Onto:
Activity (Cold) to contament add partons?
Find anadratic at the the transfer with
tind quadratic splines for it cu
Find quadratic splines for the following dataset
26 4: a1x2+b1x+C1 0 1.0
0 1.0
1 3.0 (1,3) (2,2) $a_2x^2 + b_2x + C_2$
2 2.0
3 4.0 ((0,1) a.x2+ b.x+c.
(E) = 0 = E = 10 + 10 = 10
Substituting points - 0 = c - 10 + 10c + 10+
1 de + 20 = 40 - 2 = 0 - 10
a.x2+b.x+c.
$(x=0, x=1)$ $a_0(0)^2 + b_0(0) + (0 = 1)$
a.(1)2 + b.(1) + (0) = 3
$a_1x^2 + b_1x + c_1$
$(x=1,x=2)$ $a_1(1)^2 + b_1(1) + c_1 = 3$
$a_1(2)^2 + b_1(2) + c_1 = 2$
$a_9 x^2 + b_9 x + c_9$
(2) + (2) + (2) + (3)
$(2=2, 2=3)$ $(3)^2 + (2=4)$
Equating the derivatives at (1,3)
1 +(a x2+b,x+C1)
$\frac{\partial}{\partial t} \left(a_0 x^2 + b_0 x + c_0 \right) = \frac{\partial}{\partial t} \left(a_1 x^2 + b_1 x + c_1 \right) \Big _{x=1}$
ot de la bi
$2a_0x + b_0 = 2a_1x + b_1$
$2a_0(1) + b_0 = 2a_1(1) + b_1$ $2a_0 - 2a_1 + b_0 - b_1 = 0$
300-201100

Equal.
- Zuating the
da, x2 + b x derivatives at (2.2)
Equating the derivatives at (2,2) dL. dax + ax + ci) = d(ax + cx + cx)
12 dl
day 2 the derivatives at (2,2) $ a = d(a_2 x^2 + b_2 x + c_2) _{2n}$ $ a = 2a_2 x + b_2$
40 1 h
1012 491+b1-492-b2=0
0.1
9 équations.
(o = 1 - 0
ao+bo+(0 =-3=0-2
al 1 h + c = 0 - 3
40, +26, +0, -2 =0 - 3
$4a_2 + 2b_2 + c_2 - c_2 = 0 - c_3$ $9a_2 + 3b_2 + c_2 - c_2 = 0 - c_3$
2a o + bo -2a1 - b = 0 - 1
300 + Bo -341 - 4 - 3
$a_1 + b_1 - a_2 - b_2 = 0$
00 = 0 - 9
ai bi (Ci(1),d + (1),D (4-8-1-8)
0 0 20 H Did + 5 (2),0
3 2 -3
2 2 -4 6 20 + (2) 20 (8 = 20, 8 = 20)
1 = 20 + C) e D + C () e D