Exercise 5.2

Following Eq.(5.5)-Eq.(5.10) in the textbook, the Fourier transformation of state $|j\rangle$ can be written as

$$|j
angle
ightarrow rac{1}{2^{n/2}} \left(|0
angle + e^{2\pi i 0.j_n}|1
angle
ight) \left(|0
angle + e^{2\pi i 0.j_{n-1}j_n}|1
angle
ight) \cdots \left(|0
angle + e^{2\pi i 0.j_1 \dots j_n}|1
angle
ight)$$
 (1)

According to the textbook, $j_1 \dots j_n$ is binary representation of integer j, and

$$0.j_l j_{l+1} \dots j_m = j_l/2 + j_{l+1}/4 + \dots + j_m/2^{m-l+1}$$
(2)

If we have a n-qubit state $|j\rangle=|0\rangle=|00\dots0\rangle$, then $j_k=0$ for any $1\leq k\leq n$ in the binary representation. Also, it always have $0.j_k\dots j_n=0$ for any k from eq.(2). Thus, the Fourier transformation of n-qubit state $|00\dots0\rangle$ is given by

$$|00\dots0\rangle \to \frac{1}{2^{n/2}}(|0\rangle + |1\rangle)(|0\rangle + |1\rangle)\dots(|0\rangle + |1\rangle) = |+\rangle^{\otimes n}$$
 (3)

where $|+\rangle=(|0\rangle+|1\rangle)/\sqrt{2}.$