Data Augmentation

Júlia Borges C. Silva Seminário IA898A - 2S2018

Agenda

- → Introdução
- → Técnicas de Data Augmentation
- → Experimentos Comparativos
- → Bibliotecas
- → Conclusões

Introdução

O que é?

→ É uma técnica para aumentar um conjunto de dados artificialmente, criando novos dados derivados dos que já existem [8].

Para quê serve?

- → Utilizado em aplicações onde a variedade de informações trás uma visão mais aprofundada do problema.
- Diminui a intervenção manual para criação de dados significativos.

Aplicação

→ Muito utilizado para tornar bases de dados mais robustas para algoritmos de Machine Learning (ML).

> ML é uma área da computação que utiliza técnicas estatísticas para dar ao computador a habilidade de "aprender" com os dados, sem que isso tenha sido explicitamente programado [2].

Qual o problema de base de dados pequena em ML?

Os modelos treinados em bases pequenas não generalizam bem os dados. Com isso, podem não ter uma acurácia satisfatória e/ou podem sofrer com o problema de "overfitting".

Generalização

FONTE: By Tomwsulcer - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=15568536

Overfitting

FONTE: By Chabacano - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3610

Contexto

Algoritmos de ML

Quanto maior a quantidade de dados para treinamento do algoritmo, melhor é o aprendizado.

Base de imagens

Geralmente é difícil obter dados suficientes. Na área médica, muitos dados são protegidos em razão da privacidade do paciente.

Como Data Augmentation pode reduzir o overfitting?

Aumentando o conjunto de treinamento com técnicas de distorção de dados.

- → Transformações geométricas [9]
 - ◆ Translação
 - Mudança de escala
 - ◆ Rotação
 - Reflexão
- → Transformações de cor
 - Modificação da intensidade
 - ◆ Inserção de ruído

Técnicas

Transformações geométricas

Translação: horizontal e vertical

Imagem original

150

200

Mudança de escala

Altera a resolução espacial da imagem.

É importante observar a mudança na escala dos eixos das imagens.

Rotação

Rotaciona a imagem a partir de um certo ângulo.

Imagem original

Reflexão

A reflexão pode ser horizontal ou vertical e tem um efeito de espelho da imagem.

Técnicas

Transformações de cor

Modificação de Intensidade

Soma ou subtrai um valor de um dos canais da imagem (no caso de ser RGB) ou, no caso de imagem em escala de cinza, é o equivalente da alterar a quantização da imagem.

Inserção de ruído

Foi inserido ruído Gaussiano e o chamado Sal & Pimenta

Técnicas

Combinações de duas ou mais técnicas

Combinação de duas ou mais transformações

Exemplo gerado a partir da combinação de translação horizontal, translação vertical e reflexão.

Isso pode gerar inúmeras imagens artificiais.

Problema resolvido?

Depende. Muitas vezes algumas transformações não são adequadas no contexto da aplicação. Por isso é importante identificar quais técnicas serão relevantes para construção da nova base de imagens.

Caso em que a reflexão vertical não é muito vantajosa

Se o algoritmo de ML busca por pontos turísticos em fotos, talvez esse tipo de transformação não traga melhorias ao desempenho do algoritmo.

Caso em que a reflexão vertical pode ser vantajosa

Se o algoritmo de ML quer identificar comprimidos de medicamentos, é melhor que tenha todas as orientações em que o comprimido pode ser encontrado.

Experimentos Comparativos

E vale a pena o esforço?

Foram criadas duas redes neurais para classificar algumas imagens entre 4 categorias:

gato, leão, tigre ou leopardo

Base de dados (<u>link</u>):

50 imagens de cada categoria para teste e treinamento das redes

Uma das redes foi treinada utilizando *Trasnsfer Learning* (um método para lidar com bases pequenas de dados) e a outra com Data Augmentation.

Passo a passo das implementações, parâmetros e métodos disponíveis em <u>link</u>

Resultados

Sem Data Augmentation:

75% de acurácia no melhor método

Com Data Augmentation:

95,5 % de acurácia

Bibliotecas

Biblioteca do Python

https://github.com/mdbloice/Augmentor

É um pacote Python que auxilia no aumento e na geração artificial de dados de imagem para tarefas de aprendizado de máquina

A documentação pode ser encontrada em:

https://augmentor.readthedocs.io/en/master/userguide/mainfeatures.html#elastic-distortions

Biblioteca do Python

https://keras.io/preprocessing/image/

Keras possui a classe <u>ImageDataGenerator</u> que define a configuração para preparação e aumento do conjunto de imagens. Isso inclui, entre outras coisas:

- Rotação aleatória, deslocamentos, cortes e espelhamento.
- Salva as imagens criadas em disco.

Conclusões

Diversidade é bom!

Data Augmentation é utilizado para reduzir overfitting de modelos de ML.

Aprenda com seus erros!

Alguns algoritmos de ML buscam algum padrão em um conjunto de dados que podem ser "ruidosos".

Data Augmentation

São conceitos simples que podem deixar métodos de ML muito mais eficazes.

Não basta apenas aplicar as bibliotecas existentes.

É necessário conhecimento sobre as transformações que serão feitas no dataset para analisar se são coerentes com a aplicação.

Talvez seja mais vantajoso criar sua própria biblioteca.

Referências Bibliográficas

Referências

[1] Perez, L. and Wang, J., 2017. The effectiveness of data augmentation in image classification using deep learning. *arXiv* preprint *arXiv*:1712.04621.

[2] Samuel, A.L., 1959. Some studies in machine learning using the game of checkers. *IBM Journal of research and development*, 3(3), pp.210-229.

[3] Vasconcelos, C.N. and Vasconcelos, B.N., 2017. Increasing deep learning melanoma classification by classical and expert knowledge based image transforms. *CoRR*, abs/1702.07025, 1.

Referências

[4]

https://machinelearningmastery.com/image-augmentation-deep-learning-keras/

[5]

https://medium.com/nanonets/how-to-use-dee p-learning-when-you-have-limited-data-part-2-da ta-augmentation-c26971dc8ced

[6]

https://gist.github.com/tomahim/9ef72befd43f 5c106e592425453cb6ae

[7]

https://towardsdatascience.com/data-augment ation-experimentation-3e274504f04b

Referências

[8] https://www.techopedia.com/definition/28033/ data-augmentation

[9] Gonzalez, Rafael C., and Richard E. Woods. *Processamento de imagens digitais*. Edgard Blucher, 2000.