CH 3

CH 3 3.1 Pure Substance Definition 3.2 Phases of a Pure Substance Intermolecular Model Solid Liquid Gas 3.3 Phase-Change Processes of Pure Substances Compressed Liquid and Saturated Liquid Saturated Vapor and Superheated Vapor Saturation Temperature and Saturation Pressure Latent Heat 3.4 Property Diagrams for Phase-Change Processes The T-v Diagram The P-v Diagram The P-T Diagram The P-v-T Surface 3.5 Property Tables Enthalpy Saturated Liquid and Saturated Vapor States Saturated Liquid - Vapor Mixture Superheated Vapor Compressed Liquid Reference State and Reference State 3.6 The Ideal-Gas Equation of State **Ideal Gas** Ideal-gad Equation of State 3.7 Compressibility Factor Compressibility Factor Z **Generalized Compressibility Chart** The Pseudo-Reduced Specific Volume 3.8 Other Equations of State Van Der Waals Equation of State Beattie-Bridgeman Equation of State Benedict-Webb-Rubin Equation of State Virial Equation of State

3.1 Pure Substance

Definition

a substance that has a fixed chemical composition throughout

3.2 Phases of a Pure Substance

Intermolecular Model

Solid

molecules: in fixed positions

intermolecular force: strong

Liquid

molecules: no longer at fixed positions and can rotate and translate freely

intermolecular force: weaker

distance between molecules: slight increase comparing to solid

exception on water

Gas

molecules: orders are nonexistent and move at random

intermolecular force: vary small

Energy Level: higher than other phases

3.3 Phase-Change Processes of Pure Substances

Compressed Liquid and Saturated Liquid

- compressed liquid: liquid exists in liquid phase
- saturated liquid: liquid about to vaporize

FIGURE 3-5

At 1 atm and 20°C, water exists in the liquid phase (compressed liquid).

At 1 atm pressure and 100°C, water exists as a liquid that is ready to vaporize (*saturated liquid*).

Saturated Vapor and Superheated Vapor

- **saturated vapor**: vapor is about to condense
- **superheated vapor**: vapor is not about to condense

As more heat is transferred, part of the saturated liquid vaporizes (*saturated liquid–vapor mixture*).

At 1 atm pressure, the temperature remains constant at 100°C until the last drop of liquid is vaporized (saturated vapor).

As more heat is transferred, the temperature of the vapor starts to rise (superheated vapor).

Saturation Temperature and Saturation Pressure

ullet Saturation Temperature: T_{sat}

• Saturation Pressure: P_{sat}

Latent Heat

- **latent heat of fusion**: the amount of energy absorbed(released) during melting(freezing)
- **latent heat of vaporization**: the amount of energy absorbed(released) during vaporization(condensation)

3.4 Property Diagrams for Phase-Change Processes

The T-v Diagram

as pressure increased

property	status
T_{sat}	†
v_{sat}	†
$v_{sat,vapor}$	↓
Horizontal Line	↓

The P-v Diagram

Extending with Solid Phase

- **Triple Line**: the line formed by triple-phase states
- **Triple Point**: the point appeared by triple line on P-T diagram
- **Sublimation**: the solid turns into vapor at pressures below thw triple point value

The ${\cal P}-{\cal T}$ Diagram

The P-v-T Surface

FIGURE 3-23

P-v-T surface of a substance that contracts on freezing.

FIGURE 3-24

P-v-T surface of a substance that *expands* on freezing (like water).

3.5 Property Tables

Enthalpy

which is a combination property

$$h = u + Pv (kJ/kg)$$
 or $H = U + PV (kJ)$

Saturated Liquid and Saturated Vapor States

two forms

status	table
Under Temperature	Table A-4
Under Pressure	Table A-5

- Subscript **g**: saturated vapor
- Subscript f: saturated liquid
- Subscript **fg**: the difference between the saturated vapor and saturated liquid values of the same property

$$v_{fg} = v_g - v_f$$

Saturated Liquid - Vapor Mixture

where y is v, u and h

Superheated Vapor

status	given status
$P < P_{sat}$	T
$T>T_{sat}$	P
$v>v_g$	P or T
$u>u_g$	P or T
$h>h_g$	P or T

Compressed Liquid

status	given status
$P>P_{sat}$	T
$T < T_{sat}$	P
$v < v_g$	P or T
$u < u_g$	P or T
$h < h_g$	P or T

Reference State and Reference State

Since the relations give the changes in **properties**, not the values of properties at specified states.

Therefore, we need to **choose a convenient reference state** and assign a value of zero for a convenient property or properties at the state.

For water: the state of saturated liquid at $0.01^{\circ}C$

3.6 The Ideal-Gas Equation of State

Ideal Gas

- the modules of gas are flexible, and everyone is a mass point with no volume
- there is not any force between molecules in addition to molecular collisions

When p o 0, $v o \infty$, the real gas can be treated as the ideal gas

Ideal-gad Equation of State

$$P
u=RT$$
 $PV=nR_uT$ $R=rac{R_u}{M}$ $R_u=8.31447~ ext{kJ/(kmol}\cdot K)$ $m=MN(ext{kg})$ $rac{P_1V_1}{T_1}=rac{P_2V_2}{T_2}$

3.7 Compressibility Factor

Compressibility Factor Z

$$Z=rac{P
u}{RT} \qquad P
u=ZRT$$
 $Z=rac{
u_{
m actual}}{
u_{
m ideal}}$ $P_R=rac{P}{P_{cr}} \qquad {
m and} \qquad T_R=rac{T}{T_{cr}}$

also called the principle of corresponding states

Generalized Compressibility Chart

- 1. At very low pressure ($P_R \ll 1$), gases behave as an ideal gas regardless of temperature
- 2. At high temperature ($P_R>2$), ideal-gad behavior can be assumed with good accuracy regardless od pressure
- 3. The deviation of a gad fro, ideal-gad behavior is greatest in the vicinity od critical point.

The Pseudo-Reduced Specific Volume

$$u_R = rac{
u_{actual}}{RT_{cr}/P_{cr}}$$

which is defined differently from P_R and T_R .

3.8 Other Equations of State

Van Der Waals Equation of State

$$(P+rac{a}{
u^2})(
u-b)=RT$$
 $a=rac{27R^2T_{cr}^2}{64P_{cr}} \qquad ext{and} \qquad b=rac{RT_{cr}}{8P_{cr}}$

Beattie-Bridgeman Equation of State

$$P=rac{R_uT}{ar{v}^2}(1-rac{c}{ar{v}T^3})(ar{v}+B)-rac{A}{ar{v}^2}$$
 $A=A_0(1-rac{a}{ar{v}}) \qquad ext{and}\qquad B=B_0(1-rac{b}{ar{v}})$

Benedict-Webb-Rubin Equation of State

$$P = rac{R_u T}{\overline{v}} + (B_0 R_u T - A_0 - rac{C_0}{T^2}) rac{1}{\overline{v}^2} + rac{b R_u T - a}{\overline{v}^3} + rac{a lpha}{\overline{v}^6} + rac{c}{\overline{v}^3 T^2} (1 + rac{\gamma}{\overline{v}^2}) e^{-\gamma/\overline{v}^2}$$

Virial Equation of State

$$P = rac{RT}{v} + rac{a(T)}{v^2} + rac{b(T)}{v^3} + rac{c(T)}{v^4} + rac{d(T)}{v^5} + \cdots$$