AULA 10

Metrizabilidade e Axiomas de Separação

DEFINIÇÃO 10.1. Seja (Ω, τ) um espaço topológico não vazio. Temos as seguintes definições:

- a) Seja $x \in \Omega$, diremos que $U \subset \Omega$ é uma vizinhança de x quando $x \in U^{\circ}$;
- b) Dado $x \in \Omega$ base de vizinhanças \mathcal{B}_x de x a família de vizinhanças de x com a seguinte propriedade: se U é qualquer vizinhança de x, então existe $V \subset \mathcal{B}_x$ tal que $V \subset U$;
- c) Uma cobertura aberta de Ω é um subconjunto $\mathscr{F} \subset \tau$ tal que $\bigcup_{U \in \mathscr{F}} U = \Omega$; Uma subcobertura é um subconjunto de \mathscr{F} que ainda é uma cobertura.

DEFINIÇÃO 10.2. Seja (Ω,τ) um espaço topológico não vazio. Temos as seguintes definições:

- a) Diremos que Ω satisfaz o o primeiro axioma de enumerabilidade quando todo $x \in \Omega$ tem uma base de vizinhanças enumerável;
- b) Diremos que Ω satisfaz o o segundo axioma de enumerabilidade quando a topologia τ tem um base enumerável;
- c) O espaço Ω será dito *Lindelöf* quando toda cobertura de Ω possuir uma subcobertura enumerável;
- d) Finalmente, diremos que Ω é separável sempre que Ω admitir uma conjunto enumerável denso.

Proposição 10.3. Em espaços métricos: Separável \Rightarrow base enumerável \Rightarrow Lindelöf \Rightarrow separável.

DEMONSTRAÇÃO. Prova de: Separável \Rightarrow base enumerável: Se $\{x_n\}_{n\in\mathbb{N}}$ é um conjunto denso em Ω então é fácil ver que se $\{q_m\}_{m\in\mathbb{N}}$ é uma enumeração dos racionais então $\{B_d(x_n,q_m)\}_{n,m\in\mathbb{N}}$ é uma base enumerável para τ .]

<u>Prova de: base enumerável \Rightarrow Lindelöf:</u> Seja $\mathscr F$ uma cobertura de Ω e $\mathscr B$ uma base enumerável para Ω . Defina

$$\mathscr{B}_{\mathscr{F}} = \{ B \in \mathscr{B} : B \subset A \text{ para algum } A \in \mathscr{F} \}.$$

Sendo $\mathscr B$ uma base temos que todo elemento de $\mathscr F$ pode ser escrito como uma união contável de elementos de $\mathscr B$, portanto $\mathscr B_{\mathscr F}$ é uma cobertura enumerável de Ω . Agora, para cada $B_j \in \mathscr B_{\mathscr F}$ escolha $A_j \in \mathscr F$ tal que $B_j \subset A_j$. Então temos que $\Omega = \bigcup_{j=1}^\infty B_j = \bigcup_{j=1}^\infty A_j$. Donde segue o resultado.

AULA 12

Espaços Conexos

DEFINIÇÃO 12.1. Um espaço topológico Ω é dito desconexo se existem conjuntos abertos, disjuntos e não vazios A,B tais que $\Omega=A\cup B$. Caso contrário diremos que Ω é conexo. Um subconjunto $S\subset\Omega$ é dito desconexo se com a topologia induzida S é desconexo. Caso contrário diremos que S é conexo.

EXEMPLO 12.2. Cada intervalo fechado e limitado de \mathbb{R} é conexo. De fato, suponha que o intervalo $[a,b],\ a < b$ seja desconexo. Então podemos escrever $[a,b] = A \cup B$ onde A e B são dois abertos não vazios de [a,b]. Suponha sem perda de generalidade que $b \in B$. Como B é aberto tem-se que $(b-\epsilon,b] \subset B$ para algum $\epsilon > 0$. Seja $c = \sup A$, pela observação precedente devemos ter que c < b e que $(c,b] \subset B$. Caso $c \in A$, como A é aberto, deve existir $\epsilon > 0$ tal que $[c,c+\epsilon) \subset A$, contrariando o fato de $c = \sup A$. Assim $c \in B$. Se a < c, sendo B aberto deve existir $\epsilon > 0$ tal que $(c-\epsilon,c] \subset B$, contrariando o fato de $c = \sup A$. Concluímos que c = a, assim $[a,b] = [c,b] \subset B$, outro absurdo. Portanto [a,b] é conexo.

Proposição 12.3. Um espaço topológico (Ω, τ) é conexo se e semente se Ω e \varnothing são os únicos subconjuntos de Ω simultaneamente abertos e fechados.

Proposição 12.4. A imagem de um espaço conexo por aplicação contínua é um espaço conexo.

COROLARIO 12.5. Teorema do valor intermediário.

EXERCÍCIO 12.1. Prove que a imagem contínua de um espaço conexo é um espaço conexo.

EXERCÍCIO 12.2. a) Mostre que se S é conexo então \overline{S} também o é. b) Se S é conexo e $S \subset D \subset \overline{S}$ então D é conexo.

PROPOSIÇÃO 12.6. Seja (Ω, τ) um espaço topológico. Suponha que $\Omega = \bigcup_{\alpha \in I} S_{\alpha}$, onde cada S_{α} é conexo e $\bigcap_{\alpha \in I} S_{\alpha} \neq \emptyset$. Então Ω é conexo.

DEMONSTRAÇÃO. Suponha $\Omega = A \cup B$ onde A e B são abertos e disjuntos de Ω . Note que para cada $\alpha \in I$, temos que $S_{\alpha} \subset A$ ou $S_{\alpha} \subset B$, caso contrário S_{α} não seria conexo. Agora seja $x \in \bigcap_{\alpha \in I} S_{\alpha}$, se $x \in A$, então devemos ter pela observação acima que $S_{\alpha} \in A$ para todo $\alpha \in I$ donde $B = \emptyset$. Um raciocínio análogo caso $x \in B$ mostra que $A = \emptyset$. Logo Ω é conexo.

Exercício 12.3. a) Mostre que \mathbb{R} é conexo. b) Mostre que \mathbb{R}^n é conexo.

EXERCÍCIO 12.4. Seja (Ω, τ) um espaço topológico. Suponha que cada par de pontos $x, y \in \Omega$ pertença a um conjunto conexo $S_{xy} \subset \Omega$. Então Ω é conexo.

Proposição 12.7. Sejam (Ω_1, τ_1) e (Ω_2, τ_2) espaços topológicos não vazios. Então o produto Então o produto cartesiano $\Omega_1 \times \Omega_2$ é conexo se e somente se Ω_1 e Ω_2 são conexos conexo.

Demonstração. Sendo o produto $\Omega_1 \times \Omega_2$ conexo e as projeções π_1, π_2 contínuas então pelo exercício?? temos que $\pi_1(\Omega_1 \times \Omega_2) = \Omega_1$ e $\pi_2(\Omega_1 \times \Omega_2) = \Omega_2$ são conexos.

Reciprocamente suponha que Ω_1 e Ω_2 sejam conexos. Fixe $y \in \Omega_2$ e para cada $x \in \Omega_1$ defina $U_x = (\{x\} \times \Omega_2) \cup (\Omega_1 \times \{y\})$. Note que para cada $x \in \Omega_1$ o cojunto U_x é a união dos dois conjuntos conexos $\{x\} \times \Omega_2$ e $\Omega_1 \times \{y\}$ e que $(\{x\} \times \Omega_2) \cap (\Omega_1 \times \{y\}) = \{(x,y)\}$, assim sendo seegue da proposição ?? que U_x é conexo.

Agora note que $\Omega_1 \times \Omega_2 = \bigcup_{x \in \Omega_1} U_x$ e que $\bigcap_{x \in \Omega_1} = \Omega_1 \times \{y\} \neq \emptyset$. Portanto pela proposição?? segue o resultado.

EXERCÍCIO 12.5. Complete a demonstração acima mostrando que $\{x\} \times \Omega_2$ é homemorfo a Ω_2 e que $\Omega_1 \times \{y\}$ é homeomorfo a Ω_1 .

EXERCÍCIO 12.6. Mostre que $\mathbb{R}^{\mathbb{N}}$ com a topologia das caixas não é conexo. Sugestão: Decomponha $\mathbb{R}^{\mathbb{N}}$ no conjunto das sequências limitadas e das sequências não limitadas.

Proposição 12.8. Seja $\{\Omega_{\alpha}\}_{{\alpha}\in I}$ uma família não vazia de espaços topológicos não vazios. Então o produto $\prod_{{\alpha}\in I} \Omega_{\alpha}$ é conexo se e somente se cada Ω_{α} é conexo.

Demonstração.

1. Lista de exercícios

- 1. Um espaço topológico Ω é dito ser totalmente desconexo quando os únicos subconjuntos conexos de Ω são os conjuntos unitários. Mostre que se Ω está equipado com a topologia discreta então Ω é totalmente desconexo. A recíproca vale?
- 2. Mostre que se $\{A_n\}_{n\in\mathbb{N}}$ é uma sequência de subespaços conexos de um espaço topológico Ω , tais que $A_n\cap A_{n+1}\neq\varnothing$ para todo n. Mostre que $\bigcup_{n\in\mathbb{N}}A_n$ é conexo.
- 3. O espaço \mathbb{R}_{ℓ} é conexo?
- 4. Mostre que um espaço topológico Ω é contínua se e somente se as únicas funções $f:\Omega\to\{0,1\}$ contínuas são as constantes.
- 5. Seja Ω um espaço topológico e suponha que para cada par de pontos x,y existe um subconjunto conexo S_{xy} de Ω contendo x e y, então Ω é conexo.
- 6. Mostre que para $n \geq 2$, $\mathbb{R}^n \setminus \{x_1, \dots, x_n\}$ é conexo.
- 7. Mostre que $\mathbb{R}^2 \setminus \mathbb{Q}^2$, onde \mathbb{Q}^2 representa o conjunto de todos os pontos de coordenadas racionais, também é conexo.
- 8. Prove que \mathbb{R}^n e \mathbb{R} não são homeomorfos para todo $n \geq 2$
- 9. Seja $E \subset \mathbb{R}^n$ um subespaço de codimensão ≥ 2 . Mostre que $\mathbb{R}^n \setminus E$ é conexo.

AULA 13

Compacidade

Definição 13.1. Um espaço topológico Ω é dito compacto quando toda cobertura aberta de Ω admite uma subcobertura finita. Um subconjunto $K \subset \Omega$ é dito um subconjunto compacto quando K com a topologia induzida for compacto.

EXERCÍCIO 13.1. Seja $K \subset \Omega$, então K é compacto se e somente se toda cobertura de K por abertos de Ω admite uma subcobertura finita.

EXEMPLO 13.2. A reta \mathbb{R} não é compacta. De fato considere a cobertura $\mathscr{F} = \{(n, n+2), n \in \mathbb{Z}\}$, é fácil ver que \mathscr{F} não tem subcobertura finita.

EXEMPLO 13.3. O seguinte subconjunto de \mathbb{R} é compacto: $\Omega = \{0\} \cup \{\frac{1}{n}, n \in \mathbb{Z}\}.$

DEFINIÇÃO 13.4. Diremos que um espaço topológico tem a propriedade da intersecção finta (p.i.f) se e somente se para qualquer família de conjuntos fechados $\{F_{\alpha}\}_{{\alpha}\in I}$ como a propriedade de que: $F_{\alpha_1}\cap\cdots\cap F_{\alpha_k}\neq\varnothing$ para todos $\alpha_1,\ldots,\alpha_k\in I$, tem-se que $\bigcap_{{\alpha}\in I}F_{\alpha}\neq\varnothing$.

Proposição 13.5. Um espaço topológico Ω é compacto se e somente se tem a propriedade da intersecção finita.

Demonstração. Seja $\{U_{\alpha}\}_{\alpha\in I}$ uma família de abertos. Associamos a essa família a seguinte família de fechados: $\{F_{\alpha}\}_{\alpha\in I}$, onde $F_{\alpha}=\Omega\setminus U_{\alpha}$. Então temos que $F_{\alpha_1}\cap\cdots\cap F_{\alpha_i}\neq\varnothing$ se e somente se $\{U_{\alpha_i}\}_{i=1}^k$ não é uma cobertura de Ω , enquanto pela p.i.f $\bigcap_{\alpha\in I}F_{\alpha}\neq\varnothing\Leftrightarrow\bigcup_{\alpha\in I}U_{\alpha}\neq\Omega$. Portanto, a propriedade da intersecção finita diz que se nenhuma subfamília finita de $\{U_{\alpha}\}_{\alpha\in I}$ é uma cobertura então $\{U_{\alpha}\}_{\alpha\in I}$ também não é uma cobertura, o que é a contrapositiva da definição de compacidade.

Proposição 13.6. Seja Ω um espaço topológico compacto. Então temos o seguinte:

- a) Todo subconjunto $F \subset \Omega$ fechado também é compacto;
- b) Se Ω for Hausdorff e $K \subset \Omega$ for um subconjunto compacto então K é fechado em Ω ;
- c) Todo espaço compacto Hausdorff é normal;

DEMONSTRAÇÃO. Prova de a): Seja $\{V_{\alpha}\}_{{\alpha}\in I}$ uma cobertura aberta de F. Então existem abertos U_{α} de $\overline{\Omega}$ tais que $V_{\alpha} = F \cap U_{\alpha}$. Note que $\{\Omega \setminus F\} \cup \{U_{\alpha}\}$ é uma cobertura aberta de Ω , portanto existem indíces $\alpha_1, \ldots, \alpha_n$ tais que $\{\Omega \setminus F\} \cup \{U_{\alpha_i}\}_{i=1}^n$ é uma subcobertura finita de Γ . Portanto $\{V_{\alpha_i}\}_{i=1}^n$ é uma subcobertura finita de Γ .

Prova de b): Para provar o desejado vamos precisar usar o seguinte fato: em um espaço Hausdorff dado um compacto K e um ponto $x \notin K$, existem abertos disjuntos U_x e V_x tais que $x \in U_x$ e $K \subset V_x$. De fato, fixado $x \notin K$ e $y \in K$, obtemos, pois Ω é Hausdorff, abertos disjuntos $U_{xy} \ni x$ e $V_{xy} \ni y$. Assim temos que $\{V_{xy}\}_{y \in K}$ é uma cobertura aberta de K. Usando a compacidade de K obtemos y_1, \ldots, y_n tais que

$$K \subset V_{xy_1} \cup \cdots \cup V_{xy_n} \equiv V$$
.

Defina $U_x \equiv U_{xy_1} \cap \cdots U_{xy_n}$ note que U_x é aberto pois é a intersecção finita de abertos e que $U_x \cap V_x = \emptyset$. Provando a afirmação.

Com isso em mãos podemos proceder à prova de b). Para cada $x \notin K$ tome $U_x \ni x$ e $V_x \supset K$ abertos disjuntos. Então $\Omega \setminus K = \bigcup_{x \in \Omega \setminus K} U_x$ é aberto, donde K é fechado.

Prova de c): Sejam K e L fechados em Ω , pelo item a) são ambos compactos. Usando o fato que provamos na prova de b) para cada $x \in L$, temos abertos disjuntos $U_x \ni X \ V_x \supset K$. Então, $\{U_x\}_{x \in L}$ é uma cobertura de L, por compacidade existem $x_1, \ldots x_n$ tais que $B \subset U \equiv U_{x_1} \cup \cdots \cup U_{x_n}$. Tomando $V \equiv \bigcap_{i=1}^n V_{x_i}$ temos que U e V são abertos disjuntos $K \subset V$ e $L \subset U$

DEFINIÇÃO 13.7. Um espaço topológico Ω é dito fracamente sequencialmente compacto (f.s.c) se toda sequência em Ω tem um ponto de acumulação. Se toda sequência tem uma subsequência convergente diremos que Ω é sequêncialmente compacto. Note que em espaços métricos essas duas noções coincidem.

Exercício 13.2. Mostre que um espaço métrico é fracamente sequencialmente compacto se e somente se é sequêncialmente compacto. Se Ω for apenas um espaço topológico, qual dessas noções implica a outra? Dê um exemplo de um espaço não metrizável em que essas noções não coincidem.

Proposição 13.8. Todo espaço topológico compacto é fracamente sequencialmente compacto.

