

Group 17: Amanda Bell, Tim Wang, Jasmine Wong

The Problem: Classifying Leukemia Types

- American Cancer Society estimates that in 2023, almost 60,000 new cases of Leukemia and 23,710 deaths from Leukemia will occur
- 2 types of Leukemia we're looking at:
 - Acute Myeloid Leukemia (AML)
 - Rapid growth of abnormal cells crowd out normal cells in bone marrow and bloodstream
 - More common in older adults
 - Acute Lymphocytic Leukemia (ALL)
 - Rapid growth of abnormal lymphoblasts creates immature white blood cells that are unable to fight infection
- Chronic Myeloid Leukemia (CML) and Chronic Lymphocytic Leukemia (CLL) are two other types
- Difficult to classify types by symptoms alone
- Can we classify certain types of Leukemia using genetics?
 - With machine learning models?

About Our Features

Features

- Gene Description + Accession
 Number
- Numbers for each patient values for gene expression
- Call for each gene for a patient
 - Absent
 - Present
 - Marginal

Kaggle Gene Expression Dataset (Golub et al). DNA Microarray Data

	Gene Description	Gene Accession Number	1	call	2	call.1	3	call.2	4	call.3
0	AFFX-BioB- 5_at (endogenous control)	AFFX-BioB- 5_at	-214	Α	-139	А	-76	А	-135	Α
1	AFFX-BioB- M_at (endogenous control)	AFFX-BioB- M_at	-153	Α	-73	Α	-49	А	-114	Α
2	AFFX-BioB- 3_at (endogenous control)	AFFX-BioB- 3_at	-58	Α	-1	А	-307	А	265	А

About Our Targets

Output

- Predict ALL or AML
- 47 ALL vs 25 AML
- More ALL Data
 - ALL is more common in older adults while AML more commonly affects children

Logistic Regression

- With full feature list, high accuracy (97%)
 - Only 1 misclassification
- With reduced set of features, accuracy drops (88%)

True

Predicted label

- 4 false negatives, predicted AML but should be ALL
- Model already handled 7000+ features well, so perhaps using the reduced feature dataset resulted in a loss of some important features

False

Random Forest Classification

- With full feature list
 - Ok accuracy on train data but not great (76.5%)
 - Same with F1: 0.833
 - Issue with false positives, predicted ALL but should be AML
- After hyperparameter tuning
 - min sample leaf: 2 | min samples split: 9 | n_estimators: 100
 - Accuracy and F1 dropped a bit on test data?

- Feature importance comparison to real life
 - A couple are somewhat linked to AML
 - Others seem less specific to leukemia but definitely can cause dysregulated cell processes with mutation
 - Not the genes you would see if you looked up specific ones for AML and ALL

DF D component of complement (adipsin)

Neuromedin B mRNA

KIAA0022 gene

LEPR Leptin receptor

Transmembrane protein mRNA

CTRB1 Chymotrypsinogen B1

Small nuclear ribonucleoprotein polypept.

SPTAN1 Spectrin; alpha; non-erythrocytic 1 (al... Rhesus (Rh) Blood Group System Ce-Antigen; Alt...

Phosphotyrosine independent ligand p62 for the...

234

5038

2885

1845

0.027093

0.024451

0.020000

0.018851

0.017618

0.017276

0.017112

0.013271

0.011900

KNN Classification

- Used GridSearch to hyperparameter tune
- Found that best neighbors = 4
- Testing Accuracy: 88.24%
- 3 False Positives, meaning predicted ALL for AML

PCA and **PCR**

- Conducted cross-validated PCA on training set
 - Best regression model: 35 principal components
 - Mean squared error: 0.04148
- Tested PCR model using test set, with the following results
 - Mean squared error: 0.06576

Next Steps

- Try a feature selection method for Random Forest Classifier
- Test algorithms on a subset of genes commonly associated with ALL and AML
 - Are they useful in differentiating between the two when not considering all other features?
- Finish coding neural network
- Finish writing documentation for GitHub repo

Our Approaches & Why We Chose Them

Neural Network

Logistic regression

- PCA w/ GridsearchCV
- KNN

Timeline

Date	Task Completed
3/25	Clean Data
4/1	Execute PCA, Logistic, KNN
4/7	Execute Neural Network
4/9	Finish Code Cleaning & Documentation
4/10	Start Report
4/12	Write Report
4/13	Presentation!

