Математический анализ. Коллоквиум—4

Психику-то я вам поломал на всю жизнь

Виктор Евгеньевич Лопаткин

Содержание

1	Опр	ределения	3		
	1.1	Что такое знакочередующийся ряд?	3		
	1.2	Что такое абсолютно сходящийся ряд?	3		
	1.3	Что такое безусловно сходящийся ряд?	3		
	1.4	Пусть $f:\mathbb{R} \to \mathbb{R}$ — дифференцируемая функция, что значит выражение $\mathrm{d}f = f'\mathrm{d}x$? .	3		
	1.5	Почему градиент это не вектор, а ковектор (=функционал)?	3		
	1.6	Что такое линейная дифференциальная форма?	4		
	1.7	Что значит, что функция $F(x)$ это интеграл для функции $f(x)$ на каком-то промежутке?	4		
	1.8	Что такое неопределённый интеграл?	4		
	1.9	Что такое рациональная функция от одной переменной?	4		
	1.10	Что называют правильной и простой дробями в поле $\mathbb{R}(x)$?	4		
		Что такое разбиение промежутка и что значит, что одно выражение тоньше другого?			
		(тонкота!)	5		
	1.12	Что такое ступенчатая функция? Как она выражается через характеристические			
	1.12	функции?	5		
	1 13	Что такое интеграл от ступенчатой функции на промежутке?	5		
		Что такое верхний и нижний интегралы от ограниченной функции на промежутке?	5		
		Что такое интеграл Римана от ограниченной функции на промежутке?	6		
		Что такое верхняя и нижняя сумма Римана для ограниченной функции на промежутке?	6		
	1.10	110 такое верхний и пижний сумма т имана дли отраниченной функции на промежутке:	U		
2	Теоремы 7				
	2.1	Докажите признак Лейбница для знакочередующихся рядов	7		
	2.2	Пусть дан ряд (x_n) . Если сходится ряд (x_n) , то ряд (x_n) тоже сходится	7		
	2.3	Если ряд абсолютно сходится, то при любой перестановке его элементов абсолютная			
		сходимость полученного нового ряда не нарушается и более того, его сумма остаётся			
		прежней	8		
	2.4	Если ряд (x_n) сходится условно, (т.е. ряд (x_n) расходится), то оба ряда $(x_n^+), (x_n^-)$			
		расходятся, при этом $\lim_{n\to\infty} x_n^+ = \lim_{n\to\infty} x_n^- = 0 \dots \dots \dots \dots \dots \dots$	9		
	2.5	$[A_{JJR}]_{n\to\infty}^{n}$ $n\to\infty$			
	2.5	$\alpha \in \mathbb{R}$, а также если $\alpha = \pm \infty$ можно так переставить элементы этого ряда, что сумма			
			0		
		полученного таким образом ряда будет равна α	9		
	2.6	Докажите, что $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$, где $\alpha, \beta \in \mathbb{R}$	11		
	2.7	Пусть $u = u(x), v = v(x)$ — две функции от x , имеющие непрерывные производные			
		$u'=u'(x),v'=v'(x).$ Тогда имеет место формула $\int u\mathrm{d}v=uv-\int v\mathrm{d}u$	12		
	2.8	Каждая правильная дробь может быть представлена в виде суммы конечного числа			
		простых дробей	13		
	2.0	The very rope $n > 1$ possesses the density dx and dx			
	2.9	Для каждого $n\geqslant 1$ рассмотрим форму $\omega_n:=\frac{dx}{(x^2+\alpha^2)^n},$ тогда $\int \omega_{n+1}=\frac{1}{2n\alpha^2}$.			
		$x = 2n-1$ $\int_{C} \int_{C} \int_{C}$	14		
		$\frac{x}{(x^2 + \alpha^2)^n} + \frac{2n-1}{2n\alpha^2} \cdot \int \omega_n, \int \omega_1 = \frac{1}{\alpha} \cdot \arctan\left(\frac{x}{\alpha}\right) + C \dots \dots$	14		
	2.10	Интеграл от формы $\frac{Ax+B}{(x^2+ax+b)^n}dx$ выражается через рациональные функции и функ-			
		шии In arctan	15		
	2.11	Пусть $I\subsetneq \mathbb{R}$ — промежуток и $f:I\to \mathbb{R}$ — ступенчатая функция относительно разбие-	_5		
		$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} = 1$	10		
		ния $\lambda(I)$, тогда если имеем разбиение $\lambda'(I)$, которое тоньше, чем $\lambda(I)$, то $\int_{\lambda(I)} f = \int_{\lambda'(I)} f$	16		
	2.12	Пусть $I\subsetneq \mathbb{R}$ — промежуток и $f,g:I\to \mathbb{R}$ — две ступенчатые функции на нем	16		

	Пусть $f:I\to\mathbb{R}$ — ограниченная функция на промежутке $I\subsetneq\mathbb{R}$, числами $a,b,$ т.е.,	
	$a\leqslant f(x)\leqslant b$ для всех $x\in I$. Тогда $a\cdot I \leqslant \inf\int_I f\leqslant \sup\int_I f\leqslant b\cdot I $	18
	Пусть $f:I\to\mathbb{R}$ — ступенчатая функция на ограниченном промежутке $I\subsetneq\mathbb{R}$, тогда	
	она интегрируема по Риману, и более того, интеграл Римана от неё это то же самое,	
	что и интеграл от ступенчатой функции	19
2.15	Пусть $I\subsetneq \mathbb{R}$ — промежуток и пусть $f,g:I\to \mathbb{R}$ — две ограниченные функции на нем	
	и при этом они интегрируемы на нем по Риману	19

1 Определения

1.1 Что такое знакочередующийся ряд?

Знакочередующийся ряд — это ряд (a_n) , элементы которого попеременно принимают значения противоположных знаков, т.е. если $a_n > 0$ (соотвественно, $a_n < 0$), то $a_{n+1} < 0$ (соответственно, $a_{n+1} > 0$). Элементы таких рядов можно записать либо как $a_n = (-1)^n |a_n|$, либо как $a_n = (-1)^{n+1} |a_n|$

1.2 Что такое абсолютно сходящийся ряд?

Ряд (x_n) называется **абсолютно сходящимся**, если ряд $(|x_n|)$ сходится. Если ряд (x_n) сходится, а ряд $(|x_n|)$ расходится, то говорят, что **ряд** (x_n) **сходится условно**

1.3 Что такое безусловно сходящийся ряд?

Говорят, что ряд сходится **безусловно**, если он сходится и любая перестановка его элементов не нарушает его сходимости

1.4 Пусть $f: \mathbb{R} \to \mathbb{R}$ — дифференцируемая функция, что значит выражение $\mathrm{d}f = f'\mathrm{d}x$?

Если f — дифференцируема в x_0 , тогда верно, что $\exists (\mathrm{d} f)_{x_0} : \mathbb{R} \to \mathbb{R}$ такое, что

$$f(x_0 + h) = f(x_0) + (df)_{x_0}(h) + o(|h|), h \to 0$$

 $(\mathrm{d}f)_{x_0}$ — дифференциал функции f в точке x_0 . Имеем равенство

$$(\mathrm{d}f)_{x_0}(h) := f'(x_0) \cdot h$$

Рассмотрим функцию y(x) = x, тогда

$$(\mathrm{d}x)_{x_0}(h) = (x'(x_0)) \cdot h \Longleftrightarrow (\mathrm{d}f)_{x_0}(h) = f'(x_0) \cdot h = f'(x_0) \cdot (\mathrm{d}x)_{x_0}(h) \text{ (t.k. } x' = 1)$$

$$\iff \boxed{\mathrm{d}f = f'\mathrm{d}x}$$

1.5 Почему градиент это не вектор, а ковектор (=функционал)?

Покажем, что градиент функции — элемент двойственного пространства, т.е. градиент — это ковектор (=функционал)

Рассмотрим \mathbb{R}^n с базисом $\mathbf{e} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$, тогда любой вектор $\mathbf{h} = (h_1, \dots, h_n)^\top \in \mathbb{R}^n$ записывается в виде $\mathbf{h} = h_1 \mathbf{e}_1 + \dots + h_n \mathbf{e}_n$

Рассмотрим координатные функции

$$x_1, \ldots, x_n : \mathbb{R}^n \to \mathbb{R}, \qquad x_i(\mathbf{h}) := h_i, \quad 1 \leqslant i \leqslant n$$

Тогда, их дифференциалы $(\mathrm{d}x_1,\ldots,\mathrm{d}x_n)$ — это в точности базис двойственного пространства $(\mathbb{R}^n)^*$, так как

$$(\mathrm{d}x_i)(\mathbf{e}_j) = \delta_{ij} := \begin{cases} 1, & i = j, \\ 0, & i \neq j \end{cases}$$

Тогда, если $f: \mathbb{R}^n \to \mathbb{R}$ — дифференцируемая функция в точке **a**, то её дифференциал (=градиент) можно записать так:

$$\nabla_{\mathbf{a}} f = \left. \frac{\partial f}{\partial x_1} \right|_{\mathbf{a}} \cdot \mathrm{d}x_1 + \dots + \left. \frac{\partial f}{\partial x_n} \right|_{\mathbf{a}} \cdot \mathrm{d}x_n$$

Действительно, имеем

$$(\nabla_{\mathbf{a}}f)(\mathbf{h}) = \frac{\partial f}{\partial x_1}\Big|_{\mathbf{a}} \cdot \mathrm{d}x_1(\mathbf{h}) + \dots + \frac{\partial f}{\partial x_n}\Big|_{\mathbf{a}} \cdot \mathrm{d}x_n(\mathbf{h})$$
$$= \frac{\partial f}{\partial x_1}\Big|_{\mathbf{a}} \cdot h_1 + \dots + \frac{\partial f}{\partial x_n}\Big|_{\mathbf{a}} \cdot h_n,$$

что и есть определение дифференциала фукнции.

1.6 Что такое линейная дифференциальная форма?

Выражение вида

$$f_1 dx_1 + \dots + f_n dx_n$$

где $f_1,\dots,f_n:\mathbb{R}^n\to\mathbb{R}$ — функции, называется **линейной дифференциальной формой** или 1-формой

Обычно они обозначаются через ω , а пространство всех линейных дифференциальных форм на \mathbb{R}^n обозначается как $\Omega^1(\mathbb{R}^n)$

1.7 Что значит, что функция F(x) это интеграл для функции f(x) на каком-то промежутке?

Функция F(x) в каком-то промежутке называется **интегралом** (=первообразной) для функции f(x), если

$$F'(x) = f(x)$$
 или $dF = f(x)dx$

Тоже определдение словами: F(x) — **интеграл** для функции f(x), если во всём промежутке f(x) является производной для функции F(x) или, что тоже, f(x)dx есть линейная дифференциальная форма, равная дифференциалу фукнции F(x)

1.8 Что такое неопределённый интеграл?

Неопределённый интеграл — выражение F(x)+C, где C — произвольная постоянная, представляющее собой **общий вид** функции, которая имеет производную f(x), или её дифференциал есть 1-форма f(x)dx

Обозначается символом

$$\int f(x) \mathrm{d}x$$

f(x) — подынтегральная функция

1.9 Что такое рациональная функция от одной переменной?

Рациональная функция от одной переменной — это класс эквивалентности дробей вида $\frac{P(x)}{Q(x)}$, где P(x), Q(x) — полиномы, $Q(x) \neq 0$, и две такие дроби эквивалентны

$$\frac{P(x)}{Q(x)} \sim \frac{A(x)}{B(x)} \Longleftrightarrow P(x)B(x) = A(x)Q(x)$$

1.10 Что называют правильной и простой дробями в поле $\mathbb{R}(x)$?

Friendly reminder. $\mathbb{R}(x)$ — поле рациональных функций, то есть множество всех рациональных функций

$$\mathbf \Pi$$
равильная дробь — дробь $\dfrac{P(x)}{Q(x)},$ если $\deg(P(x)) < \deg(Q(x))$

Простыми дробями в поле $\mathbb{R}(x)$ называются выражения вида

1.
$$\frac{A}{(x-\alpha)^k}$$
, где $A, \alpha \in \mathbb{R}$, и $k \geqslant 1$

2. $\frac{Ax+B}{(x^2+ax+b)^n}$, где $A,B,a,b\in\mathbb{R},\,n\geqslant 1$ и предполагается, что x^2+ax+b не имеет вещественных корней

1.11 Что такое разбиение промежутка и что значит, что одно выражение тоньше другого? (тонкота!)

Разбиение промежутка — конечное множество $\lambda(I)$ промежутков содержащихся в промежутке I, при этом любой $x \in I$ принадлежит одному и только одному промежутку из λ

Пусть I — промежуток, и пусть $\lambda(I)$, $\lambda'(I)$ — два его разбиения. Говорят, что разбиение $\lambda'(I)$ тоньше, чем $\lambda(I)$, если для каждого $J' \in \lambda'(I)$ найдётся такой $J \in \lambda(I)$, что $J' \subseteq J$

1.12 Что такое ступенчатая функция? Как она выражается через характеристические функции?

Ступенчатая функция

Пусть $A\subseteq\mathbb{R}$, и пусть дана функция $f:A\to\mathbb{R}$. Говорят, что f постоянная функция, если существует такое $\alpha\in\mathbb{R}$, что $f(x)=\alpha$ для всех $x\in A$. Если $B\subseteq A$, то говорят, что f постоянная на B, если существует такое $\beta\in\mathbb{R}$, что $f(y)=\beta$ для всех $y\in B$

Пусть дан промежуток $I\subsetneq \mathbb{R}$, и пусть дана функция $f:I\to \mathbb{R}$, и пусть $\lambda(I)$ — какое-то разбиение промежутка I. Говорят, что функция f — **ступенчатая** на I относительно $\lambda(I)$, если для каждого $J\in \lambda(I), \ f$ является nocmoshhoù на J

Выражение ступенчатой функции через характеристические

Характеристическая функция множества $A\subseteq X$ — функция $\chi_A:X\to\{0,1\}$ такая что

$$\chi_A(x) := \begin{cases} 1, & x \in A, \\ 0, & x \notin A \end{cases}$$

Пусть $f:I\to\mathbb{R}$ — ступенчатая функция на промежутке I и $\lambda(I)$ — соответствующее разбиение промежутка, тогда

$$f = \sum_{A \in \lambda(I)} f(A) \cdot \chi_A$$

1.13 Что такое интеграл от ступенчатой функции на промежутке?

Пусть $I\subsetneq\mathbb{R}$ — промежуток, $\lambda(I)$ — разбиение промежутка I и пусть $f:I\to\mathbb{R}$ — ступенчатая функция относительно этого разбиения, т.е., $f=\sum_{A\in\lambda(I)}f(A)\cdot\chi_A$

Интеграл на промежутке I ступенчатой функции $f:I\to\mathbb{R}$ относительно разбиения $\lambda(I)$ есть

$$\left| \int_{\lambda(I)} f := \sum_{A \in \lambda(I)} f(A) \cdot |A| \right|$$

1.14 Что такое верхний и нижний интегралы от ограниченной функции на промежутке?

Пусть $f:I\to\mathbb{R}$ — ограниченная функция на промежутке $I\subseteq\mathbb{R}$

Верхний интеграл функции f на промежутке I есть

$$\sup \int_{I} f := \inf \left\{ \int_{I} g, g \in M_{p.c}(f) \right\}$$

Нижний интеграл функции f на промежутке I есть

$$\inf \int_{I} f := \sup \left\{ \int_{I} g, g \in m_{p.c}(f) \right\}$$

1.15 Что такое интеграл Римана от ограниченной функции на промежутке?

Пусть $f:I\to\mathbb{R}$ — ограниченная функция на ограниченном промежутке $I\subsetneq\mathbb{R},$ тогда если

$$\inf \int_{I} f = \sup \int_{I} f,$$

то интеграл Римана от ограниченной функции на промежутке определяется так

$$\boxed{\int_I f := \inf \int_I f = \sup \int_I f}$$

1.16 Что такое верхняя и нижняя сумма Римана для ограниченной функции на промежутке?

Пусть $f:I\to\mathbb{R}$ — ограниченная функция на промежутке $I\subsetneq\mathbb{R}$ и $\lambda(I)$ — некоторое разбиение промежутка I, тогда верхняя и нижняя суммы Римана:

$$U(f,\lambda(I)) := \sum_{\substack{A \in \lambda(I) \\ A \neq \varnothing}} \sup_{x \in A} f(x) \cdot |A|$$

$$L(f, \lambda(I)) := \sum_{\substack{A \in \lambda(I) \\ A \neq \varnothing}} \inf_{x \in A} f(x) \cdot |A|$$

2 Теоремы

2.1 Докажите признак Лейбница для знакочередующихся рядов

Формулировка. Пусть (a_n) — знакочередующийся ряд, для которого выполняются следующие условия:

- 1. $|a_n| \ge |a_{n+1}|$ почти для всех n
- 2. $\lim_{n \to \infty} |a_n| = 0$

Тогда ряд (a_n) сходится

Доказательство. Воспользовавшись леммой о сходимости/расходимости почти похожих рядов, мы можем считать, что $|a_n| \geqslant |a_{n+1}|$ для всех n. Для удобства положим, что первый элемент ряда — это a_0 , т.е. $n \geqslant 0$. Рассмотрим частичную сумму S_{2n+1} , имеем

$$S_{2n+1} = |a_0| - |a_1| + |a_2| - |a_3| + |a_4| + \dots + |a_{2n}| - |a_{2n+1}|$$

= $|a_0| - (|a_1| - |a_2|) - (|a_3| - |a_4|) - \dots - (|a_{2n-1}| - |a_{2n}|) - |a_{2n+1}|,$

так как $|a_n|\geqslant |a_{n+1}|$, то каждая скобка положительна, это значит, что $\mathsf{S}_{2n+1}\leqslant |a_0|$, т.е. последовательность (S_{2n+1}) ограничена сверху

С другой стороны, мы можем записать

$$\begin{aligned} \mathsf{S}_{2n+1} &= |a_0| - |a_1| + |a_2| - |a_3| + \dots + |a_{2n-2}| - |a_{2n-1}| + |a_{2n}| - |a_{2n+1}| \\ &= \left(|a_0| - |a_1| \right) + \left(|a_2| - |a_3| \right) + \dots + \left(|a_{2n-2}| - |a_{2n-1}| \right) + \left(|a_{2n}| - |a_{2n+1}| \right) \\ &= \mathsf{S}_{2n-1} + \left(|a_{2n}| - |a_{2n+1}| \right), \end{aligned}$$

и так как $|a_{2n}|\geqslant |a_{2n+1}|$, то $\mathsf{S}_{2n+1}\geqslant \mathsf{S}_{2n-1}$, т.е. она не убывает

Итак, последовательность (S_{2n+1}) ограничена сверху и не убывает, тогда по теореме Вейерштрасса у неё есть предел $\lim_{n\to\infty}\mathsf{S}_{2n+1}=\mathsf{S}\leqslant |a_0|$

Наконец, мы также можем записать

$$S_{2n+1} = |a_0| - |a_1| + |a_2| - |a_3| + |a_{2n}| - |a_{2n+1}|$$

= $S_{2n} - |a_{2n+1}|$,

так как $\lim_{n\to\infty} \mathsf{S}_{2n+1} = \mathsf{S}$ и по условию $\lim_{n\to\infty} |a_{2n+1}| = 0$, то по арифметике пределов

$$\lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} (S_{2n+1} + |a_{2n+1}|) = S + 0 = S.$$

Итак, мы показали, что $\lim_{n\to\infty}\mathsf{S}_n=\mathsf{S},$ что и означает сходимость ряда

2.2 Пусть дан ряд (x_n) . Если сходится ряд $(|x_n|)$, то ряд (x_n) тоже сходится

Пусть (S_n) — последовательность частичных сумм ряда (x_n) , а (A_n) — последовательность частичных сумм для ряда $(|x_n|)$

Так как ряд $(|x_n|)$ сходится, то по критерию Коши для каждого $\varepsilon > 0$ можно найти такое N, что для всех $n \geqslant N$ и $p \geqslant 1$,

$$|A_{n+n} - A_n| = |x_{n+1}| + \dots + |x_{n+n}| < \varepsilon.$$

Далее, имеем

$$S_{n+p} - S_n = |x_{n+1} + \dots + x_{n+p}|$$

$$\leq |x_{n+1}| + \dots + |x_{n+p}|$$

$$< \varepsilon,$$

что согласно критерию Коши означает сходимость ряда (x_n)

2.3 Если ряд абсолютно сходится, то при любой перестановке его элементов абсолютная сходимость полученного нового ряда не нарушается и более того, его сумма остаётся прежней

Конструкция 2.3.1

Пусть дан ряд (x_n) , положим

$$x_n^+ := \begin{cases} x_n, & \text{если } x_n \geqslant 0, \\ 0, & \text{если } x_n < 0, \end{cases} \quad x_n^- := \begin{cases} -x_n, & \text{если } x_n \leqslant 0 \\ 0, & \text{если } x_n > 0 \end{cases}$$
 (1)

Предложение 2.3.2

Пусть ряд (x_n) сходится абсолютно, тогда ряды $(x_n^+), (x_n^-)$ сходятся и более того, если S, S^+, S^- — суммы рядов $(x_n), (x_n^+), (x_n^-)$ соответственно, то

$$S = S^+ - S^- \tag{2}$$

Доказательство Предложения 2.3.2

Во-первых, из леммы 2.2 следует корректность утверждения, ибо ряд (x_n) сходится, а тогда последовательность его частичных сумм (S_n) имеет предел S.

Во-вторых, так как $x_n^+ \le |x_n|$ и $x_n^- \le |x_n|$, то по признаку сравнения рядов ряды (x_n^+) , (x_n^-) сходятся, а значит, сходятся последовательности их частичных сумм (S_n^+) , (S_n^-) к S^+ , S^- соответственно.

Далее, так как из конструкции 1 следует, что $x_n = x_n^+ - x_n^-$, но тогда для каждого n получаем

$$S_n = x_1 + \dots + x_n$$

$$= x_1^+ - x_1^- + \dots + x_n^+ - x_n^-$$

$$= (x_1^+ + \dots + x_n^+) - (x_1^- + \dots + x_n^-)$$

$$= S_n^+ - S_n^-.$$

Тогда по арифметике пределов,

$$\mathsf{S} = \lim_{n \to \infty} \mathsf{S}_n = \lim_{n \to \infty} (\mathsf{S}_n^+ - \mathsf{S}_n^-) = \lim_{n \to \infty} \mathsf{S}_n^+ - \lim_{n \to \infty} \mathsf{S}_n^- = \mathsf{S}^+ - \mathsf{S}^-$$

Доказательство самой теоремы

Пусть ряд (x_n) сходится абсолютно, рассмотрим ряды (x_n^+) , (x_n^-) (конструкция 1), очевидно, что $x_n = x_n^+ - x_n^-$ для всех n. Так как ряд (x_n) сходится абсолютно, то ввиду $x_n^+ \le |x_n|$, $x_n^- \le |x_n^-|$ и признака сравнения рядов ряды (x_n^+) , (x_n^-) тоже сходятся.

Пусть ряд, полученный после перестановки исходного ряда, имеет вид (y_n) , рассмотрим также ряды (y_n^+) , (y_n^-) (конструкция 1), тогда $y_n = y_n^+ - y_n^-$, и мы получаем

$$S = S^{+} - S^{-}$$
 (по предложению 2)
$$= \sum_{n=1}^{\infty} x_{n}^{+} - \sum_{n=1}^{\infty} x_{n}^{-}$$

$$= \sum_{n=1}^{\infty} y_{n}^{+} - \sum_{n=1}^{\infty} y_{n}^{-}$$

$$= \sum_{n=1}^{\infty} (y_{n}^{+} - y_{n}^{-})$$

$$= \sum_{n=1}^{\infty} y_{n}$$

2.4 Если ряд (x_n) сходится условно, (т.е. ряд $(|x_n|)$ расходится), то оба ряда $(x_n^+), (x_n^-)$ расходятся, при этом $\lim_{n\to\infty} x_n^+ = \lim_{n\to\infty} x_n^- = 0$

Пусть ряд (x_n) сходится, но не абсолютно, т.е. ряд $(|x_n|)$ расходится. Так как $|x_n| = x_n^+ + x_n^-$, то $\mathsf{A}_n = \mathsf{S}_n^+ + \mathsf{S}_n^-$, где A_n , S_n^+ , S_n^- — частичные суммы рядов $(|x_n|)$, (x_n^+) , (x_n^-) , соответственно. Тогда из расходимости последовательности (A_n) вытекает, что хотя бы одна из последовательностей (S_n^+) , (S_n^-) расходится. Если они обе расходится, то теорема доказана

Пусть расходится последовательность (S_n^+) . Так как $x_n = x_n^+ - x_n^-$ (см. конструкцию 1), то $S_n = S_n^+ - S_n^-$

Тогда

$$\mathsf{S}_n^- = \mathsf{S}_n^+ - \mathsf{S}_n,$$

но так как $\lim_{n\to\infty}\mathsf{S}_n=\mathsf{S},$ то последовательность (S_n) — ограничена, скажем, $L\leqslant\mathsf{S}_n\leqslant R$

С другой же стороны, так как (x_n^+) — положительный расходящийся ряд, то согласно критерию сходимости положительного ряда, последовательность (S_n^+) — неограниченна. Это значит, что для любого числа N можно найти такой номер n, что $\mathsf{S}_n^+ > N + R$, а тогда $\mathsf{S}_n^- > N + R - R = N$, т.е. для любого N мы нашли номер n такой, что $\mathsf{S}_n^- > N$, это означает, что последовательность (S_n^-) неограниченна, а тогда по критерию сходимости положительного ряда, ряд (x_n^-) — расходится

Аналогично рассматривается случай, когда расходится ряд (x_n^-)

Наконец, так как ряд (x_n) сходится, то по необходимому признаку 1 , $\lim_{n\to\infty}x_n=0$, а из того, что (x_n^+) , (x_n^-) подпоследовательности в последовательности (x_n) , то получаем, что

$$\lim_{n \to \infty} x_n^+ = \lim_{n \to \infty} x_n^- = 0$$

2.5 [Для сына папы Алика.] Пусть ряд (x_n) сходится условно, тогда для любого числа $\alpha \in \mathbb{R}$, а также если $\alpha = \pm \infty$ можно так переставить элементы этого ряда, что сумма полученного таким образом ряда будет равна α

Для ряда (x_n) мы рассмотрим ряды (x_n^+) , (x_n^-) . Согласно предложению 2.4, ряды (x_n^+) , (x_n^-) расходятся. Это значит, что последовательности их частичных сумм неограничены, т.е. их значения могут быть больше любого числа

Пусть p_1 — наименьшее натуральное число (=номер последовательности (x_n^+)) такое, что

$$\alpha < x_1^+ + \dots + x_{p_1}^+ = \sum_{i=1}^{p_1} x_i^+,$$

далее, пусть q_1 — наименьшее натуральное число (=номер последовательности (x_n^-)) такое, что

$$\alpha > \sum_{i=1}^{p_1} x_i^+ - \sum_{j=1}^{q_1} x_j^-.$$

Пусть теперь p_2 есть наименьшее натуральное число (=номер последовательности (x_n^+)), большее, чем p_1 , такое, что

$$\alpha < \sum_{i=1}^{p_1} x_i^+ - \sum_{j=1}^{q_1} x_j^- + \sum_{i=p_1+1}^{p_2} x_i^+$$
$$= \sum_{i=1}^{p_2} x_i^+ - \sum_{i=1}^{q_1} x_j^-.$$

 $^{^{1}}$ Если ряд (x_{n}) сходится, то $\lim_{n\to\infty}x_{n}=0$

Потом мы выбираем такое наименьшее натуральное q_2 (=номер последовательности (x_n^-)) большее, чем q_1 , чтобы было верно неравенство

$$\alpha > \sum_{i=1}^{p_2} x_i^+ - \sum_{j=1}^{q_1} x_j^- - \sum_{j=q_1+1}^{q_2} x_j^-$$
$$= \sum_{i=1}^{p_2} x_i^+ - \sum_{j=q_1+1}^{q_2} x_j^-.$$

Продолжая таким образом, мы получаем последовательность номеров $p_1, q_1, \ldots, p_k, q_k, \ldots$, и новую последовательность

$$(x'_n) = x_1^+, \dots, x_{p_1}^+, x_1^-, \dots, x_{q_1}^-, x_{p_1+1}^+, \dots, x_{p_2}^+, x_{q_1+1}^-, \dots, x_{q_2}^-, \dots,$$

при этом, если числа $p_1, q_1, \dots, p_k, q_k$ выбраны, то мы имеем

$$\alpha > \sum_{i=1}^{p_k} x_i^+ - \sum_{j=1}^{q_k} x_j^-$$

и тогда мы подбираем p_{k+1} как наименьшее натуральное число, большее, чем p_k так, чтобы

$$\alpha < \sum_{i=1}^{p_k} x_i^+ - \sum_{j=1}^{q_k} x_j^- + \sum_{i=p_k+1}^{p_{k+1}} x_i^+ = \sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^-,$$

но тогда (в силу условия минимальности на выбор числа p_{k+1}) имеем

$$\alpha \ge \sum_{i=1}^{p_k} x_i^+ - \sum_{j=1}^{q_k} x_j^- + \sum_{i=p_k+1}^{p_{k+1}-1} x_i^+ = \sum_{i=1}^{p_{k+1}-1} x_i^+ - \sum_{j=1}^{q_k} x_j^-.$$

Итак, мы получаем

$$\sum_{i=1}^{p_{k+1}-1} x_i^+ - \sum_{j=1}^{q_k} x_j^- \le \alpha < \sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^-.$$

Из полученных неравенств вычтем сумму $\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^-$, тогда получаем

$$\left(\sum_{i=1}^{p_{k+1}-1} x_i^+ - \sum_{j=1}^{q_k} x_j^-\right) - \left(\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^-\right) \le \alpha - \left(\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^-\right) < 0.$$

откуда получаем

$$-x_{p_k+1}^+ \le \alpha - \left(\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^-\right) < 0,$$

или

$$0 < \left(\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^-\right) - \alpha \le x_{p_k+1}^+.$$

Далее, согласно предложению $2.4 \lim_{k\to\infty} x_{p_k+1}^+ = 0$, то по лемме о зажатой последовательности получаем, что

$$\lim_{k \to \infty} \left(\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^- \right) = \alpha.$$
 (3)

С другой стороны, если числа $p_1, \dots, p_k, q_k, p_{k+1}$ выбраны, то

$$\alpha < \sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^-,$$

и тогда q_{k+1} мы выбираем как наименьшее натуральное число такое, что

$$\alpha > \sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^- - \sum_{j=q_{k+1}}^{q_{k+1}} x_j^- = \sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}} x_j^-,$$

а тогда получаем

$$\alpha \le \sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}-1} x_j^-.$$

Мы получаем неравенства

$$\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}} x_j^- < \alpha \le \sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}-1} x_j^-,$$

вычитая сумму $\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}} x_j^-$ из каждого неравенства, мы получаем

$$0 < \alpha - \left(\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}} x_j^-\right) \le \left(\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}-1} x_j^-\right) - \left(\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}} x_j^-\right),$$

откуда вытекает

$$0 < \alpha - \left(\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}} x_j^-\right) \le x_{q_{k+1}}^-.$$

А тогда, согласно предложению 2.4, $\lim_{k\to\infty} x_{p_k+1}^+ = 0$, то по лемме о зажатой последовательности получаем, что

$$\left| \lim_{k \to \infty} \left(\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}} x_j^- \right) = \alpha. \right|$$
 (4)

Но по построению, все частичные суммы ряда

$$(x'_n) = x_1^+, \dots, x_{p_1}^+, x_1^-, \dots, x_{q_1}^-, x_{p_1+1}^+, \dots, x_{p_2}^+, x_{q_1+1}^-, \dots, x_{q_2}^-, \dots,$$

имеют либо вид $\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_k} x_j^-$ либо $\sum_{i=1}^{p_{k+1}} x_i^+ - \sum_{j=1}^{q_{k+1}} x_j^-$, а тогда из уравнений (3 и 4) вытекает, что сумма ряда (x_n') есть α

2.6 Докажите, что $\int (\alpha f(x) + \beta g(x)) \, \mathrm{d}x = \alpha \int f(x) \mathrm{d}x + \beta \int g(x) \mathrm{d}x$, где $\alpha, \beta \in \mathbb{R}$

Пусть F(x), G(x) — интегралы для фукнции f(x) и g(x), соответственно

(1) Прежде всего, докажем, что

$$\int \alpha f(x) dx = \alpha \int f(x) dx.$$

Если $\alpha=0$, то мы получаем тождество, поэтому пусть $\alpha\neq 0$. В силу линейности дифференциала, получаем

$$\int \alpha f(x) dx = \int \alpha dF(x)$$

$$= \int d(\alpha F(x))$$

$$= \alpha F(x) + C$$

$$= \alpha \left(F(x) + \frac{C}{\alpha} \right)$$

Так как C — произвольное число, то число $\frac{C}{\alpha}$ можно также рассматривать как произвольное, и тогда согласно определению 1.8, выражение в последней скобке — это $\int f(x) \mathrm{d}x$

Получаем

$$\int \alpha f(x) dx = \alpha \left(F(x) + \frac{C}{\alpha} \right)$$
$$= \alpha \int f(x) dx.$$

(2) Пусть $\alpha, \beta \neq 0$, так как в противном случае, мы либо получаем тождество $0 \equiv 0$, либо что уже было доказано выше