DEMONSTRAÇÃO. Seja $\{x_n\}_{n\in\mathbb{N}}$ uma sequência em um espaço compacto Ω . Suponha que $\{x_n\}_{n\in\mathbb{N}}$ não tenha ponto de acumulação (em particular $\{x_n\}_{n\in\mathbb{N}}$ é não eventualmente constante). Então para cada $x\in\Omega$ existe uma vizinhaça aberta U_x de x contendo apenas um número finito de termos de $\{x_n\}_{n\in\mathbb{N}}$. Veja que $\{U_x\}_{x\in\Omega}$ é uma cobertura aberta de Ω por compacidade deve existir x_1,\ldots,x_n em Ω tais que $\Omega=U_{x_1}\cup\cdots\cup U_{x_n}$. Mas isso implica que $\{x_n\}_{n\in\mathbb{N}}$ tem apenas um número finito de termos, o que é absurdo.

EXERCÍCIO 13.3. Seja $\Omega = \{0,1\}$ e considere em Ω a topologia $\tau = \{\emptyset, \Omega\}$. Equipe \mathbb{N} com a topologia discreta e considere o produto $\mathbb{N} \times \Omega$. Use esse exemplo para mostrar que a reciproca da proposição acima não é verdadeira.

DEFINIÇÃO 13.9. Um espaço merico (Ω, d) é dito totalmente limitado se e somente se para todo $\epsilon > 0$ existe um conjunto finito $\{x_1, \ldots, x_n\} \subset \Omega$ tal que $\Omega \subset \bigcup_{i=1}^n B_d(x_i, \epsilon)$.

Proposição 13.10. Seja (Ω, d) um espaço métrico. Então temos o seguinte:

- a) Todo espaço métrico totalmente limitado é separável;
- b) Todo espaço métrico totalmente limitado é sequencialmente compacto.

DEMONSTRAÇÃO. Prova de a): Para cada n considere o conjunto $\{x_j^{(n)}\}_{j=1}^{N_n}$ tal que $\Omega = \bigcup_{j=1}^{N_n} B_d(x_j^{(n)}, 1/n)$. Afirmamos que $\{x_j^{(n)}\}_{j=1,\dots,N_n;n\in\mathbb{N}}$ é denso em Ω . Com efeito, seja $x\in\Omega$ e $U\ni x$ um aberto, então existe n tal que $B_d(x,1/n)\subset U$. Agora veja que pela construção de $\{x_j^{(n)}\}_{j=1}^{N_n}$ existe j tal que $x\in B_d(x_j^{(n)},1/n)$, assim $x_j^{(n)}\in B_d(x,1/n)$. Portanto $\{x_j^{(n)}\}=\Omega$.

Prova de b): Seja $\{y_m\}_{n\in\mathbb{N}}$ uma sequência em Ω . Considere $\{x_j^{(n)}\}_{j=1}^{N_n}$ a sequência definida no item anterior. O princípio da casa dos pombos garante que pelo menos uma das bolas $B_d(x_j^{(1)},1),\ j=1,\ldots,N_n$, contém infinitos termos de $\{y_m\}_{m\in\mathbb{N}}$, escolha uma dessas bolas e denote-a por B_1 . Portanto existe uma subsequência $\{y_n^{(1)}\}\subset B_1$. Usando indução obtemos uma bola B_ℓ de raio $1/\ell$ e uma subsequência $\{y_m^{(\ell)}\}$ em B_ℓ . Então a subsequência $z_\ell \equiv y_\ell^{(\ell)}$, tem a propriedade de que $\{z_j\}_{j=\ell}^{\infty}\subset B_\ell$. Portanto temos que $d(z_m,z_j)<1/\ell$ sempre que $m,j\geq\ell$, ou seja, $\{z_j\}_{j\in\mathbb{N}}$ é uma sequência de Cauchy, assim existe z tal que $z_j\to z$. Portanto z é limite de uma subsequência de $\{y_m\}_{n\in\mathbb{N}}$.

Teorema 13.11. Em um espaço métrico (Ω, d) as seguintes afirmações são equivalentes:

- a) Ω é compacto:
- b) Ω é sequencialmente compacto;
- c) Ω é completo e totalmente limitado.

Demonstração. a)⇒ b): Isso é o conteúdo da Proposição 13.8.

 $\underline{\mathbf{b}})\Rightarrow \mathbf{c})$: Dado $\epsilon>0$ suponha que para quaisquer $\{x_1,\ldots,x_N\}$ tenhamos que $\overline{\bigcup_{i=1}^N B_d(x_i,\epsilon)}\neq\Omega$. Vamos construir uma sequência $\{x_n\}_{n\in\mathbb{N}}$ que não possui nenhuma subsequência convergente. Para, isso escolha, x_1 arbitrariamente e indutivamente escolha x_{n+1} de modo que $x_{n+1}\notin\bigcup_{i=1}^n B_d(x_n,\epsilon)$. Assim $d(x_n,x_m)\geq\epsilon$ para todos $n\neq m$. Concluímos que $\{x_n\}_{n\in\mathbb{N}}$ não possui subsequência convergente, o que uma contradição com a hipótese.

 $\underline{\mathbf{c}})\Rightarrow \underline{\mathbf{a}})$: A proposição 13.10 garante que sendo Ω completo e totalmente limitado $\underline{\mathbf{e}}$ ntão Ω é separável. Logo, pela proposição 10.3 Ω é Lindelöf, ou seja, toda cobertura aberta de Ω adimite uma subcobertura enumerável. Assim, seja $\{U_n\}_{n\in\mathbb{N}}$ uma cobertura enumerável de Ω , tal que nehuma subcoleção finita $\{U_1,\ldots,U_n\}$ seja uma subcobertura de Ω .

Seja $A_n = \Omega \setminus \bigcup_{j=1}^n U_n \neq \emptyset$ é fechado e $A_n \supset A_{n+1}$. Para cada n escolha $x_n \in A_n$. isso fornece uma sequência $\{x_j\}_{j\in\mathbb{N}}$ que pelo item b) da proposição anterior tem um ponto de acumulação x. Visto que $\{x_j\}_{j\in\mathbb{N}} \subset A_n$ para todo n, e cada A_n é fechado, concluímos que $x \in \bigcap_{n=1}^{\infty} A_n = \emptyset$, absurdo. Logo $\{U_n\}_{n\in\mathbb{N}}$ admite uma subcobertura finita.

EXERCÍCIO 13.4. Considere o cubo de Hilbert $C = [0,1]^{\mathbb{N}}$ equipado com a métrica produto, i.e, $d(x,y) = \sup_{n \in \mathbb{N}} \{|x_n - y_n|/n\}$.

- a) Mostre que nessa topologia bolas $B_d(x,r)$ são conjuntos da forma $\prod_{n\in\mathbb{N}} B(x_n,nr)$ (aqui B sem o índice indica a bolas de [0,1] relativas ao valor absoluto);
- b) Mostre que C é completo;
- c) Verifique que C é totalmente limitado e conclua que C é compacto.

DEFINIÇÃO 13.12. Seja Ω um espaço topológico, diremos que $A\subset\Omega$ é précompacto quando \overline{A} for compacto.

Proposição 13.13. Um subconjunto $A \subset \mathbb{R}^n$ é compacto (na topologia usual) se e somente se é fechado e limitado.

Demonstração. Sendo A compacto, então pela proposição 13.6 A é fechado, e pela proposição 13.11 A é totalmente limitado. Portanto existe um conjunto finito $\{x_1,\ldots,x_N\}$ tal que $A\subset\bigcup_{i=1}^N B(x_i,1)$. Assim sendo $A\subset B(0,r)$ onde $r=1+\max\{|x_1|,\ldots,|x_N|\}$. Portando A é limitado e fechado.

Reciprocamente, sendo A fechado e limitado, temos em particular que A é completo (todo subconjunto fechado de um espaço métrico completo é ainda completo com a topologia induzida.)

O resultado estará provado se mostrarmos que A é totalmente limitado. Pois bem, como A é limitado existe r>0 tal que $A\subset B(0,r)$, em particular A está contido no cubo C de centro 0 e lado 2r. Então $\epsilon>0$ escolha $\delta>0$ tal que $\delta\sqrt{n}<\epsilon$. Considere o conjunto $\mathcal{L}_{\delta}=\{\delta \boldsymbol{m}:\boldsymbol{m}=(m_1,m_2,\ldots,m_n)\in\mathbb{Z}^m\}$, note que \mathcal{L}_{δ} tem máximo $\lfloor\frac{2r+1}{\delta}\rfloor^n$ pontos, e que centrando em cada um desses pontos um cubo de lado δ obtemos uma cobertura de C. Para encerrar note que cada um desses cubos está contido numa bola de raio ϵ , assim A é seguramente coberto por $\lfloor\frac{2r+1}{\delta}\rfloor^n$ bolas de raio ϵ . Portanto A é totalmente limitado, assim, segue do teorema 13.11 que A é compacto.

