

Digitall-Analog-Wandler DAC 4071

Der DAC 4071 ist ein hochauflösender 16 Bit Hybrid-Digital-Analog-Wandler, der in einem 24poligen DIL-Metall-Hermetikgehäuse gefertigt wird. Der DAC 4071 ist pinkompatibel zum DAC 71.

Der Wandler wird mit Strom- oder Spannungsausgang angeboten. Für die verschiedenen Anwendungen kann zwischen drei digitalen Eingangskodes (CB, COB und CCD) gewählt werden.

Durch ein spezielles System geregelter Stromquellen in Verbindung mit hochstabilen Dünnfilmwiderständen wird auf modernen Trimmanlagen durch Funktionsabgleich sowohl für die absolute, als auch für die differentielle Linearität eine Genauigkeit von $\pm 0,003\%$ von FSR erreicht. Diese Genauigkeit wird im gesamten Temperaturbereich von $0 \dots 70^\circ\text{C}$ eingehalten. Damit ist eine Monotonie von 15 Bit garantiert.

Der Wandler arbeitet mit einer internen Referenzspannung von 10,00 V, die einen Temperaturkoeffizient von $\pm 5\text{ ppm/K}$ hat. Diese Referenz kann auch für externe Aufgaben genutzt werden.

Die Spannungsmodelle beinhalten einen Präzisionsoperationsverstärker vom Typ B087, mit dem eine slew rate von $10\text{ V}/\mu\text{s}$ erreicht wird.

Die Einschwingzeit der Strommodelle beträgt $1\text{ }\mu\text{s}$.

Blockschaltbild

Pinbelegung

Pin-Nr.	U-Modell	I-Modell
1	Bit 1 (MSB)	Bit 1
2	Bit 2	Bit 2
3	Bit 3	Bit 3
4	Bit 4	Bit 4
5	Bit 5	Bit 5
6	Bit 6	Bit 6
7	Bit 7	Bit 7
8	Bit 8	Bit 8
9	Bit 9	Bit 9
10	Bit 10	Bit 10
11	Bit 11	Bit 11
12	Bit 12	Bit 12
13	Bit 13	Bit 13
14	Bit 14	Bit 14
15	Bit 15	Bit 15
16	Bit 16 (LSB)	Bit 16
17	U_{out}	R_F
18	$+U_{cc3}$	$+U_{cc3}$
19	$-U_{cc2}$	$-U_{cc2}$
20	Masse	Masse
21	Summier-Punkt	I_{out}
22	FS-Abgleich	FS-Abgleich
23	$+U_{cc1}$	$+U_{cc1}$
24	Ref. _{out}	Ref. _{out}

Betriebsbedingungen

Kenngröße	Symbol	min	typ	max.	Einheit
Betriebsspannung	U_{cc1}	14,25		15,75	V
	$-U_{cc2}$	14,25		15,75	V
	U_{cc3}	4,75		5,25	V
Eingangsspannung	U_{IL}	0		0,8	V
	U_{IH}	2,4		U_{cc3}	V
Betriebs-temperaturbereich	ϑ_a	0		70°	C

Kennwerte

Die Kennwerte gelten bei $U_{cc1} = -U_{cc2} = 15\text{ V} \pm 0,5\text{ V}$, $U_{cc3} = 5\text{ V} \pm 0,25\text{ V}$ und $U_{IL} = 0\text{V}$, $U_{IH} = U_{cc3}$ sowie der Umgebungstemperatur $\vartheta_a = 23^\circ\text{C} \pm 2\text{ K}$

Kenngröße	Symbol	min	typ	max.	Einheit
Auflösung CB, COB			16		Bit
CCD		4			Digit
Linearitätsfehler			$0,51)$		LSB
CB, COB			$\pm 0,003$	% von FSR	
CCD			$\pm 0,005$	% von FSR	
differentieller Linearitätsfehler			$0,51)$		LSB
Bipolarität COB			$0,51)$		LSB
Monotonie $0 \dots 70^\circ\text{C}$			15		Bit
Drift $\vartheta_a 0 \dots 70^\circ\text{C}$					
Gaindrift					
U-Modelle			$\pm 0,0003$	$\pm 0,0015$	% FSR/K
I-Modelle			$\pm 0,0005$	$\pm 0,0045$	% FSR/K
Offsetdrift					
CB-U/CCD-U			$\pm 0,0001$	$\pm 0,0002$	% FSR/K
CB-I/CCD-I			$\pm 0,0001$	$\pm 0,0001$	% FSR/K
-FS COB-U			$\pm 0,001$	$\pm 0,001$	% FSR/K
Drift der differentiellen Linearität				$\pm 0,00007$	% FSR/K
Drift der absoluten Linearität				$\pm 0,00007$	% FSR/K
Umsetzzeit					
am Spannungsausgang					
auf $\pm 0,003\%$ v. FSR					
bei einem 20-V-Schritt ³⁾				10	μs
slew rate		8	15		$\text{V}/\mu\text{s}$
am Stromausgang					
auf $\pm 0,003\%$ v. FSR					
bei einem 2-mA-Schritt					
$10 \dots 100\text{ Ohm}-\text{Last}$				1	μs
1 kOhm-Last				3	μs

