[Homework 3] Martingale and Stopping Time

Problem 1 (A maximal inequality)

Let $\{Z_t\}_{t\geq 0}$ be a martingale with respect to a filtration $\{\mathcal{F}_t\}_{t\geq 1}$.

:::info

(a) Prove that for any $n \in \mathbb{N}$,

$$\sum_{k=1}^n \mathbf{E}\left[(Z_k-Z_{k-1})^2
ight] = \mathbf{E}\left[Z_n^2
ight] - \mathbf{E}\left[Z_0^2
ight].$$

:::

:::info

(b) Let au be a stopping time for the martingale $\{Z_t\}_{t>0}$. Define another sequence $\{Z_t'\}_{t>0}$ as

$$Z_t' = egin{cases} Z_t & ext{if } t < au; \ Z_ au & ext{if } t \geq au. \end{cases}$$

Prove that $\{Z_t'\}_{t\geq 0}$ is also a martingale.

:::

:::infc

(c) Let X_1,\ldots,X_n be independent random variables with $\mathbf{E}\left[X_i\right]=0$ for every $i\in[n]$. Define $S_i=\sum_{k=1}^i X_k$ for every $i\in[n]$.

Prove that for every $\lambda > 0$,

$$\mathbf{Pr}\left[\max_{1\leq k\leq n}|S_k|\geq \lambda
ight]\leq rac{1}{\lambda^2}\sum_{k=1}^n\mathbf{E}\left[X_k^2
ight].$$

:::

Problem 2 (Biased random walk)

We study the biased random walk in this exercise. Let $Z_t=\sum_{i=1}^t X_i$ where each $X_i\in\{-1,1\}$ is independent, and satisfies $\mathbf{Pr}\ [X_i=-1]=p\in(0,1)$.

...info

(a) Define $S_t = \sum_{i=1}^t (X_i + 2p - 1)$. Show that $\{X_t\}_{t \geq 0}$ is a martingale.

:::

:::info

(b) Define $P_t = \left(rac{p}{1-p}
ight)^{Z_t}$. Show that $\{P_t\}_{t\geq 0}$ is a martingale.

:::

:::info

(c) Suppose the walk stops either when $Z_t=-a$ or $Z_t=b$ for some a,b>0. Let au be the stopping time. Compute ${\bf E}$ [au].

:::

Problem 3 (Learning theory)

A simple mathematical model for Machine Learning is as follows:

- There is a finite set \mathcal{X} of domain.
- Each data point $x \in \mathcal{X}$ is associated with a label $\ell(x) \in \{0,1\}$.
- The training data $S = \{(x_1, \ell(x_1)), (x_2, \ell(x_2)), \dots, (x_m, \ell(x_m))\}$ is a collection of pairs in $\mathcal{X} \times \{0, 1\}$, usually known by the learner.
- There is a class $\mathcal H$ of *hypothesis* where each $h \in \mathcal H$ is a function from $\mathcal X$ to $\{0,1\}$.
- Let $h^* = \arg\min_{h \in \mathcal{H}} \sum_{x \in \mathcal{X}} \mathbf{1}[h(x) \neq \ell(x)]$ be the best hypothsis fitting the data. The goal of a learning algorithm is to find (or approximate) h^* provided the training data S.

Throughout this problem, we fix a domain \mathcal{X} and a class of hypothesis \mathcal{H} .

Let $h:\mathcal{X} \to \{0,1\}$ be a function. Define the *average loss* L(h) as

$$L(h) riangleq rac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \mathbf{1}[h(x)
eq \ell(x)].$$

That is, L(h) is the ratio of data points that $h(\cdot)$ and $\ell(\cdot)$ do not match.

Given a training set $S=\{(x_1,\ell(x_1)),\ldots,(x_m,\ell(x_m))\}$, we can also define the *average loss* $L_S(h)$ of h on S as

$$L_S(h) riangleq rac{1}{|S|} \sum_{x \in S} \mathbf{1}[h(x)
eq \ell(x)].$$

Intuitively, a training set S is good if $L_S(h)$ is close to L(h) for every $h \in \mathcal{H}$. As a result, we can define the notion of *representativeness* of S as

$$\mathtt{Rep}(S) riangleq \sup_{h \in \mathcal{H}} (L(h) - L_S(h)).$$

If ${\rm Rep}(S)$ is small, then a simple learning algorithm works well: choose the one performing best on S.

:::info

(a) Let $\widehat{h}=rg\min_{h\in\mathcal{H}}\sum_{(x,\ell(x))\in S}\mathbf{1}[h(x)
eq\ell(x)].$ Prove that if $exttt{Rep}(S)\leq rac{arepsilon}{2}$, then

$$L(\widehat{h}) \leq L(h^*) + \varepsilon.$$

:::

A natural question that arises is how to estimate $\operatorname{Rep}(S)$ when only S is known. A heuristic approach would be to randomly split S into two sets, namely S_1 and S_2 , which are then treated as the validation set and the training set respectively. Intuitively, a good S should have small

$$\sup_{h\in\mathcal{H}}\left(L_{S_1}(h)-L_{S_2}(h)\right)$$

on average.

This motivates the so-called *Rademacher complexity* R(S) for a training set $S = \{(x_1, \ell(x_1)), \ldots, (x_m, \ell(x_m))\}$:

$$R(S) riangleq rac{1}{m} \mathbf{E}_{\sigma \in \{1,-1\}^m} \left[\sup_{h \in \mathcal{H}} \sum_{i=1}^m \sigma_i \cdot \mathbf{1}[h(x_i)
eq \ell(x_i)]
ight].$$

An interesting fact in learning theory is the following relation between $\operatorname{Rep}(S)$ and R(S) when each data point S is sampled from $\mathcal X$ uniformly and independently at random (written as $S \sim \mathcal X^m$).

:::success

Theorem.

$$\mathbf{E}_{S \sim \mathcal{X}^m} \left[\operatorname{\mathsf{Rep}}(S) \right] < 2 \cdot \mathbf{E}_{S \sim \mathcal{X}^m} \left[R(S) \right].$$

:::

::: spoiler Click if you are interested in a proof of this

别急

:::

In the following, we assume the theorem.

:::info

(b) Assume $S\sim\mathcal{X}^m$. Prove that for any $\delta\in(0,1)$, with probability at least $1-\delta$, for all $h\in\mathcal{H}$, it holds that

$$L(h) - L_S(h) \leq 2 \cdot \mathbf{E}_{S \sim \mathcal{X}^m} \left[R(S)
ight] + \sqrt{rac{1}{2m} \log rac{2}{\delta}}.$$

:::

:::info

(c) Assume $S\sim\mathcal{X}^m$. Let \widehat{h} be the one defined in (a). Prove that for any $\delta\in(0,1)$, with probablity at least $1-\delta$, it holds that

$$L(\widehat{h}) \leq L(h^*) + 2 \cdot R(S) + 5\sqrt{\frac{1}{2m} log \frac{2}{\delta}}.$$

:::