পাওয়ার কেবল সংস্থাপন-পদাত (INSTALLATION OF POWER CABLE)

ঋতব্রত সান্যাল

পাওয়ার কেবল সংস্থাপন-পদ্ধতি

(INSTALLATION PRACTICE OF POWER CABLE)

ভীঋতত্রত সান্যাল, বি. এস-সি., এম. আই. ই.
চাটার্ড ইঞ্জিনিয়ার; ভিজিটিং লেকচারার, ক্যালকাটা টেকনিক্যাল স্থল।

অশোক পুস্তকালয় প্রকাশক ও পুস্তক-বিক্রেডা

্ ৬৪, মহাত্মা গান্ধী রোড, কলিকাতা-৭০০ ০০১ প্রকাশক:

শী**অশোক কুমার বারিক**,

শুণ, মহাত্মা গান্ধী রোড,

কলিকাতা-৭০০ ০০৯ (

O Srimati Sujata Sanyal

প্রথম সংস্করণ: দেপ্টেম্বর: ১৯৭৯

Ace No- 16400

মালাঃ প'চিশ টাকা মাত।

মৃত্তক:
শ্রীজনিলকুমার ঘোষ,
শ্রীহরি প্রেস,
১৩ং/এ, মৃক্তারামবাবু স্ত্রীট,
কলিকাতা-৭০০ ০০৭।

উৎসর্গ **অগ্রন্ধ গ্রীদেবব্রত সাত্যালের** করকম**লে ঋতত্রত**

ভূমিকা

মাতৃভাষায় বিজ্ঞান ও প্রযুক্তি-বিভা শিক্ষার ক্রমবর্ধমান প্রশাবের দক্ষে শক্ষে এই দব বিষয়ের প্রস্থের অপ্রতুলতা বিশেষভাবে অস্থৃত হচ্ছে। আশা করি, এই সংযোজন প্রযুক্তি-বিভার বিশেষ একটি শাখার দক্ষে যুক্ত কর্মীদের দৃষ্টি আকর্ষণ ও উৎস্কা সৃষ্টি করবে।

ইলেকট্রকাল ইঞ্জিনিয়ারিং-এর কয়েকটি শাখার উপর বাংলা ভাষার পৃত্তক রচনা করা হলেও, খুব সম্ভবতঃ আগুার-গ্রাউণ্ড কেবলের সংস্থাপন পদ্ধতি, স্থাপনোত্তর পরীক্ষা ও ক্রটি নিরূপনের ব্যবহারিক খুঁটিনাটির বিষয় কোন একটি প্রস্তে আলোচনা করা হয় নাই। স্তরাং, সে দিক দিয়ে এই পৃস্তক বিশেষ বৈশিষ্ট্য দাবি করতে পারে।

ভারতে বিহাতের চাহিদা বৃদ্ধির সঙ্গে দক্ষে বিহাৎ সরবরাহ ও বন্টন ব্যবস্থায় কেবলের ব্যবহার উত্তরোত্তর বৃদ্ধি পাচ্ছে। আগুর গ্রাউণ্ড কেবল-ব্যবস্থার সাফল্য নির্ভর করে কেবল সংস্থাপনার কাজ স্ফুট্ভাবে সম্পন্ন করার উপর; একাজ দক্ষ কর্মী ভিন্ন সম্ভব নয়।

দাধারণতঃ কেবল সংস্থাপনার কাজের সঙ্গে যুক্ত কর্মীরা কাজের ব্যবহারিক জ্ঞান এবং দক্ষতা শিক্ষানবীশ থাকার সময় কাজের মাধ্যমে অর্জন করেন। এই গ্রন্থ কেবলের কাজে নিযুক্ত কর্মীদের অর্জিত কারিগরি নৈপুণ্যের স্কুরণ ঘটাতে দাহায্য করবে। আশা করা যায় যে, উপরি উক্ত কাজের দক্ষে যুক্ত ইঞ্জনিয়ার ও স্থারভাইজারগণ এই পুস্তক পাঠ করে লাভবান হবেন।

প্রযুক্তি-বিভার উপযুক্ত পরিভাষার অভাব বাংলা ভাষায় প্রস্থ রচনার একটি প্রধান অন্তরায়। এই বাধা সময় সময় ইংরাজি পরিভাষিক শব্দের ভাষান্তর ঘটিয়ে কথনও বা ইংরাজি পরিভাষিক শব্দকে অবিকৃত রেথে বা ইংরাজি ও বাংলা শব্দের মিশ্রণ করে অতিক্রম করার চেষ্টা করা হয়েছে। এই প্রয়াস কতটা কলপ্রস্থ হয়েছে দে বিচারের ভার পাঠকের উপর।

এই পুস্তক রচনার কাজে আমাকে যাঁরা উৎসাহ দিয়েছেন ও নানা ভাবে সাহায্যে করেছেন, তাঁদের সকলকে ও পশ্চিমবঙ্গ সরকারের মুখ্য বৈহাতিক পরিদর্শক শ্রশঙ্কর কুমার কুণ্ডুকে তাঁর অকুণ্ঠ সহযোগিতার জন্ম আমার আন্তরিক ধন্তবাদ ও কৃতজ্ঞতা জানাচ্ছি।

> ইতি— গ্রন্থকার

সূচীপত্ৰ

ीं कि विवय	
্টিল লি বিষয় আৰু ভর্মাল চ্যাভল্টান বিষয় অধ্যাত ত প্রথম ক্ষমাম ও	शृष्ठ
िक विकास के दिवल का	HE 1-11
विशिद्ध विश्वास के विश्वाद वहरान की जा	
विश्वास विश्वास : (क्वन स्थापतित अध-अविक्रमा	28-7.
চতুর্থ অধ্যার ঃ কেবল স্থাপনের স্বাস্তি প্রতি	76-55
পঞ্জয় জাধ্যার ঃ কেবল স্থাপনের সরাসরি পদ্ধতি	20-80
পঞ্চম অধ্যার ঃ কেবল সংযোজনের প্রয়োজনী উপাদান ও হ	ান্ত্ৰা দি
	88- 63
येष्ठ व्यस्ताञ्च । मः योजन	
লপ্তম অধ্যায়ঃ কেবলের প্রান্তীয় বিস্তাস	60-36
অষ্টম অধ্যায়ঃ পি. ভি. ডি. কেবলের সংযোজন	20-775
नवस कारोज ः	250-704
বিশ্বাস ত কেবল সংস্থাপন ও সংযোজনের পূর্ববভী	
প্র্যায়ের প্রীক্ষা	301-100
দশম অধ্যায়ঃ কেবল ফণ্টের স্থান নিরূপণ	1100 101
SETS SOR EVER SERVICE VILLA	307-380

प्रदेश स्थापन को साथा राज्य नवार अधिक प्रदेश को हैं स्थापित के स्थापन को हैं स्थापित के स्थापन को के स्थापित के स्थापन को स्थापित के स्थापन को स्थापन के स्

gan sleak an this will bish slate it also sirk egos

the term a manning state giving states a man areas as a series of the se

वारणाणाः करतरक्तः जीवन्तं नकतरकः व नीवन्तं का तदकारम् कृता देश्याप्ति । पात्रकार्यः सन्तवः तृत्राम् कृत्युरः वैरह्म क्षत्रके नद्याणिताः वक्षः वांबादः व्यावनिक

रशहात क करकार। सामाहित।

প্রথম অধ্যায়

কেবল (CABLE)

কেবল (Cable) । ভূনিমুখ কেবল সাধারণতঃ আচ্ছাদনমুক্ত (sheathed) হয়। এই ধরনের কেবলের প্রয়োজনীয় অংশের প্রধান প্রধান বৈশিষ্ট্য সংক্ষেপে নিচে আলোচনা করা হল।

পরিবাহক (Conductor) ঃ পাওয়ার কেবলে গুছাকারে প্রথিত তামা বা আালুমিনিয়ামের পরিবাহক ব্যবহৃত হয়। পরিবাহক গুছাকার (stranded)-এ থাকার ফলে কেবলের আহৃতি অহুর্যায়ী একটা পরিবাহকে 7, 19, 37, 61 বা 91 তার থাকতে পারে। একটা 7-তার-বিশিষ্ট পরিবাহকের কেন্দ্রে থাকে 1-টি তার, আর কেন্দ্রের চারদিকে 6-টি তার থাকে। অনুরূপভাবে 19-তার বিশিষ্ট পরিবাহকের কেন্দ্র থাকে 1-টি তার আর কেন্দ্রকে ঘিরে চক্রাকারে থাকে 6-টি তার পরিশেষে আরও 12-টি তার তাকে ঘিরে থাকে। একাধিক স্তর-বিশিষ্ট গোলাকার পরিবাহকে স্তরের তার বিপরীত-ক্রমে বিশ্রস্ত থাকে। এর ফলে কেবল বাঁকানোর সময় তারে 'জাফ্ রি' (bird-cage) তৈরি হয় না।

যদিও পরিবাহক-হিনাবে আাল্মিনিয়ামের উপযোগিতার কথা প্রযুক্তিবিদ্দের আজানা ছিল না, তবু পূর্বে কেবল তৈরির কাজে কেবলমাত্র
ভামা ব্যবহৃত হত। উন্নততর সংযোজন-পদ্ধতি(jointing)-র কথা তাঁরা
1950 প্রীষ্টান্দের পর জানতে পারেন। ভারতে সম্প্রতি তামার বদলে
জ্যালুমিনিয়ামেই পাওয়ার কেবল তৈরি হচ্ছে। অবশ্য, থনি-অঞ্চলে এখনও
ভামাই পরিবাহক হিনাবে ব্যবহার করা হয়।

গুচ্ছাকারে গ্রথিত পরিবাহক সাধারণতঃ গোলাকৃতি হয়। কিন্তু বহুসংখ্যক কোরবিশিষ্ট বৃহদাকৃতি কেবলে ডিম্বাকৃতি পরিবাহক ব্যবহার করা হয়। পরিবাহকের এই বিশেষ আকার কেবলের পরিবাহক ও ইন্স্থ্যলেশানে মধ্যে অধিকতর দৃচসংবদ্ধ ব্যবস্থায় থাকে এবং সামগ্রিক আয়তনকে কমিয়ে দেয়।

পরিবাহক আর্জ-করণ (Conductor screening)ঃ 11KV-র চেয়ে উচ্চ শক্তিসম্পন্ন কেবলের পরিবাহকের উপরে ছই অথবা তিন স্তর আংশিক-পরিবাহী ফিতা কুণ্ডলাকারে জড়ান হয়। এই ফিতা ব্যবহারের ফলে পরিবাহকের উপরিভাগ মস্থ হয় এবং ফলতঃ, পরিবাহকের চারদিকে কোর ইনস্থালেশানের উপর ইলেক্ট্রোস্ট্যাটিক (electrostatic) চাপ কমে যায়। ইশ্স্যবেশানের উপাদান (Insulating materials)ঃ পাওয়ার কেবলে একাধিক পরিবাহক পরস্পর ও আচ্ছাদক আবরণ থেকে আলাদা করা থাকে। ইনস্থালেশান পরস্পরের মধ্যে সম্পর্ক ঘটতে দেয় না ও বিছ্যতের ক্ষরণ (Ieakage) রোধ করে।

আজকাল নিমের উপাদান কেবল ইন্স্যলেশানে ব্যাপক ব্যবস্ত হয় :

- 1. গন্ধকসংযুক্ত রবার (Vulcanized Rubber);
- 2. বাণিশ করা স্থৃতি-কিতা (Varnished Cambric) ;
- 3. ভৈলসিক্ত কাগজের ফিডা (Impregnate i Paper);
- 4. পি. ভি. সি. যৌগ (P. V. C)।

পাওয়ার কেবলের ইন্স্থালেশন উপাদানে নিম্নের গুণ থাকা আবশ্যক :

- 1. উচ্চ শক্তিসম্পন্ন ইন্স্যুলেশান ক্ষমতা থাকা;
- 2. উচ্চমানের ডাইলেক্ট্রিক শক্তিসম্পন্ন হওয়া;
- 3. শক্ত ও ভাল যান্ত্ৰিক শক্তিদম্পন্ন হওয়া;
- 4. অধিক ক্ষার ও এ্যাসিড প্রতিরোধ ক্ষমতা;
- 5. তাপ পরিবর্তনেও ইন্স্যুলেশানের মান বজায় থাকা;
- 6. दिनी मामी ना इख्या ;
- 7. পদ্ধতিগত কোন জটিলতা না থাকা।

গন্ধকসংযুক্ত রবার (Vulcanized rubber) ঃ বিশুদ্ধ প্রাকৃতিক ব্বার কেবল ইন্স্যলেশানের কাজে ব্যবহার করা হয় না। কারণ, এর আর্দ্রতা শোষণ করার সহজ প্রবণতা।

দেইজন্ম, প্রাকৃতিক রবার ব্যবহারের আগে একে আর্দ্রতা-প্রতিরোধক করতে হয় এবং যান্ত্রিক ক্ষমতা ও তাপ প্রতিরোধ ক্ষমতাকে বাড়াতে, গন্ধকজাতীয় খনিজ পদার্থের সঙ্গে মিশিয়ে যৌগ প্রস্তুত করে নেওয়া হয়। এই যৌগ প্রস্তুত করার প্রণালীকে ভাল্ক্যানাইজ করা (Vulcanising) বলে এবং উৎপন্ন জিনিষটিকে ভাল্ক্যানাইজ রবার বলে। ভাল্ক্যানাইজ রবারের মধ্যে গন্ধক থাকায়, তামার তৈরী পরিবাহকে এই ধরনের ইন্স্যালেশান ব্যবহারের আগে তামার দঙ্গে গন্ধকের বিক্রিয়া যাতে না ঘটে এবং রবারের উপর অক্সিজেনের ক্রিয়ায় জারণ (oxidation) যাতে না হয়, দেইজন্ম শরিবাহকের উপর টিনের প্রলেপ লাগিয়ে দেওয়া হয়। ভাল্ক্যানাইজ-রবার

কেবল ৩

ইন্স্যালেটেড কেবল খুবই নমনীয় ও আর্ত্র-প্রতিরোধক। 🖁তবৃও, এর ব্যবহার গৃহ ও শিল্পসংস্থাতেই সীমাবদ্ধ।

বার্ণিশ-কর। স্থৃতিফিতা (Varnished cambric tape) ঃ খুব মিহি স্থৃতিকাপড় জারিত (oxidised) তেলে ড্বিন্নে বার্নিশ করা স্থৃতিকিতা তৈরি করা হয়। যে মানের ইন্স্থালেশানের প্রয়োজন, তার জন্ম যতগুলো স্তর্ম দরকার, এই ফিতা পরিবাহকের উপর কুণ্ডলাকারে জড়িয়ে তা তৈরি করা হয়। ইন্স্থালেশানের তুটো স্তরের মধ্যে একজাতীয় তৈলাক্ত যৌগ পিচ্ছিল-কারক পদার্থ হিসাবে ব্যবহার করা হয়। বার্নিশযুক্ত স্থৃতিফিতায় তৈরি কেবল স্থাপনের সময় যে যান্ত্রিক চাপ স্থৃষ্টি হয়, তা বার্নিশ ইনস্থালেটেডা কেবল সন্থ করতে সক্ষম এবং ইহা রবার-ইন্স্থালেটেড কেবলের চেয়ে বেশী তাপমাত্রায় সন্তোমজনক কাজ করে। এই ধরণের ইন্স্থালেশান সালফিউরিক আানিড দ্বারা ক্ষতিগ্রস্ত হয় না আর বাস্তবিকই ইহা জল-প্রতিরোধক। ব্যাটারি, ফ্রান্স্করমার, জেনেরেটার প্রভৃতি যন্তের সংযোজনে এই জাতীর ফিতার সাহায্যে প্রস্তুত কেবল ব্যবহৃত হয়ে থাকে।

তৈল সিক্ত কাগজের ফিতা (Impregnated paper tape) ঃ স্থামিত, মূল্যের স্বল্লতা, উন্নত তাপ পরিবহন-ক্ষমতা, অনুক্ল বৈত্যতিক বৈশিষ্ট ও দর্বোপরি অধিকতর তাপ-দহন-ক্ষমতার জন্ম পাওয়ার কেবলের ইন্স্থালে-শানের উপাদান হিদাবে কাগজই বিশেষ উপযুক্ত। 0°1 বা 0°2 মি. মি. পুক্ কাগজের ফিতা নিযুঁতভাবে পরিবাহকের উপর কুওলাকারে জড়িয়ে দেওয়া হয়। এই উদ্দেশ্যে যে কাগজ ব্যবহার করা হয়, তা আঠালো খনিজ তেলে বা রেদিন যোগে ভূবিয়ে নেওয়া হয়। এর ফলে বৈত্যতিক শক্তি বেড়ে 3-5ঃ KV/মি. মি থেকে 40-48 KV/মি.মি. হয়। সাধারণ তাপমাত্রায় উল্লিখিত যোগগুলির মধ্যে যদিও স্থান পরিবর্তনের কোন প্রবর্তন করে। তাই, খাদে ব্যবহৃত কেবলের কোর ইন্স্থালেশান প্রবাহ প্রতিরোধী যৌগ (non-draining compound)-এ ভূবিয়ে নেওয়া হয়।

কাগজ আর্দ্রতাশোষক বলে কোর ইন্স্যুলেশানে আর্দ্রতা প্রবেশ একটা দীসা বা দীসার এলয় বা অ্যাল্মিনিয়মের আচ্ছাদন দিয়ে প্রতিরোধ করা হয়। কোনও কোনও রকমের পেপার ইন্স্যুলেটেড্ কেবলের কোর ইনস্থানেশানের উপর PVC-র আচ্ছাদন দেওয়া হয়। শি. ভি. সি.(P.V.C.): সম্প্রতিকালে কেবলশিল্পে, নিম্নলিখিত বিশেষ ভাগ থাকায়, কেবল ইন্স্থালেশানের উপাদান-হিসাবে থার্মোপ্ল্যাষ্টিক (thermoplastic) যৌগের বছল ব্যবহার হচ্ছে; কারণ ইহা—

- 1. আর্দ্রতা শোষক নয়;
- বৈছ্যাতিক ও রাসায়নিক ক্ষয় প্রাভরোধ করে ;
- 3. কম্পন (vibration) প্রতিরোধ করে;
- শক্ত ও টে কসই হয় ;
- 5. পরিবর্তনশীল নয়;
- 6. অগ্নি-সহ হয় ;

কেবল ইন্স্যুলেশানের জন্ম যে পি. ভি. সি. ব্যবহার করা হয়, সেই থার্মো-প্ল্যাসটিক যোগের প্রধান উপাদান পলি ভিনাইল ক্লোরাইড। অল্প তাপে অনমনীয়তা ও ভঙ্গুরতার জন্ম এই বিশেষ উদ্দেশ্যে ব্যবহারের পক্ষে যোগ বিশুদ্ধ আকারে উপযোগী নয়। কেবল-শিল্পের ব্যাপক চাহিদা মেটাবার জন্য বিশেষ মিশ্রণের পি. ভি. সি. প্রস্তুত করা হয়েছে।

পি. ভি. সি রবার ইন্স্থালেশানের একটা ভাল বিকল্প। এই কাজে অবিচ্ছিন্ন আবরণ (seam free)-এ ইহা প্রয়োগ করা হয়।

কেবল ইন্স্যলেশনের জন্য সাধারণতঃ তুরকমের যৌগ ব্যবহৃত হয়। একটা পরিবাহক ইন্স্যলেশানের জন্ম ও অপরটি আচ্চাদনের জন্ম। এই ত্'রকমের পি. ভি. দি যৌগের গঠন ও ধর্ম বিভিন্ন। পরিবাহক ইন্স্যলেশানের জন্ম ব্যবহৃত যৌগ মৃথ্যতঃ উন্নতমানের ক্ষরণ প্রতিরোধ শক্তিমম্পন্ন হয়। অপর পক্ষে, আচ্চাদনের জন্ম ব্যবহৃত যৌগ শক্ত, আর্দ্র তা-প্রতিরোধক এবং বৈত্যতিক ও রাসায়নিক ক্ষয় প্রতিরোধক হয়।

অবশ্র, কোনও কোনও প্রস্তুতকারক পরিরাহক-ইন্স্থালেশান্ ও আচ্ছাদনের জন্ম একই পি. ভি. সি যৌগ ব্যবহার করেন।

আজকাল তাপ প্রতিরোধক পি. ভি. সি. যোগ তৈরি হচ্ছে। এই ধরশের পি. ভি. সি. কেবল তাপজনিত বিক্বতির সম্ভাবনাকে স্থনিশ্চিতভাবে প্রতিরোধ করে এবং চল্তি পি. ভি. সি ইনস্থালেটেড্ কেবলের চেয়ে উচ্চমানের ক্ষরণ-প্রতিরোধ শক্তি সম্পন্ন হয়।

আর্ত-করণ (Screening): 11 KV.-র চেয়ে বেশী ভোল্টেজের কেবলে কোর ইন্স্যলেশানের উপর ইলেক্ট্রোস্ট্যাটিক চাপ সর্বতোভাবে আলোক-রশ্বি-অনুগ (radial) নয়। এরূপ সমস্ত কেবলের উপর স্পর্শকান্থগ (tangential) চাপ ও ক্রিয়া করে। এর ফলে বহিঃ নিজ্ঞাস্ত বিহাৎপ্রবাহ নিকটস্থ অঞ্চল উত্তথ্য করে। ফলতঃ, তৈলসিক্ত কাগজের ইন্স্থালেশান পুড়ে কাল হয়ে যায়।

তিনটি কোরযুক্ত কেবলের প্রত্যেক কোরকে পৃথকভাবে আবরণ দিয়ে কোর ইন্স্থালেশানের উপর স্পর্শান্থপ চাপের প্রভাব কার্যকরীভাবে নিয়্ত্রিত করা ষায়। এই আবরণ লোহ ছাড়া অন্ত ধাতুর কিতা দিয়ে বা ধাতুর প্রলেপযুক্ত কাগজ বা কার্যন পেপার দিয়ে দেওয়া যায়। কোর ইন্স্থালেশানের উপর এই আবরণ এমনভাবে দেওয়া হয় যে, ধাতব আচ্ছাদনের সঙ্গে সর্বদাই বৈছাতিক সংযোগে থাকে। যেহেতু আবরণটি এবং ধাতব আচ্ছাদন উভয়ই আর্থ-বিভব (earth potential)-এ থাকে, সেজন্ত ইলেক্ট্রোস্ট্যাটিক চাপ সম্পূর্ণভাবে আলোক-রশ্বি-অমুগ (radial) হয়ে যায়। এই কোর আবৃত করণের কলে কোর-কন্ট ও ভাই-ইলেক্ট্রিক অপচয় খুব কমে যায়।

আচ্ছাদন (Sheath): তৈলসিক্ত কাগজের ইন্স্থালেশানের উপর দিয়ে একেবারে ঠিক মাপের ধাতব আচ্ছাদন ঠেলে বসিয়ে দেওয়া হয়। এই আচ্ছাদন শুধু যে কোর ইনস্থালেশনকে বন্ধ রাথে তাই নয়, যান্ত্রিক ক্ষয়-ক্ষতি থেকে রক্ষাও করে। আচ্ছাদনের জন্ত দীসা, সীসার এলয় বা আাল্মিনিয়াম ব্যবহৃত হয়। দীসা নমনীয় ও ক্ষয় প্রতিরোধক বলে বিশেষ করে ভূনিয়স্থ কেবলে ইহার ব্যবহার ব্যাপক। দীসা যথন বিশুদ্ধ আকারে থাকে, তখন তার যান্ত্রিক শক্তি ও কম্পান-প্রতিরোধ ক্ষমতা খ্ব কম হয়। টিন বা এক্টিমনিজাতীয় এলয় দংমিশ্রণে দীসার এই প্রতিকূল ধর্ম দ্র করা যায়। ভারতে দীসা ও দীসার এলয় পেপার ইনস্থালেটেড্ কেবলের আচ্ছাদন ব্যাপকভাবে ব্যবহৃত হচ্ছে। তার গঠন ও প্রয়োগ নিচে দেওয়া হল:

109	
দীদা (99.8% বিশুদ্ধি)।	বৰ্মযুক্ত কেবলে ব্যবহৃত হয়।
সীসাৰ এলম্ব—0'4% টিন,	
0.2% এন্টিমনি ও দীদা অবশিষ্টাংশ	সাধারণ ব্যবহারের জন্ম।
(जड़िकार)।	
দীসাৰ এলয় 0'85% এন্টিমনি সীসা	দেতুর উপরে, পথের মোড়ে বা রেল-
অবশিষ্টাংশ (অশুদ্ধিদহ)।	পথের কাছে যেথানে কম্পনান্ধ বেশী,
一門的什么知识,但是如此,如此代明	দেখানে ব্যবহৃত হয়।

442

প্রয়োগ

আচ্ছাদনের উপাদান হিসাবে আালুমিনিয়াম কতকগুলো অনুকূল বৈশিষ্ট্যের জন্ম দীসার একটা উত্তম বিকল্প। আালুমিনিয়াম অধিকতর যান্ত্রিক শক্তি সম্পন্ন, কম্পন প্রতিরোধের ক্ষমতাও বেশী এবং ওজনে হালা। তাছাড়াও, দীসার চেয়ে এর দাম কম। কিন্তু আর্দ্র তার সংস্পর্শে এলে আালুমিনিয়াম ক্ষয়ে যায়। দেজন্ম, মাটির নীচে আালুমিনিয়াম আচ্ছাদিত কেবল ব্যবহার করার সময় ভারী বহিরাবরণ দিয়ে আর্দ্র তা প্রবেশের হাত থেকে রক্ষা করা হয়।

সংরক্ষক আবরণ (Protective covering): কেবলের উপরের সীসা বা সীসার এলয়ের আচ্ছাদনের উপর গদী, বর্ম ও প্রচ্ছদ দিয়ে ব্যবহারের উপযোগী সংরক্ষক-আবরণ তৈরি হয়।

গদী (Bedding): ভিতরের গদীর জন্ম উপকরণ হিসাবে কাগজ,
তুলো, পাটের ফিতে ও কয়লাঘটিত যৌগ (bitumen compound) ব্যাপক
ব্যবহৃত হয়। সাধারণভাবে কয়লাঘটিত যৌগযুক্ত কাপড়ের ফিতা কেবল
আচ্ছাদনের উপর কুওলাকারে জড়ানো হয়।

কোনও কোনও কেবল প্রস্তুতকারক কেবল আচ্ছাদনের উপর বিছানো গদী (lapped bedding) পছল করেন। এই ধরনের গদী তৈরি হয় কেবল আচ্ছাদনের উপর তুই স্তর কাগজের ফিতা জড়িয়ে তার উপর একটা যোগের স্তর বিছিয়ে। আরও তুই-এক স্তর স্থতাজাত দ্রবোর স্তর দিয়ে গদী তৈরির কাজ সম্পূর্ণ হয়। সাধারণভাবে এই গদী 1°5 মি.মি. পুরু হয়।

বিশেষ বিশেষ ক্ষেত্রে, যেখানে রাসায়নিক ক্ষয় প্রতিরোধের প্রশ্ন আছে, সেখানে কেবল আচ্ছাদনের উপর পি. ভি. সি-র বহিরাবরণ দেওয়া হয়।

বর্ম (Armour) ঃ সংস্থাপনের সময় ও পরবর্তীকালে মেরামতীর সময় যান্ত্রিক ক্ষতির সম্ভাবনা থেকে কেবলকে রক্ষা করার জন্ম স্থীলের তৈরি ফিতা কিংবা তারের বর্ম ব্যাপকভাবে ব্যবস্থাত হয়।

করলাজাত যৌগ (bitumen) স্থীলের ফিতার উপর 0.8 থেকে 1 মি.মি.
পুরু করে মাথিয়ে নিয়ে গদীর উপরে ছই স্তরে কুণ্ডলাকারে জড়িয়ে দেওয়া
হয়। ফিতার প্রস্তের এক তৃতীয়াংশ বা এক চতুর্থাংশ ফাঁক রেখে প্রথম স্তরে
কিতা জড়ান হয়। ফিতার দ্বিতীয় স্তর প্রথম স্তরের ফাঁকের উপর জড়ান
হয়। যদিও, এই ধরণের বর্ম যান্ত্রিক ক্ষয়-ক্ষতির হাত থেকে ভালভাবেই রক্ষা
করে, তব্ও তারের তৈরি বর্মের চেয়ে এর আড়াআড়ি টান দহ্ম করবার ক্ষমতা
আনেক কম। এ দিক থেকে যেখানে বাড়িতি টান দহ্ম করবার প্রয়োজন
আছে, যেখানে তারের বর্ম দেওয়া কেবল ব্যবহার করাই স্থবিধাজনক।

তারের বর্মের জন্ত দস্তার প্রলেপযুক্ত লোহার (galvanised steel) তারই উপাদান হিদাবে বাবহার করা হয়। কেবলের গদীর উপর দিয়ে এক বা ছই স্তরে এই তার জড়ানো হয়। যেথানে ছই স্তর যুক্ত বর্ম দেওয়া হয়, দেখানে ছিতীয় স্তরের তার প্রথম স্তরের তারের বিপরীত মুখে জড়ানো হয়।

ছই স্তরের বর্ম দেওয়া কেবল খাড়াভাবে সংস্থাপনের সময় বা নদী অতিক্রম করতে বা খনির কাজে ব্যবহার করা হয়। এ ছাড়াও খ্ব বেশী যান্ত্রিক স্থরক্ষা ফেখানে প্রয়োজন, সেখানেও এই কেবল বাবহৃত হয়।

প্রচন্ত্রদ (Serving): কেবলের বাইরের আবরণকে প্রচ্ছদ বলে। ইহা বর্মের উপর প্রয়োগ করা হয়। কেবলে আর্দ্র তা প্রবেশকে এই প্রচ্ছদ প্রতিহত করে। উপাদান হিসাবে সাধারণতঃ আশযুক্ত জিনিষ বাবহার করা হয়। জল-সহ যৌগে (কয়লা-ঘটিত) পাটের ফিতা ডুবিয়ে বর্মের উপর স্তরে বিশ্বস্ত করা হয়।

পেপার-ইন্স্যলেটেড কেবল (Paper insulated cable) ঃ সীসা বা আালুমিনিয়ামের আচ্ছাদনযুক্ত পেপার ইন্স্যালেটেড্ কেবলের ব্যবহার খুব বেশী। সেজন্ত, এর নক্সা ও গঠন ভোল্টেজের পরিমাণ ও প্রয়োগের ক্ষেত্র অন্নযায়ী বদলায়। 11 KV পর্যন্ত ভোল্টেজের কেবলের কোর-ইন্স্যালেশনের উপর ইলেক্ট্রোন্ট্যাটিক চাপ আলোক-রশ্মি-অন্নর থাকে। সেজন্ত এ ধরনের কেবলে প্রচলিত নক্সায় তৈলসিক্ত কাগজ দিয়ে পরিবাহকের উপর আবরণ দেওয়া হয়। কিন্তু 11 KV-এর চেয়ে বেশী মাত্রার কেবলের কোর-ইন্স্যালেশানের উপর ইলেক্ট্রোন্ট্যাটিক চাপ আলোক-রশ্মি-অন্নগও বটে, আবার ক্ষর্শকান্ত্রগও। ক্ষর্শকান্ত্রগ চাপ কোর-ইন্স্যালেশানে আঞ্চলিক তাপের স্পৃষ্ট করে, তাকে পুড়িয়ে ফল্ট-বিত্রাৎ প্রবাহের পথ করে দেয়। সেজন্তে 11 KV-এর চেয়ে বেশী ভোল্টেজের কেবল এমনভাবে তৈরি করা হয়, যাতে ক্ষর্শকান্ত্রগ চাপের মোকাবিলা করতে পারে। খাড়াভাবে বাবহারের কেবলে তৈল-সিক্ত যৌগ যাতে পরিবর্তিত না হয়, সেজন্ত কোর-ইন্স্ললেশানে প্রবাহ প্রতিরোধী যৌগ (non-draining compound) ব্যবহার করা হয়।

কাগজের ইন্স্যলেশানযুক্ত কেবলকে কোর ইন্স্যলেশানে তৈলসিক্ত করণের অবস্থা ভেদে মোটাম্টি ছভাগে ভাগ করা হয়।

- 1. নীরেট ধরনের কেবল (Solid-type Cable);
- 2. চাপ-সহ কেবল (Pressure Cable)।

নীরেট ধরনের কেবলে কেবল-ভাই-ইলেক্ট্রিককে চাপে রাথার জক্ত বিশেষ

Fig. 1. i.

1. পরিবাছক; 2. কোর ইন্স্থালেখন; 3. ফিলার; 4. কাগজের
বেড়; 5. দিদার আচ্ছাদন;
6. গদী; •7. বর্ম; 8. আবরণ;
9.বর্ম; 10. প্রচছন।

কোন পদ্ধতি নেওয়া হয় না। ধে কেবলে বিশেষ পদ্ধতির সাহায়ে। কেবল-ভাই-ইলেক্ট্রিককে উচ্চ-চাপে রাথা হয়, তাকে চাপ-সহ কেবল বলে।

নীরেট ধরনের কেবলকে চারটি শ্রেণীতে ভাগ করা যায়:

- 1. বেড়যুক্ত কেবল (Belted Cable);
- 2. **এইচ-টাইপ কেবল** (H-Typ) Cable);
- 3. এস এল কেবল ('SL' Cable);
- 4. **এইচ এস এল কেবল** ('HSL' Cable)।

বেড়্যুক্ত কেবলঃ এই ধবনের কেবলের নাম থেকেই এটা বেশ বোঝাখার বে, ইন্স্থালেটেড্ কোরগুলির উপরে একটি কাগজের কিতার বেড় দেওয়া আছে। এই শ্রেণীর কেবলের কার্যকারী ভোল্টেজ।

বেড়যুক্ত কেবলে ছই, তিন বা চাৰটি কোর থাকতে পারে। তিন কোরের বেড়**যুক্ত**

কেবলের ব্যবহার-ক্ষেত্র স্থবিস্তৃত বলে 1.1 KV, 3.3 KV., 6.6 KV ও 11 KV-র জন্ম এটি তৈরি হয়ে থাকে। 1.i চিত্রে প্রদর্শিত তিনকোরের বেড়যুক্ত কেবলে প্রত্যেকটি পরিবাহক কাগজের ফিতার ইন্স্যালেশান দিয়ে আলাদা করা আছে। তারপর, তিন্টি কোর একদক্ষে করে আরও একটি কাগজের ইন্স্যালেশান দিয়ে গোল করে জড়ান থাকে। ছটো কোরের মাঝখানের ফাঁক ফিলার (filler) দিয়ে ভরাট করে দেওয়া হয়। ফলে, যাতে বেড় দেওয়ার জন্ম মহল গোলাকার একটা তল তৈরি হয়। কোরের উপর দিয়ে কাগজের ফিতার বেড় দিয়ে নেওয়া হয়। দীসা, বা দীসার এলয় বা আলেন্মিনিয়ামর একটা আচ্ছাদন বেড়ের উপরে একেবারে গামে গামে লাগিয়ে দেওয়া হয়। এই ধরণের কেবলের উপর মান্ত্রিক চাপ পড়ার

সম্ভাবনা থাকে বলে, ষ্টেলের ফিতা বা জি. আই তারের বর্ম দিয়ে স্থরক্ষিত করা

হয়। এই কেবলের সবচেরে শেবে থাকে কর্মলান্ধাত যৌগে ভেন্নানো পাটের ফিতা দিয়ে তৈরি প্রচ্ছদের একটি নিশ্ছিদ্র স্তর।

তৃই বা চার কোরের বেড়যুক্ত কেবল 1.1. KV-এর হয়। ভূ-নিমন্ত সরবরাহের ক্ষেত্রে এর রাবহার ব্যাপক।

এইচ-টাইপ কেবল (H-Type Cable)ঃ 11 KV-এব চেরে বেশী ভোন্টেজ কেব্লের কোর-ইন্স্থানেশানের উপর ইলেক্ট্রোন্ট্যাটিক
চাপ আলোক-রশ্মি-অমুগ ও স্পর্শামুগ
হর। স্পর্শামুগ চাপের কলে কোর
ইনস্থানেশানের ভাই-ইলেক্ট্রিক ধর্ম
ক্রত হ্রাস পেতে থাকে। তিন কোর
বিশিষ্ট কেবল এই ধরনের-চাপ-যুক্ত
অবস্থায় কাজ করতে পারে, যদি তিনটি
এক কোর-বিশিষ্ট কেবদের অমুরূপ

Fig. 1. ii

বিশিষ্ট কেবল এই ধরনের-চাপ-যুক্ত

1. পরিবাহক; 2. কোর ইন্স্থানেশন;
অবস্থায় কাজ করতে পারে, যদি তিনটি

3. ক্রীন্; 4. কিলার; 5. টেপ; 6. দিদার
এক কোর-বিশিষ্ট কেবদের অন্তরূপ আজাদন; 7. আবরণ; 8. বর্ম; 9. প্রজ্বদ।
বৈত্যাতিক পরিস্থিতি গড়ে তোলা যায়। একজন জার্মান প্রযুক্তিবিদ (এম.
হচ্নেটভার) এক ধরনের কেবল তৈরি করেছেন। এর কোর ইন্স্থালেশানের
উপর কেবলমাত্র আলোক-রশ্মি-অনুগ ইলেক্ট্রোন্ট্যাটিক চাপ থাকবে। তাঁর
নক্সা অনুযায়ী তিন-কোর-বিশিষ্ট কেবলের প্রত্যেকটি কোর ইন্স্থালেশানের
উপর একটা ধাতবায়িত ফিতার স্তর দেওয়া হয়। ফলে, বাইর থেকে
একেবারে গায়ে লাগান ধাতব আচ্ছাদনের সঙ্গে ভিতরের কোর অন্তরঙ্গ
সংস্পর্শে থাকে। 1.ii নং চিত্রে এইচ টাইপ কেবলের নক্সা দেখান হয়েছে।

এস এল-কেবল (S L-Cable) ও এটা বহু কোরবিশিষ্ট কেবল।
এই কেবলের প্রত্যেকটি কোর-ইন্স্থালেশানের উপর পৃথক ধাতব আচ্ছাদন
খাকে। বেড়-যুক্ত কেবলের মত এর ভিতরের কোরগুলি ও এক সঙ্গে আবিদ্ধ

থাকে। এই ধরনের কেবলের ধাত্র-আচ্ছাদন এইচ টাইপ কেবলে

Fig 1. iii 1. পরিবাহক; 2. কোর ইন্স্রালেশান: 3. क्कीन; 4. मिमात बाष्ट्रापन ; 5. थाड्म ; 6. किलात ; 7. আবরণ; ৪. বর্ম; 9. প্রচ্ছদ। স্থরক্ষিত করে সর্বশেষ প্রচ্ছদ দেওয়া হয়। 1. iii নং চিত্তে এইচ. এস. এল. টাইপ কেবলের নক্সা দেখান হয়েছে।

ধাতবায়িত আবরণ যে কাজ করে, তারই অনুরূপ কাজ করে थांक।

এইচ. এস. এল. কেবল ('HSL' Cable' ঃ এইচ. এস. এল. কেবল কাৰ্যতঃ এইচ টাইপ ও এস এল টাইপ কেবলের সমন্তর। এই ধরনের কেবলে এইচ টাইপ কেবলের মত প্রত্যেকটি কোর ইনস্থা-লেশানের উপর ধাতবায়িত ফিতার স্তর লাগান হয়।

আবার, এস. এল. টাইপ কেবলের মত আবরণের উপরে একেবার গায়ে-লাগান ধাতক আচ্ছাদনও দেওয়া হয়।

আচ্ছাদিত কোরের মধ্যকার ফাঁক ভরাট করে গোলাকার করা হয়। তাকে বর্ম দিয়ে

খাড়াইভাবে ব্যবহারের জন্ম কেবল (Cable for vertical run) ? এক্ষেত্রে প্রচলিত পেপার ইন্স্থালেটেড কেবল উপযোগী নয়—বিশেষ করে, পাহাড়ে বা খনিতে। কারণ, কাগজে ব্যবহৃত তৈল-সিক্ত যৌগ (impregeating compound), পরিবাহকের তাপে উত্তপ্ত হয়ে নীচের অংশে সরে আসে। তৈলসিক্ত-যোগের এই সরে আসার ফলে কাগজের ইনস্তালেশানের উপরেক অংশ শুকনো হয়ে যায়। এর ফলে শুক্ততার সৃষ্টি এবং আয়োনাইজেশান (ionization) শুরু হয়। তাছাড়াও যৌগগুলি এক জায়গায় জড় হয়ে ধাতৰ আচ্ছাদনের উপর চাপ দিতে থাকে। ফলে, আবরণের ক্ষতিও হতে পারে।

তৈলসিক্তকরণের উপাদান হিসাবে ব্যবহৃত যোগের করণে যে অস্থ্রিধা কৃষ্টি হয়, তা বন্ধ করা যায়। প্রবাহ প্রতিরোধী উপাদানের সাহায়্যে কাগজের ইনস্থালেশান তৈরি করে 11 K V ভোল্টেজ পর্যন্ত প্রবাহ-প্রতিরোধী উপাদানে পূর্ণ কেবল পাওয়া যায়।

খনিতে ব্যবহারোপযোগী কেবল (Mining Cable)ঃ সাধারণত, খনিতে কাগজের ইন্স্যলেশান ও সীসা বা সীসার এলয়ের আচ্ছাদন দেওয়া গুচ্ছকারে প্রথিত তামার পরিবাহক যুক্ত কেবল ব্যবহার করা হয়।

এই কেবলের কোর-ইন্স্থালেশানের যৌগ উপাদান যাতে সরে না যার, সেইজন্ত অ-চল উপাদান ব্যবহৃত হয়। এই ধরনের কেবল জি. আই তারের বর্ম দ্বারা স্থরক্ষিত। এই তার বাইরে থেকে লাগান ধাতব আচ্ছাদনের উপর এক বা হুই স্তরে জড়িয়ে দেওয়া হয়। থনিতে প্রচলিত বিধি-নিষেধের সঙ্গে দক্ষতি রেখে কেবলের বৃহত্তম পরিবাহকের পরিবহন-ক্ষমতার 50%-এবর্মের পরিবহন-ক্ষমতা রাখা হয়। বর্মের পরিবহন ক্ষমতার এই মান যখন বজায় রাখা সম্ভব হয় না, তথন টিনের প্রলেপ দেওয়া কঠিন তামার তার চুকিয়ে দিয়ে একে নির্দিষ্ট মানে নিয়ে আসা হয়।

ভারতের থনিতে ব্যবহারোপযোগী 11KV পর্যস্ত কেবল তৈরি হয়।

চাপ-সহ কেবল—তৈলপূর্ণ কেবল (Oil filled Cable)ঃ 66KV-পর্যন্ত ভোল্টেজের জন্ত কাগজের ইন্স্থালেশান দেওয়া নীরেট ধরনের কেবল উপযোগী। এর চেয়ে বেশী মাত্রার ভোল্টেজসম্পন্ন কেবল-এর ব্যবহার নেই; কারণ, শৃন্ত ক্ষেত্রে আয়োনাইজেশানের ফলে কেবল ঠিকভাবে কাজ করতে পারে না।

তৈলসিক্ত পেপার-ইন্স্যুলেটেড্-কেবলে এই ধরনের শ্রুতা স্বষ্টি কম চট্চটে তেলের সাহায্যে কেবলকে চাপে রেথে প্রতিরোধ করা যায়। (চিত্র নং 1. iv)। যে সঞ্চয়-পাত্র থেকে তেল সরবরাহ করা হয়, সেটাই চাপের উৎস হিসাবে কাজ করে। এই সঞ্চয়-পাত্র কেবলের বাইরে থাকে। সঞ্চয়-পাত্রের সঙ্গে কেবল টানার পথের পাশে নির্দিষ্ট দূরত্বে রাখা তেল প্রবেশকরানলের সংযোগ রাখা হয়।

কেবলে তেল চলাচলের ব্যবস্থাকে রাখার সঠিক নানা পদ্ধতি আছে। বহু-কোর বিশিষ্ট কেবলে কোরের মাঝখানের ফাঁকা জায়গা দিয়ে তেল (1)

0

EDESTE TO

চলাচল করান হয়। আর এক-কোরবিশিষ্ট কেবলে ফাঁপা পরিবাহক ব্যবহার করাই রীতি (চিত্র নং 1. iv)। কোর ইনস্থালেশানে ধারাবাহিক

তেল চলাচলের ফলে কোনও শৃক্ততার স্ষ্টি হয় না।
ফলতঃ সাধারণ ভোল্টেজে কোনও আয়োনাইজেশান
ঘটতে পারে না।

Fig 1, iv

1. ফাঁপা পরিবাহক;
2. পেপার ইন্স্যলেশান;
3. দিসার আচ্ছাদন;
4. টেপ; 5. দিসার
আচ্ছাদন; 6. প্রচ্ছদ।

সাচ্ছাদন ; 6. প্রচ্ছদ। নাইটোজেন চুকিয়ে স্থীলের নলের ভিতরে প্রতিবর্গ মি. মিটারে 15 কেজি চাপ স্বষ্ট করা হয়। এই ধনের গঠন বিক্তাদের ফলে স্বাভাবিক কেবল ভোল্টেজের দ্বিগুণ পরিমান কার্যকরী ভোল্টেজ পাওয়া যায়। তাছাড়াও, স্থীলের নল কেবলকে যান্ত্রিক ক্ষয়-ক্ষতির হাত থেকে ভালভাবে বক্ষা করে।

পি. ভি. সি. কেবল (P. V. C. cable) ঃ 11KV. ভোন্টেজ পর্যন্ত পি. ভি. সি. ইন্স্থালেটেড কেবল এখন ভারতেই প্রস্তুত হচ্ছে (চিত্র 1.v.)। এ ধরনের কেবলে পাকান পরিবাহকের উপর পি. ভি. সি. যোগের এক আবরণ দেওয়া হয়। সাধারণত বেশীভোন্টেজের কেবলের পরিবাহকের পরিবাহী কিতা আংশিক পরিবাহী আবরণের উপর কোর ইন্স্থালেশান

থাকে। পরিবাহকের আয়তন ও কেবলের কার্যকরী ভোল্টেজের উপর কোর ইন্স্যালেশানের ঘনত্ব নির্ভর করে।

বছ-কোরবিশিষ্ট পি. ভি. সি. কেবলে ইন্স্যলেটেড কোরগুলি বুত্তাকারে সাজিয়ে নেওয়া হয়। যেথানেই প্রয়োজন পি. ভি. সি. কেবলের মধ্যবর্তী কাঁক ভরাট করা হয়। এইভাবে সাজান কোরগুলির চারদিকে একটিমাত্র আবরণ থাকে। এই আবরণ পি. ভি. সি. ফিতা বারবার যোগ মাথানো স্থতীর ফিতা দিয়ে মুড়ে অথবা পি. ভি. সি. যৌগ প্রয়োগ করে দেওয়া হয়।

ভিতরের আচ্ছাদনের উপর দস্তার প্রলেপযুক্ত লোহার তার বা লোহার পাত অথবা কঠিনায়িত জ্যালুমিনিয়ামের তার এক বা ছই স্তরে প্রয়োগ করা হয়। কেবলমাত্র বিশেষ শক্তিসম্পন্ন কেবলেই বর্মের দ্বিতীয় স্কর থাকে।

বর্মের উপরের পি. ভি. সি. যৌগের আচ্ছাদন কেবলে আর্দ্রভার প্রবেশ বন্ধ করিয়া থাকে এবং রাসায়নিক ও বৈহ্যতিক ক্ষয় থেকে রক্ষা করে।

Fig 1. v
1. পরিবাহক; 2. কোর
ইন্স্যলেশান; 3. পি. ভি. সি:
টেপ; 4. বর্ম; 5. পি. ভি.
সি-র প্রছেদ।

72 YZ ET

বিভীয় অধ্যায়

বিছ্যুৎ বহনের সীমা

(CURRENT CARRYING CAPACITY)

বিষ্ণ্যুৎ বহনের সীমাঃ তাপের একটা নিরাপদ সীমা আছে, যার নীচে কেবল ডাইলেকট্রিকে ব্যবহৃত উপাদানের ইন্স্যুলেশান-ধর্ম বজার থাকে। কিন্তু এই সীমা অতিক্রম করলেই এই ইন্স্যুলেশান-ধর্ম হ্রাস পায় ও কেবল অকেজা হয়ে পড়ে। কোর-ইনস্যুলেশান ও কেবল-পরিবাহক ঘনিষ্ঠ সংশ্পর্শে থাকে। এই জন্ম পরিবাহকে বিদ্যুৎ প্রবাহ কোরকেও উত্তপ্ত করে। তাই বিদ্যুৎ-প্রবাহের পরিমাণ খুব বিবেচনা করে নির্ধারণ করতে হবে, যাতে কোর ইন্স্যুলেশানের নিরাপদ তাপসীমার চেয়ে পরিবাহকের তাপমাত্রা নীচে থাকে। অতএব, একথা বলা যায়, পরিবাহকে স্বষ্ট উত্তাপ আর কেবল ইন্স্যুলেশানের তাপের বৈশিষ্টাই কেবলের বহনক্ষম বিদ্যুৎ প্রবাহের মাত্রা, নিরূপণ করে। কিন্তু কতকগুলি কারণ, যেমন সংস্থাপনের ধরণ, শ্রেণীবদ্ধ করার রক্ম, কেবলের পারম্পরিক নৈকট্য, বায়ুর তাপমাত্রা, মাটির তাপীয় প্রতিবন্ধকতাও বিদ্যুৎপ্রবাহের সর্বোচ্চ নিরাপদ পরিমাণ নিরূপনের সময় বিবেচনা করতে হবে।

বর্মাবৃত পি. আই. এল. সি ও পি. ভি. সি. কেবলের ভিন্ন ভিন্ন সংস্থাপন অবস্থায় বিচ্ছাৎপ্রবাহের সর্বোচ্চ মাত্রা সম্পর্কে ভারতীয় মান নির্ধারক সংস্থার স্থণারিশ নিমন্থ সিদ্ধান্তের ভিত্তিতে রচিত হয়েছে তালিকা নং 1, 2, 3, 4)।

- 1. মাটির তাপীয় প্রতিবন্ধকতা—150°C W/cm³
- 2. পি. ভি. সি.-র তাপীয় প্রতিবন্ধকতা—650°C W/cm³
- 3. মাটির তাপমাত্রা— 30°C
- 4. পারিপার্শ্বিক তাপমাত্রা— 40°C
- 5. সংস্থাপনের গভীরতা

1'1 KV. পর্যন্ত 75 সেমি 11 " " 90 সেমি

25 থেকে 33 KV পর্যন্ত 105 সেমি

সরাসরি সংস্থাপনের সময় কেবলের সবচেয়ে উপরের অংশ থেকে গভীরতা মাপতে হবে, কিন্তু নালী-পদ্ধতিতে নলের উপরিতল থেকে মৃত্তিকাতল পর্যন্ত হবে সংস্থাপন-গভীরতা।

6. সংস্থাপনের পদ্ধতি:

- (i) এক-কোরবিশিষ্ট সরাসরি মাটিতে স্থাপিত কেবল;
 - (a) তিনটি কেবলের ঘনিষ্ঠ ত্রিপত্রাকৃতি (trefoil) বিক্যাস।
 - (b) ছটি কেবলের পরস্পরকে স্পর্শ করে সমান্তরাল বিত্যাস।
- (ii) নলে স্থাপিত এক কোরের কেবল;
 - (a) তিনটি কেবলের ঘনিষ্ঠ ত্রিপত্রাকৃতি বিস্থাস।
 - (b) ঘূটি কেবলের পরস্পরকে স্পর্শ করে সমান্তরাল বিক্তাস।
- (iii) শৃন্তে ঝোলান অবস্থায় বা ব্যাকেট স্থাপিত এক কোরের কেবল;
 - (a) ছইটি কেবলের মধ্যে 2.5 সেমি ব্যবধানে রেখে উল্লম্ব বিত্যাস।
- (b) 185 মিমি² আয়তনের ছটি কেবলের মাঝখানে কেবলের ব্যাদের দ্বিগুণ ফাঁক রেথে সমান্তরাল বিন্যান। কিন্তু 240 মিমি² আয়তন বা তার চেয়ে বেশী আয়তনের কেবলের ক্ষেত্রে ঐ ফাঁক 9 দেমি রাখতে হবে।
- (c) তিনটি কোরের ঘনিষ্ঠ ত্রিপত্রাকৃতি বিভাস।
- (iv) ছই বা বহু-কোর বিশিষ্ট কেবল—এককভাবে সংস্থাপিত হয়;
- (v) পরিবাহক-তাপমাত্রার মর্বোচ্চসীমা:

(a)	11 KV—এক কোর বিশিষ্ট	70°C
	—তিন কোর বিশিষ্ট (বেড়যুক্ত)	65°C
	—তিন কোর বিশিষ্ট (আবরণযুক্ত)	70°C

(b) 22 ও 23 KV-—এক কোর বিশিষ্ট 65°C

—তিন কোরের (আররণ যুক্ত ও 'এস. এল.') 65°C

বিহাৎপ্রবাহ চলাচলের সঙ্গে সঙ্গে কেবল-পরিবাহকে তাপ স্থষ্টি হতে আকে। স্থক্ষতে পরিবাহকের তাপ তার উপরকার ইন্স্থালেশান স্তরকে অব্ধ উত্তপ্ত করে। এরপর কয়েক মিনিট ধরে উত্তপ্ত হওয়া ও শীতল হওয়া চলতে থাকে। পরে পরিবাহকে তাপ স্ঞ্চির হার আর কেবল থেকে তাপ-মোচনের হার সমতাম এলে একটা কেবল স্থায়ী তাপমাত্রায় পৌঁছায়।

যেহেতু বিভিন্ন ধরণের কেবলের বিত্যুৎপ্রবাহ চলাচলের মর্বোচ্চ হার কতকগুলো বিশেষ ধরণের সত্য সিদ্ধান্তের উপর ভিত্তি করে নিরূপণ করা হয়েছে যে কোন রকমের পরিবর্তনই বিত্যুপ্রবাহের হারকে প্রভাবিত]করবে। যে যে কারণে বিভিন্ন সংস্থাপন অবস্থায় তাপ-বিদ্রণ হয়, তা নীচে দেওয়া হল।

শুন্তে ছাপিত কেবলঃ ব্রাকেট, তাক বা গোঁজের উপর পাতা কেবলের চারপাশে বাতাদ থাকে। দেই জন্তে স্বাভাবিক ভাবেই কেবলের উপরিতল (surface) থেকে তাপ বাতাদে চলে যায়। এই তাপ মোচনের হার বাতাদ ও উপরিতলের মধ্যে তাপমাত্রার পার্থক্য এবং কেবলের ব্যাদ ও উপরিতলের অবস্থা, এবং প্রবাহের মাত্রা ও শীতল বাতাদের দিকস্থিতির উপর নির্ভর করে।

সরাসরি মাটিতে ছাপিত কেবলঃ মাটির উপর সরাসরি পাতা কেবলের চারপাশের মাটি তার ঘনিষ্ঠ সংস্পর্শে থাকে। সেইজন্তে মনে করা যেতে পারে, কেবলের উপরিতল ও মাটির উপরিতল সমতাপীয় হবে। কেবলের তাপ উপরিতলে পরিবাহিত হয়ে সম্পূর্ণভাবে মোচন হয়। কেবল থেকে উপরিতলে তাপ প্রবাহের হার প্রধানতঃ মাটির তাপীয় প্রতিবন্ধকতা ও স্থাপনের গভীরতার উপর নির্ভর করে।

নলে স্থাপিত কেবলঃ নলের তিতর স্থাপিত কেবলের উপরিতল থেকে তাপ প্রবাহের অবাধ প্রবাহ সম্পূর্ণতাবে মোচন হওয়া পথে কিছু পরিমাণ বাধার সম্মূর্থীন হয়। কারণ, কেবলের উপরিতল ও নলের দেওয়ালের মাঝখানের বায়্স্তরের এবং নলের দেওয়াল ও মাটির তাপীয় প্রতিবন্ধকতা। আবার কেবলের উপরিতল ও নলের মধ্যের বায়্স্তরের তাপীয় প্রতিবন্ধকতাও নলের ভিতরের বায়প্রবাহের অনিশ্চিত অবস্থার জন্ত পরিবর্তিত হয়। বায়্স্তরের তাপীয় প্রতিবন্ধকতার এই পরিবর্তন কেবল থেকে তাপ স্থানাস্তরের হারকে প্রভাবিত করে, ফলে লোডেড্ কেবলের তাপ মাত্রার পরিবর্তন আনে।

পূর্ববর্তী আলোচনা থেকে বোঝা যায় কেবল থেকে যত তাঁড়াতাড়ি তাপমোচন হবে তত বেশী এর বিহ্যাৎ বহনের ক্ষমতা বাড়বে।

শট-সার্কিট বিদ্যুতের পরিমাণ (Short-circuit rating): — কার্য-ক্ষেত্রে প্রায়ই বিপুল পরিমাণ ফণ্ট্-বিত্যুৎ (fault-current) ক্রেটিপূর্ণ সার্কিট বিচ্ছিন্ন করার আগে অল্প সময়ের জন্ম হলেও বহন করতে হয়। এই ধরনের প্রয়োজন মেটানোর জন্ম কেবল এমন ভাবে পরিকল্পনা করা হয়, যাতে বাড়তি বিত্যুতের প্রতিক্রিয়া এবং পাঁচ সেকেণ্ড স্থায়ী শট-সার্কিট বিত্যুতের জন্মত তাপরৃদ্ধি সন্থ করার শক্তি থাকে। চনং তালিকায় কেবলের শ্র্ট-সার্কিট বিত্যুতের হার দেওয়া হল।

কেবলে ফণ্ট্-বিছাৎ (fault current) প্রবাহের উৎপত্তি ফেজ-থেকে ফেজ বা আর্থ ফল্টের ফলে হতে পারে। ফেজ-থেকে ফেজ ফল্টে বিছাৎ প্রবাহের পরিমাণ সর্বোচ্চ ও তা সংশ্লিষ্ট পরিবাহকের মধ্য দিয়ে প্রবাহিত হয়। কিন্তু আর্থ-ফল্টে ঐ বিছাৎ ধাতব আবরণ বা ধাতব আবরণ ও বর্মের মধ্য দিয়ে প্রবাহিত হয়।

অক্তান্ত সময়ে কেবলের সার্কিট নীচে দেওয়া স্তত্ত থেকে নিরূপণ করা যায়।

Ish= $\frac{KA}{\sqrt{t}}$

এখানে Ish = কিলো-অ্যাম্প এককে সর্ট সার্কিট বিহাৎ-প্রবাহ।

K=ধ্রুবক—0°0751 অ্যাল্যুমিনিয়ামের ক্ষেত্রে।

A = বর্গমিমি এককে পরিবাহকের প্রস্থচ্ছেদ ক্ষেত্র।

যথন কোন কেবল সারাদিন ধরে সমভাবে সর্বোচ্চ পরিমাণ বিছাৎ বহন না করে, তথন ঐ কেবল স্বল্প সময় স্থায়ী বাড়তি বিছাৎ পরিবাহকে মাত্রাতিরিক্ত তাপ বৃদ্ধি না ঘটিয়েই বহন করতে পারে।

6 নং তালিকায় যে কেবল দারাদিন ধরে সমভাবে দর্বোচ্চ বহনক্ষম বিছ্যতের 50% বা 75% অংশ বহন করেছে তার প্রতি ঘণ্টায় বাড়তি-বিছ্যুৎ বহনের পরিমাণ দেওয়া হল।

ार के लगावती में स्थान के ते देश का सावकार ! प्रीकार के ता श्रम कार्य का

ভূতীর অধ্যায়

কেবল স্থাপনের পথ-পরিকল্পনা (PLANNING ROUTE FOR CABLE LAYING)

বড় বড় শহরে বিহাৎশক্তি বন্টনের জন্ম সরবরাহের ভূনিমস্থ পদ্ধতি ক্রমশঃ অধিক পরিমাণে গৃহীত হচ্ছে। এই পদ্ধতি শুধু নিরবিচ্ছিন্ন সরবরাহকে স্থানিশ্চিত করে না, এতে কয়েকটি স্থাবিধাও পাওয়া যায়।

- 1. इंश मीर्चश्री रय ;
- 2. ইহাতে বক্ষণাবেক্ষণের প্রয়োজনীয়তা কম থাকে;
- ইহাতে বিতাৎ-স্পৃষ্ট হওয়ার আশক্ষা থাকে না;
- 4. ইহা দেখিতে স্থদৃশ্য হয়;

কেবল কোন পথ দিয়ে পাতা হবে, তার স্বষ্ট্ পরিকল্পনার উপরই বণ্টনের ভূনিমুস্থ পদ্ধতির সাফল্য নির্ভর করে। সেইজন্য এই পথ পরিকল্পনার ভারপ্রাপ্ত প্রযুক্তিবিদ্দের পথ-নির্বাচনের বিষয়ে খুবই সতর্ক হতে হবে। কেন না, এর উপরই পদ্ধতিটির ব্যবহারিক কার্যকারিতার সাফল্য নির্ভর করে। তাছাড়াও সংস্থাপনের এবং পরবর্তী রক্ষণাবেক্ষণের ব্যয়কেও স্বস্ময়ে সীমিত রাথে।

বড় বড় শহরে ভূনিমুস্থ বন্টন-বাবস্থা সরবরাহকারী (feeder) কেবল, বন্টন-কেবল (distribution cable) এবং সার্ভিস কেবল নিয়ে তৈরি এক বিস্তৃত জালকের মত।

সাধারণভাবে সরবরাহকারী কেবল (feeder cable) বেশি ভোল্টেজের হয়। এই কেবল সাব-দেউশন ও যে অঞ্চল এই সাব-দেউশন পরিচালনা করে, তাদের মধ্যে সরাসরি সংযোগস্থাপন করে। সেজক্ত এই সরবরাহকারী কেবল, দৈর্ঘ্য বরাবর সমপরিমাণ বিত্যৎ-শক্তি বহন করে। এক্ষেত্রে, ভোল্টেজ হ্রাস (voltage drop)-এর প্রশ্ন, বন্টন কেবলের মত তত জরুরী নয়।

সরবরাহকারী কেবলের পথ চ্ড়াস্তভাবে স্থির করার সময় পরিকল্পনাকারী নিচের মূল বিষয়গুলির প্রতি লক্ষ্য রাথবেনঃ

- 1. কেবলের হুস্বতম দৈর্ঘ্য (shortest length);
- প্রাথমিক বায়ের দিক থেকে স্থলভতম।

স্বচেয়ে সংক্ষিপ্ত পথে যদি সর্বরাহকারী কেবল নিয়ে যাওয়া যায়, তাহলে প্রাথমিক ব্যয় সঙ্কোচ করা যায়। তাছাড়াও, বাংসরিক ব্যয়ের পরিমাণও কমে। কেননা দৈর্ঘ্য যত বেশী হয়, শক্তি অপচয়ের মাত্রাও (I^aR) তত বেশী হয়। কিন্তু, পরিথা থোঁড়ার থরচ বা কেবল পাতার থরচ থুব বেশী হলে, বায়লক্ষোচের চেটা অর্থহীন হয়ে যায়। দেজল্ঞ, প্রাথমিক বায়ের হিসাবে সব
সময়ই যে সংক্ষিপ্ততম পথের বায়ই যে সর্বদা সবচেয়ে কম হবে তা নয়।
সরবরাহকারী কেবল স্থাপনের ক্ষেত্রে বায়কে সীমিত রাথার জল্ঞ পথের হুস্বতম
দৈর্ঘ্য ও বায়ের নিয়তম পরিমাণের মধ্যে একটা স্ক্ষমঞ্জস মধ্যপথ বেছে
নিতে হবে।

বাস্তবক্ষেত্রে যতটা সম্ভব, রাস্তা পারাপারের মধ্যে না গিয়ে পথের ধারঘেঁষে সংযোগকারী কেবলের সমান্তরাল করে সরবরাহকারী কেবল পাতা হয়। কেবল পাতার সময় যাতে কেবল রাসায়নিক-সক্রিয় মাটির উপর দিয়ে না যায় এবং জল, গ্যাস ইত্যাদি নিত্য প্রয়োজনীয় সরবরাহ ব্যবস্থাকে বাধা না দেয়, এ বিধয়ে বিশেষ লক্ষ্য রাথতে হবে। গাড়ীচলা পথের চেয়ে পায়েচলা পথের উপরকার স্তর পাতলা বলে, কেবল পাতার জন্ম পায়েচলা পথ নির্বাচন করাই যুক্তিসম্মত।

বন্টন ব্যবস্থাকে মুখ্যবন্টন কেবল ও গৌণবন্টন কেবল-এ ভাগ করা যায়। সরবরাহকারী পিলারবাক্স ও বন্টনকারী পিলারবাক্স সংযোগকারী কেবলকে মুখ্য (primary) বন্টন কেবল বলা হয়। অপরপক্ষে, বন্টনকারী পিলারবাক্স থেকে বিচ্ছুরিত যে কেবল থেকে গ্রাহকের বাড়িতে বাড়িতে বিদ্যুৎ সরবরাহ করা হয়, তাকে গৌণবন্টন কেবল (secondary distribution cable) বলা হয়।

বণ্টনকারী কেবলের সংযোগ-পথ নির্বাচনের সময় নিচের বিষয়গুলি বিশেষভাবে লক্ষ্য করতে হবে। যেমন,

- 1. সর্বোচ্চসংখ্যক গ্রাহকের মধ্যে বন্টন করা যায়;
- 2. প্রতিশ্রতিমত ভোন্টেজ সরবরাহ অব্যাহত থাকে ;
- 3. ভবিশ্বৎ সম্প্রদারণের স্থযোগ থাকে।

অতএব দেখা যাচ্ছে, যে বিষয়গুলির উপর লক্ষ্য রেখে সরবরাহকারী কেবলের স্বল্পবায়ের পথ নির্বাচন করা হয়, বন্টনকারী কেবলের পক্ষে সেটাই কিন্তু স্বচেয়ে বাঞ্চনীয় পথ নয়।

সরবরাহকারী কেবলের মতই বন্টনকারী কেবল পায়েচলা পথবরাবর পাতা হয়। কিন্তু সহজ সংযোগের জন্ম পায়েচলা পথের যে দিকে ঘড়বাড়ি আছে, সেই দিকেই ঐ কেবল পাতা হয়। যেথানে স্থানের অসম্কুলানবশতঃ এই ধরণের বাবন্ধা করা যায় না, দেখানে বেশী ভোন্টেজের কেবলের উপর ভারতীয় বিধি অনুসারে নিরাপদ বাবধান রেখে সংস্থাপন করতে হবে। যেহেতু পিলারবাল্প ভূনিয়ন্থ পদ্ধতির একটা অবিজ্ঞেন্ত অংশ, দেইজন্ত বন্টানব্যবন্ধায় তার সঠিক অবস্থানের স্থান নির্বাচন পদ্ধতিটির কার্যকারিতার দিক থেকে বিশেষভাবে মুলাবান।

বন্টনকারী পিলারবান্ধটি মৃলতঃ সমগ্র বন্টনবারস্থাকে নিয়ন্থিত করে।
মৃথাবন্টন কেবল পিলারবান্ধের মধ্যে প্রবেশ করে ও গৌণবন্টন কেবলসমূহ
বিভিন্ন দিকে বিজ্পুরিত হয়। কেবলের বায়কে সীমিত রাখার জন্ত এবং
গ্রোহকদের বাড়ীতে বাড়ীতে ভোন্টেজ সরবরাহ বিজ্ঞাপিত মাত্রার মধ্যে রাখার
জন্ত পিলারবান্ধটিকে যে অঞ্চলে বিহাৎ সরবরাহ করার কথা, তার ভরকেক্রে
স্থাপন করা হয়।

পিলারবান্ধ (যে-গুলোকে কিউজের বান্ধ বা সংযোগকারী বান্ধও বলা হয়ে থাকে), সাধারণতঃ ইম্পাতের চাদর (m. s. sheet) দিয়ে তৈরি হয়। এগুলি তলার দিক খোলা আয়তাকার বান্ধ। বান্ধের ছদিকেই দরজা থাকে এবং মাটিতে শক্তভাবে বদানোর জন্ম চারটি পায়া থাকে। ভূনিমন্থ বান্ধগুলিতে কেবল তলার দিক দিয়েই প্রবেশ করে ও একইভাবে বিভিন্ন দিকে বিজ্ঞ্বিত হয়।

যাতে গাড়ী চলাচলের কোনও অস্থবিধা না ঘটে, শহরাঞ্চলে এই পিলার বাক্সগুলি গাড়ীচলা রাস্তার ধার ঘেঁবে পাল্লেচলা পথের উপর স্থাপন করা হয়। স্থাপনের সময় বাজ্যের যে দিকে ফিউজ ইউনিট আছে, সেই দিকের দরজা যেন গাড়ীচলা পথের দিকে মুখ করে থাকে, সে বিষয়ে বিশেষ খেয়াল রাখতে হবে।

কেবল-ড্রামকে গুদাম-জাত করা (Storing of cable drums) ই যে সমস্ত কেবল-ড্রাম মজুত করার জন্ম ডিপোর নিয়ে আসা হয়, সেগুলি এমনভাবে সাজিয়ে রাথতে হবে, যাতে তাদের মধ্যে অবাধে বায়ু চলাচল করতে পারে ও পরবর্তীকালে সরানো সহজ হয়। যাতে ড্রামগুলির উঁচু কানা পরম্পরের সঙ্গে সমাস্তরাল হয়ে না যায়, সে দিকেও লক্ষ্য রাথতে হবে।

ভিপোর মেঝের জল বেরিয়ে যাওয়ার যথোপযুক্ত বার্বস্থাসমেত বার্ধান হলেই ভাল। কেন না, এর ফলে ডামগুলো জলে ডুবে যাবে না বা এর চাকার উচ্ কানা পচে যাবে না। মহুণ ঢালাই মেঝে হলে, ডাম গড়িয়ে নিয়ে যাওয়াও দহজ হয়। গুদামের যায়গা যদি না বেশী বৃষ্টিপাতের অঞ্চল হয়, তবে ডিপোর উপর কোনও ঢাকা দেবার আবশ্যক নেই।

যদি কেবল ছামগুলো খোলা ছারগার মন্ত্র করার পরিকরনা থাকে, তবে নির্বাচিত খানটির তল সমান করে নিতে হবে। এরকম ক্ষেত্রে কেবল কিপোর খান উচু ও শক্ত দেখে নির্বাচন করতে হবে। কাঁটা তার বিরে থিবে ভিপোগুলি অবন্ধিত করা উচিত।

তিন মাদ অন্তব ছামগুলিকে 90° ভিগ্ৰী কোণে ঘূৰিছে বাথাৰ পছতি ভাল। এভাবে ঘূৰিয়ে বাথাৰ ফলে, কুণ্ডল (coil)-এব নীচেব অংশে কেবল ইনহলেশানকে তৈলদিক কৰাৰ জন্ত বাবস্তুত যৌগ জন্ত হতে পাৰে না। যৌগ অপ্ৰবাহী (non draining) কেবলের হয়, বা পি. ভি. বি কেবলের ক্ষেক্তে দ্রাম ঘূৰিয়ে বাথার কোনও স্বকাব হয় না।

মক্ত কৰা, পৰিবহন কৰা, কেবল ছাম নামানা, ছোৱনা, কু-ছ্যাকেৰ উপৰ ছাম তোলা, কেবল টানা ও পৰিথাৰ ভিতৰ পাতা, সংযোগ কৰা প্ৰভৃতি সংস্থাপনেৰ সকল ধাপেৰ উপৰ যত সতৰ্কতা নেওছা যাবে, কেবলেৰ আৰু তত্ই দীৰ্ঘ হবে।

েত্ৰৰ ডাম পরিবহন ও ডা খালাস করা (Transporting and unleading):

কাজের জায়গায় কেবল ভাষ নিয়ে যাওয়ার জল্প বিশেষভাবে তৈরি নীচু পাটাতনযুক্ত লরি বিভিন্ন সরবরাহ প্রতিষ্ঠান কর্তৃক বাবছত হয়। এই বরণের লরিতে মাল তোলা-নামানোর জল্প উইন্স্ (winch) বসানো থাকে। এর কলে কেবল ভাম উঠানো ও নামানোর স্থাবিধা হয়।

কাজের জান্নগায় কেবল ভাম নিমে যাওয়ার জন্ত সাধারণ লবিও বাাপক-ভাবে বাবস্থত হয়। এই ধরণের গাড়ী বাবহার করলে, কেবল ভাম যাতে সহজে পড়ে ন। যায়, সেইজন্ত শক্ত দড়ি দিয়ে বেঁধে রাণতে হবে।

লরী থেকে ভামগুলি নামানোর জন্ত কাঠের শক্ত পাটাতন বাবহৃত হয়।
ভামগুলি পাটাতনের ঢাল-বরাবর সতর্কের সঙ্গে গড়িয়ে নিয়ে যাওয়া হয়।
সাধারণতঃ, ভামগুলি গড়িয়ে নেওয়ার গতিবেগ দিক্ নির্দেশক রজ্জ্ (guide rope) ধারা নিয়য়িত হয়। ভামগুলি বিনা নিয়য়েশে মাটিতে কেলে দেওয়ার পছতি এড়িয়ে চলা উচিত। কেন না, এই পড়ার ফলে ভগু ভামেই নয়, কেবলেও
ক্ষতি হতে পারে।

কাজের জারগায় লবি থেকে জাম নামানোর পর যদি আরও কিছু দ্ব নিয়ে যাওযার দরকার হয়, দেইসব ক্ষেত্রে জামের চাকার তীর চিত্রে নির্দেশ মেনে গড়িয়ে নিয়ে যাওয়া উচিত।

বাঁকানোর সর্ব নিম্ন ব্যাসার্থ (Minimum bending radius) ঃ

দীসা বা সীসার এলয় বা আালুমিনিয়াম দারা আচ্ছাদিত পেপার ইনস্থালেটেড কেবলে পীড়ন (stress) তার ভিতরের চাপ ও তাকে বাঁকানোর প্রভাবে কার্যকর হয়। বাঁকানোর ফলে বাইরের আচ্ছাদন প্রসারিত হয় এবং ভিতরের অংশ সঙ্কুচিত হয়। এই অয়য়া চাপ কেবলকে অকেজো করে দিতে পারে। লক্ষ্য করা গেছে, এই চাপ ধাতব আচ্ছাদনের নীচে কেবলের ব্যাসের সঙ্গে সরল ভেদে ও বাঁকানোর বাাসার্ধের ব্যস্তভেদে সমাত্রপাতী। সেজন্ম, একটি বিশেষ কেবলের বাঁকানোর বাাসার্ধে যতই বড় হবে, আচ্ছাদনের উপর চাপ ততই কমবে।

কেবল প্রস্তুত-কারকরা তাঁদের উৎপাদিত কেবলের সামগ্রিক ব্যাসের হিসাবে বাঁকানোর সর্বনিম ব্যাসার্ধ নির্দিষ্ট করে দেন।

বিভিন্ন প্রকারের পি. আই. এল. সি. কেবলের জন্ম ভারতীয় বিধিতে নিরাপদ বাঁকানোর ব্যাসার্থ অন্তুমোদন করা আছে। আই. এস. 1255-1967 অন্ত্যায়ী তালিকা নিচে দেওয়া হল।

কিন্তু কার্যতঃ বেশী ভোল্টেজের কেবলের ক্ষেত্রে ভারতীয় বিধি-অনুসারে 1.1KV শক্তিসম্পন্ন কেবলের ক্ষেত্রে যেথানে সর্বনিম্ন ব্যাসার্ধ 2 মিটার নির্দেশ করা আছে, সেথানে পরিথা বা নল যেথানেই হোক, আন্নতন যেমনই হোক, সংস্থাপনের সময় সর্বনিম্ন ব্যাসার্ধ 2.8 মিটার রাথা হয়।

পি. ভি. সি. কেবলের বাঞ্ছিত সর্বনিম্ন ব্যাসার্ধঃ

11KV পর্যন্ত 15×D 11KV-র উধ্বে 12×D যথন, D কেবলের সামগ্রিক ব্যাস।

भारती

TENT NOT	বাঁকানোর সর্বনিন্দ ব্যাসার্থ		
ভোল্টের	भिज्ञन दकांत्र	মাণ্টি-কোর কেবল	
	কেবল	অনাচ্ছাদিত	আচ্ছাদিত
11KV প্र्यंख	20D	15D	12D
22KV পর্যন্ত	25D	20D	15D
33KV পর্যন্ত	30D	25D	20D

বিশেষভাবে লক্ষনীয় D=কেবলের সাম্প্রিক বাস

চভুৰ্থ অধ্যায়

কেবল স্থাপনের সরাসরি পদ্ধতি (DIRECT SYSTEM LAYING OF CABLE)

বৈহাতিক কেবল পাতার নানা বকম পদ্ধতি আছে। তার মধ্যে দরাদরি পাতার পদ্ধতিই সবচেয়ে প্রচলিত। কোদাল, পাওড়া বা দাবল দিয়ে পরিখা খুঁড়ে দরাদরি এই কেবল পাতা হয়ে থাকে। পরিখা খোঁড়ার কাজ শুক করবার আগে কেবল পাতার জন্ম পরিকল্লিত পথটিকে পায়েচলা রাস্তার উপর দিয়ে চকখড়ির দাহাযো চিহ্নিত করে নিতে হবে। কিন্ধ য়েখানে কোনও পায়ে-চলা পথ নেই, কিংবা ফাঁকা মাঠ দেখানে দড়ি টান-টান করে বেঁধে পথ চিহ্নিত করে নিতে হয়। যখন হস্ত-চালিত খনন-পদ্ধতি গ্রহণ করা হয়, তখন পরিখার উভয় দিকই চিহ্নিত করে নেওয়া ভাল। পথ তৈরির সময় কেবল য়েখানে য়েখানে মোড় নেবে, দেখানে ভারতীয় বিধি বারা নির্দিষ্ট বাঁকের নিম্নতম ব্যাসার্ধের দিকে লক্ষ্য রাখতে হবে। যারা খোঁড়ার কাজ করবে, তাদের প্রধানকে পরিকল্লিত পথে ভূনিয়স্থ অক্যান্ম নিত্র প্রয়োজনীয় বস্তুর সরবরাহ ব্যবস্থা কোথায় আছে, তা আগেই জানিয়ে রাখতে হবে। এর ফলে খননের সময় এই ধরণের বাবস্থা মেন ক্ষতিগ্রন্ত না হয়, দে বিষয়ে কর্মারা সতর্কতামূলক ব্যবস্থা নিতে পারবে।

সাধারণভাবে কেবল পাতার জন্ম চিহ্নিত পথে প্রায় 0'5 মিটার চওড়া পরিথা থনন করা হয়ে থাকে। পরিথার এই পরিমাণ বিস্তৃতি কর্মীদের কাজ করবার জন্মই পর্যাপ্ত। কিন্তু ভারতীয় বিধি অমুদারে পরিথার ন্যুনতম বিস্তৃতি হওয়া উচিত 0'45 মিটার।

কোনও কোনও ক্ষেত্রে একাধিক তারের স্থান সঙ্গুলানের জন্ম বিস্তৃত্তর পরিখা খননের প্রয়োজন হয়। কেননা, পাতা ছটি সমাস্তরাল কেবলের মধ্যে ন্যুনতম ব্যবধান 0.25 মিটার থেকে 0.4 মিটার রাখতে হয়। এর ফলে কোন একটি কেবলে ফল্ট হলে, তা অপর কেবলকে ক্ষতিগ্রস্ত করবে না। তাছাড়া, এই ব্যবস্থায় কেবলের পারস্পরিক তাপ বিনিময় ও তাপ বিকিরণে সাহায্যে করবে।

কার্যক্ষেত্রে পরিথার যতটা বিস্তৃতি রাথা প্রয়োজন, তার চেয়ে একটু কম করেই থোঁড়া হয়। পরে পাশগুলো স্থন্দরভাবে ছেঁটে নির্দিষ্ট বিস্তৃতিতে নিয়ে আসা হয়। নিচে উল্লিখিত ভারতীয় মান নিদ্ধারক সংস্থার স্থপারিশ পরিখার ন্যুন্তম গভীরতা নির্ণয়ের জন্ম বিচার্য:

1.1 KV প্র্যন্ত কার্যকারী চাপ।

0.45 মিটার ও সম্পূর্ণ কেবলটির ব্যাস।

3°3 KV থেকে 11 KV পর্যন্ত কার্যকরী চাপ।

0'75 মিটার ও সম্পূর্ণ কেবলটির ব্যাস।

22 KV থেকে 33 KV পর্যন্ত কার্যকরী চাপ।

1 মিটার ও সম্পূর্ণ কেবলটির ব্যাস।

থাকে থাকে কেবল পাতার প্রয়োজন থাকলে, যে পরিমাণ গভীর রাখার স্থপারিশ করা হয়েছে, তার চেয়ে গভীরতর পরিখা খোঁড়া হয়ে থাকে।

কার্যতঃ সম্ভব হলে, কেবলের পথ পরিকল্পনার সঙ্গে সঙ্গেই পরীক্ষামূলকভাবে সংযোগ-সন্ধির (jointing) অবস্থানও স্থির করে ফেলা ভাল।

এই সংযোজন গাড়ী-চলা এ্যাসফান্ট, কনক্রীট রাস্তার নিচে বা অন্যান্ত জরুরী সরবরাহ ব্যবস্থার থুব কাছাকাছি না হওয়াই ভাল।

কেবল সংযোজনের জন্ম গর্ভগুলির আয়তন কেবলের ধরন ও কেবল সংযুক্ত করার পদ্ধতি সংক্রান্ত প্রয়োজনের উপর নির্ভর করে। উদাহরণ স্বরূপ বলা যায়, 11 KV. বা তার চেয়ে বেশী ভোল্টেজ কেবলের সংযোজনের জন্ম প্রয়োজনীয় স্থান এল. টি. কেবলের চেয়ে বেশী হওয়া দরকার। গর্ভ কতটা করতে হবে, তা প্রধানতঃ কর্মীদের গর্ভের ভিতরে চুকে কাজ করবার স্থাচ্ছন্দ্যের উপর নির্ভর করে।

সাধারণতঃ এই গর্ভ 1.5 মিটার × 2 মিটার আকারের হয় ও গভীরতা পরিখার চেয়ে 0.3 মিটার বেশী রাখা হয়।

খনন প্রক্রিয়া (Excavation procedure) ঃ চিহ্নিত পথ ধরে পরিথা প্রথমে হাতে খুঁড়ে নেওয়া হয়, তারপর নক্ষা অত্যায়ী ত্ব পাশ চেঁচে সঠিক বিস্তৃতিতে নিয়ে আদা হয়। এর পর পরিথার তলদেশ ভালভাবে দমতল করা হয়। পরিথা গভীরে অদমতা থাকলে, তার ক্রমিক ঢাল ঠিক রেখে ভরাট করতে হবে। বর্ধাকালে মাটির নিচ থেকে জল উপরে উঠে, পরিথাকে ভিজিয়ে দিতে পারে। এ রকম ক্ষেত্রে জল জমার জন্ম পরিথা-তলের নিচে গর্ভ খুঁড়ে পরিথার দক্ষে সংযুক্ত করাই প্রচলিত রীতি। গর্ভে জমা-জল পাম্পাকরে বা বালতি করে উঠিয়ে ফেলতে হবে। এতে পরিথা শুকনা থাকে।

তলদেশ সমতল করা পরিথার উপর 7'5 cm বা 10 cm পুরু চলনি-ছাঁকা মাটির একটি স্তর বিছিয়ে দেওয়া হয়। ঐ স্তবের জন্ম রাসায়নিক-নিজিয় মাটি বেছে নিতে হবে। কেননা, কেবল-এর সঙ্গে এর সরাসরি সংযোগে থাকবে। মাটিতে যদি ক্লোরাইড জাতীয় লবণ, নাইটেট ও আালকালাইন পদার্থ থাকে, তাহলে কেবলের আচ্ছাদন ও বর্ম ক্ষয়প্রাপ্ত হয়। ছাই ও পাতা-পচা মাটিও কেবলের ক্ষয় ঘটায়।

কেবলে ক্ষয় প্রতিরোধ ব্যবস্থা (Preventive measures to avoid cable eorrosion) ঃ বাস্তবক্ষেত্রে, অবশ্র, থোঁড়া শুরুর আগে মাটি নিজ্ঞিয় কিনা পরীক্ষা করে দেখা হয় না। কিন্তু যদি খনন কার্য চলাকালীন রাদায়নিক শক্রিয় মাটির উপস্থিতি অন্থমিত হয়, তবে তৎক্ষণাৎ তা পরীক্ষা করে দেখতে হবে। সময়োচিত প্রতিরোধ ব্যবস্থা নিলে এসব ক্ষেত্রে কেবল দীর্ঘস্থায়ী হয়।

ডি সি. বিদ্যাৎক্ষেত্রের মধ্যে কেবল পাতা হলে ইলেক্ট্রোলিটিক্ প্রভাবের ফলে কেবল ক্ষয় প্রাপ্ত হতে পারে। সেজন্ত, শহরে যেখানে ট্রামের মত ডি. সি. বিদ্যাৎ-এর সাহায্যে যান চলাচল করে, সেথানে কেবল পাতার সময় খ্ব সতর্কতা নেওয়া দরকার।

নিচে যে অবস্থার কথা উল্লেখ করা হয়েছে, কেবল পাতার সময় ক্ষয় জনিত প্রভাব এড়াবার জন্ম তা সাধারণ নিয়ম হিসাবে বর্জন করা উচিত।

- 1. ছাই ও পাতা-পচা মাটি ভর্তি জমি;
- 2. নালা-নর্দমার নিকটস্থ জমি;
- 3 ডি. সি. বিহাৎ দারা চালিত যানের নিকটস্থ জমি।

নিত্য প্রয়োজনীয় সরবরাত ব্যবস্থাকে অব্যাহত রাখার পদ্ধতি
(Procedure for supporting utility service works)ঃ ভূ-নিমন্থ
নিত্য প্রয়োজনীয় সরবরাহ ব্যবস্থা পরিথা থোঁড়ার সময় বিপর্বস্ত হয়ে পড়তে
পারে। এরকম ক্ষেত্রে সরবরাহ ব্যবস্থাকে যথাযথভাবে সচল রাখার জন্য
বিশেষভাবে মনোযোগ দেওয়া দরকার। অন্যান্ত সরবরাহ ব্যবস্থার থোলা
মেনগুলি (mains) সাধারণতঃ সাময়িকভাবে দড়ি বা শেকল অথবা অন্য
কোনগুধরনের ঠেকা দিয়ে সচল রাখা হয়। পরিথাগুলি আবার ভরাট করার
আগে ঐ থোলা মেনগুলি ভাল করে পিটানো জমির উপর যথাস্থানে বিদিয়ে
দেওয়া হয়। কোনো কোনো ক্ষেত্রে এই কাজে ইট দিয়ে স্থায়ী কাঠামো তৈরি
করে ঠেকা দেওয়া হয়।

থোঁড়ার কাজ চলার সময় মাটি ঝুর্ঝুরে হলে পরিথার তৃপাশ ধনে যাওয়ার সম্ভাবনা থাকে। এই ধরনের মাটির ধন্ নামা প্রতিরোধ করার জন্ম পরিথার

Fig. 4-i

ত্ই পাশে কাঠের শক্ত তকা ব্যবহার করা হয়। তকা লাগান অবস্থায় পরিথাটিকে আবার ভরাট করার পদ্ধতি ভাল। পায়ে-চলা পথের নিচে জনসাধারণের নিত্য প্রয়োজনীয়

দরবরাহ ব্যবস্থার অন্ত্রমোদিত পরিকল্পনা নিচের তালিকায় নির্দেশিত হল।

পথের	ফুটপাথের বাস্তার	আবাসরেখা থেকে দূরত্ব				
설팅 (R) 설팅 (F) m. m.	প্রস্থ (C) m.	(E) ইলেক্ট্রিক cm.	(G) গাস em.	(T) টেলিফোন cm.	(W) জল cm.	
122	2.1	7.9	46	77	122	168
15.2	3.0	9.1	61	122	183	259
18 3	3.7	11.0	61	122	183	259
24'4	4'9	14.6	168	229	290	366
30.2	6'1	18.3	183	247	366	467
36 6	7.6	21.0	335	427	518	610

রাস্তা পারাপার করে পরিখা খনন (Trenching across road): রাস্তা পারাপার করে পরিখা খননের কাজে কিছু অস্ত্রবিধার সন্মুখীন হতে হয়। এই খননের সমস্তা শহরের প্রধান প্রধান রাস্তায়, (যেখানে গাড়ী চলচিল খুব বেশি, সেখানে) তীত্র আকার ধারণ করে।

অপেক্ষাকৃত কম চলাচলের রাস্তায় পরিথা খননের কাজ শুরু করবার আগে রাস্তা দিয়ে যান চলাচল বন্ধ করে দিতে হবে। রাস্তার উপরিতলে পরিথার তৃপাশই খড়ি দিয়ে চিহ্নিত করে নিতে হবে। একেবারে উপরের আাদফান্টের স্তর ও নিচের জমান-স্তরের কিনারা দোলা করে কেটে নিয়ে নির্দিষ্ট গভীরে পরিথাটি খনন করতে হয়। একটা নল পরিথায় স্থাপন করে আগের কাটা মাটি দিয়ে পরিথাটি ভর্তি করতে হবে।

জি. আই. অথবা আর. দি. দি. নল এই উদ্দেশ্যে বাাপকভাবে ব্যবহৃত হয়। কারণ, নলগুলি শক্ত আর বেশ বড় দৈর্ঘ্যের পাওয়া যায়। যথন এক কোরের কেবলের জন্ম স্তীলের নল ব্যবহৃত হবে, তথন এই নলের বাাস যেন এমন হয়, যাতে এর মধ্যে দুটো এই ধরণের কেবল দিছল-ফেজের ক্ষেত্রে বা তিন-ফেজের ক্ষেত্রে তিনটি কেবল প্রবেশ করানোর জায়গা থাকে। এর ফলে দক্ষরণ-জনিত (induction) প্রভাবের আশঙ্কা থাকে না।

পুন:স্থাপনের বায় কমানোর জন্ম কথনও কথনও রাস্তার উপরিতল পর্যায়ক্রমে কাটা হয়। এই পদ্ধতিতে রাস্তার উপরিতল পরিথার দৈর্ঘা বরাবর চিহ্নিত করে করেকটি অংশে বিভক্ত করে নেওয়া হয়। কোদাল, শাবল প্রভৃতি দিয়ে একটি অন্তর অংশে পরিথা থনন করা হয়। যে অংশ থনন করা হয়নি, তার নিচে দিয়ে স্থড়ঙ্গ খুঁড়ে থনিত ঘুটি অংশ সংযুক্ত করা হয়। কার্যত লক্ষা শাবলের সাহায়ে অ-থনিত অংশের নিচের অংশের ছ-প্রাস্ত থেকে স্থড়ঙ্গ থোড়া হয়। এই কার্যক্রম যতক্ষণ স্থড়ঙ্গ থোড়া শেষ না হয়, ততক্ষণ চলতে থাকে। একটা নল সাধারণতঃ জি. আই.নল, পরিথার দৈর্ঘা বরাবর রাস্তা পারাপার করে পাতা হয়, পরে পরিথাটি পূর্বের থনিত মাটি দিয়েই আবার ভরাট করে দেওয়া হয়।

বাস্ত শহরের চওড়া রাস্তার যান চলাচল খুব অল্প সময়ের জন্মও, (বিশেষ করে দিনের বেলায়), বন্ধ করা চলে না। সেই জন্ম, এই ধরনের রাস্তায় কেবল পাতার কাজ সাধারণতঃ মধ্যরাত্রে করা হয়। কিন্তু এই রকম জায়গায় যদি দিনের বেলাতেই কেবল পাতার দরকার হয়, তবে নিম্নবর্ণিত পদ্ধতি গ্রহণ করা যেতে পারে।

রাস্তার মোট বিস্তৃতির অধাংশের তুপাশে সতর্কতাস্থচক ঘটি বিজ্ঞাপন
ঝুলিয়ে গাড়ী চলাচল বন্ধ করে দেওয়া হয়। অপর অধাংশ অবশ্য যান
চলাচলের জন্ম উন্মৃক্তই থাকে। রাস্তার যে অংশে যান চলাচল বন্ধ আছে, সেই
অংশে প্রয়োজনমত গভীরতায় পরিথাটি খুঁড়ে নিতে হবে। একটি নল
পরিথার ভিতর বসিয়ে পূর্ব থনিত মাটি দিয়ে পরিথাটি আবার ভরাট করে দিতে
হবে। যান চলাচলের জন্ম এই অংশটি উন্মৃক্ত রেথে অপর অংশটি থোঁড়ার
জন্ম করে দিতে হবে। উপরি উক্ত পদ্ধতি অহুসরণ করে, একটি নল
পরিথার মধ্যে বসাতে হবে। উভয় অংশের নল ছটি একত্রে সংযুক্ত থাকবে।
পরে থনিত মাটি দিয়ে পরিথা আবার ভরাট করে দিতে হবে। সাধারণতঃ
জল-জমা এড়ানোর জন্ম নলটি একটু ঢাল রেথে বসানো হয়।

যান চলাচল ব্যবস্থা ব্যাহত হয় বলে এবং খনন ও স্থাপনের জন্ম ব্যয় বেশী বলে, শহরের ব্যস্ত রাস্তায় রাস্তা পারাপার করে, পরিথা খনন অগন্তব হয়ে দাঁড়ায়। এই ধরণের জায়গায় স্থড়ঙ্গ খোঁড়ার কথা বিচার করে দেখতে হবে। কার্যত হস্ত-চালিত মৃত্তিকা-ছিদ্রক (earth borer) এই উদ্দেশ্যে ব্যাপকভাবে ব্যবহৃত হয়। এই ছিদ্রক (borer) একটা সাধারণ মাটি খোঁড়ার য়য় ছাড়া আর কিছুই নয়, ইহা কেবল 1.5 মি. লম্বা একটি চালনা করার দণ্ড ও হাতল দ্বারা সংযুক্ত থাকে। চালনা দণ্ডের সঙ্গে পাইলট রড (pilot rod) লাগিয়ে এর দৈর্ঘ্য বাড়িয়ে নেওয়া যেতে পারে। এই মৃত্তিকা-ছিদ্রককে (earth borer দক্রিয় করবার জন্ম রাস্তার পাশের পায়ে-চলা পথে 2 মিটার × 2 মিটার একটা গর্ত খুঁড়তে হবে। যে স্থড়ঙ্গ খোঁড়া হবে তার চেয়ে এর গভীরতা কমপক্ষে ০ ও মিটার বেশী হবে। রাস্তার অপর দিকে যেখানে স্থড়ঙ্গ শেষ হবে, সেখানে অনুরূপ একটি গর্ত খুড়তে হবে। স্থড়ঙ্গ খোঁড়া শুরু করার আগে, শাবল দিয়ে দেওয়ালে একটি হাতের সাহায্যে ঘোরাতে হবে এবং শেষ না হওয়া পর্যন্ত কাজ চালিয়ে যেতে হবে।

কেবলের প্রকার ভেদ (Types of cable): স্ত্রীল ফিতা বা তারের বর্ম দেওয়া কেবল সরাসরি পাতা থায়। যেহেতু যান্ত্রিক ক্ষয়ক্ষতির হাত থেকে এগুলি চমৎকার ভাবে স্থরক্ষিত। পেপার ইন্স্যুলেট্ডে কেবল সরাসরি পাতার উপযোগী করে নেওয়ার জন্ম, এক বা ছই স্তর কয়লা-ঘটিত-যোগমিপ্রিত কাপড়, পাট বা শনের ফিতা জাড়িয়ে দেওয়া হয়। পি. ভি সিবর্মার্ত কেবল সরাসরি পাতা যায়।

পরিখায় কেবল পাতা (Placing cable in trench): পাওয়ার কেবল ভারী হয় বলে, পরিথায় পাতার সময় খুব সতর্কের সঙ্গে নাড়া-চাড়া করতে হয়। কেননা, পাতার সময় কেবলের উপরি তলে গভীর কোনও আঁচড় বা কেবলে মোচড় লাগার ফলে স্থানীয়ভাবে বর্মের উপকরণ এক জায়গায় জড় হয়ে গেলে, উপরের রক্ষক-আবরণ ক্ষতিগ্রস্ত হতে পারে।

কেবল পাতার প্রস্তুতি-পর্বে কোন্ দিকে কেবল টানা হবে, এই বিষয়টি প্রথম স্থির করা দরকার।

কয়েকটি সমস্থা (যেমন কোর উন্টাপাল্টা হয়ে যাওয়া বা ফেজে সনাক্ত করা, যা একটি নতুন কেবলের সঙ্গে পুরানো কেবলের সংযোগ ঘটানোর সময় বিশেষভাবে দেখা যায় তা, কেবল টানার দিক বিশেষ বিবেচনার সঙ্গে নির্বাচন করলে সমাধান করা যায়। কোন দিকে কেবল টানা হবে স্থির করার পর, কেবল-ড্রামটিকে গড়িয়ে নির্দিষ্ট জায়গায় নিয়ে যাওয়া হয় ও জ্যাকের উপর এমনভাবে রাথা হয়, যাতে ড্রামের দণ্ড অন্তভূমিক তলে থাকে এবং ড্রামের গায়ে তীর্রচিছ যেদিকে দেওয়া আছে, তার বিপরীত দিকে সহজে ঘোরে।

Fig. 4.ii

কায়িক পদ্ধতিতে পরিথাতে কেবল-টানা রোলার ব্যবহারে সহজতর হয়। পরিথার তলদেশে বিছানো আস্তরণের উপর স্বন্ধ ব্যবধানে রোলার স্থাপন করা হয়, এতে কেবল ঝুলে পড়ে না। সাধারণতঃ প্রত্যোকটি রোলারের সঙ্গে একজন কর্মী নিযুক্ত করা হয়।

পর পর ছটো রোলারের মধ্যের ব্যবধান নিরূপিত হবে, কর্মীমের সহজে কাজ করবার জন্ম যতটুকু জায়গা প্রয়োজন, তার উপর নির্ভর করে। তবে,

পরিখার ভিতর কর্মী-সংখ্যার অতি বাছল্য কাজের অগ্রগতি ব্যাহত করে। কেবলের আকার ও প্রকারের উপর ব্যবধানের পরিমাণ নির্ভর করে।

বাস্তবক্ষেত্রে এই ব্যবধান 1'5 মিটার থেকে 3 মিটার পর্যন্ত রাখা হয়।

वाँकारना পतिथां इतानां इ

Fig. 4.iii

কিভাবে স্থাপন করা হয়, তা 4.iii নং চিত্রে দেখানো হয়েছে।

কেবল খোলা (Paying out the cable): ড্রাম থেকে কেবল খোলার কাজ কর্মীদের দলপতি একটা স্থবিধাজনক জায়গায় (যেখান থেকে কেবল পাতার সমগ্র পথটি দেখা যায়) দাঁজিয়ে নিয়ন্ত্রণ করেন। ভ্রামের আক্রতি অনুযায়ী সাধারণতঃ হজন বা চারজন কর্মীকে এটা ঘোরাবার জন্ম নিযুক্ত করা

হয়। দলপতির নির্দেশ অনুসারে. ড়ামের কাছে নিযুক্ত কর্মীরা ড্রামটিকে ঘোরায় এবং অন্তরা পরিখার মধ্য দিয়ে কেবল টানতে থাকে; (চিত্ৰ 4'iv) যদি সকলের কাজ স্থসমন্বিত হয়, তাহলে ড্রাম থেকে ঝাঁকানি ছাড়াই পরিথায় কেবল টানা যাবে। বড় আকারের কেবল টানার কাজে কিছু অস্থবিধা দেখা দিলে, ঐ পরিস্থিতিতে কেবল হাত দিয়ে না টেনে, তার বদলে मिष्ठ वस्त्रीत माश्राया होना जान।

কোনও বক্ম প্রতিবন্ধকতা না থাকলে এবং পরিখা সোজা (straight) Fig. 4-iv

খোলা যায়। এই খোলা কেবল থ্ব সাধবানে পরিথার ভিতর নিয়ে যাওয়া হয়। হাত দিয়ে তুলে কেবল পরিথায় নিয়ে যাওয়ার সময় খুবই সতর্ক থাকতে হবে, যাতে কেবল অযথা ঝুলে না পড়ে।

কথনও কথনও কেবল খোলার জন্ম, বিশেষভাবে পরিকল্পিত ট্রেলারে কেবল ড্রামকে উঠানো হয়। এই পদ্ধতিতে ট্রেলার গাড়িটি টেনে নিয়ে যাওয়ার সঙ্গে সঙ্গে পরিথার ধারে ধারে কেবল খুলে পড়ে। পরে কেবল পরিথায় নিয়ে এদে পাতা হয়। যেহেতু এর ফলে কেবলের উপর সব চেয়ে কম চাপ পড়ে, তাই শহরের যে সব অঞ্চলে কোনও প্রতিবন্ধকতা ছাড়াই ট্রেলার পরিথার পথ ধরে যেতে পারবে আর পরিথাও সোজা এবং তা বাধাহীন, সেথানে এই পদ্ধতি বিশেষভাবে উপযোগী।

এ-প্রসঙ্গে একথা উল্লেখ করা যেতে পারে যে, কেবল খোলার জন্ম ড্রাম ঘোরানোর সময় কোনও রকম প্রতিবন্ধক পাকগুলিকে আঁট করে দেয়। এর ফলে উদ্ভূত চাপ ড্রামে পরবর্তী স্তরের কেবলের ক্ষতি করে। আবার यদি না

ঐ কাজ খুব দতর্কের সঙ্গে করা হয়, তবে পাক আঁট হয়ে যাওয়া এবং জামের কানায় ঘ্যালাগা এই ত্ই-ই ট্রেলারে করে পরিথার ধার দিয়ে কেবল-জামকে বয়ে নিয়ে যাওয়ার সময় হতে পারে।

পরিখা ভরাট করা (Back filling of trench) ঃ পরিখায় পূর্ণ দৈর্ঘার কেবল পাতার পর হাত দিয়ে কেবল একটু উচু করে ধরে রোলার গুলিকে তাদের জায়গা থেকে সরিয়ে নিতে হবে। পাতা কেবলকে এক টুকরো চাপিটা কাঠ দিয়ে সোজা করে বসাতে হবে (স্তীলের হাতুড়ি ব্যবহার করা উচিত নয়)। কেবলের অবস্থিতি একটু ঠিকঠাক করে পরিখার কেব্রস্থলে নিয়ে আসতে হবে। যদি একটি পরিখায় একের বেশী কেবল পাতা হয়, তবে তাদের মধ্যে আন্তরক্ষীয় (interaxial) ব্যবধান ভারতীয় বিধি অনুসারে যেন রক্ষিত হয়, তা দেখতে হবে।

পরিথায় সঠিক অবস্থানে কেবল স্থাপনের পর রাসায়নিকভাবে নিজ্ঞিয় আলগা মাটি বা বালির 10 সেমি, পুরু আন্তর্গ দিয়ে ঢেকে দিতে হবে। পরবর্তীকালে খননের সময়, য়াতে য়ায়্রিক ক্ষতির সময়খীন না হয়, সেই উদ্দেশ্তে পরিথার মাঝবরাবর মাটির আন্তরণের উপর ইট বা ঢালাই করা স্নাব বসানো হয়। ক্রিয়োজোট মাখানো কাঠের তক্তা দামে সন্তা বলে, কেবল ঢাকার কাজে ব্যবহৃত হয়। সাধারণভাবে এই তক্তাগুলি 5 সেমি, পুরু, 25 সেমি, চওড়া ও 300 সেমি, লম্বা হয়। রাসায়নিক-সক্রিয় মাটিতে এই কাঠের তক্তা কেবল ঢাকা দেওয়ার অমুপ্যোগী। পরবর্তী খননের সময় ঢাকার নিচে কেবলের ভোন্টেজ য়াতে অমুমান করা য়ায়, সেই উদ্দেশ্তে ঢাকার উপর সনাক্ত-স্টুচক চিহ্ন দিয়ে রাখাই প্রচলিত প্রথা।

আজকাল কেবলের ঢাকা হিদাবে কংক্রিটের স্থাব ক্রমশঃ বেশী পরিমাণে ব্যবহৃত হচ্ছে, এবং তা যদি কেবলের ঢাকার কাজে ব্যবহার করা হয়, তবে তার আকার ও ক্ষমতা ভারতীয় বিধি অনুসারে হওয়া আবশ্যক।

কেবলের চাকা সঠিকভাবে বসানোর পর পরিথাটি আগের কাটা মাটি স্তরে স্তরে বিছিয়ে ভরাট করতে হবে। প্রথম স্তর ফেলার পর পরবর্তী স্তর ফেলবার আগে ভালভাবে পিটিয়ে নিতে হবে। পেটানোর সময় পরিথায় মাঝে মাঝে জল ছিটোলে মাটি ভাল করে জমাট বাঁধবে। পরিথা 50 মি. মি. উচ্ মাটির চ্ডো করে ভরাট করাই বীতি।

স্ক্রেকিং (Flaking) ঃ কেবলের সমগ্র দৈর্ঘ্যই একবারে খুলে নেওয়া সব সময়ই ভাল। যেথানে এটি করা সম্ভব নয়, সেথানে ফ্রেকিং-এর আশ্রয় নিতে হবে। এই পদ্ধতিতে ইংরাজী আটের (৪) আকারে কেবলের একটি সমতাপূর্ণ কাঁস (100p) পরিখার পাশেই তৈরি করে নেওয়া হয়। কাঁস তৈরি করার সময় প্রস্তুতকারকদের কেবল বাঁকানোর সর্বনিম্ন বাাসার্ধ সম্পর্কে স্থপারিশ অবশুই মেনে চলতে হবে। যেহেতু উপরোক্ত কাজে প্রচুর পরিমাণ যত্ত ও মনোযোগ দেওয়া প্রয়োজন, সেজল্য এর বদলে কয়েকটা বেশী সংযোজক-সদ্ধিরাথা ভাল।

টানা পদতি (Draw-in system) : টানা পদ্ধতিতে পরিখায় পাতা নালি পথে (duot) কেবল স্থাপন করা হয়। আজকাল ঢালাই নিমেন্টের নল, ঢালাই লোহার নল বা দস্তার প্রলেপযুক্ত লোহার নল নালিপথ হিসাবে ব্যবহৃত হয়। কিন্তু এই উদ্দেশ্যে মাটি বা পাথরের নলও ব্যবহার করা হয়। कान अक्षरत कान विस्मय धर्रापत नल छेन्यां श रत, जा निर्वत कर्रात দেখানে কতটা স্থবকা আবশ্যক, ঐ নল সহজলভ্য কিনা ও খরচ কত পড়বে, তার ভিত্তিতে। ঢালাই লোহার ও দস্তার প্রলেপযুক্ত লোহার নলের দাম যদিও অক্তান্ত সহজলভা নলের চেয়ে বেশী, তবুও সব সময়ই যেসব অঞ্চলে প্রায়ই খননের কাজ চলে এবং রাস্তা, সেতু বা রেলসভ্কের নিচে যেখানে প্রায়ই नल काॅाप, महें मन अक्षालन जग अहे धनातन नलहें तिर्ह निखा है। শহরাঞ্লে সরবরাহ ব্যবস্থায় নালিপথ তৈরির জন্ম ঢালাই সিমেন্টের নল বেশ শক্ত এবং দামেও দস্তা হওয়ায়, বর্তমানে অধিক সংখ্যায় ব্যবহৃত হচ্ছে। যে কেবলটি টানা হবে, তার বাইরের ব্যাস অবশ্রই নালিপথের জন্য নির্বাচিত নলের ভিতরের ব্যাস অপেক্ষা কিছুটা কম হবে। কোন প্রতিবন্ধকতা ছাড়াই কেবল টানার জন্ম কেবলের বাইরের ব্যাসের চেয়ে নলের ভিতরেক ব্যাদ দাধারণত 2 দেমি. বড় রাথা হয়। যথন একই নলের মধ্য দিয়ে একাধিক কেবল নিয়ে যেতে হয়, তথন ইহাদের মিলিত ব্যাস অপেকা নলের ভেতরের ব্যাস 2 সেমি. বেশী রাখতে হবে। নতুন সংস্থাপনার ক্ষেত্রে ভবিয়তে কতথানি সম্প্রদারণের সম্ভাবনা আছে, সে কথা হিসাব করে নলের আয়তন স্থির করতে হবে।

নালিপথ দোজা ম্যানহোলের মধ্যে যায়। কিন্তু কথনও কথনও প্রতিবন্ধকতা এড়াবার জন্ম তাদের বাঁকতে হয়। এরকম ক্ষেত্রে কেবল চানার স্থবিধার কথা ভেবে বাঁকে ব্যাস যতটা সম্ভব বড় রাখতে হবে।

কায়িক পদ্ধতিতে যেভাবে পরিখা কাটা হয়, সেভাবে পরিখাটি এমন গভীরতার কাটতে হবে, যাতে সবচেয়ে উচু নলটিও মাটির তলের চেয়ে অস্ততঃ 60 সে.মি. নিচে থাকে। একই অন্ত্মিক তলে যতগুলি নল বাখা হবে, তার উপরই পরিখার বিস্তৃতি নির্ভর করে। সাধারণতা, গুটি সন্নিহিত নলের মধ্যে 35 সে.মি. থেকে 7'5 সে.মি. বাবধান রাখা হয়। পরিখার তলদেশ চাল্লু ও মস্থ করার পরই নল পাতা হয়। ঐ চাল 1: 400 রাখা হয়। পাতা নলগুলি খাতে তাদের নির্দিষ্ট অবস্থান থেকে সরে না যায়, সেবিষয়ে যথোপযুক্ত যন্ত্র নেওৱা আবক্সক। কার্যতা, পরিখা পুনরায় ভরাট করার সময় যাতে অবস্থানের পরিবর্তন না ঘটে, সেজন্ত পাতা নলের মধ্যে পার্থক্য-বক্ষক (separators) প্রবেশ করিয়ে দেওয়া হয়। ভরাট করার সময় যাতে অবান্ধিত জিনির প্রবেশ করে নল বন্ধ হয়ে না যায়, সে জন্তু নালিপথের ছুইপ্রান্ত কার্টের ছিপি দিয়ে কন্ধ করে দেওয়া হয়।

আজকাল বছপথবিশিষ্ট সিমেন্ট ঢালাই-এর নালিপথ জনপ্রিয় হয়ে উঠছে। এই ধরণের নালিপথ তৈরি করতে নিচের তিনটি পছতি প্রচলিত।

- া গাঁথা পদ্ধতি (Built up method) ;
- ২। স্তরীয় পদ্ধতি (Tier by tier method);
- ৩। ভাক-চিট্টব পদ্ধতি (Duc-tube method)।

সাঁথা পদ্ধ ভি (Built up method) ঃ এই পদ্ধতিতে প্রথমে 7'5 cm. পুরু সিমেণ্ট চালাই (1 : 3 : 6) প্র্যাব পরিথার তলদেশ সমতল করে নেওয়ার পর চালা হয় ও অন্তত: ছদিন সেভাবে রাখা হয়। এরপর সিমেণ্ট-চালাই মেঝের উপর নির্দিষ্ট বাবধানে পার্থক্য-রক্ষক স্থাপন করা হয়। প্রথম স্করের নলগুলি পার্থক্য-রক্ষকের উপর পাতা হয়। পরবর্তী স্তরের নলগুলি স্করের মধ্যবর্তী পার্থক্য-রক্ষকের উপর স্থাপন করা হয়। এই ধরণের প্রস্থলার সময় নালিপথের সংযোজক গ্রন্থিনী যাতে ছড়িয়ে থাকে, সে বিষয়ে যতু নিতে হবে।

ছড়িয়ে থাকা বলতে বোঝায়, সংযোজক গ্রন্থিজলি থেন একই উল্লম্ব তলে না থাকে। এই প্রথায় গ্রন্থনা দৃঢ়সংবন্ধ হয়। প্রত্যেক স্তরের নলগুলি এবং সমগ্র গ্রন্থনাটি কিছুদ্র পরপর তার দিয়ে ভালভাবে বেঁধে দিতে হবে। এতে নলগুলি নিজ নিজ অবস্থান থেকে সিমেণ্ট ঢালাই করার সময় সরে যাবে না। তারপর সমগ্র গ্রন্থনাটি সিমেণ্ট ঢালাই করে ঢেকে দেওয়া হয়।

স্তরীয় পদ্ধতি (Tier by tier method) ঃ Fig. 4. v স্তরীয় পদ্ধতিতে নলের প্রত্যেকটি স্তর পৃথকভাবে দিমেন্ট ঢালাই করা

হয়, কিন্তু গাঁথা পদ্ধতির মত সমগ্র-গুচ্ছের উপর দিয়ে নয়।
এই পদ্ধতিতেও পরিথায় তলদেশে 7.5 সে.মি. পুরু কন্জীটের স্ত্যাব
ঢালাই করা হয়। ভিত্তিস্তরের উপর তৃটি নলের মধ্যে পারস্পরিক
ন্যানতম ব্যবধান 25 সে.মি. রেথে প্রথম স্তরের নলগুলি সাজানো হয়।
নলগুলির কন্জীট ঢালাই-এর সময় নির্দিষ্ট অবস্থান থেকে সরে যাওয়ার

সম্ভাবনাকে রোধ করতে তাদের মধ্যে 120 দে.মি. ব্যবধানে চিক্রনী আক্বতির পার্থক্য-রক্ষক প্রবেশ করিয়ে দেওয়া হয়। এই পার্থক্য-রক্ষক শুধু যে নলগুলির সরে যাওয়া রোধ করে — তাই নয়, কন্জীট ঢালাই-এর সময় এগুলিকে মেঝের সঙ্গে চেপে রাথে। প্রথম স্তরের ঢালাই-এর উপর পরবর্তী স্তরের নলগুলি পাতা হয় (চিত্র 4.v)। প্রথম স্তরেটি মত এই স্তরটিকেও কন্জীট ঢালাই

Fig 4.vi

করে ঢেকে দেওয়া হয়। এইভাবে নলগুলির সমস্ত

স্তর গেঁথে তোলা হয়। একটা সম্পূর্ণ স্তরীয় গ্রন্থনা 4.vi চিত্রে দেখান হল।

ডাক-টিউব পদ্ধতি (Ductube Method) ও ডাকটিউব পদ্ধতিতে

ফীত-শক্তিশালী রবারের নল কন্ত্রীটের কাঠামোর পূর্ববর্ণিত নলের পরিবর্তে
নালিপথ তৈরির জন্ম ব্যবহৃত হয়। কন্ত্রীট যথন সম্পূর্ণ বসে যার, তথন
ববারের নলকে সম্কৃচিত করে তাদের পূর্ব অবস্থান থেকে সরিয়ে নেওয়া হয়।
নির্মাণ চলাকালীন কন্ত্রীটের নালিপথ তৈরির ক্ষেত্রে এই পদ্ধতি বিশেষ

উপযোগী। স্ফীত-শক্তিশালী রবারের নল স্তরীয় পদ্ধতিতে নালিপথ তৈরির

কাজেও বাবহৃত হয়।

ম্যানহোজ স্ Manholes) ঃ ম্যানহোল ভূনিমন্থ একটা কুঠরিবিশেষ। এথানেই নালিপথ শেষ হয়। আবার একে ড্য-পিট্ও বলা হয়। কারণ, নালিপথের ভিতর দিয়ে কেবল টানার কাজ এথান থেকেই করা হয়। ম্যানহোলে যে সব কেবল প্রবেশ করছে ও তা থেকে বেরিয়ে যাচ্ছে, তাদের সংযোজনের কুঠরি হিসাবেও একে ব্যবহার করা হয়।

ম্যানহোলের জন্ম সবচেয়ে ভাল অবস্থান হল, রাস্তা পারাপারের নিচের জমিতে তৈরি একটা কুঠরি। এথান থেকেই নালিপথগুলি বিভিন্ন দিকে ছড়িয়ে পড়ে। সাধারণতঃ, ছটি ম্যানহোলের মধ্যের বাবধান 150 মিটারের বেণী রাখা হয় না। ইট বা কন্ক্রীটের একটা অগভীর গর্ভই ম্যানহোলের কাজ করে। সাধারণভাবে ইটের দেওয়াল দেওয়া ম্যানহোলই ব্যবহৃত হয়। কিন্তু যেথানে মাটির তলা থেকে জল উঠে, সেথানে কন্ক্রীটের তৈরি ম্যানহোল অন্থাদন করা হয়। ম্যানহোলের মেঝে চালু রাখা হয় ও তৈরি চাক্না দিয়ে এর ম্থ বন্ধ করা থাকে। ম্যানহোলের ম্থের আয়তন এমন করা হয়, য়াতে একজন লোক তার মধ্যে স্বচ্ছলে প্রবেশ করতে পারে। এর ছাদ বি-ইনজোর্গড্ দিমেন্ট কন্ক্রীট-এর হওয়া বাঞ্নীয়।

ম্যানহোলের আয়তন নির্ভর করে নালিপথের সংখ্যা অথবা কত কেবল এসে দেখানে জড় হবে, তার উপর। কেবল টানা বা সংযোজনার জন্ম কর্মী প্রবেশ করে যাতে স্বচ্ছদে কাজ করতে পারে, এর উচ্চতা ততটা রাখতে হবে। কেবল টানা ও নালিপথের প্রান্তীয় সীমায় সহজে কাজ করবার জন্ম ম্যানহোলের কেবল প্রবেশর পথ ঘণ্টাক্ষতি রাখা হয়।

ছই, তিন বা চারটি প্রবেশপথ-বিশিষ্ট ম্যানহোলের আনেক প্রকার নক্সা আছে। যে কোনও একটি নির্দিষ্ট মানের নক্সাই নির্মাণের কাজে ব্যবহার করা চলে।

কেবল টানা (Drawing in Cable) । নালিপথ দিয়ে কেবল টানার প্রারম্ভিক পর্যায়ে নালিপথ বাছাই, নালিপথ লাঠি দিয়ে সাফাই (rodding) এবং দড়ি পরানো থাকে।

লালিপথ বাছাই (Selection of duct)ঃ নৃতন সংস্থাপনের ক্ষেত্রে তলার নালিপথ থেকে পর পর কেবল বিশুস্ত করা হয়। স্বল্প দৈর্ঘ্যের কেবলের নালিপথের নিচের থাকে। দীর্ঘতর কেবলের জন্ম নালিপথ বেছে নেওয়ই রীতি। একেবারে উপর তলার নালিপথটি সাধারণতঃ বাড়তি হিসাবে রাথা হয়। পুরানো ইনফলৈশনে এইভাবে নালিপথ নির্বাচন করা চলে না। এই অবস্থায় নতুন কেবল বাড়তি নালিপথেই স্থাপন করতে হবে। কিন্তু দোষ্যুক্ত কেবলের ক্ষেত্রে পুরানো নালিপথে নতুন কেবল স্থাপন করা হয়।

নালিপথ সাফাই (Rodding the duct) ঃ স্থাপনের কাজ চলার
সময় নালিপথে ময়লা জমে। সেইজন্ম কেবল টানার আগে নালিপথের
প্রতিবন্ধকতা :দূর করে নিতে হবে। 2 মিটার থেকে 3 মিটার লম্বা ও 2.5
সে.মি. ব্যাদবিশিষ্ট, এক প্রান্ত পিতল দিয়ে মোড়া ও অন্ত•প্রান্ত দকেট
(socket)-সমেত কয়েকটি বেতের লাঠি নালিপথ সাফাই করার জন্ম ব্যবহৃত
হয়। লাঠির মাথার পাটের ফেঁসো বেঁধে প্রথম লাঠিট নালিপথে প্রবেশ
করাতে হয়, তারপর একের পর একটি লাঠি নালিপথের ভিতর দিয়ে চালনা

করা হয়। এই পদ্ধতিতে পরিষ্কার করার কাজে লাঠি ব্যবহার করা হয় বলে, একে সাধারণতঃ বড়িং বলে। কথনও কথনও পরিষ্কার করার কাজে নর্ম ইশাতের রম্ভও ব্যবহৃত হয়।

দৃত্তি পরানো (Threading of rope): একটা শক্ত টানার দৃত্তি বা গ্যাস্ত্যানাইজত্ তার শেষ লাঠির সঙ্গে আটকে দেওয়া হয়। যথন লাঠিগুলি নালিপথের অপর প্রান্তে আসে, তথন লাঠিগুলি একে একে খুলে নেওয়া হয়। এই ভাবে টানার দৃত্তি নালিপথের অপর প্রান্তে আনা হয়।

কেবল টানা (Drawing in cable) ঃ ম্যানহোলের কাছে কেবল ছাম

Fig. 4.vii

গড়িয়ে এনে, যে দিকে
নালিপথের মৃথ সেই
দিকে জু-জ্যাকের উপর
ভোলা হয়। ড্রামটি জুজ্যাকের উপর তোলার
সময় যেন কেবল ড্রামের
উপর দিকা থেকে খোলে
এবং নালি পথের মধ্যে
পাকনা থেয়ে যেন সহজ্বে
ভিতরে প্রবেশ করে, মে
দিকে দৃষ্টি রাখতে হবে
(চিত্র 4. vii)।

কেবল ড্রামের দিকের টানার দড়ির প্রান্ত

কেবল ধরার ইম্পাতের তারে বোনা জালির সঙ্গে আটকে দেওয়া হয় (চিত্র 4.viii)। যে কেবলটি টানা হবে, তার উপরে তারের জালিটি পরিঞ্জে

Fig. 4.viii

দেওরা হয়। এই ধরণের কেবল ধরার জালি যতই টানের শক্তি বাড়ে, ততই দৃচভাবে আটকায়। টানের পরিমাণ মাঝামাঝি হলে, এই ধরণের জালিই ব্যবহৃত হয়। সীমার আচ্ছাদন বেশী টান সহু করতে পাজে লা; তাই কেবল বেশী জোরে টানার দরকার হলে টানার জালি (pulling grip)-র পরিবর্তে পুলিং আই (pulling eye) ব্যবহার করা হয়। পুলিং আই ইম্পাতের তৈরি। এটা সরাসরি পরিবাহকের সঙ্গে আটকানো থাকে এবং টানের শক্তি পরিবাহক ও আচ্ছাদনের উপর ছড়িয়ে পড়ে।

তৈরি করার সমন্ত্রই প্রত্যেকেই কেবলের টানের শক্তির নিরাপদ সীমা নির্দিষ্ট করে দেন এবং বাস্তবক্ষেত্রে কাজ চলার সমন্ত্র এগুলি যথাস্থভাবে মেনে চলা উচিত।

এই প্রদক্ষে কেবল প্রস্তুতকারকের কোনও নির্দেশ না থাকলে, ভারতীয় বিধির স্থারিশ গ্রহণ করা যেতে পারে।

আচ্ছাদনের ব্যাস সর্বোচ্চ টানের পরিমাণ

(ক) তাবের তৈরি 16 মিমি থেকে 30 মিমি 350 কেন্ধি পর্যস্ত ইম্পাতের জালি 31 মিমি থেকে 60 মিমি 500 কেন্ধি পর্যস্ত 61 মিমি থেকে 90 মিমি 850 কেন্ধি পর্যস্ত

(थ) श्रुनिः आहे

2 কেজি/মিমি²

আাল্মিনিয়াম কণ্ডাক্টরের
ক্ষেত্রে।

7 কেজি/মিমি²

তামার কণ্ডাক্টরের ক্ষেত্রে।

টানার দড়ির অপর প্রাস্ত উইঞ্চ (winch)-এর সঙ্গে সংযুক্ত করা হয়।
দড়ি যাতে নালিপথের মাঝামাঝি বার হয়, সে দিকে যত্ন নিতে হবে। এর ফলে
টানার কাজ চলাকালে, নালি পথের দেওয়ালে দড়ির ঘর্ষণ রোধ করা যাবে।

· 支持深行。如此公司公司,所谓各政权的。

ৰাস্তবক্ষেত্ৰে, টানার দড়ি নালিপথের সঙ্গে যাতে একই রেখায় থাকে, সে জন্ত দড়ির যে প্রান্ত টানা হচ্ছে, তার বিপরীত প্রান্তে ম্যানহোলের দেওয়ালে নির্দিষ্ট অবস্থানে একটা টানার জন্ত ব্লক (shatch block) আটকানো হয়। কথনও কথনও এই উদ্দেশ্যে দড়িও কপিকল ব্যবহার করা হয়।

নালিপথ দিয়ে কেবল টানার যাবতীয় প্রস্তুতি এই সঙ্গে শেষ হয়। নালিপথের তুই প্রান্তে কর্মীরা তাঁদের দলপতির নির্দেশে টানার কাজ করেন।
বেশী দৈর্ঘ্যের নালিপথের ক্ষেত্রে সাধারণতঃ দলপতির সঙ্কেত অপর প্রান্তের
কর্মীদের জানিয়ে দেওয়ার জন্ম মধ্য-পথে একজন কর্মী নিযুক্ত থাকেন।
কেবল ড্রামের চালনা ও উইঞ্জের কাজ এমনভাবে নিয়ন্তিত করতে হবে, যাতে

কেবল কোথাও ঝুলে না পড়ে বা আঁট হয়ে না যায়। কেবল ধীরে ধীরে ও সমতালে টানাই ভাল। সোজা নালিপথে প্রতি সেকেণ্ডে 23 সে.মি. হারে টানাই প্রচলিত রীতি। নালিপথের ভিতরে কেবল টানার আগে কখনও কখনও কেবলের বাইরের প্রচ্ছদের উপর যথেষ্ট পরিমাণে পিচ্ছিলকারক পদার্থ (Inbricant) লাগিয়ে নেওয়া হয়। পিচ্ছিলকারক পদার্থ লাগিয়ে নিলেটানার শক্তি প্রায় শতকরা চল্লিশ ভাগ হ্রাস পায় এবং কেবল ক্ষয়ের হাত থেকে রক্ষা পায়। পিচ্ছিলকারক পদার্থ-হিসাবে পেট্রোলিয়াম জেলি ব্যাপকভাবে ব্যবহৃত হয়। বাস্তবক্ষেত্রে নালিপথ দীর্ঘ ও বাঁকানো হলেই কেবলের বাহিরের প্রচ্ছেটে পিচ্ছিলকারক পদার্থ লাগানো হয়।

টানার কাজ সম্পূর্ণ হয়ে গেলে, তুদিকই সীল করে স্বল্প দৈর্ঘ্যের কেবল বার করে রাখা হয়। এতে সংযোজনার সময় বা ম্যানহোলে কেবল সাজিয়ে রাখতে কোন অস্ত্রবিধা হয় না। টানা-পদ্ধতির স্ত্রবিধা ও অস্ত্রবিধা নিচে দেওয়া হল:

ञ्चविशा :

- (ক) কেবলে পরিবর্ধন ও পরিবর্জনের কাজ পুনরায় মাটি না খুঁডেই ন্যুন্তম সময়ে করা যায়।
- (খ) নালিপথ কেবলকে যান্ত্রিক ক্ষয়-ক্ষতির হাত থেকে ভালভাবে রক্ষা করে। স্থতরাং, বর্মহীন কেবলের ক্ষেত্রেও টানা পদ্ধতিতে ব্যবহার করা চলে।

অন্তবিধাঃ

- (ক) সরাসরি মাটিতে পাতা কেবলের চেয়ে এর প্রাথমিক খরচ অনেক বেশী। বড় বড় শহর, যেখানে অক্যান্ত সরবরাহ ব্যবস্থার নানা রকম নল রয়েছে, যেখানে ছটি ম্যানহোলের মধ্যে সোজা নালি পথের স্বাভাবিক রক্ষণাবেক্ষণের খরচের চেয়ে সংস্থাপনের খরচ বেশী হতে পারে।
- (খ) নালিপথের ভিতরের কেবল খুব কম মাত্রায় তাপ বিদূরণ করে বলে, সরাসরি পাতা কেবলের চেয়ে বিছাৎ-শক্তির বহন-ক্ষমতাও কম।
- নত (গ) সরাসরি পাতা কেবলের চেয়ে, নালিপথের দোষযুক্ত কেবল বদলানো ব্যয়সাপেক্ষ।
- (ঘ) মাধ্যমিক পর্যায়ের সরবরাহ-কেন্দ্রের পক্ষে নালিপথের পদ্ধতি উপযোগী নয়। কারণ, গ্রাহকদের বিদ্যুৎ-সরবরাহ করার জন্ম প্রায়ই সরবরাহ কেবলের সঙ্গে সার্ভিস কেবল সংযোগ করতে হয়।

(ঙ) যেখানে মাটির নিচের জলতল উচু, দেখানে নালিপথ ভেদে যাওয়ার সম্ভাবনা থাকে।

খনবদ্ধ পদ্ধতি (Solid system) ঃ এই পদ্ধতিতে কেবল পাথর, কাঠ বা দিমেণ্ট কন্কীট না ঢালাই লোহার সক্ষ পাত্রে পাতা হয় ও পরে কয়লাঘটিত যোগ পদার্থ (bitumen compound) দিয়ে ভরাট করে দেওয়া হয়। এই পদ্ধতিতে কেবল পাতাকে ঘনবদ্ধ পদ্ধতি (solid system) বলে, যেহেতু কয়লাঘটিত যোগের হারা কেবল আচ্ছাদিত থাকে। প্রাথমিক থরচ বেশী বলে আজকাল তারতে খুব কমই ঘনবদ্ধ পদ্ধতিতে কেবল পাতা হয়। ওপুথরচই নয়, এই পদ্ধতিতে সংস্থাপনের সময় বেশী লাগে ও সরাসরি পাতার চেয়ে এই পদ্ধতিতে পাতার কাজে অধিকতর নৈপুণ্য প্রয়োজন হয়।

এই পদ্ধতিতেও সরাসরি পাতা পদ্ধতির মতই মাটিতে পরিথা খুঁড়ে নেওয়া হয়। যাতে কর্মী ত্রপাশে পা রেথে কাজ চালিয়ে যেতে পারেন, সেজন্ত পরিথাটি যথেষ্ট বিস্তৃত হওয়া দরকার। পরিথার তলদেশ সমতল করে তার উপর ঝুরো মাটির একটা আস্তরণ তৈরি করা হয়। এই আস্তরণের উপর পাত্রগুলি একটি অবিচ্ছিন্ন প্রণালীর মত করে স্থাপন করা হয়। তারপর পাত্রগুলির অভ্যন্তরভাগ ভালভাবে পরিক্ষার করে প্রায় 12 মিলিমিটার পুরু কয়লাঘটিত যোগের আস্তরন দেওয়া হয়। পাত্রের পথের মধ্যে 45 সে.মি. বা 50 সে.মি. অস্তর অস্তর বারধান-রক্ষক (spacer)-এ স্থাপন করা হয়। কেবল কার্যতঃ এই বারধান-রক্ষকের উপরই থাকে।

ষনবদ্ধ পদ্ধতিতে বর্মাবৃত কেবলই সাধারণভাবে পছন্দ করা হয়। কেবল পরিখার পাশে খুলে নেওয়া হয় এবং হাতে করে বয়ে পাত্রের কাছে এনে, পরিষ্কার ও শুকনো ব্যবধান-রক্ষকের উপর স্থাপন করা হয়।

তারপর কেবলগুলি সোজা করে, যে কোনও রকম টান টান ভাব না থাকে তা দেখা হয়। এরপর পরিকার করা পাত্রের এক প্রান্ত থেকে যতক্ষণ না অর্ধেক ভর্তি হয়, কয়লাঘটিত যৌগ গরম ও তরল অবস্থায় ততক্ষণ ঢালা হয়। পরে পাত্র-গুলি ঐ যৌগ দিয়ে পুরোপুরি ভর্তি করে দেওয়া হয়। তরল কয়লাঘটিত যৌগ পাত্রে ঢালবার আগে পাত্রের প্রবেশপথ একটি ঢাকনা দিয়ে বন্ধ করে দেওয়া হয়। সরাসরি পদ্ধতির মত মাটি দিয়ে পরিথাটি আবার ভরাট করে দেওয়া হয়।

যদি কয়লাঘটিত যৌগ শক্ত হয়ে যাওয়ার পর ঢাকা দিতে হয়, তাহলে আগে তরল যৌগের একটা পাতলা স্তর বিছিয়ে নেওয়া ভাল। ঢাকা সঠিক অবস্থানে রেখে তরল যৌগে ঢাপ দিয়ে বসিয়ে দেওয়া হয়।

ট্রে, ভাক বা ক্লীটের উপর কেবল পাতা (Laying cable on trays, racks and cleats) ঃ বৈচাতিক কেবল প্রায়ই বাদগৃহে, বিদ্বাত

Fig. 4.ix

কেন্দ্রে, সাবদ্টেশনে, সভক্ষে বা কারথানায়, ব্রাকেটে বা ট্রের উপর পাতা হয়। কেবল मिख्याल भवाभवि कीटाँव সাহাযো আটকে দেওয়া হয়। টে এম. এম. পাত দিয়ে তৈরি হয় ও ইম্পাতের কাঠামোর উপর বসানো থাকে। এর উপর দিয়ে সমান্তবাল কৰে দাধাৰণত ব্যবধান-রক্ষক ছাড়াই কেবল পাতা হয়। ট্রেই বরাবর

কেবলের ভারবহন করে। দেইজন্ম কোন ক্ষেত্রেই কেবল ঝুলে পড়ে ৰা (চিত্র 4.ix)। টে কথনও কথনও থাকে-থাকে সাজানো থাকে। এই ব্যবস্থা বেশীসংখ্যক কেবল বা বিভিন্ন ভোল্টেজের কেবল-স্থাপন সহজতর করে।

Fig. 4.x

अम. अम. मारि वा अव्यक्तात रेजित बारिक के क्वान का बाद करता (চিত্র 4.x.)। এই ব্যাকেট দেওয়ালে গেঁথে দেওয়া যেতে পারে বা অন্ত কিছুর উপর ভর দিয়ে আটকে দেওয়া যেতে পারে। ব্রাকেটগুলি একই তলে সাজানো যায় বা স্তরীয় পদ্ধতিতেও বিশুস্ত করা যেতে পারে। কিন্তু এর সনোনরন কতগুলি কেবল পাতা হবে, তার উপর নির্ভর করে। থাড়া করে পাতা কেবল ব্রাকেটের উপর ক্ল্যাম্প দিয়ে ভালভাবে আটকানো হয়। ক্ল্যাম্প তৈরির জন্ম চুম্বকম্ব-হীন পদার্থ, যেমন—কাঠ, পোর্দিলিন, পেতল এবং আ্যাল্মিনিয়াম ব্যবহৃত হয়। বহুতলবিশিষ্ট বাড়ীতে স্বন্ধ ব্যবধানে ক্ল্যাম্প কেবলের জন্ম নির্দিষ্ট নালিপথে লাগানো হয়।

থি -ফেজ লাইন তিনটি সিঙ্গল-ফেজ কেবলের সাহাযোও টানা যেতে পারে। কিন্তু এই ব্যবস্থায় কেবলগুলি ডেন্টা বা অনুভূমিক বিক্তানে সাজাতে হবে।

এছাড়া, কেবলগুলি ঘতটা সম্ভব নিকট সান্নিধ্যে রাথতে হবে এবং তাদের অবস্থান যেন যথোপযুক্ত নিরাপদ হয়, তাও দেখতে হবে। ক্লীট্ একটি

Fig. 4.xi

সাঁড়াশিজাতীয় কেবল ধরে রাথার যন্ত্র বিশেষ। এগুলি কাঠ বা পোর্দিলেন অথবা এম. এদ ফ্ল্যাটের তৈরি। ক্লীট্ কেবলকে সঠিক অবস্থানে দৃঢ়ভাবে আটকে রাথে। এগুলি সরাসরি দেওয়ালে আটকানো থাকে। ক্লীটের ঘটি অংশ; উপরের দিক আসনের কাজ ও তলার দিক রক্ষকের কাজ করে। রক্ষক-অংশের তলদেশে থাজকাটা থাকে, যাতে কেবলকে নিশ্চিত শক্তভাবে ধরে রাথতে পারে। কেবল

স্থাতে ঝুলে না যায়, দেজন্ত ক্লীট সরাসরি দেওয়ালের উপর একই তলে স্বল্প ব্যবধানে আটকানো হয়। ব্যাটনের উপরও ক্লীট আটকানো চলে (4.xi চিত্র)।

অন্তঃসাগরীয় কেবল পাতা (Submarine cable laying) ঃ কার্যতঃ
বহুক্ষেত্রেই নদী বা থাল পারে কেবল পাতা প্রয়োজন হয়। যেহেতু, সংস্থাপিত
কেবল সম্পূর্ণভাবে জলে নিমজ্জিত থাকে, সেই জন্ম এদের অন্তঃসাগরীয় কেবল
বলে। ইহা একটা দিস্তর তারের বর্মারত, পেপার ইনস্থালেটেড, সীসা আচ্ছাদিত
অভেগ স্বরক্ষক প্রচ্ছদদহ বৈঢ়াতিক কেবল ছাড়া আর কিছুই নয়। কোন

কেবল জোয়ার-ভাটা খেলা নদীতে সংস্থাপনের জন্ম নির্বাচন করার আগে, এর বর্ম তীব্র স্রোতের চাপ সহন্যোগ্য কিনা দেখা উচিত। কেবলের নদীপারের পথ পরিকল্পনা করবার আগে জোয়ার ভাঁটা, নদীর গভীরতা, স্রোত ইত্যাদি তথ্য সংগ্রহ করা উচিত।

নদীপারে কেবল সংস্থাপনের জন্ম, একটা নৌকায় বিশেষভাবে নির্মিত ঘূর্ণন্যন্ত্রের উপর কেবল ড্রাম স্থাপন করা হয়। আগে ডাঙায় উভয়তীরে কেবল নঙ্গরের জন্ম স্থান নির্বাচন করে নিতে হবে। নঙ্গর করার স্থান থেকে নদীগর্ভের কিছু দূর পর্যন্ত পরিথা থোঁড়া হয়। ড্রাম থেকে প্রথমে কেবল টেনে পরিথায় পাতা হয়। নঙ্গর করার জন্ম নির্দিষ্ট স্থানে কেবলের মৃক্ত প্রাপ্ত দৃঢ়ভাবে আটকে দেওয়া হয়। এরপর নৌকাটি ধীরে ধীরে গুণ টেনে নদীর অপর তীরে নিয়ে যাওয়ায়, কেবল নদী গর্ভে ডুবে যায়। সবশেষে, নদীতে পাতার গর ড্রাম থেকে কেবলের বাকি অংশ পরিথায় পাতা হয়। এরপর পরিথা বালি দিয়া ভরাট করে দেওয়া হয়।

ভাঙা নদীর পাড় বা খুব খাড়া তীরভূমি বা বিশেষ পরিস্থিতিতে কেবল সরাসরি না পেতে, কন্কীটের নলের মধ্য দিয়ে পাতাই ভাল।

নদীগর্ভ কঠিন হলে, যাতে স্রোতের অভিঘাতে কেবল প্রসারিত হয়ে না যায়, সেজক্ত সেথানে থোঁটা পুঁতে কেবল আটকে দেওয়া হয়।

কারখানার কেবল পাড়া (Laying cable in workshop) । কারখানার মেঝের আয়তাকার নালি কেটে কেবল নেওয়ার পদ্ধতি প্রচলিত। কেবল পাতার পর নালির মৃথ এম. এস প্লেট বা কন্ক্রীট স্ল্যাব দিয়ে ঢেকে দেওয়া হয়। কথনও কথনও দেওয়ালে আটকানো কাঠামোর মধ্য দিয়ে কেবল পাতা হয়। এছাড়া, বিভিন্ন যন্তের মধ্যে সংযোগের জন্ম ছাদে আটকানো নালি পথের ভিতর দিয়েও কেবল নিয়ে যাওয়া হয়। এতে যান্ত্রিক আঘাত উপরোক্ত ব্যবস্থায় রক্ষা করে।

সৈতুর উপর কেবল পাতা (Laying cable on bridge) : কন্ক্রীট্ সেতৃর পরিকল্পনাকার সেতু পরিকল্পনার মধ্যেই কেবল পাতার স্থান রেখে দেন। তাঁরা এই উদ্দেশ্যে খোলা নালির চেয়ে অচ্ছাদিত নালিপথই পছন্দ করেন। নালিপথের কন্ক্রীটের ঢাকনার উপর নিয়মিত ব্যবধানে পরিদর্শনের জন্তু গর্ত রাখা হয়। পরিদর্শনের জন্তু রাখা গর্ত নালিপথ দিয়ে কেবল টানার কাজ সহজ হয়। নালিপথে কেবল বালির মত ধাকা নিরোধক পদার্থের আন্তর্বের উপর পাতা হয়। ইম্পাতের সেতৃতে অবশ্ব সরাসরি সেতৃর কাঠামোর সঙ্গে কেবল আটকানো উচিত নয়। কেননা, সেতৃর সঙ্কোচন, প্রসারণ ও কম্পন কেবলের আচ্ছাদনকে ক্ষতিগ্রন্থ করতে পারে। সেই জন্ম, ইম্পাতের সেতৃতে কেবল পাতার জন্ম ক্যাটিনারী (catenary) ব্যবস্থা সাধারণভাবে অন্থমোদন করা হয়। এই ধরণের ব্যবস্থায় সাধারণত 2 মিটার ব্যবধানে সংযোগকারী তারের সাহায়ে কেবলটি বেঁধে ধারক তার (bearer wire)-এর সঙ্গে আটকে দিতে হবে, যেমন রেলের ট্রলিতারের ক্ষেত্রে করা হয়।

কথনও কথনও ইম্পাতের সেতৃর উপর ইম্পাতের নল পেতে তার মধ্য দিয়ে কেবল টেনে নিয়ে যাওয়া হয়। এককোরের কেবলের ক্ষেত্রে নলটির আয়তন এমন হওয়া দরকার, যাতে থি_কেজ লাইনের কেবলের স্থান এতে সঙ্গুলান হয়।

দেতুর উপর দিয়ে কাজ শুরু করবার আগে সংশ্লিষ্ট কর্তৃপক্ষের কাছ থেকে
নিয়মান্ত্রগ অনুমতি নেওয়া প্রয়োজন। কেবলের প্রস্তাবিত অবস্থান দেখিয়ে
একটা নক্ষা এবং কেবল পাতার প্রচলিত পদ্ধতিসহ একটি দর্থাস্ত সংশ্লিষ্ট
কর্তৃপক্ষের কাছে অনুমোদনের জন্ম পাঠাতে হবে।

সুড়ঙ্গে কেবল পাড়া (Laying cable in tunnel)ঃ সুড়গে দাধারণতঃ কেবল ক্লীটের দাহায়ে দেওয়ালে আটকে দেওয়া হয় অথবা আর্থ করা তাক বা ব্র্যাকেটে পাতা হয়। যতটা সম্ভব ঝুল বাঁচিয়ে কেবলকে দোছা পথে নিয়ে যেতে হবে। সুড়ঙ্গ পথে পাতা কেবলের বিক্যান্দ পরিবর্তন করা উচিত নয়। স্বড়ঙ্গের নক্সাতে কেবল-পথ চিহ্নিত করে রাখা ভাল। এর ফলে পরবর্তী রক্ষণাবেক্ষণের সময় কেবল খুঁজে পাওয়া সহজ হয়।

রেলপথের নীচে কেবল পাতা (Laying cable under railway track) ঃ রেল কর্তৃপক্ষের কাছ থেকে পূর্বে সম্মতি না পেলে, রেলপথের নীচে কেবল পাতার কোনও কাজ করা যায় না। রেল কর্তৃপক্ষ কিভাবে রেলপথের নীচে কেবল পাতা হবে, সে বিষয়ে এক নির্দেশ দেবেন এবং তাঁদের নির্দেশ কঠোরভাবে মেনে কাজ করতে হবে। সাধারণত ইম্পাত বা ঢালাই লোহার অথবা রিএনফোর্সড নলের ভিতরে কেবল পাতা হয়। নলের মাথা থেকে স্লীপারের তলদেশ পর্যন্ত গভীরতা সর্বদা ন্নতম 1 মিটার রাথতে হবে।

পঞ্চম অখ্যায়

কেবল সংযোজনের প্রয়োজনীয় উপাদান ও যন্ত্রাদি (Materials and tools required for jointing) ঃ বিছ্যৎ-প্রবাহের জন্ম অবিচ্ছিন্ন পথ তিরির উদ্দেশ্যে পাতা কেবলগুলি সংযুক্ত করা হয়। সেই জন্ম নিখুত সংযোজন-সন্ধি সরবরাহের ধারাবাহিকতাকে স্থনিশ্চিত করে, অপর পক্ষেতা যথাযথ না হলে বিছ্যৎ-বিভ্রাটের কারণ ঘটতে পারে।

তথনই সংযোজন-সৃদ্ধি আদর্শ বলে বিবেচনা করা হয় যথন বিদ্যুৎ পরিবাহকত (electrical conductivity), কেবল ছাই- ইলেক্ট্রিকের ইন্স্থালেশনগত বৈশিষ্ট্য এবং যান্ত্রিক ক্ষমতার পরিপ্রোক্ষিতে কেবলের গুণগত মান আক্রম থাকে। কিন্তু বাস্তবক্ষেত্রে খুব ভাল সংযোজনে উল্লিখিত সব গুণগুলি সম্পূর্ণভাবে রক্ষিত হয় না।

সংযোজনকে সরলবৈথীক সংযোজনসন্ধি (straight through joint)
বলা হয়; যথন দুইটি কেবলের তুই প্রান্ত একত্রে সংযুক্ত করা হয়। কিন্ত প্রধান কেবলের দঙ্গে কোনও শাখা কেবল সংযুক্ত করা হলে, তাকে 'টি'-সংযোজন-সন্ধি (tee joint) বলে।

বালাই (Soldering): কেবল পরিবাহকের সংযোগ-সন্ধিপ্তলি অবশ্রই ঝালাই (soldering) করতে হবে। সংযোজন সন্ধিকে পরিবাহক ও রাং-এর (solder) এক শৃন্ততাহীন পিণ্ডে পরিণত করাই ঝালাই করার উদ্দেশ, তা করতে গেলে, রাং-এর পরিবাহকগুচ্ছের মধ্যবর্তী ফাঁকে অনুপ্রবেশ নিশ্চিত করতে হবে। পরিকার ও অক্সাইডের আবরণমূক্ত পরিবাহকভুচ্ছের রাং-এর অবাধ-প্রবাহকে সাহায্য করে। কিন্তু পরিবাহকগুচ্ছের মধ্যে রাং-এর অনুপ্রবেশ, তার সাক্রতা ও উপরি-তলের চাপের উপর নির্ভর (viscosity and surface tension) করে। তাই সঠিক ফাক্স (flux) ও রাং নির্বাচনের গুরুজ কেবল সংযোজনে খুব বেশী।

ক্লাক্স (flux)-এর কান্ধ পরিবাহকগুল্ভকে নিখুঁতভাবে পরিষ্কার রাথা ও তার উপরিতল থেকে অক্সাইডের আবরণ অপসারণ করা। অক্সাইডের আবরণহীন পরিবাহকের উপরিতলে গলিত রাং প্রয়োগ করলে, তা সহজেই ছড়িয়ে যায় এবং পরিবাহককে টিন (tin) করার কান্ধ অরান্ধিত হয়। ঝালাই-এর কাজে ফ্লাক্স (flux) নির্বাচনের সময় দেখতে হবে, যেন ঝালাই করার পর ফ্লাস্কের অবশিষ্টাংশ পরিবাহক ও তার ইন্স্যুলেশানের পক্ষে ক্ষতিকর না হয়।

ফ্লাক্স (Flux) : বিশুদ্ধ রন্ধনের তামার উপর কোনও ক্ষয়কারক ক্রিয়া নেই বলে, তামার পরিবাহকের ঝালাই-এর কাজে তা ফ্লাক্স হিসাবে ব্যবহার করার মায়।

বিশুদ্ধ রজন-ক্লাব্রের প্রধান অত্ববিধা হল, এর ক্লাব্রের বৈশিষ্ট্যমূলক গুণের অভাব। ফলতঃ, পরিষ্কার করা তামার পরিবাহকের ঝালাই-এর ক্লেত্রেই এর ব্যবহার সীমাবদ্ধ। বিশুদ্ধ বন্ধনের সঙ্গে জৈবযৌগের সংমিশ্রণ ঘটিয়ে এর শক্তিয়তা বাড়িয়ে নিলে, বিশুদ্ধ রজন-ক্লাক্স ব্যবহারের অত্ববিধাশুলি অতিক্রম করা সম্ভব। এই মিশ্রণ রাংঝালের অত্বপ্রবেশ ক্লমতাকে বাড়িয়ে দেয় ও ঝালাই করার গতিকে ঘরান্বিত করে, রজনের ক্লয়নিরোধক ক্লমতাকে সম্পূর্ণভাবেশ্বকা করে এবং অপরিষ্কৃত তামার পরিবাহকের উপরিতলও ব্যবহারের উপযোগী করে।

উন্মৃক্ত পরিবেশে আালুমিনিয়াম পরিবাহকের উপর যে আন্থাইডের স্থায়ী আবরণ পড়ে, তা রাং-এর পরিবাহকগুচ্ছের মধ্যে দহজ প্রবেশের পথে বাধা হয়ে দাঁড়ায়। সেইজন্ম ঝালাই-এর আগে পরিবাহকগুচ্ছকে অবশুই ভালভাবে পরিষ্কার করে নিতে হবে। যান্ত্রিক ঘর্ষণের সাহায্যে পরিবাহকগুচ্ছের অন্থাইডের আবরণ অপসারণ সময়সাপেক একটা পদ্ধতি। পরিবাহকের উপরিতল থেকে এই ধরণের আবরণ জৈব বা অজৈব ক্লাক্স ব্যবহার করে ভালভাবে অপসারণ করে এবং সংযোজন-সন্ধিকে নরম ঝালাই-এর উপযোগীকরে তোলে।

জৈব ফ্লাক্স (Organic flux) ঃ আালুমিনিয়াম-পরিবাহকের সংযোজনের জন্ত ভারতে ব্যাপকভাবে যে জৈব যৌগের ব্যবহার হয়, তা ট্রাই ইথানোলেমাইন ও ক্লোরিন যৌগের মিশ্রণ (triethanolamine and flourine compound)।

এই ধরণের ফ্লাক্স প্রায় 250° সেন্টিগ্রেডে বিশ্লিষ্ট হয়ে পরিবাহকের উপর অক্সাইডের স্থায়ী আবরণ অপসারণ করে। অক্সাইডের আবরণহীন আালুমিনিয়াম পরিবাহকগুচ্ছের উপর গলিত রাং ছড়িয়ে পড়ে এবং টিন (bin) করার কাজ স্থনিশ্চিত করে। কিন্তু এই ধরণের ফ্লাক্স 300° সেন্টিগ্রেডের চেয়ে বেশী ভাপমাত্রায় পুড়ে কাল হয়ে যায় এবং ফ্লাক্স ভার বৈশিষ্ট্য হারায়। পোড়া ফ্লাক্স সংযোজন সন্ধিতে শৃত্যতা সৃষ্টি করে এবং স্বভাবতই তা কমজোরী হয়ে পড়ে।

আগের আলোচনায় একথা শাই হয়ে উঠেছে যে, ক্লাক্স-করা পরিবাহকের উপর কেবলমাত্র 300° সেন্টিগ্রেড পর্যস্ত তাপমাত্রার গলিত রাংই প্রয়োগ করা চলবে। কার্যতঃ, এই তাপমাত্রার জন্ম একটা পাত্রে রাংকে 360° সেন্টিগ্রেডে উত্তথ্য করা হয়। পাত্রে রাখা রাং-এর তাপ বেশী মাত্রায় রাখা হয়। কেননা, রাং পাত্র থেকে হাতায় ঢালবার সময় ও পরিবাহককে উত্তথ্য করতে কিছুটা তাপ অপচয় হয়।

আালুমিনিয়াম পরিবাহকের সংযোজনের জন্ত 'আইয়ার নং 7' (Eyre no 7) নামক একটি জৈব ফ্লাক্স বর্তমানে ব্যবস্থাত হচ্ছে। এই ফ্লাক্সের প্রস্তুতকারক দাবী করেন যে, সংযোজনের জন্ত প্রয়োজনীয় 316°C তাপমাত্রায় চেয়ে কম তাপমাত্রায় এই ফ্লাক্স কাজ করে এবং এতে ফ্লাক্সের যাবতীয় গুণাবলী আছে।

অজৈব ফ্লাক্স (Inorganic flux) ঃ অজৈব ফ্লাক্সকে চলিতভাবে "বিঞাক-শান ফ্লাক্স" বলা হয়। ধাতব ফ্লালাইড (halide)-ই এর প্রধান উপাদান।

প্রযুক্তবিদ্রা ক্রমশই আালুমিনিয়াম পরিবাহকের উপরের স্থায়ী অক্সাইডের আবরণ অপসারণের কাজে এর উপযোগিতাকে স্বীকার করে নিচ্ছেন। পূর্বে প্রচলিত অজৈর ক্লাক্স সাধারণতঃ ভারী ধরণের ধাতু (যেমন—টিন, দস্তা, দীসা ও ক্যাডমিয়ামের ক্লোরাইড)-র মিশ্রণ। এই দন্ট 250° নে. থেকে 350° দেটিগ্রেডে আালুমিনিয়াম পরিবাহকের দঙ্গে বিক্রিয়ার কলে আালুমিনিয়াম ফালাইড তৈরি হয় ও পরিবাহকের উপরিতল থেকে অক্সাইডের আবরণ অপসারিত করে। পরে দ্বিতীয় পর্যায়ের আর একটি বিক্রিয়া হয়ে ভারী ধাতুর অপসারণ ঘটে ও অক্সাইডের আবরণহীন আালুমিনিয়াম পরিবাহকের উপরিতলে ধাতু-শঙ্কর (alloy) প্রলেপ পড়ে। এই প্রলেপ পরিবাহকের উপরিতলের পরবর্তীকালে আবার অক্সাইডের আবরণ পড়ার দস্ভাবনাকে প্রতিরোধ করে এবং আালুমিনিয়াম পরিবাহকের গভীরে রাং স্বচ্ছকে প্রবেশ করতে সাহায্য করে।

এই ধরণের ক্লাক্সে বিক্রিয়া শুরুর জন্ম বেশী তাপের প্রয়োজন হয়। তাই সংযোজনের সময় কোর ইন্স্যালেশানের ক্ষতির সম্ভাবনা থেকে যায়। সম্প্রতি 200° সেন্টিক্রেড বা তার নীচে বিক্রিয়া হয়, এমন বিঅ্যাকশান ফ্লাক্স, উদ্ভাবিত হওয়ায় এই বিশেষ অস্থবিধা অতিক্রম করা সম্ভব হয়েছে।

রাং (Solder) ঃ বাং-এর প্রধান উপাদান টিন ও সীসা। তামার পরিবাহক সংযোজনের জন্ত "টিনম্যানস সোল্ডার" ব্যবহার করা হয়। এটি একটি ধাতৃ-শঙ্কর; এর উপাদান সমপরিমাণ টিন ও সীসা। কিন্তু অ্যালুমিনিয়ামের পরিবাহক জৈব বা অজৈব জাস্তেব সাহায্যে সংযোজনের কাজে বিভিন্ন উপাদানে গঠিত বাং ব্যবস্থাত হয়।

জৈব লান্ধের সঙ্গে বাবহারোপযোগী রাং-এর উপাদান সাধারণত: নিম্নন্তপ: 51% দীসা, 31% টিন, 9% দস্তা এবং 9% ক্যান্ডমিয়াম্। ইন্ডিয়ান কেবল কোম্পানী আাল্মিনিয়ামের পরিবাহকের উপযোগী রাং ও ঝালাই করায়, ক্লান্থ যথাক্রমে প্যারাসোল (parasol) ও প্যারাসান্ধাল (parafluxal) নামে বাজারে ছেড়েছেন। তারা দাবী করেন, প্যারাসান্ধাল 280° দেন্টিগ্রেড থেকে 290° দেন্টিগ্রেড তাপমাত্রার মধ্যে কাজ করে।

একথা উল্লেখ করা হয়েছে, উচ্চ তাপমাত্রায় জৈবজাল্ল পুড়ে যায় ও জাল্প-করার ক্ষমতা হারায়। কিন্তু বিজ্ঞাকশান জান্তের এধরণের কোন অস্থবিধা নেই। সেই জন্ত জৈব ও অজৈব জান্তের সঙ্গে বাবহারের উপযোগী রাং-এর বৈশিষ্ট্য সম্পূর্ণ ভিন্ন। জৈব জাল্পের সঙ্গে বাবহারের জন্ত রাং-এর তরল হওয়ার তাপমাত্রা কম থাকে। অপরপক্ষে বিজ্ঞাকশান জাল্পের সঙ্গে বাবহারের জন্ত রাং-এর জন্ত বাস্থিত বৈশিষ্ট্য হল উচ্চতাপমাত্রায় তরল ও বেশ ভাল প্রবাহনীলতা হওয়া।

বিআকশান ফ্লাক্সের দক্ষে যে রাং ব্যবহার করা হয়, তার মাজার (wipe) ক্ষমত। খুবই সীমিত। অতএব, একটি পরিচ্ছন্ন সংযোজন-দদ্ধির জন্ত ভিন্ন উপাদানে গঠিত ও ভিন্ন তাপীয় বৈশিষ্ট রাং সংযোজন-দদ্ধির মধ্যবর্তী শূক্তা পূর্ব ও তা মাজার কাজে ব্যবহৃত হয়। ভারতীয় মান নিদ্ধারক সংস্থা অন্থমোদিত রাংএর উপাদান (IS 1255-1967) নীচে দেওয়া হল:

শূভা পূর্নের জন্ম রাং (Filling solder)
গঠন—দস্তা 50%, টিন 29%, ক্যাডমিয়াম 21%
তবল করার তাপমাত্রা—330° সেঃ
কঠিন হওয়ার ভাপমাত্রা—160° সেঃ
শেষ পর্যায়ের বা মাজার রাং (Finishing or wiping solder)
গঠন—দীদা 70%, টিন—30%
তবল করার তাপমাত্রা—256° সেঃ
কঠিন হওয়ার তাপমাত্রা—180° সেঃ

পি. আই. এন. সি. কেবলের সীমার আচ্ছাদন ও সীমার হাতার সংযুক্তি শতকরা 70% দীমা ও 30% টিন মেশানো রাং-এর মাহায্যে করাই প্রচলিত প্রথা।

কেকুল (Ferrule) ঃ

ছুইটি কেবল পরিবাহকের প্রান্ত দীমা সংযোজনের জক্ত উইক ব্যাক্ত ক্ষেকলের (weak back ferrule) ব্যবহার ব্যাপক। ফেরুল টিন করা তামার তৈরি আড়াআড়ি কাটা ধাতব নল। কেবলের পরিবাহকের মাপের উপর ফেরুলের মাপ নির্ভর করে। সাধারণতঃ, প্রতি বর্গ ইঞ্চিতে 100 এম্পিয়ার বা সংযোগতলের প্রতি বর্গ মিলি মিটারে 0'155 এম্পিয়ার ফেরুলের নিরাপদ বিত্যুৎ ঘনাত্ম (current density) বলে বিবেচিত হয়। বিভিন্ন কেবলের উপযোগী ফেরুলের অন্থমোদিত মাপের তালিকা নিচের দেওয়া হল:

সারণী

পরিবাহকের আয়তন		ফেরুলের দৈর্ঘ্য		
বৰ্গ ইঞ্চি	বৰ্গ মি মি	रे कि	মি.মি.	
0.06	40	18	35	
0.10	65	15/8	41	
0.12	95	2	51	
0.50	125	21/8	54	
0.25	160	$2\frac{1}{8}$ $2\frac{1}{8}$	60	
0.30	195	25/8	67	
0.40	260	3	76	
0.20	320	$3\frac{5}{16}$	82	

চালাই লোহার সংযোজন-বাক্স (Cast iron joint box) ঃ কেবলের ফিতাজড়ান কেরের যান্ত্রিক স্বরক্ষার জন্ত ঢালাই লোহার সংযোজন-বাক্স ব্যবহৃত হয়। এই ধরণের বাক্সগুলির মাপ ও নক্সা সংযোজন-সন্ধির মাপ ও ধরণ কেবলের কার্যকরী ভোল্টেজের উপর নির্ভরশীল। সাধারতঃ, এল. চি. কেবলের ইন্স্থালেটেড কোর সরাসরি বাক্সের মধ্যে সীসার হাতার (lead sleeve। আবরণ ছাড়াই রাথা হয়। কিন্তু এইচ. টি. কেবলের ক্ষেত্রে সংযোজন সন্ধিকে সীসার হাতার ভিতর স্থাপন করার পরই বাক্সে রাথা হয়।

নাট ও বোল্টের সাহায্যে লোহার সংযোজন বাজের ছটি অংশকে আটকানো হয়। এই বাজের তই প্রান্তে ক্লাম্পের সাহায্যে কেবল আটকাবার ব্যবস্থা থাকে। এল. টি. সংযোজন-বাজে সীসার আচ্ছাদন বণ্ডিং ক্ল্যাম্পে আঁট করা হয়। বাজের ডালায় প্লাগসহ একই ধরণের ছটি ছিদ্র থাকে এবং তার মধ্য দিয়েই বাস্কে কেবল ক্যাম্পাউনড (cable compound) ভরা হয়। ব্যবহারের আগে সংযোজন-বাত্মে কোন ক্রটি, বিশেষ করে বায়ুবহ (blow)-ছিদ্রে আছে কিনা, দেখতে হবে ও ক্ষয়রোধক রং লাগিয়ে একে ক্ষয়-নিরোধক করে নিতে হবে।

যদি ক্ষয়ের সম্ভাবনা বেশী থাকে, তবে ঢালাই লোহার বাজের বদলে কন্ত্রীটের বাক্স ব্যবহার করাই ভাল।

হাঙা (Sleeve) ঃ যান্ত্রিক ক্ষতি থেকে কিতাজড়ান কোরকে রক্ষা করা, আর্দ্রতা প্রবেশ প্রতিরোধ করা এবং ছই কেবলের আচ্ছাদনকে সংযুক্ত করার জন্ম ইহা ব্যবহৃত হয়। সীসা, তামা অথবা পেতলের হাতাই ব্যবহার করা হয়। 11KV. পর্যন্ত ভোল্টেজের কেবল সংযোজনের কাজেদীসার হাতাই পছল করা হয়। হাতা সরাসরি আচ্ছাদনের সঙ্গে ভুড়ে দেওয়া যেতে পারে। দেক্ষেত্রে সীসার হাতার প্রান্ত খুব সাবধানে পিটিয়ে আচ্ছাদনের অতি নিকটে নামিয়ে আনতে হবে। কিন্তু কেবল সংযোজনকারীয়া পূর্ববর্ণিত পদ্ধতিতে হাতার প্রান্ত করা রয়জে নেওয়ার চেয়ে সীসার রিং লাগানো পছল করেন। কেবল প্রস্তৃতকারকরা য়য়েত ক্রেলের সংযোজনের কাজে সীসার বৃশ (bush) ও পেতলের হাতার ব্যবহার অন্থুমোদন করেন।

কেবল যৌগ (Cable compound)ঃ কেবল যৌগের নিম্নলিখিত প্রয়োজনীয় গুণাবলী থাকা দরকার:

- (১) উত্তম সংযুক্তির ক্ষমতা;
- (২) ঠাণ্ডায় সংকোচনের হার শতকরা কম;
- (৩) বেশী তাপফাত্রায় নরম হওয়া ;
- (8) জলে যাওয়ার জন্ম বেশী তাপমাত্রা (250°C);
- (e) ঠাণ্ডাম চিড় না ধরা।

11KV. পর্যস্ত কার্যকরী ভোল্টেজের কেবল সংযোজনের বাক্স ভরাটের জন্ম ক্য়লাঘটিত যৌগ ব্যবহার করা হয়। ভারতীয় কেবল কোম্পানী প্যারাকম' (Paracom) নামে একটা ক্য়লাঘটিত যৌগ প্রস্তুত ক্রেছেন। তাঁরা দাবী ক্রেন 22KV. কার্যকরী চাপের কেবল সংযোজন বাক্সে ব্যবহার করা যাবে। ঢালবার সময় যৌগের তাপমাত্রা থাকবে 150°C।

1 🎎 V. ভোল্টেজ পর্যন্ত কেবল সংযোজন-বাক্সে একই ধরনের কয়লাঘটিত যোগ হাতা ও বাক্স ভরাট করার জন্ম ব্যবহার করা যায়। কিন্তু 11KV.-এর চেয়ে বেশী ভোন্টেঞ্চর বাক্সে হাতা ভরাট করা হয় তেল ও রজনের যৌগ দিয়ে এবং ঢালাই লোহার দংযোজন-বাক্স ভরাট করা হয় কয়লাঘটিত যৌগ দিয়ে। ঠাণ্ডা অবস্থায় ঢালার উপযোগী কয়লাঘটিত যৌগও প্রস্তুত হয়েছে। এর প্রস্তুতকারকরা 11KV পর্যন্ত কেবল সংযোজন ও টারমিনেশন বাক্সের উপযোগিতার কথা বলছেন।

ইন্স্যলেটিং কিন্তা (Insulating tapa) ঃ কেবলের খোলা কোরের উপর ইন্স্যলেটিং কিতা ব্যবহার করা হয়। নীরেট ধরণের পেপার ইন্স্যলেটেড্ কেবল ইন্স্যলেশানের জন্ম বার্নিশযুক্ত মিহি কাপড়ের ফিতা, তৈলসিক্ত কাগজের ফিতা, তৈল বা কয়লাঘটিত যোগিদিক্ত স্তি ফিতা প্রভৃতি পছন্দ করা হয়। এই ফিতার বিধিবদ্ধ পরিমাপ 19 মি.মি. ও সাধারণত রোলের আকারে পাওয়া যায়।

ভারতের একটি প্রধান কেবল প্রস্তুতকারক তৈলসিক্ত কাগজের বিচ্ছিনক (separator) প্রস্তুত করেছেন। এটা তিন-কোরবিশিষ্ট উচ্চ ভোন্টেজের কেবলে ব্যবহার করা চলে। এই ধরণের বিচ্ছিনক ব্যবহারের আগে কেবল পরিবাহকের সংযোজন সন্ধি পরিষ্কার করে ইন্স্থালেটেড্ ফিতা জড়িয়ে নিতে হবে। আগে থেকে তৈরি করা এই বিচ্ছিনক লাগানর পর এটি ফিতা জড়ান কোরকে ঘিরে রাথে এবং সংযোজন সন্ধির দৈর্ঘ্য বরাবর ঢেকে দেয়। বিচ্ছিনক ও কোর ইন্স্থালেশানের মধ্যবর্তী স্থানে কেবল যৌগ সহজেই প্রবেশ করতে পারে। যেহেতু, কোরগুলি কেবল যৌগ দিয়ে ঘেরা থাকে, সেইজন্ম এই পদ্ধতি প্রচলিত ফিতা দিয়ে জড়ানো কোরের চেয়ে আর্দ্র তার প্রবেশের বিরুদ্ধে বেশী প্রতিরক্ষা জোগায়।

আবৃত্তকরণ (Screening) ঃ ধাতুসংযুক্ত কাগজের ফিতা 11 KV.-র চেয়ে বেশী ভোল্টেজ কেবলের ইন্স্থালেটেড কোরের ঢাকার কাজে ব্যাপকভাবে ব্যবহার করা হয়। এই উদ্দেশ্যে তামার জালি (copper tinsel stocking)-ও ব্যবহৃত হয়।

কেবল সংযোজনের অস্থান্থ উপাদান যেমন দীসার পাত, তৈল প্রতিরোধক ফিতার পুলটিশ, তৈল প্রতিরোধক ফিতার বন্ধনী, দীলকরা হাতা, আগে থেকে তৈরি তৈলসিক্ত কাগজের শঙ্কু (cone), কোর বিচ্ছিনক প্রভৃতি ব্যবহৃত হয়।

পেপার ইন্স্যলেটেড বৈক্যতিক কেবল সংযোজনের জন্ম প্রয়োজনীয় যন্ত্রাদির তালিকা পরপৃষ্ঠায় দেওয়া হল।

লকা	বিৰয়ণ	मः भा
1.	রো-ন্যাম্প	2倍
2.	কেরোদিন প্রেদার স্টোভ	18
3.	হাক্-ভ (ছটি রেডসমেত)	16
4.	ছোট হাক্-ছ (150 মি.মি. তিনটি রেডদমেত)	1億
5.	বড় রাং গলানোর পার্টিশন্ দেওয়া পাত্র	18
6.	বড় হাতা (100 মি.মি.)	2億
7.	কাটিং প্রায়ার	1億
8.	ফাক্-জ ব্লেডের তৈরি ছুরি	1億
9.	পেনসিল-কাটা ছুরি	1億
10.	400°C. তাপমাত্রা মাপার উপযোগী থার্মোমিটা	4 ····································
11.	कृष्ठ-कन	16
12.	ফাত্ম লাগানোর শব্দ গোলাকার বাশ	1億
13.	ভারি কাঠের হাতুড়ি	16
14.	হাৰা কাঠের হাতুড়ি	COLUMN / HOLD 16
15.	রং করার আশ	16 1 16 16
16.	জু-ড্রাইভার (200 মি.মি.)	··· 16
17.	ঐ (150 মি.মি.)	16
18.	ঐ (100 মি.মি.)	1億
19.	কাঠের শিরিট্ লেভেল (200 মি.মি. দীর্ঘ)	… 月 1度
20.	লোহার তারের রাশ	16
21.	হাতুড়ি (1 কে.জি.; গোল-মাথা)	16
22.	ঐ (1/2 কে.জি.)	1億
23.	গ্যাস প্রায়ার (300 মি.মি.)	1110 1511 1度
24.	টিন কাটার কাঁচি	16
25.	বক্স শ্যানার	1 छि दमछ्
26.	ছেনি	明佛作為,於京灣南河 1億
27.	সল্ড্যারিং আয়রন (স্ট্রেট্ টাইপ)	1市
28.	ঐ (হাচিট্ টাইপ)	16
29.	ওলন	1億

पका	বিৰরণ		जः श्रा
30.	ক্যালিপার (বাহির ও ভিতরের প্রস্তচ্ছেদ মাপার জন্ম)		16
31.	দাগানোর ছেনি		1億
32.	আচ্ছাদন 'বেলিং' করার যন্ত্র	•••	16
33.	স্যানার—বিভিন্ন মাপের	•••	1টি ক'রে
34.	অর্ধগোলাকার উথা (300 মি.মি.)		1億
35.	ঐ (250 মি.মি.)	•••	1億
36.	ত্রিকোণী উথা (300 মি.মি.)		1位
37.	চ্যাপ্টা উথা (300 মি.মি.)		1億
38.	ঢাক্না দেওয়া আালুমিনিয়াম অস্প্যান		16
39.	র্বাবের মাত্র		1危
40.	ত্রিপল (0.9 মিটার × 1.8 মিটার)		16
41.	कैं। कि	AND T	16
42.	সীসার আচ্ছাদন পরিষার করার ক্রেপার	***	1億
43.	আয়না (আয়তাকার)	1837	1位
44.	ওয়াইপিং ক্লথ (80 সে.মি. × 90 সে.মি.)	•••	16
45.	মোল স্থিন্ তেও		16
46.	কেবল যৌগ গলানর বালতি ও বালতি ধরার আংটা		
		•••	1টি ক'রে
47.	উনান	· 1	1位
48.	রবারের দন্তানা	5*1197	1危
49.	হুতির দস্তানা	***	1億
50.	ক্তি (20 মিটার দীর্ঘ)	619	1億
51.	কাঠের গোঁজ	****	4億
52.	কৰ্ণিক	n.v.d	1億
53.	टिन्हें न्यांन्थ	***	1位
54s	পিলার বক্স খোলার চাবি	•••	1位
55.	তালা	***	1億
56.	যন্ত্ৰ রাথার কাঠের বাক্স		1位

यष्टे जन्यास

সংযোজন

সংযোজন (Jointing)ঃ কেবলের পরিবাহকের সংযোজন কয়েকটি কার্যক্রমের মধ্যে দিয়ে করা হয়। এই কার্যক্রমের প্রত্যেকটি প্রভূত সতর্কতা ও মনোযোগের সঙ্গে সম্পন্ন করতে হবে। বিভিন্ন ধরনের কেবল সংযোজনের মূল স্ত্রগুলো একই। কিন্তু সঠিক কার্যপদ্ধতি ভোল্টেজ, কোর ইন্স্যালেশান এবং সংখোজনের কাজে ব্যবস্থাত বাজের উপর নির্ভর্মীল।

প্রস্তুতি-পর্ব (Preparatory step): 1. বাতাস ও ধুলো থেকে মৃক্ত রাথার জন্ম সংযোজনের ক্ষেত্রটি 6 মি. × 6 মি. তাঁবু দিয়ে চেকে দেওয়া হয়। বাতানের বিপরীত দিকে তাঁবুর একটিমাত্র দরজা রেখে এটা করা হয়।

- 2. কেবল যোগ উত্তথ্য করার ব্যবস্থা সংযোজন ক্ষেত্রের কাছাকাছি এমন জায়গায় করতে হবে, যাতে বাষ্পা ও ধোঁয়া তাঁবুর ভেতরে না ঢোকে।
- 4 বর্ষাকালে গর্ভের চারপাশে মাটির বাঁধ দিতে হবে, যাতে বৃষ্টির জল না চুকে পড়ে।
- 5. বাড়তি জল জমার গর্ত এমন জায়গায় করতে হবে, যাতে জল বার করার সময় সংযোজনের কাজে কোনও বাধা না আসে।
- 6. গর্তের তলদেশে ত্রিপল পেতে তার উপর পুরানো কাগজ বিছিয়ে দংযোজনের যন্ত্রপাতি সাজিয়ে রাথতে হবে, যাতে সংযোজনকারী সহজে কাজের সময় ঐগুলি হাতের কাছে পান।
- 7. একই চিহ্নযুক্ত কেবলের কোরগুলি একত্রে জুড়তে হবে। সাধারণতঃ প্রস্তাকারকরা কেবলের কোর ইন্স্থালেশানের দব থেকে বাইরের স্তরে পরিচিতি চিহ্ন দেন। এই চিহ্ন লাল, নীল, হল্দ, কালো রঙের হতে পারে বা নম্বর দেওয়াও থাকতে পারে।

চার কোরবিশিষ্ট নিম্নচাপের কেবলে সরলরৈখিক সংযোজনের পদ্ধতি (The procedure for making straight-through joint of four-core low tension cable):

1. ঢালাই লোহার সরলবৈথিক সংযোজন বাজের (cast iron straight through joint box) বিভিন্ন অংশ খুলে ফেলে ভালভাবে পরিষ্কার করা হয়।

- 2. কেবলের প্রান্তগুলি পাশাপাশি রাখা হয় ও প্রস্তাবিত সংযোজন সন্ধির কেন্দ্র চিহ্নিত করা হয়।
- 3. ঢালাই লোহার বাজের নিচের অংশ কেবলের নিচে প্রস্তাবিত সংযোজন সন্ধির কেন্দ্রকে মাঝামাঝি রেথে স্থাপন করা হয়।
- ঘেথান থেকে বর্ম ও প্রচ্ছদ সরাতে হবে, সেই স্থান চিহ্নিত
 করতে হবে।

উল্লেখ্যঃ কেবলের বর্মের প্রাস্ত সাধারণত বর্মের ক্ল্যাম্পের 3 মি.মি. ভেতরে রাখাই প্রচলিত প্রথা।

- 5. উচ্চ ভোল্টেজের কেবলের সরলরৈথিক সংযোজনের সময় যে উপায়ে বর্ম ও প্রচ্ছদ সরানোর কথা বলা হয়েছে, সেই পয়াই একেত্রে অবলয়ন করতে হবে।
- 6. কেবলের দীদার আচ্ছাদন পরিষ্কার করে, আচ্ছাদন-বন্ধনী ক্ল্যাম্পের 25 মি.মি. দ্র পর্যন্ত কেবল আচ্ছাদন উচ্চ ভোল্টেজের কেবলে সরলবৈথিক সংযোজন পদ্ধতিতে বর্ণিত উপায়ে প্রান্ত থেকে ছিঁড়ে ফেলা হয়।
- 7. ইন্স্যলেশানের বেড়ও আচ্ছাদনের প্রান্ত থেকে 35 মি. মিটারের বেনী রেথে কেটে ফেঙ্গা হয়। কাটার আগে বেড় ইন্স্যলেশানের উন্মূক্ত অংশে কাপড়ের ফিতার রক্ষাবন্ধনী দিয়ে নিতে হয়।
- কেবলের কোরগুলি ছড়িয়ে নিয়ে ইন্স্রালেটিং কাপড়ের ফিতা দিয়ে জড়িয়ে দেওয়া হয়।

Fig. 6.i

9. ' প্রস্তাবিত সংযোজন সন্ধির উভয় পাশে কোরের ভেতরে তৃদিক থেকে ফেব্রুলের উপর জড়ান ফিতার প্রান্ত থেকে অন্যূন 12 মি.মি. ব্যবধান রেথে কোর বিচ্ছিনক ঢুকিয়ে দেওয়া হয়।

- কেবলের থোলা কোরের বাড়তি অংশ এমনভাবে কাটা হয়, য়াতে একে অপরের মুথে মুথে থাকে।
- ফেকলের অর্ধেক দৈর্ঘা ও 10 মি.মি. পরিমিত অংশ সমান করে
 কোর ইন্স্যালেশান মাধা থেকে ফলর করে ছেটে পরিবাহকে উন্ত করা হয়।

উল্লেখ্য: পরিণীত সংযোজক সন্ধি (married joint) ব্যাপকভাবে গৃহীত হয়েছে, বিশেষ করে থনি অঞ্চলে 7 গুচ্ছ তামার পরিবাহক-সম্বলিত কেবলে। এই ধরণের সংযোজনেব জন্ম নিম্নিথিত পদ্ধতি গ্রহণ করা হয়।

- (a) পরিবাহক গুচ্ছকে বাইবের দিকে ঘৃতিয়ে নেওয়া হয় এবং পরিকার করে সোজা করা হয়।
- (b) বাইরের দিকে ছড়ান পরিবাহক গুল্ছ ত্'টি পরস্পরের দিকে ঠেলে বদিয়ে দেওয়া হয়।
- (a) সংযোজক সন্ধির কেন্দ্রটি একটি প্লায়াস দিয়ে দৃঢ্ভাবে ধরে শুচ্ছের তারগুলি পরিবাহককে থিরে একটা একটা করে ঘ্রিয়ে জড়িয়ে দেওয়া হয় (6.i চিত্র)। পরিশেষে তারের প্রাস্তগুলি পরিবাহকের সন্নিকটে আটকে দেওয়া হয়।
 - (d) একই ভাবে কেবলের অন্তান্ত কোরগুলি দংযুক্ত করা হয়।
- কেবল-পরিবাহকের সংযুক্তি উচ্চ ভোল্টেজের কেবল-পরিবাহক
 সংযোজনের পদ্ধতি অবলম্বন করেই করা হয়।
- 13 থোলা পরিবাহকের উপর কারথানার ইন্স্থানেশানের প্রায় ত্'গুণ পুরু করে ইন্স্থালেটিং স্তি-ক্ষিতা জড়িয়ে দেওয়া হয়।
- 14. 19 মি.মি. চওড়া দীদার ফিতা দীদার আচ্ছাদনের চারদিকে জড়িয়ে আচ্ছাদন-বন্ধনী ক্ল্যাম্পের ভিতরের ব্যাদের দর্মান করা হয়।
- 15. 50 মি মি. বা 75 মি.মি. চওড়া সীদার পাত বর্মের উপরে জড়ান হয়, য়তক্ষণ না দেটা বর্মের ক্ল্যাম্পের ভিতরের ব্যাদের সমান হয়।
- 16. সঠিক অবস্থানে ঢাল।ই লোহার সংযোজন বাক্সের নিচের অংশ স্থাপন করা হয় ও বর্মের ক্ল্যাম্প কেবলের সঙ্গে আটকে দেওয়া হয়।
- 17. বাজ্মের উপরের অংশ সঠিক অবস্থানে রেথে নিচের অর্ধাংশের সঙ্গে দৃঢ্ভাবে আটিকে দেওয়া হয়। (চিত্র 6.ii)
- 18. ব্লো-ল্যাম্প (blow lamp) দিয়ে এর পর এই বাক্স গরম করা হয় ও জমে যায়, এমন কয়লাঘটিত যৌগ তরল করে যতক্ষণ না ভরে ঢেলে দেওয়া হয়।

19. কিছুক্ষণের জন্ম যৌগটিকে জমতে দেওয়া হয়, পরে বাকাটির উপরে গলিত যৌগ ঢেলে পূর্ণ করা হয়।

Fig. 6.ii

20. বাক্সের বাহিরে খোলা অংশ কয়লা-ঘটিত যৌগ-সিক্ত পাটের ফিতা জড়িয়ে স্বব্দিত করা হয় এবং বর্মের ক্ল্যাম্পের ঘন্টাকৃতি মুখ (bell-mouthed) আল্কাতরা মাখানো পাটের দড়ি গুঁজে বন্ধ করে দেওয়া হয়।

চার কোরবিশিষ্ট নিম্নচাপের কেবলের সঙ্গে অনুরূপ বিস্তাৎ-বাহী কেবলের সরলরৈখিক সংযোজনের জন্ম বাড়ভি সভর্কভাঃ

- 1. প্রস্তি-পর্ব (Preparatory steps): কাজ শুরু করার আগে সংযোজনকারী রবারের জুতা বা দস্তানা পরে নেবেন। তিনি আরও দেখে নেবেন, যাতে পরিথার তলদেশ শুকনো থাকে ও একটা রবারের মাতৃর পাতা থাকে। তিজে গর্তের মধ্যে যদি রবারের মাতৃরের কিনারা দিয়ে জল ওঠে তবে তাঁর কাজ করা উচিত হবে না। এ রকম পরিস্থিতিতে রবারের মাতৃর কাঠের তক্তার উপর পাততে হবে।
 - 2. সভর্কভায়ূলক ব্যবস্থা (Precautionary steps) :
 - (a) সংযুক্তির আগে কেবল বিহাৎ-বাহী কিনা পরীক্ষা করে দেখতে হবে।
- (b) বিদ্যাৎবাহী কেবলের কোরের বর্ম সরিয়ে সীসার আচ্ছাদন খুলে ফেলে এবং কেবলের বেড় ছিঁড়ে কোরকে উন্মুক্ত করতে হবে।
- (c) সংযোজনের জন্ম নির্বাচিত কোরকে কাঠের গোঁজ দিয়ে পৃথক করে দিতে হবে এবং কোর ইন্স্থালেশান কাটার আগে তার পেছনে একটুকরো রবার রাখতে হবে।

উল্লেখ্য: নিউট্রাল (neutral) কণ্ডাক্টর সব থেকে শেষে উন্মূক্ত করাই উচিত।

(d) কেবলের অক্সান্ত কোর এমনভাবে কাটতে হবে, যাতে কোরগুলির সংযোজন সন্ধির অবস্থান একই উল্লম্ব তলে না হয়ে যায়। এতে কাজ চলাকালীন সংযোজনের কাজে ব্যবহৃত যন্ত্রাদির বারা সংঘটিত আক্ষিক শর্টসার্কিট প্রতিরোধ করা যায়।

- (e) নিরাপতার জন্ত কোরের প্রান্তগুলি ফিতা দিয়ে জড়িয়ে দিতে হবে।
- (f) কেবলের অকাশ্য কোরের ইন্স্যলেশান সরানোর জন্ম অফুরুপ পদ্ধতি অফুসরণ করা উচিত।
- (g) বাস্তবক্ষেত্রে সংযোজনের কাজ চলাকালীন আকস্মিক শট দার্কিট প্রতিরোধ করার জন্ম আচ্ছাদন ও বর্মের উপরে দাইকেলের টিউব জড়িয়ে নে ওয়াই প্রচলিত রীতি।

11 KV. পর্যন্ত ভিনটি কোর বিশিষ্ট উচ্চ ভোল্টেজের কেবলে সরস্তৈরখিক সংযোজন পছতি (The procedure for making straight-through joint of three-core high voltage cable rated upto 11 KV):

ঢালাই লোহার সংযোজন বাক্স ও সীসার আচ্ছাদন প্রস্তুতি (Preparing the Cast Iron joint box and Lead sheath): সম্পূর্ণভাবে পরিকার করার জন্ম সরলবৈথিক সংযোজন-বাক্সের নাট-বন্ট্র খুলে উপরের ঢাকনা, বর্মের ক্ল্যাম্প এবং জন্মান্ত অংশ পৃথক করে ফেলা হয়। বর্মের ক্ল্যাম্পের ভিতরের অংশ ও আচ্ছাদন বন্ধনীর গ্রিপ (grip) পরিকার করার সময় মনোযোগ দেওয়া প্রয়োজন। এর ফলে বন্ধনীর ফল কার্যকরী হয়। সীসার হাতা ও সীসার রিং যদি ব্যবহৃত হয়, তাহলে ধূলা ও তেল (grease) উথা দিয়ে ঘষে ভালভাবে পরিকার করে নিতে হবে এবং পরে পরিক্বত অংশের উপর চর্বি মাথিয়ে দিতে হবে। হাতার যে অংশ রাঙে সম্মার্জিত হবে না, সেথানে প্রাথারস ব্ল্যাক (Plumbers black)-এর প্রলেপ লাগানোর পদ্ধতি ভাল। তারপর হাতাটি কোন একটি কেবলে সংযোজন সন্ধিন্থান অভিক্রম করে ঢুকিয়ে দেওয়া হয় এবং কেবলের কাগজমোড়া অংশে কেবল-যোগ ভরার গর্ত নিচের দিকে রেথে স্থাপন করা হয়। হাতটি আবার কাগজ দিয়ে চেকে দেওয়া হয়।

ইন্সলেশানে আর্দ্রভার অনুপ্রবেশ পরীক্ষা (Testing moisture ingression in ineulation) ঃ কেবল সংযোজনের কাজ শুক করার আগে বাড়তি কেবলের প্রান্ত থেকে স্বল্প দৈর্ঘ্যের একটি অংশ কাটা হয়। এবং পরিবাহক, ফিলার ও বেড়গুক্ত ইন্স্তালেশানের উপরের স্তর আর্দ্রভার জন্ম পরীক্ষা করা হয়। পরীক্ষার জন্ম কোরের ঠিক উপরের কাগজের ইন্স্তালেশান এবং আচ্ছাদনের ঠিক নিচের স্তর নির্বাচন করার পদ্ধতি ভাল কেননা আর্দ্রভা সহজেই

আচ্ছাদনের নিচের স্তর ও পরিবাহকের উপরের স্তর ভেদ করে প্রবেশ করে।
এই পরীকা পরিচালনার সময় পরীক্ষার জন্ম নির্বাচিত পেপার ইন্স্থালেশানের
নম্নায় যেন না পরীক্ষকের হাতের ঘাম লাগে, তা দেখা খুবই জকরী। তা না
হলে পরীক্ষা থেকে কোনও সিদ্ধান্তে পৌছানো যাবে না। পরীক্ষা করতে হবে
একটিমাত্র কাগজের পর্দা নিয়ে। তা না হলে স্তরের পর্দার মধ্যের বায়ুর বুদ্বুদ্
(air-bubbles)-কে আর্জভাজনিত বুদ্বুদ্ (moisture-bubbles) বলে ভুল
করার আশবা থাকে। পরীক্ষার জন্ম নেওয়া নম্না অংশকে চিম্টে দিয়ে ধরে
গবম প্যারাফিন মোমপূর্ণ পাত্রের ভেতর ভুবিয়ে দেওয়া হয়। ঘৌগের তাপমাত্রা
120° থেকে 140° সেন্টিগ্রেডের মধ্যে রাখা হয়। নম্না অংশ ডোবানোর
কয়েক সেকেণ্ডের মধ্যে যদি ফেনা উঠতে ও বুদ্বুদ্ (frothing and bubbling)
কাটতে দেখা যায় তাহলে বুঝতে হবে ইন্স্থালেশান ভিজে। এক্ষেত্রে সংশ্লিষ্ট
কেবল বদলে ফেলতে হবে অথবা মূল অংশ থেকে ক্ষতিগ্রন্থ অংশ কেটে বাদ
দিতে হবে।

প্রাক্তন ও বর্ম অপসারণ (Stripping off serving and armour.) ঃ

Fig. 6.111

কেবলের প্রান্তগুলি পাশাপাশি রেথে প্রস্তাবিত সংযোজন সন্ধির কেন্দ্র চিহ্নিত করা হয়। 10 मि. विशे देवर्षा द्वरथे राकि-ज (hack saw) फिर्य কেবল কেটে নেওয়া ঢালাই লোহার সংযোজন বান্ধের তলার অর্ধাংশ প্রস্তাবিত সংযোজন সন্ধির নিচেমাঝামাঝি স্থাপন করা হয়, যাতে যে স্থান थ्यं अष्ट्रम. २र्भ ७ शिम অপদারণ করা হবে, তা চিহ্নিত করা যায়। সংযোজন বালোক বর্মের ক্ল্যাম্প থেকে 5 সে.মি. দুরে কেবলের প্রচ্ছদের উপর শक তার-বন্ধনী দেওয়া হয়।

তারপর রে!-ল্যাম্প দিয়ে গ্রম করে প্রচ্ছদ অপসারণ করা হয়।

তারের বিতীয় বছনীটি দেওয়া হয় কেবলের বর্মের উপর এমন একটা দ্বানে যাতে বর্মের 6 মি.মি. অংশ বর্মের ক্ল্যাম্পের ভেতরে চুকে থাকে। টিনম্যানের কাঁচি দিয়ে কেবলের বর্ম থুব শতর্কতার দক্ষে কাটা হয়। প্রথমে রো-ল্যাম্প দিয়ে গর্ম করে এবং পরে কেবোদিন বা পারাফিনে কাপড় ভিলিয়ে নিয়ে আবরণমুক্ত বর্ম ও আছোদন পরিষ্কার করা হয়। তাপে আচ্ছাদনের উপরিতলের যোগ নরম হয় ও যোগের আঠালো ভাবকে ক্মিয়ে অপনারণকে সহজ করে। পরিষ্কার করার সময় কেবল যেন বেশী উত্তপ্ত না হয়ে যায়, তা দেখা প্রয়োজন।

সীলার আচ্ছোদন অপলারণ (Removal of lead sheath) :

সংযোজনের ভল্ত কোরকে আবরণমৃক্ত করতে কেবলের আচ্ছাননের

একটা অংশ অপদাবিত কবতে হয়।

সাধারণত কেবলের একপ্রাম্ব থেকে

দীদার হাতার অর্ধাংশের দৈর্ঘার

চেয়ে 25 মি.মি. কম দীর্ঘ একটি অংশ

মাপা হয়। এর ফলে হাতার ভিতরে

আচ্ছাদনের উভয়প্রাম্ব চুকে থাকে।

এরপর সীদার আচ্ছাদনের উপর

হা ক্-না ই ফ (hack-knifa) ও

হাতুড়ির দাহাযো চিহ্নিত স্থানে একটি

রিং কাটা হয়। আচ্ছাদনের গভীরতার

Fig. 6.iv

অর্ধাংশের চেয়ে কাটার গভীরতা যেন বেশী না হয়ে যায়, দেবিষয়ে দতর্কতা নিতে হবে। তারপর আচ্ছাদনের যে অংশ অপসারিত করতে হবে তা কেবলের প্রান্ত থেকে শুরু করে ছুরি বাঁকা করে ধরে দৈর্ঘা বরাবর চিরে ফেলতে হবে। লম্বালম্বি চেরা আচ্ছাদনের এক প্রান্ত হাতুড়ি দিয়ে ঘা মেরে চিনা করে নিতে হবে ও প্রায়ারের সাহাযো আচ্ছাদনের চিনা করা অংশের প্রান্ত দৃঢ়ভাবে ধরে বাইরের দিকে টেনে ছাড়িয়ে ফেলতে হবে। অপর কেবলের প্রান্ত থেকে দীসার আচ্ছাদন অপসারণের জন্ম অন্তর্মণ পদ্ধতি অবলম্বিত হয়। উল্লিখিত কার্যক্রম 6.iii চিত্রে দেখান হ'ল।

বেড়-ইন্স্যুলেশান অপসারণ (Removing belt insulation) ঃ আচ্ছাদনের প্রাস্ত থেকে 10 মি. মি. দ্বে স্থতি ফিতা দিয়ে বেড় ইন্স্যুলেশানের উপর 35 মি.মি. বাড়তি রেথে অস্থায়ীভাবে বন্ধনী দিতে হবে। কেবলের উন্মৃক্ত অংশের উপর থেকে বেড়-ইন্স্থালেশানের তৈলগিক্ত পেপার ইন্স্থালেটেড ফিতা স্তরে স্তরে পেঁচিয়ে থ্লে নিয়ে বন্ধনীর খুব কাছে ছিঁছে ফেলতে হবে। বাঁধবার উদ্দেশ্ত হ'ল ইন্স্থালেশানকে ঘণাস্থানে রাখা। কোরের মধ্যবর্তী ফাঁকের ফিলার 6.iv চিত্রে বর্ণিত উপায়ে কাটা হয়। পরে কেবলের কোরের উপর আঠালো নয় এমন ইন্স্থালেটিং ফিতার একটি স্তর থাঁজ থেকে ক্রুক্ত করে প্রাস্ত পর্যন্ত জড়িয়ে দেওয়া হয়। কোর ইন্স্থালেশান যেদিকে জড়ান আছে, ফিতাও গেইদিকেই কোরের উপরে পেঁচিয়ে জড়াতে হবে। অপর কেবলটিও অমুদ্ধপভাবে প্রস্তুত করতে হবে।

কোর ইন্স্যুলেশান ছাঁটা (Trimming core insulation): শেষ পর্যায়ে সংযোজন অবস্থানে কেবলের প্রান্ত মুথোমুথি স্থাপন করে সংযোজন সন্ধির কেন্দ্র চিহ্নিত করা হয়। ছটি কেবলের প্রত্যেক কোরের প্রান্ত থেকে ফেরুলের অর্ধাংশের চেয়ে 10 মি.মি. বেশী দৈর্ঘ্যের সমান অংশ মেপে নিয়ে কোর

Fig. 6.v

ইন্স্যলেশান অপদারণ করাহয়।
দাধারণভাবে এল্. টি. কেবলের
পরিবাহকের উপরের ইন্স্যলেশান
প্রান্ত লম্বালম্বি (straight-edge)
হাঁটা হয়। কিন্তু উচ্চ ভোল্টেজ
কেবলের কোর ইন্স্যলেশান শঙ্ক্
আরুতিতে (cone shape) বা স্তরে
স্তরে হাঁটাই (step formation)
রীতি কারণ এতে দরাদরি পরিবাহক
থকে ক্রণ রোধ করা যায়। এখানে
মনে রাথা দরকার, উচ্চ ভোল্টেজ

কেবলে ইলেক্ট্রোস্ট্যাটিক চাপের ক্রিয়া কার্যকর থাকে।

কোর ইন্স্যলেশানকে স্চালো করার কাজে খুব ধারালো ছুরি ব্যবহার করা উচিত। কারণ তা না হলে উপরিতদের কাটা অংশ অমস্থ থেকে যাবে।

সাধারণত পেন্সিল কাটার পদ্ধতি অবসম্বন করেই কোর ইন্স্থালেশানকে শঙ্কু আক্কৃতিতে কাটা হয়। পরিশেষে উপরিতলের কাটা অংশ থস্থসে (finit) কাপড় দিয়ে ঘ্যে মুহুণকরে দেওয়া হয়।

কোর ইন্স্যলেশানকে স্তরে বিহাস্ত করার কাজে একটি সরু ইম্পাতের তার

এবং কিছু ওজন বাবহার করা হয়ে থাকে। প্রথমে পূর্বনিষ্টির অবছানে
ই পাতের তারটিকোর ইন্প্রালেশানের উপরে ফাসের মত জড়িরে নিয়ে এর
মৃক্ত তুই প্রান্তে ওজন মূলিয়ে দেওয়া হয়। এরপর কোর ইন্প্রালেশান তব একটি একটি করে গুনে ছিঁল্পে ফেলা হয়। তার বাধার জারগা বদল করে কাটার বিভিন্ন স্তর-বিশ্বাস করা হয়। প্রত্যেক অবছানেই কোর ইন্স্যালেশানের ছিন্ন স্তরের সংখ্যা সত্তরভার সঙ্গে গণনা করা উচিত।

সংযোজন সন্ধি রাংঝাল করার সময় যাতে ছাটা কোর ইন্স্যলেশান ক্তিগ্রস্ত না হয় সেইজন্তে স্তি ফিতা দিয়ে চেকে দেওয়া হয়। 300 মি. মি.° বা ভার চেয়ে বড় আকৃতির অ্যালুমিনিয়াম পরিবাহকে সরলরৈখিক সংযোজনের জন্য প্রান্তকে প্রস্তুত করা:

300 মি. মি ² বা তার চেয়েবড় আকারের আল্মিনিয়াম পরিবাহকের গুদ্ধকে স্তরে স্তরে বিক্সস্ত করে কেটে পাথার মত করে ছড়িয়ে দেওয়া হয়। পরিবাহকের গুদ্ধকে এইতাবে ছড়িয়ে দেওয়ায় দেওলি রাংশ্বালে দুচ্ভাবে নিহিত থাকে।

নিচের তালিকায় পরিবাহকের প্রদন্ত আকারের জন্ম ফেরুলের অন্ন্যাদিত দৈর্ঘ্য এবং সংযোজন সন্ধি-কেন্দ্র থেকে পরিবাহকের বিভিন্ন স্তরে কাটবার দূরত্ব দেওয়া হ'ল। স্তরে বিশুস্ত একটি পরিবাহক 6.v. চিত্রে দেখান হয়েছে।

পরিবাহকের আয়তন বর্গ মি.মি.	পরিবাহকে ভারের সংখ্যা	ফেরুলের দৈর্ঘ্য মি.মি.	A N.N.	B 14.14.	O वि.चि.	D [7.7]
300	61/2'50	84	29	19	9	
400	61/3.00	92	29	19	9	
500	91/2 65	102	39	29	19	9
625	91/3 00	113	39	29	19	9

পরিবাহক স্তরে স্তব্র বিক্রাস করার পদ্ধতি নিমন্ত্রপ:

- 1. আবরণমূক্ত তুইটি কেবলের পরিবাহক একটার ওপর আর একটা স্থাপন করে কিনারা দোজা রেখে কাটা হয়। একটি পরিবাহকের উপর অপর পরিবাহকটি সাধারণত 50 মি.মি. চাপান থাকে। (6. vi. চিত্র);
- 2. স্থালো বা স্তবে বিশ্বস্ত কেবলের কোর ইন্স্যলেশান তৈলদিক স্তি ফিতা বা শুক্নো স্তি ফিতা দিয়ে জড়ান হয় যাতে রাংঝাল (sweating) এর সময় ইন্স্যলেশানের কোনও ক্ষতি না হয়।

3. সংযোজন সন্ধি কেন্দ্র থেকে 1নং তালিকার A সারির নির্দেশিত দুরত্বে পরিবাহকের উপর তারের শব্দু বন্ধনী দিতে হবে।

Fig. 6.vi

 পরিবাহকের বাইরের স্তরের গুচ্ছগুলি ব্যাদের প্রায় অর্ধেক পর্যন্ত তারের বন্ধনী ঘেঁষে ধারালো ছুরি দিয়ে কাটতে হবে।

Fig. 6.vii

5. এরপর গুচ্ছগুলি কাটা জায়গায় বেঁকিয়ে ভাঙা হয়। তারের বয়নীটি তার পূর্ব অবস্থানেই রেথে দেওয়া হয় (চিত্র 6. vii)।

Fig. 6.viii

6. পরিবাহকের দিতীয় স্তরের গুচ্ছের উপর। 1নং তাগিকা B স্তন্তে নির্দেশিত দূরত্বে দিতীয় বন্ধনীটি দেওয়া হয়। আগের মাতই শোরালো ছবির সাহায্যে গুচ্ছের উপর থাঁজ কেটে নেওয়া হয় ও কাটা জায়গায় বেঁকিয়ে গুচ্ছেগুলি ভাঙা হয় (চিত্র 6. viii)।

- 7. বিতীয় স্তরের ভারের বন্ধনীকে সরিয়ে ফেলা হয় এবং গুচ্ছের তারগুলি কিছুটা ছড়িয়ে দেওয়া হয়।
- ৪. অন্তর্মণভাবে পরিবাহকের তৃতীয় স্তরে 1নং তালিকার C স্তস্তে দেওয়া অন্তমাদিত দূরত্ব বঙ্গায় রেথে একটি বঙ্কী দেওয়া হয়। এ স্তরের শুচ্ছগুলির ওপরও আগের মতই ধাঁজ কাটা হয়।
- তৃতীয় স্তবের বন্ধনীটি দরিয়ে ফেলা হয় এবং প্রথমে স্তবের তারগুলি
 কিছুটা ছড়িয়ে নিয়ে থাঁজকাটা জায়গায় বেঁকিয়ে ভাঙা হয়।
 - 10. একই উপায়ে পরিবাহকের অবশিষ্ট স্তরগুলিও প্রস্তুত করা হয়।
- 11. অপর কেবলের পরিবাহকগুলিও অন্ধর্ম উপায়ে স্তরে স্তরে বিয়াস করা হয়।

Fig 6.ix

12. তুইটি কেবলের পরিবাহকের শেষ স্তর্যটি এমনভাবে কাটা হয় ঘাতে

Fig. 6.x

প্রগুলি 3 মি.মি. ব্যবধান রেথে পরস্পরের ম্থোম্থি থাকে। 6. x. চিত্রে শেষ স্তরের তারগুলি আল্গা করার পদ্ধতি দেখান হরেছে। 50 মি.মি.³-এর চেয়ে বেশী কিন্তু 300 মি.মি.³-এর চেয়ে কম আয়তনের অ্যালুমিনিয়াম পরিবাহকের সরল রৈখিক সংযোজনের জন্ম প্রায়ের প্রস্তৃতি :

পরিবাহকের প্রান্তবন্ধ কাটা এমনভাবে, হয় যাতে মাঝে 3 মি.মি.
ব্যবধান রেথে পরক্ষরের ম্থোম্থি থাকে (চিত্র 6. xi.)। এই ব্যবধান
পরিবাহক গুছের মধ্যবর্তী ফাঁকে রাংঝাল ও ফ্লাক্সের প্রবেশ স্থনিশ্চিত করে।

প্র. কেবলের আবরণমৃক্ত কোর ইন্স্থালেশান শুক্নো স্থতি ফিতা জড়িয়ে স্থরক্ষিত করা হয়।

Fig. 6 xi

3. পরিবাহক গুচ্ছের কেন্দ্রে একটি ধাতব শলাকা (metal probe) ফুকিয়ে গুচ্ছের তারগুলি টিলা করা হয় (চিত্র 6 xiii)। উপরিউক্ত কাজ করার

Fig. 6xii

দময় যাতে শুচ্ছের তারগুলি অযথা তাদের অবস্থান থেকে দরে না যায় দে বিষয়ে দতর্কভার সঙ্গে লক্ষ্য রাখতে হবে।

4. পরিশেষে পরিবাহকগুলি ভালভাবে পরিষার করতে হবে যাতে তাদের গায়ে কোন যৌগ, তেল বা ময়লা লেগে না থাকে।

50 মি. মি.² পর্যন্ত আয়তনের অ্যালুমিনিয়াম পরিবাহকের সরলরৈখিক সংযোজনের জন্য প্রান্তের প্রস্তৃতি :

পরিবাহক গুচ্ছ যে দিকে প্যাঁচানো আছে তার বিপরীত দিকে
প্রায়ার ঘুরিয়ে পরিবাহক গুচ্ছের তারগুলি ঢিলা করে নিতে হ'বে।

2. এরপর ঢিলা করা পরিবাহকগুলি থুব ভালভাবে পরিষ্কার করতে হ'বে।

300 মি.মি.² বা ভার চেয়ে বড় আয়তনের কেবলের আগু-মিনিয়াম পরিবাহকের সরলঠেরখিক সংযোজনের পদতি:

 সংযুক্তির জন্ম নির্বাচিত ছই কেব্লের পরিবাহক ছটি মুখোম্থি স্থাপন করা হয় এবং কয়েক হাতা গলিত 'আলকা-পি' (Aloa-P) বাং চেলে 316° সেন্টিগ্রেডে উত্তপ্ত করা হয়। পরিমাণমত প্যারাসোল (Parasol) রাং চেলেও 280° সেন্টিগ্রেড থেকে 290°C. পর্যন্ত উত্তপ্ত করা যেতে পারে। যে

Fig 6. xiii

পরিবাহক ছটি জুড়তে হবে তাদের পেছনে একটা মোটা কাগজ দিয়ে নেওয়া ভাল। এর ফলে রাংঝাল করার সময় গলিত রাং ছিট্কে অন্ত কোর ক্ষতিগ্রস্ত

Fig 6. xiv

হবে না। আলকা-পি অথবা প্যারাদোল ঢালবার আগে পরিবাহকের উপরি-তলে আয়ার নং 7 (Eyre No. 7) বা প্যারাফাকাল (parafluxal লাগিয়ে নিতে হয় (চিত্র 6 xiii)।

- 2. পরিবাহকের উত্তপ্ত উপরিতলে বাড়তি জমে-থাকা রাং মুছে ফেলে চারিদিকে আবার ফ্রাক্স লাগান হয়।
- 3. পরিবাহকের উপরিতলে আবার গলিত রাং ঢালা হয় (চিত্র 6.xiv.)। তারপর পর্যায়ক্রমে ফ্রাক্স লাগান ও গলিত রাঙের প্রয়োগ চলতে থাকে যতক্র না পরিবাহক গুচ্ছগুলি টিনের মত উজ্জল দেখায়।
- 4. এরপর তারের বন্ধনী অপসারিত করে পরিবাহকের উপরিতল থেকে ক্রত বাড়্তি বাং মুছে ফেনতে হবে।
 - 5. উপ্লক ব্যাক ফেরুল (চিত্র 6.xv) গলিত রাঙে ডুবিয়ে তুলে নিয়ে এবং

Fig 6. xv

তৎক্ষণাৎ তার উপরিতলে ফ্রাক্স লাগিয়ে আবার রাঙে ভূবিয়ে টিন করা रुय।

6. টিন করা ফেরুলের লম্বালম্বি কাটা দিক উপরে রেখে পরিবাহকের

गां गांगाचि जांभन कवा इस এवर क्षांसादवत माहाद्या कांहो व कांक 4 मि.मि. বেথে দৃঢ়ভাবে বন্ধ করে দেওয়া হয় (চিত্র 6. xvi.) (কিটা করি)

7. সংযোজন সন্ধির উপর প্রচুর পরিমাণে রাং চালা হয় যতক্ষণ পর্যস্থ না তা উত্তপ্ত হয়ে ওঠে এবং ফেব্রুলের প্রাক্ত দিয়ে অফ্লে গড়িয়ে আনে (চিত্র 6.xvii)।

F.g. 6. xvii

- 8. প্রায়ারের সাহাযো চাপ । দিয়ে ফেরুলটি শক্ত করে বন্ধ করে দিতে হয়।
- 9. সংযোজন সন্ধির উপর এক হাতা রাং হাতা থেকে হাতায় চালা হয় এবং এই কাজ চলতে থাকে য়তক্ষণ না রাং ঠাওা হয়ে প্রায় অনমনীয় অবস্থায় আদেও ফেরুলের উপরিতলে জমে য়য়।

F g 6. xviii

- 10 একটি পরিষ্কার কাপড় বা তৈলসিক্ত কাগ্রের ফিতা নিম্নে সংযোজন সন্ধির উপরের বাড়তি রাংমুছে নিতে হবে (চিত্র 6.xviii)।
- 11. বাংঝাল করা সংযোজন সন্ধিটি কিছু সমরের জন্ম বদতে দেওয়া হয়।
- 12. কেবলের অতাত কোবের সংযোজনের জত্তেও উপরিউক্ত পদ্ধতি গ্রহণ করা হয়।

300 মি.মি.²-এর চেরে ছোট আয়তনের কেবলের জ্যালু-মিনিয়াম পরিবাহকের সরলরৈখিক সংযোজনের পদ্ধতিঃ

আবরণমৃক্ত পরিবাহকের উত্তাপ 316° সেন্টিগ্রেডে নিয়ে আসা হয়
তার উপর কয়েক হাতা গলিত "আলকা-পি" (Alea-P) রাং চেলে।
("প্যারাসোল" (Parasol) রাভের ক্ষেত্রে পরিবাহকের তাপমাত্রা 280°
পেকে 290° সেন্টিগ্রেডের মধ্যে রাখলেই চলবে।) (চিত্র 6.xix)।

Fig. 6. xix

2. পরিবাহকের উপরিতলের বাড়তি রাং ক্রত মুছে ফেলতে হবে এবং তৎক্ষণাৎ শক্ত গোল তুলি দিয়ে পরিবাহকের সবদিকে 'ফ্লাক্স', যেমন,

Fig. 6. xx

আইয়ার 7 আলকাপির জন্ম ও প্যারাসোলের জন্ম প্যারাক্সাক্সাল লাগাতে হবে যাতে পরিবাহক গুচ্ছের মধ্যে ক্লাক্সের প্রবেশ স্থানিশ্চিত হয় (চিত্র 6 xx)।
এই পর্যায়ে আ্যালুমিনিয়াম পরিবাহকের উপর ফ্লাক্সের বিক্রিয়ায় পরিবাহকটি

গুদর বভের হরে যায়। এ থেকে বোঝা যায় পরিবাহকের উপরিতল খেকে
খাগী অকাইতের আবরণ অপ্যারিত হরেছে।

 মতকণ না টিনের মত দেখার (tinned appearance) ততকণ পরিবাহকের উপর বাং চালতে হবে (জিয় 6.xxi)। বাহিত ফলের অল পরিবাহকের উপর আরও ফাল্লাও গলিত রাং ক্রারোগের ক্রারোলন হতে পারে।

Fig. 6, xxi

4. উঈক ব্যাক ফেকলকে প্রথমে গলিত রাঙে ভ্রিছে উত্তপ্ত করে নেওয়া হয়। পরে উত্তপ্ত ফেকলের উপরিতলের ফাল্ল লাগিয়ে দঙ্গে দঙ্গে গলিত রাঙে ভ্রিয়ে তাকে 'টিন' করা হয়।

Fig. 6. xxii

টিন-করা ফেকুল পরিবাহকের মাঝামাঝি বদান হয় এবং বেশ শক্ত
করে, গলিত রাং প্রবেশের পথ বেথে তা বদ্ধ করা হয় (চিত্র 6 xxii)।
 মি. মি. দয় কাক উপরের দিকে রাখাই ব্যবহারিক কেত্রে স্থবিধান্ধনক।

6. এরপর ফেরুলের উপর আবার কয়েক হাতা রাং ঢেলে তৎক্ষণাৎ সমগ্র উপরিতলে ফ্লাক্স প্রয়োগ করা হয়। এবারে ফেরুল দৃঢ়ভাবে বন্ধ করে

Fig. 6. xxiii

দেওয়া হয় এবং তার উপর এক হাতা রাং হাতা থেকে হাতায় ঢালা চলভে থাকে যতক্ষণ পর্যন্ত না রাং ঠাণ্ডা হয়ে অর্ধ-নমনীয় অবস্থায় আদে ও ফেরুলের উপরিতলে জমে যায় (চিত্র 8 xxiii.)।

- 7. একটা পরিষ্কার কাপড় বা তৈলসিক্ত কাগজের ফিতা দিয়ে সংযোজন সন্ধির উপরের বাড়্তি রাং মুছে ফেলা হয়।
 - 8. কিছুকণের জন্ম রাংঝাল করা সংযোজন সন্ধি নাড়াচাড়া করা উচিত

Fig. 6. xxiv

নয়। এতে রাং জমা বিদ্মিত হতে পারে। একটি রাংঝাল করা দংযোজন সন্ধি 6.xxiv চিত্রে দেখান হয়েছে।

9. অন্তান্ত কেবল কোরের সংযোজনের জন্ত উপরে বর্ণিত পদ্ধতি প্রয়োগ করা হয়।

ভামার পরিবাহক বিশিষ্ট কেবলর সরলরৈখিক সংযোজন সন্ধতিঃ

1. কেবলের আবরণমূক্ত পরিবাহকের প্রান্তবন্ধ ধাতব শলাকার সাহায্যে
টিগা করে ভালভাবে পরিষ্কার করে নেওয়া হয়। কিন্তু বিশেষ আকারের
পরিবাহকের (shaped conductor) ক্ষেত্রে তাকে গোলাকার করে নেওয়াই
প্রচলিত রীতি।

- 2. পরিদ্বত পরিবাহকের উপরিতলে রলনের ফ্রাক্স লাগান হয়।
- 3. টিন করা উপক বাকি ফেরুলের চেরা দিক উপরে বেথে পরিবাহকের মাঝামাঝি লাগান হয়। ফেরুলের কেল্রে 3 মি.মি. ব্যবধানে পরিবাহকের প্রান্তব্য যেন পরশ্বর ম্থোম্থি থাকে দে বিষয়ে যত্ন নিতে হবে, কারণ এতে পরিবাহক গুচ্ছের অভ্যন্তরে গলিত রাঙের অভ্পরেশ স্থনিশ্চিত হয়।
- 4 পরিবাহকের উপর গ্যাস প্লায়ারের সাহায্যে চাপ দিয়ে শক্ত করে ফেরুলটিকে বসিয়ে দেওয়া হয়। রাং প্রবেশের জন্ম ফেরুলের গায়ে অবশ্য যথেষ্ট ফাঁক থাকা প্রয়োজন।
- 5. সংযোজন দক্ষি গলিত টিনমানের বাং দিয়ে বাংঝাল করা হয়।
 এটা করা হয় হাতায় করে সংযোজন দক্ষির উপর গলিত বাং ঢেলে এবং গড়িয়ে
 পড়া বাং নীচে রাথা একটি থালি হাতায় সংগ্রহ করে। যতক্ষণ না গুছ্পুলি ও
 ক্ষেকলের প্রান্ত দিয়ে বাং সহজে প্রবাহিত হয় ততক্ষণ এই পদ্ধতিটি চালিয়ে
 যাওয়া হয়।
- 6 গরম অবস্থায় সংযোজন সন্ধির চারপাশে প্রচ্র পরিমাণে রজন-ফ্রান্থ প্রয়োগ করা হয়। তারপর ফেরুলটির ফাঁক প্রায়াবের সাহাযো চেপে বন্ধ করে দেওয়া হয়।
- 7. এরপর সংযোজন সন্ধির উপর হাতা করে গলিত রাং প্রয়োগ করা হয়। এই রাং হাতা থেকে হাতায় ঢালা হয় যতক্ষণ পর্যন্ত না রাং ঠাণ্ডা হয়ে অর্ধ-নমনীয় অবস্থায় আনে এবং ফেকলের উপরিতলে জমে যায়।
- কিছুক্ষণের জন্ম সংযোজন সন্ধি নাড়ান হয় না; এতে রাং জয়া
 য়নিশ্চিত হয়।
- কেবলের অভাত কোরের সংযোজন সন্ধি রচনার জত্তে অহরপ
 পদ্ধতি গ্রহণ করা হয়।

অ্যালুমিনিয়াম পরিবাহক বিশিষ্ট কেবলের সজে তামার পরিবাহক বিশিষ্ট কেবলের সংযোজন:

ভূনিমুস্থ বন্টন জালকের (distribution network) প্রচলিত ব্যবস্থার সম্প্রদারণের প্রয়োজনে একটা অ্যালুমিনিয়াম পরিবাহক বিশিষ্ট কেবলের সঙ্গে একটা তামার পরিবাহক-বিশিষ্ট কেবলের সংযোজনের প্রয়োজন হতে পারে। সমপরিমাণ বৈঢ়াতিক প্রবাহ বহনের ক্ষমতাসম্পন্ন তামার কেবলের পরিবাহকের ব্যাস আলুমিনিয়াম কেবলের পরিবাহকের ব্যাসের চেয়ে ছোট হয়। সেইজন্ত সরলবৈথিক সংযোজনের আগে তামার পরিবাহকের ব্যাস অ্যালুমিনিয়াম

পরিবাহকের দমান করে নেওয়া হয়। এই কাজ করা হয় উপযুক্ত আকারের ভাষার তার দিয়ে ভাষার পরিবাহককে কেঁধে বা ভাষার পরিবাহকের

Fig. 6. xxv

উপর ভাষার চেরা হাতা (alopter) চুকিয়ে দিয়ে। 6.xxv চিত্রে একটি আালুমিনিয়াম পরিবাহকের দক্ষে তামার পরিবাহকের দংবোজন দেখান হয়েছে।

উপরিউক্ত সংযোজন मिन রচনার পদ্ধতি নিমুর্ব :

- 1. আাল্মিনিয়াম পরিবাহকের আবরণমূক্ত গুচ্ছগুলিকে সোজা বা স্তরীয় বিস্তাবে কাটা হয়।
- 2. আল্মিনিয়াম পরিবাহকের উপযোগী তামার ফেরুল টিন করার পর পরিবাহকের মাঝামাঝি লাগান হয়।
- 3. তামার পরিবাহকের বাদে আালুমিনিয়াম পরিবাহকের ব্যাদের সঙ্গে সমান করে নেওয়া হয়, এর চারপাশে ছই এক স্তর তামার তার জড়িয়ে বা চেরা হাতা ভেতরে চুকিয়ে দিয়ে।
- 4. আাল্মিনিয়াম কেবল পরিবাহকের সরলরৈথিক সংযোজনের পদ্ধতি এই ধরনের সংযোজন সন্ধি রাংঝাল ও স্থবিগুন্ত করার কাজে ব্যবস্থৃত হয়।

সংযোজন সন্ধির উপর ফিন্তা জড়ান (Taping over the joint) ঃ
সাধারণতঃ তৈলসিক্ত কাগজের বা বার্নিশযুক্ত কাপড়ের ফিতা রাংঝাল করা
সংযোজন সন্ধির উপর অধিস্থাপন করা হয়। এই কাজে ফিতার পাক পূর্ববর্তী
পাকের আধাআধি চেকে প্রয়োগ করা হয়। ফলে এর একটি স্তরই ফিতার
হগুণ পুরু হয়। প্রথমে কোর ইন্স্থালেশানের কাটা অংশের উপর শক্ত করে
ফিতা জড়ান হয় যতক্ষণ না তা কোর ইন্স্থালেশানের সমান উচ্চতায় আসে।
পরে কোরের সমগ্র দৈর্ঘ্য বরাবর শক্ত করে ফিতা জড়িয়ে ইন্স্থালেশান গড়ে
তোলা হয়। কোর ইনস্থালেশান যে ভাবে জড়ান আছে ফিতার প্রথম
স্তর সেই ভাবেই জড়ান হয়। সাধারণভাবে কার্থানার ইনস্থালেশানের চেয়ে
বিগুণ পুরু করে ইনস্থালেশান গড়ে তোলাই প্রচলিত রীতি। ফিতা

खड़ावात चारण कांत्र हेनझालगात्मर भव्राहर छेन्द्रत खड़े मविद्र स्वडाहे

6.xxvi face প্রথা। স্থীয় বিভাসে কাটা ইনলা-লেশান ও সম্পূর্ণ ফিতা জড়ান সংযোজন मिक দেখান च्टार्ड ।

Fig. 6. xxvi

Fig. 6. xxvii

ফিতা-জড়ানর শেষ পর্যায়ে ফিতার সর্বশেষ অংশ আটকে দেওয়া হয়। এটা করা হয় ফিতার শেষ প্রাস্তটিকে পূর্ববর্তী পাকের মধ্যে দিয়ে শক্ত করে টেনে নিয়ে (চিত্র 6 xxvii)। এরপর ফিডার বাডডি অংশ কেটে ফেলা হয়।

উচ্চ ভোল্টেজ কেবলের সংযোজন সন্ধি দমর সময় পূর্বে প্রস্তুত ভৈল্সিক কাগজের বিচ্ছিন্নক (preformed impregnated paper separator) বাবা ইনস্থালেট করা হয়।

এই পদ্ধতিতে পরিবাহক সন্ধির উপর প্রথমে তৈলদিক স্তি-ফিডা কোর ইনস্থালেশানের উচ্চতায় জড়িয়ে নেওয়া হয়। এই স্তি-ফিতা পূর্ববর্তী পাকের 🖁 অংশ ঢেকে জড়ানই প্রচলিত প্রথা।

গড়ে তোলা ইন্সালেশানের উপর পূর্বে প্রস্তুত তৈগদিক কাগজে বিচ্ছিন্নকের কিনারা সোজা করে উপরের কোর ও অন্ত যে কোন একটি কোরের মধ্যে প্রবেশ করান হয়। এর ফলে, কেবলের কোরগুলি বিচ্ছিন্নক স্বারা বেষ্টিড তয়ে যায়।

সংযোজন সন্ধির মাঝামাঝি বিচ্ছিন্নকটি সরিয়ে বদান হয়। বিচ্ছিন্নকের প্রাস্ত থেকে 13 মি.মি. তফাতে কোর-প্রদারক (core spreader) সবিয়ে দেওয়া হয়।

বিচ্ছিন্নকের ছুই প্রাস্থে ভৈলসিক্ত ফিভার বন্ধনী প্রয়োগ করা হয়। এই কাজের সময় বিচ্ছিন্নক যাতে বিকৃত না হয়ে যায় দেদিকে লক্ষ্য রাখতে হবে।

পরিশেষে বিচ্ছিন্নক, প্রসারক, এবং কেবল কোরের উপর ইন্স্যলেটেড ফিতার বন্ধনী প্রয়োগ করে বিচ্ছিন্নকের স্থানচ্যুতি রোধ করা হয়।

সীসার হাতায় রাঙের লেপন (Wiping sleeve) ঃ

প্রথমেই দীদার হাতা ব্লো-ল্যাম্পের দাহায্যে গ্রম করে এর অভ্যন্তর আর্দ্রতাশূত্য করা হয়। পরে হাতাটি সংযোজন সন্ধির মাঝামাঝি সরিয়ে নিয়ে আসা হয় ও এর প্রান্ত ঘবে পরিকার করা হয়। জারণের ক্রিয়াকে (oxidation)
মন্দীভূত করার জন্ম হাতার পরিকৃত বহির্ভাগে চর্বি মাথান (tallowed) হয়।
এরপর হাতার হই প্রান্ত কাঠের হাতুজির সাহাব্যে আন্তে আন্তে পিটয়ে
মীদার আজ্ঞাদন বা রিং-এর উপর বসিয়ে দেওয়া হয়। সীদার হাতার প্রান্ত থেকে 15 দে.মি. দ্বন্ত পর্যন্ত সীদার আজ্ঞাদন পরিকার করা হয়।
আজ্ঞাদনের যে অংশে রাঙের প্রলেপ পড়বে তার উপর স্তির ফিতা জড়িয়ে

Fig 6 xxviii

দেওয়াই ভাল পদ্ধতি। ফিতার
বন্ধনীর বাইবের আচ্ছাদনের
পরিক্বত অংশর উপর প্রাধার্শ্
রাাকের প্রলেপ লাগান হয়
যাতে রাং চারিদকে গড়িয়ে
না যেতে পারে। আচ্ছাদনের

গুপর "প্রাথারদ ব্লাকের আন্তরণ শুকিয়ে গেলেই ফিতার বন্ধনী অপদারিত করা উচিত। যে অংশে রাঙের প্রলেপ পড়বে তাকে ব্লো-ল্যাম্পের দাহায্যে দমভাবে উত্তপ্ত করতে হবে। এবং উত্তপ্ত করার দময় আগুনের শিখা যেন এক জায়গায় কেন্দ্রীভূত না হয় দেখতে হবে। উত্তপ্ত উপরিতলে চর্বি মাথাতে হবে (চিত্র 6.xxviii)।

কার্যত সীসার হাতায় রাঙের লেপনের ছটি পদ্ধতি অবলম্বন করা হয়—প্রথমটি "দশু-লেপন" এবং দ্বিতীয়টি "পাত্র-লেপন"। ইণ্ডিয়ান স্ট্যাপ্তার্ড এই কাজে পাত্র লেপন স্থপারিশ করেন, কেন না এই পদ্ধতিতে আচ্ছাদনের উপরিতল সমভাবে উত্তপ্ত হয়। দশু-লেপন পদ্ধতিতে কোনও কোনও বিশুতে আগুনের শিথা কেন্দ্রীভূত হওয়ায় উপরিতল অসমভাবে উত্তপ্ত হওয়ার সম্ভাবনা থেকে যায়।

30% টিন ও 70% দীদার দারা গঠিত রাং উপরি-উক্ত কাজে ব্যাপকভাবে ব্যবহৃত হয়।

"পাত লেপ্ন" (Pot-wipe) :

এই লেপনের কাজ শুরু হয় দীদার হাতা প্রান্ত এবং আচ্ছাদনের উপর পরিমানমত গলিত রাং ঢেলে ও পরিশেষে উত্তপ্ত উপরিতলে চর্বি মাথিয়ে। ঢালার আগে পাত্রের গলিত রাঙের তাপমাত্রা পরীক্ষা করে নেওয়া ভাল। তুই-এক দেকেণ্ডের জন্ম দাদা কাগজ ডুবিয়ে এই কাজ করা যায়। ডোবান কাগজটির বঙ্মাঝামাঝি বাদামী হলে প্রয়োজনীর ভাপমান্তার বাং পৌচেছে বৃশ্বতে হবে। চর্বি মাথানোর ঠিক পরেই শীদার হাতা ও আজ্ঞাননের উত্তথ্য উপরিতলে গলিত রাং প্রয়োগ করা হয় যতক্ষণ না ভা জ্ঞানভাবে টিন হয়।

শীশার হাতা ও আচ্ছাদনের সংযোগভলে রাভের প্রলেপ (wipe) গড়ে ভোলার জল্জে আল্ডে আল্ডে রাং ঢালা হয় যা কিছুক্ষণ পরে অনমনীয় প্রার্থে পরিণত হয় (চিত্র 6. xxix)। রাভের লেপন

Fig. 6. xxix

(wipe) নির্দিষ্ট আকারে আনার কাল অর্থ অন্যনীয় রাভের প্রক্রেপের উপর কাপড় বুলিয়ে সমাধা করা হয়। রাভের লেপনকে নির্দিষ্ট আকার দেওয়ার কাজ চলার সময় রাং অন্যনীয় অবস্থার থাকলে তা রোল্যাম্পের সাহায্যে গ্রম করার দরকার হতে পারে। হাভের প্রলেপ (wipe) ঠাতা হলে চর্বি মাথানো হয়।

"ৰণ্ড-লেপন" (Stick-wipe) ঃ

এই পদ্ধতিতে সীদার আন্তিন ও আচ্ছাদনের উপর রাঙের প্রনেপ একটা রাঙের দণ্ড ও ব্লো-ল্যাম্প সাহায্যে করা হয়। প্রথমে উত্তপ্ত উপরিতলে রাং

Fig 6. xxx

ঘবে টিন করে নিতে হবে (চিত্র নং 6. xxxi ভাইবা)। পরে রাং-দণ্ডের প্রাস্ত

ব্লো-ল্যাম্পের সাহায্যে গলিয়ে এবং গলিত রাং দণ্ডের প্রাস্ত টিন-করা আচ্ছাদনের উপর ঘ্যে দিতে হবে।

Fig 6. xxxi

6xxx চিত্রে দর্শিত উপায়ে ব্লো-ল্যাম্পের শিথায় সরাসরি রাঙ-দণ্ড গলিয়ে প্রলেপ (wipe) দেওয়া হয়। প্রলেপকে মহণ করার কান্ধ

Fig. 6. xxxii

একযোগে রো-ল্যাম্পের সাহায্যে প্রলেপিত তলকে উত্তপ্ত করে এবং উত্তপ্ত

Fig 6. xxxiii

তলের উপর "দংযোজকের কাপড়" (Jointer's cloth) বৃত্তাকার গভিতে

ঘুরিয়ে করা হয় (চিত্র নং 6.xxxiii)। 6xxxiv চিত্রে দীদার হাতার দক্ষে আচ্ছাদনের দম্পূর্ণকৃত প্রলেপ দেখান হয়েছে।

Fig 6. xxxiv

কেবলের বর্ম ও সীলার আচ্ছাদনের বন্ধনী (Bonding lead shealths and armours of the cables):

- (১) 19 মি.মি. চওড়া শীদার ফিতা শীদার আচ্ছাদনের উপর জড়ান হয় যতক্ষণ পর্যন্ত না সংযোজন বাজের সীদার বন্ধনী ক্ল্যাম্পের ব্যাসের দ্যান হয় ততক্ষণ পর্যন্ত। এরপর মোড়কের উপর দাময়িকভাবে তারের বন্ধনী দেওয়া হয়।
- (২) 50 মি. মি. থেকে 75 মি. মি. চওড়া শীদার সক ফিতা সাধারণত কেবলের আবরণ মৃক্ত বর্মের মোড়ার কাজে ব্যবহৃত হয়। এর উদ্দেশ্য, সংযোজন বাজের বর্মের ক্ল্যাম্পের সঙ্গে এর বন্ধন দৃঢ় করা। যতক্ষণ না বর্ম ক্ল্যাম্পের ভেতরের ব্যাদের সঙ্গে সমান হচ্ছে, ততক্ষণ পর্যন্ত কেবল বর্মের উপর সীদার ফিতা জড়ানো হয়। ভারতীয় মান নির্ধারক সংস্থার স্থপারিশ হল বন্ধনী সর্বনিম্ন প্রস্থাচ্ছদ-ক্ষেত্রফল 50 মি.মি² এবং এর রোধ সমদর্শ্যের ধাত্র আচ্ছাদন এবং বর্মের যুগা রোধের সমান হওয়া আবশ্যক।
 - (৩) ঢালাই লোহার সংযোজন-বাজের নিমাংশ সঠিক অবস্থানে রাখা

Fig. 6 xxxv

হয় এবং ত। বর্মের ক্ল্যাম্প বোল্টের সাহায্যে লাগিয়ে স্থর্ফিত করা হয় (চিত্র 6xxxv)। সংযোজন বাকা ও আন্তিন যোগের সাহায্যে ভরাট করা (Filling the joint box and the sleeve with compound):

- (১) ভরাট করার জন্ত শীদার হাতার উপরের ছিদ্র সাময়িকভাবে কাগজ বা অন্য কিছুর সাহায্যে বন্ধ করে দেওয়া হয়।
- (২) ব্লো-ল্যাম্পের সাহায্যে সতক্তার সঙ্গে সংযোজন ৰাক্ষটি গ্রম করাহয়।
- (৩) কয়লা-ঘটিত যৌগ, যেমন,—'প্যারাকম' (Paracom) 150° সেন্টিগ্রেড থেকে 160° সেন্টিগ্রেড তাপমাত্রায় উত্তপ্ত করা হয় এবং বাজের ঠিক 'ভি গ্রন্থির' তলদেশ পর্যন্ত ভর্তি করা হয় (ফলতঃ উত্তপ্ত যৌগ সীসার হাতাকেও গ্রম করে)।
- (৪) দীদার হাতা গরম যোগ চেলে ভরাট করা হয়। যতক্ষণ না গরম যোগ ভরাট করার ছিন্ত পথে বেরিয়ে আদে ও যোগ থেকে ফেনা ও বুদবুদ ওঠা বন্ধ হয়, ততক্ষণ গরম যোগ চালতে হবে।
- (৫) হাতার উপরের যৌগ ভরাটের ছিন্ত দাময়িকভাবে বন্ধ করা হয় এবং যৌগটিকে তিন চার ঘণ্টা ঠাণ্ডা হতে দেওয়া হয়।
- (৬) থোগ ভরাটের ছিদ্র স্থায়ীভাবে বন্ধ করার আগে হাতা পুরোপুরি গরম যৌগ ঢেলে ভরাট করা হয়।
- (৭) সংযোজন বাজের ঢাকনার উপরের যৌগ ভরাট করার ছিজের ঢাকনা অপদারিত করা হয়।
- (৮) সংযোজন বাত্মের নিয়াংশের উপর 'ভি' আরুতি নালী পথ গরম যৌগ ঢেলে ভর্তি করা হয় ও দঙ্গে দঙ্গে উপরের অংশ সঠিক অবস্থানে বৃদিয়ে নাট বোল্ট দিয়ে স্থাকিত করা হয়।
- (৯) বাজের উপরের অংশ প্রথমে ব্লো-ল্যাম্পের সাহায্যে উত্তপ্ত করা হয় এবং বাক্স পূর্ণ না হওয়া পর্যন্ত গরম যৌগ ঢালা হয়।
- (১০) যৌশটি কিছুক্ষণের জন্ম ঠাণ্ডা হতে দেওয়া হয় এবং ভরাট করার ছিদ্র স্বায়ীভাবে বন্ধ করার আগে গরম যৌগ চেলে সংযোজন বাক্স পূর্ণ করা হয়।
- (১১) বর্মের ক্ল্যাম্পের ঘন্টাকৃতি প্রান্ত 'তার' মাখানো ফিডা জড়িয়ে ২ন্ধ করে দেওয়া হয়।

11kv.-এর চেয়ে উচ্চভোল্টেজের নীরেট ধরনের পেপার ইন-স্থ্যলেটেড কেবলের সরল রৈখিক সংযোজনের পদ্ধতিঃ

11kv. এর চেয়ে উচ্চ ভোল্টেজের বহুকোর বিশিষ্ট পি. আই. এল. দি.
কেবলে ধাতবায়িত ফিতার স্তর জড়ান থাকে। এই ধরণের কেবলে পার্থিব রাথা ধাতবায়িত ফিতা কেবলের কোর ইনস্তালেশানের উপর ইলেক্ট্রোস্টাটিক বিভবে স্ট্রেনকে অলোক-রশ্মি অহুগ করে। অতএব সংযোজন সন্ধির উপর জড়ান ইনস্থানেশানের উপর ধাতবায়িত ফিতার প্রচ্ছেদ দেওয়ার সময় যথোপয়্ক মলোযোগ দিতে হবে। ঐ ফিতা যাতে পার্থিব বিভবে থাকে সে দিকেও দৃষ্টি রাথতে হবে।

তৈলদিক্ত ক্রেপ কাগজের ফিতা জড়িয়ে সংযোজন সন্ধির উপর ইনস্থানেশান গড়ে তোলা হয়। গঠিত ইনস্থানেশানের প্রাপ্ত ক্রমশ সক (taper) করা হয়। সক করার (tapering) কাজ এক এক করে কাগজের স্তর খুলে এবং অভিপ্রেত স্তরে ছিঁড়ে ফেলে করা হয়। সাধারণত সংযোজন সন্ধির উপর হাতে জড়ান ফিতা কারখানা-ইনস্থানেশানের বিগুণ পুরু হয়।

গঠিত ইনস্থালেশানের উপর 19 মি.মি. চওড়া তামার টিনসেলের পটি (braid) জড়িয়ে উপরি উক্ত আরক্ষা ব্যবস্থা করা হয় (চিত্র 6.xxxvi)। পটিটিকে

Fig 6 xxxvi

কারখানার জড়ান আবরণের সঙ্গে যুক্ত রাখাই রীতি। সময় সময় পটিটিকে পার্থিব বিভবে স্থির রাখার জন্ম কেবলের সীদার আচ্ছাদনের সঙ্গে ঝালাই করা হয়। পটির সন্নিহিত পাক ঝালাই করা ভাল প্রথা। ভারতবর্ষের কেবল প্রস্তুতকারকরা গঠিত ইনস্থালেশানের উপর আবরণের কাজে ভামা-টিনসেলের পটির চেয়ে মোজা-জাতীয় তামা-টিনসেলের আবরণ পছন্দ করেন।

ফিতা জড়ানর পর পরিবাহকের সংযোজন সন্ধি পেতলের হাতার মধ্যে স্থাপন করা হয়। পেতলের হাতার প্রান্তবয় সীসার চেরা বৃশ (bush)-এর সাহায্যে বন্ধ করা হয় এবং সীসার প্রলেপের সাহায্যে কেবলের সীসার প্রাক্তাদনের সঙ্গে হাতার সংযুক্তি নিশ্চিত করা হয়। আন্তিনটি তেল ও রজনের

যৌগ দিয়ে ভর্তি করা হয়। পরিশেষে কয়লা-ঘটিত যৌগ দিয়ে ভর্তি ঢালাই লোহার সংযোজন বাক্সের মধ্যে সংযোজন দন্ধি সজ্জাটিকে রাথা হয়।

6xxxvii. চিত্রে 33kv. পি. আই. এল. নি. কেবলের সরলবৈথিক সংযোজন গ্রন্থির অনুপূজ্ঞ দেখান হয়েছে।

Fig. 6. xxxvii

A—রাডের প্রালেপ ;

C — তৈল প্রতিখোধক ফিতার পুলটিন;

E-হাতার উপরে ছিদ্র বন্ধ করার

ছিপি ;

H-कश्रमा घडिङ क्वन योग ;

্য—তৈলসিক্ত ক্রেপ কাগজের ফিতা;

L-एकन-तक्षत्वद्र कवन योग;

B—চেরা দীসার ব্কা;

D-শীল করার হাতা;

F—মোজজাতীর তামার টিনসেলের আবরণ;

G-लाशंत मः शांकन वांका ;

I—ফেরুল;

K-তৈল প্রতিরোধক ফিতা;

M-वर्भ-क्रांच्ला ।

33k. v. মানের এইচ. এস. এল. কেবলের সরলরৈখিক সংযোজনের পদ্ধতি:

এইচ. এদ. এল কেবলের প্রত্যেকটি কোরে নিজম্ব আচ্ছাদন এবং একটি আবরণ থাকে। কোরগুলি একত্তে রেথে একটা গোলাকৃতি দজ্জা তৈরী হয়। দেইজন্ম এইচ টাইপ কেবলের সরদরৈথিক সংযোজনের যে পদ্ধতি নেওয়া হয় গঠনের পার্থক্যের জন্ম এইচ. এদ. এল. টাইপ কেবলে দেই পদ্ধতি গ্রহণ করা যায় না।

কার্যত: এইচ. এস. এল. টাইপ কেবলের আচ্ছাদিত কোর 50 মি.মি. পুরু কন্জীট প্যানেলের তৈরী একটা আধারের স্থাপন করাই রীতি। কোনও কোনও ক্ষেত্রে ইটের তৈরী আধারও ব্যবহার করা হয়। 400 মি.মি², 33 কেজি, এইচ. এম. এম. টাইপের কেবলের সরলবৈথিক সংযোজনের পক্ষে উপ্যোগী প্রচলিত আধারের মাপ হবে 254 সে.মি. দৈর্ঘ্য,

50 দে.মি. প্রস্থ ও উচ্চতা 31:5 দে.মি.। প্রাক্তের প্যানেলে অর্ধগোলাকৃতি ছিন্ত্রপমেত ছটি অংশে বিভক্ত থাকে। ছটি অর্ধগোলাকৃতি অংশ স্থাপনের পর একটি গোলাকার ছিল্রে পরিণত হয়। এর ভেতর দিয়ে কেবল কন্কীট আধারে প্রবেশ করে। সংযোজনের জন্ম এই পদ্ধতিতে কন্কীটের আধার টালাই লোহার সরলবৈথিক সংযোজন বাল্লের মতই কাজ করে। সংযোজনের কাজ শেষ হলে আধারটি গলিত কয়লা-ঘটিত যৌগ ঘারা ভরাট করা হয়।

প্ৰথমে ছড়ান কোরের পরিবাহকগুলি পৃথক পৃথক কেবল হিসাবে প্রদত্ত প্রতিতে সংযুক্ত করা হয়।

সংযোজন করা পরিবাহকের উপর তৈলসিক্ত ক্রেপ কাগজের ফি তা জড়িয়ে ইনস্থালেশান গড়ে তোলা হয়।

গঠিত ইনস্থানেশানের উপর সাধারণত তামা-টিনসেলের মোজা-জাতীয় আবরণ দেওয়া হয়।

তেল-রজনের যৌগ দিয়ে ভর্তি পেতলের হাতার মধ্যে প্রত্যেকটি সংযোজন
সন্ধি মজ্জাকে স্থাপন করা হয়। পেতলের হাতা সাধারণত ছটি অংশে ভাগ
করা থাকে। সংযোজন-সন্ধি মজ্জার উপরে প্রথম অর্ধাংশকে রাখা হয় ও
পরে বিতীয় অর্ধাংশকে এর সঙ্গে যুক্ত করা হয়।

আন্তিনের প্রান্তগুলি দীনার চেরা বৃশ (bush)-এর নাহায্যে আটকে দেওয়া হয়। আন্তিনের উপরের ও প্রান্তের উপর দীনার প্রলেপ (wipe) প্রচলিত পদ্মায় গড়ে তোলা হয়।

কোরের সম্পূর্ণ সজ্জা আধারের মধ্যে অস্কৃত্মিক বিষ্ঠানে স্থাপন করা হয় এবং ছটি কোরের মধ্যে আন্তর অক্ষীয় ব্যবধান স্থপারিশ অস্থ্যায়ী রেখে কনকীটের থামের উপর স্থাপন করা হয়।

তামার আর্থ (earth) তার কেবলের বর্ম ও আন্তিনের সঙ্গে ঝালাই করা হয়।

আধারের ছিদ্রের ব্যাদের দক্ষে কেবলের ব্যাদের সামঞ্জন্ম রাথার জন্ম কেবলের আধারে প্রবেশ-বিন্দৃতে প্রচ্ছদের উপর কয়লাঘটিত যৌগণিক ফিতা দিয়ে জড়িয়ে দেওয়া হয়।

जर्ज-देवश्विक সংযোজনের বিশেষ পদ্ধতি :

জ্যালুমিনিয়াম পরিবাহকের সংযোজনের জন্ত নিম্নলিখিত পদ্ধতি গ্রহণ করা হয়ে থাকে।

(১) যান্ত্ৰিক চাপ পদ্ধতি (Mechanical compression technique)-তে

পরিবাহক হাতা (sleeve)-র সাহায্যে -জোড়া হয়। একটি গোলাকার আালুমিনিয়ামের নল এই কাজে ব্যবহাত হয়।

পরিবাহকের যে প্রাস্ত ছটি যুক্ত করতে হবে, তা হাতার ভেতর ঢোকাতে হবে। হাতাটির অবস্থান বিশ্বস্ত করে পরিবাহকের মাঝামাঝি জায়গায় স্থাপন করতে হবে এবং দঠিক ছাঁচ দমেত হাইড্রলিক কমপ্রেশারের সাহাষ্যে

দৃঢ়ভাবে চাপ দিত্তে হবে (हिंख 6xxxvi)। এই ठान দেওয়ার প্রক্রিয়া কয়েকটি ধাপে করা হয়। একটি ছয় কোণা ছাঁচ যুক্ত কম্প্রেদার বা চাপ্যস্ত্রের সাহায্যে ঐ ছাঁচের বিস্তৃতির র অংশ আচ্ছাদিত চিত্র 6.xxxvi করে কেন্দ্র থেকে উভয় প্রান্ত

পর্যন্ত হাতাটিকে চাপ দেওয়া হয়। চাপ্যত্তের ছাচটিকে প্রথম চাপের সমকোবে বনিয়ে হাতার উপর বিতীয়বার চাপ দেওয়া হয়। এর ফলে হাতাটি প্রান্ধ গোলাকার হয়। সবশেষে একটা গোলাকার ছাঁচ বসিয়ে চাপ দিয়ে ও িউপব্রিত্রল উথো (File) দিয়ে ঘষে মন্থণ করা হয়।

সাধারণত 500 বর্গ মি.মি. পর্যস্ত মাপের কেবল পরিবাহকের সংযুক্তি কাজে 100 টন হাইডুলিক প্রেস ও 25 টনের চাপ্যন্ত্রই উপযোগী।

ঘদিও যান্ত্রিক চাপ পদ্ধতির সাহায্যে সংযোজন বায়সাধ্য ও সংযোজনের देन्द्रा ७ यानाई मः योजदनद कार्य दिनी, उत् निम्ननिथि करवकि स्विधान জন্ত এই পদ্ধতি পছন্দ করা হয়:

- ্ক) সংযোজনের গুণগত মান বন্ধায় পাকে।
 - পরিবাহকের বিতত শক্তি 95% সংরক্ষণ করে।
- ্রে) পরিবাহকের বৈহ্যাতিক পরিবাহকত্ব সম্পূর্ণ সংরক্ষিত হয়।
- मः योष्ठक मिक्ष देखरीय काटक थ्व दिमी कूमनाखांत श्राह्म हम ना। উণরি উক্ত পদ্ধতিতে সংযোজিত সন্ধির কার্যোপযোগিতা নির্ভর করে হাতার ভিতরে স্থাপিত পরিবাহকের প্রান্তের মধ্যবর্তী ব্যবধানের পরিমাণ দঠিক নিরপণের উপর। এর কারণ হ'ল, চাপে হাতার দৈর্ঘ্য বাড়ে। ফলে, হাতার ঠিক নিচের স্তরের পরিবাহকের তারগুলিও লম্বায় বেড়ে যায়। দেই জন্ম পরিবাহকের মধ্যে কিছুটা ব্যবধান রাখা হয়। যাতে, সরল বৈশিক

সংযোজনের হাতার ভিতরে স্থাপিত পরিবাহকের তারের গুচ্ছগুনির প্রদারণ বাধা না পায়। ভারতীয় মান নির্ধারক সংস্থা ঐ বাবধানের সর্বনিম্ন পরিমাণ 0°3 মি. মি. স্থির ক্রেছেন। কিন্তু একাধিক স্তরে বিগ্রন্ত পরিবাহকের মধ্যের ব্যবধান ভারতীয় মান অন্থদারে যা হওয়া উচিত, তা নিচে দেওয়া হ'ল।

ন্তরের সংখ্যা	भिनिभिष्ठोदत व्यवधादनत्र देवर्ष्य	
2	0.4	19
and a second second second	0.6	
4	0.8	
5	1.0	

- (২) আগুনে উত্তপ্ত করার পদ্ধতি (Flame heating technique) ।

 करवाজনের এই পদ্ধতি আালুমিনিয়ামের পরিবাহকের ক্ষেত্রে গ্রহণ করা হয়।
 এই পদ্ধতির প্রধান বৈশিষ্ট্য নিচে উল্লেখ করা হল:
- (क) সংযো**জ**ন সন্ধি সজ্জাকে উ**ন্ত**প্ত করার জন্ম প্রোপেন গ্যাদের **টর্চ** ব্যবহৃত হয়।
- (খ) সাধারণভাবে সরলবৈথিক সংঘোজনের জন্ত উইকবাকি কেরুবের পরিবর্তে থাজবিশিষ্ট নিরেট ধরণের ফেরুল (Solid-type) ব্যবহাত হয়।
- ্রে) গুঁড়ো বিঞাকশান ফ্লাক্স ব্যাপকভাবে ব্যবস্থত হয়।
- (ঘ) ফেরুলের ভেতর গলিত বাং-এর অন্ধ্পবেশ নিশ্চিত করার জন্ত ফেরুলের প্রান্তগুলি কাচের তম্ভ নির্মিত টেপ দিয়ে সম্পূর্ণভাবে বন্ধ করে দেওয়া হয়।
- ে (ঙ) বিভিন্ন উপাদানের রাং সংযোজন সন্ধি সজ্জাকে ভরাট ও শেষ পর্যায়ে প্রলেপের জন্ম ব্যবহৃত হয়। এই উদ্দেশ্যে সাধারণভাবে ব্যবহৃত রাং-এর উপাদান নিম্নপ্রকার।

ভরাটের জন্ম রাং প্রলেপের জন্ম রাং উপাদান :—জিহ্ন 50%, টিন 29% উপাদান :—সীদা 70% ক্যাভিদিয়াম 21% টিন 30%

(চ) উন্মুক্ত কোর ইনস্থালেশানের উপর স্তীকাপড়ের ফিতা জড়িয়ে দেওয়া হয়। এর কলে, যতটা সম্ভব, টর্চের আগুনের সংস্পর্লে এসে কোর ইনস্থালেশানের পুড়ে যাওয়া রোধ করা যায়। (ছ) সংযোজনের জন্ত পরিবাহকের তারগুচ্ছের পূর্ব প্রস্তুতি প্রয়োজন হয় না।

আগুলে উত্তপ্ত করার পদ্ধভিতে সরল রৈখিক সংযোজন:

- (১) প্রচলিত প্রায় একে একে প্রচ্ছদ, বর্ম, আচ্ছাদন, ও বন্ধনী অপসাবিত করে কেবলের কোরকে উন্মৃক্ত করা হয়।
 - (২) আবরণহীন কোর স্থতি ফিতা দিয়ে জড়িয়ে দেওয়া হয়।
- (৩) কেবলের কোরগুলিকে কোর বিচ্ছিন্নকের সহায়তায় ছড়িয়ে দেওয়া হন্ন।
- (8) যে কোরগুলি সংযোগন করতে হবে, সেগুলিকে পাশাপাশি স্থাপন করে সংযোগন সন্ধির কেন্দ্র চিহ্নিত করা হয়।
- (e) চিহ্নিত বিন্দৃতে কোরগুলি করাতের সাহায্যে কাটা হয়।
- (৬) ফেব্রুলের দৈর্ঘ্যের অর্ধাংশ ও অতিরিক্ত 12 মি. মি. পরিমাণ অংশ কোরের প্রান্ত থেকে কোর ইনস্থালেশান অপসারিত করা হয়।
- ্ (৭) কেরোদিন বা পেট্রোলে ভেজান তুলি দিয়ে পরিবাহকগুলি পরিষার করা হয় এবং করাত দিয়ে কাটার ফলে প্রাস্তে লেগে থাকা থোঁচ অপ্নারিত করা হয়।
 - (৮) কেবলের অ্যাক্ত কোরের প্রান্তগুলি স্থৃতি ফিতার ছারা বাঁধা হয়।
- (৯) পরিবাহকের তারগুচ্ছের বাইরের স্তরের উপরিতল তারের বাস দিয়ে মধে অমস্থ করে নেওয়া হয়।
- (১০) ফেরুলের ভেতর পরিবাহকের প্রাম্বগুলি 5 মি. মি. ব্যবধান রাখা হয়।
- (১১) খাজটিকে উপরে রেখে পরিবাহকের মাঝামাঝি ফেরুলটিকে সঠিক অবস্থানে স্থাপন করা হয়।
 - (১২) ফেব্রুলের প্রান্তে পরিবাহকের উপর অল্প পরিমাণ ফ্লাক্স লাগান হয়।
 - (১৩) পরিবাহক ও ফেরুলের মধ্যে কাচ-তন্তর ফিডা দিয়ে ফেরুলের প্রান্ত বন্ধ করে দেওয়া হয়।
 - (১৪) অ্যাল্মিনিয়াম ফলকের একটি স্তর আলগাভাবে কোরের উপর জড়িয়ে পেপার ইনস্থালেশানকে টর্চের আগুনে পোড়া থেকে রক্ষা করা হয়।
 - (১৫) ধাতু-প্রবেশকের সাহায্যে ফেরুলের থাঁজের ভিতর দিয়ে পরিবাহকের উপর ফ্লাক্স লাগান হয়।

- (১৬) অক্যান্ত কোর টর্চের আগুনে ক্ষতিগ্রস্ত হওয়ার সম্ভাবনা থাকে, সেজক্ত এ্যাসবেস্টাসের অগ্নিনিরোধক কোরের মধ্যে ঢুকিয়ে তা রোধ করা হয়।
- (১৭) সংযোজন সন্ধি-সজ্জার নীচের দিক টর্চের আগুনে মৃত্ভাবে উত্তপ্ত করা হয় এবং ক্ষেক্তবের বাইরের তলে ফ্লাক্স লাগান হয়। থেয়াল রাথা দরকার যাতে ফেরুলের খাঁজ দিয়ে ফ্লাক্স বেরিয়ে টর্চের আগুনের সংস্পর্শে না আসে।
- (১৮) সংযোজন সন্ধি সজ্জাটিকে আন্মানিক 300° দেটিগ্ৰেড পৰ্যন্ত উত্তপ্ত করা হয় ও পরে ফেরুলের খাঁজের ভেতর দিয়ে পরি-বাহকের তারগুচ্ছে রাং-দণ্ড ৰবা হয় (চিত্ৰ xxxvii)।
- (১৯) থাঁজের মুখে লেগে থাকা বাং ধাতু প্রবেশকের সাহাষ্যে সরিয়ে ফেলা হয়।
- (२०) क्विक्टनत वाहेरत्त्र তলে মৃত্ আঘাত করা হয়। বাহকের তারগুচ্ছের মধ্যবর্তী চিত্র 6.xxxvii কাঁকে সহজে প্রবেশ করতে পারে।

- (২১) ফেরুলের থাঁজের ভেতরে আবার রাং দণ্ড ঘষা হয় যতক্ষণ না তা ব্বাং-এ ভর্তি হয়। লেগে থাকা বাং ধাতু প্রবেশক দিয়ে পরে সরিয়ে দেওয়া হয়।
- (২২) যতক্ষণ পর্যন্ত পরিবাহকের তারগুচ্ছের মধ্যবর্তী ফ কে রাং-চোকা সম্পূর্ণ বন্ধ না হয় ততক্ষণ এই পদ্ধতি পুনরাবৃত্তি করা হয়।
 - (২৩) ফেরুলের উপবিতল পরিষার করা হয়।
 - (২৪) ক্ষেকলের থাঁজ বাং-এর প্রলেপ দিয়ে চেকে দেওয়া হয়।
- কাচ-তন্ত্র ফিতা অপদারিত করা হয় এবং সংযোজন সন্ধি-সজ্জায় উপবিতল পবিষাব করা হয়।

আগুনে উত্তপ্ত করার পদ্ধতিতে সংযোজনের জন্য প্রারেনীর सलापि:

- গ্যাস সিলিতার; (本)
- (थ) शाम ठेर्ड ;
- (গ) ধাতু-প্রবেশক;

- (খ) প্রায়ার ;
- (৩) লোহার ফুট ফল;
- (চ) প্লাছাবের ছবি;
- (ছ) হাতৃড়ি;
 - (জ) গ্যাস প্রায়ার;
- (ঝ) হাক-খ্য;
 - (ঞ) ফাক-শু ব্লেডের তৈরি ছুরি;
 - (ট) স্থতী কাপড়ের ফিতা;
 - (ঠ) গ্লাস ফাইবারের ফিতা;
 - (**⑤**) 新報;
 - (ह) बार ;
 - (৭) প্রলেপের রাং ;
 - (ড) ফেবুল;
 - (খ) কাটিং প্লায়ার।
 - (৩) রোধের সাহাব্যে উত্তপ্ত করার পদ্ধতি (Resistance heating technique): গ্যাসটর্চের আগুনের পরিবর্তে সংযোজন সন্ধি-সজ্জাকে উত্তথ্য করার জন্ত বিদ্যুৎপ্রবাহের তাপ উৎপাদক শক্তি ব্যবহার করা হয়। কার্যত কেরুলের গারে দৃঢ়ভাবে সংলগ্ন তৃটি চিমটার মধ্যে দিয়ে সংযোজন সন্ধি-সজ্জার ভেতর বিদ্যুৎ প্রবাহ প্রেরণ করা হয়। উপরের চিমটাটির প্রান্ত বিশৃক্ষাকৃতি (forked) থাকে; এতে ফেরুলের সক্ষ ছিন্তুটি দিয়ে সচ্ছদ্দে স্লাক্স ও রাং-দণ্ড প্রয়োগ করা যায়। নিচের চিমটার সক্ষে কার্বনের ব্লক লাগান থাকে। বর্ত্তনীর মধ্যে বিদ্যুৎ প্রবাহিত হলে কার্বন ব্লক খ্ব উত্তপ্ত হয়ে উঠে। এইভাবে উৎপন্ন তাপ সংযোজন সন্ধি সজ্জাকে ধ্ব তাড়াভাড়ি উত্তপ্ত করে।

PARTIE WINGS TO PRINT

বিভিন্ন আয়তনের পরিবাছকের সরল বৈথিক সংযোজনের জন্ম প্রয়োজনীয় বিদ্যুৎ প্রবাহের পরিমাণ নিচে দেওয়া হল:—

পরিবাহকের আকার		বিস্থ্যুৎ প্ৰবাহ
বৰ্গইঞ্চি	বৰ্গ মি.মি.	অ্যামপিয়ার
0.1	65	200
0.12	95	230
0.3	195	250

6xxxvii চিত্ৰে বোধের সাহায্যে উত্তপ্ত করার পদ্ধতিতে স্বক্রৈথিক সংযোজন ও 6xxxviii চিত্তে শংযোজন সন্ধি দ্বজার প্রস্তচ্চেদ দেখান হয়েছে।

Too 6.xxxviii

fro 6.xxxix

△-- শ্লাস কাইবারের ফিঙা:

B- for big cotated (Jaws of the tong);

O—চিমটার লাড়া (Prong of the tong); C—চিমটা;

D-ফেব্লের থাঁজ:

■-छाद्रत्र बचनी :

ট্র-ফেরল:

€-কার্বনের রক।

A-কোর ইনস্থালশান এবং সীলিং ফিডার प्रधावली कांक ;

B-কোর ইনস্থালেশান :

D-at: #8:

E-গলিত রাং ;

দ-কার্বনের ব্রক:

G-গ্রাস ফাইবারের ফিতা।

এই পদ্ধভিতে সংযোজনের অমুকূল বৈশিষ্ট্যগুলি নিচে দেওয়া

- (क) খুব ক্রুত প্রয়োজনীয় উত্তাপ পাওয়া যায়।
- (খ) সাধারণত সংযোজনের সময়কাণীন কেবলের পেপার ইনস্থানেশান পুতে যায় না।
- (গ) কোন সাহায্য ব্যতীত একজন লোক সংযোজনের কাজ করতে भारत ।
- বাটারী থেকে কাজের জায়গায় দহজেই বিত্যৎ-শক্তি পাওয়া যায়। রোধের সাহায্যে উত্তপ্ত করে সরল-বৈথিক সংযোজনের পছতি :
- (১) কেবলের প্রথম জোড়া কোরের পরিবাহকগুলির প্রাস্ত ফেকলের সাহায্যে আগুনে উত্তপ্ত করার পদ্ধতি অবলম্বন করে সংযুক্ত করা হয়।
- (২) ক্ষেকলের প্রান্তে অল্ল পরিমাণ ফ্রাক্স লাগিয়ে কাচতন্তর ফিতা দিয়ে পরিবাহকের সঙ্গে শক্ত করে জড়িয়ে দেওয়া হয়।

- (৩) ধাতু-প্রবেশকের সাহায্যে সক ছিল্লের মধ্য দিয়ে খুব অল পরিমাণ ফাল্ল পরিবাহকের উপর ছড়িয়ে দেওয়া হয়।
 - (8) ফেরুলটিকে চিমটার সাহায্যে শক্ত করে আটকে ধরা হয়।
- (৫) চিমটার তার নাইফ-স্কৃতিচর সাহায্যে ব্যাটারীর টার্মিনালের সঙ্গে সংযক্ত করা হয়।
- (৩) স্থইচ 'অন'-এর দক্ষে সক্ষে বিত্যৎপ্রবাহ সংযোজন দক্ষি দজ্জাকে উত্তপ্ত করে। (ফেরুলের দক্ষ ছিদ্র পথে সাদা ধোঁয়া বেরিয়ে এলে বোঝা যাম্ম সংযোজনের উপযুক্ত তাপমাত্রা সৃষ্টি হয়েছে।)
 - (৭) যতক্ষণ পর্যস্ত না ফেব্রুল সম্পূর্ণভাবে রাং-এ ভর্তি হয় এবং স্থাগ

हिज 6.xL

পরিবাহকের ফাঁকের মধ্যে দিয়ে উঠে আদে ততক্ষণ 6.xL চিত্রে দর্শিত উপায়ে পরিবাহকের তারগুচ্ছের উপর রাং-দগু ঘষা হয়।

- (৮) স্থইচ বন্ধ করে চিমটা খুলে ফেলা হয়।
- (>) খুব ক্রত ধাতু প্রবেশকের সাহায্যে উঠে আদা স্থাগ সরিয়ে ফেলা হর এবং সংযোজন সন্ধি সজ্জার উপর প্রলেপের জন্ম রাং প্রয়োগ করা হয়।
- (১০) ফেরুলের উপর অমে থাকা বাড়তি রাং চর্বি মাথান কাপড় দিয়ে মোচা হয়।

রোবের সাহায্যে উত্তপ্ত করার পদ্ধতিতে সরল-রেখিক সংযোজনের জন্ম প্রয়োজনীয় যন্ত্রাদি :

- (ক) সংযোজন শন্ধি সজ্জ। গরম করার চিমটা;
- ্লি (খ) প্রায়ার;
 - (গ) প্রাম্বারের ছুরি;

- বে) হাক-শু রেডের তৈরি ছুরি; ক্লিটি) লালা সম্মন্ত
- (ঙ) হাতুড়ি;
 - (চ) হাক-স :
- (ছ) लाशंत्र कृष्ठे कृत ;
 - (জ) প্যাস প্রায়ার ; বি লিটি তথাই এর চিইটা চেটার চিটার স্থানিক
 - (ঝ) লোহার কাঁটা;
 - (ঞ) ফ্লাক্স; ভা লাগ প্ৰান্ত ভালাল প্ৰান্ত লাগ লাগ
 - (ট) বাং;
 - (ঠ) প্রলেপের জন্ম রাং ;
 - (ড) স্থতী কাপড়ের ফিতা;
 - (ঢ) গ্রাস ফাইবারের ফিতা;
- (ৰ) ফেকুল;
- (ভ) কাটিং প্লায়ার।
- 1'1 · KV. পর্যস্ত মানের পি. আই. এল. সি. কেবলের টি-দংযোজনের (Tee-joint) পদ্ধতি:
- (ক) পরিনীত জোড় (Married joint)
- (35 বর্গ মি. মি. পর্যস্ত শাখা কেবল সংযোজনের জন্ম গ্রহণীয়)
 - (১) ঢালাই লোহার টি-সংযোজন বাক্স খনে ভালভাবে পরিকার করা হয়।
- (२) শাথা কেবলটি মূল কেবলের উপর রাথা হয়।
- (৩) সংযোজন-সন্ধির অবস্থানের নিচে সংযোজন বাক্সের নিচের অংশটি স্থাপন করা হয় এবং মূল কেবলের উপর বাক্সের বর্মের ক্যাম্পের 6 মি.মি. দূরে প্রাক্তদের ওপর তারের বন্ধনী দেওয়া হয়।
- (৪) কেবলের বর্মের ওপর এমনভাবে চিহ্নিত করা হয় যাতে বর্ম ক্ল্যাম্পের ও মি.মি. ভিতরে রাথা সম্ভব হয়।
 - (e) मृन क्वरनित প্राक्ष्म ও वर्भ अभगोति कता रम।
- (৬) ভালভাবে পরিষ্কার করার পর বাজে দীদার বন্ধনীযুক্ত স্ল্যাম্পের মধ্যবর্তী মূল কেবলের দীদার আচ্ছাদন খুলে ফেলা হয়।
 - (१) একই পদ্ধতিতে শাখা কেবলের প্রচ্ছদ, বর্ম ও আচ্ছাদন খুলেফেশা হয়।
- (৮) উভয় কেবলের আচ্ছাদনের প্রান্ত থেকে 25 মি.মি. দ্রত পর্যন্ত ইনস্থানেশানের বেড়-এর উপর স্থতি ফিতার বন্ধনী দেওয়া হয় এবং বেড় ইনস্থানেশান খুলে কোরকে উন্মুক্ত করা হয়।

- (>) কেবলের ফিলার (filler) কেটে ফেলা হয়।
- (১+) শাথা কেবলের কোরগুলি ছড়িয়ে দেওয়া হয় ও ইনস্থালেটিং
 স্থাতিব ফিডা দিয়ে জড়ান হয়।
- (১১) একটি কাঠের 'ভি' আকাবের কীলক (wedge) মূল কেবলের কোবের মধ্যে ছুকিয়ে দেওয়া হয়, যাতে শাখা কেবলের সঙ্গে সংযোগের জভ একটি বিশেষ কোরকে গ্রন্থত করা সহজ হয়।
- (১২) 75 মি. মি. দীর্ঘ কোর ইনস্থালেশান মূল কেবল থেকে অপুসারিত করা হয়।

(১৩) শাখা কেবলের নির্বাচিত পরিবাহকের প্রান্ত থেকে 125 মি. মি.

দ্বত্ব পর্যন্ত কোর ইনস্থালেশান অপদারিতকরা হয় এবং আবরণমূজ-পরিবাহকের ওপর কোর ইনস্থালে-শানের প্রান্ত থেকে 10 মি. মি. দ্রত্যে ভারের বন্ধনী দেওয়া হয়।

- (১৪) শাথা কেবলের পরিবাহক-গুচ্ছের তারগুলি খুলে প্রথমে সোজা ও পরে পরিস্কার করা হয় (চিত্র xLi)।
- (১৫) মূল কেবলের উন্মৃক্ত পরিবাহকের পিছন দিকে একটা মোটা কাগজের বোর্ড স্থাপন করা হয়।

িএই কাগন্ধের বোর্ড মূল কেবলের অক্যান্ত কোরের ইনস্থালেশানকে রাং কালাই-এর সময় গরম রাং ছিটকিয়ে লাগার হাত থেকে রক্ষা করে।

- (১৬) মূল ও শাথা কেবলের কোর ইনস্থালেশানের প্রান্ত স্থতির কিতা দিয়ে জড়িয়ে দেওয়া হয়।
- (১৭) মূল ও শাখা কেবলের উন্মৃক্ত পরিবাহক সরল-বৈথিক সংযোজনের গৃহীত পদ্ধতিতে টিন করা হয় (চিত্র xLii)।

ি পিরিবাহকের নিচের অংশও যাতে ফ্থাম্থ টিন হয়, সে বিষয়ে দৃষ্টি দিতে হবে।]

ि किय 6 xLii

- (১৮) শাখা কেবলের টিন করা পরিবাহকের তারগুলি ছই অংশে তাগ করা হয়। এক অংশে তিনটি ও অপর অংশে চারটি গুচ্ছ থাকে।
- (১৯) শাথা কেবলের পরিবাহকের গুচ্ছগুলি মূল পরিবাহকের টিন করা পরিবাহকের ছদিকে রাথা হয়।

উপর ও নিচের গুচ্ছগুলি পরম্পারের বিপরীত দিকে মূল কেবলের পরিবাহকের ওপর জড়িয়ে দেওয়া হয় ও সংযোজিত অংশ শক্ত করে মূল কেবল পরিবাহকের ওপর বসিয়ে দেওয়া হয় (চিত্র 6xLiii)।

हिज 6.xLiii

- (২০) শাখা কেবল পরিবাহকের ওপর অস্বায়ী তারের বন্ধনী অপসাবিত করা হয়।
- (২১) 316° সেন্টিগ্রেড উত্তাপে গলিত রাং (আলকা-পি) সংযোজন সন্ধি সজ্জার উপর প্রয়োগ করা হয়।
- (২২) বাড়তি রাং মৃছে নেওয়ার পর সজ্জার উত্তপ্ত উপরিতলের প্রেচ্ব পরিমাণে ফ্লাক্স লাগান হয় (চিত্র xLiv) এবং পরে জ্ঞাবার গলিত রাং প্রয়োগ করা হয়।

हिन 6.xLiv

চিত্ৰ 6 xLV

পরিবাহকের নিচের অংশ গলিত রাং প্রবেশ করেছে কিনা আয়নার শাহায্যে পরীক্ষা করা হয়।

- (২৩) পরিষার হাতা ভর্তি গলিত রাং সংযোজন সন্ধি সজ্জার উপর হাতা থেকে হাতায় ঢালা হয় যভক্ষণ পর্যন্ত না এটা অর্ধস্বচ্ছ অবস্থায় ঠাণ্ডা হয়ে আনে এবং সংযোজন সন্ধির উপরিতলে জমে যায় (চিত্র 6xLv)।
- (২৪) টি-সংযোজন সন্ধির (Tee-joint) উপরিতলের বাড়তি রাং মৃছে নিয়ে চর্বি-মাথান কাপড় ঘবে মহুণ ও সমত্র করা হয়।
 - (২৫) শাখা কেবলের অন্যান্ত কোরের সঙ্গে সংশ্লিষ্ট মৃদ্য কেবল কোরের

भःयुक्तित्र काट्य भःयां अत्नत পূৰ্ববৰ্ণিত পদ্ধতি গৃহীত হয় (किंव 6xtvi) 1

- (২৬) সংযোজন সন্ধির ওপর ইনস্থালেটিং স্থতির ফিডা চাৰ চৰ্চা **জড়ান হয়।** কিটাৰ (৩৫)
- (২৭) এরপর মূল ও শাখা কেবলের সীসার আচ্চাদনের ওপর 19 মি. মি. চওড়া

পরিষার করা দীসার দিতা জড়িয়ে দেওয়া হয়। এই ব্যবস্থায় কেবলের স্থিত। জড়ান দীসা আচ্ছাদনের ব্যাস সংযোজন বাত্মের বন্ধনী-ক্ল্যাম্পের ভেডরের ব্যাদের সমান হওয়ায়, বন্ধনী নিথুঁত হয়। সীসার ফিতার ওপর অস্থায়ী তারের বাঁধন দেওয়া হয়।

- (২৮) মূল ও শাথা কেবলের বর্মের ওপরও 50 মি.মি. চওড়া পরিষ্কার করা দীদার ফিতা জড়ান হয় যার ফলে বর্মের ক্ল্যাম্প শক্তভাবে আটকে থাকে।
 - (২৯) সীসার ফিতার উপর অস্বায়ী তারের বাঁধন দেওয়া হয়।
- (৩০) টি-সংযোজন বাক্সের নিচের

व्यः म यथाञ्चादन दांथा रुप्त ।

(৩১) সীসার ফিতার ওপর তারের বাঁধন খুলে ফেলে তা বর্মের ক্লাম্পের সাহায্যে বাক্সের সঙ্গে আটকান হয় (চিত্ৰ 6xLvii)।

हिंव 6.xLvii

- (৩২) সীসার আচ্চাদনও **অহুর**পভাবে বাত্মের সঙ্গে লাগান হয়।
- (७०) वांट्यात नीटिंग्न अश्म द्वा नाांच्यात माहार्या अत्रम करन अनिज কেৰল যৌগ দিয়ে ভরাট করা হয়।

- (৩৪) সংযোজন বাত্মের ডালা যথাস্থানে স্থাপন করা হয় (চিত্র 6.xLviii) এবং নিচের অর্ধাংশের সঙ্গে বোল্টের সাহায্যে যুক্ত করা হয়।
- (৩৫) সংযোজন বাক্স একটি ব্লো-ল্যাম্পের সাহাযো গরম করা হয়।
- (৩৬) সংযোজন বাক্স গলিত কেবল যৌগ দ্বারা ভর্তি করার পর. তাকে পারিবেশের তাপমাত্রায় ঠাঙা করা হয়।

চিত্ৰ 6.xLviii

(৩৭) এরপর দংযোজন বাক্স গলিত যৌগ ঢেলে পূর্ণ করা হয় এবং লোহার ঢাকনিব দাহাযো ভরাট করার ছিম্রগুলি বন্ধ করে দেওয়া হয় (Tou Gylviii) 1

- (খ) বোল্টযুক্ত নখরাকৃতি ক্ল্যাম্প (Bolted Claw Clamp):
 - (১) ঢালাই লোহার সংযোজন বাক্স থুলে ভালভাবে পরিষ্কার করা হয়।
- (२) मून ७ माथा क्वरलंब श्रष्ठान, वर्म, बाष्ट्रानन, गनी ७ किनांव शविगी छ (married) জোড়ে টি-দংযোজনের 3, 4, 5, 6, 7, 8, 9, 10 ও 11 অহচ্ছেদে বর্ণিত পদ্ধতিতে অপসারিত করা হয়। শাথা কেবলের কোরের বাড়তি অংশ कार्षे एक्ना इम्र।
- (৩) শাখা কেবলের পরিবাহকের প্রান্ত থেকে কোর ইনস্থালেশান লাগের (কর্ণভুন্য প্রলম্বিত অংশের) সকেটের চেয়ে 6 মি. মি. বেশী অংশ অপসারিত করা হয়।
- (৪) শাখা কেবলের আবরণমূক্ত পরিবাহকের প্রান্তে লাগ কেবল-টার্মিনেশানের গৃহীত পদ্ধতি অহুসারে ঝালাই করা হয়।

- (৫) ক্ল্যাম্পের বিস্তারের চেয়ে 25 মি.মি. বেশী দীর্ঘ অংশের সমান করে মূল কেবলের কোর ইনস্থালেশানের একটি অংশ প্রস্তাবিত সংযোগ বিন্দু থেকে অপসারিত করা হয়।
- (৬) দরল বৈথীক সংযোজন পদ্ধতিতে বর্ণিত উপায়ে মূল কেবলের আবরণমৃক্ত পরিবাহককে টিন করা হয়।
 - (৭) ক্ল্যাম্প থেকে নাট (nut) ও ওয়াদার (washer) অপদারিত করা

হয়। মূল কেবলের টিন করা পরিবাহকের মাঝামাঝি ক্ল্যাম্পকে স্থাপন করা হয় (চিত্র 6৫)।

(৮) শাখা পরিবাহকের লাগ বোল্টের সাহায্যে দৃঢ়ভাবে ক্ল্যাম্পের সঙ্গে আটকে দেওরা হয়।

- (৯) স্থতির ইনস্থানেটিং ফিতা দিয়ে সংযোজিত দক্ষি সজ্জাকে প্রচলিত পদ্ধতিতে জড়িয়ে দেওয়া হয়।
- (১•) সংযোজনের ওপরে বর্ণিত পদ্ধতি অক্যান্ত কোরের ক্ষেত্রেও গৃহীত হয়।
- (১১) সবশেষে পরিণীত জোড় টি-সংযোজনের 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 ও 38 অহুচ্ছেদে বর্ণিত পদ্ধতিতে সমগ্র সংযোজন সন্ধি সজ্জাটিকে একটি ঢালাই লোহার যোগে পূর্ণ টি-সংযোজন বাক্সেম্বাপন করা হয়।
 - (গ) কৈৰুল সংযোজন (Ferrule joint):
 - (১) ঢালাই লোহার টি-সংযোজন বাক্স খুলে ভালভাবে পরিষ্কার করা হয়।
- (২) পরিণীত জোড়ের টি সংযোজনের বর্ণিত পদ্ধতিতে প্রাচ্ছদ, বর্ম,
 আচ্ছাদন, গদী ও ফিলার এক এক করে সরিয়ে মূল ও শাথা কেবলের
 কোরগুলি আবরণমূক্ত করা হয়।
- (৩) দংশ্লিষ্ট মূল কেবলের ওপর কেবলের কোরগুলিকে সঠিক দংযোজন অবস্থিতিতে বেঁকিয়ে নেওয়া হয় এবং শাখা কেবলের কোরের বাড়তি শংশ কেটে ফেলা হয়।
- (৪) প্রস্তাবিত সংযোগস্থল থেকে মূল কেবলের কোর ইনস্মানেশান অপসাবিত করা হয়।

- (e) শাখা কেবলের নঠিক পরিবাহকের প্রান্ত থেকে ফেরুলের সকেট অংশের চেয়ে 6 মি.মি. বেশী দীর্ঘ অংশ অপনারিত করা হয়।
- (৬) মূল ও শাথা কেবলের আবরণমূক্ত পরিবাহকগুলিকে পরিণীত জোড়ের টি-সংযোজনের ক্ষেত্রে যেমন বর্ণিত আছে নেইভাবে টিন করা হয়।
- (१) উইক ব্যাক টি ফেরুগকে টিন করা হয় প্রথমে এর উপরিতলে আয়ার

 নং 7 মাথিয়ে ও 316° সেন্টিগ্রেড উত্তাপে গলিত আলকা-পি-এর পাত্রে ভূবিয়ে ।
- (৮) কেরুলের প্রক্ষিপ্ত অংশ শাখা কেবলের পরিবাহকের সঙ্গে ঝালা হয়।
 এর উইক-ব্যাক অংশটি মূল কেবলের সঠিক পরিবাহকটির ওপর লাগান হয়।

এবং রাং প্রবেশের জন্ত সকু ছিন্ত বেথে প্রায়ারের সাহায্যে দৃঢ়ভাবে বন্ধ করে দেওয়া হয় (চিত্র 6.Li)।

(৯) প্রচুর পরিমাণে গলিত বাং দিয়ে দংখোজন লন্ধি দজ্জাকে ঢেকে দেওয়া হয়। বাং যতক্ষণ

हिज 6.Li

লা ফেকলের প্রান্ত বেয়ে গড়িয়ে পড়ে ততক্ষণ ঢালা হয়।

- (১০) প্রায়ার দিয়ে চেপে ফেরুল বন্ধ করে দেওয়া হয়। সংযোজন স্থি দজ্জাটিকে আবার গলিত রাং দিয়ে ঢেকে দেওয়া হয় এবং পরিবাহকের তারগুচ্ছের মধ্যে যাতে রাং ঝাল ডুকতে পারে, দেই উদ্দেশ্যে টোকা মারা হয়।
- (১১) আবারও এক হাতা পরিকার গলিত রাং (আলকা-পি) সজ্জার ওপর ঢেলে দেওয়া হয়, যতক্ষণ পর্যস্ত না তা ঠাণ্ডা হয়ে অর্থস্বচ্ছ অবস্থায় আনে ও সংযোজন দক্ষির উপরিতলে জমে যায়।
 - (১২) সংযোজন সন্ধি উপরিতল থেকে রাং-এর বাড়তি অংশ মূছে ফেলা হয়।
- (১৩) চর্বি মাথান কাপড় দিয়ে সংযোজন দক্ধি-সজ্জা ঘষে মস্থপ ও পরিক্ষার করা হয়।
- (১৪) কেবলের অন্যান্ত কোরের কেত্রেও সংযোজনের এই পদ্ধতি পুনরাবৃত্তি হয়।
- (১৫) স্বশেবে সমগ্র সংযোজন সন্ধি সজ্জাটি যৌগ-পূর্ণ টি-সংযোজন বাবে

ক্রবলের প্রান্তীয় বিন্যাস (Cable Termination)

কার্যক্ষেত্রে মাঝে মাঝে এমন অবস্থা আসে, যথন ভূনিমুস্থ কেবলের বৈত্যতিক যায়ের বা ওভার হেড লাইনের সঙ্গে সংযোগের জন্ত প্রান্তীয় বিশ্রাদ প্রয়োজন হয়। যেহেতু নিরেট ধরণের পেপার ইনস্থালেটেড কেবলের পেপার ইনস্থালেশানের বৈত্যতিক গুণাবলীর পক্ষে আর্দ্রভা ক্ষতিকারক সেইজন্ত কেবল ইনস্থালেশানকে প্রান্তীয় বিশ্রাদে আর্দ্রভাজনিত ক্ষতির হাত থেকে রক্ষার ওপর বিশেষ জোর দেওয়া হয়। সাধারণত পেপার ইনস্থালেটেড কেবলের প্রান্তীয় বিশ্রাদে যোগপূর্ণ ঢালাই লোহার সংযোজন বাক্স ব্যবহৃত হয়। বাজ্যের নক্ষা ও প্রান্তীয় বিশ্রাদের পদ্ধতি, কেবলের ভোল্টেজ ও যে যয়ের সঙ্গে সংযুক্ত করা হবে, তার প্রকৃতির ওপর নির্ভর করে। ওভার হেড লাইনের সঙ্গে সংযুক্ত করা হবে, তার প্রকৃতির ওপর নির্ভর করে। ওভার হেড লাইনের সঙ্গে সংযুক্তর কাজে পোলের ওপর স্থাপনের উপযোগী। উন্মুক্ত আবহাওয়ায় ব্যবহার উপযোগী উল্টানো বিভাজন বাক্স (inverted type dividing box) ব্যবহার করা হয়। কিন্তু ডিসট্রিবিউশান বোর্ড, সুইচ গিয়ার বা ট্রানস্ক্রমাবের ক্ষেত্রে কেবলের প্রান্তীয় বিশ্রাদে দিলিং বাক্স (Sealing box) ব্যবহৃত হয়।

সবচেয়ে পছন্দসই প্রান্তিক কেবল সংযোজন বাক্সের নক্সা নিচে লেখা তথ্য গুলির উপর বিশেষভাবে নির্ভরশীল:

- (क) क्वरलय विभन्न विवयन।
- (খ) সংস্থাপনের (বাইর বা ভেতরের) অবস্থিতি।
- (গ) স্থাপনের অমুপুঙ্খ।
- (খ) বাক্সে কেবলের প্রবেশ পথ
- (s) যন্ত্রাংশের সঙ্গে সংযোগের প্রকৃতি।
- (চ) অকান্ত সরঞ্জাম—যেমন, সংযোজন বাকোর যৌগ।

উন্মুক্ত আবহাওয়ায় ব্যবহার উপযোগী উণ্টানো বিভাজন বাক্সঃ

এটা একটা ঢালাই লোহার বাক্স। দেখতে অনেকটা উন্টানো বেদিনের মভ । বাক্সের সঙ্গে ইনস্থালেটারগুলি উন্টানো অবস্থায় বোন্টের সাহায্যে আটকে দেওয়া হয়। বাক্সটির ছটি অংশ থাকে। বাক্সের ঢাকায় যৌগ ভরাট ক্সায় ছিদ্র থাকে এবং নিচের অংশে একটি গ্ল্যাণ্ড (gland) লাগান থাকে। ছটি অংশ বোল্টের সাহায্যে জোড়া থাকে। কেবল নিচের অংশের গ্লাগু দিয়ে বাজ্মে প্রবেশ করে। যদি গ্লাগুটি পেতলের তৈরি হর, তাহলে কেবলের সীসার আচ্ছাদনের সঙ্গে রাং-এর প্রলেপের সাহায্যে যুক্ত থাকে। ফিতা জড়ানো ছড়ানো কেবল কোর ইনস্থালেটারের ভিতরের তামার সংযোগকারী রডের সঙ্গে সংযুক্ত থাকে। বাজ্মের গায়ে খুঁটির সঙ্গে আটকানোর উপযোগী ব্যবস্থা থাকে এবং 11 K. V. মানের কেবলের প্রান্তীয় বিক্যাদে বিভাজন বাক্স কয়লাঘটিত যৌপে পূর্ণ থাকে।

অপরপক্ষে 39 K V. কেবলের জন্ম তরল যৌগে ভরা বিভাজন বাক্স ব্যবহার করা হয়। ভরল যৌগ হিদাবে তেল ও রজনের যৌগ অনুমোদন করা হয়। বিভাজন বাক্সে যৌগের উপরে থানিকটা থালি জায়গা রাথা হয় যাতে ঝড়ু পরিবর্তনের বা তাপের ফ্লাসবৃদ্ধির ফলে যৌগের প্রসারণ বাধা না পায়। গ্লাভের উপর কেবলের বর্ম দৃঢ়ভাবে আটকে দেওয়া হয়। বাক্সের চাকনার উপরিতল সাধারণত ডিমাকৃতি করে ঢালাই করা হয়, এতে ঢাকনার উপরে বৃষ্টির জল জমা রোধ করা যায়। আর্থ তার বর্মের ক্ল্যাম্পের সঙ্গে বোল্টের সাহায্যে আটকানো থাকে।

1'1 K. V. পি. আই. এল. সি. কেবলের উন্মুক্ত আবহাওয়ায় ব্যবহারোপযোগী উল্টানো বিভাজন বাল্পে প্রান্তীয় বিশ্যাস।

1'1 K. V. কেবলের উন্তব্ধ আবহাওয়ায় ব্যবহারোপযোগী উন্টানো
বিভাজন বাজ্ঞে প্রান্তীয় বিক্যাস পদ্ধতি তারের আয়তনের সঙ্গে পরিবর্তন হয়।
কেবল পরিবাহকের আয়তন 16 বর্গ মি.মি. হলে কেবলকোর ওভারহেছ
লাইনের জাম্পারের (jumper) সঙ্গে পি. জি. ক্ল্যাম্পা বা অক্য ধরণের ক্ল্যাম্পের
মাহাযো সংযোগ করার জক্ত বাজের ইনস্থালেটার বৃশিং-এর ভেতর দিয়ে সরাসরি
বার করে নেওয়া হয়। ছড়ানো কেবল কোরগুলো প্রচলিত পদ্ধতিতে তৈলসিক্ত স্থতোর ক্লিতে দিয়ে জড়ানো হয় এবং পরিবাহকের আবরণ-মৃক্ত প্রান্তগুলিকে
বৃশিং-এর ভেতর দিয়ে নিয়ে যাওয়ার আগে টিন করা হয়। সব শেষে বাক্সটি
কয়লাঘটিত যৌগে ভরাট করা হয়। কেবল পরিবাহকের আয়তন 16 বর্গমি.মি.-এর বেশী হলে, তা তামার সংযোগকারী রডের সঙ্গে সংযুক্ত করা হয়।
কারণ, এই আয়তনের কেবল কোরকে অয় পরিসরে বাঁকান সহজ্জ নয়। যুঁটির
উপর এল. টি কেবলের প্রান্তীয় বিক্যাসের উপযোগী সংযোজন বাজ্মে চারিটি
ইনস্যালেটার বৃশিং লাগান থাকে। এই ধরণের বাজ্মে বোল্ট লাগান গ্লাণ্ড
থাকে। কিন্তু কোনও কোনও ক্লেত্রে কেবলের আচ্ছাদনের সঙ্গে গ্লাণ্ডের

রাং প্রলেপের সংযুক্তি এড়ানোর জন্ম বোল্ট লাগান গ্ল্যাণ্ডের পরিবর্তে ঢালাই লোহার শঙ্কু আকৃতি গ্রিপ ও সীদার বুশ ব্যবস্থত হয়। 11 K. V. পর্যন্ত কেবলের জন্ত গৃহীত প্রান্তীয় বিভাগের পদ্ধতি এল. টি. কেবলের ক্ষেত্রেও श्रामा ।

11 K. V. পি. আই. এল. লি. কেবলের উন্মুক্ত আবহাওয়ায় ব্যবহারোপযোগী পিওলের গ্ল্যাগুদমেও উল্টানো বিভাজন বাজে हार्जितमादबन शक्छ।

- (১) বিভাজন বাক্স খুলে ভাল-ভাবে পরিষ্কার করা হয়।
- (২) একটা কাঠের হাতুড়ির সাহায্যে কেবলের উপরের দিকটা সঠিক অবস্থানে বেঁকিয়ে দেওয়া হয় (চিত্ৰ 7.i) [অমুমোদিত বাকানোর সর্বনিম ব্যাস কেবল বাঁকানোর সময় অমুসরণ করতে হবে।]
 - (৩) খুঁটির ক্রস-আর্মের সঙ্গে

বাকাটি সাময়িকভাবে আটকে দেওয়া হয় এবং গ্লাণ্ডের একটা দিক সঠিক অবস্থানে বোল্ট দিয়ে আটকানো হয় (for 7.ii) 1

(৪) বান্মের উপর কেবলটিকে दांथा इम्र अवर भारि श्रांति विसूत 150 মি,মি. নিচে প্রচ্ছদের ,উপর তারের বন্ধনী দেওয়া হয়। বন্ধনীর পুরত্ব নির্ধারণের সময় মনে রাথা চিত্র 7.ii

প্রয়োজন যে, পরবর্তী পর্যায়ে কেবলের সীদার আচ্ছাদন ও গ্ল্যাণ্ডের উপর বাং-এর প্রলেপের কাজে বাঁকান কেবলের বর্ম বিদ্ন না ঘটায়।

(e) ভারের বন্ধনী পর্যন্ত কেবলের বাইরের প্রচ্ছদ ব্লো-ল্যাম্প দিয়ে উপবিতল গবম করে তুলে ফেলা হয়। আগুনের শিথা যে এক জায়গায় কেন্দ্রীভূত না হয় । গ্লাণ্ডের উপর জড়ানোর জত্যে স্বল্প দৈর্ঘের কয়লাঘটিত যৌগনিক পাটের ফিতার খোলা অংশ ছেড়ে রাখতে হবে।

- (৬) বর্ম হয় আকদ নয় কাঁচি দিয়ে তারের বন্ধনীর কিছু উপরে কাঁচা হয়।
 এর দৈর্ঘ্য যাতে গ্লাণ্ডের উপরে আবরণের পক্ষে যথেষ্ট হয়, তা দেখা প্রয়োজন।
- (१) কাটার উপবের বর্ম অপসারিত করা হয় এবং নিচের অংশ তারের বন্ধনী পর্যস্ত উন্টোদিকে বাঁকানো হয়।
- (৮) সীসার আচ্ছাদনের উপরের কয়লাঘটিত যৌগনিক কাপড়ের গদী অপসারিত করা হয়।
- (১) আবরণমূক্ত বর্ম ও আচ্ছাদন উপরিতলের উপর প্রথমে কেরোসিনে ভেজানো কাপড় দিয়ে ঘবে ভালভাবে পরিকার করা হয় ও পরে শুক্নো কাপড় দিয়ে মুছে নেওয়া হয়।
- (১০) অস্থায়ী অবস্থান থেকে ম্যাণ্ডটিকে সরিম্নে কেবলের ভেতর গলিরে দেওয়া হয় (চিত্র 7.iii)।
- (১১) কেবলের প্রান্থ হাকদ-র লাহাঘ্যে কেটে পূর্ববর্ণিত পছায় কেবল-ইনস্থানেশানের আর্দ্র তা পরীক্ষা করা হন্তব্য

- (১২) কেবলের প্রাস্ত আড়াআড়ি বেঁকিয়ে নেওয়া হয়। এতে য়াতের ছারপাশে রাং-এর প্রলেপের কাজ সহজে করা যায়।
- (১৩) প্রলেপের জন্ম নির্দিষ্ট বিন্দু থেকে কিছু দ্র পর্যস্ত আচ্ছাদনটি ঘবে পরিষ্কার করা হয়।
- (১৪) আচ্ছাদনে ঘেখানে বাং-এর প্রলেপ পড়বে দেখানে স্থতি ফিতা জড়িয়ে দেওয়া হয় এবং অবশিষ্ট পরিজ্ ত উপরিতলে প্রামার্দ্ র্যাক লাগিয়ে শুকিয়ে নেওয়া হয়।
- (১৫) পেতলের মাণ্ডের বাহিরের তল পরিষার করা হয় এবং কেবলের উন্তুক দীদার আচ্ছাদনের উপর পরিয়ে দেওয়া হয়। [যদি গ্লাণ্ড আচ্ছাদনের উপর পরান না যায়, তা হ'লে গ্লাণ্ডের শস্তু-প্রান্ত থেকে কিছুটা দৈর্ঘ্য কেটে ফেলে আচ্ছাদনের ব্যাদের সঙ্গে গ্লাণ্ডের ভেতরের ব্যাদ দমান করা হয়।]
- (১৬) আচ্ছাদনের উপর গ্লাগুটিকে মাঝামাঝি স্থাপন করা হয়, অবস্থান যাতে ঠিক মত থাকে। সেইজন্ম কাঠের গোঁজ গ্লাগু ও আচ্ছাদনের মধ্যে তুকিয়ে দেওয়া হয়।

- (১৭) স্থতি ফিতা অপসারণ করা হয় এবং যে তলটির উপর রাং-এর প্রালেপ পড়বে, সেটিকে গরম করে চর্বি মাথানো হয়।
- (১৮) প্লাণ্ডের প্রাপ্ত ও দীসার আচ্ছাদন গলিত রাং ঢেলে টিন করা হয় (30% টিন ও 70% দীসা)।
- (১৯) টিন করা উপরিতলের উপর হাতা থেকে হাতাম্ব রাং চেলে প্রলেপ গড়ে তোলা হয়। ঠাণ্ডা হয়ে গলিত রাং নমনীয় হয়ে যায় এবং উপরিতলে জমে যায়।
 - (২•) এইভাবে গড়ে ভোলা প্রলেপ সংযোজনকারীর কাপড় দিয়ে ছফে নির্দিষ্ট আকারে আনা হয়। প্রলেপকে নমনীয় রাখার জন্ম প্রয়োজনে রো-ল্যাম্প দিয়ে গরম করা হয়।

জ্ঞ হৈয় ঃ গ্লাণ্ডের কিনারা ও আচ্ছাদনের মধ্যে রাং-এর প্রলেপের সাহায্যে বন্ধ করার কাজ যাতে নিখুত হয়, সেবিষয়ে যত্ন নিতে হবে। প্রলেপের উপরিতল স্বম আকারে আনার জন্ত কথনই বেশী ঘ্যা উচিত নয়। কারণ, তা ক্ষতিকারক হতে পারে।

- (২১) চর্বি ঘষে প্রালেপ ঠাণ্ডা করা হয়। কেবলকে থাড়া করে ধরে কাঠের গোঁজ বার করে নেওয়া হয় ও ঐ ফাঁকটি পরিষ্কার শুকনো কাপড় দিয়ে ভরে দেওয়া হয়।
- (২২) আচ্ছাদনের প্রান্তদীমা চিহ্নিড করা হয়। সাধারণত আচ্ছাদন বান্সের ভিতরে 3 মি.মি. সম্প্রদারিত থাকে।
- (২৩) চিহ্নিত বিন্দু থেকে আচ্ছাদন কেটে ফেলা হয়। এই কাজ একটি ছুরি ও হাতুড়ির সাহায্যে আচ্ছাদনের চারদিকে দীসার গভীরভার ই অংশ গভীর করে কেটে ও পরে লম্বালম্বিভাবে প্রান্ত থেকে ঐ কাটা পর্যস্ত কেটে ফেলা হয়।
- (২৪) আচ্ছাদনের দৈর্ঘ্য বরাবর কাটা অংশের কিনারা হাতুড়ির সাহায্যে টিলা করা হয় এবং হাত দিয়ে ধরে ছিঁডে ফেলা হয়।
- (২৫) বেড় ইনস্থালেশানের উপর আচ্ছাদনের প্রাস্ত থেকে প্রায় 40 মি. মি. দূরে তারের অস্থায়ী বাঁধন দেওয়া হয়।
 - (২৬) বেড় ইনস্থালেশান স্তরে স্তরে ছিঁড়ে ফেলা হয়।
 - (२१) अत्र भत्र फिलात्र (करिं फिला इम्र)
- (২৮) কেবলের কোরগুলি ছড়িয়ে দেওয়া হয়। বেড় ইনস্থালেশানের উপরকার অস্থায়ী বাঁধন অপসারিত করা হয়। আবরণমুক্ত কোরগুলিকে

ইনস্থালেটিং স্থৃতি ফিতা দিয়ে বেড় ইনস্থালেশানকে আবৃত করে জড়িয়ে দেওয়া হয়। তৈলনিবোধক ফিতা উন্মৃক্ত কোরের মূলদেশে জড়িয়ে দেওয়া হয়। জ্ঞপ্তব্যঃ অপ্রবাহী কেবলে তৈল-নিবোধক ফিতার প্রয়োজন হয় না।

- (২৯) বাজের থোলা অংশগুলো জুড়ে দেওয়া হয়।
- (৩০) কেবল প্রবেশ করাতে বাক্সটি অল্প উচু করে তুলে ধরা হয়।
- (৩১) কেবলের কোর থেকে বাল্পের ভাষার সংযোগকারী অংশের সঙ্গে বোল্টের সাহায্যে সংযুক্তির জন্ম প্রয়োজনীয় দৈর্ঘ্য মেপে কেটে নেওয়া হয়। বাক্সটি তুলে ধরে কেবল গলিয়ে বার করা হয়।
- (৩২) প্রত্যেক কোরের প্রান্ত থেকে সকেটের দৈর্ঘ্য ও 6 মি.মি. অংশ কোর ইনস্থানেশান অপসারিত করা হয়।
- (৩৩) পরিবাহকের তারগুচ্ছ ধাতু প্রবেশক প্রবেশ করিয়ে টিলা করা হয়। হুতি ফিতা দিয়ে কোর ইনস্থালেশানের প্রান্ত জড়িয়ে দেওয়া হয়। পরিবাহকের উপর গলিত রাং (আলকা-পি) প্রয়োগ করা হয়। বাড়তি রাং খুব তাজা-তাড়ি মুছে ফেলে, উত্তপ্ত উপরিতলে আয়ার নং 7 লাগান হয়।

পরিবাহকের উপর আবার গলিত রাং (316° সেন্টিগ্রেড) প্রয়োগ করা হয়। পরে যতক্ষণ পর্যন্ত না ভালভাবে টিন হয়, ততক্ষণ পরিবাহকের উপরি-তলে ফ্লাক্সের (আয়ার নং 7) ও গলিত রাং-এর প্রয়োগ চলতে থাকে।

- (৩৪) লাগ ভালভাবে পরিষ্কার করা হয় এবং লাগের বন্ধ অংশে পরিবাহকের ব্যাদের অর্ধেকের সমান ব্যাদের একটি ছিন্তু করা হয়। এই ছিন্তু কেবল পরিবাহককে থাড়াভাবে ঝালতে সাহায্য করে। কিন্তু সকেটের গায়ে 3 মি. মি. প্রস্থ একটি থাঁজ লম্বালম্বিভাবে কাটা হয়, যধন কেবল পরিবাহককে লম্বালম্বি অবস্থায় রেথে ঝালার প্রয়োজন হয়।
 - (৩a) লাগের সংযোগস্থল শুকনো স্থৃতি ফিতা দিয়ে স্থবক্ষিত করা হয়।
- (৩৬) লাগটিকে প্লায়ার সাহায্যে ধরে গলিত রাং (আলকা-পি)-এ

 তৃবিয়ে দেওয়া হয় এবং কয়েক সেকেণ্ড পরে তুলে নেওয়া হয়। এরপর

 এর উত্তপ্ত উপরিভলে ক্লাক্স (আয়ার নং 7) লাগান হয় এবং পুনরায় গলিত

 বাং-এ ভোবান হয়। লাগটিকে পাত্র থেকে তুলে বাড়ভি রাং উপরিভল থেকে

 ঝেড়ে ফেলা হয়। ভালভাবে টিন না হওয়া পর্যন্ত এই পদ্ধতি চালিয়ে যাওয়া

 হয়।
 - (৩৭) উত্তপ্ত লাগটি পরিবাহকে বসিয়ে দেওয়া হয়। সমাপনী সংযোগের
 জন্ম লাগের চেটোর সঠিক অবস্থান দেখে নিতে হবে।

- (৩৮) যতক্ষণ না সকেটের প্রাস্ত দিয়ে গড়িয়ে যায়, ততক্ষণ লাগের ছিল্রের মধ্য দিয়ে গলিত রাং ঢালা হয়।
- (৩৯) যাতে গলিত বাং গড়িয়ে না যায়, দেজন্য দকেটের প্রান্তে স্থতি ফিতা জড়িয়ে দেওয়া হয়। কিন্তু লাগে ছিজের পরিবর্তে থাঁজ কাটা থাকলে, এই ধরণের ফিতা জড়ানোর প্রয়োজন নেই।
- (৪০) লাগের উপর গলিত রাং ঢালা হয় এবং লাগের সকেটটিকে মৃত্র ভাবে আঘাত করা হয়। এর ফলে ঝালাই-এর মধ্যে কোন ফাঁক থাকবে না।
- (৪১) লাগটির উপর আবার হাতা ভর্তি গলিত রাং হাতা থেকে হাতার চালা হয়। যতক্ষণ না তা নমনীয় অবস্থায় আদে এবং পরিশেষে লাগের উপরিতলে জমে যায়, ততক্ষণ রাং চালা চলে। লাগের চেটোর উপর থেকে ফিতার বাধন অপসারিত করা হয় এবং ঝালাই করা উপরিতল মৃহণ করা হয়।
- (৪২) অত্যান্ত পরিবাহকে লাগ ঝালাই করার জন্ত একই পদ্ধতি নেওয়া হয়। জ্বপ্তব্য: কোরের আফুভূমিক অবস্থানে লাগের সঙ্গে পরিবাহক ঝালাই করার জন্ত পরিবাহকের সঙ্গে ফেকুল সংযোজনের পদ্ধতিই গৃহীত হয়।
- (৪৩) পরিবাহক ও লাগের প্রান্তের সংযোগ স্থলে ঢালু ও মন্থণ উপরিতল গড়ে তোলার জন্ম প্ল্যান্তিক যৌগ প্রয়োগ কর। হয়। এর ফলে ফিডার নিচে বায়ুপূর্ণ স্থানের সৃষ্টি রোধ করা যায়।
- (৪৪) কোরের উপর ফিতার প্রস্থের আধাআধি ঢেকে ছই তিন স্তর্ ইনস্তালেটিং ফিতা জড়িয়ে দেওয়া হয়।
- (৪৫) কোরগুলি একত করে বিভাজন বাক্সটি সতর্কের দক্ষে কেবলের উপর পলিয়ে দেওয়া হয়।
 - (৪৬) প্লাগুটি বাক্সের দক্ষে বোল্ট দিয়ে আটকানো হয়।
 - (৪৭) কেবল পরিবাহকের লাগ সংযোজন বাজের তামার সংযোগকারী রডের দক্ষে যুক্ত করা হয়।

চিত্ৰ 7.iv

- (৪৮) ইম্পাতের ফিভার বর্ম পেতলের গ্লাণ্ডের চারপাশে জড়িয়ে দেওয়া হয় (চিত্র 7.iv) এবং বর্মের ক্ল্যাম্পের দাহায্যে আটকে দেওয়া হয়।
- (৪৯) আবরণযুক্ত বর্ম প্রথমে প্রচ্ছদের উপর-কার খোলা ফিতা দিয়ে জড়ানো হয় এবং

তার উপরিতলের কয়েক স্তর কয়লাঘটিত যৌগদিক্ত ফিতা জড়িয়ে দেওয়া হয়।

- (৫০) বাক্সটি ব্লো-ল্যাম্পের সাহায্যে গ্রম করা হয়। দেখতে হবে, আগুনের শিখা যেন ইনস্থালেটারে না লাগে। ১০০০ কলে চল্টালেট জন্মত ১৯০০ চলা
 - (৫১) কেবল যৌগকে 150° দেনিগ্রেডে উত্তপ্ত করে বাক্সটি ভরা হয়।

- (e2) বাল্পের ঢাকা যথাস্থানে বদিয়ে বোল্ট দিয়ে **আ**টকে দেওয়া হয়।
- (eo) বাল্পের উপরে ভরাট করার ছিত্রগুলি থোলা হয়।
- (৫৪) বান্দ্রের ঢাকা গরম করা হয় এবং বাক্সটি ভরাট করার ছিল্ল দিয়ে গলিত যৌগে পূর্ণ করা হয়। পরিবেশের তাপমাত্রায় যৌগ ঠাণ্ডা হলে, ছিত্রগুলি বন্ধ করা হয়।
- (ee) তামার সংযোগকারী রভের ক্ল্যাম্পের সক্ষে ওতারহেড লাইনের জাম্পারের সংযোগ করা হয়।
- (৫৬) व्यार्थित जांत वर्धित क्राांस्मित्रं व्यान्ति व्याप्तिकार विश्वत १ १ १ । 7.ए. हिट्ल मण्लूर्व टकवन होर्शितन्यान दम्थाता इन।

সীসা নির্মিত কেন্দ্র সমন্বিত নমনীয় চেরা শব্ধু ও ঢালাই লোহার গ্রিপ সমেত উন্মুক্ত আবহাওয়ায় ব্যবহারোপযোগী বিভাজন বাঙ্গে 11 K. V. পি. আই. এল. সি. কেবলের প্রান্তীয় বিস্তাদ পদ্ধতি। (11 K.V P. I. L. C. cable termination procedure on an outdoor inverted type dividing box with split malleable iron cone having lead centre and cast iron cone grip):

- বিভাজন বাল্লটি খব ভালভাবে পরিকার করা হয়।
- (२) কেবলের খাড়া প্রান্তটি সঠিক অবস্থানে বেঁকিয়ে দেওয়া হয়।

हिज 7.vi

- (৩) শকু আকৃতি গ্রিপ সম্বেত ঢালাই লোহার বিভাক্তন বাল্লটি অস্বায়ীভাবে ক্রদ আর্মে আটকানো হয় এবং কেবলের বাছা করা অংশ বাক্সটির পাশে স্থাপন করা হয় (চিত্ৰ 7.vi) ৷
- (৪) ঢালাই লোহার গ্রিপের ভিতর কেবলের প্রবেশ বিন্দুর 150 মি. মি. নিচে কেবল প্রচ্ছদের উপর তারের বছনী দেওয়া হর।
- (৫) রো-ল্যাম্পের দাহায্যে পরিমিত মাত্রায় গরম করে তারের বন্ধনী পর্যন্ত কেবলের প্রচ্ছদ খুলে ফেলা হয় এবং ঢালাই লোহার গ্রিপের উপর মোডানোর জন্য যথেষ্ট ফিতা রেখে কেটে ফেলা হয়।
- (৬) তারের বন্ধনীর থেকে কিছটা বর্ম কেটে ফেলা হয় এবং আবরণমুক্ত বর্মের উপরের অংশ অপদারিত করা হয় এবং তারের বন্ধনী পর্যস্ত নিচের অংশ বেঁকিয়ে দেওয়া হয় (চিত্র 7.vii)।
- (৭) বর্মের নিচের গদী অপসারিত हिल 7.vii করা হয় এবং আবরণমূক্ত দীদার আচ্চাদন ও বর্ম ভালভাবে পরিষ্কার করা रुष्र ।
- (৮) ঢালাই লোহার শন্তু আফুতি গ্রিপ খুলে ফেলা হয় এবং বাল্লে কেবল আচ্চাদনের প্রান্তদীমা চিহ্নিত করা হয়।
- (৯) উন্মৃক্ত আবহাওয়ায় ব্যবহারোপযোগী উন্টানো বিভাজন বাজে কেবল প্রাস্তীয় বিভাস পদ্ধতির 22, 23 এবং 24 অনুচেছ বর্ণিভ পদ্ধতি

অনুসরণ করে আচ্ছাদন কাটা এবং চিহ্নিত বিন্দু পর্যন্ত অপসারিত করা হর (চিত্র 7.viii)।

- (১০) আচ্ছাদনের প্রান্ত থেকে প্রায় 40 মি.মি. দূরে বেড় ইনস্থালেশানের উপর ভারের অস্থায়ী বন্ধনী দেওয়া হয়।
- (১১) বেড় ইনস্থালেশান স্তবে স্তবে हि ए क्ला इय ।
 - (১২) ফিলার কেটে ফেলা হয়। চিত্র 7.viii

· (১৩) কোরগুলি ছড়িয়ে দেওয়া হয় এবং বেড় ইনস্থালেশানের উপরকার ভারের বন্ধনী অপদারিত করা হয়।

हिख 7.ix

- (১৪) আবরণমুক্ত কোর স্থতির ইনস্থালেটিং ফিডা দিয়ে বেড় ইনস্থালেশানকে চেকে জড়িয়ে দেওয়া হয়।
 - (১৫) ঢালাই লোহার শত্ত্ব আকৃতির প্রিপ क्विन गनित्य (मध्या र्य (किंव 7.ix)।
 - (১৬) বাক্সের খোলা বিভিন্ন খংশ যথাস্থানে লাগান হয়।
 - (১৭) ক্ৰদ আৰ্মে অবস্থিত ৰাক্সটকে

ভূলে কেবলের উপর পরিয়ে দেওয়া হয় (চিজ 7.x)।

159 7.x

हित् 7.xi

(১৮) পূৰ্ব-বৰ্ণিত পদ্ধতিতে কোবের দৈর্ঘ্য মেপে বাক্স থেকে কেবল ৰাইবে আনা হয়। কেবলের পরিবাহকের সঙ্গে লাগের রাংঝাল জন্তে বাইবের

স্পাৰহাওয়ায় ব্যবহারোপযোগী উন্টানো, গ্ল্যাওসমেত বিভাজন বাল্লে কেবলের প্রাস্থীর বিক্রাস পদ্ধতির 32 থেকে 42 অফ্লেন্ডেনে বর্ণিত পদ্ধতি অমুসরণ করা र्य (हिल 7.xi)।

- (১৯) কোরের উপর ফিতার প্রস্থের অর্থেক চেকে তিন স্তর ইনস্থালেটিং ফিতা জড়িয়ে দেওয়া হয়।
- (২০) ফিতা জড়ানো কোরগুলি জড় করে বিভান্ধন বাল্পটি খুব সতর্কের সঙ্গে কেবলের উপর পরিয়ে দেওয়া হয়।
- (২১) কেবলের পরিবাহকগুলি বান্ধের তামার সংযোগকারী রডের সঙ্গে আটকানো হয়।
- (২২) সীসার চেরা শঙ্কু যথাস্থানে বসানো হয় (চিত্র 7-xii) এবং ঢালাই লোহার শল্প আরুতি গ্রিপ বোল্ট দিয়ে লাগিয়ে দেওয়া হয়।

(২৩) লোহার শঙ্কু আঞ্চতির গ্রিপের নিচের আবরণমৃক্ত সীদার আচ্ছাদন ক্ষলা-ঘটিত যৌগসিক্ত ফিতা দিয়ে জডিয়ে দেওয়া হয়।

- (২৪) লোহার শঙ্কু আকৃতি গ্রিপের চারদিকে ইম্পাতের ফিতার বর্ম জড়িয়ে দেওয়া হয় ও বর্মের ক্ল্যাম্পের সাহায়ে তা স্তর্কিত করা हम (हिंख 7.xiii)।
- (২৫) আবরণমুক্ত বর্ম খুলে ফেলা প্রচ্ছদের ফিতা দিয়ে মোড়ানো হয়। এ ছাড়া, তার উপর কয়লাঘটিত যৌগসিক্ত ফিতা জড়িয়ে দেওয়া হয়।

চিত্ৰ 7.xiv

(২৬) বাইবের আবহাওয়ায় ব্যবহারোপযোগী উল্টানো গ্ল্যাগুসমেত

বিভালন বান্ধে প্রান্তীয় বিক্যাদে যে পদ্ধতি নেওয়া হয়েছে, তার 50 থেকে 54 অস্তুচ্ছেদ অনুসারে বান্ধটি যৌগ বারা ভরাট করা হয়।

(২৭) বাল্পের পরিবাহকের ক্ল্যাম্পের সঙ্গে ওভারহেড লাইনের জাম্পার -(jumper)-এর সংযোগ করা হয় (চিজ 7.xiv)।

চিত্ৰ 7.xv

(२৮) আর্থের তার বর্মের ক্ল্যাম্পের সঙ্গে বোল্ট দিয়ে আটকানো হয়। 7.xv চিত্তে একটি সম্পূৰ্ণ কেবল টাৰ্মিনেশান দেখান হ'ল।

এইচ-টাইপ 33 K. V. পি. আই. এল. সি. কেবলের উন্মুক্ত আবহাওয়ায় ব্যবহারোপযোগী উল্টানো বিভাজনের বাক্সে প্রান্তীয় বিদ্যাস।

11 K.V-ইব চেয়ে বেশী ভোল্টেজ কেবলে আৰ্থ বিভবে রাখা ধাতব আবরণ-কোরের উপর জড়ানো থাকে। দেইজন্ম এই ধরণের কেবলের প্রাস্তীয় বিন্তাস 11 K.V. পর্যন্ত মানের কেবলের প্রান্তীয় বিক্যাস থেকে পৃথক। এই ধরণের কেবলের ক্ষেত্রে প্রধান যে অস্ক্রবিধা ঘটে, তা হল আবরণমূক্ত কোর ইনস্থালে-শানের উপর অতিরিক্ত চাপ (stress)-কে নিরাপদ দীমায় আনা। এই সমস্তার কার্যকরী সমাধান করা যায় ভৈলিষিক স্তি ফিডার সাহায়ে কোর ইনস্থানেশানের স্তর বাড়িয়ে এবং তা কার্যক্ষেত্রে করা হয় তৈলসিক্ত কাগজের পূর্ব নির্মিত শঙ্কুর উপর তৈলসিক্ত স্থতি ফিতা জড়িয়ে। এই ব্যবস্থায় কোর ইনস্থালেশানের উপর চাপের মাতা হ্রাদ পায়। প্রক্ষিপ্ত অংশের প্রান্তের দিক পর্যন্ত প্রচলিত উপায়ে ক্রমশ সক্ষকরে ইনস্থালেশান গড়ে তোলা হয়। অবস্থা, কেবল সংযোজনকারীরা ইনস্থালেশানের উপরি উক্ত গঠন অপেকা

हिज 7.vi

A—ঢালাই লোহার সংযোজন বান্ধ; B—তৈল প্রতিরোধক কিতা; C—প্রান্তিক জ্রীনং; D—সংযোগকারী বিং; E—বর্ম ক্ল্যাম্প; E—ঢালাই তামার গ্রাণ্ড; G—সীদার ফিতার প্যাকিং; H—রাঙের প্রলেপ; I—আর্থ লাগ; J—কেবল যোগের নিকাশন পথ; KL—ক্ল্যাম্প; M—যোগপুর্গ ইনস্থালেটর; N—ভিন্ক; O—ঢাকনা; P—হাতল; QB—ব্যাকিট; S—তৈলসিক্ত স্থৃতির ফিতা; T—কম্বলাঘটিত যোগে সিক্ত ফিতা; U—তৈলসিক্ত কাগজের পূর্ব নির্মিত শক্ষ্; V—তৈলসিক্ত ফিতা বন্ধনী।

দমস্তবের ইনস্থালেশান বিয়াদ পছন্দ করেন। গড়ে তোলা ইনস্থালেশান স্তবের উপর এন্টিমনি মিশ্রিত সীদার তার জড়িয়ে দেওয়া হয়। উপরে উরেশ করা ভোল্টেজের কয়লাঘটিত যোগ অতুপযোগী দেইজন্ম বিভাজন শাল্পটি তেন ও রজনের যোগ দিয়ে ভরা যায়। কেবলের প্রান্তীয় বিক্তাদে সব সময় কেবল প্রস্তুতকারকদের দেওয়া নির্দেশ মেনে চলা উচিত।

উন্মুক্ত আবহাওয়ায় ব্যবহারোপযোগী উন্টানো বিভাজন বান্ধে 33 K.V. পি. আই. এল. সি কেব্লের প্রান্থীয় বিক্যাদের অন্পূর্থ 7.vi চিত্রে দেখান হ'ল।

এইচ. এস. এল. টাইপ, 33 K.V. পি. আই. এল. সি. কেবলের উন্মুক্ত আবহাওয়ায় ব্যবহারোপধোগী টার্মিনেশান ইউনিটে প্রান্তীয় বিন্যাস পদ্ধতিঃ

এই ধরণের বহু কোরবিশিষ্ট কেবলে প্রত্যেকটি কোরের আবরণ (screen)
এবং আচ্ছাদন থাকে। আচ্ছাদিত কোরগুলি কেবলে এমন বিশ্বাদে রাথা
হয়, য়াতে একটি বৃত্তাকার সজ্জা তৈরী হয়। সেইজন্ত এইচ. এম. এল. টাইপ
কেবলের প্রান্তীয় বিন্তাদের নক্সা এইচ টাইপ কেবলের অনুত্রপ নয়। যদিও
এই তুই ধরণের কেবলের কার্যকর প্রান্তীয় বিন্তাদ ব্যবস্থার প্রাথমিক প্রয়োজনগুলি অভিয়।

এইচ. এস. এল. টাইপ কেবলের জন্ম প্রাপ্তীয় ব্যবস্থায় একটি বিস্তারক বাক্স (spreader box) থাকে (চিত্র 7.vii)। এই বাক্স চালাই লোহার তৈরী। বাক্স তৃটি অংশে চালাই করা হয় এবং অংশ তৃটি বোল্টের সাহায্যে জোড়া হয়। এ ছাড়া এই ব্যবস্থায় তিনটি সীলিং ইউনিটের প্রয়োজন। এই বাক্সের প্রধান উদ্দেশ্য হল সীলা আচ্ছাদিত কোরকে ত্রিম্থী করা। ইস্পাতের কাঠামোর সক্ষে বাক্সটি ক্ল্যাম্পের সাহায্যে সীলিং ইউনিটের নিচে জমি থেকে কিছুটা উচ্চতায় লাগান হয়।

কেবলের তিনটি ছড়ানো আচ্ছাদিত কোরের প্রান্ত তিনটি দীলিং ইউনিটের সঙ্গে যুক্ত থাকে। একটি ইউনিটে একটি বুসিং জাতীয় পোর্দিলিনের ইনস্থালেটের, মাথার ধাতু নির্মিত ক্যাপ এবং গোড়ায় ঢালাই লোহার কেসিং থাকে। এর সঙ্গে ঢালাই করা পিতলের গ্ল্যাণ্ড বোল্টের সাহায্যে সংযুক্ত থাকে। পিতলের গ্ল্যাণ্ডের ভিতর দিয়ে আচ্ছাদিত কোর দীলিং ইউনিটে প্রবেশ করে। পিতলে গ্ল্যাণ্ডের সঙ্গে কেবল আচ্ছাদনের বন্ধনী রাং প্রলেপ (wipe)-এর দাহায্যে করা হয়। একটি ইম্পাতের কাঠামোয় বিস্তারক (spreader) থেকে 12 মিটার উচ্চতায় দীলিং ইউনিট লাগান হয়। সাধারণত তুইটি সীলিং ইউনিটের মধ্যে 0'46 মিটার ব্যবধান রাথা হয়। মাথার ধাতক ক্যাপ সংযোগকারী রডকে আবদ্ধ করা ছাড়াও সীলিং ইউনিটের ভিতরের যোগের সচ্ছন্দ প্রদারণের স্থান করে দেয়। কেবলমাত্র ফ্রেক্সিবল কণ্ডাক্টারের সাহায্যে আপার-সংযোগ করা হয়। এতে ইনস্থালেটারের উপর আনমিত চাপ (bending stress) এড়ানো সম্ভব হয়।

চিত্ৰ 7.vii

A—গীলিং ইউনিট; B—সীদা আচ্ছাদিত কোর; C—বিস্তাবক বাক্স; D—কেবল যোগ; E—কম্বলাঘটিত যোগে সিক্ত পাটের ফিতার প্রচ্ছদ।

সংস্থাপন-পদ্ধতি (Installation procedure):

