Obsah

11	Stru	ıktura	a vlastnosti pevných látek	1
	11.1	Mecha	nické vlastnosti	1
		11.1.1	Struktura látek	1
		11.1.2	Izotropie	1
		11.1.3	Poruchy mřížky	2
	11.2	Туру	vazeb	2
				2
		11.2.2	Kovová	3
				3
		11.2.4	Vodíková (vodíkový můstek)	3
				3
	11.3	Deform	nace	3
		11.3.1	Deformace působením sil	3
			Hookův zákon	
		11.3.3	Teplotní roztažnost	4

11 Struktura a vlastnosti pevných látek

11.1 Mechanické vlastnosti

- pružnost schopnost vratné deformace
- tvárnost schopnost nevratné deformace
- pevnost odolnost vůči trvalému porušení celistvosti napětí nutné k porušení
- houževnatost odolnost vůči trvalému porušení celistvosti práce nutné k porušení

11.1.1 Struktura látek

Krystalické

- částice (atomy, molekuly, ionty) pravidelně uspořádány v mřížce
- pravidelný geometrický tvar krystalické mřížky
 - trojklonná, jednoklonná, kosočtverečná, čtverečná, krychlová, šesterečná (hexagonální), klencová
- monokrystal
 - periodický v celém objemu
 - diamant, křemen, kamenná sůl
- polykrystyl
 - mnoho zrn, uspořádání uvnitř zrn pravidelné
 - vzájemná poloha zrn náhodná
 - většina látek, např. kovy

Amorfní

- periodické uspořádání do 10^{-8} m, na větších vzdálenost pravidelnost porušena
- → neperiodické uspořádání
- sklo, pryskyřice, polymery, vosk, asfalt

Obr. 11.1: Uspořádání částic v pevných látkách

11.1.2 Izotropie

• závislost vlastností látek na směru

Izotropní látky

- ve všech směr stejné vlastnosti
- polykrystaly a amorfní látky

Anizotropní látky

- některé fyzikální vlastnosti závisí na směru
- monokrystaly

11.1.3 Poruchy mřížky

- odchylky od pravidelného rozložení
- bodové poruchy poruch mřížky pouze v jednom bodě
- čárové poruchy porucha podél linie
- objemové poruchy porucha ve větším objemu

Bodové poruchy

- vakance prázdné místo v mřížce
- intersticiální poloha částice navíc mimo mřížku
- substituční porucha vyměnění částice za jinou (nečistoty)
- Frekelova porucha částice opustí původní polohu (tvoříc vakanci) a přejde na novou (do intersticiální polohy)

11.2 Typy vazeb

vazby – váží k sobě částice krystalové mřížky

11.2.1 lontová

- mezi elektropozitivním a elektronegativním prvkem
- pomocí elektronů
- jeden atom odevzdá elektron (→ kationt) a druhý atom jej příjme (→ aniont)
- přitahování elektrostatickou sílou
- tvrdé, vysoká teplota tání
- křehké, štěpné podél rovin kolmých na hrany
- běžně izolanty, při vyšších teplotách vodiče
- pro světlo propustné

Obr. 11.2: Poruchy krystalické mřížky

11.2.2 Kovová

- uvolnění valenčních elektronů do prostoru
- volný pohyb mezi kationty kovových atomů
- neprůhledné, dobře vodivé

11.2.3 Kovalentní

- sdílení valenčních elektronů sousedních atomů
- elektrony patří oběma elektronům
- směrová (pod úhlem) a nasycená
- vazby atomů stejných prvků (H₂, Cl₂, O₂, ...) či jiných sloučenin (CH₄, H₂O, HNO₃, ...)
- tvrdé, vysoká teplota tání, nerozpustné v ředidlech, izolanty nebo polovodiče

11.2.4 Vodíková (vodíkový můstek)

- nevazebná interakce
- vodík + elektronegativní prvek atom s volným elektronovým párem
- voda, nukleonové kyseliny

11.2.5 Van der Waalsova

- slabá vazby
- elektrické povahy
- typicky krystaly inertních prvků
- při nízkých teplotách, při velkých relativních hmotnostech i pokojová teplota (parafín)
- měkké, nízká teplota tání

11.3 Deformace

- změna rozměrů, tvaru a objemu tělesa z důvodu vnějších vlivů (síla, teplota...)
- pružná (elastická)
 - dočasná/vratná deformace
 - přestanou působit vnější vlivy, deformace zmizí
 - prodloužení pružiny, prohnutí desky
- tvárná (plastická)
 - stálá
 - přetrvává i po skončení vnějšího vlivu
 - kování, válcování, přílišné natáhnutí pružiny...

11.3.1 Deformace působením sil

- tahem
 - působení dvou stejně velkých sil v jedné přímce ven z tělesa
 - roztahování tělesa
 - lano jeřábu, kladky...
- tlakem
 - působení dvou stejně velkých sil dovnitř tělesa
 - smrštění tělesa
 - pilíře mostu, nosníky domu, nosné sloupy...
- ohvbem
 - působení síly kolmo k podélné ose
 - dolní vrstvy deformovány tahem, vrchní tlakem, zachování střední vrstvy
 - prohnutí tělesa
 - tyč mezi dvěma podpěrnými body, most mezi sloupy, polička...
- smykem
 - působení dvou sil na spodní a horní podstavu tělesa
 - síly v rozdílných rovinách
 - vzájemné posunutí vrstev
 - šroub, nýt
- krutem
 - dvě dvojce sil na podstavách, stejné momenty sil opačného směru
 - vzájemné otáčení vrstev
 - hřídele, šrouby při utahování, vrtání...

11.3.2 Hookův zákon

- zákon pro pružnou deformaci
- pro malá prodloužení a deformace
- prodloužení tělesa při deformaci tahem a tlakem

$$\varepsilon = \frac{\sigma}{E} \quad \Rightarrow \quad \sigma = \varepsilon E$$

- $-\varepsilon = \Delta l/l$ relativní prodloužení/zkrácení tělesa
- $-\sigma$ mechanické napětí
- E modul pružnosti v tahu (Youngův modul)
- alternativní tvar

$$F = -kx$$

- F působící síla
- k konstanta pružnosti
- x prodloužení
- relativní prodloužení
 - značka ε , $[\varepsilon] = 1$ (bezrozměrné)
 - popisuje relativní prodloužení tělesa při působení síly
- mechanické napětí
 - značka σ , $[\sigma] = Pa$
 - míra vnitřní síly na jednotku plochy

$$\sigma = \frac{F}{S}$$

- popis stavu silového namáhání tělsa
- modul pružnosti v tahu (Youngův modul)
 - značka E, [E] = Pa
 - míra prodloužení v závislosti na mechanickém napětí
 - vlastnost tělesa konstantní, pro každý materiál rozdílná hodnota
 - konstrukční ocel (210 GPa), beton (35 GPa), monokrystalický diamant (820 GPa–1 250 GPa)

11.3.3 Teplotní roztažnost

- změny rozměrů tělesa z důvodu změny teploty
- natahování drátů, zvětšení pístu v motoru

Délková roztažnost

- tepelné roztáhnutí do délky
- převážně u dlouhých těles tyče, dráty, trubice...
- popis změny délky v závislosti na změně teplotě

$$\Delta l = l\alpha \Delta t$$

- -l původní délka
- $-\alpha, [\alpha = K^{-1}]$ teplotní součinitel délkové roztažnosti
 - *závislý na teplotě, pro malé Δt aproximace na konstantní
- nová délka po změně teploty

$$l' = l + \Delta l = l + l\alpha \Delta t = l(1 + \alpha \Delta t)$$

• využití – měření teploty – bimetalové teploměry, termostaty, požární hlásiče...

Objemová roztažnost

• způsobeno délkovou roztažností do všech směrů

$$V' \approx V(1 + \beta \Delta t)$$

- $-\beta = 3\alpha, [\beta = \mathrm{K}^{-1}]$ teplotní součinitel objemové roztažnosti
- platí jako aproximace (zanedbání členů vyšších mocnin β)