IOWA STATE UNIVERSITY

Agricultural and Biosystems Engineering

Creating a Simple Simulation

Matt Schramm

Creating a New Simulation

- Using the shortcut you previously created, navigate to the tutorial shortcut -> LIGGGHTS_Flexible_Fibers -> examples -> BondPackage -> Tutorials -> Single Tests
- Make a new folder by mkdir simple_sim
- Change to the new directory cd simple_sim
- Create a new file touch in.liggghts
- Open this file in a txt editor

Starting the Script

- Defining the type of atoms
 atom_style hybrid granular bond/gran n_bondtypes 1 bonds_per_atom 6
 atom_modify map arrayhard_particles yes # For high young's modulus
- Turn off newton's 3rd law newton off communicate single vel yes
- Set boundaries as fixed boundary f f f
- Set units to si units si
- Create the simulation domain and state there is one type of atom region domain block 0.0 0.125 0.0 0.125 -0.01 0.10 create_box 1 domain

Adding Physics

- Give the contact model pair_style gran model hertz tangential history
- Give the bond model bond_style gran
- Set the bin size neighbor 0.001 bin
- Tell liggghts to update the neighbor list every time step neigh_modify delay 0
- Set contact coefficients
 pair_coeff * * # contact physics do not need coefficients
- Set bond coefficients
 bond_coeff 1 1.0 0.0 4.0e9 2.0e8 1 0.01 1 1.0e16 1.0e16

Setting Material Properties, Adding a Wall, Add Gravity, and Set the Integration Scheme

Setting properties

fix m1 all property/global youngsModulus peratomtype 4.0e9 fix m2 all property/global poissonsRatio peratomtype 0.3 fix m3 all property/global coefficientRestitution peratomtypepair 1 0.5 fix m4 all property/global coefficientFriction peratomtypepair 1 0.1

- Place the floor for the simulation
 fix floor all wall/gran model hertz tangential history primitive type 1 zplane 0.0
- Add gravity in the z-direction fix grav all gravity 9.81 vector 0.0 0.0 -1.0
- Use velocity verlet to update the simulation fix integr all nve/sphere
- Set the time step timestep 1.0e-6

Build Particle Template and Set Particle Insertion

Set the fiber template

fix pts all particletemplate/multiplespheres 15485863 atom_type 1 density constant 2500 & nspheres 5 ntry 50000 spheres & 0.000 0.0 0.0 0.001 & 0.002 0.0 0.0 0.001 & 0.004 0.0 0.0 0.001 & 0.006 0.0 0.0 0.001 & 0.008 0.0 0.0 0.001 & 0.008 0.0 0.0 0.001 & bonded yes

Set particle distribution

fix pdd1 all particledistribution/discrete 32452843 1 pts1 1.0

Create insertion region

region fill_box block 0.0 0.125 0.0 0.125 0.0065 0.07 units box

Give insertion information

fix ins all insert/pack seed 32452867 distribution template pdd1 maxattempt 500 insert_every once & overlapcheck yes orientation random all_in yes vel constant 0.0 0.0 0.0 & region fill_box particles_in_region 500 ntry_mc 10000 check_dist_from_subdomain_border no

Set Output

- Set output to the screen thermo_style custom step atoms numbond cpu cpuremain ke
- Print output every 1000 steps thermo 1000
- Ignore atoms that leave the domain and do not normalize output thermo_modify lost ignore norm no
- Create post folder for file output shell mkdir post
- Set particle dump output for ParaView dump dmp all custom 1000 post/damp*.liggghts id type x y z vx vy vz fx fy fz omegax omegay & omegaz radius

Bond the Particles

- Run once to insert the atoms
 run 1
- Create fix to bond atoms
 fix bondcr all bond/create/gran 1 1 1 0.002001 1 6
- Bond atoms to make particles run 1
- Do not allow any more bonds to form fix_modify bondcr every 0
- Run the simulation run 250000 upto
- Save script

Run the Simulation

- From the command line, run the script liggghts –in in.script
- After the simulation ends, move post to post_single mv post post_single
- Now run your script using MPI
 mpirun –n 4 liggghts –in in.script
- After simulation ends, move post to post _MPI mv post post_MPI

View Simulation in ParaView

Open ParaView, Import both dump files, and rename them to Signle and

MPI

Compare Single Core vs MPI runs

Single Core – Notice uniformly distributed

Compare Single Core vs MPI runs

Multicore – Notice the separate packings

