2006, *110*, 6454-6457 Published on Web 03/16/2006

Lithium Exchange Processes in the Conduction Network of the Nasicon $LiTi_{2-x}Zr_x(PO_4)_3$ Series $(0 \le x \le 2)$

K. Arbi, M. A. París, and J. Sanz*

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciónes Científicas (CSIC) Cantoblanco, 28049 Madrid, Spain

Received: February 1, 2006; In Final Form: March 2, 2006

Structural sites occupied by lithium in the rhombohedral $LiTi_{2-x}Zr_x(PO_4)_3$ series $(0 \le x \le 2)$ have been investigated by 7Li NMR spectroscopy. At room temperature, the XRD patterns of the end-members of the series display rhombohedral $R\bar{3}c$ symmetry in $LiTi_2(PO_4)_3$ and triclinic $C\bar{1}$ in $LiZr_2(PO_4)_3$. In the first compound, Li ions occupy M1 sites; however, in the second one Li occupy intermediate $M_{1/2}$ sites. As the temperature increases, a first-order displacive transformation is detected in the triclinic phase, but a second-order/disorder transition is detected in the rhombohedral phase. From the temperature dependence of the 7Li NMR quadrupole constant (C_Q) of the two compounds, the evolution of M_1 and $M_{1/2}$ sites occupancy in the Nasicon conduction network has been deduced. At high temperatures, analyzed phases tend toward a disordered rhombohedral phase, in which both M_1 and $M_{1/2}$ sites are equally populated and in which lithium mobility is favored by the existence of vacant M_1 sites. According to this study, this phase can also be obtained by substituting Ti by Ti in the $TiTi_{2-x}Tr_x(PO_4)_3$ series.

Introduction

Interest in lithium ion conducting solids has considerably increased because of their potential application as electrolytes in rechargeable lithium batteries. LiM^{IV}₂(PO₄)₃ compounds with NASICON¹ structure (acronym for Na SuperIonic Conductors) have been extensively studied for their good ionic conductivity.²⁻⁶ In these compounds, structure is formed by M₂(PO₄)₃ units in which each MO₆ octahedron shares corners with six PO₄ tetrahedra and each tetrahedron shares oxygens with four octahedra (Figure 1a). The ideal framework displays the rhombohedral symmetry (space group $R\bar{3}c$), but in some particular cases a triclinic distortion (space group $C\overline{1}$) has been detected.^{7–9} In the rhombohedral LiM^{IV}₂(PO₄)₃ phases (M^{IV} = Ge and Ti), Li ions occupy M₁ sites at trigonal c-axes, with a six-fold oxygen coordination. However, in triclinic phases (M^{IV} = Sn, Hf, Zr) Li ions are four-fold coordinated at intermediate $M_{1/2}$ positions between M_1 and M_2 sites (Figure 1a). Triclinic LiM^{IV}₂(PO₄)₃ compounds exhibit a triclinic-rhombohedral transition that has been analyzed by neutron diffraction.^{7–10}

In general, Li conductivity is higher and activation energy lower in rhombohedral phases. In these samples, activation energies for lithium motion decreases when the size of tetravalent M cations increases.⁶ In the present work, ⁷Li NMR spectroscopy has been used to analyze occupation of structural sites and mobility of lithium in the fast ion conductor series $\text{LiTi}_{2-x}\text{Zr}_x$ (PO₄)₃ (0 $\leq x \leq$ 2). In these compounds, the substitution of Ti by Zr expands the rhombohedral unit cell (see Table 1); however, information concerning the Li-sites occupation is not available.

Experimental Section

LiTi_{2-x}Zr_x(PO₄)₃ compounds ($0 \le x \le 2$) have been prepared following the method described elsewhere. ^{11,12} X-ray diffraction (XRD) was used to assess purity of prepared compositions. XRD patterns were recorded with the Cu K α radiation ($\lambda = 1.5405981$ Å) in the temperature range 25–500 °C, using a high-temperature AP HTK10 camera adapted to a PW 1050/25 Phillips diffractometer. Powder XRD patterns were collected in the $10-70^{\circ}$ 2 θ range with a step size of 0.02° and a counting time of 0.1 s/step. The Fullprof program was used to determine unit cell parameters of prepared samples.

 ^7Li MAS NMR spectra were recorded in a MSL-400 Bruker spectrometer (9.4 T) at 155.50 MHz. Spectra were obtained after $\pi/2$ pulse irradiation ($\approx 4~\mu s$) with a recycling time of 10 s. The number of scans was 400. In the temperature range 100–450 K, quadrupole interactions remain small ($C_Q < 180~\text{kHz}$), making the irradiation of the central and satellite transitions non selective. ^7Li NMR chemical shifts were given relative to a 1 M LiCl aqueous solution. The fitting of the NMR spectra was carried out with the Bruker WINFIT software package. 13 This program allows the position, line width and intensity of components to be determined; however, quadrupole C_Q and η values have to be deduced with a trial and error procedure.

Results and Discussion

XRD patterns of the LiTi_{2-x}Zr_x (PO₄)₃ ($0 \le x \le 2$) series are given in Figure 2. In this figure, a progressive shift of diffraction peaks to lower 2θ values is observed that corresponds to the unit cell expansion induced by Zr for Ti substitution. The progressive increase of the c/a ratio produces the splitting

^{*} To whom correspondence should be addressed. E-mail: jsanz@icmm.csic.es.

Figure 1. (a) Rhombohedral structure of Nasicon compounds showing structural M₁, M_{1/2}, and M₂ sites. (b) Static ⁷Li NMR spectra of triclinic and rhombohedral LiZr₂(PO₄)₃ phases.

TABLE 1: Quadrupole Constant, $C_{\rm Q}$ (kHz), Asymmetry Parameter, η , and Hexagonal Unit Cell Parameters of the Rhombohedral Li $Ti_{2-x}Zr_x(PO_4)_3$ Series

χ_{Zr}	C_{Q} (KHz)	η (dimensionless)	a (Å)	c (Å)
0	44	0	8.511	20.843
0.4	50	0	8.566	21.071
0.63	65	0	8.605	21.212
1	73,3	0	8.672	21.462
1.5	88	0	8.764	21.779
2	100,5	0	8.847	22.241

of (104) and (110) peaks near 20°, and that of the (214) and (300) peaks near 36.5°. Unit cell parameters deduced from these patterns are given in Table 1. In the case of the sample x = 2, only the XRD pattern of the rhombohedral phase, recorded at 70 °C, has been considered.

⁷Li NMR (I = 3/2) spectra of the LiR₂(PO₄)₃ samples are formed by a central (-1/2,1/2) and two satellite (-3/2,-1/2)and 1/2,3/2) transitions.14 In previous works, quadrupole constants (C_Q and η parameters) of lithium located at M_1 and $M_{1/2}$ sites were deduced in $LiM^{IV}_{2}(PO_4)_3$ compounds. 15,16 In LiZr₂(PO₄)₃ samples, satellite lines of the triclinic phase are split over a larger region than in the rhombohedral phase (see Figure 1b). From analysis of 7 Li NMR spectra, quadrupole $C_{\rm O}$ and η constants of the LiTi_{2-x}Zr_x (PO₄)₃ series have been deduced (see Table 1).

Figure 2. XRD patterns of the series Li Ti_{2-x}Zr_x(PO₄)₃ recorded at room temperature. The XRD pattern of the sample with x =corresponds to that of the rhombohedral phase recorded at 70 °C.

In previous works, quadrupole C_Q and η_Q constants were calculated with expressions^{15,16}

$$C_{\rm Q} = \frac{e^2 Q V_{zz}}{h} \qquad \eta_{\rm Q} = \frac{V_{xx} - V_{yy}}{V_{zz}}$$
 (1)

