

Report No.: EED32J00028401 Page 1 of 64

TEST REPORT

Product : Beyond Tablet
Trade mark : Beyond Screen

Model/Type reference : BYM001

Serial Number : N/A

Report Number : EED32J00028401 FCC ID : 2AK5X-BM2897 Date of Issue : Mar. 30, 2017

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Beyond Screen Limited
Suite 307, Building 6, Fulltech Plaza, No. 33 North Guangshun Street,
Beijing, 100102, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Tom chen (Test Project)

Compiled by:

Report Sea

Ware xin (Project Engineer)

1/*lare* Xm

Reviewed by:

Kevin yang (Reviewer)

ReIn Ing

Sheek Luo (Lab supervisor)

Sheek Luo

Date:

Mar. 30, 2017

Check No.: 1022560588

2 Version

Version No.	Date	Description
00	Mar. 30, 2017	Original
	(25)	

Report No. : EED32J00028401 Page 3 of 64

3 Test Summary

rest Summary		/°~		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013		
Do mo o wler	162.1	UKATU	10.0	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Report No.: EED32J00028401 Page 4 of 64

4 Content

1 C	OVER PAGE				•••••	•••••	1
2 VE	RSION			•••••	•••••	•••••	2
3 TE	ST SUMMARY			•••••	•••••	•••••	3
4 C	ONTENT					•••••	3
5 TE	ST REQUIREMENT						5
/ _	.1 Test setup						
Э	5.1.1 For Conducted t						
	5.1.2 For Radiated Er						
	5.1.3 For Conducted I						
5	.2 Test Environment						
	.3 TEST CONDITION						
6 GI	ENERAL INFORMATIO	ON		••••			7
6	.1 CLIENT INFORMATION.						7
	.2 GENERAL DESCRIPTIC						
	.3 PRODUCT SPECIFICAT						
	.4 DESCRIPTION OF SUP						
	.5 TEST LOCATION						
	.6 TEST FACILITY						
	.7 DEVIATION FROM STA						
	.8 ABNORMALITIES FROM						
	9 OTHER INFORMATION						
6	.10 MEASUREMENT UNC	ertainty (95% co	NFIDENCE LEVELS	, к=2)			10
7 E(QUIPMENT LIST	•••••	•••••		•••••	•••••	11
8 R/	ADIO TECHNICAL REC	QUIREMENTS SP	ECIFICATION		•••••	•••••	13
	Appendix A): 20dB Od	ccupied Bandwidth	1				14
	Appendix B): Carrier F						
	Appendix C): Dwell Ti	me					22
	Appendix D): Hopping	Channel Number					26
	Appendix E): Conduct	ted Peak Output P	ower				28
	Appendix F): Band-ed	•					
	Appendix G): RF Con						
	Appendix H): Pseudoi						44
	Appendix I): Antenna						
	Appendix J): AC Power						
	Appendix K): Restricte						
	Appendix L): Radiated	d Spurious Emission	ons			•••••	57

Report No. : EED32J00028401 Page 5 of 64

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Report No. : EED32J00028401 Page 6 of 64

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		0
Temperature:	24°C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010mbar	10

5.3 Test Condition

Test Mode	Tx	RF Channel			
rest Mode	IX.	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/	2402MU= - 2490 MU=	Channel 1	Channel 40	Channel79	
8DPSK(DH1,DH3, DH5)	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz	
TX mode: The FUT transmitte	d the continuous modulati	on test signal a	at the specific chan	nel(s)	

Test mode:

Pre-scan under all rate at Lowest channel 1

Mode	GFSK				
packets	1-DH1	1-DH3	1-DH5		
Power(dBm)	2.227	2.301	2.308		

Mode	π/4DQPSK					
packets	2-DH1	2-DH3	2-DH5			
Power(dBm)	3.471	3.475	3.478			
Mode		8DPSK				
packets	3-DH1	3-DH3	3-DH5			
Power(dBm)	3.668	3.674	3.677			

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK.

Report No.: EED32J00028401 Page 7 of 64

6 General Information

6.1 Client Information

Applicant:	Beyond Screen Limited
Address of Applicant:	Suite 307, Building 6, Fulltech Plaza, No. 33 North Guangshun Street, Beijing, 100102, China
Manufacturer:	Beyond Screen Limited
Address of Manufacturer:	Suite 307, Building 6, Fulltech Plaza, No. 33 North Guangshun Street, Beijing, 100102, China
Factory:	Shenzhen Han-Shine Electronic Co., Ltd.
Address of Factory:	No. 2, Lane 3, 2nd Industrial Park, Yulv Village, Gongming Town, Guangming New District, Shenzhen City, Guangdong Province, 518132, China

6.2 General Description of EUT

Product Name:	Beyond Ta	Beyond Tablet			
Model No.(EUT):	BYM001				
Trade mark:	Beyond S	creen			
EUT Supports Radios application:		Wlan 2.4GHz 802.11b/g/n(HT20&HT40), Bluetooth V3.0+EDR, BT 4.0 NFC(13.56MHz)			
Power Supply:	Adapter:	MODEL: RS-200/120-S336 Adapter: INPUT: 100-240VAC, 50/60Hz, 1.5A Max OUTPUT: DC 12V2A			
AC Adapter line:	137cm(Ur	137cm(Unshielded)			
Sample Received Date:	Mar. 02, 2017				
Sample tested Date:	Mar. 02, 2	Mar. 02, 2017 to Mar. 30, 2017			

6.3 Product Specification subjective to this standard

	act opec.						
Operation	Frequency:	2402MH	z~2480MHz)	(6))	(0)
Bluetooth	Version:	3.0+EDF	}				
Modulatio	n Technique:	Frequen	cy Hopping Sp	read Spectru	ım(FHSS)		
Modulatio	n Type:	GFSK, π	r/4DQPSK, 8D	PSK		Z*5	
Number o	f Channel:	79	1	(23))	(6)	
Hopping C	Channel Type:	Adaptive	Adaptive Frequency Hopping systems				
Hardware	Version:		BY2.MB_V0.3 BY2.TB_V0.3 BY2.LRB V0.35 BY2.KB_V0.3 (manufacturer declare)				
Software '	Version:	V1.0(ma	V1.0(manufacturer declare)				
Test Powe	er Grade:	3(manuf	acturer declare)	(0,).	(0,
Test Softv	vare of EUT:	SoFia RI	FTestTool V1.1	(manufactu	rer declare)		
Antenna T	Гуре:	PIFA An	tenna				
Antenna C	Gain:	3.74dBi	X	13	\	13	
Test Volta	ige:	AC 120V	/, 60Hz	(6)	")	(6))
Operation	Frequency ea	ch of channe	el				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz

Report No.: EED32J00028401 Page 8 of 64

20	2421MHz	40	2441MHz	60	2461MHz	12	
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Report No. : EED32J00028401 Page 9 of 64

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Report No.: EED32J00028401 Page 10 of 64

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1 Radio Frequency		7.9 x 10 ⁻⁸
2 RF power,	DE nover conducted	0.31dB (30MHz-1GHz)
	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Sourious emission test	4.5dB (30MHz-1GHz)
	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32J00028401 Page 11 of 64

7 Equipment List

		RF test	system			
Equipment	Manufacturer	Model No. Serial Number		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017	
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018	
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017	
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017	
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017	

		A. W. J.			
	Cor	nducted distur	pance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 12 of 64

	3M :	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574 374	374	06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Report No. : EED32J00028401 Page 14 of 64

Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	le Channel. [MHz]		99% OBW [MHz]	Verdict	Remark
GFSK	LCH	1.029	0.91701	PASS	(0)
GFSK	MCH	1.029	0.91611	PASS	
GFSK	НСН	1.029	0.91225	PASS	
π/4DQPSK	LCH	1.261	1.1845	PASS	
π/4DQPSK	MCH	1.289	1.1832	PASS	Peak
π/4DQPSK	HCH	1.288	1.1799	PASS	detector
8DPSK	LCH	1.292	1.1785	PASS	13
8DPSK	MCH	1.288	1.1765	PASS	(6,62)
8DPSK	НСН	1.286	1.1792	PASS	

Report No. : EED32J00028401 Page 15 of 64

Test Graph

Report No.: EED32J00028401 Page 18 of 64

Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.022	PASS
GFSK	MCH	0.996	PASS
GFSK	HCH	1.120	PASS
π/4DQPSK	LCH	1.106	PASS
π/4DQPSK	MCH	0.920	PASS
π/4DQPSK	НСН	1.088	PASS
8DPSK	LCH	1.060	PASS
8DPSK	MCH	1.150	PASS
8DPSK	НСН	1.002	PASS

Report No. : EED32J00028401 Page 19 of 64

Test Graph

Report No. : EED32J00028401 Page 22 of 64

Appendix C): Dwell Time

Result Table

Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.363534	320	0.116	0.64	PASS
GFSK	DH1	MCH	0.362266	320	0.116	0.64	PASS
GFSK	DH1	НСН	0.363533	320	0.116	0.64	PASS
GFSK	DH3	LCH	1.62007	160	0.259	0.89	PASS
GFSK	DH3	MCH	1.6188	160	0.259	0.89	PASS
GFSK	DH3	НСН	1.62007	160	0.259	0.89	PASS
GFSK	DH5	LCH	2.86774	106.7	0.306	0.93	PASS
GFSK	DH5	МСН	2.86647	106.7	0.306	0.93	PASS
GFSK	DH5	НСН	2.86774	106.7	0.306	0.93	PASS

Remark : All modes are tested, only the worst mode GFSK is reported.

Report No. : EED32J00028401 Page 23 of 64

Test Graph

Report No.: EED32J00028401 Page 26 of 64

Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Test Graph

Report No.: EED32J00028401 Page 28 of 64

Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	2.308	PASS
GFSK	MCH	2.149	PASS
GFSK	HCH	1.831	PASS
π/4DQPSK	LCH	3.478	PASS
π/4DQPSK	MCH	3.260	PASS
π/4DQPSK	НСН	3.234	PASS
8DPSK	LCH	3.677	PASS
8DPSK	MCH	3.478	PASS
8DPSK	НСН	3.391	PASS

Report No.: EED32J00028401 Page 29 of 64

Test Graph

Report No. : EED32J00028401 Page 32 of 64

Appendix F): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict	
)			1.868	Off	-61.121	-18.13	PASS	
GFSK	LCH	2402	0.917	On	-53.971	-19.08	PASS	
			1.406	Off	-58.462	-18.59	PASS	
GFSK	HCH	2480	0.668	On	-54.408	-19.33	PASS	
(6,		(0,	1.720	Off	-61.087	-18.28	PASS	
π/4DQPSK	LCH	2402	-1.933	On	-56.519	-21.93	PASS	
			1.236	Off	-59.073	-18.76	PASS	
π/4DQPSK	HCH	2480	-2.381	On	-56.012	-22.38	PASS	
/			1.587	Off	-59.738	-18.41	PASS	
8DPSK LC	LCH	2402	-0.193	On	-56.827	-20.19	PASS	
			1.019	Off	-59.543	-18.98	PASS	
8DPSK	HCH	HCH	2480	-3.063	On	-54.851	-23.06	PASS

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32J00028401 Page 37 of 64

Appendix G): RF Conducted Spurious Emissions Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	1.164	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	1.475	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	1.245	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	1.696	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	1.418	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	0.859	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	1.566	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	1.213	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	1.029	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32J00028401 Page 45 of 64

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 3.74dBi.

