

Pay-to-Win Incentive Attacks on Proof-of-Work Cryptocurrencies

INPUT OUTPUT

Devcon 5 Research Meetup

11 October 2019, Osaka, Japan Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin,

Itay Tsabary, Ittay Eyal, Peter Gazi,

Sarah Meiklejohn, and Edgar Weippl

"The system is secure as long as **honest** nodes collectively control more CPU power than any cooperating group of attacker nodes."

Satoshi Nakamoto

Bitcoin's Security Model

... relies on 2/3 of the computational power being honest

But can we even determine if this is the case?

- Miners can collude
- Can be same entity

• ...

A Deep Dive into Bitcoin Mining Pools: An Empirical Analysis of Mining Shares. Romiti M, Judmayer A, Zamyatin A, Haselhofer B. Workshop on the Economics of Information Security (WEIS), 2019

BAR Model

Instead of only honest / dishonest actors, BAR model assumes:

- Byzantine: our adversary, behaves dishonestly
- Altruistic: altruistic motives, behave honestly
- Rational: may deviate from rules to maximize profit

→ **Bribing attacks** assume economically **rational** actors can be bribed into misbehaving

"Why buy when you can rent?"

Idea of Bribing attacks:

- Attacker does not need to be a miner
- Offers payment to miners to attack underlying chain
- Ideally: miners do not have to trust the adversary
 - o e.g. via smart contracts

Goals:

 Censorship, double spending, reducing active hash rate, destruction on the coin, ...

Recall: States of a Transaction

Unconfirmed	Confirmed	Agreed
TX has been broadcast to the network. ("proposed" or "published")	TX has been included in a block	TX has been agreed upon, i.e., has consensus
(→ it has received k confirmations and revision is highly unlikely
		k - security parameter dependent on underlying chain*

^{*} More about this later

Impact and Required Interference

Impact on Transactions

Revision

Change published, confirmed or agreed TX

Re-ordering

Change ordering of published, confirmed or agreed TX in a block

Exclusion / Censorship

Prevent TX from from being included in the chain (for some period)

Interference with Consensus

- Deep forks
 - Exceeding the security parameter **k** selected by the victim
- Near forks
 Fork, but depth is not dependent on victim's k parameter
- No forks

Further Properties

- 1. Required attacker hash rate
- 2. Required rational miner hash rate
- 3. **Distract hash rate?**
- 4. **Smart contracts** required?
- 5. Must the attacker trust miners?
- 6. Must miners trust the attacker?
- 7. Are failed attacks compensated?
- 8. Coordination / payment in-band or out-of-band (cross-chain)?
- 9. ...

See paper for more details!

Classification of Incentive Attacks

	Tx rev.	Tx ord.	Tx excl.	Required chain reorganization	Attacker hashrate α	Rational hashrate ω	Distracts hashrate	Requires smart contract	Payment	Trustless for attacker	Trustless for collaborator	Subsidy	Compensates if attack fails
Checklocktime bribes [7]	/	×	X	Deep fork	×	$\approx \left[\frac{1}{2}, 1\right]$	X	×	in-band	1	~	X	×
Whale Transactions [19]	✓	X	X	Deep fork	X	$\approx \left[\frac{1}{2}, 1\right]$	Х	×	in-band	/	~	Х	Х
Script Puzzle double-spend [30]	✓	~	1	Deep fork	$(0,\frac{1}{2})$	$1-\alpha$	/	×	in-band	~	×	X	~
Script Puzzle 38.2% attack [30]	Х	~	1	Near-/No forks	$[0.382, \frac{1}{2})$	$1-\alpha$	1	?†	out-of-band	?†	?†	Х	1
Proof-of-Stale blocks [20], [32]	-*	-*	-*	-*	×	-	1	1	out-of-band	~	1	X	1
CensorshipCon [21]	Х	~	1	Near-/No forks	$[\frac{1}{3}, \frac{1}{2})$	$[\frac{1}{3}, \frac{2}{3})$	1	1	in-band	~	×	1	×
HistoryRevisionCon [21]	/	×	X	Deep fork	×	$\approx \left[\frac{1}{2}, 1\right]$	X	1	in-band	1	~	/	×
GoldfingerCon [21]	-	1	✓all	No fork	X	$\approx \left[\frac{1}{2}, 1\right]$	X	1	out-of-band	1	1	X	1
Pitchforks [15]	E	-	✓all	No fork	×	$(\frac{1}{3}, 1]$	1	×	out-of-band	1	1	/	×
Front-running [10], [12]	X	/	X	No fork	×	(0, 1]	Х	×	in-band	×	/	X	1
Pay per Miner Censorship [33]	X	X	1	No fork	×	1	X	1	in-band	/	/	X	×
Pay per Block Censorship [33]	X	X	1	No fork	×	1	X	1	in-band	1	1	Х	1
Pay per Commit Censorship [33]	Х	Х	1	Near-/No fork	X	1	Х	1	in-band	1	/	Х	Х
P2W Tx Excl.& Ord.	Х	1	1	Near-/No forks	Х	$[\frac{1}{2}, 1]$	X	1	out-of-band	1	1	Х	✓
P2W Tx Rev. & Excl. & Ord.	✓	1	1	Deep fork	X	$[\frac{1}{2}, 1]$	Х	1	out-of-band	1	1	Х	1
P2W Tx Ord. Appendix E	Х	1	X	No fork	X	(0, 1]	X	1	in-band	/	1	Х	Х
P2W Tx Excl. Appendix F	X	Х	1	Near-/No forks	X	$[\frac{1}{2}, 1]$	Х	/	in-band	1	/	Х	X

See paper for more details!

Bribing Myths

"Pfff, bribing is too expensive anyway..."

Risk of failure must be compensated

Existing bribing attacks:

- Payment only if attack succeeds
- Overcompensate risk via high bribes

"Pfff, bribing is too expone ---wwav...

Risk of failure must be compensated

Existing bribing attacks:

- Payment only if attack succeeds
- Overcompensate risk via high bribes

Pay-to-Win (This work):

- Always pay miners, even if attack fails
- Miners face no financial risk
- → only small bribes required

"But miners will not attack their own coin!"

- One of the oldest arguments in this space
- Assumes miners have long term stake in their system

"But miners will not attack their own coin!"

- One of the oldest arguments in this space
- Assumes miners have long term stake in their system

Does not consider:

Private information

"But miners will not all sk their own coin!"

- One of the oldest arguments in this space
- Assumes miners have long term stake in their system

Does not consider:

Private information

Cross-chain ("out of band") attacks (This work)

Cross-Chain Bribing Attacks

Coordination and payout occur on another chain

Cross-Chain Bribing Attacks

- Coordination and payout occur on another chain
 - → Ephemeral mining relays (This work)
 - Verify state agreement & evolution of target chain
 - 2. **Check validity** of blocks (pre-defined block & TX templates)
 - 3. Track forks
 - Check correct execution of attack
 - 5. Handle payouts depending on outcome

"But is this not too complex and inefficient?"

PoW verification needs to be supported by the funding chain!

"But is this not too complex and expensive?"

- PoW verification needs to be supported by the funding chain!
- PoC implementation of components for attacks on BTC, coordinated on ETH

Exaggerated example: 24h attack on Bitcoin (144 blocks)

- Costs to run relay:
 - ~ 10-23 USD
- For comparison:
 Value of single BTC block (excl. TX fees):
 - ~ 77 000 USD

Operation	Approx. costs				
Ореганон	Gas	USD			
Initialization	244 137	0.21			
Block parsing and verification	174 929	0.15			
Block header storage	141 534	0.12			
Transaction parsing	117 253	0.1			
Markle tree verification	80 257 - 194 351	0.07 - 0.16			

Gas price: 5 Gwei, Exchange rates as per 10 May 2019 (168.01 USD/ETH)

Pay-to-Win Attacks

Overview

- Coordination and payouts happen out-of-band (cross-chain)
 - Target chain (e.g. Bitcoin) vs funding chain (e.g. Ethereum)
- Miners are always compensated (even for failed attacks)
- Uses smart contracts on funding chain
 - → **trustless** for attacker and miners!
- 2 Variants:
 - No / near fork: ordering and exclusion/censorship
 - Deep fork: revision, ordering and exclusion/censorship

Example: double spend on BTC

Attack suceeds if:

- > k blocks on main chain
- > k+1 blocks on attack chain

Attacker

Example: double spend on BTC

Attack suceeds if:

- > k blocks on main chain
- > k+1 blocks on attack chain

Attacker waits until victim's TX is included and has **k** confirmations (**k** defined by victim)

Initialization Phase:

Attacker initializes contract with

- *block templates*→ contain conditions for attack
- compensation

Block Templates

Miners can only freely choose:

- *nonce* ... for mining iteration
- coinbase ... link Ethereum account to block

Block Header

Version
PrevBlockHash
MerkleRoot
Time
nBits
nonce

nVersion				
#vin = 1				
vin[0]	hash			
	n			
	coinbaseLen			
	coinbase			
	nSequence			
#vout = 1				
vout[0]	nValue			
	scriptPubkeyLen			
	scriptPubkey			
nLockTime				

Coinbase TX

Block Templates

Miners can only freely choose:

- *nonce* ... for mining iteration
- coinbase ... link Ethereum account to block

Block Header nVersion #vin = 1Version hash PrevBlockHash n MerkleRoot vin[0] coinbaseLen Time coinbase nBits nSequence nonce #vout = 1nValue vout[0] scriptPubkeyLen

Note: BTC block reward must go to attacker

→ block reward compensation after the attack ends in ETH

Coinbase TX

nLockTime

scriptPubkey

Initialization Phase:

Attacker initializes contract with

- *block templates*→ contain conditions for attack
- compensation

Once initialized: **no abort!** (or very high timelock)

→ Reason: race conditions

Attack Phase:

- Miners mine on block templates, executing the attack
- Attacker can extend the attack (new templates + funds)

Attack Phase

Miners submit main chain blocks to contract

→ receive compensation for "to-be-forked" blocks

as incentive to join attack

Payout Phase: Successful attack

- Block rewards (r) for k main chain blocks
- Block reward + bribe (r + e) for attack chain blocks

000

Payout Phase: Successful attack

- Block rewards (r) for k main chain blocks
- Block reward + bribe (r + e) for attack chain blocks
- → **Recall**: attacker receives BTC block reward!

Attacker

Payout Phase: Failed Attack

Block rewards (r) for submitted attack chain blocks

000

Required funds at the start of attack:

$$N * (e + r) + k * r$$

N ... attack duration

e ... bribe

r ... block reward

k ... confirmation required by victim

Cost Evaluation


```
k = 6 (min. 6 main chain + 7 attack chain blocks to succeed )

r = 14 BTC (~ block reward)

e = 1 BTC (bribe - can be set way lower!)
```

Rational miners only (no victim hash rate)

- Failed attack ~ 98 BTC
- Successful attack ~ 91 BTC

Cost Evaluation

k = 6 (main chain must have 6 blocks before double spend succeeds)

r = 14 BTC (~ block reward)

e = 1 BTC (bribe - can be set way lower!)

Altruistic miners (victim has hash rate)

ω	whale costs	p2w costs c_{failed} (worst case lose)	% whale	p2w costs $c_{success}$ (worst case win)	% whale	p2w costs (expected win)
0.532	2.93e+23	7305	0.00	577	0.00	144
0.670	999.79	600	60.01	130	13.00	104
0.764	768.09	330	42.96	112	14.58	100
0.828	1265.14	240	18.97	106	8.38	99
0.887	1205.00	195	16.18	103	8.55	98
0.931	1806.67	165	9.13	101	5.59	98
0.968	2178.58	135	6.20	99	4.54	97
0.999	2598.64	120	4.62	98	3.77	97

See paper for more details!

Pros and Cons

- Difficult to detect (cross-chain)
 - → monitor all smart contract chains?
- + Miners have **no risk**
- Only small bribes necessary
- + No trust required between attacker and miners

- Requires smart contracts on funding chain
- Funding chain must be able to verify PoW of target chain
- Exchange rate handling

Crowdfunding

- Use smart contract to coordinate multiple attacks in parallel
- Attackers lock in
 - e.g. double spend TX
 - compensation
- Attack costs are typically fixed!
 - Split among participants

Challenges: timing, sabotage via conflicting attacks, ...

See paper for more discussion!

Implications: Transaction Security

Typically, we assume a global **k** (Backbone model)

Sompolinksy et al. argue: "Take into account TX value!"

Recently:

Zindros argues: "Take into account value of entire block!"

We conjecture: Even this is insufficient!

Implications: Transaction Security

Value of block of $TX1 \rightarrow set k1$ (e.g. 6)

Implications: Transaction Security

Value of block of $TX1 \rightarrow set k1$ (e.g. 6)

Problem: "juicy" TX2 in prev. block with high value being attacker

- k1 sufficient for TX1 alone... but what if the attack on TX2 occurs anyway?
- What if attacker of TX2 could also attack TX1 as "extra"?
- → In practice: **crowdfunded attacks**

What To Do? (Take With a Grain of Salt)

From theoretical perspective:

"HODLING" is risky!

Only "safety" measure:

As soon as you receive coins → spend & transfer risk!

This is theory! Less of a problem in practice.

Imperial College London

Devcon 5 Research Meetup

11 October 2019, Osaka, Japan

Pay-to-Win: Incentive Attacks on Proof-of-Work **Cryptocurrencies**

Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Peter Gazi,

Sarah Meiklejohn, and Edgar Weippl