9 Statistika, odhady parametrů

Teorie: Základní statistické zpracování a bodové odhady

Populace je soubor objektů (statistických jednotek), který je vymezen jejich výčtem nebo charakterizací jejich vlastností, může být proto konečný (rozsah označujeme N) i nekonečný. Typ rozdělení ani jeho parametry neznáme.

Statistická šetření umožní na základě opakovaných pozorování X_1, X_2, \dots, X_n usuzovat na vlastnosti populace.

Náhodný výběr je pokud pozorování X_1, X_2, \dots, X_n jsou nezávislá a stejně rozdělená.

Data je souhrn konkrétních číselných údajů $x_1, x_2, x_3, \ldots, x_n$ (výsledek opakovaných pokusů).

Populace	←Výběr	\leftarrow Excel
stř. hodnota $\mathbf{E}X$	průměr $\overline{x} = 1/n \sum_{i=1}^{n} x_i$	$PR\mathring{U}M\check{E}R(data)$
	$(\text{v}\check{\text{c}}\text{etn}\check{\text{e}}\ \text{textov}\acute{\text{y}}\text{ch}\ \text{bun}\check{\text{e}} ext{k})$	AVERAGEA(data)
rozptyl $var X$	výběrový rozptyl	VAR.S(data)
	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$	VAR.VÝBĚR(data)
směr.odchylka $\sqrt{\text{var}X}$	výběrová odchylka	SMODCH.VÝBĚR.S(data)
	$s = \sqrt{s^2}$	STDEV.S(data)
medián $x_{50\%}$	výběrový medián	MEDIAN(data)
kvartily $x_{0\%}, x_{25\%}, x_{50\%}, x_{75\%}, x_{100\%}$		QUARTIL.INC(data;04) QUARTIL.EXC(data;04)
kvantil x_{α}		PERCENTIL.INC(data; α) PERCENTIL.EXC(data; α)
pořadí (0-sestupně,1-vzestupně)		RANK.EQ(hodnota;data;0,1) RANK.AVG(hodnota;data;0,1)
funkce hustoty	histogram	ČETNOSTI(data; hodnoty)
distribuční funkce	kumulované četnosti	

Teorie: Intervalové odhady parametrů Θ ve tvaru (D; H) se spolehlivostí $1 - \alpha$

Pro parametr μ normálního rozdělení (pro známý rozptyl σ^2) $\left(\bar{x} - u_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}; \bar{x} + u_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right)$

Pro parametr μ normálního rozdělení (pro neznámý rozptyl) $\bar{x} \pm t_{1-\frac{\alpha}{2}}(\nu = n-1) \cdot \frac{s}{\sqrt{n}}$

Pro parametr σ^2 normálního rozdělení $\left(\frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2(\nu=n-1)}; \frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2(\nu=n-1)}\right)$

Pro parametr p alternativního rozdělení $\left(\hat{p} - u_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}; \hat{p} + u_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

(9.1) Z náhodného výběru

10.22 9.95 10.32 10.76 9.70 10.86

odhadněte střední hodnotu, rozptyl a směrodatnou odchylku.

$$[\overline{x} = 10.358; s^2 = 0.188; s = 0.433]$$

- (9.2) Z náhodného výběru rozsahu n=25 byl určen aritmetický průměr $\overline{x}=151.25$ a výběrový rozptyl $s^2=32.5$.
 - (a) Sestrojte 95% interval spolehlivosti pro střední hodnotu μ .

[pro známý rozptyl
$$D = \bar{x} - u_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} = 151.25 - u_{0.975} \sqrt{\frac{32.5}{25}} = 149.02$$
,] [kde $u_{0.975} = 1.96$ podle tabulek nebo v Excelu NORM.S.INV(0.975)] [CONFIDENCE.NORM($\alpha; s; n$)] [pro neznámý rozptyl $D = \bar{x} - t_{1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}} = 151.25 - t_{0.975} \sqrt{\frac{32.5}{25}} = 148.90$,]

[kde $t_{0.975} = 2.06$ podle tabulek nebo v Excelu T.INV.2T(0.05;25-1)]

(b) Sestrojte 90% interval spolehlivosti pro střední hodnotu μ .

(c) Určete rozsah výběru n tak, aby šířka 95% intervalu spolehlivosti pro střední hodnotu $\varepsilon = H - D$ byla 2.

$$[$$
 přibližně $n = 127$ $]$

(d) Sestrojte 90% a 95% intervaly spolehlivosti pro rozptyl $\sigma^2.$

[90% interval : (21.42; 56.32) ;95% interval : (19.82; 62.90)] [kvantily
$$\chi^2$$
 rozdělení v tabulkách nebo v Excelu CHISQ.INV(α ;volnost)]

- (9.3) Proved'te n krát pokus hození mincí a na základě získaných dat odhadněte bodově a intervalově pravděpodobnost, že padne líc.
- ${\bf (9.4)}\,$ Proveď te základní statistické zpracování výsledků prvních testů.
 - (a) spočtěte základní charakteristiky souboru průměr, rozptyl, směrodatná odchylka
 - (b) vykreslete histogram dat
 - (c) sestrojte intervalové odhady počtu získaných bodů

Výpočty kvantilů v Excelu

normální rozdělení	u_{α}	$NORM.S.INV(\alpha)$
	$u_{1-\alpha/2}$	NORM.S.INV(1 - $\alpha/2$) nebo NORMSINV(1 - $\alpha/2$)
t- rozdělení	t_{lpha}	$T.INV(\alpha; volnost)$
	$t_{1-\alpha/2}$	$T.INV(1 - \alpha/2; volnost)$ nebo $T.INV.2T(\alpha; volnost)$
		nebo TINV(α ;volnost)
χ^2 - rozdělení	χ^2_{α}	CHISQ.INV(α ;volnost) nebo CHIINV(1- α ;volnost)

 ${\bf Odhady\ ve\ Wolfram Alpha\ confidence\ interval\ for\ mean,\ sample\ mean,\ variance\ ,\ standard\ deviation\ }$