Definição 13.14. Sejam (Ω_1,d_1) e (Ω_2,d_2) espaços métricos. Diremos que uma função $f:\Omega_1\to\Omega_2$ é uniformemente contínua quando dado $\epsilon>0$ existe $\delta>0$ tal que

$$\forall x, y \in \Omega_1, d_1(x, y) < \delta \Rightarrow d_2(f(x), f(y)) < \epsilon.$$

Proposição 13.15. Sejam Ω_1 e Ω_2 espaços métricos com Ω_1 compacto. Então qualquer função contínua $f:\Omega_1\to\Omega_2$ é uniformemente contínua.

Teorema 13.16. Sejam Ω_1 e Ω_2 espaços topológicos com Ω_1 compacto. Então temos o seguinte:

- a) Se $f: \Omega_1 \to \Omega_2$ é contínua então $f(\Omega_1)$ é compacto em Ω_2 ;
- b) Se Ω_2 é Hausdorff e $f:\Omega_1\to\Omega_2$ é contínua e bijetiva, então f é um homemorfismo.

DEMONSTRAÇÃO. Prova de a): Seja $\{V_{\alpha}\}_{\alpha\in I}$ uma cobertura aberta de $f(\Omega_1)$. Como cada $V_{\alpha} = U_{\alpha} \cap \overline{f(\Omega_1)}$, onde U_{α} é aberto em Ω_2 , tem-se pela continuidade de f que $\{f^{-1}(U_{\alpha})\}_{\alpha\in I}$ é uma cobertura aberta do compacto Ω_1 . Extraindo uma subcobertura finita $\{f^{-1}(U_{\alpha_1}), \ldots, f^{-1}(U_{\alpha_n})\}$ de Ω_1 concluímos que $\{V_{\alpha_1}, \ldots, V_{\alpha_n}\}$ é uma cobertura de $f(\Omega_1)$. Portanto $f(\Omega_1)$ é compacto.

Prova de b): É suficiente mostrarmos que f envia fechados em fechados. Seja F fechado em Ω_1 , temos pela proposição 13.6 item a) que F é compacto, então pelo item anterior temos que f(F) é compacto em Ω_2 . Como Ω_2 é Hausdorff segue da proposição 13.6 item b) que f(F) é fechado.

Teorema 13.17. Seja $f:\Omega\to\mathbb{R}$ uma função contínua onde Ω é um espaço topológico compacto. Então f tem máximo e mínimo.

DEMONSTRAÇÃO. Pela teorema anterior, $f(\Omega)$ é compacto em \mathbb{R} e portanto é fechado e limitado. Logo $f(\Omega)$ contém seu supremo e seu ínfimo.

Exercício 13.5. Seja Ω um espaço compacto Hausdorff. Seja $f:\Omega\cup\{\infty\}$ uma função semicontínua inferiormente. Então f é limitada inferiormente, i.e, $\inf_{x\in\Omega}f(x)>-\infty$, e existe $x\in\Omega$ tal que $f(x)=\inf_{x\in\Omega}f(x)$.

1. Lista de Exercícios

- 1. Considere $[0,1]^{\mathbb{N}}$ com a topologia uniforme. Encontre nesse espaço um subconjunto infinito sem pontos de acumulação.
- 2. Mostre que [0,1] como subespaço de \mathbb{R}_{ℓ} não é f.s.c.
- 3. Mostre que o círculo $S^1=\{(x,y):x^2+y^2=1\}$ com a topologia induzida de \mathbb{R}^2 é compacto.
- 4. Mostre que [0,1] não é compacto como subespaço de \mathbb{R}_K .
- 5. Seja $\{x_n\} \subset \mathbb{R}$, uma sequência convergente com limite x, mostre que $\{x, x_n, n \in \mathbb{N}\}$ é compacto.
- 5. Qualquer espaço métrico compacto Ω é homemorfo a algum subconjunto do cubo de Hilbert. (Sugestão: Ω é separável (justifique), então seja, $\{x_1, x_2, \ldots\}$ um subconjunto denso em Ω . Defina $F: \Omega \to C$ pondo $F(x) = (d(x, x_1), d(x, x_2), \ldots)$, mostre que F é o homeomorfismo desejado).