

Outline

- $oldsymbol{1}$ 连续时间系统卡尔曼滤波算法 / 2
- 2 连续时间非线性系统滤波算法 / 41
- 3 连续时间系统平滑算法 / 50
- 4 本章小结 / 69

1.1 连续时间随机系统离散化

考虑连续时间动态系统

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{F}(t)\boldsymbol{x}(t) + \boldsymbol{G}(t)\boldsymbol{w}(t) \tag{1}$$

$$y(t) = H(t)x(t) + v(t)$$
 (2)

其中, $\mathbf{w}(t) \sim (\mathbf{0}, \mathbf{Q}(t))$ 与 $\mathbf{v}(t) \sim (\mathbf{0}, \mathbf{R}(t))$ 是互不相关的白噪声过程,它们与初始状态 $\mathbf{x}(0) \sim (\bar{\mathbf{x}}_0, \mathbf{P}_0)$ 不相关。另外,设 $\mathbf{Q}(t) \geq 0$, $\mathbf{R}(t) > 0$,它们分别是系统过程噪声和量测噪声的功率谱密度矩阵。

由线性系统理论可知

$$\boldsymbol{x}(t) = \boldsymbol{\Phi}(t, t_0) \boldsymbol{x}(t_0) + \int_{t_0}^t \boldsymbol{\Phi}(t, \tau) \boldsymbol{G}(\tau) \boldsymbol{w}(\tau) d\tau$$
 (3)

其中

$$\dot{\boldsymbol{\Phi}}(t,t_0) = \boldsymbol{F}(t)\boldsymbol{\Phi}(t,t_0), \boldsymbol{\Phi}(t_0,t_0) = \boldsymbol{I}$$
(4)

称为系统转移矩阵。

由此可以将(1)、(2)离散化为

$$\boldsymbol{x}(k+1) = \boldsymbol{\Phi}(k+1,k)\boldsymbol{x}(k) + \boldsymbol{\Gamma}(k)\boldsymbol{w}_D(k)$$
 (5)

$$y(k+1) = H(k+1)x(k+1) + v_D(k+1)$$
(6)

式中, $x(k) = x(t_k)$, $t_k = k\Delta t$, Δt 为采样时间间隔。

下面研究 Δt 很小时,(1)、(2) 与 (5)、(6) 之间的关系。首先,由 (4) 不难发现

$$\mathbf{\Phi}(t + \Delta t, t) \approx \mathbf{I} + \mathbf{F}(t)\Delta t \tag{7}$$

如果 $t = k\Delta t$, 近似地 (忽略 Δt 二阶以上小量)

$$\mathbf{\Phi}(k+1,k) \approx \mathbf{I} + \mathbf{F}(k)\Delta t \tag{8}$$

而由 (3) 可得

$$\boldsymbol{x}(t + \Delta t) = \boldsymbol{\Phi}(t + \Delta t, t)\boldsymbol{x}(t) + \int_{t}^{t + \Delta t} \boldsymbol{\Phi}(t + \Delta t, \tau)\boldsymbol{G}(\tau)\boldsymbol{w}(\tau)d\tau$$
(9)

即 (5), 其中

$$\Gamma(k)\boldsymbol{w}_D(k) = \int_t^{t+\Delta t} \boldsymbol{\Phi}(t+\Delta t, \tau) \boldsymbol{G}(\tau) \boldsymbol{w}(\tau) d\tau$$

为了保证离散后系统的过程噪声和原系统噪声具有相同的特性,要求

$$E\boldsymbol{w}_D(k) = 0 \tag{10}$$

而目

$$E[\mathbf{\Gamma}(k)\boldsymbol{w}_{D}(k)][\mathbf{\Gamma}(k)\boldsymbol{w}_{D}(k)]^{\mathrm{T}} = \mathbf{\Gamma}(k)\boldsymbol{Q}_{D}(k)\mathbf{\Gamma}^{\mathrm{T}}(k)$$

$$= E \int_{t}^{t+\Delta t} \int_{t}^{t+\Delta t} \boldsymbol{\Phi}(t+\Delta t,\tau)\boldsymbol{G}(\tau)\boldsymbol{w}(\tau)\boldsymbol{w}^{\mathrm{T}}(\lambda)\boldsymbol{G}^{\mathrm{T}}(\lambda)\boldsymbol{\Phi}^{\mathrm{T}}(t+\Delta t,\lambda)\mathrm{d}\tau\mathrm{d}\lambda$$

$$= \int_{t}^{t+\Delta t} \int_{t}^{t+\Delta t} \boldsymbol{\Phi}(t+\Delta t,\tau)\boldsymbol{G}(\tau)\boldsymbol{Q}(\tau)\delta(\tau-\lambda)\boldsymbol{G}^{\mathrm{T}}(\lambda)\boldsymbol{\Phi}^{\mathrm{T}}(t+\Delta t,\lambda)\mathrm{d}\tau\mathrm{d}\lambda$$

$$= \int_{t}^{t+\Delta t} \boldsymbol{\Phi}(t+\Delta t,\lambda)\boldsymbol{G}(\lambda)\boldsymbol{Q}(\lambda)\boldsymbol{G}^{\mathrm{T}}(\lambda)\boldsymbol{\Phi}^{\mathrm{T}}(t+\Delta t,\lambda)\mathrm{d}\lambda$$

近似地(忽略 Δt 二阶以上小量)

$$\Gamma(k)Q_D(k)\Gamma^{\mathrm{T}}(k) = G(t)Q(t)G^{\mathrm{T}}(t)\Delta t$$
(11)

如果取

$$\Gamma(k) = G(k\Delta t) \tag{12}$$

那么

$$\mathbf{Q}_D(k) = \mathbf{Q}(t)\Delta t \tag{13}$$

同样地,为了保证离散后系统的量测噪声和原量测噪声具有相同的特性,要求

$$E\mathbf{v}_D(k) = 0 \tag{14}$$

而且

$$E \int_{t}^{t+\Delta t} \boldsymbol{v}_{D}(k+\tau) \boldsymbol{v}_{D}^{\mathrm{T}}(k) d\tau = E \int_{t}^{t+\Delta t} \boldsymbol{v}(t+\tau) \boldsymbol{v}^{\mathrm{T}}(t) d\tau$$

即

$$\mathbf{R}_D(k) = \frac{1}{\Delta t} \mathbf{R}(t) \tag{15}$$

从量纲分析不难看出 (13) 与 (15) 的合理性。

$$Q_D(k) = Q(t)\Delta t$$
$$R_D(k) = \frac{1}{\Delta t}R(t)$$

注:

- (1) $E\mathbf{w}(t)\mathbf{w}^{\mathrm{T}}(\tau) = \mathbf{Q}(t)\delta(t-\tau)$ 的量纲是: $(unit)^2/s^2$, $\delta(t)$ 的量纲是:1/s; 因此 $\mathbf{Q}(t)$ 的量纲是: $(unit)^2/s$. 而 $\mathbf{Q}_D(k)$ 的量纲是: $(unit)^2$.
- (2) $E\mathbf{v}(t)\mathbf{v}^{\mathrm{T}}(\tau) = \mathbf{R}(t)\delta(t-\tau)$ 的量纲是: $(unit)^2$, 因此 $\mathbf{R}(t)$ 的量纲是: $(unit)^2 \cdot s$. 而 $\mathbf{R}_D(k)$ 的量纲是: $(unit)^2$.

Example 1.1 考虑如下连续时间系统:

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{w}(t), \quad \boldsymbol{x}(0) = \boldsymbol{0} \tag{16}$$

其中, $\boldsymbol{w}(t) \sim (\boldsymbol{0}, \boldsymbol{Q}_c)$ 是连续时间白噪声。

由 (16) 可导出

$$E\boldsymbol{x}(t)\boldsymbol{x}^{\mathrm{T}}(t) = E\left[\int_{0}^{t} \boldsymbol{w}(\alpha) d\alpha \int_{0}^{t} \boldsymbol{w}^{\mathrm{T}}(\beta) d\beta\right]$$
$$= \int_{0}^{t} \int_{0}^{t} E[\boldsymbol{w}(\alpha)\boldsymbol{w}^{\mathrm{T}}(\beta)] d\alpha d\beta$$
$$= \int_{0}^{t} \int_{0}^{t} \boldsymbol{Q}_{c}\delta(\alpha - \beta) d\alpha d\beta$$

即

$$E oldsymbol{x}(t) oldsymbol{x}^{\mathrm{T}}(t) = \int_0^t oldsymbol{Q}_c \mathrm{d}eta = oldsymbol{Q}_c \mathrm{d}eta$$

如果取 t = kT,那么

$$E\boldsymbol{x}(t)\boldsymbol{x}^{\mathrm{T}}(t) = \boldsymbol{Q}_{c}kT \tag{17}$$

下面考虑采样时间为T的离散时间系统:

$$\boldsymbol{x}_k = \boldsymbol{x}_{k-1} + \boldsymbol{w}_{k-1}, \quad \boldsymbol{x}_0 = \boldsymbol{0} \tag{18}$$

其中, $\boldsymbol{w}_k \sim (\boldsymbol{0}, \boldsymbol{Q}_d)$ 是离散时间白噪声。

不能看出

$$\boldsymbol{x}_k = \boldsymbol{w}_0 + \boldsymbol{w}_1 + \dots + \boldsymbol{w}_{k-1}$$

因此

$$E\boldsymbol{x}_{k}\boldsymbol{x}_{k}^{\mathrm{T}} = E[\boldsymbol{w}_{0}\boldsymbol{w}_{0}^{\mathrm{T}}] + E[\boldsymbol{w}_{1}\boldsymbol{w}_{1}^{\mathrm{T}}] + \dots + E[\boldsymbol{w}_{k-1}\boldsymbol{w}_{k-1}^{\mathrm{T}}] = k\boldsymbol{Q}_{d}$$
(19)

对比 (16) 和 (18) 可以发现, 离散时间系统 (18) 是连续时间系统 (16) 的合理离散化表示。因此, 通过比较 (17) 与 (19), 可以得到

$$\boldsymbol{Q}_c = \frac{\boldsymbol{Q}_d}{T}$$

Example 1.2 假设对常量 x 进行等间隔 $(T \ b)$ 量测,有

$$egin{aligned} oldsymbol{x}_k &= oldsymbol{x}_{k-1} \ oldsymbol{y}_k &= oldsymbol{x}_k + oldsymbol{v}_k \end{aligned}$$

其中, $v_k \sim (\mathbf{0}, \mathbf{R}_d)$ 是离散时间白噪声。

根据离散时间卡尔曼滤波算法,可知 $(P_{k+1|k} = P_{k|k})$

$$P_{k+1|k+1}^{-1} = P_{k|k}^{-1} + R_d^{-1} = P_0^{-1} + (k+1)R_d^{-1}$$

即

$$P_{k|k}^{-1} = P_0^{-1} + kR_d^{-1}$$

由此可导出

$$\lim_{\boldsymbol{P}_0^{-1} \to \boldsymbol{0}} \boldsymbol{P}_{k|k} = \frac{1}{k} \boldsymbol{R}_d = \frac{T}{t_k} \boldsymbol{R}_d$$

如果取 $\mathbf{R}_d = \frac{\mathbf{R}_c}{T}$, 那么 t_k 时刻的估计误差协方差将和采用间隔 T 无关,意味着

$$\lim_{T\to 0} \mathbf{R}_d = \mathbf{R}_c \delta(t)$$

因此我们可以发现连续时间量测白噪声 $v(t) \sim (\mathbf{0}, \mathbf{R}_c)$ 和离散时间量测白噪声 $v_k \sim (\mathbf{0}, \mathbf{R}_d)$ 之间的关系:

$$R_d = \frac{R_c}{T}$$

Example 1.3 (连续时间随机系统离散化仿真) 考虑如下连续时间线性时不变随机系统:

$$egin{aligned} \dot{m{x}} &= m{A}m{x} + m{B}m{u} + m{w} \ & m{y} &= m{C}m{x} + m{v} \ & m{w} \sim (m{0}, m{Q}_c), \quad m{v} \sim (m{0}, m{R}_c) \end{aligned}$$

其中: $\boldsymbol{w}(t), \boldsymbol{v}(t)$ 是连续时间白噪声, $\boldsymbol{u}(t)$ 是确定性控制信号。

根据前面的讨论。该系统近似等价于如下离散时间系统:

$$egin{align*} oldsymbol{x}_{k+1} &= e^{oldsymbol{A}\Delta t} oldsymbol{x}_k + e^{oldsymbol{A}\Delta t} \int_0^{\Delta t} e^{-oldsymbol{A}\Delta au} \mathrm{d} au oldsymbol{B} oldsymbol{u}_k + oldsymbol{w}_k \ &= e^{oldsymbol{A}\Delta t} oldsymbol{x}_k + e^{oldsymbol{A}\Delta t} [oldsymbol{I} - e^{-oldsymbol{A}\Delta t}] oldsymbol{A}^{-1} oldsymbol{B} oldsymbol{u}_k + oldsymbol{w}_k (oldsymbol{A} \ddagger eta eta) \ oldsymbol{y}_{k+1} &= oldsymbol{C} oldsymbol{x}_{k+1} + oldsymbol{v}_{k+1} \ oldsymbol{w}_k \sim & (oldsymbol{0}, oldsymbol{Q}_c \Delta t), \quad oldsymbol{v}_{k+1} \sim & (oldsymbol{0}, oldsymbol{R}_c / \Delta t) \ \end{pmatrix}$$

其中. Δt 是离散时间步长。

【注】对于非线性随机系统的高精度数字仿真仍然是一个需要研究的问题。

1.2 卡尔曼滤波算法

对于离散化后获得的系统状态方程 (5) 和量测方程 (6), 我们可以直接运用前面建立的离散时间系统卡尔曼滤波算法, 从而得

$$\hat{\boldsymbol{x}}(k+1|k) = \boldsymbol{\Phi}(k+1,k)\hat{\boldsymbol{x}}(k|k) \tag{20}$$

$$\mathbf{P}_{D}(k+1|k) = \mathbf{\Phi}(k+1,k)\mathbf{P}_{D}(k|k)\mathbf{\Phi}^{\mathrm{T}}(k+1,k) + \mathbf{\Gamma}(k)\mathbf{Q}_{D}(k)\mathbf{\Gamma}^{\mathrm{T}}(k)$$
(21)

$$K_D(k+1) = P_D(k+1|k)H^{\mathrm{T}}(k+1)[H(k+1)P_D(k+1|k)H^{\mathrm{T}}(k+1) + R_D(k+1)]^{-1}$$

$$P_D(k+1|k+1)H^{\mathrm{T}}(k+1)P_D(k+1|k)H^{\mathrm{T}}(k+1)$$
(28)

$$= \mathbf{P}_D(k+1|k+1)\mathbf{H}^{\mathrm{T}}(k+1)\mathbf{R}_D^{-1}(k+1)$$
(22)

$$\hat{x}(k+1|k+1) = \hat{x}(k+1|k) + K_D(k+1)[y(k+1) - H(k+1)\hat{x}(k+1|k)]$$
(23)

$$P_D(k+1|k+1) = [I - K_D(k+1)H(k+1)]P_D(k+1|k)$$
(24)

$$\hat{\boldsymbol{x}}(0|0) = \bar{\boldsymbol{x}}_0, \, \boldsymbol{P}_D(0|0) = \boldsymbol{P}_0 \tag{25}$$

考虑到

$$\frac{d\hat{\boldsymbol{x}}(t|t)}{dt} = \lim_{\Delta t \to 0} \frac{\hat{\boldsymbol{x}}(t + \Delta t|t + \Delta t) - \hat{\boldsymbol{x}}(t|t)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \left\{ \frac{\boldsymbol{\Phi}(t + \Delta t, t)\hat{\boldsymbol{x}}(t|t) - \hat{\boldsymbol{x}}(t|t)}{\Delta t} \right\} + \lim_{\Delta t \to 0} \left\{ \frac{\boldsymbol{K}_D(t + \Delta t, t)}{\Delta t} [\boldsymbol{y}(t + \Delta t) - \boldsymbol{H}(t + \Delta t)\hat{\boldsymbol{x}}(t + \Delta t|t)] \right\}$$

$$= \boldsymbol{F}(t)\hat{\boldsymbol{x}}(t|t) + \boldsymbol{P}_D(t|t)\boldsymbol{H}^{\mathrm{T}}(t)\boldsymbol{R}^{-1}(t)[\boldsymbol{y}(t) - \boldsymbol{H}(t)\hat{\boldsymbol{x}}(t|t)]$$

如果令

$$\boldsymbol{K}(t) = \boldsymbol{P}_D(t|t)\boldsymbol{H}^{\mathrm{T}}(t)\boldsymbol{R}^{-1}(t)$$
(26)

那么

$$\frac{\mathrm{d}\hat{\boldsymbol{x}}(t|t)}{\mathrm{d}t} = \boldsymbol{F}(t)\hat{\boldsymbol{x}}(t|t) + \boldsymbol{K}(t)[\boldsymbol{y}(t) - \boldsymbol{H}(t)\hat{\boldsymbol{x}}(t|t)]$$
(27)

另外,由(24)、(21)、(13)可知

$$P_D(t + \Delta t|t + \Delta t) = [\mathbf{I} - \mathbf{K}_D(t + \Delta t)\mathbf{H}(t + \Delta t)]P_D(t + \Delta t|t)$$
$$= [\mathbf{I} - \mathbf{K}_D(t + \Delta t)\mathbf{H}(t + \Delta t)][\mathbf{\Phi}(t + \Delta t, t)P_D(t|t)\mathbf{\Phi}^{\mathrm{T}}(t + \Delta t, t) + \mathbf{G}(t)\mathbf{Q}(t)\mathbf{G}^{\mathrm{T}}(t)\Delta t]$$

代入 (11), 并注意到

$$\boldsymbol{K}(t + \Delta t) = \left. \frac{\boldsymbol{K}_D(t + \Delta t, t)}{\Delta t} \right|_{\Delta t \to 0}$$

可导出

$$P_D(t + \Delta t|t + \Delta t) = P_D(t|t) + F(t)P_D(t|t)\Delta t + P_D(t|t)F^{T}(t)\Delta t$$
$$-K(t + \Delta t)H(t + \Delta t)P_D(t|t)\Delta t + G(t)Q(t)G^{T}(t)\Delta t + o(\Delta t)^{2}$$

所以得

$$\frac{\mathrm{d}\boldsymbol{P}_{D}(t|t)}{\mathrm{d}t} = \boldsymbol{F}(t)\boldsymbol{P}_{D}(t|t) + \boldsymbol{P}_{D}(t|t)\boldsymbol{F}^{\mathrm{T}}(t - \boldsymbol{K}(t)\boldsymbol{H}(t)\boldsymbol{P}_{D}(t|t) + \boldsymbol{G}(t)\boldsymbol{Q}(t)\boldsymbol{G}^{\mathrm{T}}(t)$$
(28)

如果令 $P(t) = P_D(t|t)$, $\hat{x}(t) = \hat{x}(t|t)$, 我们便由 (27)、(26)、(28) 得到了连续时间系统的卡尔曼滤波算法. 如表1 所示。

表 1: 连续时间系统卡尔曼滤波算法 (1)

状态方程	$\dot{\boldsymbol{x}}(t) = \boldsymbol{F}(t)\boldsymbol{x}(t) + \boldsymbol{G}(t)\boldsymbol{w}(t)$
量测方程	$oldsymbol{y}(t) = oldsymbol{H}(t)oldsymbol{x}(t) + oldsymbol{v}(t)$
滤波初值	$\hat{\boldsymbol{x}}(0) = E\boldsymbol{x}(0), \boldsymbol{P}(0) = \text{var}[\boldsymbol{x}(0)]$
滤波增益	$oldsymbol{K}(t) = oldsymbol{P}(t)oldsymbol{H}^{\mathrm{T}}(t)oldsymbol{R}^{-1}(t)$
状态估计	$\frac{\mathrm{d}\hat{m{x}}(t)}{\mathrm{d}t} = m{F}(t)\hat{m{x}}(t) + m{K}(t)[m{y}(t) - m{H}(t)\hat{m{x}}(t)]$
协方差阵	$\dot{P} = FP + PF^{\mathrm{T}} - PH^{\mathrm{T}}R^{-1}HP + GQG^{\mathrm{T}}$

其中. 滤波误差协方差矩阵计算公式.

$$\dot{\boldsymbol{P}}(t) = \boldsymbol{F}(t)\boldsymbol{P}(t) + \boldsymbol{P}(t)\boldsymbol{F}^{\mathrm{T}}(t) - \boldsymbol{P}(t)\boldsymbol{H}^{\mathrm{T}}(t)\boldsymbol{R}^{-1}(t)\boldsymbol{H}(t)\boldsymbol{P}(t) + \boldsymbol{G}(t)\boldsymbol{Q}(t)\boldsymbol{G}^{\mathrm{T}}(t)$$
(29)

$$= \boldsymbol{F}(t)\boldsymbol{P}(t) + \boldsymbol{P}(t)\boldsymbol{F}^{\mathrm{T}}(t) - \boldsymbol{K}(t)\boldsymbol{R}(t)\boldsymbol{K}^{\mathrm{T}}(t) + \boldsymbol{G}(t)\boldsymbol{Q}(t)\boldsymbol{G}^{\mathrm{T}}(t)$$

称为黎卡提(Riccati)方程。从中我们可以看出过程噪声和量测噪声对滤 波的影响。

对于含有确定性作用项 u(t), d(t) 的情况,类似地可得表2。

表 2: 连续时间系统卡尔曼滤波算法 (2)

状态方程	$\dot{\boldsymbol{x}}(t) = \boldsymbol{F}(t)\boldsymbol{x}(t) + \boldsymbol{u}(t) + \boldsymbol{G}(t)\boldsymbol{w}(t)$
量测方程	$oldsymbol{y}(t) = oldsymbol{H}(t)oldsymbol{x}(t) + oldsymbol{d}(t) + oldsymbol{v}(t)$
滤波初值	$\hat{\boldsymbol{x}}(0) = E\boldsymbol{x}(0), \boldsymbol{P}(0) = \text{var}[\boldsymbol{x}(0)]$
滤波增益	$oldsymbol{K}(t) = oldsymbol{P}(t)oldsymbol{H}^{\mathrm{T}}(t)oldsymbol{R}^{-1}(t)$
状态估计	$\frac{\mathrm{d}\hat{\boldsymbol{x}}(t)}{\mathrm{d}t} = \boldsymbol{F}(t)\hat{\boldsymbol{x}}(t) + \boldsymbol{u}(t) + \boldsymbol{K}(t)[\boldsymbol{y}(t) - \boldsymbol{H}(t)\hat{\boldsymbol{x}}(t) - \boldsymbol{d}(t)]$
协方差阵	$\dot{\boldsymbol{P}} = \boldsymbol{F}\boldsymbol{P} + \boldsymbol{P}\boldsymbol{F}^{\mathrm{T}} - \boldsymbol{P}\boldsymbol{H}^{\mathrm{T}}\boldsymbol{R}^{-1}\boldsymbol{H}\boldsymbol{P} + \boldsymbol{G}\boldsymbol{Q}\boldsymbol{G}^{\mathrm{T}}$

Example 1.4 (常量估计) 在这个例子中, 我们将使用连续时间卡尔曼滤波

器、基于有连续时间噪声的量测、估计一个常数。

$$\dot{x} = 0$$

$$y = x + v$$

$$v \sim (0, R)$$
(30)

【解】 显然, F = 0, Q = 0, H = 1。式 (28) 给出协方差的微分方程为

$$\dot{P} = -PH^TR^{-1}HP + FP + PF^T + Q$$

$$= -P^2/R$$
(31)

初始条件 $P(0) = P_0$ 。由此我们可以得出

$$\frac{dP}{P^2} = \frac{-d\tau}{R}$$

$$\int_{P(0)}^{P(t)} \frac{1}{P^2} dP = -\int_0^t \frac{1}{R} d\tau$$

$$-(P^{-1} - P_0^{-1}) = -t/R$$

$$P^{-1} = P_0^{-1} + t/R$$

$$P = (P_0^{-1} + t/R)^{-1}$$

$$= \frac{P_0}{1 + P_0 t/R}$$

$$\lim_{t \to \infty} P = 0$$
(32)

卡尔曼增益为

$$K = PH^{T}R^{-1}$$

$$= \frac{P_0/R}{1 + P_0t/R}$$
(33)

$$\lim_{t \to \infty} K = 0$$

状态更新方程为

$$\dot{\hat{x}} = F\hat{x} + u + K(y - H\hat{x}) \tag{34}$$

由此可以导出

$$\dot{\hat{x}} = K(y - \hat{x})$$

$$\lim_{t \to \infty} \dot{\hat{x}} = 0$$
(35)

Example 1.5 (速度估计) 在这个例子中,假设我们能够测量向一个方向运动物体的速度,物体受到随机加速度的影响。我们想从含噪声的量测速度中估计物体的运动速度 x。系统和测量方程为

$$\dot{x} = w$$

$$y = x + v$$

$$w \sim (0, Q)$$

$$v \sim (0, R)$$
(36)

【解】 显然, F = 0, H = 1。由式 (28) 的协方差更新方程可知

$$\dot{P} = -PH^TR^{-1}HP + FP + PF^T + Q$$

$$= -P^2/R + Q$$
(37)

初始条件为 $P(0) = P_0$ 。由此,我们可以得出

$$dP = (Q - P^{2}/R) d\tau$$

$$\int_{P(0)}^{P(t)} \frac{dP}{Q - P^{2}/R} = \int_{0}^{t} d\tau$$

$$\frac{1}{2\sqrt{Q}} \ln\left(\frac{\sqrt{Q} + P/\sqrt{R}}{\sqrt{Q} - P/\sqrt{R}}\right) \Big|_{P(0)}^{P(t)} = t$$
(38)

解出 P 就得到

$$P = \sqrt{QR} \left[\frac{P_0 - \sqrt{QR} + (\sqrt{QR} + P_0) \exp(2t\sqrt{Q})}{\sqrt{QR} - P_0 + (\sqrt{QR} + P_0) \exp(2t\sqrt{Q})} \right]$$

$$\lim_{t \to \infty} P = \sqrt{QR}$$
(39)

