MCTG-1015

Tarea 3 Diseño de engranajes

Andre Aguirre Apolo Adrián Siabichay

Caso 3:

- Motor de jaula de ardilla para compresor reciprocante de 5 hp.
- Reducción de 1200 rpm a un rango de 390 rpm (aproximadamente).
- 10,000 horas de operación.
- 95% de confiabilidad.

Procedimiento

- 1. Proponer un diseño.
- 2. Determinar las cargas sobre los dientes de los engranajes.
- 3. Determinar el esfuerzo de flexión.
- 4. Determinar el esfuerzo de contacto.
- 5. Determinar la resistencia a la flexión.
- Determinar la resistencia al contacto.
- 7. Determinar los factores de seguridad.

- Caso seleccionado: 3
- Factor de aplicación: 1.25
- Explicación: Porque tenemos un motor eléctrico jaula de ardilla como maquina máquina impulsora y el compresor que es la máquina impulsada presenta un impacto moderado.
- Potencia corregida: 5hp * 1.25= 6.25 hp

la 8-17 Aplicación de f	actores K _a				
	Máquina impulsada				
Máquina impulsora	na impulsora Uniforme Impacto moderado Impacto fuerte				
Uniforme (motor eléctrico, turbina)	1.00	1.25	1.75 o mayor		
Impacto suave (motor de varios cilindros)	1.25	1.50	2.00 o mayor		
Impacto medio (motor de un solo cilindro)	1.50	1.75	2.25 o mayor		

TABLE 9-	1 Sugge	ested Ove	erload Facto	ors, <i>K</i> o
	Driven Ma	chine		
Power source	Uniform	Light shock	Moderate shock	Heavy shock
Uniform	1.00	1.25	1.50	1.75
Light shock	1.20	1.40	1.75	2.25
Moderate shock	1.30	1.70	2.00	2.75

- Módulo/Diametral pitch según recomendación: 1,5
- Módulo/Diametral pitch seleccionada: 2
- Explicación: se selecciona un mayor tamaño de diente para ser más conservadores y el sistema pueda resistir mayores esfuerzos.
- Ángulo de presión: 20
- Método de fabricación: fresado

- Ancho de cara seleccionado: F = ?
- 16m > F > 8m

$$\bullet \frac{8}{p_d} < F < \frac{16}{p_d}$$

- F = 16 * 2 > F > 8 * 2
- F = 32 > F > 16
- F = 30[mm]
- Por tanto, se selecciona un valor en el rango disponible entre 16 y 32, así, se elige 30[mm]

 Mínimo número de dientes para evitar interferencia: 20 y 62 (relacion de velocidad 3.1:1

- Diámetros:
- $D_P = mN_P = N_P/p_d = 2 * 20 = 40$ [mm]
- $D_G = mN_G = N_G/p_d = 2 * 62 = 124$ [mm]
- Distancia entre centros C = 164/2 = 42 [mm]

Tabla 8-5

Número mínimo de dientes del piñón para eliminar la interferencia entre un piñón con diente, a profundidad total a 20°, y los engranes de varios tamaños, a profundidad total

Número mínimo de dientes en el piñón	Número máximo de dientes en el engrane
17	1 309
16	101
15	45
14	26
13	16

- Material a utilizar: AISI 4340 acero inoxidable
- Tratamiento térmico: templado y revenido
- (Opciones: sin tratamiento, templado y revenido, solo endurecido superficialmente, etc.)
- Dureza Brinell (HB): 217

Nota: puede usar materiales de tablas en los libros o de proveedores nacionales

Paso 2: determinar cargas

• Cálculo de la velocidad lineal (verifique las unidades)

•
$$v_t = \frac{D_P}{2} * n_p = 0.04/2 * 1200 * 2\pi/60 = 2.51 [m/s]$$

• Cálculo del torque en el piñón

•
$$T_P = \frac{Potencia}{n_p} = 3.73/1200 * 2\pi/60 = 29.7 [Nm]$$

Paso 2: determinar cargas

• Cálculo de la fuerza tangencial (son iguales para piñón y engrane)

•
$$W_t = \frac{T_P}{\left(\frac{D_p}{2}\right)} = 29.7/40/2 = 1.485 \text{ [kN]}$$

- Cálculo de la fuerza radial
- $W_r = W_t \tan \emptyset = 1485 \tan(20) = 540 [N]$

Paso 3: determinar el esfuerzo de flexión

• Para determinar el esfuerzo a la flexión se utiliza la ecuación de Lewis modificada.

$$\sigma_b = \frac{W_t}{FmJ} \frac{K_a K_m}{K_v} K_s K_B K_I$$

• Se requiere determinar los diversos factores.

