SECURITY INFORMATION

7608

PROVISIONAL INTELLIGENCE REPORT

70

COMPUTATION OF INPUT REQUIREMENTS OF THE AIRCRAFT INDUSTRY OF THE USSR

CIA/RR FR-19

31 October, 1952

CIA HISTORICAL REVIEW PROGRAM RELEASE AS SANITIZED

1998

Note

The data and conclusions contained in this report do not necessarily represent the final position of CRR and should be regarded as provisional only and subject to revision. Additional data or comments which may be available to the user are solicited.

WARNING

THIS DOCUM I CONTAINS INFORMAT AFFECTING THE NATION DEFENSE O' THE UNITED STATES W WILL THE MEANING OF THE ESPIONAC LAW, TITLE 18, USC, LOS. 793 AND 794, THE TRANSMIT JION OR REVELATION OF LAWING IN ANY MANUER TO A UNAUTH RIZED PERSON IS PROHIL TED BY LAW.

CENTRAL INTELLIGENCE AGENCY

Office of Research and Reports

DOCUMENT NO. _______NO CHANGE IN CLASS. [

D DECLASSIFIED
CLASS. CHANGED TO: 15 8
NEXT REVIEW DATE: 1984

DATE: 012 9 REVIEWER: 008514

SER-C TOTAL

CONFIDENTIAL

MON 8 182 14

CONFIDENTIAL

FOREWORD

This is the second of a series of provisional reports on the input requirements of the aircraft industry of the USSR.* It sets forth some tentative findings on input requirements - in manpower, materials, and energy - for the production of Soviet airframes and aircraft engines.

The purposes of this report are to provide a progess report, to identify significant inputs, to set forth some tentative findings, and to promote continuing discussions with those persons who may be of assistance in this study - by calling attention to further avenues of investigation, by suggesting a sharpening of the methodologies employed, or by providing some of the additional tools and information required.

Since this is a provisional working paper, some substantive shortcomings and statistical inconsistencies may exist. In some cases, theoretical values and constants are subject to individual choice. In the final analysis the fact that time and manpower are limited suggests that these scant resources be applied to pushing on with the job at hand rather than to explaining why minor inconsistencies may exist.

^{*} Analysts are referred for background information to the first provisional report on the subject, CIA/RR PR=8, Input Requirements of the Aircraft Industry of the USSR, 20 Oct 1951. TOP SECRET.

COMPRESSION

CONTENTS

																			Page
Sum	marre.													_					- i
_				o o	, , , , , , , , , , , , , , , , , , ,	mnut	Door	3 0 	nte										
Io	COM		ion of M																
	A _o B _o		irements irements															• 0 • . 0	6
II.	Com	outat	ion of M	lateri	lal I	nout	Requi	Lrem	ents	0	e o	•		٥	٥	۰	٠	o 0	. 7
	A. B.	•	irements irements										• •	•	0	•	•	o •	8
III.	Com	ou t at	ion of E	nerg	y Ino	out R	equir	₄ emen	ts .		ِه د	•	0 0	c	۰	0	•	0 0	16
•	A. B.		irements irements															0 0	16 17
						A	ppend	ixes											
App	endi:	x A.	Effecti	.ve Wo	ork F	acto	r		• 6	o		•	• 0		· o		0	• •	, 26
Apro	endi:	х Во	Bill of	Mate	erial	s fo	r MIG	-15	Droo	Ta	nk.	٥		6	•	o -	0	a (a. 27
App	endi:	x C.	Compari	son (of 11	-12	and U	SAF	T⇔29	A.	0 0	0	۰ ،		٥	•	0	۰ ،	. 2 8
App	endi:	x D _o	Bill of	Mate	erial	s fo	r USA	F T=	29A		•	۰	0 6	• •	٥	0	o	0 0	29
App	endi.	x E _o	Data on	a Type	e 31	and	Ju-22	L	¢ 0			0	0 (. 0	o	o	•	o e	. 31
Apn	endi	x F.	Bill of	Mat	erial	Ls fo	r J-U	8P=5	Eng	gine	s 0	٥	.	, ,	0	0	0	0 (。 33
Арг	endi:	x G _o ∈	Detaile cal Ai																
App	endi	х Но	Interc													o c	۰	0	ħ2
Apr	endi	x I.	Data fo A v iati								_								113
Λpp	endi	х J.	Detaile Aircra															•	48

CONTIDENTIAL

					Page
Anpendix K	o. Gaps in Inte	lligence	0 0 0 0 U		53
Apoendix 1.	Methodology	• • • • • • •	0 0 0 0 0	o	54
Appendix M	o Sources and	Evaluation of	Sources		• • • • 55
Figu re 1 .	Manpower Requi	<u>Illustra</u>	 	ne Production	Following Page
Figure 2	Energy Require and the USSR	ments for Air			
		ANNEX (Issued Ser	parately)		
Estimate Landing	ed Finished Wei Gear	ght and Bill o	of Materials	for MIG-15 A	irframe and

NOTE ON CLASSIFICATION

The over-all classification of this report is SECRET. Some pages, however, are of lower classification and are so designated.

-CONFIDENTIAL

CIA/RR PR-19 (ORR Project 38-51)

COAFIDENTIAL SECURITY INFORMATION

COMPUTATION OF INPUT REQUIREMENTS OF THE AIRCRAFT INDUSTRY OF THE USSR*

Summary

Manpower requirements for Soviet airframe and aircraft engine production have been computed in this report for several models which have received considerable study. The computations are based on an equation developed out of US and UK experience. Future work on manpower requirements should include study of other models; work on propellers, accessories, and spare parts; and research aimed at determination of concrete values for the variables used in computing manpower inputs.

The material requirements of the Soviet airframe and aircraft engine industries have been computed in this report for the same aircraft and aircraft engines considered in computing manpower requirements on the basis of inputs for US types comparable for this purpose, with allowance made for known and estimated differences in the Soviet types. Future work on material requirements should include study of additional types; verification of tentative weights; determination of input weights for propellers, tires, radios, and other equipment not included in the above tabulation; determination of the average proportion of rejects in Soviet plants; and investigation of the number of spare parts required by the Soviet Air Force per airplane and engine.

The energy requirements of the Soviet airframe and engine industries have been computed in this report for a given weight of product by analyzing the energy requirements of a hypothetical plant in each industry, assessing its requirements item by item and adding to obtain total requirements for each type of energy. These computations have been made on the basis of US data and roughly adjusted for the USSR with such meager data as are available. Future work on energy inputs should include more detailed research on each separate item of equipment and each process in the plant, study of propeller and accessory plants, and acquisition and use of additional over-all data for checking computed energy input requirements.

This report contains information available to CIA as of 15 May 1952.

I. Computation of Manpower Input Requirements.

A. Requirements for Airframe Production.

1. The curve of man-hours per pound of aircraft versus percent of meximum output will vary in the same manner as the energy input curve. In the case of energy, there exists a minimum or "maintenance" energy input level, to which is added the incremental energy needed for production. Similarly, in the case of manpower, there is an almost constant "indirect" labor component, plus the incremental "direct" labor used in production. The ratio of direct to total labor may run from 40 to 60 percent in Soviet aircraft plants at peak production. 3/ These relations may be expressed by using the method developed by Dr. Wright \(\frac{1}{4}\):

```
E = D + P + A
                                                                    (1)
where E = total workers
       F * indirect factory workers (assumed to be 50 percent proportional
            to output and 50 percent independent of output)
       D = direct factory workers (proportional to output)
      A = office, administrative, and other overhead workers (assumed to
            be independent of output)
In terms of percent of maximum output, P,
       E = (P/100) (D + P/2) + (A + P/2)
If D<sub>100</sub> = WE<sub>100</sub> (3) (where W * ratio of direct to total workers at 100-percent production),
            then, substituting equation (3) in equation (1),
       E_{100} (1-W) = F + A
       A = E_{100} (1-W) - F
                                                                    (4)
Substituting equation (4) in equation (2),

E = (P/100) (D_{100} + F/2) + E_{100} (1-W) - F/2
                                                                   (5)
```

^{*} Footnotes in arabic numerals are to sources listed in Appendix M.

CONTINUE

2. The number of direct workers will decrease with the cumulative number of aircraft produced, along an "80 percent curve" or similar function. The general form of this equation is

y = axn

in which, for a given model in a given plant,

y = direct man-hours required per pound of airframe number "x"

a = direct man-hours required per pound of airframe number one

x = cumulative airframe number

n = constant factor (representing slope of line)

From the above equation may be obtained the following equation

for

D = direct workers 5/:

 $D = \frac{NGaxn}{ce}$

(6)

where

N = airframes per month

G = airframe weight

c = monthly shift-hours worked

e = effective work factor

By substituting equation (6) in equation (5), the following equation may be obtained for total number of workers at the point when airframe number "x" of a given model is being produced in a given plant:

$$E = (P/100) \frac{N_{100}Gex^n}{Ge} + F/2 + E_{100} (1-W) - F2$$
 (7)

3. Eleven terms are contained in equation (7):

E = total number of workers

P = percent of maximum cutput being produced

N = number of airframes being built per month

x = cumulative airframes of given model being produced in that plant

G = airfreme weight (structural) built in plant

C = monthly shift-hours worked

e = effective work factor

a = direct man-hours per pound of first airframs produced

n = exponential factor ...

W = percent of direct to total workers

F = mumber of indirect factory workers

Of the above 11 terms, 4 are variable -- "E" (the solution) and "P," "N," and "x" (the prime variables) -- and the other 7 terms are constants. It is upon the accurate determination of the values of the constants that the validity of the solution depends.

S-R-C-R-R-T

- 4. Some work has been done on each of the constants listed, but the results leave much to be desired:
- a. Airframe structural weights, "G": this factor is known for some Soviet aircraft, not for all. 6/ Unpublished CRR aircraft plant studies should be consulted for subcontracting as it affects the input requirements of specific Soviet airframe plants.
- - c. Exponential factor, "n": this factor has been treated in many sources. 9/ Average values may be derived by airplane type, from past performance, but means to predict values for new types are not evident. The commonly used value for "n" is -1/3.
 - d. Monthly shift-hours, "c": this factor has been studied by the Port of and by CRR. 11/ A considerable amount of basic data is to be found in unpublished CRR Soviet aircraft plant studies.
 - e. Effective work factor, "e": this factor has been studied by '2/ and is discussed briefly in the present report (see Appendix A). More work needs to be done on this subject.
 - f. Ratio of direct to total workers, "W", and number of indirect factory workers, "F": these factors have been discussed inconclusively by the factor and by ORR. 14/
- 5. Values have been computed by 15/*for direct man-hours per pound of the thousandth airframe of the types dealt with in the present report. To use these data, equation (7) may be altered by letting a' x computed direct man-hours for the thousandth airframe produced, so that, if x = 1,000, then, a' x = 1. By the insertion of these values, equation (7) may be made to read

$$E = (P/100) \frac{N_{100}Ge'}{ce} + F/2 + E_{100} (1-W) - F/2$$
 (8)

6. The other values chosen for the present report are as follows. Three are based on: $\frac{16}{100}$: c = 182 e = 0.70 W = 0.50

The fourth is assumed, based on Dr. Wright's calculations 17/:

If W = 0.5 and F = 3A, then from equation (4) it follows: $0.5E_{100} = F + F/3$ $F = 0.375E_{100}$

_ 4 _

S-R-C-R-E-T

By inserting these values in equation (7), an equation is obtained for output at 100 percent of capacity:

$$E_{100} = (1) \sqrt{\frac{R_{100}Ge'}{(182)(0.7)} + \frac{0.375E_{100}}{2} + \frac{0.5E_{100} - \frac{0.375E_{100}}{2}}{(10)}}$$

$$0.5E_{100} = \frac{N_{100}Ga'}{127.4}$$

$$E_{100} = \frac{N_{100}Ga'}{63.7} = 0.0157 Ga' per aircraft$$

The equation for output at 20 percent of capacity is

$$E_{20} = (.2) \left(\frac{5N_{20}Ga'}{(182)(.7)} + \frac{0.375}{2} \frac{5N_{20}Ga'}{63.7} \right) + \frac{(0.312)(5)N_{20}Ga'}{63.7}$$

$$= \frac{Ga'}{127.4} + \frac{Ga'}{339.7} + \frac{Ga'}{40.8} = 0.03528 Ga' per aircraft$$
(11)

7. By substituting in equations (10) and (11) concrete values for airframe structural weight "G" and direct man-hours per pound of thousandth airframe "at", manpower inputs may be computed for the production of airframes. These are given in Table 1.

Table 1

Manpower Requirements for Soviet Airframe Production a/

	G (Airframe	e.	Number of Work to Produce 1 Airf	
Aircraft	Structural Weight, Lbs)	(Direct Man- Hours per Lb)	E ₁₀₀ (at 100 Percent of Capacity)	E ₂₀ (at 20 Percent of Capacity)
MTG-15 I1-12 Tu-4 Li-2 I1-18 Type 31	4,000 b/ 13,300 c/ 35,100 c/ 9,100 c/ 19,500 c/ 49,000 d/	1.66 1.56 1.39 3.03 1.73 1.00	104 326 766 433 530 769	234 732 1,721 973 1,190 1,729

a. For the thousandth airframe of a given model produced in a given plant,

<sup>b. Based on analysis by US contractor. 18/
c. Based on USAF analysis. 19/</sup>

d. From earlier CIA/RR report. 20/

S-E-C-R-E-T

B. Requirements for Aircraft Engine Production.

1. For engines, curves of data such as that used above do not exist. A makechift set of curves, based on incomplete data, has been prepared. The data are given in Tables 2 and 3.

