

Segundo Cuatrimestre 2025

Pau Frangi Mahiques, Pablo Pardo Cotos y Diego Rodríguez Cubero $Ciencias\ Matemáticas\ e$ $Ingenería\ Informática$

¹basado en la apuntes de Jesús Jaramillo

Contents

1	Medida de Lebesgue	2
	1.1 Medida Exterior de Lebesgue en \mathbb{R}^n	2
	1.2 Medida de Lebesgue en \mathbb{R}^n	
	1.3 Medibilidad de Funciones	11
2	Funciones integrables en varias variables	26
3	Teorema de Fubini	27
4	Cambio de variables	2 8
5	Funciones definidas por integrales	2 9
6	Integrales de línea: campos escalares y vectoriales	30
7	Teorema de Green	31
8	Superficies paramétricas	32
9	Integrales de superficie	33
10	Teorema de Stokes, Teorema de la divergencia de Gauss	34

1 Medida de Lebesgue

1.1 Medida Exterior de Lebesgue en \mathbb{R}^n

Definición 1.1.1. Un n-rectángulo en \mathbb{R}^n es un conjunto de la forma:

$$R = \prod_{i=1}^{n} [a_i, b_i] = [a_1, b_1] \times [a_2, b_2] \times \dots \times [a_n, b_n] \text{ donde } a_i \le b_i \ \forall i$$
 (1)

Definimos el volúmen de R como:

$$\operatorname{vol}(R) = \prod_{i=1}^{n} (b_i - a_i) \tag{2}$$

Consideramos también los n-rectángulos abiertos denotados por R, que se definen de forma análoga. Si nos se especifica si un rectángulo es abierto o cerrado, se asume que es cerrado.

Observación 1.1.1. Dado R n-rectángulo cerrado tal que $R = \prod_{i=1}^{n} [a_i, b_i]$, podemos considerar para cada $\delta > 0$ el n-rectángulo abierto $R_{\delta} = \prod_{i=1}^{n} (a_i - \delta, b_i + \delta)$. Se tiene que $R \subset R_{\delta}$ y vol $(R_{\delta}) = \prod_{i=1}^{n} (b_i - a_i + 2\delta) = \text{vol}(R) + 2n\delta$. Por tanto:

$$vol(R) = \lim_{\delta \to 0} vol(R_{\delta})$$
 (3)

Definición 1.1.2. Sea $A \subset \mathbb{R}^n$. Definimos la medida exterior de A como:

$$m^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \operatorname{vol}(R_i) \mid A \subset \bigcup_{i=1}^{\infty} R_i \text{ con } R_i \text{ n-rectángulos cerrados} \right\}$$
 (4)

Donde la ínfimo se toma sobre todas las colecciones numerables de n-rectángulos que recubren A. A esta medida exterior la llamamos medida de Lebesgue exterior.

Observación 1.1.2. Sea $A \subset \mathbb{R}^n$

- 1. $m^*(A) = +\infty \iff \forall \{R_j\}_{j \in J} \text{ tal que } A \subset \bigcup_{j \in J} R_j \text{ se tiene que } \sum_{j \in J} \operatorname{vol}(R_j) = +\infty$
- 2. $m^*(A) = 0 \iff \forall \epsilon > 0 \ \exists \{R_j\}_{j \in J} \ \text{tal que } A \subset \bigcup_{j \in J} R_j \ \text{y} \ \sum_{j \in J} \operatorname{vol}(R_j) < \epsilon$
- 3. $m^*(A) = \alpha \in \mathbb{R}^+ \iff \forall \epsilon > 0 \ \exists \{R_j\}_{j \in J} \ \text{tal que } A \subset \bigcup_{j \in J} R_j \ \text{y} \ \sum_{j \in J} \operatorname{vol}(R_j) < \alpha + \epsilon$

Definición 1.1.3. Se dice que $A \subset \mathbb{R}^n$ es un conjunto nulo si $m^*(A) = 0$.

- 1. Si R es un n-rectángulo degenerado, es decir, R tiene alguno de los lados de longitud 0, entonces R es un conjunto nulo $(m^*(R) = 0)$.
- 2. En \mathbb{R}^2 , sea el conjunto $A=\{(x,x):0\leq x\leq 1\}$. Dado $\epsilon>0$ tomamos $m\in\mathbb{N}$ tal que $m>\frac{1}{\epsilon}$. Consideramos $A\subset\bigcup_{i=1}^m[\frac{i-1}{m},\frac{i}{m}]\times[\frac{i-1}{m},\frac{i}{m}]$. Se tiene que $m^*(A)\leq\sum_{i=1}^m\mathrm{vol}([\frac{i-1}{m},\frac{i}{m}]\times[\frac{i-1}{m},\frac{i}{m}])=\frac{1}{m^2}\cdot m=\frac{1}{m}<\epsilon$. Por tanto, $m^*(A)=0$.

Denotamos por $\mathcal{P}(\mathbb{R}^n)$ al conjunto de todos los subconjuntos de \mathbb{R}^n .

Teorema 1.1.1. Sea $m^* \times \mathcal{P}(\mathbb{R}^n) \to [0, +\infty]$ una función que cumple:

- 1. $m^*(\emptyset) = 0$
- 2. $m^*(A) \leq m^*(B)$ si $A \subset B$
- 3. $m^*(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} m^*(A_i)$

Entonces m^* es una medida exterior en \mathbb{R}^n .

Demostración.

- 1. $\emptyset \subset \bigcup_{i=1}^{\infty} R_i \text{ con } R_j \text{ n-rectángulos degenerados } \implies m^*(\emptyset) \leq \sum_{j=1}^{\infty} \operatorname{vol}(R_j) = 0 \implies m^*(\emptyset) = 0.$
- 2. Sea $A \subset B$ y sea $\{R_j\}_{j \in J}$ tal que $B \subset \bigcup_{j \in J} R_j$. Entonces $\{R_j\}_{j \in J}$ es un recubrimiento de A y por tanto $m^*(A) \leq \sum_{j \in J} \operatorname{vol}(R_j) \implies m^*(A) \leq m^*(B)$.
- 3. Si $\sum_{j=1}^{\infty} A_j = +\infty$ entonces el resultado es inmediato. Supongamos que $\sum_{j=1}^{\infty} A_j < +\infty$. Sea $\epsilon > 0$. Para cada $j \in \mathbb{N}$, $\exists \{R_{j,i}\}_{i=1}^{\infty}$ tal que $A_j \subset \bigcup_{i=1}^{\infty} R_{j,i}$ y $\sum_{i=1}^{\infty} \operatorname{vol}(R_{j,i}) < m^*(A_j) + \frac{\epsilon}{2^j}$. Entonces $\bigcup_{j=1}^{\infty} A_j \subset \bigcup_{j=1}^{\infty} \bigcup_{i=1}^{\infty} R_{j,i}$ y por tanto se tiene que $m^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \operatorname{vol}(R_{j,i}) < \sum_{j=1}^{\infty} (m^*(A_j) + \frac{\epsilon}{2^j}) = \sum_{j=1}^{\infty} m^*(A_j) + \epsilon$. Como ϵ es arbitrario, se tiene que $m^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} m^*(A_j)$.

Corolario 1.1.1. La unión numerable de conjuntos nulos es un conjunto nulo.

Demostración. Sea $\{A_j\}_{j=1}^{\infty} \subset R^n$ tal que $m^*(A_j) = 0 \quad \forall j \in \mathbb{N}$ entonces $m^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} m^*(A_j) = 0 \implies m^*(\bigcup_{j=1}^{\infty} A_j) = 0.$

Lema 1.1.1. Sea $A \in \mathbb{R}^n$ entonces $m^*(A) = \inf \{ \sum_{i=1}^{\infty} \operatorname{vol}(Q_i) \mid A \subset \bigcup_{i=1}^{\infty} Q_i \text{ con } Q_i \text{ n-rectángulos abiertos} \}$

Demostración. Denotamos por β el ínfimo de la expresión del enunciado del lema. Sea $\{Q_j\}_{j\in\mathbb{N}}$ una sucesión de rectángulos abiertos tal que $A\subset\bigcup_{j\in\mathbb{N}}Q_j$. Tenemos entonces que $A\subset\bigcup_{j\in\mathbb{N}}Q_j\subset\bigcup_{j\in\mathbb{N}}\overline{Q}_j$ y puesto que $\sum_{j\in\mathbb{N}}\operatorname{vol}(\overline{Q}_j)=\sum_{j\in\mathbb{N}}\operatorname{vol}(Q_j)$, se tiene que $m^*(A)\leq\sum_{j\in\mathbb{N}}\operatorname{vol}(\overline{Q}_j)\leq\beta$. Por tanto, $m^*(A)\leq\beta$. Veamos ahora la otra desigualdad $\beta\leq m^*(A)$. Si $m^*(A)=+\infty$ entonces $\beta=+\infty$ y no hay nada que demostrar. Supongamos que $m^*(A)<+\infty$. Sea $\epsilon>0$. Por definición de medida exterior, $\exists\{R_j\}_{j\in\mathbb{N}}$ sucesión de n-rectángulos cerrados tal que $A\subset\bigcup_{j\in\mathbb{N}}R_j$ y $\sum_{j\in\mathbb{N}}\operatorname{vol}(R_j)< m^*(A)+\epsilon$. Para cada $j\in\mathbb{N}$ consideramos $\epsilon_j=\frac{\epsilon}{2^j}$. Escogiendo $\delta_j>0$ lo suficientemente pequeño, se tiene que $\operatorname{vol}(R_j)\delta_j<\operatorname{vol}(R_j)+\epsilon_j$ para todo $j\in\mathbb{N}$. Nótese que aquí $\operatorname{vol}(R_j)\delta_j$ denota el volumen del n-rectángulo abierto R_j con lados aumentados en δ_j . Entonces $A\subset\bigcup_{j\in\mathbb{N}}R_j\subset\bigcup_{j\in\mathbb{N}}(R_j)\delta_j$ y $\sum_{j\in\mathbb{N}}\operatorname{vol}(R_j)\delta_j<\sum_{j\in\mathbb{N}}(\operatorname{vol}(R_j)+\epsilon_j)=\sum_{j\in\mathbb{N}}\operatorname{vol}(R_j)+\epsilon< m^*(A)+2\epsilon$. Por tanto, $\beta\leq m^*(A)$.

Definición 1.1.4. Una partición del intervalo [a,b] es una colección numerable de puntos $P = \{a = t_0 < t_1 < ... < t_n = b\}$. Dado un n-rectángulo $R \subset \mathbb{R}^n$, una partición $P = \{P_1, P_2, ..., P_n\}$ de R es una colección particiones P_i de $[a_i, b_i]$ para cada i = 1, 2, ..., n siendo $R = \prod_{i=1}^n [a_i, b_i]$.

Los subrectángulos de P son los conjuntos de la forma

$$S_{i_1,i_2,\dots,i_n} = \prod_{i=1}^n [t_{i_j}^j, t_{i_j+1}^j]$$
 (5)

Denotamos $S \in P$ para indicar que S es un subrectángulo de P.

Lema 1.1.2. Sea $R \subset \mathbb{R}^n$ un n-rectángulo y P una partición de R. Entonces:

- 1. $R = \bigcup_{S \in P} S$
- 2. Si $S, S' \in P$ v $S \neq S'$ entonces $S \cap S' = \emptyset$
- 3. $\operatorname{vol}(R) = \sum_{S \in P} \operatorname{vol}(S)$

Proposición 1.1.1. Sea $R \subset \mathbb{R}^n$ un n-rectángulo entonces $m^*(R) = \text{vol}(R)$.

