Quantification COMP SCI 2LC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Introduction

- We discuss quantification for any symmetric and associative operator
- One can express using quantification
 - Summing a set of values (using addition +)
 - Making the disjunction of a set of boolean values (using disjunction ∨)
- Quantification is important in the predicate calculus and it is used in the rest of the course

- In programming languages, a type denotes the (nonempty) set of values that can be associated with a variable
- IB is the set of values true and false
- There are other types

Name	Symbol	Type (set of values)
integer	\mathbb{Z}	integers: $\dots, -3, -2, -1, 0, 1, 2, 3, \dots$
nat	N	natural numbers: $0, 1, 2, \dots$
positive	\mathbb{Z}^+	positive integers: $1, 2, 3, \dots$
negative	\mathbb{Z}^-	negative integers: $-1, -2, -3, \dots$
rational	\mathbb{Q}	rational numbers i/j for i, j integers, $j \neq 0$
reals	\mathbb{R}	real numbers
$positive\ reals$	\mathbb{R}^+	positive real numbers
bool	\mathbb{B}	booleans: $true$, $false$

- To be an expression, not only must a sequence of symbols satisfy the normal rules of syntax concerning balanced parentheses, etc., it must also be type correct
- Every expression E has a type t
 - which we can declare by writing E: t

Example $1: \mathbb{Z} \hspace{1cm} \mathsf{true}: \mathbb{B} \hspace{1cm} \pi: \mathbb{R}$

• Similarly, every variable has a type

Example			
x : Z	p : IB	$y: \mathrm{I\!R}$	

- The type of a variable might be mentioned in the text accompanying an expression that uses the variable
- It might be given in some sort of a declaration, much like a programming-language declaration var x: integer
- When the type of a variable is not important to the discussion, we may omit it
- We may want to declare the type of a subexpression of an expression, in order to make the expression absolutely clear to the reader

Example

- One might write 1^n as $(1 : \mathbb{Z})^{n:\mathbb{N}}$
- A fully typed expression: $((x : \mathbb{N} + y : \mathbb{N}) * x : \mathbb{N}) : \mathbb{N}$

- Each function has a type, which describes the types of its parameters and the type of its result
- If the parameters p_1, \dots, p_n of function f have types t_1, \dots, t_n nd the result of the function has type r, then f has type $t_1 \times \dots \times t_n \longrightarrow r$
- We indicate this by writing

$$f: t_1 \times \cdots \times t_n \longrightarrow r$$

Example		
Funtion	Type	Typical function application
plus	$\mathbb{Z}\times\mathbb{Z}\longrightarrow\mathbb{Z}$	$plus(1,\ 3) \ or \ 1+3$
not	$\mathbb{B} \longrightarrow \mathbb{B}$	not(true) or ¬true
sin	${ m I\!R} \longrightarrow \langle 0,1 angle$	$sin(\pi/2), sin(72.5)$
\Longrightarrow	$\mathbb{B}\times\mathbb{B}\longrightarrow\mathbb{B}$	$p \implies q \text{ or } \Longrightarrow (p,q)$

- It is important to recognize that type and type correctness, as we have defined them, are syntactic notions.
- Type correctness depends only on the sequence of symbols in the proposed expression, and not on evaluation of the expression (in a state).
- For example, $(1/(x : \mathbb{Z})) : \mathbb{R}$ is an expression, even though its evaluation is undefined if x = 0.

• If E: t, then $E \in t$ evaluates to true in all states in which E is well defined

Example

Evaluate $2 * i + 3 \in \mathbb{N}$.

- In a textual substitution E[x := F], x and F must have the same type
- Equality b=c is defined only if b and c have the same types If for example $E=2\cdot x+2^x\cdot y$ and $F=x+5\cdot z$ then $E[x:=F]=2\cdot (x+5\cdot z)+2^{x+5\cdot z}\cdot y$.

Other issues have been glossed over

- a notion of subtypes: for example, the natural numbers IN are a subset of the integers ZZ, so I: ZZ and I: IN are both suitable declarations.
- a notion overloading: we need a notion of subtypes, as well as a notion of overloading of both constants and operators, so that the same constants and operators can be used in more than one way.
- a notion of polymorphism: we also need a notion of polymorphism; as an example function $=:t\times t\to \mathbb{B}$ is polymorphic because it is defined for any type t.

- $\sum_{i=1}^{n} e_i$, where e_i is any expression
- $\sum_{i=1}^{3} i^2$, where i^2 is the expression
- $\sum (i \mid 1 \leq i \leq n : e)$

or one can write
$$+(i \mid 1 \le i \le n : e)$$

This notation is called linear notation

Problem

Use linear notation to write the following expressions:

- 0 2 + 4 + 6: $+(i \mid 1 \le i \le 3 : 2 \cdot i)$, or $+(i \mid 1 \le i \le 7 \land even(i) : i)$
- 2 * 1 + 2 * 3 + 2 * 5 + 2 * 7: $+(i \mid 0 < i < 3 : 2 \cdot (2 \cdot i + 1)i)$, or $+(i \mid 1 \leq i \leq 7 \land odd(i) : 2 \cdot i)$
- **3** $1^3 + 1^4 + 2^3 + 2^4$: $+(i, j \mid 1 \le i \le 2 \land 3 \le j \le 4 : i^j)$
- $2*(1^3+1^4+2^3+2^4)+4*(1^3+1^4+2^3+2^4)+6*(1^3+1^4+2^3+2^4)$: $+(i, j, k \mid 1 < i < 2 \land 3 < j < 4 \land 1 < k < 3 : 2 \cdot k \cdot i^{j})$
- $\mathbf{6}$ 2 * 1 + 2 * 3 + 2 * 5 + 2 * 7 + 1³ + 1⁴ + 2³ + 2⁴: +(i, j, k, l) $1 < i < 2 \land 3 < j < 4 \land 0 < k < 3 \land 0 < l < 1$: $1 \cdot i^{j} + (1 - 1) \cdot 2 \cdot (2 \cdot k + 1)$

- Let * be any binary operator that satisfy:
 - Symmetry/Commutativity: b * c = c * b
 - Associativity: (b*c)*d = b*(c*d)
 - Identity u: u*b=b=b*u
- A set of values together with an operator * that satisfy the above is called an Abelian monoid

Example

For * and u, we could choose

- \bullet + and 0
- · and 1
- ∧ and true
- ∨ and false

The general form of a quantification over * is exemplified by

$$*(x:t_1,y:t_2 | R:P)$$

where:

- Variables x and y are distinct
 - They are called the bound variables or dummies of the quantification
 - There may be one or more dummies
- t_1 and t_2 are the types of dummies x and y
 - If t_1 and t_2 are the same type, we may write $*(x, y : t_1 \mid R : P)$
 - We usually omit the type when it is obvious from the context, writing simply $*(x, y \mid R : P)$

The general form of a quantification over * is exemplified by

$$*(x:t_1,y:t_2 \mid R:P)$$

where:

- R, a boolean expression, is the range of the quantification
 - R may refer to dummies x and y
 - If the range is omitted, as in $*(x, y : t_1 \mid : P)$, then the range true is meant
- P, an expression, is the body of the quantification
 - P may refer to dummies x and y
- The type of the result of the quantification is the type of P

• Expression $*(x:X \mid R:P)$ denotes the application of operator * to the values P for all x in X for which range R is true

Example

- **3** \land (*i* | 0 ≤ *i* < 2 : *i* · *d* ≠ 6)
- $(i \mid 0 \le i < 21 : b[i] = 0)$

$$\wedge (i \mid : x \cdot i = 0) \tag{1}$$

- \bullet (1) asserts that x multiplied by any integer equals 0
- This fact is true only if x = 0, so (1) $\iff x = 0$
- The value of (1) in a state depends on the value of x in the state but not on the value of i
- The meaning of (1) does not change when dummy i is renamed:

$$\wedge (i \mid : x \cdot i = 0) = \wedge (k \mid : x \cdot k = 0)$$
 (2)

Free and bound occurrences of variables

Definition

The occurrence of i in the expression i is free.

Suppose an occurrence of i in expression E is free. Then that same occurrence of i is free in

- (E),
- ullet in function application $f(\cdots,E,\cdots)$, and
- in $*(x \mid E : F)$ and $*(x \mid F : E)$

provided i is not one of the dummies in list x.

Definition

Let an occurrence of i be free in an expression E.

That occurrence of i is bound (to dummy i) in the expression $*(x \mid E : F)$ and $*(x \mid F : E)$ if i is one of the dummies in list x.

Suppose an occurrence of i is bound in expression E. Then it is also bound (to the same dummy) in

- (E),
- ullet in function application $f(\cdots,E,\cdots)$, and
- in $*(x \mid E : F)$ and $*(x \mid F : E)$

Example

Which occurrences of i and j are free and which ones are bound?

Consider the expression

$$i > 0 \quad \lor \quad \land (i \mid 0 \le i : x \cdot i = 0)$$

Consider the expression

$$i + j + \Sigma(i \mid 1 \le i \le 10 : b[i]^j) + \Sigma(i \mid 1 \le i \le 10 : \Sigma(j \mid 1 \le j \le 10 : c[i,j]))$$

Textual Substitution

Provided \neg occurs('y', 'x, F'), i.e. a dummy of list y will have to be replaced by a fresh variable if that dummy occurs free in x or F.

$$*(y \mid R : P)[x := F] = *(y \mid R[x := F] : P[x := F])$$

Example

- $(i \mid 0 \le i < n : b[i] = n)[n := m] = ???????$
- $\bullet \land (y \mid 0 \le y < n : b[y] = n)[y := m] = ???????$

Solution

In the last two examples, dummy y was first replaced by fresh variable j;- as required by the caveat. Changing the dummy ensures that a free occurrence of Y. in the textual substitution x:= F does not become bound.

Assume that the operator * is symmetric and associative and has an identity u

 Two additional inferences rules allow substitution of equals for equals in the range and body of a quantification (Leibniz)

$$\frac{P = Q}{*(x \mid E[z:=P] : S) = *(x \mid E[z:=Q] : S)}$$

$$\begin{array}{c}
R \Longrightarrow P = Q \\
\hline
*(x \mid R : E[z := P]) = *(x \mid R : E[z := Q])
\end{array}$$

• Axiom, Empty range:

$$*(x \mid false : P) = u \text{ (the identity of } *)$$

• Axiom, One-point rule: Provided $\neg occurs('x', 'E')$,

$$*(x \mid x = E : P) = P[x := E]$$

• Axiom, Distributivity: Provided each quantification is defined,

$$*(x \mid R : P) * *(x \mid R : Q) = *(x \mid R : P * Q)$$

• Axiom, Range split: Provided $R \land S \iff$ false and each quantification is defined,

$$*(x \mid R \lor S : P) = *(x \mid R : P) * *(x \mid S : P)$$

Axiom, Range split: Provided each quantification is defined,

$$*(x \mid R \lor S : P) * *(x \mid R \land S : P)$$

=

$$*(x | R : P) * *(x | S : P)$$

 Axiom, Range split for idempotent *: Provided each quantification is defined,

$$*(x \mid R \lor S : P) = *(x \mid R : P) * *(x \mid S : P)$$

Operation * is idempotent iff x * x = x for all x.

Quantifiers ' \vee ', ' \wedge ', ' \cup ', ' \cap ' are idempotent, while '+' and ' \cdot ' are not.

• Axiom, Interchange of dummies: Provided each quantification is defined, $\neg occurs('y', 'R')$ and $\neg occurs('x', 'Q')$,

$$*(x \mid R : *(y \mid Q : P)) = *(y \mid Q : *(x \mid R : P))$$

• Axiom, Nesting: Provided $\neg occurs('y', 'R')$,

$$*(x, y \mid R \land Q : P) = *(x \mid R : *(y \mid Q : P))$$

• Axiom, Dummy renaming: Provided \neg occurs('y', 'R, P'),

$$*(x \mid R : P) = *(y \mid R[x := y] : P[x := y])$$

Example

Show the following for $n : \mathbb{N}$ and dummies $i : \mathbb{N}$

$$\forall (i \mid 0 \le i < n : b[i] = 0) \iff \forall (i \mid 0 < i < n : b[i] = 0) \land b[n] = 0$$

Problem

Show the following for $n:\mathbb{N}$ and dummies $i:\mathbb{N}$

$$*(i \mid 0 \le i < n+1 : P)$$

$$=$$

$$*(i \mid 0 \le i < n : P) * P[i := n]$$

$$*(i \mid 0 \le i < n+1 : P)$$

$$=$$

$$*(i \mid 0 < i < n+1 : P) * P[i := 0]$$

$$*(i, i \mid 0 < i < j < n+1 : c[i, j])$$

$$+(i,j \mid 0 \le i \le j < n+1 : c[i,j])$$

$$= +(i,j \mid 0 \le i \le j < n : c[i,j]) +$$

$$+(i,j \mid 0 \le i \le n : c[i,n])$$

