# Matplotlib

#### Introduction

- Matplotlib is a plotting library for the Python programming language and its extension NumPy.
- > import matplotlib.pyplot as plt

#### OR

> from matplotlib import pyplot as plt

#### Line Chart

import numpy as np from matplotlib import pyplot as plt

```
x = \text{np.arange}(0, 10)

y = x + 1

plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")

plt.plot(x, y, linestyle='-', color='b')

plt.show()
```



#### Color

| Character | Color   |
|-----------|---------|
| 'b'       | Blue    |
| 'g'       | Green   |
| 'r'       | Red     |
| 'c'       | Cyan    |
| 'm'       | Magenta |
| 'y'       | Yellow  |
| 'k'       | Black   |
| 'w'       | White   |

## Plot's linestyle

| linestyle       | description      |
|-----------------|------------------|
| '-' or 'solid'  | solid line       |
| '' or 'dashed'  | dashed line      |
| '' or 'dashdot' | dash-dotted line |
| ':' or 'dotted' | dotted line      |
| 'None'          | draw nothing     |
| 1 1             | draw nothing     |
| 1 1             | draw nothing     |

#### Line Chart with marker

```
Matplotlib demo
import numpy as np
from matplotlib import pyplot as plt
                                              8
x = \text{np.arange}(0, 10)
                                           y axis caption
y = x + 1
plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
                                              2
plt.ylabel("y axis caption")
                                                               x axis caption
plt.plot(x, y, linestyle='-', color='b', marker='o')
plt.show()
```

Note: In the above code, making linestyle=' ', we will have scatter plot.

#### Plot's Marker

| Sr. No. | Character & Description   |
|---------|---------------------------|
| 1       | '.' Point marker          |
| 2       | ',' Pixel marker          |
| 3       | 'o' Circle marker         |
| 4       | 'v' Triangle_down marker  |
| 5       | '^' Triangle_up marker    |
| 6       | '<' Triangle_left marker  |
| 7       | '>' Triangle_right marker |
| 8       | '1' Tri_down marker       |
| 9       | '2' Tri_up marker         |
| 10      | '3' Tri_left marker       |
| 11      | '4' Tri_right marker      |
| 12      | 's' Square marker         |
| 13      | 'p' Pentagon marker       |

| Sr. No. | Character & Description |
|---------|-------------------------|
| 14      | '*' Star marker         |
| 15      | 'h' Hexagon1 marker     |
| 16      | 'H' Hexagon2 marker     |
| 17      | '+' Plus marker         |
| 18      | 'x' X marker            |
| 19      | 'D' Diamond marker      |
| 20      | 'd' Thin_diamond marker |
| 21      | ' ' Vline marker        |
| 22      | '_' Hline marker        |
|         |                         |
|         |                         |
|         |                         |
|         |                         |

#### Sine Wave

```
import numpy as np
from matplotlib import pyplot as plt
# Compute the x and y coordinates
# for points on a sine curve
x = \text{np.arange}(0, 3 * \text{np.pi}, 0.1)
y = np.sin(x)
plt.title("sine wave form")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")
plt.plot(x,y)
plt.show()
```



#### Subplot

```
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

plt.subplot(2, 1, 1)

# Make the first plot
plt.plot(x, y_sin)
plt.title('Sine')
```



```
# Set the second subplot as active, and # make the second plot. plt.subplot(2, 1, 2) plt.plot(x, y_cos) plt.title('Cosine')

# Show the figure. plt.show()
```

#### Subplot with suptitle

```
import numpy as np
import matplotlib.pyplot as plt
x = \text{np.arange}(0, 3 * \text{np.pi}, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)
plt.subplot(2, 2, 1)
plt.plot(x, y_sin)
plt.title('Sine')
plt.subplot(2, 2, 2)
plt.plot(x, y_cos)
plt.title('Cosine')
plt.subplot(2, 2, 3)
plt.plot(x, y_cos)
plt.title('Cosine')
plt.subplot(2, 2, 4)
plt.plot(x, y_sin)
plt.title('Sine')
plt.suptitle('Sine and Cosine')
plt.show()
```



### Subplot with hspace

```
import numpy as np
import matplotlib.pyplot as plt
x = \text{np.arange}(0, 3 * \text{np.pi}, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)
plt.subplot(2, 2, 1)
plt.plot(x, y_sin)
plt.title('Sine')
plt.subplot(2, 2, 2)
plt.plot(x, y_cos)
plt.title('Cosine')
plt.subplot(2, 2, 3)
plt.plot(x, y_cos)
plt.title('Cosine')
plt.subplot(2, 2, 4)
plt.plot(x, y_sin)
plt.title('Sine')
plt.subplots_adjust(hspace=0.5)
plt.suptitle('Sine and Cosine')
```

plt.show()



#wspace

#### Legend

```
x = np.arange(1,11)
y1 = x + 1
y2 = x + 5
plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")
plt.plot(x,y1,label="student 1")
plt.plot(x,y2,label="student 2")
plt.legend(loc=2)
plt.show()
```



# Legend-loc

| Location String | Location Code |
|-----------------|---------------|
| 'best'          | 0             |
| 'upper right'   | 1             |
| 'upper left'    | 2             |
| 'lower left'    | 3             |
| 'lower right'   | 4             |
| 'right'         | 5             |
| 'center left'   | 6             |
| 'center right'  | 7             |
| 'lower center'  | 8             |
| 'upper center'  | 9             |
| 'center'        | 10            |

