WHAT IS CLAIMED IS:

5

10

15

20

- 1. A method of analyzing a binding affinity of a receptor for a ligand in a plurality of mixtures comprising a receptor, E, a ligand, S_i, and a receptor-ligand binding pair, ES_i, the method comprising;
- (a) providing a plurality of mixtures, each mixture comprising a receptor, [E]₀, a ligand [S_i]₀, and a titrant, T, wherein the concentration of one or more of E, S_i, T are chosen such that the relative ability of T to displace S can be determined;
 - (b) allowing each of the plurality of mixtures to achieve equilibrium;
- (c) separating the receptor-ligand binding pairs, ES_i, from the unbound ligands, S_i, for each of the plurality of mixtures;
- (d) determining the signal response from an analytical device for the receptor-ligand binding pair, ES_i in each of the plurality of mixtures; and
- (e) evaluating the signal responses from step (d) of the receptor-ligand binding pairs, ES_i, to determine binding affinity of the ligand S_i to the receptor E.
- 2. The method of claim 1, wherein each mixture is selected such that the concentration of T relative to $[E]_0$ and $[S_i]_0$, is chosen to allow for comparison of the relative ability of S_i to displace T.
- 3. The method of claim 1, comprising providing a plurality of mixtures, each mixture comprising a initial concentration of receptor, $[E]_0$, an initial concentration of ligand $[S_i]_0$, and a known concentration of a titrant wherein $[E]_0$ and $[S_i]_0$ are constant throughout each of the plurality of mixtures, the $[S_i]_0$ is approximately the same within each of the plurality of mixtures, and the concentration of the titrant is varied within the plurality of mixtures.
- 4. The method of claim 1, wherein the plurality of mixture each comprise a plurality of ligands S_i, and a plurality of receptor-ligand binding pairs, ES_i, and wherein

the signal response is determined for at least two of the receptor-ligand binding pairs, ES_i, and the relative binding of the receptor-ligand binding pairs, ES_i, is determined.

- 5. The method of claim 4, wherein at least about 90% of the plurality of ligands, S_i, have a unique molecular mass.
- 6. The method of claim 1, wherein each mixture is selected such that the concentration of T relative to $[E]_0$ and $[S_i]_0$, is chosen such that the binding affinity of a first ligand, S_1 , can be compared with the binding affinity of a second ligand, S_2 , to provide a measure of the relative binding affinity of S_1 for E and S_2 for E.
- 7. The method of claim 1, wherein the binding affinities are relative binding equilibrium constants, K_{dis} .
- 8. The method of claim 1, step (e) comprising calculating the ACE₅₀, which is the titrant concentration at which the signal response of a receptor-ligand pair reaches 50% of its value when the titrant concentration is 0.
- 9. The method of claim 8, wherein relative K_ds of a plurality of ligands are determined such that the ligand with the lowest ACE₅₀ value has the highest K_d of the mixture of ligands, and the ligand with the highest ACE₅₀ value has the lowest K_d of the mixture of ligands.
- 10. The method of claim 1, step (e) comprising calculating the K_{di} of a receptor-ligand binding pair, ES_i, in the plurality of mixtures by fitting the change in concentration of the receptor-ligand binding pairs, [ES_i], in each of the plurality of mixtures as a function of the titrant concentration to the equation of formula (I) or an equation derived from formula (I)

$$K_{di} = \frac{([E]_0 - \sum_i [ES_i])([S_i]_0 - [ES_i])}{[ES_i]}$$
 formula (I).

5

10

15

20

- 11. The method of claim 10, wherein the relative $K_{di}s$ of a plurality of ligands S_i are determined.
- 12. The method of claim 1, wherein the initial concentration of receptor, [E]₀,
 is known and the initial concentration of the ligand, [S_i]₀ is known.
 - 13. The method of claim 1, wherein the concentration of the receptor, $[E]_0$, is greater than the sum total of the concentration of the ligands, $[S_i]_0$.
 - 14. The method of claim 1, further determining the whether a ligand S_i binds to the receptor E bind in a competitive manner, an allosteric manner, or a non-competitive manner.
 - 15. The method of claim 14, wherein if a receptor ligand-pair ES_i maintains a relatively constant signal response in each of the plurality of mixtures the ligand S_i binds to the receptor E in a non-competitive manner.
 - 16. The method of claim 14, comprising determining the variation in the ratio of signal response of a receptor ligand pair ES_i to response of the receptor-titrant pair versus the concentration of the titrant for each of the plurality of mixtures, wherein if the ratios for each of the plurality of mixtures have a linear relationship with the titrant concentration, then the ligand S_i binds to the receptor in a competitive manner, and wherein if the ratios for each of the plurality of mixtures have a non-linear relationship, than the ligand S_i binds to the receptor in an allosteric manner.

30

10

15

- 17. The method of claim 1, wherein the receptor is a biomolecule.
- 18. The method of claim 1, wherein the receptor is a polypeptide.
- 19. The method of claim 1, wherein the receptor is an enzyme.

- 20. The method of claim 1, wherein the receptor is a nucleic acid.
- 21. The method of claim 1, wherein the ligand is an organic molecule.
- 22. The method of claim 1, wherein the ligand is a polypeptide.
- 23. The method of claim 1, wherein the plurality of mixtures achieves equilibrium of receptor-ligand binding pair, ES_i, unbound receptor, and unbound ligand.
 - 24. The method of claim 1, further comprising using liquid chromatography.
- 25. The method of claim 1, wherein the receptor-bound ligand is separated from each of the plurality of mixtures using size-exclusion-chromatography.
- 26. The method of claim 1, wherein the receptor-bound ligand is separated from each of the plurality of mixtures using ultrafiltration.
 - 27. The method of claim 1, wherein the signal response is determined using mass spectrometry.
 - 28. The method of claim 1, further comprising disrupting the receptor-ligand binding pair, ES_i.
- 29. The method of claim 1, wherein the signal response of a receptor-ligand binding pair, ES_i, is determined by measuring the relative amount of ligand, S_i, in the receptor-ligand binding pair, ES_i, in each of the plurality of mixtures.
 - 30. The method of claim 1, wherein the relative amount of ligand, S_i , is determined by evaluating a signal response from a mass spectrometer.

10

15

20

- 31. A method for determining the equilibrium dissociation constant, K_d , of a receptor-ligand binding pair, the method comprising;
- (a) providing a mass spectrometer calibrated to the ligand of the receptorligand binding pair;

10

15

20

25

- (b) providing a plurality of mixtures, each mixture including a receptor, $[E]_0$, and a ligand, $[S]_0$, wherein the concentration of one or more of E_0 , and S_0 is chosen such that the binding affinity of S to E can be determined;
- (c) allowing each of the plurality of mixtures to reach equilibrium of bound receptor-ligand binding pairs, ES, unbound receptor, and unbound ligand;
- (d) separating the receptor-bound ligand from each of the plurality of mixtures;
- (e) determining the signal response from the mass spectrometer for the receptor-ligand binding pairs in each of the plurality of mixtures; and
- (f) using information known, measured or acquired in steps a-e to fit the concentration of receptor-ligand pair, [ES], and initial, known ligand concentration, [S]₀, to the equation of formula (I)

$$K_d = \frac{([E]_0 - [ES])([S]_0 - [ES])}{[ES]}$$
formula (I)

- for each of the plurality of mixtures, yielding the K_d of the receptor-ligand binding pair.
 - 32. The method of claim 31, wherein each of the plurality of mixtures includes an initial concentration of receptor, [E]₀, and an initial, known concentration of ligand, [S]₀, wherein [E]₀ is about the same in each of the plurality of mixtures and [S]₀ is varied in each of the plurality of mixtures.
 - 33. The method of claim 31, further comprising determining the initial receptor concentration $[E]_0$ in the mixtures of step (b).
 - 34. The method of claim 31, wherein the receptor is a biomolecule.

- 35. The method of claim 31, wherein the receptor is a polypeptide
- 36. The method of claim 31, wherein the receptor is an enzyme.

