

a) ► Bestimmen der ersten Ableitung und Angeben der benutzten Ableitungsregeln (6BE)

Betrachtest du den Funktionsterm der Funktion f_k näher, so kannst du erkennen, dass f_k das Produkt einer linearen Funktion und einer Exponentialfunktion ist. Das heißt, zum Ableiten dieser Funktion wird die Produktregel, für das Produkt der Funktionen, und die Kettenregel, für die Exponentialfunktion, benötigt.

Erste Ableitung:

$$f_k(x) = (1-x) \cdot e^{k-kx}$$

$$f_k'(x) = -e^{k-k \cdot x} + (1-x) \cdot (-k) \cdot e^{k-k \cdot x}$$

$$f_k'(x) = -e^{k-k \cdot x} + (-k+kx) \cdot e^{k-k \cdot x} \qquad | \text{Ausklammern von } e^{k-k \cdot x}$$

$$f_k'(x) = e^{k-k \cdot x} \cdot (-1 + (-k+kx))$$

$$f_k'(x) = e^{k-k \cdot x} \cdot (kx-k-1) \qquad | \text{Ausklammern von } k \text{ in } e^{k-k \cdot x}$$

$$f_k'(x) = e^{k \cdot (1-x)} \cdot (kx-k-1)$$

Durch Umkehren der Vorzeichen in $e^{k \cdot (1-x)}$ kann dieser Teil in den Nenner des Bruchs gebracht werden.

$$f_k'(x) = \frac{kx - k - 1}{e^{k \cdot (x - 1)}}$$

Damit hast du die erste Ableitung von f_k bestimmt und gleichzeitig gezeigt, dass diese sich wie in der Aufgabenstellung darstellen lässt.

b) (1) ► Schnittpunkte mit den Koordinatenachsen

(10BE)

(1) Schnittpunkte des Graphen von f_2 mit der x - Achse:

Die Schnittpunkte des Graphen von f_2 mit der x - Achse bestimmst du, indem du den Funktionsterm von f_2 gleich null setzt und die resultierende Gleichung nach x auflöst:

$$f_2(x)=0$$

$$0=(1-x)\cdot \mathrm{e}^{2-2\cdot x} \qquad | \text{ Anwenden des Satzes vom Nullprodukt, da } \mathrm{e}^{2-2\cdot x}>0 \text{ für alle } x\in\mathbb{R}$$

$$0=1-x \qquad | +x$$

$$x=1$$

Der Graph von f_2 schneidet die x - Achse bei $x_N = 1$.

(2) Schnittpunkt des Graphen von f_2 mit der y - Achse:

Den Schnittpunkt des Graphen von f_2 mit der y - Achse bestimmst du, indem du den Funktionswert von f_2 für x=0 berechnest:

$$f(0) = (1-0) \cdot e^{2-2\cdot 0} = e^2 \approx 7,389.$$

Der Schnittpunkt von f_2 mit der y - Achse liegt bei $y = e^2 \approx 7,389$.

(2) ► Untersuchen des Graphen von f_2 auf Extrempunkte

1. Schritt: Nullstellen der ersten Ableitung

Extrempunkte befinden sich da, wo die erste Ableitung der betrachteten Funktion Nullstellen besitzt. Die erste Ableitung von f_k hast du bereits im vorherigen Aufgabenteil bestimmt. Setze für k den Wert 2 ein, um mit dieser nun arbeiten zu können.

Um nun mögliche Extremstellen zu bestimmen, setzt du die erste Ableitung von f_2 gleich null und löst die resultierende Gleichung nach x auf:

$$f_2'(x) = \frac{2 \cdot x - 2 - 1}{e^{2 \cdot (x - 1)}}$$

$$0 = \frac{2 \cdot x - 3}{e^{2 \cdot (x - 1)}} \qquad | \text{ Anwenden des Satzes vom Nullprodukt, da } e^{2 \cdot (x - 1)} > 0 \text{ für alle } x \in \mathbb{R}$$

$$0 = 2 \cdot x - 3 \qquad | -2 \cdot x$$

$$-2 \cdot x = -3 \qquad | : (-2)$$

$$x = \frac{3}{2}$$

Die Extremstelle von f_2 befindet sich demnach bei $x_E = \frac{3}{2}$.

2. Schritt: Bestimmen der Art der Extremstelle

Die Art der Extremstelle bestimmst du mit Hilfe der zweiten Ableitungsfunktion von f_2 . Nimmt diese für eine Extremstelle einen Wert kleiner Null an, so befindet sich an dieser Extremstelle ein lokales Maximum. Nimmt sie hingegen für eine Extremstelle einen Wert größer null an, so befindet sich ein Minimum an der betrachteten Extremstelle.

Bestimme die zweite Ableitung $f_2^{\prime\prime}$ wie folgt mit Hilfe der Quotientenregel:

$$f_2'(x) = \frac{2 \cdot x - 3}{e^{2 \cdot (x - 1)}}$$

$$f_2''(x) = \frac{2 \cdot e^{2 \cdot (x - 1)} - (2 \cdot x - 3) \cdot 2 \cdot e^{2 \cdot (x - 1)}}{(e^{2 \cdot (x - 1)})^2}$$

$$f_2''(x) = \frac{2 \cdot e^{2 \cdot (x - 1)} - 2 \cdot x \cdot 2 \cdot e^{2 \cdot (x - 1)} + 6 \cdot e^{2 \cdot (x - 1)}}{e^{4 \cdot (x - 1)}}$$

$$f_2''(x) = \frac{e^{2 \cdot (x - 1)} \cdot (8 - 4 \cdot x)}{e^{4 \cdot (x - 1)}}$$

$$f_2''(x) = \frac{8 - 4 \cdot x}{e^{2 \cdot (x - 1)}}$$

Setze nun die Extremstelle $x_E = \frac{3}{2}$ für x in die zweite Ableitung f_2'' von f_2 ein, um deren Art zu bestimmen:

$$f_2''(x_E) = \frac{8 - 4 \cdot \frac{3}{2}}{e^{2 \cdot (\frac{3}{2} - 1)}}$$
$$f_2''(x_E) = \frac{2}{e^1} \approx 0,736$$

Da f_2'' für $x_{\rm E}$ einen Wert größer Null annimmt, befindet sich bei $x_{\rm E}$ ein lokales Minimum der Funktion f_2 .

3. Schritt: Berechnen der y - Koordinate des Tiefpunktes

Die y - Koordinate des Tiefpunkts bei $x_{\rm E}=\frac{3}{2}$ berechnest du nun, indem du $x_{\rm E}$ in den Funktionsterm von f_2 einsetzt:

$$f_2(x) = (1-x) \cdot e^{2-2x}$$

$$f_2(x_E) = (1-\frac{3}{2}) \cdot e^{2-2\frac{3}{2}}$$

$$f_2(x_E) = -\frac{1}{2} \cdot e^{-1} \approx -0,184$$

Die Koordinaten des Tiefpunkts des Graphen von f_2 sind demnach: $T(\frac{3}{2}|-0,184)$.

(3) ► Untersuchen des Grenzwertverhaltens der Funktion

(1) Grenzwert von $f_2(x)$ für $x \to +\infty$:

$$\lim_{x \to +\infty} f_2(x) = \lim_{x \to +\infty} \left((1-x) \cdot \underbrace{e^{(2-2 \cdot x)}}_{\to 0} \right) = 0$$

Da die Exponentialfunktion ein stärkeres Wachstum als der lineare Teil der Funktionsgleichung von f_2 besitzt, wird dieser Teil der Funktionsgleichung von f_2 bei der Grenzwertbetrachtung hauptsächlich betrachtet. Da der Exponent der Exponentialfunktion für $x \to +\infty$ gegen $-\infty$ strebt, wird der Betrag der Exponentialfunktion immer kleiner. Da der lineare Teil der Funktionsgleichung für $x \to +\infty$ negativ ist, nähert sich f_2 von "unten" an die x - Achse an.

(2) Grenzwert von $f_2(x)$ für $x \to -\infty$:

$$\lim_{x \to -\infty} f_2(x) = \lim_{x \to +\infty} \left((1-x) \cdot \underbrace{e^{(2-2\cdot x)}}_{\to +\infty} \right) = +\infty$$

Da auch hier die Exponentialfunktion ein stärkeres Wachstum als der lineare Teil der Funktionsgleichung von f_2 besitzt, wird dieser Teil der Funktionsgleichung von f_2 bei der Grenzwertbetrachtung hauptsächlich betrachtet. Da der Exponent der Exponentialfunktion für $x \to -\infty$ gegen $+\infty$ strebt, wird der Betrag der Exponentialfunktion immer größer. Da der lineare Teil der Funktionsgleichung für $x \to +\infty$ positiv ist, nähert sich f_2 von in positiver Richtung an die y - Achse an.

(4) ► Entscheiden, welcher der Graphen zu f_2 gehören

Aufgrund der oben durchgeführten Grenzwertbetrachtung von f_2 , können zwei Graphen direkt ausgeschlossen werden. Betrachtet werden im Folgenden also nur noch jene Graphen, welche aus positiver y - Richtung "kommen" und sich nach der Nullstelle der Graphen bei $x_N=1$ von "unten" an die x - Achse annähern.

Bei der Untersuchung des Graphen von f_2 auf Extrempunkte hast du herausgefunden, dass der Graph f_2 bei $T(\frac{3}{2}|-0,184)$ einen Tiefpunkt besitzt. Betrachtest du nun die Funktionswerte der übrigen Graphen bei $x=\frac{3}{2}$, so kannst du den zu f_2 zugehörigen Graphen direkt über die y- Koordinate des Tiefpunkts bestimmen.

(8BE)

Der Graph von f_2 ist demnach dieser:

c) \blacktriangleright Bestimmen der Lage und Art der Extrempunkte des Graphen von f_k

1. Schritt: Nullstellen der ersten Ableitung

Extremstellen befinden sich da, wo die erste Ableitung der betrachteten Funktion Nullstellen besitzt. Die erste Ableitung von f_k hast du bereits im Aufgabenteil a bestimmt, setzte diese gleich null und löse die resultierende Gleichung nach x auf:

$$f_k'(x) = \frac{kx - k - 1}{e^{k \cdot (x - 1)}}$$

$$f_k'(x) = 0$$

$$0 = \frac{kx - k - 1}{e^{k \cdot (x - 1)}} \qquad | \text{ Anwenden des Satzes vom Nullprodukt, da } e^{k \cdot (x - 1)} > 0 \text{ für alle } x \in \mathbb{R}$$

$$0 = kx - k - 1 \qquad | -k \cdot x$$

$$-k \cdot x = -k - 1 \qquad | : (-k)$$

$$x = \frac{k + 1}{k}$$

Die Extrempunkte des Graphen der Scharfunktion befinden sich bei $x_E = \frac{k+1}{k}$.

2. Schritt: Bestimmen der Art der Extremstelle

Die Art der Extremstelle bestimmst du nun mit Hilfe der zweiten Ableitungsfunktion $\operatorname{von} f_k$. Nimmt diese für eine Extremstelle einen Wert kleiner Null an, so befindet sich an dieser Extremstelle ein lokales Maximum. Nimmt sie hingegen für eine Extremstelle einen Wert größer null an, so befindet sich ein Minimum an der betrachteten Extremstelle.

Bestimme die zweite Ableitung $f_k^{\prime\prime}$ wie folgt mit Hilfe der Quotientenregel:

$$\begin{split} f_k'(x) &= \frac{kx - k - 1}{\mathrm{e}^{k \cdot (x - 1)}} \\ f_k''(x) &= \frac{k \cdot \mathrm{e}^{k \cdot (x - 1)} - (k \cdot x - k - 1) \cdot k \cdot \mathrm{e}^{k \cdot (x - 1)}}{\left(\mathrm{e}^{k \cdot (x - 1)}\right)^2} \\ f_k''(x) &= \frac{k \cdot \mathrm{e}^{k \cdot (x - 1)} \cdot (1 - (k \cdot x - k - 1))}{\mathrm{e}^{2 \cdot k \cdot (x - 1)}} \\ f_k''(x) &= \frac{k \cdot (1 - k \cdot x + k + 1)}{\mathrm{e}^{k \cdot (x - 1)}} \\ f_k''(x) &= \frac{-k^2 \cdot x + k^2 + 2 \cdot k}{\mathrm{e}^{k \cdot (x - 1)}} \end{split}$$

