General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CR-141845) AERODYNAMIC RESULTS OF A SEPARATION TEST (CA 20) CONDUCTED AT THE BOEING TRANSONIC WIND TUNNEL USING 0.030-SCALE MODELS OF THE CONFIGURATION 140A/B (MODIFIED) SSV ORBITER (MODEL NO.

N76-16034 HC \$28.25

Unclas G3/02 08755

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER HOUSTON, TEXAS

SPACE DIVISION CHRYSLER CORPORATION

DMS-DR-2217 NASA CR-141,845 VOLUME 2 of 3

AERODYNAMIC RESULTS OF A SEPARATION TEST (CA20)

CONDUCTED AT THE BOEING TRANSONIC WIND TUNNEL

USING 0.030-SCALE MODELS OF THE CONFIGURATION

140A/B (MODIFIED) SSV ORBITER (MODEL NO. 45-0) AND

THE BOEING 747 CARRIER (MODEL NO. AX 1319 I-1)

bу

T. Dziubala, V. Esparza, R. L. Gillins and M. Petrozzi Shuttle Aero Sciences Rockwell International Space Division

Propared under NASA Contract Number NAS9-13247

by

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:

BTWT 1431/AX 1319 I-1

NASA Series Number:

CA20

Model Number:

45-0 Mod/747 Carrier AX 1319 I-1

Test Dates:

9 through 16 October 1974

Occupancy Hours:

115

FACILITY COORDINATOR

AFRODYNAMICS ANALYSIS ENGINEERS:

B. Sendek The Boeing Company Orgn. B-8342 MS1W-82 Seattle, Washington 98007 W. L. Osborn and J. F. Kerswell Rockwell International

Mail Code AC07 12214 Lakewood Blvd.

Downey, California 90241

Phone: (206) 655-3037

Phone: (213) 922-5049

PROJECT ENGINEERS:

T. Dziubala. V. Esparza R. L. Gillins, M. Petrozzi Rockwell International Space Division 12214 Lakewood Blvd. Mail Code ACO7 Downey, California 90241

C. R. Mullen Boeing Aerospace Company M. S. OT-55 P. O. Box 3999 Seattle, Washington 98124

Phone: (206) 342-1220

Phone: (213) 922-4898

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison--D. A. Sarver

Operations -- R. H. Lindahl

Reviewed by: D. E. Poucher

Approved:

for J. L. Glynn, Manager

Data Operations

one Concurrence:

N. D. Kemp, Manager

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

AERODYNAMIC RESULTS OF A SEPARATION TEST (CA20)

CONDUCTED AT THE BOEING TRANSONIC WIND TUNNEL

USING 0.030-SCALE MODELS OF THE CONFIGURATION

140A/B (MODIFIED) SSV ORBITER (MODEL NO. 45-0) AND

THE BOEING 747 CARRIER (MODEL NO. AX 1319 I-1)

by

T. Dziubala, V. Esparza, R. L. Gillins and M. Petrozzi Rockwell International Space Division

ABSTRACT

An experimental aerodynamic investigation (CA20) was conducted in the Boeing Transonic Wind Tunnel from October 9 through October 16, 1974. A Rockwell built 0.030-scale 45-0 modified SSV Orbiter Configuration 140A/B model and a Boeing built 0.030-scale 747 carrier model were tested to provide six component force and moment data for each vehicle in proximity to the other at a matrix of relative positions, attitudes and test conditions. Orbiter model support system tare effects were determined for corrections to obtain support-free aerodynamics.

In addition to the balance force data, pressures were measured. Pressure orifices were located at the base of the Orbiter, on either side of the vertical blade strut, and at the mid-root chord on either side of the vertical tail. Strain gages were installed on the Boeing 747 vertical tail to indicate buffet onset.

The 747 carrier was varied through angles of attack (measured with respect to its FRL) of 0°, 2°,4°,6°,8°, and 10° and varied through sideslip

angles of 0°, +5°, and -5°. Elevator settings were also varied.

The SSV Orbiter model was varied through angles of attack of 6° , 8° , 10° , 12° , 14° , 16° , and 18° and varied through sideslip angles of 2.5° , 0° , -2.5° , -5° , -7.5° , -10° , and -15° .

Vertical displacements of 0", 1", 2", 3", 5", 7", 9", 11", 13", 15", 18", and 21.6" (model scale) were tested. Longitudinal movements of 0", 3.6", and 7.2" (model scale) and lateral displacements of 0" and 3.6" (model scale) were tested to simulate various separation positions. Orbiter elevon deflections were also varied.

Orbiter support system tare and interference effects were determined utilizing various support and image support strut configurations. Carrier support system tare and interference effects were determined during test CA5.

The Orbiter tail cone and carrier models were provided by The Boeing Company. The Orbiter model was provided by Rockwell. These were the same models used earlier in test CA5.

This report for CA20 consists of three volumes: Volume 1 - data figures 1 through 25; Volume 2 - data figures 26 through 39; Volume 3 - tabulated source data.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	3
INDEX OF DATA FIGURES	4
NOMENCLATURE	.9
REMARKS	15
CONFIGURATIONS INVESTIGATED	16
TEST FACILITY DESCRIPTION	20
DATA REDUCTION	21
REFERENCES	22
TABLES	
I. TEST CONDITIONS	25
II. DATA SET/RUN NUMBER COLLATION SUMMARY	26
III. MODEL DIMENSIONAL DATA	
A. CARRIER	38
B. ORBITER	51
IV. CA20 DATASET DESCRIPTION (RAW DATA)	62
V. CA20 COEFFICIENT SCHEDULE (RAW DATA)	63
VI. CA20 DATASET DESCRIPTION (INTERPOLATED/INCREMENTED DATASETS)	64
VII. CA20 INTERPOLATED DATASET SUMMARY (M AND N DATASETS)	65
VIII. CA20 INCREMENTAL DATASET SUMMARY (INTERFERENCE) - (ISOLATED) (U AND V DATASETS)	67
IX. SPECIAL INTERPOLATION FOR CONFIGURATIONS WITH	68

TABLE OF CONTENTS (Concluded)

		Page
TABLI	ES (Continued)	
	X. SPECIAL INTERPOLATED INCREMENTS FOR CONFIGURATIONS WITH ATTACH HARDWARE	69
	XI. CARRIER SUPPORT STRUT TARE AND INTERFERENCE CORRECTION PROCEDURE	70
FIGU	IRES MODEL	71
	DATA	
	(VOLUME 1 - FIGURES 1-25)	85
	(VOLUME 2 - FIGURES 26-39)	85
APPE	ENDIX	
	TABULATED SOURCE DATA (VOLUME 3)	85

INDEX OF MODEL FIGURES

igure	Title	age
1.	Axis systems.	
a.	General General	71
b.	Orbiter/747 Axis System Definition	72
2.	Model sketches.	
a.	SSV Orbiter Configuration (VC70-000002)	73
b.	Orbiter/747 Flight Test Configurations	74
с.	Base Pressure Locations	75
d.	Blade Strut and Vertical Tail Pressure Locations	76
e.	Standard In-Flight Speed-Brake	77
f.	Test Support Configurations	78
g.	Orbiter/747 C.G. and C.R. Orientation	79
3.	Model photographs.	
a.	Orbiter Alone with Dummy Blade in Proximity for Sting Tare Effect Study	80
b.	Orbiter Alone with Tail Cone TC _{5.1}	81
с.	Aft View of the Orbiter/747 Showing Vertical Displacement	82
d.	Front View of the Orbiter at an Angle Of Attack with Respect to the 747 Carrier	83

INDEX OF DATA FIGURES

FIGURE NUMBER		HEDULE OF PLOTTED EFFICIENTS	CONDITIONS VARYING	PAGES
VOLUME				
4	EFFECT OF ORBITER SUPPORT STRUT MOUNTING SYSTEM ON 01	A	CONFIG, MACH	1-10
5	EFFECT OF ORBITER SUPPORT STRUT MOUNTING SYSTEM ON 02	Α	CONFIG, MACH	11-20
6	ORBITER ALONE ELEVON AND AILERON EFFECTS - 01	A	MACH, ELEVON, AILRON	21-30
7	ORBITER ALONE ELEVON AND AILERON EFFECTS - 02	A	ELEVON, AILRON	31-35
8	ORBITER ALONE DELTA Z VARIATIONS (TUNNEL ANOMALIES)	В	ALPHAO	36-39
9	ORBITER ALONE SIDESLIP EFFECTS - 01 (BETA SWEEP)	C		40-40
10	ORBITER ALONE SIDESLIP EFFECTS - 01 (ALPHA SWEEP)	D	MACH, BETAO	47-42
11	ORBITER ALONE SIDESLIP EFFECTS - 02 (ALPHA SWEEP)	D	BETA0	43-43
12	ORBITER ALONE SIDESLIP EFFECTS - 05 (ALPHA SWEEP)	D	BETA0	44-44
13	ORBITER ALONE CONFIGURATION EFFECTS	Α	CONFIG, MACH	45-54
14	ORBITER ALONE RUDDER EFFECTS	A	CONFIG, MACH, BETAO, RUDDER	55-64
15	CARRIER ALONE BASIC AERODYNAMIC CHARACTERISTICS	Ε	BETAC	65-68
16	CARRIER SIDESLIP EFFECTS IN PRESENCE OF ORBITER (BETA SWEEP)	F	DY	69-70

INDEX OF DATA FIGURES (Continued)

FIGURE NUMBER	TITLE	SCHEDULE OF PLOTTED COEFFICIENTS	CONDITIONS VARYING	PAGES
17	ORBITER SIDESLIP EFFECTS IN PRESENCE OF CARPIER	F	DY	71-72
18	ORBITER ANGLE OF ATTACK EFFECTS ON CARRIER IN PRESENCE OF ORBITER	G		73-76
19	ORBITER ANGLE OF ATTACK EFFECTS ON ORBITER IN PRESENCE OF CARRIER	A		77-81
20A	EFFECTS OF ATTACH HARDWARE ON CARRIER IN PRESENCE OF ORBITER	H	CONFIG, ALPHAO	82-99
20B	SIDESLIP EFFECTS ON CARRIER IN PRESENCE OF ORBITER WITH ATTACH HARDWARE		CONFIG, ALPHAO, BETA	100-105
200	SPOILER EFFECTS ON CARRIER IN PRESENCE OF ORBITER WITH ATTACH HARDWARE	ji i j	CONFIG, ALPHAW, BETA	106-155
21A	EFFECTS OF ATTACH HARDWARE ON ORBITER IN PRESENCE OF CARRIER	E H	CONFIG, ALPHAO	156-173
218	SIDESLIP EFFECTS ON ORBITER IN PRESENCE OF CARRIER WITH ATTACH HARDWARE		CONFIG, ALPHAO, BETAO	174-179
210	SPOILER EFFECTS ON ORBITER IN PRESENCE OF CARRIER WITH ATTACH HARDWARE	J	CONFIG, ALPHAO, BETAO	180-229
22	COMPARISON BETWEEN INTERPOLATED (MGN DATASETS AND RAW CARRIER DATA) K	ALPHAO, ALPHAC, DY, PHI	230-253
23	COMPARISON BETWEEN INTERPOLATED (NGN DATASETS AND RAW ORBITER DATA	S) K	ALPHAO, ALPHAC, DY, PHI,	254-283

זכ

INDEX OF DATA FIGURES (Continued)

	INDEX OF DATA FIGURE		
FIGURE NUMBER	TITLE	SCHEDULE OF PLOTTED COEFFICIENTS	CONDITIONS VARYING PAGES
24	VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)		CONFIG, ALPHAO, 284-623 ALPHAC, BETAC, BETAO, DX, DY
25	VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)		CONFIG, ALPHAC, 624-831 BETAO, BETAC, ALPHAO, DX, DY
VOLUME	$oldsymbol{2}_{i}$		
26	VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)	M	CONFIG, ALPHAC, 832-1132 ALPHAO, BETAC, BETAO, DX, DY
27	VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)	M	CONFIG, ALPHAC, 1133-1314 ALPHAO, BETAC, BETAO, DX, DY
28	VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)	L	CONFIG, ALPHAC, 1315-1434 ALPHAO, BETAC, DX, DY
29	VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)		CONFIG, ALPHAC, 1435-1539 ALPHAO, BETAC, DX, DY
30	VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)	P	ALPHAO, ALPHAC, 1540-1563 BETAC
31	VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)	M	ALPHAO, ALPHAC, 1564-1609 BETAC

INDEX OF DATA FIGURES (Continued)

FIGURE NUMBER	TITLE		SCHEDULE OF PLOTTED COEFFICIENTS	CONDITIONS VARYING	PAGES
32	ELEVATOR EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)		P	ALPHAO, ELV-IB, ELV-OB	1606-1617
33	ELEVATOR EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)		В	ALPHAO, ELV-IB, ELV-OB	1618-1629
34	RUDDER EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)		L 5	CONFIG, ALPHAO, RUDDER	1630-1653
35	RUDDER EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)		M	CONFIG, ALPHAO, RUDDER	1654-1674
36	ELEVON EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)			ALPHAO, ELEVON, AILRON	1675-1698
37	ELEVON EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)		M	CONFIG, ALPHAO ELEVON, AILRON	1699-1719
38	DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC = 0)		N	ALPHAC, DX	1720-1791
39	DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBI (PHI, BETAO, BETAC = 0)	TER	0	ALPHAC, DX	1792-1863

INDEX OF DATA FIGURES (Concluded)

SCHEDULE OF PLOTTED COEFFICIENTS:

- (A) CN versus ALPHAO; CN versus CLM; CA, CLM, CL versus ALPHAO; CL versus CD; CD, CY, CYN, CBL versus ALPHAO
- (B) CN, CLM, CA, CL, CD, CY, CYN, CBL versus DZ
- (C) CY, CYN, CBL versus BETAO
- (D) CY, CYN, CBL versus ALPHAO
- (E) CL versus ALPHAW; CL versus CD; CL versus CLM; CLM, CY, CYN, CBL, CLN, CSL versus ALPHAW
- (F) CY, CYN, CBL, CLN, CSL versus BETA
- (G) CL, CD, CN, CLM, CY, CYN, CBL, CLN, CSL versus ALPHAO
- (H) CL, CD, CLM, CN, CA, DCL, DCD, DCLM, DCN, DCA versus DZ
- (I) CY, CYN, CBL, CLN, CSL, DCY, DCYN, DCBL, DCLN, DCSL versus DZ
- (J) CL, CD, CLM, CN, CA, CY, CYN, CBL, CLN, CSL, DCL, DCD, DCLM, DCN, DCA, DCY, DCYN, DCBL, DCLN, DCSL versus DZ
- (K) CL, CD, CLM, CY, CLN, CSL versus DZ
- (L) CL, CD, CLM, CY, CYN, CBL, CLN, CSL, DCL, DCD, DCLM, DCY, DCYN, DCBL, DCLN, DCSL versus DZ
- (M) CN, CLM, CA, CL, CD, CY, CYN, CBL, DCN, DCLM, DCA, DCL, DCD versus DZ
- (N) DCL, DCLM, DCD, DCY, DCLN, DCSL, DCYN, DCBL versus DZ
- (0) DCN, DCLM, DCA, DCY, DCYN, DCBL, DCL, DCD versus DZ
- (P) CL, CD, CLM, CY, CYN, CBL, CLN, CSL versus DZ

NOMENCLATURE

Symbol	Plot Symbol	Description
b	BREF	reference span, in
BSTA	XC	longitudinal carrier station, in
BWL	ZC	vertical carrier station, in
c	LREF	mean aerodynamic chord, in
c _A	CA	axial force coefficient
c _D	CD	drag coefficient
c_{k_B}	CBL	body axis rolling moment coefficient
c_{ls}	CSL	stability axis rolling moment coefficient
c_L	CL	lift coefficient
Cm	CLM	pitching moment coefficient
c_{n_B}	CYN	body axis yawing moment coefficient
c _{ns}	CLN	stability axis yawing moment coefficient
CN	CN	normal force coefficient
c _{PB1}	PB1	Orbiter base pressure coefficient for orifice no. 1, see Figure 2c
C _{PB2}	PB2	Orbiter base pressure coefficient for orifice no. 2, see Figure 2c
c _{PB4}	PB4	Orbiter base pressure coefficient for orifice no. 4, see Figure 2c
CPCAV	PCAV	Orbiter cavity pressure coefficient

Symbol	Plot Symbol	<u>Definition</u>
c _b e ^{B1}	LHLS	coefficient of pressure measured on fuselage at left side of vertical tail
c _p EB2	RHLS	coefficient of pressure measured on fuselage at right side of vertical tail
c _P sc	PSC	carrier cavity pressure coefficient
c _p s ₁	LHVERT	coefficient of pressure measured on left side of Orbiter strut
c _p s ₂	RHVERT	coefficient of pressure measured on right side of Orbiter strut
c _Y	СҮ	side force coefficient
C.G.		center of gravity
C.R.		center of rotation
FRL		fuselage reference line
ℓ _o	IORB	Orbiter incidence relative to carrier FRL, deg.
LB	LREF	reference body length, in
MACH	MACH	Mach number
M.R.C.	XMRP,YMRP ZMRP	moment reference center, in
MS		model station, in
P _{Bi}		base pressure measured at station i, i=1,2,4, psia
PEB1		pressure measured on Orbiter fuselage surface on left side vertical tail/fuselage juncture, psia

Symbol	Plot Symbol	<u>Definition</u>
P _{EB2}		pressure measured on Orbiter fuselage surface on right side vertical tail/fuselage juncture, psia
PSI		pressure measured on left side of Orbiter strut S ₁ , psia
P _{S2}		pressure measured on right side of Orbiter strut S ₁ , psia
q	Q(PSF)	freestream dynamic pressure, psf
RN/ET	RN/L	freestream unit Reynolds no., 10 ⁶ per foot
V		mean freestream velocity, ft/sec
S	SREF	wing area or reference area, ft ²
WL	Z	water line, in
X		longitudinal Orbiter separation distance, measured from nominal mated position, ft
Х _с	хс	carrier longitudinal station, in
X _{MRP}	XMRP	longitudinal location of MRC, in
Χo	хо	Orbiter longitudinal station, in
Y		Orbiter lateral separation distance, measured from nominal mated position, ft
YC	YC	carrier lateral station, in
YMRP	YMRP	lateral location of MRC, in
Yo	YO	Orbiter lateral station, in
Z		Orbiter vertical separation distance, measured from nominal mated position, ft
z _c	ZC	carrier vertical station, in

Symbol -	Plot Symbol	<u>Definition</u>
Z _{MRP}	ZMRP	vertical location of MRC, in
Z _o	ZO	Orbiter vertical station, in
1/(_{\(\DZ} +10)	1/Z+10	separation parameter, inverse of vertical separation distance plus 10 ft, per foot
α	ALPHA	angle of attack, deg.
^α C	ALPHAC	carrier fuselage angle of attack, $\alpha_W^{-2^\circ}$, deg.
^α 0	ALPHA0	Orbiter angle of attack, deg.
α_{W}	ALPHAW	carrier wing angle of attack, α_c^+ 2°, deg.
αWall	ALPWAL	wind tunnel wall correction to carrier angle of attack, deg.
β	ВЕТА	angle of sideslip, deg.
βС	BETAC	carrier sideslip angle, deg.
^β 0	BETA0	Orbiter sideslip angle, deg.
$^{\delta}$ a	AILRON	aileron deflection angle, deg.
δ e	ELEVON	Orbiter elevon deflection angle, deg.
δe I	ELV-IB	inboard carrier elevator panel deflection angle, deg.
$^{\delta}\mathbf{e}_{\phi}$	ELV-OB	outboard carrier elevator panel deflection angle, deg.
δeγ	ELEVTR	carrier elevator deflection angle, deg.
$^{\delta}\mathbf{r}$	RUDDER	carrier rudder deflection angle, deg.
δ r L	RUD-L	carrier lower rudder panel deflection angle, deg.

