Pruning neural networks

Optimizing AI - Session 3

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- Quantification,
- 3 Pruning,
- 4 Factorization,
- Distillation,
- Operators and Architectures,
- **7** Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- Quantification,
- 3 Pruning,
- 4 Factorization,
- Distillation,
- Operators and Architectures,
- 7 Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

Overview of pruning

Definition

Reduce the number of parameters by eliminating neurons or connections.

Table: Comparison of obtained top-1 accuracy, number of parameters (NP) and pruning ratio (PR) on CIFAR10, CIFAR100 and ImageNet of different pruning methods applied on ResNet (RN)

Method	Network	Dataset	Baseline	Pruning	NP(M)	PR
PCAS	RN-56	C10	93.04%	93.58%	0.39	53.7%
PCAS	RN-50	C100	74.66%	73.83%	4.02	76.5%
AMC	RN-50	C10	93.53%	93.55%	NA	60.0%
ThiNet	RN-50	ImNet	72.88%	72.04%	16.94	33.7%

Basic principle (most common)

- Rank the importance of neurons
- Eliminate the least important neurons
- Fine-tune the whole network to restore accuracy

Basic principle (most common)

- Rank the importance of neurons
- Eliminate the least important neurons
- Fine-tune the whole network to restore accuracy

Rank filters / weights using $\sum |\mathbf{W}_{l,i,:,:,:}|$, and prune lowest filters and feature maps, then finetune. Lietal. 2016, https://arxiv.org/abs/1608.08710

Basic principle (most common)

- Rank the importance of neurons
- Eliminate the least important neurons
- Fine-tune the whole network to restore accuracy

ThiNet: rank and prune feature Maps directly.

Luo et al. 2017, https://arxiv.org/abs/1707.06342

Basic principle (most common)

- Rank the importance of neurons
- Eliminate the least important neurons
- 3 Fine-tune the whole network to restore accuracy

Other methods

- AutoML for Model Compression (AMC) uses reinforcement learning with a negative reward defined on the number of floating point operations He et al. 2018, https://arxiv.org/abs/1802.03494
- Pruning Channel with Attention Statistics (PCAS) uses a pretrained network, and adds an "attention" layer that learns feature map importance. Yamamoto and Maeno, 2018, https://arxiv.org/abs/1806.05382

Basic principle (most common)

- Rank the importance of neurons
- Eliminate the least important neurons
- 3 Fine-tune the whole network to restore accuracy

Other methods

- AutoML for Model Compression (AMC) uses reinforcement learning with a negative reward defined on the number of floating point operations
 - He et al. 2018, https://arxiv.org/abs/1802.03494
- Pruning Channel with Attention Statistics (PCAS) uses a pretrained network, and adds an "attention" layer that learns feature map importance.
 Yamamoto and Maeno, 2018
 - Yamamoto and Maeno, 2018,
 - https://arxiv.org/abs/1806.05382

Basic principle (most common)

- Rank the importance of neurons
- Eliminate the least important neurons
- 3 Fine-tune the whole network to restore accuracy

Table: Comparison of obtained top-1 accuracy, number of parameters (NP) and pruning ratio (PR) on CIFAR10, CIFAR100 and ImageNet of different pruning methods applied on ResNet (RN)

Method	Network	Dataset	Baseline	Pruning	NP(M)	PR
PCAS	RN-56	C10	93.04%	93.58%	0.39	53.7%
PCAS	RN-50	C100	74.66%	73.83%	4.02	76.5%
AMC	RN-50	C10	93.53%	93.55%	NA	60.0%
ThiNet	RN-50	ImNet	72.88%	72.04%	16.94	33.7%

Pruning while training (experimental)

(very) Recent papers have tried to prune networks while training, instead of using pretrained networks.

- Automatic Network Pruning by Regularizing Auxiliary Parameters, Xiao et al. NIPS 2019.
- Soft Threshold Weight Reparameterization for Learnable Sparsity, preprint february 2020 https://arxiv.org/pdf/2002.03231.pdf
- BitPruning: Learning Bitlengths for Aggressive and Accurate Quantization https://arxiv.org/abs/2002.03090

Lab Session and Project

Lab Session

- Implement one of the pruning methods from this course
- Apply it on MiniCIFAR

Presentation at next session

Present your current explorations on MiniCIFAR, CIFAR10 and / or CIFAR100 using the methods seen so far!