CE7453 Numerical Algorithms

Assignment 2 (Mini-Project)

This assignment gives you a chance to practise numerical techniques (such as least-squares approximation, cubic B-spline interpolation, trigonometric interpolation, and numerical integration) on a parametric curve.

Each of you is given an individual planar curve represented parametrically by $\mathbf{r}(u) = (x(u), y(u))$ where

$$\begin{cases} x(u) &= 1.5 \left(e^{1.5 \sin(6.2u - 0.027h)} + 0.1 \right) \cos(12.2u) \\ y(u) &= \left(e^{\sin(6.2u - 0.027h)} + 0.1 \right) \sin(12.2u) \end{cases} \quad u \in [0, 1]$$

and *h* is your index number in the class attendance list given in Appendix A.

You are required to do the following tasks:

- T1. (10 marks) Plot curve $\mathbf{r}(u)$ using some software tools such as Matlab, the visualization tool provided in Appendix B, etc., which you prefer to use.
- T2. (25 marks) Propose a least-squares method to fit a parametric cubic polynomial curve to curve $\mathbf{r}(u)$ (hints: sample a few points on the curve and fit a cubic polynomial curve to the points). Plot your cubic polynomial curve and discuss how to choose the sampling points.
- T3. (25 marks) Using the cubic B-spline interpolation algorithm you implemented in Assignment 1, propose a method to approximate curve r(u) by a cubic B-spline curve (hints: sample at least 10 points on the curve and find a cubic B-spline curve interpolating these points). Plot your cubic B-spline curve and discuss what will affect the approximation result.
- T4. (25 marks) Using discrete Fourier Transform, propose a method to approximate curve r(u) by a trigonometric interpolation curve that can be represented by the following basis functions:

$$\{1,\cos(2\pi u),\sin(2\pi u),\cos(4\pi u),\sin(4\pi u),\cos(6\pi u),\sin(6\pi u),\cos(8\pi u)\}$$

Plot your trigonometric interpolation curve and discuss the result.

T5. (15 marks) Using composite Simpson's rule, compute $\int_0^1 x(u) du$ and discuss your result.

Note: The total 100 marks of this assignment will contribute 30 marks in the final grade.

Submission instruction:

- Write your **report** in the format given in Appendix C, and name it by "assignment2-yourName.pdf". Copy your report into sub-folder "assignment2".
- After you complete the two assignments at the end of the semester, zip your folder that contains two sub-folders "assignment1" and "assignment2". Go to the NTULearn course-site, and within the Assignments you will find CE7453-Projects, where you submit the zipped file.
- Submission deadline: 18 April 2022 (Monday)

Academic Integrity

Please pay attention to academic integrity, which we should take very seriously.

This assignment will be completed **individually**. Copying is not allowed and is considered "cheating". Students caught "cheating" will receive an F in the course.

- Students are allowed to read through the assignment together and discuss what is asked by the assignment, examples of input & output of provided programs, and possible high level strategies for solving the problems.
- Students are not allowed to work together in writing the answers and detailed methods/implementations.

Appendix A. Class Attendance List

1 .AZAM ADII DAVD
1.; AZAM ABU BAKR
2.;BALSEBRE PASQUALE
3.;BIAN QINGTIAN
4.;BURTON-BARR JONATHAN WESTON
5.;CAO ZHIWEI
6.; CHEN HAILIN
7.; CHEN QI JING
8.; CHEN YUANYUAN
9.; CHEN ZHAOXI
10.; GOH YU CHEN
11.; HE XIAOSHENG
12.; HOU WENLONG
13.; HOU XINYU
14.;JU CE
15.;LAN TIANMING
16.;LI CHUNBO
17.;LI QUANZHOU
18.;LI SIYAO
19.;LI XINGRAN
20.;LI YANG
21.;LI YEWEN
22.;LIU FENGMING
23.;LUO JIAYUN
24.;MA YUBO
25.; PENG HONGYI
26.;QIU HAONAN
27.; RAO HAOCONG
28.; REN JIAWEI
29.; REN XINGYU
30.;SHAO YIDI

31.;SU ZHIXIANG
32.; SUEN HUNG YING SIDNEY
33.;SUN SHUO
34.; SUN WEN
35.;TAO SHUAILIN
36.; WANG HONGBO
37.; WANG JIANKUN
38.; WANG JIANYI
39.; WANG JING
40.; WANG YUHAN
41.; WILTON KIM
42.;WU SIZE
43.;WU TIANHAO
44.;WU YUFEI
45.;WU ZIQING
46.;XU SHIFENG
47.; YANG FAN
48.; YEO WEI JIE
49.; YU WEIPING
50.; ZHANG JIAHUI
51.; ZHANG LUO
52.; ZHANG MINGYUAN
53.; ZHANG YUANHAN
54.; ZHANG ZHAOQI 55.; ZHOU CHONG
56.; ZHOU JIANAN
57.; ZHU ZULUN

Appendix B. Visualization tool (developed by Prof Alexei Sourin)

This software tool has two versions: one for PC and the other for Mac. It allows the user to enter function definitions, domains of the input variables, and sampling resolution.

Example: to display the parametric curve

$$\begin{cases} x(u) &= \left(e^{\cos\left(6u + \frac{1}{30}\right)} + 0.1 \right) \cos(12u) \\ \\ y(u) &= e^{\cos\left(6u + \frac{1}{30}\right)} \sin(12u) \end{cases}$$

we enter the functions x(u) and y(u), the domain [0,1] and the resolution 100 into the program as follows:

Syntax: Mathematical operations and functions that can be used in formulas are:

(,), +, -, *, /, ^, sin, cos, tan, exp, sqrt, fabs, asin, acos, atan, atan2, cosh, fmod, log, log10, sinh, tanh, ceil, floor, min, max

For example, x^3 stands for x^*x^*x .

Appendix C. Report format

Assignment 2 Report Your name: XXX **Matric No.: YYY** <u>T1.</u> The plot of the curve: <u>T2.</u> Description or setup of your least-squares method: The expression (i.e., representation) of your final cubic polynomial curve: The plot of your cubic polynomial curve: Your discussion: T3. Description or setup of your cubic B-spline interpolation method: The expression (i.e., the representation) of your final cubic B-spline curve: The plot of your cubic B-spline curve: Your discussion: <u>T4.</u> Description or setup of your method: The expression (i.e., representation) of your final trigonometric interpolation curve:

The plot of your trigonometric interpolation curve:
Your discussion:
TE
<u>T5.</u>
The result:
Your discussion: