TDIDT

- □ Os algoritmos de classificação cujo conhecimento adquirido é representado como Árvore de Decisão (DT) pertencem a família TDIDT (Top Down Induction of Decision Trees)
- □Árvore de Decisão: estrutura recursiva definida como:
 - um nó folha que indica uma classe, ou
 - um nó de decisão contém um teste sobre o valor de um atributo. Cada resultado do teste leva a uma subárvore. Cada sub-árvore tem a mesma estrutura da árvore

DT para Jogar Tênis

■Atributos:

• Aparência: Sol, Nublado, Chuva

Umidade: Alta, NormalVentando: Forte, Fraco

■ Temperatura: Quente, Média, Fria

Classe (Conceito Alvo) – jogar tênis: Sim, Não

DTs Representam Disjunções de Conjunções Aparência Nublado Umidade Sim Ventando Sim Não Não Sim (Aparência=Sol \(\text{Umidade=Normal} \) \(\text{V} \) (Aparência=Sol ∧ Umidade=Alta) ∨ (Aparência=Nublado) ∨ (Aparência=Chuva ∧ Ventando=Fraco) (Aparência=Chuva A Ventando=Forte) Não

Representação da DT como um Conjunto de Regras

- ☐Uma árvore pode ser representada como um conjunto de regras
- □ Cada regra começa na raiz da árvore e caminha para baixo, em direção às folhas
 - Cada nó de decisão acrescenta um teste às premissas (condições) da regra
 - O nó folha representa a conclusão da regra

Representação da DT como um Conjunto de Regras if Paciente se sente bem = sim then classe = saudável else if Paciente tem dor = não if Temperatura do paciente ≤ 37 then classe = saudável else ("Emperatura do paciente > 37) ten classe = doente else (Paciente tem dor = sim) classe = doente end if end if

Representação da DT como um Conjunto de Regras Disjuntas

- ■As regras representadas por uma árvore de decisão são disjuntas
- □Assim, elas podem ser escritas como regras separadas, começando pela raiz, e, consequentemente, o else não é necessário

Representação da DT como um Conjunto de Regras Disjuntas if Paciente se sente bem = sim then classe = saudável end if if Paciente se sente bem = não and Paciente tem dor = não and Temperatura do paciente > 37 then classe = doente end if if Paciente se sente bem = não and Paciente tem dor = sim then classe = doente end if

Algoritmo TDIDT

- $\hfill \Box$ Seja T um conjunto de exemplos de treinamento com classes {C1, C2, ..., Ck}. Há três possibilidades:
- Seja T um conjunto de exemplos de treinamento com classes (C₁, C₂, ..., C₂). Há três possibilidades:
 1) T contém um ou mais exemplos, todos pertencendo a uma mesma classe C; a ávror de decisão para T è uma folha identificando a classe C,
 2) T não contém exemplos: a ávrore de decisão é novamente uma folha, mas a classe associada com a folha deves er determinada por alguma informação além de T. Por exemplo, a folha pode ser escolhida de acordo com algum conhecimento do dominio, tal como a classe majoridaria. C.4.5 ultiza a classe mais frequente do no paí deste nó (folhagão a clásse a majoridaria. C.4.5 ultiza a classe mais frequente do no paí deste nó (folhagão a clásse de termina de como deste de complica de como deste de complica de como deste de complica de complicación de como deste de complicación de complic

Classificando Novos Exemplos

- ■Uma DT pode ser usada para classificar novos exemplos (nunca vistos)
- □A partir da raiz basta descer através dos nós de decisão até encontrar um nó folha: a classe correspondente a esse nó folha é a classe do novo exemplo
- ■Um exemplo é classificado apenas por uma regra (sub-árvore)

Exemplo (adaptado de Quinlan, 93)

- □Neste exemplo, vamos considerar um conjunto de exemplos que contém medições diárias sobre condições meteorológicas
- - aparência: "sol", "nublado" ou "chuva"
 - temperatura: temperatura em graus Celsius
 - umidade: umidade relativa do ar
 - ventando: "sim" ou "não"
- □Cada exemplo foi rotulado com "bom" se nas condições meteorológicas daquele dia é aconselhável fazer uma viagem à fazenda e "ruim", caso contrário

O Conjunto de Dados "Viagem"

Exemplo	Aparência	Temperatura	Umidade	Ventando	Viajai
E₁	sol	25	72	sim	bom
E_2	sol	28	91	sim	ruim
E_3	sol	22	70	não	bom
E_4	sol	23	95	não	ruim
E_5	sol	30	85	não	ruim
E_6	nublado	23	90	sim	bom
E_7	nublado	29	78	não	bom
E ₈	nublado	19	65	sim	ruim
E_9	nublado	26	75	não	bom
E ₁₀	nublado	20	87	sim	bom
E ₁₁	chuva	22	95	não	bom
E ₁₂	chuva	19	70	sim	ruim
E ₁₃	chuva	23	80	sim	ruim
E ₁₄	chuva	25	81	não	bom
E ₁₅	chuva	21	80	não	bom

Escolhendo "Aparência" para **Particionar**

Escolhendo "Umidade" para Particionar "Aparência=sol"

Escolha do Atributo

- ■A maioria dos algoritmos de construção de árvores de decisão são sem retrocesso (sem backtracking) ou seja, gulosos
- □Uma vez que um teste foi selecionado para particionar o conjunto atual de exemplos, a escolha é fixada e escolhas alternativas não são exploradas

Escolha do Atributo

- ☐ A chave para o sucesso de um algoritmo de aprendizado por árvores de decisão depende do critério utilizado para escolher o atributo que particiona o conjunto de exemplos em cada iteração
- ☐ Algumas possibilidades para escolher esse atributo são:
 - aleatória: seleciona qualquer atributo aleatoriamente
 - menos valores: seleciona o atributo com a menor quantidade de valores possíveis
 - mais valores: seleciona o atributo com a maior quantidade de valores possíveis
 - ganho máximo: seleciona o atributo que possui o maior ganho de informação esperado, isto é, seleciona o atributo que resultará no menor tamanho esperado das subárvores, assumindo que a raiz é o nó atual:
 - razão de ganho
 - índice Gini

Entropia

- ☐ Seja S um subconjunto de T
- ☐ A informação esperada (ou entropia) do subconjunto S é (em bits) dado por

$$\inf_{S}(S) = -\sum_{j=1}^{k} p(C_j, S) \times \log_2(p(C_j, S))$$

$$p(C_j, S) = \frac{\text{freq}(C_j, S)}{|S|} = \frac{\text{número de exemplos em } S \text{ com classe } C_j}{\text{número de exemplos em } S}$$

- Quando aplicado a todo o conjunto de treinamento T. info(T) mede a quantidade média de informação necessária para identificar a classe de um exemplo em T
- □ Observação: $0*log_2(0) = 0$

Exercício

- ■Assuma um conjunto T de 64 exemplos. sendo 29 exemplos da classe positiva e 35 da classe negativa, ou seja, [29+,35-]
- □Assuma um conjunto T de 64 exemplos, sendo 20 exemplos da classe positiva, 32 da classe negativa e 12 da classe asterisco, ou seja, [20+,32-,12*]
- □Idem para T=[20+,32-,6*,6\$]

Solução

- ☐ Assuma um conjunto T de 64 exemplos, sendo 29 exemplos da classe positiva e 35 da classe negativa, ou seja, [29+,35-]
 - info(T) = info([29+,35-]) = = -29/64 log₂ 29/64 -35/64 log₂ 35/64 = = 0.99
- □ Assuma um conjunto T de 64 exemplos, sendo 20 exemplos da classe positiva, 32 da classe negativa e 12 da classe asterisco, ou seja, [20+,32-,12*]

 info(T) = info([20+,32-,12*]) = -20/64 log₂ 20/64 -32/64 log₂ 32/64 -21/264 log₂ 12/64 = 1.48
- □ Idem para T=[20+,32-,6*,6\$]
 info(T) = info([20+,32-,6*,6\$]) = -20/64 log₂ 20/64 -32/64 log₂ 32/64 -6/64 log₂ 6/64 -6/64 log₂ 6/64 = 1.66

Entropia

- ☐ Considere agora que T foi particionado de acordo com r valores do atributo X, ou seja $X = O_1$, $X = O_2$, ..., $X = O_r$, gerando os subconjuntos T_1 , T_2 , ..., T_r
- ☐ A informação esperada para este particionamento é a soma ponderada sobre todos os subconjuntos T_i,
 - T_i é o formado pelos exemplos de T nos quais o atributo X = O_i

$$\operatorname{info}(X,T) = \sum_{i=1}^{r} \frac{|T_i|}{|T|} \times \operatorname{info}(T_i)$$

Ganho de Informação

• gain(X,T) = info(T) - info(X,T)

ganho de informação

de T de acordo com o atributo X ■O critério de ganho (ganho máximo)

 $\max - gain(X,T) = arg \max gain(X,T)$ $X \in \{X_1, X_2, \dots, X_m\}$

■Mede o ganho de informação pela partição

seleciona o atributo $X \in T$ que maximiza o

■A quantidade

Solução $[29+,35-](X_1=?)$ [29+,35-] True [21+, 5-] [8+, 30-] [18+, 32-] [7+, 1-] [4+, 2-] info([21+,5-]) = 0.71info([18+,32-]) = 0.94info([7+,1-]) = 0.54info([8+,30-]) = 0.74 $info(X_1,[29+,35-]) =$ info([4+,2-]) = 0.92-26/64*info([21+,5-]) $info(X_2,[29+,35-]) = -50/64*info([18+,32-]) -$ -38/64*info([8+,30-]) 8/64*info([7+,1-]) -6/64*info([4+,2-])

Exen	nplo				
Exemplo	Aparência	Temperatura	Umidade	Ventando	Jogar
E ₁	sol	quente	alta	falso	não
E ₂	sol	quente	alta	verdadeiro	não
E ₃	nublado	quente	alta	falso	sim
E4	chuva	agradável	alta	falso	sim
E ₅	chuva	fria	normal	falso	sim
E ₆	chuva	fria	normal	verdadeiro	não
E ₇	nublado	fria	normal	verdadeiro	sim
E ₈	sol	agradável	alta	falso	não
E ₉	sol	fria	normal	falso	sim
E ₁₀	chuva	agradável	normal	falso	sim
E ₁₁	sol	agradável	normal	verdadeiro	sim
E ₁₂	nublado	agradável	alta	verdadeiro	sim
E ₁₃	nublado	quente	normal	falso	sim
E ₁₄	chuva	agradável	alta	verdadeiro	não

