tal 华中科技大学 20xx-20xx 学年第一学期。 Signals and Systems	(3) The N-point DFT requires complex multiplications. In contrast, the FFT algorithm requirescomplex multiplications.
Class 416 Student Number 83403483 Name 陈字	(4) $x(t) = \sin(\frac{1}{7}\pi t)$, sampling time T=3 Then the discrete-time sign $x[n] = \underline{\hspace{1cm}}$, the fundamental period of $x[n]$ is $\underline{\hspace{1cm}}$.[3]
1) For a LTI system, when the input signal $x[n]$ is equal to the unit inpulse signal $\delta[n]$ with no initial system state, the output of the system is	(5) The Fourier transform $X(\omega)$ of the periodic signal $x(t) = \sum_{k=-\infty}^{\infty} \delta(t - is _{})$.
2) In a discrete-time LTI system, the relationship between the ransfer function $H(z)$ and the unit impulse response $h[n]$ is	(6) If the Fourier transform of a continuous-time signal $x(t)$ is $X(\omega) = \begin{cases} 10, \omega <= 3 \text{rad/s}, \\ 0, \omega >= 3 \text{rad/s} \end{cases}$, then the Nyquist frequency for sampling the signal $f(t) = x(t) \cos 2t$ is

Compute the Fourier transform of the signal in the Figure

- 2. Linear or nonlinear?
- 3. Time invariant or time varying?
- 4. 5. Has memory or is memoryless? Compute the **trigonometric Fourier series** of y(t).
- Plot the line **spectra** of y(t).

For the Fourier transforms ω is given in Figure, what characteristics does x(t) have (i.e., real-valued, complex-valued)? Calculate $x(\theta)$.

For the Fourier transforms ω is given in Figure, what characteristics does x(t) have (i.e., real-valued, complex-valued, even, odd)? Calculate x(0).

