Explaining Gradualism in Trade Liberalization: A Political Economy Approach

Kristy Buzard Syracuse University kbuzard@syr.edu

May 17, 2017

Average tariffs for U.S., Western Europe, and Japan

Source: Bown, C.P., Irwin, D.A., (2017) "The GATT's Starting Point: Tariff Levels circa 1947," in Assessing the World Trade Organization: Fit for Purpose?, M. Elsig, B. Hoekman, and J. Pauwelyn eds., Cambridge University Press, forthcoming, fig. 1

Overview

The Questions

Overview

The Questions

1. Why would liberization not be immediate? Why proceed in stages?

Overview

The Questions

- 1. Why would liberization not be immediate? Why proceed in stages?
- 2. What are the frictions preventing free trade?

Related Literature

Overview

Related Literature

Export sector

- ▶ Benefits of trade integration to consumers (Devereau 1997)
- Exporters increasingly depend on trade via capacity accumulation (Chisik 2003)

Related Literature

Export sector

- ▶ Benefits of trade integration to consumers (Devereau 1997)
- Exporters increasingly depend on trade via capacity accumulation (Chisik 2003)

Import-competing sector

- ► Convex adjustment costs as workers leave import-competing sector (Mussa 1986); Furusawa & Lai similar for repeated game
- Gradual reductions improve welfare when there's a minimum wage (Mehlum 1998)
- ► Workers lose specialized skills as they leave (Staiger 1995)
- ► Lobbying and capital mobility (MRC 2007)

Related Literature

Export sector

- ▶ Benefits of trade integration to consumers (Devereau 1997)
- Exporters increasingly depend on trade via capacity accumulation (Chisik 2003)

Import-competing sector

- Convex adjustment costs as workers leave import-competing sector (Mussa 1986); Furusawa & Lai similar for repeated game
- ► Gradual reductions improve welfare when there's a minimum wage (Mehlum 1998)
- ▶ Workers lose specialized skills as they leave (Staiger 1995)
- ► Lobbying and capital mobility (MRC 2007)

Limitation of punishments to WEC (Zissimos 2007)

Politics: Motivation

Politics: Motivation

Is there a *fundamentally* political economy explanation for gradualism?

Politics: Motivation

Is there a *fundamentally* political economy explanation for gradualism?

▶ i.e. a story that doesn't hinge on specific nature of trade

Overview

Politics: Motivation

Is there a *fundamentally* political economy explanation for gradualism?

- ▶ i.e. a story that doesn't hinge on specific nature of trade
- ► The hope: lessons could be applied to other issue areas

Politics: Mechanism

Overview

Politics: Mechanism

Inefficient tariffs maintained through the lobbying of import-competing industries

Overview

Politics: Mechanism

Inefficient tariffs maintained through the lobbying of import-competing industries

▶ BUT ability to maintain protection reduced by shocks to political support

Overview

Politics: Mechanism

Inefficient tariffs maintained through the lobbying of import-competing industries

- ▶ BUT ability to maintain protection reduced by shocks to political support
 - ▶ a key politician losing an election or committee position

Overview

Politics: Mechanism

Inefficient tariffs maintained through the lobbying of import-competing industries

- ▶ BUT ability to maintain protection reduced by shocks to political support
 - ▶ a key politician losing an election or committee position
- ▶ Immediate loss of protection / rents $can \Rightarrow$ erosion of future political power and accompanying protection

Overview

Politics: Mechanism

Inefficient tariffs maintained through the lobbying of import-competing industries

- ▶ BUT ability to maintain protection reduced by shocks to political support
 - ▶ a key politician losing an election or committee position
- ▶ Immediate loss of protection / rents $can \Rightarrow$ erosion of future political power and accompanying protection
- ▶ Demonstrate with a dynamic model of political economy

Timeline

Timeline

Timeline

Within each period t, taking initial wealth as given

1. Election occurs (reduced form based on e_{t-1})

Timeline

- 1. Election occurs (reduced form based on e_{t-1})
- 2. Lobby/firm chooses l_t and makes investments in technology μ_t and politics e_t

Timeline

- 1. Election occurs (reduced form based on e_{t-1})
- 2. Lobby/firm chooses l_t and makes investments in technology μ_t and politics e_t
- 3. Government chooses tariff (τ_t)

Timeline

- 1. Election occurs (reduced form based on e_{t-1})
- 2. Lobby/firm chooses l_t and makes investments in technology μ_t and politics e_t
- 3. Government chooses tariff (τ_t)
- 4. Production takes place, workers are paid (profits realized)

Timeline

- 1. Election occurs (reduced form based on e_{t-1})
- 2. Lobby/firm chooses l_t and makes investments in technology μ_t and politics e_t
- 3. Government chooses tariff (τ_t)
- 4. Production takes place, workers are paid (profits realized)
- 5. Tariff revenue is distributed and consumption takes place (not explicitly modeled)

Economy

► Small country ('home') and Rest of World (ROW, *)

- ► Small country ('home') and Rest of World (ROW, *)
- ► Separable in three goods: X and Y (traded) and numeraire

- ► Small country ('home') and Rest of World (ROW, *)
- ► Separable in three goods: X and Y (traded) and numeraire
 - ▶ Home net importer of X, net exporter of Y

- ► Small country ('home') and Rest of World (ROW, *)
- ► Separable in three goods: X and Y (traded) and numeraire
 - ► Home net importer of X, net exporter of Y
- ▶ Home levies τ on X, Foreign levies τ^* on Y

Economy

- ► Small country ('home') and Rest of World (ROW, *)
- ► Separable in three goods: X and Y (traded) and numeraire
 - ▶ Home net importer of X, net exporter of Y
- ▶ Home levies τ on X, Foreign levies τ^* on Y

Model

• $P_X = P_Y^W + \tau$ and $\pi_X(P_X)$ increasing in τ

- ► Small country ('home') and Rest of World (ROW, *)
- ► Separable in three goods: X and Y (traded) and numeraire
 - ▶ Home net importer of X, net exporter of Y
- ▶ Home levies τ on X, Foreign levies τ^* on Y
 - $P_X = P_X^W + \tau$ and $\pi_X(P_X)$ increasing in τ
- ► Non-tradable specific factor (F) motivates political activity

- ► Small country ('home') and Rest of World (ROW, *)
- ► Separable in three goods: X and Y (traded) and numeraire
 - ▶ Home net importer of X, net exporter of Y
- ▶ Home levies τ on X, Foreign levies τ^* on Y
 - $\blacktriangleright \ P_X = P_X^W + \tau \ \text{and} \ \pi_X(P_X) \ \text{increasing in} \ \tau$
- ► Non-tradable specific factor (F) motivates political activity
- ▶ Demand identical for both goods in both countries

Economy

- ► Small country ('home') and Rest of World (ROW, *)
- ► Separable in three goods: X and Y (traded) and numeraire
 - ▶ Home net importer of X, net exporter of Y
- ▶ Home levies τ on X, Foreign levies τ^* on Y
 - $P_X = P_X^W + \tau$ and $\pi_X(P_X)$ increasing in τ
- ► Non-tradable specific factor (F) motivates political activity
- ▶ Demand identical for both goods in both countries
- $\blacktriangleright F_X(m_t, l_t) = A(m_t) F_t^{\alpha} l_t^{1-\alpha}$

Model

Political Structure

In Home country (foreign is passive):

Political Structure

In Home country (foreign is passive):

► Non-unitary government

Political Structure

In Home country (foreign is passive):

Model

- ► Non-unitary government
 - ► Members re-elected each period

Political Structure

In Home country (foreign is passive):

- ► Non-unitary government
 - ► Members re-elected each period
 - ► Composition impacted by lobby's investment

Economic and Political Structure

Political Structure

In Home country (foreign is passive):

- ► Non-unitary government
 - ► Members re-elected each period
 - ► Composition impacted by lobby's investment
 - ► Sets tariff by majority rule

Political Structure

In Home country (foreign is passive):

Model

- ► Non-unitary government
 - ► Members re-elected each period
 - ► Composition impacted by lobby's investment
 - ► Sets tariff by majority rule
- ► A Single Lobby

Economic and Political Structure

Political Structure

In Home country (foreign is passive):

- ► Non-unitary government
 - ► Members re-elected each period
 - ► Composition impacted by lobby's investment
 - ► Sets tariff by majority rule
- ► A Single Lobby
 - ▶ Represents import-competing sector, X

"Government"

$$W_{G,t} = CS_X(\tau) + \gamma_t \pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau)$$

Decision determined by complex process. Reduced form:

$$W_{\mathsf{G},\mathsf{t}} = \mathit{CS}_{\mathsf{X}}(\mathsf{\tau}) + \gamma_{\mathsf{t}} \pi_{\mathsf{X}}(\mathsf{\tau}) + \mathit{CS}_{\mathsf{Y}}(\mathsf{\tau}^*) + \pi_{\mathsf{Y}}(\mathsf{\tau}^*) + \mathit{TR}(\mathsf{\tau})$$

 \triangleright $CS_i(\cdot)$: consumer surplus

$$W_{G,t} = CS_X(\tau) + \gamma_t \pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau)$$

- $ightharpoonup CS_i(\cdot)$: consumer surplus
- \blacktriangleright $\pi_X(\tau)$: profits of import-competing industry

$$W_{\mathsf{G},\mathsf{t}} = \mathit{CS}_{\mathsf{X}}(\tau) + \gamma_{\mathsf{t}} \pi_{\mathsf{X}}(\tau) + \mathit{CS}_{\mathsf{Y}}(\tau^*) + \pi_{\mathsf{Y}}(\tau^*) + \mathit{TR}(\tau)$$

- $ightharpoonup CS_i(\cdot)$: consumer surplus
- \blacktriangleright $\pi_X(\tau)$: profits of import-competing industry
- $\blacktriangleright \pi_Y(\tau^*)$: profits of exporting industry

$$W_{\mathsf{G},\mathsf{t}} = \mathit{CS}_{\mathsf{X}}(\tau) + \gamma_{\mathsf{t}} \pi_{\mathsf{X}}(\tau) + \mathit{CS}_{\mathsf{Y}}(\tau^*) + \pi_{\mathsf{Y}}(\tau^*) + \mathit{TR}(\tau)$$

- ▶ $CS_i(\cdot)$: consumer surplus
- \blacktriangleright $\pi_X(\tau)$: profits of import-competing industry
- \blacktriangleright $\pi_{Y}(\tau^{*})$: profits of exporting industry
- $ightharpoonup TR(\tau)$: tariff revenue

$$W_{\mathsf{G},\mathsf{t}} = \mathit{CS}_{\mathsf{X}}(\tau) + \gamma_{\mathsf{t}} \pi_{\mathsf{X}}(\tau) + \mathit{CS}_{\mathsf{Y}}(\tau^*) + \pi_{\mathsf{Y}}(\tau^*) + \mathit{TR}(\tau)$$

- ▶ $CS_i(\cdot)$: consumer surplus
- \blacktriangleright $\pi_X(\tau)$: profits of import-competing industry
- $\pi_Y(\tau^*)$: profits of exporting industry
- $ightharpoonup TR(\tau)$: tariff revenue

$$W_{G,t} = \textit{CS}_X(\tau) + \gamma_t \pi_X(\tau) + \textit{CS}_Y(\tau^*) + \pi_Y(\tau^*) + \textit{TR}(\tau)$$

Model

The Players

"Government"

$$\label{eq:WGtau} W_{G,t} = \mathit{CS}_X(\tau) + \gamma_t \pi_X(\tau) + \mathit{CS}_Y(\tau^*) + \pi_Y(\tau^*) + \mathit{TR}(\tau)$$

γ_t: weight on import-competing industry profits.
 Determined via election, influenced by

"Government"

$$W_{G,t} = \mathit{CS}_X(\tau) + \gamma_t \pi_X(\tau) + \mathit{CS}_Y(\tau^*) + \pi_Y(\tau^*) + \mathit{TR}(\tau)$$

- γ_t: weight on import-competing industry profits.
 Determined via election, influenced by
 - $ightharpoonup e_{t-1}$: lobbying effort

Model

"Government"

$$W_{G,t} = \mathit{CS}_X(\tau) + \gamma_t \pi_X(\tau) + \mathit{CS}_Y(\tau^*) + \pi_Y(\tau^*) + \mathit{TR}(\tau)$$

- γ_t: weight on import-competing industry profits.
 Determined via election, influenced by
 - $ightharpoonup e_{t-1}$: lobbying effort
 - \bullet θ_{t-1} : uncertain element in electoral process

"Government"

$$W_{G,t} = \mathit{CS}_X(\tau) + \gamma_t \pi_X(\tau) + \mathit{CS}_Y(\tau^*) + \pi_Y(\tau^*) + \mathit{TR}(\tau)$$

- γ_t: weight on import-competing industry profits.
 Determined via election, influenced by
 - $ightharpoonup e_{t-1}$: lobbying effort

Model ○○○ ○●○

 \bullet θ_{t-1} : uncertain element in electoral process

Assumption 1

 $\gamma(e_{t-1}, \theta_{t-1})$ is increasing and concave in e_{t-1} for all $\theta_{t-1} \in \Theta$.

