

SEQUENCE LISTING

<110> JULIUS, Michael H.
FILIPP, Dominik

<120> THE INDUCTION OF ANTIBIOTIC PROTEINS AND PEPTIDES BY
LAIT/sCD14-PROTEIN

<130> 47841/00063

<140> US 09/721,904
<141> 2000-11-27

<150> PCT/CA99/00482
<151> 1999-05-27

<150> US 60/086,884
<151> 1998-05-27

<160> 11

<170> Wordperfect 9.0

<210> 1
<211> 1122
<212> DNA
<213> bovine

<400>	1					
atgggtgtgcg	tgccttaccc	gctgctgctg	ctgctgccgt	cactgctgcg	tgtgtctgcg	60
gacacaacag	aaccctgcga	gctggacgac	gacgatttcc	gttgtgtctg	caacttcacg	120
gatccgaagc	ctgactggtc	tagcccggtt	cagtgtatgg	ttgccgtcga	ggtggagatc	180
agtgccggcg	gccgcagcct	ggaacagttt	ctcaaggag	ccgacaccaa	cccgaagcag	240
tatgctgaca	caatcaaggc	tctgcgcgtt	cggcgactca	agctggcgcc	tgcacaggtt	300
cctgctcagc	ttctggtcgc	cgttctgcgc	gcgcgcgggt	actctcgct	caaggaactg	360
acgcttgagg	acctggaggt	aaccggccca	acgccccccga	cgcctctgga	agccgctggg	420
cctgcgctca	ccaccctcag	tctgcgttaac	gtatcggtga	caacaggagg	tgcctggctc	480
ggcgaactgc	agcagtggct	caagcctggg	ctcagggtgc	tgaacattgc	ccaaggcacac	540
tcgcttgctt	ttccgtgcgc	agggctctcc	accttcgagg	cgctcaccac	cctagacact	600
tctgacaatc	ccagtctcg	cgacacgggg	ctgatggcag	ctctctgtcc	gaacaagttc	660
ccggccctcc	aatatcttagc	gctacgcaac	gcggggatgg	agacgccgag	cggcgtgtgc	720
gcggcgctgg	cggcagcgg	ggtgcagccc	caaagcctgg	acctcagcca	caactcgctg	780
cgcgtcaccg	ccccgggtgc	tacccgatgt	gtctggccca	gtgcactaag	gtctctcaat	840
ttgtcgttcg	ctgggctgga	gcaagtgcct	aagggactgc	cccctaagct	cagcgtgctt	900
gatctcagct	gcaacaagct	aagcagggag	ccgcggcgag	acgagctgcc	cgaggtaaat	960
gacctgactc	tggacggaaa	tcccttctg	gaccctggag	ccctccagca	ccaaaatgac	1020

RECEIVED

MAR 18 2003

TECH CENTER 1600/2900

ccgatgatct ccggcgtggt cccagcctgt gcgcgttctg cttgaccat gggggtgtca	1080
ggagccctgg cgctgcttca aggagccccga ggcttcgcgt aa	1122

<210> 2
<211> 1128
<212> DNA
<213> human

<400> 2	
atggagcgcg cgtcctgctt gttgctgctg ctgctgccgc tggtgacgt ctctgcgacc	60
acgccagaac cttgtgagct ggacgatgaa gattccgct gcgtctgcaa cttctccgaa	120
cctcagcccg actggtccga agccttccag tgtgtgtctg cagtagaggt ggagatccat	180
gccggcggtc tcaacctaga gccgttcta aaggcgtcg atgcggacgc cgaccgcgg	240
cagtatgctg acacggtcaa ggctctccgc gtgcggcggc tcacagtggg agccgcacag	300
gttcctgctc agtacttggt aggcgcctcg cgtgtgctag cgtactcccg cctcaaggaa	360
ctgacgctcg aggacctaaa gataaccggc accatgcctc cgctgcctct ggaagccaca	420
ggacttgcac ttccagctt gcgcctacgc aacgtgtcgt gggcgacagg gcgttcttgg	480
ctcgccgagc tgcagcagtg gctcaagcca ggcctcaagg tactgagcat tgcccaagca	540
cactcgccctg cttttccctg cgaacagggtt cgcccttcc cggcccttac cagcctagac	600
ctgtctgaca atcctggact gggcgaacgc ggactgtatgg cggctctctg tccccacaag	660
ttcccggcca tccagaatct agcgctgcgc aacacaggaa tggagacgcc cacaggcgtg	720
tgcgcgcac tggcggcggc aggtgtgcag ccccacagcc tagacctcag ccacaactcg	780
ctgcgcgcca ccgtaaaccc tagcgctccg agatgcatgt ggtccagcgc cctgaactcc	840
ctcaatctgt cgttcgctgg gctggaacag gtgcctaaag gactgccagc caagctcaga	900
gtgctcgatc tcagctgcaa cagactgaac agggcgcgc agcctgacga gctgcccag	960
gtggataacc tgacactgga cggaaatccc ttcttggtcc ctggaactgc cctccccac	1020
gagggctcaa tgaactccgg cgtggtccca gcctgtgcac gtgcaccct gtcgggtgggg	1080
gtgtcggaa ccctgggtct gctccaaggaa gcccgggct ttgcctaa	1128

<210> 3
<211> 1101
<212> DNA
<213> murine

<400> 3	
ATGGAGCGTG TGCTTGGCTT GTTGCTGTTG CTTCTGGTGC ACGCCTCTCC CGCCCCACCA	60
GAGCCCTGCG AGCTAGACGA GGAAAGTTGT TCCTGCAACT TCTCAGATCC GAAGCCAGAT	120
TGGTCCAGCG CTTTCAATTG TTTGGGGCG GCAGATGTGG AATTGTACGG CGGCGGCCGC	180
AGCCTGGAAT ACCTTCTAAA GCGTGTGGAC ACGGAAGCAG ATCTGGGGCA GTTCACTGAT	240

ATTATCAAGT CTCTGTCCTT AAAGCGGCTT ACGGTGCGGG CCGCGCGGAT TCCTAGTCGG	300
ATTCTATTCTG GAGCCCTGCG TGTGCTCGGG ATTTCCGGCC TCCAGGAACG GACTCTTGAA	360
AATCTCGAGG TAACCGGCAC CGGCCGCCA CCGCTCTGG AAGCCACCGG ACCCGATCTC	420
AACATCTTGA ACCTCCGCAA CGTGTCTGG GCAACAAGGG ATGCCTGGCT CGCAGAACTG	480
CAGCAGTGGC TAAAGCCTGG ACTCAAGGTA CTGAGTATTG CCCAAGCACA CTCACTCAAC	540
TTTTCCCTGCG AACAGGTCCG CGTCTCCCT GCCCTCTCCA CCTTAGACCT GTCTGACAAT	600
CCTGAATTGG GCGAGAGAGG ACTGATCTCA GCCCTCTGTC CCCTCAAGTT CCCGACCCCTC	660
CAAGTTTAG CGCTGCGTAA CGCGGGATG GAGACGCCA GCGGCGTGTG CTCTGCGCTG	720
GCCGCAGCAA GGGTACAGCT GCAAGGACTA GACCTTAGTC ACAATTCACT GCGGGATGCT	780
GCAGGCGCTC CGAGTTGTGA CTGGCCCAGT CAGCTAAACT CGCTCAATCT GTCTTCACT	840
GGGCTGAAGC AGGTACCTAA AGGGCTGCCA GCCAAGCTCA GCGTGCTGGA TCTCAGTTAC	900
AACAGGCTGG ATAGGAACCC TAGCCCAGAT GAGCTGCCCC AAGTGGGAA CCTGTCACTT	960
AAAGGAAATC CCTTTTGGA CTCTGAATCC CACTCGGAGA AGTTAACTC TGGCGTAGTC	1020
ACCGCCGGAG CTCCATCATC CCAAGCAGTG GCCTTGTCAAG GAACTCTGGC TTTGCTCCTA	1080
GGAGATCGCC TCTTTGTTA A	1101

<210> 4
<211> 373
<212> PRT
<213> bovine

<400> 4
Met Val Cys Val Pro Tyr Leu Leu Leu Leu Leu Pro Ser Leu Leu
1 5 10 15
Arg Val Ser Ala Asp Thr Thr Glu Pro Cys Glu Leu Asp Asp Asp Asp
20 25 30
Phe Arg Cys Val Cys Asn Phe Thr Asp Pro Lys Pro Asp Trp Ser Ser
35 40 45
Ala Val Gln Cys Met Val Ala Val Glu Val Glu Ile Ser Ala Gly Gly
50 55 60
Arg Ser Leu Glu Gln Phe Leu Lys Gly Ala Asp Thr Asn Pro Lys Gln
65 70 75 80
Tyr Ala Asp Thr Ile Lys Ala Leu Arg Val Arg Arg Leu Lys Leu Gly
85 90 95
Ala Ala Gln Val Pro Ala Gln Leu Leu Val Ala Val Leu Arg Ala Leu
100 105 110
Gly Tyr Ser Arg Leu Lys Glu Leu Thr Leu Glu Asp Leu Glu Val Thr
115 120 125
Gly Pro Thr Pro Pro Thr Pro Leu Glu Ala Ala Gly Pro Ala Leu Thr
130 135 140

Thr Leu Ser Leu Arg Asn Val Ser Trp Thr Thr Gly Gly Ala Trp Leu
 145 150 155 160
 Gly Glu Leu Gln Gln Trp Leu Lys Pro Gly Leu Arg Val Leu Asn Ile
 165 170 175
 Ala Gln Ala His Ser Leu Ala Phe Pro Cys Ala Gly Leu Ser Thr Phe
 180 185 190
 Glu Ala Leu Thr Thr Leu Asp Leu Ser Asp Asn Pro Ser Leu Gly Asp
 195 200 205
 Thr Gly Leu Met Ala Ala Leu Cys Pro Asn Lys Phe Pro Ala Leu Gln
 210 215 220
 Tyr Leu Ala Leu Arg Asn Ala Gly Met Glu Thr Pro Ser Gly Val Cys
 225 230 235 240
 Ala Ala Leu Ala Ala Arg Val Gln Pro Gln Ser Leu Asp Leu Ser
 245 250 255
 His Asn Ser Leu Arg Val Thr Ala Pro Gly Ala Thr Arg Cys Val Trp
 260 265 270
 Pro Ser Ala Leu Arg Ser Leu Asn Leu Ser Phe Ala Gly Leu Glu Gln
 275 280 285
 Val Pro Lys Gly Leu Pro Pro Lys Leu Ser Val Leu Asp Leu Ser Cys
 290 295 300
 Asn Lys Leu Ser Arg Glu Pro Arg Arg Asp Glu Leu Pro Glu Val Asn
 305 310 315 320
 Asp Leu Thr Leu Asp Gly Asn Pro Phe Leu Asp Pro Gly Ala Leu Gln
 325 330 335
 His Gln Asn Asp Pro Met Ile Ser Gly Val Val Pro Ala Cys Ala Arg
 340 345 350
 Ser Ala Leu Thr Met Gly Val Ser Gly Ala Leu Ala Leu Leu Gln Gly
 355 360 365
 Ala Arg Gly Phe Ala
 370

<210> 5
 <211> 375
 <212> PRT
 <213> human

<400> 5
 Met Glu Arg Ala Ser Cys Leu Leu Leu Leu Leu Pro Leu Val His
 1 5 10 15
 Val Ser Ala Thr Thr Pro Glu Pro Cys Glu Leu Asp Asp Glu Asp Phe
 20 25 30
 Arg Cys Val Cys Asn Phe Ser Glu Pro Gln Pro Asp Trp Ser Glu Ala
 35 40 45
 Phe Gln Cys Val Ser Ala Val Glu Val Glu Ile His Ala Gly Gly Leu
 50 55 60

Asn Leu Glu Pro Phe Leu Lys Arg Val Asp Ala Asp Ala Asp Pro Arg
 65 70 75 80
 Gln Tyr Ala Asp Thr Val Lys Ala Leu Arg Val Arg Arg Leu Thr Val
 85 90 95
 Gly Ala Ala Gln Val Pro Ala Gln Leu Leu Val Gly Ala Leu Arg Val
 100 105 110
 Leu Ala Tyr Ser Arg Leu Lys Glu Leu Thr Leu Glu Asp Leu Lys Ile
 115 120 125
 Thr Gly Thr Met Pro Pro Leu Pro Leu Glu Ala Thr Gly Leu Ala Leu
 130 135 140
 Ser Ser Leu Arg Leu Arg Asn Val Ser Trp Ala Thr Gly Arg Ser Trp
 145 150 155 160
 Leu Ala Glu Leu Gln Gln Trp Leu Lys Pro Gly Leu Lys Val Leu Ser
 165 170 175
 Ile Ala Gln Ala His Ser Pro Ala Phe Ser Tyr Glu Gln Val Arg Ala
 180 185 190
 Phe Pro Ala Leu Thr Ser Leu Asp Leu Ser Asp Asn Pro Gly Leu Gly
 195 200 205
 Glu Arg Gly Leu Met Ala Ala Leu Cys Pro His Lys Phe Pro Ala Ile
 210 215 220
 Gln Asn Leu Ala Leu Arg Asn Thr Gly Met Glu Thr Pro Thr Gly Val
 225 230 235 240
 Cys Ala Ala Leu Ala Ala Ala Gly Val Gln Pro His Ser Leu Asp Leu
 245 250 255
 Ser His Asn Ser Leu Arg Ala Thr Val Asn Pro Ser Ala Pro Arg Cys
 260 265 270
 Met Trp Ser Ser Ala Leu Asn Ser Leu Asn Leu Ser Phe Ala Gly Leu
 275 280 285
 Glu Gln Val Pro Lys Gly Leu Pro Ala Lys Leu Arg Val Leu Asp Leu
 290 295 300
 Ser Cys Asn Arg Leu Asn Arg Ala Pro Gln Pro Asp Glu Leu Pro Glu
 305 310 315 320
 Val Asp Asn Leu Thr Leu Asp Gly Asn Pro Phe Leu Val Pro Gly Thr
 325 330 335
 Ala Leu Pro His Glu Gly Ser Met Asn Ser Gly Val Val Pro Ala Cys
 340 345 350
 Ala Arg Ser Thr Leu Ser Val Gly Val Ser Gly Thr Leu Val Leu Leu
 355 360 365
 Gln Gly Ala Arg Gly Phe Ala
 370 375

<210> 6
<211> 366
<212> PRT
<213> murine

<400>	6															
Met	Glu	Arg	Val	Leu	Gly	Leu	Val	His	Ala	Ser						
1				5				10						15		
Pro	Ala	Pro	Pro	Glu	Pro	Cys	Glu	Leu	Asp	Glu	Glu	Ser	Cys	Ser	Cys	
							25						30			
Asn	Phe	Ser	Asp	Pro	Lys	Pro	Asp	Trp	Ser	Ser	Ala	Phe	Asn	Cys	Leu	
					35		40				45					
Gly	Ala	Ala	Asp	Val	Glu	Leu	Tyr	Gly	Gly	Arg	Ser	Leu	Glu	Tyr		
				50		55			60							
Leu	Leu	Lys	Arg	Val	Asp	Thr	Glu	Ala	Asp	Leu	Gly	Gln	Phe	Thr	Asp	
					65	70			75				80			
Ile	Ile	Lys	Ser	Leu	Ser	Leu	Lys	Arg	Leu	Thr	Val	Arg	Ala	Ala	Arg	
					85			90				95				
Ile	Pro	Ser	Arg	Ile	Leu	Phe	Gly	Ala	Leu	Arg	Val	Leu	Gly	Ile	Ser	
					100			105				110				
Gly	Leu	Gln	Glu	Leu	Thr	Leu	Glu	Asn	Leu	Glu	Val	Thr	Gly	Thr	Ala	
					115		120				125					
Pro	Pro	Pro	Leu	Leu	Glu	Ala	Thr	Gly	Pro	Asp	Leu	Asn	Ile	Leu	Asn	
					130		135				140					
Leu	Arg	Asn	Val	Ser	Trp	Ala	Thr	Arg	Asp	Ala	Trp	Leu	Ala	Glu	Leu	
					145		150				155			160		
Gln	Gln	Trp	Leu	Lys	Pro	Gly	Leu	Lys	Val	Leu	Ser	Ile	Ala	Gln	Ala	
					165			170				175				
His	Ser	Leu	Asn	Phe	Ser	Cys	Glu	Gln	Val	Arg	Val	Phe	Pro	Ala	Leu	
					180			185				190				
Ser	Thr	Leu	Asp	Leu	Ser	Asp	Asn	Pro	Glu	Leu	Gly	Glu	Arg	Gly	Leu	
					195		200				205					
Ile	Ser	Ala	Leu	Cys	Pro	Leu	Lys	Phe	Pro	Thr	Leu	Gln	Val	Leu	Ala	
					210		215				220					
Leu	Arg	Asn	Ala	Gly	Met	Glu	Thr	Pro	Ser	Gly	Val	Cys	Ser	Ala	Leu	
					225		230				235			240		
Ala	Ala	Ala	Arg	Val	Gln	Leu	Gln	Gly	Leu	Asp	Leu	Ser	His	Asn	Ser	
					245			250				255				
Leu	Arg	Asp	Ala	Ala	Gly	Ala	Pro	Ser	Cys	Asp	Trp	Pro	Ser	Gln	Leu	
					260			265				270				
Asn	Ser	Leu	Asn	Leu	Ser	Phe	Thr	Gly	Leu	Lys	Gln	Val	Pro	Lys	Gly	
					275			280				285				
Leu	Pro	Ala	Lys	Leu	Ser	Val	Leu	Asp	Leu	Ser	Tyr	Asn	Arg	Leu	Asp	
					290		295				300					

