Компонентное моделирование

Scilab,подсистема xcos

Туем Г.

Содержание

1	цель расоты	6
2	Задание	7
3	Выполнение лабораторной работы	8
4	Выполнение лабораторной работы	9
5	Выполнение лабораторной работы	10
6	Выполнение лабораторной работы	11
7	Выполнение лабораторной работы	12
8	Выполнение лабораторной работы	13
9	Выполнение лабораторной работы	14
10	Выполнение лабораторной работы	15
11	Выполнение лабораторной работы	16
12	Выполнение лабораторной работы	17
13	Выполнение лабораторной работы	18
14	Выполнение лабораторной работы	19
15	Выполнение лабораторной работы	20
16	Выполнение лабораторной работы	21
17	Выполнение лабораторной работы	22
18	Выполнение лабораторной работы	23
19	Выполнение лабораторной работы	24
20	Выполнение лабораторной работы	25
21	Выполнение пабораторной работы	26

22 Выполнение лабораторной работы	27
23 Выполнение лабораторной работы	28
24 Выполнение лабораторной работы	29
25 Выполнение лабораторной работы	30
26 Выполнение лабораторной работы	31
27 Выполнение лабораторной работы	32
28 Выводы	33

Список иллюстраций

3.1	модели в xcos																																		8
-----	---------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Список таблиц

1 Цель работы

Выполнить упражнение по ознакомлению с программой хсоз.

2 Задание

Постройте с помощью хсоs фигуры Лиссажу со следующими параметрами: 1. А = B = 1, a = 2, b = 2, δ = 0; pi/4; pi/2; 3pi/4; pi;

2.
$$A = B = 1$$
, $a = 2$, $b = 4$, $\delta = 0$; $pi/4$; $pi/2$; $3pi/4$; pi ;

3.
$$A = B = 1$$
, $a = 2$, $b = 6$, $\delta = 0$; $pi/4$; $pi/2$; $3pi/4$; pi ;

4.
$$A = B = 1$$
, $a = 2$, $b = 3$, $\delta = 0$; $pi/4$; $pi/2$; $3pi/4$; pi .

Математическое выражение для кривой Лиссажу:

$$x(t) = A \sin(at + \delta), y(t) = B \sin(bt),$$

где A, B — амплитуды колебаний, a, b — частоты, δ — сдвиг фаз. В модели, изображённой на рис. II.1.3, использованы следующие блоки хсоs: — CLOCK_c — запуск часов модельного времени; — GENSIN_f — блок генератора синусоидального сигнала; — CANIMXY — анимированное регистрирующее устройство для построения графика типа y = f(x); — TEXT_f — задаёт текст примечаний.

Предположим, что в модели заданы следующие параметры: A = B = 1, a = 3, b = 2, $\delta = pi/2$.

модели в xcos и получим график, изображённый на (рис. 3.1).

Рис. 3.1: модели в хсоѕ

Постройте с помощью хсоз фигуры Лиссажу со следующими параметрами:

1.
$$A = B = 1$$
, $a = 2$, $b = 2$, $\delta = 0$; $pi/4$; $pi/2$; $3pi/4$; pi ;

• $\delta = pi/2$

2. A = B = 1, a = 2, b = 4, $\delta = 0$; pi/4; pi/2; 3pi/4; pi;

• $\delta = 3pi/4$

3. A = B = 1, a = 2, b = 6, $\delta = 0$; pi/4; pi/2; 3pi/4; pi;

• $\delta = 3pi/4$

4. A = B = 1, a = 2, b = 3, $\delta = 0$; pi/4; pi/2; 3pi/4; pi;

28 Выводы

В результате выполнения данной лабораторной работы я выполнила упражнение по ознакомлению с программой xcos