Wszystkie liczby w JavaScript to reprezentacje zmiennoprzecinkowe zapisane w systemie IEEE 754 64-bit (tzw. liczby podwójnej precyzji)

Reprezentacja zmiennoprzecinkowa IEEE 754

Reprezentacja zmiennoprzecinkowa IEEE 754

1bit	11 bitów			52 bity	
znak	wykładnik			część ułamkowa (mantysa)	
2 ⁶³	2 ⁶²	2 ⁵²	2 ⁵¹		2 ⁰

Zapiszmy liczbę:

1 część ułamkowa × 2 p

część ułamkową zakodujemy w mantysy

$$16.7 = 1.04375 \times 2^4$$

Zapis liczby: 1. część utamkowa x 2^p

tutaj zakodujemy wykładnik, pamiętając jednak, iż 0 = 1023

$$16.7 = 1.04375 \times 2^{4}$$

Zapis liczby: 1. część utamkowa x 2^p

```
16.7 : 2[1] = 8.35
  8.35:2[2] = 4.175
 4.175 : 2[3] = 2.0875
2.0875 : 2[4] = 1.04375
  16.7 = 1.04375 \times 2^4
```

Zapis liczby: 1 część ułamkowa x 2^p

Alternatywny sposób wyznaczenia wykładnika:

$$\log_2(16.7) = 4.06$$

$$16.7 = 1.04375 \times 2^4$$

Zapis liczby: 1. część ułamkowa x 2^p

znak

bit znaku (sign bit)

0 = liczba dodatnia

1 = liczba ujemna

 $16.7 = 1.04375 \times 2^4$

Zapis liczby: 1. część utamkowa x 2

1024 512 256 128 64 32 32 8 16

wykładnik u nas równy: 4

1023 wykładnik zerowy

1024 wykładnik = 1

1025 wykładnik = 2

1026 wykładnik = 3

1027 wykładnik = 4

 $16.7 = 1.04375 \times 2^4$

Zapis liczby: 1. część utamkowa x 2

10000000011

część ułamkową zakodujemy w mantysy

o największej wadze mnożymy część ułamkową ×2

$$16.7 = 1.04375 \times 2^4$$

Zapis liczby: 1 część utamkowa

Część ułamkowa	Wartość x 2	Przed przecinkiem
0.04375	0.0875	0
0.0875	0.175	0
0.175	0.35	0
0.35	0.7	0
0.7	1.4	1

Część ułamkowa		Wartość x 2	Przed przecinkiem
	-> 0.4	0.8	0
	0.8	1.6	1
	0.6	1.2	1
	0.2	0.4	0
	0.4		

 $16.7 = 1.04375 \times 2^4$

Zapis liczby: 1 część utamkowa

Ostatecznie liczba 16.7 przyjęła postać: 0100000001100001011001100110011001100110011001100110011

$$16.7 = 1.04375 \times 2^4$$

Zapis liczby: 1 . część utamkowa

Jak wielką liczbą całkowitą możemy się posługiwać?

W języku C++ maksymalny czterobajtowy int (ze znakiem) ma następującą wartość:

2147483647

Natomiast w JavaScript liczby całkowite to reprezentacje zmiennoprzecinkowe zapisane w standardzie IEEE 754

Czy w przypadku liczb całkowitych także wystąpią niedokładności (na przykład na 17 miejscu po przecinku)?

Nie! Liczby całkowite aż do 2⁵³ są reprezentowane dokładnie!

Kiedy tylko można, używa się tzw. natywnych intów, to znaczy rodzimych dla danej architektury

Maksymalny int obsługiwany w JavaScript

$$2^{53} = 9007199254740992$$

to taka liczba całkowita, która sama jest poprawnie reprezentowana w JS (IEEE 754), jak również każda liczba mniejsza od niej jest poprawnie obsługiwana

Dlaczego największy obsługiwany int to 2⁵³?

Mantysa zajmuje 52 bity, więc może 2⁵² albo 2⁵³-1 (następna waga minus jeden)

Nie! Reprezentacja zmiennoprzecinkowa IEEE 754 nie składa się przecież tylko z mantysy – to nasz umysł szuka prostej formuły

LANIE ZAOKRAG

- 1) Math.round() zaokrąglenie do najbliższej wartości 0..4 zaokrąglenie w dół, 5..9 zaokrąglenie w górę
- 2) Math.floor() zaokrąglenie zawsze w dół floor = ang. podłoga
- 3) Math.ceil() zaokrąglenie zawsze w górę ceiling = ang. sufit
- 4) Math.trunc() usunięcie części ułamkowej truncate = ang. okroić, przyciąć

Sposoby zaokrąglania do 2 miejsc po przecinku

- 1) Z użyciem funkcji round()
 - x = Math.round(x * 100) / 100;
- 2) Z użyciem funkcji toFixed()
 - x = x.toFixed(2);
- 3) Z użyciem własnego prototypu funkcji

```
Number.prototype.round = function(miejsc)
{
    return +(Math.round(this + "e+" + miejsc) + "e-" + miejsc);
}
X = X.round(2);
```


atraktor Lorenza

Efekt motyla (ang. butterfly effect) - efekt wrażliwości rozwiązań na małe zaburzenie parametrów (powodujące złożone przyczyny). Nazwa wzięta się od kształtu tzw. atraktora Lorentza albo od anegdoty o trzepocie skrzydeł motyla, wywołującego burzę piaskową

Obiekt Math - wybrane stałe matematyczne

Math.E stała Eulera 2.718281828459045

Math.Pl wartość liczby TT 3.141592653589793

Math.SQRT2 wartość √2 1.4142135623730951

Math.LN2 watość logarytmu ln(2) 0.6931471805599453

Obiekt Math - funkcje trygonometryczne

Math.sin(x) sinus z liczby x (podanej w radianach)
Math.asin(x) arcus sinus z liczby x (podanej w radianach)

Math.cos(x) cosinus z liczby x (podanej w radianach)
Math.acos(x) arcus cosinus z liczby x (podanej w radianach)

Math.tan(x) tangens z liczby x (podanej w radianach)
Math.atan(x) arcus tangens z liczby x (podanej w radianach)