Name: Vivek Singh Person No# 50208473

Problem (1) (1D and 2D Convolution on Images):

a) Perform 2D convolution on grayscale Image lena_gray.png with filters specified above to obtain gradient images G_x and G_y . Include the three images G_x , G_y and G_y in your report.

Gx:

Gy:

b)Perform 1D convolution on grayscale Image <code>lena_gray.png</code> with 1D-filters specified above to obtain gradient images G_x and G_y . Include these two images in your report. Verify the result after 1D convolution is same as the one obtained from 2D convolution from (a)

Comparing both the convolutions:

2D convolution

(c) Given an MxN Image and a PxQ filter, compute and report the computational complexity of performing 2D convolution vs using separable filters with 1D convolution.

Soln: For an MxN image and a PxQ filter the compute and report the computational complexity of performing:

2D convolution --- O(MNPQ)

1D convolution---O(MN(P+Q))

Derivation:

For 2D convolution, we have to iterate over M rows and N columns of the image matrix, while doing so, we have to iterate and compute computation over P rows and Q columns of Kernel matrix. Thus the complexity O(MNPQ)

For 1D convolution, we have to iterate over M rows and N columns of the image matrix, while doing so, we have to iterate and compute computation over P elements of one part of Kernel, thereafter over Q elements of other part of Kernel matrix. Thus the complexity O(MN(P+Q)).

Complexity is reduced because we are getting rid of the row with all zeros in 2D kernel matrix thus reduce in computation from P*Q to P+Q.

Problem 2: Histogram Equalization:

Comparison of original image on the left versus enhanced image on the right.

