Scalable Self-Healing Algorithms for High Performance Scientific Computing

Zack Tillotson November 2010

Motivation

- The size of HPC systems is outgrowing traditional checkpointing strategies
- Disk bandwidth
- Multiple failures
- ▶ =Scalable

Self Healing Framework

- ▶ I. FT-MPI
- 2. Diskless Checkpointing
- 3. Pipelining
- 4. Weighted Checksums

FT-MPI

- MPI + Fault Tolerance
- ▶ How does it work?
 - Survives failures
 - ▶ Failure actions:
 - Processors
 - Messages
- Fast
 - Scalable

Diskless Checkpointing

- Application level/System level
 - Synchronization points
 - Size
 - Heterogeneous environment
- Bit stream vs floating point number
 - ▶ Galois field vs Floating point arithmetic
 - Heterogeneous recov
- Parity/Checksums
 - Log speed
- Scalable

Pipelining

- Segment message
- Simultaneously send and receive

- ▶ Checkpoint in p + s + 2
- Scalable

Weighted Checksum

Reed-Solomon encoding

- Uses matrices which have special properties
- E.g. Vandermonde, Cauchy, Gaussian Random
- Use gaussian random matrices with floating point operations
 - Round off errors

Basic weighted checksum

- To handle k errors, k checkpoint processors
- Linear time

Weighted Checksum

▶ I Dimensional Weighted Checksum

- Split processors into groups of constant size
- To handle k errors, k checkpoint processors per group
- Constant time with regard to total number of processors

Weighted Checksum

Localized Weighted Checksum

- To handle k errors, partition processors into groups of k(k+1) size
- Each processor encodes with k+l other processors
- Any k processors going down can be recovered
- No dedicated checkpointing processors

Performance

- Preconditioned Conjugate Gradient (PCG) program
 - Basic Weighted Checksum Scheme
 - Small checkpoints
 - ▶ FT-MPI
 - Processor rebuild mode
 - Message drop mode

Performance: FT-MPI

Performance: Pipelining

No faults, all increase in time is due to overhead of computing checkpoints

Performance: Pipelining

Failure of processors simulated each run

Performance: Round Off Errors

Round off error due to recovery

Residual	Prob #1	Prob #2	Prob #3	Prob #4
0 proc	3.050e-6	2.696e-6	3.071e-6	3.944e-6
1 proc	2.711e-6	4.500e-6	3.362e-6	4.472e-6
2 proc	2.973e-6	3.088e-6	2.731e-6	2.767e-6
3 proc	3.036e-6	3.213e-6	2.864e-6	3.585e-6
4 proc	3.438e-6	4.970e-6	2.732e-6	4.002e-6
5 proc	3.035e-6	4.082e-6	2.704e-6	4.238e-6

Performance: Scalability

Limitations

- Checkpointing
 - Checkpoint size
 - Different checkpoint schemes
- General failures
 - Add disk based checkpointing
- Application level system

Questions

Zack Tillotson November 2010