University of Salzburg Lecturer: Roland Kwitt

Machine Learning (911.236)

Exercise sheet A

Background (Probability, inequalities, ...)

Exercise 1. 5 P.

Let X be a random variable that captures the sum of rolling a fair dice 10 times. Use Chebychev's inequality to bound

$$\mathbb{P}[|X - \mu| > 10]$$

Hint: Note that all dice rolls are independent. Compute the expectation of |X| to obtain μ , then the variance and go on from there (this is really just a calculus exercise)!

Exercise 2. 5 P.

Consider the following problem with (binary) inputs $x_i \in \{0, 1\}$, i = 1, ..., 4 and (binary) output $y \in \{0, 1\}$:

x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	У
1	0	0	1	0
1	1	0	1	1
1	0	1	1	1
1	0	0	0	0
:	÷	:	:	:

Lets say our learning objective is to learn a function

$$y = f(x_1, x_2, x_3, x_4)$$

which maps our four boolean inputs to one boolean output y. To get a feeling for the (size of the) problem, we want to know how many such functions exist? When you have the solution, think about what happens for n inputs x_1, \ldots, x_n ? What do you think is the big problem here? Plot the number of functions as a function of the number of inputs n.

PAC Learning

Exercise 3. 5 P.

Let \mathcal{H} be a class of binary classifiers over a domain \mathcal{X} , i.e., functions of the form $h: \mathcal{X} \to \{0,1\}$. Let \mathcal{D} be an unknown distribution over \mathcal{X} and let f be the target hypothesis in \mathcal{H} (i.e., the true labeling function). Fix some $h \in \mathcal{H}$. Show that the expected value of $L_S(h)$ over the choice of $S|_X = (x_1, \dots, x_m)$, with |S| = m, equals $L_{(\mathcal{D}, f)}(h)$. In other words, show that

$$\mathbb{E}_{S|_{X} \sim \mathcal{D}^{m}}[L_{S}(h)] = L_{(\mathcal{D},f)}(h) .$$

Hint: Use the linearity of the expectation and the fact that the samples x_i are i.i.d. Start with:

$$\mathbb{E}_{S|_{x} \sim \mathcal{D}^{m}}[L_{S}(h)] = \mathbb{E}_{S|_{x} \sim \mathcal{D}^{m}}\left[\frac{1}{m} \sum_{i=1}^{m} 1_{h(x_{i}) \neq f(x_{i})}\right]$$

Exercise 4. 10 P.

Let \mathcal{H} be a hypothesis class of binary classifiers. Show that if \mathcal{H} is agnostic PAC learnable, then \mathcal{H} is PAC learnable as well. Furthermore, if A is a successful agnostic PAC learner for \mathcal{H} , then A is also a successful PAC learner for \mathcal{H} .

Hint: In agnostic PAC learning, \mathcal{D} is a distribution over $\mathcal{X} \times \mathcal{Y}$. In PAC learning (i.e., we assume realizability), \mathcal{D} is what? Now, squeeze this into the agnostic PAC learning framework.

Exercise 5. 10 P.

Let $\mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{0, 1\}$ and consider hypothesis in \mathcal{H} of the form

$$h_r(\mathbf{x}) = 1_{\|\mathbf{x}\| \le r}(\mathbf{x})$$

for some $r \in \mathbb{R}_+$ (i.e., our hypotheses are *concentric circles*). Show that this class is PAC-learnable from training data of size

$$m \ge \left(\frac{1}{\epsilon}\right) \log \left(\frac{1}{\delta}\right)$$
 .

under the assumption of realizibility.

Total #points: 35 P.