Amendments to the Claims

1. (Currently Amended) A compound of Formula I:

$$R^7$$
 R^8
 R^9
 R^1
 R^4
 R^4
 R^2

Ι

where:

 R^1 is hydrogen, fluoro, or $(C_1 - C_3)$ alkyl;

R², R³, and R⁴ are each independently hydrogen, methyl, or ethyl;

R⁵ is hydrogen, fluoro, methyl, or ethyl;

 R^6 is $-C = C - R^{10}$, $-O - R^{12}$, $-S - R^{14}$, or $-NR^{24}R^{25}$;

R⁷ is hydrogen, halo, cyano, or CF₃ (C₁-C₆)alkyl-optionally substituted with 1 to 6 fluoro substituents, (C₂-C₆)alkenyl optionally substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl,

 $(C_4-C_6) alkoxy\ optionally\ substituted\ with\ 1\ to\ 6\ fluoro\ substituents,\ (C_4-C_6) alkylthio\ optionally\ substituted\ with\ 1\ to\ 6\ fluoro\ substituents,\ Ph^4-(C_0-C_3) alkyl-Ph^4-(C_0-C_3) alkyl-O-,\ or\ Ph^4-(C_0-C_3) alkyl-S-;$

R⁸ is hydrogen, halo, eyano, or SCF₃;

R⁹ is hydrogen;

 $R^{10} \ is \ CF_3, ethyl \ substituted \ with \ 1 \ to \ 5 \ fluoro \ substitutents, \ (C_3 - C_6) \ alkyl \ optionally \ substituted \ with \ 1 - to \ 6 \ fluoro \ substitutents, \ (C_3 - C_7) cycloalkyl \ (C_0 - C_3) alkyl, \ Ar^1 - (C_0 - C_3) alkyl, \ Ar^2 - (C_0 - C_3) alkyl, \ Ar^3 - (C_0 - C_3) alkyl, \ Ar^4 - (C_0 - C_3) alky$

 Ph^{4} -(C_{0} - C_{3})alkyl, or 3-(C_{4} - C_{4})alkyl-2-oxo-imidazolidin-1-yl-(C_{4} - C_{3})alkyl;

 $R^{12} \text{-is Ph}^2 - (C_1 - C_3) \text{alkyl}, \quad Ar^2 - (C_1 - C_3) \text{alkyl}, \quad (C_1 - C_6) \text{alkyl} \cdot S - (C_2 - C_6) \text{alkyl}, \quad (C_3 - C_7) \text{eyeloalkyl} \cdot S - (C_2 - C_6) \text{alkyl}, \quad phenyles \cdot (C_2 - C_6) \text{alkyl}, \quad phenylear bonyl} \cdot (C_1 - C_3) \text{alkyl}, \quad Ph^2 - C(O) \cdot (C_1 - C_3) \text{alkyl}, \quad (C_1 - C_6) \text{alkoxycarbonyl} \cdot (C_2 - C_6) \text{alkyl}, \quad (C_3 - C_7) \text{eyeloalkyl} \cdot OC(O) - (C_2 - C_6) \text{alkyl}, \quad phenyloxycarbonyl} \cdot (C_2 - C_6) \text{alkyl}, \quad Ph^2 - OC(O) \cdot (C_2 - C_6) \text{alkyl}, \quad Ar^2 - OC(O) \cdot (C_2 - C_6) \text{alkyl}, \quad (C_3 - C_7) \text{eyeloalkyl} \cdot NH - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ph^4 - NH - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ar^2 - NH - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ar^3 - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ar^3 - NH - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ar^3 - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ar^3 - NH - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ar^3 - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ar^3 - NH - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ar^3 - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ar^3 - NH - C(O) \cdot (C_2 - C_4) \text{alkyl} \cdot Ar^3 -$

R¹³-is (C₂-C₇)cycloalkyl(C₀-C₃)alkyl, Ph¹, Ar², or (C₁-C₂)alkoxy optionally substituted with 1 to 6 fluoro substituents, Ph¹-NH- or N-linked Het¹;

