Bộ định thời và ngắt

TS Nguyễn Hồng Quang

Electrical Engineering

1

Bộ định thời 8051

- **8051 c**ó 2 bộ định thời 16 bit T0, T1, 8052 có thêm bộ định thời 16 bit, T2
- Xác định một khoảng thời gian
- Đếm sự kiện
- •Tạo tốc độ baud trong truyền thông nối tiếp

Electrical Engineering

Ý nghĩa

- Bộ định thời cho phép tạo thời gian trễ chính xác tuyệt đối
- Bộ định thời và ngắt kết hợp có thể coi là lõi (kernel) hoạt động song song và độc lập với chương trình chính (PC)

Electrical Engineering

3

Cách đếm của bộ định thời (timer/counter)

- Bộ định thời, dù đếm thời gian hay đếm sự kiện đều luôn luôn đếm tăng
- Giá trị bắt đầu đếm được xác định bởi phần mềm
- Khi bộ định thời đếm hết thì chương trình sẽ bật cờ tràn, dấu hiệu cho phép thực hiện chương trình tiếp theo

Electrical Engineering

Các thanh ghi định thời

SFR Name	Mô tả	Địa chỉ
TH0	Timer 0 High Byte	8Ch
TL0	Timer 0 Low Byte	8Ah
TH1	Timer 1 High Byte	8Dh
TL1	Timer 1 Low Byte	8Bh
TCON	Timer Control	88h
TMOD	Timer Mode	89h

Electrical Engineering

5

Ví dụ giá trị

- Timer bắt đầu đếm từ 1000
- MOV TH0,#03
- MOV TL0, #232d
 - $-3 \times 256 + 232 = 1000$

8

Electrical Engineering

Các chế độ của bộ định thời, TMOD

Bit	Name	Explanation of Function	Timer
7	GATE1	Khi bit này = 1, Nếu tín hiệu vào INT1 (P3.3) cao thì bộ định thời bắt đầu hoạt động. Khi bit này bằng 0, thi bộ định thời không phụ thuộc vào trạng thái INT1	1
6	C/T1	Khi bít này cao, bộ định thời sẽ đếm theo sự kiện đầu vào T1 (P3.5).	1
5	T1M1	Chế độ định thời	1
4	T1M0	Chế độ định thời	1
3	GATE0	Khi bit này = 1, Nếu tín hiệu vào INTO (P3.2) cao thì bộ định thời bắt đầu hoạt động. Khi bit này bằng 0, thi bộ định thời không phụ thuộc vào trạng thái INTO	0
2	C/T0	Khi bít này cao, bộ định thời sẽ đếm theo sự kiện đầu vào T- (P3.4).	0
1	T0M1	Chế độ định thời	0
0	TOMO	Chế độ định thời	0

Electrical Engineering

7

Bit GATE

- Cho phép kích hoạt và dừng bộ định thời từ ngắt ngoài khi GATE =1
- Cho phép kích hoạt và dừng bộ định thời từ phần mềm bên trong khi GATE =0
 - Ví dụ: "SETB TR1" và "CLR TR1"

8

Electrical Engineering

Chế độ làm việc

TxM1	TxM0	Timer Mode	Mô tả
0	0	0	13-bit Timer.
0	1	1	16-bit Timer
1	0	2	8-bit auto-reload
1	1	3	Split timer mode

Electrical Engineering

9

Khởi động, dừng và điều khiển bộ định thời Thanh ghi TCON

Bit	Nam e	Bit Address	Explanation of Function	Time r
7	TF1	8Fh	Timer 1 Overflow . Bit này sẽ bật khi Timer 1 tràn	1
6	TR1	8Eh	Timer 1 Run . Khởi động và dừng Timer 1	1
5	TF0	8Dh	Timer 0 Overflow . Bit này sẽ bật khi Timer 0 tràn	0
4	TR0	8Ch	Timer 0 Run . Khởi động và dừng Timer 0.	0

Electrical Engineering

Chế độ 13 bit

 Chế độ này dùng tương thích với VXL cũ và không được sử dụng hiện nay

Electrical Engineering

1

Mode 1, 16 bit định thời

- Bộ đếm sẽ đếm từ giá trị khởi động cho tới 65536 (0 – FFFFh)
- Giá trị lớn nhất TL0 255
- Giá trị lớn nhất TH0 255
- Không tự động nạp lại

Electrical Engineering

Phương pháp làm việc với Model

- Nạp thanh ghi TL và TH giá trị khởi tạo sau đó khởi động Timer "SETB TR0" đối với Timer 0 và "SETB TR1" đối với Timer1
- Bộ định thời đềm tới FFFFH và bật bít cờ TF(Timer Flag, cờ tràn) TF0 hoặc TF1
- Muốn lặp lại việc đếm các thanh ghi TH và TL phải được nạp lại với giá trị ban đầu và TF phải được xóa về 0

Các bước làm việc Timer

- Nạp giá trị TMOD (Timer0 hay Timer1) được sử dụng và chế độ nào được chọn.
- Nạp các thanh ghi TL và TH với các giá trị đếm ban đầu.
- Khởi động bộ định thời.
- Chờ cờ TF "JNB TFx, đích"
- Dừng bộ định thời.
- Xoá cờ TF cho vòng kế tiếp.
- Quay trở lại bước 2 để nạp lại TL và TH.

Electrical Engineering

Ví dụ

 Tạo ra một xung vuông với chu kỳ 50% trên chân P1.5. Bộ định thời Timer0

```
MOV TMOD, #01
                                        ; Sử dụng Timer0 và chế độ 1(16 bít)
HERE:
             MOV TL0, #0F2H
                                        ; TL0 = F2H, byte thấp
             MOV THO, #0FFH
                                        ; TH0 = FFH, byte cao
             CPL P1.5
                                        ; Sử dụng chân P1.5
             ACALL DELAY
             SJMP HERE
                                        , Naplai TH, TL
DELAY:
             SETB TRO
                                        ; Khởi động bộ định thời Timer0
AGAIN:
             JNB
                   TF0, AGAIN
                                        ; Dừng bộ Timer
             CLR
                   TR0
             CLR
                   TF0
                                        ; Xoá cờ bộ định thời 0
             RET
```


Electrical Engineering

15

Thời gian trễ

- Hay nói cách khác, bộ Timer0 đếm tăng sau
 1,085μs để tạo ra bộ trễ bằng số đếm ×1,085μs.
- Số đếm bằng FFFFH FFF2H = ODH (13 theo số thập phân).
- Cộng 1 + 13 vì cần thêm một nhịp đồng hồ để nó quay từ FFFFH về 0 và bật cờ TF. Do vậy, ta có 14 × 1,085μs = 15,19μs cho nửa chu kỳ và cả chu kỳ là T = 2 × 15,19μs = 30, 38μs là thời gian trễ được tạo ra bởi bộ định thời.

Electrical Engineering

Ví dụ tạo xung

- Giả sử tần số XTAL là 11,0592MHz hãy viết chương trình tạo ra một sóng vuông tần số 2kHz trên chân P1.5
- a) $T = \frac{1}{f} = \frac{1}{2kHz} = 500 \mu \text{s là chu kỳ của sóng vuông.}$
- b) Khoảng thời gian cao và phần thấp là $\frac{1}{2}$ T bằng 250 μ s.
- c) Số nhịp cần trong thời gian đó là $\frac{250\mu s}{1,085\mu s}=230\,v$ à giá trị cân nạp vào các thanh ghi cân tìm là 65536 230 = 65306 và ở dạng hex là FF1AH. d) giá trị nạp vào TL là 1AH và TH là FFH.

Electrical Engineering

1

Mode 2, 8 bit định thời

- Tự động nạp lại ở chế độ 8 bít
- THx giữ giá trị khởi động để nạp
- TLx sẽ đếm tới FF, sau đó cờ tràn TFx được đặt lên, VXL sẽ tự động copy giá trị chứa trong thanh TH vào TL
- Người sử dụng phải tự xóa cờ TFx
- Ung dụng tạo xung PWM và dùng trong cổng nối tiếp

Electrical Engineering

Các bước lập trình

- Nạp thanh ghi giá trị TMOD để báo bộ định thời gian nào (Timer0 hay Timer1) được sử dụng và chế độ làm việc nào của chúng được chọn.
- Nạp lại các thanh ghi TH với giá trị đếm ban đầu.
- Khởi động bộ định thời.
- Sử dụng lệnh "JNB TFx, đích" để đợi cờ TFx lên 1. Thoát vòng lặp khi TF lên cao.
- Xoá cờ TF.
- Quay trở lại bước 4 vì chế độ 2 là chế độ tự nạp lại.

Electrical Engineering

10

Ví dụ

Giả sử tần số XTAL = 11.0592MHz. Hãy tìm a) tần số của sóng vuông được tạo ra trên chân P1.0 trong chương trình sau b) tần số nhỏ nhất có thể có được bằng chương trình này

Electrical Engineering

Chương trình

MOV TMOD, #20H MOV TH1, #5 SETB TR1 JNB TF1, BACK CPL P1.0 CLR TF1

SJMP BACK

; Chọn Timer1/ chế độ 2/ 8 bít/ tự nạp lại.

; TH1 = 5

; Khởi động Timer1

; giữ nguyên cho đến khi bộ định thời quay về 0

; Dừng bộ định thời. : Xoá cờ bô định thời

; Xoá cờ bộ định thời TF1 ; Chế độ 2 tự động nạp lại.

- a) Trong chê độ 2 ta không cân phải nạp lại TH vì nó là chế độ tự nạp. Bây giờ ta lấy (256 5).1.085 μ s = 251×1.085 μ s = 272.33 μ s là phần cao của xung. Cả chu kỳ của xung là T = 544.66 μ s và tần số là $\frac{1}{T}$ =1,83597kHz.
- b) Tân số nhỏ nhất ứng với TH = 00. Trong trường hợp này ta có T = 2 \times 256 \times 1.085 μs = 555.52 μs và tần số nhỏ nhất sẽ là $\frac{1}{T}$ =1,8kHz.

BACK:

Electrical Engineering

2

Lưu ý về hợp ngữ

- Vì bộ định thời là 8 bít trong chế độ 2 nên ta có thể để cho hợp ngữ tính giá trị cho TH.
- Ví dụ, trong lệnh "MOV TH0, # 100" thì trình hợp ngữ sẽ tính toán FF- 100 = 9C và gán TH = 9CH

Electrical Engineering

Mode 3, chế độ định thời chia xẻ

- Tạo nên 3 bộ định thời
- Bộ định thời 0 gồm 2 bộ định thời 8 bit với Timer 0 với TL0, Timer 1 với TH0
- Bộ định thời 1 có thể dùng bất cứ chế độ nào tuy vậy bạn không thể khởi động và dừng timer (luôn luôn chạy)
- Chỉ sử dụng khi cần 2 timer 8 bit và 1 timer tạo xung cho cổng nối tiếp

Electrical Engineering

23

Đếm sự kiện

- Tạo ra bộ đếm khi dùng C/T = 1
- Xung nhịp của bộ đếm do tín hiệu T0, T1 từ ngoài (không liên quan tới thạch anh)
- Các chế độ của đếm cũng giống như chế độ bộ định thời

Chân	Chân cống	Chức năng	Mô tả
14	P3.4	T0	Đầu vào ngoài của bộ đếm 0
15	P3.5	T1	Đầu vào ngoài của bộ đếm 1

Electrical Engineering

Ví dụ ứng dụng

Giả sử bộ đếm gửi tới chân T1, hãy viết chương trình cho bộ đếm 1 ở chế độ 2 để đếm các xung và hiển thị trạng thái của số đếm TL1 trên cổng P2

MOV TMOD, #01100000B; Chon bô đếm 1, chế đô 2, bít C/T = 1 xung ngoài. MOV TH1. #0 : Xoá TH1 SETB P3.5 ; Lấy đầu vào T1 AGAIN: SETB TR1 ; Khởi động bộ đếm BACK: MOV A, TL1 ; Lấy bản sao số đếm TL1 MOV P2, A ; Đưa TL1 hiến thị ra cống P2. JNB TF1, Back ; Duy trì nó nếu TF = 0 CLR TR1 ; Dừng bộ đếm TF1 CLR ; Xoá cờ TF SJMP AGAIN ; Tiếp tục thực hiện

Electrical Engineering

24

Nói thêm về bit GATE

- Dùng điều khiển Timer từ chân INT0 hoặc 1 bên ngoài
- Timer 0 phải được bật tắt bởi TR0

8052 timer thứ 3

80	PØ	SP	DPL	DPH				PCON	87
88	TCON	TMOD	TL0	TL1	TH0	TH1			8F
90	P1								97
98	SCON	SBUF							9F
AØ	P2								A7
A8	IE								AF
ВØ	P3								В7
B8	IP								В9
CØ									C7
C8	T2CON		RCAP2L	RCAP2H	TL2	TH2			CF
DØ	PSW								D7
D8									DF
EØ	ACC								E7
E8									EF
FØ	В								F7
F8									FF
•	•	•		•	•		•		,

Electrical Engineering

2

Chế độ làm việc Timer 2

BIT	NAME	BIT ADDRESS	DESCRIPTION
7	TF2	CFh	Timer 2 Overflow. Cờ tràn timer 2 và khởi tạo ngất Nếu TCLK hoặc RCLK bật lên thì TF2 không tác động
6	EXF2	CEh	Timer 2 External Flag. Lên 1 khi chuyến trạng thái từ 1-0 ở T2EX (chấn P1.1) ở chế độ reload hoặc capture khi EXEN2 đặt lên 1. Khi cho phép ngấtư T2, cờ này sẽ khởi tạo ngất
5	RCLK	CDh	Timer 2 Receive Clock. Khi bit này bằng 1, Timer 2 sẽ dùng tạo xung nhận cho cổng vào ra nối tiếp. Khi bit ngày bằng 0, Timer 1 dùng vào chức năng này.
4	TCLK	CCh	Timer 2 Transmit Clock. Khi bit này bằng 1, Timer 2 sẽ dùng tạo xung truyền cho cổng vào ra nổi tiếp. Khi bit ngày bằng 0, Timer 1 dùng vào chức năng này.
3	EXEN2	CBh	Timer 2 External Enable. Khi bật, chuyến trạng thái 1-0 ở chân T2EX (P1.1) khởi tạo quá trình capture hoặc reload.
2	TR2	CAh	Timer 2 Run. Bật tắt Timer 2
1	C/T2	C9h	Timer 2 Counter/Interval Timer. 0 là chế độ timer, 1 là chế độ counter với chuyển trạng thái (P1.0).
0	CP/RL2	C8h	Timer 2 Capture/Reload. Nếu 0,Timer 2 ở chế độ 16 bit tự động nạp lại,còn nếu 1 chuyển sang chế độ capture với bit EXEN2

dictions.

Electrical Engineering

Các chức năng Timer 2

- Timer 2 ở chế độ tạo xung cho cổng nối tiếp (baud-rate generator)
- Timer 2 ở chế độ tự động nạp lại (autoreload)
 - TH2 nạp bởi RCAP2H, TL2 nạp bởi RCAP2L
 - Timer 2 tràn từ FFFFh về 0000h

Electrical Engineering

20

Capture mode

- TH2 và TL2 sẽ copy vào RCAP2H and RCAP2L
- Chuyên dùng để tính tần số sự kiện đưa vào chân T2EX (P1.1) vì Timer 2 luôn chạy và ngắt xảy ra khi cờ tràn TF2 được đặt lên

Electrical Engineering

Bài tập

- Viết chương trình tạo dao động tần số 10KHz trên chân P1.0
- 10 KHZ tương đương với chu kỳ là 100μS, với thời gian mức thấp 50 μS, mức cao là 50μS.
- Giả thiết làm việc với tần số 12 MHz

Electrical Engineering