NumPy

<u>Документація</u>

Сайт

Завантаження

pip install numpy

Початок роботи

Основним об'єктом NumPy є однорідний багатовимірний масив (у numpy називається numpy.ndarray). Це багатовимірний масив елементів (зазвичай чисел), одного типу.

Найбільш важливі атрибути об'єктів ndarray:

ndarray.ndim - число вимірів (найчастіше їх називають "осі") масиву.

ndarray.shape – розміри масиву, його форма. Це кортеж натуральних чисел, що показує довжину масиву кожної осі. Для матриці з n рядків та m стовпів, shape буде (n,m). Число елементів кортежу shape дорівнює ndim.

ndarray.size – кількість елементів масиву. Очевидно, дорівнює добутку всіх елементів атрибуту shape.

ndarray.dtype – об'єкт, що описує тип елементів масиву. Можна визначити dtype за допомогою стандартних типів даних Python. NumPy тут надає цілий букет можливостей, як вбудованих, наприклад: bool_, character, int8, int16, int32, int64, float8, float16, float32, float64, complex64, object_, і можливість визначити власні типи даних, зокрема і складові.

ndarray.itemsize – розмір кожного елемента масиву в байтах.

ndarray.data – буфер, що містить фактичні елементи масиву. Зазвичай не потрібно використовувати цей атрибут, тому що звертатися до елементів масиву найпростіше за допомогою індексів.

Вимірність масивів

Одним з основних компонентів NumPy ε багатовимірні масиви або ndarray (N-dimensional array), які надають потужність та ефективність для роботи з числовими даними.

На відміну від списків тут присутня більше правил та обмежень, які гарантують для нас з вами чіткість роботи та можливість передбачити результат опрацювання даного масиву. Також, за рахунок наявності спеціальних типів даних ми можемо гарантувати роботу з пам'яттю набагато більш ефективними методами ніж у аналогічних структурах.

У масивів NumPy можна працювати з різними вимірами, включаючи одновимірні (вектори), двовимірні (матриці) та вищі виміри. Виміри масивів визначаються їх формою (shape) та розмірністю (dimensionality).

Форма (shape) масиву вказує на кількість елементів у кожному розмірі масиву. Наприклад, масив з формою (3, 4) має 3 рядки та 4 стовпці. Форма масиву може бути отримана за допомогою властивості shape.

```
import numpy as np

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 1
2]])
print(arr.shape) # Вивід: (3, 4)
```

Розмірність (dimensionality) масиву вказує на кількість вимірів або осей, які він має. Наприклад, двовимірний масив має розмірність 2, трирозмірний масив має розмірність 3 і т.д. Розмірність масиву можна отримати за допомогою властивості ndim.

```
import numpy as np

arr = np.array([1, 2, 3, 4])
print(arr.ndim) # Вивід: 1

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(arr.ndim) # Вивід: 2

arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
print(arr.ndim) # Вивід: 3
```

Крім того, NumPy надає можливості для перетворення форми та розмірності масивів за допомогою функцій restate() i resize().

Ці виміри масивів у NumPy дозволяють зручно та ефективно працювати з числовими даними у векторах, матрицях та більш високорозмірних структурах даних.

На практиці частіше за все використовуються різновиди 0, 1, 2 та 3 вимірний масиви. Будь-який інший масив за замовченням називається N вимірним.

0 вимірний масив означає просте число

```
import numpy as np
arr = np.array(42)
print(arr)
```

Одновимірний масив це аналог списку

```
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr)
```

Двовимірний масив це список списків, що частіше за все представляє собою відображення будь-якої таблиці. А також в загально математичне практиці відображає матрицю.

```
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
```

3 та більше вимірні масиви відображають за своєю характеристикою більш складні структури які можуть являти собою топології, таблиці з взаємопов'язаними елементами та багато іншого.

```
import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
print(arr)
```

Зверніть увагу, що всі масиви є симетричними. Це означає що кількість елементів в незалежності від його вимірності має бути однакова для кожної площини. Якщо така дія не буде виконано, ми отримаємо помилку

Створення масиву

У NumPy є багато способів створити масив. Один з найпростіших - створити масив зі звичайних списків або кортежів Python, використовуючи функцію numpy.array() (запам'ятайте: array - функція, що створює об'єкт типу ndarray):

```
import numpy as np
a = np.array([1, 2, 3]) # array([1, 2, 3])
type(a) #<class 'numpy.ndarray'>
```

Так само, функція array() трансформує вкладені послідовності багатомірні масиви даних (List, Set, Tuple). Тип елементів масиву залежить від типу елементів вихідної послідовності (але можна і перевизначити його на момент створення).

Функція array() не єдина функція створення масивів. Зазвичай елементи масиву спочатку невідомі, а масив, у якому зберігатимуться, вже потрібний. Тому є кілька функцій для того, щоб створювати масиви з якимось вихідним вмістом (за замовчуванням тип масива, що створюється — float64).

Функція zeros() створює масив із нулів

Функція ones() генерує масив заданого розміру заповнений одиницями.

Функція еуе() створює одиничну матрицю (двовимірний масив)

Функція empty() створює масив без заповнення. Вихідний вміст випадковий і залежить від стану пам'яті на момент створення масиву (тобто від сміття, що в ній зберігається):

```
np.empty((3, 3))

array([[ 6.93920488e-310, 6.93920488e-310, 6.93920149e -310],
```

```
[ 6.93920058e-310, 6.93920058e-310, 6.93920058e
-310],
        [ 6.93920359e-310, 0.00000000e+000, 6.93920501e
-310]])
```

Для створення послідовностей чисел, NumPy є функція arange(), аналогічна вбудованій в Python range(), тільки замість списків вона повертає масиви, і приймає не тільки цілі значення:

```
np.arange(10, 30, 5)

array([10, 15, 20, 25])

np.arange(0, 1, 0.1)

array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
```

Взагалі, при використанні arange() з аргументами типу float, складно бути впевненим у тому, скільки елементів буде отримано (через обмеження точності чисел із плаваючою комою). Тому, в таких випадках зазвичай краще використовувати функцію linspace(), яка замість кроку як один з аргументів приймає число, що дорівнює кількості потрібних елементів:

```
np.linspace(0, 2, 9) # 9 чисел від 0 до 2 включно
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
```

Вивід масивів

```
print(np.arange(0, 3000, 1))
"""[ 0 1 2 ..., 2997 2998 2999]"""
```

Якщо розмір масива завеликий (>55 елементів) то система автоматично буде ховати середню частину та виводити лише початкові та кінцеві значення

Індекси масивів

Принципи роботи аналогічні до принципів роботи індекса у рядках чи списках. Однак форма звернення трішечки відрізняється для кращого сприйняття

Для одновимірного:

```
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr[0])
```

Для багатовимірного

```
import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 1
1, 12]]])

print(arr[0, 1, 2])
# 6
```

```
0 \rightarrow [[1, 2, 3], [4, 5, 6]]

1 \rightarrow [4, 5, 6]

2 \rightarrow 6
```

Зрізи масивів

```
Аналогічно до списків
```

```
Має 2 форми: [start:end] та [start:end:step]
Для одновимірного масиву
```

```
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[1:5])
```

для багатовимірного масивом

```
import numpy as np
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print(arr[1, 1:4])
```

Типи даних numpy

У бібліотеці NumPy доступні різноманітні типи даних, які можна використовувати при створенні масивів. Ось декілька поширених типів даних, що підтримуються в NumPy:

- 1. **bool**: Булевий тип даних (True aбо False).
- 2. **int**: Цілі числа, які можуть бути знаковими або беззнаковими. Наприклад, int8, uint16, int32 і т.д., відповідно до розміру в байтах.
- 3. **float**: Дробові числа з плаваючою комою, такі як float16, float32, float64 і т.д., відповідно до розміру в байтах.
- 4. **complex**: Комплексні числа, які складаються з двох частин: дійсної і уявної.
- 5. **string**: Рядки тексту.
- 6. **object**: Об'єктний тип даних, який дозволяє зберігати будь-який Pythonоб'єкт у масиві NumPy.
- 7. datetime: Дати та часи.

Ці типи даних можуть використовуватись при створенні масивів за допомогою функції numpy.array(). Також, NumPy надає можливість явно вказати тип даних при створенні масиву за допомогою аргументу dtype.

