

SALESIANOS UNIVERSIDAD DON BOSCO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN CICLO 02-2020

"SEGUNDO DESAFÍO PRÁCTICO"

GRUPO DE LABORATORIO:

01

CARRERA:

INGENIERÍA EN CIENCIAS DE LA COMPUTACIÓN.

PRESENTADO POR:

Carnet	Nombre	Apellido
VC190544	Francisco José	Valle Cornejo
AV190086	César Adilson	Ayala Vásquez

DOCENTE:

Alexander Alberto Sigüenza Campos

EJERCICIO 1

Paso 1: Una vez iniciado Visual Studio, vamos a definir el origen de datos para nuestro procedimiento. En este caso, el origen será la base de datos Northwind Data Mart, la configuración quedará de la siguiente manera:

Paso 2: Definir una vista que incluya las tablas que deseamos analizar, en nuestro caso, escogeremos todas las tablas para un mayor detalle al diseñar e implementar el cubo. Nos quedará de la siguiente manera:

La vista puede puede ser visualizada de esta manera:

Paso 3: Crear un nuevo Cubo, y definiremos como tabla hechos a la tabla "pedidos", posteriormente definir las dimensiones: Proveedor, tiempo, empleado, producto y cliente.

Paso 4: El nombre del cubo será el que el programa nos da por defecto, luego de construir el cubo podemos visualizarlo mejor con un zoom del 50%. Quedando nuestra tabla hechos con color amarillo y todas las dimensiones de color azul.

Paso 5: Antes de la implementación, crearemos un campo nuevo Nombre/Categoría de la tabla productos, para ello, nos dirigimos a la vista creada en el paso 2, click derecho en la tabla producto y "Nuevo cálculo con nombre...". Configurar los campos como se muestra en la imagen:

La expresión para concatenar los campos es la siguiente:

producto.nombre + ' // ' + producto.categoria

Paso 6: Cambiar las dimensiones para que las consultas se guien más allá de las llaves primarias

Paso 7: Procesar el cubo y examinar el cubo aplicando la consulta pedida

Comando
 Procesando Dimensión, 'Cliente' completados.
 Procesando Dimensión, 'Empleado' completados.
 Procesando Cubo, 'Northwind Data Mart' completados.
 Hora de inicio: 4/10/2020 18:39:18; Hora de finalización: 4/10/2020 18:39:20; Duración: 0:00:01
 Inll Procesando Grupo de medida, 'Pedido' completados.
 Procesando Dimensión, 'Producto' completados.
 Procesando Dimensión, 'Proveedor' completados.

Paso 8: Ingresar la consulta pedida en el desafío un cubo en donde pueda visualizar nombre y país del cliente, apellido del empleado, país del proveedor, y nombre y categoría del producto. Estos dos últimos concatenados en una misma columna

Nombre	Pais	Apellido	Pais	Categoría - Producto	Precio
Alejan	Spain	Davolio	Au	Perth Pasties // Meat/Poultry	262
Alejan	Spain	Davolio	Ca	Tourtière // Meat/Poultry	29.5
Alejan	Spain	Davolio	Ge	Nord-Ost Matjeshering // Seafood	207
Alejan	Spain	Peacock	Brazil	Guaraná Fantástica // Beverages	21.6
Alejan	Spain	Peacock	Fra	Camembert Pierrot // Dairy Products	340
Alejan	Spain	Peacock	Ge	Nord-Ost Matjeshering // Seafood	150.09
Alejan	Spain	Peacock	Italy	Ravioli Angelo // Grains/Cereals	31.2
Alejan	Spain	Peacock	UK	Teatime Chocolate Biscuits // Confections	7.3
Alejan	Spain	Peacock	USA	Steeleye Stout // Beverages	57.6
Alexan	Ge	Bucha	Au	Vegie-spread // Condiments	263.4
Alexan	C-	Durales	r:-I	tablebless: //pauseess	100

EJERCICIO 2

Paso 1: Tras analizar los documentos separados con comas brindados en los recursos se ha definido usar un modelo de copo de nieve para su base de datos, con 3 tablas dimensiones principales y una relaciona a la tabla País

Paso 2: Se comienza con la creación del ETL, se usará un modelo de dos DataFlow para asegurar que las tablas Dimensiones ya tengan sus llaves primarias cuando la tabla Hechos comience a llenarse, primero se crea el origen a un archivo plano y se agrega que la separación de columnas sea por medio de la coma (,)

Paso 3: Crear una columna Derivada que lea cada fila y verifique que no hay NULL en sitios que no debería, cambiando los porcentajes base de NULL a "0" y la clave de Subregiones de NULL a "UNK"

Paso 4: Convertir todos los datos posibles haciendo que concuerden con los de la base de datos

Paso 5: Los porcentajes son archivos del mismo tipo y siempre están enlazados entre sí, al pensar en separarlos en su propia Tabla se tiene que crear un dato que no existe que será su columna de ID, para esto usamos sus propios datos sumándose, multiplicándose y dividiéndose (El divisor se suma con constantes para que nunca sea cero) creando así una llave muy poco común, pero que aún es posible que se repita, por lo que se usa otra Derived Column para concatenarle su Fecha, Su país y su subRegión.

Nombre de columna d	Columna derivada	Expresión		Tipo de datos	
ID_Porcentajes	<agregar colum<="" como="" td=""><td>(([Copia de retail_and_recreation</td><td>n_percent_change</td><td>float [DT_R4]</td><td></td></agregar>	(([Copia de retail_and_recreation	n_percent_change	float [DT_R4]	
(([Copia de r	retail_and_recreat	ion_percent_change_	from_baseline]+[Copia	de
grocery_and_pha	rmacy_percent_c	hange_from_baseline	e])*([Copia		de
parks_percent_ch	nange_from_base	line]+[Copia			de
transit_stations_p	ercent_change_fr	rom_baseline]))/	(1.265656+([0	Copia	de
workplaces_perce	ent_change_from_	_baseline]+[Copia			de
residential_perce	nt_change_from_l	baseline]))			

Nombre de columna d	Columna derivada	Expresión	Tipo de datos	Lc
Copia de ID_Porcentajes	<agregar colum<="" como="" td=""><td>(DT_STR,50,1252)(country_region_code + iso_3166</td><td>string [DT_STR]</td><td>5</td></agregar>	(DT_STR,50,1252)(country_region_code + iso_3166	string [DT_STR]	5

(DT_STR,50,1252)(country_region_code + iso_3166_2_code + date + (DT_STR,50,1252)ID_Porcentajes)

Paso 6: Con el uso de Multicast se pasa esta información a distintos Aggregate para que agrupen la información según la tabla lo necesite

Paso 7: Se copia la estructura casi completa del ETL Anterior, pero a partir del multicast se cambian los aggregate para que nuevamente, este se adecue a las asignaciones que piden la Tabla Regiones y la Tabla Hechos

Paso 8: Se crea un proyecto de Analysis Services Multidimensional y se selecciona la base de datos creada como Origen de Datos, en este caso se uso la Autenticación de SQL Server y el servidor 127.0.0.1 (localhost)

Paso 9: Crear la vista tomando el origen y todas las tablas contenidos en este

Paso 10: Crear el cubo tomando la tabla Fact y la DimRegion como puntos de medida, esta última agregada únicamente para hacer consultas con la dimensión de Región las cuales son más específicas que hacerlas únicamente por país

Paso 11: Se crean jerarquías para la Dimensión Región para que la Región, SubRegión, Metro y Censo sean juntos un mismo dato, y otra jerarquía en los porcentajes, están únicamente para agruparlos y hacer consultas de todos sin necesidad de traerlos uno por uno

Paso 12: Procesar y Examinar el cubo para hacer consultas

Region	Fecha	Cambio Base Total
AhuachapÃin Department	2020-02-15	87
AhuachapÃin Department	2020-02-16	28
AhuachapÃin Department	2020-02-17	28
AhuachapÃin Department	2020-02-18	13
AhuachapÃin Department	2020-02-19	-38
AhuachapÃin Department	2020-02-20	-16
AhuachapÃin Department	2020-02-21	121
AhuachapÃin Department	2020-02-22	-1
AhuachapÃin Department	2020-02-23	-32
AhuachapÃin Department	2020-02-24	-14
· ·		

Al hacer consultas como estas podemos ver detalles curiosos como que a partir de mediados de marzo el cambio base total daba picos negativos tan alto, y para mayores detalles podemos traer la jerarquía de porcentajes

Fecha	Cambio Trabajo	Cambio Comercio Recreac	Cambio Tiendas	Cambio Tránsito	Cambio E Públicos
2020-02-17	3	-1	2	4	1
2020-02-17	4	1	6	-1	-1
2020-02-17	4	-7	2	0	0
2020-02-17	5	0	0	0	-2
2020-02-17	5	0	4	1	-3
2020-02-17	5	3	0	0	-7
2020-02-17	6	-1	2	4	-3
2020-02-17	7	0	0	0	-1
2020-02-17	7	0	0	0	-9
2020-02-17	9	0	0	0	-2
2020-02-17	9	-1	-2	0	-14

Podemos ver cómo se mantenía una estabilidad en febrero que muchas veces se mantenía con números de cero o pequeños, siendo casi todos los cambios en tránsito, sitios públicos y el trabajo.

1	Fecha	Cambio Trabajo	Cambio Comercio Recreac	Cambio Tiendas	Cambio Tránsito	Cambio E Públicos	Cambio
	2020-03-30	-57	-60	-49	-90	-40	0
	2020-03-30	-57	-65	-41	0	-46	0
	2020-03-30	-57	-66	-4 7	-60	-44	27
	2020-03-30	-59	-66	-42	-69	-50	27
	2020-03-30	-64	-69	-4 5	-64	-60	32
	2020-03-30	-64	-70	-4 5	-64	-63	29
	2020-03-30	-68	-71	-4 8	-63	-70	35
	2020-03-30	-68	-75	-51	-58	-66	38
	2020-03-31	-50	-49	0	0	-56	0
	2020-03-31	-51	-53	0	-40	-59	0
	2020-03-31	-52	0	0	0	-53	0

Esta tendencia de estabilidad cambia en finales de Marzo cuando podemos encontrar picos negativos en la mayoría de los rubros estudiados