## Lecture 2: Determinants, Cross Product

## 1 Determinants

With two vectors, how do we calculate the area of the triangle enclosed by these two vectors?



Apparently

$$Area = \frac{1}{2}|\vec{A}||\vec{B}|\sin\theta$$

But it is hard to calculate  $\sin \theta$ , whereas it is easy to calculate  $\cos \theta$  with dot products. Therefore, we can rotate  $\vec{A}'$  by 90° to get  $\vec{A}'$  and hence

$$\sin \theta = \cos(90^{\circ} - \theta) = \cos(\theta')$$

$$Area = \frac{1}{2}|\vec{A}||\vec{B}|\sin\theta$$
$$= \frac{1}{2}|\vec{A}'||\vec{B}|\cos\theta'$$
$$= \frac{1}{2}\vec{A}'\cdot\vec{B}$$

Suppose that  $\vec{A}=< a_1, a_2>$ , and  $\vec{B}=< b_1, b_2>$ , then  $\vec{A'}=< -a_2, a_1>$ . Therefore,

$$\vec{A'} \cdot \vec{B} = <-a_2, a_1 > \cdot < b_1, b_2 >$$

$$= a_1 b_2 - a_2 b_1$$

$$= det(\vec{A}, \vec{B})$$

$$= \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

Notice that it is also possible that  $\vec{A'} = \langle a_2, -a_1 \rangle$ , depending on the relative positions of  $\vec{A}$  and  $\vec{B}$ , so the result could be the negative value of the area.