Aparência	sim	não : Tota	I Temperatura	sim	não:	Total	Umidade	sim	não :	Total	Ventando	sim	não:	Total	Jogar	
ol	2	3 5	quente	2	2	4	alta	3	4	7	falso	6	2	8	sim	9
ublado huva	4	0 4	agradável fria	4	2	6	normal	6	1	7	verdadeiro	3	3 :	6	não	5
otal	9	5 : 14	Total	9	5	14	Total	9	5	14	Total	9	5	14	Total	1
			1	_												_
		,														
info(T	") = -	$-\sum_{i=1}^{\infty}p(C_i)$	$_{j},T) \times \log_{2}(j$	$o(C_j)$,T)											
	=-	-p(sim,	T)×log ₂ (p (sim,	T))-	- p(1	$não, T) \times$	log ₂	(<i>p</i> (r	ião, î	r))					
	=-	$-\frac{9}{14} \times \log$	$g_2\left(\frac{9}{14}\right) - \frac{5}{14}$	×log	$g_2\left(\frac{3}{1}\right)$	$\left(\frac{5}{4}\right)$										
	= 0	0.940291	bits		(-	.,										
info(A	parê	ncia,T)	$=\sum_{i=1}^{3}\frac{\left T_{i}\right }{\left T\right }\times\mathbf{i}$	nfo((T_i)											
			$= \frac{\left T_{sol}\right }{\left T\right } \times \text{in}$	fo(T	, sol) +	$\frac{ T_m }{ T_m }$	$\frac{ublado}{T } \times ir$	nfo(T _{nublae}	_{io})+	$\frac{\left T_{chuva}\right }{\left T\right }\times$	info	$(T_{chuv}$	_a)		
			$=\frac{5}{14} \times info$	(T_{sol})) + -	$\frac{4}{4}$ ×	info(T _{nui}	blado)	$+\frac{5}{14}$	-×ir	nfo(T _{chuva})				

Aparência sim	não : Total	Temperatura	sim	não : Total	Umidade	sim	não	Total	Ventando	sim	não	Total	Jogar	
sol 2	3 5	quente	2	2 4	alta	3	4	7	falso	6	2	8	sim	9
nublado 4	0 4	agradável	4	2 6	normal	6	1	7	verdadeiro	3	3	6	não	5
chuva 3	2 5	fria	3	1 4			_				_			
Total 9	5 14	Total	9	5 14	Total	9	5	14	Total	9	5	14	Total	14
$\inf_{C}(T_{nubi})$	$\begin{aligned} & = -p(s) \\ & = -\frac{2}{5} \\ & = -\frac{2}{5} \\ & = -p(s) \\ & = -p(s) \\ & = -\frac{4}{4} \\ & = -p(s) \\ & = -$	$\begin{split} p(C_{f},T_{sof}) \times \log \\ & \sin(T_{sof}) \times \log_{2}\left(\frac{2}{5}\right) - \frac{3}{5} \\ & \log_{2}\left(\frac{2}{5}\right) - \frac{3}{5} \\ & p(C_{f},T_{mbhlado}) \times \log_{2}\left(\frac{4}{4}\right) - \frac{0}{4} \\ & \log_{2}\left(\frac{4}{4}\right) - \frac{0}{4} \\ & \log_{2}\left(\frac{3}{5}\right) - \frac{2}{5} \end{split}$	$\log_2(p(s)) \times \log_2(p(s)) \times \log_2(p(s)) \times \log_2(p(s)) \times \log_2(p(s)) \times \log_2(p(s)) \log_2($	$\lim_{s \to \infty} T_{sol}) - \frac{3}{5} = 0.9$ $\lim_{s \to \infty} \left(\frac{3}{5} \right) = 0.9$ $\lim_{s \to \infty} \left(p(C_j, T_{old}) \right)$ $\lim_{s \to \infty} T_{old}$	7095	o(não	T_{mib}	_{lado})×	$\log_2(p(ext{n ilde{a}}$		blado))		47

Aparência .	sim		Tota		sim	não	Total	Umidade	sim	não	Total	Ventando	sim		Total	Jogar	
ol .	2	3	5	quente	2	2	4	alta	3	4	7	falso	6	2	8	sim	9
iublado huva	4	0	5	agradável fria	4	2	6	normal	6	1	7	verdadeiro	3	3	6	não	5
nuva otal	9	- 5	: 14	Total	9	5	14	Total	9	5	14	Total	9	5	14	Total	1
	_	<u> </u>		1	_	_			_	_			_				_
inf	Fo(A :	nará	mai	$(a, T) = \sum_{i=1}^{3} \frac{1}{i}$	$T_i _{\mathcal{L}}$	info	(T)										
1111	(A)	Jaiv	711C1	1, 1) - Z [\overline{T}	iiiio	(I_i)										
				m	. '			lar.	1			la:	- 1				
				$=\frac{ I_{sol} }{ I_{sol} }$	×in	fo()	r .)	+ I nublad	ا×i⊵×	nfo	T.	T_{ado}) + $\frac{ T_{ci} }{ T_{ci} }$	nuva	× inf	o(T	.)	
				T		(.	sol)	T			nubi	ado) ·	Τ		.0(2	chuva)	
				5				4				5					
				= = ->	info	T_{sc}	+ (1	- √×inf	$o(T_n)$	ublada)+-	$\frac{5}{4}$ × info(T_{chu}	va)			
				14				14				14					
				5	.(:	2	1	$\left(\frac{2}{5}\right) - \frac{3}{5}$	1 -	_ (3))						
				=>	(-	-×1	og ₂	$(\frac{-}{5})^{-}\frac{-}{5}$	× 10	g2(.	5]]						
					7			(1)		`,							
				+4	×1 _	4 	امع	$\left(\frac{4}{4}\right) - \frac{0}{4}$) - × lc	۱σ (0)						
				14	`(4 ^	1052	(4) 4	ļ ^ 10	^{'52}	4))						
				-	7	2		(2) 2		/	21)						
				+ -	×1 –	<u>-</u> ×	log.	$\left(\frac{3}{5}\right) - \frac{2}{5}$	× lo	9.	11 ک						
				14		5	62	(5) 5		92	5]]						
				= 0.69	354	hits											

parência	sim		Temperatura	sim		Total		sim	não		Ventando	sim			Jogar	
l iblado	2	3 5	quente agradável	2	2	4 6	alta	6	4	7	falso verdadeiro	6	2	8	sim não	9
uva	3	2 5	fria	3	1	4		_	1				- 1			
tal	9	5 14	Total	9	5	14	Total	9	5	14	Total	9	5	14	Total	_1
			3 lar	1												
info(Tem	oeratura.	$T) = \sum_{i=1}^{3} \frac{ T_i }{ T }$	×ir	nfo(7	(2)										
- ($\int_{i=1}^{\infty} T $		- (17										
							l					1	1			
			T_{quent}	е.	c (T_{ag}	radável	١.	c (T_{fr}	ia .	c	or \	
			= - T	-×1	nio(I_{quent}	_{te})+	T	-×11	110(1	agradável)	17	<u>-</u> -×1	nio	I_{fria})	
			1				-	1				1	l			
			4 (2		(:	2) 2		(2))						
			$=\frac{4}{14}\times$	-=	×lo:	g ₂ -	- -=×	log ₂	-	П						
			14 (4		(-	+) 4		(4)	7						
			6	(4	1 .	(4) 2		(2)	"						
			+×		-×lo	g_2	$(\frac{4}{6}) - \frac{2}{6} \times$	log	2 = l	Ш						
			14	(6)	(6) 6		(0)	"						
			4	(1	3	1	3) 1		(1)	1)						
			+ - · ×	- -	×10	g,	$(\frac{3}{4}) - \frac{1}{4} \times$	log	, ÷	Ш						
			14	(4	ł	(4) 4	-	(4,	"						
			= 0.911	061	nite											
			- 0.711	00 0	J113											

Aparência	sim	não : Total		sim		Total	Umidade	sim		Total	Ventando	sim	não		Jogar	
ol	2	3 : 5	quente	2	2	4	alta	3	4	7	falso	6	2	8	sim	9
ublado	4	0 4	agradável	4	2	6	normal	6	1	7	verdadeiro	3	3	6	não	5
nuva	3	2 5	fria	3		4	m								m	-
otal	9	5 : 14	Total	9	5	14	Total	. 9	5	14	Total	9	. 5	14	Total	_ 1-
	info	(Umida	=	$\frac{\left T_{alt}\right }{\left T\right }$	$\frac{a}{ } \times \left(-\frac{1}{ } \times \left(-$	$\frac{3}{7}$ $-\frac{6}{7}$	$o(T_{alta})$ $< \log_2 \left(\times \log_2 \right) $	$\left(\frac{3}{7}\right)$	$-\frac{4}{7}$	×lo	$\inf(T_n) g_2\left(\frac{4}{7}\right)$ $\log_2\left(\frac{1}{7}\right)$,)			5

Escolha do Atributo para Particionar todo o Conjunto de Exemplos

 $\inf(T) = 0.94029 \text{ bits}$ $\inf(O(Aparência, T) = 0.69354 \text{ bits}$ $\inf(O(Temperatum, T) = 0.91106 \text{ bits}$ $\inf(O(Umidade, T) = 0.78845 \text{ bits}$ $\inf(O(Ventando, T) = 0.89216 \text{ bits}$ $gain(Aparência, T) = \inf(T) - \inf(O(Aparência, T) = 0.94029 - 0.69354 = 0.24675 \text{ bits}$ $gain(Temperatum, T) = \inf(T) - \inf(Temperatum, T) = 0.94029 - 0.91106 = 0.02922 \text{ bits}$ $gain(Umidade, T) = \inf(T) - \inf(Umidade, T) = 0.94029 - 0.78845 = 0.15184 \text{ bits}$ $gain(Ventando, T) = \inf(T) - \inf(Ventando, T) = 0.94029 - 0.89216 = 0.04813 \text{ bits}$ $\max - gain(X, T) = \underset{X \in \{X_1, X_2, \dots, X_n\}}{\arg \max} gain(X, T) = \text{Aparência}$

Exercício

- ☐ Calcule o ganho para o atributo "Dia", ou seja, gain(Dia,T), sabendo que info(T)=0.94
 - gain(Dia,T) = info(T) info(Dia,T)

Dia	Aparência	Temperatura	Umidade	Ventando	Jogar
d1	sol	quente	alta	falso	não
d2	sol	quente	alta	verdadeiro	não
d3	nublado	quente	alta	falso	sim
d4	chuva	agradável	alta	falso	sim
d5	chuva	fria	normal	falso	sim
d6	chuva	fria	normal	verdadeiro	não
d7	nublado	fria	normal	verdadeiro	sim
d8	sol	agradável	alta	falso	não
d9	sol	fria	normal	falso	sim
d10	chuva	agradável	normal	falso	sim
d11	sol	agradável	normal	verdadeiro	sim
d12	nublado	agradável	alta	verdadeiro	sim
d13	nublado	quente	normal	falso	sim
d14	chuva	agradável	alta	verdadeiro	não

Razão de Ganho

- ☐ Vimos que o ganho máximo é interessante para particionar os exemplos, fornecendo bons resultados
- ☐ Entretanto, ele tem uma tendência (bias) em favor de testes com muitos valores
- ☐ Por exemplo, considere um conjunto de exemplos de diagnóstico médico no qual um dos atributos contém o código de identificação do paciente (ID)
- Uma vez que cada código ID é único, particionando o conjunto de treinamento nos valores deste atributo levará a um grande número de subconjuntos, cada um contendo somente um caso
- ☐ Como todos os subconjuntos (de 1 elemento) necessariamente contêm exemplos de uma mesma classe, info(ID,T)=0, assim o ganho de informação deste atributo serà máximo

