```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
data = pd.read_csv("Advertising.csv")
data.head()
```

Out[1]: Unnamed: 0 TV radio newspaper sales 0 1 230.1 37.8 69.2 22.1 1 2 44.5 39.3 45.1 10.4 2 3 17.2 45.9 69.3 9.3 3 4 151.5 58.5 18.5 41.3 4 5 180.8 10.8 58.4 12.9

In [2]: data.drop(['Unnamed: 0'], axis=1)

Out[2]:		TV	radio	newspaper	sales	
	0	230.1	37.8	69.2	22.1	
	1	44.5	39.3	45.1	10.4	
	2	17.2	45.9	69.3	9.3	
	3	151.5	41.3	58.5	18.5	
	4	180.8	10.8	58.4	12.9	
	•••	•••	•••		•••	
	195	38.2	3.7	13.8	7.6	
	196	94.2	4.9	8.1	9.7	
	197	177.0	9.3	6.4	12.8	
	198	283.6	42.0	66.2	25.5	
	199	232.1	8.6	8.7	13.4	

200 rows × 4 columns

```
In [3]: plt.figure(figsize=(16, 8))
   plt.scatter(
     data['TV'],
     data['sales'],
     c='red'
   )
   plt.xlabel("Money spent on TV ads ($)")
   plt.ylabel("Sales ($)")
   plt.show()
```



```
In [4]: X = data['TV'].values.reshape(-1, 1)
        y = data['sales'].values.reshape(-1, 1)
        reg = LinearRegression()
        reg.fit(X, y)
        print("The linear model is: Y = {:.5} +{:.5}X".format(reg.intercept_[0], reg.coef_[
        "The linear model is: Y = 7.0326 + 0.047537X"
        # Visualise the Best Fit Line
        predictions = reg.predict(X)
        plt.figure(figsize=(16, 8))
        plt.scatter(
         data['TV'],
         data['sales'],
         c='grey'
        plt.plot(
         data['TV'],
         predictions,
         c='blue',
         linewidth=2
        plt.xlabel("Money spent on TV ads ($)")
        plt.ylabel("Sales ($)")
        plt.show()
```

The linear model is: Y = 7.0326 + 0.047537X

Regressional Model Training

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.metrics import mean_squared_error, r2_score
import joblib
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [6]: # Load the data
        data = pd.read_csv("raw_data.csv")
        # Data overview
        print(data.info())
        print("\nSample data:")
        print(data.head())
        # Visualize the distribution of the target variable (price)
        import matplotlib.pyplot as plt
        import seaborn as sns
        plt.figure(figsize=(10, 6))
        sns.histplot(data['price'], kde=True)
        plt.title('Distribution of Car Prices')
        plt.xlabel('Price')
        plt.ylabel('Frequency')
        plt.show()
        # Correlation heatmap of numeric features
```

```
plt.figure(figsize=(12, 10))
numeric_data = data.select_dtypes(include=['int64', 'float64'])
sns.heatmap(numeric_data.corr(), annot=False, cmap='coolwarm')
plt.title('Correlation Heatmap of Numeric Features')
plt.show()

# Separate features and target
X = data.drop('price', axis=1)
y = data['price']

# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta)
# Identify numeric and categorical columns
numeric_features = X.select_dtypes(include=['int64', 'float64']).columns
categorical_features = X.select_dtypes(include=['object']).columns
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype		
0	car_ID	205 non-null	int64		
1	symboling	205 non-null	int64		
2	CarName	205 non-null	object		
3	fueltype	205 non-null	object		
4	aspiration	205 non-null	object		
5	doornumber	205 non-null	object		
6	carbody	205 non-null	object		
7	drivewheel	205 non-null	object		
8	enginelocation	205 non-null	object		
9	wheelbase	205 non-null	float64		
10	carlength	205 non-null	float64		
11	carwidth	205 non-null	float64		
12	carheight	205 non-null	float64		
13	curbweight	205 non-null	int64		
14	enginetype	205 non-null	object		
15	cylindernumber	205 non-null	object		
16	enginesize	205 non-null	int64		
17	fuelsystem	205 non-null	object		
18	boreratio	205 non-null	float64		
19	stroke	205 non-null	float64		
20	compressionratio	205 non-null	float64		
21	horsepower	205 non-null	int64		
22	peakrpm	205 non-null	int64		
23	citympg	205 non-null	int64		
24	highwaympg	205 non-null	int64		
25	price	205 non-null	float64		
types: float64(8), int64(8), object(10)					

dtypes: float64(8), int64(8), object(10)

memory usage: 41.8+ KB

None

Sample data:

Sa	mpie data	•									
	car_ID s	symboling	CarName			fueltyp	e aspi	ration	doornumber	\	
0	1	3		alfa-romero giulia			ga	S	std	two	
1	2	3		alfa-romero stelvio		ga	S	std	two		
2	3	1	alfa-	alfa-romero Quadrifoglio		ga	S	std	two		
3	4	2		audi 100 ls		ga	S	std	four		
4	5	2			audi	100ls	ga	S	std	four	
	carbo	ody drivew	wheel e	nginel	ocation	wheel	hase .	en	ginesiz	e \	
0	converti	-	rwd	11811161	front				13		
-											
1	converti		rwd		front			• •	13		
2	hatchba	ack	rwd		front		94.5 .		15	2	
3	sed	dan	fwd		front		99.8 .		10	9	
4	sed	dan	4wd		front		99.4 .	• •	13	6	
	fuelcyct	em borera	tio c	+noko	compnocc	ionnat	io bone	onguen	noakn	nm citumna	
_	fuelsyst				compress				•	pm citympg	
0	mp-	Fi 3	3.47	2.68		9	0.0	111	50	00 21	
1	mp-	fi 3	3.47	2.68		9	0.0	111	50	00 21	
2	mp-	fi 2	.68	3.47		9	0.0	154	50	00 19	
3	mp-	fi 3	3.19	3.40		10	0.0	102	55	00 24	
4	mp-	fi 3	3.19	3.40		8	3.0	115	55	00 18	

	highwaympg	price
0	27	13495.0
1	27	16500.0
2	26	16500.0
3	30	13950.0
4	22	17450.0

[5 rows x 26 columns]


```
In [7]: # Create preprocessor
        preprocessor = ColumnTransformer(
            transformers=[
                ('num', Pipeline([
                     ('imputer', SimpleImputer(strategy='median')),
                     ('scaler', StandardScaler())
                ]), numeric_features),
                ('cat', Pipeline([
                     ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
                     ('onehot', OneHotEncoder(handle_unknown='ignore'))
                ]), categorical_features)
            ])
        # Create a pipeline
        model = Pipeline([
            ('preprocessor', preprocessor),
            ('regressor', RandomForestRegressor(n_estimators=200, max_depth=20, min_samples
        ])
```

```
In [8]: # Fit the model
model.fit(X_train, y_train)
```

```
# Make predictions
y_pred_train = model.predict(X_train)
y_pred_test = model.predict(X_test)
# Print results
print('Train RMSE:', np.sqrt(mean squared error(y train, y pred train)))
print('Test RMSE:', np.sqrt(mean_squared_error(y_test, y_pred_test)))
print('Train R2 Score:', r2_score(y_train, y_pred_train))
print('Test R2 Score:', r2 score(y test, y pred test))
# Visualize predicted vs actual prices
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred_test, alpha=0.5)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', lw=2)
plt.xlabel('Actual Price')
plt.ylabel('Predicted Price')
plt.title('Predicted vs Actual Car Prices')
plt.show()
# Visualize feature importance
feature importance = model.named steps['regressor'].feature importances
feature names = (model.named steps['preprocessor']
                 .named_transformers_['num'].get_feature_names_out().tolist() +
                 model.named steps['preprocessor']
                 .named_transformers_['cat'].get_feature_names_out().tolist())
feature_importance_df = pd.DataFrame({'feature': feature_names, 'importance': featu
feature_importance_df = feature_importance_df.sort_values('importance', ascending=F
plt.figure(figsize=(10, 6))
sns.barplot(x='importance', y='feature', data=feature_importance_df)
plt.title('Top 10 Most Important Features')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.show()
```

Train RMSE: 1178.9016630648398
Test RMSE: 1895.8606076632911
Train R2 Score: 0.9766958496133668
Test R2 Score: 0.9544704284930133

Top 10 Most Important Features


```
In [9]: # Save the modeL
    joblib.dump(model, 'car_price_model.joblib')
    print("Model saved as 'car_price_predictor.joblib'")
```

Model saved as 'car_price_predictor.joblib'

```
In [10]: # Function to make predictions
def predict_price(features):
    # Load the model
    loaded_model = joblib.load('car_price_model.joblib')
```

```
# Make prediction
prediction = loaded_model.predict(features)
return prediction[0]
```

```
In [11]: # Example usage
         example_features = pd.DataFrame({
              'symboling': [3],
              'CarName': ['mazda rx-7 gs'],
              'fueltype': ['gas'],
              'aspiration': ['std'],
              'doornumber': ['four'],
              'carbody': ['sedan'],
              'drivewheel': ['fwd'],
              'enginelocation': ['front'],
              'wheelbase': [102.4],
              'carlength': [175.6],
              'carwidth': [66.5],
              'carheight': [54.9],
              'curbweight': [2414],
              'enginetype': ['ohc'],
              'cylindernumber': ['four'],
              'enginesize': [122],
              'fuelsystem': ['mpfi'],
              'boreratio': [3.31],
              'stroke': [3.54],
              'compressionratio': [8.7],
              'horsepower': [92],
              'peakrpm': [4200],
              'citympg': [27],
              'highwaympg': [32],
              'car_ID': [1]
         }, index=[0])
         predicted price = predict price(example features)
         print(f"Predicted price: ${predicted_price:.2f}")
         # Visualize the prediction
         plt.figure(figsize=(8, 6))
         sns.barplot(x=['Predicted Price', 'Average Price'],
                     y=[predicted_price, data['price'].mean()])
         plt.title('Predicted Price vs Average Price')
         plt.ylabel('Price')
         plt.show()
```

Predicted price: \$13195.92

Predicted Price vs Average Price

