Anéis - Subanéis

José Antônio O. Freitas

MAT-UnB

7 de outubro de 2020

Observação: Seja (A, \oplus, \cdot)

Seja (A, \oplus, \cdot) um anel.

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por +

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente que $(A, +, \cdot)$

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente que $(A, +, \cdot)$ é um anel.

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente que $(A, +, \cdot)$ é um anel.

Seja $(A, +, \cdot)$ um anel.

Seja $(A, +, \cdot)$ um anel. Então:

i) O elemento neutro é único.

- i) O elemento neutro é único.
- ii) Para cada $x \in A$

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

iv) Dados x_1 ,

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

iv) Dados x_1 , x_2 ,

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

iv) Dados $x_1, x_2, ..., x_n \in A$,

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1+x_2+\cdots+x_n)$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1)$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1) + (-x_2)$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1) + (-x_2) + \cdots + (-x_n).$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1) + (-x_2) + \cdots + (-x_n).$$

v) Para todos α ,

v) Para todos α , x,

v) Para todos α , x, $y \in A$,

v) Para todos α , x, $y \in A$, se

$$\alpha + x$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y,$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$
,

então x = y.

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y,$$

então
$$x = y$$
.

vi) Para todo
$$x \in A$$
,

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

vi) Para todo
$$x \in A$$
,

$$x \cdot 0_A$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

vi) Para todo $x \in A$,

$$x \cdot 0_A = 0_A$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

vi) Para todo $x \in A$,

$$x \cdot 0_A = 0_A = 0_A \cdot x.$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

vi) Para todo $x \in A$,

$$x \cdot 0_A = 0_A = 0_A \cdot x.$$

v) Para todos x,

v) Para todos $x, y \in A$,

$$x(-y)$$

$$x(-y)=(-x)y$$

$$x(-y) = (-x)y = -(xy).$$

v) Para todos $x, y \in A$, temos

$$x(-y) = (-x)y = -(xy).$$

vi) Para todos x,

v) Para todos $x, y \in A$, temos

$$x(-y) = (-x)y = -(xy).$$

vi) Para todos x, $y \in A$,

v) Para todos $x, y \in A$, temos

$$x(-y)=(-x)y=-(xy).$$

vi) Para todos x, $y \in A$,

хy

v) Para todos $x, y \in A$, temos

$$x(-y) = (-x)y = -(xy).$$

vi) Para todos x, $y \in A$,

$$xy = (-x)(-y).$$

v) Para todos $x, y \in A$, temos

$$x(-y) = (-x)y = -(xy).$$

vi) Para todos x, $y \in A$,

$$xy = (-x)(-y).$$

i) Suponha que existam 0_1 ,

i) Suponha que existam 0_1 , $0_2 \in A$

$$x + 0_1$$

$$x + 0_1 = x$$

$$x + 0_1 = x$$
 e $x + 0_2$

$$x + 0_1 = x$$
 e $x + 0_2 = x$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

para todo $x \in A$.

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

para todo $x \in A$. Assim

 0_1

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

$$0_1 = 0_1 +$$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

$$0_1 = 0_1 + 0_2$$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

$$0_1 = 0_1 + 0_2 = 0_2$$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

para todo $x \in A$. Assim

$$0_1 = 0_1 + 0_2 = 0_2$$

e portanto o elemento neutro é único.

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

para todo $x \in A$. Assim

$$0_1 = 0_1 + 0_2 = 0_2$$

e portanto o elemento neutro é único.

ii) De fato,

ii) De fato, dado $x \in A$

ii) De fato, dado $x \in A$ suponha que existam y_1 ,

$$x+y_1=0_A$$

$$x + y_1 = 0_A$$
 e $x + y_2$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

*y*₁

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1=y_2+0_A$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2)$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x)$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$,

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x,

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é,

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, x

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, x + (-x)

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$.

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x)

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x,

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x, ou seja,

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x, ou seja, -(-x)

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x, ou seja, -(-x) = x.

