Analysis I

Organisation, Tipps & Tricks und Literaturhinweise

Mathe...

- ist intellektuell extrem herausfordernd
- kommt mit einem hohen Arbeitsaufwand
- oft falschen Erwartungen und
- ist wie Ausdauersport

aber dafür ist Mathe eines der schönsten Studien c:

Generelles Zeitmanagement:

- Vor- und Nachbereitung wahrscheinlich mehr als die gesetzten $14 \times 3 \, h = 4.2 \cdot 10^1 \, h$
- Klausurvorbereitung auch mehr als $3.9 \cdot 10^1\,\mathrm{h}$
- Pro Woche $2 \times 1.5 \, \text{h}, \, 2 \times 2 \, \text{h}, \, 1.5 \, \text{h}, \, 1.0 \cdot 10^1 \, \text{h}$
- Es gibt immer eine Aufgabe die man nicht lösen kann
- In die Vorlesungen kommen

Vorlesung:

- normal nicht alles zu verstehen
- Notizen was man nicht versteht
- Punkte konzise angehen
- Mathe muss sich gedanklich setzen genügend Zeit zu verarbeiten

Übungen:

- zeitintensiv
- Ergebnisse vernünftig aufschreiben

- Weg zu einer korrekter Lösung ist sehr langwierig
- nicht 10 Blätter Papier ab, von denen 9.5 inkonklusiv sind
- also schön Aufschreiben

Wenn wir einen Satz gezeigt bekommen, dann bekommen wir nicht die gescheiterten Jahrelangen Versuche zur Schau, sondern nur die Ausgearbeitete Lösung \rightarrow also bei uns auch langer weg, aber Aufschreiben nur klein

Übungszettel:

- 50% muss richtig sein
- bis Freitag 10:00 Uhr
- in F4
- diese Woche nicht so umfangreich, weil weniger Zeit
- auf ILIAS Terminfindung Abstimmung
- Donnerstag Einteilung in Tutorien
- Blätter tackern :c
- alle zwei Wochen Beweismechanik Aufgaben, nur digital nicht in Papier (ist dann die letzte Aufgabe)

Literaturempfehlung:

- Otto Forster: Analysis 1
 - kurz und knapp aber konzise, udn das hilft
 - ähnliche Struktur wie Vorlesung
 - weig motivation und wenige Querverbindungen
- Königsberger: Analysis 1
 - kurz aber konzise
 - alle themen der Vorlesung, andere Struktur
 - mehr motivation und Querverbindungen
- Klaus Fritsche: Grundkurs Analysis 1
 - ausführlich

- Daniel Grieser: Analysis I
 - Ausfühlich, aber mit Fokus auf das Wesentliche
 - alle Themen der Volesung enthalten, ähnliche Struktur
 - bunt??
- Harro Huser: Lehrbuch der Analysis Teil 1
 - extrem ausfühlich,dick, an einigen stellen sehr extensiv
 - alle und mehr Themen als Vorlesung
 - Querverbindungen
- Walter Rudin: Analysis
 - sehr knapp und elegant
 - klassiker
 - alle themen der Volesung, leicht andere Struktur
 - empfehlenswertes Buch fortgeschrittene Leser*innen
 - nicht für Anfänger*innen
- Herber amann, Joachim Escher: Analysis I
 - strkt logischer Aufbau, damit teils länglich. Großes Bild
 - alle Themen, andere Struktur
 - auch nicht für anfänger*innen
- Terence Tao: Analysis (englisch, aber gut)
- Rober Denk, Reinhard Racke: Kompendium der ANalysis
 - kurz und knapp, teils wie Nachschlagewerk
 - alle themen
- Florian Modler, Martin Kreh: Tutorium Analysis 1 und Lineare Algebra 1
 - kurz und knapp, teils wie nachschalgewerk
 - von studierende für studierende
 - aber enthält ein paar Fehler

1 Natürliche Zahlen und elemntare Begriffe

1.1 Zahlbereiche

$$\mathbb{N} := \{1, 2, 3, \dots\}$$

$$\mathbb{N}_0 := \{0, 1, 2, 3, \dots\}$$

$$\mathbb{Z} := \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

$$\mathbb{Q} := \{\frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}\}$$

$$\mathbb{R} := \{ \text{ reelle Zahlen } \}$$

Wir besprechen gar nicht was eine Menge ist, das ist zu philosophisch Es ist schwierig Mengen zu Definieren, man kommt schnell auf logische Wiedersprüche

- Notation: für x schreiben wir für eine Eigenschaft A "A(x)", falls x A erfüllt.
- \rightarrow Menge aller Objekte x mit A(x)

$${x:A(x)}$$

- \rightarrow gibt es kein x mit A(x), so nennen wir die Menge leer, " \emptyset "
- ∃≜ Existenzquantor, "es existiert"
- A, B, Eig., $M := \{x : x \text{ erf. } A\}$ $N := \{x : \text{ erf. } B\}$ $M \subset N$, falls $\forall x \in M : x \in N$
- M = N, falls $M \subset N \vee N \subset M$
- "Echte Tielmenge": $M \nsubseteq N$, falls $M \subset N, N \neq N$.

Example 1.1.1 (gerade Zahlen)

$$n \in \mathbb{N}_0 \text{ gerade } : \iff (\exists k \in \mathbb{N}_0 : n = 2k)$$

$$M := \{ n \in \mathbb{N}_0 : \exists k \in \mathbb{N}_0 : n = 2k \}$$
 (1)

$$= \{2k : k \in \mathbb{N}_0$$
 (2)

Example 1.1 $\mathbb{N} \subsetneq \mathbb{N}_0 \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R}$

Zu $\mathbb{Q} \subsetneq \mathbb{R} : \sqrt{2} \notin \mathbb{Q}$. Widerspruchsbeweis: Ang., $\sqrt{2} \in \mathbb{Q}$, so $\sqrt{2} = \frac{p}{q}$, mit $p \in \mathbb{N}_0, q \in \mathbb{N}$. $\times p$, $\times p$ teilerfremd (d.h. Bruch ist vollständig gekürzt)... Also $p^2 = 2q^2$

- $\implies p$ ist gerade. Also p = 2l mit $l \in N_0$.
- $\implies 4l^2 = p^2 = 2q^2 \implies 2l^2 = q^2 \implies q \text{ gerade.}$
- $\implies p, q \text{ gerade.} \implies p, q \text{ nicht teilerfremd.}$

1.2 Vollständige Induktion

• Ziel: Beweis von Aussagen für alle $n \in \mathbb{N}_0$

Dominoprinzip: Wenn alle Steine umfallen sollen,

- müssen wir den 1. Stein umwerfen,
- muss stehts der n-te Stein den (n+1)-ten umwerfen.

