RS/Conference2020

San Francisco | February 24 – 28 | Moscone Center

HUMAN ELEMENT

SESSION ID: CRYP-R01

Better Bootstrapping for Approximate Homomorphic Encryption

Dohyeong Ki

Seoul National University

Need for a Faster Homomorphic Encryption

Modern Data Analysis Algorithms

Machine Learning Algorithms: Covolutional Neural Network (CNN), Deep Neural Network (DNN), etc.

Require faster homomorphic operations and faster boostrapping

Extremely Complicated

What We Do

- Suggest a generalized key-switching method for the Full-RNS variant of HEAAN
- Propose a new polynomial approximation method to evaluate a sine function, which is specialized for the bootstrapping for HEAAN
- Give first implementation of bootstrapping for Full-RNS variant of approximate homomorphic encryption

RSA*Conference2020

Generalized Key-switching Method for the Full-RNS Variant of HEAAN

Preliminary

Full-RNS variant of HEAAN

$$C = \{q_0, q_1, \dots, q_L\}$$
: Base primes $\approx q$

$$B = \{p_0, p_1, \dots, p_k\}$$
: Temporary Moduli

Reduce the size of error generated from key-switching

$$P = \prod_{i=0}^{k} p_i \gg Q = \prod_{j=0}^{L} q_j$$

$$k \approx L$$

SEAL (v3.3 -)

One temporary modulus + RNS decomposition method

$$k = 1$$

Motivation

k
 — (assume the same security level)

Advantages

1. The number of evaluation keys for key-swtiching

2. Complexity for key-switching

Disadvantages

1. The number of levels supported

Key Ideas

[1] Temporary modulus technique

$$B = \{p_0, p_1, \dots, p_k\}$$
: Temporary Moduli

$$C = \{q_0, q_1, \dots, q_L\}$$
: Base primes $\approx q$

$$\mathcal{C}' = \{Q_j\}_{0 \leq j < \text{dnum}} = \begin{bmatrix} (j+1)\alpha - 1 \\ \prod_{i=j\alpha} q_i \end{bmatrix}_{0 \leq j < \text{dnum}}$$

for the given integer dnum > 0 and $\alpha = (L+1)/\text{dnum}$.

$$P = \prod_{i=0}^{k} p_i \gg \max_{0 \le j < dnum} Q_j \qquad \qquad k \approx \alpha$$

Key Ideas

[2] RNS-decomposition method

RNS-Decomp_C
$$(a(x)) = ([a(x) \cdot \hat{q_0}^{-1}]_{q_0}, \dots, [a(x) \cdot \hat{q_L}^{-1}]_{q_L}) \in R^{L+1}$$

RNS-Power_C $(b(x)) = (b(x) \cdot \hat{q_0}, b(x) \cdot \hat{q_1}, \dots, b(x) \cdot \hat{q_L}) \in R^{L+1}$,
where $C = \{q_0, q_1, \dots, q_L\}, \ \hat{q_i} = \prod_{j \neq i} q_j \ \text{and} \ a(x), b(x) \in R$

Can perform key-switching as

$$\langle \mathsf{RNS}\text{-}\mathsf{Decomp}_{\mathcal{C}}(a(x)), \mathsf{RNS}\text{-}\mathsf{Power}_{\mathcal{C}}(s(x)^2) + \mathsf{Enc}_{s(x)}(0) \rangle \bmod Q$$

Complexity of Homomorphic Multiplication

Total Complexity for Homomorphic Multiplication

$$\approx N \cdot \{(l + \log N) \cdot k + (2 + \log N) \cdot l^2 \cdot (1/k)\} + (constant)$$

if we set k to α and regard other parameters as constants

The total complexity is minimized when $k = \sqrt{\frac{2 + \log N}{l + \log N}} \cdot l$

RS/Conference2020

A New Polynomial Approximation Method to Evaluate a Sine Function

- Specialized to the Bootstrapping for HEAAN

Preliminary: Bootstrapping for HEAAN

Goal

$$m(X) = [\langle \mathsf{ct}, \mathsf{sk} \rangle]_q$$

Coefficients

to

Slots

$$m(X) = [\langle \mathsf{ct}, \mathsf{sk} \rangle]_q \qquad \qquad m(X) = [\langle \mathsf{ct}', \mathsf{sk} \rangle]_Q \qquad Q > q$$

Steps

$$ct = Enc(m(X))(mod q)$$

Modulus Raising

$$ct = Enc(t(X)) \pmod{Q_0}$$

where
$$t(X) = qI(X) + m(X)$$

 $Enc(t_0, \dots, t_{N/2-1})$ $Enc(t_{N/2},\ldots,t_{N-1})$

> Sine **Evaluation**

$$Enc(m_0, ..., m_{N/2-1})$$

 $Enc(m_{N/2}, ..., m_{N-1})$

ct' = Enc(m(X))(mod Q)

Slots to

Coefficients

Previous Works

- 1. [CHKKS18]: Taylor Approximation Method
- 2. [CCS 19]: Chebyshev Approximation Method

[CHKKS18]: Cheon et al., Bootstrapping for Approximate Homomorphic Encryption, *Eurocrypt*, 2018.

[CCS19]: Chen, H., Ilaria Chillotti and Yongsoo Song, Improved Bootstrapping for Approximate Homomorphic Encryption, Eurocrypt, 2019.

Key Ideas

Theorem 1 (polynomial interpolation). Let f be a function in $C^{n+1}[a,b]$ and p_n be a polynomial of degree $\leq n$ that interpolates the function f at n+1 distinct points $t_0, t_1, \dots, t_n \in [a,b]$, i.e. $p_n(t_i) = f(t_i)$ for all $0 \leq i \leq n$. Then, for each $t \in [a,b]$, there exists a point $\psi_t \in [a,b]$ such that

$$f(t) - p_n(t) = \frac{f^{(n+1)}(\psi_t)}{(n+1)!} \cdot \prod_{i=0}^{n} (t - t_i).$$
Bounded

Goal: Choose appropriate t_i 's that minimize the maximum value of $w(t) = \prod_{i=0}^{n} (t - t_i)$ in a specified domain of t.

Our Method

Choose d_i nodes as the Chebyshev method

$$t_{i,j} = i - \frac{1}{4} + \epsilon \cdot \cos\left(\frac{2j-1}{2d_i}\pi\right) \quad 1 \le j \le d_i$$

$$||w(t)|| \le \frac{1}{2^{d_i-1}} \cdot \epsilon^{d_i} \cdot \prod_{j=1}^{K-1-i} (j+\epsilon)^{d_{i+j}} \cdot \prod_{j=1}^{K-1+i} (j+\epsilon)^{d_{i-j}}$$

when
$$t \in I_i = [i - \frac{1}{4} - \epsilon, i - \frac{1}{4} + \epsilon]$$

How to Choose the Number of Nodes in each Interval?

Algorithm 1 Choosing the number of nodes in each interval

- 1: **Input** : Target degree n
- 2: Initialize $d_i = 1$ for all i
- 3: while $\sum d_i \leq n$ do
- 4: Compute M_i for each i
- 5: Find $i_0 = \operatorname{argmax} M_i$
- 6: $d_{i_0} \leftarrow d_{i_0} + 1$
- 7: end while
- 8: Output : d_i 's

Comparison with the Chebyshev Method

Fig. 2. Error bounds $\log_2(||f - p_n||)$ for our optimized interpolation (K = 12).

Homomorphic Evaluation of a Polynomial

Navie approach

$$p(t) = \sum_{i=0}^{n} p_i t^i \longrightarrow p'_i s \text{ are unstable } \longrightarrow \begin{array}{c} 1. \text{ Yield a lot of numerical errors} \\ 2. \text{ Make homomorphic evaluation difficult} \end{array}$$

Our method

$$T_0(t) = 1, T_1(t) = t,$$

 $T_i(t) = