This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Auteursrecht voorbehouden.

OCTROOIRAAD

OCTROOI No. 61795.

KLASSE 12 g. 4.

NEDERLAND

SOCIÉTÉ DE PRODUITS CHIMIQUES ET ENGRAIS D'AUBY, te Parijs.

Contacttoren, in het bijzonder geschikt voor het onder druk katalytisch omzetten van koolmonoxyde en dergelijke gassen.

Aanvrage No. 116075 Ned., ingediend 31 Maart 1944, 14 uur 50 min; openbaar gemaakt 15 Mei 1948, voorrang van 9 Juni 1943 af, (Frankrijk).

De uitvinding betreft een contacttoren, in het bijzonder geschikt voor het onder druk katalytisch omzetten van koolmonoxyde en dergelijke gassen, van het 5 type, waarin het gas achtereenvolgens tussen de torenwand en het binnenwerk, door een warmteuitwisselaar en door een katalysatormassa stroomt.

Uit het Nederlandse octrooischrift No. 10 24.827 is een contacttoren voor het behandelen van gassen met een katalysatormassa bekend, waarbij het gas eerst van boven naar beneden tussen de torenwand en de katalysatormassa omlaagstrijkt en 15 dan door een centrale pijp opstijgt om ten slotte door de massa omlaag te stromen.

Een soortgelijk toestel is uit het Duitse octrooischrift 593.369 bekend, waarbij 20 echter het gas langs de katalysatormassa opstijgt om door een centrale pijp omlaag te stromen en daarna door de katalysatormassa te strijken.

Ten slotte is uit het Nederlandse oc-25 trooischrift 35.602 een contacttoren bekend, waarbij de katalysatormassa zich in om elkander geplaatste cylinders bevindt en het gas tussen de torenwand en de buitencylinder omlaag strijkt, een 30 warmteuitwisselaar tussen de cylinders passeert om in de binnenste cylinder door de katalysatormassa te stromen, waarna het gas door de katalysatormassa in de buitencylinder wordt gevoerd.

Deze bekende toestellen hebben het bezwaar, dat het katalytisch werkende materiaal in één enkele laag wordt gestort, waardoor de laag een grote hoogte verkrijgt en het materiaal in het beneden-40 gedeelte vergruizelt. Bovendien is de warmteuitwisseling tussen het te behandelen gas en de katalysatormassa slechts gebrekkig.

Verkrijgbaar bij het Bureau voor den Industrieelen Eigendom, te 's-Gravenhage. Prijs per ex. f 0.60.

De uitvinding beoogt deze bezwaren van de bekende inrichtingen op te heffen 45 en bestaat daarin, dat de toren een in zijn geheel losneembaar binnenwerk bezit, hetwelk in de toren geplaatst en er uit kan worden genomen, welk binnenwerk bestaat uit een aantal afzonderlijke, boven 50 elkander gelegen en met elkander verbonden korven voor het opnemen van de katalysatormassa en een door alle korfbodems heen stekende, zich over de gehele, door de korven ingenomen, lengte uit-55 strekkende, als pijpenbundel uitgevoerde warmtewisselaar. Deze uitvoering heeft het voordeel, dat de katalysatormassa buiten de toren in de korven kan worden gebracht en daaruit kan worden verwij- 60 derd en in verschillende lagen is gesteund. Doordat de pijpen van de warmtewisselaar zich door alle lagen uitstrekken wordt de reactiewarmte uit de gehele katalysatormassa afgevoerd en plaatselijke over- 85 verhitting vermeden. Bovendien maakt het voorwarmen van het gas in de warmtewisselaar het mogelijk de temperatuur van de katalysatormassa te beperken.

Volledigheidshalve zij opgemerkt, dat 70 uit het Britse octrooischrift 273.045 een contacttoren bekend is voor het hydrogeneren van vloeistoffen, waarbij de vloeistof wordt versproeid over een katalysatormassa, die zich in een aantal boven 75 elkander gelegen korven bevindt, welke in hun geheel uit het toestel kunnen worden genomen, daar zij met elkander verenigd zijn door een centrale buis, die zich door alle korven uitstrekt en over haar 80 gehele lengte geperforeerd is. In deze buis wordt de waterstof toegevoerd, die zich door de perforaties in de lagen der kataly-

satormassa verdeelt.

De uitvinding zal in het onderstaande 85 aan de hand van de tekening met een uitvoeringsvoorbeeld nader worden toegelicht. In de tekening tonen:

fig. 1 een verticale langsdoorsnede van de contacttoren volgens de uitvinding;

5 fig. 2 en 3 horizontale dwarsdoorsneden en wel onderscheidenlijk volgens de lijnen A-B en C-D van fig. 1;

fig. 4 een verticale langsdoorsnede van de onderste korf;

fig. 5 een horizontale doorsnede van de korf volgens de lijn E-F in fig. 4;

fig. 6 en 7 onderscheidenlijk een verticale langsdoorsnede van een tussengelegen korf en van de bovenste korf;

fig. 8 één der sectoren van de geperfo-

reerde korfbodem, en

fig. 9 een verticale doorsnede van een expansiestuk voor de uitlaat van het om-

gezette gas.

De toren heeft een metalen buitenmantel 1, welke aan de binnenzijde van een bekleding 2 uit asbestvezels is voorzien, die door een laag 3 van uit diatomeenaarde vervaardigde stenen is afgedekt. 25 Aan de binnenzijde van deze laag stenen

3 is een bekleding 4 van vuurvaste stenen gemetseld, die de binnenwand

van de toren vormt.

Het binnenwerk van de toren bestaat 30 uit een stel van vier boven elkander geplaatste korven, doch dit aantal kan naar gelang van omstandigheden worden gewijzigd. Deze korven zijn van onderling gelijke constructie en verschillen 25 alleen in hoogte en in de plaatsing van ribben, die als steun voor de bodem dienen. Bij het weergegeven uitvoeringsvoorbeeld bevat dit binnenwerk een onderste korf P1, twee onderling gelijke tussen gelegen 40 korven P2 en P3 en een bovenste korf P4. Elke korf bestaat uit een metalen cylinder 5, die van binnen twee stelsels ribben heeft, die bijvoorbeeld aan de cylinder vastgelast zijn en waarvan het ene stel 45 uit verticale ribben 6 en het andere stel uit horizontale ribben 7 bestaat, die naar de as 8 van de cylinder gericht zijn. Bij het uitvoeringsvoorbeeld zijn twaalf verticale ribben 6 en zes horizontale ribben 50 7 aanwezig, die in hetzelfde verticale vlak als de verticale ribben zijn gelegen en wel

met de even of de oneven ribben. In elke cylinder rusten op de horizontale ribben sectoren 9, waarvan er zes aan-55 wezig zijn, die tezamen de bodem van de korf vormen en waarin twee reeksen van perforaties aanwezig zijn, waarvan de perforaties 10 voor het doorlaten van de pijpen van de warmtewisselaar dienen en de kleinere perforaties 11 het gas naar de

katalysatormassa 12 doorlaten, die bij het laden van de toren in de korven wordt geplaatst. Op geschikte hoogte is in elke korf een buisstuk 15 aangebracht, hetwelk aan het binneneinde is gesloten en \$5 voor het opnemen van een pyrometer dient. De korven kunnen met elkander worden verenigd door middel van klemringen 13, waarvan elke ring door een conisch verlengstuk 14 van de buitenwand 70 der korven gedragen wordt. De totale hoogte van het stelsel korven bedraagt bij het uitvoeringsvoorbeeld ongeveer 6 m.

Van de zich door de korven uitstrekkende, verticale pijpen 16 zijn er bij het 75 uitvoeringsvoorbeeld een zestigtal aanwezig, die een middellijn van enkele centimeters hebben. In elke warmteuitwisselende pijp 16 is coaxiaal een tweede pijp 17 geplaatst, die aan het benedeneinde bij 80 18 gesloten is, zodat tussen de pijpen een ringvormige ruimte ontstaat, waardoor het gas kan stromen. De pijpen 16 van de bundel zijn in een pijpenplaat 19 gestoken en daarin vastgelast, welke plaat onder in 85 de benedenste korf P1 is bevestigd, waarbij de onderrand van deze korf van insnijdingen 20 is voorzien. Het boveneinde van de pijpen 16 is vrij, zodat de uitzetting daarvan niet belemmerd wordt. De ge-90 sloten pijpen 17 zijn aan het boveneinde ... in de pijpen 16 opgehangen en kunnen eveneens vrij uitzetten.

Om de korven te monteren en op hun plaats te brengen, alsmede voor het in- 85 brengen van de katalysatormassa plaatst men de onderste korf P1 verticaal met de in de pijpplaat 19 vastgelaste pijpen 16 en brengt men boven in deze korf de eerste laag van de katalysatormassa 12, die bij 100 het weergegeven uitvoeringsvoorbeeld een inhoud van ongeveer 2 m³ heeft. De tweede korf P2 wordt op de boveneinden van de pijpen 16 geschoven, waarna de beide korven met een dichting door de klem- 109 ringen 13 op elkander worden bevestigd en de tweede laag der katalysatormassa 12 in de korf P2 wordt gebracht. Vervolgens hethaalt men dezelfde handelingen voor de korven P3 en P4.

