V2.5 2017.06

产品特点

- 5V 电源供电, 半双工;
- 1/8 单位负载,允许最多 256 个器件连接到总线;
- 驱动器短路输出保护;
- 过温保护功能;
- 低功耗关断功能:
- /RE、DE 端口允许热插拔输入
- 接收器开路失效保护;
- 具有较强的抗噪能力;
- 集成的瞬变电压抵制功能;
- 在 电 噪 声 环 境 中 的 数 据 传 输 速 率 可 达 到 500kbps:
- A、B 端口防护:接触放电±15KV; HBM±15KV。

图 1 引脚分布图

应用领域

- 电表、水表、燃气表抄表通讯;
- 电平转换
- 工业控制
- 智能仪表
- 中央空调
- 对 EMI 敏感收发器应用

- 火灾报警器
- 照明系统
- 电梯控制器
- 门禁安防

产品概述

SIT485E 是一款 5V 供电、半双工、低功耗、低摆率, 完全满足 TIA/EIA-485 标准要求的 RS-485 收发器。

SIT485E 包括一个驱动器和一个接收器,两者均可独立使能与关闭。当两者均禁用时,驱动器与接收器均输出高阻态。SIT485E 具有 1/8 负载,允许 256 个发送器并接在同一通信总线上。使用限压摆率驱动器,能显著减小 EMI 和由于不恰当的终端匹配电缆所引起的反射,可实现高达 500kbps 的无差错数据传输。

SIT485E 工作电压范围为 4.75~5.25V, 具备失效安全(fail-safe)、过温保护、限流保护、过压保护,控制端口热插拔输入等功能。

SIT485E 具有优秀的 ESD 释放能力, HBM 达到 ±15KV, 接触放电, IEC61000-4-2 ±15KV。

定购信息

定购代码	温度	封装
SIT485EESA	-40°C~85°C	8 SO
SIT485EEPA	-40°C~85°C	DIP8

编带式包装为 2500 颗/盘

极限参数:

参数	符号	大小	单位
电源电压	VCC	+7	V
控制端口电压	/RE, DE, DI	-0.3~VCC+0.3	V
总线侧输入电压	A、B	-7~13	V
接收器输出电压	RO	-0.3~VCC+0.3	V
工作温度范围		-40~85	${\mathbb C}$
存储工作温度范围		-60~150	$^{\circ}$ C
焊接温度范围		300	$^{\circ}$ C
连续功耗	SOP8	400	mW
	DIP8	700	mW

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是 不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压 的参考点为地。

引脚定义:

引脚序号	引脚名称	引脚功能
1	RO	接收器输出端。 当/RE 为低电平时, 若 A-B≧-50mV, RO 输出为高电平; 若 A-B≦-200mV,RO 输出为低电平。
2	/RE	接收器输出使能控制。 当/RE 接低电平时,接收器输出使能,RO 输出有效; 当/RE 接 高电平时,接收器输出禁能,RO 为高阻态; /RE 接高电平且 DE 接低电平时,器件进入低功耗关断模式。
3	DE	驱动器输出使能控制。 DE 接高电平时驱动器输出有效,DE 为低电平时输出为高阻态; /RE 接高电平且 DE 接低电平时,器件进入低功耗关断模式。
4	DI	驱动器输入。DE 为高电平时, DI 上的低电平使驱动器同相端 A 输出为低电平,驱动器反相端 B 输出为高电平; DI 上的高电平将使同相端输出为高电平,反相端输出为低。
5	GND	接地
6	A	接收器同相输入和驱动器同相输出端
7	В	接收器反相输入和驱动器反相输出端
8	VCC	电源端

直流电学特性

(如无另外说明,VCC=5V±5% ,TA=T_{MIN}~T_{MAX},典型值在 VCC=+5V,TA=25℃)

