

(Confidencial)

Ref.: S51956-RT-5801-IAS-697

COPIA:

Tiago Miguel Silva André Melo Paulo

PARA:

Adalberto Silva

Pág. 1/10

HISTÓRICO DAS REVISÕES								
REV.	DATA ELABORADO VERIFICADO APROVADO							
	06/06/2024	DTW	CME	CFS				
1	PRINCIPAIS MUDANÇAS							
	Primeira Emissão							

TÍTULO: ESTUDO DE CVD DE 1ª EXTREMIDADE DA LINHA IG NO MANIFOLD MSIAG-FC-011

ÍNDICE

1	INTRO	ODUCÃO
	1.1	ODUÇÃOObjetivo
	1.2	Abreviações
	1.3	Abreviações
2	PREN	MISSAS DE CÁLCULO
	2.1	Hipóteses e Metodologia
	2.2	Critério de Aceitação
3		JLTADOS
-	3.1	Instalação do MCV
	3.1.1	Alinhamento e verticalização do MCV
	3.1.2	Heave up
		Toque da linha no solo após conexão
4		CLUSÕES
5		(O
6		IMO

(Confidencial)

Ref.: S51956-RT-5801-IAS-697

1 INTRODUÇÃO

1.1 Objetivo

O presente documento tem por objetivo realizar um estudo de CVD de primeira extremidade da linha de IG no MSIAG-FC-011 em uma lâmina d'água de 2176m, a ser realizada pela embarcação Skandi Búzios no campo Lula, para avaliar a necessidade do uso de boias e/ou peso morto durante o procedimento de modo a verticalizar o MCV e cumprir o critério de heave up.

As análises são realizadas utilizando o programa de elementos finitos para análises de instalação, ORCAFLEX versão 11.3.

1.2 Abreviações

CVD : Conexão Vertical Direta

MCV : Módulo de Conexão Vertical

TDP : Touch Down Point

MBR : Minimum Bending Radius

te : Toneladas

1.3 Referências

Ref	Documento	Rev	Título
[1]	RL-3A00.00-1500-94G-R1N-001	0	DUTO DE INJEÇÃO DE GÁS DO MSIAG-02 À P-66 – ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)
[2]	RT-2885	0	CVD de 1ª da linha de IG no manifold MSIAG-02(FC-11)

Pág. 2/10

Pág. 3/10

(Confidencial)

Ref.: S51956-RT-5801-IAS-697

2 PREMISSAS DE CÁLCULO

2.1 Hipóteses e Metodologia

A metodologia utilizada no estudo visa dispor o cabo ligado à manilha do MCV e o flexível de maneira que o MCV e o hub estejam alinhados, com o desvio do MCV em relação à vertical dentro da tolerância especificada, que é condição necessária para a conexão vertical.

Após o MCV ser assentado, o ponto de conexão do flexível com o navio é suspenso, inicialmente 2,5 metros em 2,15 segundos, para assegurar que não há travamento da vértebra. Caso necessário, esse deslocamento pode ser reduzido. Nesse caso o comprimento de flexível usado para verticalizar o MCV é mantido. Essa etapa é para simular um deslocamento vertical do navio logo após o MCV ser assentado no hub.

As seguintes hipóteses foram assumidas:

- A análise realizada é dinâmica, porém não são considerados efeitos de corrente, ondas e vento;
- A linha é considerada cheia de água;
- Foi considerada a rigidez à flexão nas condições de temperatura e pressão da instalação. e anular alagado
- Apenas boias encontradas a bordo são consideradas como remediação para possíveis problemas na configuração da instalação;
- A distância horizontal entre o ponto de conexão do cabo de sustentação do MCV e o ponto de conexão do flexível com o tensionador foi assumida em 25m;
- O centro de empuxo é considerado na mesma posição do centro de gravidade do MCV;

2.2 Dados de Referência

Item	Descrição	
Estrutura	WSI 152.2553-RD-4042-6 Rev. 1	
Vértebra	CB-BR1522553-00-01 Rev. 1	
Conector	CB-EF1522540-00-05 Rev. 4	
MCV	P7000051394 / DU700164510 Rev. C / Technipfmc	
Lâmina d'água	2176 m	

(Confidencial)

Ref.: S51956-RT-5801-IAS-697

Pág. 4/10

2.3 Critério de Aceitação

Nas configurações estudadas os parâmetros da Tabela 2.1 são avaliados em relação aos limites informados.

