POSITIVE HAHN-BANACH SEPARATIONS IN OPERATOR ALGEBRAS

IKHAN CHOI

ABSTRACT.

1. Introduction

- definition and properties of $f_{\varepsilon}(t) := (1 + \varepsilon t)^{-1} t$
- commutant Radon-Nikodym, relation between $\{\omega' \in M_*^+ : \omega' \leq \omega\}$ and $\{h \in M_*^+ : \omega' \leq \omega\}$ $\pi(M)^{\prime +}: h \leq 1$, order preserving linear map
- · Mazur lemma

Definition 1.1 (Hereditary subsets). Let *E* be a partially ordered real vector space. We say a subset F of the positive cone E^+ is hereditary if $0 \le x \le y$ in E and $y \in F$ imply $x \in F$, or equivalently $F = (F - E^+)^+$, where $F - E^+$ is the set of all positive elements of E bounded above by an element of F. A *-subalgebra B of a *-algbera A is called hereditary if the positive cone B^+ is a hereditary subset of A^+ . We define the positive polar of F as the positive part of the real polar

$$F^{r+} := \{ x^* \in (E^*)^+ : \sup_{x \in F} x^*(x) \le 1 \}.$$

An example that is a non-hereditary closed convex subset of a C*-algebra is C1 in any unital C*-algebra.

Definition 1.2 (Lower dominated sequences). Let *E* be a partially ordered real vector space. A sequence $x_n \in E$ is called *lower dominated* if there is $x \in E$ such that $x \leq x_n$ for all n. If E is the self-adjoint part of the predual of a von Neumann algebra where the Jordan decomposition holds, then we can change the definition such that $x \in -E^+$.

2. Positive Hahn-Banach separation theorems

Now we start with the positive Hahn-Banach separation for von Neumann algebras, and will close this section with the same theorem for C*-algebras.

Theorem 2.1 (Positive Hahn-Banach separation for von Neumann algebras). Let M be a von Neumann algebra.

- (1) If F is a σ -weakly closed convex hereditary subset of M^+ , then $F = F^{r+r+}$. In particular, if $x \in M^+ \setminus F$, then there is $\omega \in M_*^+$ such that $\omega(x) > 1$ and $\omega \le 1$
- (2) If F_* is a norm closed convex hereditary subset of M_*^+ , then $F_* = F_*^{r+r+}$. In particular, if $\omega \in M_*^+ \setminus F_*$, then there is $x \in M^+$ such that $\omega(x) > 1$ and $x \le 1$ on F_* .

Proof. (1) Since the positive polar is represented as the real polar

$$F^{r+} = F^r \cap M_*^+ = F^r \cap (-M^+)^r = (F \cup -M^+)^r = (F - M^+)^r,$$

the positive bipolar can be written as $F^{r+r+} = (F - M^+)^{rr+} = (\overline{F - M^+})^+$ by the usual real bipolar theorem, where the closure is for the σ -weak topology. Because $F = (F - M^+)^+ \subset (\overline{F - M^+})^+$, it suffices to prove the opposite inclusion $(\overline{F - M^+})^+ \subset F$.

Let $x \in (\overline{F-M^+})^+$. Take a net $x_i \in F-M^+$ such that $x_i \to x$ σ -strongly, and take a net $y_i \in F$ such that $x_i \leq y_i$ for each i. Suppose we may assume that the net x_i is bounded. For sufficiently small ε so that the bounded net x_i has the spectra in $[-(2\varepsilon)^{-1}, \infty)$, we have $f_{\varepsilon}(x_i) \to f_{\varepsilon}(x)$ σ -strongly, and hence σ -weakly. On the other hand, by the hereditarity and the σ -weak compactness of F, we may assume that the bounded net $f_{\varepsilon}(y_i) \in F$ converges σ -weakly to a point of F by taking a subnet. Then, we have $f_{\varepsilon}(x) \in F-M^+$ by

$$0 \le f_{\varepsilon}(x) = \lim_{i} f_{\varepsilon}(x_{i}) \le \lim_{i} f_{\varepsilon}(y_{i}) \in F,$$

thus we have $x \in F$ since $f_{\varepsilon}(x) \uparrow x$ as $\varepsilon \to 0$. What remains is to prove the existence of a bounded net $x_i \in F - M^+$ such that $x_i \to x$ σ -strongly.

Define a convex set

$$G := \left\{ x \in \overline{F - M^+} : \text{ there is a sequence } x_m \in F - M^+ \\ \text{ such that } -2x \le x_m \uparrow x \text{ σ-weakly } \right\} \subset M^{sa},$$

where x_m denotes a sequence. In fact, it has no critical issue on allowing x_m to be uncountably indexed. Since we clearly have $F-M^+\subset G$ and every non-decreasing net with supremum is bounded and σ -strongly convergent, it suffices to show that G, or equivalently its intersection with the closed unit ball by the Krein-Smůlian theorem, is σ -strongly closed. Let $x_i\in G$ be a net such that $\sup_i\|x_i\|\leq 1$ and $x_i\to x$ σ -strongly. For each i, take a sequence $x_{im}\in F-M^+$ such that $-2x_i\leq x_{im}\uparrow x_i$ σ -strongly as $m\to\infty$, and also take $y_{im}\in F$ such that $x_{im}\leq y_{im}$. Since $\|x_{im}\|\leq 2\|x_i\|\leq 2$ is bounded, it implies that there is a bounded net x_j in $F-M^+$ such that $x_j\to x$ σ -strongly, and we can choose arbitrarily small $\varepsilon>0$ such that $\sigma(x_j)\subset [-(2\varepsilon)^{-1},\infty)$ for all j. Since $f_\varepsilon(x_j)$ converges to $f_\varepsilon(x)$ σ -strongly and $f_\varepsilon(y_j)$ is a bounded net for each $\varepsilon>0$ so that we may assume that the net $f_\varepsilon(y_j)$ is σ -weakly covergent by taking a subnet, we have $f_\varepsilon(x)\in F-M^+$ by

$$f_{\varepsilon}(x) = \lim_{j} f_{\varepsilon}(x_{j}) \leq \lim_{j} f_{\varepsilon}(y_{j}) \in F,$$

where the limits are in the σ -weak sense. By taking ε as any decreasingly convergent sequence to zero, we have $x \in G$, hence the closedness of G.

(2) It is enough to prove $(\overline{F_* - M_*^+})^+ \subset F_*$, where the closure is for the weak topology or equivalently in norm by the convexity of $F_* - M_*^+$, so we begin our proof by fixing $\omega \in (\overline{F_* - M_*^+})^+$. For a sequence $\omega_n \in F_* - M_*^+$ such that $\omega_n \to \omega$ in norm of M_* , we can take $\varphi_n \in F_*$ such that $\omega_n \le \varphi_n$ for all n. By modifying ω_n into $\omega_n - (\omega_n - \omega)_+ \in F_* - M_*^+$ and taking a rapidly convergent subsequence, we may assume $\omega_n \le \omega$ and $\|\omega - \omega_n\| \le 2^{-n}$ for all n. If we consider the Gelfand-Naimark-Segal representation $\pi: M \to B(H)$ associated to a positive normal linear functional

$$\widetilde{\omega} := \sum_n (\omega - \omega_n) + \omega + \sum_n 2^{-n} \left(\frac{[\omega_n]}{1 + ||\omega_n||} + \frac{\varphi_n}{1 + ||\varphi_n||} \right)$$

on M with the canonical cyclic vector Ω , we can construct commutant Radon-Nikodym derivatives $h, h_n, k_n \in \pi(M)'$ of $\omega, \omega_n, \varphi_n$ with respect to $\widetilde{\omega}$ respectively. Since $-1 \le h_n \le h$ is bounded, $h_n \to h$ in the weak operator topology of $\pi(M)'$. By the Mazur

lemma, we can take a net h_i by convex combinations of h_n such that $h_i \to h$ strongly in $\pi(M)'$, and the corresponding linear functionals ω_i and φ_i satisfy $\omega_i \leq \varphi_i$ with $\varphi_i \in F_*$ by the convexity of F_* so that $\omega_i \in F_* - M_*^+$. The net h_i can be taken to be a sequence in fact because $\pi(M)'$ is σ -finite by the existence of the separating vector Ω , but it is not necessary in here. For each i and $0 < \varepsilon < 1$, define

$$h_{\varepsilon} := f_{\varepsilon}(h), \quad h_{i,\varepsilon} := f_{\varepsilon}(h_i), \quad k_{i,\varepsilon} := f_{\varepsilon}(k_i)$$

in $\pi(M)'$, where the functional calculi are well-defined because $-1 \leq h_i$ and $0 \leq h, k_i$ for all i, and define k_ε as the σ -weak limit of the bounded net $k_{i,\varepsilon}$, which may be assumed to be σ -weakly convergent. Define $\omega_\varepsilon, \omega_{i,\varepsilon}, \varphi_{i,\varepsilon}, \varphi_\varepsilon$ as the corresponding normal linear functionals on M to $h_\varepsilon, h_{i,\varepsilon}, k_{i,\varepsilon}, k_\varepsilon$. Note that $\varphi_i \in F_*$. The hereditarity of F_* and $0 \leq \varphi_{i,\varepsilon} \leq \varphi_i$ imply $\varphi_{i,\varepsilon} \in F_*$, and the weak closedness of F_* and the weak convergence $\varphi_{i,\varepsilon} \to \varphi_\varepsilon$ in M_* imply $\varphi_\varepsilon \in F^*$. From $\omega_i \leq \varphi_i$, we can deduce $0 \leq \omega_\varepsilon \leq \varphi_\varepsilon$ by considering the operator monotonicity f_ε and taking the weak limit on i. Thus again, the hereditarity of F_* implies $\omega_\varepsilon \in F^*$, and the weak closedness of F_* and the weak convergence $\omega_\varepsilon \to \omega$ in M_* imply $\omega \in F^*$.

Now we prepare some lemmas for the positive Hahn-Banach separation theorem for C^* -algebras.

Lemma 2.2. Let A be a C^* -algebra, and let F^* be a weakly* closed convex hereditary subset of A^{*+} . If $\omega \in A^{*sa}$ is approximated weakly* by a lower dominated sequence of $F^* - A^{*+}$, then it is approximated in norm by a sequence of $F^* - A^{*+}$.

