SANTA CLARA UNIVERSITY	ELEN 153	T.A. Vinay Krishna			
Laboratory #7: Hierarchical Design Part 1_ Four-Rit Adder					

Laboratory #7: Hierarchical Design Part 1- Four-Bit Adder

I. OBJECTIVES

- To learn how to create complex circuits using bottom-up hierarchical design.
- To create a four-bit adder schematic and simulate it.

II. <u>LAB PROCEDURE</u>

1. Importing gates

- Download the Adder.zip from Camino
- Move the folder to your home page or directory where you create all your lab work and uncompress it.
- Use the "cd" command to change into that directory and launch Custom Compiler from inside directory. If done correctly, you should be able to see the Adder Library.
- To build you adder, use the given AND, XOR and OR gates given to you. These gates include schematics, symbols and layouts for you to utilize.

2. Half Adder

- Create a new library for the four-bit adder.
- Enter the Half-adder schematic, using AND, and XOR primitive cells. Create a symbol for the Half-adder.

х	y	s	c
О	O	0	O
0	1	1	O
1	O	1	O
1	1	0	1

3. Full Adder

• Enter the hierarchical Full-adder schematic, using the Half-adder symbol, and OR primitive cell. Create a symbol for the Full-adder

a_i	b_{i}	c_{i}	s_i	c _{i+1}
0	O	0	0	0
0	1	O	1	O
1	O	O	1	O
1	1	O	0	1
0	O	1	1	O
0	1	1	0	1
1	O	1	0	1
1	1	1	1	1

4. Four-Bit Ripple Carry Adder

• Enter the hierarchical 4-bit Adder schematic, using the Full-adder symbol. Create a symbol for the 4-bit Adder.

5. Simulations

• Test the correctness of the 4-bit Adder schematic entered by using the A and B input vector pairs as suggested by TA. Use pattern source (Vpat) from analoglib.

Ouestion:

How can you make an 8-bit adder using your 4-bit ripple carry adder?

III. REPORT

Write a short laboratory report that details all the work done. Describe the objective and procedures of this lab with your own words. The lab report should contain the following:

- a) All schematics used in your lab.
- b) SAE simulation setups
- c) Simulation waveforms
- d) Answer any questions in the lab assignment
- e) Conclusions