

北京科技大学学生学习与发展指导中心系列丛书

高等数学教材解析与习题指导

—— 配套《高等数学》第二版

这个图书模板是在群主网站上的一个封面模板的基础上改写而成的,设定了一些图书出版要素,设计了封面、扉页及版权页和封底的样式,修改了 chapter 的样式,并提供了几个选项可切换色彩风格,其余则维持 book 基本文档类的设定,并将选项用xkeyval 进行重新设定,提供了键值对的设置模式。

图书模板部分代码的完成得到了林莲枝大神、夜神的帮助,在此表示感谢。由于作者水平有限,模板代码编写不恰当之处还请用户提出批评和指正。

感谢造字工坊提供了刻宋、郎宋和黄金时代 三种非商业可免费下载使用的字体。

感谢谷歌提供自由使用的思源宋体、思源黑体。

感谢文泉驿提供的开源的文泉驿等宽微米 黑字体。 编委会 编著

MEXStudio 出版社

高等数学教材解析与习题指导

编委会 编著

图书在版编目(CIP)数据

高等数学教材解析与习题指导/编委会编著.—1—北京: LATEXStudio 出版社, 2018.9

ISBN 978-7-302-11622-6

I. 0811··· II. 编委会 ··· III. 书籍—模板—IATEXStudio IV.I213

中国版本图书馆 CIP 数据核字 (2018) 第 666666 号

高等数学教材解析与习题指导

编委会 编著

* * *

MEXStudio 出版社

 $\verb|https://htharoldht.com||$

htharoldht@Gmail.com

开本: 210 mm×297 mm **字数**: 666 千字

2018 年 9 月第 1 版 第 1 次印刷

印数: 001 ~ 100 册 定价: 80.6 元

水厂共当而面三张,白家决空给意层般,单重总歼者新。每建马先口住月大,究平克满现易手,省否何安苏京。两今此叫证程事元七调联派业你,全它精据间属医拒严力步青。厂江内立拉清义边指,况半严回和得话,状整度易芬列。再根心应得信飞住清增,至例联集采家同严热,地手蠢持查受立询。统定发几满斯究后参边增消与内关,解系之展习历李还也村酸。制周心值示前她志长步反,和果使标电再主它这,即务解旱八战根交。是中文之象万影报头,与劳工许格主部确,受经更奇小极准。形程记持件志各质天因时,据据极清总命所风式,气太束书家秀低坟也。期之才引战对已公派及济,间究办儿转情革统将,周类弦具调除声坑。两了济素料切要压,光采用级数本形,管县任其坚。切易表候完铁今断土马他,领先往样拉口重把处千,把证建后苍交码院眼。较片的集节片合构进,入化发形机已斯我候,解肃飞口严。技时长次土员况属写,器始维期质离色,个至村单原否易。重铁看年程第则于去,且它后基格并下,每收感石形步而。

太研认发影们毛消义飞,传立观极思工观查反,响八露加杨适克励受布例子东适进式数,连生片很门都说响今,领该术护家老支。许半相部加最都力只段,石半增热议务断天,布传孟青水足办认定。提加听置即明听报,达表那革连极型列局,社磨百处备的。做表果育改干里管张完,九听取便常则建。书改压马米本强,确已起今或,很扯呈。中化品况声人收和土又,成据便先花儿结先,身法材不组雨马。治方二没那始按知点,安住强际林维识整,转体医京型期。片需周油省育角式叫,么专光自青状维月者,老满形百清局刷,都要往严同从义。求候较件声之问条算,海识层用样油习,林布。京安时治千照议权走热那,地置基员据更些板杨。车能权大率与,用建须称外角造,情陕求领华。论精七度得员程划小,前必领定包次世,位出届打系杰出。团矿该面而山石红收收时外在安商,过率但体划励半根斯却清。来青回引何有起统断统外,何它性都辰些茄。设合当她要近地事才少音,而他路或引件打识说原入,土个车图命辆该。

编委会 2018 年 9 月

	第一篇	教材课后解析	1
	第一章	函数与极限	2
	第一节	改成节标题	2
	第二节	改成节标题	2
	第三节	改成节标题	2
	第二章	导数与微分	3
	第一节	改成节标题	3
	第二节	改成节标题	3
	第三节	改成节标题	3
	第三章	微分中值定理与导数的应用	4
	第一节	改成节标题	4
	第二节	改成节标题	4
目	第三节	改成节标题	4
	第四章	一元函数积分学及其应用	5
	第一节	改成节标题	5
录	第二节	改成节标题	5
·	第三节	改成节标题	5
	第五章	无穷级数	6
	第一节	常数项级数的概念与性质	6
	第二节	常数项级数的审敛法	7
	第三节	幂级数	9
	第四节	函数展开成幂级数及其应用	11
	第五节	傅里叶级数	12
	第六节	总习题五	14
	第六章	向量代数与空间解析几何	16
	第一节	向量及其线性运算	16
	第二节	向量的坐标 ·····	16
	第三节	向量的乘积	17
	第四节	平面与直线	17

	第五节	空间曲面与空间曲线	• • • • • • • • • • • • • • • • • • • •	18
	总习题が	<u>'</u>		19
	第七章	多元函数微分学及其应用	• • • • • • • • • • • • • • • • • • • •	21
	第一节	平面点集与多元函数		21
	第二节	多元函数的极限与连续性		21
	第三节	全微分与偏导数		22
	第四节	多元复合函数的微分法		23
	第五节	隐函数的微分法		24
	第六节	方向导数与梯度		25
	第七节	微分法在几何上的应用		25
	第八节	多元函数的极值		26
	总习题十	t		28
	第八章	重积分		30
	第一节	二重积分的概念及性质		30
目	第二节	二重积分的计算		31
	第三节	三重积分 ·····		34
	第四节	重积分的应用		36
录	总习题/	八		38
	第九章	曲线积分与曲面积分	• • • • • • • • • • • • •	40
	第一节	第一型曲线积分——对弧长的曲线积分		40
	第二节	第一型曲面积分——对面积的曲面积分		41
	第三节	第二型曲线积分——对坐标的曲线积分		42
	第四节	格林公式及其应用		42
	第五节	第二型曲面积分——对坐标的曲面积分		43
	第六节	高斯公式与斯托克斯公式		44
	第七节	场论初步		45
	总习题力	九 ·····		46
	第十章	常微分方程	• • • • • • • • • • • • • • • • • • • •	48
	第一节	微分方程的基本概念		48
	第二节	可变量分离的微分方程		49
	第三节	一阶线性微分方程与常数变易法		51

	第四节	全微分方程	52
	第五节	某些特殊类型的高阶方程	52
	第六节	高阶线性微分方程	55
	第七节	常系数线性微分方程	56
	总习题-	H	6
	第二篇	历年试卷讲解	64
	第一章	函数与极限	65
	题型一	函数的概念与复合函数解析式及性质的确定	6!
	题型二	数列/函数极限的定义及存在性的判定	6
	题型三	简单极限的计算	66
	1.3.1	化简极限的基本方法	66
	1.3.2	两个重要极限	6
	1.3.3	等价无穷小及其替换定理	68
目	1.3.4	杂题	69
	题型四	函数的连续性与间断点	70
	第二章	导数与微分	73
录	题型一	导数与微分的定义以及两者的关系	73
	题型二	导数的计算	7
	2.2.1	复合函数求导	7
	2.2.2	隐函数求导	74
	2.2.3	参数方程求导	7!
	2.2.4	反函数求导	7!
	第三章	微分中值定理与导数的应用	76
	题型一	较为复杂的极限的计算	76
	题型二	导数的应用	78
	3.2.1	求切线	78
	3.2.2	判定单调性与极值/最值	78
	3.2.3	判定拐点与凹凸性	80
	3.2.4	求渐近线	81
	3.2.5	函数性态的综合判断	8

	题型三	微分中值定理的应用84
	第四章	一元函数积分学及其应用87
	题型一	定积分的定义、基本性质以及存在性判定87
	4.1.1	定积分(黎曼积分)的定义87
	4.1.2	定积分的基本性质
	题型二	变限积分的概念、求导法则89
	题型三	不定积分的概念与微积分基本定理91
	题型四	不定积分与定积分的常用积分法(重点)91
	题型五	定积分的应用 95
	4.5.1	平面曲线的弧长 95
	4.5.2	平面图形的面积95
	4.5.3	规则几何体的体积97
	题型六	反常积分的概念与存在性判定(审敛),简单反常积分的计算 98
	第五章	无穷级数99
目	题型一	常数项级数的审敛99
	题型二	幂级数的审敛与计算和函数101
	题型三	任意项级数的计算102
录	题型四	傅里叶级数的简单问题103
	综合题一	104
	题型一	中值定理综合证明题104
	题型二	导数、积分综合性应用题104
	第六章	向量代数与空间解析几何106
	题型一	向量及其运算106
	题型二	三维空间中的面与线107
	6.2.1	直线与平面的概念及计算108
	6.2.2	认识曲面与曲线111
	第七章	多元函数微分学及其应用112
	第八章	重积分113
	题型一	重积分的概念、性质以及简单的累次积分换序113
	8.1.1	线性性质113

	8.1.2	对称性及轮换对称性113
	8.1.3	累次积分的交换积分次序114
	题型二	重积分的计算方法117
	8.2.1	直角坐标系下重积分的计算117
	8.2.2	极坐标系下二重积分的计算119
	8.2.3	柱、球坐标系下三重积分的计算121
	8.2.4	一般坐标系下重积分的计算124
	题型三	重积分的应用125
	8.3.1	求曲面面积125
	8.3.2	求立体体积126
	8.3.3	求转动惯量127
	题型四	涉及到重积分的综合题127
	第九章	曲线积分与曲面积分131
	题型一	第一类曲线积分131
目	题型二	第二类曲线积分131
	题型三	第一类曲面积分134
	题型四	第二类曲面积分135
录	第十章	常微分方程139
	综合题二	
	题型一	中值定理综合证明题140
	题型二	导数、积分综合性应用题140
	第三篇	附录 142
	第一章	谈谈本科阶段的数学课程——从高等数学说起143
	第一节	引言 · · · · · · · · · · · · · · · · · · ·
	第二节	高等数学是什么以及怎么学143
	第三节	学好高等数学有什么必要性以及帮助146
	第四节	一些笔者推荐的课外数学资料147
	1.4.1	书籍147
	1.4.2	公共资源平台148
	1	

	第二章	谈单变量微积分里几个基本的概念150
	第一节	预备知识 · · · · · · · 150
	第二节	一元函数微分学部分150
	2.2.1	连续、间断与可导150
	2.2.2	可导、极值与单调性153
	2.2.3	二阶可导与凹凸性153
	2.2.4	后记154
	第三节	一元函数积分学部分154
目	2.3.1	定积分与不定积分,可积与原函数,以及变限积分154
	2.3.2	可积 (定积分存在) 的三类条件154
	2.3.3	原函数 (不定积分) 存在的条件155
录	第四节	参考文献155
	第三章	高等数学常用公式表156
	第一节	基本初等函数导数、微分公式156
	第二节	基本导数、微分法则157
	第三节	常见高阶导数157
	第四节	微分中值定理157
	第五节	Taylor 公式 · · · · · · · · · · · · · · · · · ·
	第六节	基本积分表158

教材课后解析

	第一章	函数与极限 2
	第二章	导数与微分 3
	第三章	微分中值定理与导数的应用 4
	第四章	一元函数积分学及其应用5
目	第五章	无穷级数 6
	第六章	向量代数与空间解析几何 16
录	第七章	多元函数微分学及其应用 21
	第八章	重积分 30
	第九章	曲线积分与曲面积分 40
	第十章	常微分方程 48

第一章

函数与极限

☞ 习题见第 65 页

第一节 改成节标题

☞ 教材见页

第二节 改成节标题

☞ 教材见页

添加内容

第三节 改成节标题

☞ 教材见页

第二章

导数与微分

☞ 习题见第 73 页

第一节 改成节标题

☞ 教材见页

第二节 改成节标题

☞ 教材见页

添加内容

第三节 改成节标题

☞ 教材见页

第三章

微分中值定理与导数的应用

☞ 习题见第 76 页

第一节 改成节标题

☞ 教材见页

第二节 改成节标题

☞ 教材见页

添加内容

第三节 改成节标题

☞ 教材见页

第四章

一元函数积分学及其应用

☞ 习题见第87页

第一节 改成节标题

☞ 教材见页

第二节 改成节标题

☞ 教材见页

添加内容

第三节 改成节标题

☞ 教材见页

第五章

无穷级数

☞ 习题见第 99 页

常数项级数的概念与性质

☞ 教材见 387 页

1、单项选择题

(1) B 解析: 由例 1.1 知几何级数 $\sum_{n=1}^{\infty} aq^n$ 收敛的条件是 -1 < q < 1。

(2) B解析:由级数收敛的必要条件知该级数发散。

(3) B解析: 取 k=0 时, 该级数收敛, 取 k=1 时, 该级数发散。

(4) D 解析: 取 $\mu_n = \frac{1}{n}$ 时,级数发散但 $\lim_{n \to +\infty} \mu_n = 0$ 。取 $\mu_n = n$ 时, $\lim_{n \to +\infty} \mu_n = \infty$ 。

(5) C解析: 由级数收敛的必要条件知道, 所以级数发散。

(6) C解析:

$$2 = \sum_{n=1}^{\infty} (-1)^{n-1} \mu_n = \mu_1 - \mu_2 + \mu_3 + \cdots$$
 (1-1)

$$5 = \sum_{n=1}^{\infty} \mu_{2n-1} = \mu_1 + \mu_3 + \mu_4 + \cdots$$
 (1-2)

式 (1-1)
$$-$$
式 (1-2) $= 3 = \sum_{n=1}^{\infty} \mu_{2n} = \mu_2 + \mu_4 + \mu_6 + \cdots$ 式 (1-1) $+$ 式 (1-2) $= 8$.

(1)
$$1, \frac{4}{3}, \frac{31}{21}$$
; (2) $1, \frac{3}{2}, \frac{31}{18}$; (3) $\frac{1}{5}, -\frac{1}{25}, \frac{1}{125}$

3、解析

$$s_n = \mu_1 + \mu_2 + \dots + \mu_{n-1} + \mu_n s_{n-1} = \mu_1 + \mu_2 + \dots + \mu_{n-2} + \mu_{n-1}$$

所以
$$\mu_n = s_n - s_{n-1}$$

所以
$$\mu_n = s_n - s_{n-1}$$

因为 $s_n = \frac{3^n - 1}{3^n}$ 所以解得 $\mu_n = \frac{2}{3^n}$

$$\sum_{n=1}^{\infty} \mu_n = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{3^n - 1}{3^n} = 1$$
4、解析:

$$(1) : \frac{n}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!},$$

$$s_n = \sum_{n=1}^n \left(\frac{1}{n!} - \frac{1}{(n+1)!}\right) = 1 - \frac{1}{2!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{1}{n!} - \frac{1}{(n+1)!} = 1 - \frac{1}{(n+1)!}$$

$$\therefore \sum_{n=1}^\infty \frac{n}{(n+1)!} = \lim_{n \to +\infty} s_n = 1$$

(2) 解析:
$$\ln \frac{n^2 - 1}{n^2} = \ln \frac{n - 1}{n} - \ln \frac{n}{n+1}, s_n = \sum_{n=2}^n \ln \frac{n - 1}{n} - \ln \frac{n}{n+1} = \ln \frac{1}{2} - \ln \frac{n}{n+1}$$

$$\sum_{n=2}^\infty \ln \frac{n^2 - 1}{n^2} = \lim_{n \to +\infty} (\ln \frac{1}{2} - \ln \frac{n}{n+1}) = \ln \frac{1}{2}$$

(3) 解析:
$$a_n + a_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x \, \mathrm{d} \, x + \int_0^{\frac{\pi}{4}} \tan^{n+2} x \, \mathrm{d} \, x = \int_0^{\frac{\pi}{4}} \tan^n x (1 + \tan^2 x) \, \mathrm{d} \, x$$
$$= \int_0^{\frac{\pi}{4}} \tan^n x \, \mathrm{d} \tan x = \frac{1}{n+1}$$

(4) 解析: 在判断一个级数时必须先判断他的通项是否在 n 趋于无穷大时趋于 0 , 又 $\lim_{n\to+\infty} \frac{\sqrt[n]{n}}{(1+\frac{1}{n})^n} =$ $\frac{1}{2} \neq 0$ 由收敛级数的必要条件知该级数发散。

$$e^{r}$$
 (5) 解析: $\lim_{n \to +\infty} n^2 \ln(1 + \frac{1}{n^2}) = \lim_{n \to +\infty} \ln(1 + \frac{1}{n^2})^{n^2} = 1$, 由收敛级数的必要条件可知该级数发散. (6) $\frac{1}{5} - \frac{1}{2} + \frac{1}{10} - \frac{1}{2^2} + \frac{1}{15} - \frac{1}{2^3} \dots + \frac{1}{5n} - \frac{1}{2^n} + \dots = \sum_{n=1}^{\infty} \left(\frac{1}{5n} - \frac{1}{2^n}\right)$

因为级数 $\sum_{n=1}^{\infty} \frac{1}{5n}$ 发散, 而级数 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ 收敛, 故原级数发散.

5、解析: 级数 $\sum_{n=1}^{\infty} \mu_n$ 的前 2n 项和为: $S_{2n} = \sum_{n=1}^{n} (\mu_{2n-1} + \mu_{2n}) = \mu_1 + \mu_2 + \mu_3 + \dots + \mu_{2n-1} + \mu_{2n}$.

级数 $\sum_{n=1}^{\infty} \mu_n$ 的前 (2n+1) 项和为: $S_{2n+1} = \sum_{n=1}^{n} (\mu_{2n-1} + \mu_{2n}) + \mu_{2n+1}$ 所以 $S_{2n+1} = S_{2n} + \mu_{2n+1}$ ①.

因为级数 $\sum_{n=1}^{\infty} (\mu_{2n-1} + \mu_{2n})$ 收敛于 s, 所以 $\lim_{n \to +\infty} S_{2n} = s$ ②,

又因为 $\lim_{n\to+\infty}\mu_n=0$, 对①两侧求极限得 $\lim_{n\to+\infty}S_{2n+1}=s$ ③

综合②③得 $\lim_{n\to+\infty} S_n = s$. 证毕.

第二节 常数项级数的审敛法

☞ 教材见 403 页

$$(1)\frac{1}{4n+1} > \frac{1}{4n+1+3} = \frac{1}{4(n+1)}$$

田
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 发散, 得 $\sum_{n=1}^{\infty} \frac{1}{4(n+1)}$ 发散. 由比较审敛法得原式发散.
$$(3) \frac{n}{(n+1)(n+2)} = \frac{n+1-1}{(n+1)(n+2)} = \frac{1}{n+2} - (\frac{1}{n+1} - \frac{1}{n+2}) = \frac{2}{n+2} - \frac{1}{n+1} > \frac{2}{n+2} - \frac{1}{n+2} = \frac{1}{n+2}$$

 $\overline{n+2}$ 由 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 得 $\sum_{n=1}^{\infty} \frac{1}{n+2}$ 发散. 由比较审敛法得原式发散.

$$(5)n \geqslant 1$$
 时, $2^n > n$, 得 $\leqslant \sqrt[n]{n} \leqslant 2$. 当 $n = 1$ 时, $\sin \frac{\pi}{n\sqrt[n]{n}} = 0$

当 $n\geqslant 2$ 时,又正弦函数在 $(0,\frac{\pi}{2})$ 上单调递增, $\sin\frac{\pi}{n\sqrt[r]{n}}\geqslant\sin\frac{\pi}{2n}$.由 $\sum_{n=1}^{\infty}\sin\frac{\pi}{n}\sum_{n=1}^{\infty}\sin\frac{\pi}{2n}$ 发散,得原式 发散.

$$(7)(\sqrt{n}+1)\ln(1+\frac{1}{n^2}\sum_{n=1}^{\infty}\frac{1}{n^2}) = \ln(1+\frac{1}{n^2})^{\sqrt{n}+1} \leqslant \left(\frac{1}{n^2}\right)^{\sqrt{n}+1} \leqslant \frac{1}{n^2}$$

由 p 级数易得 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛, 所以原式收敛.

注:ln(1+x) = x -
$$\frac{x^2}{2}$$
 + $o(x^2)$

2. 解析:(1)
$$\lim_{n \to +\infty} \frac{\frac{(n+1)^3}{3^{n+1}}}{\frac{n^3}{3^n}} = \lim_{n \to +\infty} \frac{(n+1)^3}{3n^3} = \frac{1}{3} < 1$$

由比值审敛法可知原级数收敛

$$(3) \lim_{n \to +\infty} \frac{(n+1)\sin\frac{\pi}{2^{n+1}}}{n\sin\frac{\pi}{2^n}} = \lim_{n \to +\infty} \frac{(n+1)\frac{\pi}{2^{n+1}}}{n\frac{\pi}{2^n}} = \frac{1}{2} < 1$$
 由比值审敛法可知原级数收敛.
$$(5) \lim_{n \to +\infty} \frac{\frac{(n+1)!}{n!}}{\frac{n!}{n}} = \lim_{n \to +\infty} \frac{(n+1)n}{n+1} = \infty > 1$$

$$(5) \lim_{n \to +\infty} \frac{\frac{(n+1)!}{n+1}}{\frac{n!}{n!}} = \lim_{n \to +\infty} \frac{(n+1)n}{n+1} = \infty > 1$$

3. 解析:

$$(1) \lim_{n \to +\infty} \sqrt[n]{\left(\sqrt[n]{3} - 1\right)^n} = \lim_{n \to +\infty} \left(\sqrt[n]{3} - 1\right) = 0 < 1$$

由根值审敛法可知原级数

$$(3) \lim_{n \to +\infty} \sqrt[n]{\frac{a}{\left[\ln(1+n)\right]^n}} = \lim_{n \to +\infty} \frac{\sqrt[n]{a}}{\ln(1+n)} = 0 < 1$$
 由根值审敛法可知原级数收敛.

$$(5) \lim_{n \to +\infty} \sqrt[n]{\left(\frac{n}{n+1}\right)^{n^{2}}} = \lim_{n \to +\infty} \left(\frac{n}{n+1}\right)^{n} = \lim_{n \to +\infty} \left(1 + \frac{-1}{n+1}\right)^{\frac{n+1}{-1} \cdot \frac{-n}{n+1}} = e^{-1} < 1$$

4. 解析:

$$(1)\frac{1}{an+b} > \frac{1}{an}$$
 由 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 得 $\sum_{n=1}^{\infty} \frac{1}{an}$ 发散. 由比较审敛法得原式发散.

$$(3) \lim_{n \to +\infty} \frac{\frac{(n+1)^3}{(n+1)!}}{\frac{n^3}{1}} = \lim_{n \to +\infty} \frac{1}{n+1} \left(\frac{n+1}{n}\right)^3 = 0 < 1$$

当
$$b \le 1$$
 时, $b^n \le 1$, $\frac{1}{1+b^n} \ge \frac{1}{2}$, $\sum_{n=1}^{\infty} \frac{1}{1+b^n}$ 发散.

当
$$b > 1$$
 时, $\frac{1}{1+b^n} < \frac{1}{b^n} \sum_{n=1}^{\infty} \frac{1}{1+b^n}$ 收敛.

(a)
$$\frac{a^n}{1+b^n} < \frac{a^n}{b^n}$$
, 易得 $a < b$ 时, $\sum_{n=1}^{\infty} \frac{a^n}{1+b^n}$ 收敛

$$(b)a \geqslant b \ \forall b, \lim_{n \to +\infty} \frac{a^n}{1+b^n} \geqslant \lim_{n \to +\infty} \frac{b^n}{1+b^n} = 1, \sum_{n=1}^{\infty} \frac{a^n}{1+b^n} \$$
 发散.

综上可知当 b > 1 且 0 < a < b 时原式收敛, 其余情况皆发散.

$$(1)\frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n+1}}, \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$
,由莱布尼兹审敛法得原式收敛. 由 p 级数易得 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ 发散, 所以原式条件收敛.

$$(3)\sin\frac{1}{n}>\sin\frac{1}{n+1}, \lim_{n\to +\infty}\sin\frac{1}{n}=0 \text{ 由莱布尼兹审敛法得原式收敛}. \sum_{n=1}^{\infty}\sin\frac{1}{n}\text{ 发散易得原式条件收敛}.$$

$$(5)$$
 $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ 收敛.

$$\frac{1}{n} > \frac{1}{n+1}, \lim_{n \to +\infty} \frac{1}{n} = 0$$
,由莱布尼兹审敛法得 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ 收敛,则原式收敛.

$$\frac{1}{n} - \frac{1}{n^2 + 1} > \frac{1}{n} \sum_{n=1}^{\infty} \frac{1}{n}$$
 发散, 得原级数条件发散.

6. 解析:
$$\frac{\sqrt{a_n}}{n} = \sqrt{\frac{a_n}{n^2}} \leqslant \frac{1}{2} (a_n + \frac{1}{n^2})$$

 $\sum_{n=1}^{\infty} a_n \ \text{收敛} \ , \sum_{n=1}^{\infty} \frac{1}{n^2} \ \text{收敛}, \ \text{故} \ \sum_{n=1}^{\infty} \frac{1}{2} (a_n + \frac{1}{n^2}) \ \text{收敛}. \therefore \sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n} \ \text{收敛}.$

(1) 必要性: $\sum_{n=0}^{\infty} a_n$ 绝对收敛, 则 $\sum_{n=0}^{\infty} |a_n|$ 收敛, 且 $-\sum_{n=0}^{\infty} |a_n|$ 也收敛.

又 $-|a_n| \leqslant a_n^+ \leqslant |a_n|, -|a_n| \leqslant a_n^- \leqslant |a_n|,$ 故 $\sum_{n=1}^{\infty} a_n^+ = \sum_{n=1}^{\infty} a_n^-$ 同时收敛.

充分性: 正部与负部同时收敛, 即 $\sum_{n=1}^{\infty} a_n^+$, $\sum_{n=1}^{\infty} a_n^-$ 收敛.

$$\therefore \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^- = \sum_{n=1}^{\infty} a_n \, \, \, \mathbb{U} \mathfrak{D}.$$

且 $\sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^- = \sum_{n=1}^{\infty} |a_n|$ 收敛, 故而 $\sum_{n=1}^{\infty} a_n$ 绝对收敛.

 $\sum_{n=0}^{\infty} a_n$ 绝对收敛的充要条件是其正部与负部同时收敛, 得证.

(2) 必要性: $\sum_{n=1}^{\infty} a_n$ 条件收敛, 即 $\sum_{n=1}^{\infty} |a_n|$ 发散, 且 $\sum_{n=1}^{\infty} a_n$ 收敛. 反证法: 如果其正部与负部不同时发散, 有下列情况:

(a) 同时收敛, 此时 $\sum_{n=1}^{\infty} a_n$ 绝对收敛, 这与 $\sum_{n=1}^{\infty} a_n$ 条件收敛矛盾.

(b) 一格收敛一个发散, 得正部与负部之和发散, 即 $\sum_{n=1}^{\infty} a_n$ 发散, 这与 $\sum_{n=1}^{\infty} a_n$ 条件收敛矛盾.

综上得证 $\sum_{n=1}^{\infty} a_n$ 条件收敛的必要条件是其正部与负部同时发散.

充分性: 正部与负部同时发散, 而 $\sum_{n=1}^{\infty} a_n$ 收敛, 当且仅当

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^- = 0$$

时成立, 此时 $\sum_{n=1}^{\infty} a_n^+ = -\sum_{n=1}^{\infty} a_n^-$, 故有

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^- = 2 \sum_{n=1}^{\infty} a_n^+ = -2 \sum_{n=1}^{\infty} a_n^-$$

 $\therefore \sum_{n=1}^{\infty} |a_n|$ 发散, $\sum_{n=1}^{\infty} a_n$ 条件收敛. $\sum_{n=1}^{\infty} a_n$ 条件收敛的充要条件是其正部与负部同时发散.

第三节 幂级数

☞ 教材见 415 页

(1) 原式在 x = 0 处收敛, 且 $\lim_{n \to +\infty} \left| \frac{n^2 + n}{(n+1)^2 + n + 1} \right| = 1$

在 $x = \pm 1$ 处 $\left| \frac{1}{n^2 + n} \right| < \frac{1}{n^2}$, 所以收敛. 因此, 收敛域为 [-1, 1].

(3) 令 $t = (x+1)^2$, 原式变为 $\sum_{n=1}^{\infty} 2^n t^n$, 该式在 $(0, \frac{1}{2})$ 上收敛, 所以原式在 $(-1 - \frac{\sqrt{2}}{2}, -1 + \frac{\sqrt{2}}{2})$ 收敛.

(5) 令 t = x + 1, $\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{n^p}{(n+1)^p} = 1$, 当 $1 \ge p > 0$ 时, 在 t = 1 处发散, p < 1 时, 在 t = 1 处

因此原函数的收敛域为

$$\begin{cases} [-2,0), 0 1 \end{cases}$$

(7) 设 $t = x^3 \lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{1}{2}$, 在 t = 2 时收敛, 在 t = -2 时发散, 因此原式收敛域为 $(-\sqrt[3]{2}, \sqrt[3]{2}]$

(1)
$$\stackrel{\text{def}}{=} x = 0 \text{ ff}, s(x) = 0; \stackrel{\text{def}}{=} x \neq 0 \text{ ff}, s(x) = x^2 \sum_{n=0}^{\infty} e^{-nx} = \frac{x^2}{1 - e^{-x}}$$

$$(3)s(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \int x^{2n-2} = \int \sum_{n=1}^{\infty} (-1)^{n+1} x^{2n-2} = \int \frac{1}{1+x^2} = \arctan xx \in [-1,1]$$

(5)
$$\stackrel{\text{def}}{=} x = 1 \text{ Fr}, s(x) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

$$x \neq 1 \text{ ft}, s(x) = \sum_{n=1}^{\infty} \int \frac{x^n}{n} = \sum_{n=1}^{\infty} \iint x^{n-1} = \int \sum_{n=1}^{\infty} x^{n-1} = (1-x)\ln(1-x) + x, x \in [-1,1)$$

3. 解析:

 $(1)x = \pm 1$ 时,级数发散

$$x \neq \pm 1 \; \exists f, rho = \lim_{n \to +\infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \left| \frac{x(1+x^{2n})}{1+x^{2n+2}} \right|$$

 $|x| < 1 \; \exists f, \rho = |x| < 1|x| > 1 \; \exists f, \rho = 0 < 1$

因此, 级数收敛域为 $(-\infty, -1) \cup (-1, 1) \cup (1, +\infty)$

$$(2)\rho = \lim_{n \to +\infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \left| \frac{x^2 + n^3}{x^2 + (n+1)^3} \right| = 1$$
 因此,收敛域为 $(-\infty, +\infty)$

4. 解析:
$$\sum_{n=0}^{\infty} \frac{n^2 + 1}{2^n n!} x^n = \sum_{n=0}^{\infty} \frac{n^2}{n!} \left(\frac{x}{2}\right)^n + \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{x}{2}\right)^n$$

$$\Leftrightarrow G(x) = \sum_{n=1}^{\infty} \frac{n}{(n-1)!} \left(\frac{x}{2}\right)^{n-1},$$

$$\iint G(x) \, \mathrm{d} \, x = \frac{1}{(n-1)!} \sum_{n=1}^{\infty} \int n \left(\frac{x}{2}\right)^{n-1} \, \mathrm{d} \, x$$

$$= \frac{2}{(n-1)!} \sum_{n=1}^{\infty} \left(\frac{x}{2}\right)^{n} + C = 2 \cdot \frac{x}{2} \cdot \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \left(\frac{x}{2}\right)^{n-1} + C = xe^{\frac{x}{2}} + C$$

$$\therefore \sum_{n=0}^{\infty} \frac{n^2}{n!} \left(\frac{x}{2}\right)^n = \frac{x}{2} \cdot G'(x) = \left(\frac{x^2}{4} + \frac{x}{2}\right) e^{\frac{x}{2}}$$

$$\therefore \sum_{n=0}^{\infty} \frac{n^2 + 1}{2^n n!} x^n = \left(\frac{x^2}{4} + \frac{x}{2}\right) e^{\frac{x}{2}} + e^{\frac{x}{2}} = \left(\frac{x^2}{4} + \frac{x}{2} + 1\right) e^{\frac{x}{2}}.$$

$$u(t^{2}) = \sum_{n=1}^{\infty} \frac{2(-1)^{n-1}}{2n-1} t^{2n} = \sum_{n=1}^{\infty} t \frac{2(-1)^{n-1}}{2n-1} t^{2n-1} = 2t \sum_{n=1}^{\infty} \int (-t^{2})^{n-1} = 2t \int \frac{1}{1+t^{2}} dt = 2t \arctan t$$

$$v(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n = \sum_{n=1}^{\infty} \int (-x)^{n-1} = \ln(1+x)$$

$$s(x) = 2\sqrt{x} \arctan \sqrt{x} - \ln(1+x), s(\frac{1}{3}) = \frac{\pi}{3\sqrt{3}} - \ln \frac{4}{3}$$

(3)
$$\Leftrightarrow s(x) = \sum_{n=1}^{\infty} (2n-1)(x)^n, x = t^2$$

$$s(t^2) = \sum_{n=1}^{\infty} (2n-1)t^{2n} = t^2 \sum_{n=1}^{\infty} (2n-1)t^{2n-2} = t^2 \sum_{n=1}^{\infty} (t^{2n-1})' = t^2 (\frac{t}{1-t^2})t^{2n-1} = t^2 \frac{1+t^2}{\left(1-t\right)^2}t^2$$

$$s(\frac{1}{2}) = \frac{1}{2} + \frac{3}{4} + \frac{5}{8} + \frac{7}{16} + \dots = 3$$

函数展开成幂级数及其应用 第四节

☞ 教材见 433 页

1. 解析:

$$(1)e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$e^{-x} = 1 + x + \frac{(-x)^2}{2!} + \frac{(-x)^3}{3!} + \cdots \text{(B')}]$$

$$\operatorname{sh} x = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{(2n-1)!}, x \in (-\infty, +\infty)$$

$$shx = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{(2n-1)!}, x \in (-\infty, +\infty)$$

$$(3)\sin^2 x = \frac{1 - \cos 2x}{2} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2x)^{2n}}{2(2n)!}, x \in (-\infty, +\infty)$$

$$(5)\frac{1}{(1+x)^2} = -(\frac{1}{1+x})' = -(\sum_{n=0}^{\infty} (-1)^n x^n)' = \sum_{n=0}^{\infty} (-1)^n (n+1)x^n, x \in (-1,1)$$

$$(7)((1+x)\ln(1+x))' = \ln(1+x) + 1 = 1 + \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$$

$$(1+x)\ln(1+x) = x + \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+2}}{(n+1)(n+2)}, x \in (-1,1]$$

$$(1)\sqrt{x} = (1 + (x - 1))^{1/2} = 1 + \frac{x - 1}{2} + \sum_{n=2}^{\infty} \frac{\frac{1}{2} \times (-\frac{1}{2}) \times (-\frac{3}{2}) \times \dots (-\frac{2n-1}{2})}{n!} (x - 1)^{n}$$
$$= 1 + \frac{x - 1}{2} + \sum_{n=2}^{\infty} (-1)^{n-1} \frac{(2n - 3)!!}{(2n)!!} (x - 1)^{n}, x \in [0, 2]$$

$$(3)\cos x = \cos(x + \frac{\pi}{3} - \frac{\pi}{3}) = \frac{1}{2}\cos(x + \frac{\pi}{3}) + \frac{\sqrt{3}}{2}\sin(x + \frac{\pi}{3})$$
$$= \frac{1}{2}\sum_{n=0}^{\infty} \left[\frac{(x + \frac{\pi}{3})^{2n}}{(2n)!} + \sqrt{3}\frac{(x + \frac{\pi}{3})^{2n+1}}{(2n+1)!} \right], x \in (-\infty, +\infty)$$

$$(5)\sin 2x = -\sin 2(x - \frac{\pi}{2}) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{2n+1} (x - \frac{\pi}{2})^{2n+1}}{(2n+1)!}, x \in (-\infty, +\infty)$$

第五节 傅里叶级数

☞ 教材见 449 页

1. 解析: 由题意可知, f(x) 在 $x = k\pi(k = 0, \pm 1, \pm 2...)$ 处有间断点, 满足收敛定理,

$$\therefore f(\pi) = \frac{1}{2}(f(\pi^+) - f(\pi^-)) = \frac{1}{2}(-1 + 1 + \pi^2) = \frac{1}{2}\pi^2$$

同理可知 $f(5\pi) = \frac{1}{2}\pi^2$

2. 解析:

$$(1)a_0 = 2\int_{-\frac{1}{2}}^{\frac{1}{2}} (1 - x^2) \, \mathrm{d} \, x = 2 \times 2\int_0^{\frac{1}{2}} (1 - x^2) \, \mathrm{d} \, x = 4 \times (\frac{1}{2} - \frac{1}{24}) = \frac{11}{6}$$

$$a_1 = 2 \int_{-\frac{1}{2}}^{\frac{1}{2}} (1 - x^2) \cos 2n\pi \, dx = 2 \times 2 \int_0^{\frac{1}{2}} (1 - x^2) \cos 2n\pi \, dx = 4 \left(\int_0^{\frac{1}{2}} \cos 2n\pi \, dx - \int_0^{\frac{1}{2}} x^2 \cos 2n\pi \, dx \right)$$
$$= 4 \left(0 - \frac{1}{4n^2\pi^2} \cos n\pi \right) = -\frac{1}{n^2\pi^2} \cos n\pi = \frac{(-1)^{n+1}}{n^2\pi^2}$$

 $b_n = 0$

$$\therefore f(x) = \frac{11}{12} + \frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 \pi^2} \cos 2n\pi x$$

(3) f(x) 为偶函数,: $b_n = 0$

$$\begin{aligned} a_0 &= \frac{1}{\pi} \int_{-\pi}^{\pi} (3x^2 + 1) \, \mathrm{d} \, x = \frac{1}{\pi} [2\pi^3 + 2\pi] = 2\pi^2 + 2 \\ a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} (3x^2 + 1) \cos nx \, \mathrm{d} \, x = \frac{2}{\pi} \int_{0}^{\pi} (3x^2 + 1) \cos nx \, \mathrm{d} \, x = \frac{12(-1)^n}{n^2} \end{aligned}$$

$$\therefore f(x) = \pi^2 + 1 + \sum_{n=1}^{\infty} \frac{12(-1)^n}{n^2} \cos nx$$

3. 解析:2l = 2 - 0 = 2, l = 1

将 f(x) 在 [0,2] 外补充定义,将 f(x) 延拓为周期为 2 的周期函数

$$\therefore a_0 = \int_0^2 f(x) \, dx = \int_0^1 x \, dx = \frac{1}{2}$$

$$a_n = \int_0^2 f(x) \cos n\pi x \, dx = \int_0^1 x \cos n\pi x \, dx = d\frac{(-1)^n - 1}{n^2 \pi^2}$$

$$b_n = \int_0^2 f(x) \sin n\pi x \, dx = \int_0^1 x \sin n\pi \, dx = \frac{(-1)^{1+n}}{n\pi}$$

$$\therefore f(x) = \frac{1}{4} + \sum_{n=1}^\infty \frac{1}{n\pi} \left[\frac{(-1)^n - 1}{n\pi} \cos n\pi x + (-1)^{n+1} \sin n\pi x \right]$$

$$f(0) = \frac{1}{4} + \sum_{n=1}^\infty \frac{1}{n\pi} \cdot \frac{(-1)^n - 1}{n\pi} = \frac{1}{4} - \frac{2}{\pi^2} \sum_{n=0}^\infty \frac{1}{(2n+1)^2} = 0$$

$$\therefore \sum_{n=0}^\infty \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

(1) 将
$$f(x)$$
 偶延拓得 $b_n = 0$, $a_0 = \frac{2}{\pi} \int_0^{\pi} (\frac{\pi}{2} - x) dx = \frac{2}{\pi} (\frac{\pi^2}{2} - \frac{\pi^2}{2}) = 0$

$$a_n = \frac{2}{\pi} \int_0^{\pi} \left(\frac{\pi}{2} - x\right) \cos nx \, dx = \frac{2}{\pi} \left[0 - \frac{1}{n^2} (\cos n\pi - 1)\right] = \frac{2}{\pi} \left[\int_0^{\pi} \frac{\pi}{2} \cos nx \, dx - \int_0^{\pi} x \cos nx \, dx\right]$$
$$= -\frac{2}{\pi n^2} (\cos n\pi - 1) = \begin{cases} \frac{4}{\pi n^2} (n = 2k) \\ 0(n = 2k) \end{cases} (k = \pm 1, \pm 2 \dots)$$

$$f(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \cos(2k-1)x.$$
(3)a. 正弦级数

$$b_n = \frac{2}{l} \int 0^l f(x) \sin \frac{n\pi x}{l} \, dx = \frac{2}{l} \left(\int 0^{\frac{l}{2}} x \sin \frac{n\pi x}{l} \, dx + \int \frac{l}{2} (l - x) \sin \frac{n\pi x}{l} \, dx \right)$$
$$= \int \frac{4l}{n^2 \pi^2} \sin \frac{n\pi}{2} \, dx = \frac{4l(-1)^{k-1}}{\pi^2 (2k-1)}$$
$$\therefore f(x) = \frac{4l}{\pi^2}$$

$$\therefore f(x) = \frac{4l}{\pi^2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)^2} \sin \frac{(2k-1)\pi x}{l}$$

$$a_0 = \frac{2}{l} \int 0^l f(x) \, dx = \frac{2}{l} \left(\int 0^{\frac{l}{2}} x \, dx + \int \frac{l}{2}^l (l-x) \, dx \right) = \frac{l}{2}$$

$$a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} \, dx = \frac{2}{l} \left(\int_0^{\frac{l}{2}} x \cos \frac{n\pi x}{l} \, dx + \int_{\frac{l}{2}}^l (l-x) \cos \frac{n\pi x}{l} \, dx \right) = \frac{(-1)^{k-1} l}{\pi^2 (2k-1)^2}$$

$$\therefore f(x) = \frac{l}{4} + \frac{l}{\pi^2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)^2} \cos \frac{(2k-1)\pi x}{l}$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) \sin nx \, dx = \frac{2}{\pi} \left[\int_0^{\pi} x \pi \sin nx \, dx - \int_0^{\pi} x^2 \sin nx \, dx \right]$$

$$= \frac{2}{\pi} \left[-\frac{\pi^2}{n} \cos n\pi + \frac{\pi^2}{n} \cos n\pi - \frac{2}{n^3} \cos n\pi + \frac{2}{n^3} \right] = \frac{2}{\pi} \left[\frac{2}{n^3} - \frac{2}{n^3} \cos n\pi \right]$$

$$= \frac{4}{n^3 \pi} \left[1 - (-1)^n \right] = \begin{cases} \frac{8}{n^3 \pi} (n = 2k - 1) \\ 0(n = 2k) \end{cases}$$

$$k = 0, \pm 1, \pm 2 \dots$$

$$\therefore f(x) = \frac{8}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2k-1)x}{(2k-1)^3}$$
8. 解析: 将 $f(x)$ 偶延拓得:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

$$f(x + \frac{\pi}{2}) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n(x + \frac{\pi}{2}) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx + \frac{\pi}{2}n)$$

$$f(x - \frac{\pi}{2}) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n(x - \frac{\pi}{2}) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx - \frac{\pi}{2}n)$$

$$-f(x - \frac{\pi}{2}) = -\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx - \frac{\pi}{2}n) \times (-1)$$

$$\therefore f(x + \frac{\pi}{2}) = -f(x - \frac{\pi}{2}), \therefore a_0 = 0$$

$$\therefore \cos(nx + \frac{\pi}{2}n) = -\cos(nx - \frac{\pi}{2}n) \Rightarrow \cos(nx + \frac{\pi}{2}n) + \cos(nx - \frac{\pi}{2}n) = 0$$
$$\therefore 2\cos nx \cos \frac{n\pi}{2} = 0 \Rightarrow \cos \frac{n\pi}{2} = 0$$

$$\therefore 2\cos nx \cos \frac{n\pi}{2} = 0 \Rightarrow \cos \frac{n\pi}{2} = 0$$

$$n = 2k + 1(k = 0, \pm 1, \pm 2...)$$

即 f(x) 得所有偶数项为 0, 即 $a_{2k}=0$

总习题五 第六节

☞ 教材见 459 页

$$(1) \lim_{n \to +\infty} \frac{\sqrt[n]{3} - 1}{\frac{1}{n}} = \lim_{n \to +\infty} n \left(\sqrt[n]{3} - 1 \right) = \lim_{n \to +\infty} n \frac{1}{n} \ln 3 = \ln 3 > 0$$

所以级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 与级数 $\sum_{n=1}^{\infty} (\sqrt[n]{3} - 1)$ 有相同的敛散性

又因为调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 所以级数 $\sum_{n=1}^{\infty} (\sqrt[n]{3} - 1)$ 发散.

$$(3)\lim_{n\to+\infty}\frac{\frac{1}{\ln^5 n}}{\frac{1}{n}}=\lim_{n\to+\infty}\frac{n}{\ln^5 n}=+\infty(由洛必达法则易知)$$

又因为调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$, 所以级数 $\sum_{n=1}^{\infty} \frac{1}{n}$

$$(5) \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{a^{n+1}n^s}{a^n(n+1)^s} = a \begin{cases} > 1, 级数发散 \\ = 1 \\ < 1, 级数收敛 \end{cases}$$

当 a=1 时,级数为 $\sum_{n=1}^{\infty} \frac{1}{n^s}$ p 级数,当 s>1 时,级数收敛;当 $s\leqslant 1$ 时,级数发散.

(1) 因为
$$|u_n| = \frac{\sin(n+2)}{\pi^n} \leqslant \frac{1}{\pi^n}$$
, 级数 $\sum_{n=1}^{\infty} \frac{1}{\pi^n}$ 收敛

所以级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛, 级数 $\sum_{n=1}^{\infty} u_n$ 绝对收敛.

$$(3) \, \, \boxtimes \supset \lim_{n \to +\infty} \left| \frac{\cos \frac{1}{n} - n \sin \frac{1}{n}}{\frac{1}{n^2}} \right| = \lim_{n \to +\infty} \left| n^2 \cos \frac{1}{n} - n^3 \sin \frac{1}{n} \right| = \lim_{n \to +\infty} \left| n^2 \cos \frac{1}{n} - n^3 \sin \frac{1}{n} \right|$$

$$\frac{x = \frac{1}{n}}{1} \lim_{x \to 0} \left| \frac{x \cos x - \sin x}{x^3} \right| = \frac{2}{3} > 0$$

所以级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 和级数 $\sum_{n=1}^{\infty} \left| \cos \frac{1}{n} - n \sin \frac{1}{n} \right|$ 有相同的敛散性;

又因为级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛, 所以级数 $\sum_{n=1}^{\infty} \left| \cos \frac{1}{n} - n \sin \frac{1}{n} \right|$ 收敛

所以级数 $\sum_{n=1}^{\infty} \left(\cos \frac{1}{n} - n \sin \frac{1}{n}\right)$ 绝对收敛.

(5) 因为
$$u_n = (-1)^n \ln \frac{n+1}{n}$$
, $|u_n| = \ln \frac{n+1}{n} = \ln(n+1) - \ln n$

级数
$$\sum_{n=1}^{\infty} |u_n|$$
 的部分和为 $\lim_{n\to+\infty} s_n = \lim_{n\to+\infty} [\ln(n+1) - \ln n + \ln n - \ln(n-1) + \dots + \ln 2 - \ln 1] = \lim_{n\to+\infty} \ln(n+1) = +\infty$

所以级数 $\sum_{n=1}^{\infty} |u_n|$ 发散;

又 $|u_n|\geqslant |u_{n+1}|$,且 $\lim_{n\to+\infty}|u_n|=0$,所以交错级数 $\sum_{n=1}^\infty u_n$ 收敛;综上所述,级数 $\sum_{n=1}^\infty u_n$ 条件收敛.

第六章

向量代数与空间解析几何

☞ 习题见第 106 页

第一节 向量及其线性运算

☞ 教材见 9 页

3. 证明: 设 AB 中点为 E, AC 中点为 F, 连接 EF

5. 证明: (1) 由三角形不等式 $a + b \geqslant |a + b|$ 有 $|a - b| + |b| \geqslant |a - b + b| = |a|$

即 $|a| - |b| \le |a - b|$, 当且仅当 $a \parallel b$ 时取等.

(2) 由三角形不等式 $|a| + |b| \ge |a+b|$ 有 $|a+b| + |c| \ge |a+b+c|$

则 $|a+b+c| \leq |a|+b+|c| \leq |a|+|b|+|c|$, 当且仅当 $a \parallel b \parallel c$ 时取等.

7. 证明: ① 充分性: 不妨设 $\lambda = 0$, 则必有 $\mu \neq 0$, 那么 $\boldsymbol{b} = \frac{\lambda}{\mu} \boldsymbol{a}$, 即 $\boldsymbol{a} \parallel \boldsymbol{b}$;

② 必要性: $\boldsymbol{a} \parallel \boldsymbol{b}$, 即 $\boldsymbol{a} = k\boldsymbol{b}$, 则有 $\boldsymbol{a} - k\boldsymbol{b} = \boldsymbol{0}$ 即存在不全为零的实数 $\lambda = 1, \mu = k$, 使得 $\lambda \boldsymbol{a} + \mu \boldsymbol{b} = \boldsymbol{0}$.

9. 证明: ① 充分性: 若 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \mathbf{O}$, 则 $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{CO}$

又 $D \neq AB$ 中点, 则 $\overrightarrow{OA} + \overrightarrow{OB} = 2\overrightarrow{OD}$, 即 O 在中线 CD 上

同理可得 O 在中线 AE 上, 以及 O 在中线 BF 上, 则有 O 是 $\triangle ABC$ 的重心, 充分性证毕.

② 必要性: 取 AB, AC, BC 中点分别为 D, E, F 连接 AD, BE, CF 交于点 O, 即为重心, 则 $\overrightarrow{AO} = 2\overrightarrow{OD}$ 又 D 是 BC 中点, 则 $\overrightarrow{OB} + \overrightarrow{OC} = 2\overrightarrow{OD}$ 则 $\overrightarrow{OA} = \overrightarrow{BO} + \overrightarrow{CO}$ 即证得 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \mathbf{O}$.

第二节 向量的坐标

☞ 教材见 18 页

- 3. 解: 距 x 轴 $\sqrt{4+25} = \sqrt{29}$, 距 y 轴 $\sqrt{34}$, 距 z 轴 $\sqrt{13}$; 距 xOy 面 5, 距 xOz 面 2, 距 yOz 面 3.
- 5. \mathbb{H} : (1) (-3, 2, -1);
- (2) 关于 x 轴 (3,2,-1), 关于 y 轴 (-3,-2,-1), 关于 z 轴 (-3,2,1);
- (3) 关于 xOy (3, -2, -1), 关于 xOz (3, 2, 1), 关于 yOz (-3, -2, 1).
- 7. $\overrightarrow{M_1M_2} = \overrightarrow{OM_2} \overrightarrow{OM_1} = (-1, -2, 1), \ || |\overrightarrow{M_1M_2}| = \sqrt{1+2+1} = 2;$

$$\cos\alpha = -\frac{1}{2}, \cos\beta = -\frac{\sqrt{2}}{2}, \cos\gamma = -\frac{1}{2}; \quad \alpha = 120^\circ, \ \beta = 135^\circ, \ \gamma = 60^\circ; \quad \boldsymbol{e}_a = \frac{\boldsymbol{a}}{|\boldsymbol{a}|} = (\frac{1}{2}, -\frac{\sqrt{2}}{2}, \frac{1}{2}).$$

9. 解:
$$\overrightarrow{AM} = \overrightarrow{OM} - \overrightarrow{OA}$$
, $\overrightarrow{MB} = \overrightarrow{OB} - \overrightarrow{OM}$, 则 $\overrightarrow{OM} - \overrightarrow{OA} = \frac{1}{2} \left(\overrightarrow{OB} - \overrightarrow{OM} \right)$, 则 $\overrightarrow{OM} = \frac{1}{3} \overrightarrow{OB} + \frac{2}{3} \overrightarrow{OA}$ 设 $M(x,y,z)$, 则 $(x,y,z) = \frac{1}{3} (-1,3,-2) + \frac{2}{3} (1,2,3) = \left(\frac{1}{3}, \frac{7}{3}, \frac{4}{3} \right)$, 即

$$M(\frac{1}{3}, \frac{7}{3}, \frac{4}{3}).$$

11. 解:
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = (1,1,1)$$
 又 \overrightarrow{AC} 中点为 \overrightarrow{M} , 所以 $\overrightarrow{AM} = \overrightarrow{MC}$ 而 $\overrightarrow{AM} = \overrightarrow{OM} - \overrightarrow{OA}$ $\overrightarrow{MC} = \overrightarrow{OC} - \overrightarrow{OM}$, $\overrightarrow{OM} - \overrightarrow{OA} = \overrightarrow{OC} - \overrightarrow{OM}$, 则 $\overrightarrow{OM} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OC})$, 同理 $\overrightarrow{ON} = \frac{1}{2}(\overrightarrow{OB} + \overrightarrow{OD})$, 则 $\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{CD}) = (3,2,-4)$.

12. 解: 由题 $\alpha = \frac{\pi}{3}$, $\beta = \frac{\pi}{4}$ 有 $\cos \alpha = \frac{1}{2}$, $\cos \beta = \frac{\sqrt{2}}{2}$, 设 A(x,y,z) $x = \left|\overrightarrow{OA}\right| \cos \alpha = 3$, $y = 3\sqrt{2}$ $\left| \overrightarrow{OA} \right| = 6, \, \mathbb{M} \, z = 3, \, \therefore \, A(3, 3\sqrt{2}, 3).$

第三节 向量的乘积

☞ 教材见 28 页

3.
$$\Re: (1) (2\mathbf{a}) \cdot (3\mathbf{b}) = 6\mathbf{a} \cdot \mathbf{b} = -6;$$
 (2) $(2\mathbf{a}) \times (3\mathbf{b}) = 6\mathbf{a} \times \mathbf{b} = (-30, -18, 6);$

(3)
$$(a - b) (a + 2c) = -15;$$
 (4) $(a - b) \times (a + 2b) = (-15, -9, 3);$

(5)
$$\boldsymbol{u} \cdot \boldsymbol{v} = (k\boldsymbol{a} + \boldsymbol{b}) \cdot (-\boldsymbol{a} + 3\boldsymbol{b}) = 0$$
, $\mathbb{M} 4k + 3 + 2(3k - 1)\cos\left\langle \widehat{\boldsymbol{a}, \boldsymbol{b}} \right\rangle = 0$, $\mathbb{M} k = 2$.

7.
$$\overrightarrow{MR}$$
: $\overrightarrow{MA} = (-3, 1, 2), \overrightarrow{MB} = (0, -1, 3)$

(3)
$$\hat{a} = \pm \frac{\overrightarrow{MA} \times \overrightarrow{MB}}{\left| \overrightarrow{MA} \times \overrightarrow{MB} \right|} = \pm \frac{1}{\sqrt{115}} (5, 9, 3).$$

9. 证明: 设有三角形
$$ABC$$
, 三边分别为向量 \boldsymbol{a} , \boldsymbol{b} , \boldsymbol{c} , $S=\frac{1}{2}|\boldsymbol{a}\times\boldsymbol{b}|=\frac{1}{2}|\boldsymbol{b}\times\boldsymbol{c}|=\frac{1}{2}|\boldsymbol{a}\times\boldsymbol{c}|$

$$\mathbb{M} |\mathbf{a}| \cdot |\mathbf{b}| \sin \left\langle \widehat{\mathbf{a}, \mathbf{b}} \right\rangle = |\mathbf{b}| \cdot |\mathbf{c}| \sin \left\langle \widehat{\mathbf{b}, \mathbf{c}} \right\rangle = |\mathbf{a}| \cdot |\mathbf{c}| \sin \left\langle \widehat{\mathbf{a}, \mathbf{c}} \right\rangle, \ \mathbb{M} \ ab \sin C = bc \sin A = ac \sin B$$

则证得
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
.
11. 证明: $\overrightarrow{AB} = (1, -3, -2), \overrightarrow{AC} = (-2, 9, 4), \overrightarrow{AD} = (3, -6, -6)$

设
$$A,B,C,D$$
 在同一个平面上,则 $\overrightarrow{AB} = \lambda \overrightarrow{AC} + \mu \overrightarrow{AD}$,即 $(1,-3,-2) = (-2\lambda,9\lambda,4\lambda) + (3\mu,-6\mu,-6\mu)$

$$\begin{cases} 1 = -2\lambda + 3\mu \\ -3 = 9\lambda - 6\mu \end{cases} \Rightarrow \lambda = -\frac{1}{5}, \mu = \frac{1}{5}, \text{则假设成立, 共面.}$$
$$-2 = 4\lambda - 6\mu \end{cases}$$

第四节 平面与直线

☞ 教材见 42 页

2. 解: (1) 由题意, 设所求平面方程为 By + Cz = 0

将点 (4, -3, -1) 代入, 得 C = -3B, 即得 y - 3z = 0;

- (2) 平面法向量 $\overrightarrow{n} = \overrightarrow{OP} = (3, -6, 2), 3x 6y + 2z + D = 0$, 代入 P(3, -6, 2) 得 3x 6y + 2z 49 = 0;
- (3) 设平面方程为 Ax + By + Cz + D = 0, 代入得 2x 3y + 2z 10 = 0.

4. 解:
$$\begin{cases} x + 3y + z - 1 = 0 \\ 2x - y - z = 0 \\ x - 2y - 2z + 3 = 0 \end{cases} \Rightarrow x = 1, y = -1, z = 3, 则交点为 (1, -1, 3).$$

6. 解: 过 π_1 与 π_2 的平面为 $(1+\lambda)x+5y+(1-\lambda)+4\lambda=0$

$$\frac{(1+\lambda,5,1-\lambda)\cdot(1,-4,-8)}{|(1+\lambda,5,1-\lambda)\cdot(1,-4,-8)|} = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2} \Rightarrow \lambda = -\frac{3}{4},$$
则所求平面为 $x+20y+7z-12=0$ 又 π_2 与已知平面恰好成 $\frac{\pi}{4}$ 角

... 所求平面为 x + 20y + 7z - 12 = 0 或 x - z + 4 = 0.

.. 所求平面为
$$x + 20y + 7z - 12 = 0$$
 或 $x - z + 4 = 0$.
8. 解: 取 $x = 0$, 由
$$\begin{cases} -2y + 4z + 1 = 0 \\ 2y - z + 2 = 0 \end{cases}$$
, 解得 $y = -\frac{3}{2}$, $z = -1$
即直线 L 过点 $M(0, -\frac{3}{2}, -1)$, $\overrightarrow{n}_1 = (3, -2, 4)$, $\overrightarrow{n}_2 = (1, 2, -1)$, $\overrightarrow{s} = \overrightarrow{n}_1 \times \overrightarrow{n}_2 = (-6, 7, 8)$

从而所求直线对称式为
$$\frac{x}{-6} = \frac{y + \frac{3}{2}}{7} = \frac{z+1}{8}$$
,参数式方程为
$$\begin{cases} x = -6t \\ y = 7t - \frac{3}{2} \end{cases}$$
 $z = 8t - 1$

10. 解: 设过直线 L 的平面東方程为 $4x - y + 3z - 1 + \lambda(x + 5y - z + 2) = 0$

$$\mathbb{P}(4+\lambda)x + (-1+5\lambda)y + (3-\lambda)z + (-1+2\lambda) = 0 \Rightarrow 2(4+\lambda) - (-1+5\lambda) + 5(3-\lambda) = 0, \lambda = 3$$

$$\begin{cases} 7x + 14y + 5 = 0 \end{cases}$$

则投影平面方程为 7x + 14y + 5 = 0,则投影直线为 $\begin{cases} 7x + 14y + 5 = 0 \\ zx - y + 5z - 3 = 0 \end{cases}$.

空间曲面与空间曲线 第五节

☞ 教材见 64 页

2. 解: (1) 双曲柱面; (2) 椭圆柱面; (3) 抛物柱面;

(4) 球面; (5) 圆锥面 (下半部分); (6) 旋转单叶双曲面.

3. 解: (1)
$$\begin{cases} \frac{x^2}{4} - \frac{y^2}{9} = 1 \\ z = 0 \end{cases}$$
 绕 x 轴旋转形成的; (2)
$$\begin{cases} y = \frac{x^2}{4} \\ z = 0 \end{cases}$$
 绕 y 轴旋转形成的.

