

TITIE: NOISE POLLUTION MONITORING

Submitted by: Vinotha A Nithyapriya D Vasuki M Arthi R

Name of the institution: Ganesh college of engineering

Address of the institution:
Ganesh college of engineering
Attur main road,
Mettupatti(po) valapady(Tk)
Salem Dt

District:salem

State:Tamilnadu

pincode:636111

IoT Based Sound Pollution Monitoring System – Measure and Track Decibels (dB) using NodeMCU

Components Required

- ESP8266 NodeMCU Board
- Microphone sensor
- 16*2 LCD Module
- Breadboard
- Connecting wires

Working of the Project

Now that you have understood the code, you can simply upload it to your NodeMCU board and the project should start working.

To make sure the values are correct, I compared them to an android application on my phone that could measure sound. As you can see from the pictures, the results were quite close.

Code

```
#define BLYNK PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>
#include <LiquidCrystal_I2C.h>
#define SENSOR_PIN A0
LiquidCrystal_I2C lcd(0x3F, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);
const int sampleWindow = 50;
unsigned int sample;
int db;
char auth[] = "IEu1xT825VDt6hNfrcFgdJ6InJ1QUfsA";
char ssid[] = "realme 6";
char pass[] = "evil@zeb";
BLYNK_READ(V0)
 Blynk.virtualWrite(V0, db);
}
void setup() {
 pinMode (SENSOR_PIN, INPUT);
 Icd.begin(16, 2);
 lcd.backlight();
 lcd.clear();
 Blynk.begin(auth, ssid, pass);
```

```
}
void loop() {
 Blynk.run();
 unsigned long startMillis = millis(); // Start of sample
window
 float peakToPeak = 0; // peak-to-peak level
 unsigned int signalMax = 0; //minimum value
 unsigned int signalMin = 1024; //maximum value
 // collect data for 50 mS
 while (millis() - startMillis < sampleWindow)
 {
  sample = analogRead(SENSOR_PIN); //get reading from
microphone
  if (sample < 1024) // toss out spurious readings
   if (sample > signalMax)
   {
    signalMax = sample; // save just the max levels
   }
   else if (sample < signalMin)
   {
    signalMin = sample; // save just the min levels
   }
```

```
peakToPeak = signalMax - signalMin; // max - min = peak-
peak amplitude
 Serial.println(peakToPeak);
 db = map(peakToPeak, 20, 900, 49.5, 90); //calibrate for
deciBels
 lcd.setCursor(0, 0);
 lcd.print("Loudness: ");
 Icd.print(db);
 Icd.print("dB");
 if (db \le 50)
  lcd.setCursor(0, 1);
  Icd.print("Level: Quite");
 }
 else if (db > 50 \&\& db < 75)
 {
  lcd.setCursor(0, 1);
  lcd.print("Level: Moderate");
 else if (db \geq 75)
  lcd.setCursor(0, 1);
  lcd.print("Level: High");
 }
 delay(600);
 lcd.clear();
```