PRESENTATION Détecteur : faux billets

SOMMAIRE

MISSION

PRE - TRAITEMENT

Description Données retirées

ACP: Synthèse

Vérification: Kmeans

MODELISATION

Préparation Echantillonage Réglage du modèle Vérification

MISSION

OBJECTIF Détecter des faux billets

MISSION Algorithme de détection

CONDITION si probabilité ≥ 50 % alors VRAI

DONNEES Police Judiciaire

is_genuine

Etiquette authenticité d'un billet :

- 98 Vrai, 46 Faux

6 caractéristiques numériques Dimensions exprimées en mm

Différences de variation

Grande variabilité

- 3 margin low
- 5 length

Variabilité similaire

- 0 diagonal
- 1 height_left
- 2 height_right
- 4 margin_up

margin_low par catégorie

Interprétation

faux billets plus longs

Interprétation

faux billets plus courts

Relations entre caractéristiques

```
diagonal: pas de relation linéaire (R2=0)
```

```
is_genuine: margin_low et length (R<sup>2</sup>: 0.7 et 0.8)
```

height_left/height_right : relation (R²=0.5)

DONNEES RETIREES

Différences de variations

Interprétation

- 3 margin_low
- 5 length

Variations inverses

OBJECTIF: Classer les billets

COMMENT: créer une synthèse

POURQUOI : comprendre les différences

CENTRER par la médiane

COMMENT

données - médiane des données

POURQUOI

non sensible aux données atypiques

PAS DE REDUCTION?

même unité de mesure : comparaison possible garder la variabilité des caractéristiques

EBOULIS DES VALEURS PROPRES (aperçu initial)

Création des axes

- distances
- perpendiculaires

Choix du nombre

- méthode du coude
- kaiser (moyenne)

Conclusion

- F1 et F2

CERCLE DES CORRELATIONS (aperçu initial)

Mauvaise projection margin_up

Redondance height left

Non corrélé diagonal

EBOULIS DES VALEURS PROPRES

Choisir le nombre

- méthode du coude
- kaiser (moyenne)

Conclusion

- F1 et F2

CERCLE DES CORRELATIONS

Variables retirées margin_up height_left diagonal

ProjectionAngle (axe, caractéristique)

Coefficient de corrélation

PREMIER PLAN FACTORIEL

CONTRIBUTION

1 Vrais Billets

• Faux Billets

QUALITE

94 % différences

SECOND PLAN FACTORIEL

QUALITE6 % de ressemblances

VERIFICATION: KMEANS

Classer k groupes avec leurs moyennes

COMMENT

Sélectionner et positionner k moyennes Affecter à la moyenne la plus proche Déplacer la moyenne Choisir la meilleure fois

POURQUOI

Vérifier l'affectation point-moyenne

VERIFICATION: KMEANS

PREMIER PLAN FACTORIEL

Résultats

1 Faux Positif

1 Faux Négatif

Interprétation Moyenne plus proche

VERIFICATION: KMEANS

PROBLEME RENCONTRE

PROBLEME

Résultat du kmeans aléatoire :

- classement identique
- le numéro de groupe varie

SOLUTION

- Fixer l'état aléatoire
- Affecter le numéro de groupe

REGRESSION LOGISTIQUE

INTERET

- Prédire qu'un événement soit Vrai ou Faux sous forme de probabilité
- Donner l'utilité prédictive d'une caractéristique

DETERMINATION

- données numériques
- données étiquetées Vrai ou Faux
- décision : Vrai si probabilité ≥ 50 %

PREPARATION

INTERET

- résultats du modèle = reflet des données
- Lisser F2 pour faciliter l'apprentissage

QuantileTransformer

- transformer en une distribution normale
- utilisation des quantiles

ECHANTILLONAGE

RESPECTER LA CONDITION probabilité 50 %

- compatibilité à une loi de Bernoulli
- classes homogènes

SEPARER LES DONNEES

- 80 % pour l'apprentissage
- 20 % pour la vérification

FAIRE UNE VALIDATION CROISEE

- faire n échantillons du jeu d'apprentissage
- faire une moyenne des scores

REGLAGE DU MODELE

BUT

- améliorer la qualité de la prédiction

OPTIMISER LES HYPERPARAMETRES

- créer une liste de paramètres
- validation croisée des résultats

VERIFICATION

matrice de confusion

sensibilité

taux de positifs correctement classés

spécificité

taux de faux billets correctement classés

score AUROC

capacité à classer correctement les billets

CONCLUSION

SYNTHESE DES DONNEES
CLASSIFICATION KMEANS
REGRESSION LOGISTIQUE
ESTIMATION DU MODELE

QUESTIONS