Лемма об уточнении показателя

Для простого p и целого n через $\nu_p(n)$ будем обозначать степень вхождения p в n.

Лемма об уточнении показателя, или **LTE-лемма**. Пусть a и b — различные целые числа, k — натуральное, p — простое, не являющееся делителем a, и пусть выполнено одно из условий 1 или 2. Тогда

$$\nu_p(a^k - b^k) = \nu_p(a - b) + \nu_p(k).$$

Условие 1: $p \neq 2$, и a - b делится на p.

Условие 2: p = 2, и a - b делится на $p^2 = 4$.

- **1.** Пусть для чисел из условия ниже выполнены условия леммы об уточнении показателя. Докажите, что
 - (a) $\nu_p(a^k b^k) = \nu_p(a b)$, если k не кратно p;
 - (б) $\nu_p(a^p b^p) = \nu_p(a b) + 1$ при $p \neq 2$
 - **(в)** $\nu_p(a^k b^k) = \nu_p(a b) + \nu_p(k)$ для любого натурального k при $p \neq 2$;
 - (г) решите пункты б) и в) при p = 2.
- **2.** Докажите, что если p простое число, то $2^p + 3^p$ не может быть точной степенью натурального числа, отличной от первой.
- **3.** (а) Докажите, что показатель 2 по модулю 3^n равен $\varphi(3^n)$.
 - (б) Найдите показатель числа 1001 по модулю 2^{1001} .
- **4.** Решите уравнение $3^x = 2^x \cdot y + 1$ в натуральных числах.
- **5.** Найдите все натуральные n такие, что $(n+1)^{n!} 1$ делится на n^3 .
- **6.** Найдите все такие натуральные n, что при некоторых взаимно простых x и y и натуральном k>1 выполняется равенство $3^n=x^k+y^k$.
- 7. Докажите, что не существует натурального $a<10^{10}$ такого, что число $a^{2022}-1$ представимо в виде произведения 50 последовательных натуральных чисел.
- **8.** Докажите, что уравнение $a^n + b^n = c^n$ не имеет решений в натуральных числах для любого натурального n > 2 при $a, b, c \le n$.
- **9.** Найдите все натуральные n такие, что $\frac{2^{n}+1}{n^{2}}$ целое.