MINIPROJET 5

→ Un logiciel (simplifié) de traitement d'image

L'objectif est de créer en Python un programme capable de réaliser un certain nombre de modification d'image à la demande de l'utilisateur.

1. Travail demandé

MVP (Minimum Valuable Product)

Le programme python de traitement d'image doit au moins pouvoir faire :

• 1 changement de couleur (action de filtre)

L'utilisateur choisit un changement de couleur ou de teinte sur toute l'image et le programme affiche le résultat.

1 détourage

L'utilisateur choisit la valeur du paramètre de seuil utilisé et le programme affiche le résultat.

Plus (bonus):

- Possibilité de sauvegarder les nouvelles images créées.
- Action du filtre sur une zone précise de l'image.
- Plusieurs options de mode de détourage.
- 1 outil de déformation guelconque (cisaillement, zoom, « barbouillage », ...)
- 1 interface graphique (tkinter, ...)

2. Modalités:

- Travail par groupe de 3 ou 4, un seul fichier rendu.
- Timing

30 min : 1 étape de recherche réflexion sur papier et définition des tâches.

1h: 1er sprint

20 min : bilan et échanges, nouvelles recherches

1h: 2nd sprint et rendu

20 min : bilan et échanges, nouvelles recherches

1h : 3ème sprint et rendu final

Compétences visées :

REA	Imaginer et concevoir une solution modulaire : décomposer en blocs, se ramener à des sous- problèmes simples et indépendants
	Mettre en œuvre une solution, par la traduction d'un algorithme ou d'une structure de données dans un langage de programmation ou un langage de requête.
СОМ	Communiquer à l'oral en utilisant un langage rigoureux et des outils pertinents

3. En option: Utilisation de PIL

Pour tester quelque chose de différent par rapport au TP, nous utiliserons les fonctionnalités du module PIL directement, sans passer par une conversion *GrayMap*.

Doc de PIL : https://he-arc.github.io/livre-python/pillow/index.html

Voici quelques exemples permettant de manipuler des images numériques :

```
from PIL import Image
3
  # Ouvrir et afficher l'image
5 img = Image.open("cn.jpg")
                                                             On notera que le pixel (0, 0) est
   img.show()
                                                             situé en haut à gauche :
7
8
                                                                           800
9 # Dimensions
                                                                 (0.0)
10 largeur, hauteur = img.size
11 print("largeur : ", largeur)
                                                                         (400,300)
12 print("hauteur : ", hauteur)
                                                              600
13
14 # Obtenir la couleur (R, G, B) d'un pixel
                                                                                 image
15 R, G, B = img.getpixel((0, 0)) # pix de coord (0, 0)
16 print(R, G, B)
17
18
19 # Modifier la couleur (R, G, B) d'un pixel
                                                             (exemple pour une image
20 img.putpixel((0, 0), (255, 0, 0))
                                                             300x400)
       # le pixel de coord (0, 0) passe en rouge
```

A l'aide de boucle *for*, on peut ainsi parcourir l'image pour modifier les valeurs du tuple (R, G, B).

On peut créer et sauvegarder une image :

```
1 from PIL import Image
2 largeur=600
3 hauteur=600
4 img =Image.new('RGB', (largeur,hauteur))
5 for y in range(hauteur):
6    for x in range(largeur):
7        img.putpixel((x,y),(255,0,0))
8
9 img.show()
10 img.save("CarreRouge.png", "PNG")
```