

FPGA-based Distributed Edge Training of SVM

Jyotikrishna Dass, Yashwardhan Narawane, Rabi Mahapatra, Vivek Sarin
Texas A&M University

Overview

Goal

- To design and implement distributed training of machine learning, here, Support Vector Machines (SVM), on multiple FPGA system
- To reduce network communication while achieving fast training, memory-efficiency, and energy savings

Motivation

- > SVM training in computationally expensive with high memory requirement for *kernel* matrix
- > Traditional SVM training accelerators are based on inherently sequential algorithms using a single FPGA board
- ➤ Need to distribute and accelerate training on edge where the data is generated and stored across multiple devices

Background

Support Vector Machines

- Supervised machine learning algorithm for classification and regression problems
- Mathematically, a quadratic programming problem which solves for maximal separating hyperplane as a classifier

Fig. Kernel SVM: Learning hyperplane in higher feature dimension

Distributed QRSVM

- QR decomposition-based distributed SVM
- ➤ Memory-efficient + negligible Communication
- Comprises of 3 stages:
 - 1. Initialization
 - 2. Distributed QR decomposition (formulation)
 - 3. Parallel Dual Ascent (solver)

Fig. Process Flow for Distributed QRSVM algorithm

training dataset, $\mathcal{D}=\{(x_i,y_i),i=1,...,n\}$ input data matrix, $X=\{x_i\in\mathbb{R}^d,i=1...n\}$, d-dimensional space class label vector, $y=\{y_i\in\{-1,1\},i=1...n\}$

C>0 is penalty parameter for misclassification $\mathbf{K}=\{k(x_i,x_j), \forall i,j=1...n\}$ is positive definite matrix (mostly) k() represents the Mercer kernel function - linear/non-linear

Substitute, $K \approx AA^T$, $A \in \mathbb{R}^{n \times k}$ and $k \ll n$. Define, $\hat{A} = diag(y) \times A$ Substitute, $\hat{A} = QR$, where, $Q \in \mathbb{R}^{n \times n}$ is Orthogonal matrix and $R \in \mathbb{R}^{n \times k}$ is Upper Triangular matrix

Define, $F = -\left(R_g R_g^T + \frac{1}{2C}I_n\right)$ and $\hat{n} = \frac{n}{p}$

Step 2: Dual variable update - In Parallel At edge unit, i $\hat{\beta_i}^{k+1} = \hat{\beta_i}^k + \eta^*(-\hat{\alpha_i}^{k+1})$ η^* is the Optimal step size

 $\hat{\mathbf{A}}_p = \{q_p\} * R_p$

⊳Write to DDR

 $\eta_{\widehat{\mathbb{R}}_{t}}^{\star}$ is

Hardware Implementation

Basic Computational Kernels

Fig. SIMD design for computational kernel (a) Inner Product $sum = \langle x, y \rangle$ via binary reduction tree (b) Scaled vector addition SAXPY, $(x = x + \alpha y)$ via fine-grained parallelism. The vectorized kernels operate on W=floor(N/B) data samples in each pass

Increasing Throughput

Fig. Doubling the throughput for Inner Product $\langle x,y \rangle = \langle x_1,y_1 \rangle + \langle x_2,y_2 \rangle$

Data Layout + Memory Interface

Fig. Computational flow graph for parallel dual scent

Fig. Data layout in column-major order. Memory-IP interface for on-chip Block RAM (full duplex) is called *bram* and that for off-chip DDR (half-duplex) is called *AXI Master*. N_{bram} =1024 bits , N_{AXI} =2048 bits

Memory Assignment

Kernel	BRAM	DDR
Inner Product	sum	х, у
SAXPY	х	У

FPGA Xilinx Virtex xcvu9p-flgb2104-2-i

Resource	BRAM	DSP	FF	LUT
Available	2160	6840	2.36M	1.18M
Used	1405	1221	545K	450K
%	65%	18%	23%	38%

thmic Design FPGA-Architecture for distributed SVM training

Multiple FPGA Network

- Each edge device comprises of FPGA IP logic + Host processor
- Illustration for p = 4 edges in a network
- A single QRSVM IP is synthesized per FPGA device to operate at clock frequency of 125 MHz with 39 Watts of power
- Computational workload is entirely with the FPGA while communication is through Host processor (*PCle*)
- Each FPGA handles maximum of 256K samples

