

EJEMPLO 6.3.5 El producto interno de dos funciones en C[0, 1]

CálculoSea
$$f(t)$$
 :

Sea $f(t) = t^2 \in C[0, 1]$ y $g(t) = (4 - t) \in C[0, 1]$. Entonces

$$\langle f, g \rangle = \int_0^1 t^2 (4 - t) dt = \int_0^1 (4t^2 - t^3) dt = \left(\frac{4t^4}{3} - \frac{t^4}{4} \right) \Big|_0^1 = \frac{13}{12}$$

Definición 6.3.2

Nota

Aquí se usa la doble barra en lugar de una sola para evitar confusión con el valor absoluto. En el ejemplo 6.3.7, ||sen t|| denota la norma de sen tcomo un "vector" en $C[0, 2\pi]$ mientras que |sen t| denota el valor absoluto de la función sen t.

Sea V un espacio con producto interno y suponga que \mathbf{u} y \mathbf{v} están en V. Entonces

- i) **u** y v son **ortogonales** si $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
- ii) La norma de u, denotada por ||u||, está dada por

$$||\mathbf{u}|| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle} \tag{6.3.3}$$

Nota

La ecuación (6.3.3) tiene sentido ya que $(\mathbf{u}, \mathbf{u}) \ge 0$.

EJEMPLO 6.3.6 Dos vectores ortogonales en \mathbb{C}^2

En \mathbb{C}^2 los vectores (3, -i) y (2, 6i) son ortogonales porque

$$\langle (3,-i), (2,6i) \rangle = 3 \cdot \overline{2} + (-i)(\overline{6i}) = 6 + (-i)(6i) = 6 - 6 = 0$$

además
$$||(3, -i)|| = \sqrt{3 \cdot 3 + (-i)(i)} = \sqrt{10}$$
.

EJEMPLO 6.3.7 Dos funciones ortogonales en $C[0, 2\pi]$

En $C[0, 2\pi]$ las funciones sen t y cos t son ortogonales, ya que

$$\langle \operatorname{sen} t, \cos t \rangle = \int_0^{2\pi} \operatorname{sen} t \cos t \, dt = \frac{1}{2} \int_0^{2\pi} \operatorname{sen} 2t \, dt = -\frac{\cos 2t}{4} \Big|_0^{2\pi} = 0$$

Además.

$$||\operatorname{sen} t|| = \sqrt{\langle \operatorname{sen} t, \operatorname{sen} t \rangle}$$

$$= \left[\int_0^{2\pi} \operatorname{sen}^2 t \, dt \right]^{\frac{1}{2}}$$

$$= \left[\frac{1}{2} \int_0^{2\pi} (1 - \cos 2t) \, dt \right]^{\frac{1}{2}}$$

$$= \left[\frac{1}{2} \left(t - \frac{\operatorname{sen} 2t}{2} \right) \Big|_0^{2\pi} \right]^{\frac{1}{2}}$$

$$= \sqrt{\pi}$$

Si se observan las demostraciones de los teoremas 6.1.1 y 6.1.2, se ve que no se utilizó el hecho de que $V = \mathbb{R}^n$. Los mismos teoremas se cumplen en cualquier espacio con producto interno V. A continuación se enumeran, por conveniencia, después de dar una definición.