Liste der noch zu erledigenden Punkte

Layout!	2
so richtig?	2
Wort?	2
Skizze	2
skipped: Very fast intro: Matlab and images	2
motions?P.4	3
Matlab stuff	4

Kapitel 1

- ((implementation))

skipped: Very fast intro: Matlab and images

1.Overview

• "image society" (webpages: 1995 text-based, 2005 image based, 2015 video based . . .) - data transfer rates ↑, compression rates ↑ critical shift: reading \rightarrow watching • "Photoshop"-ing (remove wrinkles, bumps, ...) • Images in medicine ("medical image proscessing"), x-ray, CT, MRI, ultrasound, ... ("modalities"). different questions: Layout! measurments $\stackrel{?}{\Rightarrow}$ image align bottom \exp l: tomography \Rightarrow difficult mathematical problems 2.) Image enhancements - denoising simple pixels/lines: "sandpaper" interpolation so richtig? global noise: smoothing - grayscale histogramm balancing (spreading) - distortion makes straight lines (in real world) straight (in the images) - edge detection contour enhancement segmentation detect and separate parts of the image - registration sequence of images of the same object \Rightarrow Wort? , compare Skizze → object following in a movie Our Focus: - mathematical models/methods/ideas - (algorithms)

Kapitel 2

2. What is an image?

2.1 Discrete and continuous images

There are (at least) two different points of view:

object: matrix

tools: linear algebra (SVD, ...)

pros: (finite storage) storage, complexity

cons: limitations: zooming, rotations, ...

function

analysis (differentrage, integrate, ...)

freedom, tools, motions?P.4

(e.g. edge discontinuity)

storage (infinite amout of data)

arguably, one has:

- real life ⇒ continuous "images" (objects)
- digital camers \Rightarrow discrete images

In general we will say:

Definition 2.1 ((mathematical) image). A (mathematical) image is a function

$$u:\Omega\to F$$
,

where:
$$\Omega \subset \mathbb{Z}^d$$
 (discrete) or $\Omega \subset \mathbb{R}^d$ (continuous) ... domain $d=2$ (typical case 2D), $d=3$ ("3D image"=body or $\underbrace{2\mathrm{D}+\mathrm{time}}_{\mathrm{movie}}$) $d=4$ (3D + time)

$$F \dots range \ of \ colours$$

$$F = \mathbb{R}$$
 or $[0, \infty]$ or $[0, 1]$ or $\{0, \dots 255\}$, ... grayscale (light intensity) $F \subset \mathbb{R}^3 \dots RGB$ image (colored)

$$F = \{0, 1\} \dots \text{black/white}$$

3 Layers \Rightarrow colored images:w

Matlab stuff

Large parts of the course: analytical approach (i.e. continuous domain Ω) Since we want to differentiate, ... the image u.

Still: need to assume that also F ist continuous (not as $\{0,1\}, \{0,1,\ldots,255\}$ or \mathbb{N}) since otherwise the only differentiable (actually, the only continuous) functions $u:\Omega\to F$ are constant functions \Leftrightarrow single-colour images

Also: We usually take F one-dimensional $(F \subset \mathbb{R})$. Think of it as either

- gray scaled image, or
- treating R,G & B layer separately

2.2 Switching between discrete and continuous images

continuous \rightarrow discrete:

- divide the continuous image in small squared pieces (boxes) (superimpose grid)
- now: represent each box by one value
 - strategy 1: take function value $u(x_i)$ for $x_i = \text{midpoint of box } B_i$
 - strategy 2: use mean value

$$\frac{1}{|B_i|} \int_{B_i} u(x) dx$$

 \Rightarrow discrete image

- strategy 1: simple (and quick) but problemativ $(u(x_i) \text{ might represent } u|_{B_i} \text{ badly; for } u \in L^p$, single point evaluation not even defined)
- strategy 2: more komplex but also more "democratic" (actually closer to the way how CCD Sensors in digital camers work)

often the image value of the box B_i gets also digitized, i.e. fitted (by scaling & rounding) into range $\{0, 1, dots, 255\}$

$discrete \rightarrow continous$

This is of course more tricky ...

- Again: each pixel of the discrete image corresponds to a "box" of the continuous image (that is still to be constructed)
- \bullet Usually: \quad pixel value \mapsto function value at the $\mathit{midpoint}$ of the box
- Question: How to get the other function values (in the box)?

idea 1: just take the function value of the nearest midpoint ("nearest neighbour interpolation")

For each $x \in B_i : u(x) := u(x_j)$ where $|x - x_j| = \min_k |x - x_k|$

 \Rightarrow $u(x) = u(x_i)$ for all $x \in B_i$

 \Rightarrow each box is uni-color

 $\Rightarrow~$ the continuous image is essentially still discrete

<u>idea 2</u>: (bi-) lineare interpolation