PRÉPAS INTERNATIONALES

Filière Ingénierie Générale

B.P.: 2375 Yaoundé

Sis Carrefour des Carreaux, Immeuble 3ème étage

Tél.: 696 16 46 86

E-mail.: <u>prepas.internationales@yahoo.com</u> Site: <u>www.prepas-internationales.org</u>

MECANIQUE DU POINT MATERIEL DEVOIR SURVEILLE DU 22-01-2021, Durée 1H Année académique 2020-2021

EXERCICE I (08 POINTS)

Résoudre les équations différentielles suivantes :

1.
$$\frac{d^2y}{dx^2} + y = \frac{1}{\sin^2 x}$$

2.
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 13y = 10\cos 2x + 25\sin 2x$$

EXERCICE II (12 POINTS)

Soient $\vec{\mathbf{U}}(x, y, z) = (x + z)\vec{\mathbf{i}} + y^2\vec{\mathbf{j}} + x\vec{\mathbf{k}}$ et $\vec{\mathbf{V}}(x, y, z) = 3x^2\vec{\mathbf{i}} + (2xz - y^3)\vec{\mathbf{j}} + z\vec{\mathbf{k}}$ deux champs de vecteurs.

- 1. Calculer le rotationnel de ces champ de vecteur et conclure.
- **2.** Calculer la circulation de $\bar{\mathbf{U}}$ le long d'un arc d'équations paramétriques : $x(t) = R\cos t$, $y(t) = R\sin t$, z(t) = at, limité par les points A(R, 0, 0) et $B(R, 0, 2\pi a)$ et le long d'une la droite (AB), puis conclure.
- **3.** Calculer la circulation de $\vec{\mathbf{V}}$ le long la courbe d'équations paramétriques : $x(t) = 2t^2$, y(t) = t, $z(t) = 2t^2 t$, limitée par les points O(0,0,0) et A(2,1,3) et le long d'une la droite (OA), puis conclure.
- **4.** Commenter les résultats obtenus à la question 2 et à la question 3.