

Time Series Analytics

109-1 Homework #04

Due at 23h59, October 25 2020; files uploaded to NTU-COOL

1. (10%) Show that for an MA(1) process $\max_{-\infty < \theta < \infty} \rho_1 = 0.5 \text{ and } \min_{-\infty < \theta < \infty} \rho_1 = -0.5$

- 2. (10%) For an AR(2) process $y_t 1.0y_{t-1} + 0.5y_{t-2} = a_t$:
 - (a) Calculate ρ_1 .
 - (b) Using ρ_0 and ρ_1 as starting values and the difference equation form for the autocorrelation function, calculate the values of ρ_1 for k=2,...,15.
- 3. (20%) Put the following four models in *B* notation, and check whether it is stationary and invertible.
 - $(1) y_t = a_t 1.3a_{t-1} + 0.4a_{t-2}$
 - (2) $y_t 0.5y_{t-1} = a_t 1.3a_{t-1} + 0.4a_{t-2}$
 - (3) $y_t 1.5y_{t-1} + 0.6y_{t-2} = a_t$
 - (4) $y_t y_{t-1} = a_t 0.5a_{t-1}$
- 4. (20%) For each of the models of Exercise 3, obtain:
 - (a) The first three ψ_i weights of the model form: $y_t = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \cdots$
 - (b) The first three π_j weights of the model form: $y_t = \pi_1 y_{t-1} + \pi_2 y_{t-2} + \cdots + a_t$
 - (c) $V[y_t]$, assuming that $\sigma_a^2 = 1.0$
- 5. (10%) Consider y_t a stationary process. Show that if $\rho_1 < \frac{1}{2}$, $(1-B)y_t$ has a larger variance than does $V[y_t]$.
- 6. (20%) Consider an AR(1) process satisfying $y_t = \phi y_{t-1} + e_t$, where ϕ can be **any** number and e_t is a white noise process such that e_t is independent of the past y_{t-1}, y_{t-2}, \dots Let y_0 be a random variable with mean μ_0 and σ_0^2 .
 - (a) For t > 0, show that

$$y_t = e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \phi^3 e_{t-3} + \dots + \phi^{t-1} e_1 + \phi^t y_0.$$

- (b) Show that $E[y_t] = \phi^t \mu_0$, for t > 0.
- (c) Show that for t > 0, we have

$$V[y_t] = \begin{cases} \frac{1 - \phi^{2t}}{1 - \phi^2} \sigma_e^2 + \phi^{2t} \sigma_0^2 & \text{for } \phi \neq 1, \\ t \sigma_e^2 + \sigma_0^2 & \text{for } \phi = 1. \end{cases}$$

- (d) Assuming $\mu_0 = 0$, show that, we must have $\phi \neq 1$ to make y_t stationary.
- (e) Following (d) and supposing that $\mu_0 = 0$ and y_t is stationary, show that $V[y_t] = \frac{\sigma_e^2}{1 \phi^2}$ and we must have $|\phi| < 1$.