Clase 09

IIC 2223

Prof. Cristian Riveros

Minimización de autómatas

Dejamos varias preguntas abiertas:

- 1. ¿cómo sabemos si el autómata del algoritmo es un mínimo?
- 2. Dado *L*, ¿existe un único autómata mínimo?
- 3. Dado un A, ¿és posible construir un autómata mínimo equivalente?

En esta clase responderemos estas preguntas positivamente

Demostraremos que:

- El autómata con el mínimo de estados es único.
- El algoritmo de minimización siempre construye el autómata mínimo.

Estrategia de la demostración

- 1. Desde un DFA \mathcal{A} , definiremos una relación de equivalencia (RE) $\equiv_{\mathcal{A}}$ entre palabras en Σ^* .
- 2. Desde una RE \equiv entre palabras, construiremos un DFA \mathcal{A}_{\equiv} .
- 3. A partir de un lenguaje L, definiremos una RE \equiv_L .
- 4. A_{\equiv} , define el autómata con la menor cantidad de estados.
- 5. A_{\equiv_L} es equivalente al resultado de nuestro algoritmo de minimización.

Outline

Relaciones de Myhill-Nerode

Teorema de Myhill-Nerode

Outline

Relaciones de Myhill-Nerode

Teorema de Myhill-Nerode

Sea $L \subseteq \Sigma^*$ un lenguaje regular y $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ tal que $L = \mathcal{L}(\mathcal{A})$.

Definición

Se define la relación de equivalencia $\equiv_{\mathcal{A}}$ entre palabras en Σ^* como:

$$u \equiv_{\mathcal{A}} v \iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$$

¿és \equiv_A una relación de equivalencia?

- **reflexiva**: $u \equiv_{\mathcal{A}} u$ para todo $u \in \Sigma^*$.
- **simétrica**: si $u \equiv_{\mathcal{A}} v$ entonces $v \equiv_{\mathcal{A}} u$.
- **transitiva**: si $u \equiv_{\mathcal{A}} v$ y $v \equiv_{\mathcal{A}} w$, entonces $u \equiv_{\mathcal{A}} w$.

Para $w \in \Sigma^*$ se define su clase de equivalencia según $\equiv_{\mathcal{A}}$ como:

$$[w]_{\equiv_{\mathcal{A}}} = \{u \mid u \equiv_{\mathcal{A}} w\}$$

Sea $L \subseteq \Sigma^*$ un lenguaje regular y $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ tal que $L = \mathcal{L}(\mathcal{A})$.

Definición

Se define la relación de equivalencia $\equiv_{\mathcal{A}}$ entre palabras en Σ^* como:

$$u \equiv_{\mathcal{A}} v \iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$$

No confundir la relación $\equiv_{\mathcal{A}}$ con la relación $\approx_{\mathcal{A}}!$

- ightharpoonup $pprox_{\mathcal{A}}$ es sobre los estados en Q.
- $\blacksquare \equiv_{\mathcal{A}}$ es sobre todas las palabras en Σ^* .

Sea $L \subseteq \Sigma^*$ un lenguaje regular y $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ tal que $L = \mathcal{L}(\mathcal{A})$.

Definición

Se define la relación de equivalencia $\equiv_{\mathcal{A}}$ entre palabras en Σ^* como:

$$u \equiv_{\mathcal{A}} v \iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$$

Sea $L \subseteq \Sigma^*$ un lenguaje regular y $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ tal que $L = \mathcal{L}(\mathcal{A})$.

Definición

Se define la relación de equivalencia $\equiv_{\mathcal{A}}$ entre palabras en Σ^* como:

$$u \equiv_{\mathcal{A}} v \iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$$

Propiedades

1. $\equiv_{\mathcal{A}}$ es una congruencia por la derecha:

$$u \equiv_{\mathcal{A}} v$$
 entonces $u \cdot w \equiv_{\mathcal{A}} v \cdot w \quad \forall w \in \Sigma^*$

2. $\equiv_{\mathcal{A}}$ **refina** *L*, esto es:

si
$$u \equiv_{\mathcal{A}} v$$
 entonces $(u \in L \iff v \in L)$

3. El número de clases de equivalencia de $\equiv_{\mathcal{A}}$ es finito. (¿por qué?)

Sea $L \subseteq \Sigma^*$ un lenguaje regular y $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ tal que $L = \mathcal{L}(\mathcal{A})$.

Definición

Se define la relación de equivalencia $\equiv_{\mathcal{A}}$ entre palabras en Σ^* como:

$$u \equiv_{\mathcal{A}} v \iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$$

Propiedades

- 1. $\equiv_{\mathcal{A}}$ es un congruencia por la derecha.
- 2. $\equiv_{\mathcal{A}}$ refina L.
- 3. El número de clases de equivalencia de $\equiv_{\mathcal{A}}$ es finito.

Todo DFA \mathcal{A} de L define una **relación de equivalencia** que cumple estas 3 propiedades!

Relaciones de Myhill-Nerode

Sea $L \subseteq \Sigma^*$ cualquier lenguaje.

Definición (Relación de Myhill-Nerode)

Una relación de equivalencia \equiv en Σ^* es de Myhill-Nerode para L si:

1. ≡ es una congruencia por la derecha:

$$u \equiv v$$
 entonces $u \cdot w \equiv v \cdot w$ $\forall w \in \Sigma^*$

2. \equiv refina L.

$$u \equiv v$$
 entonces $(u \in L \iff v \in L)$

3. El número de clases de equivalencia de \equiv es finita.

Relaciones de Myhill-Nerode

Sea $L \subseteq \Sigma^*$ cualquier lenguaje.

Definición (Relación de Myhill-Nerode)

Una relación de equivalencia \equiv en Σ^* es de Myhill-Nerode para L si:

- 1. ≡ es una congruencia por la derecha.
- 2. \equiv refina L.
- 3. El número de clases de equivalencia de ≡ es finita.

A partir de una relación \equiv de Myhill-Nerode podemos construir un DFA \mathcal{A}_{\equiv}

$$\begin{array}{ccc} \mathcal{A} & \longrightarrow & \equiv_{\mathcal{A}} \\ & \equiv & \longrightarrow & \mathcal{A}_{-} \end{array}$$

Construcción del DFA \mathcal{A}_{\equiv}

Dada una relación de Myhill-Nerode \equiv para $L \subseteq \Sigma^*$, definimos el autómata:

$$A_{\equiv} = (Q_{\equiv}, \Sigma, \delta_{\equiv}, q_{\equiv}, F_{\equiv})$$

- $q_{\equiv} = [\epsilon]_{\equiv}$
- $F_{\equiv} = \{ [w]_{\equiv} \mid w \in L \}$ (¿por qué F_{\equiv} esta bien definida?)
- $\bullet \ \delta_{\equiv}([w]_{\equiv},a) \ = \ [wa]_{\equiv} \qquad \qquad \text{(ipor qu\'e δ_{\equiv} esta bien definida?)}$

Teorema

$$\mathcal{L}(\mathcal{A}_{\equiv}) = L$$

Demostración: ejercicio.

$$\mathcal{A} \longrightarrow \equiv_{\mathcal{A}}$$
 y $\equiv \longrightarrow \mathcal{A}_{\equiv}$ son procesos inversos

Teorema

1. Si \mathcal{A} es un DFA que acepta \mathcal{L} y si construimos:

$$A \longrightarrow \exists_{\mathcal{A}} \longrightarrow A_{\exists_{\mathcal{A}}}$$

entonces $\mathcal A$ es isomorfo ("equivalente") a $\mathcal A_{\equiv_{\mathcal A}}$.

2. Si \equiv es una relación de Myhill-Nerode para L y si construimos:

$$\equiv \longrightarrow \mathcal{A}_{\equiv} \longrightarrow \equiv_{\mathcal{A}_{\equiv}}$$

entonces la relación \equiv es equivalente a $\equiv_{A_{\equiv}}$.

Demostración: ejercicio

Estrategia de la demostración

- 1. Desde un DFA \mathcal{A} , definiremos una relación de equivalencia (RE) $\equiv_{\mathcal{A}}$ entre palabras en Σ^* . \checkmark
- 2. Desde una RE \equiv entre palabras, construiremos un DFA \mathcal{A}_{\equiv} .
- 3. A partir de un lenguaje L, definiremos una RE \equiv_L .
- 4. A_{\equiv} , define el autómata con la menor cantidad de estados.
- 5. A_{\equiv_L} es equivalente al resultado de nuestro algoritmo de minimización.

Outline

Relaciones de Myhill-Nerode

Teorema de Myhill-Nerode

La relación \equiv_L de un lenguaje L

Definición

Dado un lenguaje $L \subseteq \Sigma^*$, se define la relación de equivalencia \equiv_L como:

$$u \equiv_L v \quad \text{ssi} \quad (u \cdot w \in L \Leftrightarrow v \cdot w \in L) \quad \forall w \in \Sigma^*$$

¿es \equiv_L una relación de equivalencia?

- **reflexiva**: $u \equiv_L u$ para todo $u \in \Sigma^*$.
- **simétrica**: si $u \equiv_L v$ entonces $v \equiv_L u$.
- **transitiva**: si $u \equiv_L v$ y $v \equiv_L w$, entonces $u \equiv_L w$.

La relación \equiv_L de un lenguaje L

Definición

Dado un lenguaje $L \subseteq \Sigma^*$, se define la relación de equivalencia \equiv_L como:

$$u \equiv_L v \quad \text{ssi} \quad (u \cdot w \in L \Leftrightarrow v \cdot w \in L) \quad \forall w \in \Sigma^*$$

¿cuáles son las clases de equivalencia para $L = (ab)^*$?

- $[\epsilon]_{\equiv_L} = \{\epsilon, ab, abab, ababab, \ldots\}$
- $[a]_{\equiv_L} = \{a, aba, ababa, abababa, \ldots\}$
- $[b]_{\equiv_L} = \{b, bb, ba, abb, \ldots\}$

La relación \equiv_L de un lenguaje L

Definición

Dado un lenguaje $L \subseteq \Sigma^*$, se define la relación de equivalencia \equiv_L como:

$$u \equiv_L v \quad ssi \quad (u \cdot w \in L \Leftrightarrow v \cdot w \in L) \quad \forall w \in \Sigma^*$$

Propiedades

1. \equiv_L es una congruencia por la derecha:

$$u \equiv_L v$$
 entonces $u \cdot w \equiv_L v \cdot w \quad \forall w \in \Sigma^*$

- 2. \equiv_L refina L: $u \equiv_L v$ entonces $(u \in L \Leftrightarrow v \in L)$
- 3. Si \equiv es una congruencia por la derecha y refina L entonces \equiv refina \equiv_L :

$$u \equiv v$$
 entonces $u \equiv_L v$.

 \equiv_L es la congruencia por la derecha más gruesa que refina a L.

(paréntesis): Refinamiento entre relaciones

Teorema

Sea $L \subseteq \Sigma^*$. Las siguientes propiedades son equivalentes:

- 1. *L* es regular.
- 2. existe una relación de Myhill-Nerode para L.
- 3. la relación \equiv_L tiene una cantidad **finita** de clases de equivalencia.

Demostración

- 1. \Rightarrow 2. Si *L* es regular, entonces:
 - existe un autómata finito \mathcal{A} tal que $L = \mathcal{L}(\mathcal{A})$.
 - \blacksquare $\equiv_{\mathcal{A}}$ es una relación de Myhill-Nerode para L.
- 2. \Rightarrow 3. Sea = una relación de Myhill-Nerode para L, entonces:
 - ≡ tiene una cant. finita de clases de equivalencia.
 - \equiv_L tiene una cant. finita de clases de equivalencia. (¿por qué?)
- $3. \Rightarrow 1.$ Si \equiv_L tiene una cantidad **finita** de clases de equiv., entonces:
 - \blacksquare \sqsubseteq_L es una relación de Myhill-Nerode para L.
 - \mathcal{A}_{\equiv_L} es un autómata finito para L.

Conclusiones del teorema

- 1. $\equiv_L \longrightarrow A_{\equiv_I}$ produce el autómata con la menor cantidad de estados.
- 2. Todo autómata A tal que $\equiv_A = \equiv_L$ son isomorfos ("equivalentes").
- 3. El algoritmo de minimización produce un autómata isomorfo a \mathcal{A}_{\equiv_L} .

Demostración (punto 3)

Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un autómata que acepta L ya minimizado :

$$\begin{split} u &\equiv_L v &\iff \left(\ u \cdot w \in L \iff v \cdot w \in L \ \right) \quad \forall w \in \Sigma^* \\ &\iff \left(\ \hat{\delta}(q_0, u \cdot w) \in F \iff \hat{\delta}(q_0, v \cdot w) \in F \ \right) \quad \forall w \in \Sigma^* \\ &\iff \left(\ \hat{\delta}(\hat{\delta}(q_0, u), w) \in F \iff \hat{\delta}(\hat{\delta}(q_0, v), w) \in F \ \right) \quad \forall w \in \Sigma^* \\ &\iff \hat{\delta}(q_0, u) \approx_{\mathcal{A}} \hat{\delta}(q_0, v) \\ &\iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v) \quad \text{(¿por qué?)} \\ &\iff u \equiv_{\mathcal{A}} v \end{split}$$