

DISPOSITIVOS SEMICONDUCTORES

http://materias.fi.uba.ar/6625/

Evaluación Final

Nombre y apellido:	Padrón:
e-mail:	Cuatrimestre de cursada:

- Para aprobar deben contestarse bien 6 puntos del total.
- Cada pregunta otorga una cantidad de puntos especificada entre corchetes sobre el margen izquierdo.
- Si la pregunta es respondida correctamente suma el puntaje especificado.
- Si la pregunta tiene opciones y es respondida incorrectamente resta el puntaje especificado.
- Si la pregunta no es respondida no se asignan puntos.
- [½ pt.] 1) Una muestra de silicio que está dopada simultáneamente con $N_D=2\times 10^{15}\,\mathrm{at/cm^3}$ y $N_A=3\times 10^{17}\,\mathrm{at/cm^3}$, tiene una longitud $L=0.2\,\mu\mathrm{m}$ y un área $A=15\,\mu\mathrm{m^2}$. Calcular la corriente que entrega una fuente de $V=3.3\,\mathrm{V}$ conectada entre los extremos de la muestra. (Considerar $\mu_n=600\,\mathrm{cm^2/Vs}$ y $\mu_p=250\,\mathrm{cm^2/Vs}$)
- [½ pt.] 2) Calcular el ancho de la zona desierta de una juntura MOS (x_d [nm]) cuando se aplica una tensión $V_{GB}=2\,\mathrm{V}$. El gate es de polysilicio tipo N y el sustrato está dopado con $N_A=10^{16}\,\mathrm{at/cm^3}$, $C'_{ox}=1,37\times10^{-7}\,\mathrm{F/cm^2}$, $\gamma=0,4\,\mathrm{V^{0,5}}$, $V_T=0,6\,\mathrm{V}$.
- [½ pt.] 3) Dado un diodo de silicio P+N con $\phi_B = 0.8 \,\mathrm{V}, \, I_s = 14.5 \,\mathrm{pA}, \, A = 0.2 \,\mathrm{mm}^2, \, C'_{j0} = 9 \,\mathrm{nF/cm}^2 \,\mathrm{y} \,\, \tau_T = 17 \,\mathrm{ns}, \, \mathrm{hallar} \,\, \phi_n \,[\mathrm{mV}].$
- [½ pt.] 4) Para el circuito de la figura, calcular el V_{GS} [V] del transistor M_1 .

 Considerar $V_{DD}=3.3\,\mathrm{V},~I_{REF}=50\,\mu\mathrm{A},~\mu_n~C'_{ox}=120\,\mu\mathrm{A/V^2},~V_T=0.72\,\mathrm{V},~\lambda=0.02\,\mathrm{V^{-1}},~(W/L)_1=10.$
- [½ pt.] 5) Respecto del ejercicio anterior, ¿cuál debe ser el dimensionamiento del transistor M_2 (W/L)₂ para que la tensión de salida sea $V_{OUT}=2$ V? Considerar $R=200\,\Omega$.
- $[\!\!\!\frac{1}{2}\mbox{pt.}]\!\!\!$ 6) Indique cuál de las siguientes afirmaciones acerca de un transistor TBJ PNP es falsa.
- [½ pt.] 7) Calcule la tensión V_f necesaria para que la caída de tensión en R_2 sea 2,4 V. El transistor es un JFET de canal P con parámetros $|V_P|$ = 0,8 V, $|I_{Dss}|$ = 15 mA y λ = 0. Considerar R_2 = 160 Ω , R_1 = 100 Ω y V_{sup} = 5 V.
- [½ pt.] 8) ¿Qué función lógica sintetiza el circuito CMOS de la figura?

[1 pt.] 9) Realizar el *Layout* (juego de máscaras) para la fabricación de un transistor PMOS en un proceso de fabricación CMOS de sustrato tipo P. Indicar el nombre de las máscaras y el órden en que deben ser aplicadas.

