## Работа 3.3.5.

Эффект Холла в металлах

## Эффект Холла в металлах

**Цель работы:** измерение подвижности и концентрации носителей заряда в металлах.

**Оборудование:** электромагнит с источником питания, источник постоянного тока, микровольтметр, амперметры, измеритель магнитной индукции, образцы из серебра и цинка.

Суть эффекта Холла заключается в следующем: пусть через однородную пластину металла вдоль оси x течет ток I. Если поместить пластину в однородное магнитное поле B, направленное по y, то между гранями A и B появится разность потенциалов. Действительно, на движущийся с  $\langle \vec{v} \rangle$  заряд будет действовать сила Лоренца

$$\vec{F}_{\rm JI} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B}$$

где e - абсолютная величина заряда,  $\vec{E}$  - напряженность электрического поля,  $\vec{B}$  - индукция магнитного поля.



Рис. 1: Эффект Холла

В нашем случае сила, обусловленная вторым слагаемым, направлена вдоль z и равна

$$F_B = e|\langle v_x \rangle|B$$

где  $|\langle v_x \rangle|$  - дрейфовая скорость заряда вдоль оси x. Под действием силы  $F_B$  электроны отклоняются к грани B, заряжая ее отрицательно, а на грани A накапливаются нескомпенсированные положительные заряды, из-за чего возникает электрическое поле  $E_z$ , направленное вдоль оси z. Его действие на заряды можно

описать уравнением  $F_{E_z}=eE_z$ , причем сила  $F_{E_z}$  дейстует против силы  $F_B$ . Через некоторое время наступает установившийся режим, когда накопление зарядов прекращается и  $F_{E_z}=F_B$ . Отсюда нетрудно получить

$$E_z = |\langle v_x \rangle| B$$

C полем  $E_z$  связана разность потенциалов  $U_{\mathrm{A}\mathrm{B}}$ :

$$U_{AB} = -E_z l = -|\langle v_x \rangle| B l$$

В этом и состоит эффект Холла. Замечая, что  $I=ne|\langle v_x\rangle|la$ , получим

$$\varepsilon_{AB} = U_{AB} = -\frac{IB}{nea} = -R_x \cdot \frac{IB}{a}$$

Константа  $R_x$  называется постоянной Холла:

$$R_x = \frac{1}{ne}$$

## Экспериментальная установка



Рис. 2: Экспериментальная установка

В зазоре электромагнита создается постоянное магнитное поле, величину которого можно менять с помощью источника питания. Направление тока можно

менять, переключая ключ  $K_1$ , ток через электромагнит измеряется амперметром  $A_1$ . Перед использование электромагнита проградуируем его при помощи милливеберметра. Ток через металлические образцы в форме пластинок регулируется реостатом  $R_2$  и измеряется амперметром  $A_2$ . ЭДС Холла измеряется микровольтметром.

Вследствие неточности подпайки контактов к образцу не лежат на одной эквипотенциали, вследствие чего напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения. Чтобы исключить это сопротивление, будем измерять напряжение  $U_0$  между контактами образца в отсутствие магнитного поля, и затем вычетать это значение из снимаемого напряжения.

## Ход работы.

0. Определим геометрические размеры образцов:

|         | L, mm | a, MM | l, mm |
|---------|-------|-------|-------|
| серебро | 15.0  | 0.09  | 11.0  |
| цинк    | 3.5   | 0.12  | 10.5  |

1. Проградуируем электромагнит, сняв зависимость B(I):

| I, A | B, м $T$ л |
|------|------------|
| 0.1  | 111        |
| 0.2  | 211        |
| 0.4  | 424        |
| 0.6  | 618        |
| 0.8  | 799        |
| 1.0  | 937        |
| 1.1  | 1006       |
| 1.2  | 1038       |
| 1.3  | 1080       |
| 1.4  | 1113       |
| 1.5  | 1129       |



