ÀLGEBRA (EI) Curs 2012-2013 Aplicacions lineals

1. Decidiu si les aplicacions següents són lineals.

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (2x_1 - 3x_2, x_1 + x_2 - 1)$.

(b)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (2x_1 - 3x_2 - x_3, x_1 + x_2 + x_3)$.

(c)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f(x_1, x_2) = (2x_1 - 3x_2, x_1 + x_2, x_1x_2)$.

(d)
$$f: \mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathcal{M}_{2\times 2}(\mathbb{R}), f(A) = A - 2A^T.$$

2. Sigui
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 l'aplicació donada per $f(x_1, x_2, x_3) = (2x_1 - x_2 + x_3, x_2 + x_3, x_1 + x_2 + 2x_3)$.

- (a) Demostreu que és una aplicació lineal.
- (b) Doneu la matriu de f en la base canònica.
- (c) Calculeu Im(f) i Ker(f).
- **3.** Sigui $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ l'aplicació definida per

$$f(x_1, x_2, x_3) = (x_1 + x_3, x_2, x_2, x_1 + x_2 + x_3).$$

- (a) Proveu que f és una aplicació lineal.
- (b) Trobeu la matriu de f en les bases canòniques de \mathbb{R}^3 i \mathbb{R}^4 .
- (c) Trobeu Ker(f) i Im(f), així com també les dimensions i bases respectives.
- **4.** Sigui f l'aplicació lineal $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ donada per

$$f(x_1, x_2, x_3, x_4) = (2x_1 + 4x_2 - 4x_3 - 4x_4, -x_1 + x_2 + 2x_3 - x_4, 2x_2 - 2x_4, x_3 - x_4)$$

Calculeu bases i equacions dels subespais $\operatorname{Im}(f)$, $\operatorname{Ker}(f)$, $\operatorname{Im}(f) \cap \operatorname{Ker}(f)$ i $\operatorname{Im}(f) + \operatorname{Ker}(f)$.

- **5.** Sigui $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ una aplicació lineal. Pot ser un monomorfisme? Pot ser un epimorfisme?
- **6.** Sigui $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ un endomorfisme. Demostreu que f és injectiu si i només si és exhaustiu.
- 7. Sigui $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'endomorfisme

$$f(x_1, x_2, x_3) = (2x_1 - 3x_2 + x_3, x_1 - x_2 - x_3, x_1 + x_2 - 3x_3).$$

Sigui $\mathbb{S} = \langle (1, 1, -1) \rangle$ i $\mathbb{T} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - x_2 + x_3 = 0\}$. Calculeu els subespais $f(\mathbb{S}), f^{-1}(\mathbb{S}), f(\mathbb{T})$ i $f^{-1}(\mathbb{T})$.

8. Sigui $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'aplicació lineal que té com a matriu en la base canònica

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 2 & -1 \end{array}\right).$$

- (a) Calculeu la matriu de $f \circ f$ en la base canònica.
- (b) Calculeu la matriu de $f \circ f$ en la base $\mathcal{B} = \{(1,0,1), (1,1,0), (0,1,1)\}$

9. Sigui $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'aplicació lineal tal que la seva matriu en la base canònica és

$$\left(\begin{array}{ccc} 0 & 2 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right).$$

Calculeu les dimensions de $\operatorname{Im}(f \circ f)$ i $\operatorname{Ker}(f \circ f)$.

10. Siguin $f, g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ les aplicacions lineals donades per

$$f(x_1, x_2, x_3) = (3x_1 - 3x_2, 3x_2 + 3x_3, -x_1 + 2x_2 + 3x_3)$$

$$g(x_1, x_2, x_3) = (-3x_3, 3x_3, -x_1 + 2x_2).$$

Calculeu $\operatorname{Im}(f) \cap \operatorname{Im}(g)$ i $\operatorname{Ker}(f) + \operatorname{Ker}(g)$

11. La matriu d'una aplicació lineal $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ en la base canònica és

$$\begin{bmatrix} 2 & 3 \\ -2 & 7 \end{bmatrix}.$$

Quina és la matriu de f en la base $\mathcal{B} = \{(0,1), (1,0)\}$?

12. Sigui \mathbb{V} un espai vectorial de dimensió 4, $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ una base de \mathbb{V} , i siguin

$$\mathbf{u}_1 = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4, \qquad \mathbf{u}_2 = \mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3 + \mathbf{v}_4, \mathbf{u}_3 = \mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3 - \mathbf{v}_4, \qquad \mathbf{u}_4 = \mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3 - \mathbf{v}_4.$$

Demostreu que $\mathcal{B}' = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ és una base de \mathbb{V} i calculeu les matrius de canvi de base de \mathcal{B} a \mathcal{B}' , i de \mathcal{B}' a \mathcal{B} .

13. Sigui $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ l'aplicació lineal definida per

$$f(x_1, x_2, x_3) = (2x_1 - x_2, x_1 + 3x_2 + 7x_3, -x_1 + 2x_2 + 3x_3, x_2 + 2x_3).$$

- (a) Doneu la matriu de f en les bases canòniques de \mathbb{R}^3 i \mathbb{R}^4 .
- (b) Determineu les dimensions del nucli i de la imatge de f. És f injectiva? I exhaustiva?
- (c) Pertany el vector (1,0,-1) al nucli de f? És el vector (1,3,1,1) de la imatge de f?
- 14. Sigui $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ l'aplicació lineal definida per:

$$f(x_1, x_2, x_3) = (x_1 + 2x_2 + x_3, x_1 + x_2 + x_3, x_1 + x_3, 2x_1 + 3x_2 + 2x_3).$$

- (a) Trobeu la matriu de f en les bases canòniques de \mathbb{R}^3 i \mathbb{R}^4 .
- (b) Calculeu la dimensió de Ker(f). És f injectiva?
- (c) Trobeu una base de Im(f).
- (d) Siguin $\mathbf{u}_1 = (1,0,1), \mathbf{u}_2 := (0,2,1)$ i $\mathbf{u}_3 = (1,1,0)$ tres vectors de \mathbb{R}^3 . Demostreu que $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ és una base de \mathbb{R}^3 i doneu la matriu de f en la base \mathcal{B} de \mathbb{R}^3 i la base canònica de \mathbb{R}^4 .

2