Math Review

- Math Review
- Algorithms
- Sum
- Logs
- Distributions
- Finance
 - Black Scholes

Algorithms

Name	Worst	Average	Hidden constants	In place
Insertion sort	$\Theta(n^2)$	$\Theta(n^2)$	small	yes
Merge sort	$\Theta(n*logn)$	$\Theta(n*logn)$	large	no
Heap sort	O(n*logn)	-	small	yes
Quicksort	$\Theta(n^2)$	$\Theta(n*logn)$ expected	small	yes
Counting sort	$\Theta(k+n)$	$\Theta(k+n)$	large	no
Radix sort	$\Theta(d*(k+n))$	$\Theta(d*(k+n))$	large	no
Bucket sort	$\Theta(n^2)$	$\Theta(n)$	large	no

Key: k - constant, d - constant

Sum

Name	Formula
Arithmetic	$\sum_{k=1}^n k = rac{n(n+1)}{2}$
Arithmetic	$\sum_{k=0}^n k^2 = rac{n(n+1)(2n+1)}{6}$

Name	Formula	
Arithmetic	$\sum_{k=0}^n k^3 = rac{n^2(n+1)^2}{4}$	
Geometric	$\sum_{k=0}^{n} x^k = rac{x^{n+1}-1}{x-1}$	
Geometric	$\sum_{k=0}^{\infty} x^k = rac{1}{1-x}$, where x < 1	
Harmonic	$\sum_{k=1}^n 1/k = ln(n)$	
Integrating	$\sum_{k=0}^{\infty} k x^k = rac{x}{(1-x)^2}$, where x < 1	

Logs

Exp		Equiv
$\log(\prod_{k=1}^n a_k)$	=	$\sum_{k=1}^n log(a_k)$
$\log_b a$	=	$\frac{\log_c a}{\log_c b}$

Distributions

Source: medium.com/@srowen/common-probability-distributions-347e6b945ce4

Finance

Black Scholes

- wikipedia.org/wiki/Black%E2%80%93Scholes_model
- $ullet C(S_t,t) = N(d_1) * S_t N(d_2) * Ke^{-r(T-t)} \ ullet d_1 = rac{1}{\sigma(T-t)^{1/2}} [\ln(rac{S_t}{K}) + (r + rac{\sigma^2}{2} * (T-t))]$
- $\bullet \ d_2 = d_1 \sigma (T-t)^{1/2}$
 - o $N(\cdot)$ = the cumulative distribution function of the standard normal distribution
 - o S_t = the spot price of the underlying asset
 - $\circ K$ = the strike price
 - $\circ r$ the risk free rate (annual rate, expressed in terms of continuous compounding)
 - $\circ \sigma$ the volatility of returns of the underlying asset