Наприклад, створення масиву з типом int32:

```
import numpy as np

arr = np.array([1, 2, 3, 4], dtype=np.int32)

print(arr.dtype) # Вивід: int32
```

Зауважте, що тип даних в NumPy може впливати на ефективність виконання обчислень та споживання пам'яті. Вибір правильного типу даних залежить від конкретних потреб вашої програми та обсягу даних, з якими ви працюєте.

Також типи даних можна передавати через спеціальні літерами

- integer
- b boolean
- unsigned integer
- f float
- c complex float
- m timedelta
- M datetime
- o object
- s string
- unicode string
- v fixed chunk of memory for other type (void)

```
import numpy as np
arr = np.array([1, 2, 3, 4], dtype='S')
print(arr)
print(arr.dtype)
```

В NumPy ви можете конвертувати типи даних масиву за допомогою функції astype(). Ця функція створює новий масив з таким самим вмістом, але з новим типом даних. Ось приклад конвертації типу даних у масиві:

```
import numpy as np

arr = np.array([1, 2, 3, 4])
print(arr.dtype) # Вивід: int64

arr = arr.astype(np.float64)
print(arr.dtype) # Вивід: float64
```

У цьому прикладі спочатку створюється масив з типом <u>int64</u>, а потім за допомогою <u>astype()</u> конвертується в масив з типом <u>float64</u>.

Також важливо зазначити, що при конвертації типу даних може відбутися втрата точності. Наприклад, при конвертації цілих чисел у числа з плаваючою комою може втрачатися десяткова частина.

```
import numpy as np

arr = np.array([1, 2, 3, 4])
print(arr) # Вивід: [1 2 3 4]

arr = arr.astype(np.float64)
print(arr) # Вивід: [1. 2. 3. 4.]
```

У цьому прикладі цілі числа конвертуються в числа з плаваючою комою, а десяткова частина відсутня.

Зверніть увагу, що конвертація типу даних створює новий масив, а не змінює початковий масив.

Також зверніть увагу, що при неправильні конвертації, яка не може бути підтримана, наприклад, з рядку у число ('a'→ int) буде помилка

Форма масивів

Форма (shape) масиву визначає його розмірність та розмір у кожному розмірі. Вона представляється у вигляді кортежу цілих чисел і може бути отримана за допомогою атрибуту shape.

Ось приклад:

```
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr.shape) # Вивід: (2, 3)
```

У цьому прикладі масив arr має форму (2, 3), що означає, що він має 2 рядки та 3 стовпці.

Ви також можете змінювати форму масиву за допомогою методу reshape(), який створює новий масив з бажаною формою. Наприклад:

```
import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])
reshaped_arr = arr.reshape((2, 3))
print(reshaped_arr)
# Вивід:
# [[1 2 3]
# [4 5 6]]
```

У цьому прикладі початковий одновимірний масив arr перетворюється за допомогою reshape() на двовимірний масив reshaped_arr 3 формою (2, 3).

Якщо розмірність та вимір нас не буде співпадати-ви отримаєте помилку Давайте подивимось більш детально

NumPy надає функцію reshape() для зміни форми (розмірності) масиву. Функція reshape() створює новий масив з тим самими даними, але з іншою формою. Ось кілька прикладів використання функції reshape():

```
import numpy as np

# Одновимірний масив

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

reshaped_arr = arr.reshape((5, 2)) # Змінюємо форму на (5,
```

```
2)
print(reshaped_arr)
# Вивід:
# [[ 1 2]
# [34]
# [5 6]
# [ 7 8]
# [ 9 10]]
# Двовимірний масив
arr = np.array([[1, 2, 3], [4, 5, 6]])
reshaped_arr = arr.reshape((3, 2)) # Змінюємо форму на (3,
2)
print(reshaped_arr)
# Вивід:
# [[1 2]
# [3 4]
# [5 6]]
# Трирозмірний масив
arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
reshaped_arr = arr.reshape((2, 4)) # Змінюємо форму на (2,
4)
print(reshaped arr)
# Вивід:
# [[1 2 3 4]
# [5 6 7 8]]
```

У цих прикладах функція reshape() змінює форму масиву на нову форму, вказану у вигляді кортежу цілих чисел. Важливо, щоб нова форма була сумісною зі змінюваним масивом, тобто кількість елементів масиву має залишатися незмінною після зміни форми.

