CALCOLO DELLE PROBABILITA[®] Appello del 31/5/2017

Name:	0	OGNOME:	
Tarrest Commence and Commence a			

- Siano X il punto realizzato lanciando un dado regolare a 6 facce, Y il primo estratto sulla ruota del lotto di Venezia nella prossima estrazione. Posto E = 'X + Y è dispari', E_X = 'X è pari', E_Y = Y è pari'.
 - (a) determinare la partizione generata da E, Ex, Ey;
 - (b) studiare la correlazione fra le coppie (E, Ex), (E, Ey), (Ex, Ey);
 - (c) i tre eventi E, Ex, Ey sono stocasticamente indipendenti?
- 2) L'urna A contiene 3 palline bianche e 3 rosse, l'urna B contiene 2 palline bianche e 4 rosse. Si effettua una sequenza di estrazioni con contagio unitario da una delle due urne, scelta con meccanismo aleatorio che assegna probabilità 2/5 alla scelta dell'urna A. Posto E_i = "esce bianca all'i-esima estrazione":
 - (a) calcolare P(E, ∧ E_i), P(E₃|E₆), P(E₃|E₁ ∨ E₃), P(E ; ∧ E₄|E₄);
 - (b) Tizio partecipa ad un gioco in cui paga 5 unità monetarie in ogni estrazione pari se esce pallina bianca e riceve x unità monetarie in ogni estrazione dispari, ancora se esce pallina bianca. Il gioco termina dopo 15 estrazioni.
 - (b1) calcolare la media e la varianza del guadagno di Tizio;
 - (b2) determinare x m modo che il gioco sia equo.
- La coppia aleatoria (X,Y) è distribuita sul triangolo di vertici (-1,0), (1,0), (0,1) con densità congiunta proporzionale a (x + 1)(y + 1). Determinare:
 - (a) la funzione di densità di X;
 - (b) la funzione di ripartizione della coppia (X, Y) nel punto (1; 1/2);
 - (c) P(X+Y>0); $P(X+Y\le 0 \mid Y\le 1/2)$.

Esexcition 1) X = punto realizzato al lancio del dado Y= I estratto sulla ruoto di VE (Cotto) Dati gli eventi E= (X+Y & dispari) Ex= Xe hari? Ex= Yépari) = E E, è Cogicamente difendente (03) (04) dalla PG (Ex; Ey) Q1 = EXIEX = Xed Yrong displace => E COZ = EXAEX = X pari, Y dispari ?= 7 E cos = Ex A Ex = (Xed Yentrambi fari) => E CO4 = ExAEX = (X dispari, Y pari) => E b) Siamo $P(E_x) = \frac{3}{6} = \frac{4}{2}$; $P(E_x) = \frac{45}{30} = \frac{4}{2}$ P(E)= P(ExAEx)+P(ExAEx) (ExAEx)A(ExAEx)=0 - Ex, Ex sono stoc. indifendenti =P(Ex)P(Ex)+P(Ex)P(Ex)=(专)+(专)

stor indip. ·P(E/Ex)=P(Ex/Ex)=P(Ex)===P(E)=>0 4 Noto: É possibile che X+7 ria distavi (rajendo che) Xé pari (è equivalente a dire E(Ex) rolo re 7è dispari . Quindi calcolo P(Ye dispari) rafendo de: Xe fari) è come dire: P(EX/EX) Si sarebbe sotuto agine anche così: P(E/Ex) = P(ExEx) = P('X+Yedisp.' edande 'Xe jani')

P(E/Ex) = P(Ex) = P(Xe jani) Sindip. P(ExxEx) | P(Ex).P(Ex) P(Ex) P(Ex) (x)=> E ed Ex sono incorrelati · P(E/Ex)=P(Ex/Ex)=P(Ex)====P(E)=> => E ed Ex sono incorrelati. · P(Ex/Ex)=P(Ex)=1/2 => Ex, Ex incoveleti Nota: estocartica indifendenta => incorrelatione 0) P(E/ExIEX) = P(Ø/ExIEX) = 0 + = = P(E) Nota: non è possibile che X+Y è dissari salendo che (X & pari ed anche Y & pari?

2

Nota: essendo O < P(E)P(Ex)P(Ex)== < 1 mi basta verificare luquaglianta alla Lag. precedente NOU P(Ex/ExEx) Exercitio 2) Estrazioni CON contagio unitario (a=1) A = estraggo da urna A); P(A) = 2 (A-)B=" " " B); P(B)= 3 E:= erce & all i-exima estrazione a) P(E; (E) = ? · Se i. + J: (con i, j = 1, ..., n) P(EINES) = P(EINES/A)P(A)+P(EINES/B)P(B) $\binom{-3}{2}\binom{-3}{0}$, $\frac{2}{2}$, $\binom{-2}{2}\binom{-4}{2}$. $\frac{3}{2}$ $\binom{-6}{2}\binom{2}{2}$ 5 $\binom{-6}{2}\binom{2}{2}$ 5 Nota: usare guesto metodo porta a conti Cunchi da svolgere Diventa conveniente solo guardo le estraszioni da effettuare sono tante.

Nota: calcolo dei caefficienti binomiali negativi

i)
$$(-7) \equiv 1$$
. Exemplio $(-5) = 3$

ii) $(-7) = 1$. $(-1) \cdot ... \cdot (-1) \cdot ... \cdot (-1) \cdot ... \cdot (-1)$

k!

