# Datenbanksysteme Einführung und Grundlagen

Burkhardt Renz

Fachbereich MNI Technische Hochschule Mittelhessen

Sommersemester 2019

# Gliederung der Veranstaltung

- Grundlagen
  - Überblick über das Datenbank-Management
  - Datenbankarchitektur und Datenunabhängigkeit
  - Datenmodelle
- Das relationale Modell
  - SQL
  - Relationen und relationale Algebra
  - Datenbankintegrität
- Datenbank-Entwurf
  - Semantische Modellierung Entity/Relationship-Modell
  - Schema-Entwurf
  - Funktionale Abhängigkeiten und Normalformen

# Gliederung der Veranstaltung

- Transaktionen und Synchronisation konkurrierender Zugriffe
  - Transaktionen
  - Recovery
  - Isolationslevel in SQL
- Verwendung von Datenbanksystemen
  - Programmierung von Datenbank-Zugriffen mit JDBC
  - Zugriffsrechte und Datensicherheit
- XML-Erweiterungen für SQL
  - Merkmale semistrukturierter Daten
  - XPath und XQuery
  - XML in SQL-Datenbanken

### Ziele

- Konzepte von DBMS was steckt dahinter?
  - keine speziellen Produkte
- SQL anwenden können
- Informationen strukturieren können
- Programmieren mit Datenbanken erste Schritte

#### Literatur

- Gunter Saake, Kai-Uwe Sattler, Andreas Heuer: Datenbanken
   Konzepte und Sprachen mitp
- Thomas Studer: Relationale Datenbanken Springer Vieweg
- Ramez Elmasri, Shamkant B. Navathe: Grundlagen von Datenbanksystemen – Bachelorausgabe Pearson Studium
- Matthias Schubert: Datenbanken Theorie, Entwurf und Programmierung relationaler Datenbanken Teubner
- Wolfgang Gerken: Datenbanksysteme für Dummies Wiley-VCH
- Lehrbücher von Kifer, Bernstein und Lewis Elmasri und Navathe C.J. Date Silberschatz, Korth und Sudarshan Ullman, Garcia-Molina und Widom . . .

## Internet-Quellen

- Jennifer Widom: Introduction to Databases Online-Kurs der Stanford University https://lagunita.stanford.edu/ courses/DB/RDB/SelfPaced/course/
- GNU: SQLtutor Interaktiver Web-basierter Tutor für SQL http://sqltutor.fsv.cvut.cz
   neu: Fragebogen zum SQLTutor
- Spiel zum Erlernen von SQL: http://www.sql-island.de/
- SQL-Tutorial: https://sqlbolt.com/
- Übungen zu SQL: https://www.pgexercises.com/

## Übersicht

- Warum Datenbankmanagementsysteme?
  - Eine kleine Geschichte
  - Was ist ein DBMS?
  - Begriffe
- Datenunabhängigkeit und Datenbankarchitektur
  - Modell, Schema, Zustand
  - ANSI/SPARC-Architektur & Datenunabhängigkeit
  - Datenbanksprache
- Datenmodelle

# Ein erfolgreicher Web-Shop

- Wir machen einen Web-Shop zum Verkauf von Spitzenweinen auf.
- Speichern von Daten wird notwendig: Artikel, Kunden, Aufträge...
- Speichern der Daten im Dateisystem, also: eine Datei für Artikel, eine Datei für Kunden, eine Datei für Bestellungen usw.
- Welche Probleme treten auf?
  - Datenredundanz
  - Anwendungen müssen Navigation programmieren
  - Abhängigkeit aller Verwender von der Repräsention der Daten
  - Wenn mehrere Verwender die Daten gleichzeitig verändern wollen, können die Daten inkonsistent werden
- Das kann ja doch nicht die Wahrheit sein!

### Ein Zitat

Das Problem wurde schon vor langer Zeit erkannt und auch gelöst:

Future users of large data banks must be protected from having to know how the data is organized in the machine (the internal representation). ... Activities of users at terminals and most application programs should remain unaffected when the internal representation of data is changed and even when some aspects of the external representation are changed. Changes in data representation will often be needed as a result of changes in query, update, and report traffic and natural growth in the types of stored information.

– E.F. Codd

Quelle: E. F. Codd: A Relational Model of Data for Large Shared Data Banks Communications of the ACM Juni 1970

## Wie sieht dann so eine relationale Datenbank aus?

#### Artikel:

| ArtN  | r Bez               | Weingut          | Jahrgang  | Farbe | Preis |
|-------|---------------------|------------------|-----------|-------|-------|
| 10000 | 1 Les Châteaux      | Louis Max        | 2002      | rot   | 17.90 |
| 10000 | 2 Chablis           | Louis Max        | 2005      | weiß  | 15.50 |
| 10000 | 3 Château Caraguilh | es Louis Max     | 2005      | rosé  | 14.90 |
| 60485 | 1 Prosecco Val Mon  | te Cave Bellenda | <null $>$ | weiß  | 7.60  |
| 14511 | 9 Le Cop de Cazes   | Domaine Cazes    | 2004      | rot   | 6.90  |

# Weiter die Beispieldatenbank Wein

#### Lieferant:

| LftNr | Firma             | Postfach | PLZ     | Ort    |
|-------|-------------------|----------|---------|--------|
| 1 2   | Weinimport Lehr   | 45367    | F-68567 | Colmar |
|       | Bremer Weinkontor | 56       | 28195   | Bremen |

#### LieferBez:

| LftNr | ArtNr  |  |  |
|-------|--------|--|--|
| 1     | 100001 |  |  |
| 1     | 100002 |  |  |
| 1     | 100003 |  |  |
| 2     | 100002 |  |  |
| 2     | 145119 |  |  |
| 2     | 604851 |  |  |

# Weiter die Beispieldatenbank Wein

#### Kunde:

| KndNr  | Name     | Vorname | Str                | PLZ     | Ort         |
|--------|----------|---------|--------------------|---------|-------------|
| 100101 | Kehl     | Thomas  | Weinstr. 3         | 79675   | Kaiserstuhl |
| 100102 | Kehl     | Thomas  | Im Riesling 3      | 68734   | Eltville    |
| 100105 | Riesling | Karin   | 67, Rue du Château | F-68567 | Colmar      |

### Auftrag und AuftrPos:

| AuftrNr | Datum      | KndNr     | AuftrNr | Anzahl | ArtNr  |
|---------|------------|-----------|---------|--------|--------|
| 1003    | 2007-03-01 | 100101    | 1003    | 12     | 100001 |
| 1001    | 2006-10-12 | 100101    | 1003    | 12     | 100002 |
| 1002    | 2006-02-12 | 100102    | 1003    | 12     | 100003 |
| 1004    | 2006-02-12 | <null $>$ | 1001    | 1      | 100001 |
|         |            |           | 1001    | 1      | 100002 |
|         |            |           | 1001    | 1      | 100003 |
|         |            |           | 1001    | 1      | 145119 |
|         |            |           | 1002    | 48     | 100003 |

### Definition

Ein Datenbankmanagementsystem (DBMS) ist eine Software, die große Mengen von persistenten Daten für Speicherung und Zugriff verwaltet, und zwar

- effizient,
- zweckmäßig,
- sicher und
- für den parallelen Zugriff vieler Anwender und Anwendungen.

## Diskussion, 1

- große Menge von Daten viel zu groß für den Hauptspeicher
- persistente Daten
   Daten bleiben erhalten, auch wenn Programme, die sie verwenden, beendet werden
- Multiuser-Zugriff
   Synchronisation der Zugriffe
   Verschiedene Sichten für verschiedene Anwendungen

## Diskussion, 2

- sicher
   in Bezug auf Systemausfälle
   in Bezug auf Berechtigungen von Anwendern
- zweckmäßig
   einfache "Kommandos" für den Zugriff
   aber auch: es ist einfach möglich, neue, bisher nicht
   vorgesehene Abfragen zu machen
- effizient
   Geschwindigkeit eines Zugriffs
   Zahl der Transaktionen in einer bestimmten Zeit

## Arten von Datenbanksystemen

- Informations- und Verbuchungssysteme, z.B. Reisebuchung, Finanzielle Transaktionen etc.
  - OLTP = Online Transaction Processing
- Multimedia-Datenbanken
- Geografische Informationssysteme (GIS)
- Data Warehouses, Informationssysteme f
  ür strategische Entscheidungen
  - OLAP = Online Analytic Processing
- Echtzeit-Datenbanksysteme, z.B. zur Produktionssteuerung
- Internet-Suchmaschinen, Information Retrieval

Schwerpunkt der Vorlesung: klassische Informationssysteme

## Einige Begriffe

- Daten = bekannte Tatsachen über die interessierende Domäne (Miniwelt)
- Datenbank = strukturierte Sammlung von Daten über eine Miniwelt, d.h.
  - logisch zusammenhängend
  - systematisch aufgezeichnet
  - gespeichert und gepflegt
  - zweckmäßig für (evtl. verschiedene) Anwender
- Datenbankmanagementsystem (DBMS) = Software zum Erstellen und Pflegen von Datenbanken; generisch, d.h. unabhängig von einem bestimmten Anwendungsgebiet
- Datenbanksystem = Einsatz eines DBMS für eine bestimmte Datenbank und bestimmte Anwendungen

### Was leistet ein DBMS?

- Datenbank definieren
   Tabellen, Struktur der Datensätze in den Tabellen,
   Datentypen, Integritätsbedingungen
- Datenbank konstruieren
   Daten in die Datenstruktur einbringen und speichern, oft aus anderen elektronischen Quellen
- Datenbank verwenden
   Anfragen stellen = neue zutreffende Aussagen aus bekannten
   Fakten herleiten
   Daten pflegen = Aktualisieren der Daten, damit sie dem
   "Zustand" der (Mini-)Welt immer entsprechen

### Merkmale des Datenbankansatzes

- Gemeinsamer Datenbestand, integrierte Daten für verschiedene Anwendungen, gemeinsame Nutzung derselben Daten
- Datenunabhängigkeit = Immunität von Anwendungen in Bezug auf Änderungen der physischen Repräsentation der Daten und von Zugriffstechniken
- Unterstützung spezifischer Sichten auf die Daten, auch verschiedener Berechtigungen
- Steuerung des Mehrbenutzerbetriebs = Synchronisation konkurrierender Zugriffe.

# Akteure im Zusammenhang mit Datenbanksystemen

#### Akteure auf der Bühne

- Datenadministrator/Datenbankdesigner, auch Datenarchitekt
- Datenbankadministrator
- Endbenutzer
- Anwendungsentwickler

#### Akteure hinter der Bühne

- Designer und Entwickler eines DBMS
- Werkzeug-Entwickler
- Operateure und Wartungsingenieure

#### Erstes Fazit

#### Vorteile von DBMS

- Gemeinsame Nutzung von Daten
- Kontrolle von Redundanz
- Überwachung der Konsistenz der Daten
- Sicherheit bzgl. von Berechtigungen
- Sicherheit bzgl. der Persistenz der Daten
- Synchronisation konkurrierender Datenzugriffe
- Ausbalancieren konfligierender Anforderungen
- Einhalten von Standards

## Übersicht

- Warum Datenbankmanagementsysteme?
  - Eine kleine Geschichte
  - Was ist ein DBMS?
  - Begriffe
- Datenunabhängigkeit und Datenbankarchitektur
  - Modell, Schema, Zustand
  - ANSI/SPARC-Architektur & Datenunabhängigkeit
  - Datenbanksprache
- Datenmodelle

### Datenmodell

Anwender und Anwendungen sollen die Datenbank unabhängig von ihrer physischen Repräsentation, ihrer Implementierung sehen. Wie sollen sie sie dann sehen?

### Erster Begriff von Datenmodell

A data model is an abstract, self-contained, logical definition of the objects, operators, and so forth, that together constitute the abstract machine with which the users interact.

The objects allow us to model the structure of data. The operators allow us to model its behavior.

