CLAIMS

We claim:

1	1. A method for locating neighbor objects of a query geometry in a database, the method
2	comprising:
3	1) tiling a query geometry at a tiling level t;
4	2) conducting a search of a search area comprising interior and boundary tiles of the
5	query geometry for neighbors, if the search does not produce a result set that includes a target
0 0	number of neighbors, then the following steps are carried out starting with a radius r of 1:
W 1 3	3) expanding the search area to a radius r tiles at a distance d from the boundary
18 178	tiles and conducting a search for neighbors in the expanded search area, where (r-1)*tw <
	$d \le r^*tw$, wherein tw is the maximum or minimum of the x-width, y-width of a tile at
	level t and r is the query radius;
U U	4) using each tile in the expanded search area it is determined if there are any
12	geometries at distance ≤r*tw that are to be included in the result set;
13	5) if a target number of neighbors is not found, steps 3-4 are repeated with a query radius
14	of 2 tile widths followed by 3 tile widths;
15	6) if the target number still is not reached retiling the query geometry at a higher level of
16	tiling; and
17	7) repeating steps 1-7 until either the target number is reached or all objects in the
18	database are searched.

- 2. The method according to claim 1, wherein geometries at distances >r*tw are included 2 in the search with query radius r.
- 1 3. The method according to claim 1, wherein only a portion of tile in the expanded query radius are materialized prior to searching the expanded query radius for neighbors, and wherein 2
- additional tiles are materialized until all tiles at a specific query radius have been generated, 3
- searched and included in a result.
 - 4. The method according to claim 3, wherein about 1000 to about 5000 tiles are materialized prior to searching.
 - 6. The method according to claim 3, further comprising removing duplicate neighbors from the result.
 - 7. The method according to claim 3 further comprising: retaining only the target number of neighbors if more than the target number of neighbors is found and terminating the searching process.
 - 8. A method for locating neighbor objects of a query object in a database, the method comprising:
 - defining a query tile set comprising a plurality of tiles that define an initial query radius that the query object is grouped within;

locating neighbor objects within the initial query radius;

1

2

5

Sulf

7

8

9

10

11

12

determining a number of neighbor objects within the initial query radius;
expanding the query radius beyond the initial query radius by defining an expanded query
tile set beyond the query tile set if the number of neighbor objects is less than a target number;
locating neighbor objects within the expanded query radius;
determining a number of neighbor objects within the expanded radius corresponds to a
target number; and
continuing to expand the query radius and locate neighbor objects within the expanded
radius until the number of neighbor objects equals or exceeds the target number.

- 9. The method according to claim 8, further comprising: calculating a distance of each neighbor object from the query object.
- 10. The method according to claim 9, wherein the distance of each neighbor object from the center of the query object is calculated.
- 11. The method according to claim 8, wherein the distance is based upon interboundary distance, boundary-to-boundary distance, or touch or intersect distance.
 - 12. The method according to claim 8, further comprising:
 redefining the initial query tile set as larger tiles to define a revised initial query radius if
- 3 the target number of neighbor objects is not found in a minimum number of expansions of the
- 4 query radius;
 - locating neighbor objects within the revised initial query radius;

3

9

10

determining a number of neighbor objects within the revised initial query radius;

defining a revised expanded query radius beyond the revised initial query radius if the number of neighbor objects is less than the target number;

locating neighbor objects within the revised expanded query radius;

determining a number of neighbor objects within the revised expanded radius
corresponds to the target number; and

continuing to expand the query radius and locate neighbor objects within the expanded radius until the number of neighbor objects equals or exceeds the target number.

- 13. The method according to claim 12, wherein the minimum number of expansions is three.
 - 14. The method according to claim 12, further comprising:

determining whether an increased number of tiles exceeds a memory capacity of in which the database is stored prior to increasing the number of tiles; and

if the increased number of tiles exceeds the memory capacity then redefining the tiles with an increased size.

- 15. The method according to claim 8, further comprising:
- of neighbor objects in the initial query radius exceeds the target number to determine the target
- 4 number of nearest neighbor objects.

Sul Al

size.

- 16. The method according to claim 8, wherein the tiles are rectangular.
- 17. The method according to claim 8, wherein all of the tiles have the same shape and
- 18. The method according to claim 8, wherein the database comprises locations in a geographical region, the query object represents a first location in the geographical region, and the neighbor objects represent other locations in the geographical region.
- 19. The method according to claim\8, wherein the database is indexed with a linear quadtree.
 - 20. The method according to claim 8, further comprising: assigning each tile a tile code and an associated geometry as the tiles are defined.
- 21. The method according to claim 8, wherein the query radius is expanded a selected distance and the method further comprises determining a number of tiles necessary to expand the query radius the selected distance.
- 22. The method according to claim 8, wherein the query radius is expanded a selected number of tiles.
 - 23. The method according to claim 8, wherein the initial query radius and the expanded

3

1

1

2

1

2

query radius comprise the same number of tiles.

- 24. The method according to claim 8, wherein the query object is grouped within a plurality of tiles.
- 25. The method according to claim 24, wherein the query object is grouped completely or partially within the tiles.
- 26. The method according to claim 8, wherein the database comprises a spatial or geographic database.
 - 27. The method according to claim 8, further comprising: organizing the neighbor objects in order of distance.
- 28. The method according to claim 8, further comprising: calculating a distance of each located neighbor object from the query to determine the target number of nearest neighbor objects.
- 29. The method according to claim 8, wherein the query object comprises a geometry that at least partially intersects at least one tile and the neighbor objects comprise geometries that at least partially intersect at least one tile.
 - 30. The method according to claim 29, wherein at least one tile that the neighbor objects

16

17

18

2

intersect coincides with at least one tile that the query geometry intersects.

31. A computer program product for performing a process for locating neighbor objects of a query object in a database in a computer system, comprising:

a computer readable medium; and

computer program instructions, recorded on the computer readable medium, executable by a processor, for performing the steps of:

defining a query tile set comprising a plurality of tiles that define an initial query radius that the query object is grouped within;

locating neighbor objects within the initial query radius;

determining a number of neighbor objects within the initial query radius;

expanding the query radius beyond the initial query radius by defining an expanded query tile set beyond the query tile set if the number of neighbor objects is less than a target number;

locating neighbor objects within the expanded query radius;

determining a number of neighbor objects within the expanded radius corresponds to a target number; and

continuing to expand the query radius and locate neighbor objects within the expanded radius until the number of neighbor objects equals or exceeds the target number.

32. A system for performing a process for locating neighbor objects of a query object in a database, comprising:

a processor operable to execute computer program instructions; and a memory operable to store computer program instructions executable by the processor. for performing the steps of:

defining a query tile sex comprising a plurality of tiles that define an initial query radius that the query object is grouped within;

locating neighbor objects within the initial query radius;

determining a number of neighbor objects within the initial query radius;

expanding the query radius beyond the initial query radius by defining an expanded query tile set beyond the query tile set if the number of neighbor objects is less than a target number;

locating neighbor objects within the expanded query radius;

determining a number of neighbor objects within the expanded radius corresponds to a target number; and

continuing to expand the query radius and locate neighbor objects within the expanded radius until the number of neighbor objects equals or exceeds the target number.