Семинар 23.

Решение (в процессе).

1. Рассмотрим бинарную probit-модель (индекс i опущен для удобства):

$$\mathbb{P}(y=1|z,q) = \Phi(z_1\delta_1 + \gamma_1 z_2 q),$$

где $q \sim N(0;1)$ и не зависит от $z = (z_1 \, z_2);$ вектор z наблюдается, скаляр q — нет

- (a) Найдите предельный эффект z_2 на вероятность отклика.
- (b) Покажите, что

$$\mathbb{P}(y=1|z) = \Phi(z_1\delta_1/(1+\gamma_1^2z_2^2)^{1/2}).$$

Решение:

(a)
$$ME = \frac{\partial \mathbb{P}(y=1)}{\partial z_2} = \phi(z_1\delta_1 + \gamma_1 z_2 q) \cdot \gamma_1 q$$

(b) Запишем $y^* = z_1 \delta_1 + r$, где $r = \gamma_1 z_2 q + \epsilon$, и ϵ не зависит от (z,q) и имеет стандартное нормальное распределение.

Поскольку q предполагается независимым от z, то $(r|z) \sim N(0, \gamma_1^2 z_2^2 + 1);$ это следует из того, что

$$\mathbb{E}(r|z) = \gamma_1 z_2 \mathbb{E}(q|z) + \mathbb{E}(\epsilon|z) = 0.$$

Также,

$$\operatorname{Var}(r|z) = \gamma_1^2 z_2^2 \operatorname{Var}(q|z) + \operatorname{Var}(\epsilon|z) + 2\gamma_1 z_2 \operatorname{Cov}(q, \epsilon|z) = \gamma_1^2 z_2^2 + 1,$$

так как $\mathrm{Cov}(q,\epsilon|z)=0$ в силу независимости ϵ и (z,q).

Таким образом, $r/\sqrt{\gamma_1^2 z_2^2 + 1}$ имеет стандартное нормальное распределение, не зависящее от z. Отсюда следует, что

$$\mathbb{P}(y=1|z) = \Phi\left(\frac{z_1\delta_1}{\sqrt{\gamma_1^2 z_2^2 + 1}}\right).$$

- 2. Вывод многофакторной логистической регрессии (softmax function).
- 3. Ниже представлены результаты 250 наблюдений:

Семинары: Погорелова П.В.

Используя данные, найдите оценки максимального правдоподобия неизвестных параметров упорядоченной probit-модели. [Подсказка: Рассматривайте вероятности как неизвестные параметры.]

4. Пусть $y_i^* = x_i^T \beta + \varepsilon_i$, где $\varepsilon_i \sim i.i.d.(0,1)$. Известно, что

$$y_t = \begin{cases} 0, & y^* \le c_1, \\ 1, & c_1 < y^* \le c_2, \\ 2, & y^* > c_2. \end{cases}$$

Для модели упорядоченного выбора рассчитайте предельные эффекты:

- (a) $\frac{\partial P(y_i=0|x_i)}{\partial x_{ij}}$,
- (b) $\frac{\partial P(y_i=1|x_i)}{\partial x_{ij}}$
- (c) $\frac{\partial P(y_i=2|x_i)}{\partial x_{ij}}$

Список используемой литературы.

Greene W.H. (2003). Econometric Analysis, Pearson Education, 5th edition.