Experimental Results and Discussions

Hardware Platform

Proof-of-Concept implemented on Amazon AWS F1 instance with $p=\{1,2,4,8\}$ 16nm Xilinx Virtex Ultrascale+ VU9P FPGA units forming a multiple FPGA network

Training Time

#units	#iterations	#units #iterations MNIST ($C = 1, \gamma = 2^{-6}, \eta^* = 0.9$)				
p	t	T_{QR}		T_p^{FPGA}	comp	comm
1	181	3.42	_	10.92	99.9%	0.1%
2	181	1.76	4.07	5.84	99.8%	0.2%
4	182	0.93	2.51	3.58	96%	4%
8	182	0.46	2.14	2.61	99.6%	0.4%
#units	#iterations		Skin (C	$=1, \gamma=2^{-1}$	$^{-8}, \eta^* = 0$	0.9)
p	t	T_{QR}		T_p^{FPGA}	comp	comm
1	67441	2.80		4536	99.9%	0.1%
2	64424	1.46	2226	2228	99.9%	0.1%
4	59761	0.74	1107	1108	99.9%	0.1%
8	54744	0.38	625	626	99.9%	0.1%
#units	#iterations	V	Vebspan	$C = 1, \gamma$	$= 1, \eta^* =$	= 0.9)
p	t	T_{QR}	T_{DA}	T_p^{FPGA}	comp	comm
1	-	-	-	-	-	-
2	566	9.80	66.20	76.14	99.8%	0.2%
4	564	4.88	34.40	39.36	99.8%	0.2%
8	569	2.60	17.92	20.59	99.7%	0.3%
#units	#iterations		Covtype	$C = 1, \gamma =$	$= 2^3, \eta^* =$	0.9)
p	t	T_{QR}		T_p^{FPGA}	comp	comm
1	-	-	-	-	-	-
2	1125	3.35	88.02	91.45	99.9%	0.1%
4	1080	1.70	43.58	45.36	99.8%	0.2%
8	1068	0.80	23.80	24.75	99.4%	0.6%
#units #samples SUSY $(C = 1, \gamma = 2^{-3}, \eta^* = 0.9)$						
р	n	T_{QR}	T_{DA}	T_p^{FPGA}	comp	comm
1	250K	14.01	94.04	108.08	99.9%	0.1%
2	500K	14.04	116.8	131.02	99.8%	0.2%
4	1M	14.07	162.1	176.18	99.9%	0.1%
8	2M	14.14	285.47	299.63	99.9%	0.1%

- Parallel Dual Ascent is computationally dominant than Distributed QR decomposition
- ➤ Near negligible communication overhead <1%

Dataset Description

Benchmark	Application	#samples (n)	#features (d)	<i>k</i> -rank	
MNIST	Image	60,000	780	128	
Skin	Health	200,000	3	64	
Webspam	Email	350,000	254	128	
Covtype	Geography	464,810	54	64	
SUSY	Physics	2,000,000	18	128	

Strong Scaling Analysis

- Achieves near linear parallel speedup for larger datasets Skin, Webspam, Covtype
- For small dataset MNIST, going beyond p = 4 seems to be overkill

Weak Scaling Analysis

- Workload per FPGA fixed at 250K samples
- ightharpoonup (a) T_{QR} is constant while $T_{DA} \uparrow$ with #iterations
- \rightarrow (b) (T_p^{FPGA}/t) is constant as desired

Energy Analysis

- Under strong scaling, the proposed FPGA design follows the ideal energy consumption trend that is constant across #FPGA units.
- Validates fully parallel implementation

Fig. Energy consumption under Strong Scaling Skin and Covtype

- The proposed design is closer to being linear than quadratic. Aberration at p=8 due to large #iterations for fine tuning model with increasing overall problem size
- (Energy/p) is nearly constant as expected with uniform workload per device

Fig. (a) Total Energy (b) Energy per core consumption under Weak Scaling for SUSY

Future Work

- ☐ To design and implement distributed training for Deep Learning models for resource constrained devices with limited memory and low power
- ☐ To explore online/incremental learning capabilities for machine learning models at edge

References

- 1. Burges, Christopher JC. "A tutorial on support vector machines for pattern recognition." Data mining and knowledge discovery 2, no. 2
- Papadonikolakis, Markos, and Christos-Savvas Bouganis. "A scalable FPGA architecture for non-linear SVM training." In 2008 International Conference on Field-Programmable Technology, pp. 337-340. IEEE, 2008.
 Cadambi, Srihari, Igor Durdanovic, Venkata Jakkula, Murugan Sankaradass, Eric Cosatto, Srimat Chakradhar, and Hans Peter Graf. "A
- massively parallel FPGA-based coprocessor for support vector machines." In 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines, pp. 115-122. IEEE, 2009.

