

Cours Statistiques bi-variées

K. BELATTAR,

Département Informatique - Université d'Alger 1

Introduction aux statistiques bi-variées

Objectif:

- Etudier sur une même population de N individus deux variables (caractères) différentes.
- Analyser la relation entre deux variables.

Exemples:

- Taille et poids
- Taux de chaumage et sexes
- Effets et doses des médicaments,
- ...etc.

Introduction aux statistiques bi-variées

Analyser une relation entre deux variables **X** et **Y**:

- ✓ **Déterminer s'il existe une relation** entre les deux variables,
- ✓ Caractériser la relation entre les deux variables :
 - Forte vs faible (selon l'intensité)
 - Linéaire vs non linéaire (selon la forme)
 - Positive vs négative (selon la direction)
- ✓ Tester si la liaison est statistiquement significative (tests d'hypothèse),
- √ Valider la relation identifiée (absence de biais).

Type de relations (selon l'intensité)

Nuage de points

Absence d'une relation

Type de relations (selon l'intensité)

Type de relations (selon la forme)

Type de relations (selon la direction)

Relation positive (et linéaire)

Relation non linéaire positive

Relation négative (et linéaire)

Relation non linéaire et négative

Séries statiques à deux variables

■ Considérons deux variables (quantitatives, qualitatives, une quantitative et l'autre qualitative) *X* et *Y* définies sur la même population d'effectif total *N*.

$$N = \sum_{i} \sum_{j} n_{ij}$$

 n_{ij} : effectif conjoint des valeurs x_i , y_j pour lesquels X prend la valeur x_i et Y prend la valeur y_i .

Une série statistique bi-variée est représentée par l'ensemble des couples

$$\{(x_1, y_1), (x_2, y_2), ..., (x_k, y_l)\}$$

Tableau de contingence

Effectifs marginaux de Y

```
Effectif marginal de X: n_{i.} = \sum_{j} n_{ij}

Effectif marginal de Y: n_{.j} = \sum_{i} n_{ij}

Effectif des couples (x_i, y_j): N = \sum_{i} \sum_{j} n_{ij} = \sum_{i} n_{i.} = \sum_{j} n_{.j}
```

Tableau de contingence

Valeurs y_i

Fréquences marginales de Y

```
Fréquence marginale de X: f_{i.} = \sum_{j} f_{ij}

Fréquence marginale de Y: f_{.j} = \sum_{i} f_{ij}

Fréquence des couples (x_i, y_j): \sum_{i} \sum_{j} f_{ij} = \sum_{i} f_{i.} = \sum_{j} f_{.j} = 1 avec f_{ij} = \frac{n_{ij}}{N}
```

Tableau de contingence

Exemple:

Soit la répartition des salaires d'une entreprise selon le nombre d'enfant (X) et le salaire mensuel(Y) en 1000DA.

x_i y_j	[2-6[[6-10[[10-14[n _i .	$f_{i.}$
1	15	8	2	25	0.42
2	13	4	1	18	0.3
3	11	3	3	17	0.28
n _{.j}	39	15	6	60	
$f_{.j}$	0.65	0.25	0.1		1

Distributions marginales

- Effectif (fréquence) marginal (e) de X: $n_{i} = \sum_{j} n_{ij}$ $(f_{i} = \sum_{j} f_{ij})$
- Effectif (fréquence) marginal (e) de $Y: n_{.j} = \sum_i n_{ij} (f_{.j} = \sum_i f_{ij})$
- Effectifs (fréquence) des couples (x_i, y_i) :

$$N = \sum_{i} \sum_{j} n_{ij} = \sum_{i} n_{i.} = \sum_{j} n_{.j} \left(\sum_{i} \sum_{j} f_{ij} = \sum_{i} f_{i.} = \sum_{j} f_{.j} = 1 \text{ avec } f_{ij} = \frac{n_{ij}}{N} \right)$$

Moyenne marginale (variables discrètes)

$$\bar{X} = \frac{\sum_{i=1}^{N} n_{i} x_{i}}{N} = \sum_{i=1}^{N} f_{i} x_{i} \qquad \bar{Y} = \frac{\sum_{j=1}^{N} n_{.j} y_{j}}{N} = \sum_{i=1}^{N} f_{.j} y_{j}$$

Variance marginale (d'un échantillon)

$$\sigma^{2}(X) = \frac{\sum_{i=1}^{N} n_{i}(x_{i} - \bar{X})^{2}}{N-1} \qquad \sigma^{2}(Y) = \frac{\sum_{j=1}^{N} n_{j}(y_{j} - \bar{Y})^{2}}{N-1}$$

