0.1 Kirchhoff's Matrix-Tree-Theorem

Satz 0.1.1 (Kirchoff 's Matrix Tree Theorem) *Sei G ein ungerichteter Graph und L*_n *die dazuge-hörige Laplacematrix. Dann gilt:*

- (1) Die Anzahl der Spannbäume von G gleich einem beliebigen Kofaktor von L_n .
- (2) Die Anzahl der Spannbäume von G ist gleich $\frac{1}{n}\lambda_1...\lambda_{n-1}$, wobei $\lambda_1,...,\lambda_{n-1}$ die Eigenwerte von L_n sind, die ungleich null sind.

Beweis: Teil 1) des Kirchhoffs Matrix-Tree-Theorem folgt quasi direkt aus Tuttes Matrix-Tree-Theorem. Sei \vec{G} der gerichtete Graph, der entsteht, wenn man jede Kante in G als zwei gerichtete ansieht. Wir betrachten einen beliebigen Knoten aus \vec{G} , der natürlich auch in G ist. Da nach Definition jeder Knoten in jedem Spannbaum mit jedem anderen wegverbunden ist, korrespondiert jeder Spannbaum von G mit genau einem out-branching aus unserem Knoten in \vec{G} . Da jede Kante in \vec{G} auch in die entgegengesetzte Richtung vorhanden ist, können wir schließen, dass $L_n = K(\vec{G})$, wobei L_n die Laplacematrix von G ist. Jeder Kofaktor von L_n ist also gleich jedem Kofaktor von $K(\vec{G})$.

Beweis: es ist irrelevant, welchen Kofaktor wir nehmen!

Wir folgern daraus mit Tuttes Matrix-Tree-Theorem, dass die Anzahl der Spannbäume in G gleich einem beliebigen Kofaktor von L_n ist. Um Teil 2) zu zeigen, berufen wir uns auf ein bekanntes Ergebnis der linearen Algebra; Das Produkt der Eigenwerte einer Matrix ist gleich der Summe seiner Hauptminoren. Das kann man zum Beispiel in [?] nachlesen. Da L_n n Hauptminoren hat, folgt mit Teil 1), dass die Anzahl der Spannbäume von G ist gleich $\frac{1}{n}\lambda_1...\lambda_{n-1}$, wobei $\lambda_1,...,\lambda_{n-1}$ die Eigenwerte von L_n sind, die ungleich null sind. Damit ist Kirchhoffs Matrix-Tree-Theorem bewiesen.

out-branching ersetzen, ordentliche Zeilenumbrüche