- C.J. Date

Beispiel: das relationale Datenmodell

konkret: Wir organisieren die interessierenden Informationen als *Werte* in *Tupeln* (= Datensätzen), die *Relationen* (= Tabellen) bilden und geben an, wie diese Relationen *zusammenhängen*.

### Datenbankschema

Beschreibung der Struktur der Daten für ein bestimmtes Anwendungsgebiet.

Metadaten sind die Informationen *über* den Aufbau der Daten – sie werden im relationalen Modell selbst wieder in Relationen gespeichert – Systemkatalog

Zweiter Begriff von Datenmodell (= Datenbankschema)

A data model is a model of the persistent data of some particular enterprise.

- C.J. Date

Beispiel: die Struktur unserer Datenbank für den Weinhandel



### **Datenbankzustand**

#### Der Datenbankzustand ist

- der konkrete Inhalt der Datenbank zu einem bestimmten Zeitpunkt
- abgelegt in den Tabellen der Datenbank und dort gespeichert

Beispiel: der Inhalt unserer Datenbank für den Weinhandel



### **Fazit**

- Datenmodell = Konzept der Strukturierung von Daten
- Datenbankschema = Struktur einer bestimmten Miniwelt (auch: Intension)
- Datenbankzustand = Inhalt einer Datenbank, also Fakten über eine Miniwelt (auch: Extension)

# Wie erreicht man Datenunabhängigkeit?



# ${\sf Die\ ANSI/SPARC\text{-}Architektur}$



## Datenunabhängigkeit

Datenunabhängigkeit Die Immunität von Anwendungsprogrammen gegenüber Änderungen des Datenbankmanagementsystems.

Änderungen des DBMS entkoppeln von den Anwendungen, die es benutzen.

Physische Datenunabhängigkeit Änderungen an der Art der Datenspeicherung und den Zugriffstechniken haben keinen Einfluss auf Anwendungsprogramme.

Logische Datenunabhängigkeit Änderungen am konzeptuellen Schema haben nur erwünschten Einfluss auf Anwender und Anwendungsprogramme.

# Komponenten eines DBMS





# Anwendungsarchitektur



# Die Datenbanksprache SQL



# Sprachumfang

```
DDL Data Definition Language
     Datendefinition
     SQL: create table..., alter table...
DML Data Manipulation Language
     Datenverwendung
     SQL: select..., insert..., update...,
     delete...
DCL Data Control Language
     Datenberechtigungen
     SQL: grant..., revoke...
```

## Übersicht

- Warum Datenbankmanagementsysteme?
  - Eine kleine Geschichte
  - Was ist ein DBMS?
  - Begriffe
- Datenunabhängigkeit und Datenbankarchitektur
  - Modell, Schema, Zustand
  - ANSI/SPARC-Architektur & Datenunabhängigkeit
  - Datenbanksprache
- Datenmodelle

### Diskussion der Datenmodelle

#### Warum?

Wir brauchen logisches Modell, wie wir *über* Daten und ihre Struktur sprechen können wegen Datenunabhängigkeit.

 $\rightarrow$  Datenmodelle

## Leitbeispiel

Ein Lieferant (S = Supplier) hat eine Nummer <SNo>, einen Namen <SName> und einen Firmensitz <City>.

Ein Teil (P = Part) hat eine Nummer <PNo>, einen Namen <PName>, ein Gewicht <Weight> und wird in der Stadt <City> gelagert.

Ein Lieferant liefert Teile, ein Teil kann von verschiedenen Lieferanten kommen. Wir verzeichnen die Menge <Qty> des von einem Lieferanten gelieferten Teils.

### Hierarchisches Datenmodell

#### Geschichte

- späte 60er Jahre
- 1968 IBM erste Version von IMS (Information Management System)
- heute Version 14

- Record Type = Struktur eines Datensatzes mit benannten Felder und definierten Wertebereichen
- Jeder Record hat einen eindeutigen Key
- Alle Records sind in einem Baum organisiert durch sogenannte Parent-Child-Relationships, PCR

### Netzwerk-Datenmodell

#### Geschichte

- 1971 CODASYL (Committee on Data System Languages)
- Implementierung z.B. UDS/SQL von Siemens/Fujitsu auf BS2000
- Datenmodell erlebt eine gewisse Renaissance durch das semantische Web (semantisches Netz, Graphdatenbanken)

