- **2.** Seconde phase de fonctionnement : $\left(n \frac{1}{2}\right)T_{\rm E} < t < nT_{\rm E}$.
 - 2.1 Représenter le schéma équivalent au montage étudié.
 - **2.2** Montrer qu'à la fin de cette phase de fonctionnement, $q_1(nT_E) = C_1e(nT_E) = C_1e$
 - **2.3** Exprimer également $q_2(nT_E)$ en fonction de C_2 et $s(nT_E) = s_n$.
- 3. Équation de récurrence :
 - **3.1** Déduire des questions précédentes Δq_1 et Δq_2 les variations respective des charges q_1 et q_2 entre $\left(n-\frac{1}{2}\right)T_{\rm E}$ et $nT_{\rm E}$.
- **3.2** Sachant que $\Delta q_1 = \Delta q_2$, montrer que $s_n s_{n-1} = -\frac{C_1}{C_2}e_n$.
- **3.3** En utilisant la correspondance suivante $\frac{ds(nT_E)}{dt} \leftrightarrow \frac{s_n s_{n-1}}{T_E}$, justifier que que montage est bien un intégrateur.
- **3.4** Donner l'expression de la transmittance H(z) de ce montage.

15 Oscillateur numérique

La numérotation téléphonique à fréquence vocale repose sur l'envoi sur la ligne d'un signal DTMF (dual-tone multi-frequency) associé à chaque touche du clavier. Chaque code DTMF correspond à la somme de deux sinusoïdes pures don la synthèse peut être réalisée par deux oscillateurs numériques cadencés à la fréquence $f_{\rm E}=8~{\rm kHz}$.

Les fréquences utilisées pour le codage des touches du clavier sont indiquées dans le tableau suivant.

	1209 Hz	1336 Hz	1477 Hz	1633 Hz
697 Hz	1	2	3	Δ
770 Hz	4	5	6	R
852 Hz	7	8	9	C
941 Hz	*	0	#	<u> </u>

On se propose d'étudier dans cet exercice la génération numérique d'une tension sinusoïdale $s(t) = \hat{S} \sin(2\pi f_0 t)$, de niveau -9 dBm et de fréquence $f_0 = 852$ Hz, utilisée pour coder les touches 7, 8, 9 et C.

- 1. Sachant qu'en téléphonie un niveau de tension de 0 dBm correspond à une puissance de 1 mW dissipée dans une résistance de 600 Ω , déterminer l'amplitude \hat{S} du signal s(t).
- **2.1** Donner l'expression de $s_n = s(nT_E)$ en fonction de $\theta = 2\pi f_0 T_E$.
- **2.1** Sachant que sin(a + b) = sin(a)cos(b) + sin(b)cos(a), montrer que :

$$s_{n+1} = s_n \cos(\theta) + \hat{S} \sin(\theta) \cos(n\theta).$$

- 2.3 En déduire l'expression de $\cos(n\theta)$ en fonction de s_{n+1} et de s_n puis montrer que : $\cos[(n+1)\theta] = \frac{s_{n+2} \cos(\theta)s_{n+1}}{\hat{S}\sin(\theta)}$
- 3. Sachant également que : $\cos[(n+1)\theta] = \frac{s_{n+1}\cos(\theta) s_n}{\hat{S}\sin(\theta)}$, en déduire que la séquence $\{s_n\}$ vérifie l'équation de récurrence suivante :

$$s_{n+2} - 2\cos(\theta)s_{n+1} + s_n = 0$$

- **4.1** Représenter une structure de réalisation de l'algorithme avec les opérateurs élémentaires : addition ou soustraction, multiplication par une constante et mémorisation (retard de $T_{\rm F}$).
- 4.2 Quelle particularité présente cette structure ?
- **5.** On donne $s_0 = 0$ et $s_1 = 0.389 \sin(\theta)$.
 - **5.1** À l'aide d'une calculatrice ou d'un tableur, calculer la suite des échantillons s_n générés pour $0 \le n \le 20$.
 - **5.2** Représenter s_n en fonction de n pour $0 \le n \le 20$.
 - 5.3 Conclure.