

84

Quan hệ

- Quan hệ 2 ngôi
 - Một quan hệ giữa tập A và tập B là một tập con R của tích Descartes AxB.
 - ➤ Nếu (a,b) ∈ **R**, ta viết: a**R**b
 - Nếu A = B thì một tập con R của tích Descartes A x A được gọi là quan hê trên A.
 - ightharpoonup Quan hệ bù của \mathbf{R} : $\overline{\mathbf{R}} \subset \mathbf{A} \times \mathbf{B}$ và $\times \overline{\mathbf{R}} \times \mathbf{Y} \Leftrightarrow (\mathbf{x}, \mathbf{y}) \notin \mathbf{R}$
 - ➤ Quan hệ đảo của R: R⁻¹ ⊂ BxA và xR⁻¹y ⇔ yRx

85

Quan hệ

<u>Ví dụ:</u>

- a) A = tập sinh viên; B = tập lớp học.
 - $\mathbf{R} = \{(a, b) \mid \sinh \text{ viên a học lớp b}\}$
- b) Cho A = $\{1, 2, 3, 4\}$, và
 - $R = \{(a, b) \mid a \mid a \mid a \mid a \mid a \mid b \}$

Khi đó:

$$R = \{(1, 1), (1, 2), (1, 3), (1, 4),$$

(2, 2), (2, 4), (3, 3), (4,4)

86

💠 Đồ thi

a) Xét một quan hệ *R* trên tập hợp *A*={*a,b,c,d*} Biểu diễn quan hê R như đồ thi sau

 $R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, d), (d, a), (b, e), (e, b), (b, c), (c, b), (c, e), (e, c)\}$

88

Biểu diễn quan hệ

Ma trân

	1	2	3	4
a	1	1	0	1
b	0	1	0	1
c	1	0	1	0

 $R = \{(a,1), (a,2), (a,4), (b,2), (b,4), (c,1), (c,3)\}$

Biểu diễn quan hệ

Ma trận

Xét một quan hệ R trên từ tập hợp $A = \{a_1, a_2, ..., a_n\}$

đến tập hợp $B = \{b_1, b_2, ..., b_m\}$

Ma trận biểu diễn quan hệ là một trận cấp $n \times m$, ký

hiệu
$$W_{n \times m} = (w_{ij})_{1 \le i \le n, 1 \le j \le m}$$

Trong đó,

$$\mathbf{w}_{ij} = \begin{cases} 0, (\mathbf{a}_i, \mathbf{b}_j) \notin \mathbf{R} \\ 1, (\mathbf{a}_i, \mathbf{b}_j) \in \mathbf{R} \end{cases}$$

89

Tính chất của quan hệ

R là một quan hệ hai ngôi trên tập hợp A.

1) Tính phản xạ

3) Tính phản đối xứng

R có tính phản xạ nếu

R có tính phản đối xứng nếu

 $\forall a \in A : a\mathbf{R}a$

 $\forall a,b \in A : a\mathbf{R}b, b\mathbf{R}a \Rightarrow a = b$

2) Tính đối xứng

4) Tính bắc cầu

R có tính đối xứng nếu

R có tính bắc cầu nếu

 $\forall a,\!b \in A : a\textbf{R}b \Longrightarrow b\textbf{R}a$

 $\forall a,b,c \in A : a\mathbf{R}b, b\mathbf{R}c \Rightarrow a\mathbf{R}c$

90

Tính chất của quan hệ

Ví du:

Xét quan hệ ≤ trên tập hợp các số thực **R**

- có tính phản xạ vì $\forall a \in \mathbf{R} : a \leq a$
- không có tính đối xứng vì $\forall a,b \in \mathbf{R} : a \le b \not\Rightarrow b \le a$
- có tính phản đối xứng vì $\forall a,b \in \mathbf{R} : a \le b, b \le a \Rightarrow a = b$
- có tính bắc cầu vì $\forall a,b,c \in \mathbf{R} : a \le b, b \le c \Rightarrow a \le c$

92

Tổ hợp các quan hệ

$$R^1 = R, R^n = R^{n-1} \circ R$$

❖ Một quan hệ R trên tập hợp A, R có tính bắc cầu khi và chỉ khi \mathbf{R}^n ⊂ \mathbf{R} , $\forall n \in \mathbf{N}^{\hat{}}$

Tổ hợp các quan hệ

 \diamond Cho a**R**b (a \in A, b \in B)

$$b$$
S c ($b \in B$, $c \in C$)

$$S_0R = \{(a, c) \mid \exists b \in B : (a,b) \in R, (b, c) \in S\}$$

<u>Ví du:</u>

$$R = \{(a,1), (a, 2), (a, 4), (b, 2), (b, 4), (c,1), (c,3)\}$$

$$S = \{(1, e), (1, f), (2, f), (3, e), (3, f), (4, f)\}$$

$$S_0R = \{(a, e), (a, f), (b, f), (c, e), (c, f)\}$$

93

Quan hệ tương đương

Quan hệ tương đương

Một quan hệ R trên tập hợp A được gọi là một quan hệ tương đương nếu R có 3 tính chất:

Phản xạ, Đối xứng, Bắc cầu.

<u>Ví dụ:</u>

Quan hệ đồng dư (modulo) "mod n" trên **Z** là một quan hệ tương đương

94

Quan hệ tương đương

Lóp tương đương

Cho R là quan hệ tương đương trên A và phần tử $a \in A$. Lớp tương đương chứa a được ký hiệu bởi \bar{a} , hoặc $[a]_R$, hoặc [a], hoặc [a], hoặc [a]

$$[a]_R = \{b \in A \mid b R a\}$$

Ví du:

Quan hệ tương đương "mod 3" trên \mathbf{Z} , ta có $[0] = \{b \in Z \mid b \bmod 3 = 0\}$

96

Quan hệ tương đương

Tập thương

Cho ${\bf R}$ là một quan hệ tương đương trên tập hợp ${\bf A}$, tập thương xác định bởi quan hệ ${\bf R}$ trên ${\bf A}$, ký hiệu ${\bf A}$ / ${\bf R}$ được xác định

$$A/R = \{[a] \mid a \in A\}$$

<u>Ví dụ:</u>

Quan hệ quan hệ tương đương "mod 3" trên \mathbf{Z} , ta có $\mathbf{Z}/\mathrm{mod}\ 3 = \{[0],[1],[2]\}$

Quan hệ tương đương

❖ Mệnh đề

Cho **R** là một quan hệ tương đương trên tập hợp A, $a,b \in A$

- 1. [a]≠Ø
- 2. $[a] = [b] \Leftrightarrow a\mathbf{R}b$
- 3. [a] = [b] hoặc [a] \cap [b] = \emptyset

97

Quan hệ tương đương

Phân hoạch

Một phân hoạch của tập hợp A là một họ các tập con (A_i) , $i = \overline{1,n}$ thỏa:

- 1. $A_i \neq \emptyset$ $\forall i \in \{1,2,...,n\}$
- 2. $A_i \cap A_j = \emptyset$ $\forall i,j \in \{1,2,...,n\}, i \neq j$
- 3. $A_1 \cup A_2 \cup ... \cup A_n = A$

98

100

Quan hệ tương đương Ví dụ: Quan hệ "cùng tính chẵn lẻ" trên tập số nguyên Z phân hoạch Z thành 2 lớp tương đương: [1]={...,-5,-3,-1,1,3,5,...} [2]={...,-4,-2,-0,2,4,6,...}

Quan hệ tương đương

* Phân hoạch

- Một phân hoạch của tập hợp A xác định một quan hệ tương đương trên A
- ➤ Cho R là một quan hệ tương đương trên A. Khi đó các lớp tương đương của R sẽ tạo nên một phân hoạch của A. Ngược lại, nếu A₁, A₂, ..., An là một phân hoạch của A thì tồn tại quan hệ tương đương R sao cho {A₁} là tập các lớp tương đương của R.

101

Quan hệ tương đương

<u>Ví dụ</u>

Cho tập $A=\{a_1,a_2,a_3,a_4,a_5,a_6\}$ và các tập con của $A: E_1=\{a_1,a_3\}, E_2=\{a_2,a_4,a_5\}, E_3=\{a_6\}$. Hãy tìm một quan hệ tương đương trên A nhận E1, E2, E3 làm các lớp tương đương?

Giải:

Ta có: $\{E_1, E_2, E_3\}$ là một phân hoạch của A. Theo định lý 4.2, tồn tại quan một hệ tương đương trên A nhận E_1, E_2, E_3 làm các lớp tương đương. Gọi R là quan hệ tương đương cần tìm.

Do R có tính phản xạ nên R có dạng:

 $R = \{(a_1,a_1), (a_2,a_2), (a_3,a_3), (a_4,a_4), (a_5,a_5), (a_6,a_6)\} \cup X \\ E_1 \text{ là một lớp tương đương của R nên R phải có chứa các cặp: } (a_1,a_3), (a_3,a_1)$

 E_2 là một lớp tương đương của R, nên R phải có chứa các cặp: (a_2,a_4) , (a_4,a_2) , (a_2,a_5) , (a_5,a_2) , (a_4,a_5) , (a_5,a_4)

 $\begin{array}{l} \text{Vây R can tim có thể là: R=}((a_1,a_1),(a_2,a_2),(a_3,a_3),(a_4,a_4),(a_5,a_5),(a_6,a_6)) \\ & \cup \{(a_1,a_3),(a_3,a_1),(a_2,a_4),(a_4,a_2),(a_2,a_5),(a_5,a_2),(a_4,a_5),(a_5,a_4)\} \end{array}$

102

Quan hệ thứ tự

Quan hệ thứ tự

Một quan hệ R trên tập hợp A được gọi là một quan hệ thứ tự nếu R có 3 tính chất: **Phản xạ, Phản đối xứng, Bắc cầu**.

- ➤ Ký hiệu một quan hệ thứ tự là ≤
- Nếu trên A có một quan hệ thứ tự ≤, thì A được gọi được sắp thứ tự, ký hiệu (A, ≤).

104

Quan hệ thứ tự

Phần tử trôi

Với quan hệ thứ tự ≤ trên tập hợp A:

- ightharpoonup Nếu a,b \in A : a \leq b thì b được gọi là phần tử trội của phần tử a.
- Nếu b là một trội của a, $\nexists c \in A$, $c \ne a$ và $c \ne b$ sao cho a $\le c$ và $c \le b$ thì b được gọi là một phần tử trội trực tiếp của a

Quan hệ thứ tự

Ví du:

- Quan hệ ≤ (so sánh nhỏ hơn hay bằng thông thường trên R) trên tập số thực R là một quan hệ thứ tự. Tập (R, ≤) là tập có thứ tự.
- Quan hệ ⊆ trên tập hợp các tập con của X: ℘(X) là một quan hệ thứ tự.
- 3. Quan hệ "chia hết" trên **Z**⁺ là một quan hệ thứ tự.

105

Quan hệ thứ tự

Ví du:

Cho tập A= $\{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}$, Xét quan hệ: R= $\{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_4), (a_5, a_5),$

 $(a_6,a_6), (a_7,a_7), (a_1,a_3), (a_3,a_5), (a_1,a_5), (a_5,a_7), (a_3,a_7), (a_1,a_7)$

R là một quan hệ thứ tự trên A.

- ightharpoonup a_3 là một trội trực tiếp của a_1 .
- a₅ cũng là một trội của a₁ nhưng không là trội trực tiếp.

106

Quan hệ thứ tự

❖ Biểu đồ Hasse

Biểu đồ Hasse của một tập hữu hạn R có thứ tự (A, \leq) bao gồm:

- ➤ Tập các điểm trong mặt phẳng, mỗi điểm tương ứng là một phần tử trong A.
- Một cung có hướng từ a đến b nếu b là một trội trực tiếp của a.

108

Quan hệ thứ tự

Quan hệ thứ tự toàn phần

Một quan hệ thứ tự trên A gọi là toàn phần nếu mọi phần tử của A đều có thể so sánh được. Nghĩa là: $\forall x,y \in A$: $x \le y$ hay $y \le x$.

Quan hệ thứ tư bộ phận

Một quan hệ thứ tự trên A gọi là bộ phận nếu nó không phải là quan hệ thứ tự toàn phần

Quan hệ thứ tự

Ví du:

Xét tập hợp $X = \{x, y, z\}$ và tập được sắp thứ tự ($\wp(X)$, \subseteq) ta có biểu đồ Hasse:

109

Quan hệ thứ tự

<u>Ví dụ:</u>

- a) Các quan hệ "≤" và "≥" trên tập số thực là quan hệ thứ tự toàn phần.
- b) Quan hệ chia hết trên tập số nguyên, quan hệ bao hàm trên các tập hợp là các quan hệ thứ tự bộ phận.

Quan hệ thứ tự

- **The Second Relative Second S**

 - ➤ m ∈ X gọi là phần tử lớn nhất nếu m trội tất cả các phần tử khác trong X.

112

Quan hệ thứ tự - Các phần tử đặc biệt

- n' ∈ X gọi là phần tử tối tiểu nếu n' không là
 trôi của bất kỳ phần tử nào khác
- > m' ∈ X gọi là phần tử tối đại nếu m' không có bất kỳ trội thực sự nào khác.

Quan hệ thứ tự - Các phần tử đặc biệt

Ví du:

Cho tập có thứ tự ({1,2,4,6,8,12},|). Biểu đồ Hasse như sau:

Tập này không có phần tử lớn nhất, có phần tử nhỏ nhất là 1

113

Quan hệ thứ tự - Các phần tử đặc biệt

<u>Ví dụ:</u>

Tập có thứ tư cho bởi biểu đồ Hasse:

Tập này có 2 phần tử tối đại là a_4 và a_7 , 2 phần tử tối tiểu là a_1 và a_2

114

Quan hệ thứ tự - Các phần tử đặc biệt

ightarrow **a** ∈ A gọi là phần tử **chặn dưới** của X, nếu \forall x ∈ X, **a** ≤ x

Phần tử *lớn nhất* của tập các chặn dưới của X gọi là *phần tử cận dưới*, ký hiệu *inf* X (hoặc ^)

b ∈ A gọi là phần tử **chặn trên** của X, nếu $\forall x \in X, x \le \mathbf{b}$

Phần tử nhỏ nhất của tập các chặn trên của X gọi là phần tử cận trên, ký hiệu sup X (hoặc \checkmark)

116

Quan hệ thứ tự - Các phần tử đặc biệt

<u>Ví dụ:</u> Cho biểu đồ Hasse sau

Ta có: $\sup\{d,e\} = b \mid c \quad \sup\{b,c\} = a$ $\inf\{b,c\} = e \mid d \quad \inf\{d,e\} = f$

Quan hệ thứ tự - Các phần tử đặc biệt

Ví du:

Xét tập hợp ${\bf N}$ với quan hệ \leq thông thường, khi đó ${\bf N}$ có phần tử nhỏ nhất là ${\bf 0}$ và không có phần tử lớn nhất.

 $X=\{6,8,9,45,10,7,12,4\}\subset \mathbf{N}, X$ có các phần tử chặn dưới là 0,1,2,3,4. Phần tử cận dưới của X là 4. Các phần tử ≥ 45 là các phần tử chặn trên của X. Phần tử cận trên của X là 45.

117

Quan hệ thứ tự - Các phần tử đặc biệt

<u>Ví dụ:</u>

Xét tập thứ tự ($\wp(E)$, \subseteq). Khi đó \forall A, B ∈ $\wp(E)$

$$Sup(A,B) = A \cup B$$

$$Inf(A,B) = A \cap B$$

Xét tập thứ tự (N^* , |). Khi đó $\forall a, b \in N^*$

Sup(a,b) = BCNN(a,b)

Inf(a,b) = UCLN(a,b)

120

Dàn - Định nghĩa

Nếu dàn (A, \land, \lor) còn thỏa mãn thêm luật phân phối:

- $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$
- $x \lor (y \land z) = (x \lor y) \land (x \lor z)$

 $\forall x,y,z \in A$

thì dàn (A, ∧, ∨) được gọi là dàn phân phối

Dàn Dinh nghĩa 1 Bô ba (A, \land, \lor) được gọi là một dàn nếu nó thỏa mãn hệ tiên đề sau: 1) Luật lũy đẳng 3) Luật kết hợp $\forall x,y,z \in A$ $\forall x \in A$ $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ $X \wedge X = X$; $X \vee X = X$ $(x \lor y) \lor z = x \lor (y \lor z)$ 2) Luât giao hoán $\forall x,y \in A$ 4) Luật hút $\forall x,y \in A$ $x \wedge y = y \wedge x$ $x \wedge (x \vee y) = x \vee (x \wedge y) = x$ $x \lor y = y \lor x$

121

Dàn - Định nghĩa

<u>Ví dụ:</u>

- a) Với E là một tập nào đó, ($\wp(E)$, \cap , \cup) lập thành một dàn phân phối
- b) (**N***, (), []) với (a,b) = UCLN(a,b), [a,b] = BCNN(a,b) lập thành một dàn phân phối

122

Dàn - Định nghĩa

Định nghĩa 2

 (A, \land, \lor) là một dàn cho trước, ta nói rằng $a \le b$ nếu như $a \land b = a$

☐ Bổ đề

 (A,\leq) là một quan hệ thứ tự trên A Quan hệ thứ tự này được gọi là quan hệ thứ tự cảm sinh trên dàn (A,\wedge,\vee)

124

Dàn

* Tính chất

- Fighther Tập hợp có thứ tự toàn phần là một dàn, với $a \lor b = max(a,b)$ và $a \land b = min(a,b)$
- \triangleright Trong dàn (L, \leq):
 - $a \le \sup\{a,b\}$ và $b \le \sup\{a,b\}$
 - $\forall c \in L : a \le c, b \le c \implies \sup\{a,b\} \le c$
- \triangleright Trong dàn (L, \leq):
 - $\inf\{a,b\} \le a \text{ và } \inf\{a,b\} \le b$
 - $\forall c \in L : c \le a, c \le b \implies c \le \inf\{a,b\}$

Dàn - Định nghĩa

Dịnh nghĩa 3

Tập thứ tự (A, \leq) được gọi là một dàn nếu $\forall x,y \in A$ thì $\sup\{x,y\}$ và $\inf\{x,y\}$ đều tồn tại.

Lúc đó ta ký hiệu:

 $\sup\{x,y\} = x \vee y$

 $\inf\{x,y\} = x \wedge y$

125

Dàn

Dàn con

Cho dàn (L, \leq), B \subset L.

B được gọi là dàn con của L khi và chỉ khi

- B≠Ø
- $a \wedge b \in B$, $\forall a, b \in B$
- $a \lor b \in B$, $\forall a,b \in B$

126