

Sorting Algorithms

Contents

- Selection Sort
- Heap Sort
- Merge Sort
- Quick Sort
- Radix Sort

Overview

Sorting

- Sorting is:
 - A process that organizes a list of data into ascending/descending order

- Example:
 - List before sorting:

• List after sorting:

{1, 2, 5, 6, 25, 37, 40}

Sorting

- Sort key: data item which determines order
- Sorting also has indirect uses. An initial sort of the data can significantly enhance the performance of some algorithms.
- Majority of programming projects use sorting, and, in many cases, the sorting cost determines the running time.

Sorting

- Some popular sorting algorithms:
 - Bubble Sort
 - Selection Sort
 - Insertion Sort
 - Quick Sort
 - Merge Sort
 - Heap Sort
 - Radix Sort

Selection Sort

Selection Sort - Idea

- Sort naturally the same as in real-life:
 - The list is divided into two sub-lists, sorted and unsorted, which are divided by an imaginary wall.
 - Find the **smallest element** from the unsorted sub-list and move to the correct position (swap it with the element at the beginning of the unsorted data.)
 - After each selection and swapping, increase the number of sorted elements and decrease the number of unsorted ones.
 - Loop those steps until the unsorted list has only 1 element.

Selection Sort

Input: (unsorted) a[] (n elements)

Output: (sorted) a[] (n elements)

- Step 1. Initialize i = 0.
- Step 2. Loop:
 - 2.1. Find the **smallest value** a[min] in the list with index from i to n-1 (a[i], ..., a[n-1]).
 - 2.2. Swap a[min] and a[i]
- Step 3. Compare *i* with *n*:
 - If i < n then increase i by 1, back to step 2.
 - Otherwise, Stop.

Example

i = 7

- Which operation should be used for analysis?
- How many operations are there with size of the problem n?
- Best case? Worst case? Average case?

- We compare keys and move items in the algorithm
- Number of comparisons and the number of moves is used for analysis

Outer loop executes n-1 times

Total Swaps: n-1

Total Moves: 3*(n-1)

• Inner loop executes the size of unsorted part minus 1 (from 1 to n-1)

Comparisons = 1+2+...+n-1 = n*(n-1)/2

 Time complexity of the algorithm is O(n²) in all cases

- Step 1. Initialize i = 0.
- Step 2. Loop:
 - 2.1. Find the **smallest value** a[min] in the list with index from *i* to *n*-1 (a[i],.., a[n-1]).
 - 2.2. Swap a[min] and a[i]
- Step 3. Compare *i* with *n*:
 - If i < n then increase i by 1, back to step 2.
 - Otherwise, Stop.

- If sorting a very large array, selection sort algorithm is inefficient to use.
- The behavior of selection sort algorithm does not depend on the initial order of data.

What is the advantage of this algorithm?

Heap Sort

Heap Structure

- Heap is a collection of n elements $(a_0, a_1, ..., a_{n-1})$ in which
 - For every i ($0 \le i \le n/2-1$)

$$a_i \ge a_{2i+1}$$
$$a_i \ge a_{2i+2}$$

- If $2i+2 \ge n$, just $a_i \ge a_{2i+1}$ need to hold
- Condition does not apply to the second half as 2i+1 and 2i+2 are out of array
- Heap in above definition is called max-heap (we also have min-heap)

Heap Structure

- Examples:
 - A max-heap: 9, 5, 6, 4, 5, 2, 3, 3
 - A min-heap: 8, 15, 10, 20, 17, 12, 18, 21, 20

Heap Structure

- Property:
 - The first element of the max-heap is always the largest.

Heap Structure - Heap Construction

- Input: An array a[], *n* elements
- Output: A heap a[], *n* elements

```
Step 1. Start from the middle of the array (first
half). Initialize index = (n - 1)/2
Step 2. while (index >= 0)
{
   heapRebuild at position index //heapRebuild(index, a, n)
   index = index - 1
}
```


Heap Structure – heapRebuild (pos, A, n)

- Step 1. Initialize k = pos, v = A[k], is Heap = false
- Step 2. while not isHeap and 2*k+1 < n do
 j = 2*k + 1 //first element
 if j < n 1 //has enough 2 elements
 if A[j] < A[j + 1] then j = j + 1 //position of the larger
 between A[2*k+1] and A[2*k+2]
 if A[k] >= A[j] then isHeap = true
 else
 swap between A[k] and A[j]
 k = j

Heap Construction - An Example

Construct a heap from the following list:

2, 9, 7, 6, 5, 8

Heap Sort

- Idea is the same as Selection Sort.
- It has two stages:
 - Stage 1: (heap construction). Construct a heap for a given array.
 - Stage 2: (move max to right place). Move the first element to the last position and rebuild heap
 - Swap the first and the last element of the heap.
 - Decrease the heap size by 1.
 - Rebuild the heap at the first position.

Heap Sort

```
HeapSort(a[], n)
     heapConstruct(a, n);
     r = n - 1;
     while (r > 0)
           swap(a[0], a[r]);
           heapRebuild(0, a, r);
           r = r - 1;
```


Heap Sort - Analysis

• Best case, Worst case, Average case are the same.

• The order of this algorithm: O(nlog₂n)

Merge Sort

Merge Sort - Idea

- Merge Sort follows divide-and-conquer strategy.
- It is a recursive algorithm that
 - Divides the list into halves,
 - Sorts each halve separately, and
 - Then merges the sorted halves into one sorted array.
- Note:
 - A list with 0 or 1 element is a sorted list.

Merge Sort - Idea

- Merge procedure:
 - Goal: Merge two ordered lists into an ordered list.
 - Input: two ordered lists A[] (*n* elements), B[] (*m* elements)
 - Output: a new ordered list C[] (n + m elements) (containing all elements of A and B).
 - Example:
 - A = {1, 5, 7, 9}, B = {2, 9, 10, 12, 17, 26}; C = {1, 2, 5, 7, 9, 9, 10, 12, 17, 26}

Merge Sort

- Input: A[], left, right (list A from index left to right).
- Output: (sorted) A[] (from left, to right)

```
MergeSort(A[], left, right)
{
    if (left < right) {
        mid = (left + right)/2;
        MergeSort(A, left, mid);
        MergeSort(A, mid+1, right);
        Merge(A, left, mid, right);
    }
}</pre>
```


Merge Sort - An Example

fit@hcmus | DSA | 2020

28

Merge Sort - An Example

fit@hcmus | DSA | 2020

29

Merge Sort - An Example

Divide the array in half

Sort the halves

Merge the halves:

- a. 1 < 2, so move 1 from left half to tempArray
- b. 4 > 2, so move 2 from right half to tempArray
- c. 4 > 3, so move 3 from right half to tempArray
- d. Right half is finished, so move rest of left half to tempArray

Copy temporary array back into original array

- Merge Sort is an efficient algorithm with respect to time.
 - Both worst case and average case are O (n * log₂n)

 Merge Sort requires an extra array whose size equals to the size of the original array.

- If we use a linked list, we do not need an extra array
 - But we need space for the links
 - And, it will be difficult to divide the list into half (complexity of O(n))

Quick Sort

Quick Sort - Idea

• Like Merge Sort, Quick Sort is based on divide-and-conquer strategy.

- It works as follows:
 - First, it partitions an array into two parts,
 - Then, it **sorts** the parts **independently**,
 - Finally, it **combines** the sorted parts by a simple concatenation.

Quick Sort - Idea

- The algorithm consists of the following three steps:
 - Divide: partition the list.
 - To partition the list, we first choose an element from the list, namely pivot, for which we
 expect a half of the list will come before and the other half after.
 - Then we partition the elements so that ones less than the pivot go to one sub-list and ones greater than the pivot go to the other.
 - Conquer: recursively sort the sub-lists.
 - **Combine** the sorted sub-lists together.

Quick Sort

Input: A[], first, last (sort the list A[] from index first to last)

Output: sorted list A[first..last]

```
S_1
S_2
S_2
S_3
S_4
S_5
S_7
```

```
QuickSort(A[], first, last)
if (first < last) {
    Select a pivot p from A[].
    pivotIndex = Partition(A, first, last) //Partition A[] into 2
    sub-lists S1 (first ... pivotIndex-1), S2 (pivotIndex+1...last)
    QuickSort (A, first, pivotIndex-1) //Sort S1
    QuickSort (A, pivotIndex + 1, last) //Sort S2</pre>
```


Quick Sort - Partition

Partitioning places the pivot in its correct position within the array.

- Arranging the array elements around the pivot p generates two smaller sorting problems.
 - sort the **left section** of the array and sort the **right section** of the array.
 - when these two smaller problems are solved recursively, our bigger sorting problem is solved.

- Selecting the pivot
 - Select a pivot element among the elements of the given array
 - We put this pivot into the first location of the array before partitioning.
- Which array item should be selected as pivot?
 - We hope that we will get a good partitioning.

- Selecting the pivot
 - Select a pivot element among the elements of the given array
 - We put this pivot into the first location of the array before partitioning.
- Which array item should be selected as pivot?
 - If the items in the array arranged randomly, we choose a pivot randomly.
 - We can choose the first or last element as a pivot (it may not give a good partitioning).

- Partitioning uses two more variables:
 - lastS1: the last index of S1 (the elements in A less than p).
 - firstUnknown: the first index of Unknown.
- Partitioning takes place when firstUnknown <= last.

- Initialize
 - lastS1 = first
 - firstUnknown = first + 1

• Initial state

Partition(A[], first, last, pivot) -> pivotIndex

Step 1. while (firstUnknown <= last) //not finish

1.1 If the element at position firstUnknown is **less than** pivot then move that element to S1

Otherwise, move that element to S2

1.2 firstUnknown = firstUnknown + 1 //next element

Step 2. Move *pivot* to the correct position (between S1 and S2): Swap two elements at lastS1 and first.

Step 3. pivotIndex = lastS1

lastS1

≥ p

firstUnknown

< p

first

last

• Partition this list: 27, 38, 12, 39, 27, 16

Pivot	Unknown					
27	38	12	39	27	16	

Pivot	S2	Unknown				
27	38	12	39	27	16	
	<u> </u>	<u></u>				

Pivot	S1	S2	Unknown		
27	12	38	39	27	16

• Partition this list: 27, 38, 12, 39, 27, 16

Pivot	S1	S2	Unknown		
27	12	38	39	27	16
Pivot	S1		S2		U.K
27	12	38	39	27	16
		1			<u></u>
Pivot	S1		S2		
27	12	16	39	27	38
1		<u></u>			
S1		Pivot		S2	
16	12	27	39	27	38

Another technique

Another technique

Median-of-three pivot selection

Analysis

- Worst case: O(n²)
- Quick Sort is O(nlog₂n) in the best case and average case.
- Quick Sort is slow when the array is sorted and we choose the first element as the pivot.
- Although the worst case behavior is not so good, its average case behavior is much better than its worst case.
- Quick Sort is one of best sorting algorithms using key comparisons.

Radix Sort

Radix Sort

 Radix Sort algorithm is different from the other sorting algorithms that we have learnt.

• It DOES NOT use key comparisons to sort an array.

Radix Sort - Idea

Treats each element as a character string.

- Repeat (for all characters from the rightmost to the leftmost)
 - Groups elements according to their rightmost character.
 - Put these groups into order with respect to this rightmost character.
 - Combine all the groups.
 - Move to the next left position.

• At the end, the sorting process will be completed.

Radix Sort

```
RadixSort(A[], n, d) // sort n d-digit integers in the array A
 for (j = d \text{ down to } 1) {
       Initialize 10 groups to empty
       Initialize a counter for each group to 0
       for (i = 0 \text{ through } n-1) {
             k = j^{th} \text{ digit of } A[i]
             Place A[i] at the end of group k
             Increase counter for group k by 1
       Replace the items in A with all the items in group O_{\bullet}
 group 1, ..., group k in orders.
```


Radix Sort - An Example

Sort the following list ascendingly using Radix Sort:

27, 78, 52, 39, 17, 46

- Base: 10, Number of digits: 2
- First Pass. The rightmost digit

0	1	2	3	4	5	6	7	8	9
							1 7		
		5 2				46	2 7	7 8	3 9

Combine after first pass: 52, 46, 27, 17, 78, 39

Radix Sort - An Example

• Second Pass. The second rightmost digit of: 52, 46, 27, 17, 78, 39

Resulting list: 17, 27, 39, 46, 52, 78

Analysis

Time complexity of radix Sort is O(n)

- Although the radix sort is O(n), it is NOT appropriate as a general-purpose sorting algorithm.
 - Memory needed
- The Radix Sort is more appropriate for a linked list than an array.

Comparison of Sorting Algorithms

	Worst case	Average case
Selection sort	n ²	n ²
Bubble sort	n^2	n^2
Insertion sort	n ²	n ²
Mergesort	n * log n	n * log n
Quicksort	n^2	n * log n
Radix sort	n	n
Treesort	n ²	n * log n
Heapsort	n * log n	n * log n

Summary

- Selection Sort is $O(n^2)$ algorithm. Good in some particular cases but it is slow for large problems.
- Heap Sort converts an array into a heap to locate the array's largest items, enabling to sort more efficient.

Summary

- Quick Sort and Merge Sort are efficient recursive sorting algorithms.
- Quick Sort is O(n²) in worst case but rarely occurs.
- Merge Sort requires additional storage.
- Radix Sort is O(n) but not always applicable as not a general-purpose sorting algorithm.

Thank you for your listening

Exercises

• Using the Selection Sort, demonstrate the steps to sort the following list of integers DESCENDENLY:

- Applying the Heap Construction algorithm, demonstrate the steps to create a max-heap from the above list.
- Using the Merge Sort, demonstrate the steps to sort the following list of integers ASCENDENLY.
- When using the "median-of-three" pivot selection technique on the above list, what is value of the pivot?