Attention via $\log \sum \exp \text{ energy}$

Alexander Tschantz

January 25, 2025

1 General Framework

Setup. We consider a single set of nodes $v = \{v_i : i \in \{1, 2, ..., N\}\}$, where each node $v_i \in \mathbb{R}^{d_i}$. The relationships between these nodes are defined by a set of M energy functions $\{E_m : m \in \{1, 2, ..., M\}\}$. Each energy function E_m defines a subset of nodes acting as *children* $C_m \subseteq \{1, 2, ..., normalization\}$ and a subset acting as *parents* $P_m \subseteq \{1, 2, ..., N\}$, which may overlap.

Energy. Each energy function E_m defines a similarity function:

$$sim(\boldsymbol{v}_c, \boldsymbol{v}_p) : \mathbb{R}^{d_c} \times \mathbb{R}^p \to \mathbb{R},$$
 (1)

which produces a scalar similarity between a child v_c and a parent v_p . Let $\{v_c\} = \{v_c : c \in C_m\}$ and $\{v_p\} = \{v_p : p \in P_m\}$, the energy for E_m is defined as:

$$E_m(\lbrace v_c \rbrace, \lbrace v_p \rbrace) = -\sum_{c \in C_m} \ln \left(\sum_{p \in P_m} \exp(\operatorname{sim}(v_c, v_p)) \right).$$
 (2)

The global energy sums over all energy functions:

$$E(\{v\}) = \sum_{m=1}^{M} E_m(\{v_c\}, \{v_p\}).$$
 (3)

Gradient Updates. For a single node v_a , the gradient of the global energy E w.r.t. v_a decomposes into two terms. Let $\mathcal{M}_c(a) = \{m : a \in C_m\}$ denote the energy functions where v_a acts as a *child*, and $\mathcal{M}_p(a) = \{m : a \in P_m\}$ the energy functions where v_a acts as a *parent*. Then:

$$-\frac{\partial E}{\partial \boldsymbol{v}_{a}} = \underbrace{\sum_{m \in \mathcal{M}_{c}(a)} \sum_{p \in P_{m}} \operatorname{softmax}_{p} \left(\operatorname{sim}(\boldsymbol{v}_{a}, \boldsymbol{v}_{p}) \right) \frac{\partial}{\partial \boldsymbol{v}_{a}} \operatorname{sim}(\boldsymbol{v}_{a}, \boldsymbol{v}_{p})}_{\boldsymbol{v}_{a} \text{ acting as a child}} + \underbrace{\sum_{m \in \mathcal{M}_{p}(a)} \sum_{c \in C_{m}} \operatorname{softmax}_{a} \left(\operatorname{sim}(\boldsymbol{v}_{c}, \boldsymbol{v}_{a}) \right) \frac{\partial}{\partial \boldsymbol{v}_{a}} \operatorname{sim}(\boldsymbol{v}_{c}, \boldsymbol{v}_{a})}_{\boldsymbol{v}_{a} \text{ acting as a parent}}$$

$$(4)$$

The first term captures contributions from v_a being explained by its parents, while the second term captures contributions from v_a explaining its children.

2 Gaussian Mixture Models

Setup. We have N data points (children) $\mathbf{x}_i \in \mathbb{R}^d$, $i \in C = \{1, ..., N\}$, and K mixture components (parents), each with mean $\boldsymbol{\mu}_k \in \mathbb{R}^d$ and covariance $\boldsymbol{\Sigma}_k$, $k \in P = \{1, ..., K\}$. Let π_k be the mixing proportion.

Similarity function. We define

$$\operatorname{sim}ig(oldsymbol{x}_i,oldsymbol{\mu}_kig) \ = \ \ln\pi_k \ - \ frac{1}{2}ig(oldsymbol{x}_i-oldsymbol{\mu}_kig)^ opoldsymbol{\Sigma}_k^{-1}ig(oldsymbol{x}_i-oldsymbol{\mu}_kig).$$

Energy.

$$E^{\text{GMM}}(\{\boldsymbol{x}_i\}, \{\boldsymbol{\mu}_k\}) = -\sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \exp(\operatorname{sim}(\boldsymbol{x}_i, \boldsymbol{\mu}_k)) \right).$$
 (5)

Gradients. If we differentiate w.r.t. μ_k , then

$$-\frac{\partial E^{\text{GMM}}}{\partial \boldsymbol{\mu}_k} \ = \ \sum_{i=1}^N \text{softmax}_k \! \big(\text{sim}(\boldsymbol{x}_i, \boldsymbol{\mu}_k) \big) \ \boldsymbol{\Sigma}_k^{-1} \big(\boldsymbol{x}_i - \boldsymbol{\mu}_k \big).$$

Setting this gradient to zero yields the usual GMM M-step:

$$m{\mu}_k \ = \ rac{\sum_{i=1}^N \mathrm{softmax}_k \! ig(\mathrm{sim}(m{x}_i, m{\mu}_k) ig) \ m{x}_i}{\sum_{i=1}^N \mathrm{softmax}_k \! ig(\mathrm{sim}(m{x}_i, m{\mu}_k) ig)}.$$

3 Hopfield Networks

Setup. We have a set of *children* data vectors $\mathbf{x}_i \in \mathbb{R}^d$, $i \in C = \{1, ..., N\}$, and a set of *parent* memory vectors $\mathbf{m}_{\mu} \in \mathbb{R}^d$, $\mu \in P = \{1, ..., K\}$.

Similarity function.

$$\operatorname{sim}(\boldsymbol{x}_i, \boldsymbol{m}_{\mu}) = \boldsymbol{x}_i^{\top} \boldsymbol{m}_{\mu}.$$

Energy.

$$E^{\text{Hopfield}}(\{\boldsymbol{x}_i\}, \{\boldsymbol{m}_{\mu}\}) = -\sum_{i=1}^{N} \ln \left(\sum_{\mu=1}^{K} \exp(\boldsymbol{x}_i^{\top} \boldsymbol{m}_{\mu})\right).$$
(6)

Gradients.

$$-\frac{\partial E^{\text{Hopfield}}}{\partial \boldsymbol{x}_{i}} = \sum_{\mu=1}^{K} \operatorname{softmax}_{\mu}(\boldsymbol{x}_{i}^{\top} \boldsymbol{m}_{\mu}) \boldsymbol{m}_{\mu}. \tag{7}$$

$$-\frac{\partial E^{\text{Hopfield}}}{\partial \boldsymbol{m}_{\mu}} = \sum_{i=1}^{N} \operatorname{softmax}_{\mu} (\boldsymbol{x}_{i}^{\top} \boldsymbol{m}_{\mu}) \boldsymbol{x}_{i}.$$
 (8)

4 Slot Attention

Setup. Let $x_j \in \mathbb{R}^d$, $j \in C = \{1, ..., N\}$ be the children (tokens), and $\mu_i \in \mathbb{R}^d$, $i \in P = \{1, ..., S\}$ be the parents (slots). We typically apply linear transforms $W_K, W_Q \in \mathbb{R}^{d \times d}$ to form

$$sim(\boldsymbol{x}_i, \boldsymbol{\mu}_i) = (\boldsymbol{W}_K \boldsymbol{x}_i)^{\top} (\boldsymbol{W}_Q \boldsymbol{\mu}_i).$$

Energy.

$$E^{\text{Slot}}\left(\{\boldsymbol{x}_{j}\},\{\boldsymbol{\mu}_{i}\}\right) = -\sum_{j=1}^{N} \ln\left(\sum_{i=1}^{S} \exp\left(\sin(\boldsymbol{x}_{j},\boldsymbol{\mu}_{i})\right)\right). \tag{9}$$

Gradients.

$$-\frac{\partial E^{\text{Slot}}}{\partial \boldsymbol{\mu}_i} = \sum_{j=1}^{N} \operatorname{softmax}_i \left(\operatorname{sim}(\boldsymbol{x}_j, \boldsymbol{\mu}_i) \right) \boldsymbol{W}_Q^{\top} \boldsymbol{W}_K \boldsymbol{x}_j.$$
 (10)

$$-\frac{\partial E^{\text{Slot}}}{\partial \boldsymbol{x}_{j}} = \sum_{i=1}^{S} \operatorname{softmax}_{i} \left(\operatorname{sim}(\boldsymbol{x}_{j}, \boldsymbol{\mu}_{i}) \right) \boldsymbol{W}_{K}^{\top} \boldsymbol{W}_{Q} \boldsymbol{\mu}_{i}.$$
(11)

5 Self-Attention

Setup. In self-attention, every node can act as both a child (query) and a parent (key). Concretely, let us have N tokens $\{x_1, \ldots, x_N\}$. We form

$$q_i = \mathbf{W}^Q \mathbf{x}_i, \quad \mathbf{k}_i = \mathbf{W}^K \mathbf{x}_i,$$

for i = 1, ..., N. Thus the set $C = \{1, ..., N\}$ and $P = \{1, ..., N\}$ coincide, with

$$sim(\boldsymbol{x}_c, \boldsymbol{x}_p) = (\boldsymbol{W}^Q \boldsymbol{x}_c)^{\top} (\boldsymbol{W}^K \boldsymbol{x}_p).$$

Energy.

$$E^{\text{SA}}(\{\boldsymbol{x}_i\}) = -\sum_{c=1}^{N} \ln \left(\sum_{p=1}^{N} \exp \left((\boldsymbol{W}^Q \boldsymbol{x}_c)^{\top} (\boldsymbol{W}^K \boldsymbol{x}_p) \right) \right).$$
(12)

Gradients. Since each x_i is *both* a child and a parent, its gradient is a sum of two terms (the child side and the parent side). Writing it out explicitly:

$$-\frac{\partial E^{\text{SA}}}{\partial \boldsymbol{x}_{i}} = \underbrace{\sum_{p=1}^{N} \operatorname{softmax}_{p} \left((\boldsymbol{W}^{Q} \boldsymbol{x}_{i})^{\top} (\boldsymbol{W}^{K} \boldsymbol{x}_{p}) \right) \boldsymbol{W}_{Q}^{\top} \boldsymbol{W}_{K} \boldsymbol{x}_{p}}_{\text{child } i \text{ being explained by parents } p} + \underbrace{\sum_{c=1}^{N} \operatorname{softmax}_{i} \left((\boldsymbol{W}^{Q} \boldsymbol{x}_{c})^{\top} (\boldsymbol{W}^{K} \boldsymbol{x}_{i}) \right) \boldsymbol{W}_{K}^{\top} \boldsymbol{W}_{Q} \boldsymbol{x}_{c}}_{\text{parent } i \text{ explaining children } c}$$

$$(13)$$

6 Spatiotemporal Attention

Setup. We consider a hierarchy of L layers, each containing K_l latent variables of dimension D_l . Concretely, let $\mathbf{x}_{k,t}^{(l)} \in \mathbb{R}^{D_l}$ denote the k-th variable (or "slot") in layer l at time t. The lowest layer (l=1) has $K_1 = N$ observed variables (e.g., pixels) and dimension D_1 (e.g., [x, y, r, g, b]), while higher layers have separate dimensions D_l and numbers of slots K_l . Our goal is to define an energy that couples these variables vertically (across layers), concurrently (within the same layer and time), and temporally (across time).

Similarity Functions. We introduce three types of similarity, each with its own projection matrices. For inter-layer connections (linking layers l-1 and l), we define:

$$\operatorname{sim}_{v}^{(l)}(\boldsymbol{x}, \boldsymbol{x}') = (\boldsymbol{W}_{v}^{K,(l)} \boldsymbol{x})^{\top} (\boldsymbol{W}_{v}^{Q,(l)} \boldsymbol{x}'), \tag{14}$$

For intra-layer (slots within the same layer and time):

$$\operatorname{sim}_{c}^{(l)}(\boldsymbol{x}, \boldsymbol{x}') = (\boldsymbol{W}_{c}^{Q,(l)} \boldsymbol{x})^{\top} (\boldsymbol{W}_{c}^{K,(l)} \boldsymbol{x}'), \tag{15}$$

For temporal connections (the same slot across different times):

$$\operatorname{sim}_{t}^{(l)}(\boldsymbol{x}, \boldsymbol{x}') = (\boldsymbol{W}_{t}^{Q,(l)} \boldsymbol{x})^{\top} (\boldsymbol{W}_{t}^{K,(l)} \boldsymbol{x}'). \tag{16}$$

Here, $\boldsymbol{W}_{\bullet}^{Q,(l)}$ and $\boldsymbol{W}_{\bullet}^{K,(l)}$ are learnable projection matrices for layer l. The intra-layer and temporal parameters parallel the key-query mechanism in self-attention, while the inter-layer parameters are analogous to the inverted attention mechanism used in slot attention.

Energy At each layer l, the total energy is split into three terms:

$$E_{v}^{(l)} = -\sum_{t=1}^{T} \sum_{c=1}^{K_{l-1}} \underbrace{\ln \left(\sum_{k=1}^{K_{l}} \exp\left(\operatorname{sim}_{v}^{(l)}(\boldsymbol{x}_{c,t}^{(l-1)}, \boldsymbol{x}_{k,t}^{(l)}) \right) \right)}_{\text{Inter-layer energy}},$$

$$E_{c}^{(l)} = -\sum_{t=1}^{T} \sum_{k=1}^{K_{l}} \ln \left(\sum_{k'=1}^{K_{l}} \exp\left(\operatorname{sim}_{c}^{(l)}(\boldsymbol{x}_{k,t}^{(l)}, \boldsymbol{x}_{k',t}^{(l)}) \right) \right),$$

$$\underbrace{E_{t}^{(l)} = -\sum_{k=1}^{K_{l}} \sum_{t=2}^{T} \ln \left(\sum_{t' < t} \exp\left(\operatorname{sim}_{t}^{(l)}(\boldsymbol{x}_{k,t}^{(l)}, \boldsymbol{x}_{k,t'}^{(l)}) \right) \right)}_{\text{Temporal energy}}.$$

$$(17)$$

Summing these over all layers $l \in \{1, \ldots, L\}$ defines the total energy E. These terms correspond to inter-layer connections $(E_v^{(l)})$ and match the energy function for slot attention, intra-layer connections $(E_c^{(l)})$ which match the energy function for self attention, and temporal connections $(E_t^{(l)})$, which match the energy function for causal self attention (as each variable is only explained by past variables).

Gradients Consider a single variable $x_{k,t}^{(l)}$. Its gradient with respect to the energy decomposes into four parts:

$$-\frac{\partial E}{\partial \boldsymbol{x}_{k,t}^{(l)}} = \underbrace{-\frac{\partial E_v^{(l)}}{\partial \boldsymbol{x}_{k,t}^{(l)}}}_{\text{bottom-up}} + \underbrace{-\frac{\partial E_v^{(l+1)}}{\partial \boldsymbol{x}_{k,t}^{(l)}}}_{\text{top-down}} + \underbrace{-\frac{\partial E_c^{(l)}}{\partial \boldsymbol{x}_{k,t}^{(l)}}}_{\text{intra-layer}} + \underbrace{-\frac{\partial E_t^{(l)}}{\partial \boldsymbol{x}_{k,t}^{(l)}}}_{\text{temporal}}.$$
(18)

Bottom-up: We define a similarity matrix $A_{c,k}$, representing the interactions between $x_{k,t}^{(l)}$ in layer l and $x_{c,t}^{(l-1)}$ in the layer below.

$$\mathbf{A}_{c,k} = \sin_v^{(l)}(\mathbf{x}_{c,t}^{(l-1)}, \mathbf{x}_{k,t}^{(l)}), \tag{19}$$

The gradient with respect to $x_{k,t}^{(l)}$ is:

$$-\frac{\partial E_v^{(l)}}{\partial \boldsymbol{x}_{k,t}^{(l)}} = \sum_{c=1}^{K_{l-1}} \operatorname{softmax}_k(\boldsymbol{A}_{c,k}) \boldsymbol{W}_v^{Q,(l)\top} \boldsymbol{W}_v^{K,(l)} \boldsymbol{x}_{c,t}^{(l-1)}.$$
 (20)

This term aggregates contributions from the children in layer l-1, weighted by the attention softmax_k($\mathbf{A}_{c,k}$), and is analogous to Slot Attention or Gaussian mixture models.

Top-down: We define a similarity matrix $A_{k,p}$, representing the interactions between $x_{k,t}^{(l)}$ in layer l and $x_{p,t}^{(l+1)}$ in the layer above.

$$\mathbf{A}_{k,p} = \sin_{v}^{(l+1)}(\mathbf{x}_{k,t}^{(l)}, \mathbf{x}_{p,t}^{(l+1)}), \tag{21}$$

The gradient with respect to $\boldsymbol{x}_{k,t}^{(l)}$ is:

$$-\frac{\partial E_v^{(l+1)}}{\partial \boldsymbol{x}_{k,t}^{(l)}} = \sum_{p=1}^{K_{l+1}} \operatorname{softmax}_p(\boldsymbol{A}_{k,p}) \boldsymbol{W}_v^{K,(l+1)\top} \boldsymbol{W}_v^{Q,(l+1)} \boldsymbol{x}_{p,t}^{(l+1)}.$$
(22)

This term captures the influence of $\boldsymbol{x}_{k,t}^{(l)}$ being treated as a child, weighted by the attention softmax_p($\boldsymbol{A}_{k,p}$), and reflects the top-down influence from layer l+1, and is analogous to Hopfield attention or the parent term in self-attention.

Intra-layer: We define two similarity matrices, $A_{k,k'}$ and $A_{k',k}$, representing the bidirectional interactions between $x_{k,t}^{(l)}$ and other slots $x_{k',t}^{(l)}$:

$$\mathbf{A}_{k,k'} = \operatorname{sim}_{c}^{(l)}(\mathbf{x}_{k,t}^{(l)}, \mathbf{x}_{k',t}^{(l)}),
\mathbf{A}_{k',k} = \operatorname{sim}_{c}^{(l)}(\mathbf{x}_{k',t}^{(l)}, \mathbf{x}_{k,t}^{(l)}),$$
(23)

where

$$\operatorname{sim}_{c}^{(l)}(\boldsymbol{x}_{k,t}^{(l)}, \boldsymbol{x}_{k',t}^{(l)}) = (\boldsymbol{W}_{c}^{Q,(l)}\boldsymbol{x}_{k,t}^{(l)})^{\top} (\boldsymbol{W}_{c}^{K,(l)}\boldsymbol{x}_{k',t}^{(l)}).$$

The gradient with respect to $\boldsymbol{x}_{k,t}^{(l)}$ is:

$$-\frac{\partial E_{c}^{(l)}}{\partial \boldsymbol{x}_{k,t}^{(l)}} = \underbrace{\sum_{k' \neq k} \operatorname{softmax}_{k}(\boldsymbol{A}_{k',k}) \boldsymbol{W}_{c}^{K,(l)\top} \boldsymbol{W}_{c}^{Q,(l)} \boldsymbol{x}_{k',t}^{(l)}}_{\boldsymbol{x}_{k',t}^{(l)} \operatorname{acting as parent (explaining others)}} + \underbrace{\sum_{k' \neq k} \operatorname{softmax}_{k'}(\boldsymbol{A}_{k,k'}) \boldsymbol{W}_{c}^{Q,(l)\top} \boldsymbol{W}_{c}^{K,(l)} \boldsymbol{x}_{k',t}^{(l)}}_{\boldsymbol{x}_{k',t}^{(l)} \operatorname{acting as child (being explained by others)}}$$
(24)

The first term captures the influence of $\boldsymbol{x}_{k,t}^{(l)}$ as a parent, aggregating the contributions from other slots $\boldsymbol{x}_{k',t}^{(l)}$ it explains, weighted by softmax_{k'}($\boldsymbol{A}_{k,k'}$). The second term reflects $\boldsymbol{x}_{k,t}^{(l)}$'s role as a child, being explained by other slots $\boldsymbol{x}_{k',t}^{(l)}$, weighted by softmax_k($\boldsymbol{A}_{k',k}$).

7 Temporal:

Setup. We define a similarity matrix $A_{t,t'}$ representing the interaction between a slot $x_{k,t}^{(l)}$ at time t and its past representation $x_{k,t'}^{(l)}$ at time t', for t' < t:

$$\boldsymbol{A}_{t,t'} = \sin_{t}^{(l)} \left(\boldsymbol{x}_{k,t}^{(l)}, \, \boldsymbol{x}_{k,t'}^{(l)} \right) = \left(\boldsymbol{W}_{t}^{Q,(l)} \, \boldsymbol{x}_{k,t}^{(l)} \right)^{\top} \left(\boldsymbol{W}_{t}^{K,(l)} \, \boldsymbol{x}_{k,t'}^{(l)} \right). \tag{25}$$

Gradient. Assuming causal attention (i.e. no future times), the gradient w.r.t. $x_{k,t}^{(l)}$ is:

$$-\frac{\partial E_t^{(l)}}{\partial \boldsymbol{x}_{k,t}^{(l)}} = \sum_{t' < t} \operatorname{softmax}_{t'} \left(\boldsymbol{A}_{t,t'} \right) \boldsymbol{W}_t^{Q,(l) \top} \boldsymbol{W}_t^{K,(l)} \boldsymbol{x}_{k,t'}^{(l)}.$$
(26)

Thus $x_{k,t}^{(l)}$ is influenced only by its own past $x_{k,t'}^{(l)}$ (t' < t), as in causal self-attention.

Remark (Full Version). We can generalize to let each latent $s_{k,t}$ attend all data features and all slot latents at any time. This merges the three energies into a single large log-sum-exp, imposing direct competition among data, concurrency, and temporal parents, but increases complexity to $\mathcal{O}((N+K)T)^2$.

