CSI 2372 – Lab Task 3

Abdorrahim Bahrami

Operator Overloading in C++

Your task in this lab is to get yourself familiarized with operator overloading in C++. Make sure you have C++ installed, and you are familiar with the header files, and coding files. If you need help, ask your TA to help you with this.

Then, you should do the following programming task. Each programming task in the lab is a design based on the subjects you learned during lectures. There is a test code that you can use to test your design. If you have questions, ask your TAs.

Design a class for the concept of a vector in an n-dimensional space. This is not a vector in STL, this is the vector we know in math. The dimension of the vector has to be at least 2 but it can be any number. Each vector in an n-dimensional space has at n elements. Each element represents a direction in the space. For example, v = (5, -6, 2) is a vector in 3-dimensional space, which has 5 in the x dimension, -6 in y dimension, and 2 in z dimension.

Your class must have the following methods. Use the name as they are in the table to be able to use the test file for testing your class design.

You are not allowed to use vector in STL. Use dynamic memory. 傻逼!

Class Vector	
Method	Description
Vector	The default constructor that initializes
	the vector in 2-dimensional space
Vector	The default constructor that initializes
	the vector in n-dimensional space.
	It receives an array of size n to initialize the vector
	Vector (double * arr, int num), here num
	Shows the number of elements in the Vector
Vector	The copy constructor
~Vector	The destructor
dimension	The dimension of the vector
add_dimension	Add a new dimension using the given value to the end
remove_dimension	Remove a dimension at the given index
insert_dimension	Insert a new dimension at a given position with a given value
magnitude	Get the length of the vector

operator []	For indexing the dimensions
operator ==	Checks if two vectors are equal (Same dimension and same element
	in each dimension)
operator !=	Checks if the two vectors are not equal
operator =	For assigning a vector to another vector
operator +	For adding two vectors, the result
	has the dimension of the vector with the larger dimension,
	consider the rest of elements of the vector
	with a smaller dimension to be 0.
operator -	For subtracting two vectors, the result
	has the dimension of the vector with the larger dimension,
	consider the rest of elements of the vector
	with a smaller dimension to be 0.
operator *	For multiplying a scalar and a vector
operator +=	Add and assign the result
operator -=	Subtract and assign the result
operator *	For multiplying a vector and a scalar
operator *	For internal products of two vectors,
	the result has the dimension of the vector with the larger dimension,
	consider the rest of elements of the vector
	with a smaller dimension to be 0.
operator <<	For printing a vector in this format
	v = (5, -6, 2)

You can add any method you need.

Note:

$$\begin{aligned} v_1(x_1,x_2,x_3) + v_2(y_1,y_2,y_3,y_4) &= (x_1+y_1,x_2+y_2,x_3+y_3,y_4) \\ v_1(x_1,x_2,x_3,x_4) - v_2(y_1,y_2,y_3) &= (x_1-y_1,x_2-y_2,x_3-y_3,x_4) \\ v_1(x_1,x_2,x_3,x_4) - v_2(y_1,y_2,y_3) &= (x_1\times y_1,x_2\times y_2,x_3\times y_3,0) \\ 5\times v_1(x_1,x_2,x_3,x_4) &= (5x_1,5x_2,5x_3,5x_4) \\ norm(v_1) &= magnitude(v_1) = |v_1(x_1,x_2,x_3,x_4)| = \sqrt{x_1^2+x_2^2+x_3^2+x_4^2} \end{aligned}$$