Exercice photocopié

Espèce chimique	Aluminium	Dioxygène	Chlorure de sodium	Cuivre
T _{fusion} -T _{solidification}	660°C	-218°C	801°C	1 084°C
Tliquéfaction-Tvaporisation	2 500°C	-183°C	1 465°C	2 570°C

Espèce chimique	Cyclohexane	Diazote	Argent	Eau
T _{fusion} -T _{solidification}	6,5°C	-210°C	960°C	0°C
T _{liquéfaction} -T _{vaporisation}	81°C	-196°C	2 200°C	100°C

Espèce chimique	Mercure	Hélium	Phosphore	Plomb
T _{fusion} -T _{solidification}	-39°C	-272°C	44°C	327°C
T _{liquéfaction} -T _{vaporisation}	357°C	-269°C	277°C	1 755°C

Espèce chimique	Étain	Éthanol	Fer	Éther
T _{fusion} -T _{solidification}	232°C	-117°C	1 534°C	-116°C
T _{liquéfaction} -T _{vaporisation}	2 270°C	78°C	2 750°C	34°C

Ces températures sont données à pression atmosphérique normale (1 atm). Quelles espèces sont solides à 20°C ? Liquides à 20 °C ? gazeuses à 20°C ?

<u>Espèces chimiques solides à 20°C</u>: Aluminium, Chlorure de sodium, Cuivre, Argent, Phosphore, Plomb, Etain, Fer.

Espèces chimiques liquides à 20°C: Cyclohexane, Eau, Mercure, Ethanol, Ether.

Espèces chimiques gazeuses à 20°C: Dioxygène, diazote, Hélium.

EXERCICE 22 p 29 (niveau 1-2)

-
$$S_1$$
: $Cm = \frac{m_{solut\acute{e}}}{V_{solution}}$
 $Cm = \frac{17,2}{200 \times 10^{-3}} = 86,0 \text{ g.L}^{-1}$