Departamento de Matemática da Universidade de Aveiro

ANÁLISE MATEMÁTICA II - 2° sem. 2010/11

EXERCÍCIOS 3

- 1. Determine os polinómios de Taylor de grau k centrado em c das seguintes funções para os valores indicados:
 - a) $f(x) = x^2 + 3x + 1$; k = 2, c = 0.
 - b) $f(x) = \ln x$; k = 4, c = 1.
 - c) $f(x) = \arccos x$; k = 3, $c = \frac{1}{2}$

d)

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0, \\ 0, & x = 0; \text{ onde } k \in \mathbb{N}, \ c = 0. \end{cases}$$

- 2. Usando o resto na forma de Lagrange, determine um majorante para o erro que se comete, em cada uma das alíneas do exercício 1, ao aproximar a função f em causa pelo polinómio de Taylor de grau k, num intervalo de amplitude 0,2 centrado no ponto c.
- 3. Determine a linearização e a aproximação quadrática das funções f dadas, nos pontos c indicados, e, em cada alínea, esboce os seus gráficos juntamente com o da função:

(a)
$$f(x) = x^3$$
; $c = 1$. (b) $f(x) = e^x$, $c = 0$.

(b)
$$f(x) = e^x$$
, $c = 0$

(c)
$$f(x) = \ln x$$
; $c = 1$

(c)
$$f(x) = \ln x$$
; $c = 1$. (d) $f(x) = \sqrt{2 - x^2}$; $c = 1$.

(e)
$$f(x) = \sqrt{2 - x^2}$$
; $c = 0$. (d) $f(x) = \cosh x$; $c = 0$.

(d)
$$f(x) = \cosh x$$
; $c = 0$.

4. Determine, com um erro inferior a 10⁻⁴, os seguintes integrais via manipulação de séries adequadas:

a)

$$\int_0^1 e^{-t^2} dt$$

b)

$$\int_0^\pi \frac{\sin t}{t} dt$$

c)

$$\int_0^1 \frac{\arctan t}{t} dt$$

5. Mostre que

$$\int_0^1 x^{-x} dx = \sum_{n=1}^\infty \frac{1}{n^n}$$