Modeling Prices in Public Contracting

Beck DeYoung Fellow

Maria-Cristiana Gîriău Fellow

Dushant Gohri Fellow

Ethan Lee Fellow

Robert Hager Technical Mentor Daniel Townsend Project Manager

Background

National Directorate for Public Contracting in Paraguay (DNCP)

The DNCP oversees public spending. maintains a registry of transactions, and tries to identify corruption or other suspicious activity.

Project Goals

Being able to estimate reasonable prices of goods and services helps the DNCP detect overspending and corruption

TWOFOLD AIM:

- > Train models to predict item prices
- > Establish a reusable data science pipeline for the DNCP's future use

Data at a Glance

Historical data from 2010 to 2021

Approx. 3.3 million goods and services

40 predictors chosen from >180 variables

Data Pipeline

Features of

- > Flexibility: user-friendly and fully customizable
- > Modularity: self-contained at every step
- > Robustness: handles edge cases and erroneous input the Pipeline

PIPELINE HIGHLIGHTS

Isolation forest to refine model focus by removing extreme **prices** (e.g., bridges, highways)

Convert currencies to PYG and adjust prices for inflation using the consumer price index

Contextual Indicators

ISSUE: Not enough information on the context/purpose of a purchase (e.g., scissors for school vs. scissors for hospital) **SOLUTION:** Create indicator variables for various common situations

- > Text mining on the buver and tender description fields
- > Identify a total of 9 buyer indicators and 20 description indicators

Workflow

Model Types

BASELINE: ordinary least-squares multiple linear regression

- Train 2 competing model types:
- > XGBoost
- > Random Forest Regression

Highlight: automated tuning of model hyperparameters

Model Training

Model segmentation: train/evaluate 2 separate models for goods and services Findings from previous iterations: low prices have very high percentage error, so train models only on items above \$2

Results

Best model: XGBoost

- > Price variability accounted for by the model is 77% for goods and 80% for services
- > Root median squared error of \$12 for goods and \$33 for services
- > Median percentage errors of 48% for goods and 53% for services

Looking Forward

The data pipeline can be used by the DNCP to train more models

Further refinement to find the sweet spot between excluding low prices and high prices

Construct confidence intervals