- R¹⁴ is Ar² which is not N linked to the sulfur atom, Ph², R¹⁵-L-, tetrahydrofuranyl, tetrahydropyranyl, or phenyl methyl substituted on the methyl moiety with a substituent selected from the group consisting of (C₁-C₂) n alkyl substituted with hydroxy, (C₁-C₃)alkyl-O-(C₁-C₂) n-alkyl, (C₁-C₂)alkyl-C(O) (C₀-C₂) n-alkyl, and (C₁-C₃)alkyl-O-C(O) (C₀-C₂) n alkyl.
 - wherein when R¹⁴ is Ph² or Ar², wherein Ar² is pyridyl, then R¹⁴ may also, optionally be substituted with phenyl-CH-CH- or phenyl-C=C,
 - said phenyl-CH=CH- or phenyl-C≡C- being optionally further substituted with 1-to 3 substituents independently selected from the group consisting of halo, cyano, SCF₃, (C₄-C₆)alkyl optionally further substituted with 1-to 6 fluoro substituents, and (C₄-C₆)alkoxy optionally further substituted with 1-to 6 fluoro substituents, and
 - wherein when Ar² is pyridyl, the pyridyl may alternatively, optionally be substituted with R²⁸R²⁹N-C(O), and optionally further substituted with one methyl, -CF₃, eyano, or -SCF₃ substituent, or with 1 to 2 halo substituents, and
 - wherein the tetrahydrofuranyl and tetrahydropyranyl may optionally be substituted with an oxo substituent, or with one or two groups independently selected from methyl and -CF₃;
- R¹⁵-is-OR¹⁶, eyano, SCF₂, Ph², Ar², quinolinyl, isoquinolinyl, einnolinyl, quinazolinyl, phthalimido, benzothiophenyl optionally substituted at the 2-position with phenyl or benzyl, benzothiazolyl optionally substituted at the 2-position with phenyl or benzyl, benzothiadiazolyl optionally substituted with phenyl or benzyl, 2-oxo-dihydroindol-1-yl optionally substituted at the 3-position with gem-dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituteds, 2 oxo-dihydroindol 5-yl optionally substituted at the 3-position with gem-dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-imidazolidin-1-yl optionally substituted at the 3-position with gem-dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents,
- 2 oxo tetrahydropyrimidinyl optionally substituted at the 3 or 4 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents.
- 2 oxo tetrahydroquinolin 1 yl optionally substituted at the 3 position with gem dimethyl or (C_1-C_6) alkyl optionally further substituted with 1 to 6 fluoro substituents.
- -2 oxo dihydrobenzimidazol 1 yl optionally substituted at the 3 position with gem dimethyl or (C_1-C_6) alkyl optionally further substituted with 1 to 6 fluoro substituents, $-NR^{17}R^{18}$,

-C(O)R²², or a saturated heterocyle selected from the group consisting of pyrrolidinyl, piperidinyl, morpholinyl, and thiomorpholinyl, tetrahydrofuranyl, and tetrahydropyranyl, wherein Ph² and Ar² when Ar² is pyridyl, may also optionally be substituted with phenyl-CH-CH- or phenyl-C=C.

said phenyl CH=CH and phenyl C=C being optionally further substituted on the phenyl moiety with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and

wherein Ar² may alternatively, optionally be substituted with a substituent selected from the group consisting of (C₂-C₂)eycloalkyl (C₀-C₂)alkyl, Het¹ (C₀-C₂)alkyl, pyridyl (C₀-C₂)alkyl, and phenyl (C₀-C₂)alkyl, and optionally further substituted with one methyl, CF₂, cyano, or SCF₂ substituent, or with 1-to 2 halo substituents,

said pyridyl-(C₀-C₂)alkyl and phenyl-(C₀-C₂)alkyl optionally being further substituted with 1-3 substituents independently selected from halo, -CH₂, -OCH₂, -OCF₂, -OCF₂, -OCF₃, and

wherein when Ar² is pyridyl, the pyridyl may alternatively, optionally be substituted with R²⁸R²⁹N C(O), or (C₁-C₆)alkyl C(O) optionally substituted with 1 to 6 fluoro substituents, and may be optionally further substituted with one methyl, -CF₂, eyano, or -SCF₃ substituent, or with 1 to 2 halo substituents, and

wherein when Ar²-is thiazolyl, the thiazolyl-may alternatively, optionally be substituted with (C₂-C₂)cycloalkyl-(C₀-C₂)alkyl-NH-, and

