Sparkling Insights:Exploring the Diamond Data

Apostu Alexandru-Mihai (507) Dragomir Elena Alexandra (507)

Contents

- Exploratory Data Analysis
- Plots
- Machine Learning

Introduction

Diamond Valuation

Interpretation of the caraty o

Analysis Objectives

 To unravel how various diamond attributes interplay to impact pricing, providing insights that guide smarter business and consumer decisions.

EDA

Dataset columns

Content

- price price in US dollars
- carat weight of the diamond
- **cut** quality of the cut
- color diamond colour, from J (worst) to D
 (best)
- clarity a measurement of how clear the diamond is (I1 -worst, SI2, SI1, VS2, VS1, VVS2, VVS1, IF - best)

- **x** length in mm
- **y** width in mm
- **z** depth in mm
- depth total depth percentage
 z / mean(x, y)
- table width of top of diamond relative to widest point

Dataset Overview

- Short view of dataset
- Columns names
- Types of variables

Dataset Overview

- Unique values for categorical columns
- Range for numerical columns
- Description of the dataset

Plots

Distribution of Diamond Prices

- Most diamonds are priced below \$5,000.
- There is a significant peak around the \$1,000 mark.
- The distribution is right-skewed, with fewer diamonds at higher prices.
- The overlaid curve highlights the concentration of lower-priced diamonds.

Scatter Plot - Carat vs. Price

 The price is increasing along with the diamonds' weight

Box Plot - Cut vs. Price

Cut quality does not always directly correlate to higher prices, it seems like market demand and diamond availability also play critical roles

- Premium cuts have the highest median prices, also leading in average price at \$4.58K, while Ideal cuts offer a broad price range.
- Note the variance in price within each cut category, particularly the longer tails in Ideal and Premium cuts, which indicate the presence of high-priced outliers.

Average of price by cut

Hierarchical Clustermap

- This hierarchy allows ordering the data in clusters.
- It arranges the data using a dissimilarity matrix (also called distance matrix), which gives information on how far are two features

Correlations Heatmap

- The color scale indicates correlation strength, ranging from -1 (blue) to 1 (red).
- The variables price, carat, z, x, and y show significant correlations with each other

Diamond Size Ratio by Cut

 Premium and especially Ideal cuts typically exhibit tighter, more consistent dimension ratios, reflecting superior cut quality and precision.

Area chart for diamond size

Observe the constant ratio evolution of each parameter for the diamond size

3D Scatter Plot - Diamond Dimensions by Cut

 We can observe there is a visible dependency that clusters the dimensions into lines, between the variables x, y, z as they evolve in 3D space, as noted in the boxplots we discussed earlier.

3D Scatter Plot of Diamond Dimensions by Cut

Representation using t-SNE

 Represent the diamonds using 2 components resulted from t-SNE from the features for dimensions, 'depth', 'table', 'x', 'y', 'z' and color them by 'cut'.

Machine Learning

- Linear Regression
- Decision Tree
- Random Forest
- Support Vector Regression
- Gradient Boosting
- Clustering

Results

We used for training features from the columns 'carat', 'cut', 'color', 'clarity', 'depth', 'table', 'x', 'y', 'z' in order to predict the 'price' column. Bellow we have the metrics for each training

	Mean Absolute Error (MAE)	Mean Squared Error (MSE)	Root Mean Squared Error (RMSE)	R-squared (R2)	Median Absolute Error
Linear Regression	737.15	1288705.48	1135.21	0.92	526.00
Decision Tree	383.26	716342.19	846.37	0.95	129.00
Random Forest	296.68	408995.77	639.53	0.97	101.49
Support Vector Regression	787.31	2208847.56	1486.22	0.86	357.75
Gradient Boosting	437.14	715907.75	846.11	0.95	192.12

Feature importance

Feature importance

Top important features for each model

Top 5 most important features

Decision Tree	Random Forest	Support Vector Regression	Gradient Boos

	Linear Regression	Decision Tree	Random Forest	Support Vector Regression	Gradient Boosting
0	clarity_IF	carat	carat	carat	У
1	carat	У	У	clarity_IF	carat
2	clarity_VVS1	clarity_SI2	clarity_SI2	clarity_VVS1	z
3	clarity_VVS2	clarity_SI1	clarity_SI1	clarity_VVS2	clarity_SI2
4	clarity_VS1	color_J	color_J	clarity_VS1	×

Top 5 least important features

	Linear Regression	Decision Tree	Random Forest	Support Vector Regression	Gradient Boosting
0	У	cut_Very Good	cut_Very Good	clarity_SI2	cut_Very Good
1	z	cut_Premium	cut_Premium	color	cut_Premium
2	table	cut_Good	cut_Good	color_l	cut_Good
3	depth	color_E	color_E	clarity_SI1	table
4	color_E	cut_ldeal	cut_ldeal	color_H	color_E

Thank you