Quantitative Methods 2

Tutorial 8 Nhan La

Last week

- 1. Goodness of fit test
- 2. Independence test
- 3. Homogeneity test
- 4. Correlation test
 - Pearson correlation
 - Spearman rank correlation

Bivariate analysis

- Parametric tests require stricter conditions than nonparametric tests
- Parametric tests are more powerful
 - If conditions are likely satisfied, choose parametric tests

- Why regression?
 - Statistical significance of effects
 - Direction and magnitude of effects
 - Control for other effects
 - Explain, predict and forecast

• Sex = Male

• Sex = Female

- Why regression?
 - Statistical significance of effects
 - Direction and magnitude of effects
 - Control for other effects

- Simple linear regression
- Multiple linear regression

Simple linear regression

$$E(Y) = \beta_0 + \beta_1 X$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Multiple linear regression

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

MLR assumptions

	Assumption	Violation
MLR1	$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \varepsilon_i$	Nonlinearity
MLR2	$E(\varepsilon_i x_i)=0$	Omitted variable
MLR3	$Var(\varepsilon_i x_i) = \sigma^2$	Heteroskedasticity
MLR4	$E(\varepsilon_i \varepsilon_j \big x_i, x_j) = 0$	Autocorrelation
MLR5	No exact linear relationship among x_i	(Perfect) multicollinearity
MLR6	$\varepsilon_i x_i \sim N(0, \sigma^2)$	Unreliable hypothesis testing