Math 113, Fall 2019

Lecture 6, Tuesday, 9/17/2019

Clicker Questions: 1

- 1. Which of the following are cyclic groups:
- (A) \mathbb{Z} , generated by 1
- (B) U_n (with $n \in \mathbb{Z}^+$), generated by $\zeta = e^{2\pi i/n}$
- (C) Both
- (D) Neither
- (E) Something Else
- 2. Applying the Division Algorithm to divide -53 by 10 gives:
- (B) -53
- (E) My clicker fell into the toilet and this was the only button that works.

2 Review

Last time, Vojta left us with a cliffhanger. Let $\varphi: G \xrightarrow{\sim} G'$ be an isomorphism of groups and let $H \leq G$. Then

$$\varphi[G] = \{ \varphi(x) : x \in H \}$$

is a subgroup of G'.

Proof. In the last lecture, we already did the case where $\varphi[H] \neq \emptyset$. Let $a',b' \in \varphi[H]$. Then $\exists_{a,b \in H}$ such that $\varphi(a) = a'$ and $\varphi(b) = b'$. Since $H \leq G$, $ab^{-1} \in H$, so $\varphi(ab^{-1}) \in \varphi[H]$. Additionally,

$$\varphi(ab^{-1})b' = \varphi(ab^{-1})\varphi(b) = \varphi(ab^{-1}b) = \varphi(a) = a',$$

so $\varphi(ab^{-1})$ is a solution to xb'=a'. This implies $\varphi(ab^{-1})=a'(b')^{-1}$, where $\varphi(ab^{-1}) \in \varphi[H]$. Hence $a'(b')^{-1} \in \varphi[H]$. Therefore we conclude that $\varphi[H]$ is a subgroup of G'.

3 Extended Example:

Find all subgroups of U_6 .

Solution. Recall that $U_6:=\{1,\zeta,\zeta^2,\zeta^3,\zeta^4,\zeta^5\}$, where $\zeta:=e^{\frac{2\pi i}{6}}$. We already know that U_6 has the trivial subgroups $\{1\}$ and U_6 . Are there any others? Let H be a nontrivial subgroup of U_6 . Then H contains an element $x \neq 1$. If $x = \zeta$, then H contains $\zeta, \zeta^2, \zeta^3, \zeta^4, \zeta^5, 1$. Then $H = U_6$. If $x = \zeta^2$, then H contains $\zeta^2, \zeta^4, \zeta^6 = 1$, so $H \supseteq \{1, \zeta^2, \zeta^4\} = U_3$. We've

found another subgroup, $U_3 < U_6$.

If $x = \zeta^3 = -1$, then H contains $\{-1, 1\} = U_2$, so we've found yet another subgroup, $U_2 < U_6$.

If $x = \zeta^4$, then H contains $\zeta^4, \zeta^4 \cdot \zeta^4 = \zeta^3$ and 1, so $H \supseteq \{1, \zeta^2, \zeta^4\} = U_3$. If $x = \zeta^5$, then H contains $x^{-1} = \zeta$, hence as above, $H = U_6$.

If $H > U_3$, then H contains ζ or ζ^3 or ζ^5 .

If H contains ζ or ζ^5 , then $H = U_6$, as before.

If H contains ζ^3 , then H also contains $\zeta^3 \cdot \zeta^4 = \zeta$, and so again $H = U_6$. Therefore there are no subgroups H with $U_3 < H < U_6$.

If $H > U_2$, then H contains ζ, ζ^2, ζ^4 , or ζ^5 .

If it's ζ or ζ^5 , then $H = U_6$. If it's ζ^2 or ζ^4 , then $H \supseteq U_3$. Hence $H > U_3$. Therefore $H = U_6$, as before.

Then in conclusion, subgroups of U_6 are:

$$\{1\} = U_1, U_2, U_3, U_6.$$

We can make the diagram:

4 Group (Written Multiplicatively)

Definition: x^n -

Let G be a group (written multiplicatively). Let $x \in G$, and let $n \in \mathbb{Z}$. Define:

$$x^{n} := \begin{cases} \overbrace{x \cdot x \cdot \cdot \cdot x}^{n \text{ times}}, & n \ge 0\\ e, & n = 0\\ (x')^{-n}, & n < 0. \end{cases}$$

It is clear from this definition that $x^1 = x$ for all $x \in G$, hence $x^{-1} = (x')^1 = x'$, so we go back to writing x^{-1} to denote the inverse.

