Trainity Assignment Three

Operational Analytics & Investigating Metric Spikes

Aayush Damani

Table of Contents

- 1. PROJECT OVERVIEW
- 2. APPROACH
- 3. TECH STACK USED
- 4. RESULTS AND INSIGHTS
- 5. GOOGLE DRIVE LINK

Project Description

- The goal of this project is to leverage SQL skills to analyze Microsoft data from the point of view of a Lead Data Analyst.
- The analysis will focus on various aspects such as investigating metric spikes, such as a decrease in weekly user engagement, and operational analytics.
- The insights derived from this analysis will assist different teams within the organization, such as marketing, product, and operations, in making informed decisions.

Project Overview

Operational Analytics

Jobs Reviewed Over Time: Calculate the number of jobs reviewed per hour for each day in November 2020.

Throughput Analysis: Calculate the 7-day rolling average of throughput (number of events per second).

Language Share Analysis: Calculate the percentage share of each language in the last 30 days.

Duplicate Rows Detection: Identify duplicate rows in the data.

Investigating Metric Spikes

Weekly User Engagement: Measure the activeness of users on a weekly basis.

User Growth Analysis: Analyze the growth of users over time for a product.

Weekly Retention Analysis: Analyze the retention of users on a weekly basis after signing up for a product.

Weekly Engagement Per Device: Measure the activeness of users on a weekly basis per device.

Email Engagement Analysis: Analyze how users are engaging with the email service.

Approach

Data Preparation:

- Set up the database using provided commands and files.
- Ensure data integrity for accurate analysis.

Analysis Execution:

• Complete the tasks identified in the previous slide (Project Overview) in order to derive actionable insights.

Query Execution:

Write and validate SQL queries in MySQL Workbench.

Reporting:

- Create a PowerPoint report with SQL queries, outputs, and insights.
- Include screenshots and summarize findings for leadership presentation.

Tech Stack Used

Google Slides

Jobs Reviewed Over Time

Write an SQL query to calculate the number of jobs reviewed per hour for each day in November 2020.

```
## Task A: Jobs Reviewed Over Time

SELECT

EXTRACT(DAY FROM STR_TO_DATE(ds, '%m/%d/%Y')) AS date_day,

(COUNT(job_id) / 24) AS no_of_jobs_reviewed_per_hour

FROM

job_data

GROUP BY date_day;
```

date_day	no_of_jobs_reviewed_per_h
30	0.0833
29	0.0417
28	0.0833
27	0.0417
26	0.0417
25	0.0417

From the results provided in the previous slide, it is clear to see that there are 2 days where the number of jobs reviewed per hour were higher. However, the dataset only contained 6 days of data.

INSIGHTS

There might be a correlation between certain days of the month and the number of jobs reviewed per hour, but the sample size is too small to draw a conclusion.

Throughput Analysis

Write an SQL query to calculate the 7-day rolling average of throughput.

SQL Code

```
## Task B: Throughput Analysis
      SELECT
          event_date,
          throughput_per_day,
          AVG(throughput_per_day) OVER (
    Θ
              ORDER BY event_date
              ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
          ) AS rolling avg throughput
    ⊝ FROM (
          SELECT
              DATE(STR TO DATE(ds, '%m/%d/%Y')) AS event date,
              COUNT(*) AS events_per_day,
              SUM(time_spent) AS total_time_spent,
              COUNT(*) / NULLIF(SUM(time_spent), 0) AS throughput_per_day
30
          FROM
              job_data
          GROUP BY
              event_date
      ) AS daily_throughput
      ORDER BY
          event_date;
```

	event_date	throughput_per_day	rolling_avg_throughput
	2020-11-25	0.0222	0.02220000
ĺ	2020-11-26	0.0179	0.02005000
Ī	2020-11-27	0.0096	0.01656667
	2020-11-28	0.0606	0.02757500
	2020-11-29	0.0500	0.03206000
ľ	2020-11-30	0.0500	0.03505000
ſ			

From the results provided in the previous slide, it is clear to see that 28th November had the highest throughput per day, but 30th November had the highest rolling average throughput.

INSIGHTS

While the rolling average throughput is extremely important in understanding the relativity of daily metrics as compared to the previous days, daily metrics can also be incredibly important in identifying which days had the highest throughput. Therefore, both metrics should be used together in order for the best

Language Share Analysis

Write an SQL query to calculate the percentage share of each language over the last 30 days.

SQL Code

## Task C: Language Share Analysis	language	event_count	percentage_share
SELECT			
language,	Persian	3	37.5000
COUNT(*) AS event_count,	English	1	12.5000
<pre>(COUNT(*) / (SELECT COUNT(*) FROM job_data)) * 100 AS percentage_share_</pre>		Jan.	
FROM	Arabic	1	12.5000
job_data	Hindi	1	12.5000
GROUP BY	riiriui	5	12.5000
language	French	1	12.5000
ORDER BY percentage_share DESC;	Italian	1	12.5000
per centage_snare best;			

From the results provided in the previous slide, it is clear to see that Persian holds the largest language share, while the rest of the shares are distributed equally amongst several languages.

INSIGHTS

The jobs could be identified such that Persian is the primary language for that job.

Duplicate Row Detection

Write an SQL query to display duplicate rows from the job_data table.

SQL Code

```
## Task D: Duplicate Count
SELECT
    job_id, actor_id, event, language, time_spent, org, ds,
    COUNT(*) AS duplicate count
FROM
    job_data
GROUP BY
    job_id, actor_id, event, language, time_spent, org, ds
HAVING
    COUNT(*) > 1
ORDER BY
    duplicate_count DESC;
```


From the results provided in the previous slide, it is clear to see that there were no duplicate records found in the job_data table.

INSIGHTS

Since there are no duplicates, it is important to maintain this status as duplicates can affect the analysis of our data.

Weekly User Engagement

Write an SQL query to calculate the weekly user engagement.

SQL Code

```
## Task A: Weekly User Engagement
SELECT
   YEAR(STR TO DATE(occurred at, '%d-%m-%Y %H:%i')) AS year,
   WEEK(STR_TO_DATE(occurred_at, '%d-%m-%Y %H:%i')) AS week,
    COUNT(event_type) AS user_engagement
FROM
   events
WHERE
   event_type = 'engagement'
GROUP BY
   YEAR(STR_TO_DATE(occurred_at, '%d-%m-%Y %H:%i')),
   WEEK(STR_TO_DATE(occurred_at, '%d-%m-%Y %H:%i'))
ORDER BY
   year,
   week;
```

year	week	user_engageme	
2014	17	617	
2014	18	1498	
2014	19	1552	
2014	20	1580	
2014	21	1612	
2014	22	1870	
2014	23	1795	
2014	24	2014	
2014	25	539	
2014	26	144	
2014	27	46	
2014	28	30	
2014	29	26	
2014	30	8	
2014	31	14	

From the results provided in the previous slide, it is clear to see that the weekly user engagement was increasing steadily between weeks 17 and 24, after which the engagement drastically fell.

INSIGHTS

This suggests that something happened in Week 24/25 that caused a major reduction in engagement, such as a software bug, or better promotions from competitors. This would need to be investigated further.

User Growth Analysis

Write an SQL query to calculate the user growth for the product.

year month new active user cumu

SELECT year, month, new_active_user, SUM(new_active_user) OVER (ORDER BY year, month ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_active_users FROM O(SELECT YEAR(STR_TO_DATE(activated_at, '%d-%m-%Y %H:%i')) AS year, MONTH(STR_TO_DATE(activated_at, '%d-%m-%Y %H:%i')) AS month, COUNT(DISTINCT user_id) AS new_active_user FROM users WHERE state = "active" GROUP BY year, month) a;

SQL Code

year	month	new_active_user	cumulative_active_users	
2013	1	160	160	
2013	2	160	320	
2013	3	150	470	
2013	4	181	651	
2013	5	214	865	
2013	6	213	1078	
2013	7	284	1362	
2013	8	316	1678	
2013	9	330	2008	
2013	10	390	2398	
2013	11	399	2797	
2013	12	486	3283	
2014	1	552	3835	
2014	2	525	4360	
2014	3	615	4975	
2014	4	726	5701	
2014	5	779	6480	
2014	6	873	7353	
2014	7	997	8350	
2014	8	1031	9381	

From the results provided in the previous slide, it is clear to see that the number of new users joining has increased over the periods of 2013 and 2014. The growth rate has been steadily increasing every month, with the number of new users increasing every month.

INSIGHTS

This suggests that the platform is growing and further factors should be investigated further in order to understand how we acquired these new customers successfully. Was the marketing spot on? Did the sales team do something different? Was there a promotional offer?

Weekly Retention Rate

Write an SQL query to calculate the weekly retention of users based on their sign-up cohort.

_		Results	
SQL Code	weeks	no_of_users	
## Task C: Weekly Retention Rate	17	72	
SELECT WEEK(STR_TO_DATE(occurred_at, '%d-%m-%Y %H:%i')) AS weeks,	18	163	
COUNT(DISTINCT user_id) as no_of_users FROM events	19	185	
WHERE event_type="signup_flow" AND event_name="complete_signup"	20	176	Γ
GROUP BY weeks	21	183	Γ
ORDER BY weeks;	22	196	
	23	196	
	24	229	Γ
	25	32	

From the results provided in the previous slide, it is clear to see that the number of users signing up and completing the sign up flow was steadily increasing until week 25.

INSIGHTS

Week 25 must be investigated further as there might be a reason why the number of users that signed up and completed their sign up flow was so low.

Weekly Engagement Per Device

Write an SQL query to calculate the weekly engagement per device.

