CERN

Summer Student Project Report

CREATING TUBES IN VECGEOM'S SURFACE MODEL

student: Dušan Cvijetić¹, University of Belgrade supervisor: Dr. Andrei Gheata, CERN EP-SFT

Geneve, August 24, 2022

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

¹dusancvijetic2000@gmail.com

Contents

1	Introduction	2
	1.1 Bounded Surface Model	2

1 Introduction

Simulating geometry is a necessary part of any detector simulation in high energy physics. It introduces constraints to a given problem, bounding physical properties to regions of space.

One of the most important tasks geometry model has is navigation of moving particles. It must provide information on where the particle currently is, so that interactions with material can be properly simulated, but also predict where will the particle hit boundary of the current region. This prediction is done through checking ray–boundary intersections, so as to see whether the particle's trajectory leads it to exit the current region and pass into another.

Traditionally, this was done for a single particle and a single potential intersection. However, with the advent of powerful GPU technologies in the recent years, a question arises if there is possibility for parallelization, and therefore speedup, of this process. As the simulation of particle movement is one of the most resource-intensive tasks of collision simulations, its acceleration would be very valuable. VecGeom library is an effort in this direction.

Old models used the concept of solids (3D volumes) to represent the elements of a detector. However, GPU parallelization over the solid structures turns out to be quite inefficient, for they tend to use many registers and exhibit a lot of divergence. A promising approach to solving these problems is decomposing the volumes into surfaces, lowering register usage and producing less divergent algorithms.

1.1 Bounded Surface Model