Отчет о выполнении лабораторной работы 4.3.2 Дифракция света на ультразвуковой волне в жидкости (вертикальная щель)

Выполнил: Голубович Тимур, группа Б01-108 13.04.2023

Цель работы

Изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

Оборудование и приборы

Оптическая скамья; осветитель; два длиннофокусных объектива; кювета с жидкостью; кварцевый излучатель с микрометрическим винтом; генератор звуковой частоты; линза; вертикальная нить на рейтере; микроскоп.

Теоретическое введение

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0 (1 + m \cos \Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m\ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\varphi = knL = \varphi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1.

Рис. 1: Дифракция световых волн на акустической решетке

Зная положение дифракционных максимумов, легко определить длину ультразвуковой волны, учитывая малость θ : $\sin\theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m$$

Скорость ультразвуковых волн в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu$$

Экспериментальная установка

Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2: Схема для наблюдения дифракции на акустической решетке

Фокусное расстояние объектива O_2 : F=30 см, цена деления винта микроскопа – 4 мкм, погрешность измерений примем равной $\sigma=1$ деление, или 4 мкм. Полоса пропускания фильтра $\lambda=6400\pm200$ Å.

Ход работы

І. Определение скорости ультразвука по дифракционной картине

- 1. Соберем схему согласно рисунку. Отцентрируем систему и установим ширину щели равной 25 мкм.
- 2. Получим дифракционную картину.

Перемещая излучатель с помощью лимба, оценим по порядку величины длину УЗ волны как удвоенное расстояние между наиболее четкими картинами: $\Lambda=2\cdot 43$ дел $\cdot 10\frac{\text{мкм}}{\text{дел}}=0.86$ мм. Т. к. измерения проведены при $\nu=1.81$ МГц, то скорость звука $c=\Lambda\nu=1560\frac{\text{м}}{\text{c}}$.

3. Определим положения дифракционных полос. С помощью перекрестия и микрометрического винта, установленного на выходе прибора, определим координату X каждой светлой полосы в делениях винта.

Проделаем данную операцию для четырех частот. Результаты занесем в таблицу 1. Результаты заносим в таблицу 1:

m x_m , дел $ u=1.192~\mathrm{M}\Gamma$ ц	1	x_m , дел 1.526 МГц	1		1	x_m , дел $3.467 \text{ M}\Gamma$ ц
-2 -77 -1 -36 0 0 1 37 2 79	-3 -2 -1 0 1 2 3	-153 -98 -46 0 48 100 155	-3 -2 -1 0 1 2 3	-184 -115 -55 0 57 116 185	-1 0 1	-101 0 102

Таблица 1: Зависимость X(m) для 4 частот

4. Построим на одном графике 1 X = X(m) для каждой частоты.

Рис. 3: Зависимость X(m) для разных частот

5. Рассчитаем длину УЗ-волны и скорость звука для каждой частоты.

$$\Lambda = \frac{mf\lambda}{X_m} \qquad v = \Lambda \nu \tag{4}$$

ν , М Γ ц	к, дел	$C, \frac{M}{C}$
1.19	38.50	486.130
1.53	50.50	1450.455
1.81	60.04	1447.938
3.47	101.50	1639.567

Рис. 4: Зависимость c от ν

Как видно, результаты достаточно близки друг к другу и почти совпадают с табличными значениями: $v=1500~{\rm m/c}.$

II. Определение скорости ультразвука методом темного поля

1. Для перехода к методу темного поля отодвинем микроскоп от щели и разместим в промежутке между ними дополнительную линзу.

Поднимем излучатель над кюветой и опустим в воду квадратную сетку. Отцентрируем систему, чтобы сетку было четко видно в микроскопе. Рассчитаем цену деления в этом эксперименте, зная, что размер квадратика сетки 1 мм.

Получаем $0.14 \frac{\text{мм}}{\text{дел}}$

- 2. Установим ширину щели 25 мкм. Уберем калибровочную сетки и опустим излучатель. Постараемся увидеть звуковую решетку.
- 3. Закроем нулевой дифракционный максимум проволочкой. Поле зрения микроскопа затемняется.
- 4. Меняя частоту, будем наблюдать акустическую решетку.
- 5. Зафиксируем с помощью окулярной шкалы микроскопа координаты первой и последней из хорошо видимых темных полос и количество светлых промежутков между ними. Проделаем это для 4 разных частот. Результаты пишем в таблицу 3.

и МГн	Координата	Координата	Количество
ν , ΜΓц	верхней полосы	нижней полосы	светлых полос
1.006	60	0.0	12
1.190	68	0.0	20
1.370	53	0.1	14
1.650	67	0.0	20

Таблица 2: Результаты

6. Для каждой частоты рассчитаем длину Λ УЗ-волны. Посчитанные значения заносим в таблицу 4.

ν , М Γ ц	Λ , mm
1.0056	1.412
1.1900	1.190
1.3700	1.060
1.6500	0.938

Таблица 3: Зависимость длины волны от частоты

7. Построим график зависимости $\Lambda(1/\nu)$.

Рис. 5: График зависимости $\Lambda(1/\nu)$

По наклону определим скорость ультразвука.

$$v = \Lambda \nu = k = (1.46 \pm 0.09) \text{ MM} \cdot \text{M}\Gamma \text{II} = (1460 \pm 90 \text{ M/c}).$$

Значение близко к тому, что было найдено ранее. Вдобавок в пределах погрешностей оно совпадает с табличным.

Вывод

В данной работе мы изучили дифракцию света на синусоидальной акустической решетке и пронаблюдали фазовую решетку методом темного поля. Помимо этого было определено значение скорости ультразвука в воде: $(1460\pm90)~\text{м/c}$, что достаточно близко к табличному значению в 1500~m/c и в пределах погрешности вовсе совпадает. Присутствуют ошибки как систематические, так и случайные. Больший вклад вносят последние. Однако общая ошибка составляет не более 9%, что является хорошим результатом. Все эти ошибки связаны с несовершенством техники измерения.

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 4 Оптика, 2004
- [2] Кириченко Н.А. Оптика., 2011
- [3] Лабораторный практикум по общей физике. В 3 томах. Том 3. Оптика: учебное пособие под ред. А. В. Максимычева, М. Г. Никулина