Skripta: Napredna Kvantna Mehanika

Adrian Udovičić

 $March\ 30,\ 2022$

Uvod

Svrha ove skripte je upoznati studente različitih smjerova s kolegijem napredne kvantne mehanike.

Contents

1	Ket i Bra notacija	1
	1.1 Vektori baze i matrična reprezentacija	1
	1.1.1 Operatori	1
	1.1.2 Komutatori	2
	1.1.3 Vanjski produkt	2
	1.1.4 Hermitski operatori	2
	1.2 Mjerenja, opservable i relacija neodređenosti	
	1.3 Promjena baze	2
	1.4 Položaj, moment i translacija	2
	1.5 Valna funkcija u prostoru položaja i momenta	2
2	Kvantna dinamika	2
3	Teorija angularnog momenta	2
4	Simetrije Kvantne mehanike	2
5	Aproksimacijske metode	2
6	Teorija raspršenja	2

Ket i Bra notacija 1

Vektori baze i matrična reprezentacija

Kvantno stanje opisujemo sa $|\psi\rangle$ koji razapinju Hilbertov prostor s definiranim skalarnim produktom i svojstvima:

- $|\alpha\rangle + |\beta\rangle = \langle\gamma|$,
- $\mathbf{c} \cdot |\alpha\rangle = |c \cdot \alpha\rangle$,
- Postoji operator \hat{A} t.d. $|\beta\rangle$.

Dimenzija prostora određenja je problemom, npr. za 1 elektron imamo dimenzije momenta, angularnong momenta i spina $\rightarrow 3 + 3 + 2 = 8D$. Baza $\{|\alpha\rangle\}$, gdje ket $|\alpha\rangle$ sadrži sve informacije o sistemu, ali do informacije dolazimo skalarni produkt: $\langle \beta | | \alpha \rangle$, gdje je $\langle \beta |$ iz dualnog prostora ket prostora. Korespondencija:

$$C_1 |\alpha\rangle + C_2 |\beta\rangle \Leftrightarrow C_1^* \langle \alpha | C_2^* \langle \beta | \tag{1.1}$$

Svojstva skalarnog produkta:

- $\langle \beta | | \alpha \rangle = \langle \alpha | | \beta \rangle^*$,
- Pozitivna definitnost $\Rightarrow \langle \alpha | | \alpha \rangle > 0$,
- Ortogonalnost $\Rightarrow \langle \alpha | | \beta \rangle = 0 = \langle \beta | | \alpha \rangle$,
- Normalizacija $\Rightarrow |\hat{\alpha}\rangle = \frac{|\alpha\rangle}{\sqrt{\langle\alpha||\alpha\rangle}} \Rightarrow \langle\alpha\alpha\rangle = 1.$

Svaki vektor možemo razviti po vektorima baze:

$$|\alpha\rangle = \sum_{n=1}^{N} c_n |\alpha\rangle; c_n = \langle \alpha_n | \alpha \rangle$$
 (1.2)

1.1.1 Operatori

Operatori predstavljaju observable, tj. pomoću operatora pridružujemo fizikalne veličine opažanom sustavu. Npr. Operator položaja \hat{x} koristi se za određivanje položaja sustav, operator momenta \hat{p} za određivanje momenta, itd. Dijelovanje operatora na neko stanje može promijeniti to stanje:

$$\hat{A} |\alpha\rangle = |\beta\rangle \tag{1.3}$$

tj.

$$\hat{A} |\alpha\rangle = a |a\rangle, \tag{1.4}$$

gdje je $|a\rangle$ svojstveni vektor (svj. v.) operatora \hat{A} , a a svojstvena vrijednost (svj. vrij.).

Svojstva operatora:

- Zbrajanje
 - Komutativnost: $\hat{A} + \hat{B} = \hat{B} + \hat{A}$,
 - Asocijativnost: $\hat{A} + (\hat{B} + \hat{C}) = (\hat{A} + \hat{B})\hat{C}$,
 - Linearnost: $\hat{A}(a|a\rangle + b|b\rangle) = a\hat{A}|a\rangle + b\hat{A}|b\rangle$,
 - Hermetičnost: $\hat{A} |a\rangle = \langle a | \hat{A}^*$
- Množenje
 - (Anti-)Komutativnost: $\hat{A}\hat{B} \neq \hat{B}\hat{A}$,
 - Asocijativnost: $\hat{A}\left(\hat{B}\hat{C}\right) = \left(\hat{A}\hat{B}\right)\hat{C}$,
 - tj. $\hat{A}\left(\hat{B}|a\rangle\right) = \hat{A}\hat{B}|a\rangle$,
 - Hermetičnost: $\left(\hat{A}\hat{B}\right)^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$, tj. $\hat{A}\hat{B}|a\rangle = \langle a|\hat{B}^{\dagger}\hat{A}^{\dagger}$.

tj.
$$\hat{A}\hat{B}|a\rangle = \langle a|\hat{B}^{\dagger}\hat{A}^{\dagger}$$
.

1.1.2 Komutatori

$$\left[\hat{A},\hat{B}\right] = \hat{A}\hat{B} - \hat{B}\hat{A} \tag{1.5}$$

U klasičnoj mehanici to s ubili generatori koordinata i impulsa. Glavna značajka prelaska iz klasične u kvantnu mehaniku je $[p,q] \neq 0 = i\hbar$.

1.1.3 Vanjski produkt

$$|\beta\rangle\langle\alpha|$$
 (1.6)

je operator sa sljedećim svojstvima:

- $(|\beta\rangle\langle\alpha|)|\gamma\rangle = |\beta\rangle\langle\alpha|\gamma\rangle = c_{\alpha\gamma}|\beta\rangle$,
- $\hat{X} = |\beta\rangle\langle\alpha| \to \hat{X}^{\dagger} = |\alpha\rangle\langle\beta|,$
- $\bullet \ (\langle \beta |) \, \hat{X} \, |\alpha \rangle = \langle \beta | \hat{X} | \alpha \rangle = \Big(\langle \alpha | \hat{X}^\dagger | \beta \rangle \Big)^\dagger,$
- $\langle \beta | \hat{X} | \alpha \rangle = \langle \alpha | \hat{X} | \beta \rangle^{\dagger}$.

1.1.4 Hermitski operatori

 $\hat{A}=\hat{A}^{\dagger}$ je jednadžba hermetičnosti. Ako jednakost vrijedi operator \hat{A} je hermetičan.

Teorem 1.1 Svojstvene vrijednosti hermitskog operatora su realne, a vektori su međusobno ortogonalni.

Dokaz 1.1

$$\hat{A} |n\rangle = a_n |n\rangle$$

$$\langle n| \hat{A}^{\dagger} = \langle n| a_n^*$$

$$\langle n| \hat{A}|m\rangle = \langle n|m\rangle a_n^*$$
(1.7)

- 1.2 Mjerenja, opservable i relacija neodređenosti
- 1.3 Promjena baze
- 1.4 Položaj, moment i translacija
- 1.5 Valna funkcija u prostoru položaja i momenta
- 2 Kvantna dinamika
- 3 Teorija angularnog momenta
- 4 Simetrije Kvantne mehanike
- 5 Aproksimacijske metode
- 6 Teorija raspršenja