COMPUTER EVOLUTION AND PERFORMANCE

วิวัฒนาการของอุปกรณ์เทคโนโลยีพื้นฐาน

First Generation: Vacuum Tubes

- ENIAC (Electronic Numerical Integrator And Computer)
- □ ออกแบบและสร้างโดยมหาวิทยาลัย Pennsylvania
 - เริ่มตั้งแต่ปี 1943 เสร็จสิ้นในปี 1946
- □ ถือเป็นคอมพิวเตอร์เครื่องแรกของโลกที่ใช้สัญญาณดิจิทัล

- 🗖 น้ำหนัก 30 ตัน
- ใช้เนื้อที่ 1500 ตารางฟุต
- มีการใช้ vacuum tubes มากกว่า18,000 ตัว
- □ ใช้กำลังไฟฟ้า 140kW
- □ สามารถทำการบวกได้ 5000 คำสั่ง/วินาที
- □ ใช้ตัวเลขฐาน 10 ในการทำงาน

John von Neumann and EDVAC

- EDVAC (Electronic Discrete Variable Automatic Computer)
 - 🗖 ใช้ระบบเลขฐาน 2 แทน ฐาน 10
 - 🗖 แนวคิดของระบบเผยแพร่สู่สาธารณะในปี 1945
 - แนวคิดนี้เรียกว่า stored program computer ซึ่ง john von Neumann เป็นผู้นำเสนอ
 - ชุดคำสั่ง (Instruction) และข้อมูล (data) จะต้องเก็บไว้ในหน่วยความจำ
 - ค่าในหน่วยความจำสามารถอ้างอิงได้จากแอดแดรสของหน่วยความจำ
 - การทำงานของอ่านชุดคำสั่งจากหน่วยความจำตามลำดับ
- □ IAS Computer
 - Princeton Institute for Advanced Studies
 - 🗖 เป็น Prototype ของเครื่องคอมพิวเตอร์ในเวลาต่อมา
 - สร้างเสร็จในปี 1952

โครงสร้างคอมพิวเตอร์ของ John von Neumann

IAS Memory Format

(b) Instruction word

- หน่วยความจำใน IAS computer มีทั้งหมด 1000 ตำแหน่ง แต่ละตำแหน่งเก็บ ข้อมูล 1 word (40 bits)
- 🗆 ทั้งข้อมูล (Data) และชุดคำสั่ง (Instruction) เก็บอยู่ในหน่วยความจำ

โครงสร้างของ IAS Computer

- MBR (Memory Buffer Register) เก็บ
 word ของ data ที่รับ/ส่ง กับอุปการณ์ I/O
 และหน่วยความจำ
- MAR (Memory Address Register) เก็บ แอดเดรสที่จะใช้รับ/ส่งข้อมูลเข้า MBR
- IR (Instruction Register) เก็บ opcode
 8-bit ที่จะสั่งทำงาน
- IBR (Instruction Buffer Reigster) ที่เก็บ ชุดคำสั่งด้านขวาชั่วคราว
- PC (Program Counter) เก็บแอดเดรสของ ชุดคำสั่งถัดไป
- AC (Accumulator) และ MQ (Multiplier quotient) เก็บข้อมูลชั่วคราวในการคำนวณ

Commercial Computers (1)

- UNIVAC (UNIVersal Automatic Computer)
- □ 1947 Eckert และ Mauchly ก่อตั้งบริษัทชื่อ EckertMauchly Computer Corporation เพื่อสร้างคอมพิวเตอร์
 สำหรับขายจริง

UNIVAC I

- □ เป็นเครื่องคอมพิวเตอร์แบบ commercial ที่สำเร็จเป็นเครื่องแรก
- 🗖 มีวัตถุประสงค์เพื่อใช้ในการคำนวณทางวิทยาศาสตร์และแอพพลิเคชันการค้า

UNIVAC II

- ออกขายช่วงปลายปี 1958
- 🗖 มีประสิทธิภาพสูงขึ้นและมีความจุหน่วยความจำมากขึ้น

Commercial Computers (2)