Arg Asn Pro Ser Pro Asp Glu Leu Pro Gln Val Gly Asn Leu Ser Leu
 305 310 315 320

Lys Gly Asn Pro Phe Leu Asp Ser Glu Ser His Ser Glu Lys Phe Asn
 325 330 335

Ser Gly Val Val Thr Ala Gly Ala Pro Ser Ser Gln Ala Val Ala Leu
 340 345 350

Ser Gly Thr Leu Ala Leu Leu Gly Asp Arg Leu Phe Val
 355 360 365

<210> 7
 <211> 377
 <212> PRT
 <213> rabbit

<220>
 <221> unsure
 <222> (14)
 <223> Xaa = unknown

<220>
 <221> unsure
 <222> (265) ... (267)
 <223> Xaa = unknown

<220>
 <221> unsure
 <222> (269)
 <223> Xaa = unknown

<400> 7
 Met Glu Pro Val Pro Cys Leu Leu Leu Leu Leu Pro Xaa Leu Leu
 1 5 10 15

Arg Ala Ser Thr Asp Thr Pro Glu Pro Cys Glu Leu Asp Asp Asp Asp
 20 25 30

Ile Arg Cys Val Cys Asn Phe Ser Asp Pro Gln Pro Asp Trp Ser Ser
 35 40 45

Ala Leu Gln Cys Met Pro Ala Val Gln Val Glu Met Trp Gly Gly Gly
 50 55 60

His Ser Leu Glu Gln Phe Leu Arg Gln Ala Asp Leu Tyr Thr Asp Gln
 65 70 75 80

Arg Arg Tyr Ala Asp Val Val Lys Ala Leu Arg Val Arg Arg Leu Thr
 85 90 95

Val Gly Ala Val Gln Val Pro Ala Pro Leu Leu Leu Gly Val Leu Arg
 100 105 110

Val Leu Gly Tyr Ser Arg Leu Lys Glu Leu Ala Leu Glu Asp Ile Glu
 115 120 125

Val Thr Gly Thr Ala Pro Pro Pro Pro Leu Glu Ala Thr Gly Pro
 130 135 140

Ala Leu Ser Thr Leu Ser Leu Arg Asn Val Ser Trp Pro Lys Gly Gly
 145 150 155 160

Ala Trp Leu Ser Glu Leu Gln Gln Trp Leu Lys Pro Gly Leu Gln Val
 165 170 175

Leu Asn Ile Ala Gln Ala His Thr Leu Ala Phe Ser Cys Glu Gln Val
 180 185 190

Arg Thr Phe Ser Ala Leu Thr Thr Leu Asp Leu Ser Glu Asn Pro Gly
 195 200 205

Leu Gly Glu Arg Gly Leu Val Ala Ala Leu Cys Pro His Lys Glu Pro
 210 215 220

Ala Leu Gln Asp Leu Ala Leu Arg Asn Ala Gly Met Lys Ile Leu Gln
 225 230 235 240

Gly Val Cys Ala Ala Leu Ala Glu Ala Gly Val Gln Pro His His Leu
 245 250 255

Asp Leu Ser His Asn Ser Leu Arg Xaa Xaa Xaa Ala Xaa Asp Thr Gln
 260 265 270

Arg Cys Ile Trp Pro Ser Ala Leu Asn Ser Leu Asn Leu Ser Phe Thr
 275 280 285

Gly Leu Gln Gln Val Pro Lys Gly Leu Pro Ala Lys Leu Asn Val Leu
 290 295 300

Asp Leu Ser Cys Asn Lys Leu Asn Arg Ala Pro Gln Pro Gly Glu Leu
 305 310 315 320

Pro Lys Val Val Asn Leu Ser Leu Asp Gly Asn Pro Phe Leu Val Pro
 325 330 335

Gly Ala Ser Lys Leu Gln Glu Asp Leu Thr Asn Ser Gly Val Phe Pro
 340 345 350

Ala Cys Pro Pro Ser Pro Leu Ala Met Gly Met Ser Gly Thr Leu Ala
 355 360 365

Leu Leu Gln Gly Ala Arg Gly Phe Ile
 370 375

<210> 8
 <211> 1405
 <212> DNA
 <213> bovine

<400>	8					
gcgtgacgca	ctgttaagga	aagaatccac	agtccagccc	gacaaccaga	gagagaggca	60
caggctctga	aatctactg	actatgtct	tggggccgaa	gcgtgggcta	tttggggact	
taggaacagg	cttggccgc	cctgacctcc	gctgtcgccg	caggtgtgcg	tgcctacct	120
gctgctgctg	ctgctgccgt	cactgctgcg	tgtgtctgcg	gacacaacag	aaccctgcga	180
gctggacgac	cacgattcc	gttgtgtctg	caacttcacg	gatccgaagc	ctgactggtc	240
tagccgcgtt	cagtgtatgg	ttgccgtcga	ggtgagatc	agtgccggcg	gccgcagcc	300
ggaacagttt	ctcaagggag	ccgacaccaa	cccgaagcag	tatgctgaca	caatcaaggc	360
						420

tctgcgcgtt	cggcgactca	agctggcg	tcacagg	ttctgg	tcgc	480
cg	tcgc	gctcg	actctcg	taagg	aactg	540
accggccca	acgccccga	cgcctctg	agccgctgg	cctgcg	ctca	600
tctgcgt	taac	gtatcg	tgaa	caacagg	agg	660
caaggct	ctcagg	gt	tgaa	cattgc	ccaagcac	720
agggct	ctcc	ac	tcagg	cgt	actgc	780
cgacagc	gggg	cg	ctgt	gatgg	actg	840
gctacg	caac	gcggg	atgg	gatgg	tttt	900
gcaac	gcggg	atgg	gg	gatgg	tcct	960
tacccg	atgt	gtctgg	gg	actaag	tttgc	1020
gcaagt	gcct	gt	tcacta	tttgc	tttgc	1080
aagg	actgc	ctc	acta	tc	tttgc	1140
aagg	ggag	cc	actcg	tc	tttgc	1200
tccctt	ctg	cc	actcg	tc	tttgc	1260
aggagccc	ga	cc	actcg	tc	tttgc	1320
gattgc	cc	cc	actcg	tc	tttgc	1380
atc	tttatta	aaatctaaa	cagca			1405

<210> 9

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Chemically synthesized polypeptide

<400> 9

Leu Leu Leu Leu Leu Leu Pro Ser

1 5

<210> 10

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Chemically synthesized polypeptide

<400> 10

Leu Leu Leu Leu Leu Leu Pro Leu

1 5

10/10

<210> 11
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Chemically synthesized polypeptide

<400> 11

Leu Leu Leu Leu Leu Leu Val His
1 5