	Date
	Name:- Rohini J. Devkar
	Roll no:- 23272
	PRN no:- 72030818G
	TF-2
	DSBDA Practical
	Practical No. 5
	Aim:-1] Implement logistic regression using Python/R to perform classification on Social-Network ADS-CSV dataset
	2] Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, From Rate,
	Precision, Recall on the given dataset
	Theory:
*	Logistic Regression:
	logistic Regression is a fundamental classification technique.
	It belongs to the group of linear classifiers and is somewhat similar to
	polynomial and linear regression. Logistic regression is fast and relatively
)	uncomplicated, and it's convienient, and it's con for you to interpret the results.
	Although, it's essentially a method for binary classification, it can also be
- 212 (62)	applied to multiclass problems.
	O Logistic regression is one of the predicts the output of a rategorical dependent
	variable. Therefore the outcome must be a categorical or discrete value. It can
	be either yes or no, 0 or 1, true or false, etc. but instead of giving the
	exact value as o and 1, it gives the probabilistic values lie between 0 and 1
	o In logistic regression, instead of fitting a regression line, we fit an "3"
To be constant	shaped logistic function, which predicts two maximum values (0 or 1).

de	Type of Logistic Regression:							
	1) Binomial: - In binomial logistic regression, there can be only							
	two possible types of the dependent variables, such as 0 or 1							
	Pass or fail, etc.							
	2) Multinomial:- In multinomial logistic regression, there can be							
	3 or more possible unordered types of the dependent							
	variable, such as "cat", "dogs", or "sheep".							
	Caragoritar Str. 1973							
	3) Ordinal: In ordinal logistic regression, there can be 3 or							
	more possible ordered types of dependent variables,							
	such as "low", "medium", or "high".							
*	Steps in Logistic Regression:							
	1) Data Pre-processing step							
	2> Fitting logistic regression to the training set.							
	9) Predicting the test result.							
	4) Test accuracy of the result (creation of confusion matrix)							
	5) Visualizing the test set result.							
			Action Comment	All broadening	SPERIOLES			
4	Confusion Matrix of Logistic regression:							
	The confusion matrix is a two by two table that contain							
	four outcomes produced by a binary classifier.							
	0.0.1.10		The Art of					
	Confusion matrix		Predicted					
		0.810	Positive	Negative	N. CAS			
	Observed	Positive	TP I	FN	Are en (E)			
		Negative	I FP	L TN I				

Page No.
Page No.
ction No, the real or actual
d yes, and the actual value
ed yes, no and but the
, it is also called as Type-I
, it is also latter as type in
ted yes but the actual value
Type-I error,
el, such as model's accuracy,
263.7

- The above table has given following cases:

• True Negative: model has given prediction No. the real or actual value was also No.

• True positive: The model has predicted yes, and the actual value was also true.

• False Negative: The model has predicted yes, no and but the actual arabue was Yes, it is also called as Type-II error:

• False Positive: - The model has predicted yes but the actual value was the notific is called Type - I error.

- We can perform various calculations for the model, such as model's accuracy, using this matrix. These calculations are given below:

D Accuracy: It is calculated as the number of all correct predictions divided by the total number of the dataset. The best accuracy is 1.0, whereas the worst is 0.0.

 $ACC = \frac{TP+TN}{TP+TN+FN+FP} = \frac{TP+TN}{P+N}$

② From Rate: From Rate is calculated as the number of all incorrect predictions divided by the total number of the dataset. The best error rate is 0.0. whereas the worst is 1.0.

FRR = FP+FN = FP+FN
TP+TN+FN+FP P+N

3 Precision: - Presision is calculated as the number of correct positive predictions divided by the total number of positive predictions.

It is also called positive predictive value (PPV). The best precision is 1.0, whereas the worst is 0.0.

PREC = TP TP+FP

						Date					
	4) R	4) Recall :- It is calculated as the number of correct positive									
	predictions divided by the total number of positives										
	or positive observations. It is also called as Sensitivity or True positive rate. The best recall is 1.0, whereas the worst is 0.0. SN = TP = TP TP+FN P										
*	In this	practical, we	2 цэе 9ос	cial_Netwo	rk_Ads.cav	dataset for					
logistic regression.											
	No	w, we find	confusion	matrix usi	ng this do	ataset.					
	We kn	000,	u it self sel		journe sorg	100 (00)					
		P= Con	fusion maj	mix is,	LA TENNETH	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
				Pred	icted						
	0.00	and the train	19 11 11 11 11 11 11 11 11 11 11 11 11 1	+ve	-46	(Maximal Cal					
		Observed	446	sad 744 40	5						
			-46	The House	30						
	TP = 74 FN = 5 FP = 11 , TN = 30										
	then,			to make di	12 1 4 9 F 5 G - 1 9 F	A CONTRACTOR OF THE PROPERTY O					
	1) Acc = TP+TN = 74+30 = 0.875 P+N 120										
	2) Em 8	P+r	N = ₹.	5+11 = 0 120	.458						
	9) Prec = TP = 74 = 0.870 TP+FP 74+11 4) Recall = TP = 74 = 0.936 TP+FN 74+5										
100.4		(A) (\$4-4)(B) (S)	111111111111111111111111111111111111111	torn kalend	10 to 10 11						
*	Conclusio	n:- logistic	regression	n works fin to not have	e only wh	en the target variable is ty to act as regression					
	, and	al ysis.			<u> </u>						

Data Science And Big Data Analytics

Name: - Rohini Janardan Devkar

PRN NO:- 72030818G

Roll no:- 23272

Class:- TE 2(COMP)

Problem statement:-

Implement logistic regression using Python/R to perform classification on Social_Network_Ads.csv dataset

Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

```
In [21]:
          #importing Libraries
          import numpy as nm
          import matplotlib.pyplot as mtp
          import pandas as pd
In [22]:
          #importing datasets
          data_set= pd.read_csv('Social_Network_Ads.csv')
In [24]:
          #Checking the dataset
          dataset.head()
Out[24]:
             User ID Gender Age EstimatedSalary Purchased
         0 15624510
                                                       0
                       Male
                              19
                                         19000
         1 15810944
                                         20000
                       Male
                              35
                                                       0
         2 15668575 Female
                              26
                                         43000
         3 15603246 Female
                              27
                                         57000
                                                       0
         4 15804002
                       Male
                             19
                                         76000
                                                       0
          #Check the metadata
          dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 400 entries, 0 to 399
         Data columns (total 5 columns):
          # Column
                      Non-Null Count Dtype
```

```
User ID
                                 400 non-null
                                                  int64
           0
           1
               Gender
                                 400 non-null
                                                  object
           2
               Age
                                 400 non-null
                                                  int64
               EstimatedSalary 400 non-null
                                                  int64
           3
           4
               Purchased
                                 400 non-null
                                                  int64
          dtypes: int64(4), object(1)
          memory usage: 15.8+ KB
In [26]:
           #Chceking the null values
           dataset.isnull().sum()
          User ID
Out[26]:
          Gender
                              0
                              0
          Age
          EstimatedSalary
                              0
          Purchased
                              0
          dtype: int64
           #Check its dimensions
           dataset.shape
          (400, 5)
Out[27]:
In [28]:
           #Plot UserID vs Purchased.....
           x1 = dataset.iloc[:, 0].values
           y1 = dataset.iloc[:, 4].values
           plt.scatter(x1,y1,color='Orange',s=50)
           plt.xlabel('UserID')
           plt.ylabel('Purchased')
           plt.title('UserID vs Purchased')
           plt.show()
                                UserID vs Purchased
            1.0
            0.8
          Purchased
9.0
9.0
            0.2
            0.0
                               1.565
                                                  1.575
                      1.560
                                        1.570
                                                           1.580
                                                               le7
                                      UserID
In [29]:
```

```
#Plot Gender vs Purchased.....
x1 = dataset.iloc[:, 1].values
y1 = dataset.iloc[:, 4].values
plt.scatter(x1,y1,color='pink',s=50)
plt.xlabel('Gender')
plt.ylabel('Purchased')
```

```
plt.title('Gender vs Purchased')
plt.show()
```



```
In [32]: #Headmap:-To see the correlation between them!
import seaborn as sns
plt.figure(figsize=(7,4)) #7 is the size of the width and 4 is parts....
sns.heatmap(dataset.corr(),annot=True,cmap='cubehelix_r')
```

Out[32]: <AxesSubplot:>


```
In [33]: #Seperating dependent and indepndent values
    X = dataset.iloc[:, [2, 3]].values
    y = dataset.iloc[:, 4].values
In [34]: print(Y)
```

```
print(X)
[[
      19
           19000]
      35
           20000]
      26
          43000]
      27
          57000]
      19
          76000]
      27
          58000]
      27
          84000]
      32 150000]
      25
          33000]
```

65000] [35 26 80000] 26 52000] 20 86000] 32 18000] 18 82000] 29 80000] 47 25000] 26000] 45 46 28000] 48 29000] 45 22000] 47 49000] 48 41000] 45 22000] 46 23000] 47 20000] 49 28000] 47 30000] 29 43000] 31 18000] 31 74000] 27 137000] 21 16000] 28 44000] 27 90000] 35 27000] 33 28000] 30 49000] 26 72000] 27 31000] 27 17000] 33 51000] 35 108000] 30 15000] 28 84000] 23 20000] 25 79000] 27 54000] 30 135000] 31 89000] 24 32000] 18 44000] 29 83000] 35 23000] 27 58000] 24 55000] 23 48000] 28 79000] 22 18000] 32 117000] 27 20000] 25 87000] 23 66000] 32 120000] 59 83000] 24 58000] 24 19000] 23 82000] 22 63000]

31 68000] [25 80000] 24 27000] 20 23000] 33 113000] 32 18000] 34 112000] 18 52000] 22 27000] 28 87000] 26 17000] 30 80000] 39 42000] 20 49000] 35 88000] 30 62000] 31 118000] 24 55000] 28 85000] 26 81000] 35 50000] 22 81000] 30 116000] 26 15000] 29 28000] 29 83000] 35 44000] 35 25000] 28 123000] 35 730001 28 37000] 27 88000] 28 59000] 32 86000] 33 149000] 19 21000] 21 72000] 26 35000] 27 89000] 26 86000] 38 80000] 39 71000] 37 71000] 38 61000] 37 55000] 42 80000] 40 57000] 35 75000] 36 52000] 40 59000] 41 59000] 36 75000] 37 72000] 40 75000] 35 53000] 41 51000] 39 61000] 42 65000] 26 32000] 30 17000]

26 84000] [31 58000] 33 31000] 30 87000] 21 68000] 28 55000] 23 63000] 20 82000] 30 107000] 28 59000] 19 25000] 19 85000] 18 68000] 35 59000] 30 89000] 34 25000] 24 89000] 27 96000] 41 30000] 29 61000] 20 74000] 26 15000] 41 45000] 31 76000] 36 50000] 40 47000] 31 15000] 46 59000] 29 75000] 26 300001 32 135000] 32 100000] 25 90000] 37 33000] 35 38000] 33 69000] 18 86000] 22 55000] 35 71000] 29 148000] 29 47000] 21 88000] 34 115000] 26 118000] 34 43000] 34 72000] 23 28000] 35 47000] 25 22000] 24 23000] 31 34000] 26 16000] 31 71000] 32 117000] 33 43000] 33 60000] 31 66000] 20 82000] 33 41000] 35 72000]

28 32000] [24 84000] 19 26000] 29 43000] 19 70000] 28 89000] 34 43000] 30 790001 20 36000] 26 80000] 35 22000] 35 39000] 49 74000] 39 134000] 41 71000] 58 101000] 47 47000] 55 130000] 52 114000] 40 142000] 46 22000] 48 96000] 52 150000] 59 42000] 35 58000] 47 43000] 60 108000] 49 65000] 40 78000] 46 960001 59 143000] 41 80000] 35 91000] 37 144000] 60 102000] 35 60000] 37 53000] 36 126000] 56 133000] 40 72000] 42 80000] 35 147000] 39 42000] 40 107000] 49 86000] 38 112000] 46 79000] 40 57000] 37 80000] 46 82000] 53 143000] 42 149000] 38 59000] 50 88000] 56 104000] 41 72000] 51 146000] 35 50000] 57 122000] 41 52000]

35 97000] 44 39000] 37 52000] 48 134000] 37 146000] 50 44000] 52 900007 41 72000] 40 57000] 58 95000] 45 131000] 35 77000] 36 144000] 55 125000] 35 72000] 48 90000] 42 108000] 40 75000] 37 74000] 47 144000] 40 61000] 43 133000] 59 76000] 60 42000] 39 106000] 57 26000] 57 74000] 38 71000] 49 88000] 52 380001 50 36000] 59 88000] 35 61000] 37 70000] 52 21000] 48 141000] 37 93000] 37 62000] 48 138000] 41 79000] 37 78000] 39 134000] 49 890001 55 39000] 37 77000] 35 57000] 36 63000] 42 73000] 43 112000] 45 79000] 46 117000] 58 38000] 48 74000] 37 137000] 37 79000] 40 60000] 42 54000] 51 134000] 47 113000] 36 125000]

38 50000] 42 70000] 39 96000] 38 50000] 49 141000] 39 79000] 39 75000] 54 1040001 35 55000] 45 32000] 36 60000] 52 138000] 53 82000] 41 52000] 48 30000] 48 131000] 41 60000] 41 72000] 42 75000] 36 118000] 47 107000] 38 51000] 48 119000] 42 65000] 40 65000] 57 60000] 36 54000] 58 144000] 35 79000] 38 550001 39 122000] 53 104000] 35 75000] 38 65000] 47 51000] 47 105000] 41 63000] 53 72000] 54 108000] 39 77000] 38 61000] 38 113000] 37 75000] 42 90000] 37 57000] 36 99000] 60 34000] 54 70000] 41 72000] 40 71000] 42 54000] 43 129000] 53 34000] 47 50000] 42 79000] 42 104000] 59 29000] 58 47000] 46 88000] 38 71000]

```
54 26000]
         [
             60 46000]
             60 83000]
             39 73000]
             59 130000]
             37 80000]
             46 32000]
             46 740001
             42 53000]
             41 87000]
             58 23000]
             42 64000]
             48 33000]
             44 139000]
             49 28000]
             57 33000]
             56 60000]
             49 39000]
             39 71000]
             47 34000]
             48 35000]
             48 33000]
             47 23000]
             45 45000]
             60 42000]
             39 59000]
             46 41000]
             51 23000]
             50 20000]
             36 33000]
             49 36000]]
In [35]:
        # Splitting the dataset into the Training set and Test set
        from sklearn.model_selection import train_test_split
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_stat
        # Feature Scaling
        from sklearn.preprocessing import StandardScaler
         sc = StandardScaler()
        X_train = sc.fit_transform(X_train)
        X_test = sc.transform(X_test)
In [38]:
        # Fitting Logistic Regression to the Training set
        from sklearn.linear_model import LogisticRegression
         classifier = LogisticRegression(random_state = 0)
        classifier.fit(X_train, y_train)
        LogisticRegression(random_state=0)
Out[38]:
In [45]:
        # Predicting the Test set results
        y_pred = classifier.predict(X_test)
        print(y_pred)
```

```
0 0 1 1 1 1 0 1 1]
In [40]:
         # Making the Confusion Matrix
         from sklearn.metrics import confusion_matrix
         cm = confusion_matrix(y_test, y_pred)
         print(cm)
         [[74 5]
          [11 30]]
In [41]:
         #Accuray=(TN+TP)/Total+
         Accuracy=(74+31)/120
         Accuracy
        0.875
Out[41]:
In [42]:
         #Error_rate=(FN+FP)/Total
         Error_rate=(5+10)/120
         Error_rate
Out[42]:
In [43]:
         # Visualising the Training set results
         from matplotlib.colors import ListedColormap
         X set, y set = X train, y train
         X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max()
                             np.arange(start = X set[:, 1].min() - 1, stop = X set[:, 1].max()
          plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X
                      alpha = 0.75, cmap = ListedColormap(('brown', 'yellow')))
         plt.xlim(X1.min(), X1.max())
         plt.ylim(X2.min(), X2.max())
          for i, j in enumerate(np.unique(y_set)):
             plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                         c = ListedColormap(('yellow', 'brown'))(i), label = j)
          plt.title('Logistic Regression (Training set)')
          plt.xlabel('Age')
          plt.ylabel('Estimated Salary')
         plt.legend()
         plt.show()
```

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided a s value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend t o specify the same RGB or RGBA value for all points.

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided a s value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend t o specify the same RGB or RGBA value for all points.


```
In [44]:
          # Visualising the Test set results
          from matplotlib.colors import ListedColormap
          X_set, y_set = X_test, y_test
          X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max()
                               np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max()
          plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X
                       alpha = 0.75, cmap = ListedColormap(('blue', 'black')))
          plt.xlim(X1.min(), X1.max())
          plt.ylim(X2.min(), X2.max())
          for i, j in enumerate(np.unique(y_set)):
              plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                          c = ListedColormap(('black', 'blue'))(i), label = j)
          plt.title('Logistic Regression (Test set)')
          plt.xlabel('Age')
          plt.ylabel('Estimated Salary')
          plt.legend()
          plt.show()
```

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided a s value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend t o specify the same RGB or RGBA value for all points.

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided a s value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all points.

