

(12) МЕЖДУНАРОДНАЯ ЗАЯВКА, ОПУБЛИКОВАННАЯ В СООТВЕТСТВИИ С ДОГОВОРОМ О ПАТЕНТНОЙ КООПЕРАЦИИ (РСТ)

(19) ВСЕМИРНАЯ ОРГАНИЗАЦИЯ
ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
Международное бюро

РСТ

(43) Дата международной публикации:
08 апреля 2004 (08.04.2004)(10) Номер международной публикации:
WO 2004/029325 A1(51) Международная патентная классификация⁷:
C23C 16/27, H05H 1/46

(21) Номер международной заявки: PCT/RU2003/000410

(22) Дата международной подачи:
18 сентября 2003 (18.09.2003)

(25) Язык подачи: русский

(26) Язык публикации: русский

(30) Данные о приоритете:
2002125807 30 сентября 2002 (30.09.2002) RU

(71) Заявитель (для всех указанных государств, кроме (US): ИНСТИТУТ ПРИКЛАДНОЙ ФИЗИКИ РАН [RU/RU]; 603950 Нижний Новгород, ГСП-120, ул. Ульянова, 46 (RU) [INSTITUTE OF APPLIED PHYSICS RAS, Nizhny Novgorod (RU)].

(72) Изобретатели; и
(75) Изобретатели/Заявители (только для (US): ВИХАРЕВ Анатолий Леонтьевич [RU/RU]; 603155 Нижний Новгород, ул. Трудовая, д. 8, кв. 32 (RU) [VIKHAREV, Anatolij Leontjevich, Nizhny Novgorod (RU)]; ГОРБАЧЕВ Алексей Михайлович [RU/RU]; 603163 Нижний Новгород, ул. Богдановича, д. 7, кв. 7 (RU) [GORBACHEV, Aleksey Mikhaylovich, Nizhny Novgorod (RU)]; ЛИТВАК Александр Григорьевич [RU/RU]; 603000 Нижний Новгород, ул. Горького, д. 61, кв. 4 (RU) [LITVAK, Aleksandr Grigorjevich, Nizhny Novgorod (RU)]; БЫКОВ Юрий Владимирович [RU/RU]; 603136 Нижний Новгород, ул. Ильинская, д. 35/1, кв. 43 (RU) [BYKOV, Jurij Vladimirovich, Nizhny Novgorod (RU)].

КОВ, Jurij Vladimirovich, Nizhny Novgorod (RU); ДЕНИСОВ Григорий Геннадьевич [RU/RU]; 603106 Нижний Новгород, ул. Ильинская, д. 14/1, кв. 43 (RU) [DENISOV, Grigory Gennadievich, Nizhny Novgorod (RU)]; ИВАНОВ Олег Андреевич [RU/RU]; 603105 Нижний Новгород, ул. Полтавская, д. 33/45, кв. 34 (RU) [IVANOV, Oleg Andreevich, Nizhny Novgorod (RU)]; КОЛДАНОВ Владимир Александрович [RU/RU]; 603043 Нижний Новгород, пр. Октября, д. 17, кв. 24 (RU) [KOLDANOV, Vladimir Aleksandrovich, Nizhny Novgorod (RU)]. (RU)).

(74) Агент: БАБИНА Ольга Викторовна, 603950 Нижний Новгород, ул. Ульянова, д. 46, Институт прикладной физики РАН, патентная группа (RU) [BABINA, Olga Viktorovna, Nizhny Novgorod

(81) Указанные государства (национально): CA, CH, CN, DE, DK, FI, GB, IL, IN, JP, KR, NO, SE, UA, US, ZA.

(84) Указанные государства (регионально): европейский патент (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Опубликована
С отчётом о международном поиске.

В отношении двухбуквенных кодов, кодов языков и других сокращений см. «Пояснения к кодам и сокращениям», публикуемые в начале каждого очередного выпуска Бюллетеня РСТ.

(54) Title: HIGH VELOCITY METHOD FOR DEPOSING DIAMOND FILMS FROM A GASEOUS PHASE IN SHF DISCHARGE PLASMA AND DEVICE FOR CARRYING OUT SAID METHOD

(54) Название изобретения: ВЫСОКОСКОРОСТНОЙ СПОСОБ ОСАЖДЕНИЯ АЛМАЗНЫХ ПЛЁНОК ИЗ ГАЗОВОЙ ФАЗЫ В ПЛАЗМЕ СВЧ РАЗРЯДА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

(57) Abstract: The invention relates to carbon deposition by decomposing gaseous compounds with the aid of the SHF discharge plasma and can be used, for example for producing polycrystalline diamond films (plates), which are used for producing output windows of power SHF sources, for example gyrotrons. Said invention ensures a high speed deposition of the high quality diamond films (having a loss-tangent angle \square equal to or less than 3×10^{-5}) on supports whose diameter is equal to or higher than 100 mm. For this purpose, a SHF discharge is initiated in a gas mixture which is arranged in a reaction chamber and contains at least hydrogen and hydrocarbon. Afterwards, said gas mixture is activated by producing a stable nonequilibrium plasma with the aid of SHF radiation having a frequency f which is many times higher than a commonly used frequency of 2.45 GHz, for example 30 GHz. In order to localise the plasma, a standing wave is formed near the carrier and plasma layers are formed in the antinodes thereof in such a way that the sizes thereof are adjustable.

(57) **Реферат:** Изобретение относится к области осаждения углерода путем разложения газообразных соединений с помощью плазмы СВЧ разряда и может быть использовано, например, для получения поликристаллических алмазных пленок (пластин), из которых изготавливают выходные окна мощных источников СВЧ излучения, например, гиротронов. Изобретение обеспечивает высокую скорость осаждения алмазных пленок высокого качества (с тангенсом угла потерь δ не более $3 \cdot 10^{-5}$) на подложки с диаметром более 100 мм. Для этого зажигают СВЧ разряд в газовой смеси, находящейся в реакционной камере и содержащей по крайней мере водород и углеводород, активируют газовую смесь за счет создания устойчивой неравновесной плазмы с помощью СВЧ излучения с частотой f , много большей обычной используемой частоты 2,45 ГГц, например, 30 ГГц, при этом для локализации плазмы вблизи подложки формируют стоячую волну, в пучностях которой генерируют и поддерживают плазменные слои с возможностью регулирования их размера.

Высокоскоростной способ осаждения алмазных пленок из газовой фазы в плазме СВЧ разряда и устройство для его реализации

5

Область техники

Изобретение относится к области осаждения углерода путём разложения газообразных соединений с помощью плазмы СВЧ разряда и может быть использовано, например, для получения поликристаллических алмазных плёнок (пластин), из которых изготавливают выходные окна мощных источников СВЧ излучения, например, гиротронов, необходимых для дополнительного нагрева плазмы в установках термоядерного синтеза.

Предшествующий уровень техники

Осаждение алмазных плёнок из газовой фазы осуществляется так называемым CVD (chemical vapor deposition) методом. Этот метод основывается на активации тем или иным способом газовой смеси, чаще всего содержащей водород и углеводород, для создания необходимых химически активных частиц- атомов водорода и углеродсодержащих радикалов. Осаджение этих радикалов на подложку обеспечивает формирование поликристаллической алмазной плёнки в результате целого комплекса поверхностных реакций. Причём для эффективного роста алмазных плёнок необходима неравновесная концентрация атомарного водорода около поверхности подложки (Spitsyn B.V., Bouilov L.L., Derjaguin B.V., J of Cryst. Growth, 1981, v.52, p. 219-226).

Известно несколько способов активации газовой среды: с использованием нитей накаливания или газоразрядной плазмы, создаваемой разрядами постоянного тока, высокочастотными, дуговыми или СВЧ разрядами. Коммерческое применение нашли CVD реакторы, использующие плазму, созданную с помощью СВЧ разряда, так называемые MPACVD (microwave plasma-assisted chemical vapor deposition) реакторы. Это связано с тем, что СВЧ разряды, создавая высокую плотность возбуждённых и заряженных частиц, и обладая безэлектродной природой, позволяют выращивать

алмазные плёнки высокого качества (white diamond) со скоростью выше, чем 1 мкм/час.

Так, известен способ осаждения алмазных плёнок из газовой фазы в плазме СВЧ разряда, заключающийся в том, что в газовой смеси, содержащей по крайней мере водород и углеводород и поддерживаемой при давлении от 50 до 200 Торр, с помощью СВЧ излучения с частотой 2,45 ГГц зажигают СВЧ разряд. Производят активацию указанной газовой смеси плазмой СВЧ разряда, образуя химически активные частицы (радикалы), например, метила CH_3 , ацетилена C_2H_2 , атомы водорода H , обеспечивают их диффузионный перенос из объёма плазмы на подложку, специально обработанную для создания центров кристаллизации (нуклеации). Поддерживают температуру подложки в диапазоне $T_s = 700\text{-}1100^\circ\text{C}$, на поверхности которой с участием углеродсодержащих радикалов протекают поверхностные реакции, обеспечивающие рост алмазной плёнки (P.K.Bachmann, in *Handbook of industrial diamonds and diamond films*, Eds. M.Prelas, G.Popovici, L.K.Bigelow, New York: Marcel Dekker Inc. USA, 1998, p.821-850). Недостатком данного способа осаждения алмазных плёнок является малая скорость роста (1-2 мкм/час) качественных алмазных плёнок с коэффициентом теплопроводности не менее 10 Вт/см К.

Более высокую скорость роста алмазных плёнок (3-9 мкм/час) при отмеченном выше качестве обеспечивает высокоскоростной способ осаждения алмазных плёнок из газовой фазы в плазме СВЧ разряда, описанный в патенте США № 5518759, М.Кл.C23C16/50, B05D3/06, публ. 1996г. Способ-прототип заключается в том, что СВЧ разряд зажигают в находящейся в реакционной камере газовой смеси, содержащей по крайней мере водород и углеводород и поддерживаемой при давлении от 50 до 200 Торр. Указанную газовую смесь активируют плазмой СВЧ разряда на частоте $f = 2,45$ ГГц, образуя атомы водорода и углеродсодержащие радикалы, которые осаждаются на подложку, обеспечивая формирование поликристалли-

ческой алмазной плёнки в результате поверхностных реакций. Активацию газовой смеси осуществляют в условиях, когда преобладающими являются термически равновесные механизмы рождения углеродсодержащих радикалов над неравновесными электронными механизмами. Эти условия характеризуются повышенной относительной концентрацией радикала C_2 (молекулярного углерода) в плазме и достигаются за счёт повышения (до 5 кВт/см²) вводимой в плазменный реактор СВЧ мощности, приходящейся на единицу площади осаждаемой поверхности плёнки.

Недостатком способа-прототипа осаждения алмазных плёнок является необходимость использования СВЧ генератора с очень высокой мощностью (до 3 МВт) для напыления плёнок большой площади.

Для осаждения алмазных плёнок из газовой фазы в плазме СВЧ разряда известны устройства - плазменные реакторы резонансного типа на основе цилиндрического резонатора, возбуждаемого на частоте 2,45 ГГц или 915 МГц. Представителем этого класса является устройство, описанное в патенте США № 5311103, М.Кл.Н01J7/24, публ. 1994г. Устройство состоит из реакционной камеры с подложкой и держателем подложки, цилиндрического резонатора, в объёме которого располагается реакционная камера в виде кварцевой колбы, передающей коаксиально-волноводной линии с элементами связи для введения в резонатор СВЧ мощности на mode TM_{01n} , юстирующего устройства для перемещения верхней стенки цилиндрического резонатора и настройки резонатора в резонанс. В реакционной камере поддерживается давление газовой смеси от 50 до 200 Торр и плазма создаётся над подложкой в виде полусферы с размером вдоль подложки, не превышающим половины длины СВЧ волны.

Недостатком данного устройства является то, что небольшой попечный размер плазмы в реакционной камере накладывает ограничения на величину поперечного размера однородно напыляемых алмазных плёнок

(60-70 мм) при использовании СВЧ излучения с частотой 2,45 ГГц (с длиной волны 12,2 см).

Однородные алмазные плёнки немного большей площади осаждаются в плазме СВЧ разряда на частоте 2,45 ГГц в устройстве, описанном в 5 патенте США № 5954882, М.Кл.С23С16/00, публ. 1999г. Устройство состоит из реакционной камеры с подложкой и держателем подложки, эллипсоидного резонатора, в области одного из фокусов которого и располагается 10 реакционная камера в виде кварцевой колбы. Резонатор снабжен передающей коаксиально-волноводной линией с элементами связи для ввода в резонатор СВЧ мощности через область второго фокуса эллипсоида. В 15 реакционной камере поддерживается давление газовой смеси от 50 до 200 Торр. Из-за значительных размеров эллипсоидального резонатора по сравнению с длиной СВЧ волны и приблизительно квазиоптических условий распространения СВЧ волны в резонаторе возникает уширенное распределение 20 электрического поля в фокальной области резонатора. В результате в реакционной камере над подложкой создается плазма, позволяющая напылять однородные алмазные плёнки с поперечными размерами равными 70-80 мм.

Примерно с такой же площадью осаждаются алмазные плёнки в 20 устройстве, выбранном в качестве прототипа, описанном в патенте ЕР 0520832, В1, М.Кл.С23С16/26, С23С16/50, Н01Q19/00, публ. 1992г., в котором используются квазиоптические условия распространения СВЧ излучения с частотой 2,45 ГГц для его введения в реакционную камеру.

Устройство состоит из реакционной камеры в виде колбы с окном 25 для ввода СВЧ излучения, СВЧ генератора на частоте 2,45 ГГц, передающей линии, состоящей из излучающего рупора и рефлектора, металлического зеркала или диэлектрической линзы для формирования сходящегося волнового пучка, который направляется в реакционную камеру через окно. В 30 реакционной камере располагается подложка на держателе подложки и с

помощью системы напуска и откачки газа поддерживается необходимое давление газовой смеси. СВЧ разряд зажигается в фокальной области пучка, располагающейся над подложкой. В плазменном реакторе-прототипе над подложкой поддерживалась устойчивая плазма при фиксированном давлении газовой смеси равном 40 Торр.

Недостатком устройства-прототипа является то, что в нём для создания плазмы над подложкой используется сходящийся волновой пучок. Известно, что в сходящемся пучке граница СВЧ разряда, первоначально зажигаемого в области максимальной интенсивности поля, распространяется 10 навстречу СВЧ излучению в виде фронта ионизации (Ю.П. Райзер, Лазерная искра и распространение разрядов, Москва: Наука, 1974 год). Такая динамика разряда приводит к удалению области энерговыделения от подложки. В реакторе-прототипе стационарное поддержание плазмы над подложкой возможно только в узких интервалах давлений газа и величин 15 падающей СВЧ мощности в пучке. В результате невозможно достичь высоких удельных энерговкладов в плазму около подложки, т.е. невозможно получение высоких концентраций активных радикалов, и как следствие невозможно достичь высоких скоростей роста алмазных плёнок (в прототипе скорость роста равна 1 мкм/час).

20 Раскрытие изобретения

Задачей, на решение которой направлено настоящее изобретение, является разработка высокоскоростного способа осаждения алмазных плёнок из газовой фазы в плазме СВЧ разряда, обеспечивающего получение алмазных плёнок высокого качества (с тангенсом угла потерь δ не более 3 25 10^{-5} и с коэффициентом теплопроводности в диапазоне 10-20 Вт/см К) на подложках с диаметром более 100 мм, и разработка устройства (плазменного реактора) для реализации данного способа.

Технический результат в разработанном способе достигается тем, что разработанный высокоскоростной способ осаждения алмазных плёнок

из газовой фазы в плазме СВЧ разряда, также как и способ прототип, включает в себя поджиг СВЧ разряда в газовой смеси, находящейся в реакционной камере и содержащей по крайней мере водород и углеводород, активацию указанной газовой смеси плазмой СВЧ разряда, для образования атомов водорода и углеродсодержащих радикалов, которые осаждаются на подложку, обеспечивая формирование алмазной плёнки в результате поверхностных реакций.