Також можна використовувати значення <u>1</u> в кортежі форми для автоматичного визначення розміру відповідного розміру. Наприклад:

```
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
```

```
reshaped_arr = arr.reshape((3, -1)) # Змінюємо форму на (3, -1) print(reshaped_arr) # Вивід: # [[1 2] # [3 4] # [5 6]]
```

У цьому прикладі **reshape()** автоматично визначає розмір другого розміру, щоб підігнати кількість елементів.

Ітерація масивів

У бібліотеці NumPy є кілька способів ітерації (перебору) елементів масиву. Ось кілька популярних методів:

1. **Цикл for**: Можна використовувати цикл **for** для ітерації по кожному елементу масиву:

```
import numpy as np

arr = np.array([1, 2, 3, 4, 5])

for element in arr:
    print(element)

# Вивід:
# 1
# 2
# 3
# 4
# 5
```

2. **Функція** nditer(): Функція nditer() дозволяє ітерувати по елементам масиву NumPy з використанням багатьох різних режимів ітерації:

```
import numpy as np
arr = np.array([[1, 2], [3, 4]])
```

```
for element in np.nditer(arr):
    print(element)

# Вивід:

# 1

# 2

# 3

# 4
```

3. **Цикл по рядках (axis=0) або стовпцях (axis=1)**: За допомогою параметра axis можна ітерувати по рядках або стовпцях масиву:

```
import numpy as np

arr = np.array([[1, 2], [3, 4], [5, 6]])

# Ітерація по рядках
for row in arr:
    print(row)

# Вивід:
# [1 2]
# [3 4]
# [5 6]

# Ітерація по стовпцях
for column in arr.T:
    print(column)

# Вивід:
# [1 3 5]
# [2 4 6]
```

Ці методи дозволяють ефективно перебирати елементи масиву NumPy. Залежно від конкретних потреб, ви можете вибрати найбільш підходящий метод для вашого випадку ітерації.

Об'єднання масивів

У NumPy є кілька функцій для об'єднання (злиття) масивів. Ось кілька популярних методів для об'єднання масивів:

пр.concatenate(): Функція пр.concatenate() дозволяє об'єднувати масиви вздовж заданої осі. Вона приймає кортеж масивів, які потрібно об'єднати, і вказується в якому напрямку (осі) потрібно здійснити об'єднання. Ось приклад:

```
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

result = np.concatenate((arr1, arr2))
print(result)
# Вивід: [1 2 3 4 5 6]
```

np.vstack() i np.hstack(): Функції np.vstack() (vertical stack) та np.hstack() (horizontal stack) використовуються для об'єднання масивів вертикально (по рядках) і горизонтально (по стовпцях) відповідно. Ось приклади:

```
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

# Об'єднання вертикально
result = np.vstack((arr1, arr2))
print(result)
# Вивід:
# [[1 2 3]
# [4 5 6]]

# Об'єднання горизонтально
result = np.hstack((arr1, arr2))
print(result)
# Вивід: [1 2 3 4 5 6]
```

np.column_stack(): Функція np.column_stack() використовується для об'єднання масивів як стовпців нового масиву. Ось приклад:

```
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

result = np.column_stack((arr1, arr2))
print(result)
# Вивід:
# [[1 4]
# [2 5]
# [3 6]]
```

Ці методи дозволяють ефективно об'єднувати масиви NumPy в різних комбінаціях. Вибір конкретного методу залежить від потреб вашої задачі та потрібного типу об'єднання.

Розділення масивів

У бібліотеці NumPy є кілька функцій для розбиття (розділення) масиву на менші частини. Ось кілька популярних методів розбиття масивів:

np.split(): Функція np.split() розділяє масив на підмасиви вздовж заданої осі за допомогою списку індексів розбиття. Ось приклад:

```
import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])

result = np.split(arr, [2, 4]) # Розділяємо масив після 2-
го та 4-го елементів
print(result)
# Вивід: [array([1, 2]), array([3, 4]), array([5, 6])]
```

np.array_split(): Функція np.array_split() розділяє масив на підмасиви вздовж заданої осі, при цьому дозволяє різну кількість елементів у

