ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра общей физики

Лабораторная работа 2.3.1

Получение и измерение вакуума

Преподаватель: доцент Игуманов А.Ю.

Обучающийся: Глотов А.А

1 Введение

1.1 Аннотация

Данная работа посвящена изучению явления установления вакуума в системе. Используются следующие методы: линеаризация и анализ графиков зависимости p(t). Значения времени t получаем с помощью секундомера, давления p - с помощью электронных манометров

Цель работы: 1) измерение объёмов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

1.2 Теоретические сведения

По степени разряжения вакуумные установки принято делить на три класса: 1) низковакуумные – до 10^{-2} - 10^{-3} торр; 2) высоковакуумные – 10^{-4} - 10^{-7} торр; 3) установки сверхвысокого вакуума – 10^{-8} - 10^{-11} торр. С физической точки зрения низкий вакуум переходит в высокий, когда длина свободного пробега молекул газа оказывается сравнима с размерами установки; сверхвысокий вакуум характерен крайней важностью процессов адсорбции частиц на поверхности вакуумной камеры.

Процесс откачки

Обозначим через Q_d количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, через Q_i — количество газа, проникающего в единицу времени в этот объем извне — через течи. Будем считать, что насос обладает скоростью откачки W и в то же время сам является источником газа; пусть Q_n — поток газа, поступающего из насоса назад в откачиваемую систему. Будем измерять количество газа Q_d , Q_i и Q_n в единицах PV (легко видеть, что это произведение с точностью до множителя RT/μ равно массе газа). Основное уравнение, описывающее процесс откачки, имеет вид

$$-VdP = (PW - Q_d - Q_n - Q_i)dt. (1)$$

Левая часть этого уравнения равна убыли газа в откачиваемом объеме V, а правая определяет количество газа, уносимого насосом, и количество прибывающего вследствие перечисленных выше причин за время dt. При достижении предельного вакуума (давление P_{pr})

$$\frac{dP}{dt} = 0, (2)$$

$$W = \frac{\sum Q_i}{P_{pr}}. (3)$$

Обычно Q_i постоянно, а Q_n и Q_d слабо зависят от времени, поэтому в наших условиях все эти члены можно считать постоянными. Считая также постоянной скорость откачки W, уравнение (1) можно проинтегрировать и, используя (2), получить

$$P = P_o \exp\left\{\left(-\frac{W}{V}t\right)\right\} + P_{pr}.$$
(4)

Течение газа через трубу

Для количества газа, протекающего через трубу в условиях высокого вакуума или, как говорят, в кнудсеновском режиме, справедлива формула

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{L}.$$
 (5)

Применим эту формулу к случаю, когда труба соединяет установку с насосом. Пренебрежем давлением P_1 у конца, обращенного к насосу. Будем измерять количество газа, покидающего установку при давлении $P=P_2$. Пропускная способность трубы

$$C_{tr} = \left(\frac{dV}{dt}\right)_{tr} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}}.$$
 (6)

Мы видим, что пропускная способность зависит от радиуса трубы в третьей степени и обратно пропорциональна ее длине. В вакуумных установках следует поэтому применять широкие короткие трубы.

При расчете вакуумных систем нужно принимать во внимание также пропускную способность отверстий, например, в кранах. Для диффузионного насоса можно считать, что каждая молекула воздуха, попавшая в кольцевой зазор между соплом и стенками насоса, увлекается струей пара и не возвращается обратно в откачиваемый объем. Скорость откачки такого насоса можно считать равной пропускной способности отверстия с площадью, равной площади кольцевого зазора, т. е. насос качает как кольцевой зазор, с одной стороны которого расположен откачиваемый объем, а с другой – пустота.

1.3 Схема эксперимента

Процесс откачки

Производительность насоса определяется скоростью откачки W (π/c): W — это объем газа, удаляемого из сосуда при данном давлении за единицу времени. Скорость откачки форвакуумного насоса равна емкости воздухозаборной камеры, умноженной на число оборотов в секунду. Рассмотрим обычную схему откачки. Разделим вакуумную систему на две части: «откачиваемый объем» (в состав которого включим используемые для работы части установки) и «насос», к которому, кроме самого насоса, отнесем трубопроводы и краны, через которые производится откачка нашего объема.

Отметим, что для проведения экспериментов необходимо нагреть нашу систему до рабочей температуры. Индикатором нагрева служит масло, начинающее капать при определенных температурах и давлении, увеличивая интенсивность со временем.

Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном давлении и даже при понижении давления до форвакуумного длина свободного пробега меньше диаметра трубок и течение откачиваемого газа определяется его вязкостью, т. е. взаимодействием его молекул. При переходе к высокому вакууму картина меняется. Столкновения молекул между собой начинают играть меньшую роль, чем соударения со стенками. Течение газа в трубе напоминает в этих условиях диффузию газа из области больших концентраций в области, где концентрация ниже, причем роль длины свободного пробега играет ширина трубы.

1.4 Методика измерений

1. Определим объемы форвакуумной и высоковакуумной частей установки. Сначала впустим атмосферу в установку. Запрем воздух при комнатных условиях в капилляре между кранами 5 и 6. После этого откачаем воздух из оставшейся части установки (сделав это в два этапа - сначала насос должен откачать сам себя, а только потом - установку). После этого мы сначала высвободим запертый воздух только в ФВ часть, а затем добавим к ней и ВВ. Тогда записав уравнение Менделеева-Клапейрона и зная объем капилляра, мы найдем объемы соответствующих частей установки:

$$P_0 V_0 = P_{\text{yct}} (V_{\Phi \text{B}} + V_{\text{BB}}),$$
 (7)

где P_0 – атмосферное давление; V_0 – объем капилляра и кранов 5 и 6; $P_{\rm ycr}$ – установившееся давление; $V_{\rm \Phi B}$ и $V_{\rm BB}$ – соответственно объемы форвакуумной и высоковакуумной частей.

- 2. Для измерения скорости откачки диффузионного насоса измерим улучшение вакуума во времени. Построим график зависимости $-\ln\frac{P-P_{\rm np}}{P_0}$ от t. Из формулы (4) следует, что наклон, построенной кривой, есть W/V
- 3. Откроем кран 6 и создадим исскуственную течь через капилляр. Рассчитаем производительность насоса по различию $P_{\rm gh}$ и P_u , где P_u установившееся давление в высоковакуумной части с искусственной течью. В условиях высокого вакуума справдлива формула (5), где положим $P_1 := P_u$, P_2 давление в форвакуумной части.

1.5 Экспериментальная установка

Установка изготовлена из стекла, и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (M_1 и M_2), форвакуумного насоса (ФН) и соединительных кранов (M_1 и соединительных кранов (M_2 и соединительны

Кран ₁ используется для заполнения форвакуумного насоса и вакуумной установки атмосферным воздухом. Во время работы установки он должен быть закрыт. Трёхходовой кран ₂ служит для соединения форвакуумного насоса с установкой или атмосферой. Кран ₃ отделяет высоковакуумную часть установки от форвакуумной. Кран ₄ соединяет между собой колена масляного манометра. Он должен быть открыт во все время работы установки и закрывается лишь при измерении давления в форвакуумной части. Краны ₅ и ₆ стоят по концам капилляра и соединяют его с форвакуумной и высоковакуумной частями установки.

Устройство одной ступени масляного диффузионного насоса схематически показано на Рис. 3 (в лабораторной установке используется несколько откачивающих ступеней). Масло, налитое в сосуд, подогревается электрической печкой. Пары масла поднимаются по трубе и вырываются из сопла. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубку. Дальше смесь попадает в вертикальную трубу. Здесь масло осаждается на стенках трубы и маслосборников и стекает вниз, а оставшийся газ откачивается форвакуумным насосом.

Рис. 1: Схема установки

Рис. 2: Схема действия ротационного двухпластинчатого форвакуумного насоса

Рис. 3: Схема работы одной ступени диффузионного насоса

2 Результаты измерений и обработка данных

2.1 Определение характеристик установки

Запишем характеристики нашей экспериментальной установки:

$$ho_{ ext{mac}_{ ext{TO}}}=0.885rac{\Gamma}{ ext{cm}^3}$$
 $V_{ ext{a}_{ ext{TM}}}=50 ext{cm}^3$ $p_{ ext{a}_{ ext{TM}}}=102,6 ext{k}\Pi ext{a}$ $L=10 ext{cm}$ $d=0.8 ext{mm}$

Установим значения объемов, используемых в нашей работе.

$$h_1 = (346 \pm 1) \text{MM}$$
 $h_2 = (50 \pm 1) \text{MM}$ $h_3 = (298 \pm 1) \text{MM}$ $h_4 = (111 \pm 1) \text{MM}$

Согласно закону Бойля-Мариотта, получим следующие уравнения:

$$V_{\Phi^{\rm B}} = V_0 \frac{p_0}{\Delta p_1} = V_0 \frac{p_0}{\rho g(h_1 - h_2)} = (2005 \pm 46) \text{cm}^3$$
 (8)

$$V_{\text{\tiny BB}} = V_0 \frac{p_0}{\Delta p_2} - V_{\Phi \text{\tiny B}} = \frac{V_0 p_0}{\rho g} \left(\frac{1}{h_3 - h_4} - \frac{1}{h_1 - h_2} \right) = (1165 \pm 41) \text{cm}^3$$
 (9)

2.2 Получение вакуума

Проведем настройку установки для следующей серии измерений

$$p_{\rm пр} = 6.5 * 10^{-5}$$
мм.рт.ст

Снимем зависимость p(t) и запишем полученные данные в таблицу

р, мм.рт.ст.*10 ⁻⁵	$_{\mathrm{t,c}}$	р, мм.рт.ст.*10 ⁻⁵	$_{ m t,c}$	р, мм.рт.ст.*10 ⁻⁵	$_{\mathrm{t,c}}$	р, мм.рт.ст.*10 ⁻⁵	$_{\mathrm{t,c}}$
72	0	33	6	13	12	8.6	21
71	1	30	6	12	13	8.5	21
70	1	27	7	11	14	8.4	22
68	1	25	8	10	16	8.3	22
66	2	23	8	9.8	17	8.2	23
61	2	21	8	9.6	18	8.1	25
58	3	19	9	9.4	18	8.0	26
54	4	18	9	9.3	18	7.9	29
48	4	17	10	9.1	19	7.8	32
45	4	16	10	9.0	19	7.7	37
40	5	15	11	8.8	20	7.6	53
36	6	14 V	11	8.7	20	-	-

Улучшение вакуума

р, мм.рт.ст*10 ⁻⁵	t,c	р, мм.рт.ст*10 ⁻⁵	$_{\mathrm{t,c}}$	р, мм.рт.ст*10 ⁻⁵	$_{\mathrm{t,c}}$	р, мм.рт.ст*10 ⁻⁵	t,c
7.6	0	21	14	40	35	59	57
7.7	1	22	15	41	36	60	59
7.8	1	23	16	42	37	61	60
8.0	1	24	17	43	38	62	61
8.3	2	25	18	44	39	63	63
8.7	2	26	19	45	40	64	63
9.2	3	27	20	46	42	65	65
9.7	3	28	21	47	43	66	66
10	4	29	22	48	43	67	67
11	4	30	23	49	45	68	69
12	5	31	25	50	46	69	70
13	6	32	26	51	48	70	71
14	7	33	26	52	48	71	72
15	8	34	28	53	50	-	-
16	9	35	28	54	51	-	-
17	10	36	30	55	52	-	-
18	11	37	31	56	54	-	-
19	12	38	32	57	55	-	-
20	13	39 V	33	58	56	-	-

