Figure 1: Simulation with $B=500,\ p=13,\ \mu_{\alpha}=10,\ X_{i,t}\stackrel{iid}{\sim}\Gamma(1,10),\ \delta_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\ \gamma_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\alpha}=\sigma_{\delta}=\sigma_{\gamma}=\xi$ and $\sigma=1$

		В	ias				Consistency			
					Guess			Proposition		
n	ξ	$ \hat{\alpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{adj}}) $	$ \hat{\alpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\alpha_1) $	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	Best
-	0.01	0.49 (0.025)	87.849 (5.435)	1 (0)	1 (0)	1 (0)	0.994 (0.006)	0.994 (0.006)	0.994 (0.006)	0.547 (0.038)
5	0.1	$2.522 \ (0.145)$	87.943 (5.439)	1 (0)	1 (0)	1 (0)	$0.994\ (0.006)$	1 (0)	$0.994 \ (0.006)$	$0.535 \ (0.038)$
9	1	$24.742 \ (1.416)$	94.691 (5.73)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	$0.482 \ (0.038)$
	10	247.144 (14.155)	340.365 (20.666)	$0.81\ (0.03)$	1 (0)	$0.785 \ (0.032)$	$0.624\ (0.037)$	$0.618 \; (0.037)$	$0.6 \ (0.038)$	$0.418 \; (0.038)$
	0.01	0.318 (0.018)	73.775 (4.612)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	0.606 (0.038)
10	0.1	1.761 (0.104)	74.152(4.582)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1(0)	$0.606\ (0.038)$
10	1	17.24 (1.068)	81.285 (4.698)	1 (0)	1(0)	1 (0)	0.994 (0.006)	0.994(0.006)	0.994(0.006)	0.515 (0.039)
	10	172.201 (10.724)	303.791 (17.261)	$0.785 \ (0.032)$	0.995 (0.006)	$0.78 \ (0.032)$	0.594 (0.038)	$0.63 \ (0.038)$	$0.606 \ (0.038)$	0.388 (0.038)
	0.01	0.27 (0.017)	71.654 (4.19)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	0.63 (0.038)
15	0.1	$1.464 \ (0.086)$	$71.711 \ (4.205)$	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	$0.617 \ (0.038)$
19	1	$14.269 \ (0.853)$	$76.912 \ (4.646)$	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	$0.519 \ (0.039)$
	10	142.469 (8.536)	296.668 (17.064)	$0.775 \ (0.033)$	1 (0)	$0.77 \ (0.033)$	$0.506 \ (0.039)$	$0.562 \ (0.039)$	$0.506 \ (0.039)$	$0.37 \ (0.038)$
	0.01	0.232 (0.013)	64.937 (4.244)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	0.72 (0.035)
25	0.1	$1.256 \ (0.073)$	65.025 (4.247)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	$0.707 \ (0.036)$
20	1	$12.162 \ (0.723)$	70.93(4.515)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	$0.543 \ (0.039)$
	10	121.364 (7.22)	284.488 (16.044)	$0.755 \ (0.034)$	1 (0)	$0.75 \ (0.034)$	$0.561 \ (0.039)$	$0.598 \; (0.038)$	$0.573 \ (0.039)$	0.341 (0.037)

Figure 2: Simulation with $B=500,\ p=13,\ \mu_{\alpha}=10,\ X_{i,t}\stackrel{iid}{\sim}\Gamma(1,10),\ \delta_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\ \gamma_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\alpha}=\sigma_{\delta}=\sigma_{\gamma}=\xi$ and $\sigma=1$

			Distance to α_1			Distance	to y_{1,T_1^*+1}	
n	ξ	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ ext{IVW}}$	Original	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ ext{IVW}}$
	0.01	92.181 (5.464)	87.929 (5.429)	92.945 (5.38)	530.941 (8.26)	93.09 (5.466)	88.921 (5.425)	80.044 (5.572)
5	0.10	92.318 (5.438)	88.749(5.4)	92.877 (5.376)	531.7 (8.237)	93.106 (5.448)	89.688 (5.41)	$80.098 \ (5.557)$
9	1.00	$110.408 \ (6.359)$	112.895 (6.552)	111.143 (6.292)	539.293 (9.574)	109.803 (6.456)	113.673 (6.7)	97.704 (6.383)
	10.00	608.083 (40.543)	658.75 (41.166)	$609.478 \ (40.379)$	765.376 (43.2)	603.461 (40.802)	$663.964 \ (42.019)$	551.147 (39.204)
	0.01	85.761 (4.759)	73.781 (4.611)	85.251 (4.74)	531.34 (7.832)	88.001 (4.75)	75.942 (4.725)	71.843 (5.031)
10	0.10	85.596 (4.751)	74.36 (4.589)	85.115 (4.726)	531.207 (7.831)	87.862 (4.751)	76.32 (4.716)	72.035(4.998)
10	1.00	98.904 (5.657)	96.941 (5.8)	97.58 (5.694)	529.882 (9.24)	101.594 (5.697)	97.905 (5.945)	85.258 (5.777)
	10.00	552.629 (34.136)	607.916 (38.656)	550.047 (34.131)	683.331 (39.175)	554.845 (34.507)	605.65 (39.468)	485.177 (33.536)
	0.01	87.845 (4.815)	71.604 (4.189)	88.125 (4.791)	522.679 (7.39)	82.717 (4.425)	67.234 (3.908)	66.963 (4.715)
15	0.10	87.665 (4.817)	71.361 (4.214)	87.888 (4.799)	521.797 (7.332)	81.85 (4.372)	66.395 (3.884)	$66.524 \ (4.638)$
15	1.00	97.832 (6.358)	90.733(5.995)	$97.7 \ (6.377)$	512.982 (8.56)	87.039 (5.482)	81.835 (5.463)	73.372 (5.429)
	10.00	574.299 (37.641)	654.146 (39.801)	575.021 (37.553)	637.811 (40.745)	542.636 (37.393)	642.185 (39.776)	472.829 (35.937)
	0.01	87.619 (5.42)	64.935 (4.244)	87.506 (5.452)	536.46 (8.637)	89.397 (5.392)	64.912 (4.341)	73.355 (5.577)
25	0.10	87.71 (5.422)	$65.27 \ (4.254)$	87.66 (5.45)	536.872 (8.656)	89.643 (5.381)	65.457 (4.347)	73.752 (5.557)
25	1.00	102.741 (6.359)	89.279 (5.823)	103.025 (6.374)	540.993 (10.266)	105.581 (6.364)	91.855 (5.991)	88.773 (6.427)
	10.00	549.418 (35.903)	622.006 (39.938)	550.127 (35.928)	727.414 (44.214)	564.311 (37.046)	645.792 (41.356)	483.044 (36.321)

تن

Figure 3: Simulation with $B=500,\ p=13,\ \mu_{\alpha}=10,\ X_{i,t}\stackrel{iid}{\sim}\Gamma(1,10),\ \delta_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\ \gamma_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\alpha}=\sigma_{\delta}=\sigma_{\gamma}=\xi$ and $\sigma=1$

		В	ias				Consistency			
					Guess			Proposition		
σ	ξ	$ \hat{\alpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{adj}}) $	$ \hat{\alpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\alpha_1) $	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	Best
	0.01	0.169 (0.01)	76.675 (4.145)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	0.575 (0.035)
0.01	0.1	$1.689 \ (0.097)$	$76.96 \ (4.113)$	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	$0.575 \ (0.035)$
0.01	1	$16.886 \ (0.967)$	$82.841 \ (4.136)$	1 (0)	1 (0)	1 (0)	0.99 (0.007)	0.99 (0.007)	$0.99 \ (0.007)$	$0.49 \ (0.035)$
	10	168.862 (9.673)	$285.512 \ (15.176)$	$0.805 \ (0.028)$	1 (0)	$0.805 \ (0.028)$	$0.6 \ (0.035)$	$0.64 \ (0.034)$	$0.61\ (0.035)$	$0.39 \ (0.035)$
	0.01	0.172 (0.009)	76.675 (4.145)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	0.575 (0.035)
0.1	0.1	1.69 (0.096)	76.959 (4.113)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	0.575 (0.035)
	1	16.888 (0.967)	82.843 (4.136)	1 (0)	1 (0)	1 (0)	0.99 (0.007)	0.99 (0.007)	0.99 (0.007)	0.49 (0.035)
	10	168.863 (9.673)	$285.516 \ (15.177)$	$0.805 \ (0.028)$	1 (0)	$0.805 \ (0.028)$	$0.6 \ (0.035)$	$0.64 \ (0.034)$	$0.61 \ (0.035)$	$0.39 \ (0.035)$
	0.01	0.299 (0.016)	76.676 (4.146)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	0.575 (0.035)
1	0.1	1.717 (0.094)	$76.955 \ (4.115)$	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	$0.575 \ (0.035)$
1	1	$16.902 \ (0.964)$	$82.862 \ (4.137)$	1 (0)	1 (0)	1 (0)	$0.99 \ (0.007)$	0.99 (0.007)	$0.99 \ (0.007)$	$0.5 \ (0.035)$
	10	168.877 (9.669)	$285.55 \ (15.179)$	$0.805 \ (0.028)$	1 (0)	$0.805 \ (0.028)$	$0.6 \ (0.035)$	$0.64 \ (0.034)$	$0.61 \ (0.035)$	$0.39 \ (0.035)$
	0.01	2.554 (0.135)	76.839 (4.163)	1 (0)	1 (0)	1 (0)	0.995 (0.005)	0.995 (0.005)	0.995 (0.005)	0.58 (0.035)
10	0.1	2.992(0.159)	77.151 (4.13)	1 (0)	1(0)	1(0)	0.995(0.005)	0.995(0.005)	0.995(0.005)	0.555(0.035)
10	1	17.173 (0.944)	83.103 (4.162)	1 (0)	1(0)	1(0)	0.985(0.009)	0.985(0.009)	0.985(0.009)	0.475(0.035)
	10	169.006 (9.636)	285.896 (15.206)	0.815 (0.028)	0.99 (0.007)	0.815 (0.028)	0.6 (0.035)	$0.635\ (0.034)$	$0.595\ (0.035)$	0.39 (0.035)

Figure 4: Simulation with B = 500, p = 13, $\mu_{\alpha} = 10$, $X_{i,t} \stackrel{iid}{\sim} \Gamma(1,10)$, $\delta_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\delta}^2\mathbf{I}_p)$, $\gamma_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\gamma}^2\mathbf{I}_p)$ with $\sigma_{\alpha} = \sigma_{\delta} = \sigma_{\gamma} = \xi$ and $\sigma = 1$ Distance to α_1 Distance to y_{1,T_1^*+1}

			Distance to α_1			Distance	to y_{1,T_1^*+1}	
n	ξ	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ m IVW}$	Original	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ m IVW}$
	0.01	85.948 (4.276)	76.692 (4.147)	85.209 (4.274)	528.147 (6.889)	85.951 (4.276)	76.695 (4.147)	85.213 (4.274)
0.01	0.1	85.929 (4.292)	$77.266 \ (4.143)$	$85.285 \ (4.275)$	$528.004 \ (6.902)$	$85.933 \ (4.292)$	77.269 (4.143)	$85.288 \ (4.275)$
0.01	1	101.477 (5.2)	99.05 (5.352)	100.02 (5.222)	$526.567 \ (8.306)$	101.473 (5.201)	99.054 (5.352)	100.016 (5.222)
	10	548.968 (31.633)	601.281 (35.144)	548.938 (31.382)	682.184 (34.939)	$548.965 \ (31.633)$	601.279 (35.144)	$548.936 \ (31.382)$
	0.01	85.948 (4.276)	76.692 (4.147)	85.209 (4.274)	528.163 (6.89)	85.984 (4.275)	76.722 (4.146)	85.244 (4.273)
0.1	0.1	85.93 (4.292)	77.265 (4.143)	85.286 (4.275)	528.019 (6.903)	85.962 (4.291)	77.297 (4.143)	85.317 (4.274)
0.1	1	101.478 (5.2)	99.053 (5.353)	100.02 (5.222)	526.582 (8.306)	101.447 (5.204)	99.093 (5.351)	100.009 (5.223)
	10	548.967 (31.633)	601.288 (35.144)	548.939 (31.382)	682.21 (34.937)	548.936 (31.634)	601.266 (35.146)	548.913 (31.382)
	0.01	85.95 (4.278)	76.693 (4.148)	85.207 (4.277)	528.328 (6.913)	86.342 (4.286)	77.023 (4.165)	85.593 (4.285)
1	0.1	85.938 (4.294)	77.259 (4.145)	$85.291 \ (4.277)$	$528.184 \ (6.926)$	$86.292 \ (4.303)$	$77.625 \ (4.159)$	$85.635 \ (4.288)$
1	1	101.483 (5.201)	99.085 (5.356)	100.025 (5.223)	526.747 (8.321)	101.876 (5.186)	99.583 (5.348)	100.416 (5.207)
	10	548.96 (31.634)	601.365 (35.146)	548.942 (31.382)	682.566 (34.907)	548.647 (31.642)	$601.128 \ (35.174)$	$548.68 \ (31.383)$
	0.01	85.983 (4.303)	76.838 (4.164)	85.243 (4.303)	532.662 (10.924)	95.803 (9.139)	86.002 (9.122)	95.029 (9.159)
10	0.1	86.024 (4.313)	77.384 (4.17)	85.376 (4.298)	532.518 (10.923)	95.654 (9.138)	86.636 (9.117)	94.865 (9.155)
10	1	101.618 (5.209)	99.563 (5.387)	100.092 (5.241)	531.081 (11.776)	112.214 (9.311)	110.67 (9.524)	110.65 (9.333)
	10	548.888 (31.638)	602.172 (35.161)	548.982 (31.384)	691.056 (35.11)	554.266 (31.854)	$610.467 \ (35.492)$	554.565 (31.52)

Figure 5: Simulation with B = 500, p = 2, $\mu_{\alpha} = 10$, $X_{i,t} \stackrel{iid}{\sim} \Gamma(1,10)$, $\delta_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\delta}^2\mathbf{I}_p)$, $\gamma_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\gamma}^2\mathbf{I}_p)$

Conditioned on donor pool	a	$\sigma_{lpha}=\sigma_{\delta}=\sigma_{\gamma}$	$\begin{array}{c} \text{Bias} \\ \hat{\alpha}_{\text{adj}}^{\dagger} - \\ \text{Mean} \end{array}$	$\mathrm{E}(\hat{lpha}_{\mathrm{adj}}) \ \mathrm{SD}$	$ \hat{lpha}_{ m wadj}^{\dagger} ^{-}$	$\left egin{array}{c} - \operatorname{E}(lpha_1) & & \\ \operatorname{SD} & & & \end{array} ight $	$\hat{lpha}_{ m adj}$ Mean	Consistency dj SD Me	ency $\hat{lpha}_{ m wadj}$ Mean	adj SD	$\hat{lpha}_{ ext{IVW}}$ Mean	w SD
	ಗು	0.01 0.1 1 10	0.378 0.376 0.475 3.211	0.278 0.280 0.361 2.310	23.501 23.898 37.088 262.724	24.750 25.036 35.880 248.469	0.883 0.883 0.819 0.479	0.322 0.322 0.386 0.501	0.968 0.963 0.899 0.399	0.176 0.190 0.302 0.491	0.888 0.888 0.846 0.489	0.316 0.316 0.362 0.501
Yes	10	0.010 0.1 1 10	0.288 0.288 0.368 2.482	0.204 0.206 0.289 1.991	14.047 14.308 29.406 269.148	17.544 17.230 27.615 237.737	0.908 0.913 0.875 0.484	0.290 0.283 0.332 0.501	0.978 0.978 0.940 0.424	0.146 0.146 0.238 0.496	0.924 0.929 0.859 0.473	0.266 0.257 0.349 0.501
	15	0.01 0.1 1 10	0.228 0.228 0.306 2.244	$0.156 \\ 0.159 \\ 0.250 \\ 1.687$	13.238 13.429 27.568 241.401	20.303 20.757 34.442 258.458	$0.918 \\ 0.918 \\ 0.874 \\ 0.571$	0.276 0.276 0.333 0.496	$\begin{array}{c} 0.989 \\ 0.989 \\ 0.934 \\ 0.495 \end{array}$	0.105 0.105 0.249 0.501	0.923 0.923 0.879 0.571	0.267 0.267 0.327 0.496
	25	0.01 0.1 1 10	0.166 0.165 0.224 1.637	0.130 0.130 0.177 1.234	9.429 10.167 26.818 236.164	17.388 17.436 27.688 219.509	0.951 0.941 0.870 0.476	0.216 0.237 0.337 0.501	1.000 1.000 0.973 0.470	0.000 0.000 0.163 0.500	0.946 0.941 0.876 0.470	0.227 0.237 0.331 0.500
	5 10	0.01 0.1 1 10 0.01 1	0.563 0.572 0.780 4.576 0.397 0.505	0.416 0.418 0.541 3.430 0.334 0.332 0.402	23.309 23.287 31.936 234.162 14.389 14.587 25.992	21.997 22.063 31.629 233.069 14.932 15.244 24.056	0.881 0.876 0.859 0.497 0.903 0.908	0.325 0.331 0.348 0.501 0.297 0.290 0.384	0.973 0.978 0.941 0.508 0.995 0.995	0.163 0.146 0.237 0.501 0.074 0.074	0.886 0.886 0.854 0.503 0.930 0.924 0.849	0.318 0.318 0.354 0.501 0.256 0.265
	15	0.01 0.01 0.1 1	3.201 0.328 0.330 0.429 2.848	2.082 0.263 0.261 0.330 2.084	15.241 15.140 15.302 27.192 215.233	20.615 20.544 26.992 206.064	0.935 0.930 0.881 0.557	0.247 0.256 0.325 0.498	0.995 0.995 0.930 0.481	0.074 0.074 0.256 0.501	0.941 0.946 0.892 0.568	0.237 0.227 0.311 0.497
	22	0.01 0.1 1 10	0.272 0.273 0.345 2.228	0.217 0.220 0.292 1.658	10.929 11.164 24.009 210.408	16.447 16.300 23.306 191.603	0.929 0.929 0.896 0.503	0.258 0.258 0.306 0.501	$ \begin{array}{c} 1.000 \\ 1.000 \\ 0.973 \\ 0.514 \end{array} $	0.000 0.000 0.163 0.501	0.951 0.945 0.896 0.503	0.217 0.228 0.306 0.501

Figure 6: Simulation with B = 500, p = 2, $\mu_{\alpha} = 10$, $X_{i,t} \stackrel{iid}{\sim} \Gamma(1,10)$, $\delta_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\delta}^2\mathbf{I}_p)$, $\gamma_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\gamma}^2\mathbf{I}_p)$

