1. előadás

2020. szeptember 7.

1. A tantárgy honlapja:

https://numanal.inf.elte.hu/szili/Oktatas/An2_F_C_2020_osz/

A honlapon van:

- a követelményrendszer,
- ajánlott irodalmak,
- a tervezett zh időpontok,
- az előadások, illetve a gyakorlatok tematikája heti felbontásban,
- részletes előadás-, illetve gyakorlatanyagok,
- egyéb segédanyagok.

2. A félév anyaga:

Valós-valós függvényekre

- határérték és folytonosság (folytatás),
- derivált,
- integrál.

Többváltozós függvényekre

- folytonosság és határérték,
- derivált,
- integrál.

FÜGGVÉNYEK FOLYTONOSSÁGA

Az Analízis I. tantárgyban megismertük valós-valós függvény **határértékének** és **folytonosságának** a fogalmát és az ezekkel kapcsolatos alapvető eredményeket. Néhány fontos definíciót és tételt **ebben a segédanyagban** soroltunk fel. A gyakorlaton valós-valós függvények határértékeire vonatkozó feladatokat tárgyalunk. Itt a folytonosságra vonatkozó ismereteket egészítjük ki.

Szakadási helyek

Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f$ és $f \notin C\{a\}$. Ekkor azt mondjuk, hogy az a pont az f függvény **szakadási helye** (vagy a-ban f-nek **szakadása van**). A szakadási helyeket a következőképpen osztályozzuk:

 1^o Az $a \in \mathcal{D}_f$ pont az f függvény **megszüntethető** szakadási helye, ha

$$\exists \, \lim_a f \quad \text{v\'eges hat\'ar\'ert\'ek}, \quad de \quad \lim_a f \neq f(a).$$

 2^o Az $a \in \mathcal{D}_f$ pont az f függvény **elsőfajú szakadási helye** (vagy f-nek **ugrása van** a-ban), ha

$$\exists \lim_{a \to 0} f \quad \text{\'es} \quad \exists \lim_{a \to 0} f, \quad \text{\it ezek v\'egesek}, \quad de \quad \lim_{a \to 0} f \neq \lim_{a \to 0} f.$$

 3^o Ha a $\lim_{a\to 0} f$ és a $\lim_{a\to 0} f$ egyoldali határértékek közül legalább az egyik nem létezik, vagy létezik, de nem véges, akkor azt mondjuk, hogy f-nek **az** a **helyen másodfajú szakadása van**.

Megjegyzés. A "megszüntethető szakadás" elnevezés arra utal, hogy ebben az esetben az a pontban megváltoztatva a függvény értékét az f folytonossá tehető, ui. ekkor az

$$\widetilde{f}(x) := \begin{cases} f(x), & \text{ha } a \neq x \in \mathcal{D}_f \\ \lim_a f, & \text{ha } x = a \end{cases}$$

függvény már folytonos a-ban, hiszen $\widetilde{f}(a) = \lim_a f = \lim_a \widetilde{f}.$

Példák. 1. Az

$$f(x) := \begin{cases} x, & \text{ha } x \in \mathbb{R} \setminus \{0\} \\ -1, & \text{ha } x = 0 \end{cases}$$

függvénynek a 0 pontban megszüntethető szakadása van, mert $\lim_{0} f = 0 \neq f(0) = -1$.

2. Az előjelfüggvénynek (vagyis a sign függvénynek) a 0 pont elsőfajú szakadási helye, mert $\lim_{0\to 0}$ sign = $1 \neq \lim_{0\to 0}$ sign = -1.

3. Az

$$f(x) := \begin{cases} \frac{1}{x}, & \text{ha } x \in \mathbb{R} \setminus \{0\} \\ 1, & \text{ha } x = 0 \end{cases}$$

függvénynek a 0 pont másodfajú szakadási helye, mert az egyoldali határértékek bár léteznek $(\lim_{0\to 0} f = -\infty$ és $\lim_{0\to 0} f = +\infty$), de ezek nem végesek.

Korlátos zárt intervallumon folytonos függvények

Ha egy f függvény folytonos egy korlátos és zárt intervallumban, akkor ebből következik, hogy f számos egyéb fontos tulajdonsággal is rendelkezik. A **Bolzano-tételt** az Analízis I. tantárgyban már megismertetük.

Emlékeztető.

Bolzano-tétel. Legyen $-\infty < a < b < +\infty$. Tegyük fel, hogy az $f:[a,b] \to \mathbb{R}$ függvény folytonos és $f(a) \cdot f(b) < 0$. Ekkor van olyan $\xi \in (a,b)$, hogy $f(\xi) = 0$.

A tétel úgy is megfogalmazhatjuk, hogy a tett feltételek mellett az f(x) = 0 egyenletnek van megoldása az (a, b) intervallumban.

A bizonyításnál követett gondolatmenettel (az ún. Bolzano-féle felezési eljárással) az f(x) = 0 egyenlet közelítő megoldását "tetszőleges pontossággal" elő lehet állítani.

Jegyezzük meg a Bolzano-tétel alábbi kiterjesztését.

Bolzano–Darboux-tétel. Legyen $-\infty < a < b < +\infty$, és tegyük fel, hogy az $f:[a,b] \to \mathbb{R}$ függvény folytonos. Ekkor f minden f(a) és f(b) közötti értéket felvesz, azaz ha például f(a) < f(b), akkor $\forall c \in (f(a), f(b))$ számhoz $\exists \xi \in (a, b)$, hogy $f(\xi) = c$.

A bizonyításhoz elég alkalmazni a Bolzano-tételt a g(x) := f(x) - c $(x \in [a, b])$ függvényre. \square

Az analízis alkalmazásai gyakran vezetnek **szélsőérték-feladatokra**, amikor is egy valós értékű függvény legnagyobb, illetve legkisebb helyettesítési értékét keressük (ha egyáltalán ilyenek léteznek). Ezzel a feladattal kapcsolatosak következő fogalmak.

Definíció. $Az \ f \in \mathbb{R} \to \mathbb{R}$ függvénynek **van abszolút maximuma**, ha értékkészletének van legnagyobb eleme, azaz

$$\exists \alpha \in \mathcal{D}_f : \forall x \in \mathcal{D}_f \ eset\'{e}n \ f(x) \leq f(\alpha).$$

Ekkor az α pont **abszolút maximumhelye** f-nek, az $f(\alpha)$ függvényérték pedig f **abszolút** maximuma.

Megjegyzés. Az abszolút minimumra hasonló definíciók fogalmazhatók meg. Az abszolút maximum-, illetve abszolút minimumhelyeket közösen abszolút szélsőértékhelyeknek nevezzük.

Egy valós-valós függvénynek vagy vannak abszolút szélsőértékei, vagy nincsenek. Ez utóbbi esetre mutatunk példákat.

1. példa. Az f(x) := 1/x $(x \in (0,1])$ függvénynek nincs abszolút maximuma.

- **2. példa.** Az $f(x) = x \ (x \in \mathbb{R})$ függvénynek sem legkisebb, sem legnagyobb függvényértéke nincs.
- 3. példa. Az

$$f(x) := \begin{cases} x, & \text{ha } x \in (-1, 1) \\ 0, & \text{ha } x = -1 \text{ vagy } x = 1 \end{cases}$$

függvénynek nincsenek abszolút szélsőértékei.

A következő tétel azt állítja, hogy ez a jelenség egy korlátos és zárt intervallumon folytonos függvénynél nem fordulhat elő.

Weierstrass-tétel. Legyen $a, b \in \mathbb{R}$, a < b. Tegyük fel, hogy az $f : [a, b] \to \mathbb{R}$ függvény folytonos. Ekkor f-nek léteznek abszolút szélsőértékei, azaz

$$\exists \alpha, \beta \in [a, b]: f(\beta) \le f(x) \le f(\alpha) \quad (\forall x \in [a, b]).$$

Bizonyítás. Csak az abszolút maximumra vonatkozó állítást látjuk be. Az abszolút minimum létezése hasonlóan mutatható meg.

(i) Igazoljuk, hogy f korlátos [a, b]-n, azaz

$$\exists K > 0$$
, hogy $\forall x \in [a, b]$ esetén $|f(x)| < K$.

Az állítást indirekt úton bizonyítjuk. Tegyük fel, hogy f nem korlátos, azaz

$$\forall K > 0$$
 számhoz $\exists x \in [a, b]$, amelyre $|f(x)| > K$.

A $K = n \in \mathbb{N}$ választással azt kapjuk, hogy

(*)
$$\forall n \in \mathbb{N} \text{ számhoz } \exists x_n \in [a, b], \text{ amelyre } |f(x_n)| \ge n.$$

Az $(f(x_n))$ sorozat tehát nem korlátos.

Mivel $(x_n) \subset [a, b]$ korlátos sorozat, ezért a Bolzano-Weierstrass-tétel miatt létezik (x_{n_k}) konvergens részsorozata. Legyen

$$\gamma := \lim (x_{n_k}).$$

Indirekt módon igazolható, hogy γ is [a,b]-ben van. (Valóban, ha $\gamma \notin [a,b]$, akkor $\exists K(\gamma)$, amelyre $K(\gamma) \cap [a,b] = \emptyset$. (**)-ból következik, hogy $\exists k_0 \in \mathbb{N}$, hogy $\forall k \geq k_0$ esetén $x_{n_k} \in K(\gamma)$. Ez ellentmondás, mivel $x_{n_k} \in [a,b]$.)

Mivel $f \in C\{\gamma\}$, ezért az átviteli elv alapján az $(f(x_{n_k}))$ sorozat konvergens (és $f(\gamma)$ -hoz tart). Következésképpen az $(f(x_{n_k}))$ korlátos sorozat. Ez viszont ellentmondásban van (*)-gal. Ezzel megmutattuk azt, hogy az f függvény korlátos.

(ii) Igazoljuk, hogy az f függvénynek van abszolút maximumhelye.

Legyen $M := \sup_{x \in [a,b]} f(x)$. Mivel f (felülről) korlátos, ezért $M < +\infty$. A szuprémum definíciójából következik, hogy

$$\forall n \in \mathbb{N}, \ \exists y_n \in \mathcal{R}_f : \ M - \frac{1}{n} < y_n \le M.$$

Viszont:

$$y_n \in \mathcal{R}_f \implies \exists x_n \in [a, b] : f(x_n) = y_n \quad (\forall n \in \mathbb{N}).$$

Az így definiált $(x_n) \subset [a, b]$ sorozat korlátos, ezért a Bolzano-Weierstrass-tétel miatt az (x_n) sorozatnak létezik (x_{n_k}) konvergens részsorozata. Jelölje α ennek a határértékét, azaz legyen

$$\alpha := \lim (x_{n_k}).$$

Indirekt módon látható be, hogy $\alpha \in [a, b]$. Mivel $f \in C\{\alpha\}$, ezért az átviteli elv szerint

$$\lim_{k \to +\infty} f(x_{n_k}) = \lim_{k \to +\infty} y_{n_k} = f(\alpha).$$

Mivel

$$M - \frac{1}{n_k} < f(x_{n_k}) = y_{n_k} \le M \quad \text{(minden k-ra)},$$

ezért $\lim_{k\to +\infty}y_{n_k}=f(\alpha)=M$. Ezzel megmutattuk, hogy α az f függvény abszolút maximumhelye. \blacksquare

A továbbiakban az inverz függvény folytonosságával foglalkozunk.

Emlékeztető. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény invertálható, ha különböző értelmezési tartománybeli elemekhez különböző helyettesítési értékek tartoznak, azaz minden $y \in \mathcal{R}_f$ elemhez létezik egyetlen olyan $x \in \mathcal{D}_f$ elem, amelyre f(x) = y. Ebben az esetben f inverz függvénye:

$$f^{-1}: \mathcal{R}_f \ni y \mapsto x$$
, amelyre $f(x) = y$.

Tegyük fel, hogy f invertálható, és ábrázoljuk f és f^{-1} grafikonját egy olyan koordinátarendszerben, amelynek tengelyein az egységek egyenlő hosszúak. Vegyük f grafikonjának egy (x,y) pontját, azaz legyen y=f(x). Ekkor $f^{-1}(y)=x$, vagyis az (y,x) pont rajta van az f^{-1} függvény grafikonján. Ha egy pont két koordinátáját felcseréljük, akkor a pont tükörképét kapjuk meg a két tengely szögfelező egyenesére (vagyis az y=x egyenletű egyenesre) vonatkozóan. Ez azt jelenti, hogy f és f^{-1} – geometriailag – egymás tükörképei a szóban forgó szögfelezőre vonatkozóan:

Az alábbi példa azt mutatja, hogy általában egy függvény folytonossága nem "öröklődik" az esetleg létező inverzére. Legyen ui.

$$f(x) := \begin{cases} x, & \text{ha } 0 \le x < 1 \\ 3 - x, & \text{ha } 1 < x \le 2, \end{cases}$$

Könnyű ellenőrizni, hogy az a függvény invertálható, folytonos a $\mathcal{D}_f = [0, 2] \setminus \{1\}$ halmazon, $\mathcal{R}_f = [0, 2)$ és

$$f^{-1}(x) = \begin{cases} x, & \text{ha } 0 \le x < 1\\ 3 - x, & \text{ha } 1 \le x < 2. \end{cases}$$

Mivel $\lim_{1\to 0} f^{-1} = 1 \neq \lim_{1\to 0} f^{-1} = 2$, ezért $f^{-1} \notin C\{1\}$.

A következő tétel azt állítja, hogy ha feltesszük, hogy f invertálható, az értelmezési tartománya korlátos és zárt intervallum, továbbá f folytonos \mathcal{D}_f -en, akkor az inverz függvénye is folytonos.

Az inverz függvény folytonossága. Tegyük fel, hogy a korlátos és zárt $[a,b] \subset \mathbb{R}$ intervallumon értelmezett $f:[a,b] \to \mathbb{R}$ függvény folytonos és invertálható. Ekkor az f^{-1} inverz függvény folytonos a $\mathcal{D}_{f^{-1}} = \mathcal{R}_f$ halmazon.

SPECIÁLIS FÜGGVÉNYEK 1.

Az analízisben (és általában a matematikában) a leggyakrabban előforduló függvények a polinomok, a racionális függvények, az exponenciális-, a hatvány- és a logaritmusfüggvények, a trigonometrikus függvények, a hiperbolikus függvények és az inverzeik. Elemi függvényeknek nevezzük azokat a függvényeket, amelyeket a fentiekből kaphatunk meg a négy alapművelet, a kompozíció és valamely nyílt intervallumra való leszűkítés véges számú alkalmazásával.

A polinomokat és a racionális törtfüggvényeket már értelmeztük.

Ebben a pontban az exponenciális-, a hatvány- és a logaritmusfüggvényeket fogjuk **definiálni**, és felsoroljuk azokat a tulajdonságokat (folytonosság, monotonitás, határérték), amelyeket az eddigi ismereteink alapján már be lehet **bizonyítani**.

Felhívjuk a figyelmet azonban arra, hogy a függvények garfikonjait a felsorolandó tulajdonságokból még nem lehet jellemezni. Ennek ellenére szemléltetni fogjuk a függvénygrafikonokat, és később, a konvexitás tárgyalása során mutatjuk majd meg a pontos ábrázoláshoz hiányzó tulajdonságokat.

A szóban forgó függvények definiálásánál a fő nehézséget pozitív szám irracionális kitevőjű hatványainak az értelmezése jelenti. Ehhez a továbbiakban a következő utat választjuk.

Az exp függvény Analízis I-ben megadott definíciójából kiindulva értelmezzük az e szám valós kitevőjű hatványait. Az exp függvény inverzeként vezetjük be a természetes alapú logaritmusfüggvényt. Ezek felhasználásával már egyszerűen értelmezhetjük az exponenciális, a hatvány- és a logaritmusfüggvényeket, és bebizonyíthatjuk számos fontos tulajdonságaikat. (A bizonyítások leírásától el fogunk tekinteni.)

Végül megjegyezzük, hogy a trigonometrikus függvények, a hiperbolikus függvények és az inverzeik értelmezéseihez és tulajdonságainak a leírásához még nem állnak rendelkezésünkre a megfelelő eszközök. A differenciálszámítás alkalmazásaként fogjuk tárgyalni ezeket a kérdéseket.

1. A hatvány- és a gyökfüggvények

Legyen $n \in \mathbb{N}$ rözített természetes szám.

Hatványfüggvény: $f(x) := x^n \ (x \in [0, +\infty)).$

 $\mathbf{Gy\"{o}kf\"{u}ggv\acute{e}ny:}\ \sqrt[n]{}:[0,+\infty)\ni x\mapsto \sqrt[n]{x}.$

Igazolható:

- $f \uparrow$ és folytonos $[0, +\infty)$ -n \Longrightarrow \exists inverze,
- $f^{-1} = \sqrt{(a \text{ gy\"{o}}\text{kf\"{u}}\text{ggv\'{e}}\text{ny a hatv\'{a}}\text{ny}\text{f\"{u}}\text{ggv\'{e}}\text{ny inverze})}$
- f^{-1} † és folytonos $[0, +\infty)$ -n.

A függvények képe:

2. Az exp és az ln függvény

 $\underline{\mathbf{Megjegyz\acute{e}s}}$. Hatványok értelmezése. Az n tényezős $a \cdot \ldots \cdot a$ szorzatot a^n -nel jelöltük, és az a szám n-edik hatványanak neveztük. Nyilvánvaló, hogy bármely a,b valós és x,y pozitív egész számra fennállnak a hatványozás azonosságai:

$$(ab)^{x} = a^{x} \cdot b^{x}, \qquad a^{x+y} = a^{x} \cdot a^{y}, \qquad (a^{x})^{y} = a^{x \cdot y}.$$

A hatványozás műveletének kiterjesztését tetszőleges x,y valós kitevőkre úgy célszerű definiálni, hogy a fenti "szokásos" azonosságok érvényben maradjanak.

Világos például az, hogy $a \neq 0$ esetén az $a^{x+y} = a^x \cdot a^y$ azonosság csak úgy maradhat érvényben, ha a^0 -t 1-nek, a^{-n} -et pedig $1/a^n$ -nek értelmezzük minden pozitív egész n-re, azaz

$$a^0 := 1$$
 és $a^{-n} := \frac{1}{n}$ $(n = 1, 2, ...).$

A továbbiakban csak pozitív a számok hatványait értelmezzük. Viszonylag egyszerűen meg lehet mutatni azt, hogy az imént jelzett célnak megfelelően egy a > 0 valós szám r = n/m (n, m relatív prím egészek és m > 0) racionális kitevős hatványát így kell definiálnunk:

$$a^{\frac{n}{m}} := \sqrt[m]{a^n}.$$

Irracionális kitevőkre a hatványok $\acute{e}rtelmez\acute{e}se$ már jóval bonyolultabb feladat. Az első lépésként az e szám tetszőleges valós kitevőjű hatványait már értelmeztük.

<u>Emlékeztető</u>. Az exp függvény bevezetése. Az Analízis I. tárgyban láttuk, hogy a $\sum x^n/n!$ ($x \in \mathbb{R}$) hatványsor minden $x \in \mathbb{R}$ pontban konvergens (l. például a hányadoskritériumot). Ennek a hatványsornak az összegfüggvényeként definiáltuk az exp függvényt:

$$\exp(x) := \sum_{k=0}^{+\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \quad (x \in \mathbb{R}).$$

Világos, hogy $\exp(0) = 1$, és azt is tudjuk már, hogy

$$\exp(1) := \sum_{k=0}^{+\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots = e,$$

ahol az e számot így definiáltuk:

$$e := \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n.$$

A számsorok Cauchy-szorzatának a felhasználásával igazolható az alábbi fontos képlet:

$$\exp(x+y) = \exp(x) \cdot \exp(y) \quad (x, y \in \mathbb{R}),$$

amit szokás az exp függvényegyenletének, vagy multiplikatív tulajdonságának nevezni. Az is egyszerűen bebizonyítható, hogy

$$\exp\left(\frac{n}{m}\right) = e^{\frac{n}{m}} = \sqrt[m]{e^n},$$

ahol n, m relatív prím egészek és m > 0.

Kézenfekvő tehát, hogy az e szám hatványait tetszőleges $x \in \mathbb{R}$ kitevő esetén így értelmezzük: legyen

$$e^x := \exp(x) \quad (x \in \mathbb{R}).$$

Így például

$$e^{x+y} = e^x \cdot e^y, \qquad e^{-x} = \frac{1}{e^x} \quad (x, y \in \mathbb{R}).$$

Hamarosan látni fogjuk, hogy az

$$(e^x)^y = e^{x \cdot y} \quad (x, y \in \mathbb{R})$$

azonosság is igaz, következésképpen e valós kitevőjű hatványainak fenti értelmezése esetén valóban érvényben maradnak a hatványozás "szokásos" azonosságai.

Most felsoroljuk az exp függvény alapvető tulajdonságait.

Tétel. (Az exp függvény tulajdonságai.)

$$1^{o} \exp(x) := \exp x := e^{x} := \sum_{n=0}^{+\infty} \frac{x^{n}}{n!} \quad (x \in \mathbb{R}).$$

 $2^o \bullet \exp(0) = 1,$

•
$$\exp(1) = \sum_{n=0}^{+\infty} \frac{1}{n!} = e \left(:= \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n \right).$$

3° A függvényegyenlet:

$$e^{x+y} = e^x \cdot e^y \quad (x, y \in \mathbb{R}).$$

 $4^{\circ} \exp \uparrow \acute{e}s folytonos \mathbb{R}-en.$

$$5^o \mathcal{R}_{exp} = (0, +\infty).$$

$$6^{\circ} \lim_{+\infty} \exp = +\infty \quad \text{\'es} \quad \lim_{-\infty} \exp = 0.$$

Bizonyítás nélkül. ■

A fentiek alapján az exp függvény grafikonját még nem lehet pontosan szemléltetni. Gondoljuk meg ugyanis, hogy a függvénygrafikon tartalmazhat "hullámokat". A konvexitás tárgyalása során fogjuk megmutatni, hogy ez nem lehetséges.

Az exp függvény képe:

Definició. Mivel az exp : $\mathbb{R} \to \mathbb{R}$ függvény $\uparrow \mathbb{R}$ -en, ezért \exists inverze. Legyen

$$\ln := \log := \exp^{-1}$$

a (természetes alapú vagy e alapú) logaritmusfüggvény.

Megjegyzések.

$$1^{\text{o}}~\mathcal{D}_{\ln} = \mathcal{R}_{\exp} = (0, +\infty)~\text{\'es}~\mathcal{R}_{\ln} = \mathcal{D}_{\exp} = \mathbb{R}.$$

 2^o Ha x > 0, akkor

$$\ln x := \ln(x) = y \quad \stackrel{\text{inverz}}{\Longrightarrow} \quad e^y = x.$$

 $\ln x$ tehát az a kitevő, amire az alapot (vagyis az e számot) emelve x-et kapunk. Ez azt jelenti, hogy a fenti módon értelmezett logaritmus a középiskolai definícióval egyezik meg.

 \mathbf{Az} l
n függvény képe az exp függvény képének az y=xegyen
letű egyenesre vonatkozó tükörképe.

Tétel. (Az ln függvény tulajdonságai.)

- $1^o \bullet \ln e^x = x \quad (\forall x \in \mathbb{R}),$
 - $\bullet \quad e^{\ln x} = x \quad (\forall \, x > 0).$
- $2^{o} \ln(x \cdot y) = \ln x + \ln y \quad (x, y > 0).$
- $3^{\circ} \ln \uparrow \text{ \'es folytonos } (0, +\infty)\text{-en, tov\'abb\'a } \mathcal{R}_{\ln} = \mathbb{R}.$
- $4^{\circ} \lim_{+\infty} \ln = +\infty \quad \text{\'es} \quad \lim_{0+0} \ln = -\infty.$

Megjegyzések.

 1^o Az expx "jól számolható" $\forall x \in \mathbb{R}$ esetén, mert expx egy végtelen sor összege.

 2^o Az l
nxminden x>0szám
ra értelmezve van, de az értéke így nem számolható. Később majd az l
n függvényt is előállítjuk hatványsor összegeként, és annak felhasználásával lehet a függvényértékeket kiszámolni.

3. Az \exp_a és a \log_a függvények

Megjegyzés. A célunk az a^x értelmezése tetszőleges a > 0 alap és $x \in \mathbb{R}$ kitevő esetére úgy, hogy a hatványozás $x \in \mathbb{Q}$ esetén "megszokott" azonosságai érvényben maradjanak.

Az e szám tetszőleges $x \in \mathbb{R}$ kitevős hatványait már értelmeztük. a^x értelmezéséhez abból indulunk ki, hogy az a > 0 számot felírhatjuk e hatványaként:

$$a = e^{\ln a}.$$

A hatvány hatványozására vonatkozó azonosság csak úgy marad érvényben, ha a^x -t így értelmezzük:

$$a^x = \left(e^{\ln a}\right)^x = e^{x \ln a}.$$

Definíció. Legyen a > 0 valós szám. Tetszőleges $x \in \mathbb{R}$ esetén az a **szám** x-edik hatványát így értelmezzük:

$$a^x := e^{x \cdot \ln a}$$

Definíció. Legyen a > 0 valós szám. Az a **alapú exponenciális függvényt** így értelmezzük:

$$\exp_a : \mathbb{R} \to \mathbb{R}, \quad \exp_a(x) := a^x = \exp(x \cdot \ln a) \quad (\forall x \in \mathbb{R}).$$

 $\mathbf{Megjegyz\acute{e}s.}$ Világos, hogy $\exp_e = \exp$.

Igazolható (az exp és az ln függvény tulajdonságait is figyelembe véve):

- Ha $0 < a \neq 1$, akkor az $\exp_a : \mathbb{R} \to (0, +\infty)$ függvény egy folytonos bijekció.
- \bullet Haa>1,akkor \exp_a szigorúan monoton növő és

$$\lim_{-\infty} \exp_a = 0, \qquad \lim_{+\infty} \exp_a = +\infty.$$

 \bullet Ha0 < a < 1,akkor \exp_a szigorúan monoton fogyó és

$$\lim_{-\infty} \exp_a = +\infty, \qquad \lim_{+\infty} \exp_a = 0.$$

 $Az \exp_a f$ üggvény képe

Definíció. Ha a>0 valós szám és $a\neq 1$, akkor az \exp_a szigorúan monoton és folytonos \mathbb{R} -en, ezért van inverze, amelyet a **alapú logaritmusfüggvénynek** nevezünk és \log_a -val jelölünk, azaz

$$\log_a := (\exp_a)^{-1}, \quad \text{ha } a > 0 \text{ \'es } a \neq 1.$$

Megjegyzés. Világos, hogy $\log_e = \ln = \log$ és $\log_a(x) = \log_a x = y$ ekvivalens azzal, hogy $a^y = x$, azaz $\log_a x$ az a kitevő, amire a-t emelve x-et kapunk.

A \log_a függvény képe:

Tétel. (A \log_a függvény tulajdonságai.)

 1^o Ha a>1, akkor \log_a szigorúan monoton növő folytonos függvény és $\mathcal{R}_{\log_a}=\mathbb{R}$, továbbá

$$\lim_{0+0}\log_a=-\infty,\qquad \lim_{+\infty}\log_a=+\infty.$$

 2^o Ha 0 < a < 1, akkor \log_a szigorúan monoton fogyó folytonos függvény és $\mathcal{R}_{\log_a} = \mathbb{R}$, továbbá

$$\lim_{0+0} \log_a = +\infty, \qquad \lim_{+\infty} \log_a = -\infty.$$

 3^o Logaritmusazonosságok: Legyen $0 < a \neq 1$. Ekkor

- $\log_a(x \cdot y) = \log_a x + \log_a y \quad (x, y > 0);$
- $\log_a\left(\frac{x}{y}\right) = \log_a x \log_a y \quad (x, y > 0);$
- $\log_a(x^y) = y \log_a x \quad (x > 0, y \in \mathbb{R}).$

4. Általános hatványfüggvények

Definíció. Tetszőleges $\alpha \in \mathbb{R}$ szám esetén az α kitevőjű hatványfüggvényt így értelmezzük:

$$h_{\alpha}:(0,+\infty)\ni x\mapsto x^{\alpha}:=e^{\alpha\ln x}.$$

Tétel. (A hatványfüggvény tulajdonságai.)

Legyen $0 \neq \alpha \in \mathbb{R}$. Ekkor a $h_{\alpha}: (0, +\infty) \to (0, +\infty)$ függvény egy folytonos bijekció, amely

• $\alpha > 0$ esetén szigorúan monoton növő, és

$$\lim_{0 \to 0} h_{\alpha} = 0, \qquad \lim_{+\infty} h_{\alpha} = +\infty,$$

• $\alpha < 0$ esetén pedig szigorúan monoton fogyó, és

$$\lim_{0+0} h_{\alpha} = +\infty, \qquad \lim_{+\infty} h_{\alpha} = 0.$$

Bizonyítás. Az eddigiek alapján.

A h_{α} hatványfüggvény képe:

