Lógica – Grado en Ingeniería Informática, Grado en Matemáticas e Informática 26 de octubre de 2015

Examen de Lógica Proposicional

Ejercicio 1.1. Dadas las siguientes fórmulas, decir para cada una de ellas si es válida, contingente, contradicción o no es posible saber con certeza qué es, a partir de la información disponible sobre A, B y C (donde A, B y C son fórmulas bien formadas cualesquiera): (0,5 puntos)

	<u>sabiendo que</u>	<u>respuesta</u>
<i>A v</i> ¬ <i>B</i>	B es insatisfacible, A es una contradicción	VÁLIDA
$(C \lor B) \rightarrow (C \lor A)$	B es insatisfacible, C es contingente	VÁLIDA
$\neg (A \lor \neg B) \land (C \rightarrow B)$	B es válida, A es insatisfacible	VÁLIDA
$\neg A \land (A \rightarrow (B \lor \neg A))$	A es válida, B es insatisfacible	CONTRADICCIÓN
$A \wedge (C \rightarrow (B \vee \neg A))$	A es contingente, todo modelo de A es modelo de C	NO SE SABE

Ejercicio 1.2. Decir si las siguientes afirmaciones son verdaderas (V) o falsas (F). Para las que sean verdaderas decir por qué, y para las que sean falsas escribir la correspondiente definición o teorema. (2 puntos)

Si $T[A1, A2, ..., An] \vdash B$ es correcta entonces $T[A2, ..., An, \neg B] \vdash \neg A1$ es correcta

VERDADERA

Si $T[A1, A2, ..., An] \vdash B$ es correcta entonces $\{A1, A2, ..., An, \neg B\}$ es insatisfacible. Como A1 es equivalente $a \neg \neg A1$, el conjunto $\{\neg \neg A1, A2, ..., An, \neg B\}$ también sería insatisfacible. Si $\{\neg \neg A1, A2, ..., An, \neg B\}$ es insatisfacible entonces $T[A2, ..., An, \neg B] \vdash \neg A1$ es correcta.

Supongamos que $T[A2, ..., An, \neg B] \vdash \neg A1$ NO es correcta. En ese caso, el conjunto $\{A2, ..., An, \neg B, \neg \neg A1\}$ sería satisfacible, es decir, habría al menos una interpretación que haría verdaderas a A1, A2, ..., An y $\neg B$ (porque A1 es equivalente a $\neg \neg A1$). Pero esto no es posible ya que $T[A1, A2, ..., An] \vdash B$ es correcta, y eso implica que $\{A1, A2, ..., An, \neg B\}$ es insatisfacible. Por tanto $T[A2, ..., An, \neg B] \vdash \neg A1$ tiene que ser correcta.

Una fórmula bien formada A se dice que es contingente si existe al menos un contramodelo de dicha fórmula A

FALSA

Una fórmula es contingente si tiene al menos un contramodelo <u>y un modelo</u>.

La fórmula ($p \lor q \rightarrow r$) \leftrightarrow ($p \lor (q \rightarrow r)$) es una tautología

FALSA

р	q	r	pvq	$(p \lor q \rightarrow r)$	$q \rightarrow r$	$(p \lor (q \rightarrow r))$	$(p \lor q \rightarrow r) \leftrightarrow (p \lor (q \rightarrow r))$
V	٧	V	V	V	V	V	V
V	V	F	V	F	F	V	F
V	F	V	V	V	V	V	V
V	F	F	V	F	V	V	F
F	V	V	V	V	V	V	V
F	V	F	V	F	F	F	V
F	F	V	F	V	V	V	V
F	F	F	F	V	V	V	V

Como hay dos interpretaciones que hacen a la fórmula falsa, no es una tautología.

Si A1 \wedge A2 \wedge ... \wedge An \wedge ¬B es insatisfacible, podemos afirmar que B es consecuencia lógica de A1, A2, ..., An

VERDADERA

Si A1 \land A2 \land ... \land An \land \neg B es insatisfacible entonces $T[A1, A2, ..., An] \vdash B$ es correcta. Como el cálculo deductivo basado en deducción natural es correcto y completo para la lógica proposicional, esto significa que $T[A1, A2, ..., An] \models B$, es decir, que B es consecuencia lógica de A1, A2, ..., An.

Si B no fuera consecuencia lógica de A1, A2, ..., An entonces existiría al menos una interpretación que haría verdaderas a A1, A2, ..., An y falsa a B. Esa interpretación haría verdadera a la fórmula A1 \wedge A2 \wedge ... \wedge An \wedge ¬B, pero esto no es posible ya que dicha fórmula es insatisfacible. Por tanto, B tiene que ser consecuencia lógica de A1, A2, ..., An.

- a. el siguiente enunciado:
 - Jugaremos al baloncesto sólo si somos al menos 6 amigos y el árbitro se presenta o manda un sustituto.
- b. y la siguiente argumentación:
 - No aprenderé a bailar salsa si no voy a clases de baile o tengo ascendencia latina. No ligaré con chicos a menos que sepa bailar salsa y me ponga mis mejores galas. He ligado, aunque no me he puesto de gala. Por tanto, he ido a clases de baile.

a)

- o p: Jugaremos al baloncesto
- o p: Somos al menos 6 amigos
- o r: El árbitro se presenta
- o s: Manda un sustituto
- \circ p \rightarrow q \wedge (r \vee s)

b)

- o p: Aprenderé a bailar salsa
- o q: Voy a clases de baile
- o r: Tengo ascendencia latina
- s: Ligaré con chicos
- o t: Ponerme mis mejores galas
- o No aprenderé a bailar salsa si no voy a clases de baile o tengo ascendencia latina.
 - $\neg q \lor r \rightarrow \neg p$
- o No ligaré con chicos a menos que sepa bailar salsa y me ponga mis mejores galas.
 - Saber bailar salsa y ponerse las mejores galas es condición necesaria para ligar con chicos: s → p ∧ t
 - O, si no se bailar salsa y no me pongo mis mejores galas, entonces no ligo con chicos: ¬p ∧ ¬t → ¬s
- o He ligado, aunque no me he puesto de gala.
 - s ∧ ¬ t
- o Por tanto, he ido a clases de baile.
 - q

Ejercicio 3. Comprobar si hay consecuencia lógica con medios semánticos distintos a la tabla de verdad (NO son válidos: el uso de deducción natural, resolución, transformar las formulas por equivalencias, o tablas de verdad).

$$\{(p \rightarrow q) \rightarrow q \lor r, r \lor p \rightarrow t \land q, \neg t \land s\} \vDash s \rightarrow r$$
(2 puntos)

- *) Búsqueda de contramodelo:
 - 1. $i(A3)=i(\neg t \land s)=V sii i(t)=F y i(s)=V$
 - 2. $i(B)=i(s \rightarrow r)=F sii i(s)=V y i(r)=F$

(llegados a este punto, es trivial evaluar A2 y ver que sólo pueden tener interpretación verdadera con i(p)=F, y con esto, evaluar A1 y ver que sólo puede tener interpretación verdadera con i(q)=V)

- 3. $i(A1)=i((p \rightarrow q) \rightarrow q \lor r)=V sii i(p \rightarrow q)=F o i(q \lor r)=V$,
 - a. o bien, $i(p \rightarrow q)=F \sin i(p)=V y i(q)=F$
 - b. o bien, $i(q \vee r)=V \sin i(q)=V \circ i(r)=V$,
 - c. Como hemos dicho en el punto 2 que i(r)=F, tenemos que i(A1)=V sii i(q)=V o (i(p)=V y i(q)=F).
- 4. i(A2)=V sii
 - a. O bien, $i(r \vee p)=F$
 - i. $i(r \lor p)=F sii i(r)=F y i(p)=F$. Lo cual es compatible con 1 y 2.
 - b. O bien, $i(t \land q)=V$
 - i. $i(t \land q)=V \sin i(t)=V y i(q)=V$. Lo cual no es posible por el punto 1.
 - ii. Por lo tanto, $i(r \lor p)=F$ en 4.a y i(p)=F; y, por lo tanto i(q)=V en 3.c

Conclusión: No hay consecuencia lógica, como muestra el siguiente contramodelo:

$$i(p)=F$$
, $i(q)=V$, $i(r)=F$, $i(s)=V$, $i(t)=F$

*) Tableau:

El tableau tiene ramas abiertas, no hay consecuencia lógica. La rama abierta marca el contramodelo: i(p)=F, i(q)=V, i(r)=F, i(s)=V, i(t)=F

$$(p \rightarrow q) \rightarrow q \vee r (3)$$

 $r \vee p \rightarrow t \wedge q (6)$
 $-t \wedge s (1)$
 $-(s \rightarrow r) (2)$
 $|$
 $-t$
 s
 $|$
 s
 $-r$
 $/$
 $-(p \rightarrow q) (4)$ $q \vee r (5)$
 $|$ $q \vee r (5)$

Ejercicio 4. Demostrar con el cálculo **deducción natural** (y por tanto **sin utilizar** tablas de verdad, **ni** razonamientos semánticos **ni** el método de resolución) :

$$p \land q \rightarrow r \lor s \models (p \rightarrow r) \lor (q \rightarrow s)$$
 (2 puntos)

*) 1ª solución:

1- (p∧c	$(r \lor s)$	premisa		
2-	$\neg ((p \rightarrow r) \lor (q \rightarrow s))$	supuesto		
3-	$\frac{\neg ((p \to r) \lor (q \to s))}{\neg (p \to r) \land \neg (q \to s)}$	th intercambio 2 con $\neg(A \lor B) \equiv \neg A \land \neg B$		
4-	$\neg (p \rightarrow r)$	elim A 3		
5-	$\neg (q \rightarrow s)$	elim A 3		
6-	¬(¬p v r)	th intercambio 4 con A→B = ¬A∨B		
7-	р∧¬г	th intercambio 6 con $\neg (A \lor B) \equiv \neg A \land \neg B \lor \neg \neg A \equiv A$		
8-	¬(¬q v s)	th intercambio 5 con A→B ≡ ¬A∨B		
9-	q∧¬s	th intercambio 8 con $\neg (A \lor B) = \neg A \land \neg B \lor \neg \neg A = A$		
10-	р	elim ^ 7		
11-	q	elim \wedge 9		
12-	p ^ q	int ^ 10, 11		
13-	rvs	modus ponens 12, 1		
14-	¬r	elim ^ 7		
15-	¬s	elim \wedge 9		
16-	¬r ∧¬s	int ¹⁴ , 15		
17-	¬(r v s)	th intercambio 16 con $\neg A \land \neg B \equiv \neg (A \lor B)$		
18- ¬-	$r((p \rightarrow r) \lor (q \rightarrow s))$	int - 2, 13, 17		
19- (p	\rightarrow r) v (q \rightarrow s)	elim ¬ 18		

*) $2^{\underline{a}}$ solución:

- 1- $(p \land q) \rightarrow (r \lor s)$ premisa
- 2- $\neg (p \land q) \lor (r \lor s)$ th intercambio 4 con $A \rightarrow B = \neg A \lor B$
- 3- $\neg p \lor \neg q \lor r \lor s$ th intercambio 2 con De Morgan $\neg (A \land B) \equiv \neg A \lor \neg B$
- 4- $(\neg p \lor r) \lor (\neg q \lor s)$ th intercambio 3 con $A \lor B \equiv B \lor A$
- 5- $(p \rightarrow r) \vee (q \rightarrow s)$ th intercambio 5 con $A \rightarrow B = \neg A \vee B$, dos veces

Ejercicio 5. Demostrar que la siguiente estructura deductiva es correcta usando el método de resolución: (2 puntos)

$$T[t \rightarrow p, r \lor \neg r \rightarrow s, \neg ((p \land s) \lor q)] \vdash \neg p \lor \neg q \rightarrow \neg (p \lor q) \land \neg (t \lor \neg s)$$

*) Transformar a forma clausular:

A1.
$$t \rightarrow p \equiv (eliminación de \rightarrow) \neg t \lor p$$
 (clausula 1)

A2.
$$r \lor \neg r \rightarrow s \equiv (eliminación de \rightarrow) \neg (r \lor \neg r) \lor s \equiv (DeMorgan)$$

$$(\neg \neg r \land \neg r) \lor s \equiv (elim \neg \neg) (r \land \neg r) \lor s \equiv (distributividad)$$

$$(\neg r \lor s) \land (r \lor s)$$

$$(clausulas 2 y 3)$$

A3.
$$\neg ((p \land s) \lor q) \equiv \neg (p \land s) \land \neg q \equiv (DeMorgan)$$

 $(\neg p \lor \neg s) \land \neg q$ (clausulas 4 y 5)

¬C.
$$\neg (\neg p \lor \neg q \Rightarrow \neg (p \lor q) \land \neg (t \lor \neg s)) \equiv (eliminación de \Rightarrow)$$

$$\neg (\neg (\neg p \lor \neg q) \lor (\neg (p \lor q) \land \neg (t \lor \neg s))) \equiv (DeMorgan)$$

$$\neg \neg (\neg p \lor \neg q) \land \neg (\neg (p \lor q) \land \neg (t \lor \neg s)) \equiv (elim \neg \neg)$$

$$(\neg p \lor \neg q) \land \neg (\neg (p \lor q) \land \neg (t \lor \neg s)) \equiv (DeMorgan)$$

$$(\neg p \lor \neg q) \land (\neg (p \lor q) \lor \neg \neg (t \lor \neg s)) \equiv (elim \neg \neg)$$

$$(\neg p \lor \neg q) \land (p \lor q \lor t \lor \neg s)$$

$$(clausulas 6 \lor 7)$$

*) Resolución:

C8. pv tv¬s desde C7 con C5 (corte)

C9. pv pv ¬s desde C8 con C1 (corte)

- C10. pv ¬s desde C9 (idempotencia)
- C11. ¬sv ¬s desde C10 con C4 (corte)
- C12. ¬s desde C11(idempotencia)
- C13. s v s desde C2 con C3 (corte)
- C14. s desde C13(idempotencia)
- C15. □ desde C12 con C14 (corte)