

(MINING ERASABLE ITEMSETS)

Nội dung

- Giới thiệu
- Bài toán khai thác EI
- Thuật toán META
- Tổng kết

Giới thiệu

Sản xuất các loại sản phẩm...

$P_1(i_2, i_3, i_4, i_6)$

Lợi nhuận: 20 triệu

 $P_2(i_2, i_5, i_7)$

Lợi nhuận: 50 triệu

 $P_3(i_1, i_2, i_3, i_5)$

Lợi nhuận: 30 triệu

Tổng lợi nhuận khi bán toàn bộ sản phẩm 100 triệu

Nguyên liệu $i_1, i_2, i_3, i_4, i_5, i_6, i_7$

Giới thiệu

Công ty không có đủ tiền mua nguyên liệu...

Công ty phải ngừng sản xuất một số loại sản phẩm và không mua những nguyên vật liệu tương ứng...

Ngừng sản xuất những loại sản phẩm nào?

Những loại sản phẩm mà không làm giảm tổng lợi nhuận quá một **ngưỡng** nào đó...

Giới thiệu

Ví dụ:

Với ngưỡng giảm lợi nhuận chấp nhận được là 25%, công ty có thể bỏ loại sản phẩm P_1 và không mua các nguyên liệu i_4 và i_6 .

Sản phẩm	Lợi nhuận
$P_1(i_2, i_3, i_4, i_6)$	20
$P_2(i_2, i_5, i_7)$	50
$P_3(i_1, i_2, i_3, i_5)$	30

$\{i_4,i_6\}$ gọi là một tập thành phần không hữu ích

Nội dung

- Giới thiệu
- Bài toán khai thác EI
- Thuật toán META
- Tổng kết

- Dữ liệu
 - Ngưỡng ξ
 - Tập thành phần $I = \{i_1, i_2, \dots i_m\}$
 - Cơ sở dữ liệu $DB = \{P_1, P_2, \dots P_n\}$

Cơ sở dữ liệu thí dụ DB_e gồm 6 loại sản phẩm và 7 thành phần, tổng lợi nhuận là 10000.

Product	PID	Items	Val
P_1	1	$\{i_2, i_3, i_4, i_6\}$	500
P_2	2	$\{i_2, i_5, i_7\}$	200
P_3	3	$\{i_1, i_2, i_3, i_5\}$	500
P_4	4	$\{i_1, i_2, i_4\}$	8000
P_5	5	$\{i_6, i_7\}$	300
P_6	6	$\{i_3, i_4\}$	500

• Định nghĩa 1 (*Gain*)

Cho itemset $A \subseteq I$, Gain của A được tính như sau:

$$Gain(A) = \sum_{\{P_k \mid A \cap P_k. Items \neq \emptyset\}} P_k.Val$$

<u>Ví du</u>:

 $A = \{i_6, i_7\}$, các loại sản phẩm có chứa i_6 hoặc i_7 hay cả hai là P_1, P_2, P_5 , do đó:

$$Gain(A) = P_1.Val + P_2.Val + P_5.Val$$

= $500 + 200 + 300 = 1000$

P_i	PID	Items	Val
P_1	1	$\{i_2, i_3, i_4, i_6\}$	500
P_2	2	$\{i_2, i_5, i_7\}$	200
P_3	3	$\{i_1, i_2, i_3, i_5\}$	500
P_4	4	$\{i_1, i_2, i_4\}$	8000
P_5	5	$\{i_6, i_7\}$	300
P_6	6	$\{i_3, i_4\}$	500

• Định nghĩa 2 (EI)

Cho trước một ngưỡng ξ và tập DB, một tập A gọi là tập không hữu $\acute{t}ch$ nếu:

$$Gain(A) \le (\sum_{P_k \in DB} P_k . Val) \times \xi$$

Ví du:

Tổng lợi nhuận 10000, $\xi = 15\%$

Gain (
$$\{i_6, i_7\}$$
) = 50 + 20 + 30
= 100 \le (10000 \times 15%)

Do đó $\{i_6, i_7\}$ là một tập không hữu ích.

