NIO

Exercise 13: SVMs, Exam Hints

Duc Duy Pham, M.Sc.

Raum: BC 410

Tel.: 0203-379-3734

Email: duc.duy.pham@uni-due.de

 What is the general idea of a Support Vector Machine?

- What is the general idea of a Support Vector Machine?
 - 1) Find optimal hyperplane to linearly separate two classes
 - 2) Exactly the same as the perceptron
 - 3) Feature reduction
 - 4) Find optimal hyperplane for regression problems

- What is the general idea of a Support Vector Machine?
 - 1) Find optimal hyperplane to linearly separate two classes
 - 2) Exactly the same as the perceptron
 - 3) Feature reduction
 - 4) Find optimal hyperplane for regression problems

- What is the general idea of a Support Vector Machine?
 - 1) Find optimal hyperplane to linearly separate two classes
 - 2) Exactly the same as the perceptron
 - 3) Feature reduction
 - 4) Find optimal hyperplane for regression problems

 What is the general idea of a Support Vector Machine?

- What is the general idea of a Support Vector Machine?
 - Use "optimally" positioned hyperplane to linearly separate two classes (similar general idea as perceptron!)

- What is the general idea of a Support Vector Machine?
 - Use "optimally" positioned hyperplane to linearly separate two classes (similar general idea as perceptron!)
 - Maximize distance between hyperplane and both classes (maximize width of sample free "corridor" [=functional margin] around hyperplane)

UNIVERSITÄT DUISBURG ESSEN

- What are Support Vectors?
 - Support Vectors are the vectors that are on the margin of the corridor (functional margin)
 - They are the support/ the foundation of the margin hyperplanes
 - => functional margin width is restricted by Support Vectors

$$\mathcal{H}_{w,w_0}^- := \{ x | x^T w + w_0 = -1 \}$$

$$\mathcal{H}_{w,w_0}^- := \{ x | x^T w + w_0 = -1 \}$$

UNIVERSITÄT

• Maximize
$$d_{w,w_0} = \left| \frac{1-w_0}{||w||} - \frac{-1-w_0}{||w||} \right| = \frac{2}{||w||}$$

• Subject to:

$$\mathbf{x}^T w + w_0 \ge 1 \qquad \forall x \in \mathcal{P}$$

•
$$x^T w + w_0 < -1$$
 $\forall x \in \mathcal{N}$

• Minimize

$$\frac{1}{d_{w,w_0}} = \frac{||w||}{2} = \frac{1}{2}w^T w$$

Subject to:

$$x^T w + w_0 \ge 1 \qquad \forall x \in \mathcal{P}$$

•
$$x^T w + w_0 \le -1$$
 $\forall x \in \mathcal{N}$

• Minimize

$$\frac{1}{d_{w,w_0}} = \frac{||w||}{2} = \frac{1}{2}w^T w$$

Subject to:

$$r_x \cdot (x^T w + w_0) \ge 1 \quad \forall x \in \mathcal{P} \cup \mathcal{N}$$

• Minimize

$$\frac{1}{d_{w,w_0}} = \frac{||w||}{2} = \frac{1}{2}w^T w$$

- Subject to:

$$(r_x = 1 \text{ if } x \in \mathcal{P})$$

 $(r_x = -1 \text{ if } x \in \mathcal{N})$

Now use Lagrange Multipliers!

- Objective Function: $\frac{1}{2}w^Tw$
- Conditions:

$$r_x \cdot (x^T w + w_0) - 1 \ge 0 \qquad \forall x \in \mathcal{P} \cup \mathcal{N}$$

$$f_{Lagr}(w,w_0,B) :=$$

$$rac{1}{2}w^Tw - \sum\limits_{m=1}^{M}eta^m(r^m(w^Tx^m + w_0) - 1)$$

$$f_{Lagr}(w,w_0,B):=$$

$$rac{1}{2} w^T w - \sum\limits_{m=1}^{M} eta^m (r^m (w^T x^m + w_0) - 1)$$

Mimimize wrt w and w_0

Maximize wrt beta

$$egin{align} f_{Lagr}(w,w_0,B) &:= rac{1}{2} w^T w + \sum \limits_{m=1}^M eta^m - \ & \sum \limits_{m=1}^M eta^m r^m w_0 - \ & \sum \limits_{m=1}^M eta^m r^m w^T x^m \ & \sum \limits_{m=1}^M eta^m r^m w^T x^m \ \end{pmatrix}$$

$$egin{array}{lll} f_{Lagr}(w,w_0,B) &:=& rac{1}{2} w^T w + \sum \limits_{m=1}^M eta^m r^m w_0 - \ & \sum \limits_{m=1}^M eta^m r^m w^T x^m \ & \sum \limits_{m=1}^M eta^m r^m w^T x^m \end{array}$$

$$abla_w f_{Lagr}(w,w_0,B) = w - \sum\limits_{m=1}^M eta^m r^m x^m \stackrel{!}{=} ec{0}$$

$$egin{align} f_{Lagr}(w,w_0,B) \ := \ rac{1}{2} w^T w + \sum \limits_{m=1}^M eta^m r^m w_0 - \ \sum \limits_{m=1}^M eta^m r^m w^T x^m \ \sum \limits_{m=1}^M eta^m r^m w^T x^m \ \end{array}$$

$$egin{align}
abla_w f_{Lagr}(w,w_0,B) &= w - \sum\limits_{m=1}^M eta^m r^m x^m \stackrel{!}{=} ec{0} \ \ & \Rightarrow \qquad w := \sum\limits_{m=1}^M eta^m r^m x^m \ \end{aligned}$$

$$egin{align} f_{Lagr}(w,w_0,B) &:= rac{1}{2} w^T w + \sum\limits_{m=1}^M eta^m r^m w_0 - \ \sum\limits_{m=1}^M eta^m r^m w^T x^m \ \sum\limits_{m=1}^M eta^m r^m w^T x^m \end{aligned}$$

$$abla_w f_{Lagr}(w,w_0,B) = w - \sum\limits_{m=1}^M eta^m r^m x^m \stackrel{!}{=} ec{0}$$

 \Rightarrow

$$w := \sum\limits_{m=1}^{M} eta^m r^m x^m$$

Need Lagrange Multipliers to get w!

$$egin{align} f_{Lagr}(w,w_0,B) \; := \; rac{1}{2} w^T w + \sum \limits_{m=1}^M eta^m r^m w_0 - \ \sum \limits_{m=1}^M eta^m r^m w^T x^m \ \sum \limits_{m=1}^M eta^m r^m w^T x^m \ \end{array}$$

$$abla_w f_{Lagr}(w,w_0,B) = w - \sum\limits_{m=1}^M eta^m r^m x^m \stackrel{!}{=} ec{0}$$

$$\Rightarrow \qquad w := \sum\limits_{m=1}^{M} eta^m r^m x^m$$

$$rac{\partial f_{Lagr}(w,w_0,B)}{\partial w_0} = \sum\limits_{m=1}^M eta^m r^m \stackrel{!}{=} 0$$

$$egin{align} f_{Lagr}(w,w_0,B) &:= rac{1}{2} w^T w + \sum \limits_{m=1}^M eta^m - \ & \sum \limits_{m=1}^M eta^m r^m w_0 - \ & \sum \limits_{m=1}^M eta^m r^m w^T x^m \ & \sum \limits_{m=1}^M eta^m r^m w^T x^m \ \end{pmatrix}$$

$$egin{align} f_{Lagr}(w,w_0,B) &:= rac{1}{2} w^T w + \sum \limits_{m=1}^M eta^m r^m w_0 - \ & \sum \limits_{m=1}^M eta^m r^m w^T x^m \ & \sum \limits_{m=1}^M eta^m r^m w^T x^m \ & \end{array}$$

$$egin{align} f_{Lagr}(w,w_0,B) &:= rac{1}{2} w^T w + \sum\limits_{m=1}^M eta^m - \ rac{\sum\limits_{m=1}^M eta^m r^m w_0 - \ \sum\limits_{m=1}^M eta^m r^m w^T x^m - w^T w \end{bmatrix}$$

$$egin{align} f_{Lagr}(w,w_0,B) \ := \ rac{1}{2} w^T w + \sum \limits_{m=1}^M eta^m r^m w_0 - \ \sum \limits_{m=1}^M eta^m r^m w^T x^m \ \sum \limits_{m=1}^M eta^m r^m w^T x^m \ \end{array}$$

$$= \underbrace{\sum_{m=1}^{M} \beta^m -}_{\substack{1 \\ 2} (\underbrace{\sum_{m=1}^{M} \beta^m r^m x^m})^T (\underbrace{\sum_{l=1}^{M} \beta^l r^l x^l})}_{w})$$

$$egin{array}{lll} f_{Lagr}(w,w_0,B) &:=& rac{1}{2} w^T w + \sum \limits_{m=1}^M eta^m - \ & \sum \limits_{m=1}^M eta^m r^m w_0 - \ & \sum \limits_{m=1}^M eta^m r^m w^T x^m \end{array}$$

$$= \sum_{m=1}^{M} \beta^m - \frac{1}{2} (\sum_{m=1}^{M} \beta^m r^m x^m)^T (\sum_{l=1}^{M} \beta^l r^l x^l)$$
 Maximize this **Dual form** to get Lagrange Multipliers! (Condition: Betas >= 0)

(Condition: Betas >= 0)

$$egin{aligned} f_{Lagr}(w,w_0,B) &:= & rac{1}{2} w^T w + \sum\limits_{m=1}^M eta^m - \ & \sum\limits_{m=1}^M eta^m r^m w_0 - \ & \sum\limits_{m=1}^M eta^m r^m w^T x^m \end{aligned}$$

$$=\sum_{m=1}^{\infty}\beta^m-\frac{1}{2}(\sum_{m=1}^{M}\beta^mr^mx^m)^T(\sum_{l=1}^{M}\beta^lr^lx^l) \text{ Maximize this } \mathbf{D} \mathbf{0}$$
 to get Lagrange Multipliers! (Condition: Beta

Maximize this **Dual form** (Condition: Betas $\geq = 0$)

From lecture: x^m is support vector iff beta^m > 0!!!

Berechnung von w_0^* :

Sei x^m ein Support-Vektor, z.B. derjenigen Klasse mit $r^m=1$.

Dann gilt $w^{*,T}x^m+w_0=1\Rightarrow w_0^*:=1-w^{*,T}x^m$

Summary

- How to get optimal weight vector?
 - Formulate Lagrange Approach
 - Calculate partial derivatives of Lagrange function wrt to weights
 - Optimal weight vector is dependant on Lagrange multipliers
 - Insert finding into formular to get Dual Form
 - (dual form is independent of weight vector)
 - Max Dual Form to get Lagrange Multipliers!
 - (Lagrange Multipliers determine optimal weight vector)
 - Positive Lagrange Multipliers indicate support vector
 - Use support vector to calculate offset w_0

What to do if classes are not linearly separable?

- What to do if classes are not linearly separable?
 - Apply Transformation (embedding function) f_{Tran} on input space to establish linear separability

- What to do if classes are not linearly separable?
 - Apply Transformation (embedding function) f_{Tran} on input space to establish linear separability
 - The discriminant function would then change to:

$$egin{align} f_{Disk}(x) &:= ext{sign}(w^{*,T}f_{Tran}(x) + w_0^*) \ &w^* &:= \sum_{m=1}^M eta^{*,m}r^mf_{Tran}(x^m) \ eta^{*,m}
eq 0 \end{aligned}$$

- What to do if classes are not linearly separable?
 - Apply Transformation (embedding function) f_{Tran} on input space to establish linear separability
 - The discriminant function would then change to:

$$f_{Tran}(x_1, x_2) := \begin{pmatrix} x_1 \\ x_2 \\ x_1^2 + x_2^2 \end{pmatrix}$$

What is the Kernel Trick?

- What is the Kernel Trick?
 - Embeddings into very high dimensions demand more computational power and capacity for calculation of scalar product

$$w^{*,T}f_{Tran}(x) = \sum eta^{*,m}r^mf_{Tran}(x^m)^Tf_{Tran}(x)$$

- What is the Kernel Trick?
 - Embeddings into very high dimensions demand more computational power and capacity for calculation of scalar product

$$w^{*,T}f_{Tran}(x) = \sum eta^{*,m}r^m f_{Tran}(x^m)^T f_{Tran}(x)$$

- What is the Kernel Trick?
 - Embeddings into very high dimensions demand more computational power and capacity for calculation of scalar product

$$w^{*,T}f_{Tran}(x) = \sum eta^{*,m}r^m f_{Tran}(x^m)^T f_{Tran}(x)$$

There exist combination of embedding function f_{Tran} and kernel function f_{Kern} , such that Mercer condition holds:

$$f_{Tran}(x^m)^T \cdot f_{Tran}(x^\ell) = f_{Kern}(x^m, x^\ell) \quad orall x^m, x^\ell$$

- What is the Kernel Trick?
 - Embeddings into very high dimensions demand more computational power and capacity for calculation of scalar product

$$w^{*,T}f_{Tran}(x) = \sum eta^{*,m}r^m f_{Tran}(x^m)^T f_{Tran}(x)$$

■ There exist combination of embedding function f_{Tran} and kernel function f_{Kern} , such that Mercer condition holds:

$$f_{Tran}(x^m)^T \cdot f_{Tran}(x^\ell) = f_{Kern}(x^m, x^\ell) \quad orall x^m, x^\ell$$

This way, we do not even need to compute the transformation! Only the <u>result</u> of the scalar product!

Some Kernel functions:

$$egin{aligned} f_{Kern}(x^m, x^\ell) &:= (x^{m,T} \cdot x^\ell)^2 \ f_{Kern}(x^m, x^\ell) &:= e^{-rac{\|x^m - x^\ell\|^2}{2\sigma^2}} \ f_{Kern}(x^m, x^\ell) &:= anh(x^{m,T} \cdot x^\ell) \ f_{Kern}(x^m, x^\ell) &:= (x^{m,T} \cdot x^\ell + 1)^d \end{aligned}$$

Topics covered in this course

- Neuroinformatics & Machine Learning Basics
- Statistical Decision Theory
 & Statistical Classifiers
- McCulloch Pitts Cell & Perceptron
 & Learning Algorithms
- Adaline
- Multi Layer Perceptron
- Convolutional Neural Networks
- Bias-Variance-Dilemma
 & Statistical Analyses (e.g. Precision/Recall)
- RBF- Nets
- SVMs

Exam hints

- No proofs!
- No programming tasks!
- Content from the tutorials is expected to be known (except for proofs and programming assignments!)
- It is more important to be able to accurately explain concepts and relationships than to learn complicated mathematical deriviations by heart.
- You should understand the derivations, though!
- Simple (usually short) formulas, introduced in the lecture, are expected to be known (e.g. Bayes etc...)

Exam hints

- These lecture topics are definitely not going to be in the exam:
 - Chapter 1 : slides 3-4
 - Chapter 3: slides 42-47
 - Chapter 5: slides 19-24, slides 29-32, slide 38
 - Chapter 6: slides 3-4, slide 10, slides 62-64
 - Chapter 7: slides 4-9
 - Chapter 8:
 - Do not learn formulas by heart, but rather understand them and know the meaning of the used symbols!

- Definitions:
 - E.g.: When are two sets of classes said to be linearly separable?
 - Assume two sets: $P,N \subset \mathbb{R}^N$
 - P, N linearly separable if there exists a weight vector $w \in \mathbb{R}^N$ and a threshold $\Theta \in \mathbb{R}$ such that

$$w^T x \ge \Theta \quad \forall x \in P$$

- Calculations (only minor part of exam):
 - Some easy calculations
 - No calculator required
 - e.g. covariance matrix, bayes, conditional probabilities or something similarly easy
 - No calculations of inverse matrix expected

- Algorithms:
 - Description of algorithm
 - How does it work?
 - Do not leave out important aspects!
 - Make sure the corrector sees, that you know what you are talking about
 - (Do not just write down some formulas without any explanation!)
 - E.g. Perceptron learning algorithm

- Algorithms:
 - Idea of algorithm
 - What is the general idea of this algorithm?
 - Explain it in an understandable fashion (like you would explain it to a collegue)
 - Draw sketches to illustrate your explanations

_

- Derivations:
 - Do not learn derivations/proofs by heart!
 - Make sure you understand WHY we had to make these derivations!
 - To which conclusions did these poofs/derivations lead us?

- Formulas:
 - Do not learn very complex formulas by heart! (see list in previous slide)
 - Make sure you understand which components these formulas consist of!
 - Easier formulas are expected to be known!
 - (E.g. Bias, Variance, Definition of a hyperplane, linear associator, bayes, etc...)

- Transfer of knowledge:
 - Get an overall understanding of which topics this course covers
 - What are the differences?
 - What are common properties?
 - Is there any relation between chapter X and Y?

Good luck in your exam!

