Final Project: Two-level Discrete 2-D Wavelet Transform

Jacob Taylor Cassady

CECS 627: Digital Image Processing

Fall 2019

1 RESULTS

Wavelet Name	Wavelet Enum	Lossless SNR	Lossless Compression Ratio	Lossy SNR	Lossy Compression Ratio
coif5	1	403.5385	1.1798	52.9706	12.4815
db1	2	701.1841	1.3949	45.9911	16.5504
db2	3	582.5093	1.3084	50.0388	16.1003
db4	4	563.2154	1.4411	52.2531	15.5909
db8	5	544.6446	1.2623	52.4808	14.4907
db16	6	547.9617	1.1801	53.1195	12.4438
db32	7	339.8129	1.0014	53.1832	9.3185

DELIVERABLES

1.1 PLOT WAVELET NAME VS. COMPRESSION RATIO FOR THE LOSSLESS SYSTEM

Please note: the wavelet enumeration numbers correspond to wavelet names shown in the results table.

1.2 PLOT WAVELET NAME V.S COMPRESSION RATIO FOR LOSSY SYSTEM

Please note: the wavelet enumeration numbers correspond to wavelet names shown in the results table.

1.3 PLOT WAVELET NAME VS. SNR IN DBS FOR LOSSY SYSTEM

I was unable to find the SNR function you used in your example. I found an equation online from $\underline{\text{here}}$ to compute SNR that gave analogous results to your example. Decibels were calculated by the following equation: $snr_db = 20*log10(snr)$.

Wavelet Name	Lossy Compression Ratio	Lossy SNR DBs	
coif5	12.4815	2	21.92533562
db1	16.5504	2	24.37616989
db2	16.1003	2	24.13667937
db4	15.5909	2	23.85742372
db8	14.4907	2	23.22178731
db16	12.4438		21.89906045
db32	9.3185	1	19.38692019

2.1 MATLAB SCRIPT

```
wavelet names = {'coif5', 'db1', 'db2', 'db4', 'db8', 'db16', 'db32'}
for wavelet index = 1:length(wavelet names)
    wavelet name = wavelet names{wavelet index}
    [h0 h1 f0 f1] = wfilters(wavelet name);
    % Get the image
    f = mat2gray(imread('lenna.jpg'));
    sz1=size(f);
    % Perform Single-level 2D WLT
    [LL LH HL HH] = dwt2(f, wavelet name);
    sz2=size(LL);
    \ensuremath{\$} Perform Two Level 2d WLT by transmofring quandrant LL
    [LL1 LH1 HL1 HH1] = dwt2(LL, wavelet name);
    sz3 = size(LL1);
    % Reconstruct Lossless Image
    LL2 = idwt2(LL1, LH1, HL1, HH1, wavelet name, sz2);
    lossless q = idwt2(LL2, LH, HL, HH, wavelet name, sz1);
    lossless snr = 20*log(norm(f,'fro')/norm(f-lossless g,'fro'))
    % Sum the histograms across the 7 output sub images
    h1=hist(reshape(LL1, size(LL1, 1) * size(LL1, 2), 1), 256);
    h2=hist(reshape(LH1, size(LH1, 1) * size(LH1, 2), 1), 256);
    h3=hist(reshape(HL1, size(HL1, 1) * size(HL1, 2), 1), 256);
    h4=hist(reshape(HH1, size(HH1, 1) * size(HH1, 2), 1), 256);
    h5=hist(reshape(LH, size(LH, 1) * size(LH, 2), 1), 256);
    h6=hist(reshape(HL, size(HL, 1) * size(HL, 2), 1), 256);
    h7=hist(reshape(HH, size(HH, 1) * size(HH, 2), 1), 256);
    h=h1+h2+h3+h4+h5+h6+h7;
    h sum = sum(h);
    \ensuremath{\text{\%}} Compute the entropy of the lossless image
    h = h / h sum; e = 0; L2 = log(2); for i = 1:256 if h(i) > 0 e = e-
h(i)*log(h(i))/L2; end; end;
    % Compute the Compression Ratio
    lossless compression ratio = 8*512*512/(e*h sum)
    % Reconstruct the lossy Image
    z1 = zeros(sz3);
    z2 = zeros(sz2);
    LL2 = idwt2(LL1, z1, z1, z1, wavelet name, sz2);
    lossy q = idwt2(LL2, z2, z2, z2, wavelet name, sz1);
    lossy snr = 20*log(norm(f,'fro')/norm(f-lossy q,'fro'))
```

```
% Compute the entropy of the lossy image
    h1_sum = sum(h1);
h1 = h1 / h1_sum; e = 0; 12 = log(2); for i = 1:256 if h1(i) > 0 e = e -
h1(i)*log(h1(i))/L2; end; end;
    lossy_compression_ratio = 8*512*512/(e*h1_sum)
end
2.2 MATLAB OUTPUT
>> FinalProject
wavelet_names =
1×7 cell array
 {'coif5'} {'db1'} {'db2'} {'db4'} {'db8'} {'db16'} {'db32'}
wavelet_name =
  'coif5'
lossless_snr =
403.5385
lossless_compression_ratio =
```

1.1798


```
'db8'
lossless_snr =
544.6446
lossless_compression_ratio =
  1.2623
lossy_snr =
 52.4808
lossy_compression_ratio =
 14.4907
wavelet_name =
  'db16'
lossless_snr =
```

lossless_compression_ratio =

1.1801

lossy_snr =

53.1195

lossy_compression_ratio =

12.4438

wavelet_name =

'db32'

lossless_snr =

339.8129

lossless_compression_ratio =

1.0014

lossy_snr =

53.1832

lossy_compression_ratio =

9.3185