Fisica 2 – Corso di Laurea Triennale in Ingegneria Industriale

7 gennaio 2020

Seconda Prova Parziale – compito A

Cognome (stampatello)	•••••		
Nome (stampatello)			
Numero di Matricola			CFU
Registrato su ESSE3 (barrare la risposta).	SI'	NO	
Corso di Laurea e anno di iscrizione			

Problema 1. Due solenoidi, lunghi entrambi L = 30 cm, hanno raggi $R_1 = 5$ cm e $R_2 = 2$ cm e sono coassiali. I numeri totale di spire sono sul primo $N_1 = 3000$ spire e sul secondo $N_2 = 5000$. Supponendo che nel solenoide esterno la corrente vari secondo la legge $i_1(t) = i_0 \cos \omega t$ con $i_0 = 15$ A:

a) Calcolare il valore di ω perché la f.e.m. massima indotta sul solenoide interno sia di 20 V;

PER 6 CFU: Calcolare, alla frequenza trovata, l'ampiezza del campo elettrico E_{max} indotto ad una distanza $r_1 = 3$ cm dall'asse dei solenoidi tenendo conto solo della variazione di flusso prodotta dal solenoide 1.

Problema 2. Un oggetto si trova ad una distanza $p_1 = 25$ cm da una lente divergente. Una lente convergente di fuoco $f_c = 12$ cm viene posta a L = 30 cm a destra della prima lente. Grazie a questa seconda lente si forma una immagine reale ad una distanza $q_2 = 17$ cm da lei. Calcolare il fuoco f_d della lente divergente.

PER 6 CFU: Calcolare anche l'ingrandimento dell'immagine finale e la distanza focale del sistema ottico costituito dalle due lenti.

Problema 3 Una corda di densità lineare $\rho_L = 4 \times 10^{-3}$ Kg/m è vincolata agli estremi e sottoposta ad una tensione T = 360 N. Una delle sue frequenze di vibrazione è $\nu_a = 375$ Hz, e la frequenza del modo immediatamente successivo è $\nu_b = 450$ Hz.

Calcolare: 1) la frequenza fondamentale di vibrazione della corda; 2) le armoniche delle due frequenze indicate; 3) la lunghezza della corda.

Problema 4. In un interferometro di Young vengono prodotte due figure di interferenza con lunghezze d'onda $\lambda_1 = 450$ nm e $\lambda_2 = 500$ nm. Se le frange di interferenza vengono proiettate su uno schermo alla distanza di L = 0.80 m, calcolare la distanza d fra le fenditure necessaria ad avere le frange luminose di ordine 5 distanziate di $\delta x = 1.0$ mm.

- 1) Vanno consegnati i fogli con lo svolgimento e il testo stampato.
- 2) <u>Ogni foglio consegnato deve riportare nome e cognome in stampatello e il numero di matricola.</u>
- 3) Non consegnate la brutta copia.
- 4) E' obbligatorio riportare i passaggi algebrici utilizzati per arrivare alla soluzione finale corredati di un breve commento scritto che li descriva.
- 5) <u>In caso di ritiro va consegnato solo il testo stampato con scritto "Ritirato" e la firma.</u>