

Product Data

Bryant's air-cooled air conditioning split systems:

- provide a logical solution for commercial needs
- have a rugged, dependable construction
- are available in single and circuit scroll compressor capacity control
- have cooling capability up to 125°F (52°C) ambient and down to 40°F (4°C) ambient standard

FEATURES / BENEFITS

These dependable outdoor air cooled condensing units match Bryant's indoor-air handlers to meet a wide selection of cooling solutions.

Constructed for long life

The 569J single circuit and 569J dual circuit, scroll compressor models are designed and built to last. The high efficient designed outdoor coil construction allows for a more efficient design in a smaller cabinet size that utilizes an overall reduction in refrigerant charge. Where conditions require, special coil coating coil protection option is available. Cabinets are constructed of prepainted galvanized steel, delivering unparalleled protection from the environment. Inside and outside surfaces are protected to ensure long life, good looks, and reliable operation. Safety controls are used for enhanced system protection and reliability.

Each unit utilizes the Comfort Alert diagnostic and troubleshoot control system. This protects the units operation and provides valuable diagnostic information when required.

569J*07-14 shown

FEATURES AND BENEFITS (cont.)

Factory-installed options (FIOPs)

Certified and pre-engineered factory-installed options (FIOPs) allow units to be installed in less time, thereby reducing installed cost. FIOPs include:

- low ambient controls which provide cooling operation down to -20°F (-29°C) ambient temperatures
- non-fused disconnect
- 115-v GFI (ground fault interrupter) convenience outlet, powered and non-powered available
- special coil coating coil protection
- · louvered hail guard

Efficient operation

These air cooled condensing units will provide EER's up to 11.5 which meets ASHRAE 90.1 efficiency levels. The 569J dual compressor models provide two (2) stages of cooling for remarkable partial load performance.

This high efficiency will help reduce overall operating cost and energy consumption.

Controls for performance dependability

The 569J condensing units offer operating controls and components designed for performance dependability. The high efficiency hermetic scroll compressor is engineered for long life and durability. The compressors include vibration isolation for quiet operation. The high-pressure switch protects the entire refrigeration system from abnormally high operating pressures. A low-pressure switch protects the system from loss of charge. These units also include anti-short-cycling protection, which helps to protect the units against compressor failure.

All units include a crankcase heater to eliminate liquid slugging at start-up. Each unit comes standard with the Comfort Alert™ control system. This provides:

- System Go LED indicator
- Fault LED indicator
- Compressor fault LED indicator
- Phase loss protection
- Phase reversal protection
- Safety pressure indicator
- Anti-short cycle protection

The latest safety standards for 569J* units are assured through UL, Canada approvals.

Innovative Bryant 524J packaged air handlers are custom matched to 569J*condensing units

Information on matching 524J DX packaged air handler follows for convenience. See separate product data for more details. The 524J Series has excellent fan performance, efficient direct-expansion (DX) coils, a unique combination of indoor-air quality features, and is easy to install. Its versatility and state-of-the-art features

help to ensure economical performance of the split system both now and in the future.

Indoor-air quality (IAQ) features

The unique combination of IAQ features in the 524J Series air handlers help to ensure that only clean, fresh, conditioned air is delivered to the occupied space.

Direct-expansion (DX) 4 row cooling coils prevent the build-up of humidity in the room, even during part-load conditions.

Standard 2-in. (51mm) disposable filters remove dust and airborne particles from the occupied space for cleaner air.

The pitched, non-corroding drain pan can be adjusted for a right-hand or left-hand connection to suit many applications and provide positive drainage and prevent standing condensate.

The accessory economizer can provide ventilation air to improve indoor-air quality by using demand control ventilation. When used in conjunction with Bryant Comfort System and CO₂ sensors, the economizer admits fresh outdoor air to replace stale, recirculated indoor air.

Economy

The 524J Series packaged air handlers provide reduced installation expense and energy-efficient performance.

Quick installation is ensured by the multipoise design. Units can be installed in either the horizontal or vertical configuration without modifications. Fan motors and contactors are pre-wired and thermostatic expansion valves (TXVs) are factory-installed on all 524J models.

High efficiency, precision-balanced fans minimize air turbulence, surging, and unbalanced operation, cutting operation expenses.

The economizer accessory precisely controls the blend of outdoor air and room air to achieve comfort levels. When the outside air enthalpy is suitable, outside air dampers can fully open to provide "free" cooling without energizing mechanical cooling.

Rugged dependability

The 524J series units are made to last. The die-formed galvanized steel panels ensure structural integrity under all operating conditions. Galvanized steel fan housings are securely mounted to a die-formed galvanized steel fan deck.

Rugged pillow-block bearings (524J14) are securely fastened to the solid steel fan shaft with split collets and clamp locking devices. Smaller unit sizes have spider-type bearings.

-69

FEATURES AND BENEFITS (cont.)

Coil flexibility

TABLE OF CONTENTS

Model 524J direct- expansion coils have galvanized steel
casings; inlet and outlet connections are on the same end.
The coils are designed for use with Puron (R-410A)
refrigerant and have ³ / ₈ -in. diameter copper tubes
mechanically bonded to aluminum sine-wave fins. The
coils include matched, factory-installed thermostatic
expansion valves (TXVs) with matching distributor
nozzles and offers a removable power element and
extended connections.

Easier installation and service

The multipoise design and component layout ensures quick unit installation and operation. Units can be converted from horizontal to vertical operation by simply repositioning the unit. Drain pan connections are duplicated on both sides of the unit. The filters, motor, drive, TXVs, and coil connections are all easily accessed by removing a single side panel.

PAGE
FEATURES / BENEFITS 1
MODEL NUMBER NOMENCLATURE 4
AHRI CAPACITY RATINGS
SOUND POWER LEVELS 5
PHYSICAL DATA 6
DIMENSIONS 8
OPTIONS AND ACCESSORIES
SELECTION PROCEDURE
TYPICAL WIRING SCHEMATIC 16
PERFORMANCE DATA
ELECTRICAL DATA
APPLICATION DATA
TYPICAL PIPING AND WIRING 53
GUIDE SPECIFICATIONS 57

MODEL NUMBER NOMENCLATURE

9 10 11 12 13 14 15 16 17 5 6 9 J Ε A 0 0 0 G 0 0 A 0 A 1 4

Model Type

569J = Bryant Condensing Unit Puron® R-410A Refrigerant

Voltage

E = 460/3/60P = 208/230/3/60

T = 575/3/60

Nominal Tonnage

07 = 6 Tons 16 = 15 Tons 08 = 7.5 Tons 25 = 20 Tons

12 = 10 Tons 14 = 12.5 Tons

Refrigerant Circuit

A = Single Circuit

B = Single Circuit with Low Ambient Controller

D = Dual Circuit

E = Dual Circuit with Low Ambient controller

Factory Assigned

0 = Default

Factory Assigned

0 = Default

Packaging

A = Standard

B = LTL

Base Unit Controls

0 = None

Electrical Options

A = None

C = Non-Fused Disconnect

Service Options

0 = Electro-Mechanical Controls

1 = Unpowered Convenience Outlet

2 = Powered Convenience Outlet

Factory Assigned

0 = Default

Coil Options - Condenser

With All Aluminum – NOVATION Design (07–16 sizes)

G = AI/AI

K = E-Coat Al/Al

T = Al/Al with louvered hail guard

W = E-Coat Al/Al with louvered hail guard

Coil Options - Condenser

With Round Tube/Plate Fin Design

A = Al/Cu Standard

 $\mathsf{B} = \mathsf{Pre}\text{--}\mathsf{Coated}\;\mathsf{Al}/\mathsf{Cu}$

C - E-Coat Al/Cu

E = Cu/Cu

M = Al/Cu Standard with louvered hail guard

N = Pre-Coated Al/Cu with louvered hail guard

 $P = E - Coat \, al/Cu \, with \, louvered \, hail \, guard$

R = Cu/Cu - Louvered hail guard

Factory Assigned

0 = Default

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program For verification of certification for individual products, go to www.ahridirectory.org.

Certified to ISO 9001

AHRI* CAPACITY RATINGS

UNIT	COOLING CIRCUITS	COMPRESSORS	NOM. CAPACITY (TONS)	NET COOLING CAPACITY (MBH)	TOTAL POWER (kW)	EER	IEER
569J*07A/524J*07	1	1	6	71.0	6.2	11.5	12.2
569J*08A/524J*08	1	1	7.5	92.0	8.2	11.2	11.8
569J*12A/524J*12	1	1	10	117.0	10.4	11.2	12.0
569J*14A/524J*14	1	1	12.5	148.0	13.5	11.0	12.0
569J*16A/524J*16	1*	2	15	184.0	16.4	11.2	13.2
569J*25A/524J25	1*	2	20	240.0	21.8	11.0	11.2

^{*} Single circuit with two (tandem) compressors. See application tip #38TIP-10-03 for staging capabilities.

UNIT	COOLING CIRCUITS	COMPRESSORS	NOM. CAPACITY (TONS)	NET COOLING CAPACITY (MBH)	TOTAL POWER (kW)	EER	IEER
569J*12D/524J12	2	2	10	117.0	10.4	11.2	11.6
569J*14D/524J14	2	2	12.5	148.0	13.5	11.0	12.0
569J*16D/524J16	2	2	15	184.0	16.4	11.2	11.8
569J*25D/524J25	2	2	20	240.0	21.8	11.0	11.2

LEGEND

EER

AHRI – Air Conditioning, Heating and Refrigeration

Institute

ASHRAE - American Society of Heating, Refrigerating

and Air Conditioning, Inc.Energy Efficiency Ratio

IEER - Integrated Energy Efficiency Ratio

NOTES

- Rated in accordance with AHRI Standard 340/360, as appropriate.
- 2. Ratings are based on:

Cooling Standard: 80°F (27°C) db, 67°F (19°C) wb indoor air temp and 95°F (35°C) db outdoor air temp. **IEER Standard:** 80°F (27°C) db, 67°F (19°C) wb indoor air temp and 4 various outdoor temperatures.

All units comply with ASHRAE 90.1 Energy Standard for minimum EER and IEER requirements.

SOUND POWER LEVELS, dB

UNIT	COOLING			OU.	TDOOR	SOUND	(dB)			
ONIT	CIRCUITS	A-WEIGHTED	63	125	250	500	1000	2000	4000	8000
		NOVATION - A	II Alumii	num Coil	Design				•	,
569J*07A	1	82	86.4	86.0	79.2	80.2	77.6	72.0	67.9	62.3
569J*08A	1	82	86.8	85.7	80.3	80.3	77.7	72.3	70.2	65.4
569J*12A	1	82	82.8	81.5	79.2	79.4	76.2	72.3	69.4	64.2
569J*14A	1	82	82.9	78.5	77.0	77.0	75.6	75.9	72.3	70.9
569J*16A	1	80	90.3	81.8	78.0	76.7	75.2	70.5	66.4	61.9
569J*25A	1	85	91.0	85.0	80.0	86.0	79.0	73.0	68.0	63.0
569J*12D	2	82	85.2	84.0	81.0	79.5	76.6	72.4	69.3	69.5
569J*14D	2	82	84.7	79.8	78.8	77.6	77.0	72.5	70.3	67.3
569J*16D	2	80	90.3	81.8	78.0	76.7	75.2	70.5	66.4	61.9
569J*25D	2	85	91.0	85.0	80.0	86.0	79.0	73.0	68.0	63.0
	•	RTPF - Round 1	Tube/Plat	te Fin Co	il Desigr	ì				
569J*07A	1	85	89.3	85.0	82.0	82.7	80.2	75.2	71.0	66.0
569J*08A	1	85	89.3	85.0	82.0	82.7	80.2	75.2	71.0	66.0
569J*12A	1	83	86.6	81.9	85.7	80.0	77.1	74.6	69.2	65.8
569J*12D	2	84	86.3	85.8	81.4	81.9	79.5	75.1	71.9	68.9
569J*14D	2	83	81.7	80.9	82.2	80.4	78.2	73.6	69.7	65.4
569J*16A	2	83	86.7	81.2	78.9	80.4	78.0	74.2	70.2	65.0
569J*16D	2	83	86.7	81.2	78.9	80.4	78.0	74.2	70.2	65.0
569J*25A	2	85	91.0	85.0	80.0	86.0	79.0	73.0	68.0	63.0
569J*25D	2	85	91.0	85.0	80.0	86.0	79.0	73.0	68.0	63.0

LEGEND

dB = Decibel

NOTE: Outdoor sound data is measure in accordance with AHRI standard 270-2008.

PHYSICAL DATA

Single Circ	uit Models with	NOVATION - AII	Aluminum Coil I	Design	
	569J*07A	569J*08A	569J*12A	569J*14A	569J*16A
Refrigeration System					
# Circuits / # Comp. / Type	1 / 1 / Scroll	1 / 1 / Scroll	1 / 1 / Scroll	1 / 1 / Scroll	1 / 2 /Scroll
R-410A charge A/B (lbs)	4.4	4.9	6.3	7.3	12.2
System charge w/ fan coil	8.4	10.2	13.8	18.0	24.6
Metering device	TXV	TXV	TXV	TXV	TXV
High-press. Trip / Reset (psig)	630 / 505	630 / 505	630 / 505	630 / 505	630 / 505
Low-press. Trip / Reset (psig)	54 / 117	54 / 117	54 / 117	54 / 117	54 / 117
Cond. Coil					
Material (Fin/Tube)	Al/Al	Al/Al	AI/AI	Al/Al	AI/AI
Coil type	Novation	Novation	Novation	Novation	Novation
Rows / FPI	1 / 20.3	1 / 20.3	1 / 20.3	1 / 20.3	1 / 20.3
Total face area (ft2)	17.5	20.5	25.0	31.8	25.0 x 2
Cond. fan / motor					
Qty / Motor drive type	2 / direct	2 / direct	2 / direct	2 / direct	3 / direct
Motor HP / RPM	1/4 / 1100	1/4 / 1100	1/4 / 1100	1/4 / 1100	1/4 / 1100
Fan diameter (in)	22	22	22	22	22
Nominal Airflow (cfm)	6,000	6,000	6,000	6,000	10,000
Watts (total)	610	610	610	610	970

Note: 569J*25 model is not available with NOVATION coil.

Single Circ	uit Models wit	h RTPF - Rou	nd Tube/Plate	Fin Coil Desig	ın	
	569J*07A	569J*08A	569J*12A	569J*14A	569J*16A	569J*25A
Refrigeration System						
# Circuits / # Comp. / Type	1 / 1 / Scroll	1 / 2 / Scroll	1 / 2 / Scroll			
R-410a charge A/B (lbs)	11.0	13.0	16.0	32.0	32.0	28.0
System charge w/ fan coil*	14.0	17.0	20.0	N/A	43.0	38.0
Metering device	TXV	TXV	TXV	TXV	TXV	TXV
High-press. Trip / Reset (psig)	630 / 505	630 / 505	630 / 505	630 / 505	630 / 505	630 / 505
Low-press. Trip / Reset (psig)	54 / 117	54 / 117	54 / 117	54 / 117	54 / 117	54 / 117
Cond. Coil						
Material (Fin/Tube)	Al/Cu	Al/Cu	Al/Cu	Al/Cu	Al/Cu	Al/Cu
Coil type	RTPF	RTPF	RTPF	RTPF	RTPF	RTPF
Rows / FPI	2 / 17	2 / 17	2 / 17	3 / 17	2 / 17	2 / 17
Total face area (ft2)	17.5	17.5	25.1	31.8	23.5 x 2	25.0 x 2
Cond. fan / motor						
Qty / Motor drive type	2 / direct	2 / direct	2 / direct	2 / direct	3 / direct	4 / direct
Motor HP / RPM	1/4 / 1100	1/4 / 1100	1/4 / 1100	1/4 / 1100	1/4 / 1100	1/4 / 1100
Fan diameter (in)	22	22	22	22	22	22
Nominal Airflow (cfm)	6,000	6,000	6,000	6,000	9,000	12,000
Watts (total)	610	610	610	610	970	1150

^{*} Approximate system charge with about 25 ft piping of sizes indicated with matched 524J

PHYSICAL DATA (CONT.)

Dual Circuit Models with N			
	569J*12D	569J*14D	569J*16D
Refrigeration System			
# Circuits / # Comp. / Type	2 / 2 /Scroll	2 / 2 /Scroll	2 / 2 /Scroll
R-410A charge A/B (lbs)	3.0 /3.1	3.7/3.9	6.1/6.1
System charge w/ fan coil	7.4 / 7.4	10.8 / 10.8	12.0/12.0
Metering device	TXV	TXV	TXV
High-press. Trip / Reset (psig)	630 / 505	630 / 505	630 / 505
Low-press. Trip / Reset (psig)	54 / 117	54 / 117	54 / 117
Cond. Coil			
Material (Fin/Tube)	Al/Al	Al/Al	Al/Al
Coil type	Novation	Novation	Novation
Rows / FPI	1 / 20.3	1 / 20.3	1 / 20.3
Total face area (ft2)	25.0	31.8	25.0 x 2
Cond. fan / motor			
Qty / Motor drive type	2 / direct	2 / direct	3 / direct
Motor HP / RPM	1/4 / 1100	1/4 / 1100	1/4 / 1100
Fan diameter (in)	22	22	22
Nominal Airflow (cfm)	6,000	6,000	10,000
Watts (total)	610	610	970

Note: 569J*25D model is not available with NOVATION coil.

Dual Circuit Models with F	RTPF - Round Tu	be/Plate Fin Coil	Design	
	569J*12D	569J*14D	569J*16D	569J*25D
Refrigeration System				
# Circuits / # Comp. / Type	2 / 2 / Scroll	2 / 2 /Scroll	2 / 2 / Scroll	2 / 2 / Scroll
R-410a charge A/B (lbs)	8.0 / 8.0	16.0 / 16.0	16.0 / 16.0	14.0 / 14.0
System charge w/ fan coil*	11.0 / 11.0	22.0 / 22.0	22.0 / 22.0	19.0 / 19.0
Metering device	TXV	TXV	TXV	TXV
High-press. Trip / Reset (psig)	630 / 505	630 / 505	630 / 505	630 / 505
Low-press. Trip / Reset (psig)	54 / 117	54 / 117	54 / 117	54 / 117
Cond. Coil				
Material (Fin/Tube)	Al/Cu	Al/Cu	Al/Cu	Al/Cu
Coil type	RTPF	RTPF	RTPF	RTPF
Rows / FPI	2 / 17	3 / 17	2 / 17	2 / 17
total face area (ft2)	25.1	31.8	23.5 x 2	25.0 x 2
Cond. fan / motor				
Qty / Motor drive type	2 / direct	2 / direct	3 / direct	4 / direct
Motor HP / RPM	1/4 / 1100	1/4 / 1100	1/4 / 1100	1/4 / 1100
Fan diameter (in)	22	22	22	22
Nominal Airflow (cfm)	6,000	6,000	9,000	12,000
Watts (total)	610	610	970	1150

^{*} Approximate system charge with about 25 ft piping of sizes indicated with matched 524J

DIMENSIONS

UNIT	ELECTRICAL	STD. UI	NIT WT.	CORN	ER A	CORN	ER B	CORN	ER C	CORN	ER D		CENTER OF GRAVITY		UNIT HEIGHT
UNII	CHARACTERISTICS	LBS.	KG.	LBS.	KG.	LBS.	KG.	LBS.	KG.	LBS.	KG.	X	Y	I	Н
569J-07A (MCHX)	208/230-3-60,460-3-60,575-3-60	328	149	128	58	68	31	62	28	70	32	21 [533.4]	19 [482.6]	13 [330.2]	42-3/8 [1076.0]
569J-08A (MCHX)	208/230-3-60,460-3-60,575-3-60	353	160	138	63	72	33	65	29	78	35	19 [482.6]	23 [584.2]	13 [330.2]	42-3/8 [1076.0]
569J-12A (MCHX)	208/230-3-60,460-3-60,575-3-60	418	190	165	75	85	39	78	35	90	41	23 [584.2]	20 [508.0]	15 [381.0]	50-3/8 [1279.2]
569J-14A (MCHX)	208/230-3-60,460-3-60,575-3-60	431	196	162	73	82	37	92	42	95	43	19 [482.6]	23 [584.2]	15 [381.0]	50-3/8 [1279.2]
569J-12D (MCHX)	208/230-3-60,460-3-60,575-3-60	499	226	193	88	111	50	72	38	123	56	20 [508.0]	23 [584.2]	15 [381.0]	50-3/8 [1279.2]
569J-14D (MCHX)	208/230-3-60,460-3-60,575-3-60	505	229	190	86	88	40	76	34	151	68	20 [508.0]	24 [609.6]	15 [381.0]	50-3/8 [1279.2]
569J-07A (RTPF)	208/230-3-60,460-3-60,575-3-60	389	176	141	64	96	44	62	28	91	41	18 [457.2]	24 [609.6]	21 [533.4]	42-3/8 [1076.0]
569J-08A (RTPF)	208/230-3-60,460-3-60,575-3-60	391	177	142	64	96	44	62	28	91	41	18 [457.2]	24 [609.6]	21 [533.4]	42-3/8 [1076.0]
569J-12A (RTPF)	208/230-3-60,460-3-60,575-3-60	490	222	177	80	120	54	78	35	114	52	18 [457.2]	24 [609.6]	24 [609.6]	50-3/8 [1279.2]
569J-14A (RTPF)	208/230-3-60,460-3-60,575-3-60	598	271	195	88	142	64	110	50	151	68	20 [508.0]	25 [635.0]	24 [609.6]	50-3/8 [1279.2]
569J-12D (RTPF)	208/230-3-60,460-3-60,575-3-60	516	234	185	84	117	53	83	38	131	59	19 [482.6]	23 [584.2]	24 [609.6]	50-3/8 [1279.2]
569J-14D (RTPF)	208/230-3-60,460-3-60,575-3-60	654	297	214	97	155	70	120	54	165	75	20 [508.0]	25 [635.0]	24 [609.6]	50-3/8 [1279.2]

SERV	ICE VALVE CONN	ECTIONS				
UNIT	SUCTION	LIQUID				
569J-07A	1-1/8 [28.6]	3/8 [9.5]				
569J-08A	1-1/8 [28.6]	1/2 [12.7]				
569J-12A	1-3/8 [34.9]	1/2 [12.7]				
569J-14A	1-3/8 [34.9]	5/8 [15.9]				
569J-12D	1-1/8 [28.6]	3/8 [9.5]				
569 J - 14D	1-3/8 [34.9]	1/2 [12.7]				

RIGHT SIDE VIEW (FOR 38AUD SYSTEMS)

PLVB AILM

- 1. MINIMUM CLEARANCE (LOCAL CODES OR JURISDICTION MAY PREVAIL):
 A. BOTTOM TO COMBUSTIBLE SUBFACES: 0 INCHES.
 B. OUTDOOR COIL, FOR PROPER AIR FLOW: 36 INCHES
 ONE SIDE, 12 INCHES THE OTHER. THE SIDE GETTING THE
 GREATER CLEARANCE IS OPTIONAL.
 C. OVERHEAD: 60 INCHES, TO ASSURE PROPER OUTDOOR FAN
 OPERATION.
 D. BETWEEN UNITS: CONTROL BOX SIDE, 42 INCHES PER NEC.
 E. BETWEEN UNIT AND UNGROUNDED SURFACES: CONTROL BOX
 SIDE, 36 INCHES PER NEC.
 F. BETWEEN UNIT AND BLOCK OR CONCRETE WALLS AND OTHER
 GROUNDED SURFACES: CONTROL BOX SIDE, 42 INCHES PER NEC.
- 2. WITH EXCEPTION OF THE CLEARANCE FOR THE OUTDOOR COIL AS STATED IN NOTE 1B, A REMOVABLE FENCE OR BARRICADE REQUIRES NO CLEARANCE.
- UNITS MAY BE INSTALLED ON COMBUSTIBLE FLOORS MADE FROM WOOD OR CLASS A, B OR C ROOF COVERING MATERIAL.

C101212A

DIMENSIONS (cont.)

UNIT	ELECTRICAL	STD. UNIT WT.		CORN	CORNER A CORNER B		CORNER C CORNER D		CENTER OF GRAVITY			UNIT HEIGHT			
UNII	CHARACTERISTICS	LBS.	KG.	LBS.	KG.	LBS.	KG.	LBS.	KG.	LBS.	KG.	Х	Y	Z	Н
569JA16 (MCHX)	208/230-3-60,460-3-60,575-3-60	633	288	220	100	134	61	135	61.5	144	65.5	38 [965.2]	19 [482.6]	15 [381]	50-3/8 [1279.2]
569JD16 (MCHX)	208/230-3-60,460-3-60,575-3-60	633	288	220	100	134	61	135	61.5	144	65.5	38 [965.2]	19 [482.6]	15 [381]	50-3/8 [1279.2]
569JA16 (RTPF)	208/230-3-60,460-3-60,575-3-60	731	332	237	107	172	78	135	61	186	84	38 [965.2]	19 [482.6]	17 [431.8]	50-3/8 [1279.2]
569.JD16 (RTPF)	208/230-3-60.460-3-60.575-3-60	7.31	332	237	107	172	78	135	61	186	84	38 [965.2]	19 [482.6]	17 [431.8]	50-3/8 [1279.21

SERV	ICE VALVE CONN	ECTIONS
UNIT	SUCTION	LIQUID
569JA16	1-3/8 [34.9]	5/8 [15.9]
569JD16	1-3/8 [34.9]	1/2 [12.7]

DIMENSIONS IN [] ARE IN MM

LEFT SIDE VIEW FOR 38AUD SYSTEMS

TOP VIEW

FRONT VIEW

DETAIL A (NOTE POSITION OF CKT 1)

- (NOTE POSITION OF CKT 1)

 NOTES:

 1. MINIMUM CLEARANCE (LOCAL CODES OR JURISDICTION MAY
 PREVAIL):
 A BOTTOM TO COMBUSTIBLE SURFACES: 0 INCHES.
 B. OUIDOOR COIL, FOR PROPER AIR FLOW: 36 INCHES.
 ONE SIDE, 12 INCHES THE OTHER. THE SIDE GETTING THE
 GREATER CLEARANCE IS OPTIONAL.
 C. OVERHEAD: 60 INCHES, TO ASSURE PROPER OUTDOOR FAN
 OPERATION.
 D. BETWEEN UNITIAND UNGROUNDED SURFACES: CONTROL BOX
 E. BETWEEN UNITIAND UNGROUNDED SURFACES: CONTROL BOX
 F. BETWEEN UNITIAND BLOCK OR CONCRETE WALLS AND OTHER
 GROUNDED SURFACES: CONTROL BOX SIDE, 42 INCHES PER NEC.
 2. WITH EXCEPTION OF THE CLEARANCE FOR THE OUTDOOR
 COIL AS STATED IN NOTE IB. A REMOVABLE FENCE
 OR BARRICADE REQUIRES NO CLEARANCE.
 3. UNITS MAY BE INSTALLED ON COMBUSTIBLE FLOORS MADE
 FROM MOOD OR CLASS A, B OR C ROOF COVERING MATERIAL.

C101213

DIMENSIONS (cont.)

UNIT	ELECTRICAL	STD. UNIT WT. CORNER A CORNER B		ER B	CORNER C CORNER D		CENTER OF GRAVITY			UNIT HEIGHT					
OWIT	CHARACTERISTICS	LBS.	KG.	LBS.	KG.	LBS.	KG.	LBS.	KG.	LBS.	KG.	Х	Y	Z	Н
569JA25 (RTPF)	208/230-3-60,460-3-60,575-3-60	978	444	360	163	188	85	147	67	283	128	38 [965.2]	23 [584.2]	17 [431.8]	50-3/8 [1279.2]
569JD25 (RTPF)	208/230-3-60,460-3-60,575-3-60	978	444	360	163	188	85	147	67	283	128	38 [965.2]	23 [584.2]	17 [431.8]	50-3/8 [1279.2]

SERVI	ICE VALVE CONNECTIONS CC+ CENTER OF GRAVITY
UNIT	SUCTION LIGHTD
569JA25	1-5/8 [41.3] 5/8 [15.9]
569JD25	1-3/8 [34.9] 1/2 [12.7] DIMENSIONS IN [] ARE IN MM
ı	3-3/4 DISCONNECT LOCATION 21-1/4 [541] 3-3/8 [34.5] POWER ENTRY WITH 50.0/38.0/65.0 MM K.O. 01-3/4 [4.5] POWER ENTRY WITH 50.0/38.0/65.0 MM K.O. 01-3/6 [27.2] FIELD ENTRY SERVICE POWER
	LEFT SIDE VIEW FOR 38AUD SYSTEMS
	LEFT SIDE VIEW FOR 36AUD STSTEMS
	3-3/4 DISCONMECT LOCATION
•	## 1-3/8 [34.5] POWER ENTRY WITH 50.0/58.0/65.0 MM K.O. ## 60.00 MM K.O. #
	SUCTION CONNECTION
	1941)
	LEFT SIDE VIEW
	SUCTION CONNECTION ISEE CHART FOR SIZE) CKT 1 AC CKT 2 AC
	[SEE CHART FOR SIZE] CKT 1 AC CKT 2 AC

DETAIL **A**(NOTE POSITION OF CKT 1)

- NOTES:

 1. MINIMUM CLEARANCE (LOCAL CODES OR JURISDICTION MAY PREVAIL):

 A BOTTOM TO COMBUSTIBLE SURFACES: 0 INCHES.

 B. OUTDOOR COLL, FOR PROPER AIR FLOW: 36 INCHES OWE SIDE. THEM STATEMENT THE SIDE SETTING THE OWE SIDE. CHEEN STATEMENT OF THE SIDE SETTING THE OPERATION.

 DETAILOR.

 BETWEEN UNITS: CONTROL BOX SIDE. 42 INCHES PER NEC.

 E. BETWEEN UNITS AND BLOCKFORMED SURFACES: CONTROL BOX SIDE. 42 INCHES PER NEC.

 F. BETWEEN UNITS AND BLOCK OR CONCETTE WALLS AND OTHER GROUNDED SURFACES: CONTROL BOX SIDE. 42 INCHES PER NEC.

 WITH EXCEPTION OF THE CLEARANCE FOR THE OUIDOOR CONTROL BOX SIDE. 42 INCHES PER NEC.

 WITH EXCEPTION OF THE CLEARANCE FOR THE OUIDOOR CONTROL BOX SIDE. 42 INCHES PER NEC.

 WITH EXCEPTION OF THE CLEARANCE FOR THE OUIDOOR CONTROL BOX SIDE. 42 INCHES PER NEC.

 3. WITH SECRETION OF THE CLEARANCE FOR THE OUIDOOR CONTROL BOX SIDE. 42 INCHES PER NEC.

 3. WITH SECRETION OF THE CLEARANCE FOR THE OUIDOOR CONTROL BOX SIDE. 42 INCHES PER NEC.

 3. WITH SECRETION OF THE CLEARANCE FOR THE OUIDOOR SIDE. AS AND S

C101214

OPTIONS AND ACCESSORIES

569,J* OPTIONS AND ACCESSORIES

ITEM	OPTION*	ACCESSORY†
Disconnect Switch (non-fused)‡	X	
Special - coated Coil Protection	X	
Convenience Outlet (115-v)**	X	
Low Ambient Temperature MotorMaster I® Control	X	Х
Wired Condenser Coil Grille (Novation 07 - 14 models only)		Х
Louvered Hail Guard	X	Х
Programmable Thermostats		Х

- * Factory-installed option.
- † Field-installed accessory.
- ‡ Non-fused disconnect switch cannot be used when unit MOCP electrical rating exceeds 80 amps.
- ** Powered and non-powered versions available

569J* factory-installed options

CONDENSER COIL OPTIONS

Coil Coating Application - Novation Coils

			Environ	ment		
Coil Description	Standard Non-Corrosive	Mild Coastal	Moderate Coastal	Severe Coastal	Industrial	Industrial & Coastal
Alum Fin / Alum Tube	X					
E-Coated Al / Al		Х	Х	Х	Х	Х

NOTE: E-Coat is only available and must be used in any non-standard environment listed above.