Razão de Ganho

☐ Para solucionar esta situação, em analogia à definição de info(T), vamos definir a informação potencial gerada pela partição de T em r subconjuntos

$$split-info(X,T) = -\sum_{i=1}^{r} \frac{|T_i|}{|T|} \times \log_2 \left(\frac{|T_i|}{|T|} \right)$$

☐ A razão de ganho é definida como:

$$gain-ratio(X,T) = \frac{gain(X,T)}{split-info(X,T)}$$

☐ A razão de ganho expressa a proporção de informação gerada pela partição que é útil, ou seja, que aparenta ser útil para a classificação

Razão de Ganho

■Usando o exemplo anterior para o atributo Aparência que produz três subconjuntos com 5, 4 e 5 exemplos, respectivamente

split-info(Aparência,
$$T$$
) = $-\frac{5}{14} \times \log_2 \left(\frac{5}{14}\right) - \frac{4}{14} \times \log_2 \left(\frac{4}{14}\right) - \frac{5}{14} \times \log_2 \left(\frac{5}{14}\right)$
= 1 57741 bits

- □Para este teste, cujo ganho é gain(Aparência,T)=0.24675 (mesmo valor anterior), a razão de ganho é
 - gain-ratio(Aparência,T) = 0.24675 / 1.57741 = Ŏ.156428

Atributos Numéricos

- Se um atributo X assume valores reais (numéricos), um teste binário cujos resultados são X <= Z e X > Z
- O limite Z pode ser encontrado da seguinte forma
- os exemplos de T são inicialmente ordenados considerando os valores do atributo X sendo considerado
- A seriou consideration Há apenas um conjunto finito de valores, que podemos denotar (em ordem) por $\{v_1, v_2, ..., v_l\}$ Qualquer limite caindo entre v_l e v_{i+1} tem o mesmo efeito que particionar os exemplos cujos valores do atributo X encontra-se em $\{v_1, v_2, ..., v_l\}$ e em $\{v_{i+1}, v_{i+2}, ..., v_l\}$
- Assim, existem apenas L-1 divisões possíveis para o atributo X, cada um devendo ser examinado
- ser examinado
 Isso pode ser obtido (uma vez ordenados os valores) em uma única passagem, atualizando as distribuições de classes para a esquerda e para a direita do limite Z durante o processo
- durante o processo Alguns indutores podem escolher o valor de limite como sendo o ponto médio de cada intervalo $Z=(v_1+v_{i+1})/2$ C4.5, entretanto, escolhe o maior valor de Z entre todo o conjunto de treinamento que não excede o ponto médio acima, assegurando que todos os valores que aparecem na árvore de fato ocorrem nos dados

Exemplo										
Exemplo	Aparência	Temperatura	Umidade	Ventando	Jogar					
E ₁	sol	85	85	falso	não					
E ₂	sol	80	90	verdadeiro	não					
E ₃	nublado	83	86	falso	sim					
E ₄	chuva	70	96	falso	sim					
E ₅	chuva	68	80	falso	sim					
E ₆	chuva	65	70	verdadeiro	não					
E ₇	nublado	64	65	verdadeiro	sim					
E ₈	sol	72	95	falso	não					
E ₉	sol	69	70	falso	sim					
E ₁₀	chuva	75	80	falso	sim					
E ₁₁	sol	75	70	verdadeiro	sim					
E ₁₂	nublado	72	90	verdadeiro	sim					
E ₁₃	nublado	81	75	falso	sim					
E ₁₄	chuva	71	91	verdadeiro	não					

Atributos com Valores Desconhecidos (Missing Values)

- O algoritmo básico para construção da DT assume que o valor de um teste para cada exemplo de treinamento possa ser determinado
- □ Além disso, o processo de classificação de novos exemplos requer uma escolha em cada ramo da árvore, escolha esta baseada em um atributo, cujo valor deve ser conhecido
- ☐ Entretanto, em dados do mundo real é freqüente o fato que um atributo apresente valores desconhecidos
 - O valor não é relevante para aquele exemplo particular
 - O valor não foi armazenado quando os exemplos foram coletados
 - O valor não pôde ser decifrado (se escrito à mão) pela pessoa que digitou os dados

Atributos com Valores Desconhecidos

- ☐ Por exemplo, Quinlan (1993) reporta que em um conjunto de 3000 dados médicos sobre tireóide, muitos exemplos não possuem o sexo do paciente, mesmo sabendo que esta informação seja usualmente relevante para a interpretação; mais de 30% dos exemplos apresentam valores desconhecidos
- ☐ Assim, a falta de completeza é típica em dados do mundo
- ☐ Diante disso, há algumas escolhas possíveis
 - Descartar uma parte (significante) dos exemplos de treinamento e assumir alguns dos novos exemplos (teste) como sendo inclassificáveis
 - Pré-processar os dados, substituindo os valores desconhecidos (o que geralmente altera o processo de aprendizado)
 - Alterar os algoritmos apropriadamente para tratar atributos contendo valores desconhecidos

Atributos com Valores Desconhecidos

- ☐ A alteração dos algoritmos para tratar atributos contendo valores desconhecidos requer a seguinte análise:
 - A escolha de um teste para particionar o conjunto de treinamento: se dois testes utilizam atributos com diferentes números de valores desconhecidos, qual o mais desejável?
 - Uma vez que um teste tenha sido escolhido, exemplos de treinamento com valores desconhecidos de um atributo não podem ser associados a um particular ramo (outcome) do teste e, portanto, não pode ser atribuído a um subconjunto particular T_i . Como esses exemplos devem ser tratados no particionamento?
 - Quando a árvore é utilizada para classificar um novo exemplo, como o classificador deve proceder se o exemplo tem um valor desconhecido para o atributo testado no nó de decisão atual?
- Veremos nos próximos slides a estratégia adotada pelo indutor C4.5

