ECE 587 Midterm II Review

Miao Liu

Department of Electrical and Computer Engineering
Duke University, Durham NC 27708

November 5, 2012

Channel capacity. The logarithm of the number of distinguishable inputs is given by

$$C = \max_{p(x)} I(X; Y) \tag{1}$$

Channel capacity. The logarithm of the number of distinguishable inputs is given by

$$C = \max_{p(x)} I(X; Y) \tag{1}$$

Examples

- ▶ Binary symmetric channel: C = 1 H(p)
- ▶ Binary erasure channel: $C = 1 \alpha$
- Symmetric channel:

$$C = log|\mathcal{Y}| - H(\text{row of transition matrix})$$

Channel capacity. The logarithm of the number of distinguishable inputs is given by

$$C = \max_{p(x)} I(X; Y) \tag{1}$$

Examples

- ▶ Binary symmetric channel: C = 1 H(p)
- ▶ Binary erasure channel: $C = 1 \alpha$
- Symmetric channel:

$$\vec{C} = log|\mathcal{Y}| - H(\text{row of transition matrix})$$

Properties of C

- 1. $0 \le C \min\{\log |\mathcal{X}|, \log |\mathcal{Y}|\}$
- 2. I(X; Y) is a continuous concave function of p(x)

Joint typicality. The set $A_{\epsilon}^{(n)}$ of joint typical sequences

$$\{(x^n, y^n)\}$$
 w.r.t. the distribution $p(x, y)$ is given by
$$A_{\epsilon}^{(n)} = \left\{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : \right.$$
$$\left| -\frac{1}{n} p(x^n) - H(X) \right| \le \epsilon,$$

 $\left|-\frac{1}{n}p(y^n)-H(Y)\right|\leq \epsilon,$

where $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$.

 $\left|-\frac{1}{n}p(x^n,y^n)-H(X,Y)\right|\leq\epsilon$

(2)

Joint typicality. The set $A_{\epsilon}^{(n)}$ of joint typical sequences $\{(x^n, y^n)\}$ w.r.t. the distribution p(x, y) is given by

$$A_{\epsilon}^{(n)} = \left\{ (x^{n}, y^{n}) \in \mathcal{X}^{n} \times \mathcal{Y}^{n} : \right.$$

$$\left| -\frac{1}{n} p(x^{n}) - H(X) \right| \leq \epsilon,$$

$$\left| -\frac{1}{n} p(y^{n}) - H(Y) \right| \leq \epsilon,$$

$$\left| -\frac{1}{n} p(x^{n}, y^{n}) - H(X, Y) \right| \leq \epsilon \right\},$$
(2)

where $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$.

- **Joint AEP** . Let (X^n, Y^n) be sequences of length n drawn
 - i.i.d according to $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$. Then: 1. $Pr((X^n, Y^n) \in A_{\epsilon}^{(n)}) \to 1 \text{ as } n \to \infty.$
 - 2. $|A_{\epsilon}^{(n)}| < 2^{n(H(X,Y)+\epsilon)}$.
 - 3. If $(\tilde{X}^n, \tilde{Y}^n) \sim p(x^n)p(y^n)$, then $\text{Pr}\bigg((\tilde{X}^n,\tilde{Y}^n)\in A_{\varepsilon}^{(n)}\bigg)\leq 2^{-n(I(X;Y)-3\varepsilon)}.$

$$2^{-n(I(X;Y)-3\epsilon)}$$

▶ Channel coding theorem. All rates below capacity C are achievable, and all rates above capacity are not; that is, for all rates R < C, there exists a sequence of (2nR, n) codes with probability of $error\lambda^{(n)} \to 0$. Conversely, for rates R > C, $\lambda^{(n)}$ is bounded away from 0.

- ► Channel coding theorem. All rates below capacity C are achievable, and all rates above capacity are not; that is, for all rates B < C, there exists a sequence of (2nB, n) codes
 - achievable, and all rates above capacity are not; that is, for all rates R < C, there exists a sequence of (2nR, n) codes with probability of $error \lambda^{(n)} \to 0$. Conversely, for rates R > C. $\lambda^{(n)}$ is bounded away from 0.
- Feedback capacity. Feedback does not increase capacity for discrete memoryless channels (i.e., C_{FB} = C).

