Bjørn Tore Kopperud^{1,2} Sebastian Höhna^{1,2}

¹GeoBio-Center LMU, ²Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich,

Congruent birth-death models can be collapsed using Bayesian inference © github.com/kopperud © b.kopperud@Imu.de

Noether-**Programm**

Höhna**Lab**

Concept Reconstructed tree True tree Diversification rates

Problem: congruent models

Explained by Louca & Pennell [1]

Properties

- Equal likelihoods
- Produce equal reconstructed trees

Proposed solution:

Temporal smoothing

Use a prior that favors less change over more change

Constructing congruent models

Start with constant-rate model (μ_0 , λ_0)

- Pick μ₁
- Construct λ_1 :

$$\lambda(\tau) = \frac{\rho \lambda_0 e^{(\lambda_0 - \mu_0 + \mu_1)\tau}}{\rho + \frac{\rho \lambda_0}{\lambda_0 - \mu_0 + \mu_1} (e^{(\lambda_0 - \mu_0 + \mu_1)\tau} - 1)}$$

3. A set of congruent models

		_		
	model	$\lambda(au)$	μ	
	model0	2	1	Constant
*	model1	$\frac{2e^{11\tau}}{1+\frac{2}{11}(e^{11\tau}-1)}$	10.0	Decreasing
	model2	$\frac{\frac{11}{2}e^{1.2\tau}}{1+\frac{2}{12}(e^{1.2\tau}-1)}$	0.2	Increasing
		$2e^{1.2\tau}$	0.2	

[1] Louca, S., & Pennell, M. W. (2020). Extant timetrees are consistent with a myriad of diversification histories. Nature [2] Höhna, Landis, Heath, Boussau, Lartillot, Moore, Huelsenbeck, Ronquist. 2016. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language, Systematic Biology [3] Magee, A. F., Höhna, S., Vasylyeva, T. I., Leaché, A. D., & Minin, V. N. (2020). Locally adaptive Bayesian birth-death successfully detects slow and rapid rate shifts. PLoS computational biology

Simulation study

- Simulate 100 trees
- Fit Bayesian model in RevBayes [2, 3]
- 3. Summarize results

We recover the "simpler" model. The model is still not identifiable, but we recover one model and not a random choice

Results

- Constant-rate model recovered
- Increasing & decreasing not recovered
- Congruence class collapsed

Ideas

- Lineage-through-time curve is equal. Diversitythrough-time is not!
- Can use paleontological evidence to corroborate, and "shrink" congruence class

