

Kontest 3 – Finaliści

Zadanie 1. Dwusieczna kąta wewnętrznego BAC w trójkącie ABC przecina bok BC w punkcie D. Prosta k przechodzi przez punkt D i jest prostopadła do BC. Symetralna odcinka AD przecina AD i k odpowiednio w P i Q. Udowodnij, że punkty B, C, P, Q leżą na jednym okręgu.

Zadanie 2. Niech n będzie dowolną liczbą całkowitą dodatnią, a S(n) oznacza liczbę permutacji τ zbioru $\{1, \ldots, n\}$, takich że $k^4 + (\tau(k))^4$ jest liczbą pierwszą dla każdego $k = 1, \ldots, n$. Pokaż, że S(n) jest kwadratem.

Zadanie 3. Funkcję $g: \mathbb{Z} \to \mathbb{Q}$ nazywamy gęstą, jeżeli dla dowolnej liczby wymiernej c takiej, że f(x) < c < f(y), dla pewnych całkowitych x, y, istnieje taka liczba całkowita z, że f(z) = c.

Znaleźć wszystkie funkcje gęste f spełniające równanie:

$$f(x) + f(y) + f(z) = f(x)f(y)f(z),$$

dla wszystkich liczb całkowitych takich, że x + y + z = 0.

Zadanie 4. Niech $m, n \ge 2$ będą liczbami całkowitymi dodatnimi, oraz niech a_1, a_2, \ldots, a_n będą liczbami całkowitymi, z których żadna nie jest wielokrotnością m^{n-1} . Pokaż, że istnieją liczby całkowite e_1, e_2, \ldots, e_n , nie wszystkie równe zero, takie że $|e_i| < m$ dla każdego i, oraz wyrażenie $e_1a_1 + e_2a_2 + \ldots + e_na_n$ jest wielokrotnością m^n .