AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1.(Original) A communication unit for a multiple code rate communication system comprising:
 - a codeword defining N codeword elements and K information elements coded at a code rate R=K/(N-P), wherein P is a number of punctured elements of the codeword;
 - a first storage location for storing an error reduction code mother code;
 - a second storage location for storing a maximum puncture sequence S_{max} , wherein S_{max} is the puncture sequence for a maximum code rate R_{max} , and further wherein S_{max} comprises a subset S_1 that is a puncture sequence for a minimum code rate R_1 .
- 2.(Original) The communication unit of claim 1 wherein the unit is one of a transmitter that outputs the codeword or a receiver that receives the codeword.
- 3.(Original) The communication unit of claim 1 wherein $S_{max}=S_{N-K}$.
- 4.(Original) The communication unit of claim 1 wherein S_{max} further comprises at least two subsets S_i that is a puncture sequence for a code rate R_i , wherein i is an integer greater than or equal to one and each sequentially higher ith code rate is higher than the sequentially lower ith code rate.
- 5.(Original) The communication unit of claim 4 wherein each S_i comprises at least one memory element, and each S_i with at least two memory elements has at least one memory element in common with another S_i and with S_{max} .
- 6.(Original) The communication unit of claim 4 wherein $S_1 \subseteq S_2 \subseteq ... \subseteq S_{max-1} \subseteq S_{max}$.
- 7.(Original) The communication unit of claim 1 wherein the second storage location comprises a plurality of memory elements for storing S_{max} , each memory element storing a variable degree.

- 8.(Original) The communication unit of claim 1 wherein the second storage location comprises a plurality of memory elements for storing S_{max} , each memory element storing a variable node location.
- 9.(Original) The communication unit of claim 1 wherein the second storage location comprises a plurality of memory elements for storing S_{max} , each memory element storing one of a variable degree, a check degree, a variable node location, or a check node location.
- 10.(Original) The communication unit of claim 1 wherein the error reduction code mother code is a low-density parity-check (LDPC) mother code.
- 11.(Original) A transceiver for transmitting and receiving a codeword at any of three coding rates R_1 , R_2 and R_3 , wherein the codeword defines N codeword elements, K information elements, and P punctured elements, and the coding rates $R_1=K/(N-P_1) < R_2=K/(N-P_2) < R_3=K/(N-P_3)$, comprising:
 - a transmitter, a receiver, and storage for storing a low-density parity-check (LDPC) mother code;
 - a plurality of memory elements that in combination store a puncture sequence S_3 that corresponds to R_3 ;
 - a first set of computer instructions for retrieving a first subset of the plurality of memory elements to yield a puncture sequence S_1 that corresponds to R_1 ; and
 - a second set of computer instructions for retrieving a second subset of the plurality of memory elements to yield a puncture sequence S_2 that corresponds to R_2 .
- 12.(Original) A computer program embodied on a computer readable medium for determining a puncture sequence for a codeword, comprising:
 - a first storage location for storing a low-density parity-check (LDPC) mother code;
 - a second storage location for storing a plurality of memory elements M_{all} that in combination comprise a maximum rate puncture sequence S_{max} that corresponds to a maximum code rate R_{max} ; and

- a first set of computer instructions for reading a first subset of memory elements M_{set1} , wherein the number of M_{set1} is less than the number of M_{all} , wherein M_{set1} comprises a puncturing sequence S_1 that corresponds to a code rate $R_1 < R_{\text{max}}$.
- 13.(Original) The computer program of claim 12 further comprising a second set of computer instructions for reading a second subset of memory elements M_{set2} , wherein the number of M_{set2} is greater than the number of M_{set1} , wherein M_{set2} comprises a puncturing sequence S_2 that corresponds to a code rate $R_2 > R_1$, and further wherein at least one memory element is a memory element of both M_{set1} and M_{set2} .
- 14.(Original) A method for determining a puncture sequence for an ensemble of low-density parity-check (LDPC) codes comprising:

selecting at least one design criteria for an ensemble of LDPC codes and a stop criteria;

calculating a mean input LLR values, m_{u_0} , that achieves the design criteria on the ensemble of codes;

selecting a variable degree j within the design criteria for puncturing that requires one of a smallest mean input LLR value or a smallest decoding complexity;

appending the variable degree to the puncturing sequence;

adjusting the puncturing probability for the punctured variable degree, $\pi_j^{(0)}$; and

repeating the calculating and subsequent steps until the stop criteria is reached.