Figure 7: Simulation with $B=1000,\,p=2,\,\mu_{\alpha}=10,\,X_{i,t}\stackrel{iid}{\sim}\Gamma(1,10),\,\delta_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\,\gamma_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$

(E	$\hat{lpha}_{ m IVW}$	17.641	11.061	27.514	18.248	14.943	32.878	32.954	56.198	168.301	3.940	67.157	0.06.6	33.251	478.784	49.766	143.608
${ m Risk}~{ m (RMSE)}$	$\hat{lpha}_{ m wadj}$	28.751	0.128	1.210	1.106	9.815	0.243	2.406	4.447	164.310	19.915	31.870	6.461	74.734	398.102	225.368	39.428
R	$\hat{lpha}_{ m adj}$	15.990	9.152	27.020	16.671	19.527	32.712	35.230	54.996	169.681	3.467	66.393	206.9	35.600	494.029	120.853	140.890
ıcy	$\hat{lpha}_{ m IVW}$	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0	1
Consistency	$\hat{lpha}_{ m wadj}$	1	П	П	П	П	П	П	\vdash	П	1	0	П	0	0	0	1
O	$\hat{lpha}_{ m adj}$	\vdash	П	П	Н	П	П	\vdash	Н	1	\vdash	0	П	П	0	0	Н
α_1	$\hat{lpha}_{ m IVW}$	20.433	10.958	26.787	16.792	16.075	31.999	36.201	56.049	169.204	1.682	64.982	13.788	32.894	477.584	51.038	144.553
Distance to α_1	$\hat{lpha}_{ m wadj}$	31.543	0.231	0.483	0.350	8.683	1.121	0.842	4.297	165.212	17.658	29.695	10.349	75.090	396.902	226.641	38.483
Di	$\hat{lpha}_{ m adj}$	18.782	9.050	26.292	15.215	20.659	31.834	38.477	54.846	170.584	1.209	64.219	10.795	35.244	492.828	122.126	141.835
	$ \hat{lpha}_{ ext{wadj}}^{\dagger} - \mathrm{E}(\hat{lpha}_{ ext{wadj}}) $	31.551	0.229	0.484	0.354	8.599	1.130	0.866	4.273	163.417	19.168	29.582	11.948	70.552	402.211	233.576	32.038
Щ.	$ \hat{lpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{lpha}_{\mathrm{adj}}) \hat{lpha}_{\mathrm{wadj}}^{\dagger} -$	0.427	0.345	0.366	0.051	0.411	0.004	0.252	0.017	0.559	0.732	0.191	0.098	2.643	2.169	1.652	1.361
	u	25	10	15	25	ಬ	10	15	25	ಬ	10	15	25	ಬ	10	15	25
	$\sigma_\alpha = \sigma_\delta = \sigma_\gamma$		0 01	0.01				0.1			+	T			7	10	

Figure 8: Simulation with B = 1000, p = 2, $\mu_{\alpha} = 10$, $X_{i,t} \stackrel{iid}{\sim} \Gamma(1,10)$, $\delta_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\delta}^2\mathbf{I}_p)$, $\gamma_i \sim \mathcal{N}(2\mathbf{1}_p, \sigma_{\gamma}^2\mathbf{I}_p)$ Non-Parametric Bootstrap on Disparate Time-series and Parametric Bootstrap on AR(1)

	adj $\hat{lpha}_{ m IVW}$	751 17.641	966 49.951	55.353	0.056 27.884	16.722 26.431	209 50.420	19.026	1.217 34.384	273 73.937	138.150 77.489	553 59.799	015 16.655	119.557 132.862	193 17.235	791 148.242	895 218.061
	$\hat{lpha}_{ m wadj}$	28.751	32.966	0.493	0.0		14.209	1.890		40.273		62.653	20.015	-	78.493	347.791	3 55.895
(ISE)	$\hat{lpha}_{ m adj}$	15.990	52.770	55.106	28.941	26.927	50.708	19.025	34.736	70.334	75.918	55.290	18.664	164.165	16.400	149.775	211.948
$\operatorname{Risk} \left(\operatorname{RMSE} \right)$	$\hat{lpha}_{ m IVW}$	\vdash	П	0	\vdash	П	0	П	\vdash	0	0	0	\vdash	0	Н	0	0
Щ	$\hat{lpha}_{ m wadj}$	\vdash	П	1	\vdash	П	П	1	\vdash	1	0	0	\vdash	0	0	Н	Н
	$\hat{lpha}_{ m adj}$	П	П	0	Н	1	0	П	Н	0	0	0	Н	0	П	0	1
Consistency	$\hat{lpha}_{ m IVW}$	20.433	50.732	56.176	27.829	26.033	49.589	18.979	35.103	74.051	77.281	59.130	16.631	131.336	17.950	147.408	217.682
<u>უ</u>	$\hat{lpha}_{ m wadj}$	31.543	33.746	1.315	0.001	16.324	13.378	1.843	1.936	40.387	137.942	61.984	19.991	118.031	77.778	346.958	55.516
	$\hat{lpha}_{ m adj}$	18.782	53.551	55.929	28.886	26.529	49.877	18.978	35.455	70.448	75.710	54.621	18.639	162.639	17.116	148.942	211.568
Distance to α_1	$ \hat{lpha}_{ m wadj}^{\dagger} - { m E}(\hat{lpha}_{ m wadj}) $	28.114	38.905	11.330	3.808	15.456	16.352	6.139	4.348	49.543	114.715	58.683	25.270	125.588	0.123	248.954	75.169
Ω .	$ \hat{lpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{lpha}_{\mathrm{adj}}) \hat{lpha}_{\mathrm{wadj}}^{\dagger} -$	0.878	0.188	0.444	0.152	0.043	0.909	0.071	0.494	0.693	1.503	0.527	0.102	6.774	0.136	0.863	1.411
	u	ಬ	10	15	25	ಒ	10	15	25	ರ	10	15	25	ಒ	10	15	25
	$\sigma_\alpha = \sigma_\delta = \sigma_\gamma$		10.0	0.01			-	0.1			Ψ.	T			7	10	

Figu

		. B	Bias		Distance to α_1	α_1		Consistency	ıcy
$\sigma_\alpha = \sigma_\delta = \sigma_\gamma$	σ	$ \hat{lpha}_{ m adj}^{\dagger} - { m E}(\hat{lpha}_{ m adj}) $	$ \hat{\alpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{adj}}) \hat{\alpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{wadj}}) $	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m adj}$ $\hat{lpha}_{ m wadj}$ $\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m IVW}$
	0.01	0.005	26.505	68.635	26.523	70.356			\vdash
5	0.1	0.008	32.825	66.651	32.833	66.038	1	П	П
0.01	1	0.209	55.052	77.779	55.048	78.677	1	1	1
	10	0.659	8.906	18.182	8.942	16.392	П	\vdash	П
	0.01	0.041	4.850	48.389	4.856	48.773	1	П	1
-	0.1	0.022	9.665	28.105	9.704	32.457	1	П	П
0.1	1	0.284	7.249	34.603	7.087	33.139	1	1	1
	10	4.720	1.418	23.743	1.188	18.955	П	\vdash	\vdash
	0.01	0.249	126.966	144.470	126.197	145.266	П	П	П
-	0.1	0.344	1.140	37.688	0.809	36.918	Н	\vdash	
T	П	0.744	39.141	44.573	38.778	45.929	0	0	0
	10	0.557	5.551	5.608	060.9	0.695	\vdash	\vdash	П
	0.01	2.555	195.978	198.593	195.032	194.004	0	0	0
10	0.1	3.715	356.227	381.530	362.799	385.934	П	Η	П
10	П	0.820	532.508	463.159	536.718	477.354	0	0	0
	10	5.600	297.116	89.179	276.026	86.527	0	0	0

N(21 $\sigma_2^2 \mathbf{I}_{\perp}$) γ_i 10 X: iid iid N(10 10) S: c 1000 2 with R-Figure 10: Simulation

0	_	`	Discretization District to Committee						
		-	Blas	<u>-</u>	Distance to α_1	α_1	ر 	Consistency	cy
$\sigma_\alpha = \sigma_\delta = \sigma_\gamma$	u	$ \hat{lpha}_{ m adj}^{\dagger} - { m E}(\hat{lpha}_{ m adj}) $	$ \hat{lpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{lpha}_{\mathrm{adj}}) \hat{lpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\hat{lpha}_{\mathrm{wadj}}) $	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$
	ಬ	0.261	6.226	9.817	6.246	11.876	П	1	Н
50.0	10	0.026	67.109	70.703	67.091	70.475	П	П	Н
0.01	15	0.160	0.418	37.747	0.427	39.294	1	1	0
	25	0.081	1.324	43.263	1.278	44.056	П	П	П
	20	0.556	1.153	3.147	1.176	4.424	П	1	1
Ç	10	0.076	3.897	51.714	3.877	53.642	П	1	П
0.1	15	0.083	7.656	13.325	7.683	14.124	1	1	П
	25	0.029	0.666	27.716	0.646	25.711	\vdash	П	\vdash
	ಬ	0.613	11.998	40.189	12.346	41.000	1	П	П
	10	0.969	46.131	3.982	47.802	5.740	П	Τ	Н
Т	15	0.349	17.527	32.923	17.757	32.635	Н	\vdash	Н
	25	0.012	22.422	19.373	22.514	18.918	Н	\vdash	\vdash
	ಬ	6.004	213.822	197.780	220.413	194.041	0	0	0
0	10	3.039	754.690	494.622	747.898	476.112	0	0	0
10	15	0.923	302.770	242.758	287.948	245.405	1	1	П
	25	1.703	298.133	207.077	322.499	218.913	0	0	0

		П	Bias	Di	Distance to α_1	$lpha_1$		Consistency	ıcy
$\sigma_\alpha = \sigma_\delta = \sigma_\gamma$	σ	$ \hat{lpha}_{ m adj}^{\dagger} - { m E}(\hat{lpha}_{ m adj}) $	$ \hat{lpha}_{ m adj}^{\dagger} - { m E}(\hat{lpha}_{ m adj}) \hat{lpha}_{ m wadj}^{\dagger} - { m E}(\hat{lpha}_{ m wadj}) \ $	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ m IVW}$
	0.01	0.009	5.558	30.823	5.559	31.390	П	1	1
000	0.1	0.001	0.169	4.072	0.162	1.176	П	П	
0.01	Н	0.766	16.604	37.504	16.621	35.608	П	П	П
	10	3.169	9.673	59.918	0.860	57.710	Н	0	1
	0.01	0.024	29.621	71.619	29.792	71.856	0	0	0
	0.1	0.020	3.244	24.438	3.301	20.709	П	П	П
0.1	П	0.031	17.347	52.090	17.399	54.809	П	П	П
	10	1.969	19.863	55.848	19.521	56.731	1	П	П
	0.01	0.102	38.132	99.657	40.849	99.075	1	0	1
+	0.1	0.840	10.813	11.913	11.610	11.229	П	П	
Т	1	0.300	59.262	3.435	59.195	0.154	П	П	
	10	0.027	23.931	34.353	24.517	36.478	1	П	П
	0.01	2.659	282.806	83.313	272.595	102.973	0	0	0
10	0.1	2.148	75.597	103.570	88.656	85.908	1	0	П
10	1	1.339	642.765	591.299	647.793	571.320	0	0	0
	10	8.033	105.833	166.808	118.156	171.404	0	0	0