Learning beyond Datasets: Knowledge Graph Augmented Neural Networks for Natural Language Processing

Authors

- Annervaz K M, Indian Institute of Science & Accenture Technology Labs
- Somnath Basu Roy Chowdhury, IIT Kharagpur
- Ambedkar Dukkipati, Indian Institute of Science

Motivation

- Learning is still heavily on the specific training data
- Propose to enhance learning models with world knowledge
 - In the form of Knowledge Graph (KG) fact triples
- Develop a deep learning model that can extract relevant prior support facts from knowledge graphs
 - Depending on the task
 - Using attention mechanism

Example: Natural Language Inference

- A: The couple is walking on the sea shore and
- B: The man and woman are wide awake
- Need common knowledge: "The man and woman and The couple means the same"
- this information may not be specific to a particular inference

Example: Classify the News Snippet

- "Donald Trump offered his condolences towards the hurricane victims and their families in Texas."
- Need to know the facts < Donald Trump, president, United States> and < Texas, state, United States>.
- Or we cannot classify it as a political news

Overview

- Extract relevant support facts on demand from a knowledge base
- Incorporate it in the feature space along with features learned from the training data
- Jointly model this look up mechanism along with the task specific training of the model
- Generic enough so that it can be augmented to any task specific learning model to boost the performance

Knowledge Graph Representations

- Structure-based embeddings
 - e.g. TransE (h + r = t)
- Semantically-enriched embeddings:
 - learns to represent entities/relations of the KG along with its semantic information.
 - NTN:
 - Initialize entity vectors with the average word embeddings followed by tensorbased operations.
 - DKRL:
 - Take into descriptive nature of text
 - Keep the simple structure of TransE model

Conventional:

$$\max_{\theta} P(y|x,\theta)$$

- Augment the supervised learning process by incorporation of world knowledge feature x_w
- World knowledge features are retrieved using the data x:

$$x_w = F(x, \theta^{(2)})$$

Modified objective fuction:

$$\max_{\theta} P(y|x, x_w, \theta^{(1)})$$

- Where $\theta = \{\theta^{(1)}, \theta^{(2)}\}$
- Optimize: $\theta = \operatorname{argmax}_{\theta} P(y|x, F(x, \theta^{(2)}), \theta^{(1)})$

Vanilla Model

Fig. 2: Vanilla Entity/Relationship Retrieval Block Diagram

Vanilla Model - Encoder

LSTM encoder:

$$h_t = f(x_t, h_{t-1})$$

$$O = \frac{1}{T} \sum_{t=1}^{T} h_t$$

Context vector:

$$C = ReLU(O^TW)$$

- The same procedure is duplicated with separate LSTMs to form two separate context vectors
 - entity retrieval C_E
 - relationship retrieval C_R

Vanilla Model - Retriever

Attention:

$$\alpha_{e_i} = \frac{\exp(C_E^T e_i)}{\sum_{j=0}^{|E|} \exp(C_E^T e_j)}, e = \sum_{j=0}^{|E|} \alpha_{e_i} e_i$$

$$\alpha_{r_i} = \frac{\exp(C_R^T e_i)}{\sum_{j=0}^{|R|} \exp(C_R^T e_j)}, r = \sum_{j=0}^{|R|} \alpha_{r_i} r_i$$

- DKRL uses the TransE model assumption (h + r ≈ t)
- Thus the fact triplet retrieved is F = [e, r, e + r]

Vanilla Model

- Concatenate context vector and fact triple
- $F' = ReLU(F^TV)$
- $y = softmax([F':C]^T U)$
- V, U are parameters, y is used to compute the cross entropy loss

Vanilla Model - Problems

- Vanilla model attends over the entire entity/relation space
- Gradient for each attention value gets saturated easily as observed
- While training the classification and retrieval module together, the model tends to ignore the KG part and gradient propagates only through the classification module
- Most pertinent information for the task at hand comes from the training samples, only background aiding information comes from KG
- After few epochs of training, the KG retrieved fact always converged to a fixed vector

Pre-training KG Retrieval

Fig. 3: Separately Training Knowledge Graph Retrieval and Jointly Training the Full Model

Pre-training KG Retrieval

- Pre-trained KG model is used to retrieve the facts
- Joint training:
 - Concatenate with the classification module
 - Allow error to be propagate through the pre-trained model
- The separate KG part alone shows significant performance
 - 59% for News20 and 66% for SNLI
 - KG doesn't return noise and has essential information for the task

Convolution-based Cluster Representation

- Reduce the attention space
- Learning the representation of similar entity/relation vectors
- Use k-means clustering to form I clusters
 - With equal number of entity/relation vectors in each cluster
- Each clusters were then encoded using convolutional filters
 - 1D convolution

$$\mathcal{E}'(i,j) = W^T[e_{i,j}, e_{i+1,j}, \dots, e_{i+k-1,j}]^T$$

- Window size k
- pooling layer

Convolution-based Cluster Representation

Fig. 4: Convolution model cluster representation

Experiments

Dataset	Train Size	Test Size	# Classes
News20	16000	2000	20
SNLI	549367	9824	3
DBPedia	553,000	70,000	14

Hyper-parameter	News20	SNLI
Batch size	256	1024
Learning rate	0.05	0.05
Word Vector Dimension	300	300
Sequence Length	300	85
LSTM hidden-state Dimension	200	200
KG Embedding Dimension	50	50
# Clusters	20	20
# Epochs	20	20

Experiments

Model	Accuracy		
Model	News20	SNLI	
Plain LSTM	66.75%	68.73%	
Vanilla KG Retrieval	67.30%	69.20%	
Convolution-based KG	69.34%	73.10 %	

TABLE III: Test accuracy of approaches in News20 using FB15K & SNLI datasets using WN18

Summary

- Applicable for other domain task
- Future work:
 - Attention structure: flat hierarchical attention
 - Soft attention hard attention
 - Convolution based similarity based

Thanks!