Institution Oregon State University

Vehicle Prope	rties
Total Length (in)	129.375
Diameter (in)	6.25
Gross Lift Off Weigh (lb)	56.9
Airframe Material(s)	Carbon Fiber, Fiberglass
Fin Material and Thickness (in)	Carbon Fiber, 0.125
Coupler Length(s)/Shoulder Length(s) (in)	12" Nosecone/Fore; 6.875" shoulder; 23.5" Fore/Aft; 7"shoulder

Motor Properties		
Motor Brand/Designation	Cesaroni L2375-WT	
Max/Average Thrust (lb)	586.3 / 533.7	
Total Impulse (lbf-s)	1102.69	
Mass Before/After Burn (lb)	9.71 / 4.06	
Liftoff Thrust (lb)	553.5	
Motor Retention Method	6061 Aluminum Threaded Retainer	

Stability Anal	ysis
Center of Pressure (in. from nose)	84.7
Center of Gravity (in. from nose)	71.0
Static Stability Margin (on pad)	2.14
Static Stability Margin (at rail exit)	2.2
Thrust-to-Weight Ratio	10.3
Rail Size/Type and Length (in)	1515 / 144
Rail Exit Velocity (ft/s)	83.4

Ascent Analysis		
Maximum Velocity (ft/s)	573	
Maximum Mach Number	0.52	
Maximum Acceleration (ft/s^2)	309	
Target Apogee (ft)	4,500	
Predicted Apogee (From Sim.) (ft)	4,642	

Recovery System Properties - Overall		
Total Descent Time (s)	67.07 (fore), 70.83 (aft)	
Total Drift in 20 mph winds (ft)	1967.4 (fore), 2077.7 (aft)	

Recovery System Properties - Energetics			
Ejection System Energetics (ex. Black Powder)		Black Powder	
Energetics Mass - Drogue Chute (grams)	Primary	4, 5.5	
	Backup	6, 8	
Energetics Mass - Main Chute (grams)	Primary	0.33, 4	
	Backup	0.33, 4	
Energetics Mass - Other	Primary	0.33, 4	
(grams) - If Applicable	Backup	0.33, 4	

Milestone	FRR

Recovery System Properties - Recovery Electronics			
Primary Altimeter Mak	e/Model	Missile Works RRC3	
Secondary Altimeter Ma	ke/Model	Missile Works RRC3	
Other Altimeters (if ap	plicable)	N/A	
Rocket Locator (Make,	/Model)	Xbee Pro 900HP	
Additional Locators (if a	pplicable)	Texas Instruments CC 1200	
Transmitting Frequencies (all - vehicle and payload)		CC 1200: 433 MHz Xbee PRO 900HP: 900 MHz	
Describe Redundancy Plan (batteries, switches, etc.)	Two altimeters for each section, separate batteries for each altimeter, separate charges for each altimeter, two Tender Descenders per main chute.		
Pad Stay Time (Launch Configuration)	Altimeters: 8+ hours Tracking Unit: 8+ hours		

	6 1				
Rec	Recovery System Properties - Drogue Parachute				
M	lanufacturer/Mo	odel	Top Flight Recovery / XTEAR-18		
Size	or Diameter (in	or ft)	18 in. (fore) / 18 in. (aft)		
Main Alti	meter Deploym	ent Setting	Apogee		
Backup Al	timeter Deployn	nent Setting	Apogee +1 s		
Velocity at Deployment (ft/s)		1	1.99		
Terminal Velocity (ft/s)		111 (fore) /112 (aft)			
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1 in. Nylon Webbing			
Recovery Harness Length (ft)		20 (fore) / 20 (aft)			
Harness/Airframe Interfaces		ed steel eyebolts connected to meter bay bulkheads.			
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	
of Each Section (ft-lbs)	3485.0 (fore)	3922.4 (aft)	970.8 (nosecone)	N/A	

Recovery System Properties - Main Parachute				
M	anufacturer/Mo	odel	Fruity Chutes Toroidal	
Size	or Diameter (in	or ft)	8 ft (fore) / 8 ft (aft)	
Main Altim	eter Deploymer	nt Setting (ft)	800	
Backup Altir	neter Deployme	ent Setting (ft)	800, 700	
Velocity at Deployment (ft/s)		111(fore) / 112 (aft)		
Terminal Velocity (ft/s)		15.1(fore) / 14.2 (aft)		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1 in. Nylon Web		
Recovery Harness Length (ft)		20 (fore) / 20 (aft)		
Harness/Airframe Interfaces		d steel eyebolts timeter bulkhea		
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft-lbs)	64.1 (fore)	62.7 (aft)	17.9 (nosecone)	N/A

Institution	Oregon State University	Milestone	FRR
	Payloa	ad	
		Overview	
Payload 1 (official payload)	The rover is contained within the fore section of the airframe. Upon lan Primary and 2.0 g Backup. The rover has two coaxial, independently driven a third point of contact with the ground. An Arduino Teensy 3.6 developme sensor array including active sonar, passive sonar, and a nine-degree-of-deployed the auger periodically gathers soil samples and stores them in Scientific Base Station where it p	wheels with a chassis suspended between the nt board autonomously controls the motors freedom IMU. An auger is mounted in the c	them. A spring-loaded stabilizer arm acts as to move the rover, receiving input from a tenter of the chassis. When the rover is on, the rover autonomously drives to a
		Overview	
Payload 2 (non- scored		None	

