Dempsey Rogers

Physicist, Mathematician, Machine Learning Scientist

(208) 705-2666

Dempsey.Rogers@gmail.com

Highly driven physicist with 3 years of experience modeling turbulent transport dynamics in tokamak plasmas, and two prior years building and studying Naiver-Stokes and magnetohydrodynamic models. Research and Development oriented ML Scientist leveraging physics informed, unsupervized, and supervized machine learning models.

EDUCATION

Master of Science, Physics, University of Alaska Fairbanks

08/2018 - 07/2021

• Thesis: Phase Effects on the Turbulent Transport in the Magnetic Confinement of Plasmas for Nuclear Fusion

Dual Bachelors of Arts, Mathematics and Physics, Carroll College

08/2012 - 05/2016

• Senior Thesis: 2D Computational Study of MHD Instabilities for Nuclear Fusion Energy

SKILLS

Physics	Nonlinear Dynamics, Geophysical Fluid Dynamics, Mathematical Physics, Classical Mechanics, Quantum Mechanics, Computational Methods, Electricity and Magnetism, and Computational Plasma Physics RA
Mathematics	Applied Optimization, Nonlinear and Partial Differential Equations, Numerical Methods, Statistics, Discrete Mathematics, Real and Complex Analysis, Abstract Algebra and Non-Euclidean Geometry
Machine Learning	Research and Development: Iterated, documented, and deployed HSA, NN, CNN, and LSTM models leveraging Python, PyTorch, PSQL, Splunk, BASH, Slurm, MATLAB, 上下X, Beamer, and the Microsoft Suite
Other	WFR, CPR, First Aid, and Winter Wilderness Survival

WORK EXPERIENCE

Data Scientist, Idaho National Laboratory

05/2023 — Current

- Research and develop new technologies and applications for anomaly detection through machine learning, including deep learning architectures and novel methods
- Keep abreast of state of the art technologies and techniques for modeling, analyzing, manipulating, and storing data
- Provide imaginative, thorough machine learning solutions to a wide range of complex, ambiguous, and difficult problems related to protecting American critical infrastructure
- Develop and produce deep learning models related to autonomous nuclear fission reactor controls
- Clearances: DOE Q 08/2022, DHS/CISA Suitability 07/2023, and DOE SCI 10/2023

Classification Analyst, Idaho National Laboratory

02/2022 - 05/2023

- Utilize engineering theory and principles in the development, interpretation, and administration of approved Department of Energy (DOE) Classification, Controlled Unclassified Information Programs, applicable Information Security Department Programs, and working groups
- Provide guidance on classification and sensitive information matters to INL Derivative Classifiers. Provide classification and declassification reviews for INL and Idaho Cleanup Project potentially classified materials

- Apply DOE classification principles and concepts to assure that documents within potentially classified subject areas are reviewed for classified and sensitive information and are properly protected
- Develop a machine learning model for Natural Language Processing (NLP) to aid in the classification of documents
- Research state of the art NLPs, build question answering and summarizing models, and develop and fine-tune models using the INL's High Performance Computing facility
- Generate question and answering data sets to fine tune models towards classification vernacular

Computational Physics RA., UAF

12/2019 - 12/2021

- Applied skills in mathematics, statistics, and physics on UAF's High Performance Computer (HPC) to study nuclear fusion devices
- Investigated a proposed thermal transport control mechanism for tokamak plasmas in the I-mode confinement regime
- Computationally modeled the turbulent transport dynamics from phase effects in the thermal transport of tokamak plasmas
- Verified model fidelity by modeling observed transport dynamics from D-IIID
- · Investigated hysteresis free control mechanisms to increase core ion temperature and decrease core density
- Compiled and publicly defended a master's thesis based on findings

Physics Lab TA., UAF

08/2018 - 12/2019

- Prepared experiments demonstrating key concepts from the course lectures
- Provided short lectures at the being of lab sections to highlight concepts demonstrated in the experiment
- Developed distance learning labs, materials, as well as interactive remote test prep, homework, and lab support for students
- Assisted in course projects, daily assignments, and illustrated parallels between course work and real world applications

REFERENCES

Ashley Shields, Idaho National Laboratory

12/2024 — Current

Computational Data Science, Senior Manager

- (208) 526-5479
- Ashley.Shields@inl.gov

John Koudelka, Idaho National Laboratory

05/2023 - 12/2024

Scientific Visualization, Senior Manager

- (208) 526-8591
- John.Koudelka@inl.gov

Neil Walker, Idaho National Laboratory

02/2022 - 05/2023

Information Security, Senior Manager

- (208) 526-5641
- Neil.Walker@inl.gov