Functional Decomposition

Functional Decomposition

Functional Decomposition
 (Roth-Karp Decomposition)

$$f(x_1,x_2,...,x_n) = f'(g_0(x_1,...,x_k),g_1(x_1,...x_k),...$$
$$g_s(x_1,...,x_k),x_{k+1},...x_n))$$

bound set

Three Questions

- (1) With respect to a partitioning, what is the minimum number of sub-functions g?
- (2) How to synthesize the subfunctions g, and the top function f'?
- (3) How to select a partition?

Minimum Subfunctions

(1) With respect to a partitioning,

$$\Pi$$
 =(B,F) (B: Bound set; F: Free set) what is the minimum number of sub-functions g?

Ex: The comparison function (a_2a_1,b_2b_1) and $\Pi = (\{a_1b_1\},\{a_2b_2\})$

$$a_1b_1$$
 a_2b_2
 $00 \quad 01 \quad 10 \quad 11$
 $00 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1$
 $01 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
 $10 \quad 0 \quad 0 \quad 0 \quad 0$
 $11 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1$

the number of row patterns = $2 \log(\#row patterns) = 1$

Equivalent Classes

- 1. $x_1 \approx x2$ for $x_1, x_2 \in B$ if $f(x_1, y) = f(x_2, y)$ for all $y \in F$ x_1 and x_2 are in the same equivalence class
- 2. The number of row patterns is the number of equivalence class
- 3. The minimum number of g functions is log (the number of equivalent classes)

Example

(2) How to synthesize g, f'? Ex:

Example

C	d (00	01	10	11	g_1g_2
ab						<u> 5152</u>
00	-	1	1	0	0	← 00
01	-	1	0	0	1	← 01
10	-	1	1	0	0	← 00
11	()	0	0	1	← 10

ab	g ₁	ab g_2	f' cd	00	01
00	0	$\begin{vmatrix} ab \\ 00 \end{vmatrix} 0$	$\begin{bmatrix} g_1g_2 \\ 00 \end{bmatrix}$	1	1
01	0	01 1	01	1	0
10	0	10 0	10	0	0
11	1	11 0	11	d	d

10 11

0

d

0

d

How to Select a Partition

(3) How to select a partition?

a_2b_2 00 01 10 11							
a_1b_1 00							
00		1	0	0	1		
01		0	0	0	0		
10		0	0	0	0		
11		1	0	0	1		

b_1	b_2	00	10	11 1	10
a_1a_2					
00		1	0	0	0
01		0	1	0	0
10		0	0	1	0
11		0	0	0	1

row pattern=4 log(#row patterns) = 2

Example

Compute the number of equivalence classes using BDD

$x_2x_3 00011011$						
$\mathbf{x}_0\mathbf{x}_1$						
00	0	0	1 0	A		
01	0	0	1 1	В		
10	0	0	1 0	A		
11	0	0	1 0	A		

Example (cont.)

- 1. Order BDD such that the variables in the bound set is on the top of BDD
- 2. Draw a line between the bound set and the free set
- 3. The number of equivalence classes is the number of sub-trees rooted at the line