 4. Rabieah, Mudhar Bin, and Christos-Savvas Bouganis. "FPGA based nonlinear support vector machine training using an ensemble learning." In 2015 25th International Conference on Field Programmable Logic and Applications (FPL), pp. 1-4. IEEE, 2015.
- Si, Si, Cho-Jui Hsieh, and Inderjit S. Dhillon. "Memory efficient kernel approximation." The Journal of Machine Learning Research 18, no. 1 (2017): 682-713.

 Dass, Jyotikrishna, Vivek Sarin, and Rabi N. Mahapatra. "Fast and Communication-Efficient Algorithm for Distributed Support Vector
- 6. Dass, Jyotikrishna, Vivek Sarin, and Rabi N. Mahapatra. "Fast and Communication-Efficient Algorithm for Distributed Support Ve Machine Training." IEEE Transactions on Parallel and Distributed Systems (2018).

Algorithmic Design

Distributed QR Decomposition Algorithm 1 Distributed QR decomposition

- 1: $k \leftarrow \text{rank}$ 2: **for** each edge i **do** 3: $\hat{A_i} \leftarrow \text{local partitioned data}$ 4: Parallel Compute $\{q_i\}, R_i \leftarrow \hat{A_i}$ $\triangleright Algorithm 2$
- 5: GATHER $(R_i)_{k \times k}$ at Master unit 6: **end for** 7: $\hat{A}_q \leftarrow$ gathered or stacked $(R_i)_{k \times k}$
- 9: Use $(R_f)_{k imes k}$
- Algorithm 2 $\{q_i\}, R_i \leftarrow \hat{A_i}$, via Householder algorithm

 1: $Q_{\hat{n} \times k}, (\hat{A}_i)_{\hat{n} \times k}$ $\triangleright \hat{n}$: samples per edge

 2: **for** $j \leftarrow 1$ to k **do**3: $q_{ij} \leftarrow \hat{A_i}(j:\hat{n},j)$

8: Compute $\{q_f\}, R_f \leftarrow \hat{A}_q$ at Master unit $\Rightarrow Algorithm 2$

- 3: $q_{ij} \leftarrow \hat{A}_i(j:\hat{n},j)$ 4: $q_{ij}(1) \leftarrow q_{ij}(1) + sign(q_{ij}(1)) \times \boxed{\lVert q_{ij} \rVert_2} \Rightarrow \text{scalar update}$ 5: $q_{ij} \leftarrow \frac{q_{ij}}{\lVert q_{ij} \rVert_2} \Rightarrow \text{vector normalization}$ 6: $\hat{A}_i(j:\hat{n},j:k) \leftarrow \hat{A}_i(j:\hat{n},j:k) - 2q_{ij} < q_{ij}, \hat{A}_i(j:\hat{n},j:k)$
- 7: $R_i = A_i(j:\hat{n}, j:k)$ 8: **end for** 9: $\{q_i\} \leftarrow [q_{i1}, q_{i2}, \dots, q_{ik}]$ \triangleright set of k-reflectors
- Algorithm 4 Computing Step 6 in Algorithm 2

 1: $\Rightarrow \hat{A}_{i}(j:\hat{n},j:k) \leftarrow \hat{A}_{i}(j:\hat{n},j:k) 2q_{ij} < q_{ij}, \hat{A}_{i}(j:\hat{n},j:k) >$ 2: **for** $m \leftarrow j$ to k **do**3: $a_{BRAM} \leftarrow A(j:\hat{n},m)$ \Rightarrow Load into BRAM

 4: Compute $sum = < q_{ij}, a_{BRAM} >$ 5: $a_{BRAM} \leftarrow a_{BRAM} 2 \times sum \times q_{ij}$ \Rightarrow saxpy

 $A(j:\hat{n},m) \leftarrow a_{BRAM}$

 $R_{gather} = \{q_f\} * R_g$

Fig. Computational flow graph for distributed QR decomposition