Proof. Let $\omega_n \in F^* - A^{*+}$, $\varphi_n \in F^*$, $\widetilde{\omega}_0 \in A^{*+}$ be such that $\omega_n \to \omega$ weakly* in A^* and $-\widetilde{\omega}_0 \le \omega_n \le \varphi_n$ for all n. Consider the Gelfan-Naimark-Segal representation $\pi: A \to B(H)$ of

$$\widetilde{\omega} := \widetilde{\omega}_0 + \lfloor \omega \rfloor + \sum_n 2^{-n} \left(\frac{\lfloor \omega_n \rfloor}{1 + \lVert \omega_n \rVert} + \frac{\varphi_n}{1 + \lVert \varphi_n \rVert} \right)$$

with the canonical cyclic vector $\Omega \in H$. Define the commutant Radon-Nikodym derivatives $h, h_n, k_n \in \pi(A)'$ of $\omega, \omega_n, \varphi_n$ with respect to $\widetilde{\omega}$.

Consider the range $0 < \varepsilon \le \frac{1}{2}$ for ε . Since $-1 \le h_n$, h and $0 \le k_n$, the functional calculus $h_{n,\varepsilon} := f_\varepsilon(h_n)$ and $k_{n,\varepsilon} := f_\varepsilon(k_n)$ are well-defined in $\pi(A)'$. The bounded sequences $h_{n,\varepsilon}$ and $k_{n,\varepsilon}$ have weakly convergent subnets in $\pi(A)'$, and denote their limits by h_ε and k_ε respectively. Be cautious that $h'_\varepsilon := f_\varepsilon(h)$ may not be equal to h_ε . By the operator concavity of the function f_ε and the σ -finiteness of $\pi(A)'$, the Mazur lemma retakes sequences $\omega_n \in F^* - A^{*+}$ and $\varphi_n \in F^*$ such that $\omega_n \le \varphi_n$ for all n and $h_{n,\varepsilon} \to h_\varepsilon$ and $k_{n,\varepsilon} \to k_\varepsilon$ strongly. We may assume

$$\|(h_{n,\varepsilon}-h_{\varepsilon})\Omega\| < n^{-1}, \qquad \|(h_{n,\varepsilon}-h_{\varepsilon})h\Omega\| < n^{-1}$$

for all n uniformly on ε , which will be used later. Note also that we have the identity

$$(1+\varepsilon h)(h_n'-h_n)(1+\varepsilon h)=(h-h_n)+\varepsilon (h-h_n)(1+\varepsilon h_n)^{-1}(h-h_n).$$

Denote by $\omega_{n,\varepsilon}, \omega_{\varepsilon}, \omega_{\varepsilon}', \varphi_{n,\varepsilon}, \varphi_{\varepsilon}$ the linear functionals in A^{*sa} corresponded to operators in the commutant $h_{n,\varepsilon}, h_{\varepsilon}, h_{\varepsilon}', k_{n,\varepsilon}, k_{\varepsilon} \in \pi(A)'$. It follows clearly that $\omega_{n,\varepsilon} \to \omega_{\varepsilon}$ and $\varphi_{n,\varepsilon} \to \varphi_{\varepsilon}$ as $n \to \infty$, and $\omega_{\varepsilon}' \uparrow \omega$ as $\varepsilon \to 0$, weakly in A^* . If we prove $\omega_{\varepsilon}' - \omega_{\varepsilon} \to 0$ weakly in A^* as $\varepsilon \to 0$, then since $\omega_{n,\varepsilon} \le \varphi_{n,\varepsilon} \in F^*$ implies $\omega_{\varepsilon} \le \varphi_{\varepsilon} \in F^*$, we obtain the weak convergence $\omega_{\varepsilon} \to \omega$ in A as $\varepsilon \to 0$ with $\omega_{\varepsilon} \in F^* - A^{*+}$. A desired sequence

by applying the Mazur lemma on ω_{ε} after taking ε to be a decreasing sequence that converges to zero.

Thus, what remains is to prove $\omega'_{\varepsilon} - \omega_{\varepsilon} \to 0$ weakly in A^* as $\varepsilon \to 0$. Fix $x \in A^{**}$ with $\|x\| \le 1$. The one-parameter family $(h'_{\varepsilon} - h_{\varepsilon})\pi(x)\Omega$ of vectors is uniformly bounded on $0 < \varepsilon \le \frac{1}{2}$ by the uniform boundedness principle because for each $\eta \in H$, fixing any n, say n = 1, we have

$$\begin{split} & |\langle (h'_{\varepsilon} - h_{\varepsilon})\pi(x)\Omega, \eta \rangle| \\ & \leq |\langle (h'_{\varepsilon} - h_{1,\varepsilon})\pi(x)\Omega, \eta \rangle| + |\langle (h_{1,\varepsilon} - h_{\varepsilon})\pi(x)\Omega, \eta \rangle| \\ & \leq |\langle (1 + \varepsilon h)^{-1}(h - h_{1})(1 + \varepsilon h)^{-1}\pi(x)\Omega, \eta \rangle| \\ & + \varepsilon |\langle (1 + \varepsilon h)^{-1}(h - h_{1})(1 + \varepsilon h_{1})^{-1}(h - h_{1})(1 + \varepsilon h)^{-1}\pi(x)\Omega, \eta \rangle| \\ & + \|(h_{1,\varepsilon} - h_{\varepsilon})\Omega\| \|\pi(x^{*})\eta\| \\ & \leq 4\|h - h_{1}\| \|\Omega\| \|\eta\| + 4\|h - h_{1}\|^{2}\|\Omega\| \|\eta\| + \|\eta\|, \end{split}$$