wherein the pyrrolidinyl, piperidinyl, morpholinyl, and thiomorpholinyl is substituted with oxo on a carbon atom adjacent to the ring nitrogen atom, or is N substituted with a substituent selected from the group consisting of $\frac{(C_1 - C_6)alkylcarbonyl, (C_1 - C_6)alkylsulfonyl, (C_2 - C_7)eycloalkyl(C_0 - C_2)alkyl - C(O) - C_2 - C_7)eycloalkyl(C_0 - C_2)alkyl - C(O) - C_2 - C_7)eycloalkyl(C_0 - C_2)alkyl - C(O) - C_7 - C_7)eycloalkyl(C_0 - C_7)alkyl - C(O) - C_7 - C_7)eycloalkyl - C(O) - C_7 - C_7 - C_7)eycloalkyl - C(O) - C_7 -$

may optionally be further substituted with 1 or 2 methyl or CF₂ substituents, and when oxo substituted, may optionally be further N substituted with a substituent selected from the group consisting of

(C₄-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, and Ph¹-(C₀-C₃)alkyl, and wherein tetrahydrofuranyl and tetrahydropyranyl may optionally be substituted with an oxo substituent, and/or with one or two groups independently selected from methyl and -CF₂:

- L is branched or unbranched (C₁-C₆)alkylene, except when R¹⁵ is NR¹⁷R¹⁸ or Ar²-N-linked to L, in which case L is branched or unbranched (C₂-C₆)alkylene, and when L is methylene or ethylene, L may optionally be substituted with gem-ethano or with 1 to 2 fluoro substituents, and when R¹⁵ is Ph², Ar², or a saturated heterocycle, L may alternatively, optionally be substituted with a substituent selected from the group consisting of hydroxy, eyano, SCF₃; (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, (C₁-C₆)alkoxycarbonyl optionally further substituted with 1 to 6 fluoro substituents, (C₁-C₆)alkylcarbonyloxy optionally further substituted with 1 to 6 fluoro substituents, (C₂-C₃)eyeloalkyl (C₀-C₃)alkyl O -, (C₂-C₄)eyeloalkyl (C₀-C₃)alkyl O -, (C₃-C₄)eyeloalkyl (C₀-C₃)alkyl O -, (C₃-C₄)eyeloalkyl (C₀-C₃)alkyl O -, (C₃-C₄)eyeloalkyl (C₀-C₃)alkyl O -, (C₃-C₄)eyeloalkyl (C₀-C₃)alkyl C(O) O -;
- $R^{16} \hbox{-is hydrogen, } (C_1\hbox{-} C_6) \hbox{alkyl optionally substituted with 1-to-6-fluoro-substituents,} \\ (C_1\hbox{-} C_6) \hbox{alkylcarbonyl, } (C_2\hbox{-} C_7) \hbox{cycloalkyl} (C_0\hbox{-} C_2) \hbox{alkyl, } (C_2\hbox{-} C_7) \hbox{cycloalkyl} (C_0\hbox{-} C_3) \hbox{alkyl, or } \Lambda r^2 \hbox{-} (C_0\hbox{-} C_2) \hbox{-} (C_0\hbox{-} C_2) \hbox{-} (C_0\hbox{-} C_2) \hbox{-} (C_0\hbox{-} C_2$
- $R^{17} \hbox{ is } (C_1 C_4) \hbox{ alkyl-optionally substituted with 1-to-6-fluoro-substituents, t-butylsulfonyl,} \\ (C_2 C_7) \hbox{ cycloalkyl} (C_0 C_3) \hbox{ alkyl-C(O)-, } (C_2 C_7) \hbox{ cycloalkyl} (C_0 C_2) \hbox{ alkyl-sulfonyl, } Ph^4 (C_0 C_2) \hbox{ alkyl-sulfonyl, } Ar^2 (C_0 C_2) \hbox{ alkyl-C(O)-, } Ph^4 (C_0 C_2) \hbox{ alkyl-sulfonyl, } Ar^2 (C_0 C_2) \hbox{ alkyl-c(O)-, } Ar^2 (C_0 C_2) \hbox{ alkyl-sulfonyl, } R^{19} (C_0 C_2) \hbox{ alkyl-c(O)-, } r^2 (C_0 C_2) \hbox{ alkyl-sulfonyl, } R^{19} (C_0 C_2) \hbox{ alkyl-c(O)-, } r^2 (C_0 C_2) \hbox{ alkyl-sulfonyl, } R^{19} (C_0 C_2) \hbox{ alkyl-c(O)-, } r^2 (C_0 C_2) \hbox{ alkyl-sulfonyl, } R^{19} (C_0 C_2) \hbox{ alkyl-c(O)-, } r^2 (C_0 C$
- R¹⁸ is hydrogen or (C₁-C₄)alkyl optionally substituted with 1-to 6 fluoro substituents, or R¹⁷ and R¹⁸, taken together with the nitrogen atom to which they are attached form Het¹ where Het¹ is substituted with oxo on a carbon atom adjacent to the ring nitrogen atom, or R¹⁷ and R¹⁸, taken together with the nitrogen atom to which they are attached, form an aromatic heterocycle selected from the group consisting of pyrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, and 1,2,4-triazolyl,

