МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) Кафедра МО ЭВМ

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ №3

по дисциплине

«Теория игр и исследование операций»

Вариант 2

Студентка гр. 6383	Базаров И
Преподаватель	Шолохов А.В.

Санкт-Петербург 2019

Задание 1 (15 баллов).

Для заданных постоянных $\Phi \in R^{m \times n}$, $y \in R^m$ и вектора переменных $x \in R^n$ переформулировать следующую задачу оптимизации как задачу линейного программирования:

$$\min_{x} c^{T} x$$

$$s.t. \frac{Gx \le h}{Ax = b}$$

Иными словами выразить c, G, h, A, b через Φ и y так, чтобы получилась задача оптимизации, эквивалентная следующей:

$$\min_{\mathbf{x}} \|\Phi \mathbf{x} - \mathbf{y}\|_{\infty}$$

Решение

$$\min_{x} \|\Phi x - y\|_{\infty} = \min \max |\Phi x - y| = \min \max \left(\frac{\Phi x - y}{-\Phi x + y}\right) = \min t$$

s.t.
$$\Phi x - y \le t$$

 $\Phi x - y \ge -t$

=min t

$$= \min_{C} C^{T} x$$

$$s.t. \frac{\Phi x - t \le y}{-\Phi x - t \le -y} \quad s.t. Gx \le h$$

где
$$\mathbf{x}^T$$
 = $(\mathbf{t}, \mathbf{x}_1, \dots, \mathbf{x}_n)$, \mathbf{c}^T = $(1, 0, \dots, 0)^T$, \mathbf{G} = $\begin{pmatrix} -1 & \Phi \\ -1 & -\Phi \end{pmatrix}$, \mathbf{h}^T = $(\mathbf{y}, -\mathbf{y})^T$

Подставим числовые значения Φ =(2, 1)^T, y^T=(1,1)^T, ε = 1:

$$c^{T}=(1,0)^{T}, G=\begin{pmatrix} -1 & 2 \\ -1 & 1 \\ -1 & -2 \\ -1 & -1 \end{pmatrix}, h=\begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$$

Используя функцию cvxopt.solvers.lp найдем решене задачи и изобразим на плоскости точки y (оранжевого цвета) и $\Phi^{x_{\iota}}$ (синего цвета) и прямую Φ^{x} .

Решение х=2/3;

Код на python представлен в файле TASK_1.py **Задание 2 (15 ба**ллов).

Пусть A — центрально-симметричный ($a \in A \Longrightarrow -a \in A$) набор векторов («атомов»), такой что элементы A есть крайние точки выпуклой оболочки A, обозначаемой conv(A). Определим amomaphy (atomic norm) для множества A следующим образом: $\|x\|_A = \inf [t > 0 \lor x \in t conv(A)]$

Шар атомарной нормы получается равномерным расширением или сжатием множества conv(A). Вычисление $\|x\|_A$ сводится к поиску шара минимального «радиуса»t, который включает вектор x.

Рассмотрим задачу поиска решения недоопределенной СЛАУ с минимальной нормой: $\min_{x \in \mathcal{X}} \|x\|_A$

$$s.t.\Phi x = y$$

Обозначим элементы A через a_i . Тогда вектор $x \in t conv(A)$ можно представить как коническую комбинацию его элементов: $x = t \sum_i w_i a_i$, где $t \ge 0$, $1^T w = 1$,

$$x = t \sum_{i} w_{i} a_{i}$$

$$s.t. \quad t \ge 0$$

$$1^{T} w = 1, w_{i} \ge 0$$

$$\Phi x = y$$

Вводя новые переменные $u_i = t w_i$, перепишем эту задачу следующим образом: $\min_{t,u} t$

 $1^T u = t, u \ge 0$ s.t. $t \ge 0$, где матрица P содержит вектора a_i в качестве столбцов. $\Phi P u = y$

Пусть A = [(1,0),(0,1),(-1,1),(-1,0),(0,-1),(1,-1)], $\Phi = [12]$ и y = 10. Найти решение задачи используя функцию cvxopt.solvers.lp. Визуализировать результат с помощью библиотеки matplotlib (изобразить решение x_{ι} , множество ограничений $[x|\Phi x = y]$ и множество $[x|||x||_A \le ||x_{\iota}||_A]$).

Решение:

$$x^{T}=(t, u_{1}, ..., u_{6})^{T}; c^{T}=(1,0,0,0,0,0,0)^{T}; h=(0,0,0,0,0,0,0,0,0,0,y,-y)^{T}; G=$$

$$\begin{pmatrix} 1, -1, ..., -1 \\ -1, 1, ..., 1 \\ -E \\ 0, F * p \\ 0, -F * p \end{pmatrix}$$

0, -F * p , где 1,2 строки это условия что сумма $u_i = t$; далее единичная матрица накладывает ограничение что все компоненты х неотрицательны; а последние 2 строки задают ограничения $[x|\Phi x=y]$.

Найдем решение задачи используя функцию cvxopt.solvers.lp $|\mathbf{x}|_{\mathbf{A}} = \mathbf{5}$.

Визуализируем результат с помощью библиотеки matplotlib.

Код на python представлен в файле TASK_2.py

3. (10 баллов). Переписать задачу в виде:

$$\min_{x,z} f_1(x) + f_2(z)$$

$$s.t. \frac{Ax + Bz = c}{x \in C_1, z \in C_2}$$

Описать и реализовать alternating direction method of multipliers (ADMM) для решения этой задачи. *Примечание*: параметр ρ алгоритма ADMM должен быть больше единицы.

Решение:

$$\mathbf{x}^{\mathrm{T}} = (\mathbf{t})^{\mathrm{T}}$$
; $\mathbf{z}^{\mathrm{T}} = (\mathbf{u}_{1}, \ldots, \mathbf{u}_{n})^{\mathrm{T}}$; $\mathbf{f}(\mathbf{x}) = \mathbf{x}$; $\mathbf{g}(\mathbf{z}) = \mathbf{0}$. Тогда огданичения можно записать в виде: $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} = \mathbf{c}$, где $\mathbf{A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1, \cdots, -1 \\ \Phi p \end{pmatrix}$, $\mathbf{c}^{\mathrm{T}} = (\mathbf{0}, \mathbf{y})^{\mathrm{T}}$.

ADMM:

$$L\rho(x,z,y)=f(x)+g(z)+y^{T}(Ax+Bz-c)+(\rho/2)\|Ax+Bz-c\|^{2}_{2}$$
 x^{k+1} :=argmin $_{x}L\rho(x,z^{k},y^{k})$ // x - минимизация

$$z^{k+1}$$
:=argmin $_z$ L $ho(x^k,z,y^k)$ // z - минимизация y^{k+1} := y^k + $ho(Ax^{k+1}$ + Bz^{k+1} - $c)$

Найдем $argmin_x L\rho(x,z^k,y^k)$:

$$L\rho(x,z^k,y^k)=x+y^T(Ax+Bz-c)+(\rho/2)\|Ax+Bz-c\|^2$$

Возьмем производную по х и приравняем к 0, получим:

 $1 + y^{T}A + \rho (Ax + Bz)^{T}A = 0$, с учетом $A = (1,0)^{T}$, выражение примет вид:

$$1+y^Tigg(egin{array}{c}1\\0\end{pmatrix}+
hoigg(egin{array}{c}x-1^Tz-0\\\Phi p-10\end{array}igg)igg(egin{array}{c}1\\0\end{pmatrix}=0$$
 , после преобразований получим

$$1+y_1+\rho(x-1^Tz)=0$$
 , откуда $x=\frac{-1-y_1}{\rho}+\sum_{z=1}^{T}(z)$

Таким образом,
$$x^{k+1}$$
:=argmin_xL $\rho(x,z^k,y^k) = \frac{-1-y_1^k}{\rho} + \sum_{k=1}^{\infty} (z^k)$

Для нахождения $argmin_z L\rho(x^k,z,y^k)$ воспользуемся функцией solvers.qp.

Для этого в формуле $L\rho(x,z^k,y^k)=x+y^T(Ax+Bz-c)+(\rho/2)\|Ax+Bz-c\|^2$ раскроем скобки и будем избавляться от слагаемых не зависящих от z:

$$y^{T}Bz+(\rho/2) (Ax + Bz - c)^{T}(Ax + Bz - c) = y^{T}Bz + (\rho/2)(xA^{T}B-c^{T}Bz+z^{T}B^{T}Ax+z^{T}B^{T}z-z^{T}B^{T}c) = (y^{T}B + \rho xA^{T}B-\rho c^{T}B)z+\rho/2(z^{T}B^{T}Bz)$$

Таким образом матрица P для функции solvers.qp будет равна: $P = \rho B^T B$

A матрица
$$q = (y^T B + \rho x A^T B - \rho c^T B)^T$$

Код на python представлен в файле TASK_3.py

Задание 5

Задание: Пусть графы A и B являются триангуляциями пары наборов точек на плоскости.

- 1) Найти решение задачи оптимизации (см. ниже). В качестве инициализации использовать тождественную перестановку или перестановку, найденная с помощью какого-либо жадного алгоритма.
- 2) Преобразовать решение задачи X в бинарную матрицу Z: Zij=II{Xij>0.5}. Полученная матрица Z не обязательно будет (и скорее всего не будет) являться матрицей перестановки. Визуализировать Z.
- 3) Найти разложение Биркгофа –фон Неймана матрицы решения X. Выбрать матрицу перестановки с максимальным коэффициентом. Выписать соответствующую перестановку. Визуализировать решение.

Вариант 2

Решить релаксированную задачу методом проекции градиента. Для вычисления проекции произвольной квадратной матрицы на множество 풟, представить это

множество как пересечение D=D1∩D2, где D={X:X1=1,XT1=1} и D={ $X:Xij\ge0,\forall i,j$ } и использовать Dijkstra's projection algorithm task5.py

Графы создаются из trianglesи представляются в виде матрицы смежности

Алгоритм проекционный алгоритм Дейкстры для задачи оптимизации $\min \! X \| XA \! - \! BX \|_{F^2} \\ \text{s.t. } X \! \in \! \mathcal{P}$

,следующий -
$$y_k = \mathcal{P}_D(x_k + p_k)$$
 $p_{k+1} = x_k + p_k - y_k$ $x_{k+1} = \mathcal{P}_C(y_k + q_k)$ $q_{k+1} = y_k + q_k - x_{k+1}.$

где Pd – проекция на множество дважды стохастических матриц, Pc – проекция на матрицы с неотрицательными элементами.

Полученная матрица перестановки на графах (для значений > 0.5)-

Разложение Биркгофа - фон Неймана матрицы решений дает следующую перестановку

