PATENT SPECIFICATION

172,449

DRAWINGS ATTACHED

L172,449

Date of filing Complete Specification (under Section 3 (3) of the Patents Act 1949): 24 July, 1968.

Date of Application (No. 34223/67): 26 July, 1967.

Date of Application (No. 27347/68): 8 June, 1968.

Complete Specification Published: 26 Nov., 1969.

Index at acceptance:—H4 D(23X, 234, 276, 396, 513, 550, 560, 562, 718, 746, 747, 748, 756, 778, 787); A6 D(1C2, 1C5, 1C8)

International Classification: -A 63 b 43/00

COMPLETE SPECIFICATION

Improvements in or relating to Golf Balls

I, AXEL CHARLES WICKMAN, a Citizen of the United States of America, of 69, South Washington Drive, St. Armands Key, Sarasota, Florida, United States of America, do hereby declare the invention, for which I pray that a patent may be granted to me, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The invention relates to golf balls. During a game of golf quite an amount of time can be spent in trying to find a ball that has been lost in the rough. An object of the present invention as to facilitate the location of the lost golf balls.

According to one aspect of the invention a golf ball bears means for transmitting radiation of an intensity that is sufficient for the golf ball to be located after loss in long grass or the like by a person using a suitable radiation detector in the area in which the golf ball was lost

The means for transmitting radiation may be a radiation emitter. This radiation emitter may be a radio-active material which emits a radio-active radiation of an intensity that is insufficient to be injurious to a human being. Preferably the radio-active material has a long half-life relative to the normal life of a golf ball whereby the intensity of the radio-active radiation will remain substantially constant throughout the normal life of the golf ball, and the radio-active material is so arranged that the radio-active radiation will be emitted with a predetermined substantially even intensity in all directions. The core of the golf ball can contain at least some of said radio-active material. Similarly, the moulded outer case of the golf ball can contain at least some of said radio-active material. At least some of said radio-active material may also be contained in a layer of paint or the like adhered to the outer surface of the golf ball.

The radiation emitter may be a micro radio emitter arranged in the core of the golf ball. Preferably the radio emitter is so arranged that the radio radiation will be emitted with a predetermined substantially even intensity in all directions.

The means for transmitting radiation may be a radiation reflector arranged for reflecting radiation from a radiation emitter associated with the radiation detector. In the case where the radiation reflector is in the form of radiation reflective material, the moulded outer case off the golf ball may contain at least some of the radiation reflective material. At least some of the radiation reflective material may be contained in a layer of paint or the like adhered to the outer surface of the golf ball. If the outer casing of the golf ball is substantially transparent to the radiation to be reflected, the core of the golf ball may contain at least some of said radiation reflective material.

According to another aspect of the invention, a detector for locating a radiation reflective golf ball preferably includes a radiation emitter, a reflected radiation detector sensitive to the direction in which radiation reflected from a small reflective area is received, and a meter means which is sensitive to the intensity of reflected radiation received by the reflected radiation detector and is calibrated with the distance the golf ball would have to be spaced from the detector to reflect the intensity of radiation received, the radiation emitter may be a small radio emitter arranged to emit radio radiation with a predetermined substantially even intensity either in all directions or in a specific beam:

On the other hand, a detector for locating a radiation emitting golf ball, preferably includes a radiation detector sensitive to the direction in which radiation emitted from a small source is received, and a meter means which is sensitive to the intensity of radiation 45

50

55

60

65

70

75

80

85

GB1172449

Description of GB1172449

>z- Kz1< LU

PATENT SPECIFICATION

DRAWINGS ATTACHED L1723449 4tr A, Date of filing Complete Specification (under Section 3 (3) of the

Patents Act 1949): 24 July, 1968.

Date of Application (No. 34223/67): 26 July, 1967.

Date of Application (No. 27347/68): 8 June, 1968.

Complete Specification Published: 26 Nov., 1969.

ndex at acceptance:-H4 D(23X, 234, 276, 396, 513, 550, 560, 562, 718, 746, 747, 748, 756, 778, 787); A6 D(1C2, 1C5, 1C8) International Classification: -A 63 b 43/00 COMPLETE SPECIFICATION

mprovements in or relating to Golf Balls I, AXEL CARLES WICKMAN, a Citizen of the United States of America, of 69, South Washington Drive, St. Armands Key, Sarasota, Florida, United States of America, to hereby declare the invention, for which I pray that a patent may be granted to me, and the method by which it is to be performed, to be particularly described in and by the following statement: -

The invention relates to golf balls. During a game of golf quite an amount of time can be spent in trying to ind a ball that has been lost in the rough. An object of the present invention is to facilitate the location of he lost golf balls.

According to one aspect of the invention a golf ball bears means for transmitting radiation of an intensity hat is sufficient for the golf ball to be located after loss in long grass or the like by a person using a uitable radiation detector in the area in which the golf ball was lost.

The means for transmitting radiation may be a radiation emitter. This radiation emitter may be a radioactive material which emits a radio-active radiation of an intensity that is insufficient to be injurious to a numan being.

'referably the radio-active material has a long half-life relative to the normal 'life of a golf ball whereby the tensity of the radio-active radiation will remain substantially constant throughout the normal life of the lolf ball, and the radio-active material is so arranged that the radio-active radiation will be emitted with a redetermined substantially even intensity in all directions. The core of the golf ball can contain at least ome of said radio-active material. Similarly, the moulded outer case of the golf ball can contain at least ome of said radio-active material. At least some of said radio-active material may also be contained in a ayer of paint or the like adhered to the outer surface of the golf ball.

he radiation emitter may be a micro radio emitter arranged in the core of the golf ball.

'referably the radio emitter is so arranged that the radio radiation will be emitted with a predetermined ubstantially even intensity 'in all directions.

he means for transmitting radiation may be a radiation reflector arranged for reflecting radiation from a adiation emitter associated with the radiation detector. In the case where the radiation reflector is in the orm of radiation reflective material, the moulded outer case of the golf ball may contain at least 'some of ne radiation reflective material. At least some of the radiation reflective material may be contained in a syer of paint or, the like adhered to the outer surface of the golf ball. If the outer casing of the 'golf ball is ubstantially transparent to the radiation to be reflected, the core of the golf ball may contain at least some f said radiation reflective material.

ccording to another aspect of the invention, a detector for locating a radiation reflective golf ball referably includes a radiation emitter, a reflected radiation detector sensitive to the direction in which adiation reflected from a small reflective area is received, and a meter means which is sensitive to the

intensity of reflected radiation received by the reflected radiation detector and is calibrated with the distance the golf ball would have to be spaced from the detector to reflect the intensity of radiation received, the radiation emitter may be a small radio emitter arranged to emit radio radiation with a predetermined substantially even intensity either in all directions or in a specific beam.

On the other hand, a detector for locating a radiation emitting golf ball, preferably includes a radiation detector sensitive to the direction in which radiation emitted from a small source is received, and a meter means which is sensitive to the intensity of radiation -- -- -- ----? = 1' f7= -1 Id,,I i; iI', - 1 1= J,, -1LIreceived by the radiation detector and is calibrated with the distance the golf ball would have to spaced from the detector to produce the intensity of radiation received.

So that the invention may be fully understood, several embodiments are now described, by way of example only, with reference to the accompanying drawings, in which: Figures 1 to 4 are part sections brough different constructions of golf balls, and Figures 5 to 7 illustrate apparatus for use in locating a lost polf ball of the types illustrated in Figures 1 to 4.

t should be noted that all of the golf balls 10 illustrated in Figures 1 to 4 have a moulded plastic outer asing 11 surrounding a twopart core comprising a wound rubber filament zone 12 embracing a central spherical rubber bag 13 containing the usual liquid composition 14.

The golf ball 10 illustrated in Figure (1 has a radio-active material '15 evenly distributed in the liquid composition 14 forming the centre of its core so that radio-active radiation will be emitted with a substantially even intensity in all directions. It should be noted that the materials sued for manufacturing he golf ball 10 should be chosen so they do not hinder unduly the passage of the radiation, and the radio-active material should be chosen to have a long half-life relative to the normal life of a golf ball 10 so that he intensity of the radioactive radiation will remain substantially constant throughout the normal life of the jolf ball. The quantity and nature of the radioactive material should (be chosen so that the resulting nensity of radiation will not be injurious to a human being handling the golf ball 10, and the radiation will have sufficient range to be detected at a distance of at least ten feet by a radiation detector such as a Beiger counter. Preferably the radiation should be capable of detection at a range of at least fifty feet. The hoice of the radioactive material '15 will depend, as stated, on the materials used to manufacture the golf island.

is shown in Figure 6, the only remaining piece of equipment that is necessary to locate the golf ball 110 ifter it has been lost in a particular area 16 of a golf course is a cheap battery operated Geiger counter 17. This instrument is supported by the golf bag 18 and is provided with a pair of earphones 19 for the golfer of use-when the ball '10 is lost. The Geiger counter 17 is of the type that is sensitive to the direction in which radiation emitted from a small source is received and produces a signal, in the form of the usual cking signal applied to the earphones 19, which signal increases with the intensity of the radiation accived. With this type of Geiger counter, the procedure for finding a golf ball 10 lost in the rough 16 is for ne golfer to walk to the estimated area in which loss occurred, to switch on the Geiger counter 17 and to lug in the earphones 19. The Geiger counter 17 is preferably arranged on the golf bag 18 so that its irection of sensitivity points forwards with relation either to a trolley 20 supporting the golf bag, or to nshown carrying straps of the golf bag. In this manner the approximate direction of the golf ball 10 is exated merely by the golfer orientating either the trolley 20, or his trunk if he is carrying the golf bag 18, ntil the direction of strongest signal from the Geiger counter 17 is found. All that is left is for the golfer to ralk in the direction of strongest signal until the exact location of the golf ball 10 is detected. The strength f the earphone signal will indicate the distance of the golf ball '10.

desired, the Geiger counter can be more elaborate and be specifically designed for the purpose of nding the golf ball. For instance, as shown in Figure 5, a Geiger counter 21 is provided with a meter 22 hich is sensitive to the intensity of radiation received by the Geiger counter, and has a dial 23 which is alibrated with the distance the the golf ball would have to be spaced from the Geiger counter 21 to roduce the intensity of radiation received. Thus the Geiger counter 21 would by its orientation indicate the irection of the lost golf ball 10, and by its meter reading 23 would indicate the distance to be travelled to each the golf ball 10. However, for this refinement to be effective, it will be appreciated that the golf ball 0 must either have a predetermined intensity of radiation, or the meter 22 of the Geiger counter must ave an intensity control 24 so that the meter 22 can be tuned to the intensity of radiation emitted by the olf ball before the game is started.

istead of arranging the radio-active material 15 entirely in the core 12, 13, 14 of the golf ball 10, part or all fithe radio-active material 15 may be evenly distributed in the moulded outer case 11 as shown in Figure

he radio-active material 15 is preferably incorporated in the golf ball 10 during its manufacture, but may

//v3.espacenet.com/textdes?CY=ep&LG=en&F=4&IDX=GB1172449&DB=EPODOC&QPN=GB117... 12/15/2004

be applied to the golf ball after manufacture either by subjecting the golf ball 10 to a suitable radiation, or by coating the ball with a layer of radio-active paint or the like as shown in Figure 3. Figure 4 illustrates an embodiment of the invention in which no radio-active materials are used and, instead,; a micro radio emitter 26 is arranged in the liquid composition 14 forming the centre core of the golf ball '10.

The micro radio emitter 26 is arranged to emit a radiation of predetermined strength, frequency and amplitude for receipt by a suitable detector of radio radiation which takes the place of the Geiger counters 21 and '17 illus- 1 trated in Figures 5 and 6. The micro radio emitter 26 must be very light so as to have ittle or no influence on the playing characteristics of the golf ball '10, should be extremely robust and simple so as to minimise the 1 1,172,449 finding a golf ball 10 lost in the rough 16 would be for the golfer o walk to the estimated area in which loss occurred, to switch on the radio wave emitter 27 and associated radio receiver 29 and to plug in the earphones 19. 70 The radio receiver 29 is preferably arranged on the golf bag 18 so that its direction of sensitivity points forwards with relation either to the rolley 20 or to unshown carrying straps of the golf bag. In this manner the approximate direction of the polf ball 10 is located merely by the golfer orientating either the trolley 20, or his trunk if he is carrying the polf bag 18, until the direction of strongest signal from the radio receiver 29 is found. All that 80 is left is for he golfer to walk in the direction of strongest signal until the exact location-of the golf ball 10 is detected. The strength of the earphone signal will indicate the distance of the golf ball '1:0. 85 If desired, the radio vave emitter 22 and the radio receiver 29 can be more elaborate and be specifically designed for the purpose of finding the golf ball. For instance, the arrangement already described with reference to 90 Figure 5 may be employed, the radio receiver 29 could be provided with the meter 22 sensitive to the ntensity of reflected radiation 30 received, the 'dial 23 being calibrated with the distance that the golf ball O would have to 95 be spaced from the radio receiver 29 to produce the intensity of reflected radiation eceived. Thus the radio receiver 29 would by its orientation indicate the direction of the lost golf ball 10 and by its meter reading 23 would 100 indicate the distance to be travelled to reach the gollf ball 110. lowever, for this refinement to be effective, it will be appreciated that the golf ball 110 must either have a predetermined capacity for reflecting radiation, or the meter 105 22 of the radio receiver 29 must have the ntensity control 24 so that the meter 22 can be tuned to the intensity of radiation reflected by the golf ball 1110 before the game is started.

nstead of arranging the radiation reflecting 110 material entirely in or on the moulded outer case il of the jolf ball, part or all of the radiation reflecting material may be evenly distributed in the core i12, 13, '14 of he golf ball as taught with reference to Figure 1, provided that the moulded outer case 11 and any other external layers '12, '13 or 114 are manufactured from material that is generally transparent to the radiation hat is to be reflected.

VHAT I iGLAIM IS:- 120 1. A golf ball, which bears means for transmitting radiation of an intensity that is sufficient for the golf ball to be located after loss in long grass or the like by a person using a suitable adiation detector in the area in 125 which the golf ball was lost.

Data supplied from the esp@cenet database - Worldwide

GB1172449

Claims of GB1172449

2. A golf ball, according to 'Claim 1, in

which the means for transmitting radiation is a radiation emitter.

3. A golf ball,, according to Claim 2, in 130 possibility of damage when the golf ball is struck, and should be capable of emitting the predetermined radio radiation at a substantially even intensity for a considerable length of time. One advantage of this particular embodiment is that each golf ball 110 can be arranged to emit a distinct signal of its own so that the player will only'detect his own ball.

n a preferred embodiment of the invention the radio-active material 15 illustrated in Figures 1 and 2, or he radio-active paint 25 illustrated in Figure 3, is replaced by a radiation reflective material. In this nanner, the radiation reflective material will be evenly distributed in or over the moulded outer case '11 so hat radiation impinging on any aspect of the outer case 11 will be reflected with a substantially even ntensity. Preferably the radiation reflective material is incorporated in the paint 25 or the like with which he golf ball is coated as shown in Figure 3. Alternatively the radiation reflective material may be ncorporated in the golf ball 110 during its manufacture by even distribution in the moulded outer case 1'1 is described with reference to Figure 2. If the radiation reflective material is to be arranged in the moulded outer case 1,1, it should be noted that the material used for manufacturing the outer casing I1 should be :hosen so that it is generally transparent to the passage of the radiation that is to be used. The quantity and nature of the radiation reflecting material should be chosen so that the resulting intensity of radiation eflected from any aspect of the golf ball '10 will be substantially constant and will have sufficient range to ne detected at a distance of at least ten feet by a reflected radiation detector such as a radio receiver. Preferably the reflected radiation should be capable of detection at a range of at least fifty feet. The choice of the radiation reflecting material will depend, as stated, on the type of radiation to be reflected and, if it is o be arranged inside the golf ball, will also depend on the materials used to -manufacture the golf ball.

As shown in Figure 7, the only remaining piece of equipment that is necessary to locate the golf ball 10 after it has been lost in a particular area 16 of the golf course is a cheap battery operated emitter 27 of adio waves 28 and a corresponding radio receiver 29 for the reflected radiation 30. This instrument is preferabily supported by the golf bag 118 as shown in Figures 5 and 6 and may be provided with a pair of arphones 19 for the golfer to use in a similar manner to that taught with reference to Figure 6. In this event the radio receiver 29 is of the type that is sensitive to the direction in which the reflected radiation is eceived and produces a signal, in the form of a ticking signal applied to the earphones 119, which signal approaches with the intensity of the reflected radiation received. With this type of radio receiver, the procedure for 1,172,449 4 1,1 72,449 which the radiation emitter is a radio-active material which emits a adio-active radiation of an intensity that is insufficient to be injuri ous to a human 'being.

. A [golf ball, according to Claim 3, il which the radio-active material has a long half-life relative to the formal life of a gol ball whereby the intensity of the radio-activ radiation will remain substantially constant roughout the normal life of a golf ball, and the radio-active material is so arranged that the radio-active adiation will be emitted with.

predetermined substantially even intensity in all directions.

- i. A golf ball, according to Claim 3 or 4, in which the-core of the golf ball contains at least some of said adio-active material.
- . A golf ball, according to any of 'Claims 3 to 5, in which the moulded outer case of the golf ball contains it least some of said radio-active material.
- . A golf ball, according to any of Claims 3 to 6, in which at least some of said radioactive material is ontained in a layer of paint or the like adhered to the outer surface of the golf ball.
- . A golf ball, according to Claim 2, in which the radiation emitter is a micro radio emitter arranged in the ore of the golf ball.
- . A golf ball, according to [Claim 8, in which the radio emitter is so arranged that the radio radiation will be mitted with a predetermined substantially even intensity in all directions.

- i0. A golf ball, provided with a radio-active core, constructed and arranged and adapted to operate substantially as described herein and as shown in Figure it of the accompanying drawings.
- '111. A golf 'ball, provided with a radio-active moulded outer case, constructed and arranged and adapted to operate substantially as described herein and as shown in Figure 2 of the accompanying drawings.
- 12. A golf ball, covered with a radio-active layer of paint or the like, constructed and arranged and adapted to operate substantially as described herein and as shown in Figure 3 of the accompanying drawings.
- '13. A golf ball constructed and arranged and adapted to operate substantially as described herein and as shown in Figure 4 of the accompanying drawings.
- 14. A golf ball, according to Claim '1, in which the means for transmitting radiation is a radiation reflector arranged for reflecting radiation from a radiation emitter associated with the radiation detector.
- 15. A golf ball, according to (Claim i14 and in the case where the radiation reflector is in the form of adiation reflective material, in which the moulded outer case of the golf ball contains at least some of the adiation reflective material.
- 16. A golf ball, according to Claim 14 or e 15 and in the case where the radiation reflector I is in the form of adiation reflective material, in which at least some of the radiation reflective material is contained in a ayer of paint or the like adhered to the outer surface of the 70 golf ball.
- 117. A golf ball, according to 'Claim 14 and in the case where the outer casing of the golf ball is substantially transparent to the radiation to be reflected and the radiation reflector is 75 in the form of a radiation reflective material, in which the core of the golf ball contains at least some of said radiation reflective material.
- I18. A golf ball, provided with a radiation reflective core, constructed and arranged and 80 adapted to operate substantially as described herein and as shown in Figure 1 of the accompanying drawings.
- E19. A golf ball, provided with a radiation reflective moulded outer case, constructed and 85 arranged and adapted to operate substantially as described herein and as shown in Figure 2 of the accompanying lrawings.
- 20. A golf ball, covered with a radiation reflective layer of paint or the like, constructed 90 and arranged and adapted to operate substantially as described herein and as shown in Figure 3 of the accompanying lrawings.
- 11. A detector, for locating a golf ball according to any of 'Claims 4, and 114 to 20, 95 including a radiation mitter, a reflected radiation detector sensitive to the direction in which radiation reflected from a small eflective area is received, and a meter means which is sensitive to the intensity of reflected radiation eccived 'by the reflected radiation detector and is calibrated with the distance the 'golf ball would have to e spaced from the detector to reflect the intensity of radiation received.
- 2. A detector, according to Claim 21, in 105 which the radiation emitter is a small radio emitter arranged be emit radio radiation with a predetermined substantially even intensity in all directions.
- 3. A detector, according to Claim 21, in Ii0 which the radiation emitter is a small radio emitter arranged to mit radio radiation with a predetermined substantially-even intensity in a specific beam.
- 4. A detector, for locating a golf ball according to any of iClaims i1 to '13, including a radiation detector ensitive to the direction in which radiation emitted from a small source is received, and a meter means which is sensitive to the intensity of radiation received by 120 the radiation detector and is calibrated with the distance the golf ball would have to be spaced from the detector to produce the intensity of radiation exceived.
- 5. A detector, for locating a golf ball 125 according to any of Claims 1 to 13, constructed and arranged nd adapted to operate substantially as described herein and as shown in Figure 5 of the accompanying rawings.
- 6. A detector, for locating a golf ball ac1J72,449 (1g172,449 cording to any of Claims 1 to 13, constructed nd arranged and adapted to operate substantially as described herein and as shown in Figure 6 of the ccompanying drawings.

27. A detector, for locating a golf ball according to any of Claims 1 and 14 to 20, constructed and arranged and adapted to operate substantially as described herein and as shown in Figure 7 of the accompanying drawings.

WALFOfRD & HARDMAN BROWN, Chartered Patent Agents, Trinity House, Hales Street, Coventry, Warwickshire, England.

Agents for the Applicant.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1969.

Published by the Patent Office, 25 Southampton Buildings, London, W.C.2, from which copies may be obtained.

Data supplied from the esp@cenet database - Worldwide

GB1172449

Patent number:

GB1172449

Publication date:

1969-11-26

Inventor: Applicant:

Classification:

international:european:

A63B43/00F

Application number:

GBD1172449 19670726

Priority number(s):

GB19670034223 19670726

Abstract of GB1172449

1,172,449. Detection of golf balls. A. C. WICKMAN. 24 July, 1968 [26 July, 1967; 8 June, 1968], Nos. 34223/67 and 27347/68. Headings A6D. [Also in Division H4] The Specification describes various systems for discovering lost golf balls, the golf balls being constructed to radiate or reflect detect- able radiation. The normal golf ball comprises a molded plastic casing 11, Fig. 1, a wound rubber filament middle portion 12, an inner rubber shell 13 and a liquid composition core 14. A radio active substance 15, strong enough to be detected for some distance but not too strong to handle may be mixed with the liquid core 14, Fig. 1; with the outer casing 11, Fig. 2 or in a paint 25, Fig. 3 on the outside surface of the ball. The radiation is thus omnidirec- tional and may be detected by a Geiger coun- ter 22 mounted on the end of a golf bag trol-ley. The Geiger counter is directional, and the trolley &c. is thus orientated for maximum received signal. The level of received signal is displayed on a meter 23 which may be cali- brated in range. Earphones may alternatively be used. The golf ball may be provided with a radio wave reflective layer at any depth, providing the layers external thereto are transparent to radio waves, and the golf ball may be detected by a radio direction finder 29, Fig. 7, used in the same manner as the Geiger counter of Fig. 5, in conjunction with a radio transmitter 27. The golf ball may be provided with a minia-ture radio transmitter 26 Fig. 4 which is de-tected by direction finder 29.

Data supplied from the esp@cenet database - Worldwide

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: __

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.