

Microeconomía I Ayudantía 2

Profesora: Adriana Piazza Ayudantes: Jorge Arenas, Kevin Sepúlveda, Alberto Undurraga

Pregunta 1

Sea \succeq una relación de preferencia completa sobre el conjunto X, y sea $u:X\to\mathbb{R}$ una función. Demuestre que las siguientes afirmaciones son equivalentes:

- (a) u represent aa \succeq .
- (b) Para todo $x, y \in X$:

$$\left\{ \begin{array}{l} \text{si } x \succ y, \text{ entonces } u(x) > u(y) \\ \text{si } x \sim y, \text{ entonces } u(x) = u(y) \end{array} \right.$$

Pregunta 2

Sea \succeq una relacion de preferencias definida sobre un conjunto X numerable. Muestre que estas preferencias pueden ser representadas por una funcion de utilidad cuya imagen está en (-1,1).

Pregunta 3

Sea $u: \mathbb{R}^n_+ \to \mathbb{R}$. Demuestre que si $u(\cdot)$ es cuasi-cóncava y diferenciable, y $u(\mathbf{y}) \ge u(\mathbf{x})$, entonces

$$\nabla u(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) \ge 0$$

Suponga ahora que además $u(\mathbf{x})$ es continua en \mathbb{R}^n_+ , y que $(\mathbf{p}, I) \gg 0$. Demuestre que si u es diferenciable en \mathbf{x}^* , entonces \mathbf{x}^* resuelve el problema de maximización del consumidor a precios \mathbf{p} e ingreso I.

Pregunta 4

Sea la función de utilidad $u: \mathbb{R}^N_+ \to \mathbb{R}$ separable, i.e., $u(\mathbf{x}) = \sum_{n=1}^N g_n(x_n)$, con $g'_n > 0$, $g''_n < 0$, para todo $\mathbf{x} \in \mathbb{R}^N_+$, y $n \in N$.

- (a) Demuestre que para $(\mathbf{p}, w) \in \mathbb{R}^{N+1}_{++}$, el problema del consumidor tiene solución única.
- (b) Asuma que las demandas Walrasianas son estrictamente positivas y diferenciables. Demuestre que los bienes son normales.

Pregunta 5

Considere el siguiente problema de maximización de utilidad

$$\max_{\mathbf{x} \in \mathbb{R}_{+}^{N}} \left(\sum_{n=1}^{N} \beta_{n} x_{n}^{a} \right)^{\frac{1}{a}}$$
s.a. $\mathbf{p} \cdot \mathbf{x} \leq w$

(a) Muestre que las soluciones vendrán dadas por

$$x_k^* = \frac{w}{p_k^{\frac{1}{1-a}}} \cdot \frac{\beta_k^{\frac{1}{1-a}}}{\sum_{n=1}^N p_n^{\frac{a}{a-1}} \beta_n^{\frac{1}{1-a}}}$$

 $\forall k \in \{1, ..., N\}, \text{ con } \beta_k > 0 \ \forall k \in \{1, ..., N\}, \text{ y } \sum_{n=1}^{N} \beta_n = 1.$

Respuesta: Tomando la C.P.O para dos bienes cualquiera k y n:

$$\frac{\partial U}{\partial x_k} = \frac{1}{a} \left(\sum_{n=1}^N \beta_n x_n^a \right)^{1/a - 1} a \beta_k x_k^{a - 1} = \lambda p_k$$

$$\frac{\partial U}{\partial x_n} = \frac{1}{a} \left(\sum_{n=1}^N \beta_n x_n^a \right)^{1/a - 1} a \beta_l x_n^{a - 1} = \lambda p_n$$

Dividiendo ambas expresiones

$$\frac{\beta_k}{\beta_n} \frac{x_k^{a-1}}{x_n^{a-1}} = \frac{p_k}{p_n} \qquad (*)$$

y por último utilizando la restricción presupuestaria para reemplazar la relación anterior:

$$\sum_{n=1}^{N} p_n x_n = w$$

$$\sum_{n=1}^{N} p_n \left(\frac{p_k}{p_n} \frac{\beta_n}{\beta_k} \right)^{\frac{1}{1-a}} x_k = w$$

$$x_k^* = \frac{w}{p_k^{\frac{1}{1-a}}} \cdot \frac{\beta_k^{\frac{1}{1-a}}}{\sum_{n=1}^N p_n^{\frac{a}{a-1}} \beta_1^{\frac{1}{1-a}}}$$

(b) ¿Qué ocurre cuando $a \to 0$? Obtenga en este caso la función de utilidad indirecta y verifique que es creciente en w, decreciente en \mathbf{p} y homogénea de grado 0 en \mathbf{p} y w.

