

SIGMOD 2020 tutorial

Optimal Join Algorithms meet Top-k

Nikolaos Tziavelis, Wolfgang Gatterbauer, Mirek Riedewald

Northeastern University, Boston

Part 1 : Top-*k*

Slides: https://northeastern-datalab.github.io/topk-join-tutorial/

DOI: https://doi.org/10.1145/3318464.3383132

Data Lab: https://db.khoury.northeastern.edu

Why "Optimal Join Algorithms meet Top-k"?

Optimal Join algorithms

Return all results over joins

⇒How to avoid large intermediate results?

Top-k

Given k, return k "best" results

⇒ How to avoid working on any lower ranked results?

Ranked Enumeration (Any-k)

Incrementally return the k "best" results over joins (for any k = 1, 2, ...)

⇒ How to most effectively push sorting through joins?

Top-k

Optimal Join Algorithms

middleware cost model (# accesses)

small result size; wish: O(k)

return only *k*-best results

Any-k

RAM cost model

conjunctive queries

query

decompositions

most important results first

ranking function

minimize intermediate results

all results are equally important

return all results;

wish: O(r), r > n

incremental computation

Outline tutorial

- Part 1: Top-k (Wolfgang): ~20min
 - Top-k selection problem
 - Threshold algorithm [Fagin+ '03]
 - Top-k join problem
 - J* algorithm [Natsev+ '01]
 - Discussion on cost models
- Part 2: Optimal Join Algorithms (Mirek): ~30min
- Part 3: Ranked enumeration over joins (Nikolaos): ~40min

Top-k Selection Query: overall setup

- n objects $X_1, X_2, ..., X_n$ with ℓ numeric weight attributes $w_1, w_2, ..., w_\ell$
- weight of object = aggregate function over its weights $\rho(w_1, w_2, ..., w_\ell) = \rho(X)$
- Goal: Find top-k objects according to some order (e.g. min)

In most original papers assumed to be max!

id	w_1	W_2	W_3	sum
X_1	3	4	ന	10
X_2	4	2	4	10
X_3	6	8	1	15
X_4	7	6	6	18
X_5	8	7	5	20

Example aggregate function: $\rho = \text{sum}\{w_1, w_2, w_3\}$

Top-k: a set of k objects s.t. $\rho(X_i) \leq \rho(X_j)$ for every $X_i \in T$ and every $X_j \notin T$

$$n=5$$
, $\ell=3$, $k=2$

Top-k Selection Query: information in different relations

• Weights are stored in ℓ distinct relations R_i

12		
W_2		
4		
2		
8		
6		
7		

id	W_3
X_1	3
X_2	4
X_3	1
X_4	6
X_5	5

 R_{2}

Top-k Selection Query: sorted access

- Weights are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i

R_2									
W_2									
4									
2									
8									
6									
7									

id	W_3
X_1	3
X_2	4
X_3	1
X_4	6
X_5	5

 R_3

Top-k Selection Query: sorted access

- Weights are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i

R_3									
id	W_3								
X_3	1								
X_1	3								
X_2	4								
X_5	5								
X_4	6								

Notice we sort in increasing order

Top-k Selection Query: "middleware" assumption

- Weights are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i
- Goal: Find top-k with minimal access cost
 - get next object in R_i sequentially: "sorted" sequential access cost c_{seq}
 - obtain the weight for a specific object in R_i : random access (index lookup) cost c_{rand}

id	w_1	W_2	W_3	sum	id
X_1	3	4	ന	10	X_1
X_2	4	2	4	10	X_2
X_3	6	8	1	15	X_3
X_4	7	6	6	18	X_4
X_5	8	7	5	20	X_5

	<u> </u>	
id	W_2	
X_2	2	
X_1	4	
X_4	6	
X_5	7	
X_3	8	

<u> </u>	
W_3	
1	
3	
4	
5	
6	
	4

we only pay for accesses to attribute lists

• 2 types of access: sequential / random

Assumption 1: Middleware cost model:

we aggregate rankings of other services.

Notice we sort in increasing order

Top-k Selection Query as a Join Problem

- Weights are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i
- Goal: Find top-k with minimal access cost
 - get next object in R_i sequentially: "sorted" sequential access cost c_{seq}
 - obtain the weight for a specific object in R_i : random access (index lookup) cost $c_{
 m rand}$

					l	R_1		I	R_2		F	R_3
id	$\overline{w_1}$	W_2	W_3	sum	id	w_1		id	W_2		id	W_3
X_1	ന	4	3	10	X_1	3		X_2	2		X_3	1
X_2	4	2	4	10	X_2	4		X_1	4		X_1	3
X_3	6	8	1	15	X_3	6		X_4	6	$\langle \cdot \rangle$	X_2	4
X_4	7	6	6	18	X_4	7		X_5	7		X_5	5
X_5	8	7	5	20	X_5	8	/\	X_3	8	\	X_4	6

select R_1 .id, $sum(w_1, w_2, w_3)$ as weight from R_1 , R_2 , R_3 where R_1 .id= R_2 .id and R_2 .id= R_3 .id order by weight limit 2

Assumption 1: Middleware cost model:

we aggregate rankings of other services.

2 types of access: sequential / random

we only pay for accesses to attribute lists

~ Joins on unique object id: 1-1 relationships

Naive algorithm: retrieve all items

- Weights are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i
- Goal: Find top-k with minimal access cost
 - get next object in R_i sequentially: "sorted" sequential access cost c_{seq}
 - obtain the weight for a specific object in R_i : random access (index lookup) cost $c_{\rm rand}$

					R_1		R_2			R_3		
id	w_1	W_2	W_3	sum	id	w_1		id	W_2		id	w_3
X_1	3	4	3	10	X_1	3		X_2	2		X_3	1
X_2	4	2	4	10	X_2	4		X_1	4		X_1	3
X_3	6	8	1	15	X_3	6		X_4	6	\backslash / \backslash	X_2	4
X_4	7	6	6	18	X_4	7		X_5	7		X_5	5
X_5	8	7	5	20	X_5	8	/\	X_3	8	\ \ \ \	X_4	6

select R_1 .id, $sum(w_1, w_2, w_3)$ as weight from R_1 , R_2 , R_3 where R_1 .id= R_2 .id and R_2 .id= R_3 .id order by weight limit 2

Assumption 1: Middleware cost model:

we aggregate rankings of other services.

2 types of access: sequential / random

we only pay for accesses to attribute lists

Naive algorithm: retrieve all items, sort, return top-k

 $\mathsf{Cost} = n \cdot \ell \cdot c_{\mathsf{sort}}$

Assumption 2: monotonicity of ρ

- Weights are stored in ℓ distinct relations R_i
 - each R_i is sorted by attribute w_i
- Goal: Find top-k with minimal access cost
 - get next object in R_i sequentially: "sorted" sequential access cost c_{seq}
 - obtain the weight for a specific object in R_i : random access (index lookup) cost $c_{
 m rand}$

					R_1		R_2			R_3		
id	w_1	W_2	W_3	sum	id	w_1		id	W_2		id	W_3
X_1	3	4	ന	10	X_1	3		X_2	2		X_3	1
X_2	4	2	4	10	X_2	4		X_1	4		X_1	3
X_3	6	8	1	15	X_3	6		X_4	6	$\langle \cdot \rangle$	X_2	4
X_4	7	6	6	18	X_4	7	/	X_5	7		X_5	5
X_5	8	7	5	20	X_5	8	/\	X_3	8	\	X_4	6

select R_1 .id, $sum(w_1, w_2, w_3)$ as weight from R_1 , R_2 , R_3 where R_1 .id= R_2 .id and R_2 .id= R_3 .id order by weight limit 2

Assumption 2: The aggregate function ρ is monotone: $\rho(w_1, w_2, ..., w_\ell) \leq \rho(w_1', w_2', ..., w_\ell')$ if $w_i \leq w_i'$ for all i

Part 3: tropical semiring (min, sum) is instance of "selective dioid" (i.e. min(a,b) = a or b). ρ is decomposable: $\rho(w_1,w_2,w_3) = \rho\{w_1,w_2,w_3\}$ 13

Assumption 1: Middleware cost model:

we aggregate rankings of other services.

2 types of access: sequential / random

we only pay for accesses to attribute lists

Important early work making these assumptions

Fagin's algorithm:

- Fagin. Combining fuzzy information from multiple systems. PODS 1996. https://doi.org/10.1145/237661.237715
- Fagin. Fuzzy queries in multimedia database systems. PODS 1998. https://doi.org/10.1145/275487.275488
- Fagin. Combining fuzzy information from multiple systems. JCSS 1999. https://doi.org/10.1006/jcss.1998.1600

• Threshold Algorithm (TA):

- Nepal, Ramakrishna. Query processing issues in image (multimedia) databases. ICDE 1999. https://doi.org/10.1109/ICDE.1999.754894
- Güntzer, Balke, Kießling. Optimizing multifeature queries for image databases. VLDB 2000. https://dl.acm.org/doi/10.5555/645926.671875
- Fagin, Lotem, Naor. Optimal aggregation algorithms for middleware. JCSS 2003. https://doi.org/10.1016/S0022-0000(03)00026-6

2014 Gödel Prize on "a framework to design and <u>analyze</u> algorithms where aggregation of information from multiple data sources is needed... introduced the notion of <u>instance optimality</u>"

Outline tutorial

- Part 1: Top-k (Wolfgang): ~20min
 - Top-k selection problem
 - Threshold algorithm [Fagin+ '03]
 - Top-k join problem
 - J* algorithm [Natsev+ '01]
 - Discussion on cost models
- Part 2: Optimal Join Algorithms (Mirek): ~30min
- Part 3: Ranked enumeration over joins (Nikolaos): ~40min

1. Access next objects in all R_i sequentially

- 1. Access next objects in all R_i sequentially
 - a. Set threshold au to the aggregate of the weights last seen in sorted access

I	R_1		1	R_2		I	R_3	
id	w_1		id	W_2		id	W_3	
X_1	3		X_2	2		X_3	1	$\tau = \text{sum}(3,2,1) = 6$
X_2	4		X_1	4		X_1	3	
X_3	6		X_4	6		X_2	4	
X_4	7		X_5	7		X_5	5	
X_5	8	Ţ	X_3	8	Į.	X_4	6	

- 1. Access next objects in all R_i sequentially
 - a. Set threshold τ to the aggregate of the weights last seen in sorted access
 - b. Use random accesses and compute the aggregate weights ρ of all objects seen

id	w_1	$\overline{w_2}$	W_3
X_1	3		
X_2		2	
X_3			1

I	R_1		I	R_2		I	R_3	
id	w_1		id	W_2		id	W_3	
X_1	3		X_2	2		X_3	1	$\tau = \text{sum}(3,2,1) = 6$
X_2	4		X_1	4		X_1	3	
X_3	6		X_4	6		X_2	4	
X_4	7		X_5	7		X_5	5	
X_5	8	↓	X_3	8	ļ	X_4	6	

- 1. Access next objects in all R_i sequentially
 - a. Set threshold τ to the aggregate of the weights last seen in sorted access
 - b. Use random accesses and compute the aggregate weights ρ of all objects seen

id	w_1	W_2	W_3
X_1	3	4	3
X_2		2	
X_3			1

- 1. Access next objects in all R_i sequentially
 - a. Set threshold τ to the aggregate of the weights last seen in sorted access
 - b. Use random accesses and compute the aggregate weights ρ of all objects seen

id	w_1	$\overline{w_2}$	W_3
X_1	3	4	3
X_2	4	2	4
X_3			1

- 1. Access next objects in all R_i sequentially
 - a. Set threshold τ to the aggregate of the weights last seen in sorted access
 - b. Use random accesses and compute the aggregate weights ρ of all objects seen

id	w_1	W_2	W_3
X_1	3	4	സ
X_2	4	2	4
X_3	6	8	1

- Access next objects in all R_i sequentially
 - Set threshold τ to the aggregate of the weights last seen in sorted access
 - b. Use random accesses and compute the aggregate weights ρ of all objects seen

(can purge rest)

- 1. Access next objects in all R_i sequentially
 - a. Set threshold τ to the aggregate of the weights last seen in sorted access
 - b. Use random accesses and compute the aggregate weights ρ of all objects seen
 - c. Continue until the aggregate weights ρ of the top- $k \leq \tau$

10 ≤ 6: continue: access next objects sequentially

- 1. Access next objects in all R_i sequentially
 - a. Set threshold au to the aggregate of the weights last seen in sorted access
 - b. Use random accesses and compute the aggregate weights ρ of all objects seen
 - c. Continue until the aggregate weights ρ of the top- $k \leq \tau$

 $10 \le 11$: stop!

• Why can we avoid looking at X_4 ?

From the monotonicity property: for any object not seen, the score of the object is bigger than the threshold

Instance Optimality of Threshold Algorithm (TA)

- The TA algorithm is instance cost-optimal
 - within a constant factor of the best algorithm on any database*

- Let cost(A, D) = access cost of algorithm A on database D:
 - $\cot(TA, D) = O(\cot(A, D)) \text{ for all } A \text{ and } D$

^{*} Excluding those that make "wild guesses" = random access to object without first seeing it with sorted access

Outline tutorial

- Part 1: Top-k (Wolfgang): ~20min
 - Top-k selection problem
 - Threshold algorithm [Fagin+ '03]
 - Top-k join problem
 - J* algorithm [Natsev+ '01]
 - Discussion on cost models
- Part 2: Optimal Join Algorithms (Mirek): ~30min
- Part 3: Ranked enumeration over joins (Nikolaos): ~40min

Goal: Generalize TA setup to arbitrary join patterns

- Same cost model: measuring access cost
 - to simplify, we ignore random accesses
- many-to-many relationships
- no unique identifier per join result
- arbitrary join conditions possible

naturaljoin

select A_1 , A_2 , A_3 , A_4 , $sum(w_1, w_2, w_3)$ as weight from R_1 , R_2 , R_3 where R_1 . A_2 = R_2 . A_2 and R_2 . A_3 = R_3 . A_3 order by weight limit 1

Outline tutorial

- Part 1: Top-k (Wolfgang): ~20min
 - Top-k selection problem
 - Threshold algorithm [Fagin+ '03]
 - Top-k join problem
 - J* algorithm [Natsev+ '01]
 - Discussion on cost models
- Part 2: Optimal Join Algorithms (Mirek): ~30min
- Part 3: Ranked enumeration over joins (Nikolaos): ~40min

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

left to right (showing row id's)				
Partial Solution	Next Tuple	Lower bound		
(1)	R ₂ :2	1+1+0=2		
(2)	R ₂ :1	4+0+0=4		
()	R ₁ :3	4+0+0=4		

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

left to right (showing row id's)					
Partial Solution	Next Tuple	Lower bound			
(1)	R ₂ :2	1+1+0=2			
(2)	R ₂ :1	4+0+0=4			
()	R ₁ :3	4+0+0=4			

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

left to rig	ght (sho	wing row id's)
Partial Solution	Next Tuple	Lower bound
(1,2)	R ₃ :1	1+2+0=3
(1)	R ₂ :3	1+2+0=3
(2)	R ₂ :1	4+0+0=4
()	R ₁ :3	4+0+0=4

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

left to right (showing row id's)							
Partial Solution	Next Tuple	Lower bound					
(1,2)	R ₃ :1	1+2+0=3 →					
(1)	R ₂ :3	1+2+0=3					
(2)	R ₂ :1	4+0+0=4					
()	R ₁ :3	4+0+0=4					

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

left to right (showing row id's)							
Partial Solution	Next Tuple	Lower bound					
(1,2,1)		1+2+1=4					
(1,2)	R ₃ :2	1+2+1=4					
(1)	R ₂ :3	1+2+0=3 →					
(2)	R ₂ :1	4+0+0=4					
()	R ₁ :3	4+0+0=4					

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

left to right (showing row id's)							
Partial Solution	Next Tuple	Lower bound					
(1,2,1)		1+2+1=4					
(1,2)	R ₃ :2	1+2+1=4					
(1,3)	R ₃ :1	1+3+0=4 ←					
(2)	R ₂ :1	4+0+0=4					
()	R ₁ :3	4+0+0=4					

- Idea: A* search on the Cartesian product to find top-k join results
 - Keep Priority Queue (PQ) of partial results
 - Pop partial result with smallest lower bound (based on what has been seen) and access lists to extend it
 - If still incomplete, push back 2 new ones: one "longer", one "deeper"

J* w/ iterative deepening [Natsev+ 01] & Rank Join [Ilyas+ 04]

- To guarantee instance optimality for J*, go deeper only after producing all results (iterative deepening) [Natsev+ 01]
- Rank-Join [Ilyas+ 04]: Instead of A* type of search use a threshold value similarly to TA. Also instance-optimal in terms of accesses
- Many variants and much follow-up work (different join strategies, heuristics to prioritize relations, etc.)

Figures from [Ilyas+ 04]

[Ilyas+04] Ilyas, Aref, Elmagarmid. Supporting top-k join queries in relational databases. VLDBJ 2004. https://doi.org/10.1007/s00778-004-0128-2

Outline tutorial

- Part 1: Top-k (Wolfgang): ~20min
 - Top-k selection problem
 - Threshold algorithm [Fagin+ '03]
 - Top-k join problem
 - J* algorithm [Natsev+ '01]
 - Discussion on cost models
- Part 2: Optimal Join Algorithms (Mirek): ~30min
- Part 3: Ranked enumeration over joins (Nikolaos): ~40min

Middleware cost model vs. in-database join computations

Middleware cost model vs. in-database join computations

- J* and Rank-Join produce n^2 partial results to find top-1 result §
 - Are number of accesses a realistic measure for in-database join computation?
 E.g. if tables are available in a database, we don't have to fetch tuples over a network.

⇒ How to most effectively push sorting through joins?

RAM cost model

- In-memory join comp.
- quadratic cost
- in-memory processing: join time matters

R_1		_		R_2				R_3		_
A_2	w_1		A_2	A_3	W_2		A_3	A_4	W_3	
1	1		1	1	10		0	0	0	
1	2		1	2	20		1	1	100	
•••			•••		• • •		•••	•••	• • •	
1	9		1	9	90		8	8	800	
0	10		0	0	100		9	9	900	$\rfloor n$
	1 1 	1 1 1 2 	1 1 1 2 	1 1 1 2	1 1 1 1 2 1 2	1 1 1 1 10 1 2 1 2 20	1 1 1 1 10 1 2 1 2 20	1 1 1 10 0 1 2 1 2 20 1 1 9 90 8	1 1 1 10 0 0 1 2 1 2 20 1 1 1 9 90 8 8	1 1 1 10 0 0 0 1 2 1 2 1 1 100 1 9 90 8 8 800

Middleware cost model

- Minimize access depth
- linear cost
- Information retrieval: latency/ access cost matters

[§] Assuming sorted accesses only. If random accesses allowed, another slightly more complicated example shows the same issue.

Middleware cost model vs. in-database join computations

- J* and Rank-Join produce n^2 partial results to find top-1 result \S
 - Are number of accesses a realistic measure for in-database join computation?
 E.g. if tables are available in a database, we don't have to fetch tuples over a network.

A natural question:

What can one do under a RAM cost model for general conjunctive queries?

• in-memory processing: join time matters

retrieval:
latency/access
cost matters

[§] Assuming sorted accesses only. If random accesses allowed, another slightly more complicated example shows the same issue.
[Ilyas+ 04] Ilyas, Aref, Elmagarmid. Supporting top-k join queries in relational databases. VLDBJ 2004. https://doi.org/10.1007/s00778-004-0128-2
[Natsev+ 01] Natsev, Chang, Smith, Li, Vitter. Supporting incremental join queries on ranked inputs. VLDB 2001. https://doi.org/doi/10.5555/645927.673

An excerpt of rich literature, once access determines cost ...

- What if the ranking function is the distance from a desired (high-dimensional) point?
 - [Bruno+ TODS'02]: Rewrite as a range query and restart if # results < k
- What if we are allowed to pre-compute data structures and learn the ranking function at query time?
 - [Tsaparas+ ICDE'03]: Find linear ranking functions that act as "separators" (i.e., they change the top-k set)
 - [Chang+ SIGMOD'00]: Construct convex hulls for linear ranking functions
 - [Hristidis+ SIGMOD'01, Das+ VLDB'06]: Materialize ranked views for some selected ranking functions
- What if the ranking function is non-monotone?
 - [Zhang+ SIGMOD'06]: Use continuous function optimization methods
- What if the query model is different?
 - "SMART" [Wu+ VLDB'10]: Query contains disjunctions, partial results allowed to be returned

• ...

Please see dedicated tutorials and surveys on top-k

Bruno, Chaudhuri, Gravano. Top-*k* selection queries over relational databases: Mapping strategies and performance evaluation. TODS 2002. https://doi.org/10.1145/568518.568519
Tsaparas, Palpanas, Kotidis, Koudas, Srivastava. Ranked join indices. ICDE 2003. https://doi.org/10.1145/342009.335433
Chang, Bergman, Castelli, Li, Lo, Smith. The onion technique: Indexing for linear optimization queries. SIGMOD 2000. https://doi.org/10.1145/342009.335433
Hristidis, Koudas, Papakonstantinou. PREFER: A system for the efficient execution of multi-parametric ranked queries. SIGMOD 2001. https://doi.org/10.1145/376284.375690
Das, Gunopulos, Koudas, Tsirogiannis. Answering top-*k* queries using views. VLDB 2006. https://www.vldb.org/conf/2006/p451-das.pdf
Zhang, Hwang, Chang, Wang, Lang, Chang. Boolean + ranking: querying a database by *k*-constrained optimization. SIGMOD 2006. https://doi.org/10.1145/1142473.1142515
Wu, Berti-Equille, Marian, Procepiuc, Srivastava. Processing top-*k* join queries. VLDB 2010. https://doi.org/10.14778/1920841.1920951

Outline tutorial

- Part 1: Top-k (Wolfgang): ~20min
 - Top-k selection problem
 - Threshold algorithm [Fagin+ '03]
 - Top-k join problem
 - J* algorithm [Natsev+ '01]
 - Discussion on cost models
- Part 2: Optimal Join Algorithms (Mirek): ~30min
- Part 3: Ranked enumeration over joins (Nikolaos): ~40min