1 有限群表示论补充 1

1 有限群表示论补充

群 G 的表示就是对(这里全部考虑复表示)线性空间 V,考虑 $G \to \operatorname{GL}(V)$ 的群同态。这里考虑有限群,所以所有表示也是有限维的表示。

取定一组基后,就有 $\mathrm{GL}(V)\cong\mathrm{GL}_{\dim V}(C)$ 这样可以定义表示的特征标。由群同态的性质可以知道,一个特征标对一个共轭类的取值是唯一的。我们称满足这样条件的函数为群上的类函数。之后我们会证明所有不可约表示的特征标构成 $R_{\mathbf{C}}(G)$ 的一组标准正交基。

正则表示:表示空间 C(G) (可以) 取为全部 $G \perp C$ 值函数.

G 在张量积上的表示: $(\rho,V),(\pi,W)$ 是两个表示,对张量积 $V\otimes W$,定义 $(\rho\otimes\pi)(g)(v\otimes w)=Remark$. 讲清楚这里线性空间张量积的定义:

定义 G 不变子空间,如果 (因为在线性空间里面)在 G 的作用下为不变子空间。定义直和。Maschke 定理告诉我们,任意的不变子空间都有不变补空间。我们希望把表示分解为不可约子表示的直和。

Remark. 书上考虑构造 G 不变正定 Hermitian 二次型 (然后取正交补):

$$< v_1, v_2 >_V = \frac{1}{|G|} \sum_{g \in G} < g \cdot v_1, g \cdot v_2 >$$

定义 $\operatorname{Hom}(V,W)$ 上的表示: $(g \cdot u)(v) = g \cdot u(g^{-1} \cdot v)$ 我们需要说明这是一个群作用。并且有

$$\chi_{\operatorname{Hom}(V,W)}(g) = \overline{\chi_V(g)}\chi_W(g)$$

Remark. 事实上有定义对偶表示 W=C, 则有 $\mathrm{Hom}(V,W)=V^*\otimes W$,表示的张量积特征标是相乘的。这里是直接算。

定义 $\text{Hom}_G(V, W)$.

Theorem 1 (Schur 引理).

Proposition 1.1 (平均算子的相关性质). 对平均算子 $M(u), u \in \text{Hom}(V, W)$

- $(1)M(u) \in \operatorname{Hom}_G(V, W)$
- (2)V,W 都不可约且不同构
- (3)V,W 都不可约, 同构
- $(4)\phi \in R_{\mathbf{C}}(G), \sum_{g \in G} \phi(g) \rho_V(g)$ 是位似。

Theorem 2. 我们给 $R_{\mathbf{C}}(G)$ 一个标量积,下面说明三个事:

- (1) 不可约特征标的标准正交性质 (Schur 引理的体现)
- (2) 构成基,所以 $|\operatorname{Irr}(G)| = |\operatorname{Conj}(G)|$
- (3) 给出了 maschke 定理的 explicit 分解 (实际上就是极小左理想的本原中心幂等元):
- (4) 不可约的判定以及正则表示的分解。

这里我有一个问题:

Proposition 1.2 (我猜的). 对 $(\sigma_1, W_1), (\sigma_2, W_2)$. 设 $Irr(G) = \{V_1, V_2, \dots, V_t\}$. 则

1°
$$W_i \cong (\chi_{W_i}, \chi_{V_i}) V_i \ (j = 1, 2);$$

1 有限群表示论补充 2

 $2^{\circ} \dim \operatorname{Hom}_{G}(W_{1}, W_{2}) = \sum_{i=1}^{t} (\chi_{W_{1}}, \chi_{V_{i}})(\chi_{W_{2}}, \chi_{V_{i}})$

$$3^{\circ} \operatorname{dim} \operatorname{End}_{\mathbf{G}}(W) = \sum_{i=1}^{t} (\chi_{W}, \chi_{Vi})^{2}$$

 (ψ,W) 为群 H < G 的一个 K 表示,我们称 (K[G],K[H])-双模 K[G] 与左 K[H]-模 W 张量 积: $K[G]\otimes_{K[H]}W$ 为 W 诱导模,记为 W^G ,表示称为诱导表示。

Remark. 这和其他书上的定义:是 G 在 $\operatorname{Ind}_H^G:=\{\varphi:G\mapsto V, \varphi(hx)=h\cdot \varphi(x),\ \forall h\in H,\ \forall x\in G\}$ 表示一样。我们如下定义 G 在 Ind_H^G 表示:

算一下特征标和传递性。最重要的结果毫无疑问是 Frobenius 互反律和 Mackey 子群定理:

Theorem 3 (Frobenius 互反律).

$$(\operatorname{Ind}_H^G \mu, \chi)_G = (\mu, \operatorname{Res}_G^H \chi)_H$$

由此很容易得到对有限群 G 的所有不可约复表示的次数的最大者(记为 m(G))的估计:

Proposition 1.3.

$$\forall H < G, m(H) \le m(G) \le [G:H]m(H)$$

Remark. 或者你可以尝试构造同构(我还在理解这玩意,[3] 里有详细的描述): $H < G, (\pi, V)$ 是 H 的表示, (τ, U) 是 G 的表示,则有:

$$\operatorname{Hom}_G(U,\operatorname{Ind}_H^G V) \simeq \operatorname{Hom}_H(\operatorname{Res}_G^H U,V)$$

Example 1 $(GL_2(\mathbb{F}_q))$.