NLP - Fall 2017 - Midterm Exam

This material is ©Anoop Sarkar 2017.

Only students registered for this course are allowed to download this material.

Use of this material for "tutoring" is prohibited.

(1) Language Models

Mrs. Malaprop would like to build a spelling corrector focused on the particular problem of *there* vs *their*. The idea is to build a model that takes a sentence as input, for example:

- 1. He saw their football in the park
- 2. He saw their was a football in the park

For each instance of *their* or *there* Mrs. Malaprop wants to predict whether the true spelling should be *their* or *there*. So for sentence (1) the model should predict *their*, and for sentence (2) the model should predict *there*. Note that for the second example the model would correct the spelling mistake in the sentence. Mrs. Malaprop recently took some NLP classes so she wants to use a language model for this task. Given a language model $p(w_1, \ldots, w_n)$, return the spelling that gives the highest probability under the language model. So for example for the second sentence we would implement the rule: replace *there* with *their* and vice versa and compare the language model scores:

If p(He saw there was a football in the park) > p(He saw their was a football in the park)

Then return(there)
Else return(their)

Mrs. Malaprop decides to use an unigram model: $p(w_1, ..., w_n) = \prod_{i=1}^n q(w_i)$ where $q(w_i) = \frac{\text{Count}(w_i)}{N}$ and $N = \sum_w \text{Count}(w)$. Count(·) returns the number of times a word was seen in the corpus and N is the sum of counts for all words in the corpus. Assume N = 10,000 and Count(there) = 110 and Count(their) = 50. Also assume that for every word w in the vocabulary Count(w) > 0.

- a. What does the Mrs. Malaprop rule return for He saw their was a football in the park?
- b. Is the Mrs. Malaprop rule a good solution to the *their* versus *there* problem? Say yes or no and give a short and precise one sentence justification for your answer.

(2) Hidden Markov Models

The probability model $P(t_i \mid t_{i-2}, t_{i-1})$ is provided below where each t_i is a part of speech tag, e.g. $P(D \mid N, V) = \frac{1}{3}$. Also provided is $P(w_i \mid t_i)$ that a word w_i has a part of speech tag t_i , e.g. $P(\text{flies} \mid V) = \frac{1}{2}$. The part of speech tag definitions are: bos (*begin sentence marker*), N (*noun*), V (*verb*), D (*determiner*), P (*preposition*), eos (*end of sentence marker*).

$P(t_i \mid t_{i-2}, t_{i-1})$	t_{i-2}	t_{i-1}	t_i	
1	bos	bos	N	
$\frac{1}{2}$	bos	N	N	
$\frac{1}{2}$	bos	N	V	
$\frac{\overline{1}}{2}$	N	N	V	
$\frac{\overline{1}}{2}$	N	N	P	
$\frac{1}{3}$	N	V	D	
$\frac{1}{3}$	N	V	V	
$\frac{1}{3}$	N	V	P	
1	V	D	N	
1	V	V	D	
1	N	P	D	
1	V	P	D	
1	P	D	N	
1	D	N	eos	

$P(w_i \mid t_i)$	t_i	w_i
1	D	an
$\frac{2}{5}$	N	time
$\frac{2}{5}$	N	arrow
1 5	N	flies
1	P	like
$\frac{1}{2}$	V	like
$\frac{1}{2}$	V	flies
1	eos	eos
1	bos	bos

a. Consider a Jelinek-Mercer style interpolation smoothing scheme for $P(w_i \mid t_i)$:

$$P_{im}(t_i \mid t_{i-1}) = \Lambda[t_{i-1}] \cdot P(t_i \mid t_{i-1}) + (1 - \Lambda[t_{i-1}]) \cdot P(t_i)$$

 Λ is an array with a value $\Lambda[t_i]$ for each part of speech tag t_i . Provide a condition on Λ that must be satisfied to ensure that P_{im} is a well-defined probability model.

b. Provide a Hidden Markov Model (*hmm*) that uses the trigram part of speech probability $P(t_i \mid t_{i-2}, t_{i-1})$ as the transition probability $P_{hmm}(s_j \mid s_k)$ and the probability $P(w_i \mid t_i)$ as the emission probability $P_{hmm}(w_j \mid s_j)$.

Important: Provide the *hmm* in the form of two tables as shown below. The first table contains transitions between states in the *hmm* and the transition probabilities and the second table contains the words emitted at each state and the emission probabilities. Do not provide entries with zero probability.

	from-state s_k	to-state s_j	$P(s_j \mid s_k)$	state s_j	emission w	$P(w \mid s_j)$
ſ						

Hint: In your *hmm* the state $\langle N, eos \rangle$ will have emission of word eos with probability 1 and will not have transitions to any other states.

c. Based on your *hmm* constructed in 2b. what is the state sequence that would be provided by the Viterbi algorithm for the following input sentence:

bos bos time flies like an arrow eos