Projet 3: Attaque de réseaux de neurones

Joachim Dublineau, Elie Kadoche, Thomas Petiteau

Sommaire

- ☐ Attaque FGSM Implémentation et performances
- ☐ Attaque PGD Implémentation et performances
- □ Défense de réseau

Attaque FGSM

FGSM

Calcul d'une image adversarial:

$$adv_x = x + \epsilon * sign(\nabla_x L(x, y))$$

Attaque PGD

$$egin{aligned} x_{t+1} &= \Pi_{\mathcal{B}(0,\epsilon)}(x_t + \eta * sign(
abla_x L_{ heta}(x,y)) \end{aligned}$$

Implémentation

- Calcul du gradient par batch
- Step: $\eta = 0.1$
- Eps = 1
- Condition de convergence: $||x_{t+1} x_t|| < \lambda^{-1}$
 - λ est en général pris à 0.001
- Les attaques sont générées que sur les images bien prédites par le modèle

Performances et résultats

Temps de calcul:

~1sec\image sur i5 2.5 GHz

Efficacité des attaques avec ε:

Introduction des images adversariales dans la loss:

$$L(\theta, x, y) = \alpha \times l(\theta, x, y) + (1 - \alpha) \times l(\theta, x + \epsilon * sign(\nabla_x l(x, y), y))$$