Escolha de um Teste

- □ Como mencionado, o ganho de informação de um teste mede a informação necessária para identificar uma classe que pode ser esperada por meio do particionamento do conjunto de exemplos, calculado como a subtração da informação esperada requerida para identificar a classe de um exemplo após o particionamento da mesma informação antes do particionamento
- □É evidente que um teste não fornece informação alguma sobre a pertinência a uma classe de um exemplo cujo valor do atributo de teste é desconhecido

Escolha de um Teste

- □ Assumindo que uma fração F de exemplos tenha seu valor conhecido para o atributo X, a definição de ganho pode ser alterada para
 - gain(X,T) = probabilidade de X ser conhecido * (info(T) - info(X, T))+ probabilidade de X ser desconhecido * 0
 - qain(X,T) = F * (info(T) info(X,T))
- \square De forma similiar, a definição de split-info(X,T) pode ser alterada considerando os exemplos com valores desconhecidos como um grupo adicional. Se o teste tem r valores, seu split-info é calculado como se o teste dividisse os exemplos em r+1 subconjuntos

Exercício

Exemplo	Aparência	Temperatura	Umidade	Ventando	Jogar
E ₁	sol	85	85	falso	não
E ₂	sol	80	90	verdadeiro	não
E ₃	nublado	83	86	falso	sim
E ₄	chuva	70	96	falso	sim
E ₅	chuva	68	80	falso	sim
E ₆	chuva	65	70	verdadeiro	não
E ₇	nublado	64	65	verdadeiro	sim
E ₈	sol	72	95	falso	não
E ₉	sol	69	70	falso	sim
E ₁₀	chuva	75	80	falso	sim
E ₁₁	sol	75	70	verdadeiro	sim
E ₁₂	nublado	72	90	verdadeiro	sim
E ₁₃	nublado	81	75	falso	sim
E ₁₄	chuva	71	91	verdadeiro	não

Exercício

Exemplo	Aparência	Temperatura	Umidade	Ventando	Jogar
E ₁	sol	85	85	falso	não
E ₂	sol	80	90	verdadeiro	não
E ₃	nublado	83	86	falso	sim
E ₄	chuva	70	96	falso	sim
E ₅	chuva	68	80	falso	sim
E ₆	chuva	65	70	verdadeiro	não
E ₇	nublado	64	65	verdadeiro	sim
E ₈	sol	72	95	falso	não
E ₉	sol	69	70	falso	sim
E ₁₀	chuva	75	80	falso	sim
E ₁₁	sol	75	70	verdadeiro	sim
E ₁₂	?	72	90	verdadeiro	sim
E ₁₃	nublado	81	75	falso	sim
E ₁₄	chuva	71	91	verdadeiro	não

Calcular info(T), info(Aparência,T), gain(Aparência,T), split-info(Aparência,T), gain-ratio(Aparência,T)

Solução

Aparência	sim	não	Total
sol	2	3	5
nublado	3		3
chuva	3	2	- 5
Total	8	5	13

$$\inf_{0.0612 \text{ kits}} \log_2\left(\frac{8}{13}\right) - \frac{5}{13} \times \log_2\left(\frac{5}{13}\right)$$

$$= 0.9612 \text{ bits}$$

$$\begin{split} &\inf(\mathsf{Apar\hat{e}ncia},T) = \frac{5}{13} \times \left(-\frac{2}{5} \times \log_2(\frac{2}{5}) - \frac{3}{5} \times \log_2(\frac{3}{5}) \right) \\ &+ \frac{3}{13} \times \left(-\frac{3}{3} \times \log_2(\frac{3}{3}) - \frac{0}{3} \times \log_2(\frac{0}{3}) \right) \\ &+ \frac{5}{13} \times \left(-\frac{3}{5} \times \log_2(\frac{3}{5}) - \frac{2}{5} \times \log_2(\frac{2}{5}) \right) \end{split}$$

gain(Aparência,
$$T$$
) = $\frac{13}{14}$ × (0.9612 – 0.7469)

$$= 0.1990 \text{ bits}$$

Solução

split-info(Aparência,
$$T$$
) = $-\frac{5}{14} \times \log_2(\frac{5}{14})$ (para sol)

$$-\frac{3}{14} \times \log_2(\frac{3}{14}) \quad \text{(para nublado)}$$

$$-\frac{5}{14} \times \log_2(\frac{4}{14}) \quad \text{(para chuva)}$$

$$-\frac{1}{14} \times \log_2(\frac{1}{14})$$
 (para?)

gain-ratio(Aparência,
$$T$$
) = $\frac{0.1990}{1.8092}$ = 0.1100

Particionando o Conjunto de Treinamento

- ☐ Um teste pode ser selecionado dentre os possíveis testes como antes, utilizando as definições modificadas de gain e split-info
- □ Se o atributo selecionado X possui valores desconhecidos, o conceito de particionamento do conjunto T é generalizado da seguinte forma:
 - Assumindo que X assume r valores, ou seja X = O_1 , X = O_2 , ..., X= O_r , cada teste particiona o conjunto T nos subconjuntos T_1 , T_2 , ..., T_r
 - Quando um exemplo de T com valor conhecido é atributo ao subconjunto T_i isto indica que a probabilidade daquele exemplo pertencer ao subconjunto T_i é 1 e em todos os outros subconjunto é

