LISTA DE EXERCÍCIOS 1

NOME: GABRIEL FERREIRA DE SOUZA ARAUJO

NUSP: 12718100

1. O espaço de hipóteses H contém a classe de funções consideradas por um algoritmo de aprendizagem, que irá escolher a função h(x) baseado em uma função de erro calculada em um conjunto de treinamento. A junção destas três partes é chamada de modelo de aprendizagem. O espaço de hipóteses que define a complexidade de um modelo e, consequentemente sua capacidade de generalização. Também, podemos interpretar o espaço de hipóteses como o hiperplano formado por todos possíveis valores dos parâmetros, ak, $\forall k$. Segue abaixo alguns exemplos de espaços de hipóteses; Hipóteses para os modelos Perceptron, regressão linear e regressão logística respectivamente:

2. Um conjunto booleano $(A, +, \cdot, -, 0, 1)$ não vazio A com R \subseteq AxA parcialmente ordenado pela relação de ordem \leq cumprindo com as propriedades de reflexão $(x \leq x, para todo x \in A)$, antissimétrica (se $x \leq y$ e $y \leq x$, então x = y, para todo $x, y \in A$) e transitividade (se $x \leq y$ e $y \leq z$ então $x \leq z$, para todo $x, y, z \in A$); (R, \leq) e dito reticulado se para quaisquer $x, y \in R$ existem o supremo e o ínfimo de $\{x, y\}$. Em um diagrama de Hasse, por exemplo, os elementos menores (com relação a ordem parcial) são em geral desenhados abaixo dos elementos maiores. Segue três exemplos de reticulados:

5. Um operador de imagem é uma função que toma como entrada uma imagem e saída outra imagem. Operadores complexos de imagem geralmente são construídos através da combinação de operadores básicos, como dilatações, erosões e convoluções. Um operador de imagens é uma função que transforma uma imagem em outra imagem diferente. Logo, um operador ψ é um elemento de Fun[Fun[E,k],Fun[E,k]] e é tanto uma função entre reticulados quanto um elemento não reticulado dos operadores. Um operador de imagem ψ é um operador ψ se e somente se cumprir com as seguintes duas propriedades: invariante à translação: $\psi(t(i,p))=t(\psi(i),p)$, onde t(i,p) representa a tradução da imagem i por $p\in z2$; Localmente definido: existe uma janela ψ tal que ψ (i) ψ ψ ψ i ψ ψ i ψ fun ψ e um operador entre um reticulado ψ i ψ uma cadeia ψ pode ser expresso usando uma decomposição canônica:

$$\psi(I)(p) = \sum_{y=0}^{m} \vee \{\lambda[A, B](I_{p}^{(W)} : [A, B] \in \mathbf{B}_{\psi}(k)\}.$$

Pequenos recortes de pixels selecionando os pixels que pertencem à imagem, ou seja, como imagens-janela, de um pixel são fun[w,k], onde w⊂2 é um conjunto de pontos que definem uma vizinhança considerada. A imagem janela iz(w) pode centralizar a janela no pixel z∈z2 na imagem i é dada por:

$$I_z^{(W)}(p) = I(z+p) \forall p \in W.$$

Dado que o conjunto de funções booleanas $\{0,1\}^{\mathcal{P}(w)}$ é uma rede booleana que herda a estrutura de rede $(\{0,1\},\leq)$, notamos que $(\{0,1\},\leq)$ $\forall \psi \in \psi_W$, então temos: $h \in \psi(x) \Leftrightarrow h \in \psi(X \cap W_h) \Leftrightarrow h - h = o \in [\psi(X \cap W_h)]_{-h} \Leftrightarrow o \in \psi([X \cap W_h]_{-h}) \Leftrightarrow o \in \psi(X_{-h} \cap W)$. Logo, podemos definir que: $\forall X \in \mathcal{P}(W), \ \psi \in \psi_W$ temos $T \colon \psi_W \to \{0,1\}^{\mathcal{P}(W)}$ definida como: $f_{\psi}(X) = [T(\psi)](X) = \left\{\frac{1, se \ o \in \psi(x)}{0, caso \ contrário}\right\}$. $\forall X \in \mathcal{P}(E), \ h \in E, \ f \in \{0,1\}^{\mathcal{P}(W)}$ temos $T^{-1} \colon \{0,1\}^{\mathcal{P}(W)} \to \psi_W$ com $\psi_f = T^{-1}(f)$, definida como: $h \in \psi_f(X) \Leftrightarrow f(X_{-h} \cap W) = 1$. Portanto provamos que o espaço de hipóteses H de W-operadores é isomórfico ao espaço de funções Booleanas do conjunto potência de W em $\{0,1\}$.