# Towards Continuous Actions in Continuous Space and Time using Self-Adaptive Constructivism in Neural XCSF

Master seminar: Deep Learning in Computer Vision

Mithun Das

#### **INTRODUCTION**



**Agent Navigation task** 

- → Continuous environment
- → solve a continuous maze environment using discrete-valued actions, continuous-valued actions or continuous-valued actions of continuous duration.
- → Constructivism mechanism

### **RELATED WORK**

- → LCS devised using Zeroth-level Classifier System (ZCS)
- → The implementation of self-adaptive based on another paper
- → Focused on solving continuous environments

# **Implementation of XCSF Framework**

- 1. Maze environment
- 2. Neural XCSF (Discrete-valued actions)
- 3. Self-adaptation
- 4. Neural constructivism

# **Maze environment**



2D Continuous grid environment

Rewards: 1000 points

Step size: 0.05

Discount factor:  $\gamma = 0.95$  [ The discount factor  $\gamma \in [0,1]$  is the present value for future rewards ]

Avg optimal step size: 21

# **Neural XCSF**



- → Classifier is replaced with MLP
- → Strength of action passed to the left and right motors
- → Don't Match ![M]
- $\rightarrow$  0.0≤x<0.5 (low), 0.5≤x≤1.0 (high).

# **Self-adaptation**





Self-adaptive  $\mu \leftarrow \mu *e^{N(0,1)}$ 

# **Neural constructivism**

Development begins with a small network

#### **EXPERIMENTATION**

Population size **N**=16000, learning rate  $\beta$ =0.2 ,error threshold **\varepsilon**=0.005

fitness fraction for accelerated deletion  $\sigma$ =0.1, fitness power  $\mathscr{V}$ =5, GA threshold ( $\Theta$ )GA=50

- → Discrete-valued action
- → Continuous-valued action
- → Continuous-duration action

#### **DISCRETE-VALUED ACTIONS**



#### self-adaptive μ



#### **CONTINUOUS-VALUED ACTIONS**

- → simulation and reality robots
- → Output [-0.05, 0.05] (1) movement in X (2) movement in Y (3) participation in match set.
- → Steps-to-goal 11, Identical parameter as DVA

#### **CONTINUOUS-VALUED ACTIONS**





#### **CONTINUOUS-DURATION ACTIONS**

 $\psi$  = probability of constructivism event

 $\mathcal{P}$ = Probability of adding a neuron

$$P = r + \gamma * maxP$$
 
$$P = (e^{-\varphi t^t})r + (e^{-pt^i})r * maxP$$

#### **CONTINUOUS-DURATION ACTIONS**





### **Conclusion and Future work**

- → A self-adaptive neural XCSF employing constructivism is capable of solving the 2D Grid environment.
- → First implementation with LCS for CV action in response CV input
- → More complex environment

# **About the paper**

Towards continuous actions in continuous space and time using self-adaptive constructivism in neural XCSF

GD Howard, L Bull, PL Lanzi - ... of the 11th Annual conference on Genetic ..., 2009 dl.acm.org
This paper presents a Learning Classifier System (LCS) where each classifier condition is
represented by a feed-forward multi-layered perceptron (MLP) network. Adaptive behavior is
realized through the use of self-adaptive parameters and neural constructivism, providing
the system with a flexible knowledge representation. The approach allows for the evolution
of networks of appropriate complexity to solve a continuous maze environment, here using
either discrete-valued actions, continuous-valued actions, or continuous-valued actions of ...

☆ 99 Cited by 19 Related articles All 7 versions

# Thank you