Ухудшение вакуума

Пересчитаем наши точки в координаты $\frac{p-p_{\rm np}}{p_{\rm k}}(t)$ и построим соответственный график. $p_{\rm k}=7.6*10^{-5}$ мм.рт.ст

Очевидно, что на начальном участке идет улучшение вакуума за счет насоса, утечками можно пренебречь. Тогда:

$$k = \frac{\langle yt \rangle - \langle y \rangle \langle t \rangle}{\langle t^2 \rangle - \langle t \rangle^2} \qquad \sigma_k = \sqrt{\frac{1}{N} \left(\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle t^2 \rangle - \langle t \rangle^2} - k^2 \right)}$$

Т.к. число точек велико, поправка N-2 вносит небольшое значение. Вместо нее для упрощения подсчетов будем использовать N, B целях увеличения читаемости текста, логарифм по оси оY был заменен на переменную у

$$k = (-0.231 \pm 0.004)c^{-1}$$

$$\sigma_W = \sqrt{(\sigma_W^{ ext{cnyq}})^2 + (\sigma_W^{ ext{npu6}})^2}$$

Отметим, что здесь и далее, за случайные погрешности принимаются погрешности значений угловых коэффициентов графиков

$$\sigma_W^{
m приб} = W rac{\sigma V_{
m BB}}{V_{
m BB}}$$

$$W = -kV_{\text{BB}} = (0.27 \pm 0.01) \frac{\pi}{c}$$

Рассмотрим откачивание газа. Угловой коэффициент нашего графика p(t):

Аналогично k посчитаем значение и погрешность α

$$\alpha = (0.89 \pm 0.02) * 10^{-5} \frac{\text{Topp}}{c}$$

Воспользуемся уравнением

$$V_{\rm BB}dp = (Q_{\rm I} + Q_{\rm II})dt \tag{10}$$

Учтем также уравнение (1) в предельном случае. Тогда аналогично W посчитаем:

$$Q_{\text{\tiny H}} = p_{\text{\tiny HP}}W - \alpha V_{\text{\tiny BB}} = (0.72 \pm 0.09) * 10^{-5} \frac{\text{\tiny Topp*}_{\text{\tiny T}}}{c}$$
(11)

 $p_{\text{yct}} = 1.1 * 10^{-4} \text{ MM.pt.ct}$

$$p_{\Phi \text{в}} = 2.2 * 10^{-3} \text{ мм.рт.ст.}$$

Запишем формулу (1) в случаях, когда капилляр открыт и закрыт и подставим в (5). Получим

$$W = \frac{d^3}{6} \sqrt{\frac{2\pi RT}{\mu}} \frac{p_{\Phi B} - p_{ycr}}{L(p_{ycr} - p_{np})} = (0.29 \pm 0.02) \frac{\pi}{c}$$
 (12)

3 Обсуждение результатов и выводы

В ходе работы были достигнуты следующие цели:

- Получено состояние системы, приближенное к вакууму
- Экспериментально получены и подтверждены зависимости p(t) в исследуемом диапазоне значений
- Определены скорости откачки воздуха насосом и проникновения (утечек) воздуха извне

В ходе работы с неплохой точностью были получены значения объемов нашей системы не более 3%, а также скорость проникновения воздуха извне (8%) и откачки воздуха насосом (4%). Необходимо отметить, что величины случайной погрешности дали хоть и весомый, однако не определяющий вклад, что говорит о неплохой точности проведенных измерений.

Отметим, что значения откачки воздуха насосом в двух способах измерений совпадают с хорошей точностью. Однако при втором способе измерение имеет значительную погрешность (7%), что говорит о недостаточной точности. Объяснить это можно использование большого числа величин, требующих измерения.