Apuntes o más Detalles

1. Posible hipótesis inicial:

- Impostores → flight_avg mayor, traj_avg mayor.
- Legítimos → tiempos más consistentes y trayectorias más cortas.

Analisis descriptivo de usuarios legitimos e ilegitimos

dwell_avg (tiempo promedio que una tecla permanece presionada)

Métrica	Falsos (0)	Legítimos (1)	Interpretación
Media	0.11482	0.11621	Muy similares. Ligera tendencia a presionar un poco más lento en usuarios legítimos.
Desviación estándar	0.0255	0.0271	Ligera mayor variabilidad en legítimos.
Mínimo - Máximo	0.0616 - 0.2146	0.0659 - 0.2131	Rango casi idéntico.
Cuartiles (Q1-Q3)	0.0969 - 0.1299	0.0942 - 0.1317	Distribuciones parecidas.

Conclusión: dwell_avg **no parece una variable discriminativa fuerte**. Su distribución es muy similar entre clases.

flight_avg (tiempo promedio entre teclas)

Métrica	Falsos (0)	Legítimos (1)	Interpretación
Media	0.9581	0.9461	Muy cercanos, pero falsos un poco más lentos en transiciones.
Desviación estándar	0.6510	0.7487	Más variabilidad en usuarios legítimos, lo cual es coherente con patrones más naturales.
Mínimo - Máximo	0.1889 - 7.1524	0.1897 - 9.9054	Legítimos tienen valores más extremos (mayores).
Cuartiles (Q1-Q3)	0.5744 - 1.1263	0.5381 - 1.0952	Distribuciones muy parecidas.

Conclusión: Aunque los promedios son parecidos, los usuarios legítimos tienen mayor variabilidad y valores extremos, lo que podría reflejar patrones más complejos y naturales.

Esto respalda la idea de que los impostores tienen comportamientos más homogéneos o forzados.

traj_avg (trayectoria del ratón)

Métrica	Falsos (0)	Legítimos (1)	Interpretación
Media	476.67	466.51	Levemente mayor en impostores.
Desviación estándar	217.46	207.19	Más variabilidad en impostores.
Mínimo - Máximo	181.93 - 1860.33	179.16 - 1636.11	Impostores recorren distancias más largas en promedio.
Cuartiles (Q1-Q3)	326.38 - 563.28	319.40 - 555.35	Muy similares, aunque impostores tienden a moverse un poco más.

Conclusión: traj_avg puede ser más discriminativa. Los impostores muestran trayectorias de ratón más largas y variables, lo cual podría reflejar menor familiaridad con el sistema.

Conclusiones globales

Variable	¿Discriminativa?	Comentario
dwell_avg	No mucho	Prácticamente idéntica en ambas clases.
flight_avg	Moderadamente	Similar en media, pero legítimos tienen más variabilidad y extremos.
traj_avg	Sí	Impostores tienden a recorrer más distancia con el ratón y son más inconsistentes.

Mas sobre los graficos

Explicación detallada

- 1. Qué tipo de gráfico es:
- Es un histograma con densidad (histplot), segmentado por clase (label).
- El eje x: valores de dwell_avg (tiempo promedio de tecla presionada).
- El eje y: densidad (no frecuencia absoluta), de modo que el área bajo cada curva es 1.
- Las barras muestran la distribución de datos por intervalos, y la línea curva (KDE: Kernel Density Estimation) suaviza la distribución para ver la forma general.

2.Interpretacion:

- Forma: ambas distribuciones tienen una forma unimodal (un solo pico) alrededor de 0.12 segundos.
- Asimetría: ligera cola a la derecha; algunos usuarios tienen dwell_avg más altos, pero son pocos.
- Comparación entre clases:
 - Coincidencia fuerte: las curvas casi se solapan completamente, lo que indica poca diferencia entre legítimos e impostores.
 - Si las curvas estuvieran separadas, podríamos inferir mayor poder discriminativo de la variable.
- Rango típico: la mayoría de observaciones está entre 0.09 y 0.14 s, con valores mínimos en 0.06 s y máximos en 0.21 s.

