第 14 章 时间序列

14.2 水平分析与速度分析

例题14.1 时间序列水平分析与速度分析

表 14.1a 国内生产总值等经济指标时间序列

年	GDP 国内	年末总	人均国内	第三产业占	职工平均
	生产总值	人口数	生产总值	GDP 比重	工资
	(亿元) a _i	(万人) b _i	$(元/人)$ c_i	(%) d _i	$(元)$ e_i
时间	绝对数序列	绝对数序列	相对数序列	相对数序列	平均数序列
	时期序列	时点序列	时期/时点	时期/时期	
2001	109655	127627	8592	40.5	10834
2002	120333	128453	9368	41.5	12373
2003	135823	129227	10510	41.2	13969
2004	159878	129988	12299	40.4	15920
2005	184937	130756	14144	40.5	18200
2006	216314	131448	16456	40.9	20856
2007	265810	132129	20117	41.9	24721
2008	314045	132802	23648	41.8	28898
2009	340903	133450	25545	43.4	32244
2010	401513	134091	29943	43.2	36539
2011	473104	134735	35114	43.4	41799
2012	519470	135404	38364	44.6	46769
2013	568845	136072	41805	46.1	51483
2014	636463	136782	46531	48.2	56339
Σ	4447093	1852964	333300	597.6	410944

例题14.1a GDP的平均发展水平

时期序列
$$\overline{a} = \frac{\sum_{i=1}^{n} a_i}{n} = \frac{109655 + ... + 636463}{14} = \frac{4447093}{14} = 317649.5$$

例题14.1b 总人口的平均发展水平

时点序列

$$\overline{b} = \frac{\frac{b_1}{2} + b_2 + \dots + b_{n-1} + \frac{b_n}{2}}{n-1} = \frac{\frac{127627}{2} + 128453 + \dots + 136072 + \frac{136782}{2}}{13} = 132366$$

例题14.1c 员工人数(时点序列間隔不等)的平均发展水平

时间	1月1日	1月31日	3月31日	6月30日	7月31日	11月30日	12月31日
员工人数 (千人)	1	2	3	2	4	3	2

$$\overline{b} = \frac{\sum_{i=1}^{n-1} \frac{a_i + a_{i+1}}{2} f_i}{\sum_{i=1}^{n-1} f_i} = \frac{\frac{(1+2)}{2} \times 1 + \frac{(2+3)}{2} \times 2 + \frac{(3+2)}{2} \times 3 + \frac{(2+4)}{2} \times 1 + \frac{(4+3)}{2} \times 4 + \frac{(3+2)}{2} \times 1}{12} = 2.79$$

例题14.1d 人均GDP的平均发展水平

相对数序列
$$\bar{c} = \frac{\sum \frac{a_i}{b_i}}{n} = \frac{\sum c_i}{n} = \frac{333300}{14} = 23807$$

例题14.1e 第三产业占GDP比重的平均发展水平

相对数序列
$$\bar{d} = \frac{\sum d_i}{n} = \frac{597.6}{14} = 42.7$$

例题 14.1f 职工平均工资的平均发展水平

平均数序列
$$\bar{e} = \frac{\sum e_i}{n} = \frac{410944}{14} = 29353$$

例题14.1g 总人口的平均增长量

时点序列平均增长量 水平法

$$\overline{\Delta} = \frac{a_n - a_0}{n} = \frac{136782 - 127627}{13} = 704$$

累计法 $a_i - a_0 = i \times \Delta$

$$(a_1 - a_0) + (a_2 - a_0) + \dots + (a_n - a_0) = \sum_{i=1}^n a_i - na_0 \implies \Delta + 2\Delta + \dots + n\Delta = \sum_{i=1}^n a_i - na_0$$

$$\Rightarrow (1+2+\ldots+n)\Delta = \sum_{i=1}^{n} a_i - na_0 \quad \Rightarrow \quad \frac{n(n+1)}{2}\Delta = \sum_{i=1}^{n} a_i - na_0 \quad \Rightarrow \quad \Delta = \frac{2(\sum a_i - na_0)}{n(n+1)}$$

$$\overline{\Delta} = \frac{2(\sum a_i - na_0)}{n(n+1)} = \frac{2(1725337 - 13 \times 127627)}{13(13+1)} = 727$$

例题14.1h GDP的发展速度

时间	2001 a ₀	2002 a ₁	2003 a ₂	2004 a ₃	2005 a ₄	2006 a ₅	2007 a ₆
GDP	109655	120333	135823	159878	184937	216314	265810
逐期增长量		10678	15490	24055	25059	31377	49496
累计增长量		10678	26168	50223	75282	106659	156155
环比发长速度	a_i / a_{i-1}	1.097	1.129	1.177	1.157	1.17	1.229
定基发长速度	a_i/a_0	1.097	1.239	1.458	1.687	1.973	2.424
环比增长速度		0.097	0.129	0.177	0.157	0.17	0.229
定基增长速度		0.097	0.239	0.458	0.687	0.973	1.424
时间	2008 a ₇	2009 a ₈	2010 a ₉	2011 <i>a</i> ₁₀	$2012 a_{11}$	$2013 a_{12}$	2014 <i>a</i> ₁₃
GDP	314045	340903	401513	473104	519470	568845	636463
逐期增长量	48235	26858	60610	71591	46366	49375	67618
累计增长量	204390	231248	291858	363449	409815	459190	526808
环比发长速度	1.181	1.086	1.178	1.178	1.098	1.095	1.119
定基发长速度	2.864	3.109	3.662	4.314	4.737	5.188	5.804
环比增长速度	0.181	0.086	0.178	0.178	0.098	0.095	0.119
定基增长速度	1.864	2.109	2.662	3.314	3.737	4.188	4.804

总人口的平均增长量
$$\overline{\Delta} = \frac{a_n - a_0}{n} = \frac{636463 - 109655}{13} = \frac{526808}{13} = 40524$$

例题14.1i GDP的平均发展速度

水平法
$$\overline{a} = \sqrt[n]{\frac{a_n}{a_0}} = \sqrt[13]{\frac{636463}{109655}} = \sqrt[13]{5.80} = 1.145$$

累计法
$$a_0\overline{a} + a_0\overline{a}^2 + a_0\overline{a}^3 + \dots + a_0\overline{a}^n = \sum_{i=1}^n a_i$$

解高次方程式
$$\overline{a} + \overline{a}^2 + \overline{a}^3 + \dots + \overline{a}^{13} = \frac{\sum_{i=1}^{n} a_i}{a_0} = \frac{4337438}{109655} = 39.56$$

利用 Excel: 数据 → 规划求解

在 C3 输入 =A1¹+A1²+...+A1¹ → 规划求解参数 → 求解 → 确定 得到 GDP 的平均发展速度 = 1.15

文件 开始 插入 页面布局 公式	数据 审阅 视图 加载项 novaPDF	
C1 · : × / fx	=A1^1+A1^2+A1^3+A1^4+A1^5+A1^6+A1^7+A1^8+A1^9+A1^10+A1^11+A1^12+A1^13	
A B C	规划求解参数	×
1. 150182 39. 56 2 3 4 5	设置目标(I) \$C\$1 39.56 \$C\$1 39.56	
6 7	通过更改可变单元格:(B) \$A\$1	:

14.4.1 简单移动平均

例题 14.2 表 14.2a 是 29 周的销售纪录,利用 n=3 及 n=9 计算简单移动平均的结果,预 测每期的预测值,用图形表示如图 14.a。

表 14.2a	简单移动平均,	n=3.	n=9 预测值与实际值

周期	实际值	n=3	n=9	周期	实际值	n=3	n=9
		预测值	预测值			预测值	预测值
1	800			16	1,700	2,200	1,811
2	1,400			17	1,800	2,000	1,800
3	1,000			18	2,200	1,833	1,811
4	1,500	1,067		19	1,900	1,900	1,911
5	1,500	1,300		20	2,400	1,967	1,933
6	1,300	1,333		21	2,400	2,167	2,011
7	1,800	1,433		22	2,600	2,233	2,111
8	1,700	1,533		23	2,000	2,467	2,144
9	1,300	1,600		24	2,500	2,333	2,111
10	1,700	1,600	1,367	25	2,600	2,367	2,167
11	1,700	1,567	1,467	26	2,200	2,367	2,267
12	1,500	1,567	1,500	27	2,200	2,433	2,311
13	2,300	1,633	1,556	28	2,500	2,333	2,311
14	2,300	1,833	1,664	29	2,400	2,300	2,387
15	2,000	2,033	1,733	30	2,100	2,367	2,387

图 3.a 简单移动平均的时间序列

14.4.3 简单指数平滑

例题 14.3 表 14.3a 有 11 个实际值(t=11),找 n=1 当作起始值,分别以 α =0.1, α =0.5, α =0.9 作简单指数平滑预测。其图形表示如图 14.b

表 14.3a 简单指数平滑

时间	实际值	予	页测值 F	
t	Y_t	α=0.1	α=0.5	α=0.9
1	200	-	-	-
2	135	200	200	200
3	195	193.5	167.5	141.5
4	197.5	193.7	181.3	189.7
5	310	193.0	189.4	196.7
6	175	205.6	249.7	298.7
7	155	202.6	212.3	187.4
8	130	197.8	183.7	158.2
9	220	191.0	156.8	132.8
10	277.5	193.9	188.4	211.3
11	235	202.3	233.0	270.9
12	-	205.6	234.0	283.6

图 14.b 简单指数平滑

14.5.1 双重移动平均

例题 14.4 表 14.4a 的实际值 X_t ,利用双重移动平均,取 n=6,计算 M_t ,t=6 到 t=11 如 下:

利用以上
$$M_t$$
,计算 $M_{11}^{(2)}$, a_{11} , b_{11} ,如下:
$$M_6 = (60+70+85+60+88+68)/6 = 71.83$$

$$M_7 = 71.83 + (106-60)/6 = 79.50$$

$$M_8 = 79.50 + (75-70)/6 = 80.33$$

$$M_9 = 80.33 + (86-85)/6 = 80.50$$

$$M_{10} = 80.50 + (124-60)/6 = 91.17$$

$$M_{11} = 91.17 + (122-88)/6 = 96.84$$

$$M_{11}^{(2)} = (71.83+79.50+80.33+80.50+91.17+96.84)/6 = 83.36$$

$$a_{11} = 2M_{11} - M_{11}^{(2)} = 2(96.84) - 83.36 = 110.32$$

$$b_{11} = 2\left(M_{11} - M_{11}^{(2)}\right)/(n-1) = 2(96.84-83.36)/5 = 5.39$$

$$F_{11+k} = 110.32+5.39k$$

$$F_{12} = 110.32+5.39 \times 2 = 121.10$$

双重移动平均计算如表 14.4a 及图 14.c。

表 14.4a 双重移动平均计算结果

T	Xt	Mt	$M_t^{(2)}$	a_t	b_t	Ft+1	Ft+2	Ft+1+Ft+2
1	60							
2	70							
3	85							
4	60							
5	88							
6	68	71.83						
7	106	79.50						
8	75	80.33						
9	86	80.50						
10	124	91.17						
11	122	96.84	83.36	110.32	5.39	115.7	121.1	236.8
12	87	100.00	88.06	111.94	4.78	116.7	121.5	238.2
13	89	97.17	91.00	103.34	2.47	105.8	108.3	214.1
14	120	104.67	95.06	114.28	3.84	118.1	121.9	240.0
15	134	112.67	100.42	124.92	4.90	129.8	134.7	264.5
16	121	112.17	103.92	120.42	3.30	123.7	127.0	250.7
17	93	107.33	105.67	180.99	0.66	109.7	110.4	220.1
18	113	111.67	107.62	115.72	1.62	117.3	118.9	236.2
19	125	117.67	113.81	121.53	1.54	123.1	124.6	247.7
20	136	120.33	113.64	127.02	2.68	129.7	132.4	262.1
21	142	121.67	115.14	128.20	2.61	130.8	133.4	264.2
22	117	121.00	116.61	125.39	1.76	127.2	129.0	256.2
23	132	127.50	119.97	135.03	3.01	138.0	141.0	279.0
24	141	132.17	123.39	140.95	3.51	144.5	148.0	292.5

图 14.c 双重移动平均

14.5.2 一元线性回归

例题 14.5 下列每年销售额,一共有七年,试计算(a)线性回归预测公式,(b)回归标准偏 差,(c)回归相关系数,(d)第八年的预测销售额,(e)有95%之预测范围。

表 14.5a 销售纪录

年	1	2	3	4	5	6	7
销售额(万元)	1,760	2120	2350	2800	3200	3750	3800

解答 表 14.5b 回归计算数据

年 t	销售额 Y(千万元)	tY	t2	Y2
1	1.76	1.76	1	3.0976
2	2.12	4.24	4	4.4944
3	2.35	7.05	9	5.5225
4	2.8	11.2	16	7.8400
5	3.2	16.0	25	10.2400
6	3.75	22.5	36	14.0625
7	3.8	26.6	49	14.4400
Σ=28	Σ=19.78	Σ=89.35	Σ=140	Σ=59.6970