Tabela 2.1 - Parâmetros de aceitação da configuração

Parâmetros	Ref	Valor Limite	Unidade
Inclinação do MCV em relação à vertical	[-]	±0,50	graus
Distância mínima do flexível ao solo	[-]	0,50	m
Distância do flange do MCV ao leito marinho	[1]	4,50	m
Raio de travamento da vértebra	[1]	4,14	m
Raio de curvatura mínimo da linha	[1]	2,40	m
Momento fletor máximo na vértebra	[1]	70,00	kN.m
Força cortante máxima na vértebra	[1]	34,00	kN

De acordo com o documento ET-3000.00-1500-951-PMU-001 - revisão F, algumas observações se aplicam:

- (1) No caso de estudos para MCVs de umbilicais, a aprovação da análise depende apenas dos parâmetros descritos acima, não incluindo os esforços (momento/tração/cortante) como critérios de aceitação;
- (2) No caso de linhas de fluxo, os carregamentos devem ser gerados obedecendo o mesmo sistema de referência do relatório de cargas e comparados individualmente em módulo (i.e. tração com tração, cortante com cortante e momento com momento).

Ref.: S51956-RT-5801-IAS-697

3 RESULTADOS

3.1 Instalação do MCV

Para a instalação do MCV com as boias mostradas na Tabela 3.1, os resultados da análise de alinhamento e verticalização do MCV são mostrados no item 3.1.1 e o do heave up no item 3.1.2.

Tabela 3.1 - Posicionamento das boias

Empuxo	Posição em relação ao flange do MCV		
[kg]	[m]		
1320 + 385	3		
760 + 726	6		
385	9		

3.1.1 Alinhamento e verticalização do MCV

Os resultados da configuração que mantém o MCV verticalizado e alinhado são mostrados na Tabela 3.2. A Figura 3.1 apresenta a configuração do CVD de 1ª extremidade.

Tabela 3.2 – Resultados estáticos para alinhamento e verticalização

Distância Distância do flange do MCV ao linha ao solo		Inclinação do MCV	MBR Linha	MBR Vértebra
[m]	[m]	[graus]	[m]	[m]
4,50	0,58	0,36	4,85	7,12

Figura 3.1 – Configuração da CVD de 1ª extremidade. Comprimento do ponto no seio da configuração até ao flange do goose neck e comprimento do ponto na altura do flange do goose neck até o seio.

Pág. 6/10

(Confidencial)

Ref.: S51956-RT-5801-IAS-697

3.1.2 Heave up

Nesse caso o MCV é fixado no hub e o ponto de conexão do flexível com o navio é suspenso 2,5 metros em 2,15 segundos, mantendo o comprimento de flexível utilizado para verticalizar e alinhar o MCV. Os resultados são apresentados na Tabela 3.3 e na Tabela 3.4.

Tabela 3.3 - Resultados para análise de heave up

Heave up	MBR Linha MBR Vértebra		Momento Fletor Máx na Vértebra	Força Cortante Max. na Vértebra
[m]	[m]	[m]	[kN.m]	[kN]
2,50	4,13	4,14*	13,91	17,35

^{*}Vértebra travada

Tabela 3.4 - Esforços no flange do goose neck do MCV da análise do heave up

Momento	Momento Fletor	Tração	Força Cortante
Fletor	[kN.m]	[kN]	[kN]
Máximo	40,01	2,43	-2,69
Mínimo	-6,17	9,20	-13,75

3.1.3 Toque da linha no solo após conexão

Nesse caso o MCV é fixado no hub e o ponto de conexão do flexível com o navio é pago até que a linha toque no solo, mantendo o comprimento de flexível utilizado para verticalizar e alinhar o MCV. Os resultados dos esforços da interface do MCV com o duto são apresentados na

Tabela 3.5.

Tabela 3.5 – Esforços no MCV no momento em que a linha toca no solo

Momento Fletor	Tração	Força Cortante
[kN.m]	[kN]	[kN]
-0,23	7,54	-11,76

Ref.: S51956-RT-5801-IAS-697

4 CONCLUSÕES

A Tabela 4.1 sumariza os resultados da operação de conexão vertical direta de 1ª extremidade.

Conclui-se que é necessário instalar 1705kg de empuxo a 3m, 1486kg de empuxo a 6m, 385kg de empuxo a 9m, do flange, conforme Tabela 3.1, de forma a verticalizar o MCV e cumprir o critério de heave up.

