Machine Learning for WSI

- Some Literature overview on Deep Learning for Turbulence
- Test case 1): GNN as Poisson solver
- Test case 2): Raynold test case
- Test case 3): StyleGAN as deconvolution operator for LES in BOUT++

ML for CFD

Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey https://arxiv.org/pdf/2408.12171

Current CFD methodologies

from a hardware perspective

ML method for CFD

Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey https://arxiv.org/pdf/2408.12171

GNN for Poisson solver

Raynold ML

StyleGAN as deconvolution operator for LES in BOUT++

Jony Castagna – Hartree Centre Francesca Schiavello- Hartree Centre Josh Williams – Hartree Centre Lorenzo Zanisi – UKAFA

Turbulence in plasma fusion (I)

Turbulence in plasma fusion (II)

Turbulence in plasma fusion (III)

Turbulence in plasma fusion (IV)

Is it true? Tested with BOUT++:

$$\alpha$$
=100

where α is the inverse of the resistive, i.e. the larger value the lower the resistivity along B for the electrons (adiabatic response)!

Turbulence in plasma fusion (V)

 $\alpha = 0.001$

if the resistivity is very high (friction of ions, Landau dumpii and Alfven waves), α is small ar the hydrodyanimc behaviour (Navier-Stokes equations) are recovered.

However, intermedium values (α (~1) trigger the instabilities growth...

Active Control of Drift Wave Turbulence

https://epub.ub.uni-

greifswald.de/frontdoor/deliver/index/docld/477/file/diss brandt christian.pdf

The Hasegawa-Wakatani equations

$$\frac{\partial \tilde{\zeta}}{\partial t} + \widetilde{\{\phi, \zeta\}} = \alpha (\bar{\tilde{\phi}} - \bar{\tilde{n}}) - \mu \nabla^4 \tilde{\zeta}$$
$$\frac{\partial \tilde{n}}{\partial t} + \widetilde{\{\phi, n\}} = \alpha (\bar{\tilde{\phi}} - \bar{\tilde{n}}) - k \frac{\partial \tilde{\phi}}{\partial y} - \mu \nabla^4 \tilde{n}$$

for $\alpha \rightarrow 0$

Similar fluid dynamic behaviours of 2D Navier-Stokes!

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

Generative Adversarial Networks (GANs)

A trained GAN

Can I train a GAN to reconstruct the DNS fields from the internal fields seen as LES fields?

(Kim and Lee, Journal Computational Physics - 2019)

Science and Technology Facilities Council

...I need a more "flexible GAN", StyleGAN!

Our generator thinks of an image as a collection of "styles", where each style controls the effects at a particular scale

- Coarse styles → pose, hair, face shape
- Middle styles → facial features, eyes
- Fine styles → color scheme

Each layer (style) can be adjusted without interfering with the other levels!

Latent space interpolation applied to a voracity field

How StyleGAN is linked to the LES?

We use StyleGAN as deconvolution operator of a LES field to find the corresponding DNS field: we named Style Eddy Simulation (Styles)

Reconstruct DNS fields after matching the LES fields via linear interpolation!

We do not need a RNN!

HW reconstructed vorticity fields

DNS (256x256)

16x16

32x32

64x64

128x128

At low resolution, features can be "non-physical"!

Integration with BOUT++

The integration occurs via an embedded Python call (TensorFlow) from C++

We are looking at 3 possible usages of StyleGAN:

- StylES
- to create valid initial conditions for DNS
- to accelerate DNS via better initial guess for PVODE

Fully integrated BOUT++ with StylES: reconstruction $32^2 \rightarrow 256^2$

100 time units ~20k time steps!

Castagna et al. Physics of Plasma (2024)

Improvements on StyleGAN

- 1) Added hard physics constrains into the generator
 - conservation of mass and electric charge
 - vorticity derived from potential $\zeta = \nabla_{\perp}^2 \phi$

- Faster and better training
- Avoid initial "jump" in potential

2) Moved from MSG-StyleGAN to LES-StyleGAN

- Satisfy uniqueness
- Faster inference
- Avoids search into latent space during time integration!

Improvements on StyleGAN

3) Moving to single channel (valid for $\alpha \ge 1$)

- Faster training and inference
- Lower memory requirements

Lower channels -> ready for the HERMES model!

Results from improvements on StyleGAN

3D HW
initial DNS field from
StyleGAN on single
channel

Training on 1024² went down from 2 weeks to 11h!

The 3D HW on a slab geometry

- 1024 x 8 x 1024, 64 bit (max on 1 GPU!)
- Trained on 2D mHW single channel
- $\alpha=1$, k=1, $\mu_n=\mu_\zeta=10^{-6}$!
- inference on 8 planes using y direction as batch size (8 x 1024 x 1024)
- on Farscape Github and weights on Zenodo
- writing paper
- pip install styles

Mapping BOUT++ divertor to StyleGAN

Leddy's thesis "Integrated modelling of tokamak core and edge plasma turbulence" (2016)

Mapping curved geometries

DNS on highly curved surfaces used for training StyleGAN

data

Inference from StyleGAN after training on curved geometry

Questions?

