EXPLORE INTERACTION AND DIGITAL IMAGES

Homomorphic Factorization of BRDFs for High-Performance Rendering

Michael D. McCool Jason Ang Anis Ahmad

Outline

- Introduction
- Previous Work
- Factorized Representation
- Results
- Performance and Error
- Conclusions

- What is a bidirectional reflectance distribution function (BRDF)?
- Why use BRDFs in real-time rendering?

BRDF

• Functional notation:

• Assume shift-invariant:

• Omit wavelength dependence (use RGB):

- Properties of physical BRDFs:
 - Helmholtz reciprocity
 - Conservation of energy
- BRDF classes:
 - Isotropic
 - Anisotropic

Local Lighting Equation 2001 EXPLORE INTERACTION AND DIGITAL IMAGES

Outgoing radiance from point in direction :

• Illumination from N point sources:

Previous Work

Basis summation

- Cabral et al., Bidirectional Reflection
 Functions from Surface Bump Maps (1987)
- Ward, Measuring and Modeling Anisotropic Reflection (1992)
- Lafortune et al., Non-Linear Approximation of Reflectance Functions (1997)

Previous Work

Environment mapping

- Cabral et al., Reflection Space Image Based Rendering (1999)
- Kautz et al., A Unified Approach to Prefiltered Environment Maps (2000)
- Kautz and McCool, Approximation of Glossy Reflection with Prefiltered Environment Maps (2000)

Previous Work

Factorization

- Fournier, Separating Reflection Functions for Linear Radiosity (1995)
- Heidrich and Seidel, Realistic, Hardware-Accelerated Shading and Lighting (1999)
- Kautz and McCool, Interactive Rendering with Arbitrary BRDFs using Separable Approximations (1999)

- Factorization
 - SVD approach by Kautz and McCool (1999)

Homomorphic Factorization

• Approximate f using product of positive factors:

• Take logarithm of both sides:

Parameterization

- Choose parameterization:
 - Want parameters that are easy to compute
 - *Choice* (others possible!):

• Take logarithm:

Data Constraints

- Need to find p and q:
 - Set up linear constraints relating samples in f to texels in p and q
 - Use bilinear weighting factors to get subpixel precision

• Data constraints can be written as:

Smoothness Constraints 2001 EXPLORE INTERACTION AND DIGITAL IMAGES

 Add constraints to equate Laplacian with zero:

- Ensures every texel has a constraint
- $\forall \lambda$ controls the smoothness of solution

Iterative Solution

- Solve using quasi-minimal residual (QMR) algorithm in IML++
 - Modified conjugate-gradient algorithm
 - Freund and Nachtigal (1991)
 - Estimate an initial solution by averaging
 - Apply at sequence of increasing resolutions

- Divide p and q by their maximums and combine scale factors into a single colour α
- For unit-vector-valued parameters, set up texture maps as parabolic maps, hemisphere maps, or cube maps

2001 EXPLORE INTERACTION AND DIGITAL IMAGES

Results

- Top to bottom: p', q parabolic texture maps (32 x 32) and α
- Left to right: satin (Poulin-Fournier analytic), leather, velvet (CUReT), garnet red, krylon blue, cayman, mystique (Cornell)

Rendering

OpenGL 1.2.1 reconstruction

- Multitexturing and compositing
- e.g. NVIDIA GeForce 2 and ATI Radeon.

Rendering

• NVIDIA GeForce 3 reconstruction:

- Multitexturing and compositing
- Register combiners
- Vertex programs

Performance

- Venus model with 90752 triangles
- Pentium III 600 MHz, 256 MB, NVIDIA GeForce 3 AGP 4x @ 1280x1024x32bit
- Standard OpenGL Lambertian lighting:
 - 123 fps, 11.2 Mtri/s
- Full illumination:
 - 76 fps, 6.9 Mtri/s

Approximation Error

Extensions

Other parameterizations

Material mapping

Conclusions

New BRDF factorization algorithm

- Achieves reasonable compression ratios
- Minimizes relative error in approximation
- Flexible choice of parameterization
- Results are positive factors
- Can handle sparse data, reuse texture maps
- Renders in real-time rates in current hardware
- Limited to point light sources

2001 EXPLORE INTERACTION

Demo available at CAL

Acknowledgements

- Jan Kautz, Wolfgang Heidrich
- David Kirk, Matthew Papakipos, Mark Kilgard, Chris Wynn, Cass Everitt, Steve Glanville, NVIDIA
- Josée Lajoie, Kevin Moule, Martin Newell, Mira Imaging, Inc., Viewpoint Engineering
- CUReT, Cornell, Syzmon Rusinkiewicz
- NSERC, CITO