Respuesta: Cuando $a \to 0$ se tiene que por la ecuación (*), la elasticidad de sustitución entre dos bienes es igual a 1, lo cual es una propiedad de una función de utilidad Cobb-Douglas. Es decir, la función de utilidad del enunciado es una CES, y cuando $a \to 0$ esta se transforma en una Cobb-Douglas:

$$U_{a\to 0} = \prod_{n=1}^{N} x_n^{\beta_n}$$

Además, cuando a=0 las dem
ndas óptimas son de la forma:

$$x_k^* = \frac{w}{p_k} \cdot \beta_k$$

Luego, para obtener la función de utilidad indirecta reemplazamos estas demandas en la función de utilidad:

$$U(\mathbf{p}, w) = \prod_{n=1}^{N} \left(\frac{w}{p_n} \cdot \beta_n \right)^{\beta_n} = w \prod_{n=1}^{N} \left(\frac{\beta_n}{p_n} \right)^{\beta_n}$$

por lo que se cumple lo que pide el enunciado:

$$\frac{\partial U(\mathbf{p},w)}{\partial w} = \prod_{n=1}^{N} \left(\frac{\beta_n}{p_n}\right)^{\beta_n} > 0$$

$$\frac{\partial U(\mathbf{p},w)}{\partial p_k} = \left(\frac{-1}{p_k^{\beta_k+1}}\right) \cdot w \cdot \beta_k^{\beta_k+1} \prod_{n \neq k}^{N} \left(\frac{\beta_n}{p_n}\right)^{\beta_n} \leq 0 \qquad \forall k$$

$$U(\alpha \mathbf{p},\alpha w) = \alpha w \prod_{n=1}^{N} \left(\frac{\beta_n}{\alpha p_n}\right)^{\beta_n} = \alpha w \cdot \left(\frac{1}{\alpha^{\sum_{n=1}^{N} \beta_n}}\right) \prod_{n=1}^{N} \left(\frac{\beta_n}{p_n}\right)^{\beta_n} = w \prod_{n=1}^{N} \left(\frac{\beta_n}{p_n}\right)^{\beta_n} = \alpha^0 U(\mathbf{p},w) \quad \forall \alpha > 0$$

Pregunta 6

Encuentre las funciones de demanda Marshalianas de un consumidor de dos bienes, que enfrenta precios e ingresos positivos, con la siguiente función de utilidad

$$u(x_1, x_2) = \max\{ax_1, ax_2\} + \min\{x_1, x_2\}$$
 $0 < a < 1$.

Respuesta: Analicemos cómo serán las curvas de indiferencia de esta función de utilidad. En el caso de que $x_1 > x_2$, tenemos que $\overline{u} = ax_1 + x_2$, por lo que será una recta con pendiente -a. Y en el caso de que $x_1 < x_2$, se tiene que $\overline{u} = ax_2 + x_1$, por lo que la pendiente será $\frac{-1}{a}$. Algo como el siguiente gráfico:

Entonces, las demandas dependerán de la relación de precios. Si $\frac{p_1}{p_2} > \frac{1}{a}$ solo se consume del bien x_2 . Si $\frac{p_1}{p_2} < a$ solo se consume del bien x_1 . Si $a < \frac{p_1}{p_2} < \frac{1}{a}$ se consume en cantidades iguales. Por lo tanto, las demandas serán:

$$(x_1^*, x_2^*) = \begin{cases} (0, w/p_2) & \text{si } \frac{p_1}{p_2} > \frac{1}{a} \\ \{(x_1, x_2) : p_1 x_1 + p_2 x_2 = w \text{ y } x_2 \ge x_1\} & \text{si } \frac{p_1}{p_2} = \frac{1}{a} \\ (w/(p_1 + p_2), w/(p_1 + p_2)) & \text{si } a < \frac{p_1}{p_2} < \frac{1}{a} \\ \{(x_1, x_2) : p_1 x_1 + p_2 x_2 = w \text{ y } x_1 \ge x_2\} & \text{si } \frac{p_1}{p_2} = a \\ (w/p_1, 0) & \text{si } \frac{p_1}{p_2} < a \end{cases}$$