19. SPI - Serial Peripheral Interface

19.1 Features

- Full-duplex, Three-wire Synchronous Data Transfer
- Master or Slave Operation
- LSB First or MSB First Data Transfer
- Seven Programmable Bit Rates
- End of Transmission Interrupt Flag
- Write Collision Flag Protection
- · Wake-up from Idle Mode
- Double Speed (CK/2) Master SPI Mode

19.2 Overview

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the ATmega48A/PA/88A/PA/168A/PA/328/P and peripheral devices or between several AVR devices.

The USART can also be used in Master SPI mode, see "USART in SPI Mode" on page 205. The PRSPI bit in "Minimizing Power Consumption" on page 51 must be written to zero to enable SPI module.

Figure 19-1. SPI Block Diagram⁽¹⁾

Note: 1. Refer to Figure 1-1 on page 12, and Table 14-3 on page 91 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 19-2 on page 170. The system consists of two shift Registers, and a Master clock generator. The SPI Master initiates the

ATmega48A/PA/88A/PA/168A/PA/328/P

communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and Slave prepare the data to be sent in their respective shift Registers, and the Master generates the required clock pulses on the SCK line to interchange data. Data is always shifted from Master to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In – Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling high the Slave Select, SS line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This must be handled by user software before communication can start. When this is done writing a byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock generator stops setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is driven high. In this state, software may update the contents of the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. (As one byte has been completely shifted) the end of Transmission Flag, SPIF is set. (If the SPI Interrupt Enable bit, SPIE) in the SPCR Register is set, an interrupt is requested The Slave may continue to place new data to be sent into SPDR before reading the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 19-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed. When receiving data, however, a received character must be read from the SPI Data Register before the next character has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock signal, the minimum low and high periods should be:

Low periods: Longer than 2 CPU clock cycles.

High periods: Longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to Table 19-1 on page 171. For more details on automatic port overrides, refer to "Alternate Port Functions" on page 89.

© 2018 Microchip Technology Inc.

Table 19-1. SPI Pin Overrides (Note:)

Pin	Direction, Master SPI	Direction, Slave SPI
MOSI	User Defined	Input
MISO	Input	User Defined
SCK	User Defined	Input
SS	User Defined	Input

Note: See "Alternate Functions of Port B" on page 91 for a detailed description of how to define the direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a simple transmission. DDR SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins. DD MOSI, DD MISO and DD SCK must be replaced by the actual data direction bits for these pins. E.g. if MOSI is placed on pin PB5, replace DD MOSI with DDB5 and DDR SPI with DDRB.


```
Assembly Code Example(1)
      SPI MasterInit:
             ; Set MOSI and SCK output, all others input
                               r17, (1<<DD MOSI) | (1<<DD SCK)
             out
                               DDR SPI,r17
             ; Enable SPI, Master, set clock rate fck/16
                               r17, (1<<SPE) | (1<<MSTR) | (1<<SPR0)
             ldi
                               SPCR, r17
             out
             ret
      SPI MasterTransmit:
             ; Start transmission of data (r16)
             out
                               SPDR, r16
      Wait Transmit:
              ; Wait for transmission complete
                               r16, SPSR
             in
                        r16, SPIF
             sbrs
                               Wait Transmit
             rjmp
             ret
C Code Example<sup>(1)</sup>
      void SPI MasterInit(void)
             /* Set MOSI and SCK output, all others input */
             DDR SPI = (1 << DD MOSI) | (1 << DD SCK);
             /* Enable SPI, Master, set clock rate fck/16 */
             SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR0);
      void SPI MasterTransmit(char cData)
              /* Start transmission */
             SPDR = cData;
             /* Wait for transmission complete */
             while(!(SPSR & (1<<SPIF)))</pre>
                ;
```

Note: 1. See "About Code Examples" on page 17.

The following code examples show how to initialize the SPI as a Slave and how to perform a simple reception.

```
Assembly Code Example(1)
      SPI SlaveInit:
             ; Set MISO output, all others input
             ldi
                              r17, (1<<DD MISO)
                              DDR SPI,r17
             out
             ; Enable SPI
                              r17, (1<<SPE)
             ldi
             out
                              SPCR, r17
             ret
      SPI SlaveReceive:
             ; Wait for reception complete
             in r16, SPSR
             sbrs r16, SPIF
                               SPI SlaveReceive
             rjmp
             ; Read received data and return
                              r16,SPDR
             in
             ret
C Code Example<sup>(1)</sup>
      void SPI SlaveInit(void)
             /* Set MISO output, all others input */
             DDR SPI = (1 << DD MISO);
             /* Enable SPI */
             SPCR = (1 << SPE);
      char SPI_SlaveReceive(void)
             /* Wait for reception complete */
             while(!(SPSR & (1<<SPIF)))</pre>
             /* Return Data Register */
             return SPDR;
      }
```

Note: 1. See "About Code Examples" on page 17.

