$\left[\frac{4^{k}}{n}\right]$ Barrett reduction algorithm

If we want to compute many instances of $ab \mod n$ for a fixed modulus n (where $0 \le ab < n^2$), we can avoid the slowness of long division and instead perform these modular reductions using the Barrett reduction algorithm. For the given n we precompute a factor using division; thereafter the computations of $ab \mod n$ only involve multiplications, subtractions, and shifts (all of which are faster operations than division).

Algorithm

Precomputation:

- 1. Assume the modulus $n \in \mathbb{N}$ is such that $n \geq 3$ and n is not a power of 2. (This is for the sake of the proof below, and because modulo-power-of-2 is trivial.)
- 2. Choose $k \in \mathbb{N}$ such that $2^k > n$. (The smallest choice is $k = \lceil \log_2 n \rceil$.)
- 3. Calculate $r=\left|\frac{4^k}{n}\right|$. (This is the precomputed factor.)

Reduction:

- 1. We are given $x \in \mathbb{N}$, such that $0 \le x < n^2$, as the number that needs to be reduced modulo n.
- 2. Calculate $t=x-\left|\frac{xr}{4^k}\right|n$.
- 3. If t < n then return t, else return t n. This answer is equal to $x \mod n$.

Proof of correctness

- 1. Since n is not a power of 2, we know $\frac{4^k}{n}$ is not an integer. Thus $\frac{4^k}{n} 1 < r < \frac{4^k}{n}$.
- 2. Multiply by x ($x \geq 0$): $x\left(rac{4^k}{n}-1
 ight) \leq xr \leq xrac{4^k}{n}$.
- 3. Divide by 4^k : $\frac{x}{n} \frac{x}{4^k} \le \frac{xr}{4^k} \le \frac{x}{n}$.
- 4. Because $x < n^2 < 4^k$, we know $\frac{x}{4^k} < 1$. Therefore: $\frac{x}{n} 1 < \frac{xr}{4^k} \leq \frac{x}{n}$.
- 5. One floor: $\frac{x}{n} 2 < \left\lfloor \frac{x}{n} 1 \right\rfloor$.

 Another floor: $\left\lfloor \frac{x}{n} 1 \right\rfloor \leq \left\lfloor \frac{xr}{4^k} \right\rfloor$.

 Put together: $\frac{x}{n} 2 < \left\lfloor \frac{x}{n} 1 \right\rfloor \leq \left\lfloor \frac{xr}{4^k} \right\rfloor \leq \frac{x}{n}$.

6. Multiply by n (n>0): $x-2n<\left\lfloor \frac{xr}{4^k} \right\rfloor n\leq x$.

7. Negate:
$$-x \leq -\left\lfloor \frac{xr}{4^k} \right\rfloor n < 2n-x$$
.

8. Add
$$x$$
: $0 \le x - \left\lfloor \frac{xr}{4^k} \right\rfloor n < 2n$.

9. Clearly
$$x \equiv x - \left\lfloor \frac{xr}{4^k} \right\rfloor n \bmod n$$
, because $\left\lfloor \frac{xr}{4^k} \right\rfloor n$ is a multiple of n .

10. The algorithm up to this point correctly reduces x from the range $[0, n^2)$ to t in the range [0, 2n) without changing its congruence modulo n. The fix-up in the final step is simple, to get the desired answer in the range [0, n).

Bit width analysis

This is helpful for fixed-size bigint implementations and to predict the running time.

- 1. Assume the modulus is exactly m bits long, i.e. $2^{m-1} < n < 2^m$.
- 2. Often we want to set k=m, but let's allow the general case of $k\geq m$.
- 3. Then $4^k = 2^{2k}$ is 2k + 1 bits long.
- 4. Reciprocal: $2^{-m} < \frac{1}{n} < 2^{1-m}$.
- 5. Multiply by 4^k : $2^{2k-m}<\frac{4^k}{n}<2^{2k-m+1}$. Therefore r is 2k-m+1 bits long. (If k=m, then r is k+1 bits.)
- 6. We know $0 \le x < n^2$ fits in 2m bits, thus xr fits in 2k+m+1 bits.
- 7. But in fact, $xr < x\frac{4^k}{n} < 4^k n$, where $4^k n$ is known to be exactly 2k+m bits. Therefore xr fits in 2k+m bits. (If k=m, then xr fits in 3k bits.)
- 8. The rest is straightforward: $\left\lfloor \frac{xr}{4^k} \right\rfloor$ fits in m bits, $\left\lfloor \frac{xr}{4^k} \right\rfloor n$ fits in 2m bits and is in the range $[0, n^2)$, and t fits in m+1 bits.

Note: For extra optimization, the product $\left\lfloor \frac{xr}{4^k} \right\rfloor n$ only needs m+1 low-order bits to be computed. This is because the next computed value $t=x-\left\lfloor \frac{xr}{4^k} \right\rfloor n$ fits in m+1 bits, so there is no need to examine the upper m-1 bits of the product at all.

Comparison with Montgomery reduction

The Barrett algorithm and Montgomery reduction algorithm can both speed up modular reductions.

Similarities:

• They both require precomputing various constants for a given modulus n.