

Process for the production of thin semiconductor material films

Publication number: FR2681472

Publication date: 1993-03-19

Inventor: MICHEL BRUEL

Applicant: COMMISSARIAT ENERGIE ATOMIQUE (FR)

Classification:

- **International:** H01L21/205; B28D1/00; B28D5/00; G01L9/00;
H01L21/02; H01L21/027; H01L21/265; H01L21/762;
H01L27/12; H01L31/04; H01L33/00; B28D1/00;
B28D5/00; G01L9/00; H01L21/02; H01L21/70;
H01L27/12; H01L31/04; H01L33/00; (IPC1-7):
H01L21/265; H01L21/324
- **European:** B28D1/00S; B28D5/00; G01L9/00D1; H01L21/265A;
H01L21/762D2; H01L21/762D8B; H01L33/00G3D

Application number: FR19910011491 19910918

Priority number(s): FR19910011491 19910918

Also published as:

EP0533551 (A1)
 US5374564 (A1)
 JP5211128 (A)
 EP0533551 (B1)

[Report a data error here](#)

Abstract not available for FR2681472

Abstract of corresponding document: **US5374564**

Process for the preparation of thin monocrystalline or polycrystalline semiconductor material films, characterized in that it comprises subjecting a semiconductor material wafer having a planar face to the three following stages: a first stage of implantation by bombardment (2) of the face (4) of the said wafer (1) by means of ions creating in the volume of said wafer a layer (3) of gaseous microbubbles defining in the volume of said wafer a lower region (6) constituting the mass of the substrate and an upper region (5) constituting the thin film, a second stage of intimately contacting the planar face (4) of said wafer with a stiffener (7) constituted by at least one rigid material layer, a third stage of heat treating the assembly of said wafer (1) and said stiffener (7) at a temperature above that at which the ion bombardment (2) was carried out and sufficient to create by a crystalline rearrangement effect in said wafer (1) and a pressure effect in the said microbubbles, a separation between the thin film (5) and the mass of the substrate (6).

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(à n'utiliser que pour les
commandes de reproduction)

2 681 472

(21) N° d'enregistrement national :

91 11491

(51) Int Cl⁵ : H 01 L 21/265, 21/324

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 18.09.91.

(30) Priorité :

(71) Demandeur(s) : COMMISSARIAT A L'ENERGIE
ATOMIQUE Etablissement de Caractère Scientifique,
Technique et Industriel — FR.

(43) Date de la mise à disposition du public de la
demande : 19.03.93 Bulletin 93/11.

(56) Liste des documents cités dans le rapport de
recherche : Se reporter à la fin du présent fascicule.

(60) Références à d'autres documents nationaux
apparentés :

(72) Inventeur(s) : Bruel Michel.

(73) Titulaire(s) :

(74) Mandataire : Brevatome.

(54) Procédé de fabrication de films minces de matériau semiconducteur.

(57) Procédé de préparation de films minces de matériau semiconducteur caractérisé en ce qu'il consiste à soumettre une plaque d'un matériau semi-conducteur comportant une face plane dans le cas où le matériau est polycristallin, aux trois étapes suivantes:

- une première étape d'implantation par bombardement (2) de la face (4) de ladite plaque (1) au moyen d'ions créant dans le volume de la dite plaque une couche (3) de microbulles gazeuses délimitant dans le volume de la dite plaque une région inférieure (6) constituant la masse du substrat et une région supérieure (5) constituant le film mince,

- une deuxième étape de mise en contact intime de la face plane (4) de la dite plaque avec un raidisseur (7) constitué d'au moins une couche de matériau rigide;

- une troisième étape de traitement thermique de l'ensemble de la dite plaque (1) et du dit raidisseur (7) à une température supérieure à la température à laquelle est réalisé le bombardement (2) lorsque et suffisante pour créer par effet de réarrangement cristallin dans la dite plaque (1) et de pression dans les microbulles une séparation entre le film mince (5) et la masse du substrat (6).

FR 2 681 472 - A1

**PROCEDE DE FABRICATION DE FILMS MINCES
DE MATERIAU SEMICONDUCTEUR**

La présente invention concerne un procédé de fabrication de films minces de matériau 5 semiconducteur, préférentiellement applicable à la réalisation de films monocristallins.

On sait que pour réaliser des films minces monocristallins de semiconducteurs il existe plusieurs méthodes et procédés dont la mise en oeuvre est souvent 10 complexe et coûteuse car s'il est relativement aisé de réaliser des films de matériau polycristallin ou amorphe, il est beaucoup plus difficile de réaliser des films monocristallins.

On peut citer comme méthodes de réalisation 15 de films monocristallins certaines des méthodes utilisées pour la fabrication des substrats dits "Silicium sur Isolant", où le but recherché est de fabriquer un film de silicium monocristallin reposant sur un substrat isolé électriquement du film.

Les méthodes d'hétéroépitaxie permettent 20 par croissance cristalline de faire croître un cristal par exemple en silicium en film mince sur un substrat monocristallin d'une autre nature dont le paramètre de maille est voisin de celui du silicium, par exemple : 25 substrat de saphir (Al_2O_3) ou de fluorure de calcium (CaF_2). (Voir réf. 5).

Le procédé dit "SIMOX" (nom couramment utilisé dans la littérature) utilise l'implantation ionique 30 à forte dose d'oxygène dans un substrat de silicium pour créer dans le volume du silicium une couche d'oxyde de silicium séparant un film mince de silicium monocristallin de la masse de substrat. (Voir réf. 1).

D'autres procédés utilisent le principe de l'amincissement d'une plaquette par abrasion 35 mécanochimique ou chimique ; les procédés de cette

catégorie les plus performants utilisent en outre le principe de la barrière d'arrêt à la gravure (etch-stop en termes anglo-saxon) qui permet d'arrêter l'amincissement de la plaquette dès que l'épaisseur requise est atteinte et donc de garantir une homogénéité d'épaisseur. Cette technique consiste par exemple à doper de type p le substrat de type n sur l'épaisseur du film que l'on désire obtenir et à attaquer chimiquement le substrat avec un bain chimique actif pour le silicium de type n et inactif par le silicium de type p. (Voir réf. 2, 3)

Les principales applications des films minces monocristallins de semiconducteur sont les substrats Silicium sur Isolant, les membranes autoporteuses de silicium ou de carbure de silicium pour réaliser des masques pour lithographie par rayons X, les capteurs, les cellules solaires, la fabrication de circuits intégrés à plusieurs couches actives.

Les diverses méthodes de réalisation des films minces monocristallins présentent des inconvénients liés aux techniques de fabrication.

Les méthodes d'hétéroépitaxie sont limitées par la nature du substrat ; le paramètre de maille du substrat n'étant pas strictement exact à celui du semiconducteur, le film mince comporte beaucoup de défauts cristallins. En outre ces substrats sont chers et fragiles et n'existent qu'en dimension limitée.

La méthode SIMOX requiert une implantation ionique à très forte dose ce qui nécessite une machine d'implantation très lourde et complexe ; le débit de ces machines est faible et il est difficilement envisageable de l'augmenter dans des proportions notables.

Les méthodes d'amincissement ne sont compétitives du point de vue de l'homogénéité et de

la qualité que si elles utilisent le principe de la barrière d'arrêt à la gravure. Malheureusement, la création de cette barrière d'arrêt rend le procédé complexe et peut limiter dans certains cas l'utilisation du film ; en effet si l'arrêt de la gravure est réalisé par dopage de type p dans un substrat de type n, la réalisation éventuelle de dispositifs électroniques dans le film devra s'accommoder de la nature de type p du film.

La présente invention a pour objet un procédé de fabrication de films minces de matériaux semiconducteurs qui permet de s'affranchir des inconvénients précédents sans nécessiter de substrat initial de nature différente de celle du semiconducteur choisi, ni de très fortes doses d'implantation, ni de barrière d'arrêt à la gravure, mais qui permet néanmoins l'obtention d'un film d'épaisseur homogène et contrôlée.

Ce procédé de préparation de films minces se caractérise en ce qu'il consiste à soumettre une plaquette d'un matériau semiconducteur comportant une face plane dont le plan est, soit sensiblement parallèle à un plan cristallographique principal dans le cas où le matériau du semiconducteur est parfaitement monocristallin, soit faiblement incliné par rapport à un plan cristallographique principal de mêmes indices pour tous les grains, dans le cas où le matériau est polycristallin, aux trois étapes suivantes :

- une première étape d'implantation par bombardement (2) de la face (4) de la dite plaquette (1) au moyen d'ions créant dans le volume de la dite plaquette à une profondeur voisine de la profondeur moyenne de pénétrations des dits ions, une couche (3) de microbulles gazeuses délimitant dans le volume de la dite plaquette une région inférieure (6)

constituant la masse du substrat et une région supérieure (5) constituant le film mince, les ions étant choisis parmi les ions de gaz rares ou de gaz hydrogène et la température de la plaquette pendant l'implantation étant maintenue au-dessous de la température à laquelle le gaz engendré par les ions implantés peut s'échapper du semiconducteur par diffusion ;

- une deuxième étape de mise en contact intime de la face plane (4) de la dite plaquette avec un raidisseur (7) constitué d'au moins une couche de matériau rigide ;

- une troisième étape de traitement thermique de l'ensemble de la dite plaquette (1) et du dit raidisseur (7) à une température supérieure à la température à laquelle est réalisé le bombardement ionique et suffisante pour créer par effet de réarrangement cristallin dans la dite plaquette (1) et de pression dans les microbulles une séparation entre le film mince (5) et la masse du substrat (6).

L'invention s'applique donc aussi à un matériau semiconducteur polycristallin à condition que les grains constituant ce dernier présentent tous un plan cristallographique principal, (ce plan ayant les mêmes indices par exemple (1,0,0) pour tous les grains du semiconducteur) sensiblement parallèle à la surface du semiconducteur. On peut citer par exemple pour ces matériaux semiconducteur le ZMRSOI (ZMR = Zone-Melting-Recrystallization) (voir réf. 4). On entend par étape d'implantation aussi bien une étape unique d'implantation qu'une succession d'implantations à des doses et/ou à des énergies et/ou avec des ions qui peuvent être différents.

Selon une variante de mise en oeuvre du procédé, objet de l'invention, il peut être avantageux

de réaliser l'implantation des ions dans un matériau semiconducteur à travers une ou plusieurs couches de matériaux, ces couches "encapsulantes" étant choisies de façon à ce que les ions la traversent et pénètrent 5 dans le semiconducteur. A titre d'exemple, ces couches encapsulantes peuvent être utilisées comme moyen de réduire la pénétration des ions dans le semiconducteur pour fabriquer des membranes plus fines ou comme moyen de protéger le semiconducteur de contaminations 10 éventuelles ou encore comme moyen de contrôle de l'état physico-chimique de la surface du semiconducteur. Lorsque le substrat constituant la plaquette est du silicium, il peut être avantageux de choisir une couche encapsulante constituée d'oxyde de silicium thermique 15 d'épaisseur par exemple comprise entre 25 et 500 nm. Ces couches encapsulantes peuvent être conservées ou enlevées après l'étape d'implantation.

Conformément à l'invention, la température de la plaquette sur laquelle on fait l'implantation 20 d'ions est contrôlée durant l'opération de façon à ce qu'elle reste en dessous de la température critique à laquelle le gaz engendré par l'ion implanté diffuse rapidement et s'échappe du semiconducteur. A titre d'exemple, cette température critique est d'environ 25 500°C pour une implantation d'hydrogène dans du silicium. Au-dessus de cette température précédente, le procédé devient inefficace en raison de l'absence 30 de formation de microbulles. Pour le silicium on choisira préférentiellement une température d'implantation comprise entre 20°C et 450°C.

Lors de la troisième étape du traitement thermique de l'ensemble de la plaquette et de son raidisseur, se produit un réarrangement cristallin après le désordre créé par l'implantation ionique elle 35 même. La séparation entre le film et le substrat est

due à la fois au réarrangement cristallin et à la coalescence des bulles, tous deux engendrés par le traitement thermique de la 3^e étape. Sous l'effet de la pression du gaz à l'intérieur de ces bulles,
5 La surface du semiconducteur est soumise à des tensions importantes. Si l'on veut éviter une déformation de la surface et la formation de cloques (blisters en terminologie anglo-saxonne) correspondant aux macrobulles formées, il faut impérativement compenser ces tensions. En effet, les cloques précédentes peuvent éclater avant que les macrobulles n'aient atteint leur pleine croissance et qu'elles aient coalescé entre elles. C'est la raison pour laquelle si l'on veut recueillir un film continu de semiconducteur, il est
10 nécessaire de compenser les contraintes qui apparaissent pendant la phase du traitement thermique. Conformément à l'invention, cette compensation intervient par mise en contact intime de la surface de la plaquette de semiconducteur avec un raidisseur. Le rôle de ce
15 raidisseur est de par son contact avec la surface et ses propriétés mécaniques de compenser l'effet des tensions engendrées par les macrobulles. Le film de semiconducteur peut ainsi rester plan et intact pendant toute la phase du traitement thermique jusqu'au clivage
20 final.
25

Selon l'invention, le choix de la méthode de fabrication de ce raidisseur et de sa nature sont faites en fonction de chaque application visée pour le film mince. Par exemple, si l'application visée
30 est la réalisation d'un substrat de silicium sur un isolant, le raidisseur peut être constitué avantageusement d'une plaquette de silicium recouverte d'oxyde, l'oxyde du raidisseur étant mis en contact intime avec la plaquette à partir de laquelle on veut
35 réaliser le film, la plaquette comportant ou non une couche encapsulante par exemple de l'oxyde de silicium.

Le raidisseur peut être déposé directement sur la plaquette de semiconducteur à l'aide de techniques telles que l'évaporation, la pulvérisation, le dépôt chimique en phase vapeur, assisté ou non par plasma ou par photons, dès lors que l'épaisseur choisie pour le raidisseur est modérée, c'est-à-dire de l'ordre de quelques micromètres à quelques dizaines de micromètres.

Conformément à l'invention, ce même raidisseur peut être aussi bien collé à la plaquette de semiconducteur soit par une substance adhésive à la fois au raidisseur et à la plaquette soit, si l'on ne souhaite pas l'utilisation de substance adhésive, par l'effet d'une préparation préalable d'au moins une des surfaces à coller et d'un traitement thermique et/ou électrostatique assorti éventuellement d'un choix de pressions pour favoriser les liaisons interatomiques entre le raidisseur et la plaquette de semiconducteur.

Pour les applications concernant la fabrication de membranes autoporteuses, il est judicieux de choisir la nature du raidisseur tel que l'on puisse facilement et sélectivement séparer le raidisseur du film. A titre indicatif, pour réaliser une membrane de silicium monocristallin on peut par exemple choisir un raidisseur en oxyde de silicium que l'on élimine ensuite dans un bain d'acide fluorhydrique après la troisième étape thermique du procédé.

Selon une caractéristique du procédé objet de l'invention, le choix des températures de déroulement des deuxième et troisième étapes doit répondre aux impératifs suivants. La réalisation de la mise en place du raidisseur sur la plaquette ne doivent pas faire subir à celles-ci une température qui serait de nature à déclencher les processus de la troisième étape. Pour cette raison il est donc nécessaire, suivant

l'invention, de réaliser la deuxième étape du procédé à une température inférieure à celle du traitement thermique de la troisième étape. Ce dernier traitement thermique doit être réalisé, conformément à l'invention à une température à laquelle le réarrangement cristallin et la coalescence des bulles peuvent effectivement avoir lieu. A titre d'exemple, dans le cas du silicium, une température supérieure à 500°C environ est nécessaire pour que le réarrangement cristallin et la coalescence des bulles puissent avoir lieu avec une cinétique suffisante.

