Linear Algebra

Instructor: Jing YAO

5

Eigenvalues and Eigenvectors (特征值与特征向量)

5.6

SIMILARITY TRANSFORMATIONS

Similar Matrices(相似矩阵)

Similarity Transformations(相似变换)

Triangularization and Diagonalization

The Jordan Form

When A is diagonalizable:
$$S^{-1}AS = \Lambda$$

$$S = \begin{bmatrix} | & | & \cdots & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & \cdots & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}.$$

$$\mathbf{A} = \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \end{bmatrix}$$

S: invertible matrix

$$x_1, \dots, x_n$$
: eigenvectors

 $\lambda_1, \dots, \lambda_n$: eigenvalues

When A is real symmetric: $Q^{-1}AQ = \Lambda$

$$Q = \begin{bmatrix} | & | & \cdots & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & \cdots & | \\ | & & | & \cdots & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}. \quad \begin{array}{c} Q : \text{ orthogonal } \\ \text{matrix} \end{array}$$

$$\mathbf{I} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}$$

$$\lambda_1, \dots, \lambda_n \colon \text{real}$$

When A is Hermitian: $U^{-1}AU = \Lambda$

$$U = \begin{vmatrix} x_1 \\ 1 \end{vmatrix}$$

The family of $M^{-1}AM$?

$$U = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ 1 & 1 & \cdots & 1 \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}.$$

orthonormal

$$= \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

U: unitary matrix

 $\lambda_1, \dots, \lambda_n$: real

I. Similar Matrices (相似矩阵)

Definition 1 Two matrices A and B are said to be similar (相似) if there is an invertible matrix M such that $B = M^{-1}AM$ (also denoted by $A \sim B$).

Remark 1 (1) A is similar to itself. (自反性)

- (2) If **A** is similar to **B**, then **B** must be similar to **A**. (对称性)
- (3) If A_1 and A_2 are similar, A_2 and A_3 are similar, then we can also conclude that A_1 and A_3 are similar. (传递性)

Remark 2 If A and B are similar, then A^k and B^k (k is a positive integer) are also similar.

Moreover, k can be -1 if A and B are invertible.

Theorem 1 Assume that $B = M^{-1}AM$. Then A and B have the same eigenvalues. A vector v is an eigenvector of A if and only if $M^{-1}v$ is an eigenvector of B.

Proof.
$$B - \lambda I = M^{-1}AM - \lambda I = M^{-1}(A - \lambda I)M$$
, and so $|B - \lambda I| = |M^{-1}(A - \lambda I)M|$
= $|M^{-1}| \cdot |A - \lambda I| \cdot |M| = |A - \lambda I|$.

Thus the characteristic polynomials $|A - \lambda I|$ and $|B - \lambda I|$ are equal and have the same roots. So the eigenvalues of A and B are the same.

Suppose that \boldsymbol{v} is an eigenvector, i.e., $\boldsymbol{A}\boldsymbol{v}=\lambda\boldsymbol{v}$ for an eigenvalue λ .

Then
$$MBM^{-1}v = \lambda v$$
, and $BM^{-1}v = \lambda (M^{-1}v)$,

i.e., λ is an eigenvalue of \boldsymbol{B} , and an corresponding eigenvector is $\boldsymbol{M}^{-1}\boldsymbol{v}$.

Remark 1 Every $M^{-1}AM$ has the same eigenvalues as A.

Remark 2 Every $M^{-1}AM$ has the same number of independent eigenvectors as A. (Each eigenvector is multiplied by M^{-1}).

Remark 3 If $B = M^{-1}AM$, then |A| = |B|, and trace(A)=trace(B).

Remark 4 If $B = M^{-1}AM$, then rank(A)=rank(B).

Remark 5 If $B = M^{-1}AM$, then A and B have the same characteristic polynomial. However, if A and B have the same characteristic polynomial, they are *not necessarily* similar. For example,

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}.$$

 $|A - \lambda I| = |B - \lambda I| = (\lambda - 2)^2$, but A and B are not similar, since for any invertible matrix M, $M^{-1}AM = M^{-1}(2I)M = 2I = A \neq B$.

Example 1. $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ has eigenvalues 1 and 0.

If
$$\mathbf{M} = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$
, then
$$\begin{bmatrix} 1 & b \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & b \\ 0 & 0 \end{bmatrix}$$
: triangular with $\lambda = 1$ and 0.

If
$$\mathbf{M} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, then

$$B = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix}$$
: projection with $\lambda = 1$ and 0.

If
$$\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then

 \boldsymbol{B} = an arbitrary matrix with $\lambda = 1$ and 0.

II. Similarity Transformation (相似变换)

Recall that:

Every linear transformation is represented by a matrix: any linear transformation T from \mathbf{R}^n to \mathbf{R}^m can be implemented via left-multiplication by a matrix $A: x \mapsto Ax$.

The matrix A depends on the choice of basis.

We will see next:

Similarity Transformation ⇔ Change of Basis

If we change the basis by \mathbf{M} , we change the matrix \mathbf{A} to a similar matrix \mathbf{B} , and $\mathbf{B} = \mathbf{M}^{-1}\mathbf{A}\mathbf{M}$.

(同一个线性变换在两组基下的表示矩阵A和B是相似的.) We explain this for 2×2 matrices.

Let $V = \mathbb{R}^2$, and let T be a transformation of V.

Given a basis v_1 , v_2 , there exist scalars a_{ij} such that

$$T(\mathbf{v}_1) = a_{11}\mathbf{v}_1 + a_{12}\mathbf{v}_2,$$

 $T(\mathbf{v}_2) = a_{21}\mathbf{v}_1 + a_{22}\mathbf{v}_2.$

(基向量的像可以被基向量线性表出)

Let

$$A = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}.$$

Then

$$[T(v_1) \quad T(v_2)] = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{vmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{vmatrix} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} A.$$

(The linear transformation T is represented by the matrix A with respect to the basis v_1, v_2 : A是线性变换T在一组基 v_1, v_2 下的矩阵)

(For simplicity, we will write T(x) as Tx.)

(The linear transformation T is represented by the matrix A with respect to the basis $\{v_1, v_2\}$: A是线性变换T在一组基 $\{v_1, v_2\}$ 下的矩阵)

Let w_1, w_2 be another basis. Then there exist scalars m_{ij} such that

$$\begin{cases} \mathbf{w}_1 = m_{11} \mathbf{v}_1 + m_{12} \mathbf{v}_2, \\ \mathbf{w}_2 = m_{21} \mathbf{v}_1 + m_{22} \mathbf{v}_2. \end{cases}$$

Then

$$[\mathbf{w}_1 \quad \mathbf{w}_2] = [\mathbf{v}_1 \quad \mathbf{v}_2] \begin{bmatrix} m_{11} & m_{21} \\ m_{12} & m_{22} \end{bmatrix} = [\mathbf{v}_1 \quad \mathbf{v}_2] \mathbf{M}.$$

 $(M是从一组基<math>v_1, v_2$ 到另一组基 w_1, w_2 的过渡矩阵: transition matrix)

Lemma 1 Let
$$[\mathbf{w}_1 \quad \mathbf{w}_2] = [\mathbf{v}_1 \quad \mathbf{v}_2]\mathbf{M}$$
,
then $[T\mathbf{w}_1 \quad T\mathbf{w}_2] = [T\mathbf{v}_1 \quad T\mathbf{v}_2]\mathbf{M}$.

Proof. This is due to

$$\begin{cases}
T\mathbf{w}_1 = m_{11}T\mathbf{v}_1 + m_{12}T\mathbf{v}_2, \\
T\mathbf{w}_2 = m_{21}T\mathbf{v}_1 + m_{22}T\mathbf{v}_2.
\end{cases}$$

Change of Basis

(M是从一组基 $\{v_1, v_2\}$ 到另一组基 $\{w_1, w_2\}$ 的过渡矩阵: transition matrix)

 $\begin{bmatrix} \boldsymbol{w}_1 & \boldsymbol{w}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{bmatrix} \boldsymbol{M}$ Then $B = M^{-1}AM$.

Theorem 2 Two matrices represent the same linear transformation (with respect to different bases) if and only if they are similar.

Proof. (We only state our proof for n = 2.)

Let A be a matrix of degree 2, and let T be a linear transformation defined as below, where v_1, v_2 is a basis,

$$[T\boldsymbol{v}_1 \quad T\boldsymbol{v}_2] = [\boldsymbol{v}_1 \quad \boldsymbol{v}_2]\boldsymbol{A}.$$

(1) " \leftarrow " Let M be an invertible matrix, and let $B = M^{-1}AM$. Let w_1, w_2 be a basis defined by $[w_1 \ w_2] = [v_1 \ v_2]M$.

Then, as AM = MB, we have

$$[Tw_1 \ Tw_2] = [Tv_1 \ Tv_2]M = [v_1 \ v_2]AM$$

= $[v_1 \ v_2]MB = [w_1 \ w_2]B$.

Thus the linear transformation T is represented by the matrix B with respect to the basis w_1, w_2 .

Theorem 2 Two matrices represent the same linear transformation (with respect to different bases) if and only if they are similar.

Proof. (We only state our proof for n = 2.)

Let A be a matrix of degree 2, and let T be a linear transformation defined as below, where v_1 , v_2 is a basis,

$$[T\boldsymbol{v}_1 \quad T\boldsymbol{v}_2] = [\boldsymbol{v}_1 \quad \boldsymbol{v}_2]\boldsymbol{A}.$$

(2) " \rightarrow " Assume that **B** is matrix representing the linear transformation T relative to a basis w_1, w_2 .

Let **M** be the matrix such that

$$\begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \mathbf{M}.$$

$$\mathbf{w}_2 \mathbf{M}^{-1} \text{ and }$$

Then, $[v_1 \quad v_2] = [w_1 \quad w_2]M^{-1}$, and $[w_1 \quad w_2]B = [Tw_1 \quad Tw_2] = [Tv_1 \quad Tv_2]M$ $= [v_1 \quad v_2]AM = [w_1 \quad w_2]M^{-1}AM.$

Therefore, $\mathbf{B} = \mathbf{M}^{-1} \mathbf{A} \mathbf{M}$.

 $\mathbf{v_1}$, $\mathbf{v_2}$ are two linearly independent eigenvectors of $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 1/2 \end{bmatrix}$.

$$\mathbf{v}_{2} = \begin{bmatrix} \frac{2}{3} \\ -1 \end{bmatrix} \qquad \mathbf{v}_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \mathbf{T} \mathbf{v}_{2} = \frac{1}{2} \mathbf{v}_{2}$$

$$[\mathbf{T} \mathbf{v}_{1} \quad \mathbf{T} \mathbf{v}_{2}] = [\mathbf{v}_{1} \quad \mathbf{v}_{2}] \begin{bmatrix} 2 & 0 \\ 0 & 1/2 \end{bmatrix} \qquad \mathbf{T} \mathbf{v}_{1} = 2 \mathbf{v}_{1}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 2/3 \\ 0 & -1 \end{bmatrix}, \text{ and } \begin{bmatrix} 2 & 1 \\ 0 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 2/3 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 2/3 \\ 0 & -1 \end{bmatrix}^{-1}$$

Example 3. Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = Ax, where $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$.

Find a basis (denoted by B) for \mathbb{R}^2 with the property that representation matrix for T is a diagonal matrix.

Solution The eigenvalues of *A* are distinct: 5 and 3, so *A* is diagonalizable.

By diagonalizing **A** into $A = S\Lambda S^{-1}$, where

$$S = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$$
 and $\Lambda = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$.

The columns of S, call them b_1 and b_2 , are eigenvectors of A.

By Theorem 2, Λ is the representation matrix for T when $B = \{b_1, b_2\}$.

The mappings $x \mapsto Ax$ and $u \mapsto \Lambda u$ describe the same linear transformation, relative to different bases.

Remark: The way to simplify that matrix **A**—in fact to diagonalize it—is to find its eigenvectors. In the language of linear transformations:

Choose a basis consisting of eigenvectors.

III. Triangularization and Diagonalization (三角化与对角化)

Not every matrix can be diagonalized (对角化又称作相似对角化),

for instance,
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
.

However, the following theorem tells us that each matrix can be triangularized by a unitary matrix.(并不是所有矩阵都可以对角化,但每个矩阵都可以被酉矩阵三角化)

Theorem 3 (*Schur's lemma*) For a matrix \mathbf{A} of degree \mathbf{n} , there exists a unitary matrix \mathbf{U} of degree \mathbf{n} such that $\mathbf{U}^{-1}\mathbf{A}\mathbf{U} = \mathbf{T}$ is triangular. The eigenvalues of \mathbf{A} appear along the diagonal of this similar matrix \mathbf{T} .

Theorem 3 For a matrix **A** of degree n, there exists a unitary matrix \boldsymbol{U} of degree \boldsymbol{n} such that $\boldsymbol{U}^{-1}\boldsymbol{A}\boldsymbol{U} = \boldsymbol{T}$ is triangular. The eigenvalues of **A** appear along the diagonal of this similar matrix **T**.

Proof. Let A be a matrix of degree n, and assume that $Ax_1 = \lambda_1 x_1$, namely, λ_1 is an eigenvalue and x_1 is a unit eigenvector.

(A has at least one eigenvalue, in the worst case it could be repeated n times. And **A** has at least one unit eigenvector x_1)

Then, using Gram-Schmidt process, there exists an orthonormal basis x_1, x_2, \dots, x_n , so $U_1 = [x_1 x_2 \dots x_n]$ is a unitary matrix.

$$AU_1 = A[x_1 \quad x_2 \quad \cdots \quad x_n] = \begin{bmatrix} Ax_1 & Ax_2 & \cdots & Ax_n \end{bmatrix}$$

$$= \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & b_{12} & \cdots & b_{1n} \\ 0 & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$
This leads to $U_1^{-1}AU_1 = \begin{bmatrix} \lambda_1 & * \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$, and \mathbf{B} is of order $(n-1)$.

Let λ_2 be an eigenvalue of **B** and y_2 a unit eigenvector.

Let M_2 be a unitary matrix with first column equal to y_2 . Then similarly we have $M_2^{-1}BM_2 = \begin{bmatrix} \lambda_2 & * \\ \mathbf{0} & \mathbf{C} \end{bmatrix}$.

Let
$$U_2 = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & M_2 \end{bmatrix}$$
. Then U_2 is unitary, and

$$\boldsymbol{U}_{2}^{-1}(\boldsymbol{U}_{1}^{-1}\boldsymbol{A}\boldsymbol{U}_{1})\boldsymbol{U}_{2} = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{M}_{2} \end{bmatrix}^{-1} \begin{bmatrix} \lambda_{1} & * \\ \mathbf{0} & \boldsymbol{B} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{M}_{2} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 & * \\ \mathbf{0} & \mathbf{M}_2^{-1} \mathbf{B} \mathbf{M}_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & * & * \\ 0 & \lambda_2 & * \\ \mathbf{0} & \mathbf{0} & \mathbf{C} \end{bmatrix}.$$

Notice that U_1U_2 is still a unitary matrix.

Repeating this process produces a unitary matrix $U = U_1 U_2 \dots U_{n-1}$, such that $U^{-1}AU$ is a triangular matrix.

Example 4 Let
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$
.

Then **A** has the eigenvalue $\lambda = 1$ (algebraic multiplicity of λ is 2).

The only line of eigenvectors goes through $[1, 1]^T$ (geometric multiplicity of λ is 1). So A is not diagonalizable.

But A is triangularizable (A can be triangularized by a unitary matrix).

After dividing by $\sqrt{2}$, this is the first column of U.

We choose
$$\boldsymbol{U} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
, and the triangular

$$T = U^{-1}AU = \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{vmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{vmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.$$

has the eigenvalues on its diagonal.

This triangular form will show that any Hermitian matrix—whether its eigenvalues are *distinct or not* — has a complete set of orthonormal eigenvectors.

When A is Hermitian, i.e., $A = A^H$ (When A is real, it means $A = A^T$), this triangular $T = U^{-1}AU$ is also Hermitian:

$$T^{H} = (U^{-1}AU)^{H} = U^{H}A^{H}(U^{-1})^{H} = U^{-1}AU = T.$$

Therefore, *T* must be diagonal.

This finally completes the proof of the **Spectral Theorem**.

- (1) Every real symmetric matrix \mathbf{A} can be diagonalized by an orthogonal matrix \mathbf{Q} : $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{\Lambda}$ $(\mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T)$.
- (2) Every Hermitian matrix \mathbf{A} can be diagonalized by a unitary matrix \mathbf{U} : $\mathbf{U}^{-1}\mathbf{A}\mathbf{U} = \mathbf{\Lambda}$ $(\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^H)$.

The columns of Q (or U) consist of orthonormal eigenvectors of A.

Example 5 Let
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

The spectral theorem says that this $A = A^{T}$ can be diagonalized.

A has repeated eigenvalues $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = -1$.

 $\lambda_1 = \lambda_2 = 1$ has a plane of eigenvectors, and we pick an orthonormal

pair
$$x_1$$
 and x_2 : $x_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $x_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

and
$$x_3 = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ -1 \\ 0 \end{vmatrix}$$
 for $\lambda_3 = -1$.

Therefore
$$\mathbf{Q} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{bmatrix}$$
 and $\mathbf{Q}^{-1}A\mathbf{Q} = \mathbf{\Lambda} = \text{diag}(1,1,-1)$.

Remark Split $A = Q\Lambda Q^{T}$ into:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \lambda_1 \mathbf{x}_1 \mathbf{x}_1^T + \lambda_2 \mathbf{x}_2 \mathbf{x}_2^T + \lambda_3 \mathbf{x}_3 \mathbf{x}_3^T$$

$$= (+1) \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} + (+1) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + (-1) \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= (+1) \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} + (-1) \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} = \lambda_1 \mathbf{P}_1 + \lambda_3 \mathbf{P}_3,$$

where P_1 is a projection of rank 2 (onto the plane of eigenvectors).

Every Hermitian matrix with k different eigenvalues has a spectral decomposition into $\mathbf{A} = \lambda_1 \mathbf{P}_1 + \dots + \lambda_k \mathbf{P}_k$, where \mathbf{P}_i is the projection onto the eigenspace for λ_i . Since there is a full set of eigenvectors, the projections add up to the identity. And since the eigenspace are orthogonal, two projections produce zero: $\mathbf{P}_i \mathbf{P}_i = \mathbf{0}$.

An important question: For which matrices is $T = \Lambda$?

Some special matrices

Real matrices	Complex matrices	Eigenvalues
Symmetric $A^{T} = A$	Hermitian $A^{H} = A$	All λ 's are real (on the real axis)
Skew-symmetric $A^{T} = -A$	Skew-Hermitian $A^{\rm H} = -A$	All λ 's are imaginary (including 0 sometimes) (on the imaginary axis)
Orthogonal $\boldsymbol{Q}^{\mathrm{T}} = \boldsymbol{Q}^{-1}$	Unitary $\boldsymbol{U}^{\mathrm{H}} = \boldsymbol{U}^{-1}$	all $ \lambda = 1$ (on the unit circle)

These matrices are all diagonalizable.

Now we want the whole class -- called "normal".

NORMAL MATRICES

Definition 2 A matrix N is called a normal matrix (正规矩阵) if $NN^H = N^H N$.

Normal matrices include symmetric, Hermitian, orthogonal, unitary, skew-symmetric, skew-Hermitian matrices.

(For example, if $\mathbf{A} = \mathbf{A}^H$, then $\mathbf{A}\mathbf{A}^H = \mathbf{A}^H\mathbf{A} = \mathbf{A}^2$;

If $\mathbf{U}^H = \mathbf{U}^{-1}$, then $\mathbf{U}\mathbf{U}^H = \mathbf{U}^H\mathbf{U} = \mathbf{I}$.)

We will show that, normal matrices are *exactly* the matrices which are diagonalizable. (Normal matrices are *exactly* the matrices that have a complete set of orthonormal eigenvectors.)

Theorem 4 A matrix is diagonalized by a unitary matrix if and only if it is a normal matrix.

(In other words, A matrix **A** is a normal matrix if and only if there exists a unitary matrix **U** such that $U^{-1}AU$ is diagonal.)

Theorem 4 A matrix is diagonalized by a unitary matrix <u>if and only if</u> it is a normal matrix.

Proof. " \rightarrow " Let A be a matrix, and U a unitary matrix such that $U^{-1}AU = D$ is diagonal.

