<Tu vstavi zelo dober naslov >

Rok Mlinar Vahtar

August 2023

1 Uvod

< tu vstavi fenomenalno napisan uvod >

2 Standardni TFIM model

Hamiltonian za standardni Isingov model z tranzverzalnim poljem se glasi

$$\hat{H} = \sum_{\langle i,j \rangle} -J \hat{\sigma_i^z} \hat{\sigma_j^z} - h \sum_i \hat{\sigma_i^x}$$
 (1)

in ga za dimenzije N < 10 lahko rešimo z eksaktno diagonalizacijo v doglednem času.

2.1 Eksaktna diagonalizacija TFIM modela

Da izvedemo eksaktno diagonalizacijo moramo najprej sestaviti matriko, ki predstavlja hamiltonian. Najprej moramo določiti bazo, ki jo bomo uporabljali, saj hočemo, da za vektor \vec{x} , ki bo predstavljal stanje velja naslednje: $\vec{x}^T \hat{H} \vec{x} = E$, kjer je E energija tega stanja. Bazni vektorji morajo skupaj predstavljati vsa možna stanja z-projekcije vseh N spinov. Če si za bazo izberemo stanja, tako da je n-to stanje enako kot binarno zapisan n (Peto stanje je 0...000101), kjer 0 in 1 predstavljata spin dol in gor, lahko hamiltonian zapišmo kot tentzorski produkt Paulijevih matrik in identitet. To pomeni, da za vsak člen v zgornji vsoti, tenzorsko pomnožimo Paulijevi matriki na mestih i in j, ter identitete povsod drugod, v vrstnem redu, kot si sledijo spini v verigi.

Ko je matrika sestavljena jo le še diagonaliziramo z poljubnim algoritmom. Sam uporabljam python metodo scipy.linalg.eigsh, ki izkoristi hermitskost in redkost naše matrike, v zameno za to, da lahko izračuna le nekatere izmed lastnih vektorjev. Ker nas v resnici zanima le osnovno stanje, nam to ne dela težav, saj vedno lahko najdemo lastni vektor z najnižjo energijo.

Sedaj, ko imamo diagonaliziran hamiltonian, se lahko lotimo analize. Dobra mera za stanje sistema, ki nas bo tu zanimala, je magnetizacija, ki jo definiramo kot:

$$M = \frac{1}{N} \sum_{i=0}^{N} \sigma_i^z \tag{2}$$

Vse naslednje metode, predstavljene v tem poglavju se nahajajo v datoteki TFIM_QuSpin.py . Če fiksiramo J=1 in variiramo h, ter vsakič izračunamo magnetizacijo, dobimo naslednji graf, ki kaže fazni prehod pri $h\approx J$. To opravlja funkcija main().

Če želimo videti, kako se, ko $N \to \infty$, magnetizacija približuje stopnici, si lahko obledamo tudi ta graf.

Če variiramo oba J in h lahko narišemo 3D in contour grafa, na katerih opazimo pričakovane lastnosti, kot so simetrija čez ravnino h = 0 in pa feromagnetno in antiferomagnetno obnašanje za J > 0 in J < 0.

Grafa narisana preko plot3d() in plot_contour().

3 Sklopljeni verigi

Hamiltonian se glasi

$$\hat{H} = \sum_{\langle i,j \rangle} -J\hat{\sigma}_{1i}^{\hat{z}}\hat{\sigma}_{1j}^{\hat{z}} + \sum_{\langle i,j \rangle} -J\hat{\sigma}_{2i}^{\hat{z}}\hat{\sigma}_{2j}^{\hat{z}} - h\sum_{i}\hat{\sigma}_{1i}^{\hat{x}} - h\sum_{i}\hat{\sigma}_{2i}^{\hat{x}} - J_{T}\sum_{i}\hat{\sigma}_{1j}^{\hat{z}}\hat{\sigma}_{2i}^{\hat{z}}$$
(3)

in ga za dimenzije N<10 lahko rešimo z direktno diagonalizacijo v doglednem času. Vse naslednje metode, predstavljene v tem poglavju se nahajajo v datoteki TFIM_QuSpin_2.py . Dobra mera za stanje sistema, ki nas bo tu zanimala, je magnetizacija, ki jo definiramo kot:

Če vari
iramo oba hter J_T pri fiksne
mJ=1lahko narišemo 3D in contour grafa

Grafa narisana preko plot3d() in plot_contour().