Dans la mise en oeuvre du procédé, objet de l'invention, les ions utilisés pour l'implantation par bombardement sont le plus souvent des ions H⁺ mais ce choix ne doit pas cependant être considéré comme limitatif. En effet, le principe de la méthode est applicable avec des ions moléculaires d'hydrogène ou avec des ions de gaz rares tels que, hélium, néon, krypton et xénon, utilisés isolément ou en combinaison. Pour les applications industrielles du procédé, objet de l'invention, les semiconducteurs du groupe IV sont indiqués de façon préférentielle et l'on peut recourir par exemple au silicium, au germanium, au carbure de silicium ainsi qu'aux alliages silicium/germanium.

De toute façon l'invention sera mieux comprise en se référant à la description qui suit d'un exemple de mise en oeuvre qui sera décrit à titre illustratif et non limitatif en se référant aux figures 1 à 4 suivantes sur lesquelles :

- la figure 1 montre le profil de concentration des ions hydrogènes en fonction de la profondeur de pénétration ;

- la figure 2 montre la plaquette de semiconducteur monocristallin utilisé dans l'invention comme origine du film mince monocristallin, en coupe,

soumis à un bombardement d'ions H^+ , et à l'intérieur duquel est apparue une couche de microbulles de gaz engendrée par les particules implantées ;

5 - la figure 3 représente la plaquette de semiconducteur décrite par la figure 2 recouverte d'un raidisseur ;

10 - la figure 4 représente l'ensemble de la plaquette de semiconducteur et du raidisseur décrit sur la figure 3 à la fin de la phase de traitement thermique quand le clivage entre le film et la masse du substrat a eu lieu.

15 L'exemple qui sera décrit maintenant en se référant aux figures précédentes concerne la fabrication d'un film mince dans une plaquette de silicium monocristallin à l'aide d'implantations d'ions H^+ .

20 L'implantation d'ions H^+ (protons) à 150 keV dans une plaquette de silicium monocristallin dont la surface correspond à un plan cristallographique principal par exemple, un plan (1,00) se traduit pour les faibles doses d'implantation ($<10^{16} \text{ cm}^{-2}$) par un profil de concentration C en hydrogène en fonction de la profondeur P , présentant un maximum de concentration pour une profondeur R_p , tel que représenté figure 1. Dans le cas d'une implantation de protons 25 dans du silicium, R_p vaut environ 1,25 micromètres.

30 Pour les doses de l'ordre de 10^{16} cm^{-2} les atomes d'hydrogène implantés commencent à former des bulles, qui se répartissent au voisinage d'un plan parallèle à la surface. Le plan de la surface correspond à un plan cristallographique principal et il en est donc de même pour le plan des microbulles qui est donc par conséquent un plan de clivage.

35 Pour une dose implantée de $>10^{16} \text{ cm}^{-2}$ (par exemple de $5 \cdot 10^{16} \text{ cm}^{-2}$, on peut déclencher thermiquement la coalescence entre les bulles induisant un clivage

du silicium en deux parties, une couche supérieure de 1,2 micromètre d'épaisseur (le film mince) et la masse du substrat.

L'implantation d'hydrogène est un exemple 5 avantageux car le processus de freinage de cet ion dans le silicium est essentiellement de l'ionisation (freinage électronique), le freinage de type nucléaire avec déplacements atomiques n'intervenant que sur la fin du parcours. C'est pourquoi on crée très peu de 10 défauts dans la couche superficielle du silicium et que les bulles se concentrent au voisinage de la profondeur R_p (profondeur du maximum de concentration) sur une épaisseur faible. Ceci permet d'obtenir 15 l'efficacité de la méthode pour des doses implantées moyennes ($5 \cdot 10^{16} \text{ cm}^{-2}$), d'obtenir après séparation de la couche superficielle une surface de faible rugosité.