- 37. The method of claim 31, wherein the receptor is a nucleic acid.
- 38. The method of claim 31, wherein the ligand is an organic molecule.

10

- 39. The method of claim 31, wherein the ligand is a polypeptide.
- 40. The method of claim 31, wherein the plurality of mixtures reach equilibrium of bound receptor-ligand binding pairs, unbound receptor, and unbound ligand.

15

- 41. The method of claim 31, wherein the receptor-bound ligands are separated from the mixture using size-exclusion-chromatography.
 - 42. The method of claim 31, further comprising using liquid chromatography.

20

- 43. The method of claim 31, further comprising disrupting the receptor-ligand binding pairs, ES.
- 44. The method of claim 31, wherein the concentration of the receptor-ligand binding pair, [ES], is determined in step (e) by measuring the amount of ligand in the receptor-ligand binding pairs, ES, in each of the plurality of mixtures.
- 45. A method of analyzing the binding kinetics of a receptor-ligand binding pair, the method comprising;
 - (a) providing a mixture comprising a receptor, [E]₀, and a ligand, [S_i]₀;

- (b) allowing the mixture to reach equilibrium of receptor, [E], ligand, [S_i], and receptor-ligand binding pair, [ES_i];
 - (c) treating the mixture with an excess of a competitive inhibitor, I;
- (d) measuring a decrease in the receptor-ligand binding pair at a plurality of time points by;

10

15

25

30

- (i) separating the receptor-ligand binding pair from the unbound ligand; and
- (ii) determining a signal response of the receptor-ligand binding pair for each of the plurality of time points with an analytical device; and
- (e) using the information known, measured, or acquired from steps (a)-(d) to evaluate the binding kinetics of the receptor-ligand binding pair.
- 46. The method of claim 45, wherein the signal response of the receptor-ligand binding pair is measured with an analytical device.
- 47. The method of claim 45, wherein the mixture of step (a) comprises a plurality of ligands, S_i
- 48. The method of claim 45, wherein at least 90% of the plurality of ligands, S_i, have a unique molecular mass.
 - 49. The method of claim 45, wherein the binding kinetics are evaluated using the information known, measured, or acquired from steps (a)-(d) to calculate the dissociation rate, k_{s2} of the receptor-ligand binding pair by fitting the change in signal response of the receptor-ligand binding pair over time to the equation of formula (XVIII) or a derivative thereof

$$[ES] = [ES]_{t=0}e^{-ks2\cdot t}$$
 formula (XVIII).

50. The method of claim 45, comprising identifying a ligand that binds in a non-competitive manner wherein if the a ligand-receptor binding pair maintains a

relatively constant concentration at each of the plurality of time points, than the ligand is binding to the receptor in a non-competitive manner.

- 51. The method of claim 45, wherein the binding kinetics of at least two of the plurality of ligands, S_i, are compared.
 - 52. The method of claim 45, wherein the receptor is a biomolecule.
 - 53. The method of claim 45, wherein the receptor is a polypeptide.

54. The method of claim 45, wherein the receptor is an enzyme.

- 55. The method of claim 45, wherein the receptor is a nucleic acid.
- The method of claim 45, wherein the ligand is an organic molecule.
 - 57. The method of claim 45, wherein the ligand is a polypeptide.
- 58. The method of claim 45, wherein the competitive inhibitor is an organic molecule.
 - 59. The method of claim 45, wherein the competitive inhibitor is a polypeptide.
 - 60. The method of claim 45, further comprising subjecting the receptor-bound ligand to liquid chromatography.
 - 61. The method of claim 45, wherein the receptor-bound ligand is separated from the unbound ligand using size-exclusion-chromatography.

25

- 62. The method of claim 45, wherein the signal response is determined using mass spectrometry.
- 63. The method of claim 45, further comprising disrupting the receptor-ligandbinding pair.
 - 64. The method of claim 45, wherein the signal response of the receptor-ligand binding pair is determined by measuring the relative amount of ligand in the receptor-ligand binding pair.

65. The method of claim 45, further comprising determining the half-life, $t_{1/2}$, of the receptor ligand binding pair.