此时,卡尔曼增益为

$$K = PH^{T}R^{-1}$$

$$= P/R$$

$$\lim_{t \to \infty} K = \sqrt{Q/R}$$
(40)

状态估计更新的表达式为

$$\dot{\hat{x}} = F\hat{x} + u + K(y - H\hat{x})$$

$$= K(y - \hat{x})$$
(41)

1.3 最优预测算法

如果 t > T 后没有量测数据,相当于 $\mathbf{R}^{-1}(t) = 0(t > T)$,从而 $\mathbf{K}(t) = 0(t > T)$,所以

$$\frac{\mathrm{d}\hat{\boldsymbol{x}}(t)}{\mathrm{d}t} = \boldsymbol{F}(t)\hat{\boldsymbol{x}}(t), \quad t > T \tag{42}$$

即

$$\hat{\boldsymbol{x}}(T) = \boldsymbol{\Phi}(T, t)\hat{\boldsymbol{x}}(t) \tag{43}$$

1.4 - 随机可控性与随机可观性

如果没有量测数据,但有完善的验前信息,那么

$$\dot{\boldsymbol{P}}(t) = \boldsymbol{F}(t)\boldsymbol{P}(t) + \boldsymbol{P}(t)\boldsymbol{F}^{\mathrm{T}}(t) + \boldsymbol{G}(t)\boldsymbol{Q}(t)\boldsymbol{G}^{\mathrm{T}}(t), \quad \boldsymbol{P}(0) = 0$$
 (44)

该方程形式上可解. 即

$$\boldsymbol{P}(t) = \int_0^t \boldsymbol{\Phi}(t, \tau) \boldsymbol{G}(\tau) \boldsymbol{Q}(\tau) \boldsymbol{G}^{\mathrm{T}}(\tau) \boldsymbol{\Phi}^{\mathrm{T}}(t, \tau) d\tau$$
 (45)

如果对某 t > 0, P(t) 正定、有界,则称系统是一致随机完全可控的。

如果没有过程噪声及验前信息, 那么

$$\dot{\boldsymbol{P}}(t) = \boldsymbol{F}(t)\boldsymbol{P}(t) + \boldsymbol{P}(t)\boldsymbol{F}^{\mathrm{T}}(t) - \boldsymbol{P}(t)\boldsymbol{H}^{\mathrm{T}}(t)\boldsymbol{R}^{-1}(t)\boldsymbol{H}(t)\boldsymbol{P}(t), \quad \boldsymbol{P}(0) \to \infty$$
(46)

注意到

$$\dot{\mathbf{P}}^{-1}(t) = -\mathbf{P}^{-1}(t)\dot{\mathbf{P}}(t)\mathbf{P}^{-1}(t)$$
(47)

可得导出

$$\dot{\mathbf{P}}^{-1}(t) = -\mathbf{P}^{-1}(t)\mathbf{F}(t) - \mathbf{F}^{\mathrm{T}}(t)\mathbf{P}^{-1}(t) - \mathbf{H}(t)\mathbf{R}^{-1}(t)\mathbf{H}(t), \quad \mathbf{P}^{-1}(0) = 0$$
(48)

类似地,可解出

$$\mathbf{P}^{-1}(t) = \int_0^t \mathbf{\Phi}^{\mathrm{T}}(\tau, t) \mathbf{H}^{\mathrm{T}}(\tau) \mathbf{R}^{-1}(\tau) \mathbf{H}(\tau) \mathbf{\Phi}(\tau, t) d\tau$$
(49)

如果对某 t > 0, $P^{-1}(t)$ 正定、有界, 则称系统是一致随机完全可观的。

Theorem 1.1 如果 Q(t)、R(t) 及 F(t) 是有界的,而且系统是一致随机完全可控和一致随机完全可观的,那么系统的卡尔曼滤波算法一致渐进稳定。

上述定理表明,如下系统:

$$\hat{\boldsymbol{x}}(t) = [\boldsymbol{F}(t) - \boldsymbol{K}(t)\boldsymbol{H}(t)]\hat{\boldsymbol{x}}(t)$$
(50)

是一致渐进稳定的。即对于任意的 $\hat{x}(0)$,当 $t\to 0$ 时,上式的 $\hat{x}(t)\to 0$ 。也就是说,计算误差等产生的干扰将是有界的。此外,上述定理的条件还保证了滤波协方差矩阵 P(t) 的唯一性,即当 t 充分大后,P(t) 将与 P(0) 无关。

1.5 过程噪声与量测噪声相关系统

仍然考虑 (1)、(2) 系统, 但

$$E\boldsymbol{w}(t)\boldsymbol{v}^{\mathrm{T}}(\tau) = \boldsymbol{C}(t)\delta(t-)\tau$$

(51)

类似地采用YCHo方法,构造

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{F}(t)\boldsymbol{x}(t) + \boldsymbol{G}(t)\boldsymbol{w}(t) + \boldsymbol{D}(t)[\boldsymbol{y}(t) - \boldsymbol{H}(t)\boldsymbol{x}(t) - \boldsymbol{v}(t)]$$
 (52)

如果取

$$\mathbf{D}(t) = \mathbf{G}(t)\mathbf{C}(t)\mathbf{R}^{-1}(t) \tag{53}$$

那么

$$E[\boldsymbol{G}(t)\boldsymbol{w}(t) - \boldsymbol{D}(t)\boldsymbol{v}(t)] = 0$$
(54)

$$E[\boldsymbol{G}(t)\boldsymbol{w}(t) - \boldsymbol{D}(t)\boldsymbol{v}(t)]\boldsymbol{v}^{\mathrm{T}}(\tau) = 0$$
(55)

1

将 $\mathbf{D}(t)\mathbf{y}(t)$ 作为已知输入,那么便化为了常规卡尔曼滤波问题。最后可得

$$\frac{\mathrm{d}\hat{\boldsymbol{x}}(t)}{\mathrm{d}t} = \boldsymbol{F}(t)\hat{\boldsymbol{x}}(t) + \boldsymbol{K}(t)[\boldsymbol{y}(t) - \boldsymbol{H}(t)\hat{\boldsymbol{x}}(t|t)]$$
 (56)

$$\boldsymbol{K}(t) = [\boldsymbol{P}(t)\boldsymbol{H}^{\mathrm{T}}(t) + \boldsymbol{G}(t)\boldsymbol{C}(t)]\boldsymbol{R}^{-1}(t)$$
(57)

$$\dot{\boldsymbol{P}}(t) = \boldsymbol{F}(t)\boldsymbol{P}(t) + \boldsymbol{P}(t)\boldsymbol{F}^{\mathrm{T}}(t) - \boldsymbol{K}(t)\boldsymbol{R}(t)\boldsymbol{K}^{\mathrm{T}}(t) + \boldsymbol{G}(t)\boldsymbol{Q}(t)\boldsymbol{G}^{\mathrm{T}}(t) \quad (58)$$

不同之处仅在于滤波增益计算公式。

1.6 有色噪声系统

对于过程噪声相关的系统,可以直接采用状态增广法来解决。

考虑量测噪声相关的系统随机系统

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{F}(t)\boldsymbol{x}(t) + \boldsymbol{G}(t)\boldsymbol{w}(t) \tag{59}$$

$$\mathbf{y}(t) = \mathbf{H}(t)\mathbf{x}(t) + \mathbf{v}(t) \tag{60}$$

其中, $\boldsymbol{w}(t)\sim(\mathbf{0},\boldsymbol{Q}(t))$ 是高斯白噪声过程,它与初始状态 $\boldsymbol{x}(0)\sim(\bar{\boldsymbol{x}}_0,\boldsymbol{P}_0)$ 不相关。另外

$$\dot{\boldsymbol{v}}(t) = \boldsymbol{A}(t)\boldsymbol{v}(t) + \boldsymbol{w}_1(t) \tag{61}$$

其中, $w_1(t) \sim (\mathbf{0}, \mathbf{Q}_1(t))$ 是高斯白噪声过程, 与 $x(0) \sim (\bar{x}_0, \mathbf{P}_0)$ 、 $w(t) \sim (\mathbf{0}, \mathbf{Q}(t))$ 不相关。

显然不能用状态增广法。设

$$z(t) = \dot{\boldsymbol{y}}(t) - \boldsymbol{A}(t)\boldsymbol{y}(t)$$

$$= [\dot{\boldsymbol{H}}(t) + \boldsymbol{H}(t)\boldsymbol{F}(t) - \boldsymbol{A}(t)\boldsymbol{H}(t)]\boldsymbol{x}(t) + \boldsymbol{H}(t)\boldsymbol{G}(t)\boldsymbol{w}(t) + \boldsymbol{w}_1(t)$$

$$= \boldsymbol{H}_1(t)\boldsymbol{x}(t) + \boldsymbol{v}_1(t)$$

于是得

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{F}(t)\boldsymbol{x}(t) + \boldsymbol{G}(t)\boldsymbol{w}(t) \tag{62}$$

$$\boldsymbol{z}(t) = \boldsymbol{H}_1(t)\boldsymbol{x}(t) + \boldsymbol{v}_1(t) \tag{63}$$

注意到

$$E\boldsymbol{v}_1(t) = 0$$

$$E\boldsymbol{v}_1(t)\boldsymbol{v}_1^{\mathrm{T}}(t) = \boldsymbol{R}_1(t) = \boldsymbol{H}(t)\boldsymbol{G}(t)\boldsymbol{Q}(t)\boldsymbol{G}^{\mathrm{T}}(t)\boldsymbol{H}(t) + \boldsymbol{Q}_1(t)$$

$$E\boldsymbol{w}(t)\boldsymbol{v}_1^{\mathrm{T}}(\tau) = \boldsymbol{Q}(t)\boldsymbol{G}^{\mathrm{T}}(t)\boldsymbol{H}(t)\delta(t-\tau) = \boldsymbol{C}_1(t)\delta(t-\tau)$$

问题变成为量测噪声与过程噪声相关系统的滤波问题。具体地

$$\frac{\mathrm{d}\hat{\boldsymbol{x}}(t)}{\mathrm{d}t} = \boldsymbol{F}(t)\hat{\boldsymbol{x}}(t) + \boldsymbol{K}_1(t)[\dot{\boldsymbol{y}}(t) - \boldsymbol{A}(t)\boldsymbol{y}(t) - \boldsymbol{H}_1(t)\hat{\boldsymbol{x}}(t)]$$
(64)

$$\boldsymbol{K}_{1}(t) = [\boldsymbol{P}(t)\boldsymbol{H}^{\mathrm{T}}(t) + \boldsymbol{G}(t)\boldsymbol{C}_{1}(t)]\boldsymbol{R}_{1}^{-1}(t)$$
(65)

$$\dot{\boldsymbol{P}}(t) = \boldsymbol{F}(t)\boldsymbol{P}(t) + \boldsymbol{P}(t)\boldsymbol{F}^{\mathrm{T}}(t) - \boldsymbol{K}_{1}\boldsymbol{R}^{-1}(t)\boldsymbol{K}_{1}^{\mathrm{T}}(t) + \boldsymbol{G}(t)\boldsymbol{Q}(t)\boldsymbol{G}^{\mathrm{T}}(t) \quad (66)$$

可见,此时滤波需要量测数据的微分信号! 如果 $K_1(t)$ 、 $K_1(t)$ 分段连

续,那么可以将滤波公式(64)改为

$$\frac{d[\hat{\boldsymbol{x}}(t) - \boldsymbol{K}_1(t)\boldsymbol{y}(t)]}{dt} = \boldsymbol{F}(t)\hat{\boldsymbol{x}}(t) + \boldsymbol{K}_1(t)[-\boldsymbol{A}(t)\boldsymbol{y}(t) - \boldsymbol{H}_1(t)\hat{\boldsymbol{x}}(t)]$$
(67)

这样可以避免量测数据的微分信号直接进入滤波计算。滤波初值可以利用初始量测值,根据静态估计理论,可得

$$\hat{\boldsymbol{x}}(0) = \bar{\boldsymbol{x}}_0 + \text{cov}(\boldsymbol{x}(0), \boldsymbol{y}(0))[\text{var}(\boldsymbol{y}(0)]^{-1}[\boldsymbol{y}(0) - \boldsymbol{H}(0)\bar{\boldsymbol{x}}_0]
= \bar{\boldsymbol{x}}_0 + \boldsymbol{P}_0\boldsymbol{H}^{\mathrm{T}}(0)[\boldsymbol{H}(0)\boldsymbol{P}_0\boldsymbol{H}^{\mathrm{T}}(0) + \boldsymbol{R}(0)]^{-1}[\boldsymbol{y}(0) - \boldsymbol{H}(0)\bar{\boldsymbol{x}}_0]
\boldsymbol{P}(0) = \boldsymbol{P}_0 - \boldsymbol{P}_0\boldsymbol{H}^{\mathrm{T}}(0)[\boldsymbol{H}(0)\boldsymbol{P}_0\boldsymbol{H}^{\mathrm{T}}(0) + \boldsymbol{R}(0)]^{-1}\boldsymbol{H}(0)\boldsymbol{P}_0$$

2.1 基于标称轨迹的线性化滤波算法

考虑非线性动态系统

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), t) + \boldsymbol{w}(t) \tag{68}$$

$$y(t) = h(x(t), t) + v(t)$$
(69)

其中, $\boldsymbol{w}(t) \sim (\boldsymbol{0}, \boldsymbol{Q}(t))$ 与 $\boldsymbol{v}(t) \sim (\boldsymbol{0}, \boldsymbol{R}(t))$ 是互不相关的白噪声过程,它们与初始状态 $\boldsymbol{x}(0) \sim (\bar{\boldsymbol{x}}_0, \boldsymbol{P}_0)$ 不相关。另外,设 $\boldsymbol{Q}(t) \geq 0, \boldsymbol{R}(t) > 0$ 。

设系统的标称运动为

$$\dot{x}^*(t) = f(x^*(t), t), x^*(0) = \bar{x}_0$$
 (70)

$$\boldsymbol{y}^*(t) = \boldsymbol{h}(\boldsymbol{x}^*(t), t) \tag{71}$$

如果系统的真实状态 x 总是围绕标称状态 x^* 附近变化,那么类似离 散时间情况,我们可以建立基于标称状态轨迹的滤波算法,如表3 所示。

2

表 3: 基于标称轨迹的线性化滤波算法

状态方程	$\dot{oldsymbol{x}}(t) = oldsymbol{f}(oldsymbol{x}(t),t) + oldsymbol{w}(t)$
量测方程	$oldsymbol{y}(t) = oldsymbol{h}(oldsymbol{x}(t),t) + oldsymbol{v}(t)$
滤波初值	$\hat{x}^*(0) = Ex(0), P(0) = var[x(0)]$
滤波增益	$oldsymbol{K}(t) = oldsymbol{P}(t)oldsymbol{H}^{\mathrm{T}}(t)oldsymbol{R}^{-1}(t)$
状态估计	$rac{\mathrm{d}\hat{oldsymbol{x}}(t)}{\mathrm{d}t} = oldsymbol{f}(\hat{oldsymbol{x}}(t),t) + oldsymbol{K}(t)[oldsymbol{y}(t) - oldsymbol{h}(\hat{oldsymbol{x}}(t),t)]$
协方差阵	$\dot{P} = FP + PF^{\mathrm{T}} - PH^{\mathrm{T}}R^{-1}HP + Q$
辅助方程	$m{F}(t) = \left. rac{\partial m{f}[m{x}(t),t)]}{\partial m{x}^{\mathrm{T}}(t)} ight _{m{x}(t) = m{x}^*(t)}, m{H}(t) = \left. rac{\partial m{h}[m{x}(t),t)]}{\partial m{x}^{\mathrm{T}}(t)} ight _{m{x}(t) = m{x}^*(t)}$

2.2 扩展卡尔曼滤波算法

考虑非线性动态系统

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), t) + \boldsymbol{w}(t) \tag{72}$$

$$y(t) = h(x(t), t) + v(t)$$
(73)

其中. $\boldsymbol{w}(t) \sim (\boldsymbol{0}, \boldsymbol{Q}(t))$ 与 $\boldsymbol{v}(t) \sim (\boldsymbol{0}, \boldsymbol{R}(t))$ 是互不相关的白噪声过程,它 们与初始状态 $x(0) \sim (\bar{x}_0, P_0)$ 不相关。另外,设 Q(t) > 0, R(t) > 0。

类似离散时间情况,我们可以建立连续时间系统的扩展卡尔曼滤波算 法. 如表4 所示。

表 4: 连续时间系统扩展卡尔曼滤波算法 (EKF)

