- Le calcul des $\alpha(i,t)$ donne un balayage de gauche à droite
- On peut faire la même chose, mais de droite à gauche
 - on définit $\beta(i,t) = P(S_{t+1:T} = S_{t+1:T} \mid H_t = i)$
 - on note la récursion

$$\begin{split} \beta(i,t-1) &= P(S_{t:T} = s_{t:T} \mid H_{t-1} = i) \\ &= \sum_{j} P(S_{t:T} = s_{t:T}, H_{t} = j \mid H_{t-1} = i) = \sum_{j} P(S_{t+1:T} = s_{t+1:T}, S_{t} = s_{t}, H_{t} = j \mid H_{t-1} = i) \\ &= \sum_{j} P(S_{t} = s_{t} \mid H_{t} = j) P(H_{t} = j \mid H_{t-1} = i) P(S_{t+1:T} = s_{t+1:T} \mid H_{t} = j) \\ &= \sum_{j} P(S_{t} = s_{t} \mid H_{t} = j) P(H_{t} = j \mid H_{t-1} = i) \beta(j,t) \end{split}$$

- on a les valeurs initiales $\beta(i,T) = 1 \ \forall i$
- Une fois le tableau β calculé, on obtient facilement:

$$P(S_{1:T}=s_{1:T}) = \sum_{j} P(S_{1:T}=s_{1:T}, H_{1} = j)$$

$$= \sum_{j} P(S_{2:T}=s_{2:T} \mid H_{1} = j) P(S_{1}=s_{1} \mid H_{1} = j) P(H_{1} = j)$$

$$= \sum_{j} \beta(j,1) P(S_{1}=s_{1} \mid H_{1} = j) P(H_{1} = j)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	it	1	2	3	4
3(i,1	0				
	1				

• initialisation: $\beta(i,4) = 1$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

·		1	2	3	4
3(i,t	0				1
	1				1

• initialisation: $\beta(i,4) = 1$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

·	it	1	2	3	4
3(i,t	0			*	_ 1
	1			*	<u> </u>

• récursion (t=4): $\beta(i,t-1) = \sum_{i} P(S_t = s_t | H_t = j) P(H_t = j | H_{t-1} = i) \beta(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	it	1	2	3	4
3(i,1	0			*	1
_	1				1

• récursion
$$\beta(0,3) = P(S_4=1|H_4=0) P(H_4=0|H_3=0) \beta(0,4) + P(S_4=1|H_4=1) P(H_4=1|H_3=0) \beta(1,4)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

~ ·	it	1	2	3	4
3(i,1	0			0.59	1
	1				1

• récursion $\beta(0,3) = 0.1 \times 0.3 \times 1 + 0.8 \times 0.7 \times 1 = 0.59$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

· ·	it	1	2	3	4
3(i,t	0			0.59	1
	1			*	1

• récursion
$$\beta(1,3) = P(S_4=1|H_4=0) P(H_4=0|H_3=1) \beta(0,4) + P(S_4=1|H_4=1) P(H_4=1|H_3=1) \beta(1,4)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

. T	it	1	2	3	4
β(i,1	0			0.59	1
_	1			0.38	1

• récursion $\beta(1,3) = 0.1 \times 0.6 \times 1 + 0.8 \times 0.4 \times 1 = 0.38$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

.	it	1	2	3	4
3(i,1	0		K	0.59	1
	1		K	0.38	1

• récursion (t=3): $\beta(i,t-1) = \sum_{i} P(S_t = s_t | H_t = j) P(H_t = j | H_{t-1} = i) \beta(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - \diamond message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	it	1	2	3	4
3(i,t	0		*	0.59	1
	1			0.38	1

• récursion
$$\beta(0,2) = P(S_3=0|H_3=0) P(H_3=0|H_2=0) \beta(0,3) + P(S_3=0|H_3=1) P(H_3=1|H_2=0) \beta(1,3)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

. ·	it	1	2	3	4
β(i,1	0		0.2125	0.59	1
	1			0.38	1

• récursion $\beta(0,2) = 0.9 \times 0.3 \times 0.59 + 0.2 \times 0.7 \times 0.38 = 0.2125$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	it	1	2	3	4
β(i,1	0	0.106235	0.2125	0.59	1
	1	0.14267	0.349	0.38	1

on continue d'appliquer la récursion jusqu'au début (t=1)...

Lissage avec un HMM

 Les tables α(i,t) et β(i,t) peuvent également être utilisées pour faire du lissage

$$P(H_k = i \mid S_{1:T} = S_{1:T}) = P(H_k = i, S_{1:k} = S_{1:k}, S_{k+1:T} = S_{k+1:T}) / \Upsilon$$
 (Υ est la normalisation)

$$= P(H_k = i, S_{1:k} = S_{1:k}) P(S_{k+1:T} = S_{k+1:T} \mid H_k = i) / \Upsilon$$

$$= \alpha(i,k) \beta(i,k) / \Upsilon$$

Y correspond à une somme sur i seulement

Lissage avec un HMM

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

. T	it	 2	
α(i,t)	0	 0.1755	
	1	 0.071	•••

on peut calculer les probabilités de lissage au temps t=2

$$\begin{split} P(H_2 = 0 \mid S_1 = 0, S_2 = 0, S_3 = 0, S_4 = 1) &= \frac{\alpha(0,2) \; \beta(0,2)}{\sum_i \alpha(i,2) \; \beta(i,2)} \\ &= \alpha(0,2) \; \beta(0,2) / \; (\alpha(0,2) \; \beta(0,2) + \alpha(1,2) \; \beta(1,2) \;) \\ &= 0.1755 \; \times \; 0.2125 \; / \; (0.1755 \; \times \; 0.2125 \; + \; 0.071 \; \times \; 0.349) \\ &\approx 0.6008 \end{split}$$

$$P(H_2 = 1 \mid S_1 = 0, S_2 = 0, S_3 = 0, S_4 = 1) = 0.071 \times 0.349 / (0.1755 \times 0.2125 + 0.071 \times 0.349)$$

 ≈ 0.3992

Lissage avec un HMM

On peut également faire du lissage sur deux variables cachées adjacentes

$$P(H_{k} = i, H_{k+1} = j \mid S_{1:T} = s_{1:T})$$

$$= P(H_{k} = i, H_{k+1} = j, S_{1:k} = s_{1:k}, S_{k+1:T} = s_{k+1:T}) / \Upsilon'$$

$$= P(H_{k} = i, S_{1:k} = s_{1:k}) P(H_{k+1} = j \mid H_{k} = i) P(S_{k+1} = s_{k+1} \mid H_{k+1} = j) P(S_{k+2:T} = s_{k+2:T} \mid H_{k+1} = j) / \Upsilon'$$

$$= \alpha(i,k) P(H_{k+1} = j \mid H_{k} = i) P(S_{k+1} = s_{k+1} \mid H_{k+1} = j) \beta(j,k+1) / \Upsilon'$$

Υ' est une somme sur i et j