1. Pont, Kör

Valósítsuk meg a pont típus, mely a síkbeli koordináta-rendszer pontjainak a kezelésére lesz alkalmas! Implementáljuk a pont koordinátáinak megváltoztató, azt lekérdező valamint a kiíró műveleteket.

Valósítsunk meg egy kör típust, amely használja a pont típust! Implementáljuk a következő műveleteket: kiírása, kör területének számolása, adott pontnak a középponttól mért távolsága ill. annak eldöntése, hogy egy adott pont rajta van-e a körön.

Megoldás:

Pont típus

P	
(Síkbeli) Pont	$A = (p: Pont, xI: \mathbb{R})$ $xI:=getx()$
	$A = (p: Pont, yI: \mathbb{R})$
	<i>y1</i> :=gety()
	$A = (p: Pont, xI: \mathbb{R})$
	setx(x1)
	$A = (p: Pont, yI: \mathbb{R})$
	sety(<i>y1</i>)
x,y :ℝ	x1:=p.x
	<i>y1:=p.y</i>
	p.x:=x1
	<i>p.y</i> :=y1

Kör típus

kör	$A = (p: Pont, k: K\"{o}r, h: \mathbb{R})$ h:= tavolsag(p)
	m tavoloug(p)
	$A = (k: K\"{or}, t: \mathbb{R})$ $t := ter\"{u}let()$
	$A = (k: \text{K\"or}, p: \text{Pont}, l: \mathbb{L})$ $l:= \text{benne_van_e}(p)$
kp : Pont, r : \mathbb{R}	$h := \sqrt{(k.kp.x - p.x)^2 + (k.kp.y - p.y)^2}$
(I: <i>r</i> >0)	$t:=\pi*k.r^2$
	l:=k.tavolsag(x) <k.r< td=""></k.r<>

Osztály:

	Pont
-x: ℝ	
-y: ℝ	
+ getx(): \mathbb{R}	
+gety(): ℝ	
$+\text{setx}(x1:\mathbb{R})$	
$+$ sety($y1$: \mathbb{R})	

Kör		
-kp: Pont		
- r: ℝ		
+távolság(p:Pont): ℝ		
+terület():ℝ		
+benne_van_e(p:Pont): $\mathbb L$		

Feladat típus használatára:

Adott egy pontokat tartalmazó vektor, és egy kör. A vektornak van-e olyan eleme, amely a körön belül helyezkedik el? Ha igen, add meg az első ilyen pontot!

Megoldás: Keresés tétel

Specifikáció: A = (p: Pontⁿ, k: Kör, l: \mathbb{L} , ind: : \mathbb{Z}) Ef = (p=p' \wedge k=k') $1, \text{ind} = \underbrace{Search}_{i=1}^{n} k.benne_van_e(p_i)$ UF=(EF \wedge ()) Algoritmus:

$$i,l := 1$$
, false $i:\mathbb{Z}$
 $i <= n \land \neg (l)$
 $l, ind:=k.$ benne_van_e(p_i), i
 $i:= i+1$