清华大学本科生考试试题专用纸

考试科目	l 微积分 A(2)	B卷	2024年6月20日	
系名	班级	姓名	学号	
一. 填空题 (共10題, 每題3分)			
1. 设 $D = \{(x,$	$y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1,$	$x \geq 0, y \geq 0$, 则 \int	$\int_{D} (x^2 + y^2) \mathrm{d}x \mathrm{d}y = \underline{\qquad}$	<u> </u>
2. 累次积分 ∫₀ 3	$\mathrm{d}x \int_x^{\frac{\pi}{3}} \frac{\sin y}{y} \mathrm{d}y = \underline{\qquad}$	·		
	z) ^T 为三维列向量, / t度为 divAξ =		其特征值为 2,0,-3,则三维	ì线性
4. 设曲线 <i>C</i> 的 ∫ _C xydl =		y=t, z=2-2t,	0 ≤ t ≤ 1, 则空间第一型线	发积分
	曲线 <i>C</i> + 为函数曲线 ce ^y dy =	$x^2 y = x^3$,起点为 (0	,0), 终点为 (1,1), 则第二型	世线积
	$\sum_{n=1}^{\infty} \frac{(-1)^n n}{1+n^2}$ 的收敛性,下	· 述正确的结论是 _	·	
	A: 绝对收敛	; B: 条件收敛;	C: 发散.	
7. 圆柱面 x ² + 积为		$x^2 + y^2 + z^2 = 4 \ (z$	≥ 0) 和平面 z = 0 所截部:	分的面
8. 幂级数 $\sum_{n=2}^{\infty} \frac{1}{3}$	ェn 的收敛半径为 _	·		
9. 函数 ln(3+	x) 在 $x=0$ 处展开的	的幂级数为	(不必写出收敛区间)	
10. 曲面 $z=x$	$x^2 + y^2 \ (0 \le z \le 2) \ \beta$	为面积为	→	

二、解答題 (共7題)

12. (10 分) 计算战积分 $\oint_{C^*}(y-z)\mathrm{d}x+(z-x)\mathrm{d}y+(x-y)\mathrm{d}z$, 其中定向曲线 C^* 是柱面 $x^2+y^2=1$ 与平面 x+z=1 的交线, 且从 x 轴正向朝原点方向看去, C^* 的正向是逆时 针的.

13. (10 分) 求幂级数 $\sum_{n=2}^{\infty} (n-1)x^n$ 的 (i) 收敛半径, (ii) 收敛城, 以及 (iii) 和函数.

14. (12 分) 计算三重积分

$$J = \iiint_{\Omega} z dx dy dz,$$

其中 Ω 为两个球面 $x^2 + y^2 + z^2 = 4z$ 和 $x^2 + y^2 + z^2 = 2z$ 所图的有界闭区域.

15. (10 分) 设空间向量场 $\vec{F} = (x^3 - x, y^3 - y, z^3 - z)$. 试确定一个空间有界光滑的封闭 曲面 S^+ , 其外法向为正, 使得第二型面积分 $J = \iint_{S^+} \vec{F} \cdot d\vec{S}$ 的值最小, 并求出这个最小值.

- 16. (10 分) 设 $f(x) = x^2, x \in [-1, 1]$.
- (i) 求函数 ƒ(x) 以 2 为周期的 Fourier 级数;
- (ii) 求数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.
- 17. (8分) 判断级数

$$\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{n} \sin n$$

是否收敛,并说明理由.

三. 附加题 (附加题得分不计入总评, 仅用于评判成绩 A+)

设 $\sum_{n=1}^{\infty} a_n$ 为正项级数, 即级数一般项 $a_n > 0$, 再记 $S_n = \sum_{k=1}^n a_k$. 证明级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 当且仅当级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 收敛.