

Computer interfacing

Interfícies dels computadors

Dpt. d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial

Interfaces & Interfacing

The **physical**, **electrical** and **logical** means of exchanging information with a functional module.

The process of **enabling a computer to communicate** with the external world through Software, Hardware and Protocols.

Microprocessor & Microcontroller

Computers are everywhere:

- -Some are developed to be as powerful as possible, without concern for price or other restrictions.
- -Others are designed into a product, in order to provide its control. This computer is hidden from view. This sort of product is called an embedded system.

Figure 1.1: Embedded system example 1: the refrigerator

Figure 1.2: Embedded system example 2: the car door

Table 1-1: Examples of embedded systems and their markets^[1]

Market	Embedded Device				
Automotive	Ignition system				
	Engine control				
	Brake system (i.e., antilock braking system)				
Consumer electronics	Digital and analog televisions				
	Set-top boxes (DVDs, VCRs, cable boxes, etc.)				
	Personal data assistants (PDAs)				
	Kitchen appliances (refrigerators, toasters, microwave ovens)				
	Automobiles				
	Toys/games				
	Telephones/cell phones/pagers				
	Cameras				
	Global Positioning Systems (GPS)				
Industrial control	Robotics and control systems (manufacturing)				
Medical	Infusion pumps				
	Dialysis machines				
	Prosthetic devices				
	Cardiac monitors				
Networking	Routers				
	Hubs				
	Gateways				
Office automation	Fax machines				
	Photocopiers				
	Printers				
	Monitors				
	Scanners				
	Scarners				

Around Computer Interfacing

Needs interact with

Embedded systems

Ubiquitous computing

Ambient intelligent

Internet of things

Wearable computer

Humans

Sensors

Actuators

Other digital systems

Temari de l'assignatura

- Introducció
- Arquitectura del micro
- Ports d'E/S
- Interrupcions
- Timers i CCP (entrades/sortides impulsionals)
- Conversors A/D (interfícies analògiques)
- Interfícies de comunicació sèrie
- Busos i DMA

Bibliografia

Les transparències SÓN un ajut per al seguiment de les classes.

Les transparències NO SÓN la font bibliogràfica ni el material d'estudi de l'assignatura.

Bibliografia

- Llibres de texte

PIC Microcontroller: An Introduction to Software & Hardware Interfacing Han-Way Huang, Leo Chartrand. Publisher: Delmar Cengage Learning; 2004

- Manual de referència tècnica (PIC18F45K22 Data Sheet)

El teniu a Atenea i es pot cercar al web de Microchip.

- Recursos on-line

https://www.microchip.com/applicationnotes

https://learn.mikroe.com/ebooks/piccprogramming/

https://learn.mikroe.com/ebooks/microcontroladorespicc/ (en castellà)

Avaluació

- Introducció
- Arquitectura del micro
- Ports d'E/S
- 1r control • Interrupcions
- Timers i E/S impulsionals (CCP)
 2n control
- Interfícies analògiques
- · Interfícies de comunicació sèrie
- ··-·-- 3r control Busos i DMA*

*Aquest tema s'explica lligat amb l'activitat de TxT, no entra a examens.

Avaluació

La nota final s'obté:

$$NF = 0'7 \cdot NT + 0'3 \cdot NL$$

La nota de teoria NT es calcula en funció de la nota dels tres parcials

$$NT = 0.33 \text{ x Parcial } 1 + 0.33 \text{ x Parcial } 2 + 0.33 \text{ x Parcial } 3$$

La nota de laboratori NL s'obté ponderant les avaluacions de les pràctiques. La pràctica L1 i L9 és individual. Les pràctiques L2 i TxT no generen nota (són també obligatòries però de caràcter formatiu).

Els alumnes amb una nota final entre 4 i 10 poden optar a millorar la nota (NF = ceiling(NF)) en funció de la seva participació en l'assignatura. La participació es mesura mitjançant els entregables, TxT i els qüestionaris d'Atenea.

Avaluació (laboratori)

És condició necessària per superar l'assignatura realitzar i presentar correctament les pràctiques de laboratori. Això vol dir:

- Cal fer la pràctica i/o la feina que es demana abans de la sessió de laboratori corresponent.
- L'assistència al laboratori és obligatòria. Cal assistir al grup al qual esteu assignats.
- A l'inici de la sessió s'haurà d'entregar la feina realitzada a casa.
- Durant la sessió de laboratori caldrà resoldre correctament les modificacions i/o preguntes que el professor demani sobre la pràctica.
- En les proves de control es faran preguntes sobre la pràctica.

Laboratori. Mínims exigibles

L'estudiant té l'obligació de presentar un treball propi i és responsable de dominar la totalitat de la pràctica presentada i demostrar-ho quan així ho demani el professor.

Tingueu en compte que a totes les sessions s'avaluarà amb un 0 tota pràctica en la que:

- No s'hagi entregat el treball previ mínim dins del termini establert.
- L'estudiant no sàpiga respondre correctament alguna pregunta que el professor faci sobre el seu propi treball entregat.
- Hi hagi una demostració manifesta de que l'estudiant no sap adaptar el seu propi treball previ a la resolució de la pràctica demanada pel professor 'in situ' al laboratori.

Cal entregar una còpia del treball previ de cada pràctica via electrònica abans d'assistir a la sessió de laboratori corresponent. No s'acceptarà cap entrega fora de data.

Entregar una pràctica plagiada, de forma total o parcial implica el suspens automàtic de l'assignatura.

Extres

Al llarg del curs es proposaran nombrosos exercicis senzills, a realitzar pels estudiants tant a casa com a classe, que seran avaluats pel professor.

Aquí hi entraran exercicis fets a classe i entregables d'Atenea. La realització d'aquests exercicis serà voluntària i podrà augmentar la nota final.

No s'aplicarà cap increment de nota a estudiants que tinguin una NT<4.

Els estudiants repetidors que hagin aprovat les pràctiques al darrer quadrimestre, poden convalidar-les amb una nota de 5.

Avaluació (competència transversal)

G3.1 - Comprendre i utilitzar eficaçment manuals, especificacions de productes i altra informació de caràcter tècnic escrita en anglès.

- Materials i activitats a l'Atenea de l'assignatura.
- Avaluació al final de quadrimestre amb un test de comprensió lectora.

La competència "llengua estrangera" és l'única necessària per a l'obtenció del títol d'enginyer. (Exigència legal – Acreditació externa)

Càrrega de treball

6 ECTS * 25hores/ECTS = 150 hores de feina

Considerant quadrimestres de 15 setmana => 10 hores de feina/set.

- 2 hores/setmana de classe de teoria (presencial)
- + 2 hores/setmana de laboratori (presencial)
- + 6 hores/setmana de treball personal

Coneixements previs

Entre d'altres:

- Coneixement del funcionament dels diferents components electrònics: R, L, C, diodes, transistors MOS.
- Anàlisi de circuits electrònics en DC. Càlcul de tensions, corrents i consums.
- · Programació en llenguatge C
- Entendre correctament documentació escrita en anglès.

Assistència a classe

La diferència entre no venir a classe

Encoder incremental d'un ratolí mecànic de bola

Assistència a classe

i venir a classe

La relació entre el nombre de finestretes i el perímetre de l'eix ens donarà la resolució

Diode fotoreceptor + foto emissor (a l'altre costat) sempre encès

Això és texte per omplir hjgsdfjhdsfdjd.sd dsndsfdsfjd dfjndsd dfjbvd vnd dnf bbfe df dfdn fnd fje ekween fkwe fkd d dkjbnd sdkfjhdsjkf dsf dfd fdf dfd djfdjfdfd

hjgsdfjhdsfdjd.sd dsndsfdsfjd dfjndsd dfjbvd vnd dnf bbfe df dfdn fnd fje ekween fkwe fkd d dkjbnd sdkfjhdsjkf dsf dfd fdf dfd difdifdfd

hjgsdfjhdsfdjd.sd dsnd**sfdsfjd** dfjndsd dfjbvd vnd dnf bbfe df dfdn fnd fje ekween fkwe fkd d dkjbnd sdkfjhdsjkf dsf dfd fdf dfd difdjfdfd

hjgsdfjhdsfdjd.sd dsnd**sfdsfjd** dfjndsd dfjbvd vnd dnf bbfe df dfdn fnd fje ekween fkwe fkd d dkjbnd sdkfjhdsjkf dsf dfd fdf dfd djfdjfdfd Rodeta dentada (anomenada encoder incremental)

Encoder incremental d'un ratolí mecànic de bola

Eix en contacte amb la bola

Dos díodes per obtenir senyal en quadratura.

El desfasament ens donarà el sentit de gir.

Introduction

Interfaces & Interfacing

The **physical**, **electrical** and **logical** means of exchanging information with a functional module.

The process of **enabling a computer to communicate** with the external world through Software, Hardware and Protocols.

Microprocessor & Microcontroller

A microprocessor is a CPU in a single chip.

A microcontroller is a small computer on a single chip, containing a processor core, memory, and programmable input/output peripherals.

