Teoria da Computação - PPGCC

1ª Lista de Exercícios - Prof. Victor Ströele

AFD, AFN, Expressões Regulares, Linguagens Livres de Contexto, Gramáticas e Autômatos de Pilha

- 1- Construa autômatos finitos determinísticos sobre o alfabeto $\Sigma = \{0,1\}$ que aceitem as linguagens:
 - a. O conjunto de todas as palavras terminadas EXATAMENTE em 00;
 - b. O conjunto de todas as palavras com três 0's consecutivos;
 - c. $\{w \mid onde \mid w \mid \le 5\}$
 - d. O conjunto de todas as palavras, menos a palavra vazia;
 - e. {w | w começa com 0 e tem tamanho ímpar ou começa com 1 e tem tamanho par
- 2- Construa um autômato finito determinístico equivalente ao autômato finito nãodeterminístico dado por: $A = (\{p, q, r, s\}, \{0,1\}, \delta, p, \{s\})$, onde:

$$\delta(p,0) = \{p,q\} \qquad \delta(p,1) = \{p\}$$

$$\delta(q,0) = \{r\} \qquad \delta(q,1) = \{r\}$$

$$\delta(r,0) = \{s\} \qquad \delta(r,1) = \emptyset$$

$$\delta(s,0) = \{s\} \qquad \delta(s,1) = \{s\}$$

- 3- Defina qual é a linguagem aceita pelo autômato do exercício anterior. As palavras 010, 00000, 10010 e 101001010111 são aceitas pelo autômato? Explique.
- 4- Construa autômatos finitos não-determinísticos, com um determinado número de estados, para as seguintes linguagens:
 - a. {w | w termina com 00}, com 3 estados;
 - b. {0}, com 2 estados; é possível aceitar {0} com 1 estado? Justifique;
 - c. $\{\varepsilon\}$, com 1 estado;
 - d. A linguagem representada pela expressão regular 0*1*0*0, com 3 estados.
- 5- Construa expressões regulares para cada uma das linguagens do exercício 1.
- 6- Para cada uma das expressões regulares abaixo, dê duas palavras que pertencem à linguagem correspondente à expressão, e duas palavras que não pertencem à linguagem. Considere que $\Sigma = \{a, b\}$

```
a. a*b*;
```

b. a(ba)*b;

c. $a^* + b^*$;

d. (a + ba + bb)(a + b)*.

- 7- Construa (desenhe o diagrama de estados) autômatos de pilha sobre o $\Sigma = \{0, 1, 2\}$ que aceitem as seguintes linguagens:
 - a. O conjunto de TODOS os palíndromos sobre Σ (ou seja, $w \in \Sigma^*$ tal que $w = w^R$);
 - b. $\{0^i 1^j 2^k \mid i, j, k \ge 0 \ e \ (i = j \ ou \ j = k)\}$
- 8- Construa um autômato de pilha sobre o alfabeto $\Sigma = \{a, b\}$ que aceite a linguagem $\{w \in \Sigma^* \mid \text{o número de } b\text{'s em } w \text{ \'e exatamente o dobro do número de } a\text{'s}\}$. Utilize o JFLAP para validar as seguintes palavras: abb, bba, abbbba, ababbb, baabbbbba e bbabbabba. Se o seu autômato aceitar todas essas palavras o desafio será aceito.
- 9- Considere a gramática abaixo (S é a variável inicial) e dê uma derivação mais à esquerda e uma derivação mais à direita para a palavra *aaabbabbba*. Indique a substituição utilizada através dos números da coluna da direita.
 - $S \rightarrow aB$ (1)
 - $S \rightarrow bA$ (2)
 - $A \rightarrow a$ (3)
 - $A \rightarrow aS$ (4)
 - $A \rightarrow bAA$ (5)
 - $B \rightarrow b$ (6)
 - $B \rightarrow bS$ (7)
 - $B \rightarrow aBB$ (8)
- 10- Considere a gramática abaixo (S é a variável inicial) e resolva as questões abaixo.
 - a. Quais palavras de L(G) podem ser produzidas com derivações de até quatro passos? (Considere que a regra $S \to AA$ conta como o primeiro passo de toda derivação);
 - b. Dê quatro derivações distintas para a palavra babbab.
 - $S \to AA$ (1)
 - $A \rightarrow AAA$ (2)
 - $A \rightarrow bA$ (3)
 - $A \to Ab$ (4)
 - $A \rightarrow a$ (5)
- 11- Construa gramáticas livres de contexto para as seguintes linguagens sobre $\Sigma = \{0, 1\}$
 - a. O conjunto de todos os palíndromos sobre Σ
 - b. O conjunto de todas as palavras que começam e terminam com o mesmo símbolo.
 - c. $\{w \mid o \text{ tamanho de } w \text{ \'e impar}\}$