# Минобрнауки России

федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный технологический институт (технический университет)»

# Дисциплина «Разработка ПС»

Отчёт по лабораторной работе №3.

Знакомство с WinForms

Разработка программной системы для построение графика функции

Преподаватели: Корниенко Иван Григорьевич Федин Алексей Константинович

Исполнил студент 494 группы: Гусев Антон Александрович

Санкт-Петербург

2021

#### Постановка задачи

Необходимо написать приложение с использованием технологии WinForms для построения графика функции и вывода таблицы значений функции. Пользователь задает правую и левую границу, шаг, коэффициенты. При невозможности построить график функции в заданном интервале пользователю выдается предупреждение об этом с предложением сменить границы построения. Если график функции из-за коэффициентов вырождается в точку или не может быть построен пользователь также видит предупреждение.

В программе должны быть предусмотрены два варианта ввода данных: пользователем с клавиатуры или из файла. В работе должна присутствовать возможность сохранения исходных данных и сохранения результата работы программы, а также модульного тестирования.

#### Исходные данные

В качестве исходных данных программа использует: пользовательский ввод значений в специальные поля для ввода; текстовые файлы формата «txt», в которых хранится определённое число цифр в строго определённом порядке.

Значения, который ввел пользователь, является числом с плавающей запятой (тип double в C#). Результат представляет собой набор чисел с плавающей запятой (тип double в C#).

## Особые ситуации

Необходимо рассмотреть следующие особые ситуации:

- а) Невозможность построить график на заданном пользователем интервале
- б) Невозможность построить график при заданных коэффициентах
- в) Отсутствие ожидаемых программой файлов на чтение или содержание некорректных данных внутри существующих файлов.
- г) Запись работы программы в уже существующий файл или создание недопустимого файла, а также проверка атрибутов существующего файла (Атрибут «Только для чтения»).

#### Математические методы и алгоритмы решения задач

Поставленная задача требует использования некоторых математических методов. Для построения графика функция была задана математической формулой:

$$y = \pm \sqrt{\sqrt{a^4 + 4c^2x^2} - x^2 - c^2}$$

Рисунок 1 - Формула для графика Овалы Кассини

### Форматы представления данных

Формат внешних файлов, из которых производится ввод данных — строго текстовый формат txt. Внутри читаемого txt файла для корректной работы должна содержаться только 7 чисел в строго определённом порядке: левая граница, правая граница, верхняя граница, нижняя граница, шаг, коэффициент C, коэффициент A.

Формат файлов для сохранения результатов работы программы - текстовый «.txt» или в виде таблицы MS Office Excel «.xls».

## Структура программы

Программа разбита на 5 классов, также отдельно подключен проект для тестирования. Основная последовательность работы программы – ожидания решения пользователя. Программа ожидает пользовательские нажатия на доступные в тот или иной момент элементы управления. После ввода корректный данных и нажатии кнопки «Построить график» программа запускает главный алгоритм. После чего результат появляется в специальном поле для отображения графика. Затем пользователь может просмотреть таблицу значений функции, сохранить исходные данные и результат работы. Кнопка «Настройка» позволяет включить или отключить отображение справки перед запуском основной программы. Кнопка «Справка» открывает информацию о программе. Комплекс продолжает свою работу до тех пор, пока его не закроет пользователь в правом верхнем углу или с помощью средств операционной системы.

Таблица 1 – Основные переменные программы

| Имя          | Тип                    | Описание                   |
|--------------|------------------------|----------------------------|
| leftBorder   | double                 | Левая граница графика      |
| rightBorder  | double                 | Правая граница графика     |
| topBorder    | double                 | Верхняя граница графика    |
| bottomBorder | double                 | Нижняя граница графика     |
| step         | double                 | Значение шага              |
| coeffC       | double                 | Коэффициент С              |
| coeffA       | double                 | Коэффициент А              |
| Х            | double                 | Координата Х               |
| У            | double                 | Координата Ү               |
| valuesX      | List <double></double> | Список координат Х функции |
| valuesY      | List <double></double> | Список координат Ү функции |