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 1 de agosto de 2018

- [1 pt.] 10) Considere un amplificador source común polarizado con un divisor resistivo compuesto por una resistencia de $30\,\mathrm{k}\Omega$ entre V_{DD} y Gate y otra de $20\,\mathrm{k}\Omega$ entre GND y Gate. La tensión de alimentación V_{DD} es $5\,\mathrm{V}$. La fuente de señal a la entrada posee una tensión pico $v_s=200\,\mathrm{mV}$ y una resistencia serie de $12\,\mathrm{k}\Omega$ y se conecta al nodo de gate a través de un capacitor de desacople. Los datos del MOSFET son μ_n $C'_{ox}=250\,\mu\mathrm{A/V^2},$ $V_T=1,2\,\mathrm{V},$ $\lambda=0\,\mathrm{V^{-1}}.$ Se desea tener una señal a la salida de valor pico $v_o=500\,\mathrm{mV}$ y una resistencia de salida del amplificador $R_{OUT}=100\,\Omega.$ Determine el dimensionamiento del transistor (W/L), así como sus valores de polarización (I_{DQ},V_{DSQ}) y el valor de ganancia A_{vo} .
- $[\frac{1}{2}$ pt.] 11) Para el amplificador de la pregunta 10 ¿qué ocurre si se aumenta el W/L del transistor, manteniendo el resto del circuito igual?
- [1 pt.] 12) Para el amplificador de la figura, determinar el máximo v_s sin distorsión en la señal de salida. Datos: $\beta=200,\,V_A\to\infty,\,V_{BE,on}=0.7\,\mathrm{V},\,V_{CE,sat}=0.2\,\mathrm{V};\,V_{CC}=5\,\mathrm{V},\,R_B=860\,\mathrm{k}\Omega,\,R_C=3.8\,\mathrm{k}\Omega,\,R_s=3\,\mathrm{k}\Omega.$

- [½ pt.] 13) Un amplificador emisor común está polarizado con una única resistencia de base (R_B) y una única resistencia de colector (R_C) y tiene a la entrada una fuente de señal que se puede representar con una fuente ideal v_s y una resistencia serie R_s . Si el amplificador sólo distorsiona por corte, ¿cómo se identifica este problema?
- [1 pt.] 14) En el circuito de la figura donde T_1 y T_2 son dos tiristores idénticos cuya señal de control es v_p , un tren de pulsos de amplitud y ancho de pulsos suficientes como para generar un disparo, y con período $T_p = 10 \,\mathrm{ms}$, D_1 y D_2 son dos diodos de potencia idénticos, $R_L = 12 \,\Omega$, y la señal $v_S(t)$ se muestra en la figura con período $T_s = 20 \,\mathrm{ms}$ y $V_{CC} = 150 \,\mathrm{V}$. La señal v_p está desfasada α (ms) respecto del cruce con cero de $v_S(t)$. Considerando que los SCRs y los diodos presentan una caída de tensión $V_{AK} = 2 \,\mathrm{V}$ cuando se encuentran en conducción, se pide hallar α para que la potencia media en la resistencia sea $1000 \,\mathrm{W}$ y la potencia que disipa D_1 en esa condición (α [ms], P_{D1} [W]).

[1 pt.] 15) Dado un diodo que presenta una caída de tensión $V_{AK}=1,2\,\mathrm{V}$ mientras circulan 4 A, calcular la temperatura de su carcasa cuando se utiliza con un disipador de $R_{dis}=18^{\circ}\mathrm{C/W}$ en un ambiente de 40°C. Datos del dispositivo: temperatura máxima de juntura $T_{j,\mathrm{máx}}=150^{\circ}\mathrm{C},\ P_{\mathrm{máx}}(@\ T_a=25^{\circ}\mathrm{C})=4\,\mathrm{W}$ y $P_{\mathrm{máx}}(@\ T_c=25^{\circ}\mathrm{C})=25\,\mathrm{W}$.