

Bachelor of Science in Computer Science and Information Technology

Lab Report Of

Database Management System

Submitted By:

Submitted To:

Name : Basanta Rai

Department Of Computer

Semester: 4th

Science

Section : B Rollno : 23473

Lab No.	Title / Question	Submission Date	Signature
1.	Objective		
2.	Project details		
3.	ER diagram		
4.	ER diagram to relational model		
5.	Creating database and tables		
6.	Inserting and showing datas into tables		
7.	Using where clause		
8.	Using And , OR and not		
9.	Updating and showing datas from tables		
10.	Deleting datas from tables		
11.	Using Aggregate functions		
12.	Using likes		
13.	Using views		
14.	Using aliases		
15.	Using subqueries		
16.	Using joins		
17.	Using in,between		
18.	Deleting tables and database		

Objectives:

- 1. Designing database for an organization
- 2. Entity-Relation Diagram
- 3. Entity-Relation to Relational model
- 4. SQL

Project Details

Topic: Danta Clinic

Danta clinic is a dental care center, committed to expert oral health care and treatment. With a team of specialists, we aspire to provide outstanding dental services that are easily accessible to our clients and patients.

Here we will simply create a database for dental clinics, who provide dental services for patients. The clinic has many patients. Each patient can consult with many dentists and many dentists can apply many treatments to the patient. Based on treatments a patient pays a bill for that. So we created a database to store all of this information in a structured manner.

Entity-Relational Diagram

Entity-Relation to Relational model

	Mapping	of strong	entity types	
--	---------	-----------	--------------	--

Here in our er-diagram strong entities are patient, dentist, treatment and bill so we create tables for them.

For patients:

For dentists:

For Treatments:
For Bill:
■ Mapping of weak entity types No weak entities.
☐ Mapping of 1:1 binary relationship type No 1:1 relationship.
☐ Mapping of 1:N binary relationship type
□ Manuina of Mall binom valetions bin to a
☐ Mapping of M:N binary relationship type

☐ Mapping of multivalued atti	ribute
Mapping of n-ary relationsh No n-ary relationship type.	nip type

Relational diagram

SQL

Let's create a new database named "dms" to store all our data tables and relationships. "dms" stands for dental management system.

Creating tables

*

Creating patient table

```
CREATE TABLE patient(
PID INT NOT NULL PRIMARY KEY,
first_name VARCHAR(20) NOT NULL,
middle_name VARCHAR(20),
last_name VARCHAR(20) NOT NULL,
email VARCHAR(30) NOT NULL,
address VARCHAR(40) NOT NULL,
nationality VARCHAR(20), age INT,
sex VARCHAR(10),
marital_status VARCHAR(10),
profession VARCHAR(20)
);
```

Field	Туре	Null	Key	Default	Extra
PID first_name middle_name last_name email address nationality age sex marital_status profession	int varchar(20) varchar(20) varchar(20) varchar(30) varchar(40) varchar(20) int varchar(10) varchar(20)	+	PRI	NULL NULL	

Creating patient_phone table

Since our phone attribute in our patient entity is multi valued attribute, so we create a separate table to store values of phone number

SQL:

```
CREATE TABLE patient_phone(
    patientID INT,
    phone_number varchar(15) PRIMARY KEY,
    FOREIGN KEY(patientID) REFERENCES patient(PID)
);
```

Creating dentist table

```
CREATE TABLE dentist(
DID INT NOT NULL PRIMARY KEY,
first_name VARCHAR(20) NOT NULL,
middle_name VARCHAR(20),
last_name VARCHAR(20) NOT NULL,
email VARCHAR(30) NOT NULL,
address VARCHAR(40) NOT NULL,
qualification VARCHAR(20)
);
```

```
mysql> describe dentist;
                       | Null | Key | Default | Extra |
DID
              | int
                        l NO
                                   | PRI | NULL
| first_name | varchar(20) | NO | NULL
| middle_name | varchar(20) | YES | NULL
                                       NULL
| last name | varchar(20) | NO |
l email
              | varchar(30) | NO
                                    NULL
address | varchar(40) | NO
                                       NULL
| qualification | varchar(20) | YES | | NULL
7 rows in set (0.00 sec)
```

Creating dentist phone table

Similarly our phone attribute in our dentist table is multi valued attribute, so we create a separate table to store values of phone for a dentist

```
SQL:
CREATE TABLE dentist phone(
```

Creating consults table

CREATE TABLE consults (ptID INT, dtID INT, date DATE, FOREIGN KEY(ptID) REFERENCES patient(PID), FOREIGN KEY(dtID) REFERENCES dentist(DID));

Creating treatment table

```
SQL:

CREATE TABLE treatment(

TID INT PRIMARY KEY,

fee VARCHAR(15),

description TEXT(100),

);
```

