

機械学習 Machine Learning

序論 Introduction

福嶋 誠 Makoto Fukushima

情報科学部 School of Informatics and Data Science

深層学習のインパクト The impact of deep learning 医療診断 Medical diagnosis

皮膚がん診断における問題 The problem of diagnosing skin cancer

メラノーマ(悪性黒色腫) Malignant melanomas or ほくろ(良性母斑) Benign nevi

深層学習のインパクト The impact of deep learning タンパク質構造 Protein structure

タンパク質の3次元構造をそれらのアミノ酸配列から予測する. Predict the 3D structures of proteins from their amino acid sequences.

Jumper et al. (2021)

深層学習のインパクト The impact of deep learning 画像生成 Image synthesis

ヒト顔画像を人工的に生成する. Generate synthetic images of human faces.

https://generated.photos

深層学習のインパクト The impact of deep learning 大規模言語モデル Large language models

入力とした単語の系列における次の単語を生成する. Generate a word that represents the next word in the input sentence.

GPT-4: Proof of infinitely many primes FIRST PARTY: Thou dost not understand, my friend, There simply is no upper end To primes, those numbers indivisible, No matter if it seems impossible. SECOND PARTY: But how dost thou so surely know? To prove this truth, what canst thou show? FIRST PARTY: Consider this, my doubtful peer, A clever proof that will make clear: Assume that there's a final prime,

チュートリアル例 A tutorial example 人工データ Synthetic data

入力変数 Input variable: x

目標変数 Target variable: t

 x_1,\ldots,x_N t_1,\ldots,t_N Tr

訓練集合 Training set

チュートリアル例 A tutorial example 人工データ Synthetic data

入力変数 Input variable: x

目標変数 Target variable: t

 x_1, \ldots, x_N t_1, \ldots, t_N

訓練集合 Training set

チュートリアル例 A tutorial example 線形モデル Linear models

多項式 Polynomial function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

w の線形関数のひとつ A linear function of w

チュートリアル例 A tutorial example 誤差関数 Error function

多項式 Polynomial function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

訓練集合 Training set

$$x_1,\ldots,x_N$$
 t_1,\ldots,t_N

誤差関数 Error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \underline{y(x_n, \mathbf{w}) - t_n} \right\}^2$$

チュートリアル例 A tutorial example 誤差関数 Error function

多項式 Polynomial function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

訓練集合 Training set

$$x_1,\ldots,x_N$$
 t_1,\ldots,t_N

誤差関数 Error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \underline{y(x_n, \mathbf{w}) - t_n} \right\}^2$$

誤差関数を最小にするw*を選ぶ.

Choose w* that minimize the error function.

チュートリアル例 A tutorial example モデルの複雑さ Model complexity

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

_ 過学習 Over-fitting

チュートリアル例 A tutorial example モデルの複雑さ Model complexity

訓練集合を用いたときの誤差 Error derived from the training set テスト集合を用いたときの誤差 Error derived from the test set

チュートリアル例 A tutorial example モデルの複雑さ Model complexity

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

	M = 0	M = 1	M = 3	M = 9
w_0^{\star}	0.11	0.90	0.12	0.26
w_1^\star		-1.58	11.20	-66.13
w_2^{\star}			-33.67	1,665.69
w_3^{-}			22.43	-15,566.61
w_4^{\star}				76,321.23
w_5^{\star}				-217,389.15
w_6^\star				370,626.48
w_7^\star				-372,051.47
w_8^\star				202,540.70
$\widetilde{w_9^\star}$				-46,080.94
	ļ.			

ランダムノイズに引きずられている Increasingly tuned to the random noise

チュートリアル例 A tutorial example モデルの複雑さ Model complexity

データ集合のサイズが大きくなるにつれて過学習の問題は深刻でなくなる. The over-fitting problem become less severe as the size the data set increases.

