보험사 수익 극대화를 위한 가입 거절 고객에 대한 분석

A반 2조 김효진

POSCO AI · Big Data 아카데미

CONTENTS

대이터 현황

02

03

피드백 및 분석

04

결론

건강검진을 받은 사람 수:14938명 (insu_pre_review.csv)

재검: 8149명 (54.6%)승인: 3962명 (26.5%)거절: 2827명 (18.9%)

• 전체 건강검진 자 중 18.9%인 2827명이 가입 거절됨

건강검진을 받은 사람 중 거절된 사람 수: 2827명 (insu_pre_review.csv)

- 남성(1): 1488명 (52.6%)- 여성(2): 1339명 (47.4%)

• 보험 가입이 거절된 사람들의 성비는 거의 균등

보험 가입이 거절된 사람들의 연령 비율

건강검진을 받은 사람 중 거절된 사람 수: 2827명 (insu_pre_review.csv)

- 10대: 15명 (0.5%)

- 20대: 130명 (4.6%)

- 30대: 417명 (14.8%)

- 40대: 780명 (27.6%)

- 50대: 1219명 (43.1%)

- 60대: 262명 (9.3%)

- 70대: 4명 (0.1%)

• 보험 가입이 거절된 사람들 중 50대가 가장 많은 비중을 차지하며 40대 가 그 뒤를 이음

보험 가입이 거절된 사람들의 사전 위험도 비율

- ※ 사전 위험도(pre_risk): 혈액검사 판정결과 점수 합(judge_score) + 혈압 판정결과(bp_judge) 건강검진으로 고객 위험의 사전적인 위험을 측정하기 위해 만든 파생변수
- ※ 사전위험도 값이 클수록 혈압과 혈액검사에서 이상이 많이 발견된 것

보험 가입 거절된 사람들의 사전 위험도 df_count_reject_pre_risk = df_reject['pre_risk'].value_counts() df_count_reject_pre_risk

Name: pre_risk, dtype: int64

가입 거절된 사람들 중 사전 위험도가 0 인 사람들이 870명
→ 혈압과 혈액검사에서 전혀 이상이 없었음에도 가입 거절 된 경우로 혈압과 혈액검사가 위험 고객을 적절히 분류할 수 있음이 밝혀진다면 해당 고객은 위험도가 낮은 고객이므로 유치할 필요가 있음

sum_req_amount	avg_pay_amount	avg_cum_amount	dif_req_pay	risk
424498	724498	1320000	-300000	1
198600	490079	1800000	-291479	1
808750	1008750	600000	-200000	1
333680	553680	240000	-220000	1
412210	412210	375000	0	0

※ 청구 - 지급(dif_reg_pay):

고객의 청구금액(sum_req_amount) - 보험사의 지불금액(avg_pay_amount) ※ 위험도(risk):

- ㆍ보험사의 수익성을 측정할 수 있는 지표
- · 청구 지급(dif_req_pay) >= 0 일 경우 0 (보험사의 수익성 개선)
- · 청구 지급(dif_reg_pay) < 0 일 경우 1 (보험사의 수익성 악화)

- 목표변수: 위험도(risk)
- 설명변수: 판정결과 합(judge_score), 혈압 판정결과(bp_judge), 맥박 판정결과 (pulse_count_judge), 콜레스테롤 판정결과(bp_chol_judge) 등 총 19개 변수
- 데이터 셋: BHHJ_risk_data.csv (insu_request와 insu_pre_review를 합쳐 청구번호 (req_id)별로 정리한 데이터 셋)
- 분석 데이터: 혈액검사자의 청구 데이터 14769개

	Train	Test
의사결정나무	0.788	0.785
랜덤 포레스트	0.796	0.783
그래디언트 부스팅	0.792	0.786

분석결과:

- 전체 청구데이터 수: 19115 (BHHJ_risk_data.csv)
- 혈액검사자 데이터 수: 14769
- Train: 0.4, Validation: 0.3, Test: 0.3 비율
- 의사결정나무, 랜덤 포레스트, 그래디언트 부스팅 분류 모델 사용
- Train, Test 데이터 셋의 설명력이 0.8 이하로 낮은 편

제외질병 코드

- F: 정신 및 행동 장애
- H: 눈, 귀 관련 질환
- L: 피부관련 질환
- M: 근골결계통 질환
- O: 임신, 산후 관련 질환
- P: 출생전 후기에 특정 병태
- Q: 선천기형, 염색체 이상
- R: 분류되지 않은 증상, 징후, 이상소견
- S,T: 손상, 외인에 의한 결과
- V/Y/Z/U: 사망의 외인 / 건강상태 / 특수목적 코드

혈액검사 질병

- 빈혈
- 백혈병
- 당뇨병
- 고지혈증
- 갑상선 관련 질병
- 간염
- 신부전
- 종양
- 면역결핍
- 분석 후 조원들과 논의 결과 데이터에서 **혈압 및 혈액검사로 분류하기 어려운 질병들 다수 발견** ex) S02: 두개골 골절, S13: 목부위의 관절 및 인대의 탈구, 염좌 및 긴장
- 따라서 **혈압 및 혈액검사로 분석 가능한 데이터들을 선별하여 새롭게 분석** 해당 질병: 빈혈, 백혈병, 당뇨, 고지혈증, 갑상선 관련 질병, 간염, 신부전, 종양, 면역결핍 (출처: 국민건강지식센터) (질병코드 A/B/C/D/E/G/I/J/K/N)
- 또한 사전 위험도(pre_risk)가 0임에도 위험도(risk)가 1이 나온 경우 혈압 및 혈액검사로 예측하기 어려운 질병들에 걸린 것임을 확인하여 분석에서 제외
 ex) K63: 장의 기타 질환, N20: 신장 및 요관의 결석, J15: 세균성 폐렴

19100	C134221- 20120214- 16711-01- 001	C134221	혈액검사	재검	2	51	입원	19	건강보험	K21	17	456361
19103	C134221- 20130304- 12943-04- 001	C134221	혈액검사	재검	2	51	입원	12	건강보험	184	30	298363
19105	C134221- 20130917- 12901-02- 001	C134221	혈액검사	재검	2	51	입원	23	건강보험	J02	36	558396
19106	C134227- 20100423- 13218-01- 001	C134227	혈액검사	재검	2	45	외래	1	건강보험	J00	5	42600
19107	C134227- 20100423- 13243-01- 001	C134227	혈액검사	재검	2	45	외래	1	건강보험	J06	5	11120

5031 rows × 61 columns

※ 청구 - 지급(dif_req_pay):

고객의 청구금액(sum_req_amount) - 보험사의 지불금액(avg_pay_amount) ※ 위험도(risk):

- ㆍ보험사의 수익성을 측정할 수 있는 지표
- · 청구 지급(dif_req_pay) >= 0 일 경우 0 (보험사의 수익성 개선)
- · 청구 지급(dif_req_pay) < 0 일 경우 1 (보험사의 수익성 악화)

설명변수 df blood x.columns

- 목표변수: 위험도(risk)
- 설명변수: 판정결과 합(judge_score), 혈압 판정결과(bp_judge), 맥박 판정결과 (pulse_count_judge), 콜레스테롤 판정결과(bp_chol_judge) 등 총 19개 변수
- 데이터 셋: BHHJ_risk_data.csv (insu_request와 insu_pre_review를 합쳐 청구번호 (req_id)별로 정리한 데이터 셋)
- 분석 데이터: 질병코드 A/B/C/D/E/G/I/J/K/N을 주상병으로 가지며 사전 위험도(pre_risk)
 가 0이고 위험도(risk)가 1인 데이터를 제외한 혈액검사자 데이터 수: 5031개

	IUI
U	

	Feature	Importance
0	judge_score	0.598
1	bp_judge	0.328
18	bt_trig_judge	0.074
3	bt_chol_judge	0.000
4	bt_crea_judge	0.000
5	bt_gluc_judge	0.000
6	bt_hb_judge	0.000
7	bt_hbsa_judge	0.000
8	bt_hct_judge	0.000
2	pulse_count_judge	0.000
10	bt_mchc_judge	0.000
11	bt_mvc_judge	0.000
12	bt_plat_judge	0.000
13	bt_rbc_judge	0.000
14	bt_wbc_judge	0.000
15	bt_rgpt_judge	0.000
16	bt_sgot_judge	0.000
17	bt_sgpt_judge	0.000
9	bt_mch_judge	0.000

Accuracy on training set:0.937 Accuracy on test set:0.937

Confusion matrix:

[[1415 0] [95 0]]

결과: 의사결정나무 최종 모델

- 최대 깊이: 10

- - 분리 노드: 15

- 최소 잎사귀 수: 5

- Train 데이터 설명력: 0.937

- Test 데이터 설명력: 0.937

- 분석 결과 **혈액검사 판정결과의 합**(judge_score)가 가장 중요한 변수로 파악되며 두번째와 세번째로 **혈압 판정결과**(bp_judge)와 **중성지방 판정결과** (bt_trig_judge)이 중요하다고 판단됨

		Ξ	h	
	U	_	U	

	Feature	Importance
0	judge_score	0.348
1	bp_judge	0.240
18	bt_trig_judge	0.094
7	bt_hbsa_judge	0.068
17	bt_sgpt_judge	0.050
15	bt_rgpt_judge	0.042
3	bt_chol_judge	0.041
4	bt_crea_judge	0.029
5	bt_gluc_judge	0.025
10	bt_mchc_judge	0.019
6	bt_hb_judge	0.012
8	bt_hct_judge	0.011
11	bt_mvc_judge	0.008
16	bt_sgot_judge	0.007
9	bt_mch_judge	0.005
14	bt_wbc_judge	0.001
2	pulse_count_judge	0.000
12	bt_plat_judge	0.000
13	bt_rbc_judge	0.000

Accuracy on training set:0.937 Accuracy on test set:0.937

Confusion matrix:

[[1415 0] [95 0]]

- 결과: 랜덤 포레스트 최종 모델
 - 최대 깊이: 7
 - 분리 노드: 4
 - 최소 잎사귀 수: 10
 - 나무 수: 150
- Train 데이터 설명력: 0.937
- Test 데이터 설명력: 0.937
- 분석 결과 **혈액검사 판정결과의 합**(judge_score)가 가장 중요한 변수로 파악되며 두번째와 세번째로 **혈압 판정결과**(bp_judge)와 **중성지방 판정결과** (bt_trig_judge)이 중요하다고 판단됨

4	1	4	1
			Ш
	_		т

	Feature	Importance
0	judge_score	0.504
1	bp_judge	0.219
18	bt_trig_judge	0.079
7	bt_hbsa_judge	0.060
3	bt_chol_judge	0.042
6	bt_hb_judge	0.035
15	bt_rgpt_judge	0.022
10	bt_mchc_judge	0.022
17	bt_sgpt_judge	0.014
8	bt_hct_judge	0.003
4	bt_crea_judge	0.000
5	bt_gluc_judge	0.000
2	pulse_count_judge	0.000
11	bt_mvc_judge	0.000
12	bt_plat_judge	0.000
13	bt_rbc_judge	0.000
14	bt_wbc_judge	0.000
16	bt_sgot_judge	0.000
9	bt_mch_judge	0.000

Accuracy on training set:0.941 Accuracy on test set:0.934

Confusion matrix: [[1408 7] [93 2]]

- 결과: 그래디언트 부스팅 최종 모델
 - 최대 깊이: 10
 - 분리 노드: 15
 - 최소 잎사귀 수: 5
- Train 데이터 설명력: 0.941
- · Test 데이터 설명력: 0.934
- 분석 결과 **혈액검사 판정결과의 합**(judge_score)가 가장 중요한 변수로 파악되며 두번째와 세번째로 **혈압 판정결과**(bp_judge)와 **중성지방 판정결과** (bt_trig_judge)이 중요하다고 판단됨

	Train	Test
의사결정나무	0.937	0.937
랜덤 포레스트	0.937	0.937
그래디언트 부스팅	0.941	0.934

분석결과:

- 전체 청구데이터 수: 19115 (BHHJ_risk_data.csv)
- 질병코드 A/B/C/D/E/G/I/J/K/N을 주상병으로 가지며 사전 위험도(pre_risk)가 0이고 위험도(risk)가 1인 데이터를 제외한 혈액검사자 데이터 수: 5031
- Train: 0.4, Validation: 0.3, Test: 0.3 비율
- 의사결정나무, 랜덤 포레스트, 그래디언트 부스팅 분류 모델 사용
- Train, Test 데이터 셋의 설명력이 0.93 이상으로 높은 편
- 변수 중요도는 세 모델 모두 **혈액검사 판정결과 합(judge_score), 혈압 판정결과** (bp_judge), 중성지방 판정결과(bp_trig_judge) 순으로 중요성을 보임

데이터 수: 14769 (모든 혈액검사자) 목표변수: 위험도(risk) 설명변수(혈압 및 혈액검사의 판정결과) 설명력: 0.8 이하로 낮은 편

데이터 수: 5031 (혈액검사로 예측 및 분류 가능한 질병을 가진 혈액검사자) 목표변수: 위험도(risk) 설명변수(혈압 및 혈액검사의 판정 결과) 설명력: 0.93 이상으로 높은 편

→ 혈압 및 혈액검사에 의해 위험 고객을 적절히 분류할 수 있음이 밝혀짐 → 혈압 및 혈액검사로 예측 및 분류 가능한 데이터(5031)와 보험 가입이 거절된 사람들의 데이터 특성을 비교한 후 적절한 보험 상품을 추천하여 수익성 향상 가능 사전 위험도(pre_risk)가 0이며 보험 가입이 거절된 사람들의 연령 비율

- 사전 위험도가 0이며 보험 가입이 거절된 사람(870명)과 사전 위험도가 0이며 보험 가입이 승인된 사람(2310명)의 연령 분포는 비슷함(1위: 50대, 2위: 40대 3위: 30대)
- 따라서 연령대별 보험 수익성을 분석하여 보험 가입이 거절된 사람에게 적절 한 보험 상품을 추천할 필요가 있음

조심조심 보험 4 건강보험 울라트 보험 평생 건강 보장 1 All My Life 2 15 건강 보살핌 All My Life 1 3	749 585 315 260 64 65	조심조심 보험 4	20대 30대 40대 50대 60대	10대 0.0 2079.0 3082.0 7101.0 1247.0	0.0	건강보험	20 30대 40대 50대 60대	대 9344.(270.(11446.(7070.(0 0
가족 만족 보험 2+ 안심보험 통합보험 +2 건강+행복 보험 통합보험 +3 단체보험(상해)	28 26 22 18 16 14	울라트 보험	30대 40대 50대 60대	20대 3082.0 0.0 42.0 0.0	0.0	평생 건강 보장	1 1 30대 40대 50대 60대	7562.0 24204.0 23761.0 0.0	0.0
조심조심 보험 1 통합보험 +1 가족 만족 보험 1 평생 보험 2 가족 만족 보험 2 건강보험 3 평생 보험 1	10 4 3 3 2 1	All My Life 2	30대 40대 50대 60대 ※ 보형	47299.(48791.(87868.(35556.(험상품을 기준으로)))	5대별 청구 - 지급	t(dif_req_	pay) 금액의 평균	

※ 사전 위험도가 0인 보험 가입자의 보험 종류별 가입 수

- 사전 위험도가 0인 사람들 중 보험 가입이 승인된 사람(2310명)은 위와 같이 조심조심 보험 4(749명), 건강보험(585명), 울라트 보험(315명) 등에 많이 가입
- 사전 위험도가 0이며 보험 가입이 거절된 사람(870명)들이 **50대, 40대, 30대의 순으로 많은** 것을 고려하면 **All My Life 2 보험**을 추천하여 이들에게 가입하도록 유도하는 것이 보험사의 수익성 극대화를 위해 가장 좋은 방법이라 생각됨