为旋转双叶双曲面.

6. 解:直线方程一式乘以二加上二式消去 z 得到该柱面方程为 $4x^2+7y^2=8$ 则该柱面在 xOy 上的投 影为 $\begin{cases} 4x^2 + 7y^2 = 8\\ z = 0 \end{cases}$

- 9. 解: 设此动弦的中点为 (x_0, y_0, z_0)
- ·: 此动弦的一个端点为 (0,0,0)
- \therefore 另一个端点为 $(2x_0, 2y_0, 2z_0)$

又该端点在球面上,则有 $(2x_0)^2 + (2y_0)^2 + (2z_0)^2 = R^2$

即此动弦中点轨迹为

$$x^{2} + y^{2} + \left(z - \frac{R}{2}\right)^{2} = \frac{R^{2}}{4}.$$

总习题六

☞ 教材见 75 页

4. 解: 假设 $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ 共面, 设 $\boldsymbol{c} = \lambda \boldsymbol{a} + \mu \boldsymbol{b}$

代入 $(-3,12,6) = \lambda(-1,3,2) + \mu(2,-3,-4)$, 解得 $\lambda = 5, \mu = 1$, 则共面, c = 5a + b.

6. 解: 设
$$C(0,0,2)$$
, $\overrightarrow{AB} = (-1,2,1)$, $\overrightarrow{AC} = (-1,0,z)$, 则 $\cos \angle BAC = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\left|\overrightarrow{AB}\right| \cdot \left|\overrightarrow{AC}\right|}$

$$S = \frac{1}{2} \left| \overrightarrow{AB} \right| \cdot \left| \overrightarrow{AC} \right| \cdot \sin \angle BAC = \frac{1}{2} \sqrt{5z^2 - 2z + 5}$$

当且仅当
$$z=\frac{1}{2}$$
 时,取最小值, $C(0,0,\frac{1}{5})$ 8. 解: 设 $\frac{x-1}{1}=\frac{y+1}{2}=\frac{z-1}{\lambda}=t_1, \frac{x+1}{1}=\frac{y-1}{1}=\frac{z}{1}=t_2$

10. 解: L_1 方向向量为 $\boldsymbol{n}_1 = (1,1,2)$, 过点 A(-1,0,1), L_2 方向向量为 $\boldsymbol{n}_2 = (1,3,4)$, 过点 B(0,-1,2)

$$\left[\mathbf{n}_1 \ \mathbf{n}_2 \ \overrightarrow{AB} \right] = (-2, -2, 2) \cdot (1, -1, 1) = -2 + 2 + 2 = 2 \neq 0$$

则 L_1 与 L_2 异面; 两者间的距离 $d = \frac{\left|\overrightarrow{AB} \cdot (n_1 \times n_2)\right|}{n_1 \times n_2} = \frac{\sqrt{3}}{3}$.

12. 解:
$$\lim_{x \to 0} \frac{|\boldsymbol{a} + x\boldsymbol{b}| - |\boldsymbol{a}|}{x} \xrightarrow{\frac{\partial \mathcal{F} \partial \mathcal{B} \mathbb{R} \mathbb{U}}{\partial \mathcal{F} \partial \mathcal{B} \mathbb{H} \mathbb{W}}} \lim_{x \to 0} \frac{2\boldsymbol{a} \cdot \boldsymbol{b} + x |\boldsymbol{b}|^2}{|\boldsymbol{a} + x\boldsymbol{b}| + |\boldsymbol{a}|} = \frac{|\boldsymbol{a}|}{|\boldsymbol{a}| + |\boldsymbol{a}|} = \frac{1}{2}.$$

14. 解: 设公垂线过 L_1 上的点为 P(3t-1,2t-3,t), 过 L_2 上的点为 Q(m,2m-5,7m+2),

则公垂线的方向向量为 $\overrightarrow{AB} = (m - 3t + 1, 2m - 2t - 2, 7m - t + 2)$

又 L_1 方向向量为 (3,2,1), L_2 方向向量为 (1,2,7)

$$\operatorname{constant} \left\{ \overrightarrow{AB} \cdot (3,2,1) = 0 \\ \overrightarrow{AB} \cdot (1,2,7) = 0 \right. \Rightarrow \left. \begin{cases} m = -\frac{1}{4} \\ t = -\frac{5}{28} \end{cases} \right. , \operatorname{EP} Q \left(-\frac{1}{4}, -\frac{11}{2}, \frac{1}{4} \right), P \left(-\frac{43}{28}, -\frac{47}{14}, -\frac{5}{28} \right) \right.$$

又公垂线的方向向量为
$$(3,2,1) \times (1,2,7) = (3,-5,1)$$

 \therefore 公垂线方程为 $\frac{x+\frac{1}{4}}{3} = \frac{y+\frac{11}{2}}{-5} = \frac{z-\frac{1}{4}}{1}$ 或 $\frac{x+\frac{43}{28}}{3} = \frac{y+\frac{47}{14}}{-5} = \frac{z-\frac{5}{28}}{1}$.

$$d = \frac{1}{\sqrt{(1+2\lambda)^2 + (1+\lambda)^2 + (1+\lambda)^2}} = \frac{1}{\sqrt{6\lambda^2 + 8\lambda + 3}}$$

当且仅当 $\lambda = -\frac{8}{2 \times 6} = -\frac{2}{3}$ 时, 取最小值 $d_{\min} = \sqrt{3}$

而平面 2x + y + z = 0 到原点的距离 $d' = \frac{0}{\sqrt{6}} = 0 < d_{\min} = \sqrt{3}$

... 所求平面应为 $\lambda = -\frac{2}{3}$ 的平面, 即 x - y - z - 3 = 0.

18. 解: 考虑 z 轴上一点 $(0,0,z_0)$ (不妨设 $z_0>0$) 绕直线 x=y=z 旋转形成该圆锥面, 圆锥面的底面 在平面 $x+y+z-z_0=0$ 上, 圆心在直线 x=y=z 上

则显然圆心 O 为 $\left(\frac{z_0}{3}, \frac{z_0}{3}, \frac{z_0}{3}\right)$

那么, (x, y, z) 须满足以下两个条件:

① 到原点的距离相等, 即 $z_0^2 = x^2 + y^2 + z^2$

② 到 O 点的距离相等,即 $\left(x-\frac{z_0}{3}\right)^2+\left(y-\frac{z_0}{3}\right)^2+\left(z-\frac{z_0}{3}\right)^2=\left(\frac{z_0}{3}\right)^2$

整理以上二式可得该圆锥面方程为 xy + yz + xz = 0.

第七章

多元函数微分学及其应用

☞ 习题见第 106 页

平面点集与多元函数 第一节

☞ 教材见 86 页

2. 解:
$$f\left(\frac{x}{y},\sqrt{xy}\right) = \frac{x^3 - 2xy^2\sqrt{xy} + 3xy^4}{y^3} = \frac{x^3}{y^3} - 2 \times \frac{x}{y} \times \sqrt{xy} + 3xy,$$
 则

$$f(x,y) = x^3 - 2xy + 3y^2$$

则有

$$f\left(\frac{1}{x}, \sqrt{xy}\right) = \frac{1}{x^3} - \frac{4}{xy} + \frac{12}{y^2}.$$

4. 解: 套定义式即可得出答案 $f(x+y,x-y,xy) = (x+y)^{xy} + (xy)^{2x}$.

6.
$$\Re:$$
 (1)
$$\begin{cases} 4x - y^2 \ge 0 \\ 1 - x^2 - y^2 > 0 \end{cases} \Rightarrow \{(x, y) | 0 < x^2 + y^2 < 1, y^2 \le 4x \};$$

$$(2) \begin{cases} y \geqslant 0 \\ x - \sqrt{y} \geqslant 0 \end{cases} \Rightarrow \{(x, y) | x \geqslant 0, y \geqslant 0, x^2 \geqslant y \};$$

$$\begin{cases} x - \sqrt{y} \geqslant 0 \\ (3) \ (x^2 + y^2 - a^2) \ (2a^2 - x^2 - y^2) \geqslant 0 \Rightarrow \ \{(x, y) \ | a^2 \leqslant x^2 + y^2 \leqslant 2a^2 \}; \\ \begin{cases} -1 \leqslant \frac{x}{y^2} \leqslant 1 \\ y \geqslant 0 \Rightarrow \ \{(x, y) \ | -y^2 \leqslant x \leqslant y^2, 0 < y < 1 \}; \\ 1 - \sqrt{y} > 0 \end{cases} \\ \begin{cases} \sqrt{x^2 + y^2} > 0 \\ -1 \leqslant \frac{z}{\sqrt{x^2 + y^2}} \leqslant 1 \end{cases} \Rightarrow \{(x, y) \ | x^2 + y^2 - z^2 \geqslant 0, x^2 + y^2 \neq 0 \}. \end{cases}$$

$$1 - \sqrt{y} > 0$$

(5)
$$\begin{cases} \sqrt{x^2 + y^2} > 0 \\ -1 \leqslant \frac{z}{\sqrt{x^2 + y^2}} \leqslant 1 \end{cases} \Rightarrow \{(x, y) | x^2 + y^2 - z^2 \geqslant 0, x^2 + y^2 \neq 0 \}.$$

第二节 多元函数的极限与连续性

☞ 教材见 92 页

1. 解: (1) 原式
$$=\frac{1\times 2}{1^2+1}=1$$
.

(2)
$$\Rightarrow xy = u$$
, 则原式 $=\lim_{u \to 0} \frac{\sqrt{u+1} - 1}{u} = \frac{1}{2}$.

(3)
$$\Rightarrow x^2 + y^2 = u$$
, 则原式 $= \lim_{u \to 0} \frac{1 - \cos u}{u^2} = \lim_{u \to 0} \frac{\frac{u^2}{2}}{u^2} = \frac{1}{2}$.

(4) 原式 =
$$\lim_{(x,y)\to(1,0)} (1+\frac{y}{x})^{\frac{x}{y}\times\frac{2}{x}} = \lim_{x\to 0} e^{\frac{2}{x}} = e^2.$$

2. 解: (1) 先令
$$y = x$$
, 则 $\lim_{(x,y)\to(0,0)} \frac{xy}{x+y} = \lim_{x\to 0} \frac{x}{2} = 0$

再令
$$y = x^2 - x$$
, 则 $\lim_{(x,y)\to(0,0)} \frac{xy}{x+y} = \lim_{x\to 0} \frac{x^2 - x}{x^2 + x - x} = 1$

因为两条路径上所得的极限不相等, 所以极限不存

$$(2) \, \diamondsuit \, y = kx, (k \in R) \, \, \mathbb{M} \, \lim_{(x,y) \to (0,0)} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x \to 0} \frac{x^2(1 - k^2)}{x^2(1 + k^2)} = \frac{1 - k^2}{1 + k^2}$$

当 k 值发生变化时, 极限值会发生相应的变化, 所以极限不存在

4.
$$\Re: \left\{ (x,y) \left| x^2 + y^2 = k\pi + \frac{1}{2}\pi(k \in N) \right. \right\}$$

5. 解: 先令
$$y = 0$$
, 则 $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2 + y^2} \Leftrightarrow \lim_{x\to 0} \frac{2x \times 0}{x^2 + 0} = 0$ 再令 $y = x$, 则 $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2 + y^2} \Leftrightarrow \frac{2x^2}{x^2 + x^2} = 1$

再令
$$y = x$$
, 则 $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2 + y^2} \Leftrightarrow \frac{2x^2}{x^2 + x^2} = 1$

当 $x \neq 0$ 时, 函数极限不存在, 所以 f(x,y) 在 x = 0 处不连续.

7.
$$\mathbb{R}$$
: (1) \mathbb{R} $\vec{\exists}$ = $\lim_{x \to 0} \frac{e^0 - 1}{1} = 0$.

(3) 因为
$$|\sin \frac{1}{x^2} \cos \frac{1}{y^2}| \le 1$$
,所以原式 $=\lim_{(x,y)\to(0,0)} 0 \times \sin \frac{1}{x^2} \cos \frac{1}{y^2} = 0$.

(5) 原式 =
$$\lim_{(x,y)\to(0,0)} (1+x^2y^2)^{\frac{1}{x^2y^2} \times \frac{x^2y^2}{x^2+y^2}} = e^{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = e^0 = 1.$$

第三节 全微分与偏导数

☞ 教材见 106 页

3.
$$\widetilde{\mathbb{R}}$$
: (1) $\frac{\partial z}{\partial x} = \frac{\frac{x}{\sqrt{x^2 + y^2}} + 1}{x + \sqrt{x^2 + y^2}} = \frac{1}{\sqrt{x^2 + y^2}}; \qquad \frac{\partial z}{\partial y} = \frac{\frac{y}{\sqrt{x^2 + y^2}}}{x + \sqrt{x^2 + y^2}} = \frac{y}{\sqrt{x^2 + y^2}(x + \sqrt{x^2 + y^2})}.$

(2)
$$\frac{\partial z}{\partial x} = y \times xy(1+xy)^{y-1} = y^2(1+xy)^{y-1}$$
; 所以 $\ln z = y \ln (1+xy)$.

且
$$\frac{\partial^2 z}{\partial z} = z \frac{\partial z}{\partial y}$$
, 所以 $\frac{\partial z}{\partial y} = (1 + xy)^y \left[\ln(1 + xy) + \frac{xy}{1 + xy} \right]$.

(3)
$$\frac{\partial z}{\partial x} = \frac{\cos\left(\frac{x+a}{\sqrt{y}}\right)}{\sin\frac{x+a}{\sqrt{y}}} \times \frac{1}{\sqrt{y}} = \frac{\cos\left(\frac{x+a}{\sqrt{y}}\right)}{\sqrt{y}};$$

$$\frac{\partial z}{\partial y} = \frac{\cos\left(\frac{x+a}{\sqrt{y}}\right) \times \left(-\frac{x+a}{2}\right) \times y \times \frac{3}{2}}{\sin\left(\frac{x+a}{\sqrt{y}}\right)} = \cos\frac{x+a}{\sqrt{y}} \times \left(\frac{x+a}{2}\right)y^{-\frac{3}{2}}.$$

$$(4) \frac{\partial u}{\partial x} = yzx^{yz-1}; \qquad \frac{\partial u}{\partial y} = zx^{yz}\ln x; \qquad \frac{\partial u}{\partial z} = yx^{yz}\ln x.$$

(4)
$$\frac{\partial u}{\partial x} = yzx^{yz-1}; \quad \frac{\partial u}{\partial y} = zx^{yz} \ln x; \quad \frac{\partial u}{\partial z} = yx^{yz} \ln x$$

(5)
$$u_x = x^2$$
, 所以 $u_{x(x,1)} = 2x|_{x=1} = 2$.

5.
$$\mathbf{\widetilde{R}} \colon \frac{\partial u}{\partial x} = (y-z) \left[-2x + (y-z) \right]; \qquad \frac{\partial u}{\partial y} = (z-x) \left[-2y + (x-z) \right]; \qquad \frac{\partial u}{\partial z} = (x-y) \left[-2z + (x-y) \right].$$

6.
$$\mathbb{H}$$
: $(1) d u = y^2 x^{y^2 - 1} d x + 2y x^{y^2} \ln x d y$;

$$(2) d u = yzx^{yz-1} d x + zx^{yz} \ln x d y - yx^{yz} \ln x d z;$$

(3) 因为
$$d \ln u = \frac{d u}{u} = \frac{y}{xz} dx + \frac{1}{z} (\ln \frac{x}{y} - 1) dy - \frac{y}{z^2} \ln \frac{x}{y} dz$$

所以
$$\mathrm{d} u = \left(\frac{x}{y}\right)^{\frac{y}{z}} \left[\frac{y}{xz} \, \mathrm{d} x + \frac{1}{z} \left(\ln \frac{x}{y} - 1\right) \mathrm{d} y - \frac{y}{z^2} \ln \left(\frac{x}{y}\right) \mathrm{d} z\right].$$
9. 解: $\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial z}{\partial x} = \frac{\partial}{\partial x} \left(\frac{2x}{x^2 + y}\right) = \frac{-2x^2 + 2y}{\left(x^2 + y\right)^2}; \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = \frac{\partial}{\partial y} \left(\frac{2x}{x^2 + y}\right) = \frac{-2x}{\left(y + x^2\right)^2};$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y}\right) = \frac{\partial}{\partial y} \left(\frac{1}{x^2 + y}\right) = -\frac{1}{\left(x^2 + y\right)}.$$
11. 解: $\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial z} \left(\frac{yz}{x^2 + y^2}\right) = -\frac{2yzx}{\left(x^2 + y^2\right)^2}; \quad \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{-zx}{x^2 + y^2}\right) = \frac{2yzx}{\left(x^2 + y^2\right)^2}; \quad \frac{\partial^2 u}{\partial z^2} = 0;$
所以 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$

13. 解: 曲线的参数方程为
$$\begin{cases} x=1\\ y=y \end{cases}, 因为 \frac{\mathrm{d}\,x}{\mathrm{d}\,y} = 0, \frac{\mathrm{d}\,y}{\mathrm{d}\,y} = 1, \frac{\mathrm{d}\,z}{\mathrm{d}\,y} = \frac{y}{\sqrt{2+y^2}}$$

$$z = \sqrt{2+y^2}$$

所以在点 $(1,1,\sqrt{3})$ 处的切线方向向量为 $\vec{m}=(\frac{\partial x}{\partial y},\frac{\partial y}{\partial y},\frac{\partial z}{\partial y})=(0,1,\frac{1}{\sqrt{3}})$ 所以 \vec{m} 与 y 轴正向的夹角余弦 $\cos\alpha=\frac{\sqrt{3}}{2},$ 即 $\alpha=30^\circ.$

第四节 多元复合函数的微分法

☞ 教材见 118 页

1. 解:易知
$$\left\{ \frac{\partial z}{\partial x} = 2u \times u' + 2v \times v' = 4x \frac{\partial z}{\partial y} = 2u \times u' + 2v \times v' = 4y \right.$$

3. 解: 因为
$$z = \arctan(3t - 4t^3)$$
,所以 $\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{(3t - 4t^3)'}{1 + (3t - 4t^3)} = \frac{3(1 - 4t^2)}{1 + (3t - 4t^3)^2}$.

7.
$$\mathbf{F}_{x} = e^{-(x+ay)^{2}} - e^{-x^{2}}, \quad \mathbf{F}_{x} = -2(x+ay)e^{-(x+ay)^{2}} + 2xe^{-x^{2}}$$

$$f_{xx(1,1)} = (2a-2)e^{-(1-a)^{2}} + \frac{2}{e}$$

9.
$$\mathbf{M}: \frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial x} \left(f_1' + y f_2' \right) = f_{11}'' + 2y f_{12}'' + y^2 f_{22}''.$$

11.
$$mathrew{m:} \frac{\partial z}{\partial x} = f'(x + \varphi(y)), \qquad \frac{\partial^2 z}{\partial x^2} = f''(x + \varphi(y)),$$

同理可得
$$\frac{\partial z}{\partial y} = \phi'(y) f'(x + \phi(y)),$$
 $\frac{\partial^2 z}{\partial x \partial y} = \phi'(y) f''(x + \phi(y)).$

所以
$$\frac{\partial z}{\partial x} \times \frac{\partial^2 z}{\partial x \partial y} = f'(x + \phi(y)) f''(x + \phi(y)) \phi' y = \frac{\partial z}{\partial y} \times \frac{\partial^2 z}{\partial x^2}.$$

故而易得
$$\begin{cases} u_{xx} = a\left[\varphi^{''}\left(x+ay\right)+\varphi^{''}\left(x-ay\right)\right]+\varphi^{''}\left(x+ay\right)-\varphi^{''}\left(x-ay\right)\right] \\ \left[\varphi^{''}\left(x+ay\right)+\varphi^{''}\left(x-ay\right)\right]+\varphi^{''}\left(x+ay\right)-\varphi^{''}\left(x-ay\right) \end{cases}, 所以 u_{yy} = a^2u_{xx}.$$

15. **M**: $\Leftrightarrow x = \rho \cos \theta, y = \rho \sin \theta \Leftrightarrow \frac{\mathrm{d} \rho \sin \theta}{\mathrm{d} t} = -\rho \cos \theta + k\rho^3 \sin \theta.$

进而得
$$\left\{ \frac{\mathrm{d}\,\theta}{\mathrm{d}\,t} \rho \cos\theta = -\rho \cos\theta \frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} \sin\theta = k\rho^3 \sin\theta \right. , \text{所以} \left\{ \frac{\mathrm{d}\,\theta}{\mathrm{d}\,t} = -1 \frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} = k\rho^3. \right.$$

16. 证明: $dF(tx + ty + tz) = dt^k F(x, y, z)$ (对 t 求微分)

 $\Leftrightarrow [xF_1' + yF_2' + zF_3'] dt = kt^{k-1}F(x,y,z) dt$ 对上式两侧同时对 t 积分, 得

$$xF_x + yF_y + zF_z = kt^{k-1}F(x, y, z)$$

当 t=1 时, 符合题意. 证毕.

第五节 隐函数的微分法

☞ 教材见 129 页

1.
$$\mathbb{H}: \frac{\mathrm{d} y}{\mathrm{d} x} = -\frac{F_x}{F_y} = \frac{y^2 - e^x}{\cos y - 2y}.$$

3.
$$\widehat{\text{M}}: \frac{\partial z}{\partial x} = \frac{z}{x+z}, \quad \frac{\partial z}{\partial y} = \frac{z^2}{y(z+x)}.$$

5. 解: 因为
$$x = x(y, z)$$
,所以 $F[x(y, z), y, z] = 0$,两侧微分,得 $F'_1 \times \frac{\partial x}{\partial y} + F'_2 = 0$;从而 $\frac{\partial x}{\partial y} = -\frac{F'_2}{F'_1}$

同理
$$\frac{\partial y}{\partial z} = -\frac{F_3'}{F_2'}, \frac{\partial z}{\partial x} = -\frac{F_1'}{F_3'}, \therefore \frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1.$$

易知
$$\left\{ F_x = \frac{\partial F}{\partial x} \cdot \frac{\partial F}{\partial u} + \frac{\partial F}{\partial v} \cdot \frac{\partial v}{\partial x} = \frac{\partial F}{\partial u} - \frac{z}{x^2} \cdot \frac{\partial F}{\partial v} \cdot F_y = -\frac{z}{y^2} \frac{\partial F}{\partial u} + \frac{\partial F}{\partial v}, F_z = \frac{1}{y} \frac{\partial F}{\partial u} + \frac{1}{x} \frac{\partial F}{\partial v} \right\}$$
,故令 $s = \frac{\partial F}{\partial v}$, $t = \frac{\partial F}{\partial v}$,

故而
$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = x\frac{-xsy + \frac{zy}{x}t}{xs + ty} + y\frac{\frac{xz}{y}t - xyt}{xs + ty} = \frac{(xs + yt)(z - xy)}{xs + yt} = z - xy.$$
13. 解: $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(-\frac{Fx}{F_z} \right) = -\frac{F_{xy}F_z^2 - F_{xz}F_yF_z - F_{yz}F_xF_z + yF_{zz}F_xF}{F_z^3}$
易知 $F_x = -3xy$, $F_y = -3xz$, $F_z = 3z^2 - 3xy$

易知
$$F_x = -3xy$$
, $F_y = -3xz$, $F_z = 3z^2 - 3xy$

$$\Rightarrow F_{xx} = F_{yy} = 0, \ F_{zz} = 6z, \ F_{xy} = -3z, \ F_{xz} = -3y, \ F_{yz} = -3x. \Rightarrow \frac{\partial z}{\partial x \partial y} = \frac{z^5 - 2xyz^3 - x^2y^2z}{\left(z^2 - xy\right)^3}.$$

15.
$$\text{MF: } (1)\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = -\frac{F_x}{F_y} = -\frac{x(6z+1)}{2y(3z+1)}; \text{ } \exists \text{ } \exists \text{ } \exists z=2x\,\mathrm{d}\,x+2y\,\mathrm{d}\,y, \text{ } \exists \text{ } \exists y \text{ } \exists z=2x+2y\,\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = \frac{x}{3z+1}.$$

(3) 由
$$\begin{cases} x = e^u \cos v \\ y = e^u \sin v \end{cases}$$
 得 $x^2 + y^2 = e^{2u}$, 所以 $u = \frac{1}{2} \ln(x^2 + y^2)$, 由 $\frac{\mathbb{O}^2}{\mathbb{O}^2}$, 得 $\tan v = \frac{y}{x}$

$$v = \arctan \frac{y}{x}, \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = v \frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} = \frac{2x \arctan \frac{y}{x} - y \ln (x^2 + y^2)}{2(x^2 + y^2)}$$

$$\frac{\partial z}{\partial y} = \frac{y \arctan \frac{y}{x} - x \ln (x^2 + y^2)}{2 \left(x^2 + y^2\right)}, \text{ $\# \oplus \text{$\mathbb{Z}$}$ $\# \oplus \text{$$$

第六节 方向导数与梯度

☞ 教材见 137 页

2. 解: 计算得
$$u_x'(A) = -2$$
, $u_y'(A) = 4$, $u_z'(A) = -2$, 因此 grad $u(A) = (-2, 4, -2)$ 又 $\overrightarrow{AB} = (1, 2, -2)$, 因此其方向余弦向量为 $\left(\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right)$, $\frac{\partial u}{\partial \overrightarrow{AB}}\Big|_A = (-2, 4, -2) \cdot \left(\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right) = \frac{10}{3}$. 4. 解: (1)grad $z(2,1) = \frac{\partial z}{\partial x}\Big|_{(2,1)} \vec{i} + \frac{\partial z}{\partial y}\Big|_{(3,1)} \vec{j} = (16, 18)$; (3)grad $z\left(\frac{\pi}{3}, \frac{\pi}{3}\right) = \frac{\partial z}{\partial x}\Big|_{(\frac{\pi}{3}, \frac{\pi}{3})} \vec{i} = \frac{\partial z}{\partial y}\Big|_{(\frac{\pi}{3}, \frac{\pi}{3})} \vec{j} = \left(-\frac{9\sqrt{3}}{2}, -\frac{3\sqrt{3}}{2}\right)$. (5)grad $u(1,1,0) = \frac{\partial u}{\partial x}\Big|_{(1,1,0)} \vec{i} + \frac{\partial u}{\partial y}\Big|_{(1,1,0)} \vec{j} + \frac{\partial u}{\partial z}\Big|_{(1,1,0)} \vec{k} = (1,1,1)$. 6. 解: 将 $y^2 = 4x$ 两侧对 x 求微分,得: $2y\frac{dy}{dx} = 4 \Rightarrow \frac{dy}{dx} = \frac{2}{y}$, 所以 $\tan\theta = \frac{dy}{dx}\Big|_{(1,2)} = 1$ $\Rightarrow \overrightarrow{e_1} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ 所以 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = \frac{1}{3}$, $\frac{\partial z}{\partial y}\Big|_{(1,2)} = \frac{1}{3}$, 所以 $z(1,2) = \left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) \cdot \overrightarrow{e_1} = \frac{\sqrt{2}}{3}$. 8. 解: 易知方向向量 $\overrightarrow{e_1} = (\cos\alpha, \sin\alpha)$ $\cos\alpha = 0$ 时, $\frac{\partial f}{\partial l}\Big|_{(0,0)} = \lim_{\rho \to 0} \frac{f(\rho\cos\theta, \rho\sin\theta) - f(0,0)}{\rho} = 0 = \cos\alpha\sin\alpha\Big|_{\alpha = \frac{\pi}{2}}$ $\cos\alpha \neq 0$ 时, $\frac{\partial f}{\partial l}\Big|_{(0,0)} = \lim_{\rho \to 0} \frac{f(\rho\cos\theta, \rho\sin\theta) - f(0,0)}{\rho} = \cos\alpha\sin\alpha$ 所以 $\frac{\partial f}{\partial l} = \cos\alpha\sin\alpha$.

第七节 微分法在几何上的应用

☞ 教材见 146 页

1. 解:
$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\sin t$$
, $\frac{\mathrm{d}y}{\mathrm{d}t} = \cos t$, $\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\sec \left(\frac{t}{2}\right)^2}{2}$, 易知 $t = \frac{\pi}{2}$ 所以切线方程为
$$\begin{cases} x + z - 1 = 0 \\ y = 1 \end{cases}$$
, 法平面方程为 $-x + z - 1 = 0$ 3. 解: 平面的一个法向量为 $\overrightarrow{m} = (1, 2, 1)$, 且 $\frac{\mathrm{d}x}{\mathrm{d}t} = 1$, $\frac{\mathrm{d}y}{\mathrm{d}t} = 2t$, $\frac{\mathrm{d}z}{\mathrm{d}t} = 3t^2$ 所以切线的法向量为 $\overrightarrow{n} = (1, 2t, 3t^2)$. 因为 $\overrightarrow{n} \parallel$ 平面,所以 $\overrightarrow{m} \cdot \overrightarrow{n} = 0 \Rightarrow 3t^2 + 4t + 1 = 0$ 解得 $t = -1$ 或 $t = -\frac{1}{3}$,所以点为 $P_1(-1, 1, -1)$ 或 $P_2(-\frac{1}{3}, \frac{1}{9}, -\frac{1}{27})$. 5. 易知 $z = \frac{2}{xy}$ $\frac{\partial z}{\partial x} \Big|_{(2,1,1)} = -\frac{1}{2}$ $\frac{\partial z}{\partial y} \Big|_{(2,1,1)} = -1$ 所以切平面方程为 $z - 1 + \frac{1}{2}(x - 2) + y - 1 = 0 \Rightarrow x + 2y + 2z = 6$ 所以该切平面的法向量为 $\overrightarrow{n}_1 = (1, 2, 2)$,面 $x - y - z = 0$ 的一个法向量为 $\overrightarrow{n}_2 = (1, -1, -1)$ 所以切向量 $\overrightarrow{n} = \overrightarrow{n}_1 \times \overrightarrow{n}_2 \Rightarrow \overrightarrow{n} = (0, 3, -3)$ 或 $(0, -3, 3)$,易知 $\overrightarrow{n} = (0, -3, 3)$ 符合题意

设 y 轴正向的一个方向向量 $\overrightarrow{p} = (0,1,0)$

所以 $\cos \langle \vec{p}, \vec{n} \rangle = \frac{\vec{p} \cdot \vec{n}}{|\vec{n}||\vec{n}|} = -\frac{\sqrt{2}}{2}$,所以切向量与 y 轴正向夹角为 $\frac{3}{4}\pi$,所以 $F_x = 0$, $F_y = 1$, $F_z = 1$

所以在点 (2,1,1) 处的法线方程为 $\frac{x-2}{0} = \frac{y-1}{1} = \frac{z-1}{1}$, 即 $\begin{cases} y-z=0 \\ x-2 \end{cases}$

9. 解: 且平面方程为 $F_x(x-x_0) + F_y(y-y_0) + F_z(z-z_0) = 0 \Rightarrow 3x+2y-3z-4 = 0$

所以平面法向量 $\overrightarrow{m}=(3,2,-3)$, 易知平面 xOy 的法向量 $\overrightarrow{n}=(0,0,1)$

所以
$$\cos < \vec{m}, \vec{n} > = \frac{\vec{m} \cdot \vec{n}}{|\vec{m}| |\vec{n}|} = -\frac{3}{\sqrt{22}}$$
, 易知切平面上有点 $H(1,2,1)$, 面 xOy 上有点 $(0,1,0)$

所以
$$\cos < \vec{m}, \vec{n} > = \frac{\vec{m} \cdot \vec{n}}{|\vec{m}| |\vec{n}|} = -\frac{3}{\sqrt{22}}$$
, 易知切平面上有点 $H(1,2,1)$, 面 xOy 上有点 $(0,1,0)$ 所以 $\overrightarrow{OH} = (1,1,1)$, $\begin{cases} \overrightarrow{OH} \cdot \vec{m} = 2 > 0 \\ \overrightarrow{OH} \cdot \vec{n} = 1 > 0 \end{cases}$, 所以夹角余弦值 $\cos \alpha = -\cos < \vec{m}, \vec{n} > = \frac{3\sqrt{22}}{22}$.

11. 解:
$$x = \frac{\cos t e^t}{2} + \frac{\sin t e^t}{2} - \frac{1}{2}$$
, $\frac{\mathrm{d} x}{\mathrm{d} t} = \cos t e^t$, $\frac{\mathrm{d} y}{\mathrm{d} t} = 2 \cos t - \sin t$, $\frac{\mathrm{d} z}{\mathrm{d} t} = 3 e^{3t}$ 所以切线为 $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$, 法平面方程为 $x + 2(y-1) + 3(z-2) = 0 \Rightarrow x + 2y + 3z - 8 = 0$.

第八节 多元函数的极值

☞ 教材见 159 页

1. 解:
$$(1)\frac{\partial z}{\partial x} = 2x + y - 2$$
, $\frac{\partial z}{\partial y} = x + 2y - 1$,
$$\begin{cases} \frac{\partial z}{\partial x} = 0 \\ \frac{\partial z}{\partial y} = 0 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 0 \end{cases}$$
, 则驻点 $P(1,0)$

$$H_f(P) = \begin{pmatrix} \frac{\partial^2 z}{\partial x^2} & \frac{\partial^2 z}{\partial x \partial y} \\ \frac{\partial^2 z}{\partial x \partial y} & \frac{\partial^2 z}{\partial y^2} \\ \frac{\partial^2 z}{\partial x \partial y} & \frac{\partial^2 z}{\partial y^2} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \text{则 } A > 0, AC - B^2 > 0$$
所以 $H_f(P)$ 是正定矩阵, $f(x,y)$ 在 $(1,0)$ 处有最小值.

$$(2)\frac{\partial z}{\partial x} = 18x^2y^2 - 4x^3y^2 - 3x^2y^2, \ \frac{\partial z}{\partial y} = 12x^3y - 2x^4y - 3x^3y^2$$

所以
$$\begin{cases} \frac{\partial z}{\partial x} = 0 \\ \frac{\partial z}{\partial y} = 0 \end{cases} \Rightarrow \begin{cases} 18 - 4x - 3y = 0 \\ 12 - 2x - 3y = 0 \end{cases} \Rightarrow \begin{cases} x = 3 \\ y = 2 \end{cases}$$
, 所以一个可能驻点为 (3,2)

$$H_f = \begin{pmatrix} -4 & -3 \\ -3 & -3 \end{pmatrix}, \text{ MI } A < 0, AC - B^2 > 0$$

所以 $H_f(P)$ 是负定矩阵, 在 (3,2) 处有极大值 108.

(3) 令 $U(x,y)=x^2+y^2$, 易知 $\delta(x,y)$ 与 U(x,y) 的增减性恰好相反

对于
$$U(x,y)$$
, $\frac{\partial U}{\partial x} = 2x$, $\frac{\partial U}{\partial y} = 2y$, 所以
$$\begin{cases} \frac{\partial U}{\partial x} = 0 \\ \frac{\partial U}{\partial y} = 0 \end{cases} \Rightarrow 驻点 (0,0)$$

由 $U(x,y) = x^2 + y^2$ 的几何意义知

 $U(x,y) = x^2 + y^2$ 是开口向上的一个旋转抛物面, 顶点为 (0,0,0)

所以极小值点为 (0,0),z = f(x,y) 在 (0,0) 处取得最大值 1.

(4) 有基本不等式且
$$x > 0, y > 0$$
 得, $z \ge 3\sqrt[3]{\frac{8}{x} \times \frac{x}{y} \times y} = 6$

当且仅当
$$\frac{8}{x} = \frac{x}{y} = y$$
 时,即
$$\begin{cases} y^2 = x \\ \delta y = x^2 \end{cases}$$
 时取等,此时极小值点 $P(4,2)$,极小值为 6.

3. 解:
$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z} = -\frac{2x-2}{2z-4}, \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{2y+2}{2z-4}, \begin{cases} \frac{\partial z}{\partial x} = 0\\ \frac{\partial z}{\partial y} = 0 \end{cases}$$
 ⇒ 有驻点 $(1,-1)$

将
$$x = 1, y = 1$$
 代入 $F(x, y, z) = 0$ 得 $z^2 - 4z - 12 = 0$ $z = 2$ 或 $z = 6$

所以易知 z 的极大值为 6, 极小值为-2.

$$H_f(2,-2) = \begin{pmatrix} \frac{\partial^2 z}{\partial x^2} & \frac{\partial^2 z}{\partial x \partial y} \\ \frac{\partial^2 z}{\partial x \partial y} & \frac{\partial^2 z}{\partial y^2} \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}, \text{ MI } A <, AC - B^2 > 0$$

所以 H_f 是负定矩阵, f(x,y) 在 (2,-2) 处有极大值 16.

7. 解:
$$\begin{cases} 2p = 2x + 2y \\ z = x^2 \pi xy \end{cases}$$
 , $p = x + y = \frac{x}{2} + \frac{x}{2} + y \ge 3\sqrt[3]{\frac{x^2}{4}y}$, 当且仅当 $\frac{x}{2} = \frac{x}{2} = y$ 时取等,

所以
$$\frac{x^2}{4}y\leqslant \frac{p^3}{27}$$
, 所以 $z\leqslant \frac{\pi p^3}{27}$, 所以长与宽分别是 $\frac{2}{3}p$ 与 $\frac{1}{3}p$.

9. 解:椭球的参数方程为
$$\begin{cases} x = sin\varphi cos\theta \\ y = sin\varphi sin\theta, \quad 0 < \theta < \frac{\pi}{2} \\ z = 2cos\varphi, \qquad 0 < \varphi < \frac{\pi}{2} \end{cases}$$

易知切平面方程为
$$2x_0(x-x_0)+2y_0(y-y_0)+\frac{z_0}{2}(z-z_0)=0$$

所以
$$f(x,y,z) = \frac{1}{x^2} + \frac{1}{y^2} + \frac{16}{z^2}$$

$$L = \frac{1}{x^2} + \frac{1}{y^2} + \frac{16}{z^2} + a(x^2 + y^2 + \frac{{z_0}^2}{4} - 1), x_0 > 0, y_0 > 0, z_0 > 0$$

$$\begin{cases} L_x = -\frac{2}{x_0^3} + 2ax_0 = 0 \\ L_y = -\frac{2}{y_0^3} + 2ay_0 = 0 \\ L_z = -\frac{32}{z_0^3} + \frac{az_0}{2} = 0 \\ x_0^2 + y_0^2 - \frac{z_0^2}{1} = 1 \end{cases} \Rightarrow \begin{cases} x_0 = \frac{1}{2} \\ y_0 = \frac{1}{2} \\ z_0 = \sqrt{2} \end{cases}, 所以点为 (\frac{1}{2}, \frac{1}{2}, \sqrt{2}).$$

13. 解: 易知切平面方程为
$$\frac{2x_0}{a^2}(x-x_0) + \frac{2y_0}{b^2}(y-y_0) + \frac{2z_0}{c^2}(z-z_0) = 0$$
 令 $y, z = 0$ 得 $x = \frac{a^2}{x_0}$,同理得 $y = \frac{b^2}{y_0}, z = \frac{c^2}{z_0}$,所以 $V = \frac{a^2b^2c^2}{6x_0y_0z_0}$, $1 = \frac{x_0}{a^2} + \frac{y_0}{b^2} + \frac{z_0}{c^2} \geqslant 3\sqrt[3]{\frac{x_0y_0z_0}{abc}}$ 所以 $\sqrt[3]{\frac{x_0y_0z_0}{abc}} \leqslant \frac{1}{3}$,当且仅当 $\frac{x_0}{a} = \frac{y_0}{b} = \frac{z_0}{c}$ 时取等,且 $\frac{x_0}{a^2} + \frac{y_0}{b^2} + \frac{z_0}{c^2} = 1$

所以
$$\begin{cases} x_0 = \frac{a}{\sqrt{3}} \\ y_0 = \frac{b}{\sqrt{3}} \\ z_0 = \frac{c}{\sqrt{3}} \end{cases}$$
,即点 $\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}, \frac{c}{\sqrt{3}}\right)$.

总习题七

☞ 教材见 176 页

2. 证明: 易知函数等价于 $z^2 = x^2 + y^2$, 在空间中为顶点在 (0,0,0) 处的椭圆锥面. 故函数在 (0,0) 的各个方向均连续, 又有 $\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}$, $\frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$ 二者在 (0,0) 处均无意义. 所以两个一阶偏导数均不存在.

$$4. \ \, \widetilde{\mathbb{H}} \colon \, \frac{\partial u}{\partial x} = y^z x^{y^{z-1}}; \qquad \, \frac{\partial u}{\partial y} = z x^{y^z} y^{z-1} \ln x; \qquad \, \frac{\partial u}{\partial z} = y^z x^{y^z} \ln x \cdot \ln y.$$

6. 解: 对组中两个式子分别对 x,z 求导, 得:

$$\begin{cases}
1 = -2uu_x + v_x (1) \\
0 = u_x + zv_x (2) \\
0 = -2uu + v_z + 1 (3) \\
0 = u_z + v + zv_z (4)
\end{cases}$$

由(1)(2)解得:

$$\frac{\partial u}{\partial x} = -\frac{z}{2uz+1}, \quad \frac{\partial v}{\partial x} = \frac{1}{2uz+1}$$

由(3)(4)解得:

$$\frac{\partial u}{\partial z} = \frac{z - v}{2uz + 1}.$$

8. 解:

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{4x + 2y - 2}{4 - 2z}; \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{2y + 2x - 2}{4 - 2z}.$$

令两偏导均等于零, 得 x = 0, y = 1. 代回, 得 $z^2 - 4z + 3 = 0$ 解得 z = 1 或 z = 3 对方程左右求二阶偏导, 得:

$$\begin{cases} z_{xx} = \frac{2z_x^2 + 4}{4 - 2z}; \\ z_{yy} = \frac{2z_y^2 + 2}{4 - 2z}; \\ z_{xy} = \frac{2 + z_x z_y}{4 - 2z}. \end{cases}$$

$$H_f(x,y,z)=\begin{pmatrix} z_{xx}&z_{xy}\\ z_{xy}&z_{yy} \end{pmatrix}$$
,所以 $H_f(0,1,1)=\begin{pmatrix} 2&1\\ 1&1 \end{pmatrix}=1>0, z_{xx}>0$ 所以 $z=1$ 为 $z(x,y)$ 的极小值;

因为
$$Hf(0,1,3) = \begin{pmatrix} -2 & -1 \\ -1 & -1 \end{pmatrix} = 1 > 0, z_{xx} < 0$$
, 所以 z=3 为 $z(x,y)$ 的极大值.

10.
$$\Re: f(x, y, z) = \ln(xyz^3)$$

所以
$$5r^2 = x^2 + y^2 + \frac{z^2}{3} + \frac{z^2}{3} + \frac{z^2}{3} \geqslant 5\sqrt[5]{\frac{(xyz^3)^2}{27}}$$
,所以 $xyz^3 \leqslant 3\sqrt{3}r^5$

所以
$$f(x,y,z) \leqslant \ln\left(3\sqrt{3}r^5\right) = \ln\left[3\sqrt{3}\left(\frac{x^2+y^2+z^2}{5}\right)^{\frac{5}{2}}\right] \Rightarrow x^2y^2z^6 \leqslant 27\left(\frac{x^2+y^2+z^2}{5}\right)^{\frac{5}{2}}$$

当
$$x^2 = a, y^2 = b, z^2 = c$$
, 有

$$abc^3 \leqslant 27 \left(\frac{a+b+c}{5}\right)^5.$$

12.
$$W : V = \frac{1}{3}a\pi h^2 = \frac{4\pi p (p-a) (p-b) (p-c)}{3a}$$
.

两侧取对数,得

$$\ln V = \ln (p - a) + \ln (p - b) + \ln (p - c) - \ln a + \ln \frac{4\pi p}{3}.$$

$$f(a,b,c) = \ln(p-a) + \ln(p-b) + \ln(p-c) - \ln a.$$

记
$$L = \ln(p-a) + \ln(p-b) + (p-c) - \ln a + \lambda(a+b+c-2p)$$

$$i \exists L = \ln(p-a) + \ln(p-b) + (p-c) - \ln a + \lambda (a+b+c-2p)
L_a = -\frac{1}{p-a} + \lambda - \frac{1}{a} = 0
L_b = -\frac{1}{p-b} + \lambda
L_c = -\frac{1}{p-c} + \lambda
a+b+c-2p = 0$$

$$\Rightarrow \begin{cases} a = \frac{p}{2} \\ b = c = \frac{3p}{4} \end{cases}, \text{ If } V_{\text{max}} = V\left(\frac{p}{2}, \frac{3p}{4}, \frac{3p}{4}\right) = \frac{\pi}{12}p^3.$$

☞ 习题见第 113 页

第一节 二重积分的概念及性质

☞ 教材见 184 页

2. 解: (1) 该积分表示的是以 R 为半径的上半球的体积,则

$$\iint\limits_{\Gamma} \sqrt{R^2 - x^2 - y^2} \, \mathrm{d} \, \sigma = \frac{1}{2} \times \frac{4}{3} \times \pi R^3 = \frac{2}{3} \pi R^3.$$

(2) 该积分表示的是以 R 为底面半径,H 为高的圆锥的体积,则

$$\iint\limits_{\mathcal{D}} H - \frac{H}{R} \sqrt{x^2 + y^2} \, \mathrm{d}\, \sigma = \frac{1}{3} \times \pi R^2 \times H = \frac{1}{3} \pi R^2 H.$$

3. $\Re: (1) \sin^2 x \leqslant x^2$, $\Re \sin^2 (x+y) \leqslant (x+y)^2$, \Re

$$\iint\limits_{D} \sin^2(x+y) \, d\sigma < \iint\limits_{D} (x+y)^2 \, d\sigma.$$

(2) $1 \leqslant x + y \leqslant 2$, \mathbb{M} $0 \leqslant \ln(x + y) \leqslant 1$, \mathbb{M} $\ln(x + y) \geqslant \ln^2(x + y)$, \mathbb{M}

$$\iint\limits_{D} \ln(x+y) d\sigma > \iint\limits_{D} \ln^{2}(x+y) d\sigma.$$

(3) $3 \le x + y \le 6$, $\mathbb{M} \ln(x + y) > 1$, $\mathbb{M} \ln(x + y) < \ln^2(x + y)$, \mathbb{M}

$$\iint\limits_{D} \ln(x+y) d\sigma < \iint\limits_{D} \ln^{2}(x+y) d\sigma.$$

(4) $e^x \geqslant 1 + x$, $\mathbb{M} e^{x^2 + y^2} \geqslant 1 + x^2 + y^2$, \mathbb{M}

$$\iint_{D} e^{x^{2} + y^{2}} d\sigma > \iint_{D} 1 + x^{2} + y^{2} d\sigma.$$

4. 解: (1) $0 \leqslant \sin^2 x \sin^2 y \leqslant 1$, 则 $\iint\limits_D 0 \,\mathrm{d}\,\sigma \leqslant I \leqslant \iint\limits_D 1 \,\mathrm{d}\,\sigma$, 则

$$0 \leqslant I \leqslant \pi^2$$
.

$$(2) \ 1\leqslant x+y+1\leqslant 4, \ \mathbb{M} \ \iint\limits_{D} 1 \,\mathrm{d}\,\sigma\leqslant I\leqslant \iint\limits_{D} 4 \,\mathrm{d}\,\sigma, \ \mathbb{M}$$

$$2 \leqslant I \leqslant 8$$
.

$$(3) \ 0\leqslant \sqrt[4]{xy(x+y)}\leqslant 2, \ \mathbb{M} \ \iint\limits_{D} 0\,\mathrm{d}\,\sigma\leqslant I\leqslant \iint\limits_{D} 2\,\mathrm{d}\,\sigma, \ \mathbb{M}$$

$$0\leqslant I\leqslant 8.$$

(4)
$$1 \leqslant x^2 + y^2 + 1 \leqslant 17$$
, 则 $\iint_D 1 \, \mathrm{d}\, \sigma \leqslant I \leqslant \iint_D 17 \, \mathrm{d}\, \sigma$, 则
$$12\pi \leqslant I \leqslant 204\pi.$$

第二节 二重积分的计算

☞ 教材见 201 页

$$(2) \iint_{D} x \cos(x+y) d\sigma = 4 \int_{0}^{\pi} dx \int_{0}^{x} x \cos(x+y) dy = 4 \int_{0}^{\pi} x \sin(x+y) \Big|_{0}^{x} dx$$
$$= \left(-\frac{x}{2} \cos 2x + \frac{1}{4} \sin 2x + x \cos x - \sin x \right) \Big|_{0}^{\pi}$$
$$= -\frac{\pi}{2} - \pi = -\frac{3\pi}{2}.$$

$$(3) \iint\limits_D x e^{x^2 + y} d\sigma = \int_0^4 dx \int_1^3 x e^{x^2 + y} dy = \int_0^4 \left(x e^{x^2 + y} \Big|_1^3 \right) dx$$
$$= \frac{1}{2} \int_0^4 e^{x^2 + 3} - e^{x^2 + 1} d(x^2) = \frac{1}{2} \left(e^{19} - e^{17} - e^3 + e \right).$$

$$(4) \iint_{D} x^{2}y \sin(xy^{2}) d\sigma = -\frac{1}{2} \int_{0}^{\frac{\pi}{2}} dx \int_{0}^{2} x^{2}y \sin(xy^{2}) dy = 4 \int_{0}^{\frac{\pi}{2}} x \cos(xy^{2}) \Big|_{0}^{2} dx$$
$$= -\frac{1}{2} \left(-\frac{x}{4} \sin 4x - \frac{1}{16} \cos 4x - \frac{1}{2} x^{2} \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi^{2}}{16}.$$

$$(2) \iint_{D} x\sqrt{y} \, d\sigma = \int_{0}^{1} dy \int_{y^{2}}^{\sqrt{y}} x\sqrt{y} \, dy = \frac{1}{2} \int_{0}^{1} \left(x^{2} \sqrt{y} \Big|_{y^{2}}^{\sqrt{y}} \right) dy = \frac{1}{2} \int_{0}^{1} \left(y^{\frac{3}{2}} - y^{\frac{9}{2}} \right) dy$$
$$= \frac{1}{2} \times \left(\frac{2}{5} - \frac{2}{11} \right) = \frac{6}{55}.$$

(3)
$$\iint_D (x^2 + y^2 - y) d\sigma = \int_0^2 dy \int_y^{2y} (x^2 + y^2 - y) dx = \int_0^2 \left(\frac{10}{3}y^3 - y^2\right) dy$$
$$= \frac{5}{3} \times 8 - \frac{8}{3} = \frac{32}{3}.$$

$$(4) \iint_D xy^2 d\sigma = 2 \int_0^2 dy \int_0^{\sqrt{4-y^2}} xy^2 dx = 2 \int_0^2 \frac{1}{2} x^2 y^2 \Big|_0^{\sqrt{4-y^2}} dy$$
$$= \left(\frac{4}{3} y^3 - \frac{1}{5} y^5 \right) \Big|_0^2 = \frac{4}{3} \times 8 - \frac{32}{5} = \frac{64}{15}.$$

4.
$$\mathbb{R}$$
: $(1) \int_0^{\sqrt{\pi}} dx \int_x^{\sqrt{\pi}} \sin(y^2) dy = \int_0^{\sqrt{\pi}} dy \int_0^y \sin(y^2) dx = \int_0^{\sqrt{\pi}} y \sin(y^2) dy = -\frac{1}{2} \cos(y^2) \Big|_0^{\sqrt{\pi}} = -\frac{1}{2} \times (-2) = 1.$

$$(2) \int_{2}^{4} dy \int_{\frac{y}{2}}^{2} e^{x^{2}-2x} dx = \int_{1}^{2} dx \int_{2}^{2x} e^{x^{2}-2x} dy = 2 \int_{1}^{2} (x-1) e^{x^{2}-2x} dx = \int_{1}^{2} e^{x^{2}-2x} d(x^{2}-2x) dx = \int_{1}^{2} e^{x^{2}-2x} dx =$$

$$(3) \int_{1}^{2} \mathrm{d} x \int_{\sqrt{x}}^{x} \sin\left(\frac{\pi x}{2y}\right) \mathrm{d} y + \int_{2}^{4} \mathrm{d} x \int_{\sqrt{x}}^{2} \sin\left(\frac{\pi x}{2y}\right) \mathrm{d} y = \int_{1}^{2} \mathrm{d} y \int_{y}^{y^{2}} \sin\left(\frac{\pi x}{2y}\right) \mathrm{d} x$$

$$= -\frac{2}{\pi} \int_{1}^{2} \left(y \cos\left(\frac{\pi}{2}y\right)\right) \mathrm{d} y$$

$$= -\frac{2}{\pi} \times \left(-\frac{2}{\pi} - \frac{4}{\pi^{2}}\right) = \frac{4}{\pi^{3}} (\pi + 2).$$

$$(4) \int_{\frac{1}{4}}^{\frac{1}{2}} dy \int_{\frac{1}{2}}^{\sqrt{y}} e^{\frac{y}{x}} dx + \int_{\frac{1}{2}}^{\sqrt{y}} dy \int_{y}^{\sqrt{y}} e^{\frac{y}{x}} dx = \int_{\frac{1}{2}}^{1} dx \int_{x^{2}}^{x} e^{\frac{y}{x}} dy$$

$$= \int_{\frac{1}{2}}^{1} e^{\frac{y}{x}} \Big|_{x^{2}}^{x} dx = \int_{\frac{1}{2}}^{1} (ex - xe^{x}) dx = \frac{3}{8}e - \frac{\sqrt{e}}{2}.$$

5. 证明:

$$\iint_D f_1(x) \cdot f_2(y) \, \mathrm{d} x \, \mathrm{d} y = \int_a^b \mathrm{d} x \int_c^d f_1(x) \cdot f_2(y) \, \mathrm{d} y$$

$$= \int_a^b f_1(x) \, \mathrm{d} x \int_c^d f_2(y) \, \mathrm{d} y$$

$$= \left[\int_a^b f_1(x) \, \mathrm{d} x \right] \cdot \left[\int_c^d f_2(y) \, \mathrm{d} y \right].$$

6.
$$\Re: (1)$$
 $V = \iint_D (6 - 2x - 3y - 0) dx dy = \int_0^1 dx \int_0^1 (6 - 2x - 3y) dy = \int_0^1 \left(6 - 2x - \frac{3}{2}\right) dx = \frac{7}{2}$.

(2)
$$V = \iint_D (6 - x^2 - y^2 - 0) dx dy = \int_0^1 dy \int_0^{1-x} (6 - x^2 - y^2) dy$$

= $\int_0^1 (6 - 6x - x^2 + x^3 + \frac{1}{3}(x - 1)^3) dx = 3 - \frac{1}{3} + \frac{1}{4} - \frac{1}{12} = \frac{17}{6}$.

(3) 由
$$x^2 + 2y^2 = 6 - 2x^2 - y^2$$
 可知 D 为: $x^2 + y^2 \leqslant 2$.

$$V = \iint_{D} (6 - 2x^{2} - y^{2} - x^{2} - 2y^{2}) dx dy = 3 \iint_{D} (2 - x^{2} - y^{2}) dx dy$$
$$= 3 \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2}} (2 - \rho^{2}) \rho d\rho = 6\pi \times (2 - 1) = 6\pi.$$

8.
$$\Re: (1) \int_0^2 dx \int_0^{\sqrt{2x-x^2}} (x^2 + y^2) dy = \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \rho^3 d\rho$$

$$= 4 \int_0^{\frac{\pi}{2}} \cos^4\theta d\theta = 4 \times \frac{3}{4 \times 2} \times \frac{\pi}{2} = \frac{3\pi}{4}.$$

$$(2) \int_0^a dx \int_0^x \sqrt{x^2 + y^2} dy = \int_0^{\frac{\pi}{4}} d\theta \int_0^{\frac{a}{\cos \theta}} \rho^2 d\rho$$

$$= \frac{a^3}{3} \int_1^{\frac{\pi}{4}} \sec^3 \theta d\theta = \frac{a^3}{3} \left(\sec \theta \tan \theta - \frac{1}{2} \sec^2 \theta \right) \Big|_0^{\frac{\pi}{4}} = \frac{a^3}{3} \left(\sqrt{2} - \frac{1}{2} \right).$$

注: 该题结果与答案不一样, 经检验, 未发现错误, 如果发现请联系本节作者.

$$(3) \int_0^1 dx \int_{x^2}^x (x^2 + y^2)^{\frac{1}{2}} dy = \int_0^{\frac{\pi}{4}} d\theta \int_0^{\frac{\sin\theta}{\cos^2\theta}} d\rho$$
$$= \int_0^{\frac{\pi}{4}} \frac{\sin\theta}{\cos^2\theta} d\theta = -\int_0^{\frac{\pi}{4}} \frac{1}{\cos^2\theta} d(\cos\theta) = \sqrt{2} - 1.$$

$$(4) \int_0^a \mathrm{d}y \int_0^{\sqrt{a^2 - y^2}} \left(x^2 + y^2\right) \mathrm{d}x = \int_0^{\frac{\pi}{2}} \mathrm{d}\theta \int_0^a \rho^3 \, \mathrm{d}\rho = \frac{\pi}{2} \times \frac{a^3}{4} = \frac{\pi}{8}a^4.$$

9. 解: (1) 由题可知

$$\iint\limits_{D} \ln \left(1 + x^2 + y^2 \right) \mathrm{d}\,\sigma = \int_0^{\frac{\pi}{2}} \mathrm{d}\,\theta \int_0^1 \rho \ln \left(1 + \rho^2 \right) \mathrm{d}\,\rho = \frac{\pi}{4} \int_0^1 \ln \left(1 + x \right) \mathrm{d}\,x = \frac{\pi}{4} \left(2 \ln 2 - 1 \right).$$

(2) 由题可知

$$\iint\limits_{D}\arctan\left(\frac{y}{x}\right)\mathrm{d}\,\sigma=\int_{0}^{\frac{\pi}{4}}\mathrm{d}\,\theta\int_{1}^{2}\rho\arctan\left(\frac{\rho\sin\theta}{\rho\cos\theta}\right)\mathrm{d}\,\rho=\int_{0}^{\frac{\pi}{4}}\theta\,\mathrm{d}\,\theta\int_{1}^{2}\rho\,\mathrm{d}\,\rho=\frac{\pi^{2}}{32}\times\frac{3}{2}=\frac{3}{64}\pi^{2}.$$

(3) 由题可知

$$\iint\limits_{D} \frac{x+y}{x^2+y^2} \, \mathrm{d}\,\sigma = \int_0^{\frac{\pi}{2}} \, \mathrm{d}\,\theta \int_{\frac{1}{\cos\theta+\sin\theta}}^1 \left(\cos\theta+\sin\theta\right) \, \mathrm{d}\,\rho = \int_0^{\frac{\pi}{2}} \left(\cos\theta+\sin\theta-1\right) \, \mathrm{d}\,\theta = 2-\frac{\pi}{2}.$$

(4) 由题可知

$$\iint\limits_{D} \left(\frac{1-x^2-y^2}{1+x^2+y^2}\right)^{\frac{1}{2}} \mathrm{d}\,\sigma = \int_{0}^{\frac{\pi}{2}} \mathrm{d}\,\theta \int_{0}^{1} \sqrt{\frac{1-\rho^2}{1-\rho^2}} \rho \,\mathrm{d}\,\rho = \frac{\pi}{4} \int_{0}^{1} \sqrt{\frac{1-t}{1+t}} \,\mathrm{d}\,t$$

$$\frac{\text{分子分母同时乘以}_{1-t}}{\text{再三角换元}} \,\frac{\pi}{4} \times \int_{0}^{\frac{\pi}{2}} \frac{1-\sin\alpha}{\cos\alpha} \,\mathrm{d}(\sin\alpha) = \frac{\pi}{4} \left(\frac{\pi}{2}-1\right).$$

10. 解: (1) 由题可知
$$D$$
:
$$\begin{cases} x^2 + y^2 \leqslant ax \\ z = 0 \end{cases}$$

$$V = \iint\limits_{D} \left(x^2 + y^2 - 0 \right) \mathrm{d}\,\sigma = 2 \int_0^{\frac{\pi}{2}} \mathrm{d}\,\theta \int_0^{a\cos\theta} \rho^3 \,\mathrm{d}\,\rho = \frac{a^4}{2} \int_0^{\frac{\pi}{2}} \cos^4\theta \,\mathrm{d}\,\theta = \frac{a^4}{2} \times \frac{3}{4 \times 2} \times \frac{\pi}{2} = \frac{3\pi}{64} a^4.$$

(2) 由题可知
$$D$$
:
$$\begin{cases} x^2 + y^2 \leqslant \frac{1}{2} \\ z = 0 \end{cases}$$

$$V = \iint_{D} \sqrt{1 - x^2 - y^2} - \sqrt{x^2 + y^2} \, d\sigma = 4 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\frac{\sqrt{2}}{2}} \left(\rho \sqrt{1 - \rho^2} - \rho^2\right) d\rho$$
$$= 2\pi \int_{0}^{\frac{1}{2}} \sqrt{1 - t} \, dt - 2\pi \int_{0}^{\frac{\sqrt{2}}{2}} \rho^2 \, d\rho = \frac{2\pi}{3} \times \left(1 - \frac{\sqrt{2}}{4}\right) - \frac{2\pi}{3} \times \frac{\sqrt{2}}{4} = \frac{\pi}{3} \left(2 - \sqrt{2}\right).$$

第三节 三重积分

☞ 教材见 220 页

3.
$$\mathbf{\widetilde{H}} \colon (1) \iiint_{\Omega} xz \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z = \int_{-1}^{1} \mathrm{d} x \int_{x^{2}}^{1} \mathrm{d} y \int_{0}^{y} xz \, \mathrm{d} z = \frac{1}{2} \int_{0}^{1} \mathrm{d} x \int_{x^{2}}^{1} xy^{2} \, \mathrm{d} y = \frac{1}{6} \int_{-1}^{1} \left(x - x^{7} \right) \, \mathrm{d} x = 0.$$

法二: 由于积分区间关于平面 yOz 对称,同时被积函数是关于 x 的奇函数,则根据"偶倍奇零"可直接得出答案 0.

$$(2) \iiint_{\Omega} \frac{1}{(1+x+y)^3} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_0^1 \, \mathrm{d}x \int_0^{1-x} \, \mathrm{d}y \int_0^{1-x-y} \frac{1}{(1+x+y)^3} \, \mathrm{d}z$$
$$= \int_0^1 \, \mathrm{d}x \int_0^{1-x} \left(-\frac{1}{8} + \frac{1}{2(1+x+y)^2} \right) \, \mathrm{d}y = -\int_0^1 \left(\frac{1-x}{8} + \frac{1}{4} - \frac{1}{2(1+x)} \right) \, \mathrm{d}x = \frac{1}{2} \left(\ln 2 - \frac{5}{8} \right).$$

$$(3) \iiint_{\Omega} xyz \, dx \, dy \, dz = \int_{0}^{1} dx \int_{0}^{\sqrt{1-x^{2}}} dy \int_{0}^{\sqrt{1-x^{2}-y^{2}}} xyz \, dz = \frac{1}{2} \int_{0}^{1} dx \int_{0}^{\sqrt{1-x^{2}}} xy \left(1 - x^{2} - y^{2}\right) dy$$
$$= \frac{1}{8} \int_{0}^{1} \left(x - 2x^{3} + x^{5}\right) dx = \frac{1}{48}.$$

(4)
$$\iiint_{\Omega} z \, dx \, dy \, dz = \int_{0}^{h} z \, dz \iint_{\Omega} dx \, dy = \frac{\pi R^{2}}{h^{2}} \int_{0}^{h} z^{3} \, dz = \frac{\pi}{4} RH.$$

$$(5) \, \diamondsuit \, u = \frac{x}{a}, \, v = \frac{y}{b}, \, w = \frac{z}{c}, \, \mathbb{M} \, \operatorname{d} x \operatorname{d} y \operatorname{d} z = abc \operatorname{d} u \operatorname{d} v \operatorname{d} w, \, \Omega \, \not\supset \, u^2 + v^2 + w^2 \leqslant 1$$

$$\begin{split} \iiint\limits_{\Omega} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right) \mathrm{d}\,x\,\mathrm{d}\,y\,\mathrm{d}\,z &= \iiint\limits_{\Omega} \left(u^2 + v^2 + w^2\right) abc\,\mathrm{d}\,u\,\mathrm{d}\,v\,\mathrm{d}\,w \\ &= abc \int_0^1 \mathrm{d}\,u \int_0^{1-u^2} \mathrm{d}\,v \int_0^{1-u^2-v^2} \left(u^2 + v^2 + w^2\right) \mathrm{d}\,w \\ &= \frac{\underline{\&} \mp i + \frac{g}{2}\underline{g}\underline{+}}{\underline{\&} + \underline{\&} + \underline{\&}$$

4.
$$\Re : (1) \iiint_{\Omega} (x^2 + y^2) \, dx \, dy \, dz = \int_0^{2\pi} d\theta \int_0^3 \rho^3 \, d\rho \int_0^{9-\rho^2} dz$$

$$= 2\pi \int_0^3 (9\rho^3 - \rho^5) \, d\rho = 2\pi \left(\frac{9}{4} \times 81 - \frac{243}{2}\right) = \frac{243}{2}\pi.$$

$$(2) \iiint\limits_{\Omega} z \, \mathrm{d} \, x \, \mathrm{d} \, y \, \mathrm{d} \, z = \int_{0}^{2\pi} \mathrm{d} \, \theta \int_{0}^{1} \rho \, \mathrm{d} \, \rho \int_{\rho^{2}}^{\sqrt{2-\rho^{2}}} z \, \mathrm{d} \, z = \pi \int_{0}^{1} \left(2\rho - \rho^{3} - \rho^{5} \right) \, \mathrm{d} \, \rho = \pi \left(1 - \frac{1}{4} - \frac{1}{6} \right) = \frac{7}{12} \pi.$$

(3)
$$\iiint_{\Omega} \sqrt{x^2 + y^2} \, dx \, dy \, dz = \int_0^{2\pi} d\theta \int_0^4 \rho^2 \, d\rho \int_0^{4-\rho \sin \theta} dz = \int_0^{2\pi} d\theta \int_0^4 (4 - \rho \sin \theta) \, d\rho$$
$$= \frac{8\pi}{3} \times 64 = \frac{512}{3} \pi.$$

5. 解: (1)
$$\iint_{\Omega} x e^{\frac{x^2 + y^2 + z^2}{a^2}} \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z = a^4 \int_0^{\frac{\pi}{2}} \, \mathrm{d} \theta \int_0^{\frac{\pi}{2}} \, \mathrm{d} \varphi \int_0^a r^3 e^{r^2} \sin^2 \varphi \cos \theta \, \mathrm{d} r$$

$$= \int_0^{\frac{\pi}{2}} \cos \theta \, \mathrm{d} \theta \int_0^{\frac{\pi}{2}} \sin^2 \varphi \, \mathrm{d} \varphi \int_0^a r^3 e^{r^2} \, \mathrm{d} r$$

$$= a^4 \times 1 \times \frac{\pi}{4} \times \frac{1}{2} \left(a^2 e^{a^2} - a^{a^2} + 1 \right) = \frac{\pi a^4}{8} \left(a^2 e^{a^2} - a^{a^2} + 1 \right).$$

注: 该题结果与答案不一样, 经检验, 未发现错误, 如果发现请联系本节作者.

(2)
$$\iiint_{\Omega} \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{2}} \sin \varphi \, d\varphi \int_{0}^{\cos \varphi} r^3 \, dr
= -\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \cos^4 \varphi \, d(\cos \varphi) = \frac{\pi}{2} \times \frac{1}{5} = \frac{\pi}{10}.$$

(3)
$$\iiint_{\Omega} z \, dx \, dy \, dz = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{2}} \sin\varphi \cos\varphi \, d\varphi \int_{0}^{2a\cos\varphi} r^{3} \, dr$$
$$= -8\pi a^{4} \int_{0}^{\frac{\pi}{4}} \cos^{5}\varphi \, d(\cos\varphi) = \frac{4}{3}\pi a^{4} \times \left(1 - \frac{1}{8}\right) = \frac{7}{6}\pi a^{4}.$$

7.
$$\Re : (1) \iiint_{\Omega} \sin z \, dx \, dy \, dz = \int_{0}^{\pi} \sin z \, dz \iint_{D} dx \, dy = \pi \int_{0}^{\pi} z^{2} \sin z \, dz = \pi^{3} - 4\pi.$$

(2)
$$\iint_{\Omega} e^{\sqrt{x^2 + y^2 + z^2}} dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{4}} \sin \varphi d\varphi \int_{0}^{1} r^2 e^r dr$$

$$= 2\pi \left(e - 2e + 2e - 2 \right) \times \frac{1}{5} \times 4\sqrt{2} = \pi \left(2 - \sqrt{2} \right) (e - 2).$$

(3)
$$\iiint_{\Omega} (x^2 + y^2) dx dy dz = \int_0^{2\pi} d\theta \int_0^2 \rho^3 d\rho \int_{\frac{5}{2}\rho}^5 dz = 10\pi \int_0^2 (\rho^3 - \frac{1}{2}\rho^4) d\rho = 40\pi - 32\pi = 8\pi.$$

$$(4) \iiint_{\Omega} (x^2 + y^2) dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{2}} \sin^3 \varphi d\varphi \int_{a}^{A} r^4 dr = 2\pi \times \frac{2}{3} \times \frac{1}{5} (A^5 - a^5) = \frac{4\pi}{15} (A^5 - a^5).$$

8.
$$\Re: (1) V = \iiint_{\Omega} dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{2} \rho d\rho \int_{\rho}^{6-\rho^{2}} dz = 2\pi \int_{0}^{2} (6\rho - \rho^{3} - \rho^{2}) d\rho$$
$$= 2\pi \times \left(12 - 4 - \frac{8}{3}\right) = \frac{32}{3}\pi.$$

$$(2) \ V = \iiint\limits_{\Omega} \mathrm{d}\, x \, \mathrm{d}\, y \, \mathrm{d}\, z = \int_0^{2\pi} \mathrm{d}\, \theta \int_0^{\frac{\pi}{4}} \sin\varphi \, \mathrm{d}\, \varphi \int_0^{2a\cos\varphi} r^2 \, \mathrm{d}\, r = -\frac{4}{3}\pi a^3 \times \left(1 - \frac{1}{4}\right) = \pi a^3.$$

(3)
$$V = \iiint_{\Omega} dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{2} \rho d\rho \int_{\frac{\rho^{2}}{4}}^{\sqrt{5-\rho^{2}}} dz$$

 $= \pi \int_{0}^{2} \left(\sqrt{5-\rho^{2}} - \frac{\rho^{2}}{4} \right) d(\rho^{2})$
 $= \pi \times \left(\frac{2}{3} \left(5\sqrt{5} - 1 \right) - 2 \right) = \frac{2\pi}{3} \left(5\sqrt{5} - 4 \right).$

第四节 重积分的应用

1.
$$\begin{aligned} \text{MF: } (1) \ S &= \iint\limits_{(x-1)^2 + y^2 \leqslant 1} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, \mathrm{d} \, x \, \mathrm{d} \, y \\ &= \iint\limits_{D_{xy}} \sqrt{1 + \left(\frac{x}{\sqrt{x^2 + y^2}}\right)^2 + \left(\frac{y}{x^2 + y^2}\right)^2} \, \mathrm{d} \, x \, \mathrm{d} \, y = \iint\limits_{D_{xy}} \sqrt{2} \, \mathrm{d} \, x \, \mathrm{d} \, y \\ &= \sqrt{2} \iint\limits_{D_{xy}} \, \mathrm{d} \, \sigma = \sqrt{2} \pi \times 1^2 = \sqrt{2} \pi. \end{aligned}$$

$$(2) S = \iint_{(x-\frac{a}{2})^2 + y^2 \leq \frac{a^2}{4}} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dx \, dy$$

$$= \iint_{D_{xy}} \sqrt{1 + \left(\frac{-x}{\sqrt{a^2 - x^2 - y^2}}\right)^2 + \left(\frac{-y}{a^2 - x^2 - y^2}\right)^2} \, dx \, dy$$

$$= \iint_{D_{xy}} \sqrt{\frac{a^2}{a^2 - x^2 - y^2}} \, dx \, dy = a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a \cos \theta} \frac{1}{\sqrt{a^2 - \rho^2}} \rho \, d\rho$$

$$= 2a^2 \int_{0}^{\frac{\pi}{2}} (1 - \sin \theta) \, d\theta = (\pi - 2) a^2.$$

2. 解: (1)
$$\bar{y} = \frac{1}{A} \iint_D y \, \mathrm{d} x \, \mathrm{d} y = \frac{2}{\pi a b} \iint_D y \, \mathrm{d} x \, \mathrm{d} y = \frac{4}{\pi a b} \int_0^{\frac{\pi}{2}} \sin \theta \, \mathrm{d} \theta \int_0^1 a b^2 \rho^2 \, \mathrm{d} \rho = \frac{2}{\pi a b} \cdot 2 \cdot a b^2 \frac{1}{3} = \frac{4 b}{3 \pi}$$
 由 "偶倍奇零"可得 $\bar{x} = 0$,则质心为 $\left(0, \frac{4 b}{3 \pi}\right)$.

(2)
$$V = \iiint_{\Omega} dx dy dz = \int_{0}^{a} dx \int_{0}^{a-x} dy \int_{0}^{x^{2}+y^{2}} dz = \int_{0}^{a} dx \int_{0}^{a-x} (x^{2}+y^{2}) dy$$

= $\int_{0}^{a} \left[x^{2} (a-x) + \frac{1}{3} (a-x)^{3} \right] dx = \frac{1}{3} \times \frac{a^{4}}{2} = \frac{a^{4}}{6}$

$$\bar{x} = \frac{1}{V} \iiint_{\Omega} x \, dx \, dy \, dz = \frac{1}{V} = \int_{0}^{a} x \, dx \int_{0}^{a-x} dy \int_{0}^{x^{2}+y^{2}} dz = \frac{1}{V} \int_{0}^{a} dx \int_{0}^{a-x} (x^{2}+y^{2}) \, dy$$
$$= -\frac{1}{3V} \int_{0}^{a} (4x^{4} - 6ax^{3} + 3a^{2}x^{2} - a^{3}x) \, dx = \frac{a^{5}}{15} \times \frac{6}{a^{4}} = \frac{2}{5}a$$

$$\bar{y} = \frac{1}{V} \iiint_{\Omega} y \, dx \, dy \, dz = \frac{1}{V} = \int_{0}^{a} dy \int_{0}^{a-y} y \, dx \int_{0}^{x^{2}+y^{2}} dz = \frac{1}{V} \int_{0}^{a} dy \int_{0}^{a-y} (x^{2}+y^{2}) \, dx$$
$$= -\frac{1}{3V} \int_{0}^{a} (4y^{4} - 6ay^{3} + 3a^{2}y^{2} - a^{3}y) \, dy = \frac{a^{5}}{15} \times \frac{6}{a^{4}} = \frac{2}{5}a$$

$$\begin{split} \bar{z} &= \frac{1}{V} \iiint_{\Omega} z \, \mathrm{d}\, x \, \mathrm{d}\, y \, \mathrm{d}\, z = \frac{1}{V} = \int_{0}^{a} \mathrm{d}\, x \int_{0}^{a-x} \mathrm{d}\, y \int_{0}^{x^{2}+y^{2}} z \, \mathrm{d}\, z = \frac{1}{2V} \int_{0}^{a} \mathrm{d}\, x \int_{0}^{a-x} \left(x^{2}+y^{2}\right)^{2} \mathrm{d}\, y \\ &= \frac{1}{2V} \int_{0}^{a} \left[x^{4} \left(a-x\right) - \frac{2}{3} x^{2} \left(a-x\right)^{3} + \frac{1}{5} \left(a-x\right)^{5} \right] \mathrm{d}\, x = \frac{1}{5a^{4}} \times \frac{-25 + 54 - 45 + 20 + 3}{6} a^{6} = \frac{7}{30} a^{2} \end{split}$$

则质心为 $\left(\frac{2}{5}a, \frac{2}{5}a, \frac{7}{30}a^2\right)$.

(2)
$$I = \rho_0 \iiint_{\Omega} (x^2 + y^2) dx dy dz = \rho_0 \int_0^{2\pi} d\theta \int_0^R \rho^3 d\rho \int_{\frac{H}{R}\rho}^H dz$$

= $\frac{3M}{\pi R^2 H} \times 2\pi H \times \int_0^R (1 - \frac{\rho}{R}) \rho^3 d\rho = \frac{6M}{R^2} \times \frac{1}{20} R^4 = \frac{3}{10} M R^2.$

总习题八

☞ 教材见 256 页

2.
$$\Re: (1) \iint_D |x^2 + y^2 - 4| \, \mathrm{d} x \, \mathrm{d} y = \int_0^{2\pi} \, \mathrm{d} \theta \int_0^3 |\rho^2 - 4| \, \rho \, \mathrm{d} \rho = \pi \left[\int_0^4 (4 - t) \, \mathrm{d} t + \int_4^9 (t - 4) \, \mathrm{d} t \right]$$

$$= \pi \left(16 - 8 + \frac{65}{2} - 20 \right) = \frac{41}{2} \pi.$$

(2)
$$\iint_{D} |\cos(x+y)| d\sigma = \int_{0}^{\frac{\pi}{4}} dy \int_{y}^{\frac{\pi}{2}-y} \cos(x+y) dx - \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} dx \int_{\frac{\pi}{2}-x}^{x} \cos(x+y) dy$$
$$= \int_{0}^{\frac{\pi}{4}} [1 - \sin(2y)] dy - \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} [\sin(2x) - 1] dx = \int_{0}^{\frac{\pi}{2}} [1 - \sin(2x)] dx$$
$$= \frac{\pi}{2} + \frac{1}{2} (-1 - 1) = \frac{\pi}{2} - 1.$$

(3)
$$\iint_{D} x^{2} dx dy = \int_{-\pi}^{\pi} d\theta \int_{0}^{a(1-\cos\theta)} \rho^{3} \cos^{2}\theta d\rho$$
$$= \frac{a^{2}}{4} \int_{-\pi}^{\pi} \cos^{2}\theta (1-\cos\theta)^{4} d\theta = a^{2} \int_{0}^{\frac{\pi}{2}} \left(\cos^{6}\theta + 6\cos^{4}\theta + \cos^{2}\theta\right) d\theta$$
$$= a^{2} \left(\frac{5\times 3}{6\times 4\times 2} + 6\times \frac{3}{4\times 2} + \frac{1}{2}\right) \times \frac{\pi}{2} = \frac{49}{32}\pi.$$

- (4) 积分区间关于 y 轴对称, 被积函数是关于 x 的奇函数, 由 "偶倍奇零" 可知积分值为 0.
- 3. 证明: 对左边交换程序可得

$$\int_0^1 dy \int_y^1 f(y)(x-y)^{a-1} dx = \int_0^1 \frac{1}{a} (1-y)^a f(y) dy = \frac{1}{a} \int_1^0 t^a f(1-t) d(1-t)$$
$$= \frac{1}{a} \int_0^1 t^a f(1-t) dt = \frac{1}{a} \int_0^1 y^a f(1-y) dy$$

证毕.

4. 证明:将 D分为关于原点对称的两个部分,记作 D_1, D_2 ,则有

$$\iint_D f(x,y) \, \mathrm{d}\,\sigma = \iint_{D_1} f(x,y) + \iint_{D_2} f(x,y) \, \mathrm{d}\,\sigma$$

又
$$\iint_{D_2} = \iint_{D_1} f(-x, -y) d\sigma$$

则有 $\iint_D f(x, y) d\sigma = \iint_{D_1} f(x, y) - \iint_{D_1} f(x, y) d\sigma = 0$
 $\iint_D (x^2y + xy^2) dx dy = \iint_D 1 dx dy + 0 = 2 \times 2 = 4.$

5.
$$\Re: (1) \iint_{D} |z^{2}| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

$$= \int_{0}^{2\pi} \, \mathrm{d}\theta \int_{0}^{\frac{\pi}{3}} \sin\varphi \, \mathrm{d}\varphi \int_{0}^{R} r^{4} \cos^{2}\varphi \, \mathrm{d}r + \int_{0}^{2\pi} \, \mathrm{d}\theta \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sin\varphi \, \mathrm{d}\varphi \int_{2R\cos\varphi}^{R} r^{4} \cos^{2}\varphi \, \mathrm{d}r$$

$$= \frac{2}{5}\pi R^{5} \left[\int_{0}^{\frac{\pi}{3}} \left(\sin\varphi \cos^{2}\varphi \right) \, \mathrm{d}\varphi + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \left(\sin\varphi \cos^{2}\varphi \right) \, \mathrm{d}\varphi - 32 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \left(\sin\varphi \cos^{7}\varphi \right) \, \mathrm{d}\varphi \right]$$

$$= \frac{2}{5}\pi R^{5} \left(\int_{0}^{1} t^{2} \, \mathrm{d}t - 32 \int_{0}^{\frac{1}{2}} t^{7} \, \mathrm{d}t \right) = \frac{2}{5}\pi R^{5} \times \left(\frac{1}{3} - \frac{32}{8} \times \frac{1}{256} \right) = \frac{59}{480}\pi R^{5}.$$

(2) 积分区间关于面 xOy 对称, 被积函数是关于 z 的奇函数, 由 "偶倍奇零" 可知积分值为 0.

(3)
$$\iint_{\mathbb{R}^{2}} (y^{2} + z^{2}) dx dy dz = \int_{0}^{5} dx \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2x}} \rho^{3} d\rho = 2\pi \int_{0}^{5} x^{2} dx = \frac{250}{3}\pi.$$

6. 证明: 对左边交换次序可得

$$\int_0^1 dx \int_0^x dy \int_0^y f(z) dz = \int_0^1 f(z) dz \int_z^1 dy \int_z^y dx = \int_0^1 f(z) dz \int_z^1 (y - z) dy$$
$$= \frac{1}{2} \int_0^1 (1 - z)^2 f(z) dz$$

8.
$$\widetilde{\mathbf{R}}$$
: $S = \frac{1}{a} \iint_{x^2 + y^2 \le a} \sqrt{4x^2 + 4y^2 + a^2} \, \mathrm{d} x \, \mathrm{d} y + \iint_{x^2 + y^2 \le a} \sqrt{2} \, \mathrm{d} x \, \mathrm{d} y$

$$= \frac{1}{2a} \int_0^{2\pi} \mathrm{d} \theta \int_0^a \sqrt{4\rho^2 + a^2} \, \mathrm{d} \rho^2 + \sqrt{2}\pi a^2 = \pi a^2 \left(\frac{5\sqrt{5} - 1}{6} + \sqrt{2} \right).$$

10. 解:
$$J = \mu \iint_{D} (y+1)^{2} dx dy = \int_{0}^{1} (y+1)^{2} dy \int_{-\sqrt{y}}^{\sqrt{y}} dx$$
$$= 2\mu \int_{0}^{1} (y+1)^{2} \sqrt{y} dy = \frac{368}{105} \mu.$$

12.
$$\mathbf{F}(t) = \int_0^{2\pi} d\theta \int_0^t \rho d\rho \int_0^h (z^2 + f(\rho^2)) dz = 2\pi \int_0^t \left[\frac{1}{3} \rho h^3 + h \rho f(\rho^2) \right] d\rho$$

$$\Rightarrow F'(t) = \frac{2\pi}{3} h^3 t + 2\pi h t f(t^2).$$

曲线积分与曲面积分

☞ 习题见第 131 页

第一节 第一型曲线积分——对弧长的曲线积分

☞ 教材见 265 页

1. (1) 解:
$$I = \int_C \left(x^2 + y^2\right) \mathrm{d} \, s = \left\{ \int_{\overline{OA}} + \int_{\overline{AB}} + \int_{\overline{BO}} \right\} (x + y) \, \mathrm{d} \, s.$$
 在直线 $\overline{OA} \perp y = 0$, $\mathrm{d} \, s = \mathrm{d} \, x$, 得 $\int_{\overline{OA}} \left(x^2 + y^2\right) \mathrm{d} \, x = \int_0^2 x^2 \, \mathrm{d} \, x = \frac{8}{3};$ 在直线段 $\overline{AB} \perp y = -\frac{1}{2}x + 1$, $\mathrm{d} \, s = \frac{\sqrt{5}}{2} \, \mathrm{d} \, x$, 得 $\int_{\overline{AB}} \left(x^2 + y^2\right) \mathrm{d} \, s = \int_2^0 \left(x^2 + \left(-\frac{1}{2}x + 1\right)^2\right) \cdot \frac{\sqrt{5}}{2} \, \mathrm{d} \, x = -\frac{5\sqrt{5}}{3};$ 在直线段 $\overline{BO} \perp x = 0$, $\mathrm{d} \, s = \mathrm{d} \, y$ 得 $\int_{\overline{BO}} \left(x^2 + y^2\right) \mathrm{d} \, x = \int_0^1 y^2 \, \mathrm{d} \, y = \frac{1}{3};$ 故 $I = \frac{8}{3} + \frac{5\sqrt{5}}{3} + \frac{1}{3} = 3 + \frac{5\sqrt{5}}{3}.$ (2) 解: $x = a\cos^3 t$, $y = a\sin^3 t$, $0 \leqslant t \leqslant 2\pi$

$$\begin{split} I &= \int_0^{2\pi} \left(\left(x^{\frac{2}{3}} + y^{\frac{2}{3}} \right)^2 - 2 x^{\frac{2}{3}} y^{\frac{2}{3}} \right) \mathrm{d}\,s \\ &= a^{\frac{4}{3}} \cdot 4 \int_0^{\frac{\pi}{2}} 3a \sin t \cos t \, \mathrm{d}\,t - 8 \int_0^{\frac{\pi}{2}} \left(a^{\frac{2}{3}} \cos^2 t \right) \left(a^{\frac{2}{3}} \sin^2 t \right) (3a \sin t \cos t) \, \mathrm{d}\,t \\ &= 12 a^{\frac{7}{3}} \cdot \frac{1}{2} - 24 a^{\frac{7}{3}} \cdot \frac{1}{12} = 4 a^{\frac{7}{3}}. \end{split}$$

(3) 解:
$$x = a \cos t$$
, $y = a \sin t$, $0 \le t \le \frac{\pi}{4}$
弧段积分为: $I_1 = \int_0^{\pi/4} e^a \sqrt{\left(\left(a \sin t\right)^2 + \left(a \cos t\right)^2\right)} \, \mathrm{d}t = \frac{\pi}{4} a e^a$
直线段为: $I_2 + I_3 = \int_0^a e^x \, \mathrm{d}x + \int_{\frac{\sqrt{2}}{2}a}^0 e^{\sqrt{2}x} \, \mathrm{d}\left(\sqrt{2}x\right) = 2\left(e^a - 1\right)$. $\therefore I = 2\left(e^a - 1\right) + \frac{\pi}{4} a e^a$.

(4) 解:
$$I = \int_C y^2 \, \mathrm{d} \, s = \int_0^{2\pi} \left(a(1 - \cos t) \right)^2 \sqrt{\left(a(1 - \cos t) \right)^2 + \left(a \sin t \right)^2} \, \mathrm{d} \, t$$
$$= a^3 \int_0^{2\pi} (1 - \cos t)^2 \sqrt{\left(1 - \cos t \right)^2 + \left(\sin t \right)^2} \, \mathrm{d} \, t = a^3 \int_0^{2\pi} 4 \sin^4 \frac{t}{2} \cdot 2 \sin \frac{t}{2} \, \mathrm{d} \, t = \frac{256}{15} a^3.$$

(5)
$$\text{FF: } I = \int_C xyz \, \mathrm{d} \, s = \int_0^1 \left(t \cdot \frac{2\sqrt{2}}{3} t^{\frac{3}{2}} \cdot \frac{1}{2} t^2 \right) \sqrt{1 + 2t + t^2} \, \mathrm{d} \, t = \frac{\sqrt{2}}{3} \int_0^1 t^{\frac{9}{2}} (t+1) \, \mathrm{d} \, t = \frac{16\sqrt{2}}{143}$$

4. 解:由积分轮换性可知
$$\int x^2 dx = \int y^2 dy = \int z^2 dz$$

$$\therefore I = \frac{1}{3} \int_C (x^2 + y^2 + z^2) \, ds = \frac{a^2}{3} \int_C ds = \frac{2\pi a^3}{3}.$$

5.解:
$$I = \int_0^2 x \cdot \sqrt{2x} \cdot \sqrt{1 + y'^2(x)} \, \mathrm{d}x = \int_0^2 x \cdot \sqrt{2x} \cdot \sqrt{\frac{2x+1}{2x}} \, \mathrm{d}x$$
$$= \int_0^2 x \sqrt{2x+1} \, \mathrm{d}x = \int_0^2 \left(\frac{1}{3}(2x+1)^{\frac{3}{2}}\right) \, \mathrm{d}x$$
$$= \frac{1}{3}x \left(2x+1\right)^{\frac{3}{2}} \Big|_0^2 - \frac{1}{3} \int_0^2 (2x+1)^{\frac{3}{2}} \, \mathrm{d}x = \frac{5\sqrt{5}}{3} + \frac{1}{15}.$$

6. 解:
$$I = \int_{-\infty}^{0} \rho \cos \theta \cdot \sqrt{\rho^2 + \rho'^2} \, d\theta = a^2 \sqrt{1 + k^2} \int_{-\infty}^{0} e^{2k\theta} \cos \theta \, d\theta$$

下面计算 $\int_{-\infty}^{0} e^{2k\theta} \cos \theta \, d\theta = e^{2k\theta} \sin \theta |_{-\infty}^{0} - 2k \int_{-\infty}^{0} e^{2k\theta} \sin \theta \, d\theta = 2k \int_{-\infty}^{0} e^{2k\theta} \, d\cos \theta \, d\theta = 2k e^{2k\theta} \cos \theta \, d\theta = 2k \int_{-\infty}^{0} e^{2k\theta} \cos \theta \, d\theta = 2k - 4k^2 \int_{-\infty}^{0} e^{2k\theta} \cos \theta \, d\theta$

$$\therefore \int_{-\infty}^{0} e^{2k\theta} \cos \theta \, d\theta = \frac{2k}{4k^2 + 1}, \therefore I = \frac{2ka^2 \sqrt{1 + k^2}}{4k^2 + 1}.$$
7. 解: $I = \int_{L} \rho \, ds = \int_{0}^{1} t \sqrt{(a)^2 + (at)^2 + (at^2)^2} \, dt$

$$= \frac{a}{2} \int_{0}^{1} \sqrt{1 + t^2 + t^4} \, d\left(t^2\right) = \frac{a}{2} \int_{0}^{1} \sqrt{1 + h + h^2} \, dh = \frac{a}{16} \left(6\sqrt{3} - 2 + 3\ln \frac{3 + 2\sqrt{3}}{3}\right).$$

第二节 第一型曲面积分——对面积的曲面积分

☞ 教材见 271 页

1.(2) **M**:
$$dS = \sqrt{1 + z_x^2 + z_y^2} dx dy = \sqrt{3} dx dy$$

$$\therefore I = \sqrt{3} \int_{-1}^{1} dx \int_{-1}^{1-x} \frac{1}{1-x} dy = (\sqrt{3} - 1) \int_{-1}^{1-x} dy = (\sqrt{3} - 1) \int_{-1}^$$

$$\therefore I = \sqrt{3} \int_0^1 dx \int_0^{1-x} \frac{1}{(1+x+y)^2} dy = \left(\sqrt{3} - 1\right) \left(\frac{\sqrt{3}}{2} + \ln 2\right).$$

(4)
$$\mathbf{R}$$
: $dS = \sqrt{EG - F^2} d\varphi = \sqrt{1 + r^2} d\varphi$

$$\therefore I = \pi^2 \left(a\sqrt{1+a^2} + \ln\left(a + \sqrt{1+a^2}\right) \right)$$

(6)
$$\mathbb{H}$$
: $\iint xyzdS = \sqrt{3} \, \mathrm{d} \, y = \frac{\sqrt{3}}{120}$.

$$\Sigma$$
 (8) 解: 曲面 Σ 在 xOy 平面的投影区域 $Dxy: x^2 + y^2 \leqslant 2ax, z = 0$

$$\operatorname{d} S = \sqrt{1 + z_x^2 + z_y^2} \operatorname{d} x \operatorname{d} y = \sqrt{2} \operatorname{d} x \operatorname{d} y$$

$$I = \iint (xy + yz + zs) \operatorname{d} S = \iint_{\operatorname{d} xy} \sqrt{2} \left(xy - (y+x) \sqrt{x^2 + y^2} \right) \operatorname{d} x \operatorname{d} y$$

$$\sum$$

$$= \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} \rho^{2} \left(\sin\theta\cos\theta - \sin\theta - \cos\theta\right) \rho d\rho = -\frac{64}{15} \sqrt{2}a^{3}.$$

(10) 解析: 由于积分轮换性可知
$$\iint x^2 dS = \iint y^2 dS = \frac{1}{2} \iint (x^2 + y^2) dS = \frac{1}{2} a^2 \iint_{dxy} dS = \pi a^3 h$$

(12) W:
$$dS = \sqrt{1 + z_x^2 + z_y^2} dx dy = \frac{R}{\sqrt{R^2 - x^2 - y^2}} dx dy$$

2. 解析: $:: d m = \rho d S, :: m = \iint_{\Sigma} \rho d S$

$$m = \frac{1}{2} \iint_{\mathrm{d}\,xy} (x^2 + y^2) \sqrt{1 + x^2 + y^2} \,\mathrm{d}\,x \,\mathrm{d}\,y = \frac{1}{2} \int_0^{2\pi} \mathrm{d}\,\theta \int_0^1 \rho^2 \sqrt{1 + \rho^2} \rho \,\mathrm{d}\,\rho = \frac{2\pi}{15} \left(6\sqrt{3} + 1 \right)$$

第三节 第二型曲线积分——对坐标的曲线积分

☞ 教材见 281 页

1.(2) 解析:
$$I = \int_C (x^2 - 2x^3) dx + 2x (x^4 - 2x^3) dx = \int_{-1}^1 (-4x^4 + x^2) dx = -\frac{14}{15}$$

(4) 解析:
$$x = y = z, I = \int_0^1 3x^2 dx = 1.$$

(6) 解析:
$$\oint_C xy^2 \, dx - x^2 y \, dx = \int_0^{2\pi} (R^4 \cos t \sin^2 t (-\sin t) - R^4 \cos^2 t \sin t \cos t) \, dt$$
$$= R^4 \int_0^{2\pi} \sin t \cos t \, dt = 0$$

$$(8) : y = \begin{cases} x, & 0 \leqslant x \leqslant 1\\ 2 - x, & 1 \leqslant x \leqslant 2 \end{cases}$$

$$\therefore I = \int_0^1 2x^2 \, \mathrm{d} \, x + 0 \, \mathrm{d} \, x + \int_1^2 \left(x^2 + (2 - x)^2 \right) \, \mathrm{d} \, x + \left(x^2 - (2 - x)^2 \right) (- \, \mathrm{d} \, x) = \frac{4}{3}$$

(10)
$$\text{ME:} \oint_C \frac{(x+y) \, \mathrm{d} \, x - (x-y) \, \mathrm{d} \, y}{x^2 + y^2} = \int_0^{2\pi} (\cos \theta + \sin \theta) \, \mathrm{d} (\cos \theta) - (\cos \theta - \sin \theta) \, \mathrm{d} (\sin \theta)$$

$$= \int_0^{2\pi} \left(-\cos\theta \sin\theta - \sin^2\theta - \cos^2\theta + \sin\theta \cos\theta \right) d\theta = -2\pi.$$

2. 解析: 观察可知 |x| + |y| = 1

$$\therefore \oint_{ABCDA} \frac{dx + dy}{|x| + |y|} = \oint_{ABCDA} dx + dy = 0(对称性)$$

3. 解析:
$$\oint \sqrt{x^2 + y^2 + 1} \, dx + y \left(xy + \ln \left(x + \sqrt{x^2 + y^2 + 1} \right) \right) \, dy$$

原式 =
$$\int_{0}^{2\pi} a\sqrt{1+a^2}d(\cos\theta) + a^2\sin\theta \left(a^2\cos\theta\sin\theta + \ln\left(a\cos\theta + \sqrt{1+a^2}\right)\right)d(\sin\theta)$$

根据对称性以及倍角公式可得:

原式 =
$$\int_0^{2\pi} \left(-a\sqrt{1+a^2}\sin\theta + a^4\cos^2\theta\sin^2\theta \right) d\theta = \frac{\pi a^4}{4}.$$

第四节 格林公式及其应用

☞ 教材见 299 页

1.
$$\mathbf{M}$$
: (1) \mathbf{M} \mathbf{M} = $\iint_{D} (2x - x) \, dx \, dy = \iint_{D} x \, dx \, dy = 0$.

(3) 原式 =
$$\iint\limits_{D} \left(-\frac{1}{x^2} + \frac{1}{y^2} \right) dx dy = \int_{1}^{4} dx \int_{1}^{\sqrt{x}} \left(-\frac{1}{x^2} + \frac{1}{y^2} \right) dy = \frac{3}{4}.$$

(5)
$$\ \ \, \mathbb{R} \vec{\Xi} = \iint_{D} e^{x} \left(-y + \sin y - \sin y \right) dx dy = - \int_{0}^{\pi} dx \int_{0}^{\sin x} e^{x} \cdot y dx dy = \frac{1}{5} \left(1 - e^{\pi} \right).$$

2. 解: $\frac{\partial P}{\partial y} = \frac{1}{x^2} = \frac{\partial Q}{\partial x} (x \neq 0)$ 只要积分路径不通过 y 轴, 则该曲线积分与路径无关.

$$\therefore \int_{(2,1)}^{(1,2)} \frac{y}{x^2} \, \mathrm{d} \, x - \frac{1}{x^2} \, \mathrm{d} \, y = \int_{(2,1)}^{(2,2)} -\frac{1}{2} \, \mathrm{d} \, y + \int_{(2,2)}^{(1,2)} \frac{2}{x^2} \, \mathrm{d} \, x = -\frac{3}{2}.$$

3.
$$\Re : \because \frac{\partial P}{\partial y} = -ax \sin y - 2y \sin x = \frac{\partial Q}{\partial x} = -by - 2x \sin y, \therefore a = 2, b = 2.$$

$$I = \int_{(0,0)}^{(0,1)} 2y \, dy + \int_{(0,1)}^{(1,1)} (2x \cos 1 - \sin x) \, dx = 2 \cos 1.$$

4.
$$\Re : \frac{\partial P}{\partial y} = e^x + f(x) = \frac{\partial Q}{\partial x} = f'(x), \therefore e^x = f'(x) - f(x).$$

5.
$$\mathbb{R}$$
: \mathbb{R} \mathbb{R} = $\iint_{D} (2x - 2y) \, \mathrm{d} x \, \mathrm{d} y = \int_{0}^{1} \mathrm{d} x \int_{0}^{\sqrt{1 - x^{2}}} (2x - 2y) \, \mathrm{d} y = -1$

6.
$$\mathbb{R}$$
: \mathbb{R} \mathbb{R} = $\iint_{D} \left(2xe^{2y} - 1 - 2xe^{2y}\right) dxdy = \iint_{D} dxdy - \int_{2}^{0} x dx - \int_{2}^{0} \left(4e^{2y} - y\right) dy = \pi + 2e^{4} - 2$.

7. 解:
$$\frac{\partial P}{\partial y} = \frac{y^2 - 2xy - x^2}{(x^2 + y^2)} = \frac{\partial Q}{\partial x}$$
, . . . 只要不经过原点,积分就与路径无关

故原积分 =
$$\int_{-1}^{1} \frac{x+1}{x^2+1} dx = \int_{-1}^{1} \frac{1}{x^2+1} dx = \frac{\pi}{2}$$
.

9. 解: 做小椭圆域 $x^2 + 4y^2 \le r^2$ 使得椭圆区域包含在积分圆周内

$$\therefore \oint_L \frac{x \, \mathrm{d} y - y \, \mathrm{d} x}{x^2 + 4y^2} = \oint_\Gamma \frac{x \, \mathrm{d} y - y \, \mathrm{d} x}{x^2 + 4y^2} = \int_0^{2\pi} \frac{\frac{1}{2} r \cos \varphi r \cos \varphi - \frac{1}{2} r \sin \varphi \left(-r \sin \varphi \right)}{r^2} = \pi.$$

第五节 第二型曲面积分——对坐标的曲面积分

☞ 教材见 308 页

1. Fig. (1)
$$\iint_{\Sigma} (x^2 + y^2) dx dy = -\iint_{dxy} \rho^2 \cdot \rho d\rho d\theta = -2\pi \int_0^R \rho^3 d\rho = -\frac{\pi R^4}{2}.$$

(3) 原式 =
$$\iint_{\Sigma} x \, \mathrm{d} y \, \mathrm{d} z + y \, \mathrm{d} z \, \mathrm{d} x + (z^2 - 2z) \, \mathrm{d} x \, \mathrm{d} y$$

注意到
$$z_x = \frac{x}{\sqrt{x^2 + y^2}}, z_y = \frac{y}{\sqrt{x^2 + y^2}}$$

$$I = \iint_{\Sigma} (x, y, (z^2 - 2z)) \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, 1 \right) dx dy$$

$$\therefore I = \iint_{\Sigma} (z^2 - z) dx dy = \iint_{D_{\pi u}} \rho (\rho^2 - \rho) d\rho d\theta = \frac{3}{2}\pi.$$

(7) 由轮换性可知
$$\iint_{\Sigma} x^3 \, \mathrm{d} y \, \mathrm{d} z = \iint_{\Sigma} y^3 \, \mathrm{d} x \, \mathrm{d} z = \iint_{\Sigma} z^3 \, \mathrm{d} y \, \mathrm{d} x$$

$$\therefore I = 3 \iint_{D_{\pi y}} z^3 \, dx \, dy = 3 \iint_{D_{\pi y}} \rho (a^2 - \rho^2)^{\frac{3}{2}} \, d\rho \, d\theta = \frac{12}{5} \pi a^5.$$

(9) $x = a \sin \theta \cos \varphi, y = b \sin \theta \sin \varphi, z = c \cos \varphi$

$$\therefore \begin{bmatrix} x'_{\varphi} & y'_{\varphi} & z'_{\varphi} \\ x'_{\theta} & y'_{\theta} & z'_{\theta} \end{bmatrix} = \begin{bmatrix} a\cos\theta\cos\varphi & b\sin\theta\sin\varphi & -c\sin\varphi \\ -a\sin\theta\sin\varphi & b\cos\theta\sin\varphi & 0 \end{bmatrix}$$

$$\therefore A = bc \cos \theta \sin^2 \varphi, B = ac \sin \theta \cos^2 \varphi, C = ab \sin \theta \sin \varphi.$$

$$\iint\limits_{\Sigma} P \, \mathrm{d} \, y \, \mathrm{d} \, z + Q \, \mathrm{d} \, x \, \mathrm{d} \, z + R \, \mathrm{d} \, x \, \mathrm{d} \, y = \iint\limits_{\Sigma} \left(PA + QB + RC \right) \mathrm{d} \, \varphi \, \mathrm{d} \, \theta$$

$$\therefore I = \iint\limits_{D_{xy}} \left(\frac{bc}{a} \sin \varphi + \frac{ac}{b} \sin \varphi + \frac{ab}{c} \sin \varphi \right) d\varphi d\theta = \frac{4\pi}{abc} \left(a^2b^2 + c^2b^2 + a^2c^2 \right).$$

2.
$$\Re: (1)$$
: $z_x = -\frac{\sqrt{3}}{2}$, $z_y = -\frac{1}{\sqrt{3}}$, $\sqrt{1 + z_x^2 + z_y^2} = \frac{5}{2\sqrt{3}}$

$$\therefore \cos \alpha = \frac{3}{5}, \cos \beta = \frac{2}{5}, \cos \gamma = \frac{2\sqrt{3}}{5}$$

$$I = \iint\limits_{\Sigma} \left(\frac{3}{5}P + \frac{2}{5}Q + \frac{2\sqrt{3}}{5}R \right) dS.$$

(2) :
$$z_x = -2x, z_y = -2y, \sqrt{1 + z_x^2 + z_y^2} = \sqrt{1 + 4x^2 + 4y^2}$$

$$(2) : z_{x} = -2x, z_{y} = -2y, \sqrt{1 + z_{x}^{2} + z_{y}^{2}} = \sqrt{1 + 4x^{2} + 4y^{2}}$$

$$\therefore \cos \alpha = \frac{-2x}{\sqrt{1 + 4x^{2} + 4y^{2}}}, \cos \beta = \frac{-2y}{\sqrt{1 + 4x^{2} + 4y^{2}}}, \cos \gamma = \frac{1}{\sqrt{1 + 4x^{2} + 4y^{2}}}$$

$$\therefore I = \iint_{\Sigma} \frac{2xP + 2yQ + R}{\sqrt{1 + 4x^{2} + 4y^{2}}} dS.$$

$$\therefore I = \iint\limits_{\Sigma} \frac{2xP + 2yQ + R}{\sqrt{1 + 4x^2 + 4y^2}} \, \mathrm{d} S$$

高 斯 公 式 与 斯 托 克 斯 公 式 第六节

☞ 教材见 319 页

1. 解: (1) 原式 =
$$\iint_{\Omega} (z^2 + x^2 + y^2) \, dv + \iint_{D_{xy}} 2xy \, dx \, dy = \frac{2\pi a^5}{5}.$$

(2) 原式 =
$$-\iiint 3 \, \mathrm{d} \, v = -2\pi R^3$$
.

(3) 原式 =
$$\iiint_{\Omega} -3 \, dx \, dy \, dz + \iint_{\Omega} (x^2 - 1) \, dx \, dy = -\frac{15}{4}\pi.$$

(4) (i)
$$\mathbb{R}\vec{X} = \iiint_{\Omega} (3x^2 - 2x^2 + 1) dv = \iiint_{\Omega} (x^2 + 1) dx dy dz = \frac{1}{3}a^5 + a^3.$$

(ii) 补上平面 z = 0, z = 1 形成封闭曲面

$$I = \iiint_{\Omega} (x^2 + 1) \, dx \, dy \, dz + \iint_{z=1, D_{xy}} dx \, dy = \frac{1}{4}\pi R^4 + \pi R^2.$$
(5) 补上 $\sum_{1} : z = 0$ 形成闭曲面

$$\therefore \iiint\limits_{\Omega} (2x + 2y + 2) \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z = 2 \int_0^{2\pi} \mathrm{d} \theta \int_0^1 \mathrm{d} \rho \int_0^{1-\rho^2} \rho \left(\rho \left(\cos \theta + \sin \theta \right) + 1 \right) \, \mathrm{d} z = \frac{2\pi}{3}.$$

(6)
$$\mathbb{R} \mathbf{x} = \iiint_{\Omega} (2x + 2y + 2z) \, dx \, dy \, dz = 3 \times 2 \iiint_{\Omega} x \, dx \, dy \, dz = 3a^4.$$

(7)
$$\iiint_{\Omega} (2x + 2y) \, dv = 2 \iiint_{\Omega} ((x - a) + a) \, dv + 2 \iiint_{\Omega} ((y - b) + b) \, dv$$
$$= 2 (a + b) \iiint_{\Omega} dx \, dy \, dz = \frac{8}{3} \pi R^3 (a + b).$$

2.
$$\mathbb{H}$$
: $(1) = \iint_{D_{xy}} -3x^2y^2 \, dx \, dy = -3 \int_0^{2\pi} a^6 \sin^2 \theta \cos^2 \theta \, d\theta = -\frac{\pi}{8} a^6$.

(2) 原式 =
$$\iint_{\Sigma} (z^2 - x) \, dy \, dz - (z + 3) \, dx \, dy = - \iint_{\Omega} 2 \, dx \, dy \, dz$$

= $-2 \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2}} \rho \, d\rho \int_{\frac{\rho^2}{2}}^{2} dz = -20\pi$.
(4) 原式 = $\iint_{\Sigma} (2y - 2z) \, dy \, dz + (2z - 2x) \, dx \, dz + (2x - 2y) \, dx \, dy$
 $I = \iint_{\Sigma} \left((y - z) \frac{x - R}{R} + (z - x) \frac{y}{R} + (x - y) \frac{z}{R} \right) dS = 2 \iint_{\Sigma} (z - y) \, dS$
 $\therefore dS = dx \, dy \times \frac{R}{z}, dS = dx \, dz \times \frac{R}{y} \therefore z \, dS = R \, dx \, dy, y \, dS = R \, dx \, dz$
 $\therefore I = 2R \iint_{\Sigma} dx \, dy - 2R \iint_{\Sigma} dx \, dz = 2R\pi r^2$.
(6) 原式 = $-\iint_{\Sigma} dx \, dy + dx \, dz + dy \, dz = -3 \iint_{D_{xy}} dx \, dy = -\sqrt{3}\pi a^2$.
3. 解: $\sum_{1} : z = e^a, x^2 + y^2 \leqslant a^2$
 $\therefore I = \iint_{\Sigma} 4xz \, dy \, dz - 2yz \, dx \, dz + (1 - z^2) \, dx \, dy - \iint_{\Sigma_{1}} 4xz \, dy \, dz - 2yz \, dx \, dz + (1 - z^2) \, dx \, dy$
= $\iint_{\Omega} (4z - 2z - 2z) \, dx \, dy \, dz - \iint_{dxy} (1 - e^{2a}) \, dx \, dy = (e^{2a} - 1) \pi a^2$.

第七节 场论初步

☞ 教材见 328 页

1. 解: (1)
$$F = (P_1, Q_1, R_1), G = (P_2, Q_2, R_2)$$

 $\therefore \operatorname{div}(F + G) = \frac{\partial (P_1 + P_2)}{\partial x} + \frac{\partial (Q_1 + Q_2)}{\partial y} + \frac{\partial (R_1 + R_2)}{\partial z}$
原式 $= \frac{\partial P_1}{\partial x} + \frac{\partial Q_1}{\partial y} + \frac{\partial R_1}{\partial z} + \frac{\partial P_2}{\partial x} + \frac{\partial Q_2}{\partial y} + \frac{\partial R_2}{\partial z} = \operatorname{div}F + \operatorname{div}G.$
(2) $\operatorname{div}(UF) = \frac{\partial (UF)}{\partial x} + \frac{\partial (UF)}{\partial y} + \frac{\partial (UF)}{\partial z}$
原式 $= U\left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) + F\left(\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}\right) = U\operatorname{div}F + F\operatorname{div}U.$
(3) $\operatorname{rot}(F + G) = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x + g_x & f_y + g_y & f_z + g_z \end{vmatrix}$
 $\operatorname{rot}F + \operatorname{rot}G = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \end{vmatrix} + \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ g_x & g_y & g_z \end{vmatrix} = \operatorname{rot}(F + G).$
(4) $\operatorname{rot}(UF) = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = U\operatorname{rot}F + \operatorname{grad}U \times F$

- 2. \mathbf{m} : (1)div ($\mathbf{grad}\mathbf{U}$) = $\nabla \cdot (\nabla U) = \nabla^2 U = \Delta U$.
- (2) $\operatorname{div}(U\operatorname{\mathbf{grad}}\mathbf{U}) = U\operatorname{div}(\operatorname{\mathbf{grad}}\mathbf{U}) + \operatorname{\mathbf{grad}}\mathbf{U} \cdot \operatorname{\mathbf{grad}}\mathbf{U} = U\Delta U + \operatorname{\mathbf{grad}}\mathbf{U} \cdot \operatorname{\mathbf{grad}}\mathbf{U}.$
- (3) $\mathbf{rot}(\mathbf{grad}\mathbf{U}) = \nabla \times (\nabla U) = (0, 0, 0).$
- (4) $\operatorname{div}(\mathbf{rot}F) = \nabla \cdot (\nabla \times A) = (\nabla \times \nabla) \cdot F = 0.$
- 3. $\begin{aligned} \Re \colon &\operatorname{div} F = \lim_{\Delta \tau \to 0} \lim, \frac{1}{\Delta \tau} \iint_{\sigma} F \cdot n \, \mathrm{d} \, S \\ &= \lim_{\Delta \tau \to 0} \lim \frac{1}{\Delta \tau} \iint_{\sigma} \left(P \cos \alpha + Q \cos \beta + R \cos \gamma \right) \, \mathrm{d} \, S \\ &= \lim_{\Delta \tau \to 0} \lim \frac{1}{\Delta \tau} \iint_{\sigma} P \, \mathrm{d} \, y \, \mathrm{d} \, z + Q \, \mathrm{d} \, x \, \mathrm{d} \, z + R \, \mathrm{d} \, x \, \mathrm{d} \, y = 0 \end{aligned}$
- $\therefore \operatorname{div} F = 0 \Leftarrow \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0.(反推可证充分性)$

总习题九

☞ 教材见 339 页

1.
$$\mathbf{R}$$
: (1) \mathbf{R} \mathbf{T} = $\int_C \sqrt{2y^2 + z^2} \, \mathrm{d} s = \int_C \sqrt{x^2 + y^2 + z^2} \, \mathrm{d} s = 2\pi a^2$.

(3) 原式 =
$$\int_3^8 \frac{2}{3} x \sqrt{1+x} \, dx = \frac{2152}{45}$$
.

(5) 补上 x 轴使曲线封闭, 而后使用格林公式

原式 =
$$-\iint_D (2x+1) dx dy = -\int_0^2 dx \int_0^{2x-x^2} (2x+1) dy = -4.$$

(7)
$$\int_{L} (2a - a(1 - \cos t) a(1 - \cos t) + a(t - \sin t) a \sin t) dt$$

原式 =
$$\int_{0}^{2\pi} a^2 t \sin t \, dt = -2\pi a^2$$
.

(9) :
$$y = z$$
, : $x^2 + 2y^2 = 1 \rightarrow x = \cos t$, $y = \frac{1}{\sqrt{2}} \sin t$

$$\int_{L} xyz \, dx = \int_{0}^{2\pi} \cos t \cdot \frac{1}{2} \sin^{2} t \cdot \frac{1}{\sqrt{2}} \cos t \, dt = \frac{\sqrt{2}\pi}{16}.$$

4.
$$\mathbb{R}$$
: (1) \mathbb{R} \mathbb{R} = $\iint_{\mathbb{R}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{\mathbb{R}} y^2 dx dy = \int_1^4 dx \int_0^2 y^2 dy = 8.$

(2)
$$\mathbb{R}\mathfrak{T} = \iint\limits_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint\limits_{\mathcal{D}} y^2 dx dy = \int_0^a \rho^2 \cdot \rho d\rho \int_0^{2\pi} \cos^2\theta = \frac{a^4}{4}\pi.$$

6.
$$\mathbf{F}: I = -2 \iint_{\Sigma} dx dz + dx dy + dy dz = -2\sigma \left(\frac{h}{\sqrt{a^2 + h^2}} + \frac{a}{\sqrt{a^2 + h^2}} \right) = -2\pi a (a + h).$$

7. 解: (1) 补充平面 $\sum_{1} z = 0, \sum_{2} z = h$ 构成封闭曲面

原式 =
$$\iint_{\Omega} 0 \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z - \iint_{\Sigma_1} (x^2 - y) \, \mathrm{d} x \, \mathrm{d} y - \iint_{\Sigma_2} (x^2 - y) \, \mathrm{d} x \, \mathrm{d} y$$
$$= -\int_{0}^{2\pi} \int_{0}^{h} \rho \left(\rho^2 \cos^2 \theta - \rho \sin \theta \right) \, \mathrm{d} \rho \, \mathrm{d} \theta = -\frac{\pi}{4} h^4.$$

(3) 取
$$\varepsilon > 0$$
 充分小, $S_{\varepsilon}: x^{2} + y^{2} + z^{2} = \varepsilon^{2} (z \geqslant 0), D_{\varepsilon}: x^{2} + y^{2} = \varepsilon^{2} (z = 0)$

$$\therefore I = \iint_{S_{\varepsilon} + D_{\varepsilon}} \frac{x \, \mathrm{d} y \, \mathrm{d} z + y \, \mathrm{d} z \, \mathrm{d} x + z \, \mathrm{d} x \, \mathrm{d} y}{\sqrt{(x^{2} + y^{2} + z^{2})^{3}}} = \frac{1}{\varepsilon^{3}} \iint_{S_{\varepsilon}} \frac{1}{\varepsilon} (x^{2} + y^{2} + z^{2}) \, \mathrm{d} s = 2\pi.$$
(5) 补平面 $\sum_{1} : z = 0$ 构成封闭曲面

原式 =
$$\frac{1}{a}$$
 $\iint_{\Sigma + \Sigma_1 - \Sigma_1} ax \, \mathrm{d} y \, \mathrm{d} z + (z+a)^2 \, \mathrm{d} x \, \mathrm{d} y = \iint_{\Omega} [a+2(z+a]) \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z + \iint_{D_{xy}} a^2 \, \mathrm{d} x \, \mathrm{d} y$ = $-3a$ $\iint_{\Omega} \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z - 2$ $\iint_{\Omega} z \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z + a^2$ $\iint_{\Omega} \mathrm{d} x \, \mathrm{d} y = -\frac{1}{2}\pi a^3$.

8. 解: (1) 原式 =
$$-\iint_{\Sigma} dy dz + dx dz + dx dy = -\iint_{D} (1,1,1) (1,1,1) dx dy = -\iint_{D} dx dy$$

$$D_{xy}: x^{2} + y^{2} + (x + y - 1)^{2} = 1$$

$$\therefore I = -\frac{2\sqrt{3}}{3}\pi.$$

第十章

常微分方程

☞ 习题见第 139 页

微分方程的基本概念 第一节

☞ 教材见 348 页

- 2. (1) 解:将 $y = C_1 \cos \omega x$ 代入左边得: $y'' + \omega^2 y = -C_1 \omega^2 \cos \omega x + C_1 \omega^2 \cos \omega x = 0$ 符合原方程, 故 $y = C_1 \cos \omega x$ 是所给方程 $y'' + \omega^2 y = 0$.
- (3) 解: 将 $y = 3s \ln x 4 \cos x$ 代入方程左边得 $y'' + y = -3s \ln x + 4 \cos x + 3s \ln x 4 \cos x = 0$ 符合原方程, 故 $y = 3s \ln x - 4 \cos x$ 是所给方程 y'' + y = 0 的解.
- (5) 解: $y = x^2 e^x$ 求导得 $y' = 2xe^x + x^2 e^x$, 再次求导得 $y'' = 2e^x + 2xe^x + 2xe^x + x^2 e^x = 2e^x + 4xe^x + x^2 e^x$ 代入左边得 $y'' - 2y' + y = 2e^x + 4xe^x + x^2e^x - 4xe^x - 2x^2e^x + x^2e^x = 2e^x \neq 0$ 故 $y = x^2 e^x$ 不是所给方程 y'' - 2y' + y = 0 的解.
- 3. (1) 解:设所求曲线方程为 y = y(x)

根据题意可知函数应满足如下关系: $\frac{dy}{dx} = x^2$, 即 $y' = x^2$.

- (3) 解: 设所求曲线方程为 y=y(x), 该曲线在 x 处斜率为 y', 可得切线方程为 y=y'x+s又根据题意, s = x, 故 y = y'x + x, 也即 xy' = y - x.
- (5) 解:设所求曲线方程为 y = y(x),该曲线在 x 处斜率为 y'

设其在 (x,y) 处切线的截距为 b, 则切线方程为 y = y'x + b

又根据题意, $b = \frac{x+y}{2}$, 故 $y = y'x + \frac{x+y}{2}$, 也即 $y - xy' = \frac{x+y}{2}$.

4. 解:设物体与空气的温差是 T. 在冷却过程中所需时间 t 是温差 T 的函数 t = T(t)

设其冷却速度为 v, 根据题意,设比例系数为 k,则 v = kT

又因为冷却表示为温度的下降,即 v 是表示 T 递减速率的函数,故 $v = -\frac{\mathrm{d}T}{\mathrm{d}t}$

联立以上各式可得 $-\frac{\mathrm{d}\,T}{\mathrm{d}\,t}=kT$ 解此微分方程可得: $t=-\frac{\ln kT}{k}+C(C$ 为常数)

根据题意,物体在20分钟内由100度冷却到60度,温差T应为物体温度减去空气温度

开始时
$$\begin{cases} t = 0 \\ T = 100 - 20 = 80 \end{cases}$$
, 结束时
$$\begin{cases} t = 20 \\ T = 60 - 20 = 40 \end{cases}$$

形的
$$\begin{cases} t=0 \\ T=100-20=80 \end{cases}$$
 , 结束时 $\begin{cases} t=20 \\ T=60-20=40 \end{cases}$ 代入 t 与 T 的函数关系式,得 $\begin{cases} -\frac{\ln 80k}{k}+C=0 \\ -\frac{\ln 40k}{k}+C=20 \end{cases}$,解方程得 $\begin{cases} k=\frac{\ln 2}{20} \\ C=-\frac{20\ln(4\ln 2)}{\ln 2} \end{cases}$

故 $t = \frac{20}{\ln 2} \ln \frac{80}{T}$ (单位: 分钟), 则物体达到 30 度时, 需要 60 分钟.

第二节 可变量分离的微分方程

☞ 教材见 354 页

1. (2) 解: 分离变量得
$$\frac{\tan y}{\ln(\cos y)} dy = -\frac{1}{x} dx \Rightarrow -\frac{s \ln y}{\cos y \ln(\cos y)} dy = \frac{1}{x} dx$$
 两边积分得 $\ln[\ln(\cos y)] = \ln x + C \Rightarrow \ln(\cos y) = xe^C \Rightarrow \cos y = e^{xe^C}$

 $\Leftrightarrow C_1 = e^C, \cos y = e^{xC_1}, \ y = \arccos e^{C_1 x}, \ \mathbb{I} \ y = \arccos e^{C_x}.$

(4) 解: 分离变量得
$$\frac{y}{\sqrt{1+y^2}} dy = -\frac{x}{\sqrt{1+x^2}} dx$$

两边积分得 $\sqrt{1+y^2} = -\sqrt{1+x^2} + C$, 即 $\sqrt{1+x^2} + \sqrt{1+y^2} = C$.

(6) 解: 分离变量得
$$\frac{5e^x}{1-e^x} dx = -\frac{\sec^2 y}{\tan y} dy$$
, 两边积分得 $-5\ln(1-e^x) + C = -\ln(\tan y)$
 $\Rightarrow (1-e^x)^5 e^{-C} = \tan y$, $\Rightarrow C_1 = e^{-C}$

故 $(1-e^x)^5 C_1 = \tan y$, $y = \arctan C_1 (1-e^x)^5$, 即 $y = \arctan C (1-e^x)^5$.

(8) 解: 变换得
$$e^x(e^y - 1) dx + e^y(e^x + 1) dy = 0$$
, 分离变量得 $\frac{e^x}{e^x + 1} dx = -\frac{e^y}{e^y - 1} dy$ 两边积分得

$$\ln(e^x + 1) + C = -\ln(e^y - 1) \Rightarrow (e^x + 1)e^C = \frac{1}{e^y - 1}$$

$$\Leftrightarrow C_1 = \frac{1}{e^C}, \ C_1 = (e^x + 1)(e^y - 1), \ \mathbb{P}(e^x + 1)(e^y - 1) = C.$$

(10) 解: 变换得 $y' + s \ln x \cos y + \cos x s \ln y = s \ln x \cos y - \cos x s \ln y$

$$\Rightarrow y' + 2\cos xs \ln y = 0 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} + 2\cos x \ln y = 0$$

两边积分得 $\ln \left| \tan \frac{y}{2} \right| = -2s \ln x + C$, 故 $2s \ln x + \ln \left| \tan \frac{y}{2} \right| = C$.

2. (1) 解: $\frac{\mathrm{d}y}{\mathrm{d}x}s\ln x = y\ln y$, 分离变量得

$$\frac{\mathrm{d}\,y}{y\ln y} = \frac{\mathrm{d}\,x}{s\ln x}$$

两边积分得 $\ln(\ln y) = \ln(\tan\frac{x}{2}) + C \Rightarrow \ln y = \tan\frac{x}{2}e^C$

代入初始条件得 C=0,故 $\ln y=\tan\frac{x}{2}$.

(3) 解:
$$\frac{\mathrm{d}y}{\mathrm{d}x}\cos x = \frac{y}{\ln y}$$
, 分离变量得 $\frac{\mathrm{d}x}{\cos x} = -\frac{\ln y}{y}\,\mathrm{d}y$, 两边积分得

$$\ln\left|\tan(\frac{x}{2} + \frac{\pi}{4})\right| + C = \frac{1}{2}\ln^2 y$$

代入初始条件得 C = 0,故 $\ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| = \frac{1}{2} \ln^2 y$.

(5) 解: 分离变量得
$$\frac{3e^x dx}{1+e^x} = -\frac{\sec^2 y}{\tan y} dy$$
, 两边积分得 $3\ln(1+e^x) + C = -\ln(\tan y)$

变换得 $(1+e^x)^3 \tan y e^C = 0$,代入初始条件得 $C = -3 \ln 2$,故 $(1+e^x)^3 \tan y = 8$.

(7) 解:
$$x \frac{dy}{dx} + x + s \ln(x+y) = 0$$
, 变换得

$$x\left(\frac{\mathrm{d}\,y}{\mathrm{d}\,x}+1\right)+s\ln(x+y)=0 \Rightarrow x\frac{\mathrm{d}\,y+\mathrm{d}\,x}{\mathrm{d}\,x}+s\ln(x+y)=0$$

注意到
$$\frac{\mathrm{d}\,y+\mathrm{d}\,x}{\mathrm{d}\,x}=\frac{\mathrm{d}(x+y)}{\mathrm{d}\,x}$$
, 因此令 $u=x+y$,故 $x\frac{\mathrm{d}\,u}{\mathrm{d}\,x}+s\ln u=0$ 分离变量得 $\frac{\mathrm{d}\,x}{x}=-\frac{\mathrm{d}\,u}{s\ln u}$, 两边积分得

$$\ln x + C = -\ln\left|\tan\frac{u}{2}\right| \Rightarrow xe^C = \frac{1}{\tan\frac{u}{2}}$$

把初始条件代入得 $C = \ln \frac{2}{\pi}$, 故 $x \tan \frac{x+y}{2} = \frac{2}{\pi}$

4. (2) 解: 原方程可写为
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} - \frac{1}{\sin\frac{y}{x}}$$
, 令 $u = \frac{y}{x}$, 得 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x\,\mathrm{d}u}{\mathrm{d}x} + u$

故
$$\frac{x d u}{d x} + u = -\frac{1}{s \ln u}$$
,分离变量得 $s \ln d u = -\frac{d x}{x}$

两边积分得 $\cos u + C_1 = \ln x$, 变形得 $e^{\cos u}e^{C_1} = x$, 即 $x = Ce^{\cos \frac{y}{x}}$

(4) 解: 原方程可写为
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \tan\frac{y}{x}$$
, 令 $u = \frac{y}{x}$, 得 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x\,\mathrm{d}u}{\mathrm{d}x} + u$ 故 $\frac{x\,\mathrm{d}u}{\mathrm{d}x} + u = \tan u$, 分离变量得 $\frac{1}{tanu}\,\mathrm{d}u = -\frac{\mathrm{d}x}{x}$ 两边积分得 $s\ln x = xe^C$, 故 $s\ln\frac{y}{x} = xC$.

(6) 解: 原方程化为 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - 5y + 3}{2x + 4y - 6}$, 注意到 $\Delta = 18 \neq 0$

两边积分得
$$s \ln x = xe^C$$
,故 $s \ln \frac{y}{x} = xC$.

(6) 解: 原方程化为
$$\frac{dy}{dx} = \frac{2x - 5y + 3}{2x + 4y - 6}$$
, 注意到 $\Delta = 18 \neq 0$

解方程组
$$\begin{cases} 2x - 5y + 3 = 0 \\ 2x + 4y - 6 = 0 \end{cases}$$
 得到交点
$$\begin{cases} x_0 = \alpha = 1 \\ y_0 = \beta = 1 \end{cases}$$
 , \diamondsuit
$$\begin{cases} x = X + \alpha = X + 1 \\ y = Y + \beta = Y + 1 \end{cases}$$

原方程化为
$$\frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{2X - 5Y}{2X + 4Y} = \frac{2 - 5\frac{Y}{X}}{2 + 4\frac{Y}{Y}} \Rightarrow \frac{\mathrm{d}Y}{\mathrm{d}X} = u$$

$$\frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{X\,\mathrm{d}u}{\mathrm{d}X} + u,$$
 代入原方程得
$$\frac{X\,\mathrm{d}u}{\mathrm{d}X} + u = \frac{2-5u}{2+4u},$$
 变形得

$$\frac{1}{\frac{2-5u}{2+4u}-u} \, \mathrm{d} \, u = \frac{\mathrm{d} \, X}{X} \Rightarrow \left(\frac{4u+\frac{7}{2}}{2-7u-4u^2} + \frac{\frac{2}{3}}{4(u+2)} - \frac{\frac{2}{3}}{4u-1}\right) \, \mathrm{d} \, u = \frac{\mathrm{d} \, X}{X}$$

两边积分得
$$-\frac{1}{2}\ln(2-7u-4u^2)+\frac{1}{6}\ln(u+2)-\frac{1}{6}\ln(4u-1)=\ln X+C'$$

整理得
$$(4y-x-3)(y+2x-3)^2=C$$
.
(8) 解: 原方程化为 $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{x^2y^2+1}{2x^2},\ \ \diamondsuit \ u=xy,\ \ \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}u}{x\,\mathrm{d}x}+\frac{u}{x^2},$ 代入原方程得

$$\frac{\mathrm{d}\,u}{x\,\mathrm{d}\,x} + \frac{u}{x^2} = \frac{u^2 + 1}{2x^2} \Rightarrow \frac{\mathrm{d}\,x}{x} = \frac{2\,\mathrm{d}\,u}{(u - 1)^2}$$

两边积分, 得 $x = Ce^{\frac{2}{xy-1}}$.

5. (2) 解:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + s \ln \frac{y}{x}$$
, 令 $u = \frac{y}{x}$, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x \, \mathrm{d}u}{\mathrm{d}x} + u$,则 $\frac{\mathrm{d}u}{s \ln u} = \frac{\mathrm{d}x}{x}$ 两边积分得

$$y = 2x \arctan(xe^{C'})$$

代入初始条件得 $y = 2x \arctan x$.

$$(4) 解: \ \frac{\mathrm{d}\,y}{\mathrm{d}\,x} = -\frac{1+6(\frac{y}{x})^2+(\frac{y}{x})^4}{4\frac{y}{x}+4\frac{y}{x}^3}, \ \ \diamondsuit \ u = \frac{x}{y}, \frac{\mathrm{d}\,y}{\mathrm{d}\,x} = \frac{x\,\mathrm{d}\,u}{\mathrm{d}\,x} + u, \ \ 厕 \ \frac{4u+4u^3}{1+10u^2+5u^4}\,\mathrm{d}\,u = -\frac{\mathrm{d}\,x}{x}$$
 两边积分得 $(1+10u^2+5u^4)^{\frac{1}{5}} = \frac{e^{C'}}{x},$ 代入初始条件得 $x^5+10x^3y^2+5xy^4=1.$

第三节 一阶线性微分方程与常数变易法

☞ 教材见 359 页

1. 解: (1) 将方程改写为 $\frac{\mathrm{d}\,y}{\mathrm{d}\,x} + y\cos x = e^{-s\ln x}$, 对应齐次方程 $\frac{\mathrm{d}\,y}{\mathrm{d}\,x} + y\cos x = 0$ 的通解 齐次方程通解为 $y = Ce^{-s\ln x}$, 应用常数变易法, 令 $y = C(x)e^{-s\ln x}$, 代入原方程得 C'(x) = 1 积分后得 $C(x) = x + C_1$, 代入得 $y = (x + C)e^{-s\ln x}$.

(3) 解: 将方程改写为 $\frac{\mathrm{d}\,y}{y\,\mathrm{d}\,x} = \frac{1}{x+\ln y}$, 令 $u = \ln y$, $\frac{\mathrm{d}\,u}{\mathrm{d}\,x} = \frac{\mathrm{d}\,y}{y\,\mathrm{d}\,x}$, 则 $\frac{\mathrm{d}\,u}{\mathrm{d}\,x} = \frac{1}{x+u}$ 令 t = x+u, 则 $\frac{t\,\mathrm{d}\,t}{t+1} = \mathrm{d}\,x$, 两边积分得

$$t - \ln(t+1) = x + C' \Rightarrow x = Cy - \ln y - 1.$$

(5) 解: 将方程改写为 $\frac{\mathrm{d}\,x}{\mathrm{d}\,y} - \frac{2x}{y} = -y$, $P(y) = -\frac{2}{y}$, Q(y) = -y, 则 $x = y^2(C - \ln y)$.

(6) 解: 将方程改写为 $\frac{dy}{dx} + xy = x^3y^3$, 令 $z = y^{-2}$, $\frac{dz}{dx} - 2xz = -2x^3$

代入通解得 $z = Ce^{x^2} + x^2 + 1$,原方程为

$$\frac{1}{y^2} = Ce^{x^2} + x^2 + 1.$$

(7) 解: 将方程改写为 $\frac{\mathrm{d}\,y}{\mathrm{d}\,x} + \frac{y}{x} = ay^2 \ln x$, 令 z = xy, $\frac{\mathrm{d}\,z}{\mathrm{d}\,x} = \frac{az^2 \ln x}{x}$, 得

$$xy\left[C - \frac{1}{2}(\ln x)^2\right] = 1.$$

2. (1) 解: 原方程化为 $\frac{\mathrm{d}\,y}{\mathrm{d}\,x} + \frac{y}{x} = \frac{e^x}{x}$, 令 z = xy, $\frac{\mathrm{d}\,z}{\mathrm{d}\,x} = e^x$, 则 $xy = e^x + C$, 代入初始条件得 $xy = e^x$.

(3) 解: $\frac{\mathrm{d}y}{\mathrm{d}x} + y\cot x = 5e^{\cos x}$, 对应齐次方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = -y\cot x$ 通解为 $y = \frac{C}{s\ln x}$

应用常数变易法, 令 $y = \frac{C(x)}{\sin x}$, 代入得

$$y = \frac{-5e^{\cos x} + C_1}{s \ln x} \Rightarrow y = \frac{-5e^{\cos x} + 1}{s \ln x}.$$

(5) 解: 原方程化为 $\frac{\mathrm{d}\,y}{\sqrt{y}\,\mathrm{d}\,x} + \sqrt{y} = e^{\frac{x}{2}}$, 令 $z = \sqrt{y}$, $\frac{\mathrm{d}\,z}{\mathrm{d}\,x} + \frac{z}{2} = \frac{e^{\frac{x}{2}}}{2}$

对应齐次方程 $\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{z}{2} = 0$ 通解为 $z = Ce^{-\frac{z}{2}}$,应用常数变易法,得 $\sqrt{y} = (\frac{e^x}{2} + C_1)e^{-\frac{z}{2}}$ $\Rightarrow \sqrt{y} = \frac{1}{2}e^{\frac{x}{2}} + e^{-\frac{x}{2}}$.

第四节 全微分方程

☞ 教材见 364 页

1. (2) 解:
$$M = \frac{y^2}{(x-y)^2} - \frac{1}{x}$$
 $N = \frac{1}{y} - \frac{x^2}{(x-y)^2}$, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = \frac{2xy}{(x-y)^3}$ 原方程化为 $\frac{y^2 dx - x^2 dy}{(x-y)^2} = d(\frac{xy}{x-y})$, 则 $\frac{xy}{x-y} = \ln\left|\frac{x}{y}\right| + C$.

(4) 解: $M = y(x-2y)$, $N = -x^2$, $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, 方程不是全微分方程.

(6) 解: $M = x^2 + y^2$, $N = xy$, $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, 方程不是全微分方程.

(8)
$$\mathbf{M}$$
: $M = xy + \frac{1}{4}y^4$ $N = \frac{1}{2}x^2 - xy^3$, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

原方程化为 $2 d(x^2y) + d(xy^4) = 0$, 则 $2x^2y + xy^4$

2. (1) 解: 原方程变形为 $d(\frac{x^2}{y^3}) - d(\frac{1}{y}) = 0$, 积分得 $\frac{x^2}{y^3} - \frac{1}{y} = C$.

(3) 解: $M = x + y^2$ N = -2xy, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, 原方程化为 $d(\ln x) - d(\frac{y^2}{x}) = 0$, 积分得 $x = Ce^{\frac{y^2}{x}}$.

(5)
$$\mathbb{H}: \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{-M} = -\frac{4}{y}, \quad \left(\frac{3x^2}{y^3} - \frac{a}{y^2}\right) dx - \left(\frac{3x^2}{y^4} - \frac{2ax}{y^3}\right) dy = 0$$

变形为 $d(\frac{x^3}{y^3}) + d(-\frac{ax}{y^2}) = 0$, 得 $x^3 - axy = Cy^3$.

(7) 解:
$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = -\frac{2}{x} \Rightarrow (x^2 e^x + 3x^2 y^2) dx + 2x^3 y dy = 0$$

 $x^{2}e^{x} dx + d(x^{3}y^{2}) = 0 \Rightarrow (x^{2} - zx + 2)e^{x} + x^{3}y^{2} = C.$

3. (1) 解:设所求曲线方程为 y = y(x),根据题意可知未知函数应满足如下关系: $\frac{dy}{dx} = x^2$,即 $y' = x^2$.

(3) 解: 设所求曲线方程为 y=y(x), 切线方程为 y=y'x+s, 根据题意 s=x, 则 xy'=y-x.

(5) 解: 设所求曲线方程为 y = y(x), 切线方程为 y = y'x + b, 根据题意 $b = \frac{x+y}{2}$, 故 $y - xy' = \frac{x+y}{2}$.

第五节 某些特殊类型的高阶方程

☞ 教材见 369 页

1. (1) 解: 记 y' = p(y), $y'' = p \frac{d}{d} dy$, 原方程化为

$$yp\frac{\mathrm{d}}{p}\,\mathrm{d}\,y + p^2 = 0 \Rightarrow p = \frac{C_0}{y}$$

$$\therefore \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{C_0}{y} \Rightarrow y \, \mathrm{d} y = C_0 \, \mathrm{d} x$$

两侧积分得

$$y^2 = C_1 x + C_2 \left(C_1 = 2C_0 \right).$$

(3) 解:记 $y' = p(x) \Rightarrow y'' = p'$,故原式化为

$$p' = x + p$$

即

$$\frac{\mathrm{d}\,p}{\mathrm{d}\,x} - p = x$$

设积分因子 $\mu=e^{-x}$, 则在上式两边同乘积分因子 μ 得

$$\frac{\mathrm{d}\,p}{e^x\,\mathrm{d}\,x} - \frac{p}{e^x} = \frac{x}{e^x}$$

凑微分得

$$d(pe^{-x}) = xe^{-x}$$

两侧积分得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p = -x + C_1 e^x - 1$$

再次积分,得

$$y = -\frac{1}{2}x^2 - x + C_1e^x + C_2.$$

(5) 解: 记 y' = p(y), 则 $y'' = p \frac{dp}{dy}$,代入原式得

$$y(1+y) \times p \frac{dp}{dy} = -(1+\ln y) p^2 \Rightarrow \frac{dp}{p} = -\frac{1+\ln y}{y(1-\ln y)} dy$$

两侧积分得

$$\ln p = \ln y + 2\ln(1 - \ln y) + \ln C_0$$

整理得

$$p = \frac{dy}{dx} = C_0 y (1 - \ln y)^2 \Rightarrow \frac{dy}{y (1 - \ln y)^2} = C_0 x$$

再次积分得

$$\frac{1}{1 - \ln u} = C_0 x + C$$

整理得

$$-\ln y = \frac{-C_0x - C + 1}{C_0x + C} \Rightarrow y = e^{\frac{x + C_2}{x + C_1}} \quad (C_1 = \frac{C}{C_0}, C_2 = \frac{C - 1}{C_0}).$$

(7) 解:记 $y'' = p(x) \Rightarrow y''' = p'$,代入原式得

$$2xpp' = p^2 - a^2 \Rightarrow 2p \frac{\mathrm{d} p}{p^2 - a^2} = \frac{\mathrm{d} x}{x}$$

两侧积分并整理得

$$p^2 = Cx + a^2$$

$$\therefore y = \int \left(\int p \, dx \right) dx = C_2 x + C_3 \pm \frac{4(C_1 x + C_1^2)^{\frac{5}{2}}}{15C_1^2}.$$

2. (1) 解: 记 $y' = p(x) \Rightarrow y'' = p'$,代入原式得

$$p' + p^2 = 1 \Rightarrow \frac{\mathrm{d}p}{\mathrm{d}x} = -p^2 + 1 \Rightarrow \frac{\mathrm{d}p}{1 - p^2} = \mathrm{d}x$$

两侧积分并整理得

$$\frac{1+p}{1-p} = e^{2(x+C)} \Rightarrow p = \frac{e^{2(x+C)} - 1}{e^{2(x+C)} + 1}$$

亦即

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{e^{2(x+C)} - 1}{e^{2(x+C)} + 1}$$

两侧再次积分并整理得

$$y = \ln \left[e^{2(C+x)} + 1 \right] - x + C_0$$

将条件 y(0) = 0, y'(0) = 0 代入, 得

$$C = 0, C_0 = -\ln 2$$

综上, 特解为

$$y = \ln \frac{e^x + e^{-x}}{2} = \ln \operatorname{ch} x.$$

(2) 解: 记 y' = p(y), 则 $y'' = p \frac{dp}{dy}$,代入原式,得

$$yp\frac{\mathrm{d}\,p}{\mathrm{d}\,y} = 2(p^2 - p) \Rightarrow \frac{\mathrm{d}\,p}{p-1} = \frac{2\,\mathrm{d}\,y}{y}$$

两侧积分并整理得

$$p = \frac{dy}{dx} = Cy^2 + 1 \Rightarrow \frac{dy}{Cy^2 + 1} = dx$$

两侧积分并整理得

$$y = \frac{\tan\left(\sqrt{C}x + C_2\right)}{\sqrt{C}}$$

将条件 y(0) = 1, y'(0) = 2 代入, 得

$$\sqrt{C} = 1, C_2 = \frac{\pi}{4}$$

综上, 特解为

$$y = \tan\left(x + \frac{\pi}{4}\right).$$

(5) 解:记 $y' = p(x) \Rightarrow y'' = p'$,代入原式得

$$p' + p^2 + 1 = 0 \Rightarrow \frac{\mathrm{d} p}{p^2 + 1} = -\mathrm{d} x$$

两侧积分并整理得

$$p = \tan(C - x)$$

亦即

$$\frac{\mathrm{d} y}{\mathrm{d} x} = \tan(C - x)$$

$$\Rightarrow \mathrm{d} y = -\frac{\sin(C - x)}{\cos(C - x)} \,\mathrm{d} (C - x)$$

两侧积分并整理得

$$y = \ln|\cos(C - x)| + C_1$$

将条件 y(0) = 0, y'(0) = 1 代入, 得

$$C = \frac{\pi}{4}$$
, $C_1 = 1 + \frac{1}{2} \ln 2$

综上, 特解为

$$y = \ln \left| \cos \left(\frac{\pi}{4} - x \right) \right| + 1 + \frac{1}{2} \ln 2.$$

3. 解: $s = \int v \, \mathrm{d}t$,对 v,有 $\frac{\mathrm{d}v}{\mathrm{d}t} = g - \frac{(cv)^2}{m}$,而 v = s',∴ 根据题意得关于 s 的微分方程为

$$s'' = g - \frac{c^2(s')^2}{m}$$

记 $p = s' \Rightarrow s'' = p \frac{\mathrm{d} p}{\mathrm{d} s}$, 代入原式得

$$p\frac{\mathrm{d}\,p}{\mathrm{d}\,s} = g - \frac{c^2p^2}{m} \Rightarrow \frac{p}{mq - c^2p^2}\,\mathrm{d}\,p = \mathrm{d}\,s$$

两侧积分并整理得

$$s + \ln C_1 = -\frac{1}{2c^2} \ln \left(mg - c^2 p^2 \right)$$

$$\Rightarrow p = \pm \frac{1}{c^2} \sqrt{mg - Ce^{-2c^2 s}} (C_2 = C_1 e^{-2c^2})$$

将条件 p(0) = 0, s(0) = 0 代入得

$$C_2 = mg$$

所以

$$\frac{\mathrm{d}\,p}{\mathrm{d}\,s} = \pm \frac{\sqrt{mg}}{c^2} \sqrt{1 - e^{-2c^2s}}$$

分离变量得

$$\pm \sqrt{\frac{e^{2c^2s}}{e^{2c^2s} - 1}} ds = \frac{\sqrt{mg}}{c^2} dt$$

两侧积分并整理得

$$s = \frac{m}{c^2} \ln ch \left(\frac{ct}{\sqrt{mg}} \right).$$

第六节 高阶线性微分方程

☞ 教材见 373 页

1. 由朗斯基行列:

1. 田朗斯奉行列式
(1) 解:
$$\begin{vmatrix} e^{x^2} & xe^{x^2} \\ 2xe^{x^2} & e^{x^2} + 2x^2e^{x^2} \end{vmatrix} = e^{2x^2} \neq 0$$
: 线性无关. (3) 解:
$$\begin{vmatrix} e^{x^2} & xe^{x^2} \\ 2xe^{x^2} & e^{x^2} + 2x^2e^{x^2} \end{vmatrix} = e^{2x^2} \neq 0$$
: 线性无关.

线性无关.
(5) 解:
$$\begin{vmatrix} 2x^2 + 1 & x^2 - 1 & x + 2 \\ 4x & 2x & 1 \\ 4 & 2 & 0 \end{vmatrix} = -6 \neq 0$$
: 线性无关.

2. 证明: 假设 $y_1(x)$ 与 $y_2(x)$ 线性相关,则朗斯基行列式

$$\begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = y_1(x) y_2'(x) - y_2(x) y_1'(x) = 0 \quad \because \frac{y_2(x)}{y_1(x)} \neq \text{ \text{$\bar{2}$}} \qquad \text{$\bar{2}$}$$

 $\therefore y_2(x) \neq 0$ 故 $\frac{y_1(x)}{y_2(x)} = \frac{y_1'(x)}{y_2'(x)}$ 与题设矛盾 $\therefore y_1(x)$ 与 $y_2(x)$ 线性无关.

3. 解:对于零次时,有

$$a_n(x) y_1(x) + a_n(x) y_2(x) = a_n(x) [y_1(x) + y_2(x)]$$

对于一次时,有

$$a_{n-1}(x) \frac{\mathrm{d} f_1(x)}{\mathrm{d} x} + a_{n-1}(x) \frac{\mathrm{d} f_2(x)}{\mathrm{d} x} \mathrm{d} x = a_{n-1}(x) \frac{\mathrm{d} [f_1(x) + f_2(x)]}{\mathrm{d} x}$$

对于二次,有

$$a_{n-2}(x) \frac{d^{2}[y_{1}(x)]}{dx^{2}} + a_{n-2}(x) \frac{d^{2}[y_{2}(x)]}{dx^{2}} = a_{n-2}(x) \frac{d^{2}[y_{1}(x)] + d^{2}[y_{2}(x)]}{dx^{2}}$$

$$a_{n-2}(x) \frac{d^{2}[y_{1}(x) + y_{2}(x)]}{dx^{2}} = a_{n-2}(x) \frac{d\left[\frac{dy_{1}(x)}{dx} + \frac{dy_{2}(x)}{dx}\right]}{dx} = a_{n-2}(x) \frac{d^{2}[y_{2}(x)] + d^{2}[y_{1}(x)]}{dx^{2}}$$

$$\mathbb{B} a_{n-2}(x) \frac{d^{2}[y_{1}(x) + y_{2}(x)]}{dx^{2}} = a_{n-2}(x) \frac{d^{2}[y_{2}(x)] + d^{2}[y_{1}(x)]}{dx^{2}};$$

同理可证

$$a_{n-k}(x) \frac{d^{k}[y_{1}(x)]}{dx^{k}} + a_{n-k}(x) \frac{d^{k}[y_{2}(x)]}{dx^{k}} = a_{n-k}(x) \frac{d^{k}[y_{1}(x) + y_{2}(x)]}{dx^{k}} k. \in [3, +\infty).$$

第七节 常系数线性微分方程

☞ 教材见 380 页

1. (1) 解:特征方程为

$$r^4 - 1 = 0 \Rightarrow r_1, r_2 = \pm 1, r_3, r_4 = \pm i$$

:通解为

$$y = C_1 e^x + C_2 e^{-x} + C_3 \cos x + C_4 \sin x.$$

(3) 特征方程为
$$r^4 - 5r^3 + 6r^2 + 4r - 8 = 0 \Rightarrow (r - 2)(r^3 - 3r^2 + 4) = 0$$

 $\Rightarrow (r + 1)(r - 2)(r^2 - 4r + 4) = 0 \Rightarrow r_1 = -1, r_2 = r_3 = r_4 = 2.$

·. 通解为

$$y = C_1 e^{-x} + (C_2 + C_3 x + C_4 x^2) e^{2x}.$$

(5) 解: 特征方程为

$$r^4 - 13r^2 + 36 = 0 \Rightarrow (r^2 - 4)(r^2 - 9) = 0$$

得特征方程的根为

$$r_1, r_2 = \pm 3, r_3, r_4 = \pm 2$$

故通解为

$$y = C_1 e^{3x} + C_2 e^{-3x} + C_3 e^{2x} + C_4 e^{-2x}.$$

2. (2) 解:对应的齐次方程为

$$r^{3} + 3r^{2} + 3r + 1 = 0 \Rightarrow (r+1)^{3} = 1$$

故对应的齐次方程通解为

$$\tilde{y} = (C_1 + C_2 x + C_3 x^2) e^{-x}$$

设一特解

$$y^* = x^3 (b_0 x + b_1) e^{-x}$$

于是
$$(y^*)' = [-b_0 x^4 + (4b_0 - b_1) x^3 + 3b_1 x^2] e^{-x}$$

$$(y^*)'' = [b_0 x^4 - (8b_0 - b_1) x^3 + (12b_0 - 6b_1) x^2 + 6b_1 x] e^{-x}$$

$$(y^*)''' = x [-b_0 x^4 + (12b_0 - b_1) x^3 + (-36b_0 + 9b_1) x^2 + (24b_0 - 18b_1) x] e^{-x}$$

代入原方程得 $24b_0x + 6b_1 = x - 5$

解得
$$eb_0 = \frac{1}{24}, b_1 = -\frac{5}{6}$$

故有一特解

$$y^* = \frac{1}{24}x^3 (x - 20) e^{-x}$$

故而原方程通解为

$$y = (C_1 + C_2 x + C_3 x^2) e^{-x} + \frac{1}{24} x^3 (x - 20) e^{-x}.$$

(4) 解: 特征方程为 $r^2 - 3r + 2 = 0$

故通解为

$$\tilde{y} = C_1 e^{2x} + C_2 e^x$$

设特解

$$y^* = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + b_1 \sin x + b_2 \cos x$$

 $\therefore (y^*)' = a_1 + 2a_2x + 3a_3x^2 + b_1\cos x - b_2\sin x \quad (y^*)'' = 2a_2 + 6a_3x - b_1\sin x - b_2\cos x$ 代回原方程得

$$2a_3x^3 + (2a_2 - 9a_3)x^2 + (2a_1 - 6a_2 + 6a_3)x + (2a_0 - 3a_1 + 2a_2) + (b_1 + 3b_2)\sin x + (b_2 - 3b_1)\cos x = x^3 + \sin x$$

解得
$$a_3 = \frac{1}{2}$$
, $a_2 = \frac{9}{4}$, $a_1 = \frac{21}{4}$, $a_0 = \frac{45}{8}$, $b_1 = \frac{1}{10}$, $b_2 = \frac{3}{10}$

:. 原方程通解为

$$y = C_1 e^{2x} + C_2 e^x + \frac{3}{10} \cos x + \frac{1}{10} \sin x + \frac{1}{2} x^3 + \frac{9}{4} x^2 + \frac{21}{4} x + \frac{45}{8}.$$

- (6) 解: 特征方程为 $r^2 2r + 3 = 0 \Rightarrow r_{1,2} = 1 \pm \sqrt{2}i$
- :: 对应的齐次方程通解为

$$\tilde{y} = e^x \left(C_1 \sin \sqrt{2}x + C_2 \cos \sqrt{2}x \right)$$

设一个特解为 $y^* = (a\cos x + b\sin x)e^{-x}$

$$\mathbb{I}(y^*)' = [(b-a)\cos x - (b+a)\sin x]e^{-x}$$

$$(y^*)'' = (-2b\cos x + 2a\sin x)e^{-x}$$

代入原方程并解得 $a = \frac{5}{41}, b = -\frac{4}{41}$

$$\therefore y^* = \frac{1}{41} (5\cos x - 4\sin x) e^{-x}$$

:通解为

$$y = e^x \left(C_1 \sin \sqrt{2}x + C_2 \cos \sqrt{2}x \right) + \frac{1}{41} \left(5 \cos x - 4 \sin x \right) e^{-x}.$$

(8) 解: 对应的特征方程为 $r^2 + 2ar + a^2 = 0 \Rightarrow r_1 = r_2 = -a$ 故对应通解为

$$\tilde{y} = (C_1 + C_2 x) e^{-ax}$$

 $\therefore a = -1$ 时, 方程的通解为

$$y = e^x \left(C_1 + C_2 x + \frac{1}{2} x^2 \right)$$

 $a \neq 1$ 时, 方程的通解为

$$y = e^{-ax} (C_1 + C_2 x) + \frac{e^x}{(a+1)^2}.$$

- 3. (1) 解: 特征方程为 $r^2 4r + 13 = 0 \Rightarrow r_{1,2} = 2 \pm 3i$
- :通解为

$$y = e^{2x} (C_1 \sin 3x + C_2 \cos 3x)$$

而

$$y' = e^{2x} \left[(C_1 - 3C_2) \sin 3x + (3C_1 + C_2) \cos 3x \right]$$

将
$$\begin{cases} y(0) = 0 \\ y'(0) = 3 \end{cases}$$
 代入,得
$$\begin{cases} C_2 = 0 \\ C_1 = 1 \end{cases}$$

$$y = e^{2x} \cdot \sin 3x.$$

(3) 解: 对应特征方程为 $r^2 + r - 2 = 0 \Rightarrow r_1 = 1, r_2 = -2$

∴ 对应通解为 $\tilde{y} = C_1 e^x + C_2 e^{-2x}$

设特解为 $y^* = a \sin x + b \cos x$

$$(y^*)' = a \cos x - b \sin x, (y^*)'' = -a \sin x - b \cos x$$

代入得 $(-3a+b)\sin x + (a-3b)\cos x = \cos x - 3\sin x$

$$\therefore \begin{cases} -3a+b=-3 \\ a-3b=1 \end{cases} \Rightarrow \begin{cases} a=1 \\ b=0 \end{cases}$$

故特解为 $y^* = \sin x$

:通解为

$$y = C_1 e^x + C_2 e^{-2x} + \sin x.$$

$$X y(0) = 0, y'(0) = 2, \therefore C_1 = 1, C_2 = 0$$

故特解为

$$y = e^x + \sin x$$
.

(5) 解:对应特征方程为 $r^2 - 4r + 3 = 0$,特征根为 $r_1 = 1, r_2 = 3$

: 对应通解为

$$\tilde{y} = C_1 e^{3x} + C_2 e^x$$

设一个特解为
$$y^* = ae^{5x} \Rightarrow (y^*)' = 5ae^{5x}, (y^*)'' = 25ae^{5x}$$

代入原式得
$$25a - 20a + 3a = 1 \Rightarrow a = \frac{1}{8}$$

:: 特解为

$$y^* = \frac{1}{8}e^{5x}$$

:通解为

$$y = C_1 e^{3x} + C_2 e^x + \frac{1}{8} e^{5x}$$

$$\Rightarrow \int y(0) = 3 \qquad \Rightarrow \int C_1 = \frac{11}{4}$$

$$y' = 3C_1e^{3x} + C_2e^x + \frac{5}{8}e^{5x}, \quad X \begin{cases} y(0) = 3 \\ y'(0) = 9 \end{cases} \Rightarrow \begin{cases} C_1 = \frac{11}{4} \\ C_2 = \frac{1}{8} \end{cases}$$

: 特解为

$$\tilde{y} = \frac{11}{4}e^{3x} + \frac{1}{8}e^x + \frac{1}{8}e^{5x}.$$

(7) 解:对应特征方程为 $r^2 - 1 = 0$

特征根为 $r_1 = 1, r_2 = -1$

:: 对应通解为

$$\tilde{y} = C_1 e^x + C_2 e^{-x}$$

设特解为 $y^* = (a_0 + a_1 x + a_2 x^2) e^x$

$$\Rightarrow (y^*)' = [a_0 + a_1 + (a_1 + 2a_2)x + a_2x^2]e^x$$

$$(y^*)'' = [a_0 + a_1 + 2a_2 + (a_1 + 4a_2)x + a_2x^2]e^x$$

代入原方程得
$$2a_1 + 2a_2 + 4a_2x = 4x \Rightarrow$$

$$\begin{cases}
a_0 = 0 \\
a_1 = -1 \quad \therefore y^* = (-x + x^2)e^x \\
a_2 = 1
\end{cases}$$

: 通解为

$$y = C_1 e^x + C_2 e^{-x} + (-x + x^2) e^x$$

由
$$y(0) = 0, y'(0) = 1$$
 得 $C_1 = 1, C_2 = -1$

: 特解为

$$y = e^x - e^{-x} + (-x + x^2) e^x$$
.

(9) 解:原方程对应的特征方程为 $r^2 + 4r = 0 \Rightarrow r_1 = 0, r_2 = -4$, :通解为

$$\tilde{y} = C_2 e^{-4x} + C_1$$

 $\exists \exists \ y^* = a_0 + a_1 x + b_0 \cos 2x + b_1 \sin 2x + b_2 x \cos 2x + b_3 x \sin 2x$

$$\Rightarrow (y^*)' = a_0 + (b_3 - 2b_0)\sin 2x + (b_2 + 2b_1)\cos 2x - 2b_2x\sin 2x + 2b_3x\cos 2x$$
$$(y^*)'' = (-4b_2 - 4b_1)\sin 2x + (4b_3 - 4b_0)\cos 2x - 4b_2x\cos 2x - 4b_3x\sin 2x$$

代入原方程得
$$\begin{cases} b_0 = 0 \\ b_1 = -\frac{1}{16} \\ b_2 = 0 \end{cases} \Rightarrow \begin{cases} a_0 = 0 \\ a_1 = \frac{1}{8} \end{cases}, \therefore 原方程的一个特解为 $y^* = \frac{1}{8}x - \frac{1}{16}\sin 2x + \frac{1}{8}x\sin x$$$

:. 原方程特解为

$$y = \frac{1}{8}x - \frac{1}{16}\sin 2x + \frac{1}{8}x\sin x.$$

4. 解: 设 $\alpha x = t$,: $\int_0^1 y\left(\alpha x\right) \mathrm{d}\,\alpha = \int_0^x y\left(t\right) \mathrm{d}\,\frac{t}{x} = \frac{1}{x} \int_0^x y\left(t\right) \mathrm{d}\,t$,故而 $2x \int_0^1 y\left(\alpha x\right) \mathrm{d}\,\alpha = 2 \int_0^x y\left(t\right) \mathrm{d}\,t$ 方程两侧对 x 求导得 $y'' + 3y' + 2y = e^{-x}$,对应特征方程为 $r^2 + 3r + 2 = 0 \Rightarrow r_1 = -1, r_2 = -2$

:: 对应通解为

$$\tilde{y} = C_1 e^{-x} + C_2 e^{-2x}$$

设特解为 $y^* = (a_0 + a_1 x) e^{-x}$

$$(y^*)' = (a_1 - a_0 + a_1 x) e^{-x}, \quad (y^*)'' = (a_0 - 2a_1 + a_1 x) e^{-x}, \quad ((x^*))' = (a_1 - a_0 + a_1 x) e^{-x}, \quad ((x^*))' = (a_1 - a_0 + a_1 x) e^{-x}, \quad ((x^*))' = (a_1 - a_0 + a_1 x) e^{-x}, \quad ((x^*))' = (a_1 - a_0 + a_1 x) e^{-x}, \quad ((x^*))' = (a_1 - a_0 + a_1 x) e^{-x}, \quad ((x^*))' = (a_1 - a_0 + a_1 x) e^{-x}, \quad ((x^*))' = (a_0 - 2a_1 + a_1 x) e^{-x$$

∴ 特解为 $y^* = xe^{-x}$, ∴ 原方程的通解为

$$y = xe^{-x} + C_1e^{-x} + C_2e^{-2x}$$

代入 $y_0 = 1$ 得 $C_1 + C_2 = 1$, x = 0 代入原方程得 $y_0' = -1$, 代入通解, 得 $-2C_1 - C_1 = 1$ $\therefore C_2 = 0, C_1 = 0$

: 特解为

$$y = xe^{-x} + e^{-2x}$$

6. 解: $v=s'=\frac{\mathrm{d}\,s}{\mathrm{d}\,t}, a=v'=s'',\ v'=\frac{F-W}{P}=\frac{F-a-bv}{P},\ \therefore s''=\frac{F-a-bs'}{P}\Rightarrow Ps''+bs'=F-a$ 易得原方程的特征方程为 $P\lambda^2+b\lambda=0\Rightarrow\lambda_1=0, \lambda_2=-\frac{b}{P}$

:. 通解为

$$\tilde{s} = C_1 + C_2 e^{-\frac{b}{P}t}$$

易知一个特解为
$$\frac{F-a}{b}t$$
, :. 通解为 $s=C_1+C_2e^{-\frac{b}{P}t}+\frac{F-a}{b}t$

将条件
$$s(0) = 0, s'(0) = 0$$
 代入得
$$\begin{cases} C_1 = \frac{(F-a)}{b^2} P \\ C_2 = \frac{(a-F)}{b^2} P \end{cases}$$

$$\therefore s = \frac{(F-a)}{b^2} P - \frac{(F-a)}{b^2} e^{-\frac{b}{P}t} + \frac{F-a}{b}t.$$

总习题十

☞ 教材见 393 页

1. (1) 解: 设积分因子
$$\mu = e^x$$
 原式 $\Rightarrow e^{-y} \left(e^y + e^y \frac{dy}{dx} - 4\sin x \right) = 0 \Rightarrow e^y + e^y \frac{dy}{dx} - 4\sin x = 0$

$$\Rightarrow e^x \left(e^y + e^y \frac{dy}{dx} - 4\sin x \right) = 0, \quad \text{设} \ P(x,y) = e^{x+y} - 4\sin x e^x,$$

$$Q(x,y) = e^{x+y} : \frac{\partial P}{\partial y} = e^{x+y} = \frac{\partial Q}{\partial x} : \text{ 该式子可以构成全微分}$$

$$\therefore d(e^{x+y} - 2e^x \sin x + 2e^x \cos x) = 0, \quad \text{即所求方程为}$$

$$e^{x+y} - 2e^x \sin x + 2e^x \cos x = C.$$

(5) 解:特征方程为 $r^2 + 2r + 5 = 0$,特征根为 $r_{1,2} = -1 \pm 2i$,:通解为

$$\tilde{y} = e^{-x} \left(C_1 \cos 2x + C_2 \sin 2x \right)$$

设一个特解为 $y^* = a \cos 2x + b \sin 2x$

$$(y^*)' = -2a\sin 2x + 2b\cos 2x \Rightarrow (y^*)'' = -4a\cos 2x - 4b\sin 2x$$

代入原方程得 $(b-4a)\sin 2x + (4b+a)\cos 2x = \sin 2x$

解得
$$a = -\frac{4}{17}, b = \frac{1}{17},$$
 ∴ 特解为 $y^* = -\frac{4}{17}\cos 2x + \frac{1}{17}\sin 2x$

故原方程的通解为

$$y = e^{-x} \left(C_1 \cos 2x + C_2 \sin 2x \right) - \frac{4}{17} \cos 2x + \frac{1}{17} \sin 2x.$$

(7) 解:方程两侧同乘积分因子 $\mu(x) = e^x$ 得

 $2xye^x\,\mathrm{d}\,x + x^2ye^x\,\mathrm{d}\,x + \frac{y^3}{3}e^x\,\mathrm{d}\,x + x^2e^x\,\mathrm{d}\,y + y^2e^x\,\mathrm{d}\,y = 0, \ \Rightarrow d\left(x^2ye^x\right) + d\left(\frac{y^3}{3}e^x\right) = 0$ 故所得的方程为

$$x^2ye^x + \frac{y^3}{3}e^x = C.$$

(9)
$$\mathbf{M}: \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1+xy^3}{1+x^3y} = 0 \Rightarrow (\mathrm{d}x + \mathrm{d}y) + xy(y^2 \,\mathrm{d}x + x^2 \,\mathrm{d}y) = 0$$

令
$$u = x + y, v = x - y$$
, \therefore
$$\begin{cases} dy = \frac{y du - dv}{y - x} \\ dx = \frac{dv - y du}{y - x} \end{cases}$$
, 代入整理得 $(v^2 - 1) du + uv dv = 0$

$$\Rightarrow \frac{v}{v^2 - 1} dv = -\frac{du}{u} (u = x + y \neq 0, v = xy \neq 1)$$

两侧积分并整理得

$$\frac{1}{2}\ln(v^2-1) = \ln u + C' \Rightarrow \sqrt{x^2y^2-1} = C(x+y).$$

当 xy = 1 时不符合题意; 当 x + y = 0 时, 符合题意. 故通解为

$$\sqrt{x^2y^2 - 1} = C(x + y), x + y = 0.$$

2. (1) 解: 特征方程为 $r^2 + 2r + 1 = 0 \Rightarrow r_1 = r_2 = 1$, : 对应通解为

$$\tilde{y} = (C_1 + C_2 x) e^{-x}$$

设一个特解为 $y^* = a \sin x + b \cos x$

 $\therefore (y^*)' = a\cos x - b\sin x, \ \therefore (y^*)'' = -a\sin x - b\cos x, \ \text{代入整理得} \ -2b\sin x + 2a\cos x = \cos x$ 解得 $b = 0, a = \frac{1}{2}, \ \therefore$ 特解为 $y^* = \frac{1}{2}\sin x, \ \therefore$ 通解为

$$y = (C_1 + C_2 x) e^{-x} + \frac{1}{2} \sin x$$

将 $y(0) = 0, y'(0) = \frac{3}{2}$ 代入得 $C_1 = 2, C_2 = -1$, ... 原方程特解为

$$y = \frac{1}{2}\sin x + xe^{-x}.$$

(3) 解: 对应的特征方程为 $r^3 + 6r^2 + 11r + 6 = 0 \Rightarrow (r+1)(r+2)(r+3) = 0$

∴ 特征解为 $r_1 = -1, r_2 = -2, r_3 = -3,$ ∴ 通解为

$$\tilde{y} = C_1 e^{-x} + C_2 e^{-2x} + C_3 e^{-3x}$$

设一个特解为 $y^* = a_0 + a_1 e^{-4x} \Rightarrow (y^*)' = -4a_1 e^{-4x}, (y^*)'' = 16a_1 e^{-4x}, \Rightarrow (y^*)''' = -64a_1 e^{-4x}$ 代入原方程并解得 $a_0 = a_1 = \frac{1}{6}$, ∴ 特解为 $y^* = \frac{1}{6} e^{-4x} + \frac{1}{6}$, ∴ 原方程通解为

$$y = C_1 e^{-x} + C_2 e^{-2x} + C_3 e^{-3x} + \frac{1}{6} e^{-4x} + \frac{1}{6}$$

将 y(0) = 5, y'(0) = 0 代入得 $C_1 = \frac{43}{3}, C_2 = -14, C_3 = \frac{13}{3}$, ∴ 原方程特解为

$$y = \frac{43}{3}e^{-x} - 14e^{-2x} + \frac{13}{3}e^{-3x} + \frac{1}{6}e^{-4x} + \frac{1}{6}.$$

(5) 解: 设
$$y'' = p \Rightarrow y''' = p'$$
, $\therefore (x-1)p' - p = 0 \Rightarrow \frac{\mathrm{d}\,p}{\mathrm{d}\,x} = \frac{\mathrm{d}\,x}{x-1}$, 整理并解得 $p = C(x-1)$

$$\begin{array}{ll}
\vdots & \begin{cases} x = 2 \\ y' = 1 \end{cases} \Rightarrow C_0 = 1, \quad 两侧积分得 \ y' = \frac{1}{2}x^2 - x + 1 \Rightarrow y = \frac{1}{6}x^3 - \frac{1}{2}x^2 + x + C_1 \\
\vdots & \begin{cases} x = 2 \\ y = 2 \end{cases} \Rightarrow C_1 = \frac{2}{3} \Rightarrow y = \frac{1}{6}x^3 - \frac{1}{2}x^2 + x + \frac{2}{3}.
\end{array}$$

$$\therefore \begin{cases} x = 2 \\ y = 2 \end{cases} \Rightarrow C_1 = \frac{2}{3} \Rightarrow y = \frac{1}{6}x^3 - \frac{1}{2}x^2 + x + \frac{2}{3}$$

历年试卷讲解

	第一章 函数与极限 65
	第二章 导数与微分 73
	第三章 微分中值定理与导数的应用
	第四章 一元函数积分学及其应用87
	第五章 无穷级数 99
目	综合题一 104
	第六章 向量代数与空间解析几何106
录	第七章 多元函数微分学及其应用112
	第八章 重积分 ······· 113
	第九章 曲线积分与曲面积分 ······ 131
	第十章 常微分方程 ············· 139
	综合题二140

函数与极限

■ 题型一 函数的概念与复合函数解析式及性质的确定

例 1-1 (2015-2016-1-期末-选择题-10)

若函数 $f(x) = \max\{|x-2|, \sqrt{x}\}$, 则 f(x) 的最小值等于

(B)

(A) 2

(B) 1

(C) $\frac{1}{2}$

(D) 0

答案 B.

解析 $f(x) = \begin{cases} 2-x, & x \in (-\infty, 1) \\ \sqrt{x}, & x \in [1, 4] \end{cases}$, 画图即可. $x-2, & x \in (4, +\infty)$

例 1-2 (2011-2011-1-期中-选择题-13)

当 $x \to 0$ 时,变量 $\frac{1}{x^2} \cos \frac{1}{x}$ 是

(D).

(A) 无穷小

(B) 有界但不是无穷小

(C) 无穷大

(D) 无界但不是无穷大

答案 D.

解析 无穷大必须是充分靠近某个值或充分靠后的任意点都足够大; 无界只要求存在大于任意给定值的点.

相关解释详见课本 46 页注 (2) 及 47 页例 3.8.

例 1-3 (2015-2016-1-期中-填空题-7)

已知
$$f(x-1) = \ln \frac{x}{x-2}$$
,若 $f(g(x)) = \ln x$ 则 $g(x) = \frac{2}{\ln x - 1} + 1$.

答案 $\frac{2}{\ln x - 1} + 1.$

解析 $x-1=tf(t)=\ln\frac{t+1}{t-1},$ 则 $f(g(x))=\ln\frac{g(x)+1}{g(x)-1}=\ln x,$ 则 $g(x)=\frac{2}{\ln x-1}+1.$

□ 题型二 数列/函数极限的定义及存在性的判定

要求掌握 $\varepsilon - \delta$ 语言的内涵,以及单调有界准则、夹逼准则、归结原理,在此基础上,掌握柯西命

题(课本 22 页例 2.3)及基本的审敛方法(如课本 23 页例 2.4, 习题 1-2 第 8 题、第 15 17 题). 无期中、期末考试题,读者可在学完本章重要极限之后练习杂题,以作补充.

☑ 题型三 简单极限的计算

涉及到的基本概念及方法包括:极限的定义、存在性判定定理、运算法则,两个重要极限,等价无穷小替换等.

1.3.1 化简极限的基本方法

例 3-1 (2011-2011-1-期中-填空题-6)

设
$$f(x) = a^{x} (a > 0, a \neq 1)$$
,则 $\lim_{n \to 0} \frac{1}{n^{2}} \ln (f(1) f(2) \cdots f(n)) = \frac{1}{2} \ln a$.

答案 $\frac{1}{2} \ln a$.

解析 原式 =
$$\lim_{n\to 0} \frac{\ln(aa^2 \cdots a^n)}{n^2} = \lim_{n\to \infty} \frac{\ln a + 2\ln a + \cdots + n\ln a}{n^2} = \ln a \cdot \lim_{n\to 0} \frac{n(n+1)/2}{n^2} = \frac{\ln a}{2}$$
.

例 3-2 (2015-2016-1-期中-选择题-3)

在直径 d 的大圆内作两两外切的 n 个小圆,小圆的圆心都在大圆的同一直径上,两边的小圆又分别内切与大圆,若第 l_k 个小圆的周长为,则 $\lim_{n\to\infty}\sum\limits_{k=1}^n l_k=$ (A)

(A) πd

(B) 2d

(C) d

(D) 不存在

答案 A.

解析
$$\lim_{n \to \infty} \sum_{k=1}^{n} l_k = \lim_{n \to \infty} \pi(d_1 + d_2 + d_3 + \ldots + d_n) = \lim_{n \to \infty} \pi d = \pi d.$$

例 3-3 (2016-2017-1-期中-填空题-3)

极限
$$\lim_{x \to -\infty} x \left(\sqrt{x^2 + 100} + x \right) = \underline{\qquad -50}$$
.

答案 -50

解析 负代换 t = -x 得

$$\lim_{x \to -\infty} x \left(\sqrt{x^2 + 100} + x \right) = -\lim_{t \to +\infty} t \left(\sqrt{t^2 + 100} - t \right) = -\lim_{t \to +\infty} t \cdot \frac{100}{\sqrt{t^2 + 100} - t} = -50.$$

例 3-4 (2016-2017-1-期中-填空题-8)

设
$$|x| < 1$$
, 则 $\lim_{n \to \infty} \prod_{i=0}^{n} (1 + x^{2^i}) = \frac{1}{1-x}$.

解析
$$\lim_{n\to\infty} \prod_{i=0}^n (1+x^{2^i}) = \lim_{n\to\infty} \frac{(1-x)(1+x)(1+x^2)\dots}{1-x} = \lim_{n\to\infty} \frac{1-x^{2^{n+1}}}{1-x} = \frac{1}{1-x}.$$

例 3-5 (2016-2017-1-期中-选择题-17)

设
$$\lim_{n\to\infty} \frac{n^{2016}}{n^m - (n-1)^m} = l$$
, $(l 为非 0 常数, m 为正整数)$, 则 (D) (A) $l = \frac{1}{2016}, m = 2016$ (B) $m = \frac{1}{2016}, l = 2016$ (C) $l = \frac{1}{2017}, m = 2017$ (D) $m = \frac{1}{2017}, l = 2017$

(A)
$$l = \frac{1}{2016}, m = 2016$$

(B)
$$m = \frac{1}{2016}, l = 2016$$

(C)
$$l = \frac{1}{2017}, m = 2017$$

(D)
$$m = \frac{1}{2017}, l = 2017$$

答案 D.

解析
$$\lim_{n\to\infty} \frac{n^{2016}}{n^m - (n-1)^m} = \lim_{n\to\infty} \frac{n^{2016}}{n^m - [n^m - mn^{m-1} + \ldots]} = \lim_{n\to\infty} \frac{n^{2016}}{mn^{m-1} + \ldots} = l$$
 $\Rightarrow 2016 = m-1$ 即 $m = 2017$, $l = \frac{1}{2017}$.

例 3-6 (2017-2018-1-期中-填空题-3)

$$\int \lim_{n \to \infty} \frac{x^{-(n+1)}}{x^{-n}} = \frac{1}{x}, \quad |x| < 1$$

$$\lim_{n \to \infty} \frac{x^{n+2}}{x^n} = x^2, \quad |x| > 1$$

$$1, \quad |x| = 1$$

例 3-7 (2017-2018-1-期中-填空题-4)

 $0\leqslant a<1,\lim_{n o\infty}\sqrt[n]{[a[a\dots[a[a]]\dots]]}=$ ____0__.该式有 n 个方括号,[x] 表示不超过 x 的最大整

答案

解析 $a \in [0,1) \Rightarrow [a] = 0, \ a[a] = 0 \Rightarrow [a[a]] = [a[0]] = [0] = 0, 运用数学归纳法,从而$

$$\lim_{n \to \infty} \sqrt[n]{[a[a \dots [a[a]] \dots]]} = \lim_{n \to \infty} \sqrt[n]{0} = 0$$

1.3.2 两个重要极限

例 3-8 (2014-2015-1-期中-选择题-14)

若
$$a > 0, b > 0$$
 均为常数,则 $\lim_{x \to 0} \left(\frac{a^x + b^x}{2}\right)^{\frac{3}{x}} =$ (B) $(ab)^{\frac{3}{2}}$ (C) $a^{\frac{3}{2}}b$ (D) $(ab)^{\frac{2}{3}}$

答案 B.

解析 考查对极限运算法则和 e 的重要极限及基本的等价无穷小的掌握, 运算中要注意每一步拆分、替 换是否成立.

$$\lim_{x \to 0} \left(\frac{a^x + b^x}{2} \right)^{\frac{3}{x}} = \lim_{x \to 0} e^{\frac{3}{x} \ln\left(\frac{a^x + b^x}{2}\right)} = \exp\left\{ \lim_{x \to 0} \frac{3}{x} \ln\left(\frac{a^x + b^x}{2}\right) \right\} = \exp\left\{ \lim_{x \to 0} \frac{3}{x} \cdot \frac{a^x + b^x - 2}{2} \right\}$$

$$= \exp\left\{ \lim_{x \to 0} \frac{3}{x} \cdot \frac{a^x - 1}{2} + \lim_{x \to 0} \frac{3}{x} \cdot \frac{b^x - 1}{2} \right\} = \exp\left\{ \lim_{x \to 0} \frac{3}{x} \cdot \frac{x \ln a}{2} + \lim_{x \to 0} \frac{3}{x} \cdot \frac{x \ln b}{2} \right\}$$

$$= \exp\left\{ \frac{3}{2} (\ln a + \ln b) \right\} = (ab)^{\frac{3}{2}}.$$

例 3-9 (2014-2015-1-期中-选择题-16)

极限
$$\lim_{x\to 0} \left(\frac{e^x + e^{2x} + \dots + e^{nx}}{n}\right)^{\frac{1}{x}} =$$
(A) $e^{\frac{1}{2}}$ (B) $e^{\frac{n}{2}}$ (C) $e^{-\frac{1}{2}}$ (D) $e^{\frac{n+1}{2}}$

答案 D.

解析
$$\lim_{x\to 0} \left(\frac{e^x + e^{2x} + \dots + e^{nx}}{n}\right)^{\frac{1}{x}} = \exp\left\{\lim_{x\to 0} \frac{1}{x} \cdot \ln\left(\frac{e^x + e^{2x} + \dots + e^{nx}}{n}\right)\right\}$$

$$= \exp\left\{\lim_{x\to 0} \frac{1}{x} \cdot \left(\frac{e^x + e^{2x} + \dots + e^{nx}}{n} - 1\right)\right\} = \exp\left\{\lim_{x\to 0} \frac{1}{x} \cdot \frac{(e^x - 1) + (e^{2x} - 1) + \dots + (e^{nx} - 1)}{n}\right\}$$

$$= \exp\left\{\lim_{x\to 0} \frac{1}{x} \cdot \frac{x + 2x + \dots + nx}{n}\right\} = e^{\frac{n+1}{2}}.$$

1.3.3 等价无穷小及其替换定理

例 3-10 (2011-2011-1-期中-填空题-2)

$$\lim_{x \to 0} \frac{x \tan x^3}{1 - \cos x^2} = \underline{\qquad 2 \qquad}.$$

答案 2.

解析 采用等价无穷小替换 $\tan x \sim x, 1 - \cos x \sim \frac{1}{2} x^2 (x \to 0)$ 可得 $\lim_{x \to 0} \frac{x \tan x^3}{1 - \cos x^2} = \lim_{x \to 0} \frac{x \cdot x^3}{\frac{1}{(x^2)^2}} = 2.$

例 3-11 (2013-2014-1-期中-填空题-2)

$$\begin{tabular}{l} \begin{tabular}{l} \begin{tab$$

答案 8 ln a.

解析 易得
$$\frac{f(x)}{\sin x} \to 0$$
,则有 $\ln\left(1 + \frac{f(x)}{\sin x}\right) \sim \frac{f(x)}{\sin x}$,又 $a^x - 1 \sim x \ln a$,

故原式 =
$$\lim_{x \to 0} \frac{\frac{f(x)}{\sin x}}{x \ln a} = \lim_{x \to 0} \frac{f(x)}{x^2 \ln a} \frac{x}{\sin x} = 8 \Rightarrow \lim_{x \to 0} \frac{f(x)}{x^2} = 8 \ln a.$$

例 3-12 (2013-2014-1-期中-填空题-4)

计算
$$\lim_{x \to 0} \frac{5\sin^2 x + x^3 \cos \frac{1}{x^2}}{(1 + \cos x) \ln (1 + x^2)} = \underline{\frac{5}{2}}$$
.

