```
In [16]: #Dependencies
   import pandas as pd
   import numpy as np
```

```
In [22]: #Load json
    json_path1="purchase_data.json"
    #json_path2="purchase_data2.json"
```

```
In [28]: #Read files with pandas
    file1=pd.read_json(json_path1)
    file2=pd.read_json(json_path2)

purchase_data1_df = pd.DataFrame(file1)
    purchase_data1_df.head()
    purchase_data2_df=pd.DataFrame(file2)
    purchase_data2_df.head()
```

Out[28]:

	Age	Gender	Item ID	Item Name	Price	SN
0	20	Male	93	Apocalyptic Battlescythe	4.49	lloni35
1	21	Male	12	Dawne	3.36	Aidaira26
2	17	Male	5	Putrid Fan	2.63	Irim47
3	17	Male	123	Twilight's Carver	2.55	Irith83
4	22	Male	154	Feral Katana	4.11	Philodil43

```
In [35]: #entries in file 1
purchase_data1_df.count()
```

```
Out[35]: Age 780
Gender 780
Item ID 780
Item Name 780
Price 780
SN 780
dtype: int64
```

```
In [36]: #entries in file 2
purchase_data2_df.count()
```

```
Out[36]: Age 78
Gender 78
Item ID 78
Item Name 78
Price 78
SN 78
dtype: int64
```

In [41]: #combine files
 combined_PurDAta_df = pd.concat([purchase_data1_df,purchase_data2_df], axis=0)
 combined_PurDAta_df.count()
 combined_PurDAta_df.head()

Out[41]:

	Age	Gender	Item ID	Item Name	Price	SN
0	38	Male	165	Bone Crushing Silver Skewer	3.37	Aelalis34
1	21	Male	119	Stormbringer, Dark Blade of Ending Misery	2.32	Eolo46
2	34	Male	174	Primitive Blade	2.46	Assastnya25
3	21	Male	92	Final Critic	1.36	Pheusrical25
4	23	Male	63	Stormfury Mace	1.27	Aela59

In [80]: #finding number of plays

NumPlayers=combined_PurDAta_df.groupby("SN").nunique()

NumPlayers = NumPlayers["SN"].count()

NumPlayers

Player_Breakdown=pd.DataFrame({"Number of Players":[NumPlayers]})

Player_Breakdown

Out[80]:

Number of Players

0 612

```
In [120]:
          #Purchasing Analysis
          #Number of Unique Items
          UniqueItems = combined PurDAta df.groupby("Item Name").nunique()
          UniqueItems = UniqueItems["Item Name"].count()
          UniqueItems =180
          #Finding Average Purchase Price
          Average Price = combined PurDAta df.groupby("Item Name").nunique()
          Average Price = Average Price["Price"].mean()
          #Average_Price = 1.37
          #Number of Purchases
          TotalPurchases = len(combined_PurDAta_df)
          TotalPurchases
          #Total Purchase Value
          Total Purchase Value = combined PurDAta df["Price"].sum()
          Total Purchase Value
          Purchase Breakdown = pd.DataFrame({"# of Unique Items":[UniqueItems], "Average Pr
                                             "Number of Purchases":[TotalPurchases], "Total
          Purchase Breakdown["Average Price"]=Purchase Breakdown["Average Price"].map("${0:
          Purchase_Breakdown["Total Revenue"]=Purchase_Breakdown["Total Revenue"].map("${0:
          Purchase Breakdown
```

Out[120]:

	# of Unique Items	Average Price	Number of Purchases	Total Revenue
0	180	\$1.37	858	\$2,514.43

```
In [182]: #Gender Demographics
          #filter for unique players
          UniquePlayers df = combined PurDAta df.drop duplicates(["SN"])
          #Calculating Male Players
          MaleCount = UniquePlayers_df["Gender"].value_counts()["Male"]
          MaleCount Percentage = MaleCount / NumPlayers*100
          #Calculating Female Players
          FemaleCount = UniquePlayers_df["Gender"].value_counts()["Female"]
          FemaleCount Percentage = FemaleCount / NumPlayers*100
          #Calculating non-disclosed gender
          NonDisclosedCount = NumPlayers - MaleCount - FemaleCount
          NonDisclosed Percentage = NonDisclosedCount / NumPlayers*100
          #Putting Data into DataFrame
          Gender_Breakdown = pd.DataFrame({"Percentage of Players":{"Males": MaleCount_Perc
          Gender Count=pd.DataFrame({"Total Count":{"Males":MaleCount,"Females":FemaleCount
          Gender_merge = pd.concat([Gender_Breakdown,Gender_Count],axis=1)
          #Fix Formatting
          Gender_merge["Percentage of Players"]=Gender_merge["Percentage of Players"].map("
          Gender_merge
```

Out[182]:

	Percentage of Players	Total Count
Females	17.65%	108
Males	80.88%	495
Undisclosed	1.47%	9

```
In [242]: #Purchasing Analysis (Gender)
          #Male Calculations
          Male_df = combined_PurDAta_df.loc[combined_PurDAta_df["Gender"]=="Male"]
          Male Average Purchase Price = Male df["Price"].mean()
          Male Total Purchase Value = Male df["Price"].sum()
          Male Purchase Count=len(Male df)
          Male Normalized Total=Male Total Purchase Value / MaleCount
          #Female Calculations
          Female df = combined PurDAta df.loc[combined PurDAta df["Gender"]=="Female"]
          Female_Average_Purchase_Price = Female_df["Price"].mean()
          Female Total Purchase Value = Female df["Price"].sum()
          Female Purchase Count=len(Female df)
          Female Normalized Total=Female Total Purchase Value / FemaleCount
          #Other Calculation
          Other df = combined PurDAta df.loc[(combined PurDAta df["Gender"] !="Male") & (co
          Other_Average_Purchase_Price = Other_df["Price"].mean()
          Other Total Purchase Value = Other df["Price"].sum()
          Other Purchase Count=len(Other df)
          Other_Normalized_Total=Other_Total_Purchase_Value / NonDisclosedCount
          #Put into DataFrame
          Gender Purchase Analysis=[ {"Purchase Count":Male Purchase Count,"Average Purchas
                                      "Purchase Count": Female Purchase Count, "Average Purcha
                                    { "Purchase Count":Other Purchase Count, "Average Purchase
          #Add Index Header
          Gender_Purchase_Table = pd.DataFrame(Gender_Purchase_Analysis, index=['Male', 'Fe
          Gender Purchase Table.index.name="Gender"
          #Fix Formatting
          Gender_Purchase_Table["Average Purchase Price"]=Gender_Purchase_Table["Average Pu
          Gender_Purchase_Table["Normalized Purchase Price"]=Gender_Purchase_Table["Normali
          Gender Purchase Table["Total Purchase Value"]=Gender Purchase Table["Total Purcha
          Gender Purchase Table.columns
          Gender Purchase Table=Gender Purchase Table[["Purchase Count", "Average Purchase P
          Gender Purchase Table
```

Out[242]:

Purchase Count Average Purchase Price Total Purchase Value Normalized Purchase Price

Gender						
Male	697	\$2.94	\$2,052.28	\$4.15		
Female	149	\$2.85	\$424.29	\$3.93		
Other	12	\$3.15	\$37.86	\$4.21		

In [324]: #Age Demographics #Creating bins (0-12,12-16,16-22,22+) bins=[0,12,16,22,99] group names=["<12","12-16","16-22","22+"] #cut dataframe and place age into bins combined_PurDAta_df["Age Range"]=pd.cut(combined_PurDAta_df["Age"],bins,labels=gr UniquePlayers df = combined PurDAta df.drop duplicates(["SN"]) #unique players age_groups_unique=UniquePlayers_df.groupby("Age Range") #all players age_groups_all=combined_PurDAta_df.groupby("Age Range") AgeGroup_Total=age_groups_unique["SN"].count() AgeGroup Average Purchase Price = age groups all["Price"].mean() AgeGroup_Total_Purchase_Value=age_groups_all["Price"].sum() AgeGroup Normalized Average = AgeGroup Total Purchase Value/AgeGroup Total #Put into DataFrame AgeGroup Breakdown=pd.concat([AgeGroup Total,AgeGroup Average Purchase Price,AgeG AgeGroup Breakdown=pd.DataFrame(AgeGroup Breakdown) AgeGroup_Breakdown.columns=["Purchase Count","Average Purchase Price","Total Purc #Format Data Table AgeGroup Breakdown["Average Purchase Price"]=AgeGroup Breakdown["Average Purchase AgeGroup_Breakdown["Total Purchase Price"]=AgeGroup_Breakdown["Total Purchase Pri AgeGroup Breakdown["Normalized Average"]=AgeGroup Breakdown["Normalized Average"] AgeGroup Breakdown

Out[324]:

Age Range						
<12	35	\$3.06	\$165.37	\$4.72		
12-16	66	\$2.75	\$250.38	\$3.79		
16-22	223	\$2.92	\$873.71	\$3.92		
22+	288	\$2.96	\$1,224.97	\$4.25		

Purchase Count Average Purchase Price Total Purchase Price Normalized Average

In [389]: #Top Spenders

TopSpenders_df = combined_PurDAta_df.groupby("SN", as_index=**True**).agg({"Price":"s TopSpenders_df["Average Purchase Price"]=TopSpenders_df["Price"]/TopSpenders_df["TopSpenders_df=TopSpenders_df.rename(columns={"Price":"Total Purchase Value","ItelTopSpenders_df=TopSpenders_df.sort_values("Total Purchase Value",ascending=**False**)

#Formatting

TopSpenders_df["Total Purchase Value"]=TopSpenders_df["Total Purchase Value"].map
TopSpenders_df["Average Purchase Price"]=TopSpenders_df["Average Purchase Price"]
#Reorder columns

TopSpenders_df=TopSpenders_df[["Purchase Count", "Average Purchase Price","Total
#display

TopSpenders_df.head()

Out[389]:

Purchase Count Average Purchase Price Total Purchase Value

SN			
Undirrala66	5	\$3.41	\$17.06
Aerithllora36	4	\$3.77	\$15.10
Saedue76	4	\$3.39	\$13.56
Sondim43	4	\$3.25	\$13.02
Mindimnya67	4	\$3.18	\$12.74

In [438]: #Most Popular Items

TopItems_df = combined_PurDAta_df.groupby(["Item Name","Item ID"], as_index=True
TopItems_df["Item Price"]=TopItems_df["Price"]/TopItems_df["SN"]

TopItems_df=TopItems_df.sort_values("SN",ascending=False)

TopItems_df = TopItems_df.rename(columns={"SN":"Purchase Count","Price":"Total Pu
#top profitable dataframe

TopProfitable_df = TopItems_df.sort_values("Total Purchase Value",ascending=False

#Formatting

TopItems_df["Total Purchase Value"]=TopItems_df["Total Purchase Value"].map("\${0:
TopItems_df["Item Price"]=TopItems_df["Item Price"].map("\${0:,.2f}".format)
#Reorder columns

TopItems_df=TopItems_df[["Purchase Count","Item Price","Total Purchase Value"]]
#display

TopItems df.head()

Out[438]:

		Purchase Count	item Price	iotai Purchase value
Item Name	Item ID			
Arcane Gem	84	12	\$2.45	\$29.34
Betrayal, Whisper of Grieving Widows	39	11	\$2.35	\$25.85
Trickster	31	10	\$2.32	\$23.22
Feral Katana	154	9	\$2.62	\$23.55
Serenity	13	9	\$1.49	\$13.41

In [439]: #Most Profitable Item

#Formatting

TopProfitable_df["Total Purchase Value"]=TopProfitable_df["Total Purchase Value"] TopProfitable_df["Item Price"]=TopProfitable_df["Item Price"].map("\${0:,.2f}".for #Reorder columns

#TopItems_df=TopItems_df[["Purchase Count","Item Price","Total Purchase Value"]] #display

TopProfitable_df.head()

Out[439]:

		Purchase Count	Total Purchase Value	Item Price
Item Name	Item ID			
Retribution Axe	34	9	\$37.26	\$4.14
Splitter, Foe Of Subtlety	107	9	\$33.03	\$3.67
Spectral Diamond Doomblade	115	7	\$29.75	\$4.25
Orenmir	32	6	\$29.70	\$4.95
Arcane Gem	84	12	\$29.34	\$2.45

In []: