K-nearest neighbor

1-nearest neighbor

3-nearest neighbor

5-nearest neighbor

KNN-Introduction

- It assumes we have existing dataset
- Dataset has labels for all the data samples
- Given a new data sample, we compare it to all the data samples in our dataset
- We compute the most similar (i.e., nearest neighbors) data samples and check their labels
- We look at the top k similar data samples
- We choose the majority vote from k samples for the label of new data sample

KNN-Example

 We need to classify whether a movie is romance or action movie?

KNN-Example

• Dataset we have:

Movie title	# of kicks	# of kisses	Type of movie
California Man	3	104	Romance
He's Not Really into Dudes	2	100	Romance
Beautiful Woman	1	81	Romance
Kevin Longblade	101	10	Action
Robo Slayer 3000	99	5	Action
Amped II	98	2	Action
?	18	90	Unknown

KNN-Example

 Compute distance between given sample and all other samples:

Movie title	Distance to movie "?"
California Man	20.5
He's Not Really into Dudes	18.7
Beautiful Woman	19.2
Kevin Longblade	115.3
Robo Slayer 3000	117.4
Amped II	118.9

• What if k= 3, 4 and 5?

KNN- Another example

Distance between two sample?

- Compute distance between two given sample?
- Distance between two points x1 and x2:
 Euclidean Distance:

$$distance = \sqrt{\sum_{i=1}^{n} (x1_i - x2_i)^2}$$

Distance between two sample?

- Hamming Distance: Calculate the distance between binary vectors.
- Manhattan Distance: Calculate the distance between real vectors using the sum of their
- absolute difference. Also called City Block Distance.
- Minkowski Distance: Generalization of Euclidean and Manhattan distance.

Steps:

- 1. Determine value of k
- 2. Compute distance between input data sample and all data sample in dataset
- 3. Sort (ascending) the data samples based on this distance
- 4. Choose the class value that has majority vote among the k-data samples

- Use KNN algorithm for:
 - Classification of categorical values
 - Prediction of real values
- Does it have any training model? No
- How to get k-value? sqrt(#data_points)/2
- What if the dataset is huge, i.e. >1 million data samples?
- Note: Use k-d tree data structure to improve the look-up operations.

Instance-Based Learning

raw training instances are used to make predictions.

Lazy Learning

 No learning of the model is required and all of the work happens at the time a prediction is requested.

Nonparametric

 KNN makes no assumptions about the functional form of the problem being solved.

When to consider KNN?

- Simple, a good one to try first
- Less than 20 attributes per instance
- Lots of training data
- Advantages:
 - No training is needed
 - Learn complex target functions
 - Don't lose information
- Disadvantages:
 - Slow at query time
 - Easily fooled by irrelevant attributes

Curse of Dimensionality

Imagine instances described by 20 attributes,
 but only 2 are relevant to target function

Curse of dimensionality

- nearest neighbor is easily mislead with highdimensional input vector
- i.e., distance metric is not useful in high dimensions, as all data samples are almost equidistant to the input data

Applications of KNN

- Recommendation systems
- Text mining
- Stock market forecasting