

What is AI?

Series of techniques to extract information from data

The more data we have, the more we trade insight for predictive power

Case studies

Computer vision

Glass

Materials discovery

Manufacturing

Sensor data

Steel plate defects

Can we make a model that classifies the raw image directly?

Neuralnetworks

Inspired by nature

MATERIALS INDUSTRY

Artificial neurons or perceptrons

A perceptron is equal to linear or logistic regression

Activation functions

Using non-linear activations any function can be approximated

Convolutions allow us to filter using less parameters and have symmetry!

Deep learning

Source: NVIDIA Deep learning training

Features are engineered for you! but need lots of data... or do you?

Transfer learning

Source: NVIDIA Deep learning training

With transfer learning we train on large datasets and finetune on small ones

Residualnetworks

Normalization and skip connections stabilize training

This session

- Analyze the images
- Choose a model
- Optimize the model
- Evaluate the results
- Interpret with explainable AI

Part of the pipeline needs to run in production

Jupyter Lab

Log in at https://tier1.hpc.ugent.be

Training a neural network

Batches should contain enough variation

Augmentation

Adding some distortion to images improves our model's robustness

Loss functions

Regression

• MSE (L2)

$$\frac{\sum_{N}(target-pred)^{2}}{N}$$

• MAE (L1)

$$\frac{\sum_{N}|target - pred|}{N}$$

- Custom weights
- •/\\...

Classification

• (Binary) Cross entropy,

$$-target * log(prob pred) (target=1)$$
$$+(1-target) * log(1-prob pred) (target=0)$$

Summed over classes if multiclass

- For segmentation applied per pixel
- •

The right metric guides the optimizer to the right goal

Loss surfaces

https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b0 50b6c9067c67f663b915-Paper.pdf

Loss functions have complex surfaces with millions of parameters

Opt im iz in g

3blue1brown - https://mlfromscratch.com/optimizers-explained/#/

Gradient descent allows us to stepwise optimize our parameters for our loss

Opt im iz in g

3blue1brown - https://mlfromscratch.com/optimizers-explained/#/

Gradient descent allows us to stepwise optimize our parameters for our loss

More on optimizers

- https://distill.pub/2017/momentum/ try this yourself
- https://ruder.io/optimizing-gradient-descent/
- https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
- https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

Adding some distortion to images improves our model's robustness

Regularization

Dropout

Randomly delete neurons doing training

Weight decay

Add the norm of weights to loss

Metrics

Metrics can, but don't have to be the same as a loss function (no backprop)

Top losses

The best guess is not necessarily a good guess

Always gives the best prediction

Gives probability per class

SHAP

Our input features are pixels, can we trace them to the output?

https://github.com/slundberg/shap

Yes, by comparing to baseline images we can approximate shap values using grads

Scratch is clearly highlighted

Both dark and light regions used

SHAP: distributed defects

Distributed activation regions

Detecting problems with SHAP

Edges seem more important than they should be

How does this work in production?

How does this work in production?

API lets users schedule tasks for the model

How does this work in production?

Cloud (VSC, Google, Azure, AWS)

Edge

Cloud allows global deployment, but requires communication

INVESTEERT IN JOUW TOEKOMST

View more online

https://ai4mi.epotentia.com