2. Теперь снимем зависимости  $U(I_M)$  для разных значениях тока I через серебряный образец:

|           | I = 0.2  A |        | I = 0.4  A |        |        | I = 0.6 . | A      |        |
|-----------|------------|--------|------------|--------|--------|-----------|--------|--------|
| $I_M$ , A | U, дел     | U, мкВ | $I_M$ , A  | U, дел | U, мкВ | $I_M$ , A | U, дел | U, MKB |
| 0.0       | 1          |        | 0.0        | 0      |        | 0.0       | -1     |        |
| 0.2       | 2          | 0.04   | 0.2        | 1      | 0.04   | 0.2       | 2      | 0.12   |
| 0.4       | 3          | 0.08   | 0.4        | 3      | 0.12   | 0.4       | 5      | 0.24   |
| 0.6       | 4          | 0.12   | 0.6        | 4      | 0.16   | 0.6       | 7      | 0.32   |
| 0.8       | 5          | 0.16   | 0.8        | 6      | 0.24   | 0.8       | 10     | 0.44   |
| 1.0       | 5          | 0.16   | 1.0        | 7      | 0.28   | 1.0       | 11     | 0.48   |
| 1.2       | 6          | 0.20   | 1.2        | 8      | 0.32   | 1.2       | 13     | 0.56   |
| 1.4       | 6          | 0.20   | 1.4        | 8      | 0.32   | 1.4       | 13     | 0.56   |

|           | I = 0.8  A |        |           | I = 1.0 . | A      |           | I = 1.2 . | A      |
|-----------|------------|--------|-----------|-----------|--------|-----------|-----------|--------|
| $I_M$ , A | U, дел     | U, мкВ | $I_M$ , A | U, дел    | U, мкВ | $I_M$ , A | U, дел    | U, MKB |
| 0.0       | -1         |        | 0.0       | -1        |        | 0.0       | -1        |        |
| 0.2       | 2          | 0.12   | 0.2       | 3         | 0.16   | 0.2       | 4         | 0.20   |
| 0.4       | 6          | 0.28   | 0.4       | 8         | 0.36   | 0.4       | 10        | 0.44   |
| 0.6       | 9          | 0.40   | 0.6       | 12        | 0.52   | 0.6       | 15        | 0.64   |
| 0.8       | 13         | 0.56   | 0.8       | 17        | 0.72   | 0.8       | 20        | 0.84   |
| 1.0       | 15         | 0.64   | 1.0       | 20        | 0.84   | 1.0       | 24        | 1.00   |
| 1.2       | 16         | 0.68   | 1.2       | 22        | 0.92   | 1.2       | 26        | 1.08   |
| 1.4       | 18         | 0.76   | 1.4       | 23        | 0.96   | 1.4       | 28        | 1.16   |

Обратное направление вектора магнитной индукции:

|           | I = 1.2  A |        |  |  |  |  |
|-----------|------------|--------|--|--|--|--|
| $I_M$ , A | U, дел     | U, MKB |  |  |  |  |
| 0.0       | 6          |        |  |  |  |  |
| 0.2       | 10         | 0.16   |  |  |  |  |
| 0.4       | 17         | 0.44   |  |  |  |  |
| 0.6       | 22         | 0.64   |  |  |  |  |
| 0.8       | 28         | 0.88   |  |  |  |  |
| 1.0       | 32         | 1.04   |  |  |  |  |
| 1.2       | 35         | 1.16   |  |  |  |  |
| 1.4       | 38         | 1.28   |  |  |  |  |

Пересчет из делений в милливольты осуществлялся исходя из соотношения 1 дел = 0.04 мкВ в данном режиме. Значение  $U_0$  записано в первой строке для каждой из таблиц ( $I_M=0$ ), пересчет из делений в мВ осуществляется уже после вычитания  $U_0$  из измеряемого напряжения. Погрешность приборную  $\sigma_U$  примем равной 0.02 мкВ, на ее фоне погрешностью силы тока  $\sigma_I$ , равно как и погрешностью  $\sigma_B$ , можно пренебречь.

