Department of Computer Science Winter Session 2025

Prof. Ueli Maurer

Exam

Diskrete Mathematik

4. February 2025

Hinweise:

- 1.) Erlaubte Hilfsmittel: Selbstverfasste, handgeschriebene Notizen auf 6 A4-Seiten. Es ist erlaubt ein Wörterbuch zu benutzen. Es sind keine weiteren Hilfsmittel erlaubt.
- 2.) Falls nicht explizit ausgeschlossen dürfen Resultate (z.B. Lemmas oder Theoreme) aus dem Skript mit entsprechendem Verweis (z.B. "Lemma Skript"; die Nummer ist nicht notwending falls klar ist welches Resultat gemeint ist) ohne Beweis verwendet werden. Resultate aus der Übung dürfen nicht ohne Beweis verwendet werden.
- 3.) Die Aufgaben sind in drei Schwierigkeitsstufen von (\star) bis $(\star \star \star)$ eingeteilt.
- 4.) Die Aufgaben sind direkt auf dem Prüfungsblatt zu lösen. Bei Platzmangel befinden sich am Ende der Prüfung vier Zusatzblätter. Weitere Zusatzblätter können während der Prüfung bei uns bezogen werden. Nur von uns verteilte Zusatzblätter sind erlaubt.
- 5.) Die Antwortfelder unter den Aufgaben sind jeweils grosszügig bemessen. Es ist oft nicht die Erwartung, dass eine Antwort das ganze Feld füllt.
- 6.) Bitte verwenden Sie einen dokumentenechten Stift (also keinen Bleistift) und nicht die Farben Rot oder Grün.
- 7.) Bitte legen Sie die Legi für die Ausweiskontrolle auf den Tisch.
- 8.) Sie dürfen bis 15 Minuten vor Ende der Prüfung vorzeitig abgeben und den Raum still verlassen.
- 9.) Mobiltelefone und Smartwatches müssen komplett ausgeschaltet sein (kein Standby) und dürfen nicht am Körper getragen werden.

Prüfungs-Nr.

Stud.-Nr.:

Task	Points
1	33
2	17
3	33
4	33
Total	116

	ort Questions. Each conditional is required.	errect answer gives the nu	umber of points i	indicated in the brackets. N
1.)	Let $A = \{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$ cross all sets y such the		ng list, circle al	l sets x such that $x \in A$, ar $(1 Point)$
	$\{\varnothing\}$	$\{\{\varnothing\},\{\varnothing\}\}$	Ø	$\{\{\{\varnothing\}\},\varnothing\}$
2.)		let $X = (A \cap B) \setminus ((A \cup A))$ ations \cup, \cap , and \setminus in which		n expression for X using (n ar at most once. (1 Poin
3.)	Let A, B, C be sets such values of $ A + C $.	that $ (A \cup B) \times (C \cup B) $	$ S(x) = 3 \text{ and } A \cap B$	$B = \emptyset$. Write all the possib
4.)	Let $A = \{a, b, c, d\}$. Fin $\rho = \hat{\rho}$ and $\rho^2 \subseteq \rho$.	\mathbf{d} the smallest relation $\boldsymbol{\beta}$	o on A such that	$\{(a,b),(d,b)\}\subseteq ho$ and bot (2 Point
5.)				Write all upper bounds of or else, write that none exist (2 Point
	Let X be a set and let ρ n equivalence relation.	σ and σ be equivalence re	lations on X . P	rove or disprove that $\rho \cap$ (4 Point

