

CAMPUS CIUDAD DE MÉXICO
DEPARTAMENTO DE COMPUTACIÓN

PRÁCTICA 4: INTRODUCCIÓN A ATMEL STUDIO

Actividades previas

a. Instalar Atmel Studio 7.0. Instalar únicamente el soporte para microcontroladores de 8 bits.

Introducción

Los micros ATMEL cuentan con un conjunto de fusibles programables (1 sin programar, 0 programado), que modifican el comportamiento general del microcontrolador. A pesar de que éstos no forman parte del sistema mínimo es necesario considerarlos, debido a que una mala configuración, podría provocar que el microcontrolador no trabajara de manera adecuada.

Agrupando los fusibles de acuerdo con su funcionalidad, tendríamos:

- 1. Programación, depuración y acceso a memoria (Programa/EEPROM)
 - a. OCDEN On Chip Debug Enable. Habilita/Deshabilita todos los canales de comunicación para eventos de depuración.
 - b. JTAGEN. Habilita/Deshabilita el canal JTAG para la Depuración/Programación/Lectura y acceso total a todas las memorias del microcontrolador.
 - c. SPIEN. Habilita/Deshabilita el canal SPI para Programar/Leer la memoria de programa (Flash), datos (SRAM) y la EEPROM.
 - d. Memoria EEPROM (EESAVE). Mantiene el contenido de la memoria EEPROM aun y cuando se haya realizado una operación de borrado/programación del microcontrolador.
 - e. Bloqueo (LB, BLB). Protege a las memorias de programa y EEPROM, contra Verificaciones/Lecturas/Escritura posteriores a la programación. Prohíbe el acceso a la memoria deprograma (SPM, LPM) desde la memoria de Aplicación/Arranque (boot memory).
- 2. Detección de nivel de voltaje (BODLEVEL, BODEN). Activan y configuran el detector de nivel de voltaje, que desencadena el proceso de RESET interno, cuando VCC sea menor al voltaje programado, por al menos 2 μs.

BODLEVEL, BODEN	Detector de Nivel de Voltaje	
00	ACTIVADO A 4.0V	
01	DESACTIVADO	
10	ACTIVADO A 2.7V	
11	DESACTIVADO	

3. Sistema de Reloj (CKSEL, CKOPT, SUT)

Device Clock Option	CKSEL30	
External Crystal/Ceramic Resonator	1111 – 1010	
External Low-frequency Crystal	1001	
External RC Oscilator	1000 - 0101	
Calibrated Internal RC Oscillator	0100 - 0001	
External Clock	0000	

CKSEL30	Nominal Frequency (MHz)
0001	1.0
0010	2.0
0011	4.0
0100	8.0

4. Memoria de inicio (BOOTSZ, BOOTRST). Permite mover el contenido del Vector de Reset de la posición flash 0x0000 a la especificada por los fusibles BOOTSZ.

BOOTSZ1:0	Tamaño de la memoria de arranque (words)	# de páginas	Dirección de inicio de la memoria de arranque
00	128	2	0x1F80
01	256	4	0x1F00
10	512	8	0x1E00
11	1024	16	0x1C00

Desarrollo

- 1. Descargar el archivo .asm de blackboard.
- 2. Comentar el programa
- 3. Ejecutar el programa paso a paso y observar:
 - a. Modificación de los registros
 - b. Modificación de los puertos
 - c. Duración de 1 instrucción. ¿Hay instrucciones que duran más? ¿Por qué?
 - d. Duración de proceso en especifico
 - e. Memoria RAM
- 4. Conectar el circuito de los LEDs al puerto A del micro y corre el programa. Cuál es la secuencia en los LEDs y cuánto duró.
- 5. Modifica el programa para que ahora lo haga en el puerto B y así prueba todos los puertos.