Symbol .	Plot Symbol	D <u>efinitio</u> n
δ _{ru}	RUD-U	carrier upper rudder panel deflection angle, deg.
δ _S		spoiler deflection angle, deg.
ΔCA	DCA	incremental axial force coefficient
ΔCD	DCD	incremental drag coefficient
∆C _{&B}	DCBL	incremental body axis rolling moment coefficient
ΔC _l S	DCSL	incremental stability axis rolling moment coefficient
ΔCL	DCL	incremental lift coefficient
ΔC _m	DCLM	incremental pitching moment coefficient
$\Delta c_{n_{B}}$	DCYN	incremental body axis yawing moment coefficient
ΔC _n S	DCLN	incremental stability axis yawing moment coefficient
ΔCN	DCN	incremental normal force coefficient
ΔСγ	DCY	incremental side force coefficient
ΔΧ	DX	Orbiter longitudinal separation distance from nominal mated position, ft
Δ Υ	DY	Orbiter lateral separation distance from nominal mated position, ft
ΔΖ	DZ	Orbiter vertical separation distance from nominal mated position, ft
Δα	DALFA	incremental angle of attack between Orbiter and carrier FRL, $\alpha_{\rm o}$ - $\alpha_{\rm c}$, deg.

NOMENCLATURE (Concluded)

Symbol .	Plot Symbol	<u>Definition</u>
Δβ	DBETA	incremental angle of sideslip between Orbiter and carrier, β_{0} - $\beta_{c},$ deg.
Δφ	DPHI	incremental roll angle between Orbiter and carrier, deg.
ф	PHI	Orbiter roll angle, deg.
c _{LC}	CL-C	carrier lift coefficient with test mounting system corrections
CDC	CD-C	carrier drag coefficient with test mounting system corrections
CmC	CLM-C	carrier pitching moment coefficient with test mounting system corrections
CYC	CY-C	carrier side force coefficient with test mounting system corrections
C _{nBC}	CYN-C	carrier body yaw moment coefficient with test mounting system corrections
c _{nSC}	CLN-C	carrier stability yaw moment coefficient with test mounting system corrections
C _{LSC}	CSL-C	carrier stability roll moment coefficient with test mounting system corrections
C _{&BC}	CBL-C	carrier body roll moment coefficient with test mounting system corrections
c _A c	CA-C	carrier axial force coefficient with test mounting system corrections
c _{NC}	CN-C	carrier normal force coefficient with test mounting system corrections

REMARKS

The Orbiter axial force, measured during this test, exhibits the following trend:

- at low angles of attack, axial force decreases with increasing angle of attack, as would normally be expected,
- at high angles of attack, axial force increases with increasing angle of attack, contrary to normal expectations.

Extensive investigations and analysis, conducted during the test, indicated that trend number (2) was not caused by model fouling or other test problems and was, indeed, representative of aerodynamic characteristics.

Vertical tail pressure instrumentation (P_{EB_1} and P_{EB_2}) was disconnected during runs 588 through 599.

Configuration D (as described in figure 2f) was not at ϕ = 90°, as planned, because of support system deflections (caused by the Orbiter model touching strut S3).

CONFIGURATIONS INVESTIGATED

The Orbiter model was an 0.030-scale representation of the Space Shuttle Orbiter VL70-000140A/B lines with modified OMS pods and elevons as shown in figure 2a. The basic Orbiter is a blended wing-body design with a double delta wing (75° and 45° leading edge sweeps). The Orbiter model was tested both with and without a tail cone fairing. The tail cone fairing covered the MPS nozzles, OMS nozzles, and base, as shown in Figure 3b. The Orbiter model was mounted in the tunnel using several blade strut configurations as follows:

S₁ = Orbiter support blade strut, upper entry position,

S₂ = Orbiter support blade strut, lower entry position,

 $S_3 = Orbiter dummy support blade strut.$

Figure 2f shows the strut arrangements. Orbiter elevon and aileron deflection angles were varied. The Orbiter was tested both isolated and in the presence of the carrier at various separation locations. The following Orbiter configurations were tested:

$$O_1 = B_{26} C_9 E_{43} F_8 M_{16}$$
 $W_{116} T_{5.1}$
 $O_2 = B_{26} C_9 E_{43} F_8 M_{16} N_{28} N_{24}$ W_{116} (with strut S_1)
 $O_3 = B_{26} C_9 E_{43} F_8 M_{16}$ $R_5 V_8 W_{116} T_{5.1}$
 $O_4 = B_{26} C_9 E_{43} F_8 M_{16}$ $W_{116} T_{5.1}$
 $O_5 = B_{26} C_9 E_{43} F_8 M_{16} N_{28} N_{24} R_5 V_8 W_{116}$
 $O_6 = B_{26} C_9 E_{43} F_8 M_{16} N_{28} N_{24} R_5 V_8 W_{116}$ MPS cover plate off

CONFIGURATIONS INVESTIGATED (Continued)

 0_7 = B_{26} C_9 E_{43} F_8 M_{16} N_{28} R_5 V_8 W_{116} strut, S_2 cover plate #1 off MPS 0_8 = B_{26} C_9 E_{43} F_8 M_{16} N_{28} R_5 V_8 W_{116} strut, S_2 cover plate #2 off MPS 0_9 = 0_9 0_9 = 0_9

where:

Component	<u>Description</u>
^B 26	Orbiter fuselage per Rockwell lines VL70-000140A/B, model drawing SS-A01360
c ₉	Orbiter canopy per Rockwell lines VL70-000140A/B, model drawing SS-A01360
E ₄₃	Orbiter full-span, unswept hingeline, 6" gapped elevons per Rockwell lines VL70-000200, model drawing SS-A01360
F ₈	Orbiter body flap per Rockwell lines VL70-000200, model drawing SS-A01360
M ₁₆	Orbiter OMS/RCS pods per Rockwell lines VL70-000203A, VL70-008401, model drawing SS-A01360
N ₂₄	Orbiter main propulsion system (MPS) nozzles - VL70-000140A, VL70-005030A, model drawing SS-A01360
N ₂₈	Orbiter OMS nozzles - VL70-000140A model drawing SS- A01360
R ₅	Orbiter rudder per Rockwell lines VL70-000146A, model drawing SS-A01360
TC _{5.1}	Orbiter tail cone fairing which covers the MPS nozzles and the OMS nozzles and base, built by the Boeing Company, also used in CA5
V ₈	Orbiter centerline vertical tail per Rockwell lines VL70-000146A, model drawing SS-A01360
W116	Orbiter double delta wing per Rockwell lines VL70-000200, model drawing SS-A01360

CONFIGURATIONS INVESTIGATED (Continued)

Effects of simulated attach hardware were investigated using the following model components attached to the carrier.

AT 38 Forward attach structure between the Orbiter and carrier model used for i_0 of 3 to 10 degrees for $\Delta Z = 0$ feet

AT 39 Aft attach structure between the Orbiter and carrier model for $\Delta Z = 0$ feet

The carrier model was an 0.030-scale representation of the Boeing 737-100 aircraft with surface contours built to represent the 747 under loads it would experience with a 600,000 pound gross weight flying at Mach 0.86 at an altitude of 35,000 feet. The model also had a built in 0.64° leading edge up wing tip twist to compensate for model aeroelastic effects, which are estimated to produce a 0.64° leading edge down twist. The carrier had 200 square foot tip fins on its horizontal tail. Spoilers were deflected to 45° and flaps were retracted during most of the test. Several runs were made with spoilers retracted. Elevator and rudder deflections were varied during the test. The carrier was tested both isolated and in the presense of the Orbiter at various separation conditions. Carrier configurations investigated were:

$$747/0 = B_{27.8} F_0 H_{15.6} M_{26}^{25} N_{58}^{57} T_{19} V_{9.1} W_{44.1}$$

 $747/1 = B_{27.8} F_0 H_{15.6} M_{26}^{25} N_{58}^{57} S_{1-12} T_{19} V_{9.1} W_{44.1}, \delta_S = 45^{\circ}$

where:

CONFIGURATIONS INVESTIGATED (Concluded)

H _{15.6}	horizontal tail (H ₁₅) with 200 ft ² tip fins
M ²⁵ ₂₆	inboard (M_{25}) and outboard (M_{26}) nacelle struts
N ₅₈	inboard (N_{57}) and outboard (N_{58}) nacelles
s ₁₋₁₂	12 spoiler panels located on wing upper surface, all deflected 45°
T ₁₉	flap track fairing
v _{9.1}	vertical tail
W _{44.1}	wing

Orbiter base pressures were measured, for configurations without tail cone, at locations as shown by figure 2c. Pressures were measured on both sides of Orbiter support strut when S_1 was used and pressures were measured on the fuselage near the vertical tail when the vertical tail was installed as shown by figure 2d. Pressures were measured in the Orbiter and carrier balance cavity.

TEST FACILITY DESCRIPTION

The Boeing Transonic Wind Tunnel (BTWT) is a continuous flow, closed circuit, single return, atmospheric facility with the following characteristics:

Test Section F	low Parameters	Test Section Dimer	sions
Freestream Condition	Range	Description	Value
Mach number	0 thru 1.15	Cross-section (minus	
Dynamic pressure, psia	0 thru 6.3	corner fillets), ft.	8 x 10
Static pressure, psia	15 to 5.4	Length, ft.	14.5
Stagnation pressure	atmospheric	Area, ft. ²	88
Maximum unit Reynolds number, per foot	4 x 10 ⁶		
Maximum total temperature, °F	160		

The test section can be operated with either solid or slotted walls. The slotted wall configuration consists of 16 slots which can vary wall porosity from 3.5% to 11%.

Test data acquistion, recording, computations, and display are done by an XDS-9300 computer and Astro data sub-system.

DATA REDUCTION

Force and moment data were reduced in both body and stability axes using standard Boeing data reduction procedures. The following data reduction constants were used:

		<u>Carri</u>	er	<u>Orbiter</u>	•
Symbol	<u>Description</u>	Model Scale	Full Scale	Model Scale	Full Scale
S	reference area, ft. ²	4.950	5500	2.421	2690.0
b	reference span, in	70.441	2348.04	28.100	936.68
ē	reference mac, in	9.833	327.78	14.244	474.81
MRC	moment reference center, in				
	XC or XO	40.197	1339.90	33.270	1109.0
	YC or YO	0.0	0.0	0.0	0.0
	ZC or ZO	5.723	190.80	11.250	375.0

No base or cavity corrections were applied to the data.

Wind tunnel data were interpolated versus the applicable separation parameters (α_0 , ΔZ , ΔX , α_W , ΔY , β_0 , β_C , and ϕ) as summarized by Table VII. These interpolated data were used to compute interference increments by subtracting isolated data from interference data as summarized by Table VIII. A special interpolation routine was used for datasets with simulated attach hardware as summarized by Tables IX and X. Interpolated carrier data were corrected for support strut tare and interference using corrections obtained during test CA5 as summarized by Table XI. Basic data, interpolated data, incremental data, and carrier data with tare and interference corrections, are presented in this report. Tables IV through VI describe data presentation formats.

REFERENCES

Reports and Internal Letters

Speed Letter, SAS/WTO/74-365, "Fabrication of a new 0.03-scale Orbiter Model," dated July 3, 1974

- IL, SAS/WTO/74-173, Addendum #1, "Updated Model Design Requirements for Model 45-0", dated July 24, 1974
- IL, SAS/WTO/74-173, Addendum #2, "Additional Requirements for Model 45-0," dated July 24, 1974
- IL, SAS/AERO/74-493, "Piggyback Separation Tests Orbiter Support Configurations and Corrections," dated August 9, 1974
- IL, SAS/AERO/74-552, "Orbiter Model Support and Instrumentation Requirements"
- IL, SAS/AERO/74-617, "Test Requirements for Separation Test CA20," dated August 20, 1974
- NA-74-541, "Structural Analysis of the 0.03-scale SSV model 45-0", dated July 23, 1974

DMS-DR-2211, "Results of a 0.03-scale Aerodynamic Characteristics Investigation of a Boeing 747 Carrier (Model AX 1319 I-D) Mated with a Space Shuttle Orbiter (Model 45-0) conducted in the Boeing Transonic Wind Tunnel (CA5)", by 747 Aerodynamics, 747 Flight Controls, and Wind Tunnel Test Group, Boeing Aerospace Company

Drawings

Rockwell International - SSV Orbiter

SS-A01360 - Model Assy., 45-0, 0.03 Sc. SSV Orbiter (140A/B) Revision B, dated August 1, 1974

SS-A013 Model Instl. 45-0, 0.03 Sc. SSV Ferry Separation, Release 1, dated August 12, 1974

SS-A01362 - Blade Strut Assy., 0.03 Sc. 45-0 SSV Model, dated July 29, 1974

The Boeing Company - 747 Carrier

65-69716 - Model Assy., TE 1007 I-1, dated August 23, 1973

65-89585 - Wing W44.1 AX 1319 I-1, dated August 1, 1974

REFERENCES (Continued)

- 747-MD-572 Structural Arrangement Forward "A" Frame Support Orbiter 747 MOD, dated June 25, 1974
- 747-MD-461 General Arrangement 747 Space Shuttle Orbiter Carrier Aircraft (Piggyback Configuration), dated July 15, 1974
- 747-MD-576 Structural Arrangement Orbiter Aft Support, 747 MOD, dated August 1, 1974
- 1319-6, "Inbd Main Flap," dated 7-26-74
- 1319-15, "Wing Coves," dated 7-29-74
- 1319-24, "Outbd Fore-Flap," dated 8-5-74
- 1319-25, "Outbd Fore-Flap," dated 8-5-74
- 1319-33, "Inner Body Orbiter (Bal #660)" dated 8-13-74
- 1319-34, "Spoiler, dated 8-14-74
- 1319-35, "Balance Holder Orbiter (Bal #660)" dated 8-14-74
- 1319-36, "Rear Mtg. Parts Orbiter," dated 8-28-74
- 1319-37, "Aft Support and Balance Adapter Assy. Orbiter," dated 8-28-74
- 1319-38, "Inbd Flap Assy 20° F8.7," dated 8-17-74
- 1319-39, "Inbd Flap Brkts 20° F8.1," dated 8-19-74
- 1319-40, "Setting Temp L.E. Flaps," dated 8-17-74
- 1319-41, "Outbd Flap Brkts 20° F8.2," dated 8-20-74
- 1319-42, "Outbd Flap Assy 20° F_{8.2}," dated 8-20-74
- 1319-43, "Fwd Orbiter Support Parts & Assy," dated 8-21-74
- 1319-44, "L. E. Kruger & Flap Instl.," dated 8-21-74
- 1319-45, "BTWT Orbiter Alone Mtg Parts & Assy," dated 8-22-74
- 1319-47, "Template-Stabilizer Tip Fin," dated 8-22-74

REFERENCES (Concluded)

- 1319-55, "Stabilizer Fins," dated 8-23-74
- 1319-57, "Stabilizer Fin Brkts," dated 8-24-74
- 1319-60, "Stabilizer Fin Instl," dated 8-26-74
- 1319-63, "Orbiter Modif, & Inner Body Instl," dated 8-29-74
- 1319-64, "Model Support Mat'l," dated 9-3-74
- D6-25552, "Model Geometry Estimated Loads and Stress Analysis, Model AX13181-1," dated 9-11-74

TEST : CA20			DATE: 11-20-74
	TEST CON	DITIONS	
MACH NUMBER	REYNOLDS NUMBER (per unit length)	DYNAMIC PRESSURE (pounds/sq.ft.)	STAGNATION TEMPERATURE (degrees Rankine)
0.3	1.93 x 10 ⁶ /FT	126	548
0.48	2.81 x 10 ⁶ /FT	293	559
0.50	2.94 x 10 ⁶ /FT	315	555
0.60	3.30 x 10 ⁶ /FT	422	563
		,	
		The state of the s	
BALANCE UTILIZED:		#660F 2.074 inch External Balance	dia.
		CITY	COEFFICIENT
	Orbiter	Carrier	TOLERANCE:
NF		10,000 lb.	
SF	1335 lb.	5,000 lb.	
AF	301.5 lb.	1,000 lb.	
PM	4266 in1b.	100,000 in1b.	
RM	and the second s	25,000 in1b.	
YM	<u>2014.5 in.</u> -1b.	<u>25,000 in</u> 1b.	
COMMENTS:			

The second secon	A20	J DATA	A SET/RUI	NUME	BER COLL		BITE		L		T	MACH NU		Tra-congression
ENTIFIER	CONFIGURATION	HTT	Se	Sal	T do	30	Øo	ΔX	AY	ΔZ	.3	1.48	The Report of the State of the	.6
GNOOL	0, 52 53		5	0	A	-5	0	*********			576	discountings and a) COLUMN NAME OF THE PERSON NAME
702			5	0		0	0				575			
03			5	0		0	0						1	5,72
04	1		5	0		0	0							574
05	02 52 53		5	0		-5	0					578		
06	V		5	0		0	0					580	5	579
07	0, 5,		5	0		-5	0				603		6	04
08			0	0		0	0						6	514
09			5	-10		0	0						(613
10			5	0		0	0				615			616
111			10	0	Y	0	0			V			4	512
12			5	0	10	-5	0			A			18	05
13			5	0	14	-5	0			4			6	506
14	V		5	0	7.5	△	-90							617
15	02 S,		5	0	3	-5	0						6	507
16			0	0		0	0						(09
17			5	-10		0	0						6	010
18: 1	¥		5	0	IV	0	0	1	Y	1			(80
7	13 19	25	31	3	37	43	49		55		61	(67	
	45 I FAR COE	FFICIEN	T. SCH	FP4	45.	1			4		1			
a OR É	A CLERCE 0,2,4	-, 6, 8, 10°{a	dw-So	CA	RRIER	A	ΔZ=	0 3	7.5,	15,3	0,45	,60 -10;-1!	FZ,	21

A MINIMUM SEPARATION DISTANCE

CONTRACTOR OF STREET	8e 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sa O O O O O O O	F 0 0 0 15 0 0 15	3	0 -5 0 0 -5	900000	ΔΧ	AY T	ΔZ —	.3 597 592	.48	,5	. 6 611 595 594 591
CONTRACTOR OF STREET	10 5 5 5 5 5 5 5	0 0 0 0 0	- 000500		0 0 0 0 -5	00000						593	595 594 591
	5 5 5 5 5 5	0 0 0	0 0 15 0 0		0 0 -5	0 0 0			<i>a</i>			593	594 591
	5 b 5 c	0 0 0	0 15 0 0		0 0 -5	000				592		593	591
	5 5 5 S	0 0	15 0 0		0 -5	0 0							
	5 5 5	0	0		-5	0							- m
	5	0	0								District Control of the last		589
	5				0	0							598
	$\overline{}$	0	15			2						- 2	581
\Box	5		10		0	0							588
	- 1	٥	0		0	0							582
	5	٥	0		٥	0			Ш				583
	5	0	0		0	0			Ш	_			584
	5	0	0		0	0	Ш		\sqcup				585
	5	0	0		0	0			Ш	_			586
	5	0	0		0	0			Ш				587
$\dashv \dashv$	5	0	_	¥	-5	0	Y	Y	Y				599
25 3	31		37	<u> </u>	43	45	9	55		61	·	67	
		5 31	5 0 5 0 5 0 5 0	5 0 0 5 0 0 5 0 0 5 0	5 0 0 5 0 0 5 0 0 5 0 — ¥	5 0 0 0 5 0 0 0 5 0 0 0 5 0 - Y -5	5 0 0 0 0 5 0 0 0 0 5 0 0 0 0 5 0 - ¥ -5 0	5 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE II. (Continued)

DAT	ASET			10		RIE		$\overline{}$				DRB	SUMM					MACH	NUMBERS	
	TIFIER	CONFI	GURATION	The second second	Name and Address of the Owner, where	Sev	Charles and the second	Se	Sa		do	BACONE SAMMON AND SOCIOLOGICAL	Øo	ΔX	AY	DZ				1.6
(GI	1034	774	7/1	1	-5	0/3	0													853
T	35				0	0/3	0													852
\top	36		V	V	5	9/3	0								-					854
\top	37	74	1/10,8	, 4	0	9/3	0	5	0		A	0	0	0	0	7.5				851
\top	33			4	A	9/3	0	5	0		10	0	0	0	0	7.5				950
Y	39		V	4	Consulation !	9/3	0	5	0		10	0	0	0	10	7.5				848
					Ш															
				\perp																
																				\vdash
																		-		\vdash
		CE - THE COSE OF DRIVE			Ш				-											Ш
	7		13 1	9		25		31		37		43	49		55		61		67	71
1	11111	لبب	لببينا	•••	لب							سا	ىلىد		44		١.	ARID	المعا	R (2) 1
	a OR							C	DEFFI	CENTS							101	AH 117		

TABLE II. (Continued)

	1		1	^ A	RRI	ER	$\overline{}$			ORBIT	TER				Π	d	0	
	A SET	CONFIGURATION	THE OWNER OF THE OWNER OF	e _c	Sev	87	Şe	Ea	MACH	€0	фо	ΔX	AY	12	8	12	16	
GN	040	747/0 0,5,AT38AT4	0	0	9/3	0	5	0	.6	0	0	0	0	A	619			
Ť	41	Mary Mile (1844) - 35 (1947) - 1847 -	4	0	9/3	0	5	0	.6	0	0	0	0			621		
\top	42		8	0	0/3	0	5	0	.6	0	0	0	0				620	
\top	43	and the state of t	4	-5	0/3	o	5	0	.6	-5	0)	0			622		
1		747/0 025,AT38AT39	4	-5	0/3	0	5	0	.6	-5	0	3	0	100		623		
\forall	45	747/1 015,AT38 AT39	0	-	-	0	5	0	.6	0	0)	0		627			
1	46		4	0	0/3	-	5	0	.6	0	0	J	0			625		
\dagger	47	Care Selection 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	8	0	0/3	0	5	0	.6	0	0	- 3	0				626	
4	48	·	4		0/3	0	5	5	.6	-5	0	0)	V		624		
-	100		1	Γ			İ											
			\dagger	T	T		I^-											
			\dagger	\vdash	\vdash													
			十	T			1											
			十	十			T											
			十	十	1		T		TT						İ			
			十	十	1		十											
			十	t					\vdash									
		A CONTRACTOR NAMED TO THE RESIDENCE	十	十	十一		1						2122					
				_	-		31		37	43	4		. 55		61		67	7
		7 13 19			25		The state of the s		and the second second second	ACCIONATION DE CONTRACTOR DE C	(Annual Professional Commercial)	MARKET AND RESIDENCE AND ADDRESS OF THE PARTY OF THE PART					سا	
4	لبب	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••	•	111		L C	OEFF	ICENTS						IDV	AR (1)	IC'. A	(2)

29

TABLE II. (Continued)

	ATA SET			- T 7		RIE						RBI	I SUMM		2					MATERIAL PROPERTY AND ADDRESS OF THE PARTY AND
	NTIFIER	CONFIGU	IRATION	ac			THE PERSON NAMED IN	દક	Sa	MACH		ලී ග	95	ΔX	ΔΥ	ΔZ	6	10	14-	
?G	N049	747/1	0,5,	0	O	9/3	0	5	0	0.6		0	0	0	0	A	631	628	630	
7	50			O	0	9/3	0	5	0	0.6)	Ú	iO	0		1.36	637	85%	
	51			0	0	0/3	0	5	0	0.6)	O)	20	5		641	640	639	
1	52			4	0	93	ی	5	0	0.6)	5	ؿ	्		632	646	647	
	53			4	0	0/3	0	5	0	0.6		o	<u>ئ</u>	10)		635	674	693	
1	54	•		4	0	0/3	0	5	0	0.6		9	D ₀	20)		1.42	677	676	
1	55			3	0	9/3	0	5	0	0.6)	0	C	O.		633	645	644	
1	56			8	5	0/3	0	5	Ç	5,6		7	<u> </u>	10	· 🔾		4	691	692	
7	57			8	Э	7/3	9	5	0	0.6)	20	0		643	574	675	
1	58			4	0	ି/ ₃	0	٦,	0	0.5)	خ	0	10			775	781	
7	59			4	0	43	0	5	0	5.6	*************************************)	2	10	13		1	7.35	738	
1	60			3	:0	9/3	0	25)	0.6)	グ	0	10			780	787	
1	61			8	0	9/3	0	5	100	3.6		j	7	10	10			736	737	
1	62			14	-5		0	5	0	0,6		0	0	0	O			649	648	
1	63			14	-5	9/3	0	5	0	0.6		O	0	10	0			687	688	
1	64			14	-5		0	5	0	0.6		0	0	20	0			670	671	
	65			8	-5		0	5	0	3,6		0	0	0	0			650	651	
V	66	-		8	-5	0/3	0	5	0	0.6		0	0	10	0	V		690	689	
_1	7	13	19		Sairenan	25	***************************************	31	A SANSON MANAGEMENT	37		43	49		55		61		67	
-								بيا		111	111						نىنا		سبا	
	O OR	β						C	DEFFI	CENTS							IDV	AR (1)	IC. AF	(2)

TABLE II. (Continued)

	ATAS	e			1	CA	RRI	ER	r -			ORBIT	TER				Г	0		
差担抗	ENTIF		CONFIC	GURATION			Sev		Sa	Sa	MACH	80	90	ΔX	DY	ΔZ	6	10	14	
RG	NO6	7	747/1	0,51	8	Cheminater	9/3	0	5	0	0.6	0	0	20	0	A		673	672	
_	61	3			4	-5	0/3	0	5	0	0.6	0	0	0	10			776	782	
	6	,			4	-5	0/3	0	5	0	0.6	0	0	10	10			739	742	
	7	0			8	-5	0/3	0	5	0	0.6	0	0	0	10			779	786	
	7	$\overline{1}$			8	-5	0/3	0	5	0	0,6	0	0	10	10		- 0	740	741	
	7				4	5	0/3	0	5	٥	0.6	0	0	3	10			777	783	
	7	3			4	5	9/3	0	5	0	0.6	0	0	10	10			743	746	
	7	4			8	5	9/3	0	5	0	0.6	0	0	0	10			778	785	
	0.000	5			8	5	9/3	0	5	0	0.6	0	0	10	10			744	745	
	CHERTON COLOR	16			4	-5	9/3	0	5	0	3.6	0	7.5	0	0			700	699	
	Established State	7			4	-5	9/3	0	5	0	0.6	0	7.5	10	0			679	680	
	7				8	-5	9/3	0	5	0	0.6	0	7.5	0	0			701	698	
	U10120000000000000000000000000000000000	9			3	-5	9/3	0	5	0	0.6	0	7.5	10	0			682	681	
	8				4	-5	0/3	0	5	0	0.6	0	7.5	0	10			791	792	
	8	_			14	-5	9/3	0	5	0	0.6)	7.5	10	10			752	755	
	8	MAKESON SERVICE			8	-5	9/3	0	5	0	0.6	2	7.5	0	10			798		
	9	3,			8	-5	0/3	0	5	١	5.6)	7.5	10	10			753	754	
١	1 8	4		V	4	0	0/3	0	5	U	0.6	כ	7.5	0	0	Y		705	704	
		7		13 19			25		31		37	43	49		55		61		67	7
•		-		للبيب	•••		111				ICENTS		للب				100	AR (1)	16:48	(2)

3

TABLE II. (Continued)

DATA SET	AZO		_	CA	RRI		I		WOLK C	OLLATIO					1	Ctn :		
IDENTIFIER	CONFIG	URATION	- America	le.	Marcheologicus	-	Se	Ea	MACH	30	I do	ΔX	DY	DZ	6/10	Minute Street, St. Co., vol. 65, 65, 650.	1	٦
RGN085	747/1	0,5,	14	0	9/3	0	5	0	0.6	0	7.5	10	0	A	68	CONTRACTOR CONTRACTOR	agros nazran	٦
86			8	0	9/3	0	5	0	0.6	0	7.5	0	0		70	2 703		
87			8	0	9/3	0	5	0	0.6	U	7.5	10	0		68	3 684		
88			14	0	0/3	0	5	0	0.6	0	7.5	0	10		79	0 793		
89			4	0	0/3	0	5	0	0.6	0	7.5	10	10		74	8 751		
90			3	0	0/3	0	5	Э	0.5	0	7,5	0	10		79	9 796		
91			3	0	0/3	0	5	٦,	2,13	O	7.5	10	10		Control of the Contro	19 750	March 100 (1970)	
92			4	5	9/3	S	5	0	0.6	0	7,5	0	10		79	9 794		
93			4	5	0/3	0	5	0	000	0	7.5	10	10		75	6 759		
94			8	5	0/3	0	5	0	0.6	0	7,5	0	10		80	0 795		
95			8	5	0/3	0	5	0	0.6	0	7.5	10	10		75	7 758		
96			4	-5	0/3	0	5	0	0.6	5	7.5	0	10		80	4 805		
97			8	-5	9/3	0	5	٥	0.6	-5	7,5	0	10		811	810	- 1 To	
98			4	0	0/3	0	5	0	5.0	-5	7.5	0	10		80.	3 806		
99			8	0	0/3	0	5	0	1.6	-5	7.5	0	10		812	2 809		
100			4	5	93	0	5	0	5.6	-5	7,5	0	10		803	2 807		
101			8	5	9/3	0	5	0	0.6	-5	7.5	0	10		813	3 808		
V 102	1	1	4	-5	9/3	0	5	0	0.6	-5	7.5	0	10	V		915		
	7 13	1 19			25		31	100	37	43	49		55		61	67		-
a OR				لد					CENTS	<u></u>	<u>ш</u>	•••	ш.	•••		I IC.A	1 (2)	<u> </u>

DATA SET			Т	CA	RR	IER	Г			ORBIT	TER					. 0	60	
IDENTIFIER	CONFIG	URATION	વ્ય.	. Cc	Sev	80	હેહ	8a	MACH	80	\$0	ΔX	DY	02	6	10	14	
REN103	747/1	0,5,	4	0	0/3	0	5	0	0.6	-5	7.5	0	10	A		amin .	814	
104			4	-5	%3	0	5	0	0.6	5	0	10	0			830	935	
105		and the second of the second	8	-5	9/3	0	5	0	0.6	- 5	0	10	0			841	836	
106	The second second		4	-5	0/3	Ö	5	0	0.6	-5	0	0	10			844		
107			4	-5	9/3	0	5	0	0.6	-5	0	10	10			819	820	
108	AND THE PERSON NAMED IN	parental de la companya de la companya de la companya de la companya de la companya de la companya de la compa	8	-5	9/3	0	5	0	0.6	-5	0	10	10	age of		828	823	
109			4	0	9/3	0	5	0	0.6	-5	0	10	0			THE RESERVE OF THE PERSON NAMED IN	834	
110	Tanan da kanan da 1975.	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8	0	9/3	0	5)	0.6	5	0	10	٥			840	837	
111	The state of the s		4	0	0/3	0	5	0	0.6	- 5)	0	10			843		
112		and the second	4	0	9/3)	5	٥	0.6	- 5	0	10	10			819	158	
113			8	0	2/3)	13	O	0.6	5	2	0	10				846	
114	And the second of the	apple and the state of the state of	9	0	13	0	5	0	0.6	5	0	10	10			827	824	
5			4	5	0/3	0	5	0	0.6	-5	0	10	0	The second		832	833	
116		The second secon	8	5	9/3	0	5	0	0.6	-5	O	10	0			839	838	* a - 40 (0.31)
117	read the Computer of 1997		4	5.	4/3	0	5	0	0.6	-5	0	0	10			845		
118			4	5	9/3	0	15	0	0.6	-5	0	10	10			817	822	
119			8	5	9/3	0	5	0	0.6	-5	0	10	10		8	326	825	
Y 120	nina da mara N	/	4	-5	0	0	5	0	0.6	-5	0	0	10	Ý		765	768	
	12	3 19			25		31		37	43	49		55		61		67	,

TABLE II. (Continued)

-	CAZO		~~			1/KU	N NU		DLLATION		IARY			_		15/75	
DATA SET	CONFIGURATION			Sev		Se	Sa		RBIT E.	do	AX	DY	42	6	10	14	
GN121	747/1 0,51	8	-5	0	0	5	0	0.6	-5	0	0	10	4	Ť	ACCURATION OF THE	767	
7 122		4	0	0	0	5	0	0.6	-5	0	0	10		İ	761	764	
123		8	0	0	0	5	0	0.6	-5	0	0	10	1		762	763	
124		4	5	0	o	5	0	0,6	-5	0	0	10			769	772	
125	4	3	5	0	0	5	0	0.6	-5	0	0	13			770	771	
126	747/1 025	4	-5	9/3	0	5	0	0.6	0	0	0	0			656		
127		4	-5	9/3	0	5	0	0.6	0	0	10	0			657		
128		4	-5	0/3	0	5	0	0.6	0	0	20	0			669		
129		4	0	9/3	0	5	0	0.6	0	Э	٥	0			652	653	
130		4	0	0/3	O	5	0	0.6	0	0	10	0			661	659	
131		4	0	0/3	0	5	0	0.6	0	0	20	0			665	666	
132		8	0	0/3	ن	5	0	2.6	0	0	0	0			655	654	
133		8	0	0/3	0	5	0	0.6	0)	10	0			658	660	
134		8	0	9/3	0	5	0	0.6	0	0	40	2			668	667	
135		4	-5	Per Consession	0	5	0	0.6	0	0	O	10			728		
136		4	-5	9/3	0	5	ن	0.6	0	0	10	10	\Box		732		
137		4	0	9/3	0	5	0	0,6	0	2	0	10			727		
Y 138	<u> </u>	4	0	9/3	0	5	0	0.6	0	-	10	10	V		731		
a OR		9		25	<u></u>			37 LILLI CENTS	43	49 باب		55			AR (1)	67 I	121

		-			A	RIE	R	Г			ORBI	TER	-			I	. 0	40	
	TA SET	CONFIC	SURATION	a.	and the last	Sev	10000	Se	Sa	MACH	€0	90	DX	AY	ΔZ	6	ACCOUNTS NAMED IN	14-	
C	1139	747/1	025,	4	5		O	5	0	0.6	0	0	0	10	A		729		
T	140	1		4	5	9/3	0	5	0	0.6	0	0	10	10			733	Construction of the last of th	
T	141	747/1	0,51	4	0	10/13	0	5	0	0.6	0	0	0	0			and the factor of the factor o	708	
T	142			4	0	-1%-7	O	5	0	0.6	0	0	0	0	Ш		709	710	
T	143	4		4	0	43	15	5	၁	0,6	0	0	2	2			7/1	712	
†	144	747/1	025,	4	0	9/3	15	5	0	0,6	0	0	0	0			725		
T	145	747/1	0,51	4	0	0/3	0	0	0	0.6	9	0	0	2			719	CONTRACTOR OF THE PARTY OF THE	
1	146			1	0	0/3	၁	10	0	0.6	2)	9	J	U			714	715	
1	147			1	0	9/3	С	10	9	0.3)	0)	0			7/7		
T	148			4	0	03	5	10	0	5.7)	9	3	Ġ,			716		
¥	149	Ý		4	0	0/3	Э	5	-10	0.6	9	3	٥	0	V		722	723	
				\pm															
				\pm															
				\dagger	L														
-		7	13 19	L	L_	25		31		37	43	<u>l</u>		55		61	<u> </u>	67	
			ىلىيىد			Mark and distributed on the Sale		LL.	OEFF	ICENTS						100	AR (1)	IC', AR	(2)

35

TABLE II. - DATA SET/RUN NUMBER COLLATION SUMMARY (Continued)

Symbol Definition

Orbiter

			and the second second second second			
01	=	Vertical tail off Tail cone on	(V ₈) (TC _{5.1})	05	=	Vertical tail on (V ₈) Tail cone off
02	=	Vertical tail off Tail cone off with strut S ₁	(v ₈)	⁰ 6	=	MPS base plate off Vertical tail on (V ₈)
03	=	Vertical tail on Tail cone on	(V ₈) (TC _{5.1})	⁰ 7	=	MPS base plate off, S ₂ cover plate #1 off, Vertical tail on
04	=	Tail cone on Vertical Tail simulating dummy strut	(TC _{5.1})			MPS base plate off, S ₂ cover plate #2 off, Vertical tail on
						MPS base plate on, Vertical tail off with strut S ₂

Orbiter Support Strut

 S_1 = Orbiter support blade strut, upper entry position

 S_2 = Orbiter support blade strut, lower entry position

 S_3 = Orbiter dummy support blade strut

Carrier

747/0 = Carrier with spoilers and flaps retracted

747/1 = Carrier with spoilers deflected 45° and flaps retracted

α , β , and ΔZ Schedules

$$\triangle$$
 $\alpha_{c} = 0^{\circ}, 2^{\circ}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$

$$\triangle$$
 $\beta_c = -10^{\circ}, -7^{\circ}, -5^{\circ}, -3^{\circ}, -2^{\circ}, -1^{\circ}, 0^{\circ}, +1^{\circ}, +2^{\circ}, +3^{\circ}, +5^{\circ}, +10^{\circ}$

$$\triangle \alpha_0 = 6^{\circ}, 8^{\circ}, 10^{\circ}, 12^{\circ}, 14^{\circ}, 16^{\circ}, 18^{\circ}$$

TABLE II. (Concluded)

$$\triangle$$
 $\Delta Z = 0^*, 3^*, 7.5^*, 15^*, 30^*, 45^*, 60^*$

$$\triangle$$
 $\beta_0 = 2.5^{\circ}, 0^{\circ}, -2.5^{\circ}, -5^{\circ}, -7.5^{\circ}, -10^{\circ}, -15^{\circ}$

* minimum attainable

Table III. - MODEL DIMENSIONAL DATA A. Carrier Model

MODEL COMPONENT: BO	DY - ^B 27.8		
GENERAL DESCRIPTION:_	Body 74-7 Project	with A.P.V.	
Model Scale: 0.03			
Drawing Number:	65-69716		
Dimensions:			
		Full Scale	Model Scale
Length, in		2702	81.06
Max. Width, in			7.66
Area			
Wetted, ft ²			12.71

Table IIIA - Continued.