Новым в разработанном способе является то, что активацию указанной газовой смеси путём повышения концентрации N_e электронов в плазме осуществляют за счёт создания в реакционной камере устойчивой не-равновесной плазмы с помощью СВЧ излучения с мощностью не менее 1 кВт и частотой f , много большей обычно используемой частоты 2,45 ГГц, при этом для локализации плазмы вблизи подложки формируют стоячую волну, в пучностях которой генерируют и поддерживают плазменные слои с возможностью регулирования их размера.

Целесообразно активацию указанной газовой смеси путём повышения концентрации электронов проводить с помощью электромагнитного излучения с частотой f равной 30 ГГц, а размеры плазменных слоёв в пучностях стоячей СВЧ волны регулировать за счёт изменения формы и размера поперечного сечения сходящихся волновых пучков, формирующих стоячую волну.

В одном частном случае для формирования стоячей волны целесообразно использовать четыре и более сходящихся волновых пучка, пересекающихся попарно.

25 В другом частном случае для формирования стоячей волны целесообразно использовать два сходящихся пересекающихся волновых пучка.

В третьем частном случае для формирования стоячей волны целесообразно использовать два сходящихся волновых пучка, направленных на встречу друг другу.

В чётвёртом частном случае для формирования стоячей волны целесообразно использовать падающий на подложку сходящийся волновой пучок и отражённый от подложки волновой пучок.

Технический результат в разработанном устройстве достигается тем, 5 что разработанный плазменный реактор для высокоскоростного осаждения алмазной плёнки из газовой фазы в плазме СВЧ разряда, как и плазменный реактор прототип, содержит СВЧ генератор, передающую линию, оканчивающуюся квазиоптической электродинамической системой, реакционную камеру с установленной в ней подложкой на держателе подложки и системой напуска и откачки выбранной газовой смеси. 10

Новым в разработанном устройстве является то, что квазиоптическая электродинамическая система выполнена и установлена с возможностью формирования в выбранной области вблизи подложки стоячей СВЧ волны, а передающая линия выполнена в виде сверхразмерного волновода круглого сечения с гофрированной внутренней поверхностью, дополненного системой зеркал для передачи по крайней мере одного гауссова пучка на упомянутую квазиоптическую электродинамическую систему. 15

В одном частном случае изготовления плазменного реактора квазиоптическую электродинамическую систему целесообразно выполнить в виде четырёх зеркал, расположенных по разные стороны относительно области формирования плазмы и установленных с возможностью направления СВЧ излучения в виде четырёх попарно пересекающихся волновых пучков, при этом квазиоптическую электродинамическую систему целесообразно установить внутри реакционной камеры, причём передающую линию целесообразно дополнить делителем одного волнового пучка на четыре пучка, который необходимо установить на выходе упомянутого сверхразмерного волновода круглого сечения. 20 25

В другом частном случае квазиоптическую электродинамическую систему целесообразно выполнить в виде двух зеркал, расположенных по

разные стороны относительно области формирования плазмы и установить с возможностью направления двух пучков СВЧ излучения под небольшими углами к поверхности подложки, при этом передающую линию целесообразно дополнить делителем одного волнового пучка на два пучка, 5 который необходимо установить на выходе упомянутого сверхразмерного волновода круглого сечения.

В третьем частном случае квазиоптическую электродинамическую систему целесообразно выполнить в виде двух зеркал, расположенных по 10 разные стороны относительно области формирования плазмы и установленных с возможностью направления волновых пучков навстречу друг другу, при этом одно из зеркал целесообразно установить с возможностью перемещения вперёд-назад параллельно самому себе на расстоянии $\pm \frac{\lambda}{4}$, где λ - длина волны СВЧ излучения, а передающую линию необходимо дополнить делителем одного волнового пучка на два пучка, который установлен 15 на выходе упомянутого сверхразмерного волновода круглого сечения.

В четвёртом частном случае изготовления плазменного реактора возможно в нижней части реакционной камеры расположить диэлектрическое окно для ввода СВЧ излучения, а напротив окна в верхней части камеры 20 целесообразно установить подложку, при этом квазиоптическую электродинамическую систему необходимо выполнить в виде одного зеркала, расположенного снаружи ниже упомянутой реакционной камеры и установленного с возможностью направления пучка СВЧ излучения вверх 25 перпендикулярно поверхности подложки.

В пятом частном случае выполнения плазменного реактора квазиоптическая электродинамическая система может быть выполнена в виде одного зеркала, установленного с возможностью направления пучка СВЧ излучения по нормали к поверхности подложки или под небольшим углом к нормали, а внутрь реакционной камеры возможно введение радиопрозрач-

ной охлаждаемой стенки, выполненной в виде решётки из тонких металлических охлаждаемых трубок или стержней и установленной параллельно подложке на расстоянии от неё больше $\lambda/2$.

В шестом частном случае изготовления плазменного реактора квазиоптическую электродинамическую систему целесообразно выполнить в виде зеркала и оптически связанного с ней квазиоптического резонатора с плоскопараллельными зеркалами, установленными на расстоянии кратном $\lambda/2$, при этом одно из зеркал резонатора представляет собой подложку на её держателе, а другое зеркало может быть выполнено в виде периодической решётки из тонких металлических трубок или стержней, причём период решётки меньше λ .

В седьмом частном случае изготовления плазменного реактора система напуска газовой смеси в реакционную камеру в область формирования плазмы может быть выполнена в виде металлического вогнутого экрана с подводящей трубкой в центральной части, расположенного над держателем подложки на регулируемом расстоянии, а система откачки газа может быть выполнена в виде набора отверстий в держателе подложки, снабженном некоторым объёмом для откачки смеси газов, в котором расположена система водяного охлаждения верхней части держателя подложки.

В восьмом частном случае изготовления плазменного реактора систему напуска выбранной газовой смеси целесообразно совместить с решёткой из тонких металлических охлаждаемых трубок, а система откачки газа может быть выполнена в виде набора отверстий в держателе подложки, снабженном некоторым объёмом для откачиваемой смеси газов, в котором расположена система водяного охлаждения верхней части держателя подложки.

Технический результат - увеличение скорости осаждения алмазной плёнки из газовой фазы в плазме СВЧ разряда при хорошем качестве плён-

ки - в разработанных способе и устройстве достигается за счёт того, что, как установлено авторами, при повышении частоты СВЧ поля повышается концентрация электронов N_e в плазме, что позволяет увеличить скорость активации газовой смеси, т.е. скорость образования атомарного водорода и других химически активных радикалов, а это в свою очередь приводит к увеличению скорости осаждения алмазной плёнки. При этом повышение частоты СВЧ поля и использование приёмов квазиоптики позволяет управлять размерами однородной плазмы над подложкой, что в свою очередь обеспечивает однородность осаждаемой плёнки на большой площади.

10 Влияние повышения частоты СВЧ поля на скорость осаждения алмазной плёнки в МРАСВД реакторе можно объяснить следующим образом.

15 В МРАСВД реакторах скорость роста алмазных пленок определяется величиной концентрации углеродсодержащих радикалов и атомов водорода около подложки (Goodwin D.G., J.E. Butler, in *Handbook of industrial diamonds and diamond films*, Eds. M.Prelas, G.Popovici, L.K.Bigelow, New York: Marcel Dekker Inc. USA, 1998, p.527-581). В большинстве существующих МРАСВД реакторов основным каналом диссоциации молекул водорода даже при высоких температурах газа ($T_g \sim 3000-3500^0\text{K}$) является диссоциация электронным ударом (Манкелевич Ю.А., Рахимов А.Т., Суэтин Н.В. *Физика плазмы*, 1995, т.21, №10, с.921-927). Поэтому степень диссоциации молекул водорода зависит от величины электронной концентрации N_e в плазме. Величина N_e в плазме, поддерживаемой СВЧ полем в реакторах резонансного типа, возрастает до величины, при которой начинает проявляться нелинейный эффект скинирования электромагнитного поля. Поэтому характерный размер плазмы над подложкой в реакторе примерно равен глубине скин-слоя δ . При обычно используемых параметрах в МРАСВД реакторах (температура газа $T_g \sim 3000-3500^0\text{K}$, зависящей от удельной мощности, поглощаемой в плазме, и начальном давлении газовой

смеси 50-200 Тор) плотность газа около подложки соответствует минимуму кривой Пашена для поддержания непрерывного СВЧ разряда (Вихарев А.Л. и др., Физика плазмы, 1987, т.13, №9, с.1124-1130), при которой частота столкновений электронов v порядка круговой частоты поля ω . В этих 5 условиях глубина скин-слоя δ примерно равна

$$\delta \approx 2 (c/\omega) (N_{co}/N_e) [(\omega^2 + v^2)/ \omega v],$$

где $N_{co} = m\omega^2/4\pi e^2$ – критическая концентрация, $\omega = 2\pi f$ круговая частота поля, v - частота столкновений электронов с нейтральными частицами, m и e – масса и заряд электрона, соответственно. При фиксированной глубине 10 скин-слоя (например, для реакторов резонансного типа эта величина порядка 1 см) $\delta = \delta_0$, из приведенного выше соотношения для δ получаем, что величина электронной концентрации N_e в плазме пропорциональна частоте СВЧ излучения

$$N_e \propto N_{co} (c/\delta_0 \omega) [(\omega^2 + v^2)/ \omega v] \propto \omega.$$

Поэтому величина электронной концентрации N_e и, соответственно, степень диссоциации молекулярного водорода в неравновесной плазме МРАСВД реактора повышается при увеличении частоты СВЧ излучения.

