Структура молекул: Приклади тетраедрично координованих молекул

Andriy Zhugayevych azh@uninet.kiev.ua

4 жовтня 2004 р.

1 Підготовчі обчислення

Систему координат виберемо як на рис. 1.

Рис. 1: Тетраедр в кубі

Рис. 2: Орбіти

Представлення групи, розклад представлень групи обертань та симетрія базисних функцій підсумовані в таблиці:

	e	$8c_3$	$3c_2$	$6c_{4i}$	$6\sigma_v$	0	1	2	3	4	5	6	0	1	2	3
A_1	1	1	1	1	1	1			1	1		1	S			F_{xyz}
A_2	1	1	1	-1	-1							1				
E	2	-1	2	0	0			1		1	1	1			$D_{z^2}, D_{x^2-y^2}$	
F_1	3	0	-1	1	-1				1	1	1	1				$\left F_{xy^2},F_{yz^2},F_{zx^2}\right $
F_2	3	0	-1	-1	1		1	1	1	1	2	2		P_x, P_y, P_z	D_{yz}, D_{zx}, D_{xy}	

Орбіти (напрямки підвищеної симетрії) зображені на рис. 2 і разом з регулярними представленнями групи T_d на них та їх стабілізаторами наведені в наступній таблиці:

	e	$8c_3$	$3c_2$	$6c_{4i}$	$6\sigma_v$		
Λ, Λ'	4	1	0	0	2	$A_1 + F_2$	C_{3v}
Δ	6	0	2	0	2	$A_1 + E + F_2$	C_{2v}
$\Lambda \Lambda', \Lambda \Delta, \Lambda' \Delta$	12	0	0	0	2	$A_1 + E + F_1 + 2F_2$	C_{1v}

Розклад групи T_d на незвідні представлення стабілізаторів такий:

		e	c_3	c_2	σ_v	σ'_v		A_1	A_2	E	F_1	F_2
C_{3v}	A_1	1	1		1		$S; P_z$	1				1
	A_2	1	1		-1		D_{xy}		1		1	
	E	2	-1		0		P_x, P_y			1	1	1
C_{2v}	A_1	1		1	1	1	$S; P_z$	1		1		1
	A_2	1		1	-1	-1	D_{xy}		1	1	1	.
	B_1	1		-1	1	-1	P_y				1	1
	B_2	1		-1	-1	1	P_x				1	1
C_{1v}	A'	1			1		$S; P_y, P_z$	1		1	1	2
	A''	1			-1		P_x		1	1	2	1

Таблиця множення групи має вигляд:

	A_2	E	F_1	F_2
A_2	A_1	E	F_2	F_1
E		$A_1 + A_2 + E$	$F_1 + F_2$	$F_1 + F_2$
F_1			$A_1 + E + F_1 + F_2$	$A_2 + E + F_1 + F_2$
F_2				$A_1 + E + F_1 + F_2$

2 Молекула метану CH_4

Рис. 3: Молекула метану СН4

Рис. 4: Молекулярні орбіталі

Координати атомів

1	Η	a	a	a
2	Η	-a	-a	a
3	Η	a	-a	-a
4	Η	-a	a	-a
5	\mathbf{C}	0	0	0

де $a=r_{\rm CH}/\sqrt{3},\ r_{\rm CH}=1.10$ А, кут НСН дорівнює $\arccos(-1/3)$. Твірні елементи симетрії: $4c_3[{\rm CH}],\ 6\sigma_v({\rm HCH})$. Тому група симетрії T_d ($\bar{4}3{\rm m}$). Елементарним фрагментом молекули є пара атомів СН.

2.1 Тензори фізичних величин

Мультипольний розклад електричного поля дивимося по розкладу групи обертань. Тотожне представлення A_1 вперше зустрічається для l=0, проте оскільки молекула нейтральна, то $Q^0=0$. Найнижчий ненульовий момент октупольний, l=3, в кубічних осях його тензор має лише одну одну ненульову компоненту: Q_{xyz} . Для прикладу, потенціал електростатичного поля молекули метану має вигляд

$$\varphi(\vec{r}) = \sqrt{15}Q_{xyz}\frac{xyz}{r^7}, \quad Q_{xyz} = \sqrt{15}\int xyz\rho(\vec{r})dV = \frac{4\sqrt{5}}{3}r_{\mathrm{CH}}^3e_{\mathrm{H}},$$

де ρ — густина заряду, а $e_{\rm H}$ — ефективний заряд атомів водню.

Нескладно бачити, що розклад представлень D_u^l такий же як і для D_g^l , якщо поміняти A_1 і A_2 та F_1 і F_2 місцями. Тому формально найнижчий порядок магнітного моменту l=6, реально ж це означає, що магнітний момент молекули метану визначається спіном.

Момент інерції перетворюється через представлення $[V^2] = D^0 + D^2 = A_1 + E + F_2$, тобто має лише один інваріант (слід матриці). Очевидно, в кубічних осях він діагональний з однаковими елементами на діагоналі. Таким чином, обертальний спектр молекули метану складається з $(2J+1)^2$ -кратно вироджених рівнів

$$E_J = \frac{\hbar^2}{2I_{xx}}J(J+1), \quad J \ge 0.$$

2.2 Електронна структура

Тип зв'язку полярний парний ковалентний насичений $C^-sp^3 + H^+s$.

Шукаємо молекулярні орбіталі в наближенні валентних електронів. Перший спосіб:

$$\begin{array}{|c|c|c|} \hline Cs & \Gamma & A_1 = D^0 \times A_1 \\ \hline Cp & \Gamma & F_2 = D^1 \times A_1 \\ \hline Hs & \Lambda & A_1 + F_2 = D^0 \times (A_1 + F_2) \\ \hline \end{array}$$

Отже, маємо дві орбіталі A_1 складу Cs+HS і дві трикратно вироджені орбіталі F_2 складу Cp+HP, де HS і HP – базисні функції представлень A_1 і F_2 , побудованих на атомних орбіталях Hs чотирьох атомів водню (див. наступний розділ, де вони обчислюються явно). З розкладу групи обертань бачимо, що орбіталі A_1 реально можуть відповідати лише рівням з квантовими псевдочислами 1S і 2S, оскільки мінімальне наступне значення псевдоорбітального числа L=3. Орбіталі ж F_2 можуть бути якої завгодно симетрії, починаючи з L=1. Тому обов'язково буде рівень 1P, наступний же буде типу 2P або 1D або змішаним. Враховуючи, що система має вісім валентних електронів, єдиний можливий спосіб розташування рівнів такий: 1S A_1 , 1P F_2 . Незайняті рівні будуть розташовуватися як 2S A_1 , 2P1D F_2 (чисельний розрахунок вказує на симетрію 1D, зате наступний п'ятий рівень 2P типу).

Другий спосіб: беремо чотири гібридизовані орбіталі $Csp^3 \pm Hs$, верхній знак відповідає зв'язуючій орбіталі, нижній — розрихляючій. З точністю до нормування ці орбіталі мають лише один невизначений коефіцієнт пропорції між атомами вуглецю і водню — він близький до 1:1, з незначною перевагою для зв'язуючої орбіталі в бік більш електронегативного вуглецю (тому ефективний заряд вуглецю в молекулі метану негативний, чисельний розрахунок дає величину порядку -e/2). Гібридизовані орбіталі, очевидно, перетворюються під дією групи T_d точнісінько як орбіталі Hs. Тому й розклад на незвідні такий же: A_1+F_2 . Отже, приходимо до результату, одержаного першим способом, але з більш осмисленим значенням коефіцієнтів. Результат чисельного розрахунку вказаний на рис. 4.

2.3 Розщеплення рівнів в електричному полі

З наявних молекулярних орбіталей нас цікавить рівень F_2 . Виберемо вісь z вздовж напрямку поля (таблиця представлень стабілізаторів побудована саме в такій системі координат). В залежності від напрямку поля одержуємо наступні варіанти розщеплення рівнів. В полі, направленому вздовж осі третього порядку, симетрія понижується до групи C_{3v} , тоді вниз відщеплюється рівень A_1 цієї групи з хвильовою функцією P_z , оскільки вона направлена вздовж поля і тому поляризується найбільше (два ж інші рівні залишаються виродженими). В інших випадках виродження знімається повністю. Зокрема, в полі, направленому вздовж осей координат, по вище згаданій причині вниз відщеплюється рівень A_1 групи C_{2v} також з хвильовою функцією P_z . Розщеплення двох інших рівнів з хвильовими функціями P_x і P_y на P_z і P_z на P_z і P_z на P_z і P_z на P_z і відповідно, дуже незначне, оскільки визначається виключно наведеною асиметрією верхньої і нижньої трійок НСН. І, нарешті, в полі орієнтованому в площині відбиття найнижчим буде рівень P_z . Взаємне ж розташування рівнів P_z і P_z яким відповідають функції P_z і P_z орієнтовані відповідно в площині відбиття і перпендикулярно до неї, треба знаходити квантовомеханічними розрахунками.

