

Основы системного анализа

Семинар 1 <u>Основны</u>е понятия системного анализа

Знакомство и содержание урока

Дмитрий Бритин

Главный системный аналитик ООО «ОТР-2000»

«Лучше проектов могут быть только те, которые еще не внедрял»

- 💥 🛮 Более 20 лет в ИТ
- 💥 Успешные проекты в ЦБ РФ и ПАО ВТБ
- 💥 🛮 Капитан команды «Цифровой Новгород»
- Победитель конкурса Цифровые решения для регионов 2019
- Участник платформы «Смартека» Агенства стратегических инициатив

Ответьте на несколько вопросов сообщением в чат

Знаете ли вы что такое системный анализ?

Есть ли у вас опыт работы системным аналитиком?

Каковы ваши ожидания от **семинара?**

План курса

1 Основы системного анализа

Особенности работы с бизнес-информацией

Что будет на уроке сегодня

- 🖈 🛮 Закрепим понятие системы и системного анализа
- Обретем навыки работы с инструментарием аналитика на примере командной игры
- Узнаем как влияет точка наблюдения на восприятие объекта исследования
- 🖈 🛮 Закрепим приемы, принципы и методы системного анализа
- √ Поговорим о качествах и навыках, которыми должен обладать системный аналитик

Викторина

Каким термином называется целостная, взаимосвязанная совокупность частей, существующая в некоторой среде и обладающая определенным назначением, подчиненная некоторой цели? Выберете единственный правильный ответ.

- 1. Система
- 2. Структура системы
- 3. Подсистема
- 4. Системный анализ
- Модель "чёрного ящика".

Каким термином называется целостная, взаимосвязанная совокупность частей, существующая в некоторой среде и обладающая определенным назначением, подчиненная некоторой цели?

- 1. Система правильный ответ
- 2. Структура системы
- 3. Подсистема
- 4. Системный анализ
- 5. Модель "чёрного ящика".

В чем заключается цель системного анализа? Выберете единственный правильный ответ.

- 1. В исследовании систем и сложных технических комплексов
- 2. В развитии научного прогресса
- 3. В применении методов системного синтеза
- 4. В формировании концепции системы и стратегии её реализации

В чем заключается цель системного анализа?

- 1. В исследовании систем и сложных технических комплексов
- 2. В развитии научного прогресса
- 3. В применении методов системного синтеза
- 4. В формировании концепции системы и стратегии её реализации правильный ответ

Что такое системный анализ в широком смысле? Выберете единственный правильный ответ.

- 1. Это метод познания в теории управления
- 2. Это методология постановки и решения задач построения и исследования систем, являющаяся совокупностью методов системного анализа и системного синтеза
- 3. Это методология исследования систем
- 4. Это совокупность методов системного анализа

Что такое системный анализ в широком смысле?

- 1. Это метод познания в теории управления
- 2. Это методология постановки и решения задач построения и исследования систем, являющаяся совокупностью методов системного анализа и системного синтеза правильный ответ
- 3. Это методология исследования систем
- 4. Это совокупность методов системного анализа

Без чего не может существовать системный подход, предполагающий, что все частные задачи, решаемые на уровне подсистем, должны быть увязаны между собой и решаться с позиции целого? Выберете все правильные ответы.

- 1. Без множества элементов системы
- 2. Без конечной цели, позволяющий выявить конечные свойства системы
- 3. Без представления о системе как о едином целом
- 4. Без рассмотрения каждого элемента системы во взаимосвязи с другими элементами и средой
- 5. Без совокупности методов системного анализа

Без чего не может существовать системный подход, предполагающий, что все частные задачи, решаемые на уровне подсистем, должны быть увязаны между собой и решаться с позиции целого?

- 1. Без множества элементов системы
- 2. Без конечной цели, позволяющий выявить конечные свойства системы
- 3. Без представления о системе как о едином целом
- 4. Без рассмотрения каждого элемента системы во взаимосвязи с другими элементами и средой
- 5. Без совокупности методов системного анализа

Без чего не может существовать система? Выберете все правильные ответы.

- 1. Без множества элементов системы
- 2. Без конечной цели, позволяющий выявить конечные свойства системы
- 3. Без представления о системе как о едином целом
- 4. Без рассмотрения каждого элемента системы во взаимосвязи с другими элементами и средой
- 5. Без совокупности взаимосвязей связей между элементами и средой

Без чего не может существовать система? Выберете все правильные ответы.

- 1. Без множества элементов системы
- 2. Без конечной цели, позволяющий выявить конечные свойства системы
- 3. Без представления о системе как о едином целом
- 4. Без рассмотрения каждого элемента системы во взаимосвязи с другими элементами и средой
- 5. Без совокупности методов системного анализа

Дополнительно:

✓ Рукотворные системы всегда определяются конечной целью

Что относится к основным принципам системного анализа? Выберете все правильные ответы.

- 1. Принцип Паретто, говорящего о том, что 20% усилий дают 80% результата
- 2. Принцип конечной цели, позволяющий выявить конечные свойства системы
- 3. Принцип единства, говорящий что система должна рассматриваться единым целым
- 4. Принцип измеримости, говорящий что все характеристики управляемых компонент, то есть составных элементов должны быть измеримы
- 5. Принцип связности, гласящий что все для рассмотрения отдельного элемента системы следует выявить связи с другими элементами системы
- 6. Принцип развития, предполагающий модернизируемость систем за счет замены элементов системы и перестроения взаимосвязей
- 7. Принцип единственности верного решения, предполагающий наличие одного и только одного верного решения проблемы

Что относится к основным принципам системного анализа?

- 1. Принцип Паретто, говорящего о том, что 20% усилий дают 80% результата
- 2. Принцип конечной цели, позволяющий выявить конечные свойства системы
- 3. Принцип единства, говорящий что система должна рассматриваться единым целым
- 4. Принцип измеримости, говорящий что все характеристики управляемых компонент, то есть составных элементов должны быть измеримы
- 5. Принцип связности, гласящий что все для рассмотрения отдельного элемента системы следует выявить связи с другими элементами системы
- 6. Принцип развития, предполагающий модернизируемость систем за счет замены элементов системы и перестроения взаимосвязей
- 7. Принцип единственности верного решения, предполагающий наличие одного и только одного верного решения проблемы

Что не относится к методам системного анализа? Выберете все правильные ответы.

- 1. элементный, отвечающий на вопросы качества и количества элементов системы
- 2. структурный, ориентированный на анализ взаимосвязи и внутренней структуры
- 3. функциональный, изучающий целесообразность существования отдельных элементов системы
- 4. вероятностный, отвечающий на вопросы неоднородности системы во времени
- 5. коммуникативный, отвечающий на вопросы взаимосвязи со сторонними объектами и средой
- 6. исторический, рассматривающий жизненный цикл систем от зарождения до гибели

Что не относится к методам системного анализа?

- 1. элементный, отвечающий на вопросы качества и количества элементов системы
- 2. структурный, ориентированный на анализ взаимосвязи и внутренней структуры
- 3. функциональный, изучающий целесообразность существования отдельных элементов системы
- 4. вероятностный, отвечающий на вопросы неоднородности системы во времени
- 5. коммуникативный, отвечающий на вопросы взаимосвязи со сторонними объектами и средой
- 6. исторический, рассматривающий жизненный цикл систем от зарождения до гибели

Что можно отнести к основным приемам системного анализа? Выберете все правильные ответы.

- 1. Изменение уровня абстракции, позволяющего выделить существенные свойства и игнорировать второстепенные
- 2. Прототипирование, позволяющего выявить свойства системы на рабочем прототипе
- 3. Изменение точки наблюдения за системой аспекта, позволяющего взглянуть на свойства системы под нужным ракурсом
- 4. Декомпозицию разделения системы на отдельные подсистемы и элементы для упрощения её анализа
- 5. Инверсию построение системы с противоположными свойствами для подтверждения принципа конечной цели

Что можно отнести к основным приемам системного анализа?

- 1. Изменение уровня абстракции, позволяющего выделить существенные свойства и игнорировать второстепенные
- 2. Прототипирование, позволяющего выявить свойства системы на рабочем прототипе
- 3. Изменение точки наблюдения за системой аспекта, позволяющего взглянуть на свойства системы под нужным ракурсом
- 4. Декомпозицию разделения системы на отдельные подсистемы и элементы для упрощения её анализа
- 5. Инверсию построение системы с противоположными свойствами для подтверждения принципа конечной цели

Что можно считать главными качествами системного аналитика? Выберете все правильные ответы.

- 1. Системное мышление, позволяющие беспристрастно рассматривать объекты как систему, уметь и выделять общее и частное, уделять пристальное внимание значимым деталям и игнорировать несущественные
- 2. Наблюдательность, позволяющая эффективно собирать информацию о характеристиках существующих систем
- 3. Пассивность, защищающая действующие системы от некорректных изменений
- 4. Интуиция, которая требуется для работы со сложными запутанными и хаотическим системами
- 5. Коммуникабельность, для эффективной работы в команде
- 6. Лидерство, позволяющее решать задачи за счет синергии других участников команды

Что можно считать главными качествами системного аналитика?

- 1. Системное мышление, позволяющие беспристрастно рассматривать объекты как систему, уметь и выделять общее и частное, уделять пристальное внимание значимым деталям и игнорировать несущественные
- 2. Наблюдательность, позволяющая эффективно собирать информацию о характеристиках существующих систем
- 3. Пассивность, защищающая действующие системы от некорректных изменений
- 4. Интуиция, которая требуется для работы со сложными запутанными и хаотическим системами
- 5. Коммуникабельность, для эффективной работы в команде
- 6. Лидерство, позволяющее решать задачи за счет привлечения других участников команды к решению

Что такое аргументация? Выберете единственный правильный ответ.

- 1. Это процесс познания, изначально позволяющий собирать информацию
- 2. Это процесс познания представляющий собой обоснование своей позиции, точки зрения или высказывания с помощью убедительных доводов
- 3. Это метод познания, ориентированный на выяснение сущности исследуемого объекта или явления
- 4. Это метод познания, с помощью которого выделяются существенные свойства, связи и отношения предметов или явлений

Что такое аргументация? Выберете единственный правильный ответ.

- 1. Это процесс познания, изначально позволяющий собирать информацию
- 2. Это процесс познания представляющий собой обоснование своей позиции, точки зрения или высказывания с помощью убедительных доводов правильный ответ
- 3. Это метод познания, ориентированный на выяснение сущности исследуемого объекта или явления
- 4. Это метод познания, с помощью которого выделяются существенные свойства, связи и отношения предметов или явлений

Практика

Инженерная игра «Полёт на луну»

Освойте основные понятия системного анализа на примере системы посадки космического корабля

Условие игры

На земле исследовательский проходит испытания. Аппарат направляется со скоростью 30 метров в секунду и угловым отклонением в сторону 1 двигателя 12°.

Включение всех двигателей гасит скорость на 10 м/с.

Отключение одного двигателя снижает скорость на 5 м/с, но дает прирост углового отклонения в сторону двигателя за ход 5°, снимая 5° с противоположного.

Отключение двух противоположных двигателей не меняет угловое отклонение, и скорость, но приводит к увеличению скорости на 10 м/с.

Отключение двух двигателей с одной стороны увеличивает угловое отклонение на 5°, на два отключённых двигателя и снижает на 5°

Отключение трех двигателей с одной стороны увеличивает угловое отклонение на выключенный двигатель на 5°, снимая 5° с противоположного.

Отключение всех двигателей увеличивает посадочную скорость на 20 м/с без изменения угловой.

Приземление аппарата свыше 10 м/с или наклоном более 15° приводит к его разрушению

Пример фиксации результатов игры

	Начало	Ход 1	Ход 2	Ход 3	Ход 4	Ход 5
Двигатель 1	12°	Отклонение 12° Действие - 🔥	7°			
Двигатель 2		Отклонение 0° Действие - 🔥	0°			
Двигатель 3		Отклонение 0° Действие - 🔥	0°			
Двигатель 4		Отклонение 0° Действие - 🔥	5			
Скорость(м/с)	30 м/с	30 m/c	20			
Задержка управляющего сигнала	О ход					

Топливо:

Задание 1 – Тренировочная посадка

Тренировочная посадка. Передача сигнала без задержки. Запуск и работа двигателя – 1 ход.

Игроки выбирают двигатель за который они будут играть.

Игра заканчивается после 5 ходов. Количество карточек топлива неограниченно. За ход каждая команда закрепленная за двигателем может направить 1 карточку топлива. Игроки принимают решение относительно только «своего» двигателя. Отклонения аппарата нет. Общаться между командами можно. Сигналы двигателю доходят без задержки. Ответ приходит без задержки.

Задание 1 – Тренировочная посадка

Тренировочная посадка. Передача сигнала без задержки. Запуск и работа двигателя – 1 ход.

Игроки выбирают двигатель за который они будут играть.

Игра заканчивается после 5 ходов. Количество карточек топлива неограниченно. За ход каждая команда закрепленная за двигателем может направить 1 карточку топлива. Игроки принимают решение относительно только «своего» двигателя. Отклонения аппарата нет. Общаться между командами можно. Сигналы двигателю доходят без задержки. Ответ приходит без задержки.

Требуется успешно посадить корабль.

<<05:00-

Задание 2 - Тренировочная аварийная посадка

Передача сигнала без задержки. Запуск и работа двигателя – 1 ход.

Игроки выбирают двигатель за который они будут играть.

Игра заканчивается после 5 ходов. Количество карточек топлива неограниченно. За ход каждая команда закрепленная за двигателя может направить 1 карточку топлива. Игроки принимают решение относительно своего двигателя. Отклонение аппарата в одну из сторон по выбору преподавателя. За ход дополнительно отклоняется на 10, если не было корректирующего воздействие, иначе рассчитывается по формуле: начальное отклонение в градусах + отклонение 20 х число ходов без корректировки + отклонение. Общаться между командами запрещено, команды работают в личных кабинетах. Сигналы двигателю доходят без задержки. Ответ приходит без задержки.

Задание 2 – Тренировочная аварийная посадка

Передача сигнала без задержки. Запуск и работа двигателя – 1 ход.

Игроки выбирают двигатель за который они будут играть.

Игра заканчивается после 5 ходов. Количество карточек топлива неограниченно. За ход каждая команда закрепленная за двигателя может направить 1 карточку топлива. Игроки принимают решение относительно своего двигателя. Отклонение аппарата в одну из сторон по выбору преподавателя. За ход дополнительно отклоняется на 10, если не было корректирующего воздействие, иначе рассчитывается по формуле: начальное отклонение в градусах + отклонение 20 х число ходов без корректировки + отклонение. Общаться между командами запрещено, команды работают в личных кабинетах. Сигналы двигателю доходят без задержки. Ответ приходит без задержки.

Задание 2 – Моделирование реальной посадки

Корабль движется к поверхности Луны. В центре управления полётов (ЦУП) операторам доверено управлять двигателями корабля.

Передача сигнала – 1 ход, работа двигателя – 1 ход, прием ответа - 1 ход

Игроки выбирают двигатель за который они будут играть.

Игра заканчивается после 5 ходов. Количество карточек топлива ограниченно 30. За ход каждая команда закрепленная за двигателем может направить 1 карточку топлива. Игроки принимают решение относительно своего двигателя. Отклонение аппарата в одну из сторон по выбору преподавателя. За ход дополнительно отклоняется на 10, если не было корректирующего воздействие, иначе рассчитывается по формуле: начальное отклонение в градусах + отклонение 20 х число ходов без корректировки + отклонение. Общаться между командами разрешено, команды работают в личных кабинетах. Сигналы двигателю доходят задержкой. Ответ приходит с задержкой.

10 минут

Задание 2 – Моделирование реальной посадки

Корабль движется к поверхности Луны. В центре управления полётов (ЦУП) операторам доверено управлять двигателями корабля.

Передача сигнала – 1 ход, работа двигателя – 1 ход, прием ответа - 1 ход

Игроки выбирают двигатель за который они будут играть.

Игра заканчивается после 5 ходов. Количество карточек топлива ограниченно 30. За ход каждая команда закрепленная за двигателем может направить 1 карточку топлива. Игроки принимают решение относительно своего двигателя. Отклонение аппарата в одну из сторон по выбору преподавателя. За ход дополнительно отклоняется на 10, если не было корректирующего воздействие, иначе рассчитывается по формуле: начальное отклонение в градусах + отклонение 20 х число ходов без корректировки + отклонение. Общаться между командами разрешено, команды работают в личных кабинетах. Сигналы двигателю доходят задержкой. Ответ приходит с задержкой.

Требуется успешно посадить корабль.

<<10:00-

Вопросы?

Вопросы?

Домашнее задание

Домашнее задание

- 1. Опишите своими словами систему мобильного телефона (смартфона) и проведите анализ системы определив составные части с точки зрения потребителя. Сформулируйте цель исследования. Проанализируйте характеристики элементов.
- 2. Рассмотрите подробно одну из его частей, например интегрированный одноплатный мобильный процессор (mobile system on a chip), как совокупность технических устройств. Так же сформулируйте цель. Отметьте важные свойства элементов.
- 3. Сравните полученные описания, какие есть общие элементы, в чем различия. Сделайте выводы указав использованные приемы системного анализа и обозначив дальнейший план исследования.

Спасибо за внимание!