Capstone Project

TheiaVision: Object Detection
Technology for PMD Safety Alerts

Ng Wei **GA-DSI-42** 14-May-2024

Content Problem Statement & Persona 02 Dataset & Preprocessing O3 Data Modelling & Hyperparameter tuning 04 Demonstration 05 Conclusion & Recommendations

Articles of PMD

Oct 2019 "TTSH reports spike in injuries involving PMD riders"

In 2019, PMD accident rate increased 68% from 2017

Nov 2019 "E-Scooters to Be Prohibited on All Footpaths Following Safety Review"

Source: LTA

2020 - pop 2022 From

"PMD-related offences decrease in last 3 years as e-scooter population dwindles further"

From 2020 to 2022 REW foll in DMD related offences

From 2020 to 2022, 65% fall in PMD-related offences

Source: The Strait Times

May 2022 "PMD delivery rider dies after accident with motorcycle in Serangoon"

Source: The Strait Times

₹ | |

PMD Accident Footage

X

PMD Accident Footage

Problem Statement

How can we enhance the safety of Personal Mobility Devices (PMDs) in urban environments by using object detection to improve PMD users' ability to perceive and respond to their surroundings?

Persona

Darren is addressing the critical challenge of **enhancing PMD safety** due to increasing urban accidents. He is leading the development of an alert system with object detection technology that identifies obstacles such as pedestrians, vehicles, and traffic signs.

The Solution -TheiaVision

TheiaVision — An Eye of PMD that guide your way!

Theia - Greek goddess of sight and vision

What is behind of Theia Vision?

- Object Annotation
- 2. Datasets Consolidation

- 1. Learning rate
- 1. Learning rat
- 2. Batch Size

Image Dataset			
	Udacity Self Driving Car	Singapore Traffic Sign	
Images	15,000 images	851 images	
Annotation	97,942 labels	Unlabelled	
No. of Class	12	7	
Resolution	512 x 512 Pixels	Not fixed Pixel, Low Resolution	
Content	Car, pedestrian, truck and traffic lights	7 traffic signs related with PMD/Pedestrian	
Sources	? roboflow		
Readiness	Ready for modelling	Raw images	

Label/Image Proportion

Udacity Self Driving Car

Singapore Traffic Sign

02.01

Singapore Traffic Sign

Shortlisted Traffic Sign for PMD

Pedestrian Crossing

Informatory Sign -**Pedestrian Crossing**

Prohibitory Sign - No Entry & No Jaywalking

Mandatory Sign -**Pedestrian Crossing**

Temporary Left / Warning **Curve Marker**

Proportion of Traffic Signs

Resolution of Traffic Sign Images

Platform for annotation: **???** roboflow

Data Ready & Exported as YOLOv8

Annotation of Unlabeled Traffic Image

How to annotate?

- 1. Identify the objects in the image
- 2. Draw a bounding box for 1st object
- 3. Classify the object
- 4. Repeat for the rest of the objects

Address and Addre

Image Augmentation

3 methods to boost the image counts!

?

Image Preprocessing

EFORE Augmentation and Preprocessi			
X y	Udacity Self Driving Car	Singapore Traffic Sign	
Images	15,000 images	851 images	
Annotation	97,942 labels	Unlabelled	
No. of Class	12	7	
Resolution	512 x 512 Pixels	Not fixed Pixel, Low Resolution	
Content	Car, pedestrian, truck and traffic lights	7 traffic signs related with PMD/Pedestrian	
Sources	? roboflow		
Readiness	Ready for modelling	Raw images	

FTER Augmentation and Prencessi			
x	Udacity Self Driving Car	Singapore Traffic Sign	
Images	15,000 images	ZEC Bi imagges	
Annotation	97,942 labels	26113 bæbels	
No. of Class	12	7	
Resolution	512 x 512 Pixels	Not fixed Alow Resolution	
Content	Car, pedestrian, truck and traffic lights	7 traffic signs related with PMD/Pedestrian	
Sources	? roboflow	? r flow	
Readiness	Ready for modelling	Rea tkatkoinnagels lling	

Merging both image dataset			
$\left(\begin{array}{c} x \\ \end{array}\right)$	Udacity Self Driving Car	Singapore Traffic Sign	
Images	15,000 images	2613 images	
Annotation	97,942 labels	2613 labels	
No. of Class	12	7	
Resolution	512 x 512 Pixels	640 x 640 Pixels	
Content	Car, pedestrian, truck and traffic lights	7 traffic signs related with PMD/Pedestrian	
Sources	? roboflow	? roboflow	
Readiness	Ready for modelling	Ready for modelling	

Before that... let's look at the classes

Class 14

Before that... let's look at the classes

```
Udacity Self Driving Car
                                                                                     Combined Dataset
                                         Singapore Traffic Sign
                                                                                    vaml
 plaintext
                                           plaintext
                                                                                                           # Class 0
 biker
                           # Class 0
                                                                                                           # Class 1
                           # Class 1
 car
                                           curveleft sign
                                                                   # Class 0
                                                                                                           # Class 2
 pedestrian
                           # Class 2
                                                                                                           # Class 3
                                                                   # Class 1
                                           curveright_sign
                                                                                                           # Class 4
 trafficLight
                           # Class 3
                                           mandatorystop_sign
                                                                   # Class 2
                                                                                      pedestriancrossing_sign
                                                                                                           # Class 5
 trafficLight-Green
                           "Class 4
                                           noentry_sign
                                                                   # Class 3
                                                                                                           # Class 6
 trafficLight-GreenLeft Class 5
                                           nojaywalking_sign
                                                                   # Class 4
                                                                                                           # Class 7
                                                                                                           # Class 8
 trafficLight-Red
                           # Class 6
                                                                   # Class 5
                                           pedestriancrossing_sign
                                                                                                           # Class 9
 trafficLight-RedLeft
                          # Class 7
                                           zebracrossing sign
                                                                   # Class 6
                                                                                                           # Class 10
                            "Class 8
 trafficLight-Yellow
                                                                                     - trafficlight green
                                                                                                           # Class 11
                                                                                                           # Class 12
 trafficLight-YellowLeft ____class 9
                                                                                                           # Class 13
 truck
                           # Class 10
```

			?
Merging both image dataset			
	Udacity Self Driving Car	Singapore Traffic Sign	Combined Dataset
Images	15,000 images	2613 images	17,613 images
Annotation	97,942 labels	2613 labels	100,555 labels
No. of Class	12	7	15 (was 19 before merging traffic light)
Content	Car, pedestrian, truck and traffic lights	7 traffic signs related with PMD/Pedestrian	7 traffic signs, car, pedestrian, truck and traffic lights

03

Data Modelling & Hyperparameter tuning

EX

What is YOLO?

YOLO (You Only Look Once) is a fast, efficient real-time object detection system that uses convolutional neural networks (CNNs). It detects multiple objects in images or videos with a single look.

Specification of models

Feature	SimpleCNN Model	YOLOv8 Model (Singapore Traffic Sign)	YOLOv8 Model (Singapore Traffic Sign + Udacity data)
Framework	PyTorch	YOLO	YOLO
Model Type	Custom simple CNN	Pre-trained YOLOv8s model	Pre-trained YOLOv8s model
Input Size	50x50 pixels	640x640 pixels	640x640 pixels
Batch Size	128 for training and validation; 1 for testing	8	8
Epochs	50	20	25
Main Operations	Convolution, ReLU activation, pooling, fully connected layers	Convolutional operations optimized for object detection	Convolutional operations optimized for object detection
Optimization Algorithm	RMSprop with a learning rate of 0.001	Not specified, likely configurable in YOLO setup	Not specified, likely configurable in YOLO setup
Loss Function	CrossEntropyLoss	Typically a composite loss suitable for object detection tasks	Typically a composite loss suitable for object detection tasks
Output	Class scores for 7 classes	Bounding boxes with class probabilities and objectness scores	Bounding boxes with class probabilities and objectness scores
Use Case	Basic image classification	Advanced object detection in images	Advanced object detection in images

<u>?</u>

PyTorch Simple CNN Result

```
curveleft_sign # Class 0
curveright_sign # Class 1
mandatorystop_sign # Class 2
noentry_sign # Class 3
nojaywalking_sign # Class 4
pedestriancrossing_sign # Class 5
zebracrossing_sign # Class 6
```

98.3% Accuracy

?

YOLOv8 with Traffic Sign Data

92% Sensitivity

?

YOLOv8 with Master Data

80.5% Sensitivity

Yolov8 Hyperparameter Tuning

Results of different learning rate are the same. Proceed with Based Model.

Traffic Sign + Self Drive Car Yolov8 Multiclass Multi Prediction

Theia Vision brings benefit to...

2. Better user experience

1. Increase safety and confidences

1. Reduce frequency of deployment

- Our Company – MaximalSG
 - 1. Product Differentiation 2. Safety compliance
- General Public
 - 1. Safety Compliance LTA
 - 2. Collect data for Urban Planning
- SCDF 2. Accurate Accident Reconstruction Insurance
 - 1. Reduction in Claims
 - 2. Risk assessment and management Compines

Conclusion

Problem Statement

How can we enhance the safety of Personal Mobility Devices (PMDs) in urban environments by using object detection to improve PMD users' ability to perceive and respond to their surroundings?

Conclusion

TheiaVision helps to detect object with 80.5% sensitivity

Recommendation

- 1. Handle imbalance datasets (SMOTE)
- 2. Include Diverse Image of Traffic Sign (Currently Data from DashCam Only, low resolution)
- 3. Stereo Video for depth estimation
- 4. Including hazard detection (pavement condition, construction, etc.)
- 5. Install Speaker for Voice Feedback to PMD Users

