인공신경망 II Back Propagation

한국공학대학교 전자공학부 채승호 교수

- 다계층 인공 신경망의 학습
 - ▶ 예측값과 실제 출력값의 차이를 최소화하는 매개변수 탐색
 - 시스템 복잡도가 높아 일반적인 해석해 구하는 것이 매우 어려움
 - 비용함수를 설계하고 경사하강법을 적용하여 매개변수 탐색
 - ▶ 오차 역전파 알고리즘 (Error Backpropagation Algorithm)
 - 경사하강법에 기반을 둔 매개변수 업데이트 알고리즘
 - 다계층 인공 신경망 학습의 기본 알고리즘

■ 훈련데이터 구성

데이터	입력	출력
번호	$x_0, \cdots, x_m, \cdots, x_{M-1}$	$y_0, \cdots, y_q, \cdots, y_{Q-1}$
0	x_{00} ,, x_{m0} ,, $x_{(M-1)0}$	y_{00} ,, y_{q0} ,, $y_{(Q-1)0}$
:	:	i i
n	$x_{0n}, \cdots, x_{mn}, \cdots, x_{(M-1)n}$	$y_{0n}, \cdots, y_{qn}, \cdots, y_{(Q-1)n}$
:	:	:
N-1	$x_{0(N-1)},\cdots,x_{m(N-1)},\cdots,x_{(M-1)(N-1)}$	$y_{0(N\!-1)},\cdots,y_{q(N\!-1)},\cdots,y_{(Q\!-1)(N\!-1)}$

- N: 훈련 데이터의 개수, $n = 0, 1, \dots, N-1$
- M: 입력 노드의 개수 (더미노드 제외), $m = 0, 1, \dots, M 1, M$
- L: 은닉층 노드의 개수 (더미노드 제외), $l = 0, 1, \dots, L 1, L$
- Q: 출력 클래스의 개수, $q = 0, 1, \dots, Q 1$

- 비용함수
 - ▶ 평균제곱오차(MSE) 또는 평균교차엔트로피(CEE) 등 사용 가능
 - ▶ 본 강의자료는 평균제곱오차 기준으로 설명
 - ▶ 전체 데이터 (N개)에 대한 평균제곱오차

$$\epsilon_{MSE} = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn})^2 = \frac{1}{N} \sum_{n=0}^{N-1} \epsilon_{MSE}(n)$$

Q: 출력 클래스의 개수 / $\epsilon_{MSE}(n)$: n번째 데이터에 대한 MSE

- ▶ *n*번째 데이터에 대한 평균제곱오차
 - (주의!) 오차 역전파 알고리즘은 데이터 단위로 동작

$$\epsilon_{MSE}(n) = \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn})^2$$

- 오차역전파 기법의 원리
 - ▶ 연쇄법칙(Chain rule)을 활용한 효율적인 gradient 계산
 - 미분의 연쇄법칙 (E = f(z), z = g(x))

$$\frac{dE}{dx} = \frac{d}{dx} f(g(x)) = f'(g(x))g'(x) = \frac{dE}{dz} \frac{dz}{dx}$$

$$\rightarrow E \text{에 대한 } x \text{의 영향}$$

- 활성화 함수의 편미분
 - ▶ 시그모이드(sigmoid) 함수

$$z = \frac{1}{1 + e^{-x}} \implies \frac{\partial z}{\partial x} = \frac{e^{-x}}{(1 + e^{-x})^2} = z(1 - z)$$

Relu 함수

$$z = \begin{cases} x & , x > 0 \\ 0 & , x \le 0 \end{cases} \Rightarrow \frac{\partial z}{\partial x} = \begin{cases} 1 & , x > 0 \\ 0 & , x \le 0 \end{cases}$$

▶ 하이퍼볼릭탄젠트(tanh) 함수

$$z = \tanh(x) \Rightarrow \frac{\partial z}{\partial x} = 1 - z^2$$

- 예측값 계산 과정: Forward-propagation (순전파)
- 가중치 업데이트 과정: Back-propagation(역전파)

