飞行操纵—介绍

₩ <i>₩</i> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A/P	—自动驾驶
概况	A/S	—空速
飞行操纵使飞机飞行时保持必要的姿态 在机翼和机尾有可动的	C/W	—驾驶盘
舵面。飞行操纵系统可分为两类:	СВ	—电路跳开关
—主系统	cntl	—操纵
——王永统 —辅助系统	dc	—直流电
一袖切永犹	FCC	—飞行操纵计算机
<u>主飞行操纵系统</u>	FLT	—飞行(定中)
主飞行操纵系统可使飞机沿三个轴运动 横向 纵向和垂直方向。 主飞行操纵系统有下列三个部件:	gnd	—地面
	LE	—前缘
	MLG	—主起落架
—副翼(2)	NLG	—前起落架
— 升降舵 (2)	PCU	—动力控制组件
—方向舵	psi	—平方英寸磅
辅助飞行操纵系统	RUD	—方向舵
	S/B	—减速板
辅助飞行操纵系统可提高飞机升力并保持飞机的飞行特性。辅助	sec	一节
飞行操纵系统包括以下部件:	SOV	—关断活门
前缘装置(12)	stab	—安定面
——后缘襟翼(4)	STBY	—备用
—	SW	—电门
——水平安定面	SYS	—系统
31122	TE	—后缘
	typ	—典型的
	vlv	—活门
	v	—伏特
<u>缩略语</u>	xfer	—转换变压器

27-00-00-001 Rev 3 01/16/19

有效性 YE201

行操纵—介绍

有效性 YE201

27—00—00

本页空白

27—00—00—004 Rev 6 11/21/1997

有效性 YE201

27—00—00

飞行操纵—概况介绍

概况

驾驶员通过钢索手动操纵飞行操纵,自动驾驶自动操纵。

副翼

副翼操纵手轮带动钢索给副翼感觉和定中机构提供输入。这操纵副翼的 PCU, PCU 带动副翼机翼钢索和副翼。

副翼配平电门给副翼感觉和定中机构提供输入改变副翼的中立位置。

副翼 PCU 的运动也传给扰流板混合器,混合器带动定中扰流板机翼钢索,该钢索操纵飞行扰流板作动筒。作动筒移动飞行扰流板以帮助副翼进行横滚操纵。

自动驾驶仪作动筒通过感觉和定中组件给 PCU 提供机械输入。 PCU 带动副翼机翼钢索以及副翼,并给扰流板混合器提供输入。

升降舵

驾驶杆带动钢索,给升降舵感觉和定中组件提供输入,这将操纵升降舵PCU。PCU带动扭力管从而转动升降舵。

自动驾驶作动筒通过感觉和定中组件给 PCU 提供机械输入。

PCU 带动升降舵运动。

方向舵

方向舵脚蹬带动钢索,给方向舵感觉和定中组件提供输入。操纵方向舵的PCU。方向舵的PCU带动方向舵。

方向舵配平电门给方向舵感觉和定中组件提供输入,并改变方向舵的中立位置。

襟翼和缝翼

襟翼操纵手柄带动后缘襟翼控制活门。液压动力经过控制活门并 传动液压马达,该马达为襟翼传动系统提供动力并收放襟翼。随动钢 索给后缘襟翼控制活门提供反馈,将襟翼停在指定位置。

随动钢索也给前缘襟翼控制活门提供输入。控制前缘机构的位置。液压动力传到作动筒,从而移动前缘襟翼和缝翼。

备用襟翼电门电动操纵后缘襟翼。它们也操纵备用液压系统,以 打开前缘襟翼和缝翼。

飞行操纵—概况介绍

扰流板和减速板

减速板手柄带动操纵扰流板混合器的钢索 ,混合器带动扰流板机 翼钢索 ,并操纵飞行扰流板作动筒。混合器也带动地面扰流板控制活 门。活门给地面扰流板作动筒提供液压动力并打开扰流板。

在自动打开期间,自动减速板作动筒给上述钢索提供输入,并回传给减速板手柄。

水平安定面

水平安定面配平手轮移动钢索,给齿轮箱提供输入。齿轮箱带动 致动螺杆,并移动安定面。

电水平安定面配平电门控制电动马达,马达靠近齿轮箱。马达传动齿轮并带动安定面。自动驾驶也操纵安定面配平马达。

当安定面移动时,也通过升降舵感觉和定中组件带动升降舵运动。

27—00—00—004 Rev 6 11/21/199

飞行操纵—驾驶舱控制和指示—1

概况

飞行操纵的指示和控制部件位于驾驶舱。

副翼

副翼控制盘在升降舵控制杆顶端。副翼配平指示位于驾驶盘的顶部。

升降舵

升降舵控制杆在驾驶员座位前方。

方向舵

方向舵脚蹬在驾驶员座位前方

襟翼和缝翼

备用襟翼电门位于 P5 前头顶板的飞行操纵面板上。前缘装置的指示在 P5 后头顶板上。后缘襟翼的指示在 P2 中央仪表面板上。

扰流板和减速板

绿色的减速板预位灯和琥珀色的减速板没预位灯位于 P1 面板上。减速板打开灯位于 P3 板。

水平安定面

电配平电门在每个驾驶盘的外侧。

失速警告

失速警告测试电门位于 P5 后头顶板上。

27—00—00—002 Rev 3 01/20/1997

飞行操纵—驾驶舱控制和指示—2

概况

飞行操纵的指示和控制的某些部件位于驾驶舱内的操纵台上。

副翼

副翼配平电门位于 P8 后电子面板的副翼/方向舵配平面板上。

方向舵

方向舵配平控制和方向舵配平指示器位于 P8 后电子板的副翼/ 方向舵配平面板上。

襟翼和缝翼

襟翼手柄在 P10 控制台上。

扰流板和减速板

减速板手柄位于 P10 控制台上。

水平安定面

水平安定面的下列控制和指示位于 P10 控制台上:

- —机长和副驾驶安定面配平手轮
- —安定面配平指示器
- —安定面配平切断电门

安定面超控电门位于 P8 后电子板上。

27—00—00—003 Rev 1 09/25/96