

CE2101/ CZ2101: Algorithm Design and Analysis

Introduction to Sorting

Ke Yiping, Kelly

<u>Instructor's Information</u>

• Name: Ke Yiping, Kelly

• **Phone**: 6790-5046

Email: <u>ypke@ntu.edu.sg</u>

• Office: N4-02a-12

earning Ohiectives

At the end of this lecture, students should be able to:

- Define what is sorting
- Explain why we learn sorting
- Analyse the objective and evaluation of sorting algorithms

Definition (sorting in ascending order):

Given a set of records r1, r2, ..., rn with key values k1, k2,..., kn, arrange records in order s such that records rs1, rs2,..., rsn have keys with property ks1 [] ks2 [] ... [] ksn.

Definition (sorting in ascending order):

Given a set of records r1, r2, ..., rn with key values k1, k2,..., kn, arrange records in order s such that records rs1, rs2,..., rsn have keys with property ks1 | ks2 | ... | ksn.

Definition (sorting in ascending order):

Given a set of records r1, r2, ..., rn with key values k1, k2,..., kn, arrange records in order s such that records rs1, rs2,..., rsn have keys with property ks1 [] ks2 [] ... [] ksn.

Definition (sorting in ascending order):

Given a set of records r1, r2, ..., rn with key values k1, k2,..., kn, arrange records in order s such that records rs1, rs2,..., rsn have keys with property ks1 | ks2 | ... | ksn.

Definition (sorting in ascending order):

Given a set of records r1, r2, ..., rn with key values k1, k2,..., kn, arrange records in order s such that records rs1, rs2,..., rsn have keys with property ks1 [] ks2 [] ... [] ksn.

Definition (sorting in ascending order):

Given a set of records r1, r2, ..., rn with key values k1, k2,..., kn, arrange records in order s such that records rs1, rs2,..., rsn have keys with property ks1 [] ks2 [] ... [] ksn.

Definition (sorting in ascending order):

Given a set of records r1, r2, ..., rn with key values k1, k2,..., kn, arrange records in order s such that records rs1, rs2,..., rsn have keys with property ks1 [] ks2 [] ... [] ksn.

Spark 10 45
Tera Sort 10 12

Why do we learn sorting?

Why do we learn sorting?

 Things must be kept in some order if we want to find them quickly.

Why do we learn sorting?

- Things must be kept in some order if we want to find them quickly.
- How to arrange things in order? Sorting algorithms.
- Sorting is a basic building block for many algorithms.

Reference: T. (2015, April 19). Binary search in a sorted array. Retrieved May 18, 2016, from https://commons.wikimedia.org/wiki/File:Binary_search_into_array.png#/media/File:Binary_search_into_array.png

Why do we learn sorting?

- Things must be kept in some order if we want to find them quickly.
- How to arrange things in order? Sorting algorithms.
- Sorting is a basic building block for many algorithms.
- Most thoroughly studied problem in Computer Science.
- To learn ideas in Algorithm Design derived from techniques in sorting.

<u> Evample: Disioint Sets</u>

 Problem: Determine whether two sets (both of size n) are disjoint.

Evample: Disjoint Sets

- **Problem:** Determine whether two sets (both of size *n*) are disjoint.
 - Solution 1: Compare each element of the 1st set with each element of the 2nd set. That is, n2 comparisons.

Example: Disipint Sets

- Problem: Determine whether two sets (both of size n) are disjoint.
 - **Solution 1:** Compare each element of the 1st set with each element of the 2nd set. That is, **n2** comparisons.
 - Solution 2:

Step 1: We first sort the first set into ascending order. This takes O(n | gn) effort using Mergesort or Heapsort.

Step 2: For each element in the 2nd set, we use Binary Search to find it in the 1st set. This takes *O(nlgn)* time.

Comparison of Parformance

Solution 1: O(n2)

Solution 2: $O(n \lg n)$

Savings:

n =	64	128	256	512
n2 =	4,096	16,384	65,536	262,144
nlgn =	384	896	2,048	4,608

Comparison of Parformance

The data items to be sorted:

- Given a (very large) list of records.
- Each record has the following form: key; rest info of record:

```
class ALIST {
   KeyType key;
   DataType data;
};
```

- Key domain is an ordered set.
- Objective: To arrange records in 'ascending' or 'descending' order.

Comparison of Parformance

The data items to be sorted:

- Given a (very large) list of records.
- Each record has the following form: key; rest of record:

```
class ALIST {
   KeyType key;
   DataType data;
};
```

- Key domain is an ordered set.
- Objective: To arrange records in 'ascending' or 'descending' order.

Comparison of Porformance

- Sorting can be classified into internal sorting and external sorting are sorting as a sorting and external sorting are sorting as a sorting and external sorting are sorting as a sorting are sorting are sorting as a sorting are sorting as a sorting are sorting
 - We focus on internal sorting only,

i.e., all records are in (high speed) main memory during sorting.

Sorting involves two basic actions:

key comparisons between two records

swapping records around

• Goal: Use minimum working space and do as few key comparisons as possible.

<u>Summary</u>

- Sorting is to arrange a set of records so that their key values are in ascending or descending order.
- It is important to learn sorting, because:
 - Sorting has important applications
 - · Ideas of sorting can be used for other algorithms
- Objective is to design sorting algorithms with:
 - Minimum usage of memory
 - Minimum number of key comparisons or swaps