

# **TECHNICAL EXERCISE**

# DATA SCIENCE PROJECT



16 JANUARY 2025

# JESUBUKADE EMMANUEL AJAKAYE

ajakaye.bukade@gmail.com | 07884489099

# Table of Contents

# Contents

| Table of Contents                                  | 1 |
|----------------------------------------------------|---|
| List of Figures                                    | 2 |
| Executive Summary                                  | 3 |
| Introduction                                       | 3 |
| Paris Agreement                                    | 3 |
| Technical Implementation                           | 4 |
| Data Information                                   | 4 |
| Data Preparation and Visualization                 | 4 |
| Model Development                                  | 4 |
| Technical Discussion                               | 4 |
| Findings                                           | 4 |
| Implications and Recommendations for UK Government | 7 |
| Drawbacks on Model                                 | 7 |
| Areas for Further Research/Analysis                | 7 |
| Conclusion                                         | 8 |
| References                                         | Q |

# List of Figures

| Figure 1: Tau Model Metrics                                            | 5 |
|------------------------------------------------------------------------|---|
| Figure 2: Linear Regression Model Metrics                              | 6 |
| Figure 3: Chart of Actual and Predicted Total Greenhouse Gas Emissions | 6 |
| Figure 4: Forecasted Total Greenhouse Gas Emissions                    | 7 |

## **Executive Summary**

Countries.seeks.to.achieve.sustainable.environments.and.reduce.the.impact.of.climate. change.in.our.societyi.Therefore?this.technical.exercise.seeks.to.analyse.the.trends.in. greenhouse.gas.emissions.by.industriesi.Kendall.Tau.and.Linear.Regression.models.were. usedi.Findings.revealed.a.general.decreasing.trends.of.greenhouse.gas.emissions.in.the. UKi. Decreasing.trends. in. industries. such. as. Manufacturing? Public. administration.™. security. and. Mining. and. quarrying. while. increasing. trends. was. found. in. Real. estate. activities?Construction.and.Accommodation.™.food.servicesi.The.UK.government.must. continue.to.implement.policies.and.brings.reductions.in.the.emission.of.greenhouse. gasesi

Report Word Count: 873

#### Introduction

Countries seeks to achieve sustainable environments and reduce the impact of climate change in our society. Human activities are the most contributors to global warming which has sometimes made controlling of natural disasters more difficult. The greenhouse gas emissions are gases released into the atmosphere which traps heat and contributes to climate change

# Paris Agreement

The Paris Agreement which is legally binding on all participating countries covers seven gases which are known as direct greenhouse gases, and they are the largest contributors to global warming [1]. See [2] for list of greenhouse gases. The Paris Agreement develops an accountability framework which helps participating countries to communicate actions to be taken to reduce greenhouse gas emissions which underscores the importance of data science process [1]. It is therefore imperative for governments to track and analyse the emissions of these gases to develop policies towards a safer and sustainable environment.

# Technical Implementation

#### Data Information

The dataset used for this technical exercise was the <u>Atmospheric emissions</u>: <u>greenhouse</u> <u>gases by industry and gas</u>. This dataset has 10 sheets, but the technical exercise focused on the "GHG Total" sheet and extracted the first table for analysis. The extracted dataset has 26 columns (Year, Industries label A to T and 3 Consumer expenditure information) and 34 rows (Years starting from 1990 - 2023).

### Data Preparation and Visualization

The aggregate atmospheric emissions of all greenhouse gases by industry were extracted. This table was then imported into a Jupyter notebook (Python environment). Datetime was made index for a timeseries visualization and Explorative Data analysis was carried out. (See Code book for visuals).

### Model Development

Kendall Tau Statistics was favoured for model development because it can effectively reveal the direction (increasing or decreasing) and strength of association between time trends and variable been measured [3]. For a further investigation and forecasting, a linear regression model was fitted as it works well on small dataset. Functions were written in a way that are reuseable for all the tables in the dataset.

#### Technical Discussion

#### **Findings**

The tau model revealed significant trends in the greenhouse gas emissions except in industries such as Transport & storage and Human health and social work activities (p > 0.05). Generally, in the UK, the total greenhouse gas emissions (tau = -0.93, p < 0.01) revealed a decreasing trend over time.

Manufacturing, Public administration & defence and Mining & quarrying (tau = -0.95, -0.94, -0.91 respectively p < 0.01) are the top industries with decreasing trends overtime. While Real estate activities, Construction and Accommodation & food services (tau = 0.66, 0.65, 0.55 respectively p < 0.01) are top industries with increasing trends in greenhouse gas emissions overtime.

