Lecture Notes in Commutative Algebra

Ashish Kujur

Last Updated: August 23, 2022

Introduction

This is a set of lecture notes which I took for reviewing stuff that I typed after taking class from Dr. Viji Z Thomas. All the typos and errors are of mine.

Contents

§1 Lecture 1 — 10th August 2022 — Local Rings, Semilocal rings, Chinese Remainder Theorem

We will be assuming the following things before proceeding in the course:

- A ring A is a commutative ring with unity.
- Existence of maximal ideals in a commutative ring with unity (this follows immediately from Zorn's Lemma)
- Definition of ring morphism.
- Definition of prime and maximal ideals and the facts that
 - -P is a prime ideal of A iff A/P is an integral domain and
 - -M is a maximal ideal of A iff A/P is a field

§1.1 Basic Definitions — Local Rings, Semilocal rings and few other results

Definition §1.1.1 (local ring). Let A be a ring. A is said to be a *local ring* if A has a unique maximal ideal M. A local ring is often denoted by (A, M).

Definition §1.1.2 (semilocal ring). Let A be a ring. A is said to be *semilocal ring* if A has only fintilly many maximal ideals.

How does one come up with a semilocal ring with exactly m maximal ideals? Here's an example:

Example §1.1.3 (A ring with m distinct maximal ideals). Let $A = \mathbb{Z}/n\mathbb{Z}$. It is fairly easy to show that all the ideals of A are of the form (\overline{k}) where $k \in \mathbb{N}$ and $k \mid n$ and also that if $k, j \mid n$ and $(\overline{k}) \subset (\overline{j})$ iff $j \mid k$. (See Sepanski Exercise 3.47 and 3.48) Now let p_1, p_2, \ldots, p_m be m distinct primes. Define $n = p_1 p_2 \cdots p_m$. It is easy to see from the aforementioned facts that $A = \mathbb{Z}/n\mathbb{Z}$ has m distinct maximal ideals.

Example §1.1.4 (A standard example of a local ring?). Let A be a ring, M be a maximal ideal of A and $n \in \mathbb{N}$. Observe that M^n is a ideal of A (See Sepanski Exercise 3.51). We claim that A/M^n has only prime ideal namely M/M^n . Let \mathcal{P} be a prime ideal of A/M^n . Then by the correspondence theorem, $\mathcal{P} = P/M^n$ where P is a prime ideal of A containing M^n . Then $P \supset M^n$ which further implies that $P \supset M$ (due to Lemma ??. Since M is a maximal ideal, we have that P = M. This completes the proof of the claim. Also, note that since every maximal ideal is prime, we have that A/M^n is a local ring.

Fact §1.1.5. Let A be ring, B be an integral domain, $f: A \to B$ be a ring morphism and Q be a prime ideal of B. Then $\ker(f)$ is a prime ideal of A.

Proof of the fact. Suppose that $ab \in \ker(f)$. Then f(ab) = 0 which further implies f(a)f(b) = 0 and hence $a \in \ker(f)$ or $b \in \ker(f)$ since B is an integral domain.

Lemma §1.1.6. Let A, B be rings, $f : A \to B$ be a ring morphism and Q be a prime ideal in B. Then $f^{-1}(Q)$ is a prime ideal of A.

Proof. Let $p: B \to B/Q$ be the canonical homomorphism. Consider the map $p \circ f: A \to B/Q$. We show that $\ker(p \circ f) = f^{-1}(Q)$. The lemma will follows from fact ??, if we show that $\ker(p \circ f) = f^{-1}(Q)$ as B/Q is an integral domain. So consider the following:

$$x \in \ker (p \circ f) \Leftrightarrow p(f(x)) = Q$$

 $\Leftrightarrow f(x) + Q = Q$
 $\Leftrightarrow f(x) \in Q$
 $\Leftrightarrow x \in f^{-1}(Q)$

Lemma §1.1.7. Let A be a ring, let I, J be ideals of A and P be a prime ideal of A. If $P \supset IJ$ then either $P \supset I$ or $P \supset J$.

Proof. Suppose that $P \not\supset I$. Then there is some $i \in I \setminus P$. We show that $J \subset P$. Let $j \in P$. Then $ij \in IJ$ and hence $ij \in P$. Since P is a prime ideal, we must have that either $i \in P$ or $j \in P$. But the former is not possible by assumption, therefore, $j \in P$. Since j was arbitrary, the proof is complete.

