

Wydział Mechaniczny Energetyki i Lotnictwa Politechnika Warszawska

Wprowadzenie do PTC Creo

mgr inż. Grzegorz Kamiński

30 września 2024

Schemat postępowania

- * budowa modelu geometrycznego (Creo Parametrics),
- * przejście do Creo Simulate,
- * stworzenie modelu obliczeniowego,
 - ** uproszczenie geometrii,
 - ** definicj<mark>a</mark> warunk<mark>ów</mark> brzeg<mark>ow</mark>ych,
 - ** definicja obciążeń,
 - ** <mark>de</mark>finicja <mark>ma</mark>teriału,
 - ** definicja połączeń,
 - ** generowanie siatki,
- * obliczenia,
- * an<mark>aliz</mark>a wyni<mark>ków</mark>. –

Wyznaczyć linię ugięcia oraz przemieszczenie końca belki wspornikowej o przekroju prostokątnym 100x50x5. Belka jest utwierdzona jednostronnie i obciążona siłą skupioną o wartości 10kN.

Schemat rozwiązania

- * utworzyć nowy plik,
- * Uruchomić szkicowaniku na płaszczyźnie Front, narysować linię prostą o odpowiedniej długości i zakończyć szkic,
- * uruchomić Simulate (Aplications/Simulate),
- * stworzyć model uproszczony (Insert/Beam),
- * w References wybrać Edge/Curve i wskazać narysowaną linię w szkicowniku,
- * w Beam Defi<mark>niti</mark>on/Section/More/New wybrać wymiary przekroju belki,
- * wskaz<mark>ać</mark> materi<mark>ał,</mark>

Schemat rozwiązania

- * ustalić warunki brzegowe Insert/Displacement Constraint wybrać punkt i odebrać wszystkie stopnie swobody (Fixed),
- * zdefiniować obciążenie i grawitację (wybór drugiego skrajnego punktu),
- * dokonać wyboru analizy (Run Design Study/File/New Static/OK),
- * uruch<mark>om</mark>ić obli<mark>cze</mark>nia (Ru<mark>n/</mark>Start),
- * sprawdzić wyniki (Review Results): aby wyświetlić wykres wybrać typ Graph (Displacement).

Dl<mark>a b</mark>elki pokazanej n<mark>a s</mark>chema<mark>cie</mark> wyzna<mark>cz</mark>yć naprężenia zre<mark>du</mark>kowan<mark>e i l</mark>inię ugięcia belki. Przekrój belki taki sam jak w poprzednim zadaniu.

Wyznaczyć mapę przemieszczeń zredukowanych oraz linię ugięcia belki pokazanej na schemacie. Przyjąć przekrój profilu jak wcześniej. W lewej części belki obciążenie wzrasta liniowo według funkcji

$$q_1(x) = 1500 \cdot x$$

Schemat rozwiązania

Realizacja (tak jak poprzednio). Należy narysować dwie linie odpowiedzialne za położenie i długość obciążenia ciągłego. Dodać dwa punkty jako podpory.

Przy definiowaniu obciążenia (W polu Distribution wybrano opcję Total Load, w oknie Spatial Variation opcję Function of Coordinates i po wybraniu f(x) zdefiniowano funkcję (wpisać x).

Przed definicją drugiego obciążenia należy dodać drugi układ współrzędnych w miejscu początkowego obciążenia.

Wyznaczyć naprężenia zredukowane i linię ugięcia w kratownicy. Przekrój belek taki sam jak w poprzednim zadaniu.

Dziękuję za uwagę

grzegorz.kaminski@pw.edu.pl