答案

解析 注意到当 $x \to 0$ 时, $x^3 \cos \frac{1}{r^2}$ 是 x^2 的高阶无穷小, 以及 $1 + \cos x \to 2$, 于是由等价无穷小 $\ln(1+x^2) \sim x^2 \sim \sin^2 x \, (x \to 0) \, \, \exists \, \exists \, \exists \, x \to -\infty \, \frac{5x^2+0}{2x^2} = \frac{5}{2}$

例 3-13 (2017-2018-1-期中-选择题-10)

$$x \to 1 \text{ pt}, 1-x \not\equiv 1-\sqrt[3]{x} \text{ pt}$$
 (D)

- (A) 3 阶无穷小

- (B) 等价无穷小 (C) 高阶无穷小 (D) 同阶无穷小

答案 D.

解析
$$1 - \sqrt[3]{x} = -(\sqrt[3]{1+x-1} - 1) \sim -\frac{1}{3}(x-1)(x \to 1).$$

例 3-14 (2016-2017-1-期末-填空题-11)

设函数
$$\lim_{x\to 0} \frac{e - e^{\cos x}}{\sqrt[3]{1+x^2} - 1} = \underline{\qquad \frac{3e}{2}}$$
.

答案

解析
$$\lim_{x\to 0} \frac{\mathrm{e} - \mathrm{e}^{\cos x}}{\sqrt[3]{1+x^2}-1} = -\lim_{x\to 0} \mathrm{e} \frac{\mathrm{e}^{\cos x-1}-1}{\frac{1}{3}x^2} = -\lim_{x\to 0} \mathrm{e} \frac{\cos x-1}{\frac{1}{3}x^2} = -\lim_{x\to 0} \mathrm{e} \frac{-\frac{1}{2}x^2}{\frac{1}{3}x^2} = \frac{3}{2} \mathrm{e}.$$

杂题 1.3.4

例 3-15 (2013-2014-1-期中-填空题-6)

极限
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + x - 1} + x + 1}{\sqrt{x^2 + \sin x}} = \underline{\qquad 1}$$
.

答案 1.

解析 注意 x 的趋向. 可以采用负代换避免负数进入/移出开方运算时粗心产生的错误.

观察结构,得到

原式 =
$$\lim_{t \to +\infty} \frac{t\left(\sqrt{4-t^{-1}-t^{-2}}-1+t^{-1}\right)}{t\sqrt{1-t^{-2}\sin t}} = \frac{\lim_{t \to +\infty} \left(\sqrt{4-t^{-1}-t^{-2}}-1+t^{-1}\right)}{\lim_{t \to +\infty} \sqrt{1-t^{-2}\sin t}} = \frac{\sqrt{4}-1}{1} = 1.$$

例 3-16 (2016-2017-1-期中-解答题-20)

计算
$$\lim_{x\to 0} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right)$$

答案 见解析.

解析 应当分为两个单侧极限计算 $\lim_{x\to 0^+} \left(\frac{2+\mathrm{e}^{\frac{1}{x}}}{1+\mathrm{e}^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right) = \lim_{x\to 0^+} \left(\frac{2\mathrm{e}^{-\frac{4}{x}}+\mathrm{e}^{-\frac{3}{x}}}{1+\mathrm{e}^{-\frac{4}{x}}} + \frac{\sin x}{x} \right) = 1,$

题型四 函数的连续性与间断点

例 4-1 (2013-2014-1-期中-填空题-2)

已知 $f(x) = \lim_{n \to \infty} \frac{x^{2n+1} + ax^2 + bx}{x^{2n} + 1}$,且 f(x) 在 $x = \pm 1$ 处连续,则 $a = \underline{0}$, $b = \underline{1}$.

解析 首先将 f(x) 写成分段函数形式(注意分段点的

$$f\left(x\right) = \lim_{n \to \infty} \frac{x^{2n+1} + ax^{2} + bx}{x^{2n} + 1} = \begin{cases} & \lim_{n \to \infty} \frac{x + ax^{2-2n} + bx^{1-2n}}{1 + x^{-2n}}, |x| > 1 \\ & \lim_{n \to \infty} \frac{1 + a + b}{1 + 1}, x = 1 \\ & \lim_{n \to \infty} \frac{-1 + a - b}{1 + 1}, x = -1 \\ & x \cdot \lim_{n \to \infty} \frac{x^{2n} + ax + b}{x^{2n} + 1}, |x| < 1 \end{cases} = \begin{cases} & x, |x| > 1 \\ & \frac{a + b + 1}{2}, x = 1 \\ & \frac{a - b - 1}{2}, x = -1 \\ & bx, |x| < 1 \end{cases}$$

再由 f(x) 在 $x = \pm 1$ 处连续知 $\lim_{x \to 1^{-}} f(x) = f(1) = \lim_{x \to 1^{+}} f(x)$, $\lim_{x \to -1^{-}} f(x) = f(-1) = \lim_{x \to -1^{+}} f(x)$, 即 $b = \frac{a+b+1}{2} = 1, -b = \frac{a-b-1}{2} = -1,$ 解得 a = 0, b = 1.

例 4-2 (2013-2014-1-期中-选择题-14)

设函数 f(x) 和 $\varphi(x)$ 在 $(-\infty, +\infty)$ 内有定义, f(x) 为连续函数, 且 $f(x) \neq 0$, $\varphi(x)$ 有间断点, 则____ 必有间断点. (B)

(A)
$$\varphi[f(x)]$$

(B)
$$\frac{\varphi(x)}{f(x)}$$

(C)
$$[\varphi(x)]^2$$

(C)
$$\left[\varphi\left(x\right)\right]^{2}$$
 (D) $f\left[\varphi\left(x\right)\right]$

答案 B.

解析 考查对复合函数连续性的判断.

对 A 构造反例: 只需让 f 的值域落在 φ 的某段不包含间断点的定义区间上即可,例如构造 φ 有间断点 x=5 而 f 的值域是 (-1,1);

对 C 构造反例:构造一个进行平方运算之后可以被消除的跳跃间断点,例如 $\varphi(x)= \begin{cases} 1, & x>0 \\ -1, & x\leqslant 0 \end{cases}$

事实上也只有满足单侧连续且两侧极限互为相反数的跳跃间断点能被平方运算消除,而其他类型的间断点均不可,读者不妨思考原因;

对 D 构造反例: 构造
$$\varphi(x) = \begin{cases} x+1, & x \leq 0 \\ x, & x > 0 \end{cases}$$

对 B 的分析: 在有意义的前提下 (分母不为 0 之类), 连续函数与连续函数进行有限次四则运算、复合运算仍然得到连续函数.

若 $\frac{\varphi\left(x\right)}{f\left(x\right)}$ 是连续函数,则 $\frac{\varphi\left(x\right)}{f\left(x\right)}\cdot f\left(x\right)=\varphi\left(x\right)$ 也是连续函数,与已知矛盾,故 B 错.

例 4-3 (2014-2015-1-期中-填空题-4)

函数
$$f(x) = (1+x)^{\frac{x}{\tan\left(x-\frac{\pi}{4}\right)}}$$
 在区间 $(0,2\pi)$ 内的间断点是 $x = \frac{\pi}{4}, \frac{5\pi}{4}$.

答案
$$x = \frac{\pi}{4}, \frac{5\pi}{4}.$$

解析 $\tan(x - \frac{\pi}{4}) = 0 \Rightarrow x = \frac{\pi}{4}, \frac{5\pi}{4}.$

例 4-4 (2014-2015-1-期中-选择题-17)

函数
$$f(x) = \lim_{n \to \infty} \frac{x(1-x^2)}{1+x^{2n}}$$
 在 (D)

(A) $x = \pm 1$ 均连续

(B) x = 1 连续, x = -1 不连续

(C) x = 1 不连续, x = -1 连续

(D) $x = \pm 1$ 均不连续

答案 D.

解析 将 f(x) 写成分段函数形式

$$f\left(x\right) = \lim_{n \to \infty} \frac{x\left(1 - x^{2n}\right)}{1 + x^{2n}} = x \cdot \lim_{n \to \infty} \frac{1 - x^{2n}}{1 + x^{2n}} = \begin{cases} x \cdot 1, & |x| < 1 \\ x \cdot \lim_{n \to \infty} \frac{x^{-2n} - 1}{x^{-2n} + 1}, & |x| > 1 \end{cases} = \begin{cases} x, & |x| < 1 \\ -x, & |x| > 1, \\ 0, & x = \pm 1 \end{cases}$$

画出图像即可判断.

例 4-5 (2017-2018-1-期中-填空题-9)

设函数
$$f(x) = \begin{cases} (1+x)^{-\frac{2}{x}}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
,则 $k = \frac{1}{e^2}$ 时, $f(x)$ 在 $x = 0$ 处连续.

答案 $\frac{1}{e^2}$

解析
$$\lim_{x\to 0} f(x) = f(0) \Leftrightarrow k = \lim_{x\to 0} (1+x)^{-\frac{2}{x}} = e^{-2}.$$

第二章

导数与微分

题型— 导数与微分的定义以及两者的关系

例 1-1 (2013-2014-1-期中-选择题-1)

若 f'(0) = 1 , 则极限 $\lim_{h \to 0} \frac{f(-h) - f(0)}{3h} = -\frac{1}{3}$.

解析 $\lim_{h\to 0} \frac{f(-h)-f(0)}{3h} = \lim_{h\to 0} \frac{f(-h)-f(0)}{-h} \cdot \frac{1}{-3} = -\frac{1}{3}f'(0) = -\frac{1}{3}.$

例 1-2 (2013-2014-1-期中-选择题-12)

设 f(x) 可导, $F(x) = f(x)(1 + |\sin x|)$, 则 f(0) = 0 是 F(x) 在 x = 0 处可导的 (A)

(A) 充分必要条件

(B) 充分但非必要条件

(C) 必要但非充分条件

(D) 既非充分也非必要条件

答案 A.

解析 点态导数问题,首先考虑导数定义.

$$F'(0) = \lim_{x \to 0} \frac{F(x) - F(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)(1 + |\sin x|) - f(0)}{x} = \lim_{x \to 0} \left[\frac{f(x) - f(0)}{x} + \frac{f(x)|\sin x|}{x} \right],$$

一方面, 由极限四则运算法则可知

$$\begin{split} F'\left(0\right) \text{ 存在} &\Leftrightarrow \lim_{x \to 0} \frac{f\left(x\right)\left|\sin x\right|}{x} = F'\left(0\right) - \lim_{x \to 0} \frac{f\left(x\right) - f\left(0\right)}{x} = F'\left(0\right) - f'\left(0\right) \text{ 存在}; \\ \mathcal{G} - \text{方面, 不难看出} \lim_{x \to 0} \frac{f\left(x\right)\left|\sin x\right|}{x} \text{ 存在} \Leftrightarrow f\left(0\right) = 0. \end{split}$$

因此 f(0) = 0 是 F(x) 在 x = 0 处可导的充要条件.

例 1-3 (2011-2012-1-期中-填空题-1)

答案 a = -3, b = 0.

即有
$$f(x) = \begin{cases} a \ln(1-x) + b, & x \leq 0 \\ 3x, & 0 < x < 1 \end{cases}$$
 , 又因 $f(x)$ 可导 (连续),

 $f(0^+) = f(0^-)$ 解得 b = 0, $f'(0^+) = f'(0^-)$ 解得 a = -3.

例 1-4 (2015-2016-1-期中-选择题-8)

设函数 g(x) 在 x=0 的某邻域内有定义,若 $\lim_{x\to 0} \frac{x-g(x)}{\sin x} = 1$ 成立,则 (A)

- (A) $x \to 0$ 时, g(x) 是 x 的高阶无穷小
- (B) g(x) 在 x = 0 处可导
- (C) $\lim_{x \to 0} g(x)$ 存在但 g(x) 在 x = 0 处不连续 (D) g(x) 在 x = 0 处连续但不可导

答案 A.

解析
$$\lim_{x\to 0} \frac{g(x)}{x} = \lim_{x\to 0} \left[\frac{x}{\sin x} - \frac{x-g(x)}{\sin x} \right] = \lim_{x\to 0} \frac{x}{\sin x} - \lim_{x\to 0} \frac{x-g(x)}{\sin x} = 0$$
 未给出 $g(0)$ 与 $\lim_{x\to 0} g(x)$ 的关系,因此连续性及点态导数的命题均无法判定为真,BCD 均错.

▋题型二 导数的计算

包括基本求导法则、复合函数求导法则、基本导数表(初等函数)、隐函数与参数方程求导方法等

2.2.1复合函数求导

例 2-1 (2013-2014-1-期中-选择题-12)

日知
$$y = f\left(\frac{3x-2}{3x+2}\right)$$
, $f'(x) = \arctan x^2$, 则 $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=0} =$ (C) (A) π (B) $\frac{3}{2}\pi$ (C) $\frac{3}{4}\pi$

答案 C.

解析 复合函数求导问题,注意不要漏掉该求导的函数.

$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = f'\left(\frac{3x-2}{3x+2}\right) \cdot \frac{12}{\left(3x+2\right)^2}, \quad \text{T} \not\equiv \left.\frac{\mathrm{d}\,y}{\mathrm{d}\,x}\right|_{x=0} = 3f'\left(-1\right) = 3\arctan 1 = \frac{3}{4}\pi.$$

2.2.2隐函数求导

例 2-2 (2013-2014-1-期中-填空题-4)

设函数
$$y = y(x)$$
 由方程 $(x+y)^{\frac{1}{x}} = y$ 确定,则 $\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{y[(x+y)\ln(x+y) - x]}{x[y-x(x+y)]}$.

答案
$$\frac{y\left[(x+y)\ln(x+y)-x\right]}{x\left[y-x\left(x+y\right)\right]}.$$

解析 隐函数求导问题. 方程改写为 $\frac{\ln{(x+y)}}{x} = \ln{y}$,两边同时对 x 求导得到

$$LHS = \frac{\frac{x(1+y')}{x+y} - \ln(x+y)}{x^2} = \frac{y'}{x(x+y)} + \frac{1}{x(x+y)} - \frac{\ln(x+y)}{x^2}, \quad RHS = \frac{y'}{y},$$

整理得到

$$\frac{y - x(x + y)}{xy(x + y)} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x + y)\ln(x + y) - x}{x^2(x + y)},$$

于是
$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = \frac{(x+y)\ln\left(x+y\right) - x}{x^2\left(x+y\right)} \cdot \frac{xy\left(x+y\right)}{y - x\left(x+y\right)} = \frac{y\left[(x+y)\ln\left(x+y\right) - x\right]}{x\left[y - x\left(x+y\right)\right]}.$$

2.2.3 参数方程求导

例 2-3 (2013-2014-1-期中-填空题-4)

设
$$\begin{cases} x = f'(t) \\ y = tf'(t) - f(t) \end{cases}$$
, 其中 $f''(x)$ 存在且不为零,则 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \underbrace{\frac{1}{f''(t)}}$.

答案 $\frac{1}{f''(t)}$.

解析 参数方程求导问题. 以下是这类问题的通法:

$$\begin{cases} x = f'(t) \\ y = tf'(t) - f(t) \end{cases} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = tf''(t) \cdot \frac{1}{f''(t)} = t,$$

于是
$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{\mathrm{d}}{\mathrm{d} x} \left(\frac{\mathrm{d} y}{\mathrm{d} x} \right) = \frac{\mathrm{d} t}{\mathrm{d} x} = \frac{1}{\frac{\mathrm{d} x}{24}} = \frac{1}{f''(t)}.$$

2.2.4 反函数求导

例 2-4 (2013-2014-1-期中-填空题-8)

已知
$$\frac{\mathrm{d} x}{\mathrm{d} y} = \frac{1}{y'}$$
,则 $\frac{\mathrm{d}^2 x}{\mathrm{d} y^2} = \frac{y''}{y'^3}$.

答案 $-\frac{y''}{y'^3}$

解析 反函数求导问题.
$$\frac{\mathrm{d}^2 x}{\mathrm{d} y^2} = \frac{\mathrm{d}}{\mathrm{d} y} \left(\frac{\mathrm{d} x}{\mathrm{d} y} \right) = \frac{\mathrm{d}}{\mathrm{d} x} \left(\frac{\mathrm{d} x}{\mathrm{d} y} \right) \cdot \frac{\mathrm{d} x}{\mathrm{d} y} = \frac{-y''}{y'^2} \cdot \frac{1}{y'} = -\frac{y''}{y'^3}.$$

第三章

微分中值定理与导数的应用

■ 题型一 较为复杂的极限的计算

在已经学习过的基本方法的基础上,进一步结合洛必达法则、泰勒公式与拉格朗日中值定理.

例 1-1 (2011-2011-1-期中-填空题-3)

$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} = -\frac{1}{2}e.$$

答案 $-\frac{1}{2}e$

解析 原式 = $\lim_{x \to 0} \frac{e^{\frac{\ln(1+x)}{x}} - e}{x} = e \cdot \lim_{x \to 0} \frac{e^{\frac{\ln(1+x)}{x}-1} - 1}{x}$, 由等价无穷小 $\ln(1+x) \sim x \sim e^x - 1$ $(x \to 0)$

可知

原式 = $\mathbf{e} \cdot \lim_{x \to 0} \frac{\frac{\ln(1+x)}{x} - 1}{x} = \mathbf{e} \cdot \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} = \mathbf{e} \cdot \lim_{x \to 0} \frac{\frac{1}{1+x} - 1}{2x} = \mathbf{e} \cdot \lim_{x \to 0} \frac{1 - (1+x)}{2x(1+x)} = -\frac{\mathbf{e}}{2}.$ 其中用到了洛必达法则(也可以采用 $\ln(1+x)$ 的泰勒公式求解).

例 1-2 (2011-2011-1-期中-选择题-16)

答案 36.

解析 由极限四则运算法则及泰勒公式 $\sin x = x - \frac{1}{6}x^3 + o(x^3), x \in (-\delta, \delta)$ 知

$$\lim_{x \to 0} \frac{6+f(x)}{x^2} = \lim_{x \to 0} \frac{6x+xf(x)}{x^3} = \lim_{x \to 0} \left[\frac{\sin 6x + xf(x)}{x^3} + \frac{6x - \sin 6x}{x^3} \right]$$
$$= \lim_{x \to 0} \frac{\sin 6x + xf(x)}{x^3} + \lim_{x \to 0} \frac{6x - \sin 6x}{x^3} = 0 + \lim_{x \to 0} \frac{\frac{1}{6}(6x)^3}{x^3} = 36.$$

例 1-3 (2014-2015-1-期中-填空题-1)

设曲线 $y = f(x) = x^n$ 在点 (1,1) 处的切线与 x 轴的交点为 $(\xi_n,0)$,则 $\lim_{n\to+\infty} f(\xi_n) = \frac{1}{e}$.

答案 $\frac{1}{6}$.

解析 由 f'(1) = n 知点 (1,1) 处的切线为 $y-1 = n(x-1) \Rightarrow x = 1 + \frac{y-1}{n}$

于是
$$\xi_n = 1 - \frac{1}{n}$$
, 故 $\lim_{n \to +\infty} f(\xi_n) = \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}$.

例 1-4 (2017-2018-1-期中-解答题-2)

利用泰勒展开式求极限 $\lim_{x\to 0} \frac{e^x \sin x - x(1+x)}{r^3}$.

解析 原式 =
$$\lim_{x \to 0} \frac{\left[1 + x + \frac{1}{2}x^2 + o\left(x^2\right)\right] \left[x - \frac{1}{6}x^3 + o\left(x^3\right)\right] - x\left(1 + x\right)}{x^3}$$
= $\lim_{x \to 0} \frac{x - \frac{1}{6}x^3 + x^2 + \frac{1}{2}x^3 + o\left(x^3\right) - x - x^2}{x^3} = \frac{1}{3}$.

例 1-5 (2014-2015-1-期中-选择题-18)

设当 $x \to 0$ 时, 函数 $f(x) = 3\sin x - \sin 3x$ 与 cx^k 是等价无穷小, 则 (A)

(A)
$$k = 3, c = 4$$

(B)
$$k = 3, c = -4$$

(A)
$$k = 3, c = 4$$
 (B) $k = 3, c = -4$ (C) $k = 1, c = -4$ (D) $k = 1, c = 4$

(D)
$$k = 1, c = 4$$

答案 A.

解析
$$3\sin x - \sin 3x \sim 3(x - \frac{1}{6}x^3) - (3x - \frac{1}{6}(3x)^3) = 4x^3.$$

例 1-6 (2015-2016-1-期中-填空题-9)

$$\lim_{x \to 0} \frac{\frac{(1+x)^{\frac{1}{x}}}{e} - 1}{x} = -\frac{1}{2}.$$

答案 $-\frac{1}{2}$.

解析
$$\lim_{x \to 0} \frac{\frac{(1+x)^{\frac{1}{x}}}{e} - 1}{x} = \lim_{x \to 0} \frac{e^{\frac{1}{x}\ln(1+x) - 1} - 1}{x} = \lim_{x \to 0} \frac{\frac{1}{x}\ln(1+x) - 1}{x} = \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2}$$
$$= \lim_{x \to 0} \frac{x - \frac{1}{2}x^2 - x}{x^2} = -\frac{1}{2}.$$

例 1-7 (2014-2015-1-期末-计算题-14)

计算
$$\lim_{x \to +\infty} x \left(\left(1 + \frac{1}{x} \right)^x - e \right).$$

答案 见解析.

解析 倒代换, 令 $t = \frac{1}{x}$, 将原式化为

$$\lim_{t \to 0} \frac{(1+t)^{\frac{1}{t}} - e}{t} = \lim_{t \to 0} \frac{e^{\frac{1}{t}\ln(1+t)} - e}{t} = \lim_{t \to 0} \frac{e(e^{\frac{1}{t}\ln(1+t)-1} - 1)}{t} = e\lim_{t \to 0} \frac{\frac{1}{t}\ln(1+t) - 1}{t}$$

$$= e\lim_{t \to 0} \frac{\ln(1+t) - t}{t^2} = e\lim_{t \to 0} \frac{\frac{1}{1+t} - 1}{2t} = e\lim_{t \to 0} \frac{-\frac{1}{(1+t)^2}}{2} = -\frac{e}{2}.$$

主要用于判定函数的点态特征,包括单调性与极值、凹凸性与拐点、渐近线与曲率圆,以及帮助作 出简单函数的图像等.

3.2.1 求切线

例 2-1 (2013-2014-1-期中-解答题-19)

设
$$y = y(x)$$
 由方程
$$\begin{cases} x = \arctan t \\ 2y - ty^2 + e^t = 5 \end{cases}$$
 确定,求在点 $(0,2)$ 处的切线方程.

答案 见解析.

解析 本质上是求参数方程
$$\begin{cases} x = \arctan t \\ 2y - ty^2 + e^t = 5 \end{cases}$$
 在 $(0,2)$ 处的导数.

由隐函数的求导方法可得

$$2y - ty^2 + e^t = 5 \Rightarrow 2\frac{\mathrm{d}\,y}{\mathrm{d}\,t} - y^2 - 2ty\frac{\mathrm{d}\,y}{\mathrm{d}\,t} + e^t = 0 \Rightarrow \frac{\mathrm{d}\,y}{\mathrm{d}\,t} = \frac{\mathrm{e}^t - y^2}{2ty - 2},$$

从而

$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = \frac{\mathrm{d}\,y}{\mathrm{d}\,t} / \frac{\mathrm{d}\,x}{\mathrm{d}\,t} \ = \frac{\left(\mathrm{e}^t - y^2\right)\left(1 + t^2\right)}{2ty - 2} \Rightarrow \frac{\mathrm{d}\,y}{\mathrm{d}\,x} \bigg|_{x = 0} = \left. \frac{\left(\mathrm{e}^t - y^2\right)\left(1 + t^2\right)}{2ty - 2} \right|_{t = 0, y = 2} = \frac{3}{2},$$

于是切线方程为 $y = \frac{3}{2}x + 2$.

例 2-2 (2015-2016-1-期中-填空题-10)

设对数螺线 $\rho=\mathrm{e}^{\theta}$,该曲线在对应于 $\theta=\frac{\pi}{2}$ 的点处的切线方程为 $\underline{\qquad x+y=\mathrm{e}^{\frac{\pi}{2}}}$.

答案 $x + y = e^{\frac{\pi}{2}}$.

$$\therefore \frac{\mathrm{d}\,y}{\mathrm{d}\,x} = \frac{\frac{\mathrm{d}\,y}{\mathrm{d}\,\theta}}{\frac{\mathrm{d}\,x}{\mathrm{d}\,\theta}} = \frac{\sin\theta + \cos\theta}{\cos\theta - \sin\theta}, \quad \frac{\mathrm{d}\,y}{\mathrm{d}\,x}\bigg|_{\theta = \frac{\pi}{2}} = -1,$$

$$\mathbb{X}\ (\rho,\theta) = \left(\mathrm{e}^{\frac{\pi}{2}}, \frac{\pi}{2}\right) \ \mathbb{H}, \quad x = 0, y = \mathrm{e}^{\frac{\pi}{2}}$$

 \therefore 在 $(\rho, \theta) = (e^{\frac{\pi}{2}}, \frac{\pi}{2})$ 时的切线方程为: $y - e^{\frac{\pi}{2}} = -1(x - 0)$ 即 $x + y = e^{\frac{\pi}{2}}$.

3.2.2 判定单调性与极值/最值

例 2-3 (2012-2013-1-期末-选择题-12)

设 y=f'(x) 对一切 x 满足 $xf''(x)+3x[f'(x)]^2=1-e^x$,若 $f''(x_0)=0, x_0\neq 0$,则 (B).

 $(A) f(x_0)$ 是 f(x) 的极大值

- (B) $f(x_0)$ 是 f(x) 的极小值
- (C) $f(x_0, f(x_0))$ 时曲线 y = f(x) 的拐点
- (D) 以上都不对

答案 B.

解析 式子带入 x_0 即有 $f''(x_0) = \frac{1 - e^{-x_0}}{x_0} \neq 0, x_0 > 0$ 和 $x_0 < 0$ 时,均有 $f''(x_0) > 0$ 则 $f(x_0)$ 是极小值.

例 2-4 (2014-2015-1-期末-选择题-7)

函数 $f(x) = \ln(1+x^2)$ 在 [-1,2] 上的最大值是

(D)

- (A) ln 2
- (B) ln 3
- (C) ln 4
- (D) ln 5

答案 D.

解析 $f'(x) = \frac{2x}{1+x^2}$,于是 $\forall x \in [-1,0]$, f'(x) < 0; $\forall x \in [0,2]$, f'(x) > 0 则 f(x) 在 [-1,0] 上单调递减,在 [0,2] 上单调递增

于是 $f(x) = \ln(1+x^2)$ 在 [-1,2] 上的最大值为 $\max\{f(-1), f(2)\} = \ln 5$.

例 2-5 (2012-2013-1-期中-填空题-2)

$$y = x^2 e^{-x}$$
 的极大值是 $\frac{4}{e^2}$.

答案 $\frac{4}{e^2}$

解析 $y' = 2xe^{-x} - x^2e^{-x} = xe^{-x}(2-x), e^{-x} > 0 \Leftrightarrow y' = 0 \Rightarrow x_1 = 0, x_2 = 2$

则 $x \in (-\infty,0)$, y' < 0 , $y \downarrow$; $x \in [0,2]$, y' > 0 , $y \uparrow$; $x \in (2,+\infty)$, y' < 0 , $y \downarrow$ 所以当 x = 2 时极大值为 $\frac{4}{\mathrm{e}^2}$.

例 2-6 (2015-2016-1-期中-填空题-3)

若 $y = ex - e^{-\lambda x}$ 有正的极值点,则参数 λ 的取值范围是 ____ $- e < \lambda < 0$ ___ .

答案 $-e < \lambda < 0$.

解析 $y'=\mathrm{e}+\lambda\mathrm{e}^{-\lambda x},\ y'=0$ 有正的实根,即 $\lambda\mathrm{e}^{-\lambda x}=-\mathrm{e},\ \mathrm{e}^{-\lambda x}=-\frac{\mathrm{e}}{\lambda}$ 令 $f(x)=\mathrm{e}^{-\lambda x},\ g(x)=-\frac{\mathrm{e}}{\lambda}$ 即 f(x)=g(x) 存在 x>0 的点即图像有交点,画图可得 $0<-\frac{\mathrm{e}}{\lambda}<1$,即 $-\mathrm{e}<\lambda<0$.

例 2-7 (2015-2016-1-期中-选择题-6)

若 a,b,c,d 成等比数列,则函数 $f(x) = \frac{1}{3}ax^3 + bx^2 + cx + d$ (D)

(A) 有极大值, 而无极小值

(B) 无极大值, 而有极小值

(C) 有极大值, 也有极小值

(D) 无极大值, 也无极小值

答案 D.

解析 $\therefore y = \frac{1}{3}ax^3 + bx^2 + cx + d, \therefore y' = ax^2 + 2bx + c.$

而 a, b, c, d 成等比数列,则 $b^2 = ac \Leftrightarrow ax^2 + 2bx + c = 0$,则 $\Delta = 4b^2 - 4ac = 4b^2 - 4b^2 = 0$ ∴ $y' \ge 0$ 或 $y' \le 0$,即 f(x) 无极值.

例 2-8 (2016-2017-1-期中-选择题-13)

设函数 g(t) 在 $(-\infty, +\infty)$ 内可导,且对任意的 t_1, t_2 ,当 $t_1 > t_2$ 时,都有 $g(t_1) > g(t_2)$,则 (B)

(A) 对任意的 t, g'(t) > 0

(B) 函数 -g(-t) 单调增加

(C) 对任意的 t, $g'(-t) \leq 0$

(D) 函数 g(-t) 单调增加

答案 B.

解析 由题可得 $g'(t) \ge 0$, g(t) 单调增加

对于 B, $[-g(-t)]' = g'(-t) \ge 0$, 单增

对于 D, $[g(-t)]' = -g'(-t) \leq 0$, 单减.

例 2-9 (2017-2018-1-期中-选择题-6)

设 $f\left(x\right)$ 在 x=0 的某邻域内连续,且 $f\left(0\right)=0,\lim_{x\to0}\frac{f\left(x\right)}{x^{2}}=1$,则点 x=0 是 $f\left(x\right)$ 的 (B)

(A) 极大值点

(B) 驻点和极小值点

(C) 非驻点

(D) 非驻点但是极小值点

答案 B.

解析 $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \left[x \cdot \frac{f(x)}{x^2} \right] = \lim_{x \to 0} x \cdot \lim_{x \to 0} \frac{f(x)}{x^2} = 0$ 则点 x = 0 是 f(x) 的驻点.

3.2.3 判定拐点与凹凸性

例 2-10 (2013-2014-1-期末-填空题-3)

曲线 $y = \ln(x^2 + 1)$ 的拐点是 $(\pm 1, \ln 2)$.

答案 (±1, ln 2).

解析
$$y' = \frac{2x}{x^2+1}$$
, $y'' = \frac{2(x^2+1)-2x\cdot 2x}{\left(x^2+1\right)^2} = \frac{2-2x^2}{x^2+1)^2}$, $y'' = 0$ 时, $x^2 = 1, x = \pm 1, y = \ln 2$.

例 2-11 (2015-2016-1-期末-选择题-8)

曲线
$$y = \begin{cases} x(x-1)^2 \\ (x-1)^2(x-2) \end{cases}$$
 , $\begin{cases} 0 \leqslant x \leqslant 1 \\ 1 < x \leqslant 2 \end{cases}$ 在区间 $(0,2)$ 有

(A) 2 个极值点, 1 个拐点,

(B) 2 个极值点, 2 个拐点.

(C) 2 个极值点, 3 个拐点.

(D) 3 个极值点, 3 个拐点.

答案 C.

解析 注意 x = 1 的特殊性即可.

例 2-12 (2017-2018-1-期末模拟-选择题-13)

曲线
$$y = (x-1)(x-2)^2(x-3)^3(x-4)^4$$
 的拐点为 (C)

- (A) (1,0)
- (B) (2,0)
- (C)(3,0)
- (D) (4,0)

答案 C.

解析 求 y''; 令 y'' = 0, 求出使 y'' = 0 和 y'' 不存在的点;

用这些点把定义域分成若干小区间,讨论 y'' 的符号,判断曲线 y 在小区间的凹凸性;考察 y'' 在 x 两侧的近旁是否变号,如果 y'' 变号,那么点 (x, f(x)) 是曲线 y 的拐点.

例 2-13 (2017-2018-1-期中-选择题-7)

曲线
$$y = 3x^5 - 10x^3 - 360x$$
 的拐点有 (C)

- (A) 1 个
- (B) 2 个
- (C) 3 个
- (D) 0 个

答案 C.

解析 $y' = 15x^4 - 30x^2 - 360, y'' = 60x^3 - 60x = 60x(x-1)(x+1)$,令 y'' = 0 并验证根两侧二阶导数的正负可知有 3 个拐点.

例 2-14 (2017-2018-1-期末模拟-选择题-16)

曲线
$$y = \frac{1}{x} + \ln(1 + e^x)$$
 渐近线条数为 (D)

- (A) 0
- (B) 1
- (C) 2
- (D) 3

答案 D.

解析
$$\lim_{x\to+\infty}y=\lim_{x\to+\infty}\left[\frac{1}{x}+\ln(1+\mathrm{e}^x)\right]=+\infty,\ \lim_{x\to-\infty}y=\lim_{x\to-\infty}\left[\frac{1}{x}+\ln(1+\mathrm{e}^x)\right]=0,$$
 所以 $y=0$ 是曲线的水平渐近线;

 $\lim_{x\to 0} y = \lim_{x\to 0} \left[\frac{1}{x} + \ln(1+e^x) \right] = \infty$,所以 x = 0 是曲线的垂直渐近线;

$$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to -\infty} \frac{\left[\frac{1}{x} + \ln(1 + e^x)\right]}{x} = 0 + \lim_{x \to +\infty} \frac{\ln(1 + e^x)}{x} = \lim_{x \to +\infty} \frac{e^x}{\frac{1 + e^x}{1}} = 1,$$

$$b = \lim_{x \to +\infty} \left[y - x\right] = \lim_{x \to +\infty} \left[\frac{1}{x} + \ln(1 + e^x) - x\right] = 0$$

所以 y = x 是曲线的斜渐近线

所以一共3条渐近线.

例 2-15 (2012-2013-1-期中-选择题-12)

曲线
$$y = \frac{x^2 + x}{x^2 - 1}$$
 的渐近线条数为 (C)

(B) 1

(C) 2

(D) 3

答案 C.

解析 由于 $y = \frac{x^2 + x}{x^2 - 1}$ 在 $x = \pm 1$ 处没有定义,且 $\lim_{x \to 1} \frac{x^2 + x}{x^2 - 1} = \infty$, $\lim_{x \to -\infty} \frac{x^2 + x}{x^2 - 1} = \frac{1}{2}$

 $\therefore x = 1$ 是 y 的垂直渐近线;

又 $\lim_{x \to +\infty} \frac{x^2 + x}{x^2 - 1} = 1$, $\therefore y = 1$ 是曲线的水平渐近线;

而 $\lim_{x \to +\infty} \frac{y}{x} = 0$, ... 曲线 $y = \frac{x^2 + x}{r^2 - 1}$ 无斜渐近线.

: 曲线的渐近线条数为 2.

例 2-16 (2013-2014-1-期中-选择题-17)

曲线
$$y = \frac{1 + e^{-x^2}}{1 - e^{x^2}}$$
 (D)

(A) 没有渐近线

(B) 仅有水平渐近线

(C) 仅有铅直渐近线

(D) 既有水平渐近线又有铅直渐近线

答案 D.

解析 $\because \lim_{x \to 0} \frac{1 + e^{-x^2}}{1 - e^{x^2}} = \infty, \quad \therefore x = 0$ 是其铅直渐近线;

又 $:: \lim_{x \to +\infty} \frac{1 + e^{-x^2}}{1 - e^{x^2}} = \frac{1 + \lim_{x \to +\infty} e^{-x^2}}{1 - \lim_{x \to +\infty} e^{-x^2}} = 1, :: y = 1$ 是其水平渐近线.

例 2-17 (2017-2018-1-期中-选择题-9)

曲线
$$y = x \sin \frac{1}{x}$$
 (A)

(A) 只有水平渐近线

(B) 只有铅直渐近线

(C) 既有水平渐近线又有铅直渐近线

(D) 有斜渐近线

答案 A.

解析 考虑铅直渐近线: $\lim_{x\to 0}x\sin\frac{1}{x}=0$,则无铅直渐近线; 考虑水平渐近线: $\lim_{x\to +\infty}x\sin\frac{1}{x}=\lim_{x\to 0}\frac{\sin t}{t}=1$,y=1 是其水平渐近线;

考虑斜渐近线: $\lim_{x \to +\infty} \frac{x \sin \frac{1}{x}}{x} = \lim_{x \to +\infty} \sin \frac{1}{x}$,极限不存在,无斜渐近线.

函数性态的综合判断 3.2.5

例 2-18 (2013-2014-1-期中-选择题-10)

若 f(-x) = -f(x), 在 $(0,+\infty)$ 内 f'(x) > 0, f''(x) > 0, 则 f(x) 在 $(-\infty,0)$ 内 (A)

(A) f'(x) > 0, f''(x) < 0

(B) f'(x) < 0, f''(x) > 0

(C) f'(x) < 0, f''(x) < 0

(D) f'(x) > 0, f''(x) > 0

答案 A.

解析 f(-x) = -f(x), f(x) 为奇函数, 图像关于原点对称, 具有相同的单调性和相反的凹凸性 又在 $(0,+\infty)$ 内 f'(x) > 0, f''(x) > 0, 所以在 $(-\infty,0)$ 内 f'(x) > 0, f''(x) < 0.

例 2-19 (2012-2013-1-期中-选择题-15)

设 f(-x) = f(x), 且在 $(0,\infty)$ 内 f'(x) < 0, f''(x) < 0, 则曲线 y = f(x) 在 $(-\infty,0)$ 内 (D)

- (A) 单调减且是凹的

- (B) 单调减且是凸的 (C) 单调增且是凹的 (D) 单调增且是凸的

答案 D.

解析 f(-x) = f(x), 所以 f(x) 是偶函数, 图像关于 y 轴对称

可知在 y 轴两侧具有相同的凹凸性和相反的单调性

又 f(x) 在 $(0,\infty)$ 内 f'(x) < 0,所以 f(x) 在 $(0,\infty)$ 是单调减;

f'(x) < 0, f(x) 在 $(0,\infty)$ 内是凸函数;

所以在 $(-\infty,0)$ 内 f(x) 是单调增且是凸函数.

例 2-20 (2013-2014-1-期中-选择题-15)

设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$, 且 f'(0) = 0, 则 (C)

- (A) x = 0 是 f(x) 的极大值点
- (B) x = 0 是 f(x) 的极小值点
- (C) (0, f(0)) 是曲线 y = f(x) 的拐点
- (D) x = 0 不是 f(x) 的极值点, (0, f(0)) 也不是曲线 y = f(x) 的拐点

答案 C.

解析 由 $f''(x) + [f'(x)]^2 = x$,得 f(x) 在其定义域内存在二阶连续导数且 f''(0) = 0

 $f''(x) = x - [f'(x)]^2$, MUM f'''(x) = 1 - 2[f'(x)]f''(x),

所以 $f'''(0) = 1 \neq 0$ 即 (0, f(0)) 是曲线 y = f(x) 的拐点.

■ 题型三 微分中值定理的应用

主要用于判定函数的全局性态,例如特殊点、函数值的存在性

例 3-1 (2015-2016-1 期末-证明题-19)

设函数 f(x) 在 [a,b] 上具有二阶导数,且 f(a) = f(b) = 0, f'(a) f'(b) > 0,证明:存在 $\xi \in (a,b), f''(\xi) = 0$.

答案 见解析.

解析 由 f 在 [a,b] 上二阶可导可知 f' 在 [a,b] 上连续. 由 f'(a) f'(b) > 0,不妨设 f'(a) > 0,f'(b) > 0,结合 f(a) = f(b) = 0 可知

$$\exists \delta_1, \delta_2 > 0, \forall x \in (a, a + \delta_1), f(x) > 0; \ \forall x \in (b - \delta_2, b), f(x) < 0$$

于是由 f 的连续性, 借助零点存在定理可知

$$\exists \eta \in (a,b), f(\eta) = 0$$

于是 [a,b] 上二阶可导的函数 f 满足 $f(a) = f(\eta) = f(b) = 0$,接下来只需分别在 $[a,\eta]$, $[\eta,b]$ 上分别 对 f 使用罗尔定理得到 f' 的两个不同零点 ξ_1,ξ_2 ,再在 $[\xi_1,\xi_2] \subseteq [a,b]$ 上对 f' 使用罗尔定理即可证.

例 3-2 (2016-2017-1-期末-证明题-18)

设函数 f(x), g(x) 在 [a,b] 上连续,在 (a,b) 内具有二阶导数且存在相等的最大值,f(a) = g(a), f(b) = g(b), 证明:存在 $\xi \in (a,b)$,使得 $f''(\xi) = g''(\xi)$.

答案 见解析.

解析 构造函数 F(x)=f(x)-g(x),由题 F(a)=F(b)=0

设 c 处 f(x) 取最大值, d 处 g(x) 取最大值, 且有

$$f(c) = g(d), F(c) = f(c) - g(c) > f(c) - g(d) = 0, F(d) = f(d) - g(d) < f(c) - g(d) = 0$$

$$\exists \xi_1 \in (a, \xi') \ s.t. \ F'(\xi_1) = 0, \exists \xi_2 \in (\xi', b) \ s.t. \ F'(\xi_2) = 0 \Rightarrow \exists \xi \in (\xi_1, \xi_2) \subseteq (a, b) \ s.t. \ F''(\xi) = 0$$

即 $f''(\xi) = g''(\xi)$, 得证.

例 3-3 (2012-2013-1-期中-证明题-21)

设函数 f(x) 在 [0,1] 上具有二阶导数,且 f(0) = f(1) = 0, $\min f(x) = -1$, $(0 \le x \le 1)$,证明:至少存在一点 $\xi \in (0,1)$,使得 $f'''(\xi) \ge 8$.

答案 见解析.

解析 由题 $f(0) = f(1) = 0 \neq -1$, 设 $\min f(x) = f(c) = -1$; 则 $f'(c) = 0c \in (0,1)$

因为 f(x) 在 [0,1] 上具有二阶函数,且 f(c) = -1

所以可将 f(x) 在 x = c 处展开成二阶带拉格朗日余项的泰勒公式,并分别带入 x = 0 和 x = 1

有
$$\begin{cases} f(0) = f(c) + f'(c)(0-c) + \frac{1}{2}f''(\xi_1)(0-c)^2, & 0 < \xi_1 < c \\ f(1) = f(c) + f'(c)(1-c) + \frac{1}{2}f''(\xi_2)(1-c)^2, & c < \xi_2 < 1 \end{cases}$$

$$\begin{cases} f''(\xi_1) = \frac{2}{c^2} \\ f''(\xi_2) = \frac{2}{(1-c)^2} \end{cases}$$

又 $c \in (0,1)$,所以存在 $\xi \in (\xi_1, \xi_2)$ 使得 $\max f''(\xi) \geqslant \{f''(\xi_1), f''(\xi_2)\} \geqslant \frac{2}{\frac{1}{4}} = 8$,得证.

例 3-4 (2014-2015-1-期中-证明题-21)

设函数 f(x) 在区间 [0,1] 上连续,在 (0,1) 内可导,且 $f(0) = f(1) = 0, f(\frac{1}{2}) = 1$. 试证:

- (1) 存在 $\eta \in (\frac{1}{2}, 1)$ 使 $f(\eta) = \eta$;
- (2) 对于任意实数 λ , 必存在 $\xi \in (0, \eta)$ 使得 $f'(\xi) \lambda [f(\xi) \xi] = 1$.

答案 见解析.

解析 (1) 令 g(x) = f(x) - x,则 g(x) 在 $\left[\frac{1}{2}, 1\right]$ 连续,在 $\left(\frac{1}{2}, 1\right)$ 可导

$$\mathbb{E} g(1) = f(1) - 1 = 0 - 1 = -1 < 0, \ g\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) - \frac{1}{2} = 1 - \frac{1}{2} = \frac{1}{2} > 0$$

- \therefore 由零点定理, $\exists \eta \in \left(\frac{1}{2},1\right)$, 使得 $g(\eta) = 0$, 即 $f(\eta) = \eta$, 得证.
- (2) 设 $h(x) = e^{-\lambda x} [f(x) x], x \in [0, \eta], 则 h(x) 在 [0, \eta] 连续, 在 (0, \eta) 可导, 且 h(0) = h(\eta) = 0$
- ∴ 由罗尔定理, $\exists \xi \in (0, \eta)$ 使得 $h'(\xi) = 0$, $\nabla h'(x) = e^{-\lambda x} [f'(x) 1 \lambda (f(x) x)]$
- ∴ 由 $h'(\xi) = 0$ 得: $e^{-\lambda \xi} [f'(\xi) 1 \lambda (f(\xi) \xi)] = 0$
- $\therefore f'(\xi) \lambda [f(\xi) \xi] = 1$, 得证.

例 3-5 (2015-2016-1-期中-证明题-22)

设函数 f(x) 是区间 [-1,1] 上的三阶可导函数,且 f(-1) = 0, f(0) = 0, f(1) = 1, f'(0) = 0. 试证: $\exists \xi \in (-1,1)$, 使得 $f'''(\xi) \geqslant 3$.

答案 见解析.

解析 泰勒展开
$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(c)}{6}x^3 = \frac{f''(0)}{2}x^2 + \frac{f'''(c)}{6}x^3$$

 $\therefore f(1) = \frac{f''(0)}{2} + \frac{f'''(\xi_1)}{6}, f(-1) = \frac{f''(0)}{2} - \frac{f'''(\xi_2)}{6}, \text{ 两式相减并整理得到 } f'''(\xi_1) + f'''(\xi_2) = 6$
取 $f(\xi) = \max\{f(\xi_1), f(\xi_2)\}3$ 即得证.

例 3-6 (2017-2018-1-期中-填空题-6)

$$y=\sqrt{x}-1$$
 在区间 $[1,4]$ 上用拉格朗日中值定理,结论中的点 $\xi=\frac{9}{4}$.

答案 $\frac{9}{4}$.

解析 由拉格朗日中值定理得, $\frac{1}{2\sqrt{\xi}} = \frac{y(4) - y(1)}{4 - 1} = \frac{\sqrt{4} - \sqrt{1}}{3} = \frac{1}{3} \Rightarrow \sqrt{\xi} = \frac{3}{2} \Rightarrow \xi = \frac{9}{4}.$

例 3-7 (2017-2018-1-期中-证明题-2)

设 f(x) 在 [0,a] 存在三阶导数,且 f(0)=f(a)=0,设 $F(x)=x^3f(x)$. 证明:存在一点 $\xi\in(0,a)$,使得 $F'''(\xi)=0$.

答案 见解析.

解析
$$F'(x) = 3x^2 f(x) + x^3 f'(x), F''(x) = 6x f(x) + 6x^2 f'(x) + x^2 f''(x)$$

$$\Rightarrow F(0) = F(a) = 0, F'(0) = 0, F''(0) = 0$$

$$\Rightarrow F(0) = F(a) = 0 \Rightarrow \exists b \in (0, a) \text{ s.t. } F'(b) = 0, \ \ X F'(0) = 0$$

$$\Rightarrow \exists c \in (0, b) \text{ s.t. } F''(c) = 0, \ \ X F''(0) = 0$$

$$\Rightarrow \exists \xi \in (0,c) \subseteq (0,a) \text{ s.t. } F'''(\xi) = 0$$
,得证.

第四章

一元函数积分学及其应用

■ 题型一 定积分的定义、基本性质以及存在性判定

4.1.1 定积分(黎曼积分)的定义

例 1-1 (2015-2016-1-期末-填空题-6)

极限
$$\lim_{n\to+\infty}\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(2n)}=$$
 $\frac{4}{e}$.

答案 $\frac{4}{e}$.

解析 【法一】形式满足定积分定义式

$$\lim_{n \to +\infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(2n)} = \lim_{n \to +\infty} \sqrt[n]{\frac{(n+1)(n+2)\cdots(2n)}{n^n}}$$

$$= \exp\left\{\lim_{n \to +\infty} \frac{1}{n} \ln \frac{(n+1)(n+2)\cdots(2n)}{n^n}\right\} = \exp\left\{\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n \ln \frac{n+i}{n}\right\}$$

$$= \exp\left\{\int_0^1 \ln (1+x) \, \mathrm{d}x\right\}$$

而
$$\int_0^1 \ln(1+x) \, \mathrm{d} x = x \ln(1+x) \Big|_0^1 - \int_0^1 \left(1 - \frac{1}{1+x}\right) \, \mathrm{d} x = \ln 2 - \left[x - \ln(1+x)\right] \Big|_0^1 = 2 \ln 2 - 1$$
 故原式 $= \mathrm{e}^{2 \ln 2 - 1} = \frac{4}{\mathrm{e}}.$

【法二】曲 Stirling 公式 $n! \sim \frac{n^n}{e^n} \sqrt{2\pi n}$ 及 $\lim_{n \to +\infty} \sqrt[n]{a} = 1 (a > 0)$

例 1-2 (2013-2014-1-期末-填空题-6)

$$\lim_{n \to +\infty} \frac{n^4}{1^3 + 2^3 + \dots + n^3} = \underline{4}.$$

答案 4.

解析 【法一】
$$\lim_{n \to +\infty} \frac{n^4}{1^3 + 2^3 + \dots + n^3} = \frac{1}{\lim_{n \to +\infty} \frac{1}{n} \left[\left(\frac{1}{n} \right)^3 + \left(\frac{2}{n} \right)^3 + \dots + \left(\frac{n}{n} \right)^3 \right]} = \frac{1}{\int_0^1 x^3 \, \mathrm{d} x} = 4.$$

【法二】
$$\lim_{n \to +\infty} \frac{n^4}{1^3 + 2^3 + \dots + n^3} = \lim_{n \to +\infty} \frac{n^4}{\frac{n^2(n+1)^2}{4}} = 4 \lim_{n \to +\infty} \frac{n^4}{n^4 + 2n^3 + n^2} = 4.$$
 注: $1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4} = (1 + 2 + \dots + n)^2.$

例 1-3 (2016-2017-1-期末-填空题-12)

极限
$$\lim_{n\to+\infty} \left(\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \dots + \frac{n}{n^2+n^2}\right) = \underline{\frac{\pi}{4}}$$
.

答案
$$\frac{\pi}{4}$$
.

解析
$$\lim_{n \to +\infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right)$$

$$= \lim_{n \to +\infty} \frac{1}{n} \left(\frac{1}{1 + \left(\frac{1}{n}\right)^2} + \frac{1}{1 + \left(\frac{2}{n}\right)^2} + \dots + \frac{1}{1 + \left(\frac{n}{n}\right)^2} \right) = \int_0^1 \frac{1}{1 + x^2} \, \mathrm{d}x = \frac{\pi}{4}.$$

例 1-4 (2014-2015-1-期末-选择题-10)

$$\lim_{n \to +\infty} \frac{1}{n} [n(n+1)(n+2)\cdots(n+n-1)]^{\frac{1}{n}} =$$
(A) $e^{2\ln 2 - 1}$ (B) $e^{2(\ln 2 - 1)}$ (C) $e^{2\ln 2 - 3}$ (D) $e^{3\ln 2 - 1}$

答案 A.

解析

$$\lim_{n \to +\infty} \frac{1}{n} [n(n+1)(n+2) \cdots (n+n-1)]^{\frac{1}{n}} = \lim_{n \to +\infty} \exp\left\{\ln \frac{1}{n} [n(n+1)(n+2) \cdots (n+n-1)]^{\frac{1}{n}}\right\}$$

$$= \exp\left\{\lim_{n \to +\infty} \frac{1}{n} \ln \left[\frac{n(n+1)(n+2) \cdots (n+n-1)}{n^n}\right]\right\}$$

$$= \exp\left\{\lim_{n \to +\infty} \frac{1}{n} \left[\ln(1+\frac{0}{n}) + \ln(1+\frac{1}{n}) + \dots + \ln(1+\frac{n-1}{n})\right]\right\}$$

$$= \exp\left\{\int_0^1 \ln(1+x) \, dx\right\} = \exp\left\{2\ln 2 - 1\right\}.$$

4.1.2 定积分的基本性质

例 1-5(2016-2017-1-期末-选择题-2)

下列定积分中积分值不为零的是

(A)
$$\int_{\frac{1}{2}}^{\frac{1}{2}} \ln \frac{1+x}{1-x} \, dx$$
(C)
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{1+\sin^2 x} \, dx$$

(B)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x}{1 + \cos x} \, \mathrm{d} x$$
(D)
$$\int_{0}^{2\pi} \frac{\sin x + \cos x}{2} \, \mathrm{d} x$$

答案 C.

解析 $\ln \frac{1+x}{1-x}, \frac{x}{1+\cos x}$ 均为奇函数, $\frac{\sin x + \cos x}{2}$ 在整数个周期内的积分值为零.

$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{1 + \sin^2 x} \, \mathrm{d} \, x = 2 \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^2 x} \, \mathrm{d} \, x \neq 0.$$

例 1-6 (2013-2014-1-期末-解答题-13)

$$\int_{-1}^{1} \frac{x^2 + \sin x \cos x}{1 + x^6} \, \mathrm{d} \, x.$$

答案 见解析

解析
$$\int_{-1}^{1} \frac{x^2 + \sin x \cos x}{1 + x^6} dx = \int_{-1}^{1} \frac{x^2}{1 + x^6} dx + \int_{-1}^{1} \frac{\sin x \cos x}{1 + x^6} dx$$
$$= \frac{1}{3} \int_{-1}^{1} \frac{1}{1 + (x^3)^2} dx^3 + 0 = \frac{1}{3} \arctan x^3 \Big|_{-1}^{1} = \frac{\pi}{6}.$$

█ 题型二 变限积分的概念、求导法则

例 2-1 (2015-2016-1-期末-选择题-11)

设函数
$$f(x) = \begin{cases} a, & x = 0 \\ \frac{1}{x^3} \int_0^{3x} (e^{-t^2} - 1) dt, & x \neq 0 \end{cases}$$
 在 $x = 0$ 点连续,则 $a =$ (A) $x = 0$ (A) $x = 0$ (B) $x = 0$ (C) $x = 0$ (D) $x = 0$ (D) $x = 0$ (E) $x = 0$ (D) $x = 0$ (E) $x = 0$ (

答案 A.

解析
$$a = \lim_{x \to 0} \frac{1}{x^3} \int_0^{3x} (e^{-t^2} - 1) dt = \lim_{x \to 0} \frac{3(e^{-9x^2} - 1)}{3x^2} = \lim_{x \to 0} \frac{-9x^2}{x^2} = -9.$$

例 2-2 (2016-2017-1-期末-填空题-9)

设
$$y(x) = \int_0^{x^2} \sin(x - t)^2 dt$$
, 则 $\frac{dy}{dx}\Big|_{x=2} = \underline{4\sin 4}$.

答案 4 sin 4.

解析 换元得到变限积分的标准形式

$$y(x) = \int_0^{x^2} \sin(x - t)^2 dt = \frac{\partial u = x - t}{\partial x} \int_x^{x - x^2} \sin u^2 d(x - u) = \int_{x - x^2}^x \sin u^2 du$$

干是由变限积分求导法则得

$$\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_{x=2} = \left(\frac{\mathrm{d}}{\mathrm{d}x} \int_{x-x^2}^x \sin u^2 \, \mathrm{d}u\right)\bigg|_{x=2} = \left[\sin x^2 - (1-2x)\sin \left(x-x^2\right)^2\right]\bigg|_{x=2} = 4\sin 4.$$

例 2-3 (2014-2015-1-期末-选择题-9)

$$f(x) = \int_0^{x^2} \frac{\sin t}{t} \, \mathrm{d} \, t, g(x) = 2^{x^2} - 1, \, \text{则当} \, \, x \to 0 \, \, \text{时}, f(x) \, \text{是} \, \, g(x) \tag{B}$$
 (A) 低阶无穷小 (B) 同阶但非等价无穷小

(C) 高阶无穷小

(D) 等价无穷小

答案 B.

解析
$$\lim_{x\to 0}\frac{f(x)}{g(x)}=\lim_{x\to 0}\frac{\int_0^{x^2}\frac{\sin t}{t}\,\mathrm{d}\,t}{2^{x^2}-1}=\lim_{x\to 0}\frac{\int_0^{x^2}\frac{\sin t}{t}\,\mathrm{d}\,t}{x^2\ln 2}=\lim_{x\to 0}\frac{\frac{\sin x^2}{x^2}\cdot 2x}{2x\ln 2}=\lim_{x\to 0}\frac{\sin x^2}{x^2\ln 2}=\frac{1}{\ln 2}.$$

例 2-4 (2014-2015-1-期末-解答题-17)

设
$$f(x) = \begin{cases} x, & 0 \leqslant x \leqslant 1 \\ x^2, & x > 1 \end{cases}$$
 , 求 $\int_0^x f(t) \, \mathrm{d} \, t(x \geqslant 0)$.

答案 见解析

解析
$$x \le 1$$
 时 $\int_0^x f(t) dt = \int_0^x t dt = \frac{1}{2}x^2$; $x > 1$ 时 $\int_0^x f(t) dt = \int_0^1 t dt + \int_1^x t^2 dt = \frac{1}{3}x^3 + \frac{1}{6}$ 因此 $f(x) = \begin{cases} \frac{1}{2}x^2, & x \le 1 \\ \frac{1}{3}x^3 + \frac{1}{6}, & x > 1 \end{cases}$.

例 2-5 (2013-2014-1-期末-选择题-11)

(A) 等阶无穷小

(B) 高阶无穷小

(C) 低阶无穷小

(D) 同阶但非等价无穷小

答案 D.

解析
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{\int_0^{5x} \frac{\sin t}{t} dt}{\int_0^{\sin x} (1+t)^{\frac{1}{t}} dt} = \lim_{x\to 0} \frac{\frac{\sin 5x}{5x} \cdot 5}{(1+\sin x)^{\frac{1}{\sin x}} \cos x} = 5 \lim_{x\to 0} \frac{\frac{\sin 5x}{5x}}{e} = \frac{5}{e}.$$

例 2-6 (2012-2013-1-期末-选择题-9)

(A)
$$\begin{cases} \frac{1}{3}x^3 - \frac{1}{3}, & 0 \le x < 1 \\ x - 1, & 1 \le x \le 2 \end{cases}$$
 (B)
$$\begin{cases} \frac{1}{3}x^3 - \frac{1}{3}, & 0 \le x < 1 \\ x, & 1 \le x \le 2 \end{cases}$$

(C)
$$\begin{cases} \frac{1}{3}x^3, & 0 \le x < 1 \\ x - 1, & 1 \le x \le 2 \end{cases}$$
 (D)
$$\begin{cases} \frac{1}{3}x^3, & 0 \le x < 1 \\ x, & 1 \le x \le 2 \end{cases}$$

答案 A.

解析
$$0 \leqslant x < 1$$
 时, $F(x) = \int_{1}^{x} t^{2} dt = \frac{1}{3}x^{3} - \frac{1}{3}$; $1 \leqslant x \leqslant 2$ 时, $F(x) = \int_{1}^{x} 1 dt = x - 1$.

例 2-7 (2012-2013-1-期末-选择题-11)

设 f(x) 为连续函数,且 $F(x) = \int_{x^2}^{e^{-x}} x f(t) dt$,则 $\frac{dF}{dt} =$ (C)

(A)
$$xf(e^{-x}) - xf(x^2)$$
]

(B)
$$-xe^{-x}f(e^{-x}) - 2xf(x^2)$$

(C)
$$\int_{x^2}^{c} f(t) dt - x[e^{-x}f(e^{-x}) + 2xf(x^2)]$$

(A)
$$xf(e^{-x}) - xf(x^2)$$
] (B) $-xe^{-x}f(e^{-x}) - 2xf(x^2)$
(C) $\int_{x^2}^{e^{-x}} f(t) dt - x[e^{-x}f(e^{-x}) + 2xf(x^2)]$ (D) $\int_{x^2}^{e^{-x}} f(t) dt + x[e^{-x}f(e^{-x}) - 2xf(x^2)]$

解析
$$\frac{\mathrm{d}F}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}x \int_{x^2}^{\mathrm{e}^{-x}} f(t) \,\mathrm{d}t = \int_{x^2}^{\mathrm{e}^{-x}} f(t) \,\mathrm{d}t + x \left[-\mathrm{e}^{-x} f(\mathrm{e}^{-x}) - 2x f(x^2) \right]$$
$$= \int_{x^2}^{\mathrm{e}^{-x}} f(t) \,\mathrm{d}t - x \left[\mathrm{e}^{-x} f(\mathrm{e}^{-x}) + 2x f(x^2) \right].$$

┛■题型三 不定积分的概念与微积分基本定理

例 3-1 (2015-2016-1-期末-填空题-4)

若
$$\sqrt{1-x^2}$$
 是 $xf(x)$ 的一个原函数, 则 $\int_0^1 \frac{1}{f(x)} dx = \frac{\pi}{4}$.

