Proof. $S \subset \mathbb{Z} \Rightarrow S = m\mathbb{Z}$

Since $S \neq \emptyset$, $\exists a \in S$

Since S is closed under $+, -, 0 \in S$. We may assume that $S \neq \{0\}$. (if $S = \{0\}$, then $S = 0 \cdot \mathbb{Z}$)

Take any $n \in S$. Then $0 - n = -n \in S$. Thus we may also assume that S has a positive integer.

In all, $WLOG^1$, we may assume that S has a positive integer.

By WOP, S has a least positive integer m. We want to show that $S = m\mathbb{Z}$.

 $A = B \Rightarrow A \subset B$ and $B \subset A$ $A \subset B \Rightarrow \text{if } x \in A$

A then $x \in B$

1. $m\mathbb{Z} \subset S$

 $m \in S$ and S is closed under +, -. So S must have all multiples of m.

2. $S \subset m\mathbb{Z}$

Take any $a \in S$. By division algorithm, $\exists q, r \in \mathbb{Z}$ such that a = qm + r where $0 \le r < m$. Since $mq \in S$ and $a \in S$,

$$r = a - mq \in S$$

. Thus r = 0 by the minimality of m. Hence $a = mq \in m\mathbb{Z}$.

Remains to show the uniqueness of m. Suppose $m\mathbb{Z} = S = m'\mathbb{Z}$. Then $m = \pm m'$. Since m, m' > 0, m = m'.

Theorem 1. Let d=(a,b). Then d=ax+by for some $x,y\in\mathbb{Z}$ and $\{ax+by\mid x,y\in\mathbb{Z}\}$ is the set of all multiples of d. i. e. $a\mathbb{Z}+b\mathbb{Z}=\{ax+by\mid x,y\in\mathbb{Z}\}$.

Proof. We knew that d = ax + by for some $x, y \in \mathbb{Z}$. (by the theorem in the last class)

Define $S := a\mathbb{Z} + b\mathbb{Z}$. Then $a\mathbb{Z} \subset S$ and $b\mathbb{Z} \subset S$. Since S is closed under +, -, it follows the previous theorem that

$$\exists m \geq 0 \in \mathbb{Z} \text{ such that } S = m\mathbb{Z}.$$

We want to show that m = d. Since $a, b \in S = m\mathbb{Z}$, $m \mid a, m \mid b$. If $e \mid a$ and $e \mid b$, then $e \mid m$. $(\because m + as + bt \text{ for some } s, t \in \mathbb{Z})$

By the definition of GCD, m = d.

¹ Without loss of generality

Remark The GCD of a and b (not both 0) is the least positive integer that is a linear combination of a and b.

Theorem 2 (Euclidean Algorithm). $a, b \in \mathbb{Z}$, $a \neq 0$. Using the division algorithm,

$$b = aq_1 + r_1$$
, where $0 < r_1 < |a|$.

If $r_1 = 0$, terminate process.

Repeating process,

$$a = r_1q_2 + r_2$$
 $0 < r_2 < r_1$
 $r_1 = r_2q_3 + r_3$ $0 < r_3 < r_2$
 \vdots
 $r_{n-2} = r_{n-1}q_n + r_n$ $0 < r_n < r_{n-1}$
 $r_{n-1} = r_nq_{n+1}$

Then $(a, b) = r_n$.

Proof. Clearly, $r_n > 0$. Note that

$$r_{n} \mid r_{n-1}, r_{n} \mid r_{n} \Rightarrow r_{n} \mid r_{n-2}$$

$$r_{n} \mid r_{n-2}, r_{n} \mid r_{n-1} \Rightarrow r_{n} \mid r_{n-3}$$

$$\vdots$$

$$r_{n} \mid r_{1}, r_{n} \mid r_{2} \Rightarrow r_{n} \mid a$$

$$r_{n} \mid a, r_{n} \mid r_{1} \Rightarrow r_{n} \mid b$$

Note also that if

$$k \mid a, k \mid b \Rightarrow k \mid r_{1}$$

$$k \mid r_{1}, k \mid a \Rightarrow k \mid r_{2}$$

$$\vdots$$

$$k \mid r_{n}, k \mid r_{n-1} \Rightarrow k \mid r_{n}$$

Hence we conclude that $r_n = (a, b)$.

Proof (Alternate proof).

$$b = aq + r \Rightarrow (a, b) = (a, r)$$
 $r = a(-q) + b, b = aq + r$

Note that $e \mid a, e \mid b$ iff $e \mid r, e \mid a$. Thus $(a, b) \mid (a, b)$ and $(a, k) \mid (a, b)$.

Hence (a, b) = (a, r), since (a, b) > 0 and (a, k) > 0. Therefore we can see that

$$(a, b) = (a, r) = (r_1, r_2) = \cdots = (r_{n-1}, r_n).$$

Example

$$(68,710) = 2$$

$$710 = 68 \cdot 10 + 30$$

$$68 = 30 \cdot 2 + 8$$

$$30 = 8 \cdot 3 + 6$$

$$8 = 6 \cdot 1 + 2$$

$$6 = 2 \cdot 3$$

$$2 = 8 - 6 \cdot 1$$

$$= 8 - (30 - 8 \cdot 3)$$

$$= 8 \cdot 4 + 30 \cdot (-1)$$

$$= (68 - 30 \cdot 2) \cdot 4 + 30 \cdot (-1)$$

$$= 68 \cdot 4 + 30 \cdot (-1)$$

$$= 68 \cdot 4 + (710 - 68 \cdot 10) \cdot (-9)$$

$$= 68 \cdot 94 + 710 \cdot (-9)$$

Definition 1. A **Diophantine equation** is a polynomial equation that allows two or more variables to take integer values only.

e.g.

$$ax + by = c$$

$$x^n + y^n = z^n$$

$$x^2 - dy^2 = 1$$

Theorem 3. $a \neq 0, b \neq 0$.

- 1. The equation ax + by = c has integer solutions if and only if $(a, b) \mid c$.
- 2. Suppose that $(a, b) \mid c$. Then the general solution of the equation ax + by = c has form the of

$$\left\{x_0 + \frac{b}{(a,b)}t, y_0 - \frac{a}{(a,b)}t\right\}$$

where $t \in \mathbb{Z}$ and (x_0, y_0) is an arbitrary solution of the equation.

General solution for y'' - 4y' + 3y = 0? $\Rightarrow c_1 e^x + c_2 e^{3x}$ - 2 bases