_j)>$$

from the assumption that $\{f_i\}$ is in orthornormal set.

1.4 Problem 12

Show that if L is bounded then L^* is also bounded, and

$$||L^*||_{\mathcal{L}} = ||L||_{\mathcal{L}}, \quad ||L^*L||_{\mathcal{L}} = ||L||_{\mathcal{L}}^2$$

Firstly, I construct a lemma.

$$||L||_{\mathcal{L}} = \sup\{|< Lx, y > |: ||x|| \le 1, ||y|| \le 1\}$$

For proof, $(1) \ge$ direction is simple consquence of Cauchy-Schwartz inequality. $|\langle Lx,y\rangle| \le ||Lx||||y|| \le ||Lx||$ for $||x|| \le 1$. Take supremum(within $||x|| \le 1$) both side. (2) To get \le direction, for $x \in \mathcal{H}$, $||x|| \le 1$, let x' = x/||x||, y' = Lx/||Lx||. Then if $\sup |\langle Lx,y\rangle| = M$ for some $M \in \mathcal{R}$, then $|\langle Lx',y'\rangle| \le M$ by assumption, and observe that $|\langle Lx',y'\rangle| = |\langle \frac{Lx}{||x||}, \frac{Lx}{||Lx||} > = \frac{||Lx||^2}{||x||||Lx||} = \frac{||Lx||}{||x||}$, so $||Lx|| \le M||x||$. Take supremum(within $||x|| \le 1$) both side.

Note that the argument which gives supremum value always satisfies ||x|| = 1.

Let's start our main goal. Let $x \in \mathcal{H}$ such that $||x|| \leq 1$, be argument of realizing supremum of definition of operator norm, $||L||_L = ||Lx||$)

For boundedness and first identity, consider

$$||L||_{\mathcal{L}} = \sup\{|\langle Lx, y \rangle| :: ||x|| \le 1, ||y|| \le 1\}$$

= $\sup\{|\langle x, L^*y \rangle| :: ||x|| \le 1, ||y|| \le 1\} = ||L^*||$

So if L is bounded($||L||_{\mathcal{L}} < \infty$), then L^* is also bounded($||L^*||_{\mathcal{L}} < \infty$).

For second identity, consider

$$\begin{aligned} ||L||_{\mathcal{L}} &= \sup\{|\langle Lx, Ly/||Ly|| > |: ||x|| \le 1, ||y|| \le 1\} \\ &= \sup\{|\frac{\langle L^*Lx, y >}{||Ly||}|: ||x|| \le 1, ||y|| \le 1\} \\ &= \frac{1}{||L||_{\mathcal{L}}} \sup\{|\langle L^*Lx, y > |: ||x|| \le 1, ||y|| \le 1\} = \frac{||L^*L||_{\mathcal{L}}}{||L||_{\mathcal{L}}} \end{aligned}$$

At third line, I use the definition of operator norm. Multiply $||L||_{\mathcal{L}}$ both side.

Chapter 11 $\mathbf{2}$

Problem 5

Suppose for each $k = 1, 2, ..., M, Y_{k,n}, Y_k$ are random variables such that for every $M \ge 1$,

$$[Y_{1,n}, Y_{2,n}, ..., Y_{M,n}]^T \xrightarrow{d} [Y_1, Y_2, ..., Y_M]^T$$

in the Euclidean space \mathbb{R}^M . Suppose $\{w_k, k \geq 1\}$ is a sequence of numbers such that

$$\sum_{k=1}^{\infty} |w_k| E(|Y_k|) < \infty \text{ and } \sum_{k=1}^{\infty} |w_k| \sup_{n \geq 1} E|Y_{k,n} - Y_k| < \infty$$

Using Theorem 11.1.3, show that $\sum_{k=1}^{\infty} w_k Y_{k,n} \xrightarrow{d} \sum_{k=1}^{\infty} w_k Y_k$.

To more easily show to a method of using the theorem 11.1.3, I will start to match our case to the notation of the theorem's assumption on the book.

our case \leftrightarrow theorem11.1.3

$$\sum_{k=1}^{u} w_k Y_{k,n} \leftrightarrow X_n(u)$$

$$\sum_{k=1}^{u} w_k Y_k \leftrightarrow X(u)$$

$$\sum_{k=1}^{\infty} w_k Y_{k,n} \leftrightarrow X_n$$

$$\sum_{k=1}^{\infty} w_k Y_k \leftrightarrow X$$

More formally, since $[Y_{1,n},Y_{2,n},...,Y_{M,n}]^T \xrightarrow{d} [Y_1,Y_2,...,Y_M]^T$ for every $M \geq 1$ and w_k s are just real number, if we momently fix M as u, we get $\sum_{k=1}^{u} w_k Y_{k,n} \xrightarrow{d} \sum_{k=1}^{u} w_k Y_k$. and by letting u increase (to ∞), we also get $\sum_{k=1}^{u} w_k Y_k \xrightarrow{d} \sum_{k=1}^{\infty} w_k Y_k$. Note that the last term's convergence is guaranteed by our problem's assumption, $\sum_{k=1}^{\infty} |w_k| E(|Y_k|) < \infty$. Nextly, from our problem's assumption $\sum_{k=1}^{\infty} |w_k| \sup_{n \geq 1} E|Y_{k,n} - W_k| \exp_{n \geq 1} E|Y_{k,n} - W_k| \exp_{n$ $|Y_k| < \infty$,

$$\sup_{n>1} E|w_k Y_{k,n} - w_k Y_k| \to 0 \text{ as } k \to \infty$$

It directly implies

$$\lim_{u \to \infty} \limsup_{n \to \infty} P(d(\sum_{k=1}^{u} w_k Y_{k,n}, \sum_{k=1}^{\infty} w_k Y_{k,n}) > \epsilon) = 0$$

So theorem 11.1.3's condition are all set. By applying the theorem, we get $\sum_{k=1}^{\infty} w_k Y_{k,n} \xrightarrow{d} \sum_{k=1}^{\infty} w_k Y_k$.

2.2Problem 9

Suppose \mathcal{H} is an infinite dimensional separable Hilbert space and $\{e_j, j \geq 1\}$ is an orthonormal system. Define the operator Ψ by

$$\Psi(x) = \sum_{j=1}^{\infty} j^{-1} < x, e_j > e_j$$

Show that Ψ is bounded, symmetric and nonnegative definite, but it is not a covariance operator.

Boundness is straightforward. For reach the supremum of a definition of operator norm, we should choose simply e_1 because j^{-1} decreases as j goes to ∞ , and we can get $||\Psi|| = 1 < \infty$.

Next, since Ψ is clearly linear and bounded as we showed, there exist adjoint $||\Psi^*||$. Then, since j has no imaginary part,

$$<\Psi(x),y>=<\sum_{j=1}^{\infty}j^{-1}< x,e_{j}>e_{j},y>=\sum_{j=1}^{\infty}j^{-1}<< x,e_{j}>e_{j},< y,e_{j}>e_{j}>$$

$$= \sum_{j=1}^{\infty} << x, e_j > e_j, j^{-1} < y, e_j > e_j > = \sum_{j=1}^{\infty} < x, j^{-1} < y, e_j > e_j > = \sum_{j=1}^{\infty} < x, \Psi(y) > = \sum_{j=1}^{\infty} < x, \Psi(y$$

So $\Psi = \Psi^*$, and it means that Ψ is symmetric operator.

To show Ψ is nonnegative,

$$<\Psi(x), x> = \sum_{j=1}^{\infty} j^{-1} << x, e_j > e_j, x>$$

and $j^{-1} > 0, \langle x, x \rangle \ge 0$. (In fact, positive operator is also symmetric in Hilbert space.)

But, Ψ is not Hilbert-Schmidt, nor covariance operator. Consider below. Since Ψ is symmetric, we can apply spectral theorem to Ψ . For simplicity for our discussion, WLOG(because Hilbert-Schmidt norm is basis-invariant) choose $\{e_j\}$ as eigenvector(or correspond some eigen-element consisting \mathcal{H}) of Ψ . then, naturally $\{j^{-1}\}$ become eigenvalues. And when \mathcal{S} is set of Hilbert-Schmidt operator of \mathcal{H} ,

$$||\Psi||_{\mathcal{S}}^2 = \sum_{j=1}^{\infty} (j^{-1})^2 = \infty$$

so $\Psi \notin \mathcal{S}$.

2.3 Problem 14

Suppose X satisfies Definition 11.3.2 and let L be a bounded operator. Show that L(X) is Gausian; find its expected value and covariance operator.

Maybe in the problem, a condition 'L is linear map from \mathcal{H} to \mathcal{H} ' is missed. I'll assume it.

Firstly, since L is bounded linear operator, there exists an adjoint operator L^* . Then, let's consider the characteristic functional of L(X). For $y \in \mathcal{H}$,

$$\phi_{L(X)}(y) = Eexp\{i < y, LX >\} = Eexp\{i < L^*y, X >\} = \phi_X(L^*y)$$

So, X follows Gaussian(definition 11.3.2),

$$\phi_{L(X)}(y) = \phi_X(L^*y) = exp\{i < \mu, L^*y > -\frac{1}{2} < C(L^*y), L^*y > \} = exp\{i < L\mu, y > -\frac{1}{2} < LC(L^*y), y > \}$$

From above form of characteristic functional of L(X), we can observe that L(X) follows Gaussian again, with mean function $L\mu$, covariance operator LCL^* .