

Linear Models for Panel Data

Advanced Microeconometrics

Anders Munk-Nielsen 2022

Introduction

Example: Wages and schooling

Example: Wages and schooling

$$w_{it} = \beta_0 + \beta_1 e_{it} + c_i + u_{it},$$

where w_{it} is wage and e_{it} is years of schooling.

- we can **compute** the average wage among, say, people with $e_{it} = 10$ years of schooling, $\hat{E}(w_{it}|e_{it} = 10)$
- Intuitively, you can think of the POLS estimator as finding $\hat{\beta}_1$ by seeing how $\hat{E}(w_{it}|e_{it})$ varies with educ.
- The problem: what if high-IQ people (high c_i, and high wage_i regardless of educ_i) take more education (educ)
 - Mathematically: $Cov(e_{it}, c_i) > 0$
- **Decomposing** how $\hat{E}(w_{it}|e_{it})$ increases with e_{it} :
 - one part is the value of education: $\beta_1 e_{it}$
 - one part is the type composition changing: higher IQ among higher educated.

Example: Wages and schooling

Estimates from regression of log wage on dummies for education types (and sector dummies and experience)

Discussion

Education: Signaling or Skill Building

Clearly, highly educated earn more. Pick a side randomly and argue which is more important for economists:

- 1. **Skills:** education teaches analytical and abstract thinking which heightens productivity. (E.g. Scandinavian school reforms)
- 2. **Signaling:** smart people take a tough education to show firms how productive they will be. (E.g. almost nobody remembers trigonometry)

Relate the discussion to the linear model below.

Check out the discussion here: youtu.be/MvWnyUT7vPk

Admission Cutoffs

Cool empirical strategy: strict cutoff in admission for GPA

ullet \Rightarrow Regression Discontinuity design.

Source: Daly, Jensen & le Maire (2022; Labour Economics).

Where are we in the course?

Part	Topic	Parameterization non-linear	Estimation non-linear	Dimension $dim(x)$	Numerical optimization	M-estimation (Part III)	Outcome (y_i)	Panel (c_i)
T	OLS	÷	÷	low	÷	✓	R	✓
П	LASSO	÷	✓	high	✓	÷	R	÷
IV	Probit	✓	✓	low	✓	✓	{0,1}	÷
	Tobit	✓	✓	low	✓	✓	[0;∞)	÷
	Logit	✓	✓	low	✓	✓	{1, 2,, <i>J</i> }	÷
	Sample selection	✓	✓	low	✓	✓	\mathbb{R} and $\{0,1\}$	÷
	Simulated Likelihood	✓	✓	low	✓	✓	Any	✓
	Quantile Regression	÷	✓	(low)	✓	✓	R	÷
	Non-parametric	✓	(√)	∞	÷	÷	R	÷

Outline

Panel model

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}.$$

		Estimator				
Rank	Model name	POLS	BE	RE	FE	FD
X'X	No individual effects	√ + *	✓	✓	✓	✓
X′X	Random effects	✓	✓	√ + *	✓	✓
Χ′X	Fixed effects	÷	÷	÷	✓	✓
Χ̈́′Ẍ́	Fixed effects	÷	÷	÷	√ + *	✓
$\Delta \mathbf{X}' \Delta \mathbf{X}$	Fixed effects	÷	÷	÷	✓	√ + *
-	Endogeneity	÷	÷	÷	÷	÷
	X'X X'X X'X X'X \(\tilde{X}'\tilde{X}\)	$\mathbf{X}'\mathbf{X}$ No individual effects $\mathbf{X}'\mathbf{X}$ Random effects $\mathbf{X}'\bar{\mathbf{X}}$ Fixed effects $\mathbf{X}'\bar{\mathbf{X}}$ Fixed effects $\mathbf{X}'\bar{\mathbf{X}}$ Fixed effects $\Delta \mathbf{X}'\Delta \mathbf{X}$ Fixed effects	$X'X$ No individual effects $\checkmark + *$ $X'X$ Random effects \checkmark $\hat{X}'\hat{X}$ Fixed effects \div $\hat{X}'\hat{X}$ Fixed effects \div $\Delta X'\Delta X$ Fixed effects \div	$X'X$ No individual effects $\sqrt{+*}$ $\sqrt{+*}$ $\sqrt{+*}$ $X'X$ Random effects $\sqrt{-*}$ $\sqrt{*}$ $X'X$ Fixed effects $\frac{1}{2}$ $\frac{1}{2$	Rank Model name POLS BE RE X'X No individual effects $\checkmark + *$ \checkmark \checkmark X'X Random effects \checkmark \checkmark $\checkmark + *$ $\dot{X}'\dot{X}$ Fixed effects \div \div \div $\dot{X}'\dot{X}$ Fixed effects \div \div \div $\Delta X'\Delta X$ Fixed effects \div \div \div	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $\left(\div = \mathsf{inconsistent}, \ \checkmark = \mathsf{consistent}, \ \star = \mathsf{efficient} \right)$

First Differences

First Differences

Now, consider the first-differences transformed model

$$y_{it} - y_{it-1} = (\mathbf{x}_{it} - \mathbf{x}_{it-1})\beta + \overbrace{c_i - c_i}^{=0} + u_{it} - u_{it-1}$$

$$\Delta y_{it} = \Delta \mathbf{x}_{it}\beta + \Delta u_{it}$$

- Voila! Big beautiful success.
- Implementation: transform data and run POLS of ΔY on ΔX
- Assumptions: Translate between assumptions on raw vs. transformed dataset.
 - Analogously to what we did for FE.

First Differences Estimator

First Differences (FD) Estimator

$$\hat{\boldsymbol{\beta}}_{FD} = (\Delta \mathbf{X}' \Delta \mathbf{X})^{-1} \Delta \mathbf{X}' \Delta \mathbf{y}.$$

FD Assumptions for Consistency

- 1. $E(\Delta \mathbf{x}_{it} \Delta u_{it}) = \mathbf{0}$,
- 2. $E(\Delta X' \Delta X)$ must have full rank

(Simply the POLS assumptions written for the transformed data.)

Assumptions

FD Assumptions for Consistency

- 1. $E(\Delta \mathbf{x}_{it} \Delta u_{it}) = \mathbf{0}$,
- 2. $E(\Delta X' \Delta X)$ must have full rank

Translating assumptions on transformed to raw variables

Exogeneity:

$$\mathsf{E}(\Delta \mathbf{x}_{it} \Delta u_{it}) = \mathsf{E}(\mathbf{x}_{it} u_{it}) - \mathsf{E}(\mathbf{x}_{it-1} u_{it}) + \mathsf{E}(\mathbf{x}_{it} u_{it-1}) + \mathsf{E}(\mathbf{x}_{it-1} u_{it-1})$$

- Again, contemporaneous exog. is insufficient
- Strict exogeneity is, since $E(u_{it}|\mathbf{x}_i) = 0 \Rightarrow E(\mathbf{x}_{it-1}u_{it}) = \mathbf{0}$.
- Sufficient: $E(u_{it}|\mathbf{x}_{it+1},\mathbf{x}_{it},\mathbf{x}_{it-1})=0.$
- Rank condition: Requires time-series variation.
 - Same as for FE.

Inference with FD

Similar argumentation to the FE case yields:

Panel-robust variance estimator

$$\widehat{\mathsf{Avar}}(\hat{\boldsymbol{\beta}}_{FD}) = \left(\sum_{i} \Delta \mathbf{X}_{i}' \Delta \mathbf{X}_{i}\right)^{-1} \left(\sum_{i} \Delta \mathbf{X}_{i}' \widehat{\Delta \mathbf{u}}_{i} \widehat{\Delta \mathbf{u}}_{i}' \Delta \mathbf{X}_{i}\right) \left(\sum_{i} \Delta \mathbf{X}_{i}' \Delta \mathbf{X}_{i}\right)^{-1}$$

where
$$\widehat{\Delta \mathbf{u}}_i \equiv \Delta \mathbf{y}_i - \Delta \mathbf{X}_i \hat{\boldsymbol{\beta}}_{FD} \ (\Delta \mathbf{X}_i \text{ is } T - 1 \times K)$$

Variance estimator for IID errors

Assuming that Δu_{it} are IID (implying that u_{it} is a random walk!),

$$\widehat{\mathsf{Avar}}(\hat{\boldsymbol{\beta}}_{\mathit{FD}}) = \hat{\sigma}_{\mathit{u}}^2 \left(\sum_i \Delta \mathbf{X}_i' \Delta \mathbf{X}_i \right)^{-1},$$

where

$$\hat{\sigma}_u^2 = \frac{1}{NT - N - K} \sum_i \sum_t \widehat{\Delta u}_{it}^2.$$

FE vs. FD

How do we choose between FE and FD?

