OBSERVACIONES DE LA PRÁCTICA

Estudiante 1 (Nathalia Quiroga) Cod 202013212 Estudiante 2 (David Valderrama) Cod 201910987

	Máquina 1	Máquina 2
Procesadores	Core i5 8th Gen 1,8 GHz	AMD Ryzen 7 4800H
	de dos núcleos	with Radeon Graphics,
		2900 MHz, 8 Core(s) 16
		Logical Processor(s)
Memoria	8 GB 1600 MHz DDR3	8GB 3200 MHz
RAM (GB)		
Sistema	MacOS (64-bit)	Windows (64-bit)
Operativo		

Tabla 1. Especificaciones de las máquinas para ejecutar las pruebas de rendimiento.

Maquina 1

Resultados

Carga de Catálogo PROBING

Factor de Carga (PROBING)	Consumo de Datos [kB]	Tiempo de Ejecución [ms]		
0.30	1324034,332	34248,097		
0.50	1324034,332	34391,972		
0.80	1324034.996	35171.034		

Tabla 2. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías utilizando PROBING en la Maquina 1.

Carga de Catálogo CHAINING

_	Factor de Carga (CHAINING)	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
	2.00	1324044,164	35550,884
	4.00	1324044,164	35766,408
	6.00	1324044,164	36492,151

Tabla 3. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías utilizando CHAINING en la Maquina 1.

Graficas

La gráfica generada por los resultados de las pruebas de rendimiento en la Maquina 1.

• Comparación de memoria y tiempo de ejecución para PROBING y CHAINING

Maquina 2

Resultados

Carga de Catálogo PROBING

Factor de Carga (PROBING)	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
0.30	1324018.31	20130.373
0.50	1324017.983	19824.217
0.80	1324018.037	19553.6635

Tabla 4. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías utilizando PROBING en la Maquina 2.

Carga de Catálogo CHAINING

Factor de Carga (CHAINING)	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
2.00	1324024.922	20751.555
4.00	1324024.856	20490.361
6.00	1324025.195	21094.1005

Tabla 5. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías utilizando CHAINING en la Maquina 2.

Graficas

La gráfica generada por los resultados de las pruebas de rendimiento en la Maquina 2.

• Comparación de memoria y tiempo de ejecución para PROBING y CHAINING

Preguntas de análisis

- 1) ¿Por qué en la función **getTime()** se utiliza **time.perf_counter()** en vez de la previamente conocida **time.process_time()**?
 - La función perf_counter mide el tiempo real que tarda un proceso, llamado también tiempo absoluto, similar a un cronómetro. Por otro lado, la función process_time es un valor derivado de la suma de tiempo de la CPU del sistema y del usuario del proceso actual, tomando en cuenta que la CPU no dedica el 100% del tiempo a ningún proceso dado.
- 2) ¿Por qué son importantes las funciones start() y stop() de la librería tracemalloc? Porque nos permite hacer un rastreo de la asignación de memoria en Python. Así pues, start() inicia el rastreo sobre las posiciones de memoria y stop() guarda el registro y limpia todo lo que hizo start() sobre la memoria.
- 3) ¿Qué cambios percibe en el **tiempo de ejecución** al modificar el factor de carga máximo para cargar el catálogo de videos?
 - Notamos un tiempo constante entre los factores de carga, esto se puede deber a la muestra de datos tan pequeña, ya que las colisiones presentadas son pocas y no difiere con el factor de carga. Naturalmente, los valores de tiempo cambian en magnitud dependiendo de la máquina, pero esto se puede atribuir a las especificaciones técnicas de las computadoras.
- 4) ¿Qué cambios percibe en el **consumo de memoria** al modificar el factor de carga máximo para cargar el catálogo de videos?

Existe un consumo de memoria constante entre los factores de carga, esto se puede deber a la muestra de datos tan pequeña. Naturalmente, los valores de consumo de memoria cambian en magnitud dependiendo de la máquina, pero esto se puede atribuir a las especificaciones técnicas de las computadoras.

- 5) ¿Qué cambios percibe en el **tiempo de ejecución** al modificar el esquema de colisiones?, si los percibe, describa las diferencias y argumente su respuesta.

 No percibibimos alguna diferencia significativa debido a la poca cantidad de datos tomada para las pruebas, a pesar de esto, chaining ocupa un poco más de tiempo debido a la naturaleza de esta estructura de datos, ya que crea buckets haciendo un consumo mayor en tiempo.
- 6) ¿Qué cambios percibe en el consumo de memoria al modificar el esquema de colisiones?, si los percibe, describa las diferencias y argumente su respuesta.
 No percibibimos alguna diferencia significativa debido a la poca cantidad de datos tomada para las pruebas.