The Fourier Transform and Its Applications

Third Edition

Ronald N. Bracewell

Lewis M. Terman Professor of Electrical Engineering Emeritus Stanford University

CONTENTS

	Preface	xvii
1	Introduction	1
2	Groundwork	5
	The Fourier Transform and Fourier's Integral Theorem	5
	Conditions for the Existence of Fourier Transforms	8
	Transforms in the Limit	10
	Oddness and Evenness	11
	Significance of Oddness and Evenness	13
	Complex Conjugates	14
	Cosine and Sine Transforms	16
	Interpretation of the Formulas	18
3	Convolution	24
	Examples of Convolution	27
	Serial Products	30
	Inversion of serial multiplication / The serial product in matrix notation I Sequences as vectors	
	Convolution by Computer	39
	The Autocorrelation Function and Pentagram Notation	40
	The Triple Correlation	45
	The Cross Correlation	46
	The Energy Spectrum	47
4	Notation for Some Useful Functions	55
	Rectangle Function of Unit Height and Base, $Il(x)$	55
	Triangle Function of Unit Height and Area, $A(x)$	57
	Various Exponentials and Gaussian and Rayleigh Curves	57
	Heaviside's Unit Step Function, $H(x)$	61
	The Sign Function, sgn x	65
	The Filtering or Interpolating Function, sine <i>x</i>	65
	Pictorial Representation	68
	Summary of Special Symbols	71

x Contents

5	The Impulse Symbol	74
	The Sifting Property	78
	The Sampling or Replicating Symbol III(x)	81
	The Even and Odd Impulse Pairs $n(x)$ and $h(x)$	84
	Derivatives of the Impulse Symbol	85
	Null Functions	87
	Some Functions in Two or More Dimensions	89
	The Concept of Generalized Function	92
	Particularly well-behaved functions / Regular sequences / Generalized function	ns /
	Algebra of generalized functions I Differentiation of ordinary functions	
6	The Basic Theorems	105
	A Few Transforms for Illustration	105
	Similarity Theorem	108
	Addition Theorem	110
	Shift Theorem	111
	Modulation Theorem	113
	Convolution Theorem	115
	Rayleigh's Theorem	119
	Power Theorem	120
	Autocorrelation Theorem	122
	Derivative Theorem	124
	Derivative of a Convolution Integral	126
	The Transform of a Generalized Function	127
	Proofs of Theorems	128
	Similarity and shift theorems / Derivative theorem / Power theorem	
	Summary of Theorems	129
7	Obtaining Transforms	136
	Integration in Closed Form	137
	Numerical Fourier Transformation	140
	The Slow Fourier Transform Program	142
	Generation of Transforms by Theorems	145
	Application of the Derivative Theorem to Segmented Functions	145
	Measurement of Spectra	147
	Radiofrequency spectral analysis / Optical Fourier transform spectroscopy	
8	The Two Domains	151
	Definite Integral	152
	The First Moment	153
	Centroid	155
	Moment of Inertia (Second Moment)	156
	Moments	157
	Mean-Square Abscissa	158
	Radius of Gyration	159

Contents xi

	Variance	159
	Smoothness and Compactness	160
	Smoothness under Convolution	162
	Asymptotic Behavior	163
	Equivalent Width	164
	Autocorrelation Width	170
	Mean Square Widths	171
	Sampling and Replication Commute	172
	Some Inequalities	174
	Upper limits to ordinate and slope / Schwarz's inequality	
	The Uncertainty Relation	177
	Proof of uncertainty relation /Example of uncertainty relation	
	The Finite Difference	180
	Running Means	184
	Central Limit Theorem	186
	Summary of Correspondences in the Two Domains	191
9	Waveforms, Spectra, Filters, and Linearity	198
	Electrical Waveforms and Spectra	198
	Filters	200
	Generality of Linear Filter Theory	203
	Digital Filtering	204
	Interpretation of Theorems	205
	Similarity theorem / Addition theorem / Shift theorem / Modulation theorem /	
	Converse of modulation theorem	
	Linearity and Time Invariance	209
	Periodicity	211
10	0 1' 10'	210
10	Sampling and Series	219
	Sampling Theorem	219
	Interpolation	224
	Rectangular Filtering in Frequency Domain	224
	Smoothing by Running Means	226
	Undersampling	229
	Ordinate and Slope Sampling	230
	Interlaced Sampling	232
	Sampling in the Presence of Noise	234
	Fourier Series	235
	Gibbs phenomenon /Finite Fourier transforms /Fourier coefficients	~
	Impulse Trains That Are Periodic	245
	The Shah Symbol Is Its Own Fourier Transform	246
11	The Discrete Fourier Transform and the FFT	258
• •	The Discrete Transform Formula	258
	Cyclic Convolution	264
	Examples of Discrete Fourier Transforms	265