where Q is the quadrupole moment of nuclei and V_{xx} , V_{yy} , V_{zz} are the principal values of the electric field gradient (EFG) tensor at structural sites occupied by lithium. In the triclinic $LiZr_2(PO_4)_3$ phase, quadrupole constants calculated for $M_{1/2}\,$ sites, $C_Q = 180$ kHz and $\eta_Q = 0.6$, are similar to those deduced from NMR spectra recorded at 300 K.11 At these sites, lithium exhibits an almost planar four-fold coordination with Li-O distances between 1.9 and 2.26 Å.9 In the rhombohedral $LiTi_2(PO_4)_3$ phase, the experimental $C_Q = 35$ kHz deduced from NMR spectra at 300 K corresponds to that calculated for lithium at M₁ sites, with Li-O distances near 2.1 Å. 12,17 In the rhombohedral LiZr₂(PO₄)₃ sample, mean Li-O distances should increase above 2.40 Å in M₁ sites; however, Li ions move to six positions related by -3 symmetry axes in order to reduce Li-O distances to 2.3 Å in M₁ cavities. ¹⁰ In this phase, the analysis of quadrupole constants was difficult because of the Li hopping between equivalent sites.

The mobility of lithium produces the partial average at the NMR time scale ($t \sim 10^{-8}$ s) of quadrupole C_Q constants of occupied sites. From this fact, the temperature dependence of the quadrupole C_Q constant can inform us about the relative occupation of M_1 and $M_{1/2}$ sites. The variations of C_Q values of LiTi₂(PO₄)₃ and LiZr₂(PO₄)₃ are given in Figure 3a. For sake of comparison, C_Q values measured in isostructural LiGe₂(PO₄)₃ and LiHf₂(PO₄)₃ phases are also included. In triclinic LiZr₂(PO₄)₃ and LiHf₂(PO₄)₃ phases, C_0 and η values are more important (180 kHz, 0.6), indicating that sites occupied by Li display lower symmetry. Along the triclinic-rhombohedral transformation (displacive first-order transition), significant changes were detected in geometry and disposition of ZrO₆ and PO_4 polyhedra, that produced the decrease on C_Q to 120 kHz and η to 0. In the rhombohedral LiTi₂(PO₄)₃ sample, C_0 is nearly constant (~20 kHz) below 250 K, but increases up to 70 kHz at 500 K, indicating that occupation of Li sites changes (secondorder transition). In the rhombohedral $LiTi_{2-x}Zr_x(PO_4)_3$ series, quadrupole C_0 constants measured at room temperature increase from 40 to 120 kHz as the Zr content increases (Figure 3b). In samples with x > 1.5, quadrupole constants measured at room temperature are near those measured at 340 K in the rhombohedral LiZr₂(PO₄)₃ phase.¹¹

Figure 3. (a) Temperature dependence of quadrupole C_Q constants deduced from ^7Li NMR spectra of the $\text{LiR}_2(\text{PO}_4)_3$ series, R = Ge, Ti, Zr, and Hf. (b) Dependence of the quadrupole C_Q constant on the composition of the $\text{LiTi}_{2-x}\text{Zr}_x$ (PO₄)₃ series. ^7Li NMR spectra were recorded at room temperature. In the case of x = 2, the CQ value corresponds to the sample heated at 70 $^\circ\text{C}$.

1.0

 X_{Zr}

0.0

1.5

2.0

To investigate factors limiting the lithium mobility, we have analyzed the geometry of triangular bottlenecks T_1 ($O_2O_2O_1$) and T_2 ($O_2O_2O_2$) located between M_1 and M_2 sites (see Figure 1a). In this analysis, we have determined Li–O distances necessary to pass Li ions through the windows (radius of inscribed spheres). In the triclinic LiZr₂(PO₄)₃ phase, Li–O distances at T1 (four sided) and T2 (three sided polygones) windows are near 2.06 and 2.25 Å; however, these distances become 2.20 and 2.18 Å in the rhombohedral LiZr₂(PO₄)₃ phase. In the rhombohedral LiTi₂(PO₄)₃ phase, Li–O distances at T1 and T2 windows are near 2.05 and 1.98 Å. According to this analysis, T2 windows limit Li mobility in rhombohedral LiTi₂(PO₄)₃, but T1 windows limit lithium diffusion in the triclinic LiZr₂(PO₄)₃ phase.

Fast Exchange Processes. At increasing temperatures, T1 and T2 windows expand favoring Li mobility in the conduction network. In this case, fast exchange processes between M_1 and $M_{1/2}$ sites should produce a signal with intermediate characteristics. According to this model, the monotonic increment of C_Q detected in LiTi₂(PO₄)₃ has been interpreted by assuming that the residence time at $M_{1/2}$ sites (probability $P_{1/2}$) increases at the expense of that at M_1 sites (probability P_1). This increment can be analyzed with the expression P_1 0.

$$C_{\rm Q} = \frac{C_{\rm Q}^{1} P_{1} + C_{\rm Q}^{2} 3 P_{1/2}}{P_{1} + 3 P_{1/2}} \tag{2}$$

where, $C_Q^1 = 15$ and $C_Q^2 = 170$ kHz are the quadrupole

Figure 4. Variation of energy barriers produced during the heating of the rhombohedral and triclinic end members of the $LiTi_{2-x}Zr_x(PO_4)_3$ series.

constants and P_1 and $P_{1/2}$ are the occupation probabilities of M_1 and $M_{1/2}$ sites by lithium. The factor 3 takes into account the multiplicity of $M_{1/2}$ sites with respect to M_1 sites.

Extended Li motions are favored by creation of vacant M_1 sites at the intersection of conduction channels in rhombohedral phases. From the analysis of C_Q values, it was shown that creation of vacancies at M_1 sites is an activated process, with an E_a near 0.07 eV.¹⁸ However, C_Q values measured at 450 K showed that 2/3 of M_1 sites are still occupied at this temperature. From this fact, the total vacancy disordering, $P_1 = P_2 = 0.25$ ($C_Q \approx 100$ kHz) is not attained in LiTi₂(PO₄)₃, in the temperature range 200–500 K.

In the triclinic LiZr₂(PO₄)₃ phase, Li ions occupy M_{1/2} sites, but in the rhombohedral LiZr₂(PO₄)₃ phase, T1 and T2 windows cannot coordinate Li ions, favoring Li mobility. ^{10,11,19} At the triclinic-rhombohedral transition, the quadrupole constant C_Q decreased from 180 to 120 kHz and η from 0.6 to 0. In this case, the full exchange between M₁ and M_{1/2} sites, $P_1 = P_2 = 0.25$ ($C_Q \approx 100$ kHz), reproduces reasonably well experimental results. Fast exchange processes between M₁ and M_{1/2} sites, simulates also the rhombohedral $R\bar{3}c$ symmetry ($\eta_Q = 0$). This model differs from that deduced from diffraction experiments, where occupation of intermediate M_{1/2} sites was not analyzed in the rhombohedral LiZr₂(PO₄)₃ phase. ²⁰

At this point, it is interesting to analyze Li mobility in the $LiTi_{2-x}Zr_x(PO_4)_3$ series. In the rhombohedral $LiTi_2(PO_4)_3$ endmember, Li ions occupy M₁ sites and activation energy for Li motion, Ea, is 0.46 eV. In the triclinic LiZr₂(PO₄)₃ phase, Li ions occupy $M_{1/2}$ sites and activation energy E_a is 0.6 eV. Finally, occupation of M_1 and $M_{1/2}$ sites becomes similar and activation energy for Li motion decreased to 0.3 eV in the rhombohedral LiZr₂(PO₄)₃ phase (see Figure 4). A similar effect can be obtained by substitution of Ti by Zr in LiTi_{2-x}Zr_x(PO₄)₃ series. In these samples, unit cell expansion associated with Zr incorporation favors the progressive occupation of M_{1/2} at the expense of M1 sites. Along this series, Li mobility increases and activation energy E_a decreases from 0.46 to 0.3 eV². The stabilization of the rhombohedral phase in Zr-doped samples eliminates problems derived from stresses produced at the triclinic-rhombohedral transition and enlarges the electrochemical window (lower reducibility of Zr) of experimental devices.

Conclusions

Li sites and lithium mobility in $LiTi_{2-x}Zr_x(PO_4)_3$ series have been analyzed with ⁷Li NMR spectroscopy. From the analysis of quadrupole constants of end members of the series, the

preferential occupation of M₁ sites in rhombohedral and that of $M_{1/2}$ sites in triclinic phases were deduced.

The analysis of the temperature dependence of C_0 values showed the progressive occupation of midway $M_{1/2}$ sites at the expense of M₁ sites when the temperature increases in the rhombohedral LiTi₂(PO₄)₃ sample. The opposite effect was detected in triclinic LiZr₂(PO₄)₃ samples, where M_{1/2} sites are preferentially occupied at low temperatures. Above the triclinic rhombohedral transition, a full delocation of lithium on M₁ and $M_{1/2}$ sites was detected. In the case of LiTi_{2-x}Zr_x(PO₄)₃ series, a similar effect is produced when Ti is substituted by larger Zr cations. The stabilization of the rhombohedral phase in Zr-doped samples eliminates problems derived from stresses produced at the triclinic-rhombohedral transition and enlarges the electrochemical window (lower reducibility of Zr) of experimental devices.

Acknowledgment. This work was supported by the Spanish CICyT Agency (projects MAT2001-3713 and MAT2004-3070). K.A. thanks Spanish Ministry of Science and Technology for financial support.

References and Notes

- (1) Goudenough, J. B.; Hong, H. Y.-P.; Kafalas, J. A. Mater. Res. Bull. 1976, 11, 203.
- (2) Winand, J. M.; Rulmont, A.; Tarte, P. J. Solid State Chem. 1991, 93, 341.

- (3) Martinez-Juárez, A.; Rojo, J. M.; Iglesias, J. E.; Sanz, J. Chem. Mater. 1995, 7, 1857.
- (4) Sudreau, F.; Petit, D.; Boilot, J. P. J. Solid State Chem. 1989, 83,
- (5) París, M. A.; Martínez-Juárez, A.; Iglesias, J. E.; Rojo, J. M.; Sanz, J. Chem. Mater. 1997, 9, 1430.
- (6) Martinez-Juárez, A.; Pecharromán, C.; Iglesias, J. E.; Rojo, J. M. J. Phys. Chem. B 1998, 102, 372.
- (7) Morin, E.; Angenault, J.; Couturier, J. C.; Quarton, M.; He, H.; Klinowski, J. Eur. J. Solid State Inorg. Chem. 1997, 34, 947.
- (8) Losilla, E. R.; Aranda, M. A. G.; Martinez-Lara, M.; Bruque, S. Chem. Mater. 1997, 9, 1678.
- (9) Catti, M.; Stramare, S.; Ibberson, R. Solid State Ionics 1999, 123,
 - (10) Catti, M.; Starmare, S. Solid State Ionics 2000, 136-137, 489.
- (11) Arbi, K.; Lazarraga, M. G.; Chehimi, D. B.; Ayadi-Trabelsi, M.; Rojo, J. M.; Sanz, J. Chem. Mater. 2004, 16, 255.
- (12) París, M. A.; Martinez-Juárez, A.; Rojo, J. M.; Sanz, J. J. Phys. Condens. Matter 1996, 8, 5355.
- (13) Massiot, D. WINFIT: Bruker-Franzen Analytik GmbH: Bremen: Germany, 1993.
- (14) Abragam, A. The Principles of Nuclear Magnetic; Oxford University Press: Oxford, 1961.
 - (15) París, M. A.; Sanz, J. Phys. Rev. B 1997, 55, 14270.
 - (16) París, M. A.; Sanz, J. Phys. Rev. B 2000, 62, 810.
- (17) Aatiq, A.; Ménétrier, M.; Croguennec, L.; Suard, E.; Delmas, C. J. Mater. Chem. 2002, 12, 2971.
- (18) Arbi, K.; Tabellout, M.; Lazarraga, M. G.; Rojo, J. M.; Sanz, J. Phys. Rev. B 2005, 72, 094302.
- (19) Sudreau, F.; Petit, D.; Boilot, J. P. J. Solid State Chem. 1989, 83,
 - (20) Catti, M.; Stramare, S. Chem. Mater. 2003, 15, 1628.