

ESCUELA DE CIENCIAS EXACTAS

DEPARTAMENTO DE MATEMÁTICA

LCC - LF - LM - PF - PM

ÁLGEBRA Y GEOMETRÍA ANALÍTICA I

PRÁCTICA DE OPERACIONES

1. Para $A=\{a,b,c\},$ sea $f:A\times A\to A$ la operación binaria cerrada dada en la siguiente tabla:

\overline{f}	a	b	c
a	b	a	c
b	a	c	b
c	c	b	a

Dé un ejemplo para mostrar que f no es asociativa.

- 2. Defina la operación binaria cerrada $h: \mathbb{Q}^+ \times \mathbb{Q}^+ \to \mathbb{Q}^+$ dada por $h(a,b) = \frac{a}{b}$.
 - a) Muestre que h no es conmutativa ni asociativa.
 - b) Determine si h tiene algún elemento neutro.
- 3. Cada una de las siguientes funciones $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ es una operación binaria cerrada en \mathbb{Z} . Determine los casos en los que f es conmutativa o asociativa.
 - $a) \ f(x,y) = x + y xy$
 - $b)\ f(x,y)=\max\{x,y\},$ el máximo entre xe y
 - $c) f(x,y) = x^{|y|}$
 - d) f(x,y) = x + y 3
- 4. Determine y justifique cuáles de las operaciones binarias cerradas del ejercicio anterior tienen elemento neutro.
- 5. Para $\emptyset \neq A \subseteq \mathbb{N}$, sean $f, g: A \times A \to A$ las operaciones binarias cerradas dadas por $f(x,y) = \min\{x,y\}$ y $g(x,y) = \max\{x,y\}$.
 - a) Determine si f tiene elemento neutro.
 - b) Determine si g tiene elemento neutro.
- 6. Sean $A = B = \mathbb{R}$. Determine $\pi_A(D)$ y $\pi_B(D)$ para cada uno de los conjuntos siguientes $D \subseteq A \times B$.
 - a) $D = \{(x, y) : x = y^2\}$
 - b) $D = \{(x, y) : y = sen(x)\}$
 - c) $D = \{(x,y) : x^2 + y^2 = 1\}$