Coil Coating Application - Round Tube/Plate Fin Coils (07,08, 12, 16, 25 models)

			Environ	ment		
Enviro - Shield™ Description	Standard Non-Corrosive	Mild Coastal	Moderate Coastal	Severe Coastal	Industrial	Industrial & Coastal
Alum Fin / Cu Tube	X					
Pre-Coated Al / Cu		Х				
E-Coated Al / Cu					X	Х
Cu / Cu			Х	Х		

NOTE: Refer to the Guide Specifications for further detail.

E-coated aluminum-fin coils have a flexible and durable epoxy coating uniformly applied to all coil surfaces. Unlike brittle phenolic dip and bake coatings, E-coating provides superior protection with unmatched flexibility, edge coverage, metal adhesion, thermal performance, and most importantly, corrosion resistance.

E-coated coils provide this protection since all coil surfaces are completely encapsulated from environmental contamination. This coating is especially suitable in industrial environments.

Pre-coated coils (RTPF coils only) provide protection in mild coastal environments.

-20°F (-29°C) low-ambient temperature kit option (MotorMaster I®) controls outdoor-fan motor operation to maintain the correct head pressure at low outdoor ambient temperatures.

Louvered hail guard package protects coils against damage from flying debris and hail.

115-v convenience outlet is used to power electric drills, lights, and refrigerant recovery machines. This means that a separate 115-v power supply is no longer necessary.

Non-fused disconnect switch is used to remove power locally at the condensing unit. This switch also includes a power lockout capability to protect the service person. This lockout switch saves the service person time and effort because there is no need to access a distant disconnect switch while servicing the unit.

OPTIONS AND ACCESSORIES (cont.)

C101216

569J* field-installed accessories

-20°F (-29°C) low-ambient temperature kit accessory (MotorMaster I^{\oplus}) controls outdoor-fan motor operation to maintain the correct head pressure at low outdoor ambient temperatures.

Louvered hail guard package protects coils against damage from flying debris and hail.

Condenser coil grille package protects condensing unit coil from impact by large objects and vandalism.

Bryant's line of thermostats provide both programmable and non-programmable capability with the new **Debonair®** line of commercial programmable thermostats. The **Commercial Electronic** thermostats provide 7-day programmable capability for economical applications.

524.I OPTIONS AND ACCESSORIES

ITEM	OPTION*	ACCESSORY†
Alternate Fan Motors	Х	
Alternate Drives	Х	
CO ₂ Sensors		X
Condensate Drain Trap		Х
Discharge Plenum		Х
Economizer		Х
Electric Heat		Х
Hot Water Heating Coils		Х
Overhead Suspension Package		Х
Prepainted Units	Х	
Return Air Grille		Х
Steam Heating Coil		Х
Subbase		X
UV-C Germicidal Lamp**		Х

- * Factory-installed option.
- † Field-installed accessory.
- ** Contact application engineer.

524J factory-installed options

Alternate fan motors and drives are available to provide the widest possible range of performance.

Units constructed of prepainted steel are available from the factory for applications that require painted units. Unit color is American Sterling Gray.

524J field-installed accessories

Two-row hot water coils have ⁵/₈-in. diameter copper tubes mechanically bonded to aluminum plate fins. Coils have non-ferrous headers.

One-row steam coil has 1-in. OD copper tube and aluminum fins. The Inner Distributing Tube (IDT) design provides uniform temperatures across the coil face. The IDT steam coils are especially suited to applications where sub-freezing air enters the unit.

Electric resistance heat coils have an open-wire design and are mounted in a rigid frame. Safety cutouts for high temperature conditions are standard.

Economizer (enthalpy controlled) provides ventilation air and provides "free" cooling if the outside ambient temperature and humidity are suitable. The economizer can also be used in conjunction with Bryant Comfort System thermostats and CO₂ sensors to help meet indoor air quality requirements. The economizer can be used in both vertical and horizontal positions.

Discharge plenum directs the air discharge into the occupied space; integral horizontal and vertical louvers enable redirection of airflow. This accessory is available unpainted or painted.

Return-air grille provides a protective barrier over the return-air opening and gives a finished appearance to units installed in the occupied space. This accessory is available unpainted or painted.

Subbase provides a stable, raised platform and room for condensate drain connection for floor-mounted units. This accessory is available unpainted or painted.

OPTIONS AND ACCESSORIES (cont.)

Overhead suspension package includes necessary brackets to support units in horizontal installations.

 ${
m CO_2}$ sensors can be used in conjunction with the economizer accessory to help meet indoor air quality requirements. The sensor signals the economizer to open when the ${
m CO_2}$ level in the space exceeds the setpoint. A Bryant Comfort System programmable thermostat can also be used to override the sensor if the outside-air temperature is too high or too low.

Condensate drain trap includes an overflow shutoff switch that can be wired to turn off the unit if the trap becomes plugged. The kit also includes a wire harness that can be connected to an alarm if desired. The transparent trap is designed for easy service and maintenance.

UV-C germicidal lamps kill mold and fungus that may grow on evaporator coil and condensate pan surfaces. The use of UV-C germicidal lamps eliminates the foul odors that result from mold and fungus growth. These lamps also provide a self-cleaning function for the evaporator coil and drain pan. Contact application engineer for info.

OPTIONS AND ACCESSORIES (cont.)

524J WITH DISCHARGE PLENUM

524J WITH HOT WATER OR STEAM COIL

524J WITH ECONOMIZER AND UV-C GERMICIDAL LAMPS

524J WITH CONDENSATE TRAP

C09259

SELECTION PROCEDURE

Combination ratings for 569J* units matched with 524J Series air handlers are in this book. If unit is used with an air handler, use the Bryant Electronic Catalog AHU (Air-Handling Unit) selection program to obtain combined ratings.

I. Determine cooling load, evaporator-air temperature, and quantity.

Given:

Total Cooling Capacity Required (TC)
Sensible Heat Capacity Required (SHC) 95,000 Btuh
Compressor Type Scroll
Temperature Air Entering Condenser (Edb) 95°F
Temperature Air Entering Evaporator (db/wb) 80°F db, 67°F wb
Evaporator Air Quantity 4,000 cfm
External Static Pressure 0.4 in. wg
Length of Interconnecting Refrigerant Piping 25 ft (Linear)
Power Supply (V-Ph-Hz) 208/230-3-60

II. Select condensing unit air-handler combination.

For this example, select a 569J*12 matched with a 524J012 coil. This 569J*12/524J12 condensing unit air-handler combination provides 122,000 Btuh of total cooling capacity and 97,200 Btuh of sensible capacity at the given conditions. If other temperatures or airflow values are required, interpolate the values from the combination ratings.

III. Determine sizes of liquid and suction lines.

Enter Refrigerant Piping Sizes table. The sizes shown are based on an equivalent length of pipe. This equivalent length is equal to the linear length of pipe indicated at the top of each sizing column, plus a 50% allowance for fitting losses. (For a more accurate determination of actual equivalent length in place of using the estimated 50% value, refer to Bryant System Design Manual.) For this example, note in the linear length column that the proper pipe size is $^{1}/_{2}$ in. for the liquid line and $^{13}/_{8}$ in. for the suction line.

For extended line lengths over 100 feet, contact your Bryant representative or application engineer.

IV. Determine fan rpm and bhp (brake horsepower).

Refer to the 524J Air Handler Catalog - Fan Performance table. Enter the Air Handler Fan Performance table at 524J12 at 4000 cfm and move to the External Static Pressure (ESP) column. Note that the conditions require 803 rpm at 1.77 bhp.

V. Determine motor and drive.

Enter the Fan Motor Data tables and find the standard motor for 524J12 unit rated at 2.4 Hp. Since the bhp required is 1.77, a standard motor satisfies the requirement and should be used.

Next, find the type of drive that satisfies the 803 rpm requirement in the Drive Data tables. For the 524J012 unit, the Standard Drive table shows an rpm range of 666-863. Since the rpm required is 803, the standard drive satisfies the requirement and should be used.

CONTROLS

Operating sequences

When the wall thermostat calls for cooling, terminals G and Y1 are energized. As a result, the indoor fan contactor (IFC) and the compressor contactor (C1) are energized, causing the indoor fan motor (IFM), compressor #1, and outdoor fans (OFM) to start. The field-supplied and field-installed liquid line valve also opens, allowing the system to function in Cooling mode.

If the unit has 2 stages of cooling, the wall thermostat will additionally energize Y2. The Y2 signal will energize compressor contactor #2 (C2), causing compressor #2 to start.

Regardless of the number of stages, the field-supplied liquid line valve shall opens and the outdoor fan motors(OFM) runs continuously while unit is cooling.

When cooling demand decrease, the thermostat will de-energize Y2. Y2 signal will de-energize compressor contactor #2 (C2), causing compressor #2 to stop.

When cooling demand has been satisfied, the thermostat will de-energize Y1, and G terminals. Y1 and G signal will de-energize compressor contactor #1 (C1), causing compressor #1 to stop. If the wall thermostat is set to continuous (CONT), the indoor fan motor will continue to operate. Otherwise, the indoor fan motor will stop.

The outdoor fan motors (OFM) will turn off and field-supplied liquid line valve shall close, minimizing the potential for refrigerant migration.

TYPICAL WIRING SCHEMATIC

C09624

Typical 569J*16 Single Circuit

TYPICAL WIRING SCHEMATIC (cont.)

C09627

Typical 569J*16 Dual Circuit

PERFORMANCE DATA

569J*07A

CONDENSER ONLY RATINGS

991	(°E)		AIR TEMP	ERATURE ENTI	ERING CONDEI	NSER (°F)	
331	SST (°F)		85	95	100	105	115
	TC	46.7	45.1	41.7	39.8	37.9	33.9
20	kW	4.04	4.27	4.77	5.04	5.32	5.93
	SDT	91.6	96.4	105.9	110.6	115.3	124.7
	TC	51.8	50.2	46.5	44.6	42.6	38.4
25	kW	4.06	4.29	4.79	5.05	5.33	5.95
	SDT	92.7	97.5	106.9	111.6	116.3	125.6
	TC	57.0	55.2	51.4	49.4	47.3	42.9
30	kW	4.07	4.30	4.80	5.07	5.35	5.96
	SDT	93.9	98.6	108.1	112.7	117.4	126.7
	TC	62.7	60.8	56.8	54.6	52.4	47.8
35	kW	4.09	4.32	4.81	5.08	5.36	5.98
	SDT	95.1	99.8	109.2	113.9	118.6	127.8
	TC	68.7	66.7	62.5	60.2	57.9	53.0
40	kW	4.11	4.34	4.83	5.10	5.38	5.99
	SDT	96.5	101.1	110.5	115.1	119.7	128.8
	TC	75.2	73.1	68.5	66.2	63.7	58.6
45	kW	4.13	4.36	4.84	5.10	5.38	5.99
	SDT	97.9	102.5	111.8	116.3	120.9	129.9
	TC	82.2	79.9	75.1	72.5	69.9	64.4
50	kW	4.15	4.37	4.85	5.12	5.39	6.00
	SDT	99.4	104.0	113.1	117.6	122.2	131.1

NOTE:

Condensing unit only ratings are at $45^{\circ}F$ SST and $95^{\circ}F$ entering – air temperature. EER = 13.1

569J*08A

CONDENSER ONLY RATINGS

997	SST (°F)		AIR TEMP	ERATURE ENTE	RING CONDE	NSER (°F)	
331	()	80	85	95	100	105	115
	TC	65.2	63.2	59.1	57.0	54.8	50.5
20	kW	5.04	5.33	5.98	6.34	6.73	7.60
	SDT	95.3	100.2	109.8	114.7	119.5	129.2
	TC	71.5	69.4	65.0	62.8	60.5	55.9
25	kW	5.12	5.42	6.07	6.42	6.81	7.66
	SDT	96.4	101.2	110.8	115.6	120.4	129.9
	TC	77.8	75.5	70.9	68.5	66.2	61.3
30	kW	5.22	5.51	6.16	6.51	6.89	7.74
	SDT	97.6	102.4	111.9	116.6	121.3	130.7
	TC	84.8	82.4	77.5	75.0	72.4	67.2
35	kW	5.32	5.61	6.26	6.61	6.99	7.83
	SDT	98.8	103.5	112.9	117.6	122.3	131.6
	TC	92.3	89.7	84.5	81.8	79.0	73.5
40	kW	5.44	5.73	6.37	6.72	7.10	7.94
	SDT	100.1	104.8	114.2	118.8	123.5	132.7
	TC	100.3	97.5	91.9	89.0	86.1	80.1
45	kW	5.57	5.86	6.50	6.85	7.23	8.07
	SDT	101.6	106.2	115.5	120.2	124.8	133.9
	TC	108.7	105.8	99.8	96.7	93.6	87.3
50	kW	5.71	6.00	6.64	7.00	7.38	8.21
	SDT	103.1	107.8	117.0	121.6	126.2	135.3

NOTE:

Condensing unit only ratings are at $45^{\circ}F$ SST and $95^{\circ}F$ entering—air temperature. EER = 13.0

LEGEND:

kW - Compressor Power

SDT - Saturated Discharge Temperature at Compressor (°F)

SST - Saturated Suction Temperature (°F)

569J*12A

CONDENSER ONLY RATINGS

997	SST (°F)		AIR TEMP	ERATURE ENT	ERING CONDE	NSER (°F)	
331			85	95	100	105	115
	TC	78.0	75.4	70.1	67.3	64.6	58.9
20	kW	6.03	6.44	7.31	7.76	8.23	9.21
	SDT	94.0	98.7	108.2	113.0	117.7	127.2
	TC	86.4	83.6	77.9	74.9	72.0	66.0
25	kW	6.11	6.53	7.41	7.87	8.36	9.36
	SDT	95.2	100.0	109.4	114.2	118.9	128.2
	TC	94.7	91.8	85.6	82.5	79.4	73.0
30	kW	6.20	6.62	7.51	7.98	8.47	9.49
	SDT	96.6	101.3	110.7	115.4	120.0	129.2
	TC	104.0	100.8	94.3	90.9	87.6	80.7
35	kW	6.30	6.71	7.61	8.09	8.58	9.62
	SDT	98.1	102.7	112.0	116.6	121.2	130.4
	TC	113.9	110.4	103.4	99.9	96.2	88.9
40	kW	6.39	6.81	7.71	8.20	8.70	9.75
	SDT	99.5	104.2	113.4	117.9	122.5	131.6
	TC	124.3	120.6	113.1	109.2	105.4	97.5
45	kW	6.49	6.92	7.83	8.32	8.82	9.89
	SDT	101.1	105.7	114.8	119.4	123.9	132.9
	TC	135.4	131.4	123.3	119.2	115.0	106.5
50	kW	6.61	7.04	7.96	8.45	8.96	10.03
	SDT	102.8	107.3	116.4	120.9	125.4	134.3

NOTE:

Condensing unit only ratings are at $45^{\circ}F$ SST and $95^{\circ}F$ entering—air temperature. EER = 13.5

569J*12D Dual Circuit

CONDENSER ONLY RATINGS

997	SST (°F)		Al	R TEMP ENT C	ONDENSER (°	F)	
331	()	85	95	100	105	115	120
	TC	75.29	69.95	67.18	64.32	58.42	55.21
20	kW	6.88	7.89	8.43	8.96	10.04	10.53
	SDT	102.3	111.4	116.1	120.5	129.6	133.7
	TC	83.12	77.31	74.32	71.28	64.99	61.76
25	kW	6.97	7.98	8.53	9.07	10.18	10.73
	SDT	103.6	112.6	117.3	121.8	130.7	135.1
	TC	91.41	85.21	81.99	78.76	72.08	68.58
30	kW	7.06	8.08	8.63	9.18	10.31	10.87
	SDT	104.9	114.0	118.5	122.9	131.8	136.1
	TC	100.35	93.69	90.26	86.76	85.11	75.65
35	kW	7.15	8.18	8.73	9.29	10.42	10.99
	SDT	106.3	115.2	119.8	124.2	132.9	137.1
	TC	109.90	102.58	98.84	95.06	87.13	83.07
40	kW	7.25	8.29	8.83	9.39	10.54	11.12
	SDT	107.6	116.6	121.0	125.4	134.0	138.2
	TC	119.86	111.84	107.74	103.56	95.02	90.54
45	kW	7.36	8.39	8.93	9.49	10.64	11.22
	SDT	109.0	117.9	122.3	126.6	135.1	139.2
	TC	130.20	121.39	116.90	112.33	103.07	98.17
50	kW	7.48	8.51	9.04	9.60	10.75	11.33
	SDT	110.5	119.2	123.5	127.8	136.2	140.2

NOTE:

Condensing unit only ratings are at 45°F SST and 95°F entering – air temperature. EER = 13.0

LEGEND:

kW - Compressor Power

SDT - Saturated Discharge Temperature at Compressor (°F)

SST - Saturated Suction Temperature (°F)

569J*14A

CONDENSER ONLY RATINGS

99	T (°F)		AIR TEMP	ERATURE ENT	ERING CONDE	NSER (°F)	
33	1 (17)	80	85	95	100	105	115
	TC	100.8	97.4	90.3	86.6	83.0	75.5
20	kW	8.48	8.97	10.00	10.53	11.07	12.19
	SDT	98.0	102.6	111.8	116.4	120.9	130.0
	TC	111.8	108.1	100.5	96.6	92.7	84.7
25	kW	8.66	9.15	10.20	10.75	11.31	12.47
	SDT	99.6	104.1	113.2	117.7	122.3	131.3
	TC	122.9	118.9	110.7	106.6	102.4	93.9
30	kW	8.84	9.35	10.41	10.97	11.55	12.75
	SDT	101.3	105.8	114.8	119.3	123.8	132.7
	TC	134.9	130.6	121.9	117.4	113.0	103.8
35	kW	9.05	9.55	10.64	11.21	11.80	13.03
	SDT	103.1	107.6	116.5	120.9	125.4	134.2
	TC	147.7	143.0	133.7	128.9	124.1	114.3
40	kW	9.27	9.78	10.88	11.47	12.07	13.32
	SDT	105.1	109.5	118.3	122.8	127.1	135.8
	TC	161.1	156.2	146.1	141.0	135.8	125.4
45	kW	9.51	10.03	11.15	11.73	12.34	13.61
	SDT	107.2	111.6	120.3	124.7	129.0	137.5
	TC	175.4	170.1	159.3	153.8	148.3	137.1
50	kW	9.78	10.30	11.42	12.02	12.63	13.92
	SDT	109.5	113.8	122.4	126.7	130.9	139.4

NOTE:

Condensing unit only ratings are at 45°F SST and 95°F entering – air temperature. EER = 12.0

569J*14D Dual Circuit

CONDENSER ONLY RATINGS

222	SDT TC kW SDT TC TC TC TC TC TC TC TC TC		Al	R TEMP ENT C	ONDENSER (°	F)	
331	()	85	95	100	105	115	120
	TC	93.24	86.18	82.60	78.94	71.54	67.78
20	kW	9.22	10.36	10.96	11.56	12.76	13.37
	SDT	104.4	113.3	117.8	122.2	130.9	135.2
	TC	103.39	95.91	92.05	88.15	80.16	76.08
25	kW	9.42	10.60	11.21	11.83	13.10	13.73
	SDT	106.1	114.9	119.3	123.7	132.3	136.6
	TC	114.29	106.19	102.04	97.79	89.15	84.74
30	kW	9.63	10.84	11.46	12.10	13.41	14.07
	SDT	107.8	116.6	120.9	125.3	133.8	138.0
	TC	125.69	116.93	112.44	107.84	105.72	93.69
35	kW	9.84	11.07	11.71	12.36	13.70	14.38
	SDT	109.5	118.2	122.6	126.8	135.2	139.4
	TC	137.57	128.07	123.21	118.21	108.08	102.90
40	kW	10.05	11.30	11.95	12.61	13.98	14.68
	SDT	111.3	119.9	124.2	128.4	136.7	140.8
	TC	149.86	139.53	134.26	128.83	117.83	112.22
45	kW	10.27	11.53	12.18	12.85	14.24	14.95
	SDT	113.1	121.6	125.8	130.0	138.1	142.1
	TC	162.51	151.29	145.56	139.64	127.71	121.55
50	kW	10.50	11.76	12.42	13.09	14.48	15.20
	SDT	114.9	123.3	127.5	131.6	139.6	143.5

NOTE:

Condensing unit only ratings are at $45^{\circ}F$ SST and $95^{\circ}F$ entering – air temperature. EER = 13.0

LEGEND:

kW - Compressor Power

SDT - Saturated Discharge Temperature at Compressor (°F)

SST - Saturated Suction Temperature (°F)

569J*16A

CONDENSER ONLY RATINGS

991	Г (° F)		AIR TEMP	ERATURE ENT	ERING CONDE	NSER (°F)	
331	(1)	80	85	95	105	115	125
	TC	125.5	121.8	114.2	106.6	99.7	79.7
20	kW	10.5	11.2	12.6	14.2	16.0	17.5
	SDT	98.6	103.4	113.0	122.7	134.9	136.0
	TC	138.7	134.7	126.5	118.1	109.3	98.5
25	kW	10.7	11.4	12.8	14.3	16.0	17.9
	SDT	100.0	104.7	114.2	123.6	132.9	140.5
	TC	152.9	148.6	139.8	130.7	120.9	104.9
30	kW	10.9	11.6	13.0	14.6	16.2	17.8
	SDT	101.4	106.2	115.5	125.0	133.6	139.4
	TC	168.2	163.5	154.1	144.2	133.6	121.2
35	kW	11.2	11.8	13.2	14.8	16.5	18.1
	SDT	102.9	107.5	117.0	126.2	134.8	142.1
	TC	184.9	179.4	169.3	158.7	147.6	135.1
40	kW	11.5	12.0	13.5	15.1	16.8	18.5
	SDT	105.2	108.9	118.5	127.7	136.7	144.5
	TC	202.1	196.7	185.7	174.3	162.5	150.4
45	kW	11.7	12.4	13.9	15.6	17.5	19.6
	SDT	106.4	111.2	120.9	130.7	140.4	150.2
	TC	220.6	214.7	202.1	190.0	174.6	159.6
50	kW	11.9	12.6	13.9	15.4	16.9	18.5
	SDT	107.2	111.7	120.4	129.4	136.9	144.9

NOTE:

Condensing unit only ratings are at 45°F SST and 95°F entering – air temperature. EER = 12.7

569J*16D Dual Circuit

CONDENSER ONLY RATINGS

99	SST (°F) TC kW SDT TC KW		AIR TEMP	ERATURE ENT	ERING CONDE	NSER (°F)	
33	I (F)	80	85	95	105	115	125
	TC	127.6	123.7	116.0	108.1	99.7	90.2
20	kW	10.0	10.6	11.9	13.4	14.9	16.6
	SDT	96.0	100.5	109.8	119.2	128.3	137.0
	TC	140.9	136.7	128.3	119.5	110.4	101.2
25	kW	10.0	10.6	11.9	13.4	14.9	16.6
	SDT	96.0	100.5	109.8	119.2	128.3	137.0
	TC	155.0	150.5	141.3	132.0	122.3	111.4
30	kW	10.4	11.0	12.3	13.7	15.3	17.0
	SDT	98.7	103.3	112.4	121.5	130.6	139.1
	TC	170.1	165.3	155.4	145.2	134.4	123.3
35	kW	10.6	11.2	12.5	14.0	15.5	17.2
	SDT	100.1	104.7	113.8	122.8	131.7	140.4
	TC	186.3	181.0	170.3	159.0	147.3	134.9
40	kW	10.8	11.4	12.8	14.2	15.8	17.4
	SDT	101.6	106.1	115.1	124.0	132.8	141.4
	TC	203.4	197.6	185.7	173.5	160.6	147.2
45	kW	11.1	11.7	13.0	14.4	16.0	17.6
	SDT	103.2	107.6	116.5	125.4	134.0	142.5
	TC	221.4	214.9	202.0	188.6	174.5	159.7
50	kW	11.4	12.0	13.3	14.7	16.2	17.9
	SDT	104.8	109.2	118.0	126.7	135.2	143.5

NOTE:

Condensing unit only ratings are at 45°F SST and 95°F entering – air temperature. EER = 13.0

LEGEND:

kW - Compressor Power

SDT - Saturated Discharge Temperature at Compressor (°F)

SST - Saturated Suction Temperature (°F)

569J*25A

CONDENSER ONLY RATINGS

997	(°F)		AIR TEMP	ERATURE ENT	ERING CONDEI	NSER (°F)	
331	(')	80	85	95	105	115	125
	TC	159.2	154.5	144.5	133.9	122.5	110.2
20	kW	13.0	13.7	15.3	17.1	19.2	21.5
	SDT	97.3	101.8	110.6	119.3	127.9	136.5
	TC	176.1	171.0	160.2	148.8	136.5	123.2
25	kW	13.2	14.0	15.6	17.4	19.5	21.8
	SDT	98.9	103.3	112.0	120.7	129.2	137.6
	TC	194.2	188.6	176.9	164.5	151.3	136.9
30	kW	13.5	14.3	15.9	17.7	19.7	22.0
	SDT	100.6	104.9	113.6	122.1	130.5	138.8
	TC	213.5	207.4	194.7	181.2	166.8	151.2
35	kW	13.8	14.6	16.2	18.0	20.0	22.3
	SDT	102.4	106.7	115.2	123.6	131.9	140.1
	TC	234.1	227.4	213.5	198.8	183.1	166.1
40	kW	14.2	14.9	16.5	18.3	20.3	22.6
	SDT	104.3	108.5	116.9	125.2	133.3	141.4
	TC	255.9	248.6	233.3	217.3	200.1	181.7
45	kW	14.6	15.3	16.9	18.7	20.7	22.9
	SDT	106.3	110.5	118.7	126.8	134.9	142.7
	TC	279.0	270.9	254.2	236.7	218.1	197.8
50	kW	15.1	15.8	17.3	19.1	21.1	23.2
	SDT	108.5	112.5	120.6	128.6	136.5	144.1

NOTE:

Condensing unit only ratings are at $45^{\circ}F$ SST and $95^{\circ}F$ entering—air temperature. EER = 12.9

569J*25D Dual Circuit

CONDENSER ONLY RATINGS

	T (°E)		AIR TEMP	ERATURE ENT	ERING CONDE	NSER (°F)	
33	T (°F)	80	85	95	105	115	125
	TC	160.3	155.5	145.3	134.3	122.5	109.6
20	kW	12.7	13.4	15.0	16.8	18.8	21.1
	SDT	97.0	101.5	110.3	119.1	127.7	136.3
	TC	177.2	171.9	160.8	149.0	136.3	122.3
25	kW	12.7	13.4	15.0	16.8	18.8	21.1
	SDT	97.0	101.5	110.3	119.1	127.7	136.3
	TC	195.1	189.4	177.4	164.5	150.7	135.6
30	kW	13.2	13.9	15.5	17.3	19.3	21.5
	SDT	100.3	104.6	113.3	121.8	130.3	138.6
	TC	214.3	208.0	194.9	180.9	165.9	149.5
35	kW	13.5	14.3	15.8	17.6	19.6	21.8
	SDT	102.1	106.3	114.9	123.3	131.7	139.8
	TC	234.6	227.7	213.4	198.2	181.7	163.9
40	kW	13.9	14.6	16.2	17.9	19.9	22.1
	SDT	104.0	108.2	116.6	124.9	133.1	141.1
	TC	256.3	258.7	242.3	224.9	206.2	186.1
45	kW	14.3	15.2	16.7	18.5	20.4	22.5
	SDT	106.0	111.1	119.2	127.4	135.4	143.1
	TC	279.1	272.0	254.7	236.3	216.6	195.4
50	kW	14.7	15.5	17.0	18.7	20.6	22.7
	SDT	108.1	112.3	120.4	128.4	136.4	143.9

NOTE:

Condensing unit only ratings are at 45°F SST and 95°F entering – air temperature. EER = 13.0

LEGEND:

kW - Compressor Power

SDT - Saturated Discharge Temperature at Compressor (°F)

SST - Saturated Suction Temperature (°F)

569J*07A - 524J*07

									Α	MBIENT	ТЕМР	ERATUR	RE					
					85			95			105			115			125	
					EA (db)			EA (db))		EA (db)			EA (db))		EA (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		58	THC	65.8	65.8	74.1	63.4	63.4	71.4	60.7	60.7	68.3	58.3	58.3	65.7	54.7	54.7	61.6
		5	SHC	57.4	65.8	74.1	55.3	63.4	71.4	53.0	60.7	68.3	50.9	58.3	65.7	47.8	54.7	61.6
		62	THC	68.1	68.1	70.7	65.2	65.2	69.2	62.0	62.0	67.6	58.1	58.1	65.7	54.6	54.6	55.4
Ε	<u> </u>	02	SHC	51.9	61.3	70.7	50.4	59.8	69.2	48.9	58.3	67.6	47.1	56.4	65.7	36.3	45.9	55.4
5	(qw)	67	THC	74.0	74.0	74.0	70.9	70.9	70.9	67.3	67.3	67.3	63.4	63.4	63.4	56.7	56.7	56.7
800 Cfm	EA	07	SHC	42.3	51.8	61.3	41.0	50.5	59.9	39.5	49.0	58.4	37.9	47.3	56.8	35.3	44.9	54.4
÷	_	72	THC	80.7	80.7	80.7	77.3	77.3	77.3	73.6	73.6	73.6	69.4	69.4	69.4	63.2	63.2	63.2
		-	SHC	32.7	42.2	51.8	31.4	40.9	50.4	30.0	39.5	49.0	28.4	37.9	47.4	26.2	35.7	45.3
		76	THC	_	86.2	86.2	-	82.6	82.6	-	78.6	78.6	-	74.3	74.3	-	70.7	70.7
		, 0	SHC	-	34.5	44.3	-	33.2	43.0	-	31.8	41.6	-	30.3	40.0	-	29.0	38.7
		58	THC	69.0	69.0	77.8	66.5	66.5	74.9	63.7	63.7	71.8	61.2	61.2	69.0	-	-	-
		3	SHC	60.3	69.0	77.8	58.0	66.5	74.9	55.6	63.7	71.8	53.5	61.2	69.0	-	-	-
		62	THC	70.2	70.2	77.1	67.2	67.2	75.5	64.0	64.0	73.6	60.4	60.4	70.7	-	-	-
E	<u></u>	02	SHC	55.7	66.4	77.1	54.2	64.8	75.5	52.5	63.0	73.6	50.2	60.4	70.7	-	_	-
2100 Cfm	(qw)	67	THC	75.9	75.9	75.9	72.6	72.6	72.6	68.9	68.9	68.9	64.8	64.8	64.8	59.1	59.1	59.9
8	EA (07	SHC	44.8	55.7	66.5	43.4	54.3	65.1	41.9	52.8	63.6	40.3	51.1	62.0	38.1	49.0	59.9
2	ш	70	THC	82.5	82.5	82.5	79.0	79.0	79.0	75.2	75.2	75.2	70.9	70.9	70.9	63.9	63.9	63.9
		72	SHC	33.7	44.6	55.5	32.4	43.3	54.2	31.0	41.8	52.7	29.4	40.3	51.1	26.9	37.9	48.8
			THC	-	88.1	88.1	_	84.3	84.3	-	80.2	80.2	-	75.5	75.5	-	71.8	71.8
		76	SHC	_	35.8	47.0	_	34.5	45.6	_	33.0	44.2	_	31.4	42.5	_	30.2	41.2
			THC	71.7	71.7	80.8	69.0	69.0	77.8	66.1	66.1	74.5	62.6	62.6	70.6	58.9	58.9	66.3
		58	SHC	62.6	71.7	80.8	60.3	69.0	77.8	57.7	66.1	74.5	54.7	62.6	70.6	51.4	58.9	66.3
			THC	72.0	72.0	82.7	69.1	69.1	80.8	66.2	66.2	77.4	63.0	63.0	73.6	_	_	_
_		62	SHC	59.0	70.9	82.7	57.4	69.1	80.8	55.0	66.2	77.4	52.3	63.0	73.6	_	_	_
듄	(qw)		THC	77.3	77.3	77.3	74.0	74.0	74.0	70.2	70.2	70.2	66.1	66.1	66.9	62.5	62.5	65.0
2400 Cfm	2	67	SHC	47.1	59.3	71.5	45.7	57.9	70.1	44.2	56.4	68.6	42.6	54.7	66.9	41.0	53.0	65.0
24	EA		THC	84.0	84.0	84.0	80.4	80.4	80.4	76.4	76.4	76.4	71.8	71.8	71.8	67.5	67.5	67.5
	1 1	72	SHC	34.6	46.9	59.1	33.3	45.5	57.8	31.9	44.1	56.3	30.2	42.4	54.6	28.7	40.8	52.9
			THC	_	89.5	89.5	-	85.7	85.7	-	81.4	81.4	-	76.7	76.7	_		
		76	SHC	_	36.9	49.4	_	35.6	48.1	_	34.2	46.6	_	32.6	45.0	_	_	_
			THC	73.9	73.9	83.3	71.2	71.2	80.2	68.1	68.1	76.7	64.8	64.8	73.0	58.6	58.6	66.0
		58	SHC	64.6	73.9	83.3	62.2	71.2	80.2	59.5	68.1	76.7	56.5	64.8	73.0	51.2	58.6	66.0
			THC	74.0	74.0	86.5	71.3	71.3	83.3	68.2	68.2	79.7	64.8	64.8	75.8	-		
_		62	SHC	61.5	74.0	86.5	59.2	71.3	83.3	56.6	68.2	79.7	53.8	64.8	75.8	_	_	_
¥	d/		THC	78.5	78.5	78.5	75.1	75.1	75.1	71.2	71.2	73.2	67.0	67.0	71.5	63.2	63.2	69.4
2700 Cfm	EA (w	67	SHC	49.3	62.7	76.2	47.9	61.3	74.8	46.4	59.8	73.2	44.7	58.1	71.5	43.0	56.2	69.4
27(E/		THC	85.1	85.1	85.1	81.4	81.4	81.4	77.3	77.3	77.3	72.6	72.6	72.6	65.3	65.3	65.3
		72	SHC	35.5	49.0	62.5	34.2	47.6	61.1	32.7	46.1	59.6	31.1	44.5	57.9	28.6	42.2	55.7
			THC	-	90.7	90.7	-	86.7	86.7	-	82.3	82.3	-		-	-		-
		76	SHC		38.1		1	36.7	50.4		35.3	48.9						
				75.0		51.8	70.0						-	-	74.7	- 60.4		70.4
		58	THC	75.9	75.9	85.5	73.0	73.0	82.3	69.8	69.8	78.7	66.3	66.3	74.7	62.4	62.4	70.4
			SHC	66.3	75.9	85.5	63.8	73.0	82.3	61.0	69.8	78.7	57.9	66.3	74.7	54.5	62.4	70.4
		62	THC	75.9	75.9	88.8	73.1	73.1	85.4	69.9	69.9	81.7	66.4	66.4	77.6	60.2	60.2	70.4
ţ,	(q		SHC	63.1	75.9	88.8	60.7	73.1	85.4	58.0	69.9	81.7	55.1	66.4	77.6	50.0	60.2	70.4
0	(wp)	67	THC	79.5	79.5	80.7	76.0	76.0	79.3	72.1	72.1	77.6	67.9	67.9	75.7	63.7	63.7	73.5
3000 Cfm	EA		SHC	51.4	66.0	80.7	49.9	64.6	79.3	48.4	63.0	77.6	46.7	61.2	75.7	44.8	59.2	73.5
(,)		72	THC	86.1	86.1	86.1	82.3	82.3	82.3	78.0	78.0	78.0	73.3	73.3	73.3	69.6	69.6	69.6
			SHC	36.3	51.0	65.8	35.0	49.7	64.4	33.5	48.1	62.8	31.9	46.5	61.1	30.5	44.9	59.3
		76	THC	-	91.6	91.6	-	87.6	87.6	_	-	-	_	-	-	-	-	-
			SHC	-	39.1	54.0	-	37.8	52.7	-	-	-	-	-	-	-	-	-

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*07A - 524J*08

									Al	MBIENT '	TEMPE	RATUR	E					
					85			95	- • •		105		•	115			125	
				Е	A (db)		Е	A (db)		Е	A (db)		Е	A (db)		Е	A (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
			THC	71.6	71.6	80.7	69.1	69.1	77.9	66.2	66.2	74.6	63.2	63.2	72.2	-	-	-
		58	SHC	62.5	71.6	80.7	60.3	69.1	77.9	57.8	66.2	74.6	55.0	63.2	72.2	-	-	-
		62	THC	72.5	72.5	81.5	69.6	69.6	79.6	66.6	66.6	76.6	63.2	63.2	73.2	-	-	-
Æ		02	SHC	58.5	70.0	81.5	56.9	68.2	79.6	54.6	65.6	76.6	52.1	62.7	73.2	-	_	-
$\overline{\Sigma}$	(wb)	67	THC	78.1	78.1	78.1	74.8	74.8	74.8	71.2	71.2	71.2	67.0	67.0	67.7	60.9	60.9	64.5
2250 Cfm	EA (07	SHC	46.9	58.7	70.5	45.6	57.4	69.1	44.1	55.9	67.6	42.4	54.2	66.0	40.1	52.0	63.8
2	ш	72	THC	84.9	84.9	84.9	81.4	81.4	81.4	77.4	77.4	77.4	73.1	73.1	73.1	68.9	68.9	68.9
		12	SHC	34.9	46.7	58.6	33.6	45.4	57.3	32.1	43.9	55.8	30.5	42.3	54.1	29.0	40.7	52.5
		76	THC	-	90.6	90.6	-	86.9	86.9	-	82.5	82.5	-	77.1	77.1	-	-	-
		, ,	SHC	+	37.1	49.1	-	35.9	47.9		33.5	43.4	-	31.9	41.8		-	-
		58	THC	74.8	74.8	84.2	72.1	72.1	81.3	69.0	69.0	77.8	65.7	65.7	74.0	62.2	62.2	70.0
			SHC	65.3	74.8	84.2	62.9	72.1	81.3	60.3	69.0	77.8	57.3	65.7	74.0	54.3	62.2	70.0
		62	THC	74.9	74.9	87.2	72.1	72.1	84.3	69.1	69.1	80.8	65.7	65.7	76.8	61.7	61.7	72.1
Ę	(q		SHC	62.0	74.6	87.2	60.0	72.1	84.3	57.4	69.1	80.8	54.6	65.7	76.8	51.2	61.7	72.1
2600 Cfm	EA (wb)	67	THC	79.8	79.8	79.8	76.3	76.3	76.4	72.6	72.6	74.2	68.4	68.4	71.9	63.9	63.9	69.8
09	EA		SHC	49.7	63.1	76.5	48.3	61.8	75.1	46.8	60.2	73.6	45.1	58.5	71.9	43.3	56.5	69.8
7	-	72	THC	86.5	86.5	86.5	82.9	82.9	82.9	78.8	78.8	78.8	74.3	74.3	74.3	69.5	69.5	69.5
			SHC	36.0	49.4 92.3	62.9 92.3	34.7	48.1 87.7	61.6 87.7	33.2	46.6	60.1	31.6	45.0	58.4	29.9	43.3	56.7
		76	SHC	-	38.5	92.3 52.2	-	36.5	49.2	_	-	_	-	-	_	_	-	_
			THC	77.6	77.6	87.4	74.8	74.8	84.2	71.5	71.5	80.6	67.9	67.9	76.5	64.9	64.9	73.1
		58	SHC	67.7	77.6	87.4	65.3	74.8	84.2	62.5	71.5	80.6	59.3	67.9	76.5	56.7	64.9	73.1
			THC	77.7	77.7	90.8	74.8	74.8	87.5	71.6	71.6	83.7	67.9	67.9	79.4	64.9	64.9	75.1
_		62	SHC	64.5	77.7	90.8	62.1	74.8	87.5	59.5	71.6	83.7	56.4	67.9	79.4	53.9	64.9	75.9
분	(wb)		THC	81.2	81.2	83.0	77.7	77.7	81.6	73.9	73.9	80.0	69.6	69.6	78.0	65.3	65.3	74.4
3000 Cfm	2	67	SHC	52.7	67.8	83.0	51.3	66.4	81.6	49.8	64.9	80.0	48.0	63.0	78.0	44.5	59.4	74.4
30	EA		THC	87.9	87.9	87.9	84.2	84.2	84.2	80.0	80.0	80.0	75.3	75.3	75.3	70.2	70.2	70.2
		72	SHC	37.1	52.3	67.6	35.8	51.0	66.2	34.3	49.5	64.7	32.7	47.9	63.0	31.0	46.1	61.2
			THC	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		76	SHC	_	_	-	_	_	_	-	_	_	_	_	_	-	_	_
			THC	79.7	79.7	89.8	76.8	76.8	86.4	73.4	73.4	82.7	69.6	69.6	78.4	64.8	64.8	73.0
		58	SHC	69.6	79.7	89.8	67.0	76.8	86.4	64.1	73.4	82.7	60.8	69.6	78.4	56.6	64.8	73.0
			THC	79.8	79.8	93.3	76.8	76.8	89.8	73.5	73.5	85.9	69.7	69.7	81.4	65.6	65.6	76.8
Ε		62	SHC	66.3	79.8	93.3	63.8	76.8	89.8	61.0	73.5	85.9	57.8	69.7	81.4	54.5	65.6	76.8
3400 Cfm	(wb)	67	THC	82.3	82.3	88.8	78.8	78.8	87.3	74.9	74.9	85.5	70.6	70.6	83.2	-	-	-
일	EA (07	SHC	55.4	72.1	88.8	53.9	70.6	87.3	52.4	68.9	85.5	50.5	66.8	83.2	-	-	-
3,	ш	72	THC	88.9	88.9	88.9	85.1	85.1	85.1	80.8	80.8	80.8	76.1	76.1	76.1	-	_	-
		12	SHC	38.2	55.0	71.9	36.9	53.7	70.5	35.4	52.2	69.0	33.8	50.5	67.3		-	-
		76	THC	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
		,,,	SHC	•	_	-	-	-	-	-	_	-	-	-	-	-	-	-
		58	THC	81.5	81.5	91.9	78.5	78.5	88.4	75.0	75.0	84.5	71.1	71.1	80.1	64.7	64.7	72.9
			SHC	71.2	81.5	91.9	68.5	78.5	88.4	65.5	75.0	84.5	62.1	71.1	80.1	56.5	64.7	72.9
		62	THC	81.6	81.6	95.4	78.5	78.5	91.8	75.1	75.1	87.8	71.2	71.2	83.2	66.3	66.3	77.5
Æ	(q		SHC	67.8	81.6	95.4	65.2	78.5	91.8	62.4	75.1	87.8	59.1	71.2	83.2	55.1	66.3	77.5
3750 Cfm	(wb)	67	THC	83.2	83.2	93.9	79.7	79.7	92.2	75.8	75.8	90.3	71.5	71.5	87.7		-	-
75	EA		SHC	57.7	75.8	93.9	56.2	74.2	92.2	54.6	72.4	90.3	52.6	70.2	87.7	-	-	-
8	-	72	THC	89.7	89.7	89.7	85.8	85.8	85.8	81.5	81.5	81.5	76.8	76.8	76.8	-	-	_
			SHC	39.1	57.4	75.7	37.8	56.0	74.3	36.3	54.5	72.7	34.7	52.8	71.0	-	-	-
		76	THC	_	_	-	_	_	_	_	_	_	_	_	_		_	-
Ь.	NI - 4		ational	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-

Not operational

THC - Total Cooling Capacity, Gross (1,000 Btuh)

SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*08A - 524J*08

Fig.										Α	MBIENT	TEMPE	RATUR	E					
Fame						85			95			105			115			125	
Formal F						EA (db))		EA (db)	1		EA (db)	1		EA (db))		EA (db)	
Fig.					75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
Fig.			FO	THC	84.6	84.6	95.4	81.7	81.7	92.1	78.5	78.5	88.5	75.5	75.5	85.1	70.7	70.7	79.7
Formal F			50	SHC	73.9	84.6	95.4	71.3	81.7	92.1	68.5	78.5	88.5	65.9	75.5	85.1	61.7	70.7	79.7
Fig.			00	THC	88.2	88.2	89.4	84.6	84.6	87.6	80.7	80.7	85.6	76.9	76.9	83.6	73.2	73.2	81.3
The color The	Ε		62	SHC	66.1	77.7	89.4	64.3	75.9	87.6	62.4	74.0	85.6	60.5	72.0	83.6	58.5	69.9	81.3
The color The	5	φ	07	THC	95.5	95.5	95.5	91.5	91.5	91.5	87.3	87.3	87.3	82.7	82.7	82.7	76.1	76.1	76.1
The color The	250	ĕ	67	SHC	54.1	65.8	77.5	52.3	64.1	75.8	50.5	62.2	74.0	48.6	60.3	72.0	46.0	57.8	69.5
Fire	22	ш	70	THC	103.4	103.4	103.4	99.2	99.2	99.2	94.6	94.6	94.6	89.6	89.6	89.6	82.3	82.3	82.3
The color The			72	SHC	41.8	53.7	65.5	40.2	52.0	63.8	38.4	50.2	62.0	36.6	48.3	60.1	33.8	45.6	57.4
			70	THC	-	109.9	109.9	-	105.4	105.4	-	100.6	100.6	-	95.3	95.3	-	87.8	87.8
			76	SHC	_	43.9	56.2	-	42.3	54.7	-	40.6	52.8	-	38.7	50.9	-	36.1	48.3
Fig.				THC	88.7	88.7	99.9	85.6	85.6	96.4	82.1	82.1	92.5	78.7	78.7	88.7	75.4	75.4	85.0
Formal F			58	SHC	77.4	88.7	99.9	74.7	85.6	96.4	71.7	82.1	92.5	68.8	78.7	88.7	65.8	75.4	85.0
Fig.				THC	90.7	90.7	97.2	87.0	87.0	95.3	83.0	83.0	93.1	78.9	78.9	90.6	75.3	75.3	86.4
Tell	ے		62	SHC	70.7	84.0	97.2	68.8	82.1	95.3	66.9	80.0	93.1	64.7	77.6	90.6	61.7	74.0	86.4
Tell	Ç	wb)		THC	97.8	97.8	97.8	93.7	93.7	93.7	89.2	89.2	89.2	84.4	84.4	84.4	76.7	76.7	76.7
Tell	25	Ā	67	SHC	57.0	70.4	83.8	55.3	68.7	82.1	53.4	66.8	80.2	51.5	64.8	78.2	48.6	62.0	75.5
Formal First Fir	56	ш		THC	105.7	105.7	105.7	101.3	101.3	101.3	96.5	96.5	96.5	91.5	91.5	91.5	86.2	86.2	86.2
The color The			72	SHC	43.0	56.5	70.0	41.4	54.9	68.3	39.6	53.0	66.5	37.8	51.2	64.5	35.8	49.2	62.5
SHC - 45.4 59.5 - 43.8 57.8 - 42.0 56.9 - 40.2 54.0				THC	_	112.2	112.2	-	107.6	107.6	-	102.5	102.5	_	97.0	97.0	_	-	_
Formal F			76	SHC	_	45.4	59.5	_	43.8	57.8	_	42.0	55.9	_	40.2	54.0	_	-	_
Fractary				THC	92.0	92.0	103.7	88.7	88.7	99.9	85.1	85.1	95.9	81.2	81.2	91.5	76.0	76.0	85.7
Fractary			58	SHC	80.3	92.0	103.7	77.4	88.7	99.9	74.3	85.1	95.9	70.9	81.2	91.5	66.4	76.0	85.7
Form				THC	92.9	92.9	104.3	89.2	89.2	102.0	85.1	85.1	99.5	81.4	81.4	95.1	_	-	_
The control	_		62	SHC	74.9	89.6	104.3	72.9	87.4	102.0	70.7	85.1	99.5	67.6		95.1	_	-	_
The control	늉	Š Š		THC	99.6	99.6	99.6	95.3	95.3	95.3	90.8	90.8	90.8	86.0	86.0	86.0	79.1	79.1	81.7
The control	00	A	67	SHC	59.7	74.7	89.8	58.0	73.0	88.0	56.1	71.1	86.1	54.2	69.1	84.1	51.7	66.7	81.7
Fig.	30	ш		THC	107.5	107.5	107.5	103.0	103.0	103.0	98.0	98.0	98.0	92.9	92.9	92.9	88.0	88.0	88.0
The color The		, ,	72	SHC	44.1	59.2	74.3	42.5	57.5	72.6	40.7	55.7	70.7	38.8	53.8	68.7	37.0	51.8	66.7
SHC - 46.9 62.4 - 45.2 60.7 - 43.4 58.8 - 41.5 56.8				THC	_	114.0	114.0	-	109.1	109.1	-	103.9	103.9	-	98.3	98.3	-	_	_
Fig.			76	SHC	_	46.9	62.4	-	45.2	60.7	-	43.4	58.8	-	41.5	56.8	_	_	-
SHC 82.8 94.8 106.8 79.7 91.3 102.9 76.4 87.5 98.6 72.9 83.4 94.0 68.0 77.9 87.8				THC	94.8	94.8	106.8	91.3	91.3	102.9	87.5	87.5	98.6	83.4	83.4	94.0	77.9	77.9	87.8
From Fig. 1 (a) From Fig. 1 (b) From Fig. 1 (c) From Fig. 1 (c			58	SHC	82.8	94.8	106.8	79.7	91.3	102.9	76.4	87.5	98.6	72.9	83.4	94.0	68.0	77.9	87.8
SHC 78.8 94.8 110.9 75.9 91.4 106.8 72.8 87.6 102.4 69.3 83.5 97.6 66.9 79.3 92.7 THC 101.0 101.0 101.0 96.6 96.6 96.6 92.0 92.0 92.0 87.0 87.0 89.6 82.8 82.8 87.3 THC 108.9 108.9 108.9 104.3 104.3 104.3 99.2 99.2 99.2 93.8 93.8 93.8 86.1 86.1 86.1 THC 15.4 115.4 - 110.4 110.4 - 105.1 105.1 - 99.3 99.3 - 92.2 92.2 THC 15.4 115.4 - 110.4 110.4 - 105.1 105.1 - 99.3 99.3 - 92.2 92.2 THC 97.1 97.1 109.5 93.5 93.5 105.4 89.6 89.6 101.0 85.3 85.3 96.1 - - - THC 97.2 97.2 113.7 93.6 93.6 109.5 89.7 89.7 104.8 85.5 85.5 100.0 78.2 78.2 91.4 THC 102.2 102.2 102.2 97.7 97.7 99.0 93.1 93.1 97.0 88.1 88.1 94.8 - - - - THC 101.1 110.1 110.1 105.3 105.3 105.3 100.2 100.2 100.2 94.7 94.7 94.7 90.0 90.0 90.0 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8				THC	94.8	94.8	110.9	91.4	91.4	106.8	87.6	87.6	102.4	83.5	83.5	97.6	79.3	79.3	92.7
FOR SHC 62.3 78.9 95.4 60.6 77.1 93.7 58.7 75.2 91.7 56.7 73.2 89.6 54.8 71.0 87.3 104.3 105.1 1	ے		62	SHC	78.8	94.8	110.9	75.9	91.4	106.8	72.8	87.6	102.4	69.3	83.5	97.6	65.9	79.3	92.7
SHC 62.3 78.9 95.4 60.6 77.1 93.7 58.7 75.2 91.7 56.7 73.2 89.6 54.8 71.0 87.3 THC 108.9 108.9 108.9 104.3 104.3 104.3 99.2 99.2 99.2 99.8 93.8 93.8 93.8 86.1 86.1 86.1 THC 45.2 61.7 78.3 43.5 60.0 76.6 41.7 58.2 74.7 39.7 56.2 72.6 37.1 53.6 70.0 THC 115.4 115.4 - 110.4 110.4 - 105.1 105.1 - 99.3 99.3 - 92.2 92.2 THC 58HC - 48.2 65.2 - 46.5 63.4 - 44.7 61.6 - 42.7 59.5 - 40.4 57.1 SHC 84.8 97.1 109.5 93.5 93.5 105.4 89.6 89.6 101.0 85.3 85.3 96.1 - - - SHC 84.8 97.1 109.5 81.7 93.5 105.4 78.2 89.6 101.0 74.5 85.3 96.1 - - - THC 97.2 97.2 113.7 77.8 93.6 109.5 74.5 89.7 104.8 85.5 85.5 100.0 78.2 78.2 91.4 SHC 80.8 97.2 113.7 77.8 93.6 109.5 74.5 89.7 104.8 71.1 85.5 100.0 64.9 78.2 91.4 THC 102.2 102.2 102.2 97.7 97.7 99.0 93.1 93.1 97.0 88.1 88.1 94.8 - - - THC 110.1 110.1 110.1 105.3 105.3 105.3 100.2 100.2 100.2 94.7 94.7 94.7 90.0 90.0 90.0 SHC 46.1 64.2 82.2 44.4 62.4 80.4 42.6 60.5 78.4 40.7 58.5 76.4 38.9 56.6 74.2 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8		wb)		THC	101.0	101.0	101.0	96.6	96.6	96.6	92.0	92.0	92.0	87.0	87.0	89.6	82.8	82.8	87.3
Fig.	75	Ā	67	SHC	62.3	78.9	95.4	60.6	77.1	93.7	58.7	75.2	91.7	56.7	73.2	89.6	54.8	71.0	87.3
SHC 45.2 61.7 78.3 43.5 60.0 76.6 41.7 58.2 74.7 39.7 56.2 72.6 37.1 53.6 70.0 76.6 76.6 76.6 76.6 76.6 76.6 76	33	ш		THC	108.9	108.9	108.9	104.3	104.3	104.3	99.2	99.2	99.2	93.8	93.8	93.8	86.1	86.1	86.1
Form Fig.			72	SHC	45.2	61.7	78.3	43.5	60.0	76.6	41.7		74.7	39.7	56.2	72.6	37.1	53.6	70.0
SHC - 48.2 65.2 - 46.5 63.4 - 44.7 61.6 - 42.7 59.5 - 40.4 57.1				THC	-	115.4	115.4	-	110.4	110.4	-	105.1	105.1	-	99.3	99.3	-	92.2	92.2
FE SHC 84.8 97.1 109.5 81.7 93.5 105.4 78.2 89.6 101.0 74.5 85.3 96.1			76	SHC	_	48.2	65.2	-	46.5	63.4	-	44.7	61.6	-	42.7	59.5	_	40.4	57.1
SHC				THC	97.1	97.1	109.5	93.5	93.5	105.4	89.6		101.0	85.3	85.3	96.1	_		_
E 62 SHC 80.8 97.2 113.7 77.8 93.6 109.5 74.5 89.7 104.8 71.1 85.5 100.0 64.9 78.2 91.4 F 94.8 97.2 113.7 77.8 93.6 109.5 74.5 89.7 104.8 71.1 85.5 100.0 64.9 78.2 91.4 90.0 91.1 93.1 97.0 88.1 88.1 94.8 -			58	SHC	84.8	97.1	109.5	81.7	93.5	105.4	78.2			74.5	85.3	96.1	_	_	-
E 62 SHC 80.8 97.2 113.7 77.8 93.6 109.5 74.5 89.7 104.8 71.1 85.5 100.0 64.9 78.2 91.4 F 94.8 97.2 113.7 77.8 93.6 109.5 74.5 89.7 104.8 71.1 85.5 100.0 64.9 78.2 91.4 90.0 91.1 93.1 97.0 88.1 88.1 94.8 -				THC	97.2	97.2		93.6	93.6		89.7	89.7	104.8	85.5	85.5	100.0	78.2	78.2	91.4
F THC 102.2 102.2 102.2 102.2 97.7 97.7 99.0 93.1 93.1 97.0 88.1 88.1 94.8 -<	Ę		62					77.8	93.6		74.5	89.7	104.8	71.1	85.5	100.0	64.9	78.2	91.4
72 SHC 46.1 64.2 82.2 44.4 62.4 80.4 42.6 60.5 78.4 40.7 58.5 76.4 38.9 56.6 74.2 76 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8	ç	wb)								99.0									
72 SHC 46.1 64.2 82.2 44.4 62.4 80.4 42.6 60.5 78.4 40.7 58.5 76.4 38.9 56.6 74.2 76 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8	20	A	67					l .	81.0	99.0	61.1		97.0	59.1	77.0	94.8	-		-
THE HIGH SHC 46.1 64.2 82.2 44.4 62.4 80.4 42.6 60.5 78.4 40.7 58.5 76.4 38.9 56.6 74.2 76 THC - 116.5 116.5 - 111.5 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8	37	ш	7.0	THC				105.3	105.3	105.3	100.2	100.2	100.2	94.7	94.7	94.7	90.0	90.0	90.0
THC - 116.5 116.5 - 111.5 - 106.0 106.0 - 100.1 100.1 - 90.8 90.8			/2					44.4		80.4	42.6		78.4	40.7	58.5	76.4	38.9	56.6	74.2
				THC	_			-		111.5	-		106.0			100.1	-	90.8	90.8
			76		_			_			-	45.9	64.1	-	43.9	62.0	-	40.8	58.8

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*08A - 524J*12

									Al	MBIENT '	TEMPE	RATUR	E					
					85			95			105			115			125	
				Е	A (db)		E	A (db)		Е	A (db)		E	A (db)		E	A (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		58	THC	93.7	93.7	105.5	90.3	90.3	101.8	86.7	86.7	97.7	82.7	82.7	93.2	-	-	-
		50	SHC	81.8	93.7	105.5	78.9	90.3	101.8	75.7	86.7	97.7	72.2	82.7	93.2	+	-	-
		62	THC	94.5	94.5	106.5	90.8	90.8	104.2	86.8	86.8	101.5	83.0	83.0	97.0	78.0	78.0	91.2
ع	ا ۾ ا	02	SHC	76.4	91.4	106.5	74.4	89.3	104.2	72.1	86.8	101.5	68.9	83.0	97.0	64.8	78.0	91.2
Ö	(wb)	67	THC	101.3	101.3	101.3	97.0	97.0	97.0	92.4	92.4	92.4	87.7	87.7	87.7	80.4	80.4	83.5
3000 Cfm	EA		SHC	60.9	76.3	91.7	59.2	74.5	89.9	57.3	72.7	88.0	55.4	70.7	86.0	52.7	68.1	83.5
ဗ	ا " ا	72	THC	109.4	109.4	109.4	104.9	104.9	104.9	100.0	100.0	100.0	94.7	94.7	94.7	87.1	87.1	87.1
			SHC	44.9	60.4	75.8	43.3	58.7	74.1	41.5	56.9	72.2	39.6	54.9	70.2	36.9	52.2	67.6
		76	THC	-	116.1	116.1	-	111.3	111.3		106.1	106.1	-	100.4	100.4	-	-	_
			SHC		47.7	63.5		46.0	61.8		44.3	60.0	-	42.3	57.9			-
		58	THC	97.4	97.4	109.7	93.9	93.9	105.8	90.0	90.0	101.4	85.9	85.9	96.8	79.7	79.7	89.8
			SHC	85.0	97.4	109.7	82.0	93.9	105.8	78.6	90.0	101.4	75.0	85.9	96.8	69.6	79.7	89.8
		62	THC	97.5	97.5	114.0	93.9	93.9	109.9	90.1	90.1	105.4	86.0	86.0	100.5	82.6	82.6	96.6
3500 Cfm	(wb)		SHC	81.0 103.2	97.5 103.2	114.0 103.2	78.0 98.8	93.9 98.8	109.9 98.8	74.8 94.2	90.1	105.4 95.8	71.4 89.1	86.0 89.1	100.5 93.7	68.6 82.7	82.6 82.7	96.6 91.4
0	EA (67	SHC			,		l .										
22	ш		THC	64.5 111.2	82.1 111.2	99.6 111.2	62.8 106.6	80.3 106.6	97.8 106.6	60.9 101.6	78.4 101.6	95.8 101.6	58.9 96.2	76.3 96.2	93.7 96.2	56.5 88.8	73.9 88.8	91.4 88.8
()		72	SHC	46.3	63.9	81.4	44.7	62.2	79.7	42.9	60.3	77.8	40.9	58.3	75.8	38.4	55.8	73.2
			THC	40.5	117.9	117.9	-	113.0	113.0	42.9	107.6	107.6	40.9	101.8	101.8		-	75.2
		76	SHC	_	49.5	67.4	_	47.8	65.6	_	46.0	63.7	_	44.0	61.6	_	_	_
			THC	100.4	100.4	113.1	96.7	96.7	109.0	92.7	92.7	104.5	88.4	88.4	99.6	82.0	82.0	92.4
		58	SHC	87.7	100.4	113.1	84.4	96.7	109.0	80.9	92.7	104.5	77.2	88.4	99.6	71.6	82.0	92.4
			THC	100.4	100.4	117.4	96.8	96.8	113.2	92.8	92.8	104.5	88.4	88.4	103.4	81.7	81.7	95.5
_		62	SHC	83.4	100.4	117.4	80.4	96.8	113.2	77.1	92.8	108.5	73.5	88.4	103.4	67.8	81.7	95.5
焦	(wb)		THC	104.7	104.7	107.0	100.3	100.3	105.1	95.5	95.5	103.1	90.4	90.4	100.8	82.8	82.8	94.5
4000 Cfm	2	67	SHC	67.9	87.5	107.0	66.1	85.6	105.1	64.2	83.6	103.1	62.2	81.5	100.8	54.7	74.6	94.5
104	E		THC	112.7	112.7	112.7	108.0	108.0	108.0	102.8	102.8	102.8	97.3	97.3	97.3	89.9	89.9	89.9
		72	SHC	47.7	67.2	86.7	46.0	65.5	84.9	44.1	63.6	83.0	42.2	61.6	80.9	39.7	59.0	78.4
			THC	_	119.4	119.4	_	114.3	114.3	-	108.7	108.7	-	103.0	103.0	-	94.3	94.3
		76	SHC	_	51.2	71.0	_	49.5	69.2	-	47.6	67.2	_	45.6	65.1	_	42.8	62.0
			THC	102.7	102.7	115.7	98.9	98.9	111.5	94.8	94.8	106.8	90.3	90.3	101.7	85.1	85.1	95.9
		58	SHC	89.7	102.7	115.7	86.3	98.9	111.5	82.7	94.8	106.8	78.9	90.3	101.7	74.3	85.1	95.9
			THC	102.8	102.8	120.2	99.0	99.0	115.7	94.8	94.8	110.9	90.3	90.3	105.6	83.6	83.6	97.8
Ε		62	SHC	85.4	102.8	120.2	82.2	99.0	115.7	78.8	94.8	110.9	75.1	90.3	105.6	69.5	83.6	97.8
4500 Cfm	EA (wb)	67	THC	105.9	105.9	113.8	101.5	101.5	111.7	96.7	96.7	109.5	91.6	91.6	106.8	84.0	84.0	100.0
8	ĕ	07	SHC	71.0	92.4	113.8	69.2	90.5	111.7	67.2	88.3	109.5	65.0	85.9	106.8	57.0	76.0	100.0
45	"	72	THC	113.8	113.8	113.8	109.0	109.0	109.0	103.7	103.7	103.7	98.1	98.1	98.1	89.5	89.5	89.5
		12	SHC	48.9	70.3	91.7	47.2	68.6	89.9	45.3	66.6	87.9	43.4	64.6	85.7	40.6	61.8	83.1
		76	THC	-	120.4	120.4	-	115.3	115.3	-	109.6	109.6	-	103.9	103.9	-	-	-
		70	SHC	-	52.7	74.3	-	51.0	72.4	-	49.1	70.3	-	47.1	68.1	+	-	-
		58	THC	105.0	105.0	118.3	101.0	101.0	113.9	96.8	96.8	109.0	92.1	92.1	103.8	88.1	88.1	99.3
			SHC	91.7	105.0	118.3	88.2	101.0	113.9	84.5	96.8	109.0	80.5	92.1	103.8	76.9	88.1	99.3
		62	THC	105.1	105.1	122.9	101.1	101.1	l .	96.8	96.8	113.2	92.2	92.2	107.8	85.5	85.5	100.0
Į.	(a		SHC	87.3	105.1	122.9	84.0	101.1	118.2	80.4	96.8	113.2	76.6	92.2	107.8	71.1	85.5	100.0
5000 Cfm	EA (wb)	67	THC	107.1	107.1	120.5	102.6	102.6	118.3	97.8	97.8	115.8	92.7	92.7	112.8	-	-	-
ĕ	EA		SHC	74.1	97.3	120.5	72.2	95.3	118.3	70.1	93.0	115.8	67.8	90.3	112.8	-	-	-
5	-	72	THC	114.9	114.9	114.9	109.9	109.9	109.9	104.6	104.6	104.6	98.9	98.9	98.9	-	-	-
			SHC	50.1	73.4	96.7	48.4	71.6	94.8	46.5	69.6	92.7	44.6	67.5	90.5	-	-	-
		76	THC	-	121.4	121.4	-	116.2	116.2	-	110.4	110.4	-	104.7	104.7	-	-	_
	لــــا		SHC	-	54.2	77.5		52.4	75.6		50.5	73.4	-	48.5	71.1	-	_	_