Distributions marginales

x_i	n _i .	f_{i} .	$\overline{X} = f_{i} x_{i}$	$\sigma^{2}(X)$
1	25	0.42	0.42	0.14
2	18	0.3	0.6	0.6
3	17	0.28	0.84	1.34
n _{.j}	60		1.86	2,08 (∑)

Distributions marginales

y_j	n _{.j}	f _{.j}	$\overline{Y} = f_{.j} C_j$	$\sigma^2(Y)$
[2-6[39	0.65	2.6	1.3
[6-10[15	0.25	2	9.15
[10-14[6	0.1	1.2	11. 86

Distributions conditionnelles

• Fréquence conditionnelle de X sachant que $Y = y_j$:

$$f_{i/j} = f_i^{\ j} = \frac{n_{ij}}{n_{.j}} \qquad \sum_{i=1}^{n} f_i^{\ j} = 1$$

 $f_{i/j} = f_i^j = \frac{n_{ij}}{n_{.j}} \qquad \sum_{i=1}^n f_i^j = 1$ f_i^j : proportion d'individus présentant la valeur x_i parmi l'ensemble des individus présentant la valeur y_i de Y.

• Fréquence conditionnelle de Y sachant que $X = x_i$:

$$f_{j/i} = f_i^j = \frac{n_{ij}}{n_{i.}}$$

$$\sum_{i=1}^{j} f_i^j = 1$$

 $f_{j/i} = f_i^j = \frac{n_{ij}}{n_i}$ $\sum_{j=1}^{j} f_i^j = 1$ f_i^j : proportion d'individus présentant la valeur y_i parmi l'ensemble des individus présentant la valeur x_i de X.

Distributions conditionnelles

Exemple: La distribution conditionnelle de X sachant que Y=y₂ ([6-10[)

X	n _{ij}	f _{i/2}
1	8	0.53
2	4	0.27
3	3	0.2
Σ	15	1

Corrélation basée sur la covariance de données

- La forme du jeu de données (dataset) est déterminée par la covariance.
- L'élongation des points (individus) dans la direction diagonale.

Covariance de données

Considérons deux variables **numériques aléatoires** X, Y et un échantillon de n individus $\{(x_1, y_1), ..., (x_n, y_n)\}.$

$$E(X) = \overline{X} = \frac{\sum_{i=1}^{n} x_i}{n} \quad \text{et} \quad E(Y) = \overline{Y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$Cov(X, Y) = E((X - \overline{X}) * (Y - \overline{Y})) = \frac{\sum_{i=1}^{n} (x_i - \overline{X}) * (y_i - \overline{Y})}{n}$$

$$Cov(X, Y) = E(X, Y) - \overline{X}\overline{Y}$$

Quantifier la direction de la relation entre les variables X et Y.

Si $X > \overline{X}$ et $Y > \overline{Y} \Rightarrow Cov(X, Y)$ est positive. Si $X > \overline{X}$ et $Y < \overline{Y} \Rightarrow Cov(X, Y)$ est négative. Si X = X et Y = X sont indépendants $X \rightarrow Cov(X, Y) = X$ (ou presque null).

Variance est un cas spéciale de la covariance (i. $e cov(X, X) = var(X) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n}$).

Covariance de données

Covariance négative

Cov(X,Y) < 0

Covariance nulle (ou presque nulle)

Cov(X,Y)=0

Covariance positive

Cov(X,Y) > 0

Corrélation basée sur le coefficient de Pearson

Coefficient de corrélation linéaire de Pearson ($r_{X,Y}$): quantifie l'intensité de la relation entre deux variables quantitatives (numériques: discrètes).

• Considérons deux variables numériques X, Y et un échantillon de n individus $\{(x_1, y_1), ..., (x_n, y_n)\}$.

$$r_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y} \qquad \sigma_X = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{X})^2} \qquad \sigma_y = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \bar{Y})^2}$$

$$r_{X,Y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$-1 \le r_{XY} \le 1$$

Coefficient de corrélation linéaire

- Si $r_{X,Y} \gg 0$ (valeur large proche de 1) \Rightarrow Corrélation linéaire forte positive (variables redondantes) entre X et Y
- Si $r_{X,Y} = 0$ (ou proche de 0) \Rightarrow Les variables X et Y ne sont pas corrélés linéairement (variables indépendantes)
- Si $r_{X,Y} < 0$ (proche de -1) \Rightarrow Corrélation linéaire forte négative (variables redondantes) entre les variables X et Y.

