REAL ANALYSIS
DR. PAUL L. BAILEY

Homework 21 - Solutions Thursday, November 8, 2018

Problem 1. Show that if U is open in X and A is closed in X, then $U \setminus A$ is open in X, and $A \setminus U$ is closed in X.

Problem 2. Let X be any set, and let $Z \subset X$.

- (a) Let $\mathfrak{I}_1 = \{A \in \mathfrak{P}(X) \mid Z \subset A\} \cup \{\emptyset\}$. Is \mathfrak{I}_1 a topology on X?
- (b) Let $\mathcal{T}_2 = \{A \in \mathcal{P}(X) \mid Z \subset A^c\} \cup \{X\}$. Is \mathcal{T}_2 a topology on X?
- (c) Let $\mathfrak{T}_3 = \{A \in \mathfrak{P}(X) \mid Z \not\subset A\} \cup \{\varnothing, X\}$. Is \mathfrak{T}_3 a topology on X?

Solution. (a) Yes. Clearly $Z \subset X$, so $X \in \mathcal{T}_1$. Also, if Z is a subset of each set in a collection, it is a subset of its union or its intersection.

- (b) Yes. Clearly $Z \subset X = \emptyset^c$, so $\emptyset \in \mathcal{T}_2$. Also, if Z is a subset of the complement of each set in a collection, it is a subset of the complement of its union or its intersection, by DeMorgan's Law.
- (c) No. For example, let $X = \{1, 2, 3, 4\}$ and $Z = \{2, 3\}$. Then $A = \{1, 2\} \in \mathcal{T}_3$ and $B = \{1, 3\} \in \mathcal{T}_3$, but $A \cup B = \{1, 2, 3\} \notin \mathcal{T}_3$.

Definition 1. Topological spaces may be classified using the following separation axioms:

- (T0) For every two points, there exists a neighborhood of one of the points that does not contain the other point.
- (T1) For every two points, there exists a neighborhood of each point which does not contain the other point.
- (T2) For every two points, there exist disjoint neighborhoods of each point.

Spaces which satisfy the T_0 axiom are called *Kolmogoroff spaces*.

Spaces which satisfy the T_1 axiom are called *Frechet spaces*.

Spaces which satisfy the T_2 axiom are called *Hausdorff spaces*.

Problem 3. Consider the collection of all topologies that exist on the set $X = \{a, b, c\}$.

- (a) Find all topologies on X which produce Kolmogoroff spaces. Group them by equivalence.
- (b) Find all topologies on X which produce Frechet spaces. Group them by equivalence.
- (c) Find all topologies on X which produce Hausdorff spaces. Group them by equivalence.

Solution. We use the previously established notion. All topologies have \emptyset and X, so don't write those. Also, write a to mean $\{a\}$ and ab to mean $\{a,b\}$. For example, write $\{\emptyset,X,\{a\},\{b\},\{a,b\}\}$ as a,b,ab.

- (a) There are nineteen, grouped into five equivalence classes, as follows:
 - -a,ab; a,ac; b,ab; b,bc; c,ac; c,bc
 - -a, b, ab; a, c, ac; b, c, bc
 - -a, b, ab, bc; a, b, ab, ac; a, c, ac, ab; a, c, ac, bc; b, c, bc, ab; b, c, bc, ac
 - -a, ab, ac; b, ab, bc; c, ac, bc
 - -a, b, c, ab, bc, ac (the discrete topology)

- (b) Singleton sets are closed in a Frechet space. Since the union of closed sets is closed, in a finite Frechet space, every subset is the union of singleton sets, and so its closed. Thus in a finite Frechet space, the complement of every set is closed, so every set is open. Thus, a finite Frechet space has the discrete topology.
- (c) Every Hausdorff space is Frechet, so a finite Hausdorff space has the discrete topology.

Problem 4. Let X be a set. In each case, justify your answer.

- (a) If X is finite, is the trivial topology on X Kolmogoroff? Frechet? Hausdorff?
- **(b)** If X is finite, is the cofinite topology on X Kolmogoroff? Frechet? Hausdorff?
- (c) If X is finite, is the discrete topology on X Kolmogoroff? Frechet? Hausdorff?
- (d) If X is infinite, is the trivial topology on X Kolmogoroff? Frechet? Hausdorff?
- (e) If X is infinite, is the cofinite topology on X Kolmogoroff? Frechet? Hausdorff?
- (f) If X is infinite, is the discrete topology on X Kolmogoroff? Frechet? Hausdorff?

Solution. Note that a Hausdorff space is Frechet, and a Frechet space is Kolmogoroff. So, we need only mention the strongest condition. We assume |X| > 1.

- (a) Finite trivial: None.
- (b) Finite cofinite: Hausdorff, since cofinite spaces are Frechet, and finite Frechet spaces are discrete, and thus Hausdorff.
- (c) Finite discrete: Hausdorff.
- (d) Infinite trivial: None.
- (e) Infinite cofinite: Frechet, not Hausdorff.
- (f) Infiinte discrete: Hausdorff.

Definition 2. Let X be a topological space. Let (x_n) be a sequence in X. Let $p \in X$. We say that (x_n) converges to p if

for every neighborhood U of p there exists $N \in \mathbb{N}$ such that $n \geq N \Rightarrow x_n \in U$.

Problem 5. Let X be a topological space and let (x_n) be a sequence in X.

- (a) Assume X is Hausdorff. Suppose that (x_n) converges to p and to q. Show that p=q.
- (b) Find an example of a non-Hausdorff space X and a sequence (x_n) in X which converges to more than one point.

Solution. (a) Suppose $p \neq q$. Since X is Hausdorff, there exist disjoint open sets U_1 and U_2 such that $p \in U_1$ and $q \in U_2$.

Since (x_n) converges to p, there exists $N_1 \in \mathbb{N}$ such that $n \geq N_1$ implies $x_n \in U_1$.

Since (x_n) converges to q, there exists $N_2 \in \mathbb{N}$ such that $n \geq N_2$ implies $x_n \in U_2$.

Let $N = \max\{N_1, N_2\}$. Then $x_N \in U_1 \cap U_2$, contradicting that these sets are disjoint. This contradiction proves the claim.

(b) Let $X = \{a, b\}$, endowed with the trivial topology. Then every sequence in X converges to both a and to b.