Biometric Crypto-Systems

Felix Baumann, Ravinder Sangar, Jonas Winkler

26. Juni 2020

Inhalt

Einleitung

Was sind Biometrische Kryptosysteme

Ursprung

Idee hinter Biometrie Heutige Verwendung

Problematik

Gefahr vor Hackangriffen Biometrische Daten sind unveränderbar Duplikation von biometrischen Daten

Biometric Template Protection

Fuzzy Commitment

Funktionsweise

Vor- und Nachteile

Fuzzy Vault

Funktionsweise LOCK UNLOCK

Vor- und Nachteile

Biometrische Kryptosysteme

- Biometrische Daten sind biologische Messwerte, die Personen eindeutig identifizieren
- ▶ Bsp: Fingerabdruckscan, Gesichtserkennung, Irisscan
- Biometrische Kryptosysteme verbinden Kryptographie mit Biometrie

Quelle: https://www.cancom.info/2019/03/gesichtserkennung-technologie/

Funktionsweise

Inhalt

Einleitung

Was sind Biometrische Kryptosysteme

Ursprung

Idee hinter Biometrie Heutige Verwendung

Problematik

Gefahr vor Hackangriffen Biometrische Daten sind unveränderbar Duplikation von biometrischen Daten

Biometric Template Protection

Fuzzy Commitment

Funktionsweise

Vor- und Nachteile

Fuzzy Vault

Funktionsweise LOCK UNLOCK

Vor- und Nachteile

Idee hinter Biometrie

- Erste Biometrie war der Fingerabdruck
- Vor 4000 Jahren wurde mit Fingerabdrücken unterzeichnet
- ► Henry Fauld fand heraus, dass Fingerabdrücke individuell sind

Quelle: de.wikipedia.org

Heutige Verwendung

- Fingerabdrücke werden heute in Forensik eingesetzt
- ► Gesichtserkennung bei einigen Smartphone und in Flughäfen
- Schlüssel für Gebäude werden von Fingerabdruckscane abgelöst
- ▶ Biometrischer Pass wird weltweit eingesetzt: Bild des Gesichts und 2 Fingerabdruckbilder

Quelle: wikimedia.org

Problematik

- ► Alle biometrischen Daten, die gesammelt wurden, können gehackt werden
- Biometrische Daten k\u00f6nnen nicht ver\u00e4ndert werden, wie ein Passwort
- Duplikation von Daten: Fingerabdrücke können im Alltag unbemerkt abgenommen werden, Hochauflösende Fotos von Gesichtern

Biometric Template Protection

- lacktriangle Fingerabdruck nicht änderbar ightarrow muss geschützt werden
- ► Template nicht direkt gespeichert
- umgewandelt in "Protected Templates"
- reicht aus für Authentifizierung

Fuzzy Commitment

- Commitment-Schema generell
 - \triangleright G: $C \times X \rightarrow W$
 - binding-Eigenschaft
 - hiding-Eigenschaft
- ► Fuzzy Commitment besteht aus 2 Phasen:
 - Enrollment-Phase: Initialisierung und Anlegen des Templates
 & Schlüssels
 - Authentication-Phase: Verfahren zur Authentifizierung

Enrollment I

- ightharpoonup zufälliger Wert für Schlüssel s, One-Way-Hashfunktion h(s) generiert
- ► Schlüssel *s* in Hamming-Code *c* umgeschrieben

Quelle: https://www.cosy.sbg.ac.at/uhl/biometricsslides.pdf

Hamming-Code I

- ▶ an jede 2^x-te Position kommt Paritätsbit
- ▶ alle **Stellen** mit Wert 1 werden verxort
- Ergebnis stellt Wert für Paritätsbits dar

Quelle: https://www.cybersicherheit.guru/der - hamming - code/

Hamming-Code II - Beispiel

- ▶ zu codieren: 1101
- ▶ füge Paritätsbit an Positionen 1, 2 und 4 ein \rightarrow 110×1××
- ▶ Stellen, an denen Wert 1 ist miteinander verXORen \rightarrow Stellen 7, 6, 3
- **▶** 7 == **111**
- ► 6 == 110
- ► 3 == **011**
- ightharpoonup xor == 010 \rightarrow Paritätsbits haben Werte 1, 0, 0
- ► Codewort: 1101100

