Traitement d'images - Morphologie mathématiques I

Couvre les slides 1 à 39

Définitions

Terminologie

Terme	Définition
Région	Ensemble de pixels connexes d'une image binaire. bit 0 = background bit 1 = foreground (l' objet)
Elément structurant	Formes géométriques et de taille connues. Exemple les carrés ou les cercles.
Point d'ancrage	Centre de l'élément structurant.

par la suite, ces termes sont indiqués de cette manière : exemple

Formules

Symboles

Symboles	Correspond à
Θ	Erosion
⊕	Dilatation
χС	Complémentaire (inversion des couleurs)
0	Ouverture
•	Fermeture

Introduction

Chapitre 4.6.1: Slides 6 à 16

Le **but** de la morphologie est de :

- Boucher les trous
- Adoucir les bords
- Enlever les points de fonds

Sur l'image, les mots clés importants de la morphologie

Remplissage de trous

Méthodologie

- 1. On pose un <u>élément structurant</u> sur une <u>région</u>
- 2. On **déplace** cet élément pour que le point d'ancrage pour qu'il passe par la totalité des pixels de l'image.

- 3. Pour chaque positions, vérifier l'union et l'intersection de l'élément structurant et les objets de l'image.
- Reporter les résultats **positifs** sur la nouvelle image (nommée image résultat).

- 5. Obtention du résultat
 - En cas d'inclusion totale : nous érodons l'ojet
 - En cas d'intersection non nulle : nous dilatons l'objet

Pour la similitude, c'est comme si nous augmentons ou diminuons la taille de l'objet.

Similitude sous Gimp: *réduire* ou *agrendir*

Eléments structurants

Les <u>éléments structurants</u> (*B dans les images qui suivent*) sont convertis en tableaux 2D. Comme par exemple ceux-ci :

Sur ces éléments, il est possible d'effectuer des réfléxions et des translations.

B : Réflexion de l'élément structurant

B_Z : Translation de l'élément structurant

Morphologie binaire

Chapitre 4.6.2: Slides 17 à 39

- A image source
- **B** Elément structurant

Erosion et Dilatation

Slides 17 à 25

L'érosion et la dilation sont des opérations qui permettent de modifier la taille des objets. L'une ajoute de la "matière", l'autre en enlève.

Erosion

L'érosion (⊖) à pour but de supprimer les pixels des bords de l'objet. C'est une opération qui **réduit** l'objet.

Notations : $\mathbf{A} \ominus \mathbf{B} = E^B(A) = \{\vec{x} \mid B_x \subseteq A\}$

Les effets de l'érosions :

• Les parties plus petites que l'élément structurant sont supprimées

$$\begin{array}{cccc}
\square & & & & \\
A & & & B & & \\
\end{array} =$$

• Les autres parties sont diminuées

• Les trous sont agrandis

$$\bigcap_{A} \ominus \bigcirc_{B} = \bigcap_{A \ominus B}$$

• Les objets peuvent se séparer

La connexité des objets n'est pas conservée

Dilatation

La **dilatation** (\oplus) à pour but d'**ajouter** des pixels aux bords l'objet. C'est une opération qui **agrandit** l'objet.

Notations :
$$\mathbf{A} \oplus \mathbf{B} = D^B(A) = \{\vec{x} \mid B_x \cap A \neq \emptyset\}$$

Les effets de la dilatation :

• Les objets sont agrandis

• Les trous sont diminués

$$\begin{array}{c}
\square \\
A
\end{array} \bigoplus_{B} \bullet = \boxed{\square}$$

• Les objets peuvent fusionner

La connexité des objets n'est en générale pas conservée

Dualité

$$A \ominus B = (A^C \oplus B)^C$$
$$A \oplus B = (A^C \ominus B)^C$$

Ouverture et fermeture

Slides 26 à 33

Qu'est-ce qu'une isthmes : c'est des petites parcelles reliées à la terre ferme, exemple l'île saint-pierre du lac de bienne

Ouverture

L'ouverture (°) c'est : une érosion suivie d'une dilatation.

Notations : $\mathbf{A} \circ \mathbf{B} = (\mathbf{A} \ominus \mathbf{B}) \oplus \mathbf{B} = O^B(A)$

Exemple:

Propriétés:

- Lisse les formes
- Elimine les composantes connexes plus petites que l'élément structurant
- Supprime les
 - Petites iles (tâches)
 - Les isthmes
- Conserve souvant la taille et la forme
- Ne préserve pas la connexité
- Est idempotente (non itérative) : A B = A B B

Fermeture

La fermeture (*) c'est : une dilatation suivie d'une érosion.

Notations : $\mathbf{A} \cdot \mathbf{B} = (\mathbf{A} \oplus \mathbf{B}) \ominus \mathbf{B} = F^B(A)$

Exemple:

Traitement d'images

Propriétés:

- Elimine les trous plus petites que l'élément structurant
- Supprime les
 - Petits lacs (trous)
 - Les détroits (espaces faibles entre 2 objets)
 - Les golfes étroits (espaces faibles entre 2 isthmes)
- Ne **préserve pas** la **connexité** (soude les éléments proches)
- Est idempotente (non itérative) : A B = A B B

Applications

Slides 34 à 39

Pour résumés l'utilité des opérations mentionnées précédemment, nous avons :

Opération	Utilité	Exemple
Région, XOR sur l'érosion, dilatation	Déterminer les contours	
Erosion	Séparer des objets se touchant	
Dilatation	Augmenter la visibilité	
Ouverture	Filtrer le bruit selon la taille (Eliminer les petites tâches)	
Ouverture puis fermeture	Enlever le bruit	

Région, XOR sur l'érosion, dilatation

o Déterminer les contours

XOR(A, EB(A))

f seuillée =Ac

XOR(A, DB(A))

 $XOR(D^B(A), E^B(A))$

Erosion

o Séparer des objets se touchant

Image originale

Seuillage + inversion

Erosion avec disque (comptage, mesure, ...)

Dilatation

o Augmenter la visibilité

Image originale

Dilatation du texte (en blanc)

Ouverture

Filtrer le bruit selon la taille
 (Eliminer les petites tâches)

A-O(A) *(nettoyé)*

• Ouverture puis fermeture

Enlever le bruit

Image originale

1) **Ouverture** pour enlever les pixels blanc isolés dans le fond

2) **Fermeture** pour boucher les trous dans les objets