- **Identical** when T = 2, both numerically and algebraically:
 - E.g.: $\ddot{y}_{i2} = y_{i2} \frac{y_{i1} + y_{i2}}{2} = \frac{1}{2} \Delta y_{i2}$, and $\ddot{y}_{i1} = -\frac{1}{2} \Delta y_{i1}$.
- Consistency:
 - FE: requires *strict* exogeneity, $E(u_{it}|\mathbf{x}_{i1},...,\mathbf{x}_{iT})=0$
 - FD: only requires $E(u_{it}|\mathbf{x}_{it+1},\mathbf{x}_{it},\mathbf{x}_{it-1})=0$, which is *implied* by strict exogeneity.
- Efficiency: in POLS ⇒ occurs when all errors are IID.
 - FD: efficient if Δu_{it} is IID i.e. u_{it} is a unit root.
 - FE: efficient if u_{it} is IID i.e. u_{it} serially uncorrelated,
 - Why u_{it} and not \ddot{u}_{it} ? ... next slide...

Efficiency

- Question: Why does FE.3 assume u_{it} is IID, and not \ddot{u}_{it} ?
- First: note that \(\bar{u}_{it}\) can never be IID
 - $\ddot{u}_{it} \equiv u_{it} \overline{u}_i$: so \ddot{u}_{it} and \ddot{u}_{is} share the component \bar{u}_i .
- **Second**: Recall the "demeaning" matrix, \mathbf{Q}_T , s.t. $\ddot{\mathbf{u}}_i = \mathbf{Q}_T \mathbf{u}_i$.
 - Note: $\mathbf{Q}_T \mathbf{Q}_T = \mathbf{Q}_T$ (idempotent, symmetric)
 - $\qquad \text{Next: } \ddot{\mathbf{X}}_i'\ddot{\mathbf{u}}_i = (\mathbf{Q}_T\mathbf{X}_i)'\mathbf{Q}_T\mathbf{u}_i = \mathbf{X}_i'\mathbf{Q}_T\mathbf{u}_i = \ddot{\mathbf{X}}_i'\mathbf{u}_i$
- FE takes the asymptotic form

$$\sqrt{N}(\hat{\beta}_{FE} - \beta) = \left(N^{-1} \sum_{i=1}^{N} \ddot{\mathbf{X}}_{i}' \ddot{\mathbf{X}}_{i}\right)^{-1} N^{-1} \sum_{i=1}^{N} \ddot{\mathbf{X}}_{i}' \mathbf{u}_{i}.$$

Conclusion: Unweighted estimation on demeaned data (i.e. FE) is efficient when $E(\mathbf{u}_i\mathbf{u}_i|\ddot{\mathbf{X}}_i)$ is diagonal, i.e. when u_{it} are IID.

Random Effects Model

Between Estimator

- **Stepping stone:** the <u>Between Estimator</u> (BE).
- New transformation: take the time-average,

$$\overline{y}_i = \overline{\mathbf{x}}_i \boldsymbol{\beta} + c_i + \overline{u}_i,$$

where
$$\overline{\mathbf{x}}_i \equiv T^{-1} \sum_t \mathbf{x}_{it}$$
 is $K \times 1$.

- Failure: does *not* remove c_i .
- Between (BE) Estimator: Regress \overline{Y} on \overline{X} .
- Does it work? Check POLS assumptions on transformed data
- **Exogeneity:** Requires $E[\overline{\mathbf{x}}_i'(c_i + \overline{u}_i)] = \mathbf{0}_{K \times 1}$.

BE Estimator

BE Assumptions

- 1. $E(\overline{x}_i\overline{u}_i) = \mathbf{0}$ for all t, s, and $E(\overline{x}_ic_i) = \mathbf{0}$,
- 2. $\overline{\mathbf{X}}'\overline{\mathbf{X}}$ must have full rank.

Translating to model primitives

- Exogeneity sufficient conditions are
 - Strict exogeneity: $E(u_{it}|\mathbf{x}_i) = 0$ for all t
 - Uncorrelated individual effects: $E(\mathbf{x}_{it}c_i) = \mathbf{0}$ for all t
 - ullet \Rightarrow i.e. we are in the <u>random effects</u> model.
- Rank condition: unlike FE or FD, we can now allow regressors with zero time-variation.
 - Bonus question: can you think of a variable allowed by BE but not FE rank condition?