(a)
$$\beta = \frac{n\sum_{i=1}^{n} t_i Y_i - \sum_{i=1}^{n} t_i \sum_{i=1}^{n} Y_i}{n\sum_{i=1}^{n} t_i^2 - \left(\sum_{i=1}^{n} t_i\right)^2} = \frac{7(89.35) - (28)(19.78)}{7(140) - 28^2} = 0.3654$$

$$\alpha = \frac{\sum_{i=1}^{n} Y_i - \beta \sum_{i=1}^{n} t_i}{n} = \frac{19.78 - 0.3654 (28)}{7} = 1.3641$$

$$F_t = \alpha + \beta \cdot t = (1.3641 + 0.3645 \cdot t) \times 10^7 = 13641000 + 3654000 \cdot t$$

(b)
$$S = 0.1154 \times 10^7 = \$1,154,000$$

$$S^{2} = \frac{\sum_{i=1}^{n} Y_{i}^{2} - \alpha \sum_{i=1}^{n} Y_{i} - \beta \sum_{i=1}^{n} t_{i} Y_{i}}{n-2} = \frac{59.6970 - 1.3641(19.78) - 0.3654(89.35)}{5} = 0.01332$$

$$r^{2} = \frac{\left[n\sum_{i=1}^{n} t_{i}Y_{i} - \left(\sum_{i=1}^{n} t_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)\right]^{2}}{\left[n\sum_{i=1}^{n} t_{i}^{2} - \left(\sum_{i=1}^{n} t_{i}\right)^{2}\right]\left[n\sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right]}$$

(c)
$$r^{2} = \frac{[7(89.35) - 28(19.78)]^{2}}{[7(140) - 784] \cdot [7(59.6970) - 391.2484]} = 0.9824$$
$$r = 0.991$$

(d)
$$F_8 = 1364.1 + (365.4) \cdot 8 = 4287.3$$
(萬)

(e) 95%的预测范围是 4056 万与 4518 万之间
$$F_8 \pm 2S = 4287.3 \pm 2(115.4) = 4287.3 \pm 230.8(萬)$$

14.5.4 趋势指数平滑(Trend exponential smoothing)

例题 14.6 高阶管理人员训练顾问公司,为一专门接受委托以开课方式训练高阶管理人员的教育机构,由于市场需求其每三个月都会开授一门相关管理训练课程,下表为过去10次课程的注册学员人数。

时程远近	最远程			最近程			近程			
课号	1	2	3	4	5	6	7	8	9	10
注册学员人数	34	40	35	39	41	36	33	38	43	40

假设最初的真实值 (Y_θ) 是 38 与估计趋势值 (ET_I) 是 1。请用趋势指数平滑法 ($\alpha = 0.2$ and $\beta = 0.3$) 来预测未来两堂课(课号=11, 12)的注册学员人数。

解答 运用趋势指数平滑法 (α = 0.2 and β = 0.3) 的步骤是:

- 第 1 步: 已知真实值(Y_0)是 38 与估计趋势值 (ET_1) 是 1,因此预测值(F_0)等于真实值(Y_0)是 38。决定平滑常数 $\alpha = 0.2$ 与趋势平滑常数 $\beta = 0.3$ 。
- 第 2 步: 计算第一期的预测值 $F_1 = Y_0 + ET_1 = 38 + 1 = 39$ 。
- 第3步: 目前有10个实际值, 计算第2期估计趋势值(ET2)

$$LT_1 = \alpha(Y_1 - Y_0) + (1 - \alpha)(F_1 - F_0) = 0.2(34-38) + 0.8(39-38) = 0$$

$$ET_2 = \beta(LT_1) + (1 - \beta)ET_1 = 0.3(0) + 0.7(1) = 0.7$$

用趋势指数平滑法来计算未来的预测值:

$$F_2 = \alpha Y_1 + (1 - \alpha)F_1 + ET_2 = 0.2(34) + 0.8(39) + 0.7 = 38.7$$

第 4 步: 目前有 10 个实际值,依此类推,将未来 n—2 期之估计趋势值(ET_i)与预测值(F_i)都以第 3 步公式求出。

第 3 期:
$$LT_2 = \alpha(Y_2 - Y_1) + (1 - \alpha)(F_2 - F_1) = 0.2(40 - 34) + 0.8(38.7 - 39) = 0.96$$

 $ET_3 = \beta(LT_2) + (1 - \beta)ET_2 = 0.3(0.96) + 0.7(0.7) = 0.778$

$$F_3 = \alpha Y_2 + (1 - \alpha)F_2 + ET_3 = 0.2(40) + 0.8(38.7) + 0.778 = 39.738$$
 第 4 期: $LT_3 = \alpha (Y_3 - Y_2) + (1 - \alpha)(F_3 - F_2) = 0.2(35-40) + 0.8(39.738-38.7) = -0.1696$

$$ET_4 = \beta(LT_3) + (1-\beta)ET_3 = 0.3(-0.1696) + 0.7(0.778) = 0.4937$$

 $F_4 = \alpha Y_3 + (1-\alpha)F_3 + ET_4 = 0.2(35) + 0.8(39.738) + 0.4937 = 39.2841$

第 5 期:
$$LT_4 = \alpha(Y_4 - Y_3) + (1 - \alpha)(F_4 - F_3) = 0.2(39-35) + 0.8(39.2481-39.738) = 0.4369$$

$$ET_5 = \beta(LT_4) + (1-\beta)ET_4 = 0.3(0.4369) + 0.7(0.4937) = 0.4767$$

 $F_5 = \alpha Y_4 + (1-\alpha)F_4 + ET_5 = 0.2(39) + 0.8(39.2841) + 0.4767 = 39.7040$

第 6 期:
$$LT_5 = \alpha(Y_5 - Y_4) + (1 - \alpha)(F_5 - F_4) = 0.2 (41 - 39) + 0.8 (39.7040 - 39.2841)$$

= 0.7359

$$ET_6 = \beta(LT_5) + (1-\beta)ET_5 = 0.3(0.7359) + 0.7(0.4767) = 0.5544$$

 $F_6 = \alpha Y_5 + (1-\alpha)F_5 + ET_6 = 0.2(41) + 0.8(39.7040) + 0.5544 = 40.5176$

第 7 期:
$$LT_6 = \alpha(Y_6 - Y_5) + (1 - \alpha)(F_6 - F_5) = 0.2(36-41) + 0.8(40.5176-39.7040) = -0.3491$$

$$ET_7 = \beta(LT_6) + (1-\beta)ET_6 = 0.3(-0.3491) + 0.7(0.5544) = 0.2834$$

 $F_7 = \alpha Y_6 + (1-\alpha)F_6 + ET_7 = 0.2(36) + 0.8(40.5176) + 0.2834 = 39.8975$

第 8 期:
$$LT_7 = \alpha(Y_7 - Y_6) + (1 - \alpha)(F_7 - F_6) = 0.2(33-36) + 0.8(39.8975-40.5176)$$

= -1.0961

$$ET_8 = \beta(LT_7) + (1-\beta)ET_7 = 0.3(-1.0961) + 0.7(0.2834) = -0.1305$$
 $F_8 = \alpha Y_7 + (1-\alpha)F_7 + ET_8 = 0.2(33) + 0.8(39.8975) - 0.1305 = 38.3875$
第 9 期: $LT_8 = \alpha(Y_8 - Y_7) + (1-\alpha)(F_8 - F_7) = 0.2(38-33) + 0.8(38.3875-398975) = -0.2080$
 $ET_9 = \beta(LT_8) + (1-\beta)ET_8 = 0.3(-0.2080) + 0.7(-0.1305) = -0.1537$
 $F_9 = \alpha Y_8 + (1-\alpha)F_8 + ET_9 = 0.2(38) + 0.8(38.3875) - 0.1537 = 38.1563$
第 10 期: $LT_9 = \alpha(Y_9 - Y_8) + (1-\alpha)(F_9 - F_8) = 0.2(43 - 38) + 0.8(38.1563 - 38.3875) = 0.8150$
 $ET_{10} = \beta(LT_9) + (1-\beta)ET_9 = 0.3(0.8150) + 0.7(-0.1537) = 0.1369$
 $F_{10} = \alpha Y_9 + (1-\alpha)F_9 + ET_{10} = 0.2(43) + 0.8(38.1563) + 0.1369 = 39.2619$
第 5 步: n 期以后的第 k 期预测值为 $F_{n+k} = \alpha Y_n + (1-\alpha)F_n + k(ET_{t+1})$
第 11 期: $LT_{10} = \alpha(Y_{10} - Y_9) + (1-\alpha)(F_{10} - F_9) = 0.2(40 - 43) + 0.8(39.2619 - 38.1563) = 0.2845$
 $ET_{11} = \beta(LT_{10}) + (1-\beta)ET_{10} = 0.3(0.2845) + 0.7(0.1369) = 0.1812$
 $F_{11} = \alpha Y_{10} + (1-\alpha)F_{10} + ET_{11} = 0.2(40) + 0.8(39.2619) + 0.1812 = 39.5907$
第 12 期: $F_{10+2} = \alpha Y_{10} + (1-\alpha)F_{10} + 2(ET_{10+1}) = 0.2(40) + 0.8(39.2619) + 2(0.1812)$

t	Yt	ETt	Ft	LTt
0	38		38	
1	34	1	39	0
2	40	0.7	38.7	0.96
3	35	0.778	39.738	-0.1696
4	39	0.4937	39.2841	0.4369
5	41	0.4767	39.704	0.7359
6	36	0.5544	40.5176	-0.3491
7	33	0.2834	39.8975	-1.0961
8	38	-0.1305	38.3875	-0.208
9	43	-0.1537	38.1563	0.8150
10	40	0.1369	39.2619	0.2845
11		0.1812	39.5907	
12			39.7719	

14.6.1 以中央移动平均法计算季节性指数

以直线回归法(Simple Linear Regression)计算季节性指数

例题 14.8+14.11 四期季节性范例:下表为某避暑胜地的豪华旅馆过去五年内四季的住 房率,请以直线回归法计算季节性指数,并预测其未来一年四季的住房率。

季/年	1	2	3	4	5
1	0.561	0.575	0.594	0.622	0.665
2	0.702	0.738	0.738	0.708	0.835
3	0.800	0.868	0.729	0.806	0.873
4	0.568	0.605	0.600	0.632	0.670

解答 直线回归法计算季节性指数并预测之步骤如下:

第1步: 以原始时间序列数据当成因变量,时间则为自变量,计算直线回归线。

迴歸統	計					
R的倍數	0.30536					
R 平方	0.09325					
調整的R平方	0.04287					
標準誤	0.09943					
觀察值個數	20					
ANOVA						
	自由度	SS	MS	F	顯著值	
迴歸	自由度 1	SS 0.01830	MS 0.01830	F 1.85101	顯著值 0.19046	
迴歸 殘差	自由度 1 18					
	1	0.01830	0.01830			
殘差	1 18	0.01830 0.17796	0.01830			
殘差	1 18	0.01830 0.17796	0.01830			上限 95%
殘差	1 18 19	0.01830 0.17796 0.19626	0.01830 0.00989	1.85101	0.19046	上限 95% 0.734637811

假设其中第 1 期之 t 为 0。虽然所做出的回归线效果相当差,但是先将其当成是季 节性的比较基准。这条回归线为 $F_t = 0.64461 + 0.00525t$ 。

第2步: 以第一步中直线回归线, 计算历史预测值, 之将时间序列值除以相对应之 直线回归线预测值,计算出每期时间序列中的季节与不规则效果值。

Year	Season	t	Yt	Ft	SI
1	1	0	0.561	0.6446	0.8703
	2	1	0.702	0.6499	1.0802
	3	2	0.800	0.6551	1.2212
	4	3	0.568	0.6604	0.8601
2	1	4	0.575	0.6656	0.8639
	2	5	0.738	0.6708	1.1001
	3	6	0.868	0.6761	1.2839
	4	7	0.605	0.6813	0.8880
3	1	8	0.594	0.6866	0.8652
	2	9	0.738	0.6918	1.0667
	3	10	0.729	0.6971	1.0458
	4	11	0.600	0.7023	0.8543
4	1	12	0.622	0.7076	0.8791
	2	13	0.708	0.7128	0.9933
	3	14	0.806	0.7181	1.1225
	4	15	0.632	0.7233	0.8738
5	1	16	0.665	0.7285	0.9128
	2	17	0.835	0.7338	1.1379
	3	18	0.873	0.7390	1.1813
	4	19	0.670	0.7443	0.9002

其中 $F_t = 0.64461 + 0.00525t$,而 SI 则为 Y_t / F_t 。

第3步: 将上一步中算出的季节与不规则效果值,依照其所属之季节,分别算出平 均值 SI_i , 并将此平均值做正规化(normalization), 若 k 为一年内季节数,将 每个平均值乘上k除以平均值总合成为季节性指数 S_i ,亦即:

$$S_i = \frac{SI_i \times k}{\sum_{i=1}^k SI_i}$$
 如此一来 $\sum_{i=1}^k S_i = k$ 。解释季节性指数 S_i 。

季/年		1	2	3	4	5	平均	Si
	1	0.8703	0.8639	0.8652	0.8791	0.9128	0.8782	0.8782
	2	1.0802	1.1001	1.0667	0.9933	1.1379	1.0757	1.0756
	3	1.2212	1.2839	1.0458	1.1225	1.1813	1.1709	1.1709
	4	0.8601	0.8880	0.8543	0.8738	0.9002	0.8753	0.8753
總和							4.0001	4.0000

根据所算出之季节性指数可以看出第一季住房率较平均水平低 12.2%, 第 二季住房率较平均水平高出 7.6%, 第三季住房率较平均水平高出 17.1%, 第四季住房率较平均水平低 12.5%, 显示出此避暑胜地的豪华旅馆的住房 率的确有季节性因素存在。

第 4 步:将时间序列值除以相对应之季节性指数 S_i ,计算出每期去除季节性因素后 之时间序列数据。

其中S,为上一步骤所算出之季节性指数,而去除季节性因素后之时间序列数据DesYt 则为 Y_t/S_i 。

第5步: 以简单线性回归做长期趋势分析, 其中以去除季节性因素后之时间序列数 据 Des Yt 做为因变量,以 t 为自变数。

12 大话统计学: 清华大学出版社 版权所有 不准抄袭翻印 第 14 章 时间序列

迴歸統	計					
R的倍數	0.70620					
R 平方	0.49872					
調整的 R 平方	0.47088					
標準誤	0.03216					
觀察值個數	20					
ANOVA						
	自由度	SS	MS	F	顯著值	
迴歸	1	0.01852	0.01852	17.90837	0.00050	
殘差	18	0.01861	0.00103			
總和	19	0.03714				
	係數	標準誤	t 統計	P-值	下限 95%	上限 95%
截距	0.64432	0.01386	46.49271	3.33E-20	0.6152042	0.67343546
t	0.00528	0.00125	4.23183	0.000501	0.0026573	0.00789724

假设其中第 1 期之 t 为 0。这条回归线为 $Des\ Y_t = 0.64432 + 0.00528 t$ 。

第6步: 以上一步骤之结果做未来趋势预测,并乘上相对应之季节性指数 Si。

Year	Season	t	Yt	Ft	SI	Si	Des Yt	Trend	Forecast
1	1	0	0.561	0.6446	0.8703	0.8782	0.6388	0.6443	0.5659
	2	1	0.702	0.6499	1.0802	1.0756	0.6526	0.6496	0.6987
	3	2	0.800	0.6551	1.2212	1.1709	0.6832	0.6549	0.7668
	4	3	0.568	0.6604	0.8601	0.8753	0.6489	0.6602	0.5778
2	1	4	0.575	0.6656	0.8639	0.8782	0.6547	0.6654	0.5844
	2	5	0.738	0.6708	1.1001	1.0756	0.6861	0.6707	0.7214
	3	6	0.868	0.6761	1.2839	1.1709	0.7413	0.6760	0.7915
	4	7	0.605	0.6813	0.8880	0.8753	0.6912	0.6813	0.5963
3	1	8	0.594	0.6866	0.8652	0.8782	0.6764	0.6865	0.6029
	2	9	0.738	0.6918	1.0667	1.0756	0.6861	0.6918	0.7441
	3	10	0.729	0.6971	1.0458	1.1709	0.6226	0.6971	0.8162
	4	11	0.600	0.7023	0.8543	0.8753	0.6855	0.7024	0.6148
4	1	12	0.622	0.7076	0.8791	0.8782	0.7083	0.7076	0.6215
	2	13	0.708	0.7128	0.9933	1.0756	0.6582	0.7129	0.7668
	3	14	0.806	0.7181	1.1225	1.1709	0.6884	0.7182	0.8409
	4	15	0.632	0.7233	0.8738	0.8753	0.7221	0.7235	0.6332
5	1	16	0.665	0.7285	0.9128	0.8782	0.7572	0.7288	0.6400
	2	17	0.835	0.7338	1.1379	1.0756	0.7763	0.7340	0.7895
	3	18	0.873	0.7390	1.1813	1.1709	0.7456	0.7393	0.8657
	4	19	0.670	0.7443	0.9002	0.8753	0.7655	0.7446	0.6517
6	1	20		-		0.8782		0.7499	0.6585
	2	21				1.0756		0.7551	0.8123
	3	22				1.1709		0.7604	0.8904
	4	23				0.8753		0.7657	0.6702

其中 Trend 为上一步骤所算出之回归线长期趋势预测值 $Trend_t = 0.64432 + 0.00528t$,而 Forecast 为乘回季节性指数后之预测值 $Forecast = Trend_t * S_i$ 。

$$\begin{split} F_{20} &= \left[0.64432 + 0.00528(20)\right] * 0.8782 = \left(0.7499\right) * 0.8782 = 0.6585 \\ F_{21} &= \left[0.64432 + 0.00528(21)\right] * 1.0756 = \left(0.7551\right) * 1.0756 = 0.8123 \\ F_{22} &= \left[0.64432 + 0.00528(22)\right] * 1.1709 = \left(0.7604\right) * 1.1709 = 0.8904 \\ F_{23} &= \left[0.64432 + 0.00528(23)\right] * 0.8753 = \left(0.7657\right) * 0.8753 = 0.6702 \end{split}$$

亦即第6年第一季住房率为0.6585,第6年第二季住房率为0.8123,第6年第三季 住房率为 0.8904, 第 6 年第四季住房率为 0.6702。

将原始住房率(Rate)、去除季节性因素后之住房率 Des Yt、回归线长期趋势预测值 (Trend)与乘回季节性因素后之预测住房率(Forecast)以下图表示:

从上图可看出季节性因素明显,因此使用季节性指数分析的效果相当好。

例题 14.x 4期中央移动平均

从 1 到 4 的 4 期中央移动平均值放至在(t+t-k+1)/2=2.5 的位置, 从 2 到 5 的 4 期中 央移动平均值放至在3.5的位置,从3到6的4期中央移动平均值放至在4.5的位置。 再将 2.5 位置与 3.5 位置中央移动平均值平均放在 3 的位置,将 3.5 位置与 4.5 位置 中央移动平均值平均放在4的位置。这就是双数中央移动平均值的作法。

季节性指数,并以此指数做未来时间序列预测

例题 14.7+14.9 四期季节性范例:立山运动器材公司是销售各式运动用具的零售商,其 中有一款特别的网球拍,因为制程复杂,供货商需要较长时间备料与制造,一旦需求量 太大会有缺货的疑虑,可是立山的仓库太小也无法储存太多的存货。 网球拍的销售有很 大的季节性,因此有效的分析季节性与运用季节性指数做预测,可以帮助供货商备料与

