

Quantum Coding Course

Ali Kookani Yousef Mafi

اطلس كوانتوم

About us

Quantum Atlas is an educational group which aims to educate people in various fields of quantum, from hardware to software and quantum machine learning.

www.quantumatlas.ir

QuantumSTEM

in Quantum Atlas

Syllabus

Section 1	Lecture 1	Quantum Computation and Information (Theoretical lecture) – By Y. Mafi
	Lecture 2	Quantum Circuits (Coding lecture) – By A. Kookani
Section 2	Lecture 3	Quantum Simulation (Coding lecture) – By A. Kookani
	Lecture 4	IBMQ and Error Correction (Implementation and Theoretical lecture) – By Y. Mafi
Section 3	Lecture 5	Quantum Algorithm (Theoretical lecture) – By Y. Mafi
	Lecture 6	Quantum Algorithm Simulation (Coding lecture) – By A. Kookani

Primitives

The smallest processing instruction for a given abstraction level.

Running on Backends

- Provide circuit(s) + number of shots
- Run specified backend
- Get counts for each circuit

[{'00': 879, '11': 145}, {'000': 474, '111': 5050}, ...]

Sampler

Returns shot by shot bit strings sampled from the probability distribution of the quantum state prepared on the device.

Primitives

- Basic functional block to run slightly higher-level quantum programs
- Return more than just "counts" at the output
 - **Sampler**: Samples output state of a circuit (e.g. a probability distribution)

[[{'00': 0.85, '11': 0.15}, {'00': 0.7, '11': 0.3}, ...],

[{'000': 0.49, '111':0.51}], ...]

Estimators

Computes expectation values of observables with the respective states prepared by quantum circuits.

Primitives

- Basic functional block to run slightly higher-level quantum programs
- Return more than just "counts" at the output
 - **Estimator**: Estimates expectation value of state with respect to observables

Expectation Values

[[[0, 0, 0, ...], [0.5, -0.5, 0, ...], [0.2, 0.1, , -0.1, ...]], [[1], [0.9], [0.5]], ...]