In additive notation, we write nx instead of x^n . Then nx + mx = (n+m)x, and m(nx) = (mn)x (notice this is not the associative law). Also nx as defined here is n times x if $G \leq \mathbb{C}$. Also, we write (-1)x = -x as the additive inverse of x.

5 Cyclic Groups

Theorem 5.1. Let G be a multiplicative group, and let $a \in G$. Then:

- (a) $\{a^n : n \in \mathbb{Z}\}$ is a subgroup of G; call it $\langle a \rangle$.
- (b) All subgroups of G that contain a must also contain $\langle a \rangle$, and
- (c) $\langle a \rangle$ is abelian (even if G isnt).

Proof. (a) $\langle a \rangle$ is nonempty. Also, if $x, y \in \langle a \rangle$, then $x = a^n$ and $y = a^m$ for some $n, m \in \mathbb{Z}$. Then $xy^{-1} = a^n(a^m)^{-1} = a^{n-m} \in \langle a \rangle$. Hence $\langle a \rangle \leq G$. (b) If $H \leq G$ and $a \in H$, then $a^n \in H$, $\forall_{n \in \mathbb{Z}}$.

(c) Consider:

$$a^n a^m = a^{n+m} = a^{m+n} = a^m a^n, \forall_{m,n \in \mathbb{Z}}.$$

Definition: Cyclic Subgroup -

The subgroup $\langle a \rangle$ is called the **cyclic subgroup** of G generated by a. A group G or subgroup H is said to be **cyclic** if there is some $a \in H$ or $a \in G$ such that $\langle a \rangle = G$ or $\langle a \rangle = H$, respectively.

If so, then we call a a **cyclic generator** of G or H, respectively.

We call it a 'cyclic' generator because later we will find that there are more generators we consider.

Clicker Questions: 6

1. Which are the cyclic generators of U_6 ? Define $\zeta := e^{\frac{2\pi i}{6}}$.

- (a) ζ only
- (b) ζ and ζ^{-1} only
- (c) $\zeta, \zeta^2, \zeta^3, \zeta^4, \zeta^5$.
- (d) all elements of U_6 are cyclic generators of U_6
- (e) none of the above.
- 2. Which subgroups of U_6 are cyclic subgroups?
- (a) Only U_6 itself
- (b) U_6, U_2 and U_3 only
- (c) Only U_6 and U_3
- (d) all of them are
- (e) none of the above

Order of a Group

Definition: Order -

The **order** of an element $a \in G$ is the order of the cyclic subgroup that it generates. It is denoted |a|. So $|a| = |\langle a \rangle|$.

By convention, if $\langle a \rangle$ is infinite, then we say that a has infinite order.

Lemma 7.1. Let G be a group and let $a \in G$.

- (a) If a has finite order, then $\exists_{n_1,n_2\in\mathbb{Z}}: n_1\neq n_2 \text{ and } a^{n_1}=a^{n_2}$.
- (b) If there exists n_1 and n_2 as in (a) above, then $\exists_{n \in \mathbb{Z}^+} : a^n = e$.

Proof. (a) If $|a| < \infty$, then $f: \mathbb{Z} \to \langle a \rangle$, defined by $f(n) = a^n$ maps an infinite set to a finite set, so f is NOT injective, as desired.

(b) Let G and a be as in the lemma, with $|a| < \infty$. Then $a^{kn} = e \forall_{k \in \mathbb{Z}}$ because

$$a^{kn} = a^{nk} = (a^n)^k = e^k = e.$$

Now we may ask, are there any other integers m (other than multiples of our **order** n) such that $a^m = e$?

We claim that there aren't any such m. If there is such an m, then it's between multiples of n, so:

$$kn < m < (k+1)n$$
.

Then 0 < m - nk < n, and

$$a^{m-nk} = a^m (a^n)^{-k} = a^m e^{-k} = a^m = e,$$

contradicting our choice of n. So $a^m = e \iff m$ is a multiple of |a|.

Lecture ends here.