

❖ Identities :

1
$$a + b + c = 2$$
, $ab + bc + ca = 26$

$$a^3 + b^3 + c^3 - 3abc = ?$$

$$x + \frac{1}{x} = 3$$

$$x^4 + \frac{1}{x^4} = 3$$

3.
$$(a - b) = 3$$
 and $ab = 10$. Find $(a^3 - b^3) = ?$

Career Signature

4.
$$a + b + c = 6$$
, $a^3 + b^3 + c^3 - 3abc = 219$

$$ab + bc + ca = ?$$

(b)-
$$\frac{1}{6}$$

5.
$$a + b + c = 6$$
, $ab + bc + ac = 4$

$$a^3 + b^3 + c^3 - 3abc = ?$$

6.
$$\sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{6}$$
, $x^2 + \frac{1}{x^2} = ?$

(a) 12

(b) 13

(c) 15

(d) 14

7.
$$a + b + c = 13$$
, $ab + bc + ca = 54$

$$a^3 + b^3 + c^3 - 3abc = ?$$

(a) 91 (b) 104 (c) 13

(d) 14

$$x^2 + y^2 + z^2 + 27 = 6(x + y + z),$$
 $\sqrt[3]{x^3 + y^3 - z^3} = ?$

(a) 3

(b) 13

(c) 27

(d) 54

9.
$$x + y + z = 0$$

$$\frac{x^2 + y^2 + z^2}{z^2 - vx} = ?$$

$\frac{x^2+y^2+z^2}{z^2-yx}$ =? Career Signature

(a) 2

(b) 3 (c) 5

(d) 4

10.
$$4x^2 - 6x - 1 = 0$$

$$8x^3 + \frac{1}{8x^3} = ?$$

(a) 12

(b) 18

(c) 15

11.
$$x^2 + x = 19$$

$$(x+5)^2 + \frac{1}{(x+5)^2} = ?$$

(a) 12

(b) 13

(c) 81

(d) 79

12.
$$x - 5\sqrt{x} - 1 = 0$$

$$x^2 + \frac{1}{x^2} = ?$$

(a) 727

(b) 729

(c) 529

(d) 343

13.
$$x^2 - 3x - 1 = 0$$

$$(x^2 + 8x - 1)(x^3 + x^{-1})^{-1} = ?$$

(a) 4

(b) 1

(c) 2

(d) 3

The Career Signature

$$x^2 + \frac{1}{(x)^2} = ?$$

If
$$x + \frac{1}{x} = 5$$

(a) 25

(b) 23

(c) 15

(d) 14

15.
$$a + b + c = 9$$
.

15.
$$a + b + c = 9$$
, $c^3 + a^3 = 35$, $a^3 + b^3 = 91$, $b^3 + c^3 = 72$

$$ab + bc + ca = 26,$$
 $b^3 + c^3 = 72$

$$b^3 + c^3 = 72$$

$$abc = ?$$

(a) 28

(b) 33

(c) 25

16.

$$a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}, \quad b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}},$$
 (a + b)²- ab = ?

$$(a + b)^2 - ab = ?$$

(a) 990

(b) 99

(c) 98

(d) 44

17.
$$x + y = 10$$
, $xy = 4$, $x^4 + y^4 = ?$

(a) 8432 (b) 9232

(c)1235

(d) 2565

18 (a - b) = 5,
$$a^2 + b^2 = 45$$
, $ab = ?$

(a) 12

(b) 13

(c) 10 (d) 14

19.
$$x^4 + x^2 y^2 + y^4 = \frac{21}{256}$$

$$x^2 + xy + y^2 = \frac{3}{16}$$

$$(a)^{\frac{5}{8}}$$
 (b) $\frac{3}{8}$ (c) $\frac{10}{8}$ (d) 1

$$x^2 + \frac{1}{x^2} = 2$$

$$x - \frac{1}{x} = ?$$

(a) -2

(b) 1

(c) 0

(d) -1

21.
$$x + y + z = 22$$
, $xy + yz + zx = 35$, $(x - y)^2 + (y - z)^2 + (z - x)^2 = ?$

$$(x - y)^2 + (y - z)^2 + (z - x)^2 = ?$$

(b) 681

(c) 758

22.
$$\frac{x+y}{z} = 2$$
, $\frac{y}{y-z} + \frac{x}{x-z} = ?$

(a) 2

(b) 1

(c) 5

(d) 4

23.
$$a^4 + 1 = \frac{a^2}{b^2} (4b^2 - b^4 - 1), a^4 + b^4 = ?$$

(a) 2

(b) 3

(c) 5

(d) 0

$$x^{2} + \frac{1}{x^{2}} = 4$$

$$x + \frac{1}{x} = ?$$

(a) 5

(b) 6

(c) 8

25.
$$(x + 1/x)^2 = 3$$

 $x^{72} + x^{66} + x^{54} + x^{36} + x^{24} + x^6 + 1 = ?$

(a) 1

(b) 3 (c) 2

(d) 5

26.

$$x^2 + \frac{1}{x^2} = 83$$

$$x^3 - \frac{1}{x^3} = ?$$

(a) 764 (b) 750 (c) 756

27. $(x-5)^3 + (2x+6)^3 + (x-7)^3 = 3(x-5)(2x+6)(x-7)$. Find the value of x?

(a) 1

(b) 2.5

(c) 5

(d) 1.5

areer Signature

Answers:

1.a	2.a	3.a	4.b	5.b	6.d	7.a	8.a	9.d	10.a
11.b	12.d	13.b	14.a	15.c	16.a	17.c	18.c	19.ab	20.d
21.a	22.c	23.d							

Solution:

1. a + b + c = 2, ab + bc + ca = 26

$$\frac{a^3 + b^3 + c^3 - 3abc}{a^3 + b^3 + c^3 - 3abc} = (a + b + c)[(a + b + c)^2 - 3(ab + bc + ac)]$$

$$\therefore = 2 * [(2)^2 - 3(26)]$$

So option (a) is correct.

2. Given that,

$$x + \frac{1}{x} = 3$$

$$\therefore (x + \frac{1}{x})^2 = 3^2 \qquad -----[Squaring both sides]$$

$$x^2 + \frac{1}{x^2} + 2 * x * \frac{1}{x} = 9$$

$$x^2 + \frac{1}{x^2} + 2 = 9$$

$$x^2 + \frac{1}{x^2} = 7$$

Now, $(x^2 + \frac{1}{x^2})^2 = 7^2$ -----[Squaring both sides]

$$\therefore x^4 + \frac{1}{x^4} + 2 * x^2 * \frac{1}{x^2} = 49$$

$$x^4 + \frac{1}{x^4} + 2 = 49$$

$$x^4 + \frac{1}{x^4} = 47$$

So option (a) is correct.

3.
$$a - b = 3$$
 and $ab = 10$.

$$(a - b)^3 = a^3 - 3ab(a - b) - b^3$$

$$\therefore$$
 (a - b)³ + 3ab(a - b) = a³ - b³

$$\therefore 3^3 + 3 * 10 * 3 = a^3 - b^3$$

$$\therefore 27 + 90 = a^3 - b^3$$

$$a^3 - b^3 = 117$$

So option (a) is correct.

4. a + b + c = 6, $a^3 + b^3 + c^3 - 3abc = 219$

$$a^3 + b^3 + c^3 - 3abc = (a + b + c)[(a + b + c)^2 - 3(ab + bc + ac)]$$

$$\therefore$$
 219 = 6 * [(6)² - 3(ab + bc + ac)]

$$\therefore$$
 219 = 6 * [36 - 3(ab + bc + ac)]

$$\therefore$$
 219 = 216 - 18(ab + bc + ac)

$$\therefore$$
 219 - 216 = -18(ab + bc + ac)

$$\therefore \qquad \qquad 3 = -18(ab + bc + ac)$$

∴ ab + bc + ac =
$$-\frac{3}{18} = -\frac{1}{6}$$

So option (b) is correct

areer Signature

5.
$$a + b + c = 6$$
, $ab + bc + ca = 4$

$$a^3 + b^3 + c^3 - 3abc = (a + b + c)[(a + b + c)^2 - 3(ab + bc + ac)]$$

$$\therefore = 6 * [(6)^2 - 3(4)]$$

So option (b) is correct.

6.
$$\sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{6}$$
,

Squaring both sides, we get,

$$x + \frac{1}{x} + 2 * x * \frac{1}{x} = 6$$

$$x + \frac{1}{x} + 2 = 6$$

$$- x + \frac{1}{x} = 4$$

areer Signature

Squaring both sides, we get,

$$x^2 + \frac{1}{x^2} + 2 * x + \frac{1}{x} = 16$$

$$x^2 + \frac{1}{x^2} + 2 = 16$$

$$x^2 + \frac{1}{r^2} = 14$$

So option (d) is correct.

7.
$$a + b + c = 13$$
, $ab + bc + ca = 54$

$$a^3 + b^3 + c^3 - 3abc = (a + b + c)[(a + b + c)^2 - 3(ab + bc + ac)]$$

$$\therefore = 13 * [(13)^2 - 3(54)]$$

So option (a) is correct.

8.
$$x + y + z = 0$$

$$x + y = -z$$

∴ On squaring both sides, we get,(x + y)²

$$= (-z)^2$$

$$x^2 + y^2 + 2xy = z^2 - (1)$$

$$x^2 + y^2 + xy = z^2 - xy$$
 (2)

Now,

$$\frac{x^2 + y^2 + z^2}{z^2 - xy} = \frac{x^2 + y^2 + x^2 + y^2 + 2xy}{z^2 - xy} - ------From(1)$$

$$= \frac{2(x^2 + y^2 + xy)}{x^2 + y^2 + xy}$$

So option (a) is correct.

er Signature

9.
$$x^2 + x = 19$$

Let
$$y = x + 5$$

$$\rightarrow$$
 x = y - 5

Putting in the equation above, we get,

$$(y-5)^2+(y-5)=19$$

$$\Rightarrow$$
 y² - 10y + 25 + y - 5 = 19

$$\Rightarrow$$
 y² - 9y + 1 = 0

$$\Rightarrow$$
 $y^2 + 1 = 9y$

⇒
$$y + \frac{1}{y} = 9$$
 -----[Dividing throught by y]

Squaring both sides, we get,

$$y^2 + \frac{1}{y^2} + 2 * y * \frac{1}{y} = 81$$

$$\therefore y^2 + \frac{1}{y^2} + 2 = 81$$

$$\therefore y^2 + \frac{1}{y^2} = 79$$

$$\therefore (x+5)^2 + \frac{1}{(x+5)^2} = 79$$

So option (d) is correct.

Deuvre

rSignature

10.
$$x - 5\sqrt{x} - 1 = 0$$

$$x - 1 = 5\sqrt{x}$$

 \therefore On squaring both sides, we get, $(x-1)^2$

$$= (5\sqrt{x})^2$$

$$x^2 - 2x + 1 = 25x$$

$$x^2 + 1 = 27x$$

Dividing throught by x, we get,

$$x + \frac{1}{x} = 27$$
 ----(1)

$$x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2$$

So option (a) is correct.

11.
$$x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2$$

$$\therefore = 5^2 - 2$$

So option (b) is correct.

$$c^3 + a^3 = 35$$
 -----(2)

$$a^3 + b^3 = ----(3)$$

$$b^3 + c^3 = 72$$
 -----(4)

$$ab + bc + ca = 26$$
 (5)

Adding equations (2),(3) & (4), we get,

$$2a^3 + 2b^3 + 2c^3 = 35 + 91 + 72 = 198$$

$$a^3 + b^3 + c^3 = 99$$
 (6)

As per the identity,

$$a^3 + b^3 + c^3 - 3abc = (a + b + c)[(a + b + c)^2 - 3(ab + bc + ca)]$$

areer Signature

$$\therefore$$
 99 - 3abc = 9[9² - 3(26)] From(6),(1) & (5)

$$...$$
 99 - 3abc = 9(81 - 78)

$$...$$
 99 - 3abc = 9(3)

So option (d) is correct.

$$a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

$$a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
 & $b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$

After rationalising,

$$a = (\sqrt{3} + \sqrt{2})^2 = 5 + 2\sqrt{6}$$
 & $b = (\sqrt{3} - \sqrt{2})^2 = 5 - 2\sqrt{6}$

My, he Career Signature

$$(a + b)^2 - ab = (5 + 2\sqrt{6} + 5 - 2\sqrt{6})^2 - (5 + 2\sqrt{6})(5 - 2\sqrt{6})$$

$$\therefore = 10^2 - [5^2 - (2\sqrt{6})^2]$$

So option (b) is correct.

14.
$$x + y = 10$$
, $xy = 4$,

$$x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2$$

$$\therefore = (10^2 - 2 * 4)^2 - 2(4)^2$$

$$\therefore = (100 - 8)^2 - 2(16)$$

$$\therefore = 92^2 - 32$$

So option (a) is correct.

15. $a - b = 5, a^2 + b^2 = 45,$ $a^2 + b^2 = (a - b)^2 + 2ab$

$$45 = 5^2 + 2ab$$

So option (c) is correct.

Career Signature

16.

$$(x^2 + y^2 + xy)(x^2 + y^2 - xy) = (x^2 + y^2)^2 - (xy)^2$$

$$= x^4 + y^4 + 2x^2y^2 - x^2y^2$$

$$(x^2 + y^2 + xy)(x^2 + y^2 - xy) = x^4 + y^4 + x^2y^2$$

$$\therefore \frac{3}{16} * (x^2 + y^2 - xy) = \frac{21}{256}$$

$$x^2 + y^2 - xy = \frac{21 \cdot 16}{256 \cdot 3} = \frac{7}{16} - - - - - (1)$$

&
$$x^2 + y^2 + xy = \frac{3}{16}$$
 ----(2)

Adding (1) & (2), we get,

$$2x^2 + 2y^2 = \frac{5}{8}$$

$$\therefore 2(x^2 + y^2) = \frac{5}{8}$$

So option (a) is correct.

$x^2 + \frac{1}{x^2} = \left(x - \frac{1}{x}\right)^2 + 2$

$$2 = \left(x - \frac{1}{x}\right)^2 + 2$$

$$\therefore (x - \frac{1}{x})^2 = 0$$

$$\therefore x - \frac{1}{x} = 0$$

So option (c) is correct.

18.
$$x + y + z = 22$$
, $xy + yz + zx = 35$,

$$(x - y)^2 + (y - z)^2 + (z - x)^2 = x^2 + y^2 - 2xy + y^2 + z^2 - 2yz + x^2 + z^2 - 2xz$$

$$= 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz$$

$$= 2(x^2 + y^2 + z^2) - 2(xy + yz + xz)$$

$$= 2[(x + y + z)^2 - 2(xy + yz + xz)] - 2(xy + yz + xz)$$

$$= 2(x + y + z)^2 - 4(xy + yz + xz) - 2(xy + yz + xz)$$

$$\therefore$$
 = 2(x + y + z)² - 6(xy + yz + xz)

areer Signature

$$\therefore = 2(22)^2 - 6(35)$$

So option (c) is correct.

Given that, $\frac{x+y}{z} = 2$ \Rightarrow x + y = 2z \Rightarrow y = 2z - x19.

$$\therefore \frac{y}{y-z} + \frac{x}{x-z} = \frac{2z-x}{2z-x-z} + \frac{x}{x-z}$$

$$\frac{1}{z-x} = \frac{2z-x}{z-x} - \frac{x}{z-x}$$

$$= \frac{2z-2z}{z-x}$$

$$= \frac{2(z-x)}{z-x}$$

So option (a) is correct. reer Signature

$$x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2$$

$$47 = (x + \frac{1}{x})^2 - 2$$

$$\therefore (x + \frac{1}{x})^2 = 49$$

$$\therefore x + \frac{1}{x} = 7$$

So option (d) is correct.

21.
$$(x + \frac{1}{x}) 2 = 3$$
,

$$\therefore x + \frac{1}{x} = \sqrt{3}$$

$$x^3 + \frac{1}{x^3} = (\sqrt{3})^3 - 3(\sqrt{3}) = 0$$
 ----- [If $x + \frac{1}{x} = a$, then $x^3 + \frac{1}{x^3} = a^3 - 3a$]

$$x^6 + 1 = 0 \Rightarrow x^6 = -1$$

Now,

$$x^{72} + x^{66} + x^{54} + x^{36} + x^{24} + x^6 + 1 = (x^6)^{12} + (x^6)^{11} + (x^6)^9 + (x^6)^6 + (x^6)^4 + x^6 + 1$$

So option (a) is correct.

22.
$$T_{\frac{x^2 + \frac{1}{x^2} = (x - \frac{1}{x})^2 + 2}{83 = (x - \frac{1}{x})^2 + 2}}$$
 arear Signature

$$\therefore$$
 83 = $(x - \frac{1}{x})^2 + 2$

$$\therefore (x - \frac{1}{x})^2 = 81$$

$$\therefore x - \frac{1}{x} = 9$$

$$x^3 - \frac{1}{x^3} = 9^3 + 3(9) = 729 + 27 = 756$$
 -----[If $x - \frac{1}{x} = a$, then $x^3 - \frac{1}{x^3} = a^3 + 3a$]

So option (c) is correct.

23.
$$(x-5)^3 + (2x+6)^3 + (x-7)^3 = 3(x-5)(2x+6)(x-7)$$
.

Let
$$x - 5 = a$$
, $2x + 6 = b$, $x - 7 = cThen$

$$a^3 + b^3 + c^3 = 3abc$$

This is the identity when a + b + c = 0

$$x - 5 + 2x + 6 + x - 7 = 0$$

$$4x-6=0$$

So option (d) is correct.

The Career Signature