BRBCR_EL1, Branch Record Buffer Control Register (EL1)

The BRBCR EL1 characteristics are:

Purpose

Controls the Branch Record Buffer.

Configuration

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to BRBCR EL1 are undefined.

Attributes

BRBCR EL1 is a 64-bit register.

Field descriptions

6362616059585756	55	54	535251504948474645444342	41	40	39	3837	36	35	34	33
			RES0								
RES0	EXCEPTIO	NERTN	RES0	FZPS:	S FZP	RES0	TS	MPRED	CC	RES0	E1BF
3130292827262524	23	22	212019181716151413121110	9	8	7	6 5	4	3	2	1

Bits [63:24]

Reserved, res0.

EXCEPTION, bit [23]

Enable the recording of entry to EL1 via an exception.

EXCEPTION	Meaning
0b0	Disable the recording of
	Branch records for
	exceptions when taken to
	EL1.
0b1	Enable the recording of
	Branch records for
	exceptions when taken to
	EL1.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

ERTN, bit [22]

Allow the recording Branch records for exception return instructions from EL1.

ERTN	Meaning
0b0	Disable the recording Branch
	records for exception return
	instructions from EL1.
0b1	Enable the recording Branch
	records for exception return
	instructions from EL1.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

Bits [21:10]

Reserved, res0.

FZPSS, bit [9] When FEAT_PMUv3_SS is implemented:

Freeze BRBE on PMU Snapshot.

FZPSS	Meaning	
0b0	Branch recording is not	
	affected by this control.	
0b1	If either EL2 is not	
	implemented or	
	BRBCR_EL2.FZPSS is 1, then a	
	BRBE freeze event occurs when	
	a successful Capture event	
	occurs.	

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

FZP, bit [8] When FEAT PMUv3 is implemented:

Freeze BRBE on PMU overflow.

FZP	Meaning
0d0	Branch recording is not affected
	by this control.
0b1	A BRBE freeze event occurs when
	a PMU overflow occurs.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [7]

Reserved, res0.

TS, bits [6:5]

Timestamp Control.

TS	Meaning	Applies when
0b01	Virtual timestamp. The BRBE recorded timestamp is the physical counter value, minus the value of CNTVOFF_EL2 .	

0b10	Guest physical timestamp.
	The BRBE recorded
	timestamp is the physical
	counter value minus a
	physical offset. If any of the
	following are true, the
	physical offset is zero,
	otherwise the physical offset
	is the value of
	CNTPOFF EL2:

When FEAT_ECV is implemented

- EL3 is implemented and <u>SCR_EL3</u>.ECVEn == 0.
- EL2 is implemented and <u>CNTHCTL_EL2</u>.ECV == 0.
- Ob11 Physical timestamp. The BRBE recorded timestamp is the physical counter value.

All other values are reserved.

This field is ignored by the PE when EL2 is implemented and BRBCR EL2.TS != 0b00.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

MPRED, bit [4]

Mask the recording of mispredicts.

MPRED	Meaning
0b0	Disable the recording of
	mispredict information.
0b1	Allow the recording of
	mispredict information.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

CC, bit [3]

Enable the recording of cycle count information.

CC	Meaning
0d0	Disable the recording of cycle
	count information.
0b1	Allow the recording of cycle count
	information.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

Bit [2]

Reserved, res0.

E1BRE, bit [1]

EL1 Branch recording enable.

E1BRE	Meaning
0b0	Branch recording prohibited at EL1.
0b1	Branch recording enabled at EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

EOBRE, bit [0]

ELO Branch recording enable.

EOBRE	Meaning
0b0	Branch recording prohibited at EL0.
0b1	Branch recording enabled at EL0.

This field is ignored by the PE when all of the following are true:

- HCR EL2.TGE == 1.
- EL2 is implemented and enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing BRBCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBCR EL1

op0	op1	CRn	CRm	op2	
0b10	0b001	0b1001	0b0000	0b000	

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.SBRBE != '11' &&
SCR\_EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0'
&& SCR\_EL3.NS == '1' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.nBRBCTL == '0'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR EL3.SBRBE == 'x0' &&
SCR\_EL3.NS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x8E0];
    else
        X[t, 64] = BRBCR\_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.SBRBE != '11' &&
```

```
SCR EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0'
&& SCR EL3.NS == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR EL3.SBRBE == 'x0' &&
SCR EL3.NS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR EL2.E2H == '1' then
        X[t, 64] = BRBCR\_EL2;
    else
        X[t, 64] = BRBCR\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = BRBCR\_EL1;
```

MRS <Xt>, BRBCR EL12

op0	op1	CRn	CRm	op2
0b10	0b101	0b1001	0b0000	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV1, NV> == '101'
then
        X[t, 64] = NVMem[0x8E0];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR\_EL2.E2H == '1' then
        if Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE != '11'
&& SCR\_EL3.NS == '0' then
            UNDEFINED;
        elsif Halted() && HaveEL(EL3) && EDSCR.SDD
== '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0'
&& SCR_EL3.NS == '1' then
            UNDEFINED;
```

```
elsif HaveEL(EL3) && MDCR EL3.SBRBE != '11'
&& SCR EL3.NS == '0' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0'
&& SCR\_EL3.NS == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        else
            X[t, 64] = BRBCR\_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR EL2.E2H == '1' then
        X[t, 64] = BRBCR EL1;
    else
        UNDEFINED;
```

MSR BRBCR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b001	0b1001	0b0000	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.SBRBE != '11' &&
SCR\_EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0'
&& SCR\_EL3.NS == '1' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3)
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.nBRBCTL == '0'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' &&
```

```
SCR EL3.NS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x8E0] = X[t, 64];
    else
        BRBCR EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && MDCR EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR EL3.SBRBE == 'x0'
&& SCR EL3.NS == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR EL3.SBRBE == 'x0' &&
SCR_EL3.NS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR_EL2.E2H == '1' then
        BRBCR\_EL2 = X[t, 64];
    else
        BRBCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    BRBCR\_EL1 = X[t, 64];
```

MSR BRBCR EL12, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b101	0b1001	0b0000	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101'
then
         NVMem[0x8E0] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
```

```
else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR EL2.E2H == '1' then
        if Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION DEFINED "EL3 trap
priority when SDD == '1'" && MDCR EL3.SBRBE != '11'
&& SCR\_EL3.NS == '0' then
            UNDEFINED;
        elsif Halted() && HaveEL(EL3) && EDSCR.SDD
== '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR EL3.SBRBE == 'x0'
&& SCR\_EL3.NS == '1' then
            UNDEFINED;
        elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11'
&& SCR EL3.NS == '0' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        elsif HaveEL(EL3) && MDCR EL3.SBRBE == 'x0'
&& SCR EL3.NS == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        else
            BRBCR EL1 = X[t, 64];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR\_EL2.E2H == '1' then
        BRBCR\_EL1 = X[t, 64];
    else
        UNDEFINED;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright A© 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.