1. Subject Code: **EP-204** Course Title: **Optics**

2. Contact Hours: L:3 T:0 P:2

3. Examination Duration (Hrs.): Theory: 3 Practical: 0

4. Relative Weight: CWS: 15 PRS: 15 MTE: 30 ETE: 40 PRE: 0

5. Credits: 46. Semester: EVEN7. Subject Area: DCC

8. Pre-requisite: Knowledge of the concepts of trigonometric operations

and differential and integral calculus

9. Objective: To provide the in depth analysis of the concepts of the

interference, diffraction and polarization and the

applications related to them

10. Details of Course:

4th Semester

S. No.	Contents	Contac t Hours
1.	Wave nature of light, Coherence: Spatial and temporal coherence, spectral resolution of a finite wave train, Optical Beats, Coherence time and line width via fourier analysis, Fourier transform spectroscopy.	08
2.	Theory of interference and interferometers: Interference of two monochromatic waves, two beam interference, multiple beam interference, Michelson interferometer, Fabry Perot interferometer	08
3.	Theory of diffraction, Fraunhofer diffraction, Single slit diffraction, two slit diffraction, N slit diffraction by a circular aperture, diffraction by rectangular aperture, Resolving power of grating.	06
4.	Fresnel Diffraction, Fresnel Half period zones, zone plate, Gaussian beam propagation, Fresnel diffraction A Rigorous approach, Diffraction by straight edge, diffraction of a plane wave by along narrow slit and transition to the fraunhofer region	10
5.	Polarization, Production of Polarized light by different mechanisms	05
6.	Introduction to Lasers, Different types of lasers, Einstein Coefficients and Optical Amplification	05
	Total	42

Suggested Books

S.No	Name of Books/ Authors	Year of Publication/ Reprint
1.	Optics by Hecht and Ganeshan	2012/Pearson
2.	Introduction to Optics by A.Ghatak	2012/Tata McGraw Hill.
3.	Principles of Optics by M. Born and E. Wolf,	McMillan
4.	Optical Physics by S. C. Lipson and H. Lipson	2010/ Cambridge University Press
5.	Introduction to optics by Pedrotti and Pedrotti	2014/ Pearson Prentice Hall
6.	Optoelectronics and Photonics by S.O. Kasap	2010/Pearson

List of Experiments for Optics Lab

- 1. To measure the spot size and divergence of a laser beam.
- 2. To draw normal dispersion curve by using spectrometer and to determine Cauchy's constant.
- 3. To determine the diameter of a thin hair by interference due to a wedge shape air film.
- 4. To determine the resolving power of a plane transmission grating.
- 5. To determine the diameter of a circular aperture by Fraunhofer diffraction pattern.
- 6. To determine the value of Young's modulus 'Y' of a glass plate by Cornu's method.

7. To determine the wavelength of laser source using Michelson's interferometer.						