Apuntes de clase

José Antonio de la Rosa Cubero

Proposición 1. Se verifica que para todo $n \ge 2$:

$$|A_n| = \frac{n!}{2}$$

Demostración. Consideramos $\tau = (12) \in S_n$ y el conjunto:

$$(12)A_n := \{(12)\alpha : \alpha \in A_n\}$$

Es claro que todos los elementos de este conjunto son permutaciones impares. Si $\sigma \in S_n$ es una permutación impar, entonces veamos que $\sigma \in (12)A_n$.

Esto es porque $\sigma = (12)(12)\sigma$ y tenemos que $(12)\sigma \in A_n$ por ser ω una permutación impar.

Luego $(12)A_n$ es el conjunto de las permutaciones impares de S_n .

$$A_n \cup (12)A_n = S_n$$

Y además:

$$A_n \cap (12)A_n = S_n$$

Luego tenemos que el orden del grupo de permutaciones es el orden del grupo alternado más el cardinal de ese conjunto:

$$|S_n| = |A_n| + |(12)A_n|$$

Por otro lado la aplicación $d: A_n \longrightarrow (12)A_n$ tal que $d(\alpha) = (12)\alpha$, es biyectiva y entonces tenemos que

$$|A_n| = |(12)A_n|$$

Y por tanto:

$$|A_n| = \frac{S_n}{2}$$

Para G un grupo denotaremos $\mathrm{Sub}(G)$ a la familia de todos los subgrupos de G. Veamos que G es un conjunto ordenado por la inclusión.

Definición 1. Un conjunto ordenado se dice un retículo si para todo $x, y \in X$ existe inf $\{x, y\}$ y existe el sup $\{x, y\}$.

Proposición 2. Sea G un grupo y sea $\{H_i\}_{i\in I}$ una familia de subgrupos de G. Entonces la intersección de todos ellos es también un subgrupo de G.

Proposición 3. Sub(G) es un retículo.

Demostración. Sean H_1, H_2 subgrupos. El ínfimo es su intersección, que por la proposición anterior es un grupo.

El supremo lo obtenemos así:

$$\sup\{H_1, H_2\} = \bigcap_{K \in \mathcal{K}} K$$

Donde $\mathcal{K} = \{ K \in \text{Sub}(G) : H_i \leq K, i = 1, 2 \}.$

Definición 2. Denotaremos $\sup\{H_1, H_2\} = H_1 \wedge H_2$.

La unión de subgrupos no es en general un subgrupo.

Consideremos $D_3 = \{1, r, r^2, s, rs, r^2s\}.$

Tenemos que si $H_1 = \{1, s\}$ y $H_2 = \{1, rs\}$, mientras que la unión es $\{1, s, rs\}$ no es un grupo, pues (rs)s = r que no está en la unión.

Definición 3. Sea G un grupo y X,Y subconjuntos no vacíos del grupo. Denotaremos por XY al conjunto

$$XY:=\{xy:x\in X,y\in Y\}$$

Si $X = \{a\}$, escribiremos $aY = \{ay : y \in Y \text{ y si } Y = \{b\}$, escribiremos $Xb = \{xb : x \in X\}$.

Proposición 4. Sean H_1, H_2 tales que $H_1H_2 = H_2H_1$, entonces, H_1H_2 es un subgrupo de G y el supremo es el producto: $H_1 \wedge H_2 = H_1H_2$.