Lecture Four Matrices

Section 4.1 – System of linear Equations

Solving Systems of Equations

- 1. Graphically
- 2. Substitution Method
- 3. Elimination Method

Graphically

One solution (lines intersect) Consistent Independent

No Solution (lines //)
Inconsistent
Independent

Infinite solution Consistent Dependent

Substitution Method

Solve:
$$\begin{cases} 3x + 2y = 11 & (1) \\ -x + y = 3 & (2) \end{cases}$$

Solution

From (2)
$$\rightarrow y = x + 3$$
 (3)

$$(1) \Rightarrow 3x + 2\left(\frac{x+3}{3}\right) = 11$$

$$3x + 2x + 6 = 11$$

$$5x + 6 = 11$$

$$5x + 6 - 6 = 11 - 6$$

$$5x = 5$$

$$x = 1$$

From (3)
$$\rightarrow y = 1 + 3 = 4$$

Solution: (1, 4)

Elimination Method

Solve:
$$\begin{cases} 3x - 4y = 1 & (1) \\ 2x + 3y = 12 & (2) \end{cases}$$

Solution

$$-2\times) \qquad 3x - 4y = 1$$

$$3\times$$
) $2x + 3y = 12$

$$-6x + 8y = -2$$

$$\frac{6x + 9y = 36}{17y = 34}$$

$$17y - 3$$

$$y = \frac{34}{17} = 2$$

From (1)
$$\Rightarrow$$
 3x = 1 + 4y
3x = 1 + 4(2)

$$3x = 9$$

$$x = 3$$

Solution: (3, 2)

Matrices

This is called Matrix (Matrices)

Each number in the array is an element or entry

The matrix is said to be of order $m \times n$

m: numbers of rows,

n: number of columns

When m = n, then matrix is said to be **square**.

Given the system equations

$$3x + y + 2z = 31$$

$$x + y + 2z = 19$$

$$x + 3y + 2z = 25$$

The *augmented matrix* form is: $\begin{bmatrix} 3 & 1 & 2 & 31 \\ 1 & 1 & 2 & 19 \\ 1 & 3 & 2 & 25 \end{bmatrix}$

Points of a line in common

All points in common

No points in common

No points in common

No points in common

No points in common

Gaussian Elimination

Example

Use the Gaussian elimination method to solve the system

$$3x + y + 2z = 31$$

$$x + y + 2z = 19$$

$$x + 3y + 2z = 25$$

Solution

$$\begin{bmatrix} 1 & 1 & 2 & 19 \\ 0 & -2 & -4 & -26 \\ 0 & 2 & 0 & 6 \end{bmatrix} - \frac{1}{2}R_2 \qquad 0 \qquad 1 \qquad 2 \qquad 13$$

$$\begin{bmatrix} 1 & 1 & 2 & 19 \\ 0 & 1 & 2 & 13 \\ 0 & 2 & 0 & 6 \end{bmatrix} R_3 - 2R_2$$

$$\begin{bmatrix} 0 & 2 & 0 & 6 \\ 0 & -2 & -4 & -26 \\ \hline 0 & 0 & -4 & -20 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 19 \\ 0 & 1 & 2 & 13 \\ 0 & 0 & -4 & -20 \end{bmatrix} \begin{array}{c} 0 & 0 & 1 & 5 \\ -\frac{1}{4}R_3 & 0 & 0 & 1 & 5 \end{array}$$

$$\begin{bmatrix} 1 & 1 & 2 & 19 \\ 0 & 1 & 2 & 13 \\ 0 & 0 & 1 & 5 \end{bmatrix} \Rightarrow \begin{array}{c} x + y + 2z = 19 & (3) \\ y + 2z = 13 & (2) \\ z = 5 & (1) \end{array}$$

$$(2) \Rightarrow y = 13 - 2z = 13 - 2(5) = 3$$

$$(3) \Rightarrow x = 19 - y - 2z = 19 - 3 - 10 = 6$$

$$\Rightarrow (6,3,5)$$

Gauss-Jordan Elimination

Example

Use the Gauss-Jordan method to solve the system

$$3x + y + 2z = 31$$

$$x + y + 2z = 19$$

$$x + 3y + 2z = 25$$

Solution

$$\begin{bmatrix} 1 & 1 & 2 & 19 \\ 0 & -2 & -4 & -26 \\ 0 & 2 & 0 & 6 \end{bmatrix} - \frac{1}{2}R_2 \qquad 0 \quad 1 \quad 2 \quad 13$$

$$\begin{bmatrix} 1 & 1 & 2 & 19 \\ 0 & 1 & 2 & 13 \\ 0 & 2 & 0 & 6 \end{bmatrix} \begin{bmatrix} R_1 - R_2 \\ R_2 - 2R_2 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 0 & 6 & 1 & 1 & 2 & 19 \\ 0 & -2 & -4 & -26 & 0 & -1 & -2 & -13 \\ \hline 0 & 0 & -4 & -20 & 1 & 0 & 0 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 2 & 13 \\ 0 & 0 & -4 & -20 \end{bmatrix} \quad 0 \quad 0 \quad 1 \quad 5$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 6 \\ 0 & 1 & 2 & | & 13 \\ 0 & 0 & 1 & | & 5 \end{bmatrix} \quad R_2 - 2R_3 \qquad \qquad \begin{array}{c} 0 & 1 & 2 & 13 \\ 0 & 0 & -2 & -10 \\ \hline 0 & 1 & 0 & 3 \end{array}$$

$$\begin{array}{ccccc}
0 & 1 & 2 & 13 \\
0 & 0 & -2 & -10 \\
\hline
0 & 1 & 0 & 3
\end{array}$$

$$\begin{bmatrix} 1 & 0 & 0 & | 6 \\ 0 & 1 & 0 & | 3 \\ 0 & 0 & 1 & | 5 \end{bmatrix}$$

Solution: (6, 3, 5)

Example

Use the Gaussian elimination method to solve the system

$$2x + y + 2z = 4$$

$$2x + 2y = 5$$

$$2x - y + 6z = 2$$

Solution

$$\begin{bmatrix} 2 & 1 & 2 & | & 4 \\ 2 & 2 & 0 & | & 5 \\ 2 & -1 & 6 & | & 2 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1}$$

1
$$\frac{1}{2}$$
 1 2

$$\begin{bmatrix} 1 & \frac{1}{2} & 1 & 2 \\ 2 & 2 & 0 & 5 \\ 2 & -1 & 6 & 2 \end{bmatrix} \begin{array}{c} R_2 - 2R_1 \\ R_3 - 2R_1 \end{array}$$

$$\begin{array}{ccccc}
0 & -2 & 4 & -2 \\
0 & 2 & -4 & 2 \\
\hline
0 & 0 & 0 & 0
\end{array}$$

$$\begin{bmatrix} 1 & \frac{1}{2} & 1 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} x + \frac{1}{2}y + z = 2 & (3) \\ y - 2z = 1 & (2) \\ 0 = 0 & (1) \end{array}$$

From (1): 0 = 0 is a true statement. Let z be the variable.

From (2):
$$y = 1 + 2z$$

From (3):
$$x = -\frac{1}{2}y - z + 2$$
$$x = -\frac{1}{2}(1+2z) - z + 2$$
$$x = -\frac{1}{2} - z - z + 2$$
$$x = -2z + \frac{3}{2}$$

Solution:
$$\left(-2z + \frac{3}{2}, \ 2z + 1, \ z\right)$$

Example

Use the Gaussian elimination method to solve the system

$$x + 2y - 5z = -1$$

$$2x + 3y - 2z = 2$$

$$3x + 5y - 7z = 4$$

Solution

$$\begin{bmatrix} 1 & 2 & -5 & | & -1 \\ 2 & 3 & -2 & | & 2 \\ 3 & 5 & -7 & | & 4 \end{bmatrix} R_2 - 2R_1 \qquad \frac{2}{0} \quad \frac{3}{0} \quad \frac{5}{0} \quad -\frac{7}{0} \quad \frac{4}{0} \qquad \frac{-3}{0} \quad -\frac{6}{15} \quad \frac{15}{3} \quad \frac{3}{0} \quad -\frac{1}{0} \quad \frac{8}{0} \quad \frac{7}{0} \quad \frac{7}{0} \quad \frac{1}{0} \quad \frac{8}{0} \quad \frac{7}{0} \quad \frac{1}{0} \quad$$

