$\underline{\mathbf{Auteur}}: \mathbf{Abdoulaye} \ \mathbf{DABO}$

Diplômé de la licence de Mathématiques (Université Cheikh Anta Diop de Dakar - F.S.T)

Sommaire

1	Definitions	2
2	Dérivation et monotonie	3
3	Dérivation et fonction composée	3
4	Dérivation et bijection réciproque	3
5	Dérivation de fonctions usuelles	4
6	Operation sur les derivées	4

1 Definitions

Soit une fonction f éfinie sur un intervalle I et a un point de I .

Définition 1.1

On dit que la fonction f est dérivable en a si et seulement si le taux d'accroissement de la fonction f en a admet une limite finie l en a, c'est à dire : $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}=l$

l est appele nombre d'erivée de f en a. On le note : f'(a).

l est le coéfficient directeur de la tangente à la courbe de f au point (a, f(a)).

Cette tangente est d'équation (D): f'(a)(x-a)+f(a).

Toute fonction polynôme est dérivable sur \mathbb{R} .

Toute fonction rationnelle est dérivable sur tout intervalle sur lequel elle est éfinie.

Définition 1.2

On dit que:

f est dérivable à droite en a s'il existe un réel d tel que : $\lim x \to a^+ \frac{f(x) - f(a)}{x - a} = d$. Le nombre d est appelée le nombre dérivée à droite de la fonction f en a. Il est noté $f'_d(a)$.

f est dérivable a gauche en a s'il existe un réel g tel que : $\lim x \to a^{-\frac{f(x)-f(a)}{x-a}} = g$. Le nombre g est appelée le nombre dérivée à gauche de la fonction f en a. Il est noté $f'_g(a)$

Théorème 1.1

$$f$$
 est dérivable en $a \iff \begin{cases} f$ est dérivable à droite et à gauche en $a \\ f'_d(a) = f'_g(a) \end{cases}$

Théorème 1.2 (de Rolles)

Soit $f:[a,b]\to\mathbb{R}$ une fonction.

On suppose que:

f est continue sur un intervalle [a, b], dérivable sur [a, b] et f(a) = f(b).

Alors il existe un réel c dans a, b tel que f'(c) = 0

Théorème 1.3 (des accroissement finies)

Soit $f:[a,b]\to\mathbb{R}$ une fonction.

On suppose que:

f est continue sur un intervalle [a, b], dérivable sur [a, b].

Théorème 1.4 (de l'inégalite des accroissement finies)

Soit $f:[a,b]\to\mathbb{R}$ une fonction.

On suppose que f est continue sur un intervalle [a,b], dérivable sur]a,b[. et qu'il esixte un réel k positif tel que $|f'(x)| \le k \ \forall \ x \in [a,b]$.

Alors
$$|f(b) - f(a)| \le k|b - a|$$

2 Dérivation et monotonie

Théorème 2.1

Soit une fonction f éfinie sur un intervalle I et a un point de I .

- 1. Si f est dérivable en a alors la fonction f est continue en a.
- 2. Si $\forall x \in I, f'(x) = 0$, alors la fonction f est constante sur I.
- 3. Si $\forall x \in I$, f'(x) > 0, alors la fonction f est croissante sur I.
- 4. Si $\forall x \in I, f'(x) < 0$, alors la fonction f est décroissante sur I.

3 Dérivation et fonction composée

Théorème 3.1

Soit u une fonction dérivable sur un intervalle I telle que pour tout x de I, u(x) appartient à un intervalle J. Soit f une fonction dérivable sur l'intervalle J. Soit g la fonction définie sur I par : $g(x) = f \circ u(x) = f(u(x))$ pour tout réel x de I:

La fonction g est dérivable sur I et pour tout réel x de I, $g'(x) = (f \circ u)(x) = u'(x) \times f'[u(x)]$.

4 Dérivation et bijection réciproque

Théorème 4.1 (de dérivation de la bijection réciproque)

Soit f une fonction bijective d'un intervalle I vers f(I).

Si f est dérivable et que f' ne s'annule pas sur I c'est-à-dire $f'(x) \neq 0 \ \forall \ x \in I$, alors f^{-1} est dérivable sur f(I) et on a :

$$[f^{-1}(y)]' = \frac{1}{f'[f^{-1}(y)]} = \frac{1}{f'(x)} \ \forall \ y \in f(I) \ .$$

5 Dérivation de fonctions usuelles

Foncions	Dérivées
f(x) = k	f'(x) = 0
f(x) = x	f'(x) = 1
$f(\mathbf{x}) = x^n \ \mathbf{n} \in \mathbb{N}$	$f'(x) = nx^{n-1}$
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$
$f(x) = \frac{1}{x^n}$	$f'(x) = -\frac{n}{x^{n+1}}$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$

6 Operation sur les derivées

Foncions	Dérivées
f + g	f'+g'
$f \times g$	f'g + g'f
αf	$\alpha f'$
$\frac{f}{g}$	$\frac{f'g-fg'}{g^2}$
u^n	$nu'u^{n-1}$
$\frac{1}{u^n}$	$-\frac{nu'}{u^{n+1}}$
$u \circ v = u(v)$	v'u'(v)
$(f \circ u)'$	$u'\times (f'\circ u)$
e^u	$u'e^u$
$\ln u$	$\frac{u'}{u}$
f(ax+b)'	af'(ax+b)

Merci de signaler toutes erreurs via WhatsApp : $+221777426690\,$