Announcements

- Lab1 makeup due on gradescope tomorrow
- Pset1 out Tuesday, due in 2 weeks.

No screens (laptops, tablets, phones) during the class.

Recall: Types of learning

Supervised

Unsupervised

Reinforcement

Recall: Supervised Learning

 Given a training set consisting of inputs and outputs, learn to map novel, unseen inputs to outputs

The novel inputs are called a test set

Recall: Supervised Learning

 Given a training set consisting of inputs and outputs, learn to map novel, unseen inputs to outputs

The novel inputs are called a test set

Today

- Classification Intro
 - Nearest Neighbors
 - Learning to classify
 - Error Rates
- Maximum Likelihood

Classification

0: "Negative Class" (e.g., dog)

1: "Positive Class" (e.g., panda)

Learning to separate two classes: Binary Classification

What is learning to separate multiple classes called?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Types of classification

Binary	Multi-class	Multi-label
Panda Not panda	Panda, Cat, Dog	(Dog, cat), (panda)
		stablediffusionweb.com

Classification: one approach

- Nearest Neighbor Classifier
 - Use similarity (e.g., L2 distance) to labeled examples

Nearest Neighbor Classifier

What is L2 distance between two variables x and y?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Nearest Neighbor Classifier

What could be some challenges with the nearest neighbor classifier

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Challenges: many nuisance parameters

Challenges: intra-class variation

Challenges: Context

Challenges: Long-tailed data distribution

Challenges: Outliers

Requires a large dataset to work learn a good model

Classification: one approach

- K- Nearest Neighbors Classifier
 - Use similarity (e.g., L2 distance) to labeled examples

Idea for a simple classifier:

Use similarity (e.g., L2 distance) to labeled examples i.e.,

Takeaways:

- Selecting K requires tuning, and the optimal value will vary
- Distance functions can also significantly affect performance

K-Nearest Neighbor Classifier

What is a disadvantage of nearest neighbor approach?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

What is a disadvantage of nearest neighbor approach?

Quiz question 2 72 answers 3 72 participants

Feature computation - 7 answers

10%

Distance computation for every test sample - 12 answers

17%

Choosing a value of K - 1 answer

1%

All of the above. - 52 answers

72%

slido

How to speed NN up?

Issue	Potential solution
Feature dimensionality	 Feature Dimensionality reduction? Reasonable first step, but typically insufficient

How to speed NN up?

Issue	Potential solution
Feature dimensionality	 Feature Dimensionality reduction? ■ Reasonable first step, but typically insufficient
Pairwise distance computation	 Use GPUs? Adds lots of complexity Insufficient memory Overhead for memory copying between CPU & GPU
	 Buy more machines to distribute computation? Costs money to buy, maintain, Adds lots of complexity For real-time systems: communication overhead Still often insufficient, e.g., if all pairwise distances are needed (e.g. building a neighbourhood graph, clustering,)

Finding *approximate* nearest neighbor vectors

- Approximations are not guaranteed to find the nearest neighbor
- Can be much faster, but comes at a cost of missing some nearest matches

What are some real-world applications where nearest neighbors are used?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Approximate Nearest Neighbors (ANN)

Is finding only approximate nearest neighbors acceptable?

?

Big Ben

Often times yes!

How approximate NN helps

Issue	Potential solution
Feature representation	 Vector Quantization eg: binary codes instead of floating point numbers Spectral Hashing represent such that simple hamming distance can be used. Locality sensitive hashing (LSH) Similar data points are hashed together.

How approximate NN helps

Issue	Potential solution
Feature representation	 Vector Quantization eg: binary codes instead of floating point numbers Spectral Hashing represent such that simple hamming distance can be used. Locality sensitive hashing (LSH) Similar data points are hashed together.
Pairwise distance computation (approximate)	 (Randomized) K-d trees Goal: reduce the number of times distance metric is computed. Idea: If we know that two data points are close to each other, calculate distance to only one of them.

How approximate NN helps

Nearest Neighbor with KD Trees

Examine nearby points first: Explore the branch of the tree that is closest to the query point first.

24

Learning to Classify

Intro

Example: Temperature Prediction

- City temperatures France and Germany
- Features: longitude, latitude
- Labels: frigid, cold, cool, warm, hot

Nice (7.27, 43.72) cool Toulouse (1.45, 43.62) warm Frankfurt (8.68, 50.1) cold

.

Predict temperature category from longitude and latitude

Example: Temperature Prediction

Training set

Training set:

7.27, 43.72 (Nice)	cool
1.45, 43.62 (Toulouse)	warm
8.68, 50.1 (Frankfurt)	cold

Supervised Learning

Predict: Is the city cold?

What should the learner be??

Want: input X — Output y

| Tournell | Tourn

Hypothesis γ

 γ : function parametrized by θ , e.g.,

$$\gamma(x) = \operatorname{sign}(\mathbf{a}x + \mathbf{b})$$

$$\theta_{0,1} \quad \theta_2$$

Want:

input
$$x \longrightarrow \left(\gamma_{a,b}^*\right) \longrightarrow \text{output } y$$

How to learn a,b?

But what if $\gamma(x_i) \neq y_i$?

Given:

Want:

Cost function

Given: Training Set $\{x_i, y_i\}$

Cost/Error function $Cost(\gamma(x_i), y_i)$

learning == minimizing cost

Want: input $x \longrightarrow \gamma_{a,b} \longrightarrow \text{output } y$

Supervised learning in one slide

Given:

Cost function $Cost(\gamma(x_i), y_i)$

learning == minimizing cost

Learn **a,b***: min Cost($\gamma_{a,b}(x_i), y_i$)

a,b

Result:

$$\longrightarrow \gamma_{a,b}^* \longrightarrow \text{output } y_b$$

Learning to Classify

Error Rates

How do we know if γ is good?

Linear hypothesis:

$$\gamma_{a,b}(x) = \text{sign}(ax + b)$$

Bremen Bremen Berlin Berlin Berlin Berlin Bonn Erfurt Chemnitz Frankfurt Heidelberg Angers Djon Category Cool Cool Grenoble Freiburg Augsburg Category Cool Cool Frigid hot Frigid Hot Frigid Frigi

Error Function:

Portion of incorrect predictions

$$Error(\gamma_{a,b}, D\{x, y\}) = \frac{1}{N} \sum_{i=1}^{N} \gamma_{a,b}(x_i) \neq y_i$$

Goal: minimize $Error(\gamma_{a,b}, D\{x, y\})$

What is a good baseline to compare to?

Current hypothesis:

$$\gamma_{a,b}(x) = \text{sign}(ax + b)$$

Random Baseline γ_{rand} (a know nothing strategy):

Assign a random class label to each datapoint

slido

$$Error(\gamma_{a,b}, D\{x,y\}) > Error(\gamma_{rand}, D\{x,y\})$$

What does it mean to have a higher error rate than a random baseline?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

What does it mean to have a higher error rate than a random baseline?

Quiz question 2 70 answers 3 70 participants

Our hypothesis is performing very well - 2 answers

3%

Our hypothesis is performing very poorly - 68 answers

97%

slido

Predicted Predicted "0" **False** True **Positive** Negative **GT Label** (FN) (TP) False True **GT Label Positive** Negative "0" (FN)

Confusion Matrix Example (Table 1.1 in Forsyth)

Predicted labels

		0	1	2	3	4	Class error
S	0	151	7	2	3	1	7.9%
labels	1	32	5	9	9	0	91%
	2	10	9	7	9	1	81%
True	3	6	13	9	5	2	86%
F	4	2	3	2	6	0	100%

Predicted "1"

Predicted "0"

GT Label "1"

True Positive (TP)

False Negative (FN)

GT Label "0"

False Positive (FP)

True Negative (TN)

$$Precision = \frac{TP}{TP + FP}$$

Predict

		0	1	2	3	$\mid 4 \mid$	Class error
True	0	151	7	2	3	1	7.9%
	1	32	5	9	9	0	91%
	2	10	9	7	9	1	81%
	3	6	13	9	5	2	86%
	4	2	3	2	6	0	100%

Predicted "1"

Predicted "0"

GT Label "1"

True Positive (TP)

False Negative (FN)

GT Label "0"

False Positive (FP)

True Negative (TN)

$$Recall = \frac{TP}{TP + FN}$$

Predicted labels

True labels

	0	1	2	3	$\mid 4 \mid$	Class error
0	151	7	2	3	1	7.9%
1	32	5	9	9	0	91%
2	10	9	7	9	1	81%
3	6	13	9	5	2	86%
4	2	3	2	6	0	100%

Precision and Recall

Precision:

- a. The percentage of predictions that are correct
- b. The ability to identify **only** relevant data points

$$Precision = \frac{TP}{TP + FP}$$

Recall:

a. The percentage of relevant data points that are correctly identified $Recall = \frac{TP}{TP + FN}$

$$Recall = \frac{TP}{TP + FN}$$

b. The ability to identify all relevant data points

Predicted labels

	<u>S</u>
_	υ
_	\mathbf{Q}
	<u>თ</u>
	<u>ი</u>
	2
ŀ	_

	0	1	2	3	4	Class error
0	151	7	2	3	1	7.9%
1	32	5	9	9	0	91%
2	10	9	7	9	1	81%
3	6	13	9	5	2	86%
4	2	3	2	6	0	100%

Predicted labels

		0	1	2	3	4	Class error
S	0	151	7	2	3	1	7.9%
labels	1	32	5	9	9	0	91%
	2	10	9	7	9	1	81%
ľrue	3	6	13	9	5	2	86%
F	4	2	3	2	6	0	100%

What else do you notice in this confusion matrix?

Predicted labels

		0	1	2	3	4	Class error
S	0	151	7	2	3	1	7.9%
labels	1	32	5	9	9	0	91%
lak	2	10	9	7	9	1	81%
Irue	3	6	13	9	5	2	86%
Ë	4	2	3	2	6	0	100%

How to address the data distribution?

i Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

slido

37%

Maximum Likelihood Principle

Recall: Cost function

Given: Training Set $\{x_i, y_i\}$

Cost/Error function $Cost(\gamma(x_i), y_i)$

learning == minimizing cost

Want: input $x \longrightarrow [\gamma_{a,b}^*] \longrightarrow$ output y

Recall: Cost Function

Alternative View:

"Maximum Likelihood"

Maximum Likelihood: Example

Intuitive example: Estimate a coin toss

I have seen 3 flips of heads, 2 flips of tails, what is the chance of head (or tail) of my next flip?

Model:

Each flip is a Bernoulli random variable X

X can take only two values: 1 (head), 0 (tail)

$$p(X = 1) = \theta$$
, $p(X = 0) = 1 - \theta$

• θ is a parameter to be identified from data

5 (independent) trials

Likelihood of all 5 observations:

$$p(X_1,...,X_5|\theta) = \theta^3(1-\theta)^2$$

Intuition

ML chooses θ such that likelihood is maximized

5 (independent) trials

Likelihood of all 5 observations:

$$p(X_1,...,X_5|\theta) = \theta^3(1-\theta)^2$$

Solution (left as exercise)

$$\theta_{ML} = \frac{3}{(3+2)}$$

i.e. fraction of heads in total number of trials

IID Observations

- independently identically distributed random variables
- If u^i are i.i.d. r.v.s, then

$$p(u^1, u^2, ..., u^m) = p(u^1)p(u^2) ... p(u^m)$$

 A reasonable assumption about many datasets, but not always

Maximum likelihood way of estimating model parameters θ

In general, assume data is generated by some distribution $U \sim p(U|\theta)$

Observations (i.i.d.)

$$D = \{u^{(1)}, u^{(2)}, \dots, u^{(m)}\}\$$

Maximum likelihood way of estimating model parameters θ

In general, assume data is generated by some distribution $U \sim p(U|\theta)$

Observations (i.i.d.)

$$\mathbf{D} = \{u^{(1)}, u^{(2)}, \dots, u^{(m)}\}$$

Maximum likelihood estimate

$$\mathcal{L}(\mathbf{D}) = \prod_{i=1}^{m} p(u^{(i)}|\theta)$$

$$\theta_{ML} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(\mathbf{D})$$
Likelihood

Maximum likelihood way of estimating model parameters θ

In general, assume data is generated by some distribution $U \sim p(U|\theta)$

Observations (i.i.d.)

$$\mathbf{D} = \{u^{(1)}, u^{(2)}, \dots, u^{(m)}\}$$

Maximum likelihood estimate

$$\mathcal{L}(\mathbf{D}) = \prod_{i=1}^{m} p(u^{(i)}|\theta)$$

$$\theta_{ML} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(\mathbf{D})$$

$$= \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{m} \log p(u^{(i)}|\theta)$$
Likelihood
$$\sum_{i=1}^{m} p(u^{(i)}|\theta)$$

log(f(x)) is monotonic/increasing, same argmax as f(x)

Next Class

Classification II:

Overfitting, cross validation, naive bayes, support vector machines intro

Reading: Forsyth Ch 1.3, 2.1-2.1.2