O estudo apresenta travamento da vértebra, porém o momento fletor máximo na mesma não ultrapassa o admissível.

Os esforços calculados deste estudo estão aprovados a partir do ábaco (Figura 4.1)

	0		Poço	MSIAG-FC-011	Parecer Final		
BR PETROBRAS		Tipo de MCV	Injeção				
		RL de referência	RL-3A00.00-1500-94G-R1N-001				
		Data	06/06/24	aprovado			
			TAG	P7000051394			
	TechnipFMC		Execução	DTW	1		
		}	Verificação	CME	Revisão da Planilha		
			Aprovação	CFS	0		
	Análise Estrutural - MCV P7000051394 (Manifold Pré-Sal)						
Índice	Caso de Carregamento		Esforço	Valor (input)	Resultado Final		
1	CVD 2ª - Topo (Caso 1)		Tração	kN	-		
			Tração (Fx)	2,43 kN			
	CVD 1ª - MCV no <i>hub</i> com linha suspensa (Caso 3i - Flutuador/peso morto)	(a)	Cortante (Fz)	-2,69 kN	aprovado		
2			Momento fletor (M _y)	40,01 kN.m			
_			Tração (Fx)	9,20 kN			
		(b)	Cortante (Fz)	-13,75 kN	aprovado		
			Momento fletor (My)	-6,17 kN.m			
			Tração (Fx)	7,54 kN			
		(a)	Cortante (Fz)	-11,76 kN	aprovado		
3	CVD 1ª - MCV no hub		Momento fletor (My)	-0,23 kN.m			
	(Caso 3ii - Flutuador/peso morto)	(b)	Tração (Fx)	kN			
			Cortante (Fz)	kN	-		
			Momento fletor (M _y)	kN.m			

Figura 4.1 – Resultados do ábaco / Resultados do momento equivalente

Tabela 4.1 – Tabela de comparação entre os valores encontrados e os limites

Seção	Parâmetros	Valor encontrado	Valor Limite	Unidade
3.1.1	Inclinação em relação à vertical	0,36	±0,50	graus
3.1.1	Distância mínima do flexível ao solo	0,58	0,50	m
3.1.1	Distância do flange do MCV ao leito marinho	4,50	4,50	m
3.1.2	Raio de curvatura mínimo da linha/vértebra	4,13 / 4,14*	2,40 / 4,14	m
3.1.2	Momento fletor máximo na vértebra	13,91	70,00	kN.m
3.1.2	Força cortante máxima na vértebra	17,35	34,00	kN

^{*}Vértebra travada

Ref.: S51956-RT-5801-IAS-697

5 ANEXO

Esse anexo apresenta uma contingência para o caso em que o MCV se encontra acoplado no hub, porém não está travado. A ideia é, com o MCV fixo no modelo, pagar linha até que esteja um comprimento lançado no solo e então adicionar boias para a verticalização do MCV sem ação da catenária.

A primeira opção seria acrescentar até 900kg de empuxo, afastado 4m do flange do MCV. O raio mínimo na vértebra nessa condição é de 4,14m e o da linha é de 4,13m. O momento fletor obtido nessa condição é de 37,17kN.m no flange e 5,06kN.m na vértebra. A força cortante é de 16,95kN na vértebra. A Figura 5.1 apresenta essa configuração.

Figura 5.1 - Configuração do caso de contingência - 1ª opção

A segunda opção seria acrescentar até 800kg de empuxo, afastado 7m do flange do MCV. O raio mínimo na vértebra nessa condição é de 4,14m e o da linha é de 4,13m. O momento fletor obtido nessa condição é de 35,92kN.m no flange e 9,59kN.m na vértebra. A força cortante é de 16,95kN na vértebra. A Figura 5.2 apresenta essa configuração.

Figura 5.2 - Configuração do caso de contingência - 2ª opção

Ref.: S51956-RT-5801-IAS-697

6 RESUMO

CVD de primeira extremidade no manifold MSIAG FMC em uma lâmina d'água de 2176m.

Tabela 6.1 – Heave Up Heave up

Heave up
[m]
2,5

Figura 6.1 - Configuração de Verticalização

Tabela 6.2 – Configurações de Contingência

Contingância	Empuxo limite [kg]	Distância ao flange
Contingência		[m]
1	900	4,0
2	800	7,0

(Confidencial)

Ref.: S51956-RT-5801-IAS-697

Pág. 10/10

FIM DO DOCUMENTO