Project: Creditworthiness

Complete each section. When you are ready, save your file as a PDF document and submit it here: https://classroom.udacity.com/nanodegrees/nd008/parts/11a7bf4c-2b69-47f3-9aec-108ce847f855/project

Step 1: Business and Data Understanding

Due to a financial scandal that hit a competitive bank last week new customers applying for loans for your bank instead of the other bank in your city .A new 500 loan applications for new customers need to be processed to determine if they are creditworthy or not just in one week.

Key Decisions:

Answer these questions

- What decisions needs to be made? determine if customers are creditworthy to give a loan to.
- What data is needed to inform those decisions?
- 1. all credit approvals from past loan applicants the bank has ever completed.
- 2. new customers data

What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

Binary model, we will predict a categorical variable (creditworthy vs non-creditworthy)

Step 2: Building the Training Set

Build your training set given the data provided to you. The data has been cleaned up for you already so you shouldn't need to convert any data fields to the appropriate data types.

Here are some guidelines to help guide your data cleanup:

• For numerical data fields, are there any fields that highly-correlate with each other? The correlation should be at least .70 to be considered "high".

using Association analysis tool no inner correlation higher than 0.70 between variables

Correlation Matrix with ScatterPlot

ForeignsWasteratlpablezaitzrilablaCasididMondrofitAparticabloroRespetrAtenteears

 Are there any missing data for each of the data fields? Fields with a lot of missing data should be removed

delete <u>Duration-in-Current-address</u> field with 69% missing value replace records with missing value with median in <u>Age-years</u> field

Are there only a few values in a subset of your data field? Does the data field look very uniform (there is only one value for the entire field?). This is called "low variability" and you should remove fields that have low variability. Refer to the "Tips" section to find examples of data fields with low-variability.

delete

Occupation

Concurrent-Credits

becouse they are low variablity fields

 Your clean data set should have 13 columns where the Average of Age Years should be 36 (rounded up)

delete <u>Telephone</u> as recommended delete <u>Foreign-Worker</u> ,<u>No-of-dependents</u> ,<u>Guarantors</u>

F-LI-				
Table				
Guarantors				
Value	Frequency	Percent	Cumulative Frequency	Cumulative Percent
None	457	91.40	457	91.40
Yes	43	8.60	500	100.00
	nts			
Value		Percent	Cumulative Frequency	Cumulative Percent
Value	Frequency	Percent 85.40	Cumulative Frequency	
Value 1 2		Percent 85.40 14.60	Cumulative Frequency 427 500	85.40
1	Frequency 427 73	85.40	427	85.40
1 2	Frequency 427 73	85.40	427	85.40 100.00
1 2 Foreign-Worker	Frequency 427 73	85.40 14.60	427 500	Cumulative Percent 85.40 100.00 Cumulative Percent 96.20

above variables skewed to one value, with high frequncy percentage, it wouldn't be very heloful as predictor variables.

Note: For the sake of consistency in the data cleanup process, impute data using the median of the entire data field instead of removing a few data points. (100 word limit)

Note: For students using software other than Alteryx, please format each variable as:

<u>Variable</u>	Data Type
Credit-Application-Result	String
Account-Balance	String
<u>Duration-of-Credit-Month</u>	<u>Double</u>
Payment-Status-of-Previous-	
Credit	String
<u>Purpose</u>	String
Credit-Amount	<u>Double</u>
Value-Savings-Stocks	String
Length-of-current-employment	String
Instalment-per-cent	<u>Double</u>
<u>Guarantors</u>	String
<u>Duration-in-Current-address</u>	<u>Double</u>
Most-valuable-available-asset	<u>Double</u>
Age-years	<u>Double</u>
Concurrent-Credits	String
Type-of-apartment	<u>Double</u>
No-of-Credits-at-this-Bank	String
<u>Occupation</u>	<u>Double</u>

No-of-dependents	<u>Double</u>
<u>Telephone</u>	<u>Double</u>
Foreign-Worker	<u>Double</u>

Step 3: Train your Classification Models

<u>Create all of the following models: Logistic Regression, Decision Tree, Forest Model, Boosted Model</u>

Logistic Regression Model : using stepwise tool to choose most important predictor variables

Account.Balance 31.129 1 2.41e-0 Payment.Status.of.Previous.Credit 5.687 2 0.0582 Purpose 12.225 3 0.0066 Credit.Amount 9.882 1 0.0016 Length.of.current.employment 5.522 2 0.0632 Instalment.per.cent 5.198 1 0.0226				
Payment.Status.of.Previous.Credit 5.687 2 0.0582 Purpose 12.225 3 0.0066 Credit.Amount 9.882 1 0.0016 Length.of.current.employment 5.522 2 0.0632 Instalment.per.cent 5.198 1 0.0226		LR Chi-Sq	DF	Pr(>Chi-Sq)
Purpose 12.225 3 0.0066 Credit.Amount 9.882 1 0.0016 Length.of.current.employment 5.522 2 0.0632 Installment.per.cent 5.198 1 0.0226	Account.Balance	31.129	1	2.41e-08 ***
Credit.Amount 9.882 1 0.0016 Length.of.current.employment 5.522 2 0.0632 Installment.per.cent 5.198 1 0.0226	Payment.Status.of.Previous.Credit	5.687	2	0.05823.
Length.of.current.employment 5.522 2 0.06324 Instalment.per.cent 5.198 1 0.0226	Purpose	12.225	3	0.00665 **
Instalment.per.cent 5.198 1 0.0226	Credit.Amount	9.882	1	0.00167 **
	Length.of.current.employment	5.522	2	0.06324.
Most.valuable.available.asset 3.509 1 0.0610-	Instalment.per.cent	5.198	1	0.02261 *
	Most.valuable.available.asset	3.509	1	0.06104.