Remark §1.1.8. Let A be a ring, I be any ideal of A. Then there is a maximal ideal M of A containing A. The proof of this remark is fairly straightforward. Consider the ring A/I. Since every ring has a maximal ideal, so there must be some maximal ideal \mathcal{M} of A/I. By the correspondence theorem, $\mathcal{M} = M/I$ for some ideal M of A. This ideal M of A must be maximal again by the correspondence theorem and this completes the proof of the remark.

Lemma §1.1.9. Let A be a ring, I, J, K be ideals of A. Furthermore, assume that I, J are comaximal and I, K are comaximal. Then I + JK = A. (Recall that two ideals I, J are said to be comaximal if I + J = A.)

Proof. Suppose that $I + JK \subsetneq A$. Then by Remark ??, we have that there is some maximal (and hence prime) ideal P containing I + JK. Thus, we have that $I \subset P$ and $JK \subset P$.

From $JK \subset P$, we can conclude that $J \subset P$ or $K \subset P$ from Lemma ??. But in the either case, we have that $I + J \subset P \subseteq A$. A contradiction and hence I + JK = A.

Example §1.1.10. Let $A = \mathbb{Z}$. Note that the ideal (3,4) generated by 3 and 4 and the ideal (3,5) generated by 3 and 5 are exactly \mathbb{Z} . Thus, the ideal (3,20) = A by Lemma ??.

§1.2 Chinese Remainder Theorem

Theorem §1.2.1 (Chinese Remainder Theorem). Let A be a ring, I_1, I_2, \ldots, I_n be ideals of A. Consider the canonical map $\varphi : A \to A/I_1 \times A/I_2 \times \cdots A/I_n$ given by $\varphi(x) = (x + I_1, \ldots, x + I_n)$. Then the following holds:

- 1. If I_p, I_q are comaximal for all $1 \le p < q \le n$ then $I_1 I_2 \dots I_n = I_1 \cap I_2 \cap \dots \cap I_n$
- 2. φ is injective iff $\ker \varphi = I_1 \cap I_2 \cap \ldots \cap I_n = \{0\}$
- 3. If φ is surjective iff I_m, I_n are comaximal for all $1 \leq m < n \leq n$

Proof of (1). We proceed by induction on n. Suppose that n=2. Consider the ideals I_1, I_2 satisfying $I_1 + I_2 = A$. We show that $I_1I_2 = I_1 \cap I_2$.

It is fairly easy to see that $I_1I_2 \subset I_1 \cap I_2$. if $i_1 \in I_1$ and $i_2 \in I_2$ then $i_1i_2 \in I_1$ and $i_1i_2 \in I_2$ as I_1 and I_2 are both ideals of A. Hence, $i_1i_2 \in I_1 \cap I_2$. To see the reverse inclusion, we use the comaximality of I_1 and I_2 . Since $I_1 + I_2 = A$, $I_1 = i_1 + i_2$ for some $i_1 \in I_1$ and some $i_2 \in I_2$. Let $c \in I_1 \cap I_2$. Then $c = i_1c + ci_2$. Clearly $i_1c \in I_1I_2$ and $ci_2 \in I_1I_2$ and hence $c \in I_1I_2$.

Suppose that (1) holds true for any n-1 ideals of A where n>2. Let I_1, I_2, \ldots, I_n be ideals of A. Define $J=I_1I_2\cdots I_{n-1}$ and $I=I_n$. We show that I+J=A.

It is easy to see that $I + J \subset A$. Now we use that comaximality of I_{n-1} and I_n . By the comaximality, we have $1 = i_{n-1} + i_n$ for some $i_{n-1} \in I_{n-1}$ and some $i_n \in I_n$. Let $a \in A$. Then $a = ai_{n-1} + ai_n$. Clearly, $ai_n \in I_n$ as I_n is an ideal and $ai_{n-1} \in I_{n-1}$. Since $I_{n-1} \subset I$, we are done.

By the n=2, it follows that $IJ=I\cap J$. Now our result follows from the induction hypothesis:

$$I_1 \dots I_{n-1}I_n = JI$$

$$= J \cap I$$

$$= I_1 \dots I_{n-1} \cap I_n$$

$$= I_1 \cap \dots \cap I_{n-1} \cap I_n$$

Observe that the third equality follows from the induction hypothesis.

