Assignment: ECG Signal Processing and Analysis

Objective:

Analyze real-world ECG signal data and apply biomedical signal processing concepts to understand heart activity, signal noise, and system interactions.

Instructions:

- Answer all questions with detailed explanations and justifications.
- Use graphs, tables, and statistical analyses where applicable.
- Submit a report along with MATLAB/Python code for signal analysis and visualization.

1. Data Exploration

Load the ECG dataset and display the first five rows. Identify the key signal parameters available.

2. ECG Signal Behavior Analysis

- Plot the raw ECG signal over time. Identify and annotate the P, Q, R, S, and T wave points in the ECG signal.
- What trends do you observe using FFT(Fast Fourier Transform)/ Spectrum Analysis.
- Calculate the average heart rate (BPM) based on detected R-peaks.

3. Feature Extraction and Correlations

- Extract RR intervals and plot their distribution.
- Analyze the effect of noise (e.g., PLI (POWER LINE INTERFERENCE 50 HZ/60HZ) on the ECG signal.
- What trends do you observe using FFT(Fast Fourier Transform)/ Spectrum Analysis?

4. Noise Reduction and Signal Processing

- Apply a notch filter (50/60Hz) to remove PLI and high-frequency noise. Compare the filtered and unfiltered signals.
- Suggest additional methods to enhance ECG signal quality in real-time applications.
- What trends do you observe using FFT(Fast Fourier Transform)/ Spectrum Analysis.
- Calculate the mean and standard deviation of ECG amplitudes Before and after added noise.

5. Practical Implementation (Answer in Brief)

- If you were designing a real-time ECG monitoring system, what logic would you use to detect arrhythmias?
- How can ECG signal features be used to predict cardiovascular diseases?
- Discuss the potential of wearable ECG devices for continuous health monitoring.

Submission Requirements

- A detailed report with answers, All graphs including FFT, and explanations.
- MATLAB/Python code (if applicable) for ECG analysis and visualization.
- Recommendations on improving real-time ECG signal monitoring systems.