

Post	rbil	istic	. Rv	تلووا	cs f	1 ~±	ŧ۱															
								اسا م	0 25	wha	uate	file	Oud	ا ۾ ا	46 1	inle)						
			_			•				, ,					rob_rol							
2.)							a			T.						4	Linh	ماله	ind	ides		
								•	x-py	-		Cruar	iaue	-			of	tru	unn.			
				K,	χy =	E	((x-	hk)(y-14	7.7		Cross	· Cu	บ ผณ่ ค	иш		- 0	enve	as sub	o missi	<u>On</u>	
	۵٦	P)	1/00	: alda			Z =													
	и.)		.cvv	1014	VOI	(0504		,	2 =	XT	7											
М	12=	돈[2]=	: E	[۲-	+ 4]	Ξ	Ε[x] + €	[Y]	= 1	1x +	μy									
7	- µ:	2 =	(X +	(y	- E	[2]	= ((X+Y	1)-(/ Mx.	+ HJ.)									
						-	14.	_ =	lv-	- 1/1.) + (y	_ " \										
						ぜ	- p:		(,	PIX.	ן ד נא	- 143.)									
2	22 =	ε	(z	-h2)(2	-H5	Ţ] :	: E\	[(x-	-µx)	+ (4-	[(ניו	[(x -1	(x)+	(y-19)[[[(
			•								k-h×)											
					Ŭ																	
				=		₽∫	(n -	/k)('x-µx	+ ((x-y	IX)(y	- ry	5 + (y-nj) (x-	. Cxh	+ (7	-12)	(g-13	Σ ,]	
						-																
											y ex			(\/a	T	٦.	- []		l	ง 1
														+ EL	(y-11 ₃)(X-	(xy) +	בן נא	1437	3-13	ן כ
			ર્ય	2	Ε		Ex.	× +	Kxy	+	Kyx	+ 2	41									
b :)	1	,		200	Out	, d	2	م <i>ه اه</i> مدا	م ام م		raud	Ana '	Vario	Nes .	ic D							
- /		J (3.4	-		_			•			r Ind											
		3	ŧ[(x -	µx)	ly-1	1 	J =	E		-px)] ਵ[(7-1	ָרָרָא [ָ]]				-			
										_			ړا		(E[ryJ)				
									x) - {					ت	(jr	z - Y	יט)'					
							-	H	x-41	(= (=	ρ ^T	= (
									Не	nu	10	x	0.0	= 0	,							
												~ J										

C) The cerollary of the above a nesults is that if x and y are independent random variodes Then the avarious of their sum (the roudon variode 2) would simply by a large degree to just become the sun of their individual availables. 222 = Exx + Eyz The avariance notice of the sum is the sum of the imbendant avariance notices. 3.) Sensor has lu (unraliable susous) - independant. P(obj)= 0.1 a.) how navy sewors detect as dijet number of success in 10 independent totals with P=0.1 Binomial Distribution > px(N)= (n)ph(1-p) for N=0...n XN Binomic (4=10, p=0.1) Probability Mass function P(x=k) = (10)(0.1)k (0.9)10-k For k=0,... 10 b.) All measurements are occurring in posable here model ving the Binomial divibution P(XZI) = 1-P(X=0) Using the complement formula $\mathcal{V}(X=0) = \binom{|0\rangle}{0} (0.1)^0 (0.9)^{10}$ = 1.1.0.9 = 0.3487 P(XZI): 1-0.90 = 0.6513 or 65.13%. (5,4) / A Muns Princry 4.) Unartainty Ellipse centered at (3,4) Primary Axis 0 = 38 $\lambda_1 = 1$ Mx = 3 12= 0.25 µ2 = 4 f(2): 2 = 2 | (x-\mu) \(\xi - \frac{1}{2} \) | \(\xi - \mu) \] 2 = [511 512]

$$dit \left(\overline{z} - \lambda \overline{1} \right) = 0$$

$$dit \left[\begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right] = 0 = \left(\sigma_{11} - \lambda \right) \left(\sigma_{22} - \lambda \right) - \sigma_{12}^{2} = 0$$

$$\lambda^{2} - \left(\sigma_{11} + \sigma_{22} \right) \lambda + \left(\sigma_{11} \sigma_{22} - \sigma_{12}^{2} \right) = 0$$

$$\theta = \text{ angle between } = 0$$

$$\text{eigenvolves}$$

$$1 \text{ for } \theta = \frac{V_{1}}{V_{1}} \text{ Patho between eigenvolves}$$

$$\left[\overline{z} - \lambda \overline{1} \right] \hat{V} = 0$$

$$\left[\sigma_{11} - \lambda - \sigma_{12} \right] \left[V_{1} \right] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\left[\sigma_{11} - \lambda - \sigma_{12} \right] \left[V_{1} \right] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\left[\sigma_{11} - \lambda - \sigma_{12} \right] \left[V_{1} \right] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\left[\sigma_{11} - \lambda - \sigma_{12} \right] \left[V_{1} \right] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\left[\sigma_{11} - \lambda - \sigma_{12} \right] \left[V_{1} \right] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\left[\sigma_{11} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{12} - \lambda - \sigma_{11} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{12} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{12} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \lambda - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \sigma_{12} - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \sigma_{12} - \sigma_{12} \right] \left[\sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \sigma_{12} - \sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \sigma_{12} - \sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \sigma_{12} - \sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} - \sigma_{12} - \sigma_{12} - \sigma_{12} \right] = 0$$

$$\left[\sigma_{13} -$$

$$\frac{1}{(\delta_{11}-\lambda)} V_{1} + \delta_{12} V_{2} = 0$$

$$\frac{1}{(\delta_{11}-\lambda)} V_{1} + (\delta_{22}-\lambda) V_{2} = 0$$

$$\frac{1}{(\delta_{12}-\lambda)} V_{1} + (\delta_{22}-\lambda) V_{2} = 0$$

$$\frac{1}{(\delta_{12}-\lambda)} V_{1} + (\delta_{22}-\lambda) V_{2} = 0$$

$$\frac{1}{(\delta_{12}-\lambda)} V_{1} + (\delta_{22}-\lambda) V_{2} = 0$$

$$\frac{1}{(\delta_{11}-\lambda)} V_{2} + (\delta_{22}-\lambda) V_{2} = 0$$

$$\frac{1}{(\delta$$

1/21/= 7 $\sigma_{ij} = 0.8125 = \frac{13}{14}$ 2-1= 151 -313 13 13 $\sigma_{22} = 0.4375 = \frac{7}{16}$

 $= \left(\begin{array}{cc} \frac{1}{4} & -\frac{3\sqrt{3}}{4} \\ -\frac{3\sqrt{3}}{4} & \frac{13}{4} \end{array} \right)$ $\overline{O_{14}} = \frac{1 - \frac{15}{16}}{\frac{1}{12}} = 0.325$

 $(\bar{x} - \bar{\mu})^T \leq -1 (\bar{x} - \bar{\mu}) = [x - 3 \ y - 4] \begin{bmatrix} \bar{4} & -\frac{3\sqrt{3}}{4} \\ -\frac{3\sqrt{3}}{4} & \frac{13}{3} \end{bmatrix} \begin{bmatrix} x \cdot 3 \\ y - 4 \end{bmatrix}$

Here avanance matrix $\Sigma = \begin{bmatrix}
13 & 0.325 \\
14 & 0.325
\end{bmatrix}$ 0.325

 $f(x,y) = \frac{1}{\pi} \exp \left[-\frac{1}{2} \left(\frac{1}{4} (x-3)^2 - \frac{3\sqrt{3}}{2} (x-3)(y-4) + \frac{13}{4} (y-4)^2 \right] \right]$

5.)	ลู เ	g ici	g st	op iwe	- >	2~ט	ટ્ડાંડ -			ų.	uni Unic					u	+ics	+ 9	Succ	น .				
									P	× /1	L) =	((-p)	h-1	ρ,	for	h=	(ر)						
							_ {	Exp.	uta	rtio	n is	· 3n	nod	وادر	וע מ	น	Þ	=	Ave di	ogi Ida	مهر مرانس	n be	· g	
	22A	-niu	3	Pba	×4 =	Pai	۲۱ -	6.5	5											fe	-~i\{	١٠		
			Ave	જ	าง	ءطه.	ur d	. di	ild	Rn	=	눈	= ;	Q d	لمانه	rei	•							
				- 0			0					J. 3												