Aluno: Ellen Junker, Matheus de Amorim Pacheco.

DISCIPLINA: Estatística

OBSERVAÇÃO: ATIVIDADES ILEGÍVEIS NÃO SERÃO CORRIGIDAS. SERÃO DESCONSIDERADAS E SERÁ ATRIBUIDO ZERO PARA A QUESTÃO

Teste t para média usando exel

https://www.youtube.com/watch?v=V1p0uwImfJk

Use duas ou três casas após a vírgula com aproximações

<u>Instruções:</u> (para testes de hipóteses, Passos: defina as hipóteses (0,25), faça o teste com valor critico (0,25) valor amostral (0,5), tome a decisão (0,5) a resposta deverá ser conclusiva conforme a pergunta do teste).

Testes independentes: caso necessário, calcule a média com duas casas, calcule o desvio padrão com duas casas após a vírgula, para variância elevar o desvio padrão com duas casas já arredondadas ao quadrado e usar variância também com duas casas após a virgula. Grupo 1- grupo de maior variância, F< 4,0 considere variâncias homogêneas:

A) HO E H1; B) VALOR CRITICO DE t OU COMPARAR COM p DE 0,05 NO CASO DO EXEL E VALOR DE t DO Calculo e resposta conclusiva para o problema. (no conteúde tem links para uso do exel para testes t pareados e independentes)

1 (1,5)- (para testes de hipóteses, Passos: defina as hipóteses (0,25), faça o teste com valor critico (0,25) valor amostral (0,5), tome a decisão (0,5) a resposta deverá ser conclusiva conforme a pergunta do teste).

Um jornal apresenta um artigo sobre uma provável contaminação da safra de morangos por carbonato, um defensivo agrícola tóxico. A Organização Mundial de Saúde (OMS) é responsável pela determinação dos limites de contaminação por carbonato ou outros pesticidas, tendo estabelecido que este limite deve ser de 10 unidades de carbonato, em média. De posse dos resultados da análise química de 28 morangos a seguir transcritos: média de 11 unidades de carbonato e desvio padrão de 3,5 unidades, o que você poderia concluir sobre a contaminação da safra a nível de significância de 1%? Interprete os resultados. (método inadequado será desconsiderado a resolução).

Definição de hipóteses:

H0: $\mu = 10$ H1: $\mu \neq 10$

Resolução na página seguinte

Resolução: 10 lμ= n= 28 X= 11 Tcal = $(\overline{X} - \mu) / (S / raiz(n))$ 1,51 3,5 Tcal= α= 0,01 α/2= 0,005 Ho é rejeitada Ho é aceita Ho é rejeitada 27 gl=n-1= Tc= 2,771 Região Região Tc= Crítica Crítica Região de Região de Região de Rejeição Aceitação Rejeição Tcal=1.51 2,77

Decisão

O valor calculado de t está dentro da região de aceitação de Ho.

Conclusão:

As 28 amostras tiveram diferença matemática mas não tiveram uma diferença estatística relevante com um nível de significância de 1%. Ou seja, a diferença da média de 10 para 11 unidades de carbonato não é o suficiente para determinar que a safra ultrapassou o limite de contaminação.

2(1,5)- (para testes de hipóteses, Passos: defina as hipóteses (0,25), faça o teste com valor critico (0,25) valor amostral (0,5), tome a decisão (0,5) a resposta deverá ser conclusiva conforme a pergunta do teste).

Relacionam-se a seguir os valores do consumo de energia elétrica (em kWh) na casa de um morador de Itajaí durante 7 anos diferentes: 11943, 11463, 10789, 9907, 9012, 9942, 11153. A Cia fornecedora de energia afirma que o consumo anual médio é igual a 11000kWh e por isso oferece a ele um plano especial de pagamento baseado nessa quantidade. Ao nível de 5% de significância, teste a afirmação de erro da fornecedora (**método inadequado será desconsiderado a resolução**).

Definição de hipóteses:

H0: $\mu = 11000$ kWh H1: $\mu \neq 11000$ kWh

Resolução na página seguinte

Decisão:

O valor calculado de t está dentro da região de aceitação de Ho.

Conclusão:

H0 foi aceita com significância de 5%, o que indica que 11000kWh pode ser utilizado pela fornecedora de energia como média para as amostras acima. Mesmo existindo uma diferença matemática na média anual ela não é o suficiente para apresentar uma diferença estatística.

3) (1,5) (para testes de hipóteses, Passos: defina as hipóteses (0,25), faça o teste com valor critico (0,25) valor amostral (0,5), tome a decisão (0,5) a resposta deverá ser conclusiva conforme a pergunta do teste). A resistência de concreto à compressão está sendo testada por um engenheiro. Admitir que a resistência à compressão tem distribuição normal com μ de 2250 N. Ele testa corpos de prova segundo amostragem e obtém os dados abaixo. Aplique um teste de hipótese e verifique se a resistência de concreto à compressão está acima da legislação como suspeita o engenheiro ao nível de 5% (método inadequado será desconsiderado a resolução).

