Álgebra Lineal - Clase 3

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Suma de subespacios.
- ► Teorema de la dimensión para subespacios.
- Suma directa.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 1 (Sección 1.4).

Subespacio suma

Definición.

Sea V un K-espacio vectorial, y sean S y T subespacios de V. Se llama suma de S y T al conjunto

$$S + T = \{ v \in V \mid \exists x \in S, y \in T \text{ tales que } v = x + y \}$$
$$= \{ x + y \mid x \in S, y \in T \}.$$

Proposición.

Sea V un K-e.v., y sean S y T subespacios de V. Entonces:

- (a) S + T es un subespacio de V.
- (b) S + T es el menor subespacio (con respecto a la inclusión) que contiene a $S \cup T$.
- (c) Si $\{v_i\}_{i\in I}$ es un sistema de generadores de S y $\{w_j\}_{j\in J}$ es un sistema de generadores de T, entonces $\{v_i\}_{i\in I} \cup \{w_j\}_{j\in J}$ es un sistema de generadores de S+T.

(a) i)
$$0 \in S$$
 y $0 \in T \Rightarrow 0 = 0 + 0 \in S + T$.

ii)
$$v, v' \in S + T \Rightarrow \text{existen } x, x' \in S, \ y, y' \in T \text{ tales que } v = x + v, \ v' = x' + v'.$$

$$\Rightarrow v + v' = (x + y) + (x' + y') = (x + x') + (y + y') \in S + T$$

$$S \text{ y } T \text{ subespacios } \Rightarrow x + x' \in S, y + y' \in T.$$

iii) Sea
$$v \in S + T$$
 y sea $\lambda \in K$.
Existen $x \in S$, $y \in T$ tales que $v = x + y$.

$$\Rightarrow \lambda.v = \lambda.(x+y) = \lambda.x + \lambda.y \in S + T.$$

$$\lambda \in K, x \in S$$
 subespacio $\Rightarrow \lambda.x \in S$. Idem $\lambda.y \in T$.

(b) Sea
$$W$$
 un subespacio de V tal que $S \cup T \subseteq W$.

$$v \in S + T \Rightarrow v = x + y \operatorname{con} x \in S, y \in T.$$

$$\left. \begin{array}{ll}
S \subseteq S \cup T \subseteq W & \Rightarrow & x \in W \\
T \subseteq S \cup T \subseteq W & \Rightarrow & y \in W
\end{array} \right\} \underset{\text{w subesp.}}{\Rightarrow} v = x + y \in W$$

Luego, $S + T \subseteq W$.

(c)
$$v \in S + T \Rightarrow v = x + y \operatorname{con} x \in S, y \in T$$
.

 $S = \langle v_i, i \in I \rangle \Rightarrow$ existen $\alpha_i \in K \ (i \in I)$, con $\alpha_i = 0$ salvo

para finitos
$$i \in I$$
, tales que $x = \sum_{i \in I} \alpha_i v_i$.
 $T = \langle w_j, j \in J \rangle \Rightarrow$ existen $\beta_j \in K$ $(j \in J)$, con $\beta_j = 0$ salvo para finitos $j \in J$, tales que $y = \sum_{j \in J} \beta_j w_j$.

$$\Rightarrow v = \sum_{i \in I} \alpha_i v_i + \sum_{j \in J} \beta_j w_j$$
 es una combinación lineal de $\{v_i\}_{i \in I} \cup \{w_j\}_{j \in J} \subseteq S + T$.

Ejemplo. Sean
$$S = \langle (1,1,0,1), (2,3,1,1) \rangle$$
 y $T = \langle (0,0,1,1), (1,2,2,1) \rangle$ en \mathbb{R}^4 . Hallar una base de $S + T$.