- □ IBM เป็นผู้ผลิตอุปกรณ์คำนวณจาก punched-card
- □ ได้ผลิตและวางจำหน่ายเครื่องคอมพิวเตอร์ที่ใช้ไฟฟ้าในรูปแบบ storedprogram (IBM 701) ในปี 1953 โดยใช้เพื่อการคำนวณทาง วิทยาศาสตร์เป็นหลัก
- □ ในปี 1955 ได้จำหน่าย IBM 702 เพื่อการคำนวณทางด้านธุรกิจ
- □ IBM series 700/7000 กลายเป็นคอมพิวเตอร์ที่ใช้กันอย่างแพร่หลาย

และเป็นเจ้าตลาดในที่สุด

แต่ทว่า IBM เกิดปัญหาในภายหลัง เพราะเครื่องคอมพิวเตอร์แต่ละรุ่น มี สถาปัตยกรรมต่างกัน ทำให้แอพพลิเคชันต่างๆ ไม่สามารถ ทำงานร่วมกันได้

Second Generation: Transistors

- □ มีขนาดเล็กกว่า Vacuum Tubes
- 🗆 มีราคาถูกกว่า
- □ แผ่ความร้อนน้อยกว่า Vacuum Tubes
- □ ถูกสร้างโดย Bell Labs ในปี 1947
- □ จนถึงประมาณปี **1958** ถึงเริ่มมีการนำทรานซิสเตอร์ไปใช้กับ คอมพิวเตอร์

เหตุการณ์สำคัญในเครื่องคอมพิวเตอร์ในยุคที่ 2

- ทำให้สามารถสร้าง arithmetic and logic units (ALU) และ control units ที่ซับซ้อนขึ้นได้
- 🗆 เริ่มมีการใช้ภาษาโปรแกรมระดับสูง
- □ มีการพัฒนา System Software ซึ่งมีหน้าที่
 - 🗖 โหลดโปรแกรม
 - 🗖 ย้ายข้อมูลไปยังอุปกรณ์ต่างๆ และไลบรารีการทำงาน
 - 🗖 สามารถทำการคำนวณพื้นฐานได้
- □ เกิดบริษัทใหม่ชื่อว่า Digital Equipment Corporation (DEC) ในปี 1957
- □ PDP-1 เป็นเครื่องคอมพิวเตอร์เครื่องแรกของ DEC
- □ เป็นจุดเริ่มต้นของเครื่องคอมพิวเตอร์ประเภท mini-computer

Third Generation: Integrated Circuits

- □ IC ในถูกประดิษฐ์ขึ้นในปี 1958
- □ เป็น Discrete Component
 - 🗖 ภายในมีทรานซิสเตอร์
 - 🗖 ผู้ผลิตแยกรูปแบบตัวชิบของตัวเองโดยการบัดกรีตามลายวงจรบนบอร์ด
 - 🗖 ขั้นตอนการผลิตในสมัยแรกแพงและช้า
- □ เครื่องคอมพิวเตอร์รุ่นแรกๆ ของยุคนี้คือ IBM System/360 และ

DEC PDP-8

Microelectronics

- Data storage : ใช้ memory cell
- □ Data processing: 18 gates
- □ Data movement: ผ่านทาง path ของ component
- Control : มี path ที่ใช้ส่งสัญญาณควบคุม
- Computer ประกอบด้วย gate, memory cell และ path เชื่อมต่อ
- □ Gate และ memory cell สร้างด้วยอุปกรณ์ดิจิทัลแบบง่าย

Wafer, Chip, and Gate

Moore's Law

IBM 360

- □ IBM ได้ออกแบบสถาปัตยกรรมของไมโครโปรเซสเซอร์ใหม่ชื่อ IBM 360 โดยมี คำมั่นสัญญาว่า
 - 🗖 การออกแบบในครั้งนี้ต้องรองรับการกับคอมพิวเตอร์รุ่นใหม่ๆ ในอนาคตได้
 - ต้องมีวิธีติดต่อกับ I/O ที่เป็นมาตรฐาน
- □ IBM 360 : A General Purpose Register (GPR) Machine
 - 16 general-purpose 32-bit registers
 - 4 floating point 64-bit registers
 - Program Status Word (PSW): PC, condition codes, flags
 - 32-bit machine with 24-bit addresses
 - Data Format :
 - 8-bit bytes, 16-bit half-word, 32-bit word, 64-bit double word