Setzte nun die Extremstelle $x_E = \frac{k+1}{k}$ für x in die zweite Ableitung f_k'' von f_k ein, um deren Art zu bestimmen:

$$f_k''(x_E) = \frac{-k^2 \cdot \frac{k+1}{k} + k^2 + 2 \cdot k}{e^{k \cdot (\frac{k+1}{k} - 1)}}$$

$$f_k''(x_E) = \frac{-k \cdot (k+1) + k^2 + 2 \cdot k}{e^{k+1-k}}$$

$$f_k''(x_E) = \frac{-k^2 - k + k^2 + 2 \cdot k}{e^1}$$

$$f_k''(x_E) = \frac{k}{e}$$

Da e > 0 ist, bestimmt k die Art der Extremstelle. Besitzt k also einen Wert kleiner Null an, so befindet sich an der Extremstelle der Scharfunktion f_k ein lokales Maximum. Besitzt k hingegen einen Wert größer Null, so befindet sich an der Extremstelle ein lokales Minimum.

3. Schritt: Berechnen der y - Koordinate der Extremstelle

Die y - Koordinate der Extremstelle bei $x_{\rm E} = \frac{k+1}{k}$ berechnest du nun, indem du $x_{\rm E}$ in den Funktionsterm von f_k einsetzt:

$$f_k(x) = (1-x) \cdot e^{k-kx}$$

$$f_k(\mathbf{x}_{\mathsf{E}}) = \left(1 - \frac{k+1}{k}\right) \cdot e^{k-k \cdot \frac{k+1}{k}}$$

$$f_k(x_{\mathsf{E}}) = \left(\frac{k}{k} - \frac{k+1}{k}\right) \cdot e^{k - (k+1)}$$

$$f_k(\mathbf{x}_{\mathsf{E}}) = \left(\frac{k - (k+1)}{k}\right) \cdot \mathrm{e}^{-1}$$

$$f_k(x_E) = \left(\frac{-1}{k}\right) \cdot e^{-1}$$

$$f_k(\mathbf{x}_{\mathsf{E}}) = \frac{-1}{k \cdot \mathsf{e}^1}$$

Die Koordinaten der Extrempunkte E_k des Graphen der Scharfunktion f_k sind: $E_k(\frac{k+1}{k}|\frac{-1}{k\cdot e})$

d) (1) ► Nachweisen, dass sich alle Scharkurven in einem Punkt berühren

(8BE)

Dass alle Kurven der Scharfunktion sich in einem Punkt berühren weist du nach, indem du zuerst den Schnittpunkt P von zwei Kurven mit verschiedenen k berechnest. Damit ein Berührpunkt vorliegt, muss weiterhin gelten, dass alle Graphen der Scharfunktion in jenem Punkt die gleiche Steigung besitzen. Hast du P berechnet, so weist du nach, dass sich alle Kurven in einem Punkt berühren, indem du eine Punktprobe mit diesem Schnittpunkt und f_k durchführst.

Hier werden zum beispielsweise die Scharkurven f_1 mit k=1 mit f_2 mit k=2 geschnitten:

$$f_1(x) = (1-x) \cdot e^{1-1 \cdot x}$$

 $f_2(x) = (1-x) \cdot e^{2-2 \cdot x}$

Schnittpunkt P:

$$\begin{split} f_1(x) &= f_2(x) \\ (1-x) \cdot \mathrm{e}^{1-1 \cdot x} &= (1-x) \cdot \mathrm{e}^{2-2 \cdot x} & |: (1-x) \\ &= \mathrm{e}^{1-1 \cdot x} = \mathrm{e}^{2-2 \cdot x} & | & \text{Anwenden der Umkehrfunktion von e} \\ &\ln \left(\mathrm{e}^{1-1 \cdot x} \right) &= \ln \left(\mathrm{e}^{2-2 \cdot x} \right) \\ &1-1 \cdot x = 2-2 \cdot x & | & +2 \cdot x | -1 \\ &x_P &= 1 \end{split}$$

y - Koordinate von P:

 x_P in $f_1(x)$:

$$f_1(x_P) = (1-1) \cdot e^{1-1 \cdot 1} = 0 \cdot e^0 = 0$$

 \implies Der Schnittpunkt P von f_1 und f_2 hat die Koordinaten: P(1|0)

