Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT

Departamento de Engenharia Elétrica - DEE

ELE1717 - sistemas digitais - Problema 04 - Projeto

Grupo 01

Líder	Matricula	Nome
	20200150177	ANA BEATRIZ MARINHO NEVES
	20200000993	ANNY BEATRIZ PINHEIRO FERNANDES
	20170117907	ISAAC DE LYRA JUNIOR
•	20210072299	LUCAS BATISTA DA FONSECA
	20160159144	WESLEY BRITO DA SILVA

${\bf Grupo}~02$

Líder	Matricula	Nome
	20210072172	ALBERTHO SIZINEY COSTA
	20180010074	GABRIEL CAVALHEIRO FRANCISCO
	20210072270	JOAO MATHEUS BERNARDO RESENDE
	20180151241	MARCELO FERREIRA MOTA JÚNIOR
•	20180152122	RODRIGO DE LIMA SANTANA

${\bf Grupo}~{\bf 03}$

Líder	Matricula	Nome
	20200150168	ALLYSSON DE ANDRADE SILVA
	20170138246	ALYSSON FERREIRA DA SILVA
•	20200001005	ELIAS GURGEL DE OLIVEIRA
	20200150195	LUCAS AUGUSTO MACIEL DA SILVA
	20210072430	STHEFANIA FERNANDES SILVA

Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT

Departamento de Engenharia Elétrica - DEE

Disciplina:	ELE1717 - Sistemas Digitais	Período: 2021.1	
Aluno:		Problema: 04	

1- Desenvolva um circuito baseado em um uC AVR (ATMega328P) para implementar um programador horário. O programador horário irá controlar o funcionamento da saída **Out** de acordo com um agendamento definido pelo usuário. Dispositivos como o programador horário são bastante utilizados em aplicações industriais e até um aplicações residenciais. O código fonte que será carregado no uC AVR deverá estar em *Assembly*, o sistema digital deverá possuir aparência conforme a Figura 1 e a descrição de seus elementos é apresentada na Tabela 1.

Figura 1: Aparência da interface homem-máquina do programador horário

Elemento	Descrição
88:88	Display para exibição da hora
NA NF EX	Chave seletora de três estados
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Painel de LEDs da sinalização do dia da semana
O O O O T W O F	Painel de LEDs da sinalização dos modos de operação
R	Botão para ajuste do relógio (Pushbutton)
A	Botão para ajuste da programação (Pushbutton)
A	Botão de incremento (Pushbutton)
V	Botão de decremento (Pushbutton)

Tabela 1: Elementos da interface homem-máquina do programador horário

Funcionamento do sistema:

O sistema digital do programador horário funciona como um relógio com calendário semanal, adicionado de um sistema de agendamento para permitir um usuário qualquer programar o funcionamento da saída **Out**, de acordo com condições pré-definidas. A saída **Out** funciona em três condições distintas determinadas pela posição da chave seletora. Se a chave seletora se encontra na posição NA, o **Out** é 1 quando a hora atual estiver no interior do intervalo agendado pelo usuário e 0 para as demais situações. Se a chave seletora se encontra na posição NF, a saída **Out** se comporta de forma oposta ao caso da NA. Se a chave seletora se encontra na posição EX, a saída **Out** apresentará o mesmo valor da entrada **In** quando a hora atual estiver no interior do intervalo agendado pelo usuário e 0 para as demais situações. O programador horário utiliza um circuito integrado RTC (*Real Time Clock*) que, através de comunicação SPI, fornece data e hora. Por fim, a configuração do relógio será realizada ao se pressionar o botão **R** e o ajuste do agendamento será realizado ao se pressionar o botão **A**.

Modos de operação:

O programador possui 10 modos de operação. O primeiro é o modo Run no qual o display principal apresenta a hora atual, o conjunto de leds acima do display principal indica o dia da semana (Se domingo o $D_1=1$, se segunda o $D_2=1$ e assim por diante) e o conjunto de leds abaixo do display principal indica o modo em que o programador se encontra (no caso do modo Run nenhum destes leds devem ficar em nível lógico alto). O segundo modo é o $Timer_H$ sinalizado por um nível lógico alto no led T. O modo Timer_H é utilizado para ajustar a hora atual do programador. O terceiro modo é o $Timer_M$ sinalizado pelo led **T** piscando^a. O modo $Timer_M$ é utilizado para ajustar o minuto atual do programador. O quarto modo é o Week sinalizado por um nível lógico alto nos leds \mathbf{T} , \mathbf{D}_1 e pelo led \mathbf{W} piscando^a. O modo Week é utilizado para ajustar o dia atual do programador. O quinto modo é o On_H sinalizado por um nível lógico alto no led O. O modo On_H é utilizado para ajustar a hora inicial do intervalo no qual a saída do programador será ativada. O sexto modo é o On_M sinalizado pelo led O piscando^a. O modo On_M é utilizado para ajustar o minuto inicial do intervalo no qual a saída do programador será ativada. O sétimo é o modo $Week_On$ sinalizado por um nível lógico alto nos leds O, D₁ e pelo led W piscando^a. O modo Week_On é utilizado para ajustar o dia da semana da hora inicial do intervalo. O oitavo modo é o Off_H sinalizado por um nível lógico alto no led F. O modo Off_H é utilizado para ajustar a hora final do intervalo no qual a saída do programador será ativada. O nono modo é o Off_M sinalizado pelo led F piscando^a. O modo Off_M é utilizado para ajustar o minuto final do intervalo no qual a saída do programador será ativada. O décimo e último modo é o Week_Off sinalizado por um nível lógico alto nos leds F, D₁ e pelo led W piscando^a. O modo Week_Off é utilizado para ajustar o dia da semana da hora final do intervalo.

^aPiscando com uma frequência de 2 Hz.

Funcionamento do sistema (Ajuste do relógio):

O infográfico da Figura 2 apresenta o detalhamento do procedimento para ajuste do relógio do programador horário. Estando no modo Run (1), o usuário deverá pressionar o botão \mathbf{R} para inicializar o processo de ajuste do relógio, o que resultará na mudança para o modo $Timer_H$ (2). Para definir a hora basta pressionar o botão de incremento \blacktriangle ou decremento \blacktriangledown (3). Após definir a hora, o usuário deverá pressionar o botão \mathbf{R} para mudar para o modo $Timer_M$ (4). Neste momento o usuário poderá definir o minuto pressionando o botão de incremento \blacktriangle ou decremento \blacktriangledown (5). Com a hora definida, o usuário deverá mais uma vez pressionar o botão \mathbf{R} para mudar para o modo Week (6). Neste modo, basta o usuário pressionar o botão de incremento \blacktriangle ou decremento \blacktriangledown (7) para definir o dia da semana. Por fim, deve-se pressionar o botão \mathbf{R} para finalizar o processo e retornar o programador horário para o modo Run (8).

Figura 2: Infográfico do ajuste do programador horário para hora atual 09:10 de uma segunda.

Funcionamento do sistema (Ajuste do agendamento):

O infográfico da Figura 3 apresenta o detalhamento do procedimento para ajuste do agendamento do programador horário. Estando no modo Run (1), o usuário deverá pressionar o botão \mathbf{A} para inicializar o processo de agendamento, o que resultará na mudança para o modo $On_{-}H$ (2). Para definir a hora de início do agendamento basta pressionar o botão de incremento \mathbf{A} ou decremento \mathbf{V} (3). Após definir a hora de inicio do agendamento o usuário deverá pressionar o botão \mathbf{A} para mudar para o modo $On_{-}M$ (4). Neste momento o usuário poderá definir o minuto de início do agendamento pressionando o botão de incremento \mathbf{A} ou decremento \mathbf{V} (5). Com o horário de início do agendamento definido, o usuário deverá mais uma vez pressionar o botão \mathbf{A} para mudar para o modo $Week_{-}On$ (6). Neste modo, basta o usuário pressionar o botão de incremento \mathbf{A} ou decremento \mathbf{V} (7) para definir o dia da semana. A definição do horário de fim do agendamento seguirá o mesmo procedimento realizado para a definição do horário de início do agendamento. Após definir o dia da semana do fim do agendamento, modo $Week_{-}Off$ (11), basta o usuário pressionar o botão \mathbf{A} finalizando o processo e retornando o programador horário para o modo Run (12).

Figura 3: Infográfico do ajuste de agendamento do programador horário para início do agendamento às 16:50 de uma terça e final do agendamento às 16:50 de uma quarta.

Algumas observações sobre o funcionamento do programador horário

- O dia e a hora exibidos no modo Run so obtidos de um CI de RTC via SPI. O projetista deve definir como será realizada essa coleta, tratamento e exibição dos dados do RTC;
- Pode ser utilizado como CI RTC um dos seguintes modelos: MAX6902, DS3234 ou PCF2123;
- Todos os leds quando estão piscando o fazem com uma frequência de 2 Hz;
- Ao se pressionar os pushbuttons ▲ ou ▼ o valor será incrementado ou decrementado com uma frequência de 2 Hz;
- O usuário poderá alterar a chave seletora sem a obrigação de reajustar o programador horário pois a chave só afeta o funcionamento da saída **Out**;
- Uma vez que o usuário saia do modo *Run* a única forma de retornar para ele é passando por todos os outros modos do ajuste do relógio ou do ajuste do agendamento.

É importante no projeto:

- Na semana de projeto é importante estudar o microcontrolador e estudar os periféricos que serão necessários;
- O projeto será realizado através de MDE de alto nível, diagramas necessários e definição dos periféricos necessários;
- Na semana de projeto n\u00e3o \u00e9 necess\u00e3rio desenhar o circuito e nem elaborar o c\u00f3digo fonte;
- Todos os detalhes (definição de *clocks*, de atividades em paralelo, de uso de interrupções e etc) necessários para a implementação devem ser definidos no projeto;

É importante na implementação:

- Na semana de implementação são necessários desenvolver o código fonte e todos os diagrama esquemáticos do circuito;
- Todos os projetos devem conter os diagramas esquemáticos dos circuitos eletrônicos em .pdf em folhas A4 com legenda e seguindo as normas de desenho técnico (pode utilizar software para isso, Ex. Programas de desenho de PCB);
- Deve ser implementado o projeto recebido, são apenas permitidas alterações no projeto quando o mesmo está errado e, deverá ser apontado no relatório, o erro identificado e a solução adotada;
- Para comprovar o funcionamento podem ser elaboradas simulações, as quais devem estar detalhadas no relatório e em vídeo;

Referências:

- 1. Livros de arquitetura de computadores;
- 2. Datasheet do microcontrolador AVR ATMega328P, MAX6902, DS3234 e PCF2123;;
- 3. Livros de projetos com microcontroladores;