Деревья поиска для целых чисел

Россия, Санкт-Петербург

20 мая 2020

Описание задачи

- Структура данных хранит подмножество $A \subset U = \{0, 1, 2, \dots, u-1\}$
 - для простоты можно считать, что $u = 2^b$.
- Запросы:
 - INSERT(x) добавить число x $(A := A \cup \{x\});$
 - DELETE(x) удалить число x $(A := A \setminus \{x\})$;
 - NEXT(x) найти следующее после $x (min\{y \in A \mid y > x\})$
 - PREV(x) найти предыдущее перед $x \pmod{y \in A \mid y < x}$
- Умеем все операции за $\mathcal{O}(\log n) = \mathcal{O}(\log u)$.
- ullet Сделаем за $\mathcal{O}(\log \log u)$.

Битовая строка

- INSERT и DELETE за $\mathcal{O}(1)$;
- NEXT и PREV за $\mathcal{O}(u)$.

3 / 17

Дерево ван Эмде Боаса

$$u = 16 = 2^b$$
, $b = 4$

0				1				2				$3 = \sqrt{u} - 1$			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

- ullet Разбить на кластеры размера $\sqrt{u}=2^{rac{b}{2}}$:
 - ullet в каждом кластере \sqrt{u} элементов;
 - ullet номер кластера определяется старшими $rac{b}{2}$ битами.
- $x = \langle c, i \rangle$;
- x = 1011:
 - c = 10 номер кластера;
 - i = 11 номер элемента внутри кластера.

4 m > 4 m >

Дерево ван Эмде Боаса

$$u = 16 = 2^b$$
, $b = 4$, $A = \{0, 1, 3, 11, 12, 13, 15\}$

	0				1				2				$3 = \sqrt{u} - 1$			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	
1	1	0	1	0	0	0	0	0	0	0	1	1	1	0	1	
	1				0				1				1			

class VEBTree

- 1: clusters: VEBTree $<\frac{b}{2}>[2^{\frac{b}{2}}]$
- 2: summary: VEBTree $<\frac{b}{2}>$
- 3: min: int
- 4: max: int < b >

- min не хранится в clusters и summary;
- если min = max, то clusters и summary не создается.
- Peter van Emde Boas (1975).

Поиск следующего: $\operatorname{NEXT}(x)$

```
NEXT(V, x = \langle c, i \rangle)
  1 if x < V \min then
        return V.min
  3: if i < V.clusters[c].max then
        return \langle c, \text{NEXT}(V.\text{clusters}[c], i) \rangle
  5 else
     c' = \text{Next}(V.\text{summary}, c)
        return \langle c', V.clusters[c'].min\rangle
   • T(b) = T(\frac{b}{2}) + 1 = \mathcal{O}(\log b) = \mathcal{O}(\log \log u).
```


Добавление: INSERT(x)

```
INSERT(V, x = \langle c, i \rangle)
  1. if V.min = \bot then
```

- $V.\mathsf{min} = V.\mathsf{max} = x$
- return
- 4: if x < V.min then
- swap $x \leftrightarrow V$.min
- 6: $V.\max = \max(V.\max, x)$
- 7 **if** V.clusters[c].min $= \bot$ **then**
- INSERT(V.summary, c)
- 9: INSERT(V.cluster[c], i)
 - $T(b) = T(\frac{b}{2}) + 1 = \mathcal{O}(\log b) = \mathcal{O}(\log \log u)$.

// следующий вызов за $\mathcal{O}(1)$

Удаление: DELETE(x)

```
DELETE(V, x = \langle c, i \rangle)
 1. if x = V.min then
    c = V.summary.min
                                                        // первый непустой кластер
 3: if c = \bot then
 4. V.min = V.max = \bot
                                                        // удалился последний элемент
          return
     x = V.\mathsf{min} = \langle c, i = V.\mathsf{clusters}[c].\mathsf{min} \rangle
                                                        // удаляем новый минимум
 7: DELETE(V.clusters[c], i)
 8: if V.clusters[c].min = \bot then
       DELETE(V.summary, c)
                                                        // кластер стал пустым
10. if V.summary.min = \bot then
     V.\mathsf{max} = V.\mathsf{min}
                                                        // все кластеры пустые
12: else
13: c' = V.summary.max
                                                        // ищем новый максимум
    V.\mathsf{max} = \langle c', V.\mathsf{clusters}[c'].\mathsf{max} \rangle
```


Dan E. Willard (1982) (aka X-fast trie)

11 / 17

- ullet Каждая вершина число длины не больше $b=\log_2 u$;
 - числа меньше $u = 2^b$.
- Сохраним все вершины в хеш-таблицу:
 - число в хеш-таблице \implies вершина есть в дереве.
- Добавление и удаление просто спуском:
 - ullet $\log_2 u$ добавлений или удалений в хеш-таблице.
- Двусвязный список на существующих листьях.
- Поиск пред/след \iff поиск существующего предка;
 - в другом поддереве максимум/минимум \iff пред/след;
 - в каждой вершине храним мин/макс лист в поддереве.
- Поиск другого соседа: по ссылке от найденного.

- Поиск след/пред $\mathcal{O}(\log \log u)$;
- ullet Добавление $\mathcal{O}(\log u)$;
- ullet Удаление $\mathcal{O}(\log u)$;
- Память $\mathcal{O}(n \log u)$.

- ullet Разобьем множество A на подряд идущие блоки:
 - ullet размер блоков от $rac{1}{2}\log_2 u$ до $2\log_2 u \implies$ всего $\sim rac{n}{\log u}$ блоков.
- Из каждого блока выберем один элемент, например, минимальный;
 - построим X-fast tree из этих $\sim \frac{n}{\log u}$ элементов;
 - ullet дерево поиска для каждого блока: каждая операция за $\mathcal{O}(\log \log u)$.
- Dan. E. Willard (1982) (aka Y-fast trie)

Y-fast tree: INSERT и DELETE

- Добавление:
 - найти блок, в который добавить:
 - PREV(x) B X-fast tree $\mathcal{O}(\log \log u)$;
 - ullet добавить в этот блок: $\mathcal{O}(\log\log u) ext{INSERT}$ в дерево размера $\sim \log u$.
 - Может нарушится инвариант, размер блока стал $> 2\log_2 u$:
 - ullet разделить на два блока размера от $\log_2 u$ до $2\log_2 u$ за $\mathcal{O}(\log u)$;
 - добавить элемент в X-fast tree за $\mathcal{O}(\log u)$;
 - ullet исправление инварианта: амортизированно за $\mathcal{O}(1)$.
- Удаление, аналогично:
 - найти блок, в котором элемент:
 - PREV(x) B X-fast tree $\mathcal{O}(\log \log u)$;
 - ullet удалить из него: $\mathcal{O}(\log \log u) \mathrm{DELETE}$ из дерева размера $\sim \log u$.
 - Может нарушиться инвариант, размер блока стал $< \frac{1}{2} \log_2 u$:
 - объединить с одним из соседних блоков;
 - сделать один или два блока размерами: $> \log_2 u$;
 - ullet удалить (и добавить) элемент в X-fast tree за $\mathcal{O}(\log u)$;
 - ullet исправление инварианта: амортизированно за $\mathcal{O}(1)$.

Y-fast tree: PREV и NEXT

- Next(x):
 - Найти в каком блоке: PREV(x) в X-fast tree: $\mathcal{O}(\log\log u)$;
 - Найти следующий в этом блоке $\mathcal{O}(\log \log u)$
 - ullet в дереве поиска размера $\sim \log u$.
 - Если следующего нет, то искать минимум в следующем блоке;
 - ullet $\mathcal{O}(\log \log u)$, минимум в дереве поиска размера $\sim \log u$.
- ullet PREV(x), аналогично.
- Память *O*(*n*):
 - X-fast tree: $\mathcal{O}(\frac{n}{\log u}\log u) = \mathcal{O}(n)$;
 - Деревья поиска: $\mathcal{O}(n)$ суммарно.

