

Robot d'assemblage de structure aéronautique

Les éléments de structure d'un avion sont assemblés entre eux par des éléments de fixation appelés rivets : c'est l'opération de rivetage. L'assemblage complet correspond à une succession d'opérations à répéter pour chacun des points de fixation :

- mise en place des éléments à assembler ;
- perçage des éléments ;
- dépose d'un rivet ;
- pose d'une bague déformable ;
- serrage du rivet par déformation de la bague.

Ces opérations devant être répétées un très grand nombre de fois (environ 300 heures d'opérations d'assemblage sur un avion) le gain de productivité apporté par la cellule est important.

De plus, l'utilisation d'un robot permet de diminuer le nombre d'opérations de montage / démontage des éléments à assembler (comparativement à un travail manuel) ce qui permet un gain de travail supplémentaire.

- $R_0(O_0, \vec{x}_0, \overrightarrow{y_0}, \overrightarrow{z_0})$ lié à l'embase fixe 0, $\overrightarrow{y_0}$ étant l'axe vertical ascendant
- $R_1(O_1, \vec{x}_1, \overrightarrow{y_1}, \overrightarrow{z_1})$ lié à l'embase de rotation **1**
- $R_2(O_2, \vec{x}_2, \overrightarrow{y_2}, \overrightarrow{z_2})$ lié au bras 2
- $R_3(O_3, \vec{x}_3, \overrightarrow{y_3}, \overrightarrow{z_3})$ lié à l'ensemble E_2

 M_2 : masse du bras (2), centre de gravité tel que : $\overline{O_2G_2} = \frac{L_3}{2}.\overrightarrow{x_2}$

 M_{E2} : masse de l'ensemble E_2 , centre de gravité tel que : $\overrightarrow{O_3G_3} = \frac{L_4}{2} \cdot \overrightarrow{x_3} + L_5 \cdot \overrightarrow{y_3}$

Son moment d'inertie par rapport à l'axe (O_3 , $\overrightarrow{z_3}$) est noté J_{E2}

 M_{EF} : masse de l'ensemble E_F , centre de gravité tel que : $\overrightarrow{O_3G_5} = L_4 \cdot \overrightarrow{x_3} + L_5 \cdot \overrightarrow{y_3} + L_6 \cdot \overrightarrow{x_3} + L_7 \cdot \overrightarrow{x_3}$

Son moment d'inertie par rapport à l'axe (G_5 , $\overrightarrow{z_3}$) est noté J_{EF}

C₂₃ est le moment du couple articulaire exercé par le moteur en O₃ sur le bras (3) . L'inertie de son rotor est négligée L'objectif de cette étude est de déterminer le couple articulaire C₂₃ sur le bras (3) afin de garantir l'accélération maximale

 $\overline{O_1O_2} = L_1.\overline{x_1} + L_2.\overline{y_1}; \overline{z_1} = \overline{z_2}$ $(\overline{x_1}, \overline{x_2}) = (\overline{y_1}, \overline{y_2}) = \Theta_{12}$

 $\overrightarrow{O_2O_3} = L_3.\overrightarrow{x_2}; \overrightarrow{z_1} = \overrightarrow{z_2}$ $(\overrightarrow{x_1}, \overrightarrow{x_3}) = (\overrightarrow{y_1}, \overrightarrow{y_3}) = \Theta_{13}$

Rappels:

Le torseur $\{\tau_{(2\to 1)}\}$ associé à l'action mécanique exercée en A, par un solide 2 sur un solide 1 sera noté :

$$\left\{\mathcal{T}_{(2\to1)}\right\} = A \left\{\frac{\overrightarrow{R_{2\to1}}}{\overrightarrow{M_{A_{2\to1}}}}\right\} = A \left\{\frac{\overrightarrow{R_{2\to1}}}{\overrightarrow{M_{A_{2\to1}}}} = X_A \cdot \overrightarrow{x} + Y_A \cdot \overrightarrow{y} + Z_A \cdot \overrightarrow{z}\right\}_{(x,y,z)} = A \left\{X_A \cdot X_A \cdot$$

Le torseur cinématique $\{v_{2/1}\}$ du mouvement d'un solide S par rapport à un repère R exprimé au point A sera noté :

$$\left\{v_{(S/R)}\right\} = \left\{\overrightarrow{\Omega_{S/R}}\right\} = \left\{\overrightarrow{\Omega_{S/R}}\right\} = \left\{\overrightarrow{\Omega_{S/R}}\right\} = \left\{\overrightarrow{\Omega_{S/R}}\right\} = \left(v_{Ax} \cdot \overrightarrow{x} + \omega_{y} \cdot \overrightarrow{y} + \omega_{z} \cdot \overrightarrow{z}\right\}_{(x,y,z)} = \left(v_{Ax} \cdot \overrightarrow{v} + v_{Ay} \cdot \overrightarrow{y} + v_{Az} \cdot \overrightarrow{z}\right)_{(x,y,z)} = \left(v_{Ax} \cdot \overrightarrow{v} + v_{Ay} \cdot \overrightarrow{y} + v_{Az} \cdot \overrightarrow{z}\right)_{(x,y,z)} = \left(v_{Ax} \cdot \overrightarrow{v} + v_{Ay} \cdot \overrightarrow{y} + v_{Az} \cdot \overrightarrow{z}\right)_{(x,y,z)} = \left(v_{Ax} \cdot \overrightarrow{v} + v_{Ay} \cdot \overrightarrow{y} + v_{Az} \cdot \overrightarrow{z}\right)_{(x,y,z)} = \left(v_{Ax} \cdot \overrightarrow{v} + v_{Ay} \cdot \overrightarrow{y} + v_{Az} \cdot \overrightarrow{z}\right)_{(x,y,z)} = \left(v_{Ax} \cdot \overrightarrow{v} + v_{Az} \cdot$$