Table 2

Data for Computing Manpower Requirements for Piston Engine Production

Engine	Direct Labor Requirements s/ (Man-Hours)	Displacement b/	Take-Off Power b/ (Brake Hp)	Type b/
VK-107	2,500	2,135	1,630	VEE-12
AM-42 and 45	3,000	2,850	1,975	VEE-12
Ash-21	1,100	1,410	690	Redict-7
Ash-82	3,300	2,495	1,825	Redict-14
Ash-90	3,900	3,350	2,200	Redict-18
M-11	800	526	158	Radict-5
R-3350-26W	2,000	3,350	2,200	Redict-18

a. "igures, 21/ except for the figure for the R-3350-26W, which is taken from a CIA/RR report. 22/b. Air Intelligence Center (ATIC) figures. 23/

Table 3

Data for Computing Manpower Requirements for Jet Engine Production

Engine	Direct Labor Requirements a/ (Man-Hours)	Dry Weight b/	Take-Off Thrust b/ (Dry Weight, Lbs)	Type b/
Russian Nene (RD-45)	5,000	1,850-1,900	1,900-5,100	Centrifugal-1-3
German 003	1,500-2,000	1,375	2,250	nxial flow-7-1
Russian 004	2,500	1,650	2,200	Axial flow-8-1
German 004 (1st)	3,200	1,650	2,200	Axial flow-8-1
German 004 (20,000th)	850	1,650	2,200	Axial flow-8-1
J-48	1,950	2,700	6 ,2 50	Centrifugal-1-

a report of a US aircraft company. 25/

b. ATIC figures. 26/

S B C R-E-T

One US suthority 27/ cites displacement as a superior index to power for production when estimating from floor space. Curves plotted from the above data tend to contradict this thesis for man-hours. For jet engines, dry weight appears (on slim evidence) to be the index, as indicated in Figure 1.*

- 2. On the basis of these curves, it is possible to arrive at an equation for total man-hours on the assumption that equation (2) is valid for engine plants and that the thousandth engine is being built except in the case of the Ju-224. Man-hours for the Ju-224 have been computed for the hundredth engine.
- For production at 100 percent of capacity, using equation (5), we can obtain Ga' = D' directly from Figure 1:

$$E_{100} = (1) (D_{100} + F/2) E_{100} (1-0.5) - F/2$$

$$E_{100} = 2D_{100} = \frac{2 (\text{direct man-hours per engine})}{(182) (0.7)} = 0.0157D$$

For production at 20 percent of capacity

$$E_{20} = (0.2) \left(\frac{5N_{20}D'}{(182)(0.7)} + \frac{0.375}{2} \frac{(5N_{20}D')}{63.7} + \frac{(0.312)(5)N_{20}D'}{63.7} \right)$$

3. By substituting in the above equations concrete values for "D*" (direct man-hours per engine) taken from the curves plotted in Figure 1, manpower inputs may be computed for the aircraft engines under study in this report. These are given in Table 4.**

II. Computation of Material Input Requirements.

Material inputs have been computed tentatively for the Soviet airframe and engine industries, in part by analogy with comparable US types and in part from the analyses that have been made of captured Soviet equipment.

Weights given are mostly AMPRESS (Aeronautical Manufacturers Planning Reports)

[#] Figure 1 follows p. 7.

Table 4 follows on p. 8.

*** AMPR airframe weight is weight empty, less the following: engine, turbosuperchargers, starter, accessories, propeller (hubs, blades, control, governor), wheels (tires, tubes, brakes), suxiliary power plant, radio and radar units (not installation parts and wiring), battery, generator, storage items (first-aid kits, removable fire extinguishers, flight manuals, etc.).

MANPOWER REQUIREMENTS FOR AIRCRAFT ENGINE PRODUCTION

Piston Engines

Jet Engines

SECRET

SEGNAT

Fable 4

Kanpower Requirements for Soviet Aircraft Engine Production a/

		Number of Work to Produce 1 Eng	
Engine	D'	E ₁₀₀ (at 100 Percent	E ₂₀ (at 20 Percent
	(Men-Hours per Engine)	of Capacity)	of Capacity)
Vk-1	3,750	58.9	132.3
Ash-82	2,900	45.5	102.3
Ash-90	3,400	53.4	120.0
M-62	2,400	37.7	84.7
Ju-224 <u>a</u> /	4,800	75.4	169.3

a. For the thousandth aircraft engine of a given model produced in a given plant, except for the Ju-224. Requirements for the Ju-224 are for the hundredth engine produced in a given plant.

airframe weights. To obtain total inputs, it will be necessary to add the nonairframe items such as engines, tires, propellers, and radio. The weights are tentative because they have not been examined in sufficient detail to determine their completeness.

Future work on material inputs will include: (1) verification of tentative weights; (2) determination of input weights for additional aircraft and aircraft engines; (3) determination of input weights for propellers, tires, radio, etc.; (4) determination of average amount of rejects in Soviet plants; and (5) determination of amount of spares required by the Soviet Air Force, per unit aircraft and engine.

A. Requirements for Airframe Production.

l. The finished weight has been estimated and the bill of materials has been compiled in detail by ORR for the structure of a captured MIG-15 (see the Annex).* As a check on detail weights, the ORR calculated weights have been compared with an actual weight statement for the captured MIG, and adjustments have been made to compensate for parts missed in the calculations. Tentative totals for each material input have been checked and in certain cases revised in the light of a preliminary material breakdown on the MIG-15 by the Air Technical Intelligence Center (ATIC).

See-C-R-E-T

/ 41

The bill of materials for the MIG-15 drop tank has also been prepared from a description of a recovered tank, with allowance for scrap. The calculated weight checks with the actual weight. Appendix B contains these data.

S-R-C-R-R

A summary of the data is presented in Table 5.4 The data shown approximate AMPR airframe weight plus landing gear, with allowance for scrap, but should be checked in more detail for compliance with AMPR definition. Work is in progress on this subject.

2. Input data for the other Soviet aircraft dealt with in this report -- II-12, Tu-4, Ii-2, II-18, and Type 31 -- have been compiled from information furnished for US aircraft. (Some of the basic data, partly taken from an earlier report 29/, are presented in Appendixes C, D, and E.) Bill-of-materials data for the B-29 (and therefore for the Tu-4 and Type 31) appear to be incomplete, despite claims to the contrary by USAF procurement personnel. The first four listed are directly comparable to specific US types. Data for the fifth -- the Type 31 -- have been computed from the Soviet Tu-4. The points of comparison are shown in Table 6.50 On the basis of the comparisons shown in Table 6, material requirements have been tentatively compiled for the Soviet aircraft listed. These requirements are given in Table 7.500

B. Requirements for Aircraft Engine Production.

- 2. The Ju-224 is the equivalent of four 'Vee" engines without cylinder heads. It should therefore approach the ratios of the R-1820 and the R-2600, with a decrease in aluminum to allow for absence of cylinder heads. This would be at least partially compensated by the excess number of crankcases. In the absence of more detailed breakdown (which should be undertaken in the future), an average of R-1820 and R-2600 ratios was used. The weights shown above for the Ju-224 have been computed from these averages and the base of a reported weight of 2,500 kilograms (about 5,500 pounds) for the Ju-224. (See Tables 8 and 9.)

Table 5 follows on p. 10.

Table 6 follows on p. 12.

Table 7 follows on p. 14.

Table 8 follows on p. 15.

WERE Table 9 follows on p. 15.

Summary of Data for Estimating Haterial Requirements for the hIG-15 Airframe as and Landing Gear

Table 5

Cornell Laboratory Measurements 9		Total Finished Feights	1,400	524	150	h,072
		Finished Weights	1,318 437 1,411	213	126	3,629
	Totals 4	Input	2,162 1,116 1,566	699	614 120	250 9
	is Istics	Finished Weights	ग्रं			킠
	Glass and Plastics	Input	युग			ál
	ær	Finished		95	28 85	169
îmates	rhibber	Input veights		3%	85 28 85 28	369 mersee
ORK Estimates	osíum 1110ys	Finished etghts	gradi	20	0 T	ارسي: کنون (
	Magne and M	Input Lerghts	p-4	103	26	360
	Steel (including Magnesium Stainless Steel) of and Alloys	Finished	546 270 415	137	88	3,126
, (Appendix 1)	Steel (includin Stainless Steel)	Input	1,183 337 428	510	335	3,343
	loys	Finished	772 166 952		6,	7,019
	Aluminum and Alloys	Input	979 228 1,094		25	2,336
	•		Ling Group Teil Group Body Group	ing Gear	ing Gear Fuel Tanks	Cla/ill isti- mated Totals d/

* Footnotes to Table 5 follow on p. 11.

- 30 -

T-4-H-7-4-5

skummany of sata for satimating saterial tequirements for the 1.10-15 Abritame of and 1.10 ing lear (Continued)

Founds

					,	v utthmates	ma tes					
	and.	Aluminum and Alloys	Ctainless	Steel (including	hagnesium and Alloy	Bagnesium and Alloys	Teach,	oer.	Class and Flas	Class and Flastics	Totals d	g d
	daput.	Pinished of jate	Input	Pinished Personal	Input	Finished .eight:	Input ergine	unished	anput.	finished	Input	Finished
TIC rrediminary dreamioum c		3,250	•	1,620		370		200		220		5,420
eviselufotals	A 026	13.052. E. V. 050.E.	3,340 -9	7,1160 2	100 2	74.25	750 27	\f 801	75 012	रिं द्वा	8,000	5,150

a, Approximately and cirrens. 5. Formell maderalogy ligares (

21

Somell associating theorem 23/ also Inchams the following finished meight data (in pounds):

riping, etc. 170 Fixed Equipment 1,030 Pounds; finished 200 Cagine Starters Lube Cystem 1,850 160 angine accessories Tracine Controls . ingine

These figures c. - Cumiless steel is instactin the body group, as follows: -input weight, 52 pounds; finished weight, 39 pounds. are anogusted in the totals

is. These totals withing for those given in the Annex to kins report because the component figures have been rounded to the

e. Lappid linci figures.contaimed Limeatly from TYIN;

f. in it is esseme, that the Thatbear of Bylls counts for Thankhe seight of aluminum is correct. To boke a corresponding bill-of-addicinitiant, the ratio of the analysis for This oct to bill-of-muterials weight (about 1.27) has been used. If 615 pounds of extraspors are extraspors are extraspors.

That firsts is as nelleved that wheel brake seight has usen erroneously included in the ATC preliminary breakdown for finished

i. The orelitaran brainown for limited mount of the tota excense it contains some hose atome not in the UM estimate. Bili-of-materials weight is worked therefrom.

je -- dictroliminary breardown to used for glads and plastice linished weight. Bill-of-materials acted is derived therefrom.

Table 6

Comparative Statistics on Soviet and US Aircraft

Weights in Founds

		er (i) and (i) the report of the results of the res	Known Finished Seights	l veights	07_01_07_07_07_07_07_08_000	6,1	Weight datios		Estimated Finished	ted sa	Bill-of= Naterials Weight	of= ials int
	Hodel	Structure ala	Airframe b	Empty cl	Maximum Take-Off d	Airframe Structure	Empty Structure	Empty Airframe	Structure	Airframe	Known	Estimate
Soviet	US											
	T-29A		13,600	23,400	39,600			5 4	13,300		27,260	
13-12		13,300			33,000			,		18,600		27,250
n-it	B-29	35,300	000 ^π 8†	72,500	140,000	4.2	0 °2	۲۸ چ			1, 225 £	
5=£4.	C=1/3, 12/10, DC-3	9,100	12,500	37,000	29 _s 000	~	%				15,000	
	C=54, 450, UC= 4	39,500	28,000	38,000	82,500	4°7	000	and o			266°65	
	₩, טכ-68	. 25, 900	37,500	55,000	112,000	प॰र	हर्न हर्न	7.4			70,069	
Train			28,000		37,000					005"61		000,004
N. H. P.	स्पर्धा को इन्डल्य	The transfer of table 6 feeling on 2 33,	ار ما ار ما									

5 77 The state of the s

Taole 5

Comparative Statistics on Soviet and US Aircraft (Continue)

eights in rounds Satimate Bill=of= Materials ',eight Кпомп Airframe 65,000 (1,35) .stimated Finished i ci ght Structure 49,000 Airframe Empty Structure Leight datios Structure Alrirame Naximum Take-Off of 225,000 Erno ty 97,700 Knoum Minished Leights lirframe by Structure a 3 Loiel Type 31 el Soviet

a, Pignres from Air Fechnical Intelligence Center (ATC) and Mavy Bureau of Aeronautics (Buker).

b. Figures from Civil Aeronautical Administration (CTA), ATC, and Buker.

c. Figures from CCAIX Force (LGAE) and Buker.

d. Figures from CCAIX Force (LGAE) and Buker.

e. Figures from CCAIX And Buker.

e. Figures in parenthoses anderneath finished welghts for the Type 31 are ratios with parallel figure for the Tu-4. From an average of these ratios as expended the ratio 4.43 for bill-of-materials figure (67,510 pounds) for the Type 31.

Defined in

Table 7

Material Requirements for Soviet Airframe Production

D	Country of Asset	1,135 1,270 1,81 1,820
	Glass and Plastics	2,560 330 10 10 11
,	:upper	3,375 132 132 14,820
	Magnesium and Alloys	760 280 65 910 400
	Stainless Steel	1,670 20 730 2,110
	Steel and Iron	1,570 7,950 2,040 4,300 11,370
	Aluminum and Alloys	15,700 34,000 11,600 31,000 13,600
	Item	11-12 Tu-4 Li-2 Il-18 Type II 2/

a. Type 31 figures are computed from Tu-4 figures at the ratio 1.43. See above, Table 6, footnote e.

77.

Table 3

Raturial sequirements for Soviet Aircraft Engines

رزازي سهيد حديد مرجوب							بروزه برواد برواد زيده ويواد برواد والمعادل	Founds
Seviet	Comparante	4lumirum and .11oys	Cteci	Sagnestum	hbber	Copper and	Total Weight of Inputs	Total Finished Reight (Ory)
16 (16) 2 (17	Julignus (#2600 (#3350 n=1.020	1,128 2,345 2,760 1,100 1,000	5,111 2/ 6,200 7,000 3,724 17,150	655 682 682 165	ুল কাম এন তথ্য	23.4 300 36. 36.	6,900 7,657 10,659 1,432 22,135	9 4 9 4 ng 2 6 9 9 0 2 6 0 0 2 6 0 0 2 6 0

a. Taken directly from J-LdF-5 figures given in Appendix F.

b. Includes 742 pounds of stainless steel.

c. Computed from dry weights and bill-of-materials ratios for US aircraft engines given in Table 9, below.

d. Lyanged from bill-of-materials ratios given for M-1320 and 4-2600 engines in Table 9, below, applied to dry weight figure of 2,500 kilograms given by A D for the Ju-224.

Taule 9

tation for Jongating anternal Requirements for Coviet Aircraft ungines

Percent of dry height

Copper	ac of
ubber.	003
dagnesium ard alloys	neog
Steel	252 212 212 212 212 213 213 213 213 213 21
Alvainum	900 (90 600 (90)
	1-2000 1-330 1-330 1-300 (-11-200)

a "Ferage of rutios for the A-1320 and the 6-7600, See explanation in text, p. 9, above,

tailutelia.

* *2

SHORET

III. Computation of Energy Input Requirements.

A. Requirements for Airframe Production.

1. To estimate the probable energy requirements for Soviet airframe production, a hypothetical plant has been constructed for the US and a Soviet counterpart has been constructed alongside it. The hypothetical plants, US and Soviet, based on a handy 1 million square feet of floor area, are assumed to turn out 700,000 pounds of airframe per month, at peak capacity, using three shifts. 31/ From US data, detailed computations have been made of the energy inputs required in the hypothetical US plant, and Soviet requirements have been estimated therefrom (See Appendix G). (In other words, over-all efficiencies are assumed to be the same.) A summary of these requirements is given in Table 10.

Table 10

Monthly Energy Requirements for Hypothetical US and Soviet Airframe Plants (Estimated Monthly Capacity of 700,000 Pounds of Product)

Million Btu At 100 Percent At 20 Percent At 3 Percent of Capacity of Capacity of Capacity US Soviet Soviet US Soviet 600.0 Light 1,770 990 330 330.0 10,700 Comfort Heat 6,350 7,500.0 4,760 4,760.0 Electrochemical 102 752 20 22.5 3.1 Process Heat 181 181 36 5.4 5.4 Power 5,500 1,460 292 40.8 15.9 Miscellaneous 743 307 102 18.2 22.3 Run-Up 200 60.0 2,000 1,000 30.0 Total 21,646 8,226.1 10,390 5,740 5,187.5

The data given in Table 10 have been plotted, and from them a pair of generalized curves of Btu per pound of airframe versus percent of production capacity has been calculated and plotted (in Figure 2).

- 16 -

^{*} It should be noted that energy is presented in terms of British thermal units (Btu) rather than in units of coal, oil, gas, or electricity. The reason for this is the partial interchangeability of energy sources, including manpower (as indicated in Appendix H).
** Figure 2 follows p. 16

ENERGY REQUIREMENTS FOR AIRFRAME PRODUCTION IN THE US AND THE USSR

SECRET

STORES.

- 2. There is one possible check on these data. In a previously published CIA/RR study a value of 302,000 Btu per pound of airframe was derived for the US industry in 1947. 32/ Peak US production was about 9,000 aircraft per month in 1944, with about 10,000 pounds average airframe weight. 33/ If this rate -- 1,080 million pounds of airframe per year -- is accepted as the US maximum rate, then in 1947, when US production was at the rate of 3,888,000 pounds of airframe per year, the US was operating at 3.6 percent capacity. This percentage, when plotted on Figure 2, falls (mirabile dictu) right on the calculated line. In view of the fact, however, that much of the floor space available to the US industry at peak war condition had been retired by 1947, it may be more reasonable to base the 1947 operating level on the amount of floor space actually available in 1947. To obtain this figure would require a considerable amount of research and may be considered to be a project for the future.
- 3. It cannot be assumed that distribution patterns of energy sources for the airframe industries of the US and the USSR coincide. In order to determine the actual energy sources, a survey was made of CRR Soviet aircraft plant studies completed to February 1952 (see Appendix I). This field should be resurveyed when the CRR plant and plant-complex studies have been carried to completion. On the basis of fragmentary evidence, the estimated monthly energy input requirements presented in Table 10 have been broken down by source of energy. The results are presented in Table 11.*
- 4. The data presented in Table 11 have been converted from Btu into the appropriate physical unit for each form of energy, and monthly energy input requirements have been computed in these terms per 100,000 pounds of airframe produced. These results are presented in Table 11a.4%

B. Requirements for Aircraft Engine Production.

- 1. To estimate the probable energy requirements for Soviet aircraft engine production, the same method has been used as in estimating the probable energy requirements of the airframe industry -- a hypothetical plant has been constructed for the US, and a Soviet counterpart has been constructed alongside it. The US plant has been checked against the same US data used for the airframe industry. 34/ In order to permit the convenient use of certain data developed in estimating energy requirements for airframe production, the floor area of the hypothetical aircraft engine plants has been set at the same figure as that used for the hypothetical airframe plants -- 1 million square feet.
- 2. The basic model for the hypothetical US aircraft engine plant is an installation with a floor area of 4,727,000 square feet. Working

^{*} Table 11 follows on p. 18.

Table lla follows on p. 19.

Table 11

Breakdown by Sources of Monthly Energy Megulrements of Hypothetical Soviet Airframe Plant (Estimated Monthly Capacity of 700,600 Pounds of Product)

Million Uta

Total Electricity of Capacity 2112 123 869 4,155 1,000 147 At 20 rercent Coal 550 210 Gas O 255 2338 28 deduction Factor 390 102 102 181 191 191 1900 1900 10, 389 10,389 Total Electricity At 100 Percent of Gapacity 250 102 102 25 1,160 0. £89° 2,730 2,047 <u>5</u> 5,961 5,381 776 776 O 3,496 309 1,605 25. 153. 153. 117 Llectricity 825 Percentage by Source Correction for Flant Generation Coal 53 큥 (338 H 334 63 of blectric rower af 170 9,5 Corrected Total Electrochemical his cellaneous Comfort Heat Process Reat Tetot ന്നാ=05 Power

, a. The distribution of electric power by sources is estimated as follows: 75 percent is estimated to originate with the electric power grid, and 25 percent to originate in plant generators, of which coal is used to generate an estimated 21 percent and oil to generate an estimated by percent. See Appendix X,

Table lla

Breakdown by Sources of Monthly Energy Requirements of Hypothetical Soviet Airframe Plant (Estimated Honthly Capacity of 700,000 Pounds of Product)

		At 100 Percent of Capaci	ofty			At 20 Percent of Capacity	apacity	
		Gas	•	H. oetulas		Овз		
Monthly Requirements	H.	Natural Arcificial	Coal	Power	당	Natural Are	Artificial Cost	Electrical
Total in Million Btu	1,605	776	5,961	2, oh7	525	045	1,155	523
	8613	Thousand on Fe She	Short Pons Thon	Phousand Kwh	Bb1s	Thousand Cu Ft	Short Tons	Thousand Kah
Total in Physical Units of 106 b.	306 19/	► 13 151 E 169	75 6Z	/5 009	/q 86	485 c/ 110 o/	160 '9/	153 e/
Requirements in Physical Units per 100,000 Pounds					}	3		· • • • • • • • • • • • • • • • • • • •
of Airframe	- 1	100 22,5	33	98	20	347 79	174	109

a. For the factor used for conversion from Btu into physical units, see a previously published CIA/AR report, 35/ b. 125,000 Btu per gal, 42 gals per barrel, c. Based on use ratio of natural gas to artificial gas of 4,43; 1,000 Btu per on ft for natural gas and 500 Btu per on ft for artificial

gas. d. 13,000 Btu per lb; 2,000 lbs par ton. e. 3,412 Btu per kwh.

a 29 a

S=E-C-R-E-T

at 100-percent capacity, this installation produces 1,000 J-48 engines (plus 20 percent of spare parts) per month. 36/ On this basis, the monthly capacity of the hypothetical plant of 1 million square feet (including capacity used to produce spare parts) may be computed at the equivalent of about 250 J-48 engines. The finished weight of the J-48 engine is 2,725 pounds. Expressed in terms of weight, then, the production of the hypothetical US aircraft engine plant, at 100 percent of capacity, may be given as roughly 675,000 pounds a month. Finished weight is apparently the best single common measure of energy input requirements for jet and piston engines (the equivalence of jet and piston power is subject to debate).

3. From data for the actual US plant used as a model, together with analogous data for airframe production, have been computed the energy requirements of the hypothetical US aircraft angine plant, from which the requirements of the hypothetical Soviet plant have been estimated (see Appendix J). A summary of these requirements is given in Table 12.

Table 12

Monthly Energy Requirements

for Hypothetical US and Soviet Aircraft Engine Plants

for Hypothetical US and Soviet Aircraft Engine Plants (Estimated Monthly Capacity of 675,000 Pounds of Product)

	At-100).Percent	At 5.6 Percent	Million Btu At.20 Percent
	Contract Con	pacity	the factor of th	of Capacity
	US	Soviet	US	Soviet
ilight.	1,935	1,085	650	362
Comfort Heat Electrochemical	-10,700 B/ 752 B/	6,350 a/	#5 1,000	4,762 s/ 20 s/
Process Heat	423	340	24	69 -
Power Miscellaneous	10,300 743 a	4,530 / 307 a/	577 42	906 102 a/
Run-Up	47,250	23,625	2,580	4,725
10 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10 ±	733.23	36.	2015	10,946

Care il avens were in colonided there requirements for air-

4. The figures given in Table 12 for energy requirements of the hypothetical plant when production is running at 5.6 percent of capacity have been computed for checking against input figures available for total US aircraft engine production in 1947, which is estimated to have been at 5.6 percent of over-all US capacity, according to the following reasoning. Figures for total US aircraft engine production by weight are not available for 1947. Total production as a percentage of total capacity has been calculated on the besis of the average monthly numbers (1,763) and horsepower (1,850,000) of aircraft engines produced in 1947 in comparison with the monthly numbers (24,000) and horsepower (33 million) of those produced so the peak rates reached in 1944. 37/ By numbers the ratio of production in 1947 to production in 1944 is 7.35 percent; by horsepower it is 5.61 percent. Of these two figures for menthly US production of eircraft engines in 1947 as a percentage of 1944 peak production, the figure of 5.61 percent besed on horseyover has been chosen for use in checking the energy requirements data for the hypothetical aircraft engine plant against the over-all IS data available for 1947. The use of this percentage is open to the objection that the basic data involve a conversion of jet engine take-off thrust (for 1,878 jet engines) to equivalent brake borsepoyer. A such sore serious objection lies, however, sealinst the figure of 7.35 percent based on numbers of engines, which is certainly too high, since the 1944 peak data are mostly for larger engines than those produced in 1947.

On the basis that total US sircraft envire production in 1947 amounted to 5.01 percent of capacity, the the energy requirements data for 1947 may be compared with the data synthesized in Table 12 For the hypo-thetical aircraft engine plant: The US energy requirements data, as shown in Table 13.0 smount to about 5.1 billion Blu per month per million Equare feet of floor space, a figure somewhat below the calculated requirements shown in Table 12 for the hypothetical US plant, operating at 5.6 percent of capacity, which emounts to about 7.9 billion Btu per month per million square feet of floor space. The difference may be in some degree caused by such factors as variations in percentage of spares and everage size of engines. It may also, of course, be caused by the method used for estimating the percentage of activity in 1947. As in the case of estimating energy requirements for airframe production, it should be pointed out that much of the floor area available to the US industry at peak war production in 1944 had been retired in 1947 and that it might be more reasonable to base an estimate of the 1947 operating level on the lesser amount of floor space actually available in 1947.

[&]quot; Table 13 follows on p. 22.

S-E-C-P-E-T

Table 13

Comparative Data on Energy Requirements for Aircraft Engine Production Based on Total US Industry in 1947 (Floor Space, 105,315,000 Equare Feet)

Type of Energy	Annual Requirements in Physical Units	Annual Requirements Converted (Billion Btu)
Bituminous Coal	127,000 short tons	3,300
Fuel Oil Gas	308,000 bbls	1,620
Matural	231,000,000 cu ft	231
Manufactured.	395,000,000 cu fe	197
Mixed	9,000,000 cu fr	l.
Electricity	334,000,000 ligh	1,140
Total Annual Require- ments		6,492
Average Monthly Require- ments		541
Average Monthly Require- ments per 1 million sq ft		5.137
	•	7-201
(Average Monthly Requirements for US Hypothetical Plant at 5.6 Percent of Capa-		
city) <u>a</u> /		(7.915) <u>e</u> /

a. Same figure as used in calculated energy requirements for air-frame production (Table 10).

- 22 -

SECRET

C-B-C-D-T

- 6. Obviously, the calculations of energy input requirements for aircraft engine production are based on less firm ground than those for airframe production, and they are subject to modification as a result of study now being conducted by ORR.
- 7. The estimated monthly energy input requirements by use for the hypothetical Soviet aircraft engine plant, presented in Table 12, have been broken down by source of energy, on the same basis as was used in breaking down the requirements for the hypothetical Soviet airframe plant. The results are presented in Table 14.*
- 8. The data presented in Table 14 have been converted from Btu into the appropriate physical units for each form of energy, and monthly energy input requirements have been computed in these terms per 100,000 pounds of aircraft engine produced. The results, comparable to those presented for airframe production in Table 11a, are presented in Table 14a.

[#] Table 14 follows on p. 24.