which is uniformly bounded on ε . We further have $(h'_{\varepsilon}-h_{\varepsilon})\pi(x)\Omega \to 0$ weakly in H as $\varepsilon \to 0$, which can be shown as follows. By the boundedness of $(h'_{\varepsilon}-h_{\varepsilon})\pi(x)\Omega$, it is enough to choose $\pi(b)\Omega$ with $b \in A$ satisfying $\|b\| \le 1$ for the test vector. As $\|(h'_{\varepsilon}-h_{\varepsilon})\pi(b)\Omega\|$ is uniformly bounded on ε because $b \in A^{**}$, we can also prove $\|(h'_{\varepsilon}-h_{\varepsilon})h\pi(b)\Omega\|$ is uniformly bounded in the same manner but using $\|(h_{1,\varepsilon}-h_{\varepsilon})h\Omega\| < 1$ instead of $\|(h_{1,\varepsilon}-h_{\varepsilon})\Omega\| < 1$. Choose their common bound C > 0. For an arbitrarily fixed $\delta > 0$, take $a \in A$ such that $\|(\pi(x)-\pi(a))\Omega\| < \delta C^{-1}$ and $\|a\| \le 1$ by the Kaplansky density, and fix n such that $\|(\omega-\omega_n)(b^*a)\| < \delta$ and $n > \frac{9}{4}\|\Omega\|\delta^{-1}$. Then,

$$\begin{split} & |\langle (h'_{\varepsilon} - h_{\varepsilon})\pi(x)\Omega, \pi(b)\Omega\rangle| \\ & < |\langle (h'_{\varepsilon} - h_{\varepsilon})\pi(a)\Omega, \pi(b)\Omega\rangle| + \delta \\ & < |\langle (h'_{\varepsilon} - h_{\varepsilon})(1 + \varepsilon h)\pi(a)\Omega, (1 + \varepsilon h)\pi(b)\Omega\rangle| + O(\varepsilon) + \delta \\ & < |\langle (h'_{\varepsilon} - h_{n,\varepsilon})(1 + \varepsilon h)\pi(a)\Omega, (1 + \varepsilon h)\pi(b)\Omega\rangle| + \delta + O(\varepsilon) + \delta \\ & \le |(\omega - \omega_n)(b^*a)| + \varepsilon |\langle (1 + \varepsilon h_n)^{-1}(h - h_n)\pi(a_{\varepsilon})\Omega, (h - h_n)\pi(b)\Omega\rangle| + \delta + O(\varepsilon) + \delta \\ & < \delta + \varepsilon (1 - \varepsilon)^{-1} ||(h - h_n)||^2 ||\Omega||^2 + \delta + O(\varepsilon) + \delta, \end{split}$$

where $O(\varepsilon)$ can be computed as $C(2\varepsilon + \varepsilon^2)||\Omega||$, so we have

$$\limsup_{\varepsilon \to 0} |\langle (h'_{\varepsilon} - h_{\varepsilon}) \pi(x) \Omega, (1 + \varepsilon h) \pi(b) \Omega \rangle| \le 3\delta.$$

Since $\delta > 0$ was taken arbitrarily, we finally have $(h'_{\varepsilon} - h_{\varepsilon})\pi(x)\Omega \to 0$ weakly in H, which implies $\omega'_{\varepsilon} - \omega_{\varepsilon} \to 0$ weakly in A^* as $\varepsilon \to 0$.

The following lemma is a modification of the Krein-Šmulian theorem, and it can be proved in a similar way to the proof of the original theorem.

Lemma 2.3. Let A be a C^* -algebra, and C^*_n be a non-decreasing sequence of weakly*-closed convex subsets of A^{*sa} , whose union C^*_{∞} contains A^{*+} . If a norm closed convex subset G^* of A^{*sa} has the property that $G^* \cap C^*_n$ is weakly* closed for each n, then $G^* \cap C^*_{\infty}$ is relatively weakly* closed in C^*_{∞} .

Proof. Fix an element ω_0 of $C_{\infty}^* \setminus G^*$. It is enough to construct an element a of A^{sa} separating a norm open ball centered at ω_0 from G^* . Since G^* is norm closed, there exists r > 0 such that $G^* \cap B(\omega_0, r) = \emptyset$. By replacing G^* to $r^{-1}(G^* - \omega_0)$ and C_n^* to

 $r^{-1}(C_n^*-\omega_0)$, we may assume $G^*\cap B(0,1)=\varnothing$, and the claim follows if we prove there is $a\in A^{sa}$ separating B(0,1) and G^* . The condition $A^{*+}\subset C_\infty^*$ becomes $A^{*+}-\omega_0\subset C_\infty^*$. Letting the index n start from one, we may also replace C_n^* to $n(C_n^*\cap B(0,1))$ since its union is still C_∞^* . Note that C_n^* is bounded for each n, and we can easily see that $G^*\cap C_1^*=\varnothing$ and $n^{-1}C_n^*\subset (n+1)^{-1}C_{n+1}^*$.

