Module outline

Application:

Time series forecasting with 10T data

Model:

Recurrence

Long-short term memory cell

Concepts:

Recurrence

LSTM

Dropout

Train-Test-Predict Workflow

Sequences (many to one)

Problem: Time series prediction with IOT data

Output (Y: n x future prediction)

Model Rec = Recurrence

14000 12000 10000 6000

Input feature (X: n x 14 data pnts)

many to one

Sequences (many to many + 1:1)

Problem: Tagging entities in Air Traffic Controller (ATIS) data

From_city To_city Date Rec Rec Rec Rec Rec Rec burbank show to seattle flights tomorrow

many to many

Forecasting

Recurrence

 \vec{x} (t) : Input (n-dímensional array) at time t

 $\vec{\vec{p}}$ (t) $\vec{\vec{h}}$ (t) : Output (c-dimensional array) at time t

: Internal State [m-dímensional array] at time t a.k.a history

Input:

Array of numeric values coming from different sensor For numeric:

Píxels in an array, Map the image píxels to a compact representation (say n values) For an image:

For word in text: Represent words as a numeric vector using embeddings (word2vec or Glove)

Recurrence

Recurrence (Vanishing Gradients)

Doctor Who is a British science-fiction television programme produced by the <u>BBC</u> since 1963. The programme depicts the adventures of the Doctor, a Time Lord—a space and time-travelling humanoid alien. He explores the universe in his TARDIS, a sentient time-travelling space ship. Accompanied by companions, the Doctor combats a variety of foes, while working to save civilizations and help people in need. This television series produced by the

history

$$\vec{h} = \mathbf{W} \, \vec{x}^T + \vec{b}$$

A single set of (\mathbf{W}, \vec{b}) has limited memory

Long-Short Term Memory (LSTM)

Forget gate

update gate

Input

Result gate

New cell memory

$$\vec{C}$$
 (t) = \vec{C} (t-1) \times **f** + **i** \times **u**

New history

$$\vec{h}$$
(t) = tanh(\vec{C} (t)) \times

Time-series forecasting

Problem: Time series prediction with IOT data

Output
(Y: n x future prediction)

```
z = create_model(x):
        m = C.layers.Recurrence(C.layers.LSTM(TIMESTEPS))(x)
        m = C.sequence.last(m)
        m = C.layers.Dense(1)(m)
        return m
```

Input feature
(X: n x 14 data pnts)

Dropout

Problem:

Overfitting Model works great with training data With new data (unseen during training): high prediction error

Classical Approach:

L1/L2 regularization

Data augmentation / train with noise added

Early stopping

Dropout

Extremely effective technique to tackle overfitting in neural networks

Dropout

Dropout

Time-series forecasting

IOT data:

- ✓ Output of a solar panel, measurements are recorded at every 30 min interval:
 - solar.current: Current production in Watts
 - solar.total: Total production for the day so far in Watt/hour

Data Summary:

✓ Starting at a time in the day, two values are recorded

time, solar.current, solar.total

7am, 6.3, 1.7

7:30am,44.3,11.4

- ✓ 3 years of data
- ✓ The input data is not cleansed i.e., errors (panel failed to report) is included

Data pre-processing

Goal:

- ✓ compose sequence such that each training instance would be:
 - X = [solar.current@t = 1 t = 14] (t=1 14: corresponds to 1 day)
 - Y = Predicted total production for a future day

Pre-processing:

✓ Steps:

- read raw data into a pandas dataframe,
- normalize the data,
- group by day,
- append the columns "solar.current.max" and "solar.total.max", and
- generate the sequences for each day.

✓ Data filtering:

- If X has less than 8 data points we skip
- If X has more than 14 data points we truncate

Time-series forecasting

Problem: Time series prediction with IOT data

Output
(Y: n x future prediction)

```
z = create_model(x):
        m = C.layers.Recurrence(C.layers.LSTM(TIMESTEPS))(x)
        m = C.sequence.last(m)
        m = C.layers.Dropout(0.2)(m)
        m = C.layers.Dense(1)(m)
        return m
```

input feature
(X: n x 14 data pnts)

Predict (Y*) Dense Dropout **LSTM LSTM** LSTM X(t=0)X(t=1)X(t=9)

Train / Validation Workflow

Train workflow


```
z = create_model(x):
    m = C.layers.Recurrence(C.layers.LSTM(H_DIMS))(x)
    m = C.sequence.last(m)
    m = C.layers.Dropout(0.2)(m)
    m = C.layers.Dense(1)(m)
    return m
```


 $squared_error(z, Y)$

 $squared_error(z, Y)$

Trainer (model, (loss, error), learner)

Trainer.train_minibatch($\{X, Y\}$)

Learner

sgd, adagrad etc, are solvers to estimate

Test workflow

Test workflow


```
z = create_model(x):
    m = C.layers.Recurrence(C.layers.LSTM(H_DIMS))(x)
    m = C.sequence.last(m)
    m = C.layers.Dropout(0.2)(m)
    m = C.layers.Dense(1)(m)
    return m
```

```
Solar Test

Output feature (32 x 1)

(Y)

Solar panel output for the day
```


Trainer.test minibatch({X, Y})

Returns the squared error between the observed and predicted output from the solar panel

Prediction workflow

Predicted value of the solar panel output (predicted_label)

[y watts