

COMSATS University Islamabad Department of Computer Science Course Syllabus

Course Information

Course Code: CSC462 Course Title: Artificial Intelligence

Credit Hours: 4 (3,1)

Lecture Hours/Week: 3

Lab Hours/Week: 3 Pre-Requisites: CSC102-Discrete Structures

Catalogue Description:

This course gives a broad overview of the fundamental theories and techniques of Artificial Intelligence. Topics include: Overview of Artificial Intelligence; Agents & Environments; Problem-Solving; Adversarial Search; Constraint Satisfaction Problems; Knowledge Representation & Reasoning; Uncertainty; and Automated Planning.

Text and Reference Books

Textbook:

1. Artificial Intelligence: A Modern Approach, Russell, S., and Norvig, P., Pearson, 2020.

Reference Book:

1. Artificial Intelligence Basics: A Non-Technical Introduction, Taulli, T., Apress, 2019.

Week wise Plan:

Lecture #	CDF Unit #	Topics Covered	Reading Material
1.	1	Fundamentals of Artificial Intelligence (AI), Thinking Humanly, Acting Humanly, Thinking Rationally, Acting Rationally, Weak AI, and Strong AI.	AIMA: Ch1
2.	1	Intelligent Agent, and Agent Environments (Observable Agents, Deterministic, Episodic Static, and Discrete).	AIMA: Ch2
3.	1	Agent Types: Simple reflex agents, Goal-based Agents, Model-based Reflex Agents, Utility-based Agents, and Learning Agents.	AIMA: Ch2
4.	2	Search Concepts, Problem Formulation, Search Space Definition, Types of Search Algorithms, Uniformed Search, and Breadth First Search (BFS).	AIMA: Ch3
5.	2	Uninformed Search: Depth First Search (DFS), and BFS & DFS Comparison.	AIMA: Ch3
6.	2	Informed Search: Heuristic Function, Greedy Best First Search, and A* search.	AIMA: Ch3
7.	2	Local Search & Optimization: Hill Climbing & Genetic Algorithm.	AIMA: Ch3
8.	3	Game as Search Problems, and Perfect Decisions in two Person Games.	AIMA: Ch6
9.	3	Imperfect Decision, and Minimax Algorithm.	AIMA: Ch6
10.	3	Evaluation Functions, Cutting-off Search, Alpha-Beta Pruning, and Effectiveness of Alpha-Beta Pruning.	AIMA: Ch6
11.	3	Monte Carlo Tree Search, Selection, Expansion, Simulation, and Back Propagation.	AIMA: Ch6

12.	4	CSP: Defining CSP, and Variations on CSP Formulation.	AIMA: Ch5
13.	4	Constraint Propagation, Inference in CSP, Node Consistency, Arc Consistency, Path Consistency, K-Consistency, and Global Constraints.	AIMA: Ch5
14.	4	Backtracking Search for CSP, Variable & Value Ordering, Interleaving Search & Inference, and Constraint Learning.	AIMA: Ch5
15.	4	Local Search for CSP, Min-Conflicts Heuristics, and Constraint Weighting.	AIMA: Ch5
16.	4	The Structure of Problems, Cutset Conditioning, Tree Decomposition, and Value Symmetry.	AIMA: Ch5
17. 18.	<u> </u> -	Mid Term Exam	
19.	5	Introduction to Knowledge, Knowledge Based Agent, Wumpus World, and PEAS.	AIMA: Ch7
20.	5	Logic, Propositional Logic, and Pros & Cons of Propositional Logic.	AIMA: Ch7
21.	5	First Order Logic: Syntax & Semantics of First Order Logic, Using FOL, and Atomic/Complex Sentences.	AIMA: Ch8
22.	5	Inference in First-Order-Logic, Propositional vs First Order Inference, and Unification.	AIMA: Ch9
23.	5	Forward Chaining Algorithm, and Backward Chaining Algorithm.	AIMA: Ch9
24.	5	Knowledge Representation: Ontological Engineering, Categories & Objects, Events, and Mental Objects & Modal Logic.	AIMA: Ch10
25.	6	Quantifying Uncertainty, Basic Probability Notation, Inference, Using Full Joint, and Independence.	CLRS: Ch12
26.	6	Bayes' Rule & its Use, Naive Bayes Models, and Introduction to Fuzzy logic.	AIMA: Ch12
27.	6	Probabilistic Reasoning, Semantics of Bayesian Networks, Exact Inference in Bayesian Networks, and Approximate Inference for Bayesian Networks.	AIMA: Ch13
28.	6	Time & Uncertainty, and Hidden Markov Models.	AIMA: Ch14
29.	7	Classical Planning & Algorithms: Forward & Backward State-Space Search for Planning, Planning as Boolean Satisfiability.	AIMA: Ch11
30.	7	Heuristics for Planning: Domain Independent Pruning, and State Abstraction in Planning.	AIMA: Ch11
31.	7	Hierarchical Planning: High Level Actions, Searching for Primitive Solutions, and Searching for Abstract Solutions.	AIMA: Ch11
32.	7	Planning & Action in Nondeterministic Domains: Time, Schedules & Resources, Sensor-less Planning, Contingent Planning, and Online Planning.	AIMA: Ch11
		Final Term Exam	

