RNA-seq解析パイプライン: Transcript-based

Shuji Shigenobu 重信 秀治

基礎生物学研究所 生物機能解析センター

Two Basic Pipelines

Choice of reference

- ▶ Genome standard for genome-known species
- Transcript the only way for genome-unknown species
 -- can be used for genome-known species

Millions of short reads pre-processing mapping Reads aligned to reference summarization by unit (gene, transcript, exon) Table of counts normalization **DE** testing List of DE gene systems biology GO enrichment multivariate analysis network analysis

Biological insights

A transcript-based pipeline (alignment-free method)

Alignment-free RNAseq quantification

Software

- Salmon
- Kallisto
- Sailfish

Concept

- Precise alignments are not required to assign reads to their origins.
- > => "psudo-alignment" using a de bruijn graph information (kallisto), a k-mer approach (Sailfish old ver.) or a "quasi-mapping" (Salmon)

Benefit

- Ultrafast
- Computationally cheap
- Accuracy: similar or better than mapping-based methods

Salmon —Don't count . . . quantify!

Overview

Salmon is a tool for quantifying the expression of transcripts using RNA-seq data. Salmon uses new algorithms (specifically, coupling the concept of *quasi-mapping* with a two-phase inference procedure) to provide accurate expression estimates very quickly (i.e. *wicked-fast*) and while using little memory. Salmon performs its inference using an expressive and realistic model of RNA-seq data that takes into account experimental attributes and biases commonly observed in *real* RNA-seq data.

Citing Salmon

If you find Salmon useful, or have suggestions for improve Salmon in your work, please cite the Salmon paper:

https://combine-lab.github.io/salmon/

Salmon

Salmon is a tool for quantifying the expression of transcripts using RNA-seq data. Salmon uses new algorithms to provide accurate expression estimates very quickly.

```
(example)
$salmon index ... # step 1. build index
$salmon quant ... # step 2. quantification
```

Input

- reference (fasta) and reads (fastq)
- Output
 - Count estimation table: quant.sf

Let's Try Salmon

Map 75-bp Illumina reads to a transcript reference and quantify the abundance.

Prepare reads and reference genome

Sequences for this exercise are stored in ~/gitc/data/SS/.

```
IlluminaReads1.fq : Illumina reads in fastq format
minimouse_mRNA.fa : a set of transcript sequnences
```

Build index of reference sequence

```
$salmon index -t minimouse_mRNA.fa ¥
-i minimouse_mRNA.fa.salmon.idx -k 31
```

Quantification

```
$salmon quant -i minimouse_mRNA.fa.salmon.idx ¥
-l A -o salmon_out -r IlluminaReads1.fq
```

Salmon outputs

NumReads => edgeR

quant.sf

Name	Length	EffectiveLength	ТРМ	NumReads
IcI ENSMUST00000074761	381	132.000	169.095133	5.000
IcI ENSMUST00000136312	2205	1956.000	90.036424	39.451
IcI ENSMUST00000004316	1671	1422.000	0.000000	0.000
IcI ENSMUST00000105465	1665	1416.000	5801.782522	1840.332
IcI ENSMUST00000165878	1656	1407.000	0.000000	0.000
IcI ENSMUST00000177779	1674	1425.000	0.000000	0.000
IcI ENSMUST00000179238	1674	1425.000	136.797600	43.668
IcI ENSMUST00000082402	1545	1296.000	6110.505937	1774.000
IcI ENSMUST00000092163	447	198.000	32984.331687	1463.000
IcI ENSMUST00000092162	447	198.000	0.000000	0.000
IcI ENSMUST00000100497	1128	879.000	328.241125	64.633
IcI ENSMUST00000094434	552	303.000	8390.396792	569.504
IcI ENSMUST00000090860	552	303.000	0.000000	0.000
IcI ENSMUST00000005950	1422	1173.000	4014.976469	1055.000
IcI ENSMUST00000120655	1212	963.000	0.000000	0.000
IcI ENSMUST00000019649	918	669.000	1047.905860	157.043
IcI ENSMUST00000071555	1128	879.000	1271.484978	250.364
IcI ENSMUST00000167721	888	639.000	4172.375467	597.249
IcI ENSMUST00000082405	684	435.000	8599.700325	838.000
IcI ENSMUST00000171419	795	546.000	0.000000	0.000
Initelieral tetrococcossano	601	133 000	0200 002507	904 000

Salmon to edgeR

quant3.sf

quant4.sf

Notes:

Count matrix 作成するのに一手間かける必要があることに言及。最近のsalmonではsalmon merge でそれができるようになった。前回までお手製rubyスクリプトを使っていたが、今回からsalmon mergelこswitch

Lih-1|NumReads Lih-2|NumReads

Lib.3NumReads

Lih-4NumReads

IcI|ENSMUST00000167721

count matrix

4.998

89.000

135,272

597.249

\$salmon quantmerge ...

Table of counts

data import

diagnostics

normalization

DE testing

evaluation

List of DE gene

edgeR

- A Bioconductor package for differential expression analysis of digital gene expression data
- Model: An over dispersed Poisson model, negative binomial (NB) model, is used
- Normalization: TMM method (trimmed mean of M values) to deal with composition effects
- ▶ **DE test**: exact test and generalized linear models (GLM)

edgeR (classic)

- input: **count data** (not RPKM or TPM)
- output: gene table with DE significance statistics (FDR)

```
(example)
$ R
> library(edgeR)
                                  #load edgeR library
> dat <- read.delim("count_data.txt", ...) #import count table to R</pre>
> group < c(rep("M", 3), rep("H", 3)) #assign groups
> D <- DGEList(dat, group=group) #import data to edgeR</pre>
> D <- calcNormFactors(D)</pre>
                          #normalization (TMM)
> D <- estimateCommonDisp(D) #estimate common disbpersion
> D <- estimateTagwiseDisp(D) #estimate tagwise dispersion</pre>
> de <- exactTest(D, pair=c("M", "H")) #DE test</pre>
> topTags(de)
Comparison of groups: H-M
            logConc logFC P.Value
                                                  FDR
AT5G48430 -15.36821 6.255498 9.919041e-12 2.600872e-07
AT5G31702 -15.88641 5.662522 3.637593e-10 4.083773e-06
AT3G55150 -17.01537 5.870635 4.672331e-10 4.083773e-06
```

edgeR (GLM)

- input: **count data** (not RPKM or TPM)
- output: gene table with DE significance statistics (FDR)

```
(example)
$ R
> library(edgeR)
                                    #load edgeR library
> dat <- read.delim("count_data.txt", ...) #import count table to R</pre>
> treat <- factor(c("M", "M", "M", "H", "H", "H"))</pre>
> treat <- relevel(treat, ref="M)</pre>
> design <- model.matrix(~treat)</pre>
> rownames(design) <- colnames(y)</pre>
> D <- DGEList(dat, group=treat) #import data to edgeR
> D <- calcNormFactors(D, method="TMM") #normalization (TMM)</pre>
> D <- estimateDisp(D, design) #estimate dispersion</pre>
> fit <- glmFit(D, design) #fitting to model</pre>
> lrt <- glmLRTt(D, coef=2)) #DE test</pre>
> topTags(lrt)
> ...
```

Let's try edgeR

- edgeR classic
 - ex402: Differential expression analysis with edgeR (pairwise)
- edgeR linear model [advanced]
 - ex403-1: Differential expression analysis with edgeR (GLM)
 - ex403-2: Differential expression analysis with edgeR (GLM; considering batch effect)

Estimate Abundance

- Multimapping issues
 - Isoforms
 - Very similar paralogs
 - Repetitive sequences
 - > => cannot align reads uniquely
- Mapping ambiguity should be taken into consideration.

- Critical for RNA-seq de novo analysis
- Software: RSEM and eXpress (EM algorithm)