Name:

MATH 308

Fall 2022 HW 11: Due 11/04 "There are five elementary arithmetical operations: addition, subtraction, multiplication, division, and modular forms."

-Martin Eichler

Problem 1. (10pt) Showing all your steps, compute the following:

- (a) $(15+14) \mod 6$
- (b) $(8-17) \mod 5$
- (c) $-(1+8) \mod 3$
- (d) $(20-11) \mod 8$
- (e) $(9+7) \mod 4$

- (f) 14(5) mod 6
- (g) $2(3) \mod 7$
- (h) $-7(4) \mod 9$
- (i) $(-3)^3 \mod 4$
- (j) $6^2 \mod 5$

Problem 2. (10pt) Consider arithmetic modulo 4.

- (a) List two positive elements and two negative elements of [0] and [3].
- (b) Choose elements $x \in [1]$ and $y \in [3]$ with x, y > 10 and show that [x] + [y] = [0]; that is, use the division algorithm to write $x = 4m + r_x$ and $y = 4n + r_y$ and show $[x] + [y] = [r_x] + [r_y] = [0]$.
- (c) Choose elements $x,y \in [2]$ with x,y > 10 and show that $[x] \cdot [y] = [0]$; that is, use the division algorithm to write $x = 4m + r_x$ and $y = 4n + r_y$ and show $[x] \cdot [y] = [r_x] \cdot [r_y] = [0]$.

Problem 3. (10pt) Showing all your work, complete the following:

- (a) Compute $\phi(7)$, $\phi(11)$, and $\phi(131)$.
- (b) Compute $\phi(8)$, $\phi(9)$, and $\phi(49)$.
- (c) Compute $\phi(360)$.
- (d) How many integers $0, 1, 2, \dots, 359$ are invertible modulo 360? Explain.

Problem 4. (10pt) Being sure to fully justify your responses, answer the following:

- (a) Is 7 invertible modulo 15? Explain.
- (b) Prove your claim in (a) by finding an inverse for 7 modulo 15 or showing that there is no inverse of 7 modulo 15.
- (c) Is 2 invertible modulo 6? Explain.
- (d) Prove your claim in (c) by finding an inverse for 2 modulo 6 or showing that there is no inverse of 2 modulo 6.