Wstęp do informatyki

Wykład 1
Uniwersytet Wrocławski
2016

Program wykładu

- Program i literatura na kursie kno
- WdI a Wstęp do programowania
- Pytania?
- Komentarze?
- Uwagi?

O czym jest ten wykład?

- Algorytmy projektowanie, analiza, techniki
- · Złożoność algorytmu: czas, pamięć obliczeń
- Struktury danych
- Program struktura, implementacja, weryfikacja poprawności, testowanie
- Translacja programów i kod maszynowy
- Reprezentacja i arytmetyka binarna, cyfrowa reprezentacja danych
- Opis składni języków programowania

Od problemu do rozwiązania

- Problem
- Specyfikacja
- Algorytm
- Program komputerowy
- Poprawność zgodność ze specyfikacją
- Złożoność: czas, pamięć, energia, ...

Analiza programu, algorytmu

Problem

- Specyfikacja problemu:
 - Wejście
 - Wyjście ("wynik")
- Przykład 1:
 - Wejście: a, b liczby
 - Wyjście: c suma a i b
- Przykład 2:
 - Wejście: tekst T i słowo s
 - Wyjście: odpowiedź TAK gdy s występuje w T

Specyfikacja problemu - przykład

WYSZUKIWANIE WZORCA W TEKŚCIE Specyfikacja, v. 1

- Wejście: tekst T i słowo s
- Wyjście: odpowiedź TAK gdy s występuje w T

Specyfikacja, v. 2 (bardziej precyzyjna)

- **Wejście**: tekst $T=T_1...T_n$ i słowo $s=s_1...s_m$, gdzie $T_1...T_n$, $s_1...s_m$ to litery
- Wyjście: odpowiedź TAK gdy istnieje i≤n-m+1, takie że T_i T_{i+1}...T_{i+m-1} = s₁...s_m

Specyfikacja problemu - przykład

PIERWIASTKI RÓWNANIA KWADRATOWEGO Specyfikacja v.1:

Wejście: a, b, c – liczby rzeczywiste, a≠0

Wyjście: liczba rozwiązań równania ax²+bx+c=0

Specyfikacja v.2:

Wejście: a, b, c – liczby rzeczywiste, a≠0

Wyjście: liczba elementów zbioru

{ $x \in \Re : ax^2 + bx + c = 0$ }

Specyfikacja problemu - przykład MAXIMUM

Specyfikacja v.1:

Wejście: n – liczba naturalna większa od 0,

 $a_1, a_2, ..., a_n$ – ciąg liczb rzeczywistych

Wyjście: największy element ciągu $a_1, a_2, ..., a_n$

Specyfikacja v.2:

Wejście: *n* – liczba naturalna większa od 0;

 $a_1, a_2, ..., a_n$ – ciąg liczb rzeczywistych

Wyjście: *b* takie, $\dot{z}e$ $b \ge a_i$ dla każdego $i \in \{1,...,n\}$ oraz $b = a_k$ dla pewnego $k \in \{1,...,n\}$

Algorytm

- Algorytm: "skończony ciąg jasno zdefiniowanych czynności, koniecznych do rozwiązania problemu, w szczególności przez komputer"
- Jakie "czynności" potrafi wykonywać komputer?
 - Kontakt ze światem zewnętrznym: pobranie danych do pamięci (wejście) i udostępnienie wyników (wyjście)
 - Operacje arytmetyczne (u nas: dodawanie, odejmowanie, mnożenie, dzielenie)
 - Porównania i wybór różnych dróg rozwiązania (rozgałęzienia)
 - Zapisywanie danych (liczb, tekstów, obrazków,...) i wyników obliczeń w pamięci

Zapis algorytmu - schemat blokowy

Specyfikacja

Wejście:

a, b, c – liczby rzeczywiste, a≠0

Wyjście:

liczba rozwiązań równania

 $ax^2+bx+c=0$

Zapis algorytmu - pseudokod

Specyfikacja

Wejście: a, b, c – liczby rzeczywiste, a≠0

Wyjście: liczba rozwiązań równania ax²+bx+c=0

Algorytm

- 1. Wczytaj a, b, c
- 2. $d \leftarrow b * b 4 * a * c$
- 3. Jeżeli (d>0): wypisz 2, w przeciwnym razie:
 - Jeżeli (d=0): wypisz 1
 w przeciwnym razie wypisz 0

Zapis algorytmu

Schemat blokowy:

- Odczyt z "urządzenia wejściowego"
- Zapis na "urządzenie wyjściowe"
- Rozgałęzienia porównania
- Podstawienie nadaj <u>zmiennej</u> x wartość równą wyrażeniu

x ← ⟨wyrażenie⟩

zmienna - "miejsce w pamięci" identyfikowane nazwą

Schemat blokowy formalnie

- Wartość z wejścia zapisz w ⟨zmienna⟩
- Wylicz wartość (wyrażenie), wynik zapisz w zmiennej x
- Przejdź w prawo/lewo gdy ⟨warunek⟩ jest/nie jest spełniony
- Wartość (wyrażenie) wypisz na wyjście

Schemat blokowy (nie)formalnie

UWAGA1

Dla wygody wykładowcy, operacje wejścia i wyjścia będą oznaczane prostokątami

Wypisz (wyrażenie)

Czytaj (zmienna)

UWAGA2

Zastosowanie nawiasów () oznacza pewną rodzinę pojęć/napisów.

Np. (wyrażenie) oznacza możliwość wpisania w podane miejsce dowolnego wyrażenia.

Algorytm z pętlą

Specyfikacja

Wejście: n – liczba naturalna większa od zera, a₁,...a_n – ciąg liczb

Wyjście: największy element ciągu a₁...a_n

Algorytm v1

- 1. Czytaj n
- 2. Czytaj mx
- **3. Powtórz** n − 1 razy:
 - Czytaj a
 - Jeżeli a>mx: mx ← a
- 4. Wypisz mx

Pytanie: dlaczego w algorytmie nie używamy notacji $a_1, \ldots a_n$?

Algorytm z pętlą

Specyfikacja

Wejście: n – liczba naturalna większa od zera,

 $a_1, \dots a_n$ – ciąg liczb

Wyjście: największy element ciągu a₁...a_n

Algorytm v1

- 1. Czytaj n
- 2. Czytaj mx
- **3. Powtórz** n − 1 razy:
 - Czytaj a
 - Jeżeli a>mx: mx ← a
- 4. Wypisz mx

Algorytm v2

- 1. Czytaj n
- 2. Czytaj mx
- **3. Dopóki** n ≠ 1:
 - Czytaj a
 - Jeżeli a>mx: mx ← a
 - $n \leftarrow n-1$
- 4. Wypisz mx

Pytanie: dlaczego w algorytmie nie używamy notacji $a_1, \ldots a_n$?

Algorytm z pętlą

Specyfikacja

Wejście: n – liczba naturalna większa od zera,

 $a_1, \dots a_n$ – ciąg liczb

Wyjście: największy element ciągu a₁...a_n

Algorytm z licznikiem (i pętlą)

Specyfikacja

Wejście: n – liczba naturalna większa od zera,

 $a_1, \dots a_n$ – ciąg liczb

Wyjście: liczba dodatnich elementów ciągu a₁,...a_n

Algorytm v1

- 1. Czytaj n
- 2. ile \leftarrow 0
- **3. Powtórz** n razy:
 - Czytaj a
 - Jeżeli a>0: ile ←ile+1
- 4. Wypisz ile

Algorytm z licznikiem

Specyfikacja

Wejście: n – liczba naturalna większa od zera,

 $a_1, \dots a_n$ – ciąg liczb

Wyjście: liczba dodatnich elementów ciągu a₁,...a_n

Algorytm v1

- 1. Czytaj n
- 2. ile \leftarrow 0
- **3. Powtórz** n razy:
 - Czytaj a
 - Jeżeli a>0: ile ←ile+1
- 4. Wypisz ile

Algorytm v2

- 1. Czytaj n
- 2. ile \leftarrow 0
- **3. Dopóki** n >0:
 - Czytaj a
 - Jeżeli a>0: ile←ile+1
 - n ← n − 1
- 4. Wypisz ile

Algorytm z licznikiem

Specyfikacja

Wejście: n – liczba naturalna większa od zera,

 $a_1, \dots a_n$ – ciąg liczb

Wyjście: liczba dodatnich elementów ciągu

 $a_1, \dots a_n$

Algorytmy – przykład historyczny

NAJWIĘKSZY WSPÓLNY DZIELNIK

Specyfikacja v. 1

Wejście: n, m – liczby naturalne

Wyjście: największy wspólny dzielnik n i m

Specyfikacja v. 2

Wejście: n, m – liczby naturalne

Wyjście: max { p : p | n oraz p | m }

Algorytmy – przykład historyczny największy wspólny dzielnik

Algorytm Euklidesa

Czytaj n, m

Jeżeli n<m: zamień(n,m)

Dopóki m>0:

- $n \leftarrow n m$
- Jeżeli n<m: Zamień(n,m)

Wypisz n

Pyt. 1: jak zrealizować zamień(n,m)? (ćwiczenia)

Pyt. 2: Czy ten algorytm działa poprawnie...? Wyznacza nwd(n, m)? O tym kiedy indziej...

Algorytm - złożoność

- Złożoność czasowa: liczba wykonanych instrukcji.
- Złożoność pamięciowa: liczba wykorzystanych zmiennych (rozmiar pamięci...?).

Od czego zależy złożoność czasowa/pamięciowa?

- Rozmiar danych: jak dużo elementów?, wartości elementów – wielkość?
- Wartości danych: duże/małe liczby? Liczby całkowite/rzeczywiste?
- Zestaw dostępnych "instrukcji"?

Problem – rozmiar danych

- Czy bardzo duża liczba całkowita zajmuje tyle samo miejsca ile liczba mała?
- 2. Liczby całkowite a liczby rzeczywiste?
- 3. Rozmiar tekstu? Obrazów? Wideo? Muzyki?
- Ad. 1: dla uproszczenia, zazwyczaj będziemy ignorować wartości liczb (o ile nie mają wpływu na liczbę wykonanych operacji).
- Ad. 2: o tym za parę tygodni...
- Ad. 3: o tym raczej na innych przedmiotach.

Problem – rozmiar danych

Problem	Dane	Rozmiar
Suma dwóch liczb	a, b	2
Liczba pierwiastków równania kwadratowego	a, b, c	3
Wyszukiwanie wzorca w tekście	$T=T_1T_n$, $s=s_1s_m$	n + m
Maksimum ciągu liczb	n, a_1, \ldots, a_n	n + 1
Największy wspólny dzielnik	n, m	2 ?? ???

Algorytm – złożoność

Złożoność czasowa

liczba wykonanych instrukcji ("bloków" ze schematu blokowego)?

Problemy

- Pyt.: czy operacje arytmetyczne na małych/dużych liczbach wykonują się tak samo szybko?
- Odp.: niekoniecznie, ale zazwyczaj tak zakładamy.
- Pyt.: które operacje na prawdę wykonują się "w czasie jednostkowym"? Jaki hardware (sprzęt)?
- Pyt.: dużo operacji w jednym wyrażeniu arytmetycznym?

MAXIMUM n liczb

Przykład 1:

 $a_1 < a_2 < ... < a_n$

Liczba instrukcji:

$$4+5(n-1)=5n-1$$

Przykład 2:

 $a_1>a_2>...>a_n$

Liczba instrukcji:

$$4+4(n-1)=4n$$

<u>Algorytm Euklidesa</u>

Czytaj n, m

Jeżeli n<m: zamień(n,m)

Dopóki m>0:

- n \leftarrow n m
- Jeżeli n<m: Zamień(n,m)

Wypisz n

Przykład 1: n = m = 1 000 000

Liczba instrukcji: 6 ("mniej więcej")

Przykład 2: n = 1 000 000, m = 1

Liczba instrukcji: > 3 000 000

Problem	Rozmiar danych	Złożoność czasowa
Suma dwóch liczb	2	3
Liczba pierwiastków równania kwadrat.	3	4 lub 5
Maksimum ciągu liczb	n + 1	? 4n
		? 5n – 1
Największy wspólny dzielnik	2 ??	???
	???	n+m

Złożoność najgorszego przypadku:

- Dla <u>każdego</u> n wyznaczamy "najgorsze" dane o tym rozmiarze, tj. takie, dla których algorytm działa najdłużej.
- Złożoność definiuje funkcja T: N → N, taka że T(n) jest równe czasowi działania algorytmu dla "najgorszych" danych rozmiaru n.

Przykład:

Złożoność najgorszego przypadku naszego algorytmu dla maximum, to funkcja T(n)=5n – 1.

Złożoność czasowa najgorszego przypadku

Problem	Rozmiar danych	Złożoność czasowa
Suma dwóch liczb	2	3
Liczba pierwiastków równania kwadrat.	3	2 1 1 1 1 1 1 1 1 1 1
Maksimum ciągu liczb	n + 1	>4n 5n − 1
Największy wspólny dzielnik	??	4+3(n+m)

Podsumowanie: spis zagadnień

- 1. Problem i jego specyfikacja
- 2. Algorytm i używane w nim instrukcje: instrukcja warunkowa, podstawienie, instrukcje we/wy
- 3. Konstrukcje algorytmiczne: pętla, licznik
- 4. Zapis algorytmu: schemat blokowy, pseudokod
- 5. Rozmiar danych dla problemu
- 6. Złożoność czasowa (i pamięciowa) algorytmu