Examen

L'épreuve dure trois heures. Les documents ne sont pas autorisés. Les questions sont presque indépendantes, mais il est toutefois recommandé de les traiter dans l'ordre. Barème : un point par question; les questions étoilées valent, en revanche, le double. Enfin, il sera tenu compte de la qualité de la rédaction.

- 1. Déterminer les sous-groupes du groupe additif $(\mathbb{Z}, +)$. En donner la preuve. Pour quelles valeurs de l'entier $n \in \mathbb{Z}$ le quotient $\mathbb{Z}/n\mathbb{Z}$ est-il fini? Justifier.
- 2. Soit \mathcal{B} la bande $\{M = (x, y) \in \mathbb{R}^2, -1 \leq x y \leq 1\}$. Montrer que la relation d'équivalence $M \mathcal{R} N \Leftrightarrow M + \mathcal{B} = N + \mathcal{B}$ est compatible avec la loi du groupe additif $(\mathbb{R}^2, +)$. Quel est le sous-groupe dont elle relève?
- 3. Montrer que le groupe alterné \mathfrak{A}_4 ne possède pas de sous-groupe d'ordre 6. Dessiner ensuite le treillis de ses sous-groupes.
- 4. Déterminer les carrés des éléments d'ordre 4 dans \mathfrak{S}_4 . En déduire que les automorphismes de \mathfrak{S}_4 appliquent une double-transposition sur une double-transposition.
- 5. Montrer que $\sigma \circ (i j) \circ \sigma^{-1} = (\sigma(i) \sigma(j))$. En déduire le centre de \mathfrak{S}_n pour $n \geq 3$.
- 6. Montrer qu'un automorphisme Φ de \mathfrak{S}_4 envoie deux éléments conjugués a et b sur deux éléments conjugués. Que fait donc un tel automorphisme sur les neuf éléments d'ordre 2? En déduire que le sous-groupe de Klein \mathfrak{V}_4 est caractéristique dans \mathfrak{S}_4 .
- 7. Montrer que le seul sous-groupe d'indice 2 du groupe symétrique \mathfrak{S}_4 est son sous-groupe \mathfrak{A}_4 . En déduire que le sous-groupe de Klein \mathfrak{V}_4 est caractéristique dans \mathfrak{S}_4 .
- 8. Montrer que le sous-groupe de Klein \mathfrak{V}_4 est distingué dans \mathfrak{S}_4 . Déterminer le groupequotient $\mathfrak{S}_4/\mathfrak{V}_4$.
- 9. (*) Déterminer le cardinal du sous-groupe de \mathfrak{S}_4 engendré par les deux permutations (12) et (13)(24). On pourra remarquer que ces deux permutations commutent toutes deux avec (12)(34) et ne peuvent donc engendrer \mathfrak{S}_4 tout entier.
- 10. Montrer que \bar{k} est inversible dans l'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ si, et seulement si, \bar{k} engendre le groupe additif $(\mathbb{Z}/n\mathbb{Z}, +)$. Calculer ensuite l'inverse de $\overline{13}$ dans l'anneau $(\mathbb{Z}/21\mathbb{Z}, +, \cdot)$.
- 11. Résoudre dans $\mathbb Z$ le système de congruences :

$$x \equiv 2 \mod 17$$
 et $x \equiv 2 \mod 28$.

- 12. On note $n \mapsto \varphi(n)$ la fonction indicatrice d'Euler. Montrer que si $a \wedge n = 1$, alors $a^{\varphi(n)} \equiv 1 \mod n$. Calculer $\varphi(1001)$. Pour quelles valeurs de n, l'entier $\varphi(n)$ est-il pair? Justifier.
- 13. Dessiner le treillis du groupe multiplicatif (U_{24},\cdot) des racines vingt-quatrièmes de l'unité dans \mathbb{C} . Y placer les deux racines $w_7=\mathrm{e}^{7i\pi/12}$ et $w_{10}=\mathrm{e}^{5i\pi/6}$.
- 14. Montrer que le groupe additif $(\mathbb{Z}/n\mathbb{Z}, +)$ possède un nombre impair de sous-groupes si, et seulement si, l'entier n est un carré parfait.
- 15. Calculer l'exposant des groupes $G_1 = (\mathbb{Z}/8\mathbb{Z}, +)$ et $G_2 = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$. On pose $G_3 = (\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$. Montrer que deux quelconques parmi les trois groupes G_1 , G_2 ou G_3 ne sont pas isomorphes.
- 16. Déterminer les quotients de $(\mathbb{Z}/15\mathbb{Z})^{\times}$ par chacun de ses sous-groupes d'ordre 2.

- 17. Montrer que les groupes additifs $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ et $(\mathbb{Z}/(m \wedge n)\mathbb{Z}) \times (\mathbb{Z}/(m \vee n)\mathbb{Z})$ sont isomorphes.
- 18. Calculer le cardinal du groupe multiplicatif $((\mathbb{Z}/32\mathbb{Z})^{\times}, \cdot)$. Y déterminer les éléments d'ordre 2 ainsi que l'ordre de $\bar{5}$. Montrer que ce groupe n'est pas cyclique.
- 19. (*) Dessiner le treillis du groupe $((\mathbb{Z}/32\mathbb{Z})^{\times}, \cdot)$.
- 20. Calculer l'exposant du groupe multiplicatif $G = (\mathbb{Z}/100\mathbb{Z})^{\times}$. Quel est l'exposant du groupe $G \times G$?
- 21. Montrer qu'il y a autant d'éléments inversibles que de non inversibles dans l'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ si, et seulement si, n est une puissance de 2.
- 22. Déterminer les homomorphismes du groupe quaternionique \mathbb{H}_8 dans le groupe multiplicatif (\mathbb{C}^* , ·). On commencera par déterminer le sous-groupe dérivé de \mathbb{H}_8 .
- 23. (*) Une matrice monomiale est une matrice qui possède un seul terme non nul par ligne et par colonne. Montrer que ces matrices forment un sous-groupe du groupe linéaire $GL(n, \mathbb{K})$, et dont le sous-groupe des matrices diagonales est distingué. Déterminer le nombre de telles matrices qui sont de déterminant 1 lorsque $\mathbb{K} = \mathbb{F}_5^2$ et n = 2, ainsi que le groupe qu'elles forment.
- 24. Dessiner le treillis du groupe additif $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}, +)$.
- 25. Combien y a-t-il d'isomorphismes entre le groupe symétrique \mathfrak{S}_3 et le groupe \mathcal{D}_3 des isométries du triangle équilatéral?
- 26. Dessiner le treillis des sous-groupes du groupe diédral \mathcal{D}_4 des isométries du carré. En déduire le groupe-quotient de \mathcal{D}_4 par son centre. Justifier.
- 27. (*) On se donne un groupe G (commutatif ou non) d'ordre 20 possédant un élément a tel que a^{10} soit d'ordre 2. Le groupe G est-il cyclique? Examiner cela dans le cas du groupe multiplicatif $(\mathbb{Z}/25\mathbb{Z})^{\times}$. Qu'ajoute de plus l'hypothèse que le groupe est commutatif? Calculer l'ordre de $\bar{4}$ dans le groupe multiplicatif $(\mathbb{Z}/75\mathbb{Z})^{\times}$.

^{1.} On rappelle que le groupe \mathbb{H}_8 est le seul groupe non commutatif à huit éléments qui n'a qu'un seul élément d'ordre 2; il a donc six éléments d'ordre 4.

^{2.} Où \mathbb{F}_5 désigne le corps fini $(\mathbb{Z}/5\mathbb{Z},+,\cdot)$ à cinq éléments.