

STEROÏDES SURRENALIENS

Dr S. KENDRI

Maître assistante en Biochimie

Médicale

Université de Sétif Laboratoire de biochimie 2^{ème} Année de Médecine

- · Les Hormones stéroïdes sont:
- · Hormones <u>lipophiles</u>;
- · Issues du cholestérol;
- · Synthèse sous la dépendance de l'axe H-H (sauf Aldo)
- · Synthèse tissu spécifique (enzymes tissu spécifiques);
- · Non stockées dans des granules sécrétoires;

· 2 classes d'hormones stéroïdes :

· Minéralocorticoïdes (Aldostérone)

· Glucocorticoïdes (Cortisol)

Androgènes (DHEA)

Corticosurrénales:

Stéroïdes surrénaliens

· Androgènes (Testostérone)

Œstrogènes (œstradiol)

Gonades: Stéroïdes sexuels

- · Les sites de production des hormones stéroïdes :
- · 2 glandes coiffant le pôle supérieur des reins
- 2 parties:
 - * Centrale: médullaire ou médullosurrénale
 - * Périphérique: corticale ou corticosurrénale
- Très richement vascularisés
- · Origine embryologique différente

· Les sites de production des hormones stéroïdes :

· Les sites de production des hormones stéroïdes :

- · Rôles des hormones stéroïdes :
- <u>Stéroïdes sexuels (androgènes, œstrogènes, progestérone)</u>
 - * Reproduction, caractères sexuels, gamétogénèse, Gsse
 - * Développement osseux, croissance.
- · Glucocorticoïde (cortisol)
 - * Métabolisme (glucides, lipides, protéines);
 - * Système immunitaire;
 - * Inflammation
- · Minéralocorticoïdes (aldostérone)
 - * Homéostasie hydroélectrolytique

• Précurseur commun : Cholestérol

• Dr S. KENDRI 24/03/2021

· Précurseur commun : Cholestérol

Les sources du Cholestérol

● Dr S. KENDRI 24/03/2021 ● 10

- Transfert du Cholestérol
- · Passage mitochondrial du cholestérol;
- Rôle important de la protéine StAR (steroidogenic acute regulatory protein) dans le transfert du cholestérol du cytoplasme vers la mitochondrie;
- Etape limitante

- · Lieu de synthèse
- · Compartimentation subcellulaire

Les voies de biosynthèse des hormones stéroïdes

- Se déroulent alternativement dans la mitochondrie et le réticulum endoplasmique lisse impliquant de façon coordonnée des enzymes du complexe cytochrome P450
- ✓ Mitochondrie: 20-22 desmolase, 11ß hydroxylase, 18 hydroxylase.
- ✓ Réticulum endoplasmique: les autres réactions

- · Les Enzymes de la Stéroïdogénèse
- Les cytochromes P450 (CYP):
 - * Structure héminique, absorbent à 450 nm
 - * Monooxygénase à NADPH (Hydroxylases)
 - * Enzyme membranaire (mitochondrie/RE)
- · Les HydroxyStéroïdes Déshydrogénases (HSD):
 - * Oxydoréductases à NAD+/NADP+

• La Famille des Cytochromes P450

•	Cytochrome P450	Activité enzymatique	gène
•	P450scc	20-22 desmolase	CYP 11 A1
		20,22hydroxylase	
•	P450c17	17 a hydroxylase	CYP17
		17-20 desmolase (lyase)	
•	P450c21	21-hydroxylase	CYP21A2
•	P450c11	11-Bhydroxylase	CYP B 1
•	P450c11AS	18 hydroxylase	CYP B2
		(Aldostérone synthase)	

• Dr S. KENDRI 24/03/2021

4 groupes d'enzymes:

- Desmolases: clivage de la chaine latérale en C17
 - → Stéroïdes à 21C, 19C et 18C.
- · Hydroxylases: substitution d'un H par un OH
- · Déshydrogénases: oxydation des OH en cétone
- · Isomérases: déplacement de la double liaison

Régulation

· Biosynthèse (vue générale)

- Biosynthèse
- · Première étape commune

```
Cholestérol (C27) — Pregnenolone (C21)

CYP11A

(20,22 Desmolase)

(20 hydroxylase)

(22 hydroxylase)
```

· Etape limitante et régulée par ACTH

Mécanisme d'action

- La plupart des stéroïdes hydrophobes sont liés à des protéines porteuses plasmatiques. Seules les hormones libres peuvent diffuser à l'intérieur de leur cellule cible.
- Les récepteurs aux hormones stéroïdes sont typiquement dans le cytoplasme ou le noyau.
 - Quelques hormones stéroïdes se lient également à des récepteurs membranaires, qui utilisent les systèmes de second messager pour induire une réponse cellulaire rapide.
- Le complexe hormone-récepteur se lie à l'ADN et active ou réprime un ou plusieurs gènes.
- Les gènes activés produisent de nouveaux ARNm qui migrent vers le cytoplasme.
- La traduction produit de nouvelles protéines pour les processus cellulaires.

FIGURE 7.7 Action de l'hormone stéroïde.

D'après « physiologie humaine » de Silverthorn

LES GLUCOCORTICOÏDES Le Cortisol Zone Fasciculée

I. BIOSYNTHESE

• Dr S. KENDRI 24/03/2021

ACTH Rôle trophique sur la surrénale + contrôle la 1ère étape (CYP11 A)

ACTH: Adreno Cortico Tropic Hormone

CRH: Corticotropin Releasing H (corticolibérine)

Effet de l'ACTH

• Dr S. KENDRI 24/03/2021

- · CRH
 - * Origine hypothalamique
 - * Favorise la sécrétion hypophysaire d'ACTH
 - * Régulation suprathalamique
- Activatrice: cholinérgique, sérotoninérgique et noradrénérgique
 - Inhibitrice: GABA

· ACTH

- * Origine anté-hypophysaire
- * Clivage de son précurseur POMC
- * Sécrétion pulsatile > sécrétion pulsatile du cortisol
- * Pic d'ACTH se situant avant celui du cortisol, lui-même se situant avant le pic des performances de l'organisme
- * Stimule la production de cortisol, d'aldostérone (régulation aigue) et des androgènes surrénaliens
- * Active la transcription des gènes d'enzymes impliquées dans la stéroïdogénèse
 - * Action trophique positive sur les surrénales
 - * Active la pigmentation cutanée
 - * Sécrétion favorisée par le stress

Rythme circadien

III. TRANSPORT PLASMATIQUE

- Forme liée: inactive (90-95%)
 - * Albumine: à faible affinité et grande capacité
- * CBG ou transcortine: à faible capacité et forte affinité. Elle lie cortisone, corticostérone et progest Elle intervient de la régulation de la [cortisol] plasmatique: ↑ CBG: ↓cortisol libre
- Forme libre: biologiquement active (5-10%), responsable du rétrocontrôle hypothalamohypophysaire

IV. CATABOLISME

- · Exclusivement hépatique
- Réaction de réduction
- Catabolites inactifs: tetrahydrodérivés et héxahydrodérivés,
- Conjugaison (glucuro et sulfoconjugaison)
- Elimination urinaire de cortisol libre, cortisone et dérivés hydrogénés (17 OHstéroïdes, cétostéroïdes)

Dr S. KENDRI 24/03/2021

- ✓ Actions métaboliques
 - *Glucides: action hyperglycémiante
 - Néoglucogénèse hépatique (AA)
 - -Inhibition de l'utilisation périphérique du glucose
- -Action anti-insuline (l'activité récepteur, altération des post-récepteurs et accélération de la dégradation de l'insuline)

✓ Actions métaboliques

- *Protéines: action catabolisante
- Les AA mobilisés (muscle, os, TC)→ substrats de la néoglucogénèse
 - *Lipides:
 - Action lipolytique: ↑ AG, hypercholestérolémie
- Redistribution des graisses: action sur la différenciation des adipocytes et de la lipogénèse
 - * Hydro-électrolytique:
 - A forte dose: rétention sodée, fuite de K+ et H+