підмасивах. Ось приклад:

```
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
result = np.array_split(arr, 3) # Розділяємо масив на 3 пі
дмасиви
print(result)
# Вивід: [array([1, 2, 3]), array([4, 5, 6]), array([7])]
```

np.hsplit() i np.vsplit(): Функції np.hsplit() (horizontal split) і np.vsplit() (vertical split) використовуються для розділення масиву горизонтально (по стовпцях) і вертикально (по рядках) відповідно. Ось приклади:

```
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
# Розділення горизонтально
result = np.hsplit(arr, 3)
print(result)
# Вивід: [array([[1],
#
                 [4]]),
           array([[2],
#
#
                 [5]]),
#
           array([[3],
#
                 [6]])]
# Розділення вертикально
result = np.vsplit(arr, 2)
print(result)
# Вивід: [array([[1, 2, 3]]),
#
           array([[4, 5, 6]])]
```

Ці методи дозволяють ефективно розбивати масиви NumPy на менші частини залежно від потреб вашої задачі.

Сортування масивів

У бібліотеці NumPy є кілька функцій для сортування масивів. Ось декілька популярних методів сортування:

np.sort(): Функція **np.sort()** сортує масив в порядку зростання елементів по кожному рядку або по заданій осі. Оригінальний масив залишається незмінним. Ось приклад:

```
import numpy as np
arr = np.array([3, 1, 2, 5, 4])

# Сортування в порядку зростання
sorted_arr = np.sort(arr)
print(sorted_arr)
# Вивід: [1 2 3 4 5]
```

np.argsort(): Функція np.argsort() повертає індекси, які б відповідали сортуванню масиву в порядку зростання. Ось приклад:

```
import numpy as np

arr = np.array([3, 1, 2, 5, 4])

# Сортування індексів
indices = np.argsort(arr)
print(indices)
# Вивід: [1 2 0 4 3]
```

np.sort() з параметром axis: Якщо масив має більше одного розміру, можна вказати параметр axis, щоб визначити ось сортування. Ось приклад:

```
# Сортування кожного рядка масиву sorted_arr = np.sort(arr, axis=1) print(sorted_arr) # Вивід: [[1 2 3] # [4 5 6]]
```

np.sort() з параметром kind: Параметр kind визначає алгоритм сортування. За замовчуванням використовується швидке сортування ('quicksort'). Інші можливі значення включають 'heapsort' і 'mergesort'. Ось приклад:

```
import numpy as np
arr = np.array([3, 1, 2, 5, 4])

# Сортування з використанням алгоритму сортування злиттям
(mergesort)
sorted_arr = np.sort(arr, kind='mergesort')
print(sorted_arr)
# Вивід: [1 2 3 4 5]
```

Ці методи дозволяють сортувати масиви NumPy залежно від потреб вашої задачі. Вибір конкретного методу залежить від типу сортування, який ви хочете виконати.

Пошук у массивах

В бібліотеці NumPy є кілька функцій для пошуку елементів у масиві. Ось декілька популярних методів пошуку:

<u>np.where()</u>: Функція <u>np.where()</u> дозволяє знайти індекси елементів у масиві, які задовольняють певне умову. Ось приклад:

```
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
```

```
# Пошук елементів більше за 3 indices = np.where(arr > 3) print(indices) # Вивід: (array([3, 4, 5]),)
```

np.argmax() і np.argmin(): Функції np.argmax() та np.argmin() дозволяють знайти індекс максимального і мінімального елементів у масиві відповідно. Ось приклад:

```
import numpy as np

arr = np.array([1, 3, 2, 4, 5])

# Пошук індексу максимального елемента
max_index = np.argmax(arr)
print(max_index)

# Вивід: 4

# Пошук індексу мінімального елемента
min_index = np.argmin(arr)
print(min_index)
# Вивід: 0
```

<u>np.nonzero()</u>: Функція <u>np.nonzero()</u> повертає індекси ненульових елементів у масиві. Ось приклад:

```
import numpy as np

arr = np.array([0, 2, 0, 4, 0, 6])

# Пошук індексів ненульових елементів indices = np.nonzero(arr) print(indices)
# Вивід: (array([1, 3, 5]),)
```

Метод <u>searchsorted()</u> у бібліотеці NumPy використовується для знаходження індексу, на якому потрібний елемент масиву повинен бути вставлений, щоб зберегти впорядкованість масиву.

