

Kare Izgara Bulmaca (Square Grid Puzzle)

Bu bulmacada, sıfırdan başlayarak numaralandırılmış N x N kare ızgara verilmiştir. Bu ızgara içindeki rakamlar 0'dan N x N-1'e kadar olan (sınırlar dahil) farklı tamsayılardan oluşur. Amacınız, her $0 \leq i,j < N$ için i-inci satır ve j-inci sütun arasındaki kesişimdeki sayının $i \times N + j$ ile eşit olduğu bir duruma ulaşmaktır. Bu amaca ulaşmak için iki tür hamle kullanabilirsiniz:

- Down (Aşağı) hamlesi: "Da[0] a[1] ... a[N-1]", burada a[0], a[1], ... a[N-1] ızgaranın en üst satırındaki sayıların yeniden düzenlenmiş bir halidir. Bu hamle ile en üstteki satır kaldırılır ve ızgaranın altına soldan sağa a[0], a[1], ... a[N-1] sayılarından oluşturulan yeni satır eklenir.
- Right (Sağ) hamlesi: "R b[0] b[1] ... b[N-1]", burada b[0], b[1], ... ,b[N-1] ızgaranın en sol sütunundaki sayıların yeniden düzenlenmiş bir halidir. Bu hamle ile en soldaki sütun kaldırılır ve ızgaranın sağına yukarıdan aşağıya b[0], b[1], ... ,b[N-1] sayılarından oluşturulan yeni sütun eklenir.

Yeniden düzenleme, sayıların herhangi birini eklemeden veya çıkarmadan sırasını değiştirmek anlamına gelir ve orijinal sırayı koruyabilir.

Örneğin, mevcut ızgara şu şekilde ise:

Satır/Sütun	0	1	2
0	2	4	6
1	8	1	5
2	7	3	0

"D 6 2 4" hamlesini gerçekleştirerek aşağıdaki tabloyu elde edeceğiz:

Satır/Sütun	0	1	2
0	8	1	5
1	7	3	0
2	6	2	4

Ancak bunun yerine "R 2 8 7" hamlesini yaparsak şunu elde ederiz:

Satır/Sütun	0	1	2
0	4	6	2
1	1	5	8
2	3	0	7

N=3 için hedef ızgara şu şekilde görünecektir:

Satır/Sütun	0	1	2
0	0	1	2
1	3	4	5
2	6	7	8

Bulmacayı $3 \times N$ 'den daha az hamle ile çözmeyi hedefliyorsunuz. Ancak daha fazla hamle kullanmanız veya bulmacayı çözmemeniz durumunda kısmi puanlar verilebilir. Ayrıntılar için puanlama bölümüne bakın.

Girdi Formatı

İlk satır tek bir tam sayı içerir: N.

Takip eden N satır, her satırda N sayıları ile birlikte başlangıçtaki ızgarayı göstermektedir.

Çıktı Formatı

İlk satırda hamle sayısı olan tek bir tam sayı (M) bulunmalıdır. Takip eden M satırının her biri tek bir hamle içermelidir.

Puanlama

Çözümünüzdeki hamle miktarı olarak M'yi gösterelim. Ek olarak, $A=3 \times N$ ve $B=2 \times N^2$ olsun.

Çıktınız geçersizse veya M>B ise 0 puan alırsınız. Aksi takdirde puanınız, doğru hedef pozisyonlarındaki (C olarak gösterilir) sayıların miktarına bağlıdır.

Eğer C < N imes N ise bulmaca çözülmez ve bir testten yalnızca % $(50 imes \frac{C}{N imes N})$ puan alırsınız. Aksi takdirde:

- Eğer M < A ise, test için %100 puan alacaksınız.
- Eğer $A \leq M \leq B$ ise, bir testten $\% (40 imes (rac{B-M}{B-A})^2 + 50)$ puan alırsınız .

Her bir test eşit puan değerindedir. Puanınız farklı test puanlarının toplamıdır ve son puanınız tüm gönderimler arasında en iyi puan olacaktır.

Örnek 1

Standard girdi	Standard çıktı
3	4
1 4 2	R 3 6 1
375	D 2 3 4
680	D 5 6 7
	R 2 5 8

Bu çözüm, istenen sonucu 9'dan daha az hamleyle elde ederek tam puan alır.

Örnek 2

Standard girdi	Standard çıktı
2	0
2 1	
03	

4 taneden yalnızca iki sayı (1 ve 3) doğru konumda olduğundan bulmaca çözülmez. Bu çıktı, bir test için $\%50 imes rac{2}{4} = 25$ puan alacaktır.

Kısıtlar

• $2 \le N \le 9$

Altgörevler

- Altgörev yoktur.
- ullet 2 ile 9 arasında her N için eşit sayıda durum vardır.