Prinzip (vollst. Ind.) Wollen wir eine Aussage $A(n) \forall n \in \mathbb{N}$ zeigen; so zeigen wir

- (i) A(1) gilt (Induktionsanfang)
- (ii) Aus A(n) für $n \in \mathbb{N}$ stets A(n+1) folgt. (Induktionsschritt)

Definition 1.2 Summen

Für $x_{-1}, \ldots, x_n \in \mathbb{R}$ definieren wir

$$\sum_{k=1}^{n} x_k \coloneqq x_1 + \ldots + x_n$$

Example 1.3 Geometrische Summe

 $\forall n \in \mathbb{N}:$

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \tag{3}$$

I.A. n = 1

$$\sum_{k=0}^{1} x^{k} = x^{0} + x^{1} = 1 + x = \frac{(1-x)(1+x)}{1-x} = \frac{1-x^{2}}{1-x}$$

I.S.

$$n \rightarrow n+1$$

Angenommen, (equation) gilt für ein $n \in \mathbb{N}$. z.z. (equation) gilt für n+1

$$\sum_{k=0}^{n+1} x^k = \left(\sum_{k=0}^n x^k\right) + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + x^{n+1}$$

• • •

Example 1.4 Für welche $n \in \mathbb{N}$ gilt $n^2 < 2^n$?

•
$$n = 1 \rightarrow 1 < 2$$

 $n = 2 \rightarrow n^2 = 4 \not< 4 = 2^2$
 $n = 3 \rightarrow n^2 = 9 \not< 2^3$
 $n = 4 \rightarrow n^2 = 16 \not< 16 = 2^4$
 $n = 5 \rightarrow n^2 25 < 32 = 2^5$

Wir versuchen die Aussage $\forall n \geq 5$ zu zeigen.

I.A.:
$$n = 5 : n^2 = 25 < 32 = 2^5$$

I.S.: Ang., Aussage gilt für $n \ge 5$. Wir müssen zeigen:

$$(n+1)^2 < 2^{n+1}$$

$$(n+1)^2 = \underbrace{n^2}_{<2^n} + 2n + 1 < 2^n + 2n + 1 \mid^? 2^{n+1}$$
 Angenommen, es gilt

$$\forall n \ge 5: 2n+1 < 2^n \tag{4}$$

Dann:
$$(n+1)^2 < \dots < 2^n + 2n + 1 = 2 * 2^n = 2^{n+1}$$

• Wir zeigen (4) wiederum mit voll. Ind.

I.A.:
$$n = 52n + 1 = 11 < 32 = 2^5$$

I.S.: Ang., (4) gilt für
$$n \in \mathbb{N}$$
. Dann gilt: $2(n+1)+1=2n+3=(2n+1)+2<2^n+2<2^n+2^n=2*2^n=2^{n+1}$.

Definition 1.5

für $n \in \mathbb{N}_0$ definieren wir die Fakultät via $n! := n \times (n-1) \times \cdots \times 2 \times 1$, falls $n \ge 1$, und 0! := 1. Für $k \in \{0, \dots, n\}$ definieren wir den Binomialkoeffizienten

$$\binom{n}{k} \coloneqq \frac{n!}{k!(n-k)!}.$$

Lemma 1.6

Für alle $n \in \mathbb{N}$ und alle $k \in \{1, \dots, n\}$:

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

Proof

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!(n-k+1)}{k!(n-k)!(n-k+1)} + \frac{n!(k)}{(k-1)!(n-(k-1)k)!(k)}$$
$$= \frac{n!n+n!}{k!(n-k+1)!} = \frac{n!(n+1)}{k!(n-k+1)!}$$

Example 1.7 (Binomische Formel)

Für $x, y \in \mathbb{R}$ und $n \in \mathbb{N}_0$:

$$(x+y)^n? \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Sei also $x, y \in \mathbb{R}$.

I.A.: n = 0. $(x + y)^0 = 1 = \binom{0}{0} x^0 y^0$

I.S.: Gelte die Aussage für $n \in \mathbb{N}_0$

$$(x+y)^{n-1} = (x+y)(x+y)^n = (x+y)\sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
 (5)

$$= x \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} + y \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$
 (6)

$$= \sum_{k=0}^{n} \binom{n}{k} x^{k+1} y^{n-k} + \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n+1-k}$$
 (7)

Indexverschiebung: l = k + 1. $l \in \{1, ..., n + 1\}$

$$(7) = \sum_{l=1}^{n} \binom{n}{l-l} x^{l} y^{n+1-l} + \sum_{l=0}^{n} \binom{n}{l} x^{l} y^{n+1-l}$$
Hier Indexverschiebung
$$= \binom{n}{n} x^{n+1} y^{0} + \left(\sum_{k=0}^{n} \binom{n}{l-1} + \binom{n}{l} x^{l} y^{n+1-l}\right) + \binom{n}{0} x^{0} y^{n+1}$$

$$= \binom{n+1}{n+1} x^{n+1} y^{0} + \left(\sum_{l=1}^{n} \binom{n+1}{l} x^{l} y^{(n+1)-l}\right) + \binom{n+1}{0} x^{0} y^{n+1}$$

$$= \sum_{l=0}^{n+1} \binom{n+1}{l} x^{l} y^{(n+1)-l}$$

1.2.1 Characterisierung der natürlichen Zahlen

Definition 1.2.1

Eine Teilmenge $M \subset \mathbb{R}$ heißt induktiv, falls

- (i) $1 \in M$
- (ii) $\forall x \in M : x + 1 \in M$

Example 1.2.2

- (a) \mathbb{N} sind ind. Menge.
- (b) $A := \{2n : n \in \mathbb{N}_0\}$ nicht ind. Menge, da (i) $1 \neq A$, (ii) 2n+1 ist immer ungerade
- (c) $B := \{2n+1 : n \in \mathbb{N}_0\}$ nicht ind.: (i), aber 2n+1+1=2(n+1)
- (d) $\mathbb{Q}^+ := \{x \in \mathbb{Q} : q > 0\}$ ist ind. Teilmenge
- Sei $(A_i)_{i \in I}$ mit I Indexmenge eine Familie von Mengen. setze

$$\bigcap_{i \in I} \coloneqq \{x : (\forall i \in I : x \in A_i)\} \quad \text{Schnitt}$$

$$\bigcup_{i \in I} \coloneqq \{x : (\exists i \in I : x \in A_i)\} \quad \text{Vereinigung}$$

Proposition 1.2.3

Für eine Menge $M \subset \mathbb{R}$ sind äquivalent

- (i) $M = \mathbb{N}$
- (ii) Ist $N \subset \mathbb{R}$ induktiv, so $M \subset N$
- (iii)

$$M = \bigcap_{N \subset \mathbb{R}} N \text{ induktiv}$$

$$(i) \iff (ii) \iff (iii)$$

2 Körper 9

Proof

'(i) \Longrightarrow (ii)': Sei $N \subset \mathbb{R}$ beliebige ind. Teilmengen von \mathbb{R} . Zu zeigen: $M \stackrel{(i)}{=} \mathbb{N} \subset N$ Aber $1 \in \mathbb{N}$, und $1 \in N$ (da N ind.), Da N ind. ist, ist mit jeder nat. $x \in \mathbb{N}$ also auch $x \in N$. Damit $x + 1 \in \mathbb{N}$ $\mathbb{N} \subset N$.

 $(ii) \implies (iii)$, Wir zeigen:

$$\bigcap_{N \text{ ind. Menge}} N$$

ist ind. Menge

$$\stackrel{(ii)}{\Longrightarrow} M \stackrel{(ii)}{\subset} N \subset M$$
. Also

$$M = \bigcap_{N \text{ ind.}} N.$$

$$\bigcap_{N \text{ ind}} N$$
 induktiv:

(i)

$$(\forall N \text{ ind: } 1 \in N) \implies 1 \in \bigcap_{N \text{ ind.}} N$$

(ii)

$$\forall x \in \mathbb{R} : x \in \bigcap_{N \text{ ind.}} N \left(\implies x \in \bigcap_{N \text{ ind.}} N \right) \stackrel{\text{DEF.}}{\Longrightarrow} \forall N \text{ ind.} : x+1 \in N \implies x+1 \in \bigcap_{N \text{ ind.}} N = 0$$

'(iii) \implies (i)' Noch zu zeigen (blöd glaube ich oder ÜA, wir hatten auf jeden Fall keine Zeit in der Vorlesung)

2 Körper

2.1 Was sind Strukturen?

2.2 Körper

Definition 2.2.1 Körper

in script of Prof. and on paper

Example 2.2.2

in script of Prof. and on paper

2 KÖRPER 10

Example 2.2.3

in script of Prof. and on paper

Lemma 2.2.4

in script of Prof. and on paper

Lemma 2.2.5

in script of Prof. and on paper

Definition 2.1

In der Situation von definition 2.2.1 sei $n \in \mathbb{N}$, sowie $x_1, \ldots, x_n \in K$. Wir definieren rekursiv $x_1 + \cdots + x_n := (x_1 + \cdots + x_{n-1}) + x_n, x : \cdots \times x_n := (x_1 + \cdots + x_{n-1}) \cdot x_n$

Definition 2.2

In der Situation von Definition 2.2.1 sei $n \in \mathbb{N}_0$ und $x \in K$. Wir definieren

$$x^0 \coloneqq 1_K \text{ und } x^n \coloneqq (x^{n-1} \cdot x, n \in \mathbb{N})$$

Ist $x \in K \setminus \{0\}$, so sei für $n \in \mathbb{N} : x^{-n} := (x^{-1})^n$.

Lemma 2.3

Für alle $x, y \in K$, $m, n \in \mathbb{N}_0$:

i)
$$x^n \cdot x^m = x^{n+m}$$
,

ii)
$$(x^n)^m = x^{n \cdot m}$$
,

iii)
$$x^n \cdot y^n = (x \cdot y)^n$$

Ist zudem $x, y \neq 0_K$, so gelten diese Identitäten auch für $n, m \in \mathbb{Z}$

Proof :

Fixiere $n \in \mathbb{N}_0$, nun Induktion nach m.

I.A.
$$m = 0$$
. $x^n \cdot x^0 \stackrel{\text{Def.}}{=} x^n \cdot 1_K \stackrel{\text{(M2)}}{=} 1_K \cdot x^n \stackrel{\text{(M3)}}{=} x^n = x^{n+0}$

I.S. Gelte die Aussage für ein $m \in \mathbb{N}_0$. Zeige für $m \curvearrowright m+1$

$$x^n \cdot x^{m+1} \stackrel{\text{Def.}}{=} x^n (x^m) \cdot x) \stackrel{(\text{M1})}{=} (x^n \cdot x^m) \cdot x \stackrel{\text{IV}}{=} x^{n+m} \cdot x \stackrel{\text{Def.}}{=} x^{n+m+1}$$

2.3 Angeordnete Körper

• Ziel Vergleich von Elementen hinsichtlich "Größe"

2 Körper 11

Definition 2.3.1

Eine **Relation** auf einer Menge M ist eine Teilmenge $R \subset M \times M$. Ist $(x, y) \in R$, so schreiben wir auch xRy oder R(x, y) und sagen, dass x und y über R in Relation stehen.

Example 2.3.2

M = Stidierende im H"orsaal,

 $(x,y) \in M \times M : xRy : \iff x \text{ kennt den Namen von } y$

- R reflexiv? (d.h. $\forall x \in M : xRy$) Ja
- R symmetrisch? (d.h. $\forall x, y \in M : xRy \iff yRx$) Nein
- R transitiv? (d.h. $\forall x, y, z \in M : xRy \land yRx \implies xRz$) Nein

Definition 2.3.3

Sei R eine Relation auf einem Kürper K. R heiß Ordnung auf K, falls gilt

- (i) **Trichotomie:** $\forall x \in K$: Entweder $0_K Rx, xR0_K$ oder $x = 0_K$
- (ii) Abgeschlossenheit bezüglich Addition $\forall x, y \in K : 0_K R x, 0_K R y \implies 0_K R (x+y)$
- (iii) Abgeschlossenheit bezüglich Multiplikation $\forall x, y \in K : 0_K R x, 0_K R y \implies 0_K R (x \cdot y)$

Das Tupel (K, R) heißt **angeordneter Körper.** (Schreibe auch '<' für R).

Setze für $a, b \in K$:

$$a < b : \iff 0_K < (b - a)$$

$$a > b : \iff b < a$$

$$a \le b :\iff a < b \lor a = b$$

$$b \ge a : \iff a \le b$$

Lemma 2.3.4

Sei (K, <) angeordneter Körper, $a, b, c \in K$

- (i) Entweder $a > b, a = b \lor a < b$.
- (ii) $a < b \land b < c \implies a < c$
- (iii) $(a > 0 \implies (-a) < 0) \land (a < 0 \implies (-a) > 0)$
- (iv) Gilt a < b, so ist

$$ac < bc, \qquad c > 0$$

$$ac > bc,$$
 $c < 0$

$$a^2 > 0, \qquad a \neq 0$$

$$a > 0 \implies a^{-1} > 0$$

$$a < 0 \implies a^{-1} < 0$$

$$b^{-1} < a^{-1}$$
, falls $a > 0$

a + c < b + c.

2 KÖRPER 12

(v) $a < b \implies (-a) > (-b)$

Proof (i)-(iii)

- (i) Da $a < b \iff 0_K < b a$, folgt das aus Trichotomie und Def. von '>'.
- (ii) zu zeigen: ayc, d.h. $0_K < c a$.

$$c - a = (c + 0_K) - a = \underbrace{(c - b)}_{>0} + \underbrace{(b - a)}_{>0} > 0$$
, d.h. $a < c$

(iii) a > 0. Angenommen, (-a) > 0. $\stackrel{\text{Abg. Add.}}{\Longrightarrow} 0_K = a + (-a) > 0_K \stackrel{\text{Trich.}}{\Longrightarrow} E$ Ist -a = 0, so a = 0, nach Trich. Wid. zu a > 0. Falls a < 0, analog.

Corollary 2.3.5

Es gibt keine Ordnung '<' auf \mathbb{F}_2 , die \mathbb{F}_2 zu einem angeordneten Körper macht

Proof

Angenommen, '<' sei Ordnung. Da $0_K \neq 1_K$, gilt entweder $0_K < 1_K$ oder $1_K < 0_K$ (nach Trich.). Falls $0_K < 1_K$. Dann $0_K = 1_K + 1_K$ damit $0_K = 1_K + 1_K > 0_K + 1 = 1_K$. Widerspruch für $1_K < 0_K$ argumentiere analog.

