Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №1 з дисципліни: «Твердотільна електроніки-1»

ДОСЛІДЖЕННЯ ВИПРЯМЛЯЮЧИХ НАПІВПРОВІДНИКОВИХ ДІОДІВ

Виконавець: Студент 3-го курсу	(підпис)	А. Р. Півчук
Перевірив:	(підпис)	Л. М. Королевич

1. МЕТА РОБОТИ

Теоретичне вивчення і практичне дослідження випрямляючих діодів; визначення фізичних та основних технічних параметрів германійових та кремнійових діодів із їх вольт-амперних характеристик.

2. ЗАВДАННЯ

- 1. Вивчити структуру параметрів (паспортних даних) досліджуваного підкласу діодів. Ознайомитися із вимірювальним стендом та використовуваними приладами.
- 2. Зібрати схему для дослідження вольт-амперної характеристики випрямляючих діодів.
- 3. Виміряти вольт-амперні характеристики германійового та кремнійового діодів при кімнатній температурі. Результати вимірювань записати в таблиці.
- 4. *Провести температурні дослідження ВАХ германійового та кремнійового діодів при температурі $+70^{\circ}$ С (для прямої та зворотньої полярності напруги).
 - 5. Побудувати графіки вольт-амперних характеристик діодів.
- 6. Графічно визначити дифузійний потенціал ϕ_0 , опір бази r_b та струм виродження $I_{\text{вир}}$ для кожного з діодів. Оцінити тепловий струм германійового діода.
- 7. За побудованими графіками характеристик визначити основні параметри діодів.
- 8. **Побудувати графіки залежностей статичного та динамічного опорів діодів від прикладеної напруги (або вирахувати статичний та диференційний опори посередині прямої та зворотньої гілок ВАХ кожного діоду і співставити їх між собою).
- 9. Провести аналіз результатів досліджень, і зробити висновки з виконаної роботи.

Рис. 1: Схема для вимірювання ВАХ діода. При знятті зворотньої гілки ВАХ змінюється полярність джерела живлення та номінал резистора R (величина резистора для прямої гілки $R_1=5$ кОм; для зворотньої $R_2=100$ кОм, або 1 МОм).

3.РЕЗУЛЬТАТИ ВИМІРЮВАНЬ

3.1.Обрахунки значень

Всі значення та їх похибкибки обраховувались за наступними формулами: Значення спаду напруги на діоді:

$$U_D = U - U_R \tag{1}$$

Значення струму через діод:

$$I_D = \frac{U_R}{R} \tag{2}$$

Значення опору бази:

$$r_b = \frac{U_{\rm np} - \varphi_0}{I_{\rm np}} \tag{3}$$

Значення струму виродження:

$$I_{\text{вир}} = \frac{\varphi_T}{r_b} \tag{4}$$

Та їх похибки:

$$\Delta U_D = \sqrt{\Delta U^2 + \Delta U_R^2} \tag{5}$$

$$\Delta I_D = \frac{1}{R^2} \cdot \sqrt{(R\Delta U_R)^2 + (U_R \Delta R)^2} \tag{6}$$