Resultados	de resistência	à compres	ssão (N) da amostragem do engenheiro
2216	2237	2249	2204

2216	2237	2249	2204	
2225	2301	2281	2263	
2318	2255	2275	2295	
2204	2216	2301	2289	
2263	2225	2255	2249	
2295	2318	2216	2281	
2216	2216	2225	2275	
2225	2225	2318	2270	
2318	2318			

Definição das Hipóteses:

H0: μ = 2250N H1: μ > 2250N

Resolução:

No. S2 1449,11 1218,83 1688,24 444,71 3374,24 24,13 227,65 1 1218,83 1688,24 24,13 227,65 1 1218,83 1928,24 1688,24 1		μ=	2250	N	n=	34				
Second State Sec							1928,24	524,95	119,07	3126,1
s= 38,07 □ 3126,13 1928,24 1688,24 □ 9,54 1218,83 24,13 □ 1231,18 3374,24 1928,24 □ 1928,24 1928,24 1218,83 □ 1218,83 1218,83 3374,24 □ 1,96 □ 1,96 □ 1,96 □ 1,52 □ 1,409,48 15279,95 9025,12 6 □ 1,52 □ 1,52 □		<u></u> X=	2259,91	N	s2	1449,11	1218,83	1688,24	444,71	9,5
9,54 1218,83 24,13 α = 0,05 1231,18 3374,24 1928,24 1928,24 1928,24 1218,83 3374,24 1218,83 1218,83 3374,24 2cal = 1,52 17409,48 15279,95 9025,12 6 Região de Aceitação Região de Rejeição Região Região de Rejeição Rejeição Rejeição Rejeição Rejeição Rejeição Rejeição							3374,24	24,13	227,65	1231,
Ca		S=	38,07				3126,13	1928,24	1688,24	846,
1928,24 1928,24 1218,83 1218,83 3374,24 3374,24 3374,24 3374,24 3374,24 27 27 27 27 27 27 27							9,54	1218,83	24,13	119,
Teste-z: duas amostras para médias Teste-z: duas amostras para médias		α=	0,05				1231,18	3374,24	1928,24	444,
Teste-z: duas amostras para médias Ho é rejeitada Região Região de Aceitação Região de Rejeição Região de Aceitação Região de Aceitação Região de Rejeição							1928,24	1928,24	1218,83	227,
Teste-z: duas amostras para médias Teste-z: duas amostras para médias		Zc=	1,96				1218,83	1218,83	3374,24	101,
Teste-z: duas amostras para médias							3374,24	3374,24		
Ho é aceita Ho é rejeitada Região Crítica Região de Aceitação Região de Rejeição Região de Aceitação Região de Rejeição Região de Rejeição Região de Rejeição Região de Rejeição		Zcal=	1,52							
Ho é aceita							17409,48	15279,95	9025,12	6106,
Média 2259,91 2250 Variância conhecida 1449,11 0,0001 Observações 34 34 Hipótese da diferença 0 Z							Teste-z: duas amostras	para médi	as	
Região de Aceitação Rejeição P(Z<=z) uni-caudal 0,06	Но	é aceita	Но	á roi	oitada		Teste-z: duas amostras			
Região de Aceitação Rejeição Rejeição Região de Rejeição Rejeiro Rejeição R	Ho	é aceita	\	_	eitada			Dado	НО	
Região de Aceitação Rejeição 2 1,52 Região de Rejeição 2 1,52 P(Z<=z) uni-caudal 0,06 z crítico uni-caudal 1,64	Ho	é aceita	\	_	eitada		Média	Dado 2259,91	H0 2250	
Regiao de Aceitação Rejeição P(Z<=z) uni-caudal 0,06	Ho	é aceita	\	_	eitada		Média Variância conhecida	Dado 2259,91 1449,11	HO 2250 0,0001	
Aceitação Rejeição 1,64	Ho	é aceita	\	_	eitada		Média Variância conhecida Observações	Dado 2259,91 1449,11 34	HO 2250 0,0001	
z critico uni-caudal 1,64			Re-	gião tica →			Média Variância conhecida Observações Hipótese da diferença	Dado 2259,91 1449,11 34 0	HO 2250 0,0001	
100		gião de	Rei Crí	gião tica → ião de			Média Variância conhecida Observações Hipótese da diferença z	Dado 2259,91 1449,11 34 0 1,52	HO 2250 0,0001	
$P(Z \le 1,96)$ $P(Z \le 2)$ bi-caudal 0,13		gião de eitação	Red Cri	gião tica → ião de eição			Média Variância conhecida Observações Hipótese da diferença z P(Z<=z) uni-caudal	Dado 2259,91 1449,11 34 0 1,52	HO 2250 0,0001	
Zcal = 1,52		gião de eitação	Rei Crí	gião tica → ião de eição			Média Variância conhecida Observações Hipótese da diferença z P(Z<=z) uni-caudal z crítico uni-caudal P(Z<=z) bi-caudal	Dado 2259,91 1449,11 34 0 1,52 0,06 1,64 0,13	HO 2250 0,0001	

Decisão:

O valor calculado de z está dentro da região de aceitação de Ho.

Conclusão:

Mesmo estando acima da legislação em questões numéricas, a compressão não está acima em um nível relevante estatisticamente com um nível de significância de 5%. Isso significa que a resistência de concreto à compressão **não** está acima da legislação como suspeita o engenheiro.

4-(1,5) (para testes de hipóteses, Passos: defina as hipóteses (0,25), faça o teste com valor critico (0,25) valor amostral (0,5), tome a decisão (0,5) a resposta deverá ser conclusiva conforme a pergunta do teste).

Para verificar a eficiência de um cartaz na estimulação à compra de determinado produto 7 pares de lojas foram formados, cada par tendo as mesmas características quanto à localização, ao tamanho e ao volume geral das vendas. Isso feito, o cartaz foi colocado numa das lojas do par, não o sendo em sua correspondente, tendo o processo sido repetido para os 7 pares. Abaixo aparecem as vendas semanais do produto durante a experimentação, expressas em média de observação conduzida por dois meses. Analise os dados e conclua, a 5%, sobre o potencial do cartaz na indução à compra do produto.

Par	1	2	3	4	5	6	7
Com cartaz	16	24	18	14	26	17	29
Sem cartaz	13	18	14	16	19	12	22

Definição de hipóteses:

H0: μ cc = μ sc--> μ cc - μ sc = 0 H1: μ cc > μ sc --> μ cc - μ sc > 0 sc = sem cartaz | cc = com cartaz

Resolução:

1	2	3	4	5	6	7
16	24	18	14	26	17	29
13	18	14	16	19	12	22
3	6	4	-2	7	5	7
4,29			ΣD=	30		
9,90						
3,15			α=	0,05		
2.60			-l-	-		
3,00			gi=	0		
1,94						
	4,29 9,90 3,15	16 24 13 18	16 24 18 13 18 14 3 6 4 4,29 9,90 3,15 3,60	16 24 18 14 16 13 18 14 16 3 6 4 -2 ΣD= 9,90 3,15 α= gl=	16 24 18 14 26 13 18 14 16 19 3 6 4 -2 7 4,29 ΣD= 30 9,90 3,15 α= 0,05 3,60 gl= 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Teste-t: duas amostras em par para médias		
	c\ cartaz	s\ cartaz
Média	20,57	16,29
Variância	32,62	12,90
Observações	7	7
Correlação de Pearson	0,87	
Hipótese da diferença de média	0	
gl	6	
Stat t	3,60	
P(T<=t) uni-caudal	0,006	
t crítico uni-caudal	1,94	
P(T<=t) bi-caudal	0,01	
t crítico bi-caudal	2,45	

Decisão:

O valor calculado de t está fora da região de aceitação de Ho.

Conclusão:

Como o valor de t está fora da região de aceitação de Ho pode-se concluir que a média de vendas para lojas com cartazes foi maior que a média de vendas das lojas sem cartazes, considerando um nível de 5% de significância. Portanto, pode ser confirmado que os cartazes possuem um bom potencial de indução à compra.

5-(1,5)(para testes de hipóteses, Passos: defina as hipóteses (0,25), faça o teste com valor critico (0,25) valor amostral (0,5), tome a decisão (0,5) a resposta deverá ser conclusiva conforme a pergunta do teste).

Cinco operadores de um certo tipo de máquina são treinados em máquinas de duas marcas diferentes, A e B. Mediu-se o tempo em segundos que cada um deles gastou na realização da mesma tarefa, e os resultados estão abaixo:

Operador 1 2 3 4 5

Marca A 80 72 65 78 85

Marca B 75 70 60 72 78

Suponha que os tempos sigam uma distribuição normal. Há suspeitas de que a máquina B é mais rápida. Usando 5% de significância, com base nos dados acima, as suspeitas são confirmadas?

