Problem Statement:

Breast Cancer Prediction

In [1]:

import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

Data collection:

In [2]:

df=pd.read_csv(r"C:\Users\raja\Downloads\BreastCancerPrediction.csv")
df

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothn	
0	842302	М	17.99	10.38	122.80	1001.0		
1	842517	М	20.57	17.77	132.90	1326.0		
2	84300903	М	19.69	21.25	130.00	1203.0		
3	84348301	М	11.42	20.38	77.58	386.1		
4	84358402	М	20.29	14.34	135.10	1297.0		
564	926424	М	21.56	22.39	142.00	1479.0		
565	926682	М	20.13	28.25	131.20	1261.0		
566	926954	М	16.60	28.08	108.30	858.1		
567	927241	М	20.60	29.33	140.10	1265.0		
568	92751	В	7.76	24.54	47.92	181.0		
569 rows × 33 columns								
4								

Data Cleaning and Preprocessing

In [3]:

df.head()

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 33 columns

In [4]:

df.tail()

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
564	926424	М	21.56	22.39	142.00	1479.0	
565	926682	М	20.13	28.25	131.20	1261.0	
566	926954	M	16.60	28.08	108.30	858.1	
567	927241	M	20.60	29.33	140.10	1265.0	
568	92751	В	7.76	24.54	47.92	181.0	

5 rows × 33 columns

In [5]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

_	#	Column	Non-Null Count	Dtype
	0	id	569 non-null	int64
	1	diagnosis	569 non-null	object
	2	radius_mean	569 non-null	float64
	3	texture_mean	569 non-null	float64
	4	perimeter_mean	569 non-null	float64
	5	area_mean	569 non-null	float64
	6	smoothness_mean	569 non-null	float64
	7	compactness_mean	569 non-null	float64
	8	concavity_mean	569 non-null	float64
	9	concave points_mean	569 non-null	float64
	10	symmetry_mean	569 non-null	float64
	11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
	12	radius_se	569 non-null	float64
	13	texture_se	569 non-null	float64
	14	perimeter_se	569 non-null	float64
	15	area_se	569 non-null	float64
	16	smoothness_se	569 non-null	float64
	17	compactness_se	569 non-null	float64
	18	concavity_se	569 non-null	float64
	19	concave points_se	569 non-null	float64
	20	symmetry_se	569 non-null	float64
	21	<pre>fractal_dimension_se</pre>	569 non-null	float64
	22	radius_worst	569 non-null	float64
	23	texture_worst	569 non-null	float64
	24	perimeter_worst	569 non-null	float64
	25	area_worst	569 non-null	float64
	26	smoothness_worst	569 non-null	float64
	27	compactness_worst	569 non-null	float64
	28	concavity_worst	569 non-null	float64
	29	concave points_worst	569 non-null	float64
	30	symmetry_worst	569 non-null	float64
	31	<pre>fractal_dimension_worst</pre>	569 non-null	float64
	32	Unnamed: 32	0 non-null	float64
		67	1 1 1/41	

dtypes: float64(31), int64(1), object(1)

memory usage: 146.8+ KB

In [6]:

df.isnull().sum()

Out[6]:

id	0
diagnosis	0
radius_mean	0
texture_mean	0
perimeter_mean	0
area_mean	0
smoothness_mean	0
compactness_mean	0
concavity_mean	0
concave points_mean	0
symmetry_mean	0
fractal_dimension_mean	0
radius_se	0
texture_se	0
perimeter_se	0
area_se	0
smoothness_se	0
compactness_se	0
concavity_se	0
concave points_se	0
symmetry_se	0
<pre>fractal_dimension_se</pre>	0
radius_worst	0
texture_worst	0
perimeter_worst	0
area_worst	0
smoothness_worst	0
compactness_worst	0
concavity_worst	0
concave points_worst	0
symmetry_worst	0
fractal_dimension_worst	0
Unnamed: 32	569

dtype: int64

localhost:8888/notebooks/Project(4) kMeans(BreastCancer).ipynb

In [7]:

df.drop(['Unnamed: 32'],axis=1)

Out[7]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothn				
0	842302	М	17.99	10.38	122.80	1001.0					
1	842517	М	20.57	17.77	132.90	1326.0					
2	84300903	М	19.69	21.25	130.00	1203.0					
3	84348301	М	11.42	20.38	77.58	386.1					
4	84358402	М	20.29	14.34	135.10	1297.0					
564	926424	М	21.56	22.39	142.00	1479.0					
565	926682	М	20.13	28.25	131.20	1261.0					
566	926954	М	16.60	28.08	108.30	858.1					
567	927241	М	20.60	29.33	140.10	1265.0					
568	92751	В	7.76	24.54	47.92	181.0					
569 r	569 rows x 32 columns										

569 rows × 32 columns

localhost:8888/notebooks/Project(4) kMeans(BreastCancer).ipynb

In [8]:

```
plt.scatter(df["radius_mean"],df["area_mean"])
plt.xlabel("radius_mean")
plt.ylabel("area_mean")
```

Out[8]:

Text(0, 0.5, 'area_mean')

KMeans Clustering

In [9]:

from sklearn.cluster import KMeans

In [10]:

km=KMeans()
km

Out[10]:

▼ KMeans KMeans()

In [11]:

```
y_predicted=km.fit_predict(df[["radius_mean","area_mean"]])
y_predicted
```

C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(

Out[11]:

```
array([4, 1, 1, 5, 1, 5, 4, 0, 0, 5, 6, 6, 1, 6, 0, 6, 6, 6, 1, 0, 0, 2,
       6, 1, 4, 4, 6, 4, 6, 4, 5, 4, 1, 6, 4, 0, 0, 6, 0, 0, 5, 4, 0,
       0, 4, 2, 0, 5, 0, 5, 0, 5, 4, 6, 5, 1, 6, 0, 2, 2, 2, 6, 2, 0, 6,
       2, 5, 2, 0, 1, 2, 4, 0, 5, 6, 0, 4, 1, 0, 5, 0, 7, 1, 5, 4, 6, 4,
       5, 6, 6, 6, 0, 0, 6, 1, 5, 2, 5, 6, 0, 2, 5, 2, 2, 0, 5, 5,
       2, 5, 0, 2, 2, 5, 2, 6, 6, 4, 5, 4, 7, 6, 0, 0, 0, 1, 6, 1, 5, 6,
       6, 6, 4, 0, 5, 5, 6, 5, 2, 6, 5, 0, 5, 5, 5, 6, 6, 0, 0, 2, 2, 5,
       0, 5, 4, 4, 5, 5, 5, 1, 1, 5, 7, 6, 5, 4, 4, 6, 5, 0, 6, 5, 2, 2,
       2, 6, 0, 0, 3, 1, 6, 5, 6, 2, 4, 5, 5, 5, 0, 0, 2, 5, 6, 0, 0, 4,
       1, 6, 5, 4, 7, 0, 5, 6, 2, 4, 0, 6, 1, 5, 3, 4, 0, 0, 5, 2, 1, 1,
       0, 0, 2, 6, 0, 6, 2, 6, 0, 0, 4, 5, 5, 1, 2, 0, 7, 1, 0, 4, 0, 5,
       5, 0, 1, 2, 0, 0, 2, 5, 1, 5, 1, 4, 1, 0, 1, 6, 6, 6, 1, 4, 4, 6,
       4, 1, 2, 0, 0, 2, 0, 5, 7, 2, 4, 5, 5, 4, 0, 0, 1, 5, 1, 6,
       5, 0, 5, 5, 6, 6, 0, 5, 0, 0, 5, 5, 0, 2, 1, 5, 1, 2, 5, 5, 0, 2,
       0, 0, 5, 6, 0, 5, 2, 5, 5, 4, 2, 5, 2, 1, 0, 1, 5, 0, 0, 5, 6, 6,
       6, 0, 5, 5, 5, 4, 0, 4, 2, 7, 6, 2, 5, 1, 5, 2, 5, 6, 5, 5, 5, 6,
       3, 6, 5, 5, 0, 0, 2, 2, 0, 0, 0, 6, 0, 1, 1, 5, 7, 7, 6, 6, 1,
       0, 6, 2, 0, 0, 5, 5, 5, 5, 5, 0, 6, 5, 0, 5, 1, 2, 2, 6, 1, 5, 0,
       0, 0, 5, 5, 4, 5, 0, 0, 5, 5, 6, 0, 4, 5, 5, 5, 2, 6, 6, 5, 2, 6,
       0, 5, 5, 6, 5, 0, 2, 2, 2, 5, 5, 0, 6, 5, 1, 4, 6, 0, 0, 0, 0, 0,
       5, 4, 0, 2, 4, 5, 4, 6, 6, 1, 5, 1, 5, 6, 0, 0, 5, 0, 0, 2, 4, 3,
       6, 5, 0, 0, 0, 2, 4, 5, 2, 5, 6, 5, 5, 0, 0, 0, 5, 6, 5, 0, 0, 0,
       6, 5, 6, 1, 5, 4, 5, 4, 4, 5, 0, 6, 5, 5, 4, 1, 6, 0, 5, 7, 2, 2,
       5, 5, 6, 6, 5, 6, 0, 6, 6, 5, 4, 1, 0, 0, 2, 7, 5, 0, 2, 2, 0, 5,
       0, 5, 5, 5, 0, 1, 5, 1, 0, 5, 2, 2, 5, 6, 6, 0, 0, 0, 2, 2, 2, 5,
       5, 5, 0, 2, 0, 2, 2, 2, 6, 5, 0, 5, 6, 1, 7, 1, 4, 1, 2])
```

In [12]:

```
df["Cluster"]=y_predicted
df.head()
```

Out[12]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 34 columns

In [13]:

```
df1=df[df.Cluster==0]
df2=df[df.Cluster==2]
df3=df[df.Cluster==3]
plt.scatter(df1["radius_mean"],df1["area_mean"],color="red")
plt.scatter(df2["radius_mean"],df2["area_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["area_mean"],color="blue")
plt.xlabel("radius_mean")
plt.ylabel("area_mean")
```

Out[13]:

Text(0, 0.5, 'area_mean')

In [14]:

from sklearn.preprocessing import MinMaxScaler

In [15]:

```
scaler=MinMaxScaler()
```

```
In [16]:
```

```
scaler.fit(df[["area_mean"]])
df["area_mean"]=scaler.transform(df[["area_mean"]])
df.head()
```

Out[16]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	0.363733	
1	842517	М	20.57	17.77	132.90	0.501591	
2	84300903	М	19.69	21.25	130.00	0.449417	
3	84348301	М	11.42	20.38	77.58	0.102906	
4	84358402	М	20.29	14.34	135.10	0.489290	

5 rows × 34 columns

→

In [17]:

```
scaler.fit(df[["radius_mean"]])
df["radius_mean"]=scaler.transform(df[["radius_mean"]])
df.head()
```

Out[17]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	0.521037	10.38	122.80	0.363733	
1	842517	М	0.643144	17.77	132.90	0.501591	
2	84300903	М	0.601496	21.25	130.00	0.449417	
3	84348301	М	0.210090	20.38	77.58	0.102906	
4	84358402	М	0.629893	14.34	135.10	0.489290	

5 rows × 34 columns

→

In [18]:

km=KMeans()

In [19]:

```
y_predicted=km.fit_predict(df[["radius_mean","area_mean"]])
y_predicted
```

