ID:311512040 name:林胤宏

```
(a)code
```

```
import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image,ImageOps
from openpyxl import load_workbook
```

```
def plot(pic): #定義畫圖 function
  plt.figure(figsize=(5,5))
  plt.imshow(pic, cmap='gray')
  plt.axis('off')
  plt.show()
```

```
# open the image pic
pic = cv2.imread('./kid.tif',0)
plot(pic)
```

```
B = np.fft.fft2(pic)
Bshift = np.fft.fftshift(B) #將低頻分量移動到頻域圖像的中心

plot(np.log1p(np.abs(B)))
plot(np.log1p(np.abs(Bshift)))
b = np.uint8(cv2.normalize(np.log1p(np.abs(Bshift)), None, alpha=0,beta=255,
norm_type=cv2.NORM_MINMAX))
b = Image.fromarray(b)
b.save('output/(b).tif',dpi=(150.0,150.0))
```

```
#將右邊及下方 padding
def padding(img,M,N):
   pad_img = np.zeros((M,N))
   for m in range(600):
       for n in range(600):
           pad_img[m,n] = pic[m,n]
   return pad img
# Create Gaussin Filter: Low Pass Filter
M,N = 1200,1200
L = np.zeros((M,N), dtype=np.float32)
D0 = 200
for u in range(M):
   for v in range(N):
       D = np.sqrt((u-M/2)**2 + (v-N/2)**2)
       L[u,v] = np.exp(-D**2/(2*D0*D0))
print(L.shape)
```

```
plot(L)
b = np.uint8(cv2.normalize(L, None, alpha=0,beta=255, norm_type=cv2.NORM_MINMAX))
b = Image.fromarray(b)
b.save('output/(c)L.tif',dpi=(150.0,150.0))
```

```
# Image Filters

F = np.fft.fft2(pad_img)

Fshift = np.fft.fftshift(F)

Gshift = Fshift * L

G = np.fft.ifftshift(Gshift) # 將低頻逆轉換回圖像四角

g = np.abs(np.fft.ifft2(G))

plot(g)

plot(g[0:600,0:600])

b = np.uint8(cv2.normalize(g[0:600,0:600], None, alpha=0,beta=255,
norm_type=cv2.NORM_MINMAX))

b = Image.fromarray(b)

b.save('output/(d)GLPF.tif',dpi=(150.0,150.0))

plot(np.log1p(np.abs(Gshift)))

plot(np.log1p(np.abs(G)))
```

```
# Gaussian: High pass filter
HPF = 1 - L

plot(HPF)
b = np.uint8(cv2.normalize(HPF, None, alpha=0,beta=255, norm_type=cv2.NORM_MINMAX))
b = Image.fromarray(b)
b.save('output/(c)H.tif',dpi=(150.0,150.0))
```

```
# Image Filters
Gshift = Fshift * HPF
G = np.fft.ifftshift(Gshift)
g = np.abs(np.fft.ifft2(G))

plot(g)
plot(g[0:600,0:600])
b = np.uint8(cv2.normalize(g[0:600,0:600], None, alpha=0,beta=255,
norm_type=cv2.NORM_MINMAX))
b = Image.fromarray(b)
b.save('output/(d)GHPF.tif',dpi=(150.0,150.0))

plot(np.log1p(np.abs(Gshift)))
plot(np.log1p(np.abs(G)))
```

```
# 找出前 25 大的值

B = np.log1p(np.abs(Bshift))

C = B[0:600,0:300] #(0<=u<=M-1, 0<=N/2-1)

# print(C.shape)

wb = load_workbook("freq.xlsx")

print(wb.sheetnames)

sheet = wb.worksheets[0] #抓出列數

for i in range(25):

    max_index = np.unravel_index(np.argmax(C, axis=None), C.shape)

    print(max_index,C[max_index])

    sheet.cell(row = i+2, column = 1, value = max_index[0])

    sheet.cell(row = i+2, column = 2, value = max_index[1])

    sheet.cell(row = i+2, column = 3, value = C[max_index])

    C[max_index] = 0

wb.save("freq.xlsx")
```

(b) Fourier magnitude spectra (in Log scale) of kid and fruit

c) Magnitude responses of Gaussian LPF and HPF

(d) 4 output images

Kid LPF, HPF

Furit LPF, HPF

(e) start from left top

Kid

u		V
	301	299
	300	299
	299	299
	298	299
	297	299
	299	297
	302	298
	298	298
	298	294
	302	299
	302	296
	299	298
	304	298
	316	298
	299	294
	301	296
	317	298
	296	296
	296	298
	316	297
	300	294
	298	292
	297	296
	298	297
	301	297

Fruit

u	V
300	299
301	297
300	298
296	299
303	297
300	297
299	299
295	299
302	297
297	298
301	294
298	299
300	295
302	299
304	299
303	299
296	294
299	298
303	298
299	296
296	296
306	299
297	296
299	297
302	295