PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-111575

(43)Date of publication of application: 20.04.2001

(51)Int.Cl.

H04L 12/28

HO4B 7/208 H04B 7/26

(21)Application number : 11-339223

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

30.11.1999

(72)Inventor: DOI YUTAKA

KOBAYASHI HIROKAZU YAMAMOTO HIROMICHI

(30)Priority

Priority number: 11219738

Priority date: 03.08.1999

Priority country: JP

(54) REPEATER DEVICE FOR CONVERTING RADIO LAN CROSS CHANNEL AND RADIO TERMINAL **DEVICE**

(57)Abstract:

PROBLEM TO BE SOLVED: To expand communication area using a relay system, capable of easily constructing a transmission and reception area between an access point and a radio terminal in a radio LAN where a plurality of channels are used.

SOLUTION: A crossbar switch 81 is sent to frequency aconverting parts 41 to 44 of a set channel, converted into the frequency band of each channel and sent to amplifiers 21 to 24. Before that level detector 31 to 34 detect whether the channel is in a transmission state, and when the channel is in the transmission state, a control signals is sent continuously to switches 61 to 64, and the switches 61 to 64 go into 'OFF' state to stop receiving the channel. Thus, the intra-station loop of radio waves is eliminated.

Partial Translation of Reference 2

Jpn. Pat. Appln. KOKAI Publication No. 2001-111575

Filing No.: 11-339223

Filing Date: November 30, 1999

Applicant: MATSUSHITA ELECTRIC IND CO LTD

Priority: August 3, 1999 KOKAI Date: April 20, 2001

Request for Examination: Not filed

Int.Cl.: H04L 12/28

H04B 7/208 7/26

Column 8, Line 47 to Column 10, Line 31

[0042] A radio LAN cross-channel conversion repeater described in FIG. 2 has blocks 11 to 81 that are completely the same as those in FIG. 1, and is added with a mechanism described below in order to carry out channel control dynamically in accordance with a beacon signal.

[0043] First, a signal received at an intermediate frequency from each channel is relayed, and also converted to a digital signal by demodulators 101 to 104 and decoders 111 and 114 in an own station. Beacon detectors 121 and 124 that carry out extremely simple frame analysis filter only a beacon frame, and transmit a BSSID thereof to a channel control section 132.

[0044] In addition, in parallel with the above operation, receiving level measurement devices 91 to 94 measure a signal level of an intermediate frequency, and transmit the signal level to the channel control section 132 as well.

[0045] FIGS. 5, 6, and 7 describe operation procedures of the channel control section 132. Basically, the channel control section 132 is a state transition machine that continues a waiting state for events of a beacon receiving interrupt and a timer interrupt. The channel control section 132 is configured to output for start and release of a cross-channel conversion function to the crossbar switch 81 based on management and content comparison of two tables, a beacon table and a cross channel conversion table, which are internal tables of the channel control section 132, by the above events. [0046] FIG. 10 shows a configuration of the beacon table, and FIG. 11 shows a configuration of the cross channel conversion table.

[0047] There exit beacon table entries for the number of supported channels. A first

configuration item of a table entry is an area provided with a number of the channel. Information from a dip switch is recorded in a second item of a beacon table entry. [0048] A third item is a BSSID of a receiving beacon, and in this case, a 48-bit MAC address is entered as an example. For a channel for which a beacon table entry is not created, 0xFFFFFFFFFFFF is entered as an item value thereof. A fourth item is an item in which time elapsed from receiving a beacon is entered.

[0049] As executed by a process which will be described later, a beacon table entry is incremented by a timer existing in the channel control section 132, and deleted when the incremented value exceeds a certain threshold value. This is aimed at detecting a channel that is not used and releasing the channel to an unoccupied channel. The fourth item is provided for the above purpose.

[0050] There exit cross channel conversion table entries for the maximum number that can be cross-channel-converted at the same time. Since the present embodiment is in a four-channel configuration, the maximum number that can be cross-channel-converted at the same time is two.

[0051] The first item is a field provided for determining whether or not a cross channel conversion table entry is effective. The second item and the third item are fields for designating two channels that are cross channels. Since a channel for which a beacon is received is only one of the two, the channel is designated in the second item.

[0052] When a beacon receiving event is generated, the channel control section 132 is to execute three items of operation described below.

[0053]

- 1) Update of the beacon table (302 to 305, 316, 322, and 331)
- 2) Rearrangement of cross channels when a channel for which a beacon is received is a conversion channel in the cross channel conversion table that is used already (309 to 315)
- 3) Update of the cross channel conversion table by detecting a change of the beacon table
- 4) Start and release of the cross channel conversion function in accordance with a change of the cross channel conversion table

The processing of 1) determines whether or not there is a change in the beacon table in Steps 304 and 305. When "Yes" is selected in Step 305, this shows that there is no change in a beacon in the channel. In other cases, a beacon table entry is created in

Partial Translation of Reference 2

Page 3/3

steps 331 and 322.

[0054] Processing of 3) and 4) is carried out in Steps 306 to 308, Steps 317 to 321, and Steps 323 to 330. Steps 306 to 308 show that cross channel conversion that is created based on receiving of a previous beacon receiving channel is released when a source address of a receiving beacon is different from a previous address.

[0055] When str is selected in opt of an opt dip switch of a dip switch 142, and beacon table entries having the same BSSID are selected, the channel control section selects one which is at a higher receiving level of a radio wave. When spd is selected, the channel control section selects a channel that is received first by the same beacon frame.

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-111575

(P2001-111575A)

(43)公開日 平成13年4月20日(2001.4.20)

(51) Int.Cl.7	識別	l記号 F	' I		デ ・	-マコード(参考)
H 0 4 L	12/28	н	0 4 L	11/00	310B	5 K 0 3 3
H 0 4 B	7/208	Н	0.4B	7/15	В	5 K 0 6 7
	7/26			7/26	Α	5 K O 7 2

審査請求 未請求 請求項の数19 OL (全 16 頁)

(21)出願番号	特願平11-339223	(71)出願人	000005821

松下電器産業株式会社 (22)出願日 平成11年11月30日(1999.11.30) 大阪府門真市大字門真1006番地

(72)発明者 土居 裕

神奈川県川崎市多摩区東三田3丁目10番1 (31)優先権主張番号 特願平11-219738 (32)優先日 平成11年8月3日(1999.8.3)

号 松下技研株式会社内

日本(JP) (72)発明者 小林 広和

神奈川県川崎市多摩区東三田3丁目10番1

号 松下技研株式会社内

(74)代理人 100097445

弁理士 岩橋 文雄 (外2名)

最終頁に続く

(54) 【発明の名称】 無線LANクロスチャネル変換リピータ装置及び無線端末装置

(57)【要約】

(33)優先権主張国

【課題】 複数チャネルを使用する無線LANにおい て、アクセスポイントと無線端末間の送受信エリアを簡 易に構成できる中継システムを用いてその通信エリアを 拡大する。

【解決手段】 クロスバスイッチ81は設定されたチャ ネルの周波数変換部41~44に送られ、各チャネルの 周波数帯に変換し増幅器21~24に送られるのである が、そのまえにレベル検波器31~34においてそのチ ャネルが送信状態であるかどうか検知し送信状態であれ ば制御信号をスイッチ61~64に送り続け、スイッチ 61~64はOFFの状態となりそのチャネルの受信を 中止する。これにより電波の局内ループを解消すること となる。

【特許請求の範囲】

【請求項1】 周波数帯域Aを使用するチャネルXと前 記周波数帯域とは異なる周波数帯域Bを使用するチャネ ルYの信号を送受信する手段と、

前記チャネルXで受信される信号をチャネルYに変換す

チャネルYで受信される信号をチャネルXに送信する手 段とを有する無線LANクロスチャネル変換リピータ装

【請求項2】 請求項1記載の無線LANクロスチャネ 10 ル変換リピータ装置において、

3つ以上のそれぞれ異なる周波数帯域のチャネルの信号 を送受信する手段と、

任意の2つのチャネルをクロスチャネル変換する変換手

クロス変換機能を動作・停止させる手段とを有すること を特徴とする無線LANクロスチャネル変換リピータ装

【請求項3】 請求項1記載の無線LANクロスチャネ ル変換リピータ装置において、

4つ以上のそれぞれ異なる周波数帯域のチャネルの信号 を送受信する手段と、

複数個の任意の2つのチャネルをクロスチャネル変換す る変換手段と、

クロス変換機能を同時に動作させる手段とを有すること を特徴とする無線LANクロスチャネル変換リピータ装 置。

【請求項4】 請求項2乃至3いずれか記載の無線LA Nクロスチャネル変換リピータ装置において、

ビーコンの信号を検出するビーコン検出手段と、

チャンネル制御手段とを有し、

ビーコン検出検出手段は、ビーコンの信号からアクセス ポイントを識別できる識別情報を検出し、

チャネル制御手段は、前記ビーコン検出手段からの信号 により、ビーコンが到達していることを示すビーコンテ ーブルと、変換できる組み合わせを記録するクロス変換 テーブルを形成し、クロスチャネル変換できる組み合わ せを選択することを特徴とする無線LANクロスチャネ ル変換リピータ装置。

【請求項5】 請求項4記載の無線LANクロスチャネ 40 ル変換リピータ装置において、

前記ビーコン検知機能ビーコンフレームがあるチャネル である一定時間受信されないことで、前記ビーコン検知 テーブルの前記ビーコンフレームが一定時間受信されな かったチャネルのビーコン検知をOFFにし、前記チャ ネル変換テーブルから前記ビーコンフレームが一定時間 受信されなかったチャネルを含むチャネル対を削除し、 クロスチャネル変換機能に対して前記チャネル対のクロ スチャネル変換動作を停止すること指示するコントロー ル部を有することを特徴とする無線LANクロスチャネ 50 信した場合、同じビーコンフレームを最も早い時間に受

ル変換リピータ装置。

【請求項6】 請求項4乃至請求項5のいずれか記載の 無線LANクロスチャネル変換リピータ装置において、 各チャネルから受信されるビーコンフレームのサービス エリアを識別するネットワークIDを読み込む機能を有 し、異なる複数のチャネルから同じ送信元と判定できる ビーコンフレームを受信した場合には、前記複数のチャ ネルのうちの1チャネルのみをクロスチャネル変換する 制限を設け、一定時間ビーコンフレームが受信されなか ったチャネルがこの選択されたチャネルに当たる場合に は、別のチャネルをクロスチャネル変換することを特徴 とする無線LANクロスチャネル変換リビータ装置。

2

【請求項7】 請求項6記載の無線LANクロスチャネ ル変換リビータ装置において、複数のチャネルから1つ のチャネルを選択する方法として、同じビーコンフレー ムを最も早い時間に受信したチャネルを選択することを 特徴とした無線LANクロスチャネル変換リピータ装

【請求項8】 請求項7記載の無線LANクロスチャネ ル変換リビータ装置において、時間経過により最も早い 時間に受信したチャネルが変化した場合、これに連動し てクロスチャネル変換を行うチャネルを変更することを 特徴とした無線LANクロスチャネル変換リピータ装 置。

【請求項9】 請求項6記載の無線LANクロスチャネ ル変換リピータ装置において、複数のチャネルから1つ のチャネルを選択する方法として、最も強い電界強度で ビーコンフレームを受信できるチャネルを選択すること を特徴とした無線LANクロスチャネル変換リピータ装 30 置。

【請求項10】 請求項9記載の無線LANクロスチャ ネル変換リピータ装置において、時間経過により最も強 い電界強度でビーコンフレームを受信できるチャネルが 変化した場合、これに連動してクロスチャネル変換を行 うチャネルを変更することを特徴とした無線LANクロ スチャネル変換リピータ装置。

【請求項11】 請求項2乃至請求項10のいずれか記 載の無線LANクロスチャネル変換リピータ装置におい て、前記無線LANクロスチャネル変換リピータ装置が 送受信することのできるチャネルの中から、クロスチャ ネル変換動作を行えるチャネルのグループをマニュアル に設定できるチャネル選択操作部を有する無線LANク ロスチャネル変換リピータ装置。

【請求項12】 請求項1乃至請求項11のいずれか記 載の無線LANクロスチャネル変換リピータ装置によっ て構成されるネットワークシステム上で送受信する無線 端末において、前記ネットワークシステムで使用される 複数のチャネルで送受信する機能を有し、複数のネット ワークIDが同じであるビーコンを別々のチャネルで受

信したチャネルを使用して送受信を行うことを特徴とす る無線端末装置。

【請求項13】 請求項12の無線端末装置において、 時間経過により最も早い時間に受信したチャネルが変化 した場合、これに連動して送受信を行うチャネルを変更 することを特徴とする無線端末装置。

【請求項14】 請求項1乃至請求項11のいずれか記 載の無線LANクロスチャネル変換リピータ装置によっ て構成されるネットワークシステム上で送受信する無線 端末において、前記ネットワークシステムで使用される 10 複数のチャネルで送受信する機能を有し、複数のネット ワークIDが同じであるビーコンを別々のチャネルで受 信した場合、最も強い電界強度でビーコンフレームを受 信できるチャネルを使用して送受信を行うことを特徴と する無線端末装置。

【請求項15】 請求項14記載の無線端末装置におい て、時間経過により最も強い電界強度でビーコンフレー ムを受信できるチャネルが変化した場合、これに連動し て送受信を行うチャネルを変更することを特徴とする無 線端末装置。

【請求項16】 請求項4記載の無線LANクロスチャ ネル変換リピータ装置において、ビーコン検知したチャ ネルが、ビーコンテーブルにおいてはビーコン検知が○ FFであるがクロスチャネル変換テーブルにおいてクロ スチャネル変換機能により使用されていると確認された 時は、前記クロスチャネル変換テーブルにおけるチャネ ル対に対するクロスチャネル変換機能を停止し、前記チ ャネル変換テーブルにおいて使用されていないチャネル が存在しない場合には、ビーコン検知されたチャネルも クロスチャネル変換されていたチャネルもクロスチャネ 30 ル変換しないことを特徴とする無線LANクロスチャネ ル変換リピータ装置。

【請求項17】 請求項16記載の無線LANクロスチ ャネル変換リピータ装置において、クロスチャネル変換 テーブルにおいて使用されていないチャネルが1つのみ 存在する場合には、そのチャネルとクロスチャネル変換 機能を停止したビーコンテーブルでビーコン検知がON であるチャネルを使用されていないチャネルとクロスチ ャネル変換機能を開始し、前記クロスチャネル変換テー ブルにおいて使用されていないチャネルとクロスチャネ ル変換機能を開始し、前記クロス変換チャネルテーブル において使用されていないチャネルが2つ以上存在する 場合には、新たにビーコン検知されたチャネルを別の空 きチャネルとクロスチャネル変換機能を動作させること を特徴とする無線LANクロスチャネル変換リビータ装 置。

【請求項18】 請求項16記載の無線LANクロスチ ャネル変換リビータ装置において、

前記ビーコン検知機能ビーコンフレームがあるチャネル

テーブルの前記ビーコンフレームが一定時間受信されな かったチャネルのビーコン検知をOFFにし、前記チャ ネル変換テーブルから前記ビーコンフレームが一定時間 受信されなかったチャネルを含むチャネル対を削除し、 クロスチャネル変換機能に対して前記チャネル対のクロ スチャネル変換動作を停止すること指示するコントロー ル部を有することを特徴とする無線LANクロスチャネ ル変換リピータ装置。

4

【請求項19】 請求項18記載の無線LANクロスチ ャネル変換リピータ装置において、各チャネルから受信 されるビーコンフレームのサービスエリアを識別するネ ットワークIDを読み込む機能を有し、異なる複数のチ ャネルから同じ送信元と判定できるビーコンフレームを 受信した場合には、前記複数のチャネルのうちの1チャ ネルのみをクロスチャネル変換する制限を設け、一定時 間ビーコンフレームが受信されなかったチャネルがこの 選択されたチャネルに当たる場合には、別のチャネルを クロスチャネル変換することを特徴とする無線LANク ロスチャネル変換リピータ装置。

【発明の詳細な説明】 20

[0001]

【発明の属する技術分野】本発明は複数の無線端末とそ れを中継配信する中継装置からなる無線通信LANに関 する。さらに請求項4-15についてはビーコンフレー ムと呼ばれるそのフレームの到達範囲を通信サービスエ リアとして動作する無線LANに関する。

[0002]

【従来の技術】無線LANは国内外に種々の標準化が行 われおり、IEEE802.11もその一つの国際標準規格であ る。TFFF802.11もそうなのであるが、その多くの無線 L. ANシステムはアド・ホック型とインフラストラクチャ 型に分類される。

【0003】従来型のアド・ホック型の無線LANは中 継装置の介在なしに送信する端末の電波の到達範囲にお いて通信するものであり、電波環境・電波遮蔽物・送信 出力等の条件により、そのネットワークシステムとして のサービスエリアは変動し易く、ユーザが伝送サービス を確保するためには電波状況を把握して利用することが 必要となったり、N個の無線端末がその送信出力からは 到達可能であっても、端末Aと端末Bが送受信可能、端 末Bと端末Cが送受信可能であるけれども端末Aと端末 Cは送受信不能という状況が発生する可能性がある。こ のような制限は有線LANのイーサネットなどでは考え られず、同じ伝送能力がありながら無線LANが普及し ていかない一つの要因である。

【0004】一方、インフラストラクチャネットワーク においてはアクセスポイントという中継装置を介して送 受信することで、すべての無線端末がアクセスボイント への送受信が可能であればどの端末とも上記のアド・ホ である一定時間受信されないことで、前記ビーコン検知 50 ック型で発生するような問題は発生しない。しかしアク

40

5

セスポイントの配置法については、また別の意味で注意 を要する。

【0005】その理由は、

1) アクセスボイントは高機能でありコストがかさむため、できるだけ少ない数で無線LANシステムを構築しなければならない。

【0006】2)複数のアクセスボイントを近距離に配置し、これらが同一の周波数帯域を使用するチャネルで送受信すると、複数個のアクセスボイントと送受信できる位置に無線端末が配置されると、無線端末での信号の 10 復号が困難になる。という制約があるために、できるだけこれらの条件を満たすように配置することが必要となるのだが、例えば建築物内での使用では、壁や家具類の配置が電波の伝播状況を悪化させる大きな要因となりアクセスポイントの配置は、必要以上に高密度に配置する必要が生じ易く、上記1)、2)の制約との整合が求められることになり無線LANの設置作業は、有線LANに比べてはるかに難しいものになる。

【0007】また先にも述べたようにアクセスボイント 装置での中継時の処理量は大きくなってしまうため、中 20 継遅延も大きくなりやすい。

[0008]

【発明が解決しようとする課題】本発明が解決しようと する課題は以下の8点である。

【0009】1)アド・ホックネットワークにおいて広 範囲な無線による相互伝送を実現すること。

【0010】2)インフラストラクチャネットワークにおいて、遮蔽物の多い実環境下でコストを押さえなおかつ省スペースなシステムの導入で広範囲な無線による相互伝送を実現すること。

【0011】3) インフラストラクチャネットワークにおいて、アクセスポイント経由する数を減らすことでリアルタイムな無線による相互伝送を実現すること。

【0012】4)インフラストラクチャネットワークにおいて、移動する端末がアクセスポイントのエリアを越えて別のアクセスポイントのエリアに移った時には、端末とアクセスポイントとの間で移動したことの手順を必要とするが、この回数を減らすこと。

【0013】5)周波数割り当ての方法を半自動化する ことで無線LANの設置作業を容易にすること。

【0014】6)無線LANクロスチャネル変換リピータにおいて、同じネットワークからの信号を異なるチャネルから受信した場合は各々クロスチャネル変換しないことでチャネル資源の省資源化を図ること。

【0015】7)同じネットワークからの信号を異なるチャネルから受信した場合は各々クロスチャネル変換しないことでチャネル資源の省資源化を図る無線LANクロスチャネル変換リビータで、更に高速な無線LANネットワークを実現すること。

【0016】8)同じネットワークからの信号を異なる 50 とで高い信頼性を実現する。

チャネルから受信した場合は各々クロスチャネル変換しないことでチャネル資源の省資源化を図る無線LANクロスチャネル変換リピータで、更に信頼性の高い無線LANネットワークの実現を可能にすること。

6

[0017]

【課題を解決するための手段】上記7点の課題を解決する手段は以下の通りである。

【0018】1)アド・ホックネットワークに本請求項1~17で構成される無線LANクロスチャネル変換リビータ装置は、送信しようとする端末Aの伝送エリア内に存在することによって、無線リピータの伝送エリア内も端末Aの伝送エリアとなる。また無線リビータは多段につなぐことによりさらに広範囲な伝送エリアに拡張も可能である。

【0019】2)請求項1~11で記述される無線LANクロスチャネル変換リビータ装置はMAC(Media Access Control)エリアを含まないので、経路選択など複雑な動作を必要とするシステム構成が不必要となるため安価にまた小規模に構成することができる。

【0020】3)請求項1~11で記述される無線LANクロスチャネル変換リピータ装置においては、中継処理があるチャネルの搬送波をそのまま周波数を変換して送信するするだけの処理のためアクセスボイント経由の処理に比べてはるかに短い時間での中継が可能である。

【0021】4)無線LANクロスチャネル変換リピータ装置で相互接続される無線ネットワークの伝送エリア内は、一つのアクセスポイントのエリアであるため、このエリア内を移動する事に限っては、アクセスポイントのエリアの移動及びそれに付随する手順は不必要である。

【0022】5)請求項4~11で記述される無線LANクロスチャネル変換リピータ装置では、ビーコン検知機能を使用することで使用済みの周波数は検知してクロスチャネル交換中継動作に移らないので、請求項12~15の無線LAN端末を使用することで従来技術の2)で記述されるような状況をできる限り排除している。

【0023】6)請求項6~15で記述される無線LANネットワークではビーコンフレームのネットワークIDを解析することでチャネル選択の手段を提供している。

【0024】7)請求項7、8、11で記述される無線 LANクロスチャネル変換リピータ及び請求項12、1 3の無線LAN端末は選択手段において、最も速くビー コンフレームを受信されたチャネルのみをクロスチャネ ル変換することで高速化を実現する。

【0025】8)請求項9-11で記述される無線LANクロスチャネル変換リピータ及び請求項12、13の無線LAN端末は選択手段において、最も強い電界強度で受信されたチャネルのみをクロスチャネル変換することで高い信頼性を実現する

[0026]

【発明の実施の形態】本発明の実施の形態として、IEEE 802.11の無線LANにおける無線LANクロスチャネル変換リピータ装置及び無線LAN端末について記述する。この場合ビーコンフレーム内にはBSSIDと呼ばれるMACアドレスを記述するエリアが存在し、これが請求項7におけるネットワークIDに当たっている。

【0027】本発明の請求項 $1\sim3$ の実施の形態を説明するために図1を用い、本発明の請求項 $4\sim1$ 1の実施の形態を説明するため図2を用い、請求項 $12\sim15$ の 10実施の形態を説明するために図3も用いて説明する。

【0028】周波数帯域Aを使用するチャネルXと前記周波数帯域とは異なる周波数帯域Bを使用するチャネルYの信号を送受信する機能を有し、前記チャネルXで受信される信号をチャネルYに変換する機能及びチャネルYで受信される信号をチャネルXに送信する機能をクロスチャネル変換機能と呼び、この機能を有する無線LANリピータ装置を無線LANクロスチャネル変換リピータと呼ぶ。

【0029】図1において記述されている無線LANクロスチャネル変換リピータは、4つの周波数を使用したチャネルをクロスに変換する無線LANクロスチャネル変換リピータであり、請求項3の実施の形態となっているが、請求項1、2は基本的には請求項3のサブセットであり、この図により請求項1~3の実施の形態を説明していることになっている。

【0030】アンテナ11で受信されるキャリアはパラレルに4つのチャネル配信され、スイッチ61~64に流される。後述するがこれらのスイッチは通常時ONとなっており、直ちに周波数変換部71~74に流れる。【0031】この周波数変換71~74には、バンドバスフィルターが含まれ、所定の帯域のみ信号が通過する。このバンドバスフィルターの帯域は、周波数変換71~74でそれぞれ異なる。

【0032】ここにおいては各周波数を中間周波数帯に落とすために局部発振器からのそれぞれのチャネルに適合するクロックをかけており、かくチャネル信号が中間周波数帯による信号におとされ、そのままクロスバスイッチ81に供給される。

【0033】このクロスバスイッチはチャネル制御部131によって制御されるのであるが、本実施の形態の請求項1~3のシステム構成ではこの制御をディップスイッチ141によるマニュアルによる操作により制御することを想定する。本実施の形態ではディップスイッチはch1、ch2、ch3、ch4、ex1、ex2、ex3の7つで構成している。

【0034】ex1~ex3はクロスチャネルの変換の 組み合わせを指示するものであり、必ず1つのディップ スイッチがONとするものとする。各ディップスイッチ をONにすることで 8

ex1→ch1Xch2 & ch3Xch4 ex2→ch1Xch3 & ch2Xch4 ex3→ch1Xch4 & ch2Xch3 という組み合わせのクロスチャネル変換をチャネル制御 部131がクロスバスイッチ81に指示するという構成 をとる。

【0035】ex1→ch1Xch2 & ch3Xch4は、チャンネル1とチャンネル2を交換し、チャンネル3とチャンネル4を交換する意味である。

【0036】chl~ch4のディップスイッチは本実施の形態の無線LANクロスチャネル変換リピータ装置で使用するチャネルを指定するものであり、ユーザがある周波数帯域を使用不可することで次のような問題を解決する手段を与えている。

【0037】図4は1つのアクセスポイント(AP)と 2つの無線LANクロスチャネル変換リビータ(WR 1、<math>WR2)で構成されるサービスエリアを示している。 AP1はch1で通信を行っているとすると、例えばWR1はex1をONにしてch1をch2に変換する。

【0038】一方、WR2はWR1が ch2で送信しているのでもしe x1をONにしてクロスチャネル変換を行おうとすると無線LAN端末(TE)204は ch2 でWR1、WR2からの干渉波を受信することとなり通信サービスを受けることができなくなる。

【0039】したがってWR2はex1以外を使用しなくてはならない。他方WR2がex1以外、例えばex2を使用したとするとWR1はWR2からのeh3の信号をeh4に変換して送信し、WR2はさらにこれを受信してWR1のeh4の信号をeh2に変換するという伝播ループを構成することとなり、結局正常な通信はできなくなる。

【0040】 このような場合はWR 1 の c h 3 をもしくはWR 2 の c h 2 のどちらか一方をOFF にすることでこのようなループの構成を阻止することができるようになる(実用的には、両方OFF にするのが望ましい。)。

【0041】上記のように設定されたクロスバスイッチ81は設定されたチャネルの周波数変換部41~44に 送られ、各チャネルの周波数帯に変換し増幅器21~24に送られるのであるが、そのまえにレベル検波器31~34においてそのチャネルが送信状態であるかどうか検知し送信状態であれば制御信号をスイッチ61~64に送り続け、スイッチ61~64はOFFの状態となりそのチャネルの受信を中止する。これにより電波の局内ループを解消することとなる。

【0042】図2において記述される無線LANクロスチャネル変換リピータは、11~81のブロックは図1とまったく同じであるが、チャネル制御をビーコン信号 に応じて動的に行うために以下の機構が追加されてい

【0043】まず各チャネルから中間周波数で受信され た信号は中継されるとともに、自局において復調器10 1~104、復号器111~114でデジタル信号に変 換され、きわめて簡易なフレーム解析を行うビーコン検 出器121~124でビーコンフレームのみをフィルタ ーし、そのBSSIDをチャネル制御部132へ送信す る。

9

【0044】また、これと平行して受信レベル測定器9 1~94において中間周波数の信号レベルを測定して同 10 じくチャネル制御部132へ送信する。

【0045】図5、図6、図7にチャネル制御部132 の動作手順を記述している。基本的にチャネル制御部1 32はビーコン受信割り込み及びタイマー割り込みのイ ベント待ち状態を継続する状態遷移マシンであり、これ らのイベントによりチャネル制御部132の内部テーブ ルである、ビーコンテーブルとクロスチャネル変換テー ブルの二つのテーブルの管理とそのテーブル内容比較に よりクロスバスイッチ81に対してクロスチャネル変換 機能の開始・解除の出力を出すという構成になってい る。

【0046】図10にビーコンテーブルの構成及び図1 1にクロスチャネル変換テーブルの構成を示している。 【0047】ビーコンテーブルエントリーはサポートす るチャネル数分存在する。テーブルエントリーの第1構 成項目はそのチャネルのナンバーを付与する領域であ る。ディップスイッチからの情報はビーコンテーブルエ ントリーの第2項目に記録される。

【0048】第3項目は受信ビーコンのBSSIDであ り、この場合例として48ビットMACアドレスを入れ 30 ている。ビーコンテーブルエントリーが作成されていな いチャネルはこの項目値として0xFFFFFFFFFFを入れる こととしている。第4項目はビーコンを受信してからの 経過時間をいれる項目となる。

【0049】後述する手順により実行されるが、ビーコ ンテーブルエントリーはチャネル制御部132の中に存 在するタイマーによってインクリメントされある閾値を 越えると削除される。これは使用されていないチャネル を検知して空きチャネルに開放することを目的としてい る。第4項目はこの目的のため設けられている。

【0050】クロスチャネル変換テーブルエントリーは 同時にクロスチャネル交換できる最大数分存在する。本 実施の形態では4チャネル構成であるので同時にクロス チャネル交換できる最大数は2個である。

【0051】第1項目はクロスチャネル変換テーブルエ ントリーが有効かどうかを判定するために設けられたフ ィールドである。第2項目と第3項目はクロスチャネル している二つのチャネルを指定するフィールドとなる が、ビーコン受信しているチャネルは二つのうち一つの みであるのでこれを第2項目めにこれを指定するよう構 50 ビーコンテーブルエントリーと同じBSSIDを持つビ

成している。

【0052】チャネル制御部132がビーコン受信イベ ントが発生した場合に実行されるべき動作は次の3項目

【0053】1)ビーコンテーブルの更新(302~3 05, 316, 322, 331)

- 2) ビーコンを受信したチャネルが、既に使用されてい るクロスチャネル変換テーブルで、変換チャネルである 場合のクロスチャネルの再配置(309~315)
- 3) ビーコンテーブルの変化を検知してのクロスチャネ ル変換テーブルの更新
 - 4) クロスチャネル変換テーブルの変更に従ったクロス チャネル変換機能の開始・解除
- 1)の処理は手順304、305でビーコンテーブルの 変化が有るか無いかの判定をおこなっており、手順30 5で"はい"を選択したならそのチャネルにおいてビー コンの変更が無かったことを示す。それ以外の場合では 手順331、322においてビーコンテーブルエントリ 一の作成を行っている。
- 【0054】3)、4)の処理は手順306-308、 手順317-321、手順323-330で行われる。 手順306-308は受信ビーコンのソースドアレスが 以前のアドレスと異なる場合に、以前のビーコン受信チ ャネルの受信を元に作成されているクロスチャネル変換 を解除していることを示している。

【0055】チャネル制御部は、ディップスイッチ14 2のoptディップスイッチのoptでstrを選択した場合、 同じBSSIDを持つビーコンテーブルエントリーを選 択する場合により電波の受信レベルの高いほうを選択 し、spdを選択した場合は、同じビーコンフレームが先 に受信したチャネルを選択する。

【0056】手順320-321は、ディップスイッチ 142のoptディップスイッチでstrを選択した場合すな わち受信レベルを同じアクセスポイントからのクロスチ ャネル変換の指標としている場合で、既存のクロスチャ ネル変換より受信レベルの高いビーコンを受信した場合 に実行される手順で、手順的には既存のクロスチャネル 変換機能を一旦解除し新たに開始するという構成になっ ている。手順329-330は、新しいBSSIDを持 40 つビーコン受信時のクロスチャネル変換の開始を指示す る手順である。

【0057】タイマー割り込みイベントが発生した場合 に実行されるべき手順は次の2項目である。

【0058】5)すべてのビーコンテーブルエントリー のタイマーのインクリメント

- 6) ビーコンテーブルのタイムアウトの判定とタイムア ウト発生時の関連するクロスチャネル変換機能の解除
- 5) の処理は手順333で実施し、手順334-346 は6)の処理である。手順338-345は削除された

ーコンテーブルエントリーが存在する時に、クロスチャネルテーブルを付け替える手順である。

【0059】図3は本実施の形態の無線LANクロスチャネル変換リピータ装置によって構成されるネットワークで使用される端末の実施の形態である。例えば図4における204TEがこれに相当する。端末本体191は送受信チャネルスイッチ181によって一つのチャネルのみを使って送受信されるように構成されている。

【0060】そして送受信チャネルスイッチ181はチャネル選択器171によって送受信チャネルをコントロ 10 ールするよう設計されている。チャネル選択器は図8のチャネル選択器171の制御手順にしたがってチャネル選択する。チャネル選択器171はチャネル制御部132と同じくビーコン受信イベントとタイマー割り込みイベントの二つのイベント待ちを繰り返す状態遷移マシンである。

【0061】図9において無線LAN端末において使用されるビーコンテーブルの構成を示している項目的には図10のDSWの項目がないだけで後は図10の構成と同じである。

【0062】ビーコン受信イベントが発生した場合に実行されるべき動作は次の2項目である。

【0063】7) ビーコンテーブルの更新

8) ビーコンテーブルの変化を検知してのチャネルスイッチ181への指示

7)の処理は手順403、409でビーコンテーブルの変更の有無を判定しており、手順409において"はい"を選択するならビーコンテーブルの更新が無かったことを示す。それ以外の場合は手順408においてビーコンテーブルエントリーの作成を行っている。

【0064】8)の処理は手順404-407で実施しており、ディップスイッチ143のoptディップスイッチがstrを選択している時に最も受信レベルの高いチャネルを選択するよう構成されている。

【0065】タイマー割り込みイベントが発生した場合 に実行されるべきどうさは次の2項目である。

【0066】9)すべてのビーコンテーブルのタイマー のインクリメント

10)ビーコンテーブルのタイムアウトの判定とタイム アウト発生に伴う送受信チャネルの変更

9)の処理は手順413で実施し、手順414-419 は10)の処理である。

【0067】この無線LAN端末はこの構成によりアクセスポイントを変更せずに無線LANクロスチャネル変換リピータ間をハンドオーバすることができるようになる。

[0068]

【発明の効果】図1の実施の形態ではマニュアル設定によりビーコン受信チャネルと空きチャネル(ビーコンを受信しておらず、ディップスイッチでDisableにされて

いない)をクロスチャネル変換することにより、アクセスポイントに直接電波の届かない端末にも変換されたチャネルで送受信させることを可能とし、図2の実施の形態で構成された無線LANクロスチャネル変換リビータ装置は図1の実施の形態の効果に加えて、各チャネルのビーコンを受信することにより動的に空きチャネルにクロスチャネル変換機能を開始することでマニュアル動作によらず自動的にクロスチャネル変換動作を実行して、ビーコンをある時間受信していないことで自動的に空きチャネルにしてクロスチャネル変換機能を解除することを可能にする。

12

【0069】さらに同じBSSIDを持つビーコン受信チャネルについては一つのチャネルのみを選択してクロスチャネル変換することが可能であり、ディップスイッチoptの切り替えでその選択方式も変更できる。optディップスイッチをstrにセットすれば伝送誤りに強い無線LANネットワークシステムを構築できるし、spdにセットすれば高速通信に最適化された無線LANネットワークシステムを構築することができる。

20 【0070】図3の実施の形態で構成された無線LAN端末は、図1、図2の実施の形態で構築された無線LANネットワークシステムで送受信できるエリア内に有れば、最適なチャネルを選択して送受信することができる。optディップスイッチをstrにセットすれば伝送誤りに強い送受信が可能とするし、spdにセットすれば高速なそう受信を可能にする。

【図面の簡単な説明】

【図1】無線LANクロスチャネル変換リピータ装置の 構成を示した図

30 【図2】無線LANクロスチャネル変換リビータ装置の 構成を示した図

【図3】無線LAN端末の構成を示した図

【図4】伝播ループの解説図

【図5】チャネル制御部132の制御手順を示したフローチャート

【図6】チャネル制御部132の制御手順を示したフロ ーチャート

【図7】チャネル制御部132の制御手順を示したフローチャート

40 【図8】チャネル選択器171の制御手順を示したフロ ーチャート

【図9】端末側のビーコンテーブルの構成を構成を示した図

【図 10】ビーコンテーブルの構成を示した図

【図11】クロスチャネル変換テーブルの構成を示した 図

【符号の説明】

11 アンテナ

21、22、23、24 増幅器

50 31、32、33、34 レベル検波器

*

13

41、42、43、44 周波数変換装置

51 局部発振器し1

52 局部発振器L2

53 局部発振器L3

54 局部発振器L4

61、62、63、64 スイッチ

71、72,73、74 周波数変換装置

81 クロスバスイッチ

91、92、93、94、95、96、97、98 受信レベル測定器

101、102、103、104、105、106、1 07、108 復調器

 $1\,1\,0\,,\;1\,1\,1\,,\;1\,1\,2\,,\;1\,1\,3\,,\;1\,1\,4\,,\;1\,1\,5\,,\;1$

16、117、118復号器

121, 122, 123, 124, 125, 126, 1

27、128 ビーコン検出器

131、132 チャネル制御部

141 ディップスイッチ1

*142 ディップスイッチ2

143 ディップスイッチ3

155、156、157、158 変調器

165、166、167、168 符号器

171 チャネル選択器

181 チャネルスイッチ

191 端末ホスト部

201 アクセスポイント1 (AP1)

202 無線LANクロスチャネル変換リピータ装置1(WR1)

14

203 無線LANクロスチャネル変換リピータ装置2(WR2)

204 無線LAN端末 (TE)

301~316 チャネル制御部132の操作手順にお けるブロック指示符号

 $401 \sim 419$ チャネル選択器 171 の操作手順におけるブロック指示符号

【図4】

【図9】

チャネル	BSSID	タイマー (SBC)
ND		
1	0020820BAC01	1
2	0020820BAC02	2
3	FFFFFFFFFFF	0
4	FFFFFFFFFF	0

【図10】

チャネル	DSW	BSS ID	タイマー (sec)
NO	(ディップスイッチ)		
1	Enable	0020820BAC01	1
2	Enable	0020820BAC02	2
3	Enable	FFFFFFFFFF	0
4	Disable	FFFFFFFFFF	0

【図1】

【図2】

【図11】

有効	ビーコン受信チャネル	変換チャネル
0	チャネル!	チャネル3
X		

[図3]

【図5】

チャネル制御部132の制御手順(1)

【図6】 チャネル制御部132の制御手順(2)

【図7】

【図8】

フロントページの続き

(72)発明者 山本 裕理

神奈川県川崎市多摩区東三田3丁目10番1

号 松下技研株式会社内

Fターム(参考) 5K033 CB06 DA17 DB12 DB18 EA06 EA07

5K067 AA11 AA14 AA22 AA33 AA42

AA44 DD19 DD30 DD44 EE02

EE06 EE61 FF16 GG11 HH22

HH23 JJ01 JJ17 KK15

5K072 AA12 AA16 AA19 AA23 AA24

AA29 BB13 BB27 CC03 CC13

CC34 DD11 DD15 EE19 EE31

FF15 FF22 GG14 GG27 GG34

GG37 GG39