Дополнительный технический результат- повышение площади осаждаемой алмазной плёнки при сохранении её однородности - обеспечивается разработанной конструкцией плазменного реактора за счёт формирования попарно пересекающихся волновых пучков, например, четырёх попарно пересекающихся когерентных пучков.

Краткое описание фигур чертежей

На фиг.1 схематично в разрезе представлена блок-схема разработанного плазменного реактора, реализующего разработанный способ.

На фиг.2 представлена в разрезе блок-схема плазменного реактора с квазиоптической электродинамической системой, обеспечивающей формирование плазменного слоя вблизи подложки в области пересечения четырёх волновых пучков.

На фиг.3 представлена в разрезе блок-схема плазменного реактора с квазиоптической электродинамической системой, обеспечивающей формирование плазменного слоя вблизи подложки в двух пересекающихся волновых пучках.

5 На фиг.4 представлена в разрезе блок-схема плазменного реактора с квазиоптической электродинамической системой, обеспечивающей формирование плазменного слоя вблизи подложки в двух встречных волновых пучках.

10 На фиг.5 представлена в разрезе блок-схема плазменного реактора с квазиоптической электродинамической системой, обеспечивающей формирование плазменного слоя вблизи подложки в отражающемся волновом пучке.

15 На фиг.6 представлена в разрезе блок-схема плазменного реактора с квазиоптической электродинамической системой, имеющей прозрачную для СВЧ излучения периодическую решётку.

На фиг.7 представлен в разрезе держатель подложки с системами охлаждения, напуска и откачки газа для плазменных реакторов, описанных в п.8,9,10 формулы изобретения.

20 На фиг.8 представлен держатель подложки с системами охлаждения, напуска и откачки газа для плазменного реактора, описанного в п.12 и 13 формулы изобретения.

Варианты осуществления изобретения

Конструкция плазменного реактора, представленная на фиг.1, содержит реакционную камеру 1 для газовой смеси с установленной в ней подложкой 2 для осаждения алмазной плёнки 3. Подложка 2 расположена на держателе 4 подложки. Источником СВЧ излучения служит СВЧ генератор 5, соединённый с передающей линией 6, оканчивающейся квазиоптической электродинамической системой 7. Квазиоптическая электродинамическая система 7 состоит из нескольких металлических зеркал, кото-

ные установлены с возможностью формирования стоячей СВЧ волны в области 8 создания плазмы вблизи подложки 2. Реакционная камера 1 снабжена системой напуска 9 газовой смеси и системой откачки 10 газа для поддержания требуемого давления и скорости газового потока рабочей смеси в камере 1. В качестве реакционной камеры 1 может быть использована, как и в устройстве-прототипе, прозрачная кварцевая колба. В качестве источника 5 излучения может быть использован гиротрон.

В первом частном случае изготовления плазменного реактора, представлена на фиг.2, передающая линия 6 состоит из сверхразмерного волновода 14 круглого сечения, снабжённого делителем 15 волнового пучка, который оптически связан с комплектом четырёх плоских зеркал 11, каждое из которых в свою очередь оптически связано с одним вогнутым металлическим зеркалом из комплекта четырёх зеркал 12. Квазиоптическая электродинамическая система 7 состоит из четырёх металлических вогнутых зеркал 13. Волновод 14 передающей линии 6 выполнен с гофрированной внутренней поверхностью. Волновод 14 одним концом оптически связан с СВЧ генератором 5, а другим концом соединён с делителем 15 волнового пучка на четыре пучка. Делитель 15 выполнен в виде сверхразмерного квадратного волновода, работа которого основана на эффекте мультипликации изображений при распространении электромагнитной волны (G.G.Denisov, S.V.Kuzikov, in *Strong microwaves in plasmas*, Ed. A.G.Litvak, N.Novgorod: IAP, 2000, v.2, p.960-966). Зеркала 11,12 и 13 могут быть расположены как внутри реакционной камеры 1 (как показано на фиг.2), так и снаружи реакционной камеры 1 (как показано на фиг.1). Выход СВЧ генератора 5 может быть оптически связан непосредственно с волноводом 14 круглого сечения (как показано на фиг.1), а может быть оптически связан с ним посредством дополнительного зеркала 16. Зеркала 13, образующие квазиоптическую электродинамическую систему 7, установлены с возможностью направления СВЧ излучения 17 в виде четырёх по-

парно пересекающихся волновых пучков в область 8 формирования плазмы вблизи подложки 2 (см. вид А на фиг.2).

Система напуска 9 в реакционную камеру 1 газовой смеси, содержащей по крайней мере водород и углеводород и система откачки 10 газа для поддержания требуемого давления рабочей смеси могут быть выполнены по-разному, например, так как показано на фиг.7. Система напуска 9 выполнена в виде металлического вогнутого экрана 18 с подводящей трубкой 19 в центральной его части. Система откачки 10 газа выполнена в виде набора отверстий 20 в держателе 4 подложки 2, при этом держатель 4 снабжён некоторым объёмом для откачиваемой смеси газов, в котором расположена система водяного охлаждения 21 той части держателя 4, которая контактирует с подложкой 2.

Во втором частном случае изготовления плазменного реактора, представленном на фиг.3, передающая линия 6 представляет собой, как и в предыдущем случае, волновод 14 круглого сечения, снабженный делителем 15 волнового пучка, который оптически связан с двумя плоскими металлическими зеркалами 11, каждое из которых в свою очередь оптически связано с одним вогнутым металлическим зеркалом из комплекта двух зеркал 12. Квазиоптическая электродинамическая система 7 состоит из двух вогнутых металлических зеркал 13. При этом волновод 14 выполнен с гофрированной внутренней поверхностью. В этом частном случае изготовления плазменного реактора делитель 15 волнового пучка на два пучка выполнен в виде сверхразмерного прямоугольного волновода, работа которого основана на эффекте мультиплексии изображений при распространении электромагнитной волны. Зеркала 11,12 и 13 могут быть расположены как внутри реакционной камеры 1 (как показано на фиг. 2), так и снаружи реакционной камеры 1 (как показано на фиг.1). Два зеркала 13, образующие квазиоптическую электродинамическую систему 7, установлены с возможностью направления излучения в виде двух пересекающихся вол-

новых пучков в область 8 формирования плазмы вблизи подложки 2 (см. вид А на фиг.3). Система напуска 9 газовой смеси в реакционную камеру 1 и система откачки 10 газа выполнена, как и в предыдущем частном случае, как показано на фиг.7.

5 В третьем частном случае изготовления плазменного реактора, пред-
ставленном на фиг. 4, передающая линия 6 состоит, как и в предыдущих
случаях, из сверхразмерного волновода 14 круглого сечения, снабженного
делителем 15 волнового пучка, который оптически связан с комплектом
двух плоских зеркал 11, каждое из которых в свою очередь оптически свя-
10 зано с одним вогнутым металлическим зеркалом из комплекта двух зеркал
12. Квазиоптическая электродинамическая система 7 состоит из двух ме-
тальлических вогнутых зеркал 13, которые установлены с возможностью
направления излучения 17 в виде двух встречных волновых пучков в об-
ласть 8 формирования плазмы вблизи подложки 2 (см. вид А на фиг.4).
15 Для обеспечения однородности нанесения алмазной плёнки 3 на подложку
2 одно из зеркал 13 установлено с возможностью перемещения вперёд-
назад параллельно самому себе на расстояние $\pm \frac{\lambda}{4}$, где λ - длина волны
СВЧ излучения. Зеркала 11,12 и 13, как и в предыдущих частных случаях,
могут быть расположены как внутри реакционной камеры 1, так и снару-
20 жи.

В четвёртом частном случае изготовления плазменного реактора, представ-
ленном на фиг.5, реакционная камера 1 расположена вертикально
и нижняя её часть снабжена диэлектрическим окном 22 для ввода СВЧ из-
лучения 17, при этом внутри камеры 1 в верхней её части установлена
25 подложка 2 на держателе 4. Квазиоптическая электродинамическая систе-
ма 7 выполнена в этом случае в виде одного зеркала 13, расположенного
снаружи ниже камеры 1 и установленного с возможностью направления
пучка СВЧ излучения 17 вверх, перпендикулярно поверхности подложки
2. Система напуска 9 в реакционную камеру 1 газовой смеси в этом случае

выполнена в виде нескольких трубок 23. Для поддержания требуемого давления рабочей смеси в качестве системы откачки 10 газа использована трубка 24. Температурный режим подложки 2 обеспечивается с помощью системы водяного охлаждения 21, как в предыдущих частных случаях выполнения устройства.

В пятом частном случае изготовления плазменного реактора, представленном на фиг.6, передающая линия 6 состоит из сверхразмерного волновода 14 круглого сечения, выход которого оптически связан посредством металлического вогнутого зеркала 12 с квазиоптической электродинамической системой 7, выполненной в этом случае в виде одного металлического вогнутого зеркала 13, установленного с возможностью направления пучка СВЧ излучения 17 по нормали к поверхности подложки 2 или под небольшим углом к нормали. При этом внутрь реакционной камеры 1 введена радиопрозрачная охлаждаемая стенка, выполненная в виде периодической решётки 25 из тонких металлических охлаждаемых трубок или стержней 26 и установленная параллельно подложке 2 на расстоянии от неё больше $\lambda/2$. Система напуска 9 газовой смеси в данной конструкции и система откачки 10 представлены на фиг.8. Система напуска 9 состоит из полых охлаждаемых трубок 26 периодической решётки 25. Для поддержания требуемого давления в реакционной камере 1 в диапазоне 50-:-300 Торр система откачки 10 газа выполнена в виде набора отверстий 20 в держателе 4 подложки 2. Температурный режим подложки 2 обеспечивается с помощью системы водяного охлаждения 21.

В шестом частном случае изготовления плазменного реактора, также представленном на фиг.6, передающая линия 6 и квазиоптическая электродинамическая система 7 выполнены, как и в предыдущем случае. Решётка 25, введённая внутрь реакционной камеры 1 и расположенная в этом частном случае изготовления на расстоянии от подложки 2 кратном $\lambda/2$, вместе с подложкой 2 образуют квазиоптический резонатор с плоскопараллель-

ными зеркалами, имеющий резонанс на частоте излучения СВЧ генератора 5.

Система напуска 9 газовой смеси и система откачки 10 газа выполнены в данной конструкции аналогично предыдущему частному случаю, 5 как показано на фиг.8.

В конкретном примере реализации разработанных способа и устройства (плазменного реактора) в качестве реакционной камеры 1 использована кварцевая колба, выпускаемая стекольным заводом им.Ф.Э.Дзержинского города Гусь-Хрустальный. В качестве СВЧ генератора 5 использован гиротрон с частотой СВЧ излучения 30 ГГц и мощностью до 10 кВт, выпускаемый НПП "Гиком" города Н. Новгорода. В качестве передающей линии 6 использован сверхразмерный волновод 14 круглого сечения с гофрированной внутренней поверхностью, снабжённый делителем 15 волнового пучка, изготовленные в ИПФ РАН города Н. Новгорода. Для реализации разработанного способа использована конструкция плазменного реактора с квазиоптическим резонатором, представленная на фиг.6.

Разработанный высокоскоростной способ осаждения алмазных плёнок из газовой фазы в плазме СВЧ разряда реализуют следующим образом 20 (см. фиг.1).

Линейно поляризованное СВЧ излучение 17 с поперечным распределением интенсивности в виде распределения Гаусса от СВЧ генератора 5 с частотой f , много большей обычно используемой частоты 2,45 ГГц, например 30 ГГц, направляют на вход передающей линии 6. С выхода передающей линии 6 его направляют на квазиоптическую электродинамическую систему 7, посредством которой излучение 17 направляют в реакционную камеру 1, содержащую по крайней мере водород и углеводород. С помощью квазиоптической электродинамической системы 7 в выбранной области 8 реакционной камеры 1 формируют стоячую СВЧ волну, в пуч-

ностях которой генерируют и поддерживают плазменные слои, т.е. получают устойчивую неравновесную плазму. За счёт использования СВЧ излучения с частотой f , много большей обычно используемой частоты 2,45 ГГц, полученная в области 8 плазма имеет более высокую концентрацию 5 электронов, образует более высокую плотность углеродсодержащих радикалов и атомарного водорода и обеспечивает тем самым более высокую скорость роста алмазной плёнки, чем в способе-прототипе, использующем излучение с частотой 2,45 ГГц. Повышение частоты f позволяет также использовать приёмы квазиоптики и управлять размерами однородной плазмы 10 над подложкой 2, что в свою очередь обеспечивает однородность осаждаемой плёнки, т.е. позволяет решить поставленную задачу.

Плазменный реактор, представленный на фиг.2 и позволяющий реализовать способ по п.3, работает следующим образом.

Линейно поляризованное СВЧ излучение 17 с поперечным распределением интенсивности в виде распределения Гаусса от СВЧ генератора 5 с частотой 30 ГГц посредством зеркала 16 направляют на вход сверхразмерного волновода 14 круглого сечения с гофрированной внутренней поверхностью. Благодаря такому выполнению волновода 14 поперечное распределение интенсивности излучения 17 на выходе волновода 14 сохраняется 20 близким к гауссовому. Гауссов пучок поступает на вход делителя 15 волнового пучка и за счёт эффекта мультипликации изображений при распространении электромагнитной волны в сверхразмерном квадратном волноводе делится на четыре одинаковых гауссовых пучка с меньшей интенсивностью. Каждый из этих пучков излучения 17 посредством комплектов 25 зеркал 11, 12 передающей линии 6 направляют на квазиоптическую электродинамическую систему 7. Четыре вогнутых зеркала 13 электродинамической системы 7 направляют четыре сходящихся пучка 17 в область 8, где указанные четыре пучка попарно пересекаются, как показано на фиг.2 вид А, и в области их пересечения формируется стоячая волна. За счёт смеще-

ния в плоскости, перпендикулярной плоскости чертежа (см. фиг.2 вид А), противоположно расположенных зеркал 13 в каждой паре относительно оси симметрии каждой пары зеркал 13, область 8 формирования стоячей волны над подложкой 2 в данном частном случае имеет увеличенную площадь (более 100мм) по сравнению с другими известными способами. В пучностях стоячей волны величина электрического поля равна или превышает пороговое поле, необходимое для поддержания стационарной плазмы, поэтому в области 8 формирования стоячей волны происходит поджиг СВЧ разряда и формирование и локализация плазменного слоя. Изменяя форму и размеры поперечного сечения пересекающихся волновых пучков 17, можно регулировать размеры и форму плазменного слоя. Конструкция плазменного реактора по п.8 формулы изобретения обеспечивает более равномерный подвод СВЧ излучения к плазме, а также большую площадь осаждаемых алмазных плёнок.

Плазменный реактор, представленный на фиг.3 и позволяющий реализовать способ по п.4, работает следующим образом.

Линейно поляризованное СВЧ излучение 17 с поперечным распределением интенсивности в виде распределения Гаусса от СВЧ генератора 5 с частотой 30 ГГц посредством зеркала 16 и сверхразмерного волновода 14 круглого сечения направляют на вход делителя 15, выполненного в этом частном случае в виде сверхразмерного прямоугольного волновода. За счёт эффекта мультиплексии изображений при распространении электромагнитного излучения в сверхразмерном прямоугольном волноводе 15 гауссов пучок 17 делится на два одинаковых гауссовых пучка 17 меньшей интенсивностью. Каждый из этих двух пучков излучения 17 посредством комплексов зеркал 11 и 12 направляют на квазиоптическую электродинамическую систему 7. Вогнутыми зеркалами 13 квазиоптическая электродинамическая система 7 каждый из двух указанных пучков 17 в виде сходящегося пучка направляет на подложку 2 под углом к её поверхности, которая

в этом случае выполняет роль отражающего зеркала. При этом в области 8 над подложкой 2 пересекаются падающий и отражённый от подложки 2 пучки и в месте их пересечения формируется стоячая волна в направлении, перпендикулярном поверхности подложки 2. В пучностях стоячей волны 5 образуются области усиленного поля, в которых происходит локализация и поддержание одного или нескольких плазменных слоёв, параллельных плоскости подложки 2. Изменяя форму и размеры поперечного сечения падающего волнового пучка 17, а также изменяя угол падения пучка 17 на подложку 2 можно регулировать размер плазменного слоя вдоль подложки 10 2. Для получения более однородного распределения плазмы вдоль подложки 2 вторым зеркалом 13 навстречу отраженному пучку на подложку 2 направляется второй из упомянутых двух сходящихся пучков 17. За счёт этого конструкция плазменного реактора по п.9, представленная на фиг.3, обеспечивает более однородное осаждение алмазной плёнки на подложку 15 2.

Плазменный реактор, представленный на фиг.4 и позволяющий реализовать способ по п.5, работает следующим образом.

Линейно поляризованное СВЧ излучение 17 с поперечным распределением интенсивности в виде распределения Гаусса от СВЧ генератора 5 с 20 частотой 30 ГГц посредством зеркала 16 и сверхразмерного волновода 14 круглого сечения направляют на вход делителя 15, выполненного в этом случае в виде сверхразмерного прямоугольного волновода. За счёт эффекта мультипликации изображений при распространении электромагнитной волны в сверхразмерном прямоугольном волноводе 15 гауссов пучок 17 25 делится на два одинаковых пучка 17 меньшей интенсивности. Каждый из этих двух пучков излучения 17 посредством комплектов зеркал 11 и 12 направляют на квазиоптическую электродинамическую систему 7. Двумя зеркалами 13 квазиоптической электродинамической системы 7 оба упомянутых пучка 17 направляют в область 8 над подложкой 2 навстречу друг

другу, вследствие чего в области 8 вдоль оси пучков 17 образуется стоячая волна. В пучностях стоячей волны образуются области усиленного поля, в которых происходит локализация и поддержание нескольких плазменных слоёв, перпендикулярных поверхности подложки 2. Для однородного на-
5несения алмазных плёнок на подложку 2 пучности стоячих волн непре-
рывно смещают вдоль подложки 2 за счёт механического перемещения од-
ного из зеркал 13 параллельно самому себе на расстояние $\pm \lambda/4$. Конструк-
ция плазменного реактора по п.10, представленная на фиг.4, также, как и
10 предыдущая конструкция, обеспечивает однородное осаждение алмазной
плёнки 3 на подложку 2.

Плазменный реактор, представленный на фиг.5 и позволяющий реа-
лизовать способ по п.6, работает следующим образом.

Линейно поляризованное СВЧ излучение 17 с поперечным распреде-
лением интенсивности в виде распределения Гаусса от СВЧ генератора 5 с
15 частотой 30 ГГц посредством зеркала 16, сверхразмерного волновода 14
круглого сечения и зеркала 12 направляют на вход квазиоптической элек-
тродинамической системы 7, выполненной в этом частном случае в виде
одного металлического вогнутого зеркала 13, расположенного снаружи ре-
акционной камеры 1. Зеркало 13 направляет сходящийся волновой пучок
20 17 через диэлектрическое окно 22 вверх по нормали к поверхности под-
ложки 2, которая в этом случае выполняет роль отражающего зеркала и
создаёт встречный пучок 17. В результате в направлении, перпендикуляр-
ном поверхности подложки 2, образуется стоячая волна. В пучностях стоя-
чей волны образуются области усиленного поля, в которых происходит
25 локализация и поддержание одного или нескольких плазменных слоев, па-
раллельных плоскости подложки 2. Изменяя размеры поперечного сечения
падающего волнового пучка 17 можно регулировать размер плазменного
слоя вдоль подложки 2. Волновой пучок 17 направляется в данной конст-
рукции на подложку 2 снизу, так что плазма возникает под подложкой. В

5 этом случае возникающий конвективный поток газа вверх к подложке 2 дополнительно способствует локализации плазменного слоя около подложки. Конструкция плазменного реактора по п.11, представленная на фиг.5, является наиболее компактной и простой в изготовлении и обеспечивает дополнительные возможности в локализации плазмы вблизи подложки 2.

Плазменный реактор, представленный на фиг.6 и также позволяющий реализовать способ по п.6, работает следующим образом.

10 Периодическая решетка 25 из тонких металлических охлаждаемых стержней или трубок 26, установленная параллельно подложке 2, в зависимости от ее расстояния до подложки 2 и в зависимости от направления вектора напряженности электрического поля относительно оси стержней (трубок) 26, может выполнять две функции, а именно: при произвольном расстоянии до подложки 2 и при направлении вектора напряженности 15 электрического поля перпендикулярного оси стержней (трубок) 26 решетка 25 выполняет функцию радиопрозрачной охлаждаемой стенки, а при расстоянии до подложки 2 кратном $\lambda/2$ и при соответствующем направлении вектора напряженности электрического поля относительно оси стержней (трубок) 26 она выполняет функцию частично прозрачного зеркала 20 квазиоптического резонатора.

При использовании решетки 25 в качестве радиопрозрачной охлаждаемой стенки плазменный реактор, представленный на фиг.6, работает следующим образом.

25 Линейно поляризованное СВЧ излучение 17 с поперечным распределением интенсивности в виде распределения Гаусса от СВЧ генератора 5 с частотой 30 ГГц посредством зеркала 16, сверхразмерного волновода 14 и зеркала 12 направляют на зеркало 13 квазиоптической электродинамической системы 7, которая направляет сходящийся гауссов пучок 17 на решетку 25 и подложку 2 по нормали к их поверхности или под небольшим

углом к нормали. При направлении вектора напряженности электрического поля в гауссовом пучке 17 перпендикулярно оси стержней или трубок 26 решётка 25 является прозрачной для СВЧ излучения. В этом случае волновой пучок 17 отражается от поверхности подложки 2. В результате в 5 направлении, перпендикулярном поверхности подложки 2, образуется стоячая волна. В пучностях стоячей волны образуются области усиленного поля, в которых происходит локализация и поддержание одного или нескольких плазменных слоев, параллельных плоскости подложки 2. Локализации плазмы дополнительно способствует теплоотвод энергии в прозрачную для СВЧ излучения охлаждаемую решётку 25. Изменяя размеры поперечного сечения падающего волнового пучка 17, можно регулировать размер плазменного слоя вдоль подложки 2. Таким образом конструкция плазменного реактора по п.12, представленная на фиг.6 обеспечивает дополнительные возможности в локализации плазменного слоя вблизи подложки 2.

При использовании решётки 25 в качестве одного из зеркал квазиоптического резонатора, плазменный реактор, представленный на фиг. 6, работает следующим образом.

Как и в предыдущем случае, линейно поляризованный гауссов пучок 17 от СВЧ генератора 5 с частотой $f = 30$ ГГц посредством зеркала 16, сверхразмерного волновода 14 и зеркала 12 направляют на зеркало 13 квазиоптической электродинамической системы 7, которая направляет сходящийся гауссов пучок 17 на решётку 25 и подложку 2 по нормали к их поверхности или под небольшим углом к нормали. Для преобразования решётки 25 в частично отражающее второе зеркало квазиоптического резонатора изменяют по сравнению с предыдущим случаем угол между направлением вектора электрического поля в гауссовом пучке 17 и осью стержней (трубок) 26. Кроме того, поскольку в случае использования решётки 25 в качестве зеркала квазиоптического резонатора расстояние меж-

ду решёткой 25 и подложкой 2 выбрано кратным $\lambda/2$, то квазиоптический резонатор, образованный ими, имеет резонанс на частоте излучения СВЧ генератора 5. При резонансе амплитуда электрического поля в стоячей волне усиливается, что дополнительно способствует локализации плазменного слоя около подложки 2 в таком резонаторе. Локализации плазмы также способствует, как и в предыдущем случае, охлаждение металлических трубок (стержней) решетки 25. Добротность этого квазиоптического резонатора регулируется изменением коэффициента связи резонатора с гауссовым пучком излучения 17 за счёт изменения угла между вектором 10 электрического поля в гауссовом пучке и осью трубок или стержней 26. Изменяя размеры поперечного сечения падающего волнового пучка 17, здесь также, как и в предыдущих случаях, можно регулировать размер плазменного слоя вдоль подложки 2. Конструкция плазменного реактора по п.13, представленная на фиг.6, обеспечивает возможность регулирования 15 локализации плазменного слоя.

В частном случае изготовления данной конструкции система напуска 9 газовой смеси совмещена с периодической решёткой 25, в которой напуск газовой смеси осуществляют через отверстия в полых трубках 26 периодической решётки 25, как показано на фиг.8.

20 В таблице 1 приведены для сравнения результаты расчёта (численного моделирования) концентрации атомарного водорода в конструкциях плазменных реакторов, работающих на частотах 2,45 ГГц и 30 ГГц, пользуясь численной моделью, известной из публикации: A.M.Gorbachev et al, Numerical modeling of a microwave plasma CVD reactor, Diamond and Related Materials 10 (2001) p.342-346. Для частоты 2,45 ГГц был выбран плазменный реактор, известный по патенту США № 5311103, М.Кл. H01J7/24, публ.1994г.). Для частоты 30 ГГц был выбран плазменный реактор, представленный на фиг.6 с квазиоптическим резонатором, в котором плазма поддерживалась в виде одного плазменного слоя. Давление газовой

смеси в реакционных камерах, содержащих водород H_2 и метан CH_4 , составляло 100 Торр. Температура подложки равнялась 900^0C . Плазма поддерживалась при одной и той же падающей мощности.

Таблица 1:

	2,45 ГГц	30 ГГц
Концентрация электронов N_e	$\sim 5 \cdot 10^{11} \text{ см}^{-3}$	$\sim 5 \cdot 10^{12} \text{ см}^{-3}$
Максимальная концентрация атомарного водорода $[H]_{\max}$	$\sim 2 \cdot 10^{16} \text{ см}^{-3}$	$\sim 5 \cdot 10^{17} \text{ см}^{-3}$
Концентрация атомарного водорода у поверхности подложки $[H]_{\text{sur}}$	$\sim 6 \cdot 10^{14} \text{ см}^{-3}$	$\sim 10^{16} \text{ см}^{-3}$

5

Как видно из таблицы 1 концентрация атомарного водорода у поверхности подложки более, чем на порядок больше в реакторе на частоте 30 ГГц, чем в реакторе на частоте 2,45 ГГц. Предыдущие исследования (Goodwin D.G., J.E. Butler, in *Handbook of industrial diamonds and diamond films*, Eds. M.Prelas, G.Popovici, L.K.Bigelow, New York: Marcel Dekker Inc. USA, 1998, p.527-581) показывают, что такое повышение концентрации атомарного водорода также на порядок приводит к увеличению скорости роста алмазной плёнки. В плазменном реакторе (патент США № 5311103, М.Кл.Н01J7/24, публ.1994г.) скорость роста высококачественных алмазных плёнок составляет 1- 2 мкм/час, тогда как в разработанном реакторе она составляет 10-20 мкм/час.

Промышленная применимость

Разработанные способ осаждения алмазных плёнок и плазменный реактор для его осуществления направлены на увеличение скорости осаждения (получения) качественных алмазных плёнок большой площади, которые могут использоваться в различных областях науки и техники, в частности из них изготавливают выходные окна мощных источников СВЧ излучения, например, гиротронов, необходимых для дополнительного нагрева плазмы в установках термоядерного синтеза. Для реализации разработанных способа и устройства (плазменного реактора) используются

комплектующие изделия, выпускаемые отечественной промышленностью. В настоящее время проводятся испытания двух модификаций плазменного реактора: с четырьмя попарно пересекающимися волновыми пучками, как показано на фиг.2, и плазменного реактора с квазиоптическим резонатором, как показано на фиг.6. Разработанный плазменный реактор готов к мелкосерийному производству.

10

15

20

25

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Высокоскоростной способ осаждения алмазных плёнок из газовой 5 фазы в плазме СВЧ разряда, заключающийся в том, что зажигают СВЧ разряд в газовой смеси, находящейся в реакционной камере и содержащей по крайней мере водород и углеводород, активируют указанную газовую смесь плазмой СВЧ разряда, образуя атомы водорода и углеродсодержащие радикалы, которые осаждаются на подложку, обеспечивая формирование 10 поликристаллической алмазной плёнки в результате поверхностных реакций, ОТЛИЧАЮЩИЙСЯ тем, что активацию указанной газовой смеси путём повышения концентрации электронов N_e в плазме осуществляют за счёт создания в реакционной камере устойчивой неравновесной плазмы с 15 помощью СВЧ излучения с мощностью не менее 1 кВт и частотой f , много большей обычно используемой частоты 2,45 ГГц, при этом для локализации плазмы вблизи подложки формируют стоячую волну, в пучностях которой генерируют и поддерживают плазменные слои с возможностью 20 регулирования их размера.

2. Высокоскоростной способ по п.1, ОТЛИЧАЮЩИЙСЯ тем, что 25 активацию указанной газовой смеси путём повышения концентрации электронов N_e проводят с помощью электромагнитного излучения с частотой f равной 30 ГГц, а размеры плазменных слоёв в пучностях стоячей СВЧ волны регулируют за счёт изменения формы и размера поперечного сечения сходящихся волновых пучков, формирующих стоячую волну.

3. Высокоскоростной способ по п.1 или п.2, ОТЛИЧАЮЩИЙСЯ 30 тем, что для формирования стоячей волны используют четыре и более сходящихся волновых пучка, попарно пересекающихся.

4. Высокоскоростной способ по п.1 или п.2, ОТЛИЧАЮЩИЙСЯ тем, что для формирования стоячей волны используют два сходящихся 35 пересекающихся волновых пучка.

5. Высокоскоростной способ по п.1 или п.2, ОТЛИЧАЮЩИЙСЯ тем, что для формирования стоячей волны используют два сходящихся волновых пучка, направленных навстречу друг другу.

6. Высокоскоростной способ по п.1 или п.2, ОТЛИЧАЮЩИЙСЯ 5 тем, что для формирования стоячей волны используют падающий на подложку и отражённый от неё волновой пучок.

7. Плазменный реактор для высокоскоростного осаждения алмазных плёнок из газовой фазы в плазме СВЧ разряда, содержащий СВЧ генератор, передающую линию, оканчивающуюся квазиоптической электродинамической системой, реакционную камеру с установленной в ней подложкой, расположенной на держателе подложки, и системы напуска и откачки выбранной газовой смеси, ОТЛИЧАЮЩИЙСЯ тем, что квазиоптическая электродинамическая система выполнена и установлена с возможностью формирования в выбранной области вблизи подложки стоячей 10 СВЧ волны, а передающая линия выполнена в виде сверхразмерного волновода круглого сечения с гофрированной внутренней поверхностью, дополненного системой зеркал для передачи по крайней мере одного гауссова пучка на упомянутую квазиоптическую электродинамическую систему. 15

20 8. Плазменный реактор по п. 7, ОТЛИЧАЮЩИЙСЯ тем, что квазиоптическая электродинамическая система выполнена в виде четырех зеркал, расположенных по разные стороны относительно области формирования плазмы и установлена с возможностью направления СВЧ излучения в виде четырёх попарно пересекающихся волновых пучков, при этом квазиоптическая электродинамическая система вместе с частью передающей 25 линии установлены внутри реакционной камеры, причём передающая линия дополнена делителем одного волнового пучка на четыре пучка, который установлен на выходе упомянутого сверхразмерного волновода круглого сечения.

9. Плазменный реактор по п. 7, ОТЛИЧАЮЩИЙСЯ тем, что квазиоптическая электродинамическая система выполнена в виде двух зеркал, расположенных по разные стороны относительно области формирования плазмы и установленных с возможностью направления двух пучков СВЧ излучения под небольшими углами к поверхности подложки, при этом передающая линия дополнена делителем одного волнового пучка на два пучка, который установлен на выходе упомянутого сверхразмерного волновода круглого сечения.

10. Плазменный реактор по п. 7, ОТЛИЧАЮЩИЙСЯ тем, что квазиоптическая электродинамическая система выполнена в виде двух зеркал, расположенных по разные стороны относительно области формирования плазмы и установленных с возможностью направления волновых пучков навстречу друг другу, при этом одно из зеркал установлено с возможностью перемещения вперёд-назад параллельно самому себе на расстояние $\pm \frac{\lambda}{4}$, где λ - длина волны СВЧ излучения, а передающая линия дополнена делителем одного волнового пучка на два пучка, который установлен на выходе упомянутого сверхразмерного волновода круглого сечения.

11. Плазменный реактор по п.7, ОТЛИЧАЮЩИЙСЯ, тем, что в нижней части реакционной камеры расположено диэлектрическое окно для ввода СВЧ излучения, а напротив окна в верхней части камеры установлена подложка, при этом квазиоптическая электродинамическая система выполнена в виде одного зеркала, расположенного снаружи ниже упомянутой реакционной камеры и установленного с возможностью направления пучка СВЧ излучения вверх перпендикулярно поверхности подложки.

12. Плазменный реактор по п.7, ОТЛИЧАЮЩИЙ тем, что квазиоптическая электродинамическая система выполнена в виде одного зеркала, установленного с возможностью направления пучка СВЧ излучения по нормали к поверхности подложки или под небольшим углом к нормали, а внутрь реакционной камеры введена радиопрозрачная охлаждаемая стенка,

выполненная в виде решётки из тонких металлических охлаждаемых трубок или стержней и установленная параллельно подложке на расстоянии от неё больше $\lambda/2$.

13. Плазменный реактор по п.7, ОТЛИЧАЮЩИЙ тем, что квазиоптическая электродинамическая система выполнена в виде зеркала и оптически связанного с ней квазиоптического резонатора с плоскопараллельными зеркалами, установленными на расстоянии кратном $\lambda/2$, при этом одно из зеркал резонатора представляет собой подложку на держателе подложки, а другое зеркало выполнено в виде периодической решётки из тонких металлических трубок или стержней, причём период решётки меньше λ .

14. Плазменный реактор по п.8 или п.9, или п.10, ОТЛИЧАЮЩИЙ тем, что система напуска газовой смеси в реакционную камеру в область формирования плазмы выполнена в виде металлического вогнутого экрана с подводящей трубкой в центральной части, расположенного над держателем подложки на регулируемом расстоянии, а система откачки газа выполнена в виде набора отверстий в держателе подложки, снабженном некоторым объёмом для откачиваемой смеси газов, в котором расположена система водяного охлаждения верхней части держателя подложки.

20 15. Плазменный реактор по п.12, и п.13, ОТЛИЧАЮЩИЙСЯ тем, что система напуска выбранной газовой смеси совмещена с решёткой из тонких металлических охлаждаемых трубок, а система откачки газа выполнена в виде набора отверстий в держателе подложки, снабженному некоторым объёмом для откачиваемой смеси газов, в котором расположена 25 система водяного охлаждения верхней части держателя подложки .

Фиг. 1

2/8

Фиг. 2

3/8

Фиг. 3

4/8

Фиг. 4

5/8

Фиг. 5

6/8

Фиг. 6

7/8

Фиг. 7

8/8

Фиг. 8

INTERNATIONAL SEARCH REPORT

International application No.
PCT/RU 2003/000410

A. CLASSIFICATION OF SUBJECT MATTER

C23C 16/27, H05H 1/46

According to International Patent Classification (IPC) or to both national classification and IPC MI1K-7:

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) MI1K-7:

C23C 16/00, 16/26, 16/27, 16/44, 16/50, H05H 1/00, 1/24, 1/46, H01L 21/00, 21/02, 21/04,
21/18, 21/20, 21/205

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5518759 A (APPLIED SCIENCE AND TECHNOLOGY, INC) May 21, 1996, the abstract	1-6
A	EP 0520832 A1 (DE BEER INDUSTRIAL DIAMOND DIVISION (PROPRIETARY) LIMITED) 30.12.1992, the abstract	7-15
A	US 5039548 (SEMICONDUCTOR ENERGY LABORATORY CO, LTD.) Aug. 13, 1991, the abstract	1-15
A	RU 2099283 C1 (ZAKRYTOE AKTSIONERNOE OBSCHESTVO "TEKHNO-TM") 20.12.1997, page 3 of description	1-6
A	RU 2171554 C2 (KORCHAGIN YURI VLADIMIROVICH et al.) 27.07.2001, the abstract	7-15

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

09 January 2004 (09.01.2004)

Date of mailing of the international search report

22 January 2004 (22.01.2004)

Name and mailing address of the ISA/

Authorized officer

Facsimile No.

Telephone No.

ОТЧЕТ О МЕЖДУНАРОДНОМ ПОИСКЕ

Международная заявка №
PCT/RU 2003/000410

А. КЛАССИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ:		
Согласно международной патентной классификации (МПК-7) C23C 16/27, H05H 1/46		
В. ОБЛАСТИ ПОИСКА:		
Проверенный минимум документации (система классификации и индексы) МПК-7: C23C 16/00, 16/26, 16/27, 16/44, 16/50, H05H 1/00, 1/24, 1/46, H01L 21/00, 21/02, 21/04, 21/18, 21/20, 21/205		
Другая проверенная документация в той мере, в какой она включена в поисковые подборки:		
Электронная база данных, использовавшаяся при поиске (название базы и, если, возможно, поисковые термины):		
С. ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ:		
Категория*	Ссылки на документы с указанием, где это возможно, релевантных частей	Относится к пункту №
A	US 5518759 A (APPLIED SCIENCE AND TECHNOLOGY, INC) May 21, 1996, реферат	1-6
A	EP 0520832 A1 (DE BEER INDUSTRIAL DIAMOND DIVISION (PROPRIETARY) LIMITED) 30.12.1992, реферат	7-15
A	US 5039548 (SEMICONDUCTOR ENERGY LABORATORY CO, LTD.) Aug. 13, 1991, реферат	1-15
A	RU 2099283 C1 (ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ТЕХНО-ТМ") 20.12.1997, с.3 описания	1-6
A	RU 2171554 C2 (КОРЧАГИН ЮРИЙ ВЛАДИМИРОВИЧ и др.) 27.07.2001, реферат	7-15
последующие документы указаны в продолжении графы С.		<input type="checkbox"/> данные о патентах-аналогах указаны в приложении
<p>* Особые категории ссылочных документов:</p> <p>А документ, определяющий общий уровень техники</p> <p>Б более ранний документ, но опубликованный на дату международной подачи или после нее</p> <p>О документ, относящийся к устному раскрытию, экспонированию и т.д.</p> <p>Р документ, опубликованный до даты международной подачи, но после даты испрашиваемого приоритета и т.д.</p>		<p>Т более поздний документ, опубликованный после даты приоритета и приведенный для понимания изобретения</p> <p>Х документ, имеющий наибольшее близкое отношение к предмету поиска, порочащий новизну и изобретательский уровень</p> <p>У документ, порочащий изобретательский уровень в сочетании с одним или несколькими документами той же категории</p> <p>& документ, являющийся патентом-аналогом</p>
Дата действительного завершения международного поиска: 09 января 2004 (09.01.2004)	Дата отправки настоящего отчета о международном поиске: 22 января 2004 (22.01.2004)	
Наименование и адрес Международного поискового органа Федеральный институт промышленной собственности РФ, 123995, Москва, Г-59, ГСП-5, Бережковская наб., 30,1 Факс: 243-3337, телеграф: 114818 ПОДАЧА	<p>Уполномоченное лицо:</p> <p>Н. Саленко</p> <p>Телефон № 240-25-91</p>	