Betriebsspannungsabhängigkeit des FS					
ΔU_{cc1}	$+1,5\text{ V}$				
	$-1,5\text{ V};$				
$-U_{cc2}; U_{cc3} = \text{const. } SS_1$		$\pm 0,001$	$\pm 0,005$	$\% \text{ FSR}/$	$\% U_{cc1}$
$\Delta -U_{cc2}$	$+1,5\text{ V}$				
	$-1,5\text{ V};$				
$U_{cc1}; U_{cc3} = \text{const. } SS_2$		$\pm 0,001$	$\pm 0,005$	$\% \text{ FSR}/$	$\% U_{cc2}$
ΔU_{cc3}	$+0,5\text{ V}$				
	$-0,5\text{ V};$				
$U_{cc1}; -U_{cc2} = \text{const. } SS_3$		$\pm 0,0001$	$\pm 0,0005$	$\% \text{ FSR}/$	$\% U_{cc3}$
Stromaufnahme	I_{cc1}	10			mA
	$-I_{cc2}$ ²⁾	35			mA
	I_{cc3}	12			mA
Referenzspannung		9,97		10,03	V
Drift				± 50	$\mu\text{V}/\text{K}$
Laststrom für externe Anwendung				1	mA

¹⁾ gilt für 14 Bit Genauigkeit;

²⁾ Die Stromversorgung für U_{cc2} muß beim Einschaltvorgang ($\geq 1\text{ ms}$) einen Strom von $\geq 150\text{ mA}$ bereitstellen.

³⁾ Überschwingverhalten kann durch Kondensator zwischen Pin 17 und Pin 21 auf Kosten der Einschwingzeit beseitigt werden.

Wandlertypen

Für die verschiedenen Anwendungen wird der DAC 4071 in folgenden Betriebsarten gefertigt:

Betriebsart	Abkürzung	Ausgang
Complementary Bipolar Offset Binary	COB-U COB-I	$\pm 10\text{ V}$ $\pm 1\text{ mA}$
Complementary Binary	CB-U CB-I	$0 \dots 10\text{ V}$ $0 \dots -2\text{ mA}$
Complementary Binary Coded Decimal	CCD-U CCD-I	$0 \dots 10\text{ V}$ $0 \dots -1,25\text{ mA}$

Abgleich

Die Wirkung des FS- und Offsetabgleichs bei der Betriebsart CB (CCD) bzw. COB ist im Bild dargestellt.

Durch die hohe Trimmgenauigkeit des Wandlers kann die Feineinstellung durch externe Regler bei speziellen Anwendungen entfallen.

Entsprechend gewähltem Wandlertyp ergeben sich bei der angegebenen Grundschaltung folgende Einstellwerte.

Typ	Digitale Eingänge MSB LSB	Einstellwerte	Reihenfolge/ Regler
DAC 4071 COB-U	HHHH HHHH LLLL LLLL	$-10,00000\text{ V}$ $+9,99969\text{ V}$	1. Offset 2. FS
DAC 4071 CB-U	HHHH HHHH LLLL LLLL	$0,00000\text{ V}$ $+9,99985\text{ V}$	1. Offset 2. FS
DAC 4071 CCD-U	HHHH HHHH L HHL L HHL	$0,000\text{ V}$ $+9,999\text{ V}$	1. Offset 2. FS
DAC 4071-COB-I	HHHH HHHH LLLL LLLL	$+1,00000\text{ mA}$ $-0,99997\text{ mA}$	1. Offset 2. FS
DAC 4071 CB-I	HHHH HHHH LLLL LLLL	$0,00000\text{ mA}$ $-1,99997\text{ mA}$	1. Offset 2. FS
DAC 4071 CCD-I	HHHH HHHH L HHL L HHL	$0,00000\text{ mA}$ $-1,24987\text{ mA}$	1. Offset 2. FS

Bauform D 24/15-9
Hermetisches Metall-Glas-Gehäuse

Maße in mm

Typ	Erzeugnisnummer
DAC 4071 COB-U	4587.8-21 723 1
DAC 4071 CB-U	4587.8-21 733 1
DAC 4071 CCD-U	4587.8-21 743 1
DAC 4071 COB-I	4587.8-21 753 1
DAC 4071 CB-I	4587.8-21 763 1
DAC 4071 CCD-I	4587.8-21 773 1

Die fettgedruckten Ziffern ergeben das Typkurzzeichen.
Vergleichstyp DAC 71

Bestellbeispiel:

Die TGL gerechte Bestellbezeichnung für einen DAC 4071 mit einer Ausgangsspannung von $\pm 10\text{ V}$ lautet:
Hybridschaltkreis 87 212 – TGL 43829