参数	- 5% ,IA-IMIN* 符号	最小	典型	最大	单位	测试条件
驱动器						
驱动器差分输出 (无负载)	V_{OD1}		5		V	
驱动差分输出	V_{OD2}	1.5 2		5	V	图 2, RL = 27 Ω 图 2, RL = 50 Ω
输出电压幅值的变化 (NOTE1)	ΔV_{OD}			0.2	V	图 2,RL = 27 Ω
输出共模电压	Voc			3	V	图 2,RL = 27 Ω
共模输出电压幅值的变化 (NOTE1)	ΔVος			0.2	V	图 2,RL = 27 Ω
高电平输入	V _{IH}	2.0			V	DE, DI, /RE
低电平输入	V _{IL}			0.8	V	DE, DI, /RE
逻辑输入电流	I _{IN1}	-2		2	uA	DE, DI, /RE
输出短路时的电流, 短路到高	I _{OSD1}	35		250	mA	短路到 0V~12V
输出短路时的电流, 短路到低	I _{OSD2}	-250		-35	mA	短路到-7V~0V
过温关断阈值温度			150		$^{\circ}\!\mathbb{C}$	
过温关断迟滞温度			20		${\mathbb C}$	
接收器						
输入电流(A,B)	I_{IN2}			125	uA	DE = 0 V, VCC=0 或 5V VIN = 12 V
	I_{IN2}	-100			uA	DE = 0 V, VCC=0 或 5V VIN = -7 V
正向输入阀值电压	V_{IT+}			-50	mV	-7V≦V _{CM} ≦12V
反向输入阀值电压	V _{IT-}	-200			mV	, to the civil and the
输入迟滞电压	V _{hys}	10	30		mV	-7V≦V _{CM} ≦12V
高电平输出电压	V _{OH}	VCC-1.5			V	$I_{OUT} = -4mA$, $V_{ID} = +200 \text{ mV}$
低电平输出电压	V _{OL}			0.4	V	$I_{OUT} = +4mA$, $V_{ID} = -200 \text{ mV}$

三态输入漏电流	I_{OZR}			±1	uA	0.4 V < V ₀ < 2.4 V
接收端输入电阻	R _{IN}	96			kΩ	-7V≦V _{CM} ≦12V
接收器短路电流	I_{OSR}	±7		±95	mA	0 V≪V ₀ ≪VCC
供电电流						
供电电流	ICC		180	500	uA	/RE=0V 或 VCC, DE = 0 V
			170	400	uA	/RE=VCC , DE = VCC
关断电流	I_{SHDN}		0.5	10	uA	DE =0 V, /RE= VCC
ESD 保护						
A、B			± 15		KV	人 体 模 型 (HBM)
			± 15		KV	接触放电
其它端口		±4			KV	НВМ

NOTE1: ΔVOD 和 ΔVOC 分别是输入信号 DI 状态变化时引起的 VOD 与 VOC 幅值的变化。

开关特性

(如无另外说明,VCC=5V±5%,TA=T_{MIN}~T_{MAX},典型值在 VCC=5V,TA=25℃)

参数	符号	最小	典型	最大	单位	测试条件	
驱动器							
驱动器输入到输出传播延 迟(低到高)	t _{DPLH}			1000	ns		
驱动器输入到输出传播延 迟(高到低)	t_{DPHL}			1000	ns	$R_{DIFF} = 54 \Omega,$ $C_{L1} = C_{L2} = 100 pF$	
t _{DPLH} - t _{DPHL}	t _{SKEW1}			±100	ns	(见图 3 与图 4)	
上升沿时间/下降沿时间	$t_{\mathrm{DR}},t_{\mathrm{DF}}$	200	500	700	ns		
使能到输出高	t _{DZH}			2500	ns	CL = 100 pF, S1 闭	
使能到输出低	t _{DZL}			2500	ns	合(见图 5、6)	
输入低到禁能	t _{DLZ}			100	ns	C _L = 15 pF, S2 闭合	
输入高到禁能	t _{DHZ}			100	ns	(见图 5、6)	
关断条件下, 使能到输出高	t _{DZH(SHDN)}			4500	ns	C _L = 15 pF, S2 闭合 (见图 5、6)	
关断条件下, 使能到输出低	t _{DZL(SHDN)}			4500	ns	C _L = 15 pF, S1 闭合 (见图 5、6)	

接收器						
接收器 输入到输出传播延迟 从低到高	t _{RPLH}		127	200	ns	见图 7 与图 8 VID≥2.0V; 上
接收器 输入到输出传播延迟 从高到低	t _{RPHL}		127	200	ns	升与下降沿 时间 VID ≤15ns
t _{RPLH} - t _{RPHL}	t _{SKEW2}		3	30	ns	见图 7 与图 8
使能到输出低时间	$t_{ m RZL}$		20	50	ns	C _L = 100 pF, S1 闭合 (见图 9,10)
使能到输出高时间	t _{RZH}		20	50	ns	C _L = 100 pF, S2 闭合(见图 9,10)
从输出低到禁能时间	t_{RLZ}		20	50	ns	C _L = 100 pF, S1 闭合 (见图 9,10)
从输出高到禁能时间	t _{RHZ}		20	50	ns	C _L = 100 pF, S2 闭合 (见图 9,10)
关断状态下 使能到输出高时间	t _{RZH(SHDN)}			3500	ns	C _L = 100 pF, S2 闭合(见图 9,10)
关断状态下 使能 到输出低时间	t _{RZL(SHDN)}			3500	ns	C _L = 100 pF, S1 闭合 (见图 9,10)
进入关断状态时间	t _{SHDN}	50	200	600	ns	NOTE2