答案
$$-\frac{\pi}{4}$$

解析
$$f(x) = \frac{1}{x} \cdot \left(\sqrt{1 - x^2}\right)' = \frac{1}{x} \cdot \frac{-2x}{2\sqrt{1 - x^2}} = -\frac{1}{\sqrt{1 - x^2}}$$
$$\int_0^1 \frac{1}{f(x)} \, \mathrm{d} \, x = -\int_0^1 \sqrt{1 - x^2} \, \mathrm{d} \, x = \frac{x - \sin t}{2} - \int_0^{\frac{\pi}{2}} \cos^2 t \, \mathrm{d} \, t = -\int_0^{\frac{\pi}{2}} \frac{1 + \cos 2t}{2} \, \mathrm{d} \, t = -\frac{\pi}{4}.$$

在基本性质及定理的基础上,结合积分表、凑微分法、换元法、分部法、有理函数积分法等,

例 4-1 (2015-2016-1-期末-解答题-13)

计算
$$\int_{-1}^{1} \frac{x^2 + (\cos x)^3 \arctan x}{1 + \sqrt{1 - x^2}} \, \mathrm{d} x.$$

答案 见解析.

解析 积分区间是对称区间,被积函数有三角,首先观察是否有对称性. 不难看出 $\frac{x^2}{1+\sqrt{1-x^2}}$ 是偶函数而 $\frac{(\cos x)^3\arctan x}{1+\sqrt{1-x^2}}$ 是奇函数,后者在有界对称区间的积分值为 0

$$\Rightarrow \int_{-1}^{1} \frac{x^2 + (\cos x)^3 \arctan x}{1 + \sqrt{1 - x^2}} \, \mathrm{d} \, x = 2 \int_{0}^{1} \frac{x^2}{1 + \sqrt{1 - x^2}} \, \mathrm{d} \, x = 2 \int_{0}^{1} \frac{x^2}{1 + \sqrt{1 - x^2}} \cdot \frac{1 - \sqrt{1 - x^2}}{1 - \sqrt{1 - x^2}} \, \mathrm{d} \, x$$

$$= 2 \int_{0}^{1} \left(1 - \sqrt{1 - x^2} \right) \, \mathrm{d} \, x = 2 - \frac{\pi}{2}$$

其中最后一步计算用到了定积分的几何性质.

例 4-2 (2015-2016-1-期末-解答题-14)

计算 $\int \sec^6 x \, \mathrm{d} x$.

答案 见解析.

解析 【法一】 令
$$x = \arctan t$$
,从而 $\mathrm{d}\,x = \frac{1}{1+t^2}\,\mathrm{d}\,t, \sec^6 x = (1+\tan^2 x)^3 = (1+t^2)^3$

$$\int \sec^6 x\,\mathrm{d}\,x = \int (1+t^2)^3 \cdot \frac{1}{1+t^2}\,\mathrm{d}\,t = \int (1+t^2)^2\,\mathrm{d}\,t = \frac{1}{5}t^5 + \frac{2}{3}t^3 + t + C = \frac{1}{5}\tan^5 x + \frac{2}{3}\tan^3 x + \tan x + C.$$
【法二】利用 $\sec^2 x\,\mathrm{d}\,x = \mathrm{d}\,(\tan x)$ 有
$$\int \sec^6 x\,\mathrm{d}\,x = \int \sec^4 x\,\mathrm{d}(\tan x) = \int (1+\tan^2 x)^2\,\mathrm{d}(\tan x) = \frac{1}{5}\tan^5 x + \frac{2}{3}\tan^3 x + \tan x + C.$$

例 4-3 (2016-2017-1-期末-填空题-10)

若
$$f(\sin^2 x) = \frac{x}{\sin x}$$
, 则 $\int \frac{\sqrt{x}}{\sqrt{1-x}} f(x) dx = \underbrace{2\sqrt{x} - 2\sqrt{1-x} \arcsin \sqrt{x} + C}$.

答案 $2\sqrt{x} - 2\sqrt{1-x} \arcsin \sqrt{x} + C$.

解析 令 $x = \sin^2 t$,从而 $t = \arcsin \sqrt{x}$,d $x = 2\sin t \cos t dt$,于是

$$\int \frac{\sqrt{x}}{\sqrt{1-x}} f(x) dx = \int \frac{\sin t}{\cos t} \cdot \frac{t}{\sin t} \cdot 2\sin t \cos t dt = 2 \int t \sin t dt = 2\sin t - 2t \cos t + C$$
$$= 2\sqrt{x} - 2\sqrt{1-x} \arcsin \sqrt{x} + C.$$

例 4-4 (2016-2017-1-期末-解答题-13)

已知函数
$$f(x) = \int_{1}^{x} e^{-t^{2}} dt$$
, 求 $\int_{0}^{1} f(x) dx$.

答案 $\frac{1-e}{2e}$

解析
$$\int_0^1 f(x) \, \mathrm{d} \, x = x f(x) \Big|_0^1 - \int_0^1 x \, \mathrm{d} \, f(x) = x \int_1^x \mathrm{e}^{-t^2} \, \mathrm{d} \, t \Big|_0^1 - \int_0^1 x \mathrm{e}^{-x^2} \, \mathrm{d} \, x$$
$$= 0 + \frac{1}{2} \int_0^1 \mathrm{e}^{-x^2} \, \mathrm{d} (-x^2) = \frac{1 - \mathrm{e}}{2 \, \mathrm{e}}.$$

例 4-5 (2014-2015-1-期末-填空题-1)

$$\int \ln(1+x^2) \, \mathrm{d} x = \underline{x \ln(1+x^2) - 2x + 2 \arctan x + C}.$$

答案 $x \ln(1+x^2) - 2x + 2 \arctan x + C$.

解析

$$\int \ln(1+x^2) \, \mathrm{d} \, x = x \ln(1+x^2) - \int x \, \mathrm{d} \ln(1+x^2) = x \ln(1+x^2) - \int \frac{2x^2}{1+x^2} \, \mathrm{d} \, x$$
$$= x \ln(1+x^2) - 2 \int \left(1 - \frac{1}{1+x^2}\right) \, \mathrm{d} \, x = x \ln(1+x^2) - 2x + \arctan x + C.$$

例 4-6 (2014-2015-1-期末-填空题-3)

积分
$$\int_{-1}^{1} (x + \sqrt{1 - x^2})^2 dx = \underline{2}$$
.

答案 2

解析
$$\int_{-1}^{1} (x + \sqrt{1 - x^2})^2 dx = \int_{-1}^{1} (x^2 + 2x\sqrt{1 - x^2} + 1 - x^2) dx$$
$$= \int_{-1}^{1} 2x\sqrt{1 - x^2} dx + \int_{-1}^{1} dx = 0 + 2 = 2.$$

例 4-7 (2014-2015-1-期末-填空题-5)

设
$$\lim_{x \to +\infty} \left(\frac{1+x}{x} \right)^{bx} = \int_{-\infty}^{b} t e^{t} dt$$
,则常数 $b = \underline{2}$.

答案 2

解析
$$\int_{-\infty}^{b} t e^{t} dt = e^{b}(b-1), \lim_{x \to +\infty} \left(\frac{x+1}{x}\right)^{bx} = \lim_{x \to +\infty} \left(\left(1 + \frac{1}{x}\right)^{x}\right)^{b} = e^{b}, \ e^{b}(a-1) = e^{b} \Rightarrow b = 2.$$

例 4-8 (2014-2015-1-期末-填空题-6)

若函数
$$f(x) = \frac{1}{1+x^2} + \sqrt{1-x^2} \int_0^1 f(x) \, \mathrm{d} \, x$$
,则 $\int_0^1 f(x) \, \mathrm{d} \, x = \underline{\qquad} \frac{\pi}{4-\pi} \underline{\qquad}$.

答案 $\frac{\pi}{4-\pi}$.

解析 记常数
$$m = \int_0^1 f(x) dx$$
, 则 $f(x) = \frac{1}{1+x^2} + m\sqrt{1-x^2}$
于是 $m = \int_0^1 \left[\frac{1}{1+x^2} + m\sqrt{1-x^2} \right] dx = \int_0^1 \frac{1}{1+x^2} dx + m \int_0^1 \sqrt{1-x^2} dx = \frac{\pi}{4} (1+m)$
 $\Rightarrow m = \frac{\pi}{4-\pi}$.

例 4-9 (2013-2014-1-期末-填空题-4)

$$\int_{1}^{4} \frac{\ln x}{\sqrt{x}} \, \mathrm{d} x = \underline{8 \ln 2 - 4} .$$

答案 $8 \ln 2 - 4$.

解析
$$\int_{1}^{4} \frac{\ln x}{\sqrt{x}} \, \mathrm{d} \, x = \int_{0}^{1} \ln x \, \mathrm{d} \left(2 \sqrt{x} \right) = 2 \sqrt{x} \ln x \big|_{1}^{4} - 2 \int_{1}^{4} \frac{1}{\sqrt{x}} \, \mathrm{d} \, x = 8 \ln 2 - 4 \sqrt{x} \big|_{1}^{4} = 8 \ln 2 - 4.$$

例 4-10 (2013-2014-1-期末-解答题-15)

计算
$$\int_0^{+\infty} x^2 e^{-x} dx.$$

答案 见解析

解析 【法一】
$$\int_0^{+\infty} x^2 e^{-x} dx = -x^2 e^{-x} \Big|_0^{+\infty} + \int_0^{+\infty} 2x e^{-x} dx$$
$$= 0 - 2(x e^{-x} \Big|_0^{+\infty} - \int_0^{+\infty} e^{-x} dx) = -2e^{-x} \Big|_0^{+\infty} = 2.$$
【法二】 原式 = $\Gamma(3)$ = 2! = 2.

例 4-11 (2012-2013-1-期末-填空题-3)

$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x^7 + \sin^2 x) \cos^2 x \, \mathrm{d} x = \underline{\frac{\pi}{8}}.$$

答案 $\frac{\pi}{8}$.

解析

$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x^7 + \sin^2 x) \cos^2 x \, dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} x^7 \cos^2 x \, dx + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx = 2 \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2$$

例 4-12 (2012-2013-1-期末-填空题-5)

$$\int_{-\infty}^a t \mathrm{e}^t \, \mathrm{d} \, t = \lim_{x \to +\infty} \left(\frac{x+1}{x} \right)^{ax}, \, a = \underline{\qquad 2} \ .$$

答案 2.

解析
$$\int_{-\infty}^{a} t e^{t} dt = e^{a}(a-1), \lim_{x \to +\infty} \left(\frac{x+1}{x}\right)^{ax} = \lim_{x \to +\infty} \left(\left(1 + \frac{1}{x}\right)^{x}\right)^{a} = e^{a}, e^{a}(a-1) = e^{a} \Rightarrow a = 2.$$

例 4-13 (2012-2013-1-期末-解答题-14)

$$\int \frac{x e^{\arctan x}}{(1+x^2)^{\frac{3}{2}}} \, \mathrm{d} x.$$

答案 见解析.

解析 令
$$x = \tan t$$
, 则 $\sin t = \frac{x}{\sqrt{1+x^2}}$, $\cos t = \frac{1}{\sqrt{1+x^2}}$ 于是 $\int \frac{xe^{\arctan x}}{(1+x^2)^{\frac{3}{2}}} dx = \int \frac{\tan te^t}{\sec^3 t} d(\tan t) = \int e^t \sin t dt = \frac{1}{2}e^t(\sin t - \cos t) = \frac{(x-1)e^{\arctan x}}{2\sqrt{1+x^2}} + C.$

例 4-14 (2012-2013-1-期末-解答题-17)

设函数 f(x) 在 [0,1] 有二阶导数,且 $\int_0^1 [2f(x) + x(1-x)f''(x)] dx$.

答案 见解析.

解析

$$\int_0^1 \left[2f(x) + x(1-x)f''(x) \right] dx = 2 \int_0^1 f(x) dx + \int_0^1 (x-x^2)d(f'(x))$$

$$= 2xf(x)|_0^1 - 2 \int_0^1 xf'(x) dx + (x-x^2)f'(x)|_0^1 - \int_0^1 (1-2x)f'(x) dx$$

$$= 2f(1) - 2 \int_0^1 xf'(x) dx - \int_0^1 f'(x) dx + 2 \int_0^1 xf'(x) dx = f(0) + f(1).$$

■ 题型五 定积分的应用

包括几何应用: 计算平面曲线的弧长、平面图形的面积、规则几何体的体积; 物理应用: 变力做功等.

4.5.1 平面曲线的弧长

例 5-1 (2016-2017-1-期末-选择题-5)

曲线
$$y = \frac{e^x + e^{-x}}{2}$$
 从 $x = 0$ 到 $x = a > 0$ 的长度为
$$(A) \frac{e^a + e^{-a}}{3} \qquad (B) \frac{e^a - e^{-a}}{3} \qquad (C) \frac{e^a + e^{-a}}{2} \qquad (D) \frac{e^a - e^{-a}}{2}$$

签室 D

解析 弧微分
$$ds = \sqrt{1 + (y')^2} dx = \frac{e^x + e^{-x}}{2} dx$$
, 弧长 $l = \int_0^a ds = \int_0^a \frac{e^x + e^{-x}}{2} dx = \frac{e^a - e^{-a}}{2}$.

4.5.2 平面图形的面积

例 5-2 (2016-2017-1-期末-选择题-3)

曲线
$$y=x^2$$
 与 $y^2=x$ 所围成的图像的面积为 (B)

$$(A) \frac{1}{2}$$

(B) $\frac{1}{3}$

(C) $\frac{1}{4}$

(D) $\frac{1}{5}$

答案 B.

解析 由方程组 $\begin{cases} y=x^2 \\ \text{有两组解 } x=y=0, x=y=1 \text{ 知曲线 } y=x^2 \text{ 与 } y^2=x \text{ 有两个交点} \\ y^2=x \end{cases}$ (0,0),(1,1), 且曲线在两点之间的部分成闭区域,该区域面积 S 即为待求值.

由于 $\forall x \in (0,1), x^2 < \sqrt{x}$,故 $S = \int_0^1 (\sqrt{x} - x^2) dx = \frac{1}{3}$.

例 5-3 (2014-2015-1-期末-解答题-16)

已知曲线 $y = a\sqrt{x}(a > 0)$ 与曲线 $y = \ln \sqrt{x}$ 在点 $P(x_0, y_0)$ 有公共切线, 求:

- (1) 常数 a 及切点;
- (2) 两曲线与 x 轴围成图形 S 的面积.

答案 见解析

解析 (1)
$$\begin{cases} y = a\sqrt{x_0} = \ln\sqrt{x_0} = \frac{1}{2}\ln x_0 \\ y' = \frac{a}{2\sqrt{x_0}} = \frac{1}{2x_0} \end{cases} \Rightarrow \begin{cases} a = \frac{1}{e} \\ x_0 = e^2 \end{cases}$$
(2)
$$S = \int_0^{e^2} a\sqrt{x} \, dx - \frac{1}{2} \int_1^{e^2} \ln x \, dx = \frac{2}{3} ax^{\frac{3}{2}} \Big|_0^{e^2} - x(\ln x - 1)\Big|_1^{e^2} = \frac{e^2}{6} - \frac{1}{2}.$$

例 5-4 (2013-2014-1-期末-解答题-14)

计算抛物线 $y^2 = 2x$ 与直线 y = x - 4 所围成的图形的面积.

答案 见解析

解析
$$\begin{cases} y^2 = 2x \\ y = x - 4 \end{cases} \Rightarrow \begin{cases} y = 4 \\ x = 8 \end{cases} \begin{cases} y = -2 \\ x = 2 \end{cases} \Rightarrow S = \int_{-2}^4 f(y) \, \mathrm{d} \, y = \int_{-2}^4 (y + 4 - \frac{y^2}{2}) \, \mathrm{d} \, y = 18.$$

例 5-5 (2013-2014-1-期中-解答题-20)

在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的第一象限部分上求一点 P,使得该点处的切线、椭圆以及两坐标轴所围成的面积最小(其中 a > 0, b > 0,椭圆面积为 πab).

答案 见解析.

解析 设 $P(x_0, y_0)$ 是椭圆在第一象限部分的点,则由椭圆方程 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 得 $y'|_P = -\frac{b^2}{a^2} \cdot \frac{x_0}{y_0}$ \therefore 过点 P 的切线方程为: $y - y_0 = -\frac{b^2}{a^2} \cdot \frac{x_0}{y_0}$ $(x - x_0)$,又 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 得到切线方程为: $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$ \therefore 切线与坐标轴在第一象限围成的三角形面积 $S_\Delta = \frac{1}{2} \cdot \frac{a^2b^2}{x_0y_0}$ \therefore 切线、椭圆及两坐标轴所围成图形面积 $S = S_\Delta - \frac{1}{4}S$ 椭圆 $= \frac{a^2b^2}{2x_0y_0} - \frac{1}{4}\pi ab$ 又 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, 得 $S = S(x_0) = \frac{a^3b}{2x_0\sqrt{a^2 - x_0^2}} - \frac{1}{4}\pi ab$

 $S = S(x_0) = \frac{a^3b}{2x_0\sqrt{a^2 - x_0^2}} - \frac{1}{4}\pi ab$ 要使得 $S(x_0)$ 取最小,实际上是要使得 $x_0\sqrt{a^2 - x_0^2}$ 取最大 令 $f(x_0) = x_0\sqrt{a^2 - x_0^2}, x_0 \in (0, a)$,则 $f'(x_0) = \frac{a^2 - 2x_0^2}{\sqrt{a^2 - x_0^2}}$,令 $f'(x_0) = 0$,解得 $x_0 = \frac{a}{\sqrt{2}}$ 而当 $x_0 > \frac{a}{\sqrt{2}}$ 时, $f'(x_0) < 0$;当 $x_0 < \frac{a}{\sqrt{2}}$, $f'(x_0) > 0$,∴ $x_0 = \frac{a}{\sqrt{2}}$ 是 f(x) 的最大值点 于是 $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ 是 S(x) 的最小值点,即待求点 P 为 $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$.

例 5-6 (2014-2015-2-期中-选择题-11)

双纽线 $(x^2 + y^2)^2 = x^2 - y^2$ 所围成区域的面积可用定积分表示为

(A)

- (A) $2\int_0^{\frac{\pi}{4}}\cos 2\theta d\theta$ (B) $4\int_0^{\frac{\pi}{4}}\cos 2\theta d\theta$ (C) $\int_0^{\frac{\pi}{4}}\cos 2\theta d\theta$ (D) $\frac{1}{2}\int_0^{\frac{\pi}{4}}\cos^2 2\theta d\theta$

答案 A.

解析 令 $x = \rho \cos \theta$, $y = \rho \sin \theta$, 则双纽线方程 $(x^2 + y^2)^2 = x^2 - y^2$ 化为 $\rho^2 = \cos 2\theta$. 再利用双纽线 在第一象限与 x 轴所围成的面积相等可得其面积 $S=4\int_0^{\frac{\pi}{4}}\frac{1}{2}\cos 2\theta \mathrm{d}\theta=2\int_0^{\frac{\pi}{4}}\cos 2\theta \mathrm{d}\theta$.

4.5.3 规则几何体的体积

例 5-7 (2015-2016-1-期末-解答题-17)

在曲线 $y=x^2(x\geq 0)$ 上某点 A 处作一切线,使之与曲线及 x 轴所围图形 B 的面积为 $\frac{1}{12}$,求平 面图形 B 绕 y 轴旋转一周所围成的立体的体积.

答案 见解析.

解析 不妨设切点为 $P(t,t^2)$ (t>0), 计算得切线方程为 $y=2t(x-t)+t^2=2tx-t^2\Rightarrow x=\frac{1}{2t}(y+t^2)$

图形 B 的面积为 $S = \int_{0}^{t^2} \left(\frac{1}{2t} (y + t^2) - \sqrt{y} \right) dy = \frac{1}{12} t^3 = \frac{1}{12} \Rightarrow t = 1$

则切线方程为 $y = 2x - 1 \Rightarrow x = \frac{1}{2}(y+1)$. 于是旋转体的体积

$$V = \int_0^1 \pi \left\{ \left[\frac{1}{2} (y+1) \right]^2 - (\sqrt{y})^2 \right\} dy = \pi \int_0^1 \left[\frac{1}{4} (y^2 + 2y + 1) - y \right] dy$$
$$= \frac{\pi}{4} \int_0^1 (y-1)^2 dy = \frac{\pi}{4} \int_{-1}^0 y^2 dy = \frac{\pi}{12} \cdot y^3 \Big|_{-1}^0 = \frac{\pi}{12}.$$

也可采用对x积分的方法,但计算要分段,稍嫌麻烦.

例 5-8 (2016-2017-1-期末-解答题-17)

设 D_1 是由抛物线 $y=2x^2$ 和直线 x=a, x=2 及 y=0 所围成的平面区域, D_2 是由抛物线 $y = 2x^2$ 和直线 y = 0, x = a 所围成的平面区域, 其中 0 < a < 2.

- (1) 求 D_1 绕 x 轴旋转而成的旋转体体积 V_1,D_2 绕 y 轴旋转而成的旋转体体积 V_2
- (2) 问当 a 为何值时, $V_1 + V_2$ 取得最大值? 并求此最大值.

答案

解析 (1)
$$dV_1 = \pi (2x^2)^2 dx = 4\pi x^4$$
, $V_1 = \int_a^2 4\pi x^4 dx = \frac{4\pi}{5} x^5 \Big|_a^2 = \frac{128\pi - 4\pi a^5}{5}$
 $dV_2 = \pi \left(\sqrt{y/2}\right)^2 dy = \frac{\pi}{2} y dy$, $V_2 = \int_0^{2a^2} \frac{\pi y}{2} dx = \frac{\pi}{4} y^2 \Big|_0^{2a^2} = \pi a^4$.
(2) $\Leftrightarrow f(a) = V_1 + V_2 = -\frac{4\pi}{5} a^5 + \pi a^4 + \frac{128\pi}{5}$, $a \in (0, 2)$, 则 $f'(a) = -4\pi a^4 + 4\pi a^3 = 4\pi a^3 (1 - a)$

易知

$$\forall a \in (0,1), f'(a) > 0; \ \forall a \in (1,2), f'(a) < 0$$

于是 f(a) 在 a=1 处取得极大值(同时也是最大值),为 $\frac{129\pi}{5}$.

例 5-9 (2013-2014-1-期末-选择题-10)

由曲线 $x = \sqrt{y}$, x = 0, y = 4 围成的图形, 绕 y 轴旋转所得旋转体的体积为

(A)

(A) 8π

(B) 6π

(C) 4π

(D) 2π

答案 A. $\begin{cases} \operatorname{d} V = \pi (\sqrt{y})^2 \operatorname{d} y \\ V = \int dV = \int_0^4 \pi y \operatorname{d} y = 8\pi \end{cases}.$

例 5-10 (2012-2013-1-期末-解答题-18)

设平面图形 A 位于曲线 $y = e^x$ 下方、该曲线过原点的切线的左方以及 x 轴的上方, 求:

- (1) 平面图形 A 的面积 S;
- (2)A 绕 x 轴旋转所得旋转体的体积 V_x ;
- (3)A 绕直线 x=1 旋转所得旋转体的体积 $V_{x=1}$.

答案 见解析.

解析 (1)
$$S = S_1 - S_2 = \int_{-\infty}^1 e^x dx - \frac{1}{2} \times 1 \times e = e - \frac{e}{2} = \frac{e}{2}.$$

(2) $V_x = \int_{-\infty}^1 \pi y^2 dx - \frac{1}{3} \times \pi \times e^2 \times 1 = \frac{e^2 \pi}{2} - \frac{e^2 \pi}{3} = \frac{e^2 \pi}{6}.$
(3) $V_{x=1} = \int_{-\infty}^1 2\pi (1-x)y dx - \frac{1}{3} \times \pi \times e \times 1^2 = 2e\pi - \frac{e\pi}{3} = \frac{5e\pi}{3}.$

例 6-1 (2015-2016-1-期末-解答题-15)

讨论广义积分 $\int_{1}^{+\infty} \frac{1}{x^a} dx$ 的收敛性.

答案 见解析.

解析 由无界区间上反常积分的定义有

$$\int_1^{+\infty} \frac{1}{x^a} \, \mathrm{d} \, x = \lim_{b \to +\infty} \int_0^b \frac{1}{x^a} \, \mathrm{d} \, x = \begin{cases} \lim_{b \to +\infty} \frac{b^{1-a}-1}{1-a}, & a \neq 1 \\ \lim_{b \to +\infty} \ln b, & a = 1 \end{cases} = \begin{cases} \frac{1}{1-a}, & a > 1 \\ +\infty, & a \leqslant 1 \end{cases}$$

即当 a > 1 时积分收敛, 当 $a \le 1$ 时积分发散.

第五章

无穷级数

■ 題型— 常数项级数的审敛

包括正项级数、交错级数和任意项级数,要求读者掌握几个基本结论和判别法.

例 1-1 (2016-2017-1-期末-选择题-6)

若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则级数 (A) $\sum_{n=1}^{\infty} |a_n|$ 收敛

(D).

- (C) $\sum_{n=1}^{\infty} a_n a_{n+1}$ 收敛

- (B) $\sum_{n=1}^{\infty} (-1)^n a_n$ 收敛 (D) $\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2}$ 收敛

答案 D.

解析 ABC 选项可举反例 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$, D 选项实际有 $\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2} = \frac{1}{2} \left(\sum_{n=1}^{\infty} a_n + \sum_{n=2}^{\infty} a_n \right)$ 而后者收敛, 故 D 收敛.

例 1-2 (2014-2015-1-期末-选择题-12)

若常数项级数 $\sum_{n=0}^{\infty} a_n^2$ 收敛,则级数 $\sum_{n=0}^{\infty} a_n$

(D).

(A) 发散

(B) 绝对收敛

(C) 条件收敛

(D) 可能收敛, 也可能发散.

答案

解析 举反例: 令 $a_n = \frac{1}{n}$ 有 $\sum_{n=0}^{\infty} a_n$ 发散, 令 $a_n = \frac{1}{n^2}$ 有 $\sum_{n=0}^{\infty} a_n$ 收敛, 于是 D 正确.

例 1-3 (2014-2015-1-期末-证明题-19)

设正项数列 $\{a_n\}$ 单调减少,且 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散. 试证: 级数 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 收敛.

答案 见解析.

正项数列 $\{a_n\}$ 有下界,又由单调减少可知 $\{a_n\}$ 收敛,且由数列极限的保号性知 $\lim_{n\to+\infty}a_n\geqslant 0$. 而交错级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,必定有 $\lim_{n\to+\infty} a_n \neq 0$ (否则可由莱布尼茨审敛法推知 $\sum_{n=1}^{\infty} (-1)^n a_n$ 收敛) 于是 $\lim_{n\to+\infty} a_n > 0$. 于是对正项级数 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 由 Cauchy 根值审敛法有

$$\rho = \lim_{n \to +\infty} \left[\left(\frac{1}{a_n + 1} \right)^n \right]^{\frac{1}{n}} = \lim_{n \to +\infty} \frac{1}{a_n + 1} = \frac{1}{1 + \lim_{n \to +\infty} a_n} < 1$$

从而级数 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 收敛.

例 1-4 (2013-2014-1-期末-选择题-12)

设常数 k > 0,且 $\sum_{n=1}^{\infty} a_n^2$ 收敛,则 $\sum_{n=1}^{\infty} (-1)^n \frac{|a_n|}{\sqrt{n^2 + k}}$ (A).

(A) 绝对收敛

(B) 条件收敛

(C) 发散

(D) 收敛性与 k 值有关

答案 A.

解析 由基本不等式有
$$\frac{|a_n|}{\sqrt{n^2+k}} = \sqrt{\frac{a_n^2}{n^2+k}} \frac{1}{2} \left(a_n^2 + \frac{1}{n^2+k} \right) < \frac{1}{2} \left(a_n^2 + \frac{1}{n} \right)$$
而 $\sum_{n=1}^{\infty} a_n^2$ 与 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 均收敛,于是由比较审敛法可知 $\sum_{n=1}^{\infty} \sqrt{\frac{a_n^2}{n^2+k}} = \sum_{n=1}^{\infty} \left| (-1)^n \frac{|a_n|}{\sqrt{n^2+k}} \right|$ 收敛于是 $\sum_{n=1}^{\infty} (-1)^n \frac{|a_n|}{\sqrt{n^2+k}}$ 绝对收敛,故选 A.

例 1-5 (2012-2013-1-期末-填空题-6)

设级数 $\sum_{n=1}^{\infty} (a_n - a_{n+1})$ 收敛且和为 S,则 $\lim_{n \to +\infty} a_n = \underline{a_1 - S}$.

答案 $a_1 - S$.

解析 由常数项级数的部分和定义有

$$\sum_{n=1}^{\infty} (a_n - a_{n+1}) = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sum_{i=1}^{n} (a_i - a_{i+1}) = \lim_{n \to +\infty} (a_1 - a_{n+1}) = a_1 - \lim_{n \to +\infty} a_{n+1} = S$$

于是由极限的四则运算法则及唯一性可得 $\lim_{n\to+\infty}a_n=a_1-S$.

例 1-6 (2012-2013-1-期末-选择题-10)

若正项级数 $\sum\limits_{n=1}^{\infty}u_n$ 收敛,则下列级数中一定收敛的是 (D).

(A)
$$\sum_{n=1}^{\infty} (u_n + a)(0 \le a < 1)$$

(B)
$$\sum_{n=1}^{\infty} \sqrt{u_n}$$

(C)
$$\sum_{n=1}^{\infty} \frac{1}{u_n}$$

(D)
$$\sum_{n=1}^{\infty} (-1)^n u_n$$

答案 D.

解析 通项趋于 0 是常数项级数收敛的必要条件,C 错;当 $a \neq 0$ 时 $\sum_{n=1}^{\infty} (u_n + a)$ 不满足该条件,A 亦错;对于 B,可举反例 $u_n = \frac{1}{n^2}$;由已知条件可证得 D 选项的级数在通项加绝对值之后仍收敛,故为绝对收敛,于是收敛.

☑ 题型二 幂级数的审敛与计算和函数

包括幂级数的相关概念、性质,和函数的相关概念、性质,要求读者掌握性质及基本解题方法.

例 2-1 (2015-2016-1-期末-填空题-2)

幂级数 $\sum_{n=0}^{\infty} \frac{(2n-1)}{2^n} x^{2n-2}$ 的收敛区间为 ___($-\sqrt{2}$, $\sqrt{2}$)__.

答案 $(-\sqrt{2},\sqrt{2})$

解析
$$\sum_{n=0}^{\infty} \frac{(2n-1)}{2^n} x^{2n-2} = -\frac{1}{x^2} + \sum_{n=0}^{\infty} \frac{(2n+1)}{2^{n+1}} x^{2n} = -\frac{1}{x^2} + \frac{1}{2} \sum_{n=0}^{\infty} (2n+1) \left(\frac{x}{\sqrt{2}}\right)^{2n}$$

$$R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to +\infty} \frac{2n+1}{2n+3} = 1, \quad \therefore -1 < \frac{x}{\sqrt{2}} < 1 \Rightarrow x \in (-\sqrt{2}, \sqrt{2}).$$

例 2-2 (2016-2017-1-期末-填空题-8)

幂级数
$$\sum_{n=0}^{\infty} \frac{e^n - (-1)^n}{n^2} x^n$$
 的收敛半径为 $\frac{1}{e}$.

答案 $\frac{1}{e}$.

解析 显然幂级数不缺项,则收敛半径

$$R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to +\infty} \frac{\frac{e^n - (-1)^n}{n^2}}{\frac{e^{n+1} - (-1)^{n+1}}{(n+1)^2}} = \lim_{n \to +\infty} \left(\frac{n+1}{n} \right)^2 \frac{1 - e^{-n} (-1)^n}{e - e^{-n} (-1)^{n+1}} = \frac{1}{e}.$$

例 2-3 (2016-2017-1-期末-解答题-16)

求幂级数 $1 + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{2n} (|x| < 1)$ 的和函数 f(x) 及其极值.

答案 见解析.

解析 由和函数的可微性和可积性有

$$f(x) = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{2n} = 1 + \sum_{n=1}^{\infty} (-1)^n \int_0^x t^{2n-1} dt = 1 + \int_0^x \sum_{n=1}^{\infty} (-1)^n t^{2n-1} dt$$
$$= 1 + \int_0^x \frac{1}{t} \sum_{n=1}^{\infty} (-t^2)^n dt = 1 + \int_0^x \frac{1}{t} \cdot \left(\frac{1}{1+t^2} - 1\right) dt$$
$$= 1 - \int_0^x \frac{t}{1+t^2} dt = 1 - \frac{1}{2} \ln(1+x^2), |x| < 1$$

则 $f'(x) = -\frac{1}{2} \cdot \frac{2x}{1+x^2} = -\frac{x}{1+x^2}, x \in (-1,1)$. 于是 $\forall x \in (-1,0), f'(x) > 0$; $\forall x \in (0,1), f'(x) < 0$ 从而 f(x) 有极大值 f(0) = 1.

例 2-4 (2013-2014-1-期末-填空题-2)

幂级数 $\sum\limits_{n=1}^{\infty}\frac{x^n}{n}$ 的和函数 $s\left(x\right)=\ \underline{\qquad -\ln(1-x), x\in [-1,1)}$.

答案 $-\ln(1-x), x \in [-1,1).$

解析 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛半径 $R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to +\infty} \frac{n}{n+1} = 1$,且 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 收敛于是幂级数的收敛域为 [-1,1).

由和函数的可微性和可积性得

$$s(x) = \int_0^x s'(t) dt = \int_0^x \sum_{n=1}^\infty \left(\frac{t^n}{n}\right)' dt = \int_0^x \sum_{n=1}^\infty t^{n-1} dt = \int_0^x \sum_{n=0}^\infty t^n dt = \int_0^x \frac{1}{1-t} dt$$
$$= -\ln(1-x), x \in [-1, 1).$$

例 2-5 (2012-2013-1-期末-解答题-13)

将函数 $f(x) = \frac{1}{2x^2 - 3x + 1}$ 展开为 x 的幂级数.

答案 见解析

解析 观察结构,对 f(x) 进行部分分式展开得到 $f(x) = \frac{1}{(1-x)(1-2x)} = \frac{2}{1-2x} - \frac{1}{1-x}$ 而 $\frac{2}{1-2x} = 2\sum_{n=0}^{\infty} (2x)^n = \sum_{n=0}^{\infty} 2^{n+1}x^n, x \in \left(-\frac{1}{2}, \frac{1}{2}\right); -\frac{1}{1-x} = -\sum_{n=0}^{\infty} x^n, x \in (-1,1)$ 故 $f(x) = \sum_{n=0}^{\infty} 2^{n+1}x^n - \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} (2^{n+1}-1)x^n, x \in \left(-\frac{1}{2}, \frac{1}{2}\right).$

例 3-1 (2015-2016-1-期末-选择题-12)

级数
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$
 的和为 (D) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$

答案 D.

解析 设
$$s(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$
,收敛域为 $(-1,1]$. 由和函数的可微性有 $s'(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n} = \sum_{n=0}^{\infty} (-x^2)^n = \frac{1}{1+x^2}$ 于是 $s(x) = \int_0^x s'(t) \, \mathrm{d} \, t = \arctan x$. 故 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = s(1) = \frac{\pi}{4}$.

例 3-2 (2014-2015-1-期末-解答题-15)

求数项级数 $\sum_{n=1}^{\infty} \frac{n+1}{2^n n!}$ 的和.

答案 见解析.

解析 拆项

$$\sum_{n=1}^{\infty} \frac{n+1}{2^n n!} = \sum_{n=1}^{\infty} \frac{1}{(n-1)! 2^n} + \sum_{n=1}^{\infty} \frac{1}{n! 2^n} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(1/2)^n}{n!} + \sum_{n=0}^{\infty} \frac{(1/2)^n}{n!} - 1 = \frac{3}{2} \sum_{n=0}^{\infty} \frac{(1/2)^n}{n!} - 1 = \frac$$

■ 题型四 傅里叶级数的简单问题

例 4-1 (2015-2016-1-期末-填空题-5)

设 f(x) 是以 2π 为周期的函数,且 $f(x)=\begin{cases} -1,&-\pi< x\leqslant 0\\ 1+x^2,&0< x\leqslant \pi\end{cases}$,则 f(x) 的傅里叶级数在 $x=5\pi$ 处收敛于 $\frac{\pi^2}{2}$.

答案 $\frac{\pi^2}{2}$.

解析 由狄利克雷充分条件, f(x) 的傅里叶级数在 $x = 5\pi$ 处收敛于

$$\frac{1}{2} \left[f (5\pi +) + f (5\pi -) \right] = \frac{1}{2} \left[f (\pi +) + f (\pi -) \right] = \frac{\pi^2}{2}.$$

综合题一

例 1-1 (2014-2015-1-期末-证明题-18)

设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且满足 $f(1)=5\int_0^{\frac{1}{5}}x\mathrm{e}^{1-x}f(x)dx$,证明: 至少存在一点 $\xi\in(0,1)$,使得 $f'(\xi)=(1-\xi^{-1})f(\xi)$.

答案 见解析.

解析 构造函数 $g(x) = xe^{1-x}f(x)$,由积分第一中值定理可知

$$\exists \eta \in \left(0, \frac{1}{5}\right), \ f(1) = g(1) = 5 \int_{0}^{\frac{1}{5}} g(\eta) \, dx = g(\eta)$$

从而由罗尔定理可知 $\exists \xi \in (\eta, 1) \subset (0, 1), \ g'(\xi) = e^{1-\xi} (1-\xi) f(\xi) + \xi e^{1-\xi} f'(\xi) = 0$ 从而 $\exists \xi \in (0, 1), \ f'(\xi) = (1-\xi^{-1}) f(\xi).$

例 2-1 (2013-2014-1-期末-解答题-17)

设 f(x) 连续,且 $\lim_{z\to 0} \frac{f(x)-4}{x}=1$, 试求常数 k 使得 g(x) 在 x=0 处连续,其中 $g(x)=\begin{cases} \frac{1}{x\ln{(1+x)}}\int_0^x tf\left(t^2-x^2\right)\mathrm{d}t, & x\neq 0\\ k, & x=0 \end{cases}$

答案 见解析.

解析 已知 f(x) 连续, $\lim_{z\to 0} \frac{f(x)-4}{x}=1$,由极限四则运算法则可知

$$f\left(0\right) = \lim_{z \to 0} f\left(x\right) = \lim_{z \to 0} \left\lceil \frac{f\left(x\right) - 4}{x} \cdot x + 4 \right\rceil = \lim_{z \to 0} \frac{f\left(x\right) - 4}{x} \cdot \lim_{z \to 0} x + 4 = 4$$

及

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x) - 4}{x} = 1$$

从而

$$\begin{split} &\lim_{z \to 0} g\left(x\right) = \lim_{z \to 0} \frac{1}{x \ln\left(1+x\right)} \int_{0}^{x} t f\left(t^{2}-x^{2}\right) \, \mathrm{d}\,t = \lim_{z \to 0} \frac{1}{x \ln\left(1+x\right)} \cdot \frac{1}{2} \int_{0}^{x} f\left(t^{2}-x^{2}\right) \, \mathrm{d}\,\left(t^{2}-x^{2}\right) \\ &= \lim_{z \to 0} \frac{1}{x \ln\left(1+x\right)} \cdot \frac{1}{2} \int_{-x^{2}}^{0} f\left(u\right) \, \mathrm{d}\,u = \frac{1}{2} \lim_{z \to 0} \frac{1}{\left[x \ln\left(1+x\right)\right]'} \cdot \frac{\mathrm{d}}{\mathrm{d}\,x} \int_{-x^{2}}^{0} f\left(u\right) \, \mathrm{d}\,u \\ &= \frac{1}{2} \lim_{z \to 0} \frac{2x f\left(-x^{2}\right)}{\ln\left(1+x\right) + \frac{x}{1+x}} = \lim_{z \to 0} \frac{f\left(-x^{2}\right)}{\frac{\ln\left(1+x\right)}{x} + \frac{1}{1+x}} \\ &= \frac{\lim_{z \to 0} f\left(-x^{2}\right)}{\lim_{z \to 0} \frac{\ln\left(1+x\right)}{x} + \lim_{z \to 0} \frac{1}{1+x}} = \frac{f\left(0\right)}{1+1} = 2 \end{split}$$

于是 g(x) 连续 $\Leftrightarrow k = g(0) = \lim_{z \to 0} g(x) = 2$.

第六章

向量代数与空间解析几何

→ 動型一 向量及其运算

主要包括向量的概念和向量的简单运算,后者包括线性运算——加减,交换、结合、分配,数乘,点积, 叉积, 混合积等.

例 1-1

设 a,b,c 为三个不共面的非零向量,证明:若向量 p 同时垂直于 a,b,c,则 p=0.

答案 见解析.

解析 假设 $p \neq 0$, $p \perp a$, $p \perp b$, $p \mid a \times b$

又 :: $p \perp c \Rightarrow c \perp a \times b \Rightarrow (a \times b) \cdot c = 0$, 即 a, b, c 共面, 矛盾. 故 p = 0.

例 1-2 (2013-2014-2-期中-填空题-1)

设 $\mathbf{a} = (1, 2, 3), \mathbf{b} = (-1, 2, 2),$ 以 \mathbf{a}, \mathbf{b} 为邻边的平行四边形的面积为 $3\sqrt{5}$.

答案 $3\sqrt{5}$.

解析
$$S = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ -1 & 2 & 2 \end{vmatrix} = 3\sqrt{5}.$$

例 1-3 (2013-2014-2-期中-填空题-4)

答案 -40.

解析 $\mathbf{u} \cdot \mathbf{v} = k|\mathbf{a}|^2 + (2-k)\mathbf{a} \cdot \mathbf{b} - 2|\mathbf{b}|^2 = 0 \Rightarrow k = -40.$

例 1-4 (2014-2015-2-期中-填空题-1)

已知不共面的三向量 $\mathbf{a} = (1,0,-1)$, $\mathbf{b} = (2,3,1)$, $\mathbf{c} = (0,1,2)$ 及 $\mathbf{d} = (0,0,3)$,则用 \mathbf{a} , \mathbf{b} , \mathbf{c} 的线性组合表示的向量 $\mathbf{d} = \underline{2\mathbf{a} - \mathbf{b} + 3\mathbf{c}}$.

答案 2a - b + 3c.

解析 设
$$\mathbf{d} = m\mathbf{a} + n\mathbf{b} + p\mathbf{c} \Rightarrow \begin{cases} m + 2n = 0 \\ 3n + p = 0 \\ -m + n + 2p = 3 \end{cases} \Rightarrow \begin{cases} m = 2 \\ n = -1 \end{cases} \Rightarrow \mathbf{d} = 2\mathbf{a} - \mathbf{b} + 3\mathbf{c}.$$

例 1-5 (2014-2015-2-期中-填空题-4)

一向量的终点在点 B(2,-1,7), 它在 x 轴, y 轴和 z 轴上的投影依次为 4,-4,7, 则该向量的起点 A 的坐标为 (2,3,0) .

答案 (2,3,0).

解析 x = 2 - 4 = -2, y = -1 - (-4) = 3, z = 7 - 7 = 0 A(2,3,0).

例 1-6 (2014-2015-2-期中-填空题-9)

若向量 $\mathbf{a} \neq 0$,则极限 $\lim_{x \to 0} \frac{|\mathbf{a} + x\mathbf{b}| - |\mathbf{a} - x\mathbf{b}|}{x} = \underline{\qquad \frac{2\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}}$.

答案 $\frac{2\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{a}|}$.

解析 原式 = $\lim_{x\to 0} \frac{4x\mathbf{a}\cdot\mathbf{b}}{x(|\mathbf{a}+x\mathbf{b}|+|\mathbf{a}-x\mathbf{b}|)} = \frac{4\mathbf{a}\cdot\mathbf{b}}{2|\mathbf{a}|} = \frac{2\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}|}.$

例 1-7 (2015-2016-2-期末-填空题-3)

设 m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,且向量 a=4m+3n-p,则 a 在 x 轴上的投影为 ____13___,在 y 轴上的分向量为 ____7j__.

答案 13; 7j.

解析 注意区分"投影"和"投影向量、分向量"的概念,前者是数而后者是向量.

$$\mathbf{a} = (12+6-5)\mathbf{i} + (20-12-1)\mathbf{j} + (32-21+4)\mathbf{k} = 13\mathbf{i} + 7\mathbf{j} + 15\mathbf{k}$$

 \therefore 在 x 轴上的投影为 13, 在 y 轴上的分向量为 7j.

例 1-8 (2015-2016-2-期末-填空题-6)

设 $|a| = 2, |b| = 5, (a, b) = \frac{2\pi}{3}$, 向量 $m = \lambda a + 17b$ 与 n = 3a - b 垂直,则 $\lambda = \underline{40}$.

答案 40.

解析 $:: \boldsymbol{m} \cdot \boldsymbol{n} = 0 \Rightarrow 3\lambda |\boldsymbol{a}|^2 + (51 - \lambda) \boldsymbol{a} \cdot \boldsymbol{b} - 17 |\boldsymbol{b}|^2 = 0 \Rightarrow \lambda = 40.$

■ 题型二 三维空间中的面与线

6.2.1 直线与平面的概念及计算

例 2-1

求与两平面 x-4z=3,2x-y-5z=1 的交线平行,且过点 (-3,2,5) 的直线方程.

答案
$$\frac{x+3}{4} = \frac{y-2}{3} = \frac{z-5}{1}$$
.

解析 所求直线的方向向量可取为 $m{s}=m{n}_1 imesm{n}_2=egin{vmatrix} m{i} & m{j} & m{k} \\ 1 & 0 & -4 \\ 2 & -1 & -5 \end{bmatrix}=(-4,-3,-1)$

利用点向式可得方程 $\frac{x+3}{4} = \frac{y-2}{3} = \frac{z-5}{1}$.

例 2-2

求过点 (2,1,3) 且与直线 $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z}{-1}$ 垂直相交的直线方程.

答案
$$\frac{x-2}{2} = \frac{y-1}{-1} = \frac{z-3}{4}$$
.

解析 先求二直线交点 P. 过已知点且垂直于已知直线的平面的法向量为 (3,2,-1)

故其方程为
$$3(x-2) + 2(y-1) - (z-3) = 0$$

把已知直线方程化为参数方程代入可得交点 $P\left(\frac{2}{7},\frac{13}{7},-\frac{3}{7}\right)$

最后利用两点得所求方程为 $\frac{x-2}{2} = \frac{y-1}{-1} = \frac{z-3}{4}$.

例 2-3

求直线 $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{2}$ 与平面 2x + y + z - 6 = 0 的交点.

答案 (1,2,2).

解析 化直线方程为参数方程 $\begin{cases} x=2+t\\ y=3+t \end{cases}$,代入平面方程得 t=-1,从而确定交点为 (1,2,2). z=4+2t

例 2-4

求直线 $\begin{cases} x + y - z - 1 = 0 \\ x - y + z + 1 = 0 \end{cases}$ 在平面 x + y + z = 0 上的投影直线方程.

答案
$$\begin{cases} y - z - 1 = 0 \\ x + y + z = 0 \end{cases}$$

$$x+y-z-1+\lambda\left(x-y+z+1\right)=0 \Rightarrow \left(1+\lambda\right)x+\left(1-\lambda\right)y+\left(-1+\lambda\right)z+\left(-1+\lambda\right)=0$$

从中选择 λ 使其与已知平面垂直 $(1+\lambda)\cdot 1+(1-\lambda)\cdot 1+(-1+\lambda)\cdot 1=0\Rightarrow \lambda=-1$

$$\therefore \begin{cases} y - z - 1 = 0 \\ x + y + z = 0 \end{cases}$$

例 2-5

设一平面平行于已知直线 $\begin{cases} 2x-z=0\\ x+y-z+5=0 \end{cases}$ 且垂直于已知平面 7x-y+4z-3=0,求该平

面法线的方向余弦.

答案
$$\cos \alpha = \frac{\sqrt{3}}{50}, \cos \beta = \frac{5}{\sqrt{50}}, \cos \gamma = -\frac{4}{\sqrt{50}}.$$

已知平面的法向量 $n_1=(7,-1,4)$,求出已知直线的方向向量 $s=\begin{vmatrix} i & j & k \\ 2 & 0 & -1 \\ 1 & 1 & 1 \end{vmatrix}=(1,1,2)$

取所求平面的法向量 $\boldsymbol{n} = \boldsymbol{s} \times \boldsymbol{n}_1 = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 1 & 1 & 2 \\ 7 & -1 & 4 \end{vmatrix} = 2 (3, 5, -4)$

求得其方向余弦为 $\cos \alpha = \frac{\sqrt{3}}{50}, \cos \beta = \frac{5}{\sqrt{50}}, \cos \gamma = -\frac{4}{\sqrt{50}}$

例 2-6

求过点 $M_0(1,1,1)$ 且与两直线 $L_1:$ $\begin{cases} y=2x & \\ z=x-1 \end{cases}$, $L_2:$ $\begin{cases} y=3x-4 & \\ z=2x-1 \end{cases}$ 都相交的直线

【法一】先求交点、再写直线方程将两直线方程化为参数方程 解析

$$L_1: \begin{cases} x = t \\ y = 2t \end{cases} \qquad L_2: \begin{cases} x = t \\ y = 3t - 4 \\ z = t - 1 \end{cases}$$

设交点分别为 $M_1\left(t_1,2t_1,t_1-1\right), M_2\left(t_2,3t_2-4,2t_2-1\right)$ M_0,M_1,M_2 三点共线 $::\overline{M_0M_1}\parallel\overline{M_0M_2}$ $\frac{t_1-1}{t_2-1}=\frac{2t_1-1}{(3t_2-4)-1}=\frac{(t_1-1)-1}{(2t_2-1)-1}\Rightarrow t_1=0,t_2=2$ $M_1\left(0,0,-1\right), M_2\left(2,2,3\right)\Rightarrow L:\frac{x-1}{1}=\frac{y-1}{2}.$

【法二】两相交直线确定平面, 先求已知直线方向向量, 将两直线方程化为参数方程

$$L_1: \begin{cases} x = t \\ y = 2t \\ z = t - 1 \end{cases} \quad L_2: \begin{cases} x = t \\ y = 3t - 4 \\ z = 2t - 1 \end{cases}$$

得 $\boldsymbol{s}_1=\left(1,2,1\right),L_1$ 上点 $M_1\left(0,0,-1\right),\,\boldsymbol{s}_2=\left(1,3,2\right),L_2$ 上点 $M_2\left(0,-4,-1\right)$

对 L 上任意点 M(x,y,z), $\overrightarrow{M_1M}$, $\overrightarrow{M_1M_0}$, s_1 共面

例 2-7 (2014-2015-2-期末-填空题-5)

过点 P(1,-1,1) 且与直线 $L_1:\frac{x-1}{1}=\frac{y}{-2}=\frac{z-2}{2}$ 和 $L_2:\frac{x}{1}=\frac{y+2}{1}=\frac{z-3}{-3}$ 平行的平面方程 为 $\underline{\qquad 4x+5y+3z-2=0\qquad}$.

答案 4x + 5y + 3z - 2 = 0

解析 法向量 $\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 2 \\ 1 & 1 & -3 \end{vmatrix} = (4,5,3) \Rightarrow 4(x-1)+5(y+1)+3(z-1) = 0 \Rightarrow 4x+5y+3z-2 = 0.$

例 2-8 (2013-2014-2-期末-解答题-12)

求直线 L: $\begin{cases} 4x-y+3z-1=0 \\ x+5y-z+2=0 \end{cases}$ 在平面 2x-y+5z-3=0 上的投影直线.

答案 $\begin{cases} 7x + 14y + 5 = 0 \\ 2x - y + 5z - 3 = 0 \end{cases}$.

解析 不妨设直线 L 的平面東方程为 $4x - y + 3z - 1 + \lambda(x + 5y - z + 2) = 0, \lambda \in \mathbb{R}$ 平面的法向量 $\mathbf{n}_1 = (2, -1, 5)$ 与平面東方程的法向量 $\mathbf{n}_2 = (4 + \lambda, 5\lambda - 1, 3 - \lambda)$ 垂直

$$\therefore \mathbf{n}_1 \cdot \mathbf{n}_2 = 0 \Rightarrow \lambda = 3 \Rightarrow \begin{cases} 7x + 14y + 5 = 0 \\ 2x - y + 5z - 3 = 0 \end{cases}.$$

6.2.2 认识曲面与曲线

例 2-9

试求顶点在原点,含三正半坐标轴的圆锥面.

答案 xy + yz + zx = 0.

解析 设圆锥面的旋转轴方向向量为 $\mathbf{s}=(m,n,p)\Rightarrow m=n=p$. 故取 $\mathbf{s}=(1,1,1)$ 旋转轴为 x=y=z,在圆锥面上任取一点 $M\left(x,y,z\right)$ $\therefore \frac{x+y+z}{\sqrt{3}\cdot\sqrt{x^2+y^2+z^2}}=\frac{1}{\sqrt{3}}\Rightarrow xy+yz+zx=0.$

例 2-10 (2013-2014-2-期中-填空题-8)

两曲面 $z = x^2 + 2y^2, z = 3 - 2x^2 - y^2$ 的交线 C 在 xOy 面上的投影曲线方程为 $\begin{cases} x^2 + y^2 = 1 \\ z = 0 \end{cases}$

答案 $\begin{cases} x^2 + y^2 = 1 \\ z = 0 \end{cases}$

解析 ∵在 xOy 平面上,∴z=0. 两方程联立并消掉 z 即得投影曲线方程为 $\begin{cases} x^2+y^2=1\\ z=0 \end{cases}$.

第七章

多元函数微分学及其应用

/Jul 0 1 / ID				
例 0-1 (ID 题目				
答案 答案				
解析 解析				
习题 0-1 (:	ID)			
题目				
答案 答案				
解析 解析				
选择题用				(A)
填空题用答	<u>案</u>			
选项用				
(A) 选项 A	(B) 选项 B	(C) 选项 C	(D) 选项 D	

第八章

重积分

重积分的概念、性质以及简单的累次积分换序 Ⅰ题型-

线性性质 8.1.1

例 1-1 (2013-2014-2-期中-选择题-16)

设
$$I_1 = \iint_D \cos \sqrt{x^2 + y^2} \, d\sigma$$
, $I_2 = \iint_D \cos (x^2 + y^2) \, d\sigma$, $I_3 = \iint_D \cos (x^2 + y^2)^2 \, d\sigma$, 其中 $D = \{(x,y)|x^2 + y^2 \le 1\}$, 则有 (B)

(A)
$$I_1 > I_2 > I_3$$

(B)
$$I_3 > I_2 > I_3$$

(C)
$$I_2 > I_1 > I_3$$

(A)
$$I_1 > I_2 > I_3$$
 (B) $I_3 > I_2 > I_1$ (C) $I_2 > I_1 > I_3$ (D) $I_3 > I_1 > I_2$

答案 B.

解析
$$D = \{(x,y)|x^2 + y^2 \leqslant 1\} \Rightarrow 1 \geqslant \sqrt{x^2 + y^2} \geqslant x^2 + y^2 \geqslant (x^2 + y^2)^2 > 0,$$

而 $\cos x$ 在 $\left[0, \frac{\pi}{2}\right]$ 单调递减,于是

$$\forall (x,y) \in D, \cos(\sqrt{x^2 + y^2}) < \cos(x^2 + y^2) < \cos(x^2 + y^2)^2$$

由二重积分性质得

$$\iint\limits_{D} \cos \sqrt{x^2 + y^2} \, d\sigma < \iint\limits_{D} \cos \left(x^2 + y^2\right) \, d\sigma < \iint\limits_{D} \cos \left(x^2 + y^2\right)^2 \, d\sigma$$

即 $I_3 > I_2 > I_1$.

对称性及轮换对称性 8.1.2

例 1-2 (2014-2015-2-期中-选择题-16)

设
$$f(x,y) = x^4 \ln \left(y + \sqrt{1+y^2} \right)$$
, 且 $D = \{ (x,y) | |x| + |y| \le 2 \}$, 则 $\iint_D f(x,y) \, \mathrm{d} x \, \mathrm{d} y = (C)$ (A) -1 (B) 1 (C) 0 (D) 2

答案 C.

解析 显然
$$f(x,-y)=-f(x,y)$$
,而积分区域关于 x 轴对称,因此 $\iint\limits_D f(x,y)\,\mathrm{d}\,x\,\mathrm{d}\,y=0$.

例 1-3 (2015-2016-2-期中-选择题-17; 2011-2012-2-期末-选择题-11)

设有空间区域 $\Omega_1 = \{(x, y, z) | x^2 + y^2 + z^2 \leq R^2, z \geq 0\}.$

$$\Omega_2 = \{ (x, y, z) | x^2 + y^2 + z^2 \leqslant R^2, x \geqslant 0, y \geqslant 0, z \geqslant 0 \}, \text{ } \emptyset$$
 (C)

(A)
$$\iiint x \, \mathrm{d} v = 4 \iiint x \, \mathrm{d} v$$

(B)
$$\iiint y \, \mathrm{d} v = 4 \iiint y \, \mathrm{d} v$$

(C)
$$\iiint_{\Omega_1} z \, \mathrm{d} v = 4 \iiint_{\Omega_2} z \, \mathrm{d} v$$

(D)
$$\iiint_{\Omega_i} xyz \, \mathrm{d} \, v = 4 \iiint_{\Omega_i} xyz \, \mathrm{d} \, v$$

答案 C.

解析 由 Ω_1 和 Ω_2 的对称性可知 $\iiint z \, \mathrm{d} v = 4 \iiint z \, \mathrm{d} v$.

例 1-4 (2012-2013-2-期中-解答题-22)

设区域 $D=\{(x,y)|x^2+y^2\leqslant 4,x\geqslant 0,y\geqslant 0\}$, f(x,y) 为 D 上的正值连续函数, a,b 为常数, 证明: $\iint \frac{a\sqrt{f(x)}+b\sqrt{f(y)}}{\sqrt{f(x)}+\sqrt{f(y)}}\,\mathrm{d}\,\sigma=\frac{a+b}{2}\pi.$

答案 见解析.

解析 由轮换对称性 $\iint \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma = \iint \frac{a\sqrt{f(y)} + b\sqrt{f(x)}}{\sqrt{f(y)} + \sqrt{f(x)}} d\sigma$, 所以 $\iint \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma = \frac{1}{2} \iint \frac{a\sqrt{f(x)} + b\sqrt{f(y)} + a\sqrt{f(y)} + b\sqrt{f(x)}}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma$ $= \frac{1}{2} \iint \frac{(a+b)\left(\sqrt{f(y)} + \sqrt{f(x)}\right)}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma = \frac{1}{2} \iint (a+b) d\sigma = \frac{a+b}{2} \sigma$

其中 σ 为 D 区域的面积 π ,因此原式 = $\frac{a+b}{2}\pi$.

例 1-5 (2012-2013-2-期中-选择题-14)

设 $\Omega_1: x^2 + y^2 + z^2 \leqslant R^2, z \geqslant 0, \Omega_2: x^2 + y^2 + z^2 \leqslant R^2, x \geqslant 0, y \geqslant 0, z \geqslant 0,$ 则

(A)
$$\iiint_{\Omega} x \, dx \, dy \, dz = 4 \iiint_{\Omega} \Omega_2 x \, dx \, dy \, dz$$

(A)
$$\iiint_{\Omega} x \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z = 4 \iiint_{\Omega} \Omega_2 x \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z \qquad \text{(B)} \iiint_{\Omega} y \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z = 4 \iiint_{\Omega} \Omega_2 y \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z$$

(C)
$$\iiint_{\Omega} z \, dx \, dy \, dz = 4 \iiint_{\Omega} \Omega_2 z \, dx \, dy \, dz$$

(C)
$$\iiint_{\Omega_1} z \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z = 4 \iiint_{\Omega_2} z \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z \qquad \text{(D)} \iiint_{\Omega_1} xyz \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z = 4 \iiint_{\Omega_2} xyz \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z$$

答案 C.

由对称性, 在 Ω_1 上 x、y、xyz 的积分都是 0, 故 A、B、D 选项错误.