Exempli:

a) $(-3) = (-3)(-4)(-5) = -10$

b) $(-4) = (-3)(-4)(-5) = -1$

c) $(-3) = 3 \cdot 2$

c) $(-3) = 3 \cdot 2$

d) $(-4) = 3 \cdot 2$

Retormando alla $P(E; AES) = 10$

Retormando alla $P(E; AES) = 10$
 $P(E; AES) = P(E_1 AE_2)$

Scapps $P(E; A) = 10$
 $P(E; A) =$

80. 1 P(EsiEz) P(ESIEG) · P(E5/E6) = -P(E6) P(E1) P(E31(E1VE3)) · P(E3/E1 V E3) = P(EIVE3) Proprieto dell'implicatione Ez DEL VEZ P(E3) Quindi: P(EINEZ) EZA(EZVEZ) = EZ P(E1) 2 P(Es) - P(Es,Ez) Sc. P(E3, E4) | P(E1, E2) ·P(E=1E4/E4) = P(E4) P(Ex) P(E1/E2)= = P(E1/A) P(E2/A/E1)P(A)+P(E1/B)P(E2/E1/B)P(B) $= \frac{1}{3} \cdot \frac{3}{3} \cdot \frac{1}{2} + \frac{4}{4} \cdot \frac{1}{2} \cdot \frac{1}{3} = \frac{3}{35} + \frac{4}{35} = \frac{1}{5}$ $= \frac{1}{3} \cdot \frac{3}{2} \cdot \frac{1}{2} + \frac{4}{4} \cdot \frac{1}{2} \cdot \frac{1}{35} = \frac{3}{35} + \frac{4}{35} = \frac{1}{5}$ Quindi P(E31E4/E4) = 5

5

paga 5, se Ez; = (Esce & all'extrat. fari) riceve x, ne Ezi-1 = (Exce to all'estrate. dis peri) Quindi $G = \sum_{i=1}^{8} E_{2i-1} - \sum_{i=1}^{4} E_{2i} \cdot 5$ $E(G) = E \sum_{i=1}^{8} \times |E_{2i-1}| - \sum_{i=1}^{4} 5 |E_{2i}|$ $= \sum_{i} \times E(|E_{2i-1}|) - \sum_{i} 5 E(|E_{2i}|)$ = Z; x P(Ez:-1) - 5.5 P(Ezi - Scambialilità Essendo gli eventi Ez; pra loro equi-probabili (stessa cesa fer gli Ez;), mi ritrovo a sommare 8 x P(E1) - 35 P(E1) 8 volte (7 volte) lostos addendo (cioè P(E2;-1). Que la = $P(E_1) \cdot (8x - 35) = \frac{16}{5} \times -14$ $\frac{16}{5} \times -14$ $\frac{1}{5} \times P(E_{2i-1}) = 0$ Var (6) = Var (= x | Ezi-1 | + = (-5) | Ezil) 8 P(Ezi-1) = Var (Z; x |Ez; 1) + Var (Z; (-5) |Ez; 1) + 2 Cov (\(\Sigm\) x |Ez; 1) \(\Sigm\) \(\Sigm\) \(\Sigm\) = x2 \(\Si\)\(\text{Vore}\((|\mathbb{E}_{Zi-1}|) + 2\binom{8}{2}\)\(\text{Cov}\(|\mathbb{E}_{Zi-1}|\)\(+ \text{*Nota}\). + 25 [\(\int \), Var (|\(\text{Ez}_i \)) + 2 (\(\frac{7}{2} \)) (or (|\(\text{Ez}_i \) | |\(\text{Ez}_j \)] \(\frac{8}{2} \) = \(\sum_{i=1} \sum_{j > i} \) +2 \(\frac{7}{2};\times \(\Sigma_{5}(-5)\) (or (|\text{E}_{zi-1}|; |\text{E}_{3}|) $\binom{n}{2} = \sum_{i=1}^{n} \sum_{j>i}$ Var (IEI) = P(E)P(E) Viene transformator Cov(IEI; IFI) = P(E,F)-P(E)P(F) (* *

 $(**) = \times^{2} [8P(E_{1})P(E_{1}) + 2(8)(P(E_{1},E_{2}) - P(E_{1}))]$ + 25 7 P(Es) P(Es) + 2(2) P(Es Ez) - P(Es) +2.(-5).x.7.8 (P(E1/E2)-P2(E1)) - Siano Ps = P(Es), gs = P(Es), p= P(Es, Ez) = x2[8p19+56(p-(p1))]+25[7p19+42(p-(p1)2)] - 560× (p-(P4)2) $= (p_4 q_1)(8x^2+175)+(p_-(p_4)^2)(56x^2+1050-560x)$ $p_4 q_4 = \frac{2}{5} \cdot \frac{3}{5} = \frac{6}{25} ; p_-(p_4)^2 = \frac{1}{5} \cdot (\frac{2}{5})^2 = \frac{1}{25}$ $= \frac{6}{25} (8x^2 + 175) + \frac{1}{25} (56x^2 + 1.050 - 560x)$ $= \frac{48}{25} \times^2 + 42 + \frac{56}{25} \times^2 + 42 - \frac{112}{5} \times$ = 104 x2 - 112 x + 84 = Var (6) (>0 /x) Nota: Non applicare la mambiabilità in questo modo. $Var(\sum_{i=1}^{8} \times |E_{2i-1}| + \sum_{i=1}^{7} (-5)|E_{2i}|) \times Var(\sum_{i=1}^{8} |E_{i}| + \sum_{j=1}^{7} (-5)|E_{j}|)$ 4 Qui gli indici Sovo con 2(9x2, E-(ov(1Eil; 1Ejl) Affinché i gioco sia eque devorere E(6)=0. Quindi: $\times \frac{16}{5} - 14 = 0 = 0 \times = 14.5 = 35$

