DAT530

Discrete Simulation and Performance Analysis Final Project Solitaire game strategy

Racin W. Nygaard

Universitetet i Stavanger

Abstract. SKRIV DETTE TIL SLUTT!

1 Introduction

This project aims to study the popular card game, Solitaire [Site]. Solitaire is bundled with most Windows [Site] installations, as well as being available for free on several sources. It is also easy to play the game with a physical card deck. A detailed explaination of the games rules can be found in the next chapter, Solitaire Rules [REF]

Since the game utilizes all 52 cards of the deck, the number of possible initial game states is 52!, which is a very high number. A large number of these inital game states can be merged, as they offer no difference in the difficulty to solve. Some of these initial states are unsolvable, but even given a solvable game state, one often find oneself in an unsolvable game state, due to certain actions in the game are non-reversible,. There has been attempts to find the distribution of solvable and unsolvable initial game states [ref]. This is roughly 75 percent are solvable, however the study also shows that only 35 percent of the games are won by an experienced player.

This project contains a complete model of the game, a GUI to play the game, and a basic bot to simulate user actions.

1.1 Solitaire Rules

Finite State Machine?

2 Method and Design

2.1 Naming Policy

2.2 Overall Design

The model developed is pretty large, and contains 94 transition and 42 places. It is developed using the modular approach, and encompasses 6 different modules. Some of the modules are duplicated, with the only difference being the names of the transitions and places.

2.3 Draw Pile Module

The Draw Pile module has several key responsibilities. When first running the model, it will use the initial tokens of pDP_Dealer and give each of them a color according to the variable global_info.DECK. If the global_info.RANDOM_DECK is set, the cards are randomly dealt.

Table 1. Transitions used in Draw Pile

	Name	Description
	Ivame	Description
1	tDPe_Move	
2	tDPe_Out	
3	tDPe_Turn	
4	tDPi_Dealer	
_	tDPi_Enable_FP_Trans	
	tDPi_Flip_Pile	
7	tDPi_Move_Init	
8	tDPi_Turn	

Table 2. Places used in Draw Pile

	Name	Description
1	pDP_Dealer	
2	pDP_Draw_FaceDown_Pile	
3	pDP_Draw_FaceUp_Pile	
4	pDP_Move_Init	
5	pDP_Move_Out	
6	pDP_Turn	

2.4 Foundation Pile Module

2.5 Tableau Pile Module

- 6 DAT530 Final Project Solitaire game strategy
- 2.6 Module Connector Module
- 2.7 Player Module
- 2.8 Player Bot Module
- 3 Implementation
- 3.1 Algorithms

Atomicity In order to preventdd

- 3.2 Initial Dealing
- 3.3 Resources
- 3.4 Moving Multiple Cards

```
def mapper_from_to(self, key, email):
    if 'to' in email.keys() and 'from' in email.keys() and 'body_count' in email.key
```

- 4 Testing, Analysis and Results
- 4.1 Algorithms

Atomicity In order to preventdd

- 4.2 Initial Dealing
- 4.3 Resources
- 4.4 Moving Multiple Cards
- 5 Discussion

References

- $1. \ \ Wikipedia\ article\ on\ Tf-idf.\ \verb|https://en.wikipedia.org/wiki/Tf?idf|$
- 2. Tom White, Hadoop: The Definitive Guide, 2015, ISBN: 978-1-491-90163-2
- 3. Docker API Docs, https://docs.docker.com
- 4. Slides from DAT630, Krisztian Balog
- Kaggle. The Enron Email Dataset. https://www.kaggle.com/wcukierski/enron-email-dataset
- 6. Data Intensive Systems Compendium, Tomasz Wiktorski et al.
- 7. Source code of all tasks developed. GitLab https://gitlab.com/mindejulian/projectDAT500/tree/master