ต้นกำเนิดของ 8 bits = 1 byte

เครื่องคอมพิวเตอร์รุ่นต่างๆ ของ IBM 360

ในปี 1964 : ด้วยสถาปัตยกรรมของ IBM 360 มีรุ่น Models 30, 40, 50, 60, 62, และ 70 ออกวางจำหน่าย

	Model 30	Model 70
ที่เก็บข้อมูล (Storage)	8K – 64 KB	256K – 512 KB
Datapath	8-bit	64-bit
Circuit Delay	30 n	5 ns

Microprocessor

- ความหนาแน่นของอุปกรณ์ใน chip ยังคงเพิ่มขึ้นเรื่อย ๆ
- □ ในปี 1971, Intel ได้พัฒนา chip รุ่น 4004
 - 🗖 เป็น chip แรกที่บรรจุส่วนประกอบต่างๆ ของ CPU อยู่ใน chip เดียว
 - □ ถือเป็นต้นกำเนิดของ microprocessor
- □ ในปี 1972, Intel ได้พัฒนา 8008
 - □ เป็น microprocessor ขนาด 8-bit ตัวเลขของโลก
- □ ในปี 1974, Intel ได้พัฒนา 8080
 - 🗖 เป็น microprocessor สำหรับใช้งานทั่วไปตัวแรกของโลก
 - มีความเร็วสูง แต่มี instruction set ให้ใช้มากมาย
 - 🗖 มีการความสามารถใช้อ้างอ้างอิงแอดเดรสหน่วยความจำขนาดใหญ่

วิวัฒนาการของ Microprocessor ของ Intel (1)

	4004	8008	8080	8086	8088
Introduced	1971	1972	1974	1978	1979
Clock speeds	108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz
Bus width	4 bits	8 bits	8 bits	16 bits	8 bits
Number of transistors	2,300	3,500	6,000	29,000	29,000
Feature size (μ m)	10		6	3	6
Addressable memory	640 Bytes	16 KB	64 KB	1 MB	1 MB

	80286	386TM DX	386TM SX	486TM DX CPU
Introduced	1982	1985	1988	1989
Clock speeds	6 MHz - 12.5 MHz	16 MHz - 33 MHz	16 MHz - 33 MHz	25 MHz - 50 MHz
Bus width	16 bits	32 bits	16 bits	32 bits
Number of transistors	134,000	275,000	275,000	1.2 million
Feature size (μ m)	1.5	1	1	0.8 - 1
Addressabl e memory	16 MB	4 GB	16 MB	4 GB
Virtual memory	1 GB	64 TB	64 TB	64 TB
Cache	_	_	_	8 kB

วิวัฒนาการของ Microprocessor ของ Intel (2)

	486TM SX	Pentium	Pentium Pro	Pentium II
Introduced	1991	1993	1995	1997
Clock speeds	16 MHz - 33 MHz	60 MHz - 166 MHz,	150 MHz - 200 MHz	200 MHz - 300 MHz
Bus width	32 bits	32 bits	64 bits	64 bits
Number of transistors	1.185 million	3.1 million	5.5 million	7.5 million
Feature size (µm)	1	0.8	0.6	0.35
Addressable memory	4 GB	4 GB	64 GB	64 GB
Virtual memory	64 TB	64 TB	64 TB	64 TB
Cache	8 kB	8 kB	512 kB L1 and 1 MB L2	512 kB L2

	Pentium III	Pentium 4	Core 2 Duo	Core i7 EE 990
Introduced	1999	2000	2006	2011
Clock speeds	450 - 660 MHz	1.3 - 1.8 GHz	1.06 - 1.2 GHz	3.5 GHz
Bus width	64 bits	64 bits	64 bits	64 bits
Number of	9.5 million	42 million	167 million	1170 million
transistors	7.5 IIIIIIOII	12 mmon	107 Illimon	1170 million
Feature size (nm)	250	180	65	32
Addressable	64 GB	64 GB	64 GB	64 GB
memory	0+ GB	04 GB	0 1	0+ GB
Virtual memory	64 TB	64 TB	64 TB	64 TB
Cache	512 kB L2	256 kB L2	2 MB L2	1.5 MB L2/12 MB L3

ความเร็วของ Microprocessor Speed

Pipelining

□ Processor เลื่อนข้อมูลหรือชุดคำสั่งตามแนวคิดแบบ pipe โดยแบ่งการทำงาน ออกเป็นช่วงๆ (stage) ที่การทำงานในแต่ละช่วงนั้นสามารถทำงานพร้อมๆ กันได้

Branch prediction

Processor สามารถคาดการณ์และดึงชุดคำสั่งล่วงหน้ามารอก่อนได้

Data flow analysis

 Processor สามารถวิเคราะห์ชุดคำสั่งที่เป็นอิสระต่อกัน เพื่อให้สามารถประมวลผล พร้อมกันได้

Speculative execution

 เป็นการประยุกต์ใช้ branch prediction และ data flow analysis เพื่อ ประมวลผลบางคำสั่งก่อนแล้วนำผลลัพธ์ที่ได้เก็บไว้ใช้งานในอนาคต

เทคโนโลยีทาง Processor

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

เทคโนโลยีทาง Memory

เทคโนโลยีในการโอนย้ายข้อมูล

เทคโนโลยีทาง Processor เริ่มเปลี่ยนไปทาง Multi-processor และ Multi-core

Cray XT3 Supercomputer 1024 single-core processors

AMD Quad-Core Opteron
Four cores on the same die

N

IBM Blue Gene Q Supercomputer Thousands of 18-core processors

X86 Architecture (1)

- □ เป็นตัวอย่างของการออกแบบที่เรียกว่า CISC (Complex Instruction Set Computer)
- □ ถือว่าเป็นสถาปัตยกรรมคอมพิวเตอร์ที่มีส่วนแบ่งทางตลาดมากที่สุด (ไม่นับ Embedded System)
- 8080
 - Microprocessor สำหรับใช้งานทั่วไปตัวแรกของโลก
 - 8-bit machine + 8-bit data path
 - ใช้ในคอมพิวเตอร์ส่วนบุคคลเครื่องแรก (Altair)
- □ 8086
 - 16-bit machine
 - มีการใช้ instruction cache
 - 🗖 เป็นจุดเริ่มต้นของสถาปัตยกรรม x86
- 8088
 - ใช้ในเครื่องคอมพิวเตอร์ส่วนบุคคล IBM

- 80286
 - สามารถอ้างอิงหน่วยความจำได้ 16 MB จากเดิมที่สามารถ อ้างอิงได้แค่ 1 MB
- 80386
 - Microprocessor ตัวแรกของ Intel ที่ทำงานแบบ 32-bit
 - และเป็น Microprocessor ตัวแรกของ Intel ที่รองรับการ ทำงานแบบ Multitasking
- **80486**
 - มีเทคโนโลยีที่ดีขึ้นของ cache และมีการทำงาน Instruction
 Pipeline
 - 🗖 มี Math coprocessor ภายใน microprocessor

X86 Architecture (2)

- Pentium
 - Superscaler (มีการทำ Instruction Pipeline แบบ loosely pipeline)
 - มีคำสั่งหลายคำสั่งสามารถทำงานพร้อมกันได้
- Pentium Pro
 - เพิ่มการทำงานแบบ superscalar
 - มีการเปลี่ยนชื่อของ register เองได้ถ้าชุดคำสั่งอิสระต่อกัน
 - 🗖 มี Branch prediction, Data flow analysis และ Speculative execution
- Pentium II
 - มีชุดคำสั่ง MMX เพิ่มขึ้น
 - 🗖 ถูกออกแบบมาเพื่อประมวลผล video, audio และ graphics data
- Pentium III
 - มีชุดคำสั่งจัดการกับ floating point เพื่อรองรับ software 3D
- Pentium 4
 - เพิ่มความสามารถในการจัดการกับ floating point และ multimedia ต่างๆ

X86 Architecture (3)

- Core
 - Microprocessor รุ่นแรกของ Intel คือ dual core ที่หมายถึง มี 2
 processors บรรจุอยู่ใน chip ตัวเดียวกัน
- □ Core 2
 - เป็นการเปลี่ยนสถาปัตยกรรมมาเป็น 64-bits
 - มี core ภายใน 1 4 core
- Core i
 - มีการนำเทคโนโลยี Hyper-threading กลับมาใช้งานใหม่
 - □ มีจำนวน core ภายใน 1 8 cores

ระบบฝั่งตัว (Embedded System)

Market	Embedded Device		
Automotive	Ignition system Engine control Brake system		
Consumer electronics	Digital and analog televisions Set-top boxes (DVDs, VCRs, Cable boxes) Personal digital assistants (PDAs) Kitchen appliances (refrigerators, toasters, microwave ovens) Automobiles Toys/games Telephones/cell phones/pagers Cameras Global positioning systems		
Industrial control	Robotics and controls systems for manufacturing Sensors		
Medical	Infusion pumps Dialysis machines Prosthetic devices Cardiac monitors		
Office automation	Fax machine Photocopier Printers Monitors Scanners		

Acorn RISC Machine (ARM)

- ARM ออกแบบ microprocessors, microcontrollers และ multicore architecture ในรูปแบบ RISC และขายสิทธิบัตรนั้นกับ ผู้ผลิตรายต่างๆ
- □ processors มีความเร็วสูงและที่เป็นยอมรับกัน ในเรื่องของขนาดที่เล็ก และใช้พลังงานไฟฟ้าต่ำ
- □ เป็นที่นิยมใช้กันใน PDAs และอุปกรณ์มือถือต่างๆ
- □ iPod and iPhone ก็ใช้ ARM
- 🗆 เป็นสถาปัตยกรรมที่ใช้มากที่สุดในระบบฝังตัว
- 🗆 และยังเป็นสถาปัตยกรรมที่มีการใช้งานมากที่สุดในโลก

การออกแบบหมวดหมู่ของ ARM

□ ARM Processor ถูกออกแบบเพื่อตอบสนองการทำงานของระบบ หลัก ๆ 3 ระบบคือ

แอพพลิเคชันที่ต้องการความปลอดภัย

- Smart card
- SIM card
- อุปกรณ์จ่ายเงิน

ระบบฝั่งตัวแบบเวลาจริง

- ระบบจัดเก็บข้อมูล
- อุปกรณ์ระบบเครือข่าย
- ระบบของงานอุตสาหกรรม

แพลตฟอร์มของแอพพลิเคชัน

• มีระบบปฏิบัติการที่รองรับอยู่ มากมาย Linux, Palm OS, Symbian OS, Android, IOS

ARM Evolution

Family	Notable Features	Cache	Typical MIPS @ MHz
ARM1	32-bit RISC	None	
ARM2	Multiply and swap instructions; Integrated memory management unit, graphics and I/O processor	None	7 MIPS @ 12 MHz
ARM3	First use of processor cache	4 KB unified	12 MIPS @ 25 MHz
ARM6	First to support 32-bit addresses; floating-point unit	4 KB unified	28 MIPS @ 33 MHz
ARM7	Integrated SoC	8 KB unified	60 MIPS @ 60 MHz
ARM8	5-stage pipeline; static branch prediction	8 KB unified	84 MIPS @ 72 MHz
ARM9		16 KB/16 KB	300 MIPS @ 300 MHz
ARM9E	Enhanced DSP instructions	16 KB/16 KB	220 MIPS @ 200 MHz
ARM10E	6-stage pipeline	32 KB/32 KB	
ARM11	9-stage pipeline	Variable	740 MIPS @ 665 MHz
Cortex	13-stage superscalar pipeline	Variable	2000 MIPS @ 1 GHz
XScale	Applications processor; 7-stage pipeline	32 KB/32 KB L1 512 KB L2	1000 MIPS @ 1.25 GHz

- SoC = System on Chip
- DSP = Digital Signal Processor