目录

第一章	数列	1
1.1	等差与等比数列	1
	1.1.1 等差数列	1
	1.1.2 等比数列	4
	1.1.3 差比混合型数列	7
	1.1.4 中心对称函数与等差数列	8
1.2	通项公式求法	9
	1.2.1 阶差法	10
	1.2.2 累加累乘法	11
	1.2.3 待定系数法	13
	1.2.4 倒数法、对数变换法	16
	1.2.5 隔项递推数列通项公式求法	18
1.3	数列求和	21
	1.3.1 错位相减法	21
	1.3.2 裂项相消法	23
	1.3.3 待定系数法裂项	29
	1.3.4 区分奇偶项的求和	30
	1.3.5 变号数列的绝对值求和	32
	1.3.6 类周期数列求和	33
1.4	互嵌式数列组的解题策略	34
1.5	利用"整除"思想求解数列中"不定方程"	37
1.6	数列放缩	39
	1.6.1 伪等比变等比	39
	1.6.2 二次函数型裂项	40
	1.6.3 利用平均不等式效缩	41

第一章 数列

1.1 等差与等比数列

1.1.1 等差数列

等差数列性质

- 1. 等差数列 $\{a_n\}$ 的通项公式是关于n的一次函数,并且一次项系数就是公差.
- 2. 等差数列 $\{a_n\}$ 的前 n 项和公式是关于 n 的无常数项的二次函数,并且二次项系数为公差的 $\frac{1}{2}$.
- 3. 等差数列 $\{a_n\}$ 的前 n 项和 $S_n = na_{n+1}$;
- 4. 数列 $\frac{S_1}{1}$, $\frac{S_2}{2}$, $\frac{S_3}{3}$, ..., $\frac{S_n}{n}$ 亦为等差数列, 公差为 $\frac{d}{2}$, (原等差数列公差的一半).

- 7. 若 $S_m = S_n (m \neq n)$, 则 $S_{m+n} = 0$.
- 9. $\frac{a_n}{b_n} = \frac{S_{2n-1}}{T_{2n-1}}$, 其中 S_n , T_n 为等差数列 $\{a_n\}$, $\{b_n\}$ 的前 n 项和.
- 10. 若等差数列 $\{a_n\}$ 有 2n 项,则 $S_{\mathfrak{A}}-S_{\mathfrak{F}}=nd$.
- 11. 若等差数列 $\{a_n\}$ 有 2n-1 项,则 $\frac{S_{\hat{\sigma}}}{S_{\mathcal{A}}} = \frac{n}{n-1}$.
- 12. 等差数列求前 n 项和取最值时对应的 n 值, 若利用二次函数的对称轴求法, 对称轴靠近那个整数, n 的值就取这个整数; 对称轴恰好在两个整数中间, 则 n 的值就取这两个整数.

证 逐个证明

1.
$$a_n = a_1 + (n-1)d = nd + a_1 - d;$$

2.
$$S_n = a_1 n + \frac{n(n-1)d}{2} = \frac{d}{2}n^2 + \left(a_1 - \frac{d}{2}\right)n;$$

3.
$$S_n = \frac{n(a_1 + a_n)}{2} = n \cdot \frac{a_1 + a_n}{2} = na_{\frac{n+1}{2}}$$

4. 由2可得;

5.
$$$$ $$$ a_m = n, a_n = m(m \neq n), $$$ $$$ $$$ a_{m+n} = a_m + (m+n-m) \cdot \frac{m-n}{n-m} = n-n=0;$$$$$$

6. 若
$$S_m = S_n(m < n)$$
, 则 $0 = S_n - S_m = a_{m+1} + \cdots + a_n \Rightarrow a_{\frac{m+n+1}{2}} = 0$, 于是 $S_{m+n} = (m+n)a_{\frac{m+n+1}{2}} = 0$;

7. 由 4 可知
$$\left\{\frac{S_n}{n}\right\}$$
 亦为等差数列, $\frac{S_m}{m} = \frac{n}{m}$, $\frac{S_n}{n} = \frac{m}{n}$,所以数列 $\left\{\frac{S_n}{n}\right\}$ 的公差为 $d = \frac{\frac{m}{n} - \frac{n}{m}}{n-m} = -\frac{m+n}{mn}$,于是 $\frac{S_{m+n}}{m+n} = \frac{S_n}{n} + (m+n-n)d = \frac{m}{n} - \frac{m+n}{n} = -1$,故 $S_{m+n} = -(m+n)$.

8.
$$\frac{S_{2n-1}}{T_{2n-1}} = \frac{(2n-1)a_n}{(2n-1)b_n} = \frac{a_n}{b_n}$$
;

9. 若数列
$$\{a_n\}$$
 有 $2n$ 项, 则 $S_{\text{偶}} - S_{\frac{1}{7}} = a_2 + a_4 + \cdots + a_{2n} - (a_1 + a_3 + \cdots + a_{2n-1}) = (a_2 - a_1) + (a_4 - a_2) + \cdots + (a_{2n} - a_{2n-1}) = nd;$

10. 若数列
$$\{a_n\}$$
 有 $2n-1$ 项, 则 $\frac{S_{\hat{\sigma}}}{S_{\mathfrak{R}}} = \frac{a_1 + a_3 + \cdots + a_{2n-1}}{a_2 + a_4 + \cdots + a_{2n-2}} = \frac{na_n}{(n-1)a_n} = \frac{n}{n-1}$.

例 1.1 等差数列 $\{a_n\}$ 中,前 n 项和为 S_n , $S_9 > 0$, $S_{10} < 0$,则当 $n = _$ 时, S_n 最大.

解 设二次函数与 x 轴的另一个交点为 (a,0),则 $a \in (9,10)$,,所以对称轴为 $x = \frac{a}{2} \in (4.5,5)$,离 5 较近,因此当 n = 5 时, S_n 最大.

例 1.2 已知等差数列 $\{a_n\}$ 的公差为 $d(d \neq 0)$, 前 n 项和为 S_n , 若数列 $\{\sqrt{S_n + n}\}$ 也为公差为 d 的等差数列,则 $d = ___$.

解 若数列 $\{\sqrt{S_n+n}\}$ 也为公差为 d 的等差数列,则 $\sqrt{S_n+n}$ 一定是一个关于 n 的正比例函数,否则无法开根号,由等差数列前 n 项和性质可知 $\sqrt{\frac{d}{2}}=d\Rightarrow d=\frac{1}{2}$.

例 1.3 设等差数列 $\{a_n\}$ 的公差为 $d(d \neq 0)$, 前 n 项和为 S_n , 若数列 $\{\sqrt{8S_n + 2n}\}$ 也是公差为 d 的等差数列,则数列 $\{a_n\}$ 的通项公式 $a_n = \underline{\hspace{1cm}}$.

解 若数列 $\{\sqrt{8S_n+2n}\}$ 是公差为 d 的等差数列,那么 $\sqrt{8S_n+2n}$ 一定是一个关于 n 的正比例函数,否则无法开根号,所以 $\sqrt{8\times\frac{d}{2}}=d\Rightarrow d=4$. 又根据 $S_n=\frac{d}{2}n^2+\left(a_1-\frac{d}{2}\right)n$ 可知 $a_1=\frac{7}{4}$,因此 $a_n=4n-\frac{9}{4}$.

1.	已知等差数列 {a_n} 的前	fn 项和为 S_n ,若 $S_9=3$	Ba_{5} ,则一定成立的是		()
	$(A) S_4 = S_6$	(B) $S_4 = S_5$	(C) $S_5 = S_7$	(D) $S_5 = S_6$		
2.	记等差数列 $\{a_n\}$ 的前 n	a 项和为 S_n , 且 $a_3 = 5$,	$\frac{S_4}{S_2} = 4$, $\mathbb{N} \ a_{10} =$		()
	(A) 9	(B) 11	(C) 19	(D) 21		
3.	记 S_n 为等差数列 $\{a_n\}$	的前 n 项和, 且 $\frac{a_2 + 2a_7}{a_3 + a_3}$	$\frac{1+a_8}{a_6} = \frac{20}{11}, \mathbb{N} \frac{S_{11}}{S_8} =$		()
	(A) $\frac{3}{7}$	(B) $\frac{1}{6}$	(C) $\frac{5}{11}$	(D) $\frac{5}{4}$		
4.	记 S_n 为等差数列 $\{a_n\}$	的前 n 项和,已知 $a_4 = 5$	$5, S_9 = 81, \mathbb{N} \ a_{10} =$		()
	(A) 23	(B) 25	(C) 28	(D) 29		
5.	_) 项的和等于前 4 项的和			()
	$(A) - \frac{1}{2}$	(B) $\frac{3}{2}$	(C) $\frac{1}{2}$	(D) 2		
6.	【2019全国 I 文理】证	已 S_n 为等差数列的前 n	项和, 已知 $S_4 = 0$, $a_5 =$	= 5,则	()
	$(A) a_n = 2n - 5$	(B) $a_n = 3n - 10$	$(C) S_n = 2n^2 - 8n$	(D) $S_n = \frac{1}{2}n^2 - 2n$	ı	
7.	【2019 全国 III 理】记	.S _n 为等差数列前 n 项 z	や, 若 $a_1 \neq 0, a_2 = 3a_1$, 则	$\frac{S_{10}}{S_5} = \underline{\qquad}.$		
	数列 $\{a_n\}$ 的首项 $a_1 = 2$ 项是	21, 且满足 (2n - 5)a _{n+1} =	$= (2n - 3)a_n + 4n^2 - 16n$		小的- (
	(A) a_5	(B) <i>a</i> ₆	(C) <i>a</i> ₇	(D) a_8		
9.	记 S_n 为等差数列前 n	项和, 若 $a_3 = 3, S_4 = 11$,则 S ₇ =			
10.	记 S _n 为等差数列前 n 是	项和, 若 $d \neq 0$, $S_6 = 90$,a ₇ 是 a ₃ 与 a9 的等比	中项,则下列选项;		的)
	(A) $a_1 = 22$ (C) 当 $n = 10$ 或 $n = 11$	时, S_n 取得最大值	(B) $d = -2$ (D) 当 $S_n > 0$ 时, n 的靠	景大值为 20		
11.	设等差数列 $\{a_n\}$ 满足 a_n 列,则 $\frac{S_n + 10}{a_n + 1}$ 的最小作		S _n 为其前 n 项和, 若数	列 $\left\{\sqrt{S_n+1}\right\}$ 也是 $\left\{-\frac{1}{2}\right\}$	筝差3	改
12.	已知等差数列 {an} 满足	$\xi a_1^2 + a_5^2 = 8, \mathbb{M} a_1 + a_2$	的最大值为		()
	(A) 2	(B) 3	(C) 4	(D) 5		

13.	已知数列 $\{a_n\}$ 满足 a_1 的一项是	$= 21, (2n - 5)a_{n+1} = (2n)$	$-3)a_n + 4n^2 - 16n + 15$	$\sqrt{a_n+2}+9$,则 a_n 的最小 ()
	(A) a_5	(B) a ₆	(C) <i>a</i> ₇	(D) <i>a</i> ₈
14.	已知单调递增数列 {an	} 满足 $a_1 = 0$, $(a_{n+1} + a_n)$	$-1)^2 = 4a_{n+1} \cdot a_n (n \in \mathbf{N}^*)$	(a_n) , \mathbb{N} $a_n = \underline{ }$.
15.	已知等差数列 $\{a_n\}$ 满 $\frac{S_{2019}}{S_{2020}} = \underline{\qquad}$.	足 a ₁ ≠ 0, 2020 · a ₂₀₁	$9 = 2019 \cdot a_{2020}, S_n = 1$	
16.	设等差数列 {a _n } 的前 n	i 项和为 S_n , 且 $a_n \neq 0$, ā	$\frac{1}{5}a_5 = 3a_3$, \mathbb{N} $\frac{S_5}{S_9} =$	()
	(A) $\frac{5}{9}$	(B) $\frac{9}{5}$	(C) $\frac{5}{3}$	(D) $\frac{5}{27}$
17.	记 S_n 为递增等差数列	$\{a_n\}$ 的前 n 项和, 若数列	$ \eta\left\{\frac{S_n}{a_n}\right\} $ 也为等差数列,	则 $\frac{S_3}{a_3}$ = ()
	(A) 3	(B) 2	(C) $\frac{3}{2}$	(D) 1
18.	已知数列 $\{a_n\}$ 的前 n $S_{2020} =$ (A) $\frac{2023}{2}$	项和为 S _n , 若 a ₁ = 1, 点 (B) 1011	函数 $f(x) = x^3 + a_{n+1} - a_n$ (C) 1008	$a_n - \cos \frac{n\pi}{3}$ 为奇函数,则 (D) 336
10	2			(D) 330
19.	(1) 求数列 {a _n } 的通 ¹	所 n 项和为 S_n , 若 $S_9 = 5$ 项公式; $\sqrt{\frac{1}{a_2 + 3}} + \sqrt{\frac{1}{a_3 + 3}} + \cdot$		
20.	已知 S_n 为等差数列 $\{a$ 的前 n 项和 T_n 取最大		$< S_{2020} < S_{2019}$, 设 b_n :	$= a_n a_{n+1} a_{n+2}, 则数列 \left\{ \frac{1}{b_n} \right\}$
	(A) 2020	(B) 2019	(C) 2018	(D) 2017
1.	1.2 等比数列			
	公比不为1时			

1. 等比数列前 n 项和 $S_n = Aq^n - A$.

- 2. 等比数列前 n 项和 $S_n = \frac{a_1(1-q^n)}{1-a}$, 前 2n 项和 $S_{2n} = \frac{a_1(1-q^{2n})}{1-a}$, 则 $\frac{S_{2n}}{S} = 1+q^n$.
- 3. 等比数列前n项和 S_n 与通项公式 a_n 成线性关系(充要)

$$S_n = \frac{q}{q-1}a_n - \frac{a_1}{q-1} = \frac{1}{q-1}a_{n+1} - \frac{a_1}{q-1}\left(\frac{a_1}{q-1} \neq 0\right)$$

例 1.4 等比数列 $\{a_n\}$ 前 n 项和 $S_n = 2^{2n+1} + t$, 则 $t = _$.

 $\Re S_n = 2^{2n+1} + t = 2 \cdot 4^n + t \Rightarrow t = -2.$

例 1.5 已知等比数列 $\{a_n\}$ 的前 n 项和 $S_n=3^n+a$, (a 为常数) , 则数列 $\{a_n^2\}$ 的前 n 项和为 $S_n=($)

- (A) $\frac{1}{2}(9^n 1)$ (B) $\frac{1}{4}(9^n 1)$ (C) $\frac{1}{8}(9^n + a)$ (D) $\frac{3+a}{8}(9^n 1)$

解 依题意可知 a=-1, 故 $S_n=3^n-1$, 所以等比数列 $\{a_n\}$ 的通项公式 $a_n=2\cdot 3^{n-1}$, 于是 $a_1^2=4$, 选 A.

变式训练 EXERCISES

21. 【2020 全国 II 理】数列 $\{a_n\}$ 中, $a_1=2$, $a_{m+n}=a_ma_n$,若 $a_{k+1}+a_{k+2}+\cdots+a_{k+10}=2^{15}-2^5$,则 k的值为

- (A) 2
- (B) 3
- (C) 4
- (D) 5

22. 【2020 全国 I 文】设等比数列 $\{a_n\}$ 满足 $a_1 + a_2 = 4$, $a_3 - a_1 = 8$.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 记 S_n 为数列 $\{\log_3 a_n\}$ 的前 n 项和, 若 $S_m + S_{m+1} = S_{m+3}$, 求 m.

23. 【2020 全国新高考 I】已知公比大于 1 的等比数列 $\{a_n\}$ 满足 $a_2 + a_4 = 20$, $a_3 = 8$.

