离散数学(2023)作业20-循环群与群同构

离散数学教学组

Problem 1

证明: 三阶群必为循环群。

Problem 2

证明:循环群一定是交换群。

Problem 3

设 p 是素数,证明每一个 p 阶群都是循环群,且以每一个非单位元的元素作为它的生成元。

Problem 4

考虑整数加群 $(\mathbb{Z},+)$ 的循环子群 $\langle a \rangle$ 和 $\langle b \rangle$,其中 a,b 分别是两个循环群的生成元,则 $\langle a \rangle$ 是 $\langle b \rangle$ 的子群当且仅 当 $b \mid a$ 。

Problem 5

设 ϕ 是群G到G'的同构映射, $a \in G$, 证明: a的阶和 $\phi(a)$ 的阶相等。

Problem 6

设 G_1 为循环群,f是群 G_1 到 G_2 的同态映射,证明 $f(G_1)$ 也是循环群。

Problem 7

对以下各小题给定的群 G_1 和 G_2 ,以及 $f:G_1\to G_2$,说明 f 是否为群 G_1 到 G_2 的同态,如果是,说明是否为单同态、满同态和同构。

I. $G_1 = \langle Z, + \rangle, G_2 = \langle R^*, \cdot \rangle$, 其中 R^* 为非零实数集合,+ 和 · 分别表示数的加法和乘法。

$$f: Z \to R^*, f(x) = \begin{cases} 1 & x$$
 是偶数
 $-1 & x$ 是奇数

2. $G_1 = \langle Z, + \rangle, G_2 = \langle A, \cdot \rangle$,其中 + 和 · 分别表示数的加法和乘法, $A = \{x | x \in C \land |x| = 1\}$,其中 C 为复数集合。

$$f: Z \to A, f(x) = \cos x + i \sin x$$

Problem 8

令 G, G' 为群,函数 $f: G \to G'$ 是一个群同态。证明:

- I. $\ker f = \{x \in G | f(x) = e\}$ 是 G 的子群
- 2. $img f = \{x \in G' | \exists g \in G, f(g) = x\}$ 是 G' 的子群

Problem 9

我们记n 阶循环群为 C_n ,欧拉函数 $\phi(m)$ 定义为与m 互素且不大于m 的正整数的个数,考虑以下三个事实:

- I. 对正整数 m, 欧拉函数的结果 $\phi(m)$ 为 C_m 的生成元的个数
- 2. C_n 的每个元素均生成 C_n 的一个子群
- 3. C_n 的每个子群均是一个循环群 C_m ,且 $m\mid n$

证明公式

$$\sum_{m>0,m|n}\phi(m)=n$$

Problem 10

证明:整数加群 Z 不与有理数加群 Q 同构。