INF 1010 Estruturas de Dados Avançadas

Listas de Prioridades e *Heaps*

uma outra aplicação de árvores binárias...

lista de prioridades:

 lista de elementos onde estamos interessados apenas no "maior de todos" ou "menor de todos"

- seleção/remoção do elemento com maior (ou menor) prioridade
- inserção de um novo elemento

outra interface!

Listas de prioridades

Listas de Prioridades

Em muitas aplicações, dados de uma coleção são acessados por ordem de prioridade.

A prioridade associada a um dado pode ser qualquer coisa: tempo, custo, etc. Só precisa ser ordenável.

As operações que devem ser eficientes são:

- seleção do elemento com maior (ou menor) prioridade
- remoção do elemento de maior (ou menor) prioridade
- inserção de um novo elemento

implementação usando um heap (binário)

árvore binária completa

Min heap: Cada nó é menor que seus filhos

Max heap: Cada nó é maior que seus filhos

O que é um heap (binário)

Árvore binária completa

Min heap: Cada nó é menor que seus filhos

Max heap: Cada nó é maior que seus filhos

• e o que é uma árvore binária completa?

- número máximo de nós no nível i: n_i = 2ⁱ
- número máximo de nós na árvore de altura
 k:
 - $n_{max} = 2^k + ... + 2^2 + 2 + 1 = 2^{k+1} 1$

Árvore binária cheia de altura k:

árvore com 2^{k+1} – 1 nós

Exemplo: para k = 2, árvore binária cheia possui $2^3-1 = 7$ nós

Árvore binária cheia de altura k:

árvore com 2^{k+1} – 1 nós

Exemplo: para k = 2, árvore binária cheia possui $2^3-1 = 7$ nós

Árvore binária cheia de altura k:

árvore com 2^{k+1} – 1 nós

Exemplo: para k = 2, árvore binária cheia possui 2³-1 = 7 nós

Árvore binária completa

· nós de 1 a n em árvore completa

 toda folha está no último ou penúltimo nível

nível:

O que é um heap (binário)

Árvore binária completa

Min heap: Cada nó é menor que seus filhos

Max heap: Cada nó é maior que seus filhos

O que é um heap (binário)

Árvore binária completa

Min heap: Cada nó é menor que seus filhos

Max heap: Cada nó é maior que seus filhos

Inserir um elemento

Insira o elemento no final do heap e faça-o "subir" até a posição correta

Inserir um elemento

- 1. Insira o elemento no final do heap
- 2. Compare ele com seu pai:
 - a. Se estiver em ordem, a inserção terminou.
 - b. Se não estiver, troque com o pai e repita o passo 2 até terminar ou chegar à raiz.

Remoção

Retira-se sempre a raiz

Coloque na raiz o último elemento e faça-o "descer" até a posição correta

Exemplo de remoção

Remoção (do topo)

- 1. Coloque na raiz o último elemento
- 2. Compare ele com seus filhos:
 - a. Se estiver em ordem, a remoção terminou.
 - b. Se não estiver, troque com o maior filho e repita o passo 2 até terminar ou chegar numa folha.

Complexidade

Operação	Lista	Lista Ordenada	Árvore (Balanceada)	Неар
Seleção	O(n)	O(1)	O(log n)	O(1)
Inserção	O(1)	<i>O</i> (<i>n</i>)	O(log n)	O(log n)
Remoção	O(n)	O(1)	O(log n)	O(log n)
Construção	O(n)	O(n log n)	O(n log n)	O(n)

Implementando heaps

Implementando árvores binárias com vetores

Podemos representar uma árvore binária como um vetor

nó filho esquerdo de i : 2*i +1

nó filho direito de i : 2*i + 2

nó pai de i : (i-1)/2

índice	0	1	2	3	4	5	6	7	8	9	10		
nó	a	b	С	d	e	-	f	-	g	-	h	•••	
nível	0	1			2	2		3					

Implementando árvores com vetores

Podemos representar uma árvore binária como um vetor

nó filho esquerdo de i : 2*i +1

nó filho direito de i : 2*i + 2

nó pai de i : (i-1)/2

índice	0	1	2	3	4	5	6	7	8	9	10		
nó	a	b	С	d	е	-	f	-	g	-	h	•••	
nível	0	7			2	2		3					

...mas podemos ter bastante memória desperdiçada no caso geral!

Para armazenar uma árvore de altura h precisamos de um vetor de $2^{(h+1)}-1$ (número de nós de uma árvore cheia de altura h).

Implementando heap com vetor

no caso de heaps, as árvores são completas!

índice	0	1	2	3	4	5	6	7	8	9	10	:	
nó	a	b	C	d	e	f	g	h	i	j	k	•••	
nível	0	٦		2				3					

Os *n* nós da árvore estão nas *n* primeiras posições do vetor.

Implementando heap com vetor

Dado um nó armazenado no índice i, é possível computar o índice:

do nó filho esquerdo de i : 2*i +1

do nó filho direito de i : 2*i + 2

do nó pai de i : (i-1)/2

índice	0	1	2	3	4	5	6	7	8	9	10	•••	
nó	a	b	C	d	e	f	g	h	i	j	k		
nível	0	٦		2				3					

Para armazenar uma árvore de altura h precisamos de um vetor de $2^{(h+1)}-1$ (número de nós de uma árvore cheia de altura h).

Os *n* nós da árvore estão nas *n* primeiras posições do vetor.

Implementação de um módulo Heap

```
typedef struct _heap Heap;
Heap* heap_cria(int max);
void heap_insere(Heap* heap, int prioridade, dados* d);
dados * heap_remove(Heap* heap);
```


Implementação de um módulo Heap

```
struct _heap {
 int max; /* tamanho maximo do heap */
 int pos;  /* proxima posicao disponivel no vetor */
 int* prioridade; /* vetor das prioridades */
}; /* estou ignorando os dados! */
Heap* heap_cria(int max){
   Heap* heap=(Heap*)malloc(sizeof(Heap));
   heap->max=max;
   heap->pos=0;
   heap->prioridade=(int *)malloc(max*sizeof(int));
   return heap;
```


Insere

```
void heap_insere(Heap* heap, int prioridade)
{
    if ( heap->pos < heap->max )
    {
        heap->prioridade[heap->pos]=prioridade;
        corrige_acima(heap,heap->pos);
        heap->pos++;
    else
        printf("Heap CHEIO!\n");
}
```


Insere

Insere

```
static void troca(int a, int b, int* v) {
   int f = v[a];
   v[a] = v[b];
   v[b] = f;
static void corrige_acima(Heap* heap, int pos) {
   while (pos > 0){
        int pai = (pos-1)/2;
        if (heap->prioridade[pai] < heap->prioridade[pos])
            troca(pos,pai,heap->prioridade);
        else
            break;
        pos=pai;
```

Remove

```
int heap_remove(Heap* heap)
{
 if (heap->pos>0) {
    int topo=heap->prioridade[0];
    heap->prioridade[0]=heap->prioridade[heap->pos-1];
   heap->pos--;
    corrige_abaixo(heap);
    return topo;
 else {
     printf("Heap VAZIO!");
     return -1;
```


Remove

```
static void corrige_abaixo(Heap* heap){
 int pai=0;
 while (2*pai+1 < heap->pos){
    int filho_esq=2*pai+1;
    int filho_dir=2*pai+2;
    int filho;
   if (filho_dir >= heap->pos) filho_dir=filho_esq;
    if (heap->prioridade[filho_esq]>heap->prioridade[filho_dir])
        filho=filho_esq;
   else
        filho=filho_dir;
    if (heap->prioridade[pai]<heap->prioridade[filho])
            troca(pai,filho,heap->prioridade);
   else
            break;
    pai=filho;
```

Construção de Heap

Algoritmo ingênuo:

Insira um-a-um todos os n elementos.