2.4 Правила відбору

Для знаходження правил відбору випромінювання і поглинання між наявними рівнями A_1 і F_2 скористаємося таблицею множення представлень.

Для переходів $A_1 \leftrightarrow A_1$ одержимо $A_1 \times D^l \times A_1 \equiv D^l \supset A_1$ лише починаючи з l=3 для електричного моменту і ще вище для магнітного, тому такі переходи практично не будуть спостерігатися.

Переходи $A_1 \leftrightarrow F_2$ дозволені в електричному дипольному, але заборонені в магнітному дипольному наближеннях, оскільки

$$A_1 \times F_2 = F_2 \equiv D^1$$
, $A_1 \times F_2 \equiv F_2 \perp D_u^1 \equiv F_1$.

Стосовно електричного квадрупольного моменту ненульові матричні елементи будуть лише для компонент Q_{yz}, Q_{zx}, Q_{xy} , оскільки компоненти $Q_{x^2-y^2}, Q_{z^2}$ перетворюються по представленню E, яке ортогональне до F_2 .

I нарешті, між рівнями $F_2 \leftrightarrow F_2$ дозволені будь-які переходи крім тих, які визначаються представленням A_2 (зокрема, всі дипольні і квадрупольні), оскільки $F_2 \times F_2 = A_1 + E + F_1 + F_2$.

Для діагональних по енергії матричних елементів у вищенаведених розрахунках зміниться лише останній пункт: магнітний дипольний момент має нульові матричні елементи $F_2 \leftrightarrow F_2$, оскільки $\{F_2 \times F_2\} = A_1 + E + F_2 \perp F_1$.

Для знаходження правил відбору комбінаційного розсіяння врахуємо, що

$$[V^2] = A_1 + E + F_2,$$

а отже дозволені будь-які переходи між рівнями типів A_1 і F_2 .

2.5 Малі коливання

Класифікацію малих коливань проводимо на основі таблиці

$$\begin{array}{|c|c|c|c|}\hline C & \Gamma & F_2 = V \times A_1 \\ H & \Lambda & A_1 + E + F_1 + 2F_2 = V \times (A_1 + F_2) \\ \hline \end{array}$$

Поступальний і обертальний рух описуються відповідно векторним F_2 і аксіальним F_1 представленнями. Віднімаючи їх, одержимо три коливних моди $A_1 + E$ з участю лише атомів водню – для них нормальні координати співпадають з хвильовими функціями на базі Hp, а також шість коливних мод $2F_2$ змішаного типу, нормальні координати яких можна знайти лише розв'язувати відповідне секулярне рівняння. Чисельні розрахунки вказують на такий порядок коливних мод: F_2 , E, A_1 , F_2 .

Кількість незалежних компонент матриці силових постійних визначається представленням $[(V^{3N})^2]$, яке розкладається як $9A_1 + \ldots$, тобто маємо 9 інваріантів з врахуванням лише симетрійних міркувань.

Відшукання симетризованих координат буде продемонстровано нижче на прикладі молекули N_4 .

2.6 Хвильові функції

Безпосереднє обчислення хвильових функцій першим способом проводиться наступним чином. Атомні орбіталі Cs і Cp атому вуглецю самі по собі вже є базисними функціями представлень A_1 і F_2 , відповідно. Для атомних орбіталей Hs будуємо спочатку регулярне представлення групи T_d на орбіті точки [111] (атом номер 1 на рис. 1 чи 3). Вибравши $c_{4i}[100]$ і $\sigma_v[101]$ за твірні елементи групи, побудуємо їх представлення:

$$c_{4i}[001] = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad \sigma_v[101] = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

В результаті розкладу на незвідні одержимо:

причому функції ненормовані, оскільки не враховане їх перекриття. В даній задачі можна й це зробити, оскільки матриця перекриття ¹

$$G = \begin{pmatrix} 1 & q & q & q \\ q & 1 & q & q \\ q & q & 1 & q \\ q & q & q & 1 \end{pmatrix},$$

де $q=\langle s_1|s_2\rangle$ і $1=\langle s_1|s_1\rangle$, дуже проста, а тому $\langle S|S\rangle=1+3q,$ $\langle P_x|P_x\rangle=1-q.$

В даному випадку є й простіші способи одержання хвильової функції. Наприклад, знаючи, що Hs перетворюються так же як Csp^3 , а шукані функції мають бути S- і P-типів, робимо обернене перетворення від sp^3 до $s+p^3$.

¹Матриця перекриття має елементи $G_{ij}=\langle\phi_i|\phi_j\rangle$. Умовою нормування функції $\psi=\sum_i c_i\phi_i$ буде $c^+Gc=1$.

Підсумовуючи, хвильова функція основного стану молекули метану в наближенні валентних електронів з точністю до нормування має дві невідомі константи. Хвильові функції молекулярних орбіталей можна виписати явно:

$$\psi_{A_1} = c_1 R_{20}^{\mathrm{C}}(r) + c_1' \sum_{i=1}^4 R_{10}^{\mathrm{H}}(|\vec{r} - \vec{r}_i|), \quad \psi_{F_2 x} = c_2 \frac{x}{r} R_{21}^{\mathrm{C}}(r) + c_2' \sum_{i=1}^4 (-1)^i R_{10}^{\mathrm{H}}(|\vec{r} - \vec{r}_i|), \dots$$

причому незалежними константами варіювання є лише константи c_1 і c_2 .

3 Молекула N₄

Слід зауважити, що молекула N₄ не є тетраедрично координованою, точніше взагалі не є координованою.

3.1 Малі коливання

Аналогічно молекулі метану одержимо коливні моди $A_1 + E + F_2$. Про розташування частот важко щось сказати напевне крім загального принципу: чим більше нормальні координати направлені вздовж хімічних зв'язків, тим вища частота. В даному випадку найвищу частоту матиме "дихальна" повносиметрична мода A_1 . Чисельні розрахунки дають такий порядок: E, F_2, A_1 .

3.2 Електронна структура

Тип зв'язку колективний ковалентний ненасичений. Колективний, бо не існує гібридизації трьох орбіталей під кутом $\pi/3$. Тому структура молекули визначається найбільш компактним симетричним розташуванням ядер.

Зауважимо, що молекула N_4 метастабільна по відношенню до молекули N_2 з парним ковалентним зв'язком, для фосфора ж навпаки. Це відображає загальну тенденцію в таблиці Менделєєва: легкі атоми мають чітко окреслені по енергії, з жорсткою взаємною орієнтацією в просторі, сильно зв'язані з ядром чотири валентні орбіталі, для яких симетрія і направленість (фактично, парних) зв'язків відіграє визначальну роль. Важкі атоми мають рихлі слабше зв'язані з ядром орбіталі, але їх більше як за рахунок появи d- і f-орбіталей (основний ефект), так і за рахунок домішування привалентних орбіталей (це знову ж таки переважно поляризаційні d- і f-орбіталі), які енергетично менше розділені від валентних, порівняно з легкими атомами. Тому для важків атомів симетрійні принципи

Рис. 5: Молекулярні орбіталі

втрачають актуальність, оскільки велика кількість слабо локалізованих у просторі електронів "розтікається" між позитивно зарядженими ядрами, утворюючи колективний ненаправлений зв'язок.

Перший спосіб:

$$\begin{array}{|c|c|c|c|c|} \hline \text{Ns} & \Lambda & A_1 + F_2 = D^0 \times (A_1 + F_2) \\ \hline \text{Np} & \Lambda & A_1 + E + F_1 + 2F_2 = D^1 \times (A_1 + F_2) \\ \hline \end{array}$$

Отже, маємо $2A_1+3F_2$ орбіталі змішаного складу і $E+F_1$ орбіталі з p-електронів. Оскільки є F_1 орбіталь, то буде й рівень 1F, а це тягне за собою нижчі рівні. Оскільки рівні 1D і 1F можуть бути не до кінця заповнені, то теоретично залишається мінімум 0, максимум A_1+2F_2 орбіталі. З них можна утворити лише 2S і 2P рівні. Підсумовуючи маємо

$$\begin{array}{|c|c|c|} \hline 1S & A_1 \\ 1P & F_2 \\ 1D & E+F_2 \\ 1F & A_1(?)+F_1+F_2(??) \\ 2S & A_1(?) \\ 2P & F_2(??) \\ \hline \end{array}$$

Вибір орбіталі A_1 на користь рівня 2S A_1 однозначний, вибір орбіталі F_2 можна зробити лише описаним нижче другим способом (або чисельними розрахунками), який дає 2P F_2 . Порядок нижніх орбіталей: 1S, 1P, 2S, 1D, також однозначний, порядок верхніх орбіталей 1F F_1 і 2P може залежати від методу чисельних розрахунків. Власне, це малоістотно, оскільки 10 наявних електронів якраз заповнюють нижній ряд орбіталей. Залишається невизначеним лише порядок 1D E і 1D F_2 , є два аргументи на користь нижньої трикратно виродженої орбіталі (чисельний розрахунок підтверджує це): по-перше, симетрія тетраедра більше відповідає орбіталі F_2 , і по-друге, чим більше електронів, тим оптимальніше їх можна розташувати, особливо для колективного зв'язку.

Другий спосіб. Беремо гібридизовані орбіталі $N(s+p_z)$, де p_z направлені вздовж головних діагоналей кубу (про коефіцієнти ми нічого не можемо сказати, бо зв'язок колективний), і заповнюємо таблицю:

Таким чином ми одержали склад орбіталей. Результат чисельного розрахунку вказаний на рис. 5.

3.3 Хвильові функції і симетризовані зміщення

Хвильові функції на базі атомних *s*-орбіталей ми вже розглядали для молекули метану. Тут обмежимося p-орбіталями і симетризованими координатами коливань, які перетворюються за представленням $A_1+E+F_1+2F_2$ (різниця між хвильовими функціями і симетризованими зміщеннями буде лише для кратного F_2). Шукаємо генератори індукованого представлення за формулою $T=R\times D^1$, де матриці регулярного представлення R будуть такі ж як для молекули метану. Представлення D^1 в декартових координатах має вигляд:

$$D^{1}[c_{4i}] = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad D^{1}[\sigma_{v}] = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

що означає, наприклад, що атомна хвильова функція $p_x \equiv \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^T$ перетворенням c_{4i} переводиться в $-p_y$, а відбиттям σ_v в $-p_z$ (тут p_x означає хвильову функцію, а не базис). Для зміщень атомів таблиця та ж сама, але замість значка p слід поставити значок u. Розклад на незвідні можна робити або за формулою проектування, або з еврістичних міркувань. Виберемо останній спосіб.

Паралельно з декартовим зручно використовувати вже згадуваний вище симетричніший базис $\{p_+ = Y'_{11}, p_- = Y'_{1-1}, p_{z'} = Y'_{10}\}$, орієнтований в кожному атомі так, щоб вісь z' співпадала з віссю третього порядку, яка проходить через даний атом, і була напрямлена назовні. В компактній формі це можна записати так:

де крапка означає поелементне множення матриць, фактично, матриця 3×4 "підправляє" декартовий базис кожного атому.

В такому базисі функції $p_{z'}$ ведуть себе як *s*-орбіталі при застосуванні елементів симетрії групи, тому безпосередньо за формулами для *s*-орбіталей одержимо власні функції представлень A_1 і $1F_2$ (останнє представлення кратне, тому спереду треба ставити номер). Можна також очікувати, що функції

$$\frac{1}{2} \left(p_{1\pm} + p_{2\pm} + p_{3\pm} + p_{4\pm} \right)$$

будуть базисом представлення E, прямою перевіркою переконуємося, що це так. Можна вибрати і дійсний базис, якщо замінити

$$\begin{pmatrix} e^{-i\pi/3} & e^{i\pi/3} & -1 \\ e^{-i2\pi/3} & e^{i2\pi/3} & 1 \\ & 1 & 1 \end{pmatrix}$$
 на
$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

(він ортогональний, але ненормований). Відповідно до записаного порядку він дає хвильові функції $D_{x^2-y^2},\,D_{z^2}$ і S.

Для знаходження базису рівнів F_1 і $2F_2$ врахуємо, що представлення F_2 і F_1 описують відповідно зміщення і поворот молекули як цілого. Їх ненормовані базиси очевидні:

$$ec{U}^{ ext{tr}} = \sum_i ec{u}_i, \quad ec{U}^{ ext{rot}} = \sum_i \left[ec{r}_i imes ec{u}_i
ight].$$

Залишається лише вибрати правильні базиси у кратному представленні F_2 . Для нормальних координат малих коливань правильні функції коливної моди F_2 одержуються ортогоналізацією одержаних вище функцій $1F_2$ по відношенню до \vec{U}^{tr} . В підсумку одержимо

Графічно нормальні моди зображені на рис. 6.

Рис. 6: Нормальні коливання A1, E(1), E(2) і $F_2(3)$. Всюди один і той же вид зверху. Кружок з крапкою, хрестиком і білий означає відповідно $u_z < 0$, $u_z > 0$ і $u_z = 0$.

Рис. 7: Проекція базисних функцій представлень 1E, $1F_1$ і $2F_2$ на атомні орбіталі першого атому

Для хвильових функцій базис представлення $2F_2$ одержується ортогоналізацією функцій \vec{U}^{tr} по відношенню до функцій $1F_2$. В підсумку одержимо

Атомні орбіталі, що формують базиси 1E, $1F_1$ і $2F_2$ показані на рис. 7. Базисні функції представлень $1F_1$ і $2F_2$ майже однакові, але перші орієнтовані пелюстками до сусідніх атомів, а другі чергуються з першими.

4 Молекула С(СН₃)₄

Рис. 8: Молекула С(СН₃)₄

Рис. 9: Молекулярні орбіталі

Координати атомів елементарного фрагменту молекули такі:

$$C' = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}, \qquad C = \frac{a}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix},$$

$$H = \frac{a}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} + \frac{b}{\sqrt{3}} \begin{pmatrix} \frac{1}{\sqrt{2}} \sin \beta - \cos \beta, & \frac{1}{\sqrt{2}} \sin \beta - \cos \beta, & -\sqrt{2} \sin \beta - \cos \beta \end{pmatrix},$$

де $a={
m CC}=1.54$ A, $b={
m CH}=1.09$ A, $\beta={
m HCH}=111.2^\circ.$ Атоми водню лежать на орбітах $\Lambda\Lambda'$. Група симетрії T_d .

4.1 Електронна структура

Оскільки молекула складна, треба комбінувати різні підходи. Насамперед, прямолінійний розклад дає:

C's	Γ	$A_1=D^0\times A_1$
C'p	Γ	$F_2=D^1\times A_1$
Cs	Λ	$A_1 + F_2 = D^0 \times (A_1 + F_2)$
Cp	Λ	$A_1 + E + F_1 + 2F_2 = D^1 \times (A_1 + F_2)$
Hs	$\Lambda\Lambda'$	$A_1 + E + F_1 + 2F_2 = D^0 \times (A_1 + E + F_1 + 2F_2)$

Первинний аналіз симетрії одержаних орбіталей такий:

1S	2S	3S	4S
1P	2P	3P	
1D	2D	,	
1F	2F		
1G			

	A_1	E	F_1	$2F_2$
4S	?			
3P				?
2D		?		?!
1F	?		+	+
2F	_		?	??
1G	_	??	?	?

Для аналізу складу орбіталей шукаємо молекулярні орбіталі радикала СН₃:

C_{3v}	e	$2c_3$	$3\sigma_v$				
A_1	1			$S; P_z$		Co	4
A_2	1	1	-1	D_{xy}		C_n	A_1 $A_1 + B$
E	2	-1	0	P_x, P_y	\Longrightarrow	cp	$A_1 + E_1 + E_2$
С	1	1	1	A_1		115	$A_1 + L$
Η	3	0	1	$A_1 + E$			

Отже маємо $3A_1(\mathrm{C}sp_z+\mathrm{H}s)+2E(\mathrm{C}p_xp_y+\mathrm{H}s)$. Домножуючи на регулярне представлення A_1+F_2 і складаючи з орбіталями центрального атому $A_1(\mathrm{C}'s)+F_2(\mathrm{C}'p)$, одержимо

4	A_1	$C's + Csp_z + Hs$
4		$C'p + Csp_z + Hs$
2	$E + F_1 + F_2$	$Cp_xp_y + Hs$

Все це разом з результатами чисельного розрахунку дає рис. 9.