|                                                                      | tau                    | pvalue   |
|----------------------------------------------------------------------|------------------------|----------|
| Agriculture, forestry and fishing                                    | -0.668449              | 0.000000 |
| Mining and quarrying                                                 | -0.910873              | 0.000000 |
| Manufacturing                                                        | 0.946524               | 0.000000 |
| Electricity, gas, steam and air conditioning supply                  | -0.604278              | 0.000001 |
| Water supply; sewerage, waste management and remediation activities  | -0.850267              | 0.000000 |
| Construction                                                         | 0.654189               | 0.000000 |
| Wholesale and retail trade; repair of motor vehicles and motorcycles | <mark>0.4545</mark> 45 | 0.000157 |
| Transport and storage                                                | -0.005348              | 0.964527 |
| Accommodation and food services                                      | 0.547237               | 0.000005 |
| Information and communication                                        | -0.704100              | 0.000000 |
| Financial and insurance activities                                   | -0.542373              | 0.000007 |
| Real estate activities                                               | 0.661319               | 0.000000 |
| Professional, scientific and technical activities                    | -0.782531              | 0.000000 |
| Administrative and support service activities                        | <mark>0.30</mark> 8378 | 0.010329 |
| Public administration and defence; compulsory social security        | -0.935829              | 0.000000 |
| Education                                                            | 0.809991               | 0.000000 |
| Human health and social work activities                              | -0.058824              | 0.624695 |
| Arts, entertainment and recreation                                   | 0.529412               | 0.000011 |
| Other service activities                                             | 0.390374               | 0.001168 |
| Activities of households as employers                                | <mark>0.1</mark> 78412 | 0.138179 |
| Consumer expenditure [note 4]                                        | -0.429590              | 0.000353 |
| Consumer expenditure - Not travel                                    | 0.593583               | 0.000001 |
| Consumer expenditure - Travel                                        | <mark>0.26</mark> 9162 | 0.025189 |
| Total greenhouse gas emissions                                       | 0.925134               | 0.000000 |

Figure 1: Tau Model Metrics

Further investigation with the linear regression model confirmed the results from the tau model. Total greenhouse gas emissions (r2 = 0.93, mape = 0.04) showed high confidence in the predictions. Also, Public administration & defence (r2 = 0.97, mape = 0.06), Mining and quarrying (r2 = 0.95, mape = 0.08) and Manufacturing (r2 = 0.95, mape = 0.06) are industries showing high confidence in prediction which is a decreasing trends of greenhouse gas emissions.

|                                                                      | mean       | mape                   | r2_score                | gradient                 | intercept     | mae       | mse            | rmse      |
|----------------------------------------------------------------------|------------|------------------------|-------------------------|--------------------------|---------------|-----------|----------------|-----------|
| Agriculture, forestry and fishing                                    | 52,441.43  | 0.017516               | 0. <b>74</b> 4045       | -196.45                  | 446,616.10    | 916.15    | 1,277,805.52   | 1,130.40  |
| Mining and quarrying                                                 | 32,031.39  | 0.080842               | 0.950072                | -1,120.2 <mark>7</mark>  | 2,279,848.23  | 2,182.24  | 6,347,963.04   | 2,519.52  |
| Manufacturing                                                        | 117,467.68 | 0.061816               | 0.948561                | -3, <mark>482.43</mark>  | 7,104,958.74  | 6,379.49  | 63,298,572.71  | 7,956.04  |
| Electricity, gas, steam and air conditioning supply                  | 159,317.21 | 0.151760               | 0. <mark>6</mark> 86669 | -3, <mark>577</mark> .78 | 7,338,124.02  | 21,264.53 | 562,189,565.65 | 23,710.54 |
| Water supply; sewerage, waste management and remediation activities  | 50,961.53  | 0.129262               | 0.922886                | -2,124 <mark>.64</mark>  | 4,314,055.74  | 5,297.35  | 36,304,089.24  | 6,025.29  |
| Construction                                                         | 9,685.13   | 0.043473               | 0.659502                | 73.55                    | -137,888.67   | 420.05    | 268,806.14     | 518.47    |
| Wholesale and retail trade; repair of motor vehicles and motorcycles | 14,238.31  | 0.078156               | 0.289343                | 90.40                    | -167,139.73   | 1,115.66  | 1,931,699.37   | 1,389.86  |
| Transport and storage                                                | 83,954.83  | 0.108699               | 0.007022                | 91.56                    | -99,762.31    | 8,487.44  | 114,100,815.82 | 10,681.80 |
| Accommodation and food services                                      | 3,797.34   | 0.060569               | 0.596028                | 34.42                    | -65,259.06    | 230.60    | 77,270.81      | 277.98    |
| Information and communication                                        | 1,063.76   | 0.058340               | 0.777860                | -16.39                   | 33,944.21     | 63.22     | 7,381.13       | 85.91     |
| Financial and insurance activities                                   | 297.61     | 0.038493               | 0.490491                | -1.56                    | 3,429.62      | 11.35     | 243.61         | 15.61     |
| Real estate activities                                               | 889.17     | 0.048801               | 0. <b>7</b> 17345       | 9.04                     | -17,248.57    | 43.15     | 3,098.98       | 55.67     |
| Professional, scientific and technical activities                    | 2,195.06   | 0.042804               | 0.889207                | -36.19                   | 74,809.58     | 95.26     | 15,706.44      | 125.33    |
| Administrative and support service activities                        | 3,118.69   | 0.038475               | 0.223712                | 8.15                     | -13,225.41    | 118.62    | 22,160.42      | 148.86    |
| Public administration and defence; compulsory social security        | 7,943.95   | 0.060637               | 0.968298                | -268.56                  | 546,816.94    | 394.91    | 227,283.91     | 476.74    |
| Education                                                            | 4,396.93   | 0.091167               | 0.888661                | -133.32                  | 271,896.15    | 391.47    | 214,327.37     | 462.96    |
| Human health and social work activities                              | 5,877.02   | 0.086847               | 0.010989                | -6.52                    | 18,952.90     | 484.50    | 367,891.91     | 606.54    |
| Arts, entertainment and recreation                                   | 1,525.00   | 0.1 <mark>13619</mark> | 0.543176                | -26.79                   | 55,288.35     | 187.31    | 58,117.05      | 241.07    |
| Other service activities                                             | 993.73     | 0.077065               | 0.321852                | -6.70                    | 14,429.62     | 78.70     | 9,093.32       | 95.36     |
| Activities of households as employers                                | 90.36      | 0.065701               | 0.074511                | 0.22                     | -349.32       | 5.86      | 57.41          | 7.58      |
| Consumer expenditure [note 4]                                        | 148,051.28 | 0.047261               | 0.469641                | -782.5 <mark>5</mark>    | 1,718,230.20  | 6,877.69  | 66,561,811.35  | 8,158.54  |
| Consumer expenditure - Not travel                                    | 82,855.46  | 0.055364               | 0.6 <mark>9</mark> 6000 | -847.0 <mark>2</mark>    | 1,782,399.90  | 4,522.37  | 30,161,364.52  | 5,491.94  |
| Consumer expenditure - Travel                                        | 65,195.81  | 0.050999               | 0.024012                | 64.48                    | -64,174.36    | 3,229.77  | 16,263,092.13  | 4,032.75  |
| Total greenhouse gas emissions                                       | 700,337.41 | 0.036075               | 0.932908                | -11,472.81               | 23,720,529.19 | 25,031.92 | 911,108,081.98 | 30,184.57 |

