Organizational structure and the aggregation of individual-level beliefs

Felipe Csaszar
U. of Michigan – Strategy Department

Organization Science Winter Conference February 8, 2013

What is information aggregation

 Anytime N individual-level opinions are converted into one organization-level decision

- Consistent with central concepts of the Carnegie tradition
 - Organizations as information processing devices
 - Organizational structure as
 who reports to whom + process used to make decisions

Why information aggregation is relevant

- Information aggregation is pervasive:
 - TMTs, boards of directors, partners in a VC fund
- Particularly pervasive in strategic decision-making:
 - The more relevant a decision, the more likely that that decision will not be made by a single individual
- Allows to compare the performance of very different organizational structures:
 - Hierarchies, Committees, Markets, Individuals
- Sheds light on important open questions:
 - Rumelt, Schendel, and Teece (1994:42): one fundamental question of strategy is how firms make decisions
 - Finkelstein, Hambrick, and Cannella (2009:115): there is a huge gulf between executive characteristics and organizational outcomes

"How organizational structure can compensate for flawed mental representations"

I am not an expert in either Marketing or Engineering. What should I do?

- Do what the most relevant VP is telling me? (**Delegation**)
- Approve only if both agree? (Unanimity)
- Average their opinions? (Averaging)

This project will be a **great success**

This project will be a moderate failure

Research questions

1. Which decision-making structure is most appropriate for which environment?

- 2. Are there situations where a structure employing individuals with flawed mental representations can perform as well as an individual with a correct mental representation?
- 3. The opposite: Are there situations where the only way to achieve high performance is by relying on individuals with the correct mental representation?

Egon Brunswik

Model

1 Environment

Projects
(that have characteristics)

 (x_1)

 $\left(x_{2}\right)$

(munificence) (dominance) (complexity) (uncertainty)

4 Structures (that aggregate opinions)

5 Organizational Performance

Delegation: approve if $(D < 0 \text{ and } \hat{y}_A > 0)$ or if $(D \ge 0 \text{ and } \hat{y}_B > 0)$

Unanimity: approve if $\hat{y}_A > 0$ and $\hat{y}_B > 0$

Averaging: approve if $(\hat{y}_A + \hat{y}_B)/2 > 0$

(that have mental representations and have opinions about the projects)

$$y^A = \beta_0^A + \beta_1^A x_1 + \varepsilon$$

$$y^B = \beta_0^B + \beta_2^B x_2 + \varepsilon$$

Individuals estimate their mental representation based on the N projects they have seen in the past (N = experience)

Average quality of approved projects under a given structure s in a given environment (M,D,K,U) employing individuals with experience N

$$\pi_s(M,D,K,U,N) = \frac{\sum y}{\# \text{ of screened projects}}$$

What is the best performing structure as a function of the environment

Complex interactions, non-trivial results

What is the underlying mechanism: matching environments to structures

The environment's parameters (M,D,K,U) affect the location of good and bad projects in "project space"

Delegation

A structure defines the shape of a project selection area

Unanimity

Performance depends on choosing the structure that makes the least errors in a given environment

Best structure	Delegation	Unanimity		Averaging		Generalist
Archetypal project space	One dimensional	Mostly	Rectangular	Mostly positive	Diagonal	Disjointed
Environmental conditions leading to such a project space	• High D and Low U and Low/Med K	Low M and High U	• High $ D $ and Low U and High K and Low M	ullet High M and High U	 High D and Low U and High K and High M Low D and Low U (unless High K and Med M) 	• Low U and High K and Med M

When do generalists add value?

Generalist: individual with the right mental representation, $y^G = \beta_0^G + \beta_1^G x_1 + \beta_2^G x_2 + \beta_3^G x_1 x_2 + \varepsilon$

Conclusions

- 1. There are some non-trivial interactions between the environment, decision-making structure, and mental representations
- In many cases, structures can fully compensate for flawed mental representations
- 3. In some cases (low *U*, high *K*, and medium *M*) only generalists can achieve high performance
- 4. Information aggregation is a promising and underexplored research avenue