NOTE2:当/RE=1,DE=0 持续时间小于 50ns 时,器件必不进入 shutdown 状态,当大于 600ns 时,必定进入 shutdown 状态。

SIT485E 功能表:

发送			接收					
控	制	输入	输	出	控制		输入	输出
/RE	DE	DI	Α	В	/RE	DE	A-B	RO
Х	1	1	1	0	0	х	≥-50mV	1
Х	1	0	0	1	0	х	≤-200mV	0
0	0	х	Z	Z	0	х	开路/短路	1
1	0	Х	Z (Shutd	own)	1	1	х	Z
X: 任意	:电平; Z:	高阻。			1	0	х	Z (Shutdown)

测试电路

图 2 驱动器直流测试负载

图 3 驱动器时序测试电路

图 5 驱动器使能/禁能时序测试电路

图 4 驱动器传播延迟

图 6 驱动器使能/禁能时序

图 7 接收器传播延时测试电路

图 8 接收器传播延迟时序

图 9 接收器使能/禁能时序测试电路

图 10 接收器使能与禁能时序

1 简述

SIT485E 是用于 RS-485/RS-422 通信的半双工高速收发器,包含一个驱动器和接收器。具有失效安全,过压保护、过流保护、过热保护功能,允许/RE, DE 端口热插拔输入。

SIT485E 具有低摆率驱动器,能够减小 EMI 和由于不恰当的电缆端接所引起的反射,实现高达 500 kbps 的无差错数据传输。

2 失效安全

接收器输入短路或开路,或挂接在终端匹配传输线上的所有驱动器均处于禁用状态时(idle),SIT485E 可确保接收器输出逻辑高电平。这是通过将接收器输入门限分别设置为-50mV 和-200mV 实现的。若差分接收器输入电压(A-B)≥-50mV,RO 为逻辑高电平;若电压(A-B)≤-200mV,RO 为逻辑低电平。当挂接在终端匹配总线上的所有发送器都禁用时,接收器差分输入电压将通过终端电阻拉至 0V。依据接收器门限,可实现具有 50mV 最小噪声容限的逻辑高电平。-50mV 至-200mV 门限电压是符合±200mV 的 EIA/TIA-485 标准的。

3 总线上挂接 256 个收发器

4降低 EMI 和反射

SIT485E 的低摆率驱动器可以减小 EMI,并降低由不恰当的终端匹配电缆引起的反射,驱动器上升沿的时间与终端的长度有关。

5 驱动器输出保护

通过两种机制避免故障或总线冲突引起输出电流过大和功耗过高。第一,过流保护,在整个共模电压范围(参考典型工作特性)内提供快速短路保护。第二,热关断电路,当管芯温度超过 150℃时,强制驱动器输出进入高阻状态。

典型应用

SIT485E RS485 收发器设计用于多点总线传输线上的双向数据通信。图 11 显示了典型网络应用电路.这些器件也能用作电缆长于 4000 英尺的线性转发器,为减小反射,应当在传输线两端以其特性阻抗进行终端匹配,主干线以外的分支连线长度应尽可能短。

图 11 典型的 RS485 半双工通讯网络

S08 封装外形尺寸:

封装尺寸

符号	最小值 /mm	典型值 /mm	最大值 /mm
A	1.50	1.60	1.70
A1	0.1	0.15	0.2
A2	1.35	1.45	1.55
b	0.355	0.400	0.455
D	4.800	4.900	5.00
Е	3.780	3.880	3.980
E1	5.800	6.000	6.200
e		1.270BSC	
L	0.40	0.60	0.80
С	0.153	0.203	0.253
θ	-2 °	-4 °	-6°

DIP8 封装外形尺寸:

符号	最小值 /mm	典型值 /mm	最大值 /mm
A	9.00		9.20
A1	1.474		1.574
A2	0.41		0.51
A3	2.44		2.64
A4		0.51 TYP	
A5		0.99 TYP	
В	6.10		6.30
С	3.20		3.40
C1	7.10		7.30
C2		0.50 TYP	
C3	3.20		3.40
C4	1.47		1.57
D	8.20		8.80
D1	0.244		0.264
D2	7.62		7.87
θ1		17° TYP4	
θ2		10 ° TYP4	
θ3		8 ° TYP4	,