• Prinzip: $\mathbb{R} \wedge \mathbb{Q}$ sind angeordnete Körper

2.4 Der Betrag

('Abstand zur Null')

Definition 2.4.1

Für $x \in \mathbb{R}$ definieren wir den Betrag $|x| \coloneqq \begin{cases} x, & x \geq 0, \\ -x, & x < 0 \end{cases}$

Lemma 2.4.2

Der in Def 2.4.1 eingeführte Betrag erfüllt

- (i) $forall x \in \mathbb{R}|x| \ge 0$
- (ii) $|x| = 0 \iff x = 0$
- (iii) Multiplikativität: $\forall x, y \in \mathbb{R} : |x \cdot y| = |x| \cdot |y|$
- (iv) Dreiecksungleichung: $\forall x, < \in \mathbb{R} : |x+y| \le |x| + |y|$
- $(v) \ \forall x \in \mathbb{R} : |-x| = |x|$
- (vi) $\forall x, y \in \mathbb{R} : y \neq 0 \implies \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

2 Körper 13

2.5 Das Archimedische Axiom

• Das muss gefordert werden

2.6 Supremum, Infimum und die Supremumseigenschaft

ullet Ziel: Entscheidende Eigenschaft von $\mathbb R$

Definition 2.6.1

Eine nichtleere Teilmenge $A \subset \mathbb{R}$ heißt

- nach oben beschränkt, falls $\exists c \in \mathbb{R} \forall x \in A : x \leq c$. Ein solches c "obere Schranke"
- nach unten beschränkt, falls $\exists c \in \mathbb{R} \forall x \in A : c \leq x$ "untere Schranke"

Example 2.6.2

- $A = N_0$ durch 0 nach unten, nach oben unbegrenzt
- $A = \{1, 2, \dots, 10\}$ durch 1 nach unten, und durch $10, 11, \dots$ nach oben beschränkt

Definition 2.6.3

Sei $a \subset \mathbb{R}$ nichtleer

- (i) Ist A nach oben beschränkt, so heißt $s = \sup A$ Supremum von A, falls s obere Schranke ist und kleinste obere Schranke ist $d.h. \ \forall c \in \mathbb{R} : c$ obere Schranke von $A \implies s \leq c$. Ist $s \in A$ Supremum von A, so heißt s Maximum von A.
- (ii) Ist A nach oben unbeschränkt, so sei $+\infty$ das Supremum von A.
- (iii) Ist A nach unten beschränkt, so nennen wir $s' \in \mathbb{R}$ Infimum von A, falls s' untere Schranke und für jede andere untere Schranke $d \in \mathbb{R}$ von A: $d \leq s'$. Ist $s' \in A$ Infimum, so heißt s' Minimum von A.
- (iv) Ist A nach unten unbeschränkt, so sei $-\infty$ das Infimum von A

Schreibweise: $\sup(A), \max(A), \inf(A), \min(A)$.

Example 2.6.4

Für $a, b \in \mathbb{R}$ mit ayb sei $(a, b) := {\mathbb{R} : a < x < b}$ Dann: $\sup((a, b)) = b \wedge \inf((a, b)) = a$.

- Obere Schranke: $\forall x \in (a, b) : x < b \implies b$ obere Schranke.
- Ist d andere obere Schranke, so $b \leq d$. Klar: d > a, also angenommen a < d < b. Dann $x := \frac{d+b}{2} \in (a,b), x > d$. $\Longrightarrow d$ keine obere Schranke f Weiter $b \notin (a,b)$, also b Supremum, kein Maximum

Prinzip (Supremumseigenschaft)

 $\sup = \sqrt{2}$ (später). Aber $\sqrt{2} \notin \mathbb{Q}$, also gilt die Supremumseigenschaft für \mathbb{Q} nicht.

 \mathbb{R} ist

- Körper
- angeordente Körper
- bewerteter Körper
- Archimedisch angeordnete Körper
- Supremumseigenschaft

3 Folgen und Konvergenz

3.1 Reele Folgen und Konvergenz

Folge $a: \mathbb{N} \ni n \mapsto a(n) \in \mathbb{R}$. Schreibweisen:

$$(\underbrace{a_n}_{(=a(n))})_{n\in\mathbb{N}}(n \text{ Laufindex}), (a_n)$$

Example 3.1.1

 $a_n := 2n \rightarrow \text{ Folge der geraden Zahlen}$

 $a_n \coloneqq 2n+1 \to \text{ Folge der ungeraden Zahlen}$

Definition 3.1.2 Konvergenz

Sei (a_n) eine Folge in \mathbb{R} $((a_n) \subset \mathbb{R})$ und $a \in \mathbb{R}$. Wir sagen, dass (a_n) gegen a konvergiert, falls $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \geq N : |a_n - a| < \varepsilon$

Wir nennen a dann den **Grenzwert** oder **Limes** von (a_n) und schreiben

$$\lim_{n\to\infty}a\coloneqq a$$

Gibt es $a \in \mathbb{R}$ so, dass (a_n) , 'gegen a konvergiert, so nennen wir (a_n) konvergent, andernfalls divergent.

Lemma 3.1.3

Sei $(a_n) \subset \mathbb{R}$ eine Folge, die gegen $a, b \in \mathbb{R}$ konvergiert. Dann a = b.

Proof

Sei $\varepsilon > 0$ bel.. Dann

$$\exists N \in \mathbb{N} \forall n \geq N : |a_n - a| < \frac{\varepsilon}{2} \land |a_n - b| < \frac{\varepsilon}{2}$$

$$\implies \forall n \geq N : |a - b| = |(a - a_n) + (a_n - b)| \leq |a_n - a| + |a_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$\xrightarrow{\forall \varepsilon \setminus a = b} a = b$$

Für jedes $\varepsilon > 0$: Ab irgendeinem N bleibt die Folge für immer im ε -Streifen um a.

Example 3.1.4

$$(a_n)_{n\in\mathbb{N}}=\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$$
. Vermute: Limes $\lim_{n\to\infty}\frac{1}{n}=0$. Sei $\varepsilon>0$. Mit Archimedes $\exists N\in\mathbb{N}: \frac{1}{\varepsilon}< N$. Dann $\forall n\geq N: \left|\frac{1}{n}\right|=\frac{1}{n}\leq \frac{1}{N}<\varepsilon$.

Example 3.1.5

 $\forall a \in \mathbb{R} : (a_n) = (a)$ (konstante Folge) konvergent gegeben a

Example 3.1.6

$$\lim_{n\to\infty} \frac{n}{2^n} = 0. \text{ Sei } \varepsilon > 0. \text{ Nach } 1.2.3 \ \forall n \geq 5: n^2 < 2^n. \text{ Nach Arch. } \exists N \in \mathbb{N}: N \geq 5 \land \frac{1}{\varepsilon} < N. \implies \forall n \geq N: \left|\frac{n}{2^n} - 0\right| = \frac{n}{2^n} \overset{\text{Ugl}}{<} \frac{1}{n} \overset{n \geq N}{\leq} \frac{1}{N} < \varepsilon$$

Example 3.1.7

$$(a_n)_{n\in\mathbb{N}} := ((-1)^n)_{n\in\mathbb{N}}$$

Beh.: $\neg \exists a \in \mathbb{R} : (a_n)_{n \in \mathbb{N}}$ konv. gg a. Angenommen, es gäbe so ein $a \in \mathbb{R}$. Wähle $0 < \varepsilon < 1$.

Dann $\exists N \in \mathbb{N} \forall n \geq N : |(-1)^n - a| < \varepsilon$.

Dann:
$$2 = |1 - (-1)| \le \underbrace{|(1-a)|}_{|a-(-1)^n|} \le |(-a)^n - a| + \underbrace{|a+1|}_{|a-(-1)^n|} < 2\varepsilon < 2$$

Example 3.1.8

 (a_n) reele Folge.

- $\exists \varepsilon > 0 \exists N \in \mathbb{N} \forall n \geq N : |a_n a| < \varepsilon$. Für $\varepsilon = 1$ efüllt die Folge aus example 3.1.7 dies! Nicht äquivalent zu Konvergenz!
- $\forall \varepsilon > 0 \forall N \in \mathbb{N} \exists n \geq N : |a_n a| < \varepsilon$ Folge aus example 3.1.7 erüllt dies - nicht äquivalent!

3.2 Rechenregeln für Grenzwerte

Theorem 3.2.1

Seien $(a_n), (b_n) \subset \mathbb{R}$ konv. gegen $a \in \mathbb{R}$ bzw. $b \in \mathbb{R}$. Dann

- (i) $(a_n + b_n)$ konvergiert gegen $a + b \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$
- (ii) $(a_n \cdot b_n)$ konvergiert gegen $a \cdot b$

(iii) Ist $b \neq 0$ so existiert ein $N \in \mathbb{N}$ mit $n \geq N \implies b \neq 0$, und es gilt:

$$\left(\frac{a_n}{b_n}\right)_{n\geq N}$$
 konv gg $\frac{a}{b}$.

Proof

Sei $\varepsilon > 0$

Wg. Konv. $a_n \to a \exists N_1 \in \mathbb{N} : \forall n \geq N_1 : |a_n - a| < \frac{\varepsilon}{2}$

Wg. Konv. $b_n \to b \exists N_2 \in \mathbb{N} : \forall n \geq N_2 : |b_n - b| < \frac{\varepsilon}{2}$

$$(a_n), (b_n), a_n \to a, b_n \to b \implies a_n + b_n \to a + b$$

Definition 3.2.2

Wir sagen, dass $(a_n) \subset \mathbb{R}$ beschränkt ist, falls $\exists M > 0 \forall n \in \mathbb{N} : |a_n| \leq M$.

Lemma 3.2.3

Konvergente Folgen sind beschränkt.

Proof

Angenommen, (a_n) konvergiert gegen $a \ni \mathbb{R}$. Mit $\varepsilon = 1$ ex. $N \in \mathbb{N}$:

$$(\forall n \ge N : |a_n - a| < 1) \implies \forall n \ge N : ||a_n| - |a|| < 1 \implies |a_n| \le 1 + |a|$$

Setze $M := \max\{|a_1|, \dots, |a_N|, 1 + |a|\}$, so $\forall n \in \mathbb{N} : |a_n| \leq M$.

Zurück zum Beweis von Satz 3.2.1 (b) und (c):

$\overline{\text{Proof}}$

(b) zu zeigen
$$a_n \to a \land b_n \to b \implies a_n b_n \to ab$$

$$|a_n b_n - ab| = |(a_n b_n - ab_n) + (ab_n - ab)| \le |b_n| \cdot |a_n - a| + |a||b_n - b|$$
(8)

Sei $\varepsilon > 0$. Da (b_n) beschr., ex. nach Lemma 3.2.3 ein $M > 0: \forall n \in \mathbb{N}: |b_n| \leq M$. Da $a_n \to a, b_n \to b$

$$(1) \ \exists N_1 \in \mathbb{N} \forall n \ge N_1 : |a_n - a|_{\frac{\varepsilon}{2M}}$$

(2)
$$\exists N_2 \in \mathbb{N} \forall n \geq N_2 : |a_n - a| \frac{\varepsilon}{1 + |a|}$$

$$(8) \implies \forall n \ge N \coloneqq \max\{N_1, N_2\} : |a_n b_n - ab|$$

$$\overset{(8)}{\leq} M \cdot \frac{\varepsilon}{2M} + \underbrace{|a| \cdot \frac{\varepsilon}{2(1+|a|)}}_{<\frac{\varepsilon}{2}} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Damit (b).

(c)
$$a_n \to a, b_n \to b \neq 0 \implies \frac{a_n}{b_n} \to \frac{a}{b}$$

$$(1) \exists n_0 \in \mathbb{N} \forall n \ge n_0 : |b_n| \ne 0.$$

$$\forall \varepsilon > 0 \exists \widetilde{N} \forall n \ge \widetilde{N} : |b_n - b| < \varepsilon,$$

d.h.
$$|b| - \varepsilon \le |b_n|$$

Wende Dies auf
$$\varepsilon = \frac{|b|}{2}$$
 an.

Dann
$$\forall n \geq \widetilde{N} : 0 < \frac{|\widetilde{b}|}{2} \leq |b_n|$$
. setze nun $n_0 := \widetilde{N}$

(2)
$$b_n \to b \neq 0$$
, so $\frac{1}{b_n} \to \frac{1}{b}$.

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \left|\frac{b - b_n}{b_n b}\right| = \frac{|b_n - b|}{|b_n| \cdot |b|} \tag{9}$$

Für $n\widetilde{N}: \frac{|b|}{2} < |b_n|$, also $\frac{1}{|b_n|} < \frac{2}{|b|}$, also $\frac{1}{|b_n||b|} \frac{2}{|b|^2}$

Sei $\varepsilon > 0$. Dann $\exists \widetilde{\widetilde{N}} \in \mathbb{N} : \forall n \geq \widetilde{\widetilde{N}} : |b_n - b| < \frac{\varepsilon |b|^2}{2} \cdot \frac{2}{|b|^2} = \varepsilon$

(3)
$$a_n \to a, b_n \to b \neq 0 \stackrel{(2)}{\Longrightarrow} (a_n \to a, \frac{1}{b_n} \to \frac{1}{b}) \stackrel{(b)}{\Longrightarrow} \frac{a_n}{b_n} \to \frac{a}{b}$$

Example 3.2.4

 $a, b, c, d \in \mathbb{R}, c \neq 0, d \neq 0.$

$$\lim_{n\to\infty}\frac{an^2+b}{cn^2+d}=\lim_{n\to\infty}\frac{a+\frac{b}{n^2}}{c+\frac{d}{n^2}}=\lim_{n\to\infty}\frac{a_n}{b_n}$$

- $\frac{A}{n} \to 0$, Thm. 3.2.1 (b) : $\frac{b}{n^2} \to 0 \cdot 0 = 0$ Thm. 3.2.1 (b) $\frac{b}{2} \to 0$ (+) Thm. 3.2.1 (a): $a + \frac{1}{n^2} \to a$
- Nenner $c + \frac{d}{n^2} \to c \xrightarrow{\text{Thm. 3.2.1 (c)}} \frac{a_n}{b_n} \to \frac{a}{c}$.

