Transmission of signals: impairments (noise, signal-to-noise ratio and Bit Error Rate)

Signal impairments

Attenuation: the signal looses power as it propagates

• **Distortion**: the signal changes shape as it propagates

 Noise: interference with other man-made or random signals.

Noise

- Noise is any unwanted signal (from another communication source or from a random source) that interferes with our signal.
- Example of noises are:
 - Thermal noise: generated by the random thermal motion of electrons inside an electrical conductor
 - Shot noise: generated by the random statistical fluctuations of the electric current in an electrical conductor, due to the discrete nature of current (i.e., electrons)
 - Amplified Spontaneous Emission (ASE) for amplified optical systems: due to optical amplifiers, which besides amplifying the signal carrying information also introduce additional noise.

Noise

 Since the noise sums up to the transmitted signal, the received signal is different from the original signal

The Signal-to-noise ratio (SNR)

- The SNR is the ratio between the power of the signal and the power of the noise.
- The better the SNR the more the received signal is a faithful reproduction of the original one.

Effect of impairments

- Why are we worried about power loss, distortion and noise?
- Because these modify the original signal in an unpredictable way, potentially producing errors when receiving the signal.

 Notice that impairments affect both analogue and digital signals!!

Signals impairments

 If a signal is analogue, noise and distortion will modify its values, so that at the receiver I get a distorted analogue signal.

 If a signal is digital, noise and distortion will modify its values, so that at the receiver I get the wrong bits

Signals impairments

So, is there a reason why we transmit signals digitally?

- 1. Well, first of all signal are digital when stored in a computer...
- 2. But most important, we'll see that digital transmission is in principle more resilient to noise!

Bit Error Rate

- In digital systems, impairments generate bit errors, thus a typical performance metric for links is the Bit Error Rate (BER)
- It indicates how often can bit errors be expected to occur.
- It is measured as 1 bit error

 Number of bits considered
- For example if the error is 1 bit every 1,000

$$BER = \frac{1}{1000} = 10^{-3}$$

BER vs. SNR

• The lower the SNR, the higher the number of bit errors you can expect in a transmission.

BER vs. SNR

- Alternatively if the signal power is higher, the SNR will be higher.
- Remember $SNR = \frac{\text{signal power}}{\text{noise power}}$
- So having more power gives similar results as having less noise!

BER-SNR curves

 Is there a way for me to know what will the BER be, for a given SNR?

Curves like this are produced to give me exactly this type of information

BER-SNR curves

- How to use the curves:
 - What BER I have if SNR=6dB?
 - **→**BER≈ 10⁻³
 - What SNR do I require to get a BER of 10⁻⁸?
 - → SNR= 9.3dB

BER vs. modulations

So is there just one curve for BER-SNR?

 NO! Different modulation formats all have different curves!!

BER vs. multi-level modulations

 In general higher-level modulations are capable of carrying more bits within a given bandwidth...

... however they are also more affected by noise!!

Remember, nothing comes from free..!

If you gain in terms of bandwidth occupation you loose in BER performance (or power required,...)

Example I: M-PSK

 Why is 16-PSK more susceptible to noise than 4-PSK?

In 4-PSK, symbols are spaced by 90° ($\pi/2$), so my signal is resilient against phase errors of $\pm 45^{\circ}(\pi/4)$

Error-free zone for this symbol

In 16-PSK, symbols are spaced by 30° (π /6), so my signal is resilient against phase errors of ±15°(π /12)

Error-free zone for this symbol

Example II: M-QAM

• 4-QAM

• 16 QAM

If I put more symbols, the distance between them is reduced, and it becomes easier to confuse them when noise is added

Power increase in QAM

- However I can increase the power to keep the distance large...
- Here the average power (i.e. the average distance of symbol from the origin) is higher

BER-SNR summary

- High SNR gives a lower BER.
- $SNR = \frac{\text{signal power}}{\text{noise power}}$
- Larger noise (as well as distortion), will decrease SNR, and increase BER
- Transmission loss will decrease the signal power, thus decrease SNR and increase BER

Receiver sensitivity

- When a signal arrives at the receiver, besides the SNR, also the value of the signal power is important.
- The receiver has a certain sensitivity, which means it needs to receive a certain signal power in order to decode it.
- If a receiver has a sensitivity of, for example, -80dBm, this is the minimum input power it requires.