Studen	t Outcomes (SOs)								
S.#	Description								
	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements								
2	Identify, formulate, research literature, and solve <i>complex</i> computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.								
	Create, select, adapt, and apply appropriate techniques, resources, and modern computing tools to <i>complex</i> computing activities, with an understanding of the limitations.								

Course Learning Outcomes (CLO)

Sr.#	Unit #	Course Learning Outcomes	Blooms Taxonomy Learning Level	so
CLO-1	1	Articulate how artificial intelligence enables the capabilities of a computer, machine, or system to mimic the human brain.	Understanding	1
CLO-2	2-3	Apply various AI problem solving and searching techniques to a real-world problem.	Applying	1,2
CLO-3	4	Formulate a problem specified in natural language as a constraint satisfaction problem.	Applying	2
CLO-4	5	Apply resolution to a set of logic statements to answer a query.	Applying	2
CLO-5	6-7	Compare various planning strategies for different applications under uncertainty.	Analyzing	2
CLO-6	2-4	Implement various searching technique, CSP and knowledge-based system to solve a problem.	Applying	2,4

CLO Assessment Mechanism

Assessment Tools	CLO-1	CLO-2	CLO-3	CLO-4	CLO-5	CLO-6	
Quizzes	Quiz 1	Quiz 2	Quiz 3	Quiz 4	_	-	
Assignments	-	Assignment 1	Assignment 2	Assignment 3	Assignment 4	Lab Assignments	
Mid Term Exam	Mid Term Mid Term Exam Exam Exam		-				
Final Term Exam		-					

Policy & Procedures

• Attendance Policy: Every student must attend 80% of the lectures as well as laboratory in this course. The students falling short of required percentage of attendance of lectures/laboratory work, is not allowed to appear in the terminal examination.

• Course Assessment:

	Quizzes	Assignments	Mid Term Exam	Terminal Exam	Total			
Theory (T) 15		10	25	50	100			
Lab (L)	-	25	25	50	100			
Final Marks (T+L)	(T/100) *75 + (L/100) *25							

• **Grading Policy:** The minimum passing marks for each course is 50% (In case of LAB; in addition to theory, student is also required to obtain 50% marks in the lab to pass the course). The correspondence between letter grades credit points and percentage marks at CUI is as follows:

Grade	A	A-	B+	В	В-	C+	C	C-	D+	D	F
Marks	>=	80 –	75 –	71 -	68 -	64 -	61 -	58 -	54 -	50-53	< 50
	85	84	79	74	70	67	63	60	57		
Cr.	3.67-	3.34-	3.01-	2.67-	2.34-	2.01-	1.67-	1.31-	1.01-	0.10-	0.00
Point	4.00	3.66	3.33	3.00	2.66	2.33	2.00	1.66	1.30	1.00	0.00

- **Missing Exam:** No makeup exam will be given for final exam under any circumstance. When a student misses the mid-term exam for a legitimate reason (such as medical emergencies), his grade for this exam will be determined based on the Department policy. Further, the student must provide an official excuse within one week of the missed exam.
- Academic Integrity: All CUI policies regarding ethics apply to this course. The students are advised to discuss their grievances/problems with their counsellors or course instructor in a respectful manner.
- **Plagiarism Policy:** Plagiarism, copying and any other dishonest behaviour is prohibited by the rules and regulations of CUI. Violators will face serious consequences.