오차역전파 기법 가중치 업데이트 원리

 $E_{02} = (\text{target}_{02} - \text{output}_{02})^2 = 0.00407617$

▶ (1) 순전파(Forward Propagation)

$$z_1 = w_1 x_1 + w_2 x_2 = (0.3)(0.1) + (0.25)(0.2) = 0.08$$
 $z_3 = w_5 h_1 + w_6 h_2 = (0.45) h_1 + (0.4) h_2 = 0.44498412$ $z_2 = w_3 x_1 + w_4 x_2 = (0.4)(0.1) + (0.35)(0.2) = 0.11$ $z_4 = w_7 h_1 + w_8 h_2 = (0.7) h_1 + (0.6) h_2 = 0.68047592$ $h_1 = \text{sigmoid}(z_1) = 0.51998934$ $o_1 = \text{sigmoid}(z_3) = 0.609446$ $h_2 = \text{sigmoid}(z_2) = 0.52747230$ $o_2 = \text{sigmoid}(z_4) = 0.66384491$ $E_{01} = (\text{target}_{01} - \text{output}_{01})^2 = 0.04386763$

 $E_{total} = E_{01} + E_{02} = 0.04794380$

- 예측값 계산 과정: Forward-propagation (순전파)
- 가중치 업데이트 과정: Back-propagation(역전파)

▶ (2)역전파 1단계

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial o_1} \times \frac{\partial o_1}{\partial z_3} \times \frac{\partial z_3}{\partial w_5}$$

$$E_{total} = (\text{target}_{01} - \text{output}_{o1})^2 + (\text{target}_{02} - \text{output}_{o2})^2$$

$$\left(\frac{\partial E_{total}}{\partial o_1} = 2 \times (\text{target}_{01} - \text{output}_{o1})^{2-1} \times (-1) + 0 = -2(\text{target}_{01} - \text{output}_{o1}) = -2(0.4 - 0.609446) = 0.418892 \quad \text{output}_{o1} 만 o_1 의 함수$$

$$\frac{\partial o_1}{\partial z_3} = o_1 \times (1 - o_1) = 0.609446(1 - 0.609446) = 0.23802157$$
 (sigmoid 함수 미분)

$$\frac{\partial z_3}{\partial w_5} = \frac{\partial}{\partial w_5} (h_1 w_5 + h_2 w_6) = 0.51998934$$

$$\therefore \frac{\partial E_{total}}{\partial w_5} = 0.418892 \times 0.23802157 \times 0.51998934 = 0.05184571$$

$$w_5 \leftarrow w_5 - \alpha \frac{\partial E_{total}}{\partial w_5} = 0.45 - 0.5 \times 0.05184571 = 0.42407715$$

(동일한 방법으로)

$$\frac{\partial E_{total}}{\partial w_6} = \frac{\partial E_{total}}{\partial o_1} \times \frac{\partial o_1}{\partial z_3} \times \frac{\partial z_3}{\partial w_6} \rightarrow w_6 = 0.3737041$$

$$\frac{\partial E_{total}}{\partial w_7} = \frac{\partial E_{total}}{\partial o_1} \times \frac{\partial o_2}{\partial z_4} \times \frac{\partial z_4}{\partial w_7} \rightarrow w_7 = 0.69259156$$

$$\frac{\partial E_{total}}{\partial w_8} = \frac{\partial E_{total}}{\partial o_2} \times \frac{\partial o_2}{\partial z_4} \times \frac{\partial z_4}{\partial w_8} \rightarrow w_8 = 0.59248495$$

- 예측값 계산 과정: Forward-propagation (순전파)
- 가중치 업데이트 과정: Back-propagation(역전파)

▶ (2)역전파 2단계

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial h_1} \times \frac{\partial h_1}{\partial z_1} \times \frac{\partial z_1}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial h_1} = \frac{\partial E_{01}}{\partial h_1} + \frac{\partial E_{02}}{\partial h_1}$$

$$f\left(g(h(x))\right)' = \frac{df}{dz} \frac{dz}{dy} \frac{dy}{dx}$$

$$y = h(x) = linear sum$$

$$f\left(g(h(x))\right)' = \frac{df}{dz} \frac{dz}{dy} \frac{dy}{dx}$$

$$\frac{\partial E_{01}}{\partial h_1} = \frac{\partial E_{01}}{\partial z_3} \times \frac{\partial z_3}{\partial h_1} = \frac{\partial E_{01}}{\partial o_1} \times \frac{\partial o_1}{\partial z_3} \times \frac{\partial z_3}{\partial h_1} = -2(\text{target}_{01} - \text{output}_{01}) \times o_1 \times (1 - o_1) \times w_5 = 0.418892 \times 0.23802157 \times (0.45) = 0.0448674$$

$$\frac{\partial E_{02}}{\partial h_1} = \frac{\partial E_{02}}{\partial z_4} \times \frac{\partial z_4}{\partial h_1} = \frac{\partial E_{02}}{\partial o_2} \times \frac{\partial o_2}{\partial z_4} \times \frac{\partial z_4}{\partial h_1} = -2(\text{target}_{02} - \text{output}_{02}) \times o_2 \times (1 - o_2) \times w_7 = 0.12768982 \times 0.22231548 \times (0.7) = 0.0198712$$

$$\frac{\partial E_{total}}{\partial h_1} = 0.0448674 + 0.0198712 = 0.0647386$$

$$\frac{\partial h_1}{\partial z_1} = h_1 \times (1 - h_1) = 0.51998934(1 - 0.51998934) = 0.24960043$$
 (sigmoid 미분)

$$\frac{\partial z_1}{\partial w_1} = x_1 = 0.1$$

$$\frac{\partial E_{total}}{\partial w_1} = 0.0647386 \times 0.24960043 \times 0.1 = 0.00161588$$

$$w_1 \leftarrow w_1 - \alpha \frac{\partial E_{total}}{\partial w_1} = 0.3 - 0.5 \times 0.00161588 = 0.29919206$$

- 예측값 계산 과정: Forward-propagation (순전파)
- 가중치 업데이트 과정: Back-propagation(역전파)

▶ (2)역전파 2단계

(동일한 방법으로)

$$\begin{split} \frac{\partial E_{total}}{\partial w_2} &= \frac{\partial E_{total}}{\partial h_1} \times \frac{\partial h_1}{\partial z_1} \times \frac{\partial z_1}{\partial w_2} \rightarrow w_2 = 0.24983841 \\ \frac{\partial E_{total}}{\partial w_3} &= \frac{\partial E_{total}}{\partial h_2} \times \frac{\partial h_2}{\partial z_2} \times \frac{\partial z_2}{\partial w_3} \rightarrow w_3 = 0.39928971 \\ \frac{\partial E_{total}}{\partial w_4} &= \frac{\partial E_{total}}{\partial h_2} \times \frac{\partial h_2}{\partial z_2} \times \frac{\partial z_2}{\partial w_4} \rightarrow w_4 = 0.34857941 \end{split}$$

weight	previous	updated	
W_1	0.3	0.29919206	
W_2	0.25	0.24983841	
W_3	0.4	0.39928971	
W_4	0.35	0.34857941	
W_5	0.45	0.42407715	
W_6	0.4	0.3737041	
W_7	0.7	0.69259156	
W_8	0.6	0.59248495	

▶ 결과 확인

weight	previous	updated	
w_1	0.3	0.29919206	
w_2	0.25	0.24983841	
w_3	0.4	0.39928971	
W_4	0.35	0.34857941	
W_5	0.45	0.42407715	
W_6	0.4	0.3737041	
w_7	0.7	0.69259156	
w ₈	0.6	0.59248495	

