Práctica: Escaneo y Mitigación de Vulnerabilidades en Metasploitable 2

Parte 1: Configuración del Entorno

- 1.1 Instalación de Metasploitable 2
 - 1. Descarga la imagen de Metasploitable 2 desde el sitio oficial de Rapid7.
 - 2. Importa la imagen en VMware y configura la red en modo Puente o Bridge, para que pertenezcan a la misma red.

- 3. Inicia la máquina virtual y asegúrate de que tienes conectividad con tu máquina anfitriona, Kali y Metasploitable
- 4. Obten la IP de Metasploitable 2 con: ifconfig

```
kali@kali: ~
Session Actions Edit View Help
__(kali⊛kali)-[~]

$ ifconfig
eth0: flags=4163<UP.BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 192.168.1.146 hetmask 255.255.255.0 broadcast 192.168.1.255
       ineto fesu::18b:f9cd:6745:9491 prefixlen 64 scopeid 0×20<link>
       ether 00:0c:29:d0:35:37 txqueuelen 1000 (Ethernet)
       RX packets 449 bytes 35157 (34.3 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 326 bytes 33373 (32.5 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
        inet6 :: 1 prefixlen 128 scopeid 0×10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 40 bytes 3072 (3.0 KiB)
       RX errors 0 dropped 0 overruns 0
       TX packets 40 bytes 3072 (3.0 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
  -(kali⊛kali)-[~]
```

```
msfadmin@metasploitable:~$ ifconfig
eth0
Link encap:Ethernet HWaddr 00:0c:29:3e:6d:bb
inet addr:192.168.1.147
Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe3e:6dbb/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:39 errors:0 dropped:0 overruns:0 frame:0
TX packets:67 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:4370 (4.2 KB) TX bytes:7242 (7.0 KB)
Interrupt:17 Base address:0x2000

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr:::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:96 errors:0 dropped:0 overruns:0 frame:0
TX packets:96 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:21437 (20.9 KB) TX bytes:21437 (20.9 KB)
msfadmin@metasploitable:~$ __
```

Confirmación de Alcance de la Red con ping:

```
| $\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightarrow{\sqrt{kali\omega}kali\rightar
```

```
msfadmin@metasploitable:~$ ping 192.168.1.146
PING 192.168.1.146 (192.168.1.146) 55(84) bytes of data.
64 bytes from 192.168.1.146: icmp_seq=1 ttl=64 time=0.401 ms
64 bytes from 192.168.1.146: icmp_seq=2 ttl=64 time=0.683 ms
64 bytes from 192.168.1.146: icmp_seq=3 ttl=64 time=0.317 ms
64 bytes from 192.168.1.146: icmp_seq=4 ttl=64 time=0.555 ms
64 bytes from 192.168.1.146: icmp_seq=5 ttl=64 time=0.316 ms
64 bytes from 192.168.1.146: icmp_seq=5 ttl=64 time=0.477 ms
64 bytes from 192.168.1.146: icmp_seq=6 ttl=64 time=0.477 ms
64 bytes from 192.168.1.146: icmp_seq=7 ttl=64 time=0.487 ms

--- 192.168.1.146 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 5994ms
rtt min/avg/max/mdev = 0.316/0.462/0.683/0.123 ms
msfadmin@metasploitable:~$
```

1.2 Configuración de Herramientas de Escaneo

- 1. Verifica que **Nmap** y **Wireshark** estén correctamente instalados en el sistema anfitrión.
- En Linux, usa:

```
(kali⊛kali)-[~]
sudo apt update 66 sudo apt install nmap wireshark -y
[sudo] password for kall:
Get:1 http://archive-4.kali.org/kali kali-rolling InRelease [34.0 kB]
Get:2 http://archive-4.kali.org/kali kali-rolling/main amd64 Packages [20.9 MB]
Get:3 http://archive-4.kali.org/kali kali-rolling/main amd64 Contents (deb) [52.3 MB] Fetched 73.3 MB in 8s (9,649 kB/s)

3 packages can be upgraded. Run 'apt list --upgradable' to see them.
nmap is already the newest version (7.95+dfsg-3kali1).
nmap set to manually installed.
wireshark is already the newest version (4.4.9-1).
wireshark set to manually installed.
The following packages were automatically installed and are no longer required:
                          libportmidi0 python3-bluepy
librav1e0.7 python3-click-
  amass-common
                                                                                           python3-protobuf
  libbluray2
                                            python3-click-plugins
                                                                                           python3-zombie-imp
                         libtheoradec1 python3-ctick-plugins python3-zombie-imp samba-ad-dc samba-ad-provision python3-kismetcapturebtgeiger samba-ad-provision python3-kismetcapturefreaklabszigbee samba-dsdb-modules
  libbson-1.0-0t64
  libjs-jquery-ui
                                                                                           samba-ad-provision
  libjs-underscore
  libmongoc-1.0-0t64 libx264-164
                                             python3-kismetcapturertl433
  libmongocrypt0
                           libxml2
                                             python3-kismetcapturertladsb
  libplacebo349
                          libyelp0
                                             python3-kismetcapturertlamr
Use 'sudo apt autoremove' to remove them.
  Upgrading: 0, Installing: 0, Removing: 0, Not Upgrading: 3
   -(kali⊛ kali)-[~]
```

