CME 307 / MS&E 311 / OIT 676: Optimization

Optimality conditions and convexity

Professor Udell

Management Science and Engineering
Stanford

October 13, 2025

Outline

Constrained vs unconstrained optimization

constrained optimization

- examples: scheduling, routing, packing, logistics, scheduling, control
- what's hard: finding a feasible point

unconstrained optimization

- examples: data fitting, statistical/machine learning
- what's hard: reducing the objective

both are necessary for real-world problems!

Unconstrained smooth optimization

for $f: \mathbb{R}^n \to \mathbb{R}$ ctsly differentiable,

```
minimize f(x) variable x \in \mathbb{R}^n
```

examples:

- least squares
- ► logistic regression
- ▶ neural network training (with smooth activation like tanh, ELU, GeLU, ...)
- **•** ...

Oracles

an optimization **oracle** is your interface for accessing the problem data: *e.g.*, an oracle for $f: \mathbb{R}^n \to \mathbb{R}$ can evaluate for any $x \in \mathbb{R}^n$:

ightharpoonup zero-order: $f_0(x)$

▶ **first-order:** $f_0(x)$ and $\nabla f_0(x)$

second-order: $f_0(x)$, $\nabla f_0(x)$, and $\nabla^2 f_0(x)$

why oracles?

- can optimize real systems based on observed output (not just models)
- can use and extend old or complex but trusted code (e.g., NASA, PDE simulations, . . .)
- can prove lower bounds on the oracle complexity of a problem class

source: Nesterov 2004 "Introductory Lectures on Convex Optimization"

Outline

Solution of an optimization problem

minimize
$$f(x)$$

for $f: \mathcal{D} \to \mathbb{R}$. x^* is a

- **p** global minimizer if $f(x) \ge f(x^*)$ for all $x \in \mathcal{D}$.
- ▶ **local minimizer** if there is a neighborhood \mathcal{N} around x^* so that $f(x) \geq f(x^*)$ for all $x \in \mathcal{N}$.
- **isolated local minimizer** if the neighborhood $\mathcal N$ contains no other local minimizers.
- unique minimizer if it is the only global minimizer.

Solution of an optimization problem

minimize
$$f(x)$$

for $f: \mathcal{D} \to \mathbb{R}$. x^* is a

- **proof** global minimizer if $f(x) \ge f(x^*)$ for all $x \in \mathcal{D}$.
- ▶ **local minimizer** if there is a neighborhood \mathcal{N} around x^* so that $f(x) \geq f(x^*)$ for all $x \in \mathcal{N}$.
- **isolated local minimizer** if the neighborhood $\mathcal N$ contains no other local minimizers.
- unique minimizer if it is the only global minimizer.

pictures!

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, then $\nabla f(x^*) = 0$.

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, then $\nabla f(x^*) = 0$.

proof: suppose by contradiction that $\nabla f(x^*) \neq 0$. consider points of the form $x_{\alpha} = x^* - \alpha \nabla f(x^*)$ for $\alpha > 0$. by definition of the gradient,

$$\lim_{\alpha \to 0} \frac{f(x_{\alpha}) - f(x^{\star})}{\alpha} = -\nabla f(x^{\star})^{\top} \nabla f(x^{\star}) = -\|\nabla f(x^{\star})\|^{2} < 0$$

so for any sufficiently small $\alpha > 0$, we have $f(x_{\alpha}) < f(x^{*})$, which contradicts the fact that x^{*} is a local minimizer.

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, then $\nabla f(x^*) = 0$.

proof: suppose by contradiction that $\nabla f(x^*) \neq 0$. consider points of the form $x_{\alpha} = x^* - \alpha \nabla f(x^*)$ for $\alpha > 0$. by definition of the gradient,

$$\lim_{\alpha \to 0} \frac{f(x_{\alpha}) - f(x^{\star})}{\alpha} = -\nabla f(x^{\star})^{\top} \nabla f(x^{\star}) = -\|\nabla f(x^{\star})\|^{2} < 0$$

so for any sufficiently small $\alpha > 0$, we have $f(x_{\alpha}) < f(x^{*})$, which contradicts the fact that x^{*} is a local minimizer.

Definition

 $x^* \in \mathbb{R}^n$ is a **stationary point** of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ if $\nabla f(x^*) = 0$.

is a stationary point always a local minimizer?

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, then $\nabla f(x^*) = 0$.

proof: suppose by contradiction that $\nabla f(x^*) \neq 0$. consider points of the form $x_{\alpha} = x^* - \alpha \nabla f(x^*)$ for $\alpha > 0$. by definition of the gradient,

$$\lim_{\alpha \to 0} \frac{f(x_{\alpha}) - f(x^{\star})}{\alpha} = -\nabla f(x^{\star})^{\top} \nabla f(x^{\star}) = -\|\nabla f(x^{\star})\|^{2} < 0$$

so for any sufficiently small $\alpha > 0$, we have $f(x_{\alpha}) < f(x^{*})$, which contradicts the fact that x^{*} is a local minimizer.

Definition

 $x^* \in \mathbb{R}^n$ is a **stationary point** of a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ if $\nabla f(x^*) = 0$.

is a stationary point always a local minimizer? no! saddle points, local maximizers.

Second order optimality condition

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a twice differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, then $\nabla^2 f(x^*) \succeq 0$.

Second order optimality condition

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a twice differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, then $\nabla^2 f(x^*) \succeq 0$.

proof: similar to the previous proof. use the fact that the second order approximation

$$f(x_{lpha}) pprox f(x^{\star}) +
abla f(x^{\star})^{ op} (x_{lpha} - x^{\star}) + rac{1}{2} (x_{lpha} - x^{\star})^{ op}
abla^2 f(x^{\star}) (x_{lpha} - x^{\star})$$

is accurate locally to show a contradiction unless $\nabla^2 f(x^*) \succeq 0$: if not, there is a direction v such that $v^T \nabla^2 f(x^*) v < 0$. then $f(x + \alpha v) < f(x^*)$ for α arbitrarily small, which contradicts the fact that x^* is a local minimizer.

Symmetric positive semidefinite matrices

Definition

a symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is **positive semidefinite** (psd) if $x^T Qx \ge 0$ for all $x \in \mathbb{R}^n$.

these matrices are so important that there are many ways to write them! for $Q \in \mathbb{R}^{n \times n}$.

$$Q \in \mathbf{S}_{+}^{n} \iff Q \succeq 0 \iff Q = Q^{T}, \ \lambda_{\min}(Q) \geq 0 \iff v^{T}Qv \geq 0 \quad \forall v \in \mathbb{R}^{n}$$

Symmetric positive semidefinite matrices

Definition

a symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is **positive semidefinite** (psd) if $x^T Qx \ge 0$ for all $x \in \mathbb{R}^n$.

these matrices are so important that there are many ways to write them! for $Q \in \mathbb{R}^{n \times n}$,

$$Q \in \mathbf{S}_{+}^{n} \iff Q \succeq 0 \iff Q = Q^{T}, \ \lambda_{\min}(Q) \geq 0 \iff v^{T}Qv \geq 0 \quad \forall v \in \mathbb{R}^{n}$$

$$Q \in \mathbf{S}_{++}^n$$
 is symmetric positive definite (spd) $(Q \succ 0)$ if $x^T Q x > 0$ for all $x \neq 0$.

Symmetric positive semidefinite matrices

Definition

a symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is **positive semidefinite** (psd) if $x^T Qx \ge 0$ for all $x \in \mathbb{R}^n$.

these matrices are so important that there are many ways to write them! for $Q \in \mathbb{R}^{n \times n}$,

$$Q \in \mathbf{S}^n_+ \iff Q \succeq 0 \iff Q = Q^T, \ \lambda_{\min}(Q) \geq 0 \iff v^T Q v \geq 0 \quad \forall v \in \mathbb{R}^n$$

 $Q \in \mathbf{S}_{++}^n$ is symmetric positive definite (spd) $(Q \succ 0)$ if $x^T Q x > 0$ for all $x \neq 0$. why care about psd matrices Q?

- least-squares objective is quadratic with psd Hessian A^TA
- level sets of $x^T Q x$ are (bounded) ellipsoids if Q > 0
- ▶ the quadratic form $x^T Qx$ is a metric iff Q > 0
- eigenvalue decomp and svd coincide for psd matrices

Outline

Convex sets

Definition

A set $S\subseteq\mathbb{R}^n$ is convex if it contains every chord: for all $\theta\in[0,1]$, w, $v\in S$,

$$\theta w + (1 - \theta)v \in S$$

Convex sets

Definition

A set $S \subseteq \mathbb{R}^n$ is convex if it contains every chord: for all $\theta \in [0,1]$, w, $v \in S$,

$$\theta w + (1 - \theta)v \in S$$

Q: Which of these are convex? ellipsoid, crescent moon, . . .

if $S \subseteq \mathbb{R}^n$ and $T \subseteq \mathbb{R}^n$ are convex, then so are:

- ▶ intersection: $S \cap T$
- ▶ sum: $S + T = \{s + t \mid s \in S, t \in T\}$
- ▶ projection: $\{x:(x,y) \in S\}$

a function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff

a function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff

▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$

$$f(\theta w + (1-\theta)v) \le \theta f(w) + (1-\theta)f(v)$$

a function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff

▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$

$$f(\theta w + (1-\theta)v) \le \theta f(w) + (1-\theta)f(v)$$

Epigraph. epi $(f) = \{(x, t) : t \ge f(x)\}$ is convex

a function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff

▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$

$$f(\theta w + (1-\theta)v) \le \theta f(w) + (1-\theta)f(v)$$

- **Epigraph.** epi $(f) = \{(x, t) : t \ge f(x)\}$ is convex
- **First order condition.** if *f* is differentiable,

$$f(v) \ge f(w) + \nabla f(w)^{\top} (v - w), \qquad \forall w, v \in \mathbb{R}^n$$

a function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff

▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$

$$f(\theta w + (1-\theta)v) \le \theta f(w) + (1-\theta)f(v)$$

- **Epigraph.** epi $(f) = \{(x, t) : t \ge f(x)\}$ is convex
- **First order condition.** if *f* is differentiable,

$$f(v) \ge f(w) + \nabla f(w)^{\top} (v - w), \qquad \forall w, v \in \mathbb{R}^n$$

Second order condition. If *f* is twice differentiable, its Hessian is always psd:

$$\lambda_{\min}(\nabla^2 f(x)) \ge 0, \quad \forall x \in \mathbb{R}^n$$

Convexity examples

Q: Which of these functions are convex?

- ▶ quadratic function $f(x) = x^2$ for $x \in \mathbb{R}$
- ▶ absolute value function f(x) = |x| for $x \in \mathbb{R}$
- ▶ quadratic function $f(x) = x^T A x$, $x \in \mathbb{R}^n$, $A \succeq 0$
- quadratic function $f(x) = x^T A x$, A indefinite
- rollercoaster function (cubic) f(x) = (x-1)(x-3)(x-5)
- ▶ hyperbolic function f(x) = 1/x for x > 0
- ▶ jump function f(x) = 1 if $x \ge 0$, f(x) = 0 otherwise
- ▶ jump to infinity function f(x) = 1 if $x \in [-1, 1]$, $f(x) = \infty$ otherwise

if $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ are convex, then so are:

- ightharpoonup cf for $c \ge 0$
- ightharpoonup f(Ax+b) for $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$
- ightharpoonup f + g
- $ightharpoonup \max\{f,g\}$

if $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ are convex, then so are:

- ightharpoonup cf for $c \geq 0$
- ▶ f(Ax + b) for $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$
- ► f + g
- $ightharpoonup \max\{f,g\}$

Q: Pick one and assume f and g are twice-differentiable. What is the easiest way to prove convexity?

if $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ are convex, then so are:

- ightharpoonup cf for c > 0
- ightharpoonup f(Ax+b) for $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$
- ightharpoonup f + g
- $ightharpoonup \max\{f,g\}$

Q: Pick one and assume f and g are twice-differentiable. What is the easiest way to prove convexity? most general rule:

$$f \circ g(x) = f(g(x))$$
 is convex if g is convex and f is convex and nondecreasing

since

$$(f \circ g)''(x) = f''(g(x))(g'(x))^2 + f'(g(x))g''(x)$$

Jensen's inequality

Jensen's inequality generalizes the chord condition to a distribution of points:

