Plan semanal del taller T2_CDI_Virtual_Horario: Miércoles 5:00pm a 7:00pm

_		
	1. Nombre del tutor	Marco Guillermo Salazar Vega
	2. Taller	T2: CDI Virtual Miércoles 5:00pm a 7:00pm
	3. Horario	
	a) Fecha	Miércoles 16 de agosto del 2023
	b) Semana	Semana #4 (del 14 de agosto al 18 de agosto)
	c) Sesión	Sesión 03
	4. Contenido	a) Cálculo de límites (exponenciales y logarítmicos)
		b) Continuidad en un punto y en un intervalo
	5. Referencias	Material propio (Libro Límites Marco Salazar Vega)
	6. Descripción general de	Se realiza un pequeño repaso de los temas vistos en la semana anterior para aclarar dudas. Seguidamente, se realizará una serie de ejercicios
	las actividades a realizar	relacionados con los temas indicados en el punto 4. Finalmente, se
		asignan dos ejercicios para que los estudiantes resuelvan en un horario fuera del taller.
	7. Apoyos educativos	No aplica.
_		

O Cálculo de límites

Límites exponenciales

La función $f(x) = a^x$ es estrictamente creciente cuando a > 1 y es estrictamente decreciente cuando 0 < a < 1, entonces:

2. Cuando $f(x) = a^x$ es estrictamente decreciente (0 < a < 1)

Límites logarítmicos

La función $f(x) = \log_a(x)$ es estrictamente creciente cuando a > 1 y es estrictamente decreciente cuando 0 < a < 1, entonces:

1. Cuando $f(x) = \log_a(x)$ es estrictamente creciente (a > 1)

Ejemplo #3:
$$\lim_{x \to -1^{-}} 2^{\left(\frac{x+3}{x+1}\right)} - \ln(-x-1) \quad \mathbb{R}/+\infty$$

$$\frac{x+3}{x+1}$$

$$\lim_{x \to -1^{-}} 2^{\left(\frac{x+3}{x+1}\right)} - \ln(-x-1) \quad \mathbb{R}/+\infty$$

$$\lim_{x \to -1^{-}} 2^{\left(\frac{x+3}{x+1}\right)} - \lim_{x \to -1^{-}} 2^{\left(\frac{x+3}{x+1}\right)} - \lim_{x \to -1^{-}} 2^{\left(\frac{x+3}{x+1}\right)} = \lim_{x \to -1^{-}} 2^$$

$$\frac{\lim_{x \to -1^{-}} x + 3}{x + 1} - \lim_{x \to -1^{-}} \frac{\lim_{x \to -1^{-}} x + 1}{x + 1} = \frac{\lim_{x \to -1^{-}} x + 1}{x + 1}$$

Aparte:

$$\lim_{x \to -1^{-}} \frac{x+3}{x+1} = \frac{-1,0001+3}{-1,0001+1}$$

$$= \frac{2^{-}}{-0^{+}}$$

$$= 2^{-}$$

Tomando
$$x = -1.0001$$

$$\lim_{x \to -1^{-}} -x - | = -(-1.0001) - 1$$

$$= 0.0001$$

$$= 0^{+}$$
Retomando (x) se tiene:

$$\lim_{x \to -1^{-}} x + 3$$

$$2^{-\infty} - \ln (0^{+})$$

$$= 0 - (-\infty)$$

$$= + \infty$$

$$\lim_{x \to -1^{-}} (0^{+}) = \lim_{x \to -1^{-}} (1 + \infty) = \lim_{x \to 0^{+}} (1 + \infty) =$$

Continuidad de una función en un punto

Sea $A \subseteq \mathbb{R}$, sea $f: A \to \mathbb{R}$ y sea $a \in A$. Se dice que f es continua en a si, dado cualquier $\varepsilon > 0$, existe un $\delta > 0$ tal que si x es cualquier punto de A si satisface que $|x - a| < \delta$, entonces $|f(x) - f(a)| < \varepsilon$. En otras palabras se dice que f es continua en a si $\lim_{x \to a} f(x) = f(a)$.

Dicho de otra forma, para que una función f sea continua en x=a deben cumplirse las siguientes condiciones:

Si f no cumple alguna de estas condiciones, se dice que f es discontinua en x = a

Continuidad lateral

Sean a y b números reales y sea f tal que f(a) y f(b) existen, entonces se dice que f es continua:

- A la derecha de a: si y solo sí $\lim_{x \to a^+} f(x) = f(a)$
- A la izquierda de b: si y solo sí $\lim_{x \to b^-} f(x) = f(b)$

Continuidad en un intervalo cerrado

Sea f definida en [a,b]. Se dice que f es continua en dicho intervalo si f es continua:

■ en]*a*,*b*[

- a la derecha de a
- a la izquierda de b

Discontinuidad evitable e inevitable

Si f es una función discontinua en x=a, pero se tiene que $\lim_{x\to a} f(x)$ existe y f(a) no existe, o bien, que $\lim_{x\to a} f(x) \neq f(a)$, entonces la discontinuidad de la función puede evitarse redefiniendo la función de tal forma que $\lim_{x\to a} f(x) = f(a)$. En caso contrario, se dice que la discontinuidad es inevitable.

Discontinuidad evitable:

Discontinuidad inevitable:

Ejemplo #1:

Considere la función f. Determine el valor de a y b para que la función sea continua en $\mathbb R$ si:

R/
$$a = 5, b = 3$$

$$f(x) = \begin{cases} -x^2 - 3 & \text{si} & x < -2\\ ax + b & \text{si} & -2 \le x \le 3\\ x^2 + 2x + 3 & \text{si} & x > 3 \end{cases}$$

$$\lim_{x\to -2^-} f(x) = \lim_{x\to -2^+} f(x) = \lim_{x\to -2^-} -x^2 - 3 = \lim_{x\to -2} ax + b$$

$$= 7 = -2a + b$$
 (1)

$$\Theta$$
 Para $x = 3$

$$\lim_{x\to 3^{-}} f(x) = \lim_{x\to 3^{+}} f(x) = \lim_{x\to 3} ax + b = \lim_{x\to 3} x^{2} + 2x + 3$$

$$\Rightarrow$$
 3a+b=18 (2)

Resolviendo el sistema:

$$\begin{cases}
-2a+b=-7 & (1) \\
3a+b=18 & (2)
\end{cases}$$

$$3a+b = 18$$
 (2)

Despejando b' de 11) se tiene que:

$$-2a+b=-7 \Rightarrow b=-7+2a$$
 (3)

Sustituyendo (3) en (2) se tiene:

$$3a+b=18 \Rightarrow 3a+(-7+2a)=18$$

$$\Rightarrow$$
 39 - 7 + 29 = 18

$$=$$
 3a + 2a = 18+7

Sustituyendo (4) en (3), se tiene que:

$$b = -7 + 20$$
 => $b = -7 + 2.5$
=> $b = 3$

Portanto, los valores de a y b para que f sea continua en 1R son a = 5 y b = 3

Ejemplo #2:

Determine los valores de α para que h sea continua en \mathbb{R} si:

R/
$$\alpha = \frac{-3}{8}$$

$$h(u) = \begin{cases} \frac{\sin(u+4)}{2u+8} & \text{si } u < -4 \\ \alpha u - 1 & \text{si } u = -4 \\ \frac{\sqrt{u+8}}{4} & \text{si } u > -4 \end{cases}$$

Camino 0:

$$\lim_{u \to -4^+} h(u) = h(-4) = \lim_{u \to -4^+} \frac{\sqrt{u+8}}{4} = \alpha(-4) - 1$$

$$= \frac{2}{4} = -4\alpha - 1$$

$$= \frac{3}{8} = 0$$

Comino 2

 $\lim_{u \to -4^-} h(u) = h(-4) = \lim_{u \to -4} \frac{5en(u+4)}{2u+8} = \alpha(-4) - 1$

 $= \lim_{u \to -4} \frac{5 en(u+4)}{2(u+4)} = -4 a - 1$

 $= \frac{1}{2} = -\frac{1}{4}\alpha - 1$

=) 1+1=-4\a 2

 $\frac{3}{2} = -4\alpha$

 $= \frac{3}{2}$

=> -3 = ×

Por tanto, el valor de « para que h sea continua en 1R es -3.

Ejercicio #1: calcule el valor de los siguientes límites exponenciales:

$$\lim_{x \to -\infty} \frac{5^x}{5^x + 2^x}$$

R/0

$$\lim_{x \to +\infty} \frac{2^x + 4^x}{3^x - 5^x}$$

R/0

$$\lim_{x \to 1^{-}} \left(\frac{1}{5}\right)^{\frac{x^2}{\ln(x)}} + \frac{1}{1-x}$$

R/ +∞

Ejercicio #2: realice lo solicitado

Si f es una función cuya fórmula es:

R/
$$a = \frac{3}{4}$$
 y $b = -1$

$$f(x) = \begin{cases} ax^2 + b & \text{si } x > 2\\ -b + 1 & \text{si } x = 2\\ 2ax - 1 & \text{si } x < 2 \end{cases}$$

Halle el valor de a y b para que f sea continua en x = 2.

Considere la función f. Determine el valor de a y b para que la función sea continua en x = 1

$$y x = -1 si$$
:

R/ $a = \frac{3}{2}, b = \frac{5}{2}$

$$f(x) = \begin{cases} -x^2 + 2 & \text{si} & x < -1 \\ ax + b & \text{si} & -1 \le x \le 1 \\ x^2 + 2x + 1 & \text{si} & x > 1 \end{cases}$$