কেবলটি চিহ্নিত করা হয়। প্রচলিত উপায়ে প্রচ্ছন, বর্ম, গদী ও কোরের উপরকার গদী খুলে কেবলের দীসা আচ্ছাদিত কোর উন্মৃত্ত করা হয়। বিস্তারক বান্ধে প্রবেশ বিন্দু থেকে ৪০ মি.মি. দূরত্ব পর্যন্ত তিনটি আচ্চাদিত কোর একত্র করে আলকাতরা মাথানো কাগজ দিয়ে মোড়া হয়। এর পর কোরের মধ্যে উত্ত শৃল্প স্থান কয়লাঘটিত যৌগ দিয়ে পূর্ণ করা হয়। বান্ধের ক্র্যাম্পের মধ্যে প্রদারিত কেবলের বর্ম বোল্টের সাহায্যে আটকাবার আগে সীসার ফিতে দিয়ে ভালভাবে মোড়া হয়। বদ্ধনী এতে দৃঢ় হয়। বান্ধের কোর নির্গমন ছিত্রের ভিতরের ব্যাদের সঙ্গে কোরগুলিকে সমান করার জল্প কয়লাঘটিত যৌগ মাথানো কাগজ কোরের উপর জড়িয়ে দেওয়া হয়। কোরগুলি সঠিকভাবে স্থাপন করার পর, বান্ধের তৃই অর্ধাংশ বোল্টের সাহায্যে জুড়ে দেওয়া হয় এবং বাল্লটি কয়লাঘটিত যৌগ দিয়ে ভরা হয় । সিলিং ইউনিটের ভামার সংযোগকারী রডের সঙ্গে যুক্ত করার জল্প পেডলের য়্লাণ্ডের ভিতরে নিচের দিক দিয়ে আচ্চাদিত কোর সিলিং ইউনিটের ভিতর প্রবেশ করান হয়। তামার সংযোগকারী রডের সঙ্গে কেবল পরিবাহককে ঝালাই করে সংযুক্ত সন্ধি সজ্জার উপর তৈলসিক্ত ক্রেপ কাগজের ফিতা জড়িয়ে দেওয়া হয় । সিলিং ইউনিট তেল-রজনের যৌগ দিয়ে ভরে দেওয়া হয় ।

বিস্তারক বাক্স ও দিলিং ইউনিটের মধ্যবর্তী আচ্ছাদিত কোরগুলিকে বাস্ত্রিক ক্ষতি থেকে রক্ষা করার জন্ম, তামার ফিতা দিয়ে জড়িয়ে দেওরা হয়। আচ্ছাদিত কোরের বাইরের অংশ কাঠামোর দঙ্গে ক্ল্যাম্পের সাহায্যে আটকানো হয়।

মিডিয়াম ভোল্টেজের সরবরাহ স্তম্ভে (distribution pillar) পি. আই. এল. সি. কেবলের প্রান্তীয় বিশ্বাস পদ্ধতি :

(১) কাঠের ব্যাটনের সাহায্যে কেবলকে স্থমভাবে বাঁকিয়ে স্তভের নিচে দিয়ে যথাস্থানে আনা হয়।

खर्देवा : वांकातात अन्नर्याकिक मर्वनिम भीमा मन्नर्व्य तथ्यान ताथरक हत्व ।

- (২) স্তন্তের কেবল টার্মিনেশান ইউনিটের পাশে কেবলটি স্থাপন করা হয়।
- (৩) ছটি তারের বন্ধনী কেবলকে ঘিরে দেওয়া হয়। একটি কেবল টার্মিনেশান ইউনিটের বর্মের আটকানে র ক্ল্যাম্পের 150 মি.মি. নিচে, অপরটি তার 25 মি. মি. উপরে।
- (৪) উপযুক্ত উচ্চতায় কেবলটি অর্ভূমিকভাবে পাতা হয় ।
 - (e) প্রচলিত উপায়ে কেবলের বাইরের প্রচ্ছদ অপসারিত করা হয়।

- (৬) তাবের বন্ধনী পর্যস্ত বর্ম অপসারিত করা হয় ও তুইটি বন্ধনীর মধ্যেক কর্মকে বাঁকানো হয়।
- (৭) আচ্ছাদনের উপরকার গদী অপসারিত করা হয় এবং আচ্ছাদনটির উপরিতন প্রথমে ব্লো-ল্যাম্পের সাহায্যে গ্রম করে আচ্ছাদনের উত্তপ্ত তলটি কেরোসিনে ভেজা কাপড় ঘবে ভালভাবে পরিষ্ঠার করা হয়।
- (৮) স্তম্ভের কেবল টার্মিনেশান ইউনিটটি ফ্রেম থেকে নামিয়ে বিভিন্ন অংশ খুলে ফেলা হয়।
- (২) প্রান্ত থেকে উপরের তারের বন্ধনী পর্যন্ত আচ্ছাদন প্রচলিত উপাজে ছিঁড়ে ফেনা হয়।
- (১০) আচ্ছাদনের প্রান্ত থেকে 12 মি. মি. দূরত্ব পর্যন্ত বেড় ইনস্থানেশান বেখে কেবল কোরের প্রান্ত থেকে কাগজের বেড় স্তরে স্থবে ছিঁড়ে ফেলা হয়।
 - (১১) किनांत्र (कटि एकना रहा।
 - (১২) স্বস্তের ক্রেমে কেবল টার্মিনেশান ইউনিটের সামনের অর্ধাংশ শাময়িকভাবে উল্টো করে আটকে দেওয়া হয়।
 - (১৩) ইউনিটের উপর আবরণমৃক্ত কোর থাড়াভাবে রাথা হয় এবং কোরের লাগের অবস্থান কোরের উপর চিহ্নিত করা হয়।
 - (১৪) উপযুক্ত উচ্চতায় বেঁকিয়ে নিয়ে স্থাকদ-র সাহায্যে চিহ্নিত বিন্দুতে কোরগুলি কাটা হয়।
 - (১৫) ঢালাই লোহার শঙ্কু আঞ্বতির গ্রিপ কোরের উপর দিয়ে গলিজে দেওয়া হয়।
 - (১৬) কোরের প্রান্ত থেকে লাগের সকেটের গভীরতা ও 12 মি.মি. অংশের ইনস্মালেশান ছেঁটে ফেলা হয়।
 - (১৭) তৈলদিক্ত স্থতি ফিতা দিয়ে কোরগুলি জড়িয়ে দে**ও**য়া হয়।
 - (১৮) লাগ প্রথমে গরম করে গরম অবস্থার গলিত আলকা-পি রাং-এ ভুবিয়ে টিন করা হয়।
 - (১৯) প্রচলিত উপায়ে পরিবাহকের আবরণম্ভ প্রাম্বগুলিও টিন কর। হয়।

- (২০) আলকা-পি রাং-এ ভরা সকেটের মধ্যে টিন করা পরিবাহকটি প্রবেশ করিয়ে দেওয়া হয় (চিত্র 7. viii)।
- (২১) যতক্ষণ না বাং পরি-বাহকের তারগুচ্ছের মধ্যে যায়, ততক্ষণ সজ্জাটিকে উত্তপ্ত করা . হয়।
- (২২) সজ্জাটিকে ঠাণ্ডা হতে দেওয়া হয় ও কিছুক্ষণ অনড় অবস্থায় রাখা হয়।
- (২৩) ফেরুলের সাহায্যে পরিবাহক টারমিনেশান ইউনিটের তামার সংযোগকারী রডের সঙ্গে প্রচলিত উপায়ে রাংঝাল করা হয়।

- (২৪) স্তম্ভ থেকে কেবল টার্মিনেশানের সামনের ইউনিটটি অপসারিত করা হয় এবং লাগ ঝালা কোরগুলি বাস বারের তামার লিকের সঙ্গে বোল্টের সাহায্যে যুক্ত করা হয়।
- (২৫) কেবল টার্মিনেশান ইউনিটের হটি অংশ বোল্টের সাহায্যে জোড়া হয়।
- (২৬) সীসার শঙ্কুর ভেতরের তল ভালভাবে পরিষ্কার করা হয় এবং আচ্চাদনের উপরিতল চেঁচে পরিষ্কার করা হয়।
- (২৭) চালাই লোহার শঙ্কু আকৃতি গ্রিপের বোল্টগুলি দৃঢ়ভাবে লাগিয়ে সীসার শঙ্কুকে যথাস্থানে আটকে দেওয়া হয়।
- (২৮) পরিষ্কার করার পর আবরণমূক্ত বর্ম ঢালাই লোহার শস্ক্র্আকৃতি গ্রিপের চারপাশে মোড়া হয় এবং বাড়তি অংশ কেটে ফেলা হয়।
- (২৯) ঢালাই লোহার শঙ্কু আক্বতি গ্রিপের উপর ক্ল্যাম্পের নাংযো বর্মটি দৃঢ়ভাবে আটকে দেওয়া হয় এবং কয়লাঘটিত যৌগনিক্ত পাটের ফিডা জড়িয়ে দেওয়া হয়।
- (৩০) কেৰল টাৰ্মিনেশান ইউনিটটি কয়লা-ঘটিত যৌগ দিয়ে তরা হয় এবং ভরাট করার ছিল্ডলৈ বন্ধ করে দেওয়া হয়।

(৩১) স্তত্তের কেবল টার্মিনেশানের দম্পূর্ণ দজ্জাটি ছাপন করা হয় এবং ফ্রেমের সঙ্গে বোল্টের সাহায্যে আটকে দেওয়া হয়।

A-বাসবার লিক:

B—তামার লিক :

C-পারসিলিন বৃশ;

D-কেবল যৌগ ঢালা গর্ভের ঢাকনা;

E-(मकानाइं इनशालाइंड नन ;

F-कश्रला-घाँउ क्वित योशपूर्व मीलिः

G & L-দীলিং ইউনিট ধরে রাথার জন্ম আলম্ব;

H-मीमात्र शांख ;

K-কিতা জড়ান কোর;

M-ясфб;

N-ফিউজ গ্রিপ;

O — নিউট্রালের জন্ম তামার লিক;

P-मोलिः (हचात्र।

7.ix চিত্তে সরবরাহ স্তন্তের 3-ফেন্স 4-ওয়ার-এর পি. আই এল সি. কেবলের প্রান্তীয় বিক্যাদ দেখানো হয়েছে।

11 K. V. शर्यस शि. यांहे. अन. जि. दिनवान गृंशस्त्रसद ব্যবহৃত বাক্সে প্রান্তীয় বিন্যাস পদ্ধতি।

(১) বিভান্ধন বাক্ষটি খুলে ভালভাবে পরিষ্কার করা হয় এবং থালি বাক্ষটি যথাস্থানে রাখা হয়।

(২) বাজ্যের গায়ে কেবলটি থাড়া করে রাথা হয় এবং কেবলের উপর जृिं अवश्रांत তात्त्र वन्ननी श्रष्टम्य चित्र मिख्या र्य । এकि वन्ननी যেথানে কেবল বাক্সে ঢুকছে, আর একটি গ্ল্যাণ্ডের প্রায় 15 সে.মি. নিচে।

- (৩) প্রথম বন্ধনী পর্যন্ত প্রচ্ছদ, বর্ম ও গদী প্রচলিত উপায়ে একের পর এক সরিয়ে আচ্ছাদন আবরণমূক্ত করা হয়।
- (8) তৃইটি বন্ধনীর মাঝথানে প্রচ্ছদ ও বর্ম থোলা হয় কিন্তু গদী অপদাবিত করা হয়।
 - (c) আচ্ছাদন ও আবরণমৃক্ত বর্ম পরিষার করা হয়।
 - (৬) প্লাণ্ডটি কেবলের ভিতর গলিয়ে দেওয়া হয়।
 - (৭) কেবলটি অমুভূমিকভাবে বাঁকিয়ে স্থির আলম্বের উপর রাথা হয়।
- (৮) আচ্ছাদনের উপরিতল, যেথানে রাং-এর প্রলেপ গড়ে তুলতে হবে, সেই জায়গাটি-টেচে পরিষ্কার করার পর চর্বি মাথানো হয়।
- (৯) কাঠের তৈরী গোঁজের সাহায্যে গ্লাণ্ডের মাঝামাঝি কেবল স্থাপন করা হয়।
- (১০) প্রচলিত উপায়ে আচ্ছাদনের উপর গ্লাণ্ড, রাং-এর প্রলেপের সাহায্যে যুক্ত করা হয়।
 - (১১) প্রান্ত থেকে প্রথম বন্ধনী পর্যন্ত আচ্ছাদন অপদারিত করা হয়।
- (১২) আচ্ছাদনের প্রান্ত থেকে 25 মি.মি. পর্যন্ত বেড় ইনস্থানেশান রেখে বাকি উন্মৃক্ত অংশ ন্তরে স্তরে ছিঁড়ে ফেলা হয় এবং ফিলার কেটে ফেলা হয়।
- (১৩) কেবলের কোরগুলি ছড়িয়ে তৈলসিক্ত স্থতি ফিতা দিয়ে জড়িয়ে দেওয়া হয়।
- (১৪) কেবলের ছড়ান কোরগুলির গোড়ায় তেল নিরোধক ফিতার পুলটিশ লাগান হয়।
- (১৫) কেরুলের অর্ধেকের চেয়ে 6 মি.মি. বেশী দীর্ঘ অংশের সমান করে কোরের প্রান্ত থেকে ইনস্থালেশান ছাঁটা হয়।
- (১৬) ইনস্থালেটারের ঠিক উপর পর্যস্ত মেপে মিহি কাপড় বা ববার ইনস্থানেটেড ট্রেনিং কেবল কেটে নেওয়া হয়।
- (১৭) ট্রেলিং কেবলের প্রান্ত স্থতির ফিতা দিয়ে জড়িয়ে দেওয়া হয়।
 ফেরুলের দৈর্ঘ্যের অর্ধাংশের চেয়ে 6 মি.মি. বেশী অংশের ইনস্থালেশান ছেঁটে
 ফেলে ট্রেলিং কেবলের পরিবাহকগুলি উন্মুক্ত করা হয়।
- (১৮) ফেরুলের সাহায্যে উন্মুক্ত কেবল পরিবাহক ও টেলিং কেবন পরিবাহকের প্রান্ত যুক্ত কর। হয় এবং প্রচনিত উপায়ে সজ্জাটিকে রাংঝাল করা হয়।

(১৯) সঠিক অবস্থানে কেবলটি টারমিনেশান ইউনিটের পিছনের অংশের উপর স্থাপন করা হয় এবং বাজের ঢাকা বোল্টের সাহায্যে অটিকে দেওয়া হয়।

हिं 7. x

- (২·) প্রচলিত পদ্বায় বাক্সটি কয়লাঘটিত যৌগ দিয়ে ভবে দেওয়া হয়।
- (২১) 7.x চিত্রে এইচ. ভি. বিভান্ধন বাক্স দেখান হল।
- 300 বর্গমিটার বা ভত্তধর্ব কেবল পরিবাহকে লাগ ঝালার পদ্ধতি।
- (১) প্রচলিত পস্থায় কেবলের কোরগুলি আবরণমূক করে ছড়িয়ে দেওয়া হয়।
 - (২) তৈলসিক স্থতি ফিডা দিয়ে কোরগুলিকে জড়িয়ে দেওয়া হয়।
- (৩) কোরের প্রান্ত থেকে পেপার ইনস্থালেশান ছেঁটে ফেনা হয়। স্তরীয় বিক্যানে পরিবাহকের তারগুলি বিগ্রস্ত করা হয়।
- (8) পরিবাহকের উপরিতলের বাশের সাহায্যে ফ্লাক্স (আয়ার নং 7)
 লাগান হয় (চিত্র 7.xi)।
- (৫) মোটা কাগজের কলার 7.xii চিত্রে প্রদর্শিত পদ্ধতিতে পরিবাহকের উপর লাগান হয়। এতে গড়িয়ে পড়া গলিত রাং নিচে পাতা থালি হাতায় জ্মা হয়।

(৬) পরিবাহকটিতে গলিত আলকা-পি রাং প্রয়োগ করা হয়। যতক্ষণ না তা টিনের মত উজ্জল হয়, ততক্ষণ বিপরীত ক্রমে ফ্রাক্স ও রাং-এর প্রয়োগ চলতে থাকে।

- (৭) সমাপনী প্রলেপ দেওয়া শেষ হওয়ার সঙ্গে সঙ্গে তারের বন্ধনী অপসারিত করা হয় এবং পরিবাহকের উর্বিতলে জয়ে থাকা বাড়তি রাং পরিষার ভকনো কাপড় দিয়ে মুছে ফেলা হয়।
- (৮) লাগের বন্ধ প্রান্তে পরিবাহকের ব্যাদের অর্থেক ব্যাদের সমান ছিত্র করা হয়।
- (৯) টিন-করা লাগের উপরিতলে ফ্রাক্স লাগিয়ে গলিত রাং-এ ডুবিয়ে দেওয়া হয়।
- (১০) টিন-করা পরিবাহকের প্রাস্থে উত্তপ্ত লাগটি লাগিয়ে দেওয়া হয়। লাগের ভালু সঠিক অবস্থানে আছে কিনা তা দেখা প্রয়োজন (চিত্র 7.xiii)।
- (১১) লাগের তালুর উপর স্থৃতি ফিতা জড়িয়ে দেওয়া হয়।
- (১২) যতক্ষণ না সংযোজন সন্ধি
 সজ্জাটি উত্তপ্ত হয়ে ওঠে ও গলিত রাং
 লাগের তলদেশ দিয়ে সহজে গড়িয়ে পড়ে,

हिंख 7.xiii

ভতক্ষণ সজ্জার উপর গলিত রাং প্রয়োগ করা হয় (চিত্র 7xiv)।

(১৩) উত্তপ্ত সজ্জাটির উপর গলিত রাং প্রয়োগের সময় লাগটিকে

মৃত্তাবে আঘাত করা হয়, যাতে পরিবাহকের তারগুচ্ছের মধ্যবর্তী ফাঁকে রাং প্রবেশ করতে পারে।

- (১৪) যতক্ষণ না লাগের উপরিতলে রাং জমে, ততক্ষণ সন্ধি-সজ্জাটির উপর হাতায় করে গলিত রাং হাতা থেকে হাতায় ঢালা হয়।
 - (১৫) নির্দিষ্ট স্থান থেকে মোটা কাগজের কলার অপসারিত করা হয়।
- (১৬) লাগের উপরিতলে নমনীয় বাং চর্বিদিক্ত কাপড় দিয়ে ঘষে মহন-তল গঠন করা হয় (চিত্র 7.xv)।
- (১৭) কেবলের অন্তান্ত কোরের সঙ্গে লাগের সংযুক্তি পূর্বে গৃহীত পদ্ধতি অনুসরণ করে করা হয়।

সভৰ্কভামূলক ব্যবস্থা:

ভূ-নিমন্ত কেবল সংযোজনের উপর নিম্নলিথিত বিষয়গুলি বিশেষভাবে প্রাণিধানযোগ্য:

(১) কেবল সংযোজন বাক্সটিতে কোনও ত্রুটি আছে কিনা, তা পরীক্ষা করে দেখে চিহ্নিত করতে হবে।

- (২) কাটা বা ক্ষত এড়াবার জন্ম বর্মের তীক্ষ প্রাপ্ত বাঁকিয়ে দিতে হবে।
 - (৩) ছাঁটবার জন্ম ছুরির ধার পরীক্ষা করে দেখতে হবে।
- (৪) হাতা ও সংযোজনের অন্যান্য যন্ত্রাদি পরিষ্কার ও শুকনো কাপড় দিয়ে মোছার পর পুরানো থবরের কাগজের উপর সংযোজনকারীর হাতের কাছে সেগুলি রাখতে হবে।

- (৫) কেবল সংযোজন বাজের জন্ম নাটির সমান তলবিশিষ্ট গদী তৈরি করতে হবে।
 - (৬) কেবলের পেপার ইনস্থালেশানের আর্দ্র তা পরীক্ষা করতে হবে।
- (৭) প্রয়োগের আগে রাং ও কেবল যৌগের সঠিক তাপমাত্রা সম্বন্ধে নিশ্চিত হতে হবে।
- রাং-ঝালের কাজ চলার সময় সংযোজন দল্ধি-সজ্জাটি স্বদিকে
 সমানভাবে ঝালা হয়েছে কিনা, তা আয়নার সাহায়্যে পরীক্ষা করতে হবে।
- (৯) ফ্লাক্স থেকে বার হওয়া ধোঁয়া যেন প্রশাসের সঙ্গে শরীরে প্রবেশ না করে।
 - (১০) সংযোজন স্থলে বায়ু চলাচলের ব্যবস্থা করতে হবে।
- (১১) সংযোজনের কাজ শুরু করার আগে সাবান জলে হাত ধুয়ে নিতে হবে।
 - (১২) সংযোজনের উপাদান যেন ঘামে-ভেজা হাতের সংস্পর্শে না আদে।
 - (১৩) ফ্রাক্সের সঙ্গে সরাসরি চাম্ডার সংশর্প পরিহার করতে হবে।
- (১৪) আবরণমৃক্ত ইনস্থালেশানের সঙ্গে ব্লোল্যাম্পের শিথার সরাসরি সংযোগ পরিহার করতে হবে।
- (১৫) ম্যানহোলে বা সংযোজনের জন্ম গর্তে বা বিভাজন বাক্সে কেবল বাঁকাবার সময় কেবলের অন্তমোদিত ব্যাসার্ধ মেনে চলতে হবে।
- (১৬) কয়লা-ঘটিত যৌগ দিয়ে ভরাট করার আগে, ঢালাই লোহার সংযোজন বাক্সের বাইরের তলও গরম করা উচিত। এর ফলে কেবল যৌগের ক্রত ঠাণ্ডা হওয়া রোধ করা যায়।
- (১৭) ঢালাই লোহার সংযোজন বাক্সের ভেতরের স্বংশে ব্লোল্যাম্পের শিখা ঢুকতে দেওয়া উচিত নয়।
- (১৮) যৌগের ভিতর বাতার্স ঢুকে যাওয়া এবং স্তর তৈরি হওয়ার সম্ভাবনা দূর করার জন্ম একবারে কেবল যৌগটি ঢালা উচিত।

অন্তম অধ্যায়

পি. ভি. সি. কেবলের সংযোজন

11 K. V. পি. ভি. দি. কেবলের সংযোজনের জন্ম রঞ্জন-ঢালাই সংযোজন পদ্ধতি ব্যাপকভাবে গৃহীত হচ্ছে। সংযোজনের এই পদ্ধতিতে দদ্ধি-দজ্জাব চারপাশে ঢালাই-এর জন্ম উপাদান অর্ধ-তরল রজনের দঙ্গে অন্থয়াদিত অন্থপতে কঠিন-কারক পদার্থ মিশিয়ে ভৈরি করা হয়। জমে গেলে ঢালাই শ্রুতা বিহীন কঠিন নিশ্ছিদ্র আর্দ্রতা প্রভিরোধক ও উত্তম বৈহাতিক ও যান্ত্রিক গুণ সম্পন্ন হয়। মেশাবার সময় রজন ও কঠিন-কারক পদার্থের মধ্যে যে তাপীয় বিক্রিয়া হয়, তার ফলে মিশ্রণ গরম হয়ে ওঠে। পরিবেশের ভাপমাত্রা ও ছাঁচের আকার অন্থদারে মিশ্রণ কঠিন হতে 2 থেকে 7 ঘণ্টা সময় লাগে।

ইপন্ধি রজনের (Epoxy resin) কেবল সংযোজনের থোগ উপোলিন (Tropolin) ও এম-সীল (M-Seal) এই ব্যবদায়িক নামে পাওয়া যায়।

ঢালাই রজনের সংযোজনের পদ্ধতির করেকটি উল্লেখযোগ্য বৈশিষ্ট্যঃ

- (क) সংস্থাপন সহজ**সা**ধ্য।
- (থ) সম্পূর্ণভাবে জল ও কীট প্রতিরোধক।
- (গ) অম বা ক্ষারজাতীয় মাটির ক্ষয় প্রতিরোধক।
- (ঘ) উত্তম ডাই-ইলেক্ট্রিক ও যান্ত্রিক **গুণ-সম্পন্ন**।
- (७) जज्ञ नमरत्र जरम।
- (চ) কেবলের সঙ্গে দৃঢ় বন্ধন তৈরি করে।

ঢালাই রজনের সংযোজনে নিমা**ল**খিত সরঞ্জাম প্রয়োজন হয় :

- (১) 'ট্রপোলিন' 'অথবা' 'এম-সীল'।
- (২) কঠিন-কারক পদার্থ (হাজনার)।
- (৩) প্ল্যান্তিকের ছাঁচ।
- (৪) ইপক্সি পুটি (Epoxy putty)—এটি ছাঁচে কেবলের প্রবেশ-পথের ফাঁক বন্ধ করে। কাঠির আকারে পুটি পাওয়া যায়। রজনের জন্ত একটি ও কঠিন-কারক পদার্থের জন্ত আরেকটি। ব্যবহারের আগে তুই প্রকারের পুটি একদক্ষে ভাল করে মিশিয়ে নেওয়া হয়।

- (e) ছাঁচের আঠা (Mould adhesive)—ছাঁচের ছটি অংশ জোড়া ছাড়াও সন্ধি-সজ্জা ছাঁচের অভ্যন্তর পরিষ্কার করার কাজে লাগে।
- (৬) বিচ্ছিন্নক (Spacer)—চালাই কবা বিচ্ছিনক কেবলের কোরগুলিকে আলাদা করে ছড়িয়ে ঈপ্সিত দূরত্বে রাথে।
- (१) পি. ভি. দি. প্রাবক (P. V. C. solvent)—ছাচের অভ্যন্তরে আচ্ছাদনের ও কোর ইনস্থালেশানের উপরিতলে প্রয়োগ করা হয়। এতে উপোলিন বা এম-দীল যোগের সঙ্গে বন্ধন নিখুঁত হয়।
 - (৮) পি. ভি. সি. টেপ (P. V. C. tape) 1
- (৯) টিন করা তামার ফেরুল (Tinned copper ferrules)—কেবল পরিবাহক সংযোজনের জন্ম প্রয়োজন হয়।
- (১০) আর্থের তার (Earth conductor) সংযুক্তির সময় কেবলের আবরণমূক্ত বর্মের ধারাবাহিকতা বজায় রাথার জন্ম আর্থ তার ক্লাম্পের সাহাযো বর্মের উপর আটকে দেওয়া হয়।
- (১১) নাড়ানোর জন্ম ধাতব রম্ভ (Metal stirring rod)—কেবল লংযোজনের যৌগ ও কঠিন-কারক পদার্থ মিশ্রণের সময় এটি ব্যবহৃত হয়।
- (১২) বর্ম বন্ধনের জন্ম ক্ল্যাস্প (Armour bonding clamp)—এটি বর্মের সঙ্গে আর্থি তারের সংযুক্তির কাজে ব্যবহৃত হয়।

উচ্চ ভোল্টেজের পি. ভি সি. কেবলের সরলরৈখিক সংযোজন পদ্ধতিঃ

- (১) কেবলগুলি সোজা করে নিয়ে একটার উপর আর একটা রাখা হয়।
- (২) প্ল্যান্তিকের ছাঁচের ছটি অর্ধাংশের একটিকে সাময়িকভাবে নির্দিষ্ট অবস্থানে রাথা হয় এবং ছাঁচে কেবলের প্রবেশ বিন্দু চিহ্নিত করা হয়।
- (৩) কেবলের প্রান্তগুলি সংযোজন সন্ধির কেন্দ্র থেকে 10 সে. মি. বেশী দৈর্ঘ্য রেথে কাটা হয়।
 - (৪) ছাঁচের অভ্যন্তরে:কেবল আচ্ছাদনের প্রাস্ত দীমা চিহ্নিত করা হয়।
- (e) কেবল কাটার ছুরির সাহায্যে কেবলের বাইরের আচ্ছাদন কেটে বর্মকে আবরণমৃক্ত করা হয়।
- (৬) কেবলের আবরণমৃক্ত বর্ম পাথার মন্ত করে ছড়িয়ে দেওয়া হয় এবং কেবলের ভিতরের আচ্ছাদনের উপর একটি পেতলের আন্তিন চুকিয়ে তাকে ঠেলে ছড়ান ইম্পাতের তারের বর্মের গোড়া পর্যন্ত নিয়ে যাওয়া হয়।

এই আস্তিন বর্ম ক্ল্যাম্পের চাপে ভেতরের কেবল আচ্ছাদনের আরুতি বিরুত হওয়া রোধ করে।

- (१) তামার বর্মের ক্ল্যাম্প যথাস্থানে বদানো হয় এবং আটকে দেওয়া হয়।
- (৮) বর্মের তারগুলির উপর বর্মের ক্ল্যাম্পের কাছে একটা ত্রিকোণাকৃতি উথার সাহায্যে থাঁজ কাটা হয় ও পরে বেঁকিয়ে ভেঙে ফেলা হয়।
- (>) কেবলের প্রাস্ত থেকে চিহ্নিত স্থান পর্যস্ত ভেতরকার আচ্ছাদন অপসারিত করার জন্ম কেবলের বর্মের ক্ল্যাম্প থেকে 2 সে.মি. দৈর্ঘ্য মাপা হয়।
- (১০) সংযোজন অবস্থানে কেবল স্থাপন করা হয় এবং সংযোজন দক্ষির কেন্দ্র থেকে 3 মি. মি. দ্রত বেশী রেথে হাকশুর সাহায্যে সোজাস্থজি কাটা হয়।
 - (১১) কেবলের ভিতরের আচ্ছাদন কেটে ফেলা হয়।
- (১২) আবরণমৃক্ত কোরগুলি ছড়িয়ে দেওয়া হয়। কেবলের কোরের মধ্যে বিচ্ছিন্নক প্রবেশ করিয়ে দেওয়া হয় এবং পি.ভি.সি. টেপ দিয়ে বেঁধে নিজ নিজ অবস্থানে স্থির রাখা হয়। [কোরগুলি ছড়িয়ে দেওয়ার সময় এদের মধ্যস্থ্রবাবধান-সম্পর্কে প্রস্তুতকারকদের দেওয়া নির্দেশ মেনে চলতে হবে।]
- (১৩) পি. আই. এল. সি. কেবলের সরলবৈথিক সংযোজনের ক্ষেত্রে যে পদ্ধতি গৃহীত হয়েছে, সেই উপায়ে কেবলের পরিবাহক সংযুক্ত করা হয়।
- (১৪) কেবলের তামার বর্মের ক্ল্যাম্পের সঙ্গে আর্থ তার কোরের সঙ্গে অনুমোদিত ব্যবধান রেথে ঝালাই করে দেওয়া হয়।
- (১৫) সমগ্র সন্ধি সজ্জাটি একটি পরিন্ধার ব্রাশের সাহায্যে গ্রীজ তোলা দ্রাবক দিয়ে পরিষ্কার করা হয়।
- (১৬) কেবলের বাইবের ও ভেতরের আচ্ছাদন এবং কোর ইন স্থালেশান যেগুলি যৌগের মধ্যে রাথা হবে, দেগুলিকে এমারি কাগজ দিয়ে ঘবে অমন্ত্রণ কবে নেওয়া হয় এবং অমন্ত্রণ উপরিতলে মিথিলিন ক্লোরাইড ক্লাবক লাগিয়ে দেওয়া হয়।
- (১৭) ছাঁচের বাইরের রিং (ring) কেটে ফেলা হয়, যাতে কেবলের বাইরের ব্যাসের সঙ্গে মিলে যায়। ছাঁচের যৌগ ভরার প্রবেশ পথ এবং বায়ু নির্গমন পথও কাটা হয়।
- (১৮) কেবলের বাইরের আচ্ছাদনের ছাঁচে প্রবেশপথের উপর পি.ভি.িস. ফিতা কয়েক পাক জড়িয়ে দেওয়া হয়।

- (১৯) ছাঁচের ভেতরের তল গ্রীজ তোলা স্রাবক দিয়ে পরিষ্কার করা হয়।
- (২০) একটি চ্যাপ্টা ব্রাশের সাহায্যে ছাঁচের প্রসারিত কিনারার উপর আঠা লাগিয়ে দেওয়া হয়। ছাঁচের তুইটি অর্ধাংশ সন্ধি সজ্জার তুপাশে লাগিয়ে ছাঁচের প্রসারিত কিনারা তুটি একসঙ্গে চাপ দিয়ে জোড়া হয়।
- (২১) সাধারণভাবে বাবহারের উপযোগী ইপক্সি পুটি সমান পরিমাণ বজন পুটির সঙ্গে একই পরিমাণ কঠিন-কারক পুটি হাত দিয়ে ভালভাবে মিশিরে প্রস্তুত করে ছাঁচের কেবল প্রবেশ পথে লাগিয়ে বন্ধ করে দেওয়া হয়। ছাঁচের প্রদারিত কিনারাতেও ইপক্সি পুটি লাগানো হয়, যাতে ফাঁক দিয়ে কেবল যৌগ বেরিয়ে না যায়।
 - (২২) 30 মিনিটের জন্ম পুটি জমতে দেওয়া হয়।
- (২৩) যৌগ ভরার ও বাতাদ বার হওয়ার ছিদ্রগুলি দাময়িকভাবে পরিষ্কার কাগজ দিয়ে বন্ধ করে দেওয়া হয়।
- (২৪) ঝুরো মাটির গদীর উপর ছাঁচটি অহুভূমিকভাবে স্থাপন করা হয়, যাতে তা যোগ দিয়ে ভরার সময় স্থানচ্তি না হয়।
- (২৫) যতক্ষণ না মিশ্রণটির মধ্যে রঙের সমতা আদে ও বৃদ্ধ্য ওঠা বন্ধ হয়, ততক্ষণ ট্রপোলিন বা এমদিল ভর্তি টিনে কঠিন-কারক পদার্থ ঢেকে মিশ্রণটি ধীরে ধীরে একভাবে একটি শুকনো পরিষ্কার লোহার বন্ধ দিয়ে নাঞ্জা হয়।
- (২৬) প্লায়ারের সাহাযো টিনের কিনারায় ঢালবার উপযোগী মৃথ তৈরি করা হয়।
- (২৭) ছাঁচের উপরকার যৌগ ভরাট ও বাতাস বার হওয়ার ছিত্রগুলি কাগজের ছিপি খুলে উন্মৃক্ত করা হয়।
 - (২৮) খুব ধীরে ধীরে মিজিত ঘৌগ ঢেলে ছাঁচটি পূর্ণ করা হয়।
- (২৯) যৌগ থেকে বৃদ্ধুদ ওঠা বন্ধ হলে, ছাঁচটি কানায় কানায় ভবে দেওয়া হয়।
- (৩০) পরিবেশের তাপমাত্রা অনুযায়ী যোগটি 2 থেকে 6 ঘণ্টা জমতে সময় দেওয়া হয়।

(৩১) 8.i চিত্রে উচ্চ ভোন্টেজের পি. ভি. সি. কেবলের সরলবৈথিক সংযোজন দেখান হয়েছে।

চিত্ৰ 8.i

A-বায় নির্গমনের পথ ;

B-আর্থ তার;

O-কোর বিচ্ছিন্নক :

D –কেবল যৌগ ঢালার গর্ভ ;

E—রজন যৌগের পুটি;

F-5 15;

G-क वन योग ;

H—কেরুল ;

K—(本) 1

भि. ভि. त्रि. दकदत्वत्र **डि-**त्रः दशांक्रम शक्कि :

- (১) মূল কেবলের উপর শাখা কেবল স্থাপন করা হয়।
- (২) প্ল্যান্টিকের ছাঁচের নিমাংশ সংযোজন অবস্থানের নিচে মাঝামাঝি করে স্থাপন করা হয় এবং কেবলের বাইরের আচ্ছাদনের 4 সে.মি. অংশ ছাঁচের ভেতর রেথে কেবল চিহ্নিত করা হয়।
- (৩) চিহ্নের মধ্যবর্তী স্থান থেকে মূল কেবলের বাইরের আচ্ছাদনে কেটে ফেলে বর্মকে আবরণমুক্ত করা হয়।
- (8) আৰবণমূক্ত বৰ্ম হ্ছাক শু-ব সাহায্যে সাবধানে মাঝখানে কাটা হয়
 এবং উভয় প্ৰান্তের বর্মের তার বাঁকিয়ে দেওয়া হয়!
- (৫) তিন বা চার স্তর কাঁচতন্ত্রর ফিতা মূল কেবলের বাইরে আচ্ছাদনের উভন্ন প্রাস্তে ভেতরের আচ্ছাদনের উপর 4 সে.মি. পরিমিত স্থান জড়িয়ে দেওয়া হয়।
- (৬) বর্মের বন্ধনী ক্ল্যাম্পের অবস্থানে স্থলের বর্মের তারগুলি পরিষ্কার করা হয়।
- (৭) কেবলের বর্মের উপর দৃঢ়ভাবে তামার বন্ধনী ক্ল্যাম্প মূল কেবলের বাইবের আচ্ছাদনের প্রান্ত থেকে 25 দে.মি. দ্বে আটকে দেওয়া হয়।
- (৮) ক্ল্যাম্পের কাছে বর্মের তারগুলির উপর খাঁজ কাটা হয় এবং বাঁকিয়ে ভেঙে ফেলা হয়।

- (৯) ভেতরের আচ্ছাদন কেটে ছিঁড়ে ফেলার উদ্দেশ্যে মূল কেবলের বর্ম ক্ল্যাম্পের প্রান্ত থেকে 2 দে.মি. দূরত্ব মেপে চিহ্নিত করা হয়।
- (১০) কেবল-কাটা ছুরির সাহায্যে চিহ্নিত স্থানের মধ্যবর্তী আচ্ছাদন क्टिं किना रुष्र। अत करन मृत क्वरनद कांत्र व्यावत्रभम् रुष्ठ रुष्र।
 - (১১) আবরণমৃক্ত কোরের মধ্যে বিচ্ছিনক স্থাপন করা হয়।
 - (১২) একই উপায়ে শাথা কেবলকেও প্রস্তুত করা হয়।

हिज 8.ii

A & K-আর্থ তার:

C & F-वायु निर्शमत्नद्र १थ ;

E-क्वन योग :

J-বিচ্ছিন্নক;

B, G & M- ब्रजन योरभव शृष्टि ;

D-কেবল যৌগ ঢালার গর্ত;

H-कब्लाब कोत ;

N-ETTI

L_म्दक ;

(১৩) সকেট লাগানো ফেরুলের সাহায্যে পি. আই. এল. সি. কেবলে টি-সংযোজনের জন্ম গৃহীত পদ্ধতিতে শাখা কেৰলের পরিবাহকগুলি মূল কেবলের সংশ্লিষ্ট পরিবাহকের সঙ্গে সংযুক্ত করা হয়।

(১৪) কেবলের তামার বর্মের ক্ল্যাম্পের দক্ষে আর্থ তার ঝালাই করে দেওয়া হয়; এতে মূল ও শাথা কেবলের বন্ধন স্থনিশ্চিত হতে পারে।

্মুল ও শাথা কেবল কোর ও আর্থ তারের মধ্যে অনুমোদিত বাবধান বক্ষা করতে হবে।]

- (১৫) একটি পরিষ্কার ত্রাশের দাহায্যে গ্রীষ্ণ তোলা স্রাবক দিয়ে দমগ্র সন্ধি সজ্জাটিকে পরিষ্কার করা হয়।
- (১৬) সরলবৈথিক সংযোজন পদ্ধতির অনুত্রপ পদ্ধতিতে সন্ধি সজ্জাটি উপোলিন বা এমনিশের সঙ্গে একটি কঠিনকারক পদার্থ মিশিয়ে সেই মিশ্রণের মধ্যে চেকে রাখা হয়।
- (১৭) 8.ii চিত্রে পি.ভি. পি. কেবলের একটি সম্পূর্ণ টি-সংযোজন সন্ধি দেখান হল।

মিভিয়াম ভোল্টেজ পি. ভি. সি. কেবলের প্রান্তিক বিস্থাস:

কার্থানায় অথবা গৃহে মিডিয়াম ভোল্টেজ পি. ভি. দি. কেবলের প্রান্তিক বিক্তানে "ক্রচ" শীলিং বাঁতিবহিভূ ত। ঐ ধরনের অবস্থানে কেবলের কোরগুলি দ্বাদরি বা গ্লাণ্ডের সাহায্যে বিভিন্ন টার্মিনাল বাক্সের সঙ্গে সংযুক্ত করা হয়। কিন্তু রাদায়নিক বা সারের কার্থানায় অথবা কেবলের পক্ষে ক্ষতিকারক আবহাওয়ায় বা অবস্থানে কেবলকে পরিবেশের ক্ষতিকারক প্রভাব থেকে রক্ষা করার জন্ম প্রান্তিক বিন্তানে ক্রাচ দীলিং স্থপারিশ করা হয়। এ ছাড়া উন্মৃত্ত স্থানে স্থাপিত কেবলের প্রান্তিক বিন্তানের ক্ষেত্রেও উপরি-উক্ত শীলিং প্রয়োজন হয়।

জাবরণ মৃক্ত কোরের 'ক্রচ' (crotch) রজন-যোগের সাহায্যে সীল করাই প্রচলিত রীতি। এই ব্যবস্থায় কেবলের মধ্যে ধুলো ময়লা বা আর্দ্র আবহাওয়ার অন্ধ্রবেশ রোধ করা সম্ভব হয়। এ ছাড়া কোরের প্রাস্তে বাংঝাল করা স্কিটের নীচে পরিবাহকের উন্মৃক্ত অংশে রজন থোগের পুটির প্রলেপ গড়ে তুলে কোর ইনস্থালেশানে আর্দ্র আবহাওয়ার অন্ধ্রবেশ রোধ করা হয়।

সংস্থাপন পদ্ধতি :

প্রথমে পূর্বনিদিষ্ট স্থানে কেবলটি থাড়া ভাবে স্থাপন করা হয় এবং প্রান্ত থেকে প্রয়োজনীয় দূরত্ব মেপে নেওয়া হয়। কেবল কাটার ছুরির সাহায্যে কেবলের বাহিরের আচ্ছাদন কেটে বর্মকে আবরণ মৃক্ত করা হয়। বর্মবিহীন কেবলের ক্ষেত্রে বাহিরের এবং ভেতরকার আচ্ছাদন অপদারণের পর্যায়ক্রম ৪.iii চিত্রে দেখান হয়েছে। প্রথমে বাহিবের আচ্ছাদন এবং পরে ভিতরকার আচ্ছাদন কেটে কোরকে আবরণমূক্ত করা হয়। ভিতরকার আচ্ছাদন কাটার সময় বিশেষ যত্ন নেওয়া প্রয়োজন। কারণ, এই আচ্ছাদনের নীচেই কোর ইনস্থানেশান থাকায় তা ক্তিগ্রস্ত হওয়ার সন্তাবনা থাকে।

উদ্দিষ্ট যন্ত্ৰ বা স্থইচ গিয়াবের দক্ষে কেবলের সংযোজন পদ্ধতির উপর নির্ভর করেই কোরের দৈর্ঘ্য স্থির করা হয়। কোরের মধ্যে পারস্পরিক বাবধান 150 মি.মি. রেথে কেবল স্থাপন করাই রীতি। কেবল স্থাপন করার সময় কেবলের সর্বনিম বাাসাধের নিয়মটির উপর দৃষ্টি দেওয়া প্রয়োজন।

বর্মাবৃত কেবলের উন্মৃক্ত বর্মের তারগুলি প্রথমে দোজা করা হয় ও পরে তা নিচের দিকে বেঁকিয়ে দেওয়া হয়। ভিতরকার আচ্ছাদনের উপর বাহিরের আচ্ছাদনের প্রাপ্ত থেকে 70 মি.মি. দ্রত্ব পর্যন্ত ফাইবার মাদের ফিভার তিনটি ক্তর জড়িয়ে দেওয়া হয়। বাহিরের আচ্ছাদনের 20 মি.মি. উপর থেকে 30 মি.মি. দ্রত্ব পর্যন্ত বর্মের ভারের উপরের দন্তার আবরণ ঘষে তুলে ফেলা হয় এবং পরিষ্কৃত অংশ 'টিন' করা হয়। 'টিন' করার কাজে দাধারণতঃ যে রাং ব্যবহৃত হয়, তার বিভিন্ন উপাদানের আন্থপাতিক হার—শতকরা 60 ভাগ সীদা ও 80 ভাগ টিন।

বর্মের তারগুলি তারের বন্ধনীর সাহায্যে থাড়া করে রাথা হয়।
এরপর তামার আর্থ তারের একটি পাক বর্মের টিন করা অংশের মাঝামাঝি
শক্ত করে জড়িয়ে দেওয়া হয় এবং আর্থ তারটি বর্মের সঙ্গে রাংঝাল

করা হয়। বর্মের উপরের দিকের তারের বন্ধনী খুলে ফেলা হয় এবং বর্মের তারগুলি নিচের দিকে বেঁকিয়ে রাংঝাল করা তামার আর্থ তারের উপর চাপ দিয়ে বসিয়ে দেওয়া হয়। আর্থ তারের একটি পাক বর্মের তারের উপর জড়িয়ে দেওয়া হয় এবং পরে তা রাংঝালের সাহায্যে দৃঢ় নিবদ্ধ করা হয়। ঝুলে থাকা বর্মের তার আর্থ তারের বন্ধনীর কাছাকাছি কেটে ফেলা হয়।

हिज 8 iv

ভিতরকার আচ্ছাদন ফাইবার গ্লাদের ফিতা জড়ান অংশ বাদ রেখে ছুরির দাহায্যে কেবল প্রান্ত পর্যন্ত কেবল কোরগুলিকে ছড়িয়ে দেওয়া হয়।

কোরের প্রাপ্ত থেকে লাগ বা টারমিনাল ক্ল্যাম্পের সকেট অংশের দৈর্ঘ্য অপেক্ষা 12 মি.মি. বেলী অংশ মেপে নিয়ে কোর ইনস্থালেশন অপসারণ করা হয়। লাগ বা টারমিনাল ক্ল্যাম্পের দক্ষে কেবল পরিবাহকের সংযুক্তি প্রচলিত পদ্ধতিতে রাংঝাল করে স্থনিশ্চিত করা হয়।

বাসবার বা অন্ত কোন যন্ত্রের সঙ্গে কেবল সংযুক্ত করার আগে কোরের অন্তক্রম (sequence)—যেমন, কোন কোরটি R-ফেন্ড, কোন কোরটি Y আরু কোন কোরটি B, তা চিহ্নিত করে নিতে হবে।

প্রস্তুতকারকের স্থপারিশ অনুযায়ী কোরের মধ্যবর্তী ব্যবধান রক্ষা করে কেবল স্থাপন করার কথা বলা হয় কিন্তু কার্যক্ষেত্রে সময় সময় নির্দেশিত ব্যবধান বজায় রাখা সম্ভব নাও হতে পারে। কেবলের উন্মৃক্ত কোরগুলি যে কেন্দ্র বিন্দু থেকে বিভিন্ন দিকে ছড়িয়ে পড়ে, তাকে কেবলের পরিভাষায় 'ক্রাচ' বলা হয়। এই 'ক্রাচ' রজন যৌগের সাহায্যে দীল করা হয়। দীল করার পদ্ধতি নিম্নরূপঃ

- (১) শঙ্কু আকৃতির প্লাষ্টিকের ছাঁচের কেবল প্রবেশের পথ কেবলের প্রস্থাচ্ছেদের সমান করে কেটে নেওয়া হয়।
- (২) ছাঁচটির মাঝামাঝি 'ক্রাচ'-কে রেখে কেবলের উপর সাময়িকভাবে স্থাপন করা হয়। এরপর কোরের এবং বাহিরের আচ্ছাদানের যে অংশ রজন যোগের সীলের মধ্যে নিহিত থাকবে, তা চিহ্নিত করা হয়।
- (৩) কোর এবং আচ্ছাদনের চিহ্নিত অংশ এমারি কাগদ ঘবে থসথসে করা হয় ও মিথিলিন ক্লোরাইড (methylene chloride) জাবকের সাহায্যে পরিষ্কার করা হয়। পরিষ্কৃত অংশ কোন মতেই স্পর্শ করা উচিত নয়।
 - (৪) প্লাষ্টিক ছাঁচের কানার যে তলে আঠার প্রলেপ দিতে হবে, তা এমারি কাগজের সাহায্যে ঘয়ে থস্থদে করে নেওয়া হয়।
 - (৫) ছাঁচের অভ্যস্তর ভালভাবে পরিষ্কার করার পর কানার থস্থনে তলে আঠার প্রলেপ দেওয়া হয়।
 - (৬) এরপর **ছাঁ**চের সাহাযো 'ক্রাচ' ঢেকে দেওয়া হয়।
 - (१) আঠার প্রলেপ লাগানো কিনারা চেপে বিদিয়ে দেওয়া হয় এবং পরে তা স্টেইপেলের সাহায্যে বেঁধে দেওয়া হয়।
 - (৮) ছাঁচটিকে সোজা করে বদান পর ছাঁচে কেবল প্রবেশের পথের ফাঁক প্লাষ্টিকের ফিতা জড়িয়ে বন্ধ করা হয়।
 - (৯) রজন যৌগের পুটি ছাঁচের কিনারা এবং ছাঁচের কেবল প্রবেশের পথে কাগানোর পরই ছাঁচকে নিছিক্ত করা সম্পূর্ণ হয়।
 - (১০) বজন যৌগ ঢালার আগে ছাঁচের মধ্যে কোরগুলি এমন ভাবে বিশুস্ত করা হয়, যেন তাদের মধ্যে পারস্পরিক ব্যবধান ৪ মিমি এবং কোর ও ছাঁচের কিনারার দ্রত্ব 10 মিমি থাকে।
 - (১১) পূর্ববর্ণিত পদ্ধতিতে ছাঁচে রজন যৌগ ও হাজনারের মিশ্রণ ঢালা হয় এবং 2 থেকে 5 হণ্টা অপেক্ষা করার পর প্লাষ্টিকের ছাঁচ খুলে ফেলা হয়।

বর্মকে আর্থের সঙ্গে সংযুক্ত করার বিভিন্ন পর্যায় এবং দীল করা কেবল
৪.iv চিত্রে দেখান হয়েছে।

ওভার হেড লাইনের সঙ্গে মিডিয়াম ভোল্টেজ পি. ভি. সি. কেবলের সংযুক্তি:

পোলের ভিৎ পর্যন্ত পরিথা থনন করে পরিথায় কেবল পাতা হয়। পরিথায় পাতা কেবল ভিতের কাছে বেঁকিয়ে পোলের শীর্ষাভিম্থী করে সরাদরি পোলের

চিত্র ৪.v A—ইম্পাতের পাইপ।

মাথা পর্যন্ত নিয়ে যাওয়া হয়। জমি থেকে

3 মিটার দ্রত্ব পর্যন্ত কেবল জি. আই.
পাইপের মধ্যে স্থাপন করাই প্রচলিত

রীতি। ক্ল্যাম্পের সাহায়্যে কেবল পোলের
সঙ্গে বেঁধে থাড়া ভাবে রাথা হয়।

পূর্ববর্ণিত পদ্ধতিতে বাহিরের আচ্ছাদন অপদারণ, কেবল বর্মের আর্থে সংযুক্ত ও ভিতরের আচ্ছাদন অপদারণ করে কেবল কোরগুলি উন্মৃক্ত করা হয়। কেবলের 'ক্রোচ' সীলিং একই পদ্ধতিতে করা হয়।

নাধারণতঃ, কেবল পরিবাহক লাইন কণ্ডাক্টরের সঙ্গে পি. জি. ক্ল্যাম্পের সাহায্যে সংযুক্ত করা হয়। কিন্তু সংযুক্তির আগে কেবল পরিবাহক অতি অবশ্য টিন করে নিতে হবে।

ওভার হেভ লাইনের দঙ্গে পি. ভি. দি. কেবল কিভাবে সংযুক্ত করা হয় তা ৪.৮. চিত্রে দেখান হয়েছে।

6.6 K.V. পি. ভি. সি কেবলের প্রান্তিক বিন্যাস পদ্ধতি:

উচ্চ ভোন্টেজের কেবলের প্রান্তিক বিক্তাসে দকল অবস্থানেই 'ক্রাচ' দীলিং প্রয়োজন হয়। এ ছাড়া উন্মৃক্ত পরিবেশে প্রত্যেক কোরে বৃষ্টি প্রতিব্যোধক (rain shield) টুপি লাগানোর উপর জোর দেওয়া হয়।

কেবলটি পূর্ব নির্দিষ্ট স্থানে থাড়া ভাবে স্থাপন করা হয় এবং ক্ল্যাম্পের সাহায্যে বাঁধা হয়। এরপর কেবলের বাহিরের আচ্ছাদনের উপর প্রয়োজন মত দৈর্ঘ্য মেপে চিহ্নিত করা হয়। বাহিরের আচ্ছাদন কেবলা কাটার ছুরির শাহায়ে কেটে অপসারণ করা হয়। আচ্ছাদনের প্রান্তে কিছু দ্বত্ব পর্যন্ত পি. ভি. সি.-ফিতা জড়িয়ে দেওয়া হয়। অনারত কেবল বর্মের ভারগুলি বাহিরের দিকে ছড়িয়ে দেওয়ার্ম পর একটি পিতলের আস্তিন (sleeve) ভিতরকার আচ্ছাদনের উপর পরিয়ে দেওয়া হয় এবং আন্তিনটি ঠেলে উন্তুক্ত কেবল বর্মের গোড়া পর্যন্ত নিয়ে যাওয়া হয়। এই আস্তিন আর্থ ক্ল্যাম্পের চাপে ভিতরকার আচ্ছাদনের আরুতি বিক্বত হওয়া থেকে রক্ষা করে। আর্থ ক্ল্যাম্পে বর্মের উপর লাগানোর আগে আর্থ তারের সঙ্গে রাংঝাল করা লাগটি ক্ল্যাম্পের ক্ক্র ভিতর স্থাপন করা হয়। আর্থ ক্ল্যাম্পেটি পিতলের আন্তিনকে নীচে রেথে বর্মের উপরে স্থাপন করা হয় এবং ক্ক্র সাহায়ে তা দৃঢ় করা হয়। অতিরিক্ত বর্মের তারগুল্লি ক্ল্যাম্পের কাছাক।ছি কেটে ফেলা হয়। এই কাজ ত্রিকোণী উথার সাহায়ে করা হয়।

हिख 8.vi

আর্থ ক্ল্যাম্পের প্রান্ত থেকে 20 মি.মি. দূরত্ব পর্যন্ত ভিতরকার আচ্ছাদন রেখে কেবল কাটার ছুরির সাহায্যে আচ্ছাদন কেটে কেবল কোর উমুক্ত করা হয়। অনার্ত ভিতরকার আচ্ছাদনের উপর পি. ভি. মি. ফিতা ও টোন্ফ্রতার তুইটি স্তর জড়িয়ে দেওয়া হয়। উমুক্ত কোরগুলি বাহিরের দিকে
ছড়িয়ে দেওয়ার পর, তাদের অন্তর্জম চিহ্নিত করা হয়। পূর্ব বর্ণিত পদ্ধতিতে
কেবল পরিবাহকের সক্ষে লাগ রাংঝাল করা হয়।

কেবলের 'ক্রাচ' রজন যোগের সাহায্যে সীল করার পদ্ধতি মিডিয়াম ভোল্টেজের অন্তরূপ।

কেবল বর্ম আর্থ করা এবং ছাঁচে রজন যৌগ ও হাছনারের মি**শ্রণ** ঢালার পদ্ধতি ৪.vi চিত্রে দেখান হয়েছে।

ছাঁচের অভ্যন্তরে আর্থ ক্ল্যাম্পের সঠিক অবস্থান 8.vii চিত্রে দেখান হয়েছে।

উন্মুক্ত পরিবেশে কেবল কোরে পূর্ব-প্রস্তুত রৃষ্টি নিরোধক টুপি স্থাপনের পদ্ধতি নিয়রপঃ

পরিবাহকের সঙ্গে লাগ রাংঝাল করার আগেই বৃষ্টি নিরোধক টুপি উন্মুক্ত কেবল কোরে ঠেলে প্রবেশ করানো হয় এবং কোরে তাদের সঠিক অবস্থান

চিত্ৰ 8.vii

A—টোন হুভার স্তর ;

B—আর্থ ক্ল্যাম্প;

0—वर्भ ; D—क्रांम्ल ।

हिज 8.viii

A-কোর; B-রজন যৌগ;

C—পি. ভি. সি. টেপ; D—বৃষ্টি নিরোধক ট্পি ;

a=150 সে. মি.; b=250 মি. মি.।

চিহ্নিত করা হয়। কোরে বৃষ্টি নিরোধক টুপির অবস্থান চিহ্নিত করার সময় ভাদের মধ্যে পারস্পরিক সংস্পর্শ এড়ান সম্ভব হচ্ছে কিনা দেখা প্রয়োজন। চিহ্নিত স্থানে পি. ভি. দি. ফিতা জড়িয়ে গদী প্রস্তুত করা হয় এবং তার উপর ন্থি নিরোধক টুপি সঠিক ভাবে স্থাপন করা হয়। এরপর টুপি ও আচ্ছাদনের মধ্যবর্তী ফাঁক রজন যোগ ও হাডনারের

মিশ্রণ তেলে ভরাট করা হয় (চিত্র 8.viii)।

সকল অবস্থানেই কোরের প্রান্তে বাংঝাল করা সকিটের নীচে পরিবাহকের উন্মৃক্ত অংশ রজন যৌগের পুটি
দাহাযো সীল করা উচ্চ ভোল্টেজ
কেবলের ক্ষেত্রে বাধ্যতামূলক। এই
ব্যবস্থায় কোর ইন্স্যুলেশানে ধ্লো
ময়লা বা আর্দ্র আবহাওয়ার অন্তপ্রবেশ
রোধ করা সন্তব হয়।

পি ভি. দি. কেবলের মোটরের টারমিনাল বাক্সের দঙ্গে সংযুক্তি 8.ix চিত্রে দেখান হয়েছে।

উক্ত ভোল্টেজ পি. ভি. সি. কেবল ট্রান্সফর্মারের সঙ্গে কিভাবে সংযুক্ত করা হয় তা 8.x চিত্র থেকে বোঝা যাবে।

ক্রণ-লিক্ষড্ পলিথিন **ইন্** স্থ্যনেটেড (XLPE)কেবল:

हिख 8.x

চিত্ৰ 8.ix

এই ধরনের কেবলের গঠন
পি. ভি. দি. কেবলের অফুরপ।
পি. ভি. দি. কেবলের মত পরিবাহকের উপর 'ক্রশ-লিক্বড্ পলিথিন'
ইনস্যলেশানের সাহায্যে কোর ইনস্থালেশান গড়ে ভোলা হয়।

উচ্চ ভোল্টেজ কেবলে গুচ্ছকারে
গ্রাথিত পরিবাহকের উপর অর্থপরিবাহী (semi-con-ducting) ক্রণলিক্ষড্ পলিথিনের আবরণ থাকে।
কোর ইনস্থালেশানের উপরও

অহরপ আবরণ দেওয়া হয়। এ ছাড়া ঐ আবরণের উপরে কোমলায়ীভ তামার ফিতা জড়ান থাকে। শেষে ক্রশ-লিঙ্কড় পলিথিনের আবরণ তামার ফিতার স্তরের উপর দেওয়া থাকে। ইনস্থালেটেড কোরগুলি একত্র করে এবং কোরের মধ্যবর্তী ফাঁক প্রাপ্তিক ফিলারের সাহায্যে ভরাট করে, বৃত্তাকার তলের উপর পি. ভি. সি. ফিতা জড়ান থাকে। এর পরের স্তরেই থাকে দস্তার প্রনেপষ্ক্র ইস্পাতের বর্ম। কেবলে যদি বর্মের তৃইটি স্তর থাকে, ভবে তৃই স্তরের মাঝে পি. ভি. সি. একটি স্তর দেওয়া হয়। ইহা বিভেদকের কাল্ল করে। সবশেষে এই ধরণের কেবলে পি. ভি. সি.-এর আচ্ছাদন দেওয়া থাকে।

সারণী ঃ
ভূগর্ভে স্থাপিত সম-আয়তনের বিভিন্ন ধরনের কেবলের বিভাৎ বহন ক্ষমতা ।

স্থালুমিনিয়ামের পরিবাহকের স্থায়তন বর্গ মি.মি.	বিহ্যৎ বহন ক্ষমতা		
	এক্স. এল. পি. ই. কেবল (জ্যাম্পিয়ার)	পি. আই. এল. গি. কেবল (অ্যাম্পিয়ার)	পি. ভি. পি. কেবল (অ্যাম্পিয়ার)
35 120 300	120 240 385	100 205 335	105 200 230

ঢালাই রজনের কেবল সংযোজন পদ্ধভিত্তে পি. ভি সি কেবল সংযোজনের সময় নিচে উল্লেখ করাসভর্কভামূলক ব্যবস্থা নিভে হবে ঃ

- (ক) উন্মৃক্ত স্থানে সংযোজনের সময় সরাসরি স্থর্যের আলো পরিহার করতে হবে।
- থে) উপোলিন বা এম-সিলের সঙ্গে কঠিন কারক পলার্থের মিশ্রণ ছায়ায় ঘটাতে হবে।
- (গ) যেথানে পরিবেশের তাপমাত্রা 40° সেন্টিগ্রেডের নিচে, দেথানে কঠিন কারক পদার্থের দঙ্গে মিশ্রণের আগে যৌগটি ঐ তাপমাত্রায় উত্তপ্ত করতে হবে।
 - (च) কেবল সংযোজন যৌগে হাতের ম্পর্শ যতটা সম্ভব, পরিহার করাই ভাল।
 - (ও) কাজের শেষে হাত সাবান দিয়ে ধুয়ে ফেলতে হবে।
 - (চ) প্রত্যেকটি যন্ত্র বাবহারের আগে পরিষ্কার করে নিতে হবে।
 - (ছ) কেবল সংযোজনের সময় থাওয়া অথবাধুমপান করা অহুমোদিত নর।

নবম অথ্যায়

কেবল সংস্থাপন ও সংযোজনের পূর্ববর্তী পর্যায়ের পরীক্ষা

কেবল পাতা ও সংযোজন সঠিক হয়েছে কিনা এবং সংযোজন ত্রুটিশ্রু কিনা, নিশ্চিত হওয়ার জন্ম নিচে বর্ণিত পরীক্ষাগুলি করা উচিত।

(ক) পরিবাহকের রোধ পরীক্ষাঃ

এই পরীক্ষার দ্বারা কেবলের সংযোজন সন্ধি কতটা কার্যোপযোগী, তা স্থানিত হয়। একটা ভাল সংযোজন সন্ধি কেবলের পরিবাহকের গুণগুলি সংরক্ষণ করে। সেইজন্ম সংযোজন সন্ধির রোধ কেবল পরিবাহকের সমান হয়। প্রস্তুতকারকদের মান অপেক্ষা রোধের উচ্চতর মান সংযোজন সন্ধির অথবা প্রান্তীয় ব্যবস্থায় উচ্চতর স্পর্শ রোধ স্থানিত করে। টিলাভাবে সংযুক্ত পরিবাহক বা খারাপভাবে করা রাংঝাল সংযোজন সন্ধির উচ্চ স্পর্শ রোধের জন্ম দায়ী। এর ফলে কেবলের সন্ধি সজ্জা লোডে (load) বেশীমাত্রায় উত্তপ্ত হয় এবং পরিশেষে কেবল অচল হয়ে পড়ে।

কাঙ্গের জায়গায় কেবলের রোধ পরিবহণযোগ্য কেলভিন ব্রিজ (Kelvin Bridge)-এর সাহায্যে মাপা হয়।

(খ) ইন্স্যুলেশানের রোধ পরীক্ষাঃ

সংযোজনের কাজ চলাকালীন কেবল ইনস্থালেশানের ভিতর কোনও আর্দ্র তা প্রবেশ করেছে কিনা, এই পরীক্ষা দ্বারা স্টিত হয়। স্বল্প দৈর্ঘ্যে কেবলের ক্ষেত্রে এই পরীক্ষা ইনস্থ লেশান টেস্টারের সাহায্যে করা হয়। কিন্তু এই যন্ত্রটি বেশী দৈর্ঘ্যের কেবলের ইনস্থালেশান রোধ মাপার জন্ম ব্যবহার করা যায় না।

কেবলের চাপ-সহন ক্ষমতা পরীক্ষার সময় বৈদ্যাতিক ক্ষরণ (leakage)
লক্ষ্য করে নিভুলভাবে একটি কেবলের ইনস্থালেশনের রোধ মাপা যায়।

(গ) কেবলের চাপ-সহল ক্ষমতার পরীক্ষা:

এই পরীক্ষা দ্বারা কেবল কোথাও ক্ষতিগ্রস্ত হয়েছে কিনা বা সংযোজন সন্ধিতে কোন ক্রটি আছে কিনা তা স্থচিত হয়।

চাপ-পরীক্ষা চালাবার জন্ম এ. সি. বা ডি. সি. কারেন্ট ব্যবহার করা যেতে পারে। সাধারণতঃ কেবল ভোল্টেজের 2 অথবা 3 গুণ ভোল্টেজ পরিবাহক-গুলির মধ্যে বা পরিবাহক ও আর্থের মধ্যে 15 মিনিট ধরে রাখা হয়।

বিভিন্ন ভোল্টেজের কেবলের চাপ-সহন ক্ষমতা পরীক্ষার জন্ম ভারতীয় বিধিতে অন্নুমোদিত পরিমাণ কঠোরভাবে মানা উচিত। কার্যতঃ, উচ্চ ভোন্টেজের কেবলের চাপ দহন ক্ষমতা পরীক্ষার জন্য জি. পি.
বিছাৎ পছন্দ করা হয়। তার কারণ এই ধরণের বেশী দৈর্ঘ্যের কেবলের উচ্চ
ইলেকটো-ন্ট্যাটিক ধারকত্ব। নিচে উল্লেখ করা উদাহরণ থেকে চাপ-দহন
ক্ষমতা পরীক্ষার কাজে জি. সি. বিহাৎকে এ. সি. বিহাতের চেয়ে পছন্দ করার
কারণ নির্দেশ করবে।

উদাহরণ ঃ

क्वितलाय विस्थय विवयन

প্রকার: 11 কে. ভি., এইচ. টাইপ, পি. আই. এগ. নি. কেবণ; পরিবাহকের আয়তন—50 বর্গ মি. মি.;

কেবলের দৈর্ঘ্য-10 কি. মি.;

ধারকত্ব—0'268 মাইক্রো ফেরাড প্রতি কিলোমিটারে; ইনস্থালেশান রোধ—200 মেগা ওহম প্রতি কিলোমিটারে; পরীক্ষা ভোল্টেজ—এ.দি. 20,000 ভোল্টদ (50 c/s); দ্ভি.দি.; 30,000 ভোল্টদ।

উপরের কেবলটির চাপ-সহন ক্ষমতা পরীক্ষার জন্ম টানস্ফরমারের \mathbf{KVA} রেটিং হবে :

টানসফরমার রেটিং $=2\pi f$ $\sqrt{3}$ CE $^2 \times 10^{-3}$ KVA. =584 KVA.

উপরের কেবলের চাপ সহন ক্ষমতা পরীক্ষার জন্ম জি. সি. পরীক্ষা যন্ত্রের রেটিং। যন্ত্রের রেটিং $= rac{E^2}{R} imes 10^{-8} \; \mathrm{KW}.$

=0.045 KW.

এটা লক্ষণীয় যে, ভারতীয় বিধিতে আর্থ করা ব্যবস্থায় তৃইটি পরিবাহকের মধ্যে চাপ-দহন ক্ষমতা পরীক্ষার কাজে পরিবাহক ও আর্থের মধ্যে চাপ-দহন ক্ষমতা পরীক্ষার ব্যবহৃত ভোল্টেজ অপেক্ষা বেশী পরিমাণ ভোল্টেজ অনুমোদন করেছেন। আর্থ করা ব্যবস্থাতে কেবলের আচ্ছাদন সব সময় আর্থের বিভবে (earth potential) থাকে। অভএব পরিবাহক ও আচ্ছাদনের মধ্যের ভোল্টেজ কেবলের রেটেড ভোল্টেজের $\frac{1}{\sqrt{3}}$ গুণ। স্বতরাং এই ধরনের পরীক্ষায় কম পরীক্ষা ভোল্টেজ প্রয়োজন হয়।

দ্শম ভাষ্যায়

কেবল ফল্টের স্থান নিরূপণ

কেবল ফল্ট সরবরাহ ব্যবস্থায় বাধা ঘটায়। সেইজন্ত, সরবরাহ ব্যবস্থা অব্যাহত রাথবার জন্ত তৎক্ষণাৎ এ বিষয়ে মনোযোগ দেওয়া দরকার।

ভূনিমুস্থ পদ্ধতিতে যে ধরনের ফল্ট দেখা যায়, দেগুলো হল—(ক) কোরের মধ্যে শর্ট দার্কিট (short circuit), (খ) আর্থ ফল্ট (গ) পরিবাহক বিচ্ছিত্র হওয়া এবং (ঘ) উপরে উল্লিখিত ফল্টের মিলিত উপস্থিতি।

পরীক্ষার জন্ম বিশেষ কোন পদ্ধতি গ্রহণ করার আগে কেবল ফন্টের প্রকৃতি বিশ্লেষণ করে নেওয়া ভাল। কার্যতঃ কেবলে কোন ফন্ট হলেই প্রথমে নিচে লেখা প্রস্তুতি পরীক্ষা চালানো হয়।

- (১) প্রত্যেক কোরের ও আর্থ-এর ইনস্থালেশান রোধ পরীক্ষা। ঐ পরীক্ষা করার সময় কেবলের দ্রতম প্রাস্ত উন্মৃক্ত ও আর্থ থেকে বিচ্ছিন্ন করে রাথা হয়।
- (২) কোরের মধ্যের ইনস্থালেশান বোধ পরীক্ষা কেবলের দ্রতম প্রান্ত (১)-এর মত রেথে।
- প্রভ্যেক জোড়া পরিবাহকের রোধ পরীক্ষা করা হয় লাইনের দ্রতম
 প্রান্তের সমস্ত পরিবাহক একত্র করে ও আর্থ থেকে বিচ্ছিন্ন করে রেথে।
 - (৪) কেবল প্রস্তুত কারকের তথা অনুসারে পরিবাহকের রোধ পরীক্ষা।

বিভিন্ন প্রকারের কেবল ফল্টের স্থান নিরূপণের পদ্ধতি:

পর পৃষ্ঠায় সারণীটি একটি বিশেষ ধরণের কেবল ফল্টের স্থান নিরপণের জন্য সবচেয়ে উপযোগী পদ্ধতি নির্ধারণ করতে কেবল পরীক্ষককে সহায়তা করবে। কিন্তু একজন অভিজ্ঞ পরীক্ষক পরীক্ষার অন্ত কোনও পদ্ধতি অবলহন করেও ভাল ফল পেতে পারেন। সেই জন্ম পর পৃষ্ঠায় সারণীটি একেবারে চূড়াস্ত ভাবা উচিত হবে না।

সারণী-

ফল্টের প্রকৃত্তি	পরীক্ষা পদ্ধতি		
(১) শুধুমাত্র কোরে কোরে ফণ্ট	বিভব পত্ন পরীক্ষা (Fall of		
(Core to core fault only)	potential test)		
(২) শুধুমাত্র কোরে আর্থ ফল্ট	(ক) মারের লুপ পরীক্ষা		
(Core to earth fault only)	(Murray loop test)		
Charles and the second state of the second	(থ) বিভব পতন পরীক্ষা (Fall		
DESIGNO (A) - MA LACINGO THE RAN	of potential test)		
(৩) শুধুমাত্র পরিবাহকে	ধারকত্ব পরীকা (Electrostatic		
বিচ্ছিন্নতা (Open circuit only)	capacity test)		
(৪) পরিবাহকে বিচ্ছিন্নতা ও	(ক) আবেশ পদ্ধতি (Induction		
আর্থ ফল্ট (Open circuit and earth	method)		
fault)	(খ) বিভব পতন পরীক্ষা (Fall		
E (befolephia mengraphical)	of potential test)		
(e) উक्त त्वांदश्य कन्ते (High	উচ্চ ভোন্টেজে লুপ পরীকা		
resistance fault)	(High voltage loop test)		
(৬) কোরে কোরে ফল্ট ও আর্থ	বিভব পত্ন প্রীক্ষা (Fall of		
कन्ते	potential test)		
(1) কোরে কোরে ফণ্ট, আর্থ	আবেশ পদ্ধতি (Induction'		
ফল্ট ও পরিবাহকে বিচ্ছিন্নতা	method)		

মারের লুপ পরীক্ষা (Murray loop test):

যেথানে ক্রটিহীন (sound) কোরের সাহাযো লুপ তৈরী করার অবকাশ আছে, দেথানে পরিবাহকের দক্ষে আর্থ বা আচ্ছাদনের ফল্টের স্থান নিরূপণের জন্ম এই পদ্ধতি ব্যাপক ভাবে গৃহীত হয়। কোরের ফল্টের রোধ খুব কম এবং বেশ ভাল কোর ইনস্থালেশান থাকলে এই পরীক্ষা থেকে সম্ভোষজনক ফল পাওয়া যায়। 10 কিলোওহ্ম ফল্ট-রোধ সমেত কেবলে আর্থ ফল্টের স্থান নিরূপণ করার সময় প্রত্যাদগামী (return) কোরের ইনস্থালেশানের মান যদি এক মেগাওহ্ম হয় তা হ'লে ভাল বলে ধরা হয়। পথ দৈর্ঘ্যের 0.1 থেকে 0.2 শতাংশের মধ্যে ফল্টের অবস্থান এই পরীক্ষার দ্বারা নিরূপণ করা যায়।

মারের লুপ পরীক্ষার যন্ত্রাদির মধ্যে সবচেয়ে সরলটিতে একটি নির্দেশক তারে অথবা তৃটি রোধের বাল্প থাকে। নির্দেশক তারের প্রান্তে একটা গালিভানোমিটার সংযুক্ত থাকে। বাাটারির নেগেটিভ প্রাপ্ত আর্থ করা থাকে অপরপক্ষে পজিটিভ প্রাপ্ত আমামান স্পর্শক (Sliding contact)-এর সঙ্গে যুক্ত থাকে। নির্দেশক তারের উপর ঐ স্পর্শক চলাফেরা করে। স্পর্শকটি তার হুই পাশের নির্দেশক তারের ইপর্য স্থাচিত করে। 10 i চিত্রে যেমন দেখানো হয়েছে, দোষযুক্ত কোরের সঙ্গে ক্রটিহীন কোরের লূপ করে নির্দেশক তারের উভয় প্রান্তের সঙ্গে করা হয়। ক্রটিহীন কোরের সঙ্গে দোষযুক্ত কোরের সংস্ক দোর্যুক্ত কোরের বন্ধন সঠিক না হলে বা সংযোগ টিলা থাকলে পক্তি বর্হিভূত স্পর্শরোধ তৈরি হয়ে ফলের নির্ভূলতাকে ব্যাহত করে।

চিত্ৰ 10.i

ব্যাটারির স্থাইট অন করার দকে দকে পরীক্ষা শুরু হয়ে যায়। নির্দেশক তারের উপরে প্রামামান স্পর্শকটি দরান হয়। দেতুর ভারদামা বিন্দুতে

জ্বৰ
$$\frac{b}{a} = \frac{v}{x}$$

জ্বৰ $\frac{b+a}{a} = \frac{v+x}{x}$

জ্বৰ $x = (v+x)\left(\frac{a}{b+a}\right)$

$$= \frac{a}{a+b} \times \text{লুপের দৈগা}$$

যেথানে a=দোষযুক্ত কোরের সঙ্গে সংযুক্ত সেতুর বাছর দৈর্ঘা বা (রোধ); b=কৃটিহীন কোরের সঙ্গে সংযুক্ত দেতুর বাছর দৈর্ঘা; $x+\nu=$ লুপের দৈর্ঘ্য অর্থাৎ পথ দৈর্ঘ্যের দ্বিগুণ।

নির্দেশক তারের পরিবর্তে রোধের বাক্স (resistance box) ব্যবহার করা হলে ছইটি বাক্সের রোধের মান পরিবর্তন করে শৃহ্য বিচ্যুতি পাওয়া যায় (চিত্র 10.ii)।

हिज 10 ii

নিচে লেখা স্ত্তের সাহাযো কেবলের ফল্টের স্থান নিরূপণ করা যায়।

ফল্টের দ্রম্ব =
$$\frac{a}{a+b}$$
 × ল্পের দৈর্ঘ্য

a = দোষযুক্ত কোরের সঙ্গে যুক্ত বাক্সের রোধ।

b = ত্রুটিহীন কোরের সঙ্গে যুক্ত বাক্সের রোধ।

কার্যক্ষেত্রে দোষযুক্ত কোরের পরিবাহকের সঙ্গে সম-আয়তনের পরিবাহক স্থানিত জ্রুটিহীন কোর ল্পের জন্ত পাওয়া যায় না। এক্ষেত্রে ল্পের প্রত্যুদগামী কোরের সমপরিমাণ দৈর্ঘ্য ল্পের সমগ্র দৈর্ঘ্যের পরিপ্রেক্ষিতে নিধারণ করতে হবে।

কোনও একটি কেবলকে আদর্শ হিসাবে ধরে নিয়ে কেবলের সম-পরিমাণ দৈর্ঘ্য নির্ধারণ করা হয়। কার্য ক্ষেত্রে দোষযুক্ত কেবলের পরিবাহককেই দাধারণত আদর্শ হিসাবে ধরা হয়। সেইজন্ম কেবলের অন্যান্ত আয়তনের সম-পরিমাণ দৈর্ঘ্য নির্ণয়ের স্ত্রে দেওয়া হল।

সম-পরিমাণ দৈর্ঘা = প্রকৃত দৈর্ঘ্য × আদর্শের প্রস্তৃছেদ কেবলের প্রস্তৃছেদ

नूरभन्न देवर्ग निर्धातन :

উদাহরণ স্বরূপ, দোষযুক্ত কেবলের পরিবাহকের আয়তন নেওয়া হল 60 বর্গ মি.মি. এবং ক্রটিহীন প্রাকৃদিগামী কোরের 100 বর্গ মি.মি., এক্ষেত্রে 150 মি. পথ দৈর্ঘ্যের জন্ম লুপের দৈর্ঘ্য হবে

= $150 + (\frac{60}{100} \times 150)$ = 240 शिंहेर्च সেইজন্ম ক্রটিহীন প্রত্যাদগামী কোরের প্রস্থছেদ দোষমুক্তের চেয়ে যত বড় হবে, সমপরিমাণ দৈর্ঘ্য তত ছোট হবে এবং বিপরীত ক্ষেত্রে বিপরীত হবে।

যখন ফল্টের রোধ বেশী তথন ব্রিজে ডি. দি-সরবরাহের ভোল্টেজ বাড়াভে হবে। কার্যক্ষেত্রে 1000 গুছ্মের চেরে বেশী ফল্টের রোধ হলে 100 ভোল্ট ডি. সি. সরবরাহ যথোপযুক্ত বলে বিবেচিত হয়। কিন্তু 0 5 × 106 গুছ্ম ফল্টের রোধের জন্ম এই পরিমাণ বাড়িয়ে 500 ভোল্ট করা উচিত। এর চেয়ে বেশী ফল্টের রোধের ক্ষেত্রে আরও বেশী মানের ভোল্টেজ সরবরাহ প্রয়োজন। সেই জন্ম বেশী রোধ সম্পন্ন কেবলের ফল্টের স্থান নিরূপণের জন্ম বেশী ভোল্টেজের পরীক্ষা যন্ত্র ব্যবহার করতে হবে। এই বেশী ভোল্টেজের পরীক্ষা যন্ত্র ব্যবহার করতে হবে। এই বেশী ভোল্টেজের পরীক্ষা যন্ত্র যে সব ফল্ট কম ভোল্টেজে প্রায় ঠিক হয়ে যায়, সেই ধরণের ফল্টের স্থান নিরূপণের জন্ম উপযোগী।

পরীক্ষা যন্ত্রটিতে তুইটি পৃথক ইউনিট থাকে। একটি উচ্চ ভোন্টেজের ভ্যাল্ব বা ধাতব শুদ্ধিকরণ (rectifier) যন্ত্রাদি এবং অপরটি উচ্চ ভোন্টেজের বিজ্ঞ। পরীক্ষা-যন্ত্রের সংযোগ 10. iii চিত্রে দেখান হল। দেতুটিতে ইনস্থালেটেড নির্দেশক ভার ও ইনস্থালেটেড ন্রাম্যান স্পর্শক দেওয়া থাকে। পরীক্ষা চলাকালীন ফন্ট আবার দিল হয়ে যে অতিরিক্ত বিত্যং প্রবাহের স্পষ্টি হয়, তা থেকে গ্যালভ্যানোমিটার বক্ষা করার জন্ম যন্ত্রটির বিপরীত ঐ অভিরিক্ত বিত্যং ভিরম্থী করার ব্যবস্থা থাকে।

हिंद्य 10.iii

A-রিরোস্টাট; B-আমামান স্পর্শক;
D-মিলি-আামিটার;

C-ভार्न्र; E & F-द्वानकत्रमात्र।

এই যন্ত্রটি চালাবার জন্ম প্রথমে ফিলামেণ্ট ট্রানসফরমারে শক্তি দঞ্চারিত করা হয় এবং রিয়োস্টাটের (Bheostat) সাহায্যে ফিলামেণ্টের বিহাৎ-প্রবাহ প্রয়োজনাম্ব্য মানে নিয়ে আসা হয় ও ফিলামেণ্টের সঠিক ভোল্টেজ লক্ষ্য করা হয়। এর পর প্রধান ট্রানসফরমারকে চালু করা হয় এবং এর ভোল্টেজ নিয়ামকটিকে দৰচেয়ে নিচু মানে রাথা হয় যাতে পরীক্ষার স্থকতে দৰচেয়ে কমপরিমাণ ভোল্টেজ প্রয়োগ করা যায়। পরীক্ষার ভোল্টেজ ক্রমশ বাড়ান হয়, যক্তকণ না মিলিঅ্যামিটারে প্রায় 15 থেকে 20 মিলি. অ্যামপীয়ার বিত্যুৎ প্রবাহ স্চিত হয়। দেতুটি তথন শৃক্ত বিচ্যুতিতে নিয়ে আদা হয়।

কোনও কোনও ক্ষেত্রে আদর্শ ব্রিজের সাহায্যে পরীক্ষা চালানোর আগে উচ্চ রোধের প্রাথমিক ফণ্ট ভেঙ্গে দেওয়া দরকার হয়। সাধারণত এই রক্ষম অবস্থায় কেবলে উচ্চ ভোল্টেজের ডি. সি. সরবরাহ অব্যাহত রাথা হয় ফলে ফল্টের মধ্যে দিয়ে আর্থে মাঝে মাঝে বিহাৎ ক্ষরণ হয়। যতক্ষণ সরবরাহ থাকে ততক্ষণ কেবল ডায়ালেক্ট্রিক আহিত (charged) হওয়া ও ফল্টের ভেতর দিয়ে আর্থে বিহাৎ ক্ষরণ চলতে থাকে। যথন যথেষ্ট পরিমাণ বিহাৎ প্রবাহ অনেকক্ষণ ধরে চলে তথন কেবল পরীক্ষার জন্ম প্রস্তুত হয়।

সরাসরি লুপ পরীক্ষা (Direct loop test) ?

নাম থেকে যেমন স্চিত হয় এই পরীক্ষায় ভূ-নিমে প্রকৃত পক্ষে কোথায় কেবলে ফন্ট আছে তা সরাদরি নির্দেশিত হয়। যেমন মারে লুপ টেন্টে দেখা যায় তেমনই এই পদ্ধতিও হুইটস্টোনের ব্রিজের নীতির (Wheat stone bridge) একটি প্রয়োগ। এই দেতুর, ক্রটিহীন কোরের একপ্রান্তে একটি গ্যালভ্যানোমিটার এবং ক্রটিপূর্ণ কোরটি পরীক্ষার প্রান্তে এবং দ্র প্রান্তে সংযুক্ত করা থাকে। একটি ভি. আই. আর. তার ক্রটিপূর্ণ কেবলের পথ ধরে

জমির উপরিতলে পাতা হয় এবং ক্রটীপূর্ণ কোরের প্রান্তের মঙ্গে সংযুক্ত করা হয়। এই পরাক্ষায় ভি. আই. আর. তার ব্রিজের নির্দেশক তারের কাজ করে। ছুরির কিনারা, যা নির্দেশক তারকে স্পর্শ করে থাকে, ব্যাটারির পজিটিভ প্রান্তের সঙ্গে লম্বা তারের সাহায্যে সংযুক্ত থাকে। ব্যাটারির নেগেটিভ প্রান্ত আর্থ করা থাকে। ব্রিজের উপর ছুরি জাতীয় স্পর্শকের অবস্থান থেকে ফল্টের স্থান নিরূপণ করা যায়। সেতুটির বর্তনী 9.iv চিত্রে দেখান হয়েছে।

ভারলের লুপ পরীক্ষা (Varley loop test) :

এই পদ্ধতিতে ক্রটিপূর্ণ কেবলের দক্ষে ক্রটিহীন কেবলের সংযোগে যে লুপ তৈরি হয়, মারের লুপ পরীক্ষায় যেমনটি হয় দে রকম বিজের ছইটি সম্পূর্ণ বাছ তৈরি করে না। এথানে একটা পরিবর্তনশীল রোধ এবং লুপের একটা অংশ একটা বাছ তৈরি করে। অপর পক্ষে লুপের বাকি অংশ দেতুর অপর বাছটি তৈরি করে। আম্পাতিক বাছর রোধ স্থির রাধা হয়।

চিত্ৰ 10.v

10.v চিত্রে পরিবর্তনকারী স্থইচের ছুরি-সংযোগ C শর্প বিদ্তে রেথে পরিবর্তনশীল রোধ গ্যালভ্যানোমিটারের শ্যু বিচ্যুতিতে নিয়ে আসা হয়।

শূন্য বিচ্যুতিতে,

$$\begin{split} \frac{P}{Q} &= \frac{R}{X+S} \\ \text{অথবা} \quad \frac{P+Q}{Q} &= \frac{R+X+S}{X+S} \\ \text{অথবব} \quad X+S &= \frac{Q(R+X+S)}{P+Q} \\ \text{অথবা} \quad X &= \frac{Q(R+X+S)}{P+Q} - S \\ &= \frac{QR+QX+QS-SP-QS}{P+Q} \\ &= \frac{Q\cdot R+X) - SP}{P+Q} \end{split}$$

দেতুর ভারদাম্য রক্ষকে পরিবর্তনকারী স্থইচের ছুরি-সংযোগ D স্পর্শ-বিন্দুতে রেথে $\frac{P}{O} = \frac{R+X}{S_1}$

যেথানে S1, S এর নতুন অবস্থান।

ब्राज्य
$$R+X=\frac{PS_1}{Q}$$
.

সেইজন্ম পরীক্ষার ফল হিমাব করে পরীক্ষার প্রান্ত থেকে ফল্টের দূরজ নির্ধারণ করা যায়।

हिज 10.vi

কোরের মধ্যে শর্ট সর্কিট জনিত ফল্টের স্থান নিরূপণ করার জন্ম দেতুর বর্তনীর ছবি 10.vi চিত্রে দেওয়া হল।

ভারদাম্য রক্ষকে পরিবর্তনকারী স্থষ্টচের ছুরি সংযোগ d সংযোগ বিন্তুত রেথে

$$\frac{P}{Q} = \frac{S_2}{R + X}$$

যেখানে S2, ভারদাম্য রক্ষণের জন্ত পরিবর্তনশীল রোধের ন্তন মান।

স্তরাং R+X=
$$\frac{8_2Q}{P}$$

আবার ভারদাম্য রক্ষকে পরিবর্তনকারী স্কইচের ছুরি দংযোগ (knifecontact) c বিন্দুতে রেথে

$$\frac{P}{Q} = \frac{S_8 + X}{R}$$

যেখানে S₃, ভারদাম্য বৃক্ষণের জন্ম পরিবর্তনশীল রোধের প্রয়োজনীয় অবস্থান।

ফল্টের দূরত্ব, পরীক্ষার ফলাফল থেকে হিদাব করে নির্ধারণ করা যায়।

বিভব পত্তৰ পরীক্ষা (Fall of potential test) :

পরীক্ষার এই পদ্ধতি থুব সরল। যেথানে ফল্টের রোধ পরিবাহকে বিচ্যুৎ-প্রবাহ স্থির রাথার পক্ষে যথেষ্ট কম, যেথানে এই পরীক্ষা বিশেষ কার্যকরী।

এই পরীক্ষার কেবল পরিবাহকের ভোর্নেজের পতন
ছইটি মৃভিং কয়েল মিলি ভোন্টমিটারের দাহায্যে মাপা হয়
(চিত্র 10.vii)। পরিবাহকে
বিছাৎ দরবরাহ অ্যামিটার
দিয়ে মাপা হয়। ভোন্টমিটার
রিডিং লুশকরা কোরের পরিবাহকের ফন্টের অবস্থানের

উভয় দিকের ভোণ্টেজের পতন স্থচিত করে।

লুপের পরিবাহকের মধ্যে দিয়ে প্রবাহিত বিদ্যুত্তের মান 1 অ্যাম্পিরারে স্থির রাথায় ধরা যাক তৃইটি ভোল্টমিটারের রিজিং; হবে $V_1 ext{ 9 } V_2$ । যথন ভোল্টমিটারের রোধের তুলনায় ফল্টের রোধ নিতান্ত কম:

তথ্য
$$V_1 = IX$$
 এবং $V_2 = IY$

$$\therefore \frac{V_2}{V_1} = \frac{IY}{IX}$$
 অথবা $\frac{V_1 + V_2}{V_1} = \frac{X + Y}{X}$

যেথানে $X = V_1$ ও ফল্টের অবস্থানের মধ্যবর্তী লুপের পরিবাহকের রোধ। Y =ফল্টের অবস্থান ও V_2 এর মধ্যবর্তী লুপের পরিবাহকের রোধ।

ল্পের মোট রোধ R=X+Y, যেহেতু ল্পের পরিবাহকের প্রস্থচ্ছেদ সমান, সেইহেতু পরিবাহকের রোধের বদলে দৈর্ঘ্য প্রভিস্থাপিত করা যায়। অতএব, পরীক্ষার প্রাস্ত বিন্দু থেকে ফল্টের দূরত্ব $=rac{V_1}{V_1+V_2} imes$ ল্পের দৈর্ঘ্য।

কার্যত, ভোল্টমিটারের রিজিং নেওয়া হয় ব্যাটারি টার্মিনালের সঙ্গে ল্পের লংযোগ বিপরীত-মূথী করে যাতে আর্থে বিহাৎ প্রবাহ ও ই. এম. এফ. (a. m. f.) বাদ দেওয়া যায়। পরীক্ষার প্রাস্ত থেকে ফল্টের অবস্থানের দ্রত্ব নির্ণিয় করা হয় লুপের হুই প্রাস্তের ভোল্টমিটার রিজিং-এর গড় হিসাব করে।

ধারকত্ব পরীক্ষা (Capacity Test):

এই পদ্ধতি কেবলের বিচ্ছিন্ন বর্তনীতে ফল্টের অবস্থান নিরূপণের জন্ত গৃহীত হয়, যেথানে ত্রুটিপূর্ণ কোরের ইনস্থালেশান রোধ বেশী। এই পদ্ধতির মৃগনীতি হল ক্রটিপূর্ণ কোর ও ক্রটিহীন কোরের ধারকত্বের বা ক্রটিপূর্ণ কোর ও আদর্শ কনডেনসারের ধারকত্বের তুলনা করা। ক্রটিপূর্ণ কোরকে আহিড (charged) করা হয় এবং মৃভিং কয়েল গ্যালভ্যানোমিটারের মাধ্যমে করণের হারা ঐ বিহাৎ মৃক্ত করা হয়। এই গ্যালভ্যানোমিটারের বিহাতি সতর্কতার দক্ষে লক্ষ্য করা হয়। একই ভাবে ক্রটিহীন কোরকেও আহিত ও বিহাৎ মৃক্ত করা হয়। অবশু উভয় পরীক্ষাতেই আধানের (charge) সময় সীমা একই রাখাহয়। নিচে লেখা স্ত্রের সাহায্যে বিচ্যুতির (break) দূর্ভ নির্ণয় করা যায়।

বিচ্যান্তির দূর জ $=\frac{a}{b} imes$ কেবলের দৈখা

a = ক্রচিপূর্ণ কোরে দংযুক্ত গ্যালভ্যানোমিটারের রিডিং।
b = ক্রটিহীন কোরে দংযুক্ত গ্যালভ্যানোমিটারের রিডিং।

কম্মাত্রার ইনস্থানেশান রোধ-সম্পন্ন বিচ্ছিন্ন বর্তনীতে ফল্টের অবস্থান নিরপণের জয় a c বিজ ব্যবহাত হয়।

আবেশ পদ্ধতি (Induction method) :

এই পদ্ধতিতে বেশী পরিমাণ কম্পান্ধ সমেত এ. সি. বিতাৎ বা ভগ্ন প্রবাহ ডি. সি বিতাৎ ক্রেটিপূর্ণ কেবলের মধ্য দিয়ে প্রবাহিত করা হয়। সন্ধানী কয়েলটি সাধারণত ত্রিকোণাক্ষতি হয় এবং হেড কোনের সঙ্গে যুক্ত থাকে। ক্রেটিপূর্ণ কেবলের উপর দিয়ে এ কয়েল নিয়ে যাওয়ার সময় হেড ফোন শ্রুতিযোগ্য গুনগুন হর ধরা পড়ে। সন্ধানী কয়েলটি ফন্টের অবস্থানটি পেরিয়ে যাওয়ার সঙ্গে দক্ষে হঠাৎ শন্ধটি থেমে যায়।

এই পদ্ধতিটি বিশেষ করে আচ্ছাদনহীন কেবলের ফল্টের অবস্থান নির্পণের কাজে ব্যাপক ভাবে ব্যবহৃত হয়।

যেহেতু, কেবলের বর্মের তার চৌম্বক ক্ষেত্রকে চেকে রাথে সেই জন্ত দক্ষানী করেল-এ কোনও বিদ্যুৎ আবিষ্ট হতে পারে না ফলত কোনও শব্দও শ্রুতিগোচর হয় না। সেইজন্ত বর্মযুক্ত পি. আই. এল. দি. কেবলের ফল্টের ম্বান নিরূপণের জন্ত এই পদ্ধতি অমুপ্যোগী।

কখনও কখনও হেড ফোনে অন্ত কোনও কারণ জনিত স্বষ্ট শব্দ ধরা পড়ে। সেইজন্ম এই পরীক্ষা করার সময় অন্ত কোনও শব্দ যাতে না আসে সেই বিষয়ে সভৰ্কতা মূলক ব্যবস্থা নিতে হবে অন্তথা ভূল ফল পাওয়ার সন্তাবনা থেকে যাবে।

कुरिक वस टार्थारम व्हेरिश्म एवं <u>क्रम है नेव्</u>यानमान रवान रहती। अहे सम्बद्धित

পরিশিষ্ঠ

शि. शाहे. এन. नि. दिवदानत विक्रित्र डिशामादनत मःकिल নামকরণের পছত্তি

আই. এদ.-692

অ্যালুমিনিয়াম কণ্ডাক্টর		A
পেপার ইনস্থালেশন		P
সীসার আচ্ছাদন	PLANT, MILES	L
मःकद भीमांत बाष्ट्रामन	Apps wells	Ly
অংশুময় বন্ধর গদী অথবা প্রচ্ছদ	in extentar	S
পি. ভি. দি. যৌগের গদী অধবা প্রচ্ছদ	क्रिकिस भी पार्ट	Y
ছুই স্তর ইম্পাতের ফিতার বর্ম	11000-1000-00	T
তৃই স্তব দস্তার প্রলেপয়্ক ইম্পাতের ফিতার বর্ম	e motor diffe	Tg
এক স্তর বৃত্তাকার ইম্পাতের তারের বর্ম	SPIR PROPERTY	W
এক স্তর ইম্পাতের ফালির বর্ম	明 1910年	F
তুই স্তব বৃত্তাকার ইম্পাতের তারের বর্ম	Wall was a second	W
তুই স্তব ইপাতের ফালির বর্ম		FF

পি. ভি. সি. द्विवतात्र विভिন्न উপাদানের সংক্ষিপ্ত নামকরণের अक्षि । साम जी समाविक्ष सामित्र करका हैंव - वहका सामानिक विक् আই. এস.—1554

অ্যাল্মিনিয়াম কণ্ডাক্টব	1993	A
পি. ভি. দি. ইনস্থাদেশন		Y
বুক্তাকার ইম্পাতের তারের বর্ম	•••	W
ইম্পাতের ফালির বর্ম		F
তৃই স্তর বৃত্তাকার ইম্পাতের তারের বর্ম	•••	ww
তুই স্তর ইস্পাতের ফালির বর্ম	•••	FF
পি. ভি. সি. যোগের বহিরাচ্ছদন	•••	Y

সংক্ষিপ্ত নামকরণের অক্সান্ত প্রচলিত পদ্ধতি পি. আই. এল. সি. কেবল

	এক-স্তর ইপ্পাতের ফিতার বর্ম	Tell & R	S.T.A.
	ছ্ই-স্তব ইম্পাতের ফিভার বর্ম	1111	D.T.A.
	এক-স্তর ইম্পাতের তারের বর্ম		S.W.A.
	ছই-স্তব ইস্পাতের তারের বর্ম		D.W.A.
	পি. ভি. নি. কেবল		
	পি. ভি. সি. ইনস্থানেটেড্	1900000	PL
	ৰ্মাবৃত কেবল	- he • * 1 / h	A A
	र्भविशीन दक्वन	Telement 1	Y
	তামার পরিবাহক	E	C
**	কোরের সংখ্যা	–গাণিত্তিক :	দংখ্যা দ্বারা
	পূর্ণগর্ভ বৃত্তাকার পরিবাহক ক্রিন্সাম সমাস	rolls R	re re
	শুচ্ছাকারে গ্রন্থিত বৃত্তকার পরিবাহক	175 67	rm rm
	শুচ্ছাকারে প্রথিত বৃত্তাকালাকার পরিবাহক	120.00	sm
TW	উপাদানের সংক্ষিত্ত নামের সাহায্যে কিভাবে		
देवी	টত্র প্রকাশ করা হয়, সে সম্বন্ধে নিচের উ দাহরণ	त्वरक वर	कि धार्यना

ক) P. I. L. C. D. T. A. (পেপার-ইনস্থালেটেড লেড-কর্জাড ডবল খ্রীল টেপ-আর্মাড কেবল)—এই কেবল পেপার ইনস্থালেশান দারা গঠিত দীসা দারা আচ্ছাদিত দি-স্তর ইম্পাতের ফিতার বর্ম দারা স্বক্ষিত।

পাওয়া যাবে।

খে) PLA—3 (পি. ভি. সি. ইনস্থালেটেড্ ওয়ার বা ষ্ট্রিপ-আর্যাড্ থি-কোর কেবল)—এই কেবল তিন কোর সম্বনিত পি. ভি. সি. ইনস্থলেশান ধারা গঠিত ইম্পাতের তার বা ফালির বর্ম ধারা স্বর্মিক্ত।

সারণী 1

বর্মাবৃত সীসা আচ্ছাদিত থ্রি-কোর বেপ্টেড্ পেপার ইনস্থালেটেড কেবলের এ সি. বিহাৎ বহন ক্ষমতা

(অ্যান্পিয়ার এককে)

	154		কেবলের	অবস্থান		Real Property
পরিবাহকের ' আয়তন বর্গ মিমি	ভূগ	াৰ্ডে	এক- নালী		উন্মৃত স্থানে	
	ভাষা	আালু- মিনিয়াম	ভাষা	আালু- মিনিয়াম	তামা	আালু- মিনিয়াম
(1) 16 25 35	(2) A 70 92 110 135	(3) A 58 72 84 105	(4) A 64 82 95 120	(5) A 49 64 74 92	(6) A 65 87 105 130	(7) A 50 68 80 100
50 70 95 120 150 185	165 195 215 250 280	130 155 170 190 220	145 170 190 225 255	115 135 155 175 200	160 195 215 250 290	125 155 175 200 230
225 240 300 400 500 625	305 315 355 410 455 485	240 250 280 320 360 385	280 290 320 365 400 455	220 225 250 285 310 345	330 345 395 470 530 600	260 275 310 365 415 470

मात्रनी 2

33KV থ্রি-কোর এস-এল কেবল অথবা বর্মাবৃত সীসা আচ্ছাদিজ থ্রি-কোর পেপার ইনস্থালেটেড কেবলের বিত্যুৎ বহন ক্ষমতা

(জ্যাম্পিয়ার এককে)

পরিবাহকের আয়তন বর্গ মিমি		কেবলের অবস্থান							
	ভূগ	ভূগৰ্ভে		এক-মৃথী নালী পৰে		উন্মূক্ত স্থানে			
The last	তাষা	আালু- মিনিয়াম	তামা	আালু- মিনিয়াম	ভাষা	আালু- মিনিয়াম			
(1)	(2) A	(3)	(4)	(5)	(6)	(7)			
70	165	130	150	120	170	135			
95	195	155	180	140	205	160			
120	215	170	200	155	235	180			
150	245	190	225	175	265	210			
185	275	220	255	200	305	240			
225	300	240	280	220	345	270			
240	310	245	295	230	360	285			
300	345	270	325	255	400	320			
400	395	310	370	290	475	380			

वनायुर्विवावरान नि. विवास्त्रामित प्रति नि. वि. विवासितान के बाह

때한. এম. 1554 (পাট-I)-1664

क्वरन्त्र विशाद वर्म क्रमण

मात्रनी 4

(আ্যাম্পিয়ার এককে) আই. এদ 1554 (পার্ট—II)—1970

3.3, 6.6 ও 11KV ফ্রীনড্, বর্মাবৃত, পি. ভি. সি. আচ্ছাদিত পি. ভি. সি. ইনস্থানেটেড অ্যাল্মিনিয়াম কণ্ডাক্টর কেবলের বিহাৎ বহন ক্ষমতা

পরিবাহকের	গিঙ্গ ল	শিঙ্গল-কোর		শ র	
আয়তন বৰ্গ মিমি	ভূগৰ্ভে	উন্মূক্ত স্থানে	ভূগর্ভে	উনু ক স্থানে	
25	73	69	73	69	
35	90	87	84	84	
50	115	115	105	105	
70	140	145	130	130	
95	170	180	155	155	
120	195	210	180	185	
150	215	245	200	210	
185	240	285	230	240	
225	255	320	255	270	
240	265	335	260	285	
300	325	395	295	320	
400	360	455	330	380	
500	410	530	365	435	
625	450	580	430	250	
800	510	710	1 2 2 30	200	
1000	560	750		The same	

गावनी 5

11 K. V. পর্যন্ত পি. ভি. সি. ইনস্থালেটেড আলুমিনিয়াম কণ্ডাক্টর কেবলের স্ট্রার্কিট অবস্থায় বিহাৎ বহন ক্ষমতা:

আই. এস.—692—1973

ারিবাহকের সূট্		স্ট্সা (♦ ট	ৰ্কিট-বিছাৎ বহন ক্ষমতা কিলো অ্যাম্পিয়ার এককে					
আয়তন বৰ্গ মিমি	0'1 সেকেও	0'2 সেকেণ্ড	0.2 সেকেও	1.0 সেকেও	2'0 সেকেগু	5 · 0 সেকেণ্ড		
1.5	0.367	0.260	0.164	0.116	0.084	0.066	0.065	
2.5	0.604	0.427	0.270	0.191	0.135	0.108	0.085	
4	0.936		0.419	0.286	0.209	0.163	0.132	
6	1.46	1.04	0.656	0.463	0.328	0,263	0.207	
10	2.54	1.78	1.02	0.795	0.512	0.453	0.356	
16	3.70	2.62	1,66	1.17	0.830	0.666	0.524	
25	6.37	4.53	2.87	2.04	1.44	1.162	0.91	
35	8 04	5.68	3.60	2 54	1.80	1.447	1.14	
50	11.3	7.96	5.04	3.56	2.54	2.03	1.59	
70	17.5	12,3	7.81	5.52	3.90	3.146	2.47	
95	22.5	15.9	10.1	7.12	5.00	4.458	3.18	
120	288	21.8	12.9	9.10	6.44	5.187	4.07	
150	38.1	24.0	15.1	10.7	7.56	6.10	4.80	
185	42.4	30,0	18.9	13.4	9.47	7.368	6.00	
225	52.8	37.4	23.6	16.7	11.8	9,52	7.46	
240	61.0	43,2	27,3	19.3	13.6	11 00	8.63	
300	170.0	49.5	31,3	22.1	15.6	12.60	9.88	
400	101	71.1	45.0	31.8	22.5	18.01	14.4	
500	118	83.5	52.8	37.3	26.4	21.26	16.7	
625	150	106	67.0	47.3	33.5	27.01	21.2	
800	187	132	83.6	59.1	41.8	33.687	26.4	
1000	239	169	107	75.5	53.4	43.03	33.8	

নিম্নলিখিত অনুমানের উপর নির্ভর করেই পরিবাহকের দট্দার্কিট বিছাৎ বহন ক্ষমতা নির্ধারন করা হয়েছে।

- 1. সট্সার্কিটের পূর্বে পরিবাহকের তাপমাত্রা—70°C
- 2. সট্সার্কিট অন্তে পরিবাহকের তাপমাত্রা—160°C

माइनी 6

অনুমোদিত মানের গুণনীয়কে এক ঘণ্টার ওভার লোডে ভূগর্ভে স্থাপিত পেপার ইনস্থালেটেড কেবলের বিত্যুৎ বহন ক্ষমতা।

(183 बः এक /हि, टे. आत्र. এ. त्रिटभार्ड अनुसाजी)

কেবলের প্রচ্ছদের	এক ঘণ্টার ওভার লোডে বিছাৎ বহন ক্ষমতা; অনুমোদিত মানের গুণনীয়কে					
মিমি	চরম জহুমো শতকরা 50		চরম অহুমোদিভ মানের শতকরা 75 ভাগ বেশী			
12.00 (0.00 (0.00) 	সিঙ্গল-কোর	থি,-কোর	সিঙ্গল-কোর	থি,-কোর		
12.7 25.4 38.1 50.8 63.5 76.2 88.9 102 114	1.17 1.23 1.29 1.36 1.42	1.12 1.15 1.19 1.23 1.27 1.32 1.35 1.40 1.44	1.12 1.15 1.19 1.23 1.27	1.07 1.09 1.12 1.14 1.16 1.18 1.21 1.24 1.26		

D'DATE TO THE STATE OF THE PARTY OF THE PER