2. Asegúrate de que **Wireshark** esté configurado para capturar tráfico en la interfaz de red adecuada.

3. Asegúrate de tienes configurado y listo **Git y GitHub** para gestionar la documentación

Parte 2: Escaneo de Puertos y Servicios con Nmap

2.1 Escaneo de Puertos Básico (Identificación de Puertos Abiertos)

1. En la máquina anfitriona, abre una terminal y realiza un escaneo de todos los puertos de Metasploitable 2:

Utilizaremos el escaneo SYN (-sS), que es rápido y "sigiloso" (menos invasivo), para escanear todos los 65535 puertos (-p-).

```
-(kali∞kali)-[~]
└$ nmap -sS -p- 192.168.1.147
Starting Nmap /.95 ( https://nmap.org ) at 2025-10-22 15:54 EDT
Nmap scan report for 192.168.1.147
Host is up (0.0017s latency).
Not shown: 65505 closed tcp ports (reset)
          STATE SERVICE
21/tcp
          open ftp
22/tcp
          open ssh
23/tcp
          open telnet
25/tcp
          open smtp
53/tcp
          open domain
80/tcp
         open http
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
          open exec
512/tcp
513/tcp open login
514/tcp open shell
1099/tcp open rmiregistry
1524/tcp open ingreslock
2049/tcp open nfs
2121/tcp open ccproxy-ftp
3306/tcp open mysql
3632/tcp open distccd
5432/tcp open postgresql
5900/tcp open vnc
6000/tcp open X11
6667/tcp open irc
6697/tcp open ircs-u
8009/tcp open ajp13
8180/tcp open unknown
8787/tcp open msgsrvr
38109/tcp open unknown
42123/tcp open unknown
46354/tcp open unknown
54997/tcp open unknown
MAC Address: 00:0C:29:3E:6D:BB (VMware)
Nmap done: 1 IP address (1 host up) scanned in 8.19 seconds
   (kali⊛kali)-[~]
```

2. **Análisis de Resultados**: Examina los puertos abiertos e identifica los servicios principales, que incluirán:

FTP (21), SSH (22), Telnet (23), HTTP (80), MySQL (3306).

Puertos Abiertos Identificados:

- 21/tcp (Servicio ftp)
- o 22/tcp (Servicio ssh)
- 23/tcp (Servicio telnet)
- 80/tcp (Servicio http)
- 3306/tcp (Servicio mysql)

- Además, se encontraron otros servicios, como SMTP (25), DNS/Domain (53),
 y PostgreSQL (5432).
- 3. Tarea: Documenta los riesgos asociados a cada puerto abierto y servicio encontrado.

Puerto	Servicio	Riesgos Asociados		
21/tcp	FTP	Riesgo Crítico. Se espera que sea la versión vsftpd 2.3.4 , que contiene una puerta trasera (backdoor) que permite la ejecución de comandos remotos sin autenticación.		
22/tcp	SSH	Riesgo Alto. Suele estar configurado para permitir el <i>login</i> como <i>root</i> con credenciales débiles o por defecto (msfadmin/msfadmin).		
23/tcp	Telnet	Riesgo Alto. Telnet transmite toda la sesión, incluyendo credenciales (usuario y contraseña), en texto plano (sin cifrar). Esto permite a un atacante en la misma red capturar fácilmente las credenciales con una herramienta como Wireshark.		
80/tcp	НТТР	Riesgo Alto. Aloja aplicaciones web conocidas por ser vulnerables (como DVWA) que permiten ataques de Inyección SQL, Cross-Site Scripting (XSS) y ejecución remota de código.		
3306/tcp	MySQL	Riesgo Alto. El servidor de base de datos puede ser vulnerable a ataques de <i>fuerza bruta</i> o permitir el acceso con credenciales débiles o por defecto, lo que comprometería la información almacenada.		

2.2 Escaneo de Versiones y Sistema Operativo

1. Realiza un escaneo para identificar la versión del sistema operativo y los servicios específicos en cada puerto abierto:

Utilizaremos la opción de detección de versión (-sV) y la detección del sistema operativo (-O).

```
nmap -sV -0 192.168.1.147
Starting Nmap 7.95 ( https://nmap.org ) at 2025-10-22 16:06 EDT
Nmap scan report for 192.168.1.147
Host is up (0.00077s latency).
Not shown: 977 closed tcp ports (reset)
PORT
         STATE SERVICE
                            VERSION
21/tcp
                           vsftpd 2.3.4
         open ftp
                           OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)
22/tcp
         open
              ssh
23/tcp
         open
               telnet
                           Linux telnetd
25/tcp
                           Postfix smtpd
               smtp
         open
53/tcp
         open domain
                           ISC BIND 9.4.2
                           Apache httpd 2.2.8 ((Ubuntu) DAV/2)
80/tcp
               http
         open
111/tcp
                          2 (RPC #100000)
              rpcbind
         open
139/tcp
               netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
         open
              netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp
         open
512/tcp
                           netkit-rsh rexecd
         open
               exec
513/tcp
              login
                           OpenBSD or Solaris rlogind
         open
514/tcp open
              tcpwrapped
               java-rmi GNU Classpath grmiregistr
bindshell Metasploitable root shell
1099/tcp open
                           GNU Classpath grmiregistry
1524/tcp open
                           2-4 (RPC #100003)
2049/tcp open nfs
                           ProFTPD 1.3.1
2121/tcp open
3306/tcp open
                           MySQL 5.0.51a-3ubuntu5
               mysql
               postgresql PostgreSQL DB 8.3.0 - 8.3.7
5432/tcp open
5900/tcp open
                           VNC (protocol 3.3)
6000/tcp open
               X11
                           (access denied)
6667/tcp open
                           UnrealIRCd
               irc
               ajp13
8009/tcp open
                           Apache Jserv (Protocol v1.3)
8180/tcp open http
                           Apache Tomcat/Coyote JSP engine 1.1
MAC Address: 00:0C:29:3E:6D:BB (VMware)
Device type: general purpose
Running: Linux 2.6.X
OS CPE: cpe:/o:linux:linux_kernel:2.6
OS details: Linux 2.6.9 - 2.6.33
Network Distance: 1 hop
Service Info: Hosts: metasploitable.localdomain, irc.Metasploitable.LAN; OSs: Unix, Linux; CPE: cpe:
/o:linux:linux_kernel
OS and Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 13.08 seconds
   (kali⊛kali)-[~]
```

- 2. Análisis de Resultados: Investiga vulnerabilidades asociadas a cada versión detectada.
- Usa bases de datos como CVE o Exploit-DB para encontrar exploits. (ANEXO I)

A. Análisis de vsftpd 2.3.4 (Puerto 21)

- Vulnerabilidad: Este es el servicio más crítico. La versión vsftpd 2.3.4 contiene una puerta trasera (backdoor) intencionalmente colocada.
- Identificador CVE: CVE-2011-2523.
- Impacto: Permite a un atacante ejecutar comandos arbitrarios de forma remota en el servidor sin necesidad de autenticación.

• Exploit-DB: Existe el exploit Exploit-DB: 38132 que aprovecha esta puerta trasera.

B. Análisis de Apache httpd 2.2.8 (Puerto 80)

- Vulnerabilidad: Esta versión de Apache también es antigua.
- Riesgo: Permite acceso a servicios web vulnerables como DVWA y Mutillidae (que se encuentran en Metasploitable 2), que son objetivos directos para ataques de Inyección SQL y XSS.
- Investigación Adicional: La versión 2.2.8 tiene vulnerabilidades conocidas como CVE-2009-1891 (ejecución remota de código en ciertas configuraciones de módulos) o CVE-2008-2364.

C. Otros Servicios Vulnerables

- MySQL 5.0.51a-3ubuntu5: Versión muy antigua que probablemente tiene credenciales débiles o por defecto.
- PostgreSQL 8.3.7: También versión obsoleta, vulnerable a inyecciones SQL en ciertas funciones.

2.3 Escaneo de Puertas Traseras con Scripts NSE de Nmap

1. Los scripts NSE (Nmap Scripting Engine) permiten identificar puertas traseras específicas en servicios vulnerables. Ejecuta el siguiente comando:

El comando ls /usr/share/nmap/scripts | grep backdoor ha identificado el script crucial:

• Script a Usar: ftp-vsftpd-backdoor.nse

Ahora, ejecutaremos este script contra Metasploitable 2 para confirmar que la versión **vsftpd 2.3.4** es vulnerable a la puerta trasera

nmap --script ftp-vsftpd-backdoor.nse 192.168.1.147

```
nmap --script ftp-vsftpd-backdoor.nse 192.168.1.147
Starting Nmap /.95 ( https://nmap.org ) at 2025-10-22 16:17 EDT Nmap scan report for 192.168.1.147
Host is up (0.0010s latency).
Not shown: 977 closed tcp ports (reset)
        STATE SERVICE
PORT
21/tcp open ftp
  ftp-vsftpd-backdoor:
    VULNERABLE:
    vsFTPd version 2.3.4 backdoor
      State: VULNERABLE (Exploitable)
      IDs: CVE:CVE-2011-2523 BID:48539
        vsFTPd version 2.3.4 backdoor, this was reported on 2011-07-04.
      Disclosure date: 2011-07-03
      Exploit results:
        Shell command: id
        Results: uid=0(root) gid=0(root)
      References:
        https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2523
        https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/unix/ftp/vsftpd_2
34_backdoor.rb
        https://www.securityfocus.com/bid/48539
        http://scarybeastsecurity.blogspot.com/2011/07/alert-vsftpd-download-backdoored.html
22/tcp
        open ssh
23/tcp
               telnet
        open
25/tcp
        open
               smtp
53/tcp
              domain
        open
80/tcp
        open
              http
111/tcp open rpcbind
139/tcp open
              netbios-ssn
445/tcp open microsoft-ds
512/tcp
        open
               exec
513/tcp open login
514/tcp open
              shell
1099/tcp open
               rmiregistry
1524/tcp open
              ingreslock
2049/tcp open
              nfs
2121/tcp open ccproxy-ftp
3306/tcp open
              mysql
5432/tcp open
              postgresql
5900/tcp open
              vnc
6000/tcp open
              X11
6667/tcp open
              irc
8009/tcp open
              ajp13
8180/tcp open unknown
MAC Address: 00:0C:29:3E:6D:BB (VMware)
```

- 2. Análisis de Resultados: Revisa los resultados para detectar puertas traseras como:
- vsftpd 2.3.4 (puerta trasera de FTP) o ProFTPd (ejecución remota de código).

El escaneo con el script ftp-vsftpd-backdoor.nse confirmó la existencia de la puerta trasera:

- Vulnerabilidad Detectada: La versión del servidor FTP, vsftpd 2.3.4, es vulnerable a una puerta trasera.
- Confirmación de Exploit: El script ejecutó exitosamente el comando id de Linux.

- Nivel de Acceso: La respuesta del comando fue uid=0(root), lo que significa que un atacante puede obtener control de root (máximo privilegio) del sistema sin necesidad de autenticación.
- 3. Documenta las puertas traseras identificadas y los riesgos que representan.

Puerta Trasera Identificada

Se ejecutó el script NSE ftp-vsftpd-backdoor.nse contra la IP objetivo (192.168.1.147)

Hallazgo	Valor Confirmado
Servicio Vulnerable	vsftpd versión 2.3.4
Identificador CVE	CVE-2011-2523
Prueba de Exploit	La ejecución de la Shell command: id devolvió uid=0(root)

