1. Oznaczenia

współrzędne punktu

(x,y)

```
j
        godzina w roku
        wartość w godzinie 'j'
                         wartość dla jednostki wytwórczej 'A', 'B', 'C', 'D' i akumulatora 'S'
...A, ...B, ...C, ...D, ...S
        dyspozycyjność (wartość wejściowa: 'dane.csv')
D
                        dyspozycyjność jednostki: 'A', 'B', 'C', 'D'
DA, DB, DC, DD
Ε
        ciepło zmagazynowane w akumulatorze ciepła (wartość obliczana)
Κ
        indeks efektu (wartość wejściowa: 'dane.csv')
Рe
        moc elektryczna (wartość obliczana)
                        moc elektryczna jednostki: 'A', 'B', 'C', 'D'
PeA, PeB, PeC, PeD
Pt
        moc cieplna (wartość obliczana)
PtA, PtB, PtC, PtD, PtS moc cieplna jednostki: 'A', 'B', 'C', 'D' i akumulatora ciepła 'S'
Ptz
        moc cieplna zamówiona (wartość wejściowa: 'dane.csv')
R
        wskaźnik rozruchu (wartość obliczana)
                        wskaźnik rozruchu jednostki: 'A', 'B', 'C', 'D'
RA, RB, RC, RD
        temperatura zewnętrzna (wartość wejściowa: 'dane.csv')
t
Тр
        czas postoju (wartość obliczana)
Tr
        czas rozruchu (wartość obliczana)
        zużycie gazu (wartość obliczana)
Zg
ZgA
        zużycie gazu jednostki 'A'
Zw
        zużycie wegla (wartość obliczana)
ZwB, ZwC, ZwD
                        zużycie węgla jednostki: 'B', 'C', 'D'
        znak mnożenia
×
        koniunkcja ('oraz')
Λ
        z tego wynika ('wtedy')
\rightarrow
```

jednostki.pdf Strona: 1/7

2. Jednostki wytwórcze i akumulator ciepła

W skład elektrociepłowni wchodzą:

• jednostki wytwórcze

produkujące ciepło i energię elektryczną

- A
- B
- C, D (tego samego typu)
- akumulator ciepła

w którym ciepło wyprodukowane przez jednostki wytwórcze może być magazynowane (ładowanie akumulatora) albo, z którego ciepło może być pobierane (rozładowanie akumulatora - "produkcja" ciepła)

• S

Jednostka wytwórcza

- nie pracuje \rightarrow Pe = 0
- $pracuje \rightarrow Pe > 0$

Jednostka wytwórcza

W pliku 'dane.csv', określono dyspozycyjność jednostek A, B, C, D, jako gotowość jednostki do pracy.

- <u>jest dyspozycyjna</u> (może pracować) → D = 1
- <u>nie jest dyspozycyjna</u> (nie może pracować) → D = 0

Pt = PtA + PtB + PtC + PtD - PtS

jednostki.pdf Strona: 2 /7

3. Rozruch jednostek wytwórczych

Istnieje zależność czasu rozruchu Tr i wskaźnika rozruchu R od czasu postoju Tp.

Tp - liczba kolejnych godzin, gdy jednostka wytwórcza jest w postoju, nie pracuje (Pe = 0).

Tr - liczba kolejnych godzin, gdy trwa rozruch jednostki wytwórczej (Pe = 0).

Czyli

$$Pe = 0$$
 \rightarrow $Postój / Rozruch
 $Pe > 0$ \rightarrow $Praca$$

Jednostka A

$$Tp \ge 1 \rightarrow Tr = 1 \rightarrow R = 5000$$

 $Tp + Tr \ge 2$

Przykład

	Tp - postój	Tr - rozruch	Praca
j	1	2	3
Pe	0	0	> 0
R	0	5000	0

Ponowna praca (Pe > 0) jest możliwa po 2 godzinach (gdy postój 1-godzinny)

Jednostki B, C, D

Postój "krótki"

$$1 \le Tp \le 8$$
 \rightarrow $Tr = 3$ \rightarrow $R = 12000$ (w każdej godzinie rozruchu) $4 \le Tp + Tr \le 11$

Przykład

	Tp - postój	Tr	Praca			
j	1	2	3	4	5	
Pe	0	0	0	0	> 0	
R	0	12000	12000	12000	0	

Ponowna praca (Pe > 0) jest możliwa po 4 godzinach (gdy postój 1-godzinny)

	Tp - postój								Tr	Praca		
j	1	2	3	4	5	6	7	8	9	10	11	9
Pe	0	0	0	0	0	0	0	0	0	0	0	> 0
R	0	0	0	0	0	0	0	0	12000	12000	12000	0

Ponowna praca (Pe > 0) jest możliwa po 11 godzinach (gdy postój 8-godzinny)

Postój "długi"

$$Tp \ge 9 \rightarrow Tr = 6 \rightarrow R = 10000$$
 (w każdej godzinie rozruchu) $Tp + Tr \ge 15$

Przykład

	Tp - postój									Tr - rozruch						Praca
j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Pe	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	> 0
R	0	0	0	0	0	0	0	0	0	10000	10000	10000	10000	10000	10000	0

Ponowna praca (Pe > 0) jest możliwa po 15 godzinach (gdy postój 9-godzinny)

jednostki.pdf Strona: 3 /7

4. Jednostka A

Składa się z 1 turbiny gazowej, dla której istnieje zależność mocy cieplnej Pt od temperatury zewnętrznej t.

 $-40 \le t < 5$ \rightarrow $Pt \ge 40 \land Pt \le 50,85$

 $5 \le t \le 40$ \rightarrow $Pt \ge 40 \land Pt \le -0.23 \times t + 52$

Moc elektryczna Pe w funkcji Pt ('krzywa pracy')

 $Pe = 0.00024 \times Pt^3 - 0.004 \times Pt^2 + 0.4 \times Pt + 3.9$

Zużycie gazu Zg

 $Zg = 6,33 \times Pt - 15,94$

jednostki.pdf Strona: 4 /7

5. Jednostka B

Blok węglowy wyposażony w turbinę parową upustowo-kondensacyjną, która posiada 2 obszary pracy.

Obszar pracy 1

W obszarze możliwa jest produkcja

- ciepła i energii elektrycznej (Pt > 0 ∧ Pe > 0)
- tylko energii elektrycznej (Pt = $0 \land Pe > 0$) odcinek (0,72)-(0,105)

Zużycie węgla Zw

$$Pt = 0 \rightarrow Zw = 9,03 \times Pe + 124,79$$

$$Pt > 0 \rightarrow Zw = Pt \times (1.98 \times Pe + 61.34)/(1.72 \times Pe + 2.43) + (8.66 \times Pe + 129.68)$$

Zw = Ptx(1,98xPe + 61,34)/(1,72xPe + 2,43) + (8,66xPe + 129,68) -- dla Pt>0 Zw = 9,03xPe + 124,79 -- dla Pt=0

jednostki.pdf Strona: 5 /7

Obszar pracy 2

W obszarze możliwa jest produkcja

- ciepła i energii elektrycznej (Pt > 0 ∧ Pe > 0)
- tylko energii elektrycznej (Pt = $0 \land Pe > 0$) odcinek (0,105)-(0,120)

Zużycie węgla Zw

 $Pt = 0 \rightarrow$ $Zw = 9,03 \times Pe + 124,79$

 $Zw = Pt \times (0.5 \times Pe + 61.34)/(-5.28 \times Pe + 686.83) + (8.66 \times Pe + 129.68)$ $Pt > 0 \rightarrow$

jednostki.pdf Strona: 6/7

6. Jednostka C, D

Blok węglowy wyposażony w turbinę parową upustowo-przeciwprężną. Ze względu na typ turbiny, produkcja energii elektrycznej i ciepła są od siebie liniowo zależne.

Moc elektryczna Pe w funkcji Pt ('linia pracy') wynosi Pe = (44/81)×Pt + 66 - (6116/81)

Zużycie węgla Zw Zw = 5,75×Pt + 57,82

7. Akumulator ciepła

Akumulator nie wytwarza ciepła, a jedynie korzysta z wytworzonego przez jednostki A, B, C, D. Umożliwia magazynowanie określonej ilości ciepła przez pewien okres czasu. W praktyce, pozwala to na bardziej elastyczne zarządzanie pracą jednostek wytwórczych.

Moc cieplna Pt akumulatora

-120 ≤ Pt ≤ 120

• $0 < Pt \le 120$ \rightarrow ładowanie akumulatora

• Pt = 0 → akumulator jest nieużywany

-120 ≤ Pt < 0 → rozładowywanie akumulatora

Ciepło E zmagazynowane w akumulatorze

 $0 \le E \le 840$

Ciepło E w godzinie 'j' (stan naładowania akumulatora w godzinie 'j')

$$E_{j} = 0 + Pt_{1} + Pt_{2} + ... + Pt_{j}$$

jednostki.pdf Strona: 7/7