Como fazer o título caber?

Kaique M. M. Oliveira

UNIVERSIDADE DE SÃO PAULO departamento de computação e matemática

Orientadora: Profa. Dra. Vanessa Rolnik Artioli

13 de Novembro de 2024

Sumário

- Introdução
 - Exemplo 1: Propagação de descontinuidades
 - Exemplo 2: Falta de injetividade entre valores iniciais e soluções
- Existência e Regularidade das soluções das Equações com Retardo
 - Propagação de Descontinuidades
- Métodos Numéricos Contínuos
 - Métodos Contínuos para EDOs
 - Métodos Contínuos para EDRs
- O Modelo SIR
 - Descrição Matemática
 - Número Básico de Reprodução
 - Tamanho da Epidemia
- 6 Referências

Introdução

Definição 1 (Equações Diferenciais Ordinárias (EDOs))

Um *Problema de Valor Inicial (PVI)* para *Equações Diferenciais Ordinárias (EDOs)* é dado por

$$\begin{cases} y'(t) = g(t, y(t)), & t_0 \le t \le t_f, \\ y(t_0) = y_0, \end{cases}$$
 (1)

para $g:[t_0,t_f]\times\mathbb{R}^d\to\mathbb{R}^d$ e $(t_0,y_0)\in\mathbb{R}\times\mathbb{R}^d$. Quanto ao PVI 1, nós temos:

- A primeira equação é a chamada EDO e a segunda, o valor inicial.
- Uma função $\gamma:[t_0,t_f]\to\mathbb{R}^d$ é dita solução do PVI se γ é diferenciável e se satisfaz 1.

Introdução

Definição 2 (Condição de Lipschitz)

Diz-se que uma função $g:D=[t_0,t_f]\times\mathbb{R}^d\to\mathbb{R}^d$ satisfaz uma condição de *Lipschitz* em relação a variável y no conjunto D se, e somente se,

$$\|g(t, y_1) - g(t, y_2)\| \le L\|y_1 - y_2\|,$$
 (2)

para todo $(t, y_1), (t, y_2) \in D$ para alguma constante L > 0.

Teorema 1 (Existência e Unicidade)

Considere o PVI (1). Se g for contínua e satisfazer a condição de Lipschitz na variável y no conjunto D, então existe uma única solução y(t) em $[t_0, t_f]$ de (1)

Definição 3 (Problema bem posto)

O problema de valor inicial (1) é dito ser um *problema bem posto* se

- Existe uma única solução y(t) para o PVI.
- Existem constantes $\epsilon_0 > 0$ e k > 0 tais que, para qualquer ϵ sendo $0 < \epsilon < \epsilon_0$ o problema perturbado

$$\begin{cases} z'(t) = g(t, z(t)) + \delta(t), & t_0 \leq t \leq t_f, \\ z(t_0) = \alpha + \delta_0, \end{cases}$$

possui uma solução única z(t) que satisfaz

$$|z(t) - y(t)| < k\epsilon, \quad \forall t \in [t_0, t_f],$$

para toda função $\delta \in C^0([t_0,t_f],(-\epsilon,\epsilon))$ e todo $|\delta_0|<\epsilon$.

Revisão EDO

Teorema 2 (Problema bem posto)

Considere o PVI (1). Se g satisfaz as condições do Teorema de Existência e Unicidade 1, então o problema (1) é bem posto.

- Equações Diferenciais com Retardo (EDRs) generalizam as EDOs ao levarem em consideração o estado passado da solução na sua equação.
- Seu Problema de Valor Inicial (PI, para evitar confusões) pode ser descrito de forma mais ou menos geral. Utilizaremos a definição utilizada por Bellen e zennaro, que é prática do posto de vista numérico.

Definição 4 (Equações Diferenciais com Retardo (EDRs))

Seja p > 0. Um PI para EDRs é dado por $y'(t) = f(t, y(t), y(t - \tau(t, y(t)))), t_0 \le t \le t_f,$

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t)))), & t_0 \le t \le t_f, \\ y(t) = \phi(t), & t_0 - p \le t \le t_0, \end{cases}$$
 (3)

para $f:[t_0,t_f]\times\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}^d$, para $\tau:[t_0,t_f]\times\mathbb{R}^d\to[0,p]$ e para $\phi:[t_0-p,t_0]\to\mathbb{R}^d$. Quanto ao PI (3), nós temos:

- A primeira equação do PI é a chamada EDR, já a segunda, o estado inicial.
- Uma função $\gamma:[t_0-p,t_f]\to\mathbb{R}^d$ é chamada de *solução* para o PI se γ for contínua em $[t_0-p,t_f]$, diferenciável em $[t_0,t_f]$ e satisfaz (3).
- A função τ é chamada de *retardo* e assumisse que $\tau(t, y(t)) \geq 0$ para todo $t \in [t_0, t_f]$.

Quanto ao retardo $\tau(t,y(t))$, dizemos que

- O retardo depende do estado quando a função τ depende tanto do tempo t, quando do estado y. quanto do estado y
- O retardo depende do tempo caso a função retardo τ dependa apenas da tempo t.
- O retardo é constante caso τ for constante.

Novos desafios emergem ao fazer a generalização das EDOs para EDRs, sendo necessária uma nova teoria de existência, unicidade e estabilidade das soluções.

Exemplo 1: Propagação de descontinuidades

Considere a equação

$$\begin{cases} y'(t) = -y(t-1), & t \ge 0, \\ y(t) = \phi(t) = 1, & t \le 0. \end{cases}$$

$$\tag{4}$$

Observe que

$$y'(0)^- = 0 \neq -1 = -y(-1) = y'(0)^+,$$

o que significa que y' tem uma descontinuidade no 0. Mais ainda, derivando a primeira equação de (4) obtemos

$$y''(t) = -y'(t-1),$$

mostrando que a descontinuidade foi propagada para a segunda derivada de y no ponto 1.

Exemplo 1: Continuação

Mostraremos, por indução, que a equação y''(t) = -y'(t-1) implica na seguinte relação de recorrência

$$y^{(n+1)}(t) = (-1)^n y'(t-n), \qquad n = 1, 2, ...$$

Sabemos que a relação é valida para n=1, suponhemos que o resultado para algum k>1, então

$$y^{n+2}(t) = (-1)^n \frac{d}{dt} y'(t-n) = (-1)^{n+1} y'((t-(n+1))$$

Logo, a relação é válida para todo $n \ge 1$ e, de fato, a descontinuidade de y'(0) é propagada para todo $y^{(n+1)}(n)$.

Exemplo 1: Continuação

- A solução do PI (4) $\begin{cases} y'(t)=-y(t-1), & t\geq 0, \\ y(t)=\phi(t)=1, & t\leq 0. \end{cases}$ existe?
- Observe que, para todo $t \in [0,1]$, tem-se que $t-1 \in [-1,0]$, logo, o PI (4) se reduz ao seguinte PVI

$$\begin{cases} y'(t) = -1, & t \in [0, 1], \\ y(0) = \phi(0) = 1. \end{cases}$$

Cuja solução é única e dada por y(t) = 1 - t em [0, 1].

- Repetindo este processo, o PI se reduz a um PVI nos intervalos [i, i + 1], i = 1, 2, ..., cuja solução existe e é única.
- Este método é chamado de *método dos passos* e é a base para os métodos numéricos para EDRs.

Exemplo 1: Continuação

inaeiudnae GRÁFICO COMENTADO

Exemplo 2: Falta de injetividade entre valores iniciais e soluções

Considere a equação

$$y'(t) = y(t-1)(y(t)-1), t \ge 0,$$
 (5)

- Para toda $\phi: \mathbb{R} \to \mathbb{R}^d$ tal que $\phi(0) = 1$, tem-se que y(t) = 1 é solução.
- Então a unicidade entre valores iniciais e soluções é violada.
- Como veremos no teorema 3, isso ocorre porque a função f(t,y,x)=x(y-1) não satisfaz a condição de Lipschitz nas variáveis y e x.
- Para tanto, precisamos extender a definição 2.

Exemplo 2 (Continuação)

Definição 5 (Condição de Lipschitz)

Uma função $f: \overline{D} = [t_0, t_f] \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ é dita que satisfaz a condição **Lipschitz** em relação às variáveis y e x no conjunto \overline{D} se, e somente se,

$$||f(t, y_1, x_2) - f(t, y_2, x_2)|| \le L(||y_1 - y_2|| - ||x_1 - x_2||),$$
 (6)

para todo $(t, y_1, x_1), (t, y_2, x_2) \in \overline{D}$ e para alguma constante L > 0.

• Considere os pontos $(0, \frac{1}{n}, \frac{1}{n})$ e $(0, 0, \frac{1}{n})$, então

$$\left\| f\left(0,\frac{1}{n},\frac{1}{n}\right) - f\left(0,0,\frac{1}{n}\right) \right\| = \left\| \frac{1}{n} \right\| = \left| \frac{1}{n} \right| \left(\left\| \frac{1}{n} - 0 \right\| - \left\| \frac{1}{n} - \frac{1}{n} \right\| \right).$$

• Como $|\frac{1}{n}| \to \infty$, então f(t, y, x) = x(y - 1) não satisfaz a definição 5.

Definição: Equações Diferenciais do tipo Neutro com Retardo (EDRNs) ??

Definição 6 (Equações Diferenciais do tipo Neutro com Retardo (EDRNs))

Seja p > 0. Um PI para EDRNs é dado por

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t))), y'(t - \sigma(t, y(t))), & t_0 \leq t \leq t_f, \\ y(t) = \phi(t), & t_0 - p \leq t \leq t_0, \end{cases}$$

$$\text{para } f: [t_0, t_f] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d, \ \tau: [t_0, t_f] \times \mathbb{R}^d \to [0, p],$$

$$\sigma: [t_0, t_f] \times \mathbb{R}^d \to [0, p] \text{ e } \phi: [t_0 - p, t_0] \to \mathbb{R}^d.$$

$$(7)$$

Quanto ao PI (7), tem-se que:

- A primeira equação do PI é a chamada EDRN, já a segunda, o estado inicial.
- Uma função $\gamma:[t_0-p,t_f]\to\mathbb{R}^d$ é chamada de solução para o PI se γ for contínua em $[t_0-p,t_f]$, diferenciável em $[t_0,t_f]$ e satisfaz (7).
- A função τ é chamada de *retardo* e assumisse que $\tau(t, y(t)) \geq 0$ para todo $t \in [t_0, t_f]$.
- Naturalmente, mais dificuldades são introduzidas ao genearalizar as EDRs. No próximo exemplo, mostra-se que as descontinuidades não se suavizam conforme o tempo aumenta.

Exemplo 3: Propagação de Descontinuidades (EDRs)

Considere a equação

$$\begin{cases} y'(t) = -y'(t-1), & t \ge 0, \\ y(t) = t, & t \le 0. \end{cases}$$
 (8)

Como

$$y'(0)^- = 1 \neq -1 = -y'(-1) = y'(0)^+,$$

temos que a a primeira derivada de y tem uma descontinuidade no ponto t=0, mas já que y'(t)=-y'(t-1), então a descontinuidade se propaga em y' para todo $t=2,3,\ldots$

Exemplo 3: Continuação

• Utilizando o método dos passos em (8), é possível mostrar por indução que a seguinte função é solução

$$y(t) = \begin{cases} -t + 2k, & t \in [2k, 2k + 1], & k = 0, 1, \dots \\ t - 2k, & t \in [2k - 1, 2k], & k = 1, 2, \dots \end{cases}$$

 Cuja gráfico é dado por gráfico comentado

Teorema 3 (Existência local)

Considere a equação (3), ou seja,

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t)))), & t \ge t_0 \\ y(t) = \phi(t), & t \le t_0 \end{cases}$$

Sejam $U\subseteq\mathbb{R}^d$ e $V\subseteq\mathbb{R}^d$ vizinhanças de $\phi(t_0)$ e $\phi(t_0-\tau(t_0,\phi(t_0)))$, respectivamente, e suponha que a função f(t,u,v) seja contínua em relação a t e Lipschitz contínua em relação a u e v em $[t_0,t_0+h]\times U\times V$ para algum h>0. Além disso, suponha que a função inicial $\phi(t)$ seja Lipschitz contínua para $t\le t_0$ e que a função de atraso $\tau(t,y)\ge 0$ seja contínua em relação a t e Lipschitz contínua em relação a t e Lipschitz contínua em relação a t e t0. Então o problema t1 tem uma única solução em t1, t2 para algum t3 e esta solução depende continuamente dos dados iniciais.

Existência e Regularidade das soluções das Equações com Retardo

• Nesta seção, generalizaremos alguns dos conceitos dos exemplos já apresentados, e além.

Propagação de Descontinuidades

• Para simplificar a notação, introduziremos a seguintes funções.

$$\alpha(t) = t - \tau(t, y(t))$$
 e $\beta(t) = t - \sigma(t, y(t)),$

os quais são chamados de argumentos deviados.

- Note que $\alpha(t) \leq t$ e $\beta(t) \leq t$.
- Partiremos do caso escalar de (3), ou seja, $y(t) \in \mathbb{R}$.
- Também consideraremos que $\alpha(t)$ depende apenas do tempo.

:

• Suponha que $\alpha(t) \leq t_0$ para algum intervalo em $[t_0, t_f]$ e que y(t) tem uma descontinuidade em sua primeira derivada no ponto t_0 , ou seja,

$$y'(t_0)^- = \phi'(t_0)^- \neq f(t_0, \phi(t_0), \phi(\alpha(t_0))) = y'(t_0)^+$$

- Se f, ϕ e α forem contínuas, então y'(t) é também contínua para todo $t > t_0$.
- Se f, ϕ e α forem diferenciáveis, então y''(t) existe para qualquer t, exceto, talvez, nos pontos $\xi_{1,i} > t_0$ que são raízes da equação

$$\alpha(t)=t_0,$$

sendo i referente a multiplicidade da raiz.

• Suponha que $\alpha(\xi_{1,i}) = t_0$ e que $\alpha'(\xi_{1,i}) \neq 0$, pela regra da cadeia, obtemos

$$y''(t)^{\pm} = \frac{\partial f}{\partial t}(t, y(t), y(\alpha(t))) + \frac{\partial f}{\partial y}(t, y(t), y(\alpha(t)))y'(t) + \frac{\partial f}{\partial x}(t, y(t), y(\alpha(t)))y'(\alpha(t))^{\pm}\alpha'(t),$$
(9)

- Como assumimos que $\phi'(t_0)^- \neq y'(t_0)^+$, então não existe $y''(\xi_{1,i})^- \neq y''(\xi_{1,i})^+$ e, portanto, y'' tem uma descontinuidade em $\xi_{1,i}$.
- De forma análoga, é possível mostrar que as descontinuidades se propagam para y''' nos pontos $\xi_{2,i}$ tais que $\alpha(\xi_{2,i})=\xi_{1,i}$, e assim sucessivamente.

- Cada $\xi_{k,i}$ gera uma descontinuidade em $y^{(k+1)}$. Estes pontos são chamados de descontinuidades primárias de k-ésimo nível.
- Note que, conforme o nível das descontinuidades primárias aumenta, também aumenta a suavidade da solução, como descrito por Neves e Feldstein em [1] na forma do seguinte teorema.

Teorema 4 (Suavização para EDRs)

Se $\xi_{j,i}$ é um ponto de descontinuidade primária onde a função y(t) tem derivadas contínuas até a ordem $\omega-1$, então y(t) é continuamente diferenciável no ponto propagado $\xi_{j+1,k}$ pelo menos até a ordem $z\cdot\omega$, desde que $\xi_{j+1,k}$ seja uma raiz de $\alpha(t)=\xi_{j,i}$ com multiplicidade ímpar z.

- Tal suavização, em geral, não ocorre para EDRNs.
- Suponha que y' tem um ponto de descontinuidade em t_0 para a equação 7;
- ullet Suponha que exista $ar{\xi}_{1,i}>t_0$ tal que $eta(ar{\xi}_{1,i})=t_0$. Caso

$$f(\bar{\xi}_{1,i}, y(\bar{\xi}_{1,i}), y(\alpha(\bar{\xi}_{1,i})), \phi'(t_0)^-) \neq f(\bar{\xi}_{1,i}, y(\bar{\xi}_{1,i}), y(\alpha(\bar{\xi}_{1,i})), y'(t_0)^+),$$
 (10)

Então $\bar{\xi}_{1,i}$ é uma descontínuidade em y'

 \bullet Observe que cada uma destas descontinuidades podem gerar mais discontinuidades através da função α ou β . Como Segue na próxima ilustração.

Gráfico comentado

- Em geral, a suavização das solução de EDRNs não pode ser garantida.
- \bullet No entanto, o seguinte teorema abaixo é foi encontrado por Neves e Thompson [2] que garante a suavização das EDRNs tais que $\tau=\sigma$ e que

$$\phi'(t_0)^- = y'(t_0)^+ = f(t_0, \phi(t_0), \phi(\alpha(t_0), \phi'(\alpha(t_0))))$$

Teorema 5 (Suavização para EDRNs)

Se $\xi_{j,i}$ é um ponto de descontinuidade primário onde a função y(t) possui derivadas contínuas até a ordem $\omega-1$, então y(t) é continuamente diferenciável no ponto propagado $\xi_{j+1,k}$ pelo menos até a ordem $z\cdot(\omega-1)$, desde que $\xi_{j+1,k}$ seja uma raiz de (2.1.5) com multiplicidade ímpar z.

لركيا 26/73

- Diz-se que o retardo desaparece caso $\alpha(t)=t$ para algum t, ou seja, nos pontos fixos de α .
- Neste caso, as descontinuidades se acumulam a esquerda do ponto fixo, como visto na Proposição 1 abaixo.
- Considere, como hipótese para a Proposição 1, que f, ϕ, α e β sejam C^{∞} nos seus respectivos domínios.

Proposição 1

Seja $\xi > t_0$ único ponto fixo de α em $[t_0, \xi]$, ou seja, não existe outro ξ neste intervalo tal que $\alpha(\xi) = \xi$. Suponha que exista alguma descontinuidade primária $\xi_{k,i} < \xi$ de grau k tal que $\alpha(\xi_{k,i}) < \xi_{k,i}$. Então, para qualquer vizinhança a esquerda de ξ , existem infinitos pontos de descontinuidade nesta vizinhança.

Demonstração.

- Como α é contínua, e como $\alpha(\xi_{k,i}) \leq \xi_{k,i} \leq \alpha(\xi)$, temos que, pelo teorema do valor intermediário, existe $\xi_{k+1,j} \in (\xi_{k,i},\xi)$ tal que $\alpha(\xi_{k+1,i}) = \xi_{k,i}$.
- Continuando este processo, podemos criar a sequência monotonicamente crescente $s=\{\xi_{k,i},\xi_{k+1,j},...\}$ limitada superiormente por ξ .
- Para simplificar a notação, denotaremos esta sequência por $s=\{s_1,s_2,\dots\}$, observe que $\alpha(s_{k+1})=s_k$ para todo $k=1,2,\dots$
- Pelo teorema da convergência monótona, temos que $\lim_{n\to\infty} s_n = \sup_{n>1} s_n \le \xi$. Logo, nós temos

$$\sup_{n\geq 1} s_n = \lim_{n\to\infty} s_n = \lim_{n\to\infty} \alpha(s_{n+1}) = \alpha(\lim_{n\to\infty} s_{n+1}) = \alpha\left(\sup_{n\geq 1} s_n\right).$$

[S] 28/73

Demonstração ... Continuação.

:

- Como ξ é único ponto fixo em $[t_0, \xi]$ por hípotese, então $\lim_{n\to\infty} s_n = \xi$. Portanto, existem infinitos pontos de descontinuidade em qualquer vizinhança a esquerda de ξ .
- ullet Para evitar este problema, a seguinte hipótese sobre lpha é introduzida.

Hipótese 1

Existe uma constante $\tau_0 > 0$ tal que $\tau(t) = t - \alpha(t) > \tau_0$ para todo $t \in [t_0, t_f]$.

[[S]P 29/73

Figura: fig:Desaparecimento do Retardo

Retardos Limitados

- Caso o retardo seja limitado, a suavização da solução como visto no teorema 4, não ocorre.
- Para mostrar tanto, supoha que exista algum M>0 tal que $\lim_{t\to\infty}\alpha(t)\leq M.$
- Suponha que $\xi_{k,i}$ seja uma descontinuidade primária em $[M,+\infty)$, então $\alpha(t) < M < \xi_{k,j}$ para todo t > M, logo não existe $\xi_{k+1,i}$ que satisfaz $\alpha(\xi_{k+1,i}) = \xi_{k,j}$.
- Segue uma ilustração deste fenômemo.

Figura: Retardo limitado

ullet Para garantir a suavização das soluções, a função lpha deve setisfazer as seguintes duas hipóteses.

Hipótese 2

$$\lim_{t\to+\infty}\alpha(t)=+\infty.$$

Hipótese 3

Existe uma constante $\tau_1 > 0$ tal que $\tau(t) = t - \alpha(t) \le \tau_1$ para todo $t \in [t_0, t_f]$.

• abaixo, segue uma figura ilustrativa dessas três hipóteses em ação.

Figura: Hip 123

Descontinuidades Principais

• Dentre as descontinuidades primárias, um tipo delas se destaca em importância.

Definição 7

Seja $\xi_0=t_0$ definido como uma descontinuidade principal de nível 0. Indutivamente, uma descontinuidade principal de nível (k+1) é a menor raiz $\bar{\xi}_{k+1}$ de

$$\alpha(t) = \bar{\xi_k}$$

com multiplicidade ímpar, sendo $\bar{\xi_k}$ uma descontinuidade principal de nível (k)

- Note que $\alpha(t) \leq \bar{\xi}_k, \quad \forall t \in \left[\bar{\xi}_k, \bar{\xi}_{k+1}\right]$ e todo k
- ullet Logo, a EDR (3) se reduz a uma EDO nos intervalos $\left[ar{\xi}_{k}, ar{\xi}_{k+1} \right]$.

TSP 35/73

Existência e unicidade de soluções

Teorema 6 (Existência local)

Teorema 2.2.4 Considere a equação 7, ou seja,

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t)))), & t \ge t_0 \\ y(t) = \phi(t), & t \le t_0 \end{cases}$$

Sejam $U \subseteq \mathbb{R}^d$ e $V \subseteq \mathbb{R}^d$ vizinhanças de $\phi(t_0)$ e $\phi(t_0 - \tau(t_0, \phi(t_0)))$, respectivamente, e suponha que a função f(t, u, v) seja contínua em relação a t e Lipschitz contínua em relação a u e v em $[t_0, t_0 + h] \times U \times V$ para algum h > 0. Além disso, suponha que a função inicial $\phi(t)$ seja Lipschitz contínua para $t \le t_0$ e que a função de atraso $\tau(t, y) \ge 0$ seja contínua em relação a t e Lipschitz contínua em relação a t e Lipschitz contínua em relação a t e t em uma única solução em t em t esta solução depende continuamente dos dados iniciais.

ullet Para n=0,...,N-1, seja $\Delta=\{t_0,...,t_N=t_f\}$ uma malha e $h_{n+1}=t_{n+1}-t_n$ os passos.

Definição 8

Um método numérico para resolver o PVI (1) é chamado de *método de k-passos* se ele satisfaz

$$y_{n+1} = \alpha_{n,1}y_n + ... + \alpha_{n,k}y_{n-k+1} + h_{n+1}\Phi(y_n, ..., y_{n-k+1}; g, \Delta_n), \quad (11)$$

para
$$n \ge k - 1$$
 e para $\Delta_n = \{t_{n-k+1}, ..., t_n, t_{n+1}\}.$

- A função Φ é chamada de função incremento.
- Os valores $y_0, ..., y_k$ são os valores iniciais.

ullet Caso k=1, temos os chamados métodos de passo único, como o método de Euler

$$y_{n+1} = y_n + h_n f(t_n, y_n)$$

ullet Caso k>1, temos os métodos multipasse. Um exemplo de um método multipasso é o método de Adams-Bashforth de 2 passos, o qual é definido por

$$y_n = y_{n-1} + \frac{3}{2}hg(t_{n-1}, y_{n-1}) - \frac{1}{2}hg(t_{n-2}, y_{n-2}),$$

e inicializado por algum método de passo único, como o método do ponto médio descrito abaixo

$$y_n = y_{n-1} + hg\left(t_{n-1} + \frac{1}{2}h, y_{n-1} + \frac{1}{2}hg(t_{n-1}, y_{n-1})\right).$$

Suposição 1

Quanto a função incremento Φ, as seguintes suposições são feitas:

- 1. Φ satisfaz uma condição Lipschitz em relação às variáveis y com constante de Lipschitz Q_g .
- 2. Existem $h_g>0$ e $\gamma_g>0$ tal que que Φ possui uma dependência contínua de g com relação a norma do supremo no conjunto $U_n=[t_{n-k+1},t_{n+1}]\times\mathbb{R}^d$, onde $h_{n-k+2},\ldots,h_{n+1}\leq h_g(L)$, ou seja,

$$\|\Phi(y_{n},...,y_{n-k+1};\tilde{g},\Delta_{n}) - \Phi(y_{n},...,y_{n-k+1};g,\Delta_{n})\| \\ \leq \gamma_{g} \sup_{t,y\in U_{n}} \|\tilde{g}(t,y) - g(t,y)\|$$
(12)

para todo $ilde{g} \in C^0([t_0,t_f] imes \mathbb{R}^d,\mathbb{R}^d)$.

Extensão Contínua

Definição 9 (Extensão contínua)

Uma extensão contínua, ou interpolante do método (11) é uma função polinomial $\eta(t)$ definida por partes nos intervalos $[t_n,t_{n+1}]$ baseada em valores calculados pelo método definidos em $[t_{n-i_n},t_{n+j_n+1}]$, para $i_n,j_n\geq 0$.

Referências

$$\eta(t_{n} + \theta h_{n+1}) = \beta_{n,1}(\theta) y_{n+j_{n}} + \dots + \beta_{n,j_{n}+i_{n}+1}(\theta) y_{n-i_{n}}
+ h_{n+1} \Psi(y_{n+j_{n}}, \dots, y_{n-i_{n}}; \theta, g, \Delta'_{n}), \qquad 0 \leq \theta \leq 1,$$
(13)

para $\Delta_n' = \{t_{n-i_n}, \dots, t_{n+j_n}, t_{n+j_n+1}\}$, onde η satisfaz a seguinte condição de continuidade

$$\eta(t_n) = y_n \qquad e \qquad \eta(t_{n+1}) = y_{n+1}$$
(14)

Extensão Contínua

Note que

- Caso $i_n = j_n = 0$, a interpolação ocorre baseada nos valores em $[t_n, t_{n+1}]$. Tal caso é chamado de *interpolação de passo* único. Caso isso não ocorra, temos uma interpolação de múltiplos passos.
- Caso $j_n > 0$, o interpolante (13) não pode ser calculado simultâneamente com o método (11), devendo esperá-lo atingir o passo t_{n+i_n+1} para poder ser calculado.

Um método numérico discreto para EDOs acompanhado de uma extensão contínua é chamado um método numérico contínuo para EDOs.

Extensão Contínua

- A função Ψ é também chamada de função incremento.
- ullet Para garantir a condição de continuidade de η , normalmente são consideradas as seguintes hipóteses

$$eta_{n,j}(0) = egin{cases} 1 & \mathsf{para}\ j = 1 + j_n, \ 0 & \mathsf{caso}\ \mathsf{contrário}, \end{cases}$$
 $\Psi\left(y_{n+j_n}, \ldots, y_{n-i_n}; 0, g, \Delta_n'\right) = 0$

$$\beta_{n,j}(1) = \begin{cases} \alpha_{n,j-j_n} \text{ para } 1+j_n \leq j \leq k+j_n \\ 0 \text{ caso contrário} \end{cases}$$

$$\Psi\left(y_{n+j_n}, \dots, y_{n-j_n}; 1, g, \Delta_n'\right) = \Phi\left(y_n, \dots, y_{n-k+1}; g, \Delta_n\right).$$

• Para $\theta = 1$, a equação (13) se reduz à (11).

Suposição 2

Quanto a função incremento Ψ , as seguintes suposições são feitas:

- 1. Ψ satisfaz uma condição Lipschitz em relação às variáveis y com constante de Lipschitz Q_g .
- 2. Existem $h'_g > 0$ e $\gamma'_g > 0$ tal que que Φ possui uma dependência contínua de g com relação a norma do supremo no conjunto $U'_n = [t_{n-i_n}, t_{n+j_n+1}] \times \mathbb{R}^d$, onde $h_{n-i_n+1}, \ldots, h_{n+j_n+1} \leq h'_g(L)$, ou seja,

$$\|\Psi(y_{n+jn},...,y_{n-i_n};\tilde{g},\Delta'_n) - \Psi(y_{n+jn},...,y_{n-i_n};g,\Delta'_n)\|$$

$$\leq \gamma'_g \sup_{t,y \in U'_n} \|\tilde{g}(t,y) - g(t,y)\|$$
(15)

para todo $ilde{g} \in C^0([t_0,t_f] imes \mathbb{R}^d,\mathbb{R}^d)$.

Definição 10 (Ordem Local de um método discreto)

Um método discreto (11) é consistente e de ordem $p\geq 1$ é o menor inteiro tal que, para toda função $g\in C^p$ e para todos os pontos da malha tem-se que

Referências

$$||z_{n+1}(t_{n+1}) - \tilde{y}_{n+1}|| = \mathcal{O}(h_{n+1}^{p+1}),$$
 (16)

uniformemente com respeito a y_n^* em qualquer conjunto limitado de R^d e para n=0,...,N-1, onde $z_{n+1}(t)$ é solução do problema local

$$\begin{cases} z'_{n+1}(t) = g(t, z_{n+1}(t)), & t_n \le t \le t_{n+1}, \\ z(t_n) = y_n^*, & t \le t_0, \end{cases}$$
 (17)

para
$$\tilde{y}_{n+1} = \alpha_{n,1} z_{n+1}(t_n) + \dots + \alpha_{n,k} z_{n+1}(t_{n-k+1}) + h_{n+1} \Phi(z_{n+1}(t_n), \dots, z_{n+1}(t_{n-k+1}); g, \Delta_n).$$
 (18)

TSP 44/73

Ordem Local do Interpolante

Definição 11 (Ordem Local do interpolante)

Um interpolante (13) é consistente e de ordem $q \ge 1$ se

Referências

$$\max_{t_n \le t \le t_{n+1}} \|z_{n+1}(t) - \tilde{\eta}_{n+1}(t)\| = \mathcal{O}(h_{n+1}^{q+1}), \tag{19}$$

para

$$\tilde{\eta}(t_n + \theta h_{n+1}) = \beta_{n,1}(\theta) z_{n+1}(t_{n+j_n}) + \dots + \beta_{n,j_n+i_n+1}(\theta) z_{n+1}(t_{n-i_n}) + h_{n+1} \Psi(z_{n+1}(t_{n+j_n}), \dots, z_{n+1}(t_{n-i_n}); \theta, g, \Delta'_n)$$
(20)

Ordem Global

• Seja $h = \max_{1 \le n \le N} h_n$.

Definição 12 (Ordem Global de um Método Discreto)

Um método discreto (11) tem ordem global p, se

$$\max_{1 \le n \le N} \|y(t_n) - y_n\| = \mathcal{O}(h^p), \tag{21}$$

Definição 13 (Ordem Global de um Interpolante)

Um interpolante (13) tem ordem global p, se

$$\max_{t_0 \le t \le t_f} \|y(t) - \eta(t)\| = \mathcal{O}(h^p). \tag{22}$$

Apêndice

Definição 14 (Norma induzida de matrizes)

Seja K o corpo dos reais ou dos complexos e sejam $\|\cdot\|_{\alpha}$ e $\|\cdot\|_{\beta}$ normas em K^n e K^m , respectivamente. A norma $\|\cdot\|_{\alpha,\beta}$ em $K^{m\times n}$ é chamada de *norma induzida* se

$$||A||_{\alpha,\beta} = \sup\{\frac{||Ax||_{\beta}}{||x||_{\alpha}} : x \in K^n \setminus \{0\}\}.$$

Normalmente, a notação a acima é reduzida simplesmente a $\|A\|_{\alpha,\beta}=\sup_{x}\|Ax\|_{\beta}.$

Apêndice

Definição 15 (Produto de Kronecker)

Sejam A e B duas matrizes quaisquer nos espaços vetorias $K^{m,n}, m, n \geq 0$ e $B \in K^{p,q}, r, s \geq 0$ para $K = \mathbb{R}$ (ou \mathbb{C}). O produto Kronecker entre A e B é dado pela função $\otimes : K^{m,n} \times K^{p,q} \to (K^{pm \times qn})$ definida notação por blocos

$$A \otimes B = \begin{bmatrix} a_{1,1}B & a_{1,2}B & \dots & a_{1,n}B \\ a_{2,1}B & a_{2,2}B & \dots & a_{2,n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1}B & a_{m,2}B & \dots & a_{m,n}B \end{bmatrix},$$

Teorema 7 (Convergência dos Métodos para EDOs)

Considere o método (11) de ordem p > 1 e, para cada n, seja

$$C_n = \begin{bmatrix} \alpha_{n,1} & \alpha_{n,2} & \cdots & \alpha_{n,k-1} & \alpha_{n,k} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

Caso

• Existe uma norma $\|\cdot\|_*$ em \mathbb{R}^k , independente de n e da malha Δ , tal que, para a norma induzida da matriz, a seguinte condição de estabilidade é satisfeita.

$$||C_n||_* \le 1. \tag{23}$$

- A função g de (1) é C^p contínua;
- ullet Os valores iniciais y_0,\cdots,y_{k-1} aproxima a solução exata com ordem p.

Então, o método discreto (11) é convergente e de ordem global p em $[t_0, t_f]$, já o interpolante, de ordem (13) $q' = \min\{p, q+1\}$.

• Como o método discreto (11) tem ordem p, então

Referências

$$y(t_{n+1}) = \alpha_{n,1}y(t_n) + \dots + \alpha_{n,k}y(t_{n-k+1}) + h_{n+1}\Phi(y(t_n),\dots,y(t_{n-k+1});g,\Delta_n) + \epsilon_{n+1}$$
(24)

com

$$\|\epsilon_{n+1}\| \le ch_{n+1}^{p+1},$$
 (25)

para alguma constante c > 0 e para todo n = k - 1, ..., N - 1.

• Para os mesmos n, introduziremos a seguinte notação por blocos

$$\mathbf{y}_{n} = [y_{n}, y_{n-1}, \dots, y_{n-k+1}]^{T}, \mathbf{y}(t_{n}) = [y(t_{n}), y(t_{n-1}), \dots, y(t_{n-k+1})]^{T}.$$

ullet Note que $\mathbf{y}_n, \mathbf{y}(t_n) \in \mathbb{R}^{kd}$. Agora, defina \mathcal{C}_n por

$$C_n = C_n \otimes I_d$$
.

• Então que \mathcal{C}_n é uma matriz $(dk) \times (dk)$ dada por

$$C_n = \begin{bmatrix} \alpha_{n,1}I_d & \alpha_{n,2}I_d & \dots & \alpha_{n,k-1}I_d & \alpha_{n,k}I_d \\ I_d & 0 & \dots & 0 & 0 \\ 0 & I_d & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & I_d & 0 \end{bmatrix}.$$

• Devemos mostrar que C_n herda a propriedade de estabilidade (23). Para tanto, considere $\mathbf{x} \in \mathbb{R}^{kd}$ qualquer. Pela notação de blocos, podemos representar \mathbf{x} por k blocos de vetores x_1, \ldots, x_k em \mathbb{R}^d , ou seja,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix} = \begin{bmatrix} (x_1^{(1)}, & x_1^{(2)}, & \dots, & x_1^{(d)})^T \\ (x_2^{(1)}, & x_2^{(2)}, & \dots, & x_2^{(d)})^T \\ \vdots & \vdots & & \vdots \\ (x_k^{(1)}, & x_k^{(2)}, & \dots, & x_k^{(d)})^T \end{bmatrix}.$$

ullet A a norma que utilizaremos para trabalhar em \mathbb{R}^{kd} será a norma do máximo definida como

$$\|\mathbf{x}\| = \max_{1 \le i \le d} \|x^{(i)}\|_*,$$
 (26)

onde cada $x^{(i)}$ é o vetor $x^{(i)} = (x_1^{(i)}, \dots, x_k^{(i)})^T \in \mathbb{R}^k$.

• Para provar que C_n satisfaz (23), pela definição da norma induzida 14, basta mostrar que $\|C_n\mathbf{x}\| \leq \|\mathbf{x}\|$ para todo \mathbf{x} . Teremos, então, que

$$C_{n}\mathbf{x} = \begin{bmatrix} \alpha_{n,1}x_{1} + \dots + \alpha_{n,k}x_{k} \\ x_{1} \\ x_{2} \\ \vdots \\ x_{k-1} \end{bmatrix}$$

 \bullet Observe que, para todo $1 \leq j \leq d$, o vetor coluna do lado direito da igualdade acima é dado por

$$\begin{bmatrix} \alpha_{n,1} x_1^{(j)} + \dots + \alpha_{n,k} x_k^{(j)} \\ x_1^{(j)} \\ x_2^{(j)} \\ \vdots \\ x_{k-1}^{(j)} \end{bmatrix} = C_n x^{(j)}.$$

- Pela propriedade da estabilidade (23) sobre C_n , temos que $\|C_n x^{(j)}\|_* \leq \|x^{(j)}\|_*$.
- Finalmente, como $\||\mathcal{C}_n\mathbf{x}\|| \le \|x^{(j)}\|_*$ para todo $1 \le j \le d$, então $\||\mathcal{C}_n\mathbf{x}\|| \le \|\mathbf{x}\|\|$ e \mathcal{C}_n satisfaz a propriedade.

• Pela notação de blocos, temos que $y(t_n) - y_n$ é equivalente a

$$\mathbf{y}(t_{n+1}) - \mathbf{y}_{n+1} = C_n(\mathbf{y}(t_n) - \mathbf{y}_n) + h_{n+1}\Gamma_n + E_{n+1}, \quad n = k-1, \dots, N-1,$$
(27)

onde

$$\Gamma_{n} = (\Phi(\mathbf{y}(t_{n}); g, \Delta_{n}) - \Phi(\mathbf{y}_{n}; g, \Delta_{n}), 0, \dots, 0)^{T},$$

$$E_{n+1} = (\epsilon_{n+1}, 0, \dots, 0)^{T},$$

sendo 0 o vetor nulo em \mathbb{R}^d .

• Aplicando a norma $\|\cdot\|$ em ambos os lados de (27) e utilizando da propriedade de estabilidade de C_n , obtemos

$$\|\mathbf{y}(t_{n+1}) - \mathbf{y}_{n+1}\| \le \|\mathbf{y}(t_n) - \mathbf{y}_n\| + h_{n+1}\|\Gamma_n\| + \|E_{n+1}\|,$$

Referências

para todo $n = k - 1, \dots, N - 1$.

• Utilizando da propriedade da equivalência das normas em espaços de dimensão finita, obtemos

$$\begin{split} \|E_{n+1}\| &= \max_{1 \leq i \leq d} \|(e_{n+1}^{(i)}, 0, \dots, 0)\|_* \leq \max_{1 \leq i \leq d} (k_1 \|(e_{n+1}^{(i)}, 0, \dots, 0)\|_{\infty}) \\ &\leq k_1 \max_{1 \leq i \leq d} |e_{n+1}^{(i)}| \leq k_1 \|e_{n+1}^{(i)}\|_{\infty} \\ &\leq k_1 k_2 \|e_{n+1}\| \leq k_1 k_2 c h_{n+1}^{p+1} \leq k_1 k_2 c h_{n+1} h^p, \end{split}$$

para algum $k_1, k_2 > 0$ e para $h = \max_{1 \le n \le N} h_n$.

• Quanto ao restante da normas, pela continuidade Lipschitz da função incremento Φ em relação aos argumentos y na norma $\|\cdot\|$ em \mathbb{R}^d e, novamente, pela propriedade de equivalência das normas, junto com (25), existe uma constante Q>0 tal que, para $c'=k_1k_2$ e para todo $n=k-1,\ldots,N-1$, temos

$$\|\mathbf{y}(t_{n+1}) - \mathbf{y}_{n+1}\| \le (1 + h_{n+1}Q)\|\mathbf{y}(t_n) - \mathbf{y}_n\| + c'h_{n+1}h^p.$$

ullet Observe que $1+h_jQ\leq e^{h_jQ}$ para todo j, assim, continuando a relação de recorrência, obtemos

$$\|\mathbf{y}(t_{n+1}) - \mathbf{y}_{n+1}\| \leq \overbrace{h_{n+1}Q \dots e^{h_kQ} \|\mathbf{y}(t_{k-1}) - \mathbf{y}_{k-1}\|}^{(\star)} + \underbrace{c'h^p(h_{n+1} + e^{h_{n+1}Q}h_n + \dots + e^{(h_{n+1}\dots h_{k+1})Q}h_k)}_{(\star\star)}.$$

ullet Quanto a (\star) , observe que, como $h_k+\ldots h_{n+1}\leq t_f-t_0$, então

$$\begin{aligned} e^{h_{n+1}Q} \dots e^{h_kQ} \| \mathbf{y}(t_{k-1}) - \mathbf{y}_{k-1} \| &= e^{Q(h_{n+1} \dots h_k)} \| \mathbf{y}(t_{k-1}) - \mathbf{y}_{k-1} \| \\ &\leq e^{Q(t_f - t_0)} \| \| \mathbf{y}(t_{k-1}) - \mathbf{y}_{k-1} \| , \end{aligned}$$

USP 58/73

• Quando a (★★), temos que

$$h_{n+1} + e^{h_{n+1}Q}h_n + \dots + e^{(h_{n+1}\dots h_{k+1})Q}h_k = \sum_{r=k}^{n+1} e^{\left(Q\sum_{s=r+1}^{n+1}h_s\right)}h_r$$

$$\leq \int_{t_0}^{t_f} e^{Q(t_f-t)} dt = \frac{e^{Q(t_f-t_0)}-1}{Q}$$

Por fim, obtemos a relação final

$$\|\mathbf{y}(t_{n+1}) - \mathbf{y}_{n+1}\| \le e^{Q(t_f - t_0)} \|\mathbf{y}(t_{k-1}) - \mathbf{y}_{k-1}\| + \frac{e^{Q(t_f - t_0)} - 1}{Q} c' h^p$$

• Quanto ao resultado de ordem uniforme global, suponha novamente $y_n^* = y(t_n)$ em (17), de modo que (20) fornece

$$y(t_{n} + \theta h_{n+1}) = \beta_{n,1}(\theta)y(t_{n+j_{n}}) + \ldots + \beta_{n,j_{n}+i_{n}+1}(\theta)y(t_{n-i_{n}}) + h_{n+1}\Psi(y(t_{n+j_{n}}), \ldots, y(t_{n-i_{n}}); \theta, g, \Delta'_{n}) + \epsilon_{n+1}(\theta)$$
(28)

• Sendo $\max_{0 \le \theta \le 1} \|\epsilon_{n+1}(\theta)\| \le \mathcal{O}(h_{n+1}^{q+1})$ para todo $n=1,\ldots,N-1$, de acordo coma definição (19). Logo

$$\max_{0 \le n \le N-1} \max_{0 \le \theta \le 1} \|\epsilon_{n+1}(\theta)\| = O\left(h^{q+1}\right) \tag{29}$$

• Subtraindo (13) de (28), utilizando da estimativa já demonstrada (19) e a da estimativa (29), junto com a suposição de que os termos $\beta_{n,i}(\theta)$ são limitados uniformemente e de que a função incremento Ψ é Lipschitz continua em relação aos argumentos y, obtemos

$$\max_{0 \le n \le N-1} \max_{0 \le \theta \le 1} \|y(t_n + \theta h_{n+1}) - \eta(t_n + \theta h_{n+1})\| \le O(h^p) + O(h^{q+1})$$

Concluindo o teorema.

Utilizando do método dos passos, generalizaremos os métodos contínuos para EDOs para EDRs

Referências

• Considere o PI de EDRs (3), ou seja,

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t)))), & t_0 \le t \le t_f, \\ y(t) = \phi(t), & t_0 - p \le t \le t_0, \end{cases}$$
(30)

- Considere uma malha $\Delta = \{t_0, t_1, \dots, t_n, \dots, t_N = t_f\}$
- Durante o n-ésimo passo, uma aproximação y_n é obtida em t_n , o próximo passo (n+1) consiste em resolver, pelo método 11, a equação

$$\begin{cases} w'_{n+1}(t) = f(t, w_{n+1}(t), x(t - \tau(t, w_{n+1}(t)))), & t_n \le t \le t_{n+1} \\ w_{n+1}(t_n) = y_n \end{cases}$$
(31)

onde

$$x(s) = \left\{ egin{array}{ll} \phi(s) & \mathsf{para} \ s \leq t_0 \ \eta(s) & \mathsf{para} \ t_0 \leq s \leq t_n \ w_{n+1}(s) & \mathsf{para} \ t_n \leq s \leq t_{n+1} \end{array}
ight.$$

e $\eta(t)$ é o interpolante dado por 13.

• Quanto a equação (31), temos os seguintes casos:

Se $s = t - \tau(t, w_{n+1}(t)) \le t_n$ para todo $t \in [t_n, t_{n+1}]$, então, neste intervalo

- x(s) é igual ao interpolante $\eta(s)$.
- O problema local (31) se reduz a uma EDO.
- A solução local $w_{n+1}(t)$ é então aproximada pelo método discreto (11) e a aproximação de $w_{n+1}(t_{n+1})$ é definida como y_{n+1} .

Se $s=t- au\left(t,w_{n+1}(t)\right)>t_n$ para algum $t\in [t_n,t_{n+1}]$, então

- O valor x(s) é igual a w_{n+1}(s) e é desconhecido. Portanto,
 (30) não pode mais ser visto como uma EDO.
- No entanto, x(s) ainda é aproximado pelo interpolante $\eta(t)$ no intervalo subjacente $[t_n, t_{n+1}]$, implicitamente definido por (13) com $j_n = 0$, ou seja, por

$$\eta(t_{n} + \theta h_{n+1}) = \beta_{n,1}(\theta) y_{n+j_{n}} + \dots + \beta_{n,j_{n}+i_{n}+1}(\theta) y_{n-i_{n}}
+ h_{n+1} \Psi(y_{n+j_{n}}, \dots, y_{n-i_{n}}; \theta, g_{\eta}, \Delta'_{n}), \qquad 0 \leq \theta \leq 1,
(32)$$

onde

$$g_{\eta}(t,y) = f(t,y,\eta(t-\tau(t,y)))$$

 Observe que o uso da extensão contínua torna o método implicito, mesmo que o método discreto usado seja explicito.
 Este fenômeno é chamado de sobreposição (do inglês: overlapping).

65/73

Algoritmo para resolver EDRs dependendo do tempo sem desaparecimento do retardo

Referências

1. Localize todos os pontos de descontinuidade principais e os pontos de descontinuidade de ordem < p. A

$$\xi_1, \ldots, \xi_s (< t_f)$$

e defina $\xi_0 = t_0, \, \xi_{s+1} = t_f$.

2. Resolva a equação

Z. Resolva a equação
$$\begin{cases} z'(t) = f(t, z(t), \phi(t - \tau(t))), & \xi_0 \leq t \leq \xi_1, \\ z(\xi_0) = \phi(\xi_0), \end{cases}$$

usando qualquer método discreto para EDO.

3. Para $\{i = 1\}$ até s faca:

• Calcule e armazene a extensão contínua $\eta(t)$

para
$$t \in \left[\xi_{i-1}, \xi_i\right]$$
;

Resolva a equação

$$\begin{cases} z'(t) = f(t, z(t), \eta(t - \tau(t))), & \xi_i \leq t \leq \xi_{i+1}, \\ z(\xi_i) = \eta(\xi_i), & \end{cases}$$

usando o mesmo método discreto para EDOs.

- 4. Fim do Para.
- 5. Fim.

Teorema 8 (Convergência dos métodos contínuos para EDRs sem desaparecimento de retardo)

Quanto a EDR dependendo do tempo sem desaparecimento do retardo, considere

- As funções f, τ e phi são C^p -contínuas nos seus respectivos domínios e τ satisfaz a hipótese 1.
- A malha ∆ contém todos os pontos de descontinuidade de ordem ≤ p.
- Um método contínuo satisfazendo as hipóteses do Teorema 7.
- Para cada n, $[t_{n-i_n}, t_{n+1}] \subseteq [\xi_i, \xi_{i+1}]$ para algum i.

Então, o método resultante tem ordem global discreta e uniforme $q' = \min\{p, q + q\}$.

E o grude?

Os próximos slides do modelo SIR eu não sei o que fazer

Modelo de Kermack e McKendrick

Modelo SIR

- *s*, *i*, *r* := Percentual de Susceptíveis, Infectados e Removidos;
- $\beta, \gamma :=$ Taxa média de Contato e de Remoção por tempo;

$$\bullet \ \, \text{O modelo \'e dado por} \begin{cases} \frac{ds}{dt} &= -\beta is; \\ \frac{di}{dt} &= \beta is - \gamma i; \text{ onde } s+i+r=1; \\ \frac{dr}{dt} &= \gamma i \gamma. \end{cases}$$

- Note que a taxa de infeção é homogênea, ou seja, a chance de um indivíduo infectado contaminar outra pessoa é sempre a mesma, independente da pessoa.
- Soluções analíticas para o modelo são difíceis de encontrar, o que não nos impede de tirar conclusões importantes sobre o comportamento do modelo.

Modelo de Kermack e McKendrick

Número Básico de Reprodução

- Suponha que a população sucetível seja 1. O Número Básico de Reprodução R_0 é o número médio de pessoas que a doença é transmitida antes da pessoa ser imunizada. Note que, se $R_0 > 1$ a doença cresce, já se $R_0 < 0$, a doença descresce. O limiar epidemiológico é definido quando $R_0 = 1$ i.
- No modelo SIR, a doença cresce quando $\frac{di}{dt} > 0$. Supondo que s=1 obtemos

$$0 < \frac{di}{dt} = \beta i s - \gamma i \iff 0 < \beta i - \gamma i \iff i < \frac{\beta}{\gamma} i \iff 0 < \frac{\beta}{\gamma}$$

ou seja, $R_0=rac{eta}{\gamma}$ denota o início da epidemia.

Modelo de Kermack e McKendrick

Tamanho da Epidemia

• O tamanho da epidemia no modelo SIR nunca é igual a 1 independente se $R_0 >> 1$ (onde $R_0 < \infty$), ou seja

$$s_{\infty}=1-r_{\infty}>0, \quad \forall R_0\in\mathbb{R}.$$

A demonstração deste fato é envolvida, eis um modelo visual interativo para exploração: geogebra

Referências

K. W. Neves and A. Feldstein,

Characterization of jump discontinuities for state dependent delay differential equations.

Journal of Mathematical Analysis and Applications, 56:689-707, 1976.

Referências

https://api.semanticscholar.org/CorpusID: 121097839.

K. W. Neves and S. Thompson,

Software for the numerical solution of systems of functional differential equations with state-dependent delays.

Applied Numerical Mathematics, 9(3):385-401, 1992.

https://doi.org/10.1016/0168-9274(92)90029-D.

Referências

M. E. J. Newman, Spread of epidemic disease on networks.

Phys. Rev. E, 66(1):016128, 2002.

M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their applications.

Phys. Rev. E, 64(2):026118, 2001.

陯 M. E. J. Newman

Networks.

Oxford University Press, 2018.