Relatividad y Gravitación

Teoría, algoritmos y problemas

Jorge I. Zuluaga Profesor titular de Astronomía y Física

Instituto de Física, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia

17 de abril de 2020

Índice general

1.	Relatividad Especial			7		
	1.1.	Motivación	<u>1</u>	7		
	1.2.	Conceptos	básicos	7		
	1.3.	Principio de homogeneidad e isotropía del espacio-tiempo				
	1.4.	La relatividad Newtoniana				
	1.5.	La relatividad Newtoniana				
	1.6.	Las transformaciones de Lorentz-Einstein				
	1.7.	Propiedades de las TLE				
		1.7.1.	Unidades luz	17		
		1.7.2.	La TLE como una rotación hiperbólica	17		
		1.7.3.	Las TLE y la notación de Einstein	19		
		1.7.4.	Las TLE generales	20		
		1.7.5.	El valor del factor de Lorentz-Einstein	21		
		1.7.6.	Mapas de la TLE	22		
	1.8.	Consecuen	icias de las TLE	24		
		1.8.1.	Transformación de los intervalos y el gradiente	25		
		1.8.2.	Dilatación temporal	27		
		1.8.3.	El postulado de los relojes	34		
		1.8.4.	Contracción de longitudes	35		
		1.8.5.	Adición de velocidades	37		
		1.8.6.	Transformación de aceleraciones	39		
	1.9.	El espacio-	tiempo de Minkowski	39		
		1.9.1.	La norma de Minkowski	39		
		1.9.2.	Las variedades de Lorentz y la métrica de Minkowski	42		
		1.9.3.	Métrica y tipos de intervalos	45		
		1.9.4.	Métrica y tiempo propio	45		
		1.9.5.	Métrica, dilatación del tiempo y contracción de lon-			
			gitudes	46		
		1.9.6.	Vectores y cálculo en el espacio de Minkowski	47		
		1.9.7.	Minkowski y el postulado de los relojes	48		
		1.9.8.	Transformación general de cuadrivectores	49		
	1.10.			49		
		1.10.1.	Efecto Doppler relativista	50		
		1.10.2.	Aberración de la luz	51		
		1.10.3.	Enfoque relativista	52		
	1.11.	Cinemática	a relativistica	53		

4 Índice general

	1.11.1.	Cuadrivelocidad	. 53
	1.11.2.	Cuadriaceleración	
	1.11.3.	Movimiento con cuadriaceleración constante	. 56
	1.11.4.	La velocidad límite	. 60
	1.11.5.	Ejemplo: una nave interestelar	. 62
1.12.	Dinámica	relativista	. 64
	1.12.1.	Masa invariante	. 64
	1.12.2.	Momentum relativista	
	1.12.3.	Energía cinética relativistica	
	1.12.4.	Energía total relativista	
	1.12.5.	Cuadrimomentum	
	1.12.6.	Magnitud del cuadrimomentum y la simetría gauge	
	1.12.7.	Cuadrimomentum en el espacio-tiempo	
1.13.	Colisiones	relativistas	
	1.13.1.	Energía en el centro de masa	
	1.13.2.	Choques con la luz	
	1.13.3.	Una aplicación: El límite GZK	
	1.13.4.	Colisiones relativistas interactivas	
1.14.		rza	
	1.14.1.	Reglas de transformación de la fuerza	
	1.14.2.	La fuerza de Lorentz	
	1.14.3.	Movimiento circular bajo la fuerza de Lorentz	
	1.14.4.	Ecuación de movimiento relativista	
	1.14.5.	Un ejemplo numérico	
1.15.		e Mecánica Relativista	
	1.15.1.	Síntesis de cinemática relativista	
	1.15.2.	Síntesis de dinámica relativista	
1.16.		amica manifiestamente covariante	
	1.16.1.	Ecuaciones de la electrodinámica	
	1.16.2.	La cuadricorriente	
	1.16.3.	Ecuaciones de Maxwell inhomogéneas	
	1.16.4.	Los campos en términos tensoriales	
	1.16.5.	El tensor de Faraday	
	1.16.6.	Ecuaciones de Maxwell y el tensor de Faraday	
	1.16.7.	La fuerza de Lorentz	
	1.16.8.	Transformación de los campos	
	1.16.9.	Síntesis	
1.17.	Problemas	Seleccionados	. 103
Bibliografía	l		105

Índice de figuras

1.1.	Figura correspondiente al código 1.1	22
1.2.	Figura correspondiente al código 1.3	24
1.3.	Figura correspondiente al código 1.4	30
1.4.	Figura correspondiente al código 1.5	32
1.5.	Contracción de longitudes	36
1.6.	Figura correspondiente al código 1.6	40
1.7.	Figura	51
1.8.	Figura correspondiente al código 1.7	55
1.9.	Figura correspondiente al código 1.8	59
1.10.	Figura correspondiente al código 1.9	60
1.11.	Cambios en la cuadrivelocidad y la cuadriaceleración	61
1.12.	Nave interestelar	62
1.13.	Figura correspondiente al código 1.10	66
1.14.	Figura correspondiente al código 1.11	73
1.15.	Figura correspondiente al código 1.12	79
1.16.	Figura correspondiente al código 1.13	90
1.17.	Figura correspondiente al código 1.14	90

6 Índice de figuras

Capítulo 1

Relatividad Especial

Resumen. Este capítulo esta dedicado a la Relatividad especial.

1.1. Motivación

¿Qué son las leyes de la física?. Son regularidades observadas (¿o reales?) en los fenómenos que vemos en el mundo. Estas regularidades se expresan normalmente como relaciones matemáticas entre cantidades observadas.

Tomen por ejemplo esta regularidad:

$$\vec{a} = \frac{\vec{F}}{m}$$

Siempre que un cuerpo de masa m (una propiedad intrínseca suya), es sometido a una "perturbación" (una fuerza \vec{F}), el cuerpo, sin importar el estado de movimiento en el que estaba, cambia su estado en una magnitud \vec{a} (aceleración).

Esta regularidad ha sido observada en los laboratorios en la Tierra (edificios). ¿Pero es válida en el resto del Universo y para todos los observadores?. Esta es la pregunta del millón de la física y el corazón de la relatividad.

Conjetura 1.1

Las leyes de la física son universales. Cualquiera sea la regularidad que llamemos *ley física* debe ser realmente universal, debe cumplirse en todas partes, a todas horas y con independencia de quién la registre. En caso contrario lo que tendríamos sería solo una regularidad contingente.

1.2. Conceptos básicos

Para abordar la pregunta básica de la sección anterior debemos primero introducir una serie de conceptos: Cantidad física. Las leyes físicas son patrones matemáticos entre números (y otras entidades matemáticas) que asociamos a los fenómenos. Piense por ejemplo en la velocidad. Es un número que asociamos al desplazamiento de un cuerpo en el tiempo. Para definir cualquier cantidad física se necesitan: patrones (comparación), una calibración (definir los ceros o puntos de referencia) e instrumentos (dispositivos que realicen la comparación).

Por ejempl para medir la posición (lugar) uso como partrón una varilla de longitud fija, mi calibración es el lugar que escojo como punto de partida y el instrumento de medida es la misma varilla. Para medir el tiempo (fecha) uso como patrón un fenómeno repetitivo, como calibración escojo el instante a partir del cuál contar las oscilaciones y el instrumento es un reloj.

Para obtener el *valor* de una cantidad física se pueden usar medios directos o indirectos. Preferimos los medios directos que implican la comparación de lo medido con el instrumento (el patrón y la calibración) **localmente**: es decir debemos poner el instrumento donde ocurre el fenómeno.

■ Espacio-tiempo. Es el escenario en el que ocurre el universo. Matemáticamente es un espacio geométrico en el que a todo lugar e instante se le asocian unas coordenadas:

$$[x^{\mu}]_{\mu=0,1,2,3}$$

esta será una notación que usaremos en lo sucesivo y que adoptará sentido más adelante.

- Evento. Es uno de los puntos del espacio-tiempo. Un evento físico es equivalente
- Observador. También llamado (de forma intercambiable) sistema de referencia. Un observador es una entidad que registra cualquier cantidad física que ocurre en el espacio-tiempo usando un conjunto (infinito) de instrumentos físicos, que usan el mismo patrón y calibración, distribuídos (idealmente) por todos los eventos del espacio-tiempo. El observador lleva un registro de todos los fenómenos sin importar que tan lejos estén del lugar espacial en el que se encuentre.

Existen un conjunto de leyes que fueron formuladas originalmente con la idea de universalidad que mencionamos antes. Son las leyes del movimiento de Newton:

- Ley de Inercia. En la ausencia de fuerzas (interacciones) el *estado de movimiento* se conserva.
- Ley de fuerza. La acción de una fuerza cambia el *estado de movimiento*.
- Ley de acción y reacción. El cambio en el estado de movimiento de un sistema A que interactúa con otro B, es igual en magnitud pero de sentido contrario, que el cambio de movimiento que experimenta B.

Sabemos que estas leyes de pueden resumir en una sola relación matemática. Si definimos la *cantidad de movimiento* o momento lineal $\vec{p} \equiv m\vec{v}$, entonces:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}$$

Este conjunto de leyes se mantienen las mismas si se usan **observadores inerciales**.

Definición 1.1

observador inercial. Es un observador para el cuál sus registros muestran que la la ley de inercia es válida.

Registrar la validez de la ley de inercia no es experimentalmente fácil.

Proposición: Observadores con velocidad relativa constante. Si un observador O es por definición o demostración inercial, cualquier observador O' cuyo origen de coordenadas se mueva respecto al origen de coordenadas de O con velocidad \vec{u} constante, será también un observador inercial.

1.3. Principio de homogeneidad e isotropía del espacio-tiempo

Postulado 1.1

Principio de homogeneidad e isotropía del espacio-tiempo. Cualquier experimento que se realice en un sistema de referencia inercial tendrá exactamente el mismo resultado sin importar dónde se realice (homogeneidad) o en que tiempo se realice. Alrededor de todos los eventos del espacio-tiempo, los experimentos producen las mismas regularidades.

De acuerdo al principio de homogeneidad, todos los observadores inerciales que solo difieran por su origen en el espacio o por su origen en el tiempo registraran las mismas leyes de la física. Se puede probar que el principio de homogeneidad e isotropía es *equivalente* lógicamente al principio fundacional de la teoría de la relatividad.

Postulado 1.2

Principio de relatividad especial. Todas las leyes de la física deben ser iguales para todos los observadores inerciales.

1.4. La relatividad Newtoniana

Una cosa es decir que las leyes son las mismas y otra muy distinta es demostrar que lo son.

Las leyes son relaciones matemáticas entre cantidades físicas de modo que para demostrar su validez hay que probar que las relaciones son las mismas.

Definición 1.2

Covarianza de las leyes físicas. Llamamos *covarianza* de una ley física al hecho de que su forma matemática no se modifique independientemente de las transformaciones geométricas (cambios de sistemas de referencia o coordenadas) que se operen.

La pregunta es: dos observadores inerciales S y S' que miden cantidades físicas distintas m, \vec{v} , \vec{r} y \vec{F} (y las respectivas cantidades primadas), al describir las mismas regularidades llegaran a:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}$$

$$\frac{\mathrm{d}\vec{p}'}{\mathrm{d}t'} = \vec{F}'$$

Para ello debemos *postular* (¿o deducir?) la relación entre las cantidades implicadas.

Definición: Transformaciones de Galileo-Newton. La siguiente es la relación entre las cantidades cinemáticas y dinámicas básicas entre dos observadores inerciales:

$$\begin{array}{rcl}
t' & = & t \\
m' & = & m \\
\vec{F}' & = & \vec{F} \\
\vec{r}' & = & \vec{r} - \vec{u}t
\end{array}$$

> donde \vec{u} es la velocidad relativa en el espacio entre los dos observadores.

Puede probarse que si las leyes de Newton son válidas en O también lo serán en O'.

1.5. El problema del electromagnetismo

Pero las leyes de la física no se restringen a la mecánica. También están las leyes de la termodinámica, la óptica, el electromagnetismo, la física nuclear, etc. ¿Son también estas leyes covariantes bajo las transformaciones de Galileo-Newton.

Tomemos el caso por ejemplo de dos leyes básicas del electromagnetismo:

La ley de Faraday (ley de inducción en el vacío):

$$\frac{1}{c}\frac{\partial}{\partial t}\int \vec{B} \cdot d\vec{S} = -\oint \vec{E} \cdot d\vec{l}$$
$$\frac{1}{c}\frac{\partial \vec{B}}{\partial t} = -\vec{\nabla} \times \vec{E}$$

La ley de Ampere-Maxwell (en el vacío y sin corrientes):

$$\frac{1}{c}\frac{\partial}{\partial t}\int \vec{E}\cdot d\vec{S} = -\oint \vec{B}\cdot d\vec{l}$$

$$\frac{1}{c}\frac{\partial \vec{E}}{\partial t} = -\vec{\nabla} \times \vec{B}$$

Verifiquemos si son las mismas bajo las transformaciones de Galileo-Newton:

1.6. Las transformaciones de Lorentz-Einstein

Como vemos las leyes del electromagnetismo no son covariantes bajor las TGN. ¿Qué está mal? ¿las transformaciones o las leyes del EM?. Supongamos que son las transformaciones.

Postulado 1.2

Covarianza manifiesta de las ecuaciones de Maxwell. Las ecuaciones de Maxwell son *manifiestamente* covariantes, es decir, la forma en la que fueron escritas originalmente por Maxwell es covariante para observadores inerciales.

Este postulado es fuerte en el sentido en el que da mucha confianza a un conjunto de ecuaciones que esencialmente se obtienen a partir de experimentos. Esta es una prueba de la confianza que tenían los Einstein en el electromagnetismo incluso sobre

Como ya vimos que las ecuaciones no son covariantes bajo las transformaciones de Galileo-Newton, debemos encontrar un conjunto nuevo de transformaciones con las cuales las ecuaciones de Maxwell si son covariantes. Para ello asumamos que existe una familia de transformaciones lineal más generales que relacionan las coordenadas.

$$t' = a_{tt}t + a_{tx}x \tag{1.1}$$

$$x' = a_{xt}t + a_{xx}x \tag{1.2}$$

(1.3)

donde los coeficientes a_{tt} , a_{tx} , a_{xx} , a_{xx} son cantidades que no dependen de la posición, ni del tiempo y a lo sumo pueden depender de la velocidad relativa u entre los sistemas coordenados:

$$a_{\mu\nu}=a_{\mu\nu}(u)$$

donde μ : t, x.

Nota

Las transformaciones entre sistemas inerciales son lineales. En principio las transformaciones entre las variables de dos sistemas de referencia podrían tener una forma funcional arbitraria:

$$\begin{array}{rcl}
t' & = & t'(t, x) \\
x' & = & x'(t, x)
\end{array}$$

sin embargo la definición misma de observador inercial, sumado al principio de homogeneidad e isotropía, restringen el número posible de funciones.

Por la definición de sistema de referencia inercial, debe cumplirse que si el observador O observa una partícula que se mueve con velocidad constante $v=\mathrm{d}x/\mathrm{d}t$ constante (no actúa ninguna fuerza sobre ella), también el observador O' debe medir $v'=\mathrm{d}x'/\mathrm{d}t'$ constante. Para calcular esta última cantidad primero podemos determinar los diferenciales:

$$dx' = dt \left(\frac{\partial x'}{\partial x} v + \frac{\partial x'}{\partial t} \right)$$
 (1.4)

$$dt' = dt \left(\frac{\partial t'}{\partial x} v + \frac{\partial t'}{\partial t} \right) \tag{1.5}$$

(1.6)

de donde se sigue que:

$$v' = \frac{\mathrm{d}x'}{\mathrm{d}t'} = \frac{v\partial x'/\partial x + \partial x'/\partial t}{v\partial t'/\partial t + \partial t'/\partial t}$$

de esta última expresión se ve que solo si las derivadas parciales respecto al espacio y el tiempo de las reglas de transformación son constantes, es decir, solo si las transformaciones son líneales, entonces v constante implicará v' constante y viceversa.

Sin necesidad de conocer la forma funcional de los coeficientes de las transformaciones generales, es posible encontrar algunas propiedades básicas que nos permiten simplificar mucho la búsqueda de sus valores. Así por ejemplo:

1. Por la definición misma de observador inercial sabemos que el origen del sistema O' esta localizado en x'=0 según su propio sistema de referencia, mientras que en el sistema O se encuentra ubicado en x=ut. Reemplazando estas dos condiciones en la Ec. (1.2) obtenemos:

$$0 = a_{xt}t + a_{xx}ut$$

Para t > 0 esta condición implica que $a_{xt} = -ua_{xx}$ con lo que la Ec. (1.2) se escribe:

$$x' = a_{xx}(-ut + x) \tag{1.7}$$

(1.8)

2. Un razonamiento similar pero aplicado al origen del sistema O para el cual x = 0 y x' = -ut' conduce a las condiciones:

$$t' = a_{tt}t$$

$$-ut' = -ua_{xx}t$$

Para t > 0, t' > 0 lo que implica: 1) $a_{tt} > 0$ y 2) dividiendo término a término las ecuaciones anteriores obtenemos:

$$a_{tt} = a_{xx} \equiv \gamma(u) > 0$$

donde hemos introducido la función $\gamma(u)$.

3. Si introducimos un tercer observador *O*" que se mueve con velocidad *-u* (en dirección del eje *x* respecto de *O*, el tiempo de eventos en el origen de coordenadas de *O* registrados por *O*" será:

$$t'' = \gamma(-u)t$$

Ahora bien, por la postulado de isotropía, un obervador que se dirige hacia +x y uno que se dirije hacia -x deben producir las mismas medidas de un evento en el lugar común x=0, es decir para este evento t''=t' y por lo tanto:

$$\gamma(-u) = \gamma(u)$$

Con estas propiedades, la transformación general de coordenadas entre observadores inerciales que satisfacen el postulado de homogeneidad e isotropía se pueden escribir como:

$$t' = \gamma(u)(t + bx) \tag{1.9}$$

$$x' = \gamma(u)(-ut + x) \tag{1.10}$$

(1.11)

donde hemos definido $b \equiv a_{tx}/\gamma$.

No es difícil mostrar que las derivadas parciales respecto a las variables espacio-temporales serán entonces:

$$\partial_t = \gamma (\partial_{t'} - u \partial_{x'}) \tag{1.12}$$

$$\partial_x = \gamma (b\partial_{t'} + \partial_{x'}) \tag{1.13}$$

$$\partial_{\nu} = \partial_{\nu'} \tag{1.14}$$

$$\partial_z = \partial_{z'} \tag{1.15}$$

El reto consiste en encontrar las cantidades γ y b de la transformación tal que las ecuaciones de Maxwell sean covariantes.

La componente z de la ley de Faraday:

$$\frac{1}{c}\partial_t \vec{B} = -\vec{\nabla} \times \vec{E}$$

es:

$$\frac{1}{c}\partial_t B_z = \partial_z E_x - \partial_x E_y \tag{1.16}$$

Escrita después de aplicar las transformaciones de las derivadas será:

$$\frac{1}{c}\gamma(\partial_{t'}-u\partial_{x'})B_z=\partial_z E_x-\gamma(b\partial_{t'}+\partial_{x'})E_y$$

reuniendo términos semejantes:

$$\frac{1}{c'}\partial_{t'}\left[\gamma\left(\frac{c'}{c}B_z + bcE_y\right)\right] = \partial_z E_x - \partial_{x'}\left[\gamma\left(E_y - \frac{u}{c}B_z\right)\right]$$

Para que la ley de Faraday sea covariante y la ecuación anterior tenga la misma forma que la Ec. (1.16) se debe cumplir que:

$$B_z' = \gamma \left(\frac{c'}{c}B_z + bcE_y\right) \tag{1.17}$$

$$E_y' = \gamma \left(E_y - \frac{u}{c} B_z \right) \tag{1.18}$$

Por otro lado, la componente y de la ley de Ampere-Maxwell:

$$\frac{1}{c}\partial_t \vec{E} = \vec{\nabla} \times \vec{B}$$

es:

$$\frac{1}{c}\partial_t E_y = \partial_y B_x - \partial_x B_z \tag{1.19}$$

Aplicando un procedimiento análogo obtenemos que para que esta ecuación sea covariante bajo la transformación lineal general definida antes, la regla de transformación de las componentes *z y y* de los campos debería ser:

$$B_z' = \gamma \left(B_z - \frac{u}{c} E_y \right) \tag{1.20}$$

$$E_y' = \gamma \left(\frac{c'}{c} E_y + bc B_z\right) \tag{1.21}$$

Es claro que para que las Ecs. (1.17),(1.18) y (1.20),(1.21) correspondan al mismo conjunto de ecuaciones, sin importar cuál es el valor de los campos se debe cumplir que:

$$c' = c$$

$$b = -\frac{u}{c^2}$$

De donde obtenemos nuestro primer resultado significativo:

Proposición 1.3

Invarianza de la velocidad de la luz. La velocidad de la luz medida por dos observadores inerciales diferentes es siempre la misma:

$$c = c'$$

Esta conclusión es muy interesante y contraintuitiva. La velocidad de propagación de la luz juega un papel central en la relatividad y en la física en general. Lograr que su valor sea una cantidad constante independiente del observador inercial es significativo. No era para menos puesto que sabemos que la cantidad en la teoría electromagnética deènde de dos constantes de la naturaleza:

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

En la versión original de la teoría presentada por los Einstein, la constancia de la velocidad de la luz aparece como una hipótesis sin ninguna justificación. La aproximación utilizada aquí, por lo menos, obtiene este resultado como consecuencia de la covarianza de las ecuaciones de Maxwell, es decir es un teorema que se deriva de un postulado muy razonable, a saber que las ecuaciones de Maxwell del electromagnetismo son *manifiestamente covariantes*.

Adicionalmente encontramos la manera como se relacionan las componentes y y z de los campos eléctrico y magnético:

$$B_z' = \gamma \left(B_z - \frac{u}{c} E_y \right) \tag{1.22}$$

$$E_y' = \gamma \left(E_y - \frac{u}{c} B_z \right) \tag{1.23}$$

Solo nos queda una cuestión por resolver: ¿cuánto vale γ ?.

La inversa de las transformaciones en las Ecs. (1.22) y (1.23) se puede obtener cambiando u por -u:

$$B_z = \gamma \left(B_z' + \frac{u}{c} E_y' \right) \tag{1.24}$$

$$E_y = \gamma \left(E_y' + \frac{u}{c} B_z' \right) \tag{1.25}$$

donde hemos usado el hecho que $\gamma(-u) = \gamma(u)$.

Las 4 ecuaciones anteriores son completamente independientes. Conociendo el valor de γ y u, podrían usarse para encontrar el valor de cualquier componente del campo en función de las demás. Pero una característica curiosa que tienen es que pueden usarse también para encontrar el valor de gamma.

Si reemplazamos el B_z de la Ec. (1.24) y el E_y de la Ec. (1.25) en la ecuación para B_z' (Ec. 1.22) obtenemos:

$$B_{z}' = \gamma \left[\gamma \left(B_{z}' + \frac{u}{c} E_{y}' \right) - \frac{u}{c} \gamma \left(E_{y}' + \frac{u}{c} B_{z}' \right) \right]$$

y reuniendo los términos comunes obtenemos:

$$\left[1 - \gamma^2 \left(1 - \frac{u^2}{c^2}\right)\right] B_z' = 0$$

Puesto que suponemos que esta relación es válida para cualquier campo magnético, entonces:

$$\gamma = \frac{1}{\sqrt{1 - u^2/c^2}}$$

Proposición 1.4

Transformaciones de Lorentz-Einstein (TLE). Las transformaciones de coordenadas que dejan covariantes las ecuaciones de Maxwell ante cambios de observador inercial con velocidad relativa $u_x = u$ son:

$$t' = \gamma (t - ux/c^2)$$

$$x' = \gamma (-ut + x)$$

$$y' = y$$

$$z' = z$$
(1.26)

donde:

$$\gamma \equiv \frac{1}{\sqrt{1 - u^2/c^2}}\tag{1.27}$$

se conocerá en lo sucesivo como el factor de Lorentz o factor de Einstein.

