

Claims

1. A computer system for adding two or more integers, comprising:
a memory unit operable to store a program composed of a plurality
5 of instructions; and

a processor operable to fetch each instruction in turn from
the program stored in the memory unit, and decode and execute each
fetched instruction, wherein

the program includes

10 a conversion instruction set to have the processor generate
elements belonging to a group G by implementing a power operation
in the group G using each integer,

an operation instruction set to have the processor generate
an operation value by implementing a basic operation other than
15 addition using all the generated elements, and

an inverse conversion instruction set to have the processor
generate a sum value of the integers by implementing, in the group
G or a proper subgroup S of the group G, an inverse power operation
on the operation value.
- 20 2. The computer system of Claim 1 securely and reliably
manipulating target information, wherein

the program further includes a security instruction set to
have the processor implement security processing on the target
25 information, and

the security instruction set has the processor implement an
addition operation using the conversion instruction set, the operation
instruction set, and the inverse conversion instruction set.

3. The computer system of Claim 2, wherein
the group G is a multiplicative group of an integer residue
ring,

5 the conversion instruction set has the processor implement
an exponentiation to each of the integers, and

 the operation instruction set has the processor implement a
multiplication of the elements.

10 4. The computer system of Claim 3, wherein
the group G is a multiplicative group of Z/nZ where a product
 $n = p_1 \times p_2 \times \dots \times p_k$, and where p_1, p_2, \dots, p_k ($k > 1$) denote mutually
differing primes, and

15 an operator \times denotes multiplication, Z denotes an integer
ring, and Z/nZ denotes an integer residue ring composed of values
that are congruent modulo m.

5 5. The computer system of Claim 4, wherein
the inverse conversion instruction set includes instructions
20 to have the processor solve a discrete logarithm problem in each
of the multiplicative groups of $Z/Zp_1, Z/Zp_2, \dots, Z/Zp_k$, which use the
primes p_1, p_2, \dots, p_k , respectively.

25 6. The computer system of Claim 5, wherein
the inverse conversion instruction set includes instructions
to have the processor use a Chinese Remainder Theorem to solve a
discrete logarithm problem in each of the multiplicative groups of
 $Z/Zp_1, Z/Zp_2, \dots, Z/Zp_k$, which use the primes p_1, p_2, \dots, p_k , respectively.

7. The computer system of Claim 2, wherein
the group G is a multiplicative group of $\mathbb{Z}/n\mathbb{Z}$ for which $n =$
 $p^m \times q$, where p and q are primes and m is a positive integer,
5 the conversion instruction set has the processor implement
exponentiations to each of the integers, and
the operation instruction set has the processor implement a
multiplication of the elements.

10 8. The computer system of Claim 7, wherein
the subgroup S is a multiplicative group of $\mathbb{Z}/p^m\mathbb{Z}$.

9. The computer system of Claim 7, wherein
the positive integer m is 2.

15 10. The computer system of Claim 2, wherein
the subgroup S is an anomalous elliptic curve group,
the conversion instruction set has the processor implement
a multiplication on the elliptic curve using each integer,
20 and the operation instruction set has the processor implement
an addition of the elements on the elliptic curve.

25 11. The computer system of Claim 2, wherein
the group G is a direct product of two anomalous elliptic curve
groups,
the conversion instruction set has the processor implement
a multiplication on the elliptic curve using each integer, and
the operation instruction set has the processor implement an

addition of the generated elements on the elliptic curve.

12. The computer system of Claim 2, wherein
the inverse conversion instruction set has the processor store
5 a plurality of exponents each in correspondence with a value raised
to a power using a respective exponent, and find the inverse of the
power operation by searching the correspondences.

13. The computer system of Claim 2, wherein
10 the inverse conversion instruction set includes a reduction
portion to have the processor reduce each element belonging to the
group G to an element belonging to the subgroup S.

14. The computer system of Claim 2 encrypting or decrypting
15 the target information based on key information, wherein
the security instruction set has the processor encrypt or
decrypt the target information based on the key information, the
encryption and decryption being performed using the addition operation
to add the key information or second key information obtained from
20 the key information, to the target information or to second target
information obtained from the target information, and
in the addition operation, the conversion instruction set,
the operation instruction set, and the inverse conversion instruction
set are used to add the key information or the second key information,
25 to the target information or the second target information.

15. The computer system of Claim 14, wherein
the encryption is a shared key encryption algorithm, and the

decryption is a shared key decryption algorithm.

16. The computer system of Claim 2 implementing a digital signature or digital signature verification on the target information
5 based on key information, wherein

the security instruction set implements the digital signature or digital signature verification on the target information based on the key information, making use of the addition operation to add the key information or second key information obtained from the key
10 information to the target information or to second target information obtained from the target information, and

in the addition operation, the conversion instruction set, the operation instruction set and the inverse conversion instruction set are used to add the key information or to the second key information
15 to the target information or the second target information.

17. The computer system of Claim 2, wherein

the processor and the memory are integrated on an IC card.

20 18. An addition method used for adding two or more integers using a computer system that includes a memory unit and a processor, the addition method comprising steps of:

a conversion step to cause the processor to generate elements belonging to a group G by implementing a power operation in the group
25 G using each integer,

an operation step to cause the processor to generate an operation value by implementing a basic operation other than addition using all the generated elements, and

an inverse conversion step to cause the processor to generate a sum value of the integers by implementing, in the group G or a proper subgroup S of the group G, an inverse power operation on the operation value.

5

19. A computer program for adding two or more integers, the program, including:

a conversion instruction set for generating elements belonging to a group G by implementing a power operation in the group G using
10 each integer,

an operation instruction set for generating an operation value by implementing a basic operation other than addition using all the generated elements, and

an inverse conversion instruction set for generating a sum
15 value of the integers by implementing, in the group G or a proper subgroup S of the group G, an inverse power operation on the operation value.

20. The program of Claim 19, wherein
the program is recorded on a computer readable recording medium.

21. The program of Claim 19,

wherein the program is transmitted on a carrier wave.

25 22. A computer readable recording medium having a program for adding two or more integers recorded thereon, wherein the program includes:

a conversion instruction set for generating elements belonging

to a group G by implementing a power operation in the group G using each integer,

an operation instruction set for generating an operation value by implementing a basic operation other than addition using all the
5 generated elements, and

an inverse conversion instruction set for generating a sum value of the integers by implementing, in the group G or a proper subgroup S of the group G, an inverse power operation on the operation value.

10