Zadanie: MEL

Melonik

Podlaskie Zawody Programistyczne, Dostępna pamięć: 64 MB.

03.06.2018

W dzisiejszych czasach coraz trudniej o dobry melonik. Jeszcze kiedyś przyjemność noszenia go na głowie była czymś normalnym, jednak to już odlegle czasy. Twój Pan jest jednak bardzo bogaty i nie obchodzą go takie błahostki. Dostałeś wiec wymagający problem. Masz do dyspozycji mapę nietuzinkowego miasta. W mieście tym obowiązuje ruch jednokierunkowy, więc trzeba uważać w jaką uliczkę się wchodzi, bo można nie wrócić do domu. Miasto jest zbudowane w następujący sposób:

- 1. W centrum miasta jest plac główny w którym znajduje się bazarek(przyczółek **numer 1**), od niego odchodzą ulice do innych przyczółków.
- 2. Do każdego przyczółka da się dojść w dokładnie jeden sposób.
- 3. Przejście drogi między sąsiednimi przyczółkami zajmuje 1 melonikokilometr.

Masz do dyspozycji grupę tajnych posłańców z północy do pomocy, zbijać tobie łatwe kokosy. Fajne te rymy no to wyznaczymy ilość przyczółków, które w odległości k melonikokilometrów od miejsca odwiedzimy.

Wejście

W pierwszym wierszu standardowego wejścia otrzymujemy dwie liczby całkowite n i q $(1 \le n, q \le 10^5)$ oznaczająca ilość przyczółków i zapytań.

W następnych n-1 wierszach dostajemy dwie liczby całkowite a, b, które istnieje droga z przyczółku a do b $(1 \le a \le b \le n)$.

Następnie w q wierszach znajdują się zapytania reprezentowane przez dwie liczby całkowite x i k $(1 \le x, k \le n)$, oznaczające kolejno numer przyczółka i dana odległość określoną w treści zadania.

Wyjście

Na wyjściu powinno się znaleźć q wierszy z ilością przyczółków, do których możemy się dostać z przyczółka x do przyczółka odległego o k melonikokilometrów.

Przykład

6 1

Dla danych wejściowych:	poprawnym wynikiem jest:
8 5	2
1 2	0
2 3	1
7 8	3
1 6	1
6 7	
4 5	
2 4	
1 3	
5 1	
2 2	
1 2	