Зимний коллоквиум по дискретной математике 2019

hse-ami-open-exams

Содержание

1	Определение вычислимой частичной функции из \mathbb{N} в \mathbb{N} . Счетность семейства частичных вычислимых функций, и существование невычислимых функций. Разрешимость подмножества \mathbb{N} . Перечислимые подмножества \mathbb{N} . Счетсность семейства перечислимых	•
	- · · · · · · · · · · · · · · · · · · ·	
	множеств, и существование неперечислимых множеств.	3
	1.1 Определение вычислимой частичной функции из N в N	3
	1.2 Счетность семейств частичных вычислимых функций, и существование невычислимых функ-	0
	ций	3
	1.3 Разрешимость подмножества \mathbb{N}	3
	1.4 Перечислимые подмножества \mathbb{N}	3
	1.5 Счетность семейства перечислимых множеств, и существование неперечислимых множеств.	3
2	Эквивалентные определения перечислимости (полуразрешимость, область определения вычислимой функции, множество значений вычислимой функции).	4
3	Теорема Поста. Теорема о графике.	5
4	Универсальные вычислимые функции (нумерации) для семейства частичных вычислимых функций натурального аргумента. Несуществование универсальной вычислимой функции для семейства тотальных вычислмых функций натурального аргумента (диагональное рассуждение). Главные универсальные функции.	
5	Вычислимая функция, не имеющая тотального вычислимого продолжения. Перечислимое неразрешимое множество. Неразрешимость проблемы применимости.	7
6	Теорема Поста. Существование перечислимого множества, дополнение которого перечислимо. Перечислимые неотделимые множества.	. 8
7	Сводимости: m -сводимость и Тьюрингова сводимость. Их свойства. Полные перечислимые множества.	9
8	Теорема Клини о неподвижной точке.	10
9	Теорема Райса-Успенского.	11
10	Определение машин Тьюринга и вычислимых на машинах Тьюринга функций. Тезис Черча-Тьюринга. Неразрешимость проблемы остановки машины Тьюринга.	12
11	Неразрешимость проблемы достижимости в односторонних в ассоциативных исчислениях. Полугруппы, заданные порождающими и соотношениями. Теорема Маркова-Поста: неразрешимость проблемы равенства слов в некоторой конечно определенной полугруппе (без доказательства).	
12	Исчисление высказываний (аксиомы и правила вывода), понятие вывода. Теорема корректности исчисления высказываний.	14
13	Вывод из гипотез. Лемма о дедукции. Полезные производные правила.	15
14	Теорема полноты исчисления высказываний.	16