- Record Type Datensatzstruktur
- Jeder Record hat einen eindeutigen Key
- Records sind organisiert als zusammenhängender Graph durch sogenannte Owner-Child-Relationships
- Für jede Datenbank gibt es einen oder mehrere Entry Points

### Relationales Modell

#### Geschichte

- 1970 Edgar Frank "Ted" Codd: Publikation des Modells
- erste Implementierungen etwa 1980: Oracle, INGRES
- IBM kündigt 1984 DB2 an
- heute vorherrschendes Datenmodell

- Relation Mengen von Tupeln von Werten
- Informationsprinzip Die Daten sind in genau einer Weise organisiert, als Werte in Tupeln in Relationen
- Zugriff durch eine deklarative Sprache

# Entity-Relationship-Modell

#### Geschichte

- 1974 Peter Chen Publikation des Modells
- Idee: Vereinheitlichung von Hierarchie Netz Relational

- Entitätstypen Klassen von "Dingen", Objekten der Welt
- Attribute Eigenschaften dieser Objekte
- Beziehungstypen zwischen den Entitätstypen
- Abbildung des ER-Modells in die anderen Datenmodelle

# Objektorientiertes Datenmodell

#### Geschichte

- ab Mitte der 80er Jahre im Zuge der OO-Sprachen
- Ziel: Überwindung des Konzeptbruchs (impedance mismatch)
- ODMG (Object Data Management Group) Spezifikation 3.0 2000

- Objektmodell Objekte mit Methoden, Polymorphismus
- Object Definition Language ODL
- Object Query Language OQL Sprache, die Navigation in Objektstruktur unterstützt
- Sprachbindung für C++, Java, SmallTalk . . .

# Objekt-relationales Datenmodell

#### Geschichte

- Anfang der 80er
- SQL-Erweiterung in SQL:1999, SQL:2003, SQL:2008, SQL:2011
- Geografische Informationssysteme (PostGIS)

## Konzept

Füge zu (klassischem) SQL hinzu:

- benutzerdefinierte Datentypen samt Methoden inklusive Vererbung und Polymorphismus
- benutzerdefinierte Operatoren
- benutzerdefinierte Zugriffsmethoden

# Semistrukturierte Daten/XML

#### Geschichte

- HTML Dokumentenstruktur auf Basis von SGML
- Übertragung auf Datenstruktur

- Metadaten durch Tags mit Daten kombiniert
- Semantische Heterogenität möglich
- Hierarchische Struktur
- Links möglich Netz-Datenmodell
- XML Schema Vererbungsmechanismen aller Couleur
- XPath, XQuery Navigation und Anfragesprache

# NoSQL, Big Data

#### Geschichte

- XML XML-Datenbanken
- Suchmaschinen im Internet
- Cloud

- Verschiedene Datenmodelle
- Thema 0: Performanz bei großen Datenmengen für spezielle Anwendungen
- Thema 1: Verteilung der Daten
- Thema 2: Parallele Verarbeitung
- Thema 3: Konsistenz
- Thema 4: Heterogenität der Daten

## NoSQL – Arten

### Datenmodelle in NoSQL

- MapReduce Framework (z.B. Hadoop)
- Key-Value Store (z.B. Google Big Table, Amazon Dynamo, Cassandra)
- Dokumentenorientierte Datenbanken (z.B. Apache CouchDB, MongoDB)
- Graphendatenbanken (z.B. Neo4j)

#### Literatur und Links zum Thema Datenmodell

- Michael Stonebraker und Joseph M. Hellerstein: What Goes Around Comes Around https://people.cs.umass.edu/ ~yanlei/courses/CS691LL-f06/papers/SH05.pdf
- Jeffrey Dean und Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters https: //static.googleusercontent.com/media/research. google.com/de//archive/mapreduce-osdi04.pdf
- Pramod J. Sadalage und Martin Fowler: NoSQL Distilled, Addison-Wesley Professional, 2012
   Präsentation des Buchs https://youtu.be/ASiU89G10F0