de Casablanca

Exercice 0.0.1. On considère les matrices suivant

Exercise 6.6.1. On consider tes matrices saturates.
$$A = \begin{pmatrix} 0 & 2 & -2 \\ 6 & -4 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 2 & -2 & -3 \end{pmatrix}, C = \begin{pmatrix} 8 & 2 \\ -3 & 2 \\ -5 & 5 \end{pmatrix}, D = \begin{pmatrix} 5 \\ -2 \\ -1 \end{pmatrix}, E = \begin{pmatrix} x & y & z \end{pmatrix}.$$

Quels produits sont possibles? les

Exercice 0.0.2.
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 1 & -1 & 0 \end{pmatrix}$, Calculer A^2 , B^2 , AB et BA .

Exercice 0.0.3.
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 1 & 0 \end{pmatrix},$$

- 1. Calculer A^p , B^p pour tout entier naturel p.
- 2. Montrer que AB = BA
- 3. Calculer $(A+B)^p$

$$A = 2I$$

Exercice 0.0.4.
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, On pose $N = A - I$

- 1. Calculer N^2 , N^3 et N^4
- 2. Calculer A^p pour tout entier p.

Solution

$$A^{p} = \begin{pmatrix} 1 & p & p^{2} & p(p^{2} - p + 1) \\ 0 & 1 & 2p & p(3p - 2) \\ 0 & 0 & 1 & 3p \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Exercice 0.0.5. Soit A une matrice nilpotente d'indice p (ie $A^p = 0$). Calculer $(I - A)(I + A + A^2 + ... + A^{p-1})$ et $(I + A + A^2 + ... + A^{p-1}(I - A))$ Conclure.

Exercice 0.0.6. On pose $A = \begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$, avec a > 0 et b > 0.

- 1. Calculer $A^2, A^3, ..., A^p$
- 2. Calculer $B_n = \sum_{p=0}^n \frac{1}{p!} A^p$
- 3. Écrire B_n sous la forme

$$B_n = \begin{pmatrix} \alpha_n & \gamma_n \\ 0 & \beta_n \end{pmatrix},$$

4. Calculer $\lim_{n\to\infty} \alpha_n$, $\lim_{n\to\infty} \beta_n$ et $\lim_{n\to\infty} \gamma_n$