Particionando o Conjunto de **Treinamento**

- ☐ Quando um exemplo possui valor desconhecido, apenas um grau de pertinência probabilístico pode ser feito
- □ Assim a cada exemplo em cada subconjunto T_i é associado um peso representando a probabilidade do exemplo pertencer a cada subconjunto
 - Se o exemplo tem seu valor conhecido para o teste, o peso é 1
 - Se o exemplo tem seu valor desconhecido para o teste, o peso é a probabilidade do teste $X=O_i$ naquele ponto; cada subconjunto T_i é agora uma coleção de exemplos fracionários de forma que $|T_i|$ deve ser interpretado como a soma dos pesos fracionários dos exemplos no subconiunto

Particionando o Conjunto de Treinamento

- ☐ Os exemplos em T podem ter pesos não unitários, uma vez que T pode ser um subconjunto de uma partição anterior
- □ Em geral, um exemplo de T com peso w cujo valor de teste é desconhecido é atribuído a cada subconjunto T_i com peso
 - w * probabilidade de X=O_i
- ■A probabilidade é estimada como a soma dos pesos dos exemplos em T que têm seu valor (conhecido) igual a O, dividido pela soma dos pesos dos exemplos em T que possuem valores conhecidos para o atributo X

Exemplo

- Quando os 14 exemplos são particionados pelo atributo Aparência, os 13 exemplos para os quais o valor é conhecido não apresentam problemas
- O exemplo remanescente é atribuído para todas as partições, correspondendo aos valores sol, nublado e chuva, com pesos 5/13, 3/13 e 5/13, respectivamente

Exemplo

Vamos analisar a primeira partição, correspondendo a Aparência=sol

Exemplo	Aparência	Temperatura	Umidade	Ventando	Jogar	Peso
E ₁	sol	85	85	falso	não	1
E ₂	sol	80	90	verdadeiro	não	1
E ₈	sol	72	95	falso	não	1
E ₉	sol	69	70	falso	sim	1
E ₁₁	sol	75	70	verdadeiro	sim	1
E12	?	72	90	verdadeiro	sim	5/13

- ☐ Se este subconjunto for particionado novamente pelo mesmo teste anterior, ou seja, utilizando o atributo Umidade, teremos as seguintes distribuições de classes
 - Umidade <= 75 [2s, 0n] ■ Umidade > 75 [5/13s, 3n]

Exemplo

- Distribuições de classes
 - Umidade <= 75 [2s, 0n] [5/13s, 3n] Umidade > 75
- ■A primeira partição contém exemplos de uma única classe (sim)
- □ A segunda ainda contém exemplos de ambas as classes mas o algoritmo não encontra nenhum teste que melhore sensivelmente esta situação
- □ De maneira similar, o subconjunto correspondendo a Aparência=chuva e cujo teste esteja baseado no atributo Ventando (como anteriormente) não pode ser particionado em subconjuntos de uma única classe

Exemplo

■ A DT assume a forma:

```
aparencia = sol
:...umidade <= 75: sim (2.0)
: umidade > 75: não (3.4/0.4)
aparencia = nublado: sim (3.2)
aparencia = chuva
:...ventando = verdadeiro: não (2.4/0.4)
: ventando = falso: sim (3.0)
```

- ☐ Os número nas folhas da forma (N) ou (N/E) significam
 - N é a soma de exemplos fracionários que atingiram a folha
 - E é o número de exemplos que pertencem a classes diferentes daquela predita pela folha (em árvores não podadas)

Classificando um Novo Exemplo

- ☐ Uma abordagem similar é utilizada quando a DT é usada para classificar um novo exemplo
- Se um nó de decisão é encontrado para o qual o valor do atributo é desconhecido (ou seja, o valor do teste não pode ser determinado), o algoritmo explorar todos os valores possíveis de teste, combinando o resultado das classificações aritmeticamente
- Uma vez que agora podem haver múltiplos caminhos da raiz da árvore ou sub-árvore até as folhas, a "classificação" é uma distribuição de classes ao invés de uma única classe
- Quando a distribuição total de classes para o novo exemplo é estabelecida, a classe com a maior probabilidade é rotulada como sendo "a" classe predita

Exemplo

aparencia = sol
:..umidade <= 75: sim (2.0)
: umidade > 75: não (3.4/0.4)
aparencia = nublado: sim (3.2)
aparencia = chuva Aparência Temperatura Umidade Ventando :..ventando = verdadeiro: não (2.4/0.4)

Sol 75 ? falso : ventando = falso: sim (3.0)

- O valor de Aparência assegura que o exemplo mova-se para a primeira sub-árvore mas não é possível determinar se **Umidade** <= 75
- ☐ Entretanto, podemos notar que:
 - Se Umidade <= 75 o exemplo poderia ser classificado como sim
 - Se Umidade > 75, o exemplo poderia ser classificado como **não** com probabilidade 3/3.4 (88%) e **sim** com probabilidade 0.4/3.4 (12%)
- Quando a DT foi construída, as partições para estes testes tinham 2.0 e 3.4 exemplos, respectivamente
- As conclusões condicionais são combinadas com os mesmos pesos relativos 2.0/5.4 e 3.4/5.4 de forma que a distribuição final de classes para o exemplo é
 - sim: 2.0/5.4 * 100% + 3.4/5.4 * 12% = 44%
 - não: 3.4/5.4 * 88% = 56%

Poda

- ☐ Há duas formas de produzir árvores mais simples
 - pré-poda: decide-se não mais particionar o conjunto de treinamento, utilizando algum critério
 - pós-poda: induz-se a árvore completa e então remove-se alguns dos ramos
- ■A poda invariavelmente causará a classificação incorreta de exemplos de treinamento
- Consegüentemente, as folhas não necessariamente conterão exemplos de uma única classe

Pré-Poda

- ☐ Evita gastar tempo construindo estruturas (sub-árvores) que não serão usada na árvore final simplificada
- O método usual consiste em analisar a melhor forma de particionar um subconjunto, mensurando-a sob o ponto de vista de significância estatística, ganho de informação, reducão de erro ou outra métrica qualquer
- Se a medida encontrada encontrar-se abaixo de um valor limite (threshold) o particionamento é interrompido e a árvore para aquele subconjunto é apenas a folha mais apropriada
- □ Entretanto, a definição do valor limite não é simples de ser definido
 - Um valor muito grande pode terminar o particionamento antes que os benefícios de divisões subseqüentes tornem-se evidentes
 - Um valor muito pequeno resulta em pouca simplificação

Pós-Poda

- □ O processo de indução (dividir-e-conquistar) da árvore continua de forma livre e então a árvore super-ajustada (overfitted tree) produzida é então podada
- O custo computacional adicional investido na construção de partes da árvore que serão posteriormente descartadas pode ser substancial
- ☐ Entretanto, esse custo é compensador devido a uma maior exploração das possíveis partições
- ☐ Crescer e podar árvores é mais lento, mas mais confiável

Pós-Poda

- Existem várias forma de avaliar a taxa de erro de árvores podadas, dentre elas
 - avaliar o desempenho em um subconjunto separado do conjunto de treinamento (o que implica que uma parte dos exemplos devem ser reservada para a poda e, portanto, a árvore tem que ser construída a partir de um conjunto de exemplos menor)
 - avaliar o desempenho no conjunto de treinamento, mas ajustando o valore estimado do erro, já que ele tem a tendência de ser menor no conjunto de treinamento

Pós-Poda (C4.5)

- Quando N exemplos de treinamento s\u00e3o cobertos por uma folha, E dos quais incorretamente, a taxa de erro de resubstitui\u00e7\u00e3o para esta folha \u00e9 E/N
- Entretanto, isso pode ser visto como a observação de E eventos em N tentativas
- Se esse conjunto de N exemplos de treinamento forem vistos como uma amostra (o que de fato não é), podemos analisar o que este resultado indica sobre a probabilidade de um evento (erro) na população inteira de exemplos cobertos por aquela folha
- A probabilidade não pode ser determinada exatamente, mas tem uma distribuição de probabilidade (posterior) que é usualmente resumida por um par de limites de confiança
- $\hfill \square$ Para um dado nível de confiança CF, o limite superior desta probabilidade pode ser encontrado a partir dos limites de confiança de uma distribuição binomial denotado por $U_{\rm CF}(E,N)$

Análise de Complexidade

- □ Vamos assumir que a profundidade da árvore para n exemplos é O(log n) (assumindo árvore balanceada)
- Vamos considerar o esforço para um atributo para todos os nós da árvore; nem todos os exemplos precisam ser considerados em cada nó mas certamente o conjunto completo de n exemplos deve ser considerado em cada nível da árvore
- □ Como há log n níveis na árvore, o esforço para um único atributo é O(n log n)
- Assumindo que em cada nó todos os atributos são considerados, o esforço para construir a árvore torna-se O(mn log n)
 - Se os atributos são numéricos, eles devem ser ordenados, mas apenas uma ordenação inicial é necessária, o que toma O(n log n) para cada um dos m atributos: assim a complexidade acima permanece a mesma
 - Se os atributos são nominais, nem todos os atributos precisam ser considerados em cada nó uma vez que atributos utilizados anteriormente não podem ser reutilizados; entretanto, se os atributos são numéricos eles podem ser reutilizados e, portanto, eles devem ser considerados em cada nível da árvore

Análise de Complexidade

- Na poda (subtree replacement), inicialmente uma estimativa de erro deve ser efetuada em cada nó
 - Assumindo que contadores sejam apropriadamente mantidos, isto é realizado em tempo linear ao número de nós na árvore
- Após isso, cada nó deve ser considerado para substituição
 - A árvore possui no máximo n folhas, uma para cada exemplo
 - Se a árvore for binária (cada atributo sendo numérico ou nominal com dois valores apenas) isso resulta em 2n-1 nós (árvores com multi-ramos apenas diminuem o número de nós internos)
- ■Assim, a complexidade para a poda é O(n)

109

Interpretação Geométrica

- ■Consideramos exemplos como um vetor de m atributos
- □Cada vetor corresponde a um ponto em um espaço m-dimensional
- □A DT corresponde a uma divisão do espaço em regiões, cada região rotulada como uma classe

Interpretação Geométrica: Atributo-Valor

- ☐ Um teste para um atributo é da forma X; op Valor
- onde X_i é um atributo, *op* ∈ {=,≠,<,≤,>,≥} e valor é uma constante válida para o atributo
- O espaço de descrição é particionado em regiões retangulares, nomeadas hiperplanos, que são ortogonais aos eixos
- As regiões produzidas por DT são todas hiperplanos
- □ Enquanto a árvore está sendo formada, mais regiões são adicionadas ao espaço

Combinação Linear de Atributos

- □Produzem árvores de decisão oblíquas
- ■A representação para os testes são da forma

$$a_1 \times X_1 + a_2 \times X_2 + \cdots + a_m \times X_m$$
 op Valor onde a_i é uma constante, X_i é um atributo real, $op \in \{<, \leq, >, \geq\}$ e *Valor* uma constante

■O espaço de descrição é particionado hiperplanos que não são necessariamente ortogonais ao eixos

Resumo

- □Árvores de decisão, em geral, possuem um tempo de aprendizado relativamente rápido
- □Árvores de decisão permitem a classificação de conjuntos com milhões de exemplos e centenas de atributos a uma velocidade razoável
- □É possível converter para regras de classificação, podendo ser interpretadas por seres humanos
- □ Precisão comparável a outros métodos