Note that for any Banach space X, if F is a bounded subset of X, then by endowing with the discrete topology on F, we have a natural bounded linear operator $\ell^1(F) \to X$ by completeness of X, with its dual $X^* \to \ell^\infty(F)$. We will construct a bounded subset F of A^{sa} such that the subset $G^* \cap C_\infty^*$ of A^{*sa} induces a subset of the smaller subspace $c_0(F)$ of $\ell^\infty(F)$ via the restriction map $A^{*sa} \to \ell^\infty(F)$, and also such that it satisfies $G^* \cap C_\infty^* \cap F^\circ = \emptyset$, where $F^\circ := \{\omega \in A^{*sa} : \sup_{a \in F} |\omega(a)| \le 1\}$ denotes the absolute polar of F. If such a set $F \subset X$ exists, then the image of $G^* \cap C_\infty^*$ in $c_0(F)$ is a convex set disjoint to the closed unit ball of $c_0(F)$ by the condition $G^* \cap C_\infty^* \cap F^\circ = \emptyset$. Therefore, there exists a separating linear functional $l \in \ell^1(F)$ by the Hahn-Banach separation, and it induces a linear functional separating G^* and the unit ball of A^{*sa} . Then, we are done.

Let $F_0 := \{0\} \subset A^{sa}$. As an induction hypothesis on n, suppose for each $0 \le k \le n-1$ we already have a finite subset F_k of $(C_k^*)^\circ$ such that

$$G^* \cap C_n^* \cap \left(\bigcup_{k=0}^{n-1} F_k\right)^{\circ} = \emptyset.$$

If every finite subset F_n of $(C_n^*)^\circ$ satisfies

$$G^* \cap C_{n+1}^* \cap \left(\bigcup_{k=0}^{n-1} F_k\right)^{\circ} \cap F_n^{\circ} \neq \emptyset,$$

then since they are weakly* compact, the finite intersection property leads a contradiction because the intersection of all absolute polars F_n° of finite subsets F_n of $(C_n^*)^{\circ}$ is C_n^* , which is the polar of all union of finite subsets F_n of $(C_n^*)^{\circ}$ by the bipolar theorem. Thus, we can take a finite subset F_n of $(C_n^*)^{\circ}$ such that

$$G^* \cap C_{n+1}^* \cap \left(\bigcup_{k=0}^n F_k\right)^\circ = \varnothing.$$

Let $F:=\bigcup_{k=0}^{\infty}F_k$. Then, we have $G^*\cap C_{\infty}^*\cap F^\circ=\varnothing$, and every element of C_{∞}^* is restricted to F to define an element of $c_0(F)$ because for each $\omega\in C_n^*$ and $k\geq 0$ we have

$$\omega(F_{n+k}) \subset \omega((C_{n+k}^*)^\circ) \subset \frac{n}{n+k} \omega((C_n^*)^\circ) \subset [-\frac{n}{n+k}, \frac{n}{n+k}].$$

Finally, for any $\omega \in A^{*sa}$, if we enumerate F as a sequence f_m , then

$$|\omega(f_m)| \le |(\omega_+ - \omega_0)(f_m)| + |(\omega_- - \omega_0)(f_m)| \to 0,$$

so the uniform boundedness principle concludes that F is bounded. Therefore, the set F satisfies the properties we desired.

Theorem 2.4 (Positive Hahn-Banach separation for C*-algebras). *Let A be a C*-algebra*.

(1) If F is a norm closed convex hereditary subset of A^+ , then $F = F^{r+r+}$. In particular, if $a \in A^+ \setminus F$, then there is $\omega \in A^{*+}$ such that $\omega(a) > 1$ and $\omega \le 1$ on F.

(2) If F^* is a weakly* closed convex hereditary subset of A^{*+} , then $F^* = (F^*)^{r+r+}$. In particular, if $\omega \in A^{*+} \setminus F^*$, then there is $a \in A^+$ such that $\omega(a) > 1$ and $a \le 1$ on F^* .

Proof. (1) We directly prove the separation without invoking the arguments of positive bipolars. Denote by F^{**} the σ -weak closure of F in the universal von Neumann algebra A^{**} . We first show that F^{**} is hereditary subset of A^{**+} . Suppose $0 \le x \le y$ in A^{**} and $y \in F^{**}$. Then, there is $z \in A^{**}$ such that $x^{\frac{1}{2}} = zy^{\frac{1}{2}}$. Take bounded nets b_i in F and c_i in A such that $b_i \to y$ and $c_i \to z$ σ -strongly* in A^{**} using the Kaplansky density. We may assume the indices of these two nets are same. Since both the multiplication and the involution of a von Neumann algebra on bounded parts are continuous in the σ -strong* topology, and since the square root on a positive bounded interval is a strongly continuous function, we have the σ -strong* limit

$$x = y^{\frac{1}{2}}z^*zy^{\frac{1}{2}} = \lim_{i} b_i^{\frac{1}{2}}c_i^*c_ib_i^{\frac{1}{2}},$$

so we obtain $x \in F^{**}$ from $b_i^{\frac{1}{2}} c_i^* c_i b_i^{\frac{1}{2}} \in F$. Thus, F^{**} is hereditary in A^{**+} .

Let $a \in A^+ \setminus F$. Observe that we have $a \in A^{**+} \setminus F^{**}$ because if $a \in F^{**}$, then we have a net a_i in F such that $a_i \to a$ σ -weakly in A^{**} , meaning that $a_i \to a$ weakly in A and by the weak closedness of F in A we get a contradiction $a \in F^{**} \cap A = F$. By Theorem 2.1, there is $\omega \in A^{*+}$ such that $\omega(a) > 1$ and $\omega \le 1$ on $F \subset F^{**}$, so it completes the proof.

(2) As same as above, our goal is to prove $(\overline{F^*-A^{*+}})^+ \subset F^*$, so take $\omega \in (\overline{F^*-A^{*+}})^+$, where the closure is for the weak* topology. We first prove it when A is separable, which makes the weak* topology on any bounded part of A^{*sa} metrizable. Consider the following convex set

$$G^* := \left\{ \omega \in \overline{F^* - A^{*+}} : \text{ there is a lower dominated sequence } \omega_n \in F^* - A^{*+} \\ \text{such that } \omega_n \to \omega \text{ weakly* in } A^* \right\}.$$

We can easily see that $F^*-A^{*+}\subset G^*$, and we claim G^* is the weak* closure. If the claim is true, then we have $G^*=\overline{F^*-A^{*+}}$, and it follows that $\omega\in F^*$ by Lemma 2.2 and Theorem 2.1 (2), so we are done. To prove G^* is weakly* closed, we can take a sequence $\omega_n\in G^*$ such that $\omega_n\to\omega$ weakly* in A^* by the Krein-Šmulian theorem, and we will prove $\omega\in G^*$. Because ω belongs to the relative weak* closure of $G^*\cap C^*_\infty$ in C^*_∞ , where

$$C_n^* := \{\omega' \in A^{*sa} : -\sum_{k < n} \omega_{k-} - \omega_- \leq \omega'\}, \qquad C_\infty^* := \bigcup_n C_n^*,$$

so if we prove that G^* is norm closed and $G^* \cap C_n^*$ is weakly* closed for each n, then we obtain $\omega \in G^*$ by Lemma 2.3, and it completes the proof. Since the limit of a norm convergent sequence in G^* can be approximated by a lower dominated sequence in G^* as in the proof of Theorem 2.1 (2), and since every sequence in C_n^* is lower dominated, now it suffices to show $\omega \in G^*$ when it is the weak* limit of a lower dominated sequence $\omega_n \in G^*$. Take $\widetilde{\omega} \in A^{*+}$ such that $-\widetilde{\omega} \leq \omega_n$ for all n. Since ω_n is weakly* approximated by a lower dominated sequence in $F^* - A^{*+}$ by definition of G^* , applying Lemma 2.2 for each n, we can find a sequence $\omega_{nm} \in F^* - A^{*+}$ such that $\omega_{nm} \to \omega_n$ in norm of A^* as $m \to \infty$. After modifying ω_{nm} into $\omega_{nm} - (\omega_{nm} - \omega_n)_+ \in F^* - A^{*+}$ to assume $\omega_{nm} \leq \omega_n$, if we take a subsequence to have $\|\omega_n - \omega_{nm}\| < 2^{-(n+m)}$, then $\widetilde{\omega}_n := \sum_m (\omega_n - \omega_{nm})$

satisfies $-\widetilde{\omega}_n \leq \omega_{nm} - \omega_n$ for all n and m, and $\|\widetilde{\omega}_n\| \leq 2^{-n}$. Then, for the diagonal sequence $\omega_{nn} \in F^* - A^{*+}$, we have $\omega_{nn} \to \omega$ weakly* by

$$|(\omega_{nn} - \omega)(a)| \le |(\omega_{nn} - \omega_n)(a)| + |(\omega_n - \omega)(a)| \le 2^{-2n} ||a|| + |(\omega_n - \omega)(a)| \to 0$$

as $n \to \infty$ for each $a \in A$, and it is lower dominated by $-\widetilde{\omega} - \sum_n \widetilde{\omega}_n$, therefore we get the claim $\omega \in G^*$.

Now we consider a general C^* -algebra A. For a separable C^* -subalgebra B of A, we define a set

$$F_B^* := \{ \omega \in B^{*+} : \text{there is } \varphi \in F^* \text{ such that } \omega \le \varphi \text{ on } B^+ \}.$$

It is clearly a convex hereditary subset of B^{*+} , and to prove the weak* closedness via the Krein-Šmulian theorem, take a sequence $\omega_{B,n} \in F_B^*$ such that $\omega_{B,n} \to \omega_B$ weakly* in B^* . Let $\varphi_n \in F^*$ be a sequence such that $\omega_{B,n}(b) \leq \varphi_n(b)$ on $b \in B^+$, and let $\omega_n \in A^{*+}$ be the extension of $\omega_{B,n}$ for each n. Consider the Gelfand-Naimark-Segal representation $\pi: A \to B(H)$ associated to the positive linear functional

$$\widetilde{\omega} := \sum_n 2^{-n} \left(\frac{\omega_n}{1 + \|\omega_n\|} + \frac{\varphi_n}{1 + \|\varphi_n\|} \right),$$

with the canonical cyclic vector Ω . Let $p \in B(H)$ be the orthogonal projection onto the closed linear subspace $\overline{\pi(B)\Omega} \subset H$. Then, $\omega_n(b) \leq \varphi_n(b)$ on $b \in B^+$ implies $ph_np \leq pk_np$, so it follows that $ph_{n,\varepsilon}p \leq pk_{n,\varepsilon}p$. Taking weakly convergent subnets of $h_{n,\varepsilon}$ and $k_{n,\varepsilon}$, we may define the limits h_{ε} and k_{ε} , and $ph_{\varepsilon}p \leq pk_{\varepsilon}p$ implies that the corresponding functionals have the relations $\omega_{\varepsilon}(b) \leq \varphi_{\varepsilon}(b)$ for all $b \in B^+$. We clearly have $\varphi_{\varepsilon} \in F^*$, so $\omega_{B,\varepsilon} = \omega_{\varepsilon}|_B \in F_B^*(?)$. Since $\omega_{B,\varepsilon} \uparrow \omega_B$ weakly in B^* , we only need to prove the convex set F_B^* is norm closed. Take a sequence $\omega_{B,n} \in F_B^*$ again, but at this time such that $\omega_{B,n} \to \omega_B$ in norm of B^* , together with $\varphi_n \in F^*$ such that $\omega_{B,n}(b) \leq \varphi_n(b)$ on $b \in B^+$