Report No. : EED32J00028401 Page 46 of 64

Appendix J): AC Power Line Conducted Emission

est Procedure:	1000	cy range :150KHz- terminal disturban		conducted in a shield	led room
	2) The EUT	was connected to	AC power source the	rough a LISN 1 (Line lµH + 5Ω linear imp	e Impedance
	power ca	bles of all other un	its of the EUT were	connected to a sec	ond LISN 2
		A 200	-	e in the same way a	
				outlet strip was use	
			ingle LISN provided	the rating of the LISI	N was not
	exceeded				
	reference		or-standing arranger	lic table 0.8m above nent, the EUT was p	
	1,76,3	9	V/6.2 /	reference plane. The	e rear of the
	EUT shal reference	I be 0.4 m from the plane was bonded	vertical ground refe to the horizontal g	rence plane. The veround reference plan	rtical ground ie. The LISN
				unit under test and	
				on top of the groun	
				oints of the LISN 1 a ment was at least 0.	
	LISN 2.	units of the EOT at	iu associateu equipi	ment was at least 0.	o ili ilolli ule
		find the maximum	emission the relativ	ve positions of equip	ment and all
				ng to ANSI C63.10 c	
		d measurement.			
nit:	(6)	/			
	Frequenc	y range (MHz)	Limit (
	rrequeric	y range (wir iz)	Quasi-peak	Average	
	0.	15-0.5	66 to 56*	56 to 46*	(4)
	(6)	0.5-5	56	46	6
		5-30	60	50	
	MHz to 0	.50 MHz.	vith the logarithm of able at the transition	the frequency in the	e range 0.15
(8)	NOTE : THE	iower iiiriit is applic	able at the transition	i irequericy	
surement Dat					
	was performed on the rerage measurement				mission wer
cted.	crage measurement	were performed a	tine nequenoies wit	ii maximizea peak ei	moolon wer

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

20 0.150 0.5 (MHz) 5 30.000

No.	Freq.		ding_Le dBuV)	evel	Correct Factor	N	(dBuV)		Lir (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1580	37.41	32.03	13.51	9.76	47.17	41.79	23.27	65.56	55.56	-23.77	-32.29	P	
2	0.5380	31.39	26.34	21.63	9.73	41.12	36.07	31.36	56.00	46.00	-19.93	-14.64	P	
3	0.9340	19.11	14.72	8.59	9.71	28.82	24.43	18.30	56.00	46.00	-31.57	-27.70	P	
4	3.1260	18.23	13.38	5.97	9.68	27.91	23.06	15.65	56.00	46.00	-32.94	-30.35	P	
5	12.7140	16.85	9.87	3.11	9.96	26.81	19.83	13.07	60.00	50.00	-40.17	-36.93	P	
6	29.6140	10.33	5.31	0.47	10.20	20.53	15.51	10.67	60.00	50.00	-44.49	-39.33	P	A

Report No.: EED32J00028401 Page 48 of 64

Neutral line: 80.0 dBuV Limit: AVG: 30 peak AVG -20 0.1500.5 (MHz) 5 30.000 Reading_Level Correct Limit Measurement Margin No. Freq. (dBuV) Factor (dBuV) (dBuV) (dB) MHz dB. Peak QP AVG QP AVG QP AVG QP AVG P/F Comment peak 0.5420 30.75 25.14 20.82 9.73 40.48 34.87 30.55 56.00 46.00 -21.13 -15.45P 2 0.9220 19.24 14.38 3.57 9.72 28.96 24.10 13.29 56.00 46.00 -31.90 -32.71Р 3 1.7060 18.26 13.67 5.98 9.69 27.95 23.36 15.67 56.00 46.00 -32.64 -30.334 11.8660 38.65 9.45 -4.74 9.93 48.58 19.38 5.19 60.00 50.00 -40.62 -44.81 P 5 11.8660 16.51 9.41 3.60 9.93 26.44 19.34 13.53 60.00 50.00 -40.66 -36.47 P

Notes:

6

23.9540

17.25

12.11

5.47

1. The following Quasi-Peak and Average measurements were performed on the EUT:

22.29

15.65

60.00

50.00

-37.71

-34.35

P

27.43

2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

10.18

Report No.: EED32J00028401 Page 49 of 64

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:		Frequency	Detector	RBW	VBW	Remark
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	-	Alexand 4011	Peak	1MHz	3MHz	Peak
	(6,5)	Above 1GHz	Peak	1MHz	10Hz	Average
Test Procedure:	Belov	w 1GHz test proced	dure as below:			
	a d b. T w c. T	The EUT was placed t a 3 meter semi-and etermine the position of the EUT was set 3 now as mounted on the che antenna height is etermine the maximal electronic after a section of the content of the section of the sect	echoic camber. The nof the highest range of the highest range of the highest range of the fill the fill the highest range of the	he table wa adiation. the interfer neight ante meter to fo eld strengtl	ence-receinna tower. bur meters h. Both hor	on the group of th
	d. F tt e. T E f. F fr	colarizations of the a for each suspected on the antenna was tuned able was turned from the test-receiver system andwidth with Maxin Place a marker at the requency to show colands. Save the spec-	emission, the EUT ed to heights from n 0 degrees to 360 tem was set to Pe mum Hold Mode. e end of the restric empliance. Also m ctrum analyzer plo	was arran I meter to O degrees to eak Detect cted band co easure any	aged to its of a meters of find the information and closest to	worst case and and the rotatab maximum readi nd Specified ne transmit in the restricter.
		or lowest and highes re 1GHz test proce				
	g. E to h. b i. T	Different between ab of ully Anechoic Chaneter (Above 18GHz). Test the EUT in the radiation measuransmitting mode, a Repeat above process.	ove is the test site imber and change the distance is 1 elowest channel rements are perfound found the X ax	e form table meter and , the Highe rmed in X, kis position	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse case
Limit:		Frequency	Limit (dBµV	/m @3m)	Rei	mark
		30MHz-88MHz	40.0	0	Quasi-pe	eak Value
		88MHz-216MHz	43.9	5	Quasi-pe	eak Value
		216MHz-960MHz	46.0)	Quasi-pe	eak Value
		960MHz-1GHz	54.0	0	Quasi-pe	eak Value
				16	Average	
	(0)	Above 1GHz	54.0 74.0			le Value Value

Report No.: EED32J00028401 Page 50 of 64

Test plot as follows:

Worse case mode:	GFSK(1-DH5)	(20)	(375)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

_		_	
Page	51	Ωf	ദ
rauc	JΙ	OI.	\cup

Worse case mode:	GFSK(1-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

1 20 7	1 20 21	1 4% V1	
Worse case mode:	GFSK(1-DH5)		
Frequency: 2483.5MHz	Test channel: Highest Polarization: Vertical	Remark: Peak	

Page 52 of 64

Worse case mode:	π/4DQPSK(2-DH5)	200	215
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

/ 4.34	1 46.763	/ 45.76.7		
Worse case mode:	π/4DQPSK(2-DH5)			
Frequency: 2390 0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

1		Ant Cable tor Loss						Pol/Phase	Remark	
	MHz d	B/m dE	dB	dBuV	dBuV/m	dBuV/m	dB		-	
1 2390 2 pp 2401		.53 4.28 .56 4.31								

Page 53 of 64

Worse case mode:	π/4DQPSK(2-DH5)	200	215
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	π/4DQPSK(2-DH5)	(6,2)	(67)	
Frequency: 2483 5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Page 54 of 64

Worse case mode:	8DPSK(3-DH5)	(3)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	8DPSK(3-DH5)		200	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Page 55 of 64

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.
- 2) As shown in this section, the field strength limits are based on average limits. However, the peak field

Page 56 of 64

strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32J00028401 Page 57 of 64

Appendix L): Radiated Spurious Emissions

Receiver Setup:	(20)	(8	200		(5.57)
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
\	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
(0)	A h 4 O L l -	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	- /	- OS	30
	1.705MHz-30MHz	30	- (<u>(7)</u>	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32J00028401 Page 58 of 64

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	6.	0	(0.)
Test mode:	Transmitting	Horizontal	

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	47.659	14.91	1.21	10.23	26.35	40.00	-13.65	Horizontal	QP
2	71.080	10.19	1.46	12.99	24.64	40.00	-15.36	Horizontal	QP
3	136.460	10.52	1.58	21.63	33.73	43.50	-9.77	Horizontal	QP
4 pp	211.527	11.80	2.25	24.20	38.25	43.50	-5.25	Horizontal	QP
5	364.260	15.25	2.74	21.32	39.31	46.00	-6.69	Horizontal	QP
6	719.200	20.82	3.94	9.32	34.08	46.00	-11.92	Horizontal	OP

Page 59 of 64

Transmitter Emission above 1GHz

Worse case	mode:	GFSK(1-DI	H5)	Test char	nnel:	Lowest	Remark: P	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1162.051	30.13	2.47	44.44	56.01	44.17	74.00	-29.83	Pass	γ.Ή.
3728.625	33.00	5.48	44.62	49.91	43.77	74.00	-30.23	Pass	(TH)
4804.000	34.69	5.11	44.60	47.10	42.30	74.00	-31.70	Pass	Ĥ
5806.408	35.76	7.00	44.52	48.84	47.08	74.00	-26.92	Pass	Н
7206.000	36.42	6.66	44.77	47.19	45.50	74.00	-28.50	Pass	Н
9608.000	37.88	7.73	45.58	47.52	47.55	74.00	-26.45	Pass	Н
1162.051	30.13	2.47	44.44	60.22	48.38	74.00	-25.62	Pass	V
3241.498	33.38	5.57	44.67	54.59	48.87	74.00	-25.13	Pass	V
4804.000	34.69	5.11	44.60	47.51	42.71	74.00	-31.29	Pass	V
5821.207	35.77	7.03	44.52	49.38	47.66	74.00	-26.34	Pass	V
7206.000	36.42	6.66	44.77	47.15	45.46	74.00	-28.54	Pass	V
9608.000	37.88	7.73	45.58	47.77	47.80	74.00	-26.20	Pass	V

Worse case mode:		GFSK(1-D	H5)	Test char	nnel:	Middle	Remark: Po	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	53.16	41.50	74.00	-32.50	Pass	ьН
1759.638	31.33	3.05	43.72	56.56	47.22	74.00	-26.78	Pass	H
4882.000	34.85	5.08	44.60	46.85	42.18	74.00	-31.82	Pass	€ H
5986.509	35.89	7.40	44.50	48.80	47.59	74.00	-26.41	Pass	Н
7323.000	36.43	6.77	44.87	47.35	45.68	74.00	-28.32	Pass	Н
9764.000	38.05	7.60	45.55	47.75	47.85	74.00	-26.15	Pass	Н
1201.149	30.23	2.52	44.38	56.61	44.98	74.00	-29.02	Pass	V
1904.119	31.56	3.16	43.59	59.26	50.39	74.00	-23.61	Pass	V
4882.000	34.85	5.08	44.60	47.34	42.67	74.00	-31.33	Pass	V
6412.427	36.12	7.02	44.54	48.96	47.56	74.00	-26.44	Pass	V
7323.000	36.43	6.77	44.87	48.99	47.32	74.00	-26.68	Pass	V
9764.000	38.05	7.60	45.55	48.74	48.84	74.00	-25.16	Pass	V

Page 61 of 64

Worse case	mode:	GFSK(1-D	H5)	Test chan	nel:	Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	54.33	42.67	74.00	-31.33	Pass	Н
1908.972	31.57	3.16	43.58	55.57	46.72	74.00	-27.28	Pass	~°:H;
4960.000	35.02	5.05	44.60	46.37	41.84	74.00	-32.16	Pass	(H)
6511.117	36.17	6.92	44.55	48.68	47.22	74.00	-26.78	Pass	H
7440.000	36.45	6.88	44.97	47.12	45.48	74.00	-28.52	Pass	Н
9920.000	38.22	7.47	45.52	47.13	47.30	74.00	-26.70	Pass	Н
1326.513	30.52	2.66	44.21	54.72	43.69	74.00	-30.31	Pass	V
3402.126	33.25	5.54	44.66	53.75	47.88	74.00	-26.12	Pass	V
4960.000	35.02	5.05	44.60	46.45	41.92	74.00	-32.08	Pass	V
6379.864	36.10	7.05	44.54	48.88	47.49	74.00	-26.51	Pass	V
7440.000	36.45	6.88	44.97	47.73	46.09	74.00	-27.91	Pass	V
9920.000	38.22	7.47	45.52	47.83	48.00	74.00	-26.00	Pass	V