- (1) 求 {a_n} 的通项公式;
- (2) 记 b_m 为 $\{a_n\}$ 在区间 $(0,m](m \in \mathbb{N}^*)$ 中的项的个数, 求数列 $\{b_n\}$ 的前 100 项和 S_{100} .
- **24.** 记 S_n 是数列 $\{a_n\}$ 的前 n 项和, 若 $a_n = \frac{S_n}{2} 1$, 则 $S_7 = \underline{\quad }$.
- **25.** 设数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $2S_n = 3(a_n + 1)$, 若 $a_{10} = ka_g$, 则 $k = _$.
- **26.** 已知等比数列 $\{a_n\}$ 的前 n 项和为 $S_n = a \cdot 4^{n-1} + b(a \in \mathbf{R}, b \in \mathbf{R})$, 则 $\frac{b}{a} = \underline{\hspace{1cm}}$.

27. 在等比数列 $\{a_n\}$ 中, 已知 $a_n a_{n+1} = 9^n$, 则该数列的公比是 ()

- (A) -3
- (B) 3
- $(C) \pm 3$
- (D) 9

28.	数列 $\{a_n\}$ 的前 n 项和为	S_n , $a_1 = 1$, $a_n + a_{n+1}$	$=4 \times 3^{n-1}$, $\mathbb{N} S_{2020} =$	<u> </u>	
29.	等比数列 $\{a_n\}$ 前 n 项和	コ为 <i>S_n</i> , 则 " <i>a</i> ₁ < 0" 是	"S ₂₀₂₁ < 0" 均匀	()
	(A) 充分不必要条件		(B) 必要不充分条件		
	(C) 充要条件		(D) 既不充分也不必要	- 条件	
	(C) /G女 ¼ /		(<i>D)</i> 60/170/170/1704	27.11	
30.	等比数列 $\{a_n\}$ 的前 n 项		$\frac{S_9}{S_6} =$	()
	(A) $\frac{11}{6}$	(B) $\frac{31}{6}$	(C) $\frac{5}{6}$	(D) 3	
31.	【2018 全国 I】 S _n 为数	$ \Delta M \{a_n\} $ 的前 n 项和,若	$S_n = 2a_n + 1, \mathbb{N} S_6 = \underline{\hspace{1cm}}$	<u> </u>	
32.	公比不为零的等比数列	$]\{a_n\}$ 的前 n 项和为 S_n ,	下列说法正确的是	()
	(人) 艾(a) 見逆過點列	10 0 0 0 0	(D) 艾 (a) 旦 洋	剛 a > 0 0 c a c 1	
	(A) 若 {a _n } 是递增数列		(B) 若 {a _n } 是递减数列	-	
	(C) $\neq q > 0$, $\neq q >$	$_{6} > 2S_{5}$	(D) 若 $b_n = \frac{1}{a_n}$, 则 $\{b_n\}$	为等比数列	
33.	正项等比数列 {a _n } 中, c	$a_1 a_{11} + 2a_5 a_9 + a_3 a_{13} = 2$	5,则 a ₁ a ₁₃ 的最大值是	()
	(A) 25	(B) $\frac{25}{4}$	(C) 5	(D) $\frac{2}{5}$	
	(11) 23	(B) 4	(0) 3	5	
34.	已知数列 $\{a_n\}$ 和 $\{b_n\}$ 的	5 前 n 项和分别为 S_n ,	$T_n, \ a_1 = 2, \ b_1 = 1, \perp a$	$u_{n+1} = a_1 + 2T_n.$	
	(1) 若数列 {a _n } 为等差				
	$(2) \ \not \! E b_{n+1} = b_1 + 2S_n,$,证明: 数列 $\{a_n + b_n\}$ 和	$\{a_n - b_n\}$ 均为等比数列		
2.		a 4+1-T		1 4	
35.	正项等比数列 {a _n } 中, a	$a_7 = a_6 + 2a_5$, 若存在内:	项 a_m , a_n , 使得 $\sqrt{a_m a_n}$ =	= 4 <i>a</i> ₁ ,则 — + — 的	
	为,	F	25	()
	(A) $\frac{3}{2}$	(B) $\frac{5}{3}$	(C) $\frac{25}{6}$	(D) 不存在	
26	口知大筌比粉列 (a) 由	, a a a = 1	1 7 则** 列 (a) 44	涌 伍 八 七 山	
50.	已知在等比数列 {a _n } 中	$a_1 a_2 a_3 - 1, a_1 + a_2 + a_3$	$\frac{1}{a_3} = \frac{1}{2}$		
37.			项和为 S_n ,其前 n 项积	为 T_n , 并满足条件 a_1 >	1,
	$a_{2019}a_{2020} > 1, \frac{a_{2019} - 1}{a_{2020} - 1}$	< 0, 下列结论正确的是		()
	$(A) S_{2019} < S_{2020}$		(B) $a_{2019}a_{2021} - 1 < 0$		
	(C) T_{2020} 是数列 $\{T_n\}$ 中	的最大值	(D) 数列 $\{T_n\}$ 无最大值	Ī	
tol	[16 【2001 田火】 筌⑴:	*k 제 (a) 45 시 기 나	会。陌毛丛 C 沈田·	· · · · · · · · · · · · · · · · · · ·	米レ
	[1.6【2021 甲卷】等比	双灯 $\{a_n\}$ 时公比为 $q,$ 月	Π Π Ψ Π	,	
	,则) 甲是乙的充分条件但?	不是必要冬件		()

- (B) 甲是乙的必要条件但不是充分条件
- (C) 甲是乙的充要条件
- (D) 甲既不是乙的充分条件也不是乙的必要条件

 \mathbf{p} $\mathbf{q} = -1$, $\mathbf{q} = 2$ 时, $\{S_n\}$ 是递减数列, 充分性不成立, 若 $\{S_n\}$ 是递增数列,则 $a_{n+1} = S_{n+1} - S_n > 0$,可以推出 q > 0,故选 A.

1.1.3 差比混合型数列

等差含等比: 利用等比性质: $\frac{a}{b} = \frac{c}{d} = \frac{a \pm c}{b + d}$.

例 1.7 等差数列 $\{a_n\}$ 的公差不为零, 首项 $a_1 = 1$, $a_2 \in a_1$ 和 a_5 的等比中项, 则 $S_{10} = \underline{\quad \quad }$.

解 由比例的等比性质可知 $\frac{a_2}{a_1} = \frac{a_5}{a_2} = \frac{a_5 - a_2}{a_2 - a_1} = \frac{3d}{d} = 3$, 所以 $a_2 = 3a_1 = 3$, 于是 $a_n = 2n - 1$, 可得 $S_n = n^2$, 所以 $S_{10} = 100$.

例 1.8 等差数列 $\{a_n\}$ 的公差为 2, 若 a_2 , a_4 , a_8 成等比数列,则 $S_n =$)

(C) $\frac{n(n+1)}{2}$ (D) $\frac{n(n-1)}{2}$ (B) n(n-1)(A) n(n + 1)

解 由比例的等比性质可知 $\frac{a_4}{a_2} = \frac{a_8}{a_4} = \frac{a_8 - a_4}{a_4 - a_2} = \frac{4d}{2d} = 2$, 所以 $a_4 = 2a_2$, 又 $a_4 = a_2 + 4$, 所以 $a_2 = 4$, 于是 $a_n = 2n$, 可得 $S_n = n(n+1)$, 故选 A.

变式训练 EXERCISES

38. 已知等差数列 $\{a_n\}$ 的首项为 5, 公差不为零, 且 a_2 , a_4 , a_5 成等比数列, 则 a_{2020} =

- (B) $\frac{\sqrt{3}}{2}$ (C) $-\frac{\sqrt{3}}{2}$ (A) $\frac{1}{2}$
- (D) -2014

39. 记 S_n 为等差数列 $\{a_n\}$ 的前 n 项和, 已知 $a_1 = 4$, 公差 d > 0, a_4 是 a_2 与 a_8 的等比中项.

- (1) 求数列 {a_n} 的通项公式;
- (2) 求数列 $\left\{\frac{1}{S_n}\right\}$ 的前 n 项和 T_n .

40. 已知等差数列 $\{a_n\}$ 的公差不为零,且 a_2 , a_3 , a_9 成等比数列,则 $\frac{a_2 + a_3 + a_4}{a_1 + a_2 + a_3} =$ ()

- (A) $\frac{1}{3}$
- (B) $\frac{3}{8}$
- (C) $\frac{3}{7}$
- (D) $\frac{3}{5}$

41. 在公差大于 0 的等差数列 $\{a_n\}$ 中, $2a_7 - a_{13} = 1$, 且 a_1 , $a_3 - 1$, $a_6 + 5$ 成等比数列,则数列 $\{(-1)^{n-1}a_n\}$ 的前 21 项和为 \blacktriangle .

例 1.9 已知等比数列 $\{a_n\}$ 的通项公式为 $a_n = 3^n$,等差数列 $\{b_n\}$ 的通项公式为 $b_n = 4n + 3$. 将数列 $\{a_n\}$ 与 $\{b_n\}$ 的公共项,按它们在原数列中的先后顺序排成一新数列 $\{c_n\}$,求数列 $\{c_n\}$ 的通项公式.

分析 求等差数列与等比数列的公共项,可以将等比数列通项中的底数写成等差数列公差的整数倍与一常数 (小于公差) 的和与差,用二项式定理展开,根据整数的性质得到相应字母所满足的条件.

解 设 $3^k = 4m + 3$ $(k, m \in \mathbb{N}^*)$, 即 $(4-1)^k = 4m + 3$, 用二项式定理展开得

$$C_k^0 \cdot 4^k - C_k^1 \cdot 4^{k-1} + \dots + C_k^{k-1} \cdot 4 \cdot (-1)^{k-1} + (-1)^k = 4(m+1) - 1$$

结合等式左右两边的形式知 k 必为奇数,而 $4(m+1)-1 \ge 7$,则 k 的最小值为 3,故 $c_n = 3^{2n+1}$.

例 1.10 设 $\{a_n\}$ 是公比大于 1 的等比数列, S_n 是数列 $\{a_n\}$ 的前 n 项和,已知 $S_3=7$,且 a_1+3 , $3a_2$, a_3+4 构成等差数列.

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 已知 $\{b_n\}$ 的通项公式为 $b_n = 3n-1$. 令集合 $A = \{a_1, a_2, \cdots, a_n, \cdots\}$, $B = \{b_1, b_2, \cdots, b_n, \cdots\}$, 将集合 $A \cup B$ 中的元素按从小到大的顺序排列构成数列记为 $\{c_n\}$, 求数列 $\{c_n\}$ 的前 45 项的和 T_{45} .

 \mathbf{M} (1) $a_n = 2^{n-1}$;

(2) 易知数列 $\{a_n\}$ 与 $\{b_n\}$ 的公共项组成的数列 $\{d_n\}$ 是数列 $\{a_n\}$ 的偶数项,因此数列 $\{c_n\}$ 的项就是将 $\{b_n\}$ 中的项按顺序排列好后,将 $\{a_n\}$ 中奇数项按大小插入即可.

由于 $b_{41}=122,\ a_{1}=1,\ a_{3}=4,\ a_{5}=16,\ a_{7}=64,\ a_{9}=256>122,\$ 故数列 $\{c_{n}\}$ 的前 45 项是由 $\{b_{n}\}$ 前 41 项与 $\{a_{n}\}$ 中奇数项 $a_{1},\ a_{3},\ a_{5},\ a_{7}$ 构成,所以 $T_{45}=\frac{41(2+122)}{2}+85=2627.$

1.1.4 中心对称函数与等差数列

已知中心对称函数 f(x) 的对称中心为 (h,k), 且 f(x) 为单调函数, 数列 $\{a_n\}$ 是公差不为 0 的 等差数列,

若 $f(a_1) + f(a_2) + f(a_3) + \cdots + f(a_n) = nk$, 则 $a_1 + a_2 + a_3 + \cdots + a_n = nh$.

解 易知 $f(x) = (x-3)^3 + (x-3) + 2$,所以对称中心为 (3,2),由 $f(a_1) + f(a_2) + f(a_3) + \cdots + f(a_7) = 14 = 7 \times 2$ 可知 $a_1 + a_2 + a_3 + \cdots + a_7 = 7 \times 3 = 21$.

例 1.12 设函数 $f(x) = \sin x + \tan x$, 项数为 27 的等差数列 $\{a_n\}$ 满足 $a_n \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, 且公差 d 不为零, 若 $f(a_1) + f(a_2) + f(a_3) + \cdots + f(a_{27}) = 0$, 则当 $k = \underline{\hspace{1cm}}$ 时, $f(a_k) = 0$.

解 易知 f(x) 的对称中心为 (0,0), 所以 $f(a_1) + f(a_2) + \cdots + f(a_{27}) = 0$, 可知

$$a_1 + a_2 + \dots + a_{27} = 0 \Rightarrow a_{14} = 0$$

例 1.13 设函数 $f(x) = e^{-x} - e^x$,若函数 h(x) = f(x-4) + x,则函数 h(x) 的图象的对称中心为_____;若数列 $\{a_n\}$ 为公差不为零的等差数列, $a_1 + a_2 + a_3 + \cdots + a_{11} = 44$,则 $h(a_1) + h(a_2) + h(a_3) + \cdots + h(a_{11}) = ______.$

解 函数 h(x) 的图象的对称中心为 (4,4), $h(a_1) + h(a_2) + h(a_3) + \cdots + h(a_{11}) = 4 \times 11 = 44$.

变式训练 EXERCISES

- 42. 设函数 $f(x) = 2x \cos x$, $\{a_n\}$ 是公差为 $\frac{\pi}{8}$ 的等差数列, 若 $f(a_1) + f(a_2) + f(a_3) + \cdots + f(a_5) = 5\pi$, 则 $[f(a_3)]^2 a_1 a_5 =$ (C) $\frac{1}{8}\pi^2$ (D) $\frac{13}{16}\pi^2$
- **43.** 设函数 $f(x) = \sin 2x + 2\cos^2 x$, 等差数列 $\{a_n\}$ 满足 $a_{11} = \frac{3\pi}{8}$, 记 $b_n = f(a_n)$, 则数列 $\{b_n\}$ 的前 21 项和为_____.
- **44.** 已知数列 $\{a_n\}$ 的前 n 项和 $S_n = -\frac{1}{2} + 2a_n$,设 $f(x) = e^x e^{2-x} + 1$,则 $f(\log_2 a_1) + f(\log_2 a_2) + \cdots + f(\log_2 a_7)$ 的值等于
 - (A) 0
- (B) 1
- (C) 7
- (D) 14

1.2 通项公式求法

数列通项公式是数列的核心,如同函数的解析式,因此,求数列的通项公式往往是解题的突破口、关键点. 总结: 数列通项公式的求法见下表

数列通项公式的求法			
已知前几项	观察法	形如 $a_{n+1} = p \cdot a_n + f(n)$ 的递推式	待定系数法
已知前 n 项和 S_n	阶差法	形如 $a_{n+1} = \frac{pa_n}{qa_n + p}$ 的递推式	取倒法
$a_{n+1} = a_n + f(n)$	累加法	$a_{n+1} = A \cdot a_n + B \cdot C^n$ $a_{n+1} = p \cdot a_n + qa_{n-1}a_n$	相除法
$a_{n+1} = a_n \cdot f(n)$	累乘法	$a_{n+1} = p \cdot a_n^r$	对数法

1.2.1 阶差法

 S_n 是数列 $\{a_n\}$ 的前 n 项和, 把已知关系通过 $a_n=\left\{egin{array}{ll} S_1, & n=1 \\ S_n-S_{n-1} & n\geqslant 2 \end{array}
ight.$ 转化为 a_n 或 S_n 的递推关系.

例 1.14 已知正项数列 $\{a_n\}$ 中, S_n 是其前 n 项和,并且 $S_n = \frac{1}{4}(a_n + 1)^2$,求数列 $\{a_n\}$ 的通项公式.

