实验报告

1. 探究分布之间的距离影响

事先取定 $Max_k=10, fold_num=15$,数据取为每个label 600个点,1/5划分为test集.

(1). 先采用:

$$\Sigma_0 = \begin{bmatrix} 73 & 0 \\ 0 & 22 \end{bmatrix} \Sigma_1 = \begin{bmatrix} 21.2 & 0 \\ 0 & 32.1 \end{bmatrix} \Sigma_2 = \begin{bmatrix} 10 & 2 \\ 2 & 10 \end{bmatrix} \Sigma_3 = \begin{bmatrix} 15 & 0 \\ 0 & 15 \end{bmatrix}$$

$$\mu_0 = (-15, -15), \mu_1 = (15, 15), \mu_2 = (15, -15), \mu_3 = (-15, 15)$$

 $train_data, test_data, predict$ 的分布分别如下图所示:

程序输出为:

k	manhattan_distance	euclidean_distance
1	1.0	0.99
2	1.0	0.99
3	1.0	1.0
4	1.0	1.0
5	1.0	1.0
6	1.0	1.0
7	1.0	1.0
8	1.0	1.0
9	1.0	1.0

(2).再增加重叠度,将参数改为:

$$\Sigma_0 = \begin{bmatrix} 73 & 0 \\ 0 & 22 \end{bmatrix} \Sigma_1 = \begin{bmatrix} 21.2 & 0 \\ 0 & 32.1 \end{bmatrix} \Sigma_2 = \begin{bmatrix} 10 & 2 \\ 2 & 10 \end{bmatrix} \Sigma_3 = \begin{bmatrix} 15 & 0 \\ 0 & 15 \end{bmatrix}$$

$$\mu_0 = (-10, -10), \mu_1 = (10, 10), \mu_2 = (10, -10), \mu_3 = (-10, 10)$$

 $train_data, test_data, predict$ 的分布分别如下图所示:

k	manhattan_distance	euclidean_distance
1	0.95	0.95
2	0.95	0.95
3	0.96	0.96
4	0.96	0.96
5	0.96	0.96
6	0.96	0.96
7	0.96	0.96
8	0.97	0.97
9	0.96	0.96

(3).将参数改为:

$$\Sigma_0 = \begin{bmatrix} 73 & 0 \\ 0 & 22 \end{bmatrix} \Sigma_1 = \begin{bmatrix} 21.2 & 0 \\ 0 & 32.1 \end{bmatrix} \Sigma_2 = \begin{bmatrix} 10 & 2 \\ 2 & 10 \end{bmatrix} \Sigma_3 = \begin{bmatrix} 15 & 0 \\ 0 & 15 \end{bmatrix}$$
$$\mu_0 = (-5, -5), \mu_1 = (5, 5), \mu_2 = (5, -5), \mu_3 = (-5, 5)$$

train_data, test_data, predict的分布分别如下图所示:

k	manhattan_distance	euclidean_distance
1	0.60	0.60
2	0.60	0.60
3	0.61	0.61
4	0.61	0.62
5	0.62	0.63
6	0.64	0.63
7	0.64	0.64
8	0.65	0.64
9	0.64	0.65

这三组数据的结果对比,可以得到以下结论:

- 随着用来产生数据的 μ 值越来越接近,也即数据重叠越来越高,KNN算法的准确率显著下降
- Manhattan distance与Euclidean distance之间最终效果差别不大,并且Manhattan distance有时会outperform Euclidean distance
- 同一数据集下,随k的增加,准确率有提高的趋势

2. 探究协方差的影响

与前类似,事先取定 $Max_k=10, fold_num=15$,数据取为每个label 600个点,1/5划分为test集。为形成对照,我们取定第一组实验中第二次数据的 μ 值,再改变协方差矩阵来探究。

(1).参数改为:

$$\Sigma_0 = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} \Sigma_1 = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} \Sigma_2 = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} \Sigma_3 = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix}$$

$$\mu_0 = (-10, -10), \mu_1 = (10, 10), \mu_2 = (10, -10), \mu_3 = (-10, 10)$$

$train_data, test_data, predict$ 的分布分别如下图所示:

k	manhattan_distance	euclidean_distance
1	0.92	0.92
2	0.92	0.92
3	0.94	0.94
4	0.94	0.94
5	0.94	0.94
6	0.94	0.94
7	0.95	0.95
8	0.95	0.95
9	0.95	0.95

(2).参数改为:

$$\Sigma_0 = \begin{bmatrix} 50 & 0 \\ 0 & 50 \end{bmatrix} \Sigma_1 = \begin{bmatrix} 50 & 0 \\ 0 & 50 \end{bmatrix} \Sigma_2 = \begin{bmatrix} 50 & 0 \\ 0 & 50 \end{bmatrix} \Sigma_3 = \begin{bmatrix} 50 & 0 \\ 0 & 50 \end{bmatrix}$$

$$\mu_0 = (-10, -10), \mu_1 = (10, 10), \mu_2 = (10, -10), \mu_3 = (-10, 10)$$

 $train_data, test_data, predict$ 的分布分别如下图所示:

k	manhattan_distance	euclidean_distance
1	0.79	0.79
2	0.79	0.79
3	0.82	0.82
4	0.83	0.83
5	0.83	0.83
6	0.83	0.83
7	0.83	0.83
8	0.84	0.83
9	0.83	0.83

(3).参数改为:

$$\Sigma_0 = \begin{bmatrix} 75 & 0 \\ 0 & 75 \end{bmatrix} \Sigma_1 = \begin{bmatrix} 75 & 0 \\ 0 & 75 \end{bmatrix} \Sigma_2 = \begin{bmatrix} 75 & 0 \\ 0 & 75 \end{bmatrix} \Sigma_3 = \begin{bmatrix} 75 & 0 \\ 0 & 75 \end{bmatrix}$$

$$\mu_0 = (-10, -10), \mu_1 = (10, 10), \mu_2 = (10, -10), \mu_3 = (-10, 10)$$

 $train_data, test_data, predict$ 的分布分别如下图所示:

k	manhattan_distance	euclidean_distance
1	0.70	0.69
2	0.70	0.69
3	0.72	0.72
4	0.73	0.73
5	0.74	0.74
6	0.75	0.75
7	0.76	0.76
8	0.76	0.75
9	0.76	0.76

这三组数据的结果对比,可得如下结论:

- 随着协方差矩阵对角元的数越来越大,即数据之间相关性越高,KNN算法的准确率逐渐下降
- 与前面利用均值增加数据重叠度相比,这里提高了协方差,因此数据点之间虽然重叠,但离散度也增大,因此准确率没有下降到之前0.6左右

3.探究数据量的影响

这一步中,为使实验效果明显,我们取定参数为2中(2)的参数,再改变数据量大小,与前类似,事先取定 $Max_k=10, fold_num=15$,数据取为每个label 取一定点数,1/5划分为test集。

数据参数定为:

$$\Sigma_0 = \begin{bmatrix} 50 & 0 \\ 0 & 50 \end{bmatrix} \Sigma_1 = \begin{bmatrix} 50 & 0 \\ 0 & 50 \end{bmatrix} \Sigma_2 = \begin{bmatrix} 50 & 0 \\ 0 & 50 \end{bmatrix} \Sigma_3 = \begin{bmatrix} 50 & 0 \\ 0 & 50 \end{bmatrix}$$

$$\mu_0 = (-10, -10), \mu_1 = (10, 10), \mu_2 = (10, -10), \mu_3 = (-10, 10)$$

(1).每个*label*取800个点

 $train_data, test_data, predict$ 的分布分别如下图所示:

k	manhattan_distance	euclidean_distance
1	0.77	0.77
2	0.77	0.77
3	0.80	0.81
4	0.80	0.81
5	0.81	0.82
6	0.81	0.81
7	0.82	0.82
8	0.82	0.82
9	0.83	0.83

(2).每个*label*取1000个点

 $train_data, test_data, predict$ 的分布分别如下图所示:

k	manhattan_distance	euclidean_distance
1	0.78	0.77
2	0.78	0.77
3	0.82	0.82
4	0.82	0.82
5	0.83	0.83
6	0.83	0.83
7	0.83	0.83
8	0.83	0.83
9	0.84	0.84

上面两组实验与2. (2) 中的实验对照,有如下结论:

- 增加数据量虽然增大了数据的重叠度,但最终KNN算法的准确性并未受到较大影响
- 数据量较大时,采取较高的k值,反倒可能取得较高的准确率

4.实验总结

- 1. 数据分布和数据离散度会显著影响KNN算法的准确率,数据集的重叠度越高,KNN算法准确率越低
- 2. 提高k值能够提高准确率,但也受数据分布影响,提升空间的大小基本与数据的分布无关
- 3. 数据量能够提高KNN算法的准确率,但影响不大旦提升较小,增加数据量也需要更多计算时间
- 4. 以上所有实验中均存在可能的偶然误差,应单独多次实验取平均值,从而得到更可信的结论