15	Исчисление резолюций для опровержения пропозициональных формул в КН Φ : дизъюнкты, правило резолюций, опровержение КН Φ в исчислении резолюций. Теорема корректности исчисления резолюций (для пропозициональных формул в КН Φ).	
16	Теорема полноты исчисления резолюций (для пропозициональных формул в ${\rm KH}\Phi$). Доказательство нужно знать только для конечных и счетных множеств формул.	18
17	Полиномиальный алгоритм сведения задачи распознавания совместности конечных множеств произвольных формул к задаче распознавания совместности конечных множеств дизьюнктов.	
18	Определение формулы первого порядка в данной сигнатуре. Свободные и связанные вхождения переменных. Интерпретации данной сигнатуры. Общезначимые и выполнимые формулы. Равносильные формулы.	
19	Теории и их модели. Семантическое следования. Теорема Черча об алгоритмической неразрешимости отношения семантического следования и общезначимости формул (в доказательстве теоремы можно использовать существование конечно определенной полугруппы с неразрешимой проблемой равенства).	
20	Дизъюнкты, универсальные дизъюнкты. Исчисление резолюций (ИР) для доказательства несовместности множеств универсальных дизъюнктов. Теорема корректности ИР.	
21	Непротиворечивые теории. Теорема полноты ${\it MP}$ (для множеств универсальных дизъюнктов).	23
22	Исчисление резолюций для теорий, состоящих из формул общего вида (приведение к предваренной нормальной форме и сколемизация). Доказательства общезначимости с помощью ИР. Выводимость формулы в теории с помощью ИР. Теорема компактности.	
23	Гомоморфизмы, эпиморфизмы (сюръективные гомоморфизмы), изоморфизмы. Теорема о сохранении истинности при эпиморфизме. Изоморфные модели. Элементарно эквивалентные модели, элементарная эквивалентность изоморфных моделей.	
24	Выразимые (определимые) в данной модели отношения. Теорема о сохранении автоморфизмами выразимых предикатов. Доказательства невыразимости с помощью автоморфизмов.	
25	Нормальные модели. Аксиомы равенства. Теорема о существовании нормальных моделей у непротиворечивых теорий, содержащих аксиомы равенства.	27
26	Игра Эренфойхта для данной пары моделей данной сигнатуры. Теорема об элементарной эквивалентности моделей, для которых в игре Эренфойхта Консерватор имеет выигрышную стратегию.	
27	Семантически полные теории. Критерий семантической полноты теории в терминах элементарной эквивалентности моделей. Аксиоматизация элементарной теории упорядоченного множества рациональных чисел.	
28	Семантически полные теории. Критерий семантической полноты теории в терминах элементарной эквивалентности моделей. Аксиоматизация элементарной теории упорядоченного множества целых чисел.	

Определение вычислимой частичной функции из № в №. Счетность семейства частичных вычислимых функций, и существование невычислимых функций. Разрешимость подмножества №. Перечислимые подмножества №. Счетсность семейства перечислимых множеств, и существование неперечислимых множеств.

1.1 Определение вычислимой частичной функции из $\mathbb N$ в $\mathbb N$

Определение 1. Пусть A и B некоторые множества. Частичной функцией из A в B называется произвольное подмножество $f \subseteq A \times B$, удовлетворяющая свойству

$$\forall a \in A, b_1, b_2 \in B \ (a, b_1) \in f \land (a, b_2) \in f \Rightarrow b_1 = b_2$$

Обозначение: $f: A \stackrel{p}{\to} B$

Определение 2. Функция $f: A \stackrel{p}{\to} B$ вычислима, если существует программа (на C, на ассемблере, машина Тьюринга и m.n.), которая на любом входе $x \in \text{dom } f$ выписывает f(x) и завершается, а на любом входе $x \in A \setminus \text{dom } f$ не завершается ни за какое конечное число шагов.

1.2 Счетность семейств частичных вычислимых функций, и существование невычислимых функций.

Утверждение 1. Семейство частичных вычислимых функций счетно.

Доказательство. -

Утверждение 2. Существуют невычислимые функции.

 \square Оказательство. -

1.3 Разрешимость подмножества \mathbb{N} .

Определение 3. Множество А разрешимо, если его характеристическая функция

$$\chi_A(x) = \begin{cases} 1, & ecnu \ x \in A \\ 0, & ecnu \ x \notin A \end{cases}$$

вычислима.

1.4 Перечислимые подмножества \mathbb{N} .

Определение 4. Множество A пречислимо, если есть программа, на пустом входе последовательно выписывающая все элементы A и только ux.

1.5 Счетность семейства перечислимых множеств, и существование неперечислимых множеств.

Утверждение 3. Семейство перечислимых множеств счетно.

Доказательство. - \Box

Утверждение 4. Существуют неперечислимые множества.

 \square оказательство. -

2 Эквивалентные определения перечислимости (полуразрешимость, область определения вычислимой функции, множество значений вычислимой функции).

Определение 5.

3 Теорема Поста. Теорема о графике.

4 Универсальные вычислимые функции (нумерации) для семейства частичных вычислимых функций натурального аргумента. Несуществование универсальной вычислимой функции для семейства тотальных вычислмых функций натурального аргумента (диагональное рассуждение). Главные универсальные функции.

5 Вычислимая функция, не имеющая тотального вычислимого продолжения. Перечислимое неразрешимое множество. Неразрешимость проблемы применимости.

6 Теорема Поста. Существование перечислимого множества, дополнение которого перечислимо. Перечислимые неотделимые множества.

7	Сводимости: m -сводимость и Тьюрингова сводимость. Их свойства. Полные перечислимые множества.

8 Теорема Клини о неподвижной точке.

9 Теорема Райса-Успенского.

10 Определение машин Тьюринга и вычислимых на машинах Тьюринга функций. Тезис Черча-Тьюринга. Неразрешимость проблемы остановки машины Тьюринга.

11 Неразрешимость проблемы достижимости в односторонних в ассоциативных исчислениях. Полугруппы, заданные порождающими и соотношениями. Теорема Маркова-Поста: неразрешимость проблемы равенства слов в некоторой конечно определенной полугруппе (без доказательства).

12	Исчисление высказываний (аксиомы и правила вывода), понятие вывода. Теорема корректности исчисления высказываний.

13	Вывод из гипотез. Лемма о дедукции. По правила.	элезные і	производные

14	Теорема полноты исчисления высказываний.

15 Исчисление резолюций для опровержения пропозициональных формул в КНФ: дизъюнкты, правило резолюций, опровержение КНФ в исчислении резолюций. Теорема корректности исчисления резолюций (для пропозициональных формул в КНФ).

16 Теорема полноты исчисления резолюций (для пропозициональных формул в КН Φ). Доказательство нужно знать только для конечных и счетных множеств формул.

17 Полиномиальный алгоритм сведения задачи распознавания совместности конечных множеств произвольных формул к задаче распознавания совместности конечных множеств дизьюнктов.

18 Определение формулы первого порядка в данной сигнатуре. Свободные и связанные вхождения переменных. Интерпретации данной сигнатуры. Общезначимые и выполнимые формулы. Равносильные формулы.

19 Теории и их модели. Семантическое следования. Теорема Черча об алгоритмической неразрешимости отношения семантического следования и общезначимости формул (в доказательстве теоремы можно использовать существование конечно определенной полугруппы с неразрешимой проблемой равенства).

20 Дизъюнкты, универсальные дизъюнкты. Исчисление резолюций (ИР) для доказательства несовместности множеств универсальных дизъюнктов. Теорема корректности ИР.

21	Непротиворечивые теории. Теорема полноты ИР (для множеств универсальных дизъюнктов).

22 Исчисление резолюций для теорий, состоящих из формул общего вида (приведение к предваренной нормальной форме и сколемизация). Доказательства общезначимости с помощью ИР. Выводимость формулы в теории с помощью ИР. Теорема компактности.

23 Гомоморфизмы, эпиморфизмы (сюръективные гомоморфизмы), изоморфизмы. Теорема о сохранении истинности при эпиморфизме. Изоморфные модели. Элементарно эквивалентные модели, элементарная эквивалентность изоморфных моделей.

24 Выразимые (определимые) в данной модели отношения. Теорема о сохранении автоморфизмами выразимых предикатов. Доказательства невыразимости с помощью автоморфизмов.

25 Нормальные модели. Аксиомы равенства. Теорема о существовании нормальных моделей у непротиворечивых теорий, содержащих аксиомы равенства.

26 Игра Эренфойхта для данной пары моделей данной сигнатуры. Теорема об элементарной эквивалентности моделей, для которых в игре Эренфойхта Консерватор имеет выигрышную стратегию.

27 Семантически полные теории. Критерий семантической полноты теории в терминах элементарной эквивалентности моделей. Аксиоматизация элементарной теории упорядоченного множества рациональных чисел.

28 Семантически полные теории. Критерий семантической полноты теории в терминах элементарной эквивалентности моделей. Аксиоматизация элементарной теории упорядоченного множества целых чисел.