Синтаксис методу searchsorted() виглядає так:

```
numpy.searchsorted(a, v, side='left', sorter=None)
```

де:

- а вхідний впорядкований масив, в якому шукаємо;
- 🔻 значення, яке потрібно знайти і вставити;
- side (необов'язковий) специфікує, з якого боку вставити значення, якщо він вже присутній у масиві. Можливі значення: 'left' (зліва) або 'right' (справа). За замовчуванням встановлено 'left'.
- sorter (необов'язковий) масив індексів, який вказує порядок елементів а. Це дає змогу ефективніше використовувати searchsorted() для багаторазового пошуку в тому ж впорядкованому масиві.

Метод searchsorted() повертає індекс, на якому потрібний елемент оповинен бути вставлений у масив а, щоб зберегти впорядкованість. Залежно від значення side, цей індекс може бути першим (зліва) або останнім (справа) індексом, де елемент от може бути знайдений у масиві а. Якщо от вже присутній у масиві а, метод searchsorted() поверне індекс першого (зліва) або останнього (справа) входження цього елемента.

Ось приклад використання методу searchsorted():

```
import numpy as np

arr = np.array([1, 3, 5, 7, 9])

# Знаходження індексу для вставки елемента 6, щоб зберегти впорядкованість index = np.searchsorted(arr, 6) print(index)
# Вивід: 3

# Знаходження індексу для вставки елемента 4 зліва index = np.searchsorted(arr, 4, side='left') print(index)
# Вивід:
```

```
# Знаходження індексу для вставки елемента 4 справа index = np.searchsorted(arr, 4, side='right') print(index) # Вивід: 2
```

У цьому прикладі метод searchsorted() знаходить індекс, на якому елементи можуть бути вставлені у впорядкований масив arr.

Важливо! Такий метод має бути використана відсортованому значенні!

Ці методи дозволяють ефективно шукати елементи у масиві NumPy залежно від потреб вашої задачі. Вибір к онкретного методу залежить від типу пошуку, який ви хочете виконати.

Фільтрування масивів

У бібліотеці NumPy можна фільтрувати масиви за допомогою логічних умов. Це дозволяє вибрати лише ті елементи масиву, які відповідають певним критеріям. Ось кілька способів фільтрації масиву NumPy:

1. Використання логічних умов: Можна використовувати логічні умови для створення булевого масиву, який вказує, які елементи задовольняють певний критерій. Ось приклад:

```
import numpy as np

arr = np.array([1, 2, 3, 4, 5])

# Фільтрація елементів більше за 3
filtered_arr = arr[arr > 3]
print(filtered_arr)
# Вивід: [4 5]
```

1. **Використання функції** пр. where(): Функція пр. where() може бути використана для фільтрації елементів на основі певної умови. Ось приклад:

```
import numpy as np
```

```
arr = np.array([1, 2, 3, 4, 5])

# Фільтрація елементів більше за 3 з використанням np.where
()
filtered_arr = np.where(arr > 3, arr, 0)
print(filtered_arr)
# Вивід: [0 0 0 4 5]
```

У цьому прикладі, якщо умова arr > 3 є істинною, елементи зберігаються в результатовому масиві, інакше встановлюється значення 0.

Ці методи дозволяють фільтрувати масиви NumPy залежно від потреб вашої задачі і вибрати лише ті елементи, які вам потрібні.

Broadcasting

Broadcasting в NumPy є потужним механізмом, який дозволяє виконувати операції між масивами різних розмірів, але з певними умовами на сумісність.

Умова broadcasting в NumPy:

- 1. Якщо розмірність двох масивів однакова вздовж всіх осей, то вони є сумісними.
- 2. Якщо розмірність одного з масивів дорівнює 1 вздовж певної осі, то він може бути розтягнутий (broadcasted) для відповідності розміру іншого масиву вздовж цієї осі.
- 3. Якщо після розтягнення розмір двох масивів вздовж будь-якої осі співпадає, то вони є сумісними і можна виконувати операцію.

Broadcasting дозволяє виконувати операції на масивах з різними розмірностями без явного повторення чи розширення масивів. Це забезпечує більш компактний та ефективний спосіб програмування.

Розглянемо декілька прикладів:

```
import numpy as np

# Приклад 1: Broadcasting між масивом розміром (3, 3) і мас
ивом розміром (3, 1)
a = np.array([[1, 2, 3],
```

```
[4, 5, 6],
              [7, 8, 9]])
b = np.array([[10],
              [20],
              [30]])
c = a + b
print(c)
# Вивід:
# [[11 12 13]
# [24 25 26]
# [37 38 39]]
# Приклад 2: Broadcasting між масивом розміром (2, 2) і ска
лярним значенням
d = np.array([[1, 2],
              [3, 4]])
e = 10
f = d + e
print(f)
# Вивід:
# [[11 12]
# [13 14]]
# Приклад 3: Broadcasting між масивами різних розмірів (2,
3) i (3,)
g = np.array([[1, 2, 3],
              [4, 5, 6]])
h = np.array([10, 20, 30])
i = g * h
print
(i)
```

```
# Вивід:
# [[10 40 90]
# [40 100 180]]
```

В прикладах вище, ми бачимо, що NumPy автоматично розширює масиви для відповідності розмірів і виконує операції між ними. Broadcasting може використовуватись з різними операціями, такими як додавання, віднімання, множення, ділення та іншими.

Це допомагає спростити і зробити код більш ефективним, оскільки не потрібно розширювати або повторювати масиви вручну. NumPy самостійно вирішує, як розширити масиви для виконання операцій.

Це лише загальна інформація про broadcasting у NumPy. Є багато більше можливостей і правил, які дозволяють використовувати broadcasting для вирішення різних завдань з обробки даних.

Термін "broadcasting" описує те, як NumPy обробляє масиви з різними формами під час арифметичних операцій. З дотриманням певних обмежень, менший масив "розтягується" ("broadcasts") по більшому масиву, щоб вони мали сумісні форми. Broadcasting надає можливість векторизувати операції з масивами, щоб циклічні обчислення відбувалися в С, а не в Python. Він робить це без зайвого копіювання даних і зазвичай приводить до ефективних реалізацій алгоритмів. Проте, існують випадки, коли broadcasting є поганою ідеєю, оскільки він призводить до неефективного використання пам'яті, що уповільнює обчислення.

Зазвичай операції у NumPy виконуються над парами масивів на елементарному рівні. В найпростішому випадку два масиви повинні мати точно однакову форму, як у наступному прикладі:

```
a = np.array([1.0, 2.0, 3.0])
b = np.array([2.0, 2.0, 2.0])
a * b
array([2., 4., 6.])
```

Правило broadcasting в NumPy послаблює це обмеження, коли форми масивів відповідають певним умовам. Найпростіший приклад broadcasting виникає, коли масив і скалярне значення комбінуються в операції:

```
a = np.array([1.0, 2.0, 3.0])
b = 2.0
a * b
array([2., 4., 6.])
```

Результат еквівалентний попередньому прикладу, де b було масивом. Ми можемо уявляти, що скалярне значення b розтягується під час арифметичної операції до масиву з такою ж формою, як у масиву а. Нові елементи в b, як показано на малюнку 1, є просто копіями початкового скаляру. Аналогія з розтягуванням є концептуальною. NumPy достатньо розумний, щоб використовувати початкове скалярне значення без фактичного копіювання, щоб операції broadcasting були як ефективними за споживанням пам'яті та обчислювальними ресурсами можливими.

У найпростішому прикладі broadcasting, скаляр b розтягується, щоб стати масивом з такою ж формою, як у масиву а, щоб форми були сумісні для множення елементів один до одного.

Код у другому прикладі є ефективнішим, ніж у першому, оскільки broadcasting переміщує менше пам'яті під час множення (b є скаляром, а не масивом).

Загальні правила broadcasting:

При обробці двох масивів NumPy порівнює їх форми на рівні елементів. Порівняння починається з останньої (найправішої) вимірності і працює відправляючись вліво. Дві вимірності є сумісними, коли:

вони рівні, або одна з них дорівнює 1.

Якщо ці умови не виконуються, виникає виняток ValueError: operands could not be broadcast together, що вказує на несумісні форми масивів.

Вхідні масиви не обов'язково мають однакову кількість вимірів. Результатуючий масив матиме таку ж кількість вимірів, як у вхідного масиву з найбільшою кількістю вимірів, де розмір кожного виміру є найбільшим серед відповідних вимірів вхідних масивів. Зауважте, що відсутні виміри вважаються розміром одиниці.

Наприклад, якщо у вас є масив RGB значень розміром 256х256×3, і ви хочете масштабувати кожний колір на зворотній коефіцієнт, ви можете помножити зображення на одновимірний масив із 3 значеннями. Порівнявши розміри останніх вимірів цих масивів за правилами broadcasting, ми бачимо, що вони є сумісними:

Зображення (3D масив): 256 x 256 × 3

Масштаб (1D масив): 3

Результат (3D масив): 256 x 256 × 3

Коли одна з порівнюваних вимірностей дорівнює одиниці, використовується інша вимірність. Іншими словами, вимірності з розміром 1 розтягуються або "копіюються", щоб відповідати іншим вимірностям.

У наступному прикладі обидва масиви A і B мають вимірності з довжиною одиниці, які розширяються до більшої форми під час broadcast операції:

A (4D масив): $8 \times 1 \times 6 \times 1$ В (3D масив): $7 \times 1 \times 5$

Результат (4D масив): $8 \times 7 \times 6 \times 5$

Масиви, які можуть бути broadcast до однакової форми, називаються "broadcastable".

Наприклад, якщо a.shape дорівнює (5,1), b.shape дорівнює (1,6), c.shape дорівнює (6,), a d.shape дорівнює () (тобто d є скаляром), то a, b, c i d можуть бути broadcast до форми (5,6), i:

а діє як (5,6) масив, де а[:,0] розтягується на інші стовпці,

b діє як (5,6) масив, де b[0,:] розтягується на інші рядки,

с діє як (1,6) масив, а тому як (5,6) масив, де с[:] розтягується на кожен рядок, і нарешті,

d діє як (5,6) масив, де одне значення повторюється.

Ось ще декілька прикладів:

```
Α
     (2D масив): 5 × 4
     (1D масив):
В
                     1
Результат (2D масив): 5 x 4
     (2D масив): 5 × 4
Α
В
     (1D масив):
Результат (2D масив): 5 x 4
     (3D масив): 15 \times 3 \times 5
Α
     (3D масив): 15 \times 1 \times 5
В
Результат (3D масив):
15 \times 3 \times 5
Α
     (3D масив): 15 \times 3 \times 5
В
     (2D масив):
                       3 \times 5
Результат (3D масив): 15 \times 3 \times 5
     (3D масив): 15 \times 3 \times 5
Α
     (2D масив):
                       3 \times 1
В
Результат (3D масив): 15 \times 3 \times 5
Ось приклади форм, які не підлягають broadcasting:
Α
     (1D масив): 3
В
     (1D масив): 4 # виміри з кінця не відповідають
Α
     (2D масив):
                      2 \times 1
В
     (3D масив): 8 \times 4 \times 3 # друга з кінця вимірність не відповідає
Приклад broadcasting, коли 1D масив додається до 2D масиву:
```

```
a = np.array([[ 0.0,  0.0,  0.0],
[10.0, 10.0, 10.0],
[20.0, 20.0, 20.0],
[30.0, 30.0, 30.0]])
b = np.array([1.0, 2.0, 3.0])
a + b
array([[ 1.,  2.,  3.],
[11.,  12.,  13.],
[21.,  22.,  23.],
[31.,  32.,  33.]])
```

```
b = np.array([1.0, 2.0, 3.0, 4.0])
a + b
```

Traceback (most recent call last):

ValueError: operands could not be broadcast together with shapes (4,3) (4,) Як показано на Рисунку 2, b додається до кожного рядка а. На Рисунку 3 виникає виняток через несумісні форми.

Broadcasting надає зручний спосіб виконання зовнішнього добутку (або будь-якої іншої зовнішньої операції) двох масивів. Наступний приклад показує операцію зовнішнього додавання двох 1D масивів:

```
a = np.array([0.0, 10.0, 20.0, 30.0])
b = np.array([1.0, 2.0, 3.0])
a[:, np.newaxis] + b
array([[ 1., 2., 3.],
[11., 12., 13.],
[21., 22., 23.],
[31., 32., 33.]])
```