19.3 SS Pin Functionality

19.3.1 Slave Mode

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input (When SS is held low) the SPI is activated, and (MISO becomes an output if configured so by the user. All other pins are inputs) When SS is driven high, all pins are inputs, and the SPI is passive which means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin is driven high.

The \overline{SS} pin is useful for packet/byte synchronization to keep the slave bit counter synchronous with the master clock generator. When the \overline{SS} pin is driven high, the SPI slave will immediately reset the send and receive logic, and drop any partially received data in the Shift Register.

19.3.2 Master Mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the direction of the SS pin

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system. Typically, the pin will be driving the SS pin of the SPI Slave.

If \overline{SS} is configured as an input, it must be held high to ensure Master \overline{SPI} operation. If the \overline{SS} pin is driven low by peripheral circuitry when the \overline{SPI} is configured as a Master with the \overline{SS} pin defined as an input, the \overline{SPI} system interprets this as another master selecting the \overline{SPI} as a slave and starting to send data to it. To avoid bus contention, the \overline{SPI} system takes the following actions:

- 1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of the SPI becoming a Slave, the MOSI and SCK pins become inputs.
 - 2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possibility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master mode.

19.4 Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure 19-3 and Figure 19-4 on page 175. Data bits are shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing Table 19-3 on page 176 and Table 19-4 on page 176, as done in Table 19-2.

Table 19-2. SPI Modes

SPI Mode	Conditions	Leading Edge	Trailing eDge
0	CPOL=0, CPHA=0	Sample (Rising)	Setup (Falling)
1	CPOL=0, CPHA=1	Setup (Rising)	Sample (Falling)
2	CPOL=1, CPHA=0	Sample (Falling)	Setup (Rising)
3	CPOL=1, CPHA=1	Setup (Falling)	Sample (Rising)

© 2018 Microchip Technology Inc. Data Sheet Complete DS40002061A-page 174

Figure 19-3. SPI Transfer Format with CPHA = 0

Figure 19-4. SPI Transfer Format with CPHA = 1

19.5 Register Description

19.5.1 SPCR - SPI Control Register

• Bit 7 - SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if the Global Interrupt Enable bit in SREG is set.

• Bit 6 - SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI operations.

• Bit 5 - DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

Bit 4 – MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic zero. If \overline{SS} is configured as an input and is driven low while MSTR is set, MSTR will be cleared, and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Master mode.

• Bit 3 - CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low when idle. Refer to Figure 19-3 and Figure 19-4 for an example. The CPOL functionality is summarized below:

Table 19-3. **CPOL Functionality**

CPOL	Leading Edge	Trailing Edge		
0	Rising	Falling		
1	Falling	Rising		

• Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last) edge of SCK. Refer to Figure 19-3 and Figure 19-4 for an example. The CPOL functionality is summarized below:

Table 19-4. CPHA Functionality

СРНА	Leading Edge	Trailing Edge		
0	Sample	Setup		
1	Setup	Sample		

• Bits 1, 0 - SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency f_{osc} is shown in the following table:

© 2018 Microchip Technology Inc.

Table 19-5. Relationship Between SCK and the Oscillator Frequency

SPI2X	SPR1	SPR0	SCK Frequency
0	0	0	f _{osc} /4
0	0	1	f _{osc} /16
0	1	0	f _{osc} /64
0	1	1	f _{osc} /128
1	0	0	f _{osc} /2
1	0	1	f _{osc} /8
1	1	0	f _{osc} /32
1	1	1	f _{osc} /64

19.5.2 SPSR - SPI Status Register

Bit	7	6	5	4	3	2	1	0	
0x2D (0x4D)	SPIF	WCOL	-	1	-	-	_	SPI2X	SPSR
Read/Write	R	R	R	R	R	R	R	R/W	ı
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 - SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in SPCR is set and global interrupts are enabled. If \overline{SS} is an input and is driven low when the SPI is in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 - WCOL: Write COLlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set, and then accessing the SPI Data Register.

• Bit [5:1] - Reserved

These bits are reserved bits in the ATmega48A/PA/88A/PA/168A/PA/328/P and will always read as zero.

• Bit 0 - SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI is in Master mode (see Table 19-5). This means that the minimum SCK period will be two CPU clock periods. When the SPI is configured as Slave, the SPI is only ensured to work at $f_{osc}/4$ or lower.

The SPI interface on the ATmega48A/PA/88A/PA/168A/PA/328/P is also used for program memory and EEPROM downloading or uploading. See page 303 for serial programming and verification.

© 2018 Microchip Technology Inc.

19.5.3 SPDR - SPI Data Register

Bit	7	6	5	4	3	2	1	0	
0x2E (0x4E)	MSB							LSB	SPDR
Read/Write	R/W	_							
Initial Value	X	X	X	X	X	X	X	X	Undefined

The SPI Data Register is a read/write register used for data transfer between the Register File and the SPI Shift Register. Writing to the register initiates data transmission. Reading the register causes the Shift Register Receive buffer to be read.