Artificial Intelligence AI 2002 Lecture 14

Mahzaib Younas

Lecturer Department of Computer Science
FAST NUCES CFD

Propositional Logic

- Propositional logic is a declarative language.
 - its *semantics* is based on a *truth relation between sentences and possible worlds*.
 - Propositional logic allows partial information using disjunction & negation
- Propositional logic has a third property that is compositional.
- Propositional logic is compositional, i.e., the meaning of a sentence is a function of the meaning of its parts.
 - For example: The meaning of $B_{1,1} \wedge P_{1,2}$ is derived from the meaning of $B_{1,1}$ and of $P_{1,2}$

Propositional Logic

- Meaning in propositional logic is **context-independent** (unlike natural language, where meaning depends on context).
- Propositional logic has very limited expressive power (unlike natural language)
 - For example: cannot say
 - "Pits cause Breezes in adjacent squares".

we have to write a separate rule about breezes and pits for **EACH** square.

- The propositional logic assumes the world <u>contains</u> facts while,
- The <u>first-order logic</u> (like natural language) assumes the world <u>contains</u>,
- 1. Objects
- 2. Relations
- 3. functions.

- The propositional logic assumes the world <u>contains</u> facts while,
- The <u>first-order logic</u> (like natural language) assumes the world <u>contains</u>,
- 1. Objects
- 2. Relations
- 3. functions.

Objects:

- The <u>nouns and noun phrases</u> refer to <u>objects</u>
 - *In Wumpus-world*, the object examples are (squares, pits, and Wumpus)
 - Some other examples of objects are
 - People
 - Houses
 - Numbers
 - Theories
 - baseball
 - Games
 - centuries, etc.

Relations:

- The <u>verbs and verb phrases</u> refer to relations
 - *In Wumpus-world*, the relation examples are (is breezy, is adjacent to, shoots)
 - Some other examples of relations are
 - Red
 - Round
 - brother of
 - bigger than
 - Inside
 - Part of
 - has colour
 - owns etc.

Functions:

- Some of these relations are functions—relations in which there is only ONE "value" for a given "input".
 - Some example of relations are
 - father of
 - best friend
 - third inning of
 - one more than
 - end of

First Order Logic (FOL) Motivation

- The statements that <u>cannot be made in propositional logics</u> but can be expressed with FOL.
- First-order logic can also express facts about <u>some or all</u> of the objects in the universe.

First Order Logic (FOL) Motivation

Examples:

- 1. When you paint a block with green paint, it becomes green.
 - In proposition logic, one would need a statement about every single block ... for every single aspect of the situation, "if this block is black and I paint it, it becomes green" and "if block # 5 is red and I paint it, it becomes green"
- 2. When you sterilize the jar, all the bacteria are dead.
 - ➤ In FOL, we can talk about all the bacteria without naming them explicitly.

Ontological commitment

- what exists in world
- what it assumes about the nature of reality (facts).
- Mathematically, this commitment is expressed through the nature of the formal models with respect to which the truth of sentences is defined.
 - For example, propositional logic assumes that there are facts that either hold or do not hold in the world.

- Logics Commitment/ Language can be expressed in two types
- 1. Ontological Commitment
- 2. Epistemological Commitment

Ontological Commitment

- what exists in world
- what it assumes about the nature of reality (facts).
- Mathematically, this commitment is expressed through the nature of the formal models with respect to which the truth of sentences is defined
- Example:
 - Propositional logic assumes that there are facts that either <u>hold or do not hold</u> <u>in the world.</u>

Epistemological Commitment

- the possible states of knowledge that it allows with respect to each fact.
- In both propositional and first order logic, a sentence represents a fact and the agent either believes the sentence to be true or false, or has no opinion

• Thus the possible values are: true/false/unknown

Types of Logic

- Different types of logics are
- 1. Propositional Logic
- 2. Temporal Logic
- 3. Fuzzy Logic
- 4. Probability Theory
- 5. Temporal Logic

Types of Logic

• Temporal Logic

- assumes that facts hold at particular times and
- those times (which may be points or intervals) are ordered

• Probability Theory/Logic

• Systems using probability theory can have any degree of belief, ranging from 0 (total disbelief) to 1 (total belief).

• Fuzzy Logic

- Fuzzy logic has a degree of truth between 0 and 1.
- For example , the sentence "Vienna is a large city" might be true in our world only to a degree of 0.6 in fuzzy logic

Summary

Language/Logic	Ontological (What Exist in the world)	Epistemological (What an agent believes about fact)	
Propositional Logic	Facts	True/false	
First Order Logic	Facts, Objects, Relations	True/false/unknown	
Temporal Logic	Facts, Objects, Relations, Times	True/false/unknown	
Probability theory	Facts	Degree of belief [0,1]	
Fuzzy Logic	Facts with the degree of truth	Known interval value	

First Order Logic Models

Models of First Order Logic

- Models for first-order logic have objects in them.
- If object exits in the model, so there must be some domain of the objects
- The domain of a model is the <u>set of objects or domain</u> elements it contains.
- The domain is required to be nonempty
 - every possible world must contain at least one object.

The <u>first-order logic</u> assumes the world <u>contains</u>, *objects*, *relations* and *functions*.

Models of First Order Logic

- Mathematically speaking, it doesn't matter <u>what</u> <u>these objects are</u>,
- all that matters is how many there are in each particular model.

Models of First Order Logic

Richard the Loin heart was a king of England from 1189 to 1199. His younger brother was the evil king John, who ruled from 1199 to 1215. The left legs of Richard and john were different; John had a crown because he was a king.

Examples

- The above model Contains
- 1. Five objects
- 2. Two Binary Relations
- 3. Three unary relations
- 4. One Unary function

Examples:

Objects

Noun and Noun Phrases

We have 5 objects

- 1. Person King John
- 2. Person Richard
- 3. Crown
- 4. Left Leg of John
- 5. Left Leg of Richard

Binary Relation

verb and Verb Phrases

We have 2 objects

- 1. Brother
- 2. On head

Unary Relations

Verb and Verb Phrases

We have 3 objects

- 1. Person
- 2. King
- 3. Crown

One unary function, 1. left leg

Example:

Relation

- Onhead<the crown, King john>
- Brother<john, Richard>
- Crown<John>
- Person<Richard>
- King<John>

Function

- [no other person wear the crown except king]
- <John the King>- onhead(crown)

Model of First Order Logic

Tuple

• A tuple is a collection of objects arranged in a fixed order and is written with angle brackets surrounding the objects.

• Tuple Example:

The "brotherhood" relation in the model" is the set:

{<Richard the Lionheart, King John>, <King John, Richard the Lionheart>}.

The crown is on King John's head, so the "on head" relation contains just one tuple,

<the crown, King John>.

Example:

- The "brother" and "on head" relations are binary relations.
- The model also contains unary relations, or properties:
 - 1. The "person" property is true of both Richard and John;
 - 2. The "king" property is true only of John,
 - 3. The "crown" property is true only of the crown

First Order Logics Symbol and Interpretations

FOL symbol and Interpretations

- Symbol
 - The basic syntactic elements of first-order logic are the symbols that stand for objects, relations, and functions
 - The symbols will begin with UPPERCASE letters.

- There are three types of symbols in FOL
- 1. Constant Symbol which stands for objects, like Richard and John
- 2. Predicate Symbol which stands for relations, like Brother, OnHead, Person, King, and Crown
- 3. Function Symbol which stands for relations, like Brother, OnHead, Person, King, and Crown

Syntax of FOL: Basic Elements

Constants	Predicates	Functions	Variables	Connectives	Quantifiers
KingJo hn	Brother ,	Sqrt,	x, y,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A
KingRi	>, =,	LeftLe gOf,	a, b,	$\Rightarrow \qquad \qquad \Leftrightarrow \qquad $	3

FOL Symbol and Interpretations

• Interpretation specifies exactly which <u>objects</u>, <u>relations</u>, <u>and functions</u> are referred to by the constant, predicate, and function symbols.

• Arity:

• Each predicate and function symbol comes with an arity that fixes the number of arguments.

FOL Symbol and Interpretations

- Term
 - A term is a logical expression that refers to an object. Function(term1, term2.....term n)
- A term may contain:
 - Constant symbol: Fred, Japan, Bacterium 39
 - Variables: a,b, x
 - Functional symbols are applied to one or more terms. F(x), Mother-of(John)
- A term with no variables is called a ground term.

FOL Symbol and Interpretations

- Sentence
 - A predicate symbol may be applied to terms. On(a, b), Sister(Jane, John), Sister(Mother-of(Jane), Jen)
 - $\cdot term1 = term2$
 - A functional symbol may be applied to one or more terms. F(x), Mother-of(John).
 - If \boldsymbol{v} is a variable and \boldsymbol{S} is a sentence, then
 - $(\forall v S)$ and $(\exists v S)$ are sentences too.

Atomic Sentence

(or atom for short) is formed from a predicate symbol optionally followed by a parenthesized list of terms

• Syntax:

- Atomic sentences can have complex terms as arguments.
 - Married(Father (Richard), Mother (John))

Atomic Sentence Example:

Complex Sentence

• We can use logical connectives to construct more complex sentences, with the same syntax and semantics as in propositional calculus.

