Problem 1: (20 pts)

- (a) (5 pts) Complete the definition. Suppose $f: D \to \mathbb{R}$ and x_0 is ... Then f has a limit L at x_0 iff ...
- (b) (5 pts) State the Bolzano-Weierstrass Theorem.
- (c) (5 pts) Define what it means for the sequence $\{a_n\}_{n=1}^{\infty}$ to be Cauchy.
- (d) (5 pts) State the Sequential Limit Theorem.

Problem 2: (14 pts) Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2 - 5$. Use $\epsilon - \delta$ definition to prove that $\lim_{x \to 1} f(x) = -4$.

Problem 3: (15 pts) Suppose x is an accumulation point of the set $\{a_n \mid n \in \mathbb{N}\}$. Prove that there is a subsequence of $\{a_n\}_{n=1}^{\infty}$ that converges to x.

Problem 4: (15 pts) Suppose that $f: \mathbb{R} \to \mathbb{R}$, f(x) < 0 if x < 0, f(x) > 0 if x > 0 and $\lim_{x \to 0} f(x)$ exists. Call that limit L. Prove that L = 0. (*Hint:* Use the Sequential Limit Theorem.)

Problem 5: (12 pts) Suppose $E \subset R$ is non-empty and that $E \cup [0,1] = \emptyset$, where [0,1] denotes a closed interval.

- (a) (6 pts) Is it possible that sup E=1? If yes, give an example of such a set. If no, explain why not.
- (b) (6 pts) Is it possible that sup E=0? If yes, give an example of such a set. If no, explain why not.

Problem 6: (24 pts) Indicate by writing **T** or **F** whether each statement is true or false. **Give no proofs.**

- (1) The function $f:(0,1)\to\mathbb{R}$, defined by $f(x)=x\cos\left(\frac{1}{x}\right)$ does not have a limit at 0.
- (2) The function $f:(0,1)\to\mathbb{R}$, defined by $f(x)=\cos\left(\frac{1}{x}\right)$ does not have a limit at 0.
- (3) If x_0 is an accumulation point of a set $S \subset \mathbb{R}$, then $x_0 \in S$.
- (4) Every subsequence of a Cauchy sequence is Cauchy.
- (5) If $\emptyset \neq A \subset B \subset \mathbb{R}$ then inf $A \leq \inf B$?
- (6) Let A be the limit of the sequence $\{a_n\}_{n=1}^{\infty}$. Then every neighborhood of A contains all but finitely many members of the sequence $\{a_n\}_{n=1}^{\infty}$.
- (7) Let A be an accumulation point of the set $\{a_n \mid n \in \mathbb{N}\}$. Then every neighborhood of A contains all but finitely many elements of the set $\{a_n \mid n \in \mathbb{N}\}$.
- (8) If x and y are real numbers with $x \neq y$, then there is a neighborhood P of x and a neighborhood Q of y such that $P \cap Q = \emptyset$.