4.GoogLeNet

2014年由Google团队提出,论文地址Going deeper with convolutions

图4 Inception Module

Filter concatenation是指按深度进行拼接,所以每个分支所得的特征矩阵 高和宽必须相同。

(b) 相对于 (a) 多了3个1×1的convolutions进行降维例如: 假设feature map depth=512,不使用1×1conv进行降维与使用1×1conv进行降维的参数对比

图5 使用1×1卷积参数对比

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	$112{\times}112{\times}64$	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	$3 \times 3/2$	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1\times1\times1024$	0								
linear		$1\times1\times1000$	1							1000K	1M
softmax		$1\times1\times1000$	0								

图6 GoogLeNet网络结构

本文亮点:

- 1.引入了Inception结构(融合不同尺度的特征信息)
- 2.使用1×1conv进行降维以及映射处理
- 3.添加两个辅助分类器帮助训练
- 4.丢弃全连接层,使用平均池化层(大大减少模型参数)

辅助分类器:加在了4a,4d后面

图7辅助分类器

pytorch实现

@torch.jit.unused:此装饰器向编译器指示应忽略函数或方法,并用引发异常的方法代替。这样,您就可以在尚不兼容TorchScript的模型中保留代码,并仍然可以导出模型。

namedtuple: 具名元组。