チュートリアル例 A tutorial example 正則化 Regularization

正則化によりモデル複雑さをコントロールする. Control the model complexity by regularization.

誤差関数に正則化項を付加する. Add a regularization term to the error function.

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$
 正則化項 Regularization term

$$\|\mathbf{w}\|^2 \equiv \mathbf{w}^{\mathrm{T}}\mathbf{w} = w_0^2 + w_1^2 + \dots + w_M^2$$

チュートリアル例 A tutorial example 正則化 Regularization

弱い正則化 Weak tregularization

強い正則化 Strong regularization

正則化なし No regularization

 $\ln \lambda = -\infty$ $\ln \lambda = -18$ $\ln \lambda = 0$ 0.260.26 0.11 w_0^{\star} -66.130.64-0.07 w_1^{\star} 1,665.69 43.68-0.09 w_2^{\star} -15,566.61-144.00-0.07 w_3^{\star} 76, 321.23 57.90 -0.05 w_4^{\star} -217,389.15117.36 -0.04370,626.48 9.87-0.02-372,051.47-90.02-0.01 w_{7}^{\star} w_8^\star 202, 540.70 -70.90-0.01-46,080.9475.260.00

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

チュートリアル例 A tutorial example 正則化 Regularization

チュートリアル例 A tutorial example モデル選択 Model selection

訓練集合 Training set

パラメータ推定に用いる. Use it for parameter estimation.

検証用集合 Validation set

モデル選択に用いる. Use it for model selection.

テスト集合 Test set

最終的な性能評価に用いる.

Use it for the final performance evaluation.

<u>交差検証 Cross-validation</u>

検証用集合 Validation set

機械学習の歴史概要 A brief history of machine learning

ヒト脳内における二個の神経細胞(ニューロン)の模式図 Schematic illustration showing two neurons from the human brain

機械学習の歴史概要 A brief history of machine learning

人工二ユーラルネットワーク Artificial neural networks McCulloch and Pitts (1943)

$$y = f(a)$$

$$x_1, \ldots, x_M$$
 他のニューロンの活動 Activities of other neurons

$$w_1, \ldots, w_M$$
 重み Weights

 $f(\cdot)$ 活性化関数 Activation function

機械学習の歴史概要 A brief history of machine learning

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

特殊なケース A special case

$$a = \sum_{i=1}^{M} w_i x_i$$

$$y = f(a)$$

$$x_1, \ldots, x_M$$
 他のニューロンの活動 Activities of other neurons

$$w_1, \ldots, w_M$$
 重み Weights

 $f(\cdot)$ 活性化関数 Activation function

機械学習の歴史概要 A brief history of machine learning 単層ネットワーク Single-layer networks

パーセプトロン Perceptron Rosenblatt (1962)

$$f(a) = \begin{cases} 0, & \text{if } a \le 0\\ 1, & \text{if } a > 0 \end{cases}$$

Mark 1 perceptron hardware

機械学習の歴史概要 A brief history of machine learning 単層ネットワーク Single-layer networks

パーセプトロン Perceptron Rosenblatt (1962)

$$f(a) = \begin{cases} 0, & \text{if } a \leq 0\\ 1, & \text{if } a > 0 \end{cases}$$

訓練データ集合が線形分離可能である場合,パーセプトロンの学習アルゴリズムは有限回の繰り返しで厳密解に収束することが保証されている.

If the training data set is linearly separable, the perceptron learning algorithm is guaranteed to find an exact solution in a finite number of steps.

機械学習の歴史概要 A brief history of machine learning 単層ネットワーク Single-layer networks

パーセプトロン Perceptron Rosenblatt (1962)

$$f(a) = \begin{cases} 0, & \text{if } a \le 0\\ 1, & \text{if } a > 0 \end{cases}$$

線形分離可能 Linearly separable

線形分離不可能 Not linearly separable

DLFC Section 1.3 序論 序論

機械学習の歴史概要 A brief history of machine learning 逆伝播 Backpropagation

フィードフォーワードニューラルネットワーク Feed-forward neural networks

機械学習の歴史概要 A brief history of machine learning 逆伝播 Backpropagation

フィードフォーワードニューラルネットワーク Feed-forward neural networks

Rumelhart et al. (1986)

機械学習の歴史概要 A brief history of machine learning 深層ネットワーク Deep networks

深層ニューラルネットワーク Deep neural networks

多数の重み層をもつニューラルネットワーク Neural networks with many layers of weights

深層学習 Deep learning LeCun et al. (2015)

深層ニューラルネットワークに特化した機械学習の一領域 A sub-field of machine learning that focuses on deep neural networks

機械学習の歴史概要 A brief history of machine learning 深層ネットワーク Deep networks

From OpenAI

確率 Probabilities

不確実性は確率論のフレームワークを用いて取り扱うことができる. Uncertainty can be handled using the framework of probability theory.

60%

40%

確率の基本法則 The rules of probability 医療スクリーニング例 A medical screening example

偽陽性 False positives 3%

偽陰性 False negatives 10%

確率の基本法則 The rules of probability 加法定理と乗法定理 The sum and product rules

周辺確率 Marginal probability

$$p(X = x_i) = \frac{c_i}{N}.$$

同時確率 Joint probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

条件付き確率 Conditional probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

確率の基本法則 The rules of probability 加法定理と乗法定理 The sum and product rules

加法定理 Sum rule

$$p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij}$$
$$= \sum_{j=1}^{L} p(X = x_i, Y = y_j)$$

乗法定理 Product rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

確率の基本法則 The rules of probability 加法定理と乗法定理 The sum and product rules

加法定理 Sum rule

$$p(X) = \sum_{Y} p(X, Y)$$

乗法定理 Product rule

$$p(X,Y) = p(Y|X)p(X)$$

確率の基本法則 The rules of probability ベイズの定理 Bayes' theorem

ベイズの定理 Bayes' theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} \qquad \longleftarrow \qquad p(X,Y) = p(Y|X)p(X)$$

乗法定理 Product rule

$$p(X,Y) = p(Y|X)p(X)$$

加法定理 Sum rule

$$p(X) = \sum_{Y} p(X|Y)p(Y) \qquad \Longleftrightarrow \qquad p(X) = \sum_{Y} p(X,Y)$$

確率の基本法則 The rules of probability ベイズの定理 Bayes' theorem

確率の基本法則 The rules of probability 医療スクリーニング再訪 Medical screening revisited

$$p(C=1) = 1/100$$

p(C=1) = 1/100 ガンである Cancer

$$p(C=0) = 99/100$$

p(C=0) = 99/100 ガンではない No cancer

確率の基本法則 The rules of probability 医療スクリーニング再訪 Medical screening revisited

$$p(C=1) = 1/100$$
 ガンである Cancer $p(C=0) = 99/100$ ガンではない No cancer

$$p(T = 1|C = 0) = 3/100$$
 $p(T = 1|C = 1) = 90/100$
 $p(T = 0|C = 0) = 97/100$ $p(T = 0|C = 1) = 10/100$

陽性のテスト結果となる確率(ランダムにテストされた被験者に対して) Probability that someone who is tested at random will have a positive test result

$$p(T=1) = p(T=1|C=0)p(C=0) + p(T=1|C=1)p(C=1)$$
$$= \frac{3}{100} \times \frac{99}{100} + \frac{90}{100} \times \frac{1}{100} = \frac{387}{10,000} = 0.0387.$$

確率の基本法則 The rules of probability 医療スクリーニング再訪 Medical screening revisited

$$p(C=1) = 1/100$$
 ガンである Cancer $p(C=0) = 99/100$ ガンではない No cancer

$$p(T=1|C=0) = 3/100$$
 $p(T=1|C=1) = 90/100$
 $p(T=0|C=0) = 97/100$ $p(T=0|C=1) = 10/100$

テストが陽性であった場合にガンである確率 Probability that the person has cancer if a test is positive

$$p(C = 1|T = 1) = \frac{p(T = 1|C = 1)p(C = 1)}{p(T = 1)}$$
$$= \frac{90}{100} \times \frac{1}{100} \times \frac{10,000}{387} = \frac{90}{387} \simeq 0.23$$

確率の基本法則 The rules of probability 事前確率と事後確率 Prior and posterior probabilities

事前確率 Prior probability

$$p(C=1) = 1/100$$

事後確率 Posterior probability

$$p(C = 1|T = 1) = \frac{p(T = 1|C = 1)p(C = 1)}{p(T = 1)}$$
$$= \frac{90}{100} \times \frac{1}{100} \times \frac{10,000}{387} = \frac{90}{387} \simeq 0.23$$

確率の基本法則 The rules of probability 独立変数 Independent variables

 $X \subset Y$ が独立である場合: If X and Y are independent:

$$p(X,Y) = p(X)p(Y)$$

乗法定理より, From the product rule,

$$p(Y|X) = p(Y)$$

確率密度 Probability densities p(x)

条件 Conditions
$$p(x) \ge 0$$
 $\int_{-\infty}^{\infty} p(x) dx = 1$

x が区間 (a,b) に含まれる確率 Probability of that x will lie in an interval (a,b)

$$p(x \in (a,b)) = \int_a^b p(x) \, \mathrm{d}x$$

累積分布関数

Cumulative distribution function

$$P(z) = \int_{-\infty}^{z} p(x) \, \mathrm{d}x$$

確率密度 Probability densities $p(\mathbf{x}) = p(x_1, \dots, x_D)$

$$p(\mathbf{x}) \geqslant 0$$

$$\int p(\mathbf{x}) \, d\mathbf{x} = 1$$

加法定理 Sum rule

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) \, d\mathbf{y}$$

乗法定理 Product rule $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$$

ベイズの定理 Bayes' theorem

$$p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{y})p(\mathbf{y})}{p(\mathbf{x})}$$
 $p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{y})p(\mathbf{y}) d\mathbf{y}$

確率密度 Probability densities 分布の例 Example distributions

一様分布 Uniform distribution

$$p(x) = 1/(d-c), \quad x \in (c,d).$$

指数分布 Exponential distribution

$$p(x|\lambda) = \lambda \exp(-\lambda x), \quad x \geqslant 0.$$

ラプラス分布 Laplace distribution

$$p(x|\mu,\gamma) = \frac{1}{2\gamma} \exp\left(-\frac{|x-\mu|}{\gamma}\right)$$

確率密度 Probability densities 分布の例 Example distributions

ディラックのデルタ関数 Dirac delta function

$$p(x|\mu) = \delta(x - \mu)$$

経験分布 Empirical distribution

$$p(x|\mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} \delta(x - x_n)$$

確率密度 Probability densities 期待値と共分散 Expectations and covariances

期待值 Expectation

$$\mathbb{E}[f] = \sum_{x} p(x)f(x) \qquad \mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x$$

期待値の近似 Approximate expectation

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

条件付き期待値 Conditional expectation

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x)$$

確率密度 Probability densities 期待値と共分散 Expectations and covariances

分散 Variance
$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

$$\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2$$

共分散 Covariance
$$\operatorname{cov}[x,y] = \mathbb{E}_{x,y} [\{x - \mathbb{E}[x]\} \{y - \mathbb{E}[y]\}]$$
 $= \mathbb{E}_{x,y} [xy] - \mathbb{E}[x]\mathbb{E}[y]$
 $\operatorname{cov}[\mathbf{x},\mathbf{y}] = \mathbb{E}_{\mathbf{x},\mathbf{y}} [\{\mathbf{x} - \mathbb{E}[\mathbf{x}]\} \{\mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}]\}]$
 $= \mathbb{E}_{\mathbf{x},\mathbf{y}} [\mathbf{x}\mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathrm{T}}]$
 $\operatorname{cov}[\mathbf{x}] \equiv \operatorname{cov}[\mathbf{x},\mathbf{x}]$

ガウス分布 The Gaussian distribution

ガウス分布 The Gaussian distribution 平均と分散 Mean and variance

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x \, \mathrm{d}x = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x^2 dx = \mu^2 + \sigma^2$$

$$var[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

ガウス分布 The Gaussian distribution 尤度関数 Likelihood function

尤度関数 Likelihood function

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$$

ガウス分布 The Gaussian distribution 尤度関数 Likelihood function

対数尤度の最大化 Maximization of log likelihood

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n} - \mu)^{2} - \frac{N}{2} \ln \sigma^{2} - \frac{N}{2} \ln(2\pi)$$

最尤推定解 Maximum likelihood solution

$$\mu_{\text{ML}} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
 $\sigma_{\text{ML}}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2$

ガウス分布 The Gaussian distribution 最尤推定のバイアス Bias of maximum likelihood

$$\mathbb{E}[\mu_{\mathrm{ML}}] = \mu$$

$$\mathbb{E}[\sigma_{\mathrm{ML}}^2] = \left(\frac{N-1}{N}\right)\sigma^2$$

$$\widetilde{\sigma}^{2} = \frac{N}{N-1} \sigma_{\text{ML}}^{2}$$

$$= \frac{1}{N-1} \sum_{n=1}^{N} (x_{n} - \mu_{\text{ML}})^{2}$$

$$\mathbb{E}\left[\widetilde{\sigma}^{2}\right] = \sigma^{2}$$

ガウス分布 The Gaussian distribution 線形回帰 Linear regression

ガウス分布 The Gaussian distribution 線形回帰 Linear regression

尤度関数 Likelihood function

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} \mathcal{N}\left(t_n|y(x_n, \mathbf{w}), \sigma^2\right)$$

二乗和誤差 Sum-of-squares error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

対数尤度 Log likelihood

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

 \mathbf{w}_{ML} は $E(\mathbf{w})$ を最小化することで得られる.

 \mathbf{w}_{ML} is obtained by minimizing $E(\mathbf{w})$.

$$\sigma_{\text{ML}}^2 = \frac{1}{N} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}_{\text{ML}}) - t_n\}^2$$

ガウス分布 The Gaussian distribution 線形回帰 Linear regression

予測分布 Predictive distribution

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \sigma_{\mathrm{ML}}^2) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \sigma_{\mathrm{ML}}^2\right)$$

密度の変換 Transformation of densities

変数変換 Change of variables

$$x = g(y)$$

$$p_x(x)\delta x \simeq p_y(y)\delta y$$

$$p_y(y) = p_x(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$
$$= p_x(g(y)) \left| \frac{\mathrm{d}g}{\mathrm{d}y} \right|$$

$$x = g(y) = \ln(y) - \ln(1 - y) + 5$$
$$y = g^{-1}(x) = \frac{1}{1 + \exp(-x + 5)}$$

密度の変換 Transformation of densities 多変量分布 Multivariate distributions

変数変換 Change of variables

$$\mathbf{x} = \mathbf{g}(\mathbf{y})$$

$$\mathbf{x} = (x_1, \dots, x_D)^{\mathrm{T}} \quad \mathbf{y} = (y_1, \dots, y_D)^{\mathrm{T}}$$

$$p_{\mathbf{y}}(\mathbf{y}) = p_{\mathbf{x}}(\mathbf{x}) |\det \mathbf{J}|$$

$$\mathbf{J} = \begin{bmatrix} \frac{\partial g_1}{\partial y_1} & \dots & \frac{\partial g_1}{\partial y_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_D}{\partial y_1} & \dots & \frac{\partial g_D}{\partial y_D} \end{bmatrix}$$

情報理論 Information theory エントロピー Entropy

自己情報量 Self-information
$$h(x) = -\log_2 p(x)$$

$$H[x] = -\sum_{x} p(x) \log_2 p(x)$$

同じ確率で8つの状態をもつ確率変数 x に対しては,

For a random variable x having 8 possible states, each of which is equally likely,

$$H[x] = -8 \times \frac{1}{8} \log_2 \frac{1}{8} = 3 \text{ bits.}$$

情報理論 Information theory エントロピー Entropy

自己情報量 Self-information

$$h(x) = -\log_2 p(x)$$

エントロピー Entropy

$$H[x] = -\sum_{x} p(x) \log_2 p(x)$$

$$H[x] = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{8}\log_2\frac{1}{8} - \frac{1}{16}\log_2\frac{1}{16} - \frac{4}{64}\log_2\frac{1}{64}$$
= 2 bits

平均符号長 average code length =
$$\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{16} \times 4 + 4 \times \frac{1}{64} \times 6$$
 = 2 bits

情報理論 Information theory 物理学の観点 Physics perspective

N 個の物体の,箱の入れ方への総数 The total number of ways of allocating the N objects to the bins

$$W = \frac{N!}{\prod_i n_i!}$$
 i番目の箱には n_i 個の物体 n_i objects in the i th bin

エントロピー Entropy
$$\ln N! \simeq N \ln N - N \qquad \sum_i n_i = N$$

$$H = \frac{1}{N} \ln W \simeq -\lim_{N \to \infty} \sum_i \left(\frac{n_i}{N}\right) \ln \left(\frac{n_i}{N}\right) = -\sum_i p_i \ln p_i$$

エントロピーは次の場合のとき最大 Entropy is maximized when

$$\forall i: p_i = rac{1}{M}$$

 $\forall i: p_i = rac{1}{M}$ M: 箱の総数 Total number of bins

情報理論 Information theory 物理学的な観点 Physics perspective

情報理論 Information theory 微分エントロピー Differential entropy

微分エントロピー Differential entropy

$$H[x] = -\int p(x) \ln p(x) dx$$

- x は連続変数
- x is a continuous variable

情報理論 Information theory エントロピー最大化 Maximum entropy

微分エントロピーは以下のとき最大 Differential entropy is maximized when

$$p(x) = \mathcal{N}(x|\mu, \sigma^2)$$

このとき微分エントロピーの値は where the differential entropy is

$$H[x] = \frac{1}{2} \{ 1 + \ln(2\pi\sigma^2) \}.$$

情報理論 Information theory カルバック-ライブラー距離 Kullback-Leibler divergence

$$\mathrm{KL}(p\|q) = -\int p(\mathbf{x}) \ln q(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \left(-\int p(\mathbf{x}) \ln p(\mathbf{x}) \, \mathrm{d}\mathbf{x}\right)$$

$$= -\int p(\mathbf{x}) \ln \left\{\frac{q(\mathbf{x})}{p(\mathbf{x})}\right\} \, \mathrm{d}\mathbf{x} \qquad \qquad \text{Relative entropy}$$

性質 Properties
$$\mathrm{KL}(p||q) \geqslant 0$$
 $\mathrm{KL}(p||q) \not\equiv \mathrm{KL}(q||p)$

KL距離の最小化は尤度の最大化と等価.

Minimizing the KL divergence is equivalent to maximizing the log likelihood.

$$\mathrm{KL}(p\|q) \simeq \frac{1}{N} \sum_{n=1}^{N} \left\{ -\ln q(\mathbf{x}_n|\boldsymbol{\theta}) + \ln p(\mathbf{x}_n) \right\}$$

情報理論 Information theory 条件付きエントロピー Conditional entropy

条件付きエントロピー Conditional entropy

$$H[\mathbf{y}|\mathbf{x}] = -\iint p(\mathbf{y}, \mathbf{x}) \ln p(\mathbf{y}|\mathbf{x}) \, d\mathbf{y} \, d\mathbf{x}$$

条件付きエントロピーは以下の関係を満たす: The conditional entropy satisfies the relation:

$$H[\mathbf{x}, \mathbf{y}] = H[\mathbf{y}|\mathbf{x}] + H[\mathbf{x}]$$

情報理論 Information theory 相互情報量 Mutual information

相互情報量 Mutual information

$$I[\mathbf{x}, \mathbf{y}] \equiv KL(p(\mathbf{x}, \mathbf{y}) || p(\mathbf{x}) p(\mathbf{y}))$$

$$= -\iint p(\mathbf{x}, \mathbf{y}) \ln \left(\frac{p(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} \right) d\mathbf{x} d\mathbf{y}$$

相互情報量は以下の関係を満たす:

The mutual information satisfies the relation:

$$I[\mathbf{x}, \mathbf{y}] = H[\mathbf{x}] - H[\mathbf{x}|\mathbf{y}] = H[\mathbf{y}] - H[\mathbf{y}|\mathbf{x}]$$

ベイズ確率 Bayesian probabilities

コイン投げの結果 Results of coin flipping

60%

40%

事前確率 Prior probability

50%

50%

事後確率 Posterior probability

ベイズ確率 Bayesian probabilities モデルパラメータ Model parameters

ベイズの定理より From Bayes' theorem

本度関数 Likelihood function 事後分布 Posterior distribution $p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D})} \quad p(\mathcal{D}) = \int p(\mathcal{D}|\mathbf{w})p(\mathbf{w}) \, \mathrm{d}\mathbf{w}$

頻度論の立場 Frequentist perspective vs.

ベイズの立場 Bayesian perspective

ベイズ確率 Bayesian probabilities 正則化 Regularization

最大事後確率推定 Maximum a posteriori (MAP) estimation

以下の式を最小化 Minimizing the following equation

$$-\ln p(\mathbf{w}|\mathcal{D}) = -\ln p(\mathcal{D}|\mathbf{w}) - \ln p(\mathbf{w}) + \ln p(\mathcal{D})$$

$$p(\mathbf{w}|s) = \prod_{i=0}^{M} \mathcal{N}(w_i|0, s^2) = \prod_{i=0}^{M} \left(\frac{1}{2\pi s^2}\right)^{1/2} \exp\left\{-\frac{w_i^2}{2s^2}\right\}$$

$$-\ln p(\mathbf{w}|\mathcal{D}) = -\ln p(\mathcal{D}|\mathbf{w}) + \frac{1}{2s^2} \sum_{i=0}^{M} w_i^2 + \text{const}$$
— 正則化項 Regularization term

ベイズ確率 Bayesian probabilities 正則化 Regularization

最大事後確率推定 Maximum a posteriori (MAP) estimation

以下の式を最小化 Minimizing the following equation

$$-\ln p(\mathbf{w}|\mathcal{D}) = -\ln p(\mathcal{D}|\mathbf{w}) + \frac{1}{2s^2} \sum_{i=0}^{M} w_i^2 + \text{const}$$

対数尤度 Log likelihood

対数尤度 Log likelihood
$$\ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} \left\{ y(x_n,\mathbf{w}) - t_n \right\}^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

誤差関数
$$E(\mathbf{w}) = \frac{1}{2\sigma^2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{1}{2s^2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

ベイズ確率 Bayesian probabilities ベイズ機械学習 Bayesian machine learning

予測分布 Predictive distribution

$$p(t|x, \mathcal{D}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathcal{D}) d\mathbf{w}$$

 \mathbf{w} を $p(\mathbf{w}|\mathcal{D})$ を用いて積分消去(周辺化)

w is integrated out using $p(\mathbf{w}|\mathcal{D})$ (marginalization)

