Interface Control Document - AT30TSE75# Temperature Sensor (Content Exam Extra Credit)

10/17/2024 Reese Ford

Specific Order of Signals

 Set Pointer to Configuration Register AND Write to the Configuration Register, setting the Temperature Resolution to 10-bits

Figure 6-4. Write to Configuration Register

- a.
- b. 10011110 00000001 00100000
- 2. Convert Temperature to 10-bit register value
 - a. R = 0.25
 - b. $B_{temp} = \frac{D_{tempc}}{R}$
 - c. Convert B_{temp} to binary
 - d. T_{LOW} or $T_{HIGH} = B_{15}$: B_6
 - e. $B_5: B_0 = 0$
- 3. Set T_{LOW} to 24.75° C using Step 3

Figure 6-8. Write to T_{LOW} or T_{HIGH} Limit Register

- a.
- b. 10010000 00000010 00011000 11000000
- 4. Set T_{HIGH} to 30.25°C using Step 3

Figure 6-8. Write to T_{LOW} or T_{HIGH} Limit Register

- a.
- b. 10010000 00000011 00011110 01000000

Question(s) from Problem

Pin EXT_9 on the IO board is for the Temp Alarm Signal, so setting up an EIC interrupt for EXT2_PIN_9 will allow us to detect a temperature "fault". If the pin goes high, that means the temperature has either exceeded the T_{HIGH} temp or fallen below the T_{LOW} temp. When the pin goes high, it will trigger an EIC interrupt.