3.3 Stabilität der '<'-Relation unter Limesbildung

Theorem 3.3.1

Seien $(a_n), (b_n)$ zwei konvergente Folgen in \mathbb{R} : Seien $a, b \in \mathbb{R}$

- (i) Gibt es $N \in \mathbb{N} : \forall n \geq N : a_n \leq a$, so $\lim_{n \to \infty} a_n \leq a$.
- (ii) Gibt es $N \in \mathbb{N} : \forall n \geq N : b \leq b_n$, so $b \leq \lim_{n \to \infty} b_n$.

Proof

Sei $\xi := \lim_{n \to \infty} a_n$. Für $\varepsilon > 0$ finden wir $\widetilde{N} \in \mathbb{N} : n \ge \widetilde{N} : |a_n - \xi| < \varepsilon$. Damit

$$\xi = (\xi - a_n) + a_n \le |\xi - a_n| + a_n \le \xi + a_n \le a + \varepsilon \implies \xi \le a.$$

Bemerkung: Satz falsch für '<' Bsp.

Theorem 3.3.2 Sandwich-Thm

Seien $(a_n), (c_n) \subset \mathbb{R}$ konv. Folgen: $a_n, c_n \to a \in \mathbb{R}$ Ist $(b_n) \subset \mathbb{R}$, so dass $\exists N \in \mathbb{N} \forall n \geq N : a_n \leq b_n \leq c_n$, so $b_n \to a$

Proof

 $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \geq N : |a_n - a| < \frac{\varepsilon}{2}, |c_n - a| < \frac{\varepsilon}{2}, \text{ Für solche n} : a - \varepsilon < a_n - \frac{\varepsilon}{2} \leq b_n - \frac{\varepsilon}{2} \leq a_n - \frac{\varepsilon}{2} \leq a + \varepsilon \implies b_n \to a.$

3.4 Monotone Konvergenz, e und Wurzeln

Definition 3.4.1

Eine Folge (a_n) heißt

- (i) mon. wachsend $\iff \forall n \in \mathbb{N} a_n \leq a_{n+1}$
- (ii) streng mon. wachsend $\iff \forall n \in \mathbb{N} a_n < a_{n+1}$
- (iii) mon. fallend $\iff \forall n \in \mathbb{N} a_n \ge a_{n+1}$
- (iv) streng mon. fallend $\iff \forall n \in \mathbb{N} a_n > a_{n+1}$

Theorem 3.4.2

Eine monotone beshcränkte Folge konvergiert.

Proof

 $\times (a_n)$ monoton wachsend und beschränkt, also existiert nach Supremumseigenschaft $a := \sup\{a_n : n \in \mathbb{N}\} < \infty$

Zu zeigen $a_n \to a$. Sei $\varepsilon 0$ bel.. Dann nach Def. des Supremums $\exists N \in \mathbb{N} : a - \varepsilon y a_N$. Für $n \geq N$ gilt $a_N \leq a_n$ wegen Monotonie $\implies |a_n - a| = a_n - a = a - a_N + \underbrace{a_N - a_n}_{\leq 0} \leq$

$$a - a_n < \varepsilon$$
. Also $a_n \to a$.

Corollary 3.4.3

Der Grenzwert $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$ existiert. Wir nennen e die **Eulerische Zahl**. Es gilt $2 \le e \le 3$.

Lemma 3.4.4

Sei $n \in \mathbb{N}_0, x > -1$. Dann $q + nx \le (1+x)^n$.

Proof Cor. 3.4.4

zu zeigen: $(a_n) = \left(\left(\left(1 + \frac{1}{n}\right)^2\right) \text{ mon. wachs., beschr.}\right)$

$$\frac{a_n}{a_{n-1}} = \frac{\left(\frac{n+1}{n}\right)^2}{\left(\frac{n}{n-1}\right)^2}$$
Rechnen
$$\equiv \left(\frac{n^2 - 1}{n^2}\right)^n \cdot \frac{n}{n-1}$$

$$= \left(1 - \frac{1}{n^2}\right)^n \cdot \frac{n}{n-1}$$
Bernoulli mit $x = -\frac{1}{n^2} \left(1 - \frac{1}{n}\right) \cdot \frac{n}{n-1}$

$$= \frac{n-1}{n} \cdot \frac{n}{n-1}$$

 $\implies (a_n)$ mon. wachsend

Nun: (a_n) beschränkt. Bin. Formel:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

$$|a_n| = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \dots \le \frac{1}{k!}$$

$$2^{k-1} \le k! \forall k \in \mathbb{N}$$

Damit

$$\left(1 + \frac{1}{n}\right)^n \overset{\text{von davor}}{\leq} 2 + \sum_{k=2}^n \binom{n}{k} \frac{1}{n^k} \leq 2 + 2 \cdot \sum_{k=2} n \frac{1}{2^k} \leq 2 + 2 \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{2^k} \leq 2 + 2 \cdot 1 = 4$$

 \implies Zahle existiert! (nach Thm. 3.4.2)

Wiederholung:

- Konvergent \implies Beschränkt
- \bullet Monoton + Beschränkt \implies Konvergent

Corollary 3.4.5 Existenz von Quadratwurzeln

Sei $a \geq 0$, Dann existiert ein $x \in \mathbb{R}$ mit $x^2 = a$. Speziell gilt: Ist $x_0 > 0$ so konvergiert die durch

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

definierte Folge gegen die **eindeutige** positive Lösung $x \in \mathbb{R}_{>0}$ der Gleichung $x^2 = a$

Proof

(i) Beschränkt nach unten: Wir zeigen induktiv $x_1 > 0$ für alle $n \in \mathbb{N}$

I.A.: $x_0 > 0$ nach Voraussetzung

I.S.: Gelte $x_n > 0$ für ein $n \in \mathbb{N}$ (I.V.). Dann ist

$$x_{n+1} = \frac{1}{2} \left(\underbrace{x_n}_{>0} + \underbrace{\frac{\geq 0}{a}}_{>0} \right)$$

(ii) Monoton fallend:

$$x_{n+1} - x_n = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) - x_n$$

$$= \frac{1}{2} \left(\frac{a}{x_n} - x_n \right)$$

$$= \frac{1}{2 \underbrace{x_n}_{>0 \text{ nach (i)}}} \left(a - x_n^2 \right) \text{ für alle } n \in \mathbb{N}$$

Es ist

$$a - x_{n+1}^{2} = a - \frac{1}{4} \left(x_{n} + \frac{a}{x_{n}} \right)^{2}$$

$$= a - \frac{1}{4} x_{n}^{2} - \frac{1}{2} a - \frac{1}{4} \cdot \frac{a^{2}}{x_{n}^{2}}$$

$$= \frac{1}{2} a - \frac{1}{4} \left(x_{n}^{2} + \frac{a^{2}}{x_{n}^{2}} \right)$$

$$= -\frac{1}{4} \left(x_{n} - \frac{a}{x_{n}} \right)^{2} \le 0$$

Also ist (x_n) monoton fallend.

- (iii) Es gilt $l := \lim_{n \to \infty} x_n$ und $l = \lim_{n \to \infty} x_{n+1}$. Es folgt wegen $x_n x_{n+1} = \frac{1}{2} (x_n^2 + a)$, dass $l^2 = \frac{1}{2} (l^2 + a)$ und damit $l^2 = a$.
- (iv) Eindeutigkeit: Seien x, y > 0 seien zwei Lösungen zu

$$x^2 = y^2 = a$$

Dann gilt
$$0 = x^2 - y^2 = \underbrace{(x+y)}_{>0}(x-y)$$
. Also ist $x - y = 0$,

3.5 Einige Grenzwerte - alt und neu

• Für $k \in \mathbb{N}$ gilt $\lim_{n \to \infty} \frac{1}{n^k} = 0$ (Heratives Anwenden von Satz 3.2.1(i))

Definition 3.5.1 Bestimmte Divergenz

Eine Folge $(a_n) \subset \mathbb{R}$ heißt

• Bestimmt divergent gegen $+\infty$ (in Symbolen $\lim_{n\to\infty} a_n = \infty$), flls zu jedem k>0 ein $N\in\mathbb{N}$ existiert mit $a_n\geq k$ für alle $n\geq \mathbb{N}$

- Bestimmt divergent gegen $-\infty$ (in Symbolen $\lim_{n\to\infty} a_n = -\infty$), falls zu jedem k < 0 ein $N \in \mathbb{N}$ existiert mit $a_n \leq k$ für alle $n \geq N$.
- Ist (a_n) weder konvergent noch bestimmt divergent, so nennen wir (a_n) unbestimmt divergent und sagen " $\lim_{n\to\infty} a_n$ existiert nicht".
- Es gilt

$$\lim_{n \to \infty} x^n = \begin{cases} +\infty & \text{falls } x > 1\\ 1 & \text{falls } x = 1\\ 0 & \text{falls } |x| < 1\\ -\infty & \text{falls } x \ge -1 \end{cases}$$

- Für x > 1 setzte y := x - 1, mit Bernoullischer Ungleichung:

$$x^n = (1+y)^n \ge 1 + ny \to \infty$$

- Für x = 1 gilt für alle $n \in \mathbb{N}$ $x^n = 1$.
- Für $|x^{-1}>1$ (falls $x\neq 0$) Sei $\varepsilon>0$ Also gilt es existiert ein $N\in\mathbb{N}$, so das für alle $n\geq N$ gilt $|x^{-n}|\geq \frac{1}{\varepsilon}$, damit $|x^n|<\varepsilon$ für alle $n\geq N$
- Rest folgt mit Beispiel 3.1.7

_

$$\lim_{n \to \infty} \sum_{k=0}^{n} x^k = \begin{cases} +\infty & \text{falls } x \ge 1\\ \frac{1}{1-x} & \text{falls } |x| < 1\\ \text{existiert nicht} & \text{falls } x \le -1 \end{cases}$$

4 Vollständigkeit

4.1 ???

Supremumseigenschaft zeichnet \mathbb{R} aus.

Cauchy-Folgen

In \mathbb{R} sind Cauchy-Folgen und konvergente Folgen gleich, in \mathbb{Q} z.B. nicht.

Cauchy-Folgen sind beschränkt

es ist nicht so, dass alle Beschränkte Folgen, Cauchy-Folgen sind

Definition 4.1.1 Cauchyfolge

Eine reele Folge (a_n) heißt **Cauchy** oder **Cauchyfolge**, falls für alle $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, sodass $|a_n - a_m| < \varepsilon$ für allle $n, m \ge N$. $\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n, m \ge N : |a_n - a_m| < \varepsilon$

Theorem 4.1.2

Sei (a_n) eine folge in \mathbb{R} . Dann gilt:

- (i) Ist (a_n) konvergent, so ist (a_n) -Cauchy.
- (ii) Ist (a_n) Cauchy, dann ist (a_n) beschränkt.
- (iii) Ist (a_n) konvergent, so ist (a_n) beschränkt.

Proof

(i) Sei $\varepsilon 0$ beliebig. Da (a_n) konvergent, existiert ein $a \in \mathbb{R}$ und ein $N \in \mathbb{N}$ mit $|a_n - a| < \frac{\varepsilon}{2}$. Seien $n, m \in \mathbb{N}$, dann gilt

$$|a_n - a_m| = |(a_n - a) + (a - a_m)| \le |a_n - a| + |a - a_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(ii) Setze $\varepsilon = 1$. Dann finden wir ein $N \in \mathbb{N}$ mit $|a_n - a_m| < 1$ für alle $n, m \ge N$. Die Menge $\{|a_1|, \ldots, |a_N|\}$ ist endlich, hat also ein Maximum, nenne dieses M. Für alle $n \ge \mathbb{N}$ gilt also $|a_n| \le M$ falls $1 \le n \le M$,

$$|a_n| \le |a_n - a_N| + |a_N| \le |a_n - a_N| + |a_N| \le 1 + M$$
 falls $n \ge N$

Deswegen ist (a_n) durch 1 + M beschränkt.

(iii) Direkt aus (i) und (iii)

Example 4.1.3 Beschränktheit und nicht Cauchy

Betrachte $(a_n) := (-1)^n$. Dann ist $|a_n| = 1$ für alle $n \in \mathbb{N}$ und speziell (a_n) beschränkt. Wähle $0 < \varepsilon < 2$. Dann gilt für bel $N \in \mathbb{N}$

$$|a_n - a_{n+1}| = 2 > \varepsilon$$

4.2 Teilfolgen undn der Satz von Bolzano-Weierstraß

 $((-1)^n): \begin{cases} \text{gerade Folgeglieder: immer } -1 \\ \text{ungerade Folgeglieder: immer } -1 \end{cases}$

Definition 4.2.1

Sei $(a_n) \subset \mathbb{R}$ Folge und $n : \mathbb{N} \to \mathbb{N}$ eine monoton wachsende Abbildung. Dann heißt $(a_{n(k)})$ **Teilfolge**

Example 4.2.2

$$(a_n) = ((-1)^n)$$

- $n(k) = 2k \rightsquigarrow (a_{n_k}) = \text{Teilfolge der geraden Folgenglieder}$
- $n(k) = 2k 1 \rightsquigarrow (a_{n_k}) =$ Teilfolge der ungeraden Folgenglieder

Definition 4.2.3

Sei $(a_n) \subset \mathbb{R}$ und $(a_{n_k}) \subset (a_n)$ Teilfolge die gegen $a \in \mathbb{R}$ konvergiert. Dann heißt a Häufungspunkt von (a_n) . Wir definieren dann den Limes superior via

$$\limsup_{n\to\infty} := \inf_{n\in\mathbb{N}} \sup_{k>n} a_k,$$

und den Limes inferior via

$$\liminf_{n\to\infty} a_n := \sup_{n\in\mathbb{N}} \inf_{k\geq n} a_k.$$

• $a \text{ HP von } (a_n) \iff \forall \varepsilon > 0 \forall N \in \mathbb{N} \exists n \geq N : |a_n - < | < \varepsilon.$

Example 4.2.4

 $(a_n) = (a)$ für $a \in \mathbb{R}$ (konstante Folge), so a einzelner Häufungspunkt; allgemeiner: Falls $a_n \to a$ konvergiert, so ist a einzelner Häufungspunkt.