2.4 Escaneo de Vulnerabilidades Adicionales

1. Usa scripts NSE de vulnerabilidad general en servicios específicos:

```
(kali⊛ kali)-[~]
_$ nmap --script vuln 192.168.1.147
Starting Nmap /.95 ( https://nmap.org ) at 2025-10-22 16:27 EDT
Pre-scan script results:
 broadcast-avahi-dos:
    Discovered hosts:
      224.0.0.251
    After NULL UDP avahi packet DoS (CVE-2011-1002).
    Hosts are all up (not vulnerable).
Stats: 0:02:02 elapsed; 0 hosts completed (1 up), 1 undergoing Script Scan
NSE Timing: About 91.78% done; ETC: 16:29 (0:00:08 remaining)
Nmap scan report for 192.168.1.147
Host is up (0.0019s latency).
Not shown: 977 closed tcp ports (reset)
         STATE SERVICE
PORT
21/tcp open ftp
  ftp-vsftpd-backdoor:
    VULNERABLE:
    vsFTPd version 2.3.4 backdoor
      State: VULNERABLE (Exploitable)
      IDs: CVE:CVE-2011-2523 BID:48539
        vsFTPd version 2.3.4 backdoor, this was reported on 2011-07-04.
      Disclosure date: 2011-07-03
      Exploit results:
        Shell command: id
        Results: uid=0(root) gid=0(root)
        https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2523
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/unix/ftp/vsftpd_2
34_backdoor.rb
        https://www.securityfocus.com/bid/48539
        http://scarybeastsecurity.blogspot.com/2011/07/alert-vsftpd-download-backdoored.html
         open ssh
open telnet
22/tcp
23/tcp
25/tcp
         open smtp
```

```
25/tcp
                 smtp
        open
  ssl-poodle:
    VULNERABLE:
    SSL POODLE information leak
      State: VULNERABLE
      IDs: CVE:CVE-2014-3566 BID:70574
              The SSL protocol 3.0, as used in OpenSSL through 1.0.1i and other
             products, uses nondeterministic CBC padding, which makes it easier
             for man-in-the-middle attackers to obtain cleartext data via a padding-oracle attack, aka the "POODLE" issue.
      Disclosure date: 2014-10-14
      Check results:
         TLS_RSA_WITH_AES_128_CBC_SHA
      References:
         https://www.imperialviolet.org/2014/10/14/poodle.html
         https://www.securityfocus.com/bid/70574
https://www.openssl.org/~bodo/ssl-poodle.pdf
         https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566
 _sslv2-drown: ERROR: Script execution failed (use -d to debug)
  ssl-dh-params:
    VULNERABLE:
    Anonymous Diffie-Hellman Key Exchange MitM Vulnerability
      State: VULNERABLE
         Transport Layer Security (TLS) services that use anonymous
         Diffie-Hellman key exchange only provide protection against passive eavesdropping, and are vulnerable to active man-in-the-middle attacks
         which could completely compromise the confidentiality and integrity
         of any data exchanged over the resulting session.
      Check results:
         ANONYMOUS DH GROUP 1
                Cipher Suite: TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA
                Modulus Type: Safe prime
                Modulus Source: Unknown/Custom-generated
                Modulus Length: 512
                Generator Length: 8
                Public Key Length: 512
      References:
         https://www.ietf.org/rfc/rfc2246.txt
    Transport Layer Security (TLS) Protocol DHE_EXPORT Ciphers Downgrade MitM (Logjam)
       State: VULNERABLE
       IDs: CVE:CVE-2015-4000 BID:74733
         The Transport Layer Security (TLS) protocol contains a flaw that is triggered when handling Diffie-Hellman key exchanges defined with
         the DHE_EXPORT cipher. This may allow a man-in-the-middle attacker to downgrade the security of a TLS session to 512-bit export-grade
         cryptography, which is significantly weaker, allowing the attacker
```

- Análisis de Resultados: Este comando ejecuta varios scripts de vulnerabilidad en servicios como FTP, MySQL, Apache y Tomcat.
- Documenta los resultados y prioriza los servicios vulnerables para mitigación.
 - El escaneo con --script vuln no solo reconfirmó la vulnerabilidad del FTP, sino que también identificó otras fallas y debilidades:

Servicio	Puerto	Vulnerabilidad Detectada	Riesgo y Priorización
FTP		ftp-vsftpd-backdoor (CVE-2011-	CRÍTICO (Prioridad 1):
(vsftpd	21	2523)	Acceso remoto de root .
2.3.4)			
		http-enum: Detección de	ALTO (Prioridad 3):
HTTP		posibles carpetas administrativas	Exposición de rutas sensibles
(Apache	80	(/admin/, /login/, etc.). http-	y riesgo de Denegación de
2.2.8)		slowloris-check: Posible DoS	Servicio.
		(CVE-2007-6750).	
		ssl-poodle (CVE-2014-3566).	ALTO (Prioridad 2): Falla de
SMTP	25		SSL 3.0 que permite la fuga de
			información cifrada (<i>plaintext</i>).
SMB (Samba)	445	smb-vuln-ms10-061 y smb-vuln-	MEDIO/ALTO: Indica que el
		regsvc-dos (fallos de ejecución	servicio SMB/NetBIOS está
		de <i>scripts</i>).	activo y expuesto, a menudo
			con fallas de seguridad
			conocidas.

Parte 3: Captura y Análisis del Tráfico de Red con Wireshark

3.1 Captura de Tráfico Generado por Escaneos de Nmap

- 1. Inicia Wireshark y selecciona la interfaz de red que conecta con Metasploitable 2.
- 2. Inicia la captura de tráfico antes de lanzar un nuevo escaneo de Nmap.
- 3. Detén la captura cuando el escaneo termine y guarda el archivo .pcap.
- Documenta los paquetes capturados durante el escaneo y explica el proceso de detección de puertos.