Используя те же свойства и только что полученное, получаем

$$\begin{split} \int \Big(\alpha f(x) + \beta g(x)\Big) \mathrm{d}x &= \int \Big(\alpha f(x) \mathrm{d}x + \beta g(x) \mathrm{d}x\Big) \\ &= \int \Big(\alpha \mathrm{d}F(x) + \beta \mathrm{d}G(x)\Big) \\ &= \int \Big(\mathrm{d}(\alpha F(x)) + \mathrm{d}(\beta G(x))\Big) \\ &= \int \mathrm{d}(\alpha F(x) + \beta G(x)) \\ &= \alpha F(x) + \beta G(x) + C. \end{split}$$

Имеем $C=\frac{C}{2}+\frac{C}{2}$ и так как C — произвольное число, то и числа $\frac{C}{2\alpha},\frac{C}{2\beta}$ тоже можно считать произвольными. Тогда согласно определению 1.8 и линейности дифференциала, получаем

$$\int \left(\alpha f(x) + \beta g(x)\right) dx = \alpha F(x) + \beta G(x) + C$$

$$= \alpha \left(F(x) + \frac{C}{2\alpha}\right) + \left(G(x) + \frac{C}{2\beta}\right)$$

$$= \alpha \int dF(x) + \beta \int dG(x)$$

$$= \alpha \int f(x) dx + \beta \int g(x) dx$$

2.7 Пусть $u=u(x),\ v=v(x)$ — две функции от x, имеющие непрерывные производные $u'=u'(x),\ v'=v'(x).$ Тогда имеет место формула $\int u \mathrm{d} v = uv - \int v \mathrm{d} u$

Согласно определению 1.4, а также правилу Лейбница, имеем

$$d(uv) = (uv)'dx$$

$$= u'vdx + uv'dx$$

$$= v(u'dx) + u(v'dx)$$

$$= vdu + udv$$

Таким образом, u dv = d(uv) - v du. Тогда, используя линейность интеграла (п.2.6), получаем

$$\int u dv = \int (d(uv) - v du)$$
$$= \int d(uv) - \int v du$$
$$= uv - \int v du,$$

2.8 Каждая правильная дробь может быть представлена в виде суммы конечного числа простых дробей

Рассмотрим дробь $\frac{P(x)}{Q(x)}$, мы можем записать знаменатель в виде

$$Q(x) = (x - a_1)^{k_1} \cdots (x - a_p)^{k_p} (x^2 + b_1 x + c_2)^{m_1} \cdots (x^2 + b_q x + c_q)^{m_q},$$

где $k_1 + \cdots + k_p + 2m_1 + \cdots + 2m_q = \deg(P(x))$ и все $k_i, m_j \in \mathbb{Z}_{\geqslant 0}$, и более того, согласно теореме Безу, все a_i — это всё корни уравнения Q(x) = 0

(1) Пусть хотя бы один k_i больше нуля, обозначим его просто через k, тогда можно записать $Q(x)=(x-a)^k\widetilde{Q}(x)$, где a — это соответствующее число из чисел a_i . Тогда a не является корнем уравнения $\widetilde{Q}(x)=0$

Допустим теперь, что существует такое число A и такой полином $\widetilde{P}(x)$, что

$$\frac{P(x)}{Q(x)} = \frac{A}{(x-a)^k} + \frac{\widetilde{P}(x)}{(x-a)^{k-1}\widetilde{Q}(x)}$$

Для доказательства этого равенства достаточно подобрать эти неизвестные $A, \widetilde{P}(x)$ так, чтобы выполнялось равенство

$$P(x) - A\widetilde{Q}(x) = (x - a)\widetilde{P}(x).$$

Так как A это число, то оно не должно зависеть от x, поэтому положим в этом равенстве x=a, и тогда мы получаем, что

$$P(a) - A\widetilde{Q}(a) = 0$$

откуда $A=\dfrac{P(a)}{\widetilde{Q}(a)}$. Это выражение корректно, так как a был выбран так, чтобы a — корень уравнения Q(x)=0, но не корень уравнения $\widetilde{Q}(x)=0$

Далее, полином $\widetilde{P}(x)$ можно теперь определить так:

$$\widetilde{P}(x) := \frac{P(x) - A\widetilde{Q}(x)}{x - a}$$

(2) Пусть теперь Q(x) содержит хотя бы один сомножитель вида $(x^2+bx+c)^m$, тогда запишем $Q(x)=(x^2+bx+c)^m \widehat{Q}(x)$, где уже $\widehat{Q}(x)$ не делится на x^2+bx+c . Тогда подберём числа B,C и полином $\widehat{P}(x)$ так, чтобы

$$\frac{P(x)}{Q(x)} = \frac{Bx + C}{(x^2 + bx + c)^m} + \frac{\widehat{P}(x)}{(x^2 + bx + c)^{m-1}\widehat{Q}(x)}$$

Это то же самое, что подобрать эти же неизвестные, чтобы выполнялось равенство

$$P(x) - (Bx + C)\widehat{Q}(x) = (x^2 + bx + c)\widehat{P}(x)$$

Поступим следующим образом. Разделим полиномы P(x), $\hat{Q}(x)$ на $x^2 + bx + c$ с остатком;

$$P(x) = F(x)(x^2 + bx + c) + \alpha x + \beta,$$

$$\widehat{Q}(x) = H(x)(x^2 + bx + c) + \gamma x + \delta$$

Тогда, подставляя в предыдущее равенство, получаем

$$F(x)(x^{2} + bx + c) + \alpha x + \beta - (Bx + C)(H(x)(x^{2} + bx + c) + \gamma x + \delta) = (x^{2} + bx + c)\widehat{P}(x).$$

Потребуем теперь, чтобы полином

$$R(x) = \alpha x + \beta - (Bx + C)(\gamma x + \delta) = 0$$

делился на $x^2 + bx + c$ без остатка¹

¹Если можно будет найти такие числа, то значит, мы добьёмся того, что существуют такие B,C, что полином $P(x)-(Bx+C)\widehat{Q}(x)$ делится на x^2+bx+c без остатка. В таком случае, полином $\widehat{P}(x)$ находится как частное от деления полинома $P(x)-(Bx+C)\widehat{Q}(x)$ на x^2+bx+c

Итак, имеем

$$R(x) = \alpha x + \beta - (Bx + C)(\gamma x + \delta)$$

= $-\gamma Bx^2 + (\alpha - \delta B - \gamma C)x + (\beta - \delta C)$

Разделив теперь R(x) на $x^2 + bx + c$ на $x^2 + bx + c$, мы получим в остатке следующее выражение:

$$(b\gamma - \delta)B - \gamma C + \alpha)x + c\gamma B - \delta C + \beta$$

Тогда мы получаем систему (относительно неизвестных B, C) линейных уравнений

$$\begin{cases} (b\gamma - \delta)B - \gamma C = -\alpha \\ c\gamma B - \delta C = -\beta. \end{cases}$$

Определитель этой системы имеет вид

$$\Delta = \begin{vmatrix} b\gamma - \delta & \gamma \\ c\gamma & -\delta \end{vmatrix} = \delta^2 - b\gamma\delta + c\gamma^2$$

Пусть $\gamma \neq 0$, тогда

$$\Delta = \gamma^2 \left(\left(-\frac{\delta}{\gamma} \right)^2 + b \left(-\frac{\delta}{\gamma} \right) + c \right),$$

но это есть значение полинома x^2+bx+c в точке $x=-\frac{\delta}{\gamma}$ и, следовательно $\Delta\neq 0$, ибо мы предположили, что x^2+bx+c не имеет корней. Таким образом, система имеет решение, и числа с необходимым требованием существуют

Если же $\gamma=0$, то $\Delta=\delta^2$, но так как $\widehat{Q}(x)=H(x)(x^2+bx+c)+\gamma x+\delta$, то $\delta\neq 0$ ибо $\widehat{Q}(x)$ на x^2+bx+c не делится

Итак, в любом случае, решение системы существует, а значит, можно подобрать так B, C, чтобы полином $P(x) - (Bx + C)\hat{Q}(x)$ делится на $x^2 + bx + c$ без остатка. В таком случае полином

$$\widehat{P}(x) := \frac{P(x) - (Bx + C)\widehat{Q}(x)}{x^2 + bx + c}.$$

Таким образом, доказательство теоремы сводится к повторному применению случаев (1) и (2), которые обеспечивают возможность последовательного выделения простых дробей из данной правильной дроби, вплоть до её исчерпывания

