Title:

Application of HovaCAL Technology for Calibration of FTIR and other Multicomponent IR analyzers

Authors:

Edul Chikhliwala, Robert Peters and Ronald Baker – EcoChem Analytics Martin Schmaeh, IAS GmbH

Abstract:

The HovaCAL technology has been used to generate hot-wet gas mixtures of various reactive compounds NH3, HCl, HF, HBr etc. These gas mixtures can be used to calibrate FTIR and other multicomponent analyzers. In addition, different water vapor compositions generated by the Hovacal can be used to formulate water interference curves and even less significant cross-interferences of other gases (NO, CO, SO2, CO2) required by the analyzers to achieve desired performance. Finally, the accurate gas-mixing capabilities of the HovaCAL enable the user to create diluted gas matrices of various compositions using one or more span gas cylinder.

In this paper we will illustrate the above described capabilities and how these activities are crucial in the initial setup and routine maintenance of FTIR and other multicomponent IR analyzer applications.

Application of HovaCAL Technology for Calibration of FTIR and other Multicomponent IR analyzers

E. D. Chikhliwala, R. Baker and R. Peters, EcoChem Analytics
M. Schmäh, IAS GmbH

EUEC 2009 – Session A5.4 Phoenix, AZ Tuesday, 3rd February 2009

1

Presentation Outline

- ◆ Technology
 - How it works
 - Instrument configuration
- Application
 - Water reference
 - Cross-interference
 - Reactive vapor calibration

Typical Operating Values

- Evaporator temperature: 180 to 200 °C
- ◆ Liquid concentrations: Dependent on compound
- ◆ Liquid flow rate: 0.1 to 3 ml/min (Peristaltic Pump)
 - 5 to 250 µl/min (Syringe Pump)
- ◆ Carrier gas flow: 3 to 25 lit/min
- ◆ Span gas flow: 0.1 to 10 lit/min (other possible)

Calibration Procedure

- Calibration of Hot-Wet Multicomponent MC3 analyzer measuring NO, NO2, N2O, NH3, H2O, CO2 and O2
- Obtain absorbance vs concentration data for linearity and cross-interference tables
- ◆ For NDIR instruments, single/dual wavelength measurements, while for FTIR entire absorbance spectrum is obtained for a particular concentration level

HovaCAL Applications Summary

- New analyzers create linearity and cross-interference curves
- Field maintenance activities on a routine basis (semi-annual, annual)
 - Check the calibration of water channel and interference curves with HovaCAL
 - Span gas checks for NH3, HCI, HF etc
- Repair of analyzer in factory and field sample cell rebuild, source replacement, optical bench repairs require re-calibration with HovaCAL
- Eliminate or minimize use of calibration gas cylinders
- Compact & flexible delivered concentrations can be optimized at point of use

Application of HovaCAL Technology for Calibrating FTIR and Other Multicomponent IR Analyzers

By Edul Chikhliwala, Robert Peters, Ronald Baker & Martin Schmaeh

Abstract:

The HovaCAL technology has been used to generate hot-wet gas mixtures of various reactive compounds NH3, HCl, HF, HBr etc. These gas mixtures can be used to calibrate FTIR and other multicomponent analyzers. In addition, different water vapor compositions generated by the Hovacal can be used to generate water interference curves required by the analyzers. Finally, the gas-mixing capabilities of the HovaCAL enable the user to create diluted gas mixtures of various compositions using one or more span gas cylinder. In this paper we will illustrate the above described capabilities and how these activities are crucial in the initial setup and routine maintenance of these analyzer applications.

HovaCAL Applications Summary

- ◆ New analyzers create linearity and cross-interference curves
- Field maintenance activities on a routine basis (semi-annual, annual)
 - Check the calibration of water channel and interference curves with HovaCAL
 - Span gas checks for NH3, HCl, HF etc
- ◆ Repair of analyzer in factory and field sample cell rebuild, source replacement, optical bench repairs require re-calibration with HovaCAL
- Eliminate or minimize use of calibration gas cylinders
- Compact & flexible delivered concentrations can be optimized at point of use

- Water has absorption lines across IR spectrum
- Water signal is typically significantly stronger than the target compounds
- A good instrument-specific water calibration greatly helps produce accurate readings
- Instrument's response to water vapor is done initially and after major maintenance

EUEC 2009 -- Session A5.4 -- Phoenix, Arizona -- 3 Feb 2009