Homework #08 Spring 2023 Line Following

MRE/EME 5983 Robot Operating Systems

Line Following – Overview

- Develop and test one of the line following algorithms:
 - Zig-zag
 - Binning
 - Proportional control
- Assess the path of the robot center of gravity vs. the center of the line

Line Following – Overview

- Program robot to perform "infinite" line following
- Once the end of the line found, turn robot and continue line following
- Suggestion
 - Use the percentage of the line pixels observed to determine the end of the line
 - Once found, rotate until the line is found again

Line Following – ROS Network

ROS Network

- gazelle_sim_node: Simulator node
- image_view: Node to visualize camera output image
- line_follow_node: Python node to follow the blue line
 - Subscribes to camera image
 - Publishes twist message on /cmd_vel to drive robot

Line Following – Tuning (Dynamic Reconfigure)

- line_following_node must use the following dynamic reconfigure variables
 - enable
 - gain
 - Steering gain
 - speed
 - Robot speed in m/s
 - follow_type
 - Line following algorithm
 - frame_skip
 - Images frames to skip
 - HSV
 - hue, sat and val ranges

The line following algorithm "follow_type" is no longer necessary. Implement one of the line following algorithms

Line Following – Method

- Use the methods reviewed in class to line follow
- Find the line to follow using HSV and grayscale color spaces

Line Following – Post Processing

- Graphically assess the performance of the line following algorithm
- Complete the analysis for robot velocity of 0.5 m/s and 1.0 m/s
 - Find the necessary gains to complete the course successfully
 - Plot only from start to line end (do not include return portion of run)

Homework Instructions / Submissions

Homework content

- Create a working directory called hw08_lastname (ex. hw08_derose)
- Use a launch file hw08_lastname.launch to execute the ROS network
- Place all post processing scripts and images in a post directory in your package
- Record a video of your script executing (.mpg or .webm) and place it in the post directory

Homework submission

- Use tar and gzip to create a single, compressed file with the working directory and all its contents
- Upload this file to Canvas for your homework submission