Exploiter des modèles de langue pour évaluer des sorties de logiciels d'OCR pour des documents français du XVII^e siècle

Jean-Baptiste Tanguy 25 mai 2020

CELLF, STIH, Sorbonne Université

Plan de la présentation

- 1. Introduction
- 2. Évaluation non supervisée de sorties d'OCR
- 3. Définition d'estimateurs de qualité d'OCR
- 4. Expérience et résultats
- 5. Perspectives

Introduction

plus longue jambe n'attire point l'eau de la plus courte, ny par consequent celle du vaisseau où elle est : contre le fentiment de tous les Philosophes & artifans: mais l'eau descend de toutes les deux jambes dans les deux vaisseaux. iusques à la mesme hauteur que dans le tuyau precedent, en comptant la hauteur depuis la surface de l'eau de chacun des vaisseaux; Mais avant incliné le fiphon au deffous de la hauteur d'enuiron trente- & vn pieds, la plus longue iambe attire l'eau qui est dans le vaisseau de la plus courte; & quand on le rehausse au A iii

plus longue jambe n'attire point l'eau de la plus courte, ny par confequent celle du vaiffeau où elle eft: contre le fentiment de tous les Philosophes & artifans: mais l'eau defcend de toutes les deux iambes dans les deux vaiffeaux. iufques à la mefme hauteur que dans le tuyau precedent, en comptant la hauteur depuis la furface de l'eau de chacun des vaisseaux; Mais ayant incliné le fiphon au deffous de la hauteur d'enuiron trente-& vn pieds, la plus longue iambe attire l'eau qui est dans le vaisseau de la plus courte; & quand on le rehausse au A iiii

FIGURE 1 – Numérisation de la page 15 des *Experiences Nouvelles* touchant le vide... de Pascal (1647) présentée avec sa transcription diplomatique.

Introduction

Lignes Kraken	CER	Lignes Tesseract	CER
plus longue iambe n'attire	3,8 %	plus Jongue iambe n'attire	7,6 %
point lcau de la plus cour-	7,4 %	point l'eau de la plus cour-	3,7 %
te, ny par confequent celle du	3,4 %	te, ny par confequent celle du	3,4 %
vaifeau oi elle ef : contre le	16,6 %	vaiffeau où elle et : contre le	10 %
fentiment de tous les Philofo-	6,8 %	fentiment de tous les Philofo-	6,8 %
phes artifans : maislcau de-	14,8 %	phes & artifans : mais l'eau de-	7,4 %
fcend de toutes lcs dcuxiam-	14,2 %	fcend de toutes les deuxiam-	7,1 %
bes dans les dcux vaiffeaux,	11,1 %	bes dans les deux vaiffeaux ,	7,4 %
iufques a la mefme hauteur	11,5%	iufques à la mefme hauteur	7,6 %
que dans le tuyau preccdent,	3,7 %	que dans le tuyau precedent ,	0 %
en comptant la hautcur dec-	13,6 %	en comptant la hauteur de-	4,5%

Table 1 – Sorties d'OCR et *CER* de Kraken et Tesseract pour le début de la page 15 des *Experiences Nouvelles touchant le vide...* de Pascal (1647)

Introduction

Évaluation d'une sortie d'OCR : transcription diplomatique puis calcul du *CER*, avec :

$$CER = \frac{s + d + i}{C}$$

Transcription diplimatique (au moins pour état de langue français du XVIIe) :

- nécessite de l'expertise (philologie computationnelle);
- couteux temps;
- · nécessaire à toute évaluation.

Comment évaluer la qualité d'une sortie d'OCR sans vérité de terrain? (Évaluation non supervisée)

Évaluation non supervisée de

sorties d'OCR

Évaluation non supervisée : plusieurs voies

- Exploiter des ressources lexicales (la *lexicalité* d'une sortie d'OCR) [Springmann *et al.*, 2016];
- Exploiter les valeurs de confiance des logiciels d'OCR [Springmann et al., 2016];
- Exploiter les bounding boxes [Gupta et al., 2015];
- (Reconnaissance de la parole) Exploiter les modèles de langue [Chen et al., 1998].

Évaluation non supervisée : modèles de langue

Démarche:

- apprentissage de modèles de langue (grain caractère) sur des données textuelles françaises du XVII^e siècle;
- application des modèles d'OCR sur un corpus de documents numérisés du XVII^e siècle;
- calcul des CER de ces sorties d'OCR (calculés avec les vérités de terrain);
- calcul d'estimateurs de qualité utilisant les modèles de langue.