Random Effects Model

Model

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}, \quad c_i \sim \mathsf{IID}(0, \sigma_c^2), u_{it} \sim \mathsf{IID}(0, \sigma_u^2).$$

Assumptions

- **RE 1(a)**: $E(u_{it}|X_i) = 0$
- **RE 1(b)**: $E(c_i|\mathbf{x}_{it}) = \mathbf{0}$
- RE 2: $E(X_i'\Omega^{-1}X_i)$ has full rank, where $\Omega \equiv E(v_iv_i')$
- **RE 3(a):** $E(u_i u_i' | X_i, c_i) = \sigma_{ii}^2 I_T$
- **RE 3(b)**: $E(c_i^2|\mathbf{x}_i) = \sigma_c^2$

Random Effects Assumptions

- POLS consistent: with both $E(\mathbf{x}_{it}u_{it}) = \mathbf{0}$ and $E(\mathbf{x}_{it}c_i) = \mathbf{0}$, we have consistency of pooled OLS.
 - RE furthermore requires strict (and not just contemporaneous) exogeneity.
- Claim: POLS is not efficient when $\sigma_c > 0$.
- **Proof:** POLS is efficient under IID errors. In particular, $Cov(v_{it}, v_{js}|\mathbf{X}) = 0$ for all i, j, t, s.
- Consider the composite error term, $v_{it} \equiv c_i + u_{it}$
- The covariance is

$$\mathsf{Cov}(v_{it}, v_{js} | \mathbf{X}) = \begin{cases} 0 & \text{if } i \neq j \text{ by independence over } i, \\ \sigma_c^2 & \text{if } i = j \text{ and } t \neq s, \\ \sigma_c^2 + \sigma_u^2 & \text{if } i = j \text{ and } t = s. \end{cases}$$

- I.e. $V(\mathbf{v}|\mathbf{X})$ is block diagonal with N consecutive $T \times T$ blocks.
- QED.

Visualizing the composite error covariance: $Cov(c_i + u_{it}, c_j + u_{js})$

Random Effects Assumptions

- Rank condition: assumes that X'X is invertible.
 - Recall: FE/FD assumes that the transformed matrices are invertible.
 - Implication: time-invariant variables are allowed.
 - Implicit assumption: they are independent of c_i .
- Efficiency: our IID assumptions imply homoskedasticity for both u and c:
 - $\mathsf{E}(\mathbf{u}_i\mathbf{u}_i'|\mathbf{x}_i,c_i) = \sigma_u^2\mathbf{I}_{T\times T}$: i.e. homoskedasticity ans serial uncorrelatedness of u_{it}
 - where $I_{T \times T}$ is the identity matrix.
 - $E(c_i^2|\mathbf{x}_i) = \sigma_c^2$
- Then the variance of $v_{it} \equiv c_i + u_{it}$ becomes

$$\mathbf{\Omega} \equiv \mathsf{E}(\mathbf{v}_i \mathbf{v}_i' | \mathbf{x}_i) = \begin{pmatrix} \sigma_c^2 + \sigma_u^2 & \cdots & \sigma_c^2 \\ \vdots & \ddots & \vdots \\ \sigma_c^2 & \cdots & \sigma_c^2 + \sigma_u^2 \end{pmatrix} = \sigma_c^2 \mathbf{1}_T \mathbf{1}_T' + \sigma_u^2 \mathbf{I}_{T \times T}$$

Estimation

- As shown: error terms are correlated across rows when σ_c > 0, so POLS is inefficient.
- However: we derived the error variance, so we have a recipe for a weighted least squares estimator (which recovers efficiency).
- Efficient estimation is performed with weighted least squares (GLS),

$$\hat{\boldsymbol{\beta}}_{GLS} = \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \Omega^{-1} \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \Omega^{-1} \mathbf{y}_{i}\right).$$

Random Effects Estimator

Random Effects (RE) Estimator

1. **Estimate** σ_u, σ_c : Compute the FE and BE estimators, and obtain the residuals

$$\hat{\sigma}_{u}^{2} = \frac{1}{NT - N - K} \sum_{i} \sum_{t} \left(\hat{u}_{it}^{FE} \right)^{2} \quad \hat{u}_{it}^{FE} \equiv (y_{it} - \overline{y}_{i}) - (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i}) \hat{\beta}_{FE}$$

$$\hat{\sigma}_c^2 = \frac{1}{N - K - 1} \sum_i (\hat{u}_{it}^{BE})^2 - T^{-1} \hat{\sigma}_u^2, \quad \hat{u}_{it}^{BE} \equiv \overline{y}_i - \overline{\mathbf{x}}_i' \hat{\boldsymbol{\beta}}_{BE}.$$

(note that in the BE, $\bar{\mathbf{x}}_i$ should contain an intercept (thus K+1 columns), while \mathbf{x}_{it} in the FE should not)

2. Estimate $\hat{\beta}_{RE}$ using (F)GLS

$$\hat{\boldsymbol{\beta}}_{RE} = \left(\sum_{i} \mathbf{X}_{i}' \hat{\boldsymbol{\Omega}}^{-1} \mathbf{X}_{i}\right)^{-1} \sum_{i} \mathbf{X}_{i}' \hat{\boldsymbol{\Omega}}^{-1} \mathbf{y}_{i},$$

where
$$\hat{\mathbf{\Omega}} = \hat{\sigma}_c^2 \mathbf{1}_T \mathbf{1}_T' + \hat{\sigma}_u^2 \mathbf{I}_{T \times T}$$
.

RE Estimator

Random Effects (RE) Estimator

$$\begin{split} \hat{\boldsymbol{\beta}}_{RE} &= \left(\sum_{i} \mathbf{x}_{i} \hat{\boldsymbol{\Omega}}^{-1} \mathbf{x}_{i}^{\prime}\right)^{-1} \sum_{i} \mathbf{x}_{i} \hat{\boldsymbol{\Omega}}^{-1} \mathbf{y}_{i}, \\ \text{where } \hat{\boldsymbol{\Omega}} &= \hat{\sigma}_{c}^{2} \mathbf{1}_{T} \mathbf{1}_{T}^{\prime} + \hat{\sigma}_{u}^{2} \mathbf{I}_{T \times T}, \end{split}$$

- **Extremes** wrt. σ_c vs. σ_u :
 - $\sigma_c=0$ (no random effects): $\hat{\boldsymbol{\beta}}_{RE}=\hat{\boldsymbol{\beta}}_{POLS}$ since $\hat{\Omega}$ becomes diagonal.
 - $\sigma_u=0$ (only random effects): $\hat{eta}_{\it RE}
 ightarrow \hat{eta}_{\it FE}...$ easier to see later.
- Turns out: $\hat{\beta}_{RE}$ can also be obtained by running POLS on a transformed dataset.

Quasi-demeaning

Define:

$$\lambda \equiv 1 - \sqrt{rac{\sigma_u^2}{T\sigma_c^2 + \sigma_u^2}} \quad ext{(note that } \lambda \in [0;1].)$$

It can be shown that

$$\mathbf{\Omega}^{-\frac{1}{2}} = \frac{1}{\sigma_u} \left(\mathbf{I}_T - \lambda \mathbf{P}_T \right), \quad \mathbf{P}_T \equiv \frac{1}{T} \mathbf{j}_T \mathbf{j}_T'.$$

- Define $C_T \equiv (I_T \lambda P_T) (T \times T)$
- RE Estimator arises from estimation on the transformed system

$$\mathbf{C}_T \mathbf{y}_i = \mathbf{C}_T \mathbf{X}_i \boldsymbol{\beta} + \mathbf{C}_T \mathbf{v}_i.$$

• Crucially: The new errors, $\check{\mathbf{v}}_i \equiv \mathbf{C}_T \mathbf{v}_i$, satisfy homoskedasticity:

$$\mathsf{E}(\check{\mathbf{v}}_i\check{\mathbf{v}}_i') = \mathbf{C}_T \mathbf{\Omega} \mathbf{C}_T = \sigma_u^2 \mathbf{I}_T.$$

Estimation of σ_c, σ_u by POLS

- **Challenge:** Obtaining estimates of σ_c, σ_u .
- Simpler problem: estimating σ_c and σ_v
 - \Rightarrow then $\sigma_u^2 = \sigma_v^2 \sigma_c^2$ under RE.3
- Estimating $\sigma_{\mathbf{v}}^2$: Use POLS

$$\hat{\sigma}_{\mathbf{v}}^2 = \frac{1}{NT - K} \sum_{i=1}^{N} \sum_{t=1}^{T} (\hat{v}_{it}^{POLS})^2,$$

where
$$\hat{v}_{it}^{POLS} \equiv y_{it} - \mathbf{x}_{it} \hat{\boldsymbol{\beta}}_{POLS}$$
, $\hat{\boldsymbol{\beta}}_{POLS} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.

- Consistent? Yes, under RE.1
- **Estimating** σ_c^2 : Still using POLS residuals
 - Note, Ω has elements σ_c^2 everywhere in the lower triangle, which has $T(T-1)\frac{1}{2}$ elements

$$\hat{\sigma}_c^2 = \frac{1}{NT(T-1)\frac{1}{2} - K} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \hat{v}_{it}^{POLS} \hat{v}_{is}^{POLS}.$$

Alternative: Using FE and BE

- Alternative idea for estimating (σ_u, σ_c) .
 - Idea: Note that both FE and BE are consistent under RE1.
- **FE residuals:** information about *u_{it}*,

$$\hat{\sigma}_{u}^{2} = \frac{1}{NT - N - K} \sum_{i} \sum_{t} \left(\hat{u}_{it}^{FE} \right)^{2}, \quad \hat{u}_{it}^{FE} \equiv (y_{it} - \overline{y}_{i}) - (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i}) \hat{\boldsymbol{\beta}}_{FE}$$

- BE residuals: information about c_i, ...
 - ... but there is still $T^{-1} \sum_{t=1}^{T} u_{it}$ in the BE residual.

$$\hat{\sigma}_c^2 = \frac{1}{N - K - 1} \sum_i (\hat{u}_{it}^{BE})^2 - T^{-1} \hat{\sigma}_u^2, \quad \hat{u}_{it}^{BE} \equiv \overline{y}_i - \overline{\mathbf{x}}_i \hat{\boldsymbol{\beta}}_{BE}.$$

RE Estimator by Quasi-demeaning

Random Effects (RE) Estimator

1. Estimate the FE and BE estimators, and compute

$$\hat{\sigma}_{u}^{2} = \frac{1}{NT - N - K} \sum_{i} \sum_{t} (\hat{u}_{it}^{FE})^{2}, \quad \hat{u}_{it}^{FE} \equiv (y_{it} - \overline{y}_{i}) - (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i}) \hat{\beta}_{FE}
\hat{\sigma}_{c}^{2} = \frac{1}{N - K - 1} \sum_{i} (\hat{u}_{it}^{BE})^{2} - T^{-1} \hat{\sigma}_{u}^{2}, \quad \hat{u}_{it}^{BE} \equiv \overline{y}_{i} - \overline{\mathbf{x}}_{i} \hat{\beta}_{BE}.$$

2. Transform data by quasi-demeaning: $\check{y}_{it} \equiv y_{it} - \hat{\lambda} \overline{y}_i$ and $\check{\mathbf{x}}_{it} \equiv x_{it} - \hat{\lambda} \overline{\mathbf{x}}_i$, where

$$\hat{\lambda} = 1 - \sqrt{\frac{\hat{\sigma}_u^2}{T\hat{\sigma}_c^2 + \hat{\sigma}_u^2}}.$$

(Note that $\hat{\lambda} \in [0; 1]$.)

3. Estimate by POLS on transformed dataset

RE Interpretation: Revisited

• **RE:** POLS on quasi-demeaned data, $\check{y}_{it} \equiv y_{it} - \hat{\lambda} \overline{y}_i$ and $\check{\mathbf{x}}_{it} \equiv \mathbf{x}_{it} - \hat{\lambda} \overline{\mathbf{x}}_{i}$, where

$$\hat{\lambda} = 1 - \sqrt{\frac{\hat{\sigma}_u^2}{T\hat{\sigma}_c^2 + \hat{\sigma}_u^2}} = 1 - \sqrt{\frac{1}{T\frac{\hat{\sigma}_c^2}{\hat{\sigma}_u^2} + 1}}$$

Focus on $\frac{\sigma_c^2}{\sigma_c}$

- Intuitively: The RE estimator uses both within and between variation.
- **POLS**: $\frac{\sigma_c^2}{\sigma^2} \rightarrow 0 \Rightarrow \lambda \rightarrow 0$: no individual effects so demeaning is not necessary.
- RE and POLS estimates will be close. **FE**: $\frac{\sigma_c^2}{\sigma_{,2}} \to \infty$ or when $T \to \infty$.
 - $\frac{\sigma_c^2}{\sigma^2} \to \infty$: almost all variation occurs between individuals.
 - $T \to \infty$: enough variation within individuals to discard the between variation.

Variance Estimator

Variance Estimator

Assuming that u_{it} and c_i are IID,

$$\widehat{\mathsf{Avar}}(\hat{\boldsymbol{\beta}}_{\mathsf{RE}}) = \hat{\sigma}_{\mathsf{u}}^2 \left(\sum_{i} \sum_{t} \check{\mathbf{x}}_{it}' \check{\mathbf{x}}_{it} \right)^{-1}.$$

Robust Variance Estimator

$$\widehat{\mathsf{Avar}}(\hat{\boldsymbol{\beta}}_{\mathsf{RE}}) = \left(\sum_{i} \sum_{t} \check{\mathbf{x}}_{it}' \check{\mathbf{x}}_{it}\right)^{-1} \sum_{i} \sum_{t=1}^{T} \sum_{s=1}^{T} \check{\mathbf{x}}_{it}' \mathring{\hat{\mathbf{u}}}_{it} \mathring{\hat{\mathbf{u}}}_{is} \check{\mathbf{x}}_{is} \left(\sum_{i} \sum_{t} \check{\mathbf{x}}_{it}' \check{\mathbf{x}}_{it}\right)^{-1}$$

where $\hat{u}_{it} \equiv \hat{u}_{it} - \hat{\lambda}\hat{u}_{it}$, and \hat{u}_{it} is the RE residual. This allows arbitrary autocorrelation and heteroskedasticity.

 Note: somewhat awkward to use an RE estimator if one fears that RE3 is not satisfied...

Blitz Discussion

Random Effects Model

Consider the model

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it},$$

and assume
$$c_i \sim \mathrm{IID}(0, \sigma_c^2), \quad \textit{u}_{\textit{it}} \sim \mathsf{IID}(0, \sigma_u^2),$$

(meaning that \mathbf{x}_{it} is independent of both c_i and u_{it}).

Discuss

Assume that T = 1 and that $Rank[E(\mathbf{x}'_{it}\mathbf{x}_{it})] = K$.

- 1. Why is $\hat{\boldsymbol{\beta}}_{POLS}$ consistent?
- 2. Why can we *not* identify both σ_c and σ_u ?
- 3. Why would panel data (T > 1) help?

FE vs. RE

Hausman Test

- Question: is FE or RE model appropriate?
 - ullet \Rightarrow question posed by the **Hausman Test**.
- The null hypothesis: the RE model is appropriate, i.e.

$$\mathcal{H}_0$$
: RE.1-3 and FE.1-3 hold.

- **Idea:** Under \mathcal{H}_0 :
 - both $\hat{\beta}_{\textit{RE}}$ and $\hat{\beta}_{\textit{FE}}$ are consistent,
 - both become normal with rate \sqrt{N} .
- **Result:** because the difference of two normals is normal:

$$\sqrt{N}\left(\hat{\boldsymbol{\beta}}_{RE}-\hat{\boldsymbol{\beta}}_{FE}\right)\overset{d}{\rightarrow}\mathcal{N}(\boldsymbol{0},\boldsymbol{V}_{H}).$$

■ Test statistic: Idea: " $z_k \sim \mathcal{N}(0, \sigma^2) \Rightarrow \sum_{k=1}^K \frac{z_k^2}{\sigma^2} \sim \chi^2(K)$ "

$$H = \left(\hat{\boldsymbol{\beta}}_{\mathit{RE}} - \hat{\boldsymbol{\beta}}_{\mathit{FE}}\right)' \mathbf{V}_{H}^{-1} \left(\hat{\boldsymbol{\beta}}_{\mathit{RE}} - \hat{\boldsymbol{\beta}}_{\mathit{FE}}\right) \sim \chi^{2} \left(\dim(\boldsymbol{\beta})\right).$$