Lobby

$$\begin{split} \max_{e_t, m_t, l_t} \ \sum_{t=1}^{\infty} \left\{ A(m_t) \cdot F^{\alpha} \cdot l_t^{1-\alpha} \left[P^W + \tau(\gamma(e_{t-1})) \right] - l_t - \mu_t - e_t \right\} \\ \text{s.t.} \quad m_t = m_{t-1} + \mu_t \end{split}$$

$$\begin{split} \max_{e_t, m_t, l_t} \ \sum_{t=1}^{\infty} \left\{ A(m_t) \cdot F^{\alpha} \cdot l_t^{1-\alpha} \left[P^W + \tau(\gamma(e_{t-1})) \right] - l_t - \mu_t - e_t \right\} \\ s.t. \quad m_t = m_{t-1} + \mu_t \end{split}$$

$$\begin{split} \max_{e_t, m_t, l_t} \sum_{t=1}^{\infty} \left\{ A(m_t) \cdot F^{\alpha} \cdot l_t^{1-\alpha} \left[P^W + \tau(\gamma(e_{t-1})) \right] - l_t - \mu_t - e_t \right\} \\ \text{s.t.} \quad m_t = m_{t-1} + \mu_t \end{split}$$

where

μ_t: Investment in productivity

$$\begin{split} \max_{e_t, m_t, l_t} \ \sum_{t=1}^{\infty} \left\{ A(m_t) \cdot F^{\alpha} \cdot l_t^{1-\alpha} \left[P^W + \tau(\gamma(e_{t-1})) \right] - l_t - \mu_t - e_t \right\} \\ \text{s.t.} \quad m_t = m_{t-1} + \mu_t \end{split}$$

- \triangleright μ_t : Investment in productivity
 - Assume $A(\cdot)$ increasing and concave in m_{t}

$$\begin{split} \max_{e_t, m_t, l_t} \ \sum_{t=1}^{\infty} \left\{ A(m_t) \cdot F^{\alpha} \cdot l_t^{1-\alpha} \left[P^W + \tau(\gamma(e_{t-1})) \right] - l_t - \mu_t - e_t \right\} \\ \text{s.t.} \quad m_t = m_{t-1} + \mu_t \end{split}$$

- \triangleright μ_t : Investment in productivity
 - Assume $A(\cdot)$ increasing and concave in m_{+}
- ▶ l+: Labor

$$\begin{split} \max_{e_t, m_t, l_t} \ \sum_{t=1}^{\infty} \left\{ A(m_t) \cdot F^{\alpha} \cdot l_t^{1-\alpha} \left[P^W + \tau(\gamma(e_{t-1})) \right] - l_t - \mu_t - e_t \right\} \\ \text{s.t.} \quad m_t = m_{t-1} + \mu_t \end{split}$$

- \triangleright μ_t : Investment in productivity
 - Assume $A(\cdot)$ increasing and concave in m_{+}
- ▶ l+: Labor
- \triangleright e₊: Lobbying effort

$$\begin{split} \max_{e_t, m_t, l_t} \ \sum_{t=1}^{\infty} \left\{ A(m_t) \cdot F^{\alpha} \cdot l_t^{1-\alpha} \left[P^W + \tau(\gamma(e_{t-1})) \right] - l_t - \mu_t - e_t \right\} \\ \text{s.t.} \quad m_t = m_{t-1} + \mu_t \end{split}$$

- \triangleright μ_t : Investment in productivity
 - Assume $A(\cdot)$ increasing and concave in m_{+}
- ▶ l+: Labor
- \triangleright e₊: Lobbying effort
- \triangleright τ_{t} : home tariff on good X

Given γ_0

$$\begin{split} \max_{l_1,e_1,\mu_1,l_2,\mu_2} \left\{ A(m_0+\mu_1) \cdot F^{\alpha} \cdot l_1^{1-\alpha} \left[P^W + \tau \left(\gamma_0 \right) \right] - l_1 - \mu_1 - e_1 \right\} \\ \left\{ A(m_1+\mu_1) \cdot F^{\alpha} \cdot l_2^{1-\alpha} \left[P^W + \tau \left(\gamma(e_1) \right) \right] - l_2 - \mu_2 \right\} \end{split}$$

Given γ_0

$$\begin{split} \max_{l_1,e_1,\mu_1,l_2,\mu_2} \left\{ & A(m_0+\mu_1) \cdot F^{\alpha} \cdot l_1^{1-\alpha} \left[P^W + \tau\left(\gamma_0\right) \right] - l_1 - \mu_1 - e_1 \right\} \\ & \left\{ & A(m_1+\mu_1) \cdot F^{\alpha} \cdot l_2^{1-\alpha} \left[P^W + \tau\left(\gamma(e_1)\right) \right] - l_2 - \mu_2 \right\} \end{split}$$