S. L. Carlon

Table Th

Breakdown by Sources of Monthly-Energy Requirements of Hypothetical Soviet Aircraft Engine Plant (Estimated Monthly Capacity of 675,000 Pounds of Product)

Fercentage by Source	At	100 Percent of Capacity	Capacity	•		At 20 F	At 20 Percent of	Canadates:	
Uil. Gas . Coal . Eleotricity	159 011	Gas Coal	Electrioity	Total	Reduction Factor	Oil Gas	G Coal		Pote
300	`	0	1,085	1,085	sh.	i .		298	3,62
3	0	455°C X	30.	6,350 102	4. K	238 524	100°1 1	0	ı ç
1001	ਤਿ ਦ	146 100	147	320					33
50 50	153	0.0	\$ E.	200	7			፠ጜ	906
	430, 62	2	.	23,625	145	h,725 0	•	0	12.725
	24,142	845 5434	5,917	36, 339		5,024 553	3 4,024	1,349	30.915
Correction for Plans Generation		•		. •	•	-			and the same of
of clocula rower ay.	237	0 3,242	1,479			45	283	-337	T.
Corrected Total	24,379	845 6,676	1,138	. 36,339	1	5,078 553	3 6, 307		30.01

a. The distribution of electric power by sources is estimated as follower: 75 percent is estimated to originate with the electric power grid, and 25 percent to originate in plant generators, of which coal is used to generate an estimated 21 percent and oil to generate an estimated, percent,

€ •

Table 1ha

Breakdown by Sources of Monthly Energy Requirements of Hypothetical Soviet Aircraft Engine Plant (Estimated Monthly Capacity of 675,000 Pounds of Product)

Gas Gas Electrical Power Oll Natural Artificial Artificial Coal 8h5 6,676 h,h38 5,078 553 h,307 Cu Ft Short Fons Thousand Kwh Bbls Thousand Cu Ft Short Fons Th 171 g/ 257 d/ 1,301 g/ 967 b/ 496 c/ 111,6 d/ 166 d/ 25,34 38 192.6 773 367 82.6 123	### Electrical Power Oll Natural Artificial Coal	Gas
Artificial Coal Power OII Natural Artificial Coal 8h5 6,676 h,h38 5,078 553 h,307 Cu ft Short fons Thousand Kuh Bbls Thousand Cu ft Short fons 171 cf 257 df 1,301 gf 967 bf 4966 cf 111.66 gf 166 gf 25,34 38 192.6 773 367 82.6 123	Artificial Coal Power OII Natural Artificial Coal 8b5 6,676 h,h38 5,078 553 h,307 Cu Ft Short Fons Thousand Kwh 8b1s Thousand Cu Ft Short Tons 171 cf 257 df 1,301 gf 967 bf h96 cf 111.6 gf 166 df 25,314 38 192.6 773 367 82.6 123 nto physical units, see a previoually published Cut/fix report 367 183 183	•
04.65 6,676 h,h38 5,078 553 h,307 Ou fit Short Fons Thousand Kun Bbls Thousand Cu ft Short Tons 171 cf 257 df 1,301 af 967 bf h96 cf 111.6 cf 166 af 25.34 38 192.8 773 367 82.6 123	845, 6,676 h, h38 5,078 553 h,307 Cu ft Short Fons Thousand Kwh 8bls Thousand Cu ft Short Tons 171 cf 257 df 1,301 ef 967 bf 496 cf 111.6 cf 166 df 25.34 38 192.8 773 367 82.6 123 nto physical units, see a previoually published Cité report 357	•
Ou fit Short Your Thousand Kuh Bbls Thousand Cu Ft Short Your 171 of 257 df 1,301 gf 967 bf 496 cf 111.6 cf 166 df 25,34 38 192.6 773 367 82.6 123	On Ft Short Fons Thousand Kwh Bbls Thousand Cu Ft Short Fons 171 cf 257 df 1,301 gf 967 bf 196 cf 111.6 cf 166 df 25,34 38 192.6 773 367 82.6 123 nto physical units, see a previoually published CLAP/Ck report 367 183 183	845
171 g/ 257 d/ 1,301 g/ 967 b/ 496 c/ 111,6 c/ 166 g/ 165 g	171 cf 257 df 1,301 gf 967 bf 496 cf 111.6 cf 166 df 25.34 38 192.8 773 367 82.6 123 nto physical units, see a previoually published CLAFAR report. 357	
25,34 38 192,6 773 367 82,6 123	25,34 38 192.6 773 367 82.6 123 nto physical units, see a previously published UNIVER report 357	171 2
. 25,34 38 192,6 773 367 82,6 123	25,34 38 192.6 773 367 82.6 123 nto physical units, see a previously published CLAPA renare 357	
	nto physical units, see a previously published Ciff a report 177	12,3 25,34

o 255 u

S R C A ST

APPENDIX A

EFFECTIVE WORK FACTOR

"Effective work factor" is another term for "productivity" or "efficiency." This factor has been the subject of much dispute in the past. Estimates of its value have been tempered by opinion rather than bolstered by fact. It is hoped to achieve factual support of a final value by breaking "efficiency" into its constituents and evaluating them. This has not yet been seriously attempted, but one hit of pertinent data is at hand. The average horsepower of Soviet machina tools is 7.5; the average horsepower of US tools is 15. If it is assumed that US tools are used at full power (rough cut) for 20 percent of the time (and this assumption invites question), then a Soviet machine, taking a lighter cut for roughing, vakes 15 percent longer to machine a given part, or, relative to the US, the USSR is 87 percent as efficient as the US. This holds for the manufacture of engines or other items which are mainly machined. The USSR is 95 percent as efficient as the US in the manufacture of airfremes, assuming that the airfremes are 20 percent machined.

A study of machine tool maintenance and breakdowns may indicate an additional decrement of efficiency from US practice. This is an item for future study.

COMPRESE

APPENDIX B

BILL OF MATERIALS FOR MIG-15 DROP TANK 39/

Table 15

Iton	Dimensions	Quantity	Weight (Lbs) Bil	Lof Esterial
Bulkhead No. 1	Ellipse 17½" x 16"; 4 x 3½" holes	1	1.5	2.2
Bulkhead No. 2	Circle 20" x 20" radius	1	2.4	2.7
Bulkhead No. 3	U-shape 17gm x 10gm radius	1	1.6	2.9
Bulkhead No. 4	U-shape 17% x 10" radius	1	1.6	2.9
Bulkhead No. 5	U-shape 16" x 9}" radius	1	1.8	2.4
Bulkhead No. 6	Ueshape 14" x 7" radius	1	1.1	1.6
Bulkhead No. 7	U-shape 11" x 42" radius	1	0.6	8,0
Auxiliary Longeron		1	2.3	2.5
Main Longeron	80" x 20"	1	9.3	12.8
Skin Top	23" x 70"	1	6.5	11.3
Side, No. 0 - No.				
2		1	5.2	6.9
Side, No. 2 - tail		2	22.7	38.2
Rivets	15" space, 1/6" dismeter.	non i	4.2	1.1
	3/16" long	727	0.6	Anna Anna Anna Anna Anna Anna Anna Anna
Nose Cap	62" diameter	1	0.3 1.5	0.4 3.0
Filler Cap	gastes er et in	-	1.5	3.0
Solder			(solder)	(solder)
Maria Pras	TIME TON TONG		0.2	0.2
Nose Rod	in dimeter, 10" long	J.	2.4	2.4
Suspension Rod	3/4" diemeter, 19" long	٠ ۲	0.6	0.6
Suspension Tube Pressure Fitting	17" diameter, 17" long	2	1.0	1,0
Fuel Outlet		ĩ	1.0	1.0
Seal Strip (Rubber)	1/8" x 14" x 140"	î	4.4	4.4
sear serip (number)	170, a 24 a 240		(rubber)	(rubber)
Seat Strip Clips	3/8" x 2"	38	0.2	0.2
Total Steel	J. C. Z. Z.	70		97.0
Total Rubber	•			5.0
Total Solder				3.0
	,			~ ·
Total			70.3	104.5

CONFIDENTIAL

APPENDIX C

COMPARISON OF IL-12 AND USAF T-29A

Table 16

Company of the Compan		
	T-29A	11=12
AMPR Airframe Weight	•	
(Ibs)	18,600,0	18,600.0
Weight Empty (Iba)	28,782,0	
Maximum Take-Off Weigh		
(Lbs)	39,600.0	38,000.0
Span (Ft)	91.8	104.0
Area (Sq Ft)	817.0	1,160.0
Aspect Ratio	10.0	9.3
Root Thick (Percent)	20.0	
Tip Thick (Percent)	15.0	
Length (Ft)	74.7	69.9
Take-Off Power (Brake		
Hp)	4,800.0	3,650.0
Fuel (Gals)	1,000.0	1,730.0

TO LEGITIAL

APPENDIX D

BULL OF PATERIALS FOR USAY T-294

Table 17

Summery Bill of Materials for T-29A

The same of the same and the same of the s	And in London to the Annual Street, the Street, Street, Street, Street, Street, Street, Street, Street, Street,
	Weight (Lbs)
Aluminum Bronze	19,678
Bruss	15
Copper	846
begnesium	494
Manganese Bronze	269
Oilite Bronse	1
Phosphor Bronze	1
Paint	
Phenolics	2,390
Plexiglass	171
Rubber Steel	185
Alloy	
Stainless	1,438
Carbon	1,663
	130
Total	3,207

S-R-C-R-R-T

Table 18

Condensed Bill of Materials for T=29A

Materiela.	Weight (Lbs)	<u> </u>	Weight (Lbs)
Alaminum		Ullite Bronze	
Bar	. 556	Bar	. 1
Castings	342	Phosphor	
Extensions	2.689	Bronze	1
Co11	1,723	Phenolic Rod	9
Forgings	905	Sheet	212
Plate	90	Extension	2,159
Sheet	12,483		
Tube	364	Total	2,382
Wire	526	4	
- Hand	J. J	Plexiglass	
Total	19,678	Rod	2
Louis	442,432.134	Sheet	169
Alumirum			
Bronze Bar	· 2	Total	171
Brass Bar	3		
Screen	1	Rubber Ber	3
Sheet	11 2	Sponge	1
. •		Extension	93
Total	17 ½	Foam	29
		Hose g/	100
Copper Bar	/ Q Q T	Sheet	59
Cable	830		
Sheet	7	Total	185
		Steel Dem	506
Total	846	Steel Bar Cable	528
		Castings	5 7
Magnesium	200	Forgings	55
Casting		She s t	192
Sheet	276	Plate	1,988
Extensions	18	Strip	49
		Tube	12
Total	494	Wire	276 <i>5</i> 0
			-
Manganese	.	Total	3.207
Bronze Bar	252		
	16		
	n/ n		
Total	268	·	

a. Size not stated.

6 F C B F T

APPENDIX E

DATA ON TYPE 31 AND Ju=224

- 1. The following data are available on the Type 31 aircraft. 40/
 - a. Span: 185 feet.
 - b. Length: 145 feet.
 - c. Height: 27 feet.
 - d. Gross weight: 225,000 pounds.
 - e. Fuel (Diesel): 17,500 gallons.
 - f. Bombs: 10,000 pounds.
 - g. Nacelles: project 15 feet ahead of the wings, and the airscoop; is about halfway out.
 - h. Propellers: four-bladed, single rotation, 17-foot sameter.

From the above data, the empty weight of the Type 31 aircraft may be computed as shown in Table 19, which also gives comparative data for the USAF R=29.

Table 19

Computation of Type 31, Empty Weight (with Comparative Date for B-29)

Weight		m9 31	Lbs.
Gross Weight Fuel Bombs Oil	225,000 101,500 10,000 8,500	2/	1/0,000 47,700 b/ 10,000 4,000 g/
Weight, Less Fuel, Bombs, and Oil Crew and Ammunition Empty Weight	105.000 7,300	(assumed) d/	78.500 7,300 71.500

θ. Diesel fuel, 17,500 gals at 7 gals per lb.

b. Gasoline.

c. At 1/12 of fuel weight,

d. Assumed to be the same for the Type 31 as for the B-29,

- 2. The following data are available on the in-224 engine.
 - e. Length: 11.28 meters.

 - b. Dinneter: 1.03 meters.
 c. Decop to nose: 2.44 meters.
 - d. Statts: single rotation.

Information dates 1946 received from the Air Material Command

CONCIDENTAL

APPENDIX F

BILL OF MATURIAIS FOR 1-681-5 ENGINE

Table 20
Itemized Bill-of-Paterials Weights for J-48P-5 Engine

O C. D. St. St. St. St. St. St. St. St. St. St		Terroriyasin ildə ədə yəyili ildə yəyətəyində də edə yayılındə yayılında yayılında yayılında yayılında yayılın	Ibs
Materials	Weight	Materials	<u> </u>
Aluminum		Magnesium	
Bar	32,900	Bar	0.055
Disc	29,700	Casting	652.726
Sheet	13,848		
Tubing	30.823	Nickel	
Casting	775.356	Bar	6.125
Forging	245.812		
		Monel	
Steel		Bar	1.731
Miele Wire	0,691		
Wire	0.403	Rubber	
Bar ·	545,011	Sheet	0.110
Casting ANS 5385	48,699		• "
Forging	1,685.795	Copper	
Sheet (Mostly Chrome and		Bar	0.179
Chrome-Vanadium)	1,723.078	Sheet	0.025
Tubing	209.918	War and the second	Aug Sec
		Brass	
Iron		Bar	0.166
Bar	19.299	Sheet	0.316
Casting	136.939	Tubing	0,908
Stainless Steel		Bronze	
Bar AMS 5640,30 32	46,753	Bar	1.941
Wire MS 5688	0.704	Tubing	4.501
Sheet MAS 5510, 12	7.307	•••	
Tubing AIS 5570	8.944		
Casting ALS 5361	666.217		
Forging AMS 5640	4.254		
Fickeging Material: Steel			
(Chitted from Potals)	2,532,086		

COURTON

Table 21.

Summary Total of Bill-of-Materials Weights for J-48P-5 Engine

· "我们是我们是我们的,我们就是我们的,我们就会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会	Lhs
Aluminum and Alloys Steel and Iron Stainless Steel Magnesium and Alloys Copper and Alloys	1,128 4,369 742 653 8
Total	6.500
(Finished Weight)	2,725

APPENDIX G

THE HATA OF FIGHTY LIFT TOUTHEREUD

Based on US experience, detailed computations have been made of energy input requirements for the hypothetical sinframe plants considered in the text of this report. Both US and Soviet requirements have been computed for this plant, which is assumed to have I million square feet of floor area and a maximum capacity to produce 700,000 pounds of sinframe per month, using 3 shifts, 8 hours each, 25 (or 26) days a month. The computations presented below are for production at maximum capacity.

1 Light

The following expression is used to derive energy inputs for light: Kw = (foot candles) x (area) / (utilization factor) x (maintenance factor) x (lumens per watt) x (1,000)/. For a ceiling height of 40 feet, with a fixture height of 20 feet, a room 90 feet x 200 feet has an index of "B," which gives a utilization factor of the order of 0.70 /1/; a maintenance factor of 0.95 is assumed. A value of 60 lumens per watt is also assumed. The equation them becomes:

Kw = (foot candles) x (area) / (0.70) (0.95) (60) (1,000)

By using this equation, values have been obtained for the various uses of light per lour in the hypothetical US and Soviet airframe plants, as shown in Table 22.58

From the inputs for light in kilowatts per hour given in Table 22, the following values are obtained for kilowatt-hours per wonth required at 100-percent capacity for the hypothetical airframe plants: 519,000 kWh for the US plant and 290,000 kWh for the Soviet plant.

By using the conversion factor 1 kwh \equiv 3,412 Btu, the following values are obtained for the hypothetical sixframe plants:

Imput requirements for light at 100 percent of capacity;

US: 1,770,000,000 Btu per month. Soviet: 970,000,000 Btu per month.

see above, in text, p. 16

^{*} Table 22 follows on p 36.

SEC-PET

Table 22

Hourly Input Requirements for Light in Hypothetical US and Soviet Airframe Plants 42/

evoden-debydesprangeridespresser (Sparophilica)	Pook (***********************************	Area (So Ft)	IS (Kw)	Soviet a/
Use	Foot Gandles	BALLEY.	TORL	ENVIOR W
Desk	65	123,000	200	<i>5</i> 0
Assembly	15	311,000	117	120
Machine	20	52,000	26	. 25
Fine Pachine	100	140,000	350	170
Sheet Metal	20	120,000	61	7 0
Stores	5	252,000	32	5
Total per		4		
Hour x				
1.10 b/			865	184

a. Estimated,

2. Comfort Heating.

Use 4 pounds of steam per year per cubic foot of space. 44 Assume a building height of 40 feet. Volume = 40 million cubic feet. 160 million pounds of steam per year = 13 million pounds per month. Assume water is heated from 400 F to steam at 2500 F (no super heat). Take boiler efficiency at 85 percent 45/ and assume (arbitrarily) that pipe loss is 70 percent. Thus the following equation is obtained:

Btu (pounds of steam) x (250-40) (0.85) (1-9.070)

By using the above equation (with 13 million pounds of steam per month), the following values are obtained for the hypothetical airframe plants:

Input requirements for comfort heating at 100 percent of capacity:

US;

10,700,000 Btu per month.

Soviet:

6,350,000 Btu per month,

b. Standard factor. 43/

214111

. Legicochemical.

Fontily input requirements for electrochemical processes in the Eyrothetical US and Soviet sixtees plants are given in Table 23.

Table 73

Mentrochemical Input Requirements per Nonth For US and Seviet Africane Plants

TOPESSE CONTRACTOR	THE PROPERTY AND THE	LOVIOL
Plating (2 0 12 v 2,000 amp) Senerator (2 0 100 kw)	10,236,000	30,236,000
lenerator (2 0 100 km)	85,300,0 0 0	65,300,000
Chargers (3 0 4 kw)	5,318,000	5,118,000
tectifier (103 kg)	1,279,500	1,279,500
modizing s/	650,000,000	Ç
Total	731,933,500	101,933,500

a. Estimatai,

From Table 23 the following values are taken for the hypothetical air-frame plants:

input requirements for electrochemical processes at 100 percent of capacity:

90: 751,933,500 Atu per month. Fowlet: 101,353,600 Stu per month.

4. Process leer.

For hest-treating dural: essume 60 percent of minimum weight is dural. TO percent is steel. Dural is taken to 9500%, 66/ For 700,000 pounds of the different per south, (700,000) (0.60)/(25) (0) = 2,100 pounds per hour to be inserted fracting all here treatment to be done in one shift. About 700 by and tachtred, 47/ For steel, 41 by, heatmost (US and Soviet, same). 1000 - 40) (25) (1) (2610) (1,000) 162,000 Oto per south.

HE STATE OF THE ST

For welding: assume 10,000 feet of linear weld per month; from 180 amperes at 10 volts on 18-gage steel with 1/8-inch electrode, will run 20 feet per minute on short welds. 48/

(180) (10) (3/12) (10,000) \approx 51,200 Btu per month. (1,000) (60) (20)

For soldering and brazing: assume some as welding, 51,200 Btu per month.

For refrigeration: requirements of three 2-horsepower units. 49/ If compressor unit runs 20 percent of time, 25 days per month, three 8-hour shifts:

(3) (0.5) (25) (24) (0.2) (2,544) = 460,000 Btu per month.

For forge: the weight ratio of forged material to heat-treated material is about 1,000 to 12,000, or 5/60. 50/4 Assuming that forgings are heated to about heat-treat temperature:

(163,600,000) (5/60) = 13,650,000 Btu per month.

For foundry: the ratio of casting to forging is about 1 to 5: 51/

(13,650,000) (1/5) = 2,730,000 Btu per month.

By adding together the above figures for heat-treating, welding, soldering and brazing, refrigeration, forge, and foundry, the following total is obtained for the hypothetical airframe plants:

Input requirements for process heat at 100 percent of capacity:

US:

180,559,000 Btu per month.

Soviet:

180,559,000 Btu per month.

5. Power.

Monthly input requirements for power in the hypothetical US and Soviet airframe plants are given in Table 24.4 ± 52

^{*} Table 24 follows on p. 39.

Table 24

Monthly Input Requirements of Power for Hypothetical US and Soviet Airframe Plants e/

	US	Sovie	hru
Hoists 145 0 1 ton h/	653,000,000	n	(manual)
Cranes 19 @ 1 ton	85,500,000	ŏ	(manual)
Cranes 10 @ 3 tons	125,000,000	Ö	t t
Conveyors 67 & 5 hp	106,630,500	ŏ	er er
Monorail 1 0 3 hp	954,000	· ŏ	Ħ
Vacuum Sweeper 8 @ 3/4 hp	1,910,000	Č	ŧ1
Hand Tools 5,000 @ 1/5 hp c/	318,000,000	Ö	tŧ
Brakes 30 C 5 hp c/	101,000,000	Ö	α
Routers 6 @ 5 hp c/	4,9,520,000	Ċ	ff
Boring lachines 2 0 6 hp	3,810,000	3,810,000	
Broaches 6 6 5 hp	7,940,000	0	
Drill Presses 141 1 hp	44,850,000	44,850,000	
Grinders 124 @ 1 hp	39,400,000	39,400,000	
Lathes 107 @ 5 hp	170,000,000	170,000,000	
Millers 85 @ 5 hp	136,000,000	136,000,000	
Planers 1 0 5 hp	1,600,000	1,600,000	•
Misc. 200 Units G 5 hp	318,000,000	160,000,000	
Presses 60 @ 10 hp	191,000,000	100,000,000	
Shears, Punches 70 amp 5 hp	112,000,000	0	(manual)
Forges 6 & 5 hp	9,500,000	9,500,000	
Riveters 100 0 2 hp	63,600,000	C	(manual)
Totel, 1 Shift	2,499,214,500	665,160,000	*
Total, 3 Shifts d/	5,500,000,000	1,460,000,000	

a. 50 percent utilisation assumed for all machine tools.

b. Assume 2,000 lbs lifted 50 ft in 10 sees a 10,000 ft-lb/sec a 772 Stu/min. Use 90 percent efficiency and 50 percent utilization: per ton of capacify, (772/0.9) (8/2) (60) (25) = 4,500,000 Stu per morth. The lifting open is high, but power used by trolley and bridge motors has been accled.

c. feimated.

d. 2.2 a mbift ration 100-70-50.

SPCRAT

From Table 24, the following values are taken for the hypothetical sire frame plants:

Input requirements for power at 100 percent of capacity:

US:

5,500,000,000 Btu per month.

Soviet:

1,460,000,000 Btu per month.

6. Miscellaneous.

Monthly input requirements for energy for miscellaneous purposes in the hypothetical US and Soviet airframe plants are given in Table 25, on the basis of US experience. 53/

Table 25

Monthly Energy Requirements for Miscellaneous Purposes
for Hypothetical US and Soviet Airframe Plants

		Blan
T. T	ŢS.	Soviet
Rectifiers 3 @ 24 v 130 smp	3,992,040	1,000,000
Dust Collector 1 @ 5 hp	1,590,000	0
Air Compressor 2 @ 5 hp	3,180,000	3,180,000
Vacuum Pump 1 6 1 hp	318,000	C
Drug Scrubber 2 @ 3/4 hp	477,000	0
Spray Guns 17 @ 1 hp	5,410,000	0
Dryer 1 3 3/4 hp	239,000	0
Blueprinter 15 3 1 hp	4,770,000	2,000,000
Tensile Tester 1 0 2 hp	636,000	636,000
Vent Duct Tester 1 0 7 hp	2,390,000	0
Autos and Trucks a	720,000,000	300,000,000
Total	743,002,040	306,816,000

a. Using 100 vehicles, at 60 gals per engine per month, 6 lbs per gal, and 20,000 Btu per lb.

S-C-C-S-E-P

From Table 25, the following values are taken for the hypothetical air-frame plants:

Input requirements for energy for miscellaneous purposes at 100 percent of capacity:

US:

743,002,040 Btu per month.

Soviet:

306,816,000 Btu per month.

7. Run-In Fuel.

Run-up fuel is calculated at 2,000 horsepower per engine for 2 hours, 1 pound of fuel per horsepower-hour and 20,000 Btu per pound, for 25 aircraft per month:

(25) (2,000) (2) (1.0) (20,000) = 2 billion Btu per month.

The Soviet plant requirements are assumed to be one-half the US plant requirements.

The following values are used for the hypothetical airframe plants:

Input requirements for run-up fuel at 100 percent of capacity:

US:

2,000,000,000 Btu per month.

Soviet:

1,000,000,000 Btu per month.

UNCLASS IF IED

APPENDIX H

Table 26
Interchangeability of Energy Sources in Aircreft Production

Acoultements	<u>011</u>	Gas	Coal	Post	Mood	Electricity	Stem	Mannawer
Light								
Comfort Hest	x	x	*	x	X			
Electrochanical	_		~		-			
Plating						x		
Anodizing	-							
Battery Charging								
Process Heat						•		
Heat Treating	x	x	x					
Welding		x				x		
Soldering	x	x				<u> </u>	•	
Brazing	x	x	x			x		
Explosive								
Riveting				_		х		
Refrigeration		x		4 4		x		
Foundry	x	x	70			x		
Power								
Forming								•
Sheare						x		×
Brake		•				<u>x</u>		x.
Rolls						x		x
Rouler						x		x x
Drop Harmer						x	x	x
Sheet Stretchers						 X	×	×
Punch Press						x		×
Press			•			x	×	
Pipe Benders						x		×
Lathes						<u> </u>		
Milling Machines						x		
Shapers						-		
Planers								
Drill Presses								
Small Drills						x		x
Nibblera						x		_
Joining		•						
Nut Runners						u		x
Scrow Drivers						x		X
Rivotera						×		X .
Head Millers						3.		x
Finishing								
Shot Feening						\mathbf{x}_{\perp}		x
Sand Blasting						x		×
Painting						x		X
Transporting								
,C)								
Cranes						x		ズ

VIC - CO

SEC TO

APPENDIX I

DATA FOR ANALYZING THE USE OF ENERGY BY SOURCE IN THE AVIATION INDUSTRIES OF THE USSR AND CZECHOSLOVAKIA

Examination of a partial survey of Soviet and Czechoslovakian aircraft plant data for information on their use of different sources of energy indicates that, of the 40 plants so far examined, there are no data on 13, or about a third (32 percent). Of the remaining 27 plants, electric power comes into the plant from outside in 18 cases, is internally generated by coal in 3 cases, by diesel in 1, and by unstated means (probably coal) in 2 cases. Comfort heat seems to be supplied by coal in 16 cases, cil in 1 case, gas in 2 cases. In nine cases there is no indication. Process heat is obtained from coal in two cases, gas in three cases, cil in one case, electricity in one case.

On the basis of the above fragmentary data, the following uses have been assumed in Table 27.

Table 27

Tentative Breakdown of Uses of Energy by Source in Soviet and Czechoslovakian Aircraft Plants

			Per	cent
	7.5	er Source		
WINDSHIP OF THE PERSON NAMED IN COLUMN 1	Electric Grid	Conl	Can	Cil
Electric Fower	75	21	Ū	4
Process Neat	1.4	29	43 -	14
Cumfort Heat	Ü	8.4	11	5

The incomplete data on which the above sugmary is based are presented in Table 28.5

Flable 20 follows on p. 14.