Hausman Test: Variance

- Missing piece: How do we compute $Avar(\hat{\beta}_{RE} \hat{\beta}_{FE})$?
- In general, V(X Y) = V(X) + V(Y) 2Cov(X, Y)
- Full efficiency case: it can be shown that when $\hat{\beta}_{RE}$ is fully efficient, $\text{Cov}\left(\hat{\beta}_{RE},\hat{\beta}_{FE}\right) = \text{V}(\hat{\beta}_{RE})$, so

$$\mathsf{Avar}(\hat{\boldsymbol{\beta}}_{\mathit{RE}} - \hat{\boldsymbol{\beta}}_{\mathit{FE}}) = \mathsf{Avar}\left(\hat{\boldsymbol{\beta}}_{\mathit{FE}}\right) - \mathsf{Avar}\left(\hat{\boldsymbol{\beta}}_{\mathit{RE}}\right).$$

- \mathbf{V}_H is always positive definite in the scalar case, $V\left(\hat{\boldsymbol{\beta}}_{FE}\right) > V\left(\hat{\boldsymbol{\beta}}_{RE}\right)$ both under the null and the alternative.
- However, if $\hat{\sigma}_u$ estimates come from different models, it can cause trouble.
- When $\hat{\beta}_{RE}$ is not fully efficient, "bootstrapping" can be used. BUT! Then the variance formula changes...

Hausman Test: Efficient case

Hausman Test

The test statistic is

$$H = \left(\hat{\beta}_{RE} - \hat{\beta}_{FE}\right)' \left[V \left(\hat{\beta}_{FE}\right) - V \left(\hat{\beta}_{RE}\right) \right]^{-1} \left(\hat{\beta}_{RE} - \hat{\beta}_{FE}\right).$$

Under the null hypothesis that assumptions RE.1-3 and FE.1-3 are true, we have

$$H \stackrel{a}{\sim} \chi^2(K),$$

where $K = dim(\beta_{FE})$ (number of time-invariant regressors)

The Bootstrap

The Bootstrap: Motivation

- Hausman's insight: $V(\hat{\beta}_{FE} \hat{\beta}_{RE})$ takes a particularly simple form under the null.
- Objection: What if the null doesn't hold, e.g. due to heteroskedasticity?
 - What if $V(\hat{\beta}_{FE} \hat{\beta}_{RE}) \neq V(\hat{\beta}_{FE}) V(\hat{\beta}_{RE})$?
- Analytic expressions may be beyond our capability.
- More generally, The Bootstrap procedure provides help in seemingly helpless situations.

The Bootstrap Procedure

- Write our estimator as $\hat{\beta} = f(\{y_i, \mathbf{x}_i\}_{i=1}^N)$
 - It is a function of a dataset

Bootstrapping

For replications r = 1, ..., R do:

- Take N draws from $\{1,...,N\}$ with replacement, yielding $\{y_i^{(r)}, \mathbf{x}_i^{(r)}\}_{i=1}^N$.
 - Note: some individuals, i, may be drawn multiple times, and some not at all.
- Compute $\hat{\boldsymbol{\beta}}^{(r)} = f(\{y_i^{(r)}, \mathbf{x}_i^{(r)}\}_{i=1}^N)$

The bootstrapped standard error is then

$$\hat{\mathsf{V}}^{Boot}(\hat{\boldsymbol{\beta}}) = \frac{1}{R} \sum_{r=1}^{R} \left(\hat{\boldsymbol{\beta}}^{(r)} - \overline{\hat{\boldsymbol{\beta}}} \right)^{2}, \quad \overline{\hat{\boldsymbol{\beta}}} = \frac{1}{R} \sum_{r=1}^{R} \hat{\boldsymbol{\beta}}^{(r)}.$$

In Python

```
1 import numpy as np
_{2}|N,K = X.shape
3 for r in range(R):
          #select rows randomly with replacement
4
          ii = np.random.choice(range(N), N, replace=True)
5
          X_r = X[ii, :]
6
          y_r = y[ii] \# assuming y.ndim == 1
7
          betas[r, :] = estimate(X_r, y_r)
8
9
   compute empirical covariances and put into a matrix
 C = np.cov(betas, rowvar=False) # variables are in columns
12 se = np.sqrt(np.diag(C)) # alternative: np.std(betas,0)
```

Bootstrapping the Hausman Test

- In the Hausman test, we require $Var(\hat{\beta}_{RE} \hat{\beta}_{FE})...$
- ... so in each replication, instead of computing a single estimate,
 - we we **estimate both** $\hat{\beta}_{RE}$ and $\hat{\beta}_{FE}$ and compute the difference
- From scalar to vector: Simply compute the empirical Covariance matrix: np.cov()
 - Note that cov by default expects rows to be variables.