Creating bill table

```
SQL:
```

```
CREATE TABLE bill(
BID INT PRIMARY KEY,
total_amount VARCHAR(15),
PID int,
payment_status VARCHAR(10),
```

```
TID int,
FOREIGN KEY (PID) REFERENCES patient(PID),
FOREIGN KEY (TID) REFERENCES treatment(TID),
);
```

Inserting data into patient table

Inserting data into patient table

SQL:

Inserting one row at a time

INSERT INTO patient VALUES (1, "Basanta", "", "Rai", "basanta@email.com", "Khandbari", "Nepali", 20, "Male", "Single", "Student");

INSERT INTO patient VALUES(2,"Robin", "", "Devkota", "robin@email.com", "Kathmandu", "Nepali", 22, "Male", "Single", "Student");

INSERT INTO patient (PID, first_name, middle_name, last_name,email, address, nationality, age, sex, marital_status, profession) VALUES (3, "Bishal", "Bahadur", "Gurung", "bishal@email.com", "Sydney", "Australian", 20, "Male", "Single", "Businessman");

Inserting multiple rows at a time

INSERT INTO patient (PID, first_name, last_name, email, address, nationality, age, sex, marital_status, profession) VALUES (4, "Alexa", "Capaldi", "alexa@email.com", "New York", "American", 45, "Female", "Married", "Pilot"), (5, "Violet", "Kinder", "violet@email.com", "LA", "American", 26, "Female", "Single", "Musician");

Let's see the datas we have inserted:

	first_name	middle_name	. –	email	address	nationality		sex	marital_status	profession
	Basanta		Rai	basanta@email.com	•		20	Male	Single	Student
2	Robin	İ	Devkota	robin@email.com	Kathmandu	Nepali	22	Male	Single	Student
3	Bishal	Bahadur	Gurung	bishal@email.com	Sydney	Australian	20	Male	Single	Businessman
4	Alexa	NULL	Capaldi	alexa@email.com	New York	American	45	Female	Married	Pilot
5	Violet	NULL	Kinder	violet@email.com	LA	American	26	Female	Single	Musician

Inserting data into patient phone table

SQL:

<u>Inserting one row at a time</u>

INSERT INTO patient phone VALUES(1,"9876543200");

INSERT INTO patient phone VALUES(1,"9876543100");

```
INSERT INTO patient_phone VALUES(1,"9876543101");
INSERT INTO patient_phone VALUES(2,"9876543111");
INSERT INTO patient_phone VALUES(2,"9876543001");
```

Inserting multiple rows at a time

INSERT INTO patient_phone (patientID, phone_number) VALUES (3, "9876543219"), (4, "9814253647"), (4, "9876452310"), (5, "9812345670");

Let's see the datas we have inserted:

```
mysql> select * from patient_phone;
+-----+
| patientID | phone_number |
+----+
| 1 | 9876543100 |
| 1 | 9876543101 |
| 1 | 9876543200 |
| 2 | 9876543001 |
| 2 | 9876543111 |
| 3 | 9876543219 |
| 4 | 9814253647 |
| 4 | 9876452310 |
| 5 | 9812345670 |
+----+
9 rows in set (0.00 sec)
```

Inserting data into dentist table

```
INSERT INTO dentist VALUES (1,"Dr. Pramila", "", "Adhikari", "pramila@email.com", "Kathmandu", "BSD");

INSERT INTO dentist VALUES (2, "Dr. Sristi", "", "Shah", "sristi@email.com", "Pokhara", "BSD");

INSERT INTO dentist VALUES (3,"Dr. Alin", "", "Tamang", "alin@email.com", "Pokhara", "DDS");
```

```
INSERT INTO dentist (DID, first_name, middle_name, last_name, email, address, qualification) VALUES (4, "Arjun", "Kumar", "Jha", "arjun@email.com", "Sarlahi", "DMD");
```

INSERT INTO dentist (DID, first_name, last_name, email, address, qualification) VALUES (5, "Astrina", "Gurung", "astrina@email.com", "Gorkha", "BSD");

Let's see the datas we have inserted:

+++		address	qualification
2 Dr. Sristi Sh 3 Dr. Alin Ta 4 Arjun Kumar Jh	Adhikari pramila@email.com Shah sristi@email.com Tamang alin@email.com Jha arjun@email.com Gurung astrina@email.com	Kathmandu Pokhara Pokhara Sarlahi Gorkha	BSD BSD DDS DMD BSD

Inserting data into dentist_phone table

SQL:

```
INSERT INTO dentist_phone VALUES(1,"9876512340");
INSERT INTO dentist_phone VALUES(1,"9856712340");
INSERT INTO dentist_phone VALUES(2,"9856712330");
INSERT INTO dentist_phone VALUES(3, "9856712390"),
(3, "9871234650"), (3, "9823415670");
INSERT INTO dentist_phone VALUEs(4,"9871231234");
INSERT INTO dentist_phone VALUEs(5,"9876543321"),(5,"9812345761");
```

Let's see the datas we have inserted:

Inserting data into consults table

SQL:

```
INSERT INTO consults VALUES(1,1,"2022-06-01");
INSERT INTO consults VALUES(1,2,"2022-06-01");
INSERT INTO consults VALUES(1,4,"2022-06-01");
INSERT INTO consults VALUES(2,4,"2022-06-01");
INSERT INTO consults VALUES(4,2,"2022-07-01");
INSERT INTO consults VALUES(3,3,"2022-07-01"),(3,4,"2022-07-02");
```

Let's see the datas we have inserted:

```
mysql> select * from consults;
+----+
| ptID | dtID | date
+----+
| 1 | 1 | 2022-06-01 |
| 1 | 2 | 2022-06-01 |
| 1 | 4 | 2022-06-01 |
| 2 | 4 | 2022-06-01 |
| 3 | 3 | 2022-07-01 |
| 3 | 4 | 2022-07-02 |
+----+
7 rows in set (0.00 sec)
```

Inserting data into treatment table

SQL:

```
INSERT INTO treatment (TID,fee,description)
VALUES(1,"3000","Endodonotics");

INSERT INTO treatment (TID,fee,description) VALUES(2,"5000","Oral Pathology");

INSERT INTO treatment (TID,fee,description) VALUES (3, "7000",
"Periodonotics"), (4, "2000", "Cosmetic Restoration"), (5, "4000", "Pedodonotics");
```

Let's see the datas we have inserted:

Inserting data into dentist_treats table

SQL:

INSERT INTO dentist_treats (dID,tID) VALUES (1,1), (1,2), (2,3), (2,5), (3,1), (3,3), (3,5), (4,4), (5,1);

```
mysql> select * from dentist_treats;
+----+
| dID | tID |
+----+
| 1 | 1 |
| 1 | 2 |
| 2 | 3 |
| 2 | 5 |
| 3 | 1 |
| 3 | 3 |
| 3 | 5 |
| 4 | 4 |
| 5 | 1 |
+----+
9 rows in set (0.00 sec)
```

Inserting data into bill table

SQL:

```
INSERT INTO bill VALUES(1,"20000",2,"UNPAID",3);
INSERT INTO bill VALUES(2,"5000",1,"PAID",2);
INSERT INTO bill VALUES(3,"7000",3,"PENDING",4);
```

INSERT INTO bill VALUES(4,"3000",1,"PAID",5),(5,"2000",5,"PAID",4);

Let's see the datas we have inserted:

Using where clause

SQL:

select email from patient where first name="Basanta";

SQL:

select first name from dentist where qualification="BSD";

```
mysql> select first_name from dentist where qualification="BSD";
+-----+
| first_name |
+-----+
| Dr. Pramila |
| Dr. Sristi |
| Astrina |
+-----+
3 rows in set (0.00 sec)
```

Using And, OR and Not

SQL:

select total_amount from bill where PID=1 and payment_status="PAID";

SQL:

select first_name,middle_name,last_name from patient where age>25 or nationality="American";

```
mysql> select first_name,middle_name,last_name from patient where age>25 or nationality="American";
+-----+
| first_name | middle_name | last_name |
+-----+
| Alexa | NULL | Capaldi |
| Violet | NULL | Kinder |
+----+
2 rows in set (0.00 sec)
```

SQL:

select age from patient where not marital_status="Married";

```
mysql> select age from patient where not marital_status="Married";
+----+
| age |
+----+
| 20 |
| 22 |
| 20 |
| 26 |
+----+
4 rows in set (0.00 sec)
```

Updating and showing datas

update treatment set fee="5000" where TID=4;

SQL:

update patient set marital_status="Married" where sex="Male";

Deleting data from table

SQL:

delete from dentist_treats where dID=1 and tID=1;

```
mysql> select * from dentist_treats;
+----+
| dID | tID |
+----+
| 1 | 2 |
| 2 | 3 |
| 2 | 5 |
| 3 | 1 |
| 3 | 3 |
| 4 | 4 |
| 5 | 1 |
+----+
8 rows in set (0.00 sec)
```

SQL:

delete from dentist_phone where dentistID=3;

```
mysql> select * from dentist_phone;
+-----+
| dentistID | phone_number |
+-----+
| 1 | 9856712340 |
| 1 | 9876512340 |
| 2 | 9856712330 |
| 4 | 9871231234 |
| 5 | 9812345761 |
| 5 | 9876543321 |
+-----+
6 rows in set (0.00 sec)
```

Using Aggregate functions

select MIN(fee) from treatment;

```
mysql> select MIN(fee) from treatment;
+-----+
| MIN(fee) |
+-----+
| 3000 |
+-----+
1 row in set (0.00 sec)
```

SQL:

select MAX(fee) from treatment;

```
mysql> select MAX(fee) from treatment;
+-----+
| MAX(fee) |
+-----+
| 7000 |
+-----+
1 row in set (0.00 sec)
```

SQL:

SELECT COUNT(age) from patient where sex="Male";

```
mysql> SELECT COUNT(age) from patient where sex="Male";
+----+
| COUNT(age) |
+----+
| 3 |
+----+
1 row in set (0.00 sec)
```

SQL:

SELECT AVG(age) from patient where marital_status="Married";

```
mysql> SELECt AVG(age) from patient where marital_status="Married";
+----+
| AVG(age) |
+----+
| 26.7500 |
+----+
1 row in set (0.00 sec)
```

Using Likes

SQL:

select DID, email from dentist where email like "a%";

SQL:

select PID, email, age, sex from patient where nationality like "%I%";

Using views

SQL:

CREATE VIEW students AS SELECT first_name,middle_name,last_name FROM patient WHERE profession="Student";

```
mysql> CREATE VIEW students AS SELECT first_name,middle_name,last_name from patient WHERE profession="Student";
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT * FROM students;
+------+
| first_name | middle_name | last_name |
+------+
| Basanta | | Rai |
| Robin | | Devkota |
+------+
2 rows in set (0.00 sec)
```

Using aliases

SQL:

SELECT PID AS id, first_name AS username FROM patient;

```
mysql> SELECT PID AS id,first_name AS username FROM patient;
+---+----+
| id | username |
+---+----+
| 1 | Basanta |
| 2 | Robin |
| 3 | Bishal |
| 4 | Alexa |
| 5 | Violet |
+---+------+
5 rows in set (0.00 sec)
```

Using subqueries

SQL:

select * from bill where TID=(select TID from treatment where description="Cosmetic Restoration");

select first_name,middle_name,last_name from dentist where DID=(select dtID from consults where dtID=1);

Using Joins

SQL:

SELECT treatment.TID,treatment.description,bill.PID,bill.payment_status FROM bill INNER JOIN treatment ON bill.TID=treatment.TID;

SQL:

SELECT consults.ptID,consults.dtID,dentist.first_name,dentist.last_name FROM consults LEFT JOIN dentist ON consults.dtID=dentist.DID;

+	•		dtID	+ first_name last_name	İ
+	1 1 1 2 4		1 2 4 4 2 3	+	*
7	rows	+- in	set	(0.00 sec)	+

SELECT patient_phone.patientID, patient_phone.phone_number, patient.first_name, patient.last_name, patient.profession FROM patient_phone RIGHT JOIN patient on patient_phone.patientID=patient.PID;

patientID	phone_number	first_name	last_name	profession
1 1 2 2 3 4 4 5	+ 9876543100 9876543101 9876543200 9876543001 9876543111 9876543219 9814253647 9876452310 9812345670	Basanta Basanta Basanta Basanta Robin Robin Bishal Alexa Violet	Rai Rai Rai Devkota Devkota Capaldi Capaldi Kinder	Student Student Student Student Student Student Pilot Pilot Musician

Using in, between

SQL:

SELECT PID,email,marital_status FROM patient WHERE age IN(20,21,22,35);

SQL:

SELECT * FROM treatment WHERE fee BETWEEN 3000 AND 6000;

```
mysql> SELECT * FROM treatment WHERE fee BETWEEN 3000 AND 6000;
+---+---+
| TID | fee | description |
+---+----+
| 1 | 3000 | Endodonotics |
| 2 | 5000 | Oral Pathology |
| 4 | 5000 | Cosmetic Restoration |
| 5 | 4000 | Pedodonotics |
+---+---+
4 rows in set (0.00 sec)
```

Deleting data tables and database

SQL:

SHOW TABLES;

DROP TABLE patient_phone;

SQL:

SHOW DATABASES;

```
mysql> show databases;
+-----+
Database
+----+
blog
conference
dms
| information schema
| it
l itc
| lara_blog
| mysql
| performance_schema
| phpmyadmin
| pitc
| rfc
sys
13 rows in set (0.00 sec)
```

DROP DATABASE dms;

```
mysql> drop database dms;
Query OK, 8 rows affected (0.05 sec)
mysql> show databases;
Database
| blog
conference
| information schema
| it
| itc
| lara blog
mysql
performance_schema
| phpmyadmin
| pitc
| rfc
12 rows in set (0.01 sec)
```