

Tribunal de la Oposición al Cuerpo de Diplomados en Estadística del Estado

Pruebas selectivas para el ingreso en el Cuerpo de Diplomados en Estadística del Estado. Orden ECC/1384/2014, de 24 de julio (BOE 30/07/2014).

TERCER EJERCICIO

- 1. Sea X una variable aleatoria que representa la producción semanal de ácido nítrico de una fábrica medido en miles de m3. La función de densidad de esta variable viene dada por: $f(x) = k(1-x)^3$ si $x \in (0,1)$. Calcular:
 - a) El valor de k para que f(x) sea función de densidad.
 - *b*) La capacidad de los depósitos para que la probabilidad de que los depósitos se desborden sea 0,001.
 - c) Si el tiempo de vida, medido en meses, de los peces está relacionado con la producción de ácido nítrico según la siguiente función: $V=12e^{-x}$, calcular la probabilidad de que un pez viva más de tres meses y la vida media de los peces.

2. Sea (X_1, X_2) una muestra aleatoria simple de tamaño 2 de la variable aleatoria X que sigue una distribución Normal con media cero y varianza $1/\theta$ siendo θ un parámetro desconocido. Consideramos la siguiente función de la muestra

$$T(X_1, X_2) = 1/2(X_1^2 + X_2^2)$$

Se pide:

- a) Calcular la distribución de $2\theta T(X_1, X_2)$.
- b) Hallar un intervalo de confianza basado en $2\theta T(X_1, X_2)$ para el parámetro θ y para un nivel 1α con $\alpha \in (0, 1)$.

- 3. Los taxis en servicio de una ciudad están numerados del 1 al N y se desea conocer cuántos taxis hay. Para ello se observa una muestra de n taxis y se apuntan sus números. Se pide:
 - a) Obtener un estimador por el método de los momentos. ¿Es insesgado?.
 - b) Obtener un estimador por el método de máxima verosimilitud.

4. Sean los siguientes valores de altura (en centímetros) y de peso (en kilogramos) de un conjunto de 20 personas:

		1/1			4.00	4.00	4.40	4.40	150	4=0		4.74	4.74	150	4.50	4.50	454	1774	455	
Altura	164	164	166	167	169	169	169	169	170	170	171	171	171	173	173	173	174	174	175	177
Peso	68	70	69	69	69	70	69	67	71	69	70	71	76	71	70	68	70	74	71	70

Se pide:

- *a*) El valor de la media de la distribución de alturas.
- b) El valor de la desviación típica de la distribución de alturas.
- c) El valor de la mediana de la distribución de alturas.
- *d*) Agrúpense los datos en intervalos con una longitud razonadamente escogida y calcúlese la mediana de la distribución de datos agrupados.
- e) El intervalo que contiene el $40\,\%$ central de la distribución de valores agrupados de alturas construida en el punto anterior.
- *f*) Sean las variables binarias *A* y *P* que indican, respectivamente, si una persona tiene una altura superior a la mediana de las alturas y un peso superior a la mediana de los pesos. ¿Son *A* y *P* independientes? Demuéstrese.

5. Sean x e y variables cuantitativas con n=162 pares de valores representados en la siguiente gráfica:

Se tiene el siguiente conjunto de cantidades:

$$\sum_{k=1}^{n} x_k = 592.4786 \qquad \sum_{k=1}^{n} y_k = 2469.627$$

$$\sum_{k=1}^{n} x_k^2 = 2469.245 \qquad \sum_{k=1}^{n} x_k y_k = 11111.01$$

$$\sum_{k=1}^{n} x_k^3 = 11093.92 \qquad \sum_{k=1}^{n} x_k^2 y_k = 52449.87$$

$$\sum_{k=1}^{n} x_k^4 = 52351.37 \qquad \sum_{k=1}^{n} x_k^3 y_k = 256396.9$$

$$R_{y \cdot x}^2 = 0.9745407, \quad R_{y \cdot xx^2}^2 = 0.9950063 \qquad \sum_{k=1}^{n} y_k^2 = 51455.63$$

$$X^{(1)} = \begin{bmatrix} \mathbb{1} \mathbf{x} \end{bmatrix} \quad H^{(1)} = X^{(1)} \cdot (X^{(1)T}X^{(1)})^{-1}X^{(1)T} \qquad \mathbf{y}^T (\mathbb{I}_n - H^{(1)})\mathbf{y} = 759.0528$$

$$X^{(2)} = \begin{bmatrix} \mathbb{1} \mathbf{x} \mathbf{x}^2 \end{bmatrix} \quad H^{(2)} = X^{(2)} \cdot (X^{(2)T}X^{(2)})^{-1}X^{(2)T} \qquad \mathbf{y}^T (\mathbb{I}_n - H^{(2)})\mathbf{y} = 150.4276$$

Se pide:

- a) Los coeficientes de la recta $y = \beta_0 + \beta_1 x$ ajustada por mínimos cuadrados.
- b) La varianza residual del modelo anterior.
- c) La varianza residual del modelo $y = \beta_0 + \beta_1 x + \beta_2 x^2$ ajustado por mínimos cuadrados.
- *d*) A partir de los valores de las varianzas residuales obtenidos anteriormente, arguméntese qué modelo es más apropiado.
- e) En un diagrama con ejes de abscisas los valores predichos \hat{y}_k y de ordenadas los residuos e_k , indíquese cualitativamente cómo se espera que sea la relación entre \hat{y}_k y e_k .