Microcomputer: 5 basic units

- > The Arithmetic Logic Unit (ALU)
- > Control Unit: directs the operation of all other parts.
- Memory: Store program & data
- > Input: Allows data & info to be entered into memory
- > Output: Transfers data from memory to outside world

The central processing unit (CPU)

- CPU executes program instructions
- Program counter (PC) is a special register that points to the instructions
- ➤ Instruction decoder tells the ALU what to do with the data
- Control sequencer
 manages the transfer of
 instruction and data
 bytes along the internal
 data bus

Harvard & Von Newman Architecture

HARVARD ARCHITECTURE **MICROPROCESSOR** DATA INSTRUCTION **MEMORY** MEMORY CONTROL & ADDR INSTRUCTION DATA IN ALU CONTROL CONTROL **STATUS** CLOCK

MICROPROCESSOR MEMORY IN OUT ALU CONTROL STATUS CLOCK

Interface Controller

Digital interface registers are also called **PORTS**

Where are Data, Status and Command registers located?

I/O Addressing question

If the same address bus is used for both memory and I/O, how should the hardware be designed to differentiate between memory and I/O reads and writes?

Memory Mapped I/O vs. Isolated I/O

- > Memory Mapped I/O (MOTOROLA):
 - 1. Any instruction that reads or writes memory can read/write I/O Port
 - 2. Address specifies which module (input, output, RAM, ROM), will communicate with the processor
 - 3. Ex: LDAA #56 STAA \$0024 (copy value to port H)
- Isolated I/O (INTEL):
 - 1. The control bus signals that activate the I/O are separate from those that activate the memory device.
 - 2. These systems have a separate address space.
 - 3. Separate instructions are used to access I/O and Memory.
 - 4. Ex: IN AL, \$10 (copy values of port \$10 into register AL)

Advantages / Disadvantages?

Memory mapped I/O

Address	Name	Address	Name	Address	Name	Address	Name	
FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	CCPR1H	F9Fh	IPR1	
FFEh	TOSH	FDEh	POSTINC2 ⁽³⁾	FBEh	CCPR1L	F9Eh	PIR1	
FFDh	TOSL	FDDh	POSTDEC2(3)	FBDh	CCP1CON	F9Dh	PIE1	
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	CCPR2H	F9Ch	_	
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	CCPR2L	F9Bh	_	
FEAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	_	
FF9h	PCL	FD9h	FSR2L	FB9h	_	F99h	_	
FF8h	TBLPTRU	FD8h	STATUS	FB8h	_	F98h		
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	_	F97h	_	
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	_	F96h	TRISE(2)	
FF5h	TABLAT	FD5h	T0CON	FB5h	_	F95h	TRISD ⁽²⁾	
FF4h	PRODH	FD4h	-	FB4h	-	F94h	TRISC	
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB	
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA	
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h		
FFOh	INTCON3	FD0h	RCON	FB0h	_	F90h	6222235202222	
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh		
FEEh	POSTINCO(3)	FCEh	TMR1L	FAEh	RCREG	F8Eh		
FEDh	POSTDECO ⁽³⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽²⁾	
FECh	PREINCO ⁽³⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD(2)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC	ports
FEAh	FSR0H	FCAh	T2CON	FAAh	-	F8Ah	LATB	
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA	
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h		
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h		
FE6h	POSTINC1 ⁽³⁾	FC6h	SSPCON1	FA6h	EECON1	FB6h		
FE5h	POSTDEC1(3)	FC5h	SSPCON2	FA5h	_	F85h	622222222222222 666666 <u>-</u> 2666666	
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	_	F84h	PORTE ⁽²⁾	
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h	_	F83h	PORTD(2)	
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	
FEDh	BSR	FC0h	_	FA0h	PIE2	F80h	FORTA	

PICs use a memory mapped solution

RISC vs. CISC

RISC	CISC

Simple instruction set Complex instruction set

Regular and fixed instruction format Irregular instruction format

Wired instructions, take only one or a few clock cycles to execute.

Complex microcoded instructions, take many clock cycles to execute.

Simple address modes Complex address modes

Separated data and program memory

Combined data and program memory

Most operations are register to register
Most operations can be register to memory

Take shorter time to design and debug

Take longer time to design and debug

Provide large number of CPU registers

Provide smaller number of CPU registers

Simple operations, longer programs

EFFICIENCY?

Complex operations, shorter programs

EFFICIENCY?

Entregable Nº 1

Q1 Un microcontrolador amb l'entrada/sortida mapejada en la memòria RAM serà més aviat RISC o CISC?

Q3 Un xip microcontrolador que pretén ser de baix consum tindrà molta, poca RAM o no té res a veure?

Q2 Si en la ROM es guarda el programa, en la RAM es guarden els valors de les variables, llavors on es guarden els valors de les comandes, consignes i paràmetres?