$$\begin{split} z_1 &= w_1 x_1 + w_2 x_2 = (0.29919206)(0.1) + (0.24983841)(0.2) = 0.07988689 \\ z_2 &= w_3 x_1 + w_4 x_2 = (0.39928971)(0.1) + (0.34857941)(0.2) = 0.10964485 \\ h_1 &= \operatorname{sigmoid}(z_1) = 0.5199611 \\ h_2 &= \operatorname{sigmoid}(z_2) = 0.52738378 \end{split} \qquad E_{o2} &= (\operatorname{target}_{o1} - \operatorname{output}_{o1})^2 = 0.041171 \\ z_3 &= w_5 h_1 + w_6 h_2 = (0.42407715)h_1 + (0.3737041)h_2 = 0.4175891 \\ z_4 &= w_7 h_1 + w_8 h_2 = (0.69259156)h_1 + (0.59248495)h_2 = 0.67258762 \\ o_1 &= \operatorname{sigmoid}(z_3) = 0.6029062 \\ o_2 &= \operatorname{sigmoid}(z_4) = 0.66208233 \end{split} \qquad V.s.) E_{total} = E_{o1} + E_{o2} = 0.04794380 \end{split}$$

오차 역전파 알고리즘 - 일반화

Step1) Forward propagation 통한 예측값 도출

오차 역전파 알고리즘 - 일반화

▶ Step2) 경사하강법을 통한 가중치 업데이트

❖ n번째 데이터에 대해서 가중치 업데이트

$$v_{ml} \leftarrow v_{ml} - \eta \frac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n)$$

$$\epsilon_{MSE}(n) = \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn})^2$$

$$w_{lq} \leftarrow w_{lq} - \eta \frac{\partial}{\partial w_{lq}} \epsilon_{MSE}(n)$$

오차 역전파 알고리즘은 데이터 단위로 매개변수를 업데이트

 $m \to l \to q$

▶ Step 2-1) 경사하강법에서의 도함수 계산

$$rac{\partial}{\partial w_{lq}} \epsilon_{MSE}(n) = rac{\partial \epsilon_{MSE}(n)}{\partial \hat{y}_{qm}} \cdot rac{\partial \hat{y}_{qn}}{\partial eta_{qn}} \cdot rac{\partial eta_{qn}}{\partial w_{lq}}$$

$$\frac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n) = \frac{\partial \epsilon_{MSE}(n)}{\partial b_{ln}} \cdot \frac{\partial b_{ln}}{\partial \alpha_{ln}} \cdot \frac{\partial \alpha_{ln}}{\partial v_{ml}}$$

$$\frac{\partial}{\partial w_{lq}} \epsilon_{MSE}(n) = \frac{\partial \epsilon_{MSE}(n)}{\partial \hat{y}_{on}} \cdot \frac{\partial \hat{y}_{qn}}{\partial \beta_{qn}} \cdot \frac{\partial \beta_{qn}}{\partial w_{lq}}$$

- $\frac{\partial}{\partial w_{lq}} \epsilon_{MSE}(n)$ 구하기
 - ▶ 우변 1항

$$\frac{\partial \epsilon_{MSE}(n)}{\partial \hat{y}_{qn}} = \frac{\partial}{\partial \hat{y}_{qn}} \sum_{j=0}^{Q-1} (\hat{y}_{jn} - y_{jn})^{2}$$

$$= \frac{\partial}{\partial \hat{y}_{qn}} \left\{ (\hat{y}_{0n} - y_{0n})^{2} + \dots + (\hat{y}_{qn} - y_{qn})^{2} + \dots + (\hat{y}_{(Q-1)n} - y_{(Q-1)n})^{2} \right\}$$

$$= 2(\hat{y}_{qn} - y_{qn})$$

▶ 우변 2항 (sigmoid 함수)

$$\frac{\partial \hat{y}_{qn}}{\partial \beta_{qn}} = \frac{\partial}{\partial \beta_{qn}} f(\beta_{qn}) = f(\beta_{qn}) \left(1 - f(\beta_{qn}) \right) = \hat{y}_{qn} \left(1 - \hat{y}_{qn} \right)$$

(참고) 시그모이드 함수의 미분

$$f'(x) = f(x)(1 - f(x))$$

$$\frac{\partial}{\partial w_{lq}} \epsilon_{MSE}(n) = \frac{\partial \epsilon_{MSE}(n)}{\partial \hat{y}_{qn}} \cdot \frac{\partial \hat{y}_{qn}}{\partial \beta_{qn}} \cdot \frac{\partial \beta_{qn}}{\partial w_{lq}}$$

▶ 우변 3항

$$\frac{\partial \beta_{qn}}{\partial w_{lq}} = \frac{\partial}{\partial w_{lq}} \sum_{j=0}^{L} w_{jq} b_{jn} = \frac{\partial}{\partial w_{lq}} \left(w_{0q} b_{0n} + \dots + w_{lq} b_{ln} + \dots + w_{lq} b_{ln} \right) = b_{ln}$$

▶ 최종

$$\begin{split} \frac{\partial \epsilon_{MSE}(n)}{\partial w_{lq}} &= \frac{\partial \epsilon_{MSE}(n)}{\partial \hat{y}_{qn}} \cdot \frac{\partial \hat{y}_{qn}}{\partial \beta_{qn}} \cdot \frac{\partial \beta_{qn}}{\partial w_{lq}} \\ &= 2 \big(\hat{y}_{qn} - y_{qn} \big) \, \hat{y}_{qn} \big(1 - \hat{y}_{qn} \big) \, b_{ln} \\ &= e_{qn} b_{ln} \end{split}$$
 where $e_{qn} \triangleq 2 \big(\hat{y}_{qn} - y_{qn} \big) \, \hat{y}_{qn} \big(1 - \hat{y}_{qn} \big)$

$$w_{lq} \leftarrow w_{lq} - \eta \frac{\partial}{\partial w_{lq}} \epsilon_{MSE}(n)$$

- $\frac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n)$ 구하기
 - ▶ 우변 1항

$$n$$
: n번째 data $m \to l \to q$

$$\frac{\partial \epsilon_{MSE}(n)}{\partial b_{ln}} = \frac{\partial}{\partial b_{ln}} \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn})^2 = 2 \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn}) \frac{\partial \hat{y}_{qn}}{\partial b_{ln}}$$

$$= 2 \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn}) \frac{\partial}{\partial b_{ln}} f\left(\sum_{j=0}^{L} w_{jq} b_{jn}\right) \qquad \text{L: hidden layer } \text{L: hidden layer } \text{Limited possible possi$$

l 번째 hidden node와 연결된 weigh들과 output node를 고려하게 됨

$$\frac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n) = \frac{\partial \epsilon_{MSE}(n)}{\partial b_{ln}} \cdot \frac{\partial b_{ln}}{\partial \alpha_{ln}} \cdot \frac{\partial \alpha_{ln}}{\partial v_{ml}}$$

▶ 우변 2항 (sigmoid 함수)

$$\frac{\partial b_{ln}}{\partial \alpha_{ln}} = \frac{\partial}{\partial \alpha_{ln}} f(\alpha_{ln}) = f(\alpha_{ln}) (1 - f(\alpha_{ln})) = b_{ln} (1 - b_{ln})$$

▶ 우변 3항 (linear sum)

$$\frac{\partial \alpha_{ln}}{\partial v_{ml}} = \frac{\partial}{\partial v_{ml}} \sum_{j=0}^{M} v_{jl} x_{jn} = \frac{\partial}{\partial v_{ml}} (v_{0l} x_{0n} + \dots + v_{ml} x_{mn} + \dots + v_{Ml} x_{Mn}) = x_{mn}$$

▶ 최종

$$\begin{split} \frac{\partial \epsilon_{MSE}(n)}{\partial v_{ml}} &= \frac{\partial \epsilon_{MSE}(n)}{\partial b_{ln}} \cdot \frac{\partial b_{ln}}{\partial \alpha_{ln}} \cdot \frac{\partial \alpha_{ln}}{\partial v_{ml}} \\ &= \Big\{ 2 \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn}) \, \hat{y}_{qn} (1 - \hat{y}_{qn}) w_{lq} \Big\} \{b_{ln} (1 - b_{ln})\} x_{mn} \\ &= b_{ln} (1 - b_{ln}) x_{mn} \sum_{q=0}^{Q-1} e_{qn} w_{lq} \\ \\ v_{ml} \leftarrow v_{ml} - \eta \, \frac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n) \end{split}$$