解 当
$$n=1$$
 时, $4a_1=(a_1+1)^2\Rightarrow a_1=1$, 当 $n\geqslant 2$ 时,
$$\begin{cases} S_n=\frac{1}{4}(a_n+1)^2\\ S_{n-1}=\frac{1}{4}(a_{n-1}+1)^2 \end{cases}$$
 两式做差得 $a_n-a_{n-1}=2$,

所以数列 $\{a_n\}$ 是首项为 1, 公差为 2 的等差数列. 故 $a_n = 2n - 1$.

例 1.15【多选】已知数列 $\{a_n\}$ 中 $,a_1=1,a_2=2,$ 且 $\forall n>1,$ 其前 n 项 和 S_n 满足 $S_{n+1}+S_{n-1}=2(S_n+1),$ 则

(A)
$$a_7 = 13$$

(B)
$$a_{\circ} = 14$$

(C)
$$S_7 = 43$$

(D)
$$S_8 = 64$$

解 由 $S_{n+1}+S_{n-1}=2(S_n+1)$, 得 $a_{n+1}-a_n=2(n\geq 2)$, 又因为 $a_2-a_1=1$, 所以数列 $\{a_n\}$ 从第二项起为等差数列, 且公差 d=2, 于是 $a_7=12$, $a_8=14$, 所以 A \nearrow ; B \checkmark ;

又
$$S_7 = 43$$
, $S_8 = 57$, 所以 C \checkmark ; D \checkmark .

- **45.** 【2020 江苏】设 $\{a_n\}$ 是公差为 d 的等差数列, $\{b_n\}$ 是公比为 q 的等比数列, 已知 $\{a_n+b_n\}$ 的前 n 项和 $S_n=n^2-n+2^n-1$ $(n\in \mathbb{N}^*)$,则 d+q 的值是_____.
- **46.** 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且满足 $a_1 + 3a_2 + \cdots + 3^{n-1}a_n = n$, 则 $S_4 = \underline{\hspace{1cm}}$
- 47. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , $S_n = 2a_n 2$, 若存在两项 a_m , a_n , 使得 $a_m \cdot a_n = 64$, 则 $\frac{1}{m} + \frac{16}{n}$ 的最小值为

- (A) $\frac{25}{6}$
- (B) $\frac{21}{5}$
- (C) $\frac{9}{2}$
- (D) $\frac{17}{3}$
- **48.** 已知正项数列 $\{a_n\}$ 中, S_n 是其前 n 项和, 并且 $2\sqrt{S_n}=a_n+1$, 则数列 $\{a_n-7\}$ 的前 n 项和 T_n 的 最小值为
 - $(A) \frac{49}{4}$
- (B) $-\frac{7}{2}$
- (C) $\frac{7}{2}$
- (D) -12
- **49.** 已知数列 $\{a_n\}$ 中, S_n 是其前 n 项和, 并且 $S_n + S_{n+1} = 2n^2 + 3n$, 若 $a_n < a_{n+1}$, 则首项 a_1 的取值范围是 ______.
- **50.** 若数列 $\{a_n\}$ 满足 $a_1+4a_2+7a_3+\cdots+(3n-2)a_n=(n-1)4^{n+1}+2$ 对 $n\in \mathbb{N}^*$ 恒成立,且 $\{a_n\}$ 的前 n 项和为 S_n ,则使方程 $\frac{3}{2}(S_n-16)=2019$ 成立的所有正整数 n 的集合是_____.
- **51.** 数列 $\{a_n\}$ 满足 $a_1 + 2a_2 + 3a_3 + \cdots + na_n = 2^n 1 (n \in \mathbb{N}^*)$,则 $a_n = ____$,若存在 $n \in \mathbb{N}^*$ 使得 $a_n \leq \frac{n+1}{n} \cdot \lambda$ 成立,则实数 λ 的最小值为 $___$.

1.2.2 累加累乘法

形如 $a_{n+1} - a_n = f(n)$ 的递推公式. 这是广义的等差数列.

- **例 1.16** 已知数列 $\{a_n\}$ 满足 $a_{n+1}-a_n=3n+2(n\in \mathbb{N}^*)$, 且 $a_1=2$, 求数列 $\{a_n\}$ 的通项公式.
- 解 由 $a_{n+1} a_n = 3n + 2 \Rightarrow a_{n+1} = a_1 + \sum_{i=1}^n (3i+2) = 2 + \frac{n(3n+7)}{2}$,所以 $a_n = \frac{3n^2 + n}{2}$.
- **例 1.17** 已知数列 $\{a_n\}$ 满足 $a_{n+1}-a_n=\frac{1}{n^2+n}(n\in \mathbf{N}^*)$, 且 $a_1=\frac{1}{2}$, 求数列 $\{a_n\}$ 的通项公式.
- **解** 根据题意, $a_{n+1}=a_1+\sum_{i=1}^n\frac{1}{i^2+i}\Rightarrow a_{n+1}=\frac{1}{2}+\sum_{i=1}^n\frac{1}{i^2+i}$, 又根据裂项相消法 (详见本书 23 页第
- $1.3.2 \ \ \vec{\overline{\tau}}), \sum_{i=1}^n \frac{1}{i^2+i} = 1 \frac{1}{n+1}, \ \text{ffiv} \ a_{\scriptscriptstyle n+1} = \frac{1}{2} + 1 \frac{1}{n+1} \Rightarrow a_{\scriptscriptstyle n} = \frac{3}{2} \frac{1}{n}.$

- **52.** 已知数列 $\{a_n\}$ 满足 $a_{n+1}=a_n+2n(n\in \mathbf{N}^*)$, 且 $a_1=32$, 则 $\frac{a_n}{n}$ 的最小值为
 - (A) $8\sqrt{2} 1$
- (B) $\frac{52}{5}$
- (C) $\frac{31}{3}$
- (D) 10
- **53.** 已知数列 $\{a_n\}$ 满足 $a_{n+1}=a_n+2n+2$, 且 $a_1=2$, 则 $\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_{20}}$ 的值为 ()
 - (A) $\frac{19}{10}$
- (B) $\frac{19}{20}$
- (C) $\frac{10}{21}$
- (D) $\frac{20}{21}$

- **54.** 已知数列 $\{a_n\}$ 满足 $a_{n+1}=a_n+2\times 3^n+1$, 且 $a_1=3$, 则 $a_n=$ ______.
- **55.** 已知等比数列 $\{a_n\}$ 的首项为 1, 公比为 2, 数列 $\{b_n\}$ 满足 $b_1=a_1,\ b_2=a_2,\ b_{n+2}=2b_{n+1}-b_n+2.$
 - (1) 证明数列 $\{b_{n+1} b_n\}$ 为等差数列, 求数列 $\{b_n\}$ 的通项公式;
 - (2) 求数列 $\left\{\frac{b_n}{a_n}\right\}$ 的最大项.

形如 $\frac{a_{n+1}}{a_n} = f(n)$ 的递推公式. 这是广义的等比数列.

例 1.18 已知数列 $\{a_n\}$ 满足 $\frac{a_{n+1}}{a_n}=\frac{n+2}{n}$, 且 $a_1=1$, 求数列 $\{a_n\}$ 的通项公式.

解 由分母减去分子 (大减小) 除以 n 的系数得 $\frac{(n+2)-n}{1} = 2$, 可知 $\frac{a_{n+1}}{a_1} = \frac{(n+2)(n+1)}{1 \times 2} = \frac{(n+2)(n+1)}{2} \Rightarrow a_n = \frac{n(n+1)}{2}$.

例 1.19 已知数列 $\{a_n\}$ 是首项为 1 的正项数列,满足 $(n+1)a_{n+1}^2 - na_n^2 + a_n a_{n+1} = 0$,则 $\{a_n\}$ 的通项公式 $a_n = \underline{\hspace{1cm}}$

解 对式子 $(n+1)a_{n+1}^2 - na_n^2 + a_n a_{n+1} = 0$ 十字相乘可得 $[(n+1)a_{n+1} - na_n](a_{n+1} + a_n) = 0$,解得 $\frac{a_{n+1}}{a_n} = \frac{n}{n+1},$

由分母减去分子 (大减小) 除以 n 的系数得 $\frac{(n+1)-n}{1}=1$, 可知 $\frac{a_{n+1}}{a_1}=\frac{1}{n+1}\Rightarrow a_{n+1}=\frac{1}{n+1}\Rightarrow a_n=\frac{1}{n}$.

- **56.** 已知数列 $\{a_n\}$ 满足 $a_{n+1} = \left(1 + \frac{2}{n}\right)a_n$, 且 $a_1 = 2$, 求数列 $\{a_n\}$ 的通项公式.
- 57. 已知正项数列 $\{a_n\}$ 满足 $(n+1)a_{n+1}^2 na_n^2 + a_{n+1}a_n = 0$, 且 $a_1 = 1$, 则数列 $\{a_n\}$ 的通项公式 $a_n = -$.

58. 已知数列
$$\{a_n\}$$
 满足 $2(n+1)a_n - na_{n+1} = 0$, 且 $a_1 = 4$, 则
$$(A) \left\{\frac{a_n}{n}\right\}$$
 为等差数列
$$(B) \left\{a_n\right\}$$
 为递增数列

(C)
$$\{a_n\}$$
 的前 n 项和 $S_n = (n-1) \cdot 2^{n+1} + 4$ (D) $\left\{\frac{a_n}{2^{n+1}}\right\}$ 的前 n 项和 $T_n = \frac{n^2 + n}{2}$

1.2.3 待定系数法

方法 1.1. 一次函数型

形如 $a_{n+1} = ca_n + d$ 的类型, 其中 $c \neq 0$, $a_1 = a$.

- 当 c = 1 时, 数列 $\{a_n\}$ 为等差数列.
- 当 d = 0 时, 数列 $\{a_n\}$ 为等比数列.
- 当 $c \neq 1$, 且 $d \neq 0$ 时, 数列 $\{a_n\}$ 为线性递推数列.

注 构造 $a_{n+1} + \lambda = c(a_n + \lambda)$, 转化为等比数列.

例 1.20 已知数列 $\{a_n\}$ 满足 $a_n=3a_{n-1}+2(n\geq 2,\ n\in \mathbb{N}^*)$, 且 $a_1=1$, 求数列 $\{a_n\}$ 的通项公式.

解设

$$a_n + \lambda = 3(a_{n-1} + \lambda) \Rightarrow a_n = 3a_{n-1} + 2\lambda \tag{1.1}$$

由题设

$$a_n = 3a_{n-1} + 2 ag{1.2}$$

比较 (1.1), (1.2) 两式可得 $\lambda = 1$, 故 $a_n + 1 = 3(a_{n-1} + 1)$, 因此数列 $\{a_n + 1\}$ 是首项为 2, 公比为 3 的等比数列, 所以 $a_n + 1 = (a_1 + 1) \cdot 3^{n-1} = 2 \cdot 3^{n-1} \Rightarrow a_n = 2 \cdot 3^{n-1} - 1$.

例 1.21 已知数列 $\{a_n\}$ 的前 n 项和 S_n 满足 $S_n + a_n = 2n + 1 (n \in \mathbb{N}^*)$,则 $\{a_n\}$ 的通项公式 $a_n = \underline{\hspace{1cm}}$.

解 当
$$n=1$$
 时, $a_1+a_1=3 \Rightarrow a_1=\frac{3}{2}$, 当 $n \geq 2$ 时,
$$\begin{cases} S_n+a_n=2n+1 \\ S_{n-1}+a_{n-1}=2n-1 \end{cases}$$
 两式做差得

$$a_n = \frac{1}{2}a_{n-1} + 1\tag{1.3}$$

设

$$a_n + \lambda = \frac{1}{2}(a_{n-1} + \lambda) \Rightarrow a_n = \frac{1}{2}a_{n-1} - \frac{1}{2}\lambda$$
 (1.4)

比较 (1.3),(1.4) 两式可得 $\lambda = -2$,故 $a_n - 2 = \frac{1}{2}(a_{n-1} - 2)$,因此数列 $\{a_n - 2\}$ 是首项为 $\frac{3}{2} - 2 = -\frac{1}{2}$,公比为 $\frac{1}{2}$ 的等比数列,所以 $a_n - 2 = \left(-\frac{1}{2}\right) \times \left(\frac{1}{2}\right)^{n-1} = -\left(\frac{1}{2}\right)^n \Rightarrow a_n = 2 - \frac{1}{2^n}$.

- **59.** 已知数列 $\{a_n\}$ 满足 $a_{n+1}=\frac{2}{3}a_n+1(n\in \mathbf{N}^*)$, 且 $a_1=1$, 则 $\{a_n\}$ 的通项公式 $a_n=\underline{\qquad}$.
- **60.** 已知数列 $\{a_n\}$ 的前 n 项和 $S_n=3a_n-2n(n\in \mathbb{N}^*)$,若 $\{a_n+\lambda\}$ 成等比数列,则实数 $\lambda=\underline{\quad }$.

- **61.** 设数列 $\{a_n\}$ 的前 n 项和为 S_n , $S_n = 3a_n 2n$, $b_n = a_n + 2$, $c_n = \frac{1}{b_n}$.
 - (1) 证明: $\{b_n\}$ 为等比数列, 并求 a_n ;
 - (2) 记 T_n 为 $\{c_n\}$ 的前n项和, $T_n < m$ 恒成立,求m的取值范围.
- **62.** 已知数列 $\{b_n\}$ 的前 n 项和 $T_n = 2a_n n(n \in \mathbb{N}^*)$, 数列 $\{a_n\}$ 满足 $a_n = 2\log_2(1+b_n) 1$.
 - (1) 证明: $\{b_n + 1\}$ 为等比数列, 并求 b_n ;
 - (2) 若数列 $\{a_n\}$ 中去掉与数列 $\{b_n\}$ 中相同的项后, 余下的项按原顺序组成数列 $\{c_n\}$, 求 $c_1+c_2+\cdots+c_{50}$ 的值.

方法 1.2. 指数型

形如 $a_{n+1} = pa_n + q^n$ 的类型, 其中 $n \neq 0$, 1.

- 当 p=1 时, 累加即可.
- 当 $p \neq 1$ 时,等式两边同除以 q^{n+1} ,转化为一次函数型求解.

解法一 原等式两边同除以 q^{n+1} , 得

$$\frac{a_{n+1}}{q^{n+1}} = \frac{p}{q} \cdot \frac{a_n}{q^n} + 1 \tag{1.5}$$

换元,令 $b_n = \frac{a_n}{q^n}$,则式 (1.5) 化为 $b_{n+1} = \frac{p}{q} \cdot b_n + 1$,接下来仿照第 13 页一次函数型的做法构造等比数列.

解法二 待定系数法 $a_{n+1} + \lambda q^{n+1} = p(a_n + \lambda q^n)$. 详见下例.

注应用待定系数法时,要求 $p \neq q$,否则待定系数法失效.

例 1.22 已知数列 $\{a_n\}$ 满足 $a_n=3a_{n-1}+2^{n-1}(n\geq 2,\ n\in \mathbb{N}^*)$, 且 $a_1=-1$, 求数列 $\{a_n\}$ 的通项公式.

解法一 给 $a_n = 3a_{n-1} + 2^{n-1}$ 两边同除以 2^n ,得 $\frac{a_n}{2^n} = \frac{3}{2} \cdot \frac{a_{n-1}}{2^{n-1}} + \frac{1}{2}$. 令 $b_n = \frac{a_n}{2^n}$,得 $b_n = \frac{3}{2}b_{n-1} + \frac{1}{2}$,构 造 $b_n + \lambda = \frac{3}{2}(b_{n-1} + \lambda) \Rightarrow \lambda = 1$,因此数列 $\{b_n + 1\}$ 为等比数列, $b_n + 1 = \frac{3^{n-1}}{2^n} \Rightarrow a_n = 3^{n-1} - 2^n$.

解法二 令 $a_n + \lambda 2^n = 3(a_{n-1} + \lambda 2^{n-1})$, 即 $a_n = 3a_{n-1} + \lambda 2^{n-1}$,

 $\lambda = 1$

 $\therefore a_n + 2^n = 3(a_{n-1} + 2^{n-1})$,于是数列 $\{a_n + 2^n\}$ 是首项为 -1 + 2 = 1,公比为 3 的等比数列, $\therefore a_n + 2^n = 3^{n-1}$, $\therefore a_n = 3^{n-1} - 2^n$.