SQL Code

```
## Task D: Weekly Engagement Per Device
SELECT
        YEAR(STR_TO_DATE(occurred_at, '%d-%m-%Y %H:%i')) AS year,
        WEEK(STR TO DATE(occurred at, '%d-%m-%Y %H:%i')) AS week,
        device, COUNT(DISTINCT user_id) AS user_count
FROM events WHERE event_type = "engagement"
GROUP BY year, week, device
ORDER BY year, week, device;
```

		Results	
year	week	device	user_count
2014	17	acer aspire desktop	2
2014	17	acer aspire notebook	2
2014	17	amazon fire phone	1
2014	17	asus chromebook	3
2014	17	dell inspiron desktop	1
2014	17	dell inspiron notebook	4 Screen
2014	17	hp pavilion desktop	2
2014	17	htc one	2
2014	17	ipad air	1
2014	17	ipad mini	3
2014	17	iphone 4s	3
2014	17	iphone 5	11
2014	17	iphone 5s	5
2014	17	lenovo thinkpad	8
2014	17	mac mini	1
2014	17	macbook air	4
2014	17	macbook pro	13
2014	17	nexus 5	4
2014	17	nexus 7	4
2014	17	nokia lumia 635	2
2014	17	samsumg galaxy tablet	2
2014	17	samsung galaxy note	1
2014	17	samsung galaxy s4	7
2014	18	acer aspire desktop	4
2014	18	acer aspire notebook	4
2014	18	amazon fire phone	2
2014	18	asus chromebook	4
2014	18	dell inspiron desktop	3
2014	18	dell inspiron notebook	12
2014	18	hp pavilion desktop	6
2014	18	htc one	2
2014	18	ipad air	8
2014	18	ipad mini	7
2014	18	iphone 4s	4
2014	18	iphone 5	7
2014	18	iphone 5s	8
2014	18	kindle fire	5
2014	18	lenovo thinkpad	28
2014	18	mac mini	1
2014	18	macbook air	18

From the results provided in the previous slide, it is clear to see that users opted for a variety of different devices, with the Macbook Air having the most number of users (41) in 2014 Week 18, and Week 24.

INSIGHTS

Macbook Air users could be offered some sort of discount, or special promotion as it is the most used device.

Email Engagement Analysis

Write an SQL query to calculate the email engagement metrics.

SQL Code

```
## Task E: Email Engagement Analytics
SELECT user id, emails sent, emails opened, emails clicked,
       ROUND(SUM(emails opened)/SUM(emails sent),2)*100 AS open rate,
       ROUND(SUM(emails clicked)/SUM(emails opened),2)*100 AS click through rate
       FROM (
    SELECT user_id,
        SUM(CASE WHEN `action` = "sent_weekly_digest" THEN 1 ELSE 0 END) AS emails_sent,
       SUM(CASE WHEN `action` = "email_open" THEN 1 ELSE 0 END) AS emails_opened,
       SUM(CASE WHEN `action` = "email_clickthrough" THEN 1 ELSE 0 END ) AS emails_clicked
    FROM email events
    GROUP BY user id
    ) AS email engagement
GROUP BY user id;
```

user_id	emails_sent	emails_opened	emails_clicked	open_rate	click_through_rate
0	17	5	0	29.00	0.00
4	17	5	4	29.00	80.00
8	17	3	1	18.00	33.00
11	17	5	2	29.00	40.00
17	17	4	1	24.00	25.00
19	17	5	1	29.00	20.00
20	17	8	3	47.00	38.00
22	17	7	3	41.00	43.00
30	18	6	1	33.00	17.00
49	17	5	1	29.00	20.00
59	17	5	3	29.00	60.00
64	17	5	2	29.00	40.00
66	17	5	0	29.00	0.00
67	17	5	0	29.00	0.00
78	17	7	4	41.00	57.00
80	17	7	2	41.00	29.00
83	17	4	1	24.00	25.00
86	17	4	3	24.00	75.00
98	18	7	2	39.00	29.00
101	18	9	6	50.00	67.00
108	18	8	0	44.00	0.00
117	17	4	0	24.00	0.00
120	17	4	0	24.00	0.00
124	17	6	2	35.00	33.00
128	17	6	4	35.00	67.00
134	17	9	4	53.00	44.00
136	17	6	2	35.00	33.00
138	17	5	0	29.00	0.00
140	17	3	1	18.00	33.00
145	17	3	0	18.00	0.00
150	17	6	4	35.00	67.00
155	17	4	0	24.00	0.00
163	17	10	3	59.00	30.00
170	18	6	1	33.00	17.00
171	18	6	2	33.00	33.00
172	18	6	2	33.00	33.00
173	18	7	0	39.00	0.00
175	18	6	4	33.00	67.00
179	18	5	0	28.00	0.00
181	18	4	2	22.00	50.00

From the results provided in the previous slide, it is clear to see that most users have a relatively high click-through rate and open-rate.

INSIGHTS

This suggests that the emails being sent out are interactive and interesting to the user base. It could be investigated further in order to understand whether the click-through rate made any direct impact towards sales.

DRIVE LINK

https://docs.google.com/presentation/d/1_K-e0AE1_zjRJmPH50LUB5ho_3RBkky xYPX7QVSaj3k/edit?usp=sharing

THANK YOU FOR YOUR TIME.