XII Co	onte	ent	ts

	Reciprocal Property	266
	Oddness and Evenness	266
	Examples with Special Symmetry	267
	Complex Conjugates	268
	Reversal Property	268
	Addition Theorem	268
	Shift Theorem	268
	Convolution Theorem	269
	Product Theorem	269
	Cross-Correlation	270
	Autocorrelation	270
	Sum of Sequence	270
	First Value	270
	Generalized Parseval-Rayleigh Theorem	271
	Packing Theorem	271
	Similarity Theorem	272
	Examples Using MATLAB	272
	The Fast Fourier Transform	275
	Practical Considerations	278
	Is the Discrete Fourier Transform Correct?	280
	Applications of the FFT	281
	Timing Diagrams	282
	When N Is Not a Power of 2	283
	Two-Dimensional Data	284
	Power Spectra	285
12	The Discrete Hartley Transform	293
	A Strictly Reciprocal Real Transform	293
	Notation and Example	294
	The Discrete Hartley Transform	295
	Examples of DHT	297
	Discussion	298
	A Convolution of Algorithm in One and Two Dimensions	298
	Two Dimensions	299
	The Cas-Cas Transform	300
	Theorems	300
	The Discrete Sine and Cosine transforms	301
	Boundary value problems / Data compression application	
	Computing	305
	Getting a Feel for Numerical Transforms	305
	The Complex Hartley Transform	306
	Physical Aspect of the Hartley Transformation	307
	The Fast Hartley Transform	308
	The Fast Algorithm	309
	Running Time	314

Contents	xia
Contents	xia

Timing via th	e Stripe Diagram	315
Matrix Formu	ulation	317
Convolution		320
Permutation		321
A Fast Hartle	y Subroutine	322
13 Relatives o	of the Fourier Transform	329
The Two-Din	nensional Fourier Transform	329
Two-Dimensi	onal Convolution	331
The Hankel T	Fransform	335
Fourier Kerne	els	339
The Three-Di	mensional Fourier Transform	340
The Hankel T	Fransform in <i>n</i> Dimensions	343
The Mellin T	ransform	343
The 2 Transfo	orm	347
The Abel Tra	nsform	351
The Radon T	ransform and Tomography	356
The Abel-	Fourier-Hankel ring of transforms /Projection-slice theorem I	
Reconstru	action by modified back projection	
The Hilbert 7	Fransform	359
The analy	vtic signal / Instantaneous frequency and envelope I Causality	
Computing tl	ne Hilbert Transform	364
The Fractiona	al Fourier Transform	367
Shift theo	rem / Derivative theorems / Fractional convolution theorem /	
Examples	of transforms	
,14 The Laplac	e Transform	380
^Convergence	of the Laplace Integral	382
	place Transform	383
		385
		386
		389
		390

xiv	Contents
AIV	Contents

	Modulation Transfer Function	416
	Physical Aspects of the Angular Spectrum	417
	Two-Dimensional Theory	417
	Optical Diffraction	419
	Fresnel Diffraction	420
	Other Applications of Fourier Analysis	422
16	Applications in Statistics	428
	Distribution of a Sum	429
	Consequences of the Convolution Relation	434
	The Characteristic Function	435
	The Truncated Exponential Distribution	436
	The Poisson Distribution	438
17	Random Waveforms and Noise	446
	Discrete Representation by Random Digits	447
	Filtering a Random Input: Effect on Amplitude Distribution	450
	Digression on independence / The convolution relation	
	Effect on Autocorrelation	455
	Effect on Spectrum	458
	Spectrum of random input / The output spectrum	
	Some Noise Records	462
	Envelope of Bandpass Noise	465
	Detection of a Noise Waveform	466
	Measurement of Noise Power	466
18	Heat Conduction and Diffusion	475
	One-Dimensional Diffusion	475
	Gaussian Diffusion from a Point	480
	Diffusion of a Spatial Sinusoid	481
	Sinusoidal Time Variation	485
19	Dynamic Power Spectra	489
	The Concept of Dynamic Spectrum	489
	The Dynamic Spectrograph	491
	Computing the Dynamic Power Spectrum	494
	Frequency division I Time division / Presentation	
	Equivalence Theorem	497
	Envelope and Phase	498
	Using log / instead of /	499
	The Wavelet Transform	500
	Adaptive Cell Placement	502
	Elementary Chirp Signals (Chirplets)	502
	The Wigner Distribution	504

Contents	XV
Contents	XV

20	Tables of sine x , sine ² x , and exp $(-TTX^2)$	508
21	Solutions to Selected Problems	513
	Chapter 2 Groundwork	513
	Chapter 3 Convolution	514
	Chapter 4 Notation for Some Useful Functions	516
	Chapter 5 The Impulse Symbol	517
	Chapter 6 The Basic Theorems	522
	Chapter 7 Obtaining Transforms	524
	Chapter 8 The Two Domains	526
	Chapter 9 Waveforms, Spectra, Filters, and Linearity	530
	Chapter 10 Sampling and Series	532
	Chapter 11 The Discrete Fourier Transform and the FFT	534
	Chapter 12 The Hartley Transform	537
	Chapter 13 Relatives of the Fourier Transform	538
	Chapter 14 The Laplace Transform	539
	Chapter 15 Antennas and Optics	545
	Chapter 16 Applications in Statistics	555
	Chapter 17 Random Waveforms and Noise	557
	Chapter 18 Heat Conduction and Diffusion	565
	Chapter 19 Dynamic Spectra and Wavelets	571
22	Pictorial Dictionary of Fourier Transforms	573
	•	592
	Hartley Transforms of Some Functions without Symmetry	
23	The Life of Joseph Fourier	594
		597
	Index	