Back Propagation in Netz

Nick Ewing

Descripton 0.1

The following definitions and algorithm characterize the implementation of

Definitions 0.2

The following variables are used:

m: The number of training examples.

n: The number of input features for an example.

k: The number of outputs for an example.

 $\{(x^i,y^i),\ldots,(x^m,y^m)\}$: The training set, composed of m input-output example pairs where $x^{(i)}$ is an *n* dimensional vector containing the i^{th} input and $y^{(i)}$ a k dimensional vector containing the i^{th} expected output.

X: An $m \times n$ matrix where the i^{th} row contains $(x^{(i)})^T$.

Y: An $m \times k$ matrix where the i^{th} row contains $(y^{(i)})^T$.

L: The number of layers in the network.

 s_l : The number of neurons in layer l. $s_1 = n$ and $s_L = k$.

 λ : The regularization constant. α : The learning rate constant. γ : The learning momentum constant.

 $\Theta_{ij}^{(l)}$: The synapse weight between neuron i of layer l and neuron j of layer l+1. $\Theta^{(l)}$ is thus a $s_{(j+1)} \times s_j + 1$ matrix.

 $A_{ii}^{(l)}$: The change in synapse weight between neuron i of layer l and neuron j of layer l+1 of the last epoch. $A^{(l)}$ is thus a $s_{(j+1)} \times s_j + 1$ matrix.

 $a^{(l)}$: A vector of length $s_l + 1$ when l < L and s_l when l = L, containing the activation values for neurons in layer l where $a_0^{(l)}$ is the bias neuron when

l < L. $\delta^{(l)}$: A vector of length $s_l + 1$ when l < L and s_l when l = L, containing the back propagated error values associated with neurons in layer l.

 $\Delta_{ij}^{(l)}$: The sum change from all examples in synapse weight between neuron i of layer l and neuron j of layer l+1. $\Delta^{(l)}$ is thus a $s_{(j+1)} \times s_j + 1$ matrix.

 $D_{ii}^{(l)}$: The regularized mean change from all examples in synapse weight between neuron i of layer l and neuron j of layer l+1. $D^{(l)}$ is thus a $s_{(i+1)} \times s_i + 1$ matrix.

.*: Element-wise matrix multiplication operator.

The sigmoid activation function:

$$g(z) = \frac{1}{1 - e^{-z}} \tag{1}$$

0.3 Algorithm

```
\Theta^{(j)} \leftarrow \text{RandomValuedMatrix}(s_{(j+1)}, s_j + 1) \text{ for } j = 1 \dots L - 1
A^{(j)} \leftarrow \text{ZeroValuedMatrix}(s_{(j+1)}, s_j + 1) \text{ for } j = 1 \dots L - 1
repeat
    for_i \leftarrow 1 \dots m do
        {Forward propagate input activations through network}
       a^{(1)} \leftarrow x^{(i)}
       a^{(l)} \leftarrow g(\Theta^{(l-1)}a^{(l-1)}) for l = 2 \dots L
        {Find error of output layer from training outputs}
        \delta^{(L)} \leftarrow a^{(L)} - y^{(i)}
        {Back propagate error through network}
       \delta^{(L)} \leftarrow (\Theta^{(l)})^T \delta^{(l+1)} \cdot * a^{(l)} \cdot * (1 - a^{(l)}) \text{ for } l = L - 1 \dots 2
        {Multiply errors by activations}
       \Delta^{(l)} \leftarrow \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^T for l \leftarrow 1 \dots L-1
    end for {Divide errors by the number of training examples and add in regular-
   D_{ij}^{(l)} \leftarrow \frac{1}{m} \Delta_{ij}^{(l)} + \lambda \Theta^{(l)} \mathbf{if} j \neq 0
D_{ij}^{(l)} \leftarrow \frac{1}{m} \Delta_{ij}^{(l)} \mathbf{if} j = 0
{Adjust weights}
    for j \leftarrow 1 \dots L - 1 do
A^{(j)} \leftarrow \alpha D^{(j)} + \gamma A^{(j)}
       \Theta^{(j)} \leftarrow \Theta^{(j)} - A^{(j)}
    end for
    epoch \leftarrow epoch + 1
    MSE \leftarrow \text{CalculateMeanSquareError}(\Theta, X, Y)
until MSE < desired-error or epoch > max-epoch
```