3.2.Представлення значень у вигляді таблиць

U _{summ} , MB	U _R , MB	$\Delta U_{summ} = U_R$, MB	R, Ом	ΔUd, мB	Δld,mA	Ud, MB	Id,MA
277	220	0,5	5000	0,7071	0,00220	57	0,044
306	246	0,5	5000	0,7071	0,00246	60	0,0492
375	309	0,5	5000	0,7071	0,00309	66	0,0618
465	390	0,5	5000	0,7071	0,00390	75	0,078
480	403	0,5	5000	0,7071	0,00403	77	0,0806
515	437	0,5	5000	0,7071	0,00437	78	0,0874
574	494	0,5	5000	0,7071	0,00494	80	0,0988
710	623	0,5	5000	0,7071	0,00623	87	0,1246
738	650	0,5	5000	0,7071	0,00650	88	0,13
760	670	0,5	5000	0,7071	0,00670	90	0,134
806	714	0,5	5000	0,7071	0,00714	92	0,1428
811	719	0,5	5000	0,7071	0,00719	92	0,1438
830	736	0,5	5000	0,7071	0,00736	94	0,1472
870	774	0,5	5000	0,7071	0,00774	96	0,1548
908	811	0,5	5000	0,7071	0,00811	97	0,1622
970	874	0,5	5000	0,7071	0,00874	96	0,1748
1019	918	0,5	5000	0,7071	0,00918	101	0,1836
1042	942	0,5	5000	0,7071	0,00942	100	0,1884
1370	1262	0,5	5000	0,7071	0,01262	108	0,2524
1527	1412	0,5	5000	0,7071	0,01412	115	0,2824
1723	1604	0,5	5000	0,7071	0,01604	119	0,3208
2043	1914	0,5	5000	0,7071	0,01914	129	0,3828
2264	2136	0,5	5000	0,7071	0,02136	128	0,4272
2583	2441	0,5	5000	0,7071	0,02441	142	0,4882
2824	2681	0,5	5000	0,7071	0,02681	143	0,5362
4426	4263	0,5	5000	0,7071	0,04263	163	0,8526
4878	4711	0,5	5000	0,7071	0,04711	167	0,9422
6575	6393	0,5	5000	0,7071	0,06393	182	1,2786
8530	8341	0,5	5000	0,7071	0,08341	189	1,6682
9386	9181	0,5	5000	0,7071	0,09181	205	1,8362
10260	10060	5	5000	7,0711	0,10060	200	2,012
13080	12610	5	5000	7,0711	0,12610	470	2,522
15650	15450	5	5000	7,0711	0,15450	200	3,09
18430	18030	5	5000	7,0711	0,18030	400	3,606
18810	18510	5	5000	7,0711	0,18510	300	3,702
25530	25270	5	5000	7,0711	0,25270	260	5,054
28580	28280	5	5000	7,0711	0,28280	300	5,656
30200	29900	5	5000	7,0711	0,29900	300	5,98
31950	31660	5	5000	7,0711	0,31660	290	6,332
33440	33120	5	5000	7,0711	0,33120	320	6,624
34670	34350	5	5000	7,0711	0,34350	320	6,87
35950	35690	5	5000	7,0711	0,35690	260	7,138
37820	37550	5	5000	7,0711	0,37550	270	7,51
38670	38350	5	5000	7,0711	0,38350	320	7,67
40910	40320	5	5000	7,0711	0,40320	590	8,064
41830	41550	5	5000	7,0711	0,41550	280	8,31
46370	46050	5	5000	7,0711	0,46050	320	9,21
49430	49010	5	5000	7,0711	0,49010	420	9,802
50630	50330	5	5000	7,0711	0,50330	300	10,066

Табл. 1: BAX діода D1 за прямого зміщення.

U _{summ} , B	U _R , B	$\Delta U_{summ}=U_R$, B	R2, Ом	ΔUd, мкB	Δld, мκA	Ud, mB	ld, мкA
1,79	1,1	0,005	100 000	7,071	0,001	0,6900	0,011
2,14	1,13	0,005	100 000	7,071	0,001	1,0100	0,0113
2,75	1,19	0,005	100 000	7,071	0,001	1,5600	0,0119
3,26	2,24	0,005	100 000	7,071	0,001	1,0200	0,0224
3,83	1,24	0,005	100 000	7,071	0,001	2,5900	0,0124
5,57	1,32	0,005	100 000	7,071	0,001	4,2500	0,0132
6,38	1,35	0,005	100 000	7,071	0,001	5,0300	0,0135
7,36	1,39	0,005	100 000	7,071	0,001	5,9700	0,0139
9,40	1,17	0,005	100 000	7,071	0,001	8,2300	0,0117
14,77	1,69	0,005	100 000	7,071	0,001	13,0800	0,0169
18,96	1,42	0,005	100 000	7,071	0,001	17,5400	0,0142
24,67	2,74	0,005	100 000	7,071	0,001	21,9300	0,0274
23,86	2,5	0,005	100 000	7,071	0,001	21,3600	0,025
24,13	2,58	0,005	100 000	7,071	0,001	21,5500	0,0258
28,25	4,09	0,005	100 000	7,071	0,002	24,1600	0,0409
28,97	4,42	0,005	100 000	7,071	0,002	24,5500	0,0442
31,12	5,33	0,005	100 000	7,071	0,003	25,7900	0,0533
32,32	5,97	0,005	100 000	7,071	0,003	26,3500	0,0597
32,93	6,29	0,005	100 000	7,071	0,003	26,6400	0,0629
34,63	7,22	0,005	100 000	7,071	0,004	27,4100	0,0722
35,76	7,81	0,005	100 000	7,071	0,004	27,9500	0,0781
37,49	8,75	0,005	100 000	7,071	0,004	28,7400	0,0875
37,90	9,01	0,005	100 000	7,071	0,005	28,8900	0,0901
39,94	10,11	0,005	100 000	7,071	0,005	29,8300	0,1011
42,66	11,57	0,005	100 000	7,071	0,006	31,0900	0,1157
44,44	12,53	0,005	100 000	7,071	0,006	31,9100	0,1253
46,34	13,61	0,005	100 000	7,071	0,007	32,7300	0,1361
47,11	14,07	0,005	100 000	7,071	0,007	33,0400	0,1407
49,02	15,17	0,005	100 000	7,071	0,008	33,8500	0,1517
51,78	16,72	0,005	100 000	7,071	0,008	35,0600	0,1672
53,23	17,58	0,005	100 000	7,071	0,009	35,6500	0,1758
54,69	18,42	0,005	100 000	7,071	0,009	36,2700	0,1842
55,83	19,05	0,005	100 000	7,071	0,01	36,7800	0,1905
58,55	20,57	0,005	100 000	7,071	0,01	37,9800	0,2057
62,81	22,99	0,005	100 000	7,071	0,011	39,8200	0,2299
65,87	24,35	0,005	100 000	7,071	0,012	41,5200	0,2435
72,41	28,39	0,005	100 000	7,071	0,014	44,0200	0,2839
81,44	34,58	0,005	100 000	7,071	0,017	46,8600	0,3458
90,18	39,31	0,005	100 000	7,071	0,02	50,8700	0,3931
93,38	41,15	0,005	100 000	7,071	0,021	52,2300	0,4115
99,36	44,32	0,005	100 000	7,071	0,022	55,0400	0,4432

Табл. 2: BAX діода D1 за зворотного зміщення.

U _{summ} , MB	U _R , MB	Δ <i>U_{summ}=U_R</i> , мB	R, Ом	ΔUd, MB	Δld,мA	Ud, мВ	Id,мА
576	139	0,5	5000	0,7071	0,0014	437	0,0278
629	103	0,5	5000	0,7071	0,001	526	0,0206
646	196	0,5	5000	0,7071	0,002	450	0,0392
729	267	0,5	5000	0,7071	0,0027	462	0,0534
807	339	0,5	5000	0,7071	0,0034	468	0,0678
932	445	0,5	5000	0,7071	0,0045	487	0,089
992	507	0,5	5000	0,7071	0,0051	485	0,1014
1054	565	0,5	5000	0,7071	0,0057	489	0,113
1116	622	0,5	5000	0,7071	0,0062	494	0,1244
1224	724	0,5	5000	0,7071	0,0072	500	0,1448
1337	831	0,5	5000	0,7071	0,0083	506	0,1662
1682	1155	0,5	5000	0,7071	0,0116	527	0,231
1868	1342	0,5	5000	0,7071	0,0134	526	0,2684
2045	1513	0,5	5000	0,7071	0,0151	532	0,3026
2240	1704	0,5	5000	0,7071	0,017	536	0,3408
2553	2010	0,5	5000	0,7071	0,0201	543	0,402
2880	2325	0,5	5000	0,7071	0,0233	555	0,465
3137	2581	0,5	5000	0,7071	0,0258	556	0,5162
3852	3291	0,5	5000	0,7071	0,0329	561	0,6582
4587	4017	0,5	5000	0,7071	0,0402	570	0,8034
4977	4383	0,5	5000	0,7071	0,0438	594	0,8766
4891	4313	0,5	5000	0,7071	0,0431	578	0,8626
5305	4712	0,5	5000	0,7071	0,0471	593	0,9424
6383	5831	0,5	5000	0,7071	0,0583	552	1,1662
6880	6215	0,5	5000	0,7071	0,0622	665	1,243
8018	7397	0,5	5000	0,7071	0,074	621	1,4794
8711	8087	0,5	5000	0,7071	0,0809	624	1,6174
9327	8721	0,5	5000	0,7071	0,0872	606	1,7442
10100	9460	5	5000	7,0711	0,0946	640	1,892
12420	11720	5	5000	7,0711	0,1172	700	2,344
14190	13540	5	5000	7,0711	0,1354	650	2,708
15740	15030	5	5000	7,0711	0,1503	710	3,006
16870	16180	5	5000	7,0711	0,1618	690	3,236
17660	16940	5	5000	7,0711	0,1694	720	3,388
19230	18510	5	5000	7,0711	0,1851	720	3,702
20470	19810	5	5000	7,0711	0,1981	660	3,962
23080	22410	5	5000	7,0711	0,2241	670	4,482
25430	24750	5	5000	7,0711	0,2475	680	4,95
27130	26460	5	5000	7,0711	0,2646	670	5,292
28220	27530	5	5000	7,0711	0,2753	690	5,506
29630	28940	5	5000	7,0711	0,2894	690	5,788
31210	30520	5	5000	7,0711	0,3052	690	6,104
32550	31850	5	5000	7,0711	0,3185	700	6,37
35130	34440	5	5000	7,0711	0,3444	690	6,888
38560	37860	5	5000	7,0711	0,3786	700	7,572
40030	39340	5	5000	7,0711	0,3934	690	7,868
42030	41350	5	5000	7,0711	0,4135	680	8,27
45480	44720	5	5000	7,0711	0,4472	760	8,944
48470	47740	5	5000	7,0711	0,4774	730	9,548

Табл. 3: BAX діода D2 за прямого зміщення.