P_i	PID	Items	Val
P_1	1	$\{i_2, i_3, i_4, i_6\}$	500
P_2	2	$\{i_2, i_5, i_7\}$	200
P_3	3	$\{i_1, i_2, i_3, i_5\}$	500
P_4	4	$\{i_1, i_2, i_4\}$	8000
P_5	5	$\{i_6, i_7\}$	300
P_6	6	$\{i_3,i_4\}$	500

• Phát biểu bài toán: Cho cơ sở dữ liệu sản phẩm DB và một ngưỡng ξ , hãy tìm tất cả các tập không hữu ích trong DB.

PID	Items	Val
1	$\{i_2, i_3, i_4, i_6\}$	500
2	$\{i_2, i_5, i_7\}$	200
3	$\{i_1, i_2, i_3, i_5\}$	500
4	$\{i_1, i_2, i_4\}$	8000
5	$\{i_6, i_7\}$	300
6	$\{i_3,i_4\}$	500

Itemset	Gain
$\{i_3\}$	1500
$\{i_5\}$	700
$\{i_6\}$	800
$\{i_7\}$	500
$\{i_5, i_6\}$	1500
$\{i_5,i_7\}$	1000
$\{i_6, i_7\}$	1000
$\{i_5, i_6, i_7\}$	1500

Nội dung

- Giới thiệu
- Bài toán khai thác EI
- Thuật toán META
- Tổng kết

• META Mining Erasable iTemsets with the Antimonotone property algorithm

Thuật toán đầu tiên khai thác *EI*s được nhóm tác giả Zhi-Hong Deng giới thiệu vào năm 2009.

Các tính chất

Tính chất 1: Cho hai tập $X \subseteq I$ và $Y \subseteq I$. Nếu X là tập con của $Y(X \subseteq Y)$ thì $Gain(X) \leq Gain(Y)$.

Tính chất 2 (*anti-monotone*): Cho hai tập $X \subseteq I$ và $Y \subseteq I$. Nếu X không phải là một EI và $X \subseteq Y$ thì Y cũng không phải là một EI.

Tính chất 3: Nếu X là một EI và Y là tập con của X ($Y \subseteq X$) thì Y phải là một EI.

• Phương pháp: Tìm các *EI*s theo từng cấp độ (*level-wise search*)

```
Cơ sở dữ liệu DB = \{P_1, P_2, ... P_n\}; ngưỡng \xi;
Ouput: Tập toàn bộ các tập không hữu ích EI;
Sum val = 0;
For (k = 1; k \le n; k ++)
     Sum\_val = Sum\_val + P_{\iota}.Val;
E_1 = \{EI_1\};
For (k = 2; E_{k-1} \neq \emptyset; k ++)
     GC_k = \mathbf{Gen\_Candidate} (E_{k-1});
     For each product P \in DB {
           For each candidate itemset C \in GC_k
                       If (C \cap P \neq \emptyset) then
                             C.gain = C.value + P.Val;
     E_k = \{ C \in GC_k \mid C.gain \leq \xi \times Sum\_val \}
Return EI = \bigcup_k E_k;
```

Procedure Gen_Candidate (E_{k-1})

// Các items trong EIs được sắp theo thứ tự xuất hiện trong I Candidates = \emptyset ;

For each
$$A_1 (= \{x_1, x_2, \dots x_{k-2}, x_{k-1}\}) \in E_{k-1}$$

For each
$$A_2$$
 (={ $y_1, y_2, ..., y_{k-2}, y_{k-1}$ }) $\in E_{k-1}$
If $((x_1=y_1) \land (x_2=y_2) \land ... \land (x_{k-2}=y_{k-2}) \land (x_{k-1} < y_{k-1}))$ then
$$X = \{x_1, x_2, ..., x_{k-2}, x_{k-1}, y_{k-1}\};$$

If **No_Unerasable_Subset** (X, E_{k-1}) then

add *X* to *Candidates*;

Return Candidates;

Procedure No_Unerasable_Subset (X, E_{k-1})

For each (k-1)-subset X_s of X

If $X_s \notin E_{k-1}$ then

Reture FALSE; //anti-monotone

Reture TRUE;

