Preliminaries Lecture 1

Termeh Shafie

2

roadmap of the course

1

Building blocks

- I. Calculus in one dimension
- II. Probability theory
- III. Linear algebra
- IV. Multivariate calculus and optimization

building a toy model of the world in math

Theory

• a set of statements involving concepts and concern relationships among abstract concepts

Statements

• comprise assumptions, propositions, corollaries, and hypotheses

Assumptions are asserted by us

- propositions and corollaries are deduced from these assumptions
- hypotheses are derived from these deductions and then empirically challenged

Concepts helps understand the world and can be operationalized into mathematical expressions with

5

- variables
- are indicators we develop to measure our concepts
- take on different values in a given set (i.e. it can vary)
- constants: take only one value for a given set (i.e. cannot vary)

building a toy model of the world in math

Statement

concept 1

concept 2

* assumptions, propositions, corollaries

* assumptions, propositions, corollaries

6

what is a set?

A set is a collection of elements or members

- curly braces () used to list elements separated by comma ("Roster Method")
- Ellipsis (...) used within the braces to indicate that list continues in established pattern
- Cardinality of a set: the number of distinct elements in a set

<u>example</u>

set A: the natural numbers from 1 to 7

elements of A: 1,2,3,4,5,6,7

set notation: $A = \{1,2,3,4,5\} = \{1,2,3,...,7\}$

cardinality: |A| = 7

What is a set?

difficult to formally define sets: what is the set of all sets?

Russell's Paradox

Suppose a town's barber shaves every man who doesn't shave himself.

Who shaves the Barber?

Consider the set S of all sets which do not contain themselves.

Does S contain itself?

sets describe variables as discrete or continuous

- a variable is discrete if each one of its possible values can be associated with a single integer
- a variable is continuous if its values cannot be assigned a single integer
 - → typically assumed to be drawn from subset of real numbers

set notation

- To say an element belongs to a set we use a "funky E": ∈
- $A \subseteq B$ or $B \supseteq A$ means set A is a <u>subset</u> of set B
- $A \subset B$ means that A is a proper subset of B

types of sets

- Finite/Infinite
- Tuple
- Countable/Uncountable
- Empty
- Universal
- Bounded/Unbounded
- Singleton

- Sample space

Solution set

Ordered/Unordered

...more on this in your tutorial

common sets complex numbers (C) real numbers (\mathbb{R}) rationals (Q) integers (\mathbb{Z}) whole irrational natural (N) $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

10

9

basic operators

- addition +
- subtraction –
- multiplication ×
- division. ÷
- exponentiation x^a
- nth root $\sqrt[n]{x}$
- factorial!
- sum $\sum_{i} x_{i}$
- product $\prod x_i$

set operators

- difference $A \backslash B$
- complement A' or A^c or \bar{A} or $\neg A$
- intersection $A \cap B$
- union $A \cup B$
- mutually exclusive $A \cup B = \emptyset$
- Cartesian product.

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

• symmetric difference

$$A \oplus B = (A - B) \cup (B - A)$$

partition:

11

collection of subsets whose union forms the set

...more on this in your tutorial

Venn diagrams popular "thanks" to social media but often used incorrectly converts followers locals fear & revere him dracula

relations and functions

used to compare concepts and uncover relationships between them

- a **relation** is a relationship between sets of information
- a **function** is a well-behaved relation

consider a function f(x):

domain → The domain consists of all possible values that x can take on range → The range consists of all possible values y takes on given x

more on this in lecture 3..

13

14

level of measurement

15

mathematical proofs

Axioms and assumptions

► stated to begin and assumed as true

Proposition

► considered as true based on prior assumptions

Theorem

► a proven proposition

Lemma

► a theorem of "little interest" used as a prior step to solve another problem

Corollary

proposition following from the proof of a 2nd proposition which requires no further proof

mathematical proofs

a **proof** is an argument that demonstrates why a conclusion is true, subject to certain standards of truths

a mathematical proof is an argument that demonstrates why a statement is true, following the rules of mathematics

direct proofs

proof by deduction proof by induction

proof by construction

indirect proofs

proof by contradiction proof by contrapositive

17

our first proof (by construction)

Theorem

For all integers n_i if n is even, then n^2 is even.

- Find the **formal definitions** for any terms in the theorem:
- an integer n is called **even** if there is an integer k where n = 2k
- an integer n is called **odd** if there is an integer k where n = 2k + 1
- What is the grammatical structure of the theorem?
- For all integers n_i if n is even, then n^2 is even.

18

our first proof (by construction)

Theorem

For all integers n, if n is even, then n^2 is even.

- Pick some arbitrary even integer *n* and try some examples:
 - $= 4 = 2 \times 2$
 - $= 100 = 2 \times 50$
 - $= 0 = 2 \times 0$

our first proof (by construction)

Theorem

For all integers n_i if n is even, then n^2 is even.

• If possible, it's helpful to draw some pics

 \Rightarrow an integer n is called even if there is an integer k where n = 2k

what's the pattern?

can we predict this?

our first proof (by construction)

Theorem

For all integers n_i if n is even, then n^2 is even.

• If possible, it's helpful to draw some pics

⇒ an integer n is called **even** if there is an integer k where n = 2k

our first proof (by construction)

Theorem

For all integers n, if n is even, then n^2 is even.

• If possible, it's helpful to draw some pics

 $n^2 = 2(2k^2)$

21

22

our first proof (by construction)

Theorem

For all integers n_i if n is even, then n^2 is even.

Proof.

- Pick an arbitrary even integer n: we want to show that n^2 is even
- Since n is even, there is some integer such that n=2k
- This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$
- From this we see that there is an integer m (namely $2k^2$) where $n^2=2m$
- Therefore n^2 is even, which is what we wanted to show.

our first proof (by construction)

Theorem

For all integers n_i if n is even, then n^2 is even.

Proof.

- Pick an arbitrary even integer n: we want to show that n^2 is even
- Since n is even, there is some integer such that n=2k
- This means that $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$
- ullet From this we see that there is an integer m (namely $2k^2$) where $n^2=2m$
- Therefore n^2 is even, which is what we wanted to show.

let's try another

Theorem

For all integers m and n, if m and n are odd, then m+n is even.

- Find the **formal definitions** for any terms in the theorem:
- an integer n is called **even** if there is an integer k where n=2k
- an integer n is called **odd** if there is an integer k where n = 2k + 1
- What is the grammatical structure of the theorem?
- For all integers m and n, if m and n are odd, then m+n is even.

25

let's try another

Theorem

For all integers m and n, if m and n are odd, then m+n is even.

Visual intuition

 \rightarrow an integer n is called odd if there is an integer k where n = 2k + 1

26

let's try another

Theorem

For all integers m and n, if m and n are odd, then m+n is even.

Visual intuition

let's try another **Theorem**

For all integers m and n, if m and n are odd, then m+n is even.

Visual intuition

 \Rightarrow an integer n is called even if there is an integer k where n = 2k

exercise: finish writing this proof by yourself

the principle of mathematical induction

everybody do the wave!

the principle of mathematical induction

let P be some predicate

If P(0) is true and $\forall k \in N \ P(k) \to P(k+1)$, then $\forall n \in N \ P(n)$

if it starts true

and it stays true

then it's always true

- it is true for 0
- since it's true for 0, it's true for 1
- since it's true for 1, it's true for 2
- since it's true for 2, it's true for 3
- since it's true for 3, it's true for 4

:

29

30

proof by induction

- ullet use the principle of mathematical induction to show that some result is true for all natural numbers n
- the proof, step by step:
 - 1. **The base case:** prove that P(0) is true
 - 2. **Inductive step:** prove that if P(k) is true then P(k+1) is true
 - 3. Conclude by induction that P(n) is true for all $n \in \mathbb{N}$

31

proof by induction

Theorem

The sum of the first n powers of two is $2^n - 1$

Proof.

- Let P(n) be the statement "the sum of the first n powers of two is $2^n 1$."
- We prove by induction, that P(n) is true for all $n \in \mathbb{N}$ from which the theorem follows
- The base case:
 - we need to show P(0) is true, meaning that the sum of the first zero powers of two is P^0-1 .
 - since the sum of the first zero powers of two is zero and $2^0 1 = 0$, we see that P(0) is true.

proof by induction

Theorem

The sum of the first n powers of two is $2^n - 1$.

Proof cont'd.

- The inductive step:
 - the goal here is to prove "if P(k) then P(k + 1) is true"
 - to do this we choose an arbitrary k, assume P(k) is true, then try to prove P(k+1)
 - \Longrightarrow assume that for some arbitrary $k\in\mathbb{N}$ that P(k) holds, meaning that

$$2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$$

• we need to show that P(k+1) holds, meaning the sum of the first k+1 powers of two is $2^{k+1}-1$ $2^0+2^1+\cdots+2^{k-1}+2^k=2^k-1+2^k$

$$= 2(2^{k}) - 1$$

$$= 2^{k+1} - 1$$

• Therefore, P(k+1) is true, completing the induction.

indirect proofs

• Proof by contrapositive

to prove the statement
"if P is true, then Q is true"
you instead prove the equivalent statement
"if Q is false, then P is false"

• Proof by contradiction

to prove the statement
"if P is true, then Q is true"
you show that the following is not possible
"if P is true, then Q is false"

• Proof by counterexample (not technically a proof)

34

33

indirect proofs: proof by contrapositive

Theorem

For any $n \in \mathbb{Z}$, if n^2 is even, then n is even.

PROVE IT

Proof.

- By contrapositive; we prove that if n is odd, then n^2 is odd
- Let *n* be an arbitrary odd integer.
- Since n is odd, there is some integer k such that n = 2k + 1.
- Squaring both sides of this equality and simplifying yields the following:

$$n^{2} = (2k + 1)^{2}$$
$$= 4k^{2} + 4k + 1$$
$$= 2(2k^{2} + 2k) + 1$$

- From this we see that there is an integer m (namely $2k^2 + 2k$) such that $n^2 = 2m + 1$.
- Therefore n^2 is odd.

indirect proofs: proof by contradiction

Theorem

For any $n \in \mathbb{Z}$ n, if n^2 is even, then n is even.

Proof.

- Assume for the sake of contradiction that n is an integer and that n^2 is even, but that n is odd.
- Since n is odd, there is some integer k such that n = 2k + 1.
- Squaring both sides of this equality and simplifying yields the following:

$$n^{2} = (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1$$

- This tells us that n^2 is odd, which is impossible, by assumption n^2 is even.
- We have a contradiction so our assumption is incorrect
 ⇒ if n is an integer and n² is even then n is also even.