Tarea 4

Christian Badillo, Luis Nuñez, Luz Maria Santana, & Sealtiel Pichardo

Tabla de contenidos

1 Ejercicio 4 2

1 Ejercicio 4

Con la información del ejercicio 3, estime la proporción de familias que cuentan con internet dentro de su casa. Calcule un intervalo del 95% de confianza para esta proporción.

Tabla 1: Datos.

	Número de Casas en la Manzana	
Id de Manzana (i)	(M_i)	Proporción familias con internet (p_i)
25	82	0.38
54	138	0.18
76	101	0.26
107	173	0.25
110	84	0.30

Se observa que tenemos un caso de muestreo bietapico siendo el muestreo aleatorio simple el método de selección en ambas etapas. Por tanto nuestra proporción estimada es:

$$\hat{P} = \frac{\sum_{i=1}^{n} M_i \hat{p}}{\sum_{i=1}^{n} M_i}$$

Reemplazando, $\hat{P}=0.2607$. Es decir, el 26.07% de las familias de la ciudad cuentan con el servicio de conexión a Internet.

Tabla 2: Varianzas

Id de Manzana (i)	Número de Casas en la Manzana (M_i)	Proporción familias con internet (p_i)	$\frac{M_i^2(p_i-\hat{P})^2}{n-1}$	$M_i^2 \left(1 - \frac{m_i}{M_i}\right) \left(\frac{p_i(1-p_i)}{m_i-1}\right)$
25	82	0.38	23.9072	410.9569
54	138	0.18	31.0397	1188.1513
76	101	0.26	0.0014	629.4786
107	173	0.25	0.8637	1878.5410
110	84	0.30	2.7184	431.7746

La varianza de nuestro estimador puede ser calculada por la siguiente expresión:

$$\hat{\mathbb{V}}(\hat{P}) = \left(1 - \frac{n}{N}\right) \frac{1}{n\hat{M}^2} \frac{\sum_{i=1}^{n} (\hat{p}_i - \hat{P})^2}{n-1} + \frac{1}{nN\hat{M}^2} \sum_{i=1}^{n} M_i^2 \left(1 - \frac{m_i}{M_i}\right) \left(\frac{\hat{p}_i(1 - \hat{p}_i)}{m_i - 1}\right)$$

Donde:
$$\hat{M} = \sum_{i=1}^{n} \frac{M_i}{n} = 115.6$$
, $n = 5$, $N = 118$, $m_i = 4$, $i = 1, \dots, 5$.

Reemplazando se tiene que, $\hat{\mathbb{V}}(\hat{P})=0.0014146$. Y por tanto, su intervalo de confianza al 95% es: [0.187,0.3345].