4.2 1) Posons
$$p_n = x^n, p_{n-1} = x^{n-1}, \dots, p_2 = x^2, p_1 = x \text{ et } p_0 = 1$$
.

Soit
$$p = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$$
 un élément de $\mathbb{R}_n[x]$.

Alors
$$p = a_n \cdot p_n + a_{n-1} \cdot p_{n-1} + \ldots + a_2 \cdot p_2 + a_1 \cdot p_1 + p_0$$
.

Ainsi tout élément de $\mathbb{R}_n[x]$ s'écrit comme combinaison linéaire des vecteurs $p_n, p_{n-1}, \ldots, p_2, p_1, p_0$: la famille $(p_n, p_{n-1}, \ldots, p_2, p_1, p_0)$ engendre $\mathbb{R}_n[x]$.

2) Soit (q_1, q_2, \ldots, q_m) une famille finie de vecteurs de $\mathbb{R}[x]$.

Posons
$$N = \max(\deg(q_1); \deg(q_2); \dots; \deg(q_m))$$
.

Toute combinaison linéaire des polynômes q_1,q_2,\ldots,q_m génère un polynôme de degré \leq N .

C'est pourquoi la famille (q_1, q_2, \ldots, q_m) n'est pas génératrice de $\mathbb{R}[x]$, car elle ne peut pas générer les polynômes de degré $> \mathbb{N}$.