NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 2, 2022/2023

MA2001 Linear Algebra I

Tutorial 10

EXERCISE 6.9

For each of the following matrix A,

- (i) determine whether A is diagonalizable; and
- (ii) if A is diagonalizable, find a matrix P that diagonalizes A and determine $P^{-1}AP$.

Note that it requires eigenvalues and eigenvectors to determine the diagonalizability. We first review the definitions.

Let A be a square matrix of order n. If for some $\lambda \in \mathbb{R}$ and nonzero $v \in \mathbb{R}^n$ such that $Av = \lambda v$, then λ is called an *eigenvalue* of A, and v an *eigenvector* associated to λ .

The *characteristic polynomial* $\det(\lambda I - A)$ is a monic polynomial in variable λ of degree n. Its zeros (i.e., the roots to the *characteristic equation* $\det(\lambda I - A) = 0$) are precisely all the eigenvalues of A. That is,

 λ is an eigenvalue of $A \Leftrightarrow \lambda I - A$ is a singular matrix

$$\Leftrightarrow \det(\lambda \boldsymbol{I} - \boldsymbol{A}) = 0.$$

In particular,

- (i) If A is a triangular matrix, then its eigenvalues are the diagonal entries.
- (ii) If A is a square matrix of order 2, then the characteristic polynomial of A is

$$p_{\mathbf{A}}(\lambda) = \lambda^2 - \operatorname{tr}(\mathbf{A}) + \operatorname{det}(\mathbf{A}),$$

where tr(A) is the *trace* of A, defined as the sum of diagonal entries of A.

Let λ be an eigenvalue of A. Then the eigenvectors of A associated to λ are precisely all the *nonzero* vectors in the nullspace of $\lambda I - A$. The nullspace of $\lambda I - A$ is the *eigenspace* of A associated to λ , denoted by E_{λ} or $E_{A,\lambda}$. Since $\lambda I - A$ is singular, we have dim $E_{\lambda} \ge 1$.

A square matrix A is said to be *diagonalizable* if there exists an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

It is also prove that

(i) The eigenvectors associated to distinct eigenvalues are linearly independent.

- (ii) A square matrix A of order n is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors.
- (iii) If a square matrix A of order n has n distinct eigenvalues, then it is diagonalizable.

We have the **criterion for diagonalization**: Let A be a square matrix of order n.

- (a) If A has a non-real eigenvalue, or equivalently, if $\det(\lambda I A)$ cannot be completely factorized as product of linear factors over \mathbb{R} , then A is not diagonalizable over \mathbb{R} .
- (b) A has a real eigenvalue λ with *algebraic multiplicity* $a(\lambda)$ (it is the multiplicity of λ as a root of the characteristic equation) such that $\dim(E_{\lambda}) < a(\lambda)$, then A is not diagonalizable.
- (c) Suppose that every eigenvalue λ of A is a real number and dim $(E_{\lambda}) = a(\lambda)$.
 - (i) For each eigenvalue λ of A, solve the homogeneous linear system $(\lambda I A)x = 0$ to get a basis for E_{λ} .
 - (ii) Let the union of the bases for the eigenspaces be $\{v_1, ..., v_n\}$. Let $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$. Then $D = P^{-1}AP$ is a diagonal matrix such that its diagonal entries are the corresponding eigenvalues of the columns of P.

After review, we are now ready to check the diagonalizability of the following matrices.

6.9(d).
$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
.

Note that A is already a diagonal matrix. If we set P = I, then $P^{-1}AP = A$ is a diagonal matrix. Hence, we conclude that A is diagonalizable.

In general, any diagonal matrix is diagonalizable (by the identity matrix I).

6.9(b).
$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$$
.

(i) The characteristic polynomial of A is

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \lambda^2 - \operatorname{tr}(\mathbf{A})\lambda + \det(\mathbf{A}) = \lambda^2 - 4\lambda + 4 = (\lambda - 2)^2.$$

Then *A* has a unique eigenvalue $\lambda = 2$.

(ii) Find the eigenspace of A associated to $\lambda = 2$:

$$2\boldsymbol{I} - \boldsymbol{A} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}.$$

Then

$$(2\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t(1, 1), \ t \in \mathbb{R}.$$

So $\dim(E_2) = 1$ but the algebraic multiplicity of 2 is 2. It follows that A is not diagonalizable. Alternatively, assume that A is diagonalized by P. Then we must have

$$P^{-1}AP = D,$$

where D is the diagonal matrix whose diagonal entries are the eigenvalues of A, i.e.,

$$\boldsymbol{D} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2\boldsymbol{I}.$$

Then

$$A = PDP^{-1} = P(2I)P^{-1} = 2(PP^{-1}) = 2I = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix},$$

which is clearly a contradiction.

6.9(h).
$$A = \begin{pmatrix} -1 & 1 & 1 \\ -2 & 2 & 1 \\ -2 & -1 & 0 \end{pmatrix}$$
. In Tutorial 9, we have calculated that

- (i) \boldsymbol{A} has eigenvalues $\lambda = -1$ and $\lambda = 1$.
- (ii) E_{-1} has a basis $\{(-1, -1, 1)\}$, and E_1 has a basis $\{(\frac{1}{2}, 1, 0), (\frac{1}{2}, 0, 1)\}$.

Let P be the matrix whose columns are the vectors in the bases, e.g., $P = \begin{pmatrix} -1 & \frac{1}{2} & \frac{1}{2} \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Then

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

the diagonal matrix whose diagonal entries are the corresponding eigenvalues of A.

6.9(j).
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
. In Tutorial 9, we have calculated that

- (i) \boldsymbol{A} has eigenvalues $\lambda = -1$ and $\lambda = 1$.
- (ii) E_{-1} has a basis $\{(-1,0,1,0),(0,-1,0,1)\}$ and E_{1} has a basis $\{(1,0,1,0),(0,1,0,1)\}$.

Let P be the matrix whose columns are the vectors in the bases, e.g., $P = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.

Then

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

the diagonal matrix whose diagonal entries are the corresponding eigenvalues of A.

6.9(f).
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 9 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.

(i) The characteristic polynomial of A is

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda & -1 & 0 \\ -9 & \lambda & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2) \begin{vmatrix} \lambda & -1 \\ -9 & \lambda \end{vmatrix} = (\lambda - 2)(\lambda^2 - 9) = (\lambda - 2)(\lambda - 3)(\lambda + 3).$$

Then the eigenvalues of A are $\lambda = 2$, $\lambda = 3$ and $\lambda = -3$.

Since A has 3 distinct eigenvalues, it is diagonalizable.

(ii) Find the basis for each eigenspace.

Let $\lambda = 2$. Then

$$2\mathbf{I} - \mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -9 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 + \frac{9}{2}R_1} \begin{pmatrix} 2 & -1 & 0 \\ 0 & -\frac{5}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then

$$(2\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t(0, 0, 1), \ t \in \mathbb{R}.$$

Hence, E_2 has a basis $\{(0,0,1)\}.$

Let $\lambda = 3$. Then

$$3\mathbf{I} - \mathbf{A} = \begin{pmatrix} 3 & -1 & 0 \\ -9 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + 3R_1} \begin{pmatrix} 3 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 3 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then

$$(3\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t(\frac{1}{3}, 1, 0), \ t \in \mathbb{R}.$$

Then E_3 has a basis $\{(\frac{1}{3}, 1, 0).$

(iii) Let $\lambda = -3$. Then

$$-3\mathbf{I} - \mathbf{A} = \begin{pmatrix} -3 & -1 & 0 \\ -9 & -3 & 0 \\ 0 & 0 & -5 \end{pmatrix} \xrightarrow{R_2 - 3R_1} \begin{pmatrix} -3 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -5 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} -3 & -1 & 0 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then

$$(-3I - A)x = 0 \Leftrightarrow x = t(-\frac{1}{3}, 1, 0), \ t \in \mathbb{R}.$$

Then E_{-3} has a basis $\{(-\frac{1}{3}, 1, 0)\}.$

(iv) Let ${m P}$ be the matrix whose columns are vectors in the bases of the eigenspaces, e.g., ${m P}$ =

$$\begin{pmatrix} 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$
 Then

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix},$$

the diagonal matrix whose diagonal entries are the corresponding eigenvalues of A.

EXERCISE 6.16

A square matrix $A = (a_{ij})_{n \times n}$ is called a *stochastic matrix* if $a_{ij} \ge 0$ for all i, j = 1, ..., n and the sum of each column

$$\sum_{i=1}^{n} a_{ij} = a_{1j} + a_{2j} + \dots + a_{nj} = 1, \qquad j = 1, \dots, n.$$

(a) Show that 1 is an eigenvalue of \boldsymbol{A} , and if λ is an eigenvalue of \boldsymbol{A} , then $|\lambda| \leq 1$.

(b) Show that
$$\mathbf{B} = \begin{pmatrix} 0.95 & 0 & 0 \\ 0.05 & 0.95 & 0.05 \\ 0 & 0.05 & 0.95 \end{pmatrix}$$
 is stochastic, and diagonalize it.

6.16(a). We write down all the conditions: $a_{ij} \ge 0$, and the sum of each column is 1. So

$$a_{11} + a_{21} + \dots + a_{n1} = 1$$

 $a_{12} + a_{22} + \dots + a_{n2} = 1$
 \vdots \vdots
 $a_{1n} + a_{2n} + \dots + a_{nn} = 1$.

We should be able to express these equations in matrix form

$$\begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}.$$

Note that the coefficient matrix is A^{T} . If we write $u = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$. Then the given information

becomes $A^{T}u = u$, or equivalently,

$$A^{\mathrm{T}}u = 1u$$

This means that

(i) $\lambda = 1$ is an eigenvalue of A, and

(ii) $u \neq 0$ is an eigenvector of A associated to $\lambda = 1$.

However, we are expected to show that 1 is an eigenvalue of A instead of A^T . Can we find the relation between the eigenvalues of A and eigenvalues of A^T ?

We have seen that the eigenvalues of a square matrix are precisely all zeros to its characteristic polynomial. Then can we find the relation between the characteristic polynomials of A and A^{T} ?

The characteristic polynomial of A is the determinant of the matrix $\lambda I - A$, while the characteristic polynomial of A^T is the determinant of the matrix $\lambda I - A^T$.

We realize that $\lambda \boldsymbol{I} - \boldsymbol{A}$ and $\lambda \boldsymbol{I} - \boldsymbol{A}^T$ are the transpose of each other:

$$(\lambda \boldsymbol{I} - \boldsymbol{A})^{\mathrm{T}} = \lambda \boldsymbol{I}^{\mathrm{T}} - \boldsymbol{A}^{\mathrm{T}} = \lambda \boldsymbol{I} - \boldsymbol{A}^{\mathrm{T}}.$$

In particular, they have the same determinant. Hence, for any square matrix A,

- (i) A and A^T have the same characteristic polynomial;
- (ii) A and A^{T} have the same eigenvalues (including algebraic multiplicities).

Since we have shown that 1 is an eigenvalue of A^{T} , it is also an eigenvalue of A.

Next, we shall prove that if λ is an eigenvalue of A, then $|\lambda| \le 1$.

Since A have A^T have the same eigenvalues, it is equivalent to showing that if λ is an eigenvalue of A^T , then $|\lambda| \le 1$.

In discussion of an eigenvalue, we must associate it with an eigenvector, and vice versa. Let

 λ be an eigenvalue of A^{T} and $v = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \neq \mathbf{0}$ an associated eigenvector. Then

$$A^{T}v = \lambda v \Leftrightarrow \begin{cases} a_{11}c_{1} + a_{21}c_{2} + \dots + a_{n1}a_{n} = \lambda c_{1} \\ a_{12}c_{1} + a_{22}c_{2} + \dots + a_{n2}c_{n} = \lambda c_{1} \\ \vdots & \vdots \\ a_{1n}c_{1} + a_{2n}c_{2} + \dots + a_{nn}c_{n} = \lambda c_{n} \end{cases}$$

We analyze, in particular, the first equation:

$$a_{11}c_1 + a_{21}c_2 + \cdots + a_{n1}c_n = \lambda c_1$$
.

In order to get an upper bound for $|\lambda|$, we first take absolute values:

$$|a_{11}c_1 + a_{21}c_2 + \cdots + a_{n1}c_n| = |\lambda||c_1|.$$

An upper bound is clearly obtained by triangle inequality:

$$|\lambda||c_1| \le |a_{11}||c_1| + |a_{21}||c_2| + \dots + |a_{n1}||c_n| = |a_{11}||c_1| + |a_{21}||c_2| + \dots + |a_{n1}||c_n||$$

Of course we must use the condition

$$a_{11} + a_{21} + \cdots + a_{n1} = 1$$
,

in which the coefficients for $a_{11}, a_{21}, \dots, a_{21}$ are the same, while $|c_1|, |c_2|, \dots, |c_n|$ may be distinct.

If $|c_1| \le M$, $|c_2| \le M$,..., $|c_n| \le M$, then we may continue to get

$$|\lambda||c_i| \le a_{11}M + a_{21}M + \dots + a_{n1}M = (a_{11} + a_{21} + \dots + a_{n1})M = M.$$

What is the *best* choice for *M*? In the sense of *best*, we hope to have the *least M* so that

$$|c_1| \le M, |c_2| \le M, \dots, |c_n| \le M.$$

So the *best* choice for *M* is

$$M = \max\{|c_1|, |c_2|, \dots, |c_n|\},\$$

the maximum value among $|c_1|, |c_2|, \ldots, |c_n|$.

By definition, there is an index i = 1, ..., n such that $|c_i| = M$. Consider the ith equation:

$$\lambda c_i = a_{1i}c_1 + a_{2i}c_2 + \cdots + a_{ni}c_n.$$

Then

$$\begin{aligned} |\lambda|M &= |\lambda| |c_i| = |a_{1i}c_1 + a_{2i}c_2 + \dots + a_{ni}c_n| \\ &\leq a_{1i}|c_1| + a_{2i}|c_2| + \dots + a_{ni}|c_n| \\ &\leq a_{1i}M + a_{2i}M + \dots + a_{ni}M \\ &= (a_{1i} + a_{2i} + \dots + a_{ni})M = M. \end{aligned}$$

We should be able to arrive the desired result $|\lambda| \le 1$ by dividing both sides by M. We can always do so as long as M > 0.

By definition, M is the largest value among all $|c_1|, |c_2|, \dots, |c_n|$. If M = 0, then

$$|c_1| = |c_2| = \cdots = |c_n| = 0 \Rightarrow c_1 = c_2 = \cdots = c_n = 0,$$

and this implies that v = 0.

We shall emphasize again that *an eigenvector is must be a nonzero vector*. So this is impossible. Therefore, M > 0. Then dividing M both sides to $|\lambda| M \le M$ yields $|\lambda| \le 1$.

6.16(b). The verification that $\mathbf{B} = \begin{pmatrix} 0.95 & 0 & 0 \\ 0.05 & 0.95 & 0.05 \\ 0 & 0.05 & 0.95 \end{pmatrix}$ is a stochastic matrix is straightforward:

(i) every entry is ≥ 0 , and (ii) the sum of each column is 1:

- The 1^{st} column: 0.95 + 0.05 + 0 = 1.
- The 2^{nd} column: 0 + 0.95 + 0.05 = 1.
- The 3^{rd} column: 0 + 0.05 + 0.95 = 1.

We now diagonalize B using the same method as **Exercise 6.9**.

(i) Find the characteristic polynomial of *B*:

$$\det(\lambda \mathbf{I} - \mathbf{B}) = \begin{vmatrix} \lambda - 0.95 & 0 & 0 \\ -0.05 & \lambda - 0.95 & -0.05 \\ 0 & -0.05 & \lambda - 0.95 \end{vmatrix} = (\lambda - 0.95) \begin{vmatrix} \lambda - 0.95 & -0.05 \\ -0.05 & \lambda - 0.95 \end{vmatrix}$$
$$= (\lambda - 0.95)[(\lambda - 0.95)(\lambda - 0.95) - (-0.05)(-0.05)] = (\lambda - 0.95)(\lambda - 1)(\lambda - 0.9).$$

Then **B** has eigenvalues $\lambda = 1$, $\lambda = 0.95$ and $\lambda = 0.9$.

Since B has 3 distinct eigenvalues, it is diagonalizable.

(ii) Find the bases for eigenspaces.

Let $\lambda = 1$.

$$1\boldsymbol{I} - \boldsymbol{B} = \begin{pmatrix} 0.05 & 0 & 0 \\ -0.05 & 0.05 & -0.05 \\ 0 & -0.05 & 0.05 \end{pmatrix} \xrightarrow{R_2 + R_1} \begin{pmatrix} 0.05 & 0 & 0 \\ 0 & 0.05 & -0.05 \\ 0 & -0.05 & 0.05 \end{pmatrix} \xrightarrow{R_3 + R_2} \begin{pmatrix} 0.05 & 0 & 0 \\ 0 & 0.05 & -0.05 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then

$$(1I - B)x = 0 \Leftrightarrow x = t(0, 1, 1), t \in \mathbb{R}.$$

So E_1 has a basis $\{(0, 1, 1)\}.$

Let $\lambda = 0.95$.

$$0.95 \mathbf{I} - \mathbf{B} = \begin{pmatrix} 0 & 0 & 0 \\ -0.05 & 0 & -0.05 \\ 0 & -0.05 & 0 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} -0.05 & 0 & -0.05 \\ 0 & 0 & 0 \\ 0 & -0.05 & 0 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} -0.05 & 0 & -0.05 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then

$$(0.95I - B)x = 0 \Leftrightarrow x = t(-1, 0, 1), t \in \mathbb{R}.$$

So $E_{0.95}$ has a basis $\{(-1,0,1)\}$.

Let $\lambda = 0.9$.

$$0.9\boldsymbol{I} - \boldsymbol{B} = \begin{pmatrix} -0.05 & 0 & 0 \\ -0.05 & -0.05 & -0.05 \\ 0 & -0.05 & -0.05 \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} -0.05 & 0 & 0 \\ 0 & -0.05 & -0.05 \\ 0 & -0.05 & -0.05 \end{pmatrix} \xrightarrow{R_3 - R_2} \begin{pmatrix} -0.05 & 0 & 0 \\ 0 & -0.05 & -0.05 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then

$$(0.9I - B)x = 0 \Leftrightarrow x = t(0, -1, 1), t \in \mathbb{R}.$$

So $E_{0.9}$ has a basis $\{(0, -1, 1)\}$.

(iii) Let P be the matrix whose columns are the vectors in the bases of eigenspaces, e.g., P =

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$
. Then

$$\mathbf{P}^{-1}\mathbf{B}\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.95 & 0 \\ 0 & 0 & 0.9 \end{pmatrix},$$

the diagonal matrix whose diagonal entries are the corresponding eigenvalues of B.

EXERCISE 6.20

Find a general formula for a_n such that

- (a) $a_n = 3a_{n-1} 2a_{n-2}$ with $a_0 = 0$ and $a_1 = 1$.
- (b) $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 1$ and $a_1 = 0$.

This is an application of diagonalization.

Suppose that a square matrix A. Then we can find an invertible matrix A and a diagonal matrix D such that

$$P^{-1}AP = D.$$

Note that the powers of D can be evaluated easily:

$$\boldsymbol{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \Rightarrow \boldsymbol{D}^k = \begin{pmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^k \end{pmatrix}.$$

We can thus easily find the powers of A:

$$A^k = PD^kP^{-1}.$$

Suppose that the values of a_0 and a_1 are given, and

$$a_n = \alpha a_{n-1} + \beta a_{n-2}, \qquad n \ge 2.$$

Then

$$\begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} a_n \\ \alpha a_n + \beta a_{n-1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \beta & \alpha \end{pmatrix} \begin{pmatrix} a_{n-1} \\ a_n \end{pmatrix}.$$

Let
$$A = \begin{pmatrix} 0 & 1 \\ \beta & \alpha \end{pmatrix}$$
. Then $Ax_{n-1} = x_n$.

Note that the characteristic polynomial of A is

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda & -1 \\ -\beta & \lambda - \alpha \end{vmatrix} = \lambda(\lambda - \alpha) - (-1)(-\beta) = \lambda^2 - \alpha\lambda - \beta.$$

Suppose that A can be diagonalized as $P^{-1}AP = D$. Then

$$x_n = A^n x_0 = P D^n P^{-1} x_0.$$

6.20(a). $a_n = 3a_{n-1} - 2a_{n-2}$ with $a_0 = 0$ and $a_1 = 1$.

Let
$$A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$$
 and $x_n = \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix}$. Then $Ax_{n-1} = x_n$ with $x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

(i) The characteristic polynomial of A is

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda & -1 \\ 2 & \lambda - 3 \end{vmatrix} = \lambda^3 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2).$$

Then *A* has eigenvalues $\lambda = 1$ and $\lambda = 2$.

(ii) Find the bases for the eigenspaces.

Let $\lambda = 1$. Then

$$1\mathbf{I} - \mathbf{A} = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}.$$

Then $E_1 = \{(t, t) \mid t \in \mathbb{R}\} = \text{span}\{(1, 1)\}.$

Let $\lambda = 2$. Then

$$2\boldsymbol{I} - \boldsymbol{A} = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}.$$

Then $E_2 = \{(\frac{1}{2}t, t) \mid t \in \mathbb{R}\} = \text{span}\{(\frac{1}{2}, 1)\}.$

(iii) Let
$$P = \begin{pmatrix} 1 & \frac{1}{2} \\ 1 & 1 \end{pmatrix}$$
. Then $P^{-1}AP = D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. So

$$x_n = A^n x_0 = P D^n P^{-1} x_0 = \begin{pmatrix} 1 & \frac{1}{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1^n & 0 \\ 0 & 2^n \end{pmatrix} \frac{1}{1 \cdot 1 - 1 \cdot \frac{1}{2}} \begin{pmatrix} 1 & -\frac{1}{2} \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2^n - 1 \\ 2^{n+1} - 1 \end{pmatrix}.$$

In particular, the first entry gives the general formula of the sequence:

$$a_n = 2^n - 1$$
.

6.20(b). $a_n = a_{n-1} + 2a_{n-1}$ with $a_0 = 1$ and $a_1 = 0$.

Let
$$A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$$
 and $x_n = \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix}$. Then $Ax_{n-1} = x_n$ and $x_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

(i) Find the characteristic polynomial of A:

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda & -1 \\ -2 & \lambda - 1 \end{vmatrix} = \lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2).$$

Then *A* has eigenvalues $\lambda = -1$ and $\lambda = 2$.

(ii) Find the bases for the eigenspaces of A.

Let $\lambda = -1$. Then

$$-1\mathbf{I} - \mathbf{A} = \begin{pmatrix} -1 & -1 \\ -2 & -2 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix}.$$

Then $E_{-1} = \{(-t, t) \mid t \in \mathbb{R}\} = \text{span}\{(-1, 1)\}.$

Let $\lambda = 2$. Then

$$2\mathbf{I} - \mathbf{A} = \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \xrightarrow{R_2 + R_1} \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}.$$

Then $E_2 = \{(\frac{1}{2}t, t) \mid t \in \mathbb{R}\} = \text{span}\{(\frac{1}{2}, 1)\}.$

(iii) Let
$$P = \begin{pmatrix} -1 & \frac{1}{2} \\ 1 & 1 \end{pmatrix}$$
. Then $P^{-1}AP = D = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$. Then

$$\boldsymbol{x}_n = \boldsymbol{P}\boldsymbol{D}^n\boldsymbol{P}^{-1}\boldsymbol{x}_0 = \begin{pmatrix} -1 & \frac{1}{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} (-1)^n & 0 \\ 0 & 2^n \end{pmatrix} \frac{1}{(-1)\cdot 1 - 1\cdot \frac{1}{2}} \begin{pmatrix} 1 & -\frac{1}{2} \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{2}{3}(-1)^n + \frac{1}{3}2^n \\ -\frac{2}{3}(-1)^n + \frac{2}{3}2^n \end{pmatrix}.$$

In particular, the first entry gives a general formula of the sequence

$$a_n = \frac{2}{3}(-1)^n + \frac{1}{3}2^n.$$

EXERCISE 6.24

For each of the following, find a matrix P that orthogonally diagonalizes A and determine $P^{T}AP$.

Suppose A is diagonalizable. Then there exist an invertible matrix P such that $P^{-1}AP = D$ is a diagonal matrix.

If the order of A is large, then it is complicated to find P^{-1} (apply Gauss-Jordan elimination to $(P \mid I) \dashrightarrow (I \mid P^{-1})$). On the other hand, if P is an *orthogonal matrix*, then its inverse is the same as the transpose $P^{-1} = P^{T}$, which can be easily obtained.

Let A be a square matrix. If there exists an orthogonal matrix P such that $P^{T}AP = D$ is a diagonal matrix, then A is said to be *orthogonally diagonalizable*.

Surprisingly, the orthogonally diagonalizable matrices are precisely all the symmetric matrices:

A square matrix A is orthogonally diagonalizable $\Leftrightarrow A$ is a symmetric matrix.

Moreover, suppose that A is a symmetric (orthogonally diagonalizable) matrix. Then

- (i) All eigenvalues of A are real numbers.
- (ii) Eigenvectors associated to different eigenvalues of A are orthogonal.

We have the following algorithm for orthogonal diagonalize a symmetric matrix A:

(i) Solve the characteristic equation $\det(\lambda I - A) = 0$ to find the eigenvalues of A.

- (ii) For each eigenspace E_{λ} , find an orthonormal basis S_{λ} .
- (iii) Let $\{v_1, v_2, \dots, v_n\}$ be the union of these orthonormal bases.
- (iv) Then $P = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$ is an orthogonal matrix, which diagonalizes A. The diagonal entries of $P^T A P$ are the corresponding eigenvalues of A.

6.24(e).
$$A = \begin{pmatrix} 0 & -2 & 1 \\ -2 & 3 & -2 \\ 1 & -2 & 0 \end{pmatrix}$$
.

(i) Find the characteristic polynomial

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda & 2 & -1 \\ 2 & \lambda - 3 & 2 \\ -1 & 2 & \lambda \end{vmatrix} = [\lambda^2(\lambda - 3) + (-4) + (-4)] - [4\lambda + 4\lambda + (\lambda - 3)]$$
$$= \lambda^3 - 3\lambda^2 - 9\lambda - 5$$
$$= (\lambda + 1)^2(\lambda - 5).$$

Then *A* has eigenvalues $\lambda = -1$ and $\lambda = 5$.

(ii) Find the orthonormal bases for the eigenspaces of A.

Let $\lambda = -1$. Then

$$-1\mathbf{I} - \mathbf{A} = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix} \xrightarrow{R_2 + 2R_1} \begin{pmatrix} -1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then

$$E_{-1} = \{(2s - t, s, t) \mid s, t \in \mathbb{R}\} = \text{span}\{(2, 1, 0), (-1, 0, 1)\}.$$

Apply Gram-Schmidt process to get an orthonormal basis:

$$v_1 = (2, 1, 0),$$

 $v_2 = (-1, 0, 1) - \frac{(-1, 0, 1) \cdot (2, 1, 0)}{(2, 1, 0) \cdot (2, 1, 0)} (2, 1, 0) = \left(-\frac{1}{5}, \frac{2}{5}, 1\right).$

Normalize:

$$w_1 = v_1 / ||v_1|| = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right),$$

 $w_2 = v_2 / ||v_2|| = \left(-\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, \frac{5}{\sqrt{30}}\right).$

Let $\lambda = 5$. Then

$$5\mathbf{I} - \mathbf{A} = \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix} \xrightarrow{R_2 - \frac{2}{5}R_1} \begin{pmatrix} 5 & 2 & -1 \\ 0 & \frac{6}{5} & \frac{12}{5} \\ 0 & \frac{12}{5} & \frac{24}{5} \end{pmatrix} \xrightarrow{R_3 - 2R_2} \begin{pmatrix} 5 & 2 & -1 \\ 0 & \frac{6}{5} & \frac{12}{5} \\ 0 & 0 & 0 \end{pmatrix}.$$

Then

$$E_5 = \{(t, -2t, t) \mid t \in \mathbb{R}\} = \text{span}\{(1, -2, 1)\}.$$

Normalize

$$w_3 = (1, -2, 1) / \|(1, -2, 1)\| = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right).$$

(iii) Let
$$P = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{30}} & -\frac{2}{\sqrt{6}} \\ 0 & \frac{5}{\sqrt{30}} & \frac{1}{\sqrt{6}} \end{pmatrix}$$
. Then $P = \begin{pmatrix} w_1 & w_2 & w_3 \end{pmatrix}$ is an orthogonal matrix such that

$$\mathbf{P}^{\mathrm{T}}\mathbf{A}\mathbf{P} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

Note that the diagonal entries of $P^{T}AP$ are the corresponding eigenvalues of A.

6.24(g).
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
.

In a similar way to **6.9(j)**, we can calculate that

- (i) \boldsymbol{A} has eigenvalues $\lambda = -1$ and $\lambda = 1$.
- (ii) E_{-1} has a basis $\{(-1,1,0,0),(0,0,-1,1)\}.$
- (iii) E_1 has a basis $\{(1,1,0,0),(0,0,1,1)\}.$

Note that the bases that we obtained for E_{-1} and E_{1} are already orthogonal. We can simply normalize them to obtain orthonormal bases:

$$\begin{aligned} \boldsymbol{w}_1 &= (-1,1,0,0) / \| (-1,1,0,0) \| = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right), \\ \boldsymbol{w}_2 &= (0,0,-1,1) / \| (0,0,-1,1) \| = \left(0,0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right), \\ \boldsymbol{w}_3 &= (1,1,0,0) / \| (1,1,0,0) \| = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right), \\ \boldsymbol{w}_4 &= (0,0,1,1) / \| (0,0,1,1) \| = \left(0,0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right). \end{aligned}$$

Let
$$P = \begin{pmatrix} w_1 & w_2 & w_3 & w_4 \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$
. Then P is an orthogonal matrix such

that

$$\boldsymbol{P}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{P} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Again, the diagonal entries of P^TAP are the corresponding eigenvalues of A.

EXERCISE 6.29

- (a) Show that u is an eigenvector of A.
- (b) If $u \cdot v = 0$ and $v \neq 0$. Show that v is an eigenvector of A.

(c) Suppose
$$P = \begin{pmatrix} \frac{1}{2} & a_1 & a_2 & a_3 \\ \frac{1}{2} & b_1 & b_2 & b_3 \\ \frac{1}{2} & c_1 & c_2 & c_3 \\ \frac{1}{2} & d_1 & d_2 & d_3 \end{pmatrix}$$
 is an orthogonal matrix. Find $P^T A P$.

6.29(a). We emphasize again that *eigenvalue* and *eigenvector* come together as a pair.

In order to show that (a nonzero vector) u is an eigenvector of A, we shall show that $Au = \lambda u$ for some eigenvalue λ .

The verification is straightforward:

$$oldsymbol{A}oldsymbol{u} = egin{pmatrix} 4 \ 4 \ 4 \ 4 \end{pmatrix} = 4oldsymbol{u}.$$

Since $u \neq 0$, we conclude that u is an eigenvector of A associated to the eigenvalue 4.

6.29(b). In order to show that v is an eigenvector of A, we need to show that $Av = \lambda v$ for a constant $\lambda \in \mathbb{R}$.

It is given that $u \cdot v$, which is convenient to convert to the matrix form $u^T v = 0$. How can we link this condition to Av?

The matrix multiplication can be decomposed in blocks — the first matrix can be decomposed into rows and the second can be decomposed into columns. In particular,

Since $v \neq 0$, the only way to express $0 = \lambda v$ is setting $\lambda = 0$:

$$Av = 0 = 0v$$
.

Therefore, v is an eigenvector of A associated to the eigenvalue 0.

Note that the eigenspace E_0 is the nullspace of A. So dim(E_0) = nullity(A) = 3.

Before we proceed to **6.29(c)**, we summarize our findings:

- (i) A is symmetric; so it is orthogonally diagonalizable. The vectors associated to distinct eigenvalues are orthogonal.
- (ii) \boldsymbol{A} has eigenvalues 0 and 4.
 - ∘ E_4 contains an eigenvector u; so $E_4 \supseteq \text{span}\{u\}$ and $\dim(E_4) \ge 1$.
 - E_0 is the nullspace of A, and it is also the orthogonal complement of E_4 : $(E_4)^{\perp} = E_0$. Moreover, $\dim(E_0) = 3$.

Of course we can compute directly to see all eigenvalues of A. Can we conclude immediately from the above for its eigenvalues and eigenvectors?

Given a diagonalizable matrix of order n, the sum of the dimensions of the eigenspaces must be n. So for this matrix A,

$$4 \ge \dim(E_0) + \dim(E_4) \ge 3 + 1 = 4$$
.

There is no room for eigenvalues other than 0 and 4. Moreover, $\dim(E_4) = 1$, i.e., $E_4 = \operatorname{span}\{u\}$.

6.29(c). It is given that $P = \begin{pmatrix} \frac{1}{2} & a_1 & a_2 & a_3 \\ \frac{1}{2} & b_1 & b_2 & b_3 \\ \frac{1}{2} & c_1 & c_2 & c_3 \\ \frac{1}{2} & d_1 & d_2 & d_3 \end{pmatrix}$ is an orthogonal matrix. Then its columns must

be normalized. Write

$$m{w} = egin{pmatrix} rac{1}{2} \\ rac{1}{2} \\ rac{1}{2} \\ rac{1}{2} \end{pmatrix}, \quad m{w}_1 = egin{pmatrix} a_1 \\ b_1 \\ c_1 \\ d_1 \end{pmatrix}, \quad m{w}_2 = egin{pmatrix} a_2 \\ b_2 \\ c_2 \\ d_2 \end{pmatrix}, \quad m{w}_1 = egin{pmatrix} a_3 \\ b_3 \\ c_3 \\ d_3 \end{pmatrix}.$$

Then $\{w, w_1, w_2, w_3\}$ is an orthonormal basis for \mathbb{R}^4 .

Note that w normalized from u:

$$\boldsymbol{u}/\|\boldsymbol{u}\| = (1,1,1,1)/\|(1,1,1,1)\| = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) = \boldsymbol{w}.$$

Then $\{w\}$ is an orthonormal basis for span $\{u\} = E_4$.

Recall that E_0 is the set of all vectors orthogonal to $E_4 = \text{span}\{w\}$. We now have an orthonormal set of vectors $\{w_1, w_2, w_3\}$ that is orthogonal to $E_4 = \text{span}\{w\}$. Then

$$span\{w_1, w_2, w_3\} \subseteq E_0$$
.

Since $\dim(E_0) = 3$ and $\{w_1, w_2, w_3\}$ is linearly independent (because it is an orthonormal set), we conclude that $\{w_1, w_2, w_3\}$ is an orthonormal basis for E_0 .

Let $P = (w \ w_1 \ w_2 \ w_3)$. Then the columns of P are linearly independent eigenvectors of P. So

the diagonal matrix whose diagonal entries are the corresponding eigenvalues of A.