平成 26 年度

卒業論文

題目

周期流中における振動翼の3次元渦構造

の揚抗力に与える影響に関する研究

学籍番号	$\phantom{00000000000000000000000000000000000$											
提出者	田中 大貴											
指導教員	村田 滋 教 授											
指導教員	田中 洋介 准教授											

京都工芸繊維大学 工芸科学部 機械システム工学課程

概要

本研究の目的は

目次

1. 緒言						 	 	 		 	•	3
1.1 研究の背	景					 	 	 		 		3
2. 理論						 	 	 		 		4
2.0.1 ステレ	オ PIV 法					 	 	 		 		4
2.0.2 拡張位	相乱流強度 .					 	 	 		 		4
3. 実験装置	と実験方法					 	 	 		 		5
3.0.1 回流水						 	 	 		 		5
3.0.2 揚抗力	測定装置					 	 	 		 		5
3.0.3 PIV 3	光学系					 	 	 		 		5
4. 結果						 	 	 		 		6
4.0.1 揚抗力	と揚抗比					 	 	 		 		6
4.0.2 翼表面	「圧力の推定					 	 	 		 		6
4.0.3 流れの	剥離と再付着					 	 	 		 		6
4.0.4 ステレ	オ PIV による動	翼端渦構造	きの言	可視化	匕.	 	 	 		 		6
5. 結果						 	 	 		 		7
5.0.1 揚抗力	と揚抗比					 	 	 	•	 		7
5.0.2 翼表面	[圧力の推定					 	 	 	•	 		7
5.0.3 流れの	剥離と再付着					 	 	 		 		7
5.0.4 ステレ	オ PIV による動	翼端渦構造	きの言	可視化	匕.	 	 	 		 		7
6. 付録						 	 	 		 		8
6.0.1 回流水	で槽の性能評価					 	 	 		 		8
6.0.2 揚抗力	測定装置の性能	評価 .				 	 	 		 		8
	流れ構造の数値											8
6.0.4 翼の製	!作					 	 	 		 		8
6.0.5 2次元	PIV の精度評価	5				 	 	 		 		8
6.0.6 ステレ	オ PIV の精度記	评価				 	 	 		 		8
謝辞						 	 	 		 	•	9

1. 緒言

1.1 研究の背景

Latychevskaia らによるデコンボリューション法を用いる手法 (?) や,min-max フィルターを用いることによる手法 (?) などが行われてきた.

2. 理論

2.0.1 ステレオ PIV 法

この粒子が伸びてしまうという問題 (Depth-of-focus 問題) を解決する策として、トモグラフィックディジタルホログラフィ法が考えられる.

2.0.2 拡張位相乱流強度

3. 実験装置と実験方法

3.0.1 回流水槽

この粒子が伸びてしまうという問題 (Depth-of-focus 問題) を解決する策として、トモグラフィックディジタルホログラフィ法が考えられる.

- 3.0.2 揚抗力測定装置
- 3.0.3 PIV 光学系

4. 結果

4.0.1 揚抗力と揚抗比

この粒子が伸びてしまうという問題 (Depth-of-focus 問題) を解決する策として、トモグラフィックディジタルホログラフィ法が考えられる.

4.0.2 翼表面圧力の推定

あ翼表面の流れ構造から翼表面圧力を推定する

4.0.3 流れの剥離と再付着

位相乱流強度

4.0.4 ステレオ PIV による翼端渦構造の可視化

Fig. 1 Abstract of tomographic digital holography.

5. 結果

5.0.1 揚抗力と揚抗比

この粒子が伸びてしまうという問題 (Depth-of-focus 問題) を解決する策として、トモグラフィックディジタルホログラフィ法が考えられる.

5.0.2 翼表面圧力の推定

あ翼表面の流れ構造から翼表面圧力を推定する

5.0.3 流れの剥離と再付着

位相乱流強度

5.0.4 ステレオ PIV による翼端渦構造の可視化

Fig. 2 Abstract of tomographic digital holography.

6. 付録

6.0.1 回流水槽の性能評価

OpenFOAM による数値実験

PIV による流速測定

6.0.2 揚抗力測定装置の性能評価

円柱をつけた場合の

6.0.3 翼周り流れ構造の数値実験

OpenFOAM を用いて数値実験を行った.

6.0.4 翼の製作

3次元プリンタを用いて実験に供する翼の製作を行った.

6.0.5 2次元 PIV の精度評価

相関平面の平均化処理

サブピクセル補間

6.0.6 ステレオ PIV の精度評価

3次元流れ場を生成し、比較することで精度評価を行う.

謝辞

謝辞を述べる

付録