Notes on General Topology

Wenchuan Zhao

July 2, 2022

Contents

1	Top	ological Spaces	2
	1.1	Metric Spaces	2
	1.2	Some Examples on Metric Spaces	4
	1.3	Bases of Sets	6
	1.4	Topological Spaces	6
	1.5	Interiors and Closures	9
	1.6	Bases for Topologies	10

Chapter 1.

Topological Spaces

§1.1 Metric Spaces

How do we measure the distance between two points in a space? Take \mathbb{R}^3 for example, for any points $x, y \in \mathbb{R}^3$, the distance between x and y is usually means the length of the segments with x and y as its endpoints, which is given by

$$\rho(x,y) = \left(\sum_{i=1}^{3} |x_i - y_i|^2\right)^{\frac{1}{2}},$$

where for any $p \in \mathbb{R}^3$, p_i denotes the *i*-th component of p. Here, we consider ρ as a function from $\mathbb{R}^3 \times \mathbb{R}^3$ to \mathbb{R} , called *Euclidean metric function* on \mathbb{R}^3 . Then, ρ satisfies the following conditions: For any x, y, and $z \in \mathbb{R}^3$,

- 1. $\rho(x,y) = 0$ if and only if x = y;
- 2. $\rho(x, y) = \rho(y, x);$
- 3. $\rho(x,y) + \rho(y,z) \ge \rho(x,z)$; this property is also called *triangle inequality*.

In this case, we call the ordered pair (\mathbb{R}^3, ρ) the 3-dimensional Eulidean metric space.

Just like how the first scientist defined the unite of 1 kilogram, a metric function is not entirely naturally given, but is chosen depend on what distance we need to find. In the example above, the set \mathbb{R}^3 can be replaced by any set X, and the metric function ρ can be any operation from $X \times X \to \mathbb{R}$ satisfying the 3 conditions above. And this is how metric spaces are defined.

Definition 1.1.1. Let X be any set. A mapping $\rho: X \times X \to \mathbb{R}$ is a *metric* on X if and only if it satisfies the *metric axioms*. That is, for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$,

- (M1) $\rho(x,y) = 0$ if and only if x = y;
- (M2) $\rho(x,y) = 0$ if and only if x = y;
- (M3) $\rho(x, y) + \rho(y, z) \ge \rho(x, z)$.

An ordered pair (X, ρ) is a metric space if and only if ρ is a metric on X.

Some author also consider $\rho(x,y) \geq 0$ as an axiom in the list above, but, rigorously, it is a property deduced by the 3 axioms. By metric axiom M3, we have

$$\rho(x, y) + \rho(y, x) \ge \rho(x, x).$$

By M2, we have

$$\rho(x,y) + \rho(x,y) \ge \rho(x,x).$$

By M1, we have

$$2\rho(x,y) \ge 0.$$

Thus,

$$\rho(x,y) \ge 0.$$

So, if we are going to prove if an operation is a metric, this is an unnecessary progress.

Definition 1.1.2. Let (X, ρ) be a metric space, let $x \in X$, and let $\delta \in \mathbb{R}_{>0}$. The *open* δ -ball, or simply δ -ball, of x is defined as the set

$$B(x,\delta) = \{ y \in X : \rho(x,y) < \delta \}.$$

The "shape" of an open ball is determined by the metric and the set. In the 3-dimensional Euclidean metric space (\mathbb{R}^3, ρ) , for example, an open δ -ball of x is a sphere with x as its center and δ as its radius. But if ρ is a taxicap metric on \mathbb{R}^3 , i.e.,

$$\rho(x,y) = |x_1 - y_1| + |x_2 - y_2| + |x_3 - y_3|,$$

then, an open δ -ball of x is no longer a sphere, but a box with x as its center and 2δ as the length of it edges.

If < is replaced by \le in the definition, then we have the definition blew.

Definition 1.1.3. Let (X, ρ) be a metric space, let $x \in X$, and let $\delta \in \mathbb{R}_{>0}$. The *closed* δ -ball of x is defined as the set

$$\overline{B}(x,\delta) = \{ y \in X : \rho(x,y) \le \delta \}.$$

Note that, in the both definitions above, we have the condition $y \in X$. This means, open (closed) balls are always subsets of X. For example, let

$$X = [0, 1] \times [0, 1],$$

and let ρ be an Euclidean metric on X. In this case, B(0,1) is not a disk, but disk sector.

§1.2 Some Examples on Metric Spaces

Example 1.2.1. Some metrics do not care about the any geometrical length. For example, let $\rho : \mathbb{R}_{>0} \times \mathbb{R}_{>0} \to \mathbb{R}$ be defined as

$$\rho(x,y) = \begin{cases} \frac{x}{y} - 1 & : x \ge y; \\ \frac{y}{x} - 1 & : x < y, \end{cases}$$

then ρ is a metric on $\mathbb{R}_{>0}$ only cares about the ratio between any two points in the space.

There is another metric on $\mathbb{R}_{>0}$ which is quite similar. Let $\rho: \mathbb{R}_{>0} \times \mathbb{R}_{>0} \to \mathbb{R}_{\geq 0}$ be defined as

$$\rho(x,y) = \left| \log \left(\frac{x}{y} \right) \right|,$$

then ρ is a metric on $\mathbb{R}_{>0}$, and it can be proved by the properties of logarithm functions.

Example 1.2.2. The discrete metric ρ on X only cares about if any two points x and y in X coincide or not. That is,

$$\rho(x,y) = \begin{cases} 1 & : x \neq y; \\ 0 & : \text{else.} \end{cases}$$

Example 1.2.3. The 3-dimensional Euclidean metric space is one of p-product metric spaces. Let

$$X = \prod_{i=1}^{n} X_i.$$

Then, for any $p \in \mathbb{R}_{\geq 1}$, the p-product metric $\rho_p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is defined as

$$\rho_p(x,y) = \left(\sum_{i=1}^n \rho_i^p(x_i, y_i)\right)^{\frac{1}{p}},$$

where $\rho_i(x_i, y_i)$ can be the Euclidean metric on X_i for any $i \in \{1, ..., n\}$, but it is not required. Indeed, p-product metric spaces are metric space. It is easy to show that ρ_p satisfies the metric axiom 1 and 2. Now, we prove that the ρ_p satisfies the metric axiom 3. That is to show that

$$\left(\sum_{i=1}^{n} \rho_i(x_i, z_i)^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} \rho_i(x_i, y_i)^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} \rho_i(y_i, z_i)^p\right)^{\frac{1}{p}}$$

for any $x, y, z \in X$.

Proof. By Minkowski's inequality,

$$\left(\sum_{i=1}^{n} (\rho_i(x_i, y_i) + \rho_i(y_i, z_i))^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} \rho_i(x_i, y_i)^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} \rho_i(y_i, z_i)^p\right)^{\frac{1}{p}}.$$

As for any i, ρ_i is a metric on X_i . So ρ_i satisfies the open axiom 3. Thus,

$$\left(\sum_{i=1}^{n} \rho_i(x_i, z_i)^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} (\rho_i(x_i, y_i) + \rho_i(y_i, z_i))^p\right)^{\frac{1}{p}}.$$

That is,

$$\rho(x,z) \le \rho(x,y) + \rho(y,z),$$

which is precisely the metric axiom 3.

Example 1.2.4. Let M be a set of all bounded functions $S \to (T, \rho_T)$, where ρ_T is a metric on T. Here, we treat all of these functions as points in M. Let $\rho: M \times M \to \mathbb{R}$ be defined as

$$\rho(f,g) = \sup_{x \in S} \rho_T(f(x), g(x)),$$

Then ρ is a metric on M. It is actually easy to prove that ρ is indeed a metric on M. Take the metric axiom 3 for example.

Proof. Let $f, g, h \in M$, then we have

$$\rho(f,g) + \rho(g,h) = \sup_{x \in S} \rho_T(f(x), g(x)) + \sup_{x \in S} \rho_T(g(x), h(x))$$
$$= \sup_{x \in S} (\rho_T(f(x), g(x)) + \rho_T(g(x), h(x))).$$

As ρ_T satisfies the metric axiom 3, we have

$$\ldots \ge \sup_{x \in S} \rho(f(x), h(x)) = \rho(f, h).$$

Example 1.2.5. Let (M, ρ) be a metric space. Let $\rho_H : \mathcal{P}(M) \setminus \{\emptyset\} \to \mathbb{R}$ be defined as

$$\rho_H(X,Y) = \max \left\{ \sup_{x \in X} \rho(x,Y), \sup_{y \in Y} \rho(y,X) \right\},\,$$

where

$$\rho_H(a,B) = \inf_{b \in B} \rho(a,b).$$

 ρ_H is called *Hausdorff metric*. It measures how two subsets X and Y of M are similar.

§1.3 Bases of Sets

Definition 1.3.1. Let X be a set, and let $\mathcal{B} \subseteq \mathcal{P}(X)$.

 \mathcal{B} is a basis of X iff

- 1. \mathcal{B} is a cover of X, i.e., $X \subseteq \bigcup \mathcal{B}$; and
- 2. For any $B_1, B_2 \in \mathcal{B}$, there exists a $\mathcal{A} \subseteq \mathcal{B}$, such that $B_1 \cap B_2 = \bigcup \mathcal{A}$.

Note 1.3.1. Some authors also call bases of sets synthetics sets.

§1.4 Topological Spaces

There are actually at least two ways to define topological spaces: by open set axioms and by bases of sets. The first one might be the more popular one.

Definition 1.4.1. Let X be any set.

A collection $\mathcal{T} \subseteq \mathcal{P}(X)$ is a topology for X iff it satisfies the open set axioms:

- (O1): $X \in \mathcal{T}$;
- (O2): \mathcal{T} is closed under arbitrary union; explicitly,

$$\forall \mathcal{U} \subseteq \mathcal{T} : \bigcup \mathcal{U} \in \mathcal{T};$$

(O3): \mathcal{T} is closed under finite intersection; explicitly,

$$\forall \mathcal{F} \subseteq \mathcal{T}: |\mathcal{F}| \in \mathbb{N}: \bigcap \mathcal{F} \in \mathcal{T}.$$

The ordered pair (X, \mathcal{T}) is a topological space iff \mathcal{T} is a topology for X. A subset $U \subseteq X$ is an open set of (X, \mathcal{T}) , or an open subset of X, iff $U \in \mathcal{T}$.

Another way to define topological spaces is to consider any topological space as a collection *generated* by a basis of the given set. Given any set X, a basis \mathcal{B} of X is a cover of X, where for any $A, B \in \mathcal{B}$, $A \cap B$ can be considered as the union of an $\mathcal{S} \subseteq \mathcal{B}$; i.e.,

$$A \cap B = \bigcup S$$
.

For example, if (X, ρ) is a metric space, then the set of all open balls in (X, ρ) is a basis of X.

Lemma 1.4.1. Let X be any set, and let $\mathcal{T} \subseteq \mathcal{P}(X)$.

Then, \mathcal{T} is a topology for X if and only if there exists a basis \mathcal{B} of X such that

$$\mathcal{T} = \left\{ \bigcup \mathcal{A} : \mathcal{A} \subseteq \mathcal{B} \right\}.$$

Proof. Assume \mathcal{T} is a topology for X, then \mathcal{T} itself is a basis of X. (Why?) Then,

$$\mathcal{T} = \left\{\bigcup \mathcal{A} : \mathcal{A} \subseteq \mathcal{T}\right\}.$$

On the other hand, assume there is a basis \mathcal{B} of X such that $\mathcal{T} = \{\bigcup \mathcal{A} : \mathcal{A} \subseteq \mathcal{B}\}$. As \mathcal{B} is a cover of X and $\mathcal{B} \subseteq \mathcal{B}$, we have $X = \bigcup \mathcal{B} \in \mathcal{T}$. So \mathcal{T} satisfies the open set axiom O1.

Let $\mathcal{U} \subseteq \mathcal{T}$. For any $U \in \mathcal{U}$, let $\mathcal{A}_U \subseteq \mathcal{B}$ such that $U = \bigcup \mathcal{A}_U$. Thus

$$\bigcup \mathcal{U} = \bigcup_{U \in \mathcal{U}} \left(\bigcup \mathcal{A}_U \right) = \bigcup \left(\bigcup_{U \in \mathcal{U}} \mathcal{A}_U \right).$$

The union in the bracket is a subset of \mathcal{B} , so $\bigcup \mathcal{U} \in \mathcal{T}$. Thus, open set axiom 2 is satisfied.

Let
$$U, V \in \mathcal{T}$$
. Then there exists $\mathcal{A}_U, \mathcal{A}_V \mathcal{B}$

====

Even if \mathcal{T} is an infinite topology on an infinite set X, \mathcal{T} is not needed to be closed under infinite intersection. For example, let \mathcal{T}

$$\mathcal{T} = \{ [0, r) : r \in \mathbb{R} \}.$$

then \mathcal{T} is a topology for $\mathbb{R}_{\geq 0}$. The collection

$$\left\{ \left[0, \frac{1}{i}\right) \right\}_{i \in \mathbb{Z}_{>0}}$$

is a subset of \mathcal{T} , but its intersection is $\{0\} \notin \mathcal{T}$.

Lemma 1.4.2. Let (X, \mathcal{T}) be a topological space. Then, $\emptyset \in \mathcal{T}$.

Proof. As \emptyset is a subset of any set, $\emptyset \subseteq \mathcal{T}$. By the open set axiom 2, we have

$$\emptyset = \bigcup \emptyset \in \mathcal{T}.$$

Example 1.4.1. Let $X = \{1, 2, 3\}$, and let

$$\mathcal{B} = \{\{1, 2\}, \{2, 3\}, \{2\}\},\$$

and let $\mathcal{T} = \{ \bigcup \mathcal{A} : \mathcal{A} \subseteq \mathcal{B} \}$, then \mathcal{T} is a topology for X.

Definition 1.4.2. Let X be any set, and let \mathcal{T}_1 and \mathcal{T}_2 be topologies on X. \mathcal{T}_1 is said to be *finer* than \mathcal{T}_2 , or \mathcal{T}_2 is said to be *coarser* than \mathcal{T}_1 iff $\mathcal{T}_2 \subseteq \mathcal{T}_1$.

Example 1.4.2. For any set X, the power set $\mathcal{P}(X)$ can be considered as a topology for X, called *discrete topology*. It is the *finest topology* on X.

Example 1.4.3. For any set X, the collection $\{\emptyset, X\}$ is a topology for X. It is called *indiscrete topology*, or *trivial topology*, which is the coarsest topology on X.

Definition 1.5.1. Let (X, \mathcal{T}) be a topological space, and let $U \subseteq X$.

The *interior* of A, denoted A° or $\operatorname{int}(A)$, in (X, \mathcal{T}) is defined as the union of all open sets contained in A. Explicitly, int_X can be considered as a mapping from $\mathcal{P}(X)$ to $\mathcal{P}(X)$, defined as

$$\operatorname{int}_X(A) := \bigcup (\mathcal{P}(A) \cap \mathcal{T}).$$

Note 1.5.1. Finding the interior of a subset requires the definition of the topology for the set. I mean, even for the same set X and the same subset $A \subseteq X$, if there are two different topologies \mathcal{T}_1 and \mathcal{T}_2 for X, the interior of A in (X, \mathcal{T}_1) and (X, \mathcal{T}_2) might be different. For example, in \mathbb{R} , let \mathcal{T}_1 be indiscrete topology for \mathbb{R} , and let \mathcal{T}_2 be the Euclidean topology for \mathbb{R} , then,

$$\operatorname{int}_{\mathcal{T}_1}([0,1)) = \emptyset$$
, and $\operatorname{int}_{\mathcal{T}_2}([0,1)) = (0,1)$,

where $\operatorname{int}_{\mathcal{T}_1}(\cdot)$ and $\operatorname{int}_{\mathcal{T}_2}(\cdot)$ denotes the interior mapping for (X, \mathcal{T}_1) and (X, \mathcal{T}_2) respectively.

Note 1.5.2. By the definition, it is clear that for any topology (X, \mathcal{T}) and for any $A \subseteq X$, $int(A) \in \mathcal{T}$.

Lemma 1.5.1. Let (X, \mathcal{T}) be a topological space, let $A \subseteq X$, and let $U \in \mathcal{T}$. Then, $U \subseteq A$ if and only if $U \subseteq \text{int}(A)$.

Proof. As $U \in \mathcal{P}(A)$ and $U \in \mathcal{T}$, $U \in \mathcal{P}(A) \cap \mathcal{T}$. Thus,

$$U \subseteq \bigcup (\mathcal{P}(A) \cap \mathcal{T}) = \operatorname{int}(A).$$

Conversely, as $int(A) \subseteq A$, as $U \subseteq int(A)$, $U \subseteq A$.

Lemma 1.5.2. Let (X, \mathcal{T}) be a topological space, and let $A \subseteq X$. int(A) = A if and only if $A \in \mathcal{T}$.

Proof. If int(A) = A, then $A = \bigcup (\mathcal{P}(A) \cap \mathcal{T})$. As $\mathcal{P}(A) \cap \mathcal{T} \subseteq \mathcal{T}$, this union is an element of \mathcal{T} .

Conversely, as $A \in \mathcal{P}(A)$ and $A \in \mathcal{T}$, $A \in \mathcal{P}(A) \cap \mathcal{T}$. For any $U \in \mathcal{P}(A)$, $U \subseteq A$. Then, we have $A \supseteq \bigcup (\mathcal{P}(A) \cap \mathcal{T})$; and as $A \subseteq \bigcup (\mathcal{P}(A) \cap \mathcal{T})$, we have

$$A = \bigcup (\mathcal{P}(A) \cap \mathcal{T}) = \operatorname{int}(A).$$

Lemma 1.5.3. Let (X, \mathcal{T}) be a topological space, and let $A, B \subseteq X$. Then,

$$int(A \cap B) = int(A) \cap int(B).$$

Proof. Let $U \subseteq int(A \cap B)$. Then,

$$U \subseteq \operatorname{int}(A \cap B) = \bigcup (\mathcal{P}(A \cap \mathcal{B}) \cap \mathcal{T}).$$

Note that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$, so $U \in \mathcal{P}(A \cap B) \cap \mathcal{T}$ iff $U \in \mathcal{P}(A) \cap \mathcal{T}$ and $\mathcal{P}(B) \cap \mathcal{T}$. We have

$$U \subseteq \bigcup (\mathcal{P}(A \cap \mathcal{B}) \cap \mathcal{T}) \iff U \subseteq \bigcup (\mathcal{P}(A) \cap \mathcal{T}) \wedge U \subseteq \bigcup (\mathcal{P}(B) \cap \mathcal{T})$$
$$\iff U \subseteq \operatorname{int}(A) \wedge U \subseteq \operatorname{int}(B)$$
$$\iff U \subseteq \operatorname{int}(A) \cap \operatorname{int}(B).$$

Thus, $int(A \cap B) = int(A) \cap int(B)$.

§1.6 Bases for Topologies

Definition 1.6.1. Let (X, \mathcal{T}) be a topological space.

A collection $\mathcal{B} \subseteq \mathcal{T}$ is an analytic basis for \mathcal{T} iff for any $U \in \mathcal{T}$, there is an $\mathcal{A} \subseteq \mathcal{B}$, such that

$$U = \bigcup A.$$

Lemma 1.6.1. Let (X, \mathcal{T}) be a topological space.

A collection $\mathcal{B} \subseteq \mathcal{T}$ is an analytic basis for \mathcal{T} iff for any $U \in \mathcal{T}$ and for any $x \in U$, there exists a $B \subseteq \mathcal{B}$, such that

$$x \in B \subseteq \mathcal{B}$$
.

Proof. Let \mathcal{B} be an analytic basis for \mathcal{T} .

As \mathcal{B} is a basis for \mathcal{T} , for any $U \in \mathcal{T}$, there exists a $B' \subseteq \mathcal{B}$ such that $U = \bigcup \mathcal{B}'$, which implies that for any $B' \in \mathcal{B}$, $B' \subseteq U$.

Conversely, let $\mathcal{B} \subseteq \mathcal{T}$ satisfies the condition after "iff".

Let $U \in \mathcal{T}$. For any $x \in U$, let $B_x \in \mathcal{B}$ with $x \in B_x \subseteq U$.

As $\bigcup \{x\}_{x \in U} = U$, and $\{x\} \subseteq B_x$, we have

$$U \subseteq \bigcup_{x \in U} B_x.$$

As every $B_x \subseteq U$, we have

$$\bigcup_{x \in U} B_x \subseteq U.$$

Thus,

$$U = \bigcup_{x \in U} B_x.$$

======

Note 1.6.1. Explicitly, 2 can be considered as: for any $B_1, B_2 \in \mathcal{B}$, and for any $x \in B_1 \cap B_2$, there exists a $B_x \in \mathcal{B}$, such that

$$x \in B_x \subseteq B_1 \cap B_2$$
.

(Why?)

Note 1.6.2. \emptyset is not necessary be an element of \mathcal{B} .

Lemma 1.6.2. Let (X, \mathcal{T}) be a topological space, and let \mathcal{B} be an analytic basis for \mathcal{T} .

Then, \mathcal{B} is a synthetic basis of X.

Proof. Let $B_1, B_2 \in \mathcal{B}$.

As \mathcal{B} is an analytic basis for \mathcal{T} , $\mathcal{B} \subseteq \mathcal{T}$, thus $B_1 \cap B_2 \in \mathcal{T}$.

Thus, there exists an $A \subseteq \mathcal{B}$, such that

$$B_1 \cap B_2 = \bigcup \mathcal{A}.$$

This precisely satisfies the definition of synthetic basis.

Lemma 1.6.3. Let X be any set, and let \mathcal{B} be a synthetic basis of X.

Let

$$\mathcal{T} = \left\{ \bigcup \mathcal{A} : \mathcal{A} \subseteq \mathcal{B} \right\}.$$

Then, \mathcal{T} is a topology for X.

Proof. As \mathcal{B} is a synthetic basis of X, $X \subseteq \bigcup \mathcal{B}$. As $\mathcal{B} \subseteq \mathcal{P}(X)$, $\bigcup \mathcal{B} \subseteq X$. Thus, $X = \bigcup \mathcal{B} \in \mathcal{T}$.

Let $\mathcal{U} \subseteq \mathcal{T}$. For any $U \in \mathcal{U}$, there exists an $\mathcal{A}_U \subseteq \mathcal{B}$, such that $U = \bigcup \mathcal{A}_U$. We have

$$\bigcup \mathcal{U} = \bigcup \left\{ \bigcup \mathcal{A}_{U} \right\}_{U \in \mathcal{U}}$$
$$= \bigcup \left(\bigcup \left\{ \mathcal{A}_{U} \right\}_{U \in \mathcal{U}} \right)$$

As for any $U \in \mathcal{U}$, $A_U \subseteq \mathcal{B}$, thus,

$$\mathcal{U} = \bigcup \{\mathcal{A}_U\}_{U \in \mathcal{U}} \subseteq \mathcal{B}.$$

Thus, $\bigcup \mathcal{U} \in \mathcal{T}$. Therefore, \mathcal{T} is closed under arbitrary union.

Let \mathcal{V} be a finite subset of \mathcal{T} . For any $V \in \mathcal{U}$, there exists an $\mathcal{A}_V \subseteq \mathcal{B}$, such that $U = \mathcal{A}_V$.

We have

$$\bigcap \mathcal{V} = \bigcap \left\{ \bigcup \mathcal{A}_{V} \right\}_{V \in \mathcal{U}}$$
$$= \bigcap \left(\bigcup \left\{ \mathcal{A}_{V} \right\}_{V \in \mathcal{U}} \right).$$

Similar to what we have proved above,

$$\mathcal{V} = \bigcup \{\mathcal{A}_V\}_{V \in \mathcal{V}} \subseteq \mathcal{B}.$$

Thus, $\bigcap \mathcal{V} \in \mathcal{T}$. Therefore, \mathcal{T} is closed under finite intersection.

Lemma 1.6.4. Let X be any set, and let \mathcal{C} be a cover of X.

The collection

$$\mathcal{B} = \left\{ \bigcap \mathcal{A} : \mathcal{A} \subseteq \mathcal{C} \land |\mathcal{A}| \in \mathbb{N} \right\}$$

is a synthetic basis of X.

Proof. Let $B_1, B_2 \in \mathcal{B}$. There exist $\mathcal{U}, \mathcal{V} \subseteq \mathcal{C}$, such that $B_1 = \bigcup \mathcal{U}$ and $B_2 = \bigcup \mathcal{V}$. Then, we have

$$B_1 \cap B_2 = \bigcup_{U \in \mathcal{U}} U \cap \bigcup_{V \in \mathcal{V}} V$$
$$= \bigcup \{U \cap V\}_{U \in \mathcal{U}, V \in \mathcal{V}}.$$

 $\{U,V\}\subseteq\mathcal{C}$, so $U\cap V\in\mathcal{B}$. As U and V are arbitrarily taken from \mathcal{U} and \mathcal{V} respectively, $\{U\cap V\}_{U\in\mathcal{U},V\in\mathcal{V}}\subseteq\mathcal{B}$.

Therefore, for any $B_1, B_2 \in \mathcal{B}$, there exists a finite $\mathcal{A} \subseteq \mathcal{B}$, such that $B_1 \cap B_2 = \bigcap \mathcal{A}$.

Note 1.6.3. In this note, we say that C generates B.

Note 1.6.4. If \mathcal{C} generates the synthetic basis \mathcal{B} , then \mathcal{B} is the smallest synthetic basis containing \mathcal{C} . (Why?)

Definition 1.6.2. Let (X, \mathcal{T}) be a topological space, and let \mathcal{B} be a synthetic basis of X.

 \mathcal{T} is generated by \mathcal{B} iff

$$\mathcal{T} = \left\{ \bigcup \mathcal{A} : \mathcal{A} \subseteq \mathcal{B} \right\}.$$

Example 1.6.1. In \mathbb{R}^n , for any $\mathbf{x} \in \mathbb{R}^n$, define

$$B(\mathbf{x}, \delta) = \{ \mathbf{y} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{y}|| < \delta \land \delta \in \mathbb{R}_{>0} \}.$$

Let \mathcal{B} be the set of all such $B(\mathbf{x}, \delta)$, then, \mathcal{B} is a synthetic basis of \mathbb{R}^n , and it generates the *Euclidean topology* for X.

Example 1.6.2. In \mathbb{R}^n , let \mathcal{I} be the set of all open intervals. \mathcal{I} is a synthetic basis of \mathbb{R}^n , and it also generates the Euclidean topology for \mathbb{R}^n .

Example 1.6.3. An ordered set (X, \preceq) is a set X together with an ordering \preceq defined on X. That is, for any $x, y, z \in X$,

- (i) (reflexive) $x \leq x$;
- (ii) (transitive) $x \leq y$ and $y \leq z$ implies $x \prec z$;
- (iii) (antisymmetric) $x \leq y$ and $y \leq x$ implies x = y.

 (X, \preceq) is an totally ordered set iff \preceq is connected. That is, for any $x, y \in X$, $x \neq y$ implies $x \prec y$ or $y \prec x$.

Now, let (X, \preceq) be a totally ordered set, and let

$$\mathcal{A} = \{ X_{\prec x} : x \in X \} \cup \{ X_{\succ x} : x \in X \} .$$

Let \mathcal{B} be the synthetic basis generated by \mathcal{A} .

Then, \mathcal{B} generates an order topology for X.

If \leq is \leq on \mathbb{R} , then, the order topology for \mathbb{R} is exactly the same as its Euclidean topology.

Let

$$\mathcal{X} = \left\{ \prod_{i=1}^{n} \mathbb{R}_{< x_i} \right\} \cup \left\{ \prod_{i=1}^{n} \mathbb{R}_{> x_i} \right\},\,$$

let \mathcal{B} be the synthetic basis for \mathbb{R}^n generated by \mathcal{X} . Then \mathcal{B} also generates the Euclidean topology for \mathbb{R}^n

Note 1.6.5. In the example above, if (X, \preceq) is an ordered set, but the connectedness of \preceq is not required, then \mathcal{A} is not a cover of X, and it generates no synthetic basis of X.

Example 1.6.4. For any totally ordered set (X, \preceq) , the discrete topology for X can be generated by either the collection of all closed intervals in X or the collection of all singletons in X.

Example 1.6.5. Let (X, \preceq) be a totally ordered set, and let C be a countable subset of X. The set

$$\mathcal{A} = \{ X_{\prec x} : x \in C \}$$

is a countable synthetic basis of X, and it generates a countable topology for X.

Example 1.6.6. Let X be an countably infinite set, and let \mathcal{B} be the partition of X. As \mathcal{B} is a synthetic basis for X, let \mathcal{T} be the topology generated by \mathcal{B} .

Then, $|\mathcal{T}| = |\mathcal{P}(\mathcal{B})| = 2^{|\mathcal{B}|}$. Thus,

- (i) \mathcal{T} is finite iff \mathcal{B} is finite;
- (ii) \mathcal{T} is uncountable iff \mathcal{B} is infinite (even if \mathcal{B} is just countably infinite).
- (iii) \mathcal{T} can not be countably infinite.