Applied Computational Intelligence

Lecture 9 – Supervised Learning

Welcome back

☐ Project Stage 2

This Session

Supervised learning

Linear Regression

Support Vector Machine

How a Supervised ML Works

Supervised Learning

How a Supervised ML Works Cont.

The Type of Problems to Which it's Suited

Regression

Identifying real values (weight, dollars, etc.)

Classification

Categorizing objects into labelled groups or classes (cars, people, etc.)

Object Localization

Semantic Segmentation

Instance Segmentation

Image source: [1704.06857] A Review on Deep Learning Techniques Applied to Semantic Segmentation (arxiv.org)

Supervised Learning

Linear Regression

Overlapping content with ESOF 3675

Regression

- It is a basic statistical analysis used in machine learning.
- The focus is on the **relationship between outcome**(s) and its **input variable**(s).
 - Quantify the strength of correlation between variables
 - ✓ how changes in individual drivers affect the outcome
 - Multiple input variables → Multivariate Regression.
- Application: Useful for predicting the future values of data based on historical information
 - E.g., Stock market prediction and trading, weather forecasting, Pilot scanning behavior analysis*
- Note: It is important to remember regression analysis assumes that correlation relates to causation
 - Without understanding the context around data, regression analysis may lead you to inaccurate predictions

^{*} An investigation of correlation between pilot scanning behavior and workload using stepwise regression analysis, by Marvinc. Waller, Langley Research Center, National Aeronautics and Space Administration, March 1976

General Use of Regression

- Regression models are used for several purposes, including the following:
 - Data description
 - Parameter estimation
 - Prediction and estimation
 - Control

Regression - Model Building Process

Regression model - building process [3]

→ Linear Regression

Linear Regression

Used to estimate a continuous value as a linear (additive) function of other variables

```
o y := f(independent variables)
o E.g.,
o Income := f(years of education, age, gender)
o House := f(median price in neighborhood, square footage, # of bedrooms/bathrooms)
o Treatment effect := f(duration of radiation, Hz of radiation, patient attributes)
```

- Input: continuous or discrete
- Output:
 - A linear expression for predicting response as a function of drivers.
 - A set of coefficients that indicate the relative impact of each driver.

Linear Regression 1

Linear Regression – Example

Model: a single regressor, x that has a relationship with a response, y that is a straight line:

$$y = \beta_0 + \beta_1 x$$

Obser.,	Shear Strength,	Age of Propellant,
i	y_i (psi)	x_i (weeks)
1	2158.70	15.50
2	1678.15	23.75
3	2316.00	8.00
4	2061.30	17.00
5	2207.50	5.50
6	1708.30	19.00
7	1784.70	24.00
8	2575.00	2.50
9	2357.90	7.50
10	2256.70	11.00
11	2165.20	13.00
12	2399.55	3.75
13	1779.80	25.00
14	2336.75	9.75
15	1765.30	22.00
16	2053.50	18.00
17	2414.40	6.00
18	2200.50	12.50
19	2654.20	2.00
20	1753.70	21.50

- E.g., linear relationship between the rocket's shear strength and its propellant's age.
- ➤ The fitted model (i.e., best fit line) represents the relation:

$$y = \beta_0 + \beta_1 x \\ = 2627. 82 - 37.15x$$

Age of propellant

Linear Regression - General Model

- Assumption: a linear relationship between the input variables and the outcome variable.
- General model:

$$h_{\beta}(x_i) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon$$
$$h_{\beta}(x_i) = \beta_0 + \sum_{i=1}^{p} (x_{i,j} \cdot \beta_j) + \varepsilon$$

Dataset $F_1 F_2 \dots F_p$ $S_1 \\ S_2 \\ \vdots \\ S_N$

- The estimates for these unknown parameters are chosen so that, on average, the model provides
 a reasonable estimate of response variable based on the independent predictors (attributes).
- i.e., the fitted model $h_{\beta}(x)$ should minimize the overall error between the linear model and the actual observations.
- How do we find the unknown parameters?
 - Use an object function and an optimizer that works on minimizing or maximizing the value of the objective function

Linear Regression – General Model Cont.

Cost function (e.g., MSE):

$$J(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \left[\boldsymbol{h}_{\boldsymbol{\beta}}(\boldsymbol{x}_i) - y_i \right]^2$$

- The cost function can be any appropriate measures, like sum of squared errors (SSR) or residual sum of squares (RSS)).
- Objective: Searching for β'_i s that produce the least value for $J(\beta)$

$$\beta_j = \min_{\beta} J(\beta)$$

- How do we do this:
 - One method is gradient decent optimizer

→ Model fitting

Linear Regression - Gradient Decent Optimizer

• Objective: $\beta_j = \min_{\beta} J(\beta)$

Convex optimization problem

$$J(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \left[\boldsymbol{h}_{\boldsymbol{\beta}}(\boldsymbol{x}_i) - \boldsymbol{y}_i \right]^2$$

Linear Regression - Gradient Decent Optimizer Cont.

 Partial derivatives give us the slope (i.e., direction to move) in that dimension

Linear Regression - Gradient Decent Optimizer Cont.

 Partial derivatives give us the slope (i.e., direction to move) in that dimension

• Approach:

- \circ Pick a starting point $(\beta_0 = 0, \beta_1 = 0)$
- o Do:
 - ✓ Compute $J(\beta)$
 - ✓Move a small amount towards decreasing loss using the derivative:

$$ho_0 \coloneqq oldsymbol{eta}_0 - lpha rac{\delta J(eta_0, eta_1)}{\delta eta_0}$$
 Simultaneous update $ho_1 \coloneqq oldsymbol{eta}_1 - lpha rac{\delta J(eta_0, eta_1)}{\delta eta_1}$

✓ Repeat until convergence

Linear Regression w/ Categorical Variables

income = $b_0 + b_1$ age + b_2 yearsOfEducation + b_3 gender + b_4 state

- Gender is categorical, but binary
 - one variable: Male, which is 0 for females
- State is a categorical variable:
 - 50 possible values
 - Expand it to 49 indicators (0/1) variables:
 - The remaining level is the default level, i.e., all indicators set to 0

In regression, a proper way to implement a categorical variable that can take on m different values is to add m-1 binary variables to the regression model.

Categorical Variables

Linear Regression - Overfitting

- Overfitting associated with too many regression coefficients to be estimated.
- Just adding more variables to explain a given dataset may not improve the explanatory nature of the model.
- Example: $f(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$
 - \circ Let's add a fourth attribute $x_4 = x_1^2$ and add another new attribute $x_5 = \frac{x_2}{x_3}$
 - \circ Now, the model needs to learn the parameters (weights) of the following f(x).

$$f(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5$$

 Potentially, it can lead to overfitting and reduce model's generalizability outside the original dataset.

Over fitting

Linear Regression - Overfitting

- Few observations (small N)
- rapidly overfit, as model complexity increases
- Many N (very large N)
- > harder to overfit

- Red model is overfitted, since it almost memorized all the data points.
- Green model can be an optimal solution.

Over fitting 1