3.2 Filtrado y Análisis del Tráfico Capturado

- 1. Utiliza filtros para analizar el tráfico específico de cada servicio:
- Escaneo SYN: tcp.flags.syn == 1 && tcp.flags.ack == 0

```
—(kali⊛kali)-[~]
-$<mark>nmap -sS 192.168.1.147</mark>
Starting Nmap 7.95 ( https://nmap.org ) at 2025-10-22 16:46 EDT
Nmap scan report for 192.168.1.147
Host is up (0.0022s latency).
Not shown: 977 closed tcp ports (reset)
         STATE SERVICE
PORT
21/tcp
         open
                ftp
22/tcp
         open
                ssh
23/tcp
         open
                telnet
25/tcp
         open
                smtp
53/tcp
         open
                domain
80/tcp
         open
                http
         open
                rpcbind
111/tcp
139/tcp
         open
                netbios-ssn
445/tcp
                microsoft-ds
         open
512/tcp
         open
                exec
513/tcp
         open
                login
514/tcp open
                shell
1099/tcp open
                rmiregistry
1524/tcp open
                ingreslock
2049/tcp open
                nfs
2121/tcp open
                ccproxy-ftp
3306/tcp open
                mysql
5432/tcp open
                postgresql
5900/tcp open
                vnc
6000/tcp open
                X11
6667/tcp open
                irc
8009/tcp open ajp13
8180/tcp open unknown
MAC Address: 00:0C:29:3E:6D:BB (VMware)
Nmap done: 1 IP address (1 host up) scanned in 0.32 seconds
   -(kali⊛kali)-[~]
    П
```


Para ver los paquetes **SYN** que inician el escaneo, usamos el siguiente filtro:

tcp.flags.syn == 1 and tcp.flags.ack == 0

Identificación de Direcciones IP

o IP de Origen (Kali): 192.168.1.146

IP de Destino (Metasploitable 2): 192.168.1.147

Análisis de Patrones de Escaneo SYN (-sS)

El escaneo SYN es conocido como "semi-abierto" o stealth, ya que no completa la conexión TCP de tres vías. Se detecta de la siguiente manera:

Patrón Detectado	Significado en el Escaneo SYN	
192.168.1.146 (SYN) → 192.168.1.147 + 192.168.1.147 (SYN/ACK) → 192.168.1.146	Indica que el puerto está ABIERTO . El servidor responde con SYN/ACK, confirmando el servicio. Kali envía un RST inmediatamente después para no registrar la conexión por completo.	
192.168.1.146 (SYN) → 192.168.1.147 + 192.168.1.147 (RST/ACK) → 192.168.1.146	Indica que el puerto está CERRADO . El servidor rechaza inmediatamente la conexión con un paquete RST/ACK.	

Análisis de Patrones de Tráfico

Puerto Analizado	Evidencia en Wireshark (Captura)	Patrón de Paquetes Confirmado	Estado del Puerto
21 (FTP)	Muestra 3 paquetes en la secuencia	$SYN \to SYN/ACK \to RST$	ABIERTO
22 (SSH)	Muestra 3 paquetes en la secuencia	$SYN \to SYN/ACK \to RST$	ABIERTO
3306 (MySQL)	Muestra 3 paquetes en la secuencia	$SYN \to SYN/ACK \to RST$	ABIERTO

La secuencia de SYN → SYN/ACK → RST es la huella digital del escaneo SYN. El hecho de que se replique en los puertos 21, 22 y 3306 demuestra que todos están abiertos y que la prueba de la vulnerabilidad crítica (Puerto 21) se ejecutó sobre un servicio activo y escuchando.

Parte 4: Aplicación de Mitigaciones en Servicios Vulnerables

4.1 Análisis de Vulnerabilidades

Documenta cada vulnerabilidad identificada en los servicios de Metasploitable 2:

- FTP vulnerable (vsftpd 2.3.4): Acceso no autorizado por puerta trasera.
- ProFTPd con ejecución remota: Exploits permiten acceso de alto nivel.
- MySQL con acceso sin autenticación fuerte.
- SSH con acceso de root y credenciales débiles.

4.2 Aplicación de Soluciones

Aplica mitigaciones según los hallazgos.

- El servicio vsftpd versión 2.3.4 en el Puerto 21 es una vulnerabilidad CRÍTICA (CVE-2011-2523), ya que permite el acceso remoto de root sin autenticación.
- La solución inmediata para mitigar este riesgo en Metasploitable 2 es eliminar el paquete de software vsftpd.