- ✓ Action anti-inflammatoire
 - * Dose thérapeutique
 - * Répression de la cyclo-oxygénase 2
 - * Inhibition de la migration des leucocytes
 - * ↓ activité phagocytaire
 - * ↓ réponse immunitaire (↓ LT4)
- ✓ Action antiallergique
 - * Inhibition du relargage des médiateurs
- ✓ Action immuno-modulatrice
 - * Inhibition de la production de cytokines
 - * Inhibition de l'immunité cellulaire et humorale

✓ Actions sur les tissus

- * Os: ostéoporose
- * SNC: action stimulante(irritabilité, dépression)
- * Estomac: $\downarrow PGs \rightarrow \uparrow HCl \& \downarrow formation mucus \rightarrow effet ulcérigène$
 - * Peau: retard de cicatrisation
- * CVS: potentialise l'effet de l'adré→↑contraction et Vxconstriction→ ↑PAS
 - * Muscle squelettique: \force musculaire et \ fatigue
 - * Tissu sanguin: †GR, plaquettes et PNN/ | lymph, PNE

LES MINERALOCORTICOIDES L'aldostérone Zone Glomérulée

I. BIOSYNTHESE

• Dr S. KENDRI 24/03/2021

Pas de contrôle de l'axe hypothalamo-hypophysaire

• Dr S. KENDRI 24/03/2021

Contrôle de la sécrétion d'aldostérone par le système rénine-angiotensine

· Système rénine/angiotensine II

• Dr S. KENDRI 24/03/2021

· Appareil juxtaglomérulaire

● Dr S. KENDRI 24/03/2021 ● 39

Système rénine/angiotensine/aldostérone

· Kaliémie & Natrémie

- L'↑ de kaliémie et la ↓ de la natrémie (volémie)
 stimulent la sécrétion d'aldostérone
- La situation inverse est inhibitrice

· ACTH

- Dans les conditions normales, elle a peu d'effets sur la sécrétion d'aldostérone
- En cas de stress, elle stimule le libération de manière transitoire

Inhibiteurs

- ANP (Atrial Natriuretic Peptid): inhibe la libération d'aldostérone et de rénine
- Progestérone et 17 OH progestérone: inhibiteur compétitif

Dr S. KENDRI 24/03/2021

III. TRANSPORT & CATABOLISME

Transport plasmatique

- Forme libre 40 à 50%
- Forme liée 50 à 60%
 - *Albumine: faible affinité, grande quantité
- * CBG: grande affinité, faible quantité→ rapidement saturée

· Catabolisme

- Hépatique, dérivés hydrogénés (dihydro et tétrahydrodérivés)
- Réactions d'oxydation et de conjugaison→ élimination urinaire

• Dr S. KENDRI 24/03/2021 • 44

• Dr S. KENDRI 24/03/2021

• Dr S. KENDRI 24/03/2021 • 46

• Dr S. KENDRI 24/03/2021

IV. ACTIONS BIOLOGIQUES

- † réabsorption du Na+ en échange avec K+: TCD, TC
- La réabsorption d'eau suit fidèlement celle du Na+→
- → Modification du volume sanguin et PAS→ rôle dans la régulation de la PAS
- · Elimination d'ions H+, dans une moindre mesure
- Réabsorption de Na+ dans la sueur, salive et sucs digestifs

Dr S. KENDRI 24/03/2021

LES ANDROGENES SURRENALIENS Zone Réticulée

- · Sont par ordre décroissant d'abondance.
 - o Le sulfate de déhydroépiandrosterone (DHEA-S)
 - o Le déhydroépiandrostérone (DHEA) ou (DELTA 5)
 - o L'androsténedione (DELTA 4)
 - o La testostérone.

Dr S. KENDRI 24/03/2021

I. BIOSYNTHESE

I. BIOSYNTHESE

- ont une faible activité androgénique (androgènes mineurs)
- · Sont transformés dans les tissus périphériques en :
- ✓ Testostérone (androgène majeur)
- ✓ Œstradiol (seule ressource d'estradiol chez la femme ménopausée)
- SDHEA est une forme de réserve de la DHEA, exclusivement surrénalienne en dehors de toute grossesse.
- Origine des androgènes :
 2/3 surrénaliens et 1/3 gonadiques(Le 1/3 gonadique étant le plus actif)

I. BIOSYNTHESE

- · Synthétisés chez l'homme et chez la femme.
- Sécrétés sous l'influence de l'ACTH mais ne participent pas au rétrocontrôle hypophysaire.
- · Les gonadotrophines n'ont aucun effet sur la sécrétion des androgènes surrénaliens.
- Un certain nombre d'androgènes sont sécrété à la fois par la corticosurrénale et par les gonades : DHEA, androstènedione.
- D'autres sont sécrétés exclusivement par la corticosurrénale : le S-DHEA

Dr S. KENDRI 24/03/2021

Pas de rétrocontrôle sur ACTH

III. TRANSPORT & CATABOLISME

Transport plasmatique

- SBG (Sex steroid binding globulin): transport des androgènes, œstrogènes
- · Albumine: DHEA et SDHEA
 - Catabolisme
- · Homme: foie et tissus cibles, Femme: foie
- 4 androstènedione est catabolisé en dérivés tétra hydrogénés qui sont ensuite conjugués.
- DHEA et 5 DHEA sont transformées en 4 androstènedione

Dr S. KENDRI 24/03/2021

IV. ACTIONS BIOLOGIQUES

· Homme

- * Rôle limité, seule 5% de testo est surrénalienne
- Femme
- * Ménopause: source de quantité d'æstrogènes importante qualitativement
- * En activité génitale: excès→ manifestations virilisantes

CORTICOSURRENALE

Dr S. KENDRI

Maître assistante en Biochimie

Médicale

Université de Sétif Laboratoire de biochimie 2^{ème} Année Médecine

V. EXPLORATION METABOLIQUE

V.1 GLUCOCORTICOÏDES DOSAGES STATIQUES

V.1.1 CORTISOL SANGUIN

- · Conditions de prélèvement
- Sérum ou plasma
- Le matin 7h-9h: variations nycthémérales
- · L'heure du prélèvement doit être indiquée
- Pour démontrer le rythme circadien de sécrétion, 2prélèvements sont réalisés: 8h et 16h
- Eviter tout effort et stress important avant le prélèvement
- · A distance de toute prise de corticoïdes

V.1.1 CORTISOL SANGUIN

- Méthode de dosage
- Chimiluminescence
- Radio immunologie RIA
 - · Valeur Normale
- 50 200μg/l 250 800 nmol/l (cortisol total)
- Cortisolémie vespérale: 25% de la matinale
- [] dépendante de la [CBG]

V.1.1 CORTISOL SANGUIN

Faux positifs

- Situations avec ↑ CBG (grossesse, œstroprogestatifs)
- → ↑ Cortisolémie avec cortisol libre normal
- Pseudo-cushing: stress important, état infectieux, IR sévère, I hépatique sévère, dépression, anorexie mentale, alcoolisme, obésité

V.1.2 CORTISOL SALIVAIRE

- · Conditions de prélèvement
- Dosage indirecte du cortisol libre plasmatique
- Non influencé par les variations de la CBG
- · Recueil dans un tube spécial «salivette»
- Abstinence de manger ou de boire une boisson acide dans un délai de 30 minutes avant le prélèvement, ainsi que de brosser les dents
- · Recueil fait le matin

V.1.3 CORTISOL LIBRE URINAIRE CLU

· Conditions de prélèvement

- 1% des métabolites urinaires du cortisol
- Cortisol qui a échappé à la réduction et conjugaison hépatique
- Reflet du cortisol libre plasmatique actif
- Urines des 24h
- Dosage de créatinine pour valider la qualité de récolte
 - Méthode de dosage
- HPLC après extraction à partir des urines(sans hydrolyse)
- · Radio-immunologie après purification
 - Valeur normale
- Femme: $10-50 \mu g/24h$ RIA
- Homme: 20-50 $\mu g/24h$ RIA

V.2 GLUCOCORTICOÏDES DOSAGES DYNAMIQUES

V.2.1 TESTS DE FREINAGE

Tests de freinage

- La dexaméthasone, puissant glucocorticoïde de synthèse,
- Inhibe la libération d'ACTH (rétrocontrôle négatif)
- Résultat: Diminution de l'ACTH et du cortisol

V.2.1 TESTS DE FREINAGE

test	technique
Test de freinage " minute "	prélèvement à 8 H après la prise de 1 mg de dexaméthasone (Dexa) la veille vers 23 heures
Test de freinage " faible " de Liddle (freinage standard), (freinage faible	0,5 mg de Dexa est administré toutes les 6 heures pendant 48 heures. Mesure du cortisol plasmatique 6 heures après la dernière prise de Dexa ou à 16h le troisième jour,
Test de freinage renforcé (fort)	2 mg de Dexa sont administrés toutes les 4h pendant 48h mais pas très utilisés

· Tests au synacthène

 Utilisation de synacthène, analogue synthétique de l'ACTH: provoque une augmentation du cortisol

Test	Technique	Réponse
Test rapide	Après un 1 ^e prélèvement à 8 h, on injecte 0,25mg de synacthéne en IM et on prélève 30 mn et 1h plus tard.	La cortisolémie doit à peu prés doubler
Test au Synacthène Retard	on dose le cortisol à 8h Inj en IM d'1 mg de synacthéne, Dosage du cortisol 1h et 24h après inj	Normalement on a une élévation de la cortisolémie qui doit doubler

- · Test à la métopirone
- Test de stimulation de l'axe corticotrope: test dangereux
- Inhibe la 11 β Hydroxylase
- · Réponse: ACTH augmenté
- Les produits situés en amont du site de blocage sont augmentés tel que le 11désoxycortisol (composé S), 17α OH progesterone
- Ceux en aval tel que le cortisol sont bas

· Test à la métopirone

Test	Technique	Réponses
Test court	30 mg de métopirone /kg en per os à minuit et on fait 1 prélèvement à 8h	Cortisol bas ComposéS augmenté
Test standard	6 doses de 750 mg de métopirone per os toutes les 4h à partir de 8h et 1 prélèvement le lendemain à 8h	ComposeS augmenté ACTH augmenté (x 3 à 10) Cortisol bas

V.2.2 TESTS DE STIMULATION

Autres tests

Test	Technique	réponse
Test à l'insuline	0,1 UI en IV d'insuline ordinaire/kg à 8h à jeun prélèvement à -15', 0', 15', 30', 60', 90' et 120'	ACTH et cortisol augmentés à la suite de l'hypoglycémie
Test à l'ADH	prélèvements à -15', 0', 15' 30',60',et 90' après inj de 10 U à 8h en IM	
Test au CRH	prélèvements à -15', 0', 15', 30', 60', 90' et 120' après inj IV 100 μg de CRH	cortisol et ACTH augmentés

V.3 MINERALOCORTICOÏDES DOSAGE STATIQUE

V.3.1 MINERALOCORTICOÏDES

· Conditions de prélèvement

- Arrêt des médicaments antihypertenseurs pouvant affecter le système rénine angiotensine et les concentrations d'aldostérone 15 jours avant la prise de sang
- 5 jours avant la prise de sang: Arrêt des médicaments diurétiques thiazidiques, et des autres médicaments pouvant modifier l'aldostérone comme les laxatifs et instauration d'un régime normosodé (6-8 g de sel/jour) jusqu'à la prise de sang.

V.3.1 MINERALOCORTICOIDES

· Conditions de prélèvement

- Patient à jeun, le matin entre 8 et 10 h afin de tenir compte du rythme circadien de la sécrétion de cette hormone
- La position (couchée, allongé depuis au moins 1/2 h ou debout, marché au moins 1/2 h) influence les résultats des dosages
- Le stress de la ponction →↑ rénine → stimule la sécrétion d'aldostérone → prélèvement à partir d'un KT posé à l'arrivée du malade
- Sérum ou plasma (héparine de lithium, EDTA) sur tube réfrigéré

V.3.1 MINERALOCORTICOÏDES

Paramètres	Valeurs	
angiotensinogéne	1064+- 223 ng AI/ml	
aldostéronémie,	4 - 15ng / dL (0,11 - 0,42 nmo / l)	
activité rénine plasmatique	1 à 3 µg AI/l/h AI=angiotensineI	
rénine active	16,9 +- 6,54 pg/ml	
rénine totale	200 -+93 pg/ml	
prorénine,	187 +-89 pg/ml	
aldostérone urinaire	14 à 55 nmol /j ou 5-20 μg/24 h	
Aldostérone urinaire hydrolysable à pH 1	80 à 160 nmol/j ou 40 à 60 μg/24 h	

V.4 MINERALOCORTICOÏDES DOSAGE DYNAMIQUE

V.4.1 TESTS DE STIMULATION

Test à l'orthostatisme

- Le passage de la position couchée à la position debout permet de juger l'adaptation de la surrénale à son système de commande
- Soit 1er prélèvement en position couchée avant le lever et 2ème prélèvement après 1 heure de déambulation.
- Soit 1er prélèvement après 1 heure de déambulation et 2^{ème} prélèvement après 2 heures de décubitus.
- Dosage de l'aldostérone et rénine active (augmentés)
 - Test au furosémide

V.4.2 TESTS DE FREINAGE

- Test de freinage court (charge sodée)
- L'expansion volumique provoquée par la perfusion de 2L de SSI à 9°/00 en 4 h engendre un abaissement de l'aldostérone
 - Test au captopril
- Sujet à jeun et au repos depuis 1 heure au minimum
- · Prélèvement à T0 min
- Administration per os de 1 mg/kg de captopril (IEC)
- Prélèvement à T+120 min après la prise du médicament
- Dosage de rénine active (↑) et aldostérone (↓)

V.5 ANDROGENES SURENNALIENS DOSAGE STATIQUE

V.5.1 ANDROGENES SURRENALIENS

SDHEA

- Immunodosage
- Surtout chromatographie liquide couplée à SM
 - Androsténedione et 4 androsténedione
- Immunodosage

VI. VARIATIONS PATHOLOGIQUES

VI.1 GLUCOCORTICOÏDES

VI.1.1 HYPERCORTICISME

Définition

- Le syndrome de Cushing regroupe l'ensemble des manifestations cliniques, induite par une exposition chronique à un excès de glucocorticoïdes
- 2 grands cadres physiopathologiques:
- * Le syndrome de Cushing ACTH dépendant: IIaire
- * Le syndrome de Cushing ACTH indépendant: Iaire

Définition

 la sécrétion surrénalienne est autonome, indépendante de l'ACTH

*Tumeur surrénalienne unilatérale bénigne (adénome 60% cortisol), maligne (39% cortisol & androgènes)

* atteinte bilatérale primitive des surrénales dans

environ 1 %

• Cliniaue Cushing's Disease or Syndrome Symptoms

· Clinique

- symptômes d'hypercatabolisme : cutané (fragilité cutanée, ecchymoses, vergetures); musculaire (amyotrophie proximale); osseux (ostéoporose).
- Un diabète de type 2 entrant dans le cadre d'un syndrome plurimétabolique ou déséquilibré sans cause évidente.
- · Une hypertension artérielle du sujet jeune
- Un tableau psychiatrique atypique ou résistant aux antidépresseurs usuels
- · Une ostéoporose sans cause évidente

- · Diagnostic différentiel
- Syndromes de Cushing iatrogènes:
 - * Prise de corticoïdes
- * Inhibiteurs CYP450 (itraconazole, ritonavir), majorant la biodisponibilité du cortisol
 - * Progestatifs à fortes doses
- · Pseudo Syndromes de Cushing:
 - * Grossesse
 - * Alcoolisme chronique
 - * Obésité morbide
 - * Stress, pathologies psychiatriques

Biologie

· FNS: polyglobulie, polynucléose neutrophile,

lymphopénie et éosinopénie

- · Hypokaliémie
- · Hyperglycémie
- Hypercalciurie normocalcémique
- · Dyslipidémie: hypercholestérolémie
- & hyperTG

- · Biologie: hormonologie
- Dosages statiques
- * Cortisol à 8h /16h ↑ avec perte du rythme circadien
 - * CLU 1, 170H stéroïdes 1
 - * ACTH ≥ , CRH ↓
- Dosages dynamiques
 - * Freinage minute: négatif
 - * Freinage fort: absence de freinage
 - * Test à la métopirone: négatif

· Définition

- les surrénales sont stimulées par une sécrétion excessive et inappropriée d'ACTH
- * Maladie de Cushing: ACTH d'origine eutopique, tumeur des cellules corticotropes hypophysaires (80-85%)

* Syndrome de Cushing paranéoplasique: ACTH d'origine ectopique, tumeur endocrine non hypophysaire

(10-15%)

Clinique

Mélanodermie en rapport avec la sécrétion de MSH
 Cushing's Disease or Syndrome Symptoms

Biologie

- Dosages statiques
 - * Cortisol à 8h /16h \(\) avec perte du rythme circadien
 - * CLU 1, 170H stéroïdes 1
 - * ACTH 7, CRH 1

Biologie

- Dosages dynamiques
 - * Test de freinage fort
 - ° Freinage positif: maladie de Cushing
 - ° Absence de freinage: Cushing paranéoplasique
 - * Test au CRH ou à l'ADH
 - ° Réponse explosive de l'ACTH: maladie de Cushing
 - ° Absence de réponse: Cushing paranéoplasique
 - * Test à la métopirone:
 - ° Réponse explosive de l'ACTH: maladie de Cushing
 - ° Réponse négative: Cushing paranéoplasique

VI.1.2 HYPOCORTICISME

· Définition

- Carence sécrétoire en hormones CTCsurrénaliennes → tableau d'insuffisance surrénalienne IS
- Selon le degrés de déficit et la rapidité d'installation:
 - * IS chronique ou lente (ISL)
 - * ISÂ mortelle en l'absence de TRT
- Selon le niveau du trouble, surrénalien / hypophysaire:
 - * IS primitive, maladie d'Addison
 - * IS secondaire,

· Définition

- Déficit sécrétoire de l'ensemble des stéroïdes surrénaliens lors de la destruction massive des 2 surrénales
- Insuffisance en aldostérone: DésH2O EC & hyperK+
- Insuffisance en cortisol: asthénie + hypoglycémie
- Insuffisance en androgènes surrénaliens: asthénie

- Etiologies
- Formes congénitales
- *Blocs enzymatiques: 21 OHase, 11 OHase, $17\alpha OHase$
 - (Hyperplasie congénitales des surrénales)
- * anomalie du développement des glandes surrénales
- Formes acquises
 - *TBC bilatérales des surrénales
 - *IS auto-immune: rétraction corticale

· Clinique

- · Asthénie physique, psychique et sexuelle
- Amaigrissement
- Hypotension artérielle
- Mélanodermie caractéristique
- Troubles digestifs, absents dans les formes compensées. La survenue de nausées, vomissement, diarrhées, douleurs abdominales annonce la décompensation aigue

Clinique ADDISON'S DISEASE Adrenocortical Insufficiency

Biologie

- FNS: anémie, leuconeutropénie, éosinophylie
- · Tendance à l'hypoglycémie
- ↑ natriurèse, hypoNa et hyperK annoncent la décompensation

Hormonologie

- Dosages statiques
 - * Effondrement du cortisol plasmatique à 8h
 - * Effondrement de l'aldostérone avec rénine 1
 - * Effondrement des androgènes surrénaliens
 - * ACTH \\ \\ \ : elle signe l'origine surrénale de l'IS

Dosages dynamiques

* Test au synacthène immédiat: absence ↑du cortisol (il n'y a plus de tissus glandulaire pour répondre à la stimulation)

VI.1.2.2 IS SECONDAIRE

· Définition

- D'origine hypophysaire ou hypothalamique
- En rapport avec une carence en ACTH sans déficit en minéralocorticoïdes

Etiologies

- · Les causes d'insuffisance antéhypophysaire
- Corticothérapie au long cours mettant par rétrocontrôle (-), les surrénales au repos (l'IS est masquée par des signes d'imprégnation cortisolique, se manifestant lors d'1 agression ou sous dosage TRT)

VI.1.2.2 IS SECONDAIRE

· Clinique

- · Asthénie
- · Absence de mélanodermie (pâleur, dépigmentation)
- · Signes en rapport avec l'atteinte des autres lignées
 - Biologie
- Dosages statiques
 *Cortisol | ACTH | ,
- Dosages dynamiques
 - * Test au synacthène immédiat: négatif
- * Test au synacthène retard: stimulation prolongée réveille les glandes ↑ cortisol
 - * Test à la métopirone: négatif
 - * Test à l'insuline: négatif

VI.2 MINERALOCORTICOÏDES

VI.2.1 HYPERALDOSTERONISME Iaire

· Définition & étiologies

- Syndrome décrit par Conn en 1955
- Sécrétion autonome inappropriée d'aldostérone avec suppression du taux de rénine par feedback
- Causé par:
 - * un adénome (30%) uni ou bilatéral
- * une hyperplasie surrénalienne (70%) bilatérale+++

VI.2.1 HYPERALDOSTERONISME Iaire

· Clinique

- · HTA
- Asthénie, faiblesse musculaire, crampes
- Syndrome polyuro-polydipsique
 - Biologie
- · Hypokaliémie avec kaliurèse
- · Natrémie normale ou normale haute
- Aldostérone plasmatique \(\partial(\text{adénome})\)
 normal (hyperplasie)
- Activité rénine plasmatique \(\psi, \) peu stimulable par l'orthostatisme

VI.2.2 HYPERALDOSTERONISME IIaire

- Etiologies
- Sans HTA: hypersécrétion de rénine secondaire
- Avec HTA: hypersecrétion primitive de rénine
 - Biologie
- Aldostérone 1
- Activité rénine plasmatique ↑

VI.2.3 HYPOALDOSTERONISME Iaire

Etiologies

- → Ce sont les étiologies de l'ISIaire (maladie d'Addison)
- Formes congénitales
- *Blocs enzymatiques: 21 OHase, 11 OHase, $17\alpha OHase$
 - *Hyperplasie congénitales des surrénales
- Formes acquises
 - *TBC bilatérales des surrénales
 - *IS auto-immune: rétraction corticale
- → Acidose tubulaire type 4

VI.2.3 HYPOALDOSTERONISME Iaire

Biologie

- Hyponatrémie avec hypernatriurie
- Hyperkaliémie avec hypokaliurie
- Aldostérone bas
- Activité rénine plasmatique ↑
- · Test de stimulation : aldostérone bas

VI.2.4 HYPOALDOSTERONISME IIaire

Etiologies

- Hyporéninisme hypoaldostéronisme (acquis)
 - * Néphropathies tubulo-interstitielles,
 - * Atteinte de l'appareil juxta-glomérulaire,
 - * Syndromes d'obstacle urinaire,
 - * Néphropathie diabétique
- Hyporéninisme hypoaldostéronisme (induit par les médicaments)
 - * B bloquants: inhibition de l'activité rénine plasmatiq
 - * IEC: conversion de l'angioI en angioII
 - * AINS; inhibe la synthèse de PGs \rightarrow \downarrow rénine et aldo
 - * Héparine: inhibe la synthèse surrénalienne d'aldo

VI.2.4 HYPOALDOSTERONISME IIaire

Biologie

- Hyperkaliémie avec hypokaliurie
- Hyponatrémie avec hypernatriurie
- Aldostérone bas
- Activité rénine plasmatique \

VI.3 ANDROGENES SURRENALIENS

VI.3.1 HYPERANDROGENIE

· Définition

- Syndrome de virilisation d'origine surrénalienne
- Augmentation des androgènes surrénaliens
 - * Processus tumoral
- * Bloc enzymatique déviant la stéroïdogénèse
 - · Clinique

- · Hirsutisme
- · Virilisme

VI.3.1 HYPERANDROGENIE

Biologie

- · augmentation des androgènes surrénaliens
 - * SDHEA
 - * 4 androsténedione
- Testostérone subnormal ou franchement 1
- · Hypercorticisme souvent associé
- Dosage du 17 OH progestérone (↑ taux de base et après un test au synacthène → bloc 21 OH)

VI.3.1 HYPERANDROGENIE

Etiologies

- · Corticosurrénalome
- Maladie de Cushing
- Bloc enzymatique: 21 OHase, 11 OHase,
 3β- hydroxysteroïde deshydrogenase (3β-HSD) → hyperplasie congénitale des surrénales