Le torseur cinétique $\{C_{S/R}\}$ du mouvement d'un solide S par rapport à un repère R galiléen exprimé au point A sera noté :

$$\left\{C_{(S/R)}\right\} = \left\{\frac{m \, \overline{V_{G_{S/R}}}}{\overline{\sigma_{A_{S/R}}}}\right\} = \left\{\frac{m \, \overline{V_{G_{S/R}}}}{\overline{\sigma_{A_{S/R}}}} = m \, \overline{AG} \wedge \overline{V_{A_{S/R}}} + \overline{J_A}(S, \overline{\Omega_{S/R}})\right\}_{(x,y,z)} \overline{J_A} = \text{opérateur d'inertie de S en A}$$

Le torseur dynamique $\{D_{S/R)}\}$ du mouvement d'un solide S par rapport à un repère R galiléen exprimé au point A sera noté :

$$\left\{D_{(S/R)}\right\} = \left\{\begin{array}{c} m \, \overrightarrow{\Gamma_{G_{S/R}}} \\ \overrightarrow{\delta_{A_{S/R}}} \end{array}\right\} = \left\{\begin{array}{c} m \, \overrightarrow{\Gamma_{G_{S/R}}} \\ \overrightarrow{\delta_{A(S/R)}} = \left[\frac{d}{dt} \, \overrightarrow{\sigma_{A(S/R)}}\right]_R + \, \mathbf{m}. \, \overrightarrow{V_{A_{S/R}}} \wedge \overrightarrow{V_{G_{S/R}}} \end{array}\right\}_{(x,y,z)}$$

L'énergie cinétique d'un solide S dans son mouvement par rapport à un repère R galiléen exprimé au point A sera noté :

$$T_{(S/R)} = \frac{1}{2} \{C_{(S/R)}\} \otimes \{v_{(S/R)}\} = m \overrightarrow{V_{G_{S/R}}} \cdot \overrightarrow{V_{A_{S/R}}} + \overrightarrow{\Omega_{S/R}} \cdot \overrightarrow{\sigma_{A_{S/R}}}$$

Hypothèses

- l'étude est réalisée pour une demi couture orbitale (couture supérieure) ;
- le repère $R_0(O_0, \vec{x}_0, \overrightarrow{y_0}, \overrightarrow{z_0})$ sera supposé galiléen ;
- $\overrightarrow{y_0}$ est l'axe vertical ascendant et \overrightarrow{g} =- g. $\overrightarrow{y_0}$ avec g = 9.81 m.s-2;
- toutes les liaisons sont supposées parfaites
- l'angle θ_{12} est supposé constant

Questions

- 1) Déterminer l'expression du vecteur vitesse du point G_3 , $\overrightarrow{V_{G_3 \in E_2/R_1}}$ en fonction de L_4 , L_5 , θ_{13} et de ses dérivées
- 2) Déterminer l'expression du vecteur vitesse du point G_5 , $\overline{V_{G_5 \in E_F/R_1}}$ en fonction de L_4 , L_6 , L_7 , θ_{13} et de ses dérivées
- 3) Déterminer l'expression du vecteur accélération du point G_3 , $\overline{T_{G_3 \in E_2/R_1}}$ en fonction de L_4 , L_5 , θ_{13} et de ses dérivées
- 4) Déterminer l'expression du vecteur accélération du point G_5 , $\overrightarrow{\Gamma_{G_5 \in E_F/R_1}}$ en fonction de L_4 , L_6 , L_7 , θ_{13} et de ses dérivées
- 5) Déterminer le moment cinétique de E_2 en O_3 par rapport à R_1 $\overrightarrow{\sigma_{O_3}}_{E_2/R_1}$
- 6) Déterminer le moment cinétique de E_F en O_3 par rapport à R_1 $\overrightarrow{\sigma_{O_3}}_{E_F/R_1}$
- 7) Déterminer le moment dynamique de E $_2$ en O $_3$ par rapport à R $_1$ $\overrightarrow{\delta_{O_3}}_{E_2/R_1}$
- 8) Déterminer le moment dynamique de E_F en O_3 par rapport à R_1 $\overrightarrow{\delta_{O_3}}_{E_F/R_1}$
- 9) Déterminer le torseur des efforts extérieurs appliqués à l'ensemble $\{E_2, E_F\}$ exprimé au point O_3
- 10) Appliquer le théorème du moment dynamique à l'ensemble $\{E_2, E_F\}$ et écrire les équations qui en résultent
- 11) En déduire l'expression du couple C_{23} en fonction de J_{E2} , J_{EF} , M_{EF} , L_4 , L_5 , L_6 , L_7 , g puis θ_{13} et de ses dérivées
- 12) Déterminer l'énergie cinétique de E2 dans son mouvement par rapport au repère R1
- 13) Déterminer l'énergie cinétique de E_F dans son mouvement par rapport au repère R₁
- 14) Déterminer l'énergie cinétique de l'ensemble $\{E_2, E_F\}$
- 15) Déterminer la puissance des efforts extérieurs et intérieurs
- 16) Appliquer le théorème de l'énergie cinétique puis retrouver l'équation établie à la question 10
- 17) En déduire l'expression du couple C23 et vérifier que l'on retrouve un résultat identique à la question 11

L'accélération $\ddot{\theta}_{13}$ est supposée constante

18) Etablir l'expression de $tg\theta_{13}$ et en déduire la valeur de θ_{13} pour C_{23} maximum