Objectifs:

- définir et calculer les estimatateurs de qualité d'OCR (exploitation des modèles de langue);
- étudier leurs corrélations avec les CER (et les p-values).

Définition des estimateurs de

qualité d'OCR

Comment utiliser les modèles de langue?

Les modèles de langue apprennent les probabilités que des caractères donnés suivent certaines séquences de caractères.

On peut donc:

- parcourir un texte par fenêtre glissante...
- ... récupérer la séquence de caractères contenue dans cette fenêtre ainsi que le caractère suivant...
- ... et récupérer la probabilité renvoyée par un modèle de langue pour que ce caractère suive cette séquence de caractères.

```
fort [imp]_e, & peu fujette \rightarrow P(«l»|«fimp») fort [imp]_e, & peu fujette \rightarrow P(«e»|«impl»)
```

FIGURE 2 – Parcours d'un texte par fenêtre glissante (n=4) pour récupérer la probabilité d'un caractère sachant un historique.

Comment utiliser les probabilités des modèles de langue?

Hypothèse : ces probabilités peuvent être de bons indices pour estimer la qualité d'une sortie d'OCR

- Océrisation douteuse ⇒ suite de caractères qui n'est pas du texte ⇒ faibles probabilités
- Océrisation de qualité ⇒ suite de caractères formant du texte ⇒ fortes probabilités

Comment agréger les probabilités?

La somme S, le produit Pr, la perplexité Pp et le log-perplexité log(PP) sont calculés pour chaque ligne puis moyennés sur la page

$$S = \sum_{i=n+1}^{C-n} P_{LM}(c_i|h_{n,i})$$

$$Pr = \prod_{i=n+1}^{C-n} P_{LM}(c_i|h_{n,i})$$

$$PP = \frac{1}{(\prod_{i=n+1}^{C-n} P_{LM}(c_i|h_{n,i}))^{\frac{1}{C-n}}}$$

$$log(PP)$$

Avec P_{LM} la probabilité renvoyée par un modèle de langue LM, n la taille de la fenêtre glissante, C le nombre total de caractères de la sortie d'OCR, c_i le i^e caractère de la sortie d'OCR et $h_{n,i}$ l'historique des n caractères

Expérience et résultats

Les corpus

[Gabay, 2019] a rassemblé et transcrit plusieurs œuvres françaises du XVII^e siècle

i) Corpus pour l'apprentissage des modèles de langue

Identifiant	Nb lignes	Nb mots	Nb caractères
Bossuet-1683	27	770	4 128
Chapelain-1656	28	753	4 735
Ellain-1606	22	618	3 168
Gournay-1622	31	825	4 284

ii) Corpus pour l'océrisation et son évaluation

Identifiant	Nb lignes	Nb mots	Nb caractères
Papin-1682	23	548	2 230
Pascal-1647	39	776	3 568
Sales-1641	25	618	3 915
Viau-1623	33	852	4 055

TABLE 2 – Description des sous-corpus dédiés à i) l'apprentissage des modèles de langue et ii) l'océrisation et l'évaluation de la qualité des sorties d'OCR.

Les technologies utilisées

Pour l'OCR:

- [Kiessling, 2019]: Kraken, modèle pour l'anglais contemporain et modèle pour le français du XVIIe siècle
- [Smith, 2007]: Tesseract, modèle pour l'anglais contemporain

Pour les modèles de langue :

- modèles de langue à probabilités conditionnelles
- modèles de langue appris par des réseaux de neurones (LSTM et biLSTM) - voir annexe

Résultats

1	S Pr		PP		log(PP)			
	corrélation	p-value	corrélation	p-value	corrélation	p-value	corrélation	p-value
n=2	-0,004	0,968	0,158	0,086	0,113	0,221	0,006	0,952
n=3	-0,130	0,156	0,009	0,920	-0,003	0,976	0,056	0,540
n=4	-0,124	0,178	-0,005	0,960	0,016	0,866	0,060	0,518
n=5	-0,158	0,084	-0,070	0,449	0,134	0,143	0,158	0,085
n=6	-0,138	0,133	-0,054	0,556	0,180	0,049	0,188	0,040
n=7	-0,100	0,278	-0,027	0,773	0,093	0,313	0,084	0,359
n=8	-0,055	0,547	-0,008	0,930	-0,006	0,949	-0,008	0,928
n=9	-0,054	0,554	-0,083	0,366	0,096	0,299	0,095	0,300
n=10	-0,024	0,796	-0,212	0,020	0,228	0,012	0,187	0,041

TABLE 3 – Corrélations et *p-values* calculées entre les métriques d'estimation et le *CER*. OCR : Tesseract (anglais contemporain). ML : probabilités conditionnelles.

La table ci-dessus est celle qui contient le plus de valeurs significatives (l'ensemble des résultats est présenté dans l'article).

Résultats

Très peu de corrélations significatives entre les estimateurs et les CER ($pvalues \gg 0.1$), et ce pour :

- les deux logiciels d'OCR;
- les trois modèles d'OCR;
- · les quatre estimateurs;
- tous les modèles de langue (proba conditionnelles, LISTM et biLSTM pour n ∈ [[2; 10]]).

Pourquoi? Évaluation des modèles de langue.

La perplexité peut être calculée pour évaluer les modèles de langue (sur une référence).

	ML probabilités conditionnelles	ML LSTM	ML biLSTM
n=2	90	14721	257646757092
n=3	126	1010690	235913940342
n=4	426	318251055	221055920422
n=5	1091	723946838	211044617070
n=6	1978	690749546	204520506752
n=7	2801	669397958	200184237186
n=8	3510	655634987	1161841181775
n=9	3940	647905538	13807745026062
n=10	4205	643364471	14481238375005

TABLE 4 – Moyennes des perplexités des modèles de langue sur les transcriptions n'ayant pas servis à leur apprentissage.

Pourquoi? Évaluation des modèles de langue.

- Une perplexité faible suggère que le modèle de langue est de qualité (on prend généralement comme seuil d'acceptabilité 400)
- Le tableau précédent montre des valeurs aberrantes
- Sauf pour les modèles de langue à probabilités conditionnelles pour n ∈ [[2; 4]]

Perspectives

- Mauvaise qualité des modèles de langue ⇒ impossibilité d'évaluer les estimateurs de qualité d'OCR
- Reconduire l'expérience avec plus de données pour apprendre les modèles de langue pour répondre aux questions suivantes :
 - Les modèles de langue sont-ils finalement non adaptés à l'estimation de qualité d'OCR?
 - Sont-ce les estimateurs?
 - Le corpus présente-t-il des spécificités telles que les modèles de ne peuvent être de bons indicateurs?

Annexe: construction actuelle des réseaux LSTM et biLSTM

```
X, y = encoded_sequences[:,:-1], encoded_sequences[:,-1]
sequences = [to_categorical(x, num_classes=vocab_size) for x in X] # one-hot representation
X = array(sequences)
y = to_categorical(y, num_classes=vocab_size) # one-hot representation
# d. Define the model
model = Sequential()
if self. bitstm == True:
   model.add(Bidirectional(LSTM(vocab_size, input_shape=(X.shape[1], X.shape[2]), return_sequences=True)))
   model.add(Bidirectional(LSTM(vocab_size)))
else:
   model.add(LSTM(vocab_size, input_shape=(X.shape[1], X.shape[2])))
model.add(Dense(vocab_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=100, verbose=2)
d = {'model': model, 'mapping': mapping}
return d
```

FIGURE 3 – Capture d'écran du code construisant les réseaux LSTM et biLSTM.

CHEN S. F., BEEFERMAN D. & ROSENFELD R. (1998). Evaluation metrics for language models.

In Actes de DARPA Broadcast News Transcription and Understanding Workshop, p. 275–280, Lansdowne, Virginia, États-Unis : Carnegie Mellon University.

🖥 Gавау S. (2019).

Ocrising 17th french prints.

https://editiones.hypotheses.org/1958.

GUPTA A., GUTIERREZ-OSUNA R., CHRISTY M., CAPITANU B., AUVIL L., GRUMBACH L., FURUTA R. & MANDELL L. (2015).

Automatic assessment of ocr quality in historical documents.

In Actes de Twenty-Ninth AAAI Conference on Artificial Intelligence, p. 1735–1741, Austin, Texas, États-Unis.

Kraken-an universal text recognizer for the humanities.

In ADHO, Éd., Actes de Digital Humanities Conference 2019 - DH2019, Utrecht, Pays-Bas.

An overview of the tesseract ocr engine.

In Actes de Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), volume 2, p. 629–633, Parana, Brésil: IEEE.

Springmann U., Fink F. & Schulz K. U. (2016).

Automatic quality evaluation and (semi-) automatic improvement of ocr models for historical printings.

ArXiv e-prints.