L12 practice problems

- 1. Given the following input waveform and threshold voltages VT+ and VT-, sketch the output waveforms for each Schmitt-Trigger device below:
 - (a) buffer
 - (b) inverter

Page 1 ©2021 NTU

2. Implement the given truth table using the following programmable logic device. Indicate the inputs, outputs and programmed connections clearly on the PLA diagram.

(Hint: use Karnaugh map to first obtain a minimum-cost SOP Boolean expression for x and for y)

Inputs				Outputs	
а	b	С	d	Х	у
0	0	0	0	1	1
0	0	0	1	1	0
0	0	1	0	1	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	1	1
1	0	0	1	0	1
1	0	1	0	1	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	1	0

Figure 6-22

Compact representation of a 4×3 PLA with six product terms.

Page 2 ©2021 NTU

3. A digital system uses a 16-bit fixed point representation for unsigned numbers, with 8 bits allocated to the integer portion and 8 bits allocated to the fractional portion.

The 16-bit data format (in 4-bit groups for easy reading) is:

XXXX XXXX YYYY YYYY

where xxxx xxxx is the 8-bit integer portion, and yyyy yyyy is the 8-bit fractional portion.

- (a) What is the smallest non-zero binary value that can be represented in this system? What is this value in decimal?
- (b) What is the largest binary value that can be represented in this system? What is this value in decimal?
- (c) What is the 16-bit representation of the decimal value 8.7? Is this an exact representation?

Page 3 ©2021 NTU