Nombre de la asignatura: Sistemas Embebidos

LGAC: Control de procesos energéticos

Tiempo de dedicación del estudiante a las actividades:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

1. Historia de la asignatura.

Fecha revisión/actualización	Participantes	Observaciones, cambios y justificación.
Marzo de 2017 Instituto Tecnológico de	M.C. Carlos Roberto González Escarpeta	Primera versión como curso básico del programa de posgrado.
Veracruz	Dr. Ricardo Francisco Martínez González	

2. Prerrequisitos y correquisitos.

Análisis y diseño de sistemas digitales. Solución de problemas prácticos utilizando microprocesadores/micro-controladores. Arquitectura de Computadoras. Programar en algún lenguaje de alto nivel y en ensamblador de algún microprocesador/micro-controlador.

3. Objetivo dela asignatura.

Aplicar las técnicas de diseño digital y uso micro-controladores para diseñar, integrar, y construir sistemas empotrados.

Diseñar e implementar sistemas digitales utilizando soft and hard core en combinación con recursos reprogramables.

Desarrollo de la aplicación de conocimientos y habilidades relacionados con sistemas electrónicos adquiridos previamente. Desarrollo de la capacidad de integración de módulos diferentes para resolver un problema técnico.

4. Aportaciones al perfil del graduado.

5. Contenido temático.

UNIDAD	TEMA	SUBTEMAS
I	Contadores y Máquinas de Estados Finitos en VHDL (FSM)	1.1 Diseño e implementación de Contadores Ascendentes/Descendentes. 1.2 Diseño e implementación de Máquinas Mealy 1.3 Diseño e implementación Maquinas Moore 1.4 Aplicaciones.
II	Uso de un FPGA con programación en VHDL	 2.1 Arquitectura de alguna tarjeta con FPGA, como por ejemplo, la Basys 2 de Diligent. 2.2 Diseño digital usando FPGA's 2.3 Uso del ISE de Xilinx. 2.4 Uso de Aldec-Active HDL.

		 2.5 Lógica Combinacional usando los elementos de la tarjeta como entradas/salidas (switches, potenciómetro, LEDs, Display 7 segmentos. etc). 2.6 Lógica Secuencial usando los elementos de la tarjeta.
III	Procesador	3.1 Introducción.
	empotrado de 8 bits.	3.2 Arquitectura Picoblaze.
		3.3 Programación en Ensamblador Picoblaze.
		3.4 Manejo de interrupciones.
		3.5 Diseño híbrido con VHDL y Picoblaze.
IV	Procesador	4.1 Introducción
	empotrado de 16 bits, Micro-Blaze	4.2 Arquitectura Microblaze
		4.3 Programación en Ensamblador Microblaze
		4.4 Manejo de interrupciones
		4.5 Aritmética de punto flotante
		4.6 Procesamiento Digital
		4.7 Herramientas de Diseño con VHDL.
V	Aplicaciones	5.1 Sistemas Operativos de Tiempo Real.
		5.2 Diseño de aplicaciones de procesamiento digital de
		señales e imágenes.

6. Metodología de desarrollo del curso.

7. Sugerencias de evaluación.

- El estudiante deberá demostrar habilidades en:
 - o Análisis y selección de dispositivos programables.
 - Programación con VHDL.
 - o La programación en ensamblador de Picoblaze y Microblaze

- Realizar interfaces a dispositivos de entrada y salida.
- Realizar Soc's con la tarjeta FPGA disponible, incluyendo su aplicación en automatización y control de procesos de automatización y control de procesos.

8. FUENTES DE INFORMACIÓN

- 1 David G. Maxinez /Jessica Alcalá; VHDL: El arte de programar sistemas digitales; CECSA.
- 2 XILINX, documentos de: UG129, XAPP213.
- 3 MicroBlaze Microcontroller Reference Design User Guide v1.5
- 4 PicoBlaze 8-bit Embedded Microcontroller, User Guide for Spartan-3, Virtex-II.
- 5 Ken Chapman. Virtex-II Pro FPGAs PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices.

9. Actividades propuestas

Prácticas para fortalecer las competencias de los temas y de la asignatura.

- Adquisición de Datos.
- Procesador de 8 bits en FPGA.
- Programación de entrada/salida.
- Control de procesos.
- Procesador de 16 bits.
- Procesamiento digital de señales.
- Procesamiento digital de imágenes.

Realizar un proyecto que englobe el contenido de la materia.

10. Nombre y firma de los catedráticos responsables.

M.C. Carlos Roberto González Escarpeta	
Dr. Ricardo Francisco Martínez González	