MODEL COMPONENT: Fo	
GENERAL DESCRIPTION Clean Wing	
Flaps Up	

Table IIIA - Continued

MODEL COMPONENT: Horizontal	Tail H _{15.0}	5	· · · · · · · · · · · · · · · · · · ·	
GENERAL DESCRIPTION: Horizon	tal Tail wi	th Vertical Fins	s on each	
Tip at Body B. L. 12.82				
Model Scale 0.03				
Drawing Number 1319-55 1/2	- 60			
Dimension:		Full Scale	Mod	del Scale
EXPOSED DATA (one side)				
Area-ft ²		200		

Table IIIA - Continued.

MODEL COMPONENT: "25		 	
GENERAL DESCRIPTION: Inboard 747, JT9D nacelle	strut		
Model Scale: 0.03		· · · · · · · · · · · · · · · · · · ·	
Dimensions	Full Scale		Model Scale
Wing B.L. of nacelle C _L , in. Cont angle deg. inboard	470.0		14.100

MODEL COMPONENT: M26	, , , , , , , , , , , , , , , , , , , 		
GENERAL DESCRIPTION: Outboard	747, JT9D		
Strut			
Model Scale: 0.03			
Drawing Number: 937-590			
<u>Dimensions</u>		Full Scale	Model Scale
W L of C ₁ , in			25.020
Cant angle, deg inboard		2	

Table IIIA - Continued.

MODEL COMPONENT:	^N 57								
GENERAL DESCRIPTION_	Inboard	Fan	Cow1	and	Primary	747	Nacel	le,	
Flow Through Typ	e								
Model Scale: 0.03		- '.							
Drawing Number: S.O.	1007-96	-97							

Table IIIA - Continued

MODEL COMPONENT:	N ₅₈	-						
GENERAL DESCRIPTION	N: Outboard	Fan	Cow1	and	Primary	747	Nacelle,	
Flow Through Typ	oe							
Model Scale: 0	.03							
Drawing Number 5.0	. 1.007-96,-	-97						

Table III A - Continued.

Chord

MODEL COMPONENT: Spoilers S1-12		
GENERAL DESCRIPTION: Multi-panel flight	spoilers. Four outb	oard and
two inboard spoiler per side. Subscrip	t denotes spøiler pa	nel ^S lis
the most outboard L.H. panel and S12 is	most outboard R.H.	panel,
747 Model Scale: 0.03 Mo	odel: 1065	
Drawing No.: 65-71450, S.O. 1065-51,	<u>-59, -81, -173</u>	
Dimensions: (One panel)	Full Scale Ft.	Model Scale
Outboard S_{1-4} and S_{9-12} (Ft ²)	21.48	0.019 ft ²
Span (equivalent)	6.25	2.25
Chord	3.44	1.238
Inboard S_{5-6} and S_{7-8} (Ft ²)	35.31	7
Span (equivalent)	7.50	2.70
Chord	4.71	1.696

Table III A - Continued

MODEL COMPONENT: T19			
GENERAL DESCRIPTION:	Flap Track F	airings,	
4 on each side			
Model Scale: 0.03			
Drawing Number: S.O. 1	007-403		

DIMENSIONS	Full Scale	Model Scale
WBL of Track no. 1, in.	235.3	7.06
2, in.	353.0	10.59
3, in.	652.0	19.56
4, in	743.6	22.31
Distance from wing	50.0	1.5
Trailing edge to:		

Track Trailing

edge, in.

Table IIIA - Continued.

MODEL COMPONENT: Vertical V9.1		
GENERAL DESCRIPTION: Swept Vertical Tail		
Model Scale: 0.03		
Drawing Number: 65-6.9716; 1007-26,-610;	937-319	
Dimensions:	<u>Full Scale</u>	Model Scale
TOTAL DATA		
Area (Theo) Ft ²	630.0	.567
Span (theo) - In.	_386.5	11.595
Sweep-Back Angles, Degrees Leading Edge	50.12	50.12
Chords:		
Root (Theo) WP-in.	461.67	13.85
Tip (Theo) WP-in.	157.0	4.71
Cup Sta of 25 MAC	2529.6	75.888

Table IIIA - Continued.

MODEL COMPONENT: WING-W44.1		
GENERAL DESCRIPTION: Swept 747 Wing		
Model Scale: 0.03		
7.000		
Test No.	DWG. No. 65-89585	
<u>Dimensions:</u>	Full Scale	Model Scale
<u>Total Data</u>		
Area (Theo.) Ft ² Planform	5500	4.95
Span (Theo In.	2348.04	70.441
Aspect Ratio	6.96	6.96
Incidence Angle, degrees		7
Chords:		
MAC	327.78	9.833
Fus. Sta. of .25 MAC	1339.90	40.197
W.P. of .25 MAC	190.80	5.723

MODEL COMPONENT: ATTACH STRUCTURE - AT38

GENERAL DESCRIPTION: Orbiter to carrier forward attach

struts.

MODEL SCALE: 0.030

DRAWING NO.: BOEING 1319-43

	SCA	LE
DIMENSIONS:	FULL	MODEL
AT ₃₈	15.6	0.465
AT'38.1	91.67	2.75
AT _{38.2}	75.00	2.25
AT38.2A	75.0	2.25
AT38.3	ROD REMOVED	ROD REMOVED

TABLE IIIA - Concluded.

MODEL COMPONENT: ATTACH STRUCTURE - AT39

GENERAL DESCRIPTION: Orbiter to carrier aft attachment, pitch

adjustable from 0 to 10 deg.

MODEL SCALE: 0.030

DRAWING NO.: Boeing 50 1319-37.

DIMENSIONS:	FULL SCALE	MODEL SCALE
Pivot location:		
In., X _C	400.0	12.0
In., Z _C	160.7	4.821
Equivalent Span (At 0 deg iorb):		
Centerline orbiter	521.0	15.63

TABLE III MODEL DIMENSIONAL DATA B. Orbiter

MODEL COMPONENT : BODY - B26		
GENERAL DESCRIPTION: Configuration 1	40A/B orbiter	fuselage.
NOTE: B26 is identical to B24 except unde	erside of fusela	ige has been
refaired to accept W ₁₁₆ .		
MODEL SCALE: 0.030 MODEL	DWG: SS-A00	0147, Release 12
DRAWING NUMBER: VL70-000143B, -00 VL70-000140A, -00	0200, -000205, 00140B	-006089, -000145
DIMENSIONS: Length (OML: Fwd Sta $X_0 = 235$), In Length (IML: Fwd Sta $X_0 = 238$), In		MODEL SCALE 38.799 38.709
Max Width (At $X_0 = 1528.3$), In.	264.0	7.920
Max Depth (At $X_0 = 1464$), In.	250.0	7.500
Fineness Ratio Area - Ft ²	0.264	0.264
Max. Cross—Sectional	340.88	0.307
Planform		
Wetted Base		

MODEL COMPONENT : CANOPY - C9		
GENERAL DESCRIPTION : Configuration	3A. Canopy u	sed with fuselage B
MODEL SCALE: 0.030 MOI	DEL DWG: SS-	A00147, Release 12
DRAWING NUMBER: VL70-000143A	Particology and the second control of the se	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length ($X_0 = 434.643$ to 578), In.	143,357	4.301
Max Width (At $X_0 = 513.127$), In.	152.412	4.572
Max Depth (At $X_0 = 485.0$), In.	25.00	0.750
Fineness Ratio		
Area		*****
Max. Cross—Sectional		
Planform		
Wetted		·
Base		

MODEL COMPONENT: SLOTTED ELEVON (6 INCH GAP) - E43	
GENERAL DESCRIPTION: Configuration 1404	•	
NOTE: E43 is a slotted version of E24	. Data are for one	side
MODEL SCALE: 0.030		
DRAWING NUMBER: VL70-00020	0, -006089, -00609	2
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	210,00	0, 189
Span (equivalent) , In.	349.2	10. 476
Inb'd equivalent chord , In.	118.004	3.540
Outb'd equivalent chord, In.	55. 192	1.656
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.2096	0.2096
At Outb'd equiv. chord	0.4004	0,4004
Sweep Back Angles, degrees		
Leading Edge	0.00	0.00
Tailing Edge	-10.056	-10.056
Hingeline (Product of Area & c)	0.00	0.00
Area Moment (Normal×toxhingextine),	Ft ³ 1587.25	0.043
Mean Aerodynamic Chord, In.	90.7	2. 721

MODEL COMPONENT : BODY FLAP -	F ₈	
GENERAL DESCRIPTION : Configuratio	n 140A/B orbite	r body flap
NOTE: Hingeline located at X = 1	528.3, Z = 284	3
MODEL SCALE: 0.030 M	ODEL DWG: SS	-A00147, Release
DRAWING NUMBER: VL70-000140A,		
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length ($X_0 = 1520 - 1613$) In.	93.00	2,79
Max Width , IN.	262.00	7.86
Max Depth ($X_0 = 1520$), In.	23.00	0.69
Fineness Ratio		
Area - Ft ²		
Max. Cross—Sectional		
Planform	150.525	0.1355
Wetted		
Base	41.847	0.0377

MODEL COMPONENT : OMS POD - M16		
GENERAL DESCRIPTION : Configuratio	n 140C	
Orbiter OMS pod - Short pod		
MODEL SCALE: 0.030		
DRAWING NUMBER: VL70-008401, -00	8410	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (OMS Fwd Sta. Xo=1310.	5) 258.50	7.755
Max Width(At $X_0 = 1511$), In.	136.8	4.104
Max Depth (At $X_0 = 1511$), In.	74.70	2.241
Fineness Ratio	2.484	2.484
Area - Ft ²		
Max. Cross-Sectional	58.864	0.053
Planform		
Wetted		
Base		

MODEL COMPONENT: MPS NOZZLES - N24	
GENERAL DESCRIPTION: Configuration	n 140A/B orbiter MPS nozzles
MODEL SCALE: 0.030	MODEL DWG: SS-A00147, Release 1
DRAWING NUMBER: VL70-005030A, -00	00140A
DIMENSIONS:	FULL SCALE MODEL SCALE
MACH NO.	
Length - In. Gimbal Point to Exit Plane Throat to Exit Plane	$\begin{array}{c c} \hline $
Diameter - In. Exit Throat Inlet	91.00 2.73
Area - ft ² Exit Throat	45.166 0.0407
Gimbal Point (Station) - In.	
Upper Nozzle X Y Z	$\begin{array}{c cccc} 1445.00 & 43.35 \\ \hline 0.0 & 0.0 \\ \hline 443.00 & 13.29 \end{array}$
Lower Nozzles X Y Z	$ \begin{array}{rrrr} 1468.170 & 44.045 \\ $
Null Position - Deg.	
Upper Nozzle Pitch	<u>16</u> <u>16</u>
Yaw	0
Lower Nozzle Pitch Yaw	$\begin{array}{cccc} & 10 & & 10 \\ \hline & 3.5 & & 3.5 \end{array}$

	IS NOZZLES - N	<u> </u>		
ENERAL DESCRIPTION:	Configuration 1	40A/B orbiter	OMS No.	zzies
ODEL SCALE: 0.030	· · · · · · · · · · · · · · · · · · ·			
RAWING NUMBER: VI	70-000140A (Loc	cation), SS-A0	0106, Re	lease 5 (Conto
imensions:		<u>FUL</u>	L SCALE	MODEL SCALE
MACH NO.				
Length - In. Gimbal Point t Throat to Exit				
Diameter - In. Exit Throat Inlet				
Area - ft ² Exit Throat				
Gimbal Point (Stat Left XXXXX Nozzle	cion) · In.			
X o Y o Z o			518.00 -88.0 492.0	45. 54 -2. 64 14. 76
Right kamer Nozzles	ORIGINAL PAG	ie is	710 0	Ar ru
Х о Y о Zo	ORIGINAL PAG OF POOR QUA	TILES	518.0 88.0 492.0	45.54 2.64 14.76
Null Position - D Left XFFEX Nozzle	eg.		-8	±8
	eg.	13 ⁰ 17 Outb <u>'d</u> ,	=8 , 2 ⁰ 30' In	
Left XXXX Nozzle Pitch			<u>, 2 ⁰30' In</u> ±8	b'd Same ±8

MODEL COMPONENT: RUDDER - R5		
GENERAL DESCRIPTION: Configuration 140C o	erbiter rudder (identical to
configuration 140A/B rudder)		
MODEL SCALE: 0.030		
DRAWING NUMBER: VL70-000146B,	-000095	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	100.15	_0.090
Span (equivalent), In.	201.00	6. 03
Inb'd equivalent chord, In.	91.585	2. 748
Outb'd equivalent chord, In.	50.833	1.525
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0,400	0.400
Sweep Back Angles, degrees		
Leading Edge		
Tailing Edge	26. 25	26. 25
Hingeline (Product of area and c)	34.83	34.83
Area Moment (Mermanxtexappexkine), Ft3	610.92	0.0165
Mean Aerodynamic Chord, Inches	73.2	2. 196

MODEL COMPONENT : ORBITER TA	ALLCONE - TC ₅	1
GENERAL DESCRIPTION : Fairing moun	ited on orbiter fi	uselage base for
ferry missions.		
MODEL SCALE: 0.030		
DRAWING NUMBER: Boeing Dwg No.: 1	319-71	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length	445.83	13.375
Max Width	303.33	9.10
Max Deptox Height	265.00	7.95
Fineness Ratio		
Area - Ft ² Projected frontal area Max. Cross-Sectional	324.105	0.2917
Planform Wetted		
Wetted		

MODEL COMPONENT: VERTICAL - V8		*
GENERAL DESCRIPTION: Configuration 140A	/B orbiter vertical	tail.
dia dia dia dia dia dia dia dia dia dia		
		and the same of th
MODEL SCALE: 0.030 MODE	EL DWG: SS-A0014	18, Release 6
DRAWING NUMBER: VL70-000146A		
DIMENSIONS:	FULL SCALE	MODEL SCALE
TOTAL DATA		
Area (Theo) - Ft ² Planform Span (Theo) - In. Aspect Ratio Rate of Taper Taper Ratio Sweep-Back Angles, Degrees. Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC W.P. of .25 MAC	413, 253 315, 720 1, 675 0, 507 0, 404 45, 000 26, 25 41, 13 268, 50 108, 47 199, 81 1463, 35 635, 52	0.372 9.472 1.675 0.507 0.404 45.000 26.25 41.13 8.055 3.254 5.994 43.901 19.066 0.00
B.L. of .25 MAC Airfoil Section Leading Wedge Angle - Deg. Trailing Wedge Angle - Deg. Leading Edge Radius	10,00 14,92 2,00	10.00 14.92 0.060
Void Area	13.17	0,119
Blanketed Area	0.00	0.00

MODEL SCALE: 0.030 DMG. NO. VL70-000140A, -	ODEL COMPONENT: WING-W ₁₁₆ ENERAL DESCRIPTION: Configuration 4		
MODEL SCALE: 0.030 DMG. NO. VL70-000140A,		D'1 1 1	1
MODEL SCALE: 0.030 EST NO. DWG. NO. VL70-000140A, - IMENSIONS: FULL-SCALE MODEL SCALE TOTAL DATA Area (Theo.) Ft2 Planform Span (Theo In. 936.68 28.10 Aspect Ratio 2.265 2.265 Rate of Taper 1.1.77 1.177 Taper Ratio 0.200 0.200 0.200 Dihedral Angle, degrees 3.5.00 3.500 Incidence Angle, degrees 0.500 0.500 Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge 45.00 45.00 0.500 Chords: Root (Theo) B.P.O.O. 10.056 10.056 0.25 Element Line 35.209 35.209 Chords: Root (Theo) B.P.O.O. 689.24 20.677 Tip. (Theo) B.P. 137.85 4.136 MAC 0.000 FIGURAL PAGE B. 1136.83 34.105 W.P. of .25 MAC POOR QUALITY EXPOSED DATA Area (Theo) Ft2 Span, (Theo) In. BP108 Aspect Ratio 1.576 Taper Ratio Chords Root BP108 Root BP108 Tip 1.00 b 1.576 Fus. Sta. of .25 MAC 2.059 2.059 Taper Ratio Chords Root BP108 Tip 1.00 b 137.85 4.136 Fus. Sta. of .25 MAC 2.059 2.059 W.P. of .25 MAC 3.05.25 MAC 2.059 1.576 Aspect Ratio 1.576 Fus. Sta. of .25 MAC 2.059 2.059 Taper Ratio Chords Root BP108 Tip 1.00 b 137.85 4.136 AC 2.059 2.059 Taper Ratio 2.059 1.576 ASPECT RATIO 1.58 MAC 2.059 2.059 Taper Ratio 2.059 1.37.85 4.136 ASPECT RATIO 1.55 MAC 2.059 2.059 Taper Ratio 2.059 1.37.85 4.136 ASPECT RATIO 1.55 MAC 2.059 2.059 Taper Ratio 2.059 1.37.85 4.136 ASPECT RATIO 1.55 MAC 2.059 2.059 ASPECT RATIO 1.00 b 1.37.85 4.136 ASPECT RATIO 1.00 b 1.37.85 4.136 ASPECT RATIO 1.00 b 1.37.85 4.136 ASPECT RATIO 1.00 b 1.37.85 4.136 ASPECT RATIO 1.00 b 1.37.85 4.136 ASPECT RATIO 1.00 b 1.37.85 4.136 ASPECT RATIO 1.00 b 1.37.85 4.136 ASPECT RATIO 1.00 b 1.00			le is along
IMENSIONS: FULL-SCALE MODEL SCALE	trailing edge of wing. Geometric twist = 0),	
TOTAL DATA	MODEL SCALE: 0.030		
TOTAL DATA Area (nec.) Ft2 Planform 2690.00 2.421 Span (Theo In. 936.68 28.10 Aspect Ratio 2.265 2.265 Rate of Taper 1.177 1.177 Taper Ratio 0.200 0.200 0.200 Dihedral Angle, degrees 3.500 3.500 Incidence Angle, degrees 0.500 0.500 Aerodynamic Twist, degrees 45.00 45.00 Area (Theo Barren 10.056 10.056 10.056 0.25 Element Line 35.209 35.209 Chords: Root (Theo) B.P.O.O. 689.24 20.677 Tip, (Theo) B.P. 137.85 4.136 MAC Fus. Sta. of .25 MAC PAGE B 136.83 34.105 W.P. of .25 MAC POOR PAGE B 182.13 5.464 EXPOSED DATA Area (Theo) Ft2 1751.50 1.576 Span, (Theo) In. BP108 720.68 21.620 Aspect Ratio 2.059 2.059 Taper Ratio 2.059 2.059 Taper Ratio 2.059 2.059 Taper Ratio 392.83 11.785 Fus. Sta. of .25 MAC 137.85 4.136 Root BP108 562.09 16.863 Tip 1.00 b 137.85 4.136 MAC 392.83 11.785 Fus. Sta. of .25 MAC 185.98 35.579 W.P. of .25 MAC 294.30 8.829 B.L. of .25 MAC 294.30 8.829 Airfoil Section (Rockwell Mod NASA) XXXX-64 Root b 2	EST NO.	DWG. NO. VL	70-000140A, -0
Area (.neo.) Ft2 Planform Span (Theo In. Aspect Ratio Rate of Taper Taper Ratio Dihedral Angle, degrees Aerodynamic Twist, degrees Leading Edge Trailing Edge O.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. Area (Theo) Ft2 Span, (Theo) Ft2 Span, (Theo) In. BP108 Aspect Ratio Chords Root BP108 Tip 1.00 b Area (Theo) Ft2 Fus. Sta. of .25 MAC Aspect Ratio Chords Root BP108 Tip 1.00 b Root BL. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64 Root b Tip b Tip b Tip b Tip b Tip b Tip C.25 Ides Aspect Ratio Chords Root BP108 Tip b Tip b Tip b Tip b Tip c Tip b Tip b Tip C.25 Ides Aspect Ratio Chords Root BP108 Tip b Tip b Tip b Tip b Tip b Tip C.25 Ides Aspect Ratio Chords Root BP108 Tip b Tip b Tip b Tip b Tip C.25 Ides	IMENSIONS:	FULL-SCALE	MODEL SCALE
Span (Theo In. 936.68 28.10 28.20 28.10 22.265 22.26	TOTAL DATA		
Span (Theo In.	Area (Theo.) Ft2		
Aspect Ratio Rate of Taper Ratio Rate of Taper Taper Ratio Dihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC B.L. of .25 MAC Aspect Ratio Aspect Ratio Chords EXPOSED DATA Area (Theo) In. BP108 Aspect Ratio Chords Root BP108 Root BP108 Root Data Root Data Area Sta. of .25 MAC Root BP108 Root Data Area Chords Root BP108 Root Data Area Chords Root BP108 Root Data Area Chords Root BP108 Root Data Area Chords Root BP108 Root Data Area Chords Root BP108 Root Data Area Chords Root BP108 Root			2.421
Rate of Taper Taper Ratio Dihedral Angle, degrees O. 200 Dihedral Angle, degrees Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge Trailing Edge O.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. W.P. of .25 MAC Area (Theo) Ft ² Span, (Theo) In. BP108 Root BP108 Root BP108 Tip 1.00 b L. of .25 MAC Root BP108 Root DATA Area (Theo) Ft Root OR CALL PAGE Aspect Ratio Chords Root BP108 Root BP108 Tip 1.00 b L. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXXX-64 Root b Root D I. D I. Sides D. 120 Data for (1) of (2) Sides		936.68 2.265	28, 10
Taper Ratio Dihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC B.L. of .25 MAC Area (Theo) Ft Span, (Theo) In. BP108 Appect Ratio Chords Root BP108 Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 b Tip 1.00 c Tip 2 Tip 5 Tip 5 Tip 2 Tip 5 Tip 5 Tip 2 Tip 5 Tip 5 Tip 1.00 c Tip			
Dinedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.O.O. B.P. OOR POOR PAGE IS BL. of .25 MAC Aspect Ratio Chords Root BP108 Root BP108 Tip 1.00 b L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXXX-64 Root b = Data of .25 MAC Root BP108			
Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC Area (Theo) Ft ² Span, (Theo) In. BP108 Aspect Ratio Chords Root BP108 Root BP108 Root BP108 Root BP108 Root BP108 Root BP108 Root BP108 Area (Theo) BP108 ARC Area (Theo) BP108 ARC Area (Theo) BP108 ARC ARC BROOT BP108 ARC ARCA BROOT BP108 ARCA BROOT		3,500	
Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC Area (Theo) Ft ² Span, (Theo) In. BP108 Root BP108 Root BP108 Root BP108 Fus. Sta. of .25 MAC Root BP108 Root BP108 Root BP108 Fus. Sta. of .25 MAC Root BP108 Root			
Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 Mac B.L. of .25 MAC Area (Theo) Ft Span, (Theo) In. BP108 Aspect Ratio Root BP108 Root BP108 Tip 1.00 b Taper Ratio Chords Root BP108 Root BP108 Fus. Sta. of .25 MAC Root BP108 Fus. Sta. of .25 MAC Root BP108 Fus. Sta. of .25 MAC Root BP108 Fus. Sta. of .25 MAC B.L. of .25 MAC Root BP108 Fus. Sta. of .25 MAC B.L. of .25 MAC Root BP108 Fus. Sta. of .25 MAC B.L. of .25 MAC Root BP108 Fus. Sta. of .25 MAC B.L. of .25 MAC B.L. of .25 MAC Root BP108 Fus. Sta. of .25 MAC B.L. of			
Trailing Edge 0,25 Element Line Chords: Root (Theo) B.P.0.0. Root (Theo) B.P. ORIGINAL PAGE Span, (Theo) In. BP108 Aspect Ratio Chords Root BP108 Root BP108 Root b = Tip b = Tip b = Tip b = To compare the side of t		AE 00	45 00
0.25 Element Line Chords: Root (Theo) B.P.0.0. Root (Theo) B.P.0.0. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAG B.L. of .25 MAC Area (Theo) Span, (Theo) Span, (Theo) Root BP108 Root BP108 Root BP108 Tip 1.00 b Root BP108 Root BP108 Aspect Ratio Chords Root BP108 Root BP108 Root BP108 Fus. Sta. of .25 MAC Root BP108 Root BP108 Aspect Root Root Root Root Root Root Root Ro			
Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. ORIGINAL PAGE IS B.L. of .25 MAC Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC Root .25 MAC Root .25 MAC Aspect Ratio Tip 1.00 b MAC Fus. Sta. of .25 MAC Root BP108 Acc Fus. Sta. of .25 MAC Root BP108 Tip 1.00 b Aspect Ratio Tip 1.00 b N.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXXX-64 Root b Tip b Tip b On 120 On 120 On 120			
Root (Theo) B.P.O.O. Tip, (Theo) B.P. Tip, (Theo) B.P. MAC PAC PAC PAC PAC PAC PAC PAC			
Tip, (Theo) B.P. MAC MAC Pus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Area (Theo) Ft ² Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC MAC MAC Area (Theo) Exposed MAC Root BP108 Tip 1.00 b MAC ARC Fus. Sta. of .25 MAC Arca (Theo) BP108 Aspect Ratio Tip 1.00 b MAC Fus. Sta. of .25 MAC BL. of .25 MAC Arca (Theo) BP108 Arca (Theo) In. BP108 Aspect Ratio Tip 1.00 b MAC Fus. Sta. of .25 MAC BL. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXXX-64 Root b Tip b Online Online At 136 At 14.244 At 14.244 At 136 At 136 At 136 At 136 At 136 At 136 At 136 At 137 At 1751 At 1751 At 1751 At 1751 At 1761 At 136 At 1	Root (Theo) B.P.O.O.	689.24	20.677
Area (Theo) Ft ² Span, (Theo) In. BP108 Aspect Ratio Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXXX-64 Root b = Tip b = Ontage 1751.50 1.576 21.576 22.059 22.059 2.059	Tip, (Theo) B.P.	137.85	4.136
Area (Theo) Ft ² Span, (Theo) In. BP108 Aspect Ratio Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXXX-64 Root b = Tip b = Ontage 1751.50 1.576 21.576 22.059 22.059 2.059	MAC URIGIAT		والمرسوب والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع وا
Area (Theo) Ft ² Span, (Theo) In. BP108 Aspect Ratio Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXXX-64 Root b = Tip b = Ontage 1751.50 1.576 21.576 22.059 22.059 2.059	W D of 25 MAC PACE		
Area (Theo) Ft ² Span, (Theo) In. BP108 Aspect Ratio Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXXX-64 Root b = Tip b = Ontage 1751.50 1.576 21.576 22.059 22.059 2.059	B.1. of 25 MAC QUATER		
Area (Theo) Ft ² Span, (Theo) In. BP108 Aspect Ratio Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXXX-64 Root b = Tip b = Ontage 1751.50 1.576 21.576 22.059 22.059 2.059	EYPOSED DATA	100, 10	J. 707
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Area (Theo) Ft2	1751.50	1.576
Aspect Ratio 2.059 2.059 Taper Ratio 0.245 0.245 Chords Root BP108 562.09 16.863 Tip 1.00 b 137.85 4.136 MAC 392.83 11.785 Fus. Sta. of .25 MAC 185.98 35.579 W.P. of .25 MAC 294.30 8.829 B.L. of .25 MAC 251.77 7.553 Airfoil Section (Rockwell Mod NASA) XXXX-64 Root b = 0.113 0.113 Tip b = 0.120 0.120	Span. (Theo) In. BP108	والمستقصين والمستقد و	CONTRACTOR OF THE PERSON NAMED IN COLUMN 1
Taper Ratio	Aspect Ratio		
Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXXX-64 Root b = Tip b = Ontage Ontage 16.863 137.85 4.136 392.83 11.785 1185.98 35.579 294.30 8.829 7.553 Ontage Ontage			
Tip 1.00 $\frac{b}{2}$ MAC MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64 Root $\frac{b}{2}$ Tip $\frac{b}{2}$ Data for (1) of (2) Sides $ \frac{137.85}{392.83} \frac{11.785}{185.98} 35.579 294.30 8.829 7.553 0.113 0.113$	Chords		
MAC $\frac{2}{\text{Fus. Sta. of .25 MAC}}$ Fus. Sta. of .25 MAC $\frac{1185.98}{294.30}$ B.L. of .25 MAC $\frac{294.30}{251.77}$ Airfoil Section (Rockwell Mod NASA) XXXX-64 Root $\frac{b}{2}$ Tip $\frac{b}{2}$ Data for (1) of (2) Sides			
Fus. Sta. of .25 MAC $\frac{1185.98}{294.30}$ $\frac{35.579}{8.829}$ B.L. of .25 MAC $\frac{294.30}{251.77}$ $\frac{8.829}{7.553}$ Airfoil Section (Rockwell Mod NASA) XXXX-64 Root $\frac{b}{2}$ $\frac{0.113}{200}$ $\frac{0.120}{200}$ Data for (1) of (2) Sides	1γ ρ. Ι. το Ε. Το Ε. Ε. Ε. Ε. Ε. Ε. Ε. Ε. Ε. Ε. Ε. Ε. Ε.	_137.85_	4.136_
Fus. Sta. of .25 MAC $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		392, 83	11.785
B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA)		1185.98	35.579
Airfoil Section (Rockwell Mod NASA) XXXX-64 Root $\frac{b}{2}$ = $\frac{0.113}{0.113}$ 0.113 Tip $\frac{b}{2}$ = $\frac{0.120}{0.120}$ 0.120 Data for (1) of (2) Sides			
		251.77	7.553
Tip $\frac{b}{2}$ = 0.120 0.120 Data for (1) of (2) Sides			
Tip $\frac{b}{2}$ = 0.120 0.120 Data for (1) of (2) Sides	Root <u>b</u> =	0.113	0.113
		0.120	0.120
	Data for (1) of (2) Sides		
	Leading Edge Cuff ,		
Planform Area Ft ² 0,102	Planform Area Ft		
Leading Edge Intersects Fus M. L. 0 Sta 500.00 15.00 Leading Edge Intersects Wing 0 Sta 1024.00 30.72			

61

Table IV. CA20 DATASET DESCRIPTION (Raw Data)

DATASET TYPE	DESCRIPTION
RGNXXX	Longitudinal coefficient schedule for 747 carrier balance data which contain "standard" wind tunnel corrections.
AGNXXX	Lateral coefficient schedule for 747 carrier balance data which contain "standard" wind tunnel corrections.
BGNXXX	Longitudinal coefficient schedule for orbiter balance data which contain "standard" wind tunnel corrections.
CGNXXX	Lateral coefficient schedule for orbiter balance data which contain "standard" wind tunnel corrections.
DGNXXX	Pressure coefficient data as follows: Q(PSF) - dynamic pressure, psf PB1, PB2, PB3 - orbiter base pressure coefficients PCAV - orbiter cavity pressure coefficient PSC - carrier cavity pressure coefficient LHLS, RHLS - left and right hand pressure coefficients in proximity to orb. vert. tail for blade/sting support system. LHVERT, RHVERT - identical to LHLS and RHLS but for base sting support system.

Table V.
CA20 COEFFICIENT SCHEDULE
(Raw Data)

<u> </u>				<u> </u>				Coeffi	cients				
Dataset Type	Dataset • Sequence	1st ID	2nd ID	1	2	3	4	5	6	7	8	9	10
	034-036	МАСН	ALPHAW	ВЕТА	Q(PSF)	CL	CD	CLM , .	СҮ	CLN	CSL		
	037	масн	ALPHAO	ALPHAW	ВЕТА	DY	DZ	CL	CD	CLM	СҮ	CLN	CSL
	038 & 039	масн	вета	ALPHAW	ALPHAO	DY	DZ	CL	CD	CLM	CY	CLN	CSL
	040-149	ALPHA0	DZ	МАСН	ΧΩ	DY	ветао	РНІ	ALPHAW	ВЕТА	CL	CD	CLM
AGNXXX	040-149	ALPHAO	DZ	MACH	DX	DY	ВЕТАО	PHI	ALPHAW	ВЕТА	СУ	CLN	CSL
BGNXXX	001-011 & 015-033 & 037	MACH	ALPHA0	ВЕТАО	PHI	Q(PSF)	CL	CD	CLM	ĆΥ	CLN	CSL	
	012 & 013	МАСН	DZ	ALPHAO	ветао	PHI	Q(PSF)	CL	CD	CLM	СҮ	CLN	CSL
	014	MACH	BETA0	ALPHA0	PHI	Q(PSF)	CL	CD	CLM	CY	CLN	CSL	
	038 & 039	MACH	вета	ALPHAW	ALPHAO	DY	DZ	CL	CD	CLM	СҮ	CLN	CSL
	040-149	ALPHA0	DZ	MACH	DX	DY	BETAO	PHI	ALPHAW	вета	CL	CD	CLM
CGNXXX	040-149	ALPHA0	DZ	MACH	DX	DY	BETAO	PHI	ALPHAW	вета	СҮ	CLN	CSL
DGNXXX	001-011 & 015-019 & 037	MACH	ALPHA0	Q(PSF)	PB1	PB2	PB4	LHLS	RHLS	PCAV	1		
	012 & 013	MACH	DZ	Q(PSF)	PB1	PB2	PB4	LHLS	RHLS	PCAV			
	014	MACH	вета0	Q(PSF)	PB1	PB2	PB4	LHLS	PHLS	PCAV			
	020-033	МАСН	ALPHA0	Q(PSF)	PB1	PB2	PB4	LHVERT	RHVERT	PCAV			
	034-036	MACH	ALPHAW	PSC									
	038 & 039	масн	ВЕТА	Q(PSF)	PB1	PB2	PB4	LHLS	RHLS	PCAV			
	040-149	ALPHAO	DZ	Q(PSF)	PB1	PB2	PB4	LHLS	PHLS	PCAV	<u> </u>		

Note: ID--Independent variable

Table VI
CA20 DATASET DESCRIPTION
(INTERPOLATED/INCREMENTED DATASETS)

DATASET TYPE	DESCRIPTION
MGNXXX	Interpolated data for 747 carrier balance data in carrier reference dimensions.
NGNXXX	Interpolated data for orbiter balance data in orbiter reference dimensions.
UGNXXX	Incremental data - 747 carrier data in presence of orbiter (mated) minus 747 carrier alone data in 747 carrier reference dimensions.
VGNXXX	Incremental data - Orbiter data in presence of 747 carrier (mated) minus orbiter alone data in orbiter reference dimensions.

NOTE: Datasets M, N, U, and V contain the full ΔZ array of 0 3 7.5 15 30 40 and 60 ft. Therefore, the datasets reflect extrapolations for some individual test arrays of ΔZ . For subsequent data plotting, the full ΔZ arrays were truncated to the actual tested arrays.

Table VII. CA20 INTERFULATED DATASET SUMMARY

(M AND N DATASET	151	,
------------------	-----	---

	(M AND N DATASETS)
DATASET(S)	INTERPOLATED VARIABLES (1) (2)
NGN001 - 011	MACH, ALPHAO
NGN012 → 013	MACH, DZ
NGNO14	MACH, BETAO
NGN015 → 033	MACH, ALPHAO
MGN034 → 036	MACH, ALPHAW
MGN037 NGN037	MACH, ALPHAO
MGN038 NGN038 → 039	MACH, BETAC
MGN040 NGN040 → 048	ALPHAO, DZ (SEE NOTE 3)
MGN049 NGN049 → 119 MGN126 NGN126 → 140	ALPHAO, DZ, DX, ALPHAW, DY, BETAO, BETAC, PHI
MGN126 MGN141 NGN141 → 149	ALPHAO, DZ
MGN120 NGN120 → 125	ALPHAO, DZ, BETAC, ALPHAW

NOTES:

(1) Interpolation procedure:

Number of Values Available for Interpolation	Interpolation Procedure
1 2 3 4 → ∞	Substitute actual test value with a nominal test value (Note 3 below) Straight line Parabolic spline fit Cubic spline fit

BETA = BETAC

(3)
Interpolation was versus DZ and ALPHAO; however, since each of these datasets (40 → 48) has only one ALPHAO there was therefore no ALPHAO interpolation. The recorded test ALPHAO was replaced with a nominal test ALPHAO (i.e., 8, 12, or 16) so that the only interpolation was versus DZ.

Table VII. Concluded.

(4)
Interpolation on DX was not performed on all datasets due to large data fluxuations from the nominal condition.

Table VIII. CA20 INCREMENTAL DATASET SUMMARY

(INTERFERENCE) - (ISOLATED)

(IL AND V DATASETS)

BASE DATASET	VEHICLE	BETAC, deg.	ALPHAW, deg.	BETAO, deg.	ELEVON, deg.	AILRON, deg.
MGN034	CARRIER (1)	- 5	0 4 8	NA 	NA 	NA
MGN035			0 4 8			
MGN036		5 ↓	0 4 8			
NGN007 NGN010 NGN008 NGN011 NGN009 NGN018	ORBITER-0 ₁ S ₁ (2) ORBITER-0 ₂ S ₁ (2)	NA ,,	NA 	-5 0 	.5 5 0 10 5 5	0

NOTES:

(1)

ALPHAW Sweep (0, 4, 8°) ALPHAO Sweep (6, 8, 10, 12, 14, 16, 18)

Interpolate base datasets to various nominal α and β Procedure - (a) combinations.

> Subtract appropriate interpolated base dataset from interpolated separation (mated) data, except for datasets 45 thru 48 which were utilized to provide the increment due to attach hardware as follows:

Resulting Dataset Number	First Dataset Number	Second Dataset Number
UGNO45	MGNO45	MGN049 @ ALPHAO = 8
VGNO45	NGNO45	NGN049 @ ALPHAO = 8
UGNO46	MGN046	MGN052 @ ALPHA0 = 12
VGNO46	NGN046	NGN052 @ ALPHA0 = 12
UGNO47	MGNO47	MGN055 @ ALPHAO = 16
VGNO47	NGNO47	NGN055 @ ALPHAO = 16
UGNO48	MGN048	MGN046
VGNO48	NGN048	NGN046

INCREMENT = (First Dataset) - (Second Dataset)

Datasets 45 thru 48 interpolated per note (3) on "Interpolated Dataset Summary".

Datasets 49, 52, and 55 interpolated versus ALPHAO, DZ, DX, ALPHAW, DY, BETAO, BETAC, PHI.

RESULTANT SGNO		CONFIGURATION	βο =	IPUT DA O°, βc	= 0°	
CARRIER	ORBITER		αW	8° 2°	12° 6°	16° 10°
A	В	747/0 0 ₁ S ₁ AT ₃₈ AT ₃₉		40	41	42
E	F	747/1 0 ₁ S ₁ AT ₃₈ AT ₃₉		45	46	47
I	J	747/1 0 ₁ S ₁		49		
К	Ĺ	747/1 0 ₁ S ₁			52	
M	N	747/1 0 ₁ S ₁				55
			α() = 12°	$\alpha_W =$	5.83°
			β ₀ β _C	-5° -5°	0°	
С	D	747/0 0 ₁ S ₁ AT ₃₈ AT ₃₉		43	41	
G	Н	747/1 0 ₁ S ₁ AT ₃₈ AT ₃₉		48	46	
					<u> </u>	

NOTES:

- (1) Orbiter data were interpolated versus α_0 and Δz
- (2) Carrier data were interpolated versus α_W and ΔZ
- (3) The interpolation assumes a constant incidence angle between Orbiter and Carrier even though they were mounted on separate support systems (see Configuration A, in Figure 2F).
- (4) Resultant datasets SGNO__ 1 have both lateral and longitudinal coefficient data.

			INPUT DATASETS			
RESUL	$\beta_0 = 0^{\circ} \beta_C = 0^{\circ}$					
DATA	αo	8°	12°	16°		
		α_{W}	2 °	6°	10°	
CARRIER	ORBITER					
WGNR45	XGNB45		45- 49			
WGNR46	XGNB46			46-52		
WGNR47	XGNB47				47-55	
			$\alpha_0 = 12^\circ$,	$\alpha_W = 5$.	.83°	
WGNR48	XGNB48		48-	46		
WGNR43	XGNB43		43-	41		
WGNRDB	XGNBDB	(48, 46) -	(43, 47	1)	
			$\beta_0 = 0^\circ$,	$\beta_{\rm C} = 0^{\rm c}$)	
WGNRCA	XGNBCA	(45,	46, 47) -	(40, 4	1, 42)	

NOTE: Resultant datasets have incremental lateral and longitudinal coefficient data.

α, deg.	β, deg.	CA5 Run with Image Strut	CA5 Run without Image Strut
1A	0	15	99
2		20	104
6		23	108
8		27	112

$$\alpha_{W} = 10^{-100} = 3^{\circ} \rightarrow 16^{\circ}, 1^{\circ} \text{ increments}$$

$$\beta = 10^{\circ} = -12^{\circ}, -10^{\circ}, -8^{\circ}, -6^{\circ}, -4^{\circ}, -3^{\circ}, -2^{\circ}, -1^{\circ}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}, 12^{\circ}$$

$$Correction = \left(\begin{array}{c} \text{Run with} \\ \text{Image Strut} \end{array}\right) - \left(\begin{array}{c} \text{Run without} \\ \text{Image Strut} \end{array}\right)$$

"Correction" datasets are 6GMDA4, 6GMDB4 and 6GMDC4, which were interpolated for α_W = 2° to 12° and β = -5°, 0°, +5°, respectively.

"Corrected" datasets are 5GN034-149. For the DZ and α_0 sweeps (2nd independent variable), the "correction" is a constant value for all coefficients. For the α_W and β sweeps (2nd independent variable), the "correction" is a function of α_W and β , respectively.

Note:

"Correction: and "corrected" data are shown in the Appendix.

a. General

Figure 1. - Axis systems.

b. Orbiter/747 Axis System Definition Figure 1. - Concluded.

RIGINAL PAGE IS OF POOR QUALITY

REFERENCE DIMENSIONS (FS)

	ORBITER	747 CARPIER
WING AREA ∼Ft²	2690	5500
MAC (c) ~ INCHES	474.81.	327.78
SPAN (b) ~ INCHES	936.68	2348.04
MOMENT REFERENCE CENTER	67.5% LB	25.0 % €
F.S. ~ INCHES W.P. ~ INCHES	1109.0 375.0	1339.9

BWL 400 (% 96 51) BSTA 1607 (% 1317)

b. Orbiter/747 Flight Test Configurations

Figure 2. - Continued.

c. Base Pressure Locations

Figure 2. - Continued.

DRIGINAL PAGE IS
OF POOR QUALITY

CONFIGURATION A

d. Blade Strut and Vertical Tail Pressure Locations
Figure 2. - Continued.

ORIGINAL PAGE IS OF POOR QUALITY

e. Standard In-Flight Speed-BrakeFigure 2. - Continued.

f. Test Support ConfigurationsFigure 2. - Continued.

g. Orbiter/747 C.G. and C.R. Orientation

Figure 2. - Concluded.

ORIGINAL PAGE IS OF POOR QUALITY

a. Orbiter Alone with Dummy Blade in Proximity for Sting Tare Effect Study $\hbox{Figure 3. - Model photographs.}$

b. Orbiter Alone with Tail Cone ${\rm TC}_{5.1}$

Figure 3. - Continued.

c. Aft View of the Orbiter/747 Showing Vertical Displacement Figure 3. - Continued.

d. Front View of the Orbiter at an Angle of Attack with Respect to the 747 Carrier Figure 3. - Concluded.

DATA FIGURES

VOLUME 1 Figures 4-25 Pages 1-831

VOLUME 2 Figures 26-39 Pages 832-1863

PRECEDING PAGE BLANK NOT FILMED

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 832

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 836

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 838

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

Committee and the second

PAGE

840

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 846

PAGE

847

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

40

20 **DZ**

0

-.04点

20 DZ 40

60

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 850

60

20 DZ

Ò

40

20 DZ

0

40

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 852

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 853

PAGE 856

D/S (107 - 007)(VGN107) CA20 (747/1 01 S1) - (01 S1) REFERENCE INFORMATION PARAMETRIC VALUES ALPHAO SYMBOL 2690.0000 474.8100 SQ.FT. SREF -5.000 4.000 BETAC 0 10.000 **ALPHAC** IN. LREF .000 ELV-0B 3.000 BREF 14.000 ELV-IB 936,6800 IN. IN.XO IN.YO IN.ZO 1109.0000 .600 5.000 **ELEVON** .0000 YMRP .000 DX 10.000 PHI ZMRP 375.0000 -5.000 10,000 BETAO .0300 .12 .8 .10E .08 .6‡ .06+ .5[.04E .4 .02 0-DCLM DCN DCN -.02[-.04[0--.06 -.08- -.10[-.3 -.12- 20 D**Z** 60 40 20 **DZ** 40 60 0 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG

857

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT.

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

PAGE 858

859

FIG

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 860

PAGE 862

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 864

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 866

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 870

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 873

FIG 26 874 PAGE

CA20 747/1 01 S1

ORBITER DATA (NGN110)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 878 PAGE

CA20 (747/1 01 S1) - (01 S1) D/S (110 - 007)(VGN110)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 880

60

20 **DZ**

Ó

40

20 DZ 40

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26

ORBITER DATA (NGN111) 01 S1 **CA20** 747/1 REFERENCE INFORMATION PARAMETRIC VALUES SYMBOL ALPHAO 2690.0000 474.8100 936.6800 SO.FT. IN. IN. .000 ELV-08 3.000 10.000 0 ELV-1B .600 ELEVON 5.000 MÁCH .000 IN.XO BETAO -5.000 BETAC XMRP 1109.0000 YMRP ZMRP .0000 IN.YO 10.000 PHI .000 DY 4.000 .000 **ALPHAC** DX: SCALE .24 Em .22 1.1 .20 1.0 .18 .16 .14 .10 7 .08[.06 .04 .02 0--.02 سلسط 04. 20 DZ 20 DZ 40 60 40 60 0 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG

PAGE

FIG PAGE 884

D/S (111 - 007) (VGN111)

CA20 (747/1 01 S1) - (01 S1) SYMBOL ALPHAO PARAMETRIC VALUES REFERENCE INFORMATION 0 10.000 4.000 2690.0000 474.8100 **ALPHAC** BETAC .000 SREF LREF BREF SO.FT. IN. .000 3.000 ELV-IB ELV-OB 936.6800 ELEVON 5.000 MACH .600 XMRP YMRP ZMRP SCALE IN.XO IN.YO IN.ZO 1109.0000 PHI .000 DX .000 .0000 DY 10.000 BETAO -5.000 375.0000 .0300 .9-.12 .8-.10 .08 .6- .06 .04-.02 .3 DCLM 0-OCN OCN -.02 -.04[‡] -.06 000 -.08 -.10[-.12- -.14 hm 20 DZ 20 DZ 0 40 60 40 60

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG PAGE 885

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 887

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 888

"种族"中的特别是安徽的中央

PAGE

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 890

20 **DZ**

O.

40

.02

0-

-.02[

-.04 E...

0

PAGE

60

40

20 DZ

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 892

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 894

FIG

PAGE

ongevoneser er for genome engen hanen ette det ette filmetet filminge ett indikt et ble. In eige ettig in b

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 896

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT.

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 897

FIG 26 PAGE 898

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 899

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 PAGE

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 902

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 904

20 **DZ**

0

40

- .04 Eml

0

20 DZ

40

FIG 26 PAGE 906

STANCES STANCE

PAGE 908

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 913

FIG 26

D/S (115 - 007)(VGN115) CA20 (747/1 01 S1) - (01 S1) REFERENCE INFORMATION PARAMETRIC VALUES SYMBOL **ALPHAO** 2690.0000 474.8100 936,6800 SO.FT. IN. IN. SREF LREF BREF 4.000 BETAC 5.000 0 10.000 ALPHAC .000 3.000 ELV-08 14.000 ELV-18 IN.XO IN.YO IN.ZO 5.000 MACH .600 ELEVON **XMRP** 1109.0000 YMRP ZMRP .0000 375.0000 .000 DX 10.000 PHI -5.000 .000 BETAO DY SCALE .14 F''' .9₽ .12 .10 .08 .6[.06 .5[.04 .4- .02 0 000 DCL -.02‡ -.04-0 -.06 -.08 -.10 -.12[- . 14 <u>Emlandan</u> 60 20 **DZ** 40 20 40 60 0 0 DZ

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

915

20 **DZ** VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG PAGE

60

40

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

923

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

30

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT.

20

10

50

40

استأـ06. -

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 925

PAGE

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 927

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 929

FIG PAGE 930

931

ORBITER DATA (NGN108)

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 PAGE 932

933

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 936

PAGE 940

7794 STOK

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

desperiment and spring of the same state

PAGE

NEEDS AND STORY

ORBITER DATA (NGNO62) CA20 747/1 01 S1 REFERENCE INFORMATION PARAMETRIC VALUES **ALPHAO** 2690.0000 474.8100 936.6800 1109.0000 SO.FT. IN. IN. .000 ELV-OB 3.000 00 10.000. LREF BREF XMRP .600 ELEVON 5.000 14.000 IN.X0 IN.Y0 IN.Z0 .000 BETAC -5.000 BETAD YMRP ZMRP SCALE .000 .030 DY 4.000 .000 **ALPHAC** .055 բարարարարարարարարարարարարա .050 .045 .040 Š .035 CREFF! CIENT. .030 .025 .020[AXIAL FORCE .015[.010 .005 0 -.005-.010[سطِّ 015. – 50 60 30 40 20 10 -100 ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT. VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG

PAGE

945

PAGE

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

CA20 (747/1 01 S1) - (01 S1) D/S (062 - 010)(VGN062) SYMBOL **ALPHAO** PARAMETRIC VALUES REFERENCE INFORMATION 4.000 0 10.000 ALPHAC BETAC -5.000 SO.FT. 2690.0000 LREF 474.8100 IN. 14.000 ELV-IB .000 ELV-0B 3.000 936.6800 1109.0000 .0000 375.0000 BREF IN.XO IN.YO IN.ZO ELEVON 5.000 MACH .600 XMRP PHI .000 .000 DX YMRP ZMRP DY .000 BETAO .000 SCALE .06 DCA .05 COEFFICIENT, .04 .03 .02- FORCE .01± φ 0 0 AXIAL -.01+INCREMENTAL -.02[-.03-.04 -.05 -.06- -.07<u>£</u>... -10 0 10 20 30 40 50 60 70 ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ, FT. VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 950

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 955

PAGE

PAGE

PAGE 960

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 96:

26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) PAGE

PAGE

26 FIG 972 PAGE

FIG 26 PAGE 974

FIG 976 PAGE

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 978

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

PAGE

D/S (067 - 010)(VGN067) CA20 (747/1 01 S1) - (01 S1) REFERENCE INFORMATION PARAMETRIC VALUES **ALPHAO** SYMBOL SREF LREF BREF XMRP YMRP ZMRP SCALE 2690.0000 474.8100 936.6800 1109.0000 SO.FT. IN. IN. IN.XO IN.YO IN.ZO -5.000 8.000 BETAC 0 10.000 **ALPHAC** .000 ELV-0B 3.000 14,000 ELV-1B .600 5.000 MACH **ELEVON** .0000 20.000 .000 DX. PHI 375.0000 .000 DΥ .000 BETAO .0300 .14 Em .9 .12 .8 .10 .08 .6- .06[.5 .04 .02 DCLM 'n DCN DCN .2[-.02 .1卡 -.04 O -.06 -.08[-.10[-.12[-.14 Em 20 DZ 40 60 0 20 DZ 60 40 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) 26 FIG

PAGE

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG PAGE 986

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26

PAGE 983

FIG PAGE 990

DCA

COEFFICIENT,

FORCE

AXIAL

- .07<u>E</u>...l

-10 0 10 20 30 40 50 60 70 ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT. VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) 26 FIG PAGE 991

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 992

993

PAGE

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 995

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

FIG 26 PAGE 1000

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 1002 PAGE

FIG PAGE 1004

SO.FT.

IN.

SYMBOL

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 PAGE 1005

1006 PAGE

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

D/S (071 - 010) (VGN071) CA20 (747/1 01 S1) - (01 S1) REFERENCE INFORMATION PARAMETRIC VALUES SYMBOL **ALPHAO** 2690.0000 474.8100 936.6800 1109.0000 .0000 375.0000 SREF LREF BREF XMRP YMRP SQ.FT. -5.000 8.000 BETAC 0 **ALPHAC** IN. 10.000 3.000 ELV-0B .000 IN. 14.000 ELV-IB IN.XO IN.YO IN.ZO .600 ELEVON 5.000 MACH 10.000 .000 DX PHI ZMRP SCALE .000 DY 10.000 BETAO .0300 .12-.8ŧ .10 .08 .6÷ .06 .04-.4± DCLM 0-CN -.02 -.04+ $-.06 \pm$ -.1E ~.08 -.10 -.12[-.14 Embadan 20 DZ 40 60 60 20 DZ 40 0

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1011

PAGE 1012

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1013

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1014

ORBITER DATA (2GNO49) 01 S1 747/1 CA20 REFERENCE INFORMATION **ALPHAO** PARAMETRIC VALUES SYMBOL SQ.FT. SREF 2690.0000 .000 BETAC .000 ELV-IB 000 6.000 IN. LREF 474.8100 ELEVON 5.000 3.000 936.6800 ELV-0B 10.000 BREF IN. IN.XO IN.YO IN.ZO .000 XMRP 14.000 MACH .600 .0000 YMRP DY .000 .000 PHI ZMRP SCALE .000 **ALPHAC** .000 DΧ .0300 .055Tm .050 .045 .040 **∀**∪ .035 COEFFICIENT. .030 .025 .020 Ф AXIAL FORCE .015 .010 .005-0--Ф -.005 -.010 سطِ 015. – -10 0 10 20 30 40 50 60 70 ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT. 70 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26

PAGE

FIG PAGE 1016

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1018

26

FIG

CA20 (747/1 01 S1) - (01 S1) D/S (049 - 010)(4GN049) REFERENCE INFORMATION PARAMETRIC VALUES **ALPHAO** SYMBOL SO.FT. 2630.0000 SREF BETAC .000 LREF BREF XMRP YMRP .000 474.8100 936.6800 1109.0000 .0000 375.0000 000 6.000 **ALPHAC** 3.000 IN. .000 ELV-0B 10.000 ELV-18 IN.XO IN.YO IN.ZO .600 5.000 MACH ELEVON 14.000 .000 PHI .000 DX ZMRP SCALE .000 .000 BETAC .0300 DY .07Fm .06 DCA .05 COEFFICIENT, .04 .03 .02 FORCE .014 0-AXIAL $-.01 \pm$ INCREMENTAL -.02 -.03 -.04 -.05 -.06+ - .07 <u>L</u>... -10 0 10 20 30 40 50 60 70 ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT. 70 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

PAGE

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1020

60

20 DZ

Ó

40

-.14<u>Emlin</u>

20 DZ 40

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1021

PAGE 1022

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1023

PAGE 1024

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1025

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 1026 PAGE

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1027

FIG 26 PAGE 1028

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

PAGE

FIG

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1030

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 1032 PAGE

PAGE

1033

O.F

-.04

-.06-

-.08

-.10

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1037

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 PAGE 1038

PAGE 1040

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1041

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1042

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

PAGE 1044

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1046

053 - 010)(4GN053) $(747/1 \ 01 \ S1) - (01 \ S1)$ $\mathbf{D}\lambda$ CA20 REFERENCE INFORMATION PARAMETRIC VALUES ALPHAO SYMBOL 2690.0000 474.8100 SREF LREF BREF SO.FT. .000 BETAC ALPHAC 4.000 6.000 IN. 936.6800 ELV-IB .000 ELV-0B 3.000 IN. 10.000 IN.XO IN.YO IN.ZO .600 XMRP MACH 5.000 14.000 ELEVON YMRP ZMRP 375.0000 10.000 .000 DX .000 BETAO DY .000 SCALE .06-DCA .05 COEFFICIENT .04 .03E .02- FORCE .01 -.01 INCREMENTAL -.02- -.03 -.04 -.05 -.06 - .07 <u>E</u>...l... -10 0 10 20 30 40 50 60 70 ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT. VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 PAGE 1047

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1048

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (.01 AT PHI = 0)
PAGE 1049

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1051

TO DESCRIPTION OF THE PROPERTY CONTROL OF THE PROPERTY OF THE

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1052

CA20 (747/1 01 S1) - (01 S1) . D/S (056 - 010)(4GN056) REFERENCE INFORMATION PARAMETRIC VALUES SYMBOL ALPHAO SQ.FT. SREF 2690.0000 **ALPHAC** 8.000 BETAC .000 000 6.000 LREF 474.8100 3.000 IN. IN.XO IN.YO IN.ZO .000 ELV-08 BREF XMRP YMRP ELV-18 10.000 936,6800 1109.0000 .0000 375.0000 .600 ELEVON 5.000 MACH 14.000 10.000 .000 DX PHI ZMRP SCALE .000 .000 BETAO DY .0300 .14 Em .9 .12 .8E .10 .08 .6+ .06 .04 .02 DCLM OO -.02 -.04 -.06[-.08[-.10+ -.12[- . 14 起 25 DZ 40 60 20 DZ 60 40 0

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 PAGE 1053

PAGE 1054

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) 26 PAGE 1055

DZ

FIG

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1056

CA20 747/1 01 S1

ORBITER DATA (2GN051)

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1057

FIG PAGE 1058

Û

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1060

FIG 26 1062 PAGE

26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1063

FIG

PAGE 1064

PAGE 1066

D/S (054 - 010) (4GN054) $(747/1 \ 01 \ S1) - (01 \ S1)$ REFERENCE INFORMATION PARAMETRIC VALUES SYMBOL **ALPHAO** 2690.0000 474.8100 936.6800 SO.FT. SREF 4.000 BETAC .000 6.000 **ALPHAC** LREF BREF XMRP YMRP ZMRP 0 IN. 3.000 ELV-OB ELV-1B .000 IN. 10.000 IN.XO IN.YO IN.ZO 1109.0000 .0000 375.0000 .600 ELEVON 5.000 MACH 14.000 20,000 .000 DX PHI .000 BETAO .000 SCALE DY .14 Emmunum .9 .12 .8 .10 .08-.6- .06 .04 .02 DCLM 0 -.02 -.04 0 = -.06 -.08 -.10 -.12F - . i 4 hala 20 DZ 40 60 20 DZ 0 40 60 0

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 PAGE 1067

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1068

26 FIG PAGE 1070

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1072

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1074

D/S (057 - 010)(4GN057) CA20 (747/1 01 S1) - (01 S1) REFERENCE INFORMATION PARAMETRIC VALUES **ALPHAO** SYMBOL 2690.0000 474.8100 936.6800 SO.FT. 8.000 BETAC .000 6.000 ALPHAC IN. IN. IN.XO IN.YO IN.ZO 3.000 ELV-0B .000 10.000 ELV-IB XMRP YMRP ZMRP SCALE 1109.0000 .0000 375.0000 .600 5.000 14.000 20.000 .000 DX. PHI .000 BETAO .000 .0300 .07E''' .06 .05[COEFFICIENT. $.04\frac{1}{2}$.03[FORCE .01 AXIAL -.01 INCREMENTAL -.02[-.03[-.04[-.05 -.06--10 0 10 20 30 40 50 60 70 ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT. FIG 26

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) PAGE 1075

PAGE 1076

PAGE 1080

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

PAGE 1082

D/S (058 - 010)(VGN058) (747/1 01 S1) - (01 S1) CA20 REFERENCE INFORMATION PARAMETRIC VALUES SO.FT. IN. IN. **ALPHAO** SYMBOL 2690.0000 474.8100 BETAC .000 4.000 0 **ALPHAC** 10.000 936.6800 1109.0000 .0000 375.0000 .0300 3.000 ELV-0B .000 14.000 ELV-IB IN.XO IN.YO IN.ZO .600 5.000 ELEVON YMRP .000 .000 PHI ZMRP .000 BETAO 10.000 .14 Emilia .12 .8[.10 .08 .6- .06 .04 .02 .3[0-000 DCL -.02 -.04 0--.06 -.08 -.10 -.12€ 20 DZ 40 60 60 40 20 DZ 0 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)

PAGE

1083

FIG

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1084

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) 26 FIG PAGE 1086

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1088

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1090

FIG 26 PAGE 1092

PAGE 1094

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1095

FIG 26 PAGE 1096

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1097

26 FIG 1098 PAGE

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1100

FIG 26 PAGE 1102

FIG 26 PAGE 1104

PAGE 1106

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1107

FIG PAGE 1108

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 PAGE 1109

PAGE 1110

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1111

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1112

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1114

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1116

PAGE 1117

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1118

PAGE

1119

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 PAGE 1120

REFERENCE INFORMATION

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1121

FIG 26 PAGE 1122

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1123

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG PAGE 1124

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1125

PAGE 1126

PAGE 1127

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0) FIG 26 PAGE 1128

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1130

FIG 26 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 0)
PAGE 1131

26 FIG PAGE 1132

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1133

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1135

FIG 27 PAGE 1136

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG 27 PAGE 1138

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1139

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1140

PAGE 1141

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1142

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1144

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1145

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1146

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1147

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1148

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1149

PAGE

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1151

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1152

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1153

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) 27 FIG PAGE 1154

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1156

1158 PAGE

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG PAGE 1160

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1161

(Carrier of Children Ships of Control of Con

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1163

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG PAGE 1164

D/S (100 - 007) (VGN100) $(747/1 \ 01 \ S1) - (01 \ S1)$ REFERENCE INFORMATION PARAMETRIC VALUES SYMBOL **ALPHAO** 2690.0000 474.8100 936.6800 1109.0000 0000 375.0000 SQ.FT. SREF LREF BREF 5.000 4.000 BETAC 8 10.000 **ALPHAC** 3.000 IN. IN.XO IN.YO IN.ZO .000 ELV-08 14.000 ELV-IB XMRP .600 ELEVON 5,000 MACH .000 DX 7.500 PHI ZHRP -5.000 BETAO DY 10,000 .14E .9₽ .12 .8 .10 .08[£] .6‡ .06 .04 .02 0+ DCLM DCN -.02 -.04

0-

-.3E

0

20 DZ VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG 1165 PAGE

60

40

-.06

-.08‡

-.10

-.12

- 14<u> Fulmhaladada</u>

20 DZ

40

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG 27 PAGE 1166

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1167

60

20 DZ

0

40

-.12

0

20 DZ 40

FIG 27 PAGE 1168

PAGE 1169

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1170

27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG PAGE 1172

Ó

60

40

60

20 DZ

0

D/S (101 - 007) (V6N101) CA20 (747/1 01 S1) - (01 S1)

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG 27 PAGE 1173

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1174

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1177

FIG PAGE 1178

CA20 (747/1 01 S1) - (01 S1) . D/S (076 - 010)(VGN076)

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1179

PAGE 1180

D/S (076 - 010)(VGN076) (747/1 01 S1) - (01 S1) REFERENCE INFORMATION PARAMETRIC VALUES **ALPHAO** 2690.0000 474.8100 SO.FT. SYMBOL -5.000 IN. 0 4.000 BETAC **ALPHAC** 10.000 LREF 3.000 936.6800 .000 ELV-08 ELV-IB BREF 14.000 IN.XO IN.YO IN.ZO .600 XMRP HACH 5.000 **ELEVON** YMRP ZMRP .0000 375.0000 .0300 .000 7,500 DΧ PHI .000 BETAO .000 .14 Emilion .9 .12 .8E .10 .08 .6[.06 .04 .02‡ DCL -.02 -.04 0--.06 -.08 -.10[-.3[-.12 - . 14 <u>Eudu</u> ш|ш 20 DZ 20 DZ 60 40 40 60 0 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

PAGE

1181

FIG

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1182

01 51 ORBITER DATA (NGNO78) CA20 747/1 PARAMETRIC VALUES REFERENCE INFORMATION ALPHAO 2690.0000 474.8100 3.000 SREF SQ.FT. 00 10.000 .000 ELY-OB IN. .600 14,000 **ELEVON** 5.000 MACH. BREF IN. -5.000 IN.XO IN.YO IN.ZO BETAO .000 BETAC XMRP 1109.0000 YMRP ZMRP SCALE PHI 7.500 DY .000 .000 8.000 DX **ALPHAC** .0300 .050 .045 .040 .035 .030 COEFFICIENT, .025 .020 .015[FORCE .010[AXIAL .005 -.005 -.010 -.015E 10 20 30 40 50 60 70 ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT. VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

PAGE 1183

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1186

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1188

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1189

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION. DZ. FT. VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG 27 PAGE 1190

30

40

50

20

FIG 1192 PAGE

D/S (077 - 010)(VGN077) CA20 (747/1 01 S1) - (01 S1) REFERENCE INFORMATION PARAMETRIC VALUES 2690.0600 474.8100 SO.FT. SYMBOL ALPHAO SREF LREF BREF XMRP -5.000 4,000 BETAC 0 10.000 ALPHAC 936.6800 1109.0000 .0000 IN. .000 ELV-08 3.000 14.000 ELV-IB IN.XO IN.YO IN.ZO .600 ELEVON 5,000 MACH YMRP 10,000 7.500 DX ZMRP SCALE 375.0000 PHI .000 BETAO .000 DY .14 Engon .12 .8+ .10 .08 .06- .04-.02 φ 0. DCLM DCN .2ŧ -.02 .1E -.04 0 -.06[-.08[- .2--.10[-.12- -.14<u>E</u>... 20 DZ 40 60 Ò 20 DZ 60 40 0 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

PAGE 1193

FIG

D/S (077 - 010)(VGN077) CA20 (747/1 01 S1) - (01 S1) REFERENCE INFORMATION PARAMETRIC VALUES SYMBOL **ALPHAO** 2690.0000 474.8100 936.6800 1109.0000 SQ.FT. -5.000 8 4.000 BETAC 10.000 **ALPHAC** IN. LREF ELV-IB .000 ELV-0B 3.000 IN. IN.XO IN.YO IN.ZO 14.000 BREF XMRP YMRP .600 5.000 MACH **ELEVON** 10.000 PHI 7.500 DX 375,0000 ZMRP .000 .000 BETAO ĎΥ SCALE .14E .9-.12= .8- .10 .08-.6- .06 .5[.04 .02 •3- 0 020 DCL -.02 .1E -.04-0--.06 -.08 -.10+ -.3[-.12- 20 DZ 60 Ó 40 20 **DZ** 60 40 Ò

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1195

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) 27 FIG PAGE 1196

and the state of t

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1198

FIG PAGE 1200

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1201

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1202

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1203

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1205

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1206

DZ

0

40

- **.**35 Lu

0

DZ

40

-.07<u>E</u>...

0

DZ

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1207

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1209

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1212

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1213

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) 27 FIG 1214 PAGE

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG PAGE 1215

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1216

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1217

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1219

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1221

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1222

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1223

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG 27 PAGE 1224

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1226

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1227

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1228

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1229

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1230

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1231

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1233

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) 27 FIG PAGE 1234

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1235

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ, FT.

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

PAGE 1236

10

30

40

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1237

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1238

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1240

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1242

CA20 (747/1 01 S1) - (01 S1) . D/S (086 - 010)(VGN086)

FIG PAGE 1244

PAGE 1246

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1248

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1249

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1250

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1251

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1252

PAGE

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1254

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1258

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1263

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1265

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG PAGE 1266

PAGE 1267

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

ORBITER DATA (NGN090) 01 51 **CA20** 747/1 REFERENCE INFORMATION PARAMETRIC VALUES 2690.0000 474.8100 936.6800 1109.0000 SYMBOL ALPHAO 3.000 ELV-0B .000 IN. IN. ELV-18 0 10.000 LREF ,600 MACH ELEVON 5.000 BREF 14.000 IN.XO XMRP ,000 BETAC .000 BETAO IN.YO 10.000 PHI 7.500 DY ZMRP SCALE 8.000 **ALPHAC** .000 .07F .07E .35E .06 .06- •30€ .05- .05 .25 .04 .04 .20 .03 .03 .15 .02 .02 .10 .01 .01 .05[0 \sim -.01 -.01 -.05[-.02[-.02 -.10[-.03 -.03 -.15[-.04 -.04 -.20[-.05 -.05 -.25[-.06 -.06 -.30[

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1269

DZ

0

40

-.35 E...

0

DZ

40

- .07.5...

0

DZ

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1270

PAGE

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z [01 AT PHI = 7.5]
PAGE 1272

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1273

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1276

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1277

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG 27 PAGE 1278

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1279

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1280

FIG PAGE 1282

PAGE 1283

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG 27 PAGE

D/S (091 - 010)(VGN091)

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG 27 PAGE 1286

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1287

PAGE

PAGE

The state of the s

FIG 27

FIG 27 PAGE 1290

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG PAGE 1293

or the following the complete control of the first control of the

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 1. PHI = 7.5)
PAGE 1294

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1296

-Transfer

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1298

40

20

0

-.12

-.14 Emlin

0

20 DZ

40

60

PAGE 1299

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1303

PAGE 1304

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1305

rigangang parakang panggang ng panggang

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5) FIG 27 PAGE 1306

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1308

FIG PAGE 1310

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1312

PAGE

1313

FIG 27 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (01 AT PHI = 7.5)
PAGE 1314

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1315

FIG 28 PAGE 1318

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

PAGE 1320

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PH) = 0)

PAGE 1321

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG 28 PAGE

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG PAGE 1323

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1324

س<u>ة</u> 35. –

40

DZ

CARRIER DATA (MGN127) **CA20** 747/1 02 S1 SYMBOL **ALPHAO** PARAMETRIC VALUES REFERENCE INFORMATION SO.FT.
IN.
IN.
IN.XC
IN.YC
IN.ZC 5500.0000 327.7800 2348.0400 1339.9000 0 10.000 **ALPHAC** 4.000 BETAC -5.000 SREF .000 3.000 ELV-1B ELV-08 ELEVON 5.000 ,600 MACH XMRP BETAO ,000 PHI .000 0000. 0008.001 0000. ZMRP SCALE DY .000 DX 10.000 .30£ .06-.06 .25 .05 .05 .20£ .04 .04 .15- .03[.03[.10[@Qo .02 .05 .01= .01-0-0-CBL \sim -.05£ -.01 -.01 -.02[-.10[-.02 100 -.15- -.03E -.03 -.20 -.04 -.04 -.25 -.05 -.05 -.30[-.06--.06-

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1325

DZ

0

40

-.07 E...

40

DZ

- .07 島山

PAGE 1326

CA20 (747/1 02 S1) - (747/1) D/S (127 - 034) (UGN127)

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1327

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1328

PAGE

1329

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) 28 FIG 1330 PAGE

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1331

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG PAGE 1332

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1333

DZ

0

40

-.06-

-.07£

-.30E

- .35 £...

Ó

DZ

40

-.06

-.07 <u>E...</u>

Ó

DZ

40

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1334

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) PAGE 1336

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1337

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1339

PAGE

1342 PAGE

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1343

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1346

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1349

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1350

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1351

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 135

D/S (136 - 034)(UGN136)

 $(747/1 \ 02 \ S1) - (747/1)$ REFERENCE INFORMATION PARAMETRIC VALUES ALPHAO SYMBOL 5500.0000 327.7800 2348.0400 SO.FT. IN. IN. SREF 4.000 BETAC -5.000 0 10,000 **ALPHAC** LREF BREF XMRP YMRP ZMRP ELV-08 3,000 .000 ELV-IB 1339.9000 0000 190.8000 IN.XC IN.YC IN.ZC .600 MACH ELEVON 5.000 10.000 .000 DX PHI .000 BETAO 10.000 DY SCALE բույրուրուրորություն .035E .040 .06 .030 .035 .05 .025 .030 .04 .020 .025 .03± .015 .020 .02 .010 .015 .01= .005 .010E DCY .005 -.01 -.005 0--.02 -.010[-.005 -.03E -.015[-.010 -.04 -.020 $-.015 \pm$ -.05 -.025- -.020 -.06E -.030 -.025 -.07 **- .**035<u>E</u>... 40 40 0 40 0 Ó DZ DZ DZ

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) 28 FIG PAGE 1353

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1354

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1355

PAGE

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1359

FIG

28

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1362

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1363

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1365

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG PAGE 136F

CA20 (747/1 02 S1) - (747/1) D/S (130 - 035)(UGN130) SYMBOL ALPHAO PARAMETRIC VALUES REFERENCE INFORMATION 0 10.000 **ALPHAC** 4.000 BETAC .000 5500.0000 SO.FT. SREF 14.000 ELV-18 .000 ELV-08 3.000 327,7800 IN. 2348.0400 ELEVON BREF 5,000 MACH .600 IN.XC IN.YC IN.ZC XMRP 1339.9000 PHI .000 DΧ 10.000 .0000 YMRP DY .000 BETAO .000 ZMRP .08Em .6-.07 .5 .06 .05 .4 .04 .03 .02- 0-.01 DCL 000 -.10--.01--.3+ -.02 -.03 -.04- -.6E -.05[-.06 E...l... 20 DZ 0 40 60 20 **DZ** 0 40 60

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1367

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1369

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1370

DZ

0

40

Ó

DZ

40

40

0

DZ

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1371

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1373

FIG 28 1374 PAGE

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1375

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ, FT. FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (162 AT PHI = 0)

PAGE 1376

30

40

50

60

20

10

- .30<u>f</u>...

PAGE

1377

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1378

1379

PAGE

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1380

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT.

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG PAGE 1381

DZ

DZ

0

DZ

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) 28 FIG PAGE 1382

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) 1383 PAGE

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1384

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1385

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1386

PAGE 1387

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1390

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1391

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ, FT, FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

PAGE 1392

20

10

30

40

50

سلسةً 30. -

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1393

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1394

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 139

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1397

DZ

0

40

-.07<u>L</u>...

Ó

DZ

40

-.07<u>L</u>L

-.35<u>k</u>...

0

DZ

40

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1398

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1399

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT.

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

PAGE 1400

30

40

50

20

10

-.30£

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1402

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1403

PAGE

FIG PAGE

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1407

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1408

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1411

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 14:2

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1415

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG 28 PAGE

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

PAGE :418

PAGE

FIG

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG 28 PAGE

PAGE

1421

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1422

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1423

PAGE 1424

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1425

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (32 AT PHI = 0) FIG 28 PAGE 1426

DZ

747/1 02 S1 CA20 CARRIER DATA (MGN140) PARAMETRIC VALUES SYMBOL **ALPHAO** REFERENCE INFORMATION 5500.0000 327.7800 2348.0400 1339.9000 .0000 190.8000 .0306 0 10.000 **ALPHAC** 4.000 BETAC SREF LREF SQ.FT. 5.000 **ELV-18** .000 ELV-0B 3.000 BREF IN. ELEVON 5.000 .600 XMRP YMRP ZMRP SCALE IN XC IN YC IN ZC BETAO .000 PHI .000 DY 10.000 DX 10.000 1.2 Emphalmanamana .22 1.1 1.0 .20 .18[.8[.16 .14 •6- .12 .10[김 900 .08 .06 .04 .02 -.02 -.04点 20 DZ 20 DZ 60 40 40 60

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT. VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) PAGE 1428

20

30

40

-.15€

-.20E

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1430

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1431

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

DZ VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG PAGE 1433

0

40

-.025

0

DZ

40

-.030

-.035<u>L</u>...

-.130[

سَلِّ 35 أ. -

0

FIG 28 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1434

40

0

-.018

0

DZ

40

.004

-.120<u>E</u>...

0

DZ

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1435

rangangula gayra ku gang su agga dikang ing na ung palkot dikang bibang na kikala su di na dikang bibang pilaba

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1436

<mark>taniga pamanga panggang</mark>a pangganga pangga panggan penggangan panggangan penggangangan ang penggangan panggangan

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1438

Ó

40

-.06

-.07 起

0

DZ

40

-.06

-.07<u>E</u>

-.30₽

-.35<u>L</u>...

Ó

DZ

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1440

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1441

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) 29 FIG PAGE 1442

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1444

SYMBOL

0

DCN

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1446

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1447

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1448

60

40

20 DZ 20 DZ 60

FIG 29 VARÍATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1449

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1450

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 145

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1454

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1455

CA20 747/1 02 S1

ORBITER DATA (NGN135)

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1457

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG PAGE

747/1 02 S1 ORBITER DATA (NGN135) **CA20** REFERENCE INFORMATION PARAMETRIC VALUES ALPHAO SYMBOL 2690.0000 474.8100 SQ.FT. 4.000 BETAC -5.000 Ó 10.000 **ALPHAC** IN. LREF 3.000 ELV-IB ELV-0B .000 936.6800 1109.0000 .0000 IN. IN.XO IN.YO IN.ZO BREF ELEVON 5.000 MACH .600 XMRP YMRP .000 .000 PHI BETAO ZMRP SCALE 375.0000 DY 10.000 ÐΧ .000 .0300 .07 բարարարարա .07F .35En .06 .06- .30 .05 .05 .25 .04 .20 .04 .03[.03 .15 .02 .02 .10 .01 .01 .05‡ (B) CBL S -.01 -.01[-.05 -.02 -.02[-.10[-.03 -.15[-.03 -.04 -.04 -.20[-.05[-.05{ -.25[-.06 -.06 -.30[- .07 <u>L</u>... - .07 盂 -.35<u>E</u>. 40 40 Ó 40 0 Ó DΖ DZ DZ VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1460

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1462

REFERENCE INFORMATION

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG 29 PAGE 1464

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG

PAGE 1466 CA20 (747/1 01 S1) - (01 S1) D/S (136 - 018)(VGN136)

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1467

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1468

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) PAGE 1469

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1473

PAGE 1471

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1472

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG

PAGE

FIG PAGE

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1476

PAGE 1478

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

 $(747/1 \ 01 \ S1) - (01 \ S1)$ D/S (130 - 018)(VGN130)CA20 REFERENCE INFORMATION SYMBOL **ALPHAO** PARAMETRIC VALUES 2690.0000 474.8100 936.6800 1109.0000 SO.FT. SREF 4.000 0 BETAC .000 10.000 ALPHAC LREF IN. 3.000 .000 ELV-0B 14.000 ELV-IB IN.XO BREF MACH .600 ELEVON 5.000 XMRP YMRP .0000 IN.YO 10.000 .000 ĐΧ PHI 375.0000 ZMRP IN.ZO BETAO .000 .000 DY. SCALE .14 Emmin .9-.12 .8€ .10 .08 .6 .06- .04 .02[╢ .3= DCLM 0 DCN .2= -.02 -.04 -.06 - .08 -.10 -.12[20 DZ 40 60 60 Ò 20 DZ 40

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1481

SYMBOL

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1482

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1483

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) FIG PAGE 1484

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1486

ر سعی د در خ

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1487

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1488

CA20 (747/1 01 S1) - (01 S1) D/S (131 - 018)(VGN131)

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1489

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1490

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1491

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

SYMBOL

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1493

CA20 (747/1 01 S1) - (01 S1)

D/S (132 - 018)(VGN132)

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1495

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1496

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1497

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1498

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)

PAGE

1499

FIG

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1500

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1502

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1504

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1505

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1506

10

30

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT.

50

60

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1507

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1508

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1509

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0) PAGE 1510

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1511

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1512

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1513

NAME OF THE PERSON OF THE PERSON OF THE PARTY.

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 15:4

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1516

PAGE 1517

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1518

40

20

DZ

Ó

20 DZ 40

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1521

FIG PAGE 1522

CA20 (747/1 01 S1) - (01 S1) D/S (138 - 018)(VGN138) REFERENCE INFORMATION ALPHAO PARAMETRIC VALUES SYMBOL 2690.0000 474.8100 936.6800 1109.0000 SQ.FT. 10.000 ALPHAC 4.000 BETAC .000 0 IN. ELV-IB .000 ELV-08 3.000 IN. IN.XO IN.YO IN.ZO ELEVON 5.000 MACH .600 PHI .000 DX 10.000 YMRP .0000 ZMRP SCALE 375.0000 10.000 BETAO .000 DY .0300 .9 .12 .8 F .10 .08 .06 .04 Polo .02 .3+ DCLM 0-DCN -.02 .1ŧ -.04 0--.06 -.08 -.10 -.12[20 DZ 20 DZ 40 60 40 60

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1523

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1524

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1525

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1526

PAGE 1529

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1530

20 DZ

0

40

-.12[

-.14 Eulius

20 DZ 40

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1532

PAGE

1533

FIG

er.

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1535

ORBITER DATA (NGN140)

PAGE 1536

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1537

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1538

.

FIG 29 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (02 AT PHI = 0)
PAGE 1539

FIG 1540 PAGE

FIG 30 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)

30 FIG 1544 PAGE

FIG 30 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1549

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ, FT.

FIG 30 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1550

FIG 30 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1551

FIG PAGE 1552

VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0) FIG PAGE

1554

FIG 30 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 15

FIG 30 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1560

FIG 30 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1562

FIG 30 VARIATION OF CARRIER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1563

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1564

PAGE 1565

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1566

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1568

D/S (120 - 007)(VGN120) $(747/1 \ 01 \ S1) - (01 \ S1)$ REFERENCE INFORMATION PARAMETRIC VALUES SYMBOL ALPHAO 2690.0000 474.8100 SQ.FT. 4.000 BETAC -5.000 10.000 ALPHAC IN. IN.XO .000 .000 ELV-0B ELV-1B 936.6800 14.000 1109.0000 .0000 375.0000 .0300 .600 XMRP ELEVON 5.000 MACH YMRP ZMRP .000 .000 DX PHI IN.ZO -5,000 10.000 BETAO .07 Էարարարարարարա .06[.05 COEFFICIENT .04 .03[.02- FORCE .01 0-AXIAL -.01 INCREMENTAL -.02[-.03[-.04 -.05[-.06[-.07 Eulunlin -10 0 10 20 30 40 50 60 70 ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ. FT. VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)

1569

PAGE

31

FIG

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1570

AXIAL

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0) FIG 31 PAGE 1572

30

ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ, FT.

40

50

60

70

20

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1573

FIG 1574 PAGE

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1575

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1576

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1577

01 S1

ELV-0B

ALPHAC

MACH

PHI

DΥ

.000

.600

.000

10.000

4.000

PARAMETRIC VALUES

.000

.000

.000

5.000

-5.000

747/1

ELV-18

ELEVON

BETAO

BETAC

DX

CA20

ALPHAO

10.000

14.000

SYMBOL

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0) 31 FIG PAGE 1578

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1580

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1582

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1584

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1585

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1586

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1587

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE · 1588

DZ

0

0

DZ

40

40

0

DZ

CA20 (747/1 01 S1) - (01 S1) D/S (123 - 007)(VGN123)

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)

PAGE 1589

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1590

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1591

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1592

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1593

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1594

Carried of Manager States

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1596

CA20 (747/1 01 S1) - (01 S1) D/S (124 - 007)(VGN124) SYMBOL ALPHAO PARAMETRIC VALUES REFERENCE INFORMATION 0 10,000 ALPHAC 4,000 BETAC 5.000 2690,0000 SREF 474.8100 936.6800 1109.0000 .0000 375.0000 IN. LREF 14,000 ELV-18 .000 .000 ELV-0B IN. IN.XO IN.YO IN.ZO BREF ELEVON 5.000 .600 MACH .000 PHI .000 YMRP ZMRP SCALE 10.000 BETAO -5.000 .06£ DCA .05 COEFFICIENT, .04 .03- .02€ FORCE .01 AXIAL -.01 INCREMENTAL - .02 -.03 -.04 -.05‡ -.06- 20 50 -10 10 30 40 60 ORBITER VERTICAL DISPLACEMENT FROM NOMINAL MATED POSITION, DZ, FT.

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1597

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1598

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1599

SYMBOL

REFERENCE INFORMATION

SQ.FT.

2690,0000

SREF

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0) FIG 31 PAGE 1600

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1601

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0) FIG 31 PAGE 1602

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1603

FIG 31 VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0)
PAGE 1604

SYMBOL

VARIATION OF ORBITER CHARACTERISTICS WITH DELTA Z (ELEVATOR = 0) 31 FIG PAGE 1605

FIG 32 ELEVATOR EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(A)ALPHAO= 6.00

PAGE 1606

FIG 32 ELEVATOR EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(B) ALPHAO = 10.00

PAGE 1607

FIG 32 ELEVATOR EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(C)ALPHAO= 14.00 PAGE 1608

FIG 32 ELEVATOR EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)

PAGE 1612

FIG 32 ELEVATOR EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(B) ALPHAG= 10.00

PAGE 1614 (C)ALPHAO= 14.00

FIG 32 ELEVATOR EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0 :

PAGE 1616 (B)ALPHAO= 10.00

FIG 32 ELEVATOR EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)
PAGE 1617

FIG 33 ELEVATOR EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(A)ALPHAO = 6.00

PAGE 1618

FIG 33 ELEVATOR EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(B) ALPHAO = 10.00 PAGE 1619

FIG 33 ELEVATOR EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(C) ALPHAO = 14.00 PAGE 1620

ANTER PROPERTY AND ASSESSED.

PAGE 1624 6.00 (A)ALPHAO=

FIG 33 ELEVATOR EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(C) ALPHAG= 14.00

FIG 33 ELEVATOR EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(A)ALPHAO= 6.00

PAGE 1627

PAGE 1628 10.00 (B)ALPHAO=

FIG 34 RUDDER EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(B) ALPHAO = 10.00

PAGE 1631

14.00 (C)ALPHAO=

PAGE 1640 (B)ALPHAO= 10.00

PAGE 1642 6.00 (A)ALPHAØ=

a security if 119 propagation are

FIG 34 RUDDER EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0 (C)ALPHAO= 14.00 PAGE 1644

14.00 (C)ALPHAO=

1652 10.00 (B)ALPHAO=

(C)ALPHAO= 14.00 PAGE 1656

and the property of the second

FIG 35 RUDDER EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(B) ALPHAO = 10.00

PAGE 1661

FIG 35 RUDDER EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

COALPHAGE 14.00

PAGE 1662

(A)ALPHAO= 6.00

FIG 35 RUDDER EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(B)ALPHAO= 10.00 PAGE 1667

FIG 35 RUDDER EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELIA Y = U)

PAGE 1668

(A)ALPHAO= 6.00 PAGE 1672

FIG 35 RUDDER EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(B) ALPHAO = 10.00 PAGE 1673

FIG 35 RUDDER EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(C)ALPHAO = 14.00 PAGE 1674

FIG 36 ELEVON EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(A)ALPHAO= 6.00 PAGE 1675

om a Great and the stage of the second second of the second second second of the second second second second s Second restrict the stage of the second second second second second second second second second second second

(B)ALPHAO= 10.00 PAGE 1676

FIG 36 ELEVON EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(C)ALPHAO= 14.00 PAGE 1677

(B)ALPHAO= 10.00

FIG 36 ELEVON EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(B)ALPHAO = 10.00

PAGE 1688

FIG 36 ELEVON EFFECTS ON CARRIER SEPARATION CHARACTERISTICS (DELTA Y = 0)

COALPHAG= 14.00 PAGE 1689

(图·南南水色图图·安·纳图图数) 图图如图图:

PAGE 1694 (B)ALPHAO= 10.00

- (C)ALPHAO= 14.00

FIG PAGE 1699 (A)ALPHAO= 6.00

FIG 37 ELEVON EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(B)ALPHAO= 10.00 PAGE 1700

FIG PAGE 1701 (C)ALPHAO= 14.00

FIG 37 ELEVON EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

COALPHAGE 14.00

PAGE 1707

FIG 37 ELEVON EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0 PAGE 1708

FIG 37 ELEVON EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0

(B) ALPHAO = 10.00

PAGE 1709

(C)ALPHAO= 14.00 PAGE 1710

(B)ALPHAO= 10.00 PAGE 1712

(and

FIG 37 ELEVON EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)
(A)ALPHAO= 6.00

FIG 37 ELEVON EFFECTS ON ORBITER SEPARATION CHARACTERISTICS (DELTA Y = 0)

(B)ALPHAO = 10.00 PAGE 1718

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1720

117 C.

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1721

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1723

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1724

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI. BETAO, BETAC =0)
PAGE 1725

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI. BETAO, BETAC =0)
PAGE 1726

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI. BETAO, BETAC =0)
PAGE 1727

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI. BETAO. BETAC =0)
PAGE 1728

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1729

COEFFICIENT,

FORCE

DRAG

INCREMENTAL

-.030 €

-.035

-.040

-10

0

8 10

ALPHAO

12

10

20

DZ

30

40

50

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1731

12 14

8 10

ALPHAO

10

20

DZ

30

50

40

-.0030

-.0035

- .0040 […]

-10

INCREMENTAL

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI. BETAO, BETAC =0)
PAGE 1733

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1734

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1735

COEFFICIENT

FORCE

INCREMENTAL

-.25

-.30

-.35

-.40 F

-10

0

12

10

8

10

20

DZ

30

40

50

DCL.M

COEFFICIENT,

MOMENT

PITCHING

INCREMENTAL

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1737

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1738

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1739

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1740

。例如何种种的特尔。

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1741

DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0) PAGE 1742

10

8 ALPHAO 12 14

-10

10

20

DZ

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1743

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1744

DCLM

COEFFICIENT,

MOMENT

PITCHING

INCREMENTAL

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1745

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1746

ALPHAO

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

D/S (050 - 035)(6GN050)

A TANK A MARKET AND A SECOND OF THE PARTY OF

DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0) FIG 1749 PAGE

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1750

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1752

DCLM

COEFFICIENT.

PITCHING MOMENT

INCREMENTAL

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1754

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1755

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1756

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1757

entimer appressione appear are resolved freeza a resolved for a complete of the state of the analysis of the complete of the c

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1758

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1759

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1760

ALPHAO

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1761

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1762

8 1

10 12 14

10

20

DZ

30

40

50

-.040 ±

-10

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1763

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1764

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1765

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI. BETAO, BETAC =0)

PAGE 36

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1767

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1768

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1769

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1770

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1772

ALPHAO

10 12

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1773

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1775

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1777

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1779

DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0) PAGE 1780

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0) FIG 38 PAGE 1782

ALPHAO

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1783

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1784

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1785

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI. BETAO, BETAC =0)
PAGE 1786

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1787

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1788

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)
PAGE 1790

FIG 38 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CARRIER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1792

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1793

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1794

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1795

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1798

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1799

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1800

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1801

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1802

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0) FIG. 39 PAGE 1804

ALPHAO

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1805

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1806

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1807

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1808

8

ALPHAO

10

12

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1809

CA20 (747/1 91 S1) - (01 S1) D/S (055 - 010)(7GN055)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1810

から 日本の日本の日本の

DCY

COEFFICIENT

FORCE

SIDE

INCREMENTAL

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1812

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1813

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1814

.

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1815

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1817

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1818

-io

Ò

12

8 10

ALPHAO

10

30

40

50

20

DZ

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON CRBITER (PHI. BETAO, BETAC =0)
PAGE 1820

Mark the July Carlot of Street

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1821

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1825

ALPHAO

DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0) PAGE 1826

10

50

40

30

20

DZ

-:06 [

-10

Ó

12

8 10

ALPHAO

DC.Y

COEFFICIENT,

FORCE

SIDE

INCREMENTAL

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0) FIG PAGE 1828

ALPHAO

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1830

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1831

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1832

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1833

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1834

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1835

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1836

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1837

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)

-10

8

ALPHAO

10 12

10

30

20

DZ

40

SQ.FT.

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO. BETAC =0)
PAGE 1839

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1840

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO. BETAC =0)
PAGE 1841

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1842

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1843

DELTA Z AND ALPHAU BIVARIANT EFFECTS ON ORBITER (PHI. BETAO. BETAC =0) 39 PAGE 1844

DZ

-10

0

10 12

ALPHAO

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1845

DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0) FIG 39 PAGE 1846

8 ALPHAO 12

DZ

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1848

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1850

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1851

DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0) 1852 PAGE

ALPHAO

10

12

DZ

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1853

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1854

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1856

FIG. 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1857

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1858

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1859

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)

 $(747/1 \ 01 \ S1) - (01 \ S1)$

CA20

D/S (057 - 010)(7GN057)

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI. BETAO, BETAC =0)
PAGE 1861

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1862

DZ

8 10 ALPHAO

FIG 39 DELTA Z AND ALPHAO BIVARIANT EFFECTS ON ORBITER (PHI, BETAO, BETAC =0)
PAGE 1863