said aromatic heterocycle optionally being substituted with 1 to 2 halo substituents, or substituted with 1 to 2 (C₁-C₄)alkyl substituents optionally further substituted with 1 to 3 fluoro substituents, or mono substituted with fluoro, nitro, cyano, SCF₃, or (C₁-C₄)alkoxy optionally further substituted with 1 to 3 fluoro substituents, and

- optionally further substituted with a (C₁-C₄)alkyl substituent optionally further substituted with 1 to 3 fluoro substituents;
- R^{49} is $(C_1 C_6)$ alkyl optionally substituted with 1 to 6 fluoro substituents, $(C_3 C_7)$ cycloalkyl $(C_0 C_3)$ alkyl, $Ar^2 (C_0 C_3)$ alkyl, or $Ph^4 (C_0 C_3)$ alkyl,
- R^{20} -is $(C_4$ - $C_6)$ alkyl-optionally substituted with 1 to 6 fluoro substituents, $(C_3$ - $C_7)$ cycloalkyl- $(C_0$ - $C_3)$ alkyl, Ar^2 - $(C_0$ - $C_3)$ alkyl, or Ph^4 - $(C_0$ - $C_3)$ alkyl,
- R²¹ is hydrogen or (C₁-C₄)alkyl optionally substituted with 1 to 6 fluoro substituents, or R²⁰ and R²¹, taken together with the nitrogen atom to which they are attached, form Het¹;
- R^{22} -is (C_4-C_6) alkyl-optionally substituted with 1-to 6 fluoro substituents, (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl, $R^{23}-O$, $Ph^4-(C_0-C_3)$ alkyl, $Ar^2-(C_0-C_3)$ alkyl, or $R^{32}R^{33}N$;
- R^{23} is (C_4-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, $Ph^4-(C_0-C_3)$ alkyl, or $Ar^2-(C_0-C_3)$ alkyl;
- R^{24} is (C_1-C_6) alkoxy (C_2-C_5) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_1-C_6) alkylthio (C_2-C_5) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_1) alkyl $-O-(C_1-C_5)$ alkyl,
 - (C_3-C_7) cycloalkyl (C_0-C_1) alkyl-S- (C_1-C_5) alkyl, phenyl (C_1-C_3) n-alkyl, Ph 2 - (C_1-C_3) -n-alkyl, Ar 2 (C_0-C_3) n-alkyl, phenyl (C_0-C_1) alkyl-O-

 - where Ar³ is a bi-cyclic moiety selected from a group consisting of indanyl, indolyl, dihydrobenzofuranyl, benzofuranyl, benzothiophenyl, benzoxazolyl, benzothiazolyl, benzo[1,3]dioxolyl, naphthyl, dihydrobenzopyranyl, quinolinyl, isoquinolinyl, and benzo[1,2,3]thiadiazolyl,
 - said Ar³ optionally being substituted with (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, phenyl(C₀-C₁)alkyl optionally further substituted with 1 to 6 fluoro substituents, or substituted with (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, or substituted with 1-3 substituents independently selected from the group consisting of halo, oxo, methyl, and -CF₃.
 - said phenyl(C_1 - C_3) n-alkyl, Ph^2 -(C_1 - C_3) n-alkyl, or $Ar^2(C_0$ - C_3) n-alkyl optionally being substituted on the n-alkyl moiety when present with (C_1 - C_3)alkyl, dimethyl, gem-ethano, 1 to 2 fluoro substituents, or (C_1 - C_6)alkyl-C(O)-,

- said Ar²(C₀-C₃) *n*-alkyl being alternatively optionally substituted with a substituent selected from the group consisting of (C₃-C₇)cycloalkyl-(C₀-C₃)alkyl, Het¹-(C₀-C₃)alkyl, pyridyl-(C₀-C₃)alkyl, phenyl-(C₀-C₃)alkyl, pyridyl-(C₀-C₃)alkyl-NH-, phenyl-(C₀-C₃)alkyl-NH-, (C₁-C₆)alkyl-S-, and (C₃-C₇)cycloalkyl-(C₀-C₃)alkyl-S-, and optionally further substituted with one methyl, -CF₃, cyano, or -SCF₃ substituent, or with 1 to 2 halo substituents, said pyridyl-(C₀-C₃)alkyl and phenyl-(C₀-C₃)alkyl optionally being further substituted with 1-3 substituents independently selected from halo, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -SCF₃, and
- said Ph²-(C₁-C₃) n-alkyl and Ar²(C₀-C₃) n-alkyl where Ar² is pyridyl, also optionally being substituted on the phenyl or Ar² moiety, respectively, with phenyl-CH=CH-or phenyl-C=C-,
 - said phenyl-CH=CH- or phenyl-C≡C- being optionally further substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and
- said Ar²(C₀-C₃) *n*-alkyl where Ar² is pyridyl, alternatively, optionally being substituted with (C₁-C₆)alkyl-C(O)- or R²⁸R²⁹N-C(O)-, and optionally further substituted with one methyl, -CF₃, cyano, or -SCF₃ substituent, or with 1 to 2 halo substituents,
- said phenyl(C₀-C₁)alkyl-O-(C₁-C₅)alkyl, or phenyl(C₀-C₁)alkyl-S-(C₁-C₅)alkyl optionally being substituted on the phenyl moiety with (C₁-C₂)-S(O)₂-, or with 1 to 5 independently selected halo substituents, or with 1 to 3 substituents independently selected from the group consisting of halo, cyano, –SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and said pyridyl-(C₀-C₁)alkyl-C(O)NH-(C₂-C₄)alkyl and pyridyl-(C₀-C₁)alkyl-NH-C(O)NH-(C₂-C₄)alkyl optionally being substituted on the pyridyl moiety with methyl, -CF₃, or 1 to 3 halo substituents;

 R^{25} is hydrogen, (C₁-C₃)alkyl optionally substituted with 1 to 6 fluoro substituents, or allyl; R^{26} is hydrogen, (C₁-C₄)alkyl optionally substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, Ph¹-(C₀-C₃)alkyl, or Het²-(C₀-C₃)alkyl;

- R^{27} is hydrogen or (C_1-C_4) alkyl optionally substituted with 1 to 6 fluoro substituents, or R^{26} and R^{27} , taken together with the nitrogen atom to which they are attached, form Het¹;
- R^{28} is (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl, tetrahydropyran-3-yl (C_0-C_3) alkyl, tetrahydropyran-4-yl (C_0-C_3) alkyl, tetrahydrofuranyl (C_0-C_3) alkyl, $Ph^1-(C_0-C_2)$ n-alkyl, or $Ar^2-(C_0-C_2)$ n-alkyl, said $Ph^1-(C_0-C_2)$ n-alkyl and $Ar^2-(C_0-C_2)$ n-alkyl optionally being substituted on the alkyl moiety when present with (C_1-C_3) alkyl, dimethyl, or gem-ethano;
- R^{29} is hydrogen or (C_1-C_3) alkyl;
- R^{30} is hydrogen, (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, $Ph^1-(C_0-C_3)$ alkyl, or $Ar^2(C_0-C_3)$ alkyl,
- R³¹ is hydrogen or (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, or R³⁰ and R³¹, taken together with the nitrogen atom to which they are attached, form Het¹, said Het¹ also optionally being substituted with phenyl optionally further substituted with 1 to 3 halo substituents;
- R³² and R³³ are each independently hydrogen or (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, or R³² and R³³, taken together with the nitrogen atom to which they are attached, form Het¹, or R³² is Ph¹(C₀-C₁)alkyl provided that R²³ is hydrogen;
- Ar¹ is an aromatic heterocycle substituent selected from the group consisting of furanyl, thiophenyl, thiozolyl, oxazolyl, isoxazolyl, pyridyl, and pyridazinyl, any of which may optionally be substituted with 1 to 3 substituents independently selected from the group consisting of halo, (C₁-C₂)alkyl, (C₁-C₂)alkoxy, -CF₂, O-CF₂, nitro, cyano, and trifluoromethylthio;
- Ar² is an aromatic heterocycle substituent selected from the group consisting of pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, furanyl, oxazolyl, isoxazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, thiophenyl, thiazolyl, isothiazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, pyridyl, pyridazinyl, and benzimidazolyl, any of which may optionally be substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, –SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and wherein pyridyl and pyridazinyl may also optionally be substituted with (C₁-C₆)alkylamino optionally further substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, or (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-amino;

