Math, Science, and Engineering Handbook

```
Daniel Kelley <daniel.kelley@gmp.san-jose.ca.us>
```

February 20, 2022

1 Math

1.1 Integrals

```
\begin{array}{ll} 1 & \int x^n \, dx = \frac{x^{n+1}}{n+1} \\ 2 & \int \frac{dx}{x} = \ln x \\ 3 & \int e^x \, dx = e^x \\ 4 & \int \cos(x) \, dx = \sin(x) \\ 5 & \int \sin(x) \, dx = -\cos(x) \\ 6 & \int \sec^2(x) \, dx = \tan(x) \\ 7 & \int \csc^2(x) \, dx = -\cot(x) \\ 8 & \int \sec(x) \cdot \tan(x) \, dx = \sec(x) \\ 9 & \int \csc(x) \cdot \cot(x) \, dx = -\csc(x) \\ 10 & \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}(\frac{x}{a}) \\ 11 & \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a}) \\ 12 & \int \tan(x) \, dx = -\ln(\cos(x)) \\ 13 & \int \cot(x) \, dx = \ln(\sin(x)) \\ 14 & \int \sec(x) \, dx = \ln(\sec(x) + \tan(x)) \\ 15 & \int \csc(x) \, dx = -\ln(\csc(x) + \cot(x)) \end{array}
```

1.2 **Formulas**

 $\begin{array}{l} f(u+x) = f(u) + f'(u) \cdot x + f''(u) \cdot x^2/2 \\ d/dx \int_0^x f(t) dt = f(x) \end{array}$ Quadratic Approximation FTC2 $\frac{d/dx}{\int_0^{g(x)} f(t)dt} = g'(x) \cdot f(g(x))$ $\int_a^b f(x)w(x)dx / \int_a^b w(x)dx$ FTC2 Chain Rule Weighted Average

L'Hôpital's Rule 1.3

$$\lim_{x \to a} f(x)/g(x) = \lim_{x \to a} f'(x)/g'(x)$$

0/0Straight up ∞/∞ Straight up $0 \cdot \infty$ Rewrite as quotient Rewrite as $e^{ln(f)}$ 0_0 Rewrite as $e^{ln(f)}$ ∞^0 1^{∞} Rewrite as $e^{ln(f)}$ Good luck $\infty - \infty$ Otherwise Forget it.

Parametric Vector Calculus 1.4

$$\begin{split} \vec{r}(t) &= x(t)\hat{i} + y(t)\hat{j} & \int \vec{v}(t)dt \\ d\vec{v}(t)/dt & \vec{v}(t) = x'(t)\hat{i} + y'(t)\hat{j} & \int \vec{a}(t)dt \\ d\vec{v}(t)/dt & \vec{v}(t) = x''(t)\hat{i} + y''(t)\hat{j} & \int \vec{a}(t)dt & \frac{ds}{dt}\vec{T} \\ \frac{ds}{dt} &= \sqrt{x'(t)\hat{i} + y'(t)\hat{j}} & \vec{T} = \vec{v}/|\vec{\sigma}| \end{split}$$
Position Velocity Acceleration $d\vec{v}(t)/dt$ Arc Length Unit Tangent $\vec{T} = \vec{v}/|\vec{v}|$

Partial Differentiation 1.5

Approximation $f(x,y)=z_0+\frac{\partial f}{\partial x}(x-x_0)+\frac{\partial f}{\partial y}(y-y_0)$

2 Science

2.1 Units

Quantity	MKS	Name	Abbrev.
Angle		radian	rad
Solid Angle		steradian	sr
Area	m^2		
Volume	m^3		
Frequency	s^{-1}	Hertz	Hz
Velocity	$m \cdot s^{-1}$		
Acceleration	$m \cdot s^{-2}$		
Angular Velocity	$rad \cdot s^{-1}$		
Angular Acceleration	$rad \cdot s^{-2}$		
Density	$kg \cdot m^{-3}$		
Momentum	$kg \cdot m \cdot s^{-1}$		
Angular Momentum	$kg \cdot m^2 \cdot s^{-1}$		
Force	$kg\cdot m\cdot s^{-2}$	Newton	N
Work, Energy	$kg \cdot m^2 \cdot s^{-2}$	Joule	J
Power	$kg \cdot m^2 \cdot s^{-3}$	Watt	W
Torque	$kg \cdot m^2 \cdot s^{-2}$		
Pressure	$kg \cdot m^{-1} \cdot s^{-2}$	Pascal	Pa

2.2 Laws

Newton's 1st Law	$\sum \mathbf{F} = 0 \Leftrightarrow \dot{\mathbf{v}}$
Newton's 2nd Law	$\overline{\mathbf{F}} = m\mathbf{a} = \dot{\mathbf{p}}$
Newton's 3rd Law	$\mathbf{F}_a = -\mathbf{F}_a$
Gravity	F = mg; g = 9.81 m/s
Hooke's Law	$F_x = -k\Delta x$; $k = \text{spring constant}$
Force	$N = kg \cdot m \cdot s^{-2}$
Energy	$J = N \cdot m$
Power	$W = J \cdot s^{-1}$
Momentum	$\mathbf{p} = m \cdot \mathbf{v}$
Kinetic Energy	$K = \frac{1}{2}m\mathbf{v}^2 = \frac{\mathbf{p}^2}{2m}$
Momentum is conserved	
Energy is conserved	

2.3 Mechanics Problem Workflow

Draw a good picture.

Decorate with forces with a free body diagram for each body.

Choose a suitable coordinate system.

Decompose forces on each body.

Determine acceleration for each body.

Determine 1d equations of motion for each body, including necessary constraints.

Reconstruct multidimensional motion vectors.

Algebraically determine kinematics as needed.

3 Engineering

3.1 DC Ohm's Law

$$I = \frac{E}{R} = \frac{P}{E} = \sqrt{\frac{P}{R}}$$

$$R = \frac{E}{I} = \frac{E^2}{P} = \frac{P}{I^2}$$

$$E = IR = \frac{P}{I} = \sqrt{PR}$$

$$P = EI = I^2R = \frac{E^2}{R}$$

3.2 AC Ohm's Law

$$\begin{array}{lll} I &= \frac{E}{Z} &= \frac{P}{Ecos(\theta)} &= \sqrt{\frac{P}{Zcos(\theta)}} \\ Z &= \frac{E}{I} &= \frac{E^2cos(\theta)}{P} &= \frac{P}{I^2cos(\theta)} \\ E &= IZ &= \frac{P}{Icos(\theta)} &= \sqrt{\frac{PZ}{cos(\theta)}} \\ P &= EIcos(\theta) &= I^2Zcos(\theta) &= \frac{E^2cos(\theta)}{Z} \end{array}$$

Bibliography

- [1] Robert G. Brown, *Introductory Physics I*. http://web-home.phy.duke.edu/ rgb/Class/intro-physics-1/intro-physics-1.pdf
- [2] Allied Radio Corporation, *Allied's Electronics Data Handbook*. https://archive.org/details/AlliedsElectronicsDataHandbook