Matrix-Circle

SHREYASH CHANDRA PUTTA

October 17, 2022

Contents

1 Problem Statement

2 Solution

3 Software

4 Conclusion

Figure 1: triangle inscribed in Circle and its angle $\ensuremath{\mathsf{QPR}}$

1 Problem Statement

To find angle QPR of the triangle PQR which is inscribed in the circle $x^2+y^2=25$. If Q and R have co-ordinates (3,4) and (-4,3) respectively .

Symbol	Value	Description
Q	$\begin{pmatrix} 3 \\ 4 \end{pmatrix}$	given point
R	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	given point
P	$\begin{pmatrix} 0 \\ -5 \end{pmatrix}$	A point on circle

Table 1: Parameters

2 Solution

Given that Points given are on the circle forms an inscribed triangle forms by joining the points (3,4),(-4,3) and any point on the given circle

Let
$$\mathbf{Q} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
, $\mathbf{R} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$ and $\mathbf{P} = \begin{pmatrix} 0 \\ -5 \end{pmatrix}$

The direction vector of the line joining two

points A, B is given by

$$\mathbf{m} = \mathbf{B} - \mathbf{A} \tag{1}$$

From eq1 we get direction vectors of \mathbf{Q} , \mathbf{O} and \mathbf{R} , \mathbf{O} as m1 and m2 respectively

$$\mathbf{m1} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 0 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 \\ 9 \end{pmatrix} \tag{2}$$

$$\mathbf{m2} = \begin{pmatrix} -4\\3 \end{pmatrix} - \begin{pmatrix} 0\\-5 \end{pmatrix} = \begin{pmatrix} -4\\8 \end{pmatrix} \qquad (3)$$

We know, The normal vector to direction vector is defined by:

$$\mathbf{m}^{\mathsf{T}}\mathbf{n} = 0.$$

From eq4 and eq2 we get

$$(3 9) \mathbf{n1} = 0 \tag{5}$$

by eq5 we can cansider:

$$\mathbf{n1} = \begin{pmatrix} -9\\3 \end{pmatrix} \tag{6}$$

From eq4 and eq3 weget

$$\begin{pmatrix} -4 & 8 \end{pmatrix} \mathbf{n2} = 0 \tag{7}$$

by solving eq7 we consider :

$$\mathbf{n2} = \begin{pmatrix} 8\\4 \end{pmatrix} \tag{8}$$

The angle between two vectors is given by

$$\theta = \cos^{-1} \frac{\mathbf{n} \mathbf{1}^{\top} \mathbf{n} \mathbf{2}}{\|\mathbf{n} \mathbf{1}\| \|\mathbf{n} \mathbf{2}\|}$$
(9)

By substituting **n1** and **n2** we get

$$\angle QPR = 45^{\circ} \tag{10}$$

where, \mathbf{P} is a random point on the given circle

3 Software

(4) Download the following code using,

svn co https://github.com/chanduputta/ FWC-Module1Assignments/blob/ main/circle/circle.py

and execute the code by using command

Python3 circle.py

4 Conclusion

We found the $\angle QPR$ of the $\triangle PQR$ which is inscribed in the circle $x^2 + y^2 = 25$. Where P is any point on the circle as 45°.