

TUMOR TYPE
Lung adenocarcinoma
COUNTRY CODE
PF

REPORT DATE 15 Jun 2021 ORDERED TEST # ORD-1112711-01

**ABOUT THE TEST** FoundationOne®Liquid CDx is a next generation sequencing (NGS) assay that identifies clinically relevant genomic alterations in circulating cell-free DNA

# **PATIENT**DISEASE Lu

**DISEASE** Lung adenocarcinoma

DATE OF BIRTH 24 August 1951

SEX Female

MEDICAL RECORD # Not given

#### **PHYSICIAN**

MEDICAL FACILITY Arias Stella ADDITIONAL RECIPIENT None MEDICAL FACILITY ID 317319 PATHOLOGIST Not Provided

#### **SPECIMEN**

SPECIMEN ID MAH 8/24/1951 SPECIMEN TYPE Blood DATE OF COLLECTION 31 May 2021 SPECIMEN RECEIVED 07 June 2021

### Biomarker Findings

Blood Tumor Mutational Burden - 1 Muts/Mb Microsatellite status - MSI-High Not Detected Tumor Fraction - Cannot Be Determined

### **Genomic Findings**

For a complete list of the genes assayed, please refer to the Appendix.

**CHEK2** R137\*

O Therapies with Clinical Benefit

10 Clinical Trials

O Therapies with Lack of Response

#### **BIOMARKER FINDINGS**

### Blood Tumor Mutational Burden - 1 Muts/Mb

**Microsatellite status -** MSI-High Not Detected

Tumor Fraction - Cannot Be Determined

| GENOMIC FINDINGS     | VAF % |  |  |  |
|----------------------|-------|--|--|--|
| <b>CHEK2 -</b> R137* | 0.66% |  |  |  |
| 10 Trials see p. 5   |       |  |  |  |

#### THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. See Biomarker Findings section

MSI-High not detected. No evidence of microsatellite instability in this sample (see Appendix section).

Tumor fraction is an estimate of the percentage of circulating-tumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample based on observed aneuploid instability.

| THERAPIES WITH CLINICAL BENEFIT (IN PATIENT'S TUMOR TYPE) | THERAPIES WITH CLINICAL BENEFIT (IN OTHER TUMOR TYPE) |
|-----------------------------------------------------------|-------------------------------------------------------|
| None                                                      | None                                                  |
|                                                           |                                                       |

### VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS (CH)

Genomic findings below may include nontumor somatic alterations, such as CH. The efficacy of targeting such nontumor somatic alterations is unknown. This content should be interpreted based on clinical context. Refer to appendix for additional information on CH.

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the therapies listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and/or exhaustive. Neither the therapies nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies. Therapies contained in this report may have been approved by the US FDA or other national authorities; however, they might not have been approved in your respective country. In the appropriate clinical context, germline testing of APC, BRCA1, BRCA2, BRIP1, MEN1, MLH1, MSH2, MSH6, MUTYH, NF2, PALB2, PMS2, PTEN, RAD51C, RAD51D, RB1, RET, SDHA, SDHB, SDHC, SDHD, SMAD4, STK11, TGFBR2, TP53, TSC1, TSC2, VHL, and WT1 is recommended.

Variant Allele Frequency is not applicable for copy number alterations.

15 Jun 2021

Variant Allele Frequency Percentage (VAF%)



HISTORIC PATIENT FINDINGS

Blood Tumor Mutational Burden

Microsatellite status

MSI-High Not Detected

Tumor Fraction

Cannot Be Determined

CHEK2

R137\*

0.66%

NOTE This comparison table refers only to genes and biomarkers assayed by prior FoundationOne®Liquid CDx, FoundationOne®Liquid, FoundationOne®, or FoundationOne®CDx tests. Up to five previous tests may be shown

For some genes in Foundation One Liquid CDx, only select exons are assayed. Therefore, an alteration found by a previous test may not have been confirmed despite overlapping gene lists. Please refer to the Appendix for the complete list of genes and exons assayed. The gene and biomarker list will be updated periodically to reflect new knowledge about cancer biology.

As new scientific information becomes available, alterations that had previously been listed as Variants of Unknown Significance (VUS) may become reportable.

Tissue Tumor Mutational Burden (TMB) and blood TMB (bTMB) are estimated from the number of synonymous and non-synonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.

Not Tested = not baited, not reported on test, or test preceded addition of biomarker or gene

Not Detected = baited but not detected on test

Detected = present (VAF% is not applicable)

VAF% = variant allele frequency percentage

 ${\sf Cannot\,Be\,Determined\,=\,Sample\,is\,not\,of\,sufficient\,data\,quality\,to\,confidently\,determine\,biomarker\,status}$ 

**BIOMARKER FINDINGS** 

#### BIOMARKER

## Blood Tumor Mutational Burden

RESULT 1 Muts/Mb

#### **POTENTIAL TREATMENT STRATEGIES**

On the basis of clinical evidence in NSCLC and HSNCC, increased bTMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1<sup>1-2</sup> and anti-PD-1<sup>3</sup> therapies. In NSCLC, multiple clinical trials have shown patients with higher bTMB derive clinical benefit from immune checkpoint inhibitors following single agent or combination treatments with either CTLA4 inhibitors or chemotherapy, with reported high bTMB cutpoints ranging from 6 to 16 Muts/Mb¹. In HNSCC, a Phase 3 trial showed that bTMB ≥16 Muts/Mb (approximate

equivalency ≥8 Muts/Mb as measured by this assay) was associated with improved survival from treatment with a PD-L1 inhibitor alone or in combination with a CTLA-4 inhibitor<sup>4</sup>.