- 2.9 Для каждого $n\geqslant 1$ рассмотрим форму $\omega_n:=\frac{dx}{(x^2+\alpha^2)^n}$, тогда $\int \omega_{n+1}=\frac{1}{2n\alpha^2}\cdot\frac{x}{(x^2+\alpha^2)^n}+\frac{2n-1}{2n\alpha^2}\cdot\int\omega_n,\;\int\omega_1=\frac{1}{\alpha}\cdot\arctan\left(\frac{x}{\alpha}\right)+C$
 - (1) Так как $(\arctan(y))' = \frac{1}{y^2 + 1}$, то

$$\int \omega_1 = \int \frac{\mathrm{d}x}{x^2 + \alpha^2} = \int \frac{\mathrm{d}x}{\alpha^2 \cdot \left(\left(\frac{x^2}{\alpha^2}\right) + 1\right)}$$
$$= \frac{1}{\alpha^2} \int \frac{\alpha \cdot \mathrm{d}\left(\frac{x}{\alpha}\right)}{\left(\frac{x^2}{\alpha^2}\right) + 1} = \frac{1}{\alpha} \int \frac{\mathrm{d}\left(\frac{x}{\alpha}\right)}{\left(\frac{x}{\alpha}\right)^2 + 1} = \frac{1}{\alpha} \cdot \arctan\left(\frac{x}{\alpha}\right) + C.$$

(2) Пусть теперь $n \geqslant 1$, будем интегрировать ω_n по частям, т.е. воспользуемся правилом

$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u.$$

Положили $u=\frac{1}{(x^2+\alpha^2)^n},\,v=x,$ находим

$$du = \left(\frac{1}{(x^2 + \alpha^2)^n}\right)' dx = -\frac{2nx}{(x^2 + \alpha^2)^{n+1}} dx, \quad dv = dx.$$

Тогда

$$\int \omega_n = \int \frac{dx}{(x^2 + \alpha^2)^n} = \frac{x}{(x^2 + \alpha^2)^n} + 2n \cdot \int \frac{x^2}{(x^2 + \alpha^2)^{n+1}} dx$$

$$= \frac{x}{(x^2 + \alpha^2)^n} + 2n \cdot \int \frac{(x^2 + \alpha^2) - \alpha^2}{(x^2 + \alpha^2)^{n+1}} dx$$

$$= \frac{x}{(x^2 + \alpha^2)^n} + 2n \cdot \left(\int \frac{(x^2 + \alpha^2)}{(x^2 + \alpha^2)^{n+1}} dx - \alpha^2 \int \frac{dx}{(x^2 + \alpha^2)^{n+1}} \right)$$

$$= \frac{x}{(x^2 + \alpha^2)^n} + 2n \cdot \left(\int \frac{dx}{(x^2 + \alpha^2)^n} - \alpha^2 \int \frac{dx}{(x^2 + \alpha^2)^{n+1}} \right)$$

$$= \frac{x}{(x^2 + \alpha^2)^n} + 2n \cdot \int \omega_n - 2n\alpha^2 \int \omega_{n+1},$$

т.е. мы получили рекуррентное соотношение

$$\int \omega_n = \frac{x}{(x^2 + \alpha^2)^n} + 2n \cdot \int \omega_n - 2n\alpha^2 \int \omega_{n+1},$$

из которого следует требуемое

2.10 Интеграл от формы $\frac{Ax+B}{(x^2+ax+b)^n}dx$ выражается через рациональные функции и функции \ln , \arctan

Выделим в выражении $x^2 + ax + b$ полный квадрат

$$x^{2} + ax + b = \left(x + \frac{a}{2}\right)^{2} + \left(b - \frac{a^{2}}{4}\right),$$

так как по условию $x^2 + ax + b = 0$ не имеет корней, то $a^2 - 4b < 0$, тогда положим

$$c^2 := b - \frac{a^2}{4}, \qquad c = +\sqrt{b - \frac{a^2}{4}}$$

тогда сделаем замену

$$y := x + \frac{a}{2},$$

находим

$$dy = \left(x + \frac{a}{2}\right)' dx = dx,$$

$$x^2 + ax + b = \left(x + \frac{a}{2}\right)^2 + \left(b - \frac{a^2}{4}\right) = y^2 + c^2,$$

$$Ax + B = Ay + \left(B - \frac{Aa}{2}\right).$$

Рассмотрим два случая

(1) n = 1, тогда получаем

$$\begin{split} \int \frac{Ax+B}{x^2+ax+b} \mathrm{d}x &= \int \frac{Ay+\left(B-\frac{Aa}{2}\right)}{y^2+c^2} \mathrm{d}y = \frac{A}{2} \int \frac{2y \mathrm{d}y}{y^2+c^2} + \left(B-\frac{Aa}{2}\right) \int \frac{\mathrm{d}y}{y^2+c^2} \\ &= \frac{A}{2} \ln(y^2+c^2) + \frac{1}{c} \cdot \left(B-\frac{Aa}{2}\right) \arctan\left(\frac{y}{c}\right) + C, \end{split}$$

или, возвращаясь к x и подставляя вместо c его значение:

$$\int \frac{Ax+B}{(x^2+ax+b)} dx = \frac{A}{2} \ln(x^2+ax+b) + \frac{2B-Aa}{\sqrt{4b-a^2}} \arctan\left(\frac{2x+a}{\sqrt{4b-a^2}}\right) + C.$$

(2) Пусть n > 1, делая ту же замену, получаем

$$\int \frac{Ax+B}{(x^2+ax+b)^n} dx = \int \frac{Ax+\left(B-\frac{Aa}{2}\right)}{(y^2+c^2)^n} dy = \frac{A}{2} \int \frac{2ydy}{(y^2+c^2)^n} + \left(B-\frac{Aa}{2}\right) \int \frac{dy}{(y^2+c^2)^n}.$$

Видим, что второй интеграл это интеграл от формы ω который найден в теореме 2.9, первый же интеграл легко берётся с помощью замены $t:=y^2+c^2$, тогда $\mathrm{d}t=(y^2+c^2)'\mathrm{d}y=2y\mathrm{d}y$, следовательно $y\mathrm{d}y=\frac{1}{2}\mathrm{d}t$, и мы получаем

$$\int \frac{2y \, dy}{(y^2 + c^2)^n} = \int \frac{dt}{t^n} = -\frac{1}{n-1} \cdot \frac{1}{t^{n-1}} + C$$

2.11 Пусть $I\subsetneq\mathbb{R}$ — промежуток и $f:I\to\mathbb{R}$ — ступенчатая функция относительно разбиения $\lambda(I)$, тогда если имеем разбиение $\lambda'(I)$, которое тоньше, чем $\lambda(I)$, то $\int_{\lambda(I)}f=\int_{\lambda'(I)}f$

Пусть $\lambda(I) = \{A_1, \dots, A_n\}$ и пусть

$$\lambda'(I) := \left\{ A'_{11}, \dots, A'_{1\ell_1}, \dots, A'_{n1}, \dots, A'_{n\ell_n} \right\},\,$$

где A_i содержит только $A'_{i1},\ldots,A'_{i\ell}$, $1\leqslant i\leqslant n$. Из определения 1.11 тогда следует, что

$$A_i = A'_{i1} \cup \cdots \cup A'_{i\ell_i}$$
 и $|A_i| = |A'_{i1}| + \cdots + |A'_{i\ell_i}|$

Наконец, получаем, что

$$f(A'_{i1}) = \dots = f(A'_{i\ell_i}) = f(A_i), \qquad 1 \leqslant i \leqslant \ell.$$

Таким образом, имеем

$$\int_{\lambda'(I)} f = \left(f(A'_{11}) \cdot |A'_{11}| + \dots + f(A_{1\ell_1}) \cdot |A'_{1\ell_1}| \right) + \dots + \left(f(A'_{n1}) |A'_{n1}| + \dots + f(A_{n\ell_n}) \cdot |A'_{n\ell_n}| \right)
= f(A_1) \cdot \left(|A'_{11}| + \dots + |A'_{1\ell_1}| \right) + \dots + f(A_n) \cdot \left(|A'_{n1}| + \dots + |A'_{n\ell_n}| \right)
= f(A_1)|A_1| + \dots + f(A_n) \cdot |A_n|
= \int_{\lambda(I)} f$$

2.12 Пусть $I \subsetneq \mathbb{R}$ — промежуток и $f,g:I \to \mathbb{R}$ — две ступенчатые функции на нем

Замечание. Если $f = \chi_I$, и взяв разбиение $\lambda(I) = \{I\}$, мы получаем следующее

$$\int_{\lambda(I)} \chi_I = |I|.$$

И тогда мы можем записать, что если $f = \sum_{A \in \lambda(I)} f(A) \cdot \chi_A$, то

$$\int_{\lambda(I)} f = \sum_{A \in \lambda(I)} f(A) \cdot \int_{\lambda(I)} \chi_A$$

Пусть $\lambda_f(I)=\bigcup_{p=1}^n A_p,\,\lambda_g(I)=\bigcup_{q=1}^m B_q$ — разбиения промежутка I относительно которых $f,\,g$ — ступенчаты, соответственно

$$f = \sum_{p=1}^{n} \sum_{q=1}^{m} f(A_p) \cdot \chi_{A_p} \cdot \chi_{B_q} = \sum_{p=1}^{n} \sum_{q=1}^{m} f(A_p) \cdot \chi_{A_p \cap B_q},$$
$$g = \sum_{p=1}^{n} \sum_{q=1}^{m} g(B_q) \cdot \chi_{A_p} \cdot \chi_{B_q} = \sum_{p=1}^{n} \sum_{q=1}^{m} g(B_q) \cdot \chi_{A_p \cap B_q}.$$

(a)
$$\int_I (f\pm g) = \int_I f\pm \int_I g, \ \alpha,\beta \in \mathbb{R}$$

Доказательство. Согласно следствию, $f\pm g=\sum_{p=1}^n\sum_{q=1}^m(f(A_p)\pm g(B_q))\cdot\chi_{A_p\cap B_q}$, и тогда согласно замечанию

$$\int_{I} (f \pm g) = \sum_{p=1}^{n} \sum_{q=1}^{m} (f(A_{p}) \pm g(B_{q})) \cdot \int_{I} \chi_{A_{p} \cap B_{q}}$$

$$= \sum_{p=1}^{n} \sum_{q=1}^{m} f(A_{p}) \cdot \int_{I} \chi_{A_{p} \cap B_{q}} \pm \sum_{p=1}^{n} \sum_{q=1}^{m} g(B_{q}) \cdot \int_{I} \chi_{A_{p} \cap B_{q}}$$

$$= \int_{I} f \pm \int_{I} g$$

(b) Если $f(x) \ge g(x)$ для всех $x \in I$, то

$$\int_I f \ge \int_I g$$

Доказательство. Если $f(x) \ge g(x)$ для всех $x \in I$, то для любых p,q таких, что $A_p \cap B_q \ne \varnothing$, имеем $f(A_p) \ge g(B_q)$. Тогда, согласно замечанию,

$$\int_{I} f := \sum_{p=1}^{n} \sum_{q=1}^{m} f(A_{p}) \cdot \int_{I} \chi_{A_{p} \cap B_{q}} = \sum_{p=1}^{n} \sum_{q=1}^{m} f(A_{p}) \cdot |A_{p} \cap B_{q}|$$

$$\geqslant \sum_{p=1}^{n} \sum_{q=1}^{m} g(A_{p}) \cdot |A_{p} \cap B_{q}|$$

$$= \sum_{p=1}^{n} \sum_{q=1}^{m} f(A_{p}) \cdot \int \chi_{A_{p} \cap B_{q}}$$

$$= : \int_{I} g$$

(c) Если $f(x) = \alpha$ для всех $x \in I$, то

$$\int_I f = \alpha \cdot |I|$$

Доказательство. Если $f(x)=\alpha$ для всех $x\in I,$ то $f=\alpha\cdot\chi_I,$ и согласно замечанию,

$$\int_{I} f = \alpha \cdot \int \chi_{I} = \alpha \cdot |I|$$

(d) Если $I\subseteq J$ и если $\varphi:J\to\mathbb{R}$ функция, определённая следующим образом

$$\varphi(x) := \begin{cases} f(x) & x \in I, \\ 0 & x \notin I, \end{cases}$$

тогда $\varphi(x)$ — ступенчатая на J и

$$\int_{J} \varphi = \int_{I} f$$

Доказательство. Пусть $\lambda(I)$ — разбиение промежутка I и $f = \sum_{A \in \lambda(I)} f(A) \cdot \chi_A$, то определим разбиение $\lambda(J)$ промежутка J следующим образом

$$\lambda(J) := \lambda(I) \cup \{J \setminus I\}$$

положим, что $\varphi(J \setminus I) := 0$ мы получаем, что φ — ступенчата на J. Мы можем также записать

$$\varphi = \sum_{A \in \lambda(I)} f(A)\chi_A + \varphi(J \setminus I)\chi_{J \setminus I}$$

тогда согласно замечанию,

$$\int_{J} \varphi = \sum_{A \in \lambda(I)} f(A) \int_{J} \chi_{A} + \varphi(J \setminus I) \int_{J} \chi_{J \setminus I}$$

$$= \sum_{A \in \lambda(I)} f(A) \cdot |A| + 0 \cdot |J \setminus I|$$

$$= \int_{I} f$$

(e) Пусть $\{A,B\}$ — разбиение промежутка I, тогда если функции $f|_A:A\to\mathbb{R},\, f|_B:B\to\mathbb{R}$ ступенчаты на A и B соответственно, то

$$\int_I f = \int_A f|_A + \int_B f|_B$$

Доказательство. Пусть $\lambda(A):=\bigcup_{p=1}^n A_p,\ \lambda(B):=\bigcup_{q=1}^m B_q$ — разбиения промежутков A,B соответственно. Тогда $\lambda:=\lambda(A)\cup\lambda(B)$ разбиение промежутка I

Имеем

$$f = \sum_{C \in \lambda(I)} f(C) \cdot \chi_C = \sum_{p=1}^n f(A_p) \cdot \chi_{A_p} + \sum_{q=1}^m f(B_q) \cdot \chi_{B_q} = f|_A + f|_B,$$

тогда согласно замечанию,

$$\begin{split} \int_I f &= \sum_{C \in \lambda(I)} f(C) \cdot \int_I \chi_C \\ &= \sum_{C \in \lambda(I)} f(C) \cdot |C| \\ &= \sum_{p=1}^n f(A_p) \cdot |A_p| + \sum_{q=1}^m f(B_q) \cdot |B_q| \\ &= \int_A f|_A + \int_B f|_B. \end{split}$$

2.13 Пусть $f:I\to\mathbb{R}$ — ограниченная функция на промежутке $I\subsetneq\mathbb{R}$, числами a,b, т.е., $a\leqslant f(x)\leqslant b$ для всех $x\in I.$ Тогда $a\cdot |I|\leqslant\inf\int_I f\leqslant\sup\int_I f\leqslant b\cdot |I|$

Рассмотрим функции $a,b:I\to\mathbb{R},\ a(x):=a,\ b(x):=b,\ x\in I.$ Тогда $a\in m(f),\ b\in M(f),$ тогда по определению sup, inf, получаем

$$\sup \int_I f \le \int_I b = b \cdot |I|, \qquad \inf \int_I f \ge \int_I a = a \cdot |I|.$$

Покажем, что inf $\int_I f \leqslant \sup \int_I f$. Пусть $h \in m(f), g \in M(f)$, тогда $h \leqslant g$ и по теореме 2.12 п.2, получаем $\int_I h \leqslant \int_I g$. Отсюда вытекает

$$\inf \int_I f := \sup \left\{ \int_I h, \, h \leqslant g \right\} \leqslant \inf \left\{ \int_I g, g \geqslant h \right\} =: \sup \int_I f g = 0$$

2.14 Пусть $f: I \to \mathbb{R}$ — ступенчатая функция на ограниченном промежутке $I \subsetneq \mathbb{R}$, тогда она интегрируема по Риману, и более того, интеграл Римана от неё это то же самое, что и интеграл от ступенчатой функнии

Так как f — ступенчата и $f(x) \leqslant f(x) \forall x \in I$, то $f \in M_{p.c}(f), f \in m_{p.c}(f)$, тогда

$$\sup \int_I f \leqslant \int_I f, \quad \inf \int_I f \geqslant \int_I f,$$

то есть

$$\sup \int_I f \leqslant \int_I f \leqslant \inf \int_I f$$

Тогда, согласно лемме 2.13

$$\inf \int_{I} f \leqslant \sup \int_{I} f$$

$$\inf \int_{I} f = \sup \int_{I} f$$

2.15 Пусть $I\subsetneq \mathbb{R}$ — промежуток и пусть $f,g:I\to \mathbb{R}$ — две ограниченные функции на нем и при этом они интегрируемы на нем по Риману

Пусть \overline{f} (соотв. \underline{f}) — функция из $M_{p.c}(f)$ (соотв. из $m_{p.c}(f)$). Тогда ясно, что $\overline{f}+\overline{g}\in M_{p.c}(f+g)$ и $f+g\in m_{p.c}(f+g)$

