02000MAT206052102

Course Code: MAT206
Course Name: GRAPH THEORY

	Course Name: GRAITI THEORY	
Max. M	Tarks: 100 Duration: 3 I	Hours
	PART A	
	(Answer all questions; each question carries 3 marks)	Marks
1	Prove that the maximum number of edges in a simple graph with n vertices is	3
	$\frac{n(n-1)}{2}$.	
2	Define walk, path and circuit with examples.	3
3	Draw a graph which is Eulerian but not Hamiltonian	3
4	Distinguish between strongly connected digraphs and weakly connected graphs	3
	with examples.	
5	Prove that there is one and only one path between every pair of vertices in a tree.	.3
6	Draw all unlabelled trees with 5 vertices.	3
7	Prove that the edge connectivity of a graph cannot exceed the degree of the vertex	3
	with the smallest degree in G.	
8	Define planar graph and non-planar graph with examples.	3
9	Write the adjacency matrix for the following graph.	3
٧	V ₁ V ₂ V ₅	, ** k
10	Prove that the chromatic polynomial of a complete graph with 4 vertices is	3
	$\lambda(\lambda-1)(\lambda-2)(\lambda-3)$.	
	PART B (Answer one full question from each module, each question carries 14 marks)	
-	Module -1	
11 a)	Prove that the number of vertices of odd degree in a graph is always even	7

02000MAT206052102

- b) If a connected graph G is decomposed into two subgraphs g_1 and g_2 , then prove that there must be at least one vertex common between g_1 and g_2
- 12 a) Determine whether the following graphs are isomorphic or not.

7

7

b) If a graph has exactly two vertices of odd degree, then prove that there must be a path joining these two vertices.

Module -2

- 13 a) In a complete graph with n vertices, prove that there are $\frac{n-1}{2}$ edge-disjoint 7 Hamiltonian circuits, if n is an odd number ≥ 3 .
 - b) 1) For a binary relation "is greater than" on the set $X = \{3.4,7,5,8\}$
 - i) Draw the digraph representing the above relation
 - ii) Write its relation matrix
 - 2) Define equivalence digraph with an example
- 14 a) Prove that a connected graph G is an Euler graph if and only if all vertices of G are of even degree. .
 - b) Define Hamiltonian circuit and Hamiltonian path. Give an example for each.

 7
 Also draw a graph that has a Hamiltonian path but not a Hamiltonian circuit.

Module -3

- 15 a) Prove that every tree has either one or two centers
 - b) Apply Kruskal's algorithm to find the minimal spanning tree for the following 7 weighted graph.

16 a) For any spanning tree of a connected graph with n vertices and e edges, prove that there are n-1 tree branches and e-n+1 chords. For the following graph find two spanning trees and hence show that an edge that is a branch of one spanning tree can be a chord with respect to another spanning tree of same graph.

7

b) Use Dijkstra's algorithm to find the shortest path for the following weighted 7 digraph and find the shortest distance from vertex a to other vertices.

Module -4

17 a) Illustrate the statement: "The ring sum of any two cut-sets in a graph is either a third cut-set or an edge disjoint union of cut-sets", in the following graph.

02000MAT206052102

- b) Define edge connectivity, vertex connectivity separable and non-separable graph.

 Give an example for each.
- 18 a) Prove that the complete graph on 5 vertices is non-planar 7
 - b) Draw the geometric dual of the following graph 7

Module -5

19 a) For the following graph find the

7

7

- i. Incidence matrix
- ii. Path matrix between v_2 and v_5
- iii. Circuit matrix

- b) Draw a connected graph and show that the rank of its incidence matrix is one less 7 than the number of vertices.
 - 7
- 20 a) Prove that every tree with two or more vertices is 2-chromatic

- . .
- b) Prove that a covering g of a graph is minimal if and only if g contains no path of 7 length three or more.
