•	CHECK	LIST .	fy 🗖	imcom	ately		. vic	že.	tne	ibne) .	•	• •	•			
	1 .	construir	matriz	dfa [][<i>i</i>		• •		• •		• •		•	• •		•		•
• •		isimular		• • •	• • •		• •	•	• •	•	•	•	•	• •	•	•	•	•
		nscame		o regul	lar.		• •		• •		•	•	•	• •	•	•		
• •		riurtano					• •	•	• •	•	•	•	•	• •	•	•	•	•
• •		ver be p				utêr	nate	•	tam	iwi	· wy		ami	ahr	•	•	•	•
• •		oxner				٠	• •		• •	•	• •	•	•	• •	•	•		•
	· · · · · · · · · · · · · · · · · · ·	apande	9 wx 6.	nestran		di fi	wig	je	، به د .	quan	los.	bit))->, (iroir	•	•	•	
• •		decodifi				۰				•	• •		0	• •		•		•
								٠		•					٠			

. .

. . .

- 1. Construa a matriz dfa[] [] para os seguintes padrões do alfabeto {A, C, G, T}:
 - AACATAACG
 - TTTTTT
 - ATAATAAAT

- https://cmps-people.ok.ubc.ca/ylucet/DS/KnuthMorrisPratt.html

 2. Simule a execução do algoritmo KMP, como visto em sala de aula, para cada um dos padrões no texto abaixo:
 - ATTTATAATAAATAATAAATTTTTTTTAACATAACATAACG

ATTTATAATAATAATAAATTTTTTTAACATAACGA

ATTTATAATAATAATAAATTTTTTTAACATAACG AACATAACG

A T T T A T A A T A A T A A T A A T T T T T T T T T T A A C A T A A C A T A A C G

ATTTTATAAAAATAAACG

A T T T A A A A T A A T A A T A A C G

A T T T A T A A T A A T A A T A A T T T T T T T T T A A C A T A A C A T A A C G

ATTTATAATAAATAAATAACG

A TITITA TA A TA A A TA A TA A TA A TITIT TITITA A CATA A CATA A CATA A CA

A T T T A A A A A A A A A A A A A A C A T A A C A T A A C A T A A C G

depois de passax por todas as letras T...

ATTTATAAAATAAATAAATTTTTTTAACATAACG

A TTTATA A TAAATA ATAAATTTTTTTAACATAACG

A T T T A A A A A A A A A A A A A T T T T T T T A A C A T A A C A T A A C G

encontramos o padrão no texto

A.T.T.T.A.T.A.A.A.T.A.A.A.T.A.A.A.T.A.A.A.T.T.T.T.T.T.T.T.A.A.C.A.T.A.A.C.A.T.A.A.C.A.

A TTTTA TAAATAAATAAATAAATAAATTTTTTTTTAAACATAACATAACA

A T T T A T A A T A A A T A A A T A A A T T T T T T T T T A A C A T A A C A T A A C A

A TTTTTA TAAAAATAAATAAATTTTTTTAAACATAACATAACG

A T T T A T A A T A A A T A A T A A T T T T T T T T T A A C A T A A C A T A A C A

A TITITA TA A A A TA A A TA A TA A A TITIT TITIT TA A CATA A CATA A CATA A CA

achamor o padrão no texto

ATTATAAT

achamos o padrão no texto

- 3. Escreva uma expressão regular para as seguintes linguagens:
 - números binários ímpares; número par termina em 0 e úmpor em 1
 - nomes de variáveis em C; não comosça com número
 - CEPs do estado de São Paulo;

1. (011)* 1

- 2. ([a-z])[A-z])([a-z]|[0-9]|[A-z])*
- 3. (014)([4-9])([0-9]) {3} \- ([0-9]) {3}

· parentesis (

- · tem arco para o próximo caractero
- · para 1; de 1 vai para o fecha parantesis

4. Construa o autômato finito não determinístico para a expressão regular (ATA(CG)*(A|T)*(C|G)(C|G)TAA)

- 5. Para cada palavra abaixo, verifique se é aceita pela expressão regular acima, e, caso seja, mostre um caminho no autômato:
 - ATACGTTTGGTAA
 - ATACGTAA
 - ATAAAATGGTAA

para ATACGTTTGGTAA

caminho: 1,2,3,5,6,12,12,12,18,23,25,26,27

 $\{3\}$

{4} } → {4,5,8,9,10,12,14,15,16,18} & C

 $\{6,57\} \rightarrow \{6,57,59,20,21,23\}$ lê G

 $\{7,24\} \rightarrow \{7,24,8,9,10,12,14,15,16,18,25\}$ lê T

 $\{13, 26\} \rightarrow \{13, 26, 14, 9, 10, 12, 15, 16, 18\}$ le T

 $\{13\} \rightarrow \{3,14,9,20,32,15,36,38\}$ let T

{13} -> 13, 14, 9, 10, 12, 15, 16, 183 lê G

 $\{193\} \rightarrow \{19, 20, 21, 23\} \ \text{lê} G$

1 243 -> 124,257 le T

1 263 → 1 263 lâ A

1273 -> 1273 lê A

1283 -> 128, 293 final

6. Mostre uma árvore construída com base nos códigos de Huffman para as seguintes frequências de uso das letras abaixo:

D: 2	E: 5	, I: 2
N: 1	O: 3	P: 3
R: 4	/S: 1	

7. Usando a árvore construída no item anterior, mostre a codificação para a frase abaixo. Quantos bits você usou?

Pedro Pedreiro Penseiro

8. Considere a árvore abaixo, construída com base no algoritmo de compressão dos códigos de Huffman:

Decodifique a seguinte sequência de bits:

BOMBA ATOMICA