例 1.23 已知数列 $\{a_n\}$ 满足 $a_{n+1}=\frac{1}{3}a_n+\left(\frac{1}{2}\right)^{n+1}$,且 $a_1=\frac{5}{6}$,求数列 $\{a_n\}$ 的通项公式.

解 给 $a_{n+1} = \frac{1}{3}a_n + \left(\frac{1}{2}\right)^{n+1}$ 两边同乘以 2^{n+1} ,得 $2^{n+1} \cdot a_{n+1} = \frac{2}{3} \cdot (2^n \cdot a_n) + 1$. 令 $b_n = 2^n \cdot a_n$,构造 $b_{n+1} = \frac{2}{3}b_n + 1 \Rightarrow b_n = 3 - 2\left(\frac{2}{3}\right)^n$,所以 $a_n = 3\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{3}\right)^n$.

变式训练 EXERCISES

- **63.** 已知数列 $\{a_n\}$ 中, $a_1 = \frac{1}{2}$, $a_{n+1} = \frac{1}{2}a_n + \frac{1}{2^{n+1}}(n \in \mathbf{N}^*)$, 则数列 $\{a_n\}$ 的前 10 项的和为
 - (A) $\frac{33}{16}$
- (B) $\frac{129}{64}$
- (C) $\frac{509}{256}$
- (D) $\frac{65}{32}$
- **64.** 已知数列 $\{a_n\}$ 满足 $a_{n+1}=2a_n+4\cdot 3^{n-1}$, 且 $a_1=1$, 则数列 $\{a_n\}$ 的通项公式 $a_n=$ _____.
- **65.** 已知数列 $\{a_n\}$ 满足 $3a_{n+1}=a_n+\frac{1}{3^n}(n\in \mathbf{N}^*)$.
 - (1) 求证: 数列 $\{3^n \cdot a_n\}$ 为等差数列;
 - (2) 求数列 $\{a_n\}$ 的前 n 项和 S_n .

方法 1.3. 类一次函数

形如 $a_{n+1}=pa_n+kn+b$ 的类型, 其中 k,b 为常数且 $k\neq 0$.

注 待定系数法: 通过凑配可转化为 $a_{n+1} + x(n+1) + y = p(a_n + xn + y)$.

- **例 1.24** 已知数列 $\{a_n\}$ 满足 $a_{n+1}=3a_n+2n$, 且 $a_1=1$, 求数列 $\{a_n\}$ 的通项公式.
- 解 设 $a_{n+1} + x(n+1) + y = 3(a_n + xn + y) \Rightarrow a_{n+1} = 3a_n + 2xn x + 2y$,和原式比较可解得 x = 1, $y = \frac{1}{2}$,所以数列 $\left\{a_n + n + \frac{1}{2}\right\}$ 是首项为 $\frac{5}{2}$,公比为 3 的等比数列,于是 $a_n + n + \frac{1}{2} = \frac{5}{2} \times 3^{n-1} \Rightarrow a_n = \frac{5}{2} \times 3^{n-1} n \frac{1}{2}$.

- **66.** 已知数列 $\{a_n\}$ 满足 $2a_n a_{n-1} = 6n 3$, 且 $a_1 = \frac{3}{2}$, 则数列 $\{a_n\}$ 的通项公式 $a_n = \underline{\hspace{1cm}}$.
- **67.** 已知数列 $\{a_n\}$ 满足 $a_{n+1}=2a_n+2n-1$, 且 $a_1=2$, 则数列 $\{a_n\}$ 的通项公式 $a_n=$ ______.

1.2.4 倒数法、对数变换法

方法 1.4. 倒数法

形如 $a_{n+1} = \frac{Aa_n}{C + Da_n}$ 的类型, 其中 A, C, D 为常数.

注取倒数,构造等差数列或第13页一次函数型的做法构造等比数列.

解 原等式两边取倒数 $\frac{1}{a_{n+1}} = \frac{C + Da_n}{Aa_n} = \frac{C}{A} \cdot \frac{1}{a_n} + \frac{D}{A}$, 构造等差数列或第 13 页一次函数型的做法构造等比数列.

例 1.25 已知数列 $\{a_n\}$ 满足 $a_{n+1}=\frac{2a_n}{2+a_n}$, 且 $a_1=1$, 求数列 $\{a_n\}$ 的通项公式.

解 取倒数 $\frac{1}{a_{n+1}} = \frac{1}{a_n} + \frac{1}{2}$, 即数列 $\left\{\frac{1}{a_n}\right\}$ 为等差数列, 所以

$$\frac{1}{a_n} = \frac{1}{a_1} + \frac{1}{2}(n-1) = \frac{n+1}{2} \Rightarrow a_n = \frac{2}{n+1}$$

例 1.26 已知数列 $\{a_n\}$ 满足 $a_n = \frac{2a_{n-1}}{3a_{n-1}+2}$, 且 $a_1 = 1$, 求数列 $\{a_n\}$ 的通项公式.

解 取倒数 $\frac{1}{a_n} = \frac{3a_{n-1} + 2}{2a_{n-1}} = \frac{1}{a_{n-1}} + \frac{3}{2}$, 即数列 $\left\{\frac{1}{a_n}\right\}$ 是以 1 为首项, $\frac{3}{2}$ 为公差的等差数列, 所以

$$\frac{1}{a_n} = \frac{1}{a_1} + \frac{3}{2}(n-1) = \frac{3n-1}{2} \Rightarrow a_n = \frac{2}{3n-1}$$

变式训练 EXERCISES

68. 已知数列 $\{a_n\}$ 满足 $a_{n+1}=\frac{a_n}{3a_n+1}(n\in \mathbf{N}^*)$,且 $a_1=1$,则数列 $\left\{\frac{1}{a_na_{n+1}}\right\}$ 的前 10 项和 $S_{10}=($)

(A)
$$\frac{9}{28}$$

(B)
$$\frac{27}{28}$$

(C)
$$\frac{10}{31}$$

(D)
$$\frac{30}{31}$$

69. 已知数列 $\{a_n\}$ 满足 $a_{n+1} = \frac{a_n}{a_n + 3} (n \in \mathbf{N}^*)$, 且 $a_1 = 2$, 求数列 $\{a_n\}$ 的通项公式.

70. 已知数列 $\{a_n\}$ 满足 $a_{n+1}=\frac{a_n}{2a_n+1}(n\in \mathbf{N}^*)$, 且 $a_1=1$, 求数列 $\{a_n\}$ 的通项公式.

方法 1.5. 对数变换法 形如 $a_{n+1} = pa_n^r$, $a_1 = m$ 的类型, 其中 $a_n > 0$, p > 0.

注取对数,构造等比数列或第13页一次函数型的做法构造等比数列.

解 原等式两边取对数 $\log_d a_{n+1} = \log_d(pa_n^r) = r \log_d a_n + \log_d p$, 换元, 令 $b_n = \log_d a_n$, 可得 $b_{n+1} = rb_n + \log_d p$, 构造第 13 页一次函数型的做法构造等比数列.

例 1.27 已知数列 $\{a_n\}$ 满足 $a_{n+1}=a_n^2$, 且 $a_1=3$, 求数列 $\{a_n\}$ 的通项公式.

解 取以 3 为底的对数, 得 $\log_3 a_{n+1} = 2 \log_3 a_n$. 即数列 $\{\log_3 a_n\}$ 是首项为 1, 公比为 2 的等比数列, 所以 $\log_3 a_n = 2^{n-1} \Rightarrow a_n = 3^{2^{n-1}}$.

例 1.28 已知数列 $\{a_n\}$ 满足 $a_{n+1}=\frac{1}{10}\cdot a_n^2$, 且 $a_1=1$, 求数列 $\{a_n\}$ 的通项公式.

解 取对数 $\lg a_{n+1} = \lg \left(\frac{1}{10} \cdot a_n^2 \right) = 2 \lg a_n - 1$, 令 $b_n = \lg a_n$, 则

$$b_{n+1} = 2b_n - 1 \tag{1.6}$$

设

$$b_{n+1} + \lambda = 2(b_n + \lambda)$$

$$\Rightarrow b_{n+1} = 2b_n + \lambda$$
(1.7)

由式 (1.6), (1.7) 可得 $\lambda = -1$, 因此数列 $\{b_n - 1\}$ 为首项等于 -1, 公比为 2 的等比数列, 于是 $b_n - 1 = (-1) \times 2^{n-1} \Rightarrow b_n = 1 - 2^{n-1}$, 所以 $a_n = 10^{1-2^{n-1}}$.

例 1.29 已知正项数列 $\{a_n\}$ 满足 $a_n=2a_{n-1}^2(n\in \mathbf{N}^*,\ n\geqslant 2)$, 且 $a_1=1$, 求数列 $\{a_n\}$ 的通项公式.

解 取对数 $\log_2 a_n = \log_2(2a_{n-1}^2) = 2\log_2 a_{n-1} + 1 \Rightarrow \log_2 a_n + 1 = 2(\log_2 a_{n-1} + 1)$, 令 $b_n = \log_2 a_n + 1$, 则数列 $\{b_n\}$ 为首项等于 $\log_2 1 + 1 = 1$, 公比为 2 的等比数列,于是 $b_n = 2^{n-1} \Rightarrow \log_2 a_n = 2^{n-1} - 1 \Rightarrow a_n = 2^{2^{n-1}-1}$,所以 $a_n = 2^{2^{n-1}-1}$.

例 1.30 已知正项数列 $\{a_n\}$ 满足 $a_n=2\sqrt{a_{n-1}}(n\in \mathbb{N}^*,\ n\geqslant 2)$, 且 $a_1=1$, 求数列 $\{a_n\}$ 的通项公式.

解 取对数 $\log_2 a_n = \log_2(\sqrt{a_{n-1}}) = \frac{1}{2}\log_2 a_{n-1} + 1 \Rightarrow \log_2 a_n - 2 = \frac{1}{2}(\log_2 a_{n-1} - 2), 令 b_n = \log_2 a_n - 2,$ 则数列 $\{b_n\}$ 为首项等于 $\log_2 1 - 2 = -2$, 公比为 $\frac{1}{2}$ 的等比数列,于是 $b_n = -2^{2-n} \Rightarrow \log_2 a_n = 2 - 2^{2-n} \Rightarrow a_n = 2^{2-2^{2-n}}$,所以 $a_n = 2^{2-2^{2-n}}$.

例 1.31 已知数列
$$\{a_n\}$$
 的首项 $a_1 = 2$, $a_{n+1} = a_n + 6\sqrt{a_n + 2} + 9$, 则 $a_{27} =$

(A) 7268

(B) 5068

(C) 6398

(D) 4028

解 依题意, $a_{n+1} = a_n + 6\sqrt{a_n + 2} + 9 = (a_n + 2) + 2 \times \sqrt{a_n + 2} \times 3 + 3^2 - 2$, 所以

$$a_{n+1} + 2 = (a_n + 2) + 2 \times \sqrt{a_n + 2} \times 3 + 3^2 = (\sqrt{a_n + 2} + 3)^2$$
 (1.8)

于是

$$\sqrt{a_{n+1} + 2} = \sqrt{a_n + 2} + 3 \tag{1.9}$$

所以数列 $\left\{\sqrt{a_n+2}\right\}$ 是以 2 为首项, 公差为 3 的等差数列, 于是 $\sqrt{a_{27}+2}=80$, 所以 $a_{27}=6398$, 选 C.

1.2.5 隔项递推数列通项公式求法

① $a_n - a_{n-2} = d$, $n = 3, 4, 5, \dots$, ② $\frac{a_n}{a_{n-2}} = q$, $n = 3, 4, 5, \dots$,

这是隔项递推数列最简单也最基本的递推公式,一般用等差(比)数列通项公式直接求解.

例 1.32 已知 $\{a_n\}$ 是由非负整数组成的数列,满足 $a_1=0$, $a_2=3$, $a_n=a_{n-2}+2$, $n=3,4,5,\cdots$ 求数列 $\{a_n\}$ 的通项公式.

解 易知奇数项是以 0 为首项, 2 为公差的等差数列, 偶数项是以 3 为首项, 2 为公差的等差数 列,则

$$\begin{cases} a_{2k-1} = 0 + 2(k-1) \\ a_{2k} = 3 + 2(k-1) = 2k+1 \end{cases}$$
 (1.10)

$$\begin{cases} a_{2k} = 3 + 2(k-1) = 2k+1 \end{cases} \tag{1.11}$$

式 (1.10) 中令 n = 2k - 1 解得 $k = \frac{n+1}{2}$, 故

$$a_n = 2\left(\frac{n+1}{2} - 1\right) = n - 1 \quad (n \to 5)$$
 (1.12)

同理

$$a_n = n + 1 \quad (n \rightarrow \mathbb{R}) \tag{1.13}$$

于是 $a_n = \begin{cases} n-1 & (n为奇数) \\ n+1 & (n为偶数) \end{cases}$ 或 $a_n = n + (-1)^n$.

例 1.33 已知数列 $\{a_n\}$ 和 $\{b_n\}$ 满足 $a_1=1$, $a_2=2$, $a_n>0$, $b_n=\sqrt{a_na_{n+1}}$, 且 $\{b_n\}$ 是以 q 为公比的 等比数列.

- (1) 证明: $a_{n+2} = a_n q^2$;
- (2) 求数列 $\{a_n\}$ 的通项公式.

第 18 页

解 (1) 由
$$b_{n+1} = b_n q$$
 可得 $\frac{\sqrt{a_{n+1}a_{n+2}}}{\sqrt{a_n}a_{n+1}} = \frac{\sqrt{a_{n+2}}}{\sqrt{a_n}} = q$, $\therefore a_{n+2} = a_n q^2$.

(2) : $a_{n+2}=a_nq^2$, 易知奇数项是以 1 为首项, q^2 为公比的等比数列, 偶数项是以 2 为首项, q^2

为公比的等比数列,则
$$\begin{cases} a_{2k-1}=a_1\cdot (q^2)^{k-1}=q^{2k-2}\\ a_{2k}=a_2\cdot (q^2)^{k-1}=2q^{2k-2} \end{cases}, \ \ \text{于是}\ a_n=\left\{\begin{array}{ll} q^{n-1} & (n为奇数)\\ 2q^{n-2} & (n为偶数) \end{array}\right.$$

类型 2 ①
$$a_n - a_{n-2} = f(n), \quad n = 3, 4, 5, \dots, ② \frac{a_n}{a_n} = f(n), \quad n = 3, 4, 5, \dots,$$

这类问题都可以采用累加法、累乘法处理.

例 1.34 已知数列 $\{a_n\}$ 中, $a_1=1$, $a_{2k}=a_{2k-1}+(-1)^k$, $a_{2k+1}=a_{2k}+3^k$,其中 $k=1,2,3,\cdots$

- (2) 求数列 {a_n} 的通项公式.

解 (1) $a_3 = 3$, $a_5 = 13$; (2) 依题

$$\begin{cases} a_{2k} = a_{2k-1} + (-1)^k \\ a_{2k-1} = a_{2k-1} + 3^k \end{cases}$$
 (1.14)

$$a_{2k+1} = a_{2k} + 3^k (1.15)$$

两式合并可得 $a_{2k+1} - a_{2k-1} = 3^k + (-1)^k$, 由累加法

$$a_{2k+1} - a_{2k-1} = 3^k + (-1)^k$$

$$a_{2k-1} - a_{2k-3} = 3^{k-1} + (-1)^{k-1}$$

$$a_3 - a_1 = 3 + (-1)$$

∴
$$a_{2k+1} - a_1 = \frac{3}{2}(3^k - 1) + \frac{1}{2}[(-1)^k - 1],$$
 ∴ $a_{2k+1} = \frac{3^{k+1}}{2} + \frac{1}{2}(-1)^k - 1,$ 于是

$$a_{2k} = a_{2k-1} + (-1)^k = \frac{3^k}{2} + \frac{1}{2}(-1)^{k-1} - 1 + (-1)^k = \frac{3^k}{2} + \frac{1}{2}(-1)^k - 1$$

因此
$$a_n = \begin{cases} \frac{3^{\frac{n}{2}}}{2} + \frac{1}{2}(-1)^{\frac{n-1}{2}} - 1 & (n为奇数) \\ \frac{3^{\frac{n}{2}}}{2} + \frac{1}{2}(-1)^{\frac{n}{2}} - 1 & (n为偶数) \end{cases}$$

例 1.35 已知数列 $\{a_n\}$ 中, $a_1=1$, $a_2=2$, $a_n=2^na_{n-2}$,其中 $n=3,4,\cdots$,求数列 $\{a_n\}$ 的通项公式.

m 采用累乘法, 当n 为偶数时,

$$a_n = \frac{a_n}{a_{n-2}} \cdot \frac{a_{n-2}}{a_{n-4}} \cdot \frac{a_{n-4}}{a_{n-6}} \cdot \dots \cdot \frac{a_4}{a_2} \cdot a_2 = 2^{n+(n-2)+(n-4)+\dots+4+1} = 2^{\frac{n^2+2n-4}{4}}$$

当 n 为奇数时,

$$a_n = \frac{a_n}{a_{n-2}} \cdot \frac{a_{n-2}}{a_{n-4}} \cdot \frac{a_{n-4}}{a_{n-6}} \cdot \dots \cdot \frac{a_3}{a_1} \cdot a_1$$

$$= 2^n \cdot 2^{n-2} \cdot 2^{n-4} \cdot \dots \cdot 2^3 \cdot 1 = 2^{n+(n-2)+(n-4)+\dots+3} = 2^{\frac{(n-1)(n+3)}{4}}$$

因此
$$a_n = \begin{cases} 2^{\frac{(n-1)(n+3)}{4}} & (n为奇数) \\ 2^{\frac{n^2+2n-4}{4}} & (n为偶数) \end{cases}$$

类型 3 ① $a_{n+1} + a_n = f(n)$, ② $a_{n+1}a_n = f(n)$

例 1.36 已知数列 $\{a_n\}$ 中, $a_1=1$, $a_2=4$, $a_{n+1}+a_n=3n+2$,求数列 $\{a_n\}$ 的通项公式.

解 依题意

$$\begin{cases} a_{n+1} + a_n = 3n + 2 \\ a_{n+1} + a_{n+2} = 3n + 5 \end{cases}$$
 (1.16)

(1.17) -(1.16) 得 a_{n+2} $-a_n$ = 3, 易知奇数项是以 1 为首项, 3 为公差的等差数列, 偶数项是以 4 为首项, 3 为公差的等差数列,则

$$\begin{cases} a_{2k-1} = 1 + 3(k-1) = 3k - 2 \\ a_{2k} = 4 + 3(k-1) = 3k + 1 \end{cases}$$
 (1.18)

式 (1.18) 中令 n = 2k - 1 解得 $k = \frac{n+1}{2}$, 故

$$a_n = \frac{3n-1}{2} \quad (n \to 5)$$
 (1.20)

同理

$$a_n = \frac{3n+2}{2} \quad (n \, \beta \, (8))$$
 (1.21)

于是
$$a_n = \begin{cases} \frac{3n-1}{2} & (n为奇数) \\ \frac{3n+2}{2} & (n为偶数) \end{cases}$$
 或 $a_n = \frac{3(-1)^n + 6n + 1}{4}$.

例 1.37 已知数列 $\{a_n\}$ 中, $a_1=1$, $a_{n+1}a_n=4\times 3^n$,求数列 $\{a_n\}$ 的通项公式.

第 20 页

解 易知 $a_2 = 12$, $a_{n+1}a_n = 4 \times 3^n$, $a_{n+2}a_{n+1} = 4 \times 3^{n+1}$, 两式相除可得 $\frac{a_{n+2}}{a_n} = 3$, 仿照例 1.33 的做 法可得 $a_n = \begin{cases} 3^{\frac{n-1}{2}} & (n 为 奇数) \\ 12 \times 3^{\frac{n-2}{2}} & (n 为 偶数) \end{cases}$

变式训练 EXERCISES

- **71.** 已知各项全不为零的数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $S_n = \frac{1}{2} a_n a_{n+1}$,其中 $a_1 = 1$,求数列 $\{a_n\}$ 的通项公式.
- 72. 数列 $\{a_n\}$ 满足 $a_1=1$, $a_2=2$, $a_{n+2}=\left(1+\cos^2\frac{n\pi}{2}\right)a_n+\sin^2\frac{n\pi}{2}$, $n=1,2,3,\cdots$, 求数列 $\{a_n\}$ 的通项公式.
- 73. 数列 $\{a_n\}$ 的前 n 项和为 S_n ,满足 $S_n S_{n-2} = 3 \cdot \left(-\frac{1}{2}\right)^{n-1}$ $(n \ge 3)$,且 $S_1 = 1$, $S_2 = -\frac{3}{2}$,求数 列 $\{a_n\}$ 的通项公式.
- **74.** 已知数列 $\{a_n\}$ 满足 $a_n \neq 0$, $a_1 = 1$, $a_n \cdot a_{n+1} = \lambda S_n 1$, 是否存在 λ , 使得数列 $\{a_n\}$ 为等差数列.
- **75.** 已知数列 $\{a_n\}$ 满足 $a_n \neq 0$, $a_1 = 1$, $a_2 = \frac{\lambda}{2}$, $\frac{a_{n+2}}{a_n} = \lambda$, 是否存在 λ , 使得数列 $\{a_n\}$ 为等比数列.

1.3 数列求和

1.3.1 错位相减法

方法 1.6. 错位相减法

当数列 $\{a_n\}$ 的通项公式为等差和等比之积时,即 $a_n=(an+b)\cdot q^n$ 时,求数列 $\{a_n\}$ 的前 n 项和 S_n 可用错位相减法.

解法一 当数列 $\{a_n\}$ 的通项公式为等差和等比之积时,即 $a_n = (an+b) \cdot q^n$ 时,求数列 $\{a_n\}$ 的前 n 项和 S_n 可用错位相减法.

$$S_n = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n$$

$$= (a+b) \cdot q + (2a+b) \cdot q^2 + \dots + [a(n-1)+b] \cdot q^{n-1} + (an+b) \cdot q^n$$
(1.22)

$$qS_n = (a+b) \cdot q^2 + (2a+b) \cdot q^3 + \dots + [a(n-1)+b] \cdot q^n + (an+b) \cdot q^{n+1}$$
 (1.23)

(1.22) -(1.23) 得

$$(1-q)S_n = (a+b) \cdot q + a \cdot (q^2 + q^3 + \dots + q^n) - (an+b) \cdot q^{n+1}$$

$$= (a+b) \cdot q + a \cdot \frac{q^2(1-q^{n-1})}{1-q} - (an+b) \cdot q^{n+1}$$

$$\Rightarrow S_n = \frac{(a+b) \cdot q + a \cdot \frac{q^2(1-q^{n-1})}{1-q} - (an+b) \cdot q^{n+1}}{1-q}$$

解法二 当数列 $\{a_n\}$ 的通项公式为等差和等比之积时, 即 $a_n = (an+b) \cdot p^n$ 时, 求数列 $\{a_n\}$ 的前 n 项和 S_n 可用错位相减法.

具体公式如下:
$$S_n = (An + B) \cdot p^n - B$$
. 这里 $A = \frac{ap}{p-1}$, $B = \frac{a_1 - Ap}{p-1}$.

例 1.38 已知数列 $\{a_n\}$ 的通项公式为 $a_n = (2n-1)\cdot 2^n$, 求其前 n 项和 S_n .

解 依题意
$$\begin{cases} a = 2, p = 2 \Rightarrow A = \frac{ap}{p-1} = \frac{4}{1} = 4 \\ a = 2, p = 2, a_1 = 2 \Rightarrow B = \frac{a_1 - Ap}{p-1} = \frac{2-8}{1} = -6 \end{cases} \Rightarrow S_n = (4n-6) \cdot 2^n + 6$$

例 1.39 已知数列 $\{a_n\}$ 的前 n 项和 S_n 满足 $S_n + 2n = 2a_n$.

- (1) 证明: 数列 $\{a_n + 2\}$ 是等比数列, 并求数列 $\{a_n\}$ 的通项公式 a_n ;
- (2) 若数列 $\{b_n\}$ 满足 $b_n = \log_2(a_n + 2)$, 设 T_n 是数列 $\left\{\frac{b_n}{a_n + 2}\right\}$ 的前 n 项和, 求证: $T_n < \frac{3}{2}$.

解 依题意

(1)
$$a_n = 2^{n+1} - 2;$$

(2) We
$$c_n = \frac{b_n}{a_n + 2} = \frac{n+1}{2^{n+1}} = \left(\frac{1}{2}n + \frac{1}{2}\right)\left(\frac{1}{2}\right)^n$$
.
$$\begin{cases}
a = \frac{1}{2}, & p = \frac{1}{2} \Rightarrow A = \frac{ap}{p-1} = -\frac{1}{2} \\
a = \frac{1}{2}, & p = \frac{1}{2}, & c_1 = \frac{1}{4} \Rightarrow B = \frac{c_1 - Ap}{p-1} = -\frac{3}{2}
\end{cases} \Rightarrow T_n = \frac{3}{2} - \left(\frac{1}{2}n + \frac{3}{2}\right) \cdot \left(\frac{1}{2}\right)^n < \frac{3}{2}$$

- 76. 【2020 全国 I 理】设 $\{a_n\}$ 是公比不为 1 的等比数列, a_1 为 a_2 , a_3 的等差中项.
 - (1) 求 {a_n} 的公比;

- (2) 若 $a_1 = 1$, 求数列 $\{na_n\}$ 的前 n 项和.
- 77. 【2020 全国 III 理】设数列 $\{a_n\}$ 满足 $a_1=3,\ a_{n+1}=3a_n-4n.$
 - (1) 计算 a_2 , a_3 , 猜想 $\{a_n\}$ 的通项公式并加以证明;
 - (2) 求数列 $\{2^n a_n\}$ 的前 n 项和 S_n .
- 78. 已知数列 $\{a_n\}$ 的前 n 项和 S_n 满足 $S_n = -\frac{1}{2}n^2 + kn, k \in \mathbb{N}$, 且 S_n 的最大值为 8.
 - (1) 确定常数 k, 求 an;
 - (2) 求数列 $\left\{\frac{9-2a_n}{2^n}\right\}$ 的前 n 项和 T_n .

1.3.2 裂项相消法

等差数列 $\{a_n\}$ 的各项不为零,公差为 d 时,则 $\frac{1}{a_n a_{n+1}} = \frac{1}{d} \left(\frac{1}{a_n} - \frac{1}{a_{n+1}}\right)$.

•
$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$$
;

•
$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}\left(1 - \frac{1}{2n+1}\right);$$

•
$$\frac{1}{1\times 3} + \frac{1}{2\times 4} + \dots + \frac{1}{n(n+2)} = 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}$$
.

- 例 1.40 已知等差数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_2=2$, $S_7=28$, 则数列 $\left\{\frac{1}{a_n a_{n+1}}\right\}$ 的前 2020 项和为
- (A) $\frac{2020}{2021}$
- (B) $\frac{2018}{2020}$
- (C) $\frac{2018}{2019}$
- (D) $\frac{2021}{2020}$

解法一 由等差数列前 n 项和公式可知 $S_7 = 7a_4 = 28 \Rightarrow a_4 = 4$,

所以
$$a_n = n$$
, 于是 $\frac{1}{a_n a_{n+1}} = \frac{1}{n} - \frac{1}{n+1}$,

所以
$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \dots + \frac{1}{2020\times 2021} = 1 - \frac{1}{2021} = \frac{2020}{2021}$$
. 选 A.

解法二 由等差数列前 n 项和公式可知 $S_7 = 7a_4 = 28 \Rightarrow a_4 = 4$,

所以 $a_n = n$, 由大根 n 上可知 $\left\{ \frac{1}{n(n+1)} \right\}$ 的前 2020 项和为 $\frac{2020}{2021}$. 选 A.

例 1.41 等差数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_3 = 3$, $S_4 = 10$, 则 $\sum_{k=1}^n \frac{1}{S_k} =$ _____.

解 由等差数列前 n 项和公式可知 $S_4 = 4a_{2.5} = 10 \Rightarrow a_4 = 4$,

所以
$$a_n = n$$
, 于是 $\frac{1}{S_n} = 2\left(\frac{1}{n} - \frac{1}{n+1}\right)$, 所以 $\sum_{k=1}^n \frac{1}{S_k} = \frac{2n}{n+1}$.

例 1.42 已知数列 $\{b_n\}$ 的通项公式 $b_n=n$, 设数列 $\left\{\frac{1}{b_nb_{n+2}}\right\}$ 的前 n 项和为 T_n , 求证: $T_n<\frac{3}{4}$.

解 裂项
$$\frac{1}{b_n b_{n+2}} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$
, 由此可得

$$\sum_{i=1}^{n} \frac{1}{n(n+2)} = \frac{1}{2} \cdot \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}\right) < \frac{3}{4}$$

- **79.** 设正项数列 $\{a_n\}$ 的前 n 项和为 S_n , 且对于所有的自然数 n, a_n 与 2 的等差中项等于 S_n 与 2 的等比中项.
 - (1) 求数列 {a_n} 的通项公式;
 - (2) 设 $b_n = \frac{8}{a_n a_{n+1}}$, 数列 $\{b_n\}$ 的前 n 项和为 T_n , 证明: $\frac{2}{3} \le T_n < 1$.
- **80.** 等差数列 $\{a_n\}$ 的首项为 2, 公差不为 0, 且 $a_3^2 = a_1 a_7$, 则数列 $\left\{\frac{1}{a_n a_{n+1}}\right\}$ 的前 2019 项和为 ()
 - (A) $\frac{1009}{2020}$
- (B) $\frac{2019}{4042}$
- (C) $\frac{1009}{4042}$
- (D) $\frac{2019}{2021}$
- **81.** 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 点 (n,S_n) 在函数 $y = \frac{1}{2}x^2 + \frac{11}{2}x$ 的图象上,
 - (1) 求数列 {a,} 的通项公式;
 - (2) 设 $c_n = \frac{1}{(2a_n 11)(2a_n 9)}$, 数列 $\{c_n\}$ 的前 n 项和为 T_n , 若不等式 $T_n < \frac{k}{2018}$, 求整数 k 的 最小值.
- **82.** 已知正数数列 $\{a_n\}$ 的前 n 项和为 S_n 满足 $4S_n = a_n^2 + 2a_n$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;

(2) 记
$$b_n = \frac{1}{(a+1)^2}$$
, 设数列 $\{b_n\}$ 的前 n 项和为 T_n , 求证: $T_n < \frac{1}{4}$.

- **83.** 已知数列 $\{a_n\}$ 的前 n 项和为 $S_n = n^2 + n$, 等比数列 $\{b_n\}$ 的公比 q > 1, 且 $b_4 + b_5 + b_6 = 56$, $b_5 + 4$ 是 b_4 , b_6 的等差中项.
 - (1) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式.

(2) 求数列
$$\left\{b_n + \frac{1}{a_n^2 - 1}\right\}$$
 的前 n 项和 T_n .

- **84.** 已知数列 $\{a_n\}$ 为正项等比数列, $a_1=1$, 数列 $\{b_n\}$ 满足 $b_2=3$, 且 $a_1b_1+a_2b_2+\cdots+a_nb_n=3+(2n-3)2^n$.
 - (1) 求数列 $\{a_n\}$ 的通项公式 a_n ;
 - (2) 求数列 $\left\{\frac{1}{b_n b_{n+1}}\right\}$ 的前 n 项和为 T_n .
- - ① 数列 $\{a_n\}$ 为等比数列,数列 $\{S_n + a_1\}$ 也为等比数列;
 - ② 点 (S_n, a_{n+1}) 在直线 y = x + 1 上;
 - $3 \quad 2^n a_1 + 2^{n-1} a_2 + \dots + 2a_n = n a_{n+1}.$

在上面的三个条件中任选一个补充在横线上, 完成下面的解答

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \frac{1}{\log_2 a_{n+1} \log_2 a_{n+3}}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n .
- **86.** 设数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $S_n = n^2 + 2n$.
 - (1) 求 $\{a_n\}$ 的通项公式 a_n ;
 - (2) 若 $b_n = \frac{a_{n+1}}{a_n} + \frac{a_n}{a_{n+1}}$, 求数列 $\{b_n\}$ 的前 n 项和为 T_n .
- **87.** 设数列 $\{a_n\}$ 满足 $a_1=4$, 且当 $n\geq 2$ 时, $(n-1)a_n=n(a_{n-1}+2n-2)$.
 - (1) 求证: $\left\{\frac{a_n}{n}\right\}$ 为等差数列;
 - (2) 记 $b_n = \frac{2n+1}{a_n^2}$, 求数列 $\{b_n\}$ 的前 n 项和为 S_n .
- **88.** 已知等比数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_2a_7=3a_4^2$, 且 -3, S_4 , $9a_3$ 成等差数列.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 设 $b_n = (-1)^n a_n + \frac{1}{n(n+1)}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n .

该类型的特点是,分母为两个根式之和,这两个根式的平方差为常数,然后通过分母有理化, 来达到消项的目的,有时在证明不等式时,常常把分母放缩成两个根式之和,来达到消项化 简的目的.

常见样式:
$$\frac{1}{\sqrt{n+1}+\sqrt{n}} = \sqrt{n+1} - \sqrt{n}.$$

例 1.43 求证:
$$2\sqrt{n+1} - 2 < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n} - 1 (n \ge 2, n \in \mathbb{N}).$$

证 因为

$$\frac{1}{\sqrt{n}} = \frac{2}{2\sqrt{n}} > \frac{2}{\sqrt{n+1} + \sqrt{n}} = 2(\sqrt{n+1} - \sqrt{n})(n \ge 2, n \in \mathbb{N})$$

所以

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$

$$> 2(\sqrt{2} - \sqrt{1}) + 2(\sqrt{3} - \sqrt{2}) + \dots + 2(\sqrt{n+1} - \sqrt{n})$$

$$= 2\sqrt{n+1} - 2$$

又因为

$$\frac{1}{\sqrt{n}} = \frac{2}{2\sqrt{n}} < \frac{2}{\sqrt{n} + \sqrt{n-1}} = 2(\sqrt{n} - \sqrt{n-1})(n \ge 2, n \in \mathbb{N})$$

所以

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 1 + 2(\sqrt{2} - \sqrt{1}) + 2(\sqrt{3} - \sqrt{2}) + \dots + 2(\sqrt{n} - \sqrt{n-1}) = 2\sqrt{n} - 1$$

- **89.** 正项数列 $\{a_n\}$ 中, $a_1 = 1$, $a_2 = \sqrt{3}$, $a_{n+1}^2 a_n^2 = a_n^2 a_{n-1}^2 (n \ge 2)$, 则数列 $\left\{\frac{1}{a_n + a_{n+1}}\right\}$ 的前 60 项 和为_____.
- **90.** 等差数列 $\{a_n\}$ 的前 n 项和 S_n , 且 $a_3 = 2$, $S_9 = 54$.
 - (1) 求数列 $\{a_n\}$ 的通项公式 a_n ;

(2)
$$i = \emptyset$$
: $\sqrt{\frac{1}{a_1 + 3}} + \sqrt{\frac{1}{a_2 + 3}} + \dots + \sqrt{\frac{1}{a_{100} + 3}} > 13.$

由于 $(a-1)a^n = a^{n+1} - a^n$, 所以一般地有

$$\frac{(a-1)a^n}{(a^n+b)(a^{n+1}+b)} = \frac{1}{a^n+b} - \frac{1}{a^{n+1}+b}$$

注 待定系数法裂项.

例 1.44 已知数列 $\{a_n\}$ 的首项为 3, 点 (a_n, a_{n+1}) 在直线 y = 4x 上,

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设数列 $\{a_n\}$ 的前 n 项和为 S_n , $b_n = \frac{a_{n+1}}{(a_{n+1}-3)S_{n+1}} (n \in \mathbf{N}^*)$, 求数列 $\{b_n\}$ 的前前 n 项和 T_n .

解依题

(1) 容易解得 $a_n = 3 \cdot 4^{n-1}$;

(2) 因为
$$S_n = \frac{3(1-4^n)}{1-4} = 4^n - 1$$
,所以 $b_n = \frac{3 \cdot 4^n}{3(4^n - 1) \cdot (4^{n+1} - 1)}$,

设 $\frac{3 \cdot 4^n}{3(4^n - 1) \cdot (4^{n+1} - 1)} = \frac{A}{4^n - 1} + \frac{B}{4^{n+1} - 1}$,通分整理得 $A(4^{n+1} - 1) + B(4^n - 1) = 4^n$,即 $(4A + B)4^n - (A + B) = 4^n$,于是 $A = \frac{1}{3}$, $B = -\frac{1}{3}$,所以
$$b_n = \frac{3 \cdot 4^n}{3(4^n - 1) \cdot (4^{n+1} - 1)} = \frac{1}{3} \left(\frac{1}{4^n - 1} - \frac{1}{4^{n+1} - 1} \right)$$

$$\Rightarrow T_n = \frac{1}{3} \left(\frac{1}{4 - 1} - \frac{1}{4^2 - 1} + \dots + \frac{1}{4^n - 1} - \frac{1}{4^{n+1} - 1} \right)$$

$$= \frac{1}{9} - \frac{1}{3 \cdot 4^{n+1} - 3}$$

- **91.** 已知数列 $\{a_n\}$ 的前 n 项和 S_n , 且 $S_n = 2a_n a_1 (n \in \mathbb{N}^*)$, 数列 $\{b_n\}$ 满足 $b_1 = 6$, $b_n = S_n + \frac{1}{a_n} + 4$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 记数列 $\left\{\frac{1}{b_n}\right\}$ 的前 n 项和为 T_n , 证明: $T_n < \frac{1}{2}$.
- **92.** 已知等比数列 $\{a_n\}$ 的前 n 项和 $S_n(S_n \neq 0)$, 满足 S_1 , S_2 , $-S_3$ 成等差数列, 且 $a_1a_2 = a_3$.

(1) 求数列 $\{a_n\}$ 的通项公式;

(2) 记
$$b_n = \frac{-3a_n}{(a_n + 1)(a_{n+1} + 1)}$$
, 求数列 $\{b_n\}$ 的前 n 项和为 T_n .

- 93. 已知数列 $\{a_n\}$ 满足 $a_{n+1}-2a_n+2=0$, 且 $a_1=8$.
 - (1) 证明数列 {a_n-2} 为等比数列;
 - (2) 设 $b_n = \frac{(-1)^n a_n}{(2^n + 1)(2^{n+1} + 1)}$, 记数列 $\{b_n\}$ 的前 n 项和为 T_n , 若对任意的 $n \in \mathbb{N}^*$, $m \geqslant T_n$ 恒成立, 求 m 的取值范围.
- 94. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 $a_1=2$,且 $S_n=a_{n+1}$,设 $b_n=\frac{S_n}{(1+S_n)(1+S_{n+1})}$,数列 $\{b_n\}$ 的 前 n 项和为 T_n .
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 证明: $T_n < \frac{1}{3}$.

若
$$a_n > 0$$
, $n \in \mathbb{N}^*$, 则 $\log_a \frac{a_{n+1}}{a_n} = \log_a a_{n+1} - \log_a a_n$.

- 例 1.45 已知数列 $\{a_n\}$ 的通项为 $a_n = \lg \frac{n+1}{n}$, 若其前 n 项和 $S_n = 2$, 则 $n = \underline{\hspace{1cm}}$
- 解 依题意, $a_n = \lg(n+1) \lg n$, 所以 $S_n = \lg 2 \lg 1 + \lg 3 \lg 2 + \lg(n+1) \lg n = \lg(n+1) \lg 1 = 2$, 即 n = 99.

$$\tan \alpha - \tan \beta = \tan(\alpha - \beta)(1 + \tan \alpha \cdot \tan \beta).$$

例 1.46 在 1 和 100 之间插入 n 个实数, 使得这 n+2 个数构成递增的等比数列, 将这 n+2 个数的乘积记作 T_n , 再令 $a_n = \lg T_n (n \ge 1)$.

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \tan a_n \cdot \tan a_{n+1}$, 求数列 $\{b_n\}$ 的前前 n 项和 S_n .
- \mathbf{m} (1) 利用倒序相乘不难得到 $a_n = n + 2$;

(2) :
$$\tan[(n+3) - (n+2)] = \frac{\tan(n+3) - \tan(n+2)}{1 + \tan(n+2) \cdot \tan(n+3)} = \tan 1,$$

$$\therefore \tan(n+2) \cdot \tan(n+3) = \frac{\tan(n+3) - \tan(n+2)}{\tan 1} - 1,$$

所以

$$S_n = \tan(1+2) \cdot \tan(1+3) + \tan(2+2) \cdot \tan(2+3) + \dots + \tan(n+2) \cdot \tan(n+3)$$

$$= \frac{\tan(1+3) - \tan(1+2)}{\tan 1} + \frac{\tan(2+3) - \tan(2+2)}{\tan 1}$$

$$+ \dots + \frac{\tan(n+3) - \tan(n+2)}{\tan 1} - n = \frac{\tan(n+3) - \tan 3}{\tan 1} - n$$

$$\frac{1}{n(n+1)(n+2)} = \frac{1}{2(n+1)} \left(\frac{1}{n} - \frac{1}{n+2} \right) = \frac{1}{2} \left(\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \right).$$

例 1.47 已知数列
$$\{b_n\}$$
 的通项为 $b_n = n \cdot 2^{n-1}$, 求和: $\frac{b_3}{b_1 b_2} + \frac{b_4}{b_2 b_3} + \cdots + \frac{b_{n+2}}{b_n b_{n+1}}$.

解 依題
$$\frac{b_{n+2}}{b_n b_{n+1}} = \frac{(n+2)2^{n+1}}{n2^{n-1}(n+1)2^n} = \frac{n+2}{n(n+1)2^{n-2}} = \frac{2(n+1)-n}{n(n+1)2^{n-2}} = \frac{1}{n2^{n-3}} - \frac{1}{(n+1)2^{n-2}},$$
所以 $S_n = \frac{1}{1+2^{n-2}} - \frac{1}{2+2^{n-1}} + \frac{1}{2+2^{n-1}} - \frac{1}{3+2^{n}} + \cdots + \frac{1}{n2^{n-3}} - \frac{1}{(n+1)2^{n-2}} = 4 - \frac{1}{(n+1)2^{n-2}}.$

变式训练 EXERCISES

- **95.** 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $a_1 = 2$, $2S_n = (n+1)a_n$.
 - (1) 求 S_n ;

(2) 若
$$b_n = \frac{a_{n+1}}{S_{n+1}S_n}$$
, 数列 $\{b_n\}$ 的前 n 项和为 T_n , 证明: $T_n < \frac{1}{2}$.

1.3.3 待定系数法裂项

例 1.48 已知等差数列
$$\{a_n\}$$
 的通项公式 $a_n = \frac{1}{(2n-1)(2n+1)}$,请裂项.

解 设
$$a_n = \frac{1}{(2n-1)(2n+1)} = \frac{A}{2n-1} + \frac{B}{2n+1}$$
,所以 $A(2n+1) + B(2n-1) = 1$,即

$$(2A+2B)n+(A-B)=1$$
, 故 $\left\{ \begin{array}{l} 2A+2B=0 \\ A-B=1 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} A=\dfrac{1}{2} \\ B=-\dfrac{1}{2} \end{array} \right.$ 所以

$$a_n = \frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right).$$

例 1.49 数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $2S_n = n^2 + n(n \in \mathbb{N}^*)$,设 $b_n = (-1)^n \frac{a_{2n+1}}{a_n \cdot a_{n+1}}$,则数列 $\{b_n\}$ 的前 n 项和 $T_n = \underline{\hspace{1cm}}$

解 易知
$$b_n = (-1)^n \frac{2n+1}{n(n+1)}$$
,令 $\frac{2n+1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}$,所以 $A(n+1) + Bn = 2n+1$,即

当 n 为偶数时,

$$T_n = \left(-\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(-\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(-\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} + \frac{1}{n+1}\right)$$
$$= \frac{1}{n+1} - 1 = -\frac{n}{n+1}$$

当n为奇数时,

$$T_n = T_{n-1} + b_n = -\frac{n-1}{n} - \left(\frac{1}{n} + \frac{1}{n+1}\right) = -\frac{n+2}{n+1}$$

战
$$T_n = \begin{cases} -\frac{n}{n+1}, & n=2k\\ -\frac{n+2}{n+1}, & n=2k-1 \end{cases}$$
 $(k \in \mathbb{N}^*)$

例 1.50 数列 $\{b_n\}$ 的通项公式 $b_n = \frac{n+1}{4n^2(n+2)^2}$,数列 $\{b_n\}$ 的前 n 项和为 T_n ,求证: $T_n < \frac{5}{64}$.

解 令
$$\frac{n+1}{4n^2(n+2)^2} = \frac{A}{n} + \frac{B}{n^2} + \frac{C}{n+2} + \frac{D}{(n+2)^2}$$
,通分系数对应相等得
$$\begin{cases} A = C = 0 \\ B = \frac{1}{16} \\ D = -\frac{1}{16} \end{cases}$$
,所以

$$T_n = \frac{1}{16} \left[\frac{1}{1} + \frac{1}{2^2} - \frac{1}{(n+1)^2} - \frac{1}{(n+2)^2} \right] < \frac{1}{16} \left[1 + \frac{1}{4} \right] = \frac{5}{64}$$

变式训练 EXERCISES

96. 求数列 $\left\{ (-1)^n \cdot \frac{2n+1}{n^2+n} \right\}$ 的前 n 项和 T_n .

1.3.4 区分奇偶项的求和

例 1.51 【2021 新高考 I 卷】已知数列 $\{a_n\}$ 满足 $a_1=1$, $a_{n+1}=\begin{cases} a_n+1, & n$ 为奇数 $a_n+2, & n$ 为偶数

- (1) 记 $b_n = a_{2n}$, 写出 b_1 , b_2 , 并求出数列 $\{b_n\}$ 的通项公式;
- (2) 求 {a,} 的前 20 项和.

解 (1) 由题意得 $b_1=a_2=a_1+1=2,\ b_2=a_4=a_3+1=a_2+2+1=5,\$ 因为 $a_{2k+2}=a_{2k+1}+1,$ $a_{2k+1}=a_{2k}+2,\ k\in \mathbf{N}^*,\$ 所以 $a_{2k+2}=a_{2k}+3,\$ 所以 $b_{n+1}=b_n+3,$

所以数列 $\{b_n\}$ 为等差数列, 故 $b_n = 2 + 3(n-1) = 3n-1$;

(2) **方法一:** 设数列 $\{a_n\}$ 的前 20 项和为 S_{20} ,则 $S_{20} = a_1 + a_2 + a_3 + \cdots + a_{20}$,

因为 $a_1 = a_2 - 1$, $a_3 = a_4 - 1$, \cdots , $a_{19} = a_{20} - 1$, 所以

$$S_{20} = a_1 + a_2 + a_3 + \dots + a_{20} = 2(a_2 + a_4 + a_6 + \dots + a_{20}) - 10$$
$$= 2(b_1 + b_2 + a_3 + \dots + b_{10}) - 10 = 2\left(10 \cdot 2 + \frac{9 \cdot 10}{2} \cdot 3\right) - 10 = 300$$

方法二: 设 $c_n = a_{2n-1} + a_{2n}$, 所以 $c_1 = a_1 + a_2 = 3$, 而

$$c_{n+1} - c_n = (a_{2n+1} + a_{2n+2}) - (a_{2n-1} + a_{2n})$$

$$= (a_{2n+1} - a_{2n}) + (a_{2n+2} - a_{2n+1}) + (a_{2n+1} - a_{2n}) + (a_{2n} - a_{2n-1}) = 6$$

所以数列 $\{c_n\}$ 是以 3 为首项, 6 为公差的等差数列, 设数列 $\{a_n\}$ 的前 20 项和为 S_{20} , 则

$$S_{20} = a_1 + a_2 + a_3 + \dots + a_{20} = c_1 + c_2 + c_3 + \dots + c_{10} = 300$$

例 1.52 【2012 全国卷理科】数列 $\{a_n\}$ 满足 $a_{n+1}+(-1)^na_n=2n-1$,则 $\{a_n\}$ 前 60 项和为 _____. 解法一依题

$$a_{2k} - a_{2k-1} = 4k - 3 (1.24)$$

$$\begin{cases} a_{2k} - a_{2k-1} = 4k - 3 \\ a_{2k+1} + a_{2k} = 4k - 1 \\ a_{2k+1} - a_{2k} = 4k + 1 \end{cases}$$
 (1.24)

$$a_{2k+2} - a_{2k+1} = 4k + 1 (1.26)$$

由式 (1.24), (1.25) 得 $a_{2k-1} + a_{2k+1} = 2$, 所以

$$(a_1 + a_3) + (a_5 + a_7) + \dots + (a_{57} + a_{50}) = 15 \times 2 = 30$$
 (1.27)

由式 (1.25), (1.26) 得 $a_{2k} + a_{2k+2} = 8k$, 所以

$$(a_2 + a_4) + (a_6 + a_8) + \dots + (a_{58} + a_{60}) = 8(1 + 3 + 5 + \dots + 29) = 1800$$
 (1.28)

由式 (1.27), (1.28) 得 $\{a_n\}$ 前 60 项和为 1800 + 30 = 1830.

解法二 由于 $a_{n+1} + (-1)^n a_n = 2n - 1$,所以对于任意正整数 k,有 $a_{4k-2} - a_{4k-3} = 8k - 7$; $a_{4k-1} + a_{4k-2} = 8k - 5; \ a_{4k} - a_{4k-1} = 8k - 3, \ \text{从而}$

$$a_{4k} + a_{4k-3} = (a_{4k} - a_{4k-1}) + (a_{4k-1} + a_{4k-2}) - (a_{4k-2} - a_{4k-3})$$
$$= (8k - 3) + (8k - 5) - (8k - 7) = 8k - 1$$

所以 $a_{4k-3}+a_{4k-2}+a_{4k-1}+a_{4k}=(a_{4k}+a_{4k-3})+(a_{4k-2}+a_{4k-1})=16k-6$,故

$$S_{60} = a_1 + a_{60} + \dots + a_{60} = 16 \times \frac{1+15}{2} \times 15 - 6 \times 15 = 1830.$$

例 1.53 【2020 全国 I 文】数列 $\{a_n\}$ 满足, $a_{n+2}+(-1)^na_n=3n-1$, 前 16 项和为 540, 则 $a_1=$ _______. 解 当 n 为偶数时, 有 $a_{n+2}+a_n=3n-1$, 所以

$$(a_2 + a_4) + (a_6 + a_8) + (a_{10} + a_{12}) + (a_{14} + a_{16}) = 5 + 17 + 29 + 41 = 92$$
 (1.29)

又前 16 项和为 540, 于是 $a_1 + a_3 + a_5 + a_7 + a_9 + a_{11} + a_{13} + a_{15} = 448;$ 当 n 为奇数时, 有 $a_{n+2} - a_n = 3n - 1$, 由累加法得

$$a_{n+2} - a_1 = 3(1+3+5+\dots+n) - \frac{1+n}{2} = \frac{3}{4} \times n^2 + n + \frac{1}{4}$$
 (1.30)

所以
$$a_{n+2} = \frac{3}{4} \times n^2 + n + \frac{1}{4} + a_1$$
,于是

$$a_{1} + a_{3} + a_{5} + \dots + a_{13}$$

$$= a_{1} + \left(\frac{3}{4} \times 1^{2} + 1 + \frac{1}{4} + a_{1}\right) + \left(\frac{3}{4} \times 3^{2} + 3 + \frac{1}{4} + a_{1}\right) + \left(\frac{3}{4} \times 5^{2} + 5 + \frac{1}{4} + a_{1}\right) + \dots$$

$$+ \left(\frac{3}{4} \times 13^{2} + 13 + \frac{1}{4} + a_{1}\right) = 448$$

解得 $a_1 = 7$.

1.3.5 变号数列的绝对值求和

设
$$a_1, a_2, \dots, a_k > 0, a_{k+1}, \dots, a_n < 0, 则$$

$$|a_1| + |a_2| + |a_3| + \dots + |a_n| = \begin{cases} \frac{n(a_1 + a_n)}{2}, & n \le k \\ 2S_k - S_n, & n > k \end{cases}$$

证 依题意

② 当n > k时,

$$|a_1| + |a_2| + |a_3| + \dots + |a_n|$$

$$= a_1 + a_2 + a_3 + \dots + a_k - (a_{k+1} + \dots + a_n)$$

$$= S_k - (S_n - S_k) = 2S_k - S_n$$

设 $a_1, a_2, \cdots, a_k < 0, a_{k+1}, \cdots, a_n > 0, 则$

$$|a_1| + |a_2| + |a_3| + \dots + |a_n| = \begin{cases} -\frac{n(a_1 + a_n)}{2}, & n \le k \\ -2S_k + S_n, & n > k \end{cases}$$

例 1.54 已知数列 $\{a_n\}$ 的通项公式为 $a_n = 10 - 2n$, 求 $|a_1| + |a_2| + |a_3| + \cdots + |a_n|$.

$$|a_1| + |a_2| + |a_3| + \dots + |a_n| = \begin{cases} -n^2 + 9n, & n \le 5 \\ n^2 - 9n + 40, & n > 5 \end{cases} .$$

变式训练 EXERCISES

- **97.** 已知数列 $\{a_n\}$ 的通项公式为 $a_n = 11 n$, 求 $|a_1| + |a_2| + |a_3| + \cdots + |a_n|$.
- **98.** 已知数列 $\{a_n\}$ 的通项公式为 $a_n = 53 3n$, 求 $|a_1| + |a_2| + |a_3| + \cdots + |a_n|$.

1.3.6 类周期数列求和

形如 $d_n = a_n b_n + c_n$ (其中 b_n 为周期数列)的数列叫"类周期数列." 我们的求和策略是 周期内捆绑构造新数列求和. 先来个最简单的:

例 1.55 数列 $\{a_n\}$ 的通项公式 $a_n = (-1)^n \cdot n$,前 n 项和为 S_n ,则 $S_{2022} =$ ______.

解 易知 $\{(-1)^n\}$ 是 T=2 的周期数列, 当 n 取 $1,2,\cdots$ 等正整数时, $(-1)^n$ 依次周期性出现 -1, 1 这两个数,

设 $b_k = a_{2k-1} + a_{2k} \ (k \in \mathbb{N}^*)$, 易知 $a_{2k-1} = 1 - 2k$, $a_{2k} = 2k$, 所以 $b_k = 1$. 于是

$$S_{2022} = \sum_{k=1}^{\frac{2022}{2}} b_k = \frac{2022}{2} \cdot 1 = 1011$$

例 1.56 数列 $\{a_n\}$ 的通项公式 $a_n = n \cdot \cos \frac{n\pi}{2} + 1$,前 n 项和为 S_n ,则 $S_{2012} = \underline{\hspace{1cm}}$

解 易知 $\left\{\cos\frac{n\pi}{2}\right\}$ 是 T=4 的周期数列,当 n 取 $1,2,\cdots$ 等正整数时, $\cos\frac{n\pi}{2}$ 依次周期性出现 0,-1,0,1 这四个数,

设 $b_k = a_{4k-3} + a_{4k-2} + a_{4k-1} + a_{4k} \ (k \in \mathbf{N}^*)$, 易知 $a_{4k-3} = a_{4k-1} = 1$, $a_{4k-2} = -(4k-2) + 1$, $a_{4k} = 4k + 1$, 所以 $b_k = 6$. 于是

$$S_{2012} = \sum_{k=1}^{\frac{2012}{4}} b_k = \frac{2012}{4} \cdot 6 = 3018$$

例 1.57 数列 $\{a_n\}$ 的通项公式 $a_n = n \cdot \cos \frac{n\pi}{2} + 1$,前 n 项和为 S_n ,则 $S_{2022} = \underline{\hspace{1cm}}$

解 易知
$$S_{2020} = \sum_{k=1}^{\frac{2020}{4}} b_k = \frac{2020}{4} \cdot 6 = 3030$$
,而

 $S_{2022} = S_{2020} + a_{2021} + a_{2022} = 3030 + 1 + (-2021) = 1010.$

例 1.58 已知等差数列 $\{a_n\}$ 的前 n 项和 S_n ,且 $a_3=1$, $S_6=7$.数列 $\{b_n\}$ 满足 $b_1+b_2+\cdots+b_n=2^{n+1}-2$.

- (1) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
- (2) 记 $c_n = b_n \cdot \tan(a_n \pi)$, 求数列 $\{c_n\}$ 的前 3n 项和 T_{3n} .

解 (1) $a_n = \frac{n}{3}$, $b_n = 2^n$; (2) 易知数列 $\left\{\tan\left(\frac{n\pi}{3}\right)\right\}$ 是周期为 3 的一个数列,记 $d_n = c_{3n-2} + c_{3n-1} + c_{3n}$,则

$$d_n = 2^{3n-2} \times \sqrt{3} + 2^{3n-1} \times (-\sqrt{3}) + 2^{3n} \times 0 = -\sqrt{3} \times 2^{3n-2}$$

所以数列 $\{d_n\}$ 是以 8 为公比, $-2\sqrt{3}$ 为首项的等比数列,

于是数列
$$\{c_n\}$$
 的前 $3n$ 项和 $T_{3n} = \frac{-2\sqrt{3}(1-8^n)}{1-8} = \frac{2\sqrt{3}(1-8^n)}{7}$.

1.4 互嵌式数列组的解题策略

互嵌式数列组的问题在竞赛中已屡见不鲜,在解决该类型的问题时,要注意到两个数列之间的相互渗透和相互影响,既要能眼观全局从整体入手,又要能抽丝剥茧进行单独分析,并充分根据具体问题的结构特点来有针对性地进行解决.本文给出几类不同互嵌式数列组题型的解题策略.

类型 1——短小精致式:消元降维

这类问题往往不含常数项, 题目小巧玲珑, 可将其看成是二元一次方程组, 消元得到单数列的 递推关系, 再进行求解.

例 1.59 数列
$$\{a_n\}$$
, $\{b_n\}$ 满足 $a_1 = -1$, $b_1 = 2$, 且
$$\begin{cases} a_{n+1} = -b_n \\ b_{n+1} = 2a_n - 3b_n \end{cases} (n \in \mathbf{N}^*), 则$$

 $b_{2021} + b_{2022} = \underline{\qquad}$.

解 易知 b, = -8, 依题

$$\begin{cases} a_{n+1} = -b_n \\ b_{n+1} = 2a_n - 3b_n \Rightarrow b_{n+2} = 2a_{n+1} - 3b_{n+1} \end{cases}$$
 (1.31)

消去 a_{n+1}, 得

$$b_{n+2} = -2b_n - 3b_{n+1} \Rightarrow b_{n+2} + b_{n+1} = -2(b_{n+1} + b_n)$$

故
$$b_{n+1} + b_n = (-2)^{n-1}(b_2 + b_1)$$
,所以 $b_{2021} + b_{2022} = 2^{2020} \cdot (-6) = -3 \cdot 2^{2021}$.

第 34 页

例 1.60 数列
$$\{a_n\}$$
, $\{b_n\}$ 满足 $a_1=1$, $b_1=7$, 且
$$\begin{cases} a_{n+1}=b_n-2a_n\\ b_{n+1}=3b_n-4a_n \end{cases}$$
 $(n \in \mathbf{N}^*)$, 则 $a_{2022}=\underline{\qquad}$.

解 易知 a, = 5, 依题

$$\begin{cases} a_{n+1} = b_n - 2a_n \Rightarrow b_{n+1} = a_{n+2} + 2a_{n+1} \\ b_{n+1} = 3b_n - 4a_n \end{cases}$$
 (1.33)

消去 a_{n+1} , b_n , 得

$$a_{n+2} + 2a_{n+1} = 3(a_{n+1} + 2a_n) - 4a_n \Rightarrow a_{n+2} + a_{n+1} = 2(a_{n+1} + a_n)$$

故 $a_{n+1}+a_n=2^{n-1}(a_2+a_1)=3\cdot 2^n$,所以 $a_{n+1}-2^{n+1}=-(a_n-2^n)$,故 $a_n=2^n+(-1)^n$,于是 $a_{2022} = 2^{2022} + 1.$

类型 2----珠联璧合式: 合二为一

这类问题形式优美,浑然天成,两个式子之间关系紧密、通过简单的加减等运算、即可发现 其整体之间的一个递推关系,此时可以先求整体,再解个体.

例 1.61 数列
$$\{a_n\}$$
, $\{b_n\}$ 满足 $a_1=2$, $b_1=1$, 且
$$\begin{cases} a_{n+1}=\frac{3}{4}a_n+\frac{1}{4}b_n+1\\ b_{n+1}=\frac{1}{4}a_n+\frac{3}{4}b_n+1 \end{cases}$$
 $(n\in \mathbf{N}^*)$, 求数列 $\{a_n\}$, $\{b_n\}$ 的通项公式。

解依题

$$\begin{cases} a_{n+1} = \frac{3}{4}a_n + \frac{1}{4}b_n + 1 \\ b_{n+1} = \frac{1}{2}a_n + \frac{3}{2}b_n + 1 \end{cases}$$
 (1.35)

$$b_{n+1} = \frac{1}{4}a_n + \frac{3}{4}b_n + 1 \tag{1.36}$$

(1.35), (1.36)分别相加和相减,得

$$(a_{n+1} + b_{n+1} = a_n + b_n + 2 (1.37)$$

$$\begin{cases}
 a_{n+1} + b_{n+1} = a_n + b_n + 2 \\
 a_{n+1} - b_{n+1} = \frac{1}{2} (a_n - b_n)
\end{cases}$$
(1.37)

由 (1.37) 知数列 $\{a_n+b_n\}$ 是首项为 $a_1+b_1=3$, 公差为 2 的等差数列, 故可得 $a_n+b_n=2n+1$.

由 (1.38) 知数列 $\{a_n - b_n\}$ 是首项为 $a_1 - b_1 = 1$,公比为 $\frac{1}{2}$ 的等比数列,故可得 $a_n - b_n = \left(\frac{1}{2}\right)^{n-1}$.

从而可解得
$$a_n = n + \frac{1}{2} + \left(\frac{1}{2}\right)^n$$
, $b_n = n + \frac{1}{2} - \left(\frac{1}{2}\right)^n$.

例 1.62 数列 $\{a_n\}$, $\{b_n\}$ 满足 $a_1=2$, $b_1=1$, 且 $\begin{cases} a_{n+1}=5a_n+3b_n+7\\ (n\in \mathbf{N}^*), 求数列 \{a_n\}, \{b_n\} \end{cases}$ 的通项公式.

解依题

$$\begin{cases} a_{n+1} = 5a_n + 3b_n + 7 \\ b_{n+1} = 3a_n + 5b_n \end{cases}$$
 (1.39)

(1.39), (1.40)分别相加和相减,得

$$\begin{cases}
a_{n+1} + b_{n+1} + 1 = 8(a_n + b_n + 1) \\
a_{n+1} - b_{n+1} + 7 = 2(a_n - b_n + 7)
\end{cases}$$
(1.41)

由 (1.41) 知数列 $\{a_n + b_n + 1\}$ 是首项为 $a_1 + b_1 + 1 = 4$, 公比为 8 的等比数列, 故可得 $a_n + b_n + 1 = 4 \cdot 8^{n-1}$.

由 (1.42) 知数列 $\{a_n - b_n + 7\}$ 是首项为 $a_1 - b_1 + 7 = 8$, 公比为 2 的等比数列, 故可得 $a_n - b_n + 7 = 8 \cdot 2^{n-1}$.

从而可解得 $a_n = 2 \cdot 8^{n-1} + 4 \cdot 2^{n-1} - 4$, $b_n = 2 \cdot 8^{n-1} - 4 \cdot 2^{n-1} + 3$.

例 1.63 数列
$$\{a_n\}$$
, $\{b_n\}$ 满足 $a_1=-\frac{1}{2}$, $b_1=\frac{3}{2}$, 且
$$\begin{cases} 4a_{n+1}=3a_n-b_n+4\\ 4b_{n+1}=3b_n-a_n-4 \end{cases}$$
 $(n\in\mathbf{N}^*).$

- (1) 证明: $\{a_n + b_n\}$ 是等比数列, $\{a_n b_n\}$ 是等差数列;
- (2) 求数列 $\{a_n\}$ 的通项公式以及 $\{a_n\}$ 的前 n 项和 S_n .

解依题

(1)

$$\begin{cases}
4a_{n+1} = 3a_n - b_n + 4 \\
4b_{n+1} = 3b_n - a_n - 4
\end{cases}$$
(1.43)

$$\left(4b_{n+1} = 3b_n - a_n - 4\right) \tag{1.44}$$

(1.43), (1.44)分别相加和相减,得

$$\begin{cases}
4(a_{n+1} + b_{n+1}) = 2(a_n + b_n) \Rightarrow (a_{n+1} + b_{n+1}) = \frac{1}{2}(a_n + b_n) \\
4(a_{n+1} - b_{n+1}) = 4(a_n - b_n) + 8 \Rightarrow (a_{n+1} - b_{n+1}) = (a_n - b_n) + 2
\end{cases}$$
(1.45)

$$4(a_{n+1} - b_{n+1}) = 4(a_n - b_n) + 8 \Rightarrow (a_{n+1} - b_{n+1}) = (a_n - b_n) + 2$$
(1.46)

由 (1.45) 知数列 $\{a_n + b_n\}$ 是首项为 $a_1 + b_1 = 1$,公比为 $\frac{1}{2}$ 的等比数列.

由 (1.46) 知数列 $\{a_n - b_n\}$ 是首项为 $a_1 - b_1 = -2$,公差为 2 的等差数列.

(2) 由(1)知

$$\begin{cases} a_n + b_n = \left(\frac{1}{2}\right)^{n-1} \\ a_n - b_n = 2n - 4 \end{cases}$$
 (1.47)

(1.47),(1.48)相加并化简得
$$a_n = \frac{1}{2^n} + n - 2$$
,采用分组求和法可得 $S_n = \frac{n^2 - 3n + 2}{2} - \frac{1}{2^n}$.

1.5 利用"整除"思想求解数列中"不定方程"

利用"整除"思想是求解"不定方程"的一种常用方法,也符合高中学生的认知水平.通常的处理方法是先进行变量分离(将其中一个末知数用另一个或两个表示),然后利用整除思想进行分类讨论.

例 1.64 已知等差数列 $\{a_n\}$ 的公差 d>0, 其前 n 项和为 S_n , $a_1=1$, $S_2\cdot S_3=36$.

- (1) 求 d 及 S_n ;
- (2) 求 m, $k(m, k \in \mathbb{N}^*)$ 的值,使得 $a_m + a_{m+1} + a_{m+2} + \cdots + a_{m+k} = 65$.

解 依题意

- (1) $d = 2 \mathcal{R} S_n = n^2$;
- (2) $a_m + a_{m+1} + a_{m+2} + \dots + a_{m+k} = S_{m+k} S_{m-1} = (m+k)^2 (m-1)^2 = 65$, \mathbb{N}

$$2m = \frac{65}{k+1} - k + 1\tag{1.49}$$

因为 $m, k \in \mathbb{N}^*$,则 $k+1 \ge 2$,

- ① k+1=5, 此时 k=4, m=5;
- ② k+1=13, 此时 k=12, m=-3 (舍去);
- ③ k+1=65, 此时 k=32, m=-15 (舍去).

综上, k = 4, m = 5.

例 1.65 已知公差不为零的等差数列 $\{a_n\}$, 其前 n 项和为 S_n , 且 $a_2^2 + a_3^2 = a_4^2 + a_5^2$, $S_7 = 7$.

- (1) 求数列 $\{a_n\}$ 的通项公式及前 n 项和 S_n ;
- (2) 试求所有的正整数 m,使得 $\frac{a_{m}a_{m+1}}{a_{m+2}}$ 为数列 $\{a_{n}\}$ 中的项.

解 依题意

(1) $a_n = 2n - 7 \mathcal{R} S_n = n^2 - 6n$;

(2) if
$$\frac{a_m a_{m+1}}{a_{m+2}} = a_n$$
, \mathbb{N}

$$\frac{(2m-7)(2m-5)}{2m-3} = 2n-7 \tag{1.50}$$

令 2m-3=t(t ≥ -1 且为奇数),则

$$2n - 7 = \frac{t^2 - 6t + 8}{t} = t - 6 + \frac{8}{t} \tag{1.51}$$

依题, t整除 8, 又 t 为奇数,则 $t = \pm 1$,

- ① t = 1, 此时 m = 2, n = 5;
- ② t = -1, 此时 m = 1, n = -4 (舍去).

综上, m=2.

例 1.66 已知数列 $\{a_n\}$ 的通项公式为 $a_n = 7n + 2$,数列 $\{b_n\}$ 的通项公式为 $b_n = n^2$,若将数列 $\{a_n\}$, $\{b_n\}$ 中相同的项按从小到大的顺序排列后看作数列 $\{c_n\}$,则 c_9 的值为_____.

解 依题意, 令 $a_n = b_m \Rightarrow n = \frac{m^2 - 2}{7}$, 设 $k \in \mathbb{Z}$, 则

⑦ 若
$$m = 7k + 6$$
, 则 $n = \frac{(7k + 6)^2 - 2}{7} = 7k^2 + 12k + \frac{34}{7}$ (舍去)

综上,当 m=7k+3或 m=7k+4时, b_m 才能在 $\{a_n\}$ 中出现,即为公共项,公共项为 b_3 , b_4 , b_{10} , b_{11} , b_{17} , b_{18} , b_{24} , b_{25} , \cdots ,故 $c_9=31^2=961$.

1.6 数列放缩

1.6.1 伪等比变等比

若数列 $\{a_n\}$ 的通项公式含有 q^n 这样指数函数的式子, 我们采用伪等比放缩法, 即作商 $\frac{a_{n+1}}{a_n}$,使之大于或小于一个常数, 这个常数即 $\frac{a_{n+1}}{a_n}$ 的极限值, 然后将 $\{a_n\}$ 放缩成等比数列.

例 1.67 若数列
$$\{a_n\}$$
 的通项公式为 $a_n = \frac{3^n-1}{2}$,证明:对一切正整数 n ,有 $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} < \frac{3}{2}$.

证 令
$$b_n = \frac{1}{a_n}$$
,则 $\frac{b_{n+1}}{b_n} = \frac{3^n-1}{3^{n+1}-1} = \frac{1}{3} \cdot \frac{3^n-1}{3^n-\frac{1}{3}} < \frac{1}{3}$,故 $b_{n+1} < \frac{1}{3} \cdot b_n$,于是从第二项起

$$b_1 + b_2 + \dots + b_n < b_1 + \frac{1}{3} \cdot b_1 + \dots + \left(\frac{1}{3}\right)^{n-1} \cdot b_1 = \frac{1 \cdot \left[1 - \left(\frac{1}{3}\right)^n\right]}{1 - \frac{1}{3}} < \frac{3}{2}$$

注 解题过程中进行了两次放缩,第一次是在 <mark>伪等比变等比</mark>时,第二次是等比数列求和 后进行了 <mark>丢项</mark>.

从第几项起开始放缩我们观察前几项的分母,和不等号右边的分母有共性即可(最多第四项).

例 1.68 若数列
$$\{a_n\}$$
 的通项公式为 $a_n = 3^n - 2^n$,证明: 对一切正整数 n ,有 $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} < \frac{13}{10}$.

证 令
$$b_n = \frac{1}{a_n}$$
,则 $\frac{b_{n+1}}{b_n} = \frac{3^n - 2^n}{3^{n+1} - 2^{n+1}} = \frac{1}{3} \cdot \frac{3^n - 2^n}{3^n - \frac{2}{3} \cdot 2^n} < \frac{1}{3}$,故 $b_{n+1} < \frac{1}{3} \cdot b_n$,于是从第三项起

$$b_1 + b_2 + \dots + b_n < b_1 + b_2 + \frac{1}{3} \cdot b_2 + \dots + \left(\frac{1}{3}\right)^{n-2} \cdot b_2 = 1 + \frac{\frac{1}{5} \cdot \left[1 - \left(\frac{1}{3}\right)^{n-1}\right]}{1 - \frac{1}{3}} < 1 + \frac{3}{10} = \frac{13}{10}$$

例 1.69 若数列 $\{a_n\}$ 的通项公式为 $a_n = 2^n$, 证明: 对一切正整数 n, 有

$$\frac{1}{a_1 - 1} + \frac{1}{a_2 - 1} + \dots + \frac{1}{a_n - 1} < \frac{34}{21}.$$

证 令
$$b_n = \frac{1}{a_n - 1}$$
,则 $\frac{b_{n+1}}{b_n} = \frac{2^n - 1}{2^{n+1} - 1} = \frac{1}{2} \cdot \frac{2^n - 1}{2^n - \frac{1}{2}} < \frac{1}{2}$,故 $b_{n+1} < \frac{1}{2} \cdot b_n$,于是从第四项起

$$b_1 + b_2 + \dots + b_n < b_1 + b_2 + b_3 + \frac{1}{2} \cdot b_3 + \dots + \left(\frac{1}{2}\right)^{n-3} \cdot b_3 = 1 + \frac{1}{3} + \frac{\frac{1}{7} \cdot \left[1 - \left(\frac{1}{2}\right)^{n-2}\right]}{1 - \frac{1}{2}} < 1 + \frac{1}{3} + \frac{2}{7} = \frac{34}{21}$$

1.6.2 二次函数型裂项

若数列 $\{a_n\}$ 的通项公式分母含有 n^2+bn+c 这样二次函数的式子,我们利用配方把分母放缩成 可平方差 的二次函数进而化成两个一次函数(等差数列相邻两项)之积.

$$n^{2} + bn + c = \left(n + \frac{b}{2}\right)^{2} - \frac{b^{2} - 4c}{4} \ge \left(n + \frac{b}{2}\right)^{2} - \frac{k^{2}}{4}$$

其中 k 为正整数且 $k^2 \ge b^2 - 4ac$.

例 1.70 证明: 对一切正整数
$$n$$
, 有 $\frac{1}{2\times 3} + \frac{1}{3\times 5} + \cdots + \frac{1}{(n+1)(2n+1)} < \frac{2}{5}$.

证 因为

$$(n+1)(2n+1) = 2n^2 + 3n + 1 = 2\left(n + \frac{3}{2}n + \frac{1}{2}\right)$$
$$= 2\left[\left(n + \frac{3}{4}\right)^2 - \frac{1}{16}\right] > 2\left[\left(n + \frac{3}{4}\right)^2 - \frac{1}{4}\right] = \frac{1}{8}(4n+1)(4n+5)$$

$$\mathbb{N} \frac{1}{(n+1)(2n+1)} < \frac{8}{(4n+1)(4n+5)} = 2\left(\frac{1}{4n+1} - \frac{1}{4n+5}\right), \quad \text{for } \frac{1}{2\times 3} + \frac{1}{3\times 5} + \dots + \frac{1}{(n+1)(2n+1)} < 2\left(\frac{1}{5} - \frac{1}{4n+5}\right) < \frac{2}{5}$$

例 1.71 证明: 对一切正整数
$$n$$
, 有 $\frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{(2n+1)^2} < \frac{1}{4}$.

证 因为
$$(2n+1)^2 = 4\left(n+\frac{1}{2}\right)^2 > 4\left[\left(n+\frac{1}{2}\right)^2 - \frac{1}{4}\right] = 4(n+1)n$$
,则
$$\frac{1}{(2n+1)^2} < \frac{1}{4(n+1)n} = \frac{1}{4}\left(\frac{1}{n} - \frac{1}{n+1}\right), \ \$$
 于是 $\frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{(2n+1)^2} < \frac{1}{4}\left(1 - \frac{1}{n+1}\right) < \frac{1}{4}$.

例 1.72 若数列
$$\{a_n\}$$
 的通项公式为 $a_n=2n$, 证明: 对一切正整数 n , 有
$$\frac{1}{a_1(a_1+1)} + \frac{1}{a_2(a_2+1)} + \dots + \frac{1}{a_n(a_n+1)} < \frac{1}{3}.$$

证 因为

$$a_n(a_n+1) = (2n)(2n+1) = 4n^2 + 2n = 4\left[\left(n+\frac{1}{4}\right)^2 - \frac{1}{16}\right] > 4\left[\left(n+\frac{1}{4}\right)^2 - \frac{1}{4}\right] = \frac{1}{4}(4n-1)(4n+3)$$

則
$$\frac{1}{(2n)(2n+1)} < \frac{4}{(4n-1)(4n+3)} = \left(\frac{1}{4n-1} - \frac{1}{4n+3}\right)$$
,于是
$$\frac{1}{a_1(a_1+1)} + \frac{1}{a_2(a_2+1)} + \dots + \frac{1}{a_n(a_n+1)} < \left(\frac{1}{3} - \frac{1}{4n+3}\right) < \frac{1}{3}$$

例 1.73 若数列 $\{a_n\}$ 的通项公式为 $a_n = n^2$, 证明: 对一切正整数 n , 有 $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} < \frac{7}{4}$.

证 易知
$$\frac{1}{a_1} = 1 < \frac{7}{4}$$
, $\frac{1}{a_1} + \frac{1}{a_2} = \frac{5}{4} < \frac{7}{4}$, 又因为 $[n^2 > n^2 - \frac{4}{4} = (n-1)(n+1)$, 则 $\frac{1}{n^2} < \frac{1}{(n-1)(n+1)} = \frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n+1} \right)$, 于是从第三项起

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} < 1 + \frac{1}{4} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{n+1} \right) < \frac{6}{4} < \frac{7}{4}$$

1.6.3 利用平均不等式放缩

例 1.74 已知数列
$$\{a_n\}$$
 满足 $a_1=1$, $a_n^2-a_{n+1}+3=0$, 求证: $\frac{1}{a_1+2}+\frac{1}{a_2+2}+\cdots+\frac{1}{a_n+2}<\frac{2}{3}$.

证 由平均值不等式得 $a_{n+1} = a_n^2 + 3 = (a_n^2 + 1) + 2 \ge 2a_n + 2$, $\therefore a_{n+1} + 2 \ge 2(a_n + 2)$, 于是

$$a_n + 2 = \frac{a_n + 2}{a_{n-1} + 2} \cdot \frac{a_{n-1} + 2}{a_{n-2} + 2} \cdot \dots \cdot \frac{a_2 + 2}{a_1 + 2} \cdot (a_1 + 2) \ge 3 \cdot 2^{n-1}$$

故

$$\frac{1}{a_1+2} + \frac{1}{a_2+2} + \dots + \frac{1}{a_n+2} \le \frac{1}{3} \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} \right) = \frac{2}{3} \left(1 - \frac{1}{2^n} \right) < \frac{2}{3}$$