 E_1

Minh họa

$$I = \{i_1, i_2, i_3, i_4, i_5, i_6, i_7\}$$

$$DB = \{P_1, P_2, P_3, P_4, P_5, P_6\}$$

$$\xi = 18\%$$

PID	Items	Val
1	$\{i_2, i_3, i_4, i_6\}$	500
2	$\{i_2, i_5, i_7\}$	200
3	$\{i_1, i_2, i_3, i_5\}$	500
4	$\{i_1, i_2, i_4\}$	8000
5	$\{i_6, i_7\}$	300
6	$\{i_3,i_4\}$	500

Bước 1: Khởi tạo

- Tính $Sum_val = 10000$
- Tim E_1

	1
1-itemset	Gain
$\{i_3\}$	1500
{ <i>i</i> ₅ }	700
{ <i>i</i> ₆ }	800
$\{i_7\}$	500

Bước 2: Khai thác

$\underline{k} = 2$

- Xây dựng GC_2 dựa trên E_1
- Tìm tập E_2 dựa trên GC_2

1-EI	Gain
$\{i_3\}$	1500
{ <i>i</i> ₅ }	700
{ <i>i</i> ₆ }	800
$\{i_7\}$	500

 GC_2

2-itemset	Gain
$\{i_3,i_5\}$	1700
$\{i_3,i_6\}$	1800
$\{i_3,i_7\}$	2000
$\{i_5, i_6\}$	1500
$\{i_5,i_7\}$	1000
$\{i_6,i_7\}$	1000

 E_2

>	2-EI	Gain
	$\{i_3,i_5\}$	1700
	$\{i_3, i_6\}$	1800
	$\{i_5, i_6\}$	1500
	$\{i_5, i_7\}$	1000
	$\{i_6, i_7\}$	1000

Bước 2: Khai thác

$\underline{k} = 3$

- Xây dựng GC_3 dựa trên E_2
- Tìm tập E_3 dựa trên GC_3

2-EI	Gain						
$\{i_3,i_5\}$	1700	GC_3	3-itemset	Gain	E_3		Г
$\{i_3, i_6\}$	1800					<i>3-EI</i>	Gain
$\{i_5, i_6\}$	1500		$\{i_3, i_5, i_6\}$	2000		$\{i_5, i_6, i_7\}$	1000
$\{i_5,i_7\}$	1000		$\{i_5, i_6, i_7\}$	1000	'		
$\{i_6, i_7\}$	1000						

Bước 2: Khai thác

$$\underline{k} = 4$$

$$E_4 = \emptyset \rightarrow \text{Thuật toán dừng}$$

Bước 3: Trả về kết quả

$$EI = E_1 \cup E_2 \cup E_3$$

Nhận xét

- Đầu tiên, thuật toán duyệt *DB* tính tổng lợi nhuận. Trong *k* bước lặp tiếp theo, thuật toán tiếp tục duyệt *DB* để tính lợi nhuận của các itemset. Do đó chi phí thời gian rất lớn.
- Thuật toán không loại bỏ được dữ liệu dư thừa. Ví dụ xét itemset $\{i_3\}$, các loại sản phẩm chứa i_3 là P_1 , P_3 và P_6 , nhưng khi tính Gain của $\{i_3\}$ phải duyệt toàn bộ DB.

PID	Items	Val
1	$\{i_2, i_3, i_4, i_6\}$	500
2	$\{i_2, i_5, i_7\}$	200
3	$\{i_1, i_2, i_3, i_5\}$	500
4	$\{i_1, i_2, i_4\}$	8000
5	$\{i_6, i_7\}$	300
6	$\{i_3,i_4\}$	500

Nội dung

- Giới thiệu
- Bài toán khai thác EI
- Thuật toán META
- Tổng kết

Tổng kết

- Khai thác các tập thành phần không hữu ích là một trong những tác vụ mới trong khai thác dữ liệu.
- Về mặt kỹ thuật, khai thác *EI* cũng tương tự khai thác mẫu phổ biến *FP*. Cả hai cùng khai thác các itemset quan tâm.
- Tuy nhiên, khai thác EI và khai thác FP có sự khác biệt.
 - Khai thác FP ra đời trong bối cảnh một siêu thị bán lẻ muốn tìm mối quan
 hệ giữa các mặt hàng được khách hàng mua.
 - Khai thác EI xuất hiện trong bối cảnh công ty sản xuất sản phẩm cần lập kế
 hoạch sản xuất phù hợp khi nền kinh tế rơi vào suy thoái.