Decision Tree Model:

Forest Model:

Variable Importance Plot

OOB estimate of the error rate: 23.1%

Boosted Model:

value for each field gives the relative percentage importance of that field to the overall model.

Activate Window

the maximum number of trees used in the model 1808

Number of Iterations Assessment Plot

Accuracy change with model comparison tool:

Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
decision_tree	0.7467	0.8304	0.7035	0.8857	0.4222
forest	0.7933	0.8681	0.7368	0.9714	0.3778
boosted	0.7867	0.8632	0.7515	0.9619	0.3776
stepwise	0.7600	0.8364	0.7306	0.8762	0.488
Model: model names in the current of	comparison.				
Accuracy: overall accuracy, number of	of correct predictio	ns of all classes	divided by total sample numb	er.	
Accuracy_[class name]: accuracy of	f Class [class name]	is defined as t	he number of cases that are co	rrectly predicted to be Class [class name] divided by	the total number of cases that actually belong to Class
class name], this measure is also know	wn as recall.				
AUC: area under the ROC curve, only	available for two-	class classification	on.		
F1: F1 score, 2 * precision * recall / (pr	recision + recall). T	he <i>precision</i> me	asure is the percentage of actu	al members of a class that were predicted to be in the	hat class divided by the total number of cases predicted
to be in that class. In situations where	there are three or	more classes a	verage precision and average r	ecall values across classes are used to calculate the F	1 score
to be in that class in stadtons where	there are times or		relege precision and evelege i	con voices deress classes are asea to establish the	1 360161
Confusion matrix of boos	sted				
				Actual_Creditworthy	Actual_Non-Creditworthy
	Predicted	_Creditworthy	,	Actual_Creditworthy 101	Actual_Non-Creditworthy 28
	Predicted_ Predicted_Non				
Confusion matrix of deci	Predicted_Non			101	28
Confusion matrix of deci	Predicted_Non			101	28 17
Confusion matrix of deci	Predicted_Non			101 4	28
Confusion matrix of deci	Predicted_Non	-Creditworthy		101 4 Actual_Creditworthy	28 17 Actual_Non-Creditworthy
Confusion matrix of deci-	Predicted_Non Sion_tree Predicted_ Predicted_Non	-Creditworthy		101 4 Actual_Creditworthy 93	28 17 Actual_Non-Creditworthy 26
	Predicted_Non Sion_tree Predicted_ Predicted_Non	-Creditworthy		Actual_Creditworthy 93 12	28 17 Actual_Non-Creditworthy 26 19
	Predicted_Non Sion_tree Predicted_ Predicted_Non St	-Creditworthy _Creditworthy -Creditworthy		Actual_Creditworthy 93 12 Actual_Creditworthy	28 17 Actual_Non-Creditworthy 26 19 Actual_Non-Creditworthy
	Predicted_Non Sion_tree Predicted_ Predicted_Non St Predicted_	-Creditworthy _Creditworthy -Creditworthy _Creditworthy		Actual_Creditworthy 93 12 Actual_Creditworthy 102	Actual_Non-Creditworthy 26 19 Actual_Non-Creditworthy 28
	Predicted_Non Sion_tree Predicted_ Predicted_Non St	-Creditworthy _Creditworthy -Creditworthy _Creditworthy		Actual_Creditworthy 93 12 Actual_Creditworthy	28 17 Actual_Non-Creditworthy 26 19 Actual_Non-Creditworthy
Confusion matrix of fores	Predicted_Non Predicted_Non St Predicted_Non Predicted_Non Predicted_Non Predicted_Non	-Creditworthy _Creditworthy -Creditworthy _Creditworthy		Actual_Creditworthy 93 12 Actual_Creditworthy 102	Actual_Non-Creditworthy 26 19 Actual_Non-Creditworthy 28 17
	Predicted_Non Predicted_Non St Predicted_Non Predicted_Non Predicted_Non Predicted_Non	-Creditworthy _Creditworthy -Creditworthy _Creditworthy		Actual_Creditworthy 93 12 Actual_Creditworthy 102	Actual_Non-Creditworthy 26 19 Actual_Non-Creditworthy 28 17
Confusion matrix of fores	Predicted_Non Sion_tree Predicted_Predicted_Non St Predicted_Non Wise	-Creditworthy _Creditworthy -Creditworthy _Creditworthy		Actual_Creditworthy 93 12 Actual_Creditworthy 102 3	Actual_Non-Creditworthy 26 19 Actual_Non-Creditworthy 28 17

- the forest model has the highest Creditworty segment and overall accuracy
- all models predictions bias toward Creditworthy
- the logistic regression predict more Non-Creditworthy than other models

In ROC curve forest model is the closest to 1 in true positive rate (top left corner), and decisin tree model show a bad performance (bais)

Step 4: Writeup

- I will use Forest model with highest accuracy 0.79
- and the highest number of Creditworty customers predicted correct (102) accuracy (0.9714)
- correctly pridict Non-Creditworthy (17) customers accuracy (0.3778)
- With a clear bias toward Creditworthy
- ROC curve show that the forest model has the best performance

because of these points we will use the forest model to predict if the new customers are Creditworthy.

How many individuals are creditworthy?
 There are 408 new customer creditworthey

Before you Submit

<u>Please check your answers against the requirements of the project dictated by the rubric here.</u>
<u>Reviewers will use this rubric to grade your project.</u>