				(6 Poin
\star) Let (X, \preceq) be	e a poset. Let \prec be the	e relation on X defined	as follows:	
	$a \prec$	$b\iff a\preceq b\ \land\ a\neq b.$		
		e		
Prove or dispro	ove that \prec is transitiv	C.		
Prove or dispro	ove that \prec is transitiv	c.		(6 Poin
Prove or dispro	ove that \prec is transitiv	C.		(6 Poin
Prove or dispro	ove that \prec is transitiv	C.		(6 Poin
Prove or dispro	ove that \prec is transitiv	C.		(6 Poin
Prove or dispro	ove that ≺ is transitiv	C.		(6 Poin
Prove or dispro	ove that ≺ is transitiv	C.		(6 Poin
Prove or dispro	ove that ≺ is transitiv	C.		(6 Poin
Prove or dispro	ove that ≺ is transitiv	C.		(6 Poin
Prove or dispro	ove that ≺ is transitiv	C.		(6 Poin
Prove or dispro	ove that ≺ is transitiv	C.		(6 Poin
Prove or dispro	ove that ≺ is transitiv	C.		(6 Poin
Prove or dispro	ove that ≺ is transitiv			(6 Poin
Prove or dispre	ove that ≺ is transitiv			(6 Poin
Prove or dispre	ove that ≺ is transitiv			(6 Poin
Prove or dispro	ove that ≺ is transitiv			(6 Poin
Prove or dispro	ove that ≺ is transitiv			(6 Poin

e)	$(\star \star)$ Let X be a set and let ρ be a countable relation on X . Prove or disprove that the transitive closure ρ^* of ρ is countable. (9 Points	e <i>)</i>

,	$R_{13}(2^{4536}).$			
2.) Find disti	$\text{nct } k, \ell, m \in \mathbb{N} such$	h that $\varphi(k) = \varphi(\ell) = \varphi(m)$), where φ denotes Eu	ler's funct
3.) Compute	$\gcd(81, 48 + 3^{25}).$			
1.) Compute	the multiplicative in	nverse of 13 modulo 17.		
★) Compute t	he set of solutions ($(x,y) \in \mathbb{Z}_{11} \times \mathbb{Z}_{11}$ to the co	ongruence system	
		$2x + 9y \equiv_{11} 7$		
		$2x + 7y \equiv_{11} 5$ $4x + 5y \equiv_{11} 1.$		
Show your w	ork.			(4 Poi

\star) Consider the polynomia $f(p)$ is not prime.	J (4)			(4 Poir
+ +) Let \(\rho\) denote the Eul	ler's function Prove o	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat
$(\star \star)$ Let φ denote the Eul $\varphi(x) = n$ has finetely man	ler's function. Prove of y solutions $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin
\star \star) Let φ denote the Eul $\varphi(x)=n$ has finetely man	ler's function. Prove of y solutions $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin
$\star \star$) Let φ denote the Eul $\varphi(x) = n$ has finetely man	ler's function. Prove of y solutions $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin
$\star \star$) Let φ denote the Euler $\varphi(x) = n$ has finetely many	ler's function. Prove o y solutions $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin
$\star \star$) Let φ denote the Euler $\varphi(x) = n$ has finetely many	ler's function. Prove of y solutions $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin
$\star \star$) Let φ denote the Eule $\varphi(x) = n$ has finetely man	ler's function. Prove of y solutions $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin
$\star \star$) Let φ denote the Euler $\varphi(x) = n$ has finetely many	ler's function. Prove of y solutions $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin
$(\star \star)$ Let φ denote the Euler $\varphi(x) = n$ has finetely many	ler's function. Prove of y solutions $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin
(\star,\star) Let φ denote the Euler $\varphi(x)=n$ has finetely many	ler's function. Prove of y solutions $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin
$(\star \star)$ Let φ denote the Euler $(x) = n$ has finetely many	ler's function. Prove of y solutions $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin
(\star,\star) Let φ denote the Euler $(x)=n$ has finetely many	ler's function. Prove of $x \in \mathbb{N}$.	or disprove that	for all $n \in \mathbb{N} \setminus$	{0} the equat (5 Poin

