AMENDMENTS TO THE CLAIMS:

Without prejudice or disclaimer, the following listing of claims will replace all prior versions, and listing, of claims in this application:

Listing of claims:

Claims 1-55 Cancelled.

56. (Currently Amended) A compound represented by the formula (II):

$$X^2 - Y^2 - Z^2$$
 (II)

or its prodrug; or a pharmaceutically acceptable salt or solvate thereof, wherein X^2 is an optionally substituted 5-member thiazole ring heteroaryl or a thiazole group represented by the formula:

wherein E is -(CH_2)₁₋₃-, -O- CH_2 -, or -S- CH_2 -;

R⁶ and R⁷ are each independently a hydrogen atom, an optionally substituted lower alkyl, a carboxy, a lower alkyloxycarbonyl, an optionally substituted aminocarbonyl, an optionally substituted thienyl, or an optionally substituted phenyl;

$$\begin{split} & \text{Y}^2 \text{ is -NR}^\text{G}\text{CO-}(\text{CH}_2)_{0\text{-}2}\text{--}\text{--}\text{NR}^\text{G}\text{CO-}(\text{CH}_2)_{0\text{-}2}\text{--}\text{W} - \text{NR}^\text{G}\text{CO-}\text{CH-}\text{CH}_-,} \\ & \text{--}\text{W-}(\text{CH}_2)_{1\text{-}5}\text{--}\text{NR}^\text{G}\text{CO-}(\text{CH}_2)_{0\text{-}2}\text{--}\text{--}\text{W} - \text{(CH}_2)_{1\text{-}5}\text{--}\text{CONR}^\text{G} - \text{(CH}_2)_{0\text{-}2}\text{--}\text{--}\text{CONR}^\text{G} - \text{(CH}_2)_{0\text{-}2}\text{--}\text{--}\text{CONR}^\text{G} - \text{(CH}_2)_{0\text{-}5}\text{--}\text{--}\text{NR}^\text{G} - \text{(CH}_2)_{0\text{-}5}\text{--}\text{--}\text{NR}^\text{G} - \text{(CH}_2)_{0\text{-}2}\text{--}\text{--}\text{NR}^\text{G} - \text{(CH}_2)_{0\text{-}5}\text{--}\text{--}\text{NR}^\text{G} - \text{(CH}_2)_{0\text{-}2}\text{--}\text{--}\text{NR}^\text{G} - \text{CS-}\text{NR}^\text{G} - \text{NR}^\text{G} - \text{CS-}\text{NR}^\text{G} - \text{NR}^\text{G} - \text{NR}^\text{$$

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

 $-N=C(-SR^G)-NR^GCO-,-NR^G-(CH_2)_{1-2}-NR^G-CO-,-NR^GCONR^GNR^FCO-,-or-N=C(-NR^GR^G)-NR^G-CO-,$

wherein R^G is each independently a hydrogen atom or an optionally substituted lower alkyl,

R^F is a hydrogen atom or an optionally substituted aryl, and

W is an oxygen atom or a sulfur atom;

Z² is an optionally substituted phenylene, an optionally substituted 2,5 pyridine diyl, an optionally substituted 2,5 thiophene diyl, or an optionally substituted 2,5 furan-diyl;

A² is a thiazolidine ring represented by the formula:

$$R^1$$
 R^2 $N-R^5$ R^4 or $CH_2)m$

wherein R¹ and R² are both hydrogen atoms or taken together may form an oxygen atom or a sulfur atom, R³ and R⁴ are both hydrogen atoms or taken together may form an oxygen atom or a sulfur atom, and R⁵ is a hydrogen atom or lower alkyl;

Q and V are each independently chosen from O₇ -S-, -CH₂-, or and -NR^B-, wherein R^B

is a hydrogen atom or lower alkyl;_-

m is 1, 2, or 3; and

a broken line (---) represents the presence or absence of a bond; with the provisos that X² is not oxazole; and X² is not thienyl when Y² is CONR^G (CH₂)_{0.2}-.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

57. (Currently Amended) A compound according to claim 56, wherein X^2 is a group represented by the formula:

wherein E is -(CH_2)₁₋₃-, -O- CH_2 -, or -S- CH_2 -; and

R⁶ and R⁷ are each independently a hydrogen atom, an optionally substituted lower alkyl, carboxy, a lower alkyloxycarbonyl, an optionally substituted aminocarbonyl, an optionally substituted thienyl, or an optionally substituted phenyl; and R⁸ is a hydrogen atom or lower alkyl,

with the provisos that both R⁶ and R⁷ are not hydrogen atoms if X² is

$$\mathbb{R}^6$$
 \mathbb{R}^7

58. (Previously Presented) A compound according to claim 56, wherein X^2 is a group represented by the formula:

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLLP

$$R^{10}$$
 R^{11}
 R^{10}
 R^{10}
 R^{11}
 R^{11}

$$R^{10}$$
 R^{9} R^{10} R^{10} R^{10} R^{10} R^{11} R^{10} R^{10} R^{11} R^{10} R^{10} R^{11} $R^$

R⁹ is a hydrogen atom, an optionally substituted lower alkyl, a carboxy, a lower alkyloxycarbonyl, or an optionally substituted aminocarbonyl;

R¹⁰ and R¹¹ are each independently a hydrogen atom, halogen, carboxy, lower alkyloxycarbonyl, optionally substituted aminocarbonyl, nitro, or optionally substituted amino.

- 59. (Currently Amended) A compound according to any one of claims 56 to 58, wherein Y² is -NHCO-, or -CONH-, NHCH₂-, or NHSO₂-.
- 60. (Previously Presented) A compound according to any one of claims 56 to 58, wherein Z^2 is 1,4-phenylene.

61[[2]]. (Currently Amended) A compound of any one of claims 56 to 58, wherein A^2 is a ring represented by the formula:

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER

$$N-R^8$$
 or $N-R^8$

wherein R^8 is a hydrogen atom or lower alkyl; M is $-S_-$, O_- , $-CH_2$, or $-N(R^6)_-$, wherein R^6 is a hydrogen atom or lower alkyl; and T is an oxygen atom or a sulfur atom.

- 62. (Previously Presented) A compound according to any one of claims 56 to 58, wherein the broken line represents the presence of a bond.
 - 63. (Currently Amended) A compound represented by the formula III-A:

$$R^{10}$$
 R^{11}
 R^{9}
 R^{9}
 R^{10}
 R^{3}
 R^{3}
 R^{3}

or its prodrug; or a pharmaceutically acceptable salt or solvate thereof, wherein R⁹ is a hydrogen atom, an optionally substituted lower alkyl, a carboxy, a lower alkyloxycarbonyl, or an optionally substituted aminocarbonyl;

R¹⁰ and R¹¹ are each independently a hydrogen atom, halogen, carboxy, lower alkyloxycarbonyl, optionally substituted aminocarbonyl, nitro, or optionally substituted amino;

Y³ is -NHCO- or -CONH-; and

A³ is a ring represented by the formula:

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

$$N-R^8$$
 or $N-R^8$

wherein R^8 is a hydrogen atom or lower alkyl; M is $-S_{-}$, O_{-} , $-CH_{2^-}$, or $-N(R^6)$, wherein R^6 is a hydrogen atom or lower alkyl; and T is an oxygen atom or a sulfur atom.

64. (Currently Amended) A compound represented by the formula III-B:

$$R^{10}$$
 R^{11}
 S
 R^{9}
 R^{9}
 R^{10}
 R^{10}
 R^{10}
 R^{11}
 R^{10}
 R^{11}
 R^{10}
 R^{11}
 R^{11}

or its prodrug; or a pharmaceutically acceptable salt or solvate thereof, wherein R⁹ is a hydrogen atom, an optionally substituted lower alkyl, a carboxy, a lower alkyloxycarbonyl, or an optionally substituted aminocarbonyl;

R¹⁰ and R¹¹ are each independently a hydrogen atom, halogen, carboxy, lower alkyloxycarbonyl, optionally substituted aminocarbonyl, nitro, or optionally substituted amino;

Y3 is -NHCO- or -CONH-; and

A³ is a ring represented by the formula:

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

wherein R^8 is a hydrogen atom or lower alkyl; M is -S-, O , $-CH_2$, or $-N(R^6)$, wherein R^6 is a hydrogen atom or lower alkyl; and T is an oxygen atom or a sulfur atom.

- 65. (Previously Presented) A pharmaceutical composition containing at least one compound according to any one of claims 56 to 58, 63, or 64 as an active ingredient.
- 66. (Previously Presented) A pharmaceutical composition for exhibiting thrombopoietin agonism comprising as an active ingredient at least one compound according to any one of claims 56 to 58, 63, or 64.
- 67. (Previously Presented) A pharmaceutical composition comprising at least one compound according to any one of claims 56 to 58, 63, or 64, wherein the compound is a platelet production modifier.

Claims 68-69 cancelled.

70. (Currently Amended) A thrombopoietin receptor agonist composition comprising as an active ingredient a compound of the formula (I):

$$X^1 - Y^1 - Z^1$$
 (I)

or its prodrug; or a pharmaceutically acceptable salt or solvate thereof, wherein

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLL

X¹ is an optionally substituted thiazole ringaryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, or optionally substituted non-aromatic heterocyclic group;

 $\begin{array}{l} Y^1 \text{ is -NR}^A \text{CO-}(\text{CH}_2)_{0\text{-}2}\text{-}, -NR}^A \text{CO-}(\text{CH}_2)_{0\text{-}2}\text{-}W\text{-}, -NR}^A \text{CO-}(\text{CH}_2)_{0\text{-}2}\text{-}, -CONR}^A - (\text{CH}_2)_{0\text{-}2}\text{-}, -NR}^A - (\text{CH}_2)_$

wherein R^A is each independently a hydrogen atom, an optionally substituted lower alkyl, an optionally substituted aryl, an optionally substituted aralkyl, an optionally substituted heteroaryl, or an optionally substituted heteroarylalkyl,

R^F is a hydrogen atom or optionally substituted aryl,

W is an oxygen atom or a sulfur atom;

Z¹ is an optionally substituted <u>phenylenearylene</u>, optionally substituted heteroarylene, optionally substituted non-aromatic heterocycle-diyl, or optionally substituted eycloalkyl-diyl;

A¹ is a thiazolidine ring represented by the formula:

$$Q \xrightarrow{R^4} R^2$$

or

$$N-R^5$$

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

wherein R¹ and R² are both hydrogen atoms or taken together may form an oxygen atom or a sulfur atom; R³ and R⁴ are both hydrogen atoms or taken together may form an oxygen atom or a sulfur atom; R⁵ is a hydrogen atom or lower alkyl; Q and V are each independently—O-, chosen from -S-, -CH₂-, or and -NR^B-, wherein R^B is a hydrogen atom or lower alkyl;

m is 1, 2, or 3; and

a broken line (---) represents the presence or absence of a bond.

71. (Currently Amended) A thrombopoietin receptor agonist composition according to claim 70, wherein X¹ is an optionally substituted 5-member heteroarylthiazole ring or a thiazole group represented by the formula:

wherein E is $-(CH_2)_{1-3}$, $-O-CH_2$, or $-S-CH_2$ -; R^6 and R^7 are each independently a hydrogen atom, optionally substituted lower alkyl, carboxy, lower alkyloxycarbonyl, optionally substituted aminocarbonyl, optionally substituted thienyl, or optionally substituted phenyl.

72. (Currently Amended) A thrombopoietin receptor agonist composition according to claim 70, wherein X¹ is a group represented by the formula:

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLL

$$R^6$$
 R^7
 R^7
 R^6
 R^7
 R^6
 R^7
 R^6
 R^7
 R^6
 R^7
 R^6
 R^7
 R^6
 R^7
 R^7
 R^8
 R^7

wherein E is - $(CH_2)_{1-3}$ -, -O- CH_2 -, or -S- CH_2 -; and R^6 and R^7 are each independently a hydrogen atom, optionally substituted lower alkyl, carboxy, lower alkyloxycarbonyl, optionally substituted aminocarbonyl, optionally substituted thienyl, or optionally substituted phenyl; R^8 -is a hydrogen atom or lower alkyl.

- 73. (Currently Amended) A thrombopoietin receptor agonist composition according to any one of claims 70 to 72, wherein Y¹ is -NHCO-, or -CONH-, -NHCH₂-, or -NHSO₂-.
- 74. (Previously Presented) A thrombopoietin receptor agonist composition according to any one of claims 70 to 72, wherein Z¹ is 1,4-phenylene.
- 75. (Currently Amended) A thrombopoietin receptor agonist composition according to of any one of claims 70 to 72, wherein A¹ is a ring represented by the formula:

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER

$$N-R^8$$
 or $N-R^8$

wherein R^8 is a hydrogen atom or lower alkyl; M is -S-, -O-, -CH2-, or -N(R^6), wherein R^6 is a hydrogen atom or lower alkyl; and T is an oxygen atom or a sulfur atom.

76. (Previously Presented) A thrombopoietin receptor agonist composition according to any one of claims 70 to 72, wherein the broken line represents the presence of a bond.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLLP