GLEN: Generative Retrieval via Lexical Index Learning

Sunkyung Lee*, Minjin Choi*, and Jongwuk Lee

Sungkyunkwan University (SKKU), Republic of Korea

* Equal contribution

It aims to generate the identifier of relevant documents for a given query.

- All the corpus is encoded in model parameters, enabling end-to-end optimization.
- The index structure is unnecessary.

Takeaways

- ✓ A novel generative retrieval method for dynamically learning lexical identifiers based on query-document relevance
- ✓ Two-stage lexical index learning for dynamically learning lexical identifiers based on ranking signals
- ✓ Collision-free inference for efficient ranking using identifier weights

Motivation

How can we **learn** appropriate **document identifiers** for generative retrieval?

Limitation of Existing Methods

Olympic Games host city list

Most existing models **pre-define static document identifiers**, but they are **difficult to generalize** new documents.

- DSI (NeurIPS' 22) parameterizes a retrieval system with a single transformer.
- Static identifiers can be random numbers, topic hierarchies, titles, or URLs.

*Yi Tay et al. Transformer Memory as a Differentiable Search Index. NeurIPS 2022

Our Solution: Lexical Index Learning

We propose a **lexical index learning** to dynamically learn identifiers considering **query-document relevance**.

GLEN: Generative Retrieval via Lexical Index Learning

For training, GLEN introduces a dynamic lexical identifier using a two-phase lexical index learning to effectively learn relevance signals.

- Phase 1: Pre-train the model using keyword-based IDs to learn the semantics of the corpus.
- Phase 2: Learn ranking-based document IDs to reflect query-document relationships.

For inference, GLEN utilizes collision-free inference to efficiently rank documents.

- In offline, the **indexing model** generates document identifiers from each document, and similar documents can be mapped to the same identifier.
- In online, the retrieval model generates document identifiers from a query, and collided documents are efficiently ranked using identifier weights.

Experimental Results

- GLEN achieves state-of-the-art or competitive performance compared to baselines on benchmark datasets (NQ320k).
 - GLEN outperforms the best generative retrieval methods in the large-scale corpus (MS MARCO dev) and zero-shot evaluation setting (BEIR).

Type	Model	Natural Questions 320K			Madal	MS MARCO Dev	BEIR (nDCG@10)	
		R@1	R@10	MRR@100	Model	(MRR@10)	Arguana	NFCorpus
Traditional retrieval	BM25	29.7	60.3	40.2	BM25	18.4	31.5	32.5
	DocT5Query	38.0	69.3	48.9	DocT5Query	27.2	34.9	32.8
	DPR	50.2	77.7	59.9	DSI	3.1	1.8	11.1
	GTR-base	56.0	84.4	66.2	NCI	11.8	0.9	4.3
Generative retrieval	DSI	55.2	67.4	59.6	GENRET	<u>17.4</u>	<u>12.1</u>	12.1
	NCI	66.4	85.7	73.6	GLEN (Ours)	20.1	17.6	15.9
	GENRET	<u>68.1</u>	88.8	75.9	*Please refer to the paper for more detailed results.			
	GIFN (Ours)	69 1	86.0	75.4				

•	$igcup_{\!$									
i	#	Rel.	Document title	GLEN ID	NCI [1] ID	Keyword ID				
:	1	\checkmark	G0 phase	(#1) phase-phase-cell	(#14) 22-17-10-4	phase-cells-nutri				
•	2		G2 phase	(#2) phase-phase-cell	(#2) 21-28-3-0	phase-phase-cell				
:	3		Cell cycle checkpoint	(#3) point-check-cell	(#9) 1-27-21-1	point-check-cell				
	Numbers in parentheses: The r									

rank of documents predicted

by each model

Check out our paper and code for details!

contact info.
sk1027@skku.edu