Lecture 22 Segmentation: Basic Display Concepts

MP574: Applications

Sean B. Fain, PhD (sfain@wisc.edu)

Diego Hernando, PhD (dhernando@wisc.edu)

ITK/VTK Applications: Andrew Hahn, PhD (adhahn@wisc.edu)

Learning Objectives

- Learn digital image display and signal intensity mapping concepts.
- Introduce basic segmentation concepts

Digital Image Representation

- 2D matrix
 - Each pixel:
 - Scalar (gray value)
 - Triplet (RGB, BGR, HSV)
 - Quadruplet (ARGB, CMYK)
- Image quality properties
 - Image resolution: number of pixels
 - Blurring (point response)
 - Noise (signal to noise ratio)
- Alternative repre-sentation: vector graphic

Spatial Aliasing

- Occurs when object border does not align with pixel boundary
- Anti-aliasing
 - Low-pass filter before sampling
 - Can improve visualization
 - Reduces sharpness

What is Color?

Frequency / Wavelength

- "White light" is a combination of different wavelength
- Light Intensity

Our First Imaging System: Retina of the Human Eye

Simple Anatomy of the Retina by Helga Kolb

Image Perception

Spectral Frequency Sensitivity of Cones and Rods

- Rods: intensity sensitive
- Cones: color sensitive.
 - Cones are further classified by their color spectral sensitivity into L(64%), M(32%) and S(2%) types.

RGB Color Model

BT.709 primaries

Simulate part of visible spectrum by linear combination of primary colors (sRGB, Adobe RGB, ...):

Alternative Color Models

- ARGB: Same as RGB but with additional alpha channel representing opacity
- HSV / HSL

- CMYK
 - 4 color channels
 - Cyan (C)
 - Magenta (M)
 - Yellow (Y)
 - Black (K)
 - Subtractive model
 - Mostly for print media
 - Additional black channel increases quality and saves ink

Displays

- Technologies:
 - Cathode ray tube (CRT)
 - LCD (LED-Backlit)
 - LED
 - OLED
- Each pixel is comprised of red, green and blue

Look-Up Tables

- Recall our electron beams for the CRT presented in Lecture 1
- Intensities correspond to what is called a "Look-Up Table"
 - Defines the intensity of color scale of the displayed image:
 - 8 bit Monochrome [1 1 1 1 1 1 1] = 255 => white
 - 8 bit Monochrome [0 0 0 0 0 0 0] = 0 => black
- The W/L maps the input values to displayed intensity via the Look-Up Table

Window and Level in digital display

Example Hounsfield Unit or CT Number:

• The dynamic range of the image is much greater than the dynamic range of the display – 8 bit monitors up to 10 and 12 bit professional.

Window and Level Examples

Bimodal Image Histogram

Monochrome Images: Bit Depth

8 bit depth monochrome implies 256 levels of gray

1 bit depth => 2 levels, black "0" and white "1"

Window and Level (W/L) in digital display

 Linear Transform within the window, maps input x to output T[x]:

$$T[x] = \begin{cases} x \le l_{in} = l_{out} \\ (x - l_{in}) \frac{h_{out} - l_{out}}{h_{in} - l_{in}} + l_{out} \\ x > h_{in} = h_{out} \end{cases}$$

Non-linear transforms in digital display

• Generalized transform, with γ , maps input x to output T[x]:

$$T[x] = \begin{cases} x \le l_{in} = l_{out} \\ (x - l_{in})^{\gamma} \frac{h_{out} - l_{out}}{(h_{in} - l_{in})^{\gamma}} + l_{out} \\ x > h_{in} = h_{out} \end{cases}$$

- γ >1, then concave within the window
- γ <1, then convex within the window

Gamma Correction

- Systems with linear and gammacorrected cameras. The dashes in the middle represent the storage and transmission of image signals or data files. The three curves represent input—output functions of:
 - 1. The camera,
 - 2. The display, and
 - 3. The overall system.

 $\gamma=1$ (original)

http://en.wikipedia.org/wiki/Gamma correction#Monitor gamma tools

Empirical Image Transforms: Histogram Equalization

Dynamic Range vs. Bit Depth

- Note difference between dynamic range and bit depth
 - E.g. a binary image is just 0's and 1's
 - dynamic range of 2 levels
 - even if the bit depth of the encoded image is 8 bits
- Ramifications for the concepts of image compression and quantization noise
 - Information in a fraction of the bit-depth
 - Compress without loss
 - Variety of image compression (or for video COmpression/DECompression (CODEC))
 algorithms

Color Images

24bit RGB, Size ~9 MB

8 bit Color Indexed Image (256 levels), Size 3.1 MB

Contrast/Color Resolution

- Contrast resolution
 - Smallest scale of intensity change that can be depicted normalized by the dynamic range
 - Assuming the full 8 bit depth is used
 - 8 bit monochrome image (without noise) is 1/256
- Color resolution for RGB image
 - 8 bits per color channel
 - Note that 1/(256×256×256) = 1/16.8 million color levels
 - RGB color images have exquisite color resolution
- Indexed color image
 - a color look up table with a finite bit-depth (e.g. 8 bit) is used to define the (e.g.
 - 256 color levels
 - An indexed color image doesn't require any more bits to encode than a monochrome image
 - color resolution is restricted to the bit depth or only 256 color levels

Manual Segmentation

- Manually draw region of interest (ROI)
- Most basic and most common approach
- Common examples
 - Evaluation of treatment progress for tumors (RECIST)
 - Complete Response (CR): Disappearance of all target lesions
 - Partial Response (PR): >30% decrease in the sum of diameters
 - Progressive Disease (PD): >20% increase in the sum of diameters
 - Stable Disease (SD): Neither PR nor PD
 - Penumbra segmentation for ischemic stroke evaluation

Tumor Segmentation

Lung

Window / Level

Lung [L: -600, W: 1500]

Soft tissue [L: 35, W: 350]

Matlab ROI tools

• imroi: impoint(), imline(), imrect(), imellipse(), impoly(), imfreehand() create draggable and resizable ROIs ...

```
figure, imshow('coins.png');
h = impoly;
position = wait(h);
```

• roipoly()
create binary mask of ROI ...

```
I = imread('eight.tif');
BW = roipoly(I);
```


Segmentation Approaches: Overview

- Graylevel based methods
 - Thresholding
 - · Adaptive histogram equalization
 - K-means
- Topological / morphological methods
 - Erosion / Dilation
 - Watershed
 - · Region growing, splitting and merging
 - Level sets
- Gradient based methods
 - Edge detection
 - Active contour models
 - Level sets
- Iterative (optimization based) methods
 - K-Means
 - Active contour models
 - Level set
 - Graph cut / grow cut

Summary

- Digital display determined by the way image are perceived by the visual system
- Image intensity values are assigned to display based on a look up table
 - Leads to both linear and non-linear signal intensity mappings
- Color systems are used to generate a wide range of colors (RGB)
- Exploit the visual system to compress the data required to store and display information
 - Gamma correction/compression/decompression
 - Histogram equalization