UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS DE CHAPECÓ/SC CURSO DE CIÊNCIA DA COMPUTAÇÃO

GABRIEL ALAN SCARATTI

ALGORITMO DE CODIFICAÇÃO BASE64

CHAPECÓ/SC

SUMÁRIO

1. INTRODUÇÃO	3
2. DESENVOLVIMENTO	3
2.1 HISTÓRICO	3
2.2 FUNCIONAMENTO DO ALGORITMO	3
2.3 CÁLCULO DO TAMANHO DA SAÍDA	4
2.4 APLICAÇÕES PRÁTICAS	4
2.5 EXEMPLO PRÁTICO	5
3. CONCLUSÃO	5
REFERÊNCIAS	7

1. INTRODUÇÃO

A técnica Base64 é um método de codificação utilizado para expressar informações digitais usando letras e símbolos ASCII. Ela serve principalmente para assegurar que os dados cheguem intactos em plataformas que só aceitam texto, como e-mails.

Ele garante que a informação chegue sem corrupção, expandindo o tamanho do dado em cerca de 33%. O Base64 não criptografa os dados, mas os padroniza para que possam ser facilmente processados e decodificados em qualquer plataforma, tornando-o crucial para a interoperabilidade digital.

2. DESENVOLVIMENTO

2.1 HISTÓRICO

A codificação Base64 surgiu com o objetivo de aprimorar as especificações MIME (Extensões de Correio da Internet Multiuso), um padrão que visa codificar mensagens de email que contêm dados que não são apenas texto. A ideia por trás de sua criação era assegurar que qualquer informação binária pudesse ser transferida através de canais textuais sem ocasionar perdas de dados ou falhas na interpretação.

2.2 FUNCIONAMENTO DO ALGORITMO

O algoritmo Base64 converte dados binários em texto ASCII usando 64 caracteres específicos: letras maiúsculas e minúsculas (A–Z, a–z), números (0–9), além dos símbolos + e /. O processo ocorre em três etapas principais:

- 1. Agrupar os dados em blocos de 24 bits (3 bytes);
- 2. Dividir esses blocos em 4 partes de 6 bits;
- 3. Converter cada bloco de 6 bits para os caracteres da tabela Base64.

Figura 1

Index	Binary	Char									
0	000000	Α	16	010000	Q	32	100000	g	48	110000	W
1	000001	В	17	010001	R	33	100001	h	49	110001	x
2	000010	С	18	010010	S	34	100010	i	50	110010	у
3	000011	D	19	010011	T	35	100011	j	51	110011	z
4	000100	Е	20	010100	U	36	100100	k	52	110100	0
5	000101	F	21	010101	V	37	100101	1	53	110101	1
6	000110	G	22	010110	W	38	100110	m	54	110110	2
7	000111	Н	23	010111	X	39	100111	n	55	110111	3
8	001000	I	24	011000	Υ	40	101000	o	56	111000	4
9	001001	J	25	011001	Z	41	101001	р	57	111001	5
10	001010	K	26	011010	а	42	101010	q	58	111010	6
11	001011	L	27	011011	b	43	101011	r	59	111011	7
12	001100	М	28	011100	С	44	101100	S	60	111100	8
13	001101	N	29	011101	d	45	101101	t	61	111101	9
14	001110	0	30	011110	e	46	101110	u	62	111110	+
15	001111	Р	31	011111	f	47	101111	v	63	111111	/

Fonte: Wikipédia, 2024.

2.3 CÁLCULO DO TAMANHO DA SAÍDA

Fórmula: $y=[x/3]\times 4$

Onde:

- x é o tamanho de entrada em bytes;
- y é o tamanho da saída em caracteres base64.

Para garantir que o tamanho final seja sempre um múltiplo de 4, o Base64 usa caracteres de preenchimento (=) no final da string quando o número de bytes de entrada não é divisível por 3. Dessa forma, sempre haverá um aumento de tamanho (aproximadamente 33%) em comparação ao tamanho original.

2.4 APLICAÇÕES PRÁTICAS

A codificação Base64 é usada em diversos contextos:

- E-mails: codificação de anexos em MIME;
- **Redes**: transmissão de credenciais em autenticação HTTP;
- APIs: envio de imagens ou arquivos binários como strings em JSON;

• Desenvolvimento Web: uso em Data URIs para embutir imagens diretamente no código HTML.

2.5 EXEMPLO PRÁTICO

Utilizando a palavra "Oi"

1. ASCII: O = 79, i = 105

2. Converter para binário: 01001111 01101001

3. Preencher com zeros até 24 bits: 01001111 01101001 00000000

4. Dividir em 6 bits: 010011 110110 100100 000000

5. Converter em decimal: 19, 54, 36, 0

6. Converter para os caracteres da Tabela Base64: T, 2, k, A

7. Resultado final: T2k=

2.6 COMPARAÇÃO COM OUTROS MÉTODOS

Tabela 1 - Comparação

Método	Base64	Hexadecimal	Binário
Representação	64 caracteres	16 caracteres	e caracteres
Tamanho da saída	~33% maior	100% maior	700% a 800% maior
Complexidade de decodificação	Baixa	Muito Baixa	Alta
Utilização	MIME, APIs	Debugging, Criptografia	Hardware

Fonte: autoria própria.

3. CONCLUSÃO

O método de codificação Base64 desempenha um papel crucial na compatibilidade de dados entre plataformas que processam informações textuais e binárias. A sua natureza

simples e eficaz garante a sua utilização em muitas aplicações atuais, desde a internet até à infraestrutura de servidores. Compreender como este método opera é indispensável para programadores e alunos da área de informática.

REFERÊNCIAS

JOSEFSSON, S. **The Base16, Base32, and Base64 Data Encodings**. RFC Editor, 2006. Disponível em: https://www.rfc-editor.org/info/rfc4648>. Acesso em: 1 jun. 2025.

RAHIM, R. et al. Combination Base64 Algorithm and EOF Technique for Steganography. **Journal of Physics:** Conference Series, v. 1007, 2018. doi: 10.1088/1742-6596/1007/1/012003.

THE BASE64 Algorithm: Encoding & Decoding Manually and with Pseudocode. **B64ENCODE**, 2023. Disponível em: https://b64encode.com/blog/base64-algorithm/. Acesso em: 1 jun. 2025.

TSCHABITSCHER, H. **How Base64 Encoding Works**. Lifewire, 2020. Disponível em: https://www.lifewire.com/base64-encoding-overview-1166412>. Acesso em: 1 jun. 2025.

WEN, S., DANG, W. Research on Base64 Encoding Algorithm and PHP Implementation. **26th International Conference on Geoinformatics**, p. 1-5, 2018. doi: 10.1109/GEOINFORMATICS.2018.8557068.