

1. L1 = { w l w hos at most one o and exactly one 1}

2. $L2 = \{ w \mid w \text{ storts with } l \text{ or has odd length } \}$

3. L3 = { w | has at least one I and obes not contain substring 00}

4. L4 = { w | w has at most length 4 and has as mony 0s as 15}

5. $L5 = \{ w \mid every \text{ odd position of } w \text{ is } 1, \text{ and } w \text{ contains an odd number of } 083 \}$

Markov Chains

1. Proof of regular languages are closed under the Intersection Operation:

If $M_1 = (q_1, \xi_1, \delta_1, q_1, \epsilon_1)$ and

 $M_2 = (Q_2, \Sigma_2, \delta_2, q_2, F_2)$ then, $M = (Q, \Sigma_1 \delta, q_0, F)$ such that

- $\bullet \quad \varphi \ = \ Q_1 \ \times \ Q_2 \ = \left\{ (r_1, r_2) \mid r_1 \in Q_1 \ \text{ and } \ r_2 \in Q_2 \right\}$
- * Cortesion Product

- · E = E, E,
- δ((r₁, r₂), a) = (δ₁(r₁, a) , δ₂(r₂, a)) for r₁, r₂ ∈ Q and a ∈ Σ
- · qo = (q1 1 q2)
- · F = CF, × Q,) U (Q, × F,)

2. NFA for L2 { w | w contains substring 20 and w contains exactly one 0}. Alphabet {0,1,2}

3. OFA for 13 Ewl pernultimote symbol of u is 03. Alphobet £ 9,13

4. NFA for L4 Ew 1 the penultimote symbol of w is 0 or the first symbol of w is 23. Alphabet £0,1,23

Wak Tasher $M_1 = (Q_1, S_1, S_1, Q_1, F_1)$ M2= (R2, S, S2, G2, F2) SO: M= (Q, S, S, go, F) i (: Q= 9, Q $Q = \left\{ \left| \left(\Gamma_{1}, \Gamma_{2} \right) \right| V_{1} \in Q_{1} \text{ and } \Gamma_{2} \in Q_{2} \right\} \left| \left(\Gamma_{1}, \Gamma_{2} \right) \right| V_{1} \in Q_{1} \text{ and } \Gamma_{2} \in Q_{2} \right\} \left| \left(\Gamma_{1}, \Gamma_{2} \right) \right| V_{1} \in Q_{1} \text{ and } \Gamma_{2} \in Q_{2} \right\}$ $S((V_1,V_2),a)=(S_1(V_1,a),S_2(V_2,a))$ for $V_1,V_2\in Q$ and $a\in E$ 30 = (91, 92) and F= \(\langle (\sigma_1, \sigma_2) \langle (\sigma_1, \si

2

- 4: (EE) U(EEE)
- Lz: C115 C10 U 017 C115
- L3: (2£)* £££
- L4: 1" U C 1" O 1" O) 1"
- L5: E U Z U C Z O U O Z) U Z Z Z Z =
- L6: (10 6) (00 1) 00
- L7: CC001313 C 6 U C 00133
- L8: CCOUEDIIT DT

E-NEA

E-NFA	a	b	٤	E-alosore CID
)	ø	2	£1,33	
2	{2,3}	3	2	
3	1	B	3	
	•	•		

DFA	a	b	
£ 1,33	£1,33	2	
2	8433	3	
22,33	٤1,2,33	3	
€1,2,33	£ 1,2,33	£ 2, 33	
3	5,1,33	Ø	

$$S_{0}(\xi_{1,1};\lambda,a) = E(S_{E}(I_{1}a) \cup \xi_{2}(3_{1}a))$$

$$= E(\emptyset \cup \xi_{1};\lambda)$$

$$= \xi_{1,3};\lambda$$

$$S_{0}(\xi_{1,2};\lambda,b) = E(S_{E}(I_{1}b) \cup C_{3,b})$$

$$= E(\xi_{2};\lambda \cup \emptyset)$$

$$= 2$$

Sp < {23, a) = E < \$ (2a))

$$= E(E_{2,3}3)$$

$$= E_{2,3}3$$

$$= E_{2,3}3$$

$$= E(E_{2,b}3)$$

$$= E(E_{2,b}3)$$

$$= 3$$

$$\delta_{0}(E_{2,3}3,a) = E(E_{2,a}0) \cup \delta_{2}(E_{3,a}0)$$

$$= E(E_{2,3}3,v)$$

$$= E(E_{2,3}3,v)$$

$$= E(E_{2,3}3,v)$$

$$L_1 = \{aa, ab, ba, bb, 3 \longrightarrow whose length is exactly 2$$

$$\sqrt{aa + ab + ba + bb}$$

$$a(a+b) + b(a+b)$$

$$\sqrt{(a+b)(a+b)}$$

$$h = \{ aq, ab, ba, bb, aaa, \dots \} \rightarrow \text{Whose length is at least 2}$$

$$Ca+b) Ca+b) Ca+b)^*$$

+ repersents all the possible combination.

