Selected Solutions to Cunningham's "Set Theory: A First Course"

Martín Caputo

Contents

1	troduction 1	
	5 The Zermelo–Fraenkel Axioms	
	Exercise 1	
	Exercise 2	
	Exercise 3	
	Exercise 4	
	Exercise 5	
	Exercise 6	
	Exercise 7	
	Exercise 9	
	Exercise 10	

1 Introduction

1.5 The Zermelo-Fraenkel Axioms

Exercise 1

Since $\{u\}$ and $\{v,w\}$ are sets, there exists a set A such that for every set x

$$x \in A \iff x = \{u\} \lor x = \{v, w\}.$$

By extension, this set is unique and we call it $A := \{\{u\}, \{v, w\}\}\}$. Using the union axiom, given that A is a set, then there exists a set B such that for every set x,

```
x \in B \iff \exists z(x \in z \land z \in A)
\iff \exists z(x \in z \land z \in \{\{u\}, \{v, w\}\})
\iff \exists z(x \in z \land (z = \{u\} \lor z = \{v, w\}))
\iff \exists z((x \in z \land z = \{u\}) \lor (x \in z \land z = \{v, w\}))
\iff \exists z(x \in \{u\} \lor x \in \{v, w\})
\iff x \in \{u\} \lor x \in \{v, w\}
\iff x = u \lor (x = v \lor x = w)
\iff x = u \lor x = v \lor x = w
```

Where we have simplified the quantifier which does not appear in the expression. Thus B is the unique set whose elements are exactly u, v, w and we call it $B := \{u, v, w\}$.

Exercise 2

Since A is a set, then by pairing there exists the unique set $\{A,A\}$, we shall prove this set is equal to what we call $\{A\}$, the set whose only element is A. Given $x \in \{A\}$ we conclude x = A, therefore $x \in \{A,A\}$. Given $x \in \{A,A\}$ we have that $x = A \lor x = A$, therefore x = A, which implies $x \in \{A\}$. Thus $\{A\} = \{A,A\}$. Since the sets are equal and one of them exists, they both exist.

Exercise 3

Forst we prove $A \cap \{A\} = \emptyset$. For the sake of contradiction, suppose that the set A is such that $A \cap \{A\} \neq \emptyset$. Then $B := A \cap \{A\}$ is non-empty. Using the axiom of regularity, this means that there exists a set x such that $x \in B$ and $x \cap B = \emptyset$. But the first condition means $x \in A \cap \{A\}$, which means that $x \in A$ and $x \in \{A\}$, which means that $x \in A$ and $x \in A$. But then, the second is $x \cap B = A \cap A \cap \{A\} = A \cap \{A\} \neq \emptyset$, a contradiction. Therefore, $A \cap \{A\} = \emptyset$.

Finally, this means that $A \notin A$, since $A \in A$ would imply that there exists $x \in A$ such that, x = A which is equivalent to $x \in \{A\}$. Thus there would exist $x \in A \land x \in \{A\} \implies x \in A \cap \{A\} \implies A \cap \{A\} \neq \emptyset$, which contradicts the previous result.

Exercise 4

Using the regularity axiom, since $\{A, B\}$ is non-empty, then by the regularity axiom

$$\exists x (x \in \{A, B\} \land x \cap \{A, B\} = \emptyset).$$

Therefore either $x = A \land A \cap \{A, B\} = \emptyset$ or $x = B \land B \cap \{A, B\} = \emptyset$ or both. Since $A \in B$, then it cannot be that x = B, since this would mean $B \cap \{A, B\} = \emptyset$, but of course, there exists $A \in B$ and also $A \in \{A, B\}$, so the intersection $B \cap \{A, B\} = \emptyset$ cannot be empty. Therefore $x = A \land A \cap \{A, B\} = \emptyset$, which means that it is false that

$$\exists z(z \in A \land z \in \{A, B\}) \iff \exists z(z \in A \land (z = A \lor z = B))$$

$$\iff \exists z((z \in A \land z = A) \lor (z \in A \land z = B))$$

$$\iff \exists z(A \in A \lor B \in A)$$

$$\iff \exists z(B \in A)$$

$$\iff B \in A.$$

Where we simplified $A \in A$ since we know by Exercise 3 that $A \notin A$. Therefore, it is false that $B \in A$, thus it is true that $B \notin A$.

Exercise 5

From previous exercises we know that $\{A,B,C\}$ is a set. Since it is non-empty, there exists an element x of this set such that $x \cap \{A,B,C\} = \emptyset$. It cannot happen that x = B or x = C, since $A \in B$ and $B \in C$, so that the intersections are $B \cap \{A,B,C\}$ and $C \cap \{A,B,C\}$ are both nonempty. Therefore x = A and $A \cap \{A,B,C\} = \emptyset$. Thus, it is false that there exists a $z \in A \land z \in \{A,B,C\}$, that is

$$z \in A \land (z = A \lor z = B \lor z = C) \iff (z \in A \land z = A) \lor (z \in A \land z = B) \lor (z \in A \land z = C)$$
$$\iff (A \in A) \lor (B \in A) \lor (C \in A)$$
$$\iff C \in A$$

Where, $B \in A$ is true by hypothesis and $A \in A$ false by Exercise 3. Therefore, it is false that $C \in A$, which means that it is true that $C \notin A$.

Exercise 6

By the powerset axiom the set $\mathcal{P}(A)$ exists. Let $\psi(x) := x \in B$, then there exists a (unique by extension) set S, where for all sets x,

$$x \in S \iff x \in \mathcal{P}(A) \land \psi(x)$$

 $\iff x \in \mathcal{P}(A) \land x \in B$
 $\iff x \in \mathcal{P}(A) \cap B.$

Exercise 7

By the subset axiom, there exists a set S such that for all sets $x, x \in S$, if and only if, $x \in A \land \psi(x)$. Define $\psi(x) := \neg(x \in B)$ thus $A \setminus B$ exists.

Exercise 8

First we show $\{\emptyset\} \neq \emptyset$. Suppose it is true that $x \in \{\emptyset\}$. Since $x \in \emptyset$ is always false, then it is false that $x \in \{\emptyset\} \implies x \in \emptyset$, therefore, $\{\emptyset\} \neq \emptyset$.

Now we show $\{\emptyset, \{\emptyset\}\} \neq \{\emptyset\}$. Let $x = \{\emptyset\}$, then clearly $x \in \{\emptyset, \{\emptyset\}\}$, but $x \notin \{\emptyset\}$, because if it were true that $x \in \{\emptyset\}$ then $x = \emptyset \neq \{\emptyset\}$ (by the previous part) which contradicts our choice of $x = \{\emptyset\}$. Therefore $\{\emptyset, \{\emptyset\}\} \neq \{\emptyset\}$.

Now we show that $\{\emptyset, \{\emptyset\}\} \neq \emptyset$. Let $x = \emptyset$, then $x \in \{\emptyset, \{\emptyset\}\}$. But $x \notin \emptyset$, therefore $\{\emptyset, \{\emptyset\}\} \neq \emptyset$.

Exercise 9

For any x, consider $x \in A$. Since A has no elements, this statement is false, therefore the implication $x \in A \implies x \in \emptyset$ is true. Similarly, $x \in \emptyset \implies x \in A$ is true. Therefore $x \in \emptyset \iff x \in A$, thus, $A = \emptyset$.

Exercise 10

We know that for any set x, there exists the unique set $\{x\}$. In particular for every $x \in A$, there exists the unique set y such that $y = \{x\}$, thus the formula $\forall z (z \in y \iff z = x)$ is uniquely satisfied for all $x \in A$. Therefore we can conclude that there exists a set S where for any $y, y \in S \iff (\exists x \in A)(y = \{x\})$, which means that there is a set S which contains exactly those elements y for which $y = \{x\}$ for some $x \in A$, which is precisely how $\{\{x\} : x \in A\}$ is defined. Therefore $\{\{x\} : x \in A\}$ is a set.