Comandos a Ejecutar (En Metasploitable 2):

sudo netstat -ntp

Forzar la terminación del proceso FTP vulnerable:

sudo killall -9 vsftpd

Reiniciar el sistema para obligar al sistema operativo a detener el proceso vsftpd por completo, ya que fallaron los métodos de software:

sudo reboot

```
msfadmin@metasploitable:~$ sudo netstat -ntp
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address
                                                  Foreign Address
                                                                             State
PID/Program name
                    0 192.168.1.147:1099
                                                  192.168.1.146:52168
                                                                             CLOSE_WAIT
5157/rmiregistry
                    0 192.168.1.147:1099
                                                  192.168.1.146:51356
                                                                             CLOSE_WAIT
tcp
            0
5157/rmiregistry
                    0 192.168.1.147:1099
                                                  192.168.1.146:37912
                                                                             CLOSE_WAIT
tcp
5157/rmiregistry
msfadmin@metasploitable:~$
```

Comprobar:

```
msfadmin@metasploitable:~$ sudo netstat -ntp
Isudol password for msfadmin:
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
msfadmin@metasploitable:~$ _
```

Después del reinicio, el servicio FTP fue detenido.

```
-(kali⊛kali)-[~]
_$ nmap 192.168.1.147
Starting Nmap 7.95 ( https://nmap.org ) at 2025-10-22 17:49 EDT
Nmap scan report for 192.168.1.147
Host is up (0.00100s latency).
Not shown: 977 closed tcp ports (reset)
         STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp
         open telnet
25/tcp
         open
               smtp
53/tcp
               domain
         open
80/tcp
         open http
111/tcp
        open
               rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
512/tcp open
               exec
513/tcp open
               login
514/tcp open
               shell
1099/tcp open
               rmiregistry
1524/tcp open
               ingreslock
2049/tcp open
               nfs
2121/tcp open
               ccproxy-ftp
3306/tcp open
               mvsal
5432/tcp open
               postgresql
5900/tcp open
               vnc
6000/tcp open
               X11
6667/tcp open
               irc
8009/tcp open
               ajp13
8180/tcp open unknown
MAC Address: 00:0C:29:3E:6D:BB (VMware)
```

Fallo: El escaneo de nmap 192.168.1.147 en Kali sigue reportando el Puerto 21 como open.

Creamos un script para establecer reglas de firewall en Metasploitable 2 que bloqueen el acceso de la máquina (Kali Linux: 192.168.1.146) a los puertos más vulnerables(21, 22, 3306)

a. Nos conectamos por ssh:

```
    rosa@Cammie: ~

rosa@Cammie:~$ ssh -oHostKeyAlgorithms=+ssh-rsa -oPubkeyAcceptedAlgorithms=+ssh-rsa msfadmin@192.168.1.147
The authenticity of nost '192.168.1.147 (192.168.1.147)' can't be established.
RSA key fingerprint is SHA256:BQHm5EoHX9GCiOLuVscegPXLQOsuPs+E9d/rrJB84rk.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.1.147' (RSA) to the list of known hosts.
msfadmin@192.168.1.147's password:
Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686
The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.
To access official Ubuntu documentation, please visit:
http://help.ubuntu.com/
No mail.
Last login: Wed Oct 22 18:05:54 2025
msfadmin@metasploitable:~$
```

b. Crear y editar el script con nano

```
msfadmin@metasploitable:~$ nano iptables-rules.sh
Error opening terminal: xterm-256color.
msfadmin@metasploitable:~$ export TERM=xterm
msfadmin@metasploitable:~$ nano iptables-rules.sh
msfadmin@metasploitable:~$
```

```
☐ rosa@Cammie: ~
 GNU nano 2.0.7
                                       File: iptables-rules.sh
#!/bin/bash
# 1. Borrar todas las reglas existentes para limpieza
iptables -F
iptables -X
# 2. Bloquear NUEVAS conexiones TCP del atacante (Kali: 192.168.1.146)
# Bloquea el Puerto 21 (FTP - Riesgo Crítico)
iptables -A INPUT -p tcp -s 192.168.1.146 --dport 21 -j DROP
# Bloquea el Puerto 22 (SSH)
iptables -A INPUT -p tcp -s 192.168.1.146 --dport 22 -j DROP
# Bloquea el Puerto 3306 (MySQL)
iptables -A INPUT -p tcp -s 192.168.1.146 --dport 3306 -j DROP
# 3. Muestra las reglas de iptables aplicadas para verificación
iptables -L -n -v
^G Get Help
^X Exit
                   ^O WriteOut
                                     ^R Read File
                                                                          ^K Cut Text
                                                                                             ^C Cur Pos
                                                          Prev Page
  Exit
                     Justify
                                        Where Is
                                                          Next Page
                                                                             UnCut Text
                                                                                               To Spell
```

Hacer el script ejecutable

```
msfadmin@metasploitable:~$ chmod +x iptables-rules.sh
msfadmin@metasploitable:~$ ls -l iptables-rules.sh
-rwxr-xr-x 1 msfadmin msfadmin 544 2025-10-22 18:14 iptables-rules.sh
g msfadmin@metasploitable:~$
```

Ejecutar el script (aplicar reglas)

```
msfadmin@metasploitable:~$ sudo ./iptables-rules.sh
[sudo] password for msfadmin:
Chain INPUT (policy ACCEPT 383 packets, 67261 bytes)
pkts bytes target
                       prot opt in
                                                                    destination
                                       out
                                               source
    0
          0 DROP
                                               192.168.1.146
                                                                    0.0.0.0/0
                                                                                         tcp dpt:21
                       tcp
                                                                    0.0.0.0/0
    0
          0 DROP
                                               192.168.1.146
                                                                                         tcp dpt:22
                       tcp
                               *
          0 DROP
                                               192.168.1.146
                                                                    0.0.0.0/0
                                                                                         tcp dpt:3306
                       tcp
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target
                      prot opt in
                                       out
                                                                    destination
                                               source
Chain OUTPUT (policy ACCEPT 369 packets, 70613 bytes)
pkts bytes target
                      prot opt in
                                                                     destination
msfadmin@metasploitable:~$
```

```
msfadmin@metasploitable:~$ sudo iptables -L INPUT -n -v --line-numbers
Chain INPUT (policy ACCEPT 399 packets, 69993 bytes)
       pkts bytes target
                                 prot opt in
                                                    out
                                                                                       destination
                                                              source
num
                 0 DROP
                                                              192.168.1.146
          0
                                 tcp -- *
                                                                                       0.0.0.0/0
                                                                                                               tcp dpt:21
                                                              192.168.1.146
2
          0
                  0 DROP
                                 tcp
                                                                                       0.0.0.0/0
                                                                                                               tcp dpt:22
3
          0
                  0 DROP
                                 tcp
                                                              192.168.1.146
                                                                                       0.0.0.0/0
                                                                                                               tcp dpt:3306
msfadmin@metasploitable:~$
```

Subir el script desde la máquina anfitrión

```
msfadmin@metasploitable:~$ scp iptables-rules.sh msfadmin@192.168.1.147:/home/msfadmin/
The authenticity of host '192.168.1.147 (192.168.1.147)' can't be established.
RSA key fingerprint is 56:56:24:0f:21:1d:de:a7:2b:ae:61:b1:24:3d:e8:f3.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.1.147' (RSA) to the list of known hosts.
msfadmin@192.168.1.147's password:
iptables-rules.sh
100% 544 0.5KB/s 00:00
msfadmin@metasploitable:~$
```

Luego, en la VM:

```
msfadmin@metasploitable:~$ chmod +x /home/msfadmin/iptables-rules.sh
msfadmin@metasploitable:~$ ls -l /home/msfadmin/iptables-rules.sh
-rwxr-xr-x 1 msfadmin msfadmin 544 2025-10-22 18:19 /home/msfadmin/iptables-rule
s.sh
msfadmin@metasploitable:~$ _
```

Ejecutamos el escaneo nmap

```
Session Actions Edit View Help
[ (kali⊛ kali)-[~]

$ nmap 192.168.1.147
Starting Nmap 7.95 ( https://nmap.org ) at 2025-10-22 18:26 EDT
Nmap scan report for 192.168.1.147
Host is up (0.0038s latency).
Not shown: 977 closed tcp ports (reset)
                   SERVICE
21/tcp
        filtered ftp
22/tcp
         filtered ssh
23/tcp
                    telnet
         open
25/tcp
         open
                   smtp
53/tcp
                   domain
         open
80/tcp
                   http
         open
111/tcp
                   rpcbind
         open
139/tcp
                   netbios-ssn
         open
445/tcp
                   microsoft-ds
         open
512/tcp
         open
                   exec
         open
                   login
514/tcp open
                   shell
1099/tcp open
                   rmiregistry
1524/tcp open
                   ingreslock
2049/tcp open
2121/tcp open
                   nfs
                   ccproxy-ftp
3306/tcp filtered mysql
5432/tcp open
                   postgresql
5900/tcp open
6000/tcp open
6667/tcp open
8009/tcp open
                   ajp13
8180/tcp open
                   unknown
MAC Address: 00:0C:29:3E:6D:BB (VMware)
Nmap done: 1 IP address (1 host up) scanned in 1.43 seconds
  -(kali⊛kali)-[~]
```

- o Puerto 21 (FTP): Estado cambió de open a filtered.
- o Puerto 22 (SSH): Estado cambió de open a filtered.
- o Puerto 3306 (MySQL): Estado cambió de open a filtered.

El estado **filtered** confirma que el tráfico saliente de la máquina atacante (Kali) está siendo descartado **(DROP)** por las reglas de iptables en Metasploitable 2.

Se completó exitosamente la mitigación de riesgos al bloquear el acceso a los puertos críticos y vulnerables.