Time Series Modelling on Shanghai Stock Exchange (SSE) Composite Index Return

G2100651J

XU CHAOLAN

Contents

Section 1. Background Introduction	2
Section 2. Data Preparation	2
Section 3. ARMA Model Selection	2
Section 3.1 Unit Root Test	2
Section 3.2 ARMA Models Selection	4
Section 3.3 ARCH Effect Detection	5
Section 4. Hybrid Models Selection	7
Section 4.1 Models Attempt	7
Section 4.2 Residual Analysis	9
Section 4.2.1 White Noise Checking	9
Section 4.2.2. ARCH Effects Checking	10
Section 5. Model Prediction	13
Section 6. Interpreting and Limitations	14
Appendix	15
A1. Reference	15
A2. ARMA Models Result	15

Section 1. Background Introduction

Foreign Companies are allowed to invest in the banking, healthcare insurance, logistics, human resources and tourism sectors through subsidiaries or joint ventures within the Shanghai Pilot Free Trade Zone (SPFTZ) since September, 2013.

The company that intends to invest in SPFTZ plans to create a portfolio resembling Shanghai Stock Exchange (SSE) Composite Index. Accordingly, it is interested in the behavior of the SSE Index return series and would like to model the return series and the volatility.

Section 2. Data Preparation

The dataset contains daily SSE index series from 04/Jan/2005 to 14/Oct/2021, a total of 4072 observations. Taking $R_t = 100 * \log{(\frac{Price_t}{Price_{t-1}})}$ as index return variable, I further split the data with 70% as training data (from 04/Jan/2005 to 27/Sept/2016) and 30% (from 28/Sept/2016 to 14/Oct/2021) as validation data.

Section 3. ARMA Model Selection

Section 3.1 Unit Root Test

ARMA models require the time series to be stationary. I first perform unit root tests(ADF and KPSS) to check whether the data is stationary.

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-52.16950	0.0001
Test critical values:	1% level	-3.432455	
	5% level	-2.862356	
	10% level	-2.567249	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(R) Method: Least Squares Date: 12/08/21 Time: 15:16 Sample (adjusted): 2 2849 Included observations: 2848 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
R(-1)	-0.977657	0.018740	-52.16950	0.0000	
C	0.029978	0.032933	0.910256	0.3628	
R-squared	0.488833	Mean dependent var		-4.95E-05	
Adjusted R-squared	0.488654	S.D. depende	2.457433		
S.E. of regression	1.757273	Akaike info criterion		3.966105	
Sum squared resid	8788.470	Schwarz criterion		3.970287	
Log likelihood	-5645.734	Hannan-Quinn criter.		3.967613	
F-statistic	2721.657	Durbin-Watson stat		1.998457	
Prob(F-statistic)	0.000000				

Figure 1: ACF Test

Null Hypothesis: R is stationary Exogenous: Constant Bandwidth: 11 (Newey-West automatic) using Bartlett kernel

		LM-Stat.				
Kwiatkowski-Phillips-Schmidt-St	nin test statistic	0.193322				
Asymptotic critical values*:	1% level	0.739000				
	5% level	0.463000				
	10% level	0.347000				
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)						
Residual variance (no correction)	3.086471				

KPSS Test Equation Dependent Variable: R Method: Least Squares Date: 12/08/21 Time: 15:18 Sample (adjusted): 1 2849 Included observations: 2849 after adjustments

Variable	Coefficient	Coefficient Std. Error t-Statis		Prob.
С	0.030911	0.032920	0.938973	0.3478
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 1.757144 8793.355 -5648.008 1.955223	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var terion ion	0.030911 1.757144 3.965607 3.967697 3.966361

Figure 2: KPSS Test

From the test result, we see that we can reject the null hypothesis of ADF test and cannot reject that of KPSS test. Therefore, I conclude that the return data is stationary.

Figure 3: Time Series Distribution

Section 3.2 ARMA Models Selection

To find out the possible p and q order of ARMA models, I run a combination of p, q taking p from 0 to 5 and q from 0 to 5. The results are attached in appendix 1.

Based on information criteria AIC, ARMA(5,5) is recommended while ARMA(1,0) is recommended based on SBIC.

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:22 Sample: 1 2849 Included observations: 2849

Included observations: 2849 Convergence achieved after 51 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	0.030930	0.037642 0.821692		0.4113
AR(1)	-0.835131	0.148256	-5.633041	0.0000
AR(2)	-0.940416	0.196563	-4.784291	0.0000
AR(3)	-0.149268	0.263032	-0.567491	0.5704
AR(4)	-0.235308	0.186397	-1.262399	
AR(5)	0.315260	0.133159	2.367540	0.0180
MA(1)	0.860398	0.151750	5.669856	0.0000
MA(2)	0.941682	0.200371	4.699694	0.0000
MA(3)	0.183546	0.265112	0.692332	0.4888
MA(4)	0.313270	0.187088	1.674453	0.0942
MA(5)	-0.226823	0.135695	-1.671563	0.0947
SIGMASQ	3.039078	0.050579	60.08533	0.0000
R-squared	0.015355	Mean depend	dent var	0.030911
Adjusted R-squared	0.011537	S.D. depende	ent var	1.757144
S.E. of regression	1.746978	Akaike info ci	riterion	3.957921
Sum squared resid	8658.332	Schwarz crite	erion	3.983002
Log likelihood	-5626.059	Hannan-Quir	nn criter.	3.966967
F-statistic	4.021975	Durbin-Wats	on stat	1.999822
Prob(F-statistic)	0.000007			
Inverted AR Roots	.48	.0383i	.03+.83i	6969i
	69+.69i			
Inverted MA Roots	.38	.06+.78i	.0678i	6871i
	68+.71i			

Figure 4: ARMA(5,5) Model Result

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:57

Sample: 1 2849

Included observations: 2849 Convergence achieved after 16 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statistic		Prob.
C MA(1) SIGMASQ	0.030922 0.023650 3.084840	0.034622 0.893126 0.013514 1.750027 0.049591 62.20564		0.3719 0.0802 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000528 -0.000174 1.757297 8788.710 -5647.255 0.752077 0.471480	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.030911 1.757144 3.966483 3.972753 3.968744 2.001205
Inverted MA Roots	02			

Figure 5: ARMA(1,0) Model Result

Section 3.3 ARCH Effect Detection

In this stage, let's check whether the models recommended are good enough, which means they are supposed to have no ARCH effect.

F-statistic	34.88615	Prob. F(7,2834)	0.0000
Obs*R-squared	225.4644	Prob. Chi-Square(7)	0.0000

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 12/19/21 Time: 20:47 Sample (adjusted): 8 2849 Included observations: 2842 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1) RESID^2(-2) RESID^2(-3) RESID^2(-4) RESID^2(-5) RESID^2(-6) RESID^2(-7)	1.437104 0.100734 0.071788 0.103847 0.088596 0.049773 0.048890 0.064721	0.167198 0.018745 0.018818 0.018843 0.018871 0.018843 0.018818 0.018745	8.595236 5.373879 3.814821 5.511121 4.694934 2.641450 2.597996 3.452637	0.0000 0.0000 0.0001 0.0000 0.0000 0.0083 0.0094 0.0006
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.079333 0.077059 6.947975 136809.5 -9537.693 34.88615 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		3.045802 7.232214 6.717588 6.734344 6.723632 2.005278

Figure 6: Heteroskedasticity Test for ARMA(5,5) Model Result

Heteroskedasticity Test: ARCH								
F-statistic Obs*R-squared	36.93999 237.6282	Prob. F(7,283 Prob. Chi-Squ	0.0000					
Method: Least Square Date: 12/19/21 Time Sample (adjusted): 8	Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 12/19/21 Time: 20:49 Sample (adjusted): 8 2849 Included observations: 2842 after adjustments							
Variable	Coefficient	Std. Error	t-Statistic	Prob.				

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	1.427532	532 0.169922 8.401		0.0000
RESID^2(-1)	0.098115	0.018745	5.234113	0.0000
RESID^2(-2)	0.070517	0.018814	3.748021	0.0002
RESID^2(-3)	0.109989	0.018833	5.840174	0.0000
RESID^2(-4)	0.093077	0.018865	4.933739	0.0000
RESID^2(-5)	0.054586	0.018833 2.898374		0.0038
RESID^2(-6)	0.047507	0.018815 2.524997		0.0116
RESID^2(-7)	0.064637	0.018745	0.0006	
R-squared	0.083613	Mean depend	ent var	3.091647
Adjusted R-squared	0.081350	S.D. depende	nt var	7.415988
S.E. of regression	7.107947	Akaike info cri	terion	6.763115
Sum squared resid	143181.9	Schwarz criterion		6.779870
Log likelihood	-9602.386	Hannan-Quinn criter.		6.769158
F-statistic	36.93999	Durbin-Watso	n stat	2.005378
Prob(F-statistic)	0.000000			

Figure 7: Heteroskedasticity Test for ARMA(1,0) Model Result

However, both these two models don't pass the Heteroskedasticity Test. They all have ARCH effects. We need to further model the volatility of the time series data.

Section 4. Hybrid Models Selection

Section 4.1 Models Attempt

As ARMA model selected by criteria information has ARCH effect, we need to consider building ARMA- GARCH model. I first anchor mean equation part of the model to ARMA(3,3)-GARCH(1,1) after several attempt. Below are ARMA-GARCH models of four types:

Remarks:

- 1.For the following pictures, from left to right first, then first row to second row to are results of ARMA-GARCH, ARMA-TGARCH, ARMA-EGARCH, ARMA-GARCH-in-mean respectively
- 2.All models use Bollerslev-Wooldridge as covariance method as non-normality are tested for all four models

Dependent Variable: R Method: ML ARCH - Normal distribution (OPG - BHHH / Marquardt steps) Date: 12/19/21 Time: 19:43

Sample (adjusted): 4 2849

Included observations: 2846 after adjustments

Failure to improve likelihood (non-zero gradients) after 44 iterations Coefficient covariance computed using Bollerslev-Wooldridge QML sandwich with expected Hessian

MA Backcast: 13

Presample variance: backcast (parameter = 0.7) GARCH = C(8) + C(9)*RESID(-1)*2 + C(10)*GARCH(-1) Dependent Variable: R
Method: ML ARCH - Normal distribution (OPG - BHHH / Marquardt steps)
Date: 12/19/21 Time: 19:38
Sample (adjusted): 4 2849
Included observations: 2846 after adjustments
Convergence achieved after 72 iterations
Coefficient covariance computed using Bollerslev-Wooldridge QML
sandwich with expected Hessian
MB Backcast 1 3

Presample variance: backcast (parameter = 0.7) GARCH = $C(8) + C(9)*RESID(-1)^2 + C(10)*RESID(-1)^2*(RESID(-1)<0) + C(11)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.	=				
Valiable	Cocincient	Otd. Ellor	2 Oldilolio	1100.	Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.042215	0.033489	1.260564	0.2075	C	0.039136	0.030568	1.280278	0.2004
AR(1)	0.559781	0.357486	1.565881	0.1174	AR(1)	0.456506	0.096945	4.708913	0.0000
AR(2)	-0.761017	0.148396	-5.128276	0.0000	AR(2)	-0.480583	0.055207	-8.705187	0.0000
AR(3)	0.355635	0.323026	1.100946	0.2709	AR(3)	0.895852	0.088734	10.09591	0.0000
MA(1)	-0.528245	0.362411	-1.457584	0.1450	MA(1)	-0.434036	0.102440	-4.236963	0.0000
MA(2)	0.708908	0.157106	4.512278	0.0000	MA(2)	0.463973	0.060146	7.714079	0.0000
MA(3)	-0.278996	0.321084	-0.868920	0.3849	MA(3)	-0.881922	0.094311	-9.351238	0.0000
Variance Equation				Variance Equation					
C	1.929226	0.894297	2.157254	0.0310	С	0.019688	0.007597	2.591522	0.0096
RESID(-1) ²	0.071300	0.030548	2.334034	0.0196	RESID(-1) ²	0.055004	0.015550	3.537212	0.0004
GARCH(-1)	0.521300	0.217145	2.400702	0.0164	RESID(-1)^2*(RESID(-1)<0)	0.003597	0.018967	0.189644	0.8496
					GARCH(-1)	0.937519	0.011009	85.15924	0.0000
R-squared	0.009706	Mean depend		0.030888	R-squared	0.008685	Mean depend	lent var	0.030888
Adjusted R-squared	0.007613	S.D. depende		1.757898	Adjusted R-squared	0.006590	S.D. depende		1.757898
S.E. of regression	1.751193	Akaike info cr	iterion	3.983836	S.E. of regression	1.752096	Akaike info cr	iterion	3.704437
Sum squared resid	8706.296	Schwarz crite	rion	4.004755	Sum squared resid	8715.277	Schwarz crite	rion	3.727449
Log likelihood	-5658.998	Hannan-Quin	n criter.	3.991381	Log likelihood	-5260.414	Hannan-Quin	n criter.	3.712737
Durbin-Watson stat	2.019579				Durbin-Watson stat	1.999832			
Inverted AR Roots	.49	.04+.85i	.0485i		Inverted AR Roots	.95	2594i ·	25+.94i	
Inverted MA Roots	.42	.05+.81i	.0581i		Inverted MA Roots	.94	25+.94i ·	2594i	

Dependent Variable: R Method: ML ARCH - Normal distribution (OPG - BHHH / Marquardt steps) Date: 12/19/21 Time: 19:58 Sample (adjusted): 4 2849

Included observations: 2846 after adjustments Convergence achieved after 40 iterations

Coefficient covariance computed using Bollerslev-Wooldridge QML sandwich with expected Hessian

MA Backcast: 13

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(8) + C(9)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(10)
*LOG(GARCH(-1))

Dependent Variable: R
Method: ML ARCH - Normal distribution (OPG - BHHH / Marquardt steps)
Date: 12/19/21 Time: 20:03
Sample (adjusted): 4 2849
Included observations: 2846 after adjustments
Convergence achieved after 68 iterations
Coefficient covariance computed using Bollerslev-Wooldridge QML
sandwich with expected Hessian
MA Backcast: 1 3
Presample variance: backcast (parameter = 0.7)

GARCH = C(9) + C(10)*RESID(-1)*2 + C(11)*RESID(-1)*2*(RESID(-1)<0) + C(12)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.	Variable	Coefficient	Std. Error	z-Statistic	Prob.
C AR(1) AR(2) AR(3) MA(1) MA(2) MA(3)	0.048683 0.464879 0.282373 -0.899132 -0.458704 -0.303097 0.926124	0.027522 0.063180 0.086332 0.060688 0.056010 0.077524 0.054888	1.768890 7.358000 3.270794 -14.81569 -8.189724 -3.909720 16.87312	0.0769 0.0000 0.0011 0.0000 0.0000 0.0001 0.0000	@SQRT(GARCH) C AR(1) AR(2) AR(3) MA(1) MA(2) MA(3)	0.002049 0.036552 0.455753 -0.480961 0.895124 -0.433208 0.464395 -0.881125	0.065318 0.086304 0.097491 0.055550 0.089200 0.102875 0.060509 0.094767	0.031374 0.423522 4.674803 -8.658213 10.03508 -4.211015 7.674868 -9.297765	0.9750 0.6719 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
		Variance Equation							
C(8) C(9) C(10)	-0.091269 0.133888 0.991325	0.015483 0.022659 0.003356	-5.894840 5.908800 295.4002	0.0000 0.0000 0.0000	C RESID(-1) ² RESID(-1) ² *(RESID(-1)<0) GARCH(-1)	0.019692 0.055022 0.003575 0.937511	0.007599 0.015564 0.018962 0.011020	2.591552 3.535167 0.188535 85.07241	0.0096 0.0004 0.8505 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.005107 0.003004 1.755255 8746.736 -5255.994 1.966676	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.030888 1.757898 3.700628 3.721547 3.708173	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.008651 0.006205 1.752435 8715.578 -5260.414 1.999844	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir	ent var iterion rion	0.030888 1.757898 3.705140 3.730243 3.714194
Inverted AR Roots Inverted MA Roots	.69+.71i .70+.71i	.6971i .7071i	92 93		Inverted AR Roots Inverted MA Roots	.95 .94		25+.94i 25+.94i	

Figure 8: Model Result for Four GARCH-Type Models

In terms of the significant of independent variables, models involving extension GARCH are recommended, while regular GARCH model has 4 insignificant indicators. Accordingly, we can abandon regular GARCH model in this step.

Section 4.2 Residual Analysis

Section 4.2.1 White Noise Checking

Date: 12/19/21 Time: 19:46 Sample: 1 2850 Included observations: 2846

PAC Q-Stat Prob*

Date: 12/19/21 Time: 19:45
Sample: 12850
Included observations: 2846
C-statistic probabilities and the control of the contr

Q-statistic probabilities	adjusted for 6	ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*	Included observation Q-statistic probabiliti		//A te	rms			
	1 1				12.405 37.728	0.000	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
•	•	3			81.586	0.000	-		1	-0.003	-0.003	0.0346	
·P		4	0.115		119.20	0.000	•		2	0.016	0.016	0.7262	
<u>"</u>	1 '2	5	0.094			0.000	ψ.		3			0.7773	
<u>"</u>	1 12	6			174.33		•	•	4			1.0107	
E	l "E	7		0.070			*	l	_			1.2149	
ľ	l "!	8			230.55		9'	l ‼	6			3.3980	
<u>"L</u>	<u>"</u> L	9			240.03		T.	l I	/			4.9085	
F	l #				290.65		1	l <u>"</u>				5.4455 5.5810	
1	1 !!				308.65		II.	I	_			6.4611	
Ľ	I <u>"</u>				323.57		Ĭ,					8.3555	
E	l I				369.99 415.33		Ĭ	l ii				8.3555	
7	l I						ı	1				20.326	
"Ц	I 🖫				425.19 474.22		qi	Į (i	14	-0.026	-0.028	22.244	0.004
F	l ľ		0.131		494.45		ıjı		15	0.064	0.063	33.991	0.000
I.	"	17 18			520.32		ψ.					34.003	
I.		19			535.51		1					34.013	
Ľ.	I 16				572.15		4					37.044	
E	l L				620.19		<u> </u>	l				37.552	
7	1 7				628.26	0.000	1.	l !!				37.673	
I.	I 1				655.66		1	l !!				37.675 37.953	
I.	1 1				672.92		7	l I				40.267	
Ĭ.	1 1				692.14		li .	l li				40.276	
Ĭ.					719.28		Ĭ	l ii				40.606	
Ĭ,					731.54		•					40.828	
Ĭ.		28			747.77		ı)ı					40.828	
li li					756.37		ф	l þ	28	0.045	0.036	46.532	0.002
lin .	l mi				803.38		•	•				46.781	
<u>_</u>					820.00		Q:	l (t				49.632	
ı	(828.59		<u>"</u>	<u> </u>				49.745	
-6					842.26	0.000	9:	l <u>"</u> !				52.030	
					870.53		1	l <u>"</u>				52.617	
	1				886.72		1	l #				54.076 56.390	
					900.42		1	1 1				56.693	
	1 1		3	3.00	300.72			I T	30	-0.010	-0.009	50.093	0.002

^{*}Probabilities may not be valid for this equation specification.

^{*}Probabilities may not be valid for this equation specification.

