

MATHEMATICAL TRIPOS Part III

Friday, 1 June, 2018 $\,$ 1:30 pm to 4:30 pm

PAPER 106

FUNCTIONAL ANALYSIS

Attempt no more than FOUR questions.

There are FIVE questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

 $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ None \end{array}$

Cover sheet Treasury Tag

Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let X be a Banach space. Prove that $f_n \xrightarrow{w^*} f$ in X^* if and only if $f_n(x) \to f(x)$ for all $x \in X$. Prove that if $f_n \xrightarrow{w^*} f$ in X^* and $x_n \to x$ in X, then $f_n(x_n) \to f(x)$. Show further that on a $\|\cdot\|$ -compact subset of X^* , the $\|\cdot\|$ -topology and w^* -topology coincide.

State and prove the Banach-Alaoglu theorem.

Let X and Y be Banach spaces and $T \in \mathcal{B}(X,Y)$. Prove that T^* is w^* -to- w^* -continuous. Show that T is compact if and only if T^* is w^* -to- $\|\cdot\|$ -continuous on bounded subsets of Y^* . [You may assume without proof that T is compact if and only if T^* is compact.]

2

Throughout this question H is a complex Hilbert space with $H \neq \{0\}$.

- (a) Let A be a commutative unital C^* -subalgebra of $\mathcal{B}(H)$. State the spectral theorem for A.
- (b) Let $T \in \mathcal{B}(H)$ be a normal operator and $K = \sigma(T)$ be the spectrum of T in $\mathcal{B}(H)$. Referring to part (a) if necessary, prove that there is a resolution P of the identity of H over K (also known as a spectral measure) such that

$$T = \int_K \lambda \, \mathrm{d}P(\lambda) \ .$$

What can you say about P(U) for a non-empty, open subset U of K? Prove your claim. [If your claim is already part of your statement in part (a), then you cannot simply refer to that. Otherwise, part (a) can be used in your proof.].

Prove the following statements.

- 1. If λ is an isolated point of K, then λ is an eigenvalue of T and $P(\{\lambda\})$ is the orthogonal projection onto the eigenspace $\ker(\lambda I T)$.
- 2. If K consists of a single point, then T is a scalar multiple of the identity.
- 3. If dim H > 1, then T has a non-trivial invariant subspace: there is a closed subspace L of H such that $L \neq \{0\}$, $L \neq H$ and $T(L) \subset L$.

[Properties of the integral $\int_K f dP$, where $f \in L_{\infty}(K)$, can be assumed without proof.]

3

- (a) Let A and B be non-empty, disjoint convex subsets of a real locally convex space X. Assume that A is open. State and prove the Hahn–Banach separation theorem for A and B. [You may assume any version of the Hahn–Banach extension theorem.]
- Let (x_n) be a sequence in a real Banach space X and let $\varrho > 0$. Show that there exists $f \in S_{X^*}$ with $f(x_n) \geqslant \varrho$ for all $n \in \mathbb{N}$ if and only if $\left\| \sum_{i=1}^n t_i x_i \right\| \geqslant \varrho \sum_{i=1}^n t_i$ for all $n \in \mathbb{N}$ and for all non-negative real numbers t_1, \ldots, t_n .
- (b) Describe, without proof, the dual space of C(K), where K is a compact Hausdorff space. Prove that if $f_n \xrightarrow{w} 0$ in C(K), then $f_n^2 \xrightarrow{w} 0$ in C(K) also.
- (c) State the commutative Gelfand–Naimark theorem. Prove that there is a unique (up to homeomorphism) compact Hausdorff space K such that the complex Banach space ℓ_{∞} is isometrically isomorphic to C(K). Show that K contains a homeomorphic copy of $\mathbb N$ with the discrete topology which is dense in K. Show further that every bounded function $\mathbb N \to \mathbb C$ has a unique extension to a continuous function $K \to \mathbb C$.

Part III, Paper 106

TURN OVER

State and prove Mazur's theorem. Show that a w-compact subset of a normed space is bounded in norm.

Let \mathcal{F} be a σ -field on a set Ω . Let X be a separable Banach space equipped with the Borel σ -field generated by the norm-topology. Let $f \colon \Omega \to X$ be a measurable function. Prove that $g \colon \Omega \to \mathbb{R}$ given by $g(\omega) = \|f(\omega)\|$ is measurable. [Hint: First prove that there is a sequence (φ_n) in X^* such that $\|x\| = \sup_n \varphi_n(x)$ for all $x \in X$.]

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $f: \Omega \to X$ be a measurable function such that $\int_{\Omega} ||f(\omega)|| d\mu(\omega) < \infty$. Show that $\varphi \circ f: \Omega \to \mathbb{R}$ is μ -integrable for all $\varphi \in X^*$. Let $T_f: X^* \to \mathbb{R}$ be the map given by

$$T_f(\varphi) = \int_{\Omega} \varphi \circ f \, d\mu \qquad (\varphi \in X^*).$$

Taking for granted the fact that T_f is w^* -continuous, explain briefly why there is a unique element of X, which we denote by $\int_{\Omega} f d\mu$, satisfying

$$\varphi\left(\int_{\Omega} f \, \mathrm{d}\mu\right) = \int_{\Omega} \varphi \circ f \, \mathrm{d}\mu \quad \text{for all } \varphi \in X^*.$$

Let X be a separable Banach space, $K \subset X$ be a w-compact set, and $f \colon K \to X$ be the inclusion map given by f(x) = x for all $x \in K$. We equip K with the weak topology and X with the norm-topology. Prove that f is measurable with respect to the Borel σ -fields of K and X. Show further that $\int_{\Omega} ||f(\omega)|| \, \mathrm{d}\mu(\omega) < \infty$ for any bounded Borel measure μ . Let $T \colon C(K)^* \to X$ be defined by $T(\mu) = \int_K f \, \mathrm{d}\mu$, where we identify $C(K)^*$ with the space of bounded regular Borel measures on K. Prove that K is K-tow-continuous. Given K is K-tow-continuous. Given K is K-tow-compact.

5

(a) Let A be a commutative unital Banach algebra. Show that every character φ on A is continuous with $\|\varphi\| = 1$. Prove that $x \in A$ is invertible if and only if $\varphi(x) \neq 0$ for all $\varphi \in \Phi_A$.

Let K be a compact Hausdorff space and let A be the algebra C(K) with the supremum norm $\|\cdot\|$. Prove that Φ_A is homeomorphic to K. Let $\|\cdot\|_1$ be another algebra norm on A (not necessarily complete), and let B be the completion of $(A, \|\cdot\|_1)$. Prove that the restriction map $R \colon \Phi_B \to \Phi_A$ defined by $R(\varphi) = \varphi \upharpoonright_A$ is a homeomorphism between Φ_B and a closed subset L of K, where we have identified K with Φ_A . Let $U = K \setminus L$. Show that for any $x \in U$ there exist functions $f, g \in A$ such that g(x) = 1, f = 1 on L, and fg = 0 on K, and deduce that $U = \emptyset$. [Hint: first show that there is an open subset V of K such that $x \in V \subset \overline{V} \subset U$ and apply Urysohn's lemma. Then show that f is invertible in B.] Using that R is surjective, prove that $\|f\| \leqslant \|f\|_1$ for all $f \in A$.

(b) State the Beurling–Gelfand Spectral Radius Formula. Show that r(x) = ||x|| for a hermitian element x of a C^* -algebra. Let A and B be unital C^* -algebras, and let $\theta \colon A \to B$ be a unital *-homomorphism. Prove that $||\theta(x)|| \leq ||x||$ for all $x \in A$. Now assume in addition that θ is injective. Show that $||\theta(x)|| = ||x||$ for all $x \in A$. [Hint: For the last part, first show that without loss of generality we may assume that A = C(K) for some compact Hausdorff space K.]

END OF PAPER