Then
$$A = UDU^{-1}$$
, and $A^{H} = UD^{H}U^{-1}$. Thus
$$AA^{H} = (UDU^{-1})(UD^{H}U^{-1}) = UDD^{H}U^{-1}$$

$$= UD^{H}DU^{-1} = UD^{H}U^{-1}UDU^{-1} = A^{H}A,$$

i.e., A is a normal matrix.

"Conversely, let A be a normal matrix. Let U be a unitary matrix such that $U^{-1}AU = T$ is triangular. Then $T^H = U^HA^HU$, thus $TT^H = (U^{-1}AU)(U^HA^HU) = U^{-1}AA^HU = U^{-1}A^HAU$ $= (U^{-1}A^HU)(U^{-1}AU) = T^HT,$

and $TT^H = T^H T$, i.e., T is a normal matrix.

It follows that since T is triangular, T is diagonal.

(All normal triangular matrices are diagonal.—Exercise #19,20)

IV. The Jordan Form (若当形)

Although not every matrix is diagonalizable, every matrix can be converted into *Jordan form*.

The Jordan form of a matrix is important. However, we will not be able to study it in details, and instead we will only give a simple introduction.

We will systematically study it in Advanced Linear Algebra (线性代数精讲).

The goal: to make $M^{-1}AM$ as nearly diagonal as possible.

Definition 3 A **Jordan block** (若当块) is a matrix of degree *k* with the form

$$J_i = egin{bmatrix} \lambda_i & 1 & & & & \\ & \lambda_i & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_i \end{bmatrix}.$$

The diagonal value λ_i is an eigenvalue of J_i .

Since $J_i - \lambda_i I$ is of rank k - 1, the nullspace of $J_i - \lambda_i I$ has dimension 1. In other words, the eigenspace of λ_i is of dimension 1.

Theorem 5 If a matrix **A** has **s** independent eigenvectors, then it is similar to a matrix in the **Jordan form** (若当形) with **s** blocks:

$$J = M^{-1}AM = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_S \end{bmatrix},$$

where each J_i is a Jordan block, corresponding to an eigenvalue λ_i and only one independent eigenvector.

The same λ_i will appear in several blocks, if it has several independent eigenvectors.

Moreover, two matrices are similar if and only if they share the same Jordan form **J**.

$$m{J}_i = egin{bmatrix} \lambda_i & 1 & & & & \ & \lambda_i & \ddots & & \ & & \ddots & 1 \ & & & \lambda_i \end{bmatrix}.$$

Example 6 Check that
$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

all lead to Jordan form
$$J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
.

These four matrices have eigenvalues 1 and 1 with only *one* eigenvector—so **I** consists of *one* block.

(T) From T to J, a diagonal M will do it:

$$\mathbf{M}^{-1}\mathbf{T}\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \mathbf{J}. \quad \begin{array}{c} \mathbf{T}, \mathbf{A}, \mathbf{B}, \mathbf{J} \\ \mathbf{are \ similar:} \end{array}$$

(B) From B to J, a permutation P does that:

$$\mathbf{P}^{-1}\mathbf{B}\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \mathbf{J}.$$
 belong to the same

(A) From
$$\boldsymbol{A}$$
 to \boldsymbol{J} , let $\boldsymbol{U} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$, then

$$U^{-1}AU = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = T$$
 and then $M^{-1}TM = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = J$.

T, A, B, J are similar they all belong to the same family.

Example 7 Find the Jordan form of
$$A$$
, where $A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

The eigenvalues of A are all 0's (triple eigenvalue), so it will appear in all their Jordan blocks. Thus the Jordan form of A is one of the following:

$$J_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad J_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad J_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Since A has only one independent eigenvector $(1,0,0)^T$,

its Jordan form has only one block, and so the Jordan form is J_1 .

As for J_3 = zero matrix, it is in a family by itself; the only matrix similar to J_3 is $M^{-1}0M = 0$.

Example 8 Find the Jordan form of
$$\mathbf{A}$$
, where $\mathbf{A} = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

The eigenvalues of A are equal to 2 (triple eigenvalue). Thus the Jordan form of A is one of the following:

$$J_1 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, \qquad J_2 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \qquad J_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Since **A** has only one independent eigenvector $(1,0,0)^T$,

its Jordan form has only one block, and so the Jordan form is J_1 .

Example 9 Find the Jordan form of
$$A$$
, where $A = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

The eigenvalues of A are equal to 2 (triple eigenvalue). Thus the Jordan form of A is one of the following:

$$J_1 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, \qquad J_2 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \qquad J_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Since A has two independent eigenvectors $(1,0,0)^T$ and $(0,2,-1)^T$, thus A has exactly two Jordan blocks, and so the Jordan form of A is J_2 .

Remark: Power of A.

If **A** can be diagonalized, the powers of $A = S\Lambda S^{-1}$ are easy:

$$A^k = S\Lambda^k S^{-1}.$$

In general case, we have Jordan's similarity $A = MJM^{-1}$, so now we need the powers of J:

$$A^{k} = (MJM^{-1})(MJM^{-1})...(MJM^{-1}) = MJ^{k}M^{-1}.$$

Since
$$J = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_s \end{bmatrix}$$
, so $J^k = \begin{bmatrix} J_1^k & & & \\ & J_2^k & & \\ & & \ddots & \\ & & & J_s^k \end{bmatrix}$.

For instance, if λ is a triple eigenvalue with a single eigenvector, then the 3 × 3 block J_i will enter, and

$$(J_i)^k = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^k = \begin{bmatrix} \lambda^k & k\lambda^{k-1} & \frac{1}{2}k(k-1)\lambda^{k-2} \\ 0 & \lambda^k & k\lambda^{k-1} \\ 0 & 0 & \lambda^k \end{bmatrix}.$$

The Spectral Theorem for Real Symmetric Matrices

An $n \times n$ real symmetric matrix A ($A \in \mathbb{R}^{n \times n}$ and $A = A^{T}$) has the following properties:

 $(- \uparrow)$ 个对称的 $n \times n$ 实矩阵具有下面的特性)

- a. *A* has *n* real eigenvalues, counting multiplicities. (*A*有*n*个实特征值,包含重复的特征值)
- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation. (对于每一个特征值 λ , 对应特征子空间的维数等于 λ 作为特征方程的根的重数, 即: 几何重数=代数重数)
- c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal. (特征子空间相互正交, 这种正交性是在特征向量对应不同特征值的意义下成立的)
- d. **A** is orthogonally diagonalizable. (A可以正交对角化)

The Spectral Theorem for Hermitian Matrices

An $n \times n$ Hermitian matrix A ($A \in \mathbb{C}^{n \times n}$ and $A = A^{H}$) has the following properties:

 $(- \uparrow n \times n)$ 厄米特矩阵具有下面的特性)

- a. *A* has *n* real eigenvalues, counting multiplicities. (*A*有*n*个实特征值,包含重复的特征值)
- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation. (对于每一个特征值 λ , 对应特征子空间的维数等于 λ 作为特征方程的根的重数, 即: 几何重数=代数重数)
- c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal. (特征子空间相互正交, 这种正交性是在特征向量对应不同特征值的意义下成立的)
- d. **A** can be diagonalized by a unitary matrix. (**A**可以用酉矩阵 对角化)

- 1. **A** is **diagonalizable**: The columns of **S** are eigenvectors and $S^{-1}AS = \Lambda$.
- 2. A is arbitrary: The columns of M include "generalized eigenvectors" of A, and the Jordan form $M^{-1}AM = I$ is block diagonal.
- 3. A is arbitrary: The unitary U can be chosen so that $U^{-1}AU = T$ is triangular.
- 4. A is *normal*, $AA^H = A^HA$: then U can be chosen so that $U^{-1}AU = \Lambda$.
- Special cases of normal matrices, all with orthonormal eigenvectors:
- (a) If $\mathbf{A} = \mathbf{A}^H$ is Hermitian, then all λ_i are real.
- (b) If $\mathbf{A} = \mathbf{A}^T$ is real symmetric, then $\mathbf{\Lambda}$ is real and $\mathbf{U} = \mathbf{Q}$ is orthogonal.
- (c) If $\mathbf{A} = -\mathbf{A}^H$ is skew-Hermitian, then all λ_i are purely imaginary.
- (d) If **A** is orthogonal or unitary, then all $|\lambda_i| = 1$ are on the unit circle.

Key words:

Similar Matrices

Similarity Transformations

Triangularization and Diagonalization; Normal matrices

The Jordan Form

Homework

See Blackboard