Coefficient de corrélation linéaire

Test de carré de Pearson

- Y Test statistique où la statistique de test (variable aléatoire) suit une loi du x^2 sous l'hypothèse nulle.
- ✓ Il permet d'évaluer :
 - (1) La qualité de l'ajustement,
 - (2) L' homogénéité et
 - (3) L' indépendance des variables (les individus de deux variables, exprimées dans un tableau de contingence)
 - → Accepter ou rejet d'une hypothèse

Test d'indépendance de carré de Pearson

- Supposant deux variables **qualitatives aléatoires** $X = \{x_i, ..., x_c\}$ et $Y = \{y_j, ..., y_r\}$ et un échantillon de n individus.
- Vérifier l'indépendance de ces deux variables ? (hypothèse à tester)
- \rightarrow Créer la table de contingence avec les distributions jointes (X_i, Y_i)

$$x^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}} \quad e_{ij} = \frac{fr\acute{e}quence_{marginale}(X = x_{i}) * fr\acute{e}quence_{marginale}(Y = y_{j})}{n}$$

```
o_{ij}: valeur Obervée (empirique) de la distribution jointe (X_i, Y_j) e_{ij}: valeur Espérée (théorique) de la distribution jointe(X_i, Y_j) fréquence_{marginale}(X = x_i): nombre des individus ayant la valeur x_i fréquence_{marginale}(Y = y_i): nombre des individus ayant la valeur y_i
```

Test d'indépendance de carré de Pearson

Principe:

- Définir les hypothèses nulle et alternative.
- Sélectionner un **niveau de confiance** souhaité (niveau de signification , valeur p ou niveau alpha correspondant) pour le résultat du test.
- Calculer la statistique du test du chi carré x^2 .
- Déterminer les degrés de liberté (rows-1)*(cols-1), de cette statistique.
- Comparer avec **la valeur critique** de la distribution du chi carré avec les degrés de liberté et le niveau de confiance sélectionné.

- Accepter ou rejeter l'hypothèse nulle.

11/04/2021 25

Objectif: vérifier la relation de corrélation entre les deux variables aléatoires « diplôme » et « état civil ».

11/04/2021 26

Test d'indépendance de carré de Pearson

Hypothèse nulle: Pas de relation entre les variable diplôme et état civil.

Hypothèse alternative: relation significative entre les variable diplôme et état civil. niveau de signification=0.05

Table des valeurs espérées:

	Collège	Lycée	Вас	Master	Doctorat
Non marié	$\frac{90*39}{300} = 11.7$	$\frac{90*90}{300} = 27$	25.2	16.2	9.9
Marié	19.5	45	42	27	16.5
Divorcé	3.9	9	8.4	5.4	3.3
Veuf	3.9	9	8.4	5.4	3.3

Calcul x^2

Valeurs observées (o)	Valeurs espérées (e)	$(o_{ij} - e_{ij})$	$(o_{ij} - e_{ij})^2$	$\frac{(o_{ij} - e_{ij})^2}{e_{ij}}$
18	11.7	6.3	39.69	3.39
36	27	9	81	3
				•••
3	3.3	-0.3	0.09	0.02

$$x^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}} = 3.39 + 3 + \dots + 0.02 = 23.57$$

Degré de liberté = (rows-1)*(cols-1) = (4-1)*(5-1) = 12

Test d'indépendance de carré de Pearson

Degrees of Freedom -	Probability of a larger value of x 2								
	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14

https://www.youtube.com/watch?v=f53nXHoMXx4&list=RDCM UCFUTIAx5h703U3gEcM1157Q&index=1 Niveau de signification=0.05

$$x_{Critique}^2 = 21.03$$

$$x^2 = 23.57$$

$$x^2 > x_{Critique}^2$$

→ Rejeter l'hypothèse nulle et

→ Accepter l'hypothèse alternative

Introduction aux statistiques bi-variées

Conclusion

- Etude statistique d'une série bi-variée.
- > Analyse des relations entre deux variables aléatoires :
- Corrélation
- 1) Variables quantitatives:
 - Covariance (quantifier la direction de la relation)
 - Coefficient de corrélation linéaire (quantifier l'intensité de la relation)
- 2) Variables qualitatives:
 - Test de carré de Pearson (tester si la liaison est statistiquement significative).
- Régression