Worse case	mode:	π/4DQPSk	((2-DH5)	Test channel:		Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1162.051	30.13	2.47	44.44	52.44	40.60	74.00	-33.40	Pass	Н
1668.044	31.18	2.98	43.81	54.11	44.46	74.00	-29.54	Pass	Н
4804.000	34.69	5.11	44.60	47.18	42.38	74.00	-31.62	Pass	Н
5850.919	35.79	7.10	44.51	49.08	47.46	74.00	-26.54	Pass	₩ H
7206.000	36.42	6.66	44.77	46.98	45.29	74.00	-28.71	Pass	Н
9608.000	37.88	7.73	45.58	47.60	47.63	74.00	-26.37	Pass	Н
1162.051	30.13	2.47	44.44	58.44	46.60	74.00	-27.40	Pass	V
1329.894	30.52	2.66	44.21	57.29	46.26	74.00	-27.74	Pass	V
4804.000	34.69	5.11	44.60	47.33	42.53	74.00	-31.47	Pass	V
6094.137	35.95	7.33	44.51	49.09	47.86	74.00	-26.14	Pass	V
7206.000	36.42	6.66	44.77	46.87	45.18	74.00	-28.82	Pass	V
9608.000	37.88	7.73	45.58	47.58	47.61	74.00	-26.39	Pass	V

Page 62 of 64

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:	Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1201.149	30.23	2.52	44.38	51.36	39.73	74.00	-34.27	Pass	Н
1668.044	31.18	2.98	43.81	52.27	42.62	74.00	-31.38	Pass	~ :H: ~
3795.660	32.95	5.47	44.62	49.16	42.96	74.00	-31.04	Pass	(H)
4882.000	34.85	5.08	44.60	45.28	40.61	74.00	-33.39	Pass	H
7323.000	36.43	6.77	44.87	45.81	44.14	74.00	-29.86	Pass	Н
9764.000	38.05	7.60	45.55	47.42	47.52	74.00	-26.48	Pass	Н
1162.051	30.13	2.47	44.44	56.94	45.10	74.00	-28.90	Pass	V
1329.894	30.52	2.66	44.21	56.95	45.92	74.00	-28.08	Pass	V
4882.000	34.85	5.08	44.60	46.74	42.07	74.00	-31.93	Pass	V
5836.044	35.78	7.07	44.52	49.34	47.67	74.00	-26.33	Pass	V
7323.000	36.43	6.77	44.87	47.84	46.17	74.00	-27.83	Pass	V
9764.000	38.05	7.60	45.55	47.77	47.87	74.00	-26.13	Pass	V

Worse case	mode:	π/4DQPSk	((2-DH5)	Test channel:		Highest	Remark: Peak		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis		
1198.095	30.22	2.51	44.39	53.68	42.02	74.00	-31.98	Pass	Н		
1668.044	31.18	2.98	43.81	53.54	43.89	74.00	-30.11	Pass	Н		
1908.972	31.57	3.16	43.58	56.64	47.79	74.00	-26.21	Pass	Н		
4960.000	35.02	5.05	44.60	47.39	42.86	74.00	-31.14	Pass	S H		
7440.000	36.45	6.88	44.97	47.60	45.96	74.00	-28.04	Pass	Н		
9920.000	38.22	7.47	45.52	47.60	47.77	74.00	-26.23	Pass	Н		
1093.183	29.96	2.38	44.55	51.23	39.02	74.00	-34.98	Pass	V		
1439.09	30.75	2.77	44.07	51.73	41.18	74.00	-32.82	Pass	V		
4096.875	33.05	5.40	44.60	47.49	41.34	74.00	-32.66	Pass	V		
4960.000	35.02	5.05	44.60	45.68	41.15	74.00	-32.85	Pass	V		
7440.000	36.45	6.88	44.97	46.60	44.96	74.00	-29.04	Pass	V		
9920.000	38.22	7.47	45.52	47.60	47.77	74.00	-26.23	Pass	V		

Page	63	of	64
rauc	UU	UI.	$^{-}$

Worse case	mode:	8DPSK(3-I	DH5)	Test chani	nel:	Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1162.051	30.13	2.47	44.44	53.51	41.67	74.00	-32.33	Pass	Н
1668.044	31.18	2.98	43.81	53.34	43.69	74.00	-30.31	Pass	~ :H: ~
4804.000	34.69	5.11	44.60	46.97	42.17	74.00	-31.83	Pass	(H)
5791.646	35.74	6.97	44.52	49.07	47.26	74.00	-26.74	Pass	H
7206.000	36.42	6.66	44.77	46.78	45.09	74.00	-28.91	Pass	Н
9608.000	37.88	7.73	45.58	49.33	49.36	74.00	-24.64	Pass	Н
1162.051	30.13	2.47	44.44	57.30	45.46	74.00	-28.54	Pass	V
4086.459	33.02	5.40	44.60	49.24	43.06	74.00	-30.94	Pass	V
4804.000	34.69	5.11	44.60	47.65	42.85	74.00	-31.15	Pass	V
5821.207	35.77	7.03	44.52	49.07	47.35	74.00	-26.65	Pass	V
7206.000	36.42	6.66	44.77	46.74	45.05	74.00	-28.95	Pass	V
9608.000	37.88	7.73	45.58	47.91	47.94	74.00	-26.06	Pass	V

Worse case	Vorse case mode:		8DPSK(3-DH5)		inel: Middle		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	53.21	41.55	74.00	-32.45	Pass	Н
1668.044	31.18	2.98	43.81	54.46	44.81	74.00	-29.19	Pass	Н
4882.000	34.85	5.08	44.60	46.51	41.84	74.00	-32.16	Pass	Н
5747.586	35.71	6.87	44.52	49.18	47.24	74.00	-26.76	Pass	₩H
7323.000	36.43	6.77	44.87	47.89	46.22	74.00	-27.78	Pass	Н
9764.000	38.05	7.60	45.55	48.33	48.43	74.00	-25.57	Pass	Н
1162.051	30.13	2.47	44.44	59.71	47.87	74.00	-26.13	Pass	V
1529.749	30.93	2.85	43.96	52.69	42.51	74.00	-31.49	Pass	V
4882.000	34.85	5.08	44.60	46.77	42.10	74.00	-31.90	Pass	V
5971.290	35.88	7.37	44.50	49.07	47.82	74.00	-26.18	Pass	V
7323.000	36.43	6.77	44.87	47.33	45.66	74.00	-28.34	Pass	V
9764.000	38.05	7.60	45.55	48.45	48.55	74.00	-25.45	Pass	V

Page	64	of	64
Paue	04	OΙ	04

Worse case	mode:	8DPSK(3-E	DH5)	Test chann	nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	52.91	41.25	74.00	-32.75	Pass	Н
1741.812	31.30	3.04	43.74	53.17	43.77	74.00	-30.23	Pass	~ H
4960.000	35.02	5.05	44.60	46.14	41.61	74.00	-32.39	Pass	(H)
6577.752	36.20	6.86	44.56	49.53	48.03	74.00	-25.97	Pass	H
7440.000	36.45	6.88	44.97	47.55	45.91	74.00	-28.09	Pass	Н
9920.000	38.22	7.47	45.52	48.08	48.25	74.00	-25.75	Pass	Н
1159.096	30.13	2.47	44.44	58.26	46.42	74.00	-27.58	Pass	V
1823.477	31.43	3.10	43.66	56.59	47.46	74.00	-26.54	Pass	V
4960.000	35.02	5.05	44.60	46.37	41.84	74.00	-32.16	Pass	V
6396.125	36.11	7.03	44.54	49.05	47.65	74.00	-26.35	Pass	V
7440.000	36.45	6.88	44.97	47.38	45.74	74.00	-28.26	Pass	V
9920.000	38.22	7.47	45.52	47.33	47.50	74.00	-26.50	Pass	V

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

