### EXERCICE N°1 Preuve pour la fonction dérivée de $x \mapsto \sqrt{x}$ (à retenir)

Soit  $x \in \mathbb{R}_+^*$  (autrement dit: x est un nombre réel ( $\mathbb{R}$ ), positif (+), non nul (\*)) et soit  $h \in \mathbb{R}_+^*$ .

Nous allons simplifier l'écriture  $\frac{\sqrt{x+h}-\sqrt{x}}{h}$  en utilisant une expression conjuguée (une technique à retenir :  $\sqrt{x+h}-\sqrt{x}$  a pour expression conjuguée  $\sqrt{x+h}+\sqrt{x}$ )

1) Justifier que  $\sqrt{x+h} + \sqrt{x}$  ne s'annule pas.

Pour tout 
$$x \in \mathbb{R}_{+}^{*}$$
 et tout  $h \in \mathbb{R}_{+}^{*}$ 

$$\sqrt{x+h} > 0 \text{ et } \sqrt{x} > 0$$
Donc  $\sqrt{x+h} + \sqrt{x} > 0$ 

$$cqfd$$

2) Simplifier l'expression :  $\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}$ 

$$\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} = \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h}+\sqrt{x})} = \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} = \frac{1}{\sqrt{x+h}+\sqrt{x}}$$

3) En déduire le nombre dérivé en x de la fonction racine carrée.

Quand 
$$h$$
 tend vers zéro,  $\frac{1}{\sqrt{x+h}+\sqrt{x}}$  tend vers  $\frac{1}{2\sqrt{x}}$ .

Donc, pour tout  $x \in \mathbb{R}_+^*$ , le nombre dérivé en x de la fonction racine carrée est  $\frac{1}{2\sqrt{x}}$ 

4) À quoi servait la question 1)?

Nous avons été amenés à diviser par l'expression  $\sqrt{x+h} + \sqrt{x}$ , il fallait donc s'assurer que cela était toujours possible.

#### EXERCICE N°2 Preuve de la deuxième ligne du tableau de la propriété n°5

Soit u une fonction définie sur un intervalle I de  $\mathbb R$ . Soit  $k \in \mathbb R$ , soit  $x \in I$  et soit  $h \in \mathbb R$  tel que  $x+h \in I$ . Soit f la fonction définie pour tout  $x \in I$  par  $f(x) = k \times u(x)$ 

1) Pourquoi impose-t-on  $x+h \in I$ ?

La fonction u est définie sur I.

Si  $x+h \notin I$  alors on ne peut pas calculer son image par u.

2) Simplifier l'expression  $\frac{f(x+h)-f(x)}{h}$ .

$$\frac{f(x+h)-f(x)}{h} = \frac{k u(x+h)-k u(x)}{h} = k \times \frac{u(x+h)-u(x)}{h}$$

3) En déduire le nombre dérivé en x de la fonction  $f: x \mapsto k \times u(x)$ .

Pour tout  $x \in I$ ,

quand h tend vers zéro,  $k \times \frac{u(x+h)-u(x)}{h}$  tend vers  $k \times u'(x)$ 

#### EXERCICE N°3 Preuve pour la dérivée du produit (pour la culture)

#### **Préliminaires**

Soit a, b, c et d quatre réels, démontrer que ab-cd = d(a-c)+a(b-d)

$$d(a-c)+a(b-d) = ad-cd+ab-ad = ab-cd$$

#### La preuve

Soit f et g deux fonctions définies sur un intervalle I de  $\mathbb R$  .

Soit  $x \in I$  et soit  $h \in \mathbb{R}$ , tel que  $x+h \in I$ .

1) Pourquoi impose-t-on  $x+h \in I$  ?

Les fonctions f et g sont définies sur I.

Si  $x+h \notin I$  alors on ne peut pas calculer son image par f ou g.

2) En utilisant les préliminaires, montrer que :

$$\frac{(fg)(x+h) - (fg)(x)}{h} = g(x) \frac{f(x+h) - f(x)}{h} + f(x) \frac{g(x+h) - g(x)}{h}$$

$$\frac{(fg)(x+h) - fg(x)}{h} = \frac{\underbrace{f(x+h)\underbrace{g(x+h) - \underbrace{f(x)\underbrace{g(x)}_{d}}_{b}}_{h}}_{h} \underbrace{\frac{(b-d)}{(b-d)}}_{h}$$

$$= \underbrace{\frac{g(x)\underbrace{f(x+h) - f(x)}] + \underbrace{f(x)\underbrace{g(x+h) - g(x)}}_{h}}_{h}}_{g(x+h) - g(x)}$$

$$= g(x)\underbrace{\frac{f(x+h) - f(x)}{h}}_{h} + f(x)\underbrace{\frac{g(x+h) - g(x)}{h}}_{h}$$

3) En déduire le nombre dérivé en x de la fonction  $(fg): x \mapsto (fg)(x) = f(x)g(x)$ .

Pour tout  $x \in I$ , quand h tend vers zéro,

$$g(x)\frac{f(x+h)-f(x)}{h} + f(x)\frac{g(x+h)-g(x)}{h} \text{ tend vers } \left[g(x)f'(x)+f(x)g'(x)\right].$$

#### EXERCICE N°4 Déterminer la fonction dérivée d'une fonction

Pour chaque fonction, préciser le domaine de définition, le domaine de dérivabilité et déterminer sa fonction dérivée.

1) 
$$f_1: x \mapsto 5$$
 ;  $f_2: x \mapsto \frac{15}{7}$  ;  $f_3: x \mapsto \sqrt{3}$  ;  $f_4: x \mapsto 2\pi$  ;  $f_5: x \mapsto -3\pi + 5\sqrt{3}$ 

Ces cinq fonctions sont constantes, elles sont donc définies et dérivables sur  $\mathbb{R}$  et leur fonction dérivée est la fonction nulle .

Pour tout 
$$x \in \mathbb{R}$$
,

$$f_1'(x) = 0$$
,  $f_2'(x) = 0$ ,  $f_3'(x) = 0$ ,  $f_4'(x) = 0$ ,  $f_5'(x) = 0$ .

2) 
$$g_1: x \mapsto x+2$$
 ;  $g_2: x \mapsto x+3\pi\sqrt{7}$ 

Ces deux fonctions sont la somme de la fonction identité et d'une fonction constante, elles sont donc définies et dérivables sur  $\mathbb{R}$  et leur fonction dérivée est la fonction constante égale à 1 .

Pour tout 
$$x \in \mathbb{R}$$
,  $g_1'(x) = 1$ ,  $g_2'(x) = 1$ .

3) 
$$g_3: x \mapsto 4x + 5$$
;  $g_4: x \mapsto \sqrt{7}x + 8.5$ ;

Ces deux fonctions sont la somme du produit de la fonction identité par une constante k (k=4 pour  $g_3$  et  $k=\sqrt{7}$  pour  $g_4$ ) et d'une fonction constante, elles sont donc définies et dérivables sur  $\mathbb R$  et leur fonction dérivée est la fonction constante égale à k.

Ainsi: 
$$g_3': x \mapsto 4$$
 et  $g_4': x \mapsto \sqrt{7}$ 

4) 
$$h_1: x \mapsto 3x^2 - 4$$
;  $h_2: x \mapsto 4x^2 + 5x - 1$ ;  $h_3: x \mapsto -2.5x^2 + 6x + \sqrt{3}$ 

### • Pour $h_1$ :

```
h_1 est la forme 3 \times u + v
```

où 
$$u: x \mapsto x^2$$
 et  $v: x \mapsto -4$ 

Or:

$$u$$
 est définie et dérivable sur  $\mathbb{R}$  et  $\forall x \in \mathbb{R}$ ,  $u'(x) = 2x$ 

$$v$$
 est définie et dérivable sur  $\mathbb{R}$  et  $\forall x \in \mathbb{R}, v'(x) = 0$ 

#### Done

 $h_1$  est définie et dérivable sur  $\mathbb{R}$  et  $\forall x \in \mathbb{R}$ ,

$$h_1'(x) = 3u'(x) + v'(x)$$

$$= 3 \times 2x + 0$$

$$h_1'(x) = 6x$$

• Pour 
$$h_2$$
:

$$h_2$$
 est la forme  $4 \times u + 5 \times v + w$ 

où 
$$u: x \mapsto x^2$$
,  $v: x \mapsto x$  et  $w: x \mapsto -1$ 

Or:

u est définie et dérivable sur 
$$\mathbb{R}$$
 et  $\forall x \in \mathbb{R}, u'(x) = 2x$ 

$$v$$
 est définie et dérivable sur  $\mathbb{R}$  et  $\forall x \in \mathbb{R}, v'(x) = 1$ 

w est définie et dérivable sur 
$$\mathbb{R}$$
 et  $\forall x \in \mathbb{R}, w'(x) = 0$ 

#### Donc

$$h_2$$
 est définie et dérivable sur  $\mathbb{R}$  et  $\forall x \in \mathbb{R}$ ,

$$h_2'(x) = 4u'(x) + 5 \times v'(x) + w'(x)$$

$$= 4 \times 2x + 5 \times 1 + 0$$

$$h_2'(x) = 8x + 5$$

```
Pour h_3:

h_3 est la forme -2.5 \times u + 6 \times v + w

où u: x \mapsto x^2, v: x \mapsto x et w: x \mapsto -1

Or:

u est définie et dérivable sur \mathbb{R} et \forall x \in \mathbb{R}, u'(x) = 2x

v est définie et dérivable sur \mathbb{R} et \forall x \in \mathbb{R}, v'(x) = 1

w est définie et dérivable sur \mathbb{R} et \forall x \in \mathbb{R}, w'(x) = 0

Donc

h_3 est définie et dérivable sur \mathbb{R} et \forall x \in \mathbb{R}, w'(x) = 0

Donc

h_3 est définie et dérivable sur \mathbb{R} et \forall x \in \mathbb{R},

h_3'(x) = -2.5u'(x) + 6 \times v'(x) + w'(x)

= -2.5 \times 2x + 6 \times 1 + 0

h_3'(x) = -5x + 6
```

5) 
$$h_4: x \mapsto \frac{5}{2}x^3 - 4x^2 + 3x - 7\sqrt{11}$$
 ;  $h_5: x \mapsto -\pi x^3 + \sqrt{5}x^2 - \frac{14}{3}x + 33$ 

• Pour  $h_4$ :

$$h_4$$
 est la forme  $\frac{5}{2} \times u - 4 \times v + 3 \times w - t$ 

où 
$$u: x \mapsto x^3$$
,  $v: x \mapsto x^2$ ,  $w: x \mapsto x$  et  $t: x \mapsto -7\sqrt{11}$ 

Or:

$$u, v, w$$
 et  $t$  sont définies et dérivables sur  $\mathbb{R}$  et  $\forall x \in \mathbb{R}$ ,  $u'(x) = 3x^2$ ,  $v'(x) = 2x$ ,  $w'(x) = 1$  et  $t'(x) = 0$ 

Donc

 $h_4$  est définie et dérivable sur  $\mathbb{R}$  et  $\forall x \in \mathbb{R}$ ,

$$h_{4}'(x) = \frac{5}{2} \times u'(x) - 4 \times v'(x) + 3 \times w'(x) - t'(x)$$
$$= \frac{5}{2} \times 3x^{2} - 4 \times 2x + 3 \times 1 - 0$$

$$h_4'(x) = \frac{15}{2}x^2 - 8x + 3$$

On a bien compris comment ça marche mais franchement c'est long comme rédaction! On pourrait pas aller un peu plus vite?

• Pour  $h_5$ :

 $h_5$  est une somme de fonctions de référence définie et dérivables sur  $\mathbb R$ , donc  $h_5$  est définie et dérivable sur  $\mathbb R$  et :

 $\forall x \in \mathbb{R}$ ,

$$h_5'(x) = \pi \times 3x^2 + \sqrt{5} \times 2x - \frac{14}{3} \times 1 + 0$$
On fait bien attention à arrêter le radical avant le  $x$ 



6) 
$$h_6: x \mapsto 3 x^n + 2 x^2 + \frac{3}{x}$$
;  $h_7: x \mapsto 5 \sqrt{x} + 8 x^{15} - \frac{4}{x}$ ;  $h_8: x \mapsto 5 \sqrt{x} + 7 |x| - \frac{7}{x}$ 

• Pour  $h_6$ :

 $h_6$  est une somme de fonctions de référence définies et dérivables sur  $]-\infty$ ;  $0[\cup]0$ ;  $+\infty[$  donc  $h_6$  est définie et dérivable sur  $]-\infty$ ;  $0[\cup]0$ ;  $+\infty[$  et :

« Qui peut le plus, peut le moins » :

 $x:\mapsto x^n$  et  $x:\mapsto x^2$  sont définies et dérivables sur  $\mathbb{R}$  qui contient  $]-\infty$ ;  $0[\cup]0$ ;  $+\infty[$  et  $x:\mapsto \frac{1}{x}$  n'est définie et dérivable que sur  $]-\infty$ ;  $0[\cup]0$ ;  $+\infty[$ .

On ne garde que la partie commune pour tout le monde :

$$]-\infty$$
;  $0[\cup]0$ ;  $+\infty[\cap\mathbb{R}=]-\infty$ ;  $0[\cup]0$ ;  $+\infty[$ 

 $\forall x \in ]-\infty ; 0[ \cup ]0 ; +\infty[,$ 

$$h_6'(x) = 3 \times nx^{n-1} + 2 \times 2x + 3 \times \left(-\frac{1}{x^2}\right)$$

$$h_6'(x) = 3 nx^{n-1} + 4x - \frac{3}{x^2}$$

#### • Pour $h_7$ :

 $h_7$  est une somme de fonctions de référence définies et dérivables sur ]0;  $+\infty[$ , donc  $h_7$  est définie et dérivable sur ]0;  $+\infty[$  et :

$$\forall x \in ]0 ; +\infty[,$$

$$h_7'(x) = 5 \times \frac{1}{2\sqrt{x}} + 8 \times 15 x^{14} - 4 \times \left(-\frac{1}{x^2}\right)$$

$$h_{7}'(x) = \frac{5}{2\sqrt{x}} + 120x^{14} + \frac{4}{x^2}$$

#### • Pour $h_8$ :

 $h_8$  est une somme de fonctions de référence définies et dérivables sur ]0;  $+\infty[$ , donc  $h_8$  est définie et dérivable sur ]0;  $+\infty[$  et :

$$\forall x \in ]0 ; +\infty[,$$

$$h_8'(x) = 5 \times \frac{1}{2\sqrt{x}} + 7 \times 1 - 7 \times \left(-\frac{1}{x^2}\right)$$

$$h_8'(x) = \frac{5}{2\sqrt{x}} + \frac{7}{x^2} + 7$$

On a « mis la constante à la fin »

7) 
$$h_9: x \mapsto (3x+4)(2x-7)$$
 ;  $h_{10}: x \mapsto (7-2x)^2$ 

À ce stade du cours, nous savons pas comment dériver des fonctions écrites sous cette forme. Comme d'habitude, on se ramène à quelque chose que l'on connaît...

### • Pour $h_9$ :

$$\forall x \in \mathbb{R}$$
.

$$h_9(x) = (3x+4)(2x-7)$$
  
=  $6x^2 - 21x + 8x - 28$ 

$$=6x^2-13x-28$$

Ainsi,  $h_9$  est une somme de fonctions de référence définies et dérivables sur  $\mathbb{R}$ , donc  $h_9$  est définie et dérivable sur  $\mathbb{R}$  et :

$$h_9'(x) = 6 \times 2x - 13 \times 1 - 0$$

$$h_9'(x) = 12x - 13$$

#### • Pour $h_{10}$ :

$$\forall x \in \mathbb{R}$$
,

$$h_{10}(x) = (7-2x)^2$$
$$= 4x^2 - 28x + 49$$

Ainsi,  $h_9$  est une somme de fonctions de référence définies et dérivables sur  $\mathbb{R}$ , donc  $h_9$  est définie et dérivable sur  $\mathbb{R}$  et :

$$h_{10}'(x) = 4 \times 2x - 28 \times 1 - 0$$

$$h_{10}'(x) = 4x - 28$$

# EXERCICE N°1 Preuve pour la fonction dérivée de $x \mapsto \sqrt{x}$ (à retenir)

Soit  $x \in \mathbb{R}_+^*$  (autrement dit : x est un nombre réel (  $\mathbb{R}$  ), positif ( + ), non nul ( \* )) et soit  $h \in \mathbb{R}_+^*$ .

Nous allons simplifier l'écriture  $\frac{\sqrt{x+h}-\sqrt{x}}{h}$  en utilisant une expression conjuguée (une technique à retenir :  $\sqrt{x+h}-\sqrt{x}$  a pour expression conjuguée  $\sqrt{x+h}+\sqrt{x}$ )

- 1) Justifier que  $\sqrt{x+h} + \sqrt{x}$  ne s'annule pas.
- 2) Simplifier l'expression :  $\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}-\sqrt{x})}$
- 3) En déduire le nombre dérivé en x de la fonction racine carrée.
- 4) À quoi servait la question 1)?

### EXERCICE N°2 Preuve de la deuxième ligne du tableau de la propriété n°5

Soit u une fonction définie sur un intervalle I de  $\mathbb R$ . Soit  $k \in \mathbb R$ , soit  $x \in I$  et soit  $h \in \mathbb R$  tel que  $x+h \in I$ .

- 1) Pourquoi impose-t-on  $x+h \in I$ ?
- 2) Simplifier l'expression  $\frac{f(x+h)-f(x)}{h}$ .
- 3) En déduire le nombre dérivé en x de la fonction  $f: x \mapsto k \times u(x)$ .

### EXERCICE N°3 Preuve pour la dérivée du produit (pour la culture)

#### **Préliminaires**

Soit a, b, c et d quatre réels, démontrer que ab-cd = d(a-c)+a(b-d).

## La preuve

Soit f et g deux fonctions définies sur un intervalle I de  $\mathbb R$  . Soit  $h \in \mathbb R$  , tel que  $x+h \in I$  .

- 1) Pourquoi impose-t-on  $x+h \in I$  ?
- 2) En utilisant les préliminaires, montrer que :

$$\frac{fg(x+h) - fg(x)}{h} = g(x)\frac{f(x+h) - f(x)}{h} + f(x)\frac{g(x+h) - g(x)}{h}$$

3) En déduire le nombre dérivé en x de la fonction  $fg: x \mapsto fg(x) = f(x)g(x)$ .

# EXERCICE N°4 Déterminer la fonction dérivée d'une fonction

Pour chaque fonction, préciser le domaine de définition, le domaine de dérivabilité et déterminer sa fonction dérivée.

1) 
$$f_1: x \mapsto 5$$
 ;  $f_2: x \mapsto \frac{15}{7}$  ;  $f_3: x \mapsto \sqrt{3}$  ;  $f_4: x \mapsto 2\pi$  ;  $f_5: x \mapsto -3\pi + 5\sqrt{3}$ 

- **2)**  $g_1: x \mapsto x+2$  ;  $g_2: x \mapsto x+3\pi\sqrt{7}$
- 3)  $g_3: x \mapsto 4x + 5$ ;  $g_4: x \mapsto \sqrt{7}x + 8.5$ ;
- 4)  $h_1: x \mapsto 3x^2 4$ ;  $h_2: x \mapsto 4x^2 + 5x 1$ ;  $h_3: x \mapsto -2.5x^2 + 6x + \sqrt{3}$
- 5)  $h_4: x \mapsto \frac{5}{2}x^3 4x^2 + 3x 7\sqrt{11}$  ;  $h_5: x \mapsto -\pi x^3 + \sqrt{5}x^2 \frac{14}{3}x + 33$
- 6)  $h_6: x \mapsto 3x^n + 2x^2 + \frac{3}{x}$ ;  $h_7: x \mapsto 5\sqrt{x} + 8x^{15} \frac{4}{x}$ ;  $h_8: x \mapsto 5\sqrt{x} + 7|x| \frac{7}{x}$
- 7)  $h_9: x \mapsto (3x+4)(2x-7)$ ;  $h_{10}: x \mapsto (7-2x)^2$