Example 4.2.5

 $(a_n)=(-1)^n$, so sind +1 und -1 Häufungspunkte der Folge. Weiter $\limsup_{n\to\infty}a_n=+1$ und $\liminf_{n\to\infty}a_n=-1$.

Theorem 4.2.6 Bolzano Weierstraß

Jede beschränkte Folge in \mathbb{R} besitzt eine konvergente Teilfolge.

Lemma 4.2.7

Jede Folge in \mathbb{R} hat eine monotone Teilfolge.

Proof

Sei $(a_n) \subset \mathbb{R}$ beschränkt. Nach Lem 4.2.7 gibt es eine monotone Teilfolge, die natürlich auch beschränkt ist. Nach dem Satz über monotone, beschränkte Folgen konvergiert diese Teilfolge.

Brauchen:

Proof

Sei $(a_n) \subset \mathbb{R}$ bel. Wir nennen $a_{n_0}(n_0 \in \mathbb{N})$ Gipfelpunkt, falls:

(i) unendlich viele Gipfelpunkte: Sei dann (a_{n_k}) Teilfolge der Gipfelpunkte. Dann

$$n_1 \le n_2 \le n_3 \le \cdots$$
 und

$$a_{n_1} \geq a_{n_2} \geq a_{n_3} \geq \cdots$$

Also ist (a_{n_k}) monoton fallend.

(ii) endlich viele oder keine Gipfelpunkte: Hier existiert

$$N \in \mathbb{N} : n \ge N \implies a_n$$

kein Gipfelpunkt. Also gilt nicht: D. h. $\exists n_1 \geq N : a_N < a_{n_1} \implies a_{n_1}$ kein Gipfelpunkt $\implies \exists N_2 \geq n_1 : a_{n_1} < a_{n_2}$, usf. Dann ist (a_{n_k}) monoton wachsend.

4.3 Charakterisierung der Vollständigkeit

Für $a \leq b$ sei $[a, b] := \{x \in \mathbb{R} : a \leq x \leq b\}$. Der Durchmesser von $[a, b] : \operatorname{diam}([a, b]) = b - a$

Lemma 4.3.1

Sei (a_n) Cauchyfolge, die eine gegen $a \in \mathbb{R}$ konvergiente Teilfolge besitzt. Dann konvergiert (a_n) gegen a.

Proof

 $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n, m \geq N : |a_n - a_m| < \frac{\varepsilon}{2}$. Wähle zu $\varepsilon > 0$ ein solches $N \in \mathbb{N}$. Dann gibt es wegen konvergenter Teilfolge einen Index $\widetilde{N} \geq N : |a - a_{widetildeN}| < \frac{varepsilon}{2}$. Dann $\forall n \geq N$:

$$|a_n - a| = |(a_n - a_{\widetilde{N}}) + (a_{\widetilde{N}} - a)|$$

$$< \underbrace{a_n - a_{\widetilde{N}}}_{\underline{\varepsilon}} + \underbrace{a_{\widetilde{N}} - a}_{\underline{\varepsilon}}| < \varepsilon$$

Theorem 4.3.2

Die folgenden Prinzipien sind auf \mathbb{R} äquivalent:

- (i) **Supremumseigenschaft:** Jede nichtleere, nach oben beschrenkte Menge hat ein Supremum.
- (ii) **Bolzano-Weierstraß-Eigenschaft:** Jede beschränkte Folge hat eine konvergente Teilfolge
- (iii) Vollständigkeit: Jede Cauchyfolge konvergiert
- (iv) Intervallscachtelungsprinzip: Sind $(a_n), (b_n) \subset \mathbb{R}$ mit $\forall n \in \mathbb{N} : a_n \leq b_n \wedge [a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ mit $\lim_{n \to \infty} \operatorname{diam}([a_n, b_n]) = 0$, so existiert genau ein

$$x \in \bigcap_{n \in \mathbb{N}} [a_n, b_n].$$

Proof

Plan:
$$(i) \implies (ii) \implies (iii) \implies (iv) \implies (i)$$

 $Ad(i) \implies (ii)$ Die Supremumseigenschaft ist die einizige Zutat, um Bolzano-Weierstraß zu zeigen. Damit folgt (ii) aus (i)

Ad $(ii) \implies (iii)$ Sei (a_n) Cauchyfolge. Nach letzter Vorlesung ist (a_n) beschränkt, und nach (ii) hat (a_n) also konvergiert Teilfolge. Nach Lem 4.3.1 konvergiert dann aber bereits $(a_n) \implies (iii)$

Ad $(iii) \implies (iv)$ Sei $([a_n, b_n])$ eine Intervallschachtelung mit $\operatorname{diam}([a_n, b_n]) \rightarrow 0, n \rightarrow \infty$.. Sei $\varepsilon > 0$. Dann

$$\exists N \in \mathbb{N} : \forall n \geq N : \underbrace{\operatorname{diam}([a_n, b_n])}_{b_n - a_n} < \varepsilon$$

. Dann $\forall n,m\geq N: a_m\in [a_n,b_n]$ (da Intervallschachtellung), also:

$$|a_n - a_m| \le |a_n - b_n| < \varepsilon \implies (a_n)$$
 Cauchy.

Ähnlich: (b_n) Cauchy $\stackrel{(iii)}{\Longrightarrow} \exists a, b \in \mathbb{R} : a_n \to a, b_n \to b.$

$$|a-b| = \lim_{n \to \infty} \underbrace{|a_n - b_n|}_{\operatorname{diam}([a_n, b_n])} = 0 \implies a = b.$$

Kurz zu

 $a \in \bigcap_{n \in \mathbb{N}} [a_n, b_n] : (a_n)$ monoton wachsend, (b_n) monoton fallend

Stabilität der KG-Relation
$$a_1 \le a_2 \le \cdots \le a$$

$$b \ge \cdots \ge b_2 \ge b_1$$

$$\implies a_1 \le a_2 \le \cdots \le a = b \le \cdots \le b_2 \le b$$

hier fehlt noch was ...

Example einfach Beispiel aus Vorlesung

Ich glaube das soll zeigen, dass irgendwas an \mathbb{R} besonders

$$[\sqrt{2}-1,\sqrt{2}+\frac{1}{n}]$$

$$\sqrt{2} - \frac{2}{n} \le a_n leq \sqrt{2} - \frac{1}{n}$$

$$\sqrt{2} + \frac{1}{n} \le b_n leq \sqrt{2} + \frac{1}{n}$$

$$[a_n, b_n], a_n, b_n \in \mathbb{Q}$$