6. 로지스틱 회귀와 서포트 벡터 머신

2022.10.31

Chung-Ang University
AI/ML Innovation Research Center
Hyun-soon Lee

<로지스틱회귀>

목차

- 01 로지스틱 회귀란?
- 02 분류 문제의 성능지표
- 03 로지스틱 회귀 구현하기
- 04 다중클래스 분류와 소프트맥스 분류
- 05 다중클래스 분류를 코드로 구현하기

[강의 PPT 이용 안내]

- 1. 본 강의 PPT에 사용된 [데이터 과학을 위한 파이썬 머신러닝]의 내용에 관한 저작권은 한빛아카데미㈜ 있습니다.
- [데이터 과학을 위한 파이썬 머신러닝]과 관련된 자료를 무단으로 전제하거나 배포할 경우 저작권법 136조에 의거하여 처벌을 받을 수 있습니다.
- 3. 강의에 사용된 교재 이외에 사용된 이미지 데이터 등도 강사명의의 논문 또는 특허 등록 또는 특허 출원 출원 중인 자료들로 무단 사용을 금합니다.

- 분류 문제 : 몇 가지 이산적 값 중 하나를 선택하는 모델. '분류 모델 (classification model)'이라고 부름
- 샘플이 특정 클래스에 속할 확률 추정하는 데 널리 사용됨 [1]
 - 양성 클래스(positive class): 레이블 1인 경우, 추정 확률이 50%가 넘는 경우
 - 음성 클래스(negative class): 레이블이 0인 경우

- 입력 특성의 가중치 합을 계산하고 편향을 더함.
- 선형 회귀처럼 바로 결과를 출력하지 않고 결과값의 로지스틱(logistic)을 출력함

[1] 핸즈온 머신러닝 2판, 오렐리앙 제롱, 한빛미디어

■ [표 9-1]은 GRE와 GPA 데이터를 통해 대학의 합격 여부(Admit 열)를 나타냄

표 9-1 GRE와 GPA 정보를 활용하여 합격 여부를 나타내는 데이터

Number	Admit	GRE	GPA	Number	Admit	GRE	GPA
1	0	380	3,61	16	0	660	3,34 4,00
2	1	660	3,67	17	1	740	
3	1	800	4,00	18	0	560	3,19
4	1	640	3.19 2.93 3.00 2.98	19 20 21 22 23	0 0 0 1	380 400 600 620 560	2,94 3,65 2,82 3,18 3,32 3,67 3,85
5	0	520					
6	1	760					
7	1	560					
8	0	400	3.08				
9	1	540	3,39 3,92	24	0	640	
10	0	700		25	1	680	
11	0	800	4,00	26	0	580	4.00
12	0	440	3,22	27	0	600	3,59
13	1	760	4,00	28	0	740	3,62
14	0	700	3,08	29	0	620	3,30
15	1	700	4.00	30	0	580	3.69

- GRE와 GPA 정보를 산점도로 표현
 - 합격자는 파란색, 불합격자는 빨간색으로 나타냄

- 초록색 선을 추가해 선 상단은 합격, 선 하단은 불합격
 - 아래 수식으로 기존 선형회귀 모델을 적용

$$f(x) = 4 - 0.0013 \times GRE - GPA$$

$$Admit = \begin{cases} 1 & \text{if } f(x) \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

- 문제점:
 - ① f(x)의 값이 1 이상이나 0 이하로 나올 수 있음
 - ② 각 피쳐들이 Y에 영향을 주는 것을 해석하는 문제

1. 로지스틱 회귀의 개념

- 이진 분류(binary classification) 문제를 확률로 표현
- 어떤 사건이 일어날 확률을 P(X)로 나타내고 일어나지 않을 확률을 1 P(x)
 로 나타냄 (0 ≤ P(X) ≤ 1)
- 오즈비(odds ratio) : 어떤 사건이 일어날 확률과 일어나지 않을 확률의 비율

$$\frac{P(X)}{1 - P(X)}$$

1. 로지스틱 회귀의 개념

• 확률이 올라갈수록 오즈비도 급속히 상승

그림 9-2 확률이 올라가면서 오즈비가 상승하는 그래프

1. 로지스틱 회귀의 개념

■ 로짓(logit) 함수 : 오즈비에 상용로그를 붙인 수식

그림 9-3 로짓 함수 그래프

1. 로지스틱 회귀의 개념

- X 값으로 확률을 넣으면 logit(P) 꼴로 나타남
- 확률을 구하려면 기존 함수의 역함수를 취하여 연산

$$f(z) = y = -\log_e\left(\frac{1}{z} - 1\right)$$
$$z = -\log_e\left(\frac{1}{y} - 1\right)$$

$$e^{-z} = \frac{1 - y}{y}$$
$$y \times e^{-z} + y = 1$$
$$y(e^{-z} + 1) = 1$$
$$y = \frac{1}{1 + e^{-z}}$$

1. 로지스틱 회귀의 개념

■ 로지스틱 함수(logistic function) : 로짓 함수의 역함수

• 그래프가 S자 커브 형태인 0과 1사이의 값을 출력하는 시그모이드 함수

(sigmoid function)

1. 로지스틱 회귀의 개념

- 로지스틱 회귀(Logistic Regression): 종속변수가 이분형일 때 수행할 수 있는, 예측 분석을 위한 회귀분석 기법
- 시그모이드 함수 수식
 - y 값을 확률 p로 표현
 - z 값은 선형회귀와 같이 가중치와 피쳐의 선형 결합(linear combination)으로 표현 가능 $\frac{1}{2}$

$$p = \sigma(z) = \frac{1}{1 + e^{-z}}, \ \frac{p}{1 - p} = \frac{\overline{1 + e^{-z}}}{\underline{e^{-z}}} = \frac{1}{e^{-z}} = e^{z}$$

$$\log_e \frac{p}{1-p} = z$$

$$\log_e \frac{p}{1-p} = z = w_0 x_0 + w_1 x_1 + \dots + w_n x_n$$

적절한 z값을 찾으면, 이 값으로 시그모이드 함수를 사용한 0에서 1까지
 의 확률값을 구할 수 있음.

2. 로지스틱 회귀의 기본 함수

2.1 가설함수

■ 가설함수(hypothesis function)

$$h_{\theta}(x) = g(z) = \frac{1}{1 + e^{-z}}$$

- z는 가중치 값과 피쳐 값의 선형 결합, 찾아야하는 것은 가중치 값
- 가중치 값을 찾는 학습을 위해 경사하강법 알고리즘 사용

$$z = w_0 x_0 + w_1 x_1 + \dots + w_n x_n = \theta^T X$$

2. 로지스틱 회귀의 기본 함수

2.2 비용함수

- 먼저 비용함수를 정의하고 예측값과 실제값 간의 차이를 최소화하는 방향으로 학습
- 실제값이 1일 때와 실제값이 0일 때 각각 다르게 비용함수를 정의

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

2. 로지스틱 회귀의 기본 함수

2.2 비용함수

- (a)는 y = 1일 때, (b)는 y = 0일 때 비용함수 그래프(0 ≤ h ≤ 1)
 - (a)에서 h 값이 1에 가까워질수록 비용함수가 0에 가까워짐 (b)에서 h 값이 0에 가까워질수록 비용함수가 0에 가까워짐

그림 9-5 비용함수 그래프

2. 로지스틱 회귀의 기본 함수

2.2 비용함수

- 두 경우의 비용함수를 하나로 통합
- y값이 1일 경우, 오른쪽 항목이 사라짐
- y값이 o인 경우, 왼쪽 항목이 사라짐.

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$
임쪽 항목

2. 로지스틱 회귀의 기본 함수

2.3 비용함수의 미분과 가중치 업데이트

- θ 의 최적값을 구하기 위해 J 값을 θ 에 대해 미분
 - θ 는 z값 안에 있는 w_j 의 집합

$$\frac{\partial}{\partial \partial_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) x_j^i$$

- 가중치 값 업데이트
 - 선형회귀와 동일하게 모든 θ에 대해 동시에 가중치가 업데이트됨

$$egin{aligned} heta_j &= heta_j - lpha rac{\partial}{\partial \partial} J(heta) \ &= heta_j - lpha \sum_{i=1}^m (h_{ heta}(x^i) - y^i) x_j^i \end{aligned}$$

- 혼동행렬(confusion matrix)
 - 분류 문제의 성능 측정을 위해 먼저 이해해야 할 것
 - 예측 값이 실제 값 대비 얼마나 잘 맞는지 2 X 2 행렬로 표현하는 기법(그림 9-7)
- 실제값과 예측값의 조합으로 발생 가능한 4가지 경우
 - True Positive(TP): 예측값과 실제값이 모두 1로 동일할 때, 즉 모델의 예측값이 정답 이고 예측 대상이 1일 때
 - True Negative(TN): 예측값과 실제값이 모두 0으로 동일할 때, 즉 모델의 예측값이 정답이고 예측 대상이 0일 때 예측값(prediction)

실제값

- False Negative(FN): 실제값은 1이지
 만 예측값이 0으로, 모델의 예측값이
 오답이고 예측값이 0을 예측할 때
- False Positive(FP): 실제값은 0이지만 (actual class)
 예측값이 1로, 모델의 예측값이 오답
 이고 예측값이 1을 예측할 때

1 True False Negative

O False Positive True Positive Negative

- 사이킷런으로 혼동행렬표(confusion matrix) 나타내기
 - In [1] y_true: 실제 값, y_pred: 예측 값
 - In [2] 넘파이 배열: True Negative, False Positive, False Negative, True Positive

```
In [1]: from sklearn.metrics import confusion_matrix
         y_true = [1, 0, 1, 1, 0, 1]
         y_pred = [0, 0, 1, 1, 0, 1]
         confusion_matrix(y_true, y_pred)
Out [1]: | array([[2, 0],
               [1, 3]], dtype=int64)
  In [2]: tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
         (tn, fp, fn, tp)
Out [2]: (2, 0, 1, 3)
```

3. 혼동행렬표를 사용한 지표

3.1 정확도

■ 정확도(accuracy) : 전체 데이터 개수 대비 정답을 맞춘 데이터의 개수

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

예측값(prediction)

		1	0	
실제값	1	True Positive	False Negative	
(actual class)	0	False Positive	True Negative	

그림 9-7 정확도 측정

3. 혼동행렬표를 사용한 지표

3.1 정확도

■ 사이킷런으로 정확도 구하기

```
In [3]: import numpy as np
         from sklearn.metrics import accuracy_score
         y_pred = np.array([0, 1, 1, 0])
         y_{true} = np.array([0, 1, 0, 0])
         sum(y_true == y_pred) / len(y_true)
Out [3]: 0.75
 In [4]: accuracy_score(y_true, y_pred)
Out [4]: | 0.75
```

3. 혼동행렬표를 사용한 지표

3.2 정밀도, 민감도, F1 스코어

- 정밀도와 민감도는 불균일한 데이터셋을 다룰 때 유용
 - 데이터에서 1과 0의 비율이 7:3 또는 3:7 이상 차이나는 상태
- 정밀도(precision) : 모델이 1이라고 예측했을 때 얼마나 잘 맞을지에 대한 비율

$$PRECISION(PPV) = \frac{TP}{TP + FP}$$
 1 0 True False Negative (actual class) 0 False Positive Negative Negative

그림 9-8 정밀도 측정

3. 혼동행렬표를 사용한 지표

3.2 정밀도, 민감도, F1 스코어

- 민감도(recall): 실제 1인 값을 가진 데이터를 모델이 얼마나 1이라고 잘 예측했는지에 대한 비율
 - 반환율 또는 재현율이라고도 부름

$$RECALL(TPR) = \frac{TP}{TP + FN}$$

		예측값(prediction)			
		1	0		
실제값	1	True Positive	False Negative		
(actual class)	0	False Positive	True Negative		

3. 혼동행렬표를 사용한 지표

3.2 정밀도, 민감도, F1 스코어

• F1 스코어(F1 score) : 정밀도와 민감도의 조화평균 값, 해당 모델이 얼마나 성능이 좋은지 확인할 경우 사용 $F_1 = 2 \times \frac{precision \times recall}{precision + recall}$

In [5]: import numpy as np from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score

y_pred = np.array([0, 1, 1, 0, 1, 1, 1, 0]) y_true = np.array([0, 1, 0, 0, 0, 0, 1, 1])

3. 혼동행렬표를 사용한 지표

3.2 정밀도, 민감도, F1 스코어

1. 로지스틱 회귀 구현을 위한 함수

1.1 시그모이드 함수

$$h_{\theta}(x) = g(z) = \frac{1}{1 + e^{-z}}$$

def sigmoid(z):
 return 1 / (1 + np.exp(z))

1. 로지스틱 회귀 구현을 위한 함수

1.2 가설함수

시그모이드 함수의 z 값은 실제로는 가중치와 피쳐의 선형 결합이므로 피쳐 값들을 x 벡터로, 가중치 값들은 θ로 입력해줌

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

def hypothesis_function(x, theta):
 z = (np.dot(-x,theta))
 return sigmoid(z)

1. 로지스틱 회귀 구현을 위한 함수

1.3 비용함수

$$egin{aligned} J(heta) &= rac{1}{m} \sum_{i=1}^m Cost(h_ heta(x^{(i)}), y^{(i)}) \ &= -rac{1}{m} \sum_{i=1}^m ig[y^{(i)} \log h_ heta(x^{(i)}) + (1-y^{(i)}) \log (1-h_ heta(x^{(i)})) ig] \end{aligned}$$

```
def compute_cost(x, y, theta):
    m = y.shape[0]
    J = (-1.0 / m) * (
        y.T.dot(np.log(hypothesis_function(x,theta))) + ₩
        (1-y).T.dot(np.log(1- hypothesis_function(x,theta))))
    return J
```

1. 로지스틱 회귀 구현을 위한 함수

1.4 경사하강법 : 가중치 업데이트 $heta_j:= heta_j-lpha\sum_{i=1}^m(h_ heta(x^i)-y^i)x_j^i$

```
(1/2) def minimize_gradient(x, y, theta, iterations=100000,
      alpha=0.01):
         m = y.size
         cost_history = []
         theta_history = []
         for _ in range(iterations):
            original_theta = theta
            for i in range(theta.size):
                partial_marginal = x[:, i].reshape(x.shape[0], 1)
               delta = hypothesis_function(x, original_theta) - y
               grad_i = delta.T.dot(partial_marginal)
```

1. 로지스틱 회귀 구현을 위한 함수

1.4 경사하강법 : 가중치 업데이트

2. 사이킷런을 사용하여 학습하기

2.1 데이터셋 준비

- 앞의 코드들과 동일하게 사이킷런에서 로지스틱 회귀 사용가능
 - 인터넷 사용자가 초보자(newbie)인지 아닌지 구별하는 와튼대학교의 'uva.txt'데이터를 사용

In [1]: import pandas as pd data_url= "http://wwwstat.wharton.upenn.edu/~waterman/DataSets/uva.txt" df = pd.read_table(data_url) df[:5]

Out [1]:

	who	Newbie	Age	Gender	Household Income	Sexual Preference	Country	Education Attainment	Major Occupation	Marital Status	Years on Internet
0	id74364	0	54.0	Male	\$50-74	Gay male	Ontario	Some College	Computer	Other	4-6 yr
1	id84505	0	39.0	Female	Over \$100	Heterosexual	Sweden	Professional	Other	Other	1-3 yr
2	id84509	1	49.0	Female	\$40-49	Heterosexual	Washington	Some College	Management	Other	Under 6 mo
3	ld87028	1	22.0	Female	\$40-49	Heterosexual	Florida	Some College	Computer	Married	6-12 mo
4	id76087	0	20.0	Male	\$30-39	Bisexual	New Jersey	Some College	Education	Single	1-3 yr

2. 사이킷런을 사용하여 학습하기

2.2 데이터 전처리

■ 필요없는 데이터 드롭: who, Country, Years on Internet 열 제거

In [2]: df.pop('who') df.pop('Country') df.pop('Years on Internet')							
	df.dtypes						
Out [2]:	Newbie int64 Age float64 Gender object Household Income object Sexual Preference object Education Attainment object Major Occupation object Marital Status object dtype: object						

2. 사이킷런을 사용하여 학습하기

- 데이터 타입 변환하고 결측값 확인하여 채우기
 - astype 함수: category 타입의 데이터들에 대해서 원핫인코딩(one-hot encoding) 형태로 바꾸기 위해 데이터 타입을 변환
 - category 타입에 해당하는 열들의 이름을 정리하기 위하여

```
In [3]: category_cols = ["Gender", 'Household Income',
                    'Sexual Preference', 'Education Attainment',
                    'Major Occupation', "Marital Status"]
       for col in category_cols:
          df[col] = df[col].astype('category')
       df.dtypes
```

2. 사이킷런을 사용하여 학습하기

Out [3]:	Newbie	int64
	Age	float64
	Gender	category
	Household Income	category
	Sexual Preference	category
	Education Attainment	t category
	Major Occupation	category
	Marital Status	category
	dtype: object	
	<u> </u>	

2. 사이킷런을 사용하여 학습하기

- 판다스의 get_dummies 함수: 데이터들을 원핫인코딩(one-hot encoding) 형태로 변환하기 위해
 - => 열의 형태가 38개로 증가하는 것을 확인할 수 있음.
- 원핫인코딩(one-hot encoding): scikit-learn에서 제공하는 머신러닝 알고 리즘은 문자열 값을 입력 값으로 허락하지 않기 때문에 모든 문자열 값 들을 숫자형으로 인코딩하는 전처리 작업, 범주형 데이터의 개수만큼 가 변수를 생성하여 존재 유무를 1 또는 0으로 표현하는 기법
 - => 3주차 데이터 전처리 강의 참조

In [4]:	df_onehot = pd.get_dummies(df) df_onehot.shape
Out [4]:	(19583, <mark>38</mark>)

2. 사이킷런을 사용하여 학습하기

- Isnull 함수: 데이터 결측값 확인, 각 열별 데이터 중 isnull 함수 결과의 합을 표현
 - => Age에만 결측값이 존재하는 것을 확인

In [5]:	df_onehot.isnull().sum()
Out [5]:	Newbie 0
	Age 561
	Gender_Female 0
	Gender_Male 0
	Household Income_\$10-19 0 (이하 생략)

2. 사이킷런을 사용하여 학습하기

2.2 데이터 전처리

• loc 함수: 결측값을 채우는 가장 간단한 방법 => Age의 평균값으로 결측값을 채움

```
In [6]: df_onehot.loc[
pd.isnull(df_onehot['Age']), "Age"] =df_onehot['Age'].mean()
```

2. 사이킷런을 사용하여 학습하기

2.3 데이터 분리

 데이터를 x데이터와 y데이터로 나눈 후, 이를 다시 훈련(train)과 테스트 (test) 형태로 분류해야 함.

```
In [7]: x_data = df_onehot.iloc[:, 1:].values
y_data = df_onehot.iloc[:, 0].values.reshape(-1, 1)
y_data.shape, x_data.shape

Out [7]: ((19583, 1), (19583, 37))
```

2. 사이킷런을 사용하여 학습하기

2.3 데이터 분리

 X_data에 대해서 MinMaxScaler 함수를 사용하여 전체 데이터에 대한 스케 일링을 실시

```
In [8]: from sklearn import preprocessing # Min-Max Standardzation
```

```
min_max_scaler = preprocessing.MinMaxScaler()
x_data = min_max_scaler.fit_transform(x_data)
```

2. 사이킷런을 사용하여 학습하기

2.3 데이터 분리

 train_test spilt 함수를 적용하여 생성된 데이터를 학습 데이터셋과 테스트 데이터셋으로 분리함

2. 사이킷런을 사용하여 학습하기

2.3 데이터 분리

- LogisticRegression 클래스를 사용하여 학습된 모델을 생성함.
 - fit intercept 매개변수: 절편을 생성

```
In [10]: from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression(fit_intercept=True)
logreg.fit(X_train, y_train.flatten())

Out [10]: LogisticRegression()
```

2. 사이킷런을 사용하여 학습하기

2.3 데이터 분리

- penalty 매개변수: regularization을 위하여
- Max iter, tol 매개변수: 경사하강법이 가지는 매개변수

```
In [11]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)

Out [11]: LogisticRegression(multi_class='warn', solver='warn')
```

2. 사이킷런을 사용하여 학습하기

2.4 값 예측하기와 성능 측정하기

- 생성된 모델을 사용하여 실제값을 예측하기 위하여 predict 함수를 사용함.
 - X test에 존재하는 값 5개까지 모두 0으로 예측됨

In [12]:	logreg.predict(X_test[:5])
Out [12]:	array([0, 0, 0, 0, 0], dtype=int64)

2. 사이킷런을 사용하여 학습하기

2.4 값 예측하기와 성능 측정하기

- 로지스틱 회귀의 가설함수가 확률을 예측함
- 각 값들의 예측값에 대한 확률도 계산가능함
 - predict_proba: 0 일때의 확률과 1일 때의 확률을 n X 2형태의 행렬 형태로 나타냄.

In [13]:	logreg.predict_proba(X_test[:5])
Out [13]:	array([[0.56843258, 0.43156742],
	[0.91112572, 0.08887428],
	[0.79481085, 0.20518915],
	[0.85841562, 0.14158438],
	[0.62764603, 0.37235397]])

2. 사이킷런을 사용하여 학습하기

- 2.4 값 예측하기와 성능 측정하기
- 실제 성능을 측정하는 코드
 - confusion_matrix와 accuracy_score와 같은 함수를 사용함

```
In [14]: from sklearn.metrics import confusion_matrix
         from sklearn.metrics import accuracy_score
         y_true = y_test.copy()
         y_pred = logreg.predict(X_test)
         confusion_matrix(y_true, y_pred)
Out [14]: array([[4487, 275],
                [1350, 351]], dtype=int64)
 In [15]: accuracy_score(y_true, y_pred)
Out [15]: 0.7485687761101656
```

04

다중클래스 분류와 소프트맥스 분류

1. 다중클래스 분류의 개념

■ 다중클래스 분류(multi-class classification) : 2개 이상의 클래스를 가진 y 값에 대한 분류

1.1 다중클래스와 다중레이블

표 10-1 분류 작업에서 다중클래스와 다중레이블의 차이점

분류	다중클래스(multi-class) 분류	다중레이블(multi-label) 분류
작업	2개 이상의 클래스를 가진 분류 작업	상호 배타적이지 않은 속성 예측
중복 선택	중복 선택 불가능 → [1 0 0] 가능, [1 1 0] 불가	중복 선택 가능 → [1 1 0] 가능
예	과일 사진 분류 : 오렌지, 사과, 배	신문기사 분류 : 운동선수-연예인 결혼 기사 → 스포츠/연예 면

1. 다중클래스 분류의 개념

1.2 분류 접근

- One-vs-All: m개의 클래스가 존재할 때 각 클래스마다 분류기(classifier)를 생성하여 분류
 - One-vs-Rest라고도 부름
 - 대표적으로 소프트맥스 분류(softmax classification)
- One-vs-One: m개의 클래스가 있다면, 이 클래스의 분류기를 하나의 클래스로 하고 나머지 클래스의 분류기들을 만들어 최종적으로 각 분류기들의 결과를 투표로 결정
 - 총 $\frac{m(m-1)}{2}$ 개만큼의 분류기를 생성
 - 분류기가 많아질수록 정확도 높아지지만 비용도 증가

2. 소프트맥스 분류

2.1 소프트맥스 함수

- 시그모이드 함수로 다중클래스 분류 문제 다룰 수 있음
 - 각각의 클래스에 속하는지 속하지 않는지 이진분류기 m개를 생성한 후, 가장 높은 확률이 나오는 클래스를 선택
 - 분류기 번호 m에 대해 $h_m(x;\theta)$ 로 표현
 - 그러나 $h_m(x;\theta)$ 확률의 합이 1 이상이 된다는 문제 발생
 - 문제 해결 방법은 모든 클래스들의 발생 확률을 1로 정규화

2. 소프트맥스 분류

2.1 소프트맥스 함수

소프트맥스 함수(softmax function): 다중클래스 분류에서 여러 선형회귀의 출력 결과를 정규화하여 합이 1이 되도록 만드는 함수

$$\sigma(z)_j = \frac{e^{z_j}}{\sum\limits_{k=1}^K e^{z_k}}$$
 for $j=1,2,3,\cdots,K$ 표 10-2 소프트맥스 함수 값 정리

$$\sum_{j=1}^{K} \sigma(z)_{j} = \sum_{j=1}^{K} P_{j} = 1$$

		e^{z_j}
z_j	e^{z_i}	$\frac{e^{z_j}}{\sum\limits_{k=1}^K e^{z_k}}$
2	7.389	0.609
1	2.718	0.224
-1	0.367	0.030
0.5	1.648	0.135

2. 소프트맥스 분류

2.1 소프트맥스 함수

```
In [1]: import numpy as np
         def softmax(values):
            array_values = np.exp(values)
            return array_values / np.sum(array_values)
        values = [2, 1, 5, 0.5]
         y = softmax(values) # array([0.04613281, 0.01697131,
         0.92660226, 0.01029362])
         y.sum()
Out [1]: | 1.0
```

05

다중클래스 분류를 코드로 구현하기

1. mnist 데이터셋의 이해

손글씨를 숫자로 인식하는 이미지 분류 문제

그림 10-1 사이킷런의 mnist 데이터셋 예제

- 컴퓨터는 이미지를 일종의 숫자로 변환하여 인식
 - 이미지를 일종의 점(dot)으로 생각하면 m×n만큼의 공간이 존재하고, 그 공간 안에서 색깔이 진할수록 높은 값, 색깔이 옅을수록 낮은 값을 가짐

2. 데이터 불러오기

- datasets 모듈을 호출
- load_digits 함수로 딕셔너리 타입 데이터를 불러온다

In [1]:	from sklearn import datasets digit_dataset = datasets.load_digits() digit_dataset.keys()
Out [1]:	dict_keys(['data', 'target', 'frame', 'feature_names', 'target_names', 'images', 'DESCR'])

2. 데이터 불러오기

- Out [2]
 - 1797: 데이터의 개수
 - 8, 8: 가로와 세로 각각 8칸씩 총 64칸 존재, 그 값이 모두 채워져 있음
- In [3]
 - 하나의 데이터만 확인
 - target 데이터의 0번째 값은 0임

In [2]:	digit_dataset["images"].shape
Out [2]:	(1797, 8, 8)
In [3]:	digit_dataset["target"][0]
Out [3]:	0

2. 데이터 불러오기

- images 데이터의 0번째 값을 출력하면 배열인 array 형태로 나타남
 - 각 숫자가 클수록 실제 검정색에 가까운 값이 출력

In [4]:	digit_dataset["images"][0]
Out [4]:	array([[0., 0., 5., 13., 9., 1., 0., 0.],
	[0., 0., 13., 15., 10., 15., 5., 0.],
	[0., 3., 15., 2., 0., 11., 8., 0.],
	[0., 4., 12., 0., 0., 8., 8., 0.],
	[0., 5., 8., 0., 0., 9., 8., 0.],
	[0., 4., 11., 0., 1., 12., 7., 0.],
	[0., 2., 14., 5., 10., 12., 0., 0.],
	[0., 0., 6., 13., 10., 0., 0., 0.]])

2. 데이터 불러오기

```
In [5]: import matplotlib.pyplot as plt
      from random import randint
      _, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3)) # (1) subplots
      4개 생성
      for ax in axes: # (2) 각 subplot에 들어갈 숫자를 위해 for문으로 값 생성
         num = randint(1, 1000) # (3) 1~1000 사이의 숫자를 랜덤하게 선택
         image = digit_dataset["images"][num]
         label = digit_dataset["target"][num]
         ax.set axis off()
         ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
         ax.set_title('Training: %i' % label)
```

Out [5]:

[TIP] 결과값에 색을 지정하는 요소(property)인 plt.cm.gray_r을 변경하면 좀 더 다양한 형태로 값 표현이 가능하다

2. 데이터 불러오기

 데이터가 8×8 행렬이므로 2D 이미지로 표현되었지만 다음 코드와 같이 총 64개의 피쳐(feature)를 가진 하나의 데이터로 받을 수 있음

In [6]:	digit_dataset["data"][0].shape
Out [6]:	(64,)

3. 데이터 분류하기

■ 데이터를 훈련 데이터셋과 테스트 데이터셋으로 구분

```
In [7]: from sklearn.model_selection import train_test_split
```

```
X = digit_dataset["data"] # (1) data에 있는 값들 X에 할당
y = digit_dataset["target"] # (2) target에 있는 값들 y에 할당
X_train, X_test, y_train, y_test = train_test_split(X, y)
```

4. 모델 생성하기

- ovr : 클래스 모드를 모두 이진모델로 만들어 학습
- multinomial : 소프트맥스 함수를 사용하여 계산하는 방식. 경사하강법의 매 개변수 solver를 sag으로 변경

5. 성능 측정하기

- 일반적으로 다중클래스 분류도 기존 혼동행렬을 사용
- 각 클래스 대비 예측한 값을 행렬 형태로 표현

```
In [9]: from sklearn.metrics import confusion_matrix
           y_pred = logreg_ovr.predict(X_test).copy()
           y_true = y_test.copy()
           confusion_matrix(y_true, y_pred)
Out [9]: | array([[47, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                  [ 0, 49, 1, 0, 0, 0, 0, 0, 0, 0],
                  [ 0, 0, 49, 2, 0, 0, 0, 0, 0, 0],
                   [ 0, 0, 0, 37, 0, 1, 0, 0, 1, 0],
                   [ 0, 0, 0, 0, 41, 0, 0, 0, 0, 0],
                  [ 0, 1, 0, 0, 1, 41, 1, 0, 0, 1],
                   [ 0, 0, 0, 0, 2, 0, 36, 0, 0, 0],
                   [ 0, 0, 0, 0, 1, 0, 0, 41, 0, 1],
                  [ 0, 0, 0, 0, 0, 0, 0, 44, 0],
                   [ 1, 0, 0, 0, 0, 0, 0, 1, 50]], dtype=int64)
                                                                                             65
```

5. 성능 측정하기

■ 라벨별로 분류 성능을 수치화하여 표시

In [10]:	from sklearn.metrics import classification_report print(classification_report(y_true, y_pred))	
Out [10]:	precision recall f1-score support	
	0 0.98 1.00 0.99 47	
	1 0.98 0.98 50	
	2 0.98 0.96 0.97 51	
	3 0.95 0.95 39	
	4 0.91 1.00 0.95 41	
	5 0.98 0.91 0.94 45	
	6 0.97 0.95 0.96 38	
	7 1.00 0.95 0.98 43	
	8 0.96 1.00 0.98 44	
	9 0.96 0.96 52	
	accuracy 0.97 450	
	macro avg 0.97 0.97 450	
	weighted avg 0.97 0.97 450	66

5. 성능 측정하기

- micro를 선택하면 전체 평균값
 - 각 라벨별로 False Positive와 True Positive 값을 모두 더해서 True Positive 값으로 나눈 값
- macro를 선택하면 각 라벨별 결과의 합에 대한 평균을 나타냄
 - classificatrion_report의 각 라벨별 평균, 즉 avg값

In [11]:	result = confusion_matrix(y_true, y_pred) result.diagonal().sum() / result.sum(axis=0).sum()
Out [11]:	0.953333333333

5. 성능 측정하기

- 각 라벨별의 데이터 개수의 차이가 난다면 micro 선택 결과 중요
- 그렇치 않은 경우는 macro로 선택하여 라벨의 평균적인 성능을 나타냄

In [12]:	from sklearn.metrics import precision_score precision_score(y_true, y_pred, average="micro")
Out [12]:	0.96666666666666
In [13]:	<pre>precision_score(y_true, y_pred, average="macro")</pre>
Out [13]:	0.9666219376328072
In [14]:	precision_score(y_true, y_pred, average=None)
Out [14]:	array([0.97916667, 0.98 , 0.98 , 0.94871795, 0.91111111, 0.97619048, 0.97297297, 1. , 0.95652174, 0.96153846])

<서포트 벡터 머신>

01 서포트 벡터 머신

목차

01 서포트 벡터 머신이란?

01 서포트 벡터 머신이란?[2]

1. 서포트 벡터 머신의 소개

- 서포트 벡터 머신(support vector machine, SVM)
 - 인공 신경망이 딥러닝(deep learning)을 통해 인공지능 분야의 중심으로 떠오르기 전에 가장 각광받던 학습 방법 중의 하나

1. 서포트 벡터 머신의 소개

- 파란색 원과 노란색 사각형은 서로 다른 그룹에 속한 데이터들임. 이들 을 구분하는 초평면(hyperplane)은 여 러 개 존재
 - 여기서는 h1 과 h2 라는 두 개의 직 선으로 표현, h2가 더 나은 분류
- 좋은 분리 평면은 새로운 데이터가 들어왔을 때에도 판정을 잘 할 수 있 는 평면
- 초평면을 화살표로 표시된 법선 (normal) 벡터 방향으로 움직였을 때 데이터에 닿지 않는 폭이 넓을 수록 좋음

1. 서포트 벡터 머신의 소개

- SVM은 두 데이터 그룹을 나누는 초평면을 찾으면서 이 폭이 가장 넓은 것을 찾는 방법
 - 이 폭을 마진(margin)이라고 부름
 - 그림에서 볼 수 있는 것처럼 어떠한 데이터도 이 마진 내에 들어오지 않을 경우 마진을 **하드 마진(hard margin)**이라고 부름

1. 서포트 벡터 머신의 소개

- 마진 안에 아무런 데이터도 들어 오지 않도록 하는 것이 불가능하 거나
- 어떤 데이터는 잡음에 가까워 무 시하는 것이 좋을 수도 있음
- 일부 데이터가 마진 내에 들어오 도록 허용하면서 분리 평면을 찾 을 수 있을 경우 소프트 마진(soft margin)이라고 부름

 하드 마진이든 소프트 마진이든 마진을 최대로 넓게 만들려고 하기 때문에 마진의 양쪽에는 서로 다른 그룹에 속하는 데이터들이 하나씩 닿아 있으며 이것을 서포트 벡터(support vector) 라고 함

1. 서포트 벡터 머신의 소개

1.1 정의 및 특성

- 하드 마진을 사용할 경우에는 분류가 안될수도 있고, 잡음에 민감할 수밖에 없으므로 소프트 마진을 사용하는 것이 바람직
 - 잡음에 민감하다는 것은 데이터에 과적합된다는 의미
 - 소프트 마진을 사용하는 것도 모델 정칙화의 일종
- 슬랙(slack): 소프트 마진을 사용할 때는 마진 내에 들어갈 수 있는 데이터의 수
 를 제어하며 이 값을 제어하는 변수

2. 하드 마진 서포트 벡터 머신의 구현

- 서포트 벡터 머신의 기본적인 동작 은 그림과 같이 설명
 - 레이블이 부여된 데이터 입력이 존재하는 공간이 회색 초평면으 로 나타나 있고
 - 그 위에 흰색 레이블과 푸른색 레이블을 가진 데이터가 놓여 있음
 - 이 공간에 존재하는 독립변수에 의해 결정되는 종속 변수 h를 $w^Tx + b$ 라고 정의하면, $h = w^Tx + b$ 은 노란색으로 비스 등하게 표시된 초평면

2. 하드 마진 서포트 벡터 머신의 구현

- 마진(margin)에 대한 제약 조건이 없다면, 서포트 벡터 머신은 흰색 레이블의 데이터들은 h 가 음수, 푸른색 레이블의 데이터들은 h 가 양수가 되게 하는 w 와 b 를 찾으면 됨
- 답이 되는 평면이 하나가 아니며 이런 경우에는 가장 "좋은" 평면을 찾아 야함
 - 서포트 벡터 머신에서는 마진의 넓이가 큰 값이 될수록 좋은 답

2. 하드 마진 서포트 벡터 머신의 구현

- 평면을 수직선에 가깝게 눕혀 보자.
 - 직선으로 생각하면 기울기에 해당하는 w 벡터 가 o에 가까 워지는 것.
 - 이러면 마진이 점점 넓어지 는 것을 확인할 수 있음

2. 하드 마진 서포트 벡터 머신의 구현

■ 다음과 같은 제약 조건을 가진 최적화 문제가 된다.

하드 마진 SVM의 최적화 문제

최적화: $\underset{\mathbf{w},b}{\operatorname{argmin}} \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$

제약조건: $i=1,2,\cdots,m$ 인 m 개 데이터 인스턴스 $\mathbf{x}^{(i)}$ 모두에 $|\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)}+b|\geq 1$

3. 소프트 마진 서포트 벡터 머신의 구현

- 소프트 마진에는 슬랙(slack) 변수가 사용됨
- 이 슬랙 변수는 각 데이터 인스턴스마다 정의되므로 m개의 데이터 인스턴 스가 있으면 각각에 대해 $\zeta^{(i)}$ 가 존재
- 슬랙 변수가 하는 일은 각각의 데이터가 [-1, 1] 사이의 범위를 갖는 마진 안으로 들어갈 수 있는 정도를 의미
 - 하드 마진은 $\zeta^{(i)} = 0$

3. 소프트 마진 서포트 벡터 머신의 구현

슬랙 변수에 의해 각각의 데이터 인스턴스에 대해 제약 조건이 다음과 같이 변경

 $i=1,2,\cdots,m$ 인 m개 데이터 인스턴스 $\mathbf{x}^{(i)}$ 모두에 대해

$$|\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b| \ge 1 - \zeta^{(i)}$$

3. 소프트 마진 서포트 벡터 머신의 구현

- 그림을 설명하면 다음과 같다.
- 각각의 데이터 인스턴스는 마진 밖이나 안에 존재할 수 있음
- 데이터 인스턴스가 마진 내 에 많이 들어올수록 슬랙 변 수의 값이 커지는 것
 - 좋은 분류를 위해서는 슬 랙 변수를 최소로 만드는 최적화 문제를 품

3. 소프트 마진 서포트 벡터 머신의 구현

• 사이킷런을 이용하여 실제로 서포트 벡터 머신을 이용하여 데이터를 구분

In [1]:	<pre>import pandas as pd import numpy as np data_loc = 'https://github.com/dknife/ML/raw/main/data/' dfrd_rand_are/data_loc_s'true_classes_are/')</pre>				
	<pre>df = pd.read_csv(data_loc + 'two_classes.csv') df.tail(5)</pre>		x1	x2	У
		995	2.664896	-1.955326	0
Out [1]:		996	-2.019928	0.334542	1
Out [1].		997	-4.634470	0.300158	1
		998	1.426275	-2.765590	0
		999	1.988053	1.466494	0

3. 소프트 마진 서포트 벡터 머신의 구현

• 사이킷런을 이용하여 실제로 서포트 벡터 머신을 이용하여 데이터를 구분

3. 소프트 마진 서포트 벡터 머신의 구현

- 슬랙 변수 최적화의 가중치가 될 C 키워드 매개변수를 지정하고, 손실 함수를 loss 키워드 매개변수에 지정
 - SVM에서 사용하는 표준적인 손실함수는 max(0, 1-h)의 경첩(hinge) 손실 함수
 - 평균 제곱 오차를 쓰기 위해 'mse' 등을 지정하면 오류 ('hinge' 혹은 'squared_hinge'만 가능)

3. 소프트 마진 서포트 벡터 머신의 구현

• 학습이 끝나면 회귀 분석에서 사용했던 방법처럼, predict() 함수를 이용하여 입력을 넣고, 레이블을 예측

In [4]:	svm_simple.predict([[0.12, 0.56], [-4, 40], [0, 40], [5,20]])
Out [4]:	array([0, 1, 1, 0], dtype=int64)

Assignment

Assignment

■ 본인이 머신러닝 기술을 사용하여 구현하고 싶은 시스템에 대하여 간략하게 서술하시오. (A4용지 1장 정도)

예제) 머신 러닝 기술을 이용한 인간-로봇 상호작용 시스템

Assignment

■ 강의 PPT 35~49쪽 사이의 코드 In [1] ~ In [15]의 코드를 실행시킨 후 각 결과를 화면 캡쳐하여 제출하시오. (한글, 워드, PPT 등이용 가능)

Thank You!