Explicación detallada

- 1. Tipo de gráfico:
- Es un histograma con densidad (histplot), segmentado por clase (label).
- flight_avg: tiempo promedio entre liberación de una tecla y pulsación de la siguiente.
- Eje x: valores de flight_avg.
- Eje y: densidad de probabilidad.

2. Interpretación visual:

- Forma: altamente sesgada a la derecha (cola larga).
- Pico modal: alrededor de 0.3 segundos.
- Dispersión: la mayoría de valores < 2 s, pero hay observaciones atípicas > 5 s (pocos pero influyentes).
- Comparación de clases:
 - o Ambas curvas son prácticamente idénticas → no hay diferencia clara.
 - Esto sugiere que, al igual que dwell_avg, flight_avg por sí sola no discrimina bien entre grupos.

Explicación detallada (para ti)

1. Tipo de gráfico

- Es un histograma con densidad (histplot), segmentado por clase (label).
- traj_avg: valor promedio de trayectoria
- Eje X: valores de traj_avg.
- Eje Y: densidad de probabilidad.

2. Observaciones principales

- Forma: distribución fuertemente sesgada a la derecha.
- **Moda** (pico principal): entre ~300 y 400 unidades.
- Cola larga: valores aislados llegan a 1,700+.
- Comparación entre clases:
 - Curvas prácticamente idénticas.
 - o No hay desplazamiento claro en la moda ni en la dispersión.
 - Indica bajo poder discriminante por sí sola.

Interpretación de la prueba Mann-Whitney U

Variable	U- statistic	p- value	Interpretación
dwell_avg	379 882.00	0.4924	No hay diferencia estadísticamente significativa entre legítimos e impostores en el tiempo promedio que mantienen una tecla presionada.
flight_avg	414 030.00	0.0118	Diferencia estadísticamente significativa ($p < 0.05$). Esto indica que el tiempo entre pulsaciones consecutivas difiere entre legítimos e impostores.
traj_avg	398 450.00	0.2913	No hay diferencia significativa en la trayectoria promedio del ratón entre ambos grupos.

Conclusiones clave

1. dwell_avg (tiempo de presión de tecla)

- p = 0.4924 → No hay evidencia suficiente para afirmar que legítimos e impostores difieran en esta métrica.
- En términos prácticos: la velocidad con que se mantiene una tecla presionada parece ser similar entre ambos grupos.
- o Esto sugiere que esta variable por sí sola no discrimina bien.

2. flight_avg (tiempo entre teclas)

- \circ p = 0.0118 \rightarrow Diferencia significativa.
- En estudios de biometría conductual, un flight_avg más alto suele asociarse con pausas más largas y mayor indecisión, comportamiento típico de impostores.
- Esto valida parte de lo que plantea el paper: la cadencia de tecleo es un rasgo útil para diferenciar.

3. traj_avg (trayectoria del ratón)

- o $p = 0.2913 \rightarrow No$ hay differencia significativa.
- Puede deberse a que el entorno de captura (formulario fijo) obliga a movimientos similares, limitando la variabilidad discriminante.
- También es posible que el movimiento del ratón esté más influenciado por la interfaz que por la autenticidad del usuario.

Interpretación alineada con el artículo

- El resultado confirma que no todas las métricas biométricas tienen el mismo poder discriminante.
- flight_avg se comporta como un buen predictor conductual, consistente con la idea de que la interacción continua (no solo un momento puntual) revela más sobre el usuario.
- dwell_avg y traj_avg podrían seguir siendo útiles si se combinan en un modelo de Machine Learning (como el SVM que menciona el articulo).
- Esto respalda la necesidad de modelos multivariados, en lugar de depender de una sola métrica.