Risk Aversion in Sovereign Debt and Default

Francisco Roch UTDT Francisco Roldán IMF

July 2025

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Macro-financial separation

- · In most RBC models, macro-financial separation holds
 - · Elasticity of intertemporal substitution determines allocations
 - · Risk aversion determines asset prices
- Sovereign debt literature typically inherits this line of thinking
 - · CRRA preferences frequent, typically $\gamma=$ 2
- · If MFS holds in sovereign debt, macro outcomes robust to different preferences
 - · In particular, calibration of output/utility costs of default
 - · Less clear about welfare effects
 - ... losses from default, debt dilution
 - ... welfare effects of banning debt, introducing state-contingent bonds

Wanting risk prices in sovereign debt

This paper

- · Show that macro-financial separation breaks in the sovereign debt model
- · Understand the impact of preferences consistent with significant risk premia
- Risk aversion
 - 1. affects higher-order moments of equilibrium
 - ... cautious behavior: stay away from default but use debt for insurance
 - 2. has limited impact on welfare comparisons
 - ... default costs adjust in calibration
 - 3. has some impact on optimal fiscal rules

Wanting risk prices in sovereign debt

This paper

- · Show that macro-financial separation breaks in the sovereign debt model
- · Understand the impact of preferences consistent with significant risk premia
- · Risk aversion
 - 1. affects higher-order moments of equilibrium
 - ... cautious behavior: stay away from default but use debt for insurance
 - 2. has limited impact on welfare comparisons
 - ... default costs adjust in calibration
 - 3. has some impact on optimal fiscal rules

Framework

· Sovereign default model without default [reduces to an income-fluctuations problem]

$$\begin{split} u\left(v(\textbf{b},\textbf{z})\right) &= \max_{b'} \ (1-\beta)u(c) + \beta u\bigg(\underbrace{g^{-1}\left(\mathbb{E}\left[g\left(v(\textbf{b'},\textbf{z'})\right) \mid \textbf{z}\right]\right)}_{= \mathbb{T}(v(\textbf{b'},\textbf{z'})\mid \textbf{z})}\bigg) \\ \text{subject to} \quad c + \kappa b &= q(\textbf{b'},\textbf{z})(\textbf{b'} - (1-\delta)b) + y(\textbf{z}) \\ b' &\leq \bar{b} \\ \text{with} \quad q(\textbf{b'},\textbf{z}) &= 1 \\ \kappa &= r + \delta \end{split}$$

We consider parametrizations of the model to vary risk aversion

... with CRRA preferences
$$g(x) = u(x) = x^{1-\sigma}$$
 so $\mathbb{T} = \mathbb{E}$
... with robustness, $u(c) = \log c$; $g(x) = x^{1-\gamma}$, so that $\mathbb{T}[X \mid \mathcal{F}] = \mathbb{E}[X^{1-\gamma} \mid \mathcal{F}]^{\frac{1}{1-\gamma}}$

3

Sovereign default model without default [reduces to an income-fluctuations problem]

$$\begin{split} u\left(\textit{v}(\textit{b},\textit{z})\right) &= \max_{\textit{b'}} \left(1-\beta\right) u(\textit{c}) + \beta u\bigg(\underbrace{g^{-1}\left(\mathbb{E}\left[g\left(\textit{v}(\textit{b'},\textit{z'})\right) \mid \textit{z}\right]\right)}_{=\mathbb{T}\left(\textit{v}(\textit{b'},\textit{z'})\mid \textit{z}\right)}\bigg) \\ \text{subject to} \quad c + \kappa b &= q(\textit{b'},\textit{z})(\textit{b'} - (1-\delta)\textit{b}) + \textit{y}(\textit{z}) \\ \quad b' \leq \bar{\textit{b}} \\ \text{with} \quad q(\textit{b'},\textit{z}) &= 1 \\ \kappa = r + \delta \end{split}$$

We consider parametrizations of the model to vary risk aversion

... with CRRA preferences
$$g(x) = u(x) = x^{1-\sigma}$$
 so $\mathbb{T} = \mathbb{E}$
... with robustness, $u(c) = \log c$; $g(x) = x^{1-\gamma}$, so that $\mathbb{T}[X \mid \mathcal{F}] = \mathbb{E}[X^{1-\gamma} \mid \mathcal{F}]^{\frac{1}{1-\gamma}}$

3

Domestic risk premia

• Price of Lucas tree [dividend y(z)]:

$$q_{L}(b,z;d) = \beta \mathbb{E}\left[\left(\frac{c(b',z';d')}{c(b,z;d)}\right)^{-\sigma} \left(\frac{v(b',z';d')}{\mathbb{T}\left[v(b',z';d')\mid z,d\right]}\right)^{\sigma-\gamma} \left(y(z';d') + q_{L}(b',z';d')\right)\mid z,d\right]$$

· Turn into yields

$$r(b',z';d') = \frac{y(z';d') + q_L(b',z';d')}{q_L(b,z;d)}$$

Compare with the yield of a risk-free asset [dividend 1]

Macro-financial separation without default

• Start from log-log $[\sigma = \gamma = 1]$: RA moves asset prices and welfare, not the macro

	loglog	$\gamma=$ 2	$\gamma=$ 5	$\gamma=$ 10	$\gamma=$ 15
Corr. NX, y (%)	-2.02	-2.01	-1.98	-1.92	-1.86
Rel. vol. cons	1.1	1.1	1.1	1.1	1.11
Risk premium (p.p.)	1.03	1.1	1.29	1.63	1.97
Debt-to-GDP (%)	30.5	30.5	30.5	30.5	30.5
Corr. deficit, y (%)	-1.64	-1.65	-1.68	-1.73	-1.78
Default freq. (%)	0	0	0	0	0
Welfare	1.028	1.027	1.024	1.019	1.015

 \dots welfare in autarky at $\gamma=$ 15 is 1.5pp lower than loglog or CRRA

Models with default

Option value of default (with small pref. shocks for numerical performance)

$$\mathcal{V}(b,z) = \max\{v_R(b,z) + \epsilon_R, v_D(b,z) + \epsilon_D\}$$

· Similar equation for value of repayment v_R , debt prices reflect default probabilities

$$q(b',z) = \frac{1}{1+r} \mathbb{E}\left[\left(1 - \mathbb{1}_{\mathcal{D}'}\right) \left(\kappa + \left(1 - \delta\right) q(b'',z')\right) \mid z\right]$$

Costs of default

$$u(v_D(b,z)) = (1-\beta)u(h(y(z))) + \beta \mathbb{T} \left[\mathbb{1}_R \mathcal{V}(B(b,z'),z') + (1-\mathbb{1}_R)v_D(b,z') \mid z \right]$$
$$h(y) = y(1-d_0-d_1y)$$

 \cdot Risk aversion \implies lack of smoothing in default costly \implies no macro-fin separation

Models with default

Option value of default (with small pref. shocks for numerical performance)

$$\mathcal{V}(b,z) = \max\{v_R(b,z) + \epsilon_R, v_D(b,z) + \epsilon_D\}$$

· Similar equation for value of repayment v_R , debt prices reflect default probabilities

$$q(b',z) = \frac{1}{1+r} \mathbb{E}\left[\left(1 - \mathbb{1}_{\mathcal{D}'}\right) \left(\kappa + \left(1 - \delta\right) q(b'',z')\right) \mid z \right]$$

Costs of default

$$u(v_D(b,z)) = (1-\beta)u(h(y(z))) + \beta \mathbb{T} \left[\mathbb{1}_R \mathcal{V}(B(b,z'),z') + (1-\mathbb{1}_R)v_D(b,z') \mid z \right]$$
$$h(y) = y(1-d_0-d_1y)$$

 \cdot Risk aversion \implies lack of smoothing in default costly \implies no macro-fin separation

Quantitative properties

Comparative statics: robustness

· Increasing RA: lower debt tolerance, slightly lower volatilities

	loglog	$\gamma=$ 2	$\gamma=$ 5	$\gamma=$ 10	$\gamma=$ 15
Avg. spread (bps)	746	760	800	873	884
Corr. NX, y (%)	-21.1	-20.7	-19.2	-15.1	-9.71
Rel. vol. cons	1.29	1.29	1.27	1.24	1.19
Risk premium (p.p.)	2.43	2.55	2.96	3.54	3.72
Debt-to-GDP (%)	17.5	17.3	16.7	15.5	13.3
Corr. deficit, y (%)	41.9	41.5	39.8	36.7	33.5
Default freq. (%)	8.33	8.47	9	10.1	11.5
Std. dev. spreads (bps)	311	321	351	408	447
Welfare	1.009	1.008	1.004	0.9988	0.9935

Comparative statics: robustness

· Increasing RA: lower debt tolerance, slightly lower volatilities

	loglog	$\gamma=$ 2	$\gamma=$ 5	$\gamma=$ 10	$\gamma=$ 15
Avg. spread (bps)	746	760	800	873	884
Corr. NX, y (%)	-21.1	-20.7	-19.2	-15.1	-9.71
Rel. vol. cons	1.29	1.29	1.27	1.24	1.19
Risk premium (p.p.)	2.43	2.55	2.96	3.54	3.72
Debt-to-GDP (%)	17.5	17.3	16.7	15.5	13.3
Corr. deficit, y (%)	41.9	41.5	39.8	36.7	33.5
Default freq. (%)	8.33	8.47	9	10.1	11.5
Std. dev. spreads (bps)	311	321	351	408	447
Welfare	1.009	1.008	1.004	0.9988	0.9935

Comparative statics: robustness

· Increasing RA: lower debt tolerance, slightly lower volatilities

	loglog	$\gamma=$ 2	$\gamma=$ 5	$\gamma=$ 10	$\gamma=$ 15
Avg. spread (bps)	746	760	800	873	884
Corr. NX, y (%)	-21.1	-20.7	-19.2	-15.1	-9.71
Rel. vol. cons	1.29	1.29	1.27	1.24	1.19
Risk premium (p.p.)	2.43	2.55	2.96	3.54	3.72
Debt-to-GDP (%)	17.5	17.3	16.7	15.5	13.3
Corr. deficit, y (%)	41.9	41.5	39.8	36.7	33.5
Default freq. (%)	8.33	8.47	9	10.1	11.5
Std. dev. spreads (bps)	311	321	351	408	447
Welfare	1.009	1.008	1.004	0.9988	0.9935

Calibration

· Add moments as more free parameters are included

	Parameter	loglog	CRRA	robust	EZ
Sovereign's discount factor	β	0.9665	0.9671	0.9711	0.9685
Sovereign's risk aversion	γ	1	2	19.78	8.145
Sovereign's EIS	σ	1	2	1	2.813
Default output cost: linear	d_1	-0.2923	-0.2891	-0.2896	-0.2859
Default output cost: quadratic	d_2	0.3171	0.3168	0.3224	0.3186
	Data	loglog	CRRA	robust	EZ
Avg. spread (bps)	815	834	800	783	722
Rel. vol. cons	0.94	1.47	1.32	1.43	1.21
Risk premium (p.p.)	3	1.03	1.82	2.78	2.93
Debt-to-GDP (%)	17.4	17.2	17.4	18.4	17.5
Std. dev. spreads (bps)	443	402	461	497	529

Calibrated output costs of default with robustness

· Calibrations with risk aversion need higher costs

Event-study of defaults

Untargeted moments

· Calibrations with robustness: not really helpful with untargeted moments

	Data	loglog	CRRA	robust	EZ
Corr. NX,y (%)	-69	-31	-28.8	-22.2	-16.9
Std. NX (%)	1.35	2.6	2.06	2.72	1.82
Corr. spr,y (%)	-65	-65.4	-78.7	-71.5	-81.3
Corr. c,y (%)	97	84.9	88.7	82.2	89.7
Corr. spr,NX (%)	56	23.5	21	11.7	10.3

Ergodic distribution for spreads

Takeaways

With preferences consistent with significant risk premia

- · Lower debt tolerance
 - ... Larger default costs required
- Less staying at the edge of default
 - ... More skewness in the distribution of debt and spreads
 - ... Larger differences between ergodic distribution and pre-default samples
- · More use of the debt for insurance
 - ... Larger swings in debt to smooth shocks

Welfare effects of access to debt

Welfare effects of banning defaults

Fiscal rules

Overall deficit [= current account]

$$d_t = c_t + \kappa b_t - y_t$$

= $q_t(b_{t+1} - (1 - \delta)b_t)$

· Consider rules of the form

$$d_t \leq d^\star \mathbb{1}_{rac{b_t}{y_t} \geq b^\star}$$

Risk aversion in the sovereign debt model

- · Risk aversion matters for macro outcomes in the sovereign debt model
 - ... raises questions about inference, policy evaluation based on CRRA preferences
- Effect of robustness concentrated at higher-order moments
 - ... makes crises look like more abrupt events
- · Welfare effects of market access and default unchanged from standard preferences
 - ... re-calibration of default costs weighs against change in risk attitudes
- Optimal fiscal rules affected by underlying preferences
 - \dots more risk aversion \implies looser fiscal rules
- · No long-run risk

Macro-finanical separation without default

	CRRA	$\gamma=$ 5	$\gamma=$ 10	$\gamma =$ 15
Corr. NX, y (%)	-1.68	-1.58	-1.41	-1.22
Rel. vol. cons	1.06	1.06	1.06	1.06
Risk premium (p.p.)	2.26	2.58	3.05	3.53
Debt-to-GDP (%)	30.5	30.5	30.5	30.5
Corr. deficit, y (%)	-3.73	-3.85	-4.07	-4.32
Default freq. (%)	0	0	0	0
Welfare	1.024	1.021	1.016	1.011

Ergodic distribution for debt

