R2.07: Graphes et recherche de chemins

(Aucun document autorisé, pas de calculatrices, téléphones. Durée 1h30)

Remarque : le problème contient trois parties qui peuvent être traitées séparément.

Problème

Soit $G = (S = \{1, ..., n\}, A, v)$ un graphe simple valué dans le dioïde (E, \oplus, \otimes) .

PARTIE I (6 points)

On s'intéresse tout d'abord au problème du dénombrement de chemins (à savoir le nombre de chemins de mêmes extrémités) valué dans $(\mathbb{N}, \oplus, \otimes)$.

- 1. Quelle valuation est associée aux arcs du graphe G pour indiquer l'existence d'un chemin ?
- 2. Donner les opérations \oplus (opération qui permet d'obtenir le nombre de chemins de même extrémités) et \otimes (opération qui permet de dire qu'on a 1 chemin entre deux sommets) ainsi que leurs éléments neutres.
- 3. Donner les éléments neutres des opérations \oplus et \otimes .
- 4. La propriété d'absorption est-elle satisfaite?
- 5. L'opération \oplus est-elle idempotente?
- 6. Peut-on appliquer l'algorithme de Ford-Bellman?

PARTIE II (8 points)

On cherche maintenant les chemins de capacité maximale dans un graphe G valué dans $(\mathbb{R}^+ \cup \{+\infty\}, \oplus, \otimes)$.

- 1. Donner les opérations \oplus et \otimes ainsi que leurs éléments neutres.
- 2. La propriété d'absorption est-elle satisfaite ? Interpréter cette relation.
- 3. Dans l'algorithme de Warshall, on détermine des matrices $W^{(k)}$. Donner un sens aux coefficients $w_{ij}^{(k)}$, $(i,j) \in S^2$, $0 \le k \le n$, de la matrice $W^{(k)}$.
- 4. Donner la relation entre les coefficients de la matrice $W^{(k)}$ en fonction des coefficients de la matrice $W^{(k-1)}$.

PARTIE III: application (6 points)

On considère le graphe $G=(S,A,v),\,S=\{1,2,3,4,5\}$ suivant :

a = (i, j)	(1,2)	(1,3)	(1,5)	(2,3)	(2,4)	(3,4)	(4,1)	(5,2)	(5,3)
v((i,j))	1	2	4	4	5	3	4	4	3

À chaque arc a de G, on a associé sa capacité. On s'intéresse alors à trouver les chemins du graphe G de capacité maximale.

- 1. Pourquoi peut-on appliquer l'algorithme de Warshall pour déterminer les chemins de capacité maximale ? Appliquer cet algorithme.
- 2. Donner un meilleur chemin d'origine 1 et d'extrémité 1 et un meilleur chemin d'origine 3 et d'extrémité 5 ainsi que leur capacité respective.