Cada elemento é inserido na base e sobe até seu lugar.

Complexidade: O(n log n)

Construção de Heap

Observe que:

As folhas da árvore (elementos *n*/2 + 1 ... *n*) não têm descendentes e portanto já estão ordenadas em relação a eles

Se acertarmos todos os nós internos (elementos 1 ... *n/*2) em relação a seus descendentes, o heap estará pronto

É preciso trabalhar de trás para frente, desde *n*/2 até 1, pois as propriedades da heap estão corretas apenas nos níveis mais baixos.

construção de um min heap

lista de 11 prioridades: 21, 19, 16, 22, 17, 20, 23, 12, 34, 15, 60

construção de um min heap

lista de 11 prioridades: 21, 19, 16, 22, 17, 20, 23, 12, 34, 15, 60

insere-se n/2+1 elementos nas últimas posições

falta inserir: 23, 12, 34, 15, 60)

Para i, desde n/2-1, decrementando até 0:

Para i, desde n/2-1, decrementando até 0:

Para i, desde n/2-1, decrementando até 0:

Para i, desde n/2-1, decrementando até 0:

Complexidade do algoritmo de construção de Heap

Suponhamos que a árvore seja cheia. Então:

 $n = 2^{h+1} - 1$, onde h é a altura.

Destes, apenas $2^h - 1$ são nós internos.

A raiz da árvore pode descer no máximo h níveis.

Os dois nós de nível 1 podem descer *h-1* níveis.

. . .

Os 2^{h-1} nós de nível h-1 podem descer 1 nível.

Logo, no total temos:

$$S = 1(h) + 2(h-1) + 2^{2}(h-2) + \dots + 2^{h-1}(1)$$

Complexidade do algoritmo de construção de Heap

$$S = 1(h) + 2(h-1) + 2^{2}(h-2) + \dots + 2^{h-1}(1)$$
$$2S = 2(h) + 2^{2}(h-1) + 2^{3}(h-2) + \dots + 2^{h}(1)$$

$$2S - S = -1(h) + 2 + 2^{2} + \dots + 2^{h-1} + 2^{h}$$

$$S = -h + \sum_{i=0}^{h} 2^{i} = -h + \frac{(1-2^{h+1})}{(1-2)} = -h + (2^{h+1} - 1) = -h + n$$

Logo, o algoritmo de construção é O(n).

heapsort

colocar em ordem crescente....

HeapSort

Ordenação de vetor utilizando um heap:

- 1. Construa o heap (complexidade O(n))
- 2. Para todos os elementos do heap (complexidade O(nlog(n)))
 - a. Remova o elemento topo (acertando o heap)
 - b. Salve este elemento no vetor de heap, logo após o último elemento

heapsort

14 10 2 23 18 25 30

ordenação do vetor

10 18 14 23 30 25 2

14 18 25 23 30 2 10

18 23 25 30 2 10 14

23 30 25 2 10 14 18

25 30 2 10 14 18 23

30 2 10 14 18 23 25

2 10 14 18 23 25 30

HeapSort

Construção intuitiva:

- À medida que os elementos vão sendo colocados no final, o heap vai diminuindo de tamanho
- · Ao final, o vetor está em ordem decrescente

HeapSort

Ordenação de vetor utilizando um heap:

- Construa o heap (complexidade O(n))
- 2. Para todos os elementos do heap (complexidade O(nlog(n)))
 - a. Remova o elemento topo (acertando o heap)
 - b. Salve este elemento no vetor de heap, logo após o último elemento

Construção intuitiva:

- À medida que os elementos vão sendo colocados no final, o heap vai diminuindo de tamanho
- Ao final, o vetor está em ordem decrescente

Para obter ordem crescente:

- inverta a ordem do vetor (complexidade O(n)), ou
- utilize um heap onde a raiz é o maior de todos os elementos