3. Имея зависимость  $B(I_M)$ , получим зависимости  $\varepsilon(B)$ :

| I=0    | I = 0.2  A |        | I = 0.4  A |        | 0.6 A      |
|--------|------------|--------|------------|--------|------------|
| U, мкВ | B, м $T$ л | U, мкВ | B, м $T$ л | U, MKB | B, м $T$ л |
| 0.04   | 210        | 0.04   | 210        | 0.12   | 210        |
| 0.08   | 420        | 0.12   | 420        | 0.24   | 420        |
| 0.12   | 620        | 0.16   | 620        | 0.32   | 620        |
| 0.16   | 800        | 0.24   | 800        | 0.44   | 800        |
| 0.16   | 940        | 0.28   | 940        | 0.48   | 940        |
| 0.20   | 1010       | 0.32   | 1010       | 0.56   | 1010       |
| 0.20   | 1040       | 0.32   | 1040       | 0.56   | 1040       |

| I=0    | ).8 A      | I = 1.0  A |            | I=1    | 1.2 A      |
|--------|------------|------------|------------|--------|------------|
| U, мкВ | B, м $T$ л | U, мкВ     | B, м $T$ л | U, MKB | B, м $T$ л |
| 0.12   | 210        | 0.16       | 210        | 0.20   | 210        |
| 0.28   | 420        | 0.36       | 420        | 0.44   | 420        |
| 0.40   | 620        | 0.52       | 620        | 0.64   | 620        |
| 0.56   | 800        | 0.74       | 800        | 0.84   | 800        |
| 0.64   | 940        | 0.84       | 940        | 1.00   | 940        |
| 0.68   | 1010       | 0.92       | 1010       | 1.08   | 1010       |
| 0.76   | 1040       | 0.96       | 1040       | 1.16   | 1040       |

Таким образом, получаем семейство графиков:



Определим  $k=\Delta \varepsilon/\Delta B$  по МНК:

| I, A | $k,  \mathrm{B}/\mathrm{T}$ л· $10^{-6}$ | $\sigma_k$ , В/Тл· $10^{-6}$ |
|------|------------------------------------------|------------------------------|
| 0.2  | 0.20                                     | 0.01                         |
| 0.4  | 0.34                                     | 0.02                         |
| 0.6  | 0.53                                     | 0.03                         |
| 0.8  | 0.71                                     | 0.03                         |
| 1.0  | 0.96                                     | 0.01                         |
| 1.2  | 1.12                                     | 0.01                         |



Теперь определим угловой коэффициент по МНК, пользуясь формулами:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2},$$

$$\sigma_k \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2},$$

где предполагается линейная заивисимость y=kx+b. Таким образом,  $\Delta k/\Delta I=95\cdot 10^{-8}\frac{\rm B}{\rm A\cdot T_{II}}$ . Зная его, получаем

$$R_x = -k \cdot a = -0.86 \cdot 10^{-10} \frac{\text{M}^3}{\text{K}_{\text{JI}}}$$

Определим по МНК случайную погрешность:

$$\sigma_{\rm c, yq} = 0.02 \cdot 10^{-10} \frac{{\rm M}^3}{{\rm K}_{\rm J}}$$

Приборную оценим по формуле

$$\sigma_{
m приб} = \sqrt{\left(\sum_{i=0}^n rac{\partial f}{\partial x_i} \sigma_{x_i}
ight)^2},$$

считая  $R_x$  функцией от U, I:

$$\sigma_{\text{приб}} \approx 0.04 \cdot 10^{-10} \frac{\text{м}^3}{\text{K}_{\text{Л}}}$$

тогда

$$\sigma_{R_x} = \sqrt{\sigma_{\text{приб}}^2 + \sigma_{\text{случ}}^2} = 0.04 \cdot 10^{-10} \frac{\text{м}^3}{\text{Kл}}$$

ИЛИ

$$R_x^{\text{серебро}} = (-0.84 \pm 0.04) \cdot 10^{-10} \frac{\text{м}^3}{\text{K}_{\text{Л}}}$$