8.1.3 累次积分的交换积分次序

例 1-6 (2012-2013-2-期末-选择题-6)

设区域 D 是由曲线 y=x,x+y=2 及 x=2 围成的平面区域, 则 $\iint f\left(x,y\right)\mathrm{d}\,x\,\mathrm{d}\,y$ 等于 ($~\mathrm{C}$)

(A)
$$\int_{1}^{2} dx \int_{0}^{2} f(x, y) dy$$

(B)
$$\int_{0}^{1} dx \int_{x}^{2-x} f(x,y) dy$$

(C)
$$\int_{1}^{2} dy \int_{2-x}^{x} f(x, y) dx$$

(D)
$$\int_{0}^{1} dy \int_{y}^{2-y} f(x,y) dx$$

重积分

解析 考查化重积分为累次积分,
$$\iint\limits_D f(x,y) \, \mathrm{d} x \, \mathrm{d} y = \int_1^2 \, \mathrm{d} x \int_{2-x}^x f(x,y) \, \mathrm{d} y.$$

例 1-7 (2015-2016-2-期中-选择题-19)

二次积分
$$\int_{a}^{a} dy \int_{a}^{y} e^{m(a-x)} f(x) dx =$$
 (D)

(A)
$$\int_0^a x e^{m(a-x)} f(x) dx$$

(B)
$$\int_0^a a e^{m(a-x)} f(x) dx$$

(C)
$$\int_{0}^{a} (a-x) e^{a(m-x)} f(x) dx$$

(D)
$$\int_{0}^{a} (a-x) e^{m(a-x)} f(x) dx$$

答案 D.

解析 变换积分次序:
$$\begin{cases} 0 \leqslant x \leqslant y \\ 0 \leqslant y \leqslant a \end{cases} \rightarrow \begin{cases} 0 \leqslant x \leqslant a \\ x \leqslant y \leqslant a \end{cases}, 则$$

$$\int_0^a \mathrm{d}\,y \int_0^y \mathrm{e}^{m(a-x)} f\left(x\right) \mathrm{d}\,x = \int_0^a \mathrm{d}\,x \int_x^a \mathrm{e}^{m(a-x)} f\left(x\right) \mathrm{d}\,y = \int_0^a \left(a-x\right) \mathrm{e}^{m(a-x)} f\left(x\right) \mathrm{d}\,x.$$

例 1-8 (2010-2011-2-期末-选择题-8)

设
$$f(x,y)$$
 是连续函数,则 $\int_0^a \mathrm{d}x \int_0^x f(x,y) \,\mathrm{d}y$ 等于 (B)

(A)
$$\int_0^a dy \int_0^y f(x,y) dx$$

(B)
$$\int_0^a dy \int_x^a f(x,y) dx$$

(C)
$$\int_0^a dy \int_a^y f(x,y) dx$$

(B)
$$\int_0^a dy \int_y^a f(x,y) dx$$
(D)
$$\int_0^a dy \int_0^a f(x,y) dx$$

解析 变换积分次序:
$$\left\{ \begin{array}{c} 0 \leqslant x \leqslant a \\ 0 \leqslant y \leqslant x \end{array} \right. \rightarrow \left\{ \begin{array}{c} y \leqslant x \leqslant a \\ 0 \leqslant y \leqslant a \end{array} \right. , \text{则} \int_0^a \mathrm{d}\,x \int_0^x f\left(x,y\right) \mathrm{d}\,y = \int_0^a \mathrm{d}\,y \int_y^a f\left(x,y\right) \mathrm{d}\,x.$$

例 1-9 (2013-2014-2-期末 (C)-选择题-8)

交换积分次序
$$\int_0^1 \mathrm{d}y \int_{\sqrt{y}}^{\sqrt{2-y^2}} f(x,y) \, \mathrm{d}x = \tag{B}$$

(A)
$$\int_0^1 dx \int_0^{x^2} f(x, y) dy$$

(B)
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f(x, y) dy + \int_{1}^{\sqrt{2}} dx \int_{0}^{\sqrt{2-x^{2}}} f(x, y) dy$$

(C)
$$\int_{1}^{\sqrt{2}} dx \int_{0}^{\sqrt{2-x^2}} f(x,y) dy$$

(D)
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f(x, y) dy + \int_{1}^{\sqrt{3}} dx \int_{0}^{\sqrt{2-x^{2}}} f(x, y) dy$$

答案 B.

解析 画图, 分成两块区域.

例 1-10 (2014-2015-2-期中-填空题-8)

二次积分
$$\int_0^1 dx \int_0^{\sqrt{x}} e^{-\frac{y^2}{2}} dy$$
 的值等于 ___e^{-\frac{1}{2}}__.

2013-2014-2-期末 (C)-填空题-4 2012-2013-2-期中-填空题-2

答案 $e^{-\frac{1}{2}}$.

解析 交换积分次序可得

$$\begin{split} & \int_0^1 \mathrm{d}\,x \int_0^{\sqrt{x}} \mathrm{e}^{-\frac{y^2}{2}} \,\mathrm{d}\,y = \int_0^1 \mathrm{d}\,y \int_{y^2}^1 \mathrm{e}^{-\frac{y^2}{2}} \,\mathrm{d}\,x = \int_0^1 \left(1 - y^2\right) \mathrm{e}^{-\frac{y^2}{2}} \,\mathrm{d}\,y = \int_0^1 \mathrm{e}^{-\frac{y^2}{2}} \,\mathrm{d}\,y - \int_0^1 y^2 \mathrm{e}^{-\frac{y^2}{2}} \,\mathrm{d}\,y \\ & = \int_0^1 \mathrm{e}^{-\frac{y^2}{2}} \,\mathrm{d}\,y - \int_0^1 y \,\mathrm{d}\left(\mathrm{e}^{-\frac{y^2}{2}}\right) = \int_0^1 \mathrm{e}^{-\frac{y^2}{2}} \,\mathrm{d}\,y + y \mathrm{e}^{-\frac{y^2}{2}} \Big|_0^1 - \int_0^1 \mathrm{e}^{-\frac{y^2}{2}} \,\mathrm{d}\,y \\ & = y \mathrm{e}^{-\frac{y^2}{2}} \Big|_0^1 = \mathrm{e}^{-\frac{1}{2}}. \end{split}$$

例 1-11 (2013-2014-2-期末-填空题-5)

积分
$$\int_0^2 dx \int_x^2 e^{-y^2} dy$$
 的值等于 $\frac{1}{2} (1 - e^{-4})$.

答案
$$\frac{1}{2}(1-e^{-4}).$$

解析 交换积分次序. 得

$$\int_0^2 \mathrm{d}x \int_x^2 \mathrm{e}^{-y^2} \,\mathrm{d}y = \int_0^2 \mathrm{d}y \int_0^y \mathrm{e}^{-y^2} \,\mathrm{d}x = \int_0^2 y \mathrm{e}^{-y^2} \,\mathrm{d}y = -\frac{1}{2} \mathrm{e}^{-y^2} \bigg|_0^2 = \frac{1}{2} \left(1 - \mathrm{e}^{-4}\right).$$

例 1-12 (2012-2013-2-期中-选择题-15)

设函数
$$f(x,y)$$
 连续,则二次积分 $\int_{\frac{\pi}{2}}^{\pi} dx \int_{\sin x}^{1} f(x,y) dy$ 等于 (B) $\int_{0}^{1} dy \int_{\pi-\arcsin y}^{\pi} f(x,y) dx$ (C) $\int_{0}^{1} dy \int_{\frac{\pi}{2}}^{\pi+\arcsin x} f(x,y) dx$ (D) $\int_{0}^{1} dy \int_{\frac{\pi}{2}}^{\pi-\arcsin x} f(x,y) dx$ 2015-2016-2-期中-选择题-16

答案 B.

解析 考查交换积分次序方法. 注意反正弦函数 $f(x) = \arcsin x$ 的定义域是 [-1,1],值域是 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ 因此当 $x \in \left[0,\frac{\pi}{2}\right]$ 时, $x = \arcsin y$;当 $x \in \left[\frac{\pi}{2},\pi\right]$ 时, $\pi - x \in \left[0,\frac{\pi}{2}\right]$ 于是 $x \leqslant \pi \leqslant -\arcsin y$,从而将积分区域变换为

$$D: \left\{ \left. (x,y) \right| \frac{\pi}{2} \leqslant x \leqslant \pi, \sin x \leqslant y \leqslant 1 \right\} \Leftrightarrow \left\{ \left. (x,y) \right| 0 \leqslant y \leqslant 1, \pi - \arcsin y \leqslant x \leqslant \pi \right\}.$$

例 1-13 (2014-2015-2-期中-选择题-15)

设函数
$$f(x,y)$$
 连续,则二次积分 $\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy$ 等于 (B) $\int_{1}^{1} dy \int_{2-y}^{1+\sqrt{1-y^2}} f(x,y) dx$ (C) $\int_{1}^{2} dy \int_{2-y}^{\sqrt{2y-y^2}} f(x,y) dx$ (D) $\int_{0}^{1} dy \int_{2-y}^{\sqrt{2y-y^2}} f(x,y) dx$

答案 B.

解析 换序
$$\begin{cases} 0 \leqslant x \leqslant 1 \\ 2 - x \leqslant y \leqslant \sqrt{2x - x^2} \end{cases} \Rightarrow \begin{cases} 0 \leqslant y \leqslant 1 \\ 2 - y \leqslant x \leqslant 1 + \sqrt{1 - y^2} \end{cases}$$
 故
$$\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x - x^2}} f(x, y) dy = \int_{0}^{1} dy \int_{2-y}^{1 + \sqrt{1 - y^2}} f(x, y) dx.$$

8.2.1 直角坐标系下重积分的计算

例 2-1 (2015-2016-2-期中-填空题-7)

设
$$D = \{(x,y) | |x| + |y| \le 1\}$$
,则二重积分 $\iint_D |xy| \, \mathrm{d} \, x \, \mathrm{d} \, y$ 的值等于 $\frac{1}{6}$.

答案 $\frac{1}{6}$.

解析 设 D_1 为 D 在第一象限的区域,则

$$\iint_{D} |xy| \, dx \, dy = 4 \iint_{D_1} |xy| \, dx \, dy = 4 \iint_{D_1} xy \, dx \, dy = 4 \int_{0}^{1} dx \int_{0}^{1-x} xy \, dy$$
$$= 2 \int_{0}^{1} x(1-x)^{2} \, dx = 2 \int_{0}^{1} (x^{3} - 2x^{2} + x) \, dx = 2 \left(\frac{x^{4}}{4} - \frac{2x^{3}}{3} + \frac{x^{2}}{2} \right) \Big|_{0}^{1} = \frac{1}{6}.$$

例 2-2 (2012-2013-2-期末-填空题-2)

设
$$D$$
 是由直线 $y=1, x=2$ 及 $y=x$ 围成的区域,则 $\iint\limits_D xy\,\mathrm{d}\,x\,\mathrm{d}\,y=$ $\frac{9}{8}$.

答案 $\frac{9}{8}$.

解析
$$\iint_D xy \, dx \, dy = \int_1^2 dy \int_y^2 xy \, dx = \int_1^2 \frac{y}{2} (4 - y^2) \, dy = \frac{9}{8}.$$

例 2-3 (2014-2015-2-期末-选择题-6)

设 D 是由曲线 $y=x,y^2=x$ 围成的平面闭区域,则 $\iint\limits_{D} \frac{\sin y}{y} \,\mathrm{d} \,x \,\mathrm{d} \,y$ 等于 (C)

(A)
$$1 + \sin 1$$

(B)
$$1 + \cos 1$$

(C)
$$1 - \sin 1$$

(D)
$$1 - \cos 1$$

答案 C

解析 化二重积分为二次积分得到 $\iint_D \frac{\sin y}{y} dx dy = \int_0^1 \int_{y^2}^y \frac{\sin y}{y} dx dy = \int_0^1 (\sin y - y \sin y) dy$ = $(y \cos y - \sin y - \cos y)|_0^1 = 1 - \sin 1$.

例 2-4 (2013-2014-2-期中-解答题-19)

设 a, b 为正常数, $D = \{(x, y) | -a \leqslant x \leqslant a, -b \leqslant y \leqslant b\}$, 计算 $I = \iint_D e^{\max\{b^2 x^2, a^2 y^2\}} dx dy$.

答案 $\frac{4\left(e^{a^2b^2}-1\right)}{ab}.$

解析 化简被积函数然后积分即可.

$$I = \iint_{D_1} e^{b^2 x^2} dx dy + \iint_{D_2} e^{a^2 y^2} dx dy = 4 \int_0^a dx \int_0^{\frac{b}{a}x} e^{b^2 x^2} dy + 4 \int_0^b dy \int_0^{\frac{b}{a}y} e^{a^2 y^2} dx$$
$$= \frac{2}{ab} \left(e^{a^2 b^2} - 1 \right) + \frac{2}{ab} \left(e^{a^2 b^2} - 1 \right) = \frac{4}{ab} \left(e^{a^2 b^2} - 1 \right).$$

例 2-5 (2014-2015-2-期中-解答题-20)

设 Ω 是由平面 x+y+z=1 与三个坐标平面所围成的空间区域, 计算 $\iint\limits_{\Omega} (x+2y+3z)\,\mathrm{d}\,x\,\mathrm{d}\,y\,\mathrm{d}\,z$.

答案 $\frac{1}{4}$.

解析 记重积分为 I, 直接计算即可

$$\begin{split} I &= \int_0^1 \mathrm{d}\,x \int_0^{1-x} \mathrm{d}\,y \int_0^{1-x-y} \left(x + 2y + 3z\right) \mathrm{d}\,z = \int_0^1 \mathrm{d}\,x \int_0^{1-x} \left[\left(x + 2y\right) \left(1 - x - y\right) + \frac{3}{2} (1 - x - y)^2 \right] \mathrm{d}\,y \\ &= \int_0^1 \mathrm{d}\,x \int_0^{1-x} \frac{1}{2} \left[-y^2 - 2y + \left(1 - x\right)^2 + 2 \left(1 - x\right) \right] \mathrm{d}\,y \\ &= \frac{1}{2} \int_0^1 \left[-\frac{1}{3} (1 - x)^3 - \left(1 - x\right)^2 + \left(1 - x\right)^3 + 2 (1 - x)^2 \right] \mathrm{d}\,x \\ &= \frac{1}{2} \int_0^1 \left[\frac{2}{3} (1 - x)^3 + \left(1 - x\right)^2 \right] \mathrm{d}\,x = \frac{1}{2} \int_0^1 \left[\frac{2}{3} t^3 + t^2 \right] \mathrm{d}\,t = \frac{1}{4}. \end{split}$$

例 2-6 (2012-2013-2-期末-解答题-16)

计算 $\iint_D \max\{xy,1\} \, \mathrm{d} \, x \, \mathrm{d} \, y$,其中 $\{D=(x,y) | \, 0 \leqslant x \leqslant 2, 0 \leqslant y \leqslant 2\}$.

答案 $\frac{19}{4} + \ln 2$.

解析 曲线
$$xy=1$$
 将区域 D 分为两个区域 $D_1,D_2, \max\{xy,1\}=\left\{\begin{array}{c} xy,(x,y)\in D_1,\\ 1,(x,y)\in D_2,\end{array}\right.$

$$\iint_{D} \max \{xy, 1\} \, \mathrm{d} \, x \, \mathrm{d} \, y = \iint_{D_{1}} xy \, \mathrm{d} \, x \, \mathrm{d} \, y + \iint_{D_{2}} \mathrm{d} \, x \, \mathrm{d} \, y = \iint_{D_{1}} xy \, \mathrm{d} \, x \, \mathrm{d} \, y + \iint_{D} \mathrm{d} \, x \, \mathrm{d} \, y - \iint_{D_{1}} \mathrm{d} \, x \, \mathrm{d} \, y$$

$$= \int_{\frac{1}{2}}^{2} \mathrm{d} \, x \int_{\frac{1}{x}}^{2} xy \, \mathrm{d} \, y + 4 - \int_{\frac{1}{2}}^{2} \mathrm{d} \, x \int_{\frac{1}{x}}^{2} \mathrm{d} \, y = \frac{19}{4} + \ln 2.$$

8.2.2 极坐标系下二重积分的计算

例 2-7 (2012-2013-2-期中-填空题-4)

设有
$$D$$
: $x^2 + y^2 \leqslant a^2$, 则 $\iint_D e^{-x^2 - y^2} dx dy = \underbrace{\pi \left(1 - e^{-a^2}\right)}_D$.

答案
$$\pi \left(1 - e^{-a^2}\right)$$

解析

$$\iint_{D} e^{-x^{2}-y^{2}} dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{a} \rho e^{-\rho^{2}} d\rho = \frac{1}{2} \int_{0}^{2\pi} d\theta \int_{0}^{a^{2}} e^{-\rho^{2}} d(\rho^{2})$$
$$= -\frac{1}{2} \int_{0}^{2\pi} e^{-\rho^{2}} \int_{0}^{a^{2}} d\theta = \pi \left(1 - e^{-a^{2}}\right).$$

例 2-8 (2013-2014-2-期中-填空题-2)

设 D 是 xOy 平面上圆心在远点、半径为 a(a>0) 的圆域,则 $\iint\limits_D \left(a-\sqrt{x^2+y^2}\right)\mathrm{d}x\,\mathrm{d}y=\frac{a^3\pi}{3}$.

答案 $\frac{a^3\pi}{3}$.

解析 首先得出积分区域为 $D:\{(x,y)|x^2+y^2=a^2\}$,然后由积分区域及被积函数的特点将重积分转化为极坐标系下的二次积分: $\iint\limits_{D} \left(a-\sqrt{x^2+y^2}\right) \mathrm{d} \, x \, \mathrm{d} \, y = \int_0^{2\pi} \mathrm{d} \, \theta \int_0^a \left(a-\rho\right) \rho \, \mathrm{d} \, \rho = \frac{a^3\pi}{3}.$

例 2-9 (2015-2016-2-期中-填空题-10)

设区域 $D: x^2 + y^2 \leqslant 1$,则二重积分 $\iint_D \sqrt[3]{x^2 + y^2} \, \mathrm{d} \, x \, \mathrm{d} \, y$ 的值等于 $\frac{3}{4}\pi$. 2014-2015-2-期中-选择题-18

答案 $\frac{3}{4}\pi$

解析 极坐标变换可得 $\iint\limits_{D} \sqrt[3]{x^2 + y^2} \, dx \, dy = \int_0^{2\pi} d\theta \int_0^1 \rho \sqrt[3]{\rho^2} \, d\rho = 2\pi \int_0^1 \rho^{\frac{5}{3}} \, d\rho = \frac{3}{4}\pi.$

例 2-10 (2013-2014-2-期中-选择题-11)

设有闭区域 $D = \{(x,y)|x^2 + y^2 \le 1, x \ge 0\}$,则二重积分 $\iint_D \frac{1+xy}{1+x^2+y^2} \, \mathrm{d} \, x \, \mathrm{d} \, y$ 的值等于 (B) (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{2} \ln 2$ (C) $\frac{\pi}{2} \ln 3$ (D) $\ln 2$

答案 B.

解析 极坐标变换可得

$$\iint_{D} \frac{1+xy}{1+x^{2}+y^{2}} dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{1} \frac{1+\rho^{2}\cos\theta\sin\theta}{1+\rho^{2}} \rho d\rho = \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} \left(\frac{1}{1+\rho^{2}} + \frac{\rho^{2}\cos\theta\sin\theta}{1+\rho^{2}}\right) d\left(\rho^{2}\right)$$

其中

$$\int_{0}^{1} \frac{1}{1+\rho^{2}} d\left(\rho^{2}\right) = \ln 2, \ \int_{0}^{1} \frac{\rho^{2} \cos \theta \sin \theta}{1+\rho^{2}} d\left(\rho^{2}\right) = \cos \theta \sin \theta \int_{0}^{1} \frac{\rho^{2} d\left(\rho^{2}\right)}{1+\rho^{2}} = (1-\ln 2) \cos \theta \sin \theta$$

因此原式 = $\int_0^{\frac{\pi}{2}} \left[1 + (1 - \ln 2) \cdot \frac{\sin 2\theta}{2} \right] d\theta = \frac{\pi}{2} \ln 2 + (1 - \ln 2) \left(-\frac{\cos 2\theta}{4} \right) \Big|^{\pi} = \frac{\pi}{2} \ln 2.$

例 2-11 (2013-2014-2-期中-选择题-15)

设函数 f(x,y) 连续,则二次积分 $\int_{0}^{1} dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx$ 等于 (D)

(A)
$$\int_0^1 dx \int_0^{x-1} f(x,y) dy + \int_{-1}^0 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy$$

(B)
$$\int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy + \int_{-1}^{0} dx \int_{-\sqrt{1-x^{2}}}^{0} f(x,y) dy$$

(C)
$$\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\frac{1}{\cos\theta + \sin\theta}} f(\rho \cos\theta, \rho \sin\theta) d\rho + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_{0}^{1} f(\rho \cos\theta, \rho \sin\theta) d\rho$$

(D)
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_0^1 f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$$

解析
$$\int_0^1 \mathrm{d}\,y \int_{-\sqrt{1-y^2}}^{1-y} f\left(x,y\right) \mathrm{d}\,x = \iint\limits_{D_1} f\left(x,y\right) \mathrm{d}\,x \,\mathrm{d}\,y + \iint\limits_{D_2} f\left(x,y\right) \mathrm{d}\,x \,\mathrm{d}\,y$$

$$= \int_{\frac{\pi}{2}}^{\pi} \mathrm{d}\,\theta \int_0^1 f\left(\rho\cos\theta,\rho\sin\theta\right) \rho \,\mathrm{d}\,\rho + \iint\limits_{D_2} f\left(x,y\right) \mathrm{d}\,x \,\mathrm{d}\,y \ \because \ x < 1 - y, \ \therefore \rho\cos\theta < 1 - \rho\sin\theta,$$

$$\therefore \rho < \frac{1}{\cos\theta + \sin\theta} \ \therefore \iint\limits_{\Omega} f\left(x,y\right) \mathrm{d}\,x \,\mathrm{d}\,y = \int_{\frac{\pi}{2}}^{\pi} \mathrm{d}\,\theta \int_0^1 f\left(\rho\cos\theta,\rho\sin\theta\right) \rho \,\mathrm{d}\,\rho.$$

例 2-12(2010-2011-2-期末-选择题-10)

设 D 是由圆周 $x^2+y^2=1$ 及坐标轴所围成的在第一象限内的闭区域,则 $\iint \ln \left(1+x^2+y^2\right) \mathrm{d}\,x\,\mathrm{d}\,y=0$

(C)

(A)
$$\frac{\pi}{4} (\ln 2 - 1)$$

(B)
$$\frac{\pi}{8} (\ln 2 - 1)$$

(C)
$$\frac{\pi}{4} (2 \ln 2 - 1)$$

(A)
$$\frac{\pi}{4} (\ln 2 - 1)$$
 (B) $\frac{\pi}{8} (\ln 2 - 1)$ (C) $\frac{\pi}{4} (2 \ln 2 - 1)$ (D) $\frac{\pi}{8} (2 \ln 2 - 1)$

答案 C.

由极坐标变换可得 解析

$$\iint_{D} \ln (1 + x^{2} + y^{2}) dx dy = \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \ln (1 + \rho^{2}) \rho d\rho d\theta = \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \frac{1}{2} \ln (1 + \rho^{2}) d\rho^{2} d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (2 \ln 2 - 1) d\theta = \frac{\pi}{4} (2 \ln 2 - 1).$$

8.2.3 柱、球坐标系下三重积分的计算

例 2-13 (2014-2015-2-期中-填空题-6)

将三次积分
$$I = \int_0^1 \mathrm{d}\,y \int_{-\sqrt{y-y^2}}^{\sqrt{y-y^2}} \mathrm{d}\,x \int_0^{\sqrt{3(x^2+y^2)}} f\left(\sqrt{x^2+y^2+z^2}\right) \mathrm{d}\,z$$
 化为在柱面坐标形式下的
三次积分为
$$I = \int_0^\pi \mathrm{d}\,\theta \int_0^{\sin\theta} \mathrm{d}\,\rho \int_0^{\sqrt{3}\rho} f\left(\sqrt{z^2+\rho^2}\right) \rho \,\mathrm{d}\,z \quad .$$

例 2-14 (2015-2016-2-期中-填空题-8; 2012-2013-期中-选择题-11)

设
$$\Omega$$
 为平面曲线
$$\begin{cases} x^2=2z \\ y=0 \end{cases}$$
 绕 z 轴旋转一周形成的曲面与平面 $z=8$ 围成的区域,则三重积分
$$\iiint_{\Omega} \left(x^2+y^2\right) \mathrm{d} v \text{ 的值等于 } \underline{\frac{1024\pi}{3}} \ .$$

答案
$$\frac{1024\pi}{3}$$

解析 记平面曲线
$$\begin{cases} x^2 = 2z \\ y = 0 \end{cases}$$
 绕 z 轴旋转一周形成的曲面为 $\Sigma : x^2 + y^2 = 2z$ 于是积分区域 $\Omega : \left\{ (x,y,z) | \frac{1}{2} (x^2 + y^2) z 8 \right\} = \left\{ (\rho,\theta,z) | \frac{1}{2} \rho^2 z 8, \rho 0, 0 \theta 2 \pi \right\}$ 从而积分可计算得
$$\iiint_{\Omega} (x^2 + y^2) \, \mathrm{d} \, x \, \mathrm{d} \, y \, \mathrm{d} \, z = \int_0^{2\pi} \, \mathrm{d} \, \theta \int_0^4 \, \mathrm{d} \, \rho \int_{\frac{\rho^2}{2}}^8 \rho^2 \cdot \rho \, \mathrm{d} \, z = \int_0^{2\pi} \, \mathrm{d} \, \theta \int_0^4 \rho^3 \left(8 - \frac{\rho^2}{2} \right) \, \mathrm{d} \, \rho$$

$$= \int_0^{2\pi} \left(2 \rho^4 - \frac{\rho^6}{12} \right) \Big|_0^4 \, \mathrm{d} \, \theta = \frac{1024}{3} \pi.$$

例 2-15 (2014-2015-2-期中-选择题-14)

设
$$\Omega$$
 是球面 $x^2+y^2+z^2=z$ 所围成的闭区域,则 $\iint_{\Omega} \sqrt{x^2+y^2+z^2} \,\mathrm{d}\,v=$ (D) (A) $\frac{\pi}{7}$ (B) $\frac{\pi}{8}$ (C) $\frac{\pi}{9}$ (D) $\frac{\pi}{10}$

答案 D.

解析
$$x^2 + y^2 + z^2 = z \Rightarrow x^2 + y^2 + \left(z - \frac{1}{2}\right)^2 = \frac{1}{4}$$
, 在球坐标系中计算得到
$$I = \int_0^{2\pi} d\phi \int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} r^3 \sin\theta \, dr = 2\pi \int_0^{\frac{\pi}{2}} \frac{1}{4} \cos^4\theta \sin\theta \, d\theta = -\frac{\pi}{10} \cos^5\theta \Big|_0^{\frac{\pi}{2}} = \frac{\pi}{10}$$

例 2-16 (2015-2016-2-期中-选择题-15)

设
$$\Omega$$
 为由 $z = \sqrt{x^2 + y^2}$ 与 $z = 1$ 所围成的区域,则 $\iint_{\Omega} \left| \sqrt{x^2 + y^2 + z^2} - 1 \right| dv =$ (A)
(A) $\frac{\pi}{6} \left(\sqrt{2} - 1 \right)$ (B) $\frac{\pi}{5} \left(\sqrt{2} - 1 \right)$ (C) $\frac{\pi}{4} \left(\sqrt{2} - 1 \right)$ (D) $\frac{\pi}{3} \left(\sqrt{2} - 1 \right)$

答案 A

解析 积分区域 $\Omega:\left\{(x,y,z)|\sqrt{x^2+y^2}\leqslant z\leqslant 1\right\}\Leftrightarrow \left\{(r,\varphi,\theta)|r\sin\varphi\leqslant r\cos\varphi\leqslant 1,\; 0\leqslant\theta\leqslant 2\pi\right\}$ 根据被积函数特点按照 r=1 为分界面将 Ω 分为两块,其中

$$\begin{split} &\Omega_1 = \left\{ (r,\varphi,\theta) \left| 0 \leqslant r \leqslant 1, \ 0 \leqslant \varphi \leqslant \frac{\pi}{4}, \ 0 \leqslant \theta \leqslant 2\pi \right. \right\} \\ &\Omega_2 = \left\{ (r,\varphi,\theta) \left| 1 \leqslant r \leqslant \sec\varphi, \ 0 \leqslant \varphi \leqslant \frac{\pi}{4}, \ 0 \leqslant \theta \leqslant 2\pi \right. \right\}, \ \ \text{于是在球坐标系下计算可得} \end{split}$$

$$\begin{split} I &= \iiint\limits_{\Omega_1 + \Omega_2} \left| \sqrt{x^2 + y^2 + z^2} - 1 \right| \mathrm{d}\,v \\ &= \int_0^{2\pi} \mathrm{d}\,\theta \left[\int_0^{\frac{\pi}{4}} \sin\varphi \, \mathrm{d}\,\varphi \int_0^1 \left(1 - r \right) r^2 \, \mathrm{d}\,r + \int_0^{\frac{\pi}{4}} \sin\varphi \, \mathrm{d}\,\varphi \int_1^{\sec\varphi} \left(r - 1 \right) r^2 \, \mathrm{d}\,r \right] \\ &= 2\pi \cdot \left[\frac{1}{12} \int_0^{\frac{\pi}{4}} \sin\varphi \, \mathrm{d}\,\varphi + \int_0^{\frac{\pi}{4}} \sin\varphi \left(\frac{\sec^4\varphi}{4} - \frac{\sec^3\varphi}{3} + \frac{1}{12} \right) \mathrm{d}\,\varphi \right] \\ &= 2\pi \cdot \left[\frac{1}{6} \int_0^{\frac{\pi}{4}} \sin\varphi \, \mathrm{d}\,\varphi + \int_{\frac{\sqrt{2}}{2}}^1 \left(\frac{1}{4t^4} - \frac{1}{3t^3} \right) \mathrm{d}\,t \right] = 2\pi \cdot \left[\frac{1}{6} \cdot \frac{2 - \sqrt{2}}{2} + \frac{2\sqrt{2} - 3}{12} \right] = \frac{\pi \left(\sqrt{2} - 1 \right)}{6}. \end{split}$$

例 2-17 (2015-2016-2-期中-选择题-18)

积分
$$I = \int_0^1 \mathrm{d} y \int_{-\sqrt{y-y^2}}^{\sqrt{y-y^2}} \mathrm{d} x \int_0^{\sqrt{3(x^2+y^2)}} f\left(\sqrt{x^2+y^2+z^2}\right) \mathrm{d} z$$
 写成柱面坐标的形式为 (D) (A) $\int_0^{\pi} \mathrm{d} \theta \int_0^{\sin \theta} r^2 \, \mathrm{d} r \int_0^{\sqrt{3}r} f\left(\sqrt{r^2+z^2}\right) \mathrm{d} z$ (B) $\int_0^{\frac{\pi}{2}} \mathrm{d} \theta \int_0^{\sin \theta} \mathrm{d} r \int_0^{\sqrt{3}r} f\left(\sqrt{r^2+z^2}\right) \mathrm{d} z$ (C) $\int_0^{\frac{\pi}{2}} \mathrm{d} \theta \int_0^{\sin \theta} r \, \mathrm{d} r \int_0^{\sqrt{3}r} f\left(\sqrt{r^2+z^2}\right) \mathrm{d} z$

答案 D.

解析 坐标变换
$$x = \rho \sin x, y = \rho \cos x$$
 得到
$$\begin{cases} -\sqrt{y - y^2} \leqslant x \leqslant \sqrt{y - y^2} \\ 0 \leqslant y \leqslant 1 \end{cases} \Rightarrow \begin{cases} 0 \leqslant \theta \leqslant \pi \\ 0 \leqslant r \leqslant \sin \theta \\ 0 \leqslant z \leqslant \sqrt{3(x^2 + y^2)} \end{cases}$$

$$\not \boxtimes \int_0^1 \mathrm{d}\, y \int_{-\sqrt{y-y^2}}^{\sqrt{y-y^2}} \mathrm{d}\, x \int_0^{\sqrt{3(x^2+y^2)}} f\left(\sqrt{x^2+y^2+z^2}\right) \mathrm{d}\, z = \int_0^\pi \mathrm{d}\, \theta \int_0^{\sin\theta} r \, \mathrm{d}\, r \int_0^{\sqrt{3}r} f\left(\sqrt{r^2+z^2}\right) \mathrm{d}\, z.$$

例 2-18 (2014-2015-2-期末-选择题-9)

设 Ω 为由曲面 $x^2+y^2=z^2$ 与 $z=a\,(a>0)$ 围成空间区域,则 $\iint\limits_{\Omega} \left(x^2+y^2\right)\mathrm{d}\,x\,\mathrm{d}\,y\,\mathrm{d}\,z=\left(-\mathrm{A}\right)$

- (A) $\frac{\pi}{10}a^5$
- (B) $\frac{\pi}{8}a^5$
- (C) $\frac{\pi}{10}a^4$
- (D) $\frac{\pi}{8}a^4$

答案 A.

解析 由柱坐标变换得到

$$\iiint\limits_{\Omega} (x^2 + y^2) \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z = \int_0^a \int_0^{2\pi} \int_0^z r^2 \cdot r \, \mathrm{d} r \, \mathrm{d} \theta \, \mathrm{d} z = 2\pi \int_0^a \frac{z^4}{4} = 2\pi \frac{a^5}{20} = \frac{\pi}{10} a^5.$$

例 2-19 (2013-2014-2-期末-解答题-16)

计算 $\iint_{\Omega} z \, \mathrm{d} v$,其中 Ω 是由曲面 $z = \sqrt{2 - x^2 - y^2}$ 及 $z = x^2 + y^2$ 所围成的闭区域.

答案 $\frac{\pi}{2}$.

解析 柱坐标变换,得

$$\begin{split} & \iiint_{\Omega} z \, \mathrm{d} \, v = \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{z} z r \, \mathrm{d} \, r \, \mathrm{d} \, \theta \, \mathrm{d} \, z + \int_{1}^{\sqrt{2}} \int_{0}^{2\pi} \int_{0}^{\sqrt{2-z^{2}}} z r \, \mathrm{d} \, r \, \mathrm{d} \, \theta \, \mathrm{d} \, z \\ = & 2\pi \left(\int_{0}^{1} \frac{z^{3}}{2} \, \mathrm{d} \, z + \int_{1}^{\sqrt{2}} \frac{z \, (2-z^{2})}{2} \, \mathrm{d} \, z \right) = \frac{\pi}{2}. \end{split}$$

8.2.4 一般坐标系下重积分的计算

例 2-20 (2013-2014-2-期末-证明题-18)

设 f(t) 是连续函数,证明: $\iint_{|x|+|y|\leqslant 1} f(x+y) \,\mathrm{d}\, x \,\mathrm{d}\, y = \int_{-1}^1 f(u) \,\mathrm{d}\, u.$

答案 见解析.

解析 【法一】记积分区域为 $D=\{(x,y)\,||x|+|y|\,1\}=\{(x,y)\,|-1x+y1,-1x-y1\}$,做变量代换

$$\begin{cases} u = x + y \\ v = x - y \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2} (u + v) \\ y = \frac{1}{2} (u - v) \end{cases}$$

将 D 映射为 uOv 平面上的正方形区域 $D'\{(u,v)|-1u1,-1v1\}$, 该变换的雅可比行列式

$$J = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{2}$$

于是

$$\iint\limits_{|x|+|y|1} f(x+y) \, \mathrm{d} \, x \, \mathrm{d} \, y = \iint\limits_{D'} f(u) \, |J| \, \mathrm{d} \, u \, \mathrm{d} \, v = \frac{1}{2} \int_{-1}^{1} f(u) \, \mathrm{d} \, u \int_{-1}^{1} \mathrm{d} \, v = \int_{-1}^{1} f(u) \, \mathrm{d} \, u$$

证毕

【法二】以y轴为分界线,将D分成 D_1 和 D_2 左右两部分,于是

$$\iint_{D_1} f(x+y) \, \mathrm{d} x \, \mathrm{d} y = \int_{-1}^{0} \mathrm{d} x \int_{-1-x}^{1+x} f(x+y) \, \mathrm{d} y, \iint_{D_2} f(x+y) \, \mathrm{d} x \, \mathrm{d} y = \int_{0}^{1} \mathrm{d} x \int_{x-1}^{1-x} f(x+y) \, \mathrm{d} y$$

$$\int_{-1}^{0} \mathrm{d}\,x \int_{-1-x}^{1+x} f\left(x+y\right) \mathrm{d}\,y = \int_{-1}^{0} \mathrm{d}\,x \int_{-1}^{2x+1} f\left(t\right) \mathrm{d}\,t = \int_{-1}^{1} \mathrm{d}\,t \int_{\frac{t-1}{2}}^{0} f\left(t\right) \mathrm{d}\,x = \frac{1}{2} \int_{-1}^{1} \left(1-t\right) f\left(t\right) \mathrm{d}\,t$$

$$\int_{0}^{1} \mathrm{d}\,x \int_{x-1}^{1-x} f\left(x+y\right) \mathrm{d}\,y = \int_{0}^{1} \mathrm{d}\,x \int_{2x-1}^{1} f\left(t\right) \mathrm{d}\,t = \int_{-1}^{1} \mathrm{d}\,t \int_{0}^{\frac{t+1}{2}} f\left(t\right) \mathrm{d}\,x = \frac{1}{2} \int_{-1}^{1} \left(t+1\right) f\left(t\right) \mathrm{d}\,t$$

$$\text{Min}$$

$$\iint_{|x|+|y| \le 1} f(x+y) \, \mathrm{d} x \, \mathrm{d} y = \iint_{D_1} f(x+y) \, \mathrm{d} x \, \mathrm{d} y + \iint_{D_2} f(x+y) \, \mathrm{d} x \, \mathrm{d} y$$

$$= \frac{1}{2} \int_{-1}^{1} (1-t) f(t) \, \mathrm{d} t + \frac{1}{2} \int_{-1}^{1} (t+1) f(t) \, \mathrm{d} t$$

$$= \int_{-1}^{1} f(t) \, \mathrm{d} t.$$

证毕.

☑ 题型三 重积分的应用

8.3.1 求曲面面积

例 3-1 (2015-2016-2-选择题-12; 2014-2015-2-期中-填空题-2)

两个直交圆柱面 $x^2 + y^2 = R^2$ 及 $x^2 + z^2 = R^2$ 所围立体的表面积为 ___16 R^2 __.

答案 $16R^2$.

解析 设 A_1 为曲面 $z = \sqrt{R^2 - x^2}$ 相应与区域 $D: x^2 + y^2 \leqslant R^2$ 上的面积,则所求表面积为 $A = 4A_1$ $A = 4 \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, \mathrm{d} \, x \, \mathrm{d} \, y = 4 \iint_D \sqrt{1 + \left(-\frac{x}{\sqrt{R^2 - x^2}}\right)^2 + 0^2} \, \mathrm{d} \, x \, \mathrm{d} \, y$ $= 4 \iint_D \frac{R}{\sqrt{R^2 - x^2}} \, \mathrm{d} \, x \, \mathrm{d} \, y = 4R \int_{-R}^R \mathrm{d} \, x \int_{-\sqrt{R^2 - x}}^{\sqrt{R^2 - x}} \frac{1}{\sqrt{R^2 - x}} \, \mathrm{d} \, y = 8R \int_{-R}^R \mathrm{d} \, x = 16R^2.$

8.3.2 求立体体积

例 3-2 (2012-2013-2-期中-选择题-17)

由曲面 $z=\sqrt{2-x^2-y^2}$ 和曲面 $z=\sqrt{x^2+y^2}$ 所围成的立体的体积为

(A)
$$(\sqrt{2}-1)\pi$$

(B)
$$\frac{4}{3}\pi$$

(C)
$$\frac{4}{3}(\sqrt{2}-1)$$

(A)
$$(\sqrt{2}-1)\pi$$
 (B) $\frac{4}{3}\pi$ (C) $\frac{4}{3}(\sqrt{2}-1)\pi$ (D) $\frac{5}{3}(\sqrt{2}-1)\pi$

答案 C.

解析
$$\begin{cases} z = \sqrt{2 - x^2 - y^2} \\ z = \sqrt{x^2 + y^2} \end{cases}$$
 , $\therefore x^2 + y^2 = 1$ 为 D 区域,于是

$$V = \iint\limits_{D} \left(\sqrt{2 - x^2 - y^2} - \sqrt{x^2 + y^2} \right) \mathrm{d} \, x \, \mathrm{d} \, y = \int_0^{2\pi} \mathrm{d} \, \theta \int_0^1 \left(\sqrt{2 - \rho^2} - \rho \right) \rho \, \mathrm{d} \, \rho = \frac{4}{3} \left(\sqrt{2} - 1 \right) \pi.$$

例 3-3 (2012-2013-2-期末-解答题-12)

计算由曲面 $z = 6 - x^2 - y^2, z = \sqrt{x^2 + y^2}$ 所围成的立体的体积.

答案 $\frac{32}{3}\pi$.

解析 采用柱坐标,体积

$$V = \iiint_{\Omega} dv = \iiint_{\Omega} r dr d\theta dz = \int_{0}^{2\pi} d\theta \int_{0}^{2} r dr \int_{r}^{6-r^{2}} dz = 2\pi \int_{0}^{2} (6r - r^{2} - r^{3}) dr = \frac{32}{3}\pi.$$

例 3-4 (2013-2014-2-期末-解答题-17)

求由曲面 $z = x^2 + y^2$ 与 $z = \sqrt{x^2 + y^2}$ 围成的立体的体积.

答案 $\frac{\pi}{6}$.

解析 投影区域:
$$x^2 + y^2 \le 1$$
,体积 =
$$\iint_{x^2 + y^2 \le 1} \left[\sqrt{x^2 + y^2} - (x^2 + y^2) \right] dx dy = \int_0^{2\pi} d\theta \int_0^1 (\rho - \rho^2) d\rho = \frac{\pi}{6}.$$

例 3-5 (2014-2015-2-期末-解答题-12)

计算由曲面 $2az = x^2 + y^2 + z^2$ (a > 0) 及 $x^2 + y^2 = z^2$ 所围成的(含有 z 轴的部分) 立体的体积.

答案 $\frac{a^3\pi}{2}$.

解析 $2az = x^2 + y^2 + z^2 \Rightarrow x^2 + y^2 + (z - a)^2 = a^2$,柱坐标变换得

$$\begin{split} & \iiint\limits_{D} dv = \int_{0}^{a} \int_{0}^{2\pi} \int_{0}^{z} r \, \mathrm{d} \, r \, \mathrm{d} \, \theta \, \mathrm{d} \, z + \int_{a}^{2a} \int_{0}^{2\pi} \int_{0}^{\sqrt{2az - z^{2}}} r \, \mathrm{d} \, r \, \mathrm{d} \, \theta \, \mathrm{d} \, z \\ = & 2\pi \int_{0}^{a} \frac{z^{2}}{2} \, \mathrm{d} \, z + 2\pi \int_{a}^{2a} \frac{2az - z^{2}}{2} \, \mathrm{d} \, z = \frac{a^{3}\pi}{2}. \end{split}$$

8.3.3 求转动惯量

例 3-6 (2011-2012-2-期末-解答题-13)

一均匀物体(密度 ρ 为常数)占有的闭区域 Ω 由曲面 $z=x^2+y^2$ 和平面 z=0, |x|=a, |y|=a 所围成,求物体关于 z 轴的转动惯量.

答案 $\frac{112}{45}a^6\rho$.

解析 由转动惯量的定义: $J = \iiint\limits_{\Omega} \rho r^2 \, \mathrm{d} v$,其中 $r = \sqrt{x^2 + y^2}$. 由极坐标变换可得

$$J = \iiint_{\Omega} \rho r^2 \, dv = \int_{-a}^a \int_{-a}^a \int_0^{x^2 + y^2} (x^2 + y^2) \, dz \, dx \, dy = \int_{-a}^a \int_{-a}^a (x^2 + y^2)^2 \, dx \, dy$$
$$= \int_{-a}^a \int_{-a}^a (x^4 + 2x^2y^2 + y^4) \, dx \, dy = \frac{112}{45} a^6 \rho.$$

└___题型四 涉及到重积分的综合题

例 4-1 (2013-2014-2-期中-填空题-6)

设
$$f(x)$$
 为连续的函数, $F(t) = \int_1^t \mathrm{d}\, y \int_y^t f(x) \, \mathrm{d}\, x$, 则 $F'(2) =$ ($f(2)$).

答案 f(2).

解析 画出积分区域,观察其特点,交换积分次序可得

$$F(t) = \int_{1}^{t} dy \int_{y}^{t} f(x) dx = \int_{1}^{t} f(x) dx \int_{1}^{x} dy = \int_{1}^{t} (x - 1) f(x) dx$$

所以 $F'(t) = (t-1) f(t) \Rightarrow F'(2) = f(2)$.

例 4-2 (2010-2011-2-期末-选择题-11)

设
$$F(t) = \iiint\limits_{x^2+y^2+z^2\leqslant t^2} f\left(x^2+y^2+z^2\right) \mathrm{d} v$$
,其中 f 为连续函数,且 $f(0)=0,f'(0)=1,t>0$,则 $\lim\limits_{t\to 0^+} \frac{F(t)}{t^5}$ 的值为

(B)
$$\frac{4}{5}\pi$$

(C)
$$\frac{3}{5}\pi$$

(D)
$$\frac{2}{5}\pi$$

答案

解析 由球坐标变换可得

$$F\left(t\right) = \iiint\limits_{x^2 + y^2 + z^2 \leqslant t^2} f\left(x^2 + y^2 + z^2\right) \mathrm{d}\,v = \int_0^{2\pi} \int_0^{2\pi} \int_0^t f\left(r^2\right) r^2 \sin\varphi \, \mathrm{d}\,r \, \mathrm{d}\,\varphi \, \mathrm{d}\,\theta = 4\pi \int_0^t f\left(r^2\right) r^2 \, \mathrm{d}\,r$$

于是由洛必达法则及变限积分求导公式可得

$$\lim_{t \to 0^{+}} \frac{F(t)}{t^{5}} = \lim_{t \to 0^{+}} \frac{4\pi \int_{0}^{t} f(r^{2}) r^{2} dr}{t^{5}} = 4\pi \lim_{t \to 0^{+}} \frac{f(t^{2}) t^{2}}{5t^{4}} = \frac{4\pi}{5} \lim_{t \to 0^{+}} \frac{f(t^{2})}{t^{2}}$$

$$= \frac{4\pi}{5} \lim_{u \to 0^{+}} \frac{f(u)}{u} = \frac{4\pi}{5} \lim_{u \to 0^{+}} \frac{f(u) - f(0)}{u} = \frac{4\pi}{5} f'(0) = \frac{4\pi}{5}.$$

例 4-3 (2012-2013-2-期末-选择题-9; 2014-2015-2-期中-解答题-21)

设 f(x) 连续, f(1) = 1, 且 $F(t) = \iiint_{\Omega} \left[z^2 + f\left(x^2 + y^2\right) \right] \mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z$, 其中 $\Omega: 0 \leqslant z \leqslant 1, x^2 + y^2 \leqslant 1$ t^{2} , M F'(1) =

$$t^2$$
, 则 $F'(1) =$
(A) $\frac{8}{3}\pi$ (B) $\frac{7}{3}\pi$

(B)
$$\frac{7}{3}\pi$$

(C)
$$\frac{6}{3}\pi$$

(D)
$$\frac{5}{3}\pi$$

答案 A.

由柱坐标变换可得 解析

$$F(t) = \iiint_{\Omega} z^2 + f(x^2 + y^2) \, dx \, dy \, dz = \int_0^1 \int_0^{2\pi} \int_0^t \left[z^2 + f(x^2 + y^2) \right] r \, dr \, d\theta \, dz$$
$$= 2\pi \int_0^t \left[\frac{1}{3} + f(r^2) \right] r \, dr = 2\pi \cdot \left[\frac{1}{6} t^2 + \frac{1}{2} \int_0^{t^2} f(u) \, du \right] = \frac{\pi}{3} t^2 + \pi \int_0^{t^2} f(u) \, du$$

于是由变限积分求导公式可得 $F'(t) = \frac{2\pi}{3}t + 2\pi t f(t^2) \Rightarrow F'(1) = \frac{2\pi}{3} + 2\pi f(1) = \frac{8}{3}\pi$.

例 4-4(2013-2014-2-期末-选择题-9)

设函数 f 连续, $F(u,v)=\iint\limits_{D_{uv}} \frac{f\left(x^2+y^2\right)}{\sqrt{x^2+y^2}}\,\mathrm{d}x\,\mathrm{d}y$,其中 D_{uv} 为图中阴影部分,则 $\frac{\partial F}{\partial u}=$ (A)

(B)
$$\frac{v}{u}f(u)$$

(C)
$$vf(u^2)$$

(C)
$$vf(u^2)$$
 (D) $\frac{v}{u}f(u^2)$

答案 A.

解析 由极坐标,得 $\begin{cases} 1 \leqslant r \leqslant u \\ 0 < 0 < r \end{cases}$,故

$$F\left(u,v\right) = \iint\limits_{D_{uv}} \frac{f\left(x^2 + y^2\right)}{\sqrt{x^2 + y^2}} \,\mathrm{d}\,x\,\mathrm{d}\,y = \int_0^v \mathrm{d}\,\theta \int_1^u \frac{f\left(r^2\right)}{r} r\,\mathrm{d}\,r = v \int_1^u f\left(r^2\right) \,\mathrm{d}\,r$$

由变限积分求导公式得 $\frac{\partial F}{\partial u} = vf(u^2)$.

例 4-5 (2010-2011-2-期末-解答题-15)

设闭区域 $D: x^2 + y^2 \leq y, x \geq 0, f(x,y)$ 为 D 上的连续函数,且 $f(x,y) = \sqrt{1 - x^2 - y^2} - \frac{8}{\pi} \iint_D f(u,v) \, \mathrm{d} v \, \mathrm{d} u$,求 f(x,y).

答案
$$\sqrt{1-x^2-y^2}-\frac{2}{3}+\frac{8}{9\pi}$$
.

解析 令 $A = \iint_D f(u,v) \, \mathrm{d} u \, \mathrm{d} v$,则 $f(x,y) = \sqrt{1-x^2-y^2} - \frac{8}{\pi} A$,在 D 上对上式两边积分,有

$$\iint_{D} f(x,y) \, \mathrm{d} x \, \mathrm{d} y = \iint_{D} \sqrt{1 - x^{2} - y^{2}} \, \mathrm{d} x \, \mathrm{d} y - \frac{8}{\pi} A \iint_{D} \mathrm{d} x \, \mathrm{d} y$$

$$= \int_{0}^{\frac{\pi}{2}} \mathrm{d} \theta \int_{0}^{\sin \theta} \sqrt{1 - r^{2}} r \, \mathrm{d} r - \frac{8}{\pi} A \frac{\pi}{8} = -\frac{1}{3} \int_{0}^{\frac{\pi}{2}} \left(\cos^{3} \theta - 1 \right) \mathrm{d} \theta - A = \frac{\pi}{6} - \frac{2}{9} - A$$

即
$$A = \frac{\pi}{6} - \frac{2}{9} - A$$
,解得 $A = \frac{\pi}{12} - \frac{1}{9}$,从而 $f(x,y) = \sqrt{1 - x^2 - y^2} - \frac{2}{3} + \frac{8}{9\pi}$.

例 4-6 (2014-2015-2-期末-证明题-17)

设 f(x) 在 [a,b] 上连续,利用二重积分,证明: $\left(\int_a^b f(x) \, \mathrm{d}x\right)^2 \leqslant (b-a) \int_a^b f^2(x) \, \mathrm{d}x, \text{ 其中}$ $D: a \leqslant x \leqslant b, a \leqslant y \leqslant b.$

2013-2014-2-期末-证明题-18 2010-2011-2-期末-证明题-18

答案 见解析.

解析 显然 $[f(x) - f(y)]^2 0$,从而

$$0 \leqslant \int_{a}^{b} dx \int_{a}^{b} \left[f(x) - f(y) \right]^{2} dy = \int_{a}^{b} dx \int_{a}^{b} \left[f^{2}(x) - 2f(x) f(y) + f^{2}(y) \right]$$
$$= 2(b - a) \int_{a}^{b} f^{2}(x) dx - 2 \left[\int_{a}^{b} f(x) dx \right]^{2}$$

移项即得证.

例 4-7 (2014-2015-2-期末-解答题-18)

设 f(u) 具有连续的导函数,且 $\lim_{u\to +\infty} f'(u) = A, D = \{(x,y)|x^2+y^2\leqslant R^2, x\geqslant 0, y\geqslant 0\}, (R>0).$ (1) 求 $I_R=\iint_{\mathbb{R}} f'\left(x^2+y^2\right)\mathrm{d}x\mathrm{d}y;$ (2) $\lim_{R\to +\infty} \frac{I_R}{R^2}.$

答案 (1)
$$\frac{\pi}{4} [f(R^2) - f(0)];$$
 (2) $\frac{\pi}{4} A_{\circ}$

解析 (1) 极坐标变换,得

$$I_{R} = \iint_{D} f'(x^{2} + y^{2}) dx dy = \int_{0}^{\frac{\pi}{2}} \int_{0}^{R} f'(r^{2}) r dr d\theta = \frac{\pi}{4} f(r^{2}) \Big|_{0}^{R} = \frac{\pi}{4} [f(R^{2}) - f(0)].$$

(2) 由 (1) 中结果,结合洛必达法则知

$$\lim_{R\rightarrow+\infty}\frac{I_{R}}{R^{2}}=\frac{\pi}{4}\lim_{R\rightarrow+\infty}\frac{f\left(R^{2}\right)-f\left(0\right)}{R^{2}}=\frac{\pi}{4}\lim_{u\rightarrow\infty}\frac{f\left(u\right)-f\left(0\right)}{u}=\frac{\pi}{4}\lim_{u\rightarrow\infty}f'\left(u\right)=\frac{\pi}{4}A.$$

第九章

曲线积分与曲面积分

」题型一 第一类曲线积分

例 1-1 (2012-2013-2-期末-填空题-3)

设曲线 L 是椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,其周长为 a,则 $\oint_L (3xy^3 + 3x^2 + 4y^2) \, \mathrm{d} \, s = \underline{\qquad 12a \qquad}$.

答案 12a.

环积分满足在曲线 L 上恒有 $3x^2 + 4y^2 = 12$,且 xy^3 关于 y 奇对称,于是 解析

$$\oint_L (3xy^3 + 3x^2 + 4y^2) ds = 3 \oint_L xy^3 ds + \oint_L (3x^2 + 4y^2) ds = 3 \oint_L xy^3 ds + 12a = 12a.$$

例 1-2 (2013-2014-2-期末-选择题-9)

设 L 是抛物线 $y=x^2$ 上点 $O\left(0,0\right)$ 与点 $B\left(1,1\right)$ 的一段弧,则 $\int_{T}\sqrt{y}\,\mathrm{d}\,s=$

(A)
$$\frac{1}{12} \left(5\sqrt{5} - 1 \right)$$

(B)
$$\frac{1}{12} \left(5\sqrt{5} - 2 \right)$$

(C)
$$\frac{1}{12} \left(5\sqrt{5} - 3 \right)$$

(A)
$$\frac{1}{12} \left(5\sqrt{5} - 1 \right)$$
 (B) $\frac{1}{12} \left(5\sqrt{5} - 2 \right)$ (C) $\frac{1}{12} \left(5\sqrt{5} - 3 \right)$ (D) $\frac{1}{12} \left(5\sqrt{5} - 4 \right)$

答案 A.

解析 先画图,便于理解. $y=x^2\Rightarrow x=\sqrt{y}$, $\mathrm{d}\, s=\sqrt{1+\left(\frac{\mathrm{d}\, y}{\mathrm{d}\, x}\right)^2}\,\mathrm{d}\, x=\sqrt{1+4x^2}\,\mathrm{d}\, x$ 则原式 = $\int_{0}^{1} x\sqrt{1+4x^2} \, dx = \frac{1}{8} \int_{0}^{1} \sqrt{1+4x^2} \, d(1+4x^2) = \frac{1}{8} \times \frac{2}{3} (1+4x^2)^{\frac{3}{2}} \Big|_{0}^{1} = \frac{1}{12} (5\sqrt{5}-1).$

第二类曲线积分

例 2-1 (2012-2013-2-期末-证明题-18)

设 L 为光滑弧段, 其弧长为 l, 函数 P(x,y,z), Q(x,y,z), R(x,y,z) 在曲线 L 上连续, 证明:

$$\left| \int_{L} P \, \mathrm{d} \, x + Q \, \mathrm{d} \, y + R \, \mathrm{d} \, z \right| \leqslant lM$$

其中 $M = \max_{(x,y,z) \in L} \sqrt{P^2 + Q^2 + R^2}$.

答案 见解析.

解析 设光滑弧段 L 在任意点处的方向余弦为 $\cos \alpha, \cos \beta, \cos \gamma$

则 $dx = \cos \alpha ds$, $dy = \cos \beta ds$, $dz = \cos \gamma ds$, 且 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$, 于是

$$\begin{split} &\int_L P \, \mathrm{d}\, x + Q \, \mathrm{d}\, y + R \, \mathrm{d}\, z = \int_L \left(P \cos \alpha + Q \cos \beta + R \cos \gamma \right) \mathrm{d}\, s \\ &= \int_L \left(P, Q, R \right) \cdot \left(\cos \alpha, \cos \beta, \cos \lambda \right) \mathrm{d}\, s = \int_L \sqrt{P^2 + Q^2 + R^2} \sqrt{\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma} \cos \theta \, \mathrm{d}\, s \\ &= \int_L \sqrt{P^2 + Q^2 + R^2} \cos \theta \, \mathrm{d}\, s \end{split}$$

其中 θ 为向量 (P,Q,R) 与 $(\cos\alpha,\cos\beta,\cos\gamma)$ 的夹角, 故

$$\left| \int_{L} P \, \mathrm{d} \, x + Q \, \mathrm{d} \, y + R \, \mathrm{d} \, z \right| = \left| \int_{L} \sqrt{P^2 + Q^2 + R^2} \cos \theta \, \mathrm{d} \, s \right| \leqslant \int_{L} \sqrt{P^2 + Q^2 + R^2} \left| \cos \theta \right| \, \mathrm{d} \, s$$

$$\leqslant M \int_{L} \mathrm{d} \, s = l M.$$

例 2-2 (2013-2014-2-期末-选择题-10)

设
$$L$$
 是抛物线 $y^2=x$ 上从点 $A(1,-1)$ 到点 $B(1,1)$ 的一段弧,则 $\int_L xy\,\mathrm{d}\,x=$ (D) (A) $\frac{1}{5}$ (B) $\frac{2}{5}$ (C) $\frac{3}{5}$ (D) $\frac{4}{5}$

答案 D.

解析 先画图,便于理解.

$$\int_{L} xy \, \mathrm{d} x = \int_{1}^{0} -x\sqrt{x} \, \mathrm{d} x + \int_{0}^{1} x\sqrt{x} \, \mathrm{d} x = 2 \int_{0}^{1} x\sqrt{x} \, \mathrm{d} x = \frac{4}{5}.$$

例 2-3 (2013-2014-2-期末-解答题-15)

计算曲线积分
$$\int_{(1,2)}^{(3,4)} (6xy^2 - y^3) dx + (6x^2y - 3xy^2) dy$$
.

答案 见解析

解析
$$P=6xy^2-y^3, Q=6x^2y-3xy^2$$
 则 $\frac{\partial P}{\partial y}=12xy-2y^2, \frac{\partial P}{\partial x}=12xy-2y^2$, 二式相等. 所以曲线积分与路径无关,则可以通过线段路径: $A(1,2)\to C(3,2)\to B(3,4)$, 由 A 点到 C 点, $y=2$, d $y=0$. 原积分一部分 = $\int_1^3 \left(6x\cdot 2^2-2^3\right)\mathrm{d}x=80$ 由 C 点到 B 点, $x=3$, d $x=0$. 原积分另一部分 $\int_2^4 \left(6\cdot 3^2y-3\cdot 3y^2\right)\mathrm{d}y=156$ 则原式 = $80+156=236$.

例 2-4 (2015-2016-2-期末模拟-选择题-7)

设 P(x,y) , Q(x,y) 在单连通域 G 内具有一阶连续导数, P(x,y) d x+Q(x,y) d y 在 G 内为某一函数 U(x,y) 的全微分,计算 U(x,y) 的公式是

(A)
$$U(x,y) = \int_{x_0}^{x} P(x,y_0) dx + \int_{y_0}^{y} Q(x_0,y) dy$$

(B)
$$U(x,y) = \int_{x_0}^{x} Q(x,y_0) dx + \int_{y_0}^{y} P(x_0,y) dy$$

(C)
$$U(x,y) = \int_{x_0}^{x_0} P(x,y) dx + \int_{y_0}^{y_0} Q(x_0,y) dx$$

(D)
$$U(x,y) = \int_{x_0}^{x} P(x,y) dx + \int_{y_0}^{y} Q(x,y) dy$$

答案 C.

解析 沿 $(x_0, y_0) \to (x_0, y) \to (x, y)$ 路径积分.

例 2-5 (2016-2017-2-期末模拟-计算题-20)

设 L 是平面 x+y+z=2 与柱面 |x|+|y|=1 的交线,从 z 轴正向看过去,L 为逆时针方向,计算

$$I = \oint_L (y^2 - z^2) dx + (2z^2 - x^2) dy + (3x^2 - y^2) dz.$$

答案 见解析.

解析 设交线所围成的曲面为 Σ ,则 Σ : {(x,y,z) | x+y+z=2, | x| + | y| = 1},取其单位法向量为

$$\overrightarrow{n} = \frac{1}{\sqrt{1 + \left(\frac{\partial \varphi}{\partial x}\right)^2 + \left(\frac{\partial \varphi}{\partial y}\right)^2}} \left(-\frac{\partial \varphi}{\partial x}, -\frac{\partial \varphi}{\partial y}, 1\right) = (\cos \alpha, \cos \beta, \cos \gamma)$$

其中 $x = \varphi(y, z), y = \varphi(z, x), z = \varphi(x, y)$. 由 Stokes 公式,有

$$I = \iint\limits_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 - z^2 & 2z^2 - x^2 & 3x^2 - y^2 \end{vmatrix} ds - \frac{2}{\sqrt{3}} \iint\limits_{\Sigma} (4x + 2y + 3z) dS = -24.$$

例 2-6 (2012-2013-2-期中-解答题-21)

设 f(x,y) 在单位圆域上有连续偏导数,且在边界上取值为零,证明:

$$\lim_{\delta \to 0^+} \frac{-1}{2\pi} \iint_{\mathcal{D}} \frac{x f_x + y f_y}{x^2 + y^2} \, \mathrm{d} \, x \, \mathrm{d} \, y = f(0, 0)$$

其中 D 为圆环域 $\delta^2 \leq x^2 + y^2 \leq 1$.

答案 见解析.

解析 首先将被积函数恒等变形可得

$$\iint_{D} \frac{xf_{x} + yf_{y}}{x^{2} + y^{2}} dx dy$$

$$= \iint_{D} \left[\frac{\partial}{\partial x} \left(\frac{x}{x^{2} + y^{2}} f \right) + \frac{\partial}{\partial y} \left(\frac{y}{x^{2} + y^{2}} f \right) \right] dx dy - \iint_{D} \left[\frac{\partial}{\partial x} \left(\frac{x}{x^{2} + y^{2}} \right) + \frac{\partial}{\partial y} \left(\frac{y}{x^{2} + y^{2}} \right) \right] f(x, y) dx dy$$

$$= \iint_{D} \left(\frac{\partial}{\partial x} \left(\frac{x}{x^{2} + y^{2}} f \right) + \frac{\partial}{\partial y} \left(\frac{y}{x^{2} + y^{2}} f \right) \right) dx dy = I$$

注意到在 $x^2 + y^2 = 1$ 上 f(x,y) 函数值为零,故利用格林公式以及积分中值定理可得,

$$I_{1} = \oint_{x^{2}+y^{2}=1} \frac{x}{x^{2}+y^{2}} f(x,y) dy - \frac{y}{x^{2}+y^{2}} f(x,y) dx - \oint_{x^{2}+y^{2}=\delta^{2}} \frac{x}{x^{2}+y^{2}} f(x,y) dy - \frac{y}{x^{2}+y^{2}} f(x,y) dx$$

$$= 0 - \frac{1}{\delta^{2}} \oint_{x^{2}+y^{2}=\delta^{2}} x f(x,y) dy - y f(x,y) dx = -\frac{1}{\delta^{2}} \iint_{x^{2}+y^{2}\leq\delta^{2}} \left[(f+xf_{x}) + (f+yf_{y}) \right] dx dy$$

$$= -\pi \left[2f(\xi,\eta) + 3f_{x}(\xi,\eta) + \eta f_{y}(\xi,\eta) \right]$$

其中 $\xi^{2} + \eta^{2} = 1$, 故原式 = $-\frac{1}{2\pi} \cdot (-2\pi) f(0,0) = f(0,0)$.

■ 题型三 第一类曲面积分

例 3-1 (2013-2014-2-期末-填空题-5)

设 Σ 是锥面 $z^2=3\left(x^2+y^2\right)$ 被平面 z=0 及 z=3 所截得的部分,则 $\iint\limits_{\Sigma}\left(x^2+y^2\right)\mathrm{d}s=$ ___9 π __

解析 $z^2=3\,(x^2+y^2)$,将 z=3 代入,在 xy 平面上的投影为 $x^2+y^2\leqslant 3$,由 d $S=\sqrt{1+z_x^2+z_y^2}$ d x d y=2 d x d y 知

原式 =
$$\iint_{x^2 + y^2 \le 3} 2(x^2 + y^2) dx dy = 2 \int_0^{2\pi} d\theta \int_0^{\sqrt{3}} \rho^2 d\rho = 9\pi.$$

例 3-2 (2015-2016-2-期末模拟-选择题-6)

下列对面积的曲面积分不为零的有 (D)

(A)
$$\iint_{x^2+y^2+z^2=1} x \cos x \, \mathrm{d} s$$

(B)
$$\iint_{\Sigma} y^3 \, ds$$
, 其中 Σ 是椭圆面 $\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1$ 位于第一和第四象限部分

(C)
$$\iint_{x^2+y^2+z^2=1} \frac{xy+yz+xz}{\sqrt{x^2+y^2+z^2}} \, ds$$

(D)
$$\iint_{x^2+y^2+z^2=1} (x^2+y^2+x+y) ds$$

答案 D.

解析 根据曲域是否对称及奇函数可知.

例 3-3 (2016-2017-2-期末模拟-选择题-13)

设曲面 Σ 是上半球面 : $x^2+y^2+z^2=R^2$ ($z\geqslant 0$),曲面 Σ_1 是曲面 Σ 在第一卦限的部分,下列结论正确的是

(A)
$$\iint\limits_{\Sigma} x \, \mathrm{d} \, s = 4 \iint\limits_{\Sigma_1} x \, \mathrm{d} \, s$$

(B)
$$\iint\limits_{\Sigma} y \, \mathrm{d} s = 4 \iint\limits_{\Sigma_1} y \, \mathrm{d} s$$

(C)
$$\iint_{\Sigma} z \, \mathrm{d} s = 4 \iint_{\Sigma_{\tau}} z \, \mathrm{d} s$$

(D)
$$\iint_{\Sigma} xyz \, \mathrm{d} s = 4 \iint_{\Sigma_1} xyz \, \mathrm{d} s$$

答案 C.

解析 对 A, 函数 x 关于 yOz 对称,所以 $\iint\limits_{\Sigma} x \, \mathrm{d} s = 0$ 对 B, 函数 y 关于 xOz 对称,所以 $\iint\limits_{\Sigma} y \, \mathrm{d} s = 0$ 同理对 D, $\iint\limits_{\Sigma} xyz \, \mathrm{d} s = 0$.

例 3-4 (2013-2014-2-期末-填空题-4)

答案 $\frac{1+\sqrt{2}}{2}\pi$.

解析 Σ 是锥面的整个表面,补曲面 Σ_2 : $z=1, x^2+y^2=1$,在 Σ_2 上,d $s=\sqrt{1+z_x^2+z_y^2}$ d x d $y=\sqrt{2}$ d x d y, Σ_1 在 xOy 面的投影 D_{xy} : $x^2+y^2\leqslant 1$; 在 Σ_2 上,d s=1 d x d y,于是

$$\iint_{\Sigma} (x^2 + y^2) \, \mathrm{d} \, s = \iint_{D_{xy}} (x^2 + y^2) \sqrt{2} \, \mathrm{d} \, x \, \mathrm{d} \, y + \iint_{\Sigma_2} (x^2 + y^2) \, \mathrm{d} \, s = \left(\sqrt{2} + 1\right) \int_0^{2\pi} \mathrm{d} \, \theta \int_0^1 r^2 \cdot r \, \mathrm{d} \, r$$

$$= \left(\sqrt{2} + 1\right) \cdot 2\pi \cdot \frac{1}{4} r^4 \Big|_0^1 = \frac{1 + \sqrt{2}}{2} \pi.$$

■ 题型四 第二类曲面积分

例 4-1 (2012-2013-2-期末-解答题-13)

计算

$$I = \iint\limits_{\Sigma} (x + z^2) \, \mathrm{d} y \, \mathrm{d} z + z \, \mathrm{d} x \, \mathrm{d} y$$

其中 Σ 是旋转抛物面 $z=\frac{1}{2}(x^2+y^2)$ 介于 z=0 与 z=2 之间的部分的下侧.

答案 见解析.

解析 作辅助曲面 $\Sigma': z=2, x^2+y^2 \leq 4$,并取上侧. 记 $D: x^2+y^2 \leq 4$,则

$$\begin{split} I &= \oiint_{\Sigma} + \Sigma' \left(x + z^2 \right) \operatorname{d} y \operatorname{d} z + z \operatorname{d} x \operatorname{d} y - \oiint_{\Sigma'} \left(x + z^2 \right) \operatorname{d} y \operatorname{d} z + z \operatorname{d} x \operatorname{d} y \\ &= \oiint_{\Omega} 2 \operatorname{d} x \operatorname{d} y \operatorname{d} z - \oiint_{D} 2 \operatorname{d} x \operatorname{d} y = 2 \int_{0}^{2\pi} \operatorname{d} \theta \int_{0}^{2} r \operatorname{d} r \int_{\frac{1}{2}r^2}^{2} \operatorname{d} z - 8\pi \\ &= 8\pi - 8\pi = 0. \end{split}$$

例 4-2 (2013-2014-2-期末-解答题-13)

计算 $I = \iint_{\Sigma} (z\cos\gamma + y\cos\beta + x\cos\alpha) \,\mathrm{d}\,s$, 其中 Σ 是球面 $2z = x^2 + y^2 + z^2$, $\cos\alpha$, $\cos\beta$, $\cos\gamma$ 是 Σ 上点的外法向量的方向余弦.

答案 见解析.

解析 可以直接利用 Guass 公式: $\iint\limits_{\Omega} (1+1+1) dv = 3 \iint\limits_{\Omega} dv = 3 \times \frac{4}{3} \pi \times 1^3 = 4\pi.$

例 4-3 (2015-2016-2-期末模拟-填空题-5)

已知
$$\Sigma$$
 为球面 $x^2+y^2+z^2=1$ 的外侧,试计算 $\iint_{\Sigma} \frac{\mathrm{d}\,y\,\mathrm{d}\,z}{x} + \frac{\mathrm{d}\,z\,\mathrm{d}\,x}{y} + \frac{\mathrm{d}\,x\,\mathrm{d}\,y}{z} = \underline{\qquad 12\pi\qquad}$.

答案 12π.

解析 由对称性得,原式 = 3
$$\iint_{\Sigma} \frac{1}{z} dx dy = 6 \int_{0}^{2\pi} d\theta \int_{0}^{1} \frac{\rho}{\sqrt{1-\rho^{2}}} d\rho = 12\pi.$$

例 4-4 (2015-2016-2-期末模拟-计算题-六)

(1) 设 Σ 为下半球面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧,计算

$$\iint \frac{ax \, \mathrm{d} y \, \mathrm{d} z + (z+a)^2 \, \mathrm{d} x \, \mathrm{d} y}{(x^2 + y^2 + z^2)^{\frac{1}{2}}}, a > 0.$$

(2) 计算曲线积分

$$I = \oint_C (z - y) \, dx + (x - z) \, dy + (x - y) \, dz$$

其中
$$C:$$

$$\begin{cases} x^2+y^2=1\\ x-y+z=2 \end{cases}$$
 ,从 z 轴正向往负方向看是顺时针.

答案 见解析.

解析 (1) 补平面 Σ_1 : $z=0, x^2+y^2 \leqslant a^2$,取其下侧构成封闭曲面,由高斯公式得

$$I = \iint\limits_{\Sigma + \Sigma_1} \frac{ax \, \mathrm{d} \, y \, \mathrm{d} \, z + (z+a)^2 \, \mathrm{d} \, x \, \mathrm{d} \, y}{(x^2 + y^2 + z^2)^{\frac{1}{2}}} - \iint\limits_{\Sigma_1} \frac{ax \, \mathrm{d} \, y \, \mathrm{d} \, z + (z+a)^2 \, \mathrm{d} \, x \, \mathrm{d} \, y}{(x^2 + y^2 + z^2)^{\frac{1}{2}}}$$

其中
$$\iint_{\Sigma+\Sigma_1} \frac{ax \, \mathrm{d} y \, \mathrm{d} z + (z+a)^2 \, \mathrm{d} x \, \mathrm{d} y}{(x^2+y^2+z^2)^{\frac{1}{2}}} = -\frac{1}{a} \iint_{\Omega} (3a+2z) \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z$$

$$= -\frac{1}{a} \int_{0}^{2\pi} \mathrm{d} \theta \int_{\frac{\pi}{2}}^{\pi} \mathrm{d} \varphi \int_{0}^{a} (3a+2r\cos\varphi) \, r^2 \sin\varphi \, \mathrm{d} r = -\frac{3\pi}{2} a^3$$

$$\iint_{\Sigma_1} \frac{ax \, \mathrm{d} y \, \mathrm{d} z + (z+a)^2 \, \mathrm{d} x \, \mathrm{d} y}{(x^2+y^2+z^2)^{\frac{1}{2}}} = -\frac{1}{a} \iint_{\Sigma_1} a^2 \, \mathrm{d} x \, \mathrm{d} y = -a \cdot \pi a^2 = -\pi a^3$$

$$\exists E I = -\frac{3\pi}{2} a^3 + \pi a^3 = -\frac{\pi}{2} a^3. \quad (2) \ x = \cos\theta, y = \sin\theta, z = 2 - \cos\theta + \sin\theta,$$

$$\therefore I = -\int_{0}^{2\pi} \left[(2-\cos\theta) \cdot (-\sin\theta) + (2\cos\theta - 2-\sin\theta) \cdot \cos\theta + (\cos\theta - \sin\theta) \cdot (\sin\theta + \cos\theta) \right] \, \mathrm{d} \theta$$

$$= -\int_{0}^{2\pi} \left(\sin\theta \cos\theta - 2\sin\theta + 2\cos^2\theta - 2\cos\theta - \sin\theta \cos\theta + \cos^2\theta - \sin^2\theta \right) \, \mathrm{d} \theta$$

$$= -\int_{0}^{2\pi} \left(3\cos^2\theta - \sin^2\theta - 2\sin\theta - 2\cos\theta \right) \, \mathrm{d} \theta = -2\pi.$$

例 4-5 (2013-2014-2-期末-计算题-14)

计算 $I = \iint_{\Sigma} (2x+z) \, \mathrm{d} y \, \mathrm{d} z + z \, \mathrm{d} x \, \mathrm{d} y$, 其中 Σ 为有向曲面 $z = x^2 + y^2 \, (0 \leqslant z \leqslant 1)$, 其法向量与 z 轴正向的夹角为锐角.

答案 见解析. 解析: 利用矢量投影法,由已知 $z'_x = 2x, z'_y = 2y$, 于是

$$\begin{split} I &= \iint\limits_{\Sigma} \left(2x + z \right) \mathrm{d}\, y \, \mathrm{d}\, z + z \, \mathrm{d}\, x \, \mathrm{d}\, y = \iint\limits_{\Sigma} \left[\left(2x + z \right) \cdot \left(-z'_x \right) + z \right] \mathrm{d}\, x \, \mathrm{d}\, y \\ &= \iint\limits_{\Sigma} \left(-4x^2 - 2xz + z \right) \mathrm{d}\, x \, \mathrm{d}\, y = \iint\limits_{\Sigma} \left[-4x^2 - 2x \left(x^2 + y^2 \right) + x^2 + y^2 \right] \mathrm{d}\, x \, \mathrm{d}\, y \\ &= \int_0^{2\pi} \mathrm{d}\, \theta \int_0^1 \left(-4r^2 \mathrm{cos}^2 \theta - 2r^3 \, \mathrm{cos}\, \theta + r^2 \right) r \, \mathrm{d}\, r \\ &= -\frac{\pi}{2}. \end{split}$$

解析

例 4-6 (2014-2015-2-期末-计算题-16)

计算 $I = \iint_{\Sigma} 2(1-x^2) \,\mathrm{d}y \,\mathrm{d}z + 8xy \,\mathrm{d}z \,\mathrm{d}x - 4xz \,\mathrm{d}x \,\mathrm{d}y$, 其中 Σ 是由 xOy 面上的弧段 $x = \mathrm{e}^y \,(0 \leqslant y \leqslant a)$ 绕 x 轴旋转所成旋转曲面, Σ 的法向量与 x 轴正向夹角大于 $\frac{\pi}{2}$.

答案 $2\pi a^2 (e^{2a} - 1)$.

解析 画图,补面
$$\Sigma'$$
 :
$$\begin{cases} x=\mathrm{e}^a \\ y^2+z^2=a^2 \end{cases}$$
 ,方向为 x 轴正向,于是由 Gauss 公式得

$$\begin{split} I &= \iint\limits_{\Sigma + \Sigma'} 2 \left(1 - x^2 \right) \, \mathrm{d} \, y \, \mathrm{d} \, z + 8 x y \, \mathrm{d} \, z \, \mathrm{d} \, x - 4 x z \, \mathrm{d} \, x \, \mathrm{d} \, y - \iint\limits_{\Sigma'} 2 \left(1 - x^2 \right) \, \mathrm{d} \, y \, \mathrm{d} \, z + 8 x y \, \mathrm{d} \, z \, \mathrm{d} \, x - 4 x z \, \mathrm{d} \, x \, \mathrm{d} \, y \\ &= \iiint\limits_{\Omega} \left(-4 x + 8 x - 4 x \right) \, \mathrm{d} \, x \, \mathrm{d} \, y \, \mathrm{d} \, z - \iint\limits_{\Sigma'} 2 \left(1 - \mathrm{e}^{2 a} \right) \, \mathrm{d} \, y \, \mathrm{d} \, z \\ &= 0 - \iint\limits_{\Sigma'} 2 \left(1 - \mathrm{e}^{2 a} \right) \, \mathrm{d} \, y \, \mathrm{d} \, z \\ &= 2 \left(\mathrm{e}^{2 a} - 1 \right) \cdot \pi a^2. \end{split}$$

第十章

常微分方程

综合题二

例 1-1 (2014-2015-1-期末-证明题-18)

设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且满足 $f(1)=5\int_0^{\frac{1}{5}}x\mathrm{e}^{1-x}f(x)dx$,证明: 至少存在一点 $\xi\in(0,1)$,使得 $f'(\xi)=(1-\xi^{-1})f(\xi)$.

答案 见解析.

解析 构造函数 $g(x) = xe^{1-x}f(x)$,由积分第一中值定理可知

$$\exists \eta \in \left(0, \frac{1}{5}\right), \ f(1) = g(1) = 5 \int_{0}^{\frac{1}{5}} g(\eta) \, dx = g(\eta)$$

从而由罗尔定理可知 $\exists \xi \in (\eta, 1) \subset (0, 1), \ g'(\xi) = e^{1-\xi} (1-\xi) f(\xi) + \xi e^{1-\xi} f'(\xi) = 0$ 从而 $\exists \xi \in (0, 1), \ f'(\xi) = (1-\xi^{-1}) f(\xi).$

例 2-1 (2013-2014-1-期末-解答题-17)

设 f(x) 连续,且 $\lim_{z\to 0} \frac{f(x)-4}{x} = 1$, 试求常数 k 使得 g(x) 在 x=0 处连续,其中 $g(x) = \begin{cases} \frac{1}{x\ln{(1+x)}} \int_0^x tf\left(t^2-x^2\right) \mathrm{d}t, & x\neq 0\\ k, & x=0 \end{cases}$

答案 见解析.

解析 已知 f(x) 连续, $\lim_{z\to 0} \frac{f(x)-4}{x}=1$,由极限四则运算法则可知

$$f(0) = \lim_{z \to 0} f(x) = \lim_{z \to 0} \left[\frac{f(x) - 4}{x} \cdot x + 4 \right] = \lim_{z \to 0} \frac{f(x) - 4}{x} \cdot \lim_{z \to 0} x + 4 = 4$$

及

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x) - 4}{x} = 1$$

从而

$$\begin{split} &\lim_{z \to 0} g\left(x\right) = \lim_{z \to 0} \frac{1}{x \ln\left(1+x\right)} \int_{0}^{x} t f\left(t^{2}-x^{2}\right) \, \mathrm{d}\,t = \lim_{z \to 0} \frac{1}{x \ln\left(1+x\right)} \cdot \frac{1}{2} \int_{0}^{x} f\left(t^{2}-x^{2}\right) \, \mathrm{d}\,\left(t^{2}-x^{2}\right) \\ &= \lim_{z \to 0} \frac{1}{x \ln\left(1+x\right)} \cdot \frac{1}{2} \int_{-x^{2}}^{0} f\left(u\right) \, \mathrm{d}\,u = \frac{1}{2} \lim_{z \to 0} \frac{1}{\left[x \ln\left(1+x\right)\right]'} \cdot \frac{\mathrm{d}}{\mathrm{d}\,x} \int_{-x^{2}}^{0} f\left(u\right) \, \mathrm{d}\,u \\ &= \frac{1}{2} \lim_{z \to 0} \frac{2x f\left(-x^{2}\right)}{\ln\left(1+x\right) + \frac{x}{1+x}} = \lim_{z \to 0} \frac{f\left(-x^{2}\right)}{\frac{\ln\left(1+x\right)}{x} + \frac{1}{1+x}} \\ &= \frac{\lim_{z \to 0} f\left(-x^{2}\right)}{\lim_{z \to 0} \frac{\ln\left(1+x\right)}{x} + \lim_{z \to 0} \frac{1}{1+x}} = \frac{f\left(0\right)}{1+1} = 2 \end{split}$$

于是
$$g(x)$$
 连续 $\Leftrightarrow k = g(0) = \lim_{z \to 0} g(x) = 2$.

附录

目	第一章 谈谈本科阶段的数学课程——从高等数学说起 143
	第二章 谈单变量微积分里几个基本的概念150
录	第三章 高等数学常用公式表156

第一章

谈谈本科阶段的数学课程——从高等数学说起

文/似雪飞扬 Lancy

第一节引言

若人们不相信数学简单,只因他们未意识到生命之复杂。

——约翰·冯·诺依曼

不少大学新生(包括笔者当初)在初次接触高等数学课程时常常感到难以接受,对课程里的数学概念和学习方法感到困惑。本文旨在指出一些观念上的错误,并同读者探讨本科(低年级阶段的)数学课程究竟应当如何学习。

第二节 高等数学是什么以及怎么学

让我们从高等数学说起。注意,本文的"高等数学"特指微积分。

第一个问题:"高等数学"是什么,它同我们在高中时期学习的数学有什么联系吗?

首先应当指明的一点是,尽管高等数学与初等数学^① 有许多交叉之处,但绝不能认为"高等数学是建立在高中数学基础之上的",这个观点与"学好高等数学需要非常好的高中数学基础"一样,都是错误的观点。

事实上,经过严谨的公理化定义的微积分不仅不是建立在高中数学基础之上的,甚至看起来同初等数学的联系也并不是特别大。相反,要想理解高等数学,几乎是要求学生重新建立一种观念,严格区分开"常量"和"变量"——而这一点并不是作为高中数学的重点,这恰好是许多人高中数学能考到 130 甚至 140,却在刚开始学习微积分的时候感到十分吃力,甚至难以理解概念的原因。

正基于此,笔者认为,对大学新生大谈特谈微积分里各式各样的概念、定理及公式,是没有太大意义的。正如你不可能同一个钢铁直男解释清楚口红的色号一样,即使是妙笔生花的科普作家也难以对门外汉说清微积分的全部细节——有些东西站在门外是看不见的,只有走进房间你才能发现这里陈列着丰富而又美丽的展品^②。

①主要包括经典代数与几何,以及近代数学初步。具体地说,从小学时学习的四则运算,到高中时接触的简单的集合论知识和微积分概念,都属于初等数学的范畴。数学在 17 世纪之后经历了数以百年计的思想上的大解放,实现了从初等数学到高等数学、从常量数学到变量数学的大跨越。

②语出《微积分的历程: 从牛顿到勒贝格》

但这并不妨碍学长学姐们传授自己学习数学的经验。事实上,尽管学好微积分是不太容易的,但"考好"高等数学这门课程却轻松很多。以笔者本人为例,高中时我数学成绩平平,高考也没有过 120分,但在大一学习高等数学时紧抠课本上的定义和概念解释,入门反而比大多数其他同学都要快,在阶段测试以及期中、期末考试里也发挥良好。因此,诸君大可不必因为自己过往的数学成绩不够好而对高等数学抱有恐惧心里,更不能因为在高中取得了优秀的数学成绩而轻视这门课程。

第二个问题: 学习高等数学应当如何入门? 对教材和辅导书有什么要求吗?

我们先来谈谈教材。高等教育不同于义务教育的一点是,在大部分课程上,各个大学都是使用自己编写的教材。而由于高等数学是本科阶段非常重要的一门通识课,我校也组织了一些优秀的数学教师,自己编写了一套教材,如图 1-1 所示。笔者曾有幸聆听过其中两位编者——苏永美老师与胡志兴老师的课程,深深体会到以这两位老师的教学水平,本校教材是绝不会比同济版本的高等数学乃至其他学校的微积分教材差的。在后来考研复习的过程中,笔者比对了同济 7 版高数和本校的课本,也印证了这一点。因此如果只是为了掌握高等数学这门课程的话,学弟学妹们大可不必再去寻找其他教材了。

图 1-1 北京科技大学胡志兴等编. 高等数学 (第二版), 高等教育出版社.

再来说说如何入门。我们借一个例子来指出一些概念和知识上的错误, 如图 1-2 所示, 事实上, 这

图 1-2 一张错误的高等数学知识结构图.

张图不仅在内容上没有说清高等数学的梗概^①,甚至在正确性上也令人怀疑。例如,极限是微积分的基础,用一个箭头从导数的应用指向极限,而这个箭头上标注着洛必达法则是合适的吗^②?再如,导数与

^①应当包括一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数以及常微分方程七大板块,图中只提及了三个板块。

^②作者的本意可能是指可以利用洛必达法则来计算函数的极限,但这仅仅是高等数学里一个非常细节性的知识点,把它放在概括高等数学全

不定积分互为逆运算,为何没有用双向箭头连接?不是所有的定积分都可以通过不定积分计算(有的被积函数并不存在原函数,却是可积的),那么凭什么用一个箭头从不定积分指向定积分呢?这些问题尽管细节,却正说明这张图的作者并没有深入理解微积分这门学科里的概念,而只是浅尝辄止,至多停留于"考好即可"的地步。读者若想真正学好这门课,就绝不能有这样的想法——至少,课本上没有打星号指明可读可不读的章节,一定要反复读,学完之后还要回过头来思考各章节之间的联系。这样的学习甚至可能需要持续到本科高年级阶段。笔者在考研复习时整理的高等数学知识点结构图之某部分(未完成)如图 1-3 所示。

图 1-3 笔者在考研复习时整理的高等数学知识点结构图之某部分(未完成).

说完了这门学科大体上应当如何学习,我们再来聊点具体的、同时也是大家最关注的,那就是具体到课上课下时应该怎么做。笔者的经验是: 高效的预习工作是每一轮学习中最重要的部分,课堂听讲抓住重点是必不可少的部分,课后及时的复习和总结是收获最大的部分。这样说是因为,高等数学这门课程抽象性比较强,概念多而且联系紧密、深刻而富有内涵,课程时间跨度大、强度大,课后练习题型丰富。尽管每年考试的题型大同小异,难度也很友好,但仍不能就此掉以轻心,而必须重视每一轮学习的每一个环节。

在课前预习部分,要做到了解下一堂课会提到哪些概念,这些概念同已经学过的部分有什么联系(例如,是从什么问题引出的,与之相关的命题是否能被前文所述的定理证明,等等);课堂上要重点关注两方面,一是老师是如何讲解自己在预习时尚未理解的部分,二是老师是如何解题的;课后复习要及时清完习题,以及再次阅读课本——对照老师在课堂上讲述的观点,以期加深理解、弥补不足。

在除教材以外的其他参考资料方面,学弟学妹们不必担心。自 2009 年自主编辑第一版《高等数学》、2013 年修订编辑第二版《高等数学》,乃至学生讲师团建立以来,校内的各类资料可以说是无比丰富了。 笔者自己使用过的纸质资料里,除物美复印店里可以找到的《高等数学练习册(2013 版)》,以及期中、 期末考试前讲师团发下的历年考试题外,还有其他一些学校的试卷,以及《吉米多维奇数学分析习题集 学习指引》(谢惠民)、《高等数学复习指导——思路、方法与技巧》(陈文灯)、《大学生数学竞赛习题精

讲》(陈兆斗)等等,至于电子版资料就更是数不胜数了,笔者使用过的部分电子版资料如图 1-4 所示。

[《高等数学》教材勘误].[高等教育出版社] ■ [北京科技大学高等数学&工科数学分析试题].[课程复习资料].[截至2015级] | [残缺的课件].[2013].[郑连存] [工科数学分析].「课件].[2015].[胡志兴] | [工科数学分析].[课件].[2015].[苏永美] [工科数学分析补充课件].[课件] [工科数学分析选讲].[课件].[2015].[胡志兴] | [全国大学生数学竞赛.北京科技大学校内选拔赛真题].[竞赛资料].[2009-2011] 📙 [全国大学生数学竞赛非数学类真题及参考答案].[竞赛资料].[第1-6届.2009-2014] [微积分课外资料].[参考资料] 各路筆记 🌹 2013-2014-2-数学分析II期中试卷及参考答案.pdf 2014-2015-1-高等数学AI 教学日历.xlsx 🌹 2015-2016-2-高等数学AII 教学日历.pdf ■ 北京科技大学2017-2018-2微积分AII教学日历1.ipg ■ 北京科技大学2017-2018-2微积分AII教学日历2.jpg □ 高等数学上册习题答案.pdf

图 1-4 笔者使用过的部分电子版资料.

总地来说,对于普通本科生而言,过于拔高习题的难度是没有太大意义的,但仅仅局限于课后习题也难以让学生深刻理解知识点(尽管我说的"深刻理解"可能不是读者以为的"深刻理解")。斟酌再三,笔者认为在课后习题保质保量完成,而课余时间仍然充足的前提下,适当地看一些课外书、了解一些竞赛知识、做一些竞赛题是可以的,而刷大量的历年考试题则是没有必要的。个中滋味、如何平衡就待诸君正式开始学习之后,自行体会吧!

第三节 学好高等数学有什么必要性以及帮助

第三个问题:学习高等数学的意义在于什么?对于今后的学习、工作乃至生活有什么帮助?

在谈论学习某一门学科的必要性之前,必须先了解这门学科的意义;而在了解其意义之后,"为什么要学习/不必学习这门课"也就不证自明了。

大而言之,冯·诺依曼在论述微积分时曾这样评价:"微积分是现代数学取得的最高成就,对它的重要性怎样估计也是不会过分的。"而今天,在微积分问世 300 余年之后,它依然值得被这样赞美——这不仅仅是因为其广泛而又重要的应用,更是由于人类在攀登这座高峰的历程中付出的艰辛努力,以及由此在思想史上写下的辉煌篇章。小而言之,今后几乎任何领域的研究工作的推进——从人工智能的训练模式到城市排水系统的改进,从航天器的设计到交通灯的安排……都要依靠、或者至少是借助数学工具,而微积分则是这些工具里最基础并且重要的之一。

以笔者自己学习专业课的经历为例,微积分工具乃至在大一大二其他课程里学习过的数学工具,在很多专业课里都有应用。例如,在经济学理论里经常要研究一些复杂的情况,这些情况通常被很多个因素影响。为了研究一种可变因素的数量变动会对其他可变因素的变动产生多大影响,需要用到边际分析方法,而"边际"这个概念回归到微积分理论里正是最基本的概念之一——导数。再如,理解计量经济学中的各种模型,需要先修微积分、线性代数、运筹学、概率论等多门基础数学课的知识,其中有一种GARCH模型,它应用于分析具有波动性集群效应的微观金融数据,或持有某项资产的风险(异方差)

的情况。GARCH 模型的基本形式 GARCH(p,q) 写为

$$\begin{cases} y_t = x'_t \phi + u_t, & u_t \sim N\left(0, \sigma_t^2\right) \\ p & q \end{cases}$$
 (3-1a)

$$\begin{cases} y_t = x'_t \phi + u_t, & u_t \sim N(0, \sigma_t^2) \\ \sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i u_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2 \end{cases}$$
 (3-1a)

在平稳随机过程的条件下式 (3-1b) 也可以写成 $\sigma_t^2 = \beta(L)^{-1}\alpha_0 + \beta(L)^{-1}\alpha(L)u_t^2$ 的形式,而这两种形 式之间的变换则要涉及到微分算子①的概念了。定义这样一个平稳过程中的滞后算子:

$$\begin{cases} \alpha(L) = \alpha_1 L + \alpha_2 L^2 + \dots + \alpha_p L^p \\ \beta(L) = 1 - \beta_1 L - \beta_2 L^2 - \dots - \beta_p L^p \end{cases}$$

于是有 $\beta(L)\sigma_t^2 = \alpha_0 + \alpha(L)u_t^2$, 代入式 (3-1b) 便得到其变换后的形式。

再如,对于借助计算机研究各种工程现象的工程人员来讲,求解一个代数方程通常要比求解一个微分方 程容易得多,而要将微分方程转化为代数方程则需要使用积分变换的方法。例如,经典控制理论中对控 制系统的分析和综合都建立在 Laplace 变换的基础上, 而引入拉普拉斯变换的一个主要优点, 是可以用 传递函数代替常系数微分方程来描述系统的特性,为采用直观和简便的图解方法来确定控制系统特性、 分析控制系统的运动过程,以及控制系统的参数整定提供极大的便利。而要想理解 Laplace 变换, 就必 须先修微积分课程里的积分学,并深入理解复变函数的概念和性质。

当然,也有同学志不在科研或深造,而是希望毕业之后投身职业圈——怀有这样志向的学生并不少 见,也并无可指摘之处,但若就此认为大学里的高等数学(乃至某些其他必修课程)是没有必要学习的, 那笔者只好送他们一句流传甚广的玩笑话了:"数学不能用来买菜,却可以决定你在哪里买菜。"

第四节 一些笔者推荐的课外数学资料

1.4.1 书籍

必须事先指出的是,以下这些书籍不一定对"使课程取得高分"有用,而仅以飨读者之思想。排名 不分先后,尽可凭兴趣阅读。

(1)《数学——它的内容、方法和意义》[俄]A.D. 亚历山大洛夫等著

本书由前苏联数位著名数学家为普及数学知识而合力撰写,介绍了现代数学各个分支的内容、 历史发展及其在自然科学和工程技术中的应用, 语言通俗简练, 内容由浅入深, 可供高等院校 理工科师生、普通高中师生、工程技术人员和数学爱好者阅读。

(2)《古今数学思想》[美]Morris Klein 著

本书论述了从古代一直到 20 世纪头几十年中的重大数学创造和发展, 目的是介绍中心思想, 特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成

 $^{^{} ext{①}}$ 读者将会在大一年级下学期的《高等数学 \mathbf{I} 》或《工科数学分析 \mathbf{II} 》课程里首次接触到"微分算子"的概念。

尔后的数学活动有影响的主流工作。不同于一般数学史的著作,而主要作为"从历史角度来讲解的数学入门书",该书突出了数学发展历程中涌现的各类思想方法,论述了数学思想的古往今来,被誉为"我们现有的数学史中最好的一本数学史"。

(3)《微积分的历程: 从牛顿到勒贝格》[美]William Dunham 著

本书宛如一座陈列室, 汇聚了十多位数学大师的杰作, 当你徜徉其中时会对人类的想象力惊叹不已, 当你离去时必然满怀对天才们的钦佩感激之情。作者同读者一起分享了分析学历史中为人景仰的理论成果。书中的每一个结果, 从牛顿的正弦函数的推导, 到伽玛函数的表示, 再到贝尔的分类定理, 无一不处于各个时代的研究前沿, 至今还闪烁着耀眼夺目的光芒。

(a) 《数学——它的内容、方法和 意义》[俄]A.D. 亚历山大洛 夫等著.

(b) 《古今数学思想》[美]Morris Klein 著.

(c) 《微积分的历程: 从牛顿到勒 贝格》[美]William Dunham 著.

图 1-5 笔者推荐的部分书目.

当然,好书还有很多,为免贪多嚼不烂,笔者就不一一列举了。

1.4.2 公共资源平台

除去本校学生讲师团为每届学弟学妹们建立的数学交流群之外,还有许多公共平台可以为希望提高自身数学水平(以在期末考试乃至数学竞赛中取得好成绩)的大学生提供各类学习资源,包括书籍、习题、文章等等。例如图 1-6 所示微信公众号。

有兴趣的学弟学妹们也可以自行搜索各种数学交流群(我的经验告诉我,大佬们都在各个 QQ 群里交流,就看你有没有本事加进去了),这里就不赘述了。

图 1-6 笔者推荐的部分微信公众号.

第二章

谈单变量微积分里几个基本的概念

文/似雪飞扬

第一节 预备知识

初等函数与分段函数

定义 1.1 由基本初等函数经过有限次四则运算和复合运算得到的,可以只用一个式子表达的函数称为初等函数.

定义 1.2 由多个定义在不同区间上的式子组合在一次表达的函数称为分段函数.

几点说明:

(1) 分段函数不一定不是初等函数.

举例:
$$f(x) = |x| = \begin{cases} x, & x \geqslant 0 \\ -x, & x < 0 \end{cases} = \sqrt{x^2}, x \in \mathbb{R}.$$

- 一般地, 若分段函数 f(x) 的各段定义区间是连着的, 且是连续函数, 则 f(x) 是初等函数.
- (2) 基本初等函数在定义域上处处连续.
- (3) 初等函数在各段定义区间上分别处处连续(在分段点处可能间断也可能连续).

举例: $f(x) = \sin \frac{1}{x}, x \in \mathbb{R}$ 在 $(0, +\infty), (-\infty, 0)$ 上均连续,而在原点处振荡间断.

这个命题不放在微分学部分是因为一般将其作为不证自明的基本命题.

第二节 一元函数微分学部分

2.2.1 连续、间断与可导

讨论点态连续的前提是函数在该点邻域内有定义,讨论点态间断的前提是函数在该点去心邻域内有定义。例如,对 $f(x) = x, x \in \mathbb{Q}$ 讨论连续性是无意义的.

间断点的分类标准是两侧极限是否存在. 若函数在某点处间断但两侧极限均存在,则将该点定义为第一类间断点,并按两侧极限是否相等分为可去间断点和跳跃间断点(立即可知对于可去间断点必定有函数在该点处无定义的结论);若函数在某点两侧的极限至少有一侧不存在(或者两侧都不存在. 显然

第二类间断点对该点是否有定义并无要求,可以有也可以没有),则将该点定义为第二类间断点,并按单侧极限不存在的方式是趋于无穷还是振荡将该侧间断分为无穷间断和振荡间断.

举例:

$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

在原点处振荡间断, 图像如图 2-1 所示. 这也是也是振荡间断点最常用的例子.

图 2-1 一个常见振荡间断点的例子.

几点说明:

(1) 非初等函数可能只在某些点处连续,也可能处处不连续,但不可能几乎处处 ① 连续.

举例: 狄利克雷 (Dirichlet) 函数

$$D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

处处不连续, 略作变化即可得到只在原点处连续的函数

$$f(x) = x d(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

事实上,初等函数才是在其定义域上几乎处处连续的 ② .

(2) 处处连续的函数在某点处不一定可导, 甚至可能处处不可导.

举例: $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 处处连续但在原点处不可导;魏尔斯特拉斯 (Weierstrass) 函数

$$f(x) = \sum_{i=1}^{\infty} a^{n} \cos(b^{n} \pi x) \left(a \in (0,1), b = 2k + 1, k \in \mathbb{N}, ab > 1 + \frac{3}{2} \pi \right)$$

处处连续但无处可导,如2-2所示;

 $^{^{\}circ}$ "几乎处处"是数学分析中的一个说法. 若某性质 P 对于集合中的每一个元素都成立,称性质 P 在集合上处处成立;若性质 P 对于集合中的每一个元素都成立,其中是零测集,则称性质 P 在集合上几乎处处成立. 这个概念我们还将会在积分学部分再次遇到.

 $^{^{2}}$ 举例: $\tan x$ 和 $\tan \frac{1}{x}$ 在 \mathbb{R} 上几乎处处连续.

图 2-2 Weierstrass 函数图像示意图.

(3) 处处可导的函数,它的导函数在其定义域上不一定连续.

举例:
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

(4) 函数在某点处的左右导数均存在(但不一定相等),则可以推出函数在该点连续.

简单证明如下: 由左右导数存在可知
$$\Delta y = \begin{cases} y'_{-}\left(x_{0}\right)\cdot\Delta x, & \Delta x < 0 \\ y'_{+}\left(x_{0}\right)\cdot\Delta x, & \Delta x > 0 \end{cases} \rightarrow 0 \, (\Delta x \rightarrow 0).$$

(5) 函数在某点处可导,不一定在该点去心邻域内连续.

举例: 借助狄利克雷函数构造 $f(x) = x^2 D(x)$ 在 x = 0 处可导, 但在 $\mathbb{R} \setminus \{0\}$ 内处处不连续.

(6) 导函数在某点处的极限存在,不能推知函数在该点连续.

举例:
$$f(x) = [\operatorname{sgn}(x)]^2 = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
.

(7) 导函数在某点处的极限存在,且函数在该点处连续,则函数在该点可导,且导函数在该点连续. 这个命题称为导数极限定理,可以通过洛必达法则证明:设 f(x) 在 $x=x_0$ 处连续,且 $\lim_{x\to x_0} f'(x)$ 存在,则

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \xrightarrow{\text{L'Hospital}} \lim_{x \to x_0} \frac{f'(x)}{1} = \lim_{x \to x_0} f'(x)$$

(8) 连续性是介值性 ① 的充分不必要条件.

举例: 已在前文出现过的 $f(x)=x\mathbf{D}(x)=$ $\begin{cases} x, & x\in\mathbb{Q}\\ 0, & x\in\mathbb{R}\setminus\mathbb{Q} \end{cases}$ 还告诉我们,区间上的函数即使处处不连续,也可以具有介值性.

另外一个非常有意思的例子是导数介值定理(也被称为达布中值定理): 闭区间上可导的函数, 其导函数可以取到该区间两端点处导数值之间的一切值, 即导函数具有介值性. 可以通过费马引理证明之, 此处不再赘述.

①介值定理: 定义在区间上的连续函数,其值域必定也是区间(可缩为一点). 该定理可借助零点存在定理,由构造函数法证明. 介值性: 设 $I_f = [a,b]$,若 $\forall a \leqslant x_1 < x_2 \leqslant b$, $f(x_1) \neq f(x_2)$,f(x) 可取到 $f(x_1)$ 和 $f(x_2)$ 之间的任意值,称 f 在 [a,b] 上具有介值性.

2.2.2 可导、极值与单调性

- (1) 连续函数在某点处取得极值,不能推知函数在该点邻域内的单调性.举例:魏尔斯特拉斯函数在原点处取得极大值,但在原点的任意单侧去心邻域内不单调.
- (2) 连续函数在某点可导且导数不为 0, 不能推知函数在该点邻域内的单调性.

如 2004 年考研数学一 8 题/数学二 10 题: 设函数 f(x) 连续,且 f'(0) > 0,则存在 $\delta > 0$,使得 ()

(A) 在 $(0,\delta)$ 内单调增加

- (B) 在 $(-\delta,0)$ 内单调减少
- (C) 对任意的 $x \in (0, \delta)$ 有 f(x) > f(0) (D) 对任意的 $x \in (-\delta, 0)$ 有 f(x) > f(0) 答案: C. 对错解 AB 构造反例: $f(x) = \begin{cases} x^2 \sin \frac{1}{x} + \frac{x}{2}, & x \neq 0, \\ 0, & x = 0 \end{cases}$
- (3) 可导函数在某点处导数为 0 是其在该点处取得极值的必要不充分条件. 该命题可以通过费马引理证明, 此处不加赘述.
- (4) 函数在某点处连续、在该点去心邻域内可导且导函数在该点两侧变号,是其在该点处取得极值的 第一充分不必要条件.

这一点也警示我们,讨论极值点时不能仅看函数的导数为 0 的点,还应当关注其不可导的点. 例 如对于函数 $f(x) = \sqrt{|x|}, x \in \mathbb{R}$,其在原点处不可导,但在原点处取得极小值,如2-3所示.

图 2-3 原点不可导但是在原点取得极限值的一个例子.

(5) 函数在某点处二阶可导且在该点处一阶导数为 0、二阶导数不为 0,是其在该点处取得极值的第二充分不必要条件。该条件还可推广为在某点处偶数阶可导且除最高阶导数值外其他阶导数均为 0.

2.2.3 二阶可导与凹凸性

连续函数在某点处存在二阶导数,且该点处一阶导等于 0、二阶导不等于 0,不能推知函数在该点邻域内的凹凸性.

- (A) 曲线 y = f(x) 在区间 $(x_0 \delta, x_0 + \delta)$ 上是凸的
- (B) 曲线 y = f(x) 在区间 $(x_0 \delta, x_0 + \delta)$ 上是凹的
- (C) 函数 f(x) 在区间 $(x_0 \delta, x_0]$ 上严格单增,在区间 $[x_0, x_0 + \delta]$ 上严格单减
- (D) 函数 f(x) 在区间 $(x_0 \delta, x_0]$ 上严格单减,在区间 $[x_0, x_0 + \delta)$ 上严格单增

答案: C. 对错解 AB 构造反例: $f(x) = \int_0^x \left(t^2 \sin \frac{1}{t} + \frac{t}{2}\right) dt$.

2.2.4 后记

以上举出的函数,有能力的话最好自己尝试作出图像或草图,以加深理解. 最后留一道习题: 讨论 函数 $f(x) = \begin{cases} ax^{\lambda} + bx^{\alpha}\sin\left(x^{\beta}\right), & x \neq 0 \\ (a,b,\alpha,\beta,\lambda \in \mathbb{R}) & \text{在原点处存在几阶导数,各阶导函数在原} \\ 0, & x = 0 \end{cases}$

点处是否连续.

第三节 一元函数积分学部分

2.3.1 定积分与不定积分,可积与原函数,以及变限积分

- (1) 定积分存在 ⇔ 可积, 不定积分存在 ⇔ 原函数存在.
- (2) 不定积分和定积分是两个概念,不定积分存在不一定可积,可积也不一定有原函数.
- (3) 变限积分借助微积分基本定理和 Newton-Leibniz 公式担当了沟通定积分和不定积分的桥梁, 但要注意对被积函数的可积性/连续性、变限积分的连续性/可导性的区分.

2.3.2 可积 (定积分存在) 的三类条件

(1) 必要不充分条件:有限区间上有界

若不满足有限区间,立即成为无穷限的反常积分;若不满足有界,立即成为无界的反常积分.对不满足充分性举例:狄利克雷函数在闭区间 [0,1] 上有界,但不可积.

- (2) 充分不必要条件:
 - (i) 闭区间上连续.

注意和上文必要不充分条件里的"有限区间"区分开,前者可以是开区间(采用补充定义法立即变为闭区间),而这里必须是闭区间(开区间上的连续函数可能无界).

(ii) 闭区间上有界, 且只有有限个间断点.

注意:第一,这里的间断点不能是无穷间断点;第二,教材上一般写为"且只有有限个第一类间断点",并未讨论振荡间断点的情况.实际上闭区间内含有有限个振荡间断点的有界函

数也是可积的(但不一定有原函数),如 $f(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 在 [0,1] 上的定

积分为 $\sin 1$. 对不满足必要性举例: 函数 $\operatorname{sgn}\left(\sin\frac{x}{\pi}\right)$ 在 [0,1] 上有无穷个间断点 (一个振荡间断点 x=0 以及可列无穷个跳跃间断点 $x_k=\frac{1}{k}, k\in\mathbb{N}^*$),但可积. 具体为何可积将在充要条件里介绍.

- (iii) 闭区间上单调.
- (3) 充要条件 (注意,这部分超纲!) 若定义在闭区间 [a,b] 上且有界的函数 f(x) 的全体间断点构成的集合是零测度集,则 f(x) 在 [a,b] 上(勒贝格)可积,逆命题也成立.

注: 把可以用总长度任意小的有限个区间覆盖的点集称为"零测度集",简称零集. 上文中跳跃间断点 $x_k = \frac{1}{k}, k \in \mathbb{N}^*$ 构成的集合是可数无穷集,故而为零测集.

上述充要条件也表述为:区间上的有界函数可积的充要条件是几乎处处连续.

2.3.3 原函数 (不定积分) 存在的条件

- (1) 必要不充分条件: f(x) 有原函数,则必定不含有第一类间断点或无穷间断点.
- (2) 充分不必要条件: f(x) 连续,则必定有原函数.
- (3) 既非充分也非必要,需分类讨论: f(x) 含有振荡间断点,则原函数不一定不存在.

举例:
$$f(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 有原函数 $F(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$.

第四节 参考文献

- [1] 张宇等. 2019 张宇高等数学 18 讲 [M]. 北京: 高等教育出版社, 2017.12: 120.
- [2] 同济大学数学系. 高等数学. 第 7 版 [M]. 北京: 高等教育出版社, 2017,9: 59.
- [3] 胡志兴等. 高等数学. 第 2 版 [M]. 北京: 高等教育出版社, 2015.6: 161.
- [4] 谢惠民等. 吉米多维奇数学分析习题集学习指引(第二册)[M]. 北京: 高等教育出版社, 2012, 12:121-122.
- [5] 谢惠民. 数学分析习题课讲义上册 [M]. 北京: 高等教育出版社, 2003: 132

第三章

高等数学常用公式表

第一节 基本初等函数导数、微分公式

原函数	导数	微分
y = C	y' = 0	dy = 0
$y = x^{\mu}$	$y' = \mu x^{\mu - 1}$	$\mathrm{d} y = \mu x^{\mu-1}\mathrm{d} x$
$y = \sin x$	$y' = \cos x \mathrm{d} x$	$dy = \cos x dx$
$y = \cos x$	$y' = -\sin x \mathrm{d} x$	$dy = -\sin x dx$
$y = \tan x$	$y' = \sec^2 x$	$dy = \sec^2 x dx$
$y = \cot x$	$y' = -\csc^2 x \mathrm{d} x$	$dy = -\csc^2 x dx$
$y = \sec x$	$y' = \sec x \tan x$	$dy = \sec x \tan x dx$
$y = \csc x$	$y' = -\csc x \cot x$	$dy = -\csc x \cot x dx$
$y = a^x$	$y' = a^x \ln a$	$dy = a^x \ln a dx$
$y = e^x$	$y' = e^x$	$\mathrm{d}y = e^x\mathrm{d}x$
$y = \log_a x$	$y' = \frac{1}{x \ln a}$	$dy = \frac{1}{x \ln a} dx$
$y = \ln x$	$y' = \frac{1}{x}$	$dy = \frac{1}{x} dx$
$y = \arcsin x$	$y' = \frac{1}{\sqrt{1 - x^2}}$	$dy = \frac{1}{\sqrt{1-x^2}} dx$
$y = \arccos x$	$y' = -\frac{1}{\sqrt{1-x^2}}$	$dy = -\frac{1}{\sqrt{1-x^2}} dx$
$y = \arctan x$	$y' = \frac{1}{1+x^2}$	$dy = \frac{1}{1+x^2} dx$
$y = \operatorname{arccot} x$	$y' = -\frac{1}{1+x^2}$	$dy = -\frac{1}{1+x^2} dx$
$y = \sinh x$	$y' = \operatorname{ch} x$	$dy = \operatorname{ch} x dx$
$y = \operatorname{ch} x$	$y' = \operatorname{sh} x$	$dy = \operatorname{sh} x dx$
$y = \operatorname{th} x$	$y' = \frac{1}{\cosh^2 x}$	$dy = \frac{1}{\cosh^2 x} dx$

第二节 基本导数、微分法则

函数	导数法则	微分法则
$u(x) \pm v(x)$	$\left[u(x) \pm v(x)\right]' = u'(x) \pm v'(x)$	$d(u \pm v) = du \pm dv$
u(x)v(x)	[u(x)v(x)]' = u'(x)v(x) + u(x)v(x)'	d(uv) = v du + u dv
Cu	(Cu)' = Cu'	d(Cu) = C d u
$\frac{u(x)}{v(x)}$	$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - u(x)v(x)'}{v^2(x)}$	$d\left(\frac{u}{v}\right) = \frac{v d u - u d v}{v^2(x)}$
$\frac{1}{v(x)}$	$\left(\frac{1}{v(x)}\right)' = -\frac{v'(x)}{v^2(x)}$	$d\left(\frac{1}{v}\right) = -\frac{dv}{v^2}$
x = f(y)	$\left[f^{-1}(y)\right]' = \frac{1}{f'(y)}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}}$

第三节 常见高阶导数

函数	高阶导数	函数	高阶导数
e^x	e^x	$\ln(1-x)$	$-\frac{n-1!}{(1-x)^n}$
$\sin x$	$\sin(x + n \cdot \frac{\pi}{2})$	$\frac{1}{x}$	$(-1)^n \cdot \tfrac{n!}{x^(n+1)}$
$\cos x$	$\cos(x + n \cdot \frac{\pi}{2})$	$\frac{1}{(1+x)}$	$(-1)^n \cdot \tfrac{n!}{(1+x)(n+1)}$
x^{α}	$\alpha(\alpha-1)\cdots(\alpha-n+1)x^{\alpha-n}$	$\frac{1}{(1-x)}$	$-\frac{n!}{(1-x)^(n+1)}$
ln(1+x)	$(-1)^n \cdot \frac{(n-1)!}{(1+x)^n}$		

第四节 微分中值定理

Fermat 引理 设函数 f(x) 在点 x_0 的某领域 $U(x_0)$ 内有定义,并且在 x_0 处可导,如果对任意的 $x \in U(x_0)$,有 $f(x) \leq f(x_0)$ (或 $f(x) \geq f(x_0)$),那么 $f'(x_0) = 0$.

Rolle **定理** 如果函数 f(x) 满足: ① 在闭区间 [a,b] 连续,② 在开区间 (a,b) 可导,③ f(a) = f(b),那么在 (a,b) 内至少有一点 $\xi(a < \xi < b)$ 使得 $f'(\xi) = 0$.

Lagrange 中值定理 如果函数 f(x) 满足: ① 在闭区间 [a,b] 连续,② 在开区间 (a,b) 可导,那么在 (a,b) 内至少有一点 $\xi(a < \xi < b)$ 使等式 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$ 成立.

Cauchy 中值定理 如果函数 f(x) 及 F(x) 满足: ① 在闭区间 [a,b] 连续,② 在开区间 (a,b) 可导, ③对 $\forall x \in (a,b), \ F(x) \neq 0$,那么在 (a,b) 内至少有一点 $\xi(a < \xi < b)$ 使等式 $\frac{f'(\xi)}{F(\xi)} = \frac{f(b) - f(a)}{F(b) - F(a)}$ 成立.

第 五 节 Taylor 公 式

- 1. Taylor 公式
 - (1) Lagrange 型余项

$$f(x) = f(0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n$$

$$\sharp \Phi, \ R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{(n+1)}.$$

(2) Peano 型余项

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o(x^n)$$

(3) 积分型余项

2. Maclaurin 公式 (Peano 型余项)

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

3. 常用 Maclaurin 公式 (Peano 型余项)

(1)
$$e^x = 1 + x + \frac{1}{2!}x^2 + \dots + \frac{1}{n!}x^n + o(x^n)$$

(2)
$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \dots + \frac{(-1)^n x^2 (2n-1)}{(2n-1)!}x^n + o(x^{2n})$$

(3)
$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \dots + \frac{(-1)^n x^2 n}{(2n)!}x^n + o(x^{2n})$$

(4)
$$\ln(1+x) = 1 - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + \frac{(-1)^n(n+1)x^n}{n}x^n + o(x^{(n+1)})$$

(5)
$$(1+x)^{\alpha} = 1 + \alpha x + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)x^{\alpha-n}}{n!}x^n + o(x^n)$$

(6)
$$\arctan x = -x + \frac{1}{3}x^3 - \frac{1}{5}x^5 + \dots + \frac{(-1)^n x^2 (2n+1)}{(2n+1)}x^n + o(x^{2n+2})$$

(7)
$$\tan x = x + \frac{1}{3}x^3 + \frac{2}{5}x^5 + \frac{17}{315}x^7 + o(x^7)$$

第六节 基本积分表

(1)
$$\int k \, dx = kx + C$$
;
(2) $\int x^{\alpha} \, dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C \ (\alpha \neq -1);$
(3) $\int \frac{1}{x} \, dx = \ln x + C;$
(4) $\int \frac{1}{1 + x^2} \, dx = \tan x + C;$

(5)
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C;$$

(7)
$$\int \sin x \, \mathrm{d}x = -\cos x + \mathrm{C};$$

(9)
$$\int \csc^2 x \, \mathrm{d} x = -\cot x + \mathrm{C};$$

(11)
$$\int a^x dx = \frac{a^x}{\ln a} + C;$$

(13)
$$\int \operatorname{ch} x \, \mathrm{d} x = \operatorname{sh} x + \mathrm{C};$$

(15)
$$\int \cot x \, \mathrm{d} x = \ln|\sin x| + \mathrm{C};$$

(15)
$$\int \cot x \, dx = \ln|\sin x| + C;$$
(16)
$$\int \sec x \, dx = x \ln|\sec x + \tan x| + C;$$
(17)
$$\int \csc x \, dx = x \ln|\csc x + \cot x| + C;$$
(18)
$$\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan \frac{x}{a} + C;$$

(19)
$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \frac{x - a}{x + a} + C;$$
 (20)
$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \arcsin \frac{x}{a} + C;$$

(21)
$$\int \frac{1}{\sqrt{x^2 \pm a^2}} \, dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C; \quad (22) \int \sec x \tan x \, dx = \sec x + C;$$

(23)
$$\int \csc x \cot x \, dx = -\csc x + C;$$

(25)
$$\int \frac{1}{(1+x^2)^{\frac{3}{2}}} dx = \frac{x}{\sqrt{1\pm x^2}} + C;$$

(26)
$$\int \sqrt{x^2 \pm a^2} \, dx = \frac{1}{2} \left[x \sqrt{x^2 \pm a^2} \pm a^2 \ln \left(\sqrt{x^2 \pm a^2} + x \right) \right] + C;$$

(27)
$$\int \frac{1}{(x^2 + a^2)^2} dx = \frac{1}{2a^2} \left(\frac{x}{x^2 + a^2} + \frac{1}{a} \tan \frac{x}{a} \right) + C;$$

(6)
$$\int \cos x \, \mathrm{d} x = \sin x + C;$$

(8)
$$\int \sec^2 x \, dx = \tan x + C;$$
(10)
$$\int e^x x \, dx = e^x + C;$$

$$(10) \int e^x x \, \mathrm{d} x = e^x + \mathrm{C};$$

(12)
$$\int \operatorname{sh} x \, \mathrm{d} x = \operatorname{ch} x + \mathrm{C};$$

(14)
$$\int \tan x \, \mathrm{d} x = \ln|\cos x| + \mathrm{C};$$

(16)
$$\int \sec x \, \mathrm{d} x = x \ln|\sec x + \tan x| + C$$

(18)
$$\int \frac{1}{x^2 + a^2} \, \mathrm{d} \, x = \frac{1}{a} \tan \frac{x}{a} + C;$$

(20)
$$\int \frac{1}{\sqrt{x^2 - a^2}} \, \mathrm{d} x = \arcsin \frac{x}{a} + \mathrm{C};$$

(22)
$$\int \sec x \tan x \, \mathrm{d} x = \sec x + \mathrm{C};$$

(24)
$$\int \ln x \, \mathrm{d} x = x \ln x - x + \mathrm{C};$$

9"/8/302"116226"

定价: 80.6 元