8 Cross Attention

Setup. We have a set of child vectors (queries) $Q \in \mathbb{R}^{d \times N_Q}$ and a set of parent vectors (keys) $K \in \mathbb{R}^{d \times N_K}$. Let

$$C = \{1, \dots, N_Q\}, \quad P = \{1, \dots, N_K\},$$

so $v_c = q_c$ is the c-th query, and $v_p = k_p$ is the p-th key. Suppose we have learnable weight matrices $W^Q, W^K \in \mathbb{R}^{d \times d}$. Then

$$\boldsymbol{q}_c \; = \; \boldsymbol{W}^Q \boldsymbol{x}_c^Q, \quad \boldsymbol{k}_p \; = \; \boldsymbol{W}^K \boldsymbol{x}_p^K,$$

where \boldsymbol{x}_{c}^{Q} is the raw c-th query token and \boldsymbol{x}_{p}^{K} the raw p-th key token.

Similarity function.

$$sim(\boldsymbol{q}_c, \boldsymbol{k}_p) = \boldsymbol{q}_c^{\top} \boldsymbol{k}_p.$$

Energy.

$$E^{\text{Cross}}\left(\{\boldsymbol{q}_c\}, \{\boldsymbol{k}_p\}\right) = -\sum_{c=1}^{N_Q} \ln\left(\sum_{p=1}^{N_K} \exp(\boldsymbol{q}_c^{\top} \boldsymbol{k}_p)\right).$$
 (27)

Gradients.

$$-\frac{\partial E^{\text{Cross}}}{\partial \boldsymbol{q}_c} = \sum_{p=1}^{N_K} \operatorname{softmax}_p \left(\boldsymbol{q}_c^{\top} \boldsymbol{k}_p \right) \boldsymbol{k}_p.$$
 (28)

$$-\frac{\partial E^{\text{Cross}}}{\partial \mathbf{k}_p} = \sum_{c=1}^{N_Q} \operatorname{softmax}_p \left(\mathbf{q}_c^{\top} \mathbf{k}_p \right) \mathbf{q}_c.$$
 (29)

When mapping back to the raw tokens \boldsymbol{x}_{c}^{Q} or \boldsymbol{x}_{p}^{K} , chain-rule multiplies by \boldsymbol{W}^{Q} or \boldsymbol{W}^{K} , respectively.

9 Predictive coding

Setup. We again have child vectors $\{x_i\}_{i=1}^N$ and a set of parent $\boldsymbol{\mu}_k \in \mathbb{R}^d, k = 1, \dots, K$. However, rather than a direct difference $\boldsymbol{x}_i - \boldsymbol{\mu}_k$, let us assume the *model* maps $\boldsymbol{\mu}_k$ through some non-linear function $f_{\phi}(\cdot)$ before comparing to \boldsymbol{x}_i . For instance, f_{ϕ} could be a neural network.

Similarity function. Define

$$\operatorname{sim}(\boldsymbol{x}_i, \boldsymbol{\mu}_k) = -\frac{1}{2} \|\boldsymbol{x}_i - f_{\phi}(\boldsymbol{\mu}_k)\|^2.$$

Energy.

$$E^{\text{PC}}\left(\left\{\boldsymbol{x}_{i}\right\},\left\{\boldsymbol{\mu}_{k}\right\}\right) = -\sum_{i=1}^{N} \ln\left(\sum_{k=1}^{K} \exp\left(-\frac{1}{2} \left\|\boldsymbol{x}_{i} - f_{\phi}(\boldsymbol{\mu}_{k})\right\|^{2}\right)\right). \tag{30}$$

Gradients.

$$\alpha_{i,k} = \operatorname{softmax}_{k} \left(-\frac{1}{2} \| \boldsymbol{x}_{i} - f_{\phi}(\boldsymbol{\mu}_{k}) \|^{2} \right).$$

$$-\frac{\partial E^{PC}}{\partial \boldsymbol{x}_{i}} = \sum_{k=1}^{K} \alpha_{i,k} \left(\boldsymbol{x}_{i} - f_{\phi}(\boldsymbol{\mu}_{k}) \right).$$

$$-\frac{\partial E^{PC}}{\partial \boldsymbol{\mu}_{k}} = \sum_{i=1}^{N} \alpha_{i,k} \underbrace{\frac{\partial f_{\phi}(\boldsymbol{\mu}_{k})}{\partial \boldsymbol{\mu}_{k}}}_{\text{Jacobian of } f_{\phi}} \left(\boldsymbol{x}_{i} - f_{\phi}(\boldsymbol{\mu}_{k}) \right).$$

Here, $\frac{\partial f_{\phi}(\boldsymbol{\mu}_k)}{\partial \boldsymbol{\mu}_k}$ is the $d \times d$ Jacobian (or more general shape if $\boldsymbol{\mu}_k$ and $f_{\phi}(\boldsymbol{\mu}_k)$ differ in dimension).

10 Switching Linear Dynamical System

Setup. Consider a time series of observations $\{x_t\}_{t=1}^T$, where each $x_t \in \mathbb{R}^d$. We assume there are K distinct (linear) dynamical modes, each with parameters $\{A_k, b_k, \Sigma_k\}$. Let π_k be the mixing weight of mode k. A typical switching linear dynamical system (SLDS) posits:

$$\boldsymbol{x}_{t+1} \approx \boldsymbol{A}_k \boldsymbol{x}_t + \boldsymbol{b}_k, \quad k \in \{1, \dots, K\},$$

with Gaussian noise Σ_k . We treat x_{t+1} as a *child* and the $\{A_k, b_k\}$ (together with x_t) as *parents* in a mixture-of-linear-dynamics fashion.

Similarity function. Define, for each mode k,

$$\sin(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t; \boldsymbol{A}_k, \boldsymbol{b}_k) = \ln \pi_k - \frac{1}{2} (\boldsymbol{x}_{t+1} - \boldsymbol{A}_k \boldsymbol{x}_t - \boldsymbol{b}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_{t+1} - \boldsymbol{A}_k \boldsymbol{x}_t - \boldsymbol{b}_k).$$

Energy. Summing over all time steps t = 1, ..., T - 1, we write

$$E^{\text{SLDS}}(\{\boldsymbol{x}_t\}, \{\boldsymbol{A}_k, \boldsymbol{b}_k\}) = -\sum_{t=1}^{T-1} \ln \left(\sum_{k=1}^K \exp \left(\sin \left(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t; \boldsymbol{A}_k, \boldsymbol{b}_k \right) \right) \right).$$
(31)

Gradients. Let

$$\alpha_{t,k} = \operatorname{softmax}_k \left(\operatorname{sim} (\boldsymbol{x}_{t+1}, \boldsymbol{x}_t; \boldsymbol{A}_k, \boldsymbol{b}_k) \right),$$

i.e. the normalized exponent for mode k.

$$-\frac{\partial E^{\text{SLDS}}}{\partial \boldsymbol{x}_{t+1}} = \sum_{k=1}^{K} \alpha_{t,k} \, \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x}_{t+1} - \boldsymbol{A}_{k} \, \boldsymbol{x}_{t} - \boldsymbol{b}_{k}).$$

$$-\frac{\partial E^{\text{SLDS}}}{\partial \boldsymbol{x}_{t}} = \sum_{k=1}^{K} \alpha_{t,k} \left(-\boldsymbol{A}_{k}^{\top} \, \boldsymbol{\Sigma}_{k}^{-1} \right) \left(\boldsymbol{x}_{t+1} - \boldsymbol{A}_{k} \, \boldsymbol{x}_{t} - \boldsymbol{b}_{k} \right) \quad (t = 1, \dots, T - 1).$$

$$-\frac{\partial E^{\text{SLDS}}}{\partial \boldsymbol{A}_{k}} = \sum_{t=1}^{T-1} \alpha_{t,k} \, \boldsymbol{\Sigma}_{k}^{-1} \left(\boldsymbol{x}_{t+1} - \boldsymbol{A}_{k} \, \boldsymbol{x}_{t} - \boldsymbol{b}_{k} \right) \boldsymbol{x}_{t}^{\top}.$$

$$-\frac{\partial E^{\text{SLDS}}}{\partial \boldsymbol{b}_{k}} = \sum_{t=1}^{T-1} \alpha_{t,k} \, \boldsymbol{\Sigma}_{k}^{-1} \left(\boldsymbol{x}_{t+1} - \boldsymbol{A}_{k} \, \boldsymbol{x}_{t} - \boldsymbol{b}_{k} \right).$$

11 Layer Normalization

Setup. We consider a batch of input vectors $\{x_i\}_{i=1}^B$, where each vector $x_i \in \mathbb{R}^D$. Each vector is normalized by subtracting the mean and dividing by the standard deviation, with learnable scaling and bias parameters $\gamma, \delta \in \mathbb{R}^D$. For numerical stability, a small constant $\epsilon > 0$ is added to the variance.

Energy. The energy for layer normalization is given by:

$$E^{\text{LN}}(\{\boldsymbol{x}_i\}) = \sum_{i=1}^{B} \left[\gamma \sqrt{\frac{1}{D} \sum_{j=1}^{D} (x_{ij} - \bar{\boldsymbol{x}}_i)^2 + \epsilon} + \sum_{j=1}^{D} \delta_j x_{ij} \right],$$

where:

$$\bar{\boldsymbol{x}}_i = \frac{1}{D} \sum_{j=1}^{D} x_{ij}.$$

Derivative. The normalized outputs are obtained as the derivative of the energy with respect to the inputs:

$$\frac{\partial E^{\text{LN}}}{\partial x_{ij}} = \gamma_j \frac{x_{ij} - \bar{x}_i}{\sqrt{\frac{1}{D} \sum_{k=1}^{D} (x_{ik} - \bar{x}_i)^2 + \epsilon}} + \delta_j.$$
$$\bar{x}_i = \frac{1}{D} \sum_{k=1}^{D} x_{ik}.$$

12 Coordinate ascent

Consider an energy of the form

$$E(\{\boldsymbol{x}_j\}, \{\boldsymbol{\mu}_i\}; \boldsymbol{\theta}) = -\sum_{i=1}^{N} \ln \left(\sum_{i=1}^{S} \exp \left(\operatorname{sim}_{\boldsymbol{\theta}}(\boldsymbol{x}_j, \boldsymbol{\mu}_i) \right) \right),$$

with θ denoting the parameters of the similarity function. In an EM procedure, we alternate:

- **E-step**: Update latent variables using fixed θ .
- M-step: Update parameters θ in closed form given fixed latent assignments.

For *slot attention*, we have:

$$eta = \{ oldsymbol{W}_K, oldsymbol{W}_Q \}, \\ \sin_{ heta}(oldsymbol{x}_j, oldsymbol{\mu}_i) \ = \ (oldsymbol{W}_K oldsymbol{x}_j)^{ op} (oldsymbol{W}_Q oldsymbol{\mu}_i).$$
 $oldsymbol{A}$ with entries $A_{ji} = \operatorname{softmax}_i \Big((oldsymbol{W}_K oldsymbol{x}_j)^{ op} (oldsymbol{W}_Q oldsymbol{\mu}_i) \Big).$

E-step: Update Slots

Fix W_K, W_Q . The gradient for each slot μ_i is

$$-\frac{\partial E^{\mathrm{Slot}}}{\partial \boldsymbol{\mu}_i} = \sum_{i=1}^N A_{ji} \, \boldsymbol{W}_Q^\top \boldsymbol{W}_K \boldsymbol{x}_j.$$

Use this gradient to iteratively update $\{\mu_i\}$ until convergence.

M-step: Update Parameters

Given fixed slots $\{\mu_i\}$ and attention matrix \mathbf{A} , we aim to update the parameters $\mathbf{W}_K, \mathbf{W}_Q$. This is motivated by setting the gradient of the energy with respect to these parameters to zero:

$$-\frac{\partial E^{\mathrm{Slot}}}{\partial \boldsymbol{W}_{K}} = 0, \qquad -\frac{\partial E^{\mathrm{Slot}}}{\partial \boldsymbol{W}_{O}} = 0.$$

Under the fixed assignments provided by **A** and slots $\{\mu_i\}$, these conditions are equivalent to solving a weighted least-squares problem. Specifically, we consider minimizing the objective

$$\min_{\boldsymbol{W}_{K}, \boldsymbol{W}_{Q}} \sum_{i=1}^{N} \sum_{i=1}^{S} A_{ji} \left\| \boldsymbol{W}_{K} \boldsymbol{x}_{j} - \boldsymbol{W}_{Q} \boldsymbol{\mu}_{i} \right\|^{2},$$

since the stationary point of this quadratic form corresponds to zero gradients with respect to W_K, W_Q .

Update W_Q : Differentiate w.r.t. W_Q , set to zero:

$$\sum_{j,i} A_{ji} \left(\boldsymbol{W}_{K} \boldsymbol{x}_{j} - \boldsymbol{W}_{Q} \boldsymbol{\mu}_{i} \right) \boldsymbol{\mu}_{i}^{\top} = 0,$$

yielding

$$oldsymbol{W}_Q \; = \; \Biggl(\sum_{j,i} A_{ji} \, oldsymbol{W}_K oldsymbol{x}_j \, oldsymbol{\mu}_i^{ op} \Biggr) \Biggl(\sum_{j,i} A_{ji} \, oldsymbol{\mu}_i oldsymbol{\mu}_i^{ op} \Biggr)^{-1}.$$

Update W_K : Similarly, differentiate w.r.t. W_K , set to zero:

$$\sum_{j,i} A_{ji} \left(\boldsymbol{W}_{K} \boldsymbol{x}_{j} - \boldsymbol{W}_{Q} \boldsymbol{\mu}_{i} \right) \boldsymbol{x}_{j}^{\top} = 0,$$

yielding

$$oldsymbol{W}_K \; = \; \Biggl(\sum_{j\,i} A_{ji} \, oldsymbol{W}_Q oldsymbol{\mu}_i \, oldsymbol{x}_j^{ op} \Biggr) \Biggl(\sum_{j\,i} A_{ji} \, oldsymbol{x}_j oldsymbol{x}_j^{ op} \Biggr)^{-1}.$$

Iterate: Alternate between the E-step (updating $\{\mu_i\}$) and the M-step (updating W_K, W_Q) until convergence.

A Appendix: Derivation of Gradient Updates

Let us consider a generic term:

$$-\ln\Big(\sum_{m=1}^{M}\exp\big(f_m(\boldsymbol{x})\big)\Big),$$

where $x \in \mathbb{R}^d$ is some variable, and each f_m is a scalar function. We compute its gradient:

$$\frac{\partial}{\partial \boldsymbol{x}} \left[-\ln \left(\sum_{m=1}^{M} \exp(f_m(\boldsymbol{x})) \right) \right] = -\frac{1}{\sum_{m'} \exp(f_{m'}(\boldsymbol{x}))} \sum_{m=1}^{M} \exp(f_m(\boldsymbol{x})) \frac{\partial f_m(\boldsymbol{x})}{\partial \boldsymbol{x}}
= -\sum_{m=1}^{M} \left[\frac{\exp(f_m(\boldsymbol{x}))}{\sum_{m'} \exp(f_{m'}(\boldsymbol{x}))} \right] \frac{\partial f_m(\boldsymbol{x})}{\partial \boldsymbol{x}}.$$

Defining softmax_m $(f(x)) = \frac{\exp(f_m(x))}{\sum_{m'} \exp(f_{m'}(x))}$, this is

$$-\sum_{m=1}^{M} \operatorname{softmax}_{m}(f(\boldsymbol{x})) \frac{\partial f_{m}(\boldsymbol{x})}{\partial \boldsymbol{x}},$$

which matches the softmax-weighted gradient structure.

B Appendix

Here, we collect the explicit partial derivatives of sim for each model discussed.

Gaussian Mixture Models

$$\operatorname{sim}ig(oldsymbol{x}_i,oldsymbol{\mu}_kig) \ = \ \operatorname{ln}oldsymbol{\pi}_k \ - \ rac{1}{2}ig(oldsymbol{x}_i-oldsymbol{\mu}_kig)^ opoldsymbol{\Sigma}_k^{-1}ig(oldsymbol{x}_i-oldsymbol{\mu}_kig).$$
 $rac{\partial}{\partialoldsymbol{\mu}_k}\operatorname{sim}(oldsymbol{x}_i,oldsymbol{\mu}_kig) \ = \ oldsymbol{\Sigma}_k^{-1}ig(oldsymbol{x}_i-oldsymbol{\mu}_kig).$

Cross Attention

$$\begin{split} \sinig(oldsymbol{q}_c, oldsymbol{k}_pig) &= oldsymbol{q}_c^ op oldsymbol{k}_p. \ rac{\partial}{\partial oldsymbol{q}_c} \sin(oldsymbol{q}_c, oldsymbol{k}_p) &= oldsymbol{k}_p, & rac{\partial}{\partial oldsymbol{k}_p} \sin(oldsymbol{q}_c, oldsymbol{k}_p) &= oldsymbol{q}_c. \end{split}$$

Hopfield Networks

$$\sinig(oldsymbol{x}_i,oldsymbol{m}_\muig) \ = \ oldsymbol{x}_i^ op oldsymbol{m}_\mu. \ rac{\partial}{\partial oldsymbol{x}_i} \mathrm{sim}(oldsymbol{x}_i,oldsymbol{m}_\muig) \ = \ oldsymbol{m}_\mu, \quad rac{\partial}{\partial oldsymbol{m}_\mu} \mathrm{sim}(oldsymbol{x}_i,oldsymbol{m}_\muig) \ = \ oldsymbol{x}_i.$$

Slot Attention

$$\sin(\boldsymbol{x}_j, \boldsymbol{\mu}_i) = (\boldsymbol{W}_K \, \boldsymbol{x}_j)^{\top} (\boldsymbol{W}_Q \, \boldsymbol{\mu}_i).$$
 $rac{\partial}{\partial \boldsymbol{x}_i} \sin(\boldsymbol{x}_j, \boldsymbol{\mu}_i) = \boldsymbol{W}_K^{\top} \, \boldsymbol{W}_Q \, \boldsymbol{\mu}_i, \quad rac{\partial}{\partial \boldsymbol{\mu}_i} \sin(\boldsymbol{x}_j, \boldsymbol{\mu}_i) = \boldsymbol{W}_Q^{\top} \, \boldsymbol{W}_K \, \boldsymbol{x}_j.$

Self-Attention

$$\begin{split} & \sin \left(\boldsymbol{x}_{c}, \boldsymbol{x}_{p} \right) \; = \; \left(\boldsymbol{W}^{Q} \boldsymbol{x}_{c} \right)^{\top} \left(\boldsymbol{W}^{K} \boldsymbol{x}_{p} \right). \\ & \frac{\partial}{\partial \boldsymbol{x}_{c}} \mathrm{sim} (\boldsymbol{x}_{c}, \boldsymbol{x}_{p}) \; = \; \boldsymbol{W}^{Q^{\top}} \boldsymbol{W}^{K} \, \boldsymbol{x}_{p}, \quad \frac{\partial}{\partial \boldsymbol{x}_{p}} \mathrm{sim} (\boldsymbol{x}_{c}, \boldsymbol{x}_{p}) \; = \; \boldsymbol{W}^{K^{\top}} \boldsymbol{W}^{Q} \, \boldsymbol{x}_{c}. \end{split}$$

Switching Linear Dynamical System

$$sim(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t; \boldsymbol{A}_k, \boldsymbol{b}_k) = \ln \pi_k - \frac{1}{2} (\boldsymbol{x}_{t+1} - \boldsymbol{A}_k \boldsymbol{x}_t - \boldsymbol{b}_k)^\top \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_{t+1} - \boldsymbol{A}_k \boldsymbol{x}_t - \boldsymbol{b}_k).$$

$$\frac{\partial}{\partial \boldsymbol{x}_{t+1}} sim(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t; \boldsymbol{A}_k, \boldsymbol{b}_k) = \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_{t+1} - \boldsymbol{A}_k \boldsymbol{x}_t - \boldsymbol{b}_k),$$

$$\frac{\partial}{\partial \boldsymbol{x}_t} sim(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t; \boldsymbol{A}_k, \boldsymbol{b}_k) = -\boldsymbol{A}_k^\top \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_{t+1} - \boldsymbol{A}_k \boldsymbol{x}_t - \boldsymbol{b}_k),$$

$$\frac{\partial}{\partial \boldsymbol{A}_k} sim(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t; \boldsymbol{A}_k, \boldsymbol{b}_k) = \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_{t+1} - \boldsymbol{A}_k \boldsymbol{x}_t - \boldsymbol{b}_k) \boldsymbol{x}_t^\top,$$

$$\frac{\partial}{\partial \boldsymbol{b}_k} sim(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t; \boldsymbol{A}_k, \boldsymbol{b}_k) = \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_{t+1} - \boldsymbol{A}_k \boldsymbol{x}_t - \boldsymbol{b}_k).$$

Predictive Coding

$$\sin(\boldsymbol{x}_i, \boldsymbol{\mu}_k) = -\frac{1}{2} \|\boldsymbol{x}_i - f_{\phi}(\boldsymbol{\mu}_k)\|^2.$$

$$\frac{\partial}{\partial \boldsymbol{x}_i} \sin(\boldsymbol{x}_i, \boldsymbol{\mu}_k) = \boldsymbol{x}_i - f_{\phi}(\boldsymbol{\mu}_k),$$

$$\frac{\partial}{\partial \boldsymbol{\mu}_k} \sin(\boldsymbol{x}_i, \boldsymbol{\mu}_k) = \frac{\partial f_{\phi}(\boldsymbol{\mu}_k)}{\partial \boldsymbol{\mu}_k} (\boldsymbol{x}_i - f_{\phi}(\boldsymbol{\mu}_k)).$$