	Test Plans, Status, and Results
Ejection Charge Tests	Test Plan: A remote ignition system was used to ignite charges and ensure proper seperation and drogue parachute ejection with selected amount of black powder. Status: Completed. Results: Five consecutive successful tests for all sections.
Subscale Test Flights	Test Plan: Subscale launch vehicle was constructed with a 4 in. diameter airframe and launched twice on December 8th, 2018 and January 4th, 2019. Status: Completed. Results: The December 8th flight resulted in a main parachute deployment at apogee. The January 4th flight never had a main parachute deployment. The flight demonstrated several mistakes in the recovery system design, which have been accounted for.
Vehicle Demon- stration Flights	Test Plan: The full scale launch vehicle was manufactured and launched on February 22nd, 2019. The full scale launch vehicle had all competiton components of board with the payload retained within the airframe. Status: The full scale launch vehicle demonstration flight was completed on February 22nd, 2019. Results: The launch vehicle reached an apogee altitude of 5,079 ft. with a rail exit velocity of 71.85 ft/s from a 8.08 ft rail. At apogee, the launch vehicle successfully separated into three sections and released the 18 in. drogue parachute. The fore section unfurled the main parachute at 262 ft above ground leve (AGL), landing with a kinetic energy of 38.45 ft-lbf with a total descent time of 72.6 s. The aft section unfurled the main parachute at 380 ft AGL, landing with a kinetic energy of 65.87 ft-lbf with a total descent time of 79.55 s. The total drift was calculated to be 313 ft from the launch pad.
Payload Demon- stration Flights	Test Plan: The payload demonstration flight is scheduled to be March 16th, 2019 with the competition payload retained inside the fore airframe with the sam design as in the launch vehicle demonstration flight. Upon landing, the payload will be ejected from the fore airframe. Status: Manufacturing is complete. OSRT is ready to complete the payload demonstration flight on March 16th, 2019. Results: Demonstration not yet completed.

Institution Oregon State University

Milestone FRR

Transmitter #1			
Location of transmitter:	x1 Nosecone, x1 Aft above motor		
Purpose of transmitter: 2	Tracking/Telemetry		
Brand	Digi	RF Output Power (mW)	250
Model	XBP9B-DMST-002 (Xbee Pro 900HP)	Specific Frequency used by team (MHz)	900
Handshake or frequency hopping? (explain)	Frequency hopping, 400 kHz wide channels		
Distance to closest e-match or altimeter (in)	2, 2		
Description of shielding plan:	Conductive tape RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.		

Transmitter #2			
Location of transmitter: 2	x1 Nosecone, x1 Aft above motor		
Purpose of transmitter: 2	Tracking/Telemetry		
Brand	Texas Instruments	RF Output Power (mW)	40
Model	CC 1200	Specific Frequency used by team (MHz)	433
Handshake or frequency hopping? (explain)	Frequency hopping		
Distance to closest e-match or altimeter (in)	2, 2		
Description of shielding plan:	Conductive tape RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude.		

Transmitter #3			
Location of transmitter: 2	Fore section above payload bay		
Purpose of transmitter: 2	Payload Ejection Controller Receiver		
Brand	Digi	RF Output Power (mW)	250
Model	XBP9B-DMST-002 (Xbee Pro 900HP)	Specific Frequency used by team (MHz)	900
Handshake or frequency hopping? (explain)	Frequency hopping, 400 kHz wide channels		
Distance to closest e-match or altimeter (in)	1 (wired to e-matches)		
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics, electrically shielded e-match wiring. Receiving only, no transmission.		

Transmitter #4			
Location of transmitter: 2	Ground Station		
Purpose of transmitter: 2	Coordinate data reception, transmitting PLEC trigger signal		
Brand	Digi RF Output Power (mW) 250		250
Model	XBP9B-DMST-002	Specific Frequency used by team (MHz)	900
Handshake or frequency hopping? (explain)	Frequency hopping, 400 kHz wide channels		
Distance to closest e-match or altimeter (in)	N/A (isolated from launch vehicle)		
Description of shielding plan:	N/A (isolated from launch vehicle)		

Institution	Oregon State University	Milestone	FRR

Transmitter #5			
Location of transmitter: 2	Ground Station		
Purpose of transmitter: 2	Coordinate data reception		
Brand	Texas Instruments RF Output Power (mW) 40		40
Model	CC 1200	Specific Frequency used by team (MHz)	433
Handshake or frequency hopping? (explain)	Frequency hopping		
Distance to closest e-match or altimeter (in)	N/A (isolated from launch vehicle)		
Description of shielding plan:	N/A (isolated from launch vehicle)		

Transmitter #6			
Location of transmitter:	Payload		
Purpose of transmitter: 🛽	Tracking/Telemetry for launch vehicle avoidance		
Brand	Digi	RF Output Power (mW)	250
Model	XBP9B-DMST-002 (Xbee Pro 900HP)	Specific Frequency used by team (MHz)	900
Handshake or frequency hopping? (explain)	Frequency hopping, 400 kHz wide channels		
Distance to closest e-match or altimeter (in)	5 (not powered during flight)		
Description of shielding plan:	Conductive spray paint RF shielding around recovery electronics to ensure no interference with recovery electronics and to ensure that ejection takes place at the correct altitude. Not powered during flight.		

Additional Comments	

None