Povrchově aktivní látky, v našem případě etylalkohol, způsobují snížení povrchového napětí. Závislost povrchového napětí vodného roztoku etylalkoholu lze měřit odtrhávací metodou. Drátek délky l je vytahován z kapaliny silou F. Je-li drátek dostatečně tenký, platí [?]

$$2F = 2\sigma l. \tag{1}$$

Pomocí torzních vah změříme sílu P_0 , působící v okamžiku odtržení drátku. Síla P_0 je v tomto případě rovna 2F a platí \cite{P}

$$\sigma = \frac{P_0}{2I}.\tag{2}$$

Sílu P_0 určíme jako rozdíl síly P_1 , potřebné k vyvážení rámečku těsně pod hladinou kapaliny, a síly P_2 , působící v momentu odtržení drátku od hladiny. Při výpočtech využijeme přesnějšího vztahu s korekcí na tloušťku použitého drátku [?]:

$$\sigma = \frac{P_2 - P_1}{2l} - r \left(\sqrt{\frac{(P_2 - P_1)\rho g}{l}} - \frac{P_2 - P_1}{l^2} \right). \tag{3}$$

Statistické vyhodnocení

Průměrná hodnota naměřených veličin při n měřeních je počítána podle vzorce aritmetického průměru [?]

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Statistická chyba σ_{stat} aritmetického průměru se získá ze vztahu [?]

$$\sigma_{stat} = \frac{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}}{\sqrt{n}}.$$

Absolutní chyba je potom získána z σ_{stat} a chyby měřidla $\sigma_{\text{měř}}$ jako [?]

$$\sigma_{abs} = \sqrt{\sigma_{m\check{e}\check{r}}^2 + \sigma_{stat}^2}$$

Chyba výpočtů se řídí zákonem přenosu chyb [?], lineární regrese podle metody nejmenších čtverců [?].

Pomůcky

Posuvné měřidlo, pásové měřidlo, drát, kladka, zrcátko, stupnice, dalekohled, závaží, břity, kovové trámky, objektivový mikrometr