Если f — интегрируемая функция по Риману на I, тогда согласно определению 1.15

$$\int_I f = \sup \int_I f = \inf \int_I f$$

Тогда по определению inf, sup для любого $\varepsilon > 0$ найдутся такие $\overline{f} \in M_{p.c}(f), \ \underline{f} \in m_{p.c},$ что

$$\int_{I} f + \varepsilon = \sup \int_{I} f + \varepsilon > \int_{I} \overline{f}, \quad \int_{I} f - \varepsilon = \inf \int_{I} f + \varepsilon < \int_{I} \underline{f}$$
 (5)

1. Функция f + g интегрируема на I и более того,

$$\int_{I} (f+g) = \int_{I} f + \int_{I} g$$

Доказательство. Покажем, что f+g интегрируема по Риману. Воспользуемся определением 1.15 и теоремой 2.12 и полученными выше неравенствами

$$\begin{split} \sup \int_I (f+g) &\leqslant \int_I (\overline{f} + \overline{g}) \\ &= \int_I \overline{f} + \int_I \overline{g} \\ &< \int_I f + \varepsilon + \int_I g + \varepsilon \\ &= \int_I f + \int_I g + 2\varepsilon \end{split}$$

Аналогично получаем, что

$$\inf \int_I (f+g) > \int_I f + \int_I g - 2\varepsilon$$

Тогда, по теореме 2.13 получим

$$\int_{I} f + \int_{I} g - 2\varepsilon < \inf \int_{I} (f + g) \leqslant \sup \int_{I} (f + g) < \int_{I} f + \int_{I} g + 2\varepsilon$$

в частности имеем, что

$$-2\varepsilon < \inf \int_I (f+g) - \left(\int_I f + \int_I g \right) < 2\varepsilon$$
$$-2\varepsilon < \sup \int_I (f+g) - \left(\int_I f + \int_I g \right) < 2\varepsilon$$

для любого $\varepsilon > 0$, это значит, что

$$\inf \int_I (f+g) = \int_I f + \int_I g, \quad \sup \int_I (f+g) = \int_I f + \int_I g$$

то есть

$$\inf \int_I (f+g) = \sup \int_I (f+g) = \int_I f + \int_I g$$

2. Для любого $\alpha \in \mathbb{R}$, функция αf — интегрируема на I и

$$\int_{I} \alpha \cdot f = \alpha \int_{I} f$$

Доказательство. Покажем, что αf интегрируема по Риману. Рассмотрим случаи, в зависимости от α

Пусть $\alpha=0$. Тогда $\alpha f=0$ — постоянная функция и по лемме 2.14, интеграл Римана от αf тоже самое, что интеграл от ступенчатой функции $\alpha \cdot f$, который равен $\alpha=0$

Пусть $\alpha > 0$. Тогда $\alpha \overline{f} \in M_{p.c}(\alpha f)$, $\alpha \underline{f} \in m_{p.c}(f)$. Тогда по определению inf, sup, теореме 2.12 и полученным неравенствам, имеем

$$\begin{split} \sup \int_I \alpha f &\leqslant \int_I \alpha \overline{f} \\ &= \alpha \int_I \overline{f} < \alpha \left(\int_I f + \varepsilon \right), \\ \inf \int_I \alpha f &\geqslant \int_I \alpha \underline{f} \\ &= \alpha \int_I \underline{f} > \alpha \left(\int_I f - \varepsilon \right) \end{split}$$

пользуясь теоремой 2.13, имеем

$$\alpha \int_{I} f - \alpha \varepsilon < \inf \int_{I} \alpha f \leqslant \sup \int_{I} \alpha f < \alpha \int_{I} f + \alpha \varepsilon$$

В частности,

$$\alpha \int_{I} f - \alpha \varepsilon < \inf \int_{I} \alpha f < \alpha \int_{I} f + \alpha \varepsilon, \quad \alpha \int_{I} f - \alpha \varepsilon < \sup \int_{I} \alpha f < \alpha \int_{I} f + \alpha \varepsilon$$

для любого $\varepsilon > 0$. Это значит, что

$$\inf \int_I \alpha f = \alpha \int_I f \quad \sup \int_I \alpha f = \alpha \int_I f$$

то есть,

$$\int_{I} \alpha f = \alpha \int_{I} f$$

 Π усть $\alpha < 0$. Тогда можно написать, что $\alpha = -|\alpha|$ и тогда, если $|\alpha|\overline{f} \in M_{p.c}(|\alpha|f)$, то $\alpha f = -|\alpha|f \in m_{p.c}(-|\alpha|f)$. Аналогично, если $|\alpha|\overline{f} \in m_{p.c}(|\alpha|f)$, то $\alpha f = -|\alpha|f \in M_{p.c}(-|\alpha|f)$. Тогда имеем

$$\begin{split} \sup \int_I \alpha f &= \sup \int_I -|\alpha| f \leqslant \int_I \alpha \underline{f} < -|\alpha| \int_I f + \varepsilon, \\ \inf \int_I \alpha f &= \inf \int_I -|\alpha| f \geqslant \int_I \alpha \overline{f} < -|\alpha| \int_I \overline{f} - \varepsilon \end{split}$$

Тогда по лемме 2.13

$$\alpha \int_I f - \varepsilon < \inf \int_I \alpha f \leqslant \sup \int_I \alpha f < \alpha \int_I f + \varepsilon$$

3. Функция f - g интегрируема на I и

$$\int_{I} (f+g) = \int_{I} f - \int_{I} g$$

Доказательство. Применим пункты 1 и 2 к f + (-g) и получим требуемое

4. Если $f(x) \geqslant 0 \forall x \in I$, то

$$\int_{I} f \geqslant 0$$

Доказательство. Так как $f(x) \geqslant 0 \forall x \in I$, то нулевая функция $0: I \to \mathbb{R}, x \longmapsto 0, x \in I$ принадлежит множеству $m_{p,c}(f)$, но тогда

$$\inf \int_{I} f \geqslant \int_{I} 0 = 0,$$

а так как f интегрируема по Риману, то

$$\int_{I} f = \inf \int_{I} f \geqslant 0$$

5. Если $f(x) \geqslant g(x)$ для всех $x \in I$, то

$$\int_{I} f \geqslant \int_{I} g$$

Доказательство. Рассмотрим функцию h=f-g, тогда следовательно пунктам 3 и 4, получим требуемое

6. Если $f(x) = \alpha$ для всех $x \in I$, то

$$\int_{I} f = \alpha \cdot |I|$$

Доказательство. Функция $f(x) = \alpha$ — ступенчаная на I, тогда по лемме 2.14 она интегрируема по Риману, и более того, согласно лемме 2.12 п.3 имеем

$$\int_{I} f = \alpha \cdot |I|$$

7. Пусть $J\subsetneq\mathbb{R}$ — ограниченный промежуток, и $I\subseteq J$ и пусть $\varphi:J\to\mathbb{R}$ — функция, опредленная так

$$\varphi(x) := \begin{cases} f(x), & x \in I, \\ 0, & x \notin I \end{cases}$$

Тогда φ — интегрируема на J и более того

$$\int_{J}\varphi=\int_{I}f$$

Доказательство. Для данных $\overline{f} \in M_{p.c}(f), \underline{f} \in m_{p.c}(f)$ определим $\overline{F}, \underline{F}: J \to \mathbb{R}$ следующим образом

$$\overline{F}(x) := \begin{cases} \overline{f}(x), & x \in I, \\ 0, & x \notin I, \end{cases} \quad \underline{F}(x) := \begin{cases} \underline{f}(x), & x \in I, \\ \overline{0}, & x \notin I, \end{cases}$$

тогда $\overline{F}\in M_{p.c}(F)$ и $\underline{F}\in m_{p.c}(F)$. Тогда для любого $\varepsilon>0$ (см. неравенства 5), пользуясь теоремой 2.12 п.4 получаем

$$\sup \int_J F \leqslant \int_J \overline{F} = \int_I \overline{F} = \int_I \overline{f} < \int_I f + \varepsilon$$

$$\inf \int_J F \geqslant \int_J \underline{F} = \int_I \underline{F} = \int_I \underline{f} > \int_I f - \varepsilon$$

Отсюда получаем, что для любого $\varepsilon > 0$

$$\int_I f - \varepsilon < \inf \int_J F \leqslant \sup \int_J F < \int_I f + \varepsilon$$

Откуда следует, что

$$\int_J F = \int_I f$$