Let $\omega \in (\overline{F^*-A^{*+}})^+$, where the closure is taken in the weak* topology. Our goal is to show $\omega \in F^*$. Take a net $\omega_i \in F^*-A^{*+}$ and $\varphi_i \in F^*$ such that $\omega_i \to \omega$ weakly* in A^* and $\omega_i \leq \varphi_i$ for each i. We have $\varphi_i|_B \in F_B^*$ and $\omega_i|_B \in F_B^*-B^{*+}$, with the weak* convergence $\omega_i|_B \to \omega_B$ in B^* , thus we have $\omega|_B \in (\overline{F_B^*-B^{*+}})^+ = F_B^*$ because B is separable. If we consider the non-decreasing net of all separable C*-subalgebras B_j of A, then the restriction $\omega|_{B_j}$ of ω on B_j belongs to the set $F_{B_j}^*$, so there is a net $\varphi_j \in F^*$ such that $\omega(b) \leq \varphi_j(b)$ on $b \in B_j^+$ for each j, and by the Hahn-Banach extension, we obtain a net $\omega_j \in F^*-A^{*+}$ such that $\omega_j(b) = \omega(b)$ on $b \in B_j^+$ for all j.

Let A_0^{**} be the set of all elements of A^{**} whose left or right support projection is σ -finite. It is known that A_0^{**} is an algebraic ideal of A^{**} . Let $x \in A_0^{**+}$.

$$(\omega_i - \omega)(x^2) \to 0.$$

Thus, ω belongs to the $\sigma(A^*, A_0^{**})$ -closure of $F^* - A^{*+}$.

Suppose ω does not belong to the weak closure of F^*-A^{*+} . Then, there is $x \in A^{**+}$ such that $\omega(x^2) > 1$ and $x^2 \le 1$ on F^*-A^{*+} by Theorem 2.1 (2). Let $\{p_i\}_{i \in I}$ be a maximal orthogonal family of σ -finite projections of the von Neumann algebra A^{**} .

Consider the bounded linear maps

$$\begin{split} &\Gamma: c_0(I) \to A: (\lambda_i)_{i \in I} \mapsto \sum_i \lambda_i x p_i x, \\ &\Gamma^*: A^* \to \ell^1(I): \omega' \mapsto (\omega'(x p_i x))_{i \in I}, \\ &\Gamma^{**}: \ell^\infty(I) \to A^{**}: (\lambda_i)_{i \in I} \mapsto \sum_i \lambda_i x p_i x, \end{split}$$

 Γ is a topological embedding so that Γ^* is surjective?

 $\Gamma^*(F^*)$ weakly* closed convex hereditary?

$$\Gamma^*(F^* - A^{*+}) = \Gamma^*(F^*) - \ell^1(I)^+$$
?

We can check $\Gamma^*(\omega_j) \to \Gamma^*(\omega)$ weakly* so that $\Gamma^*(\omega) \in \Gamma^*(F^*)$. We can take a net $\omega_k \in F^* - A^{*+}$ such that $\Gamma^*(\omega_k) \to \Gamma^*(\omega)$ weakly, and it follows a contradiction

$$1 \ge \omega_k(x^2) = \langle 1, \Gamma^*(\omega_k) \rangle \to \langle 1, \Gamma^*(\omega) \rangle = \omega(x^2) > 1.$$

Therefore, ω is a positive functional contained in the weak closure of F^*-A^{*+} , so $\omega \in F^*$ by Theorem 2.1 (2).

If we prove the closability of positive quadratic forms...

If we prove F_B^* is weakly* closed, then there is a net $\varphi_{j,\varepsilon} \in F^*$ such that $\omega(b) \leq \varphi_j(b)$ for $b \in B_j^+$, and hence $\omega(y) \leq \varphi_j(y)$ for $y \in B_j^{**+}$. Assuming $k_{j,\varepsilon} \to k_{\varepsilon}$ weakly in $\pi(A)'$, we have $\varphi_{j,\varepsilon}(x) \to \varphi_{\varepsilon}(x)$ for $x \in \mathfrak{M}$.

If $\varphi_{j,\varepsilon}(x) \to \varphi_{\varepsilon}(x)$ for $x \in \mathfrak{M}$ implies $\varphi_{j,\varepsilon}(x) \to \varphi_{\varepsilon}(x)$ for all $x \in A^{**}$, then $\varphi_{\varepsilon} \in F^{*}$. If $\mathfrak{M} \cap B_{j}^{**}$ is σ -weakly dense in B_{j}^{**} , then $\omega_{\varepsilon}(y) \leq \varphi_{j,\varepsilon}(y)$ for $y \in B_{j}^{**+}$. Then, we have $\omega_{\varepsilon}(x) \leq \varphi_{\varepsilon}(x)$ for all $x \in A^{**+}$. Then, $\varphi_{\varepsilon} \in F^{*}$ implies $\omega_{\varepsilon} \in F^{*}$. Then, $\omega \in F^{*}$.