Figure 2: Linear Regression Model Metrics

The linear regression forecasted decreasing values for total greenhouse gas emissions over the next five years.



Figure 3: Chart of Actual and Predicted Total Greenhouse Gas Emissions

The values forecasted in Figure.0 are expected values of total greenhouse gas emissions at the end of each year with a  $\pm$ 4% upper and lower bound values (mape = 0.04)

|            | Total greenhouse gas emissions |
|------------|--------------------------------|
| 2024-12-31 | 499563.249733                  |
| 2025-12-31 | 488090.440474                  |
| 2026-12-31 | 476617.631215                  |
| 2027-12-31 | 465144.821956                  |
| 2028-12-31 | 453672.012697                  |

Figure 4: Forecasted Total Greenhouse Gas Emissions

### Implications and Recommendations for UK Government

The UK government is making progress in achieving a net zero greenhouse gas emissions by 2050 but still need to take considerable steps to actualize this as the projections showed decreasing trends but not steep to achieve net zero in the next 25 years, hence, the following recommendations:

- Policies should be put in place for industries showing increasing trends.
- Incentivise industries achieving decreasing trends to continue.
- Quarterly monitoring of progressing (greenhouse gas emissions) to include seasonality in the dataset which will improve model performance and generate new insights.

#### Drawbacks on Model

The linear regression model used for forecasting the greenhouse gas emissions returned values of a linear slope. This can be improved by adding other factors to the model to improve and predict values. Also models such as support vector regression (SVR) can also be used for model development.

### Areas for Further Research/Analysis

My technical exercise modelling and reporting focused and concentrated on the Total greenhouse gas emissions in all industries and overall, in the UK. In-depth analysis can be carried out on sub-industry groups to understand which sub-industry contributes more to greenhouse gas emissions. Furthermore, analysis can be carried out on each of the seven gases to understand the trends in each for better policy implementation around reduction of greenhouse gas emissions in the UK.

### Conclusion

Achieving a sustainable environment in our ecosystem is paramount and activities of all stakeholders must be towards ensuring a safer climate. Data science ensures that relevant tools are applied to predict and develop insights in the near future. This technical exercise is a glimpse of what we can achieve using data analytics in various industries.

### References

- [x] United Nations Climate Change. The Paris Agreement. unfccc.int [Online]. Available: <a href="https://unfccc.int/process-and-meetings/the-paris-agreement">https://unfccc.int/process-and-meetings/the-paris-agreement</a> [Accessed: 16 January 2025]
- [y] National Atmospheric Emissions Inventory. Greenhouse. Gases. naei.energysecurity.gov.uk [Online]. Available: <a href="https://naei.energysecurity.gov.uk/greenhouse-gases">https://naei.energysecurity.gov.uk/greenhouse-gases</a> [Accessed: 16 January 2025]
- [z] A. Ostwal (2020, Dec. 22). Test.for.existence.of.a.Trend.in.a.Time.Series. Medium [Online]. Available: <a href="https://towardsdatascience.com/test-for-existence-of-a-trend-in-a-time-series-3a44f242c329">https://towardsdatascience.com/test-for-existence-of-a-trend-in-a-time-series-3a44f242c329</a> [Accessed: 16 January 2025]