## Teoria dos Números: Relações de Congruência (1.6)

Prof. Rafael Alves Bonfim de Queiroz rafael.queiroz@ufop.edu.br



## Contéudo programático

• 1.6) Relação de congruência

## Relação de congruência

- Seja m um inteiro positivo. Dizemos que a é congruente a b módulo m, escrito
  - $a \equiv b \pmod{m}$  ou simplesmente  $a \equiv b \pmod{m}$  se m divide a diferença a b.
- O inteiro m é chamado de módulo. A negação de  $a \equiv b \pmod{m}$  é escrita  $a \not\equiv b \pmod{m}$ .
- Por exemplo
  - **1**  $87 \equiv 23 \pmod{4}$  já que 4 divide 87 23 = 64.
  - ②  $67 \equiv 1 \pmod{6}$  já que 6 divide 67 1 = 66.
  - **3**  $72 \equiv -5 \pmod{7}$  já que 7 divide 72 (-5) = 77.
  - **3**  $27 \not\equiv 8 \pmod{9}$  já que 9 não divide 27 8 = 19.

## Relação de congruência

**Teorema**: Seja *m* um inteiro positivo. Então:

- (i) Para qualquer inteiro a, temos  $a \equiv a \pmod{m}$ .
- (ii) Se  $a \equiv b \pmod{m}$ , então  $b \equiv a \pmod{m}$ .
- (iii) Se  $a \equiv b \pmod{m}$  e  $b \equiv c \pmod{m}$ , então  $a \equiv c \pmod{m}$ .

## Relação de congruência

**Observação**: Suponha que m seja positivo e a seja qualquer número inteiro. Pelo Algoritmo da Divisão, existem inteiros q e r com  $0 = r \le m$  tal que a = mq + r. Por isso mq = a - r ou m|(a-r) ou  $a \equiv r \pmod{m}$  De acordo:

- **1** Qualquer inteiroa é congruente módulo m a um único inteiro no conjunto  $\{0,1,2,\cdots,m-1\}$  A unicidade vem do fato de que m não pode dividir a diferença de dois desses inteiros.
- ② Quaisquer dois inteiros a e b são congruentes módulo m se e somente se eles tiverem o mesmo resto quando divididos por m.

#### Classes de Resíduos

- Como o módulo de congruência m é uma relação de equivalência, ela particiona o conjunto Z de inteiros em classes de equivalência disjuntas chamadas de classes de resíduos módulo m.
- Pelas observações acima, uma classe de resíduo consiste em todos aqueles inteiros com o mesmo resto quando divididos por m.
- Portanto, existem m tais classes de resíduos e cada classe resíduo contém exatamente um dos inteiros no conjunto de restos possíveis, isto é,  $\{0,1,2,\cdots,m-1\}$
- De um modo geral, um conjunto de m inteiros  $\{a_1, a_2, \dots, a_m\}$  é dito ser um **sistema de resíduos completo** módulo m se cada  $a_i$  vem de um classe distinta de resíduos.
- Nesse caso, cada ai é chamado de representante de sua classe de equivalência.

#### Classes de Resíduos

- Assim, os inteiros de 0 a m 1 formam um sistema de resíduos completo.
- De fato, quaisquer m inteiros consecutivos formam um sistema completo de resíduos módulo m
- A notação  $[x]_m$ , ou simplesmente [x] é usada para denotar a classe de resíduo (módulo m) contendo um inteiro x, que ou seja, aqueles inteiros que são congruentes a x.
- Em outras palavras,  $[x] = \{a \in \mathbb{Z} | a \equiv x (modm)\}$
- Assim, as classes de resíduos podem ser denotadas por [0], [1], [2],  $\cdots$ , [m-1] ou usando qualquer outra escolha de números inteiros em um sistema de resíduos completo.

## Classes de Resíduos: Exemplo

As classes de resíduos módulo m = 6 seguem:

- $[0] = \{..., -18, -12, -6, 0, 6, 12, 18, ...\},\$
- $[1] = \{..., -17, -11, -5, 1, 7, 13, 19, ...\},$
- $[2] = {..., -16, -10, -4, 2, 8, 14, 20, ...},$
- $[3] = {..., -15, -9, -3, 3, 9, 15, 21, ...}$
- $[4] = \{..., -14, -8, -2, 4, 10, 16, 22, ...\}$
- $[5] = {..., -13, -7, -1, 5, 11, 17, 23, ...}$
- Observe que  $\{-2, -1, 0, 1, 2, 3\}$  também é um sistema de resíduo completo módulo m=6, e esses representantes têm valores absolutos mínimos.

## Aritmética de congruência

A congruência A relação comporta-se muito como a relação de igualdade. Nomeadamente:

- Teorema: Suponha  $a \equiv c \pmod{m}$  e  $b \equiv d \pmod{m}$ . Então:
  - $(i) a + b \equiv c + d \pmod{m};$
  - $(ii) ab \equiv cd \pmod{m}$
- Observação: Suponha que p(x) seja um polinômio com coeficientes inteiros. Se  $s \equiv t \pmod{m}$ , então usando o teorema acima repetidamente podemos mostrar que  $p(s) \equiv p(t) \pmod{m}$ .

## Aritmética de Congruência: Exemplo

Observe que  $2 \equiv 8 \pmod{6}$  e  $5 \equiv 41 \pmod{6}$ . Então:

- (a)  $2 + 5 \equiv 8 + 41 \pmod{6}$  ou  $7 \equiv 49 \pmod{6}$
- (b)  $2 \cdot 5 \equiv 8 \cdot 41 \pmod{6}$  ou  $10 \equiv 328 \pmod{6}$
- (c) Suponha  $p(x) = 3x^2 7x + 5$ . Então p(2) = 12 14 + 5 = 3 e p(8) = 192 56 + 5 = 141 Daí  $3 \equiv 141 \pmod{6}$ .

#### Aritmética das classes de resíduos

- A adição e a multiplicação são definidas para nossas classes de resíduos módulo m da seguinte forma: [a] + [b] = [a + b] e [a][b] = [ab]
- Por exemplo, considere as classes de resíduos módulo m=6; aquilo é, [0],[1],[2],[3],[4],[5]
- Então [2] + [3] = [5], [4] + [5] = [9] = [3], [2][2] = [4], [2][5] = [10] = [4]
- O conteúdo do Teorema anterior nos diz que as definições acima estão bem definidas, ou seja, a soma e o produto de as classes de resíduos não dependem da escolha do representante da classe de resíduos

#### Aritmética das classes de resíduos

- Existe apenas um número finito m de classes de resíduos módulo m.
- Assim, pode-se facilmente escrever explicitamente suas tabelas de adição e multiplicação quando m é pequeno.
- A figura abaixo mostra as tabelas de adição e multiplicação para as classes de resíduos módulo m = 6.

| + | 0 | 1 | 2 | 3 | 4 | 5 | × | ( | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 0 | ) | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 2 | 3 | 4 | 5 | 0 | 1 |   | 0 | 1 | 2 | 3 | 4 | 5 |
|   | 2 |   |   |   |   |   |   |   | 0 |   |   |   |   |   |
|   | 3 |   |   |   |   |   |   |   | 0 |   |   |   |   |   |
|   | 4 |   |   |   |   |   |   |   | 0 |   |   |   |   |   |
| 5 | 5 | 0 | 1 | 2 | 3 | 4 | 5 | ; | 0 | 5 | 4 | 3 | 2 | 1 |

 Por conveniência de notação, omitimos os colchetes e simplesmente denotamos as classes de resíduos pelos números 0, 1, 2, 3, 4, 5.

## Inteiros Módulo $m, Z_m$

- Os inteiros módulo m, denotados por  $Z_m$ , referem-se ao conjunto  $Z_m = \{0,1,2,3,\cdots,m-1\}$  onde a adição e a multiplicação são definidas pelo módulo aritmético m ou, em outras palavras, o correspondente operações para as classes de resíduos.
- Por exemplo, a figura abaixo também pode ser vista como tabelas adição e multiplicação por  $Z_6$

| + | 0                          | 1 | 2 | 3 | 4 | 5 |  |
|---|----------------------------|---|---|---|---|---|--|
| 0 | 0<br>1<br>2<br>3<br>4<br>5 | 1 | 2 | 3 | 4 | 5 |  |
| 1 | 1                          | 2 | 3 | 4 | 5 | 0 |  |
| 2 | 2                          | 3 | 4 | 5 | 0 | 1 |  |
| 3 | 3                          | 4 | 5 | 0 | 1 | 2 |  |
| 4 | 4                          | 5 | 0 | 1 | 2 | 3 |  |
| 5 | 5                          | 0 | 1 | 2 | 3 | 4 |  |

| × | 0<br>0<br>0<br>0<br>0<br>0 | 1 | 2 | 3 | 4 | 5 |
|---|----------------------------|---|---|---|---|---|
| 0 | 0                          | 0 | 0 | 0 | 0 | 0 |
| 1 | 0                          | 1 | 2 | 3 | 4 | 5 |
| 2 | 0                          | 2 | 4 | 0 | 2 | 4 |
| 3 | 0                          | 3 | 0 | 3 | 0 | 3 |
| 4 | 0                          | 4 | 2 | 0 | 4 | 2 |
| 5 | 0                          | 5 | 4 | 3 | 2 | 1 |

Não há diferença essencial entre  $Z_m$  e a aritmética do resíduo classes módulo m, e por isso serão usadas de forma intercambiável.

## Leis de Cancelamento para Congruências

• Lembre-se de que os inteiros satisfazem o seguinte:

Lei do cancelamento: Se ab = ac e  $a \neq 0$ , então b = c.

- A diferença crítica entre a aritmética ordinária e a aritmética módulo m é que o cancelamento acima a lei não é verdadeira para congruências. Por exemplo,  $3 \cdot 1 \equiv 3 \cdot 5 \pmod{6}$  mas  $1 \not\equiv 5 \pmod{6}$
- Ou seja, não podemos cancelar o 3 mesmo sendo 3≠ 0 (mod 6). No entanto, temos o seguinte Modificado Lei de cancelamento para nossas relações de congruência.
- Teorema (Lei de Cancelamento Modificada): Suponha  $ab \equiv ac \pmod{m}$  e mdc(a, m) = 1. Então  $b \equiv c \pmod{m}$
- Teorema: Suponha que  $ab \equiv ac \pmod{m}$  e d = mdc(a, m). Então  $b \equiv c \pmod{m/d}$ .

## Leis de Cancelamento para Congruências: Exemplo

Considere a seguinte congruência:  $6 \equiv 36 \pmod{10}$ 

- Como mdc(3, 10) = 1 mas mdc(6, 10)  $\not\equiv$  1, podemos dividir ambos os lados da congruência por 3, mas não por 6.
- Ou seja,  $2 \equiv 12 \pmod{10}$  mas  $1 \not\equiv 6 \pmod{10}$
- Porém, pelo Teorema anterior, podemos dividir ambos os lados da congruência por 6 se também dividirmos o módulo por 2 que é igual a mdc(6, 10).
- Ou seja,  $1 \equiv 6 \pmod{5}$

## Leis de Cancelamento para Congruências: Exemplo

- Suponha que p seja primo.
- Então os inteiros de 1 a p-1 são relativamente primos de p.
- Assim, o habitual a lei do cancelamento é válida quando o módulo é um primo p.

Se 
$$ab \equiv ac \pmod{p}$$
 e  $a \not\equiv 0 \pmod{p}$ , então  $b \equiv c \pmod{p}$ 

• Assim,  $Z_p$ , os inteiros módulo a primo p, desempenham um papel muito especial na teoria dos números.

## Sistemas de Resíduos Reduzidos, Função Euler Phi

- A lei de cancelamento modificada é indicativa do papel especial desempenhado por aqueles inteiros que são relativamente primos (coprime) ao módulo m.
- Notamos que a é primo de m se e somente se todo elemento na classe de resíduo [a] é primo de m.
- Assim, podemos falar de uma classe de resíduo coprimida a m.
- O número de classes de resíduos relativamente primos para m ou, equivalentemente, o número de inteiros entre 1 e m (inclusive) que são relativamente primos a m é denotado por  $\phi(m)$
- A função  $\phi(m)$  é chamada de **função phi de Euler**.
- A lista de números entre 1 e m que são primos entre si m ou, mais geralmente, qualquer lista de  $\phi(m)$  inteiros incongruentes que são primos de m, é chamado de **resíduo reduzido módulo do sistema** m.

# Sistemas de Resíduos Reduzidos, Função Euler Phi: Exemplo

- Considere o módulo m=15. Existem oito inteiros entre 1 e 15 que são primos de 15: 1, 2, 4, 7, 8, 11, 13, 14. Assim,  $\phi(15)=8$  e os oito inteiros acima formam um sistema de resíduo reduzido módulo 15.
- ② Considere qualquer primo p. Todos os números 1, 2,  $\cdots$  , p-1 são coprimos a p; portanto  $\phi(p)=p-1$ .

## função phi de Euler - multiplicativa

- Uma função f com domínio de inteiros positivos N é dita multiplicativa se, sempre que a e b são relativamente melhor, f(ab) = f(a)f(b)
- Teorema: A função phi de Euler é multiplicativa. Ou seja, se a e b são relativamente primos, então  $\phi(ab) = \phi(a)\phi(b)$