Not operational

THC - Total Cooling Capacity, Gross (1,000 Btuh)

SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*12A - 524J*12

									A	MBIENT	TEMPE	RATUR	E					
					85			95			105			115			125	
					EA (db)			EA (db)			EA (db)			EA (db)			EA (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		58	THC	110.5	110.5	121.5	106.2	106.2	117.1	101.6	101.6	112.4	96.9	96.9	107.5	92.5	92.5	102.9
		30	SHC	99.4	110.5	121.5	95.3	106.2	117.1	90.9	101.6	112.4	86.3	96.9	107.5	82.0	92.5	102.9
		62	THC	114.0	114.0	114.0	108.8	108.8	111.4	103.3	103.3	108.7	97.6	97.6	105.6	91.2	91.2	101.6
Ę		02	SHC	92.3	103.2	114.0	89.9	100.6	111.4	87.3	98.0	108.7	84.5	95.1	105.6	80.8	91.2	101.6
3000 Cfm	(wb)	67	THC	123.2	123.2	123.2	117.4	117.4	117.4	111.5	111.5	111.5	105.1	105.1	105.1	_	-	-
00	E		SHC	76.4	86.8	97.2	74.1	84.4	94.7	71.7	81.9	92.1	69.1	79.3	89.4	-		
က		72	THC	133.0	133.0	133.0	126.8	126.8	126.8	120.4	120.4	120.4	113.5	113.5	113.5	106.0	106.0	106.0
			SHC	60.2	70.1	79.9	57.9	67.7	77.5	55.6	65.3	74.9	53.2	62.7	72.3	50.5	60.0	69.4
		76	THC	-	140.7	140.7	-	134.2	134.2	-	127.6	127.6	-	120.2	120.2	-	112.3	112.3
			SHC		56.4	65.8		54.1	63.4	-	51.8	61.0	-	49.3	58.4		46.6	55.6
		58	THC	115.8	115.8	128.4	111.2	111.2	123.6	106.3	106.3	118.6	101.1	101.1	113.2	94.3	94.3	106.2
			SHC	103.3	115.8 117.4	128.4	98.8	111.2	123.6	94.1	106.3	118.6	89.0	101.1	113.2	82.5	94.3	106.2
		62	SHC	117.4		124.5	112.0	112.0	121.6	106.6	106.6	118.3	101.1	101.1	113.2 113.2	93.0 81.2	93.0	104.8
μĦ	ē		THC	99.5 126.1	112.0 126.1	124.5 126.1	96.9 120.0	109.2	121.6 120.0	93.8 113.8	106.0	118.3 113.8	89.0 107.2	101.1 107.2	107.2	101.0	93.0	104.8
3500 Cfm	EA (wb)	67	SHC	81.5	93.4	105.4	79.1	91.0	102.8	76.7	88.4	100.2	74.1	85.8	97.4	71.6	83.2	94.7
350	E		THC	135.6	135.6	135.6	129.2	129.2	129.2	122.6	122.6	122.6	115.5	115.5	115.5	108.0	108.0	108.0
		72	SHC	62.8	74.1	85.4	60.5	71.7	82.9	58.2	69.3	80.4	55.7	66.7	77.7	53.2	64.0	74.9
			THC	-	143.2	143.2		136.5	136.5		129.7	129.7	-	122.1	122.1			74.5
		76	SHC	_	58.4	69.2	_	56.1	66.8	_	53.8	64.4	_	51.3	61.8	_	_	
			THC	120.2	120.2	134.3	115.3	115.3	129.2	110.1	110.1	123.8	104.5	104.5	118.0	97.1	97.1	110.4
		58	SHC	106.1	120.2	134.3	101.4	115.3	129.2	96.4	110.1	123.8	91.0	104.5	118.0	83.9	97.1	110.4
			THC	120.5	120.5	133.7	115.3	115.3	129.2	110.2	110.2	123.9	104.6	104.6	118.1	97.0	97.0	110.3
_		62	SHC	105.6	119.7	133.7	101.4	115.3	129.2	96.5	110.2	123.9	91.1	104.6	118.1	83.8	97.0	110.3
步	(wb)		THC	128.2	128.2	128.2	122.0	122.0	122.0	115.6	115.6	115.6	108.8	108.8	108.8	101.3	101.3	102.0
4000 Cfm	EA (67	SHC	86.2	99.7	113.2	83.9	97.2	110.6	81.4	94.7	108.0	78.8	92.0	105.1	76.0	89.0	102.0
40	Ш		THC	137.6	137.6	137.6	131.0	131.0	131.0	124.2	124.2	124.2	116.9	116.9	116.9	109.3	109.3	109.3
		72	SHC	65.2	78.0	90.7	62.9	75.6	88.2	60.6	73.1	85.7	58.1	70.6	83.0	55.6	67.8	80.1
		70	THC	-	145.0	145.0	-	138.2	138.2	-	131.2	131.2	-	-	-	-	-	
		76	SHC	-	60.3	72.5	_	58.1	70.1	_	55.8	67.7	_	-	-	_	-	-
		58	THC	123.8	123.8	139.3	118.6	118.6	134.0	113.2	113.2	128.4	107.3	107.3	122.2	102.3	102.3	117.1
		36	SHC	108.2	123.8	139.3	103.2	118.6	134.0	98.0	113.2	128.4	92.4	107.3	122.2	87.6	102.3	117.1
		62	THC	123.9	123.9	139.4	118.7	118.7	134.1	113.3	113.3	128.4	107.4	107.4	122.3	101.8	101.8	116.5
Cfm		02	SHC	108.3	123.9	139.4	103.3	118.7	134.1	98.1	113.3	128.4	92.5	107.4	122.3	87.1	101.8	116.5
	(wb)	67	THC	130.0	130.0	130.0	123.6	123.6	123.6	117.1	117.1	117.1	110.2	110.2	112.5	102.8	102.8	109.3
4500	E	Ŭ,	SHC	90.8	105.8	120.9	88.3	103.2	118.2	85.8	100.6	115.4	83.2	97.8	112.5	80.3	94.8	109.3
4	-	72	THC	139.1	139.1	139.1	132.4	132.4	132.4	125.5	125.5	125.5	118.1	118.1	118.1	110.3	110.3	110.3
			SHC	67.4	81.7	95.9	65.2	79.3	93.3	62.9	76.8	90.8	60.4	74.2	88.1	57.8	71.5	85.2
		76	THC	-	146.4	146.4	-	139.6	139.6	_	-	-	_	-	-	-	-	-
			SHC	-	62.2	75.7	-	59.9	73.3			-	-	-				
		58	THC	126.8	126.8	143.8	121.4	121.4	138.2	115.8	115.8	132.3	109.8	109.8	126.1	103.0	103.0	119.1
			SHC	109.8	126.8	143.8	104.5	121.4	138.2	99.2	115.8	132.3	93.4	109.8	126.1	86.9	103.0	119.1
		62	THC	126.9	126.9	143.9	121.4	121.4	138.2	115.9	115.9	132.4	109.8	109.8	126.2	103.1	103.1	119.2
Ę	ē		SHC	109.8	126.9	143.9	104.6	121.4	138.2	99.3	115.9	132.4	93.5	109.8	126.2	87.0	103.1	119.2
5000 Cfm	(wp)	67	THC	131.4 95.1	131.4 111.7	131.4 128.2	125.0 92.6	125.0 109.1	125.5 125.5	118.4 90.1	118.4 106.4	122.7 122.7	111.5 87.3	111.5 103.4	119.6 119.6	104.1 84.2	104.1 100.1	116.1 116.1
500	₽		THC	140.3	140.3	140.3	133.5	133.5	133.5	126.6	126.6	126.6	119.0	119.0	119.0	111.1	111.1	111.1
		72	SHC	69.6	85.3	100.9	67.4	82.9	98.4	65.1	80.5	95.9	62.6	77.9	93.2	60.0	75.1	90.3
			THC	-	147.6	147.6	-		90.4	-	-	=-		-	95.2		75.1	
		76	SHC	_	64.0	78.8	_	_	_	_	_	_	_	_	_	_	_	_
			5 10		07.0	10.0												

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*12 A- 524J*14

									Al	MBIENT	TEMPE	RATUR	E					
					85			95			105			115			125	
				E	A (db)		E	A (db)		E	A (db)		E	A (db)		E	A (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
			THC	119.7	119.7	132.9	115.2	115.2	128.3	110.5	110.5	123.4	105.3	105.3	118.0	97.9	97.9	110.4
		58	SHC	106.5	119.7	132.9	102.2	115.2	128.3	97.6	110.5	123.4	92.6	105.3	118.0	85.5	97.9	110.4
			THC	121.2	121.2	130.3	116.0	116.0	127.0	110.8	110.8	122.9	105.4	105.4	118.1	98.7	98.7	111.1
Ε		62	SHC	104.0	117.2	130.3	101.0	114.0	127.0	97.2	110.1	122.9	92.7	105.4	118.1	86.2	98.7	111.1
5	(wb)	67	THC	130.0	130.0	130.0	124.4	124.4	124.4	118.5	118.5	118.5	112.0	112.0	112.0	104.9	104.9	104.9
3750 Cfm	EA	67	SHC	85.3	97.8	110.3	83.1	95.5	108.0	80.8	93.1	105.5	78.3	90.5	102.7	75.6	87.7	99.8
37	ш	70	THC	139.4	139.4	139.4	133.7	133.7	133.7	127.7	127.7	127.7	120.9	120.9	120.9	113.5	113.5	113.5
		72	SHC	65.3	77.1	88.8	63.3	75.0	86.7	61.2	72.8	84.4	58.9	70.4	81.8	56.3	67.7	79.0
		76	THC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		76	SHC	-	_	-	-	_	-	-	-	_	-	-	_	-	-	-
		58	THC	124.1	124.1	138.8	119.4	119.4	134.1	114.5	114.5	128.9	109.0	109.0	123.2	100.5	100.5	114.4
		30	SHC	109.2	124.1	138.8	104.8	119.4	134.1	100.0	114.5	128.9	94.8	109.0	123.2	86.6	100.5	114.4
		62	THC	124.5	124.5	138.3	119.5	119.5	134.1	114.5	114.5	128.9	109.1	109.1	123.3	101.0	101.0	114.9
E	<u> </u>	02	SHC	108.7	123.5	138.3	104.9	119.5	134.1	100.1	114.5	128.9	94.9	109.1	123.3	87.1	101.0	114.9
4300 Cfm	(dw)	67	THC	132.1	132.1	132.1	126.4	126.4	126.4	120.4	120.4	121.1	113.8	113.8	115.6	106.5	106.5	109.5
8	EĀ	01	SHC	90.7	104.9	119.0	88.5	102.5	116.6	86.1	100.1	114.1	83.6	97.4	111.2	80.7	94.5	108.1
4	۳.	72	THC	141.3	141.3	141.3	135.5	135.5	135.5	129.5	129.5	129.5	122.6	122.6	122.6	114.3	114.3	114.3
		''-	SHC	68.1	81.4	94.7	66.1	79.3	92.6	64.0	77.1	90.3	61.7	74.7	87.7	57.6	69.7	81.7
		76	THC	-	-	_	-	-	-	-	-	_	-	_	-	-	-	-
			SHC	-	-	-	-	-	-	-	_	-	_	-	-		_	-
		58	THC	128.9	128.9	145.7	124.1	124.1	140.7	118.9	118.9	135.3	113.2	113.2	129.3	106.8	106.8	122.7
			SHC	112.1	128.9	145.7	107.5	124.1	140.7	102.5	118.9	135.3	97.0	113.2	129.3	90.9	106.8	122.7
		62	THC	129.0	129.0	145.8	124.2	124.2	140.7	119.0	119.0	135.3	113.3	113.3	129.4	106.8	106.8	122.7
Ę	<u>a</u>		SHC	112.2 134.4	129.0 134.4	145.8 134.4	107.6 128.6	124.2 128.6	140.7 128.6	102.6 122.5	119.0 122.5	135.3 124.7	97.1	113.3 115.8	129.4	91.0 108.4	106.8 108.4	122.7 118.5
5000 Cfm	(wb)	67	THC	97.3	1134.4	129.8	95.1	111.2	127.4	92.7	108.7	124.7	115.8 90.1	105.9	121.8 121.8	87.0	100.4	118.5
8	EA		THC	143.4	143.4	143.4	137.5	137.5	137.5	131.3	131.3	131.3	124.3	124.3	124.3		102.0	110.5
ц,		72	SHC	71.6	86.8	102.0	69.6	84.7	99.9	67.5	82.6	97.6	65.2	80.1	95.0	_	_	_
			THC	-	-		-		-	-	-	-	-		95.0	_	_	_
		76	SHC	_	_	_	_	_	_		_	_	_	_	_		_	_
			THC	132.3	132.3	151.0	127.3	127.3	145.8	122.0	122.0	140.3	116.1	116.1	134.1	109.5	109.5	127.2
		58	SHC	113.6	132.3	151.0	108.8	127.3	145.8	103.7	122.0	140.3	98.1	116.1	134.1	91.8	109.5	127.2
			THC	132.4	132.4	151.1	127.4	127.4	145.9	122.1	122.1	140.3	116.2	116.2	134.2	109.5	109.5	127.3
ڃ	l_	62	SHC	113.7	132.4	151.1	108.9	127.4	145.9	103.8	122.1	140.3	98.1	116.2	134.2	91.8	109.5	127.3
5	ð		THC	136.0	136.0	141.8	130.2	130.2	137.7	124.1	124.1	134.2	117.4	117.4	130.6	110.3	110.3	125.5
5700 Cfm	EA (wb)	67	SHC	103.2	121.5	139.8	100.8	119.0	137.2	98.1	116.1	134.2	94.9	112.7	130.6	90.2	107.8	125.5
57	ш	70	THC	144.7	144.7	144.7	138.8	138.8	138.8	132.0	132.0	140.6	126.0	126.0	133.0	-	-	-
		72	SHC	74.8	92.0	109.1	72.8	89.9	107.0	71.4	88.0	81.8	68.7	85.2	101.8	-	-	-
		76	THC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		76	SHC	-	_	-	-	_	-	-	-	_	-	-	-	-	-	-
		58	THC	134.9	134.9	155.1	129.8	129.8	149.8	124.4	124.4	144.2	118.3	118.3	137.8	111.6	111.6	130.8
		30	SHC	114.7		155.1	109.9	129.8	149.8	104.7	124.4	144.2	98.9	118.3	137.8	92.5	111.6	130.8
		62	THC	135.0		155.2	129.9	129.9	149.9	124.5	124.5	144.2	118.4	118.4	137.9	111.7	111.7	l
Ę	<u>6</u>	J-2	SHC	114.8	135.0		109.9	129.9	149.9	104.7	124.5	144.2	98.9	118.4	137.9	92.5	111.7	130.9
6250 Cfm	(wb)	67	THC	137.2		147.6	131.4	131.4	144.9	125.3	125.3	141.6	118.7	118.7	137.5	111.8	111.8	131.0
25(Ε̈́		SHC	107.8		147.6	105.3	125.1	144.9	102.4	122.0	141.6	98.6	118.1	137.5	92.7	111.8	131.0
9	-	72	THC	145.7	145.7	145.7	139.9	139.9	139.9	-	-	-	-	-	-	-	-	-
			SHC	77.3	96.0	114.7	75.4	94.0	112.6		-	-	-	-	-	-	_	-
		76	THC	-	-	-	-	-	-		-	-	-	-	-		-	-
	<u> </u>		SHC		_	-	_	_	-	-	_	-	-	-	-	-	_	-

Not operational

THC - Total Cooling Capacity, Gross (1,000 Btuh)

SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*12D - 524J*12

									Α	MBIENT	TEMPE	RATUR	ΙE					
					85			95			105			115			125	
					EA (db)			EA (db)			EA (db)			EA (db)			EA (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		58	THC	111.6	111.6	125.3	107.3	107.3	120.5	102.6	102.6	115.2	97.3	97.3	109.4	91.7	91.7	103.0
		56	SHC	97.9	111.6	125.3	94.1	107.3	120.5	89.9	102.6	115.2	85.3	97.3	109.4	80.3	91.7	103.0
		62	THC	115.9	115.9	119.8	110.5	110.5	117.1	104.8	104.8	114.2	98.3	98.3	110.7	92.4	92.4	106.2
Ξ	<u>~</u>	02	SHC	88.6	104.2	119.8	86.0	101.5	117.1	83.2	98.7	114.2	79.9	95.3	110.7	76.2	91.2	106.2
3000 Cfm	EA (wb)	67	THC	125.6	125.6	125.6	119.9	119.9	119.9	113.7	113.7	113.7	107.1	107.1	107.1	99.6	99.6	99.6
8	Ā	0,	SHC	71.9	87.6	103.3	69.4	85.1	100.8	66.8	82.5	98.1	63.9	79.6	95.3	60.8	76.5	92.2
ဗ	_	72	THC	135.6	135.6	135.6	129.6	129.6	129.6	123.1	123.1	123.1	116.1	116.1	116.1	108.4	108.4	108.4
			SHC	55.0	70.8	86.6	52.6	68.4	84.2	50.1	65.9	81.7	47.4	63.2	79.0	44.5	60.3	76.1
		76	THC	-	143.6	143.6	_	137.4	137.4	-	130.7	130.7	-	123.3	123.3	-	115.2	115.2
			SHC	-	57.3	73.6	-	55.1	71.4	-	52.7	68.9		50.1	66.2		47.4	63.4
		58	THC	117.1	117.1	131.6	112.5	112.5	126.4	107.5	107.5	120.8	102.0	102.0	114.7	95.7	95.7	107.7
			SHC	102.6	117.1	131.6	98.6	112.5	126.4	94.2	107.5	120.8	89.4	102.0	114.7	83.8	95.7	107.7
		62	THC	119.3	119.3	130.8	113.8	113.8	127.8	108.1	108.1	123.7	102.1	102.1	119.1	95.7	95.7	111.7
Ę	<u>@</u>		SHC	95.1	112.9	130.8	92.3	110.0	127.8	88.9	106.3	123.7	85.1	102.1	119.1	79.7	95.7	111.7
3500 Cfm	EA (wb)	67	THC	128.8	128.8	128.8	122.8	122.8	122.8	116.4	116.4	116.4	109.5	109.5	109.5	101.9	101.9	101.9
350	EA		SHC	76.0	94.1	112.2	73.5	91.6	109.7	70.8	88.9	107.0	68.0	86.1	104.2	64.9	82.9	101.0
(6)		72	THC	138.6	138.6	138.6	132.5	132.5	132.5	125.8	125.8	125.8	118.4	118.4	118.4	110.5	110.5	110.5
			SHC	56.5	74.8	93.0	54.2	72.4	90.6	51.7	69.9	88.1	48.9	67.1	85.3	46.0	64.2	82.4
		76	THC	-	146.6	146.6	-	140.2	140.2	-	133.2	133.2	-	125.6	125.6	-	-	-
			SHC	- 101.0	59.4	78.0	- 110.7	57.1	75.7		54.7	73.3		52.2	70.6		-	
		58	THC	121.6	121.6	136.6	116.7	116.7	131.2	111.4	111.4	125.3	105.7	105.7	118.9	99.2	99.2	111.7
			THC	106.5	121.6 122.2	136.6	102.2	116.7	131.2	97.6	111.4	125.3	92.5 105.7	105.7 105.7	118.9	86.8	99.2	111.7 115.9
		62	SHC	100.7	122.2	140.3 140.3	117.0 97.0	117.0 116.3	135.6 135.6	111.4 92.8	111.4 111.4	130.0 130.0	88.0	105.7	123.4 123.4	99.2 82.6	99.2 99.2	115.9
4000 Cfm	ð		THC	131.1	131.1	131.1	125.0	125.0	125.0	118.5	111.4	118.5	111.4	111.4	112.6	103.7	103.7	109.4
0	(wp)	67	SHC	79.9	100.4	120.8	77.4	97.8	118.3	74.7	95.1	115.6	71.8	92.2	112.6	68.7	89.0	109.4
104	E		THC	140.9	140.9	140.9	134.6	134.6	134.6	127.7	127.7	127.7	120.3	120.3	120.3	112.1	112.1	112.1
		72	SHC	57.9	78.6	99.2	55.6	76.2	96.8	53.1	73.7	94.2	50.4	70.9	91.5	47.5	68.0	88.5
			THC	-	148.8	148.8	-	142.3	142.3	-	135.2	135.2	-	-	-	-	-	
		76	SHC	-	61.3	82.2	_	59.1	80.0	_	56.7	77.5	_	_			_	
			THC	125.3	125.3	140.9	120.2	120.2	135.3	114.8	114.8	129.1	108.8	108.8	122.4	102.4	102.4	115.2
		58	SHC	109.7	125.3	140.9	105.2	120.2	135.3	100.4	114.8	129.1	95.2	108.8	122.4	89.5	102.4	115.2
			THC	125.3	125.3	146.2	120.2	120.2	140.3	114.7	114.7	134.0	108.8	108.8	127.1	102.4	102.4	119.6
_		62	SHC	104.4	125.3	146.2	100.1	120.2	140.3	95.5	114.7	134.0	90.5	108.8	127.1	85.1	102.4	119.6
Cfm	(dv		THC	133.0	133.0	133.0	126.8	126.8	126.8	120.1	120.1	123.8	112.9	112.9	120.7	105.1	105.1	117.3
4500	EA (wb)	67	SHC	83.6	106.4	129.2	81.1	103.8	126.6	78.3	101.0	123.8	75.4	98.0	120.7	72.2	94.8	117.3
45	Ш		THC	142.8	142.8	142.8	136.3	136.3	136.3	129.3	129.3	129.3	121.7	121.7	121.7	113.3	113.3	113.3
		72	SHC	59.3	82.2	105.1	57.0	79.9	102.8	54.4	77.3	100.2	51.7	74.6	97.5	48.8	71.6	94.5
			THC	-	150.5	150.5	_	143.9	143.9	_	_	-	_	_	-	_	_	
		76	SHC	_	63.1	86.4	_	60.9	84.1	-	_	-	-	-	-	-	_	
			THC	128.4	128.4	144.5	123.2	123.2	138.7	117.6	117.6	132.3	111.4	111.4	125.4	104.7	104.7	117.9
		58	SHC	112.4	128.4	144.5	107.8	123.2	138.7	102.8	117.6	132.3	97.4	111.4	125.4	91.5	104.7	117.9
		60	THC	128.4	128.4	149.9	123.2	123.2	143.9	117.5	117.5	137.3	111.4	111.4	130.2	104.7	104.7	122.4
Ε		62	SHC	106.9	128.4	149.9	102.5	123.2	143.9	97.8	117.5	137.3	92.6	111.4	130.2	87.0	104.7	122.4
Ş	(wb)	67	THC	134.6	134.6	137.2	128.3	128.3	134.5	121.5	121.5	131.6	114.2	114.2	128.3	106.3	106.3	124.6
5000 Cfm	EA (67	SHC	87.1	112.2	137.2	84.6	109.5	134.5	81.8	106.7	131.6	78.8	103.6	128.3	75.5	100.1	124.6
5(ш	70	THC	144.2	144.2	144.2	137.7	137.7	137.7	130.6	130.6	130.6	122.8	122.8	122.8	114.4	114.4	114.4
		72	SHC	60.6	85.8	111.0	58.3	83.5	108.6	55.8	80.9	106.1	53.0	78.2	103.3	50.1	75.2	100.3
		76	THC	-	151.9	151.9	-	-	-		-							
		70	SHC	-	64.9	90.4	_	_	-	_	_	-	_	-	_	-	-	

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh) SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*12D - 524J*14

									Al	MBIENT :	TEMPE	RATUR	E					
					85			95			105			115			125	
					A (db)			A (db)			A (db)			A (db)			A (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		58	THC	118.1	118.1	133.1	113.8	113.8	128.3	109.1	109.1	123.0	103.9	103.9	117.1	98.2	98.2	110.7
		30	SHC	103.1	118.1	133.1	99.4	113.8	128.3	95.3	109.1	123.0	90.7	103.9	117.1	85.8	98.2	110.7
		62	THC	120.1	120.1	133.8	115.0	115.0	130.9	109.5	109.5	127.1	104.1	104.1	121.7	98.3	98.3	115.0
Cfm	🌣	02	SHC	96.2	115.0	133.8	93.6	112.3	130.9	90.5	108.8	127.1	86.4	104.1	121.7	81.7	98.3	115.0
C	3	67	THC	130.2	130.2	130.2	124.8	124.8	124.8	118.7	118.7	118.7	112.0	112.0	112.0	104.6	104.6	105.5
3750	EA (wb)		SHC	77.7	96.9	116.0	75.5	94.6	113.8	73.0	92.2	111.3	70.4	89.5	108.6	67.4	86.4	105.5
'n	-	72	THC	140.9	140.9	140.9	135.4	135.4	135.4	129.2	129.2	129.2	122.3	122.3	122.3	114.6	114.6	114.6
			SHC	58.0	77.3	96.6	56.0	75.3	94.5	53.7	73.0	92.2	51.2	70.4	89.7	48.4	67.6	86.8
		76	THC	-	149.8	149.8	-	144.2	144.2		137.8	137.8	-	130.6	130.6	-	122.6	122.6
			SHC	- 100.7	61.4	81.1	- 1100	59.4	79.1		57.3	76.9	- 107.0	54.9	74.5		52.2	71.7
		58	THC	122.7	122.7	138.2	118.2	118.2	133.2	113.3	113.3	127.7	107.9	107.9	121.5	101.8	101.8	114.7
			SHC	107.1 123.2	122.7 123.2	138.2 142.6	103.3 118.4	118.2 118.4	133.2 138.1	98.9 113.4	113.3 113.4	127.7 132.5	94.1 108.0	107.9	121.5 126.2	88.9 101.9	101.8	114.7
_		62	SHC	101.5	123.2	142.6	98.2	118.4	138.1	94.1	113.4	132.5	89.7	108.0	126.2	84.6	101.9	119.1
4300 Cfm	(wp)		THC	132.3	132.3	132.3	126.8	126.8	126.8	120.6	120.6	121.3	113.8	113.8	118.1	106.3	106.3	114.4
0	ا ج	67	SHC	81.8	103.6	125.2	79.6	101.3	123.0	77.1	98.8	120.5	74.4	96.0	117.7	71.4	92.9	114.4
130	EA		THC	143.1	143.1	143.1	137.4	137.4	137.4	131.0	131.0	131.0	124.0	124.0	124.0	116.1	116.1	116.1
,		72	SHC	59.7	81.4	103.3	57.7	79.4	101.2	55.4	77.1	98.9	52.9	74.6	96.3	50.1	71.8	93.5
			THC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		76	SHC	_	_	_	_	_	_		_	_	_	_	_		_	_
			THC	127.4	127.4	143.6	122.8	122.8	138.4	117.7	117.7	132.6	111.9	111.9	126.1	105.5	105.5	118.9
		58	SHC	111.3	127.4	143.6	107.2	122.8	138.4	102.7	117.7	132.6	97.7	111.9	126.1	92.1	105.5	118.9
			THC	127.5	127.5	149.1	122.9	122.9	143.7	117.7	117.7	137.7	112.0	112.0	131.0	105.6	105.6	123.5
E		62	SHC	105.9	127.5	149.1	102.1	122.9	143.7	97.8	117.7	137.7	93.0	112.0	131.0	87.7	105.6	123.5
5000 Cfm	(qw)	07	THC	134.4	134.4	136.4	128.9	128.9	134.1	122.6	122.6	131.4	115.7	115.7	128.4	108.0	108.0	124.8
8	EA (67	SHC	86.9	111.7	136.4	84.7	109.4	134.1	82.2	106.8	131.4	79.3	103.8	128.4	76.2	100.5	124.8
20	ш	70	THC	145.1	145.1	145.1	139.4	139.4	139.4	132.9	132.9	132.9	125.7	125.7	125.7	117.6	117.6	117.6
		72	SHC	61.7	86.6	111.5	59.6	84.6	109.5	57.4	82.3	107.2	54.8	79.7	104.6	52.1	76.9	101.7
		76	THC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		7	SHC	-	_	-	-	-	_	-	_	_	1	-	-	-	-	-
		58	THC	131.2	131.2	147.9	126.4	126.4	142.4	121.1	121.1	136.4	115.1	115.1	129.8	108.5	108.5	122.4
			SHC	114.5	131.2	147.9	110.3	126.4	142.4	105.7	121.1	136.4	100.5	115.1	129.8	94.8	108.5	122.4
		62	THC	131.3	131.3	153.5	126.5	126.5	148.0	121.2	121.2	141.7	115.2	115.2	134.7	108.6	108.6	127.1
Ę	ြ		SHC	109.0	131.3	153.5	105.1	126.5	148.0	100.6	121.2	141.7	95.7	115.2	134.7	90.3	108.6	127.1
5700 Cfm	(qw)	67	THC	136.1	136.1	146.9	130.5	130.5	144.4	124.2	124.2	141.6	117.2	117.2	138.0	109.6	109.6	133.8
70(EA		SHC	91.6	119.3	146.9	89.3	116.9	144.4	86.7	114.2	141.6	83.8	111.0	138.0	80.2	107.0	133.8
2	-	72	THC	146.6	146.6	146.6	140.9	140.9	140.9	134.2	134.2	134.2	126.9	126.9	126.9	118.7	118.7	118.7
			SHC	63.5	91.5	119.6	61.5	89.5	117.5	59.3	87.2	115.2	56.7	84.6	112.6	54.0	81.8	109.7
		76	THC	-	_	-	_	_	_	_	_	_	-	_	_	-	_	_
			THC	133.5	133.5	150.5	128.7	128.7	- 145.0	123.3	123.3	138.9	117.2	117.2	132.1	110.5	110 5	124.5
		58	SHC	116.6	133.5		112.4	128.7	145.0	107.6	123.3	138.9	102.3	117.2	132.1	110.5 96.4	110.5 110.5	124.5
			THC	133.6	133.6		128.8	128.8	150.6	123.3	123.3	144.2	117.3	117.2	137.1	110.5	110.5	124.5
ے		62	SHC	111.0	133.6		107.0	128.8	150.6	102.5	123.3	144.2	97.4	117.3	137.1	91.8	110.5	129.2
6250 Cfm	(qw)		THC	137.1	137.1	154.6	131.5	131.5	151.9	125.1	125.1	148.6	118.2	118.2	144.5	110.8	110.8	138.2
20	2	67	SHC	95.1	124.8	154.6	92.7	122.3	151.9	89.9	119.3	148.6	86.7	115.6	144.5	82.4	110.3	138.2
62	EA		THC	147.5	147.5	147.5	141.7	141.7	141.7	135.0	135.0	135.0	127.6	127.6	127.6	119.4	119.4	119.4
		72	SHC	65.0	95.3	125.6	63.0	93.3	123.6	60.7	91.0	121.2	58.2	88.4	118.6	55.4	85.6	115.8
		70	THC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		76	SHC		_	_	_	_	_		_	_		_	_		_	_
Щ.	بب		tional		L				L	l	<u> </u>	L				L	<u> </u>	L

