

Linguagens Formais e Autômatos (LFA)

Aula de 11/11/2013

Linguagens Recursivas e Máquinas de Turing

Especificação Formal

Ramos(2009)

Figura 6.1: Máquina de Turing

A Figura 6.1 ilustra a configuração inicial de uma Máquina de Turing com cadeia de entrada igual a $\sigma_1 \sigma_2 \sigma_3 ... \sigma_n$. Formalmente, uma Máquina de Turing é definida como:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, <, B, F)$$

onde:

- Q é o conjunto finito não-vazio de estados;
- Σ é o alfabeto de entrada, formado por um conjunto finito não-vazio de símbolos;
- Γ é um conjunto, também finito e não-vazio, de símbolos que podem ser lidos e/ou escritos na fita de trabalho. $\Gamma \supseteq \Sigma$;
- δ é a função parcial de transição, $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{E,D\}}$;
- q_0 é o estado inicial, $q_0 \in Q$;

Especificação Formal

Ramos(2009)

Figura 6.1: Máquina de Turing

A Figura 6.1 ilustra a configuração inicial de uma Máquina de Turing com cadeia de entrada igual a $\sigma_1\sigma_2\sigma_3...\sigma_n$. Formalmente, uma Máquina de Turing é definida como:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, <, B, F)$$

- "<" $\in \Gamma,$ "<" $\not\in \Sigma,$ é o símbolo que indica a primeira posição da fita de trabalho. Durante toda a operação da máquina, o símbolo "<" não pode ser gravado em nenhuma outra posição da fita;
- $B \in \Gamma$, $B \not\in \Sigma$, é o símbolo utilizado para preencher inicialmente todas as posições que podem ser lidos e/ou à direta da cadeia de entrada na fita. Durante a operação da máquina, o símbolo B pode ser gravado em qualquer posição da fita;
- $F\subseteq Q$ é o conjunto de estados finais.

ito não-vazio de símbolos;

Linguagens RECURSIVAS

São hierarquicamente superiores às linguagens sensíveis a contexto (e também àquelas hierarquicamente inferiores às LSC's).

Linguagens Recursivas são, por isto, chamadas de Linguagens Decidíveis.

Linguagens RECURSIVAS são aquelas para as quais existe pelo menos uma MT reconhecedora que:

- para quando uma cadeia c <u>pertencente</u> a L _{recursiva} definida sobre um alfabeto Σ é aceita e
- para quando uma cadeia c' <u>não pertencente</u> a L _{recursiva} definida sobre um alfabeto Σ é rejeitada.

Há Linguagens para as quais o processo de reconhecimento pode não parar?

Sim!

Se relaxarmos a condição de parada para cadeias <u>não</u> <u>pertencentes</u> à linguagem (obviamente mantendo-se a condição de parada para as <u>pertencentes</u>) chegamos a uma outra classe de linguagens, ainda mais amplas que as linguagens recursivas, a linguagens <u>recursivamente</u> enumeráveis.

O assunto será discutido mais adiante.

MT's Determinísticas e Não-Determinísticas?

Sim!

Na realidade, assim como acontece com os autômatos finitos não-determinísticos, que podem ser convertidos em determinísticos sem prejuízo das linguagens que reconhecem ...

... toda e qualquer linguagem aceita por uma MT nãodeterminística é aceita também por pelo menos uma MT determinística.

Tal não acontece com os autômatos de pilha não-determinísticos, que reconhecem uma classe mais ampla de linguagens do que os determinísticos reconhecem.

Contrastes

Tipo de Linguagem	Autômato Reconhecedor	Limitações sobre o Alfabeto Σ?	Não Determinismo → Determinismo ?
Regulares - Tipo 3	Autômatos Finitos	não há	ND converte para D sem prejuízo a qualquer linguagem L que reconheça.
Livres de Contexto - Tipo 2	Autômatos de Pilha	não há	Uma LLC pode ser reconhecida por ND mas não por D.
Linguagens Sensíveis a Contexto - Tipo 1	Máquinas de Turing de Fita Limitada	se $\varepsilon \in \Sigma$, só pode derivar da produção S $\rightarrow \varepsilon$	ND converte para D sem prejuízo a qualquer linguagem L que reconheça.
Linguagens (Irrestritas) Recursivas - Tipo 0	Máquina de Turing de Fita Ilimitada que sempre para	não há	ND converte para D sem prejuízo a qualquer linguagem L que reconheça.
·			

Parsing "controlado externamente" da cadeia xxxyxzxz de acordo com uma Gramática Irrestrita.

Para praticar:

1.Responda: $\{a,b,c\}\subset\Sigma$?
2.Construa uma MT para reconhecer esta linguagem.

 $L = w \in \{x,y,z\}^* \mid w = x^n y (xz)^{n-1}$ Esta linguagem é "estritamente recursiva"?

Estruturas de controle (externo)

Através de expressões regulares

Cada produção tem um índice (p1,p2 ... pn); uma expressão como p1 (p2 p3)* p4 controla a derivação.

Através de matrizes

Cada produção tem um índice (p1,p2 ... pn); uma matriz de aplicação controla a derivação, linha a linha, da coluna mais à esquerda para a mais à direita.

Através de regras

Cada produção tem um índice (p1,p2 ... pn); regras como "Se <alguma condição> então aplicam-se as regras pi,pj...pk" controlam a derivação.