Por la proposición anterior,

$$S + T = \langle (1, 1, 0, 1), (2, 3, 1, 1), (0, 0, 1, 1), (1, 2, 2, 1) \rangle.$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 3 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow \{(1,1,0,1),(0,1,1,-1),(0,0,1,1)\}$$
 es una base de $S+T$.

Ejemplo. Sean S = <(1,1,0,1),(2,3,1,1) > y $T = <(0,0,1,1),(1,2,2,1) > en \mathbb{R}^4$. Hallar una base de S+T que contenga una base de S y una base de T.

$$\dim(S) = 2, \dim(T) = 2, \dim(S+T) = 3$$

Buscamos
$$B_{S+T} = \{v_1, v_2, v_3\}$$
. Para esto, $v_2 \in S \cap T$.

base de
$$S$$

Cálculos auxiliares: $S \cap T = \langle (1, 2, 1, 0) \rangle$

$$B_{S \cap T} = \{(1, 2, 1, 0)\}$$

$$B_{S \cap T} = \{(1, 2, 1, 0)\}$$

Extendemos a una base de $S: B_S = \{(1, 1, 0, 1), (1, 2, 1, 0)\}$

Extendemos a una base de
$$T: B_T = \{(1, 2, 1, 0), (0, 0, 1, 1)\}$$

$$\Rightarrow B_{S+T} = \{(1,1,0,1), (1,2,1,0), (0,0,1,1)\}$$

Teorema de la dimensión para la suma de subespacios

Teorema de la dimensión para subespacios.

Sea V un K-espacio vectorial. Sean S y T subespacios de V de dimensión finita. Entonces

$$\dim(S+T)=\dim S+\dim T-\dim(S\cap T).$$

Demostración.

Sean $s = \dim S$, $t = \dim T$ y $r = \dim(S \cap T)$. Si s = 0 (o sea $S = \{0\}$), entonces S + T = T y $S \cap T = \{0\}$ y la igualdad vale. Idem si t = 0.

- ▶ Sea $\{v_1, \ldots, v_r\}$ base de $S \cap T$ (si $r = 0, \emptyset$).
- ► Se extiende a $B_S = \{v_1, \dots, v_r, w_{r+1}, \dots, w_s\}$ base de S.
- ▶ Se extiende a $B_T = \{v_1, \dots, v_r, u_{r+1}, \dots, u_t\}$ base de T.
- $\Rightarrow \{v_1, \ldots, v_r, w_{r+1}, \ldots, w_s, u_{r+1}, \ldots, u_t\}$ base de S + T.

Es un sistema de generadores de $S + T \checkmark$. Independencia lineal: supongamos que

$$\sum_{i=1}^r \alpha_i \mathbf{v}_i + \sum_{i=r+1}^s \beta_j \mathbf{w}_j + \sum_{k=r+1}^t \gamma_k \mathbf{u}_k = 0.$$

$$\underbrace{\sum_{i=1}^{r} \alpha_{i} \mathbf{v}_{i} + \sum_{j=r+1}^{s} \beta_{j} \mathbf{w}_{j}}_{\in \mathcal{S}} = - \underbrace{\sum_{k=r+1}^{t} \gamma_{k} u_{k}}_{\in \mathcal{T}} \in \mathcal{S} \cap \mathcal{T}.$$

$$\Rightarrow \exists \delta_1, \dots, \delta_r \in K$$
 tales que $-\sum_{k=r+1}^t \gamma_k u_k = \sum_{\ell=1}^r \delta_\ell v_\ell$, o sea,

$$\sum_{\ell}^{r} \delta_{\ell} \mathbf{v}_{\ell} + \sum_{\ell}^{t} \gamma_{k} u_{k} = 0.$$

$$B_T = \{v_1, \dots, v_r, u_{r+1}, \dots, u_t\}$$
 es l.i. $\Rightarrow \delta_\ell = 0 \ \forall \ell \ y \ \gamma_k = 0 \ \forall k$.

$$\sum_{k=1}^{t} \gamma_{k} u_{k} = 0 \Rightarrow \sum_{k=1}^{r} \alpha_{i} \cdot v_{i} + \sum_{k=1}^{s} \beta_{j} \cdot w_{j} = 0$$

$$B_S = \{v_1, \dots, v_r, w_{r+1}, \dots, w_s\} \text{ es l.i. } \Rightarrow \alpha_i = 0 \ \forall i \ y \ \beta_i = 0 \ \forall j.$$

Luego,
$$B_{S+T} = \{v_1, \dots, v_r, w_{r+1}, \dots, w_s\}$$
 es i.i. $\Rightarrow \alpha_i = 0 \text{ v } \text{ f } y \text{ } \beta_j = 0 \text{ v } \text{ f}$.
Luego, $B_{S+T} = \{v_1, \dots, v_r, w_{r+1}, \dots, w_s, u_{r+1}, \dots, u_t\}$ es un base de $S+T$.

de
$$S + T$$
.

Entonces:

$$\dim(S+T) = \#B_{S+T} = r + (s-r) + (t-r)$$

= $s + t - r = \dim S + \dim T - \dim(S \cap T)$.

Suma directa

Definición.

Sea V un K-espacio vectorial, y sean S y T subespacios de V. Se dice que V es suma directa de S y T, y se nota $V = S \oplus T$, si:

- \triangleright V = S + T,
- ▶ $S \cap T = \{0\}.$

Ejemplos.

- 1. $S = \{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\} \text{ y } T = <(1, 1, 1) >.$
 - ► $S \cap T = \{0\}.$
 - $\dim(S+T) = \dim(S) + \dim(T) \dim(S \cap T) = 2+1-0 = 3$ $\Rightarrow S+T = \mathbb{R}^3.$

Luego, $\mathbb{R}^3 = S \oplus T$.

- 2. $S ext{ y } T ext{ subespacios de } \mathbb{R}^5 ext{ de dimensión } 3.$ $\dim(S \cap T) = \dim(S) + \dim(T) \dim(S + T) \geq 3 + 3 5 = 1$ $\Rightarrow S \cap T \neq \{0\}.$
 - S y T no están en suma directa.

Proposición.

Sea V un K-espacio vectorial. Sean S y T subespacios de V tales que $V=S\oplus T$. Entonces, para cada $v\in V$, existen únicos $x\in S$ e $y\in T$ tales que v=x+y.

Demostración.

Existencia: Consecuencia de que V = S + T.

Unicidad: Si v = x + y y v = x' + y' con $x, x' \in S$, $y, y' \in T$,

$$\Rightarrow \mathbf{x} - \mathbf{x}' = \mathbf{y}' - \mathbf{y} \in S \cap T = \{0\}.$$

En consecuencia x - x' = y' - y = 0, es decir, x = x', y = y'. \square

Observación.

La unicidad no vale si S y T no están en suma directa.

$$S = \langle (1,0,-1), (0,1,1) \rangle$$
 y $T = \langle (0,1,1), (2,0,1) \rangle$.

$$\Rightarrow$$
 $S + T = \mathbb{R}^3$ y $S \cap T = \langle (0, 1, 1) \rangle$.

Por ejemplo,

$$(3,1,1) = \underbrace{(1,1,0)}_{(1,0,-1)+(0,1,1) \in S} + \underbrace{(2,0,1)}_{\in T} = \underbrace{(1,0,-1)}_{\in S} + \underbrace{(2,1,2)}_{(0,1,1)+(2,0,1) \in T}$$

Proposición.

Sean V un K-e.v., S y T subespacios de V. Sean B_S y B_T bases de S y T respectivamente. Son equivalentes:

- i) $V = S \oplus T$
- ii) $B = B_S \cup B_T$ es una base de V(familia obtenida mediante la unión de las familias B_S y B_{T} .)

Demostración. Supongamos $B_S = \{v_i\}_{i \in I}$ y $B_T = \{w_i\}_{i \in J}$.

i) \Rightarrow ii) B_S y B_T generan S y T respectivemente $\Rightarrow B = B_S \cup B_T$ genera $V = S \oplus T$.

genera
$$V = S \oplus I$$
.

Supongamos
$$\underbrace{\sum_{i \in I} \alpha_i v_i + \sum_{j \in J} \beta_j w_j}_{\in T} = 0.$$

Como 0 + 0 = 0 con $0 \in S$ y $0 \in T$, por la proposición anterior, $\sum_{i \in I} \alpha_i v_i = 0 \text{ y } \sum_{i \in I} \beta_i w_i = 0.$

 B_S y B_T son I.i. $\Rightarrow \alpha_i = 0 \ \forall i \in I$ y $\beta_i = 0 \ \forall j \in J$.

Luego, B es linealmente independiente.

$$ii) \Rightarrow i$$

ightharpoonup Sea $v \in V$.

 $B = B_S \cup B_T$ genera $V \Rightarrow$ existen $\alpha_i \in K$, $i \in I$, $y \beta_j \in K$, $j \in J$, casi todos nulos, tales que $v = \sum_{i \in I} \alpha_i v_i + \sum_{j \in J} \beta_j w_j$. $\Rightarrow x = \sum_{i \in I} \alpha_i v_i \in S$, $y = \sum_{j \in J} \beta_j w_j \in T$ y vale v = x + y. Luego, V = S + T.

▶ $v \in S \cap T \Rightarrow v = \sum_{i \in I} \alpha_i v_i \text{ y } v = \sum_{j \in J} \beta_j w_j.$ ⇒ $\sum_{i \in I} \alpha_i v_i + \sum_{j \in J} (-\beta_j) w_j = 0.$ $B = B_S \cup B_T \text{ es l.i.} \Rightarrow \alpha_i = 0 \ \forall i \in I \text{ y } \beta_j = 0 \ \forall j \in J$ ⇒ v = 0Luego, $S \cap T = \{0\}.$

Definición.

Sea V un K-e.v. y sea $S\subseteq V$ un subespacio de V. Diremos que T es un complemento de S si $S\oplus T=V$.

Ejemplos.

1. Un complemento de $S = \mathbb{R}_n[X]$ en $\mathbb{R}[X]$.

$$B_S = \{1, X, \dots, X^n\}$$
 es una base de $S = \mathbb{R}_n[X]$.
 $B = \{X^i \mid i \in \mathbb{N}_0\} = \{1, X, \dots, X^n, X^{n+1}, \dots, X^i, \dots\}$ es una

base de $\mathbb{R}[X]$.

Sea $T = \langle X^{n+1}, \dots, X^i, \dots \rangle = \langle X^i, i \geq n+1 \rangle$.

- ▶ $B_T = \{X^i \mid i \ge n+1\}$ es una base de T.
- $\blacktriangleright B_S \cup B_T = B$ es una base de $\mathbb{R}[X]$.
- $\Rightarrow S \oplus T = \mathbb{R}[X].$
- 2. Un complemento de $S = \{f \in \mathbb{R}[X]/f(1) = 0\}$ en $\mathbb{R}[X]$.

$$S=<(X-1)X^i, i\in\mathbb{N}_0>$$
. Sea $T=<1>$.

- ► $f \in \mathbb{R}[X] \Rightarrow f = (f f(1)) + f(1)$, con $f f(1) \in S$ y
- $f(1) \in T$. Entonces, $S + T = \mathbb{R}[X]$. Sea $f \in S \cap T$.

$$\begin{cases}
f \in S & \Rightarrow & f(1) = 0 \\
f \in T & \Rightarrow & f = 0 \text{ o } gr(f) = 0.
\end{cases} \Rightarrow f = 0$$

$$\Rightarrow S \oplus T = \mathbb{R}[X].$$