REVOWAITTM

铂沃科技平台通讯协议

RWH743ECAT版

铂沃科技RWH743ECAT控制板通信协议

时间	软件版本	修订人	修订内容
2022.10.20	V1.0	tang	初次修订
2023.2.25	V1.0.1	tang	修正校验
2023.5.7	V1.0.2	tang	增加随动控制以及安全光栅配置

本协议适用于RWH743ECAT控制板,通信方式UDP,控制板IP地址192.168.31.88,端口8080。

目录

- ▼一、八字节协议(基础控制/参数设置)
 - ▼ 协议解析说明
 - (1) 帧头
 - (2) CMD
 - (3) DATA数据
 - (4) 校验
 - (4) 报文案例
- ▼二、十六字节协议
 - ▼ 协议解析说明
 - (1) 帧头
 - (2) CMD
 - (2) DATA数据
 - (3) 校验
- ▼三、一零四字节协议(组合运动/简谐运动)
 - ▼ 协议解析说明
 - (1) 帧头
 - (2) CMD
 - (2) DATA数据
 - (3) 校验
- ▼ 四、十七字节协议 (三轴姿态随动控制)
 - ▼ 协议解析说明
 - (1) 帧头
 - (2) CMD
 - (3) DATA数据
 - (4) 速度等级
 - (5) 校验
 - (6) 报文案例
 - (4) 速度等级
 - (5) 校验
 - (6) 报文案例
- ▼ 四、二十九字节协议 (六轴位姿随动控制)
 - ▼ 协议解析说明
 - (1) 帧头
 - (2) CMD
 - (3) DATA数据
 - (4) 速度等级
 - (5) 校验
 - (6) 报文案例

一、八字节协议(基础控制/参数设置)

八字节协议用来实现平台的基础控制功能。

ВІТ0	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	ВІТ7
帧头	CMD	DATA0	DATA1	DATA2	DATA4	校验高八位	校验低八位

协议解析说明

(1) 帧头

帧头为一个字节固定为0xA5

(2) CMD

CMD为平台命令帧,大小为一个字节,发送的为平台功能码。数据对应的功能如下表所示。

CMD	功能
0x00	返回平台信息
0x10	轴点动控制
0x11	位姿点动控制
0x77	平台复位
0x78	平台到中位
0x79	平台到顶
0x80	停止运动
0x81	安全光栅配置

(3) DATA数据

不同的CMD对应的不同数据帧

• CMD=0x00 时

DATA0	DATA1	DATA2	DATA3	
保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)	

• CMD=0x10 时

DATA0	DATA1	DATA2	DATA3
轴号	点动增量	保留(默认为0x00)	点动方向

轴号: UINT8 一号轴为0x01, 二号轴为0x02, 依此类推。

点动增量: UINT8 单位: mm

点动方向: UINT8 正方向: 0x0E 负方向: 0x0F

• CMD=0x11 时

DATA0	DATA1	DATA2	DATA3
轴号	位置点动增量	姿态点动增量	点动方向

轴号: UINT8 一号轴为0x01, 二号轴为0x02, 依此类推。

位置点动增量: UINT8 单位: mm 姿态点动增量: UINT8 单位: 度

点动方向: UINT8 正方向: 0x0E 负方向: 0x0F

• CMD=0x77 时

DATA0	DATA1	DATA2	DATA3
保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)

• CMD=0x78 时

DATA0	DATA1	DATA2	DATA3
保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)

• CMD=0x79 时

DATA0	DATA1	DATA2	DATA3
保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)

• CMD=0x80 时

DATA0	DATA1	DATA2	DATA3
保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)

• CMD=0x81 时

DATA0	DATA1	DATA2	DATA3	
安全光栅状态	保留(默认为0x00)	保留(默认为0x00)	保留(默认为0x00)	

安全光栅状态: 此参数为0x00时, 失能安全光栅; 此参数为0xFF时, 使能安全光栅;

(4) 校验

本协议采用CRC16进行校验。

(4) 报文案例

以下报文皆以十六进制表示

• 返回平台信息

0xA5 0x00 0x00 0x00 0x00 0x00 0xEE 0x18

• 轴点动控制

一轴正方向点动10mm

0xA5 0x10 0x01 0x0A 0x0E 0x00 0xB3 0xFC

• 位姿点动控制

X轴正方向点动10mm

0xA5 0x11 0x01 0x0A 0x01 0x0E 0x47 0x45 A轴正方向点动1度

0xA5 0x11 0x04 0x0A 0x01 0x0E 0x8B 0x45

• 平台复位

0xA5 0x77 0x00 0x00 0x00 0x00 0xE5 0xEC

• 平台到中位

0xA5 0x78 0x00 0x00 0x00 0x00 0xE4 0xB8

• 平台到顶

0xA5 0x79 0x00 0x00 0x00 0x00 0x24 0x85

• 停止运动

0xA5 0x80 0x00 0x00 0x00 0x00 0x30 0x19

• 使能安全光栅

0xA5 0x81 0xFF 0x00 0x00 0x00 0xe4 0x14

• 失能安全光栅

0xA5 0x81 0x00 0x00 0x00 0x00 0xf0 0x24

二、十六字节协议

十六字节协议用来实现平台的实时控制功能,建议使用10ms通信周期。

BIT0	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	ВІТ7
帧头	CMD	DATA0	DATA1	DATA2	DATA4	DATA5	DATA6
ВІТ8	ВІТ9	BIT10	BIT11	BIT12	BIT13	BIT14	BIT15
DATA7	DATA8	DATA9	DATA10	DATA11	DATA12	校验高八位	校验低八位

协议解析说明

(1) 帧头

帧头为一个字节固定为0xA5

(2) CMD

CMD为平台命令帧,大小为一个字节,发送的为平台功能码。数据对应的功能如下表所示。

CMD	功能
0x12	位姿实时控制
0x13	轴实时控制

(2) DATA数据

不同的CMD对应的不同数据帧

• CMD=0x12 时

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5
轴一增量高八位	轴一增量低八位	轴二增量高八位	轴二增量低八位	轴三增量高八位	轴三增量低八位
DATA6	DATA7	DATA8	DATA9	DATA10	DATA11

使用轴实时控制时,传入的增量为每个轴的增量,数据类型是INT16,单位为mm。

• CMD=0x13 时

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5
X轴增量高八位	X轴增量低八位	Y轴增量高八位	Y轴增量低八位	Z轴增量高八位	Z轴增量低八位
DATA6	DATA7	DATA8	DATA9	DATA10	DATA11
A轴增量高八位	A轴增量低八位	B轴增量高八位	B轴增量低八位	C轴增量高八位	C轴增量低八位

三、一零四字节协议(组合运动/简谐运动)

一零四字节协议用来实现平台的周期运动功能,让平台的六个位姿分量都走简谐运动,按照物理学的方法,周期运动可以用无穷多个不同频率的简谐运动的组合来表示。

单个位姿分量的简谐运动公式为:

$$y = Asin(\frac{2\pi}{T}t + \varphi) + B$$

其中A为幅值,T为频率, φ 为相位,B为偏置

BIT0	BIT1	BIT2	ВІТ3	BIT4	BIT5	BIT6	BIT7	
帧头	CMD	DATA0	DATA1	DATA2	DATA4	DATA5	DATA6	
ВІТ96	BIT97	BIT98	ВІТ99	BIT100	BIT101	BIT102	BIT103	
DATA94	DATA95	DATA96	DATA97	DATA98	DATA99	校验高八位	校验低八位	

协议解析说明

(1) 帧头

帧头为一个字节固定为0xA5

(2) CMD

CMD为平台命令帧,大小为一个字节,发送的为平台功能码。数据对应的功能如下表所示。

CMD	功能
0x16	周期运动控制

(2) DATA数据

• CMD=0x16 时

幅值,频率,相位,偏置值都为浮点数,按顺序拆分为字节,放入data中,最后四个字节为时间,也为浮点数

(3) 校验

本协议采用CRC16进行校验。

四、十七字节协议 (三轴姿态随动控制)

十六字节协议用来实现平台的实时控制功能,可以用于位姿随动。

ВІТ0	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	ВІТ7
帧头	CMD	DATA0	DATA1	DATA2	DATA4	DATA5	DATA6
ВІТ8	ВІТ9	BIT10	BIT11	BIT12	BIT13	BIT14	BIT15
DATA7	DATA8	DATA9	DATA10	DATA11	DATA12	速度等级	校验高八位

协议解析说明

(1) 帧头

帧头为一个字节固定为0xA5

(2) CMD

CMD为平台命令帧,大小为一个字节,发送的为平台功能码。数据对应的功能如下表所示。

CMD	功能
0x17	陀螺仪姿态随动控制
0x18	姿态随动控制

(3) DATA数据

不同的CMD对应的不同数据帧

• CMD=0x17 时

平台姿态用欧拉角表示,绕三轴旋转,分别为Z轴(升降),A轴(绕X轴旋转,翻滚角),B轴(绕y轴旋转,俯仰角)。使用此模式,会将发送的第一个位姿作为计算的起始位姿,即平台运动姿态角为发送姿态减去第一个姿态。

协议中三个数据皆为float (浮点型)数据, Z轴数值代表从平台零点上升的高度 (毫米/mm), A轴, B轴数值代表平台运动的角度 (度/°)

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5
Z轴BYTE0	Z轴BYTE1	Z轴BYTE2	Z轴BYTE3	A轴BYTE0	A轴BYTE1
DATA6	DATA7	DATA8	DATA9	DATA10	DATA44
DAIAU	DAIAI	DAIAO	DATAS	DAIA10	DATA11

例: C# 浮点数拆分为四个字节

byte[] byteAngleA = BitConverter.GetBytes(float.Parse(angleA));

sendByte[6] = byteAngleA[0]

sendByte[7] = byteAngleA[1]

sendByte[8] = byteAngleA[2]

sendByte[9] = byteAngleA[3]

(4) 速度等级

速度等级默认为1

(5) 校验

本协议采用CRC16进行校验。

(6) 报文案例

以下报文皆以十六进制表示

- 平台以速度等级1相对于初始位姿绕X轴旋转0.434°,绕Y轴旋转0.851°,Z轴升降0mm(即保持中位);
 0xA5 0x17 0x00 0x00 0x00 0x00 0x00 0x3F 0x35 0xDE 0x3E 0x23 0xDB 0x59 0x3F 0x01 0xDA 0x21
- CMD=0x18 时

平台姿态用欧拉角表示,绕三轴旋转,分别为Z轴(升降),A轴(绕X轴旋转,翻滚角),B轴(绕y轴旋转,俯仰角)。使用此模式,发送的位姿即平台运动姿态角。

协议中三个数据皆为float (浮点型)数据,Z轴数值代表从平台零点上升的高度 (毫米/mm),A轴,B轴数值代表平台运动的角度 (度/°)

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5
Z轴BYTE0	Z轴BYTE1	Z轴BYTE2	Z轴BYTE3	A轴BYTE0	A轴BYTE1
DATA6	DATA7	DATA8	DATA9	DATA10	DATA11
A轴BYTE2	A轴BYTE3	B轴BYTE0	B轴BYTE1	B轴BYTE2	B轴BYTE3

例: C# 浮点数拆分为四个字节

byte[] byteAngleA = BitConverter.GetBytes(float.Parse(angleA));

sendByte[6] = byteAngleA[0]

sendByte[7] = byteAngleA[1]

sendByte[8] = byteAngleA[2]

sendByte[9] = byteAngleA[3]

(4) 速度等级

速度等级默认为1

(5) 校验

本协议采用CRC16进行校验。

(6) 报文案例

以下报文皆以十六进制表示

• 平台以速度等级1绕X轴旋转0.434°,绕Y轴旋转0.851°,Z轴升降0mm(即保持中位); 0xA5 0x18 0x00 0x00 0x00 0x00 0x3F 0x35 0xDE 0x3E 0x23 0xDB 0x59 0x3F 0x01 0x15 0xEF

四、二十九字节协议 (六轴位姿随动控制)

十六字节协议用来实现平台的实时控制功能,可以用于位姿随动。

BIT0	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7
帧头	CMD	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5
BIT8	BIT9	BIT10	BIT11	BIT12	BIT13	BIT14	BIT15
DATA6	DATA7	DATA8	DATA9	DATA10	DATA11	DATA12	DATA13
BIT16	BIT17	BIT18	BIT19	BIT20	BIT21	BIT22	BIT23
DATA14	DATA15	DATA16	DATA17	DATA18	DATA19	DATA20	DATA21
BIT25	BIT26	BIT27	BIT28	BIT29			
DATA22	DATA23	速度等级	校验高八位	校验低八位			

协议解析说明

(1) 帧头

帧头为一个字节固定为0xA5

(2) CMD

CMD为平台命令帧,大小为一个字节,发送的为平台功能码。数据对应的功能如下表所示。

CMD	功能
0x20	位姿随动控制

(3) DATA数据

不同的CMD对应的不同数据帧

• CMD=0x20 时

平台位置即超X,Y,Z轴方向运动的位移。姿态用欧拉角表示,绕三轴旋转,分别为Z轴(升降),A轴(绕X轴旋转,翻滚角),B轴(绕y轴旋转,俯仰角),C轴(绕z轴旋转,偏航角)。

协议中数据皆为float(浮点型)数据,Z轴数值代表从平台零点上升的高度(毫米/mm),A轴,B轴,C轴数值代表平台运动的角度(度/°);X轴,Y轴,Z轴数值代表平台运动的位移(毫米/mm)

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5
Z轴BYTE0	Z轴BYTE1	Z轴BYTE2	Z轴BYTE3	A轴BYTE0	A轴BYTE1
DATA6	DATA7	DATA8	DATA9	DATA10	DATA11
A轴BYTE2	A轴BYTE3	B轴BYTE0	B轴BYTE1	B轴BYTE2	B轴BYTE3
DATA12	DATA13	DATA14	DATA15	DATA16	DATA17
C轴BYTE0	C轴BYTE1	C轴BYTE2	C轴BYTE3	X轴BYTE0	X轴BYTE1
DATA18	DATA19	DATA20	DATA21	DATA22	DATA23
X轴BYTE2	X轴BYTE3	Y轴BYTE0	Y轴BYTE1	Y轴BYTE2	Y轴BYTE3

例: C# 浮点数拆分为四个字节

byte[] byteAngleA = BitConverter.GetBytes(float.Parse(angleA));

sendByte[6] = byteAngleA[0]

sendByte[7] = byteAngleA[1]

sendByte[8] = byteAngleA[2]

sendByte[9] = byteAngleA[3]

(4) 速度等级

速度等级默认为1

(5) 校验

本协议采用CRC16进行校验。

(6) 报文案例

以下报文皆以十六进制表示