$$\begin{bmatrix} 1 & 2 & -5 | -1 \\ 0 & -1 & 8 & 4 \\ 0 & -1 & 8 & 7 \end{bmatrix} -R_2$$

$$\begin{bmatrix} 1 & 2 & -5 & -1 \\ 0 & 1 & -8 & -4 \\ 0 & -1 & 8 & 7 \end{bmatrix}$$

$$R_3 + R_2$$

$$\begin{bmatrix} 0 & -1 & 8 & 7 \\ 0 & 1 & -8 & -4 \\ \hline 0 & 0 & 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -5 & -1 \\ 0 & 1 & -8 & -4 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

From Row 3: 0 = 3 is a False statement.

No Solution or Inconsistent

Exercises Section 4.1 – System of linear Equations

Use any method to solve the system equation (*elimination* or *substitution* method)

1.
$$\begin{cases} 3x + 2y = -4 \\ 2x - y = -5 \end{cases}$$

$$6. \quad \begin{cases} 5x - 2y = 4 \\ -10x + 4y = 7 \end{cases}$$

11.
$$\begin{cases} 4x + 2y = 12 \\ 3x - 2y = 16 \end{cases}$$

2.
$$\begin{cases} 2x + 5y = 7 \\ 5x - 2y = -3 \end{cases}$$

6.
$$\begin{cases} 5x - 2y = 4 \\ -10x + 4y = 7 \end{cases}$$
11.
$$\begin{cases} 4x + 2y = 12 \\ 3x - 2y = 16 \end{cases}$$
7.
$$\begin{cases} x - 4y = -8 \\ 5x - 20y = -40 \end{cases}$$
12.
$$\begin{cases} x + 2y = -1 \\ 4x - 2y = 6 \end{cases}$$

12.
$$\begin{cases} x + 2y = -1 \\ 4x - 2y = 6 \end{cases}$$

$$3. \qquad \begin{cases} 4x - 7y = -16 \\ 2x + 5y = 9 \end{cases}$$

$$\begin{cases} 2x + y = 3 \\ x - y = 3 \end{cases}$$

13.
$$\begin{cases} x - 2y = 5 \\ -10x + 2y = 4 \end{cases}$$

4.
$$\begin{cases} 3x + 2y = 4 \\ 2x + y = 1 \end{cases}$$

9.
$$\begin{cases} 2x + 10y = -14 \\ 7x - 2y = -16 \end{cases}$$

14.
$$\begin{cases} 12x + 15y = -27 \\ 30x - 15y = -15 \end{cases}$$

$$\begin{cases} 3x + 4y = 2 \\ 2x + 5y = -1 \end{cases}$$

10.
$$\begin{cases} 4x - 3y = 24 \\ -3x + 9y = -1 \end{cases}$$

15.
$$\begin{cases} 4x - 4y = -12 \\ 4x + 4y = -20 \end{cases}$$

(16-27) Perform the matrix row operation (or operations) and write the new matrix.

16.
$$\begin{bmatrix} 1 & 4 & 7 \\ 3 & 5 & 0 \end{bmatrix} R_2 - 3R_1$$

17.
$$\begin{bmatrix} 1 & -3 & 1 \\ 2 & 1 & -5 \end{bmatrix}$$
 $R_2 - 2R_1$

18.
$$\begin{bmatrix} 1 & -3 & 3 \\ 5 & 2 & 19 \end{bmatrix}$$
 $R_2 - 5R_1$

19.
$$\begin{bmatrix} 2 & -3 & | & 8 \\ -6 & 9 & | & 4 \end{bmatrix} \quad R_2 + 3R_1$$

20.
$$\begin{bmatrix} 2 & 3 & | & 11 \\ 1 & 2 & | & 8 \end{bmatrix}$$
 $2R_2 - R_1$

21.
$$\begin{bmatrix} 3 & 5 & | & -13 \\ 2 & 3 & | & -9 \end{bmatrix} \quad 3R_2 - 2R_1$$

22.
$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 5 & 4 & 1 \end{bmatrix} \quad R_3 - 5R_2$$

23.
$$\begin{bmatrix} 1 & -1 & 5 & | & -6 \\ 3 & 3 & -1 & | & 10 \\ 1 & 3 & 2 & | & 5 \end{bmatrix} \quad \begin{array}{c} R_2 - 3R_1 \\ R_3 - R_1 \end{array}$$

24.
$$\begin{bmatrix} 3 & 2 & 1 & 1 \\ 2 & 4 & 4 & 22 \\ -1 & -2 & 3 & 15 \end{bmatrix} 3R_2 - 2R_1 \\ 3R_3 + R_1$$

25.
$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & 1 & 3 \\ 3 & -4 & 2 & -7 \end{bmatrix} \quad \begin{array}{c|c} R_2 - 2R_1 \\ R_3 - 3R_1 \end{array}$$

26.
$$\begin{bmatrix} 1 & -2 & 1 & 3 & | & -2 \\ 2 & -3 & 5 & -1 & | & 0 \\ 1 & 0 & 3 & 1 & | & -4 \\ -4 & 3 & 2 & -1 & | & 3 \end{bmatrix} \begin{bmatrix} R_2 - 2R_1 \\ R_3 - R_1 \\ R_4 + 4R_1 \end{bmatrix}$$

27.
$$\begin{bmatrix} 1 & -2 & 1 & 3 & | & -2 \\ -3 & 6 & -3 & -9 & | & 6 \\ 2 & 1 & 2 & 3 & | & 4 \\ 5 & 3 & 2 & -1 & | & -7 \end{bmatrix} \begin{bmatrix} R_2 + 3R_1 \\ R_3 - 2R_1 \\ R_4 - 5R_1 \end{bmatrix}$$

(28-34) Use the Gauss-Jordan method to solve the system

28.
$$\begin{cases} x - y + 5z = -6 \\ 3x + 3y - z = 10 \\ x + 3y + 2z = 5 \end{cases}$$

31.
$$\begin{cases} x + 2y - 3z = -15 \\ 2x - 3y + 4z = 18 \\ -3x + y + z = 1 \end{cases}$$
32.
$$\begin{cases} x + 2y + 3z = 10 \\ 4x + 5y + 6z = 11 \\ 7x + 8y + 9z = 12 \end{cases}$$

33.
$$\begin{cases} 2x + y + 2z = 4 \\ 2x + 2y = 5 \\ 2x - y + 6z = 2 \end{cases}$$

28.
$$\begin{cases} x - y + 5z = -6 \\ 3x + 3y - z = 10 \\ x + 3y + 2z = 5 \end{cases}$$
29.
$$\begin{cases} 2x - y + 4z = -3 \\ x - 2y - 10z = -6 \\ 3x + 4z = 7 \end{cases}$$

32.
$$\begin{cases} x + 2y + 3z = 10 \\ 4x + 5y + 6z = 11 \\ 7x + 8y + 9z = 12 \end{cases}$$

34.
$$\begin{cases} x_1 + x_2 + 2x_3 = 8 \\ -x_1 - 2x_2 + 3x_3 = 1 \\ 3x_1 - 7x_2 + 4x_3 = 10 \end{cases}$$

30. $\begin{cases} 4x + 3y - 5z = -29 \\ 3x - 7y - z = -19 \\ 2x + 5y + 2z = -10 \end{cases}$

(35-69) Use augmented elimination to solve linear system

35.
$$\begin{cases} 2x - 5y + 3z = 1 \\ x - 2y - 2z = 8 \end{cases}$$

42.
$$\begin{cases}
-2x + 6y + 7z = 3 \\
-4x + 5y + 3z = 7
\\
-6x + 3y + 5z = -4
\end{cases}$$
43.
$$\begin{cases}
2x - y + z = 1 \\
3x - 3y + 4z = 5 \\
4x - 2y + 3z = 4
\end{cases}$$
44.
$$\begin{cases}
3x - 4y + 4z = 7 \\
x - y - 2z = 2 \\
2x - 3y + 6z = 5
\end{cases}$$
45.
$$\begin{cases}
x - 2y - z = 2 \\
2x - y + z = 4 \\
-x + y + z = 4
\end{cases}$$
46.
$$\begin{cases}
x + y + z = 3 \\
-y + 2z = 1 \\
-x + z = 0
\end{cases}$$
47.
$$\begin{cases}
3x + y + 3z = 14 \\
7x + 5y + 8z = 37 \\
x + 3y + 2z = 9
\end{cases}$$
48.
$$\begin{cases}
4x - 2y + z = 7 \\
x + y + z = -2 \\
4x + 2y + z = 3
\end{cases}$$

49.
$$\begin{cases} 2x - 2y + z = -4 \\ 6x + 4y - 3z = -24 \\ x - 2y + 2z = 1 \end{cases}$$
50.
$$\begin{cases} 9x + 3y + z = 4 \\ 16x + 4y + z = 2 \\ 25x + 5y + z = 2 \end{cases}$$

36.
$$\begin{cases} x + y + z = 2 \\ 2x + y - z = 5 \\ x - y + z = -2 \end{cases}$$

43.
$$\begin{cases} 2x - y + z = 1 \\ 3x - 3y + 4z = 5 \\ 4x - 2y + 3z = 4 \end{cases}$$

$$\begin{cases}
9x + 3y + z = 4 \\
16x + 4y + z = 2 \\
25x + 5y + z = 2
\end{cases}$$

37.
$$\begin{cases} 2x + y + z = 9 \\ -x - y + z = 1 \\ 3x - y + z = 9 \end{cases}$$

44.
$$\begin{cases} 3x - 4y + 4z = 7 \\ x - y - 2z = 2 \\ 2x - 3y + 6z = 5 \end{cases}$$

51.
$$\begin{cases} 2x - y + 2z = -8 \\ x + 2y - 3z = 9 \\ 3x - y - 4z = 3 \end{cases}$$

38.
$$\begin{cases} 3y - z = -1 \\ x + 5y - z = -4 \\ -3x + 6y + 2z = 1 \end{cases}$$

45.
$$\begin{cases} x - 2y - z = 2 \\ 2x - y + z = 4 \\ -x + y + z = 4 \end{cases}$$

52.
$$\begin{cases} x - 3z = -5 \\ 2x - y + 2z = 16 \\ 7x - 3y - 5z = 19 \end{cases}$$

39.
$$\begin{cases} x + 3y + 4z = 14 \\ 2x - 3y + 2z = 10 \\ 3x - y + z = 9 \end{cases}$$

46.
$$\begin{cases} x + y + z = 3 \\ -y + 2z = 1 \\ -x + z = 0 \end{cases}$$

53.
$$\begin{cases} x + 2y - z = 5 \\ 2x - y + 3z = 0 \\ 2y + z = 1 \end{cases}$$

35.
$$\begin{cases} 2x - 5y + 3z = 1 \\ x - 2y - 2z = 8 \end{cases}$$
36.
$$\begin{cases} x + y + z = 2 \\ 2x + y - z = 5 \\ x - y + z = -2 \end{cases}$$
37.
$$\begin{cases} 2x + y + z = 9 \\ -x - y + z = 1 \end{cases}$$
38.
$$\begin{cases} 3y - z = -1 \\ x + 5y - z = -4 \\ -3x + 6y + 2z = 11 \end{cases}$$
39.
$$\begin{cases} x + 3y + 4z = 14 \\ 2x - 3y + 2z = 10 \\ 3x - y + z = 9 \end{cases}$$
40.
$$\begin{cases} x + 4y - z = 20 \\ 3x + 2y + z = 8 \\ 2x - 3y + 2z = -16 \end{cases}$$
41.
$$\begin{cases} 2y - z = 7 \\ x + 2y + z = 17 \\ 2x - 3y + 2z = -1 \end{cases}$$

47.
$$\begin{cases} 3x + y + 3z = 14 \\ 7x + 5y + 8z = 37 \\ x + 3y + 2z = 9 \end{cases}$$

54.
$$\begin{cases} x + y + z = 6 \\ 3x + 4y - 7z = 1 \\ 2x - y + 3z = 5 \end{cases}$$

41.
$$\begin{cases} 2y - z = 7 \\ x + 2y + z = 17 \\ 2x - 3y + 2z = - \end{cases}$$

48.
$$\begin{cases} 4x - 2y + z = 7 \\ x + y + z = -2 \\ 4x + 2y + z = 3 \end{cases}$$

55.
$$\begin{cases} 3x + 2y + 3z = 3 \\ 4x - 5y + 7z = 1 \\ 2x + 3y - 2z = 6 \end{cases}$$

56.
$$\begin{cases} x - 3y + z = 2 \\ 4x - 12y + 4z = 8 \\ -2x + 6y - 2z = -4 \end{cases}$$

56.
$$\begin{cases} x - 3y + z = 2 \\ 4x - 12y + 4z = 8 \\ -2x + 6y - 2z = -4 \end{cases}$$
57.
$$\begin{cases} 2x - 2y + z = -1 \\ x + 2y - z = 2 \\ 6x + 4y + 3z = 5 \end{cases}$$

$$\begin{cases}
 x_1 - 5x_2 + 2x_3 - 2x_4 = 4 \\
 x_2 - 3x_3 - x_4 = 0 \\
 3x_1 + 2x_3 - x_4 = 6 \\
 -4x_1 + x_2 + 4x_3 + 2x_4 = -3
\end{cases}$$

$$59. \begin{cases} x_1 + x_2 + x_3 + x_4 = 5 \\ x_1 + 2x_2 - x_3 - 2x_4 = -1 \\ x_1 - 3x_2 - 3x_3 - x_4 = -1 \\ 2x_1 - x_2 + 2x_3 - x_4 = -2 \end{cases}$$

$$\begin{cases} 2x_1 - x_2 + 2x_3 - x_4 = -2x \\ 2x + 8y - z + w = 0 \end{cases}$$

$$\begin{cases} 2x + 8y - z + w = 0 \\ 4x + 16y - 3z - w = -10 \\ -2x + 4y - z + 3w = -6 \\ -6x + 2y + 5z + w = 3 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 + 3x_3 = 0 \end{cases}$$

61.
$$\begin{cases} 2x_1 + x_2 + 3x_3 = 0 \\ x_1 + 2x_2 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

62.
$$\begin{cases} 2x + 2y + 4z = 0 \\ -y - 3z + w = 0 \\ 3x + y + z + 2w = 0 \\ x + 3y - 2z - 2w = 0 \end{cases}$$

63.
$$\begin{cases} 2x + z + w = 5 \\ y - w = -1 \\ 3x - z - w = 0 \\ 4x + y + 2z + w = 9 \end{cases}$$
64.
$$\begin{cases} 4y + z = 20 \\ 2x - 2y + z = 0 \\ x + z = 5 \\ x + y - z = 10 \end{cases}$$

64.
$$\begin{cases} 4y + z = 20 \\ 2x - 2y + z = 0 \\ x + z = 5 \\ x + y - z = 10 \end{cases}$$

65.
$$\begin{cases} x - y + 2z - w = -1 \\ 2x + y - 2z - 2w = -2 \\ -x + 2y - 4z + w = 1 \\ 3x - 3w = -3 \end{cases}$$

66.
$$\begin{cases} 2u - 3v + w - x + y = 0 \\ 4u - 6v + 2w - 3x - y = -5 \\ -2u + 3v - 2w + 2x - y = 3 \end{cases}$$

67.
$$\begin{cases} 6x_3 + 2x_4 - 4x_5 - 8x_6 = 8\\ 3x_3 + x_4 - 2x_5 - 4x_6 = 4\\ 2x_1 - 3x_2 + x_3 + 4x_4 - 7x_5 + x_6 = 2\\ 6x_1 - 9x_2 + 11x_4 - 19x_5 + 3x_6 = 1 \end{cases}$$

68.
$$\begin{cases} 3x_1 + 2x_2 - x_3 = -15 \\ 5x_1 + 3x_2 + 2x_3 = 0 \\ 3x_1 + x_2 + 3x_3 = 11 \\ -6x_1 - 4x_2 + 2x_3 = 30 \end{cases}$$

69.
$$\begin{cases} x_1 + 3x_2 - 2x_3 + 2x_5 = 0\\ 2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = -1\\ 5x_3 + 10x_4 + 15x_6 = 5\\ 2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 6 \end{cases}$$

At Snack Mix, caramel corn worth \$2.50 per pound is mixed with honey roasted missed nuts worth **70.** \$7.50 per pound in order to get 20 lbs. of a mixture worth \$4.50 per pound. How much of each snack is used?