Un rappel, un défi

on a vu que $G: \begin{tabular}{ll} $G:$ & S \to a \ S \ b + {\bf E} \\ & engendre \ le \ langage & L = \{a^n \ b^n, \ n \geq 0\} \end{tabular}$

Je vous affirme que L'= $\{a^n b^p, n \neq p\}$ est également algébrique

• Quiz - trouver une grammaire qui engendre L' est super facile assez difficile

Comme toujours en informatique, lorsqu'on ne sait pas résoudre un problème, on essaie de le ramener à des problèmes plus simples.

$$n \neq p$$
 c'est $n > p$ ou $n < p$

$$G \begin{cases} S \rightarrow a & S & b + T \\ T \rightarrow T & b + b \end{cases}$$

• Quiz - cette grammaire traite le cas $\{a^n b^p, n>p\}$ $\{a^n b^p, n<p\}$

Clôture des algébriques par union

- Si L et M sont algébriques, alors L ∪ M est algébrique.
- Exemple: soit deux grammaires engendrant respect. L₁ et L₂

$$G \begin{cases} S \rightarrow a & S & b + T \\ T \rightarrow T & b + b \end{cases}$$

$$G' \begin{cases} S \rightarrow a \quad S \quad b \quad + T \\ T \rightarrow a \quad T + a \end{cases}$$

- on construit une grammaire engendrant $L_1 \cup L_2$, ce qui prouve que le langage $L_1 \cup L_2 = \{a^n b^p, n \neq p\}$ est également algébrique.

Clôture des algébriques par union (cas général)

- Soient L et M deux langages algébriques, la seule façon *pour l'instant* de montrer que $L \cup M$ est algébrique est de trouver une grammaire qui l'engendre.
 - on construit une grammaire engendrant $L \cup M$ à partir de deux grammaires engendrant respectivement L et M,
 - il s'agit bien entendu de donner un modèle général qui convienne quels que soient les langages algébriques L et M considérés.
- Soient L et M deux langages engendrés respectivement par <X,V, S, P> et <X,V', S', P'>, où V et V' sont disjoints, soit S" un nouveau non-terminal, on peut montrer que la grammaire
 - $\langle X, V \cup V' \cup \{S''\}, S'', P \cup P' \cup \{S'' \rightarrow S, S'' \rightarrow S'\} \rangle$ engendre $L \cup M$.

Clôtures des algébriques

- Alg(X*) et Alg sont closes par
 - union
 - produit (cf TD)
 - étoile (cf TD)
- Alg n'est pas close par
 - intersection (cf cours)
 - complémentation

Ce qui signifie ...

Quiz - sur ce schéma, $L \cap M$ se trouve

toujours dans le bleu ça dépend des cas toujours dans le blanc

Exemple d'automate fini

Exemple d'automate fini

Automate fini : définitions

- Un automate fini est un quintuplet A=< X , Q , q_o , F, $\delta>$ où :
 - X est un alphabet, dit alphabet d'entrée
 - Q est un ensemble fini, appelé ensemble des états de l'automate
 - $-q_0 \in Q$ est l'état initial
 - $F \subseteq Q$ est l'ensemble des états d'acceptation (états finals cf Larousse)
 - $\delta \subseteq Q \times X \times Q$ est l'ensemble des transitions de l'automate

Pour fixer les choses

Quiz 1 - est un automate fini vrai faux

Quiz 2 - est un automate fini vrai faux

Quiz 3 - est un automate fini vrai faux

Automate fini : définitions (suite)

- chemin
- chemin vide
- trace, longueur d'un chemin
- mot **reconnu** par un automate
- langage reconnu par un automate L(A)
- famille des langages reconnaissables : Rec, Rec(X*)

Propriétés de la famille Rec(X*)

- Quiz le langage vide est reconnaissable vrai faux
- X* est reconnaissable
- Quiz tout langage fini est reconnaissable vrai faux

- Rec est close par union
- Rec est également close par
 - produit (cf TD3)
 - étoile (cf cours 5)
 - intersection (cf cours 5 et TD8)
 - complémentation (cf TD5)

Clôture des reconnaissables par union (exemple)

(suite exemple)

Clôture des reconnaissables par union (cas général)

- Soient L et M deux langages reconnaissables, la seule façon *pour l'instant* de montrer que $L \cup M$ est reconnaissable est de trouver un automate fini qui le reconnaît.
 - on construit un automate reconnaissant $L \cup M$ à partir de deux automates reconnaissant respectivement L et M,
 - il s'agit bien entendu de donner une construction générale qui convienne quels que soient les langages L et M considérés.

On a ainsi la propriété

• la famille de langages $Rec(X^*)$ contient les parties finies (de X^*) et est close par union, produit et étoile.

(et beaucoup plus)