Exercise 1.4.1: Recall that I stands for the set of irrational numbers.

- (a) Show that if $a, b \in \mathbb{Q}$ then ab and $a + b \in \mathbb{Q}$ as well.
- (b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ then $a + t \in \mathbb{I}$ and if $a \neq 0$ then $at \in \mathbb{I}$ as well.
- (c) Part (a) says that the rational numbers are closed under multiplication and addition. What can be said about st and s + t when $s, t \in \mathbb{I}$?
- (a) *Proof.* Select two arbitrary elements from the rational numbers, since they are rational we can represent them as i/j and m/n where $i, j, m, n \in \mathbb{Z}$ and $j \neq 0$ and $n \neq 0$.

Note that $i/j * m/n = \frac{im}{jn}$, from the definition of multiplication of rational numbers. Since the multiple of any two non-zero numbers is non-zero and since the multiple of any two integers is a integer so $jn \in \mathbb{Z} - \{0\}$ and $im \in \mathbb{Z}$ therefore $\frac{im}{jn} \in \mathbb{Q}$.

Note that $i/j + m/n = \frac{in+mj}{jn}$, from the definition of addition of rational numbers. Since the multiple of any two non-zero numbers is non-zero and since the multiple of any two integers is a integer so $jn \in \mathbb{Z} - \{0\}$ and $in, mj \in \mathbb{Z}$ and so also $in + mj \in \mathbb{Z}$ therefore $\frac{in+mj}{jn} \in \mathbb{Q}$.

(b) *Proof.* Proof by contradiction.

Suppose that there exists $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ where $a+t=b \notin \mathbb{I}$. Since the reals are closed under addition we can say $b \in \mathbb{R}$. Note that $b \in \mathbb{R} - \mathbb{I} = \mathbb{Q}$. We can do a little math and see a+t=b means t=b+(-a). Since the additive inverse of a rational is a rational and since the sum of two rationals is rational we conclude $t \in \mathbb{Q}$. A contradiction has been reached since the rationals and irrationals are, by definition, mutually exclusive, t cannot be a element of both.

Proof by contradiction.

Suppose that there exists $a \in \mathbb{Q} - \{0\}$ and $t \in \mathbb{I}$ where $at = b \notin \mathbb{I}$. Since the reals are closed under multiplication, and since the multiple of any two non zero numbers is itself non zero, we can say $b \in \mathbb{R} - \{0\}$. Note that $b \in \mathbb{R} - \{0\} - \mathbb{I} = \mathbb{Q} - \{0\}$. We can do a little math and see at = b means $t = b(a^{-1})$. Since the multiplicative inverse of a non zero rational is a rational (informally $(\frac{i}{m})(\frac{m}{i}) = 1$) and since the multiple of two rationals is rational we conclude $t \in \mathbb{Q}$. A contradiction has been reached since the rationals and irrationals are, by definition, mutually exclusive, t cannot be a element of both.

(c) All we can conclude is that $st \in \mathbb{R} - \{0\}$ and that $s + t \in \mathbb{R}$. As a example that the irrationals are not closed with respect to multiplication or addition note that $\sqrt{2}\sqrt{2} = 2$ and that $\pi + (-\pi) = 0$.

Math 401: Homework 2

Exercise 1.4.2: Let $A \subseteq \mathbb{R}$ be nonempty and bounded above. Let $s \in \mathbb{R}$ have the property that for all $n \in \mathbb{N}$, s + (1/n) is an upper bound for A but s - (1/n) is not an upper bound for A. Show that $s = \sup A$.

Proof. Take some $a \in \mathbb{R}$ where s < a. Note $a - s \in \mathbb{R}^+$ and so by the proof we previously completed in class there is a natural number n with the property $\frac{1}{n} < a - s$. So $s + \frac{1}{n} < a$ witch means a is bigger than a upper bound on A and so is itself not in A. Since we chose a arbitrary real grater than s and showed it is not in a we can conclude no real bigger than a is in a, in other words all elements of a are less than or equal to a. By definition a is a upper bound on a.

Next take some $b \in \mathbb{R}$ where b < s. Note $s - b \in \mathbb{R}^+$ and so by the proof we previously completed in class there is a natural number n with the property $\frac{1}{n} < s - b$. So $b < s - \frac{1}{n}$ witch means b is smaller than a number that is not a upper bound on A. Noting that if b were upper bound on A we would be forced to conclude $s - \frac{1}{n}$ is a upper bound on A, witch we know to be false, we are forced to conclude b is not a upper bound on b and since b was chosen arbitrarily we can conclude all upper bounds on b are grater than or equal to b. Noting that b has both properties of a sup we conclude b = sup b.

Exercise 1.4.3: Show that $\bigcap_{n=1}^{\infty} (0, 1/n) = \emptyset$.

Proof. Proof by contradiction.

Suppose $a \in \bigcap_{n=1}^{\infty}(0,1/n)$. Note that $a \in (0,1) \subseteq \mathbb{R}^+$ so $a \in \mathbb{R}^+$. By the proof done in class there exists a natural i with the property 1/i < a. Since a is in the intersect of all of the (0,1/n) sets $a \in (0,1/i)$ so a < 1/i a contradiction. We now conclude the negation of our supposition namely there is no a with the property $a \in \bigcap_{n=1}^{\infty}(0,1/n)$ or a logically equivalent statement $\bigcap_{n=1}^{\infty}(0,1/n) = \emptyset$.

Exercise 1.4.5: Use Exercise 1.4.1 to provide a proof of Corollary 1.4.4 by considering real numbers $a - \sqrt{2}$ and $b - \sqrt{2}$.

Proof. We are asked to prove that for all $a, b \in \mathbb{R}$ where a < b there is a $t \in (a, b)$ where $t \in \mathbb{I}$.

I will start by choosing a arbitrary set $a,b \in \mathbb{R}$ where a < b. Next let $c = a + \frac{1}{3}(b-a)$ and $d = a + \frac{2}{3}(b-a)$. Note that a < c < d < b so $[c,d] \subseteq (a,b)$. Now consider two cases, ether $c,d \in \mathbb{Q}$ or one or more of them is irrational. In the case that one or more of them is irrational then it would be a irrational in (a,b) and we're done. So now we only need to consider the case where $c,d \in \mathbb{Q}$. In this case consider $t = c + \frac{\sqrt{2}}{2}(d-c)$. Noting that $(d-c) \neq 0$ we conclude $\frac{\sqrt{2}}{2}(d-c) \in \mathbb{I}$ and thus $c + \frac{\sqrt{2}}{2}(d-c) \in \mathbb{I}$ also note that $0 < \frac{\sqrt{2}}{2} < 1$ so $c < c + \frac{\sqrt{2}}{2}(d-c) < d$ therefore $c + \frac{\sqrt{2}}{2}(d-c) \in (a,b)$ and we have found a irrational in (a,b).

Exercise Supplemental 1: Show that the sets [0, 1) and (0, 1) have the same cardinality.

Consider the function $f:[0,1) \rightarrow (0,1)$

$$f(x) = \begin{cases} 1/2 & x = 0\\ (1/2)^{n+1} & x = (1/2)^n \text{ for some } n \in \mathbb{N}\\ x & \text{otherwise} \end{cases}$$

note that f has a inverse $g:(0,1) \rightarrow [0,1)$

$$g(x) = \begin{cases} 0 & x = 1/2\\ (1/2)^{n-1} & x = (1/2)^n \text{ for some } n \in \mathbb{N} - \{1\}\\ x & \text{otherwise} \end{cases}$$

We now know f is bijective and so we have found a bijective mapping from [0, 1) to (0, 1) so by definition they have the same cardinality.

Math 401: Homework 2

Exercise 1.4.4: (W) (Hand this one in to David.)

Let a < b be real numbers and let $T = [a, b] \cap \mathbb{Q}$. Show that sup T = b.

Proof. First we note that b is a upper bound on T, since $T \subseteq [a, b]$ and every element of [a, b] is less than or equal to b.

Assume that there is a upper bound on T less than b, lets call it c. We know that there is at least one element in T since we proved in class that there is a rational between any two reals take one of these rationals and call it d. Note $d \ge a$. From that we can say $c \ge a$ as otherwise c < d witch is not possible since c is a upper bound. Next we note that there is a rational between c and b, lets call it f such that $a \le c < f < b$ and $f \in \mathbb{Q}$. Note that $f \in T$. Contradiction there is a element of T grater than c and yet c is a upper bound on T. Thus we conclude that there are no upper bounds on T less than b.

We see that b fulfills the definition of $\sup T$ and so $b = \sup T$.