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x, ou seja, -(-x) = x.

iv) Segue usando indução sobre n.

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$.

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$. Seja $-\alpha$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$. Seja $-\alpha$ o oposto de α .

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$. Seja $-\alpha$ o oposto de α . Daí

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha+x=\alpha+y$. Seja $-\alpha$ o oposto de α . Daí $x=0_A$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha+x=\alpha+y$. Seja $-\alpha$ o oposto de α . Daí $x=0_A+x=[(-\alpha)+\alpha]$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x =$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha)$

v) Suponha que
$$\alpha + x = \alpha + y$$
. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha) + (\alpha + x)$

v) Suponha que
$$\alpha + x = \alpha + y$$
. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha) + (\alpha + x) = (-\alpha) + (-\alpha)$

v) Suponha que
$$\alpha + x = \alpha + y$$
. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha) + (\alpha + x) = (-\alpha) + (\alpha + y)$

v) Suponha que
$$\alpha + x = \alpha + y$$
. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha) + (\alpha + x) = (-\alpha) + (\alpha + y) = [(-\alpha) + \alpha]$

v) Suponha que
$$\alpha + x = \alpha + y$$
. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha) + (\alpha + x) = (-\alpha) + (\alpha + y) = [(-\alpha) + \alpha] + y$

v) Suponha que
$$\alpha+x=\alpha+y$$
. Seja $-\alpha$ o oposto de α . Daí $x=0_A+x=[(-\alpha)+\alpha]+x=(-\alpha)+(\alpha+x)=(-\alpha)+(\alpha+y)=[(-\alpha)+\alpha]+y=0_A+y$

v) Suponha que
$$\alpha+x=\alpha+y$$
. Seja $-\alpha$ o oposto de α . Daí $x=0_A+x=[(-\alpha)+\alpha]+x=(-\alpha)+(\alpha+x)=(-\alpha)+(\alpha+y)=[(-\alpha)+\alpha]+y=0_A+y=y$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha+x=\alpha+y$. Seja $-\alpha$ o oposto de α . Daí $x=0_A+x=[(-\alpha)+\alpha]+x=(-\alpha)+(\alpha+x)=(-\alpha)+(\alpha+y)=[(-\alpha)+\alpha]+y=0_A+y=y$ como queríamos.

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha+x=\alpha+y$. Seja $-\alpha$ o oposto de α . Daí $x=0_A+x=[(-\alpha)+\alpha]+x=(-\alpha)+(\alpha+x)=(-\alpha)+(\alpha+y)=[(-\alpha)+\alpha]+y=0_A+y=y$ como queríamos.

$$x \cdot 0_A +$$

9/14

$$x \cdot 0_A + 0_A$$

9/14

$$x \cdot 0_A + 0_A = x \cdot 0_A$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A)$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y)

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

vii) Provemos que
$$x(-y) = -(xy)$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

vii) Provemos que
$$x(-y) = -(xy)$$
:

$$x(-y)$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

vii) Provemos que
$$x(-y) = -(xy)$$
:

$$x(-y) + xy$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y]$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A = 0_A,$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A = 0_A,$$

portanto -xy

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A = 0_A,$$

portanto -xy = x(-y).

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A = 0_A,$$

portanto
$$-xy = x(-y)$$
.

viii) Basta usar o caso anterior.

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A = 0_A,$$

portanto
$$-xy = x(-y)$$
.

viii) Basta usar o caso anterior.

Seja $(A, +, \cdot)$ um anel.

Seja $(A,+,\cdot)$ um anel. Dizemos que um subconjunto não vazio

Seja $(A,+,\cdot)$ um anel. Dizemos que um subconjunto não vazio $B\subseteq A$

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Exemplos

1) Todo anel A sempre tem dois subanéis:

Seja $(A,+,\cdot)$ um anel. Dizemos que um subconjunto não vazio $B\subseteq A$ é um **subanel** de A quando $(B,+,\cdot)$ é um anel.

Exemplos

1) Todo anel A sempre tem dois subanéis: $\{0_A\}$

Seja $(A,+,\cdot)$ um anel. Dizemos que um subconjunto não vazio $B\subseteq A$ é um **subanel** de A quando $(B,+,\cdot)$ é um anel.

Exemplos

1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A,

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Exemplos

1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) $Em(\mathbb{Z}_4, \oplus, \otimes)$

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} ,

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} , o conjunto m \mathbb{Z} , m > 1

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} , o conjunto m \mathbb{Z} , m > 1 é um subanel de \mathbb{Z} .

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} , o conjunto m \mathbb{Z} , m > 1 é um subanel de \mathbb{Z} .

Seja $(A,+,\cdot)$ um anel.

Seja $(A,+,\cdot)$ um anel. Um subconjunto não vazio

Seja $(A,+,\cdot)$ um anel. Um subconjunto não vazio $B\subseteq A$

Seja $(A,+,\cdot)$ um anel. Um subconjunto não vazio $B\subseteq A$ é um subanel de A

Seja $(A,+,\cdot)$ um anel. Um subconjunto não vazio $B\subseteq A$ é um subanel de A se, e somente se,

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y = x + (-y) \in B$

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y = x + (-y) \in B$ e $x \cdot y \in B$

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y = x + (-y) \in B$ e $x \cdot y \in B$ para todos $x, y \in B$.

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y = x + (-y) \in B$ e $x \cdot y \in B$ para todos $x, y \in B$.

Prova:

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y = x + (-y) \in B$ e $x \cdot y \in B$ para todos $x, y \in B$.

Prova:

1) Em $(\mathbb{Z}_4, \oplus, \otimes)$

1) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.

1) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.

2) No anel \mathbb{Z} ,

2) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m>1

2) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m > 1 é um subanel de \mathbb{Z} .

2) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m > 1 é um subanel de \mathbb{Z} .

2) No anel (\mathbb{Q},\star,\odot)

2) No anel (\mathbb{Q},\star,\odot) onde as operações \star e \odot em \mathbb{Q} definidas por

2) No anel (\mathbb{Q},\star,\odot) onde as operações \star e \odot em \mathbb{Q} definidas por $x\star y=x+y-8$

2) No anel (\mathbb{Q},\star,\odot) onde as operações \star e \odot em \mathbb{Q} definidas por

$$x \star y = x + y - 8$$

$$x \odot y = x + y - \frac{xy}{8}.$$

2) No anel $(\mathbb{Q}, \star, \odot)$ onde as operações \star e \odot em \mathbb{Q} definidas por

$$x \star y = x + y - 8$$

$$x \odot y = x + y - \frac{xy}{8}.$$

2) No anel $(\mathbb{Q}, \star, \odot)$ onde as operações \star e \odot em \mathbb{Q} definidas por

$$x \star y = x + y - 8$$

$$x \odot y = x + y - \frac{xy}{8}.$$

(a)
$$B = \{2k \mid k \in \mathbb{Z}\}$$

2) No anel $(\mathbb{Q}, \star, \odot)$ onde as operações \star e \odot em \mathbb{Q} definidas por

$$x \star y = x + y - 8$$

$$x \odot y = x + y - \frac{xy}{8}.$$

(a)
$$B = \{2k \mid k \in \mathbb{Z}\}$$

(b)
$$C = \{8k \mid k \in \mathbb{Z}\}$$

2) No anel $(\mathbb{Q}, \star, \odot)$ onde as operações \star e \odot em \mathbb{Q} definidas por

$$x \star y = x + y - 8$$

$$x \odot y = x + y - \frac{xy}{8}.$$

(a)
$$B = \{2k \mid k \in \mathbb{Z}\}$$

(b)
$$C = \{8k \mid k \in \mathbb{Z}\}$$