Introduction to Signals and Systems: V216

Lecture #2

Chapter 1: Signals and Systems

Transformation of Independent Variable (time axes)

- Introducing several basic properties of signals & systems through elementary transformations.
- Examples of elementary transformation:-
 - time shift, x(t-t0), x[n-n0]
 - time reversal, x(-t), x[-n].
 - time scaling, x(0.5t), x[2n].
 - and combinations of these. x(at+b), x[an-b], where a & b are signed constants.

Delayed Impulse

Example of Delayed Signal

Shifting right or lagging signal x(t)

Shifting left or leading signal x(t)

Folded or Flipped x(t) = x(-t), time reversal

Signal Flip about y- axes X[-n], time reversal

Time scaling of continuous signal

Example 1 sketch signal x(-t+1)

Example 1

Example 1 (Method 2)

x(t-1) is x(t) shifted right by 1sec

x(-t+1)=x(-1(t-1)), Flip about axis t=1

Example 1, (Method 3)

Example 2 Sketch x(3t/2 +1)

x((3/2)*(t+2/3)), x(t) compressed by 2/3 & shifted left by 2/3

Periodic Complex Exponential & Sinusoidal Signal

Using Euler's relation, the complex exponentia 1 signal can be written in terms of sinusoidal signals with the fundamenta 1 period: $e^{j\omega_o t} = \cos \omega_o t + j \sin \omega_o t$

Similarly the sinusoidal signal can be written in terms of periodic complex exponentia l, with fundamenta l period : -

$$A\cos(\omega_o t + \theta) = \frac{A}{2}e^{j\theta}e^{j\omega_o t} + \frac{A}{2}e^{-j\theta}e^{-j\omega_o t}$$

Alternativ ely we can express : -

$$A\cos(\omega_o t + \theta) = A.\operatorname{Re}\left\{e^{j(\omega_o t + \theta)}\right\}$$

or
$$A\sin(\omega_o t + \theta) = A.IM\{e^{j(\omega_o t + \theta)}\}$$

 $T_o = fundamental period$

 $\omega_{\rm o} = 2\pi f_{\rm o}$ is fundamenta 1 angular frequency in radians per second.

f_o is the fundamenta 1 frequency in hertz or cycles per second.

Increasing w_o, increase the rate of oscillation.

Case $w_o=0$ x(t) is a constant

Therefore is periodic with period T for any positive value of T.
Thus fundamental period is undefined.
On other hand can define fundamental frequency to be zero.

I.e. constant signal(d.c) has zero rate of oscillation.

Infinite Total Energy & finite average Power of Periodic Signal

Energy & Average Power for Periodic Exponentia 1 Signal over one period : -

$$\begin{aligned} \mathbf{E}_{\text{period}} &= \int_{0}^{T_{o}} |e^{j\omega_{o}t}|^{2} dt \\ &= \int_{0}^{T_{o}} 1. dt = \mathbf{T}_{o} \\ P_{period} &= \frac{1}{T_{o}} E_{period} = 1. \end{aligned} \qquad \begin{aligned} E_{\infty} &= \text{infinite} \\ P_{\infty} &= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |e^{j\omega_{o}t}|^{2} dt = 1 \end{aligned}$$

Periodic Complex Exponential

Play a central role in signals & systems. Serve as building block for many other signals.

Sets of harmonically related complex exponential are periodic with a common period T_0 .

Periodic Complex Exponential

A necessary condition for a complex exponential $e^{j\omega_o t}$ to be periodic with period T_o is:- $e^{j\omega T_o} = 1$

which implies that ωT_o is a multiple of 2π . i.e. $\omega T_o = 2\pi k, k = 0, \pm 1, \pm 2,...$

Harmonically Complex Exponential Signals.

If we define $\omega_{o} = \frac{2\pi}{T_{o}}$, then ω must be an integer multiple of ω_{o} i.e. $\omega = k\omega_{o}$.

A harmonical ly related set of complex exponentia 1 is a set of periodic exponentia ls with fundamenta 1 frequencie s that are multiples of a single

positive frequency ω_{0} .

Harmonically Complex Exponential Signals.

$$\Phi_k(t) = e^{jk\omega_o t}, \ k = 0,\pm 1,\pm 2,...$$

For k = 0, $\Phi_k(t)$ is a constant.

 $k \neq 0$, $\Phi_k(t)$ is periodic with fundamenta 1 frequencie $s \mid k \mid \omega_o$ and fundamenta 1 period

$$\frac{2\pi}{|\mathbf{k}|\omega_{o}} = \frac{T_{o}}{|\mathbf{k}|}$$

General Complex Exponential Signals

 $x(t) = Ce^{at}$, where both 'C' and 'a' are complex numbers.

If C is expressed in polar form and a in cartesian form :-

$$C = |C| e^{j\theta}$$
 and $a = r + j\omega_o$.

Then
$$x(t) = Ce^{at}$$

$$= |C| e^{j\theta} e^{(r+j\omega_o)t} = |C| e^{rt} e^{j(\omega_o t + \theta)}.$$

General Complex Exponential Signals.

Using Euler's relation,

$$x(t) = Ce^{at} = |C|e^{rt}\cos(\omega_o t + \theta) + j|C|e^{rt}\sin(\omega_o t + \theta)$$

If r = 0,

the real & imaginary parts are sinusoidal.

If r > 0,

x(t) is sinusoidal signals multipled by growing exponentia l. If r < 0,

x(t) is sinusoidal signals multipled by decaying exponentia l.

Growing & Decaying Sinusoidal Signals.

Decaying or Damped Sinusoids

Response of RLC circuits.

Mechanical systems having both damping & restoring forces e.g. automotive suspension system.

28

Discrete-Time Complex Exponential Sequence.

$$x[n] = C\alpha^n$$

where C and α are in general complex numbers.

Alternative ly we can express the sequence in the following form:-

$$x[n] = Ce^{\beta n}$$
, where $\alpha = e^{\beta}$.

Although t his form is similar to the continuous - time exponentia I signal we have described previously, the former form is perferred when dealing with the discrete - time sequence.

 $x[n] = C * \alpha^n \text{ where } \alpha > 1 \text{ } e.g. \text{ } x[n] = 2 * 1.1^n$

 $x[n] = C * \alpha^n \text{ where } 0 < \alpha < 1 \qquad x[n] = 2 * 0.9^n$

 $x[n] = C * \alpha^n$ where $-1 < \alpha < 0$ $x[n] = 2 * (-0.9)^n$

 $x[n] = C * \alpha^n \text{ where } \alpha < -1 \quad x[n] = 2 * (-1.1)^n$

$$x[n] = C * \alpha^n$$
 where $\alpha = -1$ $x[n] = 2 * (-1)^n$

Real Exponential Signal Real-valued discrete exponentials are used to describe:-

- 1) Population growth as function of generation.
- 2) Total return on investment as a function of day, month or quarter.

Discrete-time Sinusoidal Signals

 $x[n] = Ce^{\beta n}$, let $C = 1 \& \beta = j\omega_0$ be purely an imaginary number.

$$\therefore x[n] = e^{j\omega_o n}.$$

This signal is closely related to sinusoidal signal:

$$x[n] = A\cos(\varpi_o n + \phi).$$

Taking n as dimensionl ess, then both

 ϖ_{o} and ϕ have units of radians.

From Euler's relation: $-e^{j\omega_o n} = \cos \omega_o n + j \sin \omega_o n$

$$A\cos(\omega_o n + \phi) = \frac{A}{2}e^{j\phi}e^{j\omega_o n} + \frac{A}{2}e^{-j\phi}e^{-j\omega_o n}$$

Discrete-time Sinusoidal Signals

$$x[n] = \cos(8\pi n/31)$$

Discrete-time Sinusoidal Signals

These discrete-time signals possessed:-

- 1) Infinite total energy
- 2) Finite average power.

General Complex Exponential Signals

The general discrete - time complex exponential can be interpreted in terms of real exponentials and sinusoidal signals.

Writing C and α in polar form:-

$$C = |C| e^{j\theta}, \ \alpha = |\alpha| e^{j\omega_0}.$$

$$x[n] = C\alpha^n = |C| |\alpha|^n \cos(\omega_o n + \theta) + j |C| |\alpha|^n \sin(\omega_o n + \theta)$$

 $|\alpha| = 1$, real & imaginary parts are sinusoidal.

 $|\alpha|$ <1, sinusoidal decaying exponentially,

 $|\alpha| > 1$, sinusoidal growing exponentially.

General Complex Exponential Signals

Two properties of continuous - time counterpart $e^{j\omega_o t}$

- 1) The Larger is ω_0 , the higher is the rate of oscillation.
- 2) $e^{j\omega_0 t}$ is periodic for any value of ω_0 .

There are differences in each of the above properties for the discrete-time case of $e^{j\omega_o n}$.

Consider the discrete - time complex exponentia 1 with frequency $\omega_{\rm o}$ + 2π :

$$e^{j(\omega_o+2\pi)n}=e^{j2\pi n}e^{j\omega_on}=e^{j\omega_on}.$$

From this we conclude that the exponentia lat

frequency $\omega_0 + 2\pi$ is the same as that at frequency ω_0 .

Similarly at frequencie s $\omega_0 \pm 2\pi$, $\omega_0 \pm 4\pi$, and so on.

This is very different from the continuous - time case whereby

the signals are all distinct for all distinct v alues of ω_{o} .

Because of this periodicit y of 2π , we need only to consider

frequency interval of 2π in the case for discrete - time signals.

Because of this implied periodicity of discrete - time signal, the signal $e^{j\omega_o n}$ does not have a continually increasing rate of oscillation as ω_o is increased in magnitude.

Increasing $\omega_{\rm o}$ from 0 (d.c., constant sequence, no oscillation) the oscillation increases until $\omega_{\rm o}=\pi$, thereafter the oscillation will decrease to 0 i.e. a constant sequence or d.c. signal at $\omega_{\rm o}=2\pi$.

Therefore, low frequencies occurs at $\omega_0 = 0$, $\pm 2\pi$,

 \pm even multiple of π .

High frequencies are at $\omega_0 = \pm \pi, \pm 3\pi, \pm 3\pi$, and multiple of π .

Note for $\omega_0 = \pi$, odd multiple of π , $e^{j\pi n} = (e^{j\pi})^n = (-1)^n$,

the signal oscillates rapidly, changing sign at each point in time.

Second property concerns the periodicity of the discrete-time complex exponential.

In order for $e^{j\omega_0 n}$ to be periodic with period N > 0,

 $e^{j\omega_o(n+N)} = e^{j\omega_o n}$, or equivalent by $e^{j\omega_o N} = 1$.

 $\therefore \omega_{o} N$ must be a multiple of 2π .

i.e. $\omega_{o}N = 2\pi m$, or equivalently $\frac{\omega_{o}}{2\pi} = \frac{m}{N}$,

This means that the signal $e^{j\omega_o n}$ is periodic if $\omega_o/2\pi$ is a rational number and is not periodic otherwise.

This is also true for the discrete - time sinusoids.

Fundamental Period & Frequency of discrete-time complex exponential

Fundamental Period & Frequency of discrete-time complex exponential

If $x[n] = e^{j\omega_0 n}$ is periodic with fundamenta 1 period N,

Its fundamenta 1 frequency is $\frac{2\pi}{N} = \frac{\omega_o}{m}$,

The fundamenta 1 period is written as:-

$$N = m(\frac{2\pi}{\omega_o})$$

Comparison of the signal $e^{j\omega_0 t}$ and $e^{j\omega_0 n}$

 $e^{j\omega_{o}t}$

Distinct signals for distinct values of ω_{o} .

Periodic for any choice of ω_{o} .

Fundamenta l frequency $\omega_{\rm o}$ Fundamenta l period

$$\omega_{\rm o}=0$$
: undefined

$$\omega_{\rm o} \neq 0: \frac{2\pi}{\omega_{\rm o}}$$

 $e^{j\omega_{o}n}$

Identical signals for values of $\omega_{\rm o}$ separated by multiples of 2π

Periodic only if $\omega_o = \frac{2\pi m}{N}$, for some integers N > 0 and m

Fundamenta 1 frequency $\frac{\omega_0}{m}$ Fundamenta 1 period

$$\omega_{o} = 0$$
: undefined

$$\omega_{\rm o} \neq 0 : m(\frac{2\pi}{\omega_{\rm o}})$$

Harmonically related periodic exponential sequence

Considering periodic exponentials with common period N samples:

$$\phi_k[n] = e^{jk(2\pi/N)n}$$
, for $k = 0,\pm 1,...$

This set of signals possess frequencies which are multiples of

$$2\pi/N$$

Harmonically related periodic exponential sequence

In continuous-time case $e^{jk(2\pi/T)t}$ are all distinct signals for $k = 0,\pm 1,\pm 2,...$

$$\phi_{k+N}[n] = e^{j(k+N)(2\pi/N)n}$$

$$= e^{jk(2\pi/N)n}e^{j2\pi n} = \phi_k[n]$$

Harmonically related periodic exponential sequence

Therefore, there are only N distinct periodic exponentials in the discrete harmonic sequences.

$$\phi_o[n] = 1, \phi_1[n] = e^{j2\pi n/N}, \phi_2[n] = e^{j4\pi n/N},$$
..... $\phi_{N-1}[n] = e^{j2\pi(N-1)n/N}$

Any other $\phi_k[n]$ is identical to one of the above. (e.g. $\phi_N[n] = \phi_0[n]$)