Na het verenigen van de korven buiten de toren wordt het samenstel, dat een gewicht van ongeveer 15 ton heeft, met een loopkraan opgehesen en in de toren op een ondersteuning 21 in een bepaalde hoek- 115 stand geplaatst, waarna aan de bovenste korf P⁴ de bovenste verbinding 13 wordt aangebracht. Deze verbinding dient voor het bevestigen van een expansiestuk door middel van een plaat 22, die een centrale 120

opening 23 heeft. Dit expansiestuk bestaat uit een buisslang 24, die volgens een tweegangige schroeflijn is gewonden en een inlaat, alsmede een uitlaat heeft, die 5 diametraal tegenover elkander gelegen zijn en enerzijds met de kamer 25 van het binnenwerk en anderzijds met een pijpstuk 26 in verbinding staan, hetwelk aldus een omloop tussen de inlaatpijp 27 voor 10 het gas en het inwendige van het stelsel korven vormt. Vervolgens wordt het buisstuk 28 voor het uitlaten van het omgezette gas verbonden met het einde van een expansiestuk 29 en daarna plaatst men 15 de in de tekening niet weergegeven pyrometers in de aan het binneneinde gesloten buisstukken 15 en het deksel 30 op de toren.

Het verwijderen van de katalysator-20 massa geschiedt in omgekeerde zin als het zo juist beschreven inbrengen daarvan. Bij het bedrijf van het toestel is de

circulatie van het gas als volgt:

Ten einde het warmteuitwisselend ver-25 mogen van het binnenwerk zo hoog mogelijk op te voeren treedt het om te zetten gas, waaraan de vereiste hoeveelheid waterdamp is toegevoegd, van boven in de toren door het zijdelingse buisstuk 30 27 en stroomt volgens de pijlen f van boven naar beneden in de ringvormige ruimte 31 tussen het binnenwerk en de vuurvaste bekleding 4 aan de binnenwand van de toren, waarbij de warmteuitwis-35 seling bij deze eerste gasgang nog kan worden bevorderd door in deze ruimte een dubbele schroeflijnvormige leiwand 32 aan te brengen, die het gas dwingt om geheel rondom het binnenwerk te stro-40 men. Het gas komt vervolgens door de insnijdingen 20 tot onder de pijpplaat 19 in de ruimte, waarin de pijpen 16 van de warmteuitwisselaar uitmonden, en het gas stijgt in deze pijpen omhoog door de ring-45 vormige ruimte tussen deze pijpen en de aan het benedeneinde gesloten pijpen 17 om boven uit de pijpen te treden, waarna het gas door de eerste laag van de katalysatormassa 12 strijkt en door de ope-50 ningen 11 in de bodem van de korf P4 in de tweede laag van de katalysatormassa 12 treedt om vervolgens van boven naar beneden door de opvolgende lagen van de katalysator tot in de korf P¹ te 55 stromen, waaruit het gas in omgezette toestand aan het benedeneinde van het binnenwerk door het buisstuk 28 onder de vierde laag van de katalysatormassa ontwijkt.

Om de temperatuur te regelen kan door

de omloop 26 een deel van het om te zetten gas rechtstreeks in de eerste laag van de katalysatormassa worden gevoerd zonder door de warmteuitwisselende pijpen 16 te strijken.

De temperatuurcontrôle door middel van de daartoe aanwezige pyrometers geeft slechts vergelijkende waarden, daar het einde van deze meters niet alleen door de temperatuur van de katalysator, doch 70 ook door het zich om het binnenwerk bevindende om te zetten gas wordt beinvloed. In de aan het binneneinde afgesloten buisstukken 15 voor de pyrometers vindt echter geen gasstroming plaats, 75 zodat de aangegeven temperaturen niet veel zullen afwijken van de in de korven heersende temperatuur.

Het binnenwerk van de toren bestaat uit metaal en wel bij voorkeur uit chroom- 80 houdend staal en bij gebrek daaraan eventueel uit zacht staal, zoals voor ketels

wordt gebruikt.

Conclusies.

1. Contacttoren, in het bijzonder geschikt voor het onder druk katalytisch omzetten van koolmonoxyde en dergelijke gassen, van het type, waarin het gas achtereenvolgens tussen de torenwand en 90 het binnenwerk, door een warmtewisselaar en door een katalysatormassa stroomt, met het kenmerk, dat de contacttoren een in zijn geheel lossend binnenwerk bezit, dat er in geplaatst en er uit ge- 95 nomen kan worden, welk binnenwerk bestaat uit een aantal afzonderlijke, boven elkaar gelegen en met elkaar verbonden korven voor het opnemen van de katalysatormassa en een door alle korfbodems 100 heen stekende, zich over de gehele, door de korven ingenomen, lengte uitstrekkende, als pijpenbundel uitgevoerde warmtewisselaar.

2. Contacttoren volgens conclusie 1, met 105 het kenmerk, dat in de pijpen van de bundel aan één einde gesloten pijpen zijn geplaatst, die aan hun boveneinde in de eerstgenoemde pijpen zijn opgehangen, zodanig, dat tussen de pijpen een ring-110 vormige ruimte voor het doorstromen van het gas ontstaat.

3. Contacttoren volgens conclusie 1 of 2, met het kenmerk, dat het stelsel van korven aan zijn boveneinde in verbinding 115 staat met een expansie-inrichting, die een pijpslang bevat, die verbonden is met een pijp, die een omloop vormt tussen de inlaat voor het gas en het inwendige van de

korven.

Assurance A

Aanvrage 116075

Fig.4.