_

If $\widetilde{\omega}_i$ is a positive norm preserving extension of ω_i , then $\widetilde{\omega}_i \leq \varphi_i$? no. $\omega_n \to \omega$ in norm and $\omega_n \leq \omega$. Let Considering $k_{i,\varepsilon} \to k_{\varepsilon}$ so that $\varphi_{\varepsilon} \in F^*$. We need weak* convergence $\varphi_{i,\varepsilon} \to \varphi_{\varepsilon}$. $\widetilde{\omega}_{i,\varepsilon} \leq \varphi_{i,\varepsilon}$ $\widetilde{\omega}_{\varepsilon} \leq \varphi_{\varepsilon}$ $\varphi_i = \omega_i^{\sim} + (\varphi_i - \omega_i)^{\sim}$ on B $\|\omega_i^{\sim} + (\varphi_i - \omega_i)^{\sim}\| \leq \|\omega_i^{\sim}\| + \|(\varphi_i - \omega_i)^{\sim}\| = \|\omega_i\| + \|\varphi_i|_B - \omega_i\| \leq \|\varphi_i|_B\|$

Here we let ψ be a faithful semi-finite normal weight on A^{**} , and let $\pi:A^{**}\to B(H)$ be the Gelfand-Naimark-Segal representation associated to ψ , together with the left A^{**} -liner map $\Lambda:\mathfrak{N}_{\psi}\to H$ of dense range such that $\psi(x^*x)=\|\Lambda(x)\|^2$ for all $x\in\mathfrak{N}_{\psi}$. Note that because the weight ψ is faithful and semi-finite, Λ is injective and σ -weakly densely defined, meaning that \mathfrak{M}_{ψ} is a hereditary σ -weakly dense *-subalgebra of A^{**} . Construct the commutant Radon-Nikodym derivatives h,k_j of ω,φ_j with respect to ψ . Here k_j is a positive self-adjoint operator defined by the Friedrichs extension such that $\operatorname{ran}\Lambda\subset\operatorname{dom} k_j$ for all j. Taking a subnet, we may assume that there is $k_{\varepsilon}\in\pi(A)'^+$ satisfying $f_{\varepsilon}(k_j)\to k_{\varepsilon}$ σ -weakly. Because of the operator concavity of f_{ε} (more detail), we can take a net $\varphi_l\in F^*$ such that $f_{\varepsilon}(k_l)\to k_{\varepsilon}$ σ -strongly, where k_l are again the commutant Radon-Nikodym derivatives of φ_l defined by the Friedrichs extension.

Since is a strongly continuous function, we have $(f_{\varepsilon}(k_l) - k_{\varepsilon}) \to 0$ σ -strongly, so if we define $\varphi_{l,\varepsilon} \in F^* - A^{*+}$ and $\varphi_{\varepsilon} \in A^{*+}$ such that

$$\varphi_{l,\varepsilon}(x^*x) := \langle (f_{\varepsilon}(k_l) - (f_{\varepsilon}(k_l) - k_{\varepsilon})_+) \Lambda(x), \Lambda(x) \rangle, \quad \varphi_{\varepsilon}(x^*x) := \langle k_{\varepsilon} \Lambda(x), \Lambda(x) \rangle$$

for each $x\in\mathfrak{N}_{\psi}$, then we have $\varphi_{l,\varepsilon}\to\varphi_{\varepsilon}$ pointwisely on \mathfrak{M}_{ψ} and $\varphi_{l,\varepsilon}\leq\varphi_{\varepsilon}$ for all l. How to dominate $\varphi_{l,\varepsilon}$ from below?

By Lemma 2.2, we have $\varphi_{l,\varepsilon} \to \varphi_{\varepsilon}$ weakly in A^* , so Theorem 2.1 (2) implies that $\varphi_{\varepsilon} \in (\overline{F^* - A^{*+}}^w)^+ = F^*$. If we define $\omega_{\varepsilon} \in A^{*+}$ and $\varphi_{j,\varepsilon} \in F^*$ by

$$\omega_{\varepsilon}(x^*x) := \langle f_{\varepsilon}(h)\Lambda(x), \Lambda(x) \rangle, \quad \varphi_{j,\varepsilon}(x^*x) := \langle f_{\varepsilon}(k_j)\Lambda(x), \Lambda(x) \rangle$$

for each $x \in \mathfrak{N}_{\psi}$, then since $\omega \leq \varphi_{j}$ on B_{j}^{+} implies $\omega_{\varepsilon} \leq \varphi_{j,\varepsilon}$ on B_{j}^{+} , the weak* limit $\omega_{\varepsilon} \leq \lim_{j} \varphi_{j,\varepsilon} = \varphi_{\varepsilon}$ deduces $\omega_{\varepsilon} \in F^{*} - A^{*+}$. Since $\omega_{\varepsilon} \to \omega$ pointwisely on \mathfrak{M}_{ψ} and $0 \leq \omega_{\varepsilon} \leq \omega$ for all $0 < \varepsilon$, we have $\omega \in F^{*}$ by Lemma 2.2 and Theorem 2.1 (2).

3. Applications to weight theory

Corollary 3.1. Let M be a von Neumann algebra. Then, there is a one-to-one correspondence

$$\left\{ \begin{array}{c} \text{subadditive normal} \\ \text{weights of } M \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \text{hereditary closed} \\ \text{convex subsets of } M_*^+ \end{array} \right\}$$

$$\varphi \qquad \qquad \mapsto \qquad \left\{ \omega \in M_*^+ : \omega \leq \varphi \right\}$$