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*14A - 524J*14

									Α	MBIENT	TEMPE	RATUR	E					
					85			95			105			115			125	
					EA (db)			EA (db)			EA (db)			EA (db)			EA (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		EO	THC	138.4	138.4	152.4	133.2	133.2	147.0	127.6	127.6	141.2	121.6	121.6	135.0	113.3	113.3	126.5
		58	SHC	124.5	138.4	152.4	119.4	133.2	147.0	114.0	127.6	141.2	108.2	121.6	135.0	100.2	113.3	126.5
		60	THC	144.5	144.5	144.5	137.9	137.9	138.9	131.0	131.0	135.4	123.7	123.7	131.6	-	-	-
Ε		62	SHC	114.9	128.6	142.3	111.8	125.4	138.9	108.6	122.0	135.4	105.0	118.3	131.6	-	-	-
3750 Cfm	(wb)	67	THC	156.4	156.4	156.4	149.4	149.4	149.4	141.9	141.9	141.9	134.0	134.0	134.0	125.3	125.3	125.3
750	EA (67	SHC	95.6	108.7	121.7	92.7	105.7	118.6	89.7	102.5	115.3	86.5	99.2	111.9	83.1	95.7	108.2
6		72	THC	168.6	168.6	168.6	161.2	161.2	161.2	153.4	153.4	153.4	144.8	144.8	144.8	135.6	135.6	135.6
		12	SHC	75.7	88.1	100.4	73.0	85.2	97.5	70.1	82.2	94.3	67.0	79.0	91.0	63.8	75.6	87.4
		76	THC	-	178.5	178.5	-	170.8	170.8	-	162.6	162.6	-	153.6	153.6	-	143.9	143.9
		70	SHC	_	71.4	83.2	_	68.7	80.3	_	65.8	77.3	_	62.7	74.0	-	59.4	70.6
		58	THC	145.4	145.4	161.2	139.7	139.7	155.4	133.7	133.7	149.2	127.3	127.3	142.6	121.3	121.3	136.3
		56	SHC	129.5	145.4	161.2	124.0	139.7	155.4	118.3	133.7	149.2	112.1	127.3	142.6	106.3	121.3	136.3
		62	THC	148.6	148.6	155.2	141.9	141.9	151.6	134.8	134.8	147.6	127.5	127.5	142.8	121.2	121.2	136.1
Ε	_	02	SHC	123.8	139.5	155.2	120.5	136.0	151.6	116.8	132.2	147.6	112.3	127.5	142.8	106.1	121.1	136.1
Cfm	EA (wb)	67	THC	160.2	160.2	160.2	152.9	152.9	152.9	145.2	145.2	145.2	136.9	136.9	136.9	127.9	127.9	127.9
4375	Ă	07	SHC	101.9	116.9	131.8	99.0	113.8	128.7	96.0	110.7	125.4	92.8	107.3	121.9	89.3	103.7	118.1
4	ш	72	THC	172.3	172.3	172.3	164.7	164.7	164.7	156.5	156.5	156.5	147.7	147.7	147.7	138.1	138.1	138.1
		12	SHC	79.0	93.2	107.3	76.3	90.3	104.3	73.4	87.3	101.1	70.3	84.0	97.8	67.0	80.6	94.2
		76	THC	-	182.1	182.1	-	174.2	174.2	-	165.6	165.6	-	156.4	156.4	-	146.3	146.3
		70	SHC	_	74.0	87.5	_	71.3	84.6	_	68.4	81.5	_	65.3	78.3	-	61.9	74.8
		58	THC	151.0	151.0	168.8	145.0	145.0	162.6	138.7	138.7	156.0	131.9	131.9	149.0	124.6	124.6	141.4
		56	SHC	133.2	151.0	168.8	127.5	145.0	162.6	121.4	138.7	156.0	114.9	131.9	149.0	107.9	124.6	141.4
		62	THC	152.2	152.2	166.8	145.3	145.3	162.8	138.9	138.9	156.2	132.0	132.0	149.1	124.7	124.7	141.5
Ε	_	02	SHC	131.5	149.1	166.8	127.8	145.3	162.8	121.5	138.9	156.2	115.0	132.0	149.1	107.9	124.7	141.5
2	(wb)	67	THC	163.1	163.1	163.1	155.6	155.6	155.6	147.6	147.6	147.6	139.1	139.1	139.1	130.1	130.1	130.1
5000 Cfm	EA (v	07	SHC	107.9	124.8	141.6	105.0	121.7	138.5	101.9	118.5	135.1	98.6	115.1	131.5	95.1	111.4	127.7
Ŋ	_	72	THC	175.0	175.0	175.0	167.3	167.3	167.3	158.8	158.8	158.8	149.8	149.8	149.8	140.0	140.0	140.0
		'-	SHC	82.1	98.0	113.9	79.4	95.2	111.0	76.5	92.1	107.8	73.4	88.9	104.4	70.1	85.4	100.7
		76	THC	-	184.8	184.8	-	176.6	176.6	-	167.9	167.9	-	158.4	158.4	-	-	-
		, 0	SHC	-	76.5	91.6	-	73.8	88.8	-	70.8	85.7	-	67.7	82.4	-	-	-
		58	THC	155.6	155.6	175.2	149.4	149.4	168.8	142.8	142.8	161.9	135.7	135.7	154.5	127.9	127.9	146.4
			SHC	136.0	155.6	175.2	130.0	149.4	168.8	123.7	142.8	161.9	116.8	135.7	154.5	109.4	127.9	146.4
		62	THC	155.7	155.7	175.3	149.5	149.5	168.8	142.9	142.9	162.0	135.8	135.8	154.6	128.0	128.0	146.5
Çţ	2		SHC	136.1	155.7	175.3	130.1	149.5	168.8	123.8	142.9	162.0	117.0	135.8	154.6	109.5	128.0	146.5
	(wb)	67	THC	165.3	165.3	165.3	157.8	157.8	157.8	149.6	149.6	149.6		140.9	140.9		131.7	136.8
5625	EA		SHC	113.6	132.4	151.2	110.7	129.3	148.0	107.5	126.0	144.5	104.1	122.5	140.8	100.5	118.6	136.8
TO.		72	THC	177.3	177.3	177.3	169.3	169.3	169.3	160.7	160.7	160.7	151.5	151.5	151.5	141.6	141.6	141.6
			SHC	85.0	102.7	120.5	82.3	99.9	117.4	79.4	96.8	114.2	76.3	93.6	110.8	73.0	90.1	107.2
		76	THC	_	187.0	187.0	-	178.7	178.7	-	169.7	169.7	_	-	-	_	-	-
			SHC		78.9	95.7		76.2	92.8		73.2	89.8		-				
		58	THC	159.5	159.5	180.9	153.1	153.1	174.3	146.2	146.2	167.1	138.9	138.9	159.5	131.0	131.0	151.2
			SHC	138.0	159.5	180.9	131.9	153.1	174.3	125.3	146.2	167.1	118.3	138.9	159.5	110.7	131.0	151.2
		62	THC	159.6	159.6	181.0	153.2	153.2	174.4	146.3	146.3	167.2	139.0	139.0	159.5	131.0	131.0	151.2
Cfm	G		SHC	138.2	159.6	181.0	132.0	153.2	174.4	125.5	146.3	167.2	118.4	139.0	159.5	110.7	131.0	151.2
0	(wp)	67	THC	167.2	167.2	167.2	159.5	159.5	159.5	151.2	151.2	153.5	142.5	142.5	149.6	133.1	133.1	145.3
6250	Ę		SHC	119.0	139.7	160.4	116.0	136.6	157.1	112.8	133.1	153.5	109.2	129.4	149.6	105.3	125.3	145.3
_		72	THC	179.0	179.0	179.0	170.9	170.9	170.9	162.2	162.2	162.2	152.8	152.8	152.8	142.6	142.6	142.6
			SHC	87.9	107.4	126.8	85.1	104.5	123.8	82.2	101.4	120.6	79.1	98.2	117.2	75.9	94.7	113.5
		76	THC	-	188.7	188.7	-	180.2	180.2	-		_	-	-	-	-	-	-
			SHC	-	81.3	99.8	-	78.5	96.9	-	-	-	-	-	-	-	-	-

Not operational

THC - Total Cooling Capacity, Gross (1,000 Btuh)
SHC - Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*14A - 524J*16

									Al	MBIENT	TEMPE	RATUR	ΙE					
					85			95			105			115			125	
				Е	A (db)		Е	A (db)		Е	A (db)		Е	A (db)		Е	A (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
			THC	149.9	149.9	166.0	144.0	144.0	160.0	137.7	137.7	153.4	130.8	130.8	146.3	122.9	122.9	138.1
		58	SHC	133.8	149.9	166.0	128.1	144.0	160.0	122.0	137.7	153.4	115.3	130.8	146.3	107.8	122.9	138.1
			THC	152.8	152.8	160.5	145.8	145.8	156.7	138.6	138.6	152.1	131.1	131.1	146.5	122.0	122.0	137.1
Ε		62	SHC	128.7	144.6	160.5	125.2	141.0	156.7	120.8	136.5	152.1	115.6	131.1	146.5	106.8	122.0	137.1
5	(wb)		THC	164.6	164.6	164.6	157.1	157.1	157.1	149.0	149.0	149.0	140.3	140.3	140.3	-	-	_
4500 Cfm	EA (67	SHC	105.8	120.9	136.1	102.8	117.8	132.9	99.7	114.5	129.5	96.2	111.0	125.8	-	_	_
45	ш	70	THC	176.9	176.9	176.9	169.1	169.1	169.1	160.6	160.6	160.6	151.4	151.4	151.4	-	-	-
		72	SHC	81.9	96.2	110.5	79.1	93.3	107.5	76.1	90.1	104.2	72.9	86.7	100.7	-	-	_
		70	THC	-	187.1	187.1	-	179.0	179.0	-	169.7	169.7	-	-	-	-	-	_
		76	SHC	-	76.2	89.7	-	73.4	86.9	-	69.9	82.9	-	-	-	-	_	_
			THC	156.6	156.6	175.0	150.4	150.4	168.6	143.7	143.7	161.7	136.4	136.4	154.1	124.7	124.7	141.2
		58	SHC	138.2	156.6	175.0	132.2	150.4	168.6	125.8	143.7	161.7	118.8	136.4	154.1	108.2	124.7	141.2
			THC	157.6	157.6	173.5	150.7	150.7	168.8	143.8	143.8	161.7	136.5	136.5	154.2	125.1	125.1	141.6
Ε		62	SHC	136.9	155.2	173.5	132.5	150.7	168.8	125.9	143.8	161.7	118.9	136.5	154.2	108.6	125.1	141.6
5300 Cfm	EA (wb)	67	THC	167.9	167.9	167.9	160.2	160.2	160.2	151.8	151.8	152.2	142.9	142.9	144.4	-	_	-
8	¥	67	SHC	113.4	131.0	148.5	110.5	127.9	145.3	107.3	124.5	141.7	103.8	120.9	138.0	-	_	_
53	ш	70	THC	180.2	180.2	180.2	172.1	172.1	172.1	163.4	163.4	163.4	153.9	153.9	153.9	-	-	_
		72	SHC	85.9	102.4	118.8	83.1	99.5	115.8	80.1	96.3	112.5	76.9	92.9	109.0	-	-	_
		76	THC	-	189.4	189.4	-	181.2	181.2	-	-	_	-	-	-	-	-	_
		/6	SHC	-	78.2	93.1	-	75.5	90.3	-	-	_	-	-	-	-	-	_
		F0	THC	161.3	161.3	181.5	154.9	154.9	174.9	147.8	147.8	167.6	140.3	140.3	159.7	-	_	-
		58	SHC	141.1	161.3	181.5	134.9	154.9	174.9	128.1	147.8	167.6	120.9	140.3	159.7	-	-	_
		60	THC	161.7	161.7	181.1	155.0	155.0	175.0	148.0	148.0	167.7	140.4	140.4	159.8	-	_	-
Ε		62	SHC	140.7	160.9	181.1	135.0	155.0	175.0	128.2	148.0	167.7	121.0	140.4	159.8	-	-	_
5	(wb)	67	THC	170.1	170.1	170.1	162.3	162.3	162.3	153.8	153.8	155.1	144.7	144.7	149.9	-	-	-
6000 Cfm	EA (07	SHC	119.6	139.1	158.6	116.6	136.0	155.3	113.3	132.5	151.6	109.7	128.7	147.7	-	-	-
9		72	THC	182.3	182.3	182.3	174.1	174.1	174.1	165.2	165.2	165.2	155.4	155.4	155.4	-	-	-
		12	SHC	89.1	107.4	125.7	86.3	104.5	122.7	83.3	101.3	119.4	80.1	97.9	115.8	+	-	-
		76	THC	-	_	-	-	_	_	-	-	_	-	-	_	-	-	_
		70	SHC	-	-	-	-	_	-	-	_	_	-	-	-	1	_	-
		58	THC	166.2	166.2	188.7	159.5	159.5	181.8	152.2	152.2	174.2	144.3	144.3	165.9	-	_	_
			SHC	143.6	166.2	188.7	137.2	159.5	181.8	130.2	152.2	174.2	122.6	144.3	165.9	-	_	-
		62	THC	166.3	166.3	188.8	159.6	159.6	181.9	152.3	152.3	174.3	144.4	144.4	166.0	-	_	_
<u>E</u>	اھا	02	SHC	143.8	166.3	188.8	137.4	159.6	181.9	130.3	152.3	174.3	122.7	144.4	166.0	+	_	-
6800 Cfm	EA (wb)	67	THC	172.4	172.4	175.3	164.5	164.5	169.2	155.9	155.9	163.4	146.7	146.7	159.1	-	-	-
8	×		SHC	126.9	148.8	170.7	123.8	145.5	167.3	120.3	141.9	163.4	116.3	137.6	159.1	-	-	-
9	۳ ا	72	THC	184.4	184.4	184.4	176.1	176.1	176.1	167.0	167.0	167.0	157.1	157.1	157.1	-	-	_
			SHC	93.0	113.5	134.1	90.2	110.6	131.1	87.2	107.5	127.8	84.0	104.1	124.2	-	-	-
		76	THC	-	_	-	_	_	_	-	-	-	-	-	_	-	-	_
		,,	SHC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		58	THC	170.1	170.1	194.7	163.2	163.2	187.6	155.7	155.7	179.7	147.5	147.5	171.2	-	-	-
			SHC	145.4	170.1	194.7	138.8	163.2	187.6	131.6	155.7	179.7	123.8	147.5	171.2	-	_	-
		62	THC	170.2	170.2	194.8	163.3	163.3	187.7	155.8	155.8	179.8	147.6	147.6	171.3	-	-	-
ξĘ	Q		SHC	145.6	170.2	194.8	139.0	163.3	187.7	131.7	155.8	179.8	123.9	147.6	171.3		_	-
O	(wb)	67	THC	174.3	174.3	181.8	166.3	166.3	178.1	157.7	157.7	174.0	148.4	148.4	169.1	-	_	-
7500 Cfm	EA		SHC	133.4	157.6	181.8	130.1	154.1	178.1	126.4	150.2	174.0	122.0	145.5	169.1		-	-
7	-	72	THC	186.0	186.0	186.0	177.6	177.6	177.6	168.4	168.4	168.4	158.4	158.4	158.4	-	-	-
			SHC	96.5	119.2	141.9	93.8	116.3	138.9	90.8	113.2	135.6	87.6	109.8	132.0	-	-	-
		76	THC		-	-	-	-	-		-	-	-	-	-	-	-	-
			SHC	-	-	-	-	-	-	-	_	_	-	-	-	-	_	-

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*14D - 524J*14

									Α	MBIENT	TEMPE	RATUR	E					
					85			95			105			115			125	
			ľ		EA (db)													
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
	5	ıΩ	THC	137.2	137.2	152.7	132.4	132.4	147.9	127.1	127.1	142.6	121.2	121.2	136.7	114.7	114.7	130.2
			SHC	121.7	137.2	152.7	117.0	132.4	147.9	111.6	127.1	142.6	105.8	121.2	136.7	99.3	114.7	130.2
	6	30 I	THC	143.2	143.2	143.2	137.3	137.3	140.1	130.6	130.6	136.8	123.3	123.3	133.1	115.5	115.5	128.8
[E 2			SHC	112.0	127.5	142.9	109.1	124.6	140.1	105.9	121.3	136.8	102.2	117.7	133.1	97.9	113.3	128.8
3750 Cfm FA (wb)	<u>ة</u> ج	?7 I	THC	154.9	154.9	154.9	148.6	148.6	148.6	141.6	141.6	141.6	133.9	133.9	133.9	125.4	125.4	125.4
750 FA	<u> </u>		SHC	91.1	106.5	122.0	88.4	103.9	119.4	85.5	101.0	116.5	82.3	97.8	113.3	78.9	94.3	109.8
က _	- _{7:}	70	THC	166.4	166.4	166.4	160.0	160.0	160.0	152.9	152.9	152.9	144.8	144.8	144.8	135.8	135.8	135.8
	_		SHC	69.8	85.3	100.7	67.4	82.9	98.4	64.8	80.3	95.7	61.8	77.3	92.8	58.6	74.0	89.5
	7	70	THC	-	175.4	175.4	-	169.0	169.0	-	161.5	161.5	-	153.2	153.2	-	-	-
			SHC	140.6	67.2 143.6	82.7 161.7	- 100.6	65.5 138.6	81.0	133.0	63.3 133.0	78.8 151.0	- 126.7	60.7 126.7	76.2 144.8	119.9	- 110.0	137.9
	5	ו א	SHC	143.6 125.6	143.6	161.7	138.6 120.6	138.6	156.7 156.7	114.9	133.0	151.0	108.7	126.7	144.8	101.8	119.9 119.9	137.9
			THC	147.0	147.0	155.9	140.8	140.8	152.8	134.1	134.1	149.0	127.7	120.7	141.1	120.7	120.7	134.7
_		ero i	SHC	119.8	137.9	155.9	116.7	134.7	152.8	112.9	130.9	149.0	105.0	123.1	141.1	98.6	116.6	134.7
4375 Cfm FA (wb)	€ —		THC	158.8	158.8	158.8	152.3	152.3	152.3	145.0	145.0	145.0	137.0	137.0	137.0	128.1	128.1	128.1
15	<u>ک</u> 6	37 I	SHC	96.4	114.4	132.5	93.7	111.8	129.8	90.8	108.9	126.9	87.6	105.6	123.7	84.1	102.1	120.1
4375 FA			THC	170.6	170.6	170.6	163.9	163.9	163.9	156.3	156.3	156.3	147.8	147.8	147.8	138.6	138.6	138.6
	7	ו פיק	SHC	72.3	90.3	108.4	69.8	87.9	105.9	67.1	85.1	103.2	64.1	82.1	100.2	60.8	78.8	96.9
			THC	_	179.7	179.7	_	172.7	172.7	_	165.0	165.0	_	_	_	_	_	_
	7	76	SHC	_	70.7	88.7	_	68.5	86.6	_	66.1	84.1	_	_	_	_	_	_
	1_		THC	148.9	148.9	169.6	143.7	143.7	164.3	137.8	137.8	158.4	131.3	131.3	151.9	124.0	124.0	144.7
	5	58	SHC	128.3	148.9	169.6	123.1	143.7	164.3	117.2	137.8	158.4	110.6	131.3	151.9	103.4	124.0	144.7
		,_	THC	149.9	149.9	167.0	144.2	144.2	160.8	138.6	138.6	154.4	131.8	131.8	149.5	124.0	124.0	144.7
ء اع		32	SHC	125.8	146.4	167.0	119.6	140.2	160.8	113.1	133.8	154.4	108.3	128.9	149.5	103.4	124.0	144.7
5000 Cfm	6	37	THC	161.8	161.8	161.8	155.1	155.1	155.1	147.6	147.6	147.6	139.3	139.3	139.3	130.2	130.2	130.2
0000 FA (١ ٥		SHC	101.4	122.0	142.6	98.7	119.3	139.9	95.7	116.3	137.0	92.4	113.0	133.7	88.8	109.5	130.1
130		70	THC	173.7	173.7	173.7	166.7	166.7	166.7	158.9	158.9	158.9	150.2	150.2	150.2	140.7	140.7	140.7
	Ľ		SHC	74.4	95.0	115.7	71.9	92.5	113.2	69.2	89.8	110.4	66.1	86.7	107.4	62.8	83.4	104.1
	7	76	THC	-	183.0	183.0	-	175.8	175.8	-	_	-	-	-	-	_	-	-
			SHC		73.4	94.1		71.2	91.8	-	-							
	5	:Ω Ι	THC	153.5	153.5	176.7	148.0	148.0	171.2	141.9	141.9	165.1	135.1	135.1	158.3	127.5	127.5	150.8
			SHC	130.2 153.9	153.5 153.9	176.7	124.8	148.0	171.2 168.2	118.7 141.9	141.9 141.9	165.1 165.0	111.9 135.1	135.1 135.1	158.3 158.3	104.3 127.5	127.5	150.8 150.7
	6	30 I	SHC	125.5	148.7	171.9 171.9	148.3 121.8	148.3 145.0	168.2	141.9	141.9	165.0	111.9	135.1	158.3	104.3	127.5 127.5	150.7
5 Cfm	<u> </u>		THC	164.1	164.1	164.1	157.3	157.3	157.3	149.7	141.6	149.7	141.2	141.2	143.4	131.9	131.9	139.7
(S)	<u>ا ج</u>	37 I	SHC	104.1	129.2	152.4	103.3	126.5	149.7	100.3	123.5	149.7	97.0	120.2	143.4	93.3	116.5	139.7
5625 FA (ă —		THC	176.2	176.2	176.2	169.0	169.0	169.0	161.0	161.0	161.0	152.1	152.1	152.1	142.4	142.4	142.4
	7	ו פיז	SHC	76.4	99.6	122.8	73.8	97.1	120.3	71.1	94.3	117.5	68.0	91.2	114.4	64.7	87.9	111.1
	-		THC	-	_	-	-	-	-		-	-	-	-	_	-	-	_
	7	/K	SHC	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	+-		THC	157.3	157.3	183.1	151.7	151.7	177.5	145.4	145.4	171.2	138.3	138.3	164.1	130.5	130.5	156.3
	5	8 1	SHC	131.6	157.3	183.1	125.9	151.7	177.5	119.6	145.4	171.2	112.5	138.3	164.1	104.7	130.5	156.3
			THC	157.3	157.3	183.1	151.7	151.7	177.5	145.4	145.4	171.1	138.3	138.3	164.1	130.5	130.5	156.3
E _		いっし	SHC	131.6	157.3	183.1	125.9	151.7	177.5	119.6	145.4	171.1	112.5	138.3	164.1	104.7	130.5	156.3
6250 Cfm FA (wb)	S .		THC	166.1	166.1	166.1	159.2	159.2	159.3	151.3	151.3	156.2	142.7	142.7	152.8	133.2	133.2	149.0
250 FA (ر ا	67	SHC	110.5	136.3	162.0	107.8	133.5	159.3	104.7	130.5	156.2	101.3	127.0	152.8	97.4	123.2	149.0
62 			THC	178.3	178.3	178.3	170.9	170.9	170.9	162.7	162.7	162.7	153.7	153.7	153.7	143.8	143.8	143.8
			SHC	78.1	103.9	129.7	75.6	101.4	127.2	72.8	98.6	124.4	69.8	95.5	121.3	66.4	92.2	118.0
	7	ห	THC	_	-	-	-	-	_	-	-	-	_	-	-	-	-	-
1 1	_ [''	٦	SHC	-	-	-	-	_	-	-	_	_	-	-	_	-	-	-

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*14D - 524J*16

Fig.										Al	MBIENT	TEMPE	RATUR	E					
Fig.						85			95						115			125	
Fig.					Е	A (db)		Е	A (db)		E	A (db)		E	A (db)		Е	A (db)	
Second Part							85			85			85			85			85
Fig. Sect. Critical Criti				THC	145.6	145.6	164.1	140.4	140.4	158.2	134.6	134.6	151.7	128.4	128.4	144.6	121.6	121.6	137.0
Formal Part Fig.			58	SHC	127.1	145.6	164.1	122.5	140.4	158.2	117.5	134.6	151.7	112.1	128.4	144.6	106.2	121.6	137.0
Fig. 17.6 140.1 162.7 114.5 136.8 139.2 110.9 133.1 155.2 106.4 128.0 149.6 130.1				THC	149.1	149.1	162.7	142.7	142.7	159.2	135.8	135.8	155.2	128.8	128.8	149.6	121.7	121.7	142.3
Page	Ε		62	SHC	117.6	140.1	162.7	114.5	136.8	159.2	110.9	133.1	155.2	106.4	128.0	149.6	101.1	121.7	142.3
Page	Ç	Μ	07	THC	161.2	161.2	161.2	154.4	154.4	154.4	147.0	147.0	147.0	138.8	138.8	138.8	130.1	130.1	130.1
Page	8) A	67	SHC	94.6	117.4	140.3	91.8	114.6	137.5	88.8	111.6	134.5	85.6	108.4	131.2	82.1	104.9	127.7
Fig.	45	Ш	70	THC	174.0	174.0	174.0	167.0	167.0	167.0	159.1	159.1	159.1	150.6	150.6	150.6	141.2	141.2	141.2
Formal Fig.			12		70.0	93.0	116.1	67.4			64.6	87.6		61.6	84.5	107.5	58.3	81.2	
Fig. SHC C C C C C C C C C			76	THC	-	184.6	184.6	-	177.3	177.3	-	169.1	169.1	-	160.1	160.1	-	150.3	150.3
Page			70	SHC	-	72.9	96.6				-	67.7	91.2	-	64.8	88.2	-	61.6	85.0
Fig.			58		152.7		172.0			165.7		140.9	158.8	134.3	134.3	151.3	127.0	127.0	
Fig.			50								I							1	
SHC 126.2 161.5 176.8 122.0 146.8 171.5 171.2 141.0 165.0 161.6 134.4 157.2 105.6 127.1 148.6 171.5 171.2 141.0 144.5 147.1 141.5 144.5 132.6 132.6 140.7 THC 164.9 164.9 164.9 157.8 157.9 157.0 150.0 121.4 147.8 91.7 118.1 144.5 88.1 114.4 140.7 THC 177.6 177.6 177.6 170.3 170.3 170.3 162.2 162.2 162.2 162.2 163.3 163.3 163.3 143.7 143.7 143.7 THC 177.6 177.6 177.6 170.3 170.3 170.3 162.2 162.2 162.2 162.2 162.0 162.0 163.3 163.3 143.7 143.7 143.7 THC 176.6 188.2 188.2 - 180.6 180.6 - 172.1 172.1 - 162.9 162.9 - 152.8			62				Į.				I	1							
Formal F	اع ا	2	UZ																
Formal F	5	ĭ,	67	THC	164.9		164.9	157.8			150.2	150.2		141.7	141.7	144.5	132.6	132.6	
Formal F	900	Ă	01																
SHC 72.4 99.1 125.7 69.9 96.5 123.1 67.0 93.7 120.2 64.0 90.6 17.1 60.6 87.2 113.6 136.6 1	2	ш	72								1		l .						143.7
The color The																			
SHC -76.0 103.2 -73.5 100.6 -70.8 97.9 -67.9 94.9 -69.9 94.			76				l					1	l .		l .				1
Formal F																			
Fractard 187.6 187.6 187.6 187.7 187.5 181.5 181.8 187.1 127.0 149.5 183.9 183.6 186.1 131.0 131.0 133.2 187.5 1			58				l												
Fractary																			
The late			62															1	
The color The	重	G									I				1				
The color The	၁၀	≥	67								I	1			I				
The color The	00	EA									I		l .						
THC	9		72				ļ												
The least region The least r													l .						
Second Fig.			76							1			l .		1				
Fig.																			
Fig.			58									1							
## Page 1																			
Fig.	_		62				l .				1		l .		1				
The color The	뱕	á										1							
The color The	0	٤	67				l												
The color The	380	Ε⁄										l l	l .						
THC			72				Į.		Į.			l l	l .		l .				
THC 165.9 165.9 193.9 159.6 159.6 186.7 152.8 152.8 178.7 145.3 145.2															1				
FOR THC 165.7 186.8 159.6 159.6 179.8 152.7 152.7 172.1 145.2 145.2 163.7 137.1 137.1 154.5 164.5 162.7 172.1 126.8 145.2 163.7 119.7 137.1 154.5 162.7 172.1 126.8 145.2 163.7 119.7 137.1 154.5 162.7 172.1 126.8 145.2 163.7 119.7 137.1 154.5 162.7 172.1 126.8 145.2 163.7 119.7 137.1 154.5 162.7 172.1 126.8 145.2 163.7 119.7 137.1 154.5 162.7 172.1 126.8 145.2 163.7 119.7 137.1 154.5 162.7 172.1 126.8 145.2 163.7 119.7 137.1 154.5 162.7 172.1 126.8 145.2 163.7 119.7 137.1 154.5 162.7 172.1 126.8 145.2 163.7 119.7 137.1 154.5 162.4 162.1 137.8 165.9 193.9 132.6 159.6 186.7 126.9 152.8 178.7 120.7 145.3 169.9 137.2 137.2 160.4 162.1 132.1 143.1 155.9 152.8 178.7 120.7 145.3 169.9 113.9 137.2 160.4 162.1 142.1 143.1 143.1 155.9 155.9 180.3 147.2 147.2 175.8 137.9 137.9 170.1 143.			76				ļ.					_			ı	_		_	_
FOR THE 171.2 171.2 187.4 163.9 163.9 184.1 155.9 155.9 180.3 147.2 175.8 137.9 137.1 154.5 160.4 170.1 170.						165.7	186.8	159.6	159.6	179.8	152.7	152.7	172.1	145.2	145.2	163.7		137.1	154.5
FOR THE 183.8 183.8 183.8 183.8 176.0 176.			58				l .								1				
FEW NOTE 62 SHC 137.8 165.9 193.9 132.6 159.6 186.7 126.9 152.8 178.7 120.7 145.3 169.9 113.9 137.2 160.4 ME 171.2 171.2 187.4 163.9 184.1 155.9 155.9 180.3 147.2 147.2 175.8 137.9 137.9 170.1 SHC 116.2 151.8 187.4 113.2 148.7 184.1 109.9 145.1 180.3 106.2 141.0 175.8 101.8 135.9 170.1 THC 183.8 183.8 183.8 176.0 176.0 167.5 167.5 167.5 158.2 158.2 148.0 148.0 148.0 SHC 78.7 114.8 150.9 76.1 112.2 148.3 73.3 109.3 145.4 70.2 106.2 142.2 66.9 102.8 138.7 THC - - - - - -																			160.4
8 M 67 THC 171.2 171.2 187.4 163.9 163.9 184.1 155.9 155.9 180.3 147.2 147.2 175.8 137.9 137.9 170.1 8 M SHC 116.2 151.8 187.4 113.2 148.7 184.1 109.9 145.1 180.3 106.2 141.0 175.8 101.8 135.9 170.1 72 THC 183.8 183.8 183.8 176.0 176.0 167.5 167.5 167.5 158.2 158.2 158.2 148.0 148.0 148.0 76 THC -	E		62		l		ļ.	l			1				l l				160.4
72 SHC 78.7 114.8 150.9 76.1 112.2 148.3 73.3 109.3 145.4 70.2 106.2 142.2 66.9 102.8 138.7 76 THC	ၓ	Ν	07	THC	171.2	171.2	187.4	163.9	163.9	184.1	155.9	155.9	180.3	147.2	147.2	175.8	137.9	137.9	170.1
72 SHC 78.7 114.8 150.9 76.1 112.2 148.3 73.3 109.3 145.4 70.2 106.2 142.2 66.9 102.8 138.7 76 THC	000	A	6/	SHC	116.2		187.4	113.2	148.7	184.1	109.9	145.1	180.3	106.2	141.0	175.8	101.8	135.9	170.1
SHC 78.7 114.8 150.9 76.1 112.2 148.3 73.3 109.3 145.4 70.2 106.2 142.2 66.9 102.8 138.7 76 THC	75	ш	70	THC	183.8	183.8	183.8	176.0	176.0	176.0	167.5	167.5	167.5	158.2	158.2	158.2	148.0	148.0	148.0
1 1/6			12	SHC	78.7	114.8	150.9	76.1	112.2	148.3	73.3	109.3	145.4	70.2	106.2	142.2	66.9	102.8	138.7
' SHC - - - - - - - - -			76		_	-	-	_	-	-	_	-	-	-	-	-	-	-	-
			, 0	SHC	_	-	-	_	-	_	-	-	-	-	-	_	-	_	-

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*16A - 524J*16

Facility										Α	MBIENT	TEMPE	ERATUR	ΙE					
Fig.						85			95			105			115			125	
						EA (db)			EA (db)			EA (db)			EA (db)			EA (db)	
Fig.						80	85	75	80	85	75	80	85	75		85	75	80	85
Secondary Seco			58				190.5	164.1	164.1	184.2			176.8			l .	-	-	-
Fractary Fractary			5																-
Fig. Section Section			62		178.8	178.8		171.5	171.5		163.3	163.3	170.5	155.3	155.3	166.3	146.7	146.7	161.9
Formal F	٤	🌣	02														117.4	139.7	161.9
Formal F	Ö	3	67						l								-	-	-
Formal F	200	≅	-						l							l .			-
Fig. 18.0 10.1 12.7 81.6 10.30 124.3 77.9 99.5 121.1 74.0 95.9 11.7 7 - - - - -	4	-	72				1				l .		Į.	Į.					-
Formal F																l .			
			76								l								_
																			- 400.0
Formal F			58																
Formal Fig. Fig.									I										
Formal Figure F	_		62								l								
Tell The color The color	Ě	ē				l			I							l .		149.0	174.3
Tell The color The color	0	٤	67			1					l							_	-
Tell The color The color	255	Ε																	
The color The	"		72													l .			_
Formal F																l .			
Formal F			76				1		l		l			l					
Formal F	-								l										175.6
Formal F			58								l								
Formal F																			
The color The	ے		62						l		_	_	_						181.6
The color The	Ş	N Q			203.1	203.1	203.1	194.6	194.6	194.6	185.6	185.6	185.6	175.8		175.8	_	_	l
The color The	8	٥	67	SHC	120.0	148.9	177.8	116.6	145.5	174.4	112.8	141.8	170.8	108.9		l .	_	_	_
SHC 89.2 117.4 145.7 85.8 114.2 142.6 82.0 110.6 139.1 78.2 106.8 135.5	9	Щ	70	THC	219.3	219.3	219.3	210.2	210.2	210.2	200.2	200.2	200.2	189.8	189.8	189.8	-	-	
The late The late			72	SHC	89.2	117.4	145.7	85.8	114.2	142.6	82.0	110.6	139.1	78.2	106.8	135.5	-	_	-
SHC - 92.4 116.9 - 89.4 115.2 - 86.2 112.9 - 82.6 110.0 -			76	THC	-	232.9	232.9	-	223.4	223.4	-	213.1	213.1	-	201.9	201.9	-	-	-
Fig.			70		-	92.4	116.9	-	89.4	115.2	-	86.2	112.9	_			-	-	
SHC 167.3 191.0 214.8 161.2 184.2 207.2 154.5 176.6 198.6 147.8 169.0 190.1 140.5 160.6 180.7			58				1	l			Į.		Į.	ļ		l .			
Form									l										
SHC 157.7 188.7 219.7 152.1 182.3 212.5 145.5 174.2 202.9 140.6 168.9 197.3 133.6 160.6 187.6 A THC 206.4 206.4 206.4 197.7 197.7 197.7 188.2 188.2 178.4 178.4 178.5			62				1				l								
SHC 125.4 157.5 189.7 121.8 154.0 186.2 118.0 150.2 182.5 114.1 146.3 178.5 THC 222.5 222.5 222.5 223.1 213.1 213.1 203.1 203.1 203.1 192.4 192.4 192.4 SHC 91.1 122.7 154.3 87.7 119.4 151.1 84.0 115.8 147.5 80.2 112.1 144.0 THC - 236.1 236.1 - 226.5 226.5 - 215.9 215.9 - 204.4 204.4 THC - 95.3 124.6 - 92.3 122.2 - 89.0 119.5 - 85.4 116.3 SHC 171.5 196.0 220.5 189.0 189.0 212.6 181.2 181.2 204.0 173.1 173.1 194.8 SHC 171.5 196.0 220.5 165.3 189.0 212.6 158.5 181.2 204.0 151.4 173.1 194.8 THC 196.1 196.1 228.2 189.0 189.0 220.6 182.3 182.3 207.2 173.1 173.1 202.2 THC 209.1 209.1 209.1 200.2 200.2 200.2 200.2 190.5 193.8 180.5 180.5 189.7 - THC 209.1 209.1 209.1 200.2 200.2 200.2 190.5 193.8 180.5 180.5 189.7 - - - THC 225.2 225.2 225.2 225.2 215.6 215.6 205.4 205.4 205.4 194.4 194.4 194.4 - - - - THC 225.2 225.2 225.2 225.2 215.6 215.6 215.6 205.4 205.4 205.4 194.4 194.4 194.4 - - - - THC - 238.9 238.9 - 229.0 229.0 - 218.1 218.1 - 206.4 206.4 - - - -	重	ବ																160.6	187.6
THC 196.0 196.0 220.5 189.0 189.0 212.6 158.5 181.2 204.0 151.4 173.1 194.8	၁	ાં	67																-
THC 196.0 196.0 220.5 189.0 189.0 212.6 158.5 181.2 204.0 151.4 173.1 194.8	75(₽																	
THC	9		72				1	l			l .		Į.	ļ					
Fig. The color Fig. Fi									1							l .	-	-	
Second Fig. Fig.			76			1			1			1				l .	_	_	_
SHC 171.5 196.0 220.5 165.3 189.0 212.6 158.5 181.2 204.0 151.4 173.1 194.8																			-
GE THC 196.1 196.1 228.2 189.0 189.0 220.6 182.3 182.3 207.2 173.1 173.1 202.2 -			58						ı				l .						_
62 SHC 162.9 195.5 228.2 157.3 189.0 220.6 148.6 177.9 207.2 144.0 173.1 202.2 -																			
GE A THC 209.1 209.1 209.1 209.2 200.2 200.2 190.5 190.5 193.8 180.5 180.5 189.7 -	_		62						1		l .								
72 SHC 93.0 127.9 162.7 89.6 124.5 159.4 85.9 120.9 155.9 82.0 117.1 152.2	振	ď						l .	1		l .	1	L						
72 SHC 93.0 127.9 162.7 89.6 124.5 159.4 85.9 120.9 155.9 82.0 117.1 152.2	00	اخ	67					l .	1				L	l .					
72 SHC 93.0 127.9 162.7 89.6 124.5 159.4 85.9 120.9 155.9 82.0 117.1 152.2	75(E/																	
76 THC - 238.9 238.9 - 229.0 229.0 - 218.1 218.1 - 206.4 206.4			72						1		l .	1	l .						
1 1/6																			
			76		_				1		_		L	l			_	_	_

⁻ Not operational

THC - Total Cooling Capacity, Gross (1,000 Btuh)

SHC - Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*16A - 524J*25

									Α	MBIENT	TEMPE	RATUR	E					
				85			95		1	105	1		115			125		
				Е	A (db)		Е	A (db)		E	A (db)			A (db)			A (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
			THC	188.1	188.1	211.9	181.9	181.9	205.0	175.2	175.2	197.4	167.8	167.8	189.1	159.7	159.7	180.0
		58	SHC	164.2	188.1	211.9	158.8	181.9	205.0	153.0	175.2	197.4	146.5	167.8	189.1	139.4	159.7	180.0
			THC	189.5	189.5	216.5	182.5	182.5	212.0	175.4	175.4	205.1	168.0	168.0	196.4	159.8	159.8	186.9
E		62	SHC	154.7	185.6	216.5	150.8	181.4	212.0	145.7	175.4	205.1	139.5	168.0	196.4	132.7	159.8	186.9
S	(wb)		THC	203.3	203.3	203.3	195.6	195.6	195.6	187.2	187.2	187.2	177.9	177.9	177.9	167.8	167.8	172.0
6000 Cfm	EA (67	SHC	123.2	154.9	186.5	120.1	151.7	183.3	116.7	148.3	179.9	113.0	144.6	176.1	109.0	140.5	172.0
9	ш		THC	218.9	218.9	218.9	210.9	210.9	210.9	202.0	202.0	202.0	192.1	192.1	192.1	181.3	181.3	181.3
		72	SHC	90.2	122.0	153.8	87.2	119.0	150.8	84.0	115.8	147.5	80.5	112.2	143.9	76.7	108.3	140.0
			THC	-	232.4	232.4	-	224.0	224.0	-	214.7	214.7	-	-	_	-	_	-
		76	SHC	_	95.8	128.2	_	92.9	125.2	_	89.8	122.0	-	_	_	_	_	_
			THC	195.8	195.8	220.6	189.4	189.4	213.4	182.3	182.3	205.4	174.5	174.5	196.6	165.8	165.8	186.9
		58	SHC	171.0	195.8	220.6	165.3	189.4	213.4	159.1	182.3	205.4	152.4	174.5	196.6	144.8	165.8	186.9
			THC	196.0	196.0	229.2	189.5	189.5	221.6	182.4	182.4	213.3	174.6	174.6	204.2	166.0	166.0	194.1
F		62	SHC	162.8	196.0	229.2	157.4	189.5	221.6	151.5	182.4	213.3	145.1	174.6	204.2	137.9	166.0	194.1
5	Ş.		THC	207.2	207.2	207.2	199.2	199.2	201.0	190.5	190.5	197.4	181.1	181.1	193.5	170.7	170.7	189.2
7000 Cfm	EA (wb)	67	SHC	131.3	167.8	204.3	128.1	164.6	201.0	124.6	161.0	197.4	120.9	157.2	193.5	116.8	153.0	189.2
2	ш	70	THC	222.7	222.7	222.7	214.4	214.4	214.4	205.4	205.4	205.4	195.2	195.2	195.2	184.1	184.1	184.1
		72	SHC	93.3	130.0	166.6	90.3	127.0	163.6	87.1	123.7	160.3	83.6	120.1	156.7	79.7	116.2	152.7
		76	THC	-	236.5	236.5	-	-	_	-	-	-	-	-	-	-	-	-
		76	SHC	_	100.0	137.1	_	_	-	-	-	_	-	-	-	-	-	_
		FO	THC	202.0	202.0	227.6	195.3	195.3	220.1	187.9	187.9	211.8	179.8	179.8	202.6	170.7	170.7	192.4
		58	SHC	176.4	202.0	227.6	170.5	195.3	220.1	164.1	187.9	211.8	157.0	179.8	202.6	149.1	170.7	192.4
		62	THC	202.1	202.1	236.4	195.4	195.4	228.5	188.0	188.0	219.9	179.9	179.9	210.4	170.8	170.8	199.8
Ε		02	SHC	167.9	202.1	236.4	162.3	195.4	228.5	156.2	188.0	219.9	149.4	179.9	210.4	141.9	170.8	199.8
Ç	(wb)	67	THC	210.1	210.1	221.2	202.1	202.1	217.8	193.3	193.3	214.0	183.7	183.7	209.7	173.2	173.2	204.8
8000 Cfm	EA (07	SHC	138.9	180.0	221.2	135.7	176.7	217.8	132.2	173.1	214.0	128.3	169.0	209.7	124.0	164.4	204.8
8	ш	72	THC	225.7	225.7	225.7	217.3	217.3	217.3	207.9	207.9	207.9	197.6	197.6	197.6	186.2	186.2	186.2
		12	SHC	96.3	137.7	179.1	93.4	134.7	176.1	90.1	131.4	172.8	86.6	127.8	169.1	82.7	123.9	165.1
		76	THC	-	_	-	-	_	_	-	-	_	-	-	-	-	_	-
		70	SHC		-		-	-	-		-	-	-	-	-		-	-
		58	THC	207.1	207.1	233.4	200.2	200.2	225.6	192.6	192.6	217.0	184.1	184.1	207.4	174.8	174.8	196.9
			SHC	180.8	207.1	233.4	174.8	200.2	225.6	168.2	192.6	217.0	160.7	184.1	207.4	152.6	174.8	196.9
		62	THC	207.2	207.2	242.3	200.3	200.3	234.2	192.7	192.7	225.3	184.2	184.2	215.4	174.9	174.9	204.5
重	ြ		SHC	172.1	207.2	242.3	166.4	200.3	234.2	160.1	192.7	225.3	153.0	184.2	215.4	145.3	174.9	204.5
9000 Cfm	EA (wb)	67	THC	212.6	212.6	237.2	204.5	204.5	233.5	195.6	195.6	229.3	186.0	186.0	224.4	175.5	175.5	217.9
ĕ	≰	٠.	SHC	146.2	191.7	237.2	142.9	188.2	233.5	139.2	184.3	229.3	135.1	179.7	224.4	130.1	174.0	217.9
6		72	THC	228.0	228.0	228.0	219.4	219.4	219.4	209.9	209.9	209.9	199.5	199.5	199.5	187.9	187.9	187.9
			SHC	99.2	145.3	191.4	96.3	142.3	188.3	93.0	139.0	184.9	89.5	135.4	181.2	85.6	131.4	177.2
		76	THC	-	_	-	-	_	_	-	-	_	-	_	_	-	_	_
			SHC			-	-	-	-		-	-	-	-	-		-	-
		58	THC	211.4	211.4	238.2	204.3	204.3	230.2	196.4	196.4	221.4	187.8	187.8	211.6	178.1	178.1	200.7
			SHC	184.6	211.4	238.2	178.4	204.3	230.2	171.5	196.4	221.4	164.0	187.8	211.6	155.5	178.1	200.7
ے		62	THC	211.5	211.5	l .	204.4	204.4		196.6	196.6	229.8	187.9	187.9		178.2		208.3
10,000 Cfm	ð		SHC	175.7	211.5		169.8	204.4	239.0	163.3	196.6	229.8	156.1	187.9	219.7	148.0	178.2	208.3
8	EA (wb)	67	THC	214.6	214.6	251.9	206.6	206.6	247.8	197.8	197.8	242.7	188.2	188.2		178.3	178.3	223.5
ŏ	EA		SHC	152.9	202.4	251.9	149.4	198.6	247.8	145.4	194.0	242.7	140.5	188.2	235.9	133.1	178.3	223.5
7		72	THC	229.9	229.9	229.9	221.2	221.2		211.6	211.6	211.6	201.0	201.0	201.0		-	-
			SHC	102.1	152.7	203.3	99.1	149.7	200.2	95.9	146.4	196.9	92.3	142.7	193.1	-	-	-
		76	THC		-	-	-	-	-	-	-	-	-	-	-	_	_	-
			SHC		_	-	-	-	-		-	-	-	-	-	-	_	-

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*16D- 524J*16

									Α	MBIENT	TEMPE	RATUR	ΙE					
					85			95			105			115			125	
					EA (db)			EA (db)			EA (db)			EA (db)			EA (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		58	THC	168.2	168.2	185.7	161.9	161.9	181.8	156.0	156.0	175.2	149.4	149.4	167.8	143.0	143.0	160.7
			SHC	145.7	165.7	185.7	142.0	161.9	181.8	136.7	156.0	175.2	130.9	149.4	167.8	125.3	143.0	160.7
		62	THC	176.6	176.6	176.6	169.7	169.7	172.9	162.2	162.2	169.3	153.7	153.7	165.1	145.0	145.0	160.6
4500 Cfm	Q		SHC	131.8	154.0	176.2	128.4	150.7	172.9	124.8	147.0	169.3	120.7	142.9	165.1	116.4	138.5	160.6
0	(wb)	67	THC	192.7	192.7	192.7	185.3	185.3	185.3	177.2	177.2	177.2	168.0	168.0	168.0	158.8	158.8	158.8
20	EA		SHC	108.2 210.4	130.1 210.4	151.9	104.9	126.9	148.9	101.5	123.5	145.5	97.6	119.7	141.8	93.7	115.9	138.1 173.7
4		72	THC	85.4	106.0	210.4 126.6	202.4	202.4 103.1	202.4 124.0	193.7	193.7 99.8	193.7 121.1	184.1 74.9	184.1 96.3	184.1 117.8	173.7 70.9	173.7 92.5	114.2
			THC	- 05.4	224.8	224.8	82.1	216.8	216.8	78.6	207.7	207.7	74.9	197.7	197.7	70.9	186.5	186.5
		76	SHC	_	86.9	111.7	_	83.2	107.9	_	80.0	104.8	_	77.2	102.0	_	73.8	96.1
			THC	175.7	175.7	197.4	169.9	169.9	190.9	163.6	163.6	183.9	157.0	157.0	176.5	148.9	148.9	167.4
		58	SHC	154.0	175.7	197.4	148.9	169.9	190.9	143.3	163.6	183.9	137.5	157.0	176.5	130.3	148.9	167.4
			THC	181.7	181.7	192.0	174.2	174.2	188.1	166.6	166.6	184.0	157.8	157.8	179.0	149.9	149.9	172.2
_		62	SHC	141.0	166.5	192.0	137.2	162.7	188.1	133.4	158.7	184.0	128.8	153.9	179.0	123.4	147.8	172.2
5250 Cfm	(wb)		THC	198.0	198.0	198.0	190.1	190.1	190.1	181.6	181.6	181.6	172.0	172.0	172.0	162.6	162.6	162.6
20	2	67	SHC	114.1	139.4	164.7	110.7	136.1	161.5	107.2	132.6	158.1	103.3	128.8	154.3	99.4	124.9	150.4
52	EA		THC	215.8	215.8	215.8	207.4	207.4	207.4	198.2	198.2	198.2	188.3	188.3	188.3	177.5	177.5	177.5
		72	SHC	87.6	112.0	136.4	84.4	108.9	133.5	80.8	105.6	130.4	77.1	102.0	127.0	73.1	98.2	123.3
		70	THC	-	230.9	230.9	_	222.1	222.1	-	212.5	212.5	-	202.0	202.0	-	190.4	190.4
		76	SHC	_	89.4	118.3	_	86.8	115.7	-	83.9	109.4	-	80.7	103.0	-	77.0	100.5
		58	THC	182.7	182.7	205.3	176.5	176.5	198.5	169.9	169.9	191.0	162.2	162.2	182.4	154.7	154.7	174.0
		50	SHC	160.0	182.7	205.3	154.6	176.5	198.5	148.7	169.9	191.0	142.0	162.2	182.4	135.3	154.7	174.0
		62	THC	185.8	185.8	205.9	178.6	178.6	200.2	170.8	170.8	195.6	163.3	163.3	186.9	155.9	155.9	177.2
Œ	<u> </u>	02	SHC	149.1	177.5	205.9	144.4	172.3	200.2	140.3	167.9	195.6	134.0	160.5	186.9	127.2	152.2	177.2
Ö	(wb)	67	THC	202.0	202.0	202.0	193.9	193.9	193.9	185.0	185.0	185.0	175.4	175.4	175.4	165.2	165.2	165.2
6000 Cfm	ΕĀ		SHC	119.6	148.2	176.9	116.3	144.9	173.6	112.6	141.3	170.1	108.7	137.5	166.3	104.6	133.4	162.2
9	-	72	THC	219.9	219.9	219.9	211.2	211.2	211.2	201.7	201.7	201.7	191.8	191.8	191.8	180.4	180.4	180.4
			SHC	89.8	117.6	145.4	86.5	114.5	142.5	82.9	111.1	139.2	79.2	107.3	135.4	75.1	103.6	132.0
		76	THC	-	235.1	235.1	_	226.2	226.2	-	216.2	216.2	-	205.2	205.2	-	193.3	193.3
-			SHC	- 100.5	92.9	121.7	-	90.2	114.7		87.1	112.8	-	83.7	110.2	- 450.0	79.9	107.2
		58	THC	188.5	188.5	212.0	182.1	182.1	204.8 204.8	175.1	175.1	197.0	167.0	167.0 167.0	187.9 187.9	159.2 139.2	159.2 159.2	179.2
			THC	165.0 189.7	188.5 189.7	212.0 216.7	159.4 183.3	182.1 183.3	204.6	153.2 176.4	175.1 176.4	197.0 200.6	146.1 168.7	167.0	191.6	159.2	159.2	179.2 185.9
_		62	SHC	155.5	186.1	216.7	149.8	179.2	208.6	144.0	170.4	200.6	137.5	164.6	191.6	132.4	159.2	185.9
분	(dw)		THC	205.3	205.3	205.3	196.8	196.8	196.8	187.8	187.8	187.8	178.1	178.1	178.1	167.5	167.5	173.4
6750 Cfm	٥	67	SHC	124.9	156.7	188.6	121.5	153.3	185.2	117.8	149.7	181.6	113.9	145.7	177.6	109.6	141.5	173.4
675	EA		THC	223.3	223.3	223.3	214.3	214.3	214.3	204.6	204.6	204.6	194.2	194.2	194.2	182.6	182.6	182.6
		72	SHC	91.8	122.9	154.0	88.5	119.7	151.0	84.9	116.3	147.7	81.2	112.7	144.2	77.1	108.7	140.3
			THC	_	238.8	238.8	_	229.4	229.4	_	219.1	219.1	_	207.9	207.9	-	195.4	195.4
		76	SHC	_	96.1	124.2	_	93.2	122.1	_	90.0	119.6	_	86.5	116.7	_	82.6	113.3
			THC	193.5	193.5	217.7	186.9	186.9	210.2	179.6	179.6	202.1	171.5	171.5	193.1	163.1	163.1	183.6
		58	SHC	169.3	193.5	217.7	163.5	186.9	210.2	157.1	179.6	202.1	150.0	171.5	193.1	142.6	163.1	183.6
		60	THC	194.9	194.9	221.2	188.2	188.2	213.2	180.1	180.1	207.5	171.5	171.5	200.4	163.1	163.1	190.6
E	2	62	SHC	158.8	190.0	221.2	153.1	183.2	213.2	148.3	177.9	207.5	142.6	171.5	200.4	135.6	163.1	190.6
7500 Cfm	(wb)	67	THC	207.9	207.9	207.9	199.3	199.3	199.3	190.0	190.0	192.6	180.1	180.1	188.7	169.2	169.2	184.2
90	EA (07	SHC	129.9	164.9	199.8	126.4	161.4	196.4	122.7	157.7	192.6	118.7	153.7	188.7	114.4	149.3	184.2
7.5	"	72	THC	226.0	226.0	226.0	216.9	216.9	216.9	207.0	207.0	207.0	196.3	196.3	196.3	184.4	184.4	184.4
		12	SHC	93.7	128.1	162.4	90.4	124.9	159.3	86.9	121.5	156.0	83.1	117.7	152.4	78.9	113.6	148.4
		76	THC	-	241.7	241.7	-	232.1	232.1	-	221.6	221.6	-	210.1	210.1	-	197.2	197.2
	_		SHC	-	98.9	131.0	_	96.0	128.6	-	92.7	125.9	-	89.2	122.7	-	85.2	119.2

Not operational
 THC – Total Cooling Capacity, Gross (1,000 Btuh)
 SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*16D - 524J*25

									Α	MBIENT '	TEMPE	RATUR	RE					
					85			95			105			115			125	
				Е	A (db)		Е	A (db)		Е	A (db)		Е	A (db)		Е	A (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
			THC	189.5	189.5	213.0	182.9	182.9	205.6	175.8	175.8	197.7	168.1	168.1	189.0	159.8	159.8	179.8
		58	SHC	166.0	189.5	213.0	160.2	182.9	205.6	154.0	175.8	197.7	147.1	168.1	189.0	139.9	159.8	179.8
		60	THC	191.7	191.7	215.9	184.0	184.0	211.1	176.3	176.3	203.9	168.3	168.3	196.3	159.8	159.8	186.5
Ε		62	SHC	155.8	185.8	215.9	151.6	181.3	211.1	146.0	174.9	203.9	140.1	168.2	196.3	133.1	159.8	186.5
6000 Cfm	(dw)	67	THC	207.6	207.6	207.6	199.1	199.1	199.1	189.8	189.8	189.8	180.1	180.1	180.1	169.2	169.2	170.3
8	EA (67	SHC	124.8	155.7	186.5	121.3	152.1	182.9	117.4	148.2	179.0	113.5	144.3	175.1	108.9	139.6	170.3
9	ш	70	THC	225.6	225.6	225.6	216.6	216.6	216.6	206.8	206.8	206.8	196.1	196.1	196.1	184.7	184.7	184.7
		72	SHC	92.7	123.8	154.8	89.3	120.4	151.4	85.7	116.7	147.7	81.8	112.7	143.7	77.6	108.5	139.5
		76	THC	-	240.7	240.7	-	231.2	231.2	-	220.8	220.8	-	209.6	209.6	-	-	-
		70	SHC	-	98.4	130.4	-	95.2	127.1	-	91.6	123.4	-	87.8	119.4	-	-	-
		50	THC	197.6	197.6	222.2	190.6	190.6	214.3	183.0	183.0	205.9	174.8	174.8	196.7	165.9	165.9	186.6
		58	SHC	173.0	197.6	222.2	166.8	190.6	214.3	160.1	183.0	205.9	152.9	174.8	196.7	145.2	165.9	186.6
		62	THC	197.6	197.6	230.6	190.6	190.6	222.5	183.0	183.0	213.6	174.8	174.8	204.1	165.8	165.8	193.7
Ξ	=	02	SHC	164.6	197.6	230.6	158.8	190.6	222.5	152.3	183.0	213.6	145.5	174.8	204.1	138.0	165.8	193.7
7000 Cfm	(dw)	67	THC	211.7	211.7	211.7	202.9	202.9	202.9	193.4	193.4	195.5	183.1	183.1	191.2	172.1	172.1	186.3
8	EA (07	SHC	132.4	167.8	203.3	128.7	164.1	199.6	124.8	160.2	195.5	120.6	155.9	191.2	116.0	151.2	186.3
7	ш	72	THC	229.8	229.8	229.8	220.5	220.5	220.5	210.3	210.3	210.3	199.3	199.3	199.3	187.6	187.6	187.6
		12	SHC	95.6	131.3	167.0	92.2	127.9	163.6	88.5	124.2	159.8	84.6	120.1	155.7	80.4	115.8	151.3
		76	THC	-	245.1	245.1	-	235.3	235.3	-	224.5	224.5	-	-	-	-	-	-
		70	SHC	-	102.4	138.9	-	99.1	135.5	-	95.5	131.8	-	-	-	-	-	-
		58	THC	204.0	204.0	229.5	196.7	196.7	221.4	188.8	188.8	212.5	180.1	180.1	202.8	170.9	170.9	192.3
		50	SHC	178.5	204.0	229.5	172.1	196.7	221.4	165.1	188.8	212.5	157.5	180.1	202.8	149.4	170.9	192.3
		62	THC	204.0	204.0	238.2	196.6	196.6	229.7	188.7	188.7	220.5	180.2	180.2	210.5	170.8	170.8	199.6
Æ	<u> </u>	02	SHC	169.8	204.0	238.2	163.6	196.6	229.7	157.0	188.7	220.5	149.8	180.2	210.5	142.0	170.8	199.6
8000 Cfm	(wb)	67	THC	214.7	214.7	219.1	205.8	205.8	215.2	196.1	196.1	211.0	185.7	185.7	206.3	174.5	174.5	201.0
18	Ε̈́Α	- 0,	SHC	139.4	179.2	219.1	135.7	175.5	215.2	131.7	171.3	211.0	127.3	166.8	206.3	122.6	161.8	201.0
8	-	72	THC	232.9	232.9	232.9	223.4	223.4	223.4	213.0	213.0	213.0	201.7	201.7	201.7	189.2	189.2	189.2
			SHC	98.4	138.6	178.8	94.9	135.1	175.3	91.2	131.3	171.4	87.2	127.2	167.3	82.8	122.8	162.7
		76	THC	-	248.6	248.6	-	_	_	-	_	_	-	-	-	-	-	-
			SHC	-	106.2	147.2	-	_	_	-	-	_	-	-	-	-	_	-
		58	THC	209.3	209.3	235.6	201.8	201.8	227.2	193.6	193.6	217.9	184.6	184.6	207.9	174.9	174.9	197.0
			SHC	183.0	209.3	235.6	176.5	201.8	227.2	169.2	193.6	217.9	161.3	184.6	207.9	152.8	174.9	197.0
		62	THC	209.3	209.3	244.5	201.7	201.7	235.7	193.5	193.5	226.2	184.6	184.6	215.8	174.9	174.9	204.5
Ę,	<u>a</u>		SHC	174.1	209.3	244.5	167.8	201.7	235.7	160.9	193.5	226.2	153.4	184.6	215.8	145.3	174.9	204.5
9000 Cfm	(dw)	67	THC	217.2	217.2	234.0	208.2	208.2	230.1	198.2	198.2	225.4	187.7	187.7	220.1	176.6	176.6	213.6
ĕ	ΕĀ		SHC	145.9	190.0	234.0	142.2	186.1	230.1	138.0	181.7	225.4	133.4	176.7	220.1	128.2	170.9	213.6
6	-	72	THC	235.4	235.4	235.4	225.7	225.7	225.7	215.1	215.1	215.1	203.7	203.7	203.7	191.4	191.4	191.4
			SHC	100.9	145.5	190.0	97.5	142.0	186.5	93.7	138.1	182.6	89.7	134.0	178.3	85.4	129.6	173.7
		76	THC	-	_	_	_	_	_	_	_	_	_	_	_	-	_	-
			SHC	-	-	-		-		407.0	- 107.0	-	-	-	-	470.4	470.4	-
		58	THC	213.8	213.8	240.8	206.1	206.1	232.1	197.6	197.6	222.6	188.3	188.3	212.1	178.4	178.4	201.0
			SHC	186.9		240.8	180.1	206.1	232.1	172.7	197.6	222.6	164.5	188.3	212.1	155.8	178.4	201.0
Ę		62	THC	213.8		249.9	206.0	206.0	240.8	197.6	197.6	231.0	188.3	188.3	220.3	178.3	178.3	208.6
10,000 Cfm	ð		SHC	177.8	213.8		171.2	206.0	240.8 243.6	164.1	197.6	231.0	156.4	188.3	220.3	148.0	178.3	208.6
8	(wb)	67	THC	219.3	219.3	248.2	210.1	210.1		200.2	200.2	238.3	189.7	189.7	232.2 232.2	178.9	178.9	222.0
0,0	EA		SHC	152.2	200.2		148.2	195.9	243.6	143.7	191.0	238.3	138.8	185.5		132.0	177.0	222.0
7		72	THC	237.4	237.4	237.4	227.6		227.6	216.8	216.8	216.8	205.2	205.2	205.2	192.7	192.7	192.7
			SHC	103.4	152.2	201.1	99.9	148.7	197.5	96.1	144.8	193.5	92.1	140.7	189.2	87.7	136.1	184.5
		76	THC	-	-	-	-	-	-		-	-	-	-	-		-	-
Ш.	<u>. </u>		SHC		-	-	-		_		_	_	-	-	-	_	-	-

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*25A - 524J*25

									Α	MBIENT	TEMPE	ERATUR	RΕ					
					85			95			105			115			125	
					EA (db)			EA (db)			EA (db)			EA (db)			EA (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		58	THC	221.5	221.5	248.3	213.5	213.5	239.8	204.9	204.9	230.0	195.3	195.3	219.4	184.5	184.5	207.4
		20	SHC	194.2	221.2	248.3	187.3	213.5	239.8	179.7	204.9	230.0	171.2	195.3	219.4	161.7	184.5	207.4
		62	THC	232.4	232.4	232.9	222.4	222.4	228.1	211.4	211.4	222.6	199.4	199.4	216.7	186.5	186.5	209.6
٤	ا ۾ ا	02	SHC	173.9	203.4	232.9	169.1	198.6	228.1	163.7	193.2	222.6	157.9	187.3	216.7	151.3	180.5	209.6
6000 Cfm	(dw)	67	THC	251.7	251.7	251.7	240.8	240.8	240.8	228.9	228.9	228.9	215.9	215.9	215.9	201.6	201.6	201.6
18	EA	0,	SHC	141.6	170.7	199.8	136.8	166.0	195.3	131.7	161.1	190.4	126.2	155.6	185.0	120.3	149.7	179.2
ø	ا " ا	72	THC	272.8	272.8	272.8	260.8	260.8	260.8	247.6	247.6	247.6	233.4	233.4	233.4	217.8	217.8	217.8
			SHC	110.4	138.3	166.1	105.5	133.8	162.0	100.3	128.9	157.5	94.8	123.6	152.4	88.9	117.9	147.0
		76	THC	-	290.9	290.9	-	278.1	278.1	-	263.7	263.7	-	248.5	248.5	-	231.6	231.6
			SHC	-	111.5	144.5	-	106.8	139.8	-	103.0	136.0	-	98.3	123.1		92.9	120.2
		58	THC	232.1	232.1	260.6	223.5	223.5	251.1	214.2	214.2	240.7	203.9	203.9	229.2	192.4	192.4	216.4
			SHC	203.5	232.1	260.6	195.9	223.5	251.1	187.7	214.2	240.7	178.6	203.9	229.2	168.5	192.4	216.4
		62	THC	238.9	238.9	253.7	228.3	228.3	248.2	217.1	217.1	242.1	205.0	205.0	234.5	192.8	192.8	222.1
7000 Cfm	a l		SHC	186.0	219.8	253.7	180.8	214.5	248.2	175.1	208.6	242.1	168.4	201.5	234.5	159.1	190.6	222.1
0	(dw)	67	THC	258.3	258.3	258.3	246.8	246.8	246.8	234.4	234.4	234.4	220.8	220.8	220.8	205.9	205.9	
9	EA		SHC	149.2 279.3	182.8 279.3	216.5 279.3	144.4	178.1	211.8	139.2 253.0	173.0	206.7	133.6	167.4 238.3	201.2	127.5 222.0	161.4 222.0	195.3 222.0
		72	SHC				266.7	266.7	266.7		253.0	253.0 169.4	238.3		238.3			
			THC	113.2	145.9 297.5	178.5 297.5	108.3	141.2 283.8	174.1 283.8	103.1	136.3 269.2	269.2	97.6	130.9 253.2	164.2 253.2	91.5	125.1 235.5	158.6 235.5
		76	SHC	-	116.1	154.6	_	112.0	138.2	_	107.4	137.4	_	102.4	133.9	_	96.7	129.1
-			THC	240.8	240.8	270.6	231.8	231.8	260.5	221.8	221.8	249.4	210.9	210.9	237.2	198.8	198.8	223.6
		58	SHC	211.0	240.8	270.6	203.0	231.8	260.5	194.2	221.8	249.4	184.6	210.9	237.2	173.9	198.8	223.6
			THC	244.2	244.2	271.9	233.5	233.5	265.4	222.6	222.6	255.7	211.0	211.0	245.3	198.8	198.8	232.0
_		62	SHC	196.6	234.3	271.9	190.9	228.2	265.4	183.3	219.5	255.7	175.2	210.2	245.3	165.5	198.8	232.0
F	(dw)		THC	263.5	263.5	263.5	251.6	251.6	251.6	238.7	238.7	238.7	224.6	224.6	224.6	209.2	209.2	210.8
8000 Cfm	2	67	SHC	156.4	194.4	232.4	151.5	189.6	227.6	146.3	184.4	222.4	140.6	178.7	216.9	134.5	172.6	210.8
80	EA		THC	284.4	284.4	284.4	271.3	271.3	271.3	257.3	257.3	257.3	242.0	242.0	242.0	225.4	225.4	225.4
		72	SHC	115.9	153.0	190.2	110.9	148.3	185.7	105.8	143.3	180.9	100.2	137.9	175.6	94.2	132.0	169.9
			THC	-	302.5	302.5	_	288.4	288.4	-	273.4	273.4	-	256.8	256.8	_	-	-
		76	SHC	_	120.4	153.1	-	116.0	150.4	-	111.3	146.9	-	106.0	142.5		-	-
			THC	248.2	248.2	279.1	238.7	238.7	268.5	228.3	228.3	256.8	216.8	216.8	244.0	204.1	204.1	229.7
		58	SHC	217.4	248.2	279.1	209.0	238.7	268.5	199.8	228.3	256.8	189.7	216.8	244.0	178.5	204.1	229.7
		60	THC	249.3	249.3	285.8	238.9	238.9	277.7	228.3	228.3	266.5	216.8	216.8	253.2	204.1	204.1	238.4
Æ	اءا	62	SHC	204.9	245.4	285.8	198.4	238.0	277.7	190.1	228.3	266.5	180.4	216.8	253.2	169.8	204.1	238.4
9000 Cfm	(dw)	67	THC	267.7	267.7	267.7	255.5	255.5	255.5	242.2	242.2	242.2	227.7	227.7	232.0	212.0	212.0	225.6
8	EA	0	SHC	163.4	205.6	247.7	158.4	200.6	242.9	153.1	195.3	237.6	147.3	189.7	232.0	141.1	183.4	225.6
6	۱ ۳ ا	72	THC	288.5	288.5	288.5	275.2	275.2	275.2	260.8	260.8	260.8	245.1	245.1	245.1	228.1	228.1	228.1
		'-	SHC	118.4	159.9	201.4	113.5	155.2	196.8	108.3	150.1	191.9	102.7	144.6	186.5	96.6	138.7	180.7
		76	THC	-	306.6	306.6	-	292.3	292.3	-	276.7	276.7	-	-	-	-	-	-
		, ,	SHC	1	124.2	162.9	-	119.7	159.4	-	114.8	155.2	-	-	-	-	-	-
		58	THC	254.7	254.7	286.5	244.7	244.7	275.3	233.9	233.9	263.2	221.9	221.9	249.8	208.7	208.7	234.9
			SHC	222.9	254.7	286.5	214.1	244.7	275.3	204.6	233.9	263.2	194.0	221.9	249.8	182.5	208.7	234.9
_		62	THC	254.6	254.6	297.3	244.8	244.8	285.3	233.9	233.9	273.1	221.9	221.9	259.2	208.6	208.6	243.8
Cfm	ē		SHC	212.0	254.6	297.3	203.4	244.4	285.3	194.6	233.9	273.1	184.5	221.9	259.2	173.4	208.6	243.8
000	(wb)	67	THC	271.3	271.3	271.3	258.7	258.7	258.7	245.1	245.1	252.3	230.3	230.3	246.7	214.0	214.0	239.7
10,000	EA		SHC	170.0	216.4	262.7	165.0	211.4	257.7	159.6	206.0	252.3	153.9	200.3	246.7	147.3	193.5	239.7
=		72	THC	292.0	292.0	292.0	278.4	278.4	278.4	263.7	263.7	263.7	247.4	247.4	247.4	230.0	230.0	230.0
			SHC	120.9	166.6	212.3	116.0	161.8	207.6	110.7	156.7	202.6	105.0	151.0	197.1	98.9	145.1	191.2
		76	THC	-	310.1	310.1	-	295.3	295.3	-	-	_	-	-	-	-	_	-
			SHC	-	127.8	171.4	-	123.2	167.5	-	-	-	-	-	-	-	-	-

Not operational

THC - Total Cooling Capacity, Gross (1,000 Btuh)

SHC - Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*25A- 524J*28

									Α	MBIENT	TEMPE	RATUR	E					
					85			95			105			115			125	
					EA (db)			EA (db)			EA (db)			EA (db)			EA (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		58	THC	236.2	236.2	266.2	228.0	228.0	256.9	219.0	219.0	246.7	209.0	209.0	235.5	198.1	198.1	223.2
		- 00	SHC	206.3	236.2	266.2	199.0	228.0	256.9	191.2	219.0	246.7	182.5	209.0	235.5	172.9	198.1	223.2
		62	THC	241.6	241.6	264.9	231.6	231.6	259.3	220.9	220.9	252.9	209.4	209.4	244.9	198.2	198.2	231.8
Cfm	G		SHC	191.3	228.1	264.9	186.2	222.8	259.3	180.6	216.7	252.9	173.9	209.4	244.9	164.7	198.2	231.8
0	(wb)	67	THC	262.3	262.3	262.3	251.0	251.0	251.0	238.9	238.9	238.9	225.7	225.7	225.7	211.4	211.4	211.4
7500	EA		SHC	154.6 284.6	192.0 284.6	229.4 284.6	149.9 272.4	187.3 272.4	224.6 272.4	145.0 259.2	182.3 259.2	219.6 259.2	139.6 244.7	176.9 244.7	214.2	133.9 229.2	171.1 229.2	208.4
_		72	SHC	116.2	153.9	191.6	111.6	149.3	186.9	106.8	144.3	181.9	101.5	139.0	176.4	95.9	133.3	170.7
			THC	110.2	303.1	303.1	-	289.9	289.9		275.8	275.8		260.4	260.4	95.9		-
		76	SHC		123.4	162.7	_	118.8	157.9		114.0	152.8	_	108.7	147.3	_	_	_
			THC	247.1	247.1	278.5	238.2	238.2	268.4	228.5	228.5	257.5	217.8	217.8	245.4	206.1	206.1	232.2
		58	SHC	215.7	247.1	278.5	208.0	238.2	268.4	199.5	228.5	257.5	190.2	217.8	245.4	179.9	206.1	232.2
			THC	248.7	248.7	286.9	238.6	238.6	279.1	228.7	228.7	267.4	218.0	218.0	254.9	206.2	206.2	241.2
_		62	SHC	204.5	245.7	286.9	198.2	238.6	279.1	189.9	228.7	267.4	181.1	218.0	254.9	171.3	206.2	241.2
Ş	(wb)		THC	268.2	268.2	268.2	256.5	256.5	256.5	243.9	243.9	243.9	230.1	230.1	234.0	215.3	215.3	227.8
8750 Cfm	EA (67	SHC	164.0	206.9	249.7	159.3	202.1	244.9	154.2	197.0	239.7	148.7	191.4	234.0	142.8	185.3	227.8
87	ш	70	THC	290.8	290.8	290.8	277.9	277.9	277.9	264.2	264.2	264.2	249.2	249.2	249.2	233.1	233.1	233.1
		72	SHC	120.1	163.2	206.3	115.4	158.5	201.5	110.5	153.4	196.4	105.1	148.0	190.9	99.4	142.2	184.9
		76	THC	-	309.2	309.2	-	295.5	295.5	-	280.8	280.8	-	-	-	-	-	-
		7	SHC	_	128.3	172.8	_	123.7	168.0	_	118.7	162.8	-	-	-	-	-	-
		58	THC	255.9	255.9	288.4	246.5	246.5	277.8	236.2	236.2	266.1	224.9	224.9	253.4	212.5	212.5	239.4
			SHC	223.5	255.9	288.4	215.2	246.5	277.8	206.2	236.2	266.1	196.3	224.9	253.4	185.5	212.5	239.4
_		62	THC	256.1	256.1	299.5	246.7	246.7	288.4	236.3	236.3	276.4	225.0	225.0	263.1	212.6	212.6	248.6
분	G		SHC	212.7	256.1	299.5	204.9	246.7	288.4	196.3	236.3	276.4	186.9	225.0	263.1	176.6	212.6	248.6
10,000 Cfm	(wb)	67	THC	272.9 173.0	272.9 221.1	272.9 269.2	260.7 168.1	260.7	264.2	247.7 162.9	247.7 210.8	258.7 258.7	233.6 157.2	233.6 204.9	252.6 252.6	218.5 151.1	218.5 198.5	245.9
),	EA		THC	295.5	295.5	295.5	282.2	216.1 282.2	264.2 282.2	268.1	268.1	268.1	252.7	252.7	252.0	236.1	236.1	245.9 236.1
7		72	SHC	123.7	172.1	220.4	119.0	167.3	215.5	114.0	162.2	210.3	108.6	156.6	204.7	102.8	150.7	198.6
			THC		314.0	314.0	-	299.8	299.8	-	-	-	-	130.0	-		130.7	
		76	SHC	_	133.0	182.6	_	128.2	177.7	_	_	_	_	_	_	_	_	
			THC	263.3	263.3	296.8	253.4	253.4	285.5	242.6	242.6	273.4	230.7	230.7	260.0	217.7	217.7	245.4
		58	SHC	229.9	263.3	296.8	221.2	253.4	285.5	211.8	242.6	273.4	201.5	230.7	260.0	190.1	217.7	245.4
			THC	263.5	263.5	308.1	253.6	253.6	296.5	242.8	242.8	283.9	230.9	230.9	270.0	217.9	217.9	254.8
Cfm		62	SHC	218.9	263.5	308.1	210.6	253.6	296.5	201.7	242.8	283.9	191.8	230.9	270.0	181.0	217.9	254.8
၁	S.	67	THC	276.6	276.6	287.7	264.2	264.2	282.3	250.9	250.9	276.5	236.5	236.5	269.8	221.3	221.3	262.1
,250	EA (wb)	67	SHC	181.4	234.6	287.7	176.4	229.4	282.3	171.1	223.8	276.5	165.2	217.5	269.8	158.6	210.3	262.1
Ξ.	ш	72	THC	299.3	299.3	299.3	285.7	285.7	285.7	271.2	271.2	271.2	255.4	255.4	255.4	238.5	238.5	238.5
			SHC	127.2	180.6	234.1	122.4	175.7	229.1	117.3	170.6	223.8	111.9	165.0	218.0	106.1	159.0	211.9
		76	THC	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
			SHC	-	-	-	-	-	-	-	-		-		-	-	-	
		58	THC	269.7	269.7	303.9	259.3	259.3	292.2	248.1	248.1	279.5	235.7	235.7	265.6	222.2	222.2	250.4
			SHC	235.5	269.7	303.9	226.4	259.3	292.2	216.6	248.1	279.5	205.8	235.7	265.6	194.1	222.2	250.4
٦		62	THC	269.8 224.2	269.8 269.8	315.5 315.5	259.4 215.5	259.4 259.4	303.4 303.4	248.2 206.2	248.2 248.2	290.2 290.2	235.8 195.9	235.8 235.8	275.7 275.7	222.4 184.7	222.4 222.4	260.0 260.0
2,500 Cfm	(wp)		THC	279.8	279.8	305.1	267.1	267.1	299.3	253.7	253.7	290.2	239.2	239.2	285.1	223.8	223.8	275.5
8	٤	67	SHC	189.4	247.2	305.1	184.3	241.8	299.3	178.6	235.7	292.8	172.3	228.7	285.1	164.9	220.2	275.5
2,2	EA		THC	302.4	302.4	302.4	288.5	288.5	288.5	273.7	273.7	273.7	257.7	257.7	257.7	240.4	240.4	240.4
-		72	SHC	130.5	188.9	247.3	125.7	184.0	242.3	120.6	178.7	236.9	115.1	173.1	231.0	109.2	167.0	224.7
			THC	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
		76	SHC	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Ь.	1 - 1		tional	L	1	I	l	L	l	L	L	1	L	L	L	L	L	

Not operational

THC - Total Cooling Capacity, Gross (1,000 Btuh)

SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*25D- 524J*25

									Α	MBIENT	TEMPE	RATUR	ΙE					
					85			95			105			115			125	
					EA (db)			EA (db)			EA (db)			EA (db)			EA (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		58	THC	220.0	220.0	247.0	212.1	212.1	238.2	203.4	203.4	228.5	193.7	193.7	217.7	182.8	182.8	205.5
		-00	SHC	193.0	220.0	247.0	186.0	212.1	238.2	178.3	203.4	228.5	169.8	193.7	217.7	160.1	182.8	205.5
		62	THC	230.1	230.1	234.9	220.0	220.0	230.0	209.0	209.0	224.6	197.0	197.0	218.3	183.9	183.9	210.5
Ę	ā		SHC	174.4	204.7	234.9	169.6	199.8	230.0	164.2	194.4	224.6	158.2	188.3	218.3	151.2	180.8	210.5
6000 Cfm	(wp)	67	THC SHC	251.0 142.4	251.0 172.3	251.0 202.2	239.9 137.6	239.9 167.6	239.9 197.6	227.9 132.5	227.9 162.6	227.9 192.7	214.6 126.9	214.6 157.1	214.6 187.3	199.9 120.9	199.9 151.1	199.9 181.3
90	E		THC	274.2	274.2	274.2	262.0	262.0	262.0	248.7	248.7	248.7	234.1	234.1	234.1	217.9	217.9	217.9
		72	SHC	111.3	140.1	168.9	106.4	135.5	164.6	101.2	130.6	160.0	95.6	125.2	154.8	89.5	119.3	149.1
			THC	_	294.4	294.4	_	281.0	281.0	-	266.4	266.4	-	250.7	250.7	-	233.4	233.4
		76	SHC	_	113.0	146.0	_	108.7	141.7	_	104.6	133.3	_	99.7	126.2	_	94.1	122.4
			THC	230.8	230.8	259.3	222.2	222.2	249.7	212.8	212.8	239.2	202.3	202.3	227.5	190.6	190.6	214.4
		58	SHC	202.3	230.8	259.3	194.7	222.2	249.7	186.4	212.8	239.2	177.2	202.3	227.5	166.9	190.6	214.4
		62	THC	236.4	236.4	255.9	225.9	225.9	250.3	215.3	215.3	241.3	203.8	203.8	231.2	191.3	191.3	220.8
Cfm	اءا	02	SHC	186.6	221.3	255.9	181.4	215.8	250.3	174.2	207.7	241.3	166.3	198.7	231.2	158.0	189.4	220.8
Ö	(wb)	67	THC	257.6	257.6	257.6	245.9	245.9	245.9	233.2	233.2	233.2	219.3	219.3	219.3	204.0	204.0	204.0
2000	EA	<u> </u>	SHC	150.4	185.0	219.6	145.5	180.2	214.9	140.3	175.0	209.8	134.6	169.4	204.2	128.4	163.2	198.1
	-	72	THC	281.0	281.0	281.0	268.1	268.1	268.1	254.2	254.2	254.2	238.8	238.8	238.8	222.0	222.0	222.0
			SHC	114.4	148.1 301.1	181.8 301.1	109.5	143.4 287.2	177.3 287.2	104.2	138.4 272.2	172.5 272.2	98.5	132.8 255.7	167.2 255.7	92.3	126.8	161.3
		76	SHC	_	118.2	151.3	_	113.9	143.1	_	109.2	140.7	_	104.0	136.6	_	_	_
-			THC	239.6	239.6	269.4	230.5	230.5	259.2	220.5	220.5	248.0	209.4	209.4	235.6	197.0	197.0	221.7
		58	SHC	209.9	239.6	269.4	201.8	230.5	259.2	193.0	220.5	248.0	183.3	209.4	235.6	172.3	197.0	221.7
			THC	241.9	241.9	274.0	232.2	232.2	263.9	222.0	222.0	253.2	210.1	210.1	242.3	197.0	197.0	230.1
Ε		62	SHC	197.3	235.6	274.0	189.6	226.8	263.9	181.7	217.5	253.2	173.3	207.8	242.3	163.9	197.0	230.1
8000 Cfm	(dw)	67	THC	262.7	262.7	262.7	250.5	250.5	250.5	237.3	237.3	237.3	222.9	222.9	222.9	207.1	207.1	214.0
000	EA	07	SHC	158.0	197.1	236.3	153.0	192.2	231.4	147.6	186.9	226.1	141.8	181.1	220.3	135.5	174.7	214.0
×	_	72	THC	286.3	286.3	286.3	272.8	272.8	272.8	258.4	258.4	258.4	242.5	242.5	242.5	225.1	225.1	225.1
			SHC	117.4	155.7	194.1	112.4	150.9	189.5	107.1	145.8	184.5	101.3	140.1	179.0	95.1	134.0	173.0
		76	THC	-	306.6 122.8	306.6 157.5	-	292.0 118.2	292.0 154.2	-	276.5 113.3	276.5 150.2	_	_	_	_	_	-
			THC	- 247.2	247.2	278.0	- 237.6	237.6	267.3	- 227.1	227.1	255.5	- 215.4	215.4	242.4	202.4	202.4	227.8
		58	SHC	216.4	247.2	278.0	207.9	237.6	267.3	198.7	227.1	255.5	188.4	215.4	242.4	176.9	202.4	227.8
			THC	249.4	249.4	281.3	239.3	239.3	272.2	227.9	227.9	262.4	215.4	215.4	251.6	202.3	202.3	236.4
E		62	SHC	202.5	241.9	281.3	195.4	233.8	272.2	187.7	225.1	262.4	179.2	215.4	251.6	168.3	202.3	236.4
9000 Cfm	(wb)	07	THC	266.8	266.8	266.8	254.2	254.2	254.2	240.6	240.6	241.9	225.9	225.9	235.9	209.5	209.5	229.3
8	EA (67	SHC	165.2	208.8	252.4	160.1	203.8	247.4	154.7	198.3	241.9	148.7	192.3	235.9	142.2	185.7	229.3
6	ш	72	THC	290.4	290.4	290.4	276.6	276.6	276.6	261.8	261.8	261.8	245.4	245.4	245.4	227.6	227.6	227.6
		12	SHC	120.1	163.0	205.9	115.1	158.2	201.2	109.8	152.9	196.1	103.9	147.2	190.5	97.6	141.0	184.4
		76	THC	-	310.7	310.7	-	295.9	295.9	_	_	-	-	-	-	_	_	-
<u> </u>			SHC	050.7	126.7	167.1	- 040.7	122.1	163.2	- 000.7	- 000 7	- 064.0			- 040.0		-	-
		58	THC	253.7	253.7	285.4	243.7	243.7	274.2	232.7	232.7	261.9	220.5	220.5	248.2	206.9	206.9	233.0
			SHC	221.9 255.5	253.7 255.5	285.4 290.4	213.1 244.0	243.7 244.0	274.2 282.1	203.5	232.7 232.6	261.9 271.8	192.7 220.5	220.5 220.5	248.2 257.6	180.8 206.9	206.9 206.9	233.0 241.9
Ε		62	SHC	208.4	249.4	290.4	201.5	241.8	282.1	193.5	232.6	271.8	183.3	220.5	257.6	171.9	206.9	241.9
Cfm	(wp)		THC	270.1	270.1	270.1	257.2	257.2	262.7	243.3	243.3	257.0	228.0	228.0	250.8	211.4	211.4	243.3
000	EA (v	67	SHC	172.1	220.0	267.8	166.9	214.8	262.7	161.4	209.2	257.0	155.2	203.0	250.8	148.3	195.8	243.3
10,000	ы	70	THC	293.9	293.9	293.9	279.7	279.7	279.7	264.4	264.4	264.4	247.8	247.8	247.8	229.6	229.6	229.6
'		72	SHC	122.8	170.1	217.4	117.7	165.1	212.5	112.3	159.8	207.3	106.4	154.0	201.6	100.1	147.8	195.4
		76	THC	-	314.3	314.3	-	299.1	299.1	-	-	-	-		-		-	
		70	SHC	-	130.6	175.9	_	125.8	171.7	_	-	_	-	_	-	_	_	-

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

569J*25D- 524J*28

									AN	/BIENT	ГЕМРЕ	RATUR	ΙE					
					85			95			105			115			125	
				E	A (db)		E	A (db)		Е	A (db)		E	A (db)		Е	A (db)	
				75	80	85	75	80	85	75	80	85	75	80	85	75	80	85
		58	THC	237.5	237.5	261.6	228.5	228.5	251.7	218.7	218.7	240.9	207.7	207.7	228.8	195.9	195.9	215.8
		00	SHC	213.4	237.5	261.6	205.3	228.5	251.7	196.5	218.7	240.9	186.6	207.7	228.8	176.0	195.9	215.8
		62	THC	241.6	241.6	261.6	230.8	230.8	255.7	220.1	220.1	246.2	207.9	207.9	236.1	196.1	196.1	222.6
Ē	G		SHC	201.2	231.4	261.6	195.7	225.7	255.7	188.0	217.1	246.2	179.8	207.9	236.1	169.5	196.1	222.6
500 Cfm	≥	67	THC	262.2	262.2	262.2	250.1	250.1	250.1	237.0	237.0		222.5	222.5	222.5	207.4	207.4	207.4
20	EA (wb)		SHC	163.9	194.6	225.3	158.9	189.6	220.3	153.6	184.2	214.9	147.7	178.3	208.9	141.6	172.2	202.7
7		72	THC	285.5	285.5	285.5	272.2	272.2		257.9	257.9	257.9	242.1	242.1	242.1	225.6	225.6	225.6
			SHC	125.1	156.0 305.5	186.9 305.5	120.2	151.0 291.1	181.9 291.1	114.9	145.7	176.5	109.2	139.9	170.6	103.2	133.8	164.5
		76	SHC	_	124.9	156.9	-	120.0	151.8			-	_	-	-		-	
			THC	248.0	248.0	273.2	238.3	238.3	262.5	227.7	227.7	250.8	215.9	215.9	237.8	203.3	203.3	223.9
		58	SHC	222.8	248.0	273.2	214.1	238.3	262.5	204.6	227.7	250.8	194.0	215.9	237.8	182.6	203.3	223.9
			THC	249.2	249.2	280.0	238.6	238.6	270.9	227.9	227.9	258.8	216.1	216.1	245.4	203.4	203.4	231.0
_		62	SHC	213.6	246.8	280.0	206.3	238.6	270.9	197.0	227.9	258.8	186.8	216.1	245.4	175.8	203.4	231.0
8750 Cfm	(wp)		THC	267.7	267.7	267.7	254.9	254.9	254.9	241.2	241.2	241.2	226.3	226.3	228.3	210.6	210.6	221.6
20	2	67	SHC	174.8	210.1	245.4	169.7	204.9	240.2	164.2	199.3	234.5	158.2	193.2	228.3	151.8	186.7	221.6
87	EA		THC	291.3	291.3	291.3	277.3	277.3	277.3	262.4	262.4	262.4	246.1	246.1	246.1	228.9	228.9	228.9
		72	SHC	130.3	165.7	201.2	125.2	160.6	196.0	119.9	155.2	190.5	114.0	149.2	184.4	108.0	143.1	178.1
		70	THC	_	311.4	311.4	_	_	-	_	-	-	_	-	-	-	_	-
		76	SHC	-	130.1	166.5	-	_	-	-	-	-	-	-	_	-	-	-
		58	THC	256.5	256.5	282.5	246.1	246.1	271.1	234.9	234.9	258.8	222.4	222.4	245.0	209.1	209.1	230.4
		36	SHC	230.4	256.5	282.5	221.2	246.1	271.1	211.1	234.9	258.8	199.9	222.4	245.0	187.9	209.1	230.4
_		62	THC	256.7	256.7	291.5	246.3	246.3	279.7	235.1	235.1	267.0	222.6	222.6	252.8	209.3	209.3	237.6
Cfm	<u>~</u>	02	SHC	221.9	256.7	291.5	213.0	246.3		203.2	235.1	267.0	192.4	222.6	252.8	180.9	209.3	237.6
0	(wp)	67	THC	271.7	271.7	271.7	258.6	258.6	259.0	244.6	244.6	253.0	229.2	229.2	246.3	213.3	213.3	238.9
10,000	EA		SHC	185.1	224.9	264.6	179.8	219.4		174.1	213.6	253.0	167.8	207.1	246.3	161.1	200.0	238.9
9	_	72	THC	295.6	295.6	295.6	281.2	281.2	281.2	265.8	265.8	265.8	249.0	249.0	249.0	-	_	-
			SHC	135.2	175.0	214.9	130.0	169.8	209.6	124.6	164.2	203.9	118.6	158.2	197.7		-	-
		76	THC	_	-	-	_	_	_	_	-	_	-	_	-	-	-	_
			THC	263.5	263.5	290.3	- 252.7	252.7	278.3	240.9	240.9	265.3	227.9	227.9	- 251.0	214.0	214.0	235.7
		58	SHC	236.8	263.5	290.3	227.0	252.7	278.3	216.4	240.9	265.3	204.7	227.9	251.0	192.2	214.0	235.7
			THC	263.7	263.7	299.5	252.9	252.7	287.1	241.1	241.1	273.7	228.0	228.0	258.9	214.1	214.1	243.1
Ε		62	SHC	228.0	263.7	299.5	218.6	252.9	287.1	208.4	241.1	273.7	197.1	228.0	258.9	185.1	214.1	243.1
Cfm	(dv		THC	275.0	275.0	282.7	261.6	261.6	276.8	247.2	247.2	270.3	231.8	231.8	262.6	216.0	216.0	251.8
11,250	EA (wb)	67	SHC	194.9	238.8	282.7	189.4	233.1	276.8	183.4	226.8	270.3	176.6	219.6	262.6	168.2	210.0	251.8
Ξ,	Ē		THC	299.0	299.0	299.0	284.2	284.2	284.2	268.4	268.4	268.4	251.3	251.3	251.3	-	_	_
_		72	SHC	139.8	184.0	228.1	134.6	178.7	222.7	129.0	173.0	216.9	123.1	166.8	210.6	-	_	_
		70	THC	-	-	-	-	-	-	-	-	-		-	-		_	-
		76	SHC	_	-	-	_	_	-	-	-	-	_	-	-	-	_	-
		F0	THC	269.5	269.5	296.9	258.2	258.2	284.4	245.9	245.9	270.9	232.4	232.4	256.0	218.0	218.0	240.1
		58	SHC	242.2	269.5	296.9	232.0	258.2	284.4	221.0	245.9	270.9	208.8	232.4	256.0	195.9	218.0	240.1
		62	THC	269.7	269.7	306.3	258.4	258.4		246.1	246.1		232.5	232.5	264.0	218.1	218.1	247.6
12,500 Cfm	<u>چ</u> ا	UZ.	SHC	233.2	269.7	306.3	223.4	258.4		212.8	246.1		201.0	232.5		188.6	218.1	247.6
0	EA (wb)	67	THC	277.8	277.8	299.7	264.1	264.1		249.7	249.7		234.5	234.5	274.3	218.8	1	261.2
,50	Ä	01	SHC	204.0	251.8	299.7	198.2	245.7		191.6	238.6		183.1	228.7	274.3	173.4	217.3	261.2
12		72	THC	301.7	301.7	301.7	286.6	286.6		270.5	270.5	1	-	-	-	-	-	-
1			SHC	144.3	192.6	241.0	139.0	187.2		133.4	181.5	229.6	-	-	-	-	-	-
		76	THC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			SHC	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-

Not operational

THC – Total Cooling Capacity, Gross (1,000 Btuh)
SHC – Sensible Cooling Capacity, Gross (1,000 Btuh)

ELECTRICAL DATA

569J*07A COOLING WITHOUT POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE	RANGE	CON	/IP 1	OFM	(ea)	POWER	SUPPLY
V-1 11-112	MIN	MAX	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	19	123	325	1.5	26.8	45
460-3-60	414	506	9.7	62	325	0.8	13.7	20
575-3-60	518	633	7.4	50	325	0.7	10.7	15

569J*07A COOLING WITH POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE	RANGE	CON	/IР 1	OFM	(ea)	POWER	SUPPLY
V-111-112	MIN	MAX	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	19	123	325	1.5	31.6	50
460-3-60	414	506	9.7	62	325	0.8	15.9	25
575-3-60	518	633	7.4	50	325	0.7	12.4	15

569J*08A COOLING WITHOUT POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE	RANGE	CON	/IP 1	OFM	(ea)	POWER	SUPPLY
V-F11-112	MIN	MAX	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	25	164	325	1.5	34.3	50
460-3-60	414	506	12.2	100	325	0.8	16.9	25
575-3-60	518	633	9.0	78	325	0.7	12.7	20

569J*08A COOLING WITH POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE	RANGE	CON	/IP 1	OFM	(ea)	POWER	SUPPLY
V-F11-112	MIN	MAX	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	25	164	325	1.5	39.1	60
460-3-60	414	506	12.2	100	325	0.8	19.1	30
575-3-60	518	633	9.0	78	325	0.7	14.4	20

569J*12A COOLING WITHOUT POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE	RANGE	CON	/IP 1	OFM	(ea)	POWER	SUPPLY
V-1 11-112	MIN	MAX	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	30.1	225	325	1.5	40.6	60
460-3-60	414	506	16.7	114	325	0.8	22.5	30
575-3-60	518	633	12.2	80	325	0.7	16.7	25

569J*12A COOLING WITH POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGI	E RANGE	CON	/IP 1	OFM	(ea)	POWER	SUPPLY
V-111-112	MIN	MAX	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	30.1	225	325	1.5	45.4	60
460-3-60	414	506	16.7	114	325	0.8	24.7	30
575-3-60	518	633	12.2	80	325	0.7	18.4	30

569J*12D COOLING WITHOUT POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE	VOLTAGE RANGE		COMP 1		COMP 2		OFM (ea)		POWER SUPPLY	
V-F11-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse	
208/230-3-60	187	253	15.9	110	15.9	110	325	1.5	38.8	50	
460-3-60	414	506	7.7	52	7.7	52	325	0.8	18.9	25	
575-3-60	518	633	5.7	39	5.7	39	325	0.7	14.2	20	

569J*12D COOLING WITH POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE RANGE		COMP 1		COMP 2		OFM (ea)		POWER SUPPLY	
V-111-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	15.9	110	15.9	110	325	1.5	43.6	50
460-3-60	414	506	7.7	52	7.7	52	325	0.8	21.1	25
575-3-60	518	633	5.7	39	5.7	39	325	0.7	15.9	20

569J*14A COOLING WITHOUT POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE	VOLTAGE RANGE		COMP 1		(ea)	POWER SUPPLY		
V-111-112	MIN	MAX	RLA	LRA	WATTS	FLA	MCA	Fuse	
208/230-3-60	187	253	48.1	245	325	1.5	63.1	80	
460-3-60	414	506	18.6	125	325	0.8	24.9	30	
575-3-60	518	633	14.7	100	325	0.7	19.8	30	

569J*14A COOLING WITH POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE	RANGE	COMP 1		OFM	(ea)	POWER SUPPLY		
V-F11-112	MIN	MAX	RLA	LRA	WATTS	FLA	MCA	Fuse	
208/230-3-60	187	253	48.1	245	325	1.5	67.9	80	
460-3-60	414	506	18.6	125	325	0.8	27.1	45	
575-3-60	518	633	14.7	100	325	0.7	21.5	30	

569J*14D COOLING WITHOUT POWERED CONVENIENCE OUTLET

V_Dh_Hz	V-Ph-Hz VOLTAGE		RANGE COMP		MP 1 COMP 2		OFM	(ea)	POWER SUPPLY	
V-F11-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	22.40	149	22.40	149	325	1.5	53.4	60
460-3-60	414	506	10.6	75	10.6	75	325	0.8	25.5	30
575-3-60	518	633	7.7	54	7.7	54	325	0.7	18.7	25

569J*14D COOLING WITH POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE RANGE		COMP 1		COMP 2		OFM (ea)		POWER SUPPLY	
V-1 11-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	22.40	149	22.40	149	325	1.5	58.2	80
460-3-60	414	506	10.6	75	10.6	75	325	0.8	27.7	35
575-3-60	518	633	7.7	54	7.7	54	325	0.7	20.4	25

569J*16A COOLING WITHOUT POWERED CONVENIENCE OUTLET

V_Dh_Hz	V-Ph-Hz VOLTAGE RANGE		COMP 1		COMP 2		OFM	(ea)	POWER SUPPLY		
V-111-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse	
208/230-3-60	187	253	25	164	25	164	325	1.5	60.8	80	
460-3-60	414	506	12.2	100	12.2	100	325	0.8	29.9	40	
575-3-60	518	633	9	78	9	78	325	0.7	22.4	30	

569J*16A COOLING WITH POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE RANGE		COMP 1		COMP 2		OFM (ea)		POWER SUPPLY	
V-111-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	25	164	25	164	325	1.5	66.6	90
460-3-60	414	506	12.2	100	12.2	100	325	0.8	32.1	40
575-3-60	518	633	9	78	9	78	325	0.7	24.1	30

569J*16D COOLING WITHOUT POWERED CONVENIENCE OUTLET

V_Dh_Hz	V-Ph-Hz VOLTAGE RANGE		COMP 1		COMP 2		OFM (ea)		POWER SUPPLY	
V-F11-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	25	164	25	164	325	1.5	60.7	80
460-3-60	414	506	12.2	100	12.2	100	325	0.8	29.8	40
575-3-60	518	633	9	78	9	78	325	0.6	22.0	30

569J*16D COOLING WITH POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE RANGE		COMP 1		COMP 2		OFM (ea)		POWER SUPPLY	
V-111-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	25	164	25	164	325	1.5	65.6	90
460-3-60	414	506	12.2	100	12.2	100	325	0.8	32.1	40
575-3-60	518	633	9	78	9	78	325	0.7	24.1	30

569J*25A COOLING WITHOUT POWERED CONVENIENCE OUTLET

V_Dh_Hz	V-Ph-Hz VOLTAGE RANGE		COMP 1		COMP 2		OFM	(ea)	POWER SUPPLY		
V-111-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse	
208/230-3-60	187	253	30.1	225	30.1	225	325	1.5	73.7	100	
460-3-60	414	506	16.7	114	16.7	114	325	0.8	40.8	50	
575-3-60	518	633	12.2	80	12.2	80	325	0.7	30.3	40	

569J*25A COOLING WITH POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE RANGE		COMP 1		COMP 2		OFM	(ea)	POWER SUPPLY	
V-111-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	30.1	225	30.1	225	325	1.5	78.5	100
460-3-60	414	506	16.7	114	16.7	114	325	0.8	43.0	50
575-3-60	518	633	12.2	80	12.2	80	325	0.7	32.0	40

569J*25D COOLING WITHOUT POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE RANGE		TAGE RANGE COMP 1		COMP 2		OFM (ea)		POWER SUPPLY	
V-F11-112	MIN	MAX RLA		LRA	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	30.1	225	30.1	225	325	1.5	73.7	100
460-3-60	414	506	16.7	114	16.7	114	325	0.8	40.8	50
575-3-60	518	633	12.2	80	12.2	80	325	0.7	30.3	40

569J*25D COOLING WITH POWERED CONVENIENCE OUTLET

V-Ph-Hz	VOLTAGE RANGE		COMP 1		COMP 2		OFM (ea)		POWER SUPPLY	
V-1 11-112	MIN	MAX	RLA	LRA	RLA	LRA	WATTS	FLA	MCA	Fuse
208/230-3-60	187	253	30.1	225	30.1	225	325	1.5	78.5	100
460-3-60	414	506	16.7	114	16.7	114	325	0.8	43.0	50
575-3-60	518	633	12.2	80	12.2	80	325	0.7	32.0	40

APPLICATION DATA

Operating limits

Maximum outdoor temperature
Minimum return-air temperature (524J) $55^{\circ}F$
Maximum return-air temperature (524J) 95°F
Range of acceptable saturation suction temperature
$Maximum\ discharge\ temperature\ \dots \ 275^{\circ}F$
Minimum discharge superheat 60°F
NOTES:

- 1. Select air handler at no less than 300 cfm/ton (nominal condensing unit capacity).
- 2. Total combined draw of the field-supplied liquid line solenoid valve and air handler fan contactor must not exceed 22 va. If the specified va must be exceeded, use a remote relay to control the load.

MINIMUM OUTDOOR-AIR OPERATING TEMPERATURE

UNIT	МІ	NIMUM OUTDOOR TEMP (°F)
569J	Std	With MotorMaster I® Control†
07A	35	
08A	35	
12A	35	
14A	35	
16A	35	00
25A	35	- 20
12D	35	
14D	35	
16D	35	
25D	35	

† Wind baffles (field-supplied and field-installed) are recommended for all units with MotorMaster I® control. Refer to Low Ambient Temperature Control Installation Instructions for additional information.

Refrigerant piping

IMPORTANT: Do not bury refrigerant piping underground.

It is recommended that the refrigerant piping for all commercial split systems include a liquid line solenoid valve, a liquid line filter drier and a sight glass.

For refrigerant lines longer than 75 lineal ft, a liquid line solenoid valve installed at the **indoor** unit and a suction accumulator are required. Refer to the Refrigerant Specialties Part Numbers table.

REFRIGERANT SPECIALTIES PART NUMBERS

LIQUID LINE SIZE (in.)	LIQUID LINE SOLENOID VALVE (LLSV)	LLSV COIL	SIGHT GLASS
3/8	EF680033	EF680037	KM680008
1/2	EF680035	EF680037	KM680004
5/8	EF680036	EF680037	KM680005

NOTE: 569J* units require TWO sets of parts.

Puron-duty Filter Drier(s)

Model-Size	Qty	Liquid Line OD	Desiccant Volume	Part Number Ref
569J*07	1	³ / ₈ -in	8 cu. in.	KH43LG091
569J*08	1	¹ / ₂ -in	16 cu. in.	KH43LG085
569J*12	1	¹ / ₂ -in	16 cu. in.	KH43LG085
569J*14	1	⁵ / ₈ -in	16 cu. in.	KH43LG086
569J*16	1	⁵ / ₈ -in	30 cu. in.	KH43LG087
569J*25	1	⁵ / ₈ -in	30 cu. in.	KH43LG087
569J*12	2	³ / ₈ -in	8 cu. in.	KH43LG091
569J*14	2	¹ / ₂ -in	16 cu. in.	KH43LG085
569J*16	2	¹ / ₂ -in	16 cu. in.	KH43LG085
569J*25	2	¹ / ₂ -in	16 cu. in.	KH43LG085

569J* 07-14 PIPING RECOMMENDATIONS (SINGLE-CIRCUIT UNIT)

R-410A	Equivalent Len	gth									
	Ft	0-38		38-75		75-11	3	113-1	50	150-1	88
	m	0-12		12-23		23-34		34-46	;	46-57	,
Model	Linear Length Ft m	0-25 0-8		25-50 8-15		50-75 15-23		75-10 23-30		100-1 30-38	
569J*07	Liquid Line	3/8		3/8	1/2	1/2		1/2	⁵ /8	1/2	⁵ / ₈
	Max Lift (ft) Novation RTPF Suction Line Charge (lbs) Novation RTPF	25 25 7/ ₈ 8.4 14.0	7/8	42 50 ⁷ / ₈ 9.6 15.2	50 50 1 ¹ / ₈ 11.1 16.7	75 75 1 ¹ / ₈ 13.1 18.6		90 100 1 ¹ / ₈ 15.0 20.6	100 100 18.8 24.4	86 125 1 ¹ / ₈ 16.9 22.5	101 125 22.6 28.2
569J*08	Liquid Line	1/2		1/2		1/2		1/2		1/2	
3030 00	Max Lift (ft) Novation RTPF Suction Line	25 25 7/ ₈	1 ¹ / ₈	50 50 1 ¹ / ₈		75 75 1 ¹ / ₈		100 100 1 1 1/8		112 93 1 ¹ / ₈	
	Charge (lbs) Novation RTPF	11.8 18.6	, 0	12.9 19.7		14.9 21.7		16.8 23.8		18.7 25.5	
569J*12	Liquid Line	1/2		1/2		1/2	⁵ / ₈	1/2	⁵ / ₈	1/2	⁵ / ₈
	Max Lift (ft) Novation RTPF Suction Line	25 25 1 ¹ / ₈		50 50 1 ¹ / ₈		48 57 1 ¹ / ₈	73 75	54 61 1 ¹ / ₈	87 100 1 ³ / ₈	43 47 1 ¹ / ₈	84 99 1 ³ / ₈
	Charge (lbs) Novation RTPF	13.4		15.4 21.8		17.3 23.5	20.1 26.2	20.0 26.2	23.7 29.9	22.1 DNU	26.8 33.0
569J*14	Liquid Line	1/2		1/2	5/8	1/2	5/8	5/8	3/4	5/8	3/4
	Max Lift (ft) Novation RTPF Suction Line	25 25 1 ¹ / ₈		50 50 1 ¹ / ₈	50 NR	45 75 1 ³ / ₈	75 NR	100 100 1 ³ / ₈	100 NR	95 125 1 ³ / ₈	107 NR
	Charge (lbs) Novation RTPF	16.9 46.0		18.8 47.9	20.7 NR	21.3 50.4	24.1 NR	27.2 56.3	32.2 NR	30.2 59.3	36.5 NR
Legend:											
Equivalent Length	Equivalent tubing	length, in	cluding et	ffects of re	efrigeratio	n specialt	ies device:	S			
Linear Length	Linear tubing len		-		-		·	-	-	-	
Liquid Line	Tubing size, inches OD.										
Max Lift	Maximum liquid lift (indoor unit ABOVE outdoor unit only), at maximum permitted liquid line pressure drop • Linear Length Less than 75 ft (23 m): Minimum 2.0° F subcooling entering TXV • Linear Length Greater than 75 ft (23m): Minimum 0.5° F subcooling entering TXV										
Suction Line	Tube size, inches See highlighted:		e with RTF	PF coil mo	odel						
Charge	Charge Quantity, (where applicable		ılated for b	ooth liquid	d line size:	s (where a	applicable)	, but only	with large	er suction	line size
DNU	Do Not Use (pres	sure drop	exceeds	available	subcoolin	g in this n	nodel)				
NOTE:		For applications with equivalent length greater than 188 ft (57 m) and/0r linear length greater than 125 ft (38 m), contact your local Carrier representative.									

569J 16-25 PIPING RECOMMENDATIONS (SINGLE-CIRCUIT UNIT)

R-410A			Equivale	nt Length		
	Ft	0-38	38-75	75-113	113-150	150-188
	m	0-12	12-23	23-34	34-46	46-57
	Linear Length					
	Ft	0-25	25-50	50-75	75-100	100-125
Model	m	0-8	8-15	15-23	23-30	30-38
569J*16	Liquid Line	5/8	5/8	5/8	5/8	5/8
	Max Lift	25	50	75	100	125
	Suction Line	1-1/8	1-3/8	1-3/8	1-3/8	1-3/8 1-5/8
	Charge (lbs)					
	Novation	24.3	27.5	30.6	33.7	37.8
	RTPF	42.7	45.9	49.0	52.1	56.2
569J*25	Liquid Line	5/8	5/8	5/8	5/8	5/8
	Max Lift	25	50	71	77	63
	Suction Line	1- ¹ / ₈ 1- ³ / ₈	1- ³ / ₈	1- ³ / ₈ 1- ⁵ / ₈	1- ⁵ / ₈	1- ⁵ / ₈
	Charge (lbs)	37.8	40.8	44.6	47.8	51.1
Legend:						
Equivalent Length	Equivalent tubing	length, including e	ffects of refrigeration	specialties devices	5	
Linear Length	Typical linear tubi	ng length, (50% ad	ded to linear to defir	ne Equivalent Lengt	h for this table)	
Liquid Line	Tubing size, inche	es OD.				
Max Lift	Maximum liquid lift (indoor unit ABOVE outdoor unit only), at maximum permitted liquid line pressure drop — • Linear Length Less than 75 ft (23 m): Minimum 2.0° F subcooling entering TXV • Linear Length Greater than 75 ft (23m): Minimum 0.5° F subcooling entering TXV					
Suction Line	Tube size, inches	OD				
Charge	Charge Quantity, lbs. Calculated for both liquid line sizes (where applicable), but only with larger suction line size (where applicable)					
NOTE:		vith equivalent lengt I Carrier representa	th greater than 188 tive.	ft (57 m) and/0r line	ar length greater th	an 125 ft (38 m),

569J 12-14 PIPING RECOMMENDATIONS (TWO-CIRCUIT UNIT)

_ .	Equivalent Length											
Ft	0-38	38-75	75-113		113-150		150-188					
m	0-12	12-23	23-34	ļ	34-46	i	46-57					
Linear Length Ft	0-25	25-50 8-15	50-75		75-100		100-125					
111								1/2				
Max Lift (ft) Novation RTPF	25 25	50 50	28 75	75 NR	DNU 83	100 100	DNU 62	99 125				
Suction Line	⁷ / ₈	7/8	1 ¹ / ₈		1 ¹ / ₈		1 ¹ / ₈					
Charge (lbs) (ea circuit) Novation RTPF	7.1 13.3	8.1 14.3	9.6 15.8	11.9 NR	DNU 16.9	13.8 20.0	DNU 18.1	15.8 22.0				
Liquid Line	3/8	3/8	3/8	1/2	3/8	1/2	3/8	1/2				
Max Lift (ft) Novation RTPF Suction Line Charge (lbs) (ea circuit)	25 25 ⁷ / ₈	50 50 7/ ₈	48 75 1 ¹ / ₈	75 NR	DNU 54 1 ¹ / ₈	100 100	DNU 45 1 ¹ / ₈	122 125				
Novation RTPF	9.7 23.0	10.7 24.0	14.5 27.8	NR	DNU 26.6	16.4 29.7	DNU 27.8	18.4 31.7				
Equivalent tubing length, in	cluding effects	of refrigeration spec	ialties device	s								
Linear tubing length, feet												
Tubing size, inches OD.												
Maximum liquid lift (indoor unit ABOVE outdoor unit only), at maximum permitted liquid line pressure drop • Linear Length Less than 75 ft (23 m): Minimum 2.0° F subcooling entering TXV • Linear Length Greater than 75 ft (23m): Minimum 0.5° F subcooling entering TXV Tube size, inches OD See highlighted: Do not use with RTPF coil model												
applicable)		. ,), but only	with large	er suction	line size (\	where				
			s model)									
Not Recommended (use sm	naller liquid tube	e size)										
	Ft m Liquid Line Max Lift (ft) Novation RTPF Suction Line Charge (lbs) (ea circuit) Novation RTPF Liquid Line Max Lift (ft) Novation RTPF Suction Line Charge (lbs) (ea circuit) Novation RTPF Suction Line Charge (lbs) (ea circuit) Novation RTPF Suction Line Charge (lbs) (ea circuit) Novation RTPF Equivalent tubing length, in Linear tubing length, feet Tubing size, inches OD. Maximum liquid lift (indoor of the company of the cater the company of the compa	Ft	Ft	Ft 0-25 25-50 50-75 m 0-8 8-15 15-23 Liquid Line 3/ ₈ 3/ ₈ 3/ ₈ Max Lift (ft) Novation 25 50 28 RTPF 25 50 75 Suction Line 7/ ₈ 7/ ₈ 1 ½ Charge (lbs) (ea circuit) Novation 7.1 8.1 9.6 RTPF 13.3 14.3 15.8 Liquid Line 3/ ₈ 3/ ₈ 3/ ₈ Max Lift (ft) Novation 25 50 48 RTPF 25 50 75 Suction Line 7/ ₈ 7/ ₈ 1 ½ Charge (lbs) (ea circuit) Novation 9.7 10.7 14.5 RTPF 23.0 24.0 27.8 Equivalent tubing length, feet Tubing size, inches OD. Maximum liquid lift (indoor unit ABOVE outdoor unit only), at maximum periodering entering e	Ft m 0 - 25	Ft 0-25 25-50 50-75 75-10 m 0-8 8-15 15-23 23-30 Liquid Line 3/8 3/8 3/8 1/2 3/8 Max Lift (ft) DNU DNU <td> Ft</td> <td> Ft</td>	Ft	Ft				

569J 16-25 PIPING RECOMMENDATIONS (TWO-CIRCUIT UNIT)

NOTE: 569J r	requires TWO sets	of refrigeration p	iping						
R-410A	Equivalent Lengt	h							
	Ft	0-38	38-75	75-113	}	113-15	50	150-18	38
	m	0-12	12-23	23-34		34-46		46-57	
	Linear Length								
	Ft	0-25	25-50	50-75		75-100)	100-12	25
Model	m	0-8	8-15	15-23		23-30		30-38	
569J*16	Liquid Line	1/2	1/2	1/2		1/2		1/2	
	Max Lift	25	50	75		100		125	
	Suction Line	7/8	11/8	1 ¹ / ₈		1 ¹ / ₈		1 ¹ / ₈	
	Charge ea. (lbs)								
	Novation	11.7	13.8	15.7		17.6		19.6	
	RTPF	21.7	23.8	25.7		27.6		29.6	
569J*25	Liquid Line	1/2	1/2	1/2	⁵ / ₈	1/2	5/8	1/2	⁵ / ₈
	Max Lift	25	50	54	75	60	99	46	95
	Suction Line	1 ¹ / ₈	1 ¹ / ₈	1 ¹ / ₈		1 ¹ / ₈	1 ³ / ₈	1 ³ / ₈	
	Charge (lbs) 1 2	19.3 18.3	21.0 20.3	23.0 22.0	26.0 25.0	25.9 24.9	29.7 28.7	28.0 27.0	32.7 31.7
Legend:			•						
Equivalent Length	Equivalent tubing le	ength, including eff	ects of refrigeration	specialties	s devices				
Linear Length	Typical linear tubing	g length (50% adde	ed to linear to define	Equivaler	nt Length	for this tal	ble)		
Liquid Line	Tubing size, inches OD. Maximum liquid lift (indoor unit ABOVE outdoor unit only), at maximum permitted liquid line pressure drop — Linear Length Less than 75 ft (23 m): Minimum 2.0° F subcooling entering TXV Linear Length Greater than 75 ft (23m): Minimum 0.5° F subcooling entering TXV								
Max Lift						_			
Suction Line	Tube size, inches C	D							
Charge	Charge Quantity, lb (where applicable)	Charge Quantity, lbs. Calculated for both liquid line sizes (where applicable), but only with larger suction line size (where applicable)							
NOTE:	For applications wit contact your local E		n greater than 188 ft ve.	(57 m) an	d/0r linea	r length g	reater tha	n 125 ft (3	8 m),

TYPICAL PIPING AND WIRING

Roof Installation and a Ceiling-Mounted Fan Coil

LEGEND:

NEC - National Electrical Code

TXV - Thermostatic Expansion Valve

- * Field-supplied
- † Double riser may be required. Consult condensing unit product data catalog for details.

NOTES

- 1. All piping must follow standard refrigerant piping techniques. Refer to Bryant System Design Manual for details.
- 2. All wiring must comply with the applicable local and national codes.
- 3. Wiring and piping shown are general points-of-connection guides only and are not intended for, or to include all details for, a specific installation.
- 4. Liquid line solenoid valve (solenoid drop control) is recommended to prevent refrigerant migration to the compressor.
- 5. Internal factory-supplied TXVs not shown.

TYPICAL PIPING AND WIRING (CONT.)

Roof Installation and a Vertical Discharge Fan Coil

LEGEND

DIAM — Diameter

NEC — National Electrical Code
TXV — Thermostatic Expansion Valve ___ Piping

*Field supplied.

- All piping must follow standard refrigerant piping techniques. Refer to System Design Manual for details.
 All wiring must comply with applicable local and national codes.
 Wiring and piping shown are general points-of-connection guides only and are not intended for, or to include all details for, a specific installation.
- Filter driers must be bi-flow type suited for heat pump duty.
 Internal factory-supplied TXVs and check valves not shown.

C101129

TYPICAL PIPING AND WIRING (CONT.)

Ground Level Installation and Vertical Discharge Fan Coil

LEGEND

DIAM— Diameter

 National Electrical Code Thermostatic Expansion Valve

→ Piping

*Field supplied.

NOTES:

- All piping must follow standard refrigerant piping techniques. Refer to System Design Manual for details.
- All wiring must comply with the applicable local and national codes.

 Wiring and piping shown are general points-of-connection guides only and are not intended for, or to include all details for, a specific installation.
- Liquid line solenoid valve (solenoid drop control) is recommended to prevent refrigerant migration to the compressor.
 Internal factory-supplied TXVs not shown.

C101130

TYPICAL PIPING AND WIRING (CONT.)

Dual Condensing Units and a Dual Circuit Fan

NOTES

- All piping must follow standard refrigerant piping techniques. Refer to System Design Manual for details.
- 2. All wiring must comply with applicable local and national codes.
- Wiring and piping shown are general points-of-connection guides only and are not intended for, or to include all details for, a specific installation.
- 4. Filter driers must be bi-flow type suited for heat pump duty.
- Heat Pump Unit A should be the first on, last off and be connected to the lower half of the coil.
- 6. Internal factory-supplied TXVs and check valves not shown.

C101131

Ր69<u>9</u>

GUIDE SPECIFICATIONS

Commercial Air-Cooled Condensing Units

HVAC Guide Specifications

Size Range: 6 to 20 Tons, Nominal

Bryant Model Numbers: 569J*, Single Circuit (07 - 25 Models) 569J*, Dual Circuit (12 - 25 Models)

Part 1 — General

1.01 SYSTEM DESCRIPTION

Outdoor-mounted, air-cooled condensing unit suitable for on-the-ground or rooftop installation. Unit shall consist of a hermetic scroll air-conditioning compressor(s) assembly, an air-cooled coil, propeller-type condenser fans, and a control box. Unit shall discharge supply air upward as shown on contract drawings. Unit shall be used in a refrigeration circuit matched with a packaged air-handling unit.

1.02 QUALITY ASSURANCE

- A. Unit shall be rated in accordance with AHRI Standard 360.
- B. Unit construction shall comply with ANSI/ASHRAE 15 safety code latest revision and comply with NEC.
- C. Unit shall be constructed in accordance with UL 1995 standard and shall carry the UL and UL, Canada label.
- D. Unit cabinet shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- E. Air-cooled condenser coils for hermetic scroll compressor units (569J*) and 569J* shall be leak tested at 150 psig, and pressure tested at 650 psig.
- F. Unit shall be manufactured in a facility registered to ISO 9001:2000 manufacturing quality standard.

1.03 DELIVERY, STORAGE, AND HANDLING

Unit shall be shipped as single package only, and shall be stored and handled according to unit manufacturer's recommendations.

1.04 WARRANTY (FOR INCLUSION BY SPECIFYING ENGINEER.)

Part 2 — Products

2.01 EQUIPMENT

A. General:

Factory-assembled, single piece, air-cooled condensing unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, compressor, holding charge, and special features required prior to field start-up.

- B. Unit Cabinet:
- 1. Unit cabinet shall be constructed of galvanized steel, bonderized and coated with a prepainted baked enamel finish.
- 2. A heavy-gauge roll-formed perimeter base rail with forklift slots and lifting holes shall be provided to facilitate rigging.
- C. Condenser Fans:
- 1. Condenser fans shall be direct driven, propeller type, discharging air vertically upward.
- 2. Fan blades shall be balanced.
- 3. Condenser fan discharge openings shall be equipped with PVC-coated steel wire safety guards.
- 4. Condenser fan and motor shaft shall be corrosion resistant.
- D. Compressor:
- 1. Compressor shall be of the hermetic scroll type .
- 2. Compressor shall be mounted on rubber grommets.
- 3. Compressors shall include overload protection.
- 4. Compressors shall be equipped with a crankcase heater.
- 5. Compressor shall be equipped with internal high pressure and high temperature protection.
- 6. 569J*16 and 25 sizes shall use two scroll compressors manifold together.
- E. Condenser Coils:
- 1. Standard Aluminum fin Copper Tube Coils:
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.

- b. Evaporator coils shall be leak tested to 150 psig, pressure tested to 450 psig, and qualified to UL 1995 burst test at 1775 psig.
- c. Condenser coils shall be leak tested to 150 psig, pressure tested to 650 psig, and qualified to UL 1995 burst test at 1980 psig.
- 2. Optional Pre-coated aluminum-fin condenser coils:
 - a. Shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments.
 - b. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube.
 - c. Epoxy-phenolic barrier shall minimize galvanic action between dissimilar metals.
- 3. Optional Copper-fin evaporator and condenser coils:
 - a. Shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets.
 - b. Galvanized steel tube sheets shall not be acceptable.
 - c. A polymer strip shall prevent coil assembly from contacting the sheet metal coil pan to minimize potential for galvanic corrosion between coil and pan.
- 4. Optional E-coated aluminum-fin evaporator and condenser coils:
 - a. Shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins.
 - b. Coating process shall ensure complete coil encapsulation of tubes, fins and headers.
 - c. Color shall be high gloss black with gloss per ASTM D523-89.
 - d. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges.
 - e. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93.
 - f. Impact resistance shall be up to 160 in.-lb (ASTM D2794-93).
 - g. Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92).
 - h. Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90.
- 5. Standard All Aluminum Novation Coils:
 - a. Standard condenser coils shall have all aluminum Novation Heat Exchanger Technology design consisting of aluminum multi port flat tube design and aluminum fin. Coils shall be a furnace brazed design and contain epoxy lined shrink wrap on all aluminum to copper connections.
 - b. Condenser coils shall be leak tested to 150 psig, pressure tested to 650 psig, and qualified to UL 1995 burst test at 1980 psig.
- 6. Optional E-coated aluminum-fin, aluminum tube condenser coils:
 - a. Shall have a flexible epoxy polymer coating uniformly applied to all coil external surface areas without material bridging between fins or louvers.
 - b. Coating process shall ensure complete coil encapsulation, including all exposed fin edges.
 - c. E-coat thickness of 0.8 to 1.2 mil with top coat having a uniform dry film thickness from 1.0 to 2.0 mil on all external coil surface areas, including fin edges, shall be provided.
 - d. Shall have superior hardness characteristics of 2H per ASTM D3363-00 and cross-hatch adhesion of 4B-5B per ASTM D3359-02.
 - e. Shall have superior impact resistance with no cracking, chipping or peeling per NSF/ANSI 51-2002 Method 10.2.
- F. Refrigeration Components:

Refrigeration circuit components shall include liquid line service valve, suction line service valve, a full charge of compressor oil, and a partial holding charge of refrigerant.

- G. Controls and Safeties:
- 1. Minimum control functions shall include:
 - f. Control wire terminal blocks.
 - g. Compressor lockout on auto-reset safety until reset from thermostat.
 - h. Each unit shall utilize the Comfort Alert [™] Diagnostic Board that provides:
 - (1.) System Pressure Trip fault code indication
 - (2.) Short Cycling fault code indication
 - (3.) Locked Rotor fault code indication
 - (4.) Open Circuit fault code indication

- (5.) Reverse Phase 3 fault code indication
- (6.) Welded Contactor fault code indication
- (7.) Low Voltage fault code indication
- (8.) Anti-short cycle protection
- (9.) Phase reversal protection
- 2. Minimum safety devices which are equipped with automatic reset (after resetting first at thermostat), shall include:
 - a. High discharge pressure cutout.
 - b. Low pressure cutout.
- H. Operating Characteristics:

1.	The capacity of the condensing unit shall meet or exceed Btuh at a suction temperature of °F. The
	power consumption at full load shall not exceed kW.
2.	The combination of the condensing unit and the evaporator or fan coil unit shall have a total net cooling capacity
	of Btuh or greater at conditions of cfm entering-air temperature at the evaporator at °F were
	bulb and °F dry bulb, and air entering the condensing unit at °F.

- 3. The system shall have an EER of _____ Btuh/Watt or greater at standard AHRI conditions.
- 4. Standard unit shall be capable to operate up to $125^{\circ}F$ ($52^{\circ}C$) and down to $40^{\circ}F$ ($4^{\circ}C$)
- I. Electrical Requirements:
- 1. Nominal unit electrical characteristics shall be _____ v, 3-ph, 60 Hz. The unit shall be capable of satisfactory operation within voltage limits of ____ v to ____ v.
- 2. Unit electrical power shall be single-point connection.
- 3. Unit control circuit shall contain a 24-v transformer for unit control.
- J. Special Features:
- 1. Low-Ambient Temperature Control:

A low-ambient temperature control shall be available as a factory-installed option or as a field-installed accessory. This low-ambient control shall regulate speed of the condenser-fan motors in response to the saturated condensing temperature of the unit. The control shall maintain correct condensing pressure at outdoor temperatures down to -20° F (-29° C).

2. Unit-Mounted, Non-Fused Disconnect Switch:

Switch shall be factory-installed and internally mounted. NEC and UL-approved non-fused switch shall provide unit power shutoff. Switch shall be accessible from outside the unit and shall provide power off lockout capability. Non-fused disconnect switch cannot be used when unit MOCP electrical rating exceeds 80 amps.

3. Convenience Outlet:

Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle. Outlet shall include 15 amp GFI (ground fault interrupter) receptacle with independent fuse protection. Voltage required to operate convenience outlet shall be provided by a factory-installed step-down transformer. Outlet shall be accessible from outside the unit.

- 4. Thermostat Controls:
 - a. Programmable multi-stage thermostat shall have 7-day clock, holiday scheduling, large backlit display, remote sensor capability, and Title 24 compliance.
 - b. Commercial Electronic Thermostat shall have 7-day time clock, auto-changeover, multi-stage capability, and large LCD (liquid crystal display) temperature display.
- 5. Louvered hail Guard Package:

Louvered hail guard package shall protect coils against damage from hail and other flying debris.

6. Condenser Coil Grille (Novation coil models 07-14):

Grille shall add decorative appearance to unit and protect condenser coil from large objects and vandalism.