Enrollment II

► Template (als Bitstring) x XOR c ergibt "Safe" w

Quelle: https://www.cosy.sbg.ac.at/uhl/biometricsslides.pdf

Authentication I

- neues Template y wird eingelesen (User hält Finger an Sensor)
- $\triangleright w \oplus y = c'$ (Kandidaten-Codewort)

Quelle: https://www.cosy.sbg.ac.at/uhl/biometricsslides.pdf

Hamming-(De)code

- ightharpoonup c' muss nun decodiert werden ightharpoonup es werden erneut die Stellen aller 1en verXORt
- ▶ Beispiel: c' = 0010010
- **▶** 2 == 010
- **▶** 5 == 101
- ightharpoonup xor ==111
 ightarrow bedeutet an der Stelle 3 ist ein Bitfehler aufgetreten, er kann korrigiert werden
- lacktriangle wenn Ergebnis ==0 o fehlerfreie Übertragung
- nur 1-Bit-Fehler kann korrigiert werden

Authentication II

- lacktriangle Paritätsbits werden wieder entfernt ightarrow Kandidatenschlüssel s'
- ► Einsetzen von s' in h(.), wenn $h(s) == h(s') \rightarrow$ Authentifizierung erfolgreich

Quelle: https://www.cosy.sbg.ac.at/uhl/biometricsclides.pdf

Fuzzy Commitment

- ▶ Vorteile
 - entstehende Unschärfe kann ausgeglichen werden
 - ► Template selbst wird nicht gespeichert → gut geschützt
- Nachteile
 - ► Template muss als Bitstring dargestellt werden (möglichst kurz, da nur 1-Bit-Fehler erkannt werden)
 - ► Länge des Template-Bitstrings x muss mit jener des Keys s übereinstimmen, wegen XOR

Fuzzy Vault

- Fingerabdrücke sind nicht zu 100% reproduzierbar
- ► Konzept das Fehler tolleriert?

Fuzzy Vault

- ▶ Alice möchte wissen ob jemand ihre Interessen teilt
- ► Alice sichert Interessen in einem Save
- Bob hat ähnliche Interessen
- Bob kann den Save entsperren

Prinzip

Quelle: $https://www.researchgate.net/figure/Key-distribution-solution-based-on-fuzzy-vault-scheme-112_fig1_3^21080531/$

Biometric Template

Quelle: http://www.tellen.co.nz/biometric - doorkeeper/prettyPhoto[gallery6320]/0

Parameter

- ▶ Universum *F*
- ► Secret s
- ► Polynomfunktion p
- ► Bob kann den Save entsperren

LOCK

```
X, R \rightarrow \emptyset
s \rightarrow p
for i = 1 to t
    (a_i, p(a_i)) \rightarrow (x_i, y_i)
    X \cup \{x_i\} \to X
    R \cup \{(x_i, y_i)\} \rightarrow R
for i = t + 1 to r
    x_i \in F - X
    y_i \in F - \{(x_i, y_i)\}
    R \cup \{(x_i, y_i)\} \rightarrow R
return R
```

Prinzip

Quelle: $https://www.researchgate.net/figure/Key-distribution-solution-based-on-fuzzy-vault-scheme-112_fig1_3^21080531/$

UNLOCK

$$egin{aligned} Q & o \emptyset \ & ext{for } i = 1 ext{ to } t \ & R & \xrightarrow{b_i, \circ} (x_i, y_i) \ & Q igcup (x_i, y_i) & o Q \ & RS_{DECODE}(k, Q) & o s' \ & ext{return } s' \end{aligned}$$

Vor- und Nachteile

- Vorteile
 - ► Fehler der Sensoren/Finger werden toleriert
 - ► Chaff-Points bestimmen die Sicherheit
- Nachteile
 - eventuell weniger Sicherheit gegenüber anderen Verschlüsselungssysteme bei wenigen Chaff-Points
 - Risiko für hohe Komplexität

Vielen Dank für Ihre Aufmerksamkeit