Kurs wxMaxima, Teil 08:

Differentialrechnung:

Verwendete Kursinhalte:

- 2D-Graphik: Funktionen Kurven, Punkte Strecken
- Diff./Int.-Rechnung: Differenzieren

Grundlegende Bemerkungen: Es ist jede Inputzeile zu dokumentieren:

- Kommentar 1: Mathematische Vorgangsweise (was soll passieren)
- Kommentar 2: Vorgangsweise in wxMaxima (Syntax, Bemerkungen,..) Zusätzlich sind die Ergebnisse der Aufgaben zu interpretieren!
- Volumen eines Kegelstumpfes nebenstehende Formal gegeben. Berechne folgenden Ableitungen nach den auftretenden Variablen: $\partial_h V$, $\partial_{r1} V$, $\partial_{r2} V$

$$V = \frac{\pi \cdot h}{3} \left(r_1^2 + r_1 r_2 + r_2^2 \right)$$

Erklären Sie die Unterschiede zwischen den einzelnen Ableitungen und beschreiben Sie das Verhalten jener Variablen, nach denen gerade nicht abgeleitet wird.

2 Spiel mit Exponenten: Gesucht ist jeweils die erste Ableitung:

$$a) \quad f(t) = (\cos(t))^4$$

c)
$$h(t) = cos(t^4)$$

b)
$$g(t) = \cos^4(t)$$

c)
$$h(t) = cos(t^4)$$

d) $k(t) = cos^4(t^4)$

- 3 Gegeben ist die Funktion $y(x) = -0.1x^3 + 5.061x^2 73x + 202.11$ im Intervall [-5,5]
 - a) Zeige mit Hilfe einer Tabelle, dass im gegebenen Intervall ein Vorzeichenwechsel der Funktionswerte erfolgt
 - b) Berechne eine Nullstelle dieser Funktion, indem Du das Newton-Verfahren anwendest. Ein möglicher Startwert kann der Tabelle aus Punkt a.) entnommen werden.
 - c) Zur Berechnung weiterer Nullstellen, verwende Deine Kenntnisse über den Fundamentalsatz der Algebra
- Diskutiere die Funktion $y(x) = \frac{\cos(x)}{x}$ im Intervall $(0, 2\pi]$:

Ermittle Definitionsmenge, Polstellen, Nullstellen, Extremwerte, Wendepunkte, Wendetangenten und erstelle einen Graphen, in den Du alle berechneten Größen einträgst.

5 Wie muss bei nebenstehender Funktion die Zahl c gewählt werden, wenn die Funktion zwei verschiedene Wendepunkte besitzen soll?

$$f(x) = \frac{x^4}{24} - \frac{x^3}{6} + c \cdot x^2$$

- 6 Eine Polynomfunktion vierten Grades geht durch die Punkte $P_1(-1|9)$ und $P_2(1|1)$. Sie berührt die x-Achse an der Stelle $x_3 = 2$. P_2 ist ein relatives Extremum.
 - a) Bestimmen Sie die Funktionsgleichung der Polynomfunktion.
 - b) Diskutieren Sie die gefundene Polynomfunktion und geben Sie Nullstellen, Extremwerte, Wendepunkte und Wendetangenten an.
 - c) Erstellen Sie einen Graphen der Polynomfunktion und tragen Sie in diesen Graphen die gefundenen Nullstellen, Extremwerte und Wendepunkte und Wendetangenten ein. Tragen Sie in den Graphen außerdem die Angabe ein (P_1, P_2) .