

Problema N

O Rio da Nlogônia

Nome base: nlogonia *Tempo limite:* 1s

Em um rio da Nlogônia, pesquisadores observaram uma espécie de peixe que, no seu período reprodutivo (piracema), se desloca desde a foz até a nascente desse rio. Devido ao acidentado relevo da Nlogônia, diversos canais foram formados no seu percurso, o que resultou na formação de diversas ilhas fluviais. Os pesquisadores iniciaram um estudo para investigar esse deslocamento dos peixes, da foz até a nascente do rio.

Entretanto, a existência de tantos canais no rio dificulta o mapeamento do percurso do cardume. Assim, os pesquisadores instalaram N sensores pelo curso do rio para quantificar a população de peixes do cardume de acordo com os seguintes critérios:

- Um sensor demarca a junção de dois ou mais canais do rio, ou;
- Um sensor demarca o desmembramento do rio em dois ou mais canais, ou;
- Um sensor é colocado diretamente no leito (corpo principal) ou no meio de um canal do rio.

Os sensores são identificados por inteiros de 1 a N, em que o sensor 1 é colocado na foz e o sensor N na nascente. Os pesquisadores sabem que no rio existem desafios relacionados ao relevo que podem prejudicar o deslocamento dos peixes e predadores. Por isso, os pesquisadores estimaram, com base em estudos preliminares, que, para cada trecho delimitado por dois sensores i e j, Pi peixes do cardume conseguem atravessá-lo, saindo do ponto onde se encontra o sensor i e chegando no local do sensor j.

Como os pesquisadores estão ocupados estudando com a coleta de dados dos sensores, você foi contratado para auxiliá-los. Determine a maior população de peixes do cardume que poderá chegar até a nascente a partir da foz do rio.

ENTRADA

A primeira linha do arquivo de entrada contém dois inteiros N ($3 \le N \le 5x10^2$) e M ($2 \le M \le 10^4$), que indica a quantidade de sensores e a quantidade de trechos do rio delimitados por dois sensores, respectivamente.

A seguir, existem M linhas. A i-ésima linha contém três inteiros X_i , Y_i e P_i ($1 \le X_i$, $Y_i \le N$, $1 \le P_i \le 10^5$), representando o trecho formado pelos sensores X_i e Y_i , enquanto P_i denota a quantidade de peixes que passa pelo trecho com base no relevo do rio, respectivamente.

SAÍDA

Imprima uma única linha contendo um inteiro com a maior população de peixes do cardume que poderá chegar até a nascente do rio, a partir da foz do rio.

Exemplo de Entrada	Exemplo de Saída
5 5	4
1 2 7	
2 3 2	
2 4 3	
351	
455	

Exemplo de Entrada	Exemplo de Saída
6 8	7
125	
1 4 4	
358	
2 3 6	
451	
4 2 3	
3 6 5	
5 6 2	

Exemplo de Entrada	Exemplo de Saída
8 11	11
677	
2 5 6	
1 2 13	
7 8 11	
5 4 4	
4 6 11	
3 4 9	
5 7 8	
2 4 7	
3 6 7	
2 3 9	