#### **FREQUENCY & PROGNOSIS**

NSCLC harbors a median bTMB of 16.8 Muts/Mb (range 1.9-52.5 Muts/Mb)3. Published data investigating the prognostic implications of bTMB levels in lung cancer are limited (PubMed, Jul 2020). A large study of Chinese patients with lung adenocarcinoma reported a shorter median OS for tumors with a higher number of mutations in a limited gene set compared with a lower mutation number (48.4 vs. 61.0 months)5. Another study of patients with NSCLC correlated elevated TMB with poorer prognosis and significantly associated lower TMB in combination with PD-L1 negative status with longer median survival in patients with lung adenocarcinoma6. However, no significant prognostic association of TMB and/or PD-L1 status with survival has been reported in patients with lung SCC6-7.

#### **FINDING SUMMARY**

Blood tumor mutational burden (bTMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations from circulating tumor DNA in blood. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma<sup>8-9</sup> and cigarette smoke in lung cancer<sup>10-11</sup>, treatment with temozolomide-based chemotherapy in glioma<sup>12-13</sup>, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes14-18, and microsatellite instability (MSI)14,17-18. High bTMB levels were not detected in this sample. It is unclear whether the bTMB levels in this sample would be predicted to be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents<sup>1-3</sup>. Depending on the clinical context, TMB testing of an alternate sample or by another methodology could be considered.

#### BIOMARKER

## **Tumor Fraction**

RESULT

Cannot Be Determined

#### **POTENTIAL TREATMENT STRATEGIES**

Specimens with high tumor fraction values have high circulating-tumor DNA (ctDNA) content, and thus high sensitivity for identifying genomic alterations. Such specimens are at low risk of false negative results. However, if tumor fraction is not detected as high, it does not exclude the presence of disease burden or compromise the confidence of reported alterations. Tumor fraction levels currently have limited implications for diagnosis, surveillance, or therapy and should not be overinterpreted or compared from one blood draw

to another. There are currently no targeted approaches to address specific tumor fraction levels. In the research setting, changes in tumor fraction estimates have been associated with treatment duration and clinical response and may be a useful indicator for future cancer management<sup>19-24</sup>.

#### **FREQUENCY & PROGNOSIS**

Detectible ctDNA levels have been reported in a variety of tumor types, with higher tumor fraction levels reported for patients with metastatic (Stage 4) tumors compared with patients with localized disease (Stages 1 to 3)<sup>25</sup>. Elevated tumor fraction levels have been reported to be associated with worse prognosis in a variety of cancer types, including pancreatic cancer<sup>26</sup>, Ewing sarcoma and osteosarcoma<sup>27</sup>, prostate cancer<sup>22</sup>, breast cancer<sup>28</sup>, leiomyosarcoma<sup>29</sup>, esophageal cancer<sup>30</sup>, colorectal cancer<sup>31</sup>, and gastrointestinal cancer<sup>32</sup>.

#### **FINDING SUMMARY**

Tumor fraction provides an estimate of the percentage of ctDNA present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate for this sample is based on the observed level of aneuploid instability. The tumor fraction algorithm utilized for FoundationOne Liquid CDx uses the allele frequencies of approximately 1,000 singlenucleotide polymorphism (SNP) sites across the genome. Unlike the maximum somatic allele frequency (MSAF) method of estimating ctDNA content<sup>33</sup>, the tumor fraction metric does not take into account the allele frequency of individual variants but rather produces a more holistic estimate of ctDNA content using data from across the genome. The amount of ctDNA detected may correlate with disease burden and response to therapy  $^{34-35}$ . However, the tumor fraction estimate in this sample could not be determined with confidence.



**GENOMIC FINDINGS** 

**GENE** 

## CHEK2

ALTERATION R137\*

TRANSCRIPT ID

CODING SEQUENCE EFFECT

409C>T

#### POTENTIAL TREATMENT STRATEGIES

Limited clinical data indicate that CHEK2 inactivation may predict sensitivity to PARP inhibitors. Patients with CHEK2-altered prostate cancer have experienced clinical responses to PARP inhibitors<sup>36-38</sup>. Clinical benefit has been observed for patients with ovarian39 and testicular<sup>40</sup> cancers treated with PARP inhibitors. One study of patients with breast cancer reported that carriers of the CHEK2 H371Y mutation have a higher likelihood of response to neoadjuvant chemotherapy<sup>41</sup>, whereas another study found that CHEK2 mutation carriers have a lower frequency of objective clinical responses to neoadjuvant therapy<sup>42</sup>. A third study reported that the CHEK2 1100delC mutation is not associated with differential efficacy of chemotherapy and endocrine therapy in patients with metastatic breast cancer43.

#### **FREQUENCY & PROGNOSIS**

CHEK2 mutations have been reported in 8.3% of glioblastoma (GBM) samples and in carcinomas of the endometrium (3.8%), urinary tract (3.5%), ovary (3.4%), and large intestine (3.1%), and at low frequency in a variety of solid and hematologic cancer types (COSMIC, 2021)44. In breast cancer, certain CHEK2 mutations are associated with higher grade and larger tumors as well as bilateral disease<sup>45</sup>. A study reported that a polymorphism in CHEK2 was associated with worse survival of patients with GBM, but this association lost significance after adjusting for other prognostic factors46-47. Another study in prostate cancer reported that CHEK2 expression is decreased in higher grade tumors and that CHEK2 is a tumor suppressor that decreases the growth of prostate cancer cells and regulates androgen receptor signaling48.

#### **FINDING SUMMARY**

CHEK2 encodes the protein checkpoint kinase 2, a serine/threonine kinase that plays an important role in the DNA-damage response; it is a putative tumor suppressor<sup>49-52</sup>. Alterations such as seen here may disrupt CHEK2 function or expression<sup>53-63</sup>.

#### POTENTIAL GERMLINE IMPLICATIONS

One or more of the CHEK2 variants observed here has been described in the ClinVar database as a

likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with familial breast cancer (ClinVar, Mar 2021) $^{64}$ . Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Germline CHEK2 mutation has been associated with cancer susceptibility of low to moderate penetrance, especially in hereditary breast cancer<sup>65</sup>. CHEK2 germline mutation has been identified in approximately 2.5% of familial or high-risk breast cancer cases<sup>66-67</sup>. Although heterozygous germline CHEK2 mutation increases breast cancer risk two- to three-fold, it is not associated with younger age at diagnosis  $^{67\text{-}68}$ . In the appropriate clinical context, germline testing of CHEK2 is recommended.

# POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion<sup>69-74</sup>. Comprehensive genomic profiling of solid tumors may detect nontumor alterations that are due to CH<sup>73,75-76</sup>. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH



CLINICAL TRIALS

**IMPORTANT** Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or

research staff. This is not a comprehensive list of all available clinical trials. There may also be compassionate use or early access programs available, which are not listed in this report. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial  $\Rightarrow$  Geographical proximity  $\Rightarrow$  Later trial phase. Clinical trials are not ranked in order of potential or predicted efficacy for this patient or

in order of level of evidence for this patient's tumor type. Clinical trials listed here may have additional enrollment criteria that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. However, clinicaltrials.gov does not list all clinical trials that might be available.

CHEK2

ALTERATION R137\*

**RATIONALE** 

On the basis of clinical evidence in prostate and other solid cancers, CHEK2 loss or inactivation

may confer sensitivity to PARP inhibitors.

NCT03742895 PHASE 2

Efficacy and Safety of Olaparib (MK-7339) in Participants With Previously Treated, Homologous
Recombination Repair Mutation (HRRm) or Homologous Recombination Deficiency (HRD) Positive
Advanced Cancer (MK-7339-002 / LYNK-002)

LOCATIONS: Lima (Peru), Trujillo (Peru), Cali (Colombia), Bogota (Colombia), Medellin (Colombia), Monteria (Colombia), Valledupar (Colombia), Buenos Aires (Argentina), Ciudad de Buenos Aires (Argentina), Berazategui (Argentina)

NCT04123366 PHASE 2

Study of Olaparib (MK-7339) in Combination With Pembrolizumab (MK-3475) in the Treatment of Homologous Recombination Repair Mutation (HRRm) and/or Homologous Recombination Deficiency (HRD)-Positive Advanced Cancer (MK-7339-007/KEYLYNK-007)

TARGETS PARP, PD-1

LOCATIONS: Lima (Peru), Bellavista (Peru), Cuzco (Peru), Arequipa (Peru), Cali (Colombia), Medellin (Colombia), Bucaramanga (Colombia), Barranquilla (Colombia), Buenos Aires (Argentina), Ciudad de Buenos Aires (Argentina)

NCT02498613 PHASE 2

A Phase 2 Study of Cediranib in Combination With Olaparib in Advanced Solid Tumors

TARGETS
PARP, VEGFRS

LOCATIONS: Florida, Texas, Tennessee, Virginia, Connecticut, Massachusetts, Toronto (Canada), California

NCT03329001 PHASE 1

Crossover Study to Assess the Relative Bioavailability and Bioequivalence of Niraparib Tablet
Compared to Niraparib Capsule

TARGETS
PARP

LOCATIONS: Florida, Georgia, Texas, Tennessee, Oklahoma, Connecticut, Michigan, Colorado, California

NCT02286687 PHASE 2

Phase II Study of BMN 673

TARGETS
PARP

**LOCATIONS:** Texas

© and Foundation Medicine Inc. All rights recomme

© 2021 Foundation Medicine, Inc. All rights reserved.

Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531

Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531

Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531



**CLINICAL TRIALS** 

| NCT03334617                                                                                                                         | PHASE 2                                               |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Phase II Umbrella Study of Novel Anti-cancer Agents in Patients With NSCLC Who Progressed on an Anti-PD-1/PD-L1 Containing Therapy. | TARGETS PD-L1, PARP, mTORC1, mTORC2, ATR, CD73, STAT3 |
| LOCATIONS: Texas, Tennessee, District of Columbia, Maryland, Missouri, Pennsylvania, New York, Ma                                   | ssachusetts, Toronto (Canada), Brampton (Canada)      |
| NCT03739710                                                                                                                         | PHASE 1/2                                             |
| Platform Trial of Novel Regimens Versus Standard of Care (SoC) in Non-small Cell Lung Cancer (NSCLC)                                | TARGETS<br>CTLA-4, ICOS, PD-1, TIM-3, PARP            |
| LOCATIONS: Georgia, North Carolina, Tennessee, Texas, Missouri, New York, New Jersey, Michigan, To                                  | ronto (Canada)                                        |
| NCT02769962                                                                                                                         | PHASE 1/2                                             |
| Trial of CRLX101, a Nanoparticle Camptothecin With Olaparib in People With Relapsed/Refractory Small Cell Lung Cancer               | TARGETS<br>PARP, TOP1                                 |
| LOCATIONS: Maryland                                                                                                                 |                                                       |
| NCT02264678                                                                                                                         | PHASE 1/2                                             |
| Ascending Doses of AZD6738 in Combination With Chemotherapy and/or Novel Anti Cancer Agents                                         | TARGETS<br>ATR, PARP, PD-L1                           |
| LOCATIONS: New York, Massachusetts, California, Saint Herblain (France), Withington (United Kingdo                                  | om), Sutton (United Kingdom), London (United          |

| NCT03127215                                                       | PHASE 2                 |
|-------------------------------------------------------------------|-------------------------|
| Study of Olaparib/Trabectedin vs. Doctor's Choice in Solid Tumors | TARGETS FUS-DDIT3, PARP |

**LOCATIONS:** Freiburg (Germany), Essen (Germany), Mainz (Germany), Heidelberg (Germany), Tuebingen (Germany), Frankfurt (Germany), Stuttgart (Germany), München (Germany), Dresden (Germany)

Kingdom), Cambridge (United Kingdom), Villejuif (France)



TUMOR TYPE Lung adenocarcinoma REPORT DATE 15 Jun 2021

FOUNDATION ONE \*\* LIQUID CDx

ORDERED TEST # ORD-1112711-01

APPENDIX

Variants of Unknown Significance

**NOTE** One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

DIS3 A494V **FAM123B** R178H

**SETD2** P873L

**TSC1** S829R

**ZNF703** S177fs\*54

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an \*); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

| ABL1<br>Exons 4-9          | ACVR1B                                   | AKT1<br>Exon 3                 | AKT2                                  | AKT3                                                     | <b>ALK</b><br>Exons 20-29, Introns 18, 19      | ALOX12B                                                   | AMER1<br>(FAM123B)                          | APC             |
|----------------------------|------------------------------------------|--------------------------------|---------------------------------------|----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|-----------------|
| AR                         | <b>ARAF</b><br>Exons 4, 5, 7, 11, 13, 15 | ARFRP1<br>i,                   | ARID1A                                | ASXL1                                                    | ATM                                            | ATR                                                       | ATRX                                        | AURKA           |
| AURKB                      | AXIN1                                    | AXL                            | BAP1                                  | BARD1                                                    | BCL2                                           | BCL2L1                                                    | BCL2L2                                      | BCL6            |
| BCOR                       | BCORL1                                   | BCR*<br>Introns 8, 13, 14      | <b>BRAF Exons 11-18,</b> Introns 7-10 | <b>BRCA1</b> D Introns 2, 7, 8, 12, 16, 19, 20           | BRCA2 D Intron 2                               | BRD4                                                      | BRIP1                                       | BTG1            |
| BTG2                       | BTK<br>Exons 2, 15                       | C11orf30<br>(EMSY)             | C17orf39<br>(GID4)                    | CALR                                                     | CARD11                                         | CASP8                                                     | CBFB                                        | CBL             |
| CCND1                      | CCND2                                    | CCND3                          | CCNE1                                 | CD22                                                     | CD70                                           | CD74*<br>Introns 6-8                                      | CD79A                                       | CD79B           |
| CD274<br>(PD-L1)           | CDC73                                    | CDH1                           | CDK12                                 | CDK4                                                     | CDK6                                           | CDK8                                                      | CDKN1A                                      | CDKN1B          |
| CDKN2A                     | CDKN2B                                   | CDKN2C                         | СЕВРА                                 | CHEK1                                                    | CHEK2                                          | CIC                                                       | CREBBP                                      | CRKL            |
| CSF1R                      | CSF3R                                    | CTCF                           | CTNNA1                                | CTNNB1<br>Exon 3                                         | CUL3                                           | CUL4A                                                     | CXCR4                                       | CYP17A1         |
| DAXX                       | DDR1                                     | <b>DDR2</b><br>Exons 5, 17, 18 | DIS3                                  | DNMT3A                                                   | DOT1L                                          | EED                                                       | EGFR<br>Introns 7, 15, 24-27                | EP300           |
| ЕРНАЗ                      | ЕРНВ1                                    | ЕРНВ4                          | ERBB2                                 | ERBB3<br>Exons 3, 6, 7, 8, 10, 12,<br>20, 21, 23, 24, 25 | ERBB4                                          | ERCC4                                                     | ERG                                         | ERRFI1          |
| ESR1<br>Exons 4-8          | ETV4*<br>Intron 8                        | ETV5*<br>Introns 6, 7          | ETV6*<br>Introns 5, 6                 | EWSR1*<br>Introns 7-13                                   | <b>EZH2</b><br>Exons 4, 16, 17, 18             | EZR*<br>Introns 9-11                                      | FAM46C                                      | FANCA           |
| FANCC                      | FANCG                                    | FANCL                          | FAS                                   | FBXW7                                                    | FGF10                                          | FGF12                                                     | FGF14                                       | FGF19           |
| FGF23                      | FGF3                                     | FGF4                           | FGF6                                  | FGFR1<br>Introns 1, 5, Intron 17                         | FGFR2<br>Intron 1, Intron 17                   | FGFR3<br>Exons 7, 9 (alternative<br>designation exon 10), | FGFR4                                       | FH              |
| FLCN                       | FLT1                                     | FLT3<br>Exons 14, 15, 20       | FOXL2                                 | FUBP1                                                    | GABRA6                                         | 14, 18, Intron 17<br>GATA3                                | GATA4                                       | GATA6           |
| <b>GNA11</b><br>Exons 4, 5 | GNA13                                    | GNAQ<br>Exons 4, 5             | GNAS<br>Exons 1, 8                    | GRM3                                                     | GSK3B                                          | НЗГЗА                                                     | HDAC1                                       | HGF             |
| HNF1A                      | HRAS<br>Exons 2, 3                       | HSD3B1                         | ID3                                   | IDH1<br>Exon 4                                           | IDH2<br>Exon 4                                 | IGF1R                                                     | IKBKE                                       | IKZF1           |
| INPP4B                     | IRF2                                     | IRF4                           | IRS2                                  | JAK1                                                     | JAK2<br>Exon 14                                | JAK3<br>Exons 5, 11, 12, 13, 15,<br>16                    | JUN                                         | KDM5A           |
| KDM5C                      | KDM6A                                    | KDR                            | KEAP1                                 | KEL                                                      | <b>KIT Exons 8, 9, 11, 12, 13, 1</b> Intron 16 | KLHL6<br>7,                                               | KMT2A<br>(MLL) Introns 6, 8-11,<br>Intron 7 | KMT2D<br>(MLL2) |

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an \*); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

| KRAS                      | LTK                                                    | LYN                                           | MAF                                                          | MAP2K1<br>(MEK1) Exons 2, 3                                   | MAP2K2<br>(MEK2) Exons 2-4, 6, 7 | MAP2K4              | МАРЗК1              | MAP3K13                                                |
|---------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|---------------------|---------------------|--------------------------------------------------------|
| МАРК1                     | MCL1                                                   | MDM2                                          | MDM4                                                         | MED12                                                         | MEF2B                            | MEN1                | MERTK               | MET                                                    |
| MITF                      | MKNK1                                                  | MLH1                                          | MPL<br>Exon 10                                               | MRE11A                                                        | MSH2<br>Intron 5                 | MSH3                | MSH6                | MST1R                                                  |
| МТАР                      | MTOR<br>Exons 19, 30, 39, 40,<br>43-45, 47, 48, 53, 56 | МИТҮН                                         | MYB*<br>Intron 14                                            | MYC<br>Intron 1                                               | MYCL (MYCL1)                     | MYCN                | MYD88<br>Exon 4     | NBN                                                    |
| NF1                       | NF2                                                    | NFE2L2                                        | NFKBIA                                                       | NKX2-1                                                        | NOTCH1                           | NOTCH2<br>Intron 26 | <b>NOTCH3</b>       | <b>NPM1</b><br>Exons 4-6, 8, 10                        |
| NRAS<br>Exons 2, 3        | NSD3<br>(WHSC1L1)                                      | NT5C2                                         | <b>NTRK1</b><br>Exons 14, 15, Introns<br>8-11                | NTRK2<br>Intron 12                                            | NTRK3<br>Exons 16, 17            | NUTM1*<br>Intron 1  | P2RY8               | PALB2                                                  |
| PARK2                     | PARP1                                                  | PARP2                                         | PARP3                                                        | PAX5                                                          | PBRM1                            | PDCD1<br>(PD-1)     | PDCD1LG2<br>(PD-L2) | PDGFRA<br>Exons 12, 18, Introns 7,<br>9, 11            |
| PDGFRB<br>Exons 12-21, 23 | PDK1                                                   | PIK3C2B                                       | PIK3C2G                                                      | PIK3CA<br>Exons 2, 3, 5-8, 10, 14,<br>19, 21 (Coding Exons 1, | PIK3CB                           | PIK3R1              | PIM1                | PMS2                                                   |
| POLD1                     | POLE                                                   | PPARG                                         | PPP2R1A                                                      | 2, 4-7, 9, 13, 18, 20)<br>PPP2R2A                             | PRDM1                            | PRKAR1A             | PRKCI               | РТСН1                                                  |
| PTEN                      | PTPN11                                                 | PTPRO                                         | QKI                                                          | RAC1                                                          | RAD21                            | RAD51               | RAD51B              | RAD51C                                                 |
| RAD51D                    | RAD52                                                  | RAD54L                                        | <b>RAF1</b><br>Exons 3, 4, 6, 7, 10, 14, 15, 17, Introns 4-8 | RARA<br>Intron 2                                              | RB1                              | RBM10               | REL                 | <b>RET</b> Introns 7, 8, Exons 11, 13-16, Introns 9-11 |
| RICTOR                    | RNF43                                                  | ROS1<br>Exons 31, 36-38, 40,<br>Introns 31-35 | RPTOR                                                        | RSPO2*<br>Intron 1                                            | SDC4*<br>Intron 2                | SDHA                | SDHB                | SDHC                                                   |
| SDHD                      | SETD2                                                  | SF3B1                                         | SGK1                                                         | SLC34A2*<br>Intron 4                                          | SMAD2                            | SMAD4               | SMARCA4             | SMARCB1                                                |
| SMO                       | SNCAIP                                                 | SOCS1                                         | SOX2                                                         | SOX9                                                          | SPEN                             | SPOP                | SRC                 | STAG2                                                  |
| STAT3                     | STK11                                                  | SUFU                                          | SYK                                                          | ТВХЗ                                                          | TEK                              | TERC*               | TERT*<br>Promoter   | ТЕТ2                                                   |
| TGFBR2                    | TIPARP                                                 | TMPRSS2*<br>Introns 1-3                       | TNFAIP3                                                      | TNFRSF14                                                      | TP53                             | TSC1                | TSC2                | TYRO3                                                  |
| U2AF1                     | VEGFA                                                  | VHL                                           | WHSC1                                                        | WTI                                                           | XPO1                             | XRCC2               | ZNF217              | ZNF703                                                 |

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Microsatellite (MS) status

Blood Tumor Mutational Burden (bTMB)

**Tumor Fraction** 

APPENDIX

About FoundationOne®Liquid CDx

FoundationOne Liquid CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium. The CE-IVD regulatory status of FoundationOne Liquid CDx is applicable in countries that accept and/or recognize the CE mark.



### \_\_\_

FoundationOne Liquid CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Liquid CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform high-complexity clinical testing.

**ABOUT FOUNDATIONONE LIQUID CDX** 

Please refer to technical information for performance specification details.

#### **INTENDED USE**

FoundationOne Liquid CDx is a next generation sequencing based in vitro diagnostic device that analyzes 324 genes. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The test also detects the genomic signatures blood tumor mutational burden (bTMB), microsatellite instability (MSI), and tumor fraction. FoundationOne Liquid CDx utilizes circulating cell-free DNA (cfDNA) isolated from plasma derived from the anti-coagulated peripheral whole blood of cancer patients. The test is intended to be used as a companion diagnostic to identify patients who may benefit from treatment with targeted therapies in accordance with the approved therapeutic product labeling. Additionally, FoundationOne Liquid CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with malignant neoplasms.

### TEST PRINCIPLES

The FoundationOne Liquid CDx assay is performed exclusively as a laboratory service using circulating cell-free DNA (cfDNA) isolated from plasma derived from anti-coagulated peripheral whole blood from patients with solid malignant neoplasms. The assay employs a single DNA extraction method to obtain cfDNA from plasma from whole blood. Extracted

cfDNA undergoes whole-genome shotgun library construction and hybridization-based capture of 324 cancer-related genes including coding exons and select introns of 309 genes, as well as only select intronic regions or non-coding regions of 15 genes. Hybrid-capture selected libraries are sequenced with deep coverage using the NovaSeq® 6000 platform. Sequence data are processed using a customized analysis pipeline designed to accurately detect genomic alterations, including base substitutions, indels, select copy number variants, and select genomic rearrangements. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The assay also detects select genomic rearrangements, select copy number alterations, tumor fraction, and genomic signatures including MSI and bTMB. A subset of targeted regions in 75 genes is baited for increased sensitivity.

#### THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. *Note:* A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

# QUALIFIED ALTERATION CALLS (EQUIVOCAL)

All equivocal calls, regardless of alteration type, imply that there is adequate evidence to call the alteration with confidence. However, the repeatability of equivocal calls may be lower than non-equivocal calls.

