Cost Minimization

Econ 50 | Lecture 13 | February 18, 2016

Elasticity of Substitution

$$\sigma = \frac{\% \text{ change in capital-labor ratio}}{\% \text{ change in } MRTS_{L,K}}$$

$$= \frac{1}{\frac{\% \text{ change in } MRTS_{L,K}}{\% \text{ change in capital-labor ratio}}}$$

Calculating elasticity of MRTS with respect to K/L

Lecture

Group Work

- Cost Minimization
- Expansion Paths
- Deriving Short-Run and Long-Run Total Cost Curves

- Calculate short-run and long-run cost curves
- Understanding what the "lower envelope" means

Lecture

Group Work

- Cost Minimization
- Expansion Paths
- Deriving Short-Run and Long-Run Total Cost Curves

- Calculate short-run and long-run cost curves
- Understanding what the "lower envelope" means

Producer Theory, Part I: Cost Minimization

exogenous variables

endogenous variables

Part I Cost Minimization

"New" Graphical Element: Isocost Line

- Given input prices, the set of all combinations of L and K that cost the same amount
- E.g., the isocost line for 10 is the set of all combinations of L and K such that wL + rK = 10.
- Like a budget line, but you're not "given" an income

Consumer Theory

Producer Theory

Hicksian Demand

"Given prices P_x and P_y , what combination of X and Y gives me utility U at the lowest cost?"

Conditional Demands

"Given prices **w** and **r**, what combination of **L** and **K** can produce quantity **q** at the lowest cost?"

Conditional Demands and Total Cost

$$TC(w, r, q) = wL^*(w, r, q) + rK^*(w, r, q)$$

Lagrange Method

$$\min_{L,K} wL + rK$$
s.t. $f(L,K) = q$

$$\mathcal{L}(L, K, \lambda) = wL + rK + \lambda(q - f(K, L))$$

1. Sketch an isoquant for q = 10.

2. Calculate the **MRTS**

3. Derive the **conditional demands** for labor and capital: **L*(w,r,q)**, **K*(w,r,q)**

4. Find the **total cost** of producing **q** units, for general **w** and **r**

5. Confirm that when $\mathbf{w} = \mathbf{9}$ and $\mathbf{r} = \mathbf{16}$, we obtain $\mathbf{L}^* = \mathbf{133}$, $\mathbf{K}^* = \mathbf{75}$, $\mathbf{TC} = \mathbf{\$2,400}$ if we want to produce $\mathbf{q} = \mathbf{10}$

Part II Expansion Path

Consumer Theory

Producer Theory

Income-Consumption Curve

"Given prices P_x and P_y , what combinations of X and Y would I buy if I had various different incomes?"

Expansion Path

"Given prices **w** and **r**, what combination of **L** and **K** would we employ to produce various different quantities?"

Sidebar: The Long Run and the Short Run

Expansion Path in the Long Run and Short Run

- "Long Run" from an input selection perspective: can vary K and L
- "Short Run" from an input selection perspective: K is fixed

Part III Long Run and Short Run Total Cost

Long-Run Total Cost

$$TC(w, r, q) = wL^*(w, r, q) + rK^*(w, r, q)$$

Short-Run Total Cost

$$TC(w, r, q, \overline{K}) = wL(q|\overline{K}) + r\overline{K}$$

6. Find the **short run total cost** of producing **q** units, for general **w** and **r**