### **Fonctions rationnelles**

Étudier une fonction revient à :

- 1- Déterminer son domaine de définition.
- 2- Étudier sa parité.
- 3- Étudier sa périodicité. (Surtout pour les fonctions trigonométriques).
- 4- Calculer les limites ou les valeurs limites aux bornes de son domaine de définition et déterminer ses éventuelles asymptotes.
- 5- Calculer sa dérivée.
- 6- Dresser son tableau de variations.
- 7- Dresser un tableau de valeurs.
- 8- Tracer ses éventuelles asymptotes.
- 9- Tracer sa courbe représentative.

#### N°1

- a. Étudier la fonction f donnée par  $f(x) = x + 1 + \frac{1}{x-2}$ .
- b. Soit g(x) = f(|x|). Comment déduire  $C_g$  à partir de  $C_f$ ? La tracer.

### <u>N°2</u>

- a. Étudier la fonction h donnée par  $h(x) = \frac{x^2-1}{x^2+1}$ .
- b. Soit  $i(x) = \frac{(x+1)|x-1|}{x^2+1}$ . Comment déduire  $C_i$  à partir de  $C_h$ ? La tracer.

#### N°3

Étudier la fonction j donnée par  $j(x) = \frac{x^2+1}{x^2-1}$ ,

### <u>N°4</u>

- a. Étudier la fonction k donnée par  $k(x) = \frac{x^2 + 2x 1}{x + 2}$ .
- b. Soit  $l(x) = \frac{x^2 + 2|x| 1}{|x| + 2}$ . Comment déduire  $C_l$  à partir de  $C_k$ ? La tracer.

### N°5

Étudier la fonction m donnée par  $m(x) = x + \frac{x-2}{x^2+1}$ .

### **Fonctions irrationnelles**

### <u>N°1</u>

- a. Étudier la fonction f donnée par  $f(x) = \frac{\sqrt{x^2+1}-x}{x}$ .
- b. Déterminer l'ensemble image par f de  $D_f$ .
- c. Soit  $g(x) = \frac{\sqrt{x^2+1}+x}{x}$ . Comment déduire  $C_g$  à partir de  $C_f$ ?
- d. Soit  $h(x) = \frac{\sqrt{x^2+1}-|x|}{x}$ . Comment déduire  $C_h$  à partir de  $C_f$ ?
- e. Soit  $i(x) = \frac{\sqrt{x^2+1}-|x|}{|x|}$ . Comment déduire  $C_i$  à partir de  $C_f$  ?

#### N°2

Étudier la fonction f donnée par  $f(x) = \frac{x}{\sqrt{x^2+1}-x}$ .

### N°3

Étudier la fonction f donnée par  $f(x) = x - \sqrt{4 - x^2}$ .

### N°4

Étudier la fonction f donnée par  $f(x) = x - \sqrt{x^2 - 4}$ .

### N°5

Étudier la fonction f donnée par  $f(x) = x - \sqrt{x-2}$ .

### N°6

Étudier la fonction f donnée par  $f(x) = |x| + \sqrt{4 + x^2}$ .

# Fonctions réciproques

Pour chacune des fonctions suivantes répondre aux questions suivantes :

- a. Montrer que f admet une fonction réciproque  $f^{-1}$ .
- b. Donner l'expression de  $f^{-1}$ .
- c. Déterminer les éventuels points d'intersections de  $(C_f)$  et $(C_{f-1})$ .
- d. Tracer  $(C_f)$  et $(C_{f-1})$  dans un même repère othonormé.
- a) f est la fonction définie sur  $[0; +\infty[$  à valeurs dans  $[1; +\infty[$  et donnée par  $f(x) = \sqrt{x} + 1$
- b) f est la fonction définie sur  $[1; +\infty[$  à valeurs dans  $f([1; +\infty[)])$  et donnée par  $f(x) = -1 \sqrt{x-1}$
- c) f est la fonction définie sur [-2; 0] à valeurs dans f([-2; 0]) et donnée par  $f(x) = -x^2 + x + 2$

# Fonctions logarithme népérien : Exercices (1)

1) Déterminer le domaine de définition de chacune des fonctions suivantes:

$$f(x) = ln(x-1) \qquad g(x) = ln(-x) \qquad h(x) = ln(x^2)$$
  
$$i(x) = ln^2(x) \qquad j(x) = ln(sin(x))$$

2) Après avoir déterminé le domaine de définition de chacune des fonctions suivantes, donner l'expression de sa dérivée.

$$f(x) = ln(\cos(x)) \qquad g(x) = ln(\ln(x)) \qquad h(x)$$
$$= xln(x) - x$$

$$i(x) = \ln \left( \frac{1 - \sin (x)}{1 + \sin (x)} \right)$$

- 3) Simplifier l'expression de  $f(x) = ln\left(\frac{(x+2)^{30}}{\sqrt{1+x^2}}\right)$ .
- 4) Résoudre l'équation suivante : ln(3 x) + ln(4 + x) = ln (10).
- 5) Calculer :  $\int_0^{\frac{\pi}{4}} \tan(x) dx$ .
- 6) Résoudre l'inéquation suivante :

$$\ln(1-x) + \ln(2-x) < \frac{1}{2}\ln(9).$$

7) Résoudre l'inéquation suivante : 
$$ln(1-x)(2-x) < ln(3)$$
.  
8) Soit  $I = \int_0^{\frac{\pi}{6}} \frac{\sin(x)dx}{\cos(x) + \sin(x)}$  et  $J = \int_0^{\frac{\pi}{6}} \frac{\cos(x)dx}{\cos(x) + \sin(x)}$ 

- a. Calculer I J et I + J.
- b. En déduire les valeurs exactes de I et J.
- 9) Simplifier l'expression suivante :

$$A = \ln\left(\frac{1}{2}\right) + \ln\left(\frac{2}{3}\right) + \ln\left(\frac{3}{4}\right) + \dots + \ln\left(\frac{99}{100}\right)$$

Résoudre l'équation :  $\ln(4x + 2) - \ln(x - 1) = \ln(x)$ . 10)

- 11) Ecrire plus simplement: ln(21) + 2 ln(14) 3ln(0.875).
- 12) Soit la suite  $(u_n)_{n\in\mathbb{N}}$  donnée par  $u_n=0$   $3^n$ . À partir de quel rang n,  $u_n$  devient-elle plus petite que  $10^{-10}$  ?
- 13) Écrire plus simplement  $a = 2^{\frac{-1}{\ln 2}}$ .
- 14) Résoudre l'inéquation :  $2 \ln^2(x) + 5 \ln(x) 7 \ge 0$ ,
- 15) Calculer les intégrales suivantes :

$$L = \int_{0}^{1} \frac{x^{3} + 1}{x + 1} dx \qquad M = \int_{1}^{4} \frac{1 - \ln^{2}(x)}{x} dx$$

16) Résoudre les inéquations suivantes :  $\ln^2(x) + 2\ln|x| - 8 \ge 0$ ,

$$\ln|x - 2| \le 2\ln(x)$$

17) Quel est le domaine de définition de la fonction f donnée par  $f(x) = \ln(x + \sqrt{1 + x^2})$ ?

# Fonctions logarithme népérien : Exercices (2)

Pour chacun des exercices 1) à 3) suivants, calculer la limite de chacune des fonctions suivantes aux bornes ouvertes de leur domaine de définition :

a) 
$$f(x) = \frac{1}{\ln(x)}$$

b) 
$$f(x) = x(1 - \ln(x))$$

c) 
$$f(x) = \ln\left(\frac{x+1}{x-4}\right)$$

d) 
$$f(x) = x + \ln(x + 1) - \ln(x)$$

2)

a) 
$$f(x) = \frac{x - \ln(x)}{x}$$

b) 
$$f(x) = \frac{1}{x} + \ln(x)$$

c) 
$$f(x) = x + \frac{\ln(x)}{x}$$

d) 
$$f(x) = \ln(2 + e^x)$$

3) a) 
$$f(x) = x ln \left(1 + \frac{1}{x}\right)$$

$$b) f(x) = x + x, \ln\left(1 + \frac{1}{x}\right)$$

4) Vrai ou Faux?

f est la fonction définie sur  $]-1;+\infty[$  par :

$$f(x) = \ln(x^2 + x + 1) - 2\ln(x + 1)$$

Dites si les affirmations suivantes sont vraies ou fausses. Justifiez votre réponse :

- a)  $\lim_{x \to -1^+} f(x) = -\infty,$
- b)  $\lim_{x \to +\infty} f(x) = -\infty$ ,
- c) f est croissante sur  $[1; +\infty[$ .
- d) L'équation f(x) = 0 admet une unique solution dans l'intervalle  $]-1;+\infty[.$
- e) L'équation f(x) = 1 admet une unique solution dans l'intervalle  $]-1;+\infty[.$
- 5)
- a. Résoudre, dans N, l'inéquation  $\left(1 \frac{1}{a^3}\right)^n \le 10^{-10}$ .
- b. Résoudre, dans  $\mathbb{R}$ , l'équation  $\ln(7-x) + \ln(x-2) = \ln(-4x^2 + 20x)$ .
- c. Résoudre, dans  $\mathbb{R}$ , l'inéquation  $\frac{\ln x}{1-\ln x} \ge \frac{1-\ln x}{\ln x}$ .
- 6) Calculer chacune des intégrales suivantes :

$$J = \int_{-1}^{1} \frac{e^{x} - e^{-x}}{e^{x^{2}}} dx$$

$$I = \int_{-1}^{1} \frac{e^{x}}{(e^{x} + 5)^{2}} dx$$

$$I = \int_{-1}^{1} \frac{e^{x}}{\left(e^{x} + 5\right)^{2}} dx \qquad K = \int_{-2}^{2} \frac{x^{7} + e^{x}}{e^{x} + e^{-x}} dx$$

7) Résoudre, dans R, l'équation et les inéquations suivantes :

$$a. \frac{1}{1-ln|x|} \le 1-ln|x|.$$

b. 
$$e^{2\ln(x+1)} \ge \ln(e^{2x+5})$$
.

c. 
$$\ln(7-x)-\ln(x+2) \le \ln(x-\frac{7}{2})$$
.

8) f est une fonction définie sur  $]0; +\infty[$  par :

$$f(x) = ax + b + \frac{\ln(x)}{x}$$
 où a et b sont deux nombres,

On note  $(C_f)$  sa courbe représentative dans un repère orthonormé.

- 1. i. Sachant que le point A(1;0) est le point de  $(C_f)$  en lequel la tangente est parallèle à la droite d'équation y = 3x + 2, écrire un système d'équations que vérifient a et b,
  - ii. Résoudre ce système et déterminer les valeurs de a et b,
- 2. On note g la fonction définie sur  $]0; +\infty[$  par  $g(x) = 2x^2 + 1 \ln(x)$ 
  - i. Démontrer que pour tout x de  $]0; +\infty[$ , g(x) > 0,
  - ii. Déduisez-en que f est strictement croissante sur l'intervalle  $]0; +\infty[$  .
- 9) f est la fonction définie sur  $[0; +\infty[$  par  $f(x) = \begin{cases} g(x) = x^2, \ln(x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$ 
  - 1. Démontrer que f est continue et dérivable en 0,
  - 2. On a appelle  $(C_f)$  la courbe représentative de f,
    - a) En A, la courbe  $(C_f)$  admet un minimum. Quelles sont ses coordonnées ?
    - b) Démontrer qu'il existe deux tangentes à  $(C_f)$  passant par 0. Précisez une équation de chacune de ces tangentes.

Dans un repère orthonormé  $(0; \vec{i}; \vec{j})$ , on a tracé les courbes  $(C_f)$  et  $(C_g)$  représentatives, respectivement des fonctions f et g définies sur  $]0; +\infty[$  par  $f(x) = \ln(x)$  et  $g(x) = \ln^2(x) = \ln(x) * \ln(x)$  pas  $\ln(x^2)$ .



- 1. Etudiez la position relative de ces deux courbes.
- 2. Pour x appartenant à l'intervalle  $]0; +\infty[$ , M et N sont des points de  $(C_f)$  et  $(C_g)$  de même abscisse x.
  - a) h est la fonction définie sur  $]0; +\infty[$  par h(x) = f(x) g(x). Etudier les variations de h sur  $]0; +\infty[$ .
  - b) Sur l'intervalle [1; e], pour quelle valeur de x la distance MN estelle maximale ? Déduisez-en alors la valeur maximale de MN.
  - c) Démontrer que sur  $]0;1[\cup]e;+\infty[$ , il existe deux nombres a et b (a < b) pour lesquels la distance MN est égale à 1. Précisez les valeurs de a et b à  $10^{-1}$  près.

### 11) Vrai ou Faux

La courbe  $(C_f)$  ci-dessous est la représentation graphique d'une fonction f définie sur  $]-\infty;2[$ .

La droite d'équation x = 2 et l'axe des abscisses sont asymptotes à  $(C_f)$ .

On note g la fonction donnée par :  $g(x) = \ln (f(x))$ .



- 1. g est définie sur ] 2; 2[.
- 2. g est dérivable en 0 et  $g'(0) = \frac{1}{e}$ .
- 3. L'équation g(x) = 1 a exactement deux solutions dans l'intervalle [-2; 2].
- $4. \lim_{x\to 0} g(g(x)) = -\infty.$

### 12) Logarithme et suite

f est la fonction définie sur ] – 1; + $\infty$ [ par :

$$f(x) = x - \frac{\ln(x+1)}{x+1}$$

La courbe ( $\mathcal{C}$ ) représentative de f et la droite ( $\Delta$ ) d'équation y=x sont données ci-dessous :

## A. Étude de certaines propriétés de (C):

- 1. Calculez f'(x) pour tout  $x \in ]-1; +\infty[$ .
- 2. Pour tout  $x \in ]-1;+\infty[$ , on pose :

$$N(x) = (1+x)^2 + \ln(x+1) - 1$$

- a) Vérifiez que l'on définit ainsi une fonction strictement croissante sur  $]-1;+\infty[$ .
- b) Calculez N(0) et déduisez-en les variations de f.
- 3. Calculez les coordonnées du point d'intersection de la courbe (C) et de la droite  $(\Delta)$ .

# B. Étude d'une suite convergente.

- 1. Démontrez que si  $x \in [0; 4]$  alors  $f(x) \in [0; 4]$ .
- 2. On considère la suite  $(u_n)_{n\in\mathbb{N}}$  définie par  $u_0=4$  et pour tout  $n\in\mathbb{N},\,u_{n+1}=f(u_n).$ 
  - a) Tracez, à l'aide d'une calculatrice, la courbe (C) et la droite  $(\Delta)$ . Conjecturez les variations de la suite  $(u_n)_{n\in\mathbb{N}}$  et son éventuelle limite.
  - b) Démontrez que pour tout  $n \in \mathbb{N}$ ,  $u_n \in [0; 4]$ .
  - c) Étudiez le sens de variation de la suite  $(u_n)_{n\in\mathbb{N}}$ .
  - d) Démontrez que la suite  $(u_n)_{n\in\mathbb{N}}$  est convergente et calculez sa limite  $\ell$ .

### 13) Logarithme et suite

On considère la fonction (E):  $x + \ln(x) = 0$ .

Le but de cet exercice est de prouver que l'équation (E) a une unique solution  $\alpha$  dans  $I = ]0; +\infty[$  et d'utiliser une suite convergente pour obtenir un encadrement de  $\alpha$ .

### A. Existence et unicité de la solution :

f est la fonction définie sur I par  $f(x) = x + \ln(x)$ .

Etudiez les variations de la fonction f sur I et déduisez l'existence d'un nombre  $\alpha$  unique de I tel que  $f(\alpha) = 0$ .

Vérifier que  $\frac{1}{2} < \alpha < 1$ .

#### B. Encadrement de $\alpha$ :

- 1. g est la fonction définie sur I par  $g(x) = \frac{4x \ln(x)}{5}$ ,
  - a) Démontrez qu'un nombre x est solution de l'équation (E) si et seulement si, g(x) = x.
  - b) Étudiez les variations de g sur I et démontrez que pour tout x de l'intervalle  $J = \left[\frac{1}{2}; 1\right], g(x)$  appartient à J.
- 2. La suite  $(u_n)_{n\in\mathbb{N}}$  définie par :

 $u_0 = \frac{1}{2}$  et pour tout  $n \in \mathbb{N}$   $u_{n+1} = g(u_n)$ .

a) Démontrez par récurrence que pour tout  $n \in \mathbb{N}$ :

$$\frac{1}{2} \le u_n \le u_{n+1} \le 1$$

- b) Déduisez-en que la suite  $(u_n)_{n\in\mathbb{N}}$  converge vers  $\alpha$ .
- 3. On donne  $u_{10} \simeq 0.5671236$ ,

On admet que  $u_{10}$  est une valeur approchée de  $\alpha$ .

Déduisez-en un encadrement de  $\alpha$  sous la forme  $u \le \alpha \le v$  où u et v sont des nombres décimaux écrits avec 3 décimales.

# Fonctions logarithme népérien : Étude de fonctions

#### $N^{\circ}1$

- a. Étudier la fonction f donnée par f(x) = x, ln(x).
- b. Soit g(x) = x, ln(|x|). Comment déduire  $C_g$  à partir de  $C_f$ ? La tracer.
- c. Soit  $h(x) = |x|, \ln(|x|)$ . Comment déduire  $C_h$  à partir de  $C_f$ ? La tracer.

#### <u>N°2</u>

- a. Étudier la fonction *i* donnée par  $i(x) = \frac{1 + \ln(x)}{1 \ln(x)}$ .
- b. Soit  $j(x) = \frac{1 + \ln(x)}{|1 \ln(x)|}$ . Comment déduire  $C_j$  à partir de  $C_i$ ? La tracer.

#### N°3

- a. Étudier la fonction k donnée par  $k(x) = \frac{\ln(x)}{x}$ ,
- b. Soit  $l(x) = \frac{|\ln (x)|}{x}$ . Comment déduire  $C_l$  à partir de  $C_k$ ?
- c. Calculer l'aire du domaine délimité par  $C_k$ , l'axe des abscisses et les droites d'équations  $x = \frac{1}{e}$  et x = e.

#### N°4

- a. Étudier la fonction m donnée par  $m(x) = \ln(\cos(x))$ .
- b. Soit  $n(x) = \ln(\sin(x))$ . Comment déduire  $C_n$  à partir de  $C_l$ ?

#### N°5

Étudier la fonction o donnée par  $o(x) = \sqrt{1 - \ln(x)}$ .

### N°6

Étudier la fonction p donnée par  $p(x) = \sqrt{1 - \ln^2(x)}$ .

#### <u>N°7</u>

Étudier la fonction q donnée par  $q(x) = x - \ln(x^2)$ .

# Fonctions exponentielles: Exercices

1) Résoudre les équations suivantes:

a) 
$$5e^x + 4 = e^{-x}$$

b) 
$$6e^x + e^{-x} = 7$$

$$c) \ 2e^{-x} = \frac{1}{e^x + 3}$$

$$d) e^{2x+3} = e^{\frac{5}{x}}$$

$$e) e^{x^2} = (e^{-x})^2 \cdot e^3$$

$$f) e^{2x+3} \le e^{\frac{3}{x}}$$

$$g)\frac{e^{x^2}}{e^5} \le e^{-4x}$$

$$h) e^x + e^{-x} - 2 \ge 0$$

$$i) 7e^x + 1 < 8e^{-x}$$

2) Pour chacune des fonctions suivantes, déterminer son domaine de définition, puis calculer sa limite aux bornes ouvertes de son domaine de définition :

a) 
$$f(x) = e^{-x^2-1}$$

b) 
$$f(x) = e^{2x} - e^{-x}$$

c) 
$$f(x) = e^{3x} - e^{2x} + 2$$

d) 
$$f(x) = \frac{e^{2x} + e^x + 1}{e^x + 2}$$

e) 
$$f(x) = e^{\frac{1}{x}}$$

f) 
$$f(x) = \frac{1}{x} \cdot e^{\frac{1}{x}}$$

$$g) f(x) = \frac{e^{2x}}{x^2}$$

$$h) f(x) = x^2 \cdot e^{-2x}$$

3) Calculer la limite de chacune des fonctions suivantes en  $0^+$ :

$$a) f(x) = \frac{e^x - 1}{2x}$$

$$b) f(x) = \frac{1 - e^{-x}}{x}$$

$$c) f(x) = \frac{e^{2x} - 1}{4x}$$

4) f et g sont deux fonctions définies sur IR par :

$$f(x) = \frac{e^x + e^{-x}}{2}$$
  $g(x) = \frac{e^x - e^{-x}}{2}$ 

Et soir 
$$h(x) = \frac{g(x)}{f(x)}$$

Montrer que 
$$h'(x) = \frac{1}{f^2(x)}$$
.

- 5) On donne ci-dessous la courbe ( $\mathcal{C}$ ) représentative d'une fonction f définie sur IR par  $f(x) = ax + b + x \cdot e^x$  où a et b sont deux nombres.
  - 1. Déterminer les valeurs de a et b sachant que la tangente (C) en A(0;2) coupe l'axe des abscisses au point d'abscisse 2.
  - 2. a) Calculer f'(x) puis f''(x).
  - b) Déduisez-en que f' a pour tableau de variation :



- 6) On a tracé ci-dessous la courbe (C) représentative d'une fonction f définie sur  $]-1;+\infty[$  par  $f(x)=\frac{e^x}{(x+1)^2}$ 
  - 1. Démontrer que f a pour tableau de variation :



- 2. *M* est un point de (*C*) d'abscisse *a*.

  Démontrer qu'il existe deux valeurs de *a*, que l'on calculera, pour lesquelles la tangente en *M* passe par l'origine *0* du repère.
- 7)
  1. Justifiez que pour tout nombre  $x, e^x \ge x + 1$ .
  - 2. Déduisez-en que :

a) 
$$e^{-x} + x - 1 \ge 0$$

$$b) (x-1) \cdot e^x + 1 \ge 0.$$

3. Exploitez les résultats précédents pour démontrer que la fonction g définie sur  $]0; +\infty[$  par  $g(x)=\frac{e^x-1}{x}$  est strictement croissante.

# Fonctions exponentielles: Etude de fonctions

### <u>N°1</u>

Étudier la fonction f donnée par  $f(x) = x + \frac{1}{e^x - 1}$ .

#### N°2

Étudier la fonction g donnée par  $g(x) = \frac{e^x}{x}$ .

#### **N°3**

- a. Étudier la fonction h donnée par  $h(x) = e^x x$ .
- b. Calculer l'aire du domaine délimité par  $C_f$ , la  $2^{\text{ème}}$  bissectrice et les droites d'équations  $x = \ln 10^{-2}$  et x = 0.

#### N°4

- a. Étudier la fonction i donnée par  $i(x) = \frac{e^{x}-1}{e^{x}+1}$ .
- b. Montrer que i est impaire. En déduire que  $C_i$  admet un centre de symétrie.
- c. Soit  $j(x) = \frac{2}{e^{x}+1}$ . Comment déduire  $C_j$  à partir de  $C_i$ ?
- d. Montrer que i admet une fonction réciproque qu'on déterminera.
- e. Calculer l'aire du domaine délimité par  $C_i$ , l'axe x'Ox et les droites d'équations x = 0 et x = 1.

### N°5

Étudier la fonction k donnée par  $k(x) = \ln(e^x + 1)$ .

### <u>N°6</u>

Étudier la fonction l donnée par  $l(x) = e^{2x} - x$ .

#### N°7

Étudier la fonction m donnée par m(x) = x,  $e^x$ .

### N°8

Étudier la fonction n donnée par  $n(x) = x - 1 + \frac{1}{e^x}$ .