# RANKING OF ALTERATIONS AND THERAPIES

Biomarker and Genomic Findings
Therapies are ranked based on the following criteria: Therapies with clinical benefit in patient's tumor type (ranked alphabetically within each NCCN category) followed by therapies with clinical benefit in other tumor type (ranked alphabetically within each NCCN category).

Clinical Trials

Pediatric trial qualification → Geographical proximity → Later trial phase.

#### **LIMITATIONS**

- 1. For in vitro diagnostic use.
- 2. For prescription use only. This test must be ordered by a qualified medical professional in accordance with clinical laboratory regulations.
- 3. A negative result does not rule out the presence of a mutation below the limits of detection of the assay. Patients for whom no companion diagnostic alterations are detected should be considered for confirmation with an appropriately validated tumor tissue test, if available.
- **4.** The FoundationOne Liquid CDx assay does not detect heterozygous deletions.
- **5**. The test is not intended to provide information on cancer predisposition.
- Performance has not been validated for cfDNA input below the specified minimum input.
- 7. Tissue TMB and blood TMB (bTMB) are estimated from the number of synonymous and nonsynonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.
- 8. Tumor fraction is the percentage of circulatingtumor DNA (ctDNA) present in a cell-free DNA (ctDNA) sample. The tumor fraction estimate is computationally derived from observed aneuploid instability in the sample.
- 9. Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the tumor genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor. The MSI algorithm is based on genome wide analysis of 1765 microsatellite loci and not based on the 5 or 7 MSI loci described in current clinical practice guidelines for solid tissue testing.
- 10. Genomic findings from circulating cell-free DNA (cfDNA) may originate from circulating tumor DNA fragments, germline alterations, or non-tumor somatic alterations, such as clonal hematopoiesis of indeterminate potential (CHIP). Genes with alterations that may be derived from CHIP include, but are not limited

APPENDIX

About FoundationOne®Liquid CDx

to: ASXL1, ATM, CBL, CHEK2, DNMT3A, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, TP53, and U2AF1.

- 11. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. If a reported alteration is suspected to be germline, confirmatory testing should be considered in the appropriate clinical context.
- 12. The test is not intended to replace germline testing or to provide information about cancer predisposition.

#### VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >30%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

# VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, ATM, CBL, CHEK2, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-

matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

# NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2021. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any

#### LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

#### **NO GUARANTEE OF CLINICAL BENEFIT**

This report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

### NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Liquid CDx.

# TREATMENT DECISIONS ARE THE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with

potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test or the information contained in this report.

Certain sample of variant characteristics may result in reduced sensitivity. These include: low sample quality, deletions and insertions >4obp, or repetitive/high homology sequences.

FoundationOne Liquid CDx is performed using cell-free DNA, and as such germline events may not be reported.

#### **SELECT ABBREVIATIONS**

| SELECT ADDREVIATIONS |                             |  |  |  |  |  |
|----------------------|-----------------------------|--|--|--|--|--|
| ABBREVIATION         | DEFINITION                  |  |  |  |  |  |
| CR                   | Complete response           |  |  |  |  |  |
| DCR                  | Disease control rate        |  |  |  |  |  |
| DNMT                 | DNA methyltransferase       |  |  |  |  |  |
| HR                   | Hazard ratio                |  |  |  |  |  |
| ITD                  | Internal tandem duplication |  |  |  |  |  |
| MMR                  | Mismatch repair             |  |  |  |  |  |
| Muts/Mb              | Mutations per megabase      |  |  |  |  |  |
| NOS                  | Not otherwise specified     |  |  |  |  |  |
| ORR                  | Objective response rate     |  |  |  |  |  |
| os                   | Overall survival            |  |  |  |  |  |
| PD                   | Progressive disease         |  |  |  |  |  |
| PFS                  | Progression-free survival   |  |  |  |  |  |
| PR                   | Partial response            |  |  |  |  |  |
| SD                   | Stable disease              |  |  |  |  |  |
| ткі                  | Tyrosine kinase inhibitor   |  |  |  |  |  |

MR Suite Version 4.1.0

APPENDIX

References

- 1. Gandara DR, et al. Nat. Med. (2018) pmid: 30082870
- 2. Wang Z, et al. JAMA Oncol (2019) pmid: 30816954
- Aggarwal C, et al. Clin. Cancer Res. (2020) pmid: 32102950
- 4. Li et al., 2020; ASCO Abstract 6511
- 5. Xiao D, et al. Oncotarget (2016) pmid: 27009843
- 6. Chen Y, et al. J. Exp. Clin. Cancer Res. (2019) pmid: 31088500
- 7. Yu H, et al. J Thorac Oncol (2019) pmid: 30253973
- 8. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 9. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 10. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 11. Rizvi NA, et al. Science (2015) pmid: 25765070
- 12. Johnson BE, et al. Science (2014) pmid: 24336570
- 13. Choi S, et al. Neuro-oncology (2018) pmid: 29452419 14. Cancer Genome Atlas Research Network, et al. Nature
- (2013) pmid: 23636398
- 15. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 16. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 17. Nature (2012) pmid: 22810696
- 18. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid:
- 19. Bronkhorst AJ, et al. Biomol Detect Quantif (2019) pmid: 30923679
- 20. Raja R, et al. Clin. Cancer Res. (2018) pmid: 30093454
- 21. Hrebien S. et al. Ann. Oncol. (2019) pmid: 30860573
- 22. Choudhury AD, et al. JCI Insight (2018) pmid: 30385733
- 23. Goodall J. et al. Cancer Discov (2017) pmid: 28450425
- Goldberg SB, et al. Clin. Cancer Res. (2018) pmid: 29330207
- 25. Bettegowda C, et al. Sci Transl Med (2014) pmid: 24553385

