

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO

INSTITUTO DE CIENCIAS ECONÓMICO ADMINISTRATIVAS

DOCTORADO EN CIENCIAS ECONÓMICO ADMINISTRATIVAS

MATERIA: TEMAS SELECTOS 1 "ESTADÍSTICA PARA LAS CIENCIAS ECONÓMICO ADMINISTRATIVAS"

TERCER SEMESTRE

CATEDRÁTICO: DRA. CARLA CAROLINA PÉREZ HERNÁNDEZ

ALUMNA: ALEJANDRA DE JESÚS GUZMÁN DIMAS

LAB 45 ECONGEO (CUADERNO R)

Lab 45 (Markdown)

Alejandra Guzmán

2024-04-04

EJEMPLO 4 PLOT A HOOVER CURVE

library(EconGeo)

##

Please cite EconGeo in publications as:

Balland, P.A. (2017) Economic Geography in R: Introduction to the EconGeo Package, Papers in Evolutionary Economic Geography, 17 (09): 1-75

Generate vectors of industrial and population count

ind=c(0,10,10,30,50) pop=c(10,15,20,25,30)

Check de ind vector

ind

[1] 0 10 10 30 50

Check de pop vector

pop

[1] 10 15 20 25 30

Run the function (30% of the population produces 50% of the industrial output)

Hoover.curve (ind,pop)

Hoover curve

Compute the corresponding Hoover

Gini

Hoover.Gini(ind,pop)

[1] 0.31

EJEMPLO GINI Generate vectors of industrial count

```
ind=c(0,10,10,30,50)
```

Run the function

```
Gini(ind)
```

```
## [1] 0.48
```

Generate a region-industry matrix

```
mat=matrix(
    c(0,1,0,0,
        0,1,0,0,
        0,1,0,0,
        0,1,0,1,
        0,1,1,1), ncol=4, byrow = T)
rownames(mat) = c("R1", "R2", "R3", "R4", "R5")
colnames(mat) = c("I1", "I2", "I3", "I4")
```

Run the function

```
Gini(mat)
```

Run the function by aggregating all industries

```
Gini(rowSums(mat))
```

```
## [1] 0.25
```

Run the function for industry 1 only (perfect equality)

```
Gini(mat[,1])
```

```
## [1] NaN
```

Run the function for industry 2 only (perfect equality)

```
Gini(mat[,2])
```

```
## [1] 0
```

Run the function for industry 3 only (perfect unequality: max Gini= (5-1)/5)

```
Gini(mat[,3])
```

```
## [1] 0.8
```

Run the function for industry 4 only (top 40% produces 100% of the output)

```
Gini(mat[,4])
```

```
## [1] 0.6
```

EJEMPLO HOOVER.GINI Generate vectors of industrial and population count

```
ind=c(0,10,10,30,50)
pop=c(10,15,20,25,30)
```

Run the function (30% of the population produces 50% of the industrial output)

```
Hoover.Gini(ind, pop)
```

```
## [1] 0.31
```

Generate a region - industry matrix

```
mat=matrix(
  c(0,10,0,0,
    0,15,0,0,
    0,20,0,0,
    0,25,0,1,
    0,30,1,1), ncol = 4, byrow = T)
rownames(mat)= c("R1", "R2", "R3", "R4","R5")
colnames(mat)= c("I1", "I2", "I3", "I4")
```

Run the function

```
Hoover.Gini(mat,pop)
```

Run the function by aggregating all industries

```
Hoover.Gini(rowSums(mat),pop)
```

```
## [1] 0.015
```

Run the function for industry 1 only

```
Hoover.Gini(mat[,1], pop)
```

```
## [1] NaN
```

Run the function for industry 2 only (perfectly proportional to population)

```
Hoover.Gini(mat[,2], pop)
```

```
## [1] 0
```

Run the function for industry 3 only (30% of the pop. produces 100% of the output)

```
Hoover.Gini(mat[,3], pop)
```

```
## [1] 0.7
```

Run the function for industry 4 only (55% of the pop. produces 100% of the output)

```
Hoover.Gini(mat[,4], pop)
```

```
## [1] 0.475
```

EJEMPLO LOCATIONAL.GINI Generate a region-industry matrix

```
mat=matrix(
    c(100,0,0,0,0,0,0,0,0,15,5,70,10,0,0,20,10,20,50,0,0,25,30,5,40,0,25,30,5,40,0,40,55,5,0), ncol = 5, byrow = T)
rownames(mat) = c("R1", "R2", "R3", "R4", "R5")
colnames(mat) = c("I1", "I2", "I3", "I4", "I5")
```

Run the function

```
locational.Gini(mat)
```

```
##
    Industry Loc.Gini
## 1
         11
                0.40
## 2
          12
                 0.18
## 3
          13
                 0.27
## 4
          14
                 0.31
          15
## 5
                 0.28
```

