Section 5.2 Continued

Theorem 5.2.14

A function $f: D \longrightarrow \mathbb{R}$ is continuous on D iff for every open set G in $\mathbb{R} \exists$ an open set H in \mathbb{R} st $H \cap D = f^{-1}(G)$

Proof.

 \longrightarrow

Let: G be an open subset of \mathbb{R}

Assume: f is continuous on D

If $c \in f^{-1}(G)$, then $f(c) \in G$.

Since G is open, \exists a neighborhood V of f(c) such that $v \subset G$

By Theorem 5.2.2(c), \exists a neighborhood U(c) of c, such that

 $f(U(c) \cap D) \subset V$

Now, let $H = \bigcup_{c \in f^{-1}(G)} U(G)$

Since each neighborhood U(c) is open, it follows that H is open and that $H \cap D = f^{-1}(G)$

Let: V be a neighborhood of f(c) since $c \in D$

Since V is an open set, our hypothesis implies that \exists an open set $H \subset \mathbb{R}$ st $H \cap D = f^{-1}(V)$

Since $f(c) \in V$, we have $c \in H$

But, H is an open set, so \exists a neighborhood U of c st U \subset H.

Thus, $f(U \cap D) \subset f(H \cap D) \subset V$

From Theorem 5.2.2, f is continuous on D.

Corollary 5.2.15

A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous iff $f^{-1}(G)$ is open in \mathbb{R} whenever G is open in \mathbb{R}

Example 5.2.16

Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f(x) = \{x \text{ if } x \leq 2, 4 \text{ if } x > 2\}$ If G = (1, 3), then $f^{-1}(G) = (1, 2]$

Section 5.3: Properties of Continuous Functions

Definition 5.3.1: Boundedness of Function

A function $f: D \longrightarrow \mathbb{R}$ is said to be bounded if the range f(D) is a bounded subset of \mathbb{R} (i.e. f is bounded if there exists $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in D$).

Note: A continuous function may not be bounded even when the domain is bounded.

Theorem 5.3.2

If $D \subset \mathbb{R}$ is compact and $f: D \longrightarrow \mathbb{R}$ is continuous, then f(D) is compact

Proof.

Let: $J = \{G_{\alpha}\}$ be an open cover of f(D)

Want to show: J has a finite subcover.

Since f is continuous on D,

Theorem 5.2.14 implies that for each open set G_{α} in J, \exists an open set H_{α} st $H_{\alpha} \cap D = f^{-1}(G_{\alpha})$

Moreover, since $f(D) \subset \bigcup G_{\alpha}$,

it follows that $D \subset \bigcup f^{-1}(G_{\alpha}) \subset \bigcup H_{\alpha}$,

Thus, the collection $\{H_{\alpha}\}$ is an open cover of D.

Since D is compact, \exists finitely many sets H_{α_1} , H_{α_2} , ... H_{α_n} such that

 $D \subset H_{\alpha_1} \cup H_{\alpha_2} \dots H_{\alpha_n}$

But then $D \subset (H_{\alpha_1} \cap D) \cup (H_{\alpha_2} \cap D) \dots (H_{\alpha_n} \cap D)$

 $f(D) \subset G_{\alpha_1} \cup G_{\alpha_2} \dots G_{\alpha_n}$

Therefore,

 $\{G_{\alpha_1}, \dots G_{\alpha_n}\}$ is a finite subcover of J for f(D)

Therefore, f(D) is compact.

Corollary 5.3.5

Let: $D \subset \mathbb{R}$ be compact

 $f: D \longrightarrow \mathbb{R}$ is continuous implies f assumes min and max values on D.

That is to say: \exists points $x_1, x_2 \in D$ such that $f(x_1) \leq f(x) \leq f(x_2) \ \forall \ x \in D$

Proof.

By Theorem 5.3.2, f(D) is compact.

From Lemma 3.5.4, f(D) has both a minimum, y_1 , and a maximum, y_2 .

