공정 시뮬레이션 경진대회 2019

- NGCC 발전소의 실현 가능성 조사 -

2019.07.01

Background

- 천연가스를 이용해 더 많은 전기를 생산해야 함
- 생산량과 환경이슈(CO2, 공해, 미세먼지)를 동시에 만족해야 함
- NGCC 발전소는 이에 부합하여 고려할만한 가치가 있음

* NGCC (Natural Gas Combined Cycle)

Problem

- NGCC 발전소의 실현 가능성 조사
 - 800MW의 전기를 생산하는 공정을 완성
 - CCS (Carbon capture & Storage-Compression)
 - 증기 터빈, HRSG(Heat Recovery Steam Generator) 이용
 - 경제적 분석 (총 투자 비용, 연간 운영비용, 내부수익률)
 - 전기 가격에 따른 손익분기점 및 민감도 분석

Product Capacity & Specifications

• 알짜 전력 생산량 고려

(총 생산량 – 생산 중 소비량)

• 연간 8000시간 조업

Natural gas Feed spec

- 기체 부피 분율 고려
- OSBL Temp. 15 C
- OSBL Press. 18 barg

• 공기 공급 조건: 80 C, 1 barg

성분	%
N2	0.04
C1	89.26
C2	8.64
C3	1.44
i-C4	0.27
n-C4	0.35

^{*} OSBL (outside battery-reactor, tower, ... - limits)

CO2 Capture

- 30wt% MEA 수용액 이용
- MEA: Monoethanolamine, Ethanolamine, 61.084 g/mol
- MEA 용액을 가열하면 CO2가 분리
- *최소* 90 mol% 포획
- OSBL 45 C, 50 barg

Utility

- 냉각수는 32 C로 공급되고 42 C로 배출
- 보일러 공급수 80 C, 1 barg

Process Configuration

INPUT		
	Energy Flow, MMBtu/hr	Mass Flow, lb/hr
Natural Gas	3,771	165,182

OUTPUT			
	Energy Flow, MMBtu/hr	Mass Flow, lb/hr	
Power	1,977	-	
Net Plant E	fficiency, % HHV (C	Overall) 50.8%	

Combustor

- 천연가스의 완전연소 가정
- 과량의 O2 공급 가정

반응물	생성물	Δ <i>H (</i> kJ/mol)
CH ₄ + 2 O ₂	CO ₂ + 2 H ₂ O	- 891
$C_2H_6 + 3.5 O_2$	$2 CO_2 + 3 H_2O$	- 1418
$C_3H_8 + 5 O_2$	$3 CO_2 + 4 H_2O$	- 2027
C ₄ H ₁₀ + 6.5 O ₂	4.00	- 2635 (N)
	4 CO ₂ + 5 H ₂ O	- 2629 (I)

Economic Conditions

- 천연가스 : 14 \$/mmbtu
- 전기 : 0.11 \$/kwh
- 냉각수 : 0.03 \$/m3
- 99.5wt% MEA: 1.5 \$/kg
- 발전소 수명 : 40년

Report

- PFD에는 물질 수지를 따르는 온도, 압력, 유량, 조성 표기
- PFD에는 에너지 수지를 따르는 가열, 냉각 열량 표기
- Metric 단위를 사용하고 공정에 대한 설명 작성
- 경제적 분석을 포함할 것
- 이익을 위해 필요한 최소한의 전기 가격 추정
- CO2 저장(Stack cost)은 비용 추정에 포함되지 않음

Point

- 적절한 상태방정식을 논리적인 근거를 토대로 사용할 것
- 연소 반응식을 잘 지정할 것
- Kinetic data가 필요 없는 Conversion Reactor
- MEA는 손실을 보충하고, CW 및 BFW 손실은 무시
- HRSG의 approach temp. 조절이 핵심

Question

- 질소 산화물의 처리
- SCR(Selective Catalytic Reduction) & DLN(Dry Low NOx)

참조

- MEA https://en.wikipedia.org/wiki/Ethanolamine
- NGCC https://www.nrc.gov/docs/ML1217/ML12170A423.pdf
- Process Equipment cost estimation
 https://www.osti.gov/servlets/purl/797810/
- Combustion Enthalpy
 https://www.cheric.org/research/kdb/hcprop/cmpsrch.php