Answer

To prove $\vdash \Box(x=1) \Rightarrow \Box(\Box(x=1)))$ we must prove

$$\llbracket \Box(x=1) \Rightarrow \Box(\Box(x=1)) \rrbracket(\sigma)$$

for an arbitrary behavior σ . Here is the proof.

1. Suffices: $\llbracket\Box(x=1)\rrbracket(\sigma)\Rightarrow \llbracket\Box(\Box(x=1))\rrbracket(\sigma)$

PROOF: Because $\llbracket F \Rightarrow G \rrbracket(\sigma)$ is defined to equal $\llbracket F \rrbracket(\sigma) \Rightarrow \llbracket G \rrbracket(\sigma)$, for any F, G, and σ .

2. Suffices Assume: $\llbracket \Box(x=1) \rrbracket(\sigma)$ and τ a suffix of σ Prove: $\llbracket \Box(x=1) \rrbracket(\tau)$

PROOF: By step 1 and the definition of $\llbracket \Box F \rrbracket(\sigma)$, with $F \leftarrow \Box(x=1)$.

3. Suffices Assume: ρ a suffix of τ

Prove:
$$[x = 1](\rho)$$

PROOF: By step 2 and the definition of $[\![F]\!](\sigma)$, with $F \leftarrow x = 1$.

4. Q.E.D.

PROOF: ρ is a suffix of σ by steps 2 and 3 (since a suffix of a suffix of σ is a suffix of σ). Hence $[\![x=1]\!](\rho)$ is true by the assumption $[\![\Box(x=1)]\!](\sigma)$ of step 2 and the definition of \Box .

Observe that replacing (x=1) by F in the proof shows that $\Box F \Rightarrow \Box \Box F$ is a theorem, for any formula F.