Una interesante consecuencia matemática de todo el razonamiento anterior es:

Proposición 1.5

La velocidad de la luz es la máxima velocidad relativa. Dado que $\gamma>0$ y es real, es fácil mostrar que siempre:

$$0 \le u < c$$

.

1.7. Propiedades de las TLE

Las transformaciones de Lorentz-Einstein juegan un papel central en el estudio de todas las propiedades del espacio-tiempo que se derivan de los postulados de la relatividad.

Postulado 1.6

Postulado de relatividad espacial. Todas las leyes de la física son covariantes bajo las transformaciones de Lorentz-Einstein.

1.7.1. Unidades luz

La característica más notable de las TLE es que combinan espacio y tiempo en un mismo conjunto de ecuaciones de transformación. Este hecho de entrada rompe con el tiempo absoluto de la física newtoniana.

Al hacerlo sin embargo crea el problema de que en una misma ecuación (y en otros contextos en la teoría) tengamos cantidades muy diferentes desde el punto de vista físico y dimensional como lo son el tiempo y el espacio.

Una manera de subsanar este inconveniente es midiendo una de estas cantidades con unidades análogas a la otra. En Astronomía estamos por ejemplo acostumbrado a medir las distancias con unidades de tiempo cuando decimos que la estrella más cercana esta a 4.2 años-luz (al) de distancia. Dada una cantidad x, medida en unidades de longitud, la cantidad equivalente medida en unidades de tiempo será:

$$x_L = \frac{x}{c}$$

donde $[x_L]$ =sl (segundos luz).

Menos frecuente es usar unidades de distancia para referirse al tiempo. De manera análoga a como medimos 1 segundo-luz (sl), podemos definir 1 metro-luz como el tiempo que le toma a la luz recorrer un metro. El tiempo t_L en metros luz se calcula como:

$$t_I = ct$$

En unidades luz, la velocidad (la rapidez o cualquier componente) es:

$$v_L = \frac{\mathrm{d}x_L}{\mathrm{d}t} = \frac{1}{c}\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{v}{c}$$

1.7.2. La TLE como una rotación hiperbólica

Las transformaciones de Lorentz en términos de cantidades escritas en unidades luz serán:

$$t' = \gamma (t - u_L x_L)$$

$$x'_L = \gamma (-u_L t + x_L)$$

o bien:

$$t'_{L} = \gamma (t_{L} - u_{L}x)$$

$$x' = \gamma (-u_{L}t_{L} + x)$$

En ambos casos podemos si definimos $u_L \equiv u/c$, que no es otra cosa que la rapidez medida en unidades luz, las TLE se pueden escribir de forma:

$$\left(\begin{array}{c}t'\\x'_L\end{array}\right) = \Lambda(u_L)\left(\begin{array}{c}t\\x_L\end{array}\right)$$

donde

$$\Lambda(u_L) \equiv \left(egin{array}{cc} \gamma & -\gamma u_L \ -\gamma u_L & \gamma \end{array}
ight)$$

$$y \gamma = (1 - u_L^2)^{-1/2}$$
.

Esta matriz tiene dos propiedades interesantes:

- 1. det $\Lambda = 1$ 2. $\Lambda(u_L)^{-1} = \Lambda(-u_L)$

Que son las mismas propiedades de las matrices de rotación:

$$R(\theta) \equiv \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

lo que sugiere que podemos considerarla como tal. Pero hay un inconveniente. Los signos de la diagonal de la matriz TLE no son contrarios. Pero hay una solución para ello y es usar una matriz de rotación hiperbólica:

$$R_h(\phi) \equiv \begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix}$$

donde ϕ más que un ángulo, es un parámetro de rotación.

Si hacemos la identificación:

$$\cos \phi \equiv \gamma$$

es fácil probar que

$$\sin \phi = \gamma u_L$$

por lo que concluímos que la transformación que relaciona las coordenadas espacio-tiempo de dos observadores inerciales con velocidad relativa u_L es una rotación hiperbólica con parámetro $\cos \phi = \gamma(u_L)$.

Definición 1.3

Vector posición en el espacio-tiempo. Al vector:

$$x^{\mu} = \begin{pmatrix} t \\ x_L \\ y_L \\ z_L \end{pmatrix}$$

lo llamaremos el vector posición en el espacio-tiempo.

1.7.3. Las TLE y la notación de Einstein

Otra manera de escribir la TLE aprovechando que puede expresarse matricialmente es:

$$x'_{\mu} = \sum_{\nu} \Lambda_{\mu\nu} x_{\nu}$$

donde $\mu, \nu: 0(t), 1(x), 2(y), 3(z)$ y $\Lambda_{\mu\nu}$ son las componentes de la matriz de rotación.

Con lo común que será manipular expresiones como estas, estar escribiendo sumatorias por todas partes se hace muy incómodo. Para evitarlo Einstein invento una notación que se vale de una importante propiedad matemática.

Definición 1.4

componentes covariantes y contravariantes de un vector. Dado un espacio coordenado de 4 dimensiones, y un conjunto de 4 vectores \vec{e}_0 , \vec{e}_1 , \vec{e}_2 , \vec{e}_3 no paralelos entre sí (que llamaremos base). Cualquier vector \vec{v} en el espacio tiene asociados 4 números que llamamos sus componentes, definidos de la siguiente maneral:

1. Componentes contravariantes, $\vec{v}:(v^0,v^1,v^2,v^3)$, que son tales que:

$$\vec{v} = v^0 \vec{e}_0 + v^1 \vec{e}_1 + v^2 \vec{e}_2 + v^3 \vec{e}_3$$

Los llamamos *contravariantes* porque si un cambio de escala modifica las longitudes de \vec{e}_{μ} por un factor k, las componentes v^{μ} se modificaran por un factor 1/k (*contrario* a los vectores de base).

2. **Componentes covariantes**, \vec{v} : (v_0 , v_1 , v_2 , v_3), que son tales que:

$$v_0 = \vec{v} \cdot \vec{e}_0$$
, $v_1 = \vec{v} \cdot \vec{e}_1$, $v_2 = \vec{v} \cdot \vec{e}_2$, $v_3 = \vec{v} \cdot \vec{e}_3$

Los llamamos *covariantes* porque si un cambio de escala modifica las longitudes de \vec{e}_{μ} por un factor k, las componentes v^{μ} se modificaran por un factor k (*contrario* a los vectores de base).

Las componentes contravariantes y covariantes de un vector coinciden si: 1) El producto punto es el definido en el espacio euclidiano y 2) si los vectores de la base son ortogonales^a.

Nótese que en términos compactos cualquier vector se puede escribir en términos de sus componentes contravariantes como:

$$\vec{v} = \sum_{\mu} v^{\mu} \vec{e}_{\mu}$$

Para abreviar la expresión anterior usaremos en lo sucesivo la convención de

^aUn video con una explicación de la diferencia entre componentes contravariantes y covariantes puede encontrarse aquí: https://www.youtube.com/watch?v=CliW7kSxxWU

que cuándo en una suma, los índices se repiten (normalmente en posiciones covariantes y contravariantes) entonces, la sumatoria correspondiente al índice se puede eliminar. Al índice lo llamamos también un *índice mudo* y su nombre puede cambiarse a voluntad. Así:

$$\vec{v} = \sum_{\mu} v^{\mu} \vec{e}_{\mu} = v^{\mu} \vec{e}_{\mu} = v^{\nu} \vec{e}_{\nu}$$

En lo sucesivo y en un espíritu similar, usaremos la expresion v^{μ} para referirnos al vector \vec{v} mismo.

En términos de la notación de Einstein y de las componentes contravariantes del vector posición en el espacio tiempo x^{μ} las TLE se pueden escribir como:

$$x^{\mu'} = \Lambda^{\mu'}_{\nu} x^{\nu}$$

aquí ν es un índice mudo y μ' es el índice de la ecuación.

Las componentes explícitas de la matriz $\Lambda_{\nu}^{\mu'}$ son, cuando la velocidad va en la dirección del eje x:

$$\Lambda_0^{0'} = \Lambda_1^{1'} = \gamma$$
 $\Lambda_2^{2'} = \Lambda_3^{3'} = 1$
 $\Lambda_1^{0'} = \Lambda_0^{1'} = -u_L \gamma$

1.7.4. Las TLE generales

Las transformaciones deducidas hasta aquí asumían que la velocidad relativa entre los sistemas de referencia inerciales iba en la dirección del eje x. Aunque siempre es posible hacer esa elección, puede ser también común que otras direcciones sean más importantes para definir nuestro sistema de coordenadas. Por tal razón tiene mucho interés escribir las TLE cuando \vec{u} es arbitraria.

Proposición 1.7

Transformaciones de Lorentz-Einstein vectoriales. Si dos sistemas de referencia O y O' tienen velocidad relativa \vec{u} , sus medidas de espacio y tiempo se relacionan a través de:

$$t' = \gamma \left(t - \vec{u}_L \cdot \vec{r}_L \right) \tag{1.28}$$

$$\vec{r}_L' = \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{r}_L - \gamma t\right) \vec{u}_L \tag{1.29}$$

Esta transformación general puede entenderse si se escribe $\vec{r}=r_{\parallel}\hat{u}+r_{\perp}\hat{v}$, donde $\hat{v}\cdot\hat{u}=0$. Remplazando, la transformación queda:

$$t' = \gamma \left(t - u_L r_{\parallel} \right)$$

$$r'_{\parallel} = r_{\parallel} + \left(\frac{\gamma - 1}{u_L^2} u_L r_{\parallel} - \gamma t \right) u_L$$

$$= \gamma \left(-u_L t + r_{\parallel} \right)$$

$$r'_{\perp} = r_{\perp}$$
(1.30)

que es exactamente la TLE original.

Es posible probar que las componentes de la matriz de rotación del TLE en el caso general son:

$$\Lambda_0^{0'} = \gamma \Lambda_i^{0'} = \Lambda_0^{i'} = -\gamma u_L^i \Lambda_j^{i'} = \delta_{ij} + (\gamma - 1) u_L^i u_L^j / u_L^2$$

1.7.5. El valor del factor de Lorentz-Einstein

Las TLE dependen del valor de u_L y del factor de Lorentz γ . Es importante familiarizarse con el valor de estas cantidades.

La primera propiedad importante es que $u_L < 1$ y por lo tanto $\gamma > 1$. Ahora bien para velocidades comunes (la velocidad de un vehículo, un avión, un planeta, incluso una estrella o una galaxia), $u_L \ll 1$. Por la misma razón entonces el factor se puede expandir usando el teorema del binomio:

$$\gamma = \frac{1}{\sqrt{1 - u_L^2}} = 1 + \frac{u_L^2}{2} + \mathcal{O}(u_L^3)$$

o lo que es lo mismo:

$$\gamma - 1 = \frac{u_L^2}{2} + \mathcal{O}(u_L^3)$$

A menudo es más fácil calcular $\gamma-1$ que γ mismo.

Un gráfico del factor de Lorentz como función de la fracción u_L se muestra en la figura abajo.

(Algoritmo 1.1)

```
from numpy import log10,sqrt,logspace
us=logspace(log10(1e-5),log10(0.9999),1000)
gammas=1/sqrt(1-us**2)-1
gamma_approx=us**2/2

import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.gca()

ax.plot(us,gammas,label='Exacto')
ax.plot(us,gamma_approx,label='Aprox. binomial')
```

```
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlim((1e-5,1e0))
ax.set_ylim((1e-11,1e1))

ax.set_label(r"$\( \frac{1}{3} \)
ax.set_ylabel(r"\( \frac{1}{3} \)
ax.set_ylabel(r"\( \frac{1}{3} \)
ax.grid()

ver Figura 1.1
```


Figura 1.1: Figura correspondiente al código 1.1.

Nótese que la aproximación $\gamma=u_L^2/2$ es suficientemente buena (error relativo menor a 1 %) hasta $u_L\approx$ 0,2

1.7.6. Mapas de la TLE

¿Cómo se ven gráficamente las TLE?. Para mostrar cómo se ven la TLE podemos definir esta rutina general que permite el cálculo de $x^{\mu'}$ dados los valores de x^{μ} :

```
def Lambda_TLE(u):
    from numpy import zeros
    Lambda=zeros((4,4))

#Factor de Lorentz
    umag=(u[0]**2+u[1]**2+u[2]**2)**0.5
    gamma=(1-umag**2)**(-0.5)
#Lambda
```

```
Lambda[0,0]=gamma
Lambda[0,1:]=-u*gamma
Lambda[1:,0]=-u*gamma
for i in range(1,4):
    for j in range(1,4):
        dij=0
        if i==j:dij=1
        Lambda[i,j]=dij+(gamma-1)*u[i-1]*u[j-1]/umag**2
return Lambda
```

Construyamos por ejemplo una transformación sencilla escogiendo la velocidad en la dirección de x:

```
from numpy import array
  u=array([0.2,0.0,0.0])
  Lambda=Lambda_TLE(-u)
Lambda (u = [0.2 \ 0. \ 0.]) =
[[1.02062073 0.20412415 0.
                                               ]
                                     0.
                                               1
 [0.20412415 1.02062073 0.
                                     0.
 [0.
             0.
                        1.
                                     0.
 ГО.
             0.
                         0.
                                     1.
                                               11
```

Una manera de visualizar las transformaciones de Lorentz-Einstein es ver qué valor de t', x' toman eventos con valor de t o x constantes:

(Algoritmo 1.3)

```
#Escoge valores de x:
from numpy import linspace
xs=linspace(0,rmax,rmax+1,endpoint=True)
ts=linspace(0,rmax,rmax+1,endpoint=True)
#Calcula valores de t' y x' usando la matriz:
from numpy import zeros_like
tps=zeros_like(xs)
xps=zeros_like(xs)
from numpy import matmul
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
for t in xs:
    for i,x in enumerate(xs):
        tps[i],xps[i],yp,zp=matmul(Lambda,[t,x,0,0])
    ax.plot(tps,xps,'r-')
for x in xs:
    for i,t in enumerate(ts):
        tps[i],xps[i],yp,zp=matmul(Lambda,[t,x,0,0])
```

```
ax.plot(tps,xps,'r-')

#Decoración
ax.set_xticks(xs)
ax.set_yticks(xs)
ax.set_xlabel("$t$")
ax.set_ylabel("$x$")
ax.set_xlim((0,rmax))
ax.set_ylim((0,rmax))
ax.grid()
fig.tight_layout()
```


Figura 1.2: *Figura correspondiente al código* **1.3**.

1.8. Consecuencias de las TLE

Las TLE que introdujimos en las secciones anteriores no serían más que reglas matemáticas de transformación requeridas para juzgar si una ley física lo es realmente, sin mayores consecuencias en nuestro entendimiento del Universo. A excepción del resultado un poco sorprendente de que la velocidad de la luz es la

misma independiente del sistema de referencia en el que se la mida, las transformaciones no parecerían contener ninguna consecuencia física muy relevante. Sin embargo, cuando se examinan con cuidado, y esto fue justamente lo que hicieron Albert Einstein y Mileva Maric, se descubre que las transformaciones esconden algunos "secretos" bien guardados de la naturaleza del espacio-tiempo. Esencialmente, nos obligan a repensar la manera como pensamos en algunos de los conceptos más fundamentales de la física: el espacio, el tiempo, la simultaneidad, la causalidad, entre otros.

Hemos dicho que una de las ideas más importantes de fondo en la relatividad es que el Universo esta "sumergido" en un continuo espacio-temporal en el que coexisten aquí y allá, hoy, ayer, mañana. Todos los eventos del universo están reunidos en una sola entidad geométrica. Moverse dentro del espacio-tiempo tan solo implica una rotación de los ejes coordenados.

El gran reto de esta sección será mostrar como las propiedades del espaciotiempo se ven reflejadas en las cantidades que efectivamente medimos en los laboratorios.

1.8.1. Transformación de los intervalos y el gradiente

Si tomamos dos eventos en el espacio tiempo E_1 y E_2 con coordenadas x_1^{μ} : $(t_1, x_{1L}, y_{1L}, z_{1L})^{\mathrm{T}}$ y x_2^{μ} : $(t_2, x_{2L}, y_{2L}, z_{2L})^{\mathrm{T}}$, la *diferencia* entre sus coordenadas espacio-temporales, medida para dos observadores inerciales es de forma general igual a:

$$\Delta x^{\mu'} = \Lambda^{\mu'}_{\nu} \Delta x^{\nu}$$

donde hemos usado la convención de suma de Einstein (en el lado derecho de la ecuación hay una suma sobre el índice mudo ν que hemos obviado).

En la expresión anterior sabemos que $\Lambda^{\mu'}_{\nu}$ es la misma en todos los puntos del espacio-tiempo y por eso al calcular la diferencia entre las coordenadas de los eventos, no hemos cambiado esta cantidad.

Por otro lado las derivadas parciales respecto a cada coordenada se puede escribir como (ver Problemas al final del Capítulo):

$$\frac{\partial}{\partial x^{\mu'}} = \Lambda^{\nu}_{\mu'} \frac{\partial}{\partial x^{\nu}}$$

La forma matemática de la ecuación anterior (idéntica a la que define la TLE original) tiene una implicación más profunda de la que hemos mencionado. Una implicación que solo puede verse cuando se piensa el problema desde la perspectiva de las matemáticas. Notese que podemos escribir las componentes de la transformación de Lorentz-Einstein como:

$$\Lambda_{\nu}^{\mu'} \equiv \frac{\partial x^{\mu'}}{\partial x^{\nu}}$$

donde aquí $x^{\mu'}$ representa la función de transformación y no el valor de la coordenada. La inversa por su lado es:

$$\Lambda^{\nu}_{\mu'} \equiv \frac{\partial x^{\nu}}{\partial x^{\mu'}}$$

Usando estas expresiones las leyes de transformación para el vector posición, el intervalo y el gradiente se pueden escribir como:

$$x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} x^{\nu}$$
$$\Delta x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} \Delta x^{\nu}$$
$$\partial_{\mu'} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} \partial_{\nu}$$

donde hemos usado la notación abreviada para la derivada parcial $\partial_{\mu} \equiv \partial/\partial x^{\mu}$.

Definición 1.5

Tensor covariante y contravariante. Una cantidad física A^{μ} , se conoce como un **tensor contravariante.** de rango 1, si al realizar un cambio de coordenadas $x^{\mu'} = x^{\mu'}(x^{\nu})$, la cantidad transforma obedeciendo la regla:

$$A^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} A^{\nu}$$

En contraposición, un **tensor covariante** de rango 1 A_{μ} , es aquel que transforma de acuerdo con:

$$A_{\mu'} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} A_{\nu}$$

Esta definición es general, sin importar el tipo de transformación de coordenadas que realicemos en el espacio-tiempo, sean estas las TLE o cualquier otra transformación.

De acuerdo con la definición anterior el vector posición x^{μ} , el intervalo Δx^{μ} son tensores contravariantes de rango 1 bajo las TLE, mientras que el gradiente ∂_{μ} es un tensor covariante de rango 1 bajo las mismas transformaciones.

En términos explícitos, podemos escribir los intervalos en la TLE simple como:

$$\Delta t' = \gamma \left(\Delta t - u_L \Delta x_L \right)$$

$$\Delta x'_L = \gamma \left(-u_L \Delta t + \Delta x_L \right)$$

$$\Delta y'_L = \Delta y_L$$

$$\Delta z'_L = \Delta z_L$$

o de forma más general:

$$\Delta t' = \gamma \left(\Delta t - \vec{u}_L \cdot \Delta \vec{r}_L \right) \tag{1.31}$$

$$\Delta \vec{r}_L' = \Delta \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \Delta \vec{r}_L - \gamma \Delta t\right) \vec{u}_L \tag{1.32}$$

Y el gradiente:

$$\begin{aligned} & \partial_t' = \gamma \left(\partial_t + u_L \partial_{x_L} \right) \\ & \partial_{x_L'} = \gamma \left(u_L \partial_t + \partial_{x_L} \right) \\ & \partial_{y_L'} = \partial_{y_L} \\ & \partial_{z_I'} = \partial_{z_L} \end{aligned}$$

1.8.2. Dilatación temporal

Definición 1.6

Duración. La duración T de un fenómeno que comienza en un evento E_1 y termina en un evento E_2 es la diferencia entre las coordenadas temporales de los dos eventos:

$$T \equiv t_2 - t_1 = \Delta t$$

La *duración* es solo una parte de la diferencia que existe entre dos eventos. Durante la historia de la física esta cantidad ha tenido un papel central en la descripción de los fenómenos. En los *Principia* por ejemplo, Newton señala que este número solo difiere de un observador a otro por las unidades que utilizan para medir el tiempo, pero que en el fondo todos los observadores miden la misma cantidad y si usaran las mismas unidades, obtendrían el mismo resultado. Esta idea está intímamente ligada con el concepto *tiempo absoluto*, que era la *creencia* (que hoy sabemos es infundada) de que existe algo así como un tiempo registrado por los *relojes de dios* (una entidad sobrenatural hipotética que todo lo conoce) que es común a todos. El tiempo absoluto fue central en la filosofía y la física pre relativistica.

Por las transformaciones de Lorentz sabemos que la duración registrada por dos observadores inerciales es definitivamente distinta, incluso si usan las mismas unidades. Así por ejemplo, si la velocidad relativa entre los observadores es arbitraria \vec{u} :

$$T = \gamma \left(T' + \vec{u}_L \cdot \Delta \vec{r'}_L \right)$$

que es lo mismo que

$$T = \gamma \left(T' + u_L \Delta x' \right)$$

donde x' es la coordenada espacial en dirección de \vec{u} .

Sistemas de referencia del Viajero y del Laboratorio. La elección de cuál es el observador primado y cuál es el no primado en relatividad es completamente arbitraria y simétrica. Esta idea esta en el corazón

Nota (Cont.)

mismo de los postulados de la teoría. Sin embargo, conceptualmente, la elección apropiada de uno u otro, puede llegar a ser muy importante para ilustrar las consecuencias de las TLE.

En lo sucesivo llamaremos al sistema primado **sistema de referencia del viajero**, **observador viajero** o simplemente el **Viajero** (con mayúscula inicial). Aunque la palabra viajero da a entender que tiene un estado de movimiento absoluto, esta elección simplemente refleja la importancia que daremos a las medidas del *Observador* que se define a continuación.

El observador no primado y al que llamaremos aquí el **sistema de referencia del observador** o simplemente **el Observador** (con mayúscula inicial), será cualquier sistema en el Universo donde se quiere saber el valor de aquellas cantidades físicas medidas por el Viajero, pero en términos de las coordenadas locales. A veces al Observador también se lo conoce como el Laboratorio.

Normalmente quién estudia un fenómeno en relatividad se considera así mismo el Observador, de modo que las etiquetas de Viajero y Observador pueden intercambiarse.

En lo sucesivo daremos las observaciones del Viajero (sistema primado), como fuente de muchos de los datos físicos primarios (en este sentido este observador se comporta como el experimentador que se pone en una situación incómoda para estudiar el mundo), hará que sea mucho más común usar las TLE inversas:

$$\Lambda^{\nu}_{u'}(u) = \Lambda^{\mu'}_{\nu}(-\vec{u})$$

en lugar de las transformaciones originales, es decir de aquellas que nos dan las observaciones del Observador en función de las del Viajero.

Entender esta última expresión no es fácil. En ella se combinan tiempos con intervalos espaciales $\Delta x'$ de una manera que no es común para nosotros en la física clásica. ¿Qué significa que la duración de un fenómeno para el Observador dependa no solo de su duración para el Viajero, sino de la ubación espacial de los eventos que lo limitan?. Es extraño, pero debemos tratar de entenderlo.

Podemos entender este resultado de dos maneras diferentes.

La primera es apelar a los *mapas de las transformaciones* que construimos en las secciones anteriores. Consideremos dos sistemas de coordenadas que tienen velocidad relativa $u_L = 0.3$:

```
from numpy import array
u=array([0.3,0,0])
```

Ahora tomemos dos fenómenos limitados por tres eventos E_0 y E_1 y E_2 con coordenadas para el viajero iguales a:

```
#Las coordenadas son: t', x', y', z'
EOp=array([0,0,0,0])
E1p=array([5,0,0,0])
E2p=array([5,2,0,0])
```

Los dos fenómenos que podemos llamar E_0E_1 y E_0E_2 empiezan en el mismo evento, E_0 . Los eventos 1 y 2 ocurren en el mismo instante en el futuro, pero en lugares diferentes en el laboratorio. E_2 ocurre además en el mismo lugar que el evento inicial E_0 .

Las coordenadas de los evento para el observador, se pueden calcular usando la matriz de la transformación de Lorentz, que podemos calcular con la rutina Lambda_TLE que introdujimos en una sección anterior:

```
from export import Lambda_TLE

#Calculamos la inversa porque queremos pasar de 0' a 0
Lambda=Lambda_TLE(-u)

#Aplicamos las transformaciones
from numpy import matmul
E0=matmul(Lambda,E0p)
E1=matmul(Lambda,E1p)
E2=matmul(Lambda,E2p)

E1 = [0. 0. 0. 0.]
E2 = [5.24142418 1.57242726 0. 0. ]
```

Como era de esperarse las coordenadas para los dos observadores difieren de forma no trivial.

En el siguiente algoritmo usamos la rutina mapa_TLE para mostrar la malla de valores constantes de t y x para los dos observadores inerciales. Allí representamos además la posición de los eventos

```
(Algoritmo 1.4)
from export import mapa_TLE
fig=mapa_TLE(*u)
ax=fig.gca()
ax.annotate("E0",xy=(E0[0],E0[1]),arrowprops={'fc':'k'});
ax.annotate("E1",xy=(E1[0],E1[1]),arrowprops={'fc':'k'});
ax.annotate("E2",xy=(E2[0],E2[1]),arrowprops={'fc':'k'});
ver Figura 1.3
```

Como vemos en el gráfico, la duración del fenómeno E_0E_1 que para el Viajero es 5, es mayor para el Observador (5.24). Por otro lado el fenómeno E_0E_1 que también dura 5 para el Viajer, pero que ocurre en lugares muy separados del espacio, tiene para el Observador una duración mucho mayor (5.87).

Tres cosas son claras sin embargo:

 $E3 = [5.87039509 \ 3.66899693 \ 0.$

Figura 1.3: Figura correspondiente al código 1.4.

- 1. Las duraciones de los eventos no son las mismas registradas por distintos observadores y esto contradice abiertamente nuestras intuiciones clásicas del tiempo.
- las duraciones son mayores para el Observador que para el Viajero. Este resultado se conoce de forma general en relatividad como dilatación del tiempo.
- 3. La duración relativa de los fenómenos depende del lugar del espacio en el que ocurran los eventos que los limitan.
- 4. La diferencia entre la duración para el Viajero y el Observador tiene un valor mínima si el fenómeno ocurre en reposo en el laboratorio (los eventos que lo limitan ocurren en el mismo lugar).

Este último resultado conduce a una importante definición en relatividad:

Definición: Duración propia. Llamamos **duración propia** (o **tiempo propio**) y la denotamos como T_0 a la duración que tiene un fenómeno en un sistema de referencia inercial en el cual sus eventos límite ocurren en el mismo del espacio.

En el ejemplo anterior la duración propia del fenómeno E_0E_1 es $T_0=5$ y es la que es medida por el Viajero, que es donde los dos eventos ocurren en el mismo lugar del espacio $\Delta x'=0$.

Sin embargo, la duración propia del fenómeno E_0E_2 no es 5 (la que mide el Viajero) ni 5.8 (la que mide el Observador). Para encontrar la duración propia de este fenómeno tendríamos que construir un sistema de referencia en el que E_0 y E_2 ocurrieran en el mismo lugar del espacio. Para ello, es claro de la figura anterior que el nuevo sistema de referencia debería tener una velocidad v mayor que la velocidad v del viajero.

En el gráfico abajo vemos que si nos montamos en un sistema de referencia con una velocidad $v_L = 3,7/5,9$, los dos eventos E_0 y E_2 ocurren en el mismo lugar del espacio:

(Algoritmo 1.5)

```
from export import mapa_TLE
v=array([3.7/5.9,0,0])
fig=mapa_TLE(*v)
ax=fig.gca()
ax.annotate("E0",xy=(E0[0],E0[1]),arrowprops={'fc':'k'});
ax.annotate("E1",xy=(E1[0],E1[1]),arrowprops={'fc':'k'});
ax.annotate("E2",xy=(E2[0],E2[1]),arrowprops={'fc':'k'});
ver Figura 1.4
```

La duración registrada por este nuevo sistema de referencia ahora si será la duración propia del fenómeno E_0E_2 , que como vemos es aún menor que 5. ¿Pero que es este esta velocidad $v_L=3.7/5.9$? Estas no es otra cosa que la velocidad obtenida dividiendo el desplazamiento en x, Δx_L y la duración T para el Observador:

$$v_L \equiv \frac{\Delta x_L}{T}$$

a la que llamaremos la velocidad asociada con el fenómeno.

Ahora la relación entre las duraciones estará dada por:

$$T = \gamma(v_L) (T' + v_L \Delta x')$$

= $\gamma(v_L) T_0$

puesto que en este sistema de referencia $\Delta x' = 0$.

Proposición 1.8

La duración propia es la mínima duración. La duración T de un fenómeno con una velocidad asociada v_L es:

$$T = \gamma(v_L)T_0$$

donde T_0 es su duración propia del fenómeno, $v_L = \Delta x_L/T$ es la velocidad asociada al fenómeno y $\gamma(v_L) = (1-v_L^2)^{-1/2}$. T es siempre mayor que la duración propia o en otras palabras *la duración propia es la mínima duración*

Figura 1.4: *Figura correspondiente al código* **1.5**.

Proposición 1.8 (Cont.)

que podemos asociar a un fenómeno.

Vemos en esta definición que el factor de Lorentz-Einstein, γ juega un papel muy importante porque nos da la razón entre la duración de un fenómeno y su duración propia:

$$\gamma = \frac{T}{T_0}$$

Nota

Gamas distintos. Es importante también entender que el γ que asociamos a un fenómeno, no es conceptualmente el mismo que el que usamos en las transformaciones de Lorentz. La razón más obvia es que el γ de un fenómeno, depende de una velocidad, la *velocidad asociada al fenómeno* que puede o no ser una velocidad real. En cambio el γ de las transformaciones de Lorentz esta asociado con la velocidad relati-

Nota (Cont.)

va entre dos sistemas de referencia muy reales. Las fórmulas son las mismas, el origen del factor es el mismo pero conceptualmente las dos cantidades son distintas.

Con todos estos elementos a la mano podemos finalmente formular este resultado:

Proposición 1.9

Dilatación del tiempo. La duración de un fenómeno es siempre mayor si se percibe el fenómeno en movimiento a si se lo hace en reposo.

Un ejemplo clásico de esto es la desintegración radioactiva de una partícula elemental. Si la partícula está en reposo respecto al Observador, su tiempo de decaimiento será el tiempo propio. En cambio si la partícula se mueve con velocidad constante v_L con respecto a él, su tiempo de decaimiento será mayor. Las partículas duran más en movimiento que en reposo.

En el apartado anterior definimos cantidades asociadas a los eventos extremos de un fenómeno (cuándo y dónde empieza y cuándo y dónde termina). Geométricamente siempre es posible trazar una línea recta entre dos fenómenos del espacio tiempo. Esta línea recta tiene un nombre muy específico en relatividad:

Definición 1.7

intervalo espacio-temporal. Dados dos eventos E_1 y E_2 , el intervalo espacio-temporal *S* entre ellos es el segmento de línea que los une.

¿Qué es físicamente el intervalo espacio-temporal? Como cada punto del segmento es en sí mismo un evento, el intervalo es un fenómeno también (una colección de eventos). ¿Qué relación guardan esos eventos?. He ahí el problema.

Comencemos por el caso más simple. Dos eventos que ocurren en el mismo lugar del espacio. En ese caso los puntos del intervalo corresponden a los eventos que le ocurren a un observador local que esta justamente en reposo en el lugar donde ocurren los eventos.

Consideremos ahora dos eventos que ocurren en lugares distintos del espacio pero tal que $\Delta x_L < t$. En este caso, siempre es posible encontrar un observador inercial tal que los dos eventos ocurran en el mismo lugar del espacio. Este intervalo y el anterior serán entonces conceptualmente equivalentes.

En los dos casos anteriores y por las definiciones anteriores, siempre es posible definir el tiempo propio entre los eventos. Es decir siempre podemos asociar al intervalo un tiempo. Es por eso que a estos intervalos los llamamos intervalos **temporaloides** (en inglés *time-like*).

Pero ¿qué pasa en el caso en el que $\Delta x_L > t$? En este caso, por las propiedades de las rotaciones definidas por las TLE, no habrá ningún observador para el cuál los eventos ocurran en el mismo lugar del espacio. Sin embargo si es posible encontrar un observador para el cuál los dos eventos ocurren el mismo momento del tiempo (son simultáneos). Están en lugares distintos del espacio pero son simultáneos para este observador. Por esta razón llamamos a estos **intervalos espacialoides** (en inglés *space-like*).

¿Y que pasa si $\Delta x_L = t$? Por definición este intervalo estará limitado por eventos en los que solo puede estar un rayo de luz (o cualquier otra onda que viaje a esa velocidad). Por esa razón a estos intervalos los llamamos **intevalos luminoides**.

Definición 1.8

línea de universo. La línea de universo de una partícula es la colección de todos los eventos en los que está la partícula al pasar el tiempo. Geométricamente, la línea de universo es la suma de intervalos microscópicos temporaloides entre puntos adyacentes de su trayectoria.

1.8.3. El postulado de los relojes

En las sección anterior existe una imprecisión. Definimos la duración propia entre dos eventos (separados por un intervalo temporaloide) como la duración medida por un observador en el que los eventos se registran en el mismo lugar del espacio. Sin embargo nunca específicamos el lugar de los eventos intermedios del fenómeno.

Así por ejemplo, si el fenómeno es el movimiento de una partícula en un sincrotrón, para el Observador el fenómeno "la partícula da una vuelta completa" esta limitado por eventos que ocurren en el mismo lugar del espacio. Podría uno decir que la duración propia del fenómeno es la que mide por tanto el observador. Pero podemos también preguntarnos ¿qué miden los relojes de la partícula?

Esta pregunta no tiene ninguna respuesta en el marco de la teoría tal y como ha sido formulada hasta ahora. La razón es sencilla. No existe ningún sistema de referencia inercial que podamos asociar a la partícula. Todos los resultados obtenidos hasta ahora solo aplican para este tipo de sistemas de referencia.

¿Qué hacer entonces?. Una construcción posible sería la de suponer que lo que observa la partícula (al menos en términos de la medida de duraciones) es la acumulación de los efectos observados por una infinidad de sistemas de referencia inerciales que instantáneamente se mueven con la velocidad (variable) v(t) de la partícula.

Podemos dividir la línea de universo de la partícula en intervalos temporaloides infinitesimales. La duración propia de cada subintervalo será:

$$d\tau = \frac{1}{\gamma}dt$$

donde por razones que veremos en un momento, hemos llamado d τ y dt y no d T_0 y dt, a las duraciones propia y medida del intervalo infinitesimal.

La construcción anterior se puede expresar matemáticamente diciendo que el tiempo propio asociado a la trayectoria de la partícula será:

$$T_0 = \int_0^t \mathrm{d}\tau$$

Pero esto, ¡no es más que una suposición!. Pero es una suposición tan importante que ha sido elevada a la altura de un postulado:

Postulado: Postulado de los relojes o hipótesis de los relojes. El tiempo propio medido por un observador que se mueve en una trayectoria espacial con velocidad variable $\vec{v}(t)$ (tiempo medido por relojes ideales transportador por el observador) entre dos eventos limitados por $t=t_1$ (inicio de la línea de universo) y $t=t_2$ es igual a:

$$\Delta \tau[v](t) = \int_0^t \sqrt{1 - v(t)^2/c^2} dt$$

Varias anotaciones:

- Representamos el tiempo propio como τ por que de la misma manera que t puede usarse como un parámetro para distinguir cada punto de la línea de universo, τ puede jugar también el mismo papel.
- La notación $\Delta \tau[v]$ indica que τ es un funcional de v(t). En términos físicos, por cada v(t) hay un τ diferente.
- La duración propia T_0 que habíamos definido antes entre dos eventos, es igual al tiempo propio $\tau(T)$ medido a lo largo del intervalo entre ellos:

$$\Delta au = \frac{1}{\gamma} \Delta t$$

que es la forma más común en la que se presenta este resultado.

1.8.4. Contracción de longitudes

De la misma manera que podemos definir la duración de un fenómeno (una colección de intervalos temporaloides), se puede definir la longitud de un objeto (una colección de intervalos espacialoides).

Pensemos por ejemplo en una regla de 30 cm sobre una mesa. En un momento dado (un valor específico del tiempo) los eventos que definen el estado de los extremos de la regla, están naturalmente separados por intervalos espacialoides. Imaginemos que la regla rotará 180 grados. ¿Cómo se define la longitud de la regla? Ciertamente pensar en la longitud simplemente como la diferencia entre las posiciones espaciales de dos eventos cualquiera en los extremos no es adecuado. Uno podría definir como evento 1 "centímetro cero de la regla al principio" y el evento 2 "centrimetro 30 de la regla al final". Si se hiciera así la regla mediría 0 centímetros (porque después de la rotación en 180 grados el centímetro 30 quedaría en la misma posición que el centímetro 0).

Para definir la longitud de un objeto se debe tomar la posición espacial de sus extremos (de cualquier sección transversal) en el mismo tiempo.

Definición 1.9

Longitud de un objeto. Dado un *objeto* que esta limitado en un instante dado, por eventos espacialoides, definimos la longitud instantánea del objeto en una cierta dirección, como la diferencia entre las coordenadas espaciales en esa dirección de eventos que en el sistema de referencia ocurren simultáneamente.

¿Es la longitud de una regla transportada por el Viajero igual para el Viajero y el observador?. Los eventos E_1 y E_2 de nuestro ejemplo anterior satisfacen la condición de ser eventos espacialoides para ambos observadores.

Para el viajero la longitud de un objeto limitado por ellos será:

Lp=E2p[1]-E1p[1]

L (Viajero) = 2

El problema es que la longitud medida por el Observador no puede obtenerse de estos dos eventos puesto que en sus sistema de referencia ellos no son simultáneos. Para encontrar la longitud en este sistema, hay que encontrar un evento E_2 que sea para el observador simultáneo a E_1 . Veamos esto gráficamente:

Figura 1.5: Contracción de longitudes.

Por inspección en la figura se ve que al identificar ese evento, la diferencia de coordenadas será menor en el sistema de referencia del observador:

¿Cuál es esa diferencia?. Podemos usar las transformaciones de Lorentz para encontrarla. Para ello usemos:

$$\Delta x' = \gamma (-u_L \Delta t + \Delta x)$$

La separación espacial entre dos eventos que estén en los extremos de la regla, **siempre** será L_0 para el Viajero. Para el Observador la separación entre esos eventos solo será la longitud L si los eventos son tales que $\Delta t = 0$. De la anterior relación obtenemos entonces que:

$$L_0 = \gamma(-u_L 0 + L)$$

o bien

$$L_0 = \gamma L$$

Proposición 1.10

Contracción de Longitudes. La longitud de un objeto que se mueve, medida en la dirección de movimiento es siempre menor que su longitud medida en reposo:

$$L = \frac{1}{\gamma}L_0$$

1.8.5. Adición de velocidades

Una de las consecuencias más sonadas de las TLE es la manera como transforman las velocidades. De acuerdo con las Transformaciones de Galileo-Newton, si una partícula tiene una velocidad \vec{v}' para un Viajero que se mueve con velocidad relativa \vec{u} respecto a un Observador, su velocidad \vec{v} para el Observador será simplemente:

$$\vec{v} = \vec{u} + \vec{v}'$$

¿Qué pasa en el caso de la relatividad?. Para calcular la manera como se relacionan escojamos un sistema de ejes coincidentes (eje x en dirección de \vec{u}) y notemos que transcurrido un intervalo de tiempo infinitesimal dt' en el sistema de referencia del Viajero, el tiempo y las posiciones en los tres ejes medidas por el Viajero y el observador cambiarán de acuerdo con:

$$dt = \gamma (dt' + u_L dx'_L)$$

$$dx_L = \gamma (u_L dt + dx_L)$$

$$dy_L = dy'_L$$

$$dz_L = dz'_L$$

La velocidad instantánea se define como $d\vec{v}_L/dt$, de modo que dividiendo término a término los intervalos infinitesimales de espacio obtenemos:

$$v_{x} = \frac{u_{L} + v'_{xL}}{1 + u_{L}v'_{xL}}$$

$$v_{y} = \frac{1}{\gamma} \frac{v'_{yL}}{1 + u_{L}v'_{xL}}$$

$$v_{z} = \frac{1}{\gamma} \frac{v_{zL}}{1 + u_{L}v'_{xL}}$$

o si definimos:

$$D \equiv \frac{1}{1 + u_L v'_{\gamma L}}$$

entonces:

$$egin{aligned} v_x &= D(u_L + v_{xL}') \ v_y &= rac{D}{\gamma} v_{yL}' \ v_z &= rac{D}{\gamma} v_{zL}' \end{aligned}$$

Nótese que si \vec{v}' : (1,0,0) (un rayo de luz) entonces:

$$D = \frac{1}{1 + u_L}$$

y la velocidad medida por el observador será:

$$v_{xL} = \frac{1}{1 + u_I}(u_L + 1) = 1$$

Es decir, la teoría desarrollada es autoconsistente, en tanto la velocidad de un rayo de luz será la misma sin importar el observador.

Usando las transformaciones generales de Lorentz-Einstein es posible generalizar la ley de adición de velocidades relativistas como:

$$v_{\parallel L} = D(u_L + v'_{\parallel L})$$

$$v_{\perp L} = \frac{D}{\gamma} v'_{\perp L}$$
(1.33)

donde

$$D \equiv \frac{1}{1 + \vec{u}_L \cdot \vec{v}_L'}$$

1.8.6. Transformación de aceleraciones

Un procedimiento similar pero mucho más laborioso algebraicamente conduce al resultado:

$$a_{\parallel L} = \frac{D^3}{\gamma^3} a'_{\parallel L}$$

$$a_{\perp L} = \frac{D^3}{\gamma^2} \left[a'_{\perp L} + (\vec{v}'_L \cdot \vec{u}_L a'_{\perp L} - \vec{a}'_L \cdot \vec{u}_L v'_{\perp L}) \right]$$
(1.34)

En este último caso, nótese que si $\vec{v}' = 0$ (la partícula se encuentra en reposo respecto al Viajero), la tramsformación para la componente perpendicular de la aceleración se reduce a:

$$a_{\perp L}^0 = \frac{D^3}{\gamma^2} a_{\perp L}^{\prime 0}$$

donde el superíndice 0 indica que es la aceleración calculada para la partícula en reposo en el sistema del viajero.

1.9. El espacio-tiempo de Minkowski

Una forma poderosa de sintetizar todos los resultados anteriores fue presentada en un artículo en 1908 por Herman Minkowski quién había sido profesor de Albert Einstein en la Universidad. Al principio Einstein considero esta formulación de la teoría especial de la relatividad una curiosidad matemática. Esto fue hasta que en 1912 y después de 5 largos años de esfuerzos en la búsqueda de una *generalización* de la teoría, Einstein descubrió que la mejor manera de describir matemáticamente la relatividad era usando la aproximación geométrica de Minkowski.

1.9.1. La norma de Minkowski

Hasta ahora hemos usado los diagramas de espacio-tiempo como una *mera* herramienta gráfica para representar las TLE y sus consecuencias. Sin embargo es posible concebir los puntos en estos *diagramas* como formando un espacio geométrico con propiedades más generales.

Considere por ejemplo la situación representada con el siguiente algoritmo:

(Algoritmo 1.6)

```
from export import mapa_TLE
fig=mapa_TLE(ux=0.3,ngrid=20,nticks=20)
```

```
ax=fig.gca()
ax.plot([3,9],[3,7],'k-',lw=5)
ax=fig.gca()

ver Figura 1.6
```


Figura 1.6: *Figura correspondiente al código* **1.6**.

Vemos allí un intervalo espacio temporal (línea negra). Podemos usar las TLE o el mismo gráfico para encontrar las coordenadas espacio-temporales de los eventos que limitan el intervalo:

```
from numpy import array
#0bservador
E1=array([3,3,0,0])
E2=array([9,7,0,0])
#Viajero
Ep1=array([2.25,2.25,0,0])
Ep2=array([7.25,4.5,0,0])
```

Como vemos las cooredanadas espacio-temporales son muy diferentes al aplicar una transformación hiperbólica en el espacio-tiempo, lo que era de esperarse por las TLE. Si pensamos ahora el problema desde un punto de vista geométrico y

miramos el gráfico nos damos cuenta que hay una propiedad del intervalo que no puede ser distinta a pesar de la rotación hiperbólica. Esa propiedad es la *longitud* del intervalo. Pero, ¿cuánto vale esa longitud?.

Si usamos la *fórmula clásica* de la longitud (también llamada *norma euclidiana*), la distancia en el espacio-tiemp Δs entre los eventos sería:

$$\Delta s_{\mathrm{L,Euclidiana}}^2 = \Delta t^2 + \Delta x_L^2 + \Delta y_L^2 + \Delta z_L^2$$

obtenemos:

```
#0bservador
Ds2=(E2[0]-E1[0])**2+\
    (E2[1]-E1[1])**2+\
    (E2[2]-E1[2])**2+\
    (E2[3]-E1[3])**2

#Viajero
Dsp2=(Ep2[0]-Ep1[0])**2+\
    (Ep2[1]-Ep1[1])**2+\
    (Ep2[2]-Ep1[2])**2+\
    (Ep2[3]-Ep1[3])**2
```

Ds^2 euclidiana (Observador) = 52 Ds^2 euclidian (Viajero) = 30.0625

Como vemos las distancias calculadas entre los dos eventos no son las mismas. Este hecho es ciertamente preocupante puesto que una propiedad que debería ser obviamente la misma resulta relativa.

Nota

Unidades de ds. Como vemos las unidades de la amétrica ds son las mismas unidades que escojamos usar para t o para x. En la elección que hemos hecho en este libro, es decir, en unidades luz en el que el tiempo se mide en segundos y las distancias en segundos-luz, la métrica se escribe $\mathrm{d}s_L$ tiene unidades de tiempo.

Herman Minkowski encontró la solución a este problema, mostrando que la norma en el espacio-tiempo debía ser distinta:

$$\Delta s_{\mathrm{L,Minkowski}}^2 = \Delta t^2 - (\Delta x_L^2 + \Delta y_L^2 + \Delta z_L^2)$$

¿Por qué el signo menos?. Comprobémoslo numéricamente:

```
#Ubservador
Ds2=(E2[0]-E1[0])**2-\
    ((E2[1]-E1[1])**2+\
    (E2[2]-E1[2])**2+\
    (E2[3]-E1[3])**2)
#Viajero
Dsp2=(Ep2[0]-Ep1[0])**2-\
```

```
((Ep2[1]-Ep1[1])**2+\
(Ep2[2]-Ep1[2])**2+\
(Ep2[3]-Ep1[3])**2)
```

Ds euclidiana (Observador) = 20 Ds euclidian (Viajero) = 19.9375

El signo menos garantiza que efectivamente la distancia entre los eventos sea la misma (aproximadamente) en nuestro ejemplo sencillo.

Proposición 1.11

Norma de Minkowski. La distancia entre dos eventos infinitesimalmente cercanos en el espacio-tiempo en un sistema de referencia inercial es:

$$\mathrm{d}s_I^2 = \mathrm{d}t^2 - \mathrm{d}l_I^2$$

donde $\mathrm{d}l_L$ es la norma euclidiana que en coordenadas cartesianas $\mathrm{d}l_L=\sqrt{\mathrm{d}x_L^2+\mathrm{d}y_L^2+\mathrm{d}z_L^2}.$

Es fácil mostrar que la norma de Minkowski es invariante bajo transformaciones de Lorentz-Einstein, que es el objetivo que perseguíamos (ver Problemas al final del capítulo).

1.9.2. Las variedades de Lorentz y la métrica de Minkowski

Hay una sutil diferencia entre lo que llamamos una *norma*, que es la manera como definimos la magnitud de los vectores en un espacio vectorial (en este caso, el vector desplazamiento en el espacio-tiempo $\mathrm{d}x^{\mu}$) y un concepto geométrico más general, el concepto de *métrica*.

Para introducir este concepto es necesario primero introducir una serie de definiciones matemáticas generales que usaremos a lo largo del texto:

Definición 1.10

Espacio métrico o espacio normado. Un espacio métrico es un conjunto X sobre el que podemos definir una *función bilineal g* entre los elementos del espacio:

$$g: X \times X \to \mathbb{R}^3$$

que cumple:

- 1. Es positiva: $g(p,q) \ge 0$.
- 2. Es simétrica: g(p,q) = g(q,p).
- 3. No es degenerada: g(p,q) = 0 si p = q.

Donde p y q son elementos del conjunto X. A la función g se la llama función distancia o **métrica**.

Definición 1.10 (Cont.)

La binealidad de la métrica se expresa mediante las propiedades:

1.
$$g(\lambda p_1 + p_2, q) = \lambda g(p_1, q) + g(p_2, q)$$

2.
$$g(p, \lambda q_1 + q_2) = \lambda g(p, q_1) + g(p, q_2)$$

El espacio métrico mejor conocido es el espacio euclidiano \mathbb{R}^3 , cuyos elements podemos denotar como $p:(x_p,y_p,z_p)$ y que tiene métrica:

$$g(p,q) = (x_p - x_q)^2 + (y_p - y_q)^2 + (z_p - z_q)^2$$

Los conceptos de espacio métrico y métrica se pueden generalizar para construir un conjunto de definiciones que se presentan a continuación de manera *intuitiva* (definiciones más rigurosas pueden encontrarse en textos de geometría diferencial):

Definición 1.11

Conceptos de Variedad. Una variedad. es una estructura matemática (un conjunto y unas reglas para definir la distancia entre los puntos, es decir, una métrica), que en terminos intuitivos generaliza a n-dimensiones los conceptos de curva (1-variedad) y superficie (2-variedad). El espacio euclidiano \mathbb{R}^3 es una 3-variedad (trivariedad). El espacio-tiempo es una 4-variedad (cuadrivariedad).

Una **variedad diferenciable** es aquella sobre la que podemos definir funciones (campos escalares, campos vectoriales y campos tensoriales) y la operación de derivación. Es decir, sobre una variedad diferenciable se pueden definir y realizar las operaciones propias del cálculo. Así mismo, y usando el mismo cálculo, sobre una variedad diferenciable se puede definir el concepto de longitud de arco.

Alrededor de cada punto de una variedad diferenciable se puede definir un **espacio tangente** que es una variedad euclidiana que comparte con la variedad original un solo punto. Así por ejemplo: sobre la superficie de una esfera (2-variedad) podemos definir un plano tangente.

Una **variedad de Riemann** es una variedad diferenciable que localmente es *similar* (homeomórfica) al espacio euclidiano. Un ejemplo de una variedad de Riemann es la superficie de una esfera (2-variedad) que tiene una métrica muy específica. Localmente esta superficie es *similar* a un plano (2-variedad).

Una **pseudo variedad de Riemann** es una variedad diferenciable en la que la función métrica no necesariamente satisface la condición de ser positiva. Localmente una pseudo variedad de Riemann no es *similar* al espacio ecuclidiano, sino al que se conoce como el espacio pseudo euclidiano, que es aquel en el que la función métrica se escribe de forma general como:

Definición 1.11 (Cont.)

$$g(p,q) = (p_1 - q_1)^2 + \dots + (p_k - q_k)^2 + \dots - (p_{k+1} - q_{k+1})^2 + \dots - (p_N - q_N)^2$$

Nótese que esta métrica es prácticamente idéntica a la métrica euclidiana, excepto por el signo menos de los últimos términos. Se dice que esta métrica tiene signatura (signature): (k, N-k)

Una **variedad de Lorentz** es una pseudo variedad de Riemann con una métrica (forma bilineal cuadrática) son *signatura* (1,N-1).

De acuerdo con estas definiciones podemos decir que lo que encuentra Minkowski al demostrar que la norma es la que definimos antes es que el espaciotiempo es una variedad diferenciable pseudo euclidiana con signatura (1,3) y métrica (en el sistema de coordenadas cartesianas):

$$g(x^{\mu}, x^{\mu} + dx^{\mu}) = dt^2 - dx_L^2 - dy_L^2 - dz_L^2$$

En el sistema de coordenadas cilíndricas, la **métrica de Minkowski** será:

$$g(x^{\mu}, x^{\mu} + dx^{\mu}) = dt^2 - dr_L^2 - r^2 d\theta_L^2 - dz_L^2$$

Si usaramos un sistema de coordenadas generalizado y no necesariamente ortogonal, la métrica podría escribirse de forma general como:

$$g(x^{\mu}, x^{\mu} + \mathrm{d}x^{\mu}) = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

donde $g_{\mu\nu}(x^{\alpha})$ son cantidades que en general dependen de la posición en el espacio (como lo vemos en la métrica de Minkowski escrita en coordenadas polares y que se conocen como coeficientes métricos.

Por comodidad usaremos la notación:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

En el caso del espacio-tiempo de un observador inercial los coeficientes métricos *en coordenadas cartesianas* son:

$$g_{\mu\nu} = \eta_{\mu\nu} \equiv \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & -1 \end{array}
ight)$$

Proposición 1.12

La métrica es un tensor. La métrica $g_{\mu\nu}$ es un campo tensorial covariante de segundo orden, es decir, al hacer un cambio de coordenadas $x^{\mu'}(x^{\nu})$ la métrica transforma como:

$$g_{\mu'\nu'} = \frac{\partial x^{\alpha}}{\partial x^{\mu'}} \frac{\partial x^{\beta}}{\partial x^{\nu'}} g_{\alpha\beta}$$

El espacio-tiempo entonces es una variedad diferenciable pseudo-euclidiana con una métrica de signatura (1,3), que llamamos de forma más específica en el contexto de la física, la métrica de Minkowski. Pero más allá de lo rimbombante que estas afirmaciones pueda sonar ¿qué implicaciones tiene todo esto para la relatividad en particular y para la física en general?.

1.9.3. Métrica y tipos de intervalos

Usando la métrica de Minskowski podemos definir los tipos de intervalos así:

■ Intervalo temporaloide. Este tipo de intervalos se definieron como aquellos en los que se puede encontrar un sistema de referencia en el que los eventos límite ocurran en el mismo lugar del espacio. En otros términos, son intervalos para los cuales se puede encontrar una partícula física que viaje entre ellos. Como sabemos que las partículas viajan con velocidad $u_L < 1$ entonces $\mathrm{d} l_L^2 < \mathrm{d} t^2$ y por lo tanto:

$$ds^2 > 0$$

■ Intervalo espacialoide. Este tipo de intervalos se definieron como aquellos en los que no se puede encontrar un sistema de referencia en el que los eventos límite ocurran en el mismo lugar del espacio. En otros términos, son intervalos para los cuales no existe una partícula física que viaje entre ellos. Como sabemos que las partículas viajan con velocidad $u_L < 1$ entonces $\mathrm{d}l_L^2 > \mathrm{d}t^2$ y por lo tanto:

$$ds^2 < 0$$

■ Intervalo luminoide. Este tipo de intervalos se definieron como aquellos en los que no se puede encontrar un sistema de referencia en el que los eventos límite ocurran en el mismo lugar del espacio, y tampoco en el mismo lugar del tiempo (eventos simultáneos). Solo es posible encontrar rayos de luz que viajen entre ellos, es decir: $\mathrm{d}l_L^2 = \mathrm{d}t^2$ y por lo tanto:

$$ds^2 = 0$$

1.9.4. Métrica y tiempo propio

En un sistema de referencia en el que dos eventos (con un intervalo temporaloide) separados en el sistema de referencia del Observador por una distancia $d\vec{r}_L$, ocurren en el mismo lugar del espacio, la distancia espacio-temporal es simplemente:

$$\mathrm{d}s_L^2 = \mathrm{d}\tau^2 - 0^2$$

o bien

$$ds_L = d\tau$$

donde hemos usado de una vez τ para representar el hecho de que en este sistema de referencia y como se explico en sesiones anteriores, este tiempo es el tiempo propio entre los eventos.

Dada la invarianza de la métrica para todos los observadores podemos concluir que **en el caso de intervalos temporaloides y en unidades luz** la métrica (la distancia espacio-temporal entre eventos) no es otra cosa que el tiempo propio entre esos eventos.

Si por el contrario tenemos eventos espacialoides, podemos siempre encontrar un sistema de referencia en el que los eventos límite ocurren en el mismo momento del tiempo, es decir su separación esta relacionada es con la distancia propia entre esos eventos:

$$ds_L^2 = 0^2 - d\lambda_L^2$$

que se podría escribir como:

$$\sqrt{-\mathrm{d}s_L^2} = \lambda_L$$

Dada la invarianza de la métrica para todos los observadores podemos concluir que **en el caso de intervalos espacialoides y en unidades luz** la métrica (la distancia espacio-temporal entre eventos) esta relacionada con la distancia propia entre esos eventos.

1.9.5. Métrica, dilatación del tiempo y contracción de longitudes

Con las definiciones del aparte anterior se puede entender de forma inmediata la dilatación del tiempo y la contracción de longitudes.

Consideremos por ejemplo un fenómeno limitado por dos eventos y un intervalo temporaloide. La distancia entre los eventos será:

$$d\tau^2 = dt^2 - dl_L^2$$

donde de una vez hemos usado el hecho que $ds_L^2 = d\tau^2$.

Si reconocemos que $\mathrm{d}l_L/\mathrm{d}t=v_L$ es simplemente la velocidad del Viajero, llegamos a la relación conocida:

$$d\tau = \frac{1}{\gamma}dt$$

es decir, la dilatación del tiempo es la manifestación directa de la métrica de Minkowski.

El caso de la contracción de longitudes es un poco más truculento. Para definir la longitud de un objeto que esta en reposo para el Viajero, es necesario tomar dos eventos asociados al objeto que ocurren simultáneamente en el sistema del Observador. Para estos dos eventos la distancia medida en los dos sistemas de referencia serán:

$$-\mathrm{d}x_L^2 = \mathrm{d}t'^2 - \mathrm{d}\lambda^2$$

Aquí hay que tener en cuentra que en el sistema del viajero los dos eventos no ocurren simultáneamente sino que ocurren separados por un tiempo $dt' = u_L d\lambda$, de allí que:

$$\mathrm{d}x_L = \frac{1}{\gamma} \mathrm{d}\lambda$$

que ya habíamos obtenido.

1.9.6. Vectores y cálculo en el espacio de Minkowski

Posiblemente la más importante de las consecuencias de la *geometrización* de la relatividad, es la idea de que las leyes de la física pueden escribirse en términos de vectores y tensores en el espacio-tiempo y al hacerlo tener la covariancia que esperamos de ellas de acuerdo con el **postulado de relatividad**. Veamos porque.

En el espacio métrico de Minkowski, el vector prototipo es el vector intervalo. Este vector transforma de acuerdo con las TLE como:

$$\mathrm{d}x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} \mathrm{d}x^{\nu}$$

Habíamos explicado antes que esta transformación es el equivalente a una rotación hiperbólica en el espacio-tiempo. Savemos que este vector que transforma de esta manera tiene una propiedad geométria, su norma, que es invariante bajo TLE:

$$ds^{2} = |dx^{\mu}|^{2} = dt^{2} - dx_{L}^{2} - dy_{L}^{2} - dz_{L}^{2}$$

Podríamos generalizar este resultado para decir que cualquier otro vector que transforme de la manera en la que lo hace el vector intervalo tiene la misma propiedad. Así si una cantidad A^{μ} : (A^0, A^1, A^2, A^3) es tal que:

$$A^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} A^{\nu}$$

entonces

$$|A^{\mu}|^2 = (A^0)^2 - (A^1)^2 - (A^2)^2 - (A^3)^2$$

Una manera más interesante de generalizar lo que sabemos de vectores en el espacio euclidiano a vectores en el espacio de Minkowski es introducir el producto punto o producto interior, que para el vector prototipo (el vector desplazamiento es:

$$ds^2 = dx^{\mu} \cdot dx^{\nu} \equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$$

y que se puede generalizar para cualquier par de vectores como:

$$A^{\mu} \cdot B^{\nu} \equiv g_{\mu\nu} A^{\mu} B^{\nu}$$

o en términos explícitos:

$$A^{\mu} \cdot B^{\nu} = A^{0}B^{0} - (A_{L}^{1}B_{L}^{1} + A_{L}^{2}B_{L}^{2} + A_{L}^{2}B_{L}^{2})$$

La suma de vectores y la multiplicación por un escalar están igualmente definidas en el espacio de Minkowski.

Como sucede en el espacio euclidiano cualquier expresión matemática que escribamos en términos vectoriales, así por ejemplo

$$\vec{A} + \lambda \vec{B}$$

definirá en sí misma un vector, que transforma como el vector desplazamiento y por lo tando es covariante bajo las TLE.

El **postulado de relatividad** o postulado de covariancia de las leyes de la naturaleza se puede formular ahora como una proposición:

Proposición 1.13

Leyes físicas y tensores. Todas las leyes físicas que se expresan en términos de cuadrivectores o tensores de rango superior son covariantes.

Podemos definir una función escalar de variable real f(s) como es usual (usaremos s como letra para la variable independiente en lugar de x), una función tensorial de variable real $F^{\mu}(s)$ o $g_{\mu\nu}(s)$, una función escalar o tensorial de variable cuadrivectorial (normalmente de la cuadriposición) $f(x^{\mu})$ o $F^{\mu}(x^{\mu})$ o $g_{\mu\nu}(x^{\mu})$.

Los conceptos regulares del cálculo también están definidos, tales como la derivación:

$$\frac{\mathrm{d}}{\mathrm{d}s}x^{\mu}(s):\left(\frac{\mathrm{d}}{\mathrm{d}s}t(s),\frac{\mathrm{d}}{\mathrm{d}s}\vec{r}_{L}(s),\right)$$

donde $x^{\mu}(s)$ describe por ejemplo una línea de universo en el espacio-tiempo y s puede entenderse como un parámetro que distingue cada punto en el espacio.

La integración:

$$F(s) = \int_0^s f(s') ds'$$

o bien

$$W = \int_0^s F^{\mu}(s') \cdot \mathrm{d}x^{\mu}(s')$$

1.9.7. Minkowski y el postulado de los relojes

De la misma manera que definimos cualquier integral podemos definir la integral de línea fundamental:

$$\tau = \int_0^{s'} \mathrm{d}s$$

donde los ds son temporaloides. Esta es s la longitud de una curva arbitraria en el espacio tiempo.

Por el postulado de los relojes esta integral es también el tiempo propio de esa línea de universo.

1.9.8. Transformación general de cuadrivectores

Hemos visto que cualquier cantidad que transforme como

$$A^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} A^{\nu}$$

es un cuadrivector.

En secciones anteriores habíamos visto una forma general de las transformaciones de Lorentz-Einstein para el cuadrivector posición x^{μ} : (t, \vec{r}_L) :

$$t' = \gamma \left(t - \vec{u}_L \cdot \vec{r}_L \right) \tag{1.35}$$

$$\vec{r}_L' = \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{r}_L - \gamma t\right) \vec{u}_L \tag{1.36}$$

Estas relaciones pueden extenderse a cualquier cuadrivector $A^{\mu}:(A^{0},\vec{A})$:

$$A^{0'} = \gamma \left(A^0 - \vec{u}_L \cdot \vec{A}_L \right) \tag{1.37}$$

$$\vec{A}_L' = \vec{A}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{A}_L - \gamma A^0\right) \vec{u}_L \tag{1.38}$$

1.10. Óptica relativista

Para entender la manera en la que las propiedades de la luz transforman de un observador inercial a otro en relatividad especial (óptica relativista). Consideremos el hecho de que cualquier onda monocromática se puede describir en el espaciotiempo usando el cuadrivector de propagación:

$$k_L^{\mu}: \frac{2\pi}{\lambda}(1,\hat{k})$$

donde \hat{k} es la dirección de propagación de la onda y λ es la longitud de onda. La relación de dispersión de la onda en el vacío será:

$$\lambda \nu = c$$

donde ν es la frecuencia.

Esta cantidad debe transformar como lo hace cualquier cuadrivector:

$$k^0 = \gamma \left(k^{0'} + \vec{u}_L \cdot \vec{k'}_L \right) \tag{1.39}$$

$$\vec{k}_L = \vec{k'}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{k'}_L + \gamma k^{0'}\right) \vec{u}_L \tag{1.40}$$

1.10.1. Efecto Doppler relativista

Supongamos que emitimos una onda monocromática en dirección de x (la misma dirección de la velocidad relativa entre los sistemas). En este caso:

$$k^{\mu}:\frac{2\pi}{\lambda}(1,1,0,0)$$

La ecuación de transformación de la componente temporal del cuadrivector de propagación será:

$$\frac{2\pi}{\lambda} = \gamma \left(\frac{2\pi}{\lambda'} + u_L \frac{2\pi}{\lambda'} \right)$$

De donde obtenemos:

$$\frac{1}{\lambda} = \frac{1}{\lambda'} \frac{1 + u_L}{\sqrt{1 - u_L^2}}$$

Si identificamos $\lambda_{\rm em}=\lambda'$ y $\lambda_{\rm obs}=\lambda$, entonces:

$$\lambda_{\rm obs} = \lambda_{\rm em} \sqrt{\frac{1 - u_L}{1 + u_L}}$$

Nótese que si $u_L \ll 1$ y usamos el teorema del binomio para expandir el factor en el radical en el lado derecho:

$$\lambda_{\rm obs} = \lambda_{\rm em} (1 - \frac{1}{2}u_L + \ldots)(1 - \frac{1}{2}u_L + \ldots)$$

conservando solo los términos lineales en u_L obtenemos:

$$\lambda_{\rm obs} \approx \lambda_{\rm em} (1 - u_L)$$

que se puede escribir como:

$$\frac{\lambda_{\rm em} - \lambda_{\rm obs}}{\lambda_{\rm em}} \approx u_L$$

De aquí identificamos el corrimiento al rojo clásico:

$$z = u_L$$

1.10.2. Aberración de la luz

Figura 1.7: Figura

Veámos ahora que pasa con un rayo de luz emitido en una dirección diferente de \vec{u}_L . En este caso la transformación de las componentes espaciales del vector de propagación será:

$$k^{0} = \gamma \left(k^{0'} + \vec{u}_{L} \cdot \vec{k'}_{L} \right) \tag{1.41}$$

$$\vec{k}_{L} = \vec{k'}_{L} + \left(\frac{\gamma - 1}{u_{L}^{2}} \vec{u}_{L} \cdot \vec{k'}_{L} + \gamma k^{0'}\right) \vec{u}_{L}$$
 (1.42)

Identificando $k^0=2\pi/\lambda$ y $\vec{k}_L=2\pi/\lambda\hat{k}$ y dividiendo la segunda ecuación por la primera, obtenemos:

$$\hat{k} = \frac{\hat{k}' + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \hat{k}' + \gamma\right) \vec{u}_L}{\gamma (1 + \vec{u}_L \cdot \hat{k}')}$$

Consideremos ahora el caso particular en el que \hat{k} se encuentra sobre el plano x-y y se puede parametrizar como:

$$\hat{k} = \cos \theta \hat{e}_x + \sin \theta \hat{e}_y
\hat{k}' = \cos \theta' \hat{e}_x + \sin \theta' \hat{e}_y$$

La componente temporal queda:

$$\frac{1}{\lambda_{\rm obs}} = \frac{1}{\lambda_{\rm obs}} \gamma (1 + u_L \cos \theta')$$

De aquí se obtiene que si $\theta' = 0$ se reproduce la fórmula del efecto Doppler. Pero hay un resultado más interesante que se obtiene si $\theta' = \pi/2$. En este caso:

$$\lambda_{\rm obs}^{\perp} = \frac{1}{\gamma} \lambda_{\rm em}$$

que se conoce como el efecto Doppler transversal.

Al reemplazar \hat{k} y \hat{k}' en la ley de transformación obtenemos:

$$\cos \theta = \frac{\cos \theta' + u_L}{1 + u_L \cos \theta'} \tag{1.43}$$

$$\cos \theta = \frac{\cos \theta' + u_L}{1 + u_L \cos \theta'}$$

$$\sin \theta = \frac{\sin \theta'}{\gamma (1 + u_L \cos \theta')}$$
(1.43)

que puede probarse cumplen $\sin^2 \theta + \cos^2 \theta = 1$

¿Qué pasa cuando $\cos \theta' = 0$?. En este caso en el sistema del Observador se ve:

$$\cos \theta = u_L$$

Es decir, la luz que debería llegar al observador de la vertical aparece en un ángulo muy pequeño desviada respecto a esa vertical. A este fenómeno se lo llama aberración de la luz.

1.10.3. Enfoque relativista

Imagine que desde una fuente astrofísica que se mueve con velocidad \vec{u}_L repecto al observador, emite radiación en todas las direcciones. ¿En qué direcciones se verá venir la radiación? ¿cómo se distribuye la potencia de la radiación de la fuente?

Si la emisión es isotrópica una cuarta parte de la radiación se emitirá entre $\theta'=0$ y $\theta'=\pi/2$. Sin embargo, en el sistema de referencia del observador esa misma energía se emitirá entre $\theta = 0$ y $\theta = \theta_b < \pi/2$ donde θ_b se conoce como el ángulo de enfoque y es igual a:

$$\cos \theta_h = u_L$$

o bien:

$$\theta_b = \cos^{-1} u_L$$

Es posible mostrar que para $\gamma \gg 1$ el ángulo de enfoque es:

$$\theta_b pprox rac{1}{\gamma}$$

Para visualizar el efecto de enfoque relativista vea la figura interactiva en la versión electrónica del libro¹.

1.11. Cinemática relativistica

Usando lo que vimos en la sección anterior, podemos reconstruir una cinemática en el espacio-tiempo.

1.11.1. Cuadrivelocidad

Definimos la cuadrivelocidad media de una partícula que se mueve entre dos eventos separados por un intervalo temporaloide como:

$$\bar{U_L}^{\mu} = \frac{\Delta x_L^{\mu}}{\Delta \tau}$$

donde $\Delta \tau$ es el tiempo propio entre los eventos.

