# pyspeckit Documentation Release 0.1

**Adam Ginsburg and Jordan Mirocha** 

# **CONTENTS**

| 1  | Class    | ses                           | 3  |  |  |
|----|----------|-------------------------------|----|--|--|
| 2  | Features |                               |    |  |  |
|    | 2.1      | Installation and Requirements | 5  |  |  |
|    | 2.2      | Models                        | 6  |  |  |
|    | 2.3      | Features                      | 12 |  |  |
|    | 2.4      | Readers                       |    |  |  |
|    | 2.5      | Wrappers                      | 23 |  |  |
|    | 2.6      | Examples                      | 25 |  |  |
| Ру | thon I   | Module Index                  | 47 |  |  |
| In | dex      |                               | 49 |  |  |

An extensible spectroscopic analysis toolkit for astronomy.

If you're just getting started, see the examples page.

Download the January 2012 version, the latest commit, see *Installation and Requirements*, or see our pypi entry.

Supported file types and their formats:

- FITS
- Plain Text
- hdf5

CONTENTS 1

2 CONTENTS

# **CLASSES**

- spectrum can read a variety of individual spectra types
  - Spectrum The Spectrum class, which is the core of pyspeckit. The \_\_init\_\_ procedure opens a spectrum file.
  - Spectra A group of Spectrums. Generally for when you have multiple wavelength observations you want to stitch together (e.g., two filterbanks on a heterodyne system, or the red/blue spectra from a multiband spectrometer like the Double Imaging Spectrograph)
  - ObsBlock An Observation Block multiple spectra of different objects or different times covering the same wavelength range
- cubes is used to deal with data cubes and has functionality similar to GAIA and ds9.
  - Cube A Cube of Spectra. Has features to collapse the cube along the spectral axis and fit spectra to each
    element of the cube. Is meant to replicate Starlink's GAIA in some ways, but with less emphasis on speed
    and much greater emphasis on spectral line fitting.

4 Chapter 1. Classes

**CHAPTER** 

**TWO** 

# **FEATURES**

- Baseline Fitting describes baseline & continuum fitting.
- Model Fitting describes the general process of model fitting.
- Measurements is a toolkit for performing EQW, column, and other measurements...
- Units contains the all-important SpectroscopicAxis class that is used to deal with coordinate transformations
- Registration describes the extensible qualities of pyspeckit

## 2.1 Installation and Requirements

PySpecKit requires at least the basic scientific packages

- numpy
- · matplotlib
- · mpfit is included
- scipy is optional. It is only required for RADEX grid interpolation

You'll most likely want at least one of the following packages to enable file reading

- · pyfits
- atpy (which depends on asciitable [github link])
- hdf5

If you have pip (see <a href="http://pypi.python.org/pypi/pyspeckit">http://pypi.python.org/pypi/pyspeckit</a>), you can install with:

```
pip install pyspeckit
```

You can acquire the code with this clone command:

```
hg clone https://bitbucket.org/pyspeckit/pyspeckit.bitbucket.org pyspeckit cd pyspeckit python setup.py install
```

Or you can Download the latest tarball version, then extract and install using the standard python method:

```
wget https://bitbucket.org/pyspeckit/pyspeckit.bitbucket.org/get/tip.tar.gz
tar -xzf pyspeckit-pyspeckit.bitbucket.org-tip.tar.gz
cd pyspeckit-pyspeckit.bitbucket.org-tip
python setup.py install
```

You can also check out the source code

#### 2.2 Models

The generic SpectralModel class is a wrapper for model functions. A model should take in an X-axis and some number of parameters. In order to declare a SpectralModel, you give SpectralModel the function name and the number of parameters it requires. The rest of the options are optional, though parametes & shortvarnames are strongly recommended. If you do not specify fitunits, your fitting code must deal with units internally.

Here are some examples of how to make your own fitters:

Then you can register these fitters.

#### 2.2.1 Generic SpectralModel wrapper

A wrapper class for a spectra model. Includes internal functions to generate multi-component models, annotations, integrals, and individual components. The declaration can be complex, since you should name individual variables, set limits on them, set the units the fit will be performed in, and set the annotations to be used. Check out some of the hyperfine codes (hcn, n2hp) for examples.

modelfunc: the model function to be fitted. Should take an X-axis (spectroscopic axis) as an input, followed by input parameters. npars - number of parameters required by the model

```
parnames - a list or tuple of the parameter names
```

parvalues - the initial guesses for the input parameters (defaults to ZEROS)

parlimits - the upper/lower limits for each variable (defaults to ZEROS)

parfixed - Can declare any variables to be fixed (defaults to ZEROS)

parerror - technically an output parameter... hmm (defaults to ZEROS)

partied - not the past tense of party. Can declare, via text, that some parameters are tied to each other. Defaults to zeros like the others, but it's not clear if that's a sensible default

fitunits - convert X-axis to these units before passing to model

parsteps - minimum step size for each paremeter (defaults to ZEROS)

```
npeaks - default number of peaks to assume when fitting (can be overridden)
```

shortvarnames - TeX names of the variables to use when annotating

multisingle - Are there multiple peaks (no background will be fit) or just a single peak (a background may/will be fit)

```
annotations (shortvarnames=None)
```

Return a list of TeX-formatted labels

#### components (xarr, pars, \*\*kwargs)

Return a numpy ndarray of the independent components of the fits

**fitter** (*xax*, *data*, *err=None*, *quiet=True*, *veryverbose=False*, *debug=False*, *parinfo=None*, \*\*kwargs)

Run the fitter. Must pass the x-axis and data. Can include error, parameter guesses, and a number of verbosity parameters.

quiet - pass to mpfit. If False, will print out the parameter values for each iteration of the fitter

veryverbose - print out a variety of mpfit output parameters

debug - raise an exception (rather than a warning) if chi<sup>2</sup> is nan

accepts tied, limits, limited, and fixed as keyword arguments. They must be lists of length len(params)

**parinfo - You can override the class parinfo dict with this, though** that largely defeats the point of having the wrapper class. This class does NO checking for whether the parinfo dict is valid.

kwargs are passed to mpfit after going through \_make\_parinfo to strip out things used by this class

```
integral (modelpars, **kwargs)
```

Extremely simple integrator: IGNORES modelpars; just sums self.model

#### mpfitfun (x, y, err=None)

Wrapper function to compute the fit residuals in an mpfit-friendly format

#### n modelfunc(pars, \*\*kwargs)

Simple wrapper to deal with N independent peaks for a given spectral model

#### slope (xinp)

Find the local slope of the model at location x (x must be in xax's units)

#### 2.2.2 Ammonia inversion transition TKIN fitter

Ammonia inversion transition TKIN fitter translated from Erik Rosolowsky's http://svn.ok.ubc.ca/svn/signals/nh3fit/

#### **Module API**

```
\label{eq:continuous_problem} \begin{split} \operatorname{pyspeckit.spectrum.models.ammonia.ammonia}(xarr, & tkin=20, & tex=None, \\ ntot=1000000000000000, & width=1, \\ xoff\_v=0.0, & fortho=0.0, & tau=None, & fillingfraction=None, & return\_tau=False, & thin=False, \\ verbose=False, & return\_components=False, \\ debug=False) \end{split} Generate a model Ammonia spectrum based on input temperatures, column, and gaussian parameters
```

Generate a model Annihoma spectrum based on input temperatures, column, and gaussian parameters

ntot can be specified as a column density (e.g., 10^15) or a log-column-density (e.g., 15)

tex can be specified or can be assumed LTE if unspecified, if tex>tkin, or if "thin" is specified

2.2. Models 7

"thin" uses a different parameterization and requires only the optical depth, width, offset, and tkin to be specified. In the 'thin' approximation, tex is not used in computation of the partition function - LTE is implicitly assumed

If tau is specified, ntot is NOT fit but is set to a fixed value fillingfraction is an arbitrary scaling factor to apply to the model fortho is the ortho/(ortho+para) fraction. The default is to assume all ortho. xoff\_v is the velocity offset in km/s

tau refers to the optical depth of the 1-1 line. The optical depths of the other lines are fixed relative to tau\_oneone (not implemented) if tau is specified, ntot is ignored

#### 2.2.3 SimpleFitter wrapper

Adds a variable height (background) component to any model

#### 2.2.4 Formaldehyde cm-line fitter

This is a formaldehyde 1\_11-1\_10 / 2\_12-2\_11 fitter. It includes hyperfine components of the formaldehyde lines and has both LTE and RADEX LVG based models

```
py speckit.spectrum.models.formaldehyde.formaldehyde(xarr, amp=1.0, \\ xoff\_v=0.0, width=1.0, return\_components=False)
```

Generate a model Formaldehyde spectrum based on simple gaussian parameters

the "amplitude" is an essentially arbitrary parameter; we therefore define it to be Tex given tau=0.01 when passing to the fitter The final spectrum is then rescaled to that value

```
pyspeckit.spectrum.models.formaldehyde.formaldehyde_radex(xarr,
                                                                                      density=4,
                                                                           column=13,
                                                                           xoff_v=0.0, width=1.0,
                                                                           grid_vwidth=1.0,
                                                                           grid_vwidth_scale=False,
                                                                           texgrid=None,
                                                                                            tau-
                                                                           grid=None, hdr=None,
                                                                           path_to_texgrid='',
                                                                           path to taugrid='',
                                                                           tempera-
                                                                           ture_gridnumber=3,
                                                                           debug=False,
                                                                                            ver-
                                                                           bose=False, **kwargs)
```

Use a grid of RADEX-computed models to make a model line spectrum

The RADEX models have to be available somewhere. OR they can be passed as arrays. If as arrays, the form should be: texgrid = ((minfreq1,maxfreq1,texgrid1),(minfreq2,maxfreq2,texgrid2))

xarr must be a SpectroscopicAxis instance xoff\_v, width are both in km/s

grid\_vwidth is the velocity assumed when computing the grid in km/s this is important because tau = modeltau / width (see, e.g., Draine 2011 textbook pgs 219-230)

grid\_vwidth\_scale is True or False: False for LVG, True for Sphere

#### 2.2.5 Gaussian Fitter

The simplest and most useful model.

Until 12/23/2011, gaussian fitting used the complicated and somewhat bloated gaussfitter.py code. Now, this is a great example of how to make your own model! Just make a function like gaussian and plug it into the SpectralModel class.

```
pyspeckit.spectrum.models.inherited_gaussfitter.gaussian(x, A, dx, w, re-
turn_components=False)
Returns a 1-dimensional gaussian of form H+A*numpy.exp(-(x-dx)**2/(2*w**2))
[height,amplitude,center,width]
return_components does nothing but is required by all fitters

pyspeckit.spectrum.models.inherited_gaussfitter.gaussian_fitter(multisingle='multi')
Generator for Gaussian fitter class
```

#### 2.2.6 HCN Hyperfine Fitter

This is an HCN fitter... ref for line params: http://www.strw.leidenuniv.nl/~moldata/datafiles/hcn@hfs.dat

```
pyspeckit.spectrum.models.hcn_radex (xarr, density=4, column=13, xoff\_v=0.0, width=1.0, grid\_vwidth=1.0, grid\_vwidth\_scale=False, texgrid=None, tau-grid=None, hdr=None, path\_to\_taugrid='', path\_to\_taugrid='', temperature\_gridnumber=3, tetagrid=10, tetagrid=10,
```

Use a grid of RADEX-computed models to make a model line spectrum

The RADEX models have to be available somewhere. OR they can be passed as arrays. If as arrays, the form should be: texgrid = ((minfreq1,maxfreq1,texgrid1),(minfreq2,maxfreq2,texgrid2))

xarr must be a SpectroscopicAxis instance xoff\_v, width are both in km/s

grid\_vwidth is the velocity assumed when computing the grid in km/s this is important because tau = modeltau / width (see, e.g., Draine 2011 textbook pgs 219-230)

grid\_vwidth\_scale is True or False: False for LVG, True for Sphere

#### 2.2.7 Hill5 analytic infall model

t- kelvin nu - Hz?

```
Code translated from: https://bitbucket.org/devries/analytic_infall/overview

Original source: http://adsabs.harvard.edu/abs/2005ApJ...620..800D

pyspeckit.spectrum.models.hill5infall.hill5_model (xarr, tau, v_lsr, v_infall, sigma, tpeak, TBG=2.73)

The rest of this needs to be translated from C

pyspeckit.spectrum.models.hill5infall.jfunc(t, nu)
```

2.2. Models 9

#### 2.2.8 Generalized hyperfine component fitter

Wrapper for the hyperfine model class. Specify the offsets and relative strengths when initializing, then you've got yourself a hyperfine modeler.

Initialize the various parameters defining the hyperfine transitions

line names is a LIST of the line names to be used as indices for the dictionaries

voff\_lines\_dict is a linename:v\_off dictionary of velocity offsets for the hyperfine components. Technically, this is redundant with freq\_dict

freq\_dict - frequencies of the indvidual transitions

line\_strength\_dict - Relative strengths of the hyperfine components, usually determined by their degeneracy and Einstein A coefficients

```
hyperfine (xarr, Tex=5.0, tau=0.10000000000000001, xoff_v=0.0, width=1.0, re-
turn_components=False, Tbackground=2.73, amp=None)

Generate a model spectrum given an excitation temperature, optical depth, offset velocity, and velocity width.
```

```
hyperfine_amp (xarr, amp=None, xoff\_v=0.0, width=1.0, return\_components=False, Tback-ground=2.73, Tex=5.0, tau=0.10000000000000001) wrapper of self.hyperfine with order of arguments changed
```

#### 2.2.9 Lorentzian Fitter

The simplest and most useful model.

Until 12/23/2011, lorentzian fitting used the complicated and somewhat bloated gaussfitter.py code. Now, this is a great example of how to make your own model!

#### 2.2.10 Model Grid

Fit a line based on parameters output from a grid of models

Generator for lorentzian fitter class

```
pyspeckit.spectrum.models.modelgrid.gaussian_line(xax, maxamp, tau, offset, width)
A Gaussian line function in which the

pyspeckit.spectrum.models.modelgrid.line_model_2par(xax, center, width, gridval1, gridval2, gridval2, griddim1, griddim2, maxampgrid, taugrid, linefunction=<function gaussian_line at 0x10957a578>)

Returns the spectral line that matches the given x-axis
```

xax, center, width must be in the same units!

```
pyspeckit.spectrum.models.modelgrid.line_params_2D (gridval1, gridval2, griddim1, grid-
dim2, valuegrid)
```

Given a 2D grid of modeled line values - the amplitude, e.g. excitation temperature, and the optical depth, tau - return the model spectrum

griddims contains the names of the axes and their values... it should have the same number of entries as gridpars

#### 2.2.11 N2H+ fitter

Reference for line params: Daniel, F., Dubernet, M.-L., Meuwly, M., Cernicharo, J., Pagani, L. 2005, MNRAS 363, 1083 http://www.strw.leidenuniv.nl/~moldata/N2H+.html http://adsabs.harvard.edu/abs/2005MNRAS.363.1083D

pyspeckit.spectrum.models.n2hp.aval\_dict = {'121-011': 1.512, '121-010': 2.0150000000000001, '121-012': 0.1010
Line strengths of the 15 hyperfine components in J=1-0 transition. The thickness of the lines indicates their
relative weight compared to the others. Line strengths are normalized in such a way that summing over all
initial J = 1 levels gives the degeneracy of the J = 0 levels, i.e., for JF1F 012, three for JF1F 011, and one for
JF1F 010. Thus, the sum over all 15 transitions gives the total spin degeneracy

```
 py speckit.spectrum.models.n2hp.n2hp\_radex (xarr, density=4, column=13, \\ xoff\_v=0.0, width=1.0, grid\_vwidth=1.0, \\ grid\_vwidth\_scale=False, tex-\\ grid=None, taugrid=None, hdr=None, \\ path\_to\_texgrid='', path\_to\_taugrid='', \\ temperature\_gridnumber=3, debug=False, \\ verbose=False, **kwargs)
```

Use a grid of RADEX-computed models to make a model line spectrum

The RADEX models have to be available somewhere. OR they can be passed as arrays. If as arrays, the form should be: texgrid = ((minfreq1,maxfreq1,texgrid1),(minfreq2,maxfreq2,texgrid2))

xarr must be a SpectroscopicAxis instance xoff\_v, width are both in km/s

grid\_vwidth is the velocity assumed when computing the grid in km/s this is important because tau = modeltau / width (see, e.g., Draine 2011 textbook pgs 219-230)

grid\_vwidth\_scale is True or False: False for LVG, True for Sphere

#### 2.2.12 Voigt Profile Fitter

```
py speckit.spectrum.models.inherited\_voigtfitter.\textbf{voigt} (xarr, amp, xcen, Gfwhm, Lfwhm) \\ voigt profile \\ V(x, sig, gam) = Re(w(z))/(sig*sqrt(2*pi)) z = (x+i*gam)/(sig*sqrt(2)) \\ Converted from http://mail.scipy.org/pipermail/scipy-user/2011-January/028327.html \\ py speckit.spectrum.models.inherited\_voigtfitter.\textbf{voigt\_fitter} (multisingle='multi') \\ Generator for voigt fitter class
```

2.2. Models 11

#### 2.3 Features

#### 2.3.1 Baseline Fitting

There are a number of cool features in baselining that aren't well-described below, partly due to Sphinx errors as of 12/22/2011.

exclude and include allow you to specify which parts of the spectrum to use for baseline fitting. Enter values as pairs of coordinates.

Excludefit makes use of an existing fit and excludes all points with signal above a (very low) threshold when fitting the baseline. Going back and forth between baseline (excludefit=True) and specfit() is a nice way to iteratively measure the baseline & emission/absorption line components.

#### **API**

class pyspeckit.spectrum.baseline.Baseline(Spectrum)

Class to measure and subtract baselines from spectra.

While the term 'baseline' is generally used in the radio to refer to broad-band features in a spectrum not necessarily associated with a source, in this package it refers to general continuum fitting. In principle, there's no reason to separate 'continuum' and 'spectral feature' fitting into different categories (both require some model, data, and optional weights when fitting). In practice, however, 'continuum' is frequently something to be removed and ignored, while spectral features are the desired measurable quantity. In order to accurately measure spectral features, it is necessary to allow baselines of varying complexity.

The Baseline class has both interactive and command-based data selection features. It can be used to fit both polynomial and power-law continua. Blackbody fitting is not yet implemented [12/21/2011]. Baseline fitting is a necessary prerequisite for Equivalent Width measurement.

As you may observe in the comments on this code, this has been one of the buggiest and least adequately tested components of pyspeckit. Bug reports are welcome. (as of 1/15/2012, a major change has probably fixed most of the bugs, and the code base is much simpler)

```
___call___(*args, **kwargs)
```

Fit and remove a polynomial from the spectrum. It will be saved in the variable "self.basespec" and the fit parameters will be saved in "self.order"

function baseline(spectrum,xarr=None,xmin=None,xmax=None,order=1,quiet=True,exclude=None): Subtract a baseline from a spectrum If xmin,xmax are not specified, defaults to ignoring first and last 10% of spectrum

exclude is a set of start/end indices to ignore when baseline fitting (ignored by setting error to infinite in fitting procedure)

excludefit creates a mask based on the fitted gaussian model (assuming that it has a zero-height) using an exclusion level of (exclusionlevel) \* the smallest gaussian peak that was fit

fit\_plotted\_area means that a fit will only be attempted on the region currently shown in the plot. Overridden by interactive=True or exclude='interactive'

if fit\_original is set, "basespec" is added back to the spectrum before fitting so you can run this procedure multiple times without losing information

```
__init__(Spectrum)
__module__ = 'pyspeckit.spectrum.baseline'
annotate(loc='upper left')
```

```
button2action (event=None, debug=False, subtract=True, fit_original=False, powerlaw=False,
                        baseline fit color='orange', exclude=None, **kwargs)
          Do the baseline fitting and save and plot the results.
          Can specify a region to exclude using velocity units or pixel units
     button3action (event=None, debug=False, subtract=True, fit_original=False, powerlaw=False,
                        baseline fit color='orange', exclude=None, **kwargs)
          Do the baseline fitting and save and plot the results.
          Can specify a region to exclude using velocity units or pixel units
     clearlegend()
     crop(x1pix, x2pix)
          When spectrum.crop is called, this must be too
     downsample (factor)
     plot_baseline (annotate=True, baseline_fit_color='orange', **kwargs)
          Overplot the baseline fit
     savefit()
     unsubtract()
2.3.2 Model Fitting
class pyspeckit.spectrum.fitters.Specfit (Spectrum, Registry=None)
     Bases: pyspeckit.spectrum.interactive.Interactive
     EQW (plot=False, plotcolor='g', annotate=False, alpha=0.5, loc='lower left')
          Returns the equivalent width (integral of "baseline" or "continuum" minus the spectrum) over the selected
          range
     annotate (loc='upper
                                  right',
                                              labelspacing=0.25,
                                                                       markerscale = 0.01,
                                                                                               border-
                 pad=0.10000000000000001,
                                                    handlelength=0.10000000000000001,
                                                                                               handle-
                  textpad=0.10000000000000001, frameon=False, **kwargs)
          Add a legend to the plot showing the fitted parameters
          clearlegend() will remove the legend
          kwargs passed to legend
     button3action(event, debug=False)
          Disconnect the interactiveness Perform the fit (or die trying) Hide the guesses
     clear (legend=True, components=True)
          Remove the fitted model from the plot
          Also removes the legend by default
     clear_all_connections (debug=False)
          Prevent overlapping interactive sessions
     clear_highlights()
     crop(x1pix, x2pix)
          When spectrum.crop is called, this must be too
     downsample (factor)
          Downsample the model spectrum (and the spectofit spectra) This should only be done when Spec-
          trum.smooth is called
```

2.3. Features 13

```
event manager(event, debug=False)
     Decide what to do given input (click, keypress, etc.)
firstclick_guess()
     Initialize self.guesses
firstclick selection(include all=False)
     Initialize the include/exclude mask
fullsizemodel()
     If the gaussian was fit to a sub-region of the spectrum, expand it (with zeros) to fill the spectrum.
guesspeakwidth (event, debug=False)
     Interactively guess the peak height and width from user input
     Width is assumed to be half-width-half-max
highlight_fitregion(drawstyle='steps-mid', color='g', clear_highlights=True, **kwargs)
     Re-highlight the fitted region
     kwargs are passed to matplotlib.plot
integral (direct=False, threshold='auto', integration limits= | |, return error=False, **kwargs)
     Return the integral of the fitted spectrum
     if direct=True, return the integral of the spectrum over a range defined by the threshold or integration limits
     if defined
     note that integration limits will operate directly on the DATA, which means that if you've baselined with-
     out subtract=True, the baseline will be included in the integral
     if return_error is set, the error computed by sigma = sqrt(sum(sigma_i^2)) * dx will be returned as well
moments (**kwargs)
     Return the moments
     see moments
multifit (fittype=None, renormalize='auto', annotate=None, show_components=None,
             bose=True, **kwargs)
     Fit multiple gaussians (or other profiles)
     fittype - What function will be fit? fittype must have been Registryed in the singlefitters dict. Uses
         default ('gaussian') if not specified
     renormalize - if 'auto' or True, will attempt to rescale small data (<1e-9) to be closer to 1 (scales by
         the median) so that the fit converges better
peakbgfit (usemoments=True,
                                                        vheight=True,
                                                                         height=0,
                                                                                      negamp=None,
                                    annotate=None,
                                                                                        debug=False,
                                renormalize='auto',
                                                         show_components=None,
              fittype=None,
              nsigcut moments=None, **kwargs)
     Fit a single peak (plus a background)
     usemoments - The initial guess will be set by the fitter's 'moments' function (this
                                                                                                  overrides
          'guesses')
     annotate - Make a legend? vheight - Fit a (constant) background as well as a peak? height - initial guess
     for background negamp - If True, assumes amplitude is negative. If False, assumes positive. If
         None, can be either.
```

14 Chapter 2. Features

the median) so that the fit converges better

fittype - What function will be fit? fittype must have been Registryed in the singlefitters dict

renormalize - if 'auto' or True, will attempt to rescale small data (<1e-9) to be closer to 1 (scales by

```
nsigcut moments - pass to moment guesser; can do a sigma cut for moment guessing
plot fit (annotate=None,
                                 show components=None,
                                                                composite fit color='red',
                                                                                               compo-
             nent_fit_color='blue', lw=0.5,
                                                composite\_lw=0.75,
                                                                       component lw=0.75,
                                                                                               compo-
             nent_kwargs={}, **kwargs)
     Plot the fit. Must have fitted something before calling this!
     It will be automatically called whenever a spectrum is fit (assuming an axis for plotting exists)
     kwargs are passed to the fitter's components attribute
plotresiduals (fig=2, axis=None, clear=True, **kwargs)
     Plot residuals of the fit. Specify a figure or axis; defaults to figure(2).
     kwargs are passed to matplotlib plot
print_fit (print_baseline=True, **kwargs)
     Print the best-fit parameters to the command line
register_fitter(*args, **kwargs)
     Register a model fitter
     Register a fitter function.
     Required Arguments:
         name: [string] The fit function name.
         function: [function] The fitter function. Single-fitters should take npars + 1 input parameters,
              where the +1 is for a 0th order baseline fit. They should accept an X-axis and data and
              standard fitting-function inputs (see, e.g., gaussfitter). Multi-fitters should take N * npars,
             but should also operate on X-axis and data arguments.
         npars: [ int ] How many parameters does the function being fit accept?
     Optional Keyword Arguments:
         multisingle: ['multi' | 'single'] Is the function a single-function fitter (with a background), or
              does it allow N copies of the fitting function?
         override: [True | False ] Whether to override any existing type if already present.
         key: [ char ] Key to select the fitter in interactive mode
savefit()
     EACH TYPE OF MODEL TO BE FIT*
```

Save the fit parameters from a Gaussian fit to the FITS header \*THESE SHOULD BE WRITTEN FOR

```
selectregion (xmin=None, xmax=None, xtype='wcs', highlight=False, fit_plotted_area=True, re-
                  set=False, verbose=False, debug=False, **kwargs)
     Pick a fitting region in either WCS units or pixel units
```

```
selectregion_interactive(event, mark_include=True, debug=False, **kwargs)
     select regions for baseline fitting
```

```
seterrspec (usestd=None, useresiduals=True)
```

Simple wrapper function to set the error spectrum; will either use the input spectrum or determine the error using the RMS of the residuals, depending on whether the residuals exist.

#### setfitspec()

Set the spectrum that will be fit. This is primarily to remove NANs from consideration: if you simply remove the data from both the X-axis and the Y-axis, it will not be considered for the fit, and a linear X-axis is not needed for fitting.

However, it may be possible to do this using masked arrays instead of setting errors to be 1e10....

2.3. Features 15

```
shift pars(frame=None)
```

Shift the velocity / wavelength / frequency of the fitted parameters into a different frame

Right now this only takes care of redshift and only if redshift is defined. It should be extended to do other things later

#### 2.3.3 Measurements

Bases: object

This can be called after a fit is run. It will inherit the specfit object and derive as much as it can from modelpars. Just do: spec.measure(z, xunits, fluxnorm)

Notes: If z (redshift) or d (distance) are present, we can compute integrated line luminosities rather than just fluxes. Provide distance in cm.

**Currently will only work with Gaussians. To generalize:** 1. make sure we manipulate modelpars correctly, i.e. read in entries corresponding to wavelength/frequency/whatever correctly.

```
misclines = dictionary miscline = {{ 'name': H_alpha', 'wavelength': 6565, 'etc': 0}, {}}
```

Find root of function using bisection method. Absolute tolerance of 1e-4 is being used.

```
Measurements.bracket_root (f, x_guess, atol=0.0001)
```

Bracket root by finding points where function goes from positive to negative.

```
Measurements.compute_amplitude(pars)
```

Calculate amplitude of emission line. Should be easy - add multiple components if they exist. Currently assumes multiple components have the same centroid.

```
Measurements.compute_flux(pars)
```

Measurements.bisection (f, x\_guess)

Calculate integrated flux of emission line. Works for multi-component fits too. Unnormalized.

```
Measurements.compute_fwhm(pars)
```

Determine full-width at half maximum for multi-component fit numerically, or analytically if line has only a single component. Uses bisection technique for the former with absolute tolerance of 1e-4.

```
Measurements.compute_luminosity(pars)
```

Determine luminosity of line (need distance and flux units).

```
Measurements.derive()
```

Calculate luminosity and FWHM for all spectral lines.

```
Measurements.identify()
```

Determine identity of lines in self.modelpars. Fill entries of self.lines dictionary.

Note: This method will be infinitely slow for more than 10 or so lines.

```
Measurements.separate()
```

For multicomponent lines, separate into broad and narrow components (assume only one of components is narrow).

```
Measurements.to tex()
```

Write out fit results to tex format.

#### 2.3.4 Units

#### **Units and SpectroscopicAxes**

Unit parsing and conversion tool. The SpectroscopicAxis class is meant to deal with unit conversion internally

**Open Questions: Are there other FITS-valid projection types, unit types, etc.** that should be included? What about for other fields (e.g., wavenumber?)

```
class pyspeckit.spectrum.units.SpectroscopicAxis
    Bases: numpy.ndarray
```

A Spectroscopic Axis object to store the current units of the spectrum and allow conversion to other units and frames. Typically, units are velocity, wavelength, frequency, or redshift. Wavenumber is also hypothetically possible.

WARNING: If you index a SpectroscopicAxis, the resulting array will be a SpectroscopicAxis without a dxarr attribute! This can result in major problems; a workaround is being sought but subclassing numpy arrays is harder than I thought

Convert the spectrum to the specified units. This is a wrapper function to convert between frequency/velocity/wavelength and simply change the units of the X axis. Frame conversion is... not necessarily implemented.

```
unit [ string ] What unit do you want to 'view' the array as?
```

*frame* [ None ] NOT IMPLEMENTED. When it is, it will allow you to convert between LSR, topocentric, heliocentric, rest, redshifted, and whatever other frames we can come up with. Right now the main holdup is finding a nice python interface to an LSR velocity calculator... and motivation.

```
center_frequency [ None | float ] center_frequency_units [ None | string ]
```

If converting between velocity and any other spectroscopic type, need to specify the central frequency around which that velocity is calculated. I think this can also accept wavelengths....

```
cdelt (tolerance=1e-08)
```

Return the channel spacing if channels are linear

```
change_frame (frame)
```

Change velocity frame

```
convert_to_unit (unit, **kwargs)
```

Return the X-array in the specified units without changing it Uses as\_unit for the conversion, but changes internal values rather than returning them.

```
coord_to_x (xval, xunit)
```

Given an X-value assumed to be in the coordinate axes, return that value converted to xunit e.g.: xarr.units = 'km/s' xarr.refX =  $5.0 \text{ xarr.refX\_units} = \text{GHz xarr.coord\_to\_x}(6000, \text{GHz'}) == 5.1 \text{ # GHz}$ 

#### in\_frame (frame)

Return a shifted xaxis

#### in range (xval)

Given an X coordinate in SpectroscopicAxis' units, return whether the pixel is in range

2.3. Features 17

```
make dxarr(coordinate location='center')
```

Create a "delta-x" array corresponding to the X array.

coordinate\_location ['left', 'center', 'right'] Does the coordinate mark the left, center, or right edge of the pixel? If 'center' or 'left', the *last* pixel will have the same dx as the second to last pixel. If right, the *first* pixel will have the same dx as the second pixel.

```
umax (units=None)
```

Return the maximum value of the SpectroscopicAxis. If units specified, convert to those units first

```
umin (units=None)
```

Return the minimum value of the SpectroscopicAxis. If units specified, convert to those units first

```
x_in_frame (xx, frame)
```

Return the value 'x' shifted to the target frame

```
x to coord (xval, xunit, verbose=False)
```

Given a wavelength/frequency/velocity, return the value in the SpectroscopicAxis's units e.g.: xarr.units = 'km/s' xarr.refX = 5.0 xarr.refX\_units = GHz xarr.x\_to\_coord(5.1, 'GHz') == 6000 # km/s

```
x_to_pix (xval)
```

Given an X coordinate in SpectroscopicAxis' units, return the corresponding pixel number

```
class pyspeckit.spectrum.units.SpectroscopicAxes
```

```
Bases: pyspeckit.spectrum.units.SpectroscopicAxis
```

Counterpart to Spectra: takes a list of SpectroscopicAxis's and concatenates them while checking for consistency and maintaining header parameters

#### 2.3.5 Registration

PySpecKit is made extensible by allowing user-registered modules for reading, writing, and fitting data.

For examples of registration in use, look at the source code of pyspeckit.spectrum.\_\_init\_\_ and pyspeckit.spectrum.fitters.

The registration functions can be accessed directly:

```
pyspeckit.register_reader
pyspeckit.register_writer
```

However, models are bound to individual instances of the Spectrum class, so they must be accessed via a specfit instance

```
sp = pyspeckit.Spectrum('myfile.fits')
sp.specfit.register_fitter
```

Alternatively, you can access and edit the default Registry

```
pyspeckit.fitters.default_Registry.add_fitter
```

If you've already loaded a Spectrum instance, but then you want to reload fitters from the default\_Registry, or if you want to make your own *Registry*, you can use the semi-private method

```
MyRegistry = pyspeckit.fitters.Registry()
sp._register_fitters(registry=MyRegistry)
```

#### **API**

```
pyspeckit.spectrum.__init__.register_reader (filetype, function, suffix, default=False)
     Register a reader function.
     Required Arguments:
          filetype: [ string ] The file type name
           function: [function] The reader function. Should take a filename as input and return an X-axis
               object (see units.py), a spectrum, an error spectrum (initialize it to 0's if empty), and a pyfits
               header instance
           suffix: [int] What suffix should the file have?
     Optional Keyword Arguments:
pyspeckit.spectrum.__init__.register_writer(filetype, function, suffix, default=False)
     Register a writer function.
     Required Arguments:
          filetype: [ string ] The file type name
           function: [function] The writer function. Will be an attribute of Spectrum object, and called as
               spectrum.Spectrum.write_hdf5(), for example.
           suffix: [ int ] What suffix should the file have?
     Optional Keyword Arguments:
class pyspeckit.spectrum.fitters.Registry
     This class is a simple wrapper to prevent fitter properties from being globals
     add_fitter(name, function, npars, multisingle='single', override=False, key=None)
           Register a fitter function.
           Required Arguments:
               name: [string] The fit function name.
               function: [function] The fitter function. Single-fitters should take npars + 1 input parameters,
                    where the +1 is for a 0th order baseline fit. They should accept an X-axis and data and
                   standard fitting-function inputs (see, e.g., gaussfitter). Multi-fitters should take N * npars,
                   but should also operate on X-axis and data arguments.
               npars: [ int ] How many parameters does the function being fit accept?
           Optional Keyword Arguments:
               multisingle: ['multi' | 'single'] Is the function a single-function fitter (with a background), or
                   does it allow N copies of the fitting function?
               override: [True | False ] Whether to override any existing type if already present.
               key: [ char ] Key to select the fitter in interactive mode
```

#### 2.4 Readers

#### 2.4.1 Plain Text

Text files should be of the form:

2.4. Readers 19

```
wavelength flux err 3637.390 0.314 0.000 3638.227 0.717 0.000 3639.065 1.482 0.000
```

where there 'err' column is optional but the others are not. The most basic spectrum file allowed would have no header and two columns, e.g.:

```
1 0.5
2 1.5
3 0.1
```

If the X-axis is not monotonic, the data will be sorted so that the X-axis is in ascending order.

#### **API**

#### PySpecKit ASCII Reader

Routines for reading in ASCII format spectra. If atpy is not installed, will use a very simple routine for reading in the data.

```
pyspeckit.spectrum.readers.txt_reader.open_1d_txt (filename, xaxcol=0, datacol=1, er-
rorcol=2, text_reader='simple', at-
pytype='ascii', **kwargs)
```

Attempt to read a 1D spectrum from a text file assuming wavelength as the first column, data as the second, and (optionally) error as the third.

Reading can be done either with atpy or a 'simple' reader. If you have an IPAC, CDS, or formally formatted table, you'll want to use atpy.

If you have a simply formatted file of the form, e.g. # name name # unit unit data data data data

kwargs are passed to atpy. Table

```
pyspeckit.spectrum.readers.txt_reader.simple_txt (filename, xaxcol=0, datacol=1, er-
rorcol=2, skiplines=0, **kwargs)

Very simple method for reading columns from ASCII file.
```

#### 2.4.2 FITS

A minimal header should look like this:

```
SIMPLE =
                           T / conforms to FITS standard
BITPIX =
                         -32 / array data type
                           2 / number of array dimensions
NAXIS
NAXIS1 =
                         659
                           2
NAXIS2 =
CRPIX1
CRVAL1 =
           -4953.029632560421
            212.5358581542998
CDELT1 =
CTYPE1 = 'VRAD-LSR'
CUNIT1 = 'm/s
BUNIT = 'K
                110.20137E9
RESTFRQ =
SPECSYS = 'LSRK '
END
```

A fits file with a header as above should be easily readable without any user effort:

```
sp = pyspeckit.Spectrum('test.fits')
```

If you have multiple spectroscopic axes, e.g.

```
CRPIX1A = 1.0

CRVAL1A = 110.2031747948101

CTYPE1A = 'FREQ-LSR'

CUNIT1A = 'GHz '

RESTFRQA= 110.20137
```

you can load that axis with the 'wcstype' keyword:

```
sp = pyspeckit.Spectrum('test.fits', wcstype='A')
```

If you have a .fits file with a non-linear X-axis that is stored in the .fits file as data (as opposed to being implicitly included in a heaer), you can load it using a custom .fits reader. An example implementation is given in the tspec\_reader. It can be registered using *Registration*:

```
tspec_reader = check_reader(tspec_reader.tspec_reader)
pyspeckit.register_reader('tspec',tspec_reader,'fits')
```

#### **API**

```
pyspeckit.spectrum.readers.fits_reader.open_1d_fits (filename, **kwargs)

Grabs all the relevant pieces of a simple FITS-compliant 1d spectrum
```

#### **Inputs:**

```
wcstype - the suffix on the WCS type to get to velocity/frequency/whatever specnum - Which # spectrum, along the y-axis, is the data?

errspecnum - Which # spectrum, along the y-axis, is the error spectrum?
```

This is open\_1d\_fits but for a pyfits\_hdu so you don't necessarily have to open a fits file

```
pyspeckit.spectrum.readers.fits_reader.read_echelle(pyfits_hdu)
    Read an IRAF Echelle spectrum
```

http://iraf.noao.edu/iraf/ftp/iraf/docs/specwcs.ps.Z

#### 2.4.3 hdf5

(work in progress)

2.4. Readers 21

#### **API**

#### PySpecKit HDF5 Reader

Routines for reading in spectra from HDF5 files.

Note: Current no routines for parsing HDF5 headers in classes.py.

This reader expects three datasets to exist in the hdf5 file 'filename': 'xarr', 'data', and 'error', by default. Can specify other dataset names.

#### 2.4.4 Gildas CLASS files

Pyspeckit is capable of reading files from some versions of CLASS. The CLASS developers have stated that the GILDAS file format is private and will remain so, and therefore there are no guarantees that the CLASS reader will work for your file.

Nonetheless, if you want to develop in python instead of SIC, the read\_class module is probably the best way to access CLASS data.

The CLASS file specification is incomplete, so much of the data reading is hacked together. The code style is based off of Tom Robitaille's idlsave package.

An example usage. Note that telescope and line are NOT optional keyword arguments, they are just specified as such for clarity

```
 n2hp = class\_to\_obsblocks(fn1, telescope=['SMT-F1M-HU','SMT-F1M-VU'], \\ line=['N2HP(3-2)','N2H+(3-2)'])
```

This will generate a ObsBlock from all data tagged with the 'telescope' flags listed and lines matching either of those above. The data selection is equivalent to a combination of

```
find /telescope SMT-F1M-HU
find /telescope SMT-F1M-VU
find /line N2HP(3-2)
find /line N2H+(3-2)
```

ALL of the data matching those criteria will be included in an ObsBlock. They will then be accessible through the ObsBlock's *speclist* attribute, or just by indexing the ObsBlock directly.

#### An essentially undocumented API

#### **GILDAS CLASS file reader**

```
Read a CLASS file into an pyspeckit.spectrum.ObsBlock
```

```
pyspeckit.spectrum.readers.read_class.class_to_obsblocks(*arg, **kwargs)
```

Load an entire CLASS observing session into a list of ObsBlocks based on matches to the 'telescope' and 'line' names

```
pyspeckit.spectrum.readers.read_class.class_to_spectra(*arg, **kwargs)

Load each individual spectrum within a CLASS file into a list of Spectrum objects
```

```
pyspeckit.spectrum.readers.read_class.make_axis(header)
```

Create a pyspeckit.spectrum.units.SpectroscopicAxis from the CLASS "header"

```
pyspeckit.spectrum.readers.read_class.read_class(*arg, **kwargs)

A hacked-together method to read a binary CLASS file. It is strongly dependent on the incomplete GILDAS CLASS file type Specification
```

# 2.5 Wrappers

These are wrappers to simplify some of the more complicated (and even some of the simpler) functions in PySpecKit

#### 2.5.1 Cube Fitting

Light-weight wrapper for cube fitting

Takes a cube and error map (error will be computed naively if not given) and computes moments then fits for each spectrum in the cube. It then saves the fitted parameters to a reasonably descriptive output file whose header will look like

```
PLANE1 = 'amplitude'
PLANE2 = 'velocity'
PLANE3 = 'sigma'
PLANE4 = 'err_amplitude'
PLANE5 = 'err_velocity'
PLANE6 = 'err_sigma'
PLANE7 = 'integral'
PLANE8 = 'integral_error'
CDELT3 = 1
CTYPE3 = 'FITPAR'
CRVAL3 = 0
CRPIX3 = 1
```

#### Parameters:

errfilename [ None | string name of .fits file ] A two-dimensional error map to use for computing signal-tonoise cuts

scale\_keyword [ None | Char ] Keyword to pass to the data cube loader - multiplies cube by the number indexed by this header kwarg if it exists. e.g., if your cube is in T\_A units and you want T\_A\*

vheight [bool] Is there a background to be fit? Used in moment computation

```
verbose [ bool ] verbose_level [ int ]
```

How loud will the fitting procedure be? Passed to momenteach and fiteach

signal\_cut [ float ] Signal-to-Noise ratio minimum. Spectra with a peak below this S/N ratio will not be fit and will be left blank in the output fit parameter cube

*clobber* [ bool ] Overwrite parameter .fits cube if it exists?

kwargs are passed to pyspeckit. Spectrum. specfit

2.5. Wrappers 23

Plot the results from a multi-nh3 fit

Do plot\_nh3 with syntax similar to plotter()

#### 2.5.2 Simple Gaussian Fitter

```
As stated in the name title, will fit Gaussians to simple spectra!
     kwargs will be passed to specfit
     figuresavename [None | string] After fitting, save the figure to this filename if specified
     croprange [ list of 2 floats ] Crop the spectrum to (min,max) in the specified units
     savename [ None | string ] After fitting, save the spectrum to this filename
     Note that this wrapper can be used from the command line:
          python fit_gaussians_to_simple_spectra.py spectrum.fits
2.5.3 NH3 fitter wrapper
Wrapper to fit ammonia spectra. Generates a reasonable guess at the position and velocity using a gaussian fit
pyspeckit.wrappers.fitnh3.BigSpectrum_to_NH3dict(sp, vrange=None)
     A rather complicated way to make the spdicts above given a spectrum...
pyspeckit.wrappers.fitnh3.fitnh3tkin(input_dict,
                                                                dobaseline=True,
                                                                                    baselinekwargs={},
                                                  crop=False, guessline='twotwo', tex=15, tkin=20, col-
                                                  umn=15.0, fortho=0.6600000000000003, tau=None,
                                                  thin=False, quiet=False, doplot=True, fignum=1,
                                                  guessfignum=2, smooth=False, scale_keyword=None,
                                                  rebase=False, npeaks=1, guesses=None, **kwargs)
     Given a dictionary of filenames and lines, fit them together e.g. { oneone':'G000.000+00.000_nh3_11.fits'}
pyspeckit.wrappers.fitnh3.plot_nh3(spdict, spectra, fignum=1, show_components=False, resid-
```

pyspeckit.wrappers.fit\_gaussians\_to\_simple\_spectra.fit\_gaussians\_to\_simple\_spectra (filename,

units='km/ doplot=True, baseline=True, plotresid-

als=False, figuresavename=Non croprange=Non savename=Non \*\*kwargs)

24 Chapter 2. Features

pyspeckit.wrappers.fitnh3.plotter override(sp, vrange=None, \*\*kwargs)

fignum=None, \*\*plotkwargs)

#### 2.5.4 N2H+ fitter wrapper

Wrapper to fit N2H+ using RADEX models. This is meant to be used from the command line, e.g.:

```
python n2hp_wrapper.py file.fits
```

and therefore has no independently defined functions.

In place of the actual contents of N2H+ fitter, here are the modules used to make the wrapper

```
model.SpectralModel()
```

A wrapper class for a spectra model. Includes internal functions to generate multi-component models, annotations, integrals, and individual components. The declaration can be complex, since you should name individual variables, set limits on them, set the units the fit will be performed in, and set the annotations to be used. Check out some of the hyperfine codes (hcn, n2hp) for examples.

Use a grid of RADEX-computed models to make a model line spectrum

The RADEX models have to be available somewhere. OR they can be passed as arrays. If as arrays, the form should be: texgrid = ((minfreq1,maxfreq1,texgrid1),(minfreq2,maxfreq2,texgrid2))

xarr must be a SpectroscopicAxis instance xoff\_v, width are both in km/s

grid\_vwidth is the velocity assumed when computing the grid in km/s this is important because tau = modeltau / width (see, e.g., Draine 2011 textbook pgs 219-230)

grid\_vwidth\_scale is True or False: False for LVG, True for Sphere

### 2.6 Examples

#### 2.6.1 Radio Fitting: H<sub>2</sub>CO RADEX example

Because an LVG model grid is being used as the basis for the fitting in this example, there are fewer free parameters. If you want to create your own model grid, there is a set of tools for creating RADEX model grids (in parallel) at 'the agpy RADEX page <a href="http://code.google.com/p/agpy/source/browse/trunk/radex">http://code.google.com/p/agpy/source/browse/trunk/radex</a>'. The model grids used below are available on the *pyspeckit bitbucket download page* <a href="https://bitbucket.org/pyspeckit/pyspeckit.bitbucket.org/downloads">https://bitbucket.org/pyspeckit/pyspeckit.bitbucket.org/downloads</a>>.

```
import pyspeckit
import numpy as np
import pyfits
from pyspeckit.spectrum import models

# create the Formaldehyde Radex fitter
# This step cannot be easily generalized: the user needs to read in their own grids
texgrid1 = pyfits.getdata('/Users/adam/work/h2co/radex/grid_greenscaled/1-1_2-2_T5to55_lvg_greenscale
taugrid1 = pyfits.getdata('/Users/adam/work/h2co/radex/grid_greenscaled/1-1_2-2_T5to55_lvg_greenscale
texgrid2 = pyfits.getdata('/Users/adam/work/h2co/radex/grid_greenscaled/1-1_2-2_T5to55_lvg_greenscale
taugrid2 = pyfits.getdata('/Users/adam/work/h2co/radex/grid_greenscaled/1-1_2-2_T5to55_lvg_greenscale
dugrid2 = pyfits.getdata('/Users/adam/work/h2co/radex/grid_greenscaled/1-1_2-2_T5to55_lvg_greenscale
# this deserves a lot of explanation:
# models.formaldehyde.formaldehyde_radex is the MODEL that we are going to fit
```

2.6. Examples 25

# models.model.SpectralModel is a wrapper to deal with parinfo, multiple peaks,

```
# and annotations
# all of the parameters after the first are passed to the model function
formaldehyde_radex_fitter = models.model.SpectralModel(
        models.formaldehyde.formaldehyde_radex, 4,
        parnames=['density','column','center','width'],
        parvalues=[4,12,0,1],
        parlimited=[(True,True), (True,True), (False,False), (True,False)],
        parlimits=[(1,8), (11,16), (0,0), (0,0)],
        parsteps=[0.01,0.01,0,0],
        fitunits='Hz',
        texgrid=((4,5,texgrid1),(14,15,texgrid2)), # specify the frequency range over which the grid
        taugrid=((4,5,taugrid1),(14,15,taugrid2)),
        shortvarnames=("n","N","v","\\sigma"), # specify the parameter names (TeX is OK)
        grid_vwidth_scale=False,
# sphere version:
texgrid1 = pyfits.getdata('/Users/adam/work/h2co/radex/grid_aug2011_sphere/grid_aug2011_sphere_tex1..
taugrid1 = pyfits.getdata('/Users/adam/work/h2co/radex/grid_aug2011_sphere/grid_aug2011_sphere_tau1..
texgrid2 = pyfits.getdata('/Users/adam/work/h2co/radex/grid_aug2011_sphere/grid_aug2011_sphere_tex2.
taugrid2 = pyfits.getdata('/Users/adam/work/h2co/radex/grid_aug2011_sphere/grid_aug2011_sphere_tau2.
hdr = pyfits.getheader('/Users/adam/work/h2co/radex/grid_aug2011_sphere/grid_aug2011_sphere_tau2.fit;
formaldehyde_radex_fitter_sphere = models.model.SpectralModel(
       models.formaldehyde.formaldehyde_radex, 4,
        parnames=['density','column','center','width'],
        parvalues=[4,12,0,1],
        parlimited=[(True,True), (True,True), (False,False), (True,False)],
        parlimits=[(1,8), (11,16), (0,0), (0,0)],
        parsteps=[0.01,0.01,0,0],
        fitunits='Hz',
        texgrid=((4,5,texgrid1),(14,15,texgrid2)),
        taugrid=((4,5,taugrid1),(14,15,taugrid2)),
        hdr=hdr,
        shortvarnames=("n", "N", "v", "\\sigma"),
        grid_vwidth_scale=True,
        )
sp1 = pyspeckit.Spectrum('G203.04+1.76_h2co.fits',wcstype='D',scale_keyword='ETAMB')
sp2 = pyspeckit.Spectrum('G203.04+1.76_h2co_Tastar.fits',wcstype='V',scale_keyword='ETAMB')
sp1.crop(-50,50)
sp1.smooth(3) # match to GBT resolution
sp2.crop(-50,50)
sp1.xarr.convert_to_unit('GHz')
sp1.specfit() # determine errors
sp1.error = np.ones(sp1.data.shape)*sp1.specfit.residuals.std()
sp1.baseline(excludefit=True)
sp2.xarr.convert_to_unit('GHz')
sp2.specfit() # determine errors
sp2.error = np.ones(sp2.data.shape)*sp2.specfit.residuals.std()
sp2.baseline(excludefit=True)
sp = pyspeckit.Spectra([sp1, sp2])
```

```
sp.Registry.add_fitter('formaldehyde_radex_sphere',
        formaldehyde_radex_fitter_sphere, 4, multisingle='multi')
sp.plotter()
sp.specfit(fittype='formaldehyde_radex', multifit=True, quesses=[4,12,3.75,0.43], quiet=False)
# these are just for pretty plotting:
sp1.specfit.fitter = sp.specfit.fitter
sp1.specfit.modelpars = sp.specfit.modelpars
sp1.specfit.model = np.interp(sp1.xarr,sp.xarr,sp.specfit.model)
sp2.specfit.fitter = sp.specfit.fitter
sp2.specfit.modelpars = sp.specfit.modelpars
sp2.specfit.model = np.interp(sp2.xarr,sp.xarr,sp.specfit.model)
# previously, xarrs were in GHz to match the fitting scheme
spl.xarr.convert_to_unit('km/s')
sp2.xarr.convert_to_unit('km/s')
sp1.plotter(xmin=-5, xmax=15, errstyle='fill')
sp1.specfit.plot_fit(show_components=True)
sp2.plotter(xmin=-5, xmax=15, errstyle='fill')
sp2.specfit.plot_fit(show_components=True)
sp.plotter(figure=5)
sp.specfit(fittype='formaldehyde_radex_sphere', multifit=True, quesses=[4,13,3.75,0.43], quiet=False)
# these are just for pretty plotting:
sp1.specfit.fitter = sp.specfit.fitter
sp1.specfit.modelpars = sp.specfit.modelpars
sp1.specfit.model = np.interp(sp1.xarr.as_unit('GHz'),sp.xarr,sp.specfit.model)
sp2.specfit.fitter = sp.specfit.fitter
sp2.specfit.modelpars = sp.specfit.modelpars
sp2.specfit.model = np.interp(sp2.xarr.as_unit('GHz'),sp.xarr,sp.specfit.model)
sp1.plotter(xmin=-5, xmax=15, errstyle='fill', figure=6)
sp1.specfit.plot_fit(show_components=True)
sp2.plotter(xmin=-5, xmax=15, errstyle='fill', figure=7)
sp2.specfit.plot_fit(show_components=True)
2.6.2 Radio Fitting: NH<sub>3</sub> example
import pyspeckit
# The ammonia fitting wrapper requires a dictionary specifying the transition name
# (one of the four specified below) and the filename. Alternately, you can have the
# dictionary values be pre-loaded Spectrum instances
filenames = {'oneone':'G032.751-00.071_nh3_11_Tastar.fits',
    'twotwo':'G032.751-00.071_nh3_22_Tastar.fits',
    'threethree':'G032.751-00.071_nh3_33_Tastar.fits',
    'fourfour':'G032.751-00.071_nh3_44_Tastar.fits'}
```

sp.Registry.add\_fitter('formaldehyde\_radex',

formaldehyde\_radex\_fitter, 4, multisingle='multi')

2.6. Examples 27

# Fit the ammonia spectrum with some reasonable initial guesses. It is # important to crop out extraneous junk and to smooth the data to make the



```
# fit proceed at a reasonable pace.
spdict1,spectra1 = pyspeckit.wrappers.fitnh3.fitnh3tkin(filenames,crop=[0,80],tkin=18.65,tex=4.49,co.
```

#### 2.6.3 Simple Radio Fitting: HCO+ example

#### import pyspeckit

```
# load a FITS-compliant spectrum
spec = pyspeckit.Spectrum('10074-190_HCOp.fits')
# The units are originally frequency (check this by printing spec.xarr.units).
# I want to know the velocity. Convert!
# Note that this only works because the reference frequency is set in the header
spec.xarr.frequency_to_velocity()
# Default conversion is to m/s, but we traditionally work in km/s
spec.xarr.convert_to_unit('km/s')
# plot it up!
spec.plotter()
# Subtract a baseline (the data is only 'mostly' reduced)
spec.baseline()
# Fit a gaussian. We know it will be an emission line, so we force a positive guess
spec.specfit(negamp=False)
# Note that the errors on the fits are larger than the fitted parameters.
# That's because this spectrum did not have an error assigned to it.
# Let's use the residuals:
spec.specfit.plotresiduals()
# Now, refit with error determined from the residuals:
```



Figure 2.1: Both transitions are fit simultaneously using a RADEX model. The input (fitted) parameters are therefore density, column density, width, and velocity.

2.6. Examples 29



Figure 2.2: The 2-2 transition is used to guess the central velocity and width via gaussian fitting because its hyperfine lines are weaker



Figure 2.3: Then all 4 lines are simultaneously fit. Even upper limits on the 4-4 line can provide helpful contraints on the model

2.6. Examples 31

```
# (we pass in guesses to save time / make sure nothing changes)
spec.specfit(guesses=spec.specfit.modelpars)

# Save the figures to put on the web....
spec.plotter.figure.savefig("simple_fit_example_HCOp.png")
spec.specfit.residualaxis.figure.savefig("simple_fit_example_HCOp_residuals.png")

# Also, let's crop out stuff we don't want...
spec.crop(-100,100)
# replot after cropping (crop doesn't auto-refresh)
spec.plotter()
# replot the fit without re-fitting
spec.specfit.plot_fit()
# show the annotations again
spec.specfit.annotate()
spec.plotter.figure.savefig("simple_fit_example_HCOp_cropped.png")
```



Figure 2.4: Sample HCO+ spectrum fitted with a gaussian

#### 2.6.4 Optical fitting: The H $\alpha$ -[NII] complex of a type-I Seyfert galaxy

# import pyspeckit # Rest wavelengths of the lines we are fitting - use as initial guesses NIIa = 6549.86 NIIb = 6585.27 Halpha = 6564.614 SIIa = 6718.29 SIIb = 6732.68 # Initialize spectrum object and plot region surrounding Halpha-[NII] complex



Figure 2.5: Residuals of the gaussian fit from the previous figure



Figure 2.6: A zoomed-in, cropped version of the spectrum. With the 'crop' command, the excess data is discarded.

```
spec = pyspeckit.Spectrum('sample_sdss.txt', errorcol=2)
spec.plotter(xmin = 6450, xmax = 6775, ymin = 0, ymax = 150)
# We fit the [NII] and [SII] doublets, and allow two components for Halpha.
# The widths of all narrow lines are tied to the widths of [SII].
guesses = [50, NIIa, 5, 100, Halpha, 5, 50, Halpha, 50, 50, NIIb, 5, 20, SIIa, 5, 20, SIIb, 5]
tied = ['', '', 'p[17]', '', 'p[17]', '', 'p[4]', '', '3 * p[0]', '', 'p[17]', '', 'p[17]', ''
# Actually do the fit.
spec.specfit(guesses = guesses, tied = tied, annotate = False)
spec.plotter.refresh()
# Let's use the measurements class to derive information about the emission
# lines. The galaxy's redshift and the flux normalization of the spectrum
# must be supplied to convert measured fluxes to line luminosities. If the
# spectrum we loaded in FITS format, 'BUNITS' would be read and we would not
# need to supply 'fluxnorm'.
spec.measure(z = 0.05, fluxnorm = 1e-17)
# Now overplot positions of lines and annotate
y = spec.plotter.ymax * 0.85 # Location of annotations in y
for i, line in enumerate(spec.measurements.lines.keys()):
    # If this line is not in our database of lines, don't try to annotate it
   if line not in spec.speclines.optical.lines.keys(): continue
   x = spec.measurements.lines[line]['modelpars'][1]  # Location of the emission line
    spec.plotter.axis.plot([x] * 2, [spec.plotter.ymin, spec.plotter.ymax], ls = '--', color = 'k')
    spec.plotter.axis.annotate(spec.speclines.optical.lines[line][-1], (x, y), rotation = 90, ha = ':
# Make some nice axis labels
spec.plotter.axis.set_xlabel(r'Wavelength $(\AA)$')
spec.plotter.axis.set\_ylabel(r'Flux $(10^{-17}) \mathrm{erg/s/cm^2/AA})$')
spec.plotter.refresh()
# Print out spectral line information
print "Line Flux (erg/s/cm^2)
                                   Amplitude (erg/s/cm^2) FWHM (Angstrom) Luminosity (erg/s)"
for line in spec.measurements.lines.keys():
   print line, spec.measurements.lines[line]['flux'], spec.measurements.lines[line]['amp'], spec.measurements.lines[line]
        spec.measurements.lines[line]['lum']
# Had we not supplied the objects redshift (or distance), the line
# luminosities would not have been measured, but integrated fluxes would
# still be derived. Also, the measurements class separates the broad and
# narrow H-alpha components, and identifies which lines are which. How nice!
spec.specfit.plot_fit()
# Save the figure
spec.plotter.figure.savefig("sdss_fit_example.png")
```



## 2.6.5 Optical Plotting - Echelle spectrum of Vega (in color!)

```
import pyspeckit
from pylab import *
import wav2rgb
speclist = pyspeckit.wrappers.load_IRAF_multispec('evega.0039.rs.ec.dispcor.fits')
for spec in speclist:
    spec.units="Counts"
SP = pyspeckit.Spectra(speclist)
SPa = pyspeckit.Spectra(speclist, xunits='angstroms', quiet=False)
SP.plotter(figure=figure(1))
SPa.plotter(figure=figure(2))
figure(3)
clf()
figure(4)
clf()
#clr = [list(clr) for clr in matplotlib.cm.brg(linspace(0,1,len(speclist)))]
clr = [wav2rgb.wav2RGB(c) + [1.0] for c in linspace(380,780,len(speclist))][::-1]
for ii, (color, spec) in enumerate(zip(clr, speclist)):
    spec.plotter(figure=figure(3), clear=False, reset=False, color=color, refresh=False)
    fig4=figure(4)
    fig4.subplots_adjust(hspace=0.35,top=0.97,bottom=0.03)
    spec.plotter(axis=subplot(10,1,ii%10+1), clear=False, reset=False, color=color, refresh=False)
    spec.plotter.axis.yaxis.set_major_locator( matplotlib.ticker.MaxNLocator(4) )
    if ii % 10 == 9:
        spec.plotter.refresh()
        spec.plotter.savefig('vega_subplots_%03i.png' % (ii/10+1))
        clf()
spec.plotter.refresh()
```























## **PYTHON MODULE INDEX**

```
pyspeckit.spectrum.__init___, 19
pyspeckit.spectrum.baseline, 12
pyspeckit.spectrum.fitters, 19
pyspeckit.spectrum.measurements, 16
pyspeckit.spectrum.models,6
pyspeckit.spectrum.models.ammonia,7
pyspeckit.spectrum.models.fitter,8
pyspeckit.spectrum.models.formaldehyde,
pyspeckit.spectrum.models.hcn,9
pyspeckit.spectrum.models.hill5infall,
pyspeckit.spectrum.models.hyperfine, 9
pyspeckit.spectrum.models.inherited_gaussfitter,
pyspeckit.spectrum.models.inherited_lorentzian,
pyspeckit.spectrum.models.inherited_voigtfitter,
pyspeckit.spectrum.models.model,6
pyspeckit.spectrum.models.modelgrid, 10
pyspeckit.spectrum.models.n2hp, 11
pyspeckit.spectrum.readers.fits_reader,
pyspeckit.spectrum.readers.hdf5_reader,
pyspeckit.spectrum.readers.read_class,
pyspeckit.spectrum.readers.txt_reader,
pyspeckit.spectrum.units, 17
pyspeckit.wrappers, 23
pyspeckit.wrappers.cube_fit, 23
pyspeckit.wrappers.fit_gaussians_to_simple_spectra,
pyspeckit.wrappers.fitnh3,24
pyspeckit.wrappers.n2hp_wrapper, 24
```

48 Python Module Index

## **INDEX**

| Symbols                                                             | class_to_obsblocks() (in module                                                                               |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| call() (pyspeckit.spectrum.baseline.Baseline                        | pyspeckit.spectrum.readers.read_class), 22                                                                    |
| method), 12                                                         | class_to_spectra() (in module                                                                                 |
| init() (pyspeckit.spectrum.baseline.Baseline                        | pyspeckit.spectrum.readers.read_class), 22                                                                    |
| method), 12                                                         | clear() (pyspeckit.spectrum.fitters.Specfit method), 13                                                       |
| module (pyspeckit.spectrum.baseline.Baseline at-                    | clear_all_connections() (pyspeckit.spectrum.fitters.Specfit                                                   |
| tribute), 12                                                        | method), 13 clear_highlights() (pyspeckit.spectrum.fitters.Specfit                                            |
| A                                                                   | method), 13                                                                                                   |
|                                                                     | clearlegend() (pyspeckit.spectrum.baseline.Baseline                                                           |
| add_fitter() (pyspeckit.spectrum.fitters.Registry method),          | method), 13                                                                                                   |
| ammonia() (in module                                                | $components () \ (py speck it. spectrum. models. model. Spectral Model$                                       |
| pyspeckit.spectrum.models.ammonia), 7                               | method), 7                                                                                                    |
| annotate() (pyspeckit.spectrum.baseline.Baseline method), 12        | convert_to_unit() (pyspeckit.spectrum.units.SpectroscopicAxis method), 17                                     |
| annotate() (pyspeckit.spectrum.fitters.Specfit method), 13          | $coord\_to\_x() \ (py speck it. spectrum. units. Spectroscopic Axis$                                          |
| annotations() (pyspeckit.spectrum.models.model.SpectralN            | Model method), 17                                                                                             |
| method), 7                                                          | crop() (pyspeckit.spectrum.baseline.Baseline method), 13                                                      |
| as_unit() (pyspeckit.spectrum.units.SpectroscopicAxis method), 17   | crop() (pyspeckit.spectrum.fitters.Specfit method), 13 cube_fit() (in module pyspeckit.wrappers.cube_fit), 23 |
| aval_dict (in module pyspeckit.spectrum.models.hcn), 9              | D                                                                                                             |
| aval_dict (in module pyspeckit.spectrum.models.n2hp),               | _                                                                                                             |
| 11                                                                  | downsample() (pyspeckit.spectrum.baseline.Baseline method), 13                                                |
| В                                                                   | downsample() (pyspeckit.spectrum.fitters.Specfit                                                              |
| Baseline (class in pyspeckit.spectrum.baseline), 12                 | method), 13                                                                                                   |
| BigSpectrum_to_NH3dict() (in module                                 |                                                                                                               |
| pyspeckit.wrappers.fitnh3), 24                                      | E                                                                                                             |
| button2action() (pyspeckit.spectrum.baseline.Baseline               | EQW() (pyspeckit.spectrum.fitters.Specfit method), 13                                                         |
| method), 12                                                         | event_manager() (pyspeckit.spectrum.fitters.Specfit                                                           |
| button3action() (pyspeckit.spectrum.baseline.Baseline               | method), 13                                                                                                   |
| method), 13                                                         | F                                                                                                             |
| button3action() (pyspeckit.spectrum.fitters.Specfit                 |                                                                                                               |
| method), 13                                                         | firstclick_guess() (pyspeckit.spectrum.fitters.Specfit method), 14                                            |
| C                                                                   | firstclick_selection() (pyspeckit.spectrum.fitters.Specfit                                                    |
| cdelt() (pyspeckit.spectrum.units.SpectroscopicAxis                 | method), 14                                                                                                   |
| method), 17                                                         | fit_gaussians_to_simple_spectra() (in module                                                                  |
| change_frame() (pyspeckit.spectrum.units.SpectroscopicAsmethod), 17 |                                                                                                               |
| memou), 1/                                                          | fitnh3tkin() (in module pyspeckit.wrappers.fitnh3), 24                                                        |
|                                                                     |                                                                                                               |