- 전체 알고리즘 적용 순서
 - ▶ 1) 신경망 모델 설계(Hidden Layer수, Node수, 활성화 함수, Learning Rate 등)
 - ▶ 2) 설계된 모델에 따른 Weight Matrix 생성 및 초기화
 - ▶ 3) N개의 훈련 데이터 Shuffle
 - ▶ 4) 0부터 N-1번째 데이터에 대해 순차적으로 오차 역전파 알고리즘 적용 (1 epoch)
 - for n번째 데이터
 - (순전파) n-1에서 업데이트 된 Weight로부터 예측값 \hat{y}_{qn} ·계산
 - 0.5를 기준으로 0과 1로 예측값을 변환, 분류 정확도 계산 및 저장
 - (역전파) 실제값(Target)과 예측값(Output) 간의 오차로부터 Weight 업데 이트
 - ▶ 사용자가 입력한 epoch 수 만큼 3~4) 반복

■ 데이터

▶ 2입력 3클래스 분류 데이터

입력 속성: 출석률, 시험성적

• 출력 속성: 학점 (A, B, C)

데이터	입력		출력	
번호	출석률	시험성적	학점	
0	76	98	А	
1	65	94	А	
2	80	86	А	
3	89	74	А	
4	55	77	А	
5	30	79	В	
6	39	64	В	
7	38	63	В	
8	45	49	В	
9	80	42	В	
10	68	7	С	
11	64	8	С	
12	21	26	С	
13	15	14	С	
14	11	12	С	

- 데이터 가공
 - One-Hot Encoding
 - 출력 변수의 가공
 - 출력 클래스의 수와 같은 출력층 노드 설계를 위한 인코딩
 - y_q : 출력 클래스가 q에 속할 확률(가능성), q = 0,1,2

데이터	입력		출력		
번호	출석률	시험성적	y_0	y_1	y_2
0	76	98	1	0	0
1	65	94	1	0	0
2	80	86	1	0	0
3	89	74	1	0	0
4	55	77	1	0	0
5	30	79	0	1	0
6	39	64	0	1	0
7	38	63	0	1	0
8	45	49	0	1	0
9	80	42	0	1	0
10	68	7	0	0	1
11	64	8	0	0	1
12	21	26	0	0	1
13	15	14	0	0	1
14	11	12	0	0	1

- 인공 신경망 설계
 - ▶ 은닉층 추가
 - 임의의 은닉층 추가
 - 각 은닉층의 노드 수 자유롭게 설정 가능
 - ▶ 2계층 인공 신경망
 - 모든 계층의 활성함수로 시그모이드 함수 사용

- 인공 신경망 학습
 - ▶ 비용함수 설계

• 평균제곱오차
$$\epsilon_{MSE}(n) = \sum_{q=0}^2 \left(\hat{y}_{qn} - y_{qn}\right)^2$$

▶ 학습률 0.001로 오차 역전파 알고리즘 적용

$$V = \begin{bmatrix} -0.0837 & -0.0259 \\ -0.0496 & 0.1757 \\ 6.3349 & -5.1625 \end{bmatrix}, \quad W = \begin{bmatrix} -5.0855 & -0.6823 & 3.9907 \\ 3.5843 & 0.9311 & -5.2163 \\ -2.7844 & -1.0409 & 0.2020 \end{bmatrix}$$

- 인공 신경망 학습
 - ▶ 학습에 실패한 경우

실습

- Error Back-Propagation 알고리즘 구현
 - ▶ 알고리즘을 사용자 지정함수로 구현
- Two-Layer Neural Network "Training"
 - ► "NN_data.csv"를 7:3 으로 Training set :Test set 분할
 - ▶ Training set과 1)에서 구현한 알고리즘으로부터 Two-Layer Neural Network를 Training
 - ► Epoch에 따른 Accuracy 및 MSE 그래프 도출
 - ► Hyper-parameter tuning을 통해 최적화
- Two-Layer Neural Network "Test"
 - ▶ 2)에서 도출한 Two-Layer Neural Network에 Testing set 삽입