EJEMPLO LOCATIONAL.GINI.CURVE Generate a region -industry matrix

```
mat=matrix(
    c(100,0,0,0,0,0,0,0,0,15,5,70,10,0,0,15,5,70,10,0,0,20,10,20,50,0,0,25,30,5,40,0,25,30,5,40,0,40,55,5,0), ncol=5, byrow = T)
rownames(mat) = c("R1", "R2", "R3", "R4", "R5")
colnames(mat) = c("I1", "I2", "I3", "I4", "I5")
```

Run the function (shows industry 5)

```
locational.Gini.curve(mat)
```

Locational Gini curve I1

Cumulative distribution of total industrial shares

Locational Gini curve I2

Cumulative distribution of total industrial shares

Locational Gini curve I3

Cumulative distribution of total industrial shares

Locational Gini curve I4

Cumulative distribution of total industrial shares

Locational Gini curve 15

locational.Gini.curve(mat, pdf=TRUE)

[1] "locational.Gini.curve.pdf has been saved to your current working directory"

EJEMPLO LORENZ.CURVE Generate vector of industrial count

ind=c(0,10,10,30,50)

Run the function

Lorenz.curve(ind)

Lorenz curve


```
Lorenz.curve(ind,pdf=TRUE)
```

[1] "Lorenz.curve.pdf has been saved to your current working directory"

Lorenz.curve(ind, plot=FALSE)

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
## [1] 0.0 0.0 0.1 0.2 0.5 1.0
```

Generate a region - industry matrix

```
mat=matrix(
  c(0,1,0,0,
    0,1,0,0,
    0,1,0,0,
    0,1,0,1,
    0,1,1,1), ncol=4, byrow = T)
rownames(mat) = c("R1", "R2", "R3", "R4", "R5")
colnames(mat) = c("I1", "I2", "I3", "I4")
```

Run the function

```
Lorenz.curve(mat)
```

Lorenz curve I1

Lorenz curve I2

Lorenz curve I3

Lorenz curve I4

Lorenz.curve(mat, pdf=TRUE)

[1] "Lorenz.curve.pdf has been saved to your current working directory"

Lorenz.curve(mat, plot=FALSE)

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
## R1 R2 R3 R4 R5
## 0 NaN NaN NaN NaN
```

Run the function by aggregating all industries

Lorenz.curve(rowSums(mat))

Lorenz curve

Lorenz.curve(rowSums(mat),pdf=TRUE)

```
## [1] "Lorenz.curve.pdf has been saved to your current working directory"
```

```
Lorenz.curve(rowSums(mat), plot = FALSE)
```

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
## R1 R2 R3 R4 R5
## 0.000 0.125 0.250 0.375 0.625 1.000
```

Run the function for industry 1 only (perfect equality)

```
Lorenz.curve(mat[,1])
```

Lorenz curve

Lorenz.curve(mat[,1], pdf=TRUE)

[1] "Lorenz.curve.pdf has been saved to your current working directory"

Lorenz.curve(mat[,1], plot=FALSE)

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
## R1 R2 R3 R4 R5
## 0 NaN NaN NaN NaN NaN
```

Run the function for industry 2 only (perfect equality)

```
Lorenz.curve(mat[,2])
```

Lorenz curve

Lorenz.curve(mat[,2], pdf=TRUE)

[1] "Lorenz.curve.pdf has been saved to your current working directory"

Lorenz.curve(mat[,2], plot=FALSE)

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
       R1 R2 R3 R4 R5
## 0.0 0.2 0.4 0.6 0.8 1.0
```

Run the function for industry 3 only (perfect unequality)

Lorenz.curve(mat[,3])

Lorenz curve


```
## [1] "Lorenz.curve.pdf has been saved to your current working directory"
```

```
Lorenz.curve(mat[,3], plot=FALSE)
```

```
## $cum.reg
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
##
## $cum.out
## R1 R2 R3 R4 R5
## 0 0 0 0 0 1
```

Run the function for industry 4 only (top 40% produces 100% of the output)

```
Lorenz.curve(mat[,4])
```

Lorenz curve

Lorenz.curve(mat[,4], pdf=TRUE)

[1] "Lorenz.curve.pdf has been saved to your current working directory"

Lorenz.curve(mat[,4], plot=FALSE)

```
## $cum.reg

## [1] 0.0 0.2 0.4 0.6 0.8 1.0

##

## $cum.out

## R1 R2 R3 R4 R5

## 0.0 0.0 0.0 0.0 0.5 1.0
```

Compare the distribution of the industries

```
par(mfrow=c(2,2))
Lorenz.curve(mat[,1])
Lorenz.curve(mat[,2])
Lorenz.curve(mat[,3])
Lorenz.curve(mat[,4])
```


0.6

1.0

8.0