C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(

Out[19]:

```
array([2, 3, 3, 1, 3, 1, 2, 7, 7, 1, 5, 5, 3, 5, 7, 5, 5, 5, 3, 7, 7, 4,
       5, 3, 2, 2, 5, 2, 5, 2, 2, 1, 2, 3, 5, 2, 7, 7, 5, 7, 7, 1, 3, 7,
       7, 2, 4, 7, 1, 7, 1, 7, 1, 2, 5, 1, 3, 5, 7, 4, 4, 4, 5, 4, 7, 5,
       4, 1, 4, 7, 3, 4, 2, 7, 1, 5, 7, 2, 3, 7, 1, 7, 0, 3, 1, 2, 5, 2,
       1, 5, 5, 5, 7, 7, 5, 3, 1, 4, 1, 5, 7, 4, 1, 4, 4, 7, 1,
       4, 7, 7, 4, 4, 1, 4, 5, 5, 2, 1, 2, 0, 5, 7, 7, 7, 3, 5, 3,
       5, 5, 2, 7, 1, 1, 5, 1, 4, 5, 1, 7, 1, 1, 1, 5, 5, 7, 7, 4, 4, 1,
       7, 1, 2, 2, 1, 1, 1, 3, 3, 1, 0, 5, 1, 2, 2, 5, 1, 7, 5, 1, 1, 4,
       4, 5, 7, 7, 6, 3, 5, 1, 5, 4, 2, 1, 1, 1, 7, 7, 4, 1, 5, 7,
       3, 5, 1, 2, 0, 7, 1, 5, 4, 2, 7, 5, 3, 1, 6, 2, 7, 7, 1, 4,
       7, 7, 4, 5, 7, 5, 4, 5, 7, 7, 2, 1, 1, 3, 4, 7, 0, 3, 7, 2, 7, 1,
       1, 7, 3, 4, 7, 7, 1, 1, 3, 1, 3, 2, 3, 7, 3, 5, 5, 5, 5, 3, 2, 2, 5,
       2, 3, 4, 7, 7, 1, 7, 1, 0, 4, 2, 1, 1, 2, 7, 7, 3, 1, 3, 5,
         7, 1, 1, 5, 5, 7, 1, 7, 7, 1, 1, 7, 4, 3, 1, 3, 4, 1, 1, 7, 4,
       7, 7, 1, 5, 7, 1, 4, 1, 1, 2, 4, 1, 4, 3, 7, 3, 1, 7, 7, 1, 5, 5,
       5, 7, 1, 1, 1, 2, 7, 2, 4, 0, 5, 4, 1, 3, 1, 4, 1, 5, 1, 1, 1, 5,
       6, 5, 1, 7, 7, 7, 4, 4, 7, 7, 7, 5, 7, 3, 3, 1, 0, 0, 5, 5,
       7, 5, 4, 7, 7, 1, 1, 1, 1, 1, 7, 5, 1, 7, 1, 3, 4, 4, 5, 3, 1, 7,
       7, 7, 1, 1, 2, 1, 7, 7, 1, 1, 5, 7, 2, 1, 1, 1, 4, 5, 5, 1, 4, 5,
       7, 1, 1, 5, 1, 7, 4, 4, 4, 1, 1, 7, 5, 1, 3, 2, 5, 7, 7, 7,
       1, 2, 7, 4, 2, 1, 2, 5, 5, 3, 1, 3, 1, 5, 7, 7, 1, 7, 7, 4, 2, 6,
       5, 1, 7, 7, 7, 4, 2, 1, 4, 1, 5, 1, 1, 7, 7, 7, 1, 5, 1, 7, 7, 7,
       5, 1, 5, 3, 1, 2, 1, 2, 2, 1, 7, 5, 7, 1, 2, 3, 5, 7, 1, 0, 4, 4,
       1, 1, 5, 5, 1, 5, 7, 5, 5, 1, 2, 3, 7, 7, 4, 0, 1, 7, 4, 4, 7,
       7, 1, 1, 1, 7, 3, 1, 3, 7, 1, 4, 4, 1, 5, 5, 7, 7, 7, 4, 4, 4, 1,
       1, 1, 7, 4, 7, 4, 4, 4, 5, 1, 7, 1, 5, 3, 0, 3, 2, 3, 4])
```

In [20]:

```
df["New cluster"]=y_predicted
df.head()
```

Out[20]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	0.521037	10.38	122.80	0.363733	
1	842517	М	0.643144	17.77	132.90	0.501591	
2	84300903	М	0.601496	21.25	130.00	0.449417	
3	84348301	М	0.210090	20.38	77.58	0.102906	
4	84358402	М	0.629893	14.34	135.10	0.489290	

5 rows × 35 columns

→

In [21]:

```
df1=df[df["New cluster"]==0]
df2=df[df["New cluster"]==1]
df3=df[df["New cluster"]==2]
plt.scatter(df1["radius_mean"],df1["area_mean"],color="red")
plt.scatter(df2["radius_mean"],df2["area_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["area_mean"],color="blue")
plt.xlabel("radius_mean")
plt.ylabel("area_mean")
```

Out[21]:

Text(0, 0.5, 'area_mean')

In [22]:

```
km.cluster_centers_
```

Out[22]:

In [23]:

```
df1=df[df["New cluster"]==0]
df2=df[df["New cluster"]==1]
df3=df[df["New cluster"]==2]
plt.scatter(df1["radius_mean"],df1["area_mean"],color="red")
plt.scatter(df2["radius_mean"],df2["area_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["area_mean"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("radius_mean")
plt.ylabel("area_mean")
```

Out[23]:

Text(0, 0.5, 'area_mean')

In [24]:

```
k_rng=range(1,10)
sse=[]
```

In [25]:

```
for k in k_rng:
   km=KMeans(n_clusters=k)
    km.fit(df[["radius_mean","area_mean"]])
    sse.append(km.inertia )
#km.inertia_ will give you the value of sum of square errorprint(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init`
will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
  warnings.warn(
C:\Users\raja\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly
to suppress the warning
 warnings.warn(
Out[25]:
Text(0, 0.5, 'Sum of Squared Error')
```


Conclusion:

In this dataset we are doing clustering on Radius_mean and Area_mean. This is the best model for this dataset. when k value is high error rate is low, or k value is low error rate is high