Zeige jetzt durch die Punktprobe von f_k mit Schnittpunkt P, dass sich alle Scharkurven in einem Punkt schneiden:

$$f_k(x) = (1-x) \cdot e^{k-k \cdot x}$$

$$f_k(x_P) = (1-1) \cdot e^{k-k \cdot 1}$$

$$0 = 0 \cdot e^0$$

$$0 = 0$$

Zeige durch Berechnung von $f'_k(x_P)$, dass sich alle Graphen der Scharfunktion im Punkt P berühren:

$$f'_{k}(x) = e^{k \cdot (1-x)} \cdot (kx - k - 1)$$

$$f'_{k}(x_{P}) = e^{k \cdot (1-1)} \cdot (k \cdot 1 - k - 1)$$

$$f'_{k}(x_{P}) = -1$$

Da $f'_k(x)$ unabhängig von k an der Stelle x_P eine Steigung von -1 besitzt, hast du gezeigt das alle Scharkurven bei x_P die gleiche Steigung besitzen.

 \implies Da die Punktprobe von P und der Scharkurve f_k zu einer wahren Aussage führt und alle Graphen der Scharkurven bei P die gleiche Steigung besitzen wurde gezeigt, dass sich alle Scharkurven in einem Punkt berühren.

(2) ► Zeigen, das es kein weiterer Berührpunkt der Scharkurven existiert

Das es außer P keinen weiteren Berührpunkt der Scharkurven gibt zeigst du, indem du allgemein beweist, dass sich die Scharkurven für unterschiedliche k nur im Punkt P berühren.

Nimm dazu ein k_1 , $k_2 \in \mathbb{R}$ mit $k_1 \neq k_2$ an und schneide die zugehörigen Scharkurven:

$$f_{k_{1}}(x) = f_{k_{2}}(x)$$

$$(1-x) \cdot e^{k_{1}-k_{1} \cdot x} = (1-x) \cdot e^{k_{2}-k_{2} \cdot x} \qquad | -((1-x) \cdot e^{k_{1}-k_{1} \cdot x})$$

$$0 = (1-x) \cdot e^{k_{2}-k_{2} \cdot x} - (1-x) \cdot e^{k_{1}-k_{1} \cdot x} \qquad | \text{Ausklammern von } (1-x)$$

$$0 = (1-x) \cdot \left(e^{k_{2}-k_{2} \cdot x} - e^{k_{1}-k_{1} \cdot x}\right) \qquad | \text{Satz vom Nullprodukt: } 1. \text{ Schnittstelle bei } x = 1$$

$$0 = e^{k_{2}-k_{2} \cdot x} - e^{k_{1}-k_{1} \cdot x} \qquad | +e^{k_{1}-k_{1} \cdot x}$$

$$e^{k_{1}-k_{1} \cdot x} = e^{k_{2}-k_{2} \cdot x} \qquad | \text{Anwenden der Umkehrfunktion von e}$$

$$\ln\left(e^{k_{1}-k_{1} \cdot x}\right) = \ln\left(e^{k_{2}-k_{2} \cdot x}\right)$$

$$k_{1}-k_{1} \cdot x = k_{2}-k_{2} \cdot x \qquad | +k_{2} \cdot x | -k_{1}$$

$$k_{2} \cdot x - k_{1} \cdot x = k_{2}-k_{1} \qquad | \text{Ausklammern von } x$$

$$x \cdot (k_{2}-k_{1}) = k_{2}-k_{1} \qquad | \text{Susklammern von } x$$

$$| +k_{2} \cdot x | -k_{1} \qquad | \text{Ausklammern von } x$$

$$| +k_{2} \cdot x | -k_{1} \qquad | \text{Ausklammern von } x$$

$$| +k_{2} \cdot x | -k_{1} \qquad | \text{Ausklammern von } x$$

$$| +k_{2} \cdot x | -k_{1} \qquad | \text{Ausklammern von } x$$

$$| +k_{2} \cdot x | -k_{1} \qquad | \text{Ausklammern von } x$$

$$| +k_{2} \cdot x | -k_{1} \qquad | \text{Ausklammern von } x$$

$$| +k_{2} \cdot x | -k_{1} \qquad | \text{Ausklammern von } x$$

$$| +k_{2} \cdot x | -k_{1} \qquad | \text{Ausklammern von } x$$

Betrachtest du den oben bestimmten Term für die zweite Schnittstelle x_S der Scharkurven f_{k_1} und f_{k_2} näher, so kannst du erkennen, das sich für unterschiedliche k immer $x_S = 1$ ergibt. Beispiel:

$$k_1 = 1$$
 und $k_2 = 2$: $x_S = \frac{2-1}{2-1} = \frac{1}{1} = 1$.

Allgemein zeigst du diese Erkenntnis nun, indem du den Term für die Schnittstelle bei x_S so weit wie möglich kürzt:

$$x_{S} = \frac{k_{2} - k_{1}}{k_{2} - k_{1}}$$

$$x_{5} = 1$$

Da sich bei x_S eine doppelte Schnittstelle befindet, hast du gezeigt, dass sich alle Scharkurven im Punkt P berühren. Des Weiteren hast du gezeigt, dass außer P kein weiterer Schnittpunkt der Scharkurven existiert.

e) **Erläutern der angegebenen Schritte zur Flächeninhaltsberechnung**

(8BE)

Erkläre die angegebene Rechnung Zeile für Zeile. Deine Erklärung könnte so aussehen:

Erste Zeile:

Die erste Zeile der Berechnung zeigt das Integral über die Scharkurve f_k in den Grenzen $x_u=1$ und $x_o=b$ mit b>1. Das heißt, das betrachtete Integral gibt die Fläche, welche durch die zur y - Achse parallelen Gerade bei x=b begrenzt wird, zwischen Scharkurve f_k und x - Achse an.

Auf der rechten Seite des Gleichheitszeichen wurde eine Stammfunktion der Scharkurven f_k gebildet, welche in Abhängigkeit von b und k integriert werden soll.

Zweite Zeile:

In der zweiten Zeile der Flächeninhaltsberechnung wurde der oben aufgestellte Term zur Berechnung der Fläche zwischen f_k und der x - Achse, in den Grenzen $x_u = 0$ und $x_o = b$, so weit wie möglich vereinfacht. Entstanden dabei, ist eine Funktion, welche in Abhängigkeit von b die Fläche zwischen Scharkurve f_k und x - Achse angibt:

$$A_k(b) = \frac{1}{k} \cdot \left(b - 1 + \frac{1}{k} \right) \cdot e^{k \cdot (1 - b)} - \frac{1}{k^2}$$

Dritte Zeile:

In der dritten Zeile wird der Grenzwert der Flächeninhaltsfunktion $A_k(b)$ für $b \to \infty$ gebildet:

Im angegebenen Kasten resultiert daraus der Grenzwert $-\frac{1}{k^2}$. Ein Vergleich mit dem Funktionsterm $A_k(b)$ zeigt: Damit dieser Grenzwert zustande kommt, muss der Ausdruck $\frac{1}{k} \cdot \left(b-1+\frac{1}{k}\right) \cdot \mathrm{e}^{k(1-b)}$ verschwinden, also den Grenzwert Null annehmen. Deine Aufgabe ist es nun, zu betrachten, für welche Werte von k dies geschieht. Betrachte zunächst den Grenzwert von $A_k(b)$ für $b \to \infty$:

$$\lim_{b \to \infty} A_k(b) = \lim_{b \to +\infty} \left(\frac{1}{k} \cdot \left(b - 1 + \frac{1}{k} \right) \cdot e^{k \cdot (1-b)} - \frac{1}{k^2} \right)$$

Um den gewünschten Grenzwert zu erhalten, muss also der Ausdruck $e^{k(1-b)}$ für $b \to \infty$ gegen Null streben. Dann wird das gesamte Produkt Null, weil sich der Exponentialterm gegenüber dem linearen Term durchsetzt.

Dies ist dann der Fall, wenn der Exponent $k \cdot (1-b)$ für $b \to \infty$ gegen $-\infty$ strebt. Betrachte also, für welche Werte von k dies passiert:

Für $b \to \infty$ strebt der Ausdruck (1-b) gegen $-\infty$. Um im gesamten Exponenten den Grenzwert $-\infty$ zu erhalten, muss also gelten: k > 0.

Dann gilt nämlich:

$$\lim_{b \to \infty} A_k(b) = \lim_{b \to +\infty} \left(\frac{1}{k} \cdot \left(b - 1 + \frac{1}{k} \right) \cdot \underbrace{e^{k \cdot (1 - b)}}_{\to 0} \right)$$
$$= \frac{1}{k} \cdot 0 - \frac{1}{k^2} = -\frac{1}{k^2}$$

Damit folgt:

Diese Schlussweise ist für alle Werte von k > 0 korrekt.