Predição de Intenção de Compra de Casas

Henrique Hott

Janeiro 2025

1 Análise Exploratória

Uma análise inicial simples demonstrou a presença de valores negativos na coluna de tempo e de valores faltantes em diversas colunas, essas linhas foram simplesmente removidas do conjuntos de dados.

Ademais a partir da distribuição das variáveis foi possível perceber um desbalanceamento na variável alvo.

Figure 1: Distribuição das variáveis.

2 Tratamento, Combinação e Seleção de Variáveis

2.1 Tratamento

Todas a variáveis numéricas foram normalizadas entre 0 e 1, utilizando o maior valor presente, enquanto as categóricas foram transformadas em números inteiros.

2.2 Combinação

- 1. Renda Por Idade: Tenta distinguir usuários que tem mais poder de compra em relação aos seus pares na idade.
- 2. Renda Por Tempo no Site: Tenta distinguir e relacionar o comportamento de tempo gasto com poder de compra.
- 3. Tempo no Site por Idade: Tenta relacionar a idade e o interesse, considerado como tempo gasto, com a idade.

2.3 Seleção

A matriz de correlação nos da *insight's* valiosos sobre as relações entre as variáveis. Nela podemos ver duas das variáveis criadas tem mais correlação com o objetivo do que parte das que ja existiam no dataset.

Figure 2: Distribuição das variáveis em relação à variável alvo.

Já a distribuição mostra demonstra quais variáveis pode trazer informações relevantes para o modelo por que seguem uma distribuição "bem definida".

Figure 3: Distribuição das variáveis em relação à variável alvo.

A partir do gráfico da distribuição das variáveis em relação a variável alvo e a partir da matriz de correlação foram escolhidas cinco - a quantidade foi definida para garantir a possibilidade de execução de um *grid search* em tempo viável - variáveis para serem utilizadas pelo modelo:

- 1. Idade
- 2. Tempo no Site (min)
- 3. Renda Por Idade
- 4. Renda Por Tempo no Site

5. Tempo no Site por Idade

3 Balanceamento do Conjunto de Dados

Foi observado que existe um desbalancemanto do conjunto de dados em relação a variável alvo, uma relação de 3:1. Considerando que a perca de uma venda tem valor significativo pois os valores no comercio de imóveis são mais altos, identificou-se a necessidade de contornar este problema.

Classe	Quantidade
Não Compra	119
Compra	31

Para isso foi utilizado e comparado duas estratégias:

- Realizar o rebalanceamento dos dados a partir da tecnica de sobreamostrage aleatória.
- 2. Ajustar os pesos de maneira inversamente proporcional as frequências das classes dentro do classificador.

4 Resultados

4.1 Métricas

A partir da natureza do problema, que é o sucesso de uma possível venda de um imóvel, é importante definir um objetivo: Diminuir o número que vezes que um potencial comprador deixa de realizar a compra. Ou seja, é necessário escolher um modelo que tenha um bom F1 balanceado entre recall e precision.

A fim de diminuir o efeito da aleatoriedade nos resultados foi realizado uma busca entre os hiperparametros utilizando a téninca de *GridSearch* em conjunto da utilização de *Stratified Cross Fold Validation* com cinco *folds* para escolher o melhor conjunto de parâmetros.

Classificador	Subamostragem	Peso por Classe
Logistic Regression	0.56	0.55
SVC	0.52	0.53
Decision Tree	0.66	0.55
Random Forest	0.63	0.62

4.2 Interpretação dos Modelos

4.2.1 SVC

Os parâmetro encontrados foram:

Listing 1: Parâmetro encontrado para o classificado SVC.

Para análisar o resultado do SVC utilizamos as dependências parciais de cada variável de entrada em relação a variável alvo.

Figure 4: Dependências parciais

O principal fator a se considerar é a inclinação das curvas e o sinal da inclinação, quanto maior a magnitude da inclinação maior é a influência no modelo. Por exemplo, "Renda por Idade" é uma variável que, a medida que aumentam, a probabilidade de haver uma compra diminui.

4.2.2 Decision Tree

Os parâmetro encontrados foram:

Listing 2: Parâmetro encontrado para o classificador Decision Tree.

No ranqueamento das features da arvore é possível perceber que a Idade tem zero influencia na decisão tomada pela mesma.

```
Feature
                             Importance
       Tempo no Site (min)
                               0.520399
1
           Renda Por Idade
2
                               0.222333
  Tempo no Site Por Idade
                               0.155372
4
  Renda Por Tempo no Site
                               0.101897
3
                      Idade
0
                               0.000000
```

Figure 5: Ranquamento das features da árvore de decisão.

5 Conclusão

Ambos modelos demonstraram que as variáveis criadas a partir da junção de outras duas influenciaram positivamente. Ademais, outras combinações de variação e outros conjuntos podem ser testadas para tentar garantir mais eficiência. Seria interessante também testar um modelo por votação.