Theorem

If $f: \mathbb{R}^n \to \mathbb{R}$ is convex and X is a random variable, then

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$$

Sublevel set

Definition

The **sublevel set** of a function $f: \mathbb{R}^n \to \mathbb{R}$ at level t is

$$S_t = \{x \in \mathbb{R}^n \mid f(x) \le t\}$$

Sublevel set

Definition

The **sublevel set** of a function $f: \mathbb{R}^n \to \mathbb{R}$ at level t is

$$S_t = \{x \in \mathbb{R}^n \mid f(x) \le t\}$$

Theorem

A convex function $f: \mathbb{R}^n \to \mathbb{R}$ has convex sublevel sets.

Sublevel set

Definition

The **sublevel set** of a function $f: \mathbb{R}^n \to \mathbb{R}$ at level t is

$$S_t = \{x \in \mathbb{R}^n \mid f(x) \le t\}$$

Theorem

A convex function $f: \mathbb{R}^n \to \mathbb{R}$ has convex sublevel sets.

proof: Jensen's inequality. if $x, y \in S_t$, then for $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \le \theta t + (1 - \theta)t = t$$

so
$$\theta x + (1 - \theta)y \in S_t$$
.

Quasiconvexity

converse is not true: a function can have all sublevel sets convex, and still be non-convex.

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **quasiconvex** if its sublevel sets are convex.

examples of functions that are quasiconvex but not convex?

Supporting hyperplane

Definition

A supporting hyperplane to a set $S \subseteq \mathbb{R}^n$ at a point $x \in S$ is a hyperplane that touches S at x and lies entirely on one side of S:

$$H = \{ y \in \mathbb{R}^n \mid a^\top y = b \}$$
 supports S at x if $\begin{array}{cc} a^\top x &= b \\ a^\top y &\geq b \end{array} \ \forall y \in S$

Supporting hyperplane

Definition

A supporting hyperplane to a set $S \subseteq \mathbb{R}^n$ at a point $x \in S$ is a hyperplane that touches S at x and lies entirely on one side of S:

$$H = \{ y \in \mathbb{R}^n \mid a^\top y = b \}$$
 supports S at x if $\begin{aligned} a^\top x &= b \\ a^\top y &\geq b \quad \forall y \in S \end{aligned}$

Theorem (Supporting hyperplane)

Any nonempty convex set has a supporting hyperplane at every boundary point.

Theorem (Partial converse)

If a closed set with nonempty interior has a supporting hyperplane at every boundary point, then it is convex.

Theorem (Partial converse)

If a closed set with nonempty interior has a supporting hyperplane at every boundary point, then it is convex.

Theorem

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex \iff for all $x \in \mathbf{relint\ dom}\ f$, the epigraph of f has a supporting hyperplane at (x, f(x)): for some $g \in \mathbb{R}^n$,

$$f(y) \ge f(x) + g^{\top}(y - x) \quad \forall y \in \mathbb{R}^n$$

Theorem (Partial converse)

If a closed set with nonempty interior has a supporting hyperplane at every boundary point, then it is convex.

Theorem

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex \iff for all $x \in \mathbf{relint\ dom}\ f$, the epigraph of f has a supporting hyperplane at (x, f(x)): for some $g \in \mathbb{R}^n$,

$$f(y) \ge f(x) + g^{\top}(y - x) \quad \forall y \in \mathbb{R}^n$$

generalizes first-order condition for convexity to non-differentiable functions!

Theorem (Partial converse)

If a closed set with nonempty interior has a supporting hyperplane at every boundary point, then it is convex.

Theorem

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex \iff for all $x \in \text{relint dom } f$, the epigraph of f has a supporting hyperplane at (x, f(x)): for some $g \in \mathbb{R}^n$,

$$f(y) \ge f(x) + g^{\top}(y - x) \quad \forall y \in \mathbb{R}^n$$

generalizes first-order condition for convexity to non-differentiable functions!

Definition

A vector $g \in \mathbb{R}^n$ is a **subgradient** of $f : \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ if $f(y) \ge f(x) + g^\top(y - x)$ for all $y \in \mathbb{R}^n$.

Example: subgradients

 $f = \max\{f_1, f_2\}$, with f_1 , f_2 convex and differentiable

Q: Where is the function f differentiable? Where is the subgradient unique?

Subdifferential

set of all subgradients of f at x is called the **subdifferential** $\partial f(x)$

$$\partial f(x) = \{g : f(y) \ge f(x) + g^T(y - x) \quad \forall y\}$$

Subdifferential

set of all subgradients of f at x is called the **subdifferential** $\partial f(x)$

$$\partial f(x) = \{g : f(y) \ge f(x) + g^T(y - x) \quad \forall y\}$$

for any f,

- $ightharpoonup \partial f(x)$ is a closed convex set (can be empty)
- $ightharpoonup \partial f(x) = \emptyset \text{ if } f(x) = \infty$

proof: use the definition

Subdifferential

set of all subgradients of f at x is called the **subdifferential** $\partial f(x)$

$$\partial f(x) = \{g : f(y) \ge f(x) + g^T(y - x) \quad \forall y\}$$

for any f,

- $ightharpoonup \partial f(x)$ is a closed convex set (can be empty)

proof: use the definition

if f is convex,

- ▶ $\partial f(x)$ is nonempty, for $x \in \mathbf{relint} \, \mathbf{dom} \, f$
- ▶ $\partial f(x) = {\nabla f(x)}$, if f is differentiable at x
- ▶ if $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$

Outline

Convex optimization

an optimization problem is convex if:

▶ **Geometrically:** the feasible set and the epigraph of the objective are convex

for example, a nonlinear minimization is convex if the objective and inequality constraints are convex functions, and the equality constraints are affine

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i=1,\ldots,m_1$
 $Ax=b_2$
variable $x \in \mathbb{R}^n$

Convex optimization

an optimization problem is convex if:

▶ **Geometrically:** the feasible set and the epigraph of the objective are convex

for example, a nonlinear minimization is convex if the objective and inequality constraints are convex functions, and the equality constraints are affine

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i=1,\ldots,m_1$
 $Ax = b_2$
variable $x \in \mathbb{R}^n$

concave functions:

- ightharpoonup a function f is concave if -f is convex
- ▶ concave maximization ⇒ a convex optimization problem

Why care about convex optimization?

- ▶ local optimality ⇒ global optimality
- efficient solvers
- conceptual tools that generalize linear programming: duality, stopping conditions, ...

Local minima are global for convex functions

Theorem

If x^* is a local minimizer of a convex function f, then x^* is a global minimizer.

Local minima are global for convex functions

Theorem

If x^* is a local minimizer of a convex function f, then x^* is a global minimizer.

proof?

Local minima are global for convex functions

Theorem

If x^* is a local minimizer of a convex function f, then x^* is a global minimizer.

proof? suppose by contradiction that another point x' is a global minimizer, with $f(x') < f(x^*)$. draw the chord between x' and x^* . since the chord lies above f, every convex combination $x = \theta x^* + (1 - \theta)x'$ of x' and x^* for $\theta \in (0,1)$ has a value $f(x) < f(x^*)$. this is true even for $x \to x^*$, contradicting our assumption that x^* is a local minimizer.

Corollary

Corollary

If f is convex and differentiable and $\nabla f(x^*) = 0$, then x^* is a global minimizer.

Corollary

Corollary

If f is convex and differentiable and $\nabla f(x^*) = 0$, then x^* is a global minimizer.

Q: Is a global minimizer of a convex function always unique?

Corollary

Corollary

If f is convex and differentiable and $\nabla f(x^*) = 0$, then x^* is a global minimizer.

Q: Is a global minimizer of a convex function always unique?

A: No. Picture.

after today, you should be able to:

- assess whether a point is a local or global minimizer
- state and apply first- and second-order optimality conditions
- define convex sets and functions
- prove convexity using different definitions and operations that preserve convexity
- state and apply Jensen's inequality
- compute subgradients of simple functions
- certify that a point is a global minimizer of a convex function