

OUTLINE

Lecture

- Sequencing basics
- Sequence Formats
- Quality Metrics
- Quality Control with FastQC

Tutorial

- FastQC
- Adapter Trimming

SEQUENCING

- Enzymatic reaction on adding complementary nucleotide
- Needs a "priming sequence" to start

HOW DO YOU GET PRIMED DNA?

- A priori sequence knowledge: use Polymerase Chain Reaction(**PCR**) with Primers to select a DNA region
- In the old days if sequences weren't known then would use cloning

From Kevinshe (2004) Science Creative Quarterly

SHOTGUN SEQUENCING

- Shearing the whole genome
- Put adapters & barcodes on either end (synthetic primers) of sequence

Sequencing reads

HIGH COVERAGE FILLS THE GAPS

Sequencing reads

TYPICAL NGS WORKFLOW

TYPICAL NGS WORKFLOW

"NEXT GENERATION" SEQUENCING

	Sanger Sequencing	"NGS"
Sequences Per Rxn	1 clone	Millions of molecules
Rxn per run	384	Millions
Sequence Quality	High	Low
Sequence Length	600-800 bp	35-2000
Cost per bp	High	Low (and decreasing)

SEQUENCING

LEADERS IN 2020

	Illumina (2 nd gen)	PacBio (3 rd Gen)
Sequence Length	150 bp	Up to 25kb
Error Rate	"Low"	"High" – but much better now
Price per Gbp	\$7-\$93	\$100-\$200
Different types of questions		

SEQUENCE ASSEMBLY

GENOME ASSEMBLY

N50 – Genome Contiguity

 half of the genome is
 covered by contigs >= the

 N50 contig size.

Check out this explanation: https://www.molecularecologist.com/2017/03/whats-n50/

SCAFFOLDING

- Contig high confidence of sequences
- Can then be arranged into Scaffolds e.g. using linkage information from the sequencing data itself

WHERE IN THE GENOME?

- Genetic Mapping relative positions (cM) from pedigrees etc
- Physical Mapping:
 - Restriction Mapping
 - Florescent *in situ* Hybridisation (FISH)
 - Sequence Tagged Site (STS) Mapping
- Sequencing information
 - Subcloning
 - Long-read data
 - Linkage from PE short-read
- Synteny mapping from other species

Figure Skinner et al. (2009) BMC Genomics

DIFFICULT SEQUENCES

- High GC content (Library Prep & Sequencing)
 - >45% often difficult to obtain sequence for
- Repeated sequences (Bioinformatic)
 - E.g. short repeats (microsatellites)
 - Segment or gene duplications

REDUCING GENOME COMPLEXITY

- Trade off between depth and coverage
- Only Interested in Some Bits
- Cost

RADSEQ AND GENOTYPING-BY-SEQUENCING

- RADseq, ddRAD, GBS, ezRAD, 2bRAD
- Cheap
- No Genome Required
- Usually only for SNPs
- Biases: dropout, PCR duplicates, coverage variance

RNA-SEQ

- Only sequences gene exons
- Well understood methodologies and bioinformatics
- Can be used to understand gene expression

SO NOW YOU HAVE SOME DATA...

HOW DO COMPUTERS REPRESENT DNA SEQUENCES?

- Base information (ATG or C)
- Base Position
- Signal strength/confidence in base
- Where did the sequence come from?

G A C T C N T C A C G

FASTA FORMAT

- Nucleic acid or amino acid sequences
- File extension .fasta, .fas, .fna, .fa
- Header line ">" + information
- Interleaved or sequential sequences.
- Single vs multi-fasta

>ENSP00000354687 pep:known chromosome:GRCh37:MT:3307:4262:1 gene:ENS MPMANLLLLIVPILIAMAFLMLTERKILGYMQLRKGPNVVGPYGLLQPFADAMKLFTKEP LKPATSTITLYITAPTLALTIALLLWTPLPMPNPLVNLNLGLLFILATSSLAVYSILWSG WASNSNYALIGALRAVAQTISYEVTLAIILLSTLLMSGSFNLSTLITTQEHLWLLLPSWP LAMMWFISTLAETNRTPFDLAEGESELVSGFNIEYAAGPFALFFMAEYTNIIMMNTLTTT IFLGTTYDALSPELYTTYFVTKTLLLTSLFLWIRTAYPRFRYDQLMHLLWKNFLPLTLAL LMWYVSMPITISSIPPOT >ENSP00000355046 pep:known chromosome:GRCh37:MT:4470:5511:1 gene:ENS MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIPVLTKKMNPRSTEAAIKYF LTQATASMILLMAILFNNMLSGQWTMTNTTNQYSSLMIMMAMAMKLGMAPFHFWVPEVTQ GTPLTSGLLLLTWQKLAPISIMYQISPSLNVSLLLTLSILSIMAGSWGGLNQTQLRKILA YSSITHMGWMMAVLPYNPNMTILNLTIYIILTTTAFLLLNLNSSTTTLLLSRTWNKLTWL TPLIPSTLLSLGGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRLIYST SITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPISPFMLMIL >ENSP00000354499 pep:known chromosome:GRCh37:MT:5904:7445:1 gene:ENS MFADRWLFSTNHKDIGTLYLLFGAWAGVLGTALSLLIRAELGQPGNLLGNDHIYNVIVTA HAFVMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRMNNMSFWLLPPSLLLLLASAMVEA GAGTGWTVYPPLAGNYSHPGASVDLTIFSLHLAGVSSILGAINFITTIINMKPPAMTOYO TPLFVWSVLITAVLLLLSLPVLAAGITMLLTDRNLNTTFFDPAGGGDPILYQHLFWFFGH PEVYILILPGFGMISHIVTYYSGKKEPFGYMGMVWAMMSIGFLGFIVWAHHMFTVGMDVD TRAYFTSATMIIAIPTGVKVFSWLATLHGSNMKWSAAVLWALGFIFLFTVGGLTGIVLAN SSLDIVLHDTYYVVAHFHYVLSMGAVFAIMGGFIHWFPLFSGYTLDQTYAKIHFTIMFIG VNLTFFPQHFLGLSGMPRRYSDYPDAYTTWNILSSVGSFISLTAVMLMIFMIWEAFASKR KVLMVEEPSMNLEWLYGCPPPYHTFEEPVYMKS

FASTQ FORMAT

- Results from next generation sequencing experiments
- Filename usually follows a standard: SampleCode_AdapterSequences.fq
- @header

FASTQ FORMAT

QUALITY SCORES

- ASCII character code 33 = Phred Quality Score
- Minimum acceptable Phred = 20 (default in many trimming programs)

@K00317:53:HGCNKBBXX:7:1101:12581:1525 1:N:0:TCTCGCGC+AGGCGAAG
CGGGGAAAAAAAACCAACAAAAACATTTTGGGCAATATAGGCGGCATTTCGGACCACGACAATGAGCGATTTAAAATGGACATGGGCACTTTCCAGAAA
+

AAFAFFJJJAJFJJJJJJJJJJJJFJJ7F<<FF<7FJFF<F<<<<AAJ7<<<--FF-FJ77FA<<<FFF-7<<<<FJJ-<AFFA<<777AA-77<7J-<FF

ASCII	Code	Probability of Wrong Base	Phred Quality Score	
!	33	1	0	
"	34	0.794	1	
+	43	0.1	10	
5	53	0.01	20	
?	63	0.001	30	

For the full list go here:

FASTQC

- Program for evaluating sequence quality in all reads in a file
- https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

PER BASE SEQUENCE QUALITY

Ideal Illumina Data

PER BASE SEQUENCE QUALITY

- Ideal Illumina Data ... not universal
- Illumina sequence quality decreases along the read length
- Different sequences might have different typical error profiles
- Some can be corrected with quality trimming

PER BASE SEQUENCE QUALITY

Contact your sequencing facility

PER SEQUENCE QUALITY

Per sequence quality scores

PER BASE SEQUENCE CONTENT

• Always Fails for RNAseq data.

PER SEQUENCE GC CONTENT

- Ideal situation Normal distribution of GC content
- Theoretical distribution derived from the dataset.

PER SEQUENCE GC CONTENT

- Sharp peaks might be the result of a specific sequence contaminant such as:
 - Adapter-dimers
 - Highly expressed gene
- Broad peaks might indicate contaminant from another species (with different GC content)
 - Can check who with tools like taxonomer.io

Per sequence GC content

DUPLICATE SEQUENCES

- Warnings/Failure if non-unique sequences
 >20%/50% total.
- Can arise from low complexity library sequencing the same bit of DNA over and over again
- PCR duplicates from library prep can be removed if have UMI
- Often warnings in RNAseq experiments don't worry too much

OVERREPRESENTED SEQUENCES

- Warnings/Failure if a given sequence represents >0.1/1% of total
- Sometimes have Adapter Sequences
- Can use BLAST Identify contaminant
- May also be flagged from RNAseq

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
CTGCTATGGCCACCAGACTCTCAGGCTCCATGCAGTGGCCAGCCTCATCG	2554	0.8349133703824779	No Bit
${\tt CAGCGGTCTAGTTTGAAGAACCTGACCCGAGTCTTGGTGACGAAGGCCAG}$	2463	0.8051650866296176	No Hit
${\tt GTTTGAAGAACCTGACCCGAGTCTTGGTGACGAAGGCCAGATTTGCGATC}$	1920	0.6276560967636483	No Hit
${\tt CCACAGGGTCCCAGGTCATGGGTACCGAGTCCAGGTCATAGTGCCGGATG}$	1219	0.39849624060150374	No Hit
GAAGAACCTGACCCGAGTCTTGGTGACGAAGGCCAGATTTGCGATCTTCA	1186	0.3877084014383786	No Hit
GGCAGGTGGACCCGGAGCCGCTGACAGAGGAGGTCAGCCCCTGAGTTGGA	1111	0.3631905851585486	No Hit
CACAGGGTCCCAGGTCATGGGTACCGAGTCCAGGTCATAGTGCCGGATGT	1079	0.35272965021248776	No Hit
CTCCCTCCTCCCCCCCACCACCACCCCCCCCCCCCCCCC	1036	0 3386727688787185	No Hit

FASTQC TAKE HOME

- Warnings and Failure for modules very strict, a lot of data will have an issue.
- What is expected from your experimental design (sample source, library type etc)
- Can use quality trimming programs like trim_galore, Trimmomatic, Adapter Removal...
- RNAseq mapping tools are designed to account for adapter contamination and low sequence quality
- More important for questions that require variant calling
- Downstream ways to account for data quality too

FURTHER READING & REFERENCES

- Ghurye & Pop (2019). Modern technologies and algorithms for scaffolding assembled genomes. PLoS computational biology. https://doi.org/10.1371/journal.pcbi.1006994
- MacManes et al (2014) On the optimal trimming of high-throughput mRNA sequence data. Frontiers in Genetics
- Logsdon et al (2020) Long-read human genome sequencing and its applications. Nature Reviews Genetics 21: 597-614
- Fabbro et al (2013) An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One https://doi.org/10.1371/journal.pone.0085024
- Bush et al (2020) Read trimming has minimal effect on bacterial SNP-calling accuracy. Microbial Genomics 6: https://doi.org/10.1099/mgen.0.000434
- PacBio Contigs and Scaffolds (https://www.pacb.com/blog/genomes-vs-gennnnes-difference-contigs-scaffolds-genome-assemblies/)
- Griffith Lab RNA-seq Bioinformatics Course Lecture (https://rnabio.org/course/)
- HBC training Tutorial (https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon/lessons/qc_fastqc_assessment.html)
- FastQC documentation

YOUR DATA...

- Manacus vitellinus
- Lek display has ultra-fast wingsnap
- Normal (PEC) and Fast-twitch (SH)
- Your data from larger study on gene expression in muscles across manakins (Driver, Balakrishnan, Fuxjager et al Unpubl.)

YOUR DATA...

- Taeniopygia guttata (wild)
- Wild Zebra Finches from Singhal et al. (2015). Stable recombination hotspots in birds. Science
- Whole Genome Resequencing
- Illumina HiSeq 2000 Paired End.