制造。立山搜集了过去三年每季的网球拍销售如下表(以千计)。

年/季	1	2	3	4
1	3	9	6	2
2	4	11	8	3
3	5	15	11	3

解答 季节性指数计算步骤如下:

第1步: 立山一年内季节数为4, 因此计算出4期中央移动平均值。

Year	Quarter	Sales	4-CMA	2-CMA
1	1	3		
	2	9 (→ 5.00	
	3	6	5.25	 5.13
	4	ل_ 2	5.75	5.50
2	1	4	6.25	6.00
	2	11	6.50	6.38
	3	8	6.75	6.63
	4	3	7.75	7.25
3	1	5	8.50	8.13
	2	15	8.50	8.50
	3	11	0.50	
	4	3		

第 2 步: 将时间序列值除以相对应之 4 期中央移动平均值,计算出每期时间序列中的季节与不规则效果值。

Year	Quarter		4-CMA	SI
1	1	3	6 / 5.1	13 = 1.17
	2 3 4	9	- 12	4.47
	3	6	5.13	1.17
		2	5.50	0.36
2	1	4	6.00	0.67
	2 3	11	6.38	1.72
	3	8	6.63	1.21
	4	3 5	7.25	0.41
3	1		8.13	0.62
	2 3	15	8.50	1.76
		11		
	4	3		

第3步:将上一步中算出的季节与不规则效果值,依照其所属之季节,分别算出平

根据所算出之季节性指数可以看出第一季销售量较平均水平低34.5%,第 二季销售量较平均水平高出75.3%,第三季销售量较平均水平高出17.1%, 第四季销售量较平均水平低60.7%,显示出网球拍的销售的确有相当高的 季节性因素存在。

第 4 步: 将时间序列值除以相对应之季节性指数 Si, 计算出每期去除季节性因素后之 时间序列数据。

Year Qu	arter	Sales	Si	Deseas.Sales
1	1	3 –	655	ط.4.58 م
	2 3	9	1.753	$\frac{-3}{655}$ 5.13
	3	6	1.199	:655 5.00
	4	2	.393	_ / 5.09
2	1	4	.655	6.11
	2 3	11	1.753	4.58 6.27
	3	8	1.199	6.67
	4	3	.393	7.63
3	1	5	.655	7.63
	2	15	1.753	8.56
	3	11	1.199	9.17
	4	3	.393	7.63

第5步: 以去除季节性因素后之时间序列数据做长期趋势分析如简单线性回归。以 此除季节性因素后之时间序列数据为因变量,以时间 t 为自变量, 计算出简 单线性回归线。

				Y_t
Year	Quarter	Sales	S _i	Deseas.Sales
1	1	3	.655	4.58
	2	9	1.753	5.13
	3	6	1.199	5.00
	4	2	.393	5.09
2	1	4	.655	6.11
	2	11	1.753	6.27
	3	8	1.199	6.67
	4	3	.393	7.63
3	1	5	.655	7.63
	2	15	1.753	8.56
	3	11	1.199	9.17
	4	3	.393	7.63

第6步: 以上一步骤之结果做未来趋势预测,并乘上相对应之季节性指数 Si。

 $F_{13} = 4.066 + 0.3933(13) = 9.179$

 $F_{14} = 4.066 + 0.3933(14) = 9.572$

 $F_{15} = 4.066 + 0.3933(15) = 9.966$

 $F_{16} = 4.066 + 0.3933(16) = 10.359$

	9.179 * .655 = 6.012									
Perio	d Trend	Seaso	nal	Quarterly						
t	Forec.	Inde	X	Forecast						
13	9.179	.65	5	6.012						
14	9.572	1.75	3	16.780						
15	9.966	1.19	9	11.949						
16	10.359	.39	3	4.071						

16 大话统计学: 清华大学出版社 版权所有 不准抄袭翻印 第 14 章 时间序列

亦即第四年第一季销售为 6,012, 第四年第二季销售为 16,780, 第四年第三季销售为 11,949, 第四年第四季销售为 4,071。

将实际销售值(Sales)、去除季节性因素后之销售值(Deseas. Sales)、简单线性回归销售值(Ft)与乘回季节性因素后之预测销售值(Yt)以下图表示:

从上图可看出季节性因素明显, 因此使用季节性指数分析的效果相当好。

例题 14.X 十二个月季节性范例:某超商体系欲预测某商品未来 12 个月的销售金额,此 超商体系持有此商品已超过十年,因此拥有十年的历史数据。

解答 第1步: 计算出 12期中央移动平均值。

YEAR	SALES			
MONTH	AMOUNT	MV-12	C-MV-12	Ratio
8007	1338736			
8008	1302240			
8009	1432088			
8010	1583832			
8011	1903572			
8012	1970974	1692632.75		
8101	2202337	1695472.92	1694052.83	1.3000
8102	2093861	1699355.83	1697414.38	1.2336
8103	1933285	1705037.50	1702196.67	1.1358
8104	1733243	1707537.50	1706287.50	1.0158
8105	1431296	1712674.58	1710106.04	0.8370
8106	1386129	1715345.08	1714009.83	0.8087
8107	1372818	1713453.00	1714399.04	0.8008
8108	1348835	1717786.58	1715619.79	0.7862

第 2 步: 将时间序列值除以相对应之 12 期中央移动平均值, 计算出每期时间序列中的季节与不规则效果值。

第 3 步: 将上一步中算出的季节与不规则效果值,依照其所属之季节,分别算出平均值 SI_i ,并将此平均值做正规化(normalization)。

Average	Normalized
S.I.	S.I.
1.2713	1.2713
1.2446	1.2446
1 1225	1 1226

	_	
Season	S.I.	S.I.
1	1.2713	1.2713
2	1.2446	1.2446
3	1.1335	1.1336
4	1.0223	1.0224
5	0.8362	0.8362
6	0.8145	0.8146
7	0.7917	0.7917
8	0.7838	0.7839
9	0.8664	0.8665
10	0.9421	0.9421
11	1.1380	1.1381
12	1.1549	1.1550
	11.9993	12.0000