§2 Lecture 2 — 12th August 2022 — Chinese Remainder Theorem continued...

§2.1 Proof of Chinese Remainder Theorem continued ...

Proof of (2) and (3). Observe the following:

$$a \in \ker \varphi \iff \varphi(a) = (I_1, I_2, \dots, I_n)$$

 $\iff (a + I_1, a + I_2, \dots, a + I_n) = (I_1, I_2, \dots, I_n)$
 $\iff a \in I_1 \cap I_2 \cap \dots \cap I_n$

Hence $\ker \varphi = I_1 \cap I_2 \cap \ldots \cap I_n$. So it is easy to see now that (2) follows immediately from what we just proved.

Now, we proceed to prove (3). We first prove (\Leftarrow) direction. Suppose that I_p and I_q are comaximal for $1 \le p < q \le n$. Let us denote e_i $(1 \le i \le n)$ for $e_i = (I_1, I_2, \dots, 1 + I_i, \dots, I_n)$.

We first show that $I_1 + I_2 \cdots I_n = A$. We show this by induction. Clearly, $I_1 + I_2 = A$ by assumption. Now suppose that $I_1 + I_2 \cdots I_{n-1} = A$. It then follows from Lemma ?? and $I_1 + I_n = A$ that $I_1 + I_2 \cdots I_n = A$.

Now, 1 = x + y for some $x \in I_1$ and $y \in I_2 \cdots I_n$. It follows from part (1) of this theorem that $I_2 \cdots I_n = I_2 \cap \ldots \cap I_n$. Thus $y \in I_2 \cap \ldots \cap I_n$. Thus

$$\varphi(y) = (y + I_1, \dots, y + I_n)$$

$$= (1 - x + I_1, y + I_2, \dots, y + I_n)$$

$$= (1 + I_1, I_2, \dots, I_n)$$

$$= e_1$$

This shows that e_1 is in the image of φ . Similarly, it can be shown that e_i is in the image of φ for each i.

Now, we can finally show that φ is actually surjective. Let $(a_1 + I_1, \dots, a_n + I_n)$ be in the codomain of φ . Since we have shown that each e_i is in the image of the φ , $\varphi(y_i) = e_i$ for some $y_i \in A$.

Now observe that

$$\varphi\left(\sum_{i=1}^{n} a_{i} y_{i}\right) = \sum_{i=1}^{n} \varphi(a_{i}) \varphi(y_{1})
= \sum_{i=1}^{n} (a_{i} + I_{1}, \dots, a_{i} + I_{i}, \dots, a_{i} + I_{n}) (I_{1}, \dots, 1 + I_{i}, \dots, I_{n})
= \sum_{i=1}^{n} (I_{1}, I_{2}, \dots, a_{i} + I_{i}, \dots, I_{n})
= (a_{1} + I_{1}, a_{2} + I_{2}, \dots, a_{n} + I_{n})$$

This shows that φ is surjective.

We proceed to prove the (\Rightarrow) direction of (3). Suppose that φ is surjective. We just show that $I_1 + I_2 = A$. The others follow similarly. To prove that $I_1 + I_2 = A$, it suffices to show

that $1 \in I_1 + I_2$. Following the convention in the previous direction, there is some $x \in X$ such that $\varphi(x) = e_1$. So $(x + I_1, \dots, x + I_n) = (1 + I_1, \dots, I_n)$. Then $1 - x \in I_1$ and $x \in I_2$. Hence $1 = (1 - x) + x \in I_1 + I_2$. This completes the proof.

Lemma §2.1.1 (Prime Avoidance Lemma). Let I, P_1, P_2, \ldots, P_n be ideals of a ring A. Furthermore, assume that P_i is prime for each i. If $I \subset P_1 \cup P_2 \cup \ldots \cup P_n$ then there is some j such that $I \subset P_j$.

§3 Lecture 3 — 17th August, 2022 — Proof of Prime Avoidance, Jacobson Radical, Modules

§3.1 Proof of Prime Avoidance Lemma

Proof of ??. We prove that the following equivalent statement that:

If for all j, $I \not\subset P_j$ for all j, there is some element $x \in I$ such that $x \not\in P_j$ for all j. (\star)

We prove this theorem by assuming that all but 2 of the P_i are prime ideals. (Note: this is a slightly weaker assumption!)

We now start the proof using induction.

We first consider the case when n=2. Let I be an ideal and P_1 and P_2 be prime ideals of A such that $I \not\subset P_1$ and $I \not\subset P_2$. So, there are some element $x \in I \setminus P_1$ and $y \in I \setminus P_2$.

If $x \notin P_2$ then we are done. Likewise if $y \notin P_1$ then we are again done. So, we may assume that $x \in P_2$ and $y \in P_1$.

Now consider x + y. Undoubtedly, $x + y \in I$. If it were the case that $x + y \in P_1$ then $x \in P_1$ which is not possible by choice of x. Likewise if it were the case that $x + y \in P_2$ then $y \in P_2$ as $x \in P_2$ which again is not possible by choice of y. Therefore, we have that $x + y \in I$, $x + y \notin P_1$ and $x + y \notin P_2$ and this ends our verification of the base case.

Now, suppose that the (\star) is true when the number of prime ideals is equal to n-1 where $n \geq 3$.

Let I be an ideal and P_1, P_2, \ldots, P_n be prime ideals such that $I \not\subset P_j$ for $1 \leq j \leq n$.

By using the induction hypothesis, there is an element $x \in I$ such that $x \notin P_j$ for $1 \le j \le n-1$.

If $x \notin P_n$ then our proof is complete! So, we assume that $x \in P_n$.

Furthermore, we may assume that for $i \neq j$, it is not the case that $P_i \subset P_j$ or $P_j \subset P_i$, that is, there are no inclusions among the prime ideals. Since $n \geq 3$ and all but 2 of the P_j are prime ideals, we may assume that P_n is a prime ideal.

We claim that $IP_1P_2...P_{n-1} \not\subset P_n$. Suppose not then $IP_1P_2...P_{n-1} \subset P_n$. It follows by induction and Lemma ?? that $I \subset P_n$ or $P_i \subset P_n$ for some $1 \leq j \leq n-1$. Note that the latter part of the 'or' cannot hold by our assumption in the previous paragraph. Thus $I \subset P_n$. But then again this is a contradiction! So, we have that $IP_1P_2...P_{n-1} \not\subset P_n$.

Now select a $y \in IP_1 \dots P_{n-1}$ but $y \notin P_n$.

Now, we finish the proof by showing that $x+y \in I$ but $x+y \notin P_i$ for all $1 \le i \le n$. It is evident that $x+y \in I$. If $x+y \in P_n$ then $y \in P_n$ which is not possible by choice of y. Note that $y \in IP_1 \dots P_{n-1}$ implies $y \in P_i$ for all $1 \le i \le n-1$. Now if $x+y \in P_i$ for some

 $1 \le i \le n-1$ then $x \in P_i$. But that cannot happen by choice of x. Thus we have found an element which is in I but not in any of P_i and this completes the proof!

§3.2 Jacobson Radical & Local Rings revisited

Notation §3.2.1. Let A be a ring. We will use max-spec(A) to denote the set of all maximal ideals of A.

Definition §3.2.2 (Jacobson Radical). Let A be a ring. The Jacobson radical $\mathcal{J}(A)$ is defined to by the intersection of all maximal ideals of A. In other words,

$$\mathcal{J}(A) := \bigcap \{m : m \in \max\text{-spec}(A)\}\$$

Lemma §3.2.3. Let A be a ring. Then $x \in \mathcal{J}(A)$ iff 1 - xy is a unit for all $y \in A$.

Proof. (\Longrightarrow) Suppose that $x \in \mathcal{J}(A)$. Suppose that 1-xy is not a unit for some $y \in A$. Then there is some maximal ideal m of A containing 1-xy. (Just consider the ideal generated by 1-xy and Remark ??)

Since $x \in \mathcal{J}(A)$, $x \in m$. So $xy \in m$ as m is an ideal. Then $1 = (1 - xy) + xy \in m$ but this is not possible as maximal ideals are not the entire ring by definition! Hence 1 - xy is a unit for all $y \in A$.

(\Leftarrow) Now suppose that 1-xy is a unit for all $y \in A$. If $x \notin \mathcal{J}(A)$ then there must be some maximal ideal m of A such that $x \in A \setminus m$. Now consider the ideal m+(x). Clearly $m+(x) \supseteq m$ for otherwise $x \in m$. Hence m+(x)=A as m is a maximal ideal. Thus there are some elements $z \in m$ and $y \in A$ such that z+xy=1. But then $1-xy=z \in m$. Also, 1-xy is a unit, but that cannot possibly happen as maximal ideals cannot contain units!

Lemma §3.2.4. Let A be a ring and m be a nontrivial ideal such that every element of $A \setminus m$ is a unit. Then (A, m) is a local ring.

Proof. Let I be any nontrivial ideal of A. To show that (A, m) is a local ring, it suffices to show that that $I \subset m$. Let $x \in I$. If $x \notin m$ then x must be a unit by hypothesis. But that is not possible as I is not trivial and hence $I \subset m$. Thus, (A, m) is a local ring. \square

Lemma §3.2.5. Let A be a ring, m be a maximal ideal. If every element of 1 + m is a unit then (A, m) is local.

Proof. By lemma ??, it suffices to show that every element of $A \setminus m$ is a unit. So let $x \in A \setminus m$. Then (x) + m = A as m is a maximal ideal. So, there are elements $y \in A$ and $z \in m$ such that 1 = xy + z. Then $xy = 1 - z \in 1 + m$ and hence xy is a unit. Since xy is a unit, there is some $u \in A$ such that (xy)u = u(xy) = 1. But by associativity and commutativity, we have that x(yu) = (yu)x = 1 and hence x is a unit.

§3.3 Introduction to Modules

Definition §3.3.1. Let A be a ring. An A-module is a abelian group M with a multiplication map

$$\cdot: A \times M \to M$$

$$(a \cdot x) \mapsto ax$$

satisfying

- (i) a(x+y) = ax + ay for all $a \in A$ and $x, y \in M$,
- (ii) (a+b)x = ax + bx for all $a, b \in A$ and $x \in M$,
- (iii) (ab)x = a(bx) for all $a, b \in A$ and $x \in M$,
- (iv) $1_A x = x$ for $x \in M$.

Alternatively, an A-module is an abelian group M together with a ring homomorphism $\varphi:A\to \operatorname{End}(M)$ where $\operatorname{End}(M)$ is the ring of endomorphism of the abelian group M. Recall that sum in the ring $\operatorname{End}(M)$ is given pointwise and the multiplication is given by function composition.

To check the equivalence of two definitions, let M be a A-module in the sense of Definition \ref{M} ??. Define a map $\varphi:A\to \operatorname{End}(M)$ by $a\stackrel{\varphi}{\mapsto} \varphi_a$ where $\varphi_a:M\to M$ given by $\varphi_a(m)=am$ for every $m\in M$. It is now easily seen that φ is a ring homomorphism. Conversely, let M be a module in the sense of previous paragraph. Now, define $\cdot:A\to M\times M$ by $(a\cdot m)=(\varphi(a))(m)$. It is easy to check the properties (i)–(iv) of Definition \ref{M} ??.

Definition §3.3.2. A A-module M is said to be *faithful* if the map $\varphi: A \to \operatorname{End}(M)$ is injective.

Example §3.3.3. Here are a few examples of modules:

- 1. Every vector space over a field k is a k-module.
- 2. Every abelian group is a \mathbb{Z} -module.

§4 Lecture 4 — 22 August, 2022 — Exact Sequences and some homological algebra?

§4.1 Review of Exact Sequences

Definition §4.1.1 (Short Exact Sequence). $0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$ is called a short exact sequence if

- 1. im $f = \ker g$,
- 2. g is surjective,

3. f is injective.

Remark §4.1.2. The sequence $0 \longrightarrow A \xrightarrow{f} B$ is an exact sequence iff f is injective. Also the sequence $A \xrightarrow{g} B \longrightarrow 0$ is exact iff g is surjective.

Definition §4.1.3. Let $f: M \to N$ be a A-module homomorphism then we define coker f:=N/im f.

§4.2 Theorems involving exactness of Hom-functor

Proposition §4.2.1 (Left exactness of the *Hom*-functor). Let $0 \longrightarrow N_1 \stackrel{\varphi}{\longrightarrow} N_2 \stackrel{\psi}{\longrightarrow} N_3$ be an exact sequence of R-modules. Then

$$0 \longrightarrow Hom_R(M, N_1) \xrightarrow{\varphi^*} Hom(M, N_2) \xrightarrow{\psi^*} Hom(M, N_3)$$
 is an exact sequence.

Proof. First, we need to define the map $\varphi^*: Hom(M, N_1) \to Hom(M, N_2)$. So, let $f \in$

$$Hom\ (M, N_1)$$
. Then we may define the map $\varphi^*(f) = \varphi f$ as the following diagram: A

$$\downarrow f \qquad \varphi f$$

$$\downarrow f \qquad \varphi f$$

$$\downarrow N_1 \qquad \varphi \qquad N_2$$

Likewise, we define $\psi^*: Hom(M, N_2) \to Hom(M, N_3)$ by $\psi^*(g) = \psi g$ for $g \in Hom(M, N_2)$

Now, we show that $0 \longrightarrow Hom_R(M, N_1) \xrightarrow{\varphi^*} Hom(M, N_2) \xrightarrow{\psi^*} Hom(M, N_3)$ is an exact sequence.

We first show exactness in the middle. For that, we need to show that im $\varphi^* = \ker \psi^*$.

First, we show the im $\varphi^* \subset \ker \psi^*$. Let $g \in \operatorname{im} \varphi^*$. Then $g = \varphi^*(f)$ for some $f \in Hom(M, N_1)$. Then

$$\psi^*(g) = \psi^*(\varphi^*(f))$$
$$= \psi(\varphi f) = 0$$

Note that the last equality holds because the the original sequence is exact at N_2 . (For more details, let $m \in M$. Then $\psi(\varphi(f(m))) = 0$ as im $\varphi = \ker \psi$).

(The reverse inclusion is much harder to prove, or, at least that's what he said ...) Let $f \in \ker \psi^*$. Then $\psi f = 0$.

Also, note that $\ker \psi = \varphi(N_1) \cong N_1$ since φ is injective and the original exact sequence. We claim that (by the universal property of the kernel (N_1, φ)) there is a unique map $g: M \to N_1$ such that $g\varphi = f$.

$$0 \longrightarrow N_1 \xrightarrow{\varphi} N_2 \xrightarrow{\psi} N_3$$

We proceed to show the existence of the map $g: M \to N_1$ that we have claimed. Let $m \in M$. Then $f(m) \in N_2$. Then $\psi(f(m)) = 0$ because $\psi f = 0$. Hence $f(m) \in \ker \psi$. But $\ker \psi = \operatorname{im} \phi$, so, there is some $n_1 \in N_1$ such that $\varphi(n_1) = f(m)$. We define $g(m) = n_1$.

It is easy to see that if $g(m) = n_1$ then $\varphi g(m) = \varphi(n_1) = f(m)$. So $\varphi g = f$.

Now, we show that φ is well-defined. The only place where well-definedness is lost is when we took preimages, so, let $n_1, n_1' \in N_1$ such that $\varphi(n_1) = f(m)$ and $\varphi(n_1') = f(m)$. Now, since φ is injective, we have that $f(m) = \varphi(n_1) = \varphi(n_1')$ implies $n_1 = n_1'$. Therefore, g is well-defined.

Now, we need to prove that $g \in Hom(M, N_1)$. But this immediately follows from the facts that φ and f are homomorphisms.

Thus, we have that $\varphi^*(g) = f$ and hence $f \in \text{im } g^*$.

We need to show that $\ker \varphi^* = \{0\}$. For that, let $f \in Hom(M, N_1)$. Then $\varphi^*(f) = 0$ implies that $\varphi f = 0$. By the original exact sequence, φ is injective. Let $m \in M$. Then $\varphi(f(m)) = 0$ and the fact that φ is injective implies that f(m) = 0. Since m was arbitrary, we have that f = 0.

Proposition §4.2.2 (Right exactness of the *Hom* functor). Let $M_1 \xrightarrow{\varphi} M_2 \xrightarrow{\psi} M_3 \longrightarrow 0$ be an exact sequence of R-modules. Then

$$0 \longrightarrow Hom(M_3, N) \xrightarrow{\psi^*} Hom(M_2, N) \xrightarrow{\varphi^*} Hom(M_1, N)$$

is an exact sequence of R-module.

Proof. Repeat the same as in Proposition ?? but this time with coker and the universal property of (M_3, ψ) .

$\S 5$ Lecture 5 — 23rd August, 2022 — Another day, another topic