SS2021

PPBphys1 -

Polarisation

Charlotte Geiger - Manuel Lippert - Leonhard Schatt —

Gruppe 4

Informationen

Versuchstag 19.05.2021

 $Versuch splatz NWII \mid 2.1.02.669$

Betreuer Moritz Heindl

Gruppen Nr.

Auswertperson Charlotte Geiger

Messperson Manuel Lippert

Protokollperson Leonhard Schatt

Inhaltsverzeichnis

1	Einleitung	5
2	Fragen zur Vorbereitung	6
	2.1 Allgemeines	6
	2.2 Zusammenhang von Intensität und elektrischem Feld	8
	2.3 Fresnel'sche Formeln für Spezialfälle	8
	2.4 Intensität der Streustrahlung	10
	2.5 Winkelabhängigkeit der Rayleigh-Streustrahlung	11
	2.6 Starke Vorwärtsstreuung bei der Miestreuung	12
3	Messprotokoll	14
4	Auswertung und Diskussion	22
	4.1 Reflexion an Glas	22
	4.2 Mie-Streuung	26
5	Fazit	32

1 Einleitung

Licht ist etwas, das uns tagtäglich umgibt-sowohl im Freien oder hinter Fenstern durch das Sonnenlicht oder in der Nacht durch die Glühbirnen in den Lampen. Das uns dadurch auch die Phänomene der Brechung, Beugung und Polarisation des Lichts begegnen ist uns meistens nicht bewusst. Und doch ist bieten sie ziemlich wichtige Erkenntnisse. Beispielsweise kann man dadurch Spannungsanalyse an transparenten Kunststoffen durchführen, was unter anderem auch bei Spannungsanalysen bei älteren Brücken verwendet wird, wodurch die Stabilität gemessen wird. Auch kommt man damit in Kinos in Berührung, durch die 3D-Brillen, wenn man sich einen Film anschaut mit 3D Effekten oder beim Aufsetzen von Sonnenbrillen.

Dad wir recht häufig mit diesen Phänomenen in Berührung kommen, ist es sinnvoll, sich mit diesem Phänomen näher auseinanderzusetzen. In diesem Versuch lernen wir die Eigenschaften linear polarisiertes Licht eines Lasers bezüglich Reflexion und Streuung kennen. Wir messen den Brewsterwinkel und berechnen daraus die Intensitätsdifferenzen der Einfallenden im Gegensatz zur reflektierten Intensität. Auch berechnen wir den Brechungsindex des Glases und berechnen mit Hilfe der Miestreuung die Größe kugelförmiger Polystyrol-Teilchen.

2 Fragen zur Vorbereitung

2.1 Allgemeines

Polarisation durch Reflexion

Bei Auftreffen von unpolarisiertem Licht - zum Beispiel von einer Glühbirne oder von der Sonne - auf eine Glasplatte teilt sich das Licht in einen reflektierten und einen gebrochenen Lichtstrahl auf. Der reflektierte Strahl ist linear polarisiert, wenn der Winkel zwischen reflektiertem in gebrochenem Strahl dem Brewster-Winkel entspricht. Dieser beträgt 90 Grad. Ist diese Voraussetzung nicht erfüllt, so entsteht nur teilweise Polarisation. ¹

Polarisation durch Brechung und Doppelbrechung

Eine Möglichkeit für die Polarisation durch Brechung ist bei Eintritt von Lichtstrahlen in bestimmte Kristalle, beispielsweise Quarze. Licht wird hierauf je nach seiner Schwingungsrichtung in verschiedener Weise gebrochen, sind aber immer linear polarisiert. Kristalle weisen die Eigenschaft auf, dass sie in unterschiedliche Richtungen unterschiedlich das Licht brechen. Dieses Verhalten nennt man optisch anisotrop. Bei solchen Materialien tritt Doppelbrechung auf. Aber auch bei optisch isotropen Medien (beispielsweise Glas oder Wasser) kann Doppelbrechung vorkommen. Dieses Phänomen ist bei Verformung des Materials durch Zug- und/oder Druckkräfte zu beobachten, was man als Spannungsdoppelbrechung bezeichnet. ²

http://www.chemgapedia.de/vsengine/vlu/vsc/de/ph/14/ep/einfuehrung/wellenoptik/polarisation_b.vlu.html

²https://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/polarisation-von-licht-durch-reflexion-und-brechung

Polarisation durch Streuung

Auch durch Streuung kann polarisiertes Licht erzeugt werden. Je nach Polarisationsrichtung wird Licht an einem sogenannten Streuzentrum unterschiedlich stark in unterschiedliche Richtungen gestreut. Das Streuzentrum ist beispielsweise ein Atom oder ein Molekül. Fällt unpolarisiertes Licht auf solch ein Streuzentrum, so wird es angeregt und das Licht wird gestreut. Da die Streurichtung ungleich der Einfallsrichtung ist, so kann man folgendes Phänomen erkennen: Das in y-Richtung gestreute Licht wird vollständig linear in z-Richtung, das in z-Richtung abgestrahlte Licht in y-Richtung polarisiert. Daher erkennt man in bestimmten Raumrichtungen linear polarisiertes Licht.

Funktionsweise von Polarisationsfiltern

Die Filter bestehen aus langen, parallel ausgerichteten Kettenmolekülen. Durch das Eintreten von unpolarisiertem Licht werden die Kettenmoleküle durch die dazu parallelen elektromagnetischen Wellen angeregt, wodurch die Welle absorbiert wird. Die zu den Kettenmolekülen senkrecht schwingende Wellen können die Moleküle nicht anregen, wodurch nur parallele Wellen absorbiert werden. Daher filtern Polarisationsfilter nur Licht bestimmter Polarisationsrichtung aus. Bei senkrechter Verdrehung von zwei identischen Polarisationsfiltern erkennt man eine deutliche Verdunklung, da dadurch zwei senkrecht zueinander stehende Wellen absorbiert wurden. ⁴

Definition Polarisationsgrad

Der Polarisationsgrad entspricht dem Verhältnis der Intensität des polarisierten Lichtanteils zur Gesamtintensität des Lichtes. ⁵

 $^{^3}$ https://www.leifiphysik.de/optik/polarisation/ausblick/polarisation-durch-streuung

 $^{^4 \}mathtt{https://www.leifiphysik.de/optik/polarisation/grundwissen/polarisation-von-licht-einfuehrung}$

⁵https://www.spektrum.de/lexikon/optik/polarisationsgrad/2622

2.2 Zusammenhang von Intensität und elektrischem Feld

Intensität wird in der Physik die Größe genannt, die die Flächenleistungsdichte beim senkrecht zur Ausbreitungsrichtung zeigende Transport von Energie beschreibt. Die Intensität wird im Versuch durch eine Photodiode gemessen.

$$I = c\epsilon_0 E^2 \tag{2.1}$$

Mit dem elektrischen Feld E, beschrieben durch eine zeitlich periodische Funktion mit der Amplitude: $E = \sqrt{E_{\parallel}^2 + E_{\perp}^2}$, der Intensität $I = \frac{\epsilon_0 \epsilon_{\rm m} c_0}{2n_{\rm m}} E^2$ und Medium m. Gemessen wird das zeitliche Mittel der Intensität I ⁶

2.3 Fresnel'sche Formeln für Spezialfälle

$$\varphi = 0 \rightarrow \psi = 0$$

Für die Fresnelschen Formeln gilt:

$$\begin{split} \frac{E_{\mathrm{r},\parallel}}{E_{\mathrm{e},\parallel}} &= \frac{n_2 - n_1}{n_2 + n_1} \\ \frac{E_{\mathrm{t},\parallel}}{E_{\mathrm{e},\parallel}} &= \frac{2n_1}{n_2 + n_1} \\ \frac{E_{\mathrm{r},\perp}}{E_{\mathrm{e},\perp}} &= \frac{n_1 - n_2}{n_2 + n_1} \\ \frac{E_{\mathrm{t},\perp}}{E_{\mathrm{e},\perp}} &= \frac{2n_1}{n_2 + n_1} \end{split}$$

Betragsmäßig unterscheiden sich die senkrechte und parallele Richtung des reflektierten und transmittierten Anteil bezüglich des Einfallsstrahls nicht und verhalten sich gleich. Der Grund dafür ist, dass die rotationssymmetrische Aufbauweise keine Vorzugsrichtung aufweist.

Nun betrachten wir die Energieerhaltung, die über folgende Formeln gegeben ist:

$$\begin{split} E_{\mathrm{r},\parallel} + \frac{n_2}{n_1} E_{\mathrm{t},\parallel} &= E_{\mathrm{e},\parallel} \\ E_{\mathrm{r},\perp} + \frac{n_2}{n_1} E_{\mathrm{t},\perp} &= E_{\mathrm{e},\perp} \end{split}$$

Der Faktor $\frac{n_2}{n_1}$ wird durch den Medienwechsel notwendig. Zu erkennen ist nun, dass der reflektierte Anteil steigt, je größer der Unterschied zwischen den Brechindices ist.

⁶Demtroder S. 188, 7.6

Bei mit betrachten des Winkels, muss man den Faktor $\frac{n_2}{n_1}$ um den Faktor $\frac{cos\psi}{cos\varphi}$ erweitern. Beide Richtungen der Polarisation verhalten sich gleich, wodurch man feststellt, dass sich durch senkrechten Durchgang keine Polarisationsgradänderung ergibt bzw. diese nicht möglich ist. Dadurch folgt: P=const

Brewster Gesetz und Brewsterflächen

Das Brewster Gesetz lässt sich aus der Abstrahlcharakteristik der atomaren Dipole und dem snelliusschen Brechungsgesetz herleiten. Für die Herleitung wird meist angenommen, dass der Strahl von dem Medium Luft mit Brechindex $n_1 = 1$ auf ein Medium aus einem anderer Material mit Brechindex n_2 fällt.

Die Definition des Brewster-Winkels lautet wie in Frage zur Vorbereitung 1 schon beschrieben folgendermaßen:

$$Theta_1 = \Theta_b \Theta_2 = 90^o - \Theta_B \tag{2.2}$$

Das Reflexionsgesetz besagt, dass Einfallswinkel | $Theta_1$ gleich Reflexionswinkel Θ_a sein muss. Eingesetzt in die das snelliussche Brechungsgesetz:

$$n_1 sin(\Theta_1) = n_2 sin(\Theta_2) \tag{2.3}$$

folgt nach umstellen das Brewstersche Gesetz:

$$n_1 sin(\Theta_{\rm B}) = n_2 sin(90^o - \Theta_{\rm B}) = n_2 cos(\Theta_{\rm B})$$
 \rightarrow $n_1 = arctan(\frac{n_2}{n_1})$ (2.4)

$$\varphi + \psi = \frac{\pi}{2}$$

Nun betrachten wir den Sonderfall des Brewsterwinkel. Damit gilt mit den trigonometrischen Umformungen $sin(\psi) = cos(\varphi)$ und analog $sin(\varphi) = cos(\psi)$:

$$\begin{split} \frac{E_{\mathrm{r},\parallel}}{E_{\mathrm{e},\parallel}} &= \frac{n_2 cos(\varphi) - n_1 sin(\varphi)}{n_2 cos(\varphi) + n_1 sin(\varphi)} = \frac{n_2 cos(\varphi) - n_2 cos(\varphi)}{2n_2 cos(\varphi)} = 0 \\ \frac{E_{\mathrm{r},\perp}}{E_{\mathrm{e},\perp}} &= \frac{n_1 cos(\varphi) - n_2 sin(\varphi)}{n_2 cos(\varphi) + n_1 sin(\varphi)} = \frac{n_1 - \frac{n_2^2}{n_1}}{n_1 + \frac{n_2^2}{n_1}} = \frac{n_1^2 - n_2^2}{n_1^2 + n_2^2} \\ \frac{E_{\mathrm{t},\parallel}}{E_{\mathrm{e},\parallel}} &= \frac{2n_1 cos(\varphi)}{2n_2 cos(\varphi)} = \frac{n_1}{n_2} \\ \frac{E_{\mathrm{t},\perp}}{E_{\mathrm{e},\perp}} &= \frac{2n_1 cos(\varphi)}{n_2 sin(\varphi) + n_1 cos(\varphi)} = \frac{2n_1^2}{n_2^2 + n_1^2} \end{split}$$

Man sieht aus den Ergebnissen, dass der parallele Anteil komplett transmittiert und überhaupt gar nicht reflektiert wird. Daher ist der reflektierte Strahl komplett polarisiert. Somit gilt: $P_{\rm r}=1$. Das ist auch die Besonderheit bei Brewsterwinkeln, dass der reflektierte Lichtstrahl senkrecht zur Einfallsebene polarisiert ist.

Dieses Phänomen wird viel in der Physik genutzt. Beispielsweise im Laser findet es Anwendung. Das sogenannte Brewster-Fenster funktioniert durch parallel zur Einfallslinie polarisierten Lichtfall, der durch eine im Brewsterwinkel zum Licht stehende Glasplatte bzw. einen Lichtkristall, fällt. Somit wird der Polarisationsgrad gesteigert, ohne die Intensität zu schwächen. $^{7-8-9}$

Abbildung 2.1: Reflexions-/Transmissionsvermögen R,T für die Grenzfläche Luft n=1 und Glas n=1,5. Auf Grenzfläche einfallendes Licht von der Luftseite (=Seite des niedrigeren Brechungsindex) (links) und von der Glasseite (=Seite des höheren Brechungsindex) (rechts)

2.4 Intensität der Streustrahlung

Für die Rayleigh-Streuung muss man sich zuerst der Schwingungseigenschaft von Luftmolekülen auseinandersetzen. Wie oben schon angedeutet können Moleküle nur in bestimmte Richtungen schwingen. Bei Anregung von Luftmolekülen entstehen induzierte elektrische Dipolschwingungen, die sogenannten Hertzschen Dipole. Die zur Polarisationsrichtung im Abstand r abgestrahlte Feldstärke kann man folgendermaßen berechnen:

$$E = \frac{\omega^2 p}{4pi\varepsilon_0 c^2 r} \tag{2.5}$$

mit Frequenz ω des abgestrahlten Lichts

Anzahldichte der Moleküle: N

E-Feldvektor des angeregten Lichts: $E_{\rm in} = E_0 sin(\omega t)$

Polarisation: $P = (\varepsilon_r - 1) \cdot \varepsilon_0 E_{in}$

Induzierter Dipolmoment des Moleküls: $p = \frac{P}{N} = \frac{\varepsilon_{\rm r} - 1}{N} \cdot \varepsilon_0 E_{\rm in}$

⁷https://www.geothermie.de/bibliothek/lexikon-der-geothermie/b/brewsterwinkel-brewstergesetz.html

 $^{^{8} \}texttt{http://www.techniklexikon.net/d/brewster-fenster/brewster-fenster.htm}$

⁹https://de.wikipedia.org/wiki/Fresnelsche_Formeln

Gestreute Intensität (von Volumen mit N Molekülen): I=~ $NV \cdot \overline{E^2}$ $I_{\rm in} \sim \overline{E_{\rm in}}, \ \omega = \frac{2pic}{\lambda}, \ \varepsilon_{\rm r} = n^2, \ \overline{E_{\rm in}^2 = \frac{E_0^2}{2}}$

$$\frac{I}{I_{\rm in}} = \frac{NV\overline{E^2}}{S_{\rm in}^2} = \frac{\pi^2 V(n^2 - 1)sin^2(\vartheta)}{Nr\lambda^4}$$
(2.6)

Dadurch erkennt man, dass die Intensität indirekt proportional zur vierten Potenz der Wellenlänge ist. Je größer die Wellenlänge, desto kleiner die abgestrahlte Intensität. Da Blau eine kleine Wellenlänge hat von ca. 400 nm, so ist die abgestrahlte Intensität deutlich gößer, als beispielsweise rot mit der Wellenlänge von 700nm. Daher erscheint der Himmel blau. ¹⁰

2.5 Winkelabhängigkeit der Rayleigh-Streustrahlung

Die Lichtstreuung beruht allgemein darauf, dass durch die Lichtwelle im Dipole mit Ausrichtung in Polarisationsrichtung des Lichtes induziert werden. Die induzierten Dipole wiederum strahlen ein Lichtfeld der gleichen Frequenz ab. Die theoretische Winkelabhängigkeit der Streuintensität in der Streuebene ist je nach Polarisation des anregenden Lichts durch das Rayleigh-Gesetz vorgegeben. Nun diskutieren wir die Winkelabhängigkeit der Intensität der Rayleigh Streustrahlung anhand von Gleichung (7):

Intensität =
$$S(\delta) = AIsin^2(\delta)$$
 (2.7)

Mit der Quelle Demtröder S.321 der 7. Auflage folgt folgender Zusammenhang:

$$\overline{P_{\rm S}} = N\sigma_{\rm S}\overline{I} \tag{2.8}$$

 $\overline{P_{\rm S}}$ als Streuleistung, $A=N\sigma(\omega)$ als Frequenzabhängigkeit, σ als Streuquerschnitt und δ als betrachteter Winkel.

Daraus folgt:

$$I = I_0 sin^2(\delta) \tag{2.9}$$

Dadurch wird deutlich, dass der Winkel δ je nach Polarisationsrichtung variiert. Nun wird die Abhängigkeit der Polarisationsrichtung zur Streuebene betrachtet. Zuerst die Parallele Richtung: Aus der Abbildung erkennt man die geometrischen Zusammenhänge von $\delta = \frac{\pi}{2} - \Theta$. Damit folgt:

$$I(\Theta) = I_{0,\parallel} \cdot \sin^2(\frac{\pi}{2} - \Theta) = I_{0,\parallel} \cdot \cos^2(\Theta)$$
 (2.10)

$$\Rightarrow S_{0,\parallel} \cdot \cos^2(\Theta) \tag{2.11}$$

 $^{^{10}} https://home.uni-leipzig.de/pwm/teaching/ExPhys3_WS0809/script/EP3_jan22_09.pdf$

2 Fragen zur Vorbereitung

Nun betrachten wir die senkrechte Polarisationsrichtung im Bezug zur Streuebene Aus dieser Abbildung kann man sehen, dass δ für jedes Θ immer $\frac{\pi}{2}$ bleibt. Damit folgt:

$$I(\delta = \frac{\pi}{2}) = I_{0,\perp} \tag{2.12}$$

$$\Rightarrow S_{\perp}(\Theta) \sim AI_{0,\perp} \tag{2.13}$$

Man erkennt, dass die Folgerungen (parallel, bzw senkrecht) den Gleichungen Gl. 8 und Gl.9 im Skript entsprechen. Durch die Szstem-Symmetrie haben Rückwerts- und Vorwärtsstreuung die gleichen Werte. 11

2.6 Starke Vorwärtsstreuung bei der Miestreuung

Bei Lichtstreuung an festen Mikropartikeln beispielsweise Staub oder Rauch erkennt man eine elastische, kohärente Streuung. Diese Streuung von Licht an Teilchen mit einem ähnlich großen Durchmesser wie die Wellenlänge nennt man Mie-Lorentz Streuung. Die Intensität der Mie Streuung ist proportional zum quadrierten Durchmesser des streuenden Teilchens. Die gesamte gestreute Lichtintensität berechnet sich dann folgendermaßen:

$$I \propto \left| \sum_{K=1}^{N} A_{K}^{2} \right| \tag{2.14}$$

 $A_{\rm K}$ ist die Streuamplitude des K-ten Moleküls im Partikel mit N Molekülen Zustandekommen der starken Vorwärtsstreuung der Miestrahlung:

Für die Veranschaulichung der Mie-Streuung kann folgendes System betrachtet werden:

Abbildung 2.2: Normiere Winkelverteilung des Streulichtes eines Tropfens mit einem Durchmesser von $0,01~\mu m$ (links) und $0,1~\mu m$ (rechts) mit beiden Polarisationsrichtungen

 $^{^{11} {\}tt www.spektrum.de/lexikon/optik/rayleigh-streuung/2774}$

Durch geometrische Überlegungen werden folgende Zusammenhänge deutlich:

$$\begin{split} \Delta_{\text{vor}} &= \mid d - d cos(\Theta) \mid = d \mid 1 - cos(\Theta) \mid \\ \Delta_{\text{r\"{u}ck}} &= \mid d + d cos(\pi - \Theta_{\text{r}}) \mid = d \mid 1 - cos(\Theta_{\text{r}}) \mid \\ &\rightarrow \Delta = d \mid 1 - cos(\Theta) \mid \end{split}$$

Der Phasenversatz ist also eine Funktion von $1 - cos(\Theta)$. Man erkennt, dass man durch diese theoretische Vorüberlegung keinen Unterschied zwischen Vorwärts und Rückwärts-Streurichtung ausmachen kann.

Bei den bisherigen Überlegungen haben wir den Abstand d
 als konstant angenommen. Dies gilt jedoch nur in der Theorie, da sich Teilchen in der Theorie durch thermische Bewegungen bzw. Schwingungen immer bewegen und sich so der Abstand dauerhaft verändert. Dies ist einer der Gründe, weshalb die Miestrahlung vor allem nach vorne streut. Für die "wirkliche"Beschreibung der starken Vorwärtsstreuung der Miestrahlung und anderer Effekte bei Streuung an Partikeln nutzt man die relativ komplizierte Lorenz-Mie-Theorie. Diese Theorie ist eine mathematisch genaue Beschreibung verschiedenster Streuphänomene von elektromagnetischer Wellen an Teilchen und die genaue Lösung der Maxwell-Gleichungen für die Streuung einer ebenen elektromagnetischen Welle an einem beliebig großen Teilchen. Jedoch wird für die Streuung an kleinen Teilchen $\lambda\gg D$ meist die unkompliziertere Berechnung der Rayleigh Streuung genutzt, obwohl auch die Mie-Theorie dies abdeckt. Es werden durch die Mie-Theorie Lösungen gefunden, die verschiedene Geometrien und Formen haben (ähnlich zu den Legendre - Polynomen der Quantenmechanik). Diese Formen zeigen, dass die Vorwärtsstreuung meist größer ist, als die Rückwärtsstreuung. 12 13 14

¹²https://physik.cosmos-indirekt.de/Physik-Schule/Mie-Streuung

¹³Demtröder, Auflage 7, Kapitel 10.9.3, S.322

¹⁴http://webdoc.sub.gwdg.de/ebook/diss/2003/fu-berlin/1998/13/kap3.pdf

3 Messprotokoll

Das Messprotokoll wurde am Versuchstag handschriftlich erstellt und hier als PDF-Datei eingefügt.

Nachtrag

Fehler der Drehscheibe: 0.707°

Ro	ll	en	vec	te	lu	ng			4:	/	Yan	uel	?		A	: ,	Ch	al	ioe	ť		P:	1	ieo	250	mit			4	-37			Ť	78	-1		
De	- 1					~		100	Acres 1	100	11.0	March 1971						(5)	ide no		/	Ra	263	Y i	Be	שלו	e			Sec	73/1		1	9X)			
Ven	- 1													L																							
						ï																															
					c	19	40	134	0)																												
					Ι,	14	34	d	3	e	e					Z-	H	H	H																	+	_
						D	14	M	-	V	XI	2	AC	00	23			Ĺ	Ī																		
	34	o.i	37		103		-	1	154		30	166	65	260			×	2		28		rsd	4-		-1	6	q		- 74		J.		3	isd	r é	P	
	-		M1.	211		0=			d	00		10		0		1	2 9	12	nh	0			V I		5	279	N	.00	7,9		HIV	L	i See				
		0.0	1 11	CIL4	S'N		-	5		_		-						33													71				-		
				42	173	en)	100	613	2.1	5		žÆ.	ji) pri	10		108			101	Fire	-	0.0	170	0,5	Criti	-1		DE.			DX.	10.1	#	Πį	ÁD:		
75	sr	Œ.	d	32	22	i ca	1	100	hs	3 (e je		E	15	10.	1		73	42		3 :		4,1	126	-73	92	_ ?	94	1		10	-	A	M)	9	
	79	ey.	4		/K	75	in		157	ï	NI.	18	n	J II	9	E	,	ni	8 01.	Q:	nio.	k			èe	- 3	OT!	Ţ	÷		10.6		ń.		200	14.	
	s)	S.P.	2	3	10		- N		- As		180	70	120	43	6	ė.	0	de.		10		J	i c	an	e Tê		d	W.			-	ķa!	ą	J.		u	
					-		ŀ	H	t.	10		5	6 5		1	1		10	date.	W.	4.			Ш		3			2					Nuc	a		
1	2	CH	5	. 7	12	ns	k	+		ľ	L								1 8		115			b	-	1	l si		~	H.,	STREET	1	-	0.675	2001	¥	
			de	عدو	٦	(30	9	3)	i	N	00	le	ı	1	20	25	3 P	- :	2			Ė		L	W.	ġ.	00			200	Ler		33	OB.	×	
	-	al.	5/	1	SIS W	CH	(i	-	W	13	56.	18	30	21	16		ý	96	129	10	-	nc.		134		54	eg j	1/3	9	h	3-A	Sic	K	12	(0)	3	
				_		-	-	-								-				1				-	,	14. II	Ė	15		13	عر	3	591	k:	-7	ni	
	2.	624	140	ł.s	lei.			1	1	n id	į,		Į,		a	Δ	do	15	or (2	102	i	1	Ť	-ti		17	-	9Å	1		6		Q		3-	3	
						L	t	t	l	Ì	t				t	t	t	1		N/N	i Si	1	87.1	I VZ	224	77.5	107		nra.	-3	2.		Ľ	1			
dr.	77		764	00.	9	62	2	2	Ý			16		49	13	di.		to L	-	10	1	100	12/	0/5	lor.			14	10	52	27			7/	7.4	- 12 - 13 - 13	
				ľ	F		-	16	10		C).	15	h.		1 7	w	112	1		2		B	io			0	Ė	Jid	in a		J.	84		5	-	E	
	F	eh	00	c		t	Ì			İ	İ		L	İ	İ	İ	İ	İ	L	İ	İ	Ī		Ī			Ė						i	. 1	Ĺ		
			I	7	(N	Vi	a	it '		Sel	nu	30	n	CAY	2	C		s Z	u	W		13	S S	x n	1	1,0	12	01	/	s b	L		111		T.T		
H			Ų	25	ci	182		e h	-	V	/w	im	ec.		2	-		0	-	F	1					1,					-	Y					
u	Dio	kξ	28	che	ik			At	ole	æ f	ans	25	-	0	37	1	1	180		4	_)	F		F		F								
																	1	180		ex	90	120	unc	3/					L	İ	F		F	þ			
	T	H	N	-	Ab	ع					±						1		-	H	H										L						
					I			J	les	S	ehe	þŗ			0	0	23	26	1	4	P	00	1/5				L	F		F			F				Ē

1.2	Me-St	revuno			h				÷	\perp		-	1	Н									L
	Probe	F 7 1 1			lli'c	ha	-0/0	- 4		ine	000	~	(At	n De	=0,	-1	~	200	in.	1201	1D(I	901.	t
															7	4		No.			W.S.		
TPC.	Jufbou	i mai	de or	nsich	id	eru	sch	24		1.1	a	ng	300	العا	Hie	5 17	au C	tV	40	w	eu l		ŀ
Plei o	alksem	ADE	ทน	124	طاه		ne	باط	دراء	~ 0	4.1	2	hai	CO	- 5	00				5,51	+	+	f
	1 1 1 1 1 1						100	100				~			old. I	100	Шъ	en!	g i		pč II		
De	Probe	wied 9	ageith	D, S	oda	20 0	ler e	anfe	ulte	nde	. (das	RO	los	1Q	80	nou	+	عاني	1	-	-	H
Verst	erkung	200	dische	arvac	0	اهرا	10	54		Ťą.						E			-4				t
	3	3		יטייט	Ö	~						W	AD.		16				5	8	I		Ī
1- C	dia						.00		+	+		-	× -1						0		+	-	H
date	dieser sel die	HANSH	sury o	AT TO	C)	Jew	100	-00	CC	CAL	-01	-	NGO/	e	8	RE	1 dal	inc	-				1
-		1.00		2.000	7	S.VI					Ĩ		5/8		te	FI							I
								H		H	18	A.			10		35		100	i.			1
										51 = 7	u)		20 L		-				3	53	+		i
-								Ρj			N				Ph/				77-		V.		
										H	1	e,	3 /		7415			Н	34				
										+		T. W.			Ha	125	-	H		Ε	Ť	-	-
			ligi.				411			10					do			Ħ					
								Ш	d		Ш	ly.			10						_		L
				-13	4	-			H	10		1	4		-12	H	+	Н	Н	-	-	+	ŀ
									ī		Ħ				Ŧ	Н	Ť						Ī
	47											П											I
					4	-			-	1		19/	-	Н	-11	H	-	Н	Н		-	-	H
									+				+		1	H	-	Н				İ	Ť
									Į,						- 6								Ī
					4				4			-									-	1	H
Ven	wendet		- A	Abe n	Q.		P		H	VI A		-	P	Н	-		-		H		+	-	H
			20 11		g	44		П	T			7						П					Ī
Ver	Haker								1		V 1	Ac.			1 2						1		L
+						+			-				-	H	40		+	Н			+	-	H
									Ť		y.	11											t
									Ţ		7-		2 1			1							I
						-	-	H	+	-			+	H			+		2.1	-	+	+	H
									+				1	H	Ī	+	+	Н		+	+		t
K4	abgeson	en vo	on de	er u	دره	end	eta	PS	Sen	طح						П							I
	0								F					H				H		4	4	1	-
					H				+	+		-	-	H	-	\vdash	-	H		+	+		+
								Πĺ								П		П					İ
									1			1						Ш		4	4	1	Ļ
					H	-			+	+		+	+			+		-	H	+	+	+	H
					-	_		H	-	-		-	-	\vdash			-	+		-	-	-	+

Messwerte	Eu Jul			Bei	101:	Ubers	teast	- 1
				=> Bei	100 5	0,6	#6#±0,000	> 0
Intersitäten:	bei park	olker Poloris	noi tra	ohne {	Ros:	433		0,0
	THE PARTY	TAL AND DOLL -		Sec. 178		(Bei	Qargorer .	150
·Wirmer gas	Q°	50,			1/4	Bed	pachtura	į l
Winkel Dates				Messal - City	CVD	dest :	sich der T	101
1800	6735mV	5,08mV			- Ju	0.01.		
100	Contract of the Contract of th	0,000				-407	10/40	100
424000	Intellation	Spanning am u			7	-	70000000	-
White those	MAILEN DIOSE	spanning am u	usgeing		41-65			
F'0	160				V-1-11			-
5°	NO	- Drent	wedg, ch	1				-
- The -30		0000000						
is e	30%	0,9736V						
200	1 400	8297SOVI	Winkel	Paalle	Rd to	TANO	Peake = S	100
25	509	20,9+37V	P	nty Indian		-000		
260	GE	0/9800V				E last		
35 °	300	6,330mV						T
400	80	COLUMN I						
450	800	262						-
45/		Q.3624V						-
305	Loce	CX 449BY						+
539	110°	OISLAN		1-1-12				1
600	1200	O 560V		(A)				
∕ 6S°	1300	0/9/8V						
			Gen	ressen	mit Ve	Stirte	m	
(winked Reate	Whitel That	Spannuna in 1	, 0		10	8-1		- 10
1/30	500	2416,03mV						
200	405	3,53mV						
25°	808	138,03mV						-
20	00	0 100 TO 11						+
30°	600	3/36,79mV						+
35°	709	135/66mV			1			_
406	800	98,60mV	57				To the last	
450	900	98 60mV 55, 43mV						
509	1000	22,56mV						
550	1160	0,0062mV	(± 0,00	21/	- I o I			
600	120°	10,35 mV	1 9/0	- my /				
45	130	00 FQ. 11						+
70°		98,59 mV						+
	1400	295,2 mV	104 10	RUCH IS		SUIDAD.	(A) (5) (5) (5)	8/1/
75°	1560	830,6mV						
208	1600	1,5563V					- Asurana	8
850	1700	3,3626						
569	1/20	Q,68 mV		9-4-7		75716		
57°	1140	O. SimV	Gallania -					
540	1080	0,34 mV						\top
539	1060	8,22mV						1
3		0/2017				+		+
								+
								+
		34-36	Liviali	-1963VM	THE		denier.	10
							N -	
								+
								+
								+
						1 1 1		
								1

	0-7-11-1		
usabgechter Po Winkel in s	Mosser Wasser	Probe 1	Probe 2
Winder in 9	Spannung in V		
30	22 ()	194,50 167,69 143,20 118,50 95,91 17,70 ±2 50,05 42,16 84,23	86,90 72,25 65,21 52,26 41,80
35	17,02 5-2	167 60	72 25
40	13 56	1113 26	65 24
45	3 56 \ 12,25	110 < 0	52.20
50	7,10	95.01	01/06
55	455	77,70 ±2	94/80
66	411	5805	30,08 22,50 15,16
65	3,46	62/16	15 16
76	333	94/10	
75	3/3/3	2/2/	11,44
80	2,83	10/8/	6/10
85	276	9:10	0170
80	280	92/16 91/27 21/81 14/81 9/76 7/85 7/40	3,69 ±0,5
85	260	1110	2 110
Neo Neo	2.70	0.03	3/18
105	2,30	3/03	M144 8,15 5,70 4,34 3,69 5,48 4,15 5,68
110	3,68	7,40 9,03 12,30 19,42 ±0,5	5,68 3,19 45,94
115	568 6,41 ±0,5	20194 1-0,5	3,13
120	250	26/25	15,690
120	1 58 \- 973	36,25 46,71 60,62	16,60
120	13.30	46,71	2720
135	067	71,10	24/36
180	18 67 2485	92 73 1=2	5/50
145		9373 1=2	15,66 124,20 27,38 37,55 54,08 13,01 + 2
150	7367	121/64	- CFX.88
750	1710	154,10	GQ/A T O

	Ø in °	Uwasser/mV	Uslmv	Uz/mV
	30	33,66		
	35	26,96	302,02	340,55
	40	45,36	287 (66	285,28 270,56 237,34
	90	24,60	278, 96 266,78	270,26
	45	18,60	266,78	237,34
	56 \$5	18,53	258,30 253,33	222/46 209/89
	55	10,61	253/33	209/39
	60	8,20	247101	193,26
	65	7.25	240,13 214,43 266,54	21455
	76	6 90	214.43	214,55
	75	6 17	266 56	130,10
	80	555	100 11	177,69
	85	105 5 42	198,11	111/03
		1 0 42	190,15	161,04
	96	3,36	187,10	162,50
	95	5,82	183,60	168,05 F wintel nach
	100	\$,20 \$,20 \$,20 \$,50 \$,55 \$,55 \$,55 \$,82 \$,73	185,0010	161,04 162,50 168,05 P Wintel naves 162,58 R Feeler
	105	751	184,01 3	168 105 R
	1010	7,51	181,02.2	16222 / 100
H	115	16.26	182 10 3	450.27 105
	120	16 ₁ 26 22,36	185,60 185,60 184,01 181,42 181,42 182,14 193,14 193,14 193,24	144,13 110
	125	20,00	184,29 5	15/15
	130	28,30	193/19 5	151,40 115
	130	28,30 33,63 68,81 12,72,21	189, +7 -9	151,33 120
	135	168,81	194,29 207,32 214,36 246,28 308,467	151,66 125
	140	ta 72,21	207,32 6	459 463 1130
	195	104,26	211.36 2	185,50 135
	150	186,66	200 28 2	183,26 140
		1 (30)	200 160	28,25 145
			308,70	321,42 /5
				21,42
		1 12 13		
			K	
				Fehor = 5

4 Auswertung und Diskussion

4.1 Reflexion an Glas

Bei der ersten Teilaufgabe bestimmen wir den Brechungsindex von Glas, indem wir den Brewsterwinkel gemessen haben. Die Beziehung zwischen den Brechindices und dem Brewsterwinkel ist folgendermaßen:

$$\theta_{\rm B} = tan^{-1} \left(\frac{n_2}{n_1}\right) = tan^{-1}(n_2) \quad \text{mit} n_1 = 1$$
 (4.1)

Aus dem Protokollbuch kann man folgenden Wert für den Brewsterwinkel entnehmen: Die Fehler sind:

Für den Winkel φ : Ablesefehler $s_a=\pm 1^\circ$ Bei der Spannung U: Ablesefehler: $s_a=\pm 0,5Digits$, Systematischer Fehler: $s_r=0$ 0.02% + 4Digits

Schwankung ist bei parallele Polarisation $\pm 0,02mV$, bei senkrechter: $\pm 0,1mV$

Da die Schwankung im Gegensatz zum Ablesefehler sowohl bei der parallelen, als auch bei der senkrechten Polarisation durchschnittlich mindestens um einen Faktor 150 kleiner ist, vernachlässigen wir diese Unsicherheit. Mit dem Fehlerfortpflanzungsgesetz folgt:

$$s_{\varphi} = \sqrt{s_{\rm a}^2} = 1^{\circ} \tag{4.2}$$

$$s_{\rm U} = \sqrt{s_{\rm a}^2 + s_{\rm r}^2} = \sqrt{(0, 5 * U)^2 + (0, 0002 * U + 0, 0004)^2}$$
 (4.3)

Nach der Theorie, die wir auch schon in den Fragen zur Vorbereitung beschrieben haben, muss die Spannung der gemessenen Intensität beim Brewsterwinkel bei paralleler Polarisation gegen Null gehen. Bei unserer Messung haben wir dieses Phänomen bei dem

$$\theta = 54^{\circ} \tag{4.4}$$

$$U_{\parallel} = (34 \pm 17)10^{-1} mV \tag{4.5}$$

erreicht. Wir haben zwar nicht genau die Spannung Null erreicht, aber mit dem Fehler des Winkels und der Spannung, sowie die Schwankung der Spannung fällt dieser Wert deutlich noch in die Messungenauigkeit und liegt in der Fehlertoleranz. Daher folgt:

$$\theta_{\rm B} = 54^{\circ} = tan^{-1}(n_2) \qquad \Leftrightarrow \qquad n_2 = tan(\theta_{\rm B}) = 1,37638$$
 (4.6)

$$s_{\rm n_2} = s_{\theta_{\rm B}} = 0,017455 \tag{4.7}$$

$$n_2 = (137 \pm 2)10^{-2} \tag{4.8}$$

Im Vergleich zu handelsüblichem Glas wie zum Beispiel Kalk-Natron-Silikatglas ca. 1,5, für Borosilikatglas ca. 1,47 und für Aluminosilikatglas ca. 1,5 sieht man, das unserer berechnete Wert in der Fehlertoleranz von dem Brechindex von Glas liegt. Diese Messmethode ist daher ausreichend genau für eine Brechindexbestimmung.

Mit Hilfe des bestimmten Brechindex des Glases und der Fresnelschen Formeln bestimmen wir nun die theoretische Abhängigkeit von den folgenden Formeln, wobei $E_{\rm r,\parallel}$ bzw. $E_{\rm r,\perp}$ die reflektierte und $E_{\rm e,\parallel}$ bzw. $E_{\rm e,\perp}$ die einfallende Energie bezeichnen.

$$\frac{E_{\rm r,\parallel}}{E_{\rm e,\parallel}} \tag{4.9}$$

$$\frac{E_{\rm r,\perp}}{E_{\rm e,\perp}} \tag{4.10}$$

Mit der Beziehung $\frac{U}{U_{\rm e}}=\frac{I}{I_{\rm e}}$ und den dazugehörigen Fehlern berechnen wir nun zuerst die Werte mit den folgenden Formeln aus dem Skript:

$$\left(\frac{E_{\rm r,\parallel}}{E_{\rm e,\parallel}}\right) = \sqrt{\frac{I_{\rm r,\parallel}}{I_{\rm e,\parallel}}} = \sqrt{\frac{U}{U_{\rm e}}} \tag{4.11}$$

$$\left(\frac{E_{\rm r,\perp}}{E_{\rm e,\perp}}\right) = \sqrt{\frac{I_{\rm r,\perp}}{I_{\rm e,\perp}}} = \sqrt{\frac{U}{U_{\rm e}}} \tag{4.12}$$

Mit dem Fehlerfortpflanzungsgesetz:

$$s_{\frac{E_{\rm r}}{E_{\rm e}}} = \frac{1}{2} \sqrt{\frac{s_{\rm I_r}^2}{I_{\rm e} I_{\rm r}} + \frac{I_{\rm r} s_{\rm I_e}}{I_{\rm e}^2}}$$
 (4.13)

Somit bekommen wir die Werte in der folgenden Tabelle:

Tabelle 4.1: Messreihe für parallele Polarisation

¹https://www.baunetzwissen.de/glossar/b/brechungsindex-51605

$4\ Auswertung\ und\ Diskussion$

	φ/\circ	$\frac{E_{\mathrm{r}}}{E_{\mathrm{e}}}$,theo	$\frac{E_{\mathrm{r}}}{E_{\mathrm{e}}} \parallel, \mathrm{mess}$	$S_{rac{\mathrm{E_r}}{\mathrm{E_e}}\parallel,\mathrm{mess}}$
1	15	0.1502	0.1906	0.0511
2	20	0.1435	0.0228	0.0322
3	25	0.1344	0.1428	0.0420
4	30	0.1225	0.1421	0.0419
5	35	0.1072	0.1415	0.0418
6	40	0.0877	0.1207	0.0389
7	45	0.0629	0.0905	0.0357
8	50	0.0314	0.0577	0.0334
9	53	0.0084	0.0218	0.0322
10	54	0.0000	0.0070	0.0320
11	55	0.0088	0.0095	0.0320
12	56	0.0182	0.0100	0.0320
13	57	0.0280	0.0115	0.0320
14	60	0.0607	0.0390	0.0326
15	65	0.1280	0.1207	0.0389
16	70	0.2163	0.2088	0.0554
17	75	0.3332	0.3503	0.1060
18	80	0.4901	0.4795	0.1774
19	85	0.7038	0.6985	0.3511

Tabelle 4.2: Messreihe für senkrechte Polarisation E_r

		φ/\circ	$E_{\rm r}$	$\frac{E_{\rm r}}{E_{\rm e}}$,mess	$S_{ \underline{\mathrm{E_r}}}$
		Ψ/"	$\frac{E_{\rm r}}{E_{\rm e}}$,theo	$E_{\rm e} \perp, {\rm mess}$	$\frac{E_{\mathrm{r}}}{E_{\mathrm{e}}}_{\perp,\mathrm{mess}}$
_	1	15	0.16	0.22	0.05
	2	20	0.17	0.23	0.06
	3	25	0.18	0.24	0.06
	4	30	0.19	0.26	0.06
	5	35	0.20	0.28	0.07
	6	40	0.22	0.29	0.08
	7	45	0.25	0.32	0.09
	8	50	0.28	0.36	0.11
	9	55	0.31	0.40	0.12
	10	60	0.36	0.44	0.14
	11	65	0.42	0.51	0.19
	12	70	0.49	0.58	0.23
	13	75	0.58	0.67	0.31
	14	80	0.69	1.03	0.70
	15	85	0.83	0.87	0.51

Abbildung 4.1: Amplituden-Verhältnis des Laserstrahls bei senkrechter und paralleler Polarisation

Man erkennt in der Graphik, dass unserer Kurvenverlauf dem theoretischen Verlauf sehr ähnelt, jedoch erkennt man auch vor allem bei der Roten Linie, daher bei der senkrechten Polarisation einen deutlichen Abstand zur theoretischen Linie. Da dieser Abstand durchgehend nahezukonstant bleibt, vermuten wir einen von systematischen Fehler dahinter. Die Gründe für die Abweichungen sind vor allem die Lichtverschmutzung in dem Raum, denn trotz guter Abschirmung des Experimentaufbaus war es unmöglich ihn komplett abzuschirmen. Ausschlaggebend dafür ist das beispielsweise das Aufblicken der Messperson um die Werte zu erfragen und dem damit verbundenen Lichtstrahl der Stirnlampe. Zusätzlich ging die Tür zu dem Raum des Öfteren auf, wodurch zusätzliches Licht in den Raum drang. Auch sind die Messungenauigkeiten des Messapparat relativ hoch, was sich durch das Fehlerfortpflanzungsgesetz durch alle Werte zieht. Es gibt bei unseren Messungen zwei Werte, die deutlich aus der Statistik herausfallen. Zum Einen ist das der Wert der parallelen Polarisation bei 200, der wahrscheinlich durch ein verrutschtes Komma zustande gekommen ist. Zusätzlich erkennt man einen falsch liegenden Wert bei 80° bei der senkrechten Polarisation. Dieser Wert ist unmöglich, da sich das Verhältnis von $E_{\rm r}$ zu $E_{\rm e}$ über eins befindet, wodurch man raus schließt, dass die Reflektierte Intensität größer sein müsste als die einfallende Intensität, was physikalisch nicht möglich ist. Der falsche Wert dieses Messwertes ist wohl auch auf eine

Misskommunikation zwischen Messperson und Protokollperson zurückzuführen.

4.2 Mie-Streuung

Relative Streuung

In diesem Versuchsteil wir die Mie-Streuung an drei unterschielichen Proben durchgeführt. Durch diese versucht man Informationen über die Probe in Erfahrung zu bringen. Dies funktioniert, da beim Streuen ein Bild des reziproken Raumes abgebildet wird. Dieses enthält Informationen über typische Abstände in der Probe.

Brechnet wurden die relative Streuung der Proben ΔS bezüglich der Leerprobe. Dabei wurden die Fehler nach Fehlerfortpflanzungsgesetz berechnet.

$$\Delta S = S_{\text{Probe}} - S_{\text{Wasser}} \tag{4.14}$$

$$s_{\Delta} = \sqrt{(s_{\text{SProbe}})^2 + (s_{\text{SWasser}})^2}$$

$$(4.15)$$

Alle Werte in Tabelle 4.3 der relativen Streuung und ihrer Fehler werden in mV angegeben.

Polarisationsgrad

Als Nächstes wird der Polarisationsgrad betrachtet. Dabei wird der Fehler mit Fehlerfortpflanzung berechnet anhand der folgenden Formeln:

$$P = \frac{\Delta S_{\perp} - \Delta S_{\parallel}}{\Delta S_{\perp} + \Delta S_{\parallel}} \tag{4.16}$$

$$P = \frac{\Delta S_{\perp} - \Delta S_{\parallel}}{\Delta S_{\perp} + \Delta S_{\parallel}}$$

$$s_{P} = \frac{2}{(\Delta S_{\perp} + \Delta S_{\parallel})^{2}} \sqrt{(\Delta S_{\parallel} s_{\Delta S_{\perp}})^{2} + (\Delta S_{\perp} s_{\Delta S_{\parallel}})^{2}}$$

$$(4.16)$$

Im Gegensatz dazu verhält sich Rayleighstreuung folgendermaßen:

$$P_{\text{Rayleigh}} = \frac{\sin^2(\phi)}{1 + \cos^2(\phi)}.$$

Erstmal fällt in Grafik 4.3 auf, dass bei Probe 2 die Messung sehr dubios scheint. Die ungefähre Form der Kurve stimmt zwar, jedoch beginnen die Werte erst bei circa 0,6. Das bei der Messung irgend ein Fehler vorliegt, ist uns auch wärend das Versuches schon aufgefallen. Das riesige ßchwankenin der Messung, was alles überlagerte, hat leider ein korrekte Messen erschwert.

In der Grafik sieht man sehr schön, dass das Maximum bei beiden Kurven relativ genau bei 90° liegt. Die Kurven für beide Proben, vorallem vom Probe 1 weisen eine beeindruckende Symmetrie auf bezüglich einer Achse durch 90°.

	ϕ in $^{\circ}$	$\Delta S_{\parallel 1}$	SAG	$\Delta S_{\parallel 2}$	SAG	$\Delta S_{\perp 1}$	SAG	$\Delta S_{\perp 2}$	SAG
	Ψ ΙΙΙ	<u>∆</u> ∪ ₁	$s_{\Delta S_{\parallel 1}}$	$\Delta \mathcal{D} \parallel 2$	$s_{\Delta S_{\parallel 1}}$	$\Delta v_{\perp 1}$	$s_{\Delta S_{\pm 1}}$	$\Delta \mathcal{O}_{\perp 2}$	$s_{\Delta \mathrm{S}_{\pm 2}}$
1	30	170.96	2.83	63.36	2.06	268.96	5.02	277.49	5.02
2	35	150.67	2.83	55.18	2.06	260.70	5.02	258.27	5.02
3	40	129.64	2.06	51.65	0.71	254.36	5.02	245.90	5.02
4	45	106.25	2.06	40.01	0.71	248.18	5.02	218.74	5.02
5	50	88.81	2.06	34.70	0.71	242.77	5.02	206.87	5.02
6	55	73.15	2.06	25.53	0.71	242.72	5.02	198.78	5.02
7	60	53.94	2.06	18.39	0.71	238.81	5.02	185.00	5.02
8	65	38.70	2.06	11.64	0.71	232.88	5.02	207.30	5.02
9	70	27.94	0.71	8.11	0.71	207.53	5.02	186.20	5.02
10	75	18.69	0.71	5.03	0.71	200.37	5.02	183.93	5.02
11	80	11.68	0.71	2.87	0.71	192.56	5.02	172.14	5.02
12	85	7.00	0.71	1.55	0.71	184.73	5.02	155.62	5.02
13	90	4.75	0.71	0.89	0.71	181.55	5.02	157.35	5.02
14	95	4.80	0.71	0.88	0.71	179.78	5.02	162.23	5.02
15	100	6.33	0.71	1.45	0.71	177.28	5.02	155.50	5.02
16	105	9.40	0.71	2.78	0.71	173.91	5.02	142.76	5.02
17	110	15.74	0.71	5.51	0.71	171.66	5.02	130.69	5.02
18	115	23.26	0.71	9.53	0.71	175.19	5.02	135.14	5.02
19	120	28.67	0.71	9.02	0.71	170.18	5.02	128.37	5.02
20	125	36.98	0.71	11.47	0.71	161.47	5.02	123.30	5.02
21	130	47.32	2.06	14.08	0.71	160.60	5.02	125.74	5.02
22	135	51.43	2.06	17.88	0.71	139.31	5.39	117.49	5.39
23	140	63.91	2.06	21.26	0.71	139.15	5.39	110.99	5.39
24	145	68.89	2.83	14.23	2.83	136.08	5.39	134.05	5.39
25	150	80.43	2.83	24.50	2.83	121.50	5.39	134.82	5.39