Date: 12/19/21 Time: 19:59 Sample: 1 2850

Included observations: 2846 Q-statistic probabilities adjusted for 6 ARMA terms Date: 12/19/21 Time: 20:06 Sample: 1 2850 Included observations: 2846

Q-statistic probabilities adjusted for 6 ARMA terms

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
		1 0.023 2 0.008 3 0.035 4 0.047 5 0.000 6 -0.033 7 0.039	0.023 0.008 0.034 0.045 -0.002 -0.035 0.037		0.000	# 		1 0.019 2 0.000 3 0.039 4 0.019 5 0.010 6 -0.03 7 0.022 8 0.000	5 0.015 2 0.001 9 0.039 4 0.013 6 0.016 7 -0.039 4 0.024 3 0.001	0.6140 0.6214 4.9835 5.5353 6.2847 10.194 11.800 11.829	0.001
• • • • • • • • • • • • • • • • • • •	10 10 11 10 11	10 0.046 11 0.020 12 0.006 13 0.026 14 -0.001 15 0.048 16 0.012	0.046 0.013 0.000 0.024 -0.007 0.046 0.011	30.568 30.572 37.034 37.476	0.000 0.000 0.000 0.000 0.000 0.000 0.000	1) 1) 1) 1) 1) 1)	# # # # #	10 0.03 11 0.00 12 0.00 13 0.04 14 -0.02 15 0.04 16 0.01	3 0.031 4 0.003 9 0.005 0 0.038 5 -0.028 3 0.044 5 0.011	28.495 29.122	0.002 0.005 0.009 0.003 0.003 0.001 0.001
1) 13 11 11 11 11	11 13 41 41 41	18 0.033 19 -0.003 20 0.005 21 -0.015 22 -0.004 23 -0.022 24 0.013	0.027 -0.009 -0.000 -0.015 -0.010 -0.026 0.015		0.000 0.000 0.000 0.000 0.000 0.001	•	#1 	19 0.004 20 0.007 21 -0.025 22 -0.006 23 -0.017 24 -0.005	0.012 0.004 0.001 -0.021 -0.011 7 -0.020	30.003 30.056 30.205 31.742 31.913 32.765 32.786	0.003 0.005 0.007 0.007 0.010 0.012 0.018
1 1 1 1 1 1 1 1	10 10 10 10 10	26 0.004 27 0.003 28 0.030 29 0.008 30 -0.023 31 0.007 32 -0.012 33 -0.002	0.001 0.002 0.024 0.004 -0.023 0.007 -0.014	44.324 44.347 46.990 47.169 48.687 48.838	0.001 0.002 0.001 0.002 0.002 0.003 0.004 0.006	# 	0 0 0 0 1 1 1	26 0.002 27 0.002 28 0.02 29 0.01 30 -0.02 31 -0.00 32 -0.02 33 0.00	5 0.005 8 0.008 1 0.017 1 0.010 3 -0.023 2 -0.003 5 -0.025 0 0.003	33.045 33.250 34.573 34.928 36.412	0.033 0.044 0.043 0.053 0.050 0.065 0.057 0.073
, , ,			0.027	52.400	0.005	Ĭ			0.024	39.968	0.084

^{*}Probabilities may not be valid for this equation specification.

Figure 9: Correlogram of Residuals for Four GARCH-Type Models

In terms of white noise of the residual, TGARCH and GARCH-in-mean are recommended as they have relatively white noise signal.

Section 4.2.2. ARCH Effects Checking

^{*}Probabilities may not be valid for this equation specification.

Date: 12/19/21 Time: 19:51 Sample: 1 2850 Included observations: 2846

Date: 12/19/21 Time: 19:54 Sample: 1 2850 Included observations: 2846

	Partial Correlation		AC	PAC	Q-Stat	Prob*	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
ф 1	ф	1	0.066	0.066	12.405	0.000	•	•	1 -0.021			
<u> </u>	1	2	0.094	0.090	37.728	0.000	•	•			2.2217	
<u> </u>	in in	3	0.124	0.114	81.586	0.000	*	1			2.5867	
<u> </u>	<u> </u>	4	0.115	0.096	119.20	0.000	*				3.0340	
∳	ı l ı	5	0.094	0.066	144.35	0.000	"	"			3.0905	
<u> </u>	ı b	6					4	l 4			3.4976	
<u> </u>	ı p	7			208.01		<u>"</u>	<u>"</u>			3.9222	
ф I	ф	8	0.089		230.55		<u>'</u>	l <u>'</u>	8 -0.017			
ų l	ļ •	9			240.03		!	l "!	9 -0.023			
–	Ψ.	10		0.088			9	l			8.4476	
10	1	11			308.65		4	l 📍	11 -0.013			
φ	•	12			323.57		<u>'</u>	l '			9.2437	
P	Ψ.	13	0.127	0.077			ľ	l ' !			9.8749	
P	l P	14			415.33		<u>"</u>	<u>"</u>			10.108	
· P	1	15	0.059	0.003			4	"!	15 -0.029			
· •	'P	16			474.22		ľ	l "!			13.037	
<u>e</u> 1	l Y	17	0.084				T T	l "			13.195	
	<u>"</u>	18			520.32		T T	l "			13.217	
<u>e</u> 1	l Y	19		0.011			"	"			13.231	
E 1	<u>"</u>	20			572.15		"	"			13.292	
T I	J	21		0.069			T T	l "	21 -0.003			
L L	<u>"</u>	22			628.26		T T	l "	22 -0.005			
		23			655.66		T T	l "	23 -0.001			
<u>"</u>	1 1	24			672.92		T T	l "!			13.506	
T I	<u>"</u>	25		0.023			7	"			13.938	
	1 1	26		0.028	719.28		T T	l "			14.093	
T I		27		-0.006	731.54		"	"			14.123	
T I	l I	28					<u> </u>	l !			14.793	
L L	ı ı	29		-0.011			!	l "			15.808	
, , , , , , , , , , , , , , , , , , ,	<u> </u>	30			803.38		*				17.147	
1 1	ı "I	31			820.00		!	"	31 -0.009		17.369	
1 1	l <u>"</u>	32		-0.009			4	P	32 -0.028			
Ľ.	ı I	33			842.26		*	1 1			19.620	
T I	l !!	34			870.53		*	l 🕴			19.918	
Ľ l	1	35			886.72		•	†			21.099	
ų į	1	36	0.069	0.004	900.42	0.000	•	(36 -0.012	-0.011	21.540	0.973

^{*}Probabilities may not be valid for this equation specification.

*Probabilities may not be valid for this equation specification.

Date: 12/19/21 Time: 20:00 Sample: 1 2850 Included observations: 2846 Date: 12/19/21 Time: 20:07 Sample: 1 2850 Included observations: 2846

Autocorrelation	Partial Correlation	Α	AC .	PAC	Q-Stat	Prob*	-	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
	1 1	1 -0	0.017	-0.017	0.7806	0.377	-	•	•				1.2675	
1)))	2 0	.024	0.024	2.4859	0.289		•	•	2			2.2274	
•		3 0	0.020	0.021	3.6574	0.301		•	•	3			2.5946	
ψ		4 0	0.006	0.006	3.7668	0.438		•	•	4			3.0423	
•	•				4.3091			ų.	Ψ	5			3.0990	
•	•				5.0105			•	•	6			3.5072	
•	1 1				6.1829			*	!	7			3.9324	
•	•				7.0871			•	l •				4.8107	
•	•				7.3292			! !	l •	_			6.3348	
ų.	1 1				9.6610			y y	l l	10			8.4591	
•	•				10.046			•	l "!				8.9671	
•)				10.821			*	!	12			9.2560	
•	! •				11.299			Ÿ.	<u>"</u>	13			9.8886	
Ψ	1 1				11.394			y y	<u>"</u>	14			10.122	
qi .	1 0				14.652			4	l "!				12.530	
•)				15.169			4	"				13.052	
ψ					15.287			T T	"	17			13.210	
ψ					15.299			#	1 1				13.232	
ψ.	P				15.334			1		19			13.246	
ψ		20 -0	0.001	-0.002	15.338	0.757		T T	"	20			13.307	
ψ		21 -0	0.003	-0.003	15.360	0.804		ų.	"				13.326	
ų.	#	22 -0	800.0	-0.007	15.535	0.838		ų.					13.386	
ψ		23 -0	0.005	-0.006	15.595	0.872		ll.	"				13.390	
ψ		24 -0	0.000	-0.000	15.595	0.902		T.	"	24			13.522	
•	1 1	25 0	0.022	0.025	17.004	0.882		*	"	25			13.957	
ų.		26 0	.005	0.004	17.067	0.907		ll l	Ψ	26			14.113	
•		27 -0	0.009	-0.010	17.322	0.923		ll.					14.143	
ų.		28 -0	.007	-0.008	17.466	0.939		! '	! '				14.812	
•	•	29 -0	0.023	-0.023	18.954	0.922		•	l •				15.825	
ıjı		30 0	0.026	0.024	20.925	0.890		4	"	30			17.161	
•		31 -0	0.011	-0.008	21.305	0.904		•					17.385	
dı .	1 6	32 -0	.027	-0.028	23.447	0.864		Q ¹	P				19.639	
1		33 0	0.006	0.005	23.545	0.888		ų.	Ψ	33			19.639	
ı)		34 0	0.012	0.015	23.974	0.899		•		34			19.936	
j.	•				25.579			*	•				21.112	
ĺ	1 6				26.326			•	•	36	-0.012	-0.011	21.555	0.973
1	1						-							

^{*}Probabilities may not be valid for this equation specification.

*Probabilities may not be valid for this equation specification.

Figure 10: Correlogram of Residuals Squared for Four GARCH-Type Models

Heteroskedasticity Test: ARCH

F-statistic	20.21475	Prob. F(7,2831)	0.0000
Obs*R-squared	135.1479	Prob. Chi-Square(7)	0.0000

Test Equation:
Dependent Variable: WGT_RESID^2
Method: Least Squares
Date: 12/19/21 Time: 19:53
Sample (adjusted): 11 2849

Included observations: 2839 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6) WGT_RESID^2(-7)	0.357121 0.023174 0.057435 0.090810 0.081785 0.059290 0.066228 0.070388	0.037084 0.018748 0.018710 0.018708 0.018723 0.018708 0.018710 0.018746	9.630103 1.236103 3.069787 4.854014 4.368163 3.169183 3.539643 3.754780	0.0000 0.2165 0.0022 0.0000 0.0000 0.0015 0.0004 0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.047604 0.045249 1.453106 5977.704 -5085.304 20.21475 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion rion n criter.	0.648538 1.487141 3.588098 3.604867 3.594147 2.006552

Heteroskedasticity Test: ARCH

F-statistic	0.542404	Prob. F(7,2831)	0.8028
Obs*R-squared	3.802459	Prob. Chi-Square(7)	0.8022

Test Equation:
Dependent Variable: WGT_RESID^2
Method: Least Squares
Date: 12/19/21 Time: 19:56
Sample (adjusted): 11 2849

Included observations: 2839 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.975901	0.062245	15.67842	0.0000
WGT_RESID^2(-1)	-0.020390	0.018793	-1.085006	0.2780
WGT_RESID^2(-2)	0.017629	0.018804	0.937533	0.3486
WGT_RESID^2(-3)	0.012568	0.018806	0.668279	0.5040
WGT_RESID^2(-4)	0.012570	0.018806	0.668419	0.5039
WGT_RESID^2(-5)	0.004310	0.018807	0.229187	0.8187
WGT_RESID^2(-6)	-0.012224	0.018803	-0.650109	0.5157
WGT_RESID^2(-7)	0.011248	0.018800	0.598293	0.5497
R-squared	0.001339	Mean depend	lent var	1.001621
Adjusted R-squared	-0.001130	S.D. depende	nt var	2.014416
S.E. of regression	2.015554	Akaike info cri	iterion	4.242479
Sum squared resid	11500.82	Schwarz crite	rion	4.259249
Log likelihood	-6014.199	Hannan-Quin	n criter.	4.248528
F-statistic	0.542404	Durbin-Watso	n stat	1.999579
Prob(F-statistic)	0.802769			

Heteroskedasticity Test: ARCH

Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 12/19/21 Time: 20:01 Sample (adjusted): 11 2849

Included observations: 2839 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.949094	0.061592	15.40925	0.0000
WGT_RESID^2(-1) WGT_RESID^2(-2)	-0.016927 0.024402	0.018789 0.018773	-0.900916 1.299820	0.3677 0.1938
WGT_RESID*2(-2) WGT_RESID*2(-3)	0.024402	0.018777	1.155656	0.1938
WGT_RESID^2(-4)	0.006767	0.018781	0.360317	0.7186
WGT_RESID^2(-5)	0.012656	0.018777	0.673998	0.5004
WGT_RESID^2(-6)	-0.015668	0.018774	-0.834594	0.4040
WGT_RESID^2(-7)	0.018863	0.018773	1.004787	0.3151
R-squared	0.002205	Mean depend	dent var	1.001014
Adjusted R-squared	-0.000262	S.D. depende	ent var	2.003887

S.E. of regression	2.004149	Akaike into criterion	4.231130
Sum squared resid	11371.03	Schwarz criterion	4.247900
Log likelihood	-5998.089	Hannan-Quinn criter.	4.237179
F-statistic	0.893909	Durbin-Watson stat	1.999327
Prob(F-statistic)	0.510199		

Heteroskedasticity Test: ARCH

F-statistic	0.543850	Prob. F(7,2831)	0.8016
Obs*R-squared	3.812580	Prob. Chi-Square(7)	0.8011

Test Equation:
Dependent Variable: WGT_RESID^2
Method: Least Squares
Date: 12/19/21 Time: 20:08

Sample (adjusted): 11 2849 Included observations: 2839 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5) WGT_RESID^2(-6)	0.975846 -0.020415 0.017653 0.012607 0.012579 0.004312 -0.012240	0.062245 0.018793 0.018804 0.018806 0.018806 0.018806 0.018803	15.67751 -1.086326 0.938788 0.670365 0.668846 0.229258 -0.650976	0.0000 0.2774 0.3479 0.5027 0.5036 0.8187 0.5151
WGT_RESID^2(-7) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.011255 0.001343 -0.001126 2.015673 11502.17 -6014.367 0.543850 0.801635	0.018800 0.598693 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.5494 1.001605 2.014539 4.242597 4.259367 4.248646 1.999577

Figure 11: Heteroskedasticity Test for Four GARCH-Type Models

In terms of squared residual and ARCH effects, all three models involving extension GARCH are recommended as they don't have ARCH effects.

Therefore, at this step, I finally recommend the model to be ARMA(3,3)-TGARCH (1,1) since its white noise performance is better than ARMA(3,3)-GARCH-in-mean (1,1)

Section 5. Model Prediction

Finally, let's see the performance of the model recommended.

Forecast: R_FORCAST	
Actual: R	
Forecast sample: 9/28/2009	5 10/14/2021
Included observations: 3893	}
Root Mean Squared Error	1.581005
Mean Absolute Error	1.068237
Mean Abs. Percent Error	121.3359
Theil Inequality Coefficient	0.935342
Bias Proportion	0.000028
Variance Proportion	0.885226
Covariance Proportion	0.114746
Theil U2 Coefficient	1.045436
Symmetric MAPE	174.4949

Figure 12: Forecast Result 1

Figure 13: Forecast Result 2

Section 6. Interpreting and Limitations

From above discussion, I finally proposed an ARMA(3,3)-TGARCH(1,1) model for the Shanghai Stock Exchange (SSE) Composite Index return series. However, the model has limitations: white noise result is not perfectly ideal although all the indicators in the model are significant and the model is of no ARCH effects. The process can be further improved if some more complex hybrid model, like ARMA-EGARCH(1,1)-M model are further attempted.

Appendix

A1. Reference Introductory Econometrics for Finance 3rd (third) Edition by Chris Brooks

A2. ARMA Models Result

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 16:55 Sample: 1 2849

Included observations: 2849

Convergence achieved after 6 iterations

Coefficient covariance computed using outer product of gradients

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 16:58

Sample: 1 2849

Included observations: 2849
Convergence achieved after 13 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) SIGMASQ	0.030921 0.022337 3.084930	0.034617 0.013535 0.049555	0.893231 1.650324 62.25259	0.3718 0.0990 0.0000	C AR(1) AR(2) SIGMASQ	0.030936 0.022946 -0.027022 3.082675	0.034314 0.013516 0.014111 0.050174	0.901556 1.697672 -1.914919 61.44017	0.3674 0.0897 0.0556 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000499 -0.000203 1.757322 8788.965 -5647.296 0.710760 0.491358	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	0.030911 1.757144 3.966512 3.972782 3.968773 1.998682	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001230 0.000176 1.756989 8782.542 -5646.256 1.167535 0.320624	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	0.030911 1.757144 3.966484 3.974844 3.969499 1.998190
Inverted AR Roots	.02				Inverted AR Roots	.01+.16i	.0116i		

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:01

Sample: 1 2849

Included observations: 2849

Convergence achieved after 12 iterations

Coefficient covariance computed using outer product of gradients

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:03

Sample: 1 2849 Included observations: 2849

Convergence achieved after 13 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) AR(3) SIGMASQ	0.030921 0.023799 -0.027752 0.031522 3.079608	0.035616 0.013534 0.014042 0.013264 0.050077	0.868171 1.758500 -1.976328 2.376506 61.49789	0.3854 0.0788 0.0482 0.0175 0.0000	C AR(1) AR(2) AR(3) AR(4) SIGMASQ	0.030910 0.021594 -0.025817 0.029842 0.070009 3.064482	0.038525 0.013429 0.014065 0.013267 0.013628 0.049726	0.802331 1.607987 -1.835569 2.249411 5.137202 61.62694	0.4224 0.1079 0.0665 0.0246 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.002224 0.000820 1.756423 8773.803 -5644.839 1.584435 0.175627	Mean depende S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.030911 1.757144 3.966191 3.976642 3.969960 2.004315	Log likelihood	0.007124 0.005378 1.752412 8730.708 -5637.835 4.079919 0.001080	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	0.030911 1.757144 3.961976 3.974517 3.966499 1.999897
Inverted AR Roots	.29	1430i -	14+.30i		Inverted AR Roots	.53	0253i	02+.53i	47

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:05 Sample: 1 2849

Included observations: 2849

Convergence achieved after 12 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030910	0.038569	0.801402	0.4230
AR(1)	0.021599	0.013542	1.595004	0.1108
AR(2)	-0.025815	0.014227	-1.814463	0.0697
AR(3)	0.029840	0.013275	2.247928	0.0247
AR(4)	0.070010	0.013739	5.095680	0.0000
AR(5)	-6.93E-05	0.014546	-0.004764	0.9962
SIGMASQ	3.064482	0.049797	61.53968	0.0000
R-squared	0.007124	Mean depend	dent var	0.030911
Adjusted R-squared	0.005028	S.D. depende	ent var	1.757144
S.E. of regression	1.752721	Akaike info cr	3.962678	
Sum squared resid	8730.708	Schwarz crite	3.977309	
Log likelihood	-5637.835	Hannan-Quin	3.967955	
F-statistic	3.398739	Durbin-Watso	on stat	1.999915
Prob(F-statistic)	0.002415			
Inverted AR Roots	.53 47	.00	02+.53i	0253i

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:13 Sample: 1 2849

Included observations: 2849
Convergence achieved after 29 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030923	0.039025	0.792400	0.4282
AR(1)	-0.880913	0.051856	-16.98756	0.0000
AR(2)	-0.007148	0.018833	-0.379528	0.7043
AR(3)	0.007249	0.018176	0.398852	0.6900
AR(4)	0.096332	0.017646	5.459104	0.0000
AR(5)	0.088785	0.014204	6.250814	0.0000
MA(1)	0.903946	0.050069	18.05401	0.0000
SIGMASQ	3.053507	0.049990	61.08262	0.0000
R-squared	0.010680	Mean dependent var		0.030911
Adjusted R-squared	0.008242	S.D. dependent var		1.757144
S.E. of regression	1.749887	Akaike info criterion		3.959804
Sum squared resid	8699.441	Schwarz criterion		3.976525
Log likelihood	-5632.741	Hannan-Quinn criter.		3.965834
F-statistic	4.381388	Durbin-Watson stat		1.994815
Prob(F-statistic)	0.000076			
Inverted AR Roots	.56	00+.56i	0056i	59
	85			
Inverted MA Roots	90			

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:13 Sample: 1 2849

Included observations: 2849
Convergence achieved after 29 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030923	0.039025	0.792400	0.4282
AR(1)	-0.880913	0.051856	-16.98756	0.0000
AR(2)	-0.007148	0.018833	-0.379528	0.7043
AR(3)	0.007249	0.018176	0.398852	0.6900
AR(4)	0.096332	0.017646	5.459104	0.0000
AR(5)	0.088785	0.014204	6.250814	0.0000
MA(1)	0.903946	0.050069	18.05401	0.0000
SIGMASQ	3.053507	0.049990	61.08262	0.0000
R-squared	0.010680	Mean depend	lent var	0.030911
Adjusted R-squared	0.008242	S.D. depende	ent var	1.757144
S.E. of regression	1.749887	Akaike info cr	iterion	3.959804
Sum squared resid	8699.441	Schwarz crite	rion	3.976525
Log likelihood	-5632.741	Hannan-Quin	in criter.	3.965834
F-statistic	4.381388	Durbin-Watso	1.994815	
Prob(F-statistic)	0.000076			
Inverted AR Roots	.56	00+.56i	0056i	59
	85			
Inverted MA Roots	90			

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:16 Sample: 12849 Included observations: 2849

Convergence achieved after 55 iterations
Coefficient covariance computed using outer product of gradients

AR(1) 0.006611 0.194935 0.033914 0.972 AR(2) -0.583075 0.103412 -5.638373 0.000 AR(3) 0.042396 0.016096 2.633998 0.006 AR(4) 0.060044 0.017619 3.407898 0.000 AR(5) 0.010689 0.026624 0.401496 0.688 MA(1) 0.015239 0.195912 0.077784 0.938 MA(2) 0.562630 0.104136 5.402853 0.000 SIGMASQ 3.054097 0.050076 60.98943 0.000 R-squared 0.010489 Mean dependent var 0.03091 Adjusted R-squared 0.007702 S.D. dependent var 1.75571 S.E. of regression 1.750364 Akaike info criterion 3.96068 SUM squared resid 8701.122 Schwarz criterion 3.97951 Log likelihood -5633.010 Hannan-Quinn criter. 3.96747 F-statistic 3.763024 Durbin-Watson stat 1.99970 Inverted AR Roots 3801-82i01+.82i17+.11i	Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(2) -0.583075 0.103412 -5.638373 0.000 AR(3) 0.042396 0.016096 2.633998 0.008 AR(4) 0.060044 0.017619 3.407898 0.000 AR(5) 0.010689 0.026624 0.401496 0.688 MA(1) 0.015239 0.195912 0.077784 0.938 MA(2) 0.562630 0.104136 5.402853 0.000 SIGMASQ 3.054097 0.050076 60.98943 0.000 R-squared Adjusted R-squared 0.010489 Mean dependent var 0.0309 Adjusted R-squared S.E. of regression 1.750364 Akaike info criterion 3.96068 Sum squared resid 8701.122 Schwarz criterion 3.96068 Log likelihood -5633.010 hannan-Quinn criter. 3.96747 F-statistic 3.763024 Durbin-Watson stat 1.99970 Inverted AR Roots 380182i01+.82i17+.11i	С	0.030907	0.037567	0.822716	0.4107
AR(3) 0.042396 0.016096 2.633998 0.006 AR(4) 0.060044 0.017619 3.407898 0.000 AR(5) 0.010689 0.026624 0.401496 0.688 MA(1) 0.015239 0.195912 0.077784 0.938 MA(2) 0.562630 0.104136 5.402853 0.000 SIGMASQ 3.054097 0.050076 60.98943 0.000 R-squared 0.010489 Mean dependent var 0.0309 Adjusted R-squared 0.007702 S.D. dependent var 1.75714 S.E. of regression 1.750364 Akaike info criterion 3.96068 Sum squared resid 8701.122 Schwarz criterion 3.96068 Log likelihood -5633.010 Hannan-Quinn criter. 3.96745 F-statistic 3.763024 Durbin-Watson stat 1.99970 Inverted AR Roots 380182i01+.82i17+.11i	AR(1)	0.006611	0.194935	0.033914	0.9729
AR(4) 0.060044 0.017619 3.407898 0.000 AR(5) 0.010689 0.026624 0.401496 0.688 MA(1) 0.015239 0.195912 0.077784 0.936 MA(2) 0.562630 0.104136 5.402853 0.000 SIGMASQ 3.054097 0.050076 60.98943 0.000 R-squared 0.010489 Mean dependent var 0.0309 Adjusted R-squared 0.007702 S.D. dependent var 1.75714 S.E. of regression 1.750364 Akaike info criterion 3.96066 Sum squared resid 8701.122 Schwarz criterion 3.96764 Log likelihood -5633.010 Hannan-Quinn criter. 3.96767 F-statistic 3.763024 Durbin-Watson stat 1.99976 Prob(F-statistic) 0.000213	AR(2)	-0.583075	0.103412	-5.638373	0.0000
AR(5) 0.010689 0.026624 0.401496 0.688 MA(1) 0.015239 0.195912 0.077784 0.938 MA(2) 0.562630 0.104136 5.402853 0.000 SIGMASQ 3.054097 0.050076 60.98943 0.000 R-squared Adjusted R-squared 0.010489 Mean dependent var 0.0309 Adjusted R-squared 0.007702 S.D. dependent var 1.75714 S.E. of regression 1.750364 Akaike info criterion 3.96068 Sum squared resid 8701.122 Schwarz criterion 3.9795(Log likelihood -5633.010 Hannan-Quinn criter. 3.96747 F-statistic 3.763024 Durbin-Watson stat 1.9997(Prob(F-statistic) 0.000213	AR(3)	0.042396	0.016096	2.633998	0.0085
MA(1) 0.015239 0.195912 0.077784 0.938 MA(2) 0.562630 0.104136 5.402853 0.000 SIGMASQ 3.054097 0.050076 60.98943 0.000 R-squared 0.010489 Mean dependent var 0.0309* S.E. of regression 1.750364 Akaike info criterion 3.96068 Sum squared resid 8701.122 Schwarz criterion 3.9795 Log likelihood -5633.010 Hannan-Quinn criter 3.9674 F-statistic 3.763024 Durbin-Watson stat 1.99970 Inverted AR Roots 38 0182i 01+.82i 17+.11i	AR(4)	0.060044	0.017619	3.407898	0.0007
MA(2) 0.562630 0.104136 5.402853 0.000	AR(5)	0.010689	0.026624	0.401496	0.6881
SIGMASQ 3.054097 0.050076 60.98943 0.000	MA(1)	0.015239	0.195912	0.077784	0.9380
R-squared	MA(2)	0.562630	0.104136	5.402853	0.0000
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) 0.007702 S.D. dependent var Akaike info criterion 3.96068 Schwarz criterion 3.9795 Chwarz criterion 3.9795 Chwarz criterion 3.9797 Chwarz criterion 3.9674 Durbin-Watson stat 1.9997 Chwarz criterion 3.763024 Durbin-Watson stat 1.9997 Chwarz	SIGMASQ	3.054097	0.050076	60.98943	0.0000
S.E. of regression Sum squared resid Log likelihood F-statistic 1.750364 8701.122 -5633.010 1.76333.010 1.7633.010 1.7633.010 1.7633.010 1.7633.010 1.7633.010 1.7633.010 1.7633.010	R-squared	0.010489	Mean dependent var		0.030911
Sum squared resid Log likelihood 8701.122 - 5633.010 Schwarz criterion 3.97950 - 3.99740 F-statistic Prob(F-statistic) 3.763024 - 0.000213 Durbin-Watson stat 1.99970 - 1.99970 Inverted AR Roots 380182i01+.82i17+.11i17+.11i	Adjusted R-squared	0.007702	S.D. depende	ent var	1.757144
Log likelihood -5633.010 Hannan-Quinn criter. 3.9674; F-statistic 3.763024 Durbin-Watson stat 1.99970 Prob(F-statistic) 0.000213 Inverted AR Roots .38 0182i 01+.82i 17+.11i	S.E. of regression	1.750364	Akaike info cri	iterion	3.960695
F-statistic 3.763024 Durbin-Watson stat 1.99970 Prob(F-statistic) 0.000213 Inverted AR Roots 3.80182i01+.82i17+.11i	Sum squared resid	8701.122	Schwarz criter	rion	3.979506
Prob(F-statistic) 0.000213 Inverted AR Roots 380182i01+.82i17+.11i1711i	Log likelihood	-5633.010	Hannan-Quin	n criter.	3.967479
Inverted AR Roots .380182i01+.82i17+.11i1711i	F-statistic	3.763024	Durbin-Watson stat		1.999708
1711i	Prob(F-statistic)	0.000213			
	Inverted AR Roots	.38	0182i -	.01+.82i	17+.11i
		1711i			
Inverted MA Roots01+.75i0175i	Inverted MA Roots	01+.75i	0175i		

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 12/08/21 Time: 17:19
Sample: 1 2849

Included observations: 2849 Convergence achieved after 27 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030924	0.037848	0.817067	0.4140
AR(1)	-0.990050	0.114824	-8.622298	0.0000
AR(2)	-0.548266	0.137214	-3.995700	0.0001
AR(3)	-0.396548	0.104892	-3.780530	0.0002
AR(4)	0.097680	0.020608	4.739797	0.0000
AR(5)	0.085797	0.016328	5.254705	0.0000
MA(1)	1.014262	0.116716	8.689985	0.0000
MA(2)	0.549685	0.141678	3.879823	0.0001
MA(3)	0.420933	0.107669	3.909512	0.0001
SIGMASQ	3.045791	0.050447	60.37555	0.0000
R-squared	0.013180	Mean depend	lent var	0.030911
Adjusted R-squared	0.010052	S.D. depende	ent var	1.757144
S.E. of regression	1.748290	Akaike info cr	iterion	3.958683
Sum squared resid	8677.459	Schwarz crite	rion	3.979584
Log likelihood	-5629.144	Hannan-Quin	n criter.	3.966221
F-statistic	4.213069	Durbin-Watso	1.998866	
Prob(F-statistic)	0.000020			
Inverted AR Roots	.39 88	04+.78i ·	0478i	41
Inverted MA Roots	05+.68i	0568i	92	

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:22 Sample: 1 2849 Included observations: 2849

Convergence achieved after 51 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030930	0.037642	0.821692	0.4113
AR(1)	-0.835131	0.148256	-5.633041	0.0000
AR(2)	-0.940416	0.196563	-4.784291	0.0000
AR(3)	-0.149268	0.263032	-0.567491	0.5704
AR(4)	-0.235308	0.186397	-1.262399	0.2069
AR(5)	0.315260	0.133159	2.367540	0.0180
MA(1)	0.860398	0.151750	5.669856	0.0000
MA(2)	0.941682	0.200371	4.699694	0.0000
MA(3)	0.183546	0.265112	0.692332	
MA(4)	0.313270	0.187088	1.674453	0.0942
MA(5)	-0.226823	0.135695	-1.671563	0.0947
SIGMASQ	3.039078	0.050579	60.08533	0.0000
R-squared	0.015355	Mean depend	dent var	0.030911
Adjusted R-squared	0.011537	S.D. depende	ent var	1.757144
S.E. of regression	1.746978	Akaike info criterion		3.957921
Sum squared resid	8658.332	Schwarz criterion		3.983002
Log likelihood	-5626.059	Hannan-Quinn criter.		3.966967
F-statistic	4.021975	Durbin-Watson stat		1.999822
Prob(F-statistic)	0.000007			
Inverted AR Roots	.48	.0383i	.03+.83i	6969i
	69+.69i			
Inverted MA Roots	.38	.06+.78i	.0678i	6871i
	68+.71i			

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:21 Sample: 1 2849 Included observations: 2849 Convergence achieved after 85 iterations Coefficient covariance computed using outer product of gradients							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
С	0.030916	0.036014	0.858443	0.3907			
AR(1)	-1.543634	0.106212	-14.53352	0.0000			
AR(2)	-1.098393	0.188145	-5.838003	0.0000			
AR(3)	-0.974535	0.180142	-5.409804	0.0000			
AR(4)	-0.448880	0.102846	-4.364573				
AR(5)	0.087984	0.016965	5.186327				
MA(1)	1.570434	0.106463	14.75105	0.0000			
MA(2)	1.109702	0.188381	5.890742				
MA(3)	0.985434	0.177751	5.543913				
MA(4)	0.543546	0.095486	5.692431				
SIGMASQ	3.044074	0.050213	60.62339	0.0000			
R-squared	0.013736	Mean depend	dent var	0.030911			
Adjusted R-squared	0.010261	S.D. depende	ent var	1.757144			
S.E. of regression	1.748105	Akaike info cr	iterion	3.958829			
Sum squared resid	8672.567	Schwarz crite		3.981820			
Log likelihood	-5628.352	Hannan-Quir	ın criter.	3.967120			
F-statistic	3.952645	Durbin-Wats	on stat	2.002048			
Prob(F-statistic)	0.000022						
Inverted AR Roots	.14 9122i	.07+.84i	.0784i	91+.22i			
Inverted MA Roots	.1180i	.11+.80i	8920i	89+.20i			

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:25

Sample: 1 2849

Included observations: 2849

Convergence achieved after 22 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030910	0.038571	0.801368	0.4230
AR(1)	0.021228	0.206470	0.102816	0.9181
AR(2)	-0.025809	0.015550	-1.659719	0.0971
AR(3)	0.029832	0.014488	2.059124	0.0396
AR(4)	0.070020	0.015773	4.439388	0.0000
MA(1)	0.000368	0.207775	0.001769	0.9986
SIGMASQ	3.064482	0.049796	61.54021	0.0000
R-squared	0.007124	Mean dependent var		0.030911
Adjusted R-squared	0.005028	S.D. depende	nt var	1.757144
S.E. of regression	1.752721	Akaike info cr	iterion	3.962678
Sum squared resid	8730.708	Schwarz crite	rion	3.977309
Log likelihood	-5637.835	Hannan-Quin	n criter.	3.967955
F-statistic	3.398738	Durbin-Watso	n stat	1.999903
Prob(F-statistic)	0.002415			
Inverted AR Roots	.53	0253i ·	.02+.53i	47
Inverted MA Roots	00			

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:25
Sample: 1 2849
Included observations: 2849
Convergence achieved after 22 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030910	0.038571	0.801368	0.4230
AR(1)	0.021228	0.206470	0.102816	0.9181
AR(2)	-0.025809	0.015550	-1.659719	0.0971
AR(3)	0.029832	0.014488	2.059124	0.0396
AR(4)	0.070020	0.015773	4.439388	0.0000
MA(1)	0.000368	0.207775	0.001769	0.9986
SIGMASQ	3.064482	0.049796	61.54021	0.0000
R-squared	0.007124	Mean depend	0.030911	
Adjusted R-squared	0.005028	S.D. depende	ent var	1.757144
S.E. of regression	1.752721	Akaike info cr	iterion	3.962678
Sum squared resid	8730.708	Schwarz crite	rion	3.977309
Log likelihood	-5637.835	Hannan-Quin	ın criter.	3.967955
F-statistic	3.398738	Durbin-Watso	on stat	1.999903
Prob(F-statistic)	0.002415			
Inverted AR Roots	.53	0253i	02+.53i	47
Inverted MA Roots	00			

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:29

Sample: 1 2849 Included observations: 2849 Convergence achieved after 22 iterations

Coefficient covariance computed using outer product of gradients

7494 0.82432 1866 0.45496 10079 -4.95836 6249 0.39093 15795 2.10354 2849 -0.38346 6117 4.92719	0.6492 0.0000 0.0000 0.6959 0.0355 0.7014 0.0000
.0079 -4.95839 6249 0.39093 5795 2.10354 2849 -0.38346	00 0.0000 08 0.6959 15 0.0355 01 0.7014 04 0.0000
6249 0.39093 5795 2.10354 2849 -0.38346	38 0.6959 45 0.0355 31 0.7014 94 0.0000
25795 2.10354 2849 -0.38346	0.0355 0.7014 0.0000
2849 -0.38346	0.7014 0.0000
	0.0000
6117 4.92719	
	2 0.8213
4788 -0.22590	
0171 60.8747	4 0.0000
Mean dependent var	
ependent var	1.757144
info criterion	3.960708
arz criterion	3.979519
an-Quinn criter.	3.967492
Durbin-Watson stat	
n-Watson stat	
n-Watson stat	
n-Watson stat 	22
ľ	

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:26

Sample: 1 2849

Included observations: 2849

Convergence achieved after 23 iterations

Coefficient covariance computed using outer product of gradients

Variable	/ariable Coefficient		t-Statistic	Prob.
С	0.030908	0.037209	0.830649	0.4062
AR(1)	0.078994	0.108456	0.728356	0.4665
AR(2)	-0.589666	0.100487	-5.868078	0.0000
AR(3)	0.042544	0.016004	2.658291	0.0079
AR(4)	0.057046	0.017683	3.226100	0.0013
MA(1)	-0.056957	0.110461	-0.515628	0.6062
MA(2)	0.567883	0.100578	5.646173	0.0000
SIGMASQ	3.054188	0.049958	61.13557	0.0000
R-squared	0.010460	Mean dependent var		0.030911
Adjusted R-squared	0.008021	S.D. depende	ent var	1.757144
S.E. of regression	1.750082	Akaike info cr	iterion	3.960023
Sum squared resid	8701.380	Schwarz crite	rion	3.976744
Log likelihood	-5633.053	Hannan-Quin	n criter.	3.966053
F-statistic	4.289945	Durbin-Watso	n stat	2.000240
Prob(F-statistic)	0.000099			
Inverted AR Roots	.33	.01+.82i	.0182i	26
Inverted MA Roots	.0375i	.03+.75i		

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:30 Sample: 1 2849 Included observations: 2849

Convergence achieved after 38 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	0.030909	0.037280	0.829119	0.4071
AR(1)	0.165032	0.440927	0.374284	0.7082
AR(2)	-0.674315	0.325540	-2.071378	0.0384
AR(3)	0.127102	0.351501	0.361598	0.7177
AR(4)	-0.030635	0.264802	-0.115692	0.9079
MA(1)	-0.143104	0.441063	-0.324452	0.7456
MA(2)	0.651107	0.317559	2.050349	0.0404
MA(3)	-0.081804	0.332247 -0.246213		0.8055
MA(4)	0.082584	0.239457 0.344879		0.7302
SIGMASQ	3.054002	0.050323	60.68778	0.0000
R-squared	0.010520	Mean depen	dent var	0.030911
Adjusted R-squared	0.007383	S.D. depende	ent var	1.757144
S.E. of regression	1.750645	Akaike info ci	riterion	3.961366
Sum squared resid	8700.851	Schwarz crite	rion	3.982267
Log likelihood	-5632.966	Hannan-Quir	nn criter.	3.968904
F-statistic	3.353668	Durbin-Wats	on stat	1.999799
Prob(F-statistic)	0.000428			
Inverted AR Roots	.1019i	.10+.19i	0280i	02+.80i
Inverted MA Roots	.0940i	.09+.40i	02+.70i	0270i

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:33 Sample: 1 2849

Included observations: 2849

Convergence achieved after 34 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	0.030927	0.036909	0.837918	0.4021
AR(1)	-1.152172	0.206883	-5.569194	0.0000
AR(2)	-0.812129	0.221420	-3.667826	0.0002
AR(3)	-0.676912	0.207636	-3.260095	0.0011
AR(4)	-0.159357	0.179608	-0.887246	0.3750
MA(1)	1.176869	0.206960	5.686458	
MA(2)	0.817748	0.225315	3.629347	0.0003
MA(3)	0.700305	0.204060	3.431865	
MA(4)	0.254388	0.179743	1.415292	
MA(5)	0.086028	0.016602	5.181902	
SIGMASQ	3.045402	0.050566	60.22630	0.0000
R-squared	0.013306	Mean depend	dent var	0.030911
Adjusted R-squared	0.009829	S.D. depende	ent var	1.757144
S.E. of regression	1.748487	Akaike info cr	riterion	3.959258
Sum squared resid	8676.350	Schwarz crite	rion	3.982249
Log likelihood	-5628.963	Hannan-Quir	nn criter.	3.967550
F-statistic	3.827175	Durbin-Wats	on stat	1.999719
Prob(F-statistic)	0.000037			
Inverted AR Roots	.0276i	.02+.76i	32	87
Inverted MA Roots	.1067i	.10+.67i	23+.39i	2339i
	91			

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:36 Sample: 1 2849 Included observations: 2849 Convergence achieved after 50 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	0.030921	0.034545	0.895095	0.3708	
AR(1)	0.208605	0.073258	2.847534	0.0044	
AR(2)	-0.816560	0.053917	-15.14464	0.0000	
AR(3)	0.056612	0.015951	3.549172	0.0004	
MA(1)	-0.185026	0.073066	-2.532309	0.0114	
MA(2)	0.770797	0.059425	12.97081	0.0000	
SIGMASQ	3.059036	0.049983	61.20151	0.0000	
R-squared	0.008889	Mean depend	0.030911		
Adjusted R-squared	0.006796	S.D. depende	ent var	1.757144	
S.E. of regression	1.751163	Akaike info cr	iterion	3.960907	
Sum squared resid	8715.194	Schwarz crite	rion	3.975537	
Log likelihood	-5635.312	Hannan-Quin	n criter.	3.966183	
F-statistic	4.247998	Durbin-Watso	on stat	2.002885	
Prob(F-statistic)	0.000289				
Inverted AR Roots	.07	.0790i	.07+.90i		
Inverted MA Roots	.09+.87i	.0987i			

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 12/08/21 Time: 17:35

Sample: 1 2849

Included observations: 2849

Convergence achieved after 29 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030906	0.038399	0.804869	0.4210
AR(1)	0.556168	0.185455	2.998931	0.0027
AR(2)	-0.040276	0.016767	-2.402094	0.0164
AR(3)	0.059423	0.013554	4.384231	0.0000
MA(1)	-0.533515	0.185058	-2.882959	0.0040
SIGMASQ	3.073926	0.050038	61.43160	0.0000
R-squared	0.004065	Mean dependent var		0.030911
Adjusted R-squared	0.002313	S.D. depende	ent var	1.757144
S.E. of regression	1.755111	Akaike info cr	iterion	3.965049
Sum squared resid	8757.614	Schwarz crite	rion	3.977589
Log likelihood	-5642.212	Hannan-Quin	n criter.	3.969571
F-statistic	2.320515	Durbin-Watso	on stat	2.002926
Prob(F-statistic)	0.040938			
Inverted AR Roots	.64	04+.30i ·	0430i	
Inverted MA Roots	.53			

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:38 Sample: 12849 Included observations: 2849

Convergence achieved after 36 iterations
Coefficient covariance computed using outer product of gradients

Variable	riable Coefficient		t-Statistic	Prob.	
С	0.030900	0.038018	0.812796	0.4164	
AR(1)	0.705658	0.132632	5.320417	0.0000	
AR(2)	-0.820286	0.074976	-10.94071	0.0000	
AR(3)	0.485936	0.128661	3.776877	0.0002	
MA(1)	-0.682464	0.138214	-4.937717	0.0000	
MA(2)	0.776425	0.082834	9.373240	0.0000	
MA(3)	-0.408172	0.132883	-3.071664	0.0021	
SIGMASQ	3.055458	0.050344	60.69194	0.0000	
R-squared	0.010048	Mean dependent var		0.030911	
Adjusted R-squared	0.007609	S.D. depende	ent var	1.757144	
S.E. of regression	1.750446	Akaike info cri	iterion	3.960439	
Sum squared resid	8705.001	Schwarz crite	rion	3.977160	
Log likelihood	-5633.645	Hannan-Quin	n criter.	3.966469	
F-statistic	4.119338	Durbin-Watso	n stat	2.002977	
Prob(F-statistic)	0.000163				
Inverted AR Roots	.63	.04+.88i	.0488i		
Inverted MA Roots	.57	.0684i	.06+.84i		

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:39 Sample: 1 2849 Included observations: 2849

Convergence achieved after 26 iterations

Coefficient covariance computed using outer product of gradients

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 12/08/21 Time: 17:41

Sample: 1 2849

Included observations: 2849
Convergence achieved after 30 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) AR(3) MA(1) MA(2) MA(3) MA(4) SIGMASQ	0.030908 0.152029 -0.644027 0.114944 -0.130106 0.621105 -0.070107 0.053483 3.054020	0.037319 0.279967 0.095785 0.232170 0.280402 0.094728 0.221576 0.022590 0.050223	0.828221 0.543026 -6.723702 0.495087 -0.463998 6.556695 -0.316403 2.367520 60.80943	0.4076 0.5872 0.0000 0.6206 0.6427 0.0000 0.7517 0.0180 0.0000	C AR(1) AR(2) AR(3) MA(1) MA(2) MA(3) MA(4) MA(5) SIGMASQ	0.030925 -0.983534 -0.626395 -0.484701 1.008743 0.628544 0.512416 0.097016 0.083442 3.045948	0.037425 0.108748 0.129114 0.099620 0.110332 0.133089 0.103288 0.021158 0.016091 0.050462	0.826337 -9.044180 -4.851474 -4.865480 9.142783 4.722739 4.961037 4.585376 5.185624 60.36150	0.4087 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.010514 0.007727 1.750342 8700.903 -5632.974 3.772068 0.000207	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.030911 1.757144 3.960670 3.979481 3.967454 1.999851	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.013129 0.010001 1.748335 8677.906 -5629.217 4.196595 0.000021	Mean depend S.D. depend Akaike info co Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion rrion nn criter. on stat	0.030911 1.757144 3.958734 3.979635 3.966272 2.000967
Inverted AR Roots Inverted MA Roots	.18 .0731i		0181i 00+.72i	0072i	Inverted AR Roots Inverted MA Roots	0574i .1050i 92	05+.74i .10+.50i	89 14+.57i	1457i

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:42

Sample: 1 2849

Included observations: 2849

Convergence achieved after 19 iterations

Coefficient covariance computed using outer product of gradients

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 12/08/21 Time: 17:43 Sample: 1 2849 Included observations: 2849 Convergence achieved after 43 iterations

Coefficient covariance computed using outer product of gradients

Prob. 0.3525 0.1223 0.0000 0.1318 0.0000 0.0000 0.030911 1.757144 3.962300 3.974840 3.966822 1.969851

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic
C AR(1) AR(2) MA(1) SIGMASQ	0.030935 -0.171430 -0.025094 0.194606 3.082149	0.034432 0.433724 0.018799 0.433258 0.050229	0.898427 -0.395251 -1.334840 0.449169 61.36201	0.3690 0.6927 0.1820 0.6533 0.0000	C AR(1) AR(2) MA(1) MA(2) SIGMASQ	0.030938 -0.122075 -0.776769 0.131260 0.726279 3.065469	0.033272 0.078972 0.070391 0.087071 0.078185 0.050325	0.929833 -1.545796 -11.03508 1.507502 9.289235 60.91375
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001400 -0.000004 1.757148 8781.043 -5646.013 0.996896 0.407878	S.D. dependent var 1.79 Akaike info criterion 3.90 Schwarz criterion 3.91 Hannan-Quinn criter. 3.93		0.030911 1.757144 3.967015 3.977466 3.970784 1.999272	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.006804 0.005058 1.752695 8733.521 -5638.296 3.895493 0.001604	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Wats	ent var iterion rion nn criter.
Inverted AR Roots Inverted MA Roots	09+.13i 19	0913i			Inverted AR Roots Inverted MA Roots	06+.88i 0785i	0688i 07+.85i	

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:44

Sample: 1 2849

Included observations: 2849

Convergence achieved after 49 iterations

Coefficient covariance computed using outer product of gradients

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:46 Sample: 1 2849

Included observations: 2849

Convergence achieved after 21 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) MA(1) MA(2) MA(3) SIGMASQ	0.030921 0.136451 -0.833865 -0.115445 0.789770 0.048559 3.059589	0.034218 0.057442 0.048090 0.059524 0.053647 0.015370 0.050003	0.903634 2.375468 -17.33962 -1.939463 14.72173 3.159282 61.18751	0.3663 0.0176 0.0000 0.0525 0.0000 0.0016 0.0000	AR(1) AR(2) MA(1) MA(2) MA(3) MA(4)	0.030911 0.022021 -0.641001 -0.000442 0.620882 0.038801 0.058385 3.054204	0.036707 0.095610 0.088192 0.098355 0.089087 0.015249 0.016872 0.050000	0.842085 0.230320 -7.268228 -0.004495 6.969425 2.544531 3.460393 61.08394	0.8179 0.0000 0.9964 0.0000 0.0110 0.0005
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.008709 0.006617 1.751321 8716.770 -5635.570 4.161605 0.000360	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	1.757144 3.961088 3.975719 3.966365	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.010454 0.008016 1.750087 8701.428 -5633.061 4.287703 0.000100	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	0.030911 1.757144 3.960028 3.976749 3.966059 1.999216
Inverted AR Roots Inverted MA Roots	.07+.91i .09+.89i	.0791i .0989i	06		Inverted AR Roots Inverted MA Roots	.01+.80i .05+.72i	.0180i .0572i	05+.33i	0533i

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 12/08/21 Time: 17:47

Sample: 1 2849

Included observations: 2849

Convergence achieved after 30 iterations

Coefficient covariance computed using outer product of gradients

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 17:49 Sample: 1 2849

Included observations: 2849

Convergence achieved after 40 iterations

fficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030925	0.037425	0.826337	0.4087
AR(1)	-0.983534	0.108748	-9.044180	0.0000
AR(2)	-0.626395	0.129114	-4.851474	0.0000
AR(3)	-0.484701	0.099620	-4.865480	0.0000
MA(1)	1.008743	0.110332	9.142783	0.0000
MA(2)	0.628544	0.133089	4.722739	0.0000
MA(3)	0.512416	0.103288	4.961037	0.0000
MA(4)	0.097016	0.021158	4.585376	0.0000
MA(5)	0.083442	0.016091	5.185624	0.0000
SIGMASQ	3.045948	0.050462	60.36150	0.0000
R-squared	0.013129	Mean depend	dent var	0.030911
Adjusted R-squared	0.010001	S.D. depende	ent var	1.757144
S.E. of regression	1.748335	Akaike info cr	iterion	3.958734
Sum squared resid	8677.906	Schwarz crite	rion	3.979635
Log likelihood	-5629.217	Hannan-Quin	nn criter.	3.966272
F-statistic	4.196595	Durbin-Watso	on stat	2.000967
Prob(F-statistic)	0.000021			
Inverted AR Roots	0574i	05+.74i	89	
Inverted MA Roots	.1050i	.10+.50i	14+.57i	1457i

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030933	0.034142	0.906001	0.3650
AR(1)	-0.911133	0.048254	-18.88200	0.0000
MA(1)	0.931897	0.043524	21.41100	0.0000
SIGMASQ	3.078638	0.049722	61.91658	0.0000
R-squared	0.002538	Mean dependent var		0.030911
Adjusted R-squared	0.001486	S.D. depende	ent var	1.757144
S.E. of regression	1.755838	Akaike info cr	iterion	3.965179
Sum squared resid	8771.041	Schwarz crite	rion	3.973540
Log likelihood	-5644.398	Hannan-Quin	n criter.	3.968194
F-statistic	2.412593	Durbin-Watso	on stat	1.992163
Prob(F-statistic)	0.064921			
Inverted AR Roots	91			
Inverted MA Roots	93			

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:51 Sample: 1 2849

Included observations: 2849
Convergence achieved after 19 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030934	0.034569	0.894839	0.3709
AR(1)	-0.182572	0.487159	-0.374768	0.7079
MA(1)	0.206229	0.486469	0.423930	0.6716
MA(2)	-0.021967	0.020169	-1.089098	0.2762
SIGMASQ	3.082360	0.050203	61.39773	0.0000
R-squared	0.001332	Mean dependent var		0.030911
Adjusted R-squared	-0.000073	S.D. depende	ent var	1.757144
S.E. of regression	1.757208	Akaike info cr	iterion	3.967083
Sum squared resid	8781.645	Schwarz crite	rion	3.977534
Log likelihood	-5646.110	Hannan-Quin	in criter.	3.970852
F-statistic	0.948059	Durbin-Watso	on stat	2.000379
Prob(F-statistic)	0.435023			
Inverted AR Roots	18			
Inverted MA Roots	.08	28		

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:54 Sample: 1 2849

Convergence achieved after 28 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030923	0.036939	0.837127	0.4026
AR(1)	-0.005740	0.211309	-0.027165	0.9783
MA(1)	0.027122	0.211414	0.128289	0.8979
MA(2)	-0.018000	0.015646	-1.150421	0.2501
MA(4)	0.067009	0.013989	4.790105	0.0000
SIGMASQ	3.068625	0.049633	61.82662	0.0000
R-squared	0.005782	Mean dependent var		0.030911
Adjusted R-squared	0.004033	S.D. depende	ent var	1.757144
S.E. of regression	1.753597	Akaike info cr	iterion	3.963325
Sum squared resid	8742.512	Schwarz crite	rion	3.975866
Log likelihood	-5639.757	Hannan-Quin	in criter.	3.967848
F-statistic	3.306741	Durbin-Watso	on stat	1.999943
Prob(F-statistic)	0.005565			
Inverted AR Roots	01			
Inverted MA Roots	.3635i	.36+.35i	3735i	37+.35i

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:57 Sample: 1 2849

Included observations: 2849 Convergence achieved after 16 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1) SIGMASQ	0.030922 0.023650 3.084840	0.034622 0.013514 0.049591	0.893126 1.750027 62.20564	0.3719 0.0802 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000528 -0.000174 1.757297 8788.710 -5647.255 0.752077 0.471480	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.030911 1.757144 3.966483 3.972753 3.968744 2.001205
Inverted MA Roots	02			

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 12/08/21 Time: 17:52

Sample: 1 2849

Included observations: 2849
Convergence achieved after 29 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030906	0.038070	0.811811	0.4170
AR(1)	0.510142	0.193868	2.631395	0.0085
MA(1)	-0.490492	0.193163	-2.539262	0.0112
MA(2)	-0.032049	0.016410	-1.953008	0.0509
MA(3)	0.056501	0.013752	4.108524	0.0000
SIGMASQ	3.074707	0.049842	61.68898	0.0000
R-squared	0.003811	Mean dependent var		0.030911
Adjusted R-squared	0.002059	S.D. depende	ent var	1.757144
S.E. of regression	1.755334	Akaike info cr	iterion	3.965302
Sum squared resid	8759.840	Schwarz crite	rion	3.977843
Log likelihood	-5642.573	Hannan-Quin	ın criter.	3.969825
F-statistic	2.175444	Durbin-Watso	on stat	1.997048
Prob(F-statistic)	0.054182			
Inverted AR Roots	.51			
Inverted MA Roots	.39+.21i	.3921i	29	

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 12/08/21 Time: 17:55

Sample: 1 2849 Included observations: 2849

Convergence achieved after 25 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030924	0.038748	0.798069	0.4249
AR(1)	-0.865744	0.060916	-14.21210	0.0000
MA(1)	0.893253	0.061490	14.52687	0.0000
MA(2)	0.003306	0.019319	0.171145	0.8641
MA(3)	0.012557	0.018952	0.662577	0.5077
MA(4)	0.090751	0.018417	4.927587	0.0000
MA(5)	0.085818	0.014623	5.868647	0.0000
SIGMASQ	3.055070	0.050028	61.06675	0.0000
R-squared	0.010174	Mean depend	lent var	0.030911
Adjusted R-squared	0.007735	S.D. depende	ent var	1.757144
S.E. of regression	1.750335	Akaike info cr	iterion	3.960315
Sum squared resid	8703.895	Schwarz crite	rion	3.977035
Log likelihood	-5633.468	Hannan-Quin	n criter.	3.966345
F-statistic	4.171457	Durbin-Watso	n stat	2.004167
Prob(F-statistic)	0.000140			
Inverted AR Roots	87			
Inverted MA Roots	.39+.39i 91	.3939i ·	38+.40i	3840i

Dependent Variable: R

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 12/08/21 Time: 17:59 Sample: 1 2849

Included observations: 2849 Convergence achieved after 15 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030935	0.034467	0.897532	0.3695
MA(1)	0.024341	0.013489	1.804486	0.0713
MA(2)	-0.024487	0.014115	-1.734837	0.0829
SIGMASQ	3.082739	0.050123	61.50305	0.0000
R-squared	0.001209	Mean dependent var		0.030911
Adjusted R-squared	0.000156	S.D. depende	ent var	1.757144
S.E. of regression	1.757007	Akaike info cri	iterion	3.966504
Sum squared resid	8782.723	Schwarz crite	rion	3.974865
Log likelihood	-5646.285	Hannan-Quin	n criter.	3.969519
F-statistic	1.148007	Durbin-Watson stat		2.001223
Prob(F-statistic)	0.328291			
Inverted MA Roots	.14	17		

Dependent Variable: R
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 12/08/21 Time: 18:00
Sample: 1 2849
Included observations: 2849
Convergence achieved after 23 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030917	0.035545	0.869800	0.3845
MA(1)	0.019378	0.013538	1.431388	0.1524
MA(2)	-0.024153	0.014161	-1.705604	0.0882
MA(3)	0.031810	0.013316	2.388822	0.0170
SIGMASQ	3.080072	0.050012	61.58630	0.0000
R-squared	0.002073	Mean dependent var		0.030911
Adjusted R-squared	0.000670	S.D. depende	ent var	1.757144
S.E. of regression	1.756555	Akaike info cr	iterion	3.966342
Sum squared resid	8775.125	Schwarz crite	rion	3.976792
Log likelihood	-5645.054	Hannan-Quin	ın criter.	3.970111
F-statistic	1.477075	Durbin-Watso	on stat	1.995623
Prob(F-statistic)	0.206414			
Inverted MA Roots	.16+.25i	.1625i	35	

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 18:02

Date: 12/08/21 | time: 18:02 Sample: 1 2849 Included observations: 2849 Convergence achieved after 48 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030930	0.037586	0.822911	0.4106
AR(1)	-0.986669	0.087771	-11.24142	0.0000
AR(2)	-0.616629	0.091794	-6.717504	0.0000
MA(1)	1.009962	0.086924	11.61890	0.0000
MA(2)	0.619463	0.094849	6.531071	0.0000
MA(3)	0.023808	0.021958	1.084226	0.2784
MA(4)	0.082134	0.020372	4.031639	0.0001
MA(5)	0.091363	0.015064	6.064946	0.0000
SIGMASQ	3.051730	0.050551	60.36899	0.0000
R-squared	0.011256	Mean dependent var		0.030911
Adjusted R-squared	0.008471	S.D. depende	ent var	1.757144
S.E. of regression	1.749686	Akaike info cr	iterion	3.959926
Sum squared resid	8694.378	Schwarz crite	rion	3.978737
Log likelihood	-5631.915	Hannan-Quin	ın criter.	3.966710
F-statistic	4.041322	Durbin-Watso	on stat	1.998795
Prob(F-statistic)	0.000086			
Inverted AR Roots	4961i	49+.61i		
Inverted MA Roots	.29+.39i	.2939i	53+.67i	5367i
	53			

Dependent Variable: R Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 12/08/21 Time: 18:01

Sample: 1 2849

Included observations: 2849 Convergence achieved after 20 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.030905	0.038207	0.808882	0.4187
MA(1)	0.021098	0.013539	1.558310	0.1193
MA(2)	-0.017858	0.014232	-1.254828	0.2096
MA(3)	0.029249	0.013664	2.140602	0.0324
MA(4)	0.066353	0.013949	4.756888	0.0000
SIGMASQ	3.066311	0.049590	61.83332	0.0000
R-squared	0.006531	Mean dependent var		0.030911
Adjusted R-squared	0.004784	S.D. depende	ent var	1.757144
S.E. of regression	1.752935	Akaike info cr	riterion	3.962572
Sum squared resid	8735.921	Schwarz crite	rion	3.975112
Log likelihood	-5638.683	Hannan-Quir	nn criter.	3.967094
F-statistic	3.738213	Durbin-Watson stat		1.999325
Prob(F-statistic)	0.002243			
Inverted MA Roots	.36+.38i	.3638i	3732i	37+.32i