Dérivabilité

$$f'(a) = \lim_{x o a}\left(rac{f(x)-f(a)}{x-a}
ight) = \lim_{h o 0}\left(rac{f(a+h)-f(a)}{h}
ight)$$
 avec $x=a+h$

- Si f dérivable en a, alors f continue en a.
- f dérivable en $a\Leftrightarrow$ elle admet une développement limité à l'ordre 1 en a : $f(a+h)=f(a)+f'(a)h+h\varepsilon(h)$ avec $\lim_{h\to 0}\varepsilon(h)=0$
- Tangente à la courbe en a : y = f'(a)(x a) + f(a).
- Si f dérivable en $f^{-1}(x)$ et si $f'(f(x)) \neq 0$, alors $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$.

Propriétés des fonctions dérivables

Théorème de Rolle

Soit f continue sur [a,b] et dérivable sur]a,b[(avec a < b)

• Si f(a) = f(b) alors $\exists c \in]a,b[;f'(c) = 0$

Accroissement finis

Egalité

Soit f continue sur [a,b], dérivable sur]a,b[. Alors $\exists c \in]a,b[;f(b)-f(a)=f'(c)(b-c)$

Inégalité

Soit f dérivable sur I, on suppose que $\exists K \geq 0; |f'(t)| \leq K$. Alors $\forall (x,y) \in I^2, |f(y)-f(x)| \leq K|y-x|$

Fonctions de classe C^1, C^p, C^∞

• Une fonction est de classe C^1 sur I si f est dérivable et f' est continue sur I.

• Une fonction est de classe C^p sur I si f est p fois dérivable et $f^{(p)}$ continue sur I.

Formule de Leibniz

Soit f et g définies et dérivables jusqu'à l'ordre n. $\forall n \in \mathbb{N}$:

$$f(fg)^{(n)} = \sum_{k=0}^n inom{n}{k} f^{(k)} g^{(n-k)} = \sum_{k=0}^n inom{n}{k} f^{(n-k)} g^{(k)}$$

• Similaire à la Formules du binôme de Newton.

Théorème de la limite de la dérive

- Si f continue en I et si f' admet une limite finie en a, alors f est dérivable en a et $f'(a) = l = \lim_{x \to a} f'(x)$. f' est alors continue en a.
- Si f' admet un limite infinie en a, alors f n'est pas dérivable en a