- 15.(Original) The method of claim 14 wherein adjusting the puncturing probability for the punctured variable degree, $\pi_j^{(0)}$ includes accounting for a specific code length and a finite number of variable nodes of each variable degree.
- 16.(Original) The method of claim 14 wherein the stop criteria comprises a code rate equal to one.

- 17.(Original) The method of claim 14 wherein the stop criteria comprises a length of a puncturing sequence that corresponds to a Binary Erasure Channel (BEC) threshold for random errors.
- 18.(Original) The method of claim 17 wherein the stop criteria comprises a fraction of punctured variable nodes that reaches or exceeds the BEC threshold.
- 19.(Original) The method of claim 14 wherein the at least one design criteria is selected from at least one of the group consisting of: a target bit error rate (BER) within a finite number of iterations; an asymptotic E_b/N_0 threshold; and a number of decoding iterations for a target BER.

20.(New) A transmitter comprising:

an information source for providing a codeword;

- a memory for storing a low density parity check code LDPC mother code and a maximum puncture sequence S_{max} ;
- a LDPC encoder having an input coupled to an output of the information source and an input coupled to an output of the memory; and
- a modulator having an input coupled to an output of the LDPC encoder, wherein the encoder operates in one instance to encode at a maximum rate R_{max} by puncturing elements of a codeword in locations described by the maximum puncture sequence S_{max} read from the memory, an in another instance to encode at a lesser rate R_1 by puncturing elements of a codeword in locations described by a subset S_1 of the maximum puncture sequence S_{max} read from the memory.
- 21.(New) The transmitter of claim 20, wherein the encoder encodes at any of rates R_{max} , R_3 , R_2 , and R_1 by puncturing elements of a codeword in locations described by the respective sequences S_{max} , S_3 , S_2 , and S_1 , wherein $R_{max} > R_3 > R_2 > R_1$ and $S_1 \subseteq S_2 \subseteq S_3 \subseteq S_{max}$.
- 22.(New) The transmitter of claim 20, wherein the encoder encodes at any of rates R_{max} , R_3 , R_2 , and R_1 by puncturing elements of a codeword in locations described by the respective sequences S_{max} , S_3 , S_2 , and S_1 , wherein $R_{max} > R_2 > R_1$ and each of S_1 , S_2 and S_3 are subsets of S_{max} but not subsets of any of the other of S_1 , S_2 and S_3 .

23.(New) A receiver comprising:

- a demodulator for demodulating a received codeword;
- a memory for storing a low density parity check code LDPC mother code and a maximum puncture sequence S_{max} ; and
- a LDPC decoder having an input coupled to an output of the demodulator and an input coupled to an output of the memory;

wherein the decoder operates in one instance to decode at a maximum rate R_{max} by depuncturing elements of a codeword in locations described by the maximum puncture sequence S_{max} read from the memory, an in another instance to decode at a lesser rate R_1 by de-puncturing elements of a codeword in locations described by a subset S_1 of the maximum puncture sequence S_{max} read from the memory.

24.(New) The receiver of claim 23, wherein the decoder decodes at any of rates R_{max} , R_3 , R_2 , and R_1 by de-puncturing elements of a codeword in locations described by the respective sequences S_{max} , S_3 , S_2 , and S_1 , wherein $R_{max} > R_3 > R_2 > R_1$ and $S_1 \subseteq S_2 \subseteq S_3 \subseteq S_{max}$.

25.(New) The receiver of claim 23, wherein the decoder decodes at any of rates R_{max} , R_3 , R_2 , and R_1 by de-puncturing elements of a codeword in locations described by the respective sequences S_{max} , S_3 , S_2 , and S_1 , wherein $R_{max} > R_3 > R_2 > R_1$ and each of S_1 , S_2 and S_3 are subsets of S_{max} but not subsets of any of the other of S_1 , S_2 and S_3 .