Math 435 08/22/2025 Notes

August 27, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Definition 1. $f: A \to B$ is injective iff $f(x_1) = f(x_2)$ implies $x_1 = x_2$ for all $x_1, x_2 \in A$.

Definition 2. $f: A \to B$ is surjective iff for all $y \in B, \exists x \in A$ with y = f(x), or Im(f) = B.

Proposition 1. A function $f: A \to B$ is injective iff $f \circ g_1 = f \circ g_2$ implies $g_1 = g_2$ for all sets X and functioning $g_1, g_2: X \to A$.

Figure 1: Left Cancellation for Injectivity

Proof:

(Direction 1) Let X, g_1, g_2 be given as above. We must show that $g_1 = g_2$, i.e. $g_1(x) = g_2(x)$ $\forall x \in X$. Well,

$$f(g_1(x)) = f \circ g_1(x) = f \circ g_2(x) = f(g_2(x)). \tag{1}$$

But, f is injective, so $g_1(x) = g_2(x)$.

(Direction 2) Assume $f \circ g_1(x) = f \circ g_2(x) \Rightarrow g_1 = g_2$. Let $a_1, a_2 \in A$ such that $f(a_1) = f(a_2)$. Then we need to show that $a_1 = a_2$. Let X be a set with one element, $X = \{x\}$. Define $g_1(x) = a_1$ and $g_2(x) = a_2$. Then,

$$f \circ g_1(x) = f(a_1) = f(a_2) = f \circ g_2(x).$$
 (2)

So,

$$a_1 = g_1(x) = g_2(x) = a_2.$$
 (3)

Proposition 1 is significant because we can now characterize injectivity without referencing set elements!

Proposition 2. A function $f: A \to B$ is surjective iff $g_1 \circ f = g_2 \circ f$ implies $g_1 = g_2$ for all X, $g_1, g_2: B \to X$.

Proof is exercise.

Figure 2: Right Cancellation for Surjectivity

Definition 3. Given a set A, the identity function, $id_A : A \to A$ is defined by $id_A(a) = a$ for all $a \in A$.

Definition 4. Given $f: A \to B$, a function $g: B \to A$ is a right inverse if $f \circ g = id_B$.

Definition 5. Given $f: A \to B$, a function $g: B \to A$ is a left inverse if $g \circ f = id_A$.

Proposition 3. Every injective function has a left inverse.

Proof is exercise.

Proposition 4. Every surjective function has a right inverse iff ZFC.

Proof:

Definition 6. Axiom of Choice (ZFC): Given any set X whose elements are non-empty sets, there exists a choice function $c: X \to A$ such that $c(A) \in A$, for all $A \in X$.

Let $f: A \to B$ be surjective. We want to show that there exits $g: B \to A$ with $f \circ g = id_B$. By surjectivity, for every $b \in B$, the fiber $f^{-1}(b)$ is non-empty. By ZFC $\exists c$ such that for all $b \in B$,

$$c(f^{-1}(b) \in f^{-1}(b).$$
 (4)

Well, $f(c(f^{-1}(b))) = b$. Define $g(b) = c(f^{-1}(b))$ for all $b \in B$. Then $f \circ g(b) = b$, and g is a right inverse.