

What is claimed is:

1 1. A system for finding compounds in a text corpus, comprising:
2 a vocabulary comprising tokens extracted from a text corpus; and
3 a compound finder iteratively identifying compounds having a plurality of
4 lengths within the text corpus, each compound comprising a plurality of tokens,
5 comprising:

6 an *n*-gram counter evaluating a frequency of occurrence for one or
7 more *n*-grams in the text corpus, each *n*-gram comprising tokens selected from the
8 vocabulary; and

9 a likelihood evaluator determining a likelihood of collocation for
10 one or more of the *n*-grams having a same length, adding the *n*-grams having a
11 highest likelihood as compounds to the vocabulary and rebuilding the vocabulary
12 based on the added compounds.

1 2. A system according to Claim 1, further comprising:
2 an iterator selecting *n*-grams having a same length that is less than the
3 same length as *n*-grams previously selected.

1 3. A system according to Claim 1, wherein only some of the *n*-grams
2 having a highest likelihood are added as compounds to the vocabulary.

1 4. A system according to Claim 1, wherein the likelihood of
2 collocation as a likelihood ratio λ is computed in accordance with the formula:

$$3 \quad \lambda = \frac{L(H_i)}{L(H_c)}$$

4 where $L(H_i)$ is a likelihood of observing H_i under an independence hypothesis,
5 $L(H_c)$ is a likelihood of observing H_c under a collocation hypothesis, and H is a
6 pair of tokens.

1 5. A system according to Claim 4, wherein the $L(H_c)$ is determined,
2 comprising dividing the *n*-gram into *n*-1 pairings of segments, calculating a

3 likelihood of collocation for each pairing of segments, and selecting the maximum
4 likelihood of collocation of the pairings as $L(H_c)$.

1 6. A method for finding compounds in a text corpus, comprising:
2 building a vocabulary comprising tokens extracted from a text corpus; and
3 iteratively identifying compounds having a plurality of lengths within the
4 text corpus, each compound comprising a plurality of tokens, comprising:
5 evaluating a frequency of occurrence for one or more n -grams in
6 the text corpus, each n -gram comprising tokens selected from the vocabulary;
7 determining a likelihood of collocation for one or more of the n -
8 grams having a same length; and
9 adding the n -grams having a highest likelihood as compounds to
10 the vocabulary and rebuilding the vocabulary based on the added compounds.

1 7. A method according to Claim 6, further comprising:
2 selecting n -grams having a same length that is less than the same length as
3 n -grams previously selected.

1 8. A method according to Claim 6, further comprising:
2 adding only some of the n -grams having a highest likelihood as
3 compounds to the vocabulary.

1 9. A method according to Claim 6, further comprising:
2 computing the likelihood of collocation as a likelihood ratio λ in
3 accordance with the formula:

$$4 \quad \lambda = \frac{L(H_i)}{L(H_c)}$$

5 where $L(H_i)$ is a likelihood of observing H_i under an independence hypothesis,
6 $L(H_c)$ is a likelihood of observing H_c under a collocation hypothesis, and H is a
7 pair of tokens.

1 10. A method according to Claim 9, further comprising:

2 determining $L(H_c)$, comprising:
3 dividing the n -gram into $n-1$ pairings of segments;
4 calculating a likelihood of collocation for each pairing of
5 segments; and
6 selecting the maximum likelihood of collocation of the pairings as
7 $L(H_c)$.

1 11. A computer-readable storage medium holding code for performing
2 the method according to Claim 6.

1 12. An apparatus for finding compounds in a text corpus, comprising:
2 means for building a vocabulary comprising tokens extracted from a text
3 corpus; and
4 means for iteratively identifying compounds having a plurality of lengths
5 within the text corpus, each compound comprising a plurality of tokens,
6 comprising:
7 means for evaluating a frequency of occurrence for one or more n -
8 grams in the text corpus, each n -gram comprising tokens selected from the
9 vocabulary;
10 means for determining a likelihood of collocation for one or more
11 of the n -grams having a same length; and
12 means for adding the n -grams having a highest likelihood as
13 compounds to the vocabulary and means for rebuilding the vocabulary based on
14 the added compounds.

1 13. A system for identifying compounds through iterative analysis of
2 measure of association, comprising:
3 a stored limit on a number of tokens per compound; and
4 a compound finder iteratively evaluating compounds within a text corpus,
5 comprising:

6 an *n*-gram counter determining a number of occurrences of one or
7 more *n*-grams within the text corpus, each *n*-gram comprising up to a maximum
8 number of tokens, which are each provided in a vocabulary for the text corpus;
9 a likelihood evaluator identifying at least one *n*-gram comprising a
10 number of tokens equal to the limit based on the number of occurrences and
11 determining a measure of association between the tokens in the identified *n*-gram
12 and adding each identified *n*-gram with a sufficient measure of association to the
13 vocabulary as a compound token, rebuilding the vocabulary based on the added
14 compound tokens and adjusting the limit.

1 14. A system according to Claim 13, further comprising:
2 a stored upper limit on a number of identified *n*-grams; and
3 a limiter identifying a number of *n*-grams up to the upper limit based on
4 the number of occurrences.

1 15. A system according to Claim 13, further comprising:
2 an iterator initially specifying the limit comprising a plurality of tokens
3 per compound and subsequently decreasing the limit comprising a lesser plurality
4 of tokens per compound.

1 16. A system according to Claim 13, wherein the measure of
2 association between the tokens in the identified *n*-gram comprises a likelihood
3 ratio λ .

1 17. A system according to Claim 16, wherein the likelihood ratio λ is
2 calculated in accordance with the formula:

$$3 \quad \lambda = \frac{L(H_i)}{L(H_c)}$$

4 where $L(H_i)$ is a likelihood of observing H_i under an independence hypothesis,
5 $L(H_c)$ is a likelihood of observing H_c under a collocation hypothesis, and H is a
6 pair of tokens.

1 18. A system according to Claim 17, wherein, for each pair of tokens,
2 t_1, t_2 , in the identified n -gram, the independence hypothesis comprises
3 $P(t_2 | t_1) = P(t_2 | \bar{t}_1)$ and the collocation hypothesis comprises $P(t_2 | t_1) > P(t_2 | \bar{t}_1)$.

1 19. A system according to Claim 17, wherein the $L(H_i)$ is computed
2 for each pair of tokens, t_1, t_2 , in the identified n -gram in accordance with the
3 formula:

4
$$\arg \max_{L(H_i)} \frac{L(t_1, t_2 \text{ form compound})}{L(n\text{-}gram \text{ does not form compound})}.$$

1 20. A system according to Claim 13, further comprising:
2 an initial vocabulary comprising a plurality of tokens extracted from the
3 text corpus.

1 21. A system according to Claim 20, further comprising:
2 a parser parsing the tokens from the text corpus.

1 22. A system according to Claim 13, further comprising:
2 a filter determining the number of occurrences of one or more n -grams
3 within the text corpus for only unique n -grams.

1 23. A system according to Claim 13, wherein each text corpus
2 comprises a plurality of documents comprising one of a Web page, a news
3 message and text.

1 24. A method for identifying compounds through iterative analysis of
2 measure of association, comprising:
3 specifying a limit on a number of tokens per compound; and
4 iteratively evaluating compounds within a text corpus, comprising:
5 determining a number of occurrences of one or more n -grams
6 within the text corpus, each n -gram comprising up to a maximum number of
7 tokens, which are each provided in a vocabulary for the text corpus;

8 identifying at least one *n*-gram comprising a number of tokens
9 equal to the limit based on the number of occurrences and determining a measure
10 of association between the tokens in the identified *n*-gram; and
11 adding each identified *n*-gram with a sufficient measure of
12 association to the vocabulary as a compound token, rebuilding the vocabulary
13 based on the added compound tokens and adjusting the limit.

1 25. A method according to Claim 24, further comprising:
2 providing an upper limit on a number of identified *n*-grams; and
3 identifying a number of *n*-grams up to the upper limit based on the number
4 of occurrences.

1 26. A method according to Claim 24, further comprising:
2 initially specifying the limit comprising a plurality of tokens per
3 compound; and
4 subsequently decreasing the limit comprising a lesser plurality of tokens
5 per compound.

1 27. A method according to Claim 24, wherein the measure of
2 association between the tokens in the identified *n*-gram comprises a likelihood
3 ratio λ .

1 28. A method according to Claim 27, further comprising:
2 calculating the likelihood ratio λ in accordance with the formula:

$$3 \quad \lambda = \frac{L(H_i)}{L(H_c)}$$

4 where $L(H_i)$ is a likelihood of observing H_i under an independence hypothesis,
5 $L(H_c)$ is a likelihood of observing H_c under a collocation hypothesis, and H is a
6 pair of tokens.

1 29. A method according to Claim 28, wherein, for each pair of tokens,
2 t_1, t_2 , in the identified n -gram, the independence hypothesis comprises
3 $P(t_2 | t_1) = P(t_2 | \bar{t}_1)$ and the collocation hypothesis comprises $P(t_2 | t_1) > P(t_2 | \bar{t}_1)$.

1 30. A method according to Claim 28, further comprising:
2 computing the $L(H_i)$ for each pair of tokens, t_1, t_2 , in the identified n -gram
3 in accordance with the formula:

4
$$\arg \max_{L(H_i)} \frac{L(t_1, t_2 \text{ form compound})}{L(n\text{-}gram \text{ does not form compound})}.$$

1 31. A method according to Claim 24, further comprising:
2 constructing an initial vocabulary comprising a plurality of tokens
3 extracted from the text corpus.

1 32. A method according to Claim 31, further comprising:
2 parsing the tokens from the text corpus.

1 33. A method according to Claim 24, further comprising:
2 determining the number of occurrences of one or more n -grams within the
3 text corpus for only unique n -grams.

1 34. A method according to Claim 24, wherein each text corpus
2 comprises a plurality of documents comprising one of a Web page, a news
3 message and text.

1 35. A computer-readable storage medium holding code for performing
2 the method according to Claim 24.

1 36. An apparatus for identifying compounds through iterative analysis
2 of measure of association, comprising:
3 means for specifying a limit on a number of tokens per compound; and
4 means for iteratively evaluating compounds within a text corpus,
5 comprising:

6 means for determining a number of occurrences of one or more *n*-
7 grams within the text corpus, each *n*-gram comprising up to a maximum number
8 of tokens, which are each provided in a vocabulary for the text corpus;
9 means for identifying at least one *n*-gram comprising a number of
10 tokens equal to the limit based on the number of occurrences and means for
11 determining a measure of association between the tokens in the identified *n*-gram;
12 and
13 means for adding each identified *n*-gram with a sufficient measure
14 of association to the vocabulary as a compound token, means for rebuilding the
15 vocabulary based on the added compound tokens and means for adjusting the
16 limit.