

Netflix Award

The New Hork Times (Sep, 21, 2009):

Netflix Awards \$1 Million Prize and Starts a New Contest

[...]try to predict what movies particular customers would prefer

"Accurately predicting the movies Netflix members will love is a key component of our service," said Neil Hunt, chief product officer (Netflix)

Contents

- Netflix Award
- RS as a learning task
 - regression
 - classification
 - preferences
 - probabilistic preferences
 - matrix factorization

2

Netflix Award

Netflix dataset

- Moree than 100 millions movie assessments (1-5 stars)
- From Nov. 11, 1999 to Dec. 31, 2005
- 480189 users
- 17770 movies
- 99% cells are empty
 - Each movie has an average of 5600 assessments
 - Each user has assessed 208 movies (average)
- 2 datasets: train and quiz (test-prize)

Netflix Award

Loss function: root-mean-square error (RMSE)

$$RMSE = \sqrt{\frac{1}{|Quiz|} \sum_{(u,i) \in Quiz} (r(u,i) - b(u,i))^2}$$

Netflix had their own RS, Cinematch, with

RMSE = 0.9514.

Winner had to be 10% better than that

5

7

Winner Netflix Award

BellKor's Pragmatic Chaos

Yehuda Koren, Robert M. Bell: Advances in Collaborative Filtering. Recommender Systems Handbook 2011: 145-186

Yehuda Koren, Yahoo! Research

Robert Bell, AT&T Labs – Research

•

Netflix Award

Final score reuslts

	Team	RMSE	Date	Hour
1	BellKor's Pragmatic Chaos	0,8567	26/07/09	18:18:28
2	The Emsemble	0,8567	26/07/09	18:38:22
3	Grand Prize Team	0,8582	10/07/09	21:24:40
4	Opera Solutions and Vandelay United	0,8588	10/07/09	01:12:31

(

How does Pragmatic Chaos work?

Titanic y Joe

Average Netflix: 3.7

• Titanic: 0.5 over the average (all users)

Joe is quite critic: 0.3 below average

$$\hat{r}_{Joe,Titanic} = 3.7 + 0.5 - 0.3 = 3.9$$

$$\hat{\boldsymbol{r}}_{ui} = \mu + \boldsymbol{b}_i + \boldsymbol{b}_u$$

	baseline	Cinematch	Prize
RMSE	0,9799	0,9514	0,8567

.

How does Pragmatic Chaos work?

Previous equation look nice, but it is too simple

Koren & Bell proposed a new (and more complex) version to estimate the mark given by a user u of and item i,

$$\hat{r}_{ui} = \mu + b_i + b_u + q_i^T p_u$$

μ	General average in Netflix
b_i	bias (item i)
b_u	bias (user u)
q_i, p_u	Are (column) vectors with k components (columns of matrices Q & P)

9

Matrix factorization

step by step

$$6 = 3 * 2$$

M1 = M2 * M3

How does Pragmatic Chaos work?

Vectors q_i and p_u are representing k features of items and users respectively

They are learned (as bias)

$$\hat{r}_{ui} = \mu + b_i + b_u + q_i^T p_u$$

μ	General average in Netflix
b_i	bias (item i)
b_u	bias (user u)
q_i, p_u	Are (column) vectors with k components (columns of matrices Q & P)

- 1

$$\hat{r}_{ui} = \mu + b_i + b_u + q_i^T p_u$$

$$\hat{r}_{ui} = \mu + b_i + b_u + q_i^T p_u$$

RS as machine learning tasks

- Fill matrix of assessments
 - Regression
 - Classification
 - Preferences

RS as a machine learning task

The matrix of assessments contains the marks given by users (rows) to the items (columns)

	p1	p2	рз	p4
u1	4	*	*	9
u2	*	7	4	*
u3	*	*	3	8
u4	5	5	*	*

The goal is to fill the matrix *according* to the available scores

Thus we must \emph{learn} a function $f_{ heta}(oldsymbol{u},oldsymbol{p})$

that depends on a set of parameters

θ

RS as a machine learning task

The meaning of the word *according* is of key importance. It will define the kind of learning task

If we think that cell scores are

Exact values: regression

• Labels of a finite set: classification

Clues to order: preferences, ranking

Fill matrix with regression

 p1
 p2
 p3
 p4

 u1
 4
 *
 *
 9

 u2
 *
 7
 4
 *

 u3
 *
 *
 3
 8

 u4
 5
 5
 *
 *

- Assuming that the available scores are numeric and reliable
- Regression may fill the matrix trying to minimize the difference from predictions and real values
- Netflix award

1

Fill matrix with regression

The learning task is defined by the dataset

$$D = \{(u, p; M(u, p)) : M(u, p)\}$$
 Available

The aim is to solve

$$heta^* = \operatorname*{argmin}_{ heta} \sum_{D} \left(f_{ heta}(oldsymbol{u}, oldsymbol{p}) - oldsymbol{M}(oldsymbol{u}, oldsymbol{p})
ight)^2 +
u r(heta)$$

where the last summand is a regularization parameter

Fill matrix with a classifier

	p1	p2	р3	p4
u1	7	*	*	4
u2	*	d.	7	*
u3	*	*	7	4
u4	7	F	*	*

- Assuming reliable labels of a finite set in cells
- Matrix can be filled using a classifier

Fill matrix with a classifier

The learning task is defined by the dataset

$$D = \{(u, p; M(u, p)) : M(u, p) = +1, -1\}$$

The aim is to solve

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{D} \max\{0, 1 - \boldsymbol{M}(\boldsymbol{u}, \boldsymbol{p}) f_{\theta}(\boldsymbol{u}, \boldsymbol{p})\} + \nu r(\theta)$$

Fill matrix learning preferences

 $M(u_1, p_4) > M(u_1, p_1)$ $M(u_2, p_2) > M(u_2, p_3)$ $M(u_3, p_4) > M(u_3, p_3)$

The scores of items are only considered as relative comparisons for each user

- For instance, u1 prefers item p4 over p1. However, we are not sure about the absolute scores
- When users are not professionals, the marks assigned are not trustable, but they are reliable as relative comparisons

Fill matrix learning preferences

dataset

$$\mathcal{D}$$

$$M(u_1,p_4) > M(u_1,p_1) \hspace{1cm} (u_1,p_4,p_1) \ M(u_2,p_2) > M(u_2,p_3) \Longrightarrow (u_2,p_2,p_3)$$

$$M(u_2, p_2) > M(u_2, p_3) \implies (u_2, p_2, p_3)$$

$$M(u_3,p_4)>M(u_3,p_3) \qquad \qquad (u_3,p_4,p_3)$$

$$M(u,p_b) > M(u,p_w) \Rightarrow [u,p_b,p_w] \in \mathcal{D}$$

Triples of

- user
- 2 items with different marks:
 - one is better (b) than the other (w)

Fill matrix learning preferences

In this case, we must solve

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{D} \max \{0, 1 - f_{\theta}(\boldsymbol{u}, \boldsymbol{p}_b) + f_{\theta}(\boldsymbol{u}, \boldsymbol{p}_w)\} + \nu r(\theta)$$

Matrix factorization

step by step

25

Factorization

A general expression for f (the filling function) is this

$$M(oldsymbol{u},oldsymbol{p})\cong f(oldsymbol{u},oldsymbol{p})=\sum_{i,j}oldsymbol{x}_{ij}oldsymbol{u}_ioldsymbol{p}_j$$

Then, learning \mathbf{f} is learning \mathbf{X} whose components are the weights (xij) of each pair of user item.

But this matrix can have an unmanageable dimension

To overcome this problem, we can determine ${\bf f}$ by means of two matrices that ${\bf factor}~{\bf X}$.

$$f(u, p) = u^T X p = u^T W^T V p = \langle W u, V p \rangle$$

Factorization

- When viewing RSs as a Machine Learning task, no indication was made about the form that the function f should have, capable of filling in the matrix of evaluations.
- In any case, we will always assume that both products and users can be represented by vectors.

26

Factorization: geometric interpretation

The equation

$$f(\boldsymbol{u}, \boldsymbol{p}) = \langle \boldsymbol{W} \boldsymbol{u}, \boldsymbol{V} \boldsymbol{p} \rangle$$

means that we are **embedding** users and items into a common Euclidean space

$$egin{aligned} \mathbb{R}^{|\mathcal{U}|} &
ightarrow \mathbb{R}^k, & oldsymbol{u} \mapsto oldsymbol{W} oldsymbol{u}; \ \mathbb{R}^{|rep(\mathcal{P})|} &
ightarrow \mathbb{R}^k, & oldsymbol{p} \mapsto oldsymbol{V} oldsymbol{p}. \end{aligned}$$

and then ${\bf f}$ is proportional to the distance to an hyperplane

$$f(u, p) = \langle Wu, Vp \rangle$$

= $||Wu|| ||Vp|| cos(Wu, Vp)$
= $||Wu|| d(hyp(Wu, Vp))$

27

Factorization: geometric interpretation V_{p_1} V_{p_2} V_{p_3} V_{p_4} V_{p_5} V_{p_6} V_{p_6}