第 4 步: 将时间序列值除以相对应之季节性指数 S_i , 计算出每期去除季节性因素后 之时间序列数据。

第5步: 以去除季节性因素后之时间序列数据做长期趋势分析如简单线性回归。

迴歸	統計					
R 的倍數	0.984887544					
R 平方	0.970003474					
調整的R平方	0.969749266					
標準誤	28905.65938					
觀察值個數	120					
ANOVA						
	自由度	SS	MS	F	顯著值	
迴歸	1	3.18823E+12	3.18823E+12	3815.788813	1.04416E-91	
殘差	118	98593383007	835537144.1			
總和	119	3.28683E+12				
	係數	標準誤	t統計	P-值	下限 95%	上限 95%
截距	1652527.423	5244.61389	315.0903875	1.8222E-174	1642141.671	1662913
t	4705.533613	76.17574579	61.77207146	1.04416E-91	4554.685061	4856.382

假设其中第 1 期之 t 为 0。

第6步:以上一步骤之结果做未来趋势预测,并乘上相对应之季节性指数 S_i 。

Reg Forecast	Multiply S.I.	S.I.	t
2217191.46	1755350.48	0.7917	120
2221896.99	1741745.05	0.7839	121
2226602.52	1929351.09	0.8665	122
2231308.06	2102115.32	0.9421	123
2236013.59	2544807.07	1.1381	124
2240719.12	2588030.59	1.1550	125
2245424.66	2854608.37	1.2713	126
2250130.19	2800512.04	1.2446	127
2254835.73	2556081.78	1.1336	128
2259541.26	2310154.98	1.0224	129
2264246.79	1893363.17	0.8362	130
2268952.33	1848288.56	0.8146	131

相加性季节性趋势分析

例题 14.10 四期季节性范例:下表为某避暑胜地的豪华旅馆过去五年内四季的住房率,请以相加性季节性趋势分析模式预测其未来一年四季的住房率。

季/年	1	2	3	4	5
1	0.561	0.575	0.594	0.622	0.665
2	0.702	0.738	0.738	0.708	0.835
3	0.800	0.868	0.729	0.806	0.873
4	0.568	0.605	0.600	0.632	0.670

解答 相加性季节性趋势分析模式预测之步骤如下:

第1步: 当一年中有4个季节时,定义3个二元变量。

定义 Q1 = 1 当第 t 期的数据为第 1 季时,否则为 0。

Q2 = 1 当第 t 期的资料为第 2 季时,否则为 0。

Q3 = 1 当第 t 期的资料为第 3 季时,否则为 0。

因此当 Q1、Q1、Q1 均为 Q1 时就表示第 t 期的资料为第 4 季。

	•					
Year	Season	t	Q1	Q2	Q3	Yt
1	1	0	1	0	0	0.561
	2	1	0	1	0	0.702
	3	2	0	0	1	0.800
	4	3	0	0	0	0.568
2	1	4	1	0	0	0.575
	2	5	0	1	0	0.738
	3	6	0	0	1	0.868
	4	7	0	0	0	0.605
3	1	8	1	0	0	0.594
	2	9	0	1	0	0.738
	3	10	0	0	1	0.729
	4	11	0	0	0	0.600
4	1	12	1	0	0	0.622
	2	13	0	1	0	0.708
	3	14	0	0	1	0.806
	4	15	0	0	0	0.632
5	1	16	1	0	0	0.665
	2	17	0	1	0	0.835
	3	18	0	0	1	0.873
	4	19	0	0	0	0.670

第2步: 以原始时间序列数据当成因变量,时间则为自变量,加上所有的季节性『二 元变量』为自变量, 计算直线回归线。

> 由于一年中有4个季节时,因此在第一步骤定义3个二元变量。所欲做出 的直线回归模式为 $\hat{Y}_t = b_0 + b_1 t + b_2 Q 1 + b_3 Q 2 + b_4 Q 3$ 。这个直线回归模 式实际上可拆为四个相加性季节性趋势分析模式,分别为:

第一季: $\hat{Y}_t = b_0 + b_1 t + b_2 Q 1$

第二季: $\hat{Y}_t = b_0 + b_1 t + b_3 Q2$

第三季: $\hat{Y}_t = b_0 + b_1 t + b_4 Q3$

第四季: $\hat{Y}_{t} = b_{0} + b_{1}t$

以 Excel 计算后结果如下表:

迴歸絲	統計					
R 的倍數	0.94302					
R 平方	0.88929					
調整的 R 平方	0.85977					
標準誤	0.03806					
觀察值個數	20					
ANOVA						
	自由度	SS	MS	F	顯著值	
迴歸	4	0.17453	0.043633	30.122167	5.202E-07	
殘差	15	0.02173	0.001449			
總和	19	0.19626				
	係數	標準誤	t 統計	P-值	下限 95%	上限 95%
截距	0.55959	0.02374	23.57193	2.882E-13	0.5089878	0.6101872
t	0.00504	0.00150	3.34843	0.0043994	0.0018309	0.0082441
Q1	0.00351	0.02449	0.14342	0.8878648	-0.0486876	0.0557126
Q2	0.13928	0.02426	5.74134	3.899E-05	0.0875697	0.1909803
Q3	0.20524	0.02412	8.50975	3.992E-07	0.1538314	0.2566436

所出的直线回归模式为

 $\hat{Y}_t = 0.55959 + 0.00504t + 0.00351Q1 + 0.13927Q2 + 0.20524Q3$ 。这个直线回归模式实际上可拆为四个相加性季节性趋势分析模式,分别为:

第一季: $\hat{Y}_t = 0.5631 + 0.00504t$ 第二季: $\hat{Y}_t = 0.6989 + 0.00504t$ 第三季: $\hat{Y}_t = 0.7648 + 0.00504t$ 第四季: $\hat{Y}_t = 0.5596 + 0.00504t$

若将四季的直线回归模式以图型表示如下图,可看出以第四季直线回归模式为基准,其 他三季的直线回归模式分别往上加成:

第3步: 将上一步中算出的直线回归线, 做未来趋势预测。

Year	Season	t	Q1	Q2	Q3	Yt	Ft
1	1	0	1	0	0	0.561	0.5631
	2	1	0	1	0	0.702	0.7039
	3	2	0	0	1	0.800	0.7749
	4	3	0	0	0	0.568	0.5747
2	1	4	1	0	0	0.575	0.5833
	2	5	0	1	0	0.738	0.7241
	3	6	0	0	1	0.868	0.7951
	4	7	0	0	0	0.605	0.5949
3	1	8	1	0	0	0.594	0.6034
	2	9	0	1	0	0.738	0.7442
	3	10	0	0	1	0.729	0.8152
	4	11	0	0	0	0.600	0.6150
4	1	12	1	0	0	0.622	0.6236
	2	13	0	1	0	0.708	0.7644
	3	14	0	0	1	0.806	0.8354
	4	15	0	0	0	0.632	0.6352
5	1	16	1	0	0	0.665	0.6437
	2	17	0	1	0	0.835	0.7845
	3	18	0	0	1	0.873	0.8555
	4	19	0	0	0	0.670	0.6553
6	1	20	1	0	0		0.6639
	2	21	0	1	0		0.8047
	3	22	0	0	1		0.8757
	4	23	0	0	0		0.6755

其中 F_t 为上一步骤所算出之回归线长期趋势预测值 F_t =0.55959+0.00504t+ 0.00351Q1+0.13927Q2+0.20524Q3,而第6年的预测值算法如下:

 $F_{20} = 0.55959 + 0.00504(20) + 0.00351(1) = 0.6639$

 $F_{21} = 0.55959 + 0.00504(21) + 0.13927(1) = 0.8047$

 $F_{22} = 0.55959 + 0.00504(22) + 0.20524(1) = 0.8757$

 $F_{23} = 0.55959 + 0.00504(23) = 0.6755$

亦即第6年第一季住房率为0.6639,第6年第二季住房率为0.8047,第6 年第三季住房率为 0.8757, 第 6 年第四季住房率为 0.6755。

将原始住房率(Y_t)与回归线长期趋势之预测住房率(F_t)以下图表示:

从上图可看出季节性因素明显,因此使用相加性季节性趋势分析模式的效果相当好。

习题

1. 下列时间序列数据,利用简单移动平均,预测第 12 期数据, n=4,并计算预测误差。

T	实际值	t	实际值	t	实际值
1	546	5	647	9	736
2	528	6	594	10	724
3	530	7	665	11	813
4	508	8	630	12	-

2. 数据同习题 3.1, 试利用简单指数平滑, 预测第 12 期数据, 以最初 3 个值当起始值, α =0.1, 并计算预测误差

3. 试利用直线回归,预测第11期数据

时间	1	2	3	4	5	6	7	8	9	10
实际值	430	446	464	480	498	514	532	548	570	591

4. 下表为过去八年某酿酒厂所售出其期下代表品牌酒的箱数。

年	2001	2002	2003	2004	2005	2006	2007	2008
箱数	270	356	398	456	358	500	410	376

请回答以下问题:

- (1). 请用三期移动平均计算预测值(过去5年与未来一年销售)。
- (2). 请用 $\alpha = 0.9$ 的指数平滑法计算预测值(过去 8 年与未来一年销售)。
- (3). 请用 $\alpha = 0.9$, $\beta = 0.8$, F0 = 390 与 Estimated_Trend0 = 50 的趋势指数平滑法 计算预测值(过去 8 年与未来一年销售)。
 - (4). 请用 MAD, MSE 与 MAPE 比较(1), (2) 与 (3) 之结果,请问何者较正确?
- 5. 为预测未来销售量,下表为过去十个月某加油站所售出之汽油(以千加仑计)。

期数(月)	1	2	3	4	5	6	7	8	9	10
汽油(以千加仑计)	40	45	44	47	48	50	52	51	48	47

请回答以下问题:

- (1). 请用三期移动平均计算预测值(过去7个月与未来3个月销售)。
- (2). 请用 $\alpha = 0.8$ 的指数平滑法计算预测值(过去 10 个月与未来 3 个月销售)。
- (3). 请用 $\alpha = 0.8$, $\beta = 0.6$, F0 = 47 与 Estimated_Trend0 = 1 的趋势指数平滑法计算预测值(过去销售与未来一年销售) (过去 10 个月与未来 3 个月销售)。
 - (4). 请用 MAD, MSE 与 MAPE 比较(1), (2) 与 (3) 之结果,请问何者较正确?
- 6. 为预测未来销售量,下表为过去十个月某加油站所售出之汽油(以千加仑计)。

期数(年)	1	2	3	4	5	6
时间序列	125	115	120	126	140	122

请回答以下问题:

- (1). 请用三期移动平均计算预测值(过去3年与未来一年销售)。
- (2). 请用 $\alpha = 0.7$ 的指数平滑法计算预测值(过去 6 年与未来一年销售)。
- (3). 请用 $\alpha = 0.7$, $\beta = 0.2$, F0 = 125 与 Estimated_Trend0 = 1 的趋势指数平滑法计算预测值(过去销售与未来一年销售)(过去 6 年与未来一年销售)。
 - (4). 请用 MAD, MSE 与 MAPE 比较(1), (2) 与 (3) 之结果,请问何者较正确?

7. 下表为某计算机供货商从 2005 至 2008 年的每季销售计算机金额(以百万元计)。

季/年	2005	2006	2007	2008
1	60	65	68	74
2	75	83	85	90
3	93	98	102	106
4	62	69	71	75

请回答以下问题:

- (1). 请以四季中央移动平均计算季节指数。
- (2). 请用上题计算之季节性指数将销售金额去季节性后算出简单线性回归线。
- (3). 请用上题计算之季节性指数与简单线性回归线, 预测 2009 年每季之销售。
- 8. 吉萨金字塔为埃及最受欢迎的观光地点,,下表为吉萨金字塔从 2005 至 2008 年的每 季参观人次(以千计)。

季/年	2005	2006	2007	2008
冬	210	215	218	220
春	260	275	282	290
夏	480	490	505	525
秋	250	255	265	270

请回答以下问题:

- (1). 请以四季中央移动平均计算季节指数。
- (2). 请用上题计算之季节性指数将参观人次去季节性后算出简单线性回归线。
- (3). 请用上题计算之季节性指数与简单线性回归线,预测 2009 年每季之参观人次。
- 9. 下表为美国某大学之商业统计课程从 2006 至 2008 年的每学期注册人次。

季/年	2006	2007	2008
1	26	27	32
2	29	25	36
3	33	36	39
4	18	21	30

请回答以下问题:

- (1). 请以四季中央移动平均计算季节指数。
- (2). 请用上题计算之季节性指数将注册人次去季节性后算出简单线性回归线。
- (3). 请用上题计算之季节性指数与简单线性回归线, 预测 2009 年每季之注册人次。
- 10. 下表为某零售商四年来的每个月之营业额(以百万元计)。

月	1	2	3	4	5	6	7	8	9	10	11	12
第一年	143	138	195	225	175	389	454	618	770	564	327	235
第二年	189	326	289	293	279	552	674	827	1000	502	512	300
第三年	359	264	315	361	414	647	836	901	1104	874	683	352
第四年	332	244	320	437	544	830	1011	1081	1400	1123	713	487

请回答以下问题:

- (1). 请以12期中央移动平均计算季节(月)指数。
- (2). 请用上题计算之季节性(月)指数将营业额去季节性后算出简单线性回归线。
- (3). 请用上题计算之季节性指数与简单线性回归线,预测明年每月之营业额。