| fitter() (pyspeckit.spectrum.models.model.SpectralModel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| method), 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pyspeckit.spectrum.models.modelgrid), 11                                                                    |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lorentzian() (in module                                                                                     |
| pyspeckit.spectrum.models.formaldehyde),<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pyspeckit.spectrum.models.inherited_lorentzian), 10                                                         |
| • = "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lorentzian_fitter() (in module                                                                              |
| pyspeckit.spectrum.models.formaldehyde),<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>pyspeckit.spectrum.models.inherited_lorentzian), 10</pre>                                              |
| fullsizemodel() (pyspeckit.spectrum.fitters.Specfit method), 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M                                                                                                           |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | make_axis() (in module                                                                                      |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pyspeckit.spectrum.readers.read_class), 22                                                                  |
| gaussian() (in module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | make_dxarr() (pyspeckit.spectrum.units.SpectroscopicAxis method), 17                                        |
| pyspeckit.spectrum.models.inherited_gaussfitter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | moments() (pyspeckit.spectrum.fitters.Specfit method),                                                      |
| gaussian_fitter() (in module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                          |
| pyspeckit.spectrum.models.inherited_gaussfitter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mpfitfun() (pyspeckit.spectrum.models.model.SpectralModel method), 7                                        |
| gaussian_line() (in module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | multifit() (pyspeckit.spectrum.fitters.Specfit method), 14                                                  |
| pyspeckit.spectrum.models.modelgrid), 10<br>guesspeakwidth() (pyspeckit.spectrum.fitters.Specfit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                                                                                                           |
| method), 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n2hp_radex() (in module                                                                                     |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pyspeckit.spectrum.models.n2hp), 11                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n2hp_radex() (pyspeckit.spectrum.models.n2hp static                                                         |
| hcn_radex() (in module pyspeckit.spectrum.models.hcn),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | method), 25                                                                                                 |
| 9 highlight fitterien() (nyemeeldt eneetmyn fittere Smeeft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n_modelfunc() (pyspeckit.spectrum.models.model.SpectralModel method), 7                                     |
| highlight_fitregion() (pyspeckit.spectrum.fitters.Specfit method), 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | methody, 7                                                                                                  |
| hill5_model() (in module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                           |
| pyspeckit.spectrum.models.hill5infall), 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | open_1d_fits() (in module                                                                                   |
| hyperfine() (pyspeckit.spectrum.models.hyperfine.hyperfine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                             |
| method), 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | open_1d_pyfits() (in module                                                                                 |
| hyperfine_amp() (pyspeckit.spectrum.models.hyperfine.hyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             |
| method), 10<br>hyperfinemodel (class in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | open_1d_txt() (in module pyspeckit.spectrum.readers.txt_reader), 20                                         |
| pyspeckit.spectrum.models.hyperfine), 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | open_hdf5() (in module                                                                                      |
| propertiespectum moders my permier, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pyspeckit.spectrum.readers.hdf5_reader),                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                          |
| in_frame() (pyspeckit.spectrum.units.SpectroscopicAxis method), 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P                                                                                                           |
| in_range() (pyspeckit.spectrum.units.SpectroscopicAxis method), 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | peakbgfit() (pyspeckit.spectrum.fitters.Specfit method), 14                                                 |
| integral() (pyspeckit.spectrum.fitters.Specfit method), 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | plot_baseline() (pyspeckit.spectrum.baseline.Baseline                                                       |
| $integral() \ (py speck it. spectrum. models. model. Spectral Model spectral Mod$ | el method), 13                                                                                              |
| method), 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | plot_fit() (pyspeckit.spectrum.fitters.Specfit method), 15                                                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | plot_nh3() (in module pyspeckit.wrappers.fitnh3), 24<br>plotresiduals() (pyspeckit.spectrum.fitters.Specfit |
| (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | method), 15                                                                                                 |
| ifunc() (in module pyspeckit.spectrum.models.hill5infall), 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | plotter_override() (in module pyspeckit.wrappers.fitnh3),                                                   |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | print_fit() (pyspeckit.spectrum.fitters.Specfit method), 15                                                 |
| line_model_2par() (in module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pyspeckit.spectruminit (module), 19                                                                         |
| pyspeckit.spectrum.models.modelgrid), 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pyspeckit.spectrum.baseline (module), 12                                                                    |
| <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pyspeckit spectrum fitters (module) 13 19                                                                   |

50 Index

| pyspeckit.spectrum.measurements (module), 16                                           | shift_pars() (pyspeckit.spectrum.fitters.Specfit method),                            |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| pyspeckit.spectrum.models (module), 6                                                  | 15                                                                                   |
| pyspeckit.spectrum.models.ammonia (module), 7                                          | simple_txt() (in module                                                              |
| pyspeckit.spectrum.models.fitter (module), 8                                           | pyspeckit.spectrum.readers.txt_reader), 20                                           |
| pyspeckit.spectrum.models.formaldehyde (module), 8                                     | slope() (pyspeckit.spectrum.models.model.SpectralModel                               |
| pyspeckit.spectrum.models.hcn (module), 9                                              | method), 7                                                                           |
| pyspeckit.spectrum.models.hill5infall (module), 9                                      | Specfit (class in pyspeckit.spectrum.fitters), 13                                    |
| pyspeckit.spectrum.models.hyperfine (module), 9                                        | SpectralModel (class in                                                              |
| pyspeckit.spectrum.models.inherited_gaussfitter (module), 8                            | pyspeckit.spectrum.models.model), 6 SpectralModel() (pyspeckit.spectrum.models.model |
| pyspeckit.spectrum.models.inherited_lorentzian (module), 10                            | method), 25<br>SpectroscopicAxes (class in pyspeckit.spectrum.units),                |
| pyspeckit.spectrum.models.inherited_voigtfitter (module), 11                           | 18 SpectroscopicAxis (class in pyspeckit.spectrum.units), 17                         |
| pyspeckit.spectrum.models.model (module), 6                                            | start_interactive() (pyspeckit.spectrum.fitters.Specfit                              |
| pyspeckit.spectrum.models.modelgrid (module), 10                                       | method), 16                                                                          |
| pyspeckit.spectrum.models.n2hp (module), 11                                            |                                                                                      |
| pyspeckit.spectrum.readers.fits_reader (module), 21                                    | U                                                                                    |
| pyspeckit.spectrum.readers.hdf5_reader (module), 22                                    | umax() (pyspeckit.spectrum.units.SpectroscopicAxis                                   |
| pyspeckit.spectrum.readers.read_class (module), 22                                     | method), 18                                                                          |
| pyspeckit.spectrum.readers.txt_reader (module), 20                                     | umin() (pyspeckit.spectrum.units.SpectroscopicAxis                                   |
| pyspeckit.spectrum.units (module), 17                                                  | method), 18                                                                          |
| pyspeckit.wrappers (module), 23                                                        | unsubtract() (pyspeckit.spectrum.baseline.Baseline                                   |
| pyspeckit.wrappers.cube_fit (module), 23                                               | method), 13                                                                          |
| pyspeckit.wrappers.fit_gaussians_to_simple_spectra                                     |                                                                                      |
| (module), 23                                                                           | V                                                                                    |
| pyspeckit.wrappers.fitnh3 (module), 24<br>pyspeckit.wrappers.n2hp_wrapper (module), 24 | <pre>voigt() (in module pyspeckit.spectrum.models.inherited_voigtfitter), 11</pre>   |
| D                                                                                      | voigt_fitter() (in module                                                            |
| R                                                                                      | pyspeckit.spectrum.models.inherited_voigtfitter),                                    |
| read_class() (in module                                                                | 11                                                                                   |
| pyspeckit.spectrum.readers.read_class), 22                                             | V.                                                                                   |
| read_echelle() (in module                                                              | X                                                                                    |
| pyspeckit.spectrum.readers.fits_reader), 21                                            | x_in_frame() (pyspeckit.spectrum.units.SpectroscopicAxis                             |
| register_fitter() (pyspeckit.spectrum.fitters.Specfit method), 15                      | method), 18 x_to_coord() (pyspeckit.spectrum.units.SpectroscopicAxis                 |
| register_reader() (in module                                                           | method), 18                                                                          |
| pyspeckit.spectruminit), 19 register_writer() (in module                               | x_to_pix() (pyspeckit.spectrum.units.SpectroscopicAxis method), 18                   |
| pyspeckit.spectruminit), 19                                                            |                                                                                      |
| Registry (class in pyspeckit.spectrum.fitters), 19                                     |                                                                                      |
| S                                                                                      |                                                                                      |
| savefit() (pyspeckit.spectrum.baseline.Baseline method), 13                            |                                                                                      |
| savefit() (pyspeckit.spectrum.fitters.Specfit method), 15                              |                                                                                      |
| selectregion() (pyspeckit.spectrum.fitters.Specfit method), 15                         |                                                                                      |
| selectregion_interactive()                                                             |                                                                                      |
| (pyspeckit.spectrum.fitters.Specfit method), 15                                        |                                                                                      |
| seterrspec() (pyspeckit.spectrum.fitters.Specfit method), 15                           |                                                                                      |
| setfitspec() (pyspeckit.spectrum.fitters.Specfit method),                              |                                                                                      |

Index 51