Since $y_1, y_2 \in f(D)$, there exists $x_1, x_2 \in D$ st $f(x_1) = y_1$ and $f(x_2) = y_2$

Thus,

 $f(x_1) \leq f(x) \leq f(x_2) \ \forall \ x \in D$

Lemma 5.3.5

Let: $f:[a,b] \longrightarrow \mathbb{R}$ be continuous

 $f(a) < 0 < f(b) \ \Rightarrow \exists \ c \in (a, \, b) \ st \ f(c) = 0$

Proof.

Let: $c = \max\{x : f(x) \le 0\}$ and $S = \{x \in [a, b] : f(x) \le 0\}$

Since $a \in S$, S is nonempty.

Notice that S is bounded above by b, so c = sup S exists as a real number in [a, b]

Want to show: f(c) = 0

Suppose: f(c) < 0

Then \exists a neighborhood U of c such that f(x) < 0 for all $x \in U \cap [a, b]$

(This comes from Exercise 5.2.13)

Now $c \neq b$, since f(c) < 0 < f(b)

Thus, U contains an in between point p st c

But f(p) < 0 since $p \in U$

Therefore, $p \in S$

This contradicts c being an upper bound for S.

Suppose: f(c) > 0

Similarly,

If f(c) > 0, then \exists a neighborhood U of c such that f(x) > 0 for all $x \in U \cap [a, b]$

Now, $c \neq a$, since f(c) > 0 > f(a)

Thus, U contains a point p st a

Since $f(x) > 0 \ \forall \ x \in U$, no points of S are in [p, c]

That is to say, p is an upper bound for S.

This contradicts c being the least upper bound (supremum) of S.

Hence, f(c) = 0

Since f(a) < 0 < f(b) and f(c) = 0,

 $\exists c \in (a, b)$

Theorem 5.3.6 - Intermediate Value Theorem

Assume: $f : [a, b] \longrightarrow \mathbb{R}$ is continuous

Then f has the intermediate value property on [a, b].

That is, if k is any value between f(a) and f(b),

i.e.
$$f(a) < k < f(b)$$
 or $f(b) < k < f(a)$,

then $\exists c \in (a, b) \text{ st } f(c) = k$

Proof.

Let: k be between f(a) and f(b)

If f(a) < f(b), from Lemma 5.3.5, consider the continuous function:

 $g: [a, b] \longrightarrow \mathbb{R}$ given by g(x) = f(x) - k

Then,

$$g(a) = f(a) - k < 0$$

and

$$g(b) = f(b) - k > 0$$

From Lemma 5.3.5, $\exists c \in (a, b)$

st

$$g(c) = 0 = f(c) - k \Rightarrow f(c) = k$$

Similarly, we can prove when f(a) > f(b)

Exercise 5.3.7

Using the intermediate value theorem, we can show that every positive number has a positive nth root.

Assume: $k > 0, n \in \mathbb{N}$

Let: $f(x) = x^n$

Notice that f(0) = 0 < k

if b = k + 1, then from Bernolli's inequality (Exercise 3.1.24),

$$b^n = (k+1)^n \ge 1 + kn > k$$

$$f(b) = b^n = (k+1)^n > 1 + kn > k$$

Since f is continuous,

 $\exists c \in (0, b) \text{ st } f(c) = k = c^n, \text{ where } c \text{ is the nth root of } k$

Theorem 5.3.10

Let: I be a compact interval

Assume: $f: I \longrightarrow \mathbb{R}$ is a continuous function

Then, the set f(I) is a compact interval.

Proof.

From Corollary 5.3.3,

 $\exists x_1, x_2 \in I \text{ st } f(x_1) \leq f(x) \leq f(x_2), \text{ for all } x \in I$

Let: $m_1 = f(x_1), m_2 = f(x_2), \text{ and } f(I) \subset \subset [m_1, m_2]$

If $m_1 = m_2$, then $f(I) = \{m_1\} = [m_1, m_2]$, and we're done.

If $m_1 < m_2$ and $k \in (m_1, m_2)$, then by Theorem 5.3.6, we have

 $k = f(c), c \in (x_1, x_2) \text{ and } (m_1, m_2) \subset f(I).$

 $m_1, m_2 \in f(I), [m_1, m_2] \subset f(I), f(I)$ is the compact interval $[m_1, m_2]$, and we are done.