Write your name here Surname	Other r	names
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced Subsidi Unit 3B: Chemistry	ary	s I Alternative
Wednesday 8 May 2013 - Time: 1 hour 15 minute	_	Paper Reference 6CH07/01
Candidates may use a calcu	.lata	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions. Write your answers in the spaces provided.

- 1 Tests were carried out on compounds **X**, **Y** and **Z**. Complete the tables below.
 - (a) Compound **X** is a white, water-soluble solid.

	Test	Observation	Inference (Name or formula)	
(i)	Flame test	Lilac flame		(1)
(ii)	To a solution of X , add barium chloride solution and acidify with hydrochloric acid		Sulfate ions absent	(1)
(iii)	To a solution of X , add dilute nitric acid followed by		lodide ions present	(2)
(iv)	Add concentrated aqueous ammonia solution to the mixture remaining from test (iii)		Confirms presence of iodide ions	(1)

(1)

(b) Compound Y is a white solid that is insoluble in water.

	Test	Observation	Inference (Name or formula)	
(i)	Flame test	Yellow-red (brick red) flame		(1)
(ii)	Add dilute hydrochloric acid to Y	The mixture fizzed and the solid		
	Bubble the gas through	It turned milky	CO ₂ evolved	(2)

(iii) The	formula	of Y is:	

(1)

(c) **Z** is a colourless organic liquid with only one functional group. **Z** is completely miscible with water to form a neutral solution.

	Test	Observation	Inference	
(i)	Add bromine water to Z	No colour change		(1)
(ii)	Add solid phosphorus(V) chloride, PCI ₅ , to Z	Misty fumes (of hydrogen chloride)		(1)
(iii)	Warm Z with potassium dichromate(VI) solution and dilute sulfuric acid	Colour changes from orange to green	Z could be or	
				(2)

(d) The composition by mass of $\bf Z$ is C 60.0%, H 13.3%, O 26.7%.

(i) Calculate the empirical formula of **Z**.

(2)

(ii) The molecular formula of **Z** is the same as its empirical formula. Give the **displayed** formulae of the two possible isomers of **Z**.

(2)

(Total for Question 1 = 18 marks)

- 2 An experiment to determine the enthalpy change of reaction between aqueous copper(II) sulfate and zinc was carried out as follows.
 - 1. 50.0 cm³ of copper(II) sulfate solution, of concentration 1.00 mol dm⁻³, was placed in a polystyrene cup.
 - 2. The temperature of the solution was measured with a 0 110 $^{\circ}$ C thermometer and was found to be 23.0 $^{\circ}$ C.
 - 3. Zinc powder with a mass of 5 g (an excess) was added to the solution with vigorous stirring and the highest temperature recorded was 69.5 °C.
 - (a) (i) Write the **ionic** equation for the reaction between zinc and aqueous copper(II) ions, including state symbols.

(2)

- (ii) Calculate the quantity of heat energy produced in the experiment above, giving your answer in J. (Assume that the heat capacity of the mixture is $4.18 \text{ J g}^{-1} \, ^{\circ}\text{C}^{-1}$ and its density is $1.00 \, \text{g cm}^{-3}$.) Use the expression
 - energy transferred in joules = mass \times specific heat capacity \times temperature change

(iii) Calculate the number of moles of copper(II) sulfate used in the experiment.

(1)

(iv) Use your answers from (a)(ii) and (a)(iii) to calculate the enthalpy change for the reaction in kJ mol ⁻¹ . Give your answer to three significant figures and include the appropriate sign.	(2)
 (b) The thermometer used in this experiment gave an uncertainty in each temperature reading of ±0.5 °C. (i) State the maximum temperature difference in this experiment that could have been obtained using this thermometer. 	(1)
(ii) What is the percentage error in the temperature change using this thermometer?	(1)
(c) Using the same equipment , together with a stop clock, suggest a procedure that would improve the accuracy of this experiment by obtaining a more accurate temperature change. You must use the same mass of zinc powder and the same volume of 1.00 mol dm ⁻³ copper(II) sulfate solution.	(4)
(Total for Question 2 = 13 ma	arks)

3	alcohol with sodium chloride or bromide, in the presence of 50% aqueous sulfuric acid.										
		kanes cannot be made from sodium iodide and sulfuric acid; red phosphorus dine can be used instead as the halogenating agent.									
	(a) (i)	What would you see if concentrated sulfuric acid was added to solid sodium iodide? Give two observations.	(2)								
1											
	(ii)	Explain why sodium iodide and sulfuric acid cannot be used to make iodoalkanes from alcohols.									
			(2)								
		ve the equation for the reaction between phosphorus and iodine to form osphorus(III) iodide. State symbols are not required.									
			(1)								

(c) A preparation of 1-iodobutane is given in outline below.

Procedure

- 1. Suitable quantities of red phosphorus and butan-1-ol are placed in a round-bottomed flask fitted with a reflux condenser.
- 2. The mixture is heated until it boils gently and then the heat source is removed.
- 3. A suitable quantity of powdered iodine is added in small portions down the condenser at a rate which just maintains gentle boiling. The reaction should be allowed to subside after each addition.
- 4. After the addition of iodine is complete, the mixture is heated under reflux for 30 60 minutes, until little or no iodine is visible.
- 5. The apparatus is allowed to cool and the condenser rearranged for distillation.
- 6. The crude 1-iodobutane is distilled off until the residue in the distilling flask is about one-fifth of its original volume. Double its volume of water is added and the distillation continued until no more oily drops condense into the receiver.
- 7. The crude 1-iodobutane is separated and washed with dilute sodium thiosulfate solution and then with dilute sodium carbonate solution.
- 8. The organic layer is separated and allowed to stand over anhydrous calcium chloride.
- (i) What does the manner in which the iodine is added in **step 3** suggest about the nature of the reaction?

(1)

(ii) Completion of **step 4** requires that 'little or no iodine is visible'. State what you would look for in this step to ensure that this is true.

(1)

(iii) Draw the apparatus that is used in step 6 for distillation.	(3)
(iv) Suggest why the first washing of the product in step 7 is with dilute sodium thiosulfate solution rather than with water alone.	(1)
(v) State why calcium chloride used in step 8 must be anhydrous.	(1)
(vi) To complete the preparation, after decanting the mixture from the calcium chloride, there should be a step 9. What is this step?	(1)

(d)	Chloroalkanes can be made from an alcohol and phosphorus(V) chloride, PCI	5 °
	The equation for the reaction of butan-1-ol with PCI _s is	,

$$CH_3CH_2CH_2CH_2OH + PCI_5 \rightarrow CH_3CH_2CH_2CH_2CI + HCI + POCI_3$$

This reaction is not suitable for the manufacture of 1-chlorobutane on a large scale.

(i) In a laboratory preparation of 1-chlorobutane, 95.0 g of butan-1-ol was used. Calculate the maximum mass of 1-chlorobutane that could be obtained.

(Assume the molar masses are, in g mol⁻¹, butan-1-ol = 74.0, 1-chlorobutane = 92.5) (2)

(ii) In practice, 95.3 g of 1-chlorobutane was obtained. Calculate the percentage yield.

(1)

(iii) Give **one** reason why the actual yield is lower than the maximum possible yield.

(1)

(iv) Give **two** reasons why this reaction would not be used industrially to make 1-chlorobutane.

(2)

(Total for Question 3 = 19 marks)

TOTAL FOR PAPER = 50 MARKS

BLANK PAGE

BLANK PAGE

	0 (8)	(18) 4.0 He hetium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	궃	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86		P																																																																
	7	(71)	19.0	L	fluorine 9	35.5	ַם ז	cntorne 17	79.9		bromine 35	126.9	_	iodine 53	[210]	At	astatine 85		en reporte		175	3	lutetium 71	[257]	۲	lawrencium 103																																																									
	9	(16)	16.0	0	oxygen 8	32.1		16	79.0	_	selenium 34	127.6	Б	tellurium 52	[509]	9	polonium 84		16 have be ticated		173		ytterbium 70	[254]		nobelium li																																																									
	2	(15)	14.0	z	nitrogen 7	31.0	۵.	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83	nbers 112-1 Illy authen		Elements with atomic numbers 112-116 have been reported but not fully authenticated		tomic numbers 112- but not fully authen		tomic numbers 112- but not fully auther		tomic numbers 112- but not fully authen		tomic numbers 112- but not fully authen		tomic numbers 112- but not fully authen		tomic numbers 112- but not fully authen		tomic numbers 112- but not fully auther		rtomic numbers 112. but not fully authe		nbers 112. ully authe		nbers 112. Jily auther		nbers 112- ully auther		nbers 112- Jily auther		nbers 112- Jily auther	nbers 112- ully auther	ibers 112-1 Ily authen		bers 112-1 lly authent		ibers 112-1 Ily authen		nbers 112-1 Illy authen		ibers 112-1 Ily authent		ibers 112-1 Ily authent		nbers 112- ully auther		nbers 112-		ibers 112-		ibers 112- Ily authen		nbers 112- Illy auther		nbers 112- Illy authen		nbers 112- Illy auther		ibers 112-		ibers 112-' Ily authen		169		thulium 69	[526]		mendelevium 101
	4	(14)	12.0	U	carbon 6	28.1		14	72.6	Ge	germanium 32	118.7	Sn	20 tiv	207.2	Pb	lead 82	tomic num but not fu																				stomic nur but not f	tomic nun but not fu		167	ᆸ	erbium 68	[253]		fermium 100																																					
	æ	(13)	10.8	8	boron 5	27.0	IA.	atuminium 13	69.7	Ga	gallium 31	114.8	드	indium 49	204.4	F	thallium 81		nents with		165		holmium 67	[254]	Es	einsteinium 99																																																									
ents								(12)	65.4	Zu	zinc 30	112.4	В	cadmium 48	200.6	Ę	mercury 80				163	Dy	dysprosium 66	[251]	უ	californium einsteinium 98 99																																																									
Elem								(11)	63.5	J	copper 29	107.9	Ag	silver 47	197.0	Αn	gold 79	[272]	Rg	111	159		terbium 65	[245]	æ	berketium 97																																																									
The Periodic Table of Elements								(10)	58.7	ź	nickel 28	106.4	Pq	palladium 46	195.1	7	platinum 78	[271]	Mt Ds	110	157	PS	gadolinium 64	[247]	E S	anium 96																																																									
c Tab								(6)	58.9	ပိ	cobalt 27	102.9		rhodium 45	192.2	_	iridium 77	[268]	Mt	109	152		europium 63	[243]	Am	amencium 95																																																									
riodi		1.0 — hydrogen						(8)	55.8	Fe		101.1	Ru	ruthenium 44	190.2	o	osmium 76	[277]	Hs	108	150		samarium 62	[242]	Pu	plutonium 94																																																									
he Pe								(2)	54.9	Wn	chromium manganese 24 25	[86]	ր	molybdenum technetium 42 43	186.2	Re	rhenium 75	-	Bh	107	[147]	Pm	praseodymium neodymium promethium 59 60 61	[237]	ď	neptunium plutonium americium 93 95																																																									
F			mass	pol	number			(9)	52.0	ა	chromium 24	95.9	Wo	molybdenum 42	183.8	>	tungsten 74	[392]	Sg seaborgium	106	144	PN	neodymium 60		D	uranium 92																																																									
		Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	Q Q	niobium 41	180.9	Ta	tantalum 73	[292]	do dubnium	105	141	P	ргазеодутіцт 59	[231]	Pa	protactinium 91																																																									
			relat	atc	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	Rf nutherfordium	104	140	S	cerium 58	232	£	thorium 90																																																									
			_					(3)	45.0	Sc	scandium 21	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]	AC*	89		es																																																													
	2	(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca		9.78	Sr	strontium 38	137.3	Ba	barium 56	[526]	Ra	88		* Lanthanide series	* Actinide series																																																												
	-	(£)	6.9	:	Lithium 3	23.0	Na	sodium 11	39.1	×	potassium 19	85.5	&	rubidium 37	132.9	S	caesium 55	[223]	Fr francium	87		* Lant	* Actin																																																												