L'utilisation du procédé de l'invention permet en outre de choisir l'épaisseur du film mince dans une large gamme d'épaisseur en choisissant l'énergie 20 d'implantation. Cette propriété est d'autant plus vraie que l'ion implanté présente un numéro atomique z faible. A titre d'exemple, on donne sur le tableau suivant l'épaisseur du film que l'on peut obtenir pour diverses énergies d'implantation des ions H^+ 25 ($z=1$).

Energie des ions H^+ en keV	10	50	100	150	200	500	1000
Epaisseur du film en μm	0,1	0,5	0,9	1,2	1,6	4,7	13,5

Sur la figure 2 on voit la plaquette de 30 semiconducteur 1 recouverte éventuellement d'une couche encapsulante 10 soumis à un bombardement ionique 2 d'ions H^+ à travers la face plane 4 qui est parallèle à un plan cristallographique principal ; on voit la couche 3 de microbulles parallèle à la face 4. La couche 35 3 et la face 4 délimitent le film mince 5. Le reste 6 du substrat semiconducteur constitue la masse du substrat.

Sur la figure 3 on voit le raidisseur 7 qui a été mis en contact intime avec la face 4 de la plaquette 1 de semiconducteur.

Sur la figure 4 on voit le film 5 solidaire 5 du raidisseur 7 séparé par l'espace 8 de la masse du substrat 6.

Les références indiquées dans le présent texte sont les suivantes :

- (1) SIMOX SOI for Integrated Circuit Fabrication par Hon Wai Lam, IEEE Circuits and Devices Magazine, Juillet 10 1987.
- (2) Silicon on Insulator Wafer Bonding Wafer Thinning Technological Evaluations par Haisma, Spierings, Biermann et Pals, Japanese Journal of Applied Physics, 15 vol. 28, n° 8, Août 1989.
- (3) Bonding of silicon wafers for silicon on insulator, par Maszara, Goetz, Caviglia et McKitterick, Journal of Applied Physic 64 (10) 15 Nov. 1988.
- (4) Zone melting recrystallization silicon on insulator technology par Bor Yeu Tsaur, IEEE Circuits and Devices Magazine, Juillet 1987.
- (5) 1986 IEEE SOS/SOI Technology Workshop, Sept. 30-Oct. 2, 1986, South seas plantation resort and yacht Harbour, Captiva Island, Floride.

REVENDICATIONS

1. Procédé de préparation de films minces de matériau semiconducteur caractérisé en ce qu'il consiste à soumettre une plaquette d'un matériau semiconducteur comportant une face plane dont le plan est soit sensiblement parallèle à un plan cristallographique principal dans le cas où le matériau du semiconducteur est parfaitement monocristallin, soit faiblement incliné par rapport à un plan cristallographique de mêmes indices pour tous les grains, dans le cas où le matériau est polycristallin, aux trois étapes suivantes :
- une première étape d'implantation par bombardement (2) de la face (4) de la dite plaquette (1) au moyen d'ions créant dans le volume de la dite plaquette à une profondeur voisine de la profondeur moyenne de pénétrations des dits ions, une couche (3) de microbulles gazeuses délimitant dans le volume de la dite plaquette une région inférieure (6) constituant la masse du substrat et une région supérieure (5) constituant le film mince, les ions étant choisis parmi les ions de gaz rares ou de gaz hydrogène et la température de la plaquette pendant l'implantation étant maintenue au-dessous de la température à laquelle le gaz engendré par les ions implantés peut s'échapper du semiconducteur par diffusion ;
 - une deuxième étape de mise en contact intime de la face plane (4) de la dite plaquette avec un raidisseur (7) constitué d'au moins une couche de matériau rigide ;
 - une troisième étape de traitement thermique de

l'ensemble de la dite plaquette (1) et du dit raidisseur (7) à une température supérieure à la température à laquelle est réalisé le bombardement (2) ionique et suffisante pour créer par effet de 5 réarrangement cristallin dans la dite plaquette (1) et de pression dans les microbulles une séparation entre le film mince (5) et la masse du substrat (6).

2. Procédé de préparation de films minces selon la revendication 1, caractérisé en ce que l'étape 10 d'implantation des ions dans le matériau semiconducteur est effectué à travers une ou plusieurs couches de matériaux de nature et d'épaisseur telles qu'ils puissent être traversés par les ions.

3. Procédé de fabrication de films minces 15 selon la revendication 1, caractérisé en ce que le semiconducteur est un semiconducteur à liaisons covalentes du groupe IV.

4. Procédé de fabrication de films minces selon l'une quelconque des revendications 1 à 3, 20 caractérisé en ce que le semiconducteur est le silicium, l'ion implanté est un ion de gaz hydrogène, la température d'implantation est comprise entre 20°C et 450°C et la température de la troisième étape de traitement thermique est supérieure à 500°C.

25 5. Procédé de fabrication de films minces selon la revendication 2, caractérisé en ce que l'implantation est réalisée à travers une couche encapsulante d'oxyde de silicium thermique et que le raidisseur est une plaquette de silicium recouverte 30 d'une couche d'oxyde de silicium.

6. Procédé de fabrication de films minces selon la revendication 1, caractérisé en ce que le raidisseur est déposé par l'une ou plusieurs des techniques comprises dans le groupe : évaporation, 35 dépôt chimique en phase vapeur avec ou sans assistance plasma ou assistance photonique, pulvérisation.

14

7. Procédé de fabrication de films minces selon la revendication 1, caractérisé en ce que le raidisseur est collé à la dite plaquette au moyen d'une substance adhésive.

8. Procédé de fabrication de films minces selon la revendication 1, caractérisé en ce que le raidisseur est rendu adhérent à la plaquette par un traitement favorisant les liaisons interatomiques.

10

15

20

25

30

35

1/1

FIG. 1

FIG. 2

FIG. 3

FIG. 4

INSTITUT NATIONAL
de la
PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE

établi sur la base des dernières revendications
déposées avant le commencement de la recherche

FR 9111491
FA 465596

DOCUMENTS CONSIDERES COMME PERTINENTS		Revendications concernées de la demande examinée
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	
A	GB-A-2 211 991 (U.K. ATOMIC ENERGY AUTHORITY) * page 1, alinéa 2 - page 4, alinéa 5; revendications 1,2,4-12; figures A,B *	1,3-5
A	APPLIED PHYSICS LETTERS. vol. 55, no. 21, 20 Novembre 1989, NEW YORK US pages 2223 - 2224; J. LI: 'novel semiconductor substrate formed by hydrogen ion implantation into silicon.' * le document en entier *	1,3,4
A	IBM TECHNICAL DISCLOSURE BULLETIN, vol. 29, no. 3, Août 1986, NEW YORK US page 1416; 'isolation by inert ion implantation' * le document en entier *	1
A	US-A-5 034 343 (HARRIS CORP.) * revendication 1 *	1

DOMAINES TECHNIQUES
RECHERCHES (Int. CLS)

H01L

3

CATEGORIE DES DOCUMENTS CITES
 X : particulièrement pertinent à lui seul
 Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
 A : pertinent à l'encontre d'au moins une revendication ou arrière-plan technologique général
 O : divulgation non écrite
 P : document intercalaire

Date d'achèvement de la recherche

25 JUIN 1992

Examinateur

VANCRAEYNEST F.H.

T : théorie ou principe à la base de l'invention
 E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure.
 D : cité dans la demande
 L : cité pour d'autres raisons
 & : membre de la même famille, document correspondant

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.