#### Ticks

```
x = np.arange(1,11)
y1 = x + 1
y2 = x + 5
plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")
plt.plot(x,y1,label="student 1")
plt.plot(x,y2,label="student 2")
plt.legend(loc=2)
plt.xticks(np.arange(11))
plt.yticks(np.arange(16))
plt.show()
```



#### Ticks - User Defined

```
x = np.arange(1,11)
y1 = x + 1
y2 = x + 5
plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
                                          y axis caption
plt.ylabel("y axis caption")
plt.plot(x,y1,label="student 1")
plt.plot(x,y2,label="student 2")
plt.legend(loc=2)
plt.xticks(np.arange(1,11),['a','b','c','d'
,'e','f','g','h','i','j'], rotation=45)
plt.yticks(np.arange(16))
plt.show()
```



#### Scatter Plot with Plot

```
Matplotlib demo
import numpy as np
from matplotlib import pyplot as plt
                                              10
x = \text{np.arange}(0,11)
                                           y axis caption
y = x + 1
plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
                                              2
plt.ylabel("y axis caption")
                                                                                 8
                                                                                         10
plt.plot(x, y, marker='o', color='b', linestyle='')
                                                                 x axis caption
plt.show()
```

### Scatter Plot with plt.scatter

```
Matplotlib demo
import numpy as np
from matplotlib import pyplot as plt
                                             10
x = \text{np.arange}(0,11)
                                           y axis caption
y = x + 1
plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
                                              2
plt.ylabel("y axis caption")
                                                                                         10
                                                         2
                                                                                 8
                                                                 x axis caption
plt.scatter(x, y, marker='o', color='b')
plt.show()
```

### Scatter Plot with plt.scatter

```
x = np.arange(1,11)
                                                                Matplotlib demo
y1 = x + 1
                                                     student 1
                                              14
                                                     student 2
y2 = x + 5
                                              13
                                              12
                                              11
plt.title("Matplotlib demo")
                                              10
                                            y axis caption
plt.xlabel("x axis caption")
                                               7
plt.ylabel("y axis caption")
                                               3
2
1
plt.scatter(x, y1, label="student 1")
plt.scatter(x, y2, label="student 2")
                                                                  x axis caption
plt.legend(loc=2)
plt.xticks(np.arange(1, 11), ['a','b','c','d','e','f','g','h','i','j'], rotation=45)
plt.yticks(np.arange(16))
plt.show()
```

#### Scatter Plot with plt.scatter

```
x = np.arange(1,11)
y1 = x + 1
y2 = x + 5

plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")
```



```
plt.scatter(x, y1, label="student 1", marker='o', color='b')
plt.scatter(x, y2, label="student 2", marker='^', color='r')
plt.legend(loc=2)
plt.xticks(np.arange(1, 11), ['a','b','c','d','e','f','g','h','i','j'], rotation=45)
plt.yticks(np.arange(16))
plt.show()
```

#### Scatter Plot and Line Plot with Plot

```
x = \text{np.arange}(1,11)

y1 = x + 1

y2 = x + 5
```

plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")



```
plt.plot(x, y1, label="student 1", marker='o', color='b', linestyle='')
plt.plot(x, y2, label="student 2", marker='^', color='r', linestyle='')
plt.plot(x, y1+2)
plt.legend(loc=2)

plt.xticks(np.arange(1,11),['a','b','c','d','e','f','g','h','i','j'], rotation=45)

plt.yticks(np.arange(16))

plt.show()
```

#### Bar Graph

from matplotlib import pyplot as plt

$$x = [5, 8, 10]$$
  
 $y = [12, 16, 6]$ 

$$x2 = [6, 9, 11]$$
  
 $y2 = [6, 15, 7]$ 

plt.bar(x, y, color = 'b', align = 'center') plt.bar(x2, y2, color = 'g', align = 'center')

```
plt.title('Bar graph')
plt.ylabel('Y axis')
plt.xlabel('X axis')
plt.show()
```

### Histogram

from matplotlib import pyplot as plt

import numpy as np

a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])

plt.hist(a, bins = [0,20,40,60,80,100], color = 'b', edgecolor='k', linewidth = 0.5)

plt.title("histogram")

plt.show()



### OpenCV - Installing and Importing

pip install opency-python

import cv2

### OpenCV - Reading an Image

img = cv2.imread("Desert.jpg")

### OpenCV - Showing an Image

cv2.imshow("First Figure",img)

### OpenCV - Writing an Image

cv2.imwrite("Desert1.jpg", img)

### OpenCV - Resizing an Image

img1=cv2.resize(img, (360, 512))

or

img1=cv2.resize(img, None, fx=0.5, fy=0.5)
#fx -> columns

### OpenCV

- Around 2500 efficient algorithms
- Face detection applications
- Object identification applications
- Anomaly detection from a video
- Content-based image retrieval

### Reading data from a CSV File

```
import pandas
import numpy as np

data=pandas.read_csv('temp.csv',header=None)
#default header argument is infer

data=data.as_matrix() # or data=data.values
print(data)
```

### Writing data to a CSV File

```
import numpy import pandas as pd
```

```
a = numpy.array([[1,2,3],[4,5,6],[7,8,9]])
```

```
df = pd.DataFrame(a)
df.to_csv("file.csv", header=None, index=False)
```

#### Disclaimer

Content of this presentation is not original and it has been prepared from various sources for teaching purpose.