Ciência de Dados Quântica 2021/22

Variational Quantum
Classification: an overview

LUÍS PAULO SANTOS

Material de Consulta

- ▶ [Schuld2021] Chap. 5
- [Abbas2021] 2021 Qiskit Global Summer School on Quantum Machine Learning:
 Building a Quantum Classifier
 https://learn.giskit.org/summer-school/2021/lec5-1-building-quantum-classifier

General framework

Near Term versus Fault Tolerant

> Fault Tolerant :

- Large number of qubits, error corrected, noise resilient
- ► Large and long programs, deep circuits
- ▶ NISQ: Noisy Intermediate Scale Quantum systems
 - ▶ Limited number of qubits, noise sensitive, decoherence
 - ▶ Short lived programs, shallow circuits

Variational Models

Variational circuit $|\varphi\rangle \longrightarrow U(\theta) \longrightarrow M |\langle z\rangle|.$

 The output is stochastic

- Multiple measurements
- Expectation value
- Probability distribution over basis states

Parameterized quantum circuit / model

Variational circuit as a classifier

► Task:

Train a parameterized quantum circuit on labelled samples for a set of classical data in order to predict label for new, unseen, data

- 1. Encode the classical data into a quantum state
- 2. Apply a parameterized model
- 3. Measure the circuit to extract labels
- 4. Use optimization to update the model's parameters

Data encoding

- $| \varphi \rangle$ is the quantum state encoding some classical data point, x^i , which is eventually a vector of multiple features: $x^i = (x_1^i, \dots, x_N^i)$
- This encoding should be made explicit: $U(\theta)|\varphi\rangle = U'(x,\theta)|0\rangle = W(\theta)S(x)|0\rangle$

State Preparation

- Basis / Amplitude / Angle encoding
- IQP
- Higher order encoding
- • •

S(x)

 $\mathcal{R}_{y}(\widetilde{x_{1}})$

 $\mathcal{R}_{y}(\widetilde{x_{2}})$

|0>

|0>

Data encoding: example

- $x^i = (x_1^i, x_2^i)$ represents a student:
 - $\rightarrow x_1$ university access grade $\in [10, 20]$
 - ▶ x_2 hours of independent work per week $\in [0, 20]$
- ▶ Angle encoding. Normalize to $[-\pi, \pi]$:

$$\widetilde{x_1} = \frac{x_1 - 10}{10} * 2\pi - \pi$$
 ; $\widetilde{x_2} = \frac{x_2}{20} * 2\pi - \pi$

▶ Higher order encoding. Normalize $\widetilde{x_1} * \widetilde{x_2}$ to $[-\pi, \pi]$:

Parameterized model

What should be the parameterized model (ansatz) ?

$$|0\rangle \longrightarrow S(x) \longrightarrow W(\theta) \longrightarrow M$$

- Problem dependent ...
- Open research question ...

Parameterized model: expressibility

Low expressibility

High expressibility

Idle circuit

$$|0\rangle - I$$

Circuit A

$$|0\rangle$$
 H R_Z $-$

Circuit B

$$|0
angle - H| - R_Z| - R_X|$$

Arbitrary unitary

$$|0\rangle - U -$$

- Expressibility depends on the data encoding and the ansatz
- High expressibility might not always be desirable

Parameterized model

- Problem dependent versus problem independent
- Hardware dependent versus hardware independent
- ▶ Hardware and problem independent common template:

Extracting labels: binary example

- \triangleright Binary classification requires distinguishing between 2 labels: y_F and y_P
- On our students example (slide 8): y_F = FAIL ; y_P = PASS
- ► Two qubit measurement example:

$$\hat{y}_F = \frac{e^{\langle z_F \rangle}}{e^{\langle z_F \rangle} + e^{\langle z_P \rangle}}$$

$$\widehat{y}_P = rac{e^{\langle z_P
angle}}{e^{\langle z_F
angle} + e^{\langle z_P
angle}}$$

Cost Function

Loss function: cross entropy

- The loss function: measurement of the dissimilarity between the true class y^i and the estimated distribution over the C classes \hat{y}^i , for data point x^i
- Cross entropy is based on the notion of entropy and compares two probability distributions
 - let y^i be a one-hot encoded vector (all 0s, except in the position corresponding to x^i true class):

$$ce(y^i, \hat{y}^i) = -\sum_{c=1}^{c} (y_c^i * \ln(\hat{y}_c^i))$$

Cost function

▶ The cost is the average of cross entropy across all M data points:

$$C(\theta^{t}) = \frac{1}{M} \sum_{i=1}^{M} ce(y^{i}, \hat{y}^{i}) = -\frac{1}{M} \sum_{i=1}^{M} \sum_{c=1}^{C} y_{c}^{i} * \ln(\hat{y}_{c}^{i})$$

Optimization

Optimization: parameters shift rule

$$\theta^{t+1} = \theta^t - \eta \, \overrightarrow{\nabla}_{\theta} C(\theta^t)$$

$$\overrightarrow{\nabla}_{\theta} \langle O \rangle_{\theta} = \boxed{0} \longrightarrow \mathbf{S}(x) \longrightarrow \mathbf{W} \left(\theta + \frac{\pi}{s}\right) \longrightarrow \mathbf{M} \longrightarrow \langle M \rangle_{\theta + \frac{\pi}{s}} - \boxed{0} \longrightarrow \mathbf{S}(x) \longrightarrow \mathbf{W} \left(\theta - \frac{\pi}{s}\right) \longrightarrow \mathbf{M} \longrightarrow \langle M \rangle_{\theta - \frac{\pi}{s}}$$

$$\vec{\nabla}_{\theta} \langle O \rangle_{\theta} = \frac{1}{s} \left[\langle O \rangle_{\theta + \frac{\pi}{s}} - \langle O \rangle_{\theta - \frac{\pi}{s}} \right]$$

For single qubit Pauli gates s=2

$$\vec{\nabla}_{\theta} \langle O \rangle_{\theta} = \frac{1}{2} \left[\langle O \rangle_{\theta + \frac{\pi}{2}} - \langle O \rangle_{\theta - \frac{\pi}{2}} \right]$$

Optimization: parameters shift rule

- ▶ The gradient has to be evaluated:
 - 1. for each parameter $heta_k$ in $ec{ heta}$
 - 2. for each data point x^m in the data set
 - 3. if there are different measurements per class, for each class c

$$\nabla_{\theta_k} \langle \sigma_z \rangle_{c,\theta_{\partial k}}^m = \frac{1}{2} \left[\langle \sigma_z \rangle_{c,\theta_k + \frac{\pi}{2}}^m - \langle \sigma_z \rangle_{c,\theta_k - \frac{\pi}{2}}^m \right]$$

▶ The evaluation of each $\langle \sigma_z \rangle$ requires multiple shots

Iterate

Update θ

$$\vec{\theta}^{t+1} = \vec{\theta}^t - \eta \, \vec{\nabla}_{\theta} C(\vec{\theta}^t) \qquad \qquad \vec{\theta}^{t+1} = \begin{pmatrix} \theta_1^t - \eta \, \nabla_{\theta_1} C(\vec{\theta}^t) \\ \vdots \\ \theta_K^t - \eta \, \nabla_{\theta_K} C(\vec{\theta}^t) \end{pmatrix}$$

Variational Quantum Algorithms

