ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CƠ-TIN (Đề gồm 4 câu/4 trang)

Môn: Toán rời rạc (MAT3500 2, Học kỳ 1, 2024-2025)

ĐỀ KIỂM TRA GIỮA KỲ

Thời gian: 50 phút

- Điền các thông tin về Họ Tên, Mã Sinh Viên, Lớp trước khi bắt đầu làm bài.
- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.
- \bullet Điểm bài kiểm tra này chiếm 20% tổng số điểm của môn học.

Họ và Tên:		
Mã Sinh Viên:	Lớp:	

Câu:	1	2	3	4	Tổng
Điểm tối đa:	2	3	3	2	10
Điểm:					

- 1. (a) (1 điểm) Cho các mệnh đề p, q, và r. Hai mệnh đề $p \to (\neg q \to r)$ và $p \to (\neg q \land r)$ có tương đương lôgic không? Vì sao?
 - (b) (1 điểm) Cho các tập hợp A, B, và C. Các tập hợp $A-(B\cap C)$ và $(A-B)\cup (A-C)$ có bằng nhau hay không? Vì sao?

Lời giải:

(a) Hai mệnh đề đã cho không tương đương lôgic. Ví dụ, với $p=q=r=\mathsf{T}$, ta có:

$$\begin{aligned} p \to (\neg q \to r) &= \mathsf{T} \to (\neg \mathsf{T} \to \mathsf{T}) = \mathsf{T} \to \mathsf{T} = \mathsf{T} \\ p \to (\neg q \land r) &= \mathsf{T} \to (\neg \mathsf{T} \land \mathsf{T}) = \mathsf{F} \end{aligned}$$

(b) Hai tập hợp $A-(B\cap C)$ và $(A-B)\cup (A-C)$ bằng nhau. Có thể chứng minh bằng cách sử dụng bảng tính thuộc như sau.

A	B	C	$B \cap C$	$A - (B \cap C)$	A-B	A-C	$(A-B) \cup (A-C)$
1	1	1	1	0	0	0	0
1	1	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	0	0	0	1	1	1	1
0	1	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

Do các giá trị tương ứng ở mỗi hàng của các cột $A-(B\cap C)$ và $(A-B)\cup (A-C)$ trong bảng đều bằng nhau, suy ra hai tập hợp cũng bằng nhau.

2. (3 điểm) Cho dãy $\{a_n\}$ được định nghĩa một cách đệ quy như sau: $a_1 = 2$, $a_2 = 9$, $a_n = 2a_{n-1} + 3a_{n-2}$ $(n \ge 3)$. Sử dụng nguyên lý quy nạp mạnh, hãy chứng minh $a_n \le 3^n$ với mọi số nguyên $n \ge 1$.

Lời giải: Gọi P(n) là phát biểu $a_n \leq 3^n$. Ta chứng minh P(n) đúng với mọi số nguyên $n \geq 1$ bằng quy nạp mạnh.

• Bước cơ sở: Ta chứng minh P(1) và P(2) đúng. Thật vậy,

$$a_1 = 2 \le 3^1 = 3$$
 $P(1)$ đúng $a_2 = 9 \le 3^2 = 9$ $P(2)$ đúng

• Bước quy nạp: Giả sử P(j) đúng với mọi j thỏa mãn $1 \le j \le k$, trong đó $k \ge 2$ là một số nguyên dương nào đó. Nghĩa là, với $1 \le j \le k$, ta có $a_j \le 3^j$. Ta chứng minh P(k+1) đúng, nghĩa là chứng minh $a_{k+1} \le 3^{k+1}$. Thật vậy, ta có

$$a_{k+1}=2a_k+3a_{k-1}$$
 Do $k+1\geq 3$
$$\leq 2\cdot 3^k+3\cdot 3^{k-1}$$
 Do $k\geq 2$, giả thiết quy nạp cho ta $P(k)$ và $P(k-1)$ đúng
$$=3^{k+1}$$

Theo nguyên lý quy nạp mạnh, ta có điều phải chứng minh.

- 3. (3 diểm) Cho S là tập các cặp sắp thứ tự các số nguyên được định nghĩa bằng đệ quy như sau
 - Bước cơ sở: $(0,0) \in S$
 - Bước đệ quy: Nếu $(a,b) \in S$, thì $(a+2,b+3) \in S$ và $(a+3,b+2) \in S$

Sử dụng quy nạp theo cấu trúc để chứng minh a+b chia hết cho 5 với mọi $(a,b) \in S$.

Lời giải: Gọi P là tính chất sau: a+b chia hết cho 5. Ta chứng minh P đúng với mọi $(a,b) \in S$ bằng quy nạp theo cấu trúc.

- Bước cơ sở: Ta chứng minh (0,0) thỏa mãn tính chất P. Thật vậy, ta có 0+0=0 luôn chia hết cho 5.
- Bước quy nạp: Giả sử $(a,b) \in S$ thỏa mãn tính chất P, nghĩa là a+b chia hết cho 5. Ta chứng minh (a+2,b+3) và (a+3,b+2) cũng thỏa mãn tính chất P. Thật vậy, với cặp (a+2,b+3), ta có (a+2)+(b+3)=(a+b)+5. Do a+b chia hết cho 5, ta có (a+b)+5 cũng chia hết cho 5, và do đó cặp (a+2,b+3) thỏa mãn tính chất P. Tương tự, cặp (a+3,b+2) cũng thỏa mãn tính chất P.

Theo nguyên lý quy nạp theo cấu trúc, ta có điều phải chứng minh.

4. (2 điểm) Chứng minh rằng phương trình $x^4+y^4=100$ không có nghiệm nguyên dương, nghĩa là, không tồn tại cặp $(x,y)\in\mathbb{Z}^+\times\mathbb{Z}^+$ thỏa mãn $x^4+y^4=100$.

Lời giải: Từ $x^4 \le 100$, ta có $x^2 \le 10$, suy ra $x \le \sqrt{10} \approx 3.16$. Do $x \in \mathbb{Z}^+$, ta có $1 \le x \le 3$. Tương tự, ta cũng có $1 \le y \le 3$. Xét tất cả các trường hợp có thể xảy ra:

\boldsymbol{x}	y	$x^4 + y^4$
1	1	2
1	$\frac{1}{2}$	17
1	3	82
2	1	17
2	2 3	32
2 2 3	3	97
3	1	82
3	2 3	97
3	3	162

Từ bảng trên, ta thấy không có trường hợp nào thỏa mãn $x^4+y^4=100.$ Do đó, ta có điều phải chứng minh.