Lecture 1

1 Introduction

1.1 Quadratic polynomials

Example 1.1 (n=3).

Definition 1.1 (Symmetric function). Let $\phi(x_1, \ldots, x_n)$ be a function. Then ϕ is *symmetric* if \forall permutations $\omega \in S_n$, $\phi(x_1, \ldots, x_n) = \phi(x_{\omega(1)}, \ldots, x_{\omega(n)})$

Definition 1.2 (Elementary symmetric functino in x_1, \ldots, x_n).

$$\sigma_1 = \sigma_1(x_1, \dots, x_n) = x_1 + \dots + x_n$$

$$\sigma_2 = \sigma_2(x_1, \dots, x_n) = x_1 x_2 + x_1 x_3 + \dots + x_1 x_n + x_2 x_3 + \dots + x_{n-1} x_n$$

$$\sigma_n = \sigma_n(x_1, \dots, x_n) = \sum_{i_1 < \dots < i_k} x_{i_1} \cdots x_{i_k} \quad (\text{# of terms is } \binom{n}{k})$$

Theorem 1.1.

- 1. For \forall symmetric function $\phi \exists !$ polynomial $P(t_1, \ldots, t_n)$ such that $\phi(x_1, \ldots, x_n) = P(\sigma_1, \ldots, \sigma_n)$
- 2. Moreover, if ϕ is a polynomial with coefficients in a ring R ($\phi \in R[x_1, \dots, x_n]$) then $P \in R[x_1, \dots, x_n]$

Theorem 1.2 (Vieta Formula).

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n} = (x - x_{1}) \cdots (x - x_{n})$$
$$= x^{n} - \sigma_{1}(x_{1}, \dots, x_{n})x^{n-1} + \sigma_{2}(x_{1}, \dots, x_{n})x^{n-2} + \dots + (-1)^{n}\sigma_{n}(x_{1}, \dots, x_{n})$$

Corollary 1.2.1. The discriminant $D = P(a_1, \ldots, a_n)$ is a polynomial

1.2 Cubic polynomials

If $ax^3 + bx^2 + cx + d = 0$, then one solution is

$$x = \sqrt[3]{-\frac{1}{2} \left(\frac{2b^3 - 9abc + 27a^2d}{27a^3}\right) + \sqrt{\left(\frac{1}{2} \left(\frac{2b^3 - 9abc + 27a^2d}{27a^3}\right)\right)^2 + \left(\frac{3ac - b^2}{9a^2}\right)^3}} + \sqrt[3]{-\frac{1}{2} \left(\frac{2b^3 - 9abc + 27a^2d}{27a^3}\right) - \sqrt{\left(\frac{1}{2} \left(\frac{2b^3 - 9abc + 27a^2d}{27a^3}\right)\right)^2 + \left(\frac{3ac - b^2}{9a^2}\right)^3}}$$

$$x^{3} + Ax^{2} + Bx + C = \left(x + \frac{A}{3}\right)^{3} + p\left(x + \frac{A}{3}\right) + q$$
$$\implies x^{3} + px + q = 0$$

1

$$\underbrace{(a+b)^3}_{x} = 3ab(a+b) + a^3 + b^3$$
$$x^3 - 3abx - a^3 - b^3 = 0, \quad x_1 = a_b$$

$$x_1 + x_2 + x_3 = 0 \implies x_2 + x_3 = -a - b$$

$$x_1 x_2 + x_1 x_3 + x_2 x_3 = a^3 + b^3 \implies x_2 x_3 = \frac{a^3 + b^3}{x_1} = \frac{a^3 + b^3}{a + b} = a^2 - ab + b^2$$

Theorem 1.3 (Inverse Vieta Theorem).

Example 1.2 (Root of unity). ε

Example 1.3. What about $x^3 + px + q = 0$?

1.3 Quadric Method

Let $f(x) = x^4 + ax^2 + bx + c = 0$.

- 1. If b = 0, it is simply a quadratic equation.
- 2. If $x^4 g^2(x) = 0 \implies x^2 = g(x), x^2 = -g(x)$

$$f(x) = \left(x^2 + \frac{y}{2}\right)^2 + (a - y)x^2 + bx + c - \left(\frac{y^2}{4}\right)$$
$$D = b^2 - 4(a - y)(c - \frac{y^2}{4}) = 0$$

Definition 1.3 (Ferrari's Resolvent). $y^3 - ay^2 - 4cy + 4ac - b^2 = 0$

$$g(x) = Ax + B$$

$$0 = f(x) = \left(x^2 + \frac{y}{2}\right)^2 - (Ax + B)^2$$

$$= \left(x^2 + \frac{y}{2} - Ax - B\right) \left(x^2 + \frac{y}{2} + Ax + B\right)$$

$$x_1 + x_2 = A; \ x_1 x_2 = \frac{y}{2} - B$$

$$x_3 + x_4 = -A; \ x_3 x_4 = \frac{y}{2} + B$$

$$x_1 x_2 + x_3 x_4 = y_1$$

$$x_1 x_3 + x_2 x_4 = y_2$$

 $x_1 + x_2 + x_3 + x_4 = 0$

 $x_1 x_4 + x_2 x_3 = y_3$

1 INTRODUCTION

Suppose we have some quadric equation $f(x) = x^4 + ax^2 + bx + c$. Then we have unknown roots x_1, x_2, x_3 , and x_4 .

Claim 1. y_1, y_2, y_3 are roots of a cubic equation

$$y_1 + y_2 + y_3 = \sigma_2(x_1, x_2, x_3, x_4) = a$$

$$\sigma_2(y_1, y_2, y_3) = \phi(x_1, x_2, x_3, x_4) = x_1x_2 + x_3x_4$$

Example 1.4. Consider the polynomial $\phi(x_1, x_2, x_3, x_4) = x_1 + x_2 - x_3 - x_4$

$$\begin{cases} z_1 = (x_1 + x_2 - x_3 - x_4)^2 \\ z_2 = (x_1 - x_2 + x_3 - x_4)^2 \\ z_3 = (x_1 - x_2 - x_3 + x_4)^2 \end{cases}$$