Factor geométrico, J

- Contacto en: punta o HPSTC
- Explicación: Dado el número de dientes y la carga aplicada se selecciona un factor geométrico aproximado.
- Para el piñón
- J = 0.24
- Para el engrane
- J = 0.29

Factor dinámico, K_{v}

- Número de calidad de su engranaje: $Q_{v}=6$
- Explicación: Como el proceso de mecanizado es fresado se escoge un valor intermedio de 6. Qv

Q_v	Procesos
3 - 4	Formado: FUNDICIÓN SINTERIZADO ESTIRADO EN FRÍO ESTAMPADO
5 - 7	Rectificado: • FRESADO • GENERACIÓN POR CREMALLERA • FORMADO POR CORTE
8 - 11	Cepillado o esmerilado

Factor dinámico, K_{v}

• $K_v = 0.8$

Factor de distribución de carga, K_m

• $K_m = 1.6$

Tabla 8-16 Factores K_m de distribución de carga				
	de cara (mm)	K _m		
<2	(50)	1.6		
6	(150)	1.7		
9	(250)	1.8		
≥20	(500)	2.0		

Factor de aplicación, K_a

• $K_a = 1.25$

Tabla 8-17 Aplicación de fa	actores <i>Ka</i>		
		Máquina impulsada	
Máquina impulsora	Uniforme	Impacto moderado	Impacto fuerte
Uniforme (motor eléctrico, turbina)	1.00	1.25	1.75 o mayor
Impacto suave (motor de varios cilindros)	1.25	1.50	2.00 o mayor
Impacto medio (motor de un solo cilindro)	1.50	1.75	2.25 o mayor

Factor de tamaño, K_s

• $K_{S} = 1$

TABLE 9-2	Suggested Size Factors, K _s			
Diametral pitch, P_d	Metric module, m	Size factor, K _s		
≥ 5	≤ 5	1.00		
4	6	1.05		
3	8	1.15		
2	12	1.25		
1.25	20	1.40		

Factor de espesor del aro, K_B

- Para esta primera iteración, asuma que el espesor del aro es igual a la altura del diente
- $m_B = 1$
- $K_B = 1.24$

$$K_B = -2m_B + 3.4$$
 $0.5 \le m_B \le 1.2$ $K_B = 1.0$ $m_B > 1.2$

Factor de engranaje loco, K_I

- No se está analizando ningún engranaje loco.
- El factor se iguala a 1 y no afecta el cálculo

Paso 3: determinar el esfuerzo de flexión

- De sesta manera se determina el esfuerzo de flexión para el piñón y el engrane.
- (Revise bien las unidades)

•
$$\sigma_b = \frac{W_t}{FmJ} \frac{K_a K_m K_s K_B K_I}{K_v} = \frac{p_d W_t}{FJ} \frac{K_a K_m K_s K_B K_I}{K_v}$$

- $\sigma_{bP} = 360.9375$ [Mpa]
- $\sigma_{bG} = 298.707$ [Mpa]

Paso 4: determinar el esfuerzo de contacto

• Para determinar los esfuerzos superficiales se emplea como base para la fórmula de resistencia contra el picado de la AGMA, la cual es

$$\sigma_c = C_p \sqrt{\frac{W_t}{FId} \frac{C_a C_m}{C_v} C_s C_f}$$

- Los factores C_a , C_m , C_v y C_s son iguales a K_a , K_m , K_v y K_s , respectivamente, como se definió en el esfuerzo a la flexión.
- Los factores que faltan calcular son I, C_p y C_f .

Factor geométrico superficial, I

• I = 0.105

Coeficiente elástico, C_p

Tabla 8-18 Coeficiente elástico C_p de la AGMA en unidades de $[psi]^{0.5}$ $([MPa]^{0.5})^{*\dagger}$

	Ep			Material	del engrane		
Material	psi	Acero	Hierro	Hierro	Hierro	Bronce al	Bronce
del piñón	(MPa)		maleable	nodular	fundido	aluminio	al estaño
Acero	30E6	2 300	2 180	2 160	2 100	1 950	1 900
	(2E5)	(191)	(181)	(179)	(174)	(162)	(158)
Hierro	25E6	2 180	2 090	2 070	2 020	1 900	1 850
maleable	(1.7E5)	(181)	(174)	(172)	(168)	(158)	(154)
Hierro	24E6	2 160	2 070	2 050	2 000	1 880	1 830
nodular	(1.7E5)	(179)	(172)	(170)	(166)	(156)	(152)
Hierro	22 <i>E</i> 6	2 100	2 020	2 000	1 960	1 850	1 800
fundido	(1.5 <i>E</i> 5)	(174)	(168)	(166)	(163)	(154)	(149)
Bronce al	17.5 <i>E</i> 6	1 950	1 900	1 880	1 850	1 750	1 700
aluminio	(1.2 <i>E</i> 5)	(162)	(158)	(156)	(154)	(145)	(141)
Bronce	16E6	1 900	1 850	1 830	1 800	1 700	1 650
al estaño	(1.1 <i>E</i> 5)	(158)	(154)	(152)	(149)	(141)	(137)

[†]Los valores de E_p en esta tabla son aproximados; se utilizó v = 0.3 como una aproximación de la razón de Poisson para todos los materiales. Si existen números más precisos de E_p y v, éstos se deberían emplear en la ecuación 7.23 para determinar C_p .

Factor de acabado superficial, C_f

• En este caso $\mathcal{C}_f=1$ para engranes fabricados con métodos convencionales.

Paso 4: determinar el esfuerzo de contacto

Ahora se ingresan todos los factores

•
$$\sigma_c = C_p \sqrt{\frac{W_t}{FId} \frac{C_a C_m}{C_v} C_s C_f}$$

• $\sigma_c = 1036.77$ [Mpa]

Paso 5: Determinar la resistencia a la flexión

• Primero se obtiene la resistencia sin corregir y luego los factores correspondientes

$$S_{fb} = \frac{K_L}{K_T K_R} S_{fb'}$$

FIGURE 9–18 Allowable bending stress number for through-hardened steel gears, s_{at} (Extracted from AGMA 2001-D04 Standard, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth, with permission of the publisher, American Gear Manufacturers Association, 1001 North Fairfax Street, 5^{th} floor, Alexandria, VA 22314) [Reference 6]

Factor de vida, K_L

- Vida mínima: 10000 horas
- Número de ciclos
- Para el piñón:
- $N = 1200 \, rev * 60min * 10000h = 7.2E8ciclos$
- Para el engrane:
- • N = 390rev * 60min * 10000h = 2.3E8ciclos

Factor de vida, K_L

• El factor de vida, K_L , varía según el número de ciclos al que se va a someter el engranaje.

Factor de temperatura, K_T

- $K_T = 1$
- Explicación: La temperatura es menor a 121

Factor de confiabilidad, K_R

• $K_R = 0.96$

Tab	la	8-	1	9
-----	----	----	---	---

Factor K_R de la AGMA

% de confiabilidad	K _R
90	0.85
99	1.00
99.9	1.25
99.99	1.50

Paso 5: Determinar la resistencia a la flexión

Para el piñón

•
$$S_{fbP} = \frac{K_L}{K_T K_R} S_{fb} = 191.67$$

• Para el engrane

•
$$S_{fbG} = \frac{K_L}{K_T K_R} S_{fb} = 204.17$$

Paso 6: Determinar la resistencia al contacto

• Determinar la resistencia al contacto.

$$\bullet \ S_{fc} = \frac{c_L c_H}{c_T c_R} S_{fc}'$$

• Los factores C_T y C_R son iguales a K_T y K_R , respectivamente.

FIGURE 9–19 Allowable contact stress number for through-hardened steel gears, s_{ac} (Extracted from AGMA 2001-D04 Standard, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth, with permission of the publisher, American Gear Manufacturers Association, 1001 North Fairfax Street, 5^{th} floor, Alexandria, VA 22314) [Reference 6]

Factor de vida superficial, C_L

• De manera similar al K_L con $N_p=7.2{\rm E}08$ ciclos $C_L=0.85$

Factor de razón de dureza, C_H

- $C_H = 1$
- Explicación: Ambos engranajes se fabricaran con el mismo material y tratamiento.

Paso 6: Determinar la resistencia al contacto

Ahora se puede determinar la resistencia al contacto

•
$$S_{fc} = \frac{c_L c_H}{c_T c_R} S'_{fc} = 619.79 \text{ MPa}$$

Paso 7: Determinar los factores de seguridad

• En cuanto a la flexión, los factores de seguridad para el engranaje y el piñón son:

$$N_{bP} = \frac{S_{fbP}}{\sigma_{bP}} = 0.53$$

$$N_{bG} = \frac{S_{fbG}}{\sigma_b G} = 0.68$$

Paso 7: Determinar los factores de seguridad

• El factor de seguridad para el contacto entre dientes del engranaje y el piñón es:

•
$$N_c = \left(\frac{S_{fc}}{\sigma_c}\right)^2 = 0.357$$

Modelo en Inventor

- Modele el par de engranajes propuestos en Inventor.
- Capture todas las medidas geométricas importantes desde el ayudante.

Conclusiones y comentarios

- Norton sugiere que el factor de seguridad a la flexión sea mayor a 2, mientras que Mott sugiere que esté entre 1 y 1.5. ¿Cumple o no cumple? En el diseño generado no se cumple con este requerimiento ya que ambos factores de seguridad dieron menores a 1. El del engranaje es de 0.53 y el del piñon es de 0.68
- En ambos casos se sugiere que el factor de seguridad del contacto sea mayor a 1. ¿Cumple o no cumple? El factor de seguridad de contacto salió 0.357 lo que es menor a 1 por lo que no se cumple esta condición.
- ¿El diseño sugerido funciona o no? Explique. El diseño funcionará durante unas pocas horas pero debido a los bajos factores de seguridad se sabe que no podrá llegar hasta las 10000 horas de funcionamiento como fue requerido.
- En caso de que los factores de seguridad no sean satisfactorios, ¿qué cambios le haría al diseño para que lo sean? Se debe volver a realizar iteraciones hasta llegar a un diseño que cumpla con lo requerido.
- El factor mb se debe definir según la geometría del engranaje para poder mayor precisión al realizar los cálculos.