Chapter 1: Analysis of Large Graphs: TrustRank and WebSpam

崔金华

邮箱: jhcui@hust.edu.cn

主页: https://csjhcui.github.io/

办公地址: 东湖广场柏景阁1单元1568 室

Some Problems with PageRank

- Measures generic popularity of a page
 - Will ignore/miss topic-specific authorities
 - Solution: Topic-Specific PageRank
- Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank

Topic-Specific PageRank

Topic-Specific PageRank

- Instead of generic popularity, can we measure popularity within a topic?
- Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history"
- Allows search queries to be answered based on interests of the user
 - **Example:** Query "Trojan" wants different pages depending on whether you are interested in sports, history and computer security

Topic-Specific PageRank

- Random walker has a small probability of teleporting at any step
- Teleport can go to:
 - Standard PageRank: Any page with equal probability
 - To avoid dead-end and spider-trap problems
 - Topic Specific PageRank: A topic-specific set of "relevant" pages (teleport set)
- Idea: Bias the random walk
 - When walker teleports, she pick a page from a set S
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic/query
 - For each teleport set S, we get a different vector r_S

Matrix Formulation

To make this work all we need is to update the teleportation part of the PageRank formulation:

$$A_{ij} = eta M_{ij} + (1 - eta)/|S| \quad \text{if } i \in S$$
 $\beta M_{ij} + 0 \quad \text{otherwise}$
 $A = \beta M + (1 - \beta) \left[\frac{1}{N}\right]_{N \times N}$

- A is stochastic!
- We weighted all pages in the teleport set S equally
 - Could also assign different weights to pages!
- Compute as for regular PageRank:
 - Multiply by M, then add a vector
 - Maintains sparseness

Example: Topic-Specific PageRank

Suppose $S = \{1\}, \beta = 0.8$

Node	Iteration			
	0	1	2	stable
1	0.25	0.4	0.28	0.294
2	0.25	0.1	0.16	0.118
3	0.25	0.3	0.32	0.327
4	0.25	0.2	0.24	0.261

 $S=\{1\}, \beta=0.90:$

r=[0.17, 0.07, 0.40, 0.36] r=[0.17, 0.13, 0.38, 0.30]

 $S=\{1\}$, $\beta=0.8$:

r=[0.29, 0.11, 0.32, 0.26] **r**=[0.26, 0.20, 0.29, 0.23]

 $S=\{1\}, \beta=0.70$:

 $S=\{1,2,3,4\}, \beta=0.8$:

r=[0.13, 0.10, 0.39, 0.36]

 $S=\{1,2,3\}$, $\beta=0.8$:

 $S=\{1,2\}$, $\beta=0.8$:

 $S=\{1\}$, $\beta=0.8$:

r=[0.39, 0.14, 0.27, 0.19] r=[0.29, 0.11, 0.32, 0.26]

华中科技大学人机物系统与安全实验室