- ▶ Channel coding theorem. All rates below capacity C are achievable, and all rates above capacity are not; that is, for
- all rates R < C, there exists a sequence of (2nR, n) codes with probability of error $\lambda^{(n)} \to 0$. Conversely, for rates R > C. $\lambda^{(n)}$ is bounded away from 0. Feedback capacity. Feedback does not increase capacity
- for discrete memoryless channels (i.e., $C_{FB} = C$). Source-Channel theorem. A stochastic process with
- entropy rate H cannot be sent reliably over a discrete memoryless channel if H > C. Conversely, if the process satisfies the AEP, the source can be transmitted reliably if

H < C

Consider two discrete memoryless channels $(\mathcal{X}_1, p(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p(y_2|x_2), \mathcal{Y}_2)$ with capacities C_1 and C_2 respectively. A new channel $(\mathcal{X}_1 \times \mathcal{X}_2, p(y_1|x_1) \times p(y_2|x_2), \mathcal{Y}_1 \times \mathcal{Y}_2)$ is formed in which $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$, are simultaneously sent, resulting in y_1, y_2 . Find the capacity of the channel.

Consider two discrete memoryless channels $(\mathcal{X}_1, p(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p(y_2|x_2), \mathcal{Y}_2)$ with capacities C_1 and C_2 respectively. A new channel $(\mathcal{X}_1 \times \mathcal{X}_2, p(y_1|x_1) \times p(y_2|x_2), \mathcal{Y}_1 \times \mathcal{Y}_2)$ is formed in which $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$, are simultaneously sent, resulting in y_1, y_2 . Find the capacity of the channel.

Solution: the questions is equivalent to find the distribution $p(x_1, x_2)$ that maximizes $I(X_1, X_2; Y_1, Y_2)$.

Consider two discrete memoryless channels $(\mathcal{X}_1, p(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p(y_2|x_2), \mathcal{Y}_2)$ with capacities C_1 and C_2 respectively. A new channel $(\mathcal{X}_1 \times \mathcal{X}_2, p(y_1|x_1) \times p(y_2|x_2), \mathcal{Y}_1 \times \mathcal{Y}_2)$ is formed in which $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$, are simultaneously sent, resulting in y_1, y_2 . Find the capacity of the channel.

Solution: the questions is equivalent to find the distribution $p(x_1, x_2)$ that maximizes $I(X_1, X_2; Y_1, Y_2)$. Since $p(y_1, y_2|x_1, x_2) = p(y_1|x_1)p(y_2|x_2)$, therefore, we have $Y_1 \leftarrow X_1 \leftrightarrow X_2 \rightarrow Y_2$ and

Consider two discrete memoryless channels $(\mathcal{X}_1, p(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p(y_2|x_2), \mathcal{Y}_2)$ with capacities C_1 and C_2 respectively. A new channel $(\mathcal{X}_1 \times \mathcal{X}_2, p(y_1|x_1) \times p(y_2|x_2), \mathcal{Y}_1 \times \mathcal{Y}_2)$ is formed in which $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$, are simultaneously sent, resulting in y_1, y_2 . Find the capacity of the channel.

Solution: the questions is equivalent to find the distribution $p(x_1, x_2)$ that maximizes $I(X_1, X_2; Y_1, Y_2)$.

Since $p(y_1, y_2|x_1, x_2) = p(y_1|x_1)p(y_2|x_2)$, therefore, we have $Y_1 \leftarrow X_1 \leftrightarrow X_2 \rightarrow Y_2$ and

$$I(X_1, X_2; Y_1, Y_2) = H(Y_1, Y_2) - H(Y_1, Y_2|X_1, X_2)$$

= $H(Y_1, Y_2) - H(Y_1|X_1, X_2) - H(Y_2|X_1, X_2)$ (3)

$$=H(Y_1,Y_2)-H(Y_1|X_1)-H(Y_2|X_2)$$
 (4)

$$\leq H(Y_1) + H(Y_2) - H(Y_1|X_1) - H(Y_2|X_2)$$
 (5)

$$=I(X_1, Y_1) + I(X_2, Y_2)$$
 (6)

