Růst domácností a jeho dopad na energetiku

Smirnov Nikita

10. května 2025

Počet domácností v ČR i ve světě dlouhodobě roste. Co to znamená pro spotřebu energie a jaké výzvy to přináší do budoucna?

Pozorování

I přes to, že růst světové populace se zpomaluje díky moderním technologiím a vzdělání, **průměrný počet osob na domácnost klesá**. Výsledkem je, že **počet domácností nadále rychle roste**.

Počet domácností v ČR i ve světě dlouhodobě roste. Co to znamená pro spotřebu energie a jaké výzvy to přináší do budoucna?

Obrázek: Růst populace (vlevo) a počet domácností (vpravo)

Více domácností = vyšší nároky na energetickou síť?

Pozorování

V posledních 30 letech počet domácností roste rychleji než počet obyvatel.

Více domácností = vyšší nároky na energetickou síť?

Více domácností = vyšší nároky na energetickou síť?

Problém Rostoucí zatížení sítě → potřeba regulace a predikce spotřeby. Spotřeba elektřiny u maloodběru v roce 2012 1800 1600 1400 ₹ 1200 1000 800 600 400 Zdroi: ERÚ, tabulka: Elektřina.cz

Cíl projektu

Analyzovat vývoj spotřeby a modelovat vliv růstu domácností pomocí **simulačního nástroje**.

Funkce pro výpočet spotřeby energie pro jednu domácnost

$$E_h(t) = E_{hprev} \cdot P(t)^{\beta_P} \cdot GDP(t)^{\beta_{GDP}} \cdot Eff(t)^{\beta_{eff}}$$

- *E_{hprev}* spotřeba energie v předchozím roce.
- $P(t)^{\beta_P}$ cena energie v tomto roce, s ohledem na koeficient elasticity.
- $GDP(t)^{\beta_{GDP}}$ HDP v tomto roce, s ohledem na koeficient elasticity.
- $Eff(t)^{\beta_{eff}}$ energetická účinnost, s ohledem na koeficient elasticity.
- β_P, β_{GDP}, β_{eff} jsou koeficienty elasticity, které popisují, změna každého faktoru ovlivňuje poptávku po energii.

Funkce pro výpočet počtu domácností

$$H(t) = H_{prev} \cdot \left(1 + r_H \cdot \frac{GDP(t)}{GDP_{prev}}\right)$$

- H_{prev} počet domácností v předchozím roce.
- r_H 0.015, vypočtený standardní procento růstu domácností.
- $\frac{GDP(t)}{GDP_{prev}}$ faktor růstu HDP za poslední rok.

Funkce pro výpočet ceny elektřiny

$$P(t) = P_{prev} \cdot e^{\beta \cdot (t - t_{prev})}$$

- P_{prev} cena elektřiny v předchozím roce.
- β 0.015, vypočtený faktor růstu ceny pro exponenciální funkci.

Funkce pro výpočet ceny elektřiny

$$P(t) = P_{prev} \cdot e^{\beta \cdot (t - t_{prev})}$$

kde:

- P_{prev} cena elektřiny v předchozím roce.
- β 0.015, vypočtený faktor růstu ceny pro exponenciální funkci.

Funkce pro výpočet HDP

$$GDP(t) = GDP_{prev} \cdot (1 + r_{GDP} \cdot (t - t_{prev}))$$

- GDP_{prev} HDP v předchozím roce.
- β 0.025, faktor růstu HDP.

Pseudokód pro simulaci jednoho roku

```
Algoritmus 1: Simulace spotřeby – výpočet vstupních veličin
```

```
Vstup: Seznam dat data, počáteční rok startYear, koncový rok endYear
```

Výstup: CSV soubor se simulovanými hodnotami spotřeby energie

```
1 nastav efficiency na 1.0;
```

```
2 nastav energyConsumption na BASE_CONSUMPTION;
```

```
3 for rok year od startYear do endYear do
```

```
4 gdp ← calculateGDP(data, year);
```

```
households ← calculateHouseholds(data,
year, gdp);
```

7 end

Pseudokód pro simulaci jednoho roku

```
Algoritmus 1: Simulace spotřeby – výpočet vstupních veličin
```

8 end

Vyhodnocení simulačního modelu

Porovnání se skutečnými daty ukazuje, že model dokáže predikovat vývoj spotřeby energie na základě růstu počtu domácností a dalších faktorů, což jej činí vhodným nástrojem pro analýzu a predikci energetických nároků v budoucnosti.

