Lógica proposicional. Metateoría: Corrección y Completitud _{Lógica}

i

Del conjunto de hipótesis Γ se deduce lpha

$i\Gamma \models \alpha$?

- Definición de valuación
- Equivalencias lógicas
- Hay métodos que responden SÍ o NO

$\Gamma \vdash \alpha$?

- Prueba formal
- Requiere ingenio

¿Son equivalentes ambas formas de responder la pregunta?

Corrección y completitud del cálculo proposicional

Si construimos una prueba siguiendo las reglas dadas:

- ¿estamos seguros de que no puede ocurrir que las hipótesis sean ciertas y la conclusión no?
- ¿Y recíprocamente? Si alpha es consecuencia lógica de Γ , ¿existe una derivación de α con hipótesis en Γ ?

¿Se cumple $\Gamma \vdash \alpha \Leftrightarrow \Gamma \models \alpha$?

Corrección del cálculo proposicional

La corrección de un cálculo nos indica que las reglas de construcción de sus juicios reflejan nociones semánticas. Un cálculo es correcto para una semántica.

Lema 1.6.1 Corrección del sistema de pruebas

Sean
$$\Gamma\subseteq \mathsf{PROP}$$
 y $\alpha\in \mathsf{PROP}$ si $\Gamma \vdash \alpha$ entonces $\Gamma \models \alpha$

Lema 1.6.1 Corrección del sistema de pruebas

Versión Original

Sean $\Gamma \subseteq \mathtt{PROP}$ y $\alpha \in \mathtt{PROP}$

si
$$\Gamma \vdash \alpha$$
 entonces $\Gamma \models \alpha$

Observaciones

- $\begin{array}{c} \bullet \;\; \Gamma \vdash \alpha \Leftrightarrow (\bar{\exists} D \in \mathtt{DER}) ((\Gamma = \Gamma' \cup H(D)) \; \mathsf{y} \\ C(D) = \alpha) \end{array}$
- Si se prueba que

$$(\forall D \in \mathtt{DER}) H(D) \models C(D)$$

entonces se puede probar la tesis.

• Esto se puede hacer mediante una inducción en DER.

ш

Usamos el PIP para DER

Consideramos la propiedad

$$H(D) \models C(D)$$

Caso base

T)

 $\varphi \models \varphi$ ($D = \varphi$ por lo que coinciden hipótesis y tesis.)

Dem.

En todas las valuaciones v tal que $v(\varphi)=1$, se cumple que $v(\varphi)=1$.

Caso $I \wedge (D$ se construye con $I \wedge)$

HI)

- 1. Sea D' tal que $H(D') \models C(D')$ con $C(D') = \alpha$.
- 2. Sea D'' tal que $H(D'') \models C(D'')$ con $C(D'') = \beta$

3.
$$D = \frac{D''}{\alpha \wedge \beta} \frac{D'''}{(I \wedge)}$$

TI)

$$H(D) \models \alpha \land \beta$$

Caso $I \wedge$

Dem.

1. Por definición de H(D) se sabe que $H(D)=H(D')\cup H(D'')$ por lo que se cumple que dada una valuación v cualquiera:

$$\begin{split} (\forall \varphi \in H(D).v(\varphi) = 1 \:) \Rightarrow \\ (\bar{\forall} \varphi' \in H(D').v(\varphi') = 1 \:) \text{ y} \\ (\bar{\forall} \varphi'' \in H(D'').v(\varphi'') = 1 \:) \end{split}$$

2. Por HI.1 y 2 para toda valuación \emph{v} se cumple que :

$$(\forall \varphi \in H(D').(v(\varphi) = 1)) \Rightarrow v(\alpha) = 1$$
$$(\forall \varphi \in H(D'').(v(\varphi) = 1)) \Rightarrow v(\beta) = 1$$

3. Por 1 y 2 se cumple que:

$$(\overline{\forall}\varphi\in H(D).v(\varphi)=1)\Rightarrow\\ (v(\alpha)=1)\ \mathbf{y}\\ (v(\beta)=1)$$

4. Por lo que por definición de valuación y de consecuencia lógica, se cumple que la tesis.

$\overline{\mathsf{Caso}\ I} \to$

HI)

1. Sea D' tal que $H(D') \models C(D')$ con $C(D') = \beta$.

2.
$$D = \frac{D'}{\alpha \rightarrow \beta} (I \rightarrow I)$$

TI)

$$H(D) \models \alpha \rightarrow \beta$$

$\mathsf{Caso}\ I \to$

 $\stackrel{ extbf{Dem.}}{ ext{1}}$ Por HI.1 se sabe que todas para cualquier valuación v se cumple que:

$$(\bar{\forall}\varphi \in H(D').v(\varphi) = 1) \Rightarrow v(\beta) = 1$$

- 2. Por def de H(D) se sabe que en este caso, que a lo sumo $H(D') = H(D) \cup \{\alpha\}$. (podría ser que H(D) = H(D'))
- 3. Por la afirmación 2, se sabe que dada cualquier valuación v, se cumple que: $(\bar{\forall}\varphi\in H(D).v(\varphi)=1\,)\Rightarrow$

$$((ar{\forall} \varphi \in H(D').v(\varphi) = 1) \text{ o bien } v(\alpha) = 0)$$

- 4. Por la observación anterior, dada una valuación v tal que $(\bar{\forall} \varphi \in H(D).v(\varphi)=1)$ tiene que cumplir una de las dos condiciones del consecuente y por lo tanto:
 - o bien la valuación hace verdaderas a todas las fórmulas de H(D'), con lo que $v(\beta)=1$ por hipótesis
 - o bien $v(\alpha) = 0$

En cualquier de estos dos casos $v(\alpha \to \beta) = 1$ por lo que se cumple la tesis.

Lema 1.6.1

Ejercicio

Realizar los restantes casos inductivos.

Usos del Teorema de Corrección

Proporciona formas de mostrar una consecuencia semántica. En particular, otra forma de mostrar que una fórmula es tautología.

si
$$\vdash \varphi$$
 entonces $\models \varphi$

Proporciona formas de mostrar cuando no se cumple una consecuencia sintáctica. En particular, una forma de mostrar que una fórmula no es teorema.

si
$$\not\models \varphi$$
 entonces $\not\models \varphi$

Teorema de completitud

Completitud

Observaciones

Sean $\Gamma \subseteq PROP$ y $\alpha \in PROP$ Si $\Gamma \models \alpha$ entonces $\Gamma \vdash \alpha$

- Dice que dada una Consecuencia Semántica, se puede hacer una derivación que la justifique.
- Es el recíproco de Corrección.
- Demostramos el Contrarecíproco.

Demostración (Contrarecíproco: $\Gamma \not\vdash \alpha \Rightarrow \Gamma \not\vdash \alpha$)

$$\begin{array}{l} \Gamma \not\vdash \alpha \\ \Rightarrow (crec.RAA) \\ \Gamma, \neg \alpha \not\vdash \bot \\ \Rightarrow (?) \\ (\bar{\exists}v)(\forall \varphi \in \Gamma \cup \{\neg \alpha\})(v(\varphi) = 1) \\ \Rightarrow (\mathrm{Def.\ valuaciones}) \\ (\bar{\exists}v)(\bar{\forall}\varphi \in \Gamma)(v(\varphi) = 1 \ \mathrm{y} \ v(\alpha) = 0) \\ \Rightarrow (\mathrm{Def.\ consecuencia\ semántica}) \\ \Gamma \not\vDash \alpha \end{array}$$

Algunos elementos para terminar la prueba

Definiciones a ver

- Conjuntos consistentes de fórmulas
- Conjuntos consistentes maximales de fórmulas
- Teorías

Resultados a ver

- Condición suficiente de consistencia: si un conjunto es satisfacible, entonces es consistente
- Todo conjunto consistente está incluído en algún conjunto consistente maximal

Conjuntos consistentes

Definición 1.6.2

Un conjunto $\Gamma\subseteq PROP$ es consistente (o libre de contradicciones) sii $\Gamma\not\vdash\bot$.