U _{summ} , MB	U _R , MB	Δ <i>U</i> _{summ} , MB	R2, Ом	U _R , MB	ΔUd, мB	Δld, нA	Ud,мВ	Id, мкA
34	0,12	0,5	100 000	0,005	0,0005	0,08	0,0339	0,0012
54	0,07	0,5	100 000	0,005	0,0005	0,06	0,0539	0,0007
85	0,03	0,5	100 000	0,005	0,0005	0,05	0,0850	0,0003
110	0,04	0,5	100 000	0,005	0,0005	0,05	0,1100	0,0004
208	0,13	0,5	100 000	0,005	0,0005	0,08	0,2079	0,0013
247	0,16	0,5	100 000	0,005	0,0005	0,09	0,2468	0,0016
347	0,22	0,5	100 000	0,005	0,0005	0,12	0,3468	0,0022
527	0,31	0,5	100 000	0,005	0,0005	0,16	0,5267	0,0031
662	0,37	0,5	100 000	0,005	0,0005	0,19	0,6616	0,0037
709	0,39	0,5	100 000	0,005	0,0005	0,2	0,7086	0,0039
1041	0,55	0,5	100 000	0,005	0,0005	0,28	1,0405	0,0055
1524	0,75	0,5	100 000	0,005	0,0005	0,38	1,5233	0,0075
2109	1,03	0,5	100 000	0,005	0,0005	0,52	2,1080	0,0103
2883	1,32	0,5	100 000	0,005	0,0005	0,66	2,8817	0,0132
3237	1,46	0,5	100 000	0,005	0,0005	0,73	3,2355	0,0146
4515	2,03	0,5	100 000	0,005	0,0005	1,02	4,5130	0,0203
4837	2,18	0,5	100 000	0,005	0,0005	1,09	4,8348	0,0218
5644	2,53	0,5	100 000	0,005	0,0005	1,27	5,6415	0,0253
6024	2,67	0,5	100 000	0,005	0,0005	1,34	6,0213	0,0267
7455	3,25	0,5	100 000	0,005	0,0005	1,63	7,4518	0,0325
8175	3,66	0,5	100 000	0,005	0,0005	1,83	8,1713	0,0366
9162	3,97	0,5	100 000	0,005	0,0005	1,99	9,1580	0,0397
10060	4,45	5	100 000	0,005	0,005	2,23	10,0556	0,0445
11090	4,90	5	100 000	0,005	0,005	2,45	11,0851	0,049
11850	5,27	5	100 000	0,005	0,005	2,64	11,8447	0,0527

Табл. 4: BAX діода D2 за зворотного зміщення.

Рис. 2: BAX діода D1 за прямого зміщення.

Рис. 3: ВАХ діода D1 за зворотного зміщення.

Рис. 4: ВАХ діода D2 за прямого зміщення.

Рис. 5: BAX діода D2 за зворотного зміщення.

3.2. Розрахунок r_b та $I_{\text{вир}}$ для двох діодів

Використовуючи Рис. (2) опір бази r_b D1: для цього з точки Т опускаємо перпендикуляр на обидві осі, потім визначаємо значення в точці їх перетину $I_{\rm np}=0.008~{\rm A}$ і $U_{\rm np}=0.3~{\rm B}$. Наступним кроком знайдемо дифузійний потенціал який знаходиться в точці перетину дотичної проведеної до точки Т і вісі напруг. Зробивши це отримаємо $\varphi_0=0.255~{\rm B}$.

$$r_b = \frac{U_{\text{пр}} - \varphi_0}{I_{\text{пр}}} = 5.624 \text{ Om}$$
 (7)

Тепер можемо знайти $I_{\text{вир}}$:

$$I_{\text{вир}} = \frac{\varphi_T}{r_b} = 0.0046 \text{ A}$$
 (8)

Аналогічно для діода D2:

$$I_{\text{пр}} = 0.007 \text{ A}$$
 $U_{\text{пр}} = 0.73 \text{ B}$
 $\varphi_0 = 0.69 \text{ B}$
 $r_b = 5.7142 \text{Om}$
 $I_{\text{вир}} = 0.0045 \text{ A}$

4. АНАЛІЗ РЕЗУЛЬТАТІВ ДОСЛІДЖЕНЬ ТА ВИСНОВКИ З ВИКОНАНОЇ РОБОТИ

В результаті виконання даної лабораторної роботи було досліджено випрямляючі діоди та побудовно графіки ВАХ германієвого та кремнієвого діодів. Також виходячи з вольт-фмперної характеристики діода D1 можна сказати що це германієвий діод, оскільки спад напруги в прямому напрямі на германієвих діодах не перевищує 0,5 В, а що стосується діода під назвою D2 то як видно з його ВАХ за прямого зміщення то це кремнієвий діод, оскільки прямий спад напруги у кремнієвих діодах більший, ніж у германієвих, і досягає 1,5 В.