- 1) How many integer solutions are there to the equation $x_1 + x_2 + x_3 + x_4 = 20$ where
 - a) $x_1 \ge 2$, $x_2 \ge 5$ and the rest are nonnegative

let
$$y_1 = x_1 - 2$$
 $y_2 = x_2 - 5$
 $y_1 + y_2 + x_3 + x_4 = 13$

3 bars + 13 objects = 16 item 5

 $\binom{16}{3}$

b) $0 \le x_1 \le 7$, $1 \le x_2 < 5$, and $x_3 \ge 6$ and other is nonnegative.

This can be done using the following equivalent conditions:

$$\{ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 6 \} - \{ x_1 \ge 8, \ x_2 \ge 0, \ x_3 \ge 6 \} - \{ x_1 \ge 0, \ x_2 \ge 5, \ x_3 \ge 6 \}$$

$$- \{ x_1 \ge 0, \ x_2 = 0, \ x_3 \ge 6 \} + \{ x_1 \ge 8, \ x_2 \ge 5, \ x_3 \ge 6 \} + \{ x_1 \ge 8, \ x_2 = 0, \ x_3 \ge 6 \}$$

[Case 1]
$$\{x_1 \ge 0, x_2 \ge 0, x_3 \ge 6\}$$

Let $x_3^1 = x_3 - 6$
 $x_1 + x_2 + x_3^1 + x_4 = 14$
3 bars + 14 objects = 17 items
 $\binom{17}{14} = 680$

[Case 2]
$$\{x_1 \ge 8, x_2 \ge 0, x_3 \ge 6\}$$

Let $x_1' = x_1 - 8, x_3' = x_3 - 6$
 $x_1' + x_2 + x_3' + x_4 = 6$
3 bars + 6 objects = 9 items
 $\binom{9}{6} = 84$

Case 3)
$$\{x_1 \ge 0, x_2 \ge 5, x_3 \ge 6\}$$

Let $x_2' = x_2 - 5, x_3' = x_3 - 6$
 $x_1 + x_2' + x_3' + x_4 = 9$
3 bars + 9 objects = 12 items
 $\binom{12}{9} = 220$

Case 4
$$\{x_1 \ge 0, x_2 = 0, x_3 \ge 6\}$$

Let $x_3' = x_3 - 6$
 $x_1 + x_3' + x_4 = 14$
 $x_2 = 16$ items
 $\begin{cases} 16 \\ 14 \end{cases} = 120$

To solve this problem, we subtract Case 2, 3, and 4 from Case 1. However, notice the following two sets are subtracted twice and must be added back:

- (i) $\{x_1 \ge 8, x_2 \ge 5, x_3 \ge 6\}$ (included in 2nd and 3rd terms) Let $x_1' = x_1 - 8, x_2' = x_2 - 5, x_3' = x_3 - 6$ $x_1' + x_2' + x_3' + x_4 = 1$ 3 bars + 1 object = 4 items $\binom{4}{1} = 4$
- (ii) $\{x_1 \ge 8, x_2 = 0, x_3 \ge 6\}$ (included in 2nd and 4th terms) Let $x_1' = x_1 - 8, x_3' = x_3 - 6\}$ $x_1' + x_3' + x_4 = 6$ 2 bars + 6 objects = 8 items $\binom{8}{6} = 28$

The total number of solutions with the given constraints is 680 - 84 - 220 - 120 + 4 + 28 = 288