Conjuntos inconsistentes

Un conjunto $\Gamma \subseteq PROP$ es inconsistente sii $\Gamma \vdash \bot$.

Lema 1.6.3

Demostrar

Las siguientes afirmaciones son equivalentes:

- i Γ es inconsistente
- ii Para toda $\varphi \in \mathtt{PROP}$ se cumple $\Gamma \vdash \varphi$
- iii Existe $\varphi \in \mathtt{PROP}$ tal que $\Gamma \vdash \varphi$ y $\Gamma \vdash \neg \varphi$

Contrarecíprocos

Las siguientes afirmaciones son equivalentes:

- i Γ es consistente
- ii Existe $\varphi \in \mathtt{PROP}$ tal que $\Gamma \nvdash \varphi$
- iii Para todo $\varphi \in \mathtt{PROP}$ se cumple que $\Gamma \not\vdash \varphi$ o

Lema 1.6.3. $\alpha \rightarrow \beta$

H)

 Γ es inconsistente

T)

Para toda $\varphi \in \mathtt{PROP}$ se cumple $\Gamma \vdash \varphi$

Dem.

$$\begin{array}{l} \Gamma \vdash \bot \\ \Rightarrow \mbox{(Notación} \vdash) \\ (\bar{\exists}D \in \mathrm{DER})H \ (D) \subseteq \Gamma \ \mbox{y} \ C \ (D) = \bot \\ \Rightarrow \mbox{(Eliminación} \bot) \\ (\bar{\forall}\varphi)(\bar{\exists}D \in \mathrm{DER})H \ (D) \subseteq \Gamma \ \mbox{y} \ C \ (D) = \varphi \\ \Rightarrow \mbox{(Notación} \vdash) \\ (\bar{\forall}\varphi)\Gamma \vdash \varphi \end{array}$$

Lema 1.6.3

Ejercicio

Pruebe las partes faltantes del lema, es decir, $\beta \to \gamma$ y $\gamma \to \alpha$.

Lema 1.6.4. Condición suficiente de consistencia

H) Dado $\Gamma \subseteq PROP$ tal que hay al menos una valuación v que cumple que:

$$(\bar{\forall}\varphi\in\Gamma)v(\varphi)=1$$

T) Γ es consistente.

Estrategia de prueba: Contrarecíproco

- **H)** $\Gamma \vdash \bot$
- **T)** No hay ninguna valuación v tal que:

$$(\bar{\forall}\varphi\in\Gamma)v(\varphi)=1$$

Lema 1.6.4 Condición Suficiente de Consistencia

Demostración (del contrarecíproco)

Dem.

$$\begin{array}{l} \Gamma \vdash \bot \\ \Rightarrow (?) \\ \Gamma \models \bot \\ \Rightarrow (?) \\ (\bar{\forall} w) \text{si } (\bar{\forall} \varphi \in \Gamma) w \, (\varphi) = 1 \text{ entonces } w \, (\bot) = 1 \\ \Rightarrow (?) \\ \text{No hay ninguna valuación tal que } (\bar{\forall} \varphi \in \Gamma) w \, (\varphi) = 1 \end{array}$$

Ejercicio. Justifique los pasos.

Sugerencia: En el último paso suponga que hay una valuación que cumple lo pedido.

Ejercicio

Muestre que los siguientes conjuntos son consistentes

- •
- $\{\neg p_1 \land p_2 \rightarrow p_0, p_1 \rightarrow (\neg p_1 \rightarrow p_2), p_0 \leftrightarrow \neg p_2\}$
- $\bullet \ \{p_i \to p_{i+1} : i \in \mathbb{N}\}$
- $\bullet \ \{p_i \to p_{i+1} : i \in \{0,1,2\}\} \cup \{p_2 \to \neg p_0\}$
- $\bullet \ \{p_i \to \neg p_{i+1} : i \in \{0,1,2\}\} \cup \{\neg p_2 \to p_0\}$

Conjuntos consistentes: Propiedades

Lema 1.6.5

- 1. Si $\Gamma \cup \{\neg \varphi\}$ es inconsistente, entonces $\Gamma \vdash \varphi$.
- 2. Si $\Gamma \cup \{\varphi\}$ es inconsistente, entonces $\Gamma \vdash \neg \varphi$.

Otra lectura

- 1. Si $\Gamma \not\vdash \varphi$, entonces $\Gamma \cup \{\neg \varphi\}$ es consistente.
- 2. Si $\Gamma \not\vdash \neg \varphi$, entonces $\Gamma \cup \{\varphi\}$ es consistente.

Def. 1.6.6. Consistencia maximal

Definición

Un conjunto $\Gamma \subseteq \mathtt{PROP}$ es consistente maximal sii

- i Γ es consistente
- ii si $\Delta\subseteq \mathsf{PROP}$ es consistente y $\Gamma\subseteq\Delta$, entonces $\Gamma=\Delta$

Corolario A. (Otra visión de la def.)

- i Γ es consistente
- ii si $\Delta\subseteq \mathsf{PROP}$ cumple $\Gamma\subset \Delta$, entonces Δ es inconsistente.

Corolario B. (Otra visión de la def.)

- i Γ es consistente
- ii Para cualquier $\varphi \in \mathsf{PROP}$ se cumple que si $\varphi \notin \Gamma$ entonces $\Gamma \cup \{\varphi\}$ es inconsistente.

Consistencia maximal y valuaciones

- **H)** Sea v una valuación.
- **T)** El conjunto

$$\Gamma_{v} = \left\{\varphi \in \mathtt{PROP} : v\left(\varphi\right) = 1\right\}$$

es consistente maximal.

Dem.

Sea $\Gamma_v \subset \Delta$.

$$\begin{array}{l} \psi \in \Delta \quad \Gamma_v \\ \Rightarrow \mbox{(?)} \\ \neg \psi \in \Gamma_v \\ \Rightarrow \mbox{(?)} \\ \neg \psi \in \Delta \\ \Rightarrow \mbox{(?)} \\ \Delta \vdash \bot. \end{array}$$

Teorías

Definición

Un conjunto $\Gamma\subseteq \mathtt{PROP}$ es una teoría sii $\mathrm{Cons}\,(\Gamma)\subseteq\Gamma.$

Otra escritura

Un conjunto $\Gamma\subseteq PROP$ es una teoría sii para toda $\alpha\in PROP$, si $\Gamma\vdash\alpha$ entonces $\alpha\in\Gamma$.

Lema 1.6.8 Consistente Maximal ⇒ Teoría

H)

Sea Γ consistente maximal.

T)

 Γ es teoría.

Dem.

$$\Gamma \vdash \alpha$$

$$\Rightarrow (?)$$

$$\Gamma \not\vdash \neg \alpha$$

$$\Rightarrow (?)$$

$$\Gamma \cup \{\alpha\} \text{ es consistente}$$

$$\Rightarrow (?)$$

$$\alpha \in \Gamma.$$

Lema 1.6.9 Pertencia a CM pprox Semántica

- **H)** Sea Γ consistente maximal.
- T)
- i Para toda $\alpha \in PROP$, o bien $\alpha \in \Gamma$, o bien $\neg \alpha \in \Gamma$.
- ii Para toda $\alpha, \beta \in \mathsf{PROP}, \ \alpha \to \beta \in \Gamma$ sii (si $\alpha \in \Gamma$ entonces $\beta \in \Gamma$).
- iii Para toda $\alpha, \beta \in \mathtt{PROP}$, $\alpha \wedge \beta \in \Gamma$ sii $\alpha \in \Gamma$ y $\beta \in \Gamma$.
- iv Para toda $\alpha, \beta \in \mathsf{PROP}, \ \alpha \lor \beta \in \Gamma \ \mathsf{sii} \ \alpha \in \Gamma \ \mathsf{o} \ \beta \in \Gamma.$
- v Para toda $\alpha, \beta \in \mathsf{PROP}, \ \alpha \leftrightarrow \beta \in \Gamma$ sii $(\alpha \in \Gamma \mathsf{sii} \ \beta \in \Gamma).$

Lema 1.6<u>.9.i</u>

$\Gamma CM \Leftrightarrow (\bar{\forall} \alpha \in \mathtt{PROP}) \text{ o bien } \alpha \in \Gamma \text{ o bien } \neg \alpha \in \Gamma$

Dem.

Como Γ es consistente no puede suceder que $\alpha \in \Gamma$ y $\neg \alpha \in \Gamma.$ Además,

$$\alpha \notin \Gamma$$

$$\Rightarrow (?)$$

$$\Gamma, \alpha \vdash \bot$$

$$\Rightarrow (?)$$

$$\Gamma \vdash \neg \alpha$$

$$\Rightarrow (?)$$

$$\neg \alpha \in \Gamma.$$

$$\neg \alpha \notin \Gamma
\Rightarrow (?)
\Gamma, \neg \alpha \vdash \bot
\Rightarrow (?)
\Gamma \vdash \alpha
\Rightarrow (?)
\alpha \in \Gamma.$$

Lema 1.6.9.ii.

Directo

H) Sea Γ consistente maximal, y $\alpha \to \beta \in \Gamma$ **T)** si $\alpha \in \Gamma$ entonces $\beta \in \Gamma$ **Dem.**

$$\alpha \in \Gamma$$

$$\Rightarrow (?)$$

$$\Gamma \vdash \alpha$$

$$\Rightarrow (?)$$

$$\Gamma \vdash \beta$$

$$\Rightarrow (?)$$

$$\beta \in \Gamma.$$

Lema 1.6.9.ii

Recíproco

H) Sea Γ consistente maximal, y si $\alpha \in \Gamma$ entonces $\beta \in \Gamma$

Caso $\beta \in \Gamma$

Dem.

$$\beta \in \Gamma$$

$$\Rightarrow (?)$$

$$\Gamma \vdash \beta$$

$$\Rightarrow (?)$$

$$\Gamma \vdash \alpha \rightarrow \beta$$

$$\Rightarrow (?)$$

$$\alpha \rightarrow \beta \in \Gamma.$$

T) $\alpha \to \beta \in \Gamma$

Caso $\beta \in \Gamma$

$$\alpha \notin \Gamma$$

$$\Rightarrow (?)$$

$$\neg \alpha \in \Gamma$$

$$\Rightarrow (?)$$

$$\Gamma \vdash \neg \alpha$$

$$\Rightarrow (?)$$

$$\Gamma \vdash \alpha \rightarrow \beta$$

$$\Rightarrow (?)$$

$$\alpha \rightarrow \beta \in \Gamma.$$

Teorema de completitud

Completitud

Si
$$\Gamma \models \alpha$$
 entonces $\Gamma \vdash \alpha$

Demostración (Contrarecíproco: $\Gamma \nvdash \alpha \Rightarrow \Gamma \nvdash \alpha$)

$$\begin{array}{lll} \Gamma \not\vdash \alpha & \Gamma, \neg \alpha \not\vdash \bot \\ \Rightarrow (crec.RAA) & \Rightarrow (?) \\ \Gamma, \neg \alpha \not\vdash \bot & (\bar{\exists}\Delta)\Gamma \cup \{\neg \alpha\} \subseteq \Delta \\ \Rightarrow (?) & \text{y Δ es consistente maximal} \\ (\bar{\exists}v)(\forall \varphi \in \Gamma \cup \{\neg \alpha\})(v(\varphi) = 1) & \Rightarrow (?) \\ \Rightarrow \text{(Def. valuaciones)} & (\bar{\exists}v, \Delta)\Gamma \cup \{\neg \alpha\} \subseteq \Delta \\ (\bar{\exists}v)(\bar{\forall}\varphi \in \Gamma)(v(\varphi) = 1 \text{ y } v(\alpha) = 0) \text{ y } (\bar{\forall}\varphi \in \Delta)v(\varphi) = 1 \\ \Rightarrow \text{(Def. consecuencia semántica)} & \Rightarrow (?) \\ \Gamma \not\vdash \alpha & (\bar{\exists}v)(\bar{\forall}\varphi \in \Gamma \cup \{\neg \alpha\})v(\varphi) = 1 \end{array}$$

Lema 1.6.7.

Hipótesis

Sea $\Gamma \subseteq PROP$ consistente.

Tesis

Existe $\Gamma^* \subseteq \mathsf{PROP}$ consistente maximal tal que $\Gamma \subseteq \Gamma^*.$

Lema 1.6.7. Demostración (1/2)

1. Enumeramos todas las palabras de PROP: $\varphi_0, \varphi_1, \varphi_2 \dots$

2. Definimos la familia $\bar{\Gamma}$ de conjuntos de fórmulas como:

$$\begin{split} \Gamma_0 &:= \Gamma \\ \bar{\Gamma}_{n+1} &:= \begin{cases} \text{si } \bar{\Gamma}_n \cup \{\varphi_n\} \text{ es consistente} \\ & \text{entonces } \bar{\Gamma}_n \cup \{\varphi_n\} \\ & \text{sino } \bar{\Gamma}_n \end{cases} \end{split}$$

3. Probamos que para cualquier $n \in \mathbb{N}$ se tiene que $\bar{\Gamma}_n$ es consistente (inducción)

Lema 1.6.7. Demostración (2/2)

4. Definimos el conjunto de fórmulas Γ^* como:

$$\Gamma^* := \bigcup_{n \in \mathbb{N}} \bar{\Gamma}_n$$

- 5. Probamos que Γ^* es consistente (contrarrecíproco)
- 6. Probamos que Γ^* es consistente maximal (contrarrecíproco)

Lema 1.6.10

Hipótesis

Sea $\Gamma \subseteq PROP$ consistente.

Tesis

Existe una valuación v tal que para cualquier fórmula $\alpha \in \Gamma$ se cumple $v\left(\alpha\right)=1$.

Demostra<u>ción</u>

- 1. Sea Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.
- 2. Definimos $v \operatorname{con} v(p) = 1 \operatorname{sii} p \in \Gamma^*$.
- 3. Probamos que $v(\alpha) = 1$ sii $\alpha \in \Gamma^*$.

Lema 1.6.10.3

Hipótesis

Sea $\Gamma^*\subseteq \text{PROP}$ consistente maximal, y la valuación v tal que $v\left(p\right)=1$ sii $p\in\Gamma^*.$

Tesis

Para toda $\alpha \in \mathsf{PROP}$ se cumple que $v\left(\alpha\right)=1$ sii $\alpha \in \Gamma^*.$

Demostración

Usamos PIP. La propiedad es

$$\mathcal{P}\left(\alpha\right) := v\left(\alpha\right) = 1 \Leftrightarrow \alpha \in \Gamma^*$$

Lema 1.6.10.3. Casos base

$$\mathcal{P}\left(\alpha\right)=\left(v\left(\alpha\right)=1\Leftrightarrow\alpha\in\Gamma^{*}\right)$$

$\mathcal{P}\left(p\right)$

Por definición de v.

$\mathcal{P}\left(\perp\right)$

Hay que justificar que $v(\bot) = 0$ y $\bot \notin \Gamma^*$.

Lema 1.6.10.3. Negación e implicación

$$\mathcal{P}(\alpha) = (v(\alpha) = 1 \Leftrightarrow \alpha \in \Gamma^*)$$

$\mathcal{P}(\neg \varphi)$

$$v(\neg \varphi) = 1$$

$$\Leftrightarrow ??$$

$$v(\varphi) = 0$$

$$\Leftrightarrow ??$$

$$\varphi \notin \Gamma^*$$

$$\Leftrightarrow ??$$

$$\neg \varphi \in \Gamma^*.$$

$$\mathcal{P}\left(\varphi \to \psi\right)$$

$$\begin{array}{l} v\left(\varphi\rightarrow\psi\right)\\ v\left(\varphi\rightarrow\psi\right)=0\\ \Leftrightarrow \ \ ^{(?)}\\ v\left(\varphi\right)=1\ \ \ y\ v\left(\psi\right)=0\\ \Leftrightarrow \ \ ^{(?)}\\ \varphi\in\Gamma^{*}\ \ \ y\ \psi\notin\Gamma^{*}\\ \Leftrightarrow \ \ ^{(?)}\\ \varphi\rightarrow\psi\notin\Gamma^{*}. \end{array}$$

Lema 1.6.10.3. Conjunción y disyunción

$$\mathcal{P}(\alpha) = (v(\alpha) = 1 \Leftrightarrow \alpha \in \Gamma^*)$$

$\mathcal{P}\left(\varphi \wedge \psi\right)$

$$\begin{split} v\left(\varphi \wedge \psi\right) &= 1\\ \Leftrightarrow \mbox{\tiny (?)}\\ v\left(\varphi\right) &= 1 \text{ y } v\left(\psi\right) = 1\\ \Leftrightarrow \mbox{\tiny (?)}\\ \varphi &\in \Gamma^* \text{ y } \psi \in \Gamma^*\\ \Leftrightarrow \mbox{\tiny (?)}\\ \varphi \wedge \psi \in \Gamma^*. \end{split}$$

$\mathcal{P}\left(\varphi\vee\psi\right)$

$$\begin{split} v\left(\varphi\vee\psi\right) &= 0\\ \Leftrightarrow \mbox{$(?)$}\\ v\left(\varphi\right) &= 0 \mbox{ y } v\left(\psi\right) = 0\\ \Leftrightarrow \mbox{$(?)$}\\ \varphi\notin\Gamma^*\mbox{ y } \psi\notin\Gamma^*\\ \Leftrightarrow \mbox{$(?)$}\\ \varphi\vee\psi\notin\Gamma^*. \end{split}$$

Lema 1.6.10.3. Bicondicional

$$\mathcal{P}\left(\alpha\right)=\left(v\left(\alpha\right)=1\Leftrightarrow\alpha\in\Gamma^{*}\right)$$

$\mathcal{P}\left(\varphi \leftrightarrow \psi\right)$

$$v (\varphi \leftrightarrow \psi) = 1$$

$$\Leftrightarrow ??$$

$$v (\varphi) = v (\psi)$$

$$\Leftrightarrow ??$$

$$\varphi \in \Gamma^* \Leftrightarrow \psi \in \Gamma^*$$

$$\Leftrightarrow ??$$

$$\varphi \leftrightarrow \psi \in \Gamma^*.$$

Corolario 1.6.11

Hipótesis

Sean $\alpha \in \mathsf{PROP}$ y $\Gamma \subseteq \mathsf{PROP}$ tales que $\Gamma \not\vdash \alpha$.

Tesis

Existe una valuación v tal que para toda $\beta \in \Gamma$ se cumple $v\left(\beta\right)=1$, y además $v\left(\alpha\right)=0$.

Demostración

$$\Gamma \not\vdash \alpha$$

$$\Rightarrow (?)$$

$$\Gamma, \neg \alpha \not\vdash \bot$$

$$\Rightarrow (?)$$

$$(\exists v)(\forall \varphi \in \Gamma \cup \{\neg \alpha\})$$

$$v(\varphi) = 1$$

$$\Rightarrow (?)$$

$$(\exists v)(\forall \varphi \in \Gamma)$$

$$v(\varphi) = 1 \text{ y } v(\alpha) = 0.$$

Teorema 1.6.12. Completitud

Hipótesis

Sean $\alpha \in PROP$ y $\Gamma \subseteq PROP$.

Tesis

Si $\Gamma \models \alpha$, entonces $\Gamma \vdash \alpha$.

Argumento

Contrarrecíproco del Corolario 1.6.11.

Del conjunto de hipótesis Γ se deduce α

$\Gamma \models \alpha$

- Definición de valuación
- Equivalencias lógicas
- Hay métodos que responden SÍ o NO

$\Gamma \vdash \alpha$

- Prueba formal
- Requiere ingenio

Son equivalentes ambas formas de responder la pregunta. Los teoremas de corrección y completitud nos autorizan a utilizar tanto mecanismos semánticos como pruebas formales.