Serviços de Rede 1 – Aula 2 - Práticas

2019-2020

Instituto Politécnico de Coimbra

Departamento de Engenharia Informática

Pre - Requisitos

• Ter instalado o Cisco Packet Tracer versão 7.1

Exercício 1 - Configurar uma rede alargada

Exercício 1

- A empresa SR1 SA tem uma rede com a topologia indicada na figura na página seguinte (a topologia de rede tem como base o exercício 3 da aula anterior pelo que o deve ter resolvido e a funcionar).
 - Na sede tem duas LAN (LAN1 e LAN2), uma DMZ e uma zona exterior.
 - Os endereços das redes são os seguintes:
 - LAN 1 192.168.1.0 255.255.255.0
 - LAN 2 192.168.2.0 255.255.255.0
 - DMZ 10.1.1.0 255.255.255.0
 - Zona externa 213.85.203.0 255.255.255.248
 - A rede LAN 1 e 2 têm os IP fornecidos por DHCP no router.
 - Na DMZ e zona externa os IP são fixos.
 - Tem uma delegação no Porto com a rede 192.168.4.0 255.255.255.0. Os IP são dados por DHCP configurado no router da sede.
 - A rede do ISP é 213.85.200.0 255.255.255.248 e os IP são fixos.
 - As redes de ligação são as seguintes:
 - Sede Porto -> 192.168.3.1 255.255.255.252
 - Porto Sede -> 192.168.3.2 255.255.255.252
 - Sede Internet -> 213.85.201.1 -255.255.255.252
 - Internet Sede -> 213.85.201.2 -255.255.255.252
- Garanta que a sua rede está funcional e que todos os PC (sede e Porto) acedem à rede interna e DMZ configurando a sua simulação igual à da imagem anterior seguindo todos as condições lá indicadas.

Exercício 1

Exercício 1 (cont.)

- A empresa abriu uma nova delegação em Lisboa. Todos os serviços vão ficar centrados em Coimbra, ou seja só vão existir postos de trabalho na nova delegação.
 - IP da LAN 192.168.5.0
 - IP do Router 192.168.5.254
 - DNS 192.168.1.2
- Deve:
 - Ligar esta nova delegação a Coimbra utilizando uma ligação Serie.
 - Configurar um par de endereços IP para esta ligação. Utilizar a rede seguinte à que foi utilizada para a ligação ao Porto.
 - Colocar 4 PC. Dar um IP estático a um deles, fazer as alterações necessárias na rede e testar se tudo funciona.
 - Colocar um servidor de DHCP na sede em Coimbra com o endereço 192.168.1.3. Este servidor deverá ter as seguintes características
 - Pool de Lisboa Inicio 192.168.5.10 Máximo 250 utilizadores.
 - Pool do Porto Inicio 192.168.4.10 Máximo de utilizadores 50.
 - Não esquecer a informação do gateway e DNS (192.168.1.2).
 - Anular no router da sede o DHCP para Lisboa e Porto.
 - Garantir que tanto os PCs de Lisboa e do Porto tem endereços "dados" pelo servidor DHCP que está na rede. Os IP das redes da sede (LAN1 e LAN2) continuam a ser dados pelo router central.
- Teste toda a rede e verifique que tudo está a funcionar corretamente.
- Entre em modo de simulação e "siga" o processo de atribuição de um IP por DHCP. Veja o formato dos pacotes que são trocados entre os terminais e o servidor.

Configurando uma interface Ethernet

```
R1(config)#interface fastethernet 0/0
R1(config-if)#ip address 172.16.1.254 255.255.255.0
R1(config-if)#no shutdown

*Mar 1 01:16:08.212: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up

*Mar 1 01:16:09.214: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
```

```
R1#show interfaces fastethernet 0/0
FastEthernet0/0 is up, line protocol is up
Hardware is AmdFE, address is 000c.3010.9260 (bia 000c.3010.9260)
Internet address is 172.16.3.1/24
R1#
```

Configuração de uma Interface Serial

Configuração base

Rotas Estáticas

Comando ip route

Para configurar uma rota estática utiliza-se o seguinte comando:

Router(config) # ip route network-address subnet-mask
{ip-address | exit-interface }

Parâmetro	Descrição
network-address	Endereço da rede de destino da rede remota a ser adicionado à tabela de roteamento.
subnet-mask	Máscara de sub-rede da rede remota a ser adicionada à tabela de roteamento. A máscara de sub-rede pode ser modificada para sumarizar um grupo de redes.
ip-address	Normalmente conhecido como o endereço IP do roteador do próximo salto.
exit-interface	Interface de saída usada no encaminhamento de pacotes para a rede de destino.

Rotas Estáticas

- · Rotas estáticas configuradas com uma interface de saída são mais eficientes.
- A tabela de routing pode identificar a interface de saída em uma única consulta, ao invés de duas quando utiliza o endereço IP.

```
R1 (config) #no ip route 192.168.2.0 255.255.255.0 172.16.2.2
R1(config) #ip route 192.168.2.0 255.255.255.0 serial 0/0/0
R1 (config) #end
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
      * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route
Gateway of last resort is not set
    172.16.0.0/24 is subnetted, 3 subnets
       172.16.1.0 [1/0] via 172.16.2.2
       172.16.2.0 is directly connected, Serial0/0/0
       172.16.3.0 is directly connected, FastEthernet0/0
   192.168.1.0/24 [1/0] via 172.16.2.2
    192.168.2.0/24 is directly connected, Serial0/0/0
```

Agora a interface de saída está especificada na rota estática. Não há necessidade de uma pesquisa recursiva.

Modificando Rotas Estáticas

As rotas estáticas existentes não podem ser modificadas. Uma rota antiga deve ser removida colocando um **no** antes do comando **ip route.**

no ip route 192.168.2.0 255.255.255.0 serial 0/0/1

A nova rota estática deve ser reescrita na configuração do router:

```
R1 (config) #no ip route 172.16.1.0 255.255.255.0 172.16.2.2
R1 (config) #ip route 172.16.1.0 255.255.255.0 serial 0/0/0
R1 (config) #no ip route 192.168.1.0 255.255.255.0 172.16.2.2
R1 (config) #ip route 192.168.1.0 255.255.255.0 172.16.2.2
R1 (config) #ip route 172.16.3.0 255.255.255.0 serial 0/0/0

R2 (config) #ip route 172.16.3.0 255.255.255.0 serial 0/0/0
R2 (config) #ip route 192.168.2.0 255.255.255.0 192.168.1.1
R2 (config) #ip route 192.168.2.0 255.255.255.0 serial 0/0/1

R3 (config) #ip route 172.16.1.0 255.255.255.0 serial 0/0/1
R3 (config) #no ip route 172.16.1.0 255.255.255.0 serial 0/0/1
R3 (config) #ip route 172.16.2.0 255.255.255.0 192.168.1.2
R3 (config) #ip route 172.16.2.0 255.255.255.0 serial 0/0/1
R3 (config) #ip route 172.16.3.0 255.255.255.0 serial 0/0/1
```

Verificar as Rotas Estáticas

• Para verificar a configuração da rota estática:

- Utilize os seguintes comandos:
 - Passo 1 show running-config
 - Passo 2 verificar se a rota estática foi inserida corretamente
 - **Passo 3 -** *show ip route*
 - Passo 4 verificar se a rota foi adicionada na tabela de roteamento
 - **Passo 5** utilizar o comando *ping* para verificar se os pacotes conseguem alcançar o destino e que o caminho de regresso está funcionado.

DHCP Relay

- Um cliente DHCP utiliza mecanismos de broadcast para localizar o DHCP e solicitar as configurações TCP/IP.
- Os routers por defeito não encaminham este tipo tráfego. Ou seja, os clientes só poderão obter as configurações do TCP/IP caso o servidor DHCP esteja localizado na mesma rede local.
- Pode haver situações na qual o servidor DHCP está localizado em uma outra sub-rede, ou seja, localizado em uma outra rede local. Nesse caso, deveremos configurar um DHCP Relay Agent na rede onde não existe o servidor DHCP.
- O DHCP Relay Agent pega nos pacotes enviados pelos clientes DHCP, transforma esses pacotes em um formato que o rr possaouter possa encaminhá-los para o servidor DHCP, ou seja, é um intermediário entre os clientes DHCP e o servidor DHCP.

DHCP Relay - Cisco

Packet Tracer - Servidor DHCP

Dúvidas