• Examples:

```
\neg Brother(LeftLeg(Richard), John)

Brother(Richard, John) \land Brother(John, Richard)

King(Richard) \lor King(John)

\neg King(Richard) \Rightarrow King(John).
```

FOL Interpretations

• Constants: KingJohn, Richard

• Predicates: person, king, crown

• Functions: brother, on_head, left_leg

<u>Quantifiers</u>

Quantifiers

• Quantifier in the context of AI refers to an element that expresses the quantity of items within a specified range.

- There are two types of quantifiers
- 1. Universal Quantifiers (For All)
- 2. Existential Quantifiers (There Exists)

• "All kings are persons" is written in first-order logic as,

$$\forall x \ King(x) \Rightarrow Person(x)$$

- ∀ is usually pronounced "For all . . ."
- Intuitively, the sentence $\forall \mathbf{x} \mathbf{P}$, where \mathbf{P} is any logical expression, says that \mathbf{P} is true for every object \mathbf{x} .
- More precisely, $\forall x \ P$ is true in a given model if P is true in ALL possible extended interpretations constructed from the interpretation given in the model,
 - where each extended interpretation specifies a domain element to which x refers.

• "All kings are persons" is written in first-order logic as,

$$\forall x \; King(x) \Rightarrow Person(x)$$

- ∀ is usually pronounced "For all . . ."
- Example: "For all x, if x is a king, then x is a person."

We can extend the interpretation in **five** ways:

 $x \rightarrow$ Richard the Lionheart,

 $x \rightarrow \text{King John}$,

 $x \rightarrow$ Richard's left leg,

 $x \rightarrow$ John's left leg,

 $x \rightarrow$ the crown.

• The universally quantified sentence is equivalent to asserting the following five sentences:

Richard the Lionheart is a king \Rightarrow Richard the Lionheart is a person.

King John is a king \Rightarrow King John is a person.

Richard's left leg is a king \Rightarrow Richard's left leg is a person.

John's left leg is a king \Rightarrow John's left leg is a person.

The crown is a king \Rightarrow the crown is a person.

• "King John has a crown on his head", we write

 $\exists x \; Crown(x) \land OnHead(x, John)$

- ∃x is pronounced "There exists an x such that . . ." or "For some x . . .".
- Intuitively, the sentence $\exists x P$ says that P is true for at least one object x.
- More precisely, $\exists x \ P$ is true in a given model if P is true in at least one extended interpretation that assigns x to a domain element.

• That is, at least one of the following is true:

Richard the Lionheart is a crown \land Richard the Lionheart is on John's head; King John is a crown \land King John is on John's head; Richard's left leg is a crown \land Richard's left leg is on John's head; John's left leg is a crown \land John's left leg is on John's head; The crown is a crown \land the crown is on John's head.

• The <u>fifth assertion is true in the model</u>, so the original existentially quantified sentence is true in the model.

 Notice that, by the definition, the sentence would also be true in a model in which King John was wearing two crowns.

• There is a variant of the existential quantifier, usually written \exists^1 or $\exists!$, that means

"There exists exactly one."

• Typically, A is the main connective with \exists .

• Typically e is the main connective with \forall .

Common Mistake:

• Using A as the main connective with \forall .

Everyone at Berkeley is smart:

$$\forall x \ At(x, Berkeley) \Rightarrow Smart(x)$$

$$\forall x \ At(x, Berkeley) \land Smart(x)$$

means "Everyone is at Berkeley and everyone is smart"

Common Mistake:

• Using e as the main connective with \exists

The implication is true whenever its premise is false—regardless of the truth of the conclusion.

Nested Quantifiers

• For example, "Brothers are siblings" can be written as

 $\forall x \ \forall y \ Brother(x,y) \Rightarrow Sibling(x,y)$.

- Consecutive quantifiers of the same type can be written as one quantifier with several variables.
- For example, to say that siblinghood is a symmetric relationship, we can write,

 $\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x)$

Nested Quantifiers

• The <u>order of quantification</u> is very important. For example: "Everybody loves somebody" means that for every person, there is someone that person loves:

$$\forall x \exists y \ Loves(x,y)$$

 On the other hand, to say "There is someone who is loved by everyone" we write

$$\exists y \ \forall x \ Loves(x,y)$$

Nested Quantifiers

- Some confusion may arise when two quantifiers are used with the same variable name.
- Consider the sentence

```
\forall x \ (Crown(x) \lor (\exists x \ Brother(Richard, x)))
```

- Here the x in Brother (Richard, x) is existentially quantified.
- The <u>rule</u> is that the variable belongs to the innermost quantifier that mentions it; then it will not be subject to any other quantification.

 $\exists z \ Brother(Richard, z).$

Reading Material

- Artificial Intelligence, A Modern Approach
 Stuart J. Russell and Peter Norvig
 - Chapter 8.