Modeling the Characteristics of Airport Travelers

Melanie Malinas Springboard Data Science Career Track Capstone 1

Problem Statement

- Analyzing the characteristics of business vs. non-business travelers
 - Business travelers are twice as profitable for an airline as non-business travelers
- Analysis of San Francisco International Airport (SFO) survey data from 2017
- Survey asked over 2,500 SFO travelers about their experience at SFO as well as information about their trips and demographic information

Data Cleaning

- Data was acquired in a CSV file from SF Open Data
- Almost all the data was categorical data
- Data was weighted, so I created dictionaries with weighted counts for each answer
 - For example, when the data was weighted, the number of pleasure travelers went down and the number of business travelers went up
- Renamed columns
- Mapped descriptions from data dictionary onto data
- Created a new column for whether someone was a business traveler or a non-business traveler

Types of SFO travelers

Categorical correlations between variables

How people got to the airport

Checking bags

Times flown out of SFO

Age of traveler

Gender of traveler

Household income of traveler

Business case

- Airline marketing a travel rewards credit card
- Giving deal when checking in at the desk of the airport
 - Features to use: Bags, Age, Gender, Times Flown
- Optimizing F1 score
 - Striking a balance between precision and recall

Machine learning methods

Method	Precision	Recall	F1 Score
Logistic regression - no class balance	0.54	0.63	0.581
Logistic regression - class balance	0.55	0.61	0.578
Random forests - no class balance	0.59	0.52	0.550
Random forests - class balance	0.61	0.51	0.553
SVM - no class balance	0.66	0.42	0.511
SVM - class balance	0.49	0.64	0.553
Logistic regression - upsampling	0.58	0.60	0.591

Decision tree visualization

Conclusions

- It is possible to predict whether someone is a business traveler based only on their gender, age, number of times flown out of SFO, and whether they checked a bag.
- Surprising that logistic regression was the best model and random forests did not do as well
- Usefulness of upsampling
- Assumptions of this project:
 - We did not have info on whether someone used a business credit card to book flight or whether they used a business-related email
- Work may be useful for distinguishing non-obvious business travelers from non-business travelers