Therefore

$$C = \max_{p(x_1, x_2)} I(X_1, X_2; Y_1, Y_2)$$

Therefore

$$C = \max_{p(x_1, x_2)} I(X_1, X_2; Y_1, Y_2)$$

$$\leq \max_{p(x_1, x_2)} I(X_1; Y_1) + \max_{p(x_1, x_2)} I(X_2; Y_2)$$

Therefore

$$C = \max_{p(x_1, x_2)} I(X_1, X_2; Y_1, Y_2)$$

$$\leq \max_{p(x_1, x_2)} I(X_1; Y_1) + \max_{p(x_1, x_2)} I(X_2; Y_2)$$

$$= \max_{p(x_1)} I(X_1; Y_1) + \max_{p(x_2)} I(X_2; Y_2)$$

Therefore

$$C = \max_{p(x_1, x_2)} I(X_1, X_2; Y_1, Y_2)$$

$$\leq \max_{p(x_1, x_2)} I(X_1; Y_1) + \max_{p(x_1, x_2)} I(X_2; Y_2)$$

$$= \max_{p(x_1)} I(X_1; Y_1) + \max_{p(x_2)} I(X_2; Y_2)$$

$$= C_1 + C_2$$

with equality iff $p(x_1, x_2) = p^*(x_1)p^(x_2)$ and $p*(x_1)$ and $p*(x_2)$ are the distributions that maximize C_1 and C_2 respectively.

Solution: When
$$X_1, X_2, \dots, X_n$$
 are chosen i.i.d from $Bern(\frac{1}{2})$, Let $X^{(n)} = \{X_1, X_2, \dots, X_n\}$ and $Y^{(n)} = \{Y_1, Y_2, \dots, Y_n\}$

$$I(X^{(n)}; Y^{(n)}) = H(X^{(n)}) - H(X^{(n)}|Y^{(n)})$$

Solution: When
$$X_1, X_2, \dots, X_n$$
 are chosen i.i.d from $Bern(\frac{1}{2})$, Let $X^{(n)} = \{X_1, X_2, \dots, X_n\}$ and $Y^{(n)} = \{Y_1, Y_2, \dots, Y_n\}$

$$I(X^{(n)}; Y^{(n)}) = H(X^{(n)}) - H(X^{(n)}|Y^{(n)})$$

$$= H(X^{(n)}) - H(Z^{(n)}|Y^{(n)})$$

Solution: When
$$X_1, X_2, \dots, X_n$$
 are chosen i.i.d from $Bern(\frac{1}{2})$, Let $X^{(n)} = \{X_1, X_2, \dots, X_n\}$ and $Y^{(n)} = \{Y_1, Y_2, \dots, Y_n\}$
$$I(X^{(n)}; Y^{(n)}) = H(X^{(n)}) - H(X^{(n)}|Y^{(n)})$$

$$= H(X^{(n)}) - H(Z^{(n)}|Y^{(n)})$$

$$\geq H(X^{(n)}) - H(Z^{(n)})$$

Solution: When
$$X_1, X_2, \dots, X_n$$
 are chosen i.i.d from $Bern(\frac{1}{2})$, Let $X^{(n)} = \{X_1, X_2, \dots, X_n\}$ and $Y^{(n)} = \{Y_1, Y_2, \dots, Y_n\}$
$$I(X^{(n)}; Y^{(n)}) = H(X^{(n)}) - H(X^{(n)}|Y^{(n)})$$

$$= H(X^{(n)}) - H(Z^{(n)}|Y^{(n)})$$

$$\geq H(X^{(n)}) - H(Z^{(n)})$$

$$\geq H(X^{(n)}) - \sum_{i=1}^{n} H(Z_i)$$

$$= nH(1/2) - nH(p)$$

HW7-2 continues

Therefore, with memory over n uses of the channel, the channel capacity is

$$nC^{(n)} = \max_{p(X^n)} I(X^{(n)}; Y^{(n)})$$

 $\geq I(X^{(n)}; Y^{(n)})$
 $\geq n(1 - H(p))$
 $= nC$

HW7-2 continues

Therefore, with memory over n uses of the channel, the channel capacity is

$$nC^{(n)} = \max_{p(X^n)} I(X^{(n)}; Y^{(n)})$$

 $\geq I(X^{(n)}; Y^{(n)})$
 $\geq n(1 - H(p))$
 $= nC$

Conclusion: channels with memory have higher capacity.

HW7-2 continues

Therefore, with memory over n uses of the channel, the channel capacity is

$$nC^{(n)} = \max_{p(X^n)} I(X^{(n)}; Y^{(n)})$$

 $\geq I(X^{(n)}; Y^{(n)})$
 $\geq n(1 - H(p))$
 $= nC$

- Conclusion: channels with memory have higher capacity.
- Intuition
 - correlation between the noise decreases the effective noise.
 - the information from the past samples of noise helps reducing the present noise.

Summary

Good Luck!