- 26. Lapin M, et al. J Transl Med (2018) pmid: 30400802
- 27. Shulman DS, et al. Br. J. Cancer (2018) pmid: 30131550
- 28. Stover DG, et al. J. Clin. Oncol. (2018) pmid: 29298117
- 29. Hemming ML, et al. JCO Precis Oncol (2019) pmid: 30793095
- 30. Egyud M, et al. Ann. Thorac. Surg. (2019) pmid:
- 31. Fan G, et al. PLoS ONE (2017) pmid: 28187169
- 32. Vu et al., 2020; DOI: 10.1200/PO.19.00204
- 33. Li G, et al. J Gastrointest Oncol (2019) pmid: 31602320
- 34. Zhang EW, et al. Cancer (2020) pmid: 32757294
- 35. Butler TM, et al. Cold Spring Harb Mol Case Stud (2019) pmid: 30833418
- 36. Abida W, et al. Clin. Cancer Res. (2020) pmid: 32086346
- 37. Mateo J, et al. Lancet Oncol. (2019) pmid: 31806540
- 38. Mateo J, et al. N. Engl. J. Med. (2015) pmid: 26510020
- 39. Swisher EM, et al. Lancet Oncol. (2017) pmid: 27908594
- 40. Gruber et al., 2019; ASCO Abstract 3006 41. Liu Y, et al. BMC Cancer (2015) pmid: 25884806
- 42. Pfeifer W, et al. Breast Cancer Res. Treat. (2014) pmid:
- 43. Kriege M, et al. J. Cancer Res. Clin. Oncol. (2015) pmid: 25958056
- 44. Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 45. Kilpivaara O, et al. Int. J. Cancer (2005) pmid: 15472904
- 46. Simon M, et al. Neurosurgery (2006) pmid: 17016233
- 47. Dong YS, et al. Tumour Biol. (2014) pmid: 24532427
- 48. Ta HQ, et al. Cancer Res. (2015) pmid: 26573794
- 49. Tomlinson IP, et al. Mutagenesis (2012) pmid:
- 50. Xu HP, et al. Nucleic Acids Res. (1990) pmid: 2205842
- 51. van der Groep P, et al. Cell Oncol (Dordr) (2011) pmid: 21336636

- 52. Schutte M, et al. Am. J. Hum. Genet. (2003) pmid: 12610780
- 53. Xu X, et al. Mol. Cell. Biol. (2002) pmid: 12024051
- 54. Lee CH, et al. J. Biol. Chem. (2001) pmid: 11390408
- Schwarz JK, et al. Mol. Cancer Res. (2003) pmid: 12805407
- 56. Ng CP, et al. J. Biol. Chem. (2004) pmid: 14681223
- 57. Matsuoka S, et al. Proc. Natl. Acad. Sci. U.S.A. (2000) pmid: 10973490
- 58. Zhou BB, et al. J. Biol. Chem. (2000) pmid: 10744722
- 59. Ahn JY, et al. Cancer Res. (2000) pmid: 11085506
- 60. Melchionna R, et al. Nat. Cell Biol. (2000) pmid: 11025670
- 61. Yoda A, et al. J. Biol. Chem. (2006) pmid: 16798742
- 62. Chehab NH, et al. Genes Dev. (2000) pmid: 10673500
- 63. Lee SB, et al. Cancer Res. (2001) pmid: 11719428
- 64. Landrum MJ, et al. Nucleic Acids Res. (2018) pmid:
- 65. Mahdavi M, et al. J Cell Physiol (2019) pmid: 30552672
- 66. Kleiblová P, et al. Klin Onkol (2019) pmid: 31409080
- 67. Hauke J, et al. Cancer Med (2018) pmid: 29522266
- 68. Lu HM, et al. JAMA Oncol (2019) pmid: 30128536
- 69. Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
- 70. Genovese G, et al. N. Engl. J. Med. (2014) pmid: 25426838
- 71. Xie M, et al. Nat. Med. (2014) pmid: 25326804
- 72. Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid: 28669404
- 73. Severson EA, et al. Blood (2018) pmid: 29678827
- 74. Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 75. Chabon JJ, et al. Nature (2020) pmid: 32269342
- 76. Razavi P, et al. Nat. Med. (2019) pmid: 31768066