1.Materiales

Propiedades del cobre (Necesitamos modulo de Young y poisson)

(Mencionar que me aoarecian dos cobres, pero este era el que tenía las propiedades casi iguales)

A continuación propiedades del acero, donde se necesitarán los mismos módulos que en el caso del cobre (propiedades elásticas) y además características relacionadas con el calor (las últimas propiedades)

2. Geometría

3. Cálculo Térmico

Para el mallado se emplea "Hex Dominant"

- Temperaturas en el modelo en el primer paso

- Calor introducido al modelo en las condiciones indicadas en el primer paso

Y la reacción después del primer paso será: (Cantidad de energía o calor que habría que introducir en el sistema)

	Time [s]	Reaction Probe [W]
1	1,	3223,3
2	2,	0,

- Confirmar que en el estado final (segundo paso) el modelo se encuentra a temperatura ambiente

(Si queréis podéis añadir alguna marca donde pone time 1 y 2 para que vea que corresponde con lo que pide)

4. Cálculo elástico

Tras la condición de contorno del enunciado:

Gdl globales sujetos: Desplazamientos en y, rotación en x, rotación en z

Gdl globales libres: Desplazamientos x, desplazamientos z, rotación en y

Para bloquear los anteriores (libres):

Bloqueando dos esquinas alineadas longitudinalmente según x, impedimos desplazamiento según x y rotación según y. Con la primera condición en una esquina evitamos desplazamiento en x y con la segunda la rotación.

Si además, a una de las esquinas anteriores le bloqueamos además del desplazamiento según x el desplazamiento según z, tendremos todos los gdl sujetos.

Si bloquease según z ambas esquinas no permitiría la dilatación.

En x no impedimos la dilatación ya que las esquinas están alineadas en único lado, pudiendo dilatarse por el opuesto.

Para el primer paso:

Desplazamientos direccionales (eje x)

- Desplazamientos direccionales (eje y)

- Desplazamientos direccionales (eje z)

Claramente a través de las imágenes observamos isolíneas según cada caso, no habrá coacciones, dejando dilatar libremente a la estructura.

- Desplazamientos totales en la estructura

-Solicitar información al modelo para deducir la longitud de la barra de cobre para que encaje en el acero dilatado

Para ello utilizaremos los desplazamientos según z del acero, concretamente crearemos un par de probes en las zonas de unión con el cobre. La resta de dichos desplazamientos será la longitud necesaria de la barra de cobre.

-Representar la tensión de Von Mises en la estructura, indicando dónde se encuentran las zonas de mayor tensión

Para el segundo paso:

- Desplazamientos direccionales (eje x)

- Desplazamientos direccionales (eje y)

- Desplazamientos direccionales (eje z)

- Desplazamientos totales en la estructura

- Generar una superficie (Construction Geometry) cortando la barra por la mitas en dirección perpendicular al eje y solicitar las tensiones longitudinales en la barra.

Deducir el axil y momento flector en la barra en ese punto. Viendo la figura anterior sabemos que habrá momento flector.

Para ver que no afecta en la fibra neutra: (En nudos centrales deberían de aparecer valores constantes)

Por la simetría impuesta no habrá flexión lateral.

(Faltaría deducir a través de los valores de las dos imágenes anteriores el axil y momento flector)

 Deducir el acortamiento de la barra y contrastar con el valor que se obtiene a través de los desplazamientos

Apartado para confirmar que el axil se mantiene constante a lo largo de la barra. (A través de la ley del acortamiento, una vez hallado el axil, se halla el acortamiento)

A través de los desplazamientos se obtiene, restando ambas probes (puestas el acero, area de unión con cobre):

(restando dichos valores saldrá el acortamiento, lo menciona en el video sobre el 1:15)

- Representar la tensión de Von Mises en la estructura, indicando donde se encuentran las zonas de mayor tensión

- Representar la energía de deformación, indicando las zonas de mayor energía de deformación

- Representar el error (Structural Error), indicando las zonas con mayor error

5. Cálculo elástico submodelo

 Representar para el estado final las tensiones de VM en la parte del acero, comparando el resultado del submodelo y modelo completo para el mismo tamaño de malla.

(Submodelo, el modelo es del apartado anterior)

 Repetir el cálculo del submodelo introduciendo controles de malla y presentando la misma representación de VM

Modelo 1: Tamaño general 5 mm

Como se puede observar con dicho tamaño de malla nos cambia los hexaedros a tetraedros. Cambiando a un método de mallado tetraédrico, ya que no nos dejaba resolver el modelo, obtenemos la siguiente malla:

Con dicha malla, la representación de VM para el modelo 1 es:

Modelo 2: Tamaño general 5 mm y refinamiento de borde del contacto tipo 1.

Mallado (de nuevo tetraédrico):

Representación de VM:

Modelo 3: Tamaño general 5 mm y refinamiento en borde del contacto de tipo 3 Mallado (otra vez tetraédrico):

Representación de VM: