Biodiversity for the National Parks

Capstone Project for Introduction to Data Analysis

Vina Noviana Limanto

Overview of presentation

- Part 1: Overview of species dataframe
- Part 2: Investigating endangered species
 - Count of species by conservation status
 - Differences in conservation status by species category
 - Testing for significance in differences in conservation status by category
 - Recommendations
- Part 3: Foot and mouth disease reduction effort
 - Sample size determination
 - Recommendations

PART 1: OVERVIEW OF SPECIES DATAFRAME

Inspecting the species dataframe

Overview of species dataframe:

	category	scientific_name	common_names	conservation_status	
	cutegory	_	common_names	conservacion_scacas	
0	Mammal	Clethrionomys gapperi gapperi	Gapper's Red-Backed Vole	nan	
1	Mammal	Bos bison	American Bison, Bison	nan	
2	Mammal	Bos taurus	Aurochs, Aurochs, Domestic Cattle (Feral), Domesticated Cattle	nan	
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	nan	
4	Mammal	Cervus elaphus	Wapiti Or Elk	nan	

The species dataframe contains:

- 5541 unique species
- 7 species categories, incl. Mammal, Bird, Reptile, Amphibian, Fish, Vascular Plant, Nonvascular Plant
- 5 conservation statuses, incl. Species of Concern, Endangered, Threatened, In Recovery, and no status (i.e. no intervention/ protection required)

Count of species by conservation status

Conservation status by species category

Category	not_protected	protected	percent_protected	
Mammal	146	30	0.170455	
Bird	413	75	0.153689	
Amphibian	72	7	0.088608	
Fish	115	11	0.087302	
Reptile	73	5	0.064103	
Nonvascular Plant	328	5	0.015015	
Vascular Plant	4216	46	0.010793	

- There are differences in the percentage of protected species across categories
- However, we need to test if these observed differences are significant, i.e. not due to chance
- Chi-squared test is most suitable to test significance, given that we are dealing with categorical data and more than one set of data

PART 2: INVESTINGATING ENDANGERED SPECIES

Conservation status by species category

Chi-Squared pval	Mammal	Bird	Amphibian	Fish	Reptile	NVC Plant	VC Plant
Mammal	N/A	0.45	0.09	0.03	0.02	<0.01	<0.01
Bird	0.45	N/A	0.18	0.08	0.05	<0.01	<0.01
Amphibian	0.09	0.18	N/A	0.82	0.78	<0.01	<0.01
Fish	0.03	0.08	0.82	N/A	0.74	<0.01	<0.01
Reptile	0.02	0.05	0.78	0.74	N/A	0.03	<0.01
NVC Plant	<0.01	<0.01	<0.01	<0.01	0.03	N/A	0.66
VC Plant	<0.01	<0.01	<0.01	<0.01	<0.01	0.66	N/A

pval < 0.05

Legend:

pval > 0.05

Key observations:

1 Animals are more likely to be endangered than Plants

2 Mammals are more likely to be endangered than Fish and Reptile

Recommendations

- As animals are more likely to be endangered than plants, conservation efforts (including preventive efforts) need to be focused on animals rather than plants
- Conservation and preventive efforts need to be further focused on mammals, which are more likely to be endangered than other animal categories such as fish and reptiles

PART 3: FOOT & MOUTH DISEASE REDUCTION EFFORT

Sample size determination

Sample size of 510 is needed in each park, based on the following assumptions:

- Baseline conversion rate of 15%, based on previous year's record of foot and mouth disease occurrence
- Minimum detectable effect of 33.3%, given that scientists aim to be able to detect reductions of at least 5%, which is 33.3% of the 15% baseline rate
- Statistical significance of 90%

PART 3: FOOT & MOUTH DISEASE REDUCTION EFFORT

Recommendations

- To ensure that a >5% drop in observed cases of foot and mouth disease is significant, National Parks scientists need to observe at least 510 sheep in each park
- Based on observations of sheep per week in each park, this is estimated to take 1-4 weeks