Таблица 2 – Классы, используемые в программе

| Имя               | Описание                             | Методы                                                                                                                                                                                                                            | Описание                          |
|-------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| CassiniOval       | Построение овалов<br>Кассини         | <pre>public static double CalculatePointOnTheGraph(doubl e coeffA, double coeffC, double x)</pre>                                                                                                                                 | Расчет значения функции в точке х |
| Table             | Отображени е таблцы значений функции | <pre>private void Table_Load(object sender, EventArgs e)</pre>                                                                                                                                                                    | Построение и заполнение таблицы   |
|                   | функции                              | <pre>private void ExcelButton_Click(object sender, EventArgs e)</pre>                                                                                                                                                             | Вывод<br>таблицы в<br>книгу Excel |
| WorkWithFile<br>s | Сохранение данных                    | <pre>public static void SaveToFile(string fileOutputPath, string text)</pre>                                                                                                                                                      | Сохранение исходных данных        |
|                   |                                      | <pre>public static string MakeResult(string leftBorder, string rightBorder, string topBorder, string bottomBorder, string step, string coeffC, string coeffA, List<double> valuesX, List<double> valuesY)</double></double></pre> | Формировани е результата          |
|                   |                                      | <pre>public static List<decimal> FromFileInput(string fileInputPath)</decimal></pre>                                                                                                                                              | Считывание данных из файла        |

### Блок-схемы алгоритмов программы



Рисунок 2 - Блок-схема основного алгоритма программы

#### Описание хода выполнения лабораторной работы

В ходе лабораторной работы было создано решение (Solution) интегрированной среде разработки Microsoft Visual Studio C# 2019. В нём был создан проект.

После написания основного цикла работы программы, были созданы функции пользовательского ввода, чтения данных из файла. Далее были созданы методы класса работы с полученными значениями. После был создан алгоритм построения графика, печати полученных данных на экран и сохранения во внешний файл как исходных данных, так и результатов.

В ходе работы над проектом были учтены и обработаны ошибки ввода некорректных данных, некорректное чтение файлов, а также обработаны возникающие исключения.

Также в код программы были включены модульные тесты, предназначенные для тестирования основного модуля программы. Данные для тестирования берутся из заранее подготовленных файлов. В случае удачного прохождения тестов на экран выводится сообщение об успешном их выполнении, иначе - сообщение о неудаче в ходе тестирования.

### Результаты работы программы

При первом запуске программы пользователь видит поле, где будет строиться график, и область ввода входных данных



Рисунок 3 – Первый запуск программы

Значение для границ графика, коэффициентов и шага пользователь может задать как вручную, так и открыв файл.



Рисунок 4 – Пример работы программы при вызове меню «Файл»

Выбрав пункт меню файл «Открыть файл» перед пользователем появляется информация об ожидаемом содержимом открываемого файла



Рисунок 5 – Информация об ожидаемом содержимом открываемого файла

После ввода границ необходимо нажать кнопку «Построить график», однако, при изменении коэффициентов и/или шага нажатие кнопки не обязательно: график обновится автоматически



Рисунок 6 – Пример работы программы.

Изначально кнопки меню «Файл» недоступны для нажатий пользователя ввиду того, что исходные данные и результаты отсутствуют.



Рисунок 7 – Меню «Файл» до построения графика

Однако после того, как были введены корректные значения любым из доступных способов и получены результаты, пользователь может сохранить все данные, которые использовались в программе.



Рисунок 8 – Доступные пункты меню «Файл»

Входные данные сохраняются так же, как того требует программа при открытии файлов. Таким образом сохраненные данные могут быть использованны повторно в данной программе. Результат сохраняется вместе со всеми введенными значениями и таблицей значений функции

Кнопка «Таблица значений» вызвает новое окно, посволяющее просмотреть и сохранить в виде книги Excel значения функции на заданном интервале.



Рисунок 9 - Таблица значений функции

| 4   | Α                                     | В    | С     | D | Е |   |
|-----|---------------------------------------|------|-------|---|---|---|
| 1   | 1 Результат построения Овалов Кассини |      |       |   |   |   |
| 2   | Левая граница:                        | -10  |       |   |   |   |
| 3   | Правая граница:                       | 10   |       |   |   |   |
| 4   | Верхняя граница:                      | 10   |       |   |   |   |
| 5   | Нижняя граница:                       | -10  |       |   |   |   |
| 6   | Коэффициент С:                        | 1    |       |   |   |   |
| 7   | Коэффициент А:                        | 1    |       |   |   |   |
| 8   | Шаг:                                  | 0,01 |       |   |   |   |
| 9   | Таблица значений:                     |      |       |   |   |   |
| 10  | X                                     | Υ    | -Y    |   |   |   |
| 11  | -1,41                                 | 0    | 0     |   |   |   |
| 12  | -1,4                                  | 0,1  | -0,1  |   |   |   |
| 13  | -1,39                                 | 0,14 | -0,14 |   |   |   |
| 14  | -1,38                                 | 0,17 | -0,17 |   |   |   |
| 15  | -1,37                                 | 0,19 | -0,19 |   |   |   |
| 16  | -1,36                                 | 0,21 | -0,21 |   |   |   |
| 17  | -1,35                                 | 0,23 | -0,23 |   |   |   |
| 18  | -1,34                                 | 0,25 | -0,25 |   |   |   |
| 19  | -1,33                                 | 0,26 | -0,26 |   |   |   |
| 20  | -1,32                                 | 0,28 | -0,28 |   |   |   |
| 21  | -1,31                                 | 0,29 | -0,29 |   |   |   |
| 22  | -1,3                                  | 0,3  | -0,3  |   |   |   |
| 23  | -1,29                                 | 0,32 | -0,32 |   |   |   |
| 24  | -1,28                                 | 0,33 | -0,33 |   |   |   |
| 25  | -1 27                                 |      | -0 34 |   |   |   |
|     | <b>√</b> → Лист1                      | •    |       |   |   |   |
| Гот | ОВО                                   |      |       |   |   |   |
|     |                                       |      |       |   |   | _ |

Рисунок 10 - Экспорт в Excel

При нажатии кнопки меню «Настройка» появляется возможность включить иои отключить появление справки перед запуском основной программы.



Рисунок 11 – Пункт меню «Настройка»

При нажатии кнопки меню «Справка» появляется окно с информацией об авторе данной программы и ее задаче.



Рисунок 12 – Окно «Справка»