6. Las empresas del sector informático de cierta región facturaron durante los años 2001, 2002 y 2003 las cantidades que se indican y a los precios que figuran en la siguiente tabla:

			Ordenadores de sobremesa		Ordenadores portátiles				
	t	Año	p_{1t}	q_{1t}	p_{2t}	q_{2t}	$\sum_{i=1}^{2} p_{it} q_{i0}$	$\sum_{i=1}^2 p_{i0}q_{it}$	$\sum_{i=1}^{2} p_{it} q_{it}$
()	2001	750	30	1100	15	39000	39000	39000
	1	2002	805	31	1150	20	41400	45250	47955
	3	2003	820	40	1175	25	42225	57500	62175

N.B.: p_{it} y q_{it} denotan precio (en euros) por unidad y cantidad vendida, respectivamente, del producto i en el período de tiempo t.

- *a*) Construir, con base 2001, los índices de precios y cantidades de Laspeyres, Paasche y Fischer para el año 2002.
- b) Calcular, con base 2001, el índice de valor para el año 2002 a partir de los índices anteriores.
- c) Hallar la repercusión de los ordenadores portátiles en la variación del índice de precios de Laspeyres entre los años 2002 y 2003. Conocemos que la ponderación de los ordenadores portátiles es de 42,31 % y es constante en el tiempo.

7. Conociendo los siguientes saldos de una Balanza de Pagos (MBP6), en m.m. de euros:

Exportaciones de bienes FOB	166,0
Exportaciones de servicios	25,7
Importaciones de bienes FOB	162,9
Importaciones de servicios	6,4
Transferencias de capital	3,7
Adquisición / Enajenación de activos no financieros no producidos	0,3
Rentas primarias y secundarias	-16,7
Errores y omisiones	1,9

Calcular:

- a) El saldo de la Cuenta de Bienes y Servicios.
- b) El saldo de la Cuenta Corriente y explicar el significado económico de ese saldo.
- c) El saldo de la Cuenta de Capital.
- d) La Capacidad (+) Necesidad (-) de financiación y su significado económico.
- e) El saldo de la Cuenta Financiera.

8. A partir de la siguiente información sobre una economía

Importación de bienes y servicios(M)	3600				
Exportación de bienes y servicios (X)					
Impuestos sobre productos					
Formación bruta de capital (FBC)					
Consumo intermedio	11000				
Gasto en consumo individual (CF individual)	6900				
Gasto en consumo colectivo (CF colectivo)	3580				
Consumo de capital fijo					
Rentas de la propiedad recibidas del exterior	220				
Rentas de la propiedad pagadas al exterior	230				
Rentas de los asalariados recibidas del exterior	160				
Rentas de los asalariados pagadas al exterior	180				
Impuestos netos sobre producción e importaciones	900				
Remuneraciones de asalariados					
Transferencias corrientes netas del exterior	35				
Transferencias de capital netas del exterior	185				

Calcule:

- a) El PIB a precios de mercado.
- b) El Excedente de explotación / Renta mixta bruto.
- c) El Producto interior neto a precios de mercado.
- *d*) La Renta Nacional Bruta a precios de mercado.
- e) La Renta Nacional Disponible Bruta a precios de mercado.
- f) La capacidad o necesidad de financiación de esta economía.

9. Se dispone de la siguiente tabla de nacimientos abreviada y de las cifras de población.

Nacimientos. Año 2013.

Total	425.494
De 15 a 19 años	8.816
De 20 a 24 años	32.251
De 25 a 29 años	78.929
De 30 a 34 años	155.810
De 35 a 39 años	120.720
De 40 a 44 años	27.313
De 45 a 49 años	1.655

Población residente. Mujeres.

Edad	1 de enero de 2013	1 de enero de 2014
De 15 a 19 años	1.051.130	1.038.329
De 20 a 24 años	1.201.940	1.166.856
De 25 a 29 años	1.443.413	1.372.353
De 30 a 34 años	1.811.757	1.711.917
De 35 a 39 años	1.983.801	1.970.685
De 40 a 44 años	1.886.012	1.890.390
De 45 a 49 años	1.818.983	1.829.884

Calcular, siempre que sea posible:

- a) Edad media a la maternidad.
- b) Tasa global de fecundidad.
- *c*) Tasa global de natalidad.
- d) Tasa de fecundidad específica para el grupo 15-19 años.

10. El número de nacimientos de varones en una determinada región en 2013 fue de 42.104. Además, se tienen estos datos de defunciones y población de varones:

	Pobl	Defunciones	
	Varo	Varones	
Edad	01-ene-2013	01-ene-2014	Año 2013
0 años	42.634	41.539	137
1-4 años	191.260	184.086	27
5-9 años	249.865	252.464	28
10-14 años	230.342	233.090	17
15-19 años	226.043	224.299	51
20-24 años	253.177	248.243	99

Rellene todos los datos del siguiente extracto de tabla de mortalidad abreviada. Suponer que las defunciones se reparten de forma homogénea, es decir, $a_x=0,5$ para todas las edades.

Edad	Supervivientes	Defunciones	Riesgo o pro-	Tasas específi-	Población
	a edad exacta	teóricas con	babilidad de	cas de morta-	estacionaria
	x	edad(x, x+n)	muerte con	lidad $m(x, x +$	nL_x
			edad(x, x+n)	n)	
0	100.000				
1					
5					
10					
15					
20					