Sistemas Digitais

Análise, Síntese, Projecto

```
    Análise Diagrama lógico => Descrição formal duma Função
```

Síntese Descrição formal duma Função => Diagrama lógico

Projecto Descrição informal dum circuito =>

=> Descrição formal duma Função

=> Diagrama lógico

 Em 1854, o matemático inglês George Boole inventou um sistema algébrico que atribui um valor de verdadeiro ou falso a proposições.

- Álgebra de Boole é a ferramenta matemática de suporte da análise e síntese de circuitos digitais.
- Os axiomas de um sistema matemático são um conjunto mínimo de definições básicas que assumimos como verdadeiras, a partir das quais quaisquer derivações podem ser efectuadas.
- Uma variável, X, só pode assumir um de dois valores: "0" ou "1"
- Axioma 1 (A1) X = 0 se $X \ne 1$ (A1') X = 1 se $X \ne 0$

Denotando X' como saída de um **inversor** cuja entrada é X (**Função Inversão**):

Figure 4–1 Signal naming and algebraic notation for an inverter.

• (A2) Se X = 0 então X' = 1 (A2') Se X = 1 então X' = 0

Figure 4-2 Signal naming and algebraic notation: (a) AND gate; (b) OR gate.

- Multiplicação Lógica porta AND de 2 entradas: X.Y = X AND Y
- Adição Lógica porta OR de 2 entradas: X + Y = X OR Y

• (A1)
$$X = 0$$
 se $X \neq 1$ (A1') $X = 1$ se $X \neq 0$
• (A2) Se $X = 0$ então $X' = 1$ (A2') Se $X = 1$ então $X' = 0$
• (A3) $0.0 = 0$ (A3') $1 + 1 = 1$
• (A4) $1.1 = 1$ (A4') $0 + 0 = 0$
• (A5) $0.1 = 1.0 = 0$ (A5') $1 + 0 = 0 + 1 = 1$

- Estes axiomas definem completamente a álgebra comutada. Todos os outros factos sobre um sistema podem ser provados utilizando estes axiomas como condições de partida.
- Alguns teoremas e axiomas da Álgebra de Boole possuem um complementar (ex: A5') que é obtido trocando os 0's por 1's, complementando as variáveis e trocando +'s por .'s.

- Princípio da Dualidade: Qualquer teorema ou identidade da Álgebra de Boole continua verdadeiro se trocarmos os 0's por 1's e os sinais . por +.
- Há apenas uma convenção na Álgebra de Boole onde isto não se aplica:

$$X + X.Y = X$$
 T9 $(X.(1 + Y) = X.1 = X)$
 $X.X + Y = X$ princípio da dualidade
 $X + Y = X$ o que é falso!

 O problema reside na ordem das operações. Ao aplicarmos o teorema da dualidade temos de dar precedência à adição. Assim, o segundo passo seria:

$$X.(X + Y) = X.X + X.Y = X.(1 + Y) = X$$

Teoremas de álgebra comutada 1 variável

Table 4-1

Switching-algebra theorems with one variable.

(T1)	X + 0 = X	(T1')	$X \cdot 1 = X$	(Identities)
(T2)	X + 1 = 1	(T2')	$X \cdot 0 = 0$	(Null elements)
(T3)	X + X = X	(T3')	$X \cdot X = X$	(Idempotency)
(T4)	(X')' = X			(Involution)
(T5)	X + X' = 1	(T5')	$X \cdot X' = 0$	(Complements)

Teoremas de álgebra comutada 2 ou 3 variáveis

Table 4-2 Switching-algebra theorems with two or three variables.

Sistemas Digitais 3ª aula 6-17

Teoremas de álgebra comutada n variáveis

Table 4–3 Switching-algebra theorems with n variables.

- Os teoremas de DeMorgan (T13) e (T13') são de todos os mais usados.
- Uma porta lógica AND de n entradas cuja saída é complementada (invertida) é equivalente a uma porta lógica OR cujas n entradas estejam complementadas

Teorema de DeMorgan

Figure 4–3 Equivalent circuits according to DeMorgan's theorem T13: (a) AND-NOT; (b) NOT-OR; (c) logic symbol for a NAND gate; (d) equivalent symbol for a NAND gate.

(b)
$$X \longrightarrow X'$$
 $Y \longrightarrow Z = X' \cdot Y'$ (d) $X \longrightarrow Z = X' \cdot Y'$

Figure 4–4 Equivalent circuits according to DeMorgan's theorem T13': (a) OR-NOT; (b) NOT-AND; (c) logic symbol for a NOR gate; (d) equivalent symbol for a NOR gate.

Sistemas Digitais

- Da análise de circuitos combinacionais obtém-se a descrição formal das respectivas funções lógicas. Com estas é possível:
 - Determinar o comportamento do circuito para várias combinações das entradas,
 - Manipular a descrição algébrica e sugerir diferentes estruturas para o circuito,
 - Transformar a descrição algébrica numa forma normalizada que corresponde a uma estrutura fisicamente disponível.

- Há 5 formas de representar uma função lógica:
 - Uma tabela de verdade,
 - Uma soma algébrica dos termos mínimos, soma canónica,
 - Um somatório dos termos mínimos,
 - Um produto algébrico dos termos máximos, produto canónico,
 - Um produtório dos termos máximos.

Table 4–6
Minterms and maxterms for a
3-variable logic function, F(X,Y,Z).

Row	Х	Υ	Z	F	Minterm	Maxterm
0	0	0	0	F(0,0,0)	$X' \cdot Y' \cdot Z'$	X + Y + Z
1	0	0	1	F(0,0,1)	$X' \cdot Y' \cdot Z$	X + Y + Z'
2	0	1	0	F(0,1,0)	$X' \cdot Y \cdot Z'$	X + Y' + Z
3	0	1	1	F(0,1,1)	$X' \cdot Y \cdot Z$	X + Y' + Z'
4	1	0	0	F(1,0,0)	$X \cdot Y' \cdot Z'$	X' + Y + Z
5	1	0	1	F(1,0,1)	X-Y'-Z	X' + Y + Z'
6	1	1	0	F(1,1,0)	$X \cdot Y \cdot Z'$	X' + Y' + Z
7	1	1	1	F(1,1,1)	$X\!\cdot\! Y\!\cdot\! Z$	X' + Y' + Z'

• A função lógica F é dada por: X'.Y'.Z'+X'.Y.Z+X.Y'.Z'+X.Y.Z'+X.Y.Z que pode ser representada como um somatório: $F = \sum (0,3,4,6,7)$

$$F = \sum_{X,Y,Z} (0,3,4,6,7)$$

• Ou, usando a dualidade: (X+Y+Z').(X+Y'+Z).(X'+Y+Z') que pode ser representada utilizando um produtório:

$$F = \prod_{X,Y,Z} (1,2,5)$$

Como obter a função F(X,Y,Z)?

Construir Tabela de Verdade.

Obter expressão lógica.

Mesma função lógica (implementação diferente). Soma de produtos.

 Mesma função lógica (implementação diferente). Produto de Somas.

```
F = ((X+Y').Z) + (X'.Y.Z')
= (X+Y'+X') . (X+Y'+Y) . (X+Y'+Z') . (Z+X') . (Z+Y) . (Z+Z')
= 1 . 1 . (X+Y'+Z') . (X'+Z) . (Y+Z) . 1
= (X+Y'+Z') . (X'+Z) . (Y+Z)
```


3 implementações para G(W,X,Y,Z) = W.X.Y + Y.Z

Exercícios:

Construa a tabela de verdade das funções:

i)
$$F = W.X.Y.Z.(W.X.Y.Z' + W.X'.Y.Z + W'.X.Y.Z + W.X.Y'.Z)$$

ii)
$$F = X'.Y'.Z' + X.Y.Z + X.Y'.Z$$