$$L_1 = \{ a, b, aa, bb, cb, ba \} \longrightarrow \text{ whose length at most 2}$$

$$= \{ \{ e, b, aa, bb, cb, ba \} \}$$

$$= \{ \{ a+b+E \} \{ a+b+E \} \}$$

$$L_1 = \xi$$
 3 — Whose length is even $L_1 = \xi$ 6, $\alpha = \alpha_1$ be, $\beta = \beta_1$ be, 3 — Length of 2 strings $C(\alpha + \beta) C(\alpha +$

$$L_1 = \{\dots, \}$$
 Divisible by 3
 $((a+b)(a+b)(a+b))^*$ (a+b)

Regular Boopressian Practice Questions

- 1. Cabo* Caleo 1 coo* Cbleo
- 2. Cabas Calbs (bb)
- 3. Cb/ Capad+ D*
- 5. (aa*) | b*

Problem 1: a* Cb Ca U aags)*

1.

- ca) Start state for $M_1 = Q_1$ Start State for $M_2 = Q_1$
- (b) Set of Accept state for $m_1 = \{q_2\}$ Set of Accept state for $m_2 = \{q_1, q_4\}$
- (C) Transition for m_1 : $q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_4 \xrightarrow{b} q_5$ Transition for m_2 :
- q, \xrightarrow{a} q, \xrightarrow{a} q, \xrightarrow{b} q_2 \xrightarrow{b} q_4
- G for M_1 the machine QOBSN'T PROCEPT the string
- When giving E to M_1 the machine gives q_1 , however q_1 is not an accept state. NO When giving E to M_2 the machine gives q_2 , which is an accept state. If S

2. Formal Deffination for $M_1 = \{0, 1, 1, 2, 3, 4, 5$

where

1. Q = {q, q2, q3}

2. E= { a, b}

3. & is descriped as

	a	Ь
q,	92	ar
92	વાડ	43
93	az	93

4. 9, is the state

5. garpt states F = Equit

~

A

ß

5

I. From that language LI = {WIWhas more Os than Is } is not regular

Assuming that L, is regular. Heree, there excists a ρ for L.

$$W = O^{p+1} P$$

Decomposation of winto xyz:

$$\cdot x = 1^{\alpha}$$

.. considering xy'z for 1>0:

$$xy'z = 0 | \alpha | \beta | \beta - \alpha - \beta$$

$$= 0 | \beta | \beta + \beta - \beta$$

Hence xo'z is in 4 iff p+iB-B < p+1

in by countradiction it leaves w outside the language, hence through proof by counterdiction L1 is a Monneyvlar expression.

2. Prove that congrege $L_2 = \{ w \mid w \text{ has even length and the first half of } w \text{ has more Os than the second half of } w \}$ is not regolar.

Assuming L_2 is regular. Hence there exist a p for L_2

accompation of winto xyz:

$$\cdot x = 0^{\circ}$$

considering zg'z for i > 0:

$$\cdot xy^{i}z = 0^{d} 0^{i\beta}0^{\beta-d-\beta} \wedge 10^{\beta-1}$$

$$= 0^{\beta+i\beta-\beta} 10^{\beta-1}$$

$$= 0^{\beta+\beta(i-1)} 10^{\beta-1} , \text{ however if } \beta=0 \text{ then this is if in } L_{2}.$$

Hence, by proof of conterdiction w is outside the longuage and L2 is a Nonreputar language.

1. LI = { w | w is polindrome and has at least two Os} cand assume epsilon is a palindrome)

2. 12 = { w I w starts and ends with the some symbol and has an odd number of 08}

3. 13 = { w I w has add length and the middle in wis a O and w has add number of 133

4. L4 = { w/w has even length and the first notif of w does not contain 0s}

5- $L5 = \{a'b'c'' \text{ with } ij = j \text{ or } jj = k, i,j,k > = 0\}$

1. $L1 = \{ w \mid w \text{ has odd length and the middle symbol of } w \text{ is a b } \}$

Z. L2 = Ewlw has more as than bs}

3. L3 = {a' b' with i { } , i, 5 >= 0}

(b)

(0)