Tabelle 4.3: Intensität der relativen Streuung von Probe 1 und 2 bei Einstrahlung von parallel bzw. senkrecht polarisiertem Licht

Asymmetriefaktor

Da in der Versuchsbeschreibung der Asymmetriefaktor X in einer Tabelle für $\phi=45^\circ$ gegeben ist. Wir verwenden dafür jeweils S_{\perp} , was jedoch an sich irrelevant sein sollte, da X eine von der Polarisation unabhängige Größe ist.

$$\phi = 45^{\circ}$$

$$X = \frac{S(\phi)}{S(\pi - \phi)}$$

$$s_{X} = \sqrt{\left(\frac{s_{S}(\phi)}{S(\pi - \phi)}\right)^{2} + \left(\frac{S(\phi) \cdot s_{S}(\pi - \phi)}{(S(\pi - \phi))^{2}}\right)^{2}}$$

	P_1	s_{P_1}	P_2	s_{P_2}
1	0.22	0.01	0.63	0.01
2	0.27	0.01	0.65	0.01
3	0.32	0.01	0.65	0.01
4	0.40	0.01	0.69	0.01
5	0.46	0.01	0.71	0.01
6	0.54	0.01	0.77	0.01
7	0.63	0.01	0.82	0.01
8	0.72	0.01	0.89	0.01
9	0.76	0.01	0.92	0.01
10	0.83	0.01	0.95	0.01
11	0.89	0.01	0.97	0.01
12	0.93	0.01	0.98	0.01
13	0.95	0.01	0.99	0.01
14	0.95	0.01	0.99	0.01
15	0.93	0.01	0.98	0.01
16	0.90	0.01	0.96	0.01
17	0.83	0.01	0.92	0.01
18	0.77	0.01	0.87	0.01
19	0.71	0.01	0.87	0.01
20	0.63	0.01	0.83	0.01
21	0.54	0.02	0.80	0.01
22	0.46	0.02	0.74	0.01
23	0.37	0.02	0.68	0.02
24	0.33	0.03	0.81	0.04
25	0.20	0.03	0.69	0.03

Tabelle 4.4: Polarisationsgrad von Probe 1 und Probe 2 mit Fehler

Berechnet man diese erhält man:

$$X_1 = 1,7814945$$
 $s_{X_1} = 0,07777833$
 $X_2 = 1,8617754$ $s_{X_2} = 0,09550227$

$$X_1 = 1,78 \pm 0,08 X_2 = 1,86 \pm 0,09$$

In der Tabelle im Skript sind als Referenzwerte die Werte für $\frac{D}{\lambda_{\rm M}}$ gegeben, wobei D die Teilchengröße und $\lambda_{\rm M}$ die Wellenlänge im Medium. Das Medium, hier Wasser, hat einen Brechungsindex $n_{\rm Wasser}=1,33$. Die Wellenlänge im Medium ergibt sich wiefolgt:

$$\lambda_{\mathrm{Vakuum}} = 632,8 \mathrm{nm}$$

$$\lambda_{\mathrm{M}} = \lambda_{\mathrm{Wasser}} = \frac{\lambda_{\mathrm{Vakuum}}}{n_{\mathrm{Wasser}}}$$

$$\rightarrow \lambda_{\mathrm{Wasser}} = 475,79 \mathrm{nm}$$

Da in der Tabelle die von uns errechneten Werte nicht exakt tabuliiert sind, können wir nur Zwischenwerte abschätzen. Für diese nehmen wir einen Fehler von 0,005 als Ablesefehler an.

Probe 1:
$$\frac{D}{\lambda_{\rm M}} = 0.31$$

Probe 2: $\frac{D}{\lambda_{\rm M}} = 0.33$

Die Teilengröße ergibt sich trivialer Weise mit

$$D = \frac{D}{\lambda_{\rm m}} \lambda_{\rm M}$$

$$s_{\rm D} \approx 0,005 * \lambda_{\rm M} = 3,164 {\rm nm}$$

$$\Rightarrow D_1 = (147 \pm 3) \text{nm} D_2 = (157 \pm 3) \text{nm}$$

Die mit dem bloßen Auge nicht sichtbaren Schwebstoffe in dem Wasser sind erstaunlich klein. Die Teilchen haben eine Größe vom mur wenigen Nanometern. Dies ist in der Tat erstaunlich, da wir damit in der Größenordnung einzelner langkettiger Polymermolekülen sind. Dieser Versuch scheint also ein sehr gute Methode zu sein um Strukturen auf kleinen Skalen aufzulösen. Verbessern könnte man die Methodik noch, indem man höherenergetische Strahlung nimmt. Dann würde man es GISAX, SAX, GIWAX oder Wax nennen. Diese Methoden sind vorallem bei Strukturanalysen, beispielsweise im Bereich der Halbleiterphysik sehr verbreitet.

Abbildung 4.2: Relative Streuung von Probe 1 und Probe 2 bei sekrechter und paralleler Polarisation

Abbildung 4.3: Polarisationsgrad der Probe 1 und Probe 2 aufgetragen mit der theoretischen Rayleighstreuung

5 Fazit

Polarisation ist ein Phänomen, mit dem wir in unserem gesamten Leben umgeben sind. Ob durch das Eindringen der Sonnenstrahlen in das Hausinnere oder im Kino durch die Brillen für den 3D Film.

In diesem Versuch haben wir uns mit diesem Phänomen auseinandergesetzt und sowohl den Brewsterwinkel, den Brechungsindex als auch die Größe kugelförmiger Polystyrol-Teilchen gemessen bzw. berechnet.

Durch das Vergleichen mit den Theoretisch ermittelten Werten ist uns aufgefallen, dass selbst die kleinste Lichtverschmutzung die Messwerte verfälschen kann. Daher ist der Versuchsaufbau wahrscheinlich noch besser, wenn es sowohl eine bessere Abschirmung gegen Licht, als auch evtl. einen Schrittmotor für eine genauere Winkelmessung gäbe. Aber für das Kennenlernen für die Messung von polarisierenden Eigenschaften des Licht ist es auf jeden Fall eine gute Konstruktion.