Implémentez un modèle de scoring

Projet 7 - Openclassroom

Plan de la présentation

- I. Présentation de la problématique
 - i. Rappel de la problématique
 - ii. Présentation du jeu de données
- II. Modélisation effectuée
 - Utilisation d'une Baseline
 - ii. Définition d'une fonction de scoring
 - iii. Optimisation du modèle
- III. Présentation du dashboard
- IV. Conclusion

Rappel de la problématique

- Prêt à dépenser : Société financière qui propose des crédits à la consommation
- Développer un modèle de scoring de probabilité de défaut d'un client
- Pouvoir expliquer le refus ou l'acceptation d'une demande de crédit au client
- Utiliser un dashboard intuitif au vue des utilisateurs

Présentation du jeu de données

Présentation du jeu de données

- Après aggrégations des données 307511 données et 1465 features
- ☐ En enlevant les variables fortement corrélées => 854 features
- En enlevant les features pas importantes pour notre modèle => 338 features

Présentation du jeu de données

Visualisation de la répartition de la valeur target

- Régression logistique =>
 - Accuracy = 91%
 - ☐ AUC score = 50%

Over-sampling en utilisant SMOTE:

Définition d'une fonction de scoring

- Quelle fonction de scoring choisir:
 - AUC ROC : pas intéressant on voudrait donner plus de poids aux faux négatifs
 - F-Bêta score : Un peu plus intéressant, mais ça correspond pas à la vraie mesure métier

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

$$F_{eta} = rac{(1+eta^2) \cdot ext{true positive}}{(1+eta^2) \cdot ext{true positive} + eta^2 \cdot ext{false negative} + ext{false positive}}$$

Définition d'une fonction de scoring

- $annuity factor = \frac{1 (1 + r)^{-1} * nbyears}{r}$
- $installements = \frac{amount}{annuityfactor}$
- creditcost = installements * nbyears amount

	AMT_CREDIT	AMT_ANNUITY	cost	percent of credit
0	254700.0	28867.5	6295.514197	2.471737
1	337500.0	16875.0	17998.551323	5.332904
2	719365.5	36859.5	37464.837987	5.208039
3	408780.0	13185.0	33521.265320	8.200319
4	273636.0	15835.5	12674.310872	4.631814
230628	216000.0	8271.0	14947.889979	6.920319
230629	1214086.5	43609.5	89487.866336	7.370798
230630	1129500.0	58612.5	58108.392423	5.144612
230631	755856.0	31905.0	47536.615124	6.289110
230632	270000.0	13500.0	14398.841058	5.332904

Préprocessing

- Nettoyage des données
- One hot encoding + Label encoding
- Imputer (Median)
- Min Max Scaler

Oversampling

- Smote with Knn (Neighbors=5)
- 50% Target 1 et 50% Target 0

Hyperopt + Light GBM

- Light GBM + Adaptive
 TPE
- Early stopping avec la fonction de scoring de crédit
- Trials Hyperopt dépendant de la stabilité du score
- Utilisation de GOSS

- boosting_type='goss',
- class_weight='balanced',
- colsample_bytree=0.7069849102479817,
- min_child_samples=87,
- min_child_weight=4.2031367501272445
- n_estimators=10000,
- num_leaves=25,
- objective='binary',
- reg_alpha=0.7724008005312301
- reg_lambda=0.720234086958816

Model
Light GBM (preprocessed)
Logistic regression
Logistic regression + SMOTE

Model
Light GBM (preprocessed)
Logistic regression
Logistic regression + SMOTE

Présentation du dashboard

Présentation du dashboard

Présentation du dashboard

- <u>https://pret-a-depenser.herokuapp.com/</u>
- https://pret-a-depenser-backend.herokuapp.com/get all clients

Conclusion

- Pousser un peu plus le nettoyage des données
- Utiliser une structure cloud pour améliorer la rechercher hyperopt
- Utiliser un model stacking
- Améliorer la lisibilité des résultats (One hot encoding)
- Charger toutes les données dans le dashboard (en utilisant une meilleure architecture)
- Autoriser de renseigner des informations d'un client pour pouvoir avoir une prédiction
- Limites du modèle Light GBM