Ridge and Lasso Regression

Süleyman Buğra Gülsoy

23 12 2021

Introduction:

The aim of the objective is predicting the number of car seat sales using the data with the best possible model

Methodology:

Statistical methods that i will be using are multiple linear regression and ridge, lasso regression Since the data has more than 1 variables multiple linear regression is suitable. Thus, to avoid overfit and have a better interpretation of data, Ridge and Lasso models is going to be used for reducing model variance that can be caused by using too many variables with shrinking estimators.

Data Set:

The data that I will be using is "Carseats" which is in the "ISLR" package The data tracks the unit sales for car seats with respect to 10 variables

Sales: unit sales in thousands CompPrice: price charged by competitor at each location Income: community income level in 1000s of dollars Advertising: local ad budget at each location in 1000s of dollars Population: regional pop in thousands Price: price for car seats at each site ShelveLoc: Bad, Good or Medium indicates quality of shelving location Age: age level of the population Education: ed level at location Urban: Yes/No US: Yes/No

The Modelling:

```
library("ISLR")
library("glmnet")

## Warning: package 'glmnet' was built under R version 4.1.3

## Zorunlu paket yükleniyor: Matrix

## Loaded glmnet 4.1-3

library("leaps")
seat_data = Carseats
nacount = c()
```

```
for(i in 1:ncol(seat_data)){
   nacount = c(nacount,sum(is.na(seat_data[,i])))
}
nacount
## [1] 0 0 0 0 0 0 0 0 0 0
```

The data does not have any NA values

```
sum(duplicated(seat_data))
## [1] 0
```

The data does not have any duplicated value

```
str(seat_data)
## 'data.frame':
                  400 obs. of 11 variables:
## $ Sales
                : num 9.5 11.22 10.06 7.4 4.15 ...
## $ CompPrice : num 138 111 113 117 141 124 115 136 132 132 ...
## $ Income : num 73 48 35 100 64 113 105 81 110 113 ...
## $ Advertising: num 11 16 10 4 3 13 0 15 0 0 ...
## $ Population : num 276 260 269 466 340 501 45 425 108 131 ...
## $ Price : num 120 83 80 97 128 72 108 120 124 124 ...
## $ ShelveLoc : Factor w/ 3 levels "Bad", "Good", "Medium": 1 2 3 3 1 1 3 2
3 3 ...
## $ Age
            : num 42 65 59 55 38 78 71 67 76 76 ...
## $ Education : num 17 10 12 14 13 16 15 10 10 17 ...
                : Factor w/ 2 levels "No", "Yes": 2 2 2 2 2 1 2 2 1 1 ...
## $ Urban
                : Factor w/ 2 levels "No", "Yes": 2 2 2 2 1 2 1 2 1 2 ...
## $ US
```

All the categorical variables are in factor form thus we dont need to manipulate it Since R will handle the dummy variables automaticly

Now the data set is ready for regression

```
set.seed (8270)

split_data = sample(1:nrow(seat_data), 0.8*nrow(seat_data))

train_seat = seat_data[split_data,]

test_seat = seat_data[-split_data,]
```

The data has splitted into test and training with respect to %80,%20 rule

Firstly multiple linear regression model with using all the variables in data

```
lm 1 = lm(Sales~., data = train seat)
summary(lm 1)
##
## Call:
## lm(formula = Sales ~ ., data = train seat)
## Residuals:
       Min
                    Median
               1Q
                               3Q
                                      Max
## -2.92800 -0.71545 0.01873 0.69185
                                  2.70956
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 5.5111335 0.6617412 8.328 2.73e-15 ***
## CompPrice
                 ## Income
## Advertising
                 0.1191268 0.0120177
                                     9.913 < 2e-16 ***
## Population
                 0.0002695 0.0004018
                                     0.671
                                             0.503
                ## Price
## ShelveLocGood 4.9030621 0.1704880 28.759 < 2e-16 ***
## ShelveLocMedium 1.8430375 0.1381559
                                    13.340 < 2e-16 ***
## Age
                -0.0452180 0.0034889 -12.961 < 2e-16 ***
               -0.0273317 0.0216803 -1.261
## Education
                                             0.208
## UrbanYes
                0.1494414 0.1240574
                                     1.205
                                             0.229
## USYes
                -0.1623912 0.1647065 -0.986
                                             0.325
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.008 on 308 degrees of freedom
## Multiple R-squared: 0.8739, Adjusted R-squared: 0.8694
## F-statistic:
               194 on 11 and 308 DF, p-value: < 2.2e-16
predic_linear = predict(lm_1,test_seat)
sqrt(mean((predic_linear-test_seat$Sales)^2))
## [1] 1.076357
```

The mean square error is 1.076357

Secondly, conducting a multiple linear regression model with using only better variables

To have a subset of variables we use "regsubsets" function to try to compare all possible subsets

```
subset = regsubsets(Sales~., data = train_seat, method = "backward", nvmax =
10)
summary(subset)
```

```
## Subset selection object
## Call: regsubsets.formula(Sales ~ ., data = train_seat, method =
"backward",
##
       nvmax = 10)
## 11 Variables
                  (and intercept)
##
                     Forced in Forced out
## CompPrice
                         FALSE
                                      FALSE
## Income
                         FALSE
                                      FALSE
## Advertising
                         FALSE
                                      FALSE
## Population
                         FALSE
                                      FALSE
## Price
                         FALSE
                                      FALSE
## ShelveLocGood
                         FALSE
                                      FALSE
## ShelveLocMedium
                         FALSE
                                      FALSE
## Age
                         FALSE
                                      FALSE
## Education
                         FALSE
                                      FALSE
## UrbanYes
                         FALSE
                                      FALSE
## USYes
                         FALSE
                                      FALSE
## 1 subsets of each size up to 10
## Selection Algorithm: backward
##
              CompPrice Income Advertising Population Price ShelveLocGood
                                                                  "*"
## 1
       (1)
              11 11
                         .. ..
                                               .. ..
                                                           "*"
                                                                  "*"
      (1)
## 2
              "*"
                                                           "*"
                                                                  "*"
## 3
      (1)
              "*"
                          .. ..
                                                                  "*"
## 4
        1
              "*"
                          . .
                                               .. ..
                                                                  "*"
## 5
      (1)
              "*"
                         .. ..
                                               .. ..
                                                                  "*"
## 6
        1
       (1)
              "*"
                          "*"
                                 " * "
                                               .. ..
                                                                  "*"
## 7
              "*"
                         " * "
                                 " * "
                                               11 11
                                                           11 * 11
                                                                  " * "
      (1)
## 8
## 9
      (1)
              " * "
                         "*"
                                 "*"
                                               11 11
                                                           11 * II
                                                                  "*"
                         "*"
                                 "*"
                                                           "*"
                                                                  "*"
              "*"
## 10
       (1)
##
              ShelveLocMedium Age Education UrbanYes USYes
## 1
       (1)
                                .. ..
## 2
        1)
              " "
                                                . .
      (1)
## 3
              .....
                                .. ..
                                    •
         1
## 4
## 5
      (1)
        1)
## 6
## 7
        1)
              " * "
              "*"
        1)
## 8
              "*"
                                                "*"
      (1)
## 9
                                                "*"
              "*"
                                "*" "*"
                                                          "*"
## 10 (1)
which.max(summary(subset)$adjr2)
## [1] 10
which.min(summary(subset)$cp)
## [1] 7
which.min(summary(subset)$bic)
```

```
## [1] 7
subset2 = regsubsets(Sales~., data = train_seat, method = "forward", nvmax =
10)

which.max(summary(subset2)$adjr2)
## [1] 10
which.min(summary(subset2)$cp)
## [1] 7
which.min(summary(subset2)$bic)
## [1] 7
```

Both forward and backward methods suggest using the same 7 variables with respect to cp and bic minimum

```
coef(subset,7) == coef(subset2,7)
       (Intercept)
                          CompPrice
                                              Income
                                                          Advertising
##
Price
##
             FALSE
                              FALSE
                                               FALSE
                                                                 TRUE
FALSE
##
     ShelveLocGood ShelveLocMedium
                                                 Age
             FALSE
                               TRUE
                                               FALSE
```

Conducting our second multiple linear regression with best subset of our variables

```
lm_2 = lm(Sales~ CompPrice + Income + Advertising + Price + ShelveLoc +
Age, data = train seat)
summary(lm_2)
##
## Call:
## lm(formula = Sales ~ CompPrice + Income + Advertising + Price +
##
      ShelveLoc + Age, data = train seat)
##
## Residuals:
                1Q Median
                                3Q
                                       Max
## -2.7965 -0.6689 -0.0160 0.7171 2.8292
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
                    5.295652
                               0.553685
                                         9.564 < 2e-16 ***
## (Intercept)
## CompPrice
                    0.093930
                               0.004519 20.786 < 2e-16 ***
                                         7.327 2.03e-12 ***
## Income
                   0.014996
                              0.002047
## Advertising
                   0.113420
                               0.008455
                                        13.415 < 2e-16 ***
## Price
                   -0.094550
                              0.002953 -32.014 < 2e-16 ***
```

The mean square error is 1.07292

Now conducting a ridge regression model with using all variables

```
x_train = model.matrix(Sales~.,train_seat,)[,-1]
y_train = train_seat$Sales
```

To decide best lambda value for our model we use cross validation

```
optimal = cv.glmnet(x_train,y_train, alpha = 0)
optimal$lambda.min
## [1] 0.1417235
ridge_model = glmnet(x_train, y_train, alpha = 0, lambda = optimal$lambda.min)

x_test = model.matrix(Sales~.,test_seat,)[,-1]
y_test = test_seat$Sales

predic_ridge = predict(ridge_model, newx = x_test)
sqrt((mean(predic_ridge - y_test)^2))
## [1] 0.01823733
```

The mean square error with ridge regression is 0.01823733

Now conductin our second ridge regression model with using only the best subset of variables

```
x_train_2 = model.matrix(Sales~CompPrice + Income + Advertising + Price +
ShelveLoc + Age ,train_seat,)[,-1]

y_train_2 = train_seat$Sales

optimal_2 = cv.glmnet(x_train_2,y_train_2, alpha = 0)

optimal_2$lambda.min

## [1] 0.1417235

ridge_model_2 = glmnet(x_train_2, y_train_2, alpha = 0, lambda =
optimal_2$lambda.min )

x_test_2 = model.matrix(Sales~CompPrice + Income + Advertising + Price +
ShelveLoc + Age,test_seat,)[,-1]

y_test_2 = test_seat$Sales

predic_ridge_2 = predict(ridge_model_2, s= optimal_2$lambda.min, newx =
x_test_2)

sqrt((mean(predic_ridge_2 - y_test_2)^2))

## [1] 0.0159226
```

The mean square error with second ridge regression model is 0.0159226

Lasso Regression with using all of the variables

```
optimal_3 = cv.glmnet(x_train,y_train, alpha = 1)

optimal_3$lambda.min

## [1] 0.006426991

lasso_model = glmnet(x_train, y_train, alpha = 1, lambda = optimal_3$lambda.min )

sum(coef(lasso_model) != 0)

## [1] 12

predic_lasso = predict(lasso_model, newx = x_test)

sqrt((mean(predic_lasso - y_test)^2))

## [1] 0.01651172
```

The mean square error with lasso model is 0.01699377

Conducting the lasso model with using only the best subset of variables

```
optimal_4 = cv.glmnet(x_train_2,y_train_2, alpha = 1)

optimal_4$lambda.min

## [1] 0.004861783

lasso_model_2 = glmnet(x_train_2, y_train_2, alpha = 1, lambda = optimal_4$lambda.min )

sum(coef(lasso_model_2) != 0)

## [1] 8

predic_lasso_2 = predict(lasso_model_2,newx = x_test_2)

sqrt((mean(predic_lasso_2 - y_test_2)^2))

## [1] 0.01361432
```

The mean square error with second lasso model is 0.01361432

To Conclude:

We have conducted in total 6 models: And the error for each model is

Multiple linear regression with all variables: 1.076357

Multiple linear regression with best subset of variables: 1.07292

Ridge regression with all variables: 0.01823733

Ridge regression with best subset of variables: 0.0159226

Lasso regression with all variables: 0.01699377

Lasso regression with best subset of variables: 0.01361432

As it seen the best model for prediction is Lasso regression model Which has only the best subset of 7 variables since it has the lowest error between all the models

References:

https://www.statology.org https://rstatisticsblog.com https://rpubs.com