4. Построим аналогичные зависимости для цинкового образца. Соответствующая зависимость для образца из цинка:

|           | I = 1.0  A |        |            |  |  |  |
|-----------|------------|--------|------------|--|--|--|
| $I_M$ , A | U, дел     | U, мкВ | B, м $T$ л |  |  |  |
| 0.0       | 13         |        |            |  |  |  |
| 0.2       | 19         | 0.24   | 210        |  |  |  |
| 0.4       | 24         | 0.44   | 420        |  |  |  |
| 0.6       | 29         | 0.64   | 620        |  |  |  |
| 0.8       | 34         | 0.84   | 800        |  |  |  |
| 1.0       | 38         | 1.00   | 940        |  |  |  |
| 1.2       | 40         | 1.08   | 1010       |  |  |  |
| 1.4       | 42         | 1.16   | 1040       |  |  |  |



Аналогично найдем угловой коэффициент и определим его погрешность, используя МНК:

$$k = \frac{\Delta \varepsilon}{\Delta B} = 108 \cdot 10^{-8} \frac{\mathrm{B}}{\mathrm{Tл}}$$
 $\sigma_{\mathrm{случ}} = 3 \cdot 10^{-8} \frac{\mathrm{B}}{\mathrm{Tл}}$ 

Считая k = f(U, I):

$$\sigma_{
m приб} pprox 5 \cdot 10^{-8} rac{
m B}{
m Tл}$$

Отсюда получаем:

$$\sigma_k = \sqrt{\sigma_{\text{приб}}^2 + \sigma_{\text{случ}}^2} = 6 \cdot 10^{-8} \frac{\text{B}}{\text{Тл}}$$

Таким образом:

$$k = (108 \pm 6) \cdot 10^{-8} \frac{B}{T_{\pi}}$$

Отсюда несложно получить:

$$R_x^{\text{цинк}} = -k \cdot \frac{a}{I} = (-1.30 \pm 0.07) \cdot 10^{-10} \frac{B}{T_{\text{Л}}}$$

5. Определим напряжения  $U_{34}$  для серебра и цинка в отсутствие магнитного поля:

|         | $U_{34}$ , дел | $U_{34}$ , мк ${ m B}$ |
|---------|----------------|------------------------|
| серебро | 27             | 270                    |
| цинк    | 24             | 240                    |

В данном режиме измерений 75 делениям соответствовало 750 мкВ, откуда 1 дел = 10 мкВ. Отсюда погрешность  $\sigma_{U_{34}}$  примем равной 5мкВ. Тогда можем найти удельные проводимости по формуле

$$\sigma = rac{IL_{34}}{U_{34}al}:$$
  $\sigma^{
m cepe6po} = (56.1 \pm 1.0) \cdot 10^6 rac{
m O_M}{
m M}$   $\sigma^{
m цинк} = (11.5 \pm 0.2) \cdot 10^6 rac{
m O_M}{
m M}$ 

Определим n, зная значение постоянной Холла:

$$n = -\frac{1}{R_x q} = -\frac{1}{R_x e}$$

При этом погрешность можно определить, считая n = f(R):

$$n^{ ext{cepe6po}} = (0.74 \pm 0.04) \cdot 10^{29} \text{M}^{-3}$$
  
 $n^{ ext{IUHK}} = (0.48 \pm 0.03) \cdot 10^{29} \text{M}^{-3}$ 

6. Теперь, зная основной тип носителей заряда и их концентрацию, можем найти подвижность:

$$\sigma = enb \implies b = \frac{\sigma}{en},$$

$$\Delta b = \sqrt{\left(\frac{\partial f}{\partial n}\sigma_n\right)^2 + \left(\frac{\partial f}{\partial \sigma}\Delta\sigma\right)^2}$$

$$b^{\text{серебро}} = (47 \pm 3)\frac{\text{см}^2}{\text{B} \cdot \text{c}}$$

$$b^{\text{ЦИНК}} = (15 \pm 3)\frac{\text{см}^2}{\text{B} \cdot \text{c}}$$

Таким образом, в данной лабораторной работе мы определили концентрацию носителей зарядов в металлах, таких как серебро и цинк, а также исследовали проявления эффекта Холла в этих металлах.