

- 1 1. A method comprising:
 - 2 applying stress to an optical medium to provide a
 - 3 desired dispersion compensation.
- 1 2. The method of claim 1 including applying stress
2 to an optical medium including a photoelastic medium to
3 generate a corrective dispersion of the opposite polarity
4 of a dispersion induced in the optical medium.
- 1 3. The method of claim 2 including using a
2 piezoelectric device to generate stress in an optical
3 medium.
- 1 4. The method of claim 3 including controlling the
2 amount of stress and thereby the desired dispersion
3 compensation by controlling the voltage applied to said
4 piezoelectric device.
- 1 5. The method of claim 4 including securing the
2 photoelastic medium to said piezoelectric device and
3 passing an optical signal through said photoelastic medium.

1 6. A method comprising:
2 securing a photoelastic medium to a piezoelectric
3 device; and
4 applying a voltage to the piezoelectric device to
5 induce a stress in said photoelastic medium appropriate to
6 correct dispersion generated in an optical system coupled
7 to said photoelastic medium.

1 7. The method of claim 6 including controlling the
2 voltage applied to said piezoelectric device to generate a
3 dispersion of a polarity opposite to the polarity of a
4 dispersion generated in said optical system.

1 8. The method of claim 7 including generating a
2 corrective dispersion of substantially the same magnitude
3 as the dispersion generated in said optical system.

1 9. An optical system comprising:
2 an optical medium defining an optical path;
3 a photoelastic material in said optical path; and
4 a device to controllably stress said photoelastic
5 medium to generate a dispersion of an appropriate polarity
6 and magnitude to correct a dispersion induced in said
7 optical medium.

1 10. The system of claim 9 wherein said device is a
2 piezoelectric actuator.

1 11. The system of claim 10 including a voltage source
2 to control the amount of voltage applied to said
3 piezoelectric actuator to enable tuning of the dispersion
4 applied through said photoelastic medium.

1 12. An optical system comprising:
2 an optical medium defining an optical path;
3 a photoelastic material in said optical path; and
4 a piezoelectric actuator coupled to said
5 photoelastic material.

1 13. The system of claim 12 wherein said piezoelectric
2 actuator is secured to said photoelastic medium.

1 14. The system of claim 13 including a voltage source
2 to controllably apply potential to said piezoelectric
3 actuator.

1 15. The system of claim 14 to provide a tunable
2 magnitude and polarity of dispersion to cancel dispersion
3 generated along said optical path by said optical medium.