Political Shocks

00

What happens when γ_0 decreases? Two cases:

Given γ_0

$$\begin{split} \max_{l_1,e_1,\mu_1,l_2,\mu_2} \left\{ & A(m_0+\mu_1) \cdot F^{\alpha} \cdot l_1^{1-\alpha} \left[P^W + \tau \left(\gamma_0 \right) \right] - l_1 - \mu_1 - e_1 \right\} \\ & \left\{ & A(m_1+\mu_1) \cdot F^{\alpha} \cdot l_2^{1-\alpha} \left[P^W + \tau \left(\gamma(e_1) \right) \right] - l_2 - \mu_2 \right\} \end{split}$$

00

What happens when γ_0 decreases? Two cases:

1.
$$\mu_1\!\uparrow$$
 and $l_1\!\uparrow$

Given γ_0

$$\begin{split} \max_{l_1,e_1,\mu_1,l_2,\mu_2} \left\{ & A(m_0+\mu_1) \cdot F^{\alpha} \cdot l_1^{1-\alpha} \left[P^W + \tau \left(\gamma_0 \right) \right] - l_1 - \mu_1 - e_1 \right\} \\ & \left\{ & A(m_1+\mu_1) \cdot F^{\alpha} \cdot l_2^{1-\alpha} \left[P^W + \tau \left(\gamma(e_1) \right) \right] - l_2 - \mu_2 \right\} \end{split}$$

What happens when γ_0 decreases? Two cases:

- 1. $\mu_1 \uparrow$ and $l_1 \uparrow$
- 2. $\mu_1 \downarrow$ and $l_1 \downarrow$

 $\mu_1 \downarrow$ and $l_1 \downarrow$: reduce investment in productivity

 $\mu_1 \downarrow$ and $l_1 \downarrow$: reduce investment in productivity

 \blacktriangleright investment in politics $(e_1) \uparrow$

 $\mu_1 \downarrow$ and $l_1 \downarrow$: reduce investment in productivity

- \blacktriangleright investment in politics $(e_1) \uparrow$
- ▶ l₂↓

 $\mu_1 \downarrow$ and $l_1 \downarrow$: reduce investment in productivity

- ▶ investment in politics (e_1) ↑
- ightharpoonup $l_2\downarrow$

 $\mu_1 \uparrow$ and $l_1 \uparrow$: increase investment in productivity

 $\mu_1 \downarrow$ and $l_1 \downarrow$: reduce investment in productivity

- \blacktriangleright investment in politics $(e_1) \uparrow$
- ightharpoonup $l_2\downarrow$

 $\mu_1 \uparrow$ and $l_1 \uparrow$: increase investment in productivity

 \blacktriangleright investment in politics $(e_1) \downarrow$

 $\mu_1 \downarrow$ and $l_1 \downarrow$: reduce investment in productivity

- \blacktriangleright investment in politics $(e_1) \uparrow$
- ightharpoonup $l_2\downarrow$

 $\mu_1 \uparrow$ and $l_1 \uparrow$: increase investment in productivity

- \blacktriangleright investment in politics $(e_1) \downarrow$
- ightharpoonup $l_2 \uparrow$

 $\mu_1 \downarrow$ and $l_1 \downarrow$: reduce investment in productivity

- \blacktriangleright investment in politics $(e_1) \uparrow$
- ightharpoonup $l_2 \downarrow$

 $\mu_1 \uparrow$ and $l_1 \uparrow$: increase investment in productivity

- \blacktriangleright investment in politics $(e_1) \downarrow$
- ightharpoonup $l_2 \uparrow$

This is gradualism!

▶ Determine what separates cases of $\mu_1 \uparrow$ from $\mu_1 \downarrow$?

- ▶ Determine what separates cases of $\mu_1 \uparrow$ from $\mu_1 \downarrow$?
- ► Add wealth constraint

- ▶ Determine what separates cases of $\mu_1 \uparrow$ from $\mu_1 \downarrow$?
- ► Add wealth constraint
- ► Fully dynamic model

- ▶ Determine what separates cases of $\mu_1 \uparrow$ from $\mu_1 \downarrow$?
- ► Add wealth constraint
- ► Fully dynamic model
- ► Comparative statics on A(m₊)

- ▶ Determine what separates cases of $\mu_1 \uparrow$ from $\mu_1 \downarrow$?
- ► Add wealth constraint
- ► Fully dynamic model
- ► Comparative statics on A(m₊)
- ► CRS production