- Het¹ is a saturated, nitrogen-containing heterocycle substituent selected from the group consisting of azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, morpholinyl, thiomorpholinyl, homomorpholinyl, and homothiomorpholinyl, any of which may optionally be substituted with (C_1-C_6) alkyl or with 2 methyl substituents;
- Het² is a saturated, oxygen-containing heterocycle substituent selected from the group consisting of tetrahydrofuranyl, tetrahydropyranyl, and oxepinyl, any of which may optionally be substituted with (C₁-C₆)alkyl or with 2 methyl substituents;
- Ph¹ is phenyl optionally substituted with 1 to 5 independently selected halo substituents, or with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents;

Ph² is phenyl substituted with:

- a) 1 to 5 independently selected halo substituents; or
- b) 1 to 3 substituents independently selected from the group consisting of halo, cyano, SCF₃, nitro, hydroxy, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents; or
- c) 0, 1, or 2 substituents independently selected from the group consisting of halo, cyano,
 -SCF₃, methyl, -CF₃, methoxy, -OCF₃, nitro, and hydroxy, together with one substituent selected from the group consisting of
 - i) (C₁-C₁₀)alkyl optionally further substituted with 1 to 6 fluoro substituents or mono-substituted with hydroxy, (C₁-C₆)alkoxy, (C₁-C₆)alkyl-C(O)-, (C₁-C₆)alkyl-S(O)-, (C₃-C₇)cycloalkyl(C₀-C₃)alkyloxy, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-S(O)-, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-S(O)₂-, Het²-(C₀-C₃)alkyloxy, Het²-(C₀-C₃)alkyl-S(O), Het²-(C₀-C₃)alkyl-S(O)₂, Ph¹-(C₀-C₃)alkyloxy, Ph¹-(C₀-C₃)alkyl-S(O)-, Ph¹-(C₀-C₃)alkyl-S(O)₂-,
 - ii) C_1 - C_{10})alkoxy- $(C_0$ - C_3)alkyl optionally further substituted with 1 to 6 fluoro substituents, and optionally further substituted with hydroxy,
 - iii) (C₁-C₆)alkyl-C(O)-(C₀-C₃)alkyl optionally further substituted with 1 to 6 fluoro substituents,
 - iv) carboxy,
 - v) (C₁-C₆)alkoxycarbonyl optionally further substituted with 1 to 6 fluoro substituents,

- vi) (C₁-C₆)alkyl-C(O)-(C₀-C₃)-O- optionally further substituted with 1 to 6 fluoro substituents,
- vii) (C₁-C₆)alkylthio-(C₀-C₃)alkyl optionally further substituted with 1 to 6 fluoro substituents,
- viii) (C₁-C₆)alkylsulfinyl-(C₀-C₃)alkyl optionally further substituted with 1 to 6 fluoro substituents,
- ix) (C₁-C₆)alkylsulfonyl-(C₀-C₃)alkyl optionally further substituted with 1 to 6 fluoro substituents,
- x) (C_1-C_6) alkylsulfonyl- (C_0-C_1) alkyl-O- optionally further substituted with 1 to 6 fluoro substituents,
- xi) (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, optionally further substituted on the cycloalkyl with 1 to 4 substituents selected from methyl and fluoro,
- xii) (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-O-, optionally further substituted on the cycloalkyl with 1 to 4 substituents selected from methyl and fluoro,
- xiii) (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-C(O)-,
- xiv) (C_3-C_7) cycloalkyl (C_0-C_3) alkyl-O-C(O)-,
- xv) (C_3-C_7) cycloalkyl (C_0-C_3) alkyl-S- (C_0-C_3) alkyl,
- xvi) (C_3-C_7) cycloalkyl (C_0-C_3) alkyl- $S(O)-(C_0-C_3)$ alkyl,
- xvii) (C_3-C_7) cycloalkyl (C_0-C_3) alkyl $-S(O)_2-(C_0-C_3)$ alkyl,
- xviii) Ph¹-(C₀-C₃)alkyl, optionally substituted on the alkyl moiety with 1 to 2 fluoro substituents,
- xix) Ph¹-(C₀-C₃)alkyl-O-, optionally substituted on the alkyl moiety with 1 to 2 fluoro substituents
- $Ph^1-(C_0-C_3)alkyl-C(O)-$
- xxi) Ph^1 -(C₀-C₃)alkyl-O-C(O)-,
- xxii) Ph^1 -(C₀-C₃)alkyl-C(O)-(C₀-C₃)alkyl-O-,
- xxiii) Ph^{1} -(C_{0} - C_{3})alkylthio,
- xxiv) Ph^{1} - $(C_{0}$ - C_{3})alkylsulfinyl,
- xxv) Ph¹-(C₀-C₃)alkylsulfonyl,
- xxvi) $Ar^2(C_0-C_3)$ alkyl,
- xxvii) Ar²(C₀-C₃)alkyl-O-
- xxviii) Ar²-(C₀-C₃)alkyl-S-,
- xxix) $Ar^2(C_0-C_3)alkyl-C(O)-,$

```
Ar^2(C_0-C_3)alkyl-C(S)-,
```

$$x1$$
) $R^{26}R^{27}N$ -,

xli)
$$R^{28}R^{29}$$
-N-(C₁-C₃)alkoxy,

xlii)
$$R^{28}R^{29}N-C(O)-$$
,

xliii)
$$R^{28}R^{29}N-C(O)-(C_1-C_3)alkyl-O-,$$

xliv)
$$R^{28}R^{29}N-C(S)-$$
,

$$xlv$$
) $R^{30}R^{31}N-S(O)_{2}$ -,

or a pharmaceutically acceptable salt thereof, subject to the following provisos:

- e) when R³ is methyl, then R² and R⁴ are each hydrogen.
- 2. (Cancelled)
- 3. (Previously Presented) A compound according to Claim 1 wherein R⁷ is chloro.
- 4.-8. (Cancelled)
- 9. (Cancelled)

- 10. (Currently Amended) A compound according to Claim 9 $\underline{1}$ wherein R^{24} is Ph^2 -(C₁-C₃) n-alkyl-.
- 11. (Currently Amended) A compound according to Claim $9 \underline{1}$ wherein R^{24} is Ar^2 -(C₁-C₃) n-alkyl-.
- 12. (Currently Amended) A compound according to Claim 9 $\underline{1}$ wherein R^{24} is Ph^2 -(C_1 - C_3) n-alkyl- or Ar^2 -(C_1 - C_3) n-alkyl-, and R^{25} is hydrogen.
 - 13. (Cancelled)
 - 14. (Cancelled)
 - 15. (Cancelled)
- 16. (Previously Presented) A pharmaceutical composition comprising a compound according to Claim 1 as an active ingredient in association with a pharmaceutically acceptable carrier, diluent or excipient.
 - 17. (Cancelled)
- 18. (Original) A method for the treatment of obesity in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
 - 19. (Original) The method of Claim 18, where the mammal is human.
- 20. (Previously Presented) A method for the treatment of obsessive compulsive disorder in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
 - 21. (Original) The method of Claim 20, where the mammal is human.

- 22. (Cancelled)
- 23. (Cancelled)
- 24. (Original) A method for the treatment of anxiety in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
 - 25. (Original) The method of Claim 24, where the mammal is human.
 - 26. 37 (Cancelled)
- 38. (New) The compound according to Claim 1 which is 7-chloro-6-[4-(*t*-butyl-sulfonylmethyl)-benzylamino]-2,3,4,5-tetrahydro-1*H*-benzo[*d*]azepine or a pharmaceutically acceptable salt thereof.
- 39. (New) A pharmaceutical composition comprising a compound according to Claim 38 as an active ingredient in association with a pharmaceutically acceptable carrier, diluent or excipient.
- 40. (New) A method for the treatment of obesity in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 38.
 - 41. (New) The method of Claim 40, where the mammal is human.
- 42. (New) A method for the treatment of obsessive compulsive disorder in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 38.
 - 43. (New) The method of Claim 42, where the mammal is human.

- 44. (New) A method for the treatment of depression in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 38.
 - 45. (New) The method of Claim 44, where the mammal is human.
- 46. (New) A method for the treatment of anxiety in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 38.
 - 47. (New) The method of Claim 46, where the mammal is human.