Demostración.

" < "

Sea $R \subset \bigcup_{j \in \mathbb{N}} R_j$ con $R_1 = R$ y R_j degenerados para j > 1. Entonces:

$$m^*(R) \le \sum_{j \in \mathbb{N}} \operatorname{vol}(R_j) = \operatorname{vol}(R_1) + \sum_{j=2}^{\infty} \operatorname{vol}(R_j) = \operatorname{vol}(R_1) = \operatorname{vol}(R).$$

">"

Dado $\epsilon > 0$ existe $\{Q_j\}_{j \in \mathbb{N}}$ sucesión de n-rectángulos abiertos tal que $R \subset \bigcup_{j \in \mathbb{N}} Q_j$ y $\sum_{j \in \mathbb{N}} \operatorname{vol}(Q_j) < m^*(R) + \epsilon$. Sabemos que R es compacto al ser cerrado y acotado y, por tanto, al ser $\bigcup_{j \in \mathbb{N}} Q_j$ un recubrimiento abierto de R, existe un subrecubrimiento finito $\{Q_1, Q_2, ..., Q_m\}$ de R. Entonces $R \subset \bigcup_{i=1}^m Q_i \subset \bigcup_{i=1}^m \overline{Q}_i$. Consideramos $R_j = R \cap \overline{Q}_j$ para j = 1, 2, ..., m. Tenemos entonces que $R = \bigcup_{j=1}^m \overline{Q}_j$ y además prolongando los lados podemos obtener una partición P de R tal que cada subrectángulo de P está contenido el algún R_j para $1 \le j \le m$. Por tanto, $\operatorname{vol}(R) = \sum_{S \in P} \operatorname{vol}(S) \le \sum_{j=1}^m \operatorname{vol}(R_j) \le \sum_{j=1}^m \operatorname{vol}(Q_j) < m^*(R) + \epsilon$. Por tanto, $m^*(R) \ge \operatorname{vol}(R)$.

1.2 Medida de Lebesgue en \mathbb{R}^n

Notación: Para $A \subset \mathbb{R}^n$ denotamos por A^c al complementario de A en \mathbb{R}^n .

Definición 1.2.1. Un conjunto $A \subset \mathbb{R}^n$ es medible en el sentido de Lebesgue si para todo $R \subset \mathbb{R}^n$ n-rectángulo se tiene que:

$$m^*(R) = m^*(R \cap A) + m^*(R \cap A^c)$$
 (6)

Proposición 1.2.1. Sea $A \subset \mathbb{R}^n$ entonces son equivalentes:

- 1. A es medible en el sentido de Lebesgue.
- 2. $\forall E \subset \mathbb{R}^n$ conjunto se tiene que $m^*(E) = m^*(E \cap A) + m^*(E \cap A^c)$.
- 3. $\forall E \subset \mathbb{R}^n$ conjunto se tiene que $m^*(E) \geq m^*(E \cap A) + m^*(E \cap A^c)$.

Demostración.

$$"2 \implies 3"$$

Trivial

"3
$$\Longrightarrow$$
 2"

$$m^*(E) = m^*(E \cap A) + m^*(E \cap A^c) + m^*(E \cap A \cap A^c) \le m^*(E \cap A) + m^*(E \cap A^c)$$

$$"2 \implies 1"$$

Inmediato, tomando E = R.

$$"1 \implies 3"$$

Sea $E \subset \mathbb{R}^n$ conjunto, si $m^*(E) = +\infty$ entonces el resultado es inmediato. Supongamos que $m^*(E) < +\infty$. Sea $\epsilon > 0$. Por definición de medida exterior, $\exists \{R_j\}_{j \in \mathbb{N}}$ sucesión de n-rectángulos cerrados tal que $E \subset \bigcup_{j \in \mathbb{N}} R_j$ y $\sum_{j \in \mathbb{N}} \operatorname{vol}(R_j) < m^*(E) + \epsilon$. Entonces $E \cap A \subset \bigcup_{j \in \mathbb{N}} R_j \cap A$ y $E \cap A^c \subset \bigcup_{j \in \mathbb{N}} R_j \cap A^c$. Por tanto, $m^*(E \cap A) + m^*(E \cap A^c) \leq \sum_{j \in \mathbb{N}} m^*(R_j \cap A) + \sum_{j \in \mathbb{N}} m^*(R_j \cap A^c) = \sum_{j \in \mathbb{N}} \operatorname{vol}(R_j) < m^*(E) + \epsilon$. Por tanto, $m^*(E) \geq m^*(E \cap A) + m^*(E \cap A^c)$.

Definición 1.2.2. Sea X un conjunto y $A \subset \mathcal{P}(X)$ una colección de subconjuntos de X. Se dice que A es una σ -álgebra si:

- 1. $X \in \mathcal{A}$
- 2. Si $A \in \mathcal{A} \implies A^c \in \mathcal{A}$
- 3. $\forall \{A_j\}_{j\in\mathbb{N}} \subset \mathcal{A}$ se tiene que $\bigcup_{j\in\mathbb{N}} A_j \in \mathcal{A}$

Definición 1.2.3. Sea X un conjunto y $A \subset \mathcal{P}(X)$ una σ -álgebra, entonces una medida en X es una función $\mu : A \to [0, +\infty]$ tal que:

- 1. $\mu(\emptyset) = 0$
- 2. Si $\{A_i\}_{i\in\mathbb{N}}\subset\mathcal{A}$ es una colección numerable de conjuntos disjuntos dos a dos entonces:

$$\mu(\bigcup_{j\in\mathbb{N}} A_j) = \sum_{j\in\mathbb{N}} \mu(A_j)$$

Teorema 1.2.1. La familia M de todos los conjuntos medibles de \mathbb{R}^n es una σ -álgebra y $m=m^*\upharpoonright_M$ es una medida numerablemente aditiva que llamaremos medida de Lebesgue en \mathbb{R}^n .

Demostraremos este teorema con los siguientes lemas:

Lema 1.2.1. \mathbb{R}^n es medible en el sentido de Lebesgue.

Demostración. Sea $E \subset \mathbb{R}^n$ conjunto. Entonces $m^*(E) = m^*(E \cap \mathbb{R}^n) + m^*(E \cap (\mathbb{R}^n)^c) = m^*(E) + m^*(\emptyset) = m^*(E) + 0 = m^*(E)$.

Lema 1.2.2. Sea $A \subset \mathbb{R}^n$ medible en el sentido de Lebesgue. Entonces A^c es medible en el sentido de Lebesgue.

Demostración. Sea $E \subset \mathbb{R}^n$ conjunto. Entonces $m^*(E \cap A^c) + m^*(E \cap (A^c)^c) = m^*(E \cap A^c) + m^*(E \cap A) = m^*(E)$

Con los dos lemas anteriores obtenemos como colorario que \emptyset es medible en el sentido de Lebesgue.

Lema 1.2.3. Sean $A, B \subset \mathbb{R}^n$ medibles en el sentido de Lebesgue. Entonces $A \cup B$ y $A \cap B$ son medibles en el sentido de Lebesgue.

Demostración. Observemos primero que $A \cup B = (A^c \cap B) \cup (A \cap B) \cup (A \cap B^c)$ luego entonces tenemos que $m^*(A \cup B) \le m^*(A^c \cap B) + m^*(A \cap B) + m^*(A \cap B^c)$. Sea $E \subset \mathbb{R}^n$ conjunto. Entonces $m^*(E) = m^*(E \cap A) + m^*(E \cap A^c) = m^*(E \cap A) + m^*(E \cap A^c \cap B) + m^*(E \cap A^c \cap B) + m^*(E \cap A \cap B) + m^*(E \cap A \cap B^c) + m^*(E \cap A \cap B) + m^*(E \cap A \cap B) + m^*(E \cap A \cap B) = m^*(E \cap A \cap B) + m^*(E \cap A \cap B) = m^*($

Lema 1.2.4. Sea $\{A_j\}_{j\in\mathbb{N}}\subset\mathbb{R}^n$ una colección numerable de conjuntos medibles en el sentido de Lebesgue. Entonces $\bigcup_{j\in\mathbb{N}}A_j$ es medible en el sentido de Lebesgue y además $m^*(\bigcup_{j\in\mathbb{N}}A_j)=\sum_{j\in\mathbb{N}}m^*(A_j)$

Demostración. Definimos la sucesión creciente de conjuntos $B_k = A_1 \cup ... \cup A_k$. Entonces B_k es medible en el sentido de Lebesgue por el lema anterior. Sean $B = \bigcup_{k \in \mathbb{N}} B_k = \bigcup_{j \in \mathbb{N}} A_j$ y $E \in \mathbb{R}^n$ tenemos:

$$m^*(E \cap B_k) = m^*(E \cap B_k \cap A_k) + m^*(E \cap B_k \cap A_k^c) = m^*(E \cap A_k) + m^*(E \cap B_{k-1}) = m^*(E \cap A_k) + m^*(E \cap B_{k-1}) = m^*(E \cap B_k) + m^*(E \cap B_k) = m^*(E \cap B_k)$$

Reiterando el proceso obtenemos $m^*(E \cap B_k) = \sum_{j=1}^k m^*(E \cap A_j)$. Por lo tanto, $m^*(E) = m^*(E \cap B_k) + m^*(E \cap B_k^c) = \left(\sum_{j=1}^k m^*(E \cap A_j)\right) + m^*(E \cap B_k^c) \ge \sum_{j=1}^k m^*(E \cap A_j) + m^*(E \cap B^c)$. Se sigue entonces $m^*(E) \ge \sum_{j \in \mathbb{N}} m^*(E \cap A_j) + m^*(E \cap B^c) \ge m^*(E \cap B^c) \ge m^*(E \cap B) + m^*(E \cap B^c)$ Luego B es medible.

Tomando E=B en la desigualdad anterior obtenemos $m^*(B) \geq \sum_{j\in\mathbb{N}} m^*(B\cap A_j) + m^*(B\cap B^c) = \sum_{j\in\mathbb{N}} m^*(B\cap A_j)$. Por otro lado, $m^*(B) \leq \sum_{j\in\mathbb{N}} m^*(B\cap A_j)$ por definición de medida exterior. Por tanto, $m^*(B) = \sum_{j\in\mathbb{N}} m^*(A_j) \implies m^*(\bigcup_{j\in\mathbb{N}} A_j) = \sum_{j\in\mathbb{N}} m^*(A_j)$.

Lema 1.2.5. La unión numerable de conjuntos medibles en el sentido de Lebesgue es un conjunto medible en el sentido de Lebesgue.

Demostración. Sea $\{B_j\}_{j\in\mathbb{N}}$ una colección numerable de conjuntos medibles en el sentido de Lebesgue. Considermos:

$$A_1 = B_1$$

$$A_2 = B_2 \cap B_1^c$$

$$A_3 = B_3 \cap B_2^c \cap B_1^c$$

$$\vdots$$

$$A_j = B_j \cap B_{j-1}^c \cap \ldots \cap B_1^c$$

Observemos que $\bigcup_{j\in\mathbb{N}}A_j=\bigcup_{j\in\mathbb{N}}B_j$ y que para todo $j\in\mathbb{N},$ A_j es intersección finita de conjuntos medibles, por tanto, A_j es medible. Además, $\forall i,j\in\mathbb{N}$ con $i\neq j,$ $A_i\cap A_j=\emptyset$. Por el lema anterior, $\bigcup_{j\in\mathbb{N}}A_j$ es medible $\Longrightarrow \bigcup_{j\in\mathbb{N}}B_j$ es medible. \square

Proposición 1.2.2. Todo conjunto nulo es medible en el sentido de Lebesgue.

Demostración. Sea $A \subset \mathbb{R}^n$ nulo, entonces $m^*(A) = 0$. $\forall E \in \mathbb{R}^n$ se tiene que $E \cap A \subset A \implies 0 \le m^*(E \cap A) \le m^*(A) = 0 \implies m^*(E \cap A) = 0$. Análogamente, $E \cap A^c \subset E \implies 0 \le m^*(E \cap A^c) \le m^*(E) \implies m^*(E \cap A^c) = 0$. Por tanto, $m^*(E \cap A) + m^*(E \cap A^c) \le m^*(E)$. Para la otra desigualdad, $E = (E \cap A) \cup (E \cap A^c) \implies m^*(E) \le m^*(E \cap A) + m^*(E \cap A^c)$. Y por tanto obtenemos la igualdad $m^*(E) = m^*(E \cap A) + m^*(E \cap A^c)$.

Definición 1.2.4. Se dice que una *propiedad* se verifica en casi todo punto cuando el conjunto de puntos en los que no se verifica la propiedad es un conjunto nulo.

Proposición 1.2.3. Todo n-rectángulo cerrado $R \in \mathbb{R}^n$ es medible en el sentido de Lebesgue.

Demostración. Dado $R \subset \mathbb{R}^n$ n-rectángulo cerrado, tenemos que ver que $\forall Q \in \mathbb{R}^n$ n-rectángulo cerrado se tiene que $\operatorname{vol}(Q) \geq m^*(Q \cap R) + m^*(Q \cap R^c)$. Consideramos el n-rectángulo $Q_0 = Q \cap R$. Nótese que $Q \cap R^c$ es unión finita de n-rectángulos $\{Q_1, \ldots, Q_m\}$. Entonces $Q = Q_0 \cup Q_1 \cup \ldots \cup Q_m$ forman una partición de Q. Luego $\operatorname{vol}(Q) = \sum_{i=0}^m \operatorname{vol}(Q_i) = m^*(Q \cap R) + \sum_{i=1}^m m^*(Q_i) \geq m^*(Q \cap R) + m^*(Q \cap R^c)$.

Observación 1.2.1. En \mathbb{R}^n los rectángulos abiertos o se^omiabiertos son medibles en el sentido de Lebesgue.

Definición 1.2.5. Un n-cubo cerrado (respectivamente abierto) en \mathbb{R}^n es un conjunto de la forma:

$$R = [a_1, b_1] \times ... \times [a_n, b_n]$$
 tal que $\forall i, j \in \{1, 2, ..., n\}$ se tiene que $b_i - a_i = b_j - a_j$ (7)

Análogamente se pueden definir los cubos n-dimensionales semi-abiertos.

Observación 1.2.2. Denotaremos la norma del supremo en \mathbb{R}^n como:

$$||x||_{\infty} = \sup_{i=1}^{n} \{|x_i|\} \text{ para } x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$
 (8)

Llamaremos bola abierta de centro $x \in \mathbb{R}^n$ y radio r > 0 al conjunto:

$$B_{\infty}(x,r) = \{ y \in \mathbb{R}^n : ||y - x||_{\infty} < r \} \equiv (x_1 - r, x_1 + r) \times \ldots \times (x_n - r, x_n + r)$$
 (9)

Análogamente, llamaremos bola cerrada de centro $x \in \mathbb{R}^n$ y radio r > 0 al conjunto:

$$\overline{B}_{\infty}(x,r) = \{ y \in \mathbb{R}^n : ||y - x||_{\infty} \le r \} \equiv [x_1 - r, x_1 + r] \times \ldots \times [x_n - r, x_n + r]$$
 (10)

Teorema 1.2.2. Sea $G \in \mathbb{R}^n$ abierto entonces se tiene:

1. G es unión numerable de n-cubos cerrados.

2. G es unión numerable de n-cubos abiertos.

Demostración. Consideremos la familia de n-cubos $\mathcal{B} = \{\overline{B}_{\infty}(q,r) : q \in \mathbb{Q}^n, r \in \mathbb{Q}, r > 0, \overline{B}_{\infty}(q,r) \subset G\}$. Veamos que $G = \bigcup_{B \in \mathcal{B}} B$. Dado que $B \in G$ $\forall B \in \mathcal{B}$ entonces es inmediato ver que $\bigcup_{B \in \mathcal{B}} B \subset G$. Por ser G abierto, $\exists \delta > 0$ tal que $B_{\infty}(x,\delta) \subset G$. Sea $r \in \mathbb{Q}$ con $0 < r < \frac{\delta}{2}$, por la densidad de \mathbb{Q}^n en \mathbb{R}^n , sabemos que $\exists q \in \mathbb{Q}^n$ tal que $||x-q||_{\infty} < r$. Veamos entonces que $x \in B_{\infty}(q,r) \subset B_{\infty}(x,\delta) \subset G$. Dado $y \in \mathbb{R}^n$ con $||y-q||_{\infty} < r$ se sigue:

$$||y - x||_{\infty} \le ||y - q||_{\infty} + ||q - x||_{\infty} < r + r = 2r < \delta$$

Por tanto $y \in B_{\infty}(x, \delta) \implies x \in \overline{B}_{\infty}(q, r) \subset G$. Luego $G = \bigcup_{B \in \mathcal{B}} B$.

Nótese que numerabilidad de la familia \mathcal{B} es inmediata por la numerabilidad de \mathbb{Q}^n que, a su vez, es numerable por ser \mathbb{Q} numerable.

La segunda parte del teorema es análoga a la primera.

Corolario 1.2.1. Todos los conjuntos abiertos y cerrados de \mathbb{R}^n son medibles en el sentido de Lebesgue.

Teorema 1.2.3. Sea $E \in \mathbb{R}^n$, entonces son equivalentes:

- 1. E es medible en el sentido de Lebesgue.
- 2. $\forall \epsilon > 0 \quad \exists G \in \mathbb{R}^n$ abierto tal que $E \subset G$ y $m^*(G \setminus E) < \epsilon$.
- 3. $\forall \epsilon > 0 \quad \exists F \in \mathbb{R}^n \text{ cerrado tal que } F \subset E \text{ y } m^*(E \setminus F) < \epsilon.$
- 4. $\forall \epsilon$ existen F cerrado y G abierto tales que $F \subset E \subset G$ y $m^*(G \setminus F) < \epsilon$.

Demostración.

" $1 \implies 2$ " Distinción de casos:

- 1. Supongamos que $m^*(E) < +\infty$: Sea $\epsilon > 0$. Por definición de medida exterior, $\exists \{R_j\}_{j \in \mathbb{N}}$ sucesión de n-rectángulos abiertos tales que $E \subset \bigcup_{j=1}^{\infty}(R_j)$ y $\sum_{j \in \mathbb{N}} \operatorname{vol}(R_j) < m^*(E) + \epsilon$. Considerando el abierto $G = \bigcup_{j=1}^{\infty}(R_j)$, se tiene que G es medible por el colorario anterior y $m^*(G) = m^*(E \cap G) + m^*(E \cap G^c) = m^*(E) + m^*(G \setminus E)$. Por tanto, $m^*(G \setminus E) = m^*(G) m^*(E) < \sum_{j \in \mathbb{N}} \operatorname{vol}(R_j) m^*(E) < \epsilon$.
- 2. Supongamos que $m^*(E) = +\infty$: $\forall k \in \mathbb{N}$ sea $E_k = E \cap [-k, k]^n$, que es medible por ser intersección finita de conjuntos medibles. Además $m^*(E_k) < +\infty$ por ser E_k acotado, y $E = \bigcup_{k=1}^{\infty} E_k$. Dado $\epsilon > 0$, $\forall k \in \mathbb{N}$ existe G_k abierto tal que $E_k \subset G_k$ y $m^*(G_k \setminus E_k) < \frac{\epsilon}{2^k}$. Entonces $G = \bigcup_{k=1}^{\infty} G_k$ abierto y $E = \bigcup_{k=1}^{\infty} E_k \subset \bigcup_{k=1}^{\infty} G_k = G$ por lo que $m^*(G \setminus E) \le m^*(\bigcup_{k=1}^{\infty} (G_k \setminus E_k)) \le \sum_{k=1}^{\infty} m^*(G_k \setminus E_k) < \sum_{k=1}^{\infty} \frac{\epsilon}{2^k} = \epsilon$.

$$"2 \implies 1"$$

 $\forall j \in \mathbb{N}$ tomando $\epsilon = \frac{1}{j}$ entonces $\exists G_j$ abierto tal que $E \subset G_j$ y $m^*(G_j \setminus E) < \frac{1}{j}$. Entonces considerando $B = \bigcap_{j=1}^{\infty} G_j$ que es medible y abierto se tiene que $E \subset B$. Luego $B \setminus E \subset G_j \setminus E$ para todo $j \in \mathbb{N}$. Por tanto, $m^*(B \setminus E) \leq m^*(G_j \setminus E) < \frac{1}{j}$. En consecuencia $m^*(B \setminus E) = 0 \implies B \setminus E$ es medible.

Por otro lado, $B = E \cup (B \setminus E)$ o que es lo mismo $E = B \setminus (B \setminus E)$. Tanto B como $(B \setminus E)$ son medibles, luego E es medible.

Observación: Además, $E = B \setminus Z$, donde B es intersección numerable de abiertos o Z es un conjunto nulo. "1 \implies 3"

Como E es medible entonces E^c también los es. Por (2), dado $\epsilon > 0$ existe G abierto tal que $E^c \subset G$ y $m^*(G \setminus E^c) < \epsilon$. Entonces $F = G^c$ es cerrado y $F \subset E$. Además, $E \setminus F = E \cap F^c = E \cap G = G \setminus E^c \implies$

$$m^*(E \setminus F) = m^*(G \setminus E^c) < \epsilon.$$
"1 \Longrightarrow 3"

Como E es medible entonces tenemos que E^c también es medible, por lo que, dado $\epsilon > 0$ por (2) $\exists G$ -abierto tal que $E^c \subset G$ y $m^*(G \setminus E^c) < \epsilon$. Entonces $F = G^c$ es cerrado y $F \subset E$. Además, $E \setminus F = E \cap F^c = E \cap G = G \setminus E^c \implies m^*(E \setminus F) = m^*(G \setminus E^c) < \epsilon$.

"3 \implies 1"

 $\forall j \in \mathbb{N} \ \exists F_j \ \text{cerrado tal que} \ F_j \subset E, \ m(E \setminus F_j) < 1/j. \ \text{Sea} \ A = \bigcup_{j=1}^{\infty} F_j \ \text{conjunto medible y} \ A \subset E.$ Además, $m(E \setminus A) \leq m(E \setminus F_j) < 1/j \ \forall j \in \mathbb{N}$. Por tanto, $E = A \cup (E \setminus A) = (\bigcup_{j=1}^{\infty} F_j) \cup (E \setminus A)$ Entonces dado que $E \setminus A$ es un conjunto medible por ser nulo y $\bigcup_{j=1}^{\infty} F_j$ es medible por ser unión numerable de conjuntos cerrados, entonces E es medible.

Definición 1.2.6. La σ -álgebra de Borel en \mathbb{R}^n es la menor σ -álgebra que contiene a todos los abiertos de \mathbb{R}^n (o equivalentemente, la menor σ -álgebra que contiene a todos los cerrados de \mathbb{R}^n). Los conjuntos de $\mathcal{B}(\mathbb{R}^n)$ se llaman conjuntos de Borel o conjuntos Borelianos.

Decimos que $A \subset \mathbb{R}^n$ es G_δ si A es intersección numerable de abiertos. Análogamente, decimos que un conjunto $B \subset \mathbb{R}^n$ es F_σ si A es unión numerable de cerrados.

Corolario 1.2.2. Sea $E \subset \mathbb{R}^n$, entonces son equivalentes:

- 1. E es medible en el sentido de Lebesgue.
- 2. $E = A \setminus N$ con A siendo G_{δ} y N un conjunto nulo.
- 3. $E = B \cup N$ con B siendo F_{σ} y N un conjunto nulo.

Corolario 1.2.3. Sea $E \subset \mathbb{R}^n$, entonces son equivalentes:

- 1. E es medible en el sentido de Lebesgue.
- 2. $m(E) = \inf\{m(G) : G \text{ abierto y } E \subset G\}.$
- 3. $m(E) = \sup\{m(K) : K \text{ compacto y } K \subset E\}.$

Lema 1.2.6. Sea $\{A_j\}_{j\in\mathbb{N}}$ familia numerable y creciente de conjuntos medibles en el sentido de Lebesgue. Entonces $\bigcup_{j\in\mathbb{N}} A_j$ es medible en el sentido de Lebesgue y $m(\bigcup_{j\in\mathbb{N}} A_j) = \lim_{j\to\infty} m(A_j)$.

Demostración. Sea $\{B_j\}_{j\in\mathbb{N}}$ una colección numerable de conjuntos medibles en el sentido de Lebesgue. Considermos:

$$A_1 = B_1$$

$$A_2 = B_2 \cap B_1^c$$

$$A_3 = B_3 \cap B_2^c \cap B_1^c$$

$$\vdots$$

$$A_j = B_j \cap B_{j-1}^c \cap \ldots \cap B_1^c$$

De esta manera obtenemos que $\bigcup_{j=1}^{\infty}A_j=\bigcup_{j=1}^{\infty}B_j$ y que $(B_j)_{j\in\mathbb{N}}$ es una sucesión disjunta de conjuntos Entonces $m^*(\bigcup_{j=1}^{\infty}A_j)=m^*(\bigcup_{j=1}^{\infty}B_j)=\sum_{j=1}^{\infty}=\lim_{k\to\infty}m(A_k)$ Dado que $m^*(A_j)=m(B_1)+m(B_2)+\ldots+m(B_j)$ $\forall j>=1$

Demostración. Demostración del Corolario 4.

 $E = \bigcup_{k=1}^{\infty} E_k : E_k = E \cap [-k, k]^n \ \forall k \in \mathbb{N}$ Entonces $(E_k)_k \in \mathbb{N}$ es una sucesión creciente de conjuntos medibles y por el lema anterior tenemos que $m(E) = \lim_{k \to \infty} m(E_k)$ Además, $\forall k \in \mathbb{N} \ \exists F_k \subset E_k$ cerrado tal que $m(E_k \setminus F_k) < \frac{1}{k}$ Entonces como F_k es un conjunto cerrado y acotado, tenemos que el conjunto es compacto. Por tanto $m(E_k) = m(E_k \setminus F_k) + m(F_k) \ge m(F_k) + 1/k$ y por tanto $m(E) = \lim_{k \to \infty} m(F_k)$ y finalmente obtenemos que $m(E) = \sup\{m(F_k) : k \in \mathbb{N}\} = \sup\{m(K) : K \text{ compacto y } K \subset E\}$

Definición 1.2.7. Un n-cubo cerrado (respectivamente abierto) en \mathbb{R}^n es un conjunto de la forma:

$$R = [a_1, b_1] \times ... \times [a_n, b_n]$$
 tal que $\forall i, j \in \{1, 2, ..., n\}$ se tiene que $b_i - a_i = b_j - a_j$ (11)

Definición 1.2.8. Se dice que un cubo en \mathbb{R}^n es diádico si sus lados miden 2^{-m} para algún $m \in \mathbb{N}$. Es decir, si el rectángulo Q es de la forma:

$$Q = \left\lceil \frac{k_1}{2^m}, \frac{k_1 + 1}{2^m} \right\rceil \times \dots \times \left\lceil \frac{k_n}{2^m}, \frac{k_n + 1}{2^m} \right\rceil,$$

con $m \in \mathbb{Z}$ (nivel de escala u orden) y $k_1, k_2, \dots k_n \in \mathbb{Z}$

Teorema 1.2.4. Todo conjunto abierto U de \mathbb{R}^n es unión numerable y disjunta n-cubos semiabiertos, que son cubos diádicos.

Demostración. Denotemos por \mathcal{F} la familia de todos los cubos cerrados de la forma

$$\left[\frac{k_1}{2^m}, \frac{k_1+1}{2^m}\right] \times \cdots \times \left[\frac{k_n}{2^m}, \frac{k_n+1}{2^m}\right],$$

con $k_i \in \mathbb{Z}$ y $m \in \mathbb{N}$. Sea \mathcal{Q}_1 la familia de todos los cubos cerrados Q de la forma $[k_1, k_1+1] \times \cdots \times [k_n, k_n+1]$, donde los $k_i \in \mathbb{Z}$, y tales que $Q \subset U$. Supuesto definida \mathcal{Q}_m , sea \mathcal{Q}_{m+1} la familia de todos los cubos Q de la forma

$$\left[\frac{k_1}{2^m}, \frac{k_1+1}{2^m}\right] \times \cdots \times \left[\frac{k_n}{2^m}, \frac{k_n+1}{2^m}\right],$$

donde $k_i \in \mathbb{Z}$, tales que no están contenidos en ningún cubo $Q' \in \mathcal{Q}_j$ para $j \leq m$, y tales que $Q \subset U$. Por inducción queda definida \mathcal{Q}_m para todo $m \in \mathbb{N}$, y ponemos

$$Q = \bigcup_{m=1}^{\infty} Q_m.$$

Es obvio por construcción que si $Q, Q' \in \mathcal{Q}$ y $Q \neq Q'$, entonces Q y Q' tienen interiores disjuntos. También es claro que que $\bigcup_{Q \in \mathcal{Q}} Q \subset U$. Veamos que de hecho

$$U = \bigcup_{Q \in \mathcal{Q}} Q.$$

Dado $x \in U$, usando que U es abierto y que el conjunto $\{k/2^m : k \in \mathbb{Z}, m \in \mathbb{N} \cup \{0\}\}$ es denso en \mathbb{R} , es fácil ver que existe algún cubo $Q_x \in \mathcal{F}$ tal que $x \in Q_x$ y $Q \subset U$. El lado de Q_x mide 2^{-m_x} para algún $m_x \in \mathbb{N} \cup \{0\}$. Si $Q_x \in \mathcal{Q}_{m_x}$ ya hemos terminado. En otro caso, por definición de \mathcal{Q}_{m_x} , existe algún $j < m_x$ tal que Q_x está contenido en algún cubo $Q'_x \in \mathcal{Q}_j$, y por tanto x pertenece a este cubo. En cualquier caso se ve que $x \in \bigcup_{i=1}^{\infty} Q_i$.

1.3 Medibilidad de Funciones

Definición 1.3.1. Un espacio medible es un par (X, Σ) donde X es un conjunto y Σ es una σ -álgebra de subconjuntos de X.

Vamos a considerar los siguientes espacios medibles:

- $(X, \Sigma) = (E, M|_E)$, donde $E \subset \mathbb{R}^n$ es un conjunto medible y $M|_E$ es la familia de subconjuntos medibles de E.
- $(X, \Sigma) = (A, B|_A)$, donde $A \subset \mathbb{R}^n$ es un conjunto boreliano y $B|_A$ es la familia de subconjuntos borelianos de A.

Definición 1.3.2. Sea (X, Σ) un espacio medible. Una función $f: X \to [-\infty, +\infty]$ es medible si para todo $\alpha \in \mathbb{R}$, el conjunto $\{x \in X : f(x) < \alpha\}$ es un conjunto medible.

Proposición 1.3.1. Sea (X, Σ) un espacio medible y $f: X \to [-\infty, +\infty]$, entonces son equivalentes

- 1. f es medible.
- 2. Para todo $\alpha \in \mathbb{R}$, el conjunto $\{x \in X : f(x) \geq \alpha\}$ es un conjunto medible.
- 3. Para todo $\alpha \in \mathbb{R}$, el conjunto $\{x \in X : f(x) > \alpha\}$ es un conjunto medible.
- 4. Para todo $\alpha \in \mathbb{R}$, el conjunto $\{x \in X : f(x) \leq \alpha\}$ es un conjunto medible.
- 5. Para todo $\alpha, \beta \in \mathbb{R}$, los conjuntos $\{x \in X : \beta \leq f(x) < \alpha\}, \{x \in X : f(x) = +\infty\}$ y $\{x \in X : f(x) = -\infty\}$ son conjuntos medibles.
- 6. Para todo $G \subset \mathbb{R}$ abierto, los conjuntos $f^{-1}(G)$, $\{x \in X : f(x) = +\infty\}$ y $\{x \in X : f(x) = -\infty\}$ son conjuntos medibles.

Demostración. Teniendo en cuenta que $X \setminus \{x \in X : f(x) < \alpha\} = \{x \in X : f(x) \ge \alpha\}$ dado que las σ -álgebras son cerradas bajo complementarios, obtenemos que (1) \iff (2) y (3) \iff (4). Veamos ahora la relación (1) \iff (4):

- (1) \Longrightarrow (4): Podemos tomar el conjunto $\{x \in X : f(x) \le \alpha\} = \bigcap_{k=1}^{\infty} \{x \in X : f(x) < \alpha + \frac{1}{k}\}$ que es una intersección numerable de conjuntos medibles por (1). Por tanto al tomar el limite cuando $k \to \infty$ obtenemos que $\{x \in X : f(x) \le \alpha\}$ es medible.
- (4) \Longrightarrow (1): Equivalentemente al apartado anterior podemos obtener que el conjunto $\{x \in X : f(x) < \alpha\} = \bigcup_{k=1}^{\infty} \{x \in X : f(x) \le \alpha \frac{1}{k}\}$ es medible por (4). Por tanto, también al tomar el límite cuando $k \to \infty$ obtenemos que $\{x \in X : f(x) < \alpha\}$ es medible.

De forma análoga a esta equivalencia podemos obtener que $(2) \iff (3)$. Y también las equivalencias de $(5) \iff (6)$ son inmediatas, pues podemos tomar los conjuntos acotados $x \in X : \alpha \le f(x) < \beta = x \in X : f(x) \ge \alpha \cap x \in X : f(x) < \beta$ los cuales son conjuntos medibles por los apartados anteriores. De forma similar podemos obtener que el conjunto $x \in X : f(x) = +\infty = \bigcap_{k=1}^{\infty} \{x \in X : f(x) > k\}$ es medible por los apartados anteriores. De forma análoga se demuestra el caso de (6). Por último veamos la equivalencia de $(6) \iff (7)$:

- 1. (7) \Longrightarrow (6): Dado un conjunto abierto $G \subset \mathbb{R}$ podemos tomarlo como $G = (\alpha, \beta)$ para ciertos $\alpha, \beta \in \mathbb{R}$. Por tanto, el conjunto $f^{-1}(G) = \{x \in X : f(x) \in G\} = \{x \in X : \alpha < f(x) < \beta\}$ y asimismo, los conjuntos $\{x \in X : f(x) = +\infty\}$ y $\{x \in X : f(x) = -\infty\}$ son medibles por las equivalencias anteriores.
- 2. (6) \Longrightarrow (7): Dado un conjunto abierto $G \subset \mathbb{R}$ podemos reescribir G como $G = \bigcup_{j=1}^{\infty} (\alpha_j, \beta_j)$ donde $\alpha_j, \beta_j \in \mathbb{R}$ es un conjunto abierto. Por tanto, el conjunto $f^{-1}(G) = \bigcup_{j=1}^{\infty} f^{-1}(\alpha_j, \beta_j) = \bigcup_{j=1}^{\infty} \{x \in X : \alpha_j < f(x) < \beta_j\}$ es medible por las equivalencias anteriores.

Corolario 1.3.1. Sea $E \subset \mathbb{R}^n$ un conjunto medible y $f: E \to \mathbb{R}$ una función continua, entonces f es medible.

Proposición 1.3.2. Sea (X, Σ) un espacio medible y $f_1, f_2, \ldots, f_n : X \to \mathbb{R}$ funciones medibles y $\Phi : \mathbb{R}^n \to \mathbb{R}$ una función continua, entonces la función $\Phi \circ (f_1, f_2, \ldots, f_n) : X \to \mathbb{R}$ es medible.

Demostración. Sean $(f_1, f_2, \ldots f_n): X \to \mathbb{R} y \Phi: \mathbb{R}^n \to \mathbb{R}$ funciones medibles y continua respectivamente. Denotemos por $h = (f_1, f_2, \ldots, f_n) \circ \Phi: X \to \mathbb{R}^m \to \mathbb{R}$ y sea $G \subset \mathbb{R}$ conjunto abierto, entonces, denotemos por $U = \Phi^{-1}(G)$ al conjuto abierto en \mathbb{R}^n . Entonces sea $(R_j)_{j \in \mathbb{N}}$ sucesión de rectángulos n-dimensionales tales que $(R_j) = \prod_{i=1}^{\infty} (\alpha_i^j.\beta_i^j) \forall j \in \mathbb{N} \iff \forall j \in \mathbb{N} f^{-1}(R_j) = \prod_{i=1}^{\infty} (\alpha_i^j.\beta_i^j)$ es medible. Por tanto, la funcion h es medible.

Corolario 1.3.2. Sean (X, Σ) espacio medible y $f, g : X \to \mathbb{R}$ funciones medibles, entonces f + g $f \circ g$, $\max\{f, g\}$, $\min\{f, g\}$, $f^+ = \max\{f, 0\}$, $f^- = \min\{f, 0\}$ son todo funciones medibles.

Observación 1.3.1. $f = f^+ - f^-$ y $|f| = f^+ + f^-$.

Teorema 1.3.1. Sea (X, Σ) espacio medible y $(f_j)_{j \in \mathbb{N}} : X \to [+\infty, -\infty]$ una sucesión de funciones medibles, entonces:

- 1. $\sup_{i \in \mathbb{N}} \{f_i\}$ es una función medible.
- 2. $\inf_{i \in \mathbb{N}} \{f_i\}$ es una función medible.
- 3. $\limsup_{i\to\infty} \{f_i\}$ es una función medible.
- 4. $\liminf_{j\to\infty} \{f_j\}$ es una función medible.
- 5. $\lim_{j\to\infty} f_j = f$ es una función medible.

Demostración. 1. Denotemos $h(x) = \sup_{j \in \mathbb{N}} f_j$ y dado $\alpha \in \mathbb{R}$ queremos ver que $x \in X : h(x) > \alpha$ es un conjunto medible. Entonces, $\sup_{j \in \mathbb{N}} f_j > \alpha \iff \exists j \in \mathbb{N} : f_j(x) > \alpha \Rightarrow x \in X : h(x) > \alpha = \bigcup_{j \in \mathbb{N}} f_j > \alpha$ que es medible por ser una unión numerable de conjuntos medibles.

2. Denotemos $g(x) = \inf_{j \in \mathbb{N}} f_j$ y dado $\alpha \in \mathbb{R}$ queremos ver que $x \in X : g(x) < \alpha$ es un conjunto medible. Entonces, $\inf_{j \in \mathbb{N}} f_j \geq \alpha \iff \forall j \in \mathbb{N} : f_j(x) \geq \alpha \Rightarrow x \in X : g(x) \geq \alpha = \bigcap_{j \in \mathbb{N}} x \in X : f_j \geq \alpha$ que es medible por ser una unión numerable de conjuntos medibles.

- 3. Recordemos que $\limsup_{j\to\infty} f_j = \lim_{j\to\infty} (\sup_{k\geq j} f_k) = \lim_{j\to\infty} \sup f_j, f_{j+1}, \ldots$ Entonces como el límite de una sucesión decreciente y acotada siempre existe tenemos que $\lim_{j\to\infty} \sup_{k\geq j} f_k = \inf_{j\in\mathbb{N}} (\sup_{k\geq j} f_k)$ que es medible por ser una función continua.
- 4. Recordemos que $\liminf_{j\to\infty} f_j = \lim_{j\to\infty} (\inf_{k\geq j} f_k) = \lim_{j\to\infty} \inf f_j, f_{j+1}, \ldots = \sup_{j\in\mathbb{N}} (\inf_{k\geq j} f_k)$ que es medible por ser una función continua.
- 5. Si $\lim_{j\to\infty} f_j = f$ (puntualmente) entonces $\lim_{j\to\infty} f_j = \lim\sup_{j\to\infty} f_j = \lim\inf_{j\to\infty} f_j = f$. Entones por los apartados anteriores obtenemos que f es una función medible.

Proposición 1.3.3. Sean $f, g : \mathbb{R}^n \to [+\infty, -\infty]$ funciones medibles-Lebesgue tales que f = g en casi todo punto. Entones g es medible-Lebesgue.

Demostración. Dado que f = g en casi todo punto, entonces $Z = \{x \in \mathbb{R}^n : f(x) \neq g(x)\}$ es un conjunto de medida nula. Entonces, dado un $\alpha \in \mathbb{R}$ tenemos que $\{x \in \mathbb{R}^n : g(x) < \alpha\} = \{x \in Z : f(x) < \alpha\} \cup \{x \in Z^c : g(x) < \alpha\}$ es medible dado que $\{x \in Z : f(x) < \alpha\}$ es medible por ser un conjunto de medida nula y $\{x \in Z^c : g(x) < \alpha\}$ es medible por ser g medible. Por tanto, g es medible.

Corolario 1.3.3. Sea $(f_j)_{j\in\mathbb{N}}:\mathbb{R}^n\to [+\infty,-\infty]$ sucesión de funciones medibles tales que $f_j\to f$ en casi todo punto, entonces f es medible.

 $Demostración. \text{ Sea } Z = \{x \in X : f_j(x) \not\rightarrow f(x)\} \text{ el cual tiene medida nula por hipótesis. Entones definimos } \\ \text{la función } g(x) = \begin{cases} \lim_{j \to \infty} f_j(x) & x \in Z^c \\ 0 & x \in Z \end{cases} \Rightarrow g(x) = f(x) \text{ en casi todo punto. Asimismo podemos definir la } \\ \text{sucesión de funciones } g_j(x) = \begin{cases} f_j(x) & x \in Z^c \\ 0 & x \in Z \end{cases} \text{ que converge a } g \text{ puntualmente, por tanto, por la proposición } \\ \text{anterior tenemos que } g \text{ es medible } \Rightarrow f \text{ es medible.}$

Definición 1.3.3. Sea (X, Σ) espacio medible. Definimos la función característica de un conjunto $E \in \Sigma$ como: $X_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \in E^c \end{cases}$

Observación 1.3.2. X_e es medible $\iff E \in \Sigma$

Demostración. Sea $G \subset \mathbb{R}$ abierto, podemos definir el conjunto $X_E^{-1}(G) = \{x \in X : X_E(x) \in G\} = \begin{cases} X & 0 \in G & 1 \in G \\ E & 0 \notin G & 1 \in G \\ E^c & 0 \in G & 1 \notin G \end{cases}$, por tanto, X_E es medible $\iff E \in \Sigma$.

Observación 1.3.3. Sean $E \subset \mathbb{R}^n yf : E \to [-\infty, +\infty]$. Entonces son equivalentes:

- 1. $f: E \to [-\infty, +\infty]$ es medible-Lebesgue.
- 2. $f \circ X_E : \mathbb{R}^n \to [-\infty, +\infty]$ es medible-Lebesgue.

Demostración. • $(1 \implies 2) : E^c$ es medible y $\{x \in E : f(x) > \alpha\}$ es medible $\implies \{x \in \mathbb{R}^n : f \circ X_E(x) > \alpha\}$ es medible.

• $(2 \implies 1): \{x \in \mathbb{R}^n : f \circ X_E(x) > \alpha\}$ es medible $\implies \{x \in E: f(x) > \alpha\}$ es medible.

Definición 1.3.4. Sea (X, Σ) espacio medible y $f: X \to [0, +\infty]$. Se dice que f es una función simple si toma un valor finito de valores. Es decir si: $f(X) = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subset [0, +\infty]$. Además denotamos a $f^{-1}(\alpha_i) = E_i$ y $f = \sum_{i=1}^n \alpha_i X_{E_i}$. Asimismo obtenemos que $X = bigcup_{i=1}^n E_i$ -unión disjunta de conjuntos. De este modo podemos decir que f es una combinación lineal finita de funciones simples.

Observación 1.3.4. f es medible $\iff \{E_1, E_2, \dots, E_n\}$ es medible.

Teorema 1.3.2. Sea (X, Σ) espacio medible y $f: X \to [0, +\infty]$ una función medible. Entonces existen funciones simples $(f_n)_{n \in \mathbb{N}}$ tales que:

- $0 \le f_1 \le f_2 \le \dots \le f$.
- $\forall x \in X \lim_{n \to \infty} f_n(x) = f(x)$.
- Si además, f acotada $\implies \lim_{n\to\infty} f_n = f$ en casi todo punto.

Demostración. $\forall n \in \mathbb{N}, 1 \leq i \leq n2^n$ definimos: $E_{n,i} = f^{-1}(\left[\frac{i-1}{2^n}, \frac{i}{2^n}\right]) = \{x \in X : \frac{i-1}{2^n} \leq f(x) < \frac{i}{2^n}\}$ y $F_n = f^{-1}([n, +\infty]) = \{x \in X : f(x) > n\}$. Los cuales son conjuntos medibles por ser preimágenes de conjuntos medibles. Sea entonces $(f_n)_{n \in \mathbb{N}} = \sum_{i=1}^{n2^n} \frac{i-1}{2^n} X_{E_{n,i}} + nX_{F_n}$, la cual es una sucesión de funcion simples. Analicemos la convergencia (puntual) $\lim_{n \to \infty} f_n(x) = f(x)$:

- Si $f(x) = +\infty \implies f(x) \ge m \quad \forall m \in \mathbb{N} \implies f_n(x) = m \quad \forall m \in \mathbb{N} \implies \lim_{n \to \infty} f_n(x) = f(x) = +\infty.$
- Si $f(x) < +\infty \implies \exists m(x) \in \mathbb{N} : 0 \le f(x) \le m(x) \implies \exists k \in \mathbb{N} : \frac{k-1}{2^m} \le f(x) \le \frac{k}{2^m} \text{ y } f_n = \frac{k-1}{2^m} \quad \forall n \ge m \implies 0 \le |f(x) f_n(x)| \le \frac{1}{2^m} \quad \forall n \ge m \implies \lim_{n \to \infty} f_n(x) = f(x).$ Además, cuando $\exists M \in \mathbb{N} : f(x) \le M \quad \forall x \in X \implies 0 \le f(x) f_n(x) \le \frac{1}{2^m} \quad \forall n \ge m \implies \lim_{n \to \infty} f_n(x) = f(x)$ (uniformemente).

Ahora veamos que $f_n(x)$ es creciente: $f_n(x) = \begin{cases} \frac{i-1}{2^n} & x \in E_{n,i} \\ n & x \in F_n \end{cases} \implies f_{n+1}(x) = \begin{cases} \frac{2i-2}{2^{n+1}} & x \in E_{n,i} \\ n+1 & x \in F_{n+1} \end{cases} \implies f_n(x) \le f_{n+1}(x) \quad \forall n \in \mathbb{N}. \quad \text{Dado que } 1 \le i \le n2^n \implies 1 \le i \le 2^{n+1} \implies f_n(x) \le f_{n+1}(x) \quad \forall n \in \mathbb{N}. \quad \Box$

Definición 1.3.5. Consideremos en \mathbb{R}^n la σ -álgbra M de los conjuntos medibles y la medida-Lebesgue m. Sea $s: \mathbb{R}^n \to [0, +\infty]$ una función simple, medible, no negativa y con representación canónica $s = \sum_{i=1}^n \alpha_i X_{A_i}$ donde $\mathbb{R}^n = \bigcup_{i=1}^m A_i$ -unión disjunta de conjuntos medibles. Entonces definimos la integral de s como: $\int_{\mathbb{R}^n} s \, dx = \sum_{i=1}^n \alpha_i m(A_i)$.

Observación 1.3.5. $int_{\mathbb{R}^n}0=0$

Demostración. Dado $E \subset \mathbb{R}^n$ mdible definimos $\int_E s = \int_{\mathbb{R}^n} s \circ X_E = \sum_{i=1}^n \alpha_i m(A_i \cap E)$.

Lema 1.3.1. Sea $\mathbb{R}^n = \bigcup_{k=1}^{\infty} X_k$ unión disjunta de conjuntos medibles. Sea $s: \mathbb{R}^{\times} \to [0, +\infty]$ una función simple, medible y no negativa. Entonces $\int_{\mathbb{R}^n} s = \sum_{k=1}^{\infty} \int_{X_k} s$.

Demostración. Supongamos que

$$s = \sum_{i=1}^{m} d_i \cdot \chi_{A_i}$$

(forma canónica), entonces

$$s(\mathbb{R}^n) = \{d_1, \dots, d_m\}.$$

Para todo $k \in \mathbb{N}$, sea $B_k \in \{d_1, \dots, d_m\}$. Definimos para cada $j = 1, \dots, m$ el conjunto

$$Y_j = \{ k \in \mathbb{N} : \beta_k = d_j \}.$$

Así, $\mathbb{N} = \bigcup_{j=1}^m Y_j$ es una unión disjunta. Además,

$$s^{-1}(\alpha_j) = A_j = \bigcup_{k \in Y_j} X_k,$$

una unión disjunta.

Entonces, usando la propiedad de la medida en una unión disjunta, tenemos

$$m(A_j) = m\left(\bigcup_{k \in Y_j} X_k\right) = \sum_{k \in Y_j} m(X_k).$$

Por lo tanto,

$$\int_{\mathbb{R}^n} s = \sum_{j=1}^m \alpha_j \cdot m(A_j) = \sum_{j=1}^m \sum_{k \in Y_j} \alpha_j \cdot m(X_k).$$

Intercambiando el orden de la suma,

$$\sum_{j=1}^{m} \sum_{k \in Y_j} \alpha_j \cdot m(X_k) = \sum_{k \in Y_j} \beta_k \cdot m(X_k).$$

Así,

$$\int_{\mathbb{R}^n} s = \sum_{k \in Y_j} \beta_k \cdot m(X_k).$$

Corolario 1.3.4. Sean $s,t:\mathbb{R}^n\to [0,+\infty]$ funciones simples, medibles y no negativas. Entonces: $\int_{\mathbb{R}^n} (s+t) = \int_{\mathbb{R}^n} s + \int_{\mathbb{R}^n} t$.

Demostración. Sea $S = \sum_{i=1}^m \alpha_i \cdot \chi_{A_i}$ y $t = \sum_{j=1}^k \beta_j \cdot \chi_{B_j}$. Dado que $\mathbb{R}^n = \bigcup_{i=1}^m \bigcup_{j=1}^k (A_i \cap B_j)$, donde la unión es disjunta y los conjuntos A_i, B_j son medibles, se tiene que en $A_i \cap B_j$: $s+t=\alpha_i+\beta_j$. Aplicando el lema de integración para funciones simples: $\int_{\mathbb{R}^n} (s+t) = \sum_{i=1}^m \sum_{j=1}^k (\alpha_i+\beta_j) m(A_i \cap B_j) = \sum_{i=1}^m \alpha_i m(A_i \cap B_j) + \sum_{j=1}^k \beta_j m(A_i \cap B_j) = \int_{\mathbb{R}^n} s + \int_{\mathbb{R}^n} t \text{ (por el lema)}.$

Definición 1.3.6. Sea $f: \mathbb{R}^n \to [0, +\infty)$ una función medible. Definimos la integral de Lebesgue como:

$$\int_{\mathbb{R}^n} f = \sup \left\{ \int_{\mathbb{R}^n} s \mid s \text{ es simple, medible y } 0 \le s \le f \right\}.$$

Si $E \subset \mathbb{R}^n$ es medible y $f: E \to [0, +\infty)$, definimos:

$$\int_E f = \sup \left\{ \int_{\mathbb{R}^n} s \cdot \chi_E \mid s \text{ es simple, medible y } 0 \leq s \leq f \cdot \chi_E \right\}.$$

Proposición 1.3.4. Para funciones medibles, no-negativas y conjuntos medibles se tiene que:

- 1. si $0 \le f \le g$ y $E \subset F$ entonces $\int_E f \le \int_F g$.
- 2. si $f, g, \geq \implies \int_E (f+g) = \int_E f + \int_E g$.
- 3. si $c \ge 0, f \ge 0 \implies \int_E cf = c \int_E f$.
- 4. si $m(E)=0 \implies \int_E f=0.$ (Incluso si $f=+\infty)$
- 5. si $f\big|_E=0 \implies \int_E f=0.$ (Incluso si $m(E)=+\infty)$
- 6. si $A \subset Byf \ge 0 \implies \int_A f \le \int_B f$.
- 7. si A, B son conjuntos medibles y disjuntos y $f \ge 0 \implies \int_{A \cup B} f = \int_A f + \int_B f$.
- 8. si f=g en casi todo punto de E $\implies \int_E f = \int_E g$.

Demostración. 1. Si $f = c \cdot 0$, entonces es trivial.

Si c > 0, tomamos $s = \sum_{i=1}^{m} \alpha_i \cdot \chi_{A_i}$, con $0 \le s \le f$.

Entonces, $c \cdot s = \sum_{i=1}^{m} c \cdot \alpha_i \cdot \chi_{A_i}$, con $0 \le c \cdot s \le c \cdot f$.

Así,

$$\int_{\mathbb{R}^n} c \cdot s = \sum_{i=1}^m c \cdot \alpha_i \cdot m(A_i) = c \sum_{i=1}^m \alpha_i \cdot m(A_i) = c \int_{\mathbb{R}^n} s.$$

Tomando el supremo, obtenemos

$$\int_{\mathbb{R}^n} c \cdot f = c \sup \left\{ \int_{\mathbb{R}^n} s \mid s \text{ es simple, } 0 \le s \le f \right\} = c \int_{\mathbb{R}^n} f.$$

2. Si m(E) = 0, entonces para toda s simple y medible tal que $0 \le s \le f$, se tiene que

$$s = \sum_{i=1}^{m} \alpha_i \cdot \chi_{A_i}.$$

De donde,

$$\int_{E} s = \sum_{i=1}^{m} \alpha_{i} \cdot m(A_{i} \cap E) = 0.$$

Por lo tanto,

$$\int_{E} f = \sup \left\{ \int_{E} s \right\} = 0.$$

3. Para toda s simple con $0 \le s \le f$, se tiene que s(x) = 0 para casi todo $x \in E$. Luego,

$$f \cdot \chi_E = 0 \Rightarrow s = 0 \Rightarrow \int_E s = 0, \quad \forall s.$$

Tomando el supremo,

$$\sup\left\{ \int_{E} s \right\} = 0 = \int_{E} f.$$

4. Si f es simple y medible con $0 \le s \le f$, se tiene que

si
$$A \subset B$$
, $\chi_A \le \chi_B \Rightarrow 0 \le s \cdot \chi_B$.

5. Si A, B son medibles y disjuntos, entonces

$$\chi_{A\cup B}=\chi_A+\chi_B.$$

Así,

$$\int_{A \cup B} f = \int_{\mathbb{R}^n} f \cdot \chi_{A \cup B} = \int_{\mathbb{R}^n} f(\chi_A + \chi_B).$$

Por linealidad de la integral,

$$\int_{\mathbb{R}^n} f \chi_A + \int_{\mathbb{R}^n} f \chi_B = \int_A f + \int_B f.$$

Por lo tanto,

$$\int_{A \cup B} f = \int_A f + \int_B f.$$

8. Si $E=A\cup Z,$ con A y Z disjuntos y tales que $x\in E\Rightarrow f(x)=g(x),$ entonces

$$Z = \{ x \in E \mid f(x) \neq g(x) \}.$$

Si m(Z) = 0, se tiene que

$$\int_{E} f = \int_{A} f + \int_{Z} f = \int_{A} g + 0 = \int_{A} g.$$

Teorema 1.3.3. Sea $(f_k)_{k\in\mathbb{N}}:\mathbb{R}^n\to[0,+\infty]$ una sucesión de funciones medibles tales que:

- 1. $f_1 \leq f_2 \leq \dots$ (puntualmente en \mathbb{R}^n)
- 2. $\lim_{k\to\infty} f_k = f$ (puntualmente en \mathbb{R}^n)

Entonces se cumple que:

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} f_k = \int_{\mathbb{R}^n} f.$$

Demostración. La sucesión $\{f_k\}_{k\in\mathbb{N}}$ es monótona creciente en $[0,+\infty)$. Por lo tanto, existe el límite:

$$l = \lim_{k \to \infty} f_k, \in [0, +\infty].$$

Dado que $f_k(x) \leq f(x) \quad \forall x \in \mathbb{R}^n$, tenemos que:

$$\int_{\mathbb{R}^n} f_k \le \int_{\mathbb{R}^n} f.$$

Queda demostrar la otra desigualdad para probar el teorema.// Sea s una función simple y medible en \mathbb{R}^n con $0 \le s \le f$, y fijemos un $c \in (0,1)$. $\forall k \in \mathbb{N}$, definimos la sucesión de conjuntos $E_k = \{x \in \mathbb{R}^n : f_k(x) \ge c \cdot s(x)\}$. Esta sucesión es medible (debido a que tanto f_k como s son medibles) y es creciente (debido a que $f_k \le f_{k+1}$ y $c \cdot s \le c \cdot f \le f$). Ahora veamos que:

$$\bigcup_{k=1}^{\infty} E_k = \mathbb{R}^n.$$

Sea $x \in \mathbb{R}^n$. Entonces,

$$\begin{cases} \text{Si } f_k(x) = 0, \Rightarrow s(x) = 0 \Rightarrow 0 = f_k(x) \Rightarrow 0 = s(x) \Rightarrow x \in E_k \quad \forall k. \\ \text{Si } f_k(x) > 0, \Rightarrow c \cdot s(x) \leq f_k(x) \Rightarrow \forall k \in \mathbb{N}, \quad c \cdot s(x) \leq f_k(x). \end{cases}$$

Por lo tanto, $x \in \mathbb{R}^n$. Veamos que:

$$\int_{\mathbb{R}^n} s = \lim_{k \to \infty} \int_{E_k} s.$$

Dado que $s = \sum_{j=1}^{m} \alpha_j \cdot \chi_{A_j}$ con $s^-1(\alpha_j) = A_j$ tenemos:

$$m(A_j) = m(\bigcap_{k=1}^{\infty} (E_k \cap A_j)) = \lim_{k \to \infty} m(E_k \cap A_j).$$

Entonces:

$$\int_{\mathbb{R}^n} s = \sum_{j=1}^m \alpha_j \cdot m(A_j) = \sum_{j=1}^m \alpha_j \cdot \lim_{k \to \infty} m(E_k \cap A_j) = \lim_{k \to \infty} \sum_{j=1}^m \alpha_j \cdot m(E_k \cap A_j) = \lim_{k \to \infty} \int_{E_k} s ds$$

Finalmente, obtenemos que:

$$\int_{\mathbb{R}^n} f_k \ge \int_{E_k} f_k \ge \int_{E_k} c \cdot s = c \cdot \int_{E_k} s$$

Tomando límites el límite cuando $k \to \infty$, obtenemos que:

$$l \geq c \cdot \int_{\mathbb{R}^n} s$$

Por último, si tomamos el límite $c \to 1$ obtenemos que:

$$l \ge \int_{\mathbb{R}^n} s$$

Dado que s es una función simple y medible arbitraria, se tiene esta propiedad $\forall s$ función simple, medible y no-negativa (por ser $0 \le s \le f$). Por tanto, obtenemos la ansiada desigualdad: $l \ge \int_{\mathbb{R}^n} f$.

Teorema 1.3.4. Sea $E \subset \mathbb{R}^n$ medible y $f_k : E \to [0, +\infty]$ sucesión de funcion medibles y $f : E \to [0, +\infty]$ tales que:

- 1. $f_1 \leq f_2 \leq \dots$ (en casi todo punto de E)
- 2. $\lim_{k\to\infty} f_k = f$ (en casi todo punto de E)

Demostración. Denotamos el conjunto

$$N = \{x \in E \mid (1) \text{ y } (2) \text{ no se cumplen}\}$$

Sabemos que m(N) = 0. Definimos la sucesión de funciones

$$\hat{f}_k = f_k \cdot \chi_{E \setminus N}, \quad \forall k \in \mathbb{N} \ \text{y} \ \hat{f} = f \cdot \chi_{E \setminus N}$$

Podemos aplicar el **Teorema de la Convergencia Monótona**, lo que nos permite concluir que: 1. $\hat{f}_k \to f$ puntualmente. 2. Se cumple la convergencia de integrales. Por lo tanto, tomando límites en la integral:

$$\int_E f = \int_{E \setminus N} f = \int_{\mathbb{R}^n} \hat{f} = \lim_{k \to \infty} \int_{\mathbb{R}^n} \hat{f}_k = \lim_{k \to \infty} \int_E f_k.$$

Corolario 1.3.5. 1. si $f, g : \mathbb{R}^n \to [0, +\infty]$ son medibles, medibles y no-negativas \Longrightarrow

$$\int_{\mathbb{R}^n} f + g = \int_{\mathbb{R}^n} f + \int_{\mathbb{R}^n} g$$

2. si $(f_k)_{k\in\mathbb{N}}:\mathbb{R}\to[0,+\infty]$ sucesión de funciones mediles $\forall k\in\mathbb{N}$

$$\int_{E} \sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} \int_{E} f_k$$

•

Demostración. 1. Sabemos que existen sucesiones crecientes $(s_j)_{j\in\mathbb{N}}$ y $(t_j)_{j\in\mathbb{N}}$ de funciones simples medibles no negativas tales que $\lim_{j\to\infty} s_j = f$ y $\lim_{j\to\infty} t_j = g$. Por lo tanto, aplicando el **Teorema de la Convergencia Monótona** obtenemos que:

$$\int_{\mathbb{R}^n} f + g = \lim_{j \to \infty} \int_{\mathbb{R}^n} s_j + t_j = \lim_{j \to \infty} \int_{\mathbb{R}^n} s_j + \lim_{j \to \infty} \int_{\mathbb{R}^n} t_j = \int_{\mathbb{R}^n} f + \int_{\mathbb{R}^n} g.$$

2. Por el apartado anterior obtenemos que: $\sum_{k=1}^{m} \int_{\mathbb{R}^n} f_k = \int_{\mathbb{R}^n} \sum_{k=1}^{m} f_k \implies$ podemos aplicar el Teorema de la Convergencia Monótona, dado que la sucesión $\sum_{k=1}^{m} f_k$ converge de forma creciente a $\sum_{k=1}^{\infty} f_k$. Entonces finalmente obtenemos que:

$$\int_{\mathbb{R}^n} \sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} \int_{\mathbb{R}^n} f_k$$

.

Lema 1.3.2. Sea $(f_k)_{k\in\mathbb{R}^n}$ sucesión de funciones medibles, entonces:

$$\int_{\mathbb{R}^n} \liminf_{k \to \infty} f_k \le \lim \inf_{k \to \infty} \int_{\mathbb{R}^n} f_k$$

Demostración. Sea

$$f = \liminf_{k \to \infty} f_k = \lim_{k \to \infty} \inf_{j \ge k} f_j = \lim_{k \to \infty} g_k$$

Dado que $g_k \ge 0$, la sucesión (g_k) está compuesta por funciones medibles y no negativas para todo $k \in \mathbb{N}$. Además, es una sucesión creciente en el sentido de que

$$g_k \le g_{k+1}, \quad \forall k \in \mathbb{N}.$$

Por el **Teorema de la Convergencia Monótona **, se tiene que:

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} g_k = \int_{\mathbb{R}^n} \lim_{k \to \infty} g_k.$$

Por definición del liminf, se cumple la desigualdad:

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} g_k \le \liminf_{k \to \infty} \int_{\mathbb{R}^n} g_k.$$

Finalmente, dado que $g_k \leq f$, se concluye que:

$$\int_{\mathbb{R}^n} g_k \le \int_{\mathbb{R}^n} f_k.$$

Observación 1.3.6. El resultado análogo con lim sup no es válido en gneral. Podemos tomar de contraejemplo la función $f_k = k \cdot \chi_{[k,\infty]}$.

Definición 1.3.7. Sean $E \subset \mathbb{R}^n$ conjunto medible y $f: E \to [0, +\infty]$ función medible. Se dice que f es integrable (o absolutamente integrable) cuando

$$\int_{E} f < +\infty$$

Es decir cuando

$$\int_{\mathbb{R}^n} f \circ \chi_E < +\infty$$

Observación 1.3.7. f es integrable en $E \iff |f|$ es integrable en $E \iff f^+$ y f^- son integrables en E.

Lema 1.3.3. Sean $E \subset \mathbb{R}^n$ y f = g - h con $g, h : E \to [-\infty, +\infty]$ funciones integrables. Entonces,

$$\int_{E} f = \int_{E} g - \int_{E} h.$$

Demostración. Si $f = g - h \implies |f| = |g - h| \le g + h \implies f$ es integrable. $f = f^+ - f^- = g - h \implies f^+ + h = f^- + g \implies \int_E f^+ + h = \int_E f^- + g \implies \int_E f = \int_E f^+ - \int_E f^- = \int_E g - \int_E h$.

Proposición 1.3.5. Para funciones f y g integrables en E, se cumplen las siguientes propiedades:

1. Si f, g son integrables en E, entonces f + g también es integrable y

$$\int_{E} (f+g) = \int_{E} f + \int_{E} g.$$

2. Si f es integrable en E y $c \in \mathbb{R}$, entonces cf es integrable en E y

$$\int_{E} (cf) = c \int_{E} f.$$

3. Si $f \leq g$ en casi todo punto de E, entonces

$$\int_{E} f \le \int_{E} g.$$

4. Si |f| es integrable en E, entonces f también es integrable y

$$\left| \int_{E} f \right| \le \int_{E} |f|.$$

5. Si f = g en casi todo punto de E y f es integrable en E, entonces g también es integrable en E con,

$$\int_{E} f = \int_{E} g.$$

6. Si m(E) = 0 y f es medible, entonces es integrable en E y

$$\int_{E} f = 0$$

- 7. Si f es integrable en E entonces $|f| < \infty$ en casi todo punto de E
- 8. Si $\int_E |f| = 0$, entonces f = 0 en casi todo punto de E.

Demostración. (1) Dado que $f = f^+ - f^-$ y $g = g^+ - g * - \implies f + g = f^+ + g^+ - (f^- + g^-)$, con ambas partes ≥ 0 . Entones, por el lema de la integral de funciones no negativas,

$$\int_{E} (f+g) = \int_{E} f^{+} + \int_{E} g^{+} - \int_{E} f^{-} - \int_{E} g^{-}.$$

Reagrupando términos,

$$\int_{E} (f+g) = \int_{E} f + \int_{E} g.$$

(2) Si c > 0. Como $cf = cf^+ - cf^- \implies$,

$$\int_{E} cf = \int_{E} (cf)^{+} - \int_{E} (cf)^{-} = c \int_{E} f^{+} - c \int_{E} f^{-} = c \int_{E} f.$$

Si c < 0, usando $cf = cf^+ - cf * - = (-c)f^+ - (-c)f^-$. Entones aplicamos el apartado anterior y obtenemos que:

$$\int_{E} cf = c \int_{E} f.$$

(3) Como $g - f \ge 0$ en casi todo punto de E, se cumple que: $(g - f) \cdot \chi_E \ge 0$ en casi todo punto de $\mathbb{R}^n \Longrightarrow$

$$\int_{E} (g - f) \ge 0.$$

Aplicando la linealidad de la integral,

$$\int_{E} g - \int_{E} f \ge 0,$$

lo cual implica que

$$\int_{E} f \le \int_{E} g.$$

(4) Se tiene que $|f| = f^+ + f^-$. Usando la linealidad de la integral,

$$|\int_{E} f| = |\int_{E} f^{+} + \int_{E} f^{-}.|$$

Como $f = f^+ - f^-$, aplicamos la desigualdad triangular:

$$\left| \int_E f \right| = \left| \int_E f^+ - \int_E f^- \right| \le \int_E f^+ + \int_E f^- = \int_E |f|.$$

(5) Como f = g en casi todo punto de $E \implies f^+ = g^+$ $f^- = g^-$ en casi todo punto de E por lo que sólo queda aplicar el apartado anterior.

$$\int_E f = \int_E g$$

(6) $|f| \cdot \chi_E \ge 0$ en casi todo punto de $\mathbb{R}^n \implies \int_E |f| = \int_{\mathbb{R}^n} |f \cdot \chi_E| = 0 \implies$

$$|\int_E f| \le \int_E |f| = 0$$

- (7) No se qué hace la demostracion
- (8) Sea

$$A = \{x \in E : |f(x)| > 0\}.$$

Definimos los conjuntos

$$A_k = \{x \in E : |f(x)| > \frac{1}{k}\}, \quad \forall k \in \mathbb{N},$$

por lo que

$$A = \bigcup_{k=1}^{\infty} A_k.$$

Ahora, evaluamos la medida de A_k utilizando la integral:

$$m(A_k) = \int_{A_k} 1 \le \int_{A_k} k \cdot |f| = k \int_{A_k} |f| \le \int_{A_k} |f| \le \int_{E} |f|$$

Tomando el límite cuando $k \to \infty$ (y de la subaditvidad) se concluye que

$$m(A) = \lim_{k \to \infty} m(A_k) = 0.$$

Teorema 1.3.5. Sean $E \subset \mathbb{R}^{\times}$ medible y $\forall k \in \mathbb{N}, f_k : E \to [-\infty, +\infty]$ funciones medibles. Supongamos que $\exists g : E \to [-\infty, +\infty]$ integrable en E tal que $|f_k| < g$ en casi todo punto de E y $\forall k \in \mathbb{N}$. Si además suponemos que $\lim_{k \to \infty} f_k = f$ en casi todo punto de E, entonces:

1.

 f_k y f son integrables en E

2.

$$\lim_{k \to \infty} \int_E |f_k - f| = 0$$

3.

$$\lim_{k \to \infty} \int_{E} f_k = \int_{E} f$$

Demostración. FALTA LA DEMOSTRACION

Definición 1.3.8. Sea f función integrable, se define una función por su integral paramétrica como:

$$F(u) = \int_{E} f(x, u) dx$$

Teorema 1.3.6. Sean $E \subset \mathbb{R}^n$ conjunto medible, $U \subset \mathbb{R}^n$ conjunto cualquiera, $f : E \times U \to \mathbb{R}$ y suponemos que:

- 1. $\forall u \in Uf(\cdot, u) : E \to \mathbb{R}$ es medible.
- 2. $\forall x \in Ef(x,\cdot): U \to \mathbb{R}$ es continua.
- 3. $\exists g: E \to [0, +\infty]$ integrable en E tal que $|f(x, u)| \leq g(x)$ en casi todo punto de E y $\forall u \in U$.

Entonces podemos decir que:

$$F(u) = \int_{E} f(x, u) dx$$

es una función continua en U.

Demostración. FALTA LA DEMOSTRACION

Observación 1.3.8. $\forall u_0 \in U \lim_{u \to u_0} \int_E f(x, u) dx = F(u) = F(u_0) = \int_E f(x, u_0) dx$

Teorema 1.3.7. Sean $E \subset \mathbb{R}^n$ conjunto medible, $U = (a, b) \subset \mathbb{R}$ conjunto abierto y $f : E \times U \to \mathbb{R}$. Y además supongamos que:

- 1. $\forall u \in Uf(\cdot, u) : E \to \mathbb{R}$ es integrable en E.
- 2. $\forall x \in Ef(x,\cdot): U \to \mathbb{R}$ es de clase C^1 en U.
- 3. $\exists g: E \to [0, +\infty]$ integrable en E tal que $|\frac{\partial f}{\partial u}(x, u)| \leq g(x)$ en casi todo punto de E y $\forall u \in U$.

Entonces se cumple que:

$$F(t) = \int_{E} f(x, t) dx$$

es de clase C^1 en U y $\forall t \in U$ se cumple que:

$$F'(t) = \int_{E} \frac{\partial f}{\partial u}(x, t) dx$$

Demostración. FALTA LA DEMOSTRACION

Teorema 1.3.8. Sea $[a,b] \subset \mathbb{R}^n$ y $f:[a,b] \to \mathbb{R}$ integrable Riemann en [a,b]. Entonces f es integrable Lebesgue en [a,b] y se cumple que:

$$(L)\int_{a}^{b} f = (R)\int_{a}^{b} f$$

Observación 1.3.9. Denotamos $\int_a^b f = \int_{[a,b]} f$

Demostración. $\forall k \in \mathbb{N} \quad \exists P_k = \{a = x_0^k < x_1^k < \dots < x_n^k = b\} \subset [a,b] \text{ tal que: } \bar{S}(f,P_k) - \underline{S}(f,P_k) < \frac{1}{k}.$ Sabemos que P_{k+1} es mas fina que P_k y además que $diamm(P_k) = \sup_{i \in \{1,\dots,n\}} (x_i^k - x_{i-1}^k) < \frac{1}{k}.$ $\forall k \in \mathbb{N}$ denotamos $m_k = \inf\{f(x) : x \in [x_{i-1}^k, x_i^k]\}$ y $M_k = \sup\{f(x) : x \in [x_{i-1}^k, x_i^k]\}.$

$$\underline{S}(f, P_k) = \sum_{i=1}^{n_k} m_k (x_i^k - x_{i-1}^k) \ge \sum_{i=1}^{n_k} m_k = \int_a^b \Phi_k \quad \text{con} \quad \Phi_k = \sum_{i=1}^{n(k)} m_i^k \cdot \chi_{x_{i-1}^k, x_i^k}$$

$$y\bar{S}(f, P_k) = \sum_{i=1}^{n_k} M_k(x_i^k - x_{i-1}^k) = \int_a^b \Psi_k \quad \text{con} \quad \Psi = \sum_{i=1}^{n(k)} M_i^k \cdot \chi_{x_{i-1}^k, x_i^k}$$

Es claro que $\Phi_k \leq f \leq \Psi_k$. Además, como P_{k+1} es más fino que $P_k \implies (\Phi_k) \uparrow y (\Psi_k) \downarrow$ Denotamos $\Phi = \lim_{k \to \infty} \Phi_k = \sup \Phi_k \ y \ \Psi = \lim_{k \to \infty} \Psi_k = \inf \Psi_k$

f es integrable-Riemann $\Longrightarrow f$ es actoda $\Longleftrightarrow \exists M \in \mathbb{N}$ tal que $|f(x)| \leq M, \forall x \in [a,b]$. La función g(x) = M es integrable en [a,b] y puesto que $|\Psi_k| \leq g$ entonces por el Teorema de la Convergencia Dominada:

$$\underline{S}(f, P_k) = \int_a^b \Phi_k \to \int_a^b \Phi \bar{S}(f, P_k) = \int_a^b \Psi_k \to \int_a^b \Psi$$

Pero a su vez, también se cumple que:

$$\underline{S}(f, P_k) \to (R) \int_a^b f \ y \ \bar{S}(f, P_k) \to (R) \int_a^b f \implies \int_a^b \Phi = (R) \int_a^b f = \int_a^b \Psi$$

Y como $\int_a^b \Psi - \Phi = 0 \implies \Psi - \Phi = 0$ en casi todo punto de [a,b]. Es decir $\Phi = f = \Psi$ en casi todo punto de [a,b]. Y finalmente obtenemos que:

$$(L)\int_a^b f = \int_a^b \Phi = \int_a^b \Psi = (R)\int_a^b f$$

Teorema 1.3.9. Sean $[a,b] \subset \mathbb{R}^n$ y $f:[a,b] \to \mathbb{R}$ una función acotada. Entonces f es integrable-Riemann en $[a,b] \iff D_f = \{x \in [a,b] \mid f \text{ no es continua en } x\}$ tiene medida nula.

Observación 1.3.10. Ejemplo: La función de Dirichlet $f = \chi_{\mathbb{R}^n \cup [0,1]} : [0,1] \to \mathbb{R}, f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ no es integrable-Riemann en [0,1]. Pero f=0 en casi todo punto $\implies f$ es integrable-Lebesgue y ésta vale: $\int_{[0,1]} f = \int_{[0,1]} 0 = 0$

Teorema 1.3.10. Sean $-\infty \le \alpha < \beta \le +\infty$ y $f:(\alpha,\beta) \to \mathbb{R}$ una función abossolutamente integrable-Riemmann en el intervalo (α,β) . Entonces f es integrable-Lebesgue en (α,β) y se cumple que:

$$(L)\int_{\alpha}^{\beta} f = (R)\int_{\alpha}^{\beta} f$$

Demostración. Habría que realizar una distinción de casos según el tipo de intervalo que sea (α, β) , en este caso trataremos el intervalo $[\alpha, \infty)$: Por hipótesis sabemos que:

- 1. $\forall k \in \mathbb{N}, f$ es integrable-Riemann en [a, b]
- 2. $\lim_{b\to\infty} \int_a^b |f| < +\infty$

Tenemos una sucesión $(b_n)_{n\in\mathbb{N}}$ y definimos las sucesiones de funciones: $f_n = f \cdot \chi_{[a,b_n]}$ y $g_n = |f| \cdot \chi_{[a,b_n]}$. De manera que tenemos que $f_n \uparrow f$ y $g_n \uparrow |f|$. Entonces aplicamos el Teorema de la Convergencia Monóntona:

1.
$$(L) \int_a^{+\infty} |f| = \lim_{n \to \infty} (L) \int_a^{b_n} |f| = \lim_{n \to \infty} (R) \int_a^{b_n} |f| = (R) \int_a^{+\infty} |f| < \infty$$

2. Esto muestra que f es integrable-Lebesgue en $[a, +\infty)$.

Por otra parte, como $|f_n| \leq |f| \ \forall n \in \mathbb{N}$ por el Teorema de la Convergencia Dominada se tiene que:

1.
$$(L) \int_{a}^{+\infty} f = \lim_{n \to \infty} (L) \int_{a}^{\infty} f_n = \lim_{n \to \infty} (R) \int_{a}^{b_n} f = (R) \int_{a}^{+\infty} f$$

Finalmente obtenemos el resultado de que f es integrable de Riemann-impropia en $[a, +\infty)$. $\forall (b_n)_{n \in \mathbb{N}} : b_n \to \infty$ tenemos que $|\int_{b_n}^{b_m} f| \leq \int_{b_n}^{b_m} |f| \leq \epsilon$

Funciones integrables en varias variables

3 Teorema de Fubini

4	Camb	io de	variab	les
_	Callo	io ac	VOLION.	

5	Funciones	definidas po	or integrales	

6	Integrales of	de línea:	campos	escalares	y vectoriales	5

7 Teorema de Green

8 Superficies paramétricas

9 Integrales de superficie

10	Teorema de Stokes.	Teorema de la divergencia de Gauss