ust	ort Questions. Each correct answer gives the number of points indicated in t ification is required.	ne brackets. Iv
1.)	Give the number of subgroups of $\langle \mathbb{Z}_2 \times \mathbb{Z}_6; \oplus \rangle$.	(1 Poin
2.)	Find a generator of a largest cyclic subgroup of $\langle \mathbb{Z}_9^* \times \mathbb{Z}_5^*; * \rangle$ and compute $(a,b)*(c,d)=(a\odot_9 c,b\odot_5 d)$ for $(a,b),(c,d)\in\mathbb{Z}_9^*\times\mathbb{Z}_5^*$.	its order, when
3.)	Compute $R_{x^2+x+1}(x^4+x^2)$ in $\mathbb{Z}_5[x]$.	(2 Point
1.)	Find the smallest integer $n > 8$ such that \mathbb{Z}_n^* is isomorphic to \mathbb{Z}_8^* .	(2 Point
5.)	Compute $gcd(x^3 + x^2 + x + 1, 2x^3 + x + 3)$ in $\mathbb{Z}_5[x]$.	(2 Points
	Let $\langle G; \star, \hat{\ }, e \rangle$ be a group and $Z(G) := \{h \mid h \in G, g \star h \star \widehat{g} = h \text{ for all } g \in G \}$ there of G . Prove that $Z(G) = G$ if and only if G is commutative.	
		G} the so-calle (5 Point

For all $p($	(x) and $q(x)$) in $R[x]$ it h	olds that d	$eg\left(p(x)\cdot q(x)\right)$	(x) = deg (x)	p(x)) + deg	(q(x)).
				`	,		(4 Poi
							(6 Poi

ubgroup of G if an		

Ta	sk 4. Logic			• • • • • • • • • • • • • • • • • • • •		33 Points
a)	Short Questi justification is		orrect answer gives the	ne number of po	ints indicated in the	e brackets. No
	_	_	occur free in the form	nula		(2 Points)
			$\Big(\forall x P(f(x), y) \Big)$	(y) $\wedge \exists y Q(x, g(y))$	(j).	
	2.) Circle all	the formulas	in CNF and cross all	formulas in DN	IF in the list below.	. (2 Points)
	$A \wedge B$	$\wedge \neg C$	$A \wedge \neg (B \vee C)$	$A \lor (\neg E$	$B \wedge C$) A	$\vee \neg B \vee \neg C$
	3.) Let $F = \forall$	/x P(x). Circl	e all formulas G in t	he following list	such that $F \models G$.	(2 Points)
	$\forall x Q(x)$	P(y)	$Q(y) \to P(z)$	$\exists y Q(y)$	$(Q(z) o Q(y))^{\gamma}$	$\vee(Q(y) \to Q(z))$
	4.) Find a for	mula in pren	ex normal form equiv	valent to		(3 Points)
			$\exists x \bigg(P(y) \land \neg \Big(\forall y \big($	$Q(x,y) \wedge \exists z R(z)$	$(z,y))\Big)\Bigg).$	
			\		, 	
b)	(*) Disprove \mathcal{K} and for all \mathfrak{C}		lution calculus is cor olds that	nplete, that is d	isprove that for all	sets of clauses
			$\mathcal{K} \models K =$	$\Rightarrow \mathcal{K} \vdash_{Res} K.$		
						(3 Points)

c)	(\star) We extend the resolution calculus with two new rules ext and tnd. The rules work as follows, for all clauses K and all literals L :				
	for all clauses K and all literals L : $K \vdash_{ext} K \cup \{L\},$	(1)			
	$dash_{tnd}\ \{L,\overline{L}\},$	(1)			
	where				
	$\overline{L} = \begin{cases} \neg A & \text{if } L = A \text{ for some atomic formula } A, \\ A & \text{if } L = \neg A \text{ for some atomic formula } A. \end{cases}$				
	Prove that the rules ext and tnd are correct.	(3 Points)			
	Trove shall the rates ext and the correct.	(0.1.00000)			

$(\star \star \star)$ Prove that the extended calculusets \mathcal{K} and all clauses K it holds that:	$s ResExt = {ext, res, tnd} is com$	aplete, that is, for all clause
$\mathcal{K} otin $	$=K\Longrightarrow \mathcal{K}\vdash_{ResExt}K.$	
Hint: What is the clause set correspond	ling to the negation of K ?	(11 Points)

• $G = \forall x Q(x, f(x))$. Prove or disprove that if F is satisfiant	ble then G is satisfiable.	(7 Point