## **The Causality Lab**

Application: www.phil.cmu.edu/projects/causality-lab

Web Version: <a href="http://oli.web.cmu.edu">http://oli.web.cmu.edu</a>

- Create New Account
- Course admit code: csrdemo05

### **Outline**

### Yesterday

- 1. The Curriculum
- 2. The Online Course
  - Modules
  - Causality Lab
  - Case Studies
- 3. Learning Studies

### **Today**

- 1. The Causality Lab in Detail
- 2. Hands On Work
  - Doing Exercises
  - Authoring Exercises
- 3. Pilot Studies

## **Simple Bayes Net**



```
P(RT = <55) = .1

P(RT = 55-85) = .8

P(RT = >85) = .1

P(Wearing a Sweater | RT < 55) = .98

P(Wearing a Sweater | RT = 55 -85) = .5

P(Wearing a Sweater | RT > 85) = .04
```

### Exp. Setup

### **Manipulated Graph**

### **Population**





| P(RT = <55) = .1                            |
|---------------------------------------------|
| P(RT = 55-85) = .8                          |
| P(RT = >85) = .1                            |
| P(Wearing a Sweater   $RT < 55$ ) = .98     |
| P(Wearing a Sweater   $RT = 55 - 85$ ) = .5 |
| P(Wearing a Sweater $  RT > 85 = .04$       |











$$P(RT = <55) = .1$$
  
 $P(RT = 55-85) = .8$   
 $P(RT = >85) = .1$   
 $P(Wearing a Sweater | I) = .5$ 

# **Causality Lab: Navigation Panel**



## **Causality Lab – Pilot Studies**

- Carnegie Mellon class (15 students): Causation and Social Policy
- 4-weeks so far through online course
  - Causal graphs,
  - Independence and Conditional Independence
  - d-separation
- No exposure to equivalence classes or methods for discovering structure

## **Causality Lab – Pilot Studies**

- Students given set of possible true models
- Students setup experiments
- Given independence results directly
  - no sample data
  - no statistical inference needed
- Tasks:
  - Infer correct model in minimum number of experiments
  - Infer set of models consistent with experiments so far

## **Training Experiment**

#### True Model one of:



#### Student Task:

- Do Passive Observation First eliminate inconsistent models
- Discover True model in fewest possible experiments after that

#### True Model one of:



#### Student Task:

Discover True model in fewest possible experiments





Intervene on X:  $X_{||Z|} Y$ ?





Intervene on Y: X \_||\_ Z ?





Intervene on Z: Indistinguishable Models

# **Experiment 1: Results**

Correct Answer: 15/15



### True Model one of:



Task: Discover True model in fewest possible experiments



| <b>Experimental Setup</b> | Distinguishable?           |
|---------------------------|----------------------------|
| Passive Observation       | M1 from {M2, M3, M4}       |
| Randomize A               | M1 from {M2, M3} from M4   |
| Randomize B               | M1 from {M2, M4} from M3   |
| Randomize C               | M1 from M2 from M3 from M4 |



# **Experiment 2: Results**

### Correct Answer: 14/15





#### True Model one of:



#### Student Task:

- 1) Passive Observation: eliminate inconsistent models
- 2) Discover True model in fewest possible experiments thereafter

## **Experiment 3: Conditions**



# **Experiment 3: Results**

### **Overall Success**





## **Experiment 3: Equivalence under Passive Observation**



## **Experiment 3: Equivalence Class Integrity**



### **After Passive Observation:**

Students who understand equivalence should either

- Keep all models in an equivalence class, or
- Remove all models in an equivalence class

$$\mathit{MEC-Integrity} = \sum_{\mathrm{mec} \in \{A,B,C,G,H,I\}} |\mathbf{mec}| : \text{if all models in mec were included or all excluded:}$$

# **Experiment 3: Equivalence Class Integrity Results**



## **Experiment 3: Commission and Omission**



# **Experiment 3: Equivalence Class Integrity Results**





## **Experiment 3: Adjacency Integrity**

Adjacency -Integrity = 
$$\sum_{\text{adj} \in \{A,B,C, D+G,E+H,F+I\}} \begin{bmatrix} |adj|: \text{ if all models in adj were} \\ \text{included or all excluded:} \\ \mathbf{0} : \text{ otherwise}$$

18



# **Experiment 3: Adjacency Integrity**

# of graphs committed that are adjacency consistent

# of graphs committed



## **Experiment 3: Adjacency Integrity**

```
Adjacency Consistent
Inclusion = # of committed graphs that are adjacency consistent

# of committable graphs that are adjacency consistent

Adjacency Inconsistent
Inclusion = # of committed graphs that are adjacency inconsistent

# of committed graphs that are adjacency inconsistent

# of committable graphs that are adjacency inconsistent
```



## **Tentative Hypotheses from Pilot Study**

- Students can distinguish direct from indirect causation
- Students prefer passive observation
- Students often choose optimal experiments to orient a chain
- Students act as if they understand adjacency, but not orientation within an adjacency class reliably