Usando el mismo método de la mecánica convencional podemos extender este concepto al de cuadrivelocidad instantánea:

$$U^{\mu} = \lim_{\Delta \tau \to 0} \frac{\Delta x_L^{\mu}}{\Delta \tau} = \frac{\mathrm{d} x_L^{\mu}}{\mathrm{d} \tau}$$

En términos de componentes explícitas:

$$U_L^{\mu}:\left(\frac{\mathrm{d}t}{\mathrm{d} au},\frac{\mathrm{d}\vec{r}_L}{\mathrm{d} au}\right)$$

Usando el hecho que d $au=\mathrm{d}t/\gamma$, donde $\gamma=(1-v_L^2)^{1/2}$ con:

$$\vec{v}_L = \frac{\mathrm{d}x_L^{\mu}}{\mathrm{d}t}$$

la cuadrivelocidad queda:

$$U_L^{\mu}: \gamma(1, \vec{v}_L)$$

Proposición 1.14

Cuadrirapidez. Todas las partículas del universo ($v_L < 1$) tienen siempre cuadrirapidez unitaria:

$$|U_L^{\mu}|=1$$

Naturalmente esto es en unidades luz. En unidades convencionales la cuadrirapidez sería igual a c.

¹http://github.com/seap-udea/Relatividad-Zuluaga

Un gráfico de todas las cuadrivelocidades de todas las partículas en el universo son:

```
%matplotlib inline
```

(Algoritmo 1.7)

```
from numpy import linspace
vl=linspace(0,0.95)
gamma=1/(1-v1**2)**0.5
U0=gamma
Ux=gamma*vl
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
ax.plot(U0,Ux)
ax.set_xlim((0,3))
ax.set_ylim((0,3))
ax.plot([0,3],[0,3],'k--')
ax.set_xlabel("$U_L^0$")
ax.set_ylabel("$U_{L}^{x}$")
fig.tight_layout()
                                                                ver Figura 1.8
```

Nótese que en realidad si incluímos las 3 dimensiones espaciales todas las cuadrivelocidades del universo estarían en un hiper-hiperboloide de revolución:

$$1 = (U_L^0)^2 - (U_L^1)^2 - (U_L^2)^2 - (U_L^3)^2$$

Si fijas el valor de $U_L^0 = \gamma$, los puntos satisfacen:

$$v_{Lx}^2 + v_{Ly}^2 + v_{Lz}^2 = \text{cte}$$

que son puntos sobre una esfera.

Cuadriaceleración 1.11.2.

De la misma manera que definimos la cuadrivelocidad promedio, podemos definir la cuadriaceleración promedio:

$$\bar{A_L}^{\mu} = \frac{\Delta U_L^{\mu}}{\Delta \tau}$$

La aceleración instantánea sería:

$$A_L^{\mu} = \lim_{\Delta au o 0} rac{\Delta U_L^{\mu}}{\Delta au} = rac{\mathrm{d} U_L^{\mu}}{\mathrm{d} au}$$

Figura 1.8: Figura correspondiente al código 1.7.

Usando d $au=\mathrm{d}t/\gamma$, donde $\gamma=(1-v_L^2)^{1/2}$ obtenemos (ver Problemas al final del capítulo):

$$A_L^{\mu}: \gamma^4(\vec{a}_L \cdot \vec{v}_L, \vec{a}_L)$$

naturalmente aquí $\vec{a}_L \cdot \vec{v}_L$ es el producto punto euclidiano convencional y $\vec{a}_L =$ $d\vec{v}_L/dt$ es la aceleración espacial clásica.

Nota

De unidades luz a unidades convencionales. Si en un problema dado obtenemos el desplazamiento, la velocidad (cuadrivelocidad) o la acelaración (cuadriaceleración) en unidades luz, podemos volver a obtener las unidades originales como:

$$\begin{array}{rcl} \Delta \vec{r} & = & c \Delta \vec{r}_L \\ \vec{v} & = & c \vec{v}_L \\ \vec{a} & = & c \vec{a}_L \end{array}$$

Con estas transformaciones, la cuadriaceleración se puede escribir co-

mo:

$$A^{\mu}: c\gamma^4\left(\frac{\vec{a}\cdot\vec{v}}{c^2}, \frac{\vec{a}}{c}\right)$$

Nótese que si $\vec{v}_L = \vec{o}$ entonces:

$$A_L^{\mu}:(0,\vec{\alpha}_L)$$

de donde vemos que el módulo cuadrado de la cuadriaceleración es espacialoide:

$$|A_L^{\mu}|^2 = -\alpha_L^2$$

Dado que esta cantidad es invariante (la misma para el Observador y el viajero) llamamos a α_L la aceleración propia de la partícula.

Proposición 1.15

La relación entre la cuadriaceleración y la cuadrivelocidad. La cuadrivelocidad y la cuadriaceleración son perpendiculares:

$$A^{\mu} \cdot U^{\nu} = 0$$

1.11.3. Movimiento con cuadriaceleración constante

En un movimiento en el cuál tanto la velocidad como la aceleración dependen del tiempo $\vec{v}(t)$ y $\vec{a}(t)$, siempre es posible encontrar un sistema de referencia inercial que se mueve instantáneamente con velocidad $\vec{v}(t)$ tal que la aceleración del cuerpo es la aceleración propia.

Podemos modelar lo que pasa a una partícula que se mueve de una manera tal que su aceleración propia α_L es constante. En este caso se cumple que:

$$(A_L^0)^2 - (A_L^x)^2 = \alpha_L^2$$

Para saber cuánto valen las componentes de la cuadriaceleración en un momento dado pormos escribir su relación con las componentes de cuadrivelocidad:

$$A_L^0 U_L^0 - A_L^x U_L^x = 0$$

Por otro lado las componentes de la cuadrivelocidad satisfacen:

$$(U_I^0)^2 - (U_I^x)^2 = 1$$

Eliminando obtenemos las ecuaciones:

$$A_L^0 = \alpha_L U_L^x$$

$$A_L^x = \alpha_L U_L^0$$
(1.45)

Si derivamos la segunda ecuación respecto del tiempo propio, obtenemos:

$$\frac{\mathrm{d}A_L^x}{\mathrm{d}\tau} = \alpha_L A_L^0 = \alpha_L^2 U_L^x$$

donde hemos usado primero el hecho que $\mathrm{d}U_L^0/\mathrm{d}\tau=A_L^0$ y luego la primera ecuación. Esta ecuación se puede escribir como:

$$\frac{\mathrm{d}^2 U_L^x}{\mathrm{d}\tau^2} = \alpha_L^2 U_L^x$$

Que tiene como solución general:

$$U_L^x = A \exp(\alpha_L \tau) + B \exp(-\alpha_L \tau)$$

Asumiendo que $U_L^x(0)=0$ y $\mathrm{d}U_L^x(0)/\mathrm{d}\tau=\alpha_L$ obtenemos la solución para la componente x de la cuadrivelocidad:

$$U_L^x = \sinh(\alpha_L \tau)$$

Si reconocemos que $U_L^x = \gamma v_{Lx}$ y despejamos la velocidad obtenemos:

$$v_{Lx} = \tanh(\alpha_L \tau)$$

Si integramos ahora U_L^x obtenemos para x_L :

$$x_L(\tau) = \frac{1}{\alpha_L} \cosh(\alpha_L \tau) + k$$

donde k es una constante. Adumiendo que $x_L(0) = 0$ la solución para la posición es:

$$x_L(\tau) = \frac{1}{\alpha_L} [\cosh(\alpha_L \tau) - 1]$$

Queda un problema por resolver. Estamos describiendo el movimiento de la partícula en el sistema de referencia del observador donde el tiempo es t. ¿Cómo se relacionan t con τ ?. Nos olvidamos que hay una ecuación diferencial para τ que viene dada por $U_L^0 = \mathrm{d}t/\mathrm{d}\tau$. Si usamos la ecuación:

$$A_L^x = \alpha_L U_L^0$$

y tenemos en cuenta que $A_L^x = \mathrm{d} U_L^x/\mathrm{d} \tau = \alpha_L \cosh(\alpha_L \tau)$, la ecuación para t queda:

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = \cosh(\alpha_L \tau)$$

que se resuelve trivialmente con condición inicial t(0) = 0 como:

$$t = \frac{1}{\alpha_L} \sinh(\alpha_L \tau)$$

trayectoria de una partícula con aceleración propia constante. Si una partícula tiene aceleración propia constante α_L , en la configuración estándar su posición y velocidad son iguales a:

$$t(\tau) = \frac{1}{\alpha_L} \sinh(\alpha_L \tau) \tag{1.46}$$

$$x_L(\tau) = \frac{1}{\alpha_L} [\cosh(\alpha_L \tau) - 1] \tag{1.47}$$

$$v_{Lx}(\tau) = \tanh(\alpha_L \tau) \tag{1.48}$$

Usando esta solución podemos graficar en el espacio tiempo la trayectoria de la partícula:

(Algoritmo 1.8)

```
#Cuadriaceleración propia constante
alphaL=0.02
#Tiempos propios
from numpy import linspace
taus=linspace(0,100,1000)
#Solución
from numpy import sinh, cosh, tanh
ts=(1/alphaL)*sinh(alphaL*taus)
xLs=(1/alphaL)*(cosh(alphaL*taus)-1)
vLs=tanh(alphaL*taus)
#Gráfico
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
ax.plot(ts,xLs)
#Decoración
rang=xLs.max()
ax.set_xlim(0,rang)
ax.set_ylim(0,rang)
ax.plot([0,rang],[0,rang],'k--')
ax.set_xlabel("$t$");
ax.set_ylabel("$x_L$");
ax.grid();
                                                                ver Figura 1.9
```

Una prueba muy importante de todo resultado en relatividad es verificar que coincida con el resultado Newtoniano en el límite de velocidades muy pequeñas.

Figura 1.9: Figura correspondiente al código 1.8.

Si usamos la expansión en series de potencias para las funciones sinh, cosh y tanh:

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots \tag{1.49}$$

$$sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$

$$cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$
(1.49)

$$\tanh x = x - \frac{x^3}{3} + \frac{2x^5}{15} + \dots$$
 (1.51)

(1.52)

y descartamos términos de orden superior en $\alpha_L \tau$ obtenemos:

$$t \approx \tau$$
 (1.53)

$$v_{Lx} \approx \alpha_L \tau \tag{1.54}$$

$$v_{Lx} \approx \alpha_L \tau$$
 (1.54)
 $x_L \approx \alpha_L \frac{\tau^2}{2}$ (1.55)

que coincide con las ecuaciones clásicas.

1.11.4. La velocidad límite

Hay una interesante consecuencia del resultado obtenido en esta sección. Habíamos visto que si se mantiene constante la aceleración la velocidad de la partícula es:

```
v_{Lx} = \tanh(\alpha_L \tau)
```

Este resultado no parece más que una curiosidad matemática pero en realidad contiene una consecuencia importante. Para entenderla hagamos un gráfico de v_{Lx} :

```
from numpy import linspace,tanh

import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.gca()

for alfaL in linspace(1e-2,1e-1,5):
    taus=linspace(0,100,100)
    vLxs=tanh(alfaL*taus)
    ax.plot(taus,vLxs,label=fr"$\alpha_L$={alfaL:.2f}")

ax.legend()
ax.set_xlabel(fr"$\tau$");
ax.set_ylabel(fr"$v_{{Lx}}$");
fig.tight_layout()
```


Figura 1.10: Figura correspondiente al código 1.9.

Lo que notamos es que independientemente del valor de la aceleración propia,

Figura 1.11: Cambios en la cuadrivelocidad y la cuadriaceleración

la velocidad de la partícula nunca logra ser mayor que 1 (en unidades convencionales, la velocidad de la luz). Esto es consistente con los resultados obtenidos hasta ahora.

Habra una explicación física de por qué es así, ¿por qué, a pesar de la aceleración sostenida por la partícula, esta nunca logra llevarla a una velocidad mayor que la de la luz?

Una manera posible de explicarlo es apelando a la propiedad nueva de ortogonalidad entre la cuadrivelocidad y la cuadriaceleración. Lo que pasa cuando la velocidad aumenta es que la componente temporal de la cuadriaceleración va aumentando también:

$$A_I^{\mu}: \gamma^4(\vec{a}_L \cdot \vec{v}_L, \vec{a}_L)$$

Como resultado no solo la componente espacial de la cuadrivelocidad de la partícula se hace mayor, sino que también lo hace su componente temporal:

$$U_L^{\mu}:(\gamma,\gamma\vec{v}_L)$$

Cuando la velocidad es próxima a la velocidad de la luz $v_L \to 1$, la cuadriace-leración tiene casi idénticas componentes temporal y espacial $A_L^\mu \to (\gamma^4 a_L, \gamma^4 a_L)$, esto implica que toda ganancia en la componente temporal de la cuadrivelocidad

es igual a la ganancia en la componente espacial de la misma. De este modo, la cuadrivelocidad se mantiene cerca pero nunca igual a la correspondiente a la luz.

Otra manera de entenderlo es ver lo que pasa con la aceleración espacial a_L cuando la velocidad va aumentando. En la configuración estándar y por la invarianza del módulo de la cuadriaceleración:

$$\gamma^8 (a_L^2 v_L^2 - a_L^2) = -\alpha_L^2$$

de donde despejando a_L queda:

$$a_L = \frac{1}{\gamma^3} \alpha_L$$

es decir a medida que la velocidad va aumentando (γ va creciendo) la aceleración medida por el observador se hace cada vez menor. Cuando el cuerpo se aproxima a la velocidad de la luz la aceleración espacial es casi nula y el cuerpo no gana ni un ápice más de velocidad.

1.11.5. Ejemplo: una nave interestelar

Figura 1.12: Nave interestelar

Uno de los más grandes sueños de exploración de la humanidad ha sido viajar a otras estrellas. Para hacerlo un diseño posible es el de construir una nave capaz de sostener una aceleración constante igual a la aceleración de la gravedad en la Tierra (para simular justamente los efectos de la gravedad), en unidades luz $\alpha_L = g/c$. ¿Cuánto le tomaría a una nave así, ir hasta Alpha Centauri situada en $x_L = 4$ años-luz?

Para encontrar la solución a este problema basta que despejemos τ de la ecuación de la posición:

$$\tau = \frac{1}{\alpha_L} \cosh^{-1}(\alpha_L x_L + 1)$$

El manejo de las unidades aquí debe ser cuidadoso. Nótese que $[\alpha_L] = 1/T_L$ y $[x_L] = T_L$, de modo que una vez se escogen las unidades de α_L quedan fijas las unidades de x_L .

$$\alpha_L = \frac{g}{c} = \frac{9.8 \text{ m/s}^2}{3 \times 10^8 \text{ m/s}} = 3.27 \times 10^{-8} \text{ s}^{-1}$$

En este caso las unidades de x_L deben ser segundos(-luz).

```
#Velocidad de la luz
c = 3e8 \# m/s
#Aceleración
alphaL=9.8/3e8 \#1/segundos-luz = 1 / s-l
#Distancia a recorrer
year=365.25*86400 # segundos
xL=4*year \#s-l
#Tiempo propio
from numpy import arccosh
tau=arccosh(alphaL*xL+1)/alphaL #s
#Tiempo coordenado
from numpy import sinh
t=(1/alphaL)*sinh(alphaL*tau) #s
#Velocidad al llegar
from numpy import sinh
vL=tanh(alphaL*tau) # u.l.
```

```
print(f"alpha_L = {alphaL} 1/s-l")
print(f"x_L = {xL} s-l")
print(f"alpha_L x_L = {alphaL*xL}")
print(f"tau = {tau} s = {tau/year} años")
print(f"t = {t} s = {t/year} años")
print(f"v_L = {vL} = {vL*c} m/s")
```

Para ver las figuras interactivas busque la versión electrónica del libro².

²http://github.com/seap-udea/Relatividad-Zuluaga

1.12. Dinámica relativista

Hemos visto:

- Las transformaciones de Galileo-Newton no mantienen las ecuaciones de Maxwell covariantes.
- Para mantener las ecuaciones de Maxwell covariantes deben usarse las transformaciones de Lorentz-Einstein (TLE).
- Las TLE y sus conscuencias demuestran que la física debe hacerse en el espacio-tiempo de cuatro dimensiones y las cantidades físicas deben representarse como tensores (que transforman como las TLE) y las leyes como ecuaciones tensoriales.

¿Cómo se escriben las leyes de la mecánica en términos tensoriales? (en términos de invariantes). Llamaremos a la mecánica así construída **mecánica relativista**.

1.12.1. Masa invariante

El primer concepto central a la meánica relativista es el de **masa invariante**. Llamaremos así a la masa que asignamos a una partícula en un sistema de referencia que en un instante dado se mueve con la misma velocidad instantánea que ella. La masa invariante también se podría llamar **masa propia** siguiendo la convención semántica que habíamos usado hasta ahora.

Consideramos que esta es una cantidad verdaderamente escalar en el contexto del espacio-tiempo y por lo tanto que es una cantidad invariante, es decir, todos los observadores inerciales coincidiran en el valor de esta cantidad.

1.12.2. Momentum relativista

Si queremos formular una teoría mecánica relativista (covariante) debemos expresar todas las cantidades en términos de cantidades invariantes, cuadrivectores y tensores.

El momentum newtoniano:

$$\vec{p} = m\vec{v} = m\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$$

claramente no es ni un cuadrivector, ni parte de él. La razón básica es que esta cantidad no transforma como dx^{μ} que es nuestro cuadrivector prototipo.

Si definimos el momentum como:

$$\vec{p} \equiv m \frac{\mathrm{d}\vec{r}}{\mathrm{d}\tau}$$

dado que m y d τ son invariantes, las componentes de este vector serán parte de un verdadero cuadrivector.

Definición 1.12

Momentum relativista. Una partícula que se mueve con velocidad \vec{v} tiene un momento relativista:

1.12. Dinámica relativista 65

Definición 1.12 (Cont.)

$$\vec{p} \equiv \gamma(v) m \vec{v}$$

Nótese que el momentum relativista coincide con el momentum clásico para $v \ll c$.

De aquí podemos postular:

Postulado 1.3

Conservación del momentum relativista. El momentum relativista total de un sistema aislado se mantiene constante. Es decir, en ausencia de fuerzas externas:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(\sum \vec{p}_i \right) = \frac{\mathrm{d}}{\mathrm{d}\tau} \left(\sum \gamma(v_i) m_i \vec{v}_i \right) = 0$$

Este postulado ha sido probado experimentalmente en incontables experimentos realizados en aceleradores de partículas.

Nota

unidades luz de la masa y el momentum. Como hemos venido trabajando en unidades luz todas las cantidades cinemáticas, es interesante preguntarse por cuáles son las unidades del momentm. Tal y como es definido el momentum en unidades convencionales y el momentum en unidades luz se relacionaran como:

$$\vec{p} = c\vec{p}_L$$

A velocidades intermedias y conservando los términos de orden v_L^3 la magnitud del momentum relativista es:

$$p_L \approx mv_L + \frac{1}{2}mv_L^3$$

Este segundo término no se conocía en el mundo clásico.

En el algoritmo abajo mostramos el momentum relativista de una partícula como función de su velocidad.

%matplotlib inline

(Algoritmo 1.10)

from numpy import linspace vLs=linspace(0,0.5,100) gammas=1/(1-vLs**2)**0.5

```
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.gca()

pLs_new=m*vLs
pLs_rel=gammas*m*vLs
pLs_apr=m*vLs+0.5*m*vLs**3

ax.plot(vLs,pLs_new,label="Momentum Newtoniano")
ax.plot(vLs,pLs_apr,label="Momentum post Newtoniano")
ax.plot(vLs,pLs_rel,label="Momentum Relativista")

ax.set_xlabel("$v_{L}$")
ax.set_ylabel("$p_{L}$")
ax.legend()
ax.grid();

ver Figura 1.13
```


Figura 1.13: *Figura correspondiente al código* **1.10**.

masa relativística. Una interpretación *clásica* del momentum relativístico es decir que lo que sucede cuando una partícula se mueve su masa aumenta siguiendo la prescripción:

Nota (Cont.)

$$m_r = \frac{m}{\sqrt{1 - v_L^2}}$$

donde m_r se conoce como la **masa relativística**. La mayoría de los autores consideran hoy esta interpretación como conceptualmente imprecisa sino incorrecta. Hay varias razones para ello, siendo la más importante el hecho que siendo m un escalar no asociado a ninguna cantidad geométrica, no existe una justificación de porque debería transformar como se indica arriba.

Adicionalmente si vemos la expresión para el momentum post Newtoniano:

$$p_L \approx mv_L + \frac{1}{2}mv_L^3$$

notamos que en realidad el aumento de p_L con la velocidad, por encima del valor newtoniano mv_L es producto de los términos que no habían sido descubiertos y no del aumento en la masa.

Energía cinética relativistica 1.12.3.

El momentum relativista nos sirve para definir otras cantidades útiles. En mecánica clásica el teorema del trabajo y la energía establece que:

$$K = \int_0^{\vec{r}} \vec{F} \cdot d\vec{r}$$

En esta expresión d \vec{r} es parte de un cuadrivector, pero la fuerza clásica \vec{F} no lo es.

Una forma más conveniente de escribir esta expresión clásicamente es identificando:

$$\vec{F} \cdot d\vec{r} = \vec{v} \cdot d\vec{p}$$

Escribiendo la energía cinética de este modo:

$$K = \int \vec{v} \cdot d\vec{p}$$

Postulado 1.4

Postulado de la energía cinética. La energía cinética relativista (covariante) se relaciona con el momentum relativista como:

$$k \equiv \int_0^{\vec{v}} \vec{v} \cdot d\vec{p}$$

o en unidades luz:

Postulado 1.4 (Cont.)

$$k_L \equiv \int_0^{\vec{v}_L} \vec{v}_L \cdot \mathrm{d}\vec{p}_L$$

Por la definición de la energía cinética relativista, la relación entre esta cantidad expresada en unidades luz y la misma cantidad expresada en unidades convencionales es:

$$k = c^2 k_L$$

¿Cómo se expresa la energía cinética explícitamente como función de la velocidad?. En la mecánica Newtoniana sabemos que:

$$K = \frac{1}{2}mv^2$$

Mecnica Newtoniana

cambio de mayúsculas por minúsculas en mecánica relativista. Es corriente cambiar las letras que usamos para las cantidades mecánica de acuerdo a si son las clásicas (newtonianas) o las relativísticas. Normalmente, si una cantidad se representa con una letra minúscula en la mecánica newtoniana, se representará con una letra mayúscula en la mecánica relativista y viceversa. Existen, naturalmente, algunas excepciones notables. A continuación se enumeran estas transformaciones de notación:

 $\vec{v} \rightarrow U^{\mu}$ (cuadrivelocidad) $\vec{a} \rightarrow A^{\mu}$ (cuadriaceleracin)

 $m \rightarrow m \text{ (masa invariante)}$

→ Mecnica Relativista

 $\vec{p} \rightarrow \vec{p}$ (trimomentum) $\vec{p} \rightarrow P^{\mu}$ (cuadrimomentum)

 $\stackrel{r}{K} \rightarrow k$ (energa cintica relativista) $E \rightarrow E$ (energa total relativista)

 $\vec{F} \rightarrow f^{\mu}$ (cuadrifuerza)

Reemplazando la definición del momentum relativista en la definición de energía cinética:

$$k_L = \int_0^{ec{v}_L} ec{v}_L \cdot m \; \mathrm{d} \left(rac{ec{v}_L}{\sqrt{1-v_L^2}}
ight)$$

Integrando por partes obtenemos:

$$k_L = (\gamma - 1)m$$

1.12. Dinámica relativista

69

o en unidades convencionales

$$k = (\gamma - 1)mc^2$$

Expandiendo $\gamma - 1$:

$$k_L \approx \frac{1}{2} m v_L^2$$

que coincide con lo que sabemos en mecánica Newtoniana.

1.12.4. Energía total relativista

Una manera de escribir la energía cinética es:

$$k_L = \gamma m - m$$

o en unidades convencionales:

$$k = \gamma(v)mc^2 - \gamma(0)mc^2$$

donde hemos usado el hecho de que $\gamma(0) = 1$.

Estas dos expresiones dan la idea de que cuando sobre una partícula se realiza un trabajo (igual a k) una cantidad asociada con la partícula cambia de valor. No importa la naturaleza del trabajo realizado, siempre esa cantidad cambia de valor. La cantidad es:

$$E = \gamma mc^2$$

o en unidades luz:

$$E_L = \gamma m$$

¿Qué tiene de especial esta cantidad?. Puede mostrarse (ver Problemas al final del capítulo) que esta cantidad se conserva.

1.16

Proposición. Conservación de la energía total relativista. Dado un sistema aislado formado por partículas de masas invariantes $\{m_i\}$ que se mueven con velocidades instantáneas $\{\vec{v}_i\}$ que pueden cambiar en el tiempo como resultado de su mutua interacción, entonces la cantidad:

$$E \equiv \sum_{i} (k_i + m_i c^2) = \sum_{i} \gamma(v_i) m_i c^2$$

es constante. Llamaermos a E la energía total del sistema.

En unidades luz:

$$E_L \equiv \sum_i \gamma(v_{Li}) m_i$$

1.12.5. Cuadrimomentum

Hasta ahora todas las cantidades mecánicas definidas son cantidades vectoriales (trivectores) o escalares. Sin embargo para formular leyes físicas covariantes, estas deben escribirse rigurosamente en términos de tensores.

Existe una poderosa simetría en relatividad que emerge de las relaciones anteriores.

Nótese que hemos postulado y demostrado la conservación de dos cantidades claves:

- Momentum relativista: $\vec{p}_L = \gamma m \vec{v}_L$
- Energía relativista: $E_L = \gamma m$

¿Podrían estas dos cantidades usarse para definir una única cantidad conservada en 4 dimensiones?. Es fácil ver que si definimos la cantidad:

$$P_L^\mu:(E_L,\vec{p}_L)$$

las componentes de esta cantidad serán conservadas y por lo tanto la cantidad cuadrivectorial será conservada también.

En términos de la masa invariante y la velocidad la cantidad se escribe:

$$P_L^{\mu}: m\gamma(1, \vec{v}_L)$$

pero identificamos aquí a la cuadrivelocidad $U_L^\mu:\gamma(1,\vec{v}_L)$ y por lo tanto podemos escribir:

$$P_L^{\mu} = mU_L^{\mu}$$

Proposición: Conservación del cuadrimomentum. Si en un sistema aislado definimos el cuadrimomentum como:

$$P_L^{\mu} \equiv \sum_i m_i U_{iL}^{\mu}$$

entonces esta cantidad se mantiene constante. El cuadrimomentum de cada partícula tiene componentes:

$$P_{iL}^{\mu}:(E_{iL},\vec{p}_{iL})$$

o en unidades convencionales:

$$P_i^{\mu}:(E/c,\vec{p}_i)$$

1.12.6. Magnitud del cuadrimomentum y la simetría gauge

¿Cuál era la simetría de la que hablabamos antes?. La magnitud del cuadrimomentum es por definición:

$$|P_L^{\mu}|^2 = |mU_L^{\mu}|^2 = m^2$$

1.12. Dinámica relativista 71

y por componentes:

$$|P_L^{\mu}|^2 = E_L^2 - p_L^2$$

De aquí se sigue la relación fundamental:

$$m^2 = E_L^2 - p_L^2$$

o en unidades convencionales:

$$m^2 = E^2/c^4 - p^2/c^2$$

que se escribe tradicionalmente como:

$$(mc^2)^2 = E^2 - (pc)^2$$

La masa como una cantidad geométrica. Vemos que el cuadrimomentum ofrece una interesante interpretación para la masa. La masa como la magnitud del cuadrimomentum. Esto explica su invarianza (los módulos son invariantes geométricos). Sin embargo debe entenderse que la masa como módulo del cuadrimomentum es *resultado* de asumir que es una cantidad invariante y no al revés.

Esta relación es increíble porque abre la posibilidad para que las partículas tengan masa nula. Si

$$E_L = p_L$$

o lo que es lo mismo, en unidades convencionales:

$$E/c^2 = p/c$$

o bien

$$E = pc$$

entonces la partícula tendrá masa nula.

Esta última relación es conocida en el electromagnetismo y es la relación entre la energía y el momentum transportado por una onda electromagnética. Es decir, podemos asociar a las ondas electromagnéticas masa nula. En la moderna teoría cuántica de campos a esta condición se la llama **simetría gauge**.

1.12.7. Cuadrimomentum en el espacio-tiempo

La relación entre la masa, la energía y el momentum, muestra una propiedad muy interesante en el espacio-tiempo. Si construimos un espacio con coordenadas E_L y p_{Lx} (espacio energía-momentum) entonces la ecuación de la masa indica que

no importa el estado de movimiento en el que se encuentre una partícula siempre estará sobre una hipérbola en este espacio.

Si usamos el hecho:

$$E_L^2 = m^2 + p_{Lx}^2$$

podemos hacer una gráfica del lugar geométrico del cuadrimomentum en el espacio energía-momentum para distintas velocidades.

```
%matplotlib inline
                                                               (Algoritmo 1.11)
#Masa de la partícula
m=1 # kg
#Momenta y energías
from numpy import linspace, sqrt
pLs=linspace(0,3)
ELs=sqrt(m**2+pLs**2)
#Gráfico
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.gca()
ax.plot(ELs,pLs)
#Decoración
rang=ELs.max()
ax.set_xlim((0,rang))
ax.set_ylim((0,rang))
ax.plot([0,rang],[0,rang],'k--')
ax.set_xlabel("$E_L$");
ax.set_ylabel("$p_{Lx}$");
ax.grid();
fig.tight_layout();
                                                                ver Figura 1.14
```

1.13. Colisiones relativistas

Una de las más interesantes aplicaciones que tiene la dinámica relativista, es el estudio de colisiones entre partículas de alta energía. Estas colisiones pueden ocurrir en el Universo en el interior de estrellas agonizantes, en el Universo primitivo, en los rayos cósmicos cuando colisionan con el medio interestelar o la atmósfera de la Tierra e incluso con la radiación de fondo. Naturalmente, en la Tierra, las colisiones de alta energía se han usado por décadas para estudiar la estructura íntima de la materia y el funcionamiento de las fuerzas fundamentales.

Figura 1.14: *Figura correspondiente al código* **1.11**.

1.13.1. Energía en el centro de masa

Considere dos partículas idénticas que chocan. Una de ellas esta animada de una velocidad muy grande (vista en el sistema de referencia del observador (que llamaremos aquí sistema de referencia del laboratorio) y la otra esta en reposo allí. ¿Cómo son sus cuadrimomentos individuales? ¿cuál es su cuadrimomento total?

Consideremos en general dos partículas de masas diferentes, m_1 (impactor) y m_2 (objetivo o target). Inicialmente el impactor tiene una velocidad en el sistema de referencia del laboratorio $v_1^{\rm lab}$ que lo anima de un momento lineal allí $p_{L1} = \gamma_1 m_1 v_1^{\rm lab}$. El cuadrimomento total en el laboratorio será:

$$P_L^{\text{lab}}: (E_{L1}^{\text{lab}}, p_{L1}^{\text{lab}}) + (E_{L2}^{\text{lab}}, 0)$$

El módulo de este cuadrimomento será:

$$\begin{array}{lcl} M^2 & = & (E_{L1}^{\mathrm{lab}} + E_{L2}^{\mathrm{lab}})^2 - (p_{L1}^{\mathrm{lab}})^2 \\ & = & (E_{L1}^{\mathrm{lab}})^2 - (p_{L1}^{\mathrm{lab}})^2 + (E_{L2}^{\mathrm{lab}})^2 + 2E_{L1}^{\mathrm{lab}}E_{L2}^{\mathrm{lab}} \\ & = & m_1^2 + m_2^2 + 2m_2E_{L1}^{\mathrm{lab}} \end{array}$$

donde hemos introducido el parámetro M como el módulo del cuadrimomento total.

Si nos pasamos ahora al **sistema de referencia del centro de masa**, es decir, aquel en el que el momento lineal total del sistema es cero:

$$P_L^{\text{CM}}: (E_{L1}^{\text{CM}}, p_L^{\text{CM}}) + (E_{L2}^{\text{CM}}, -p_L^{\text{CM}})$$

En este sistema de referencia el módulo del cuadrimomento será el mismo, pero su dependencia de las masas de las partículas individuales será diferente:

$$M^2 = (E_{L1}^{\text{CM}} + E_{L2}^{\text{CM}})^2 = (E_L^{\text{CM,fix}})^2$$

La diferencia será que esta energía esta completamente disponible para la producción de partículas. Igualando nos queda:

$$E_L^{\text{CM,fix}} = \sqrt{m_1^2 + m_2^2 + 2m_2 E_{L1}^{\text{lab}}}$$

Si asumimos que la energía de la partícula impactora es mucho mayor que su masa y la del blanco $E_{L1}^{\text{lab}} \gg m_1, m_2$, entonces la energía del impacto en el centro de masa será:

$$E_L^{\text{CM,fix}} \approx \sqrt{2m_2 E_{L1}^{\text{lab}}}$$

¿Qué pasa ahora si lo que tengo ahora son dos partículas que se mueven una hacia la otra con una cierta velocidad?. EN ese caso el momento total será:

$$P_{L}^{\text{lab}}: (E_{L1}^{\text{lab}}, p_{L1}^{\text{lab}}) + (E_{L2}^{\text{lab}}, -p_{L2}^{\text{lab}})$$

cuyo módulo será:

$$\begin{array}{lll} (E_L^{\rm CM,col})^2 & = & (E_{L1}^{\rm lab} + E_{L2}^{\rm lab})^2 - (p_{L1}^{\rm lab} - p_{L2}^{\rm lab})^2 \\ & = & (E_{L1}^{\rm lab})^2 - (p_{L1}^{\rm lab})^2 + (E_{L2}^{\rm lab})^2 - (p_{L1}^{\rm lab})^2 + 2(E_{L1}^{\rm lab}E_{L2}^{\rm lab} + p_{L1}^{\rm lab}p_{L2}^{\rm lab}) \\ & = & m_1^2 + m_2^2 + 2(E_{L1}^{\rm lab}E_{L2}^{\rm lab} + p_{L1}^{\rm lab}p_{L2}^{\rm lab}) \end{array}$$

¿Cuál es la diferencia entre esta situación y la anterior?. Si suponemos que $E_{L1}^{\mathrm{lab}}, E_{L2}^{\mathrm{lab}} \gg m_1, m_2$ y por tanto $p_{L1}^{\mathrm{lab}} \approx E_{L1}^{\mathrm{lab}}$ y $p_{L2}^{\mathrm{lab}} \approx E_{L2}^{\mathrm{lab}}$, entonces la enegría en el centro de masa de estas colisiones será:

$$E_L^{\text{CM,col}} \approx \sqrt{4E_{L1}^{\text{lab}}E_{L2}^{\text{lab}}}$$

Comparando las energía disponibles en el centro de masa en el caso de una colisión con un objetivo fijo y la colisión de dos haces, vemos que la energía disponible en este segundo caso es mucho mayor.

Pongámosle número a estos procesos. Imaginemos que tenemos un acelerador que puede llevar protones hasta 7 TeV de energía (energía típica en el LHC). ¿Cuánta energía en el centro de masa podemos conseguir si disparamos estos protones hacia protones que están en reposo?. En unidades convencionales:

$$\frac{E^{\text{CM,fix}}}{c^2} \approx \sqrt{2m_2 \frac{E_1^{\text{lab}}}{c^2}}$$

o lo que es lo mismo:

$$E^{\text{CM,fix}} \approx \sqrt{2(m_2c^2)E_1^{\text{lab}}}$$

La energía en reposo de un protón $mc^2 = 938 \text{ MeV} = 0.938 \text{ TeV}.$

#Masa del protón mc2=0.938 #TeV E1_lab=7 #TeV

```
#Energía en el centro de masa para choque fijo
ECM_fix=(2*mc2*E1_lab)**0.5
```

 $ECM_fix = 3.6238101495525394 TeV$

En contraposición la energía en el centro de masa obtenida si hacemos chocar dos haces de protones con 7 TeV es:

```
#Energía en el centro de masa para colision
ECM_col=(4*E1_lab*E1_lab)**0.5
```

```
ECM_col = 14.0 TeV
ECM_col / ECM_fix = 3.86
```

Es decir, con una colisión frontal es posible extraer casi 4 veces más energía de una colisión que con la colisión en reposo.

Cuánta energía necesitaría un haz de protones que choca contra un blanco fijo de protones para igualar esta energía e 14 TeV. Igualando $E^{\text{CM,fix}}$ con $E^{\text{CM,lab}}$ obtenemos:

$$\sqrt{2mE_L^{\text{lab,fix}-\text{eq}}} = \sqrt{4(E_L^{\text{lab,col}})^2}$$

y despejando $E_L^{\text{lab,fix}-\text{eq}}$ obtenemos:

$$E_L^{\text{lab,fix}-\text{eq}} = \frac{2(E_L^{\text{lab,col}})^2}{m}$$

De modo que para igualar la energía en el centro de masa obtenida por una colisión de haces de protones ($mc^2=0.938\,\text{TeV}$) con energía $E^{\text{lab,col}}=1\,\text{TeV}$, será:

$$E_L^{\text{lab,fix}-\text{eq}} \approx 418 \text{ TeV}$$

1.13.2. Choques con la luz

Los choques con fotones son una de las situaciones más comunes en astrofísica de altas energías. Lo que debemos tener en cuenta cuando describimos la colisión con un fotón es que su masa invariante es cero, de modo que:

$$E_L^{\text{fotn}} = p_L^{\text{fotn}}$$

Existen tres posibles resultados de la colisión con un fotón:

- Efecto Compton. La dispersión de un fotón de alta energía contra una partícula, de modo que la partícula recibe energía del fotón.
- Efecto Compton inverso. La dispersión de una partícula de alta energía contra un fotón, de modo que el fotón recibe energía.
- Absorción. La absorción de un fotón de alta energía por una partícula y la producción de nuevas partículas a partir de este proceso.

Consideremos el último proceso. Un caso partícular de una reacción de este tipo se produce en la radiación cósmica de fondo (RCF). En este caso protones de alta energía pueden chocar con los fotones de la RCF produciendo la reacción:

$$\gamma + p \rightarrow p + \pi^+$$

donde $m_pc^2=938~{\rm MeV}$ y $m_\pi c^2=140~{\rm MeV}$. ¿Cuál es la energía mínima que deber tener el protón para producir esta reacción con un fotón con una energía dada?

Podemos calcular esta energía asumiendo que al crearse, el neutrón y el pión resultante de la reacción anterior se crean en reposo en el sistema de referencia de su centro de masa (esta sería la mínima energía). Ahora bien, como el módulo del cuadrimomentum es el mismo en cualquier sistema de referencia de modo que:

$$|P_{Lp}^{\text{lab}} + P_{Lp}^{\text{lab}}|^2 = |P_{Lp}^{\text{res}} + P_{L\pi}^{\text{res}}|^2 |(E_{L\gamma}^{\text{lab}} + E_{Lp}^{\text{lab}}, E_{L\gamma}^{\text{lab}} - p_{Lp}^{\text{lab}})|^2 = (m_p + n_\pi)^2 2E_{L\gamma}^{\text{lab}} E_{Lp}^{\text{lab}} + m_p^2 + 2p_{Lp}^{\text{lab}} E_{L\gamma}^{\text{lab}} = (m_p + n_\pi)^2$$

Si dejamos solo las propiedades del protón en un solo lado:

$$E_{Lp}^{\text{lab}} + p_{Lp}^{\text{lab}} = \frac{(m_p + m_\pi)^2 - m_p^2}{2E_{L\gamma}^{\text{lab}}}$$

Usando la relación $(p_{Lp}^{\rm lab})^2=(E_{Lp}^{\rm lab})^2-m_p^2$, la energía del protón estaría determinada por:

$$E_{Lp}^{\text{lab}} + \sqrt{(E_{Lp}^{\text{lab}})^2 - m_p^2} = \frac{m_\pi^2 + 2m_\pi m_p}{2E_{L\gamma}^{\text{lab}}}$$

1.13.3. Una aplicación: El límite GZK

Ahora bien ¿en qué situaciones un protón de alta energía puede toparse con un fotón? Para que esto pase la abundancia de fotones debe ser enorme. Los fotones más energéticos en el Universo son los fotones de la radiación cósmica de fondo que tienen además una muy pequeña energía $E_{\gamma}=2.5\times 10^{-10}$ MeV. Esto implica que para producir la reacción anterior el protón debe tener una energía enorme, $E_{Lp}^{\rm lab}\gg m_p$. Con esto podemos finalmente aproximar la expresión anterior como:

$$E_{Lp}^{\mathrm{lab}} pprox rac{m_{\pi}^2 + 2m_{\pi}m_p}{4E_{L\gamma}^{\mathrm{lab}}}$$

que en unidades convencionales quedaría:

$$E_p^{\text{lab}} \approx \frac{(m_\pi c^2)^2 + 2(m_\pi c^2)(m_p c^2)}{4E_{\gamma}^{\text{lab}}}$$

Usando la energía de los fotones de rayos gama obtenemos:

```
mpc2=938 #MeV
mpic2=140 #MeV
```

1.13. Colisiones relativistas

```
ERCF=2.5e-10 #MeV

Ep=((mpic2)**2+2*mpic2*mpc2)/(4*ERCF)
```

Energía límite de protones = 2.822400e+20 eV

Llamamos a este el *umbral de Greisen–Zatsepin–Kuzmin* y corresponde a la energía máxima en la que un protón de rayos cósmicos puede viajar sin sufrir interacciones relavantes con los fotones de la radiación de fondo.

1.13.4. Colisiones relativistas interactivas

Una excelente manera de entender las colisiones relativistas y algunos de los resultados que hemos mostrado antes es graficando el resultado de estas interacciones en diagramas espacio-tiempo.

En el código interactivo abajo podemos ver el resultado de la colisión de dos partículas cuya naturaleza se puede modificar a voluntad y cambiar el sistema de referencia desde el que se ve la colisión.

```
def colision_relativista(m1=940,E1=7000,
                         m2=940, E2=940,
                         uL=0.0,
                         rang=5000,
                         ):
   m1=float(m1)
   m2=float(m2)
   E1=float(E1)
   E2=float(E2)
    #Factor gama de las partículas
    if m1>0:
        gama1=E1/m1
        pc1=(E1**2-m1**2)**0.5
    else:
       pc1=E1
    if m2>0:
        gama2=E2/m2
        pc2=(E2**2-m2**2)**0.5
    else:
        pc2=E2
    #Componentes de los cuadrimomentos
    from numpy import array
    P1=array([E1,pc1])
    P2=array([E2,-pc2])
    #Rotar los ejes de acuerdo a uL
    gamma=1/(1-uL)**0.5
   Pp1=array([0,0])
    Pp1[0]=gamma*(P1[0]-uL*P1[1])
    Pp1[1]=gamma*(-uL*P1[0]+P1[1])
```

```
Pp2=array([0,0])
    Pp2[0] = gamma*(P2[0] - uL*P2[1])
    Pp2[1]=gamma*(-uL*P2[0]+P2[1])
    #Cuadrimomento total
    PpT=Pp1+Pp2
    #Masa asociada
   M=(PpT[0]**2-PpT[1]**2)**0.5
    #Gráfica
    import matplotlib.pyplot as plt
    plt.close("all")
    fig=plt.figure(figsize=(5,5))
    ax=fig.gca()
    ax.arrow(0,0,Pp1[0],Pp1[1],color='r',lw=2,zorder=100)
    ax.arrow(0,0,Pp2[0],Pp2[1],color='r',lw=2,zorder=100)
    ax.arrow(0,0,PpT[0],PpT[1],color='b',zorder=100)
    ax.arrow(0,0,M,0,color='k',lw=2,alpha=0.3,zorder=100)
    #Decoración
    ax.grid(zorder=-100);
    ax.set_xlim((-0.1,rang));
    ax.set_ylim((-rang,rang));
    ax.set_title(f"$u_L={uL:0.2f}$ c, $m_1 c^2={m1}$ MeV, $m_2 c^2={m2}$ MeV",fontsize=10
    ax.set_xlabel(f"$E$ [MeV]");
    ax.set_ylabel(f"$pc$ [MeV]");
    fig.tight_layout();
                                                             (Algoritmo 1.12)
from ipywidgets import interact, fixed, widgets
opciones=dict(continuous_update=False)
interact(colision_relativista,
```

Uno de los conceptos más complicados de la mecánica Newtoniana es el concepto de fuerza. Podría decirse que, incluso en el siglo xxi las discusiones alrededor de este concepto han sido difícilmente resueltas. No es la excepción para el mismo

Figura 1.15: *Figura correspondiente al código* **1.12**.

concepto pero en el contexto de la dinámica relativista.

En la mecánica newtoniana la *fuerza resultante* se define como:

$$\vec{\mathcal{F}} \equiv \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\vec{v})}{\mathrm{d}t}$$

es decir, entendemos por fuerza la manifestación de cualquier cambio en el momento lineal de una partícula. Una cosa muy diferente es cuál es el origen de ese cambio.

Independientemente se postula la existencia de fenómenos que se manifiestan a través de lo que podemos llamar *fuerzas aplicadas* \vec{F} . Así por ejemplo la fricción de dos superficies en el movimiento de cuerpos macroscópicos se describe con una fuerza aplicada efectiva que llamamos *fuerza de fricción* y que se modela de formas muy diversas. La atracción evidente entre cuerpos con masa se modela también con una fuerza aplicada conocida, la fuerza gravitacional, y el caso de una partícula cargada que se mueve en un campo eléctrico y magnético, también puede modelarse usando una fuerza aplicada (la fuerza de Lorentz).

El postulado de fuerza Newtoniano se puede formular diciendo que la fuerza aplicada (cualquiera de las anteriores) es igual a la fuerza resultante:

$$\vec{\mathcal{F}} = \vec{F}$$

o en otros términos:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}$$

que es la que llamamos también la segunda ley de Newton.

La pregunta de la relatividad sería ¿cuál es la versión covariante de esta ley? ¿se reduce la versión covariante del postulado de fuerzas a la versión relativista a bajas velocidades?

Previamente habíamos definido el trimomentum como:

$$\vec{p} \equiv \gamma(v) m \vec{v}$$

Mostramos que esta cantidad se conserva en las colisiones.

De aquí podemos definir la trifuerza aplicada como:

$$\vec{\mathcal{F}} \equiv \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}(\gamma m\vec{v})}{\mathrm{d}t}$$

esta cantidad es la que esta implicada en los procesos de interacción reales (covariantes), aquella que se relaciona con la conservación del trimomentum. Nótese la diferencia entre esta definición y la definición clásica, en tanto en esta definición esta presente el factor de Lorentz-Einstein.

Curiosamente, el desarrollo del lado derecho de la ecuación anterior no conduce a ninguna expresión relevante o simple (aunque naturalmente puede hacerse). Solo la introducción de una cantidad más general puede darnos luz sobre la verdadera interpretación de esta cantidad.

De la misma manera como definimos el cuadrimomentum podemos definir ahora la cuadrifuerza en analogía:

$$f^{\mu} \equiv \frac{\mathrm{d}P^{\mu}}{\mathrm{d}\tau}$$

Esta ecuación puede escribirse de dos maneras diferentes:

1. Como una forma generalizada de la segunda ley de Newton en el espaciotiempo:

$$f^{\mu} = mA^{\mu}$$

de donde podemos obtener las componentes de la cuadrifuerza usando aquellas que dedujimos para la cuadriaceletación:

$$f_L^{\mu}: \gamma^4(m\vec{a}_L \cdot \vec{v}_L, m\vec{a}_L)$$

2. Derivando explícitamente las componentes del cuadrimomentum obtenemos:

$$f_L^{\mu}:\left(\gamma \frac{\mathrm{d}E_L}{\mathrm{d}t}, \gamma \vec{\mathcal{F}}_L\right)$$

La componente temporal de este cuadrivector es, como la trifuerza truculenta de calcular. Sin embargo si usamos la propiedad de ortogonalidad $A^{\mu} \cdot U^{\nu} = 0$ y sabemos que $f^{\mu} \propto A^{\mu}$, podemos decir que:

$$f_L^0 U_L^0 = \vec{f}_L \cdot \vec{U}_L$$

de donde obtenemos:

$$f_L^0 = \vec{f}_L \cdot \vec{v}_L$$

Finalmente las componentes de la cuadrifuerza se pueden escribir como:

$$f_L^\mu:\gamma(\vec{\mathcal{F}}_L\cdot\vec{v}_L,\vec{\mathcal{F}}_L)$$

De esta última expresión derivamos la importante relación:

$$\frac{\mathrm{d}E_L}{\mathrm{d}t} = \vec{\mathcal{F}}_L \cdot \vec{v}_L$$

que es idéntica a su análoga newtoniana pero con la energía cinética.

Como sabemos que $E_L = \gamma m$ esta relación puede también escribirse como:

$$\frac{\mathrm{d}(\gamma m)}{\mathrm{d}t} = \vec{\mathcal{F}}_L \cdot \vec{v}_L$$

Nota: Unidades luz de la trifuerza. Por la definición misma de la trifuerza, $\vec{\mathcal{F}} = d\vec{p}/dt$ la relación entre la fuerza en unidades luz y la fuerza en unidades convencionales sería:

$$\vec{F} = c\vec{F}_I$$

Volviendo a la definición de trifuerza:

$$ec{\mathcal{F}}_L = rac{ ext{d}(\gamma m ec{v}_L)}{ ext{d}t} = rac{ ext{d}(\gamma m)}{ ext{d}t} ec{v}_L + \gamma m ec{a}_L$$

y usando la relación recien obtenida obtenemos:

$$\vec{\mathcal{F}}_L = \gamma m \vec{a}_L + (\vec{\mathcal{F}}_L \cdot \vec{v}_L) \vec{v}_L$$

Proposición 1.17

Ley de fuerza relativista. Si sobre una partícula (masa invariante constante m) actua una fuerza aplicada \vec{F}_L , entonces la aceleración espacial experimentada por la partícula esta dada por:

$$\vec{a}_L = \frac{1}{\gamma m} [\vec{F}_L - (\vec{F}_L \cdot \vec{v}_L) \vec{v}_L]$$

Es interesante notar que a diferencia de la aceleración newtoniana, la aceleración relativista \vec{a}_L no es necesariamente paralela a la fuerza aplicada. La ley de fuerza relativista muestra que los tres vectores residen sobre el mismo plano, pero no necesariamente son paralelos unos a tros.

Una manera alternativa de escribir la ley de fuerza relativista sería descomponer la aceleración y la fuerza en componentes paralelas y perpendiculares a la velocidad:

$$\gamma m(\vec{a}_{L\parallel} + \vec{a}_{L\perp}) = \vec{F}_{L\parallel} + \vec{F}_{L\parallel} - \vec{F}_{L\parallel} v_L^2$$

igualando componente a componente, podemos reescribir la ley como:

$$a_{L\parallel} = \frac{1}{\gamma^3 m} F_{L\parallel}$$

 $a_{L\perp} = \frac{1}{\gamma m} F_{L\perp}$

En unidades convencionales:

$$a_{\parallel} = \frac{1}{\gamma^3 m} F_{\parallel}$$
 $a_{\perp} = \frac{1}{\gamma m} F_{\perp}$

Definición 1.13

Inercia direccional. Definimos la **inercia**. de una partícula en una dirección \hat{v} , \mathcal{I}_v , como el cociente entre la componente de la fuerza aplicada en esa dirección y la componente de la aceleración experimentada en la misma dirección:

$$\mathcal{I}_{\sqsubseteq} \equiv rac{ec{\mathcal{F}} \cdot \dot{\sqsubseteq}}{ec{\dashv} \cdot \dot{\sqsubseteq}}$$

De forma interesante la ley de fuerza relativista muestra que una partícula tiene una inercia diferente en distintas direcciones relativas a su velocidad. Así, en dirección perpendicular a la velocidad la inercia de una partícula es $\mathcal{I}_{\perp} = \bigcirc \updownarrow$ mientras que en dirección paralela es $\mathcal{I}_{\parallel} = \bigcirc \updownarrow$.

1.14.1. Reglas de transformación de la fuerza

Una interesante consecuencia de los desarrollos anteriores alrededor de los conceptos de fuerza en la dinámica relativista es entender que a diferencia de lo que pasa en la física newtoniana, en la relatividad la fuerza no es la misma cuando es medida por distintos observadores inerciales.

La cuadrifuerza transforma de acuerdo a las TLE:

$$f^{\mu} = \Lambda^{\mu}_{\nu'} f^{\nu'}$$

De allí se deduce que la trifuerza resultante $\vec{\mathcal{F}}$ debe transformar como lo hace la componente espacial de cualquier cuadrivector:

$$\gamma_v ec F_L = \gamma_{v'} ec F_L' + \left(rac{\gamma_u - 1}{u_L^2} ec u_L \cdot \gamma_{v'} ec F_L' + \gamma_u \gamma_{v'} ec \mathcal{F}_L' \cdot ec v_L'
ight) ec u_L$$

o su inversa:

$$\gamma_{v'}ec{F}_L' = \gamma_vec{F}_L + \left(rac{\gamma_u - 1}{u_L^2}ec{u}_L\cdot\gamma_vec{F}_L - \gamma_u\gamma_vec{\mathcal{F}}_L\cdotec{v}_L
ight)ec{u}_L$$

Aquí es importante aclarar que en la expresión aparecen dos velocidades: la velocidad relativa entre los sistemas de referencia \vec{u} y la velocidad de la partícula sobre la que actúa la fuerza \vec{v} . Por la misma razón aparecen también dos γ diferentes, uno para cada velocidad.

Una primera consecuencia de esta relación es que si en un sistema de referencia una partícula esta en equilibrio $\vec{F} = \vec{o}$, también lo estará en el otro sistema de referencia. Es decir, el equilibrio es invariante.

Si descomponemos la fuerza en una componente paralela a la velocidad y una perpendicular a ella

$$\vec{F} = \vec{F}_{||} + \vec{F}_{||}$$

y asumimos que la partícula se mueve instantáneamente en la misma dirección relativa de los sistemas de referencia, es decir $\vec{v} \parallel \vec{u}$, entonces las dos componentes transformaran de acuerdo con las ecuaciones (ver Problemas al final del capítulo):

$$F_{\parallel} = \frac{F'_{L\parallel} + \vec{u}_L \cdot \vec{F}'_L}{1 + \vec{v}'_L \cdot \vec{u}_L}$$

$$F_{\perp} = \frac{\gamma_u^{-1} F'_{L\perp}}{1 + \vec{v}'_L \cdot \vec{u}_L}$$
(1.56)

$$F_{\perp} = \frac{\gamma_u^{-1} F_{L\perp}'}{1 + \vec{v}_T' \cdot \vec{u}_I} \tag{1.57}$$

(1.58)

Un hecho interesante que se deriva de estas relaciones es que la trifuerza relativista no puede tener cualquier forma, sino solo aquella que transforme de acuerdo con las anteriores condiciones. En particular vemos que la trifuerza relativista depende de la velocidad de una forma no trivial.

Una fuerza que no cumple esa condición es la fuerza de atracción gravitacional de Newton que puede probarse fácilmente, no transforma de acuerdo a las reglas anteriores. Es decir la fuerza gravitacional no es una fuerza compatible con la dinámica relativista. Si queremos modelar la gravedad será necesario que desarrollemos una teoría nueva sobre esta fuerza. Ese es justamente el propósito de la teoría general de la relatividad.

La fuerza de Lorentz 1.14.2.

La única fuerza modelada clásicamente que transforma de acuerdo a la prescripción anterior es la fuerza de Lorentz:

$$\vec{F} = q\vec{E} + q\frac{\vec{v}}{c} \times \vec{B}$$

Si tomamos el caso elemental en el que \vec{B} solo tiene componente z y hay un campo eléctrico en dirección de de y la fuerza sería:

$$F_y = qE_y - qv_LB_z$$

donde $v_L = v_x/c$ es la velocidad instantánea de la partícula en dirección x y en unidades luz.

Vamos a ver si esta fuerza transforma de acuerdo a lo que habíamos dicho. Para ello tomemos un observador inercial que se mueve con velociadad u_L en dirección de x. las leyes de transformación para los campos que habíamos derivado antes son:

$$B_z = \gamma_u \left(B'_z + u_L E'_y \right)$$

$$E_y = \gamma_u \left(E'_y + u_L B'_z \right)$$

Reemplazando queda:

$$F_y = \gamma_u [qE'_y(1 - u_L v_L) - q(u_L - v_L)B'_z]$$

Reuniendo términos obtenemos:

$$F_y = \gamma_u (1 - u_L v_L) \left(q E_y' - q \frac{u_L - v_L}{1 - u_L v_L} B_z' \right)$$

Reconciendo que por la ley de adición de velocidades relativista:

$$v_L' = \frac{u_L - v_L}{1 - u_L v_L}$$

la anterior ecuación se puede escribir como:

$$F_y' = \frac{\gamma_u^{-1}}{1 - u_L v_L} F_y$$

que es justamente la regla de transformación para la componente perpendicular. Con esto queda probado que la fuerza de Lorentz es una trifuerza en sentido estricto.

1.14.3. Movimiento circular bajo la fuerza de Lorentz

No hay muchos problemas que se puedan resolver fácilmente usando el concepto de cuadrifuerza por sus rigurosas condiciones de transformación. Sin embargo hay una situación particular y muy útil en la cuál se puede aplicar la teoría vista hasta ahora.

Imaginemos que tenemos un electrón que entra en un campo magnético uniforme \vec{B} con una velocidad inicial \vec{v} constante y perpendicular al campo. ¿Cuál es la trayectoria que describe el electrón en el espacio?

De acuerdo con la fuerza de Lorenz la fuerza que experimenta el electrón es constante e igual a:

$$F = |q| \frac{v}{c} B$$

Dado que la fuerza es siempre perpendicular a la velocidad la partícula, concluímos que la partícula describirá una trayectoria circular y su velocidad se mantendrá constante. Esto no cambia así tengamos dinámica relativista.

Usando la ley de fuerza relativista y dado que la fuerza siempre es perpendicular, la aceleración centripeta estará dada por:

$$a = \frac{F}{\gamma m}$$

Dado que geometricamente sabemos que sobre un círculo $a=v^2/R$:

$$\frac{v^2}{R} = \frac{F}{\gamma m}$$

y reemplazando la fuerza de Lorentz obtenemos:

$$\frac{v^2}{R} = \frac{|q|vB}{\gamma mc}$$

Despejando el radio obtenemos:

$$R = \frac{\gamma mcv}{qB}$$

Este resultado contrasta con el resultado clásico:

$$R_N = \frac{mcv}{qB}$$

por el factor γ .

1.14.4. Ecuación de movimiento relativista

De la misma manera que en la teoría newtoniana el movimiento de una partícula se predice una vez se han especificado las fuerzas que actúan sobre ella a través de la denominada ecuación de movimiento, podemos hacer los mismo en el marco de la teoría de la relatividad.

Para ello partimos de la definición:

$$A_L^{\mu}: \left(\frac{\mathrm{d}^2 t}{\mathrm{d}\tau^2}, \frac{\mathrm{d}^2 \vec{r}_L}{\mathrm{d}\tau^2}\right)$$

y de la ley de fuerza covariante:

$$f^{\mu} = mA^{\mu}$$

Usando las componentes de la cuadrifuerza podemos escribir las ecuaciones de movimiento en función de la fuerza aplicada como:

$$m\frac{\mathrm{d}^2 t}{\mathrm{d}\tau^2} = \gamma \vec{F}_L \cdot \vec{v}_L \tag{1.59}$$

$$m\frac{\mathrm{d}^2\vec{r}_L}{\mathrm{d}\tau^2} = \gamma \vec{F}_L \tag{1.60}$$

con
$$\gamma = (1 - v_L^2)^{-1/2}$$
.

Estas ecuaciones corresponden a un conjunto de 4 ecuaciones diferenciales escalares de segundo orden en las que debe especificarse explícitamente la forma de la fuerza que en general depende de la posición, la velocidad y el tiempo propio:

$$\vec{F}_L = \vec{F}_L(\vec{r}_L, \vec{v}_L, \tau)$$

Debe recordarse, sin embargo, que \vec{F}_L debe satisfacer las reglas de transformación definidas antes, tal y como lo hacen por ejemplo las fuerzas de Lorentz.

1.14.5. Un ejemplo numérico

Para poner en práctica todo lo visto en esta sección podemos estudiar el movimiento de un electrón en un campo magnético en condiciones mucho más generales de las consideradas en el ejemplo analítico de la sección anterior. Es natural que en una situación real el electrón radiara parte de su energía y el resultado que obtendremos no será el mismo pero supongamos que esas perdidas son pequeñas.

Para ello primero debemos escribir el sistema de ecuaciones de primer orden correspondiente a las ecuaciones de movimiento:

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = U_t$$

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = U_{Lx}$$

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = U_{Ly}$$

$$\frac{\mathrm{d}z}{\mathrm{d}\tau} = U_{Lz}$$

$$\frac{\mathrm{d}U_t}{\mathrm{d}\tau} = \frac{\gamma}{m}\vec{F}_L \cdot \vec{v}_L$$

$$\frac{\mathrm{d}U_{Lx}}{\mathrm{d}\tau} = \frac{\gamma}{m}\vec{F}_{Lx}$$

$$\frac{\mathrm{d}U_{Ly}}{\mathrm{d}\tau} = \frac{\gamma}{m}\vec{F}_{Ly}$$

$$\frac{\mathrm{d}U_{Lz}}{\mathrm{d}\tau} = \frac{\gamma}{m}\vec{F}_{Lz}$$

Podemos además usar el hecho que $U_t=\gamma$. Si hacemos la asignación Y_i : (t,x,y,z) y Y_{4+i} : $(U_t,U_{Lx},U_{Ly},U_{Lz})$ para i=0,1,2,3, las anteriores ecuaciones se pueden implementar con la siguiente rutina:

```
def edm_lorentz(Y,tau,m,q,EL,BL):
   Ecuaciones de movimiento de la dinámica relativista
    #tiempo, posicion y velocidad
   t=Y[0]
   rL=Y[1:4]
   Ut=Y[4]
   UL=Y[5:]
    #Factor gamma
   from numpy import sqrt
    gama=Ut
   vL=UL/gama
    #Trifuerza
   from numpy import cross
   FL=q*EL(rL,t)+q*cross(vL,BL(rL,t))
    #Ecuaciones de movimiento
   from numpy import dot
   dtdtau=Ut
   drdtau=UL
   dUtdtau=gama*dot(FL,vL)/m
   dULdtau=gama*FL/m
   return [dtdtau]+list(drdtau)+[dUtdtau]+list(dULdtau)
```

Las propiedades de las partículas serán:

```
c=3e8 #m/s
me=9.11e-31 #kg
e=-1.6e-19 #C

#Velocidad inicial
v=0.5*c
gama=1/(1-(v/c)**2)**0.5

#Campo magnético y eléctrico
Bo=10.0 #Teslas
Eo=0.0 #V/m

#Radio de giro
Rg=gama*me*c*v/(abs(e)*Bo)

#Tiempo en el laboratorio de giro
from numpy import pi
Tg=2*pi*Rg/v
```

```
print(f"Radio de giro predicho = {Rg/1e3} km")
print(f"Tiempo de giro predicho = {Tg} s")
```

Radio de giro predicho = 29.58559285678589 km Tiempo de giro predicho = 0.0012392784156130296 s

Definamos ahora nuestro campo eléctrico y magnético:

```
from numpy import array
c=3e8 #m/s
def ELfunc(rL,t):
    #[rL]: unidades luz, [t]: s
    E=array([Eo,0,0]) #V/m
    return E/c

def BLfunc(rL,t):
    #[rL]: unidades luz, [t]: s
    B=array([0,0,Bo]) #Teslas
    return B/c
```

Y las condiciones iniciales:

```
c=3e8 #m/s

#Condiciones iniciales
tau0=0
rL0=array([0,-Rg,0])/c
vL0=array([v,0,0])/c

from numpy.linalg import norm
gama0=1/(1-norm(vL0)**2)**0.5

#Componentes de la cuadrivelocidad
Ut0=gama0
UL0=gama0*vL0

#Vector de condiciones iniciales resultante
Y0s=array([tau0]+list(rL0)+[Ut0]+list(UL0))
```

Probemos llamando a la ecuación de movimiento:

```
dYdtau=edm_lorentz(Y0s,0,me,e,ELfunc,BLfunc)

dY/dtau_0 =
[1.1547005383792517, 0.5773502691896258, 0.0, 0.0, 0.0, -0.0, 3380.023529833155, -0.0]
```

Y ahora podemos proceder a resolver las ecuaciones de movimiento:

```
from numpy import linspace
taus=linspace(0,10*Tg,1000)

from scipy.integrate import odeint
solucion=odeint(edm_lorentz,YOs,taus,args=(me,e,ELfunc,BLfunc))
```

Un gráfico de la trayectoria será:

```
%matplotlib inline
```

```
#Extraemos las posiciones
r=solucion[:,1:4]*c

import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()

#Coordenadas x-y
ax.plot(r[:,0]/1e3,r[:,1]/1e3,'ko-')

#Decoración
ax.grid();
ax.set_title(f"v = {v/c}c, B = {Bo} T")
ax.set_xlabel("$x$ [km]");
ax.set_ylabel("$y$ [km]");
fig.tight_layout();

ver Figura 1.16
```

Podemos tambien graficar otras cantidades, por ejemplo el tiempo y el tiempo propio:

```
(Algoritmo 1.14)

ts=solucion[:,0]

fig=plt.figure()
ax=fig.gca()

ax.plot(taus,ts)

ax.set_xlabel(f"$\\tau$ [s]");
ax.set_ylabel(f"$t$ [s]");

ver Figura 1.17
```

Como la velocidad es constante la relación entre el tiempo de laboratorio y el tiempo propio es $t=\gamma \tau$.

Figura 1.16: Figura correspondiente al código 1.13.

Figura 1.17: Figura correspondiente al código 1.14.

1.15. Síntesis de Mecánica Relativista

Después de introducir las cantidades y postulados claves en las secciones anteriores, estamos listos para hacer una síntesis completa de la nueva mecánica, de la **mecánica covariante** o la **mecánica relativista**.

1.15.1. Síntesis de cinemática relativista

Las propiedades cinemáticas de una partícula se describen con las siguientes propiedades básicas:

- Cuadriposición: x^{μ}
 - Indica la posición de un evento en el espacio tiempo.
 - Las componentes generales: $x^{\mu}:(ct,\vec{r})$
 - Componente temporal: *t*, tiempo coordenado.
 - \circ Componentes espaciales: \vec{r} , vector posición.
 - En unidades luz:
 - Vector posición: $\vec{r}_L = \vec{r}/c$
 - \circ Cuadrivector: $x_L^{\mu}:(t,\vec{r}_L)$
 - Módulo:
 - Temporaloide: Tiempo propio $\tau^2 = t^2 r_L^2$
 - Espacialoide: Longitud propia $-\lambda_L^2 = t^2 r_L^2$
 - Transformación de sistemas coorenadas:
 - $\circ \text{ General: } x^{\mu} = \Lambda^{\mu}_{\nu'} x^{\nu'}$
 - Vectorial:

$$t' = \gamma \left(t - \vec{u}_L \cdot \vec{r}_L \right)$$
$$\vec{r}'_L = \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{r}_L - \gamma t \right) \vec{u}_L$$

- **•** Cuadridesplazamiento: dx^{μ}
 - Intervalo infinitesimal entre dos eventos vecinos.
 - Las componentes generales: $dx^{\mu}:(ct,d\vec{r})$
 - En unidades luz:
 - Vector posición: $d\vec{r}_L = d\vec{r}/c$
 - Cuadrivector: dx_L^{μ} : $(dt, d\vec{r}_L)$
 - Módulo:
 - General: Intervalo $ds^2 = dt^2 dr_L^2$
 - $\circ~$ Temporaloide: Diferencial de tiempo propio d $au^2={\mathrm d} t^2-{\mathrm d} r_L^2$
 - Factor de Lorentz: $dt = \gamma_v d\tau$, $\gamma_v = 1/\sqrt{1-v^2/c^2}$.
 - Transformación de sistemas coorenadas:
 - \circ General: $dx^{\mu} = \Lambda^{\mu}_{\nu'} dx^{\nu'}$

■ Trivelocidad: \vec{v}

- Definición: $\vec{v} \equiv d\vec{r}/dt$.
- Velocidad medida en el laboratorio.
- En unidades luz: $\vec{v}_L = \vec{v}/c$
- Factor de Lorentz: $\gamma_v = 1/\sqrt{1-v_L^2}$.
- Transformación de sistemas coorenadas:
 - Vectorial:

$$v_{L\parallel} = D(u_L + v'_{L\parallel})$$

$$\vec{v}_{L\perp} = \frac{D}{\gamma_u} \vec{v}'_{L\perp}$$
(1.61)

donde

$$D \equiv \frac{1}{1 + \vec{u}_L \cdot \vec{v}_L'}$$

■ Cuadrivelocidad: U^µ

- Definición: $U^{\mu} = dx^{\mu}/d\tau$.
- Solo se define en líneas de universo (elemento de línea temporaloide).
- Las componentes generales:

$$U^{\mu}:\left(\frac{\mathrm{d}(ct)}{\mathrm{d}\tau},\frac{\mathrm{d}\vec{r}}{\mathrm{d}\tau}\right)$$

• En unidades convencionales:

$$U^{\mu}:\gamma\left(c,\vec{v}\right)$$

- En unidades luz:
 - \circ Vector posición: $U_L^{\mu} = U^{\mu}/c$
 - \circ Componente temporal: $U_L^0 = \mathrm{d}t/\mathrm{d}\tau = \gamma$, velocidad en el tiempo.
 - \circ Componentes espaciales: $ec{U}_L=\mathrm{d}ec{r}_L/\mathrm{d} au=\gammaec{v}_L$, velocidad escalada.
- Componentes explícitas:
 - o Unidades luz:

$$U_L^\mu:\gamma\left(1,\vec{v}_L\right)$$

- Módulo:
 - \circ Unidades convencionales: $|U^{\mu}| = c$.
 - Unidades luz: $|U_L^{\mu}| = 1$.
- Transformación de sistemas coorenadas:
 - \circ General: $U^{\mu} = \Lambda^{\mu}_{\nu'} U^{\nu'}$

■ Triaceleración: *a*

- Definición: $\vec{a} \equiv d\vec{v}/dt = d^2\vec{r}/dt^2$.
- Aceleración medida en el laboratorio.
- En unidades luz: $\vec{a}_L = \vec{a}/c$
- Cuadriaceleracion: A^{μ}
 - Definición: $A^{\mu} = dU^{\mu}/d\tau = d^2x^{\mu}/d\tau^2$.
 - Las componentes generales:

$$A^{\mu}:\left(\frac{\mathrm{d}(\gamma c)}{\mathrm{d} au},\frac{\mathrm{d}(\gamma ec{v})}{\mathrm{d} au}\right)$$

• Componentes explícitas en unidades convencionales

$$A^{\mu}: \gamma^4 \left(\vec{a} \cdot \frac{\vec{v}}{c}, \vec{a} \right)$$

• Componentes explícitas en unidades luz:

$$A_L^{\mu}: \gamma^4 \left(\vec{a}_L \cdot \vec{v}_L, \vec{a}_L \right)$$

- Módulo:
 - Aceleración propia: $|A_L^{\mu}|^2 = -\alpha_L^2$.
 - Relación componentes: $\alpha_L^2 = |\vec{A}_L|^2 (A_L^0)^2$.
- Ortogonalidad: la aceleración siempre es ortogonal a la cuadrivelocidad,

$$A^{\mu}U_{\mu} = A_{L}^{0}U_{L}^{0} - \vec{A}_{L} \cdot \vec{U}_{L} = 0$$

1.15.2. Síntesis de dinámica relativista

- Masa invariante: m
 - Masa de una partícula (valor constante).
 - Es una cantidad escalar y no depende del observador.
- **■** Trimomentum: \vec{p}
 - Definición: $\vec{p} \equiv \gamma_v m \vec{v}$.
 - Momento lineal medido en el laboratorio.
 - Se conserva en todas las colisiones.
 - En unidades luz: $\vec{p}_L^{\mu} = \vec{p}/c$
- Energía cinética relativista: *k*
 - Definición: $k \equiv \int_0^{\vec{v}} \vec{v} \cdot d\vec{p}$.
 - En unidades luz: $k_L = k/c^2$
 - Explícitamente como función de la velocidad:
 - ∘ En unidades luz: $k_L = (\gamma 1)m$
 - En unidades convencionales: $k = mc^2$
- Energía total relativista: *E*

- Definición: $E \equiv mc^2 + k$.
- La energía total de una partícula se conserva.
- Unidades luz: $E_L = E/c^2 = m + k_L$
- Expresión única:
 - En unidades convencionales: $E = \gamma mc^2$.
 - En unidades luz: $E_L = \gamma m$.

