IOTLAB 2021

Guillaume Schreiner (ICube/CNRS)

Scientific Context

Introduction

WIRELESS SENSOR NETWORKS

APPLICATIONS

INTERNET OF THINGS

Internet of Everything...

SCIENTIFIC ISSUES

MAC Layer, Routing Layer
Multi-hop Routing
IPv6 end-to-end
Security (Transmission, OTA Upgrades, etc.)
Energy Consumption

...

ß

INTERNET

EXPERIMENTATION

How to easily develop and test a large scale loT application

SILECS

Testbeds overview

RESEARCH CYCLE

- Idea
- Model
- Simulation
- Experimentation
- Deployment

FROM SENSORS TO THE CLOUD

- Complementary testbeds
 - IoT-LAB
 - Grid5k
- Exemple of experimentation

IR SILECS

IoT-LAB testbed

IOT-LAB

- The Very Large Scale IoT Testbed
 - **1500** loT nodes
 - 7 sites located in France

IOT-LAB

- Fully automated
 - Available 24/7
- Reproductible experimentations
- Multi-sites
- Free Access for everyone
 - Academic (researchers, students)
 - Industrials

Nodes, Infrastructure

Equipment

IOT-LAB NODES

- 3 logical components:
 - Gateway: uplink to the infrastructure, deploy user firmware
 - Control Node : monitoring (energy, radio)
 - Open Node : programmable loT Node

OPEN NODES (LEGACY)

Name (nb)	MCU	Sensors	Radio
M3 (817)	Cortex M3 (32bits), 72 MHz, 256 kB ROM, 64 kB RAM	LightAccelerometerPression	• AT86RF231 (2.4GHz)
A8 (470)	Cortex A8 (32 bits), 600 Mhz, 256 MB RAM	LightAccelerometerPression	AT86RF231 (2.4GHz)Ethernet

IOT-LAB CUSTOM NODES

- Open Nodes from the market (18 boards)
 - Arduino-zero, Zolertia, ST, nRF, micro:bit, Pycom, etc.
 - https://www.iot-lab.info/docs/boards/overview/
- Requirements: USB interface + Linux toolchain

Features, Embedded OS, Tools, Learn, Community

Large Scale IoT Experimentations

FONCTIONNALITES

- Large scale user firmware deployment
- Automatic performances monitoring
 - Energy, radio level, radio capture, RTL-SDR
- Serial port and debug port access
- User workspace for development
 - Via remote server trough SSH
 - Via local virtual machine
- Public IPv6 networks
- LoRaWAN Infrastructure

EMBEDDED OS

OS	M3	A8	CUSTOM
FreeRTOS	Х	-	х
Contiki	Х	-	Х
Riot	Х	-	X
OpenWSN	Х	-	Х
Zephyr	-	-	Х
Linux Yocto	-	Х	-

Test your own OS on our nodes!

LINUX YOCTO

- Image for Open Node
 - A8, Raspberry Pl 3 and 4
- Generate IPK
- Github https://github.com/iot-lab/iot-lab-yocto

GLOBAL OVERVIEW

REST API

- Authenticated access
- Experimentation
 - Submit, reload, stop or cancel, resources descriptions, etc.
- Monitoring profile
 - Get, create, modify, delete
- User preferences
 - Modify user, SSH keys, password, etc.

TOOLS

- Web Portal: quick hands-on for beginners
- CLI-tools + Run Script: batch your experiment
 - experiment, node, profile, robot
- Serial_aggregator: gather nodes serial output
- OML Plot Tools: graph monitoring results
- Remote debugger: gdb Open Node
- Sniffer_aggregator: gather radio capture
- Radio characterization: understand radio topology
- MQTT & Leshan broker: forward data to Internet

LEARN

- Quickly hands-on IoT-LAB, Jupyter Notebook & Tutorials
 - https://www.iot-lab.info/learn/
- MOOC: IoT with MCU: a hands-on course
 - Second session in 2021
 - https://www.fun-mooc.fr/courses/coursev1:inria+41020+session01/about

COMMUNITY

- Official Site http://www.iot-lab.info
- Github https://github.com/iot-lab/
- Mailing list <u>users@iot-lab.info</u>
- Register a personal account:
 - https://www.iot-lab.info/testbed/signup

IOT-LAB USERS

> 7 000 users

■ FRA 32 %

IND 13.4%

■ GER 3,5%

■ ITA 3,2%

IOT-LAB USAGE RATIO

>270 000 experimentations

IOT-LAB PUBLICATIONS

- Publications https://www.iot-lab.info/community/publications/
 - Publications using/citing loT-LAB 299
 - https://scholar.google.com/citations?user=RLklob4AAAAJ
 - **2021**: 7
 - **2020**: 15
 - **2019**: 39
 - **2018**: 57
 - **2017**: 36

REPRODUCIBILITY

- Ability to run the same setup several times
 - Firmware
 - Nodes id
 - Monitoring
 - Duration

REPRODUCIBILITY

- Radio interferences issues
 - From others IoT-LAB users (same techno and radio chanels)
 - Solution:
 - book all the site

REPRODUCIBILITY

- Radio interferences issues
 - From outside the testbed (Wi-Fi, Bluetooth, etc)
 - Solutions:
 - Schedule experiment outside office hours (night, weekend)
 - Use an anechoic chamber (expansive, small)

Packet loss
During workhours