Învățare automată

— Licență, anul III, 2018-2019, examenul parțial I —

Nume student: Grupa:

1. (Formula lui Bayes; inferențe statistice; exemplificarea noțiunii de ipoteză / ipoteze MAP ("Maximum A posteriori Probability"))

A. Mickey dă cu zarul de mai multe ori, sperând să obțină un 6. Secvența celor 10 rezultate obținute de el în urma acestor aruncări este următoarea: 1, 2, 4, 3, 2, 2, 3, 5, 1, 6. Mickey se întreabă dacă nu cumva zarul este măsluit (având tendința să producă de mai multe ori fața 2 decât ar fi normal dacă zarul ar fi perfect).

Se presupune că în general fiecare set de 100 de zaruri conține 5 zaruri măsluite (engl., unfair) în așa fel încât este favorizată apariția feței 2, rezultând următoarea distribuție de probabilitate a celor șase fețe, (1, 2, 3, 4, 5, 6): P = [0.1, 0.5, 0.1, 0.1, 0.1, 0.1].

Folosind teorema lui Bayes, furnizați-i lui Mickey informația care-l interesează: în ce măsură putem spune că zarul este măsluit [sau nu]?

 $\textbf{\textit{Observație}: Puteți folosi următoarele aproximări: } \log_2 3 = 1.585; \log_2 5 = 2.322; \log_2 19 = 4.248.$

(Algoritmul Bayes Naiv şi algoritmul Bayes Corelat: aplicare)

B. Se dă setul de date alăturat, cu A și B variabile de intrare, iar C variabilă de ieșire.

a. Care este numărul minim de probabilități ce trebuie estimate pentru a putea construi după aceea (pe acest set de date) un clasificator de tip Bayes Naiv? Justificați.

b. Similar, pentru clasificatorul Bayes Corelat. Justificați.

			nr.
A	B	C	apariţii
0	0	1	3
0	1	0	1
0	1	1	4
1	0	0	5
1	1	0	2
1	1	1	1

- c. Care este decizia clasificatorului Bayes Naiv pentru $A=0,\,B=1$? Precizați cu ce probabilitate este luată această decizie.
- d. Care este decizia clasificatorului Bayes Corelat pentru $A=0,\,B=1$? Precizați cu ce probabilitate este luată această decizie.
- e. Dacă rezultatele obținute la punctele c și d diferă (fie și numai în privința probabilităților cu care sunt luate deciziile), care este explicația? Justificați în mod riguros.

- 2.
- A. Dați definiția noțiunii de arbore de decizie.
- B. Folosiți următorul set de date pentru a învăța cu ajutorul unui arbore de decizie dacă o ciupercă este sau nu comestibilă, utilizând atributele discrete Formă, Culoare și Miros.

Formă	Culoare	Miros	$Comestibilreve{a}$
C	В	1	1
D	В	1	1
D	\mathbf{W}	1	1
D	\mathbf{W}	2	1
\mathbf{C}	В	2	1
D	В	2	0
D	\mathbf{G}	2	0
C	\mathbf{U}	2	0
C	В	3	0
C	\mathbf{W}	3	0
D	\mathbf{W}	3	0

Observație (1): Dacă la calculul entropiilor și / sau al câștigului de informație folosiți alte formule decât cele date în definiția acestor noțiuni, enunțați-le la cazul general și apoi demonstrați-le în mod succint.

Observație (2): Dacă veți folosi corect definițiile, veți constata că veți avea de făcut foarte puține calcule!

a. Calculați entropia condițională specifică $H(Comestibilă \mid Miros = 1 \text{ sau } Miros = 3)$.

Sugestie: Aplicați (deci, scrieți mai întî) definiția noțiunii de entropie condițională specifică.

- b. Ce atribut va alege algoritmul ID3 ca rădăcină a arborelui de decizie?
- c. Elaborați întregul arbore de decizie care va fi învățat din datele de mai sus (fără pruning).
- d. Exprimați cu ajutorul unui set de reguli din calculul propozițional clasificarea produsă de arborele de decizie obținut. (IF ... THEN Comestibilă; IF ... THEN ¬Comestibilă.)
- e. Să presupunem că avem un set de date de validare:

Formă	Culoare	Miros	$Comestibil reve{a}$
C	В	2	0
D	В	2	0
\mathbf{C}	\mathbf{W}	2	1

Care va fi eroarea produsă de arborele de decizie pe mulţimea de date de antrenare respectiv pe datele de validare? (Exprimaţi răspunsul ca număr de exemple clasificate greşit.)

- 3.
- A. Demonstrați că minimul funcției $Z(\alpha_t) \stackrel{def.}{=} (1 \varepsilon_t) \exp(-\alpha_t) + \varepsilon_t \exp(\alpha_t)$ se atinge pentru valoarea argumentului $\bar{\alpha}_t = \ln \sqrt{\frac{1 \varepsilon_t}{\varepsilon_t}}$. Calculați $Z(\bar{\alpha}_t)$.
- B. Considerăm setul de date de antrenament din figura următoare. Vom folosi algoritmul AdaBoost cu compași de decizie în rolul de ipoteze "slabe".

- a. Determinați separatorul decizional corespunzător primei ipoteze "slabe", h_1 . Desenați-l pe figura de mai sus și indicați [eventual printr-o mică săgeată perpendiculară pe acest separator] care este zona clasificată cu +.
- b. Calculați ε_1 și α_1 . Cât este acuratețea obținută de AdaBoost la antrenare dacă oprim acum algoritmul?
- c. Cât va fi valoarea noilor probabilități / ponderi $D_2(i)$ pentru fiecare dintre cele şapte exemple de antrenament? (Atenție! Nu uitați să faceți normalizarea cu ajutorul factorului Z_1 .)
- d. Desenați separatorul decizional corespunzător celei de-a doua ipoteze "slabe", h_2 . Indicați iarăși zona de decizie corespunzătoare clasei +.
- e. Care sunt exemplele de antrenament cărora le va fi asignată cea mai mică pondere / probabilitate după ce algoritmul AdaBoost va fi terminat cea de-a doua sa iterație?
- f. Se îmbunătățește oare acuratețea la antrenare obținută de AdaBoost la a doua iterație în raport cu cea obținută la prima iterație?
- g. Va putea oare AdaBoost să obțină eroare la antrenare 0 pe acest set de date? Justificați riguros, citând un rezultat teoretic prezentat la curs.

Observație importantă: Dacă veți folosi rezultate teoretice importante prezentate la curs, calculele pe care va trebui să le faceți la acest exercițiu vor fi foarte simple!

Răspuns:

[a.-c.] Iterația t = 1:

i	1	2	3	4	5	6	7
$D_1(i)$							

S	-1.15	-0.25	+0.65
$err_{D_1}(X < s)$			
$err_{D_1}(X \ge s)$			

 $\varepsilon_1 =$

 $\alpha_1 =$

i	1	2	3	4	5	6	7
$D_2(i)$							

 $Z_1 =$

[d.-f.] Iteraţia t = 2:

S	-1.15	-0.25	+0.65
$err_{D_2}(X < s)$			
$err_{D_2}(X \ge s)$			

 $\varepsilon_2 =$

 $\alpha_2 =$

i	1	2	3	4	5	6	7
$D_3(i)$							

 $Z_2 =$

t	α_t	x_1	x_2	x_3	x_4	x_5	x_6	x_7
1	$\alpha_1 =$							
2	$\alpha_2 =$							
	Н							

Observație: În acest tabel, veți trece clasificările făcute de ipotezele "slabe" h_t (pentru t=1 și t=2) și respectiv ipoteza "combinată" H livrată de AdaBoost după efectuarea primelor două iterații. Veți \hat{i} ncercui (în tabelul acesta) clasificările eronate, sub forma \oplus sau \ominus .

Cât de multe date de antrenament necesită algoritmul Bayes Naiv?
[LC: complexitatea la eșantionare])

Fie variabilele aleatoare $X_1, X_2, \dots, X_d \stackrel{not.}{=} Y$, fiecare dintre ele urmând o distribuţie Bernoulli, de parametru 1/2.

Comentariu: Variabilele X_1, X_2, \ldots, X_d fiind de tip Bernoulli(1/2), rezultă că a "observa" (sau, a genera) o valoare (x_i) pentru o variabilă oarecare, X_i , fixată este echivalent cu aruncarea unei monede perfecte. Similar, a "observa" (sau, a genera) o instanță etichetată $\bar{x} \stackrel{not.}{=} (X_1 = x_1, \ldots, X_d = x_d)$ este echivalent cu aruncarea a d monede perfecte în mod independent (sau, echivalent, cu d aruncări independente ale unei monede perfecte).

Scopul acestui exercițiu este să calculăm N_{NB} , o margine inferioară pentru numărul de exemple de antrenament de care este nevoie [în prezentul context] astfel încât, dat fiind un prag $\varepsilon \in (0,1)$, fixat, să putem spune că în setul de date reprezentat de cele N_{NB} exemple de antrenament probabilitatea să nu fi întâlnit toate valorile [tuturor] variabilelor X_1, X_2, \ldots, X_d este mai mică decât ε . (Aşadar, în acest context, cu probabilitate de $1-\varepsilon$ putem estima toți parametrii algoritmului Bayes Naiv.)

Sugestie de lucru:

- i. Considerând (din nou) X_i fixat, care este probabilitatea ca în N exemple de antrenament (unde $N \in \mathbb{N}$) să nu fi întâlnit ambele valori ale lui X_i ?
- ii. Folosind inegalitatea $P(E_1 \cup \ldots \cup E_n) \leq \sum_{i=1}^n P(E_i)$ care este valabilă pentru orice evenimente aleatoare E_1, \ldots, E_n , și considerând din nou N fixat, calculați o margine superioară pentru probabilitatea ca în N exemple de antrenament să nu fi întâlnit toate valorile [tuturor] celor d variabile X_1, X_2, \ldots, X_d .

Observație importantă: Pentru fixarea ideilor, la punctele i. și ii. puteți considera d=5 și N=10. Veți da răspunsurile atât în această variantă (adică, folosind aceste date concrete) cât și în cazul general.

- iii. Dacă impuneți condiția ca marginea superioară a probabilității] de la punctul ii. să fie egală cu un $\varepsilon > 0$ fixat, puteți obține raționând analitic, pas cu pas, prin relații de echivalență cât trebuie să fie N_{NB} , în funcție de d și ε (deci vom scrie $N_{NB}(d,\varepsilon)$) astfel încât, dat fiind un set de N_{NB} exemple de antrenament (generate cu ajutorul variabilelor aleatoare X_1, X_2, \ldots, X_d), probabilitatea de a nu întâlni în acest set toate valorile [tuturor] variabilelor X_1, X_2, \ldots, X_d să fie mai mică decât ε .
- iv. Calculați efectiv marginile superioare $N_{NB}(d,\varepsilon)$ pentru $\varepsilon=0.01$ și $d\in\{2,5,10\}$. Puteți folosi aproximarea $\log_2 5=2.3219$.

¹Echivalent spus, care este probabilitatea ca pentru X_i , în toate cele N exemple de antrenament, să apară în mod exclusiv(!) fie una fie cealaltă dintre valorile lui X_i ?