■ Cuadrimomentum: P^µ

- Definición: $P^{\mu} \equiv mU^{\mu}$.
- El cuadrimomento de un sistema aislado de partículas se conserva.
- Las componentes generales:

$$P^{\mu}:\left(m\frac{\mathrm{d}(ct)}{\mathrm{d}\tau},m\frac{\mathrm{d}\vec{r}}{\mathrm{d}\tau}\right)$$

- En unidades convencionales: $P^{\mu}: (\gamma mc, \gamma m\vec{v})$
- En términos de la energía y el trimomentum: $P^{\mu}:(E/c,\vec{p})$
- En unidades luz: $P_L^{\mu} = P^{\mu}/c$.
- En términos de la energía y el trimomentum: $P_L^\mu:(E_L,\vec{p}_L)$
- Módulo:
 - En unidades convencionales: $(mc^2)^2 = (E)^2 (pc)^2$
 - En unidades luz: $m^2 = E_L^2 p_L^2$

• Trifuerza: $\vec{\mathcal{F}}$

- Definición: $\vec{\mathcal{F}} \equiv \mathrm{d}\vec{p}/\mathrm{d}t = \mathrm{d}(\gamma m \vec{v})/\mathrm{d}t$
- Fuerza medida en el laboratorio.
- En unidades convencionales: $\vec{F}_L = \vec{F}/c$.
- Relación con la aceleración:
 - $\circ \; ext{General:} \; \gamma m ec{a}_L = ec{\mathcal{F}}_L (ec{\mathcal{F}}_L \cdot ec{v}_L) ec{v}_L$
 - o Componentes:

$$a_{\parallel} = rac{1}{\gamma^3 m} F_{\parallel}$$
 $ec{a}_{\perp} = rac{1}{\gamma m} ec{F}_{\perp}$

- Transformación:
 - Componentes:

$$F_{\parallel} = \frac{F'_{L\parallel} + \vec{u}_L \cdot \vec{F}'_L}{1 + \vec{v}'_L \cdot \vec{u}_L}$$
 (1.62)

$$F_{\perp} = \frac{\gamma_u^{-1} F_{L\perp}'}{1 + \vec{v}_I' \cdot \vec{u}_L} \tag{1.63}$$

(1.64)

■ Cuadrifuerza: f^µ

- Definición: $f^{\mu} \equiv dP^{\mu}/d\tau$.
- Ley de fuerza generalizada: $f^{\mu} = mA^{\mu}$.
- Componentes explícitas:
 - \circ En unidades luz: $f_L^\mu: \gamma^4(m\vec{a}_L\cdot\vec{v}_L, m\vec{a}_L)$
 - En unidades convencionales: $f^{\mu}: \gamma^4(m\vec{a} \cdot \vec{v}/c, m\vec{a})$

1.16. Electrodinamica manifiestamente covariante

En la deducción de las transformaciones de Lorentz-Einstein habíamos encontrado que por ser covariantes los campos eléctrico y magnético deben transformar como:

$$B'_{z} = \gamma \left(B_{z} - \frac{u}{c} E_{y} \right)$$

$$E'_{y} = \gamma \left(E_{y} - \frac{u}{c} B_{z} \right)$$

Esta relación es una interesante novedad en el electromagnetismo clásico en tanto propone una conexión entre los campos eléctrico y magnético (incluso estáticos) que no estaba en la teoría original de Maxwell. Nos lleva a pensar en la idea de que existe una manera alternativa y más general de escribir la teoría electromagnética consistente con los postulados de la relatividad.

Como hemos visto antes, una manera de garantizar que las nuevas ecuaciones sean covariantes sería escribirlas en términos de escalares y tensores, o en otros términos necesitamos escribir las **ecuaciones de la electrodinámica manifiestamente covariantes**.

1.16.1. Ecuaciones de la electrodinámica

Las ecuaciones que necesitamos escribir de forma manifiestamente covariantes son:

Ecuaciones de Maxwell:

$$\vec{\nabla} \cdot \vec{E} = 4\pi\rho \tag{1.65}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \tag{1.66}$$

$$\vec{\nabla} \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0 \tag{1.67}$$

$$\vec{\nabla} \times \vec{B} - \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = \frac{4\pi}{c} \vec{J} \tag{1.68}$$

(1.69)

• Conservación de la carga eléctrica:

$$\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{J}$$

Ley de Lorentz:

Sobre una carga individual:

$$\vec{F} = q(\vec{E} + \frac{1}{c}q\vec{v} \times \vec{B})$$

Sobre una corriente de carga:

$$\vec{f} = \rho \vec{E} + \frac{1}{c} \vec{J} \times \vec{B}$$

Donde las cantidades implicadas son:

- Campo eléctrico \vec{E} . Es una cantidad fundamental. En la teoría clásica es producido por cargas individuales (a través de la primera ecuación) o en simultánea con campos magnéticos variables (tercera ecuación). Las unidades del campo eléctrico son: [E] = V/m (1 V = 1 J/C).
- **Densidad de flujo magnético** \vec{B} . Esta relacionada con el campo magnético \vec{H} . En el vacío $\vec{H} = \mu_0 \vec{B}$, donde $\mu_0 = 4\pi \times 10^{-7}$ N m A⁻¹ (1 A = 1 C/s). Las unidades de la densidad de flujo magnético son: [B] = T (Tesla, 1 T = N m⁻¹ A⁻¹).
- **Densidad de carga eléctrica** ρ . La carga eléctrica es una propiedad fundamental de algunas partículas elementales en la naturaleza. La carga de una partícula se *asume* un invariante en la relatividad. Las unidades de densidad de carga son $[\rho]$ =C m⁻³.
- **Densidad de flujo de corriente** \vec{J} . Cuando en el espacio hay cargas en movimiento se puede definir el clujo de carga somo la tasa a la que pasa carga eléctrica por unidad de área. Las unidades de la densidad de flujo de corriente es [J]=A m⁻².
- **Veclocidad de la luz** c. Es una constante de la naturaleza $c=2,999792458 \times 10^8 \, \mathrm{m \, s^{-1}}$. Se relaciona con otra constante que no aparece explícitamente en la versión de las ecuaciones escritas arriba, la permeabilidad eléctrica del vacío, $\epsilon_0=8,854\times 10^{-12} \, \mathrm{C^2 \, m^{-2} \, N^{-1}}$.
- Potencial escalar eléctrico ϕ y vectorial magnético \vec{A} . Las ecuaciones de Maxwell pueden escribirse también en términos de funciones potenciales, que permiten escribir los campos de forma alternativa como:

$$ec{B} = \vec{\nabla} \times \vec{A}$$

$$ec{E} = -\vec{\nabla}\phi - \frac{1}{c}\frac{\partial \vec{A}}{\partial t}$$

■ Libertad Gauge. Los potenciales pueden escogerse de una diversidad muy amplia de familias. En particular:

$$\vec{A}' = \vec{A} + \vec{\nabla}\chi$$

$$\phi' = \phi - \frac{1}{c} \frac{\partial \chi}{\partial t}$$

también son potenciales validos. ¿Qué funciones de potencial elegir?.

 Gauge de Coulomb. Si se reemplaza la definición del campo eléctrico en la primera ecuación de Maxwell se obtiene:

$$\frac{1}{c}\frac{\partial}{\partial t}(\vec{\nabla}\cdot\vec{A}) + \vec{\nabla}^2\phi = -4\pi\rho$$

Esta ecuación adopta la forma de la ley de Coulomb si se escoge arbitrariamente que el potencial vectorial magnético cumpla la condición:

$$\vec{\nabla} \cdot \vec{A} = 0$$

que se conoce como **gauge de Coulomb**. Esta condición sin embargo no es covariante (no involucra tensores, ni invariantes) y por lo tanto no es apropiada para la relatividad.

• Gauge de Lorentz. Un gauge que resulta covariante puede escribirse como:

$$\frac{1}{c}\frac{\partial \phi}{\partial t} + \vec{\nabla} \cdot \vec{A} = 0$$

Cuando los potenciales se escriben con esta condición se dice que se usa el gauge de Lorenz.

Nótese que si se usa el gauge de Lorentz la primera ecuación inhomogénea de Maxwell es equivalente a la ecuación:

$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \vec{\nabla}^2 \phi = 4\pi \rho$$

Puede probarse, de la misma manera, que la ecuación inhomogénea del campo magnético se puede escribir de forma análoga como:

$$\frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \vec{\nabla}^2 \vec{A} = \frac{4\pi}{c} \vec{J}$$

Estas dos ecuaciones son ecuaciones de onda con fuentes ρ y \vec{J} . El gauge de Lorenz entonces, físicamente, representa la acción de los campos mediada por ondas electromagnéticas, mientras que el gauge de Coulomb representa la acción del campo a distancia, instantáneamente.

1.16.2. La cuadricorriente

La primera cantidad que podemos escribir como un tensor es la densidad de corriente eléctrica.

En el sistema de referencia propio de una nube de cargas, la densidad de carga eléctrica es:

$$\rho_0 = \frac{\sum q_i}{V_0}$$

En un sistema de referencia inercial arbitrario sabemos que la carga es invariante pero el volumen transforma como $V=V_0/\gamma$ de modo que la densidad en el sistema del observador:

$$\rho = \gamma \rho_0$$

Por otro lado la densidad de carga eléctrica de una nube que se mueve con velocidad \vec{v} respecto al observador es:

$$\vec{J} = \rho \vec{v} = \gamma \rho_0 \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$$

Al comparar las cantidades anteriores con el cuadrivector velocidad podemos ver que tanto ρ como \vec{J} se pueden considerar las componentes temporal y espacial del cuadrivector:

$$J_L^{\mu} = \rho_0 U_L^{\mu} : \gamma \rho_0 (1, \vec{v}_L) : (\rho, \vec{J}_L)$$

o en unidades convencionales:

$$J^{\mu}:(c\rho,\vec{J})$$

En términos de la cuadricorriente la ecuación de continuidad o de conservación de la carga se puede escribir como:

$$\begin{split} \frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} &= 0 \\ \frac{\partial \rho}{\partial t} + \sum_{i} \frac{\partial J_{Li}}{\partial x_{Li}} &= 0 \\ \frac{\partial J_{L}^{0}}{\partial x^{0}} + \sum_{i} \frac{\partial J_{Li}}{\partial x_{L}^{i}} &= 0 \end{split}$$

y usando la notación de Einstein:

$$\partial_{\mu}J^{\mu}=0$$

Definición 1.14

Derivada covariante o derivada coma. Definimos la derivada covariante o derivada coma. de un campo tensorial $A^{\alpha\beta\gamma\dots}$ como la derivada del campo respecto a una componente:

Definición 1.14 (Cont.)

$$A^{\alpha\beta\gamma\dots}_{,\mu}\equiv\partial_{\mu}A^{\alpha\beta\gamma\dots}$$

Usando la notación de la derivada coma, la ecuación de continuidad se escribe finalmente como:

$$J^{\mu}_{.u} = 0$$

Esta es la forma manifiestamente covariante de la ecuación de continudad.

1.16.3. Ecuaciones de Maxwell inhomogéneas

Habíamos escrito las ecuaciones inhomogéneas en la forma:

$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \vec{\nabla}^2 \phi = 4\pi \rho$$
$$\frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \vec{\nabla}^2 \vec{A} = \frac{4\pi}{c} \vec{J}$$

En estas ecuaciones se pueden reconocer algunas propiedades importantes para nuestro propósito:

 El operador diferencial en las dos ecuaciones se puede escribir en términos de la derivada covariante como:

$$\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \vec{\nabla}^2 = \partial_\mu \partial^\mu$$

 El lado derecho de las dos ecuaciones son las componentes de la cuadricorriente.

De este modo las ecuaciones se pueden escribir como:

$$\partial_{\mu}\partial^{\mu}\phi = \frac{4\pi}{c}J^{0}$$

$$\partial_{\mu}\partial^{\mu}\vec{A} = \frac{4\pi}{c}\vec{J}$$
(1.70)

Es decir si definimos la cantidad:

$$A^{\mu}:(\phi,\vec{A})$$

las ecuaciones inhomogéneas de Maxwell se pueden escribir de forma manifiestamente covariantes como:

$$\partial_{\mu}\partial^{\mu}A^{\nu}=rac{4\pi}{c}J^{\nu}$$

y de la naturaleza tensorial de las cantidades involucrados podemos deducir que A^{ν} es también un tensor que podríamos llamar el **cuadripotencial** electromagnético.

1.16.4. Los campos en términos tensoriales

La introducción del cuadripotencial nos permite escribir los campos eléctrico y magnético en términos tensoriales, lo que será muy útil para derivar la forma de las ecuaciones de Maxwell manifiestamente covariantes.

Por definición de los potenciales:

$$ec{B} = \vec{\nabla} \times \vec{A}$$
 $ec{E} = -\vec{\nabla}\phi - \frac{1}{c}\frac{\partial \vec{A}}{\partial t}$

Si lo escribimos en términos de las componentes explícitas del cuadripotencial obtenemos:

$$B^{i} = \sum_{j,k} \epsilon_{ijk} \partial_{j} A^{k}$$

$$E^{i} = -\partial_{i} A^{0} - \partial_{0} A^{i}$$

donde ϵ_{ijk} es el símbolo de Levi-Civita.

Una interesante simetría se produce si escribimos las componentes explícitas:

$$B^{1} = \partial_{2}A^{3} - \partial_{3}A^{2}$$

$$E^{1} = -\partial_{1}A^{0} - \partial_{0}A^{1}$$

1.16.5. El tensor de Faraday

Si usamos las componentes contravariantes de la derivada (que implican simplemente un cambio en el signo de las componentes espaciales de las derivadas) podemos escribir:

$$B^{1} = -\partial^{2}A^{3} + \partial^{2}A^{2}$$

$$E^{1} = \partial^{1}A^{0} - \partial^{0}A^{1}$$

que se puede escribir como:

$$\begin{array}{rcl} B^1 & = & -(\partial^2 A^3 - \partial^2 A^2) \\ E^1 & = & -(\partial^0 A^1 - \partial^1 A^0) \end{array}$$

De aquí, si definimos el tensor contravariante de segundo rango:

$$F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$$

Vemos que el campo eléctrico y el campo magnético se pueden escribir en términos de este tensor como:

$$B^{i} = -\epsilon_{ijk}F^{jk}$$

$$E^{i} = -F^{i0}$$

donde es importante anotar que en la primera expresión no se usa la convención de suma de Einstein.

Otra manera de verlo podría ser escribir explícitamente las componentes del tensor en coordenadas cartesianas:

$$F^{\mu\nu}: \left(egin{array}{cccc} 0 & -E_x & -E_y & -E_z \ E_x & 0 & -B_z & +B_y \ E_y & +B_z & 0 & -B_x \ E_z & -B_y & +B_x & 0 \end{array}
ight)$$

Llamamos a $F^{\mu\nu}$ el tensor electromagnético o tensor de Faraday.

Propiedades del tensor de Faraday. El tensor de Faraday tiene las siguientes propiedades:

- Antisimetría: $F^{\mu\nu} = -F^{\nu\mu}$
- Traza nula: $\sum_{\mu} F^{\mu\mu} = 0$
- Propiedad cíclica de la derivada contravariante:

$$\partial^{[\alpha}F^{\mu\nu]} \equiv \partial^{\alpha}F^{\mu\nu} + \partial^{\mu}F^{\nu\alpha} + \partial^{\nu}F^{\alpha\mu} = 0$$

- **Determinante invariante**: det $F^{\mu\nu} = (\vec{E} \cdot \vec{B})^2$
- **Escalar**: $F^{\mu\nu}F_{\mu\nu} = 2(E^2 B^2)$.

1.16.6. Ecuaciones de Maxwell y el tensor de Faraday

Las ecuaciones de Maxwell inhomogenéas las habíamos escrito como:

$$\partial_{\nu}\partial^{\mu}A^{\nu} = \frac{4\pi}{c}J^{\nu}$$

Podemos sumar y restar $\partial_{\mu}\partial^{\nu}A^{\mu}$ para obtener:

$$\partial_{\mu}(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})+\partial_{\mu}\partial^{\nu}A^{\mu}=rac{4\pi}{c}J^{
u}$$

Ahora bien, por el gauge de Lorenz:

$$\frac{1}{c}\frac{\partial \phi}{\partial t} + \vec{\nabla} \cdot \vec{A} = \partial_{\mu}A^{\mu}$$

y por lo tanto el segundo término en el lado izquierdo es cero.

Con esto las ecuaciones de Maxwell inhomogeneas se pueden escribir en términos del tensor de Faraday como:

$$F^{\mu\nu}_{,\mu} = \frac{4\pi}{c} J^{\nu}$$

Qué es la forma manifiestamente covariante de las ecuaciones inhomogéneas de Maxwell.

¿Y las ecuaciones de Maxwell homogéneas?. Estas ecuaciones son:

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$$
(1.71)

Vemos que se trata de 4 ecuaciones que se pueden escribir también en la forma:

$$\begin{array}{lll} \partial_1 B_x + \partial_2 B_y + \partial_3 B_z & = & 0 \\ \partial_0 B_x + \partial_2 E_z - \partial_3 E_y & = & 0 \\ \partial_0 B_y + \partial_3 E_x - \partial_1 E_z & = & 0 \\ \partial_0 B_z + \partial_1 E_y - \partial_2 E_x & = & 0 \end{array}$$

Reemplazando los valores del campo por las respectivas entradas del vector de Faraday estas ecuaciones se pueden escribir como:

$$\begin{array}{lll} \partial_1 F^{32} + \partial_2 F^{13} + \partial_3 F^{21} & = & 0 \\ \partial_0 F^{32} + \partial_2 F^{30} - \partial_3 F^{20} & = & 0 \\ \partial_0 F^{13} + \partial_3 F^{10} - \partial_1 F^{30} & = & 0 \\ \partial_0 F^{21} + \partial_1 F^{20} - \partial_2 F^{10} & = & 0 \end{array}$$

Si se cambian las derivadas covariantes por derivadas contravariantes y se reorganizan los índices, se obtienen expresiones que recuerdan una propiedad introducida antes:

$$\begin{array}{lll} \partial^{1}F^{23} + \partial^{2}F^{31} + \partial^{3}F^{12} & = & 0 \\ \partial^{0}F^{32} + \partial^{3}F^{20} + \partial^{2}F^{03} & = & 0 \\ \partial^{0}F^{13} + \partial^{1}F^{30} + \partial^{3}F^{10} & = & 0 \\ \partial^{0}F^{21} + \partial^{2}F^{10} + \partial^{1}F^{02} & = & 0 \end{array}$$

que no son otra cosa que la propiedad cíclica de la derivada contravariante del tensor de Faraday:

$$\partial^{[\alpha}F^{\mu\nu]}=0$$

1.16.7. La fuerza de Lorentz

La fuerza de Lorentz para una sola partícula es:

$$\vec{F} = q\vec{E} + \frac{1}{c}q\vec{v} \times \vec{B}$$

Escribiendo explícitamente la componente *x* queda:

$$\frac{\mathrm{d}p_x}{\mathrm{d}t} = \frac{q}{c}(cE_x + v_yB_z - v_zB_y)$$

Multiplicando por γ a ambos lados podemos escribir:

$$\frac{\mathrm{d}P^1}{\mathrm{d}\tau} = \frac{q}{c}(U^0 F^{10} - U^2 F^{12} - U^3 F^{13})$$

De donde podemos proponer la generalización para calcular la cuadrifuerza:

$$f^{\mu} = \frac{q}{c} F^{\mu\nu} U_{\nu}$$

que llevada a un conjunto de cargas se puede escribir como:

$$f^{\mu} = F^{\mu\nu} J_{\nu}$$

Transformación de los campos 1.16.8.

Llegados a este punto podemos encontrar las leyes de transformación de los campos eléctricos y magnético.

Síntesis 1.16.9.

En síntesis la dinámica de cargas y campos electromagnéticos clásicos se describen con:

$$F^{[\mu\nu,\alpha]} = 0 \tag{1.72}$$

$$F^{\mu\nu}_{,\mu} = \frac{4\pi}{c} J^{\mu} \tag{1.73}$$

$$J^{\mu}_{,\nu} = 0$$
 (1.74)
$$f^{\mu} = F^{\mu\nu} J_{\nu}$$
 (1.75)

$$f^{\mu} = F^{\mu\nu} J_{\nu} \tag{1.75}$$

donde $F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ y el cuadripotencial cumple $A^{\mu}_{,\mu} = 0$ (gauge de Lorenz).

Problemas Seleccionados 1.17.

1. Demostración de las derivadas. Demostrar que las derivadas parciales respecto a las coordenadas del espacio-tiempo transforman como:

$$\frac{\partial}{\partial x^{\mu'}} = \Lambda^{\nu}_{\mu'} \frac{\partial}{\partial x^{\nu}}$$

2. Invariancia de la norma de Minkowski. Demostrar que la norma de Minkowski:

$$ds^2 = dt^2 - dx_L^2 - dy_L^2 - dz_L^2$$

es invariante bajo transformaciones de Lorentz-Einstein.

3. **Invariancia de la norma de Minkowski**. Demostrar que la métrica $g_{\mu\nu}$ definida como:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

dond ds^2 es un invariante, es un tensor covariante de rango 2.

4. **Componentes de la cuadriaceleración**. Partiendo de la definición de cuadrivelocidad demostrar que las componentes de la cuadriaceleración son:

$$A_L^{\mu}: \gamma^4(\vec{a}_L \cdot \vec{v}_L, \vec{a}_L)$$

 Transformación de la fuerza. Dado que la componente espacial de la fuerza transforma como:

$$\gamma_v ec F_L = \gamma_{v'} ec F_L' + \left(rac{\gamma_u - 1}{u_L^2} ec u_L \cdot \gamma_{v'} ec F_L' + \gamma_u \gamma_{v'} ec \mathcal{F}_L' \cdot ec v_L'
ight) ec u_L$$

mostrar que si la velcidad de la partícula es paralela a la velocidad relativa de los sistemas de referencia, las componentes paralela y perpendicular de la fuerza transforman como:

\begin{eqnarray}

\nonumber

 $F_\operatorname{\& = \& \frac{\alpha_u^{-1}F'_{L\leq v}}{1+|\operatorname{vec}\{v\}'_L \cdot \|e^{u}_L} \le \operatorname{eqnarray}$

 Transformación de la fuerza. Demostrar que la ley de atracción gravitacional de Newton:

$$\vec{F} = \frac{GMm}{R^3}\vec{R}$$

no tranforma de acuerdo a las reglas de transformación de Lorentz-Einstein para la trifuerza y por lo tanto no puede usarse en dinámica relativista.

Bibliografía