### Исходный текст программы

```
[Начало программы ---]
[Начало Program.cs ---]
using System;
using System.Windows.Forms;
namespace Lab3
    static class Program
        [STAThread]
        static void Main()
            Application.EnableVisualStyles();
            Application.SetCompatibleTextRenderingDefault(false);
           Application.Run(new MainWindow());
[Конец Program.cs ---]
[Начало MainWindow.cs ---]
using System;
using System.Collections.Generic;
using System.Windows.Forms;
namespace Lab3
```

```
public partial class MainWindow : Form
   private static double leftBorder; // Левая граница
   private static double rightBorder; // Правая граница
   private static double topBorder; // Верхняя граница
    private static double bottomBorder; // Нижняя граница
   private static double step; // War
   private static double coeffC; // Коэффициент С private static double coeffA; // Коэффициент А
   private static double x; // Координата X
   private static double y; // Координата Y
   public static List<double> valuesX = new List<double>(); // Список координат X функции
    public static List<double> valuesY = new List<double>(); // Список координат Y \bar{\Phi}ункции
   public MainWindow()
        InitializeComponent();
        saveFileDialog1.Filter = @"Text files(*.txt)|*.txt";
        MaximizeBox = false;
        chartCO.Show();
        chartCO.Series["CassiniOvalPos"].Points.AddXY(0, 0);
        chartCO.Series["CassiniOvalNeg"].Points.AddXY(0, 0);
        chartCO.ChartAreas[0].AxisX.Minimum = 0;
        chartCO.ChartAreas[0].AxisX.Maximum = 100;
        chartCO.ChartAreas[0].AxisY.Minimum = 0;
        chartCO.ChartAreas[0].AxisY.Maximum = 100;
        if (InfoShowing.Default.Show == true)
        {
            InfoToolStripMenuItem Click(null, null);
            ShowInfoOnStartToolStripMenuItem.Checked = true;
        else ShowInfoOnStartToolStripMenuItem.Checked = false;
    }
   private void CreateChartButton Click(object sender, EventArgs e)
        try
            valuesX.Clear();
            valuesY.Clear();
            chartCO.Series["CassiniOvalPos"].Points.Clear();
            chartCO.Series["CassiniOvalNeg"].Points.Clear();
            leftBorder = (double)LeftBorderUpDown.Value;
            rightBorder = (double)RightBorderUpDown.Value;
            topBorder = (double) TopBorderUpDown.Value;
            bottomBorder = (double) BottomBorderUpDown. Value;
            step = (double)ScaleUpDown.Value;
            coeffC = (double) CUpDown.Value;
            coeffA = (double) AUpDown.Value;
            if (topBorder <= bottomBorder || leftBorder >= rightBorder)
                throw new ArgumentOutOfRangeException();
            if (coeffA == coeffC && coeffC == 0)
                MessageBox.Show("График вырождается в точку." + Environment.NewLine +
                           "Измените значение коэффициентов.", "Предупреждение!",
                          MessageBoxButtons.OK, MessageBoxIcon.Warning);
                return;
            chartCO.ChartAreas[0].AxisX.Minimum = leftBorder;
            chartCO.ChartAreas[0].AxisX.Maximum = rightBorder;
            chartCO.ChartAreas[0].AxisY.Minimum = bottomBorder;
            chartCO.ChartAreas[0].AxisY.Maximum = topBorder;
```

```
x = -Math.Sqrt(Math.Pow(coeffC, 2) + Math.Pow(coeffA, 2));
                chartCO.Series["CassiniOvalPos"].Points.AddXY(x, 0);
                chartCO.Series["CassiniOvalNeg"].Points.AddXY(x, 0);
                valuesX.Add(x);
                valuesY.Add(0);
                for (x = -Math.Sqrt(Math.Pow(coeffC, 2) + Math.Pow(coeffA, 2)) + step; x < 
Math.Sqrt(Math.Pow(coeffC, 2) + Math.Pow(coeffA, 2)); x += step)
                    y = CassiniOval.CalculatePointOnTheGraph(coeffA, coeffC, x); // Рассчёт
координаты Ү
                    // Проверка на построения графика в заданном интервале
                    if (x - step > rightBorder || x - step < leftBorder || y > topBorder || y <
bottomBorder)
                        throw new IndexOutOfRangeException();
                    chartCO.Series["CassiniOvalPos"].Points.AddXY(x, у); // Добавление точки на
график
                    chartCO.Series["CassiniOvalNeg"].Points.AddXY(x, -y);
                    valuesX.Add(x); // Добавление точки в таблицу
                    valuesY.Add(y);
                x = Math.Sqrt(Math.Pow(coeffC, 2) + Math.Pow(coeffA, 2));
                chartCO.Series["CassiniOvalPos"].Points.AddXY(x, 0);
                chartCO.Series["CassiniOvalNeg"].Points.AddXY(x, 0);
                valuesX.Add(x);
                valuesY.Add(0);
                TableButton.Enabled = true;
                SaveDataToolStripMenuItem.Enabled = true;
                SaveResultToolStripMenuItem.Enabled = true;
            catch (IndexOutOfRangeException)
                MessageBox.Show("График не может быть построен при указанных данных." +
Environment.NewLine +
                               "Измените значение коэффициентов, шага или границ.", "Ошибка!",
                               MessageBoxButtons.OK, MessageBoxIcon.Error);
                valuesX.Clear();
                valuesY.Clear();
                chartCO.Series["CassiniOvalPos"].Points.Clear();
                chartCO.Series["CassiniOvalNeg"].Points.Clear();
                TableButton.Enabled = false;
                SaveDataToolStripMenuItem.Enabled = false;
                SaveResultToolStripMenuItem.Enabled = false;
            catch (ArgumentOutOfRangeException)
                MessageBox.Show("Ошибка!" + Environment.NewLine +
                                "Нижняя граница должна быть меньше верхней." + Environment.NewLine +
                                "Левая граница должна быть меньше правой.", "Ошибка!",
                                 MessageBoxButtons.OK, MessageBoxIcon.Error);
                valuesX.Clear();
                valuesY.Clear();
                chartCO.Series["CassiniOvalPos"].Points.Clear();
                chartCO.Series["CassiniOvalNeg"].Points.Clear();
                TableButton.Enabled = false;
                SaveDataToolStripMenuItem.Enabled = false;
                SaveResultToolStripMenuItem.Enabled = false;
            catch (OverflowException)
                MessageBox.Show("Одно из значений было недопустимо малым или недопустимо большим.",
                                "Ошибка!", MessageBoxButtons.OK, MessageBoxIcon.Error);
                valuesX.Clear();
```

```
valuesY.Clear();
                chartCO.Series["CassiniOvalPos"].Points.Clear();
                chartCO.Series["CassiniOvalNeg"].Points.Clear();
                TableButton.Enabled = false;
                SaveDataToolStripMenuItem.Enabled = false;
                SaveResultToolStripMenuItem.Enabled = false;
            }
        }
        private void SaveDataToolStripMenuItem Click(object sender, EventArgs e)
            if (saveFileDialog1.ShowDialog() == DialogResult.Cancel) // Обработка закрытия окна
сохранения введенных данных
                return;
            string fileOutputPath = saveFileDialog1.FileName; // Получение имени файла
            saveFileDialog1.FileName = string.Empty;
            // Формирование результата
            string answer = LeftBorderUpDown.Text + " " +
                            RightBorderUpDown.Text + " " +
                            TopBorderUpDown.Text + " " +
                            BottomBorderUpDown.Text + " " +
                            ScaleUpDown.Text + " " +
                            CUpDown.Text + " " +
                            AUpDown.Text;
            // Сохранение результата
            WorkWithFiles.SaveToFile(fileOutputPath, answer);
        private void AUpDown ValueChanged (object sender, EventArgs e)
            CreateChartButton Click(null, null);
        private void CUpDown ValueChanged (object sender, EventArgs e)
            CreateChartButton Click(null, null);
        private void ScaleUpDown ValueChanged(object sender, EventArgs e)
        {
            CreateChartButton Click(null, null);
        private void TableButton Click(object sender, EventArgs e)
            var table = new Table(valuesX, valuesY, this);
            table.Show();
        }
        private void OpenFileToolStripMenuItem Click(object sender, EventArgs e)
            try
                MessageBox.Show("В файле должно содержаться только 7 чисел в строго определённом
порядке:" + Environment.NewLine +
                                "левая граница, правая граница, верхняя граница, нижняя граница,
шаг, коэффициент С, коэффициент А." + Environment.NewLine, "Внимание!",
                                MessageBoxButtons.OK, MessageBoxIcon.Warning);
                if (openFileDialog1.ShowDialog() == DialogResult.Cancel)
                    return;
                string fileInputPath = openFileDialog1.FileName;
                List<decimal> initialData = WorkWithFiles.FromFileInput(fileInputPath);
                openFileDialog1.FileName = string.Empty;
                if (initialData.Count > 7 || initialData.Count < 7)
                    throw new ArgumentOutOfRangeException();
                LeftBorderUpDown.Value = initialData[0];
                RightBorderUpDown.Value = initialData[1];
                TopBorderUpDown.Value = initialData[2];
```

```
BottomBorderUpDown.Value = initialData[3];
                ScaleUpDown.Value = initialData[4];
                CUpDown.Value = initialData[5];
                AUpDown.Value = initialData[6];
            catch (FormatException)
                MessageBox.Show("Файл содержит некорректные данные.\n" +
                                "Файл не должен содержать букв и спец. символов.", "Ошибка!",
                                MessageBoxButtons.OK, MessageBoxIcon.Error);
            catch (ArgumentOutOfRangeException)
                MessageBox.Show("В файле недостаточно данных или файл содержит больше данных, чем
нужно.", "Ошибка!",
                                MessageBoxButtons.OK, MessageBoxIcon.Error);
        }
        private void SaveResultToolStripMenuItem Click(object sender, EventArgs e)
            if (saveFileDialog1.ShowDialog() == DialogResult.Cancel)
                return;
            string fileOutputPath = saveFileDialog1.FileName;
            saveFileDialog1.FileName = string.Empty;
            string answer = WorkWithFiles.MakeResult(LeftBorderUpDown.Text, RightBorderUpDown.Text,
TopBorderUpDown.Text, BottomBorderUpDown.Text, ScaleUpDown.Text, CUpDown.Text, AUpDown.Text,
valuesX, valuesY);
           WorkWithFiles.SaveToFile(fileOutputPath, answer);
        private void InfoToolStripMenuItem Click(object sender, EventArgs e)
            MessageBox.Show("Автор: Гусев Антон " + Environment.NewLine +
                "Учебное заведение: СПБГТИ(ТУ)" + Environment.NewLine +
                "Группа: 494" + Environment.NewLine +
                "Использование WinForms для построения графика функции и вывод таблицы значений" +
Environment.NewLine +
                "Функция: Овалы Кассини" + Environment.NewLine,
                "Информация", MessageBoxButtons.OK, MessageBoxIcon.Information);
        }
        private void ShowInfoOnStartToolStripMenuItem Click(object sender, EventArgs e)
            if (ShowInfoOnStartToolStripMenuItem.Checked)
                ShowInfoOnStartToolStripMenuItem.Checked = false;
                InfoShowing.Default.Show = false;
                InfoShowing.Default.Save();
            else
                ShowInfoOnStartToolStripMenuItem.Checked = true;
                InfoShowing.Default.Show = true;
                InfoShowing.Default.Save();
            }
        }
}
```

```
[Начало CassiniOval.cs ---]
using System;
namespace Lab3
    public static class CassiniOval
        public static double CalculatePointOnTheGraph(double coeffA, double coeffC, double x)
            return Math.Sqrt (Math.Sqrt (Math.Pow(coeffA, 4) + (4 * Math.Pow(x, 2) * Math.Pow(coeffC,
2))) - Math.Pow(x, 2) - Math.Pow(coeffC, 2));
[Конец CassiniOval.cs ---]
[Hачало Table.cs ---]
using System;
using System.Collections.Generic;
using System.Windows.Forms;
namespace Lab3
    public partial class Table : Form
        public int rowCount;
        public static List<double> tempValuesX = new List<double> { };
        public static List<double> tempValuesY = new List<double> { };
        decimal left;
        decimal right;
        decimal top;
        decimal bottom;
        decimal coeffC;
        decimal coeffA;
        decimal step;
        public Table(List<double> valuesY, List<double> valuesY, MainWindow textBoxes)
            left = textBoxes.LeftBorderUpDown.Value;
            right = textBoxes.RightBorderUpDown.Value;
            top = textBoxes.TopBorderUpDown.Value;
            bottom = textBoxes.BottomBorderUpDown.Value;
            coeffC = textBoxes.CUpDown.Value;
            coeffA = textBoxes.AUpDown.Value;
            step = textBoxes.ScaleUpDown.Value;
            tempValuesX.Clear();
            tempValuesY.Clear();
            rowCount = valuesX.Count;
            for (int i = 0; i < valuesX.Count; i++)
                tempValuesX.Add(valuesX[i]);
                tempValuesY.Add(valuesY[i]);
            InitializeComponent();
        }
        private void Table_Load(object sender, EventArgs e)
            TableFunc.Rows.Clear();
            TableFunc.RowCount = rowCount;
            for (int i = 0; i < tempValuesX.Count; i++)</pre>
            {
                TableFunc[0, i].Value = Math.Round(tempValuesX[i], 2);
                TableFunc[1, i].Value = Math.Round(tempValuesY[i], 2);
                TableFunc[2, i].Value = -Math.Round(tempValuesY[i], 2);
            }
        }
```

```
private void ExcelButton Click(object sender, EventArgs e)
            Microsoft.Office.Interop.Excel.Application ExcelApp = new
Microsoft.Office.Interop.Excel.Application();
            Microsoft.Office.Interop.Excel.Workbook ExcelWorkBook;
           Microsoft.Office.Interop.Excel.Worksheet ExcelWorkSheet;
            ExcelWorkBook = ExcelApp.Workbooks.Add(System.Reflection.Missing.Value);
            //Таблица
            ExcelWorkSheet =
(Microsoft.Office.Interop.Excel.Worksheet) ExcelWorkBook.Worksheets.get Item(1);
            ExcelApp.Cells[1, 1] = "Результат построения Овалов Кассини";
            ExcelApp.Cells[2, 1] = "Левая граница: "; ExcelApp.Cells[2, 2] = left;
            ExcelApp.Cells[3, 1] = "Правая граница: "; ExcelApp.Cells[3, 2] = right; ExcelApp.Cells[4, 1] = "Верхняя граница: "; ExcelApp.Cells[4, 2] = top;
            ExcelApp.Cells[5, 1] = "Нижняя граница: "; ExcelApp.Cells[5, 2] = bottom;
            ExcelApp.Cells[6, 1] = "Коэффициент С: "; ExcelApp.Cells[6, 2] = coeffC;
            ExcelApp.Cells[7, 1] = "Коэффициент A: "; ExcelApp.Cells[7, 2] = coeffA;
            ExcelApp.Cells[8, 1] = "War: "; ExcelApp.Cells[8, 2] = step;
            ExcelApp.Cells[9, 1] = "Таблица значений:";
            ExcelApp.Cells[10, 1] = "X"; ExcelApp.Cells[10, 2] = "Y"; ExcelApp.Cells[10, 3] = "-Y";
            for (int i = 0; i < TableFunc.Rows.Count; i++)</pre>
                for (int j = 0; j < TableFunc.ColumnCount; j++)</pre>
                    ExcelApp.Cells[i + 11, j + 1] = TableFunc.Rows[i].Cells[j].Value;
            ExcelApp.Visible = true;
            ExcelApp.UserControl = true;
    }
[Конец Table.cs ---]
[Начало WorkWithFiles.cs --- ]
using System;
using System.Collections.Generic;
using System.Ling;
namespace Lab3
    class WorkWithFiles
        public static void SaveToFile(string fileOutputPath, string text)
            System.IO.File.WriteAllText(fileOutputPath, text);
        public static string MakeResult(string leftBorder, string rightBorder, string topBorder,
string bottomBorder, string step, string coeffC, string coeffA, List<double> valuesX, List<double>
valuesY)
            string values;
            string answer = "Левая граница: " + leftBorder + Environment.NewLine +
                            "Правая граница: " + rightBorder + Environment.NewLine +
                            "Верхняя граница: " + topBorder + Environment.NewLine +
                            "Нижняя граница: " + bottomBorder + Environment.NewLine +
                            "Mar: " + step + Environment.NewLine +
                            "Коэффициент C: " + coeffC + Environment.NewLine +
                            "Коэффициент A: " + coeffA + Environment.NewLine + Environment.NewLine +
                            "Таблица значений." + Environment.NewLine + Environment.NewLine;
            values = String.Format("{0, 12} {1, 15} {2, 15}", "Координата X", "Координата Y",
"Координата -Y");
            for (int i = 0; i < valuesX.Count; i++)
                Math.Round(valuesY[i], 2));
```

```
answer += values;
            return answer;
        public static List<decimal> FromFileInput(string fileInputPath)
            string arrStr = null;
            arrStr = System.IO.File.ReadAllText(fileInputPath);
            string[] stringSeparators = { "\r", "\n", " ", "\t" };
            List<decimal> tempList = arrStr.Split(stringSeparators,
StringSplitOptions.RemoveEmptyEntries)
                                   .Select(n => decimal.Parse(n))
                                  .ToList();
            fileInputPath = string.Empty;
            return tempList;
}
 [Конец WorkWithFiles.cs ---]
[Hачало UnitTest.cs ---]
using Microsoft. Visual Studio. Test Tools. Unit Testing;
using System;
using Lab3;
namespace UnitTestProject
    [TestClass]
    public class UnitTest
        [TestMethod]
        public void CalculatePointOnTheGraph1()
            double coefficientC = 50.0;
            double coefficientA = 50.0;
            double x = 30.0;
            double expectedY = 22.47;
            double resultY = CassiniOval.CalculatePointOnTheGraph(coefficientC, coefficientA, x);
            resultY = Math.Round(resultY, 2);
            Assert.AreEqual(expectedY, resultY);
        [TestMethod]
        public void CalculatePointOnTheGraph2()
            double coefficientC = 70.0;
            double coefficientA = 70.0;
            double x = 60.0;
            double expectedY = 35.0;
            double resultY = CassiniOval.CalculatePointOnTheGraph(coefficientC, coefficientA, x);
            resultY = Math.Round(resultY, 2);
            Assert.AreEqual(expectedY, resultY);
        [TestMethod]
        public void CalculatePointOnTheGraph3()
            double coefficientC = 90.0;
            double coefficientA = 90.0;
            double x = 90.0;
            double expectedY = 43.73;
            double resultY = CassiniOval.CalculatePointOnTheGraph(coefficientC, coefficientA, x);
            resultY = Math.Round(resultY, 2);
```

```
Assert.AreEqual(expectedY, resultY);
        [TestMethod]
        public void CalculatePointOnTheGraph4()
            double coefficientC = 60.0;
            double coefficientA = 60.0;
           double x = 30.0;
           double expectedY = 24.31;
           double resultY = CassiniOval.CalculatePointOnTheGraph(coefficientC, coefficientA, x);
           resultY = Math.Round(resultY, 2);
           Assert.AreEqual(expectedY, resultY);
        [TestMethod]
        public void CalculatePointOnTheGraph5()
            double coefficientC = 80.0;
            double coefficientA = 80.0;
            double x = 20.0;
            double expectedY = 18.85;
            double resultY = CassiniOval.CalculatePointOnTheGraph(coefficientC, coefficientA, x);
            resultY = Math.Round(resultY, 2);
           Assert.AreEqual(expectedY, resultY);
[Конец UnitTest.cs ---]
[Конец программы --- ]
```