Definição de hipóteses:

H0: $\mu a = \mu b --> \mu a - \mu b = 0$

H1: $\mu a > \mu b --> \mu a - \mu b > 0$

Resolução:

operador	1	2	3	4	5	
marca a	80	72	65	78	85	seg
marca b	75	70	60	72	78	seg
diferença	5	2	5	6	7	
<u>D</u> =	5			ΣD=	25	
S2=	3,5					
SD=	1,87		α=	0,05		
t=	5,98			gl=	4	
tc=	2,13					

Teste-t: duas amostras em par para médias		
	marca a	marca b
Média	76	71
Variância	59,5	47
Observações	5	5
Correlação de Pearson	0,97	
Hipótese da diferença de média	0	
gl	4	
Stat t	5,98	
P(T<=t) uni-caudal	0,002	
t crítico uni-caudal	2,13	
P(T<=t) bi-caudal	0,004	
t crítico bi-caudal	2,78	

Decisão:

O valor calculado de t está fora da região de aceitação de Ho.

Conclusão:

Como o valor de t está fora da regiçao de aceitação de Ho podemos afirmar que a hipótese H1 está correta, portanto, a um nível de 5% de significância, a máquina B de fato é mais rápida que a máquina A.

6) (1,5)(para testes de hipóteses, Passos: defina as hipóteses (0,25), faça o teste com valor critico (0,25) valor amostral (0,5), tome a decisão (0,5) a resposta deverá ser conclusiva conforme a pergunta do teste).

<u>Corrosão em vigas metálicas:</u> Produtos químicos estão sendo estudados dois processos diferentes de combate a corrosão em vigas. Para verificar o efeito dos dois processos foram utilizadas duas amostras aleatórias que apresentaram os valores da tabela, quanto a variável "duração viga (em meses) antes da primeira mancha de corrosão aparecer". Ao nível de significância de 5% é possível afirmar que um tratamento é melhor do que o outro?

Processo	Tamanho da	Média	Desvio
	amostra		padrão
A	15	48	10
В	12	52	15

Definição de hipóteses:

H0**:** μa = μb H1: μa ≠ μb

Resolução:

resolução:					
Processo	Tamanho da Amostra	Média	Desvio Padrão	Variância	
Α	15	48	10	100	
В	12	52	15	225	-> maior variância
α =	0,05				
F=225/100 =	2,25	<4 homogênea			
gl	12+15-2 =	25			
S ² a	((12-1)*225 + (15-1)*100)/25 =	155			
Sa =	12,4498996	≅	12,45		
α/2 =	0.005				
tc pela tabela =	0,025 2,06				
-6.18 -4.12	-2.06 0 2.06	4.12			
Pos	síveis valores da estatís	stica t			

Decisão:

O valor calculado de t está dentro da região de aceitação de Ho.

Conclusão:

0,83 é a região de H0 verdadeiro, portanto, não há diferenças significativas nas médias e não pode ser afirmado que um tratamento é melhor que o outro.

7) (1,0)A tabela abaixo apresenta valores que mostram como o comprimento de uma barra de aço varia conforme a temperatura:

25 T (°C) 10 15 30 mm (m) 1003 1005 1011 1014 1010

Usando o exel apresente (copie as saídas para a avaliação, entrada de dados e saída de dados):

- a) A) (vale 0,35) O coeficiente de correlação (r) e O coeficiente de determinação (r²),
- b) b) (vale 0,3) Apresente o diagrama de dispersão com a Equação da reta de regressão
- c) d) (Vale 0,35)Discuta claramente os resultados (vide slides de aula).

Respostas:

a)
$$r = 0.98 r^2 = 0.97$$

b)

c)

r	Correlação
0,000	Nula
0,000 0,350	Fraca
0,350 0,650	Média
0,650 0,950	Forte
0,950 0,990	Muito forte
1,000	Perfeita

r	Correlação
0,9 < r ≤1,0	Ótima
0,8 < r ≤0,9	Boa
$0.7 < r \le 0.8$	Razoável
0,6 < r ≤ 0,7	Medíocre
$0.5 < r \le 0.6$	Péssima
r ≤0,5	Imprópria

Através da análise dos resultados é possível concluir que existe uma forte correlação entre o comprimento de uma barra de aço e a temperatura. Como o valor de r (0,98) é maior que zero e se aproxima de 1, existe uma correlação direta classificada como muito forte, se utilizarmos a primeira tabela como critério. Se o critério for baseado na segunda tabela, sua correlação é direta (por ser maior que zero) e ótima, por ser menor que 1 e maior que 0,9.

Resolução:

•					
T (° C)> x	mm (m)> y	x^2	y^2	ху	$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2} \cdot \sqrt{n\sum y^2 - (\sum y)^2}}$
10	1003	100	1006009	10030	$\sqrt{n\sum x^2 - (\sum x)^2} \cdot \sqrt{n\sum y^2 - (\sum y)^2}$
15	1005	225	1010025	15075	
20	1010	400	1020100	20200	n= 5
25	1011	625	1022121	25275	r= 0,98
30	1014	900	1028196	30420	
100	5043	2250	5086451	101000	
a)					
r=	0,98260737	≅	0,98		
r^2=	0,96550276	≅	0,97		

