Homework 1 for Math 2371

Zhen Yao

Problem 1. Let A > 0. Show that

$$A + A^{-1} > 2I$$
.

Proof. Since A > 0, then there exists a unique matrix U such that $A = U\Lambda U^*$, where

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}.$$

and $\lambda_i > 0, 1 \le j \le n$. Then, we have

$$A + A^{-1} - 2I = U\Lambda U^* + U\Lambda^{-1}U^* - 2UIU^*$$

$$= U(\Lambda + \Lambda^{-1} - 2I)U^*$$

$$= U\begin{pmatrix} \lambda_1 + \lambda_1^{-1} - 2 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \lambda_n + \lambda_n^{-1} - 2 \end{pmatrix}U^*$$

$$= U\overline{\Lambda}U^*.$$

and we can use the function $f(x) = x + \frac{1}{x} - 2$ to obtain that if x > 0, then $f(x) \ge 0$. Thus, we can know every diagonal entry of $\overline{\Lambda}$ is greater or equal to 0, which implies $A + A^{-1} - 2I = U\overline{\Lambda}U^* \ge 0$.

Problem 2. Suppose A, B > 0. Show that

$$\det(A+B) \ge 2\sqrt{\det A \det B}.$$

Proof. With inequality $\det(tA + (1-t)B) \ge (\det A)^t (\det B)^{1-t}$, we can substitute A, B by 2A, 2B, which also satisfy 2A, 2B > 0 and choose t = 1/2, then we have

$$\det(A+B) = \det\left(\frac{1}{2}(2A) + \frac{1}{2}(2B)\right)$$

$$\geq (\det 2A)^{\frac{1}{2}}(\det 2B)^{\frac{1}{2}}$$

$$= \sqrt{2^{n+1}}\det A\det B$$

$$= 2^n\sqrt{\det A\det B}$$

$$\geq 2\sqrt{\det A\det B}, \text{ for } n \geq 1.$$

where in the third step we assume A, B are $n \times n$ matrices. Thus the proof is complete. \square

Problem 3. Let A, B be two real positive matrices. Suppose that AB = BA, show that AB > 0.

Proof. Since Ab = BA, we can know that A, B have the same eigensystem, i.e., if x_j is an eigenvector of A corresponding to eigenvalue λ_j , then Bx_j is also an eigenvector of A and x_j is also an eigenvector of B.

Let x_1, \dots, x_n be a basis consisting of eigenvectors of B corresponding to eigenvalues μ_1, \dots, μ_n . Then we have

$$(x_j, ABx_j) = (x_j, A\mu_j x_j) = (x_j, \mu_j Ax_j)$$

also, since A, B > 0, then all $\mu_j > 0$, which imlpies $(x_j, \mu_j A x_j) > 0$ for all x_j . Thus, AB > 0.

Problem 4. Given m positive numbers $r_j, 1 \leq j \leq m$. Show that

$$G = \left(\frac{1}{r_i + r_j + 1}\right)_{m \times m}$$

is positive definite.

Proof. Let $f_j = x^{r_j}, 1 \leq j \leq m$, and we define $(f,g) = \int_0^1 f(x)g(x)dx$, then we have

$$(f_i, f_j) = \int_0^1 x^{r_i} x^{r_j} dx = \frac{1}{r_i + r_j + 1}.$$

Thus, G is a Gram matrix, then G is positive definite.