状态方程	$\dot{oldsymbol{x}}(t) = oldsymbol{f}(oldsymbol{x}(t),t) + oldsymbol{w}(t)$
量测方程	$oldsymbol{y}(t) = oldsymbol{h}(oldsymbol{x}(t),t) + oldsymbol{v}(t)$
滤波初值	$\hat{\boldsymbol{x}}(0) = E\boldsymbol{x}(0), \boldsymbol{P}(0) = \text{var}[\boldsymbol{x}(0)]$
滤波增益	$oldsymbol{K}(t) = oldsymbol{P}(t)oldsymbol{H}^{\mathrm{T}}(t)oldsymbol{R}^{-1}(t)$
状态估计	$rac{\mathrm{d}\hat{oldsymbol{x}}(t)}{\mathrm{d}t} = oldsymbol{f}(\hat{oldsymbol{x}}(t),t) + oldsymbol{K}(t)[oldsymbol{y}(t) - oldsymbol{h}(\hat{oldsymbol{x}}(t),t)]$
协方差阵	$\dot{\boldsymbol{P}} = \boldsymbol{F}\boldsymbol{P} + \boldsymbol{P}\boldsymbol{F}^{\mathrm{T}} - \boldsymbol{P}\boldsymbol{H}^{\mathrm{T}}\boldsymbol{R}^{-1}\boldsymbol{H}\boldsymbol{P} + \boldsymbol{Q}$
辅助方程	$m{F}(t) = \left. rac{\partial m{f}[m{x}(t),t)]}{\partial m{x}^{\mathrm{T}}(t)} ight _{m{x}(t) = \hat{m{x}}(t)}, m{H}(t) = \left. rac{\partial m{h}[m{x}(t),t)]}{\partial m{x}^{\mathrm{T}}(t)} ight _{m{x}(t) = \hat{m{x}}(t)}$

混合时间系统扩展卡尔曼滤波算法

考虑具有离散时间量测的非线性动态系统

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), t) + \boldsymbol{w}(t) \tag{74}$$

$$\boldsymbol{y}_k = \boldsymbol{h}[\boldsymbol{x}(t_k)] + \boldsymbol{v}_k \tag{75}$$

其中. $\mathbf{w}(t) \sim (\mathbf{0}, \mathbf{Q}(t))$ 与 $\mathbf{v}_k \sim (\mathbf{0}, \mathbf{R}_k)$ 是互不相关的白噪声, 它们与初始 状态 $x(0) \sim (\bar{x}_0, P_0)$ 不相关。另外,设 $Q(t) \geq 0, R_k > 0$ 。

设在 t_{k-1} 时刻已经获得了最优估计 $\hat{x}(t_{k-1})$ 。在获得量测值 y_k 之前,

$$\frac{\mathrm{d}\hat{\boldsymbol{x}}(t)}{\mathrm{d}t} = \hat{\boldsymbol{f}}(\boldsymbol{x}(t), t), \quad t_{k-1} \le t < t_k$$
 (76)

有

2

考虑到

$$f(x(t),t) \approx f(\hat{x}(t),t) + F(t)(x(t) - \hat{x}(t))$$
(77)

其中

$$\boldsymbol{F}(t) = \left. \frac{\partial \boldsymbol{f}(\boldsymbol{x}(t), t)}{\partial \boldsymbol{x}^{\mathrm{T}}(t)} \right|_{\boldsymbol{x}(t) = \hat{\boldsymbol{x}}(t)}$$
(78)

所以, 近似地

$$\frac{\mathrm{d}\hat{\boldsymbol{x}}(t)}{\mathrm{d}t} = \boldsymbol{f}(\hat{\boldsymbol{x}}(t), t), t_{k-1} \le t < t_k$$
(79)

另外

$$\dot{\boldsymbol{P}}(t) = \boldsymbol{F}(t)\boldsymbol{P}(t) + \boldsymbol{P}(t)\boldsymbol{F}^{\mathrm{T}}(t) + \boldsymbol{Q}(t), t_{k-1} \le t < t_k$$
(80)

设

$$oldsymbol{H}_k = \left. rac{\partial oldsymbol{h}(oldsymbol{x}(t_k), t_k)}{\partial oldsymbol{x}^{ ext{T}}(t_k)}
ight|_{oldsymbol{x}(t_k) = \hat{oldsymbol{x}}(t_k^-)}$$

那么,量测方程可近似为

$$oldsymbol{y}_k = oldsymbol{h}[\hat{oldsymbol{x}}(t_\mathrm{k}^-)] + oldsymbol{H}_k[oldsymbol{x}(t_k) - \hat{oldsymbol{x}}(t_\mathrm{k}^-)] + oldsymbol{v}_k$$

于是可建立此时的滤波算法,如表5所示。

表 5: 混合时间系统扩展卡尔曼滤波算法

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t),t) + \boldsymbol{w}(t), \quad \boldsymbol{w}(t) \sim (\boldsymbol{0},\boldsymbol{Q}(t))$$

$$\boldsymbol{y}_k = \boldsymbol{h}[\boldsymbol{x}(t_k)] + \boldsymbol{v}_k, \quad \boldsymbol{v}(k) \sim (\boldsymbol{0},\boldsymbol{R}_k)$$
时间修正 $(\hat{\boldsymbol{x}}(0) = \bar{\boldsymbol{x}}_0, \quad \boldsymbol{P}(0) = \boldsymbol{P}_0)$

$$\frac{d\hat{\boldsymbol{x}}(t)}{dt} = \boldsymbol{f}(\hat{\boldsymbol{x}}(t),t), t_{k-1} \leq t < t_k$$

$$\dot{\boldsymbol{P}}(t) = \boldsymbol{F}(t)\boldsymbol{P}(t) + \boldsymbol{P}(t)\boldsymbol{F}^{\mathrm{T}}(t) + \boldsymbol{Q}(t), t_{k-1} \leq t < t_k$$
量测修正 $\hat{\boldsymbol{x}}(t_k^+) = \hat{\boldsymbol{x}}(t_k^-) + \boldsymbol{K}_k[\boldsymbol{y}_k - \boldsymbol{h}[\hat{\boldsymbol{x}}(t_k^-)]]$

$$\boldsymbol{P}(t_k^+) = [\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{H}_k]\boldsymbol{P}(t_k^-)$$

$$\boldsymbol{K}_k = \boldsymbol{P}(t_k^-)\boldsymbol{H}_k^{\mathrm{T}}[\boldsymbol{H}_k\boldsymbol{P}(t_k^-)\boldsymbol{H}_k^{\mathrm{T}} + \boldsymbol{R}_k]^{-1}$$

$$\boldsymbol{F}(t) = \frac{\partial \boldsymbol{f}(\boldsymbol{x}(t),t)}{\partial \boldsymbol{x}^{\mathrm{T}}(t)}\Big|_{\boldsymbol{x}(t) = \hat{\boldsymbol{x}}(t)}, \quad \boldsymbol{H}_k = \frac{\partial \boldsymbol{h}(\boldsymbol{x}(t_k),t_k)}{\partial \boldsymbol{x}^{\mathrm{T}}(t_k)}\Big|_{\boldsymbol{x}(t_k) = \hat{\boldsymbol{x}}(t_k^-)}$$

连续时间系统平滑算法

固定区间平滑

考虑如下连续时间系统:

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{F}(t)\boldsymbol{x}(t) + \boldsymbol{B}(t)\boldsymbol{u}(t) + \boldsymbol{G}(t)\boldsymbol{w}(t)$$
(81)

$$y(t) = H(t)x(t) + v(t), \quad t \in [0, T]$$
(82)

同前一样,设 $\mathbf{w}(t) \sim (\mathbf{0}, \mathbf{Q}(t))$ 与 $\mathbf{v}(t) \sim (\mathbf{0}, \mathbf{R}(t))$ 是相互独立的白噪声过 程,它们与初始状态 $x(0) \sim (\bar{x}_0, P_0)$ 不相关。另外,过程噪声功率谱密度 矩阵 Q(t) > 0,量测噪声功率谱密度矩阵 R(t) > 0。

3.1.1前向滤波

为了简便,下述一些公式省略了自变量 t。

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\boldsymbol{x}}_f = \boldsymbol{F}\hat{\boldsymbol{x}}_f + \boldsymbol{B}\boldsymbol{u} + \boldsymbol{P}_f\boldsymbol{H}^{\mathrm{T}}\boldsymbol{R}^{-1}[\boldsymbol{y} - \boldsymbol{H}\hat{\boldsymbol{x}}_f], \quad \hat{\boldsymbol{x}}_f(0) = \bar{\boldsymbol{x}}_0$$
(83)

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{P}_f = \mathbf{F} \mathbf{P}_f + \mathbf{P}_f \mathbf{F}^{\mathrm{T}} + \mathbf{G} \mathbf{Q} \mathbf{G}^{\mathrm{T}} - \mathbf{P}_f \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{P}_f, \quad \mathbf{P}_f(0) = \mathbf{P}_0 \quad (84)$$

3.1.2 反向滤波

为了建立反向滤波,设 $\tau = T - t$,由 (81)、(82)可得

$$\frac{\mathrm{d}\boldsymbol{x}(\tau)}{\mathrm{d}\tau} = -\boldsymbol{F}(\tau)\boldsymbol{x}(\tau) - \boldsymbol{B}(\tau)\boldsymbol{u}(\tau) - \boldsymbol{G}(\tau)\boldsymbol{w}(\tau)$$
(85)

$$\mathbf{y}(\tau) = \mathbf{H}(\tau)\mathbf{x}(\tau) + \mathbf{v}(\tau), \quad \tau \in [0, T]$$
 (86)

可见,在前向滤波方程中将 $\{F, B, G\}$ 分别换为 $\{-F, -B, -G\}$,即可获得反向滤波方程:

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\hat{\boldsymbol{x}}_b = -\boldsymbol{F}\hat{\boldsymbol{x}}_b - \boldsymbol{B}\boldsymbol{u} + \boldsymbol{P}_b\boldsymbol{H}^{\mathrm{T}}\boldsymbol{R}^{-1}[\boldsymbol{y} - \boldsymbol{H}\hat{\boldsymbol{x}}_b]$$
(87)

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \mathbf{P}_b = -\mathbf{F} \mathbf{P}_b - \mathbf{P}_b \mathbf{F}^{\mathrm{T}} + \mathbf{G} \mathbf{Q} \mathbf{G}^{\mathrm{T}} - \mathbf{P}_b \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{P}_b$$
(88)

在 t = T 时刻,平滑估计与前向滤波应该一致。因此, $\hat{x}(T|T) =$ $\hat{x}_f(T), P(T|T) = P_f(T)$ 。由后者可知反向滤波协方差矩阵的边界条件为

$$\mathbf{P}_b^{-1}(t=T) = \mathbf{P}_b^{-1}(\tau=0) = \mathbf{0}$$
(89)

目前还不能直接确定 $\hat{x}_b(t=T) = \hat{x}_b(\tau=0)$,但如果令 $\hat{\chi}_b = P_b^{-1}\hat{x}_b$,肯定 有

$$\hat{\boldsymbol{\chi}}_b(t=T) = \hat{\boldsymbol{\chi}}_b(\tau=0) = \mathbf{0} \tag{90}$$

考虑到

$$\frac{\mathrm{d}\boldsymbol{P}_b^{-1}}{\mathrm{d}\tau} = -\boldsymbol{P}_b^{-1} (\frac{\mathrm{d}\boldsymbol{P}_b}{\mathrm{d}\tau}) \boldsymbol{P}_b^{-1} \tag{91}$$

可导出

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \boldsymbol{P}_b^{-1} = \boldsymbol{P}_b^{-1} \boldsymbol{F} + \boldsymbol{F}^{\mathrm{T}} \boldsymbol{P}_b^{-1} + \boldsymbol{H}^{\mathrm{T}} \boldsymbol{R}^{-1} \boldsymbol{H} - \boldsymbol{P}_b^{-1} \boldsymbol{G} \boldsymbol{Q} \boldsymbol{G}^{\mathrm{T}} \boldsymbol{P}_b^{-1}$$
(92)

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\hat{\boldsymbol{\chi}}_b = [\boldsymbol{F} - \boldsymbol{G}\boldsymbol{Q}\boldsymbol{G}^{\mathrm{T}}\boldsymbol{P}_b^{-1}]^{\mathrm{T}}\hat{\boldsymbol{\chi}}_b - \boldsymbol{P}_b^{-1}\boldsymbol{B}\boldsymbol{u} + \boldsymbol{H}^{\mathrm{T}}\boldsymbol{R}^{-1}\boldsymbol{y}$$
(93)

以上两式的边界条件分别由 (89) 和 (90) 给出。

3.1.3 最优平滑器

根据融合估计原理, $t \in [0,T]$ 时刻的最优平滑估计为

$$\mathbf{P}(t) = [\mathbf{P}_f^{-1}(t) + \mathbf{P}_b^{-1}(t)]^{-1}$$
(94)

$$\hat{\boldsymbol{x}}(t) = \boldsymbol{P}(t)[\boldsymbol{P}_f^{-1}(t)\hat{\boldsymbol{x}}_f(t) + \hat{\boldsymbol{\chi}}_b(t)]$$
(95)

3.1.4 RTS 平滑公式

当完成前向滤波后,可以把上述反向滤波和平滑计算结合在一起,由 此可以导出如下 RTS 平滑算法:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \boldsymbol{P} = -[\boldsymbol{F} + \boldsymbol{G} \boldsymbol{Q} \boldsymbol{G}^{\mathrm{T}} \boldsymbol{P}_{f}^{-1}] \boldsymbol{P} - \boldsymbol{P} [\boldsymbol{F} + \boldsymbol{G} \boldsymbol{Q} \boldsymbol{G}^{\mathrm{T}} \boldsymbol{P}_{f}^{-1}]^{\mathrm{T}} + \boldsymbol{G} \boldsymbol{Q} \boldsymbol{G}^{\mathrm{T}}$$
(96)

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\hat{\boldsymbol{x}} = -\boldsymbol{F}\hat{\boldsymbol{x}} - \boldsymbol{B}\boldsymbol{u} - \boldsymbol{G}\boldsymbol{Q}\boldsymbol{G}^{\mathrm{T}}\boldsymbol{P}_{f}^{-1}[\hat{\boldsymbol{x}} - \hat{\boldsymbol{x}}_{f}]$$
(97)

上述算法本质上是反向积分,边界条件分别为 $P|_{\tau=0} = P|_{t=T} = P_{t}(T)$ 和 $|\hat{x}|_{\tau=0} = \hat{x}|_{t=T} = \hat{x}_f(T)_{\circ}$

上述算法表明,平滑算法依赖于前向滤波的结果。因此,精确的滤波是 精确平滑的前提。由于固定区间平滑是在获取数据记录后离线完成的. 因

此计算速度通常不是一个重要因素。然而,由于通常需要处理洗及大量测 量的长数据记录,因此计算机舍入引起的计算误差是一个重要因素。所以, 最好有对计算机舍入误差相对不敏感的递归算法,可以参考前面关于最优 滤波相关的讨论(次优及鲁棒算法)。

基于固定区间平滑算法,扩展到固定点平滑及固定延迟平滑比较简单 和直接,下面直接给出最后的算法,细节请参考相关文献。

3.2 固定点平滑

设 t 时刻是待平滑估计的时间点,滤波算法(常规前向滤波)的右端 点为 T。随着 T > t 的增加,t 时刻的平滑算法如下:

$$\frac{\mathrm{d}}{dT}\boldsymbol{\Phi}(t,T) = -\boldsymbol{\Phi}(t,T)[\boldsymbol{F}(T) + \boldsymbol{G}(T)\boldsymbol{Q}(T)\boldsymbol{G}^{\mathrm{T}}(T)\boldsymbol{P}_{f}^{-1}(T)], \boldsymbol{\Phi}(t,t) = \boldsymbol{I}$$
(98)

$$\frac{\mathrm{d}}{dT}\hat{\boldsymbol{x}}(t|T) = \boldsymbol{\Phi}(t,T)\boldsymbol{P}_f(T)\boldsymbol{H}(T)\boldsymbol{R}^{-1}(T)[\boldsymbol{y}(T) - \boldsymbol{H}(T)\hat{\boldsymbol{x}}_f(T)]$$
(99)

$$\frac{\mathrm{d}}{dT}\hat{\boldsymbol{x}}(t|T) = \boldsymbol{\Phi}(t,T)\boldsymbol{P}_f(T)\boldsymbol{H}(T)\boldsymbol{R}^{-1}(T)[\boldsymbol{y}(T) - \boldsymbol{H}(T)\hat{\boldsymbol{x}}_f(T)] \qquad (99)$$

$$\frac{\mathrm{d}}{dT}\boldsymbol{P}(t|T) = -\boldsymbol{\Phi}(t,T)\boldsymbol{P}_f(T)\boldsymbol{H}(T)\boldsymbol{R}^{-1}(T)\boldsymbol{P}_f(T)\boldsymbol{\Phi}^{\mathrm{T}}(t,T) \qquad (100)$$

3.3 固定延迟平滑

设滤波算法 (常规前向滤波) 的右端点为 T. 固定的时间延迟为 $\Delta > 0$ 。 随着 $T(>\Delta)$ 的增加, $T-\Delta$ 时刻的平滑算法如下:

$$\frac{\mathrm{d}}{\mathrm{d}T}\hat{\boldsymbol{x}}(T-\Delta|T) = [\boldsymbol{F}(T-\Delta) + \boldsymbol{G}(T-\Delta)\boldsymbol{Q}(T-\Delta)\boldsymbol{G}^{\mathrm{T}}(T-\Delta)\boldsymbol{P}_{f}^{-1}(T-\Delta)]\hat{\boldsymbol{x}}(T-\Delta|T)
- \boldsymbol{G}(T-\Delta)\boldsymbol{Q}(T-\Delta)\boldsymbol{G}^{\mathrm{T}}(T-\Delta)\boldsymbol{P}_{f}^{-1}(T-\Delta)\hat{\boldsymbol{x}}_{f}(T-\Delta)
- \boldsymbol{\Psi}(T-\Delta,T)\boldsymbol{P}_{f}(T)\boldsymbol{H}^{\mathrm{T}}(T)\boldsymbol{R}^{-1}(T)[\boldsymbol{y}(T) - \boldsymbol{H}(T)\hat{\boldsymbol{x}}_{f}(T)]$$

$$\frac{\mathrm{d}}{\mathrm{d}T} \mathbf{P}(T - \Delta | T) = [\mathbf{F}(T - \Delta) + \mathbf{G}(T - \Delta)\mathbf{Q}(T - \Delta)\mathbf{G}^{\mathrm{T}}(T - \Delta)\mathbf{P}_{f}^{-1}(T - \Delta)]\mathbf{P}(T - \Delta | T)$$

$$+ \mathbf{P}(T - \Delta | T)[\mathbf{F}(T - \Delta) + \mathbf{G}(T - \Delta)\mathbf{Q}(T - \Delta)\mathbf{G}^{\mathrm{T}}(T - \Delta)\mathbf{P}_{f}^{-1}(T - \Delta)]^{\mathrm{T}}$$

$$- \mathbf{G}(T - \Delta)\mathbf{Q}(T - \Delta)\mathbf{G}^{\mathrm{T}}(T - \Delta)$$

$$- \mathbf{\Psi}(T - \Delta, T)\mathbf{P}_{f}(T)\mathbf{H}^{\mathrm{T}}(T)\mathbf{R}^{-1}(T)\mathbf{P}_{f}(T)\mathbf{\Psi}(T - \Delta, T)$$

其中,
$$\Psi(T-\Delta,T) = \Phi(T-\Delta,T)\Phi(t,T)$$
。

Example 3.1 (固定区间平滑) 考虑如下随机系统:

$$\dot{x} = w,$$
 $w \sim \mathcal{N}(0, q)$
 $z = x + v,$ $v \sim \mathcal{N}(0, r)$

其最优滤波的稳态协方差为 $p(t) = \alpha$,这里 $\alpha = \sqrt{rq}$ 。试分别用前向-反向 最优滤波器和 Rauch-Tung-Striebe 公式两种方法,考察固定区间最优平滑 器的稳态情况。

【解】(1)前向-反向最优滤波器

前向滤波的 Riccati 方程为

$$\dot{p} = q - p^2/r$$

稳态时 (p=0),有 $p=\sqrt{rq}=\alpha$ 。反向滤波的 Riccati 方程为

$$\frac{\mathrm{d}}{\mathrm{d}\tau}p_b = q - p_b^2/r$$

稳态时 $p_b = \sqrt{rq} = \alpha$ 。因此,可知平滑的协方差为

$$p(t|T) = [p^{-1}(t) + p_b^{-1}(t)]^{-1} = \frac{\alpha}{2}$$

即最优滤波协方差的一半。此外

$$\hat{x}(t|T) = p(t|T)[\hat{x}(t)/p(t) + \hat{x}_b(t)/p_b(t)] = \frac{1}{2} [\hat{x}(t) + \hat{x}_b(t)]$$

上式表明. 稳态时 x 的平滑估计是正向估计加反向估计的平均值。

(2) 采用 Rauch-Tung-Striebel 公式, 稳态平滑协方差矩阵微分方程为 (假设 给定 $T, t \leq T$)

$$\dot{p}(t|T) = \frac{2q}{\alpha}p(t|T) - q$$

其解为 $(q/\alpha = \beta, p(T|T) = \alpha)$

$$p(t|T) = \frac{\alpha}{2} \left(1 + e^{-2\beta(T-t)} \right), \quad t \leqslant T$$

如果 T-t 足够大 (即 $T-t>2/\beta$)),反向回扫处于稳态。此时,和前 面一样,可以得到 $p(t|T) = \alpha/2$ 。平滑状态估计的微分方程为

$$\dot{x}(t|T) = \beta[\hat{x}(t|T) - \hat{x}(t)]$$

前向滤波与平滑估计的协方差变化如图1所示。

Figure 1: 前向滤波与平滑估计协方差

Example 3.2 (固定延迟平滑) 确定例3.1 中考虑的系统的固定延迟最优平 滑器的稳态行为。

固定延迟最优平滑 $(T-t=\Delta)$ 固定, $T\geq\Delta$) 所需的转移矩阵为

$$\frac{\mathrm{d}}{\mathrm{d}T}\varphi_L(T-\Delta,T)=0$$

假设 $p(T-\Delta) = p(T) = \alpha$ 。上述方程的解是一个常数,由固定点平滑确 定的初始条件给出

$$\varphi_L(T-\Delta,T)=e^{-\beta\Delta}$$

因此. 固定延迟平滑协方差满足的方程为

$$\frac{\mathrm{d}p(T - \Delta|T)}{\mathrm{d}T} = 2\beta p(T - \Delta|T) - q\left(1 + e^{-2\beta\Delta}\right)$$

利用固定点平滑得到的初始条件 $p(0 \mid \Delta)$,我们导出

$$p(T - \Delta|T) = \frac{\alpha}{2} \left(1 + e^{-2\beta\Delta}\right)$$

因此, 如果 Δ 足够大 (即 $\Delta > 2/\beta$), 状态的延迟估计和稳态平滑的精度 一样。当然,这就是它有用的原因。对应的延迟状态估计为

$$\frac{\mathrm{d}\hat{x}(T-\Delta\mid T)}{\mathrm{d}T} = \beta \left(\hat{x}(T-\Delta\mid T) - \hat{x}(T-\Delta) + e^{-\beta\Delta}[z(T) - \hat{x}(T)]\right)$$

所需初始条件为 $\hat{x}(0 \mid \Delta)$,由最优固定点平滑器给出。

3.4 可平滑性

如果最优平滑器提供的状态估计优于最终最优滤波器估计向后反向插 值时获得的状态估计,则称该状态是可平滑的。研究表明,只有系统过程

噪声可控的状态才是可平滑的。因此,常值状态是不可平滑的,而随机时 变的状态是可平滑的。下面讲行简要讨论。

不失一般性,下面考虑无控制输入系统的平滑问题,即 (81) 中 B=0。 如果系统没有过程噪声,那么 Q=0。由 RTS 平滑公式 (97) 可知

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\boldsymbol{x}}(t|T) = \boldsymbol{F}\hat{\boldsymbol{x}}(t|T), \quad \hat{\boldsymbol{x}}(T|T) = \hat{\boldsymbol{x}}_f(T)$$
(101)

其解为

$$\hat{\boldsymbol{x}}(t|T) = \boldsymbol{\Phi}(t,T)\hat{\boldsymbol{x}}_f(T) \tag{102}$$

可见。此时最优固定区间平滑估计就是前向滤波的反向插值。此时。平滑 估计误差协方差矩阵方程为

$$\dot{\boldsymbol{P}}(t|T) = \boldsymbol{F}\boldsymbol{P}(t|T) + \boldsymbol{P}(t|T)\boldsymbol{F}^{\mathrm{T}}, \quad \boldsymbol{P}(T|T) = \boldsymbol{P}_f(T)$$
(103)

可解得

$$\mathbf{P}(t|T) = \mathbf{\Phi}(t,T)\mathbf{P}_f(T)\mathbf{\Phi}^{\mathrm{T}}(t,T)$$
(104)

如果进一步地有 F=0. 那么 $\Phi(t,T)=I$. 干是

$$\hat{\boldsymbol{x}}(t|T) = \hat{\boldsymbol{x}}_f(T) \tag{105}$$

$$\mathbf{P}(t|T) = \mathbf{P}_f(T) \tag{106}$$

当 t < T 都成立。上述讨论说明: 如果 F = Q = 0,平滑不能改善滤波。 也就是说,对于恒值状态,滤波状态协方差将为零,卡尔曼增益将为零,平 滑状态估计将等干滤波状态估计。因此,对于恒值状态,平滑状态估计不 会优于滤波状态估计,该状态是不可平滑的。

如果状态是随机时变的,则滤波状态协方差将不为零,这意味着卡尔 曼增益将非零,平滑状态估计将不同于滤波状态估计。此时,平滑状态估 计将优于滤波状态估计,该状态是可平滑的。

概况起来,只有过程噪声可控的状态才是可平滑的。恒值状态不可平 滑。而随机时变状态可平滑。以上讨论及结论,对于离散时间系统的平滑 也是有效的。

4. *

本章针对连续时间动态系统,基于离散化的思想,建立了连续时间卡尔曼滤波算法。对于连续时间非线性系统,介绍了基于标称状态线性化及扩展卡尔曼滤波算法。最后还简要介绍了连续时间系统的最优平滑算法及系统的可平滑性。

其实,对应离散时间系统的相关算法,在连续时间系统中有类似的研究和结果,例如连续时间系统的自适应滤波、平方根滤波、稳态滤波、 H_{∞} 鲁棒滤波、容积滤波、无迹滤波及粒子滤波等等,限于时间和篇幅不再赘述。

