Level 2 Stars, Workshop 6

David Alexander

1. Convection

- a) What causes convection in stars? Draw cross sections through both a low mass (~1 solar mass) and high mass (~8 solar mass) main-sequence star to highlight the regions where convection is believed to occur in these stars. Why does convection occur in each of these regions?
- b) Briefly describe the mixing-length theory of convection.
- c) Calculate the radial extent (ℓ) of the convection cells at the surface of the Sun using the following equation $\ell = \alpha H_P$, where the scale height (H_P) satisfies $\frac{1}{H_P} = -\frac{1}{P}\frac{dP}{dr}$ and α is a scaling factor. In your calculation assume that the pressure at the surface of the Sun is $P=10^{13}$ N m⁻² and that the density is equal to the average density of the Sun. State a likely value of α and briefly justify the value you have given.

2. Pulsating Stars

- a) What property of Cepheid variables makes them extremely useful in estimating the distances to other galaxies?
- b) Using a simple model of constant density and the adiabatic sound speed, show that the period of a radially oscillating star is given by

$$\Pi \approx \sqrt{\frac{3\pi}{2\gamma G\rho}}\,,$$

where Π is the period, γ is the ratio of specific heats and ρ is the density. State any assumptions you make. You may use the standard integral

$$\int_{0}^{R} \frac{dr}{\sqrt{\left(R^2 - r^2\right)}} = \left[\sin^{-1}\left(\frac{r}{R}\right)\right]_{0}^{R}.$$

- c) A 2 solar mass RR Lyrae variable star has an observed pulsation period of 5.0 hrs, a surface temperature of 7500 K, and γ =5/3. What is its luminosity?
- d) Given, from part b, that $\Pi \approx \sqrt{\frac{3\pi}{2\gamma G\rho}}$, also demonstrate that $\Pi \propto L^{\frac{3}{4}}$. [σ =5.67 × 10⁻⁸ W m⁻² K⁻⁴; M_{\odot} = 1.99 x 10³⁰ kg]