SETTET

Table 28

Data Available on the Use of Energy by Sources in Aircraft Plants in the USSN and Czechoslovakia

T. W.	Plent	Pata
Centrel Region		•
Tbilisi	No. 31	Coal, oil, and electric process furnace. Central heating by coal. Electricity from local grid, with own standby plant.
Gor'kiy	No. 21	Electricity from city grid. Coal heat.
Moscow (Khimki)	Но. 301	Electricity from outside of plant. Coal heat.
Eastern Begion		
Novosibirsk	No. 153	Electricity from city grid.
Omsk	No. 166	Electricity from city grid.
Tashkent	10. 84A	Electricity.
Tashkeut	No. 84B	Electricity from city grid.
Trkutsk	No. 39	Coal-fired plant supplied power to plant and town.
VLan=Vde	No. 99	Electricity from city grid. Had standby plant.
Komsomol'ek	No. 126	One power plant, coal-fired.
Komsomol'sk	No. 130	Electricity from city grid.
Semenovka	No. 116	Electricity from city grid. Had standby plant.
Krasnoyarak		Own power plant.

SECOPT

Table 28

Data Available on the Use of Energy by Sources in Aircraft Plants in the USSR and Csechoslovakia (Continued)

Tour	Plant	DALL MARKET CONTRACTOR OF THE PROPERTY OF THE
Hestern Region	•	
Archangel		No report.
Catchina		No report.
Kargopol ¹	. 4 4	Has own power station (heating).
Leningrad	No. 162	No report.
Leningrad	No. 381	No report.
Leningrad	No. 211	No report.
Leningrad	No. 330	No report.
Leningrad	No. 7	(Engine parts) electricity from city grid. Heating plant uses from 10 to 10C tons of coal per day (reports vary). Probably 10 tons to comfort heat and process steam, 6C tons to forges, etc. Floor area 156,40C sq. ft.
Leningrad	Nos. 23, 272	Electricity from city grid. Heat from coal (wood) boiler house, not often used.
Leningrad	No. 448	Electricity from city grid. Central heating plant, uses coal and "oilstone." Gas from city mains in all parts of plant.
Year 1697	No. 135	Electricity from city gird. Central heating by oil-fired plant.

List T. T. T. T.

Table 28

Data Trailable on the United Science by Courses to Aircraft Plants in the USSS and Czechosletakie

en e	AND DESCRIPTION OF THE PARTY OF WARRY STREET, AND THE STREET, WHICH STREET, WAS ARRESTED AT STREET,	en engana, sameny no representa agrapia menenana Palatan Annay getantaman Palatan Annay in sa a mangri sa sa a
Kher thos		No report.
Reliningrad	"Junkero"	No report,
Kaunes, Litimanian S	SR ₄	No report,
Mask	"Aredo"	% report.
Narva, Estonian SCR		No report,
Rige, Latvian USA	· .	Gas from city mains, for heat- treat, Diesel-generated electri- power. No mention of confort heating.
Beringred	"Grasnyy Ferus"	Power from city grid
Volkhovstroy	en e	Electricity from city grid.
Gaarboelcuskia		
Obrokovice	Retorres Works, Netional Corporation, Obsiderica Plant	No reports
Freque	Aviation Works, Maliumal Corporation, Typocony Clant (ASRC)	Floobricity from city grids. Cosl heating.
Thered & Count it i	Notomear Works. National Corporation, (new Avia plout)	Coal brating:
Crego _*	Motorour Works, Sational Corporation, Swim Cokenies Fourt	Chartricity from city grids. Coal heating, 2 wagons per week.

- Service of

Table 26

Data amillable on the Use of Energy by Spances in Strongs Mants in the USER and Creatmalowskiu (Continued)

The same of the sa	ALT P - Name and production and the first and the construction of the second	program triplesconduct triples displayed and country and the second section of the section of the second section of the section
Vienshe Bradiété	Motorear Works, National Corporation, (old Avia plant)	Upal heming.
decoup	Motorest Works, National Corporation, Chocch Plant (Braz-Benes)	Coal heating.
fregue	Aviation Works, National Corporation, Letnery Plant (Letov-Clancks)	Generates our electricity, uses qual for heat.
Pragus	Fraga	Electricity and gas from city, Stondby electric plant. this heating.

rest.

5

APPEARS IN I

DATA TIPE, DATA DE L'INCOX MELL DANNEUR DE PRESENTE SEAL ARRESTA CLUSSIAN L'ARRES

From on BC experience, detailed computations have been make of energy requirements for the hypothetical aliminate engine plants considered in the test of this report. With 35 and Soviet requirements have been computed for this plant, which is essured to have I william square feet of floor space and a maximum especity to produce 675,000 pounds of aircraft engines per month, using 3 shifts, 8 hours each, 25 (or 26) days a month. The figures presented below are for production at maximum capacity. Certain Sigures have been taken, as indicated below, directly from the figures computed for the hypothetical airfrome plants (presented in appendix 6).

1. Light.

By the same method used shove (in appendix 6) in computing input requirments for light in the hypothetical airframe plants, values have been obtained for the various uses of light per hour in the hypothetical aircraft cengine plants as shown in Table 29.

Table 19

Nourly Imput Hequirements for Light in HS and Soviet Aircraft Engine Planto (Flant Area 4,727,000 sq. ft.)

Ise	Eool Candles	Area (Sq. Pt.)	115	Soviet (Ky)
Pachining	65	1,032,622	4,580	1,600
ineraction] \$ ³ \$.	76/37/345	7. D	WC O
toesably	3.3	237,752	89	90
l'act	35	\$F , 565	37	18
Plane (Aintenance	2 €	191,702	91	15
Tool Cribs	20	63,349	6?	ۯ
Magier Mechanics	& 7	386, 673	433	300
Vaterials	2.5	623,950	373	37
Carry & Co.	3.5	14 710	13.1	<u></u>
and district the first the		35 (373)	335	35
147 8 2 2 x 6	, , , e,	107 F 18 18	200	730
Night Park	3:	(C) (till)	197	.20
Proceed	··	F# 1 3 4 3 4	121	J.C.
Tolai			4,453	2,22

APPENDING J

DELECTED DATA DE CERCE AR AL PREMERIA DE DELECTETATA ANTONIO DE CANTALINA

Provided to the experience, detailed computations have been make of energy requirements for the hypothetical aliminal engine plants considered in the tent of this report. Both 35 and Soviel requirements have been computed for this plant, which is assumed to have I million square feet of floor space and a maximum expecity to produce 675,000 pounds of aimeraft engines per month, using 3 shifts. I hours each, 25 (or 26) days a month. The figures presented below are for production at maximum capacity. Certain Tigures have been taken, as indicated below, directly from the figures computed for the hypothetical airframe plants (presented in Appendix C).

1. Light.

By the same method used above (in Appendix G) in computing input requirements for light in the hypothetical airfrene plants, values have been obtained for the verices uses of light per hour to the hypothetical aircraft lengthe plants as shown in Table 29.

Table 19

Hourly Input Hequirements for Light in TO and Soviet Aircraft Engine Plants (Flant Area 4,727,000 sq. ft.)

ISO management of the second	Eool Candles	Aren (Sa <u>. Pt.</u>)	715 ()(u)	Soviet (Ky)
Hackin hyt Inspection Inspection Inspection Install Flant Lathtenance Tool Ciths Haster Hechanics Haterials Lety too Wilder Helician Filler Filler Filler	65 300 3.5 2.5 2.6 60 3.5 3.5 3.6 3.7	1,033,6.2 973,505 230,752 97,566 101,702 80,349 180,673 621,960 36,700	1,680 760 89 37 91 67 433 373 311 223 263 199 121	1,600 90 18 15 60 37 35 100 10
:50%s}	3		4,463	203

S. P. C. D. W. D.

From the impute for light in kilowatte per hour given in Table 22, the following values are obtained for kwh per month required at 100-percent especitly for the hypothetical sircraft engine plants (area: I million square feet): 567,000 kwh for the UJ plant and 370,000 kwh for the Soviet plant.

By using the conversion factor 1 km = 3,412 Btv, the following values are obtained for the hypothetical aircraft engine plants:

Lagat requirements for light at ICC percent of capacity:

US: 1,935,000,000 Btu per month. Soviet: 1,085,000,000 Btu per month.

2. Confort leating.

The requirements for comfort heating are the same in the hypothetical aircraft engine plants as in the hypothetical airframe plants (in Appendix C) as follows:

Lout requirements for comfort heating at 100 percent of capacity:

75: 10,700,000,000 Btu per month. Soviet: 6,350,000,000 Btu per month.

3. Electrochemical.

Requirements for electrochemical processes in the hypothetical US and Soviet aircraft engine plants are taken to be the same as for the hypothetical air-frame plants (in Appendix G) as follows:

Input requirements for electrochemical processes at 100 percent of capacity:

US: 751,933,500 Btu per month. Soviet: 101.933,500 Btu per month.

4. Ergceca Heal.

For heat-treating, by using the same method as used above (in Appendix G) for the hypothetical mirframe plants, the input requirements obtained come to shout of million but per wouth for the hypothetical mirraft engine plants, at IOX percent of capacity.

Welding and soldering input requirements for the hypothetical aircraft engine plants are sesumed to be roughly double those of the airframe plants (given in Appendix C), or about 200,000 Dtu per month.

144 H 147

fuere are no requirements for refrigeration in the aircraft engine plants.

For forge and foundry the 3-48 bill of saterials has been used. There are 4,2% pounds of forged and cast items per anglue, or (254) (4,2%) = 1,070,000 pounds per month. The weight of forged and cast items in the hypothetical airframe plant (Appendix 6) was (0.70) (700,000) (0,1) = 49,000 pounds per month. Requirements for this weight were 16,380,000 Btu per month. To obtain requirements for the hypothetical aircraft engine plants:

(1,070,000/49,000) (16,380,000) = 357,575,400 Stu per month.

by adding together the above figures for US requirements for heat-treating, welding and coldering, and forge and foundry, the following total is obtained for the hypothetical aircraft engine plant and an estimate made for the corresponding Soviet plant:

Input requirements for process heat at 100 percent of capacity:

US: 422,775,400 Stu per month. Soviet: 340,000,000 Btu per month.

~ -{D =

5. Power.

Montray apper temperements for power in the hypothetical US one Soviet sirfirst t engine plant ere given in Table 30

Teble 30

Hourly Input Requirements of Power for US Aircraft Engine Fleat (Plant rea: 4,727,000 Sq. Ft.)

	ÜS						
Machine	Number of Machines	Hp per Machine	Hp per Hour				
Boring	460	15	6,900				
Broach	64	15	960				
Drill	375	15	5,625				
Gear Cutter	124	15	1,860				
Grinders	640	15	9,600				
Lathes	640	17 15	9,600				
Millers	430	4.7 2.3	6,450				
Miscellaneous	52^		7,800				
Rolls	¥7	- 15 15	255				
Presses	- :		ر ر ے				
Vertical, Hydraulic, 1150-Ton Average / Vertical, Mechanical,	42	17.5	735				
55-Ton Average	39	17.5	682.5				
Parch and Shears .		for US	450				
Forging Hammers	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 101 05	45 15				
Riveting Mochines	2 11		90				
Thread Rollers	" باغ		350				
Total He			12,182.5				

In a comparable Soviet plant the number of machines is estimated to run at 5,000, or about the same as in the US plant, with the exception of certain items (rulls, riveting machines, and thread rollers) of which the lowist plant is assumed to have none. The Soviet machines are assumed to be of 7.0 horsepower (see appendix A), as against 15 horsepower for the US machines. The power requirements of a comparable Soviet plant would thus amount to (3,000) (7.5) a 22,500 horsepower per hour.

For 3 shifts, 26 days per month, assume a 60 percent utilization factor. For the hypothetical aircraft engine plants, with an area of 1 million square feet, converting at 2,545 Btu per horsepower-hour (26) (24) (0.60) (2,545) (hp)/(4.727) s Btu per month. Using this equation and the values in Table 30, the following values are obtained for the hypothetical aircraft engine plants:

Input requirements for power at 100 percent of capacity:

US: 10,300,000,000 Btu per month. Soviet: 44,530,000,000 Btu per month.

6. Miccellaneous.

Nonthly input requirements for energy for miscellaneous purposes are taken to be the same as for the hypothetical airframe plants (in Appendix G), as follows, at 100-percent capacity:

306,816,000 Btm per month.

7. Jun-ilo Fuel.

13 requirements at 1,500 horsepower per engine for 5 hours green run and 4 hours final run, 250 engines per month, 0.7 pound per horsepower, and 20,000 Btu per pound:

(1,500) (9) (250) (0.7) (20,000) ± 47,250,000,000 Ftu per month.

No allowance is made for reclamation of energy. The Soviet plant requirements are commed to be about one-half the US plant requirements.

The following values are used for the hypothetical aircraft engine plants.

Digit requirements for ren-up fuel at ICA percent of capacity:

53: 47,250,000,000 Stu per month. Soviet: 23,625,000,000 Stu per month.

S-E-C-R-F-T

APPENDIX Y.

GAPS IN INTELLIGENCE

There is almost no information available on the input requirements of the aviation industry of the USSR. Observation has provided good estimates of the salient characteristics of many Soviet aircraft, but there are very few aircraft, most of them obsolescent, available for detailed analysis. On recent Soviet production methods there is virtually no direct evidence of a quantitative character. The state of information in this field is still substantially the same as described in CIA/RR PR-8, Input Requirements of the Aviation Industry of the USSR, 29 October 1951. TOP SECRET.

SEFECTOR P. O.

T XICHACC.

MECTODO OGY

This entire report is an exercise in methodology == specifically, in the development of US analogous factors applicable to the study of input requirements in the aviation industry of the USSR. In developing analogous factors for the study of each of the types of input requirements dealt with in this report == mannower, material, and energy == the methods used have been derived from and tested against US (and UK) experience. The application of these methods to the aviation industry of the USSR involves a large element of judgment, and the resulting estimates of Soviet input requirements are at best illustrative of the general order of magnitude of the Soviet requirements. As indicated below in Appendixes L and Mg the kind and extent of information available on the aviation industry of the USTR precludes its being used at the present time to cross-check estimates based on US analogy of Soviet input requirements in this industry.

AbbINDLX A

COURCES AND EVALUATION OF SOURCES

Evaluation of Sources:

Most of the sources used and cited in this report deal with the US aviaaion industry. They are considered to be highly reliable. Data on Soviet idireraft are all admittedly tentative and incomplete. Data on Soviet plants and production are fragmentary and inconclusive.

R. Sources,

Referenced Sources.

- l. Airnlane Production Efficiency, Report No. 17A, US Aircraft Production Board, 15 Hay 1903 - miglassifieu. 3。
- h. Anculane Production Efficiency, cited above.
 5. The terminology used in equation (6) is that in JIB 3/87, cited above.
- MIG-15 Group Weight Statement, Cornell Aeronautical Laboratory, [1952 | SECRET. Characteristics and Performance Handbook, USSR Aircraft, USAF, Nov 1950. CONFIDENTIAL. CIA/RR PR-8, Input Requirements of the Aircraft Industry of the USSR 29 October 1951. YOU SECRET.
- 7. Source Book of World War II Data, USAF AMC, Vol. I, Oct 1917, and Vol. II. Jan 1948. RESTRICTED
- Especially Source Book of World War II Data, cited above, and CIA/RR PR-8 cited shows.
- 10. 11. CLAYAR PR-8 ct tad above.
- 12. 13, Tarqº
- 14. CIA/RR FR-8, cited shrm
- 15.
- 16。
- 17。 Airplane Production Efficiency, cited above.
- MIG-15 Group Weight Statement, cited above. 18.
- Characteristics and Parformance Handbook, cited above. 19.
- Material Inputs for the Aviation Industry of the USSR, April Appendix D to Section III. SPURET - TO PRINTARY.

```
21.
     Soviet Aircraft Engines Rociprocating, ATIC Study No. 101 - AC
22.
       51/3-310。
24.
      mulliparation Plan Reports Pratt and Whitney Aircraft Gorgoration.
 25,
      Soviet Aircraft Engines nurhojet and Turboprop, ATTO Study No. 102 AC
26.
27. E. A. Parsons, Analogy Ratios on Aero-Engine Production. USAF ATD
      620/1.
 28. MIO-15 Group Weight Statement, cited above.
29. See CLARR PR-8, cited above.
 30. Itdd.
     Hand Report RN-503, Predicting Output from Floor Space.
      CINER PR-8, cited above. The calculation was based on information
 32
      given in US Consus of Manufacturers, 1947.
 33. CIVRR PR-8. cited above.
34. US Census of Manufacturers 1947, cited above.
 35. CIA/An PR-8, cotted shows of 9.
 36
       To consum of Manufacturers, 1917.
 37. Aviation Week, 26 keb 1951.

38. CINRR PR-8, cited above, p. 9.

39. Air Intelligence Digest, Feb 1952, op. 34, 35, 36, 40. ArIC Study No. 102 - AC 51/29-34.
  bl. Mechanical Engineers Handbook, Marks, 5th Edition, po. 1,0-3-75.
  12. Data are averaged from
 13. lunce 128, p. 1.631.

15. lbd., p. 1,105.

16. Alcoa Aluminum and Its Alloys, Aluminum Company of America, p. 103.

17. Hechanical Engineers Handbook, cited above, p. 813.
  148. Ibido, Table 2, p. 1,726, Table 4, v. 1,728.
       Ibid.
  49.
                       مرية المسيطي المريا
  50.
                                                                                  11
  51. CLAME PR-6; cited above, p. 19.
  53.
                                                                                 ._.2
  540 Ibido
```

S-E-C-H-1,-T

Background Sources.

USAF/DI, 2-21145, 3 Oct 1951.

CMP-1 (ASU), Model B-29, Boeing Airplane Company, 20 May 1945.

MIG-15 Data in CIA TS No. 027980. TOP SECRET.

Report NA-51-187, North American Aviation Corporation, F-860, 9 May 1951.

Industrial Mobilization Plan, Hamilton Standard Propellers.

PROVISIONAL INTELLIGENCE REPORT

COMPUTATION OF INFUT REQUIREMENTS OF THE AIRCRAFT INDUSTRY OF THE USSR

CIA/RR PR-19

October 1952

ANNEX

ESTIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 ADEFRAME AND LANDING GEAR

Note

The data and conclusions contained in this report do not necessarily represent the final position of ORR and should be regarded as provisional only and subject to revision. Additional data or comments which may be available to the user are solicited.

WARNING

THIS DOCUMENT INTAINS INFORMATION AF ING THE NATIONAL DEFENSE OF _ UNITED STATES WITHIN _ MEANING OF THE ESPIONAGE _ M, TITLE 18, USC, SECS _ M3 AND TMAL, THE TRANSMIT _ IN OR REVELATION OF WHT IN ANY MANNER TO AN MINAUTH _ ZED PERSON IS PROHIBIT BY LAW.

CENTRAL INTELLIGENCE AGENCY

Office of Research and Reports

18 W

MARTINI RELAT

SECURITY INFORMATION

ANNEX

ESTIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 AIRFRAME AND LANDING GEAR

		Number		Finishe	d	E111	Of Mate	ounds erials
	Ttem	of <u>Phicos</u>	Dural	Steel	Total	Dural	Steel	Total
A,	Wing Group.							
	Wing							
	Front Spar, O.B.	•						
	Web, Dural Shoet .057 x 8-3/4 x 114 (10 in. x 3 in. hole) Cap, Dural Sheet .080 x 2 x 114 Rivets, 3/16 @ 3/in.	1 1 350	1.8 0.3			6.3 1.8 0.6		
	Front Spar, 1.B. (E-E)		4					
	Web, Dural Sheet oll3 x 7 x 139 (75-ST) Cap, Alcoa 79-T x 139 in Cap, Zee o265 in x 24 in x 139 in		9.7 8.3 16.7			9.7 8.3 16.7		
	Rivets, 3/16 @ 3/in.	840	8.0			1.5		
	Rear Spar, O.B.	•						
	Web, Dural Sheet .0975 x 5-7/8 x 133 (11 in. x 3 in. holes) Cap, Dural Sheet .093 x 2 x 133 (75-ST) Cap, Dural Sheet .067 x 1 x 133 (75-ST) Cap, Dural Sheet .067 x 1½ x 133 Rivets, 3/16 @ 3/in.	1 1 1 1 100	7.5 2.7 0.9 1.4			11.0 2.7 0.9 1.4 0.7	•	•
	Rear Spar, I.B.							
	Web, Dural Sheet .0975 x 8½ x 84 Cap, Dural Sheet .093 x 3 x 84 Cap, Dural Sheet .067 x 2 x 84 (75-ST) Cap, Dural Sheet .067 x 1½ x 84 (75-ST)	1 1 . 1	6.9 2.4 1.2 0.9			6.9 2.7 1.3 0.9		
	Rivets, 3/16 @ 3/in.	250	0.2			0.5		
	Diagonal Spar							
	Web, Dural Sheet .080 x 5½ x 63 Capa, Steel "T" Stock;	2	5.6			6.5		
	$3\frac{1}{2} \times 2\frac{1}{2} \times 63$ Bolts, @ 3/4 in Pitch.	2		1.03.0		•	306.0	
	3/3 in. \$ x 2 in. lg	170		8,5			17.0	

S-E-C-R-E-F

ESTIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 AIRFRAME AND LANDING CEAR (Continued)

	Number	Finish	ed .	Bill	of Mate	Pounds rials
Item	of Pieces	Dural Stoel	Total	Dural	Steel	Total
Nuts, 3/8 in. (Staked)	170	6.8			6.8	
Drag Strut						
Web, Dural .080 x						
6=3/4 x 41.5 Caps, .063 x 2½ x 42.5	1	2.3		2.3		
Rivets, 3/16 in. \$ @ 3/i	1 n 250 .	0.7 0.2		0.7 0.5		
Cap, Dural .31 x 1-3/4	30 (002		00,7		
× 41.5	, 1	2.2		2.2		
Strute, Alcoa 79-KE x 10 Rivets, 3/16 in. 1 e 2/1		0,7 0,1		0.7 0.1		
Drag Strut						
.094 x 2½ x 41.5	1	1.0		1.0		
False Spar (1.B. fwd)		4				
Cap, Top, .11 x 2 x 24 1:	n. 2	1.1		1.1		
Cap, Lower, all $x 2\frac{1}{4} x$ ll in.	2	0.5		0.5		
False Spar (Aileron Hinge)						
Cap, Sheet Section, Similto Alcoa 22022 x 60 in.	lar 1	2,2		2,2		
Drag Rib						
Caps, 125 x 2 x 29 in.	2	1.7		1.7		
Web, Dural .037 x 9 in. x 68 in.	1	1.7		2.3		
Rivets, 1/8 in. 6 @ 3/in. (Skin Included)	900	0.2		0,6		
Stringers, Leading Edge I.B.	•	- •		3,5		
(Extruded Sections; Closest	t US Shape	Is Quoted)				
1 Alcoa 10135 - 1003 x 76 (1	1.02		1.2		
2 Alcoa 10135 - 1003 x	_					
97 in。 3 Alcoa 10135 - 149 in。	1 1	1.6		1.6		
4 Alcoa 10135 - 0601	7	1.1		1.1		
135 in.	1	1.0		1.0		
5 Alcoa 10135 - 0601 97 in.	1	0.7		0.7		
Stringers, Leading Edge, O.B	3.					
$1.094 \times 1\frac{1}{2} \times 38 \text{ in.}$	1	0.5		0.5		
$2.094 \times 1\frac{1}{2} \times 98 \text{ in.}$	ĩ	1.3		1.3		
3 .094 x 1½ x 48 in.	1.	0,6		0.6		
5 .094 x 12 x 2y in.	<u>1</u> 1	0.8 1.2		0.8		
2 .094 x 12 x 98 in. 3 .094 x 12 x 48 in. 4 .094 x 12 x 59 in. 5 .094 x 12 x 98 in. Rivets, 1/8 in @ 3/in.		±0 =		1,2		
(Skin)	2700	0.7		1.4		

S. Brook B.T.

ESTIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 ATRIFRAME AND LANDING GEAR (Continued)

	Number	Finish	ed	Bill of Materials		
Item	of Pieces	Dural Steel	Total	Dural Steel Tota		
Stringers, between Spars						
6 Alcoa 10135 - 0601 x	2	0,9		0.9		
7 Alcoa 10135 = 0601 x	2	1.8		1.8		
8 Alcoa 10135 - 0601 x 52	2	0.8		0.8		
6 .06 x 1½ x 54 8 .06 x 1½ x 70	· 2 2	0.5 1.0		0.5 1.0		
Ribs, (Counting Flap and Aileron Ribs Twice)			٠			
Dural Sheet, 037 x 82 x	62 9	25.0		37.0		
(3 x 3 in. d Holes, 2 F Rib Clips, .06 x la x 7	lange All in 36	2°5		2,2		
Rivets, 1/8 in @ 3/in. (Includes Skin)	5100	1.3		2.6		
Skint						
Root 1.B., .074 x 42 x 27 Skin (Upper)	1	8.5		9.5		
Root 1.B., 100 x 42 x 27 Doubler (Upper)	1	11.7		14.5		
Root 1.B., .066 x 33 x 36 Skin (Upper and Lower)	2	1.6.0		29 .2		
Root 1.B., .100 x 33 x 36 Doubler (Upper and Lower)	2	23.8.		43.6		
L.E. Inboard, .072 x 50 x 1	102 1	25.0		38,2		
L.E. O.B., .055 x 50 x 102	1	24.2		28,6		
Between Spars, 054 x 30 x 125 (Upper and Lower) 2	31.4		42.0		
T.E. Inboard (Upper), .054	x 1	12.1		12.9		
Rivets (Along Spars), .054 x 20 x 115	l	12,1.		12,9		
Rivets (Along Spars), 1/8 @ 3/in.	3000	1.0		2.0		
Wing Tip, .05h x 2h x 60	1	5.8		12,0		
Wing Connector				,		
.125 x 2½ x 57"	1.	3.5		3.5		
Aileron Hinge Fittings	-					
Steel. 063 x 6 x 4 063 x 6 x 2 063 x 2 x 2 063 x 3 x 2	2 14 2					
Total		1.8		1.8		

S-E-C-REEF

ESTIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 AIRFRAME AND LANDING GEAR (Continued)

		Number		Finishe	d	Bill	of Materia	118
	Item	of Pieces	Dural	Steel	Total	Dural	Steel Tot	tal
	Flap Hinge Fittings Spoiler Hinge Fittings Wing Weights	1		1.8 1.8 65.0			1.8 1.8 65.0	
	Handhole Cover, Alcoa 23787 x 72	1	1.9			1.9		
	Aileron Differential Bracket (est.)	1	5.0			5.0		
	L.G. Hinge Fitting (est.) Fence (est.)	1	• 5.0	25.0		6,0	35.0	
	Wing Panel, Total	43	317.8	213.7	<u>531.5</u>	416.3	43502 65	ِي1
Flap	•							
	Bottom Skin, .040 x 19 x 107 Top Skin, .037 x 20	ı	8.1	4		8.6		
	x 107	· 1	8.6			9.2		
	Nose Skin, .040 x 2 x 107	1	0.9			1.0		
	Trail Edge, .060 x 2 x 107	1	1.3			1.3		
	Ribs, .040 x 4 x 19 (See Wing) Rivets, 1/8 in.@ 2/ih.	11 2350	1.9 0.7	s 0		3.3 1.4	,	
	Flap Hinge Fittings Spar, .040 x 4 x 107	2 1	1.7	1,8		1.7	1.8	
	Total		23.2	1.8	25.0	26.5	1.8 2	8.
Ailer	on	•						
	Spar, .040 x 6 x 60	1	1.4			1.4		
	Tail Edge, .060 x 2 x 67	1	0.8		*	0,8		
	Ribs, .037 x 6 x 18 (See Wing) Skin.054 x 18 x 63	2 2	0.8 11.4			1.5 12.4	- •	
	Hinges Rivets (See Flap)	2	0.4	1.8		0.8	1.8	
	Total		14.8	1.8	16.6	16,9	1.8 1	8.
Wing (Carry-through Structure							
	Front, .23 x 8 x 52 in. Fittings, Steel Rear, Cap Steel T (See	1 2	13.3	5.0		13,3	10.0	
	Wing) x 56 in. Web, Dural .080 x 5 x	2		91.4			272.0	
		•	1.0.0			42.0		
	52 Bolts (See Wing) Nuts	2	42.0	8.5 6.8		4.4.	17.0 6.8	

SECRET

ESTIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 AIRFRAME AND LANDING GEAR (Continued)

	Number	FI	nished	Bill of Mater	nds ials
Item	of Pieces	Dural S	teel Total	l Dural Steel T	otal
Total Wing (Two Winga Flus Carry-through)		<u>766.9</u> 5	46.3 . 1313.2		
Spoilers		4.6		4.6	
Total Wing Group		<u>771.5</u> 5	46.3 1317.8		136.9
B. Tail Group.	٠.	*		and the same of th	
Fin				•	
Spar Cap Tee, 2 x 3 x 3/8 x 97 in.	2	9	99.4	3 45。0	
Webs, Dural, .080 x 7 x 97 (75-ST) Lead Edge,	2	11.0		16.0	
.0165 x 10 x 112 .0165 x 1 x 112 Bolts, @ 3/4 in.	2 2	7.1. 2.8		8.5 3.3	
Pitch 3/8 in. 6 x 1 in lg. Nuts, 3/8 in.	n。 380 380		12.0 1.4	38.0 11.4	
Treil Edge, .054 x 4 x 112 Stringers, Alcoa	1	3°5		2,2	
10135 = 1003 x 125 in 10135 = 1003 x 122 in 10135 = 1003 x 117 in	. 2	4.1 3.9 3.7		4°1 3°9 3°7	
Ribs, .037 x 6 x 36 (3 x 3 in, ø holes) Ribs Clips, .06 x 2	10	7.2		10,31	
x 6 in. Fuselage Attach,	20 .	1.5		1.5	
.125 x 2\frac{1}{4} x 82 in. Hinge Brackets, .065 x 4 x 3	2	4.4		4.4	
.065 x 4 x 2 .065 x 2 x 2 .065 x 2 x 2 Skin, .047 x 57 in. x 3		2.9 19.7		2 .9 28.6	
.037 x 24 x 47 Rivets, 1/8 in. \$ @	2	8,6		21.1	
2/in.	2350	1°1		1.11	
Total udder		80.2 11/2	223.0	111.7 394.4 50	6.1
Spar, .054 x 4 x 112 Trail Edge, .060 x 2	1	2,2		3.3	
x 24 Tab, .046 x l x 40 Ribs, .034 x 4 x 18	1 1 12	0.3 0.2 2.3		0.3 0.2 3.8	
Rib Clips, Alcoa 79-M x 6 in.	12	0.9		0.9	

SeE-C-R-B-T

ESTIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 AIRFRAME AND LANDING GEAR (Continued)

	Number of		Finishe	d	BIII	of Mata	erials
Item	Pieces	Dural	Steel	Total	Dural	Steel	Total
Skin, 2036 x 18 x 36 2036 x 18 x 51	2	5.2 7. 4		•	5.8 8.2		
Hinge Brackets (mag- nesium alloy) Horn .065 Wall x 3 in.	14	(1.0	magnesi	um alloy)*	(1.0	magnesi	um alloy
0.D. x 2h in. Rivets; 1/8 in. \$ @ 2/in	1 1 1	0.6	4.1		1,0	4.1	
· Total Frame of Rudder	•	19.1	4.1		23.5	4.1	
Static Balance, @ 70%			17.0			17,0	
Total		19.1	21.1	41.2	23.5	<u>21.1</u>	45.6
Stabilizer (One Side)					,		
Spar, Inboard, I beam, 55 in. lg ll x 2 in. ø Holes	1	4	1 11 0				
Spar, Outboard, Channel	1		3 5.0			217.0	
Spar, Trail Edge, Dural	1	1.5	3.9		1.5	4.2	
Ribs, .046 x 4 x 25 Rib Clips, .06 x 2 x 1½	7 30	3°2 0°5			5.4		
Skin, .040 x 25 x 80 Stringers, .06 x $1\frac{1}{4}$ x	2	16.0			23.5		
57 •06 x 1½ x 62 •06 x 1¼ x 40	2 2 2	0.8 0.8 0. 5			0,8 0.8 0.5		
Hinge Bracket .065 x 4 x 3 .065 x 4 x 2	2 4				703		
₀065 x 2 x 2	6		1.5			1.5	
Total Levator (One Side)		23.3	40.L	63.7	33.0	222.7	255.7
Spar, .054 x 4 x 75 Trail Edge, .060 x 2 x 42 Ribs, .046 x 3 x 11 Rib Clips, .06 x 2 x 5/8 Skin, .040 x 11 x 70 Hinge Brackets (See	1 7 7 2	1.5 0.5 1.3 0.1 6.2			1.7 0.5 2.2 0.1 8.6		
Stabilizer) Horn 3 in. OD x .065			1.5			1,5	
Wall x 10 in. Rivets 1/8 in. @ 2/in.	1 780	0.3	2.0		0.5	2.0	
Total Frame of One Elev	ator	9.9	3.5		13.6	3.5	

^{*} All paranthetical entries are excluded from dural and steel totals but appear in the over-all totals.

Serce P. F. T.

ESTIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 AIRFRAME AND LANDING GEAR (Continued)

		Number of		rinishoo	1	Hill	of Mate	Pounds rials
	Item	Pieces	Dural	Steel	Total	Dural	Steel	Total
	Static Balance @ 70%			9.4			9.4	
	Total	4	2.2	12.9	22.8	13.6	12.9	26.4
	Total Tail Group		165.7		437.2	228,2	886.7	
					42100		00001	111207
,	Body Group.							
	Longerone, Alcoa 12061		•					
	x 310 in. 12061 x 15h in.	6 2	91.8 15. 2			918 15.2		
	12061 x 72 in. 12061 x 260 in.	2 2	7.1 25.5			7.1		
	Alcoa 10135 - 0601 x 156 in.	2	6.6			25.5		
	Dural .065 x 4 x 156	4	16.5			6.6 16.5		
	Stringers, Alcoa 10135 = 0601 x 124	2	1.9	• 4		1.9		
	10135 = 0601 x 166 10135 = 0601 x 310	2	2.5 4.7			2°5 4°7		
	10135 = 0601 x 235 10135 = 0601 x 280	2	3.5			3.5		
	$10135 = 0601 \times 310$	2	4.2 4.7			4.2		
	10135 - 0601 x 260 10135 - 0601 x 310	2 6	3.9 14.1			3.9 14.1		
	Frames:							
	Station	1		4-				
	20 °125 x 5 x 130	1 1	6.8 7.7			6 . 8 7.7		
	30	1	8.5			8.5		
	59.6 .125 x 5 x 126	l	9.U 7.5			9.4 7.5		
	82.8 $.125 \times 5 \times 134$	1	7.7 7.9			7.7 7.9		
	94.5 .125 x 5 x 138 105 10136 - 2402	1	808			8.2		
	182 119	1	10.8	23,2		10.5	.23.2	-
	129 10136 - 2402	1	2000	03.0		10.8		
	$134 .125 \times 5 \times 182$	1	10.8	23.2		10.8	23.2	
	162 10136 - 21:02	1	10.8			1.0.8		
	182 174 .125 x 5 x 182	1	8.2 10.8			მ. 2		
	184 °125x 5 x 182 193 °125 x 5 x 182	1	10.8			10.8 10.3		
	202 °125 x 5 x 17h	1	10.8 10.3			10.8		
	222 $0.125 \times 5 \times 170$	1	10.2 10.1	•		1.0.2		
	234 °125 x 5 x 165 245 °125 x 5 x 153	1	9.8			10.1 9.8		
	257 .125 x 5 x 11/2 270 .125 x 5 x 132	1	9 .1 8.4			9.1 8.4		
	279 .125 x 5 x 121	1	7.8 7.2			7.8 7.2		

CS TO CORDER

ESTIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 AIRFRAME AND LANDING GEAR (Continued)

			1.6			
		Number			·	Pounds
		of		Finished	ENTS o	f Materials
-	Item	Pieces	Dural			Steel Total
	Chant					10001
	Station					
	300 °125 x 5 x 50	1	2.9		2.9	
	309 °125 x 5 x 84	1	5.0		5.0	
	320 °125 x 5 x 67	1	4.0		4.0	
	Ducts					
	Ducus					
	0 to lilis Dural .065					
	x 84 x 48	1	01 0			
	44 = 105 .065 x 75 x 60	2	24.8	*	29.0	
	105 - 162 .065 x 48 x	2	₹ 59.0		75.0	
	55 (Top)	2	۲2.2			
•	104 - 162 .065 x 65 x	4	53.3		75.0	
	55 (Lower)	2	72.2			2
	Frame Liu: Web .032 x	•	1204		90.0	
	18 x 36	1	2.1		0 -	
	Struts .094 x 12 x 12	Ī			8.0	
	Duct Stiffener .094 x	4	4.5		4.5	
	$1\frac{1}{2} \times 84$ in.	1	7 R		- 0	
	Frame 105; Web .032 x 24	-	7.₌β		7.8	
	x 60	1	4.6		~ 0	
	Struts .094 x 1 x 24	3	2,2		5.7	
	Stiffener Alcoa 09h x		~ o ~ :		2.2	
	12 x 84 in.	2	7.0		~ ~	
	Frame 162: Web .015	. -	100		7.0	44
	x 36 x 60 (18=8)	1		(19.8 stainless	f	
		_		77790 a certures	1	-
	Stiffeners, .094 x 12 x					
	48	2	9.0		0.0	
	Stiffeners, .094 x 12		, , , ,		9.0	
	x 05	2	12.1		10 1	
	Struts .094 x 1½ x 24	5	11.2		12,1	
	Cookpit Floor .060 x				11.2	
	○0 x 50	1	18.0			
	Alcoa 10135 = 0601 x 60	7	3, 2		18.0	
	10135 - 0601 × 10	3o	2.3		3.2	
	Function on a		-0,5		2,3	
	Fuselage Skin					
	о-44: 0045 x 45 x 134					
	44-105: 045 x 61 x	1	24.1		46.6	
	ин=105: .045 x 61 x 132				40,0	
		1	32.2		30 n	
		1	9.5		32.2 23.8	
		1	20.5			
	105-162: .045 x 57 x 90 105-210: .020 x 105 x	1	20.5		20.5 20.5	
	180				~00)	
	162-234: .042 x 72 x 172	1	3 7.8		37.8	
	234-320: .044 x 86 x 120	1	49.5		49.5	
	\$044 x 00 x 120	1	41.3		79.3	
					. / 30	

Sofe C. P. F. F.

STIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 AIRFRAME LANDING GEAR (Continued)

		Number		Finished			of Mat	Founds
Item		of Pleces	Dural	Steel	Total			
Tail Pape	-	Apple Continuous		2000	TOTAL	narat	Steel	Total
(18-8) .032 x 63 x Flange /8 x 1½ x 3	30 32	1		(17.2 (1.7	stainles stainles	a) a)		stainles:
Canopy		1	(44 gl	ass and	plastic	s) (44 gl	lass and	d plastics
Armor Plate		1	•	330			3 3 0	
Total Body Group			952.4	376.4	1411.5	1094.4	<u>376.4</u>	1566.7
Landing Gear					•			
Whee's Brakes Tire, 6.6 x 26 Tubo Oloos, Main Nose		3 3 3 2 1	(30 mag (69 ru) (15 ru)	gnesium 55 ober) ober) 100 70)	(159 m (69 ru (15 ru)	agnesiu 165 bber) bber) 400 280	um)
fotal Landing Gear	•			225	339		845	1088
Fuel Tanks	1.41							
Aft Fuol Tank								
Rnar End, .040 x 190	•	1	1.0			-		
Front, 040 x 810 sq. in.		1	1.9 3.1			3.1		
Imapper: OS .040 x 7	9	1	11.0			5,0		
rapper, I.S., 040 x 38 x 36		ı	5.3			11.0 5.3		
Tops, $.040 \times 11 \times 36$ Haffles $.040 \times 650$		2	3.0			3,0		
eq. in.		2	5,0			8.1		
Total Aft Fuel Ta	ık		29.3		29.3	35.5		<u>35.5</u>
Forward Fuel Tank, at .3 lb./gal.	,	1	(85 rubt	œr)		(35 r ub)	ber)	

Finished			Dural	Steel	Steel Steel	ragnesium and Alloys	Rubber	Glass and Plastics	Total
Weight Bill of			1519.0	21.5000	30		169	1,1,	3661,8
Ma Terials	·	1	2337.4	3335.9	52	160	169	1414	6098。3

CONFIDENTIAL

FSTIMATED FINISHED WEIGHT AND BILL OF MATERIALS FOR MIG-15 AIRFRAME AND LANDING GFAR (Continued)

-					Pounds					
		Mumber of		Finished			Fill of Materials			
***************************************	Item	Pieces	Dural	Steel	Total	Dural	Steel	Total		
	Engine Mount 22in. OD				0.4		ž.			
	x .065 x 24	2		.6.8			6.8			
	$2\frac{1}{3}$ in. OD x .065 x 36	2		10.2			10.2			
	$2\frac{1}{2}$ in. OD x .065 x 30	2		8.4						
	Firewall Fittings, 6 cu.			704			8 . 4			
*	ino est.	6		10.3				•		
Engine	Engine Fittings, 7 cu.	_		1007		12.0				
	in. est.	3		6.0						
		_	•	11.7			7.0			
				41.50		•	Liliali			