Tacotron 2

Neural network for speech synthesis directly from text.

References: Tacotron2 Location-sensitive attention

Load Data

• Input: Text

• Output: Audio Recording -> Time-Domain waveforms -> Mel-frequency spectrogram

Preprocessing

Input

1. Create word index

- 2. Convert string to list of numbers based on index
- 3. Pad all to be same width

Output

• Short-time Fourier transform (STFT)

• Frame size: 50 ms

• Frame hop: 12.5 ms

• Window function: Hann

- Mel Scale Transforms
 - 80 channel mel filterbank spanning 125 to 7.6 Hz
 - ∘ Clip filterbank output to min of 0.01
 - Log dynamic range compression

Model Components

Encoder

• Embedding layer

• Input size: Size of text

o Output size: 512

• 3 Conv1D-BatchNorm-Relu-Dropout

o Kernel: 5

o Stride: 1

o Output: 512

o Padding: same

 \circ p = 0.5 (training only)

- Bi-directional LSTM-Zoneout
 - p = 0.1
 - o Units: 256 in each direction

Location-sensitive attention

possibly use a different/newer attention?

Decoder

- Prenet 2 Linear-Dropout
 - o Outputs: 256
 - o Activation: relu
 - \circ p = 0.5
- Attention network
- Uni-directional LSTM-Zoneout
 - o Units: 1024
 - p = 0.1
- Outputs:
 - Linear transform predicts target spectrogram frame
 - o Postnet 5 Conv-BatchNorm-Tanh(except last)-Dropout
 - Kernel: 5
 - Stride: 1
 - Output: 512
 - Padding: same
 - p = 0.5 (training only)
 - Linear transform/projection down to scalar
 - Activation: Sigmoid

Model Architecture

Training

- Feed correct output instead of predicted output to decoder
- Batch size: 64
- Loss Function: Mean Squared Error (MSE)
- Optimizer
 - Adam
 - \circ \$\beta 1 = 0.9\$
 - \circ \$\beta 2 = 0.999\$
 - \circ \$\epsilon = 10^{-6}\$
 - \circ \$lr = 0.001\$
 - Decay: exponential to \$0.00001\$ starting at 50,000 iterations
 - Iterations (steps) per epoch \$\frac{\input size}{\text{batch size}}\$
 - Iterations to epochs: \$Epoch = iterations \times \frac{batchsize}{inputsize}\$