

第7章频率特性和谐振现象

杨旭强 哈尔滨工业大学电气工程系

7.3 RLC串联电路的频率特性

基本要求:了解RLC串联电路的网络函数及其频率特性。

主要内容

- 一、以电阻电压为响应的网络函数
- 二、以电容电压为响应的网络函数
- 三、以电感电压为响应的网络函数

7.3 RLC串联电路的频率特性

$$H_{R}(j\omega) = \frac{\dot{U}_{R}}{\dot{U}} = \frac{R}{R + j[\omega L - 1/(\omega C)]}$$

$$H_{C}(j\omega) = \frac{\dot{U}_{C}}{\dot{U}} = \frac{1/(j\omega C)}{R + j\omega L + 1/(j\omega C)}$$

$$H_{L}(j\omega) = \frac{\dot{U}_{L}}{\dot{U}} = \frac{j\omega L}{R + j\omega L + 1/(j\omega C)}$$

一、以电阻电压为响应的网络函数

$$H_{R}(j\omega) = \frac{\dot{U}_{R}}{\dot{U}} = \frac{R}{R + j[\omega L - 1/(\omega C)]}$$

$$|H_R(j\omega)| = \frac{1}{\sqrt{1 + \frac{1}{R^2} \left(\omega L - \frac{1}{\omega C}\right)^2}} = \frac{1}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$$

$$\theta_R(\omega) = -\arctan Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right)$$

ω/ω_0	$ H_R(j\omega) $	$\theta_{\scriptscriptstyle R}(\omega)$
0	0	90°
1	1	0°
•	•	•
•	•	:
∞	0	-90°

一、以电阻电压为响应的网络函数

$$\left| H_R(j\omega) \right| = \frac{1}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right)^2}}$$

$$\theta_R(\omega) = -\arctan Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right)$$

RLC带通电路的频率特性

1. $|H_R(j\omega)|$ 具有带通特性

$$\frac{1}{\sqrt{1+Q^2\left(\frac{\omega_{\rm c}}{\omega_0} - \frac{\omega_0}{\omega_{\rm c}}\right)^2}} = \frac{1}{\sqrt{2}}$$

$$\omega_{\rm c1} = \omega_0 \left(-\frac{1}{2Q} + \sqrt{\frac{1}{4Q^2} + 1} \right)$$

$$\omega_{c2} = \omega_0 \left(\frac{1}{2Q} + \sqrt{\frac{1}{4Q^2} + 1} \right)$$

通带宽度

$$\Delta \omega = \omega_{c2} - \omega_{c1} = \frac{\omega_0}{O}$$

一、以电阻电压为响应的网络函数

2. 频率特性与品质因数的关系

$$\Delta\omega = \omega_{c2} - \omega_{c1} = \frac{\omega_0}{Q}$$

- (1)Q值越大,截止频率处的曲线越陡,频率选择性越好,带宽越窄。
- (2)Q值越小,带宽越宽,选择性能越差。

RLC串联电路,频率选择性与带宽存在矛盾。

二、以电容电压为响应的网络函数

$$H_{C}(j\omega) = \frac{\dot{U}_{C}}{\dot{U}} = \frac{1/(j\omega C)}{R + j\omega L + 1/(j\omega C)}$$

$$= \frac{1}{(1 - \omega^{2}LC) + j\omega CR} = \frac{1}{[1 - \left(\frac{\omega}{\omega_{0}}\right)^{2}] + j\frac{1}{Q}\left(\frac{\omega}{\omega_{0}}\right)}$$

$$|H_C(j\omega)| = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_0}\right)^2\right]^2 + \frac{1}{Q^2} \left(\frac{\omega}{\omega_0}\right)^2}}$$

$\theta_{c}(\omega) = -\arctan$	1		
	$O(\frac{\omega_0}{\omega_0}$	$\overline{-\omega}$	
	ω	$\omega_{_0}$	

ω/ω_0	$ H_c(j\omega) $	$\theta_{\scriptscriptstyle C}(\omega)$
0	1	0_{\circ}
1	Q	-90°
•	•	•
:	•	•
∞	0	-180°

二、以电容电压为响应的网络函数

RLC低通电路的滤波特性

$$|H_C(j\omega)| = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_0}\right)^2\right]^2 + \frac{1}{Q^2} \left(\frac{\omega}{\omega_0}\right)^2}}$$

$$\theta_C(\omega) = -\arctan\frac{1}{Q(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0})}$$

 $|H_c(j\omega)|$ 具有低通特性

三、以电感电压为响应的网络函数

$$H_{L}(j\omega) = \frac{\dot{U}_{L}}{\dot{U}} = \frac{j\omega L}{R + j\omega L + 1/(j\omega C)}$$

$$= \frac{1}{[1 - 1/(\omega^{2}LC)] - jR/(\omega L)} = \frac{1}{\left[1 - \left(\frac{\omega_{0}}{\omega}\right)^{2}\right] - j\frac{1}{Q}\left(\frac{\omega_{0}}{\omega}\right)}$$

$$|H_{L}(j\omega)| = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega_{0}}{\omega}\right)^{2}\right]^{2} + \frac{1}{Q^{2}}\left(\frac{\omega_{0}}{\omega}\right)^{2}}}$$

$\theta(\omega)$ – arctan	-1		
$\theta_L(\omega) = -\arctan$	\overline{o}		$\overline{\omega_0}$
	2	$\overline{\omega_0}$	ω

ω/ω_0	$ H_L(j\omega) $	$ heta_{\scriptscriptstyle L}(\omega)$
0	0	180°
1	Q	90°
•	•	•
•	•	•
∞	1	0°

三、以电感电压为响应的网络函数

RLC高通电路频率特性

$$|H_{L}(j\omega)| = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega_{0}}{\omega}\right)^{2}\right]^{2} + \frac{1}{Q^{2}}\left(\frac{\omega_{0}}{\omega}\right)^{2}}}$$

$$\theta_{L}(\omega) = -\arctan\frac{-1}{Q\left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)}$$

 $|H_L(j\omega)|$ 具有高通特性

思考: RLC串联电路能否实现带阻特性?

$$H_X(j\omega) = \frac{\dot{U}_X}{\dot{U}} = \frac{j[\omega L - 1/(\omega C)]}{R + j[\omega L - 1/(\omega C)]}$$

$$\omega_{c1} = \omega_0 \left(-\frac{1}{2Q} + \sqrt{\frac{1}{4Q^2} + 1} \right)$$

$$\omega_{c2} = \omega_0 \left(\frac{1}{2Q} + \sqrt{\frac{1}{4Q^2} + 1} \right)$$