A Non-Negative Bilinear DFEM Scheme for S_N Transport

Peter Maginot Jean Ragusa and Jim Morel

Texas A&M University- Department of Nuclear Engineering

M&C 2015 April 20, 2015

Outline

- Goal/Motivation
- Basics
- BCSZ Method
- Initial Results

Goal

Long term goal: Accurate methods for multi-dimensional radiative transfer Near term goal: Non-negative bilinear DFEM for neutron transport -Why bilinear? Bilinear DFEM maintains thick diffusion limit, radiative transfer requires optically thick cells History: Extension of non-negative linear (1,x,y) scheme developed on rectangles

Formalities

Solving

$$\vec{\Omega}_d \cdot \nabla \psi_d(x, y) + \sigma_t(x, y)\psi_d(x, y) = S_d(x, y)$$
 (1)

for unstructured quadrilaterals using bilinear (Q^1) DFEM.

• Using the standard interpolatory basis functions

$$B_0(s,t) = \frac{1-s}{2} \frac{1-t}{2}$$

$$B_1(s,t) = \frac{s+1}{2} \frac{1-t}{2}$$

$$B_2(s,t) = \frac{s+1}{2} \frac{t+1}{2}$$

$$B_3(s,t) = \frac{1-s}{2} \frac{t+1}{2}$$

Mapping to Reference Coordinates

All work carried out on a reference element, $s \in [-1, 1]$, $t \in [-1, 1]$

$$x = x_0 B_0(s, t) + x_1 B_1(s, t) + x_2 B_2(s, t) + x_3 B_3(s, t)$$
 (2)

$$y = y_0 B_0(s, t) + y_1 B_1(s, t) + y_2 B_2(s, t) + y_3 B_3(s, t)$$
 (3)

Methods to Compare

- UBLD: Unlumped Bilinear DFEM- Galerkin DFEM, no explanation necessary
- FLBLD: Fully Lumped Bilinear DFEM- UBLD with mass matrix lumping, surface matrix lumping, and other manipulations. Equivalent to sub-cell corner balance.
- BCSZ: Bilinear consistent set-to-zero: Non-linear, Petrov-Galerkin DFEM, satisfies all bilinear moments of Eq. (1)

BCSZ Definition

Solution representation, $\widetilde{\psi}_{BCSZ}(s,t)$:

$$\widetilde{\psi}_{BCSZ}(s,t) = \begin{cases} \widehat{\psi}_{BCSZ}(s,t) & \widehat{\psi}_{BCSZ}(s,t) > 0\\ 0 & \text{otherwise} \end{cases}$$
 (4)

Bilinear function, $\widehat{\psi}_{BCSZ}$, to search for,

$$\widehat{\psi}_{BCSZ}(s,t) = \sum_{i=0}^{3} \psi_{i,BCSZ} B_i(s,t), \qquad (5)$$

Moment Equation Edge Integration

DFEM moment equations will need to integrate quantities like this on cell edges:

$$(\vec{\Omega}_d \cdot \vec{n}_\alpha) \int_{\alpha} B_i(s, -1) \widetilde{\psi}_{BCSZ} ds$$

- Check vertices for negativity
- ② By definition of $\widetilde{\psi}_{BCSZ}$, integrate $\widehat{\psi}_{BCSZ}$ only over portion of the interval where $\widehat{\psi}_{BCSZ} \geq 0$
 - 4 possible cases

Cell Interior Integration

Must integrate terms like, $B_i\widetilde{\psi}_{BCSZ}|J|$, over areas like these:

Enabling Idea

Along every integration area curve:

$$\widehat{\psi}_{BCSZ}(s,t) = 0$$

Transform interpolatory $\widehat{\psi}_{BCSZ}$ to moment based f(s,t):

$$f(s,t) = f_c + sf_s + tf_t + stf_{st}$$
(6)

$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} f_c \\ f_s \\ f_t \\ f_{ct} \end{bmatrix} = \vec{\psi}_{BCSZ}$$
 (7)

Enabling Idea- 2

Along each integration area defined by a curve, f(s, t) = 0, and

$$\hat{l}_t = -\frac{f_c + f_s s}{f_t + f_{st} s},\tag{8}$$

enabling the use of variable limits of integration. Consider integration over the region where $\widehat{\psi}_{BCSZ} > 0$, R_+ , of a generic function M(s,t):

$$\int \int_{R_+} M(s,t) = \int_{-1}^1 ds \int_{\hat{l}_t}^1 dt \ M(s,t)$$