Backtrack

Giuseppe Persiano

Università di Salerno

Novembre, 2021

N regine

Piazzare 8 regine su una scacchiera in modo tale che nessuna regina attacchi un'altra regina.

N regine

Piazzare 8 regine su una scacchiera in modo tale che nessuna regina attacchi un'altra regina.

Algoritmo di backtrack

La filosofia del backtrack

- prova tutte le scelte che non sono in conflitto con quelle precedenti
- se non hai alternative, torna indietro a cambia una delle scelte precedenti

8 righe: 0,1,...,7

Backtrack applicato al problema delle 8 regine

Prova a piazzare una regina sulla riga RRegine sulle righe 0, 1, 2, ..., R-1

- se R = 8 termina con successo
- se R < 8 per ogni possibile posizione C sulla riga R
 - se posizione (R, C) non è sotto attacco
 - st annota dove hai messo la regina e passa ricorsivamente alla riga R+1
 - * se la chiamata ricorsiva ha successo, termina con successo (torna alla chiamata precedente alla riga R-1)

se hai provato tutte le posizioni, termina con insuccesso (torna alla chiamata precedente alla riga R-1)

prima chiamata R=0

```
def solve(R,regine,N):
    if R==N:
        return True
    for C in range(N):
        regine[R]=C
        if checkQueen(regine,R):
            if solve(R+1,regine,N):
                return True
    return False
```

```
Per risolvere il problema con N = 8

soluzione=[None]*8
   if solve(R=0, regine=soluzione, N=8):
        print(soluzione)
```

```
##controlla se la posizione della regina nella riga R
##e' compatibile con le regine nelle righe 0,1,...,R-1
def checkQueen(posizioni,R):
    r1=R
    c1=posizioni[R]
    for r in range(R):
        r2=r
        c2=posizioni[[r]
        if attackingQ(r1,c1,r2,c2):
            return False
    return True

def attackingQ(r1,c1,r2,c2):
    return samecolumn(r1,c1,r2,c2) or sameMajorD(r1,c1,r2,c2) \
            or sameMinorD(r1,c1,r2,c2)
```

Regine a (r_1, c_1) e (r_2, c_2)

• controlla se sono sulla stessa riga:

Regine a (r_1, c_1) e (r_2, c_2)

• controlla se sono sulla stessa riga:

$$r_1 == r_2$$

Regine a (r_1, c_1) e (r_2, c_2)

• controlla se sono sulla stessa riga:

$$r_1 == r_2$$

• controlla se sono sulla stessa colonna:

Regine a (r_1, c_1) e (r_2, c_2)

• controlla se sono sulla stessa riga:

$$r_1 == r_2$$

• controlla se sono sulla stessa colonna:

$$c_1 == c_2$$

Regine a (r_1, c_1) e (r_2, c_2)

• controlla se sono sulla stessa riga:

$$r_1 == r_2$$

• controlla se sono sulla stessa colonna:

$$c_1 == c_2$$

• controlla se sono sulla stessa diagonale maggiore:

Regine a (r_1, c_1) e (r_2, c_2)

• controlla se sono sulla stessa riga:

$$r_1 == r_2$$

• controlla se sono sulla stessa colonna:

$$c_1 == c_2$$

• controlla se sono sulla stessa diagonale maggiore:

$$c_1 - r_1 == c_2 - r_2$$

Regine a (r_1, c_1) e (r_2, c_2)

• controlla se sono sulla stessa riga:

$$r_1 == r_2$$

controlla se sono sulla stessa colonna:

$$c_1 == c_2$$

• controlla se sono sulla stessa diagonale maggiore:

$$c_1 - r_1 == c_2 - r_2$$

controlla se sono sulla stessa diagonale minore:

Regine a (r_1, c_1) e (r_2, c_2)

• controlla se sono sulla stessa riga:

$$r_1 == r_2$$

• controlla se sono sulla stessa colonna:

$$c_1 == c_2$$

• controlla se sono sulla stessa diagonale maggiore:

$$c_1 - r_1 == c_2 - r_2$$

• controlla se sono sulla stessa diagonale minore:

$$c_1 + r_1 == c_2 + r_2$$

 $\begin{array}{ll} \mathtt{R} = \mathtt{4} & \mathtt{regine} = [\mathtt{0}, \mathtt{2}, \mathtt{4}, \mathtt{1}, \mathtt{None}, \mathtt{None}, \mathtt{None}, \mathtt{None}, \mathtt{None}] & \mathtt{N} = \mathtt{9} \\ \mathtt{C} = \mathtt{0} & \end{array}$

 $\begin{array}{ll} \mathtt{R} = \mathtt{4} & \mathtt{regine} = [\mathtt{0},\mathtt{2},\mathtt{4},\mathtt{1},\mathtt{None},\mathtt{None},\mathtt{None},\mathtt{None},\mathtt{None}] & \mathtt{N} = \mathtt{9} \\ \mathtt{C} = \mathtt{1} \end{array}$

 $\mathtt{R} = 4 \qquad \mathtt{regine} = [0, 2, 4, 1, \mathtt{None}, \mathtt{None}, \mathtt{None}, \mathtt{None}, \mathtt{None}] \qquad \mathtt{N} = 9$

C=2

 $\mathtt{regine} = [0, 2, 4, 1, \mathtt{None}, \mathtt{None}, \mathtt{None}, \mathtt{None}, \mathtt{None}] \qquad \mathtt{N} = \mathtt{9}$

R = 4C=3

regine = [0, 2, 4, 1, 3, None, None, None, None] N = 9R = 5C=0

R = 5 regine = [0, 2, 4, 1, 3, None, None, None, None] N = 9C=1

regine = [0, 2, 4, 1, 3, None, None, None, None] N = 9R = 5C=8

regine = [0, 2, 4, 1, 3, None, None, None, None] N = 9R = 5C=8

 $\begin{array}{ll} {\tt R}=4 & {\tt regine}=[0,2,4,1,{\tt None},{\tt None},{\tt None},{\tt None},{\tt None}] & {\tt N}=9 \\ {\tt C}=3 \Rightarrow {\tt C}=4 & \end{array}$

regine = [0, 2, 4, 1, None, None, None, None, None] N = 9

R = 4C=5 R = 4 regine = [0,2,4,1,None,None,None,None,None] N = 9

C=6

 $\mathtt{R} = 4 \qquad \mathtt{regine} = [0, 2, 4, 1, \mathtt{None}, \mathtt{None}, \mathtt{None}, \mathtt{None}, \mathtt{None}] \qquad \mathtt{N} = 9$

C=7

 $\begin{array}{ll} \mathtt{R} = \mathtt{5} & \mathtt{regine} = [\mathtt{0}, \mathtt{2}, \mathtt{4}, \mathtt{1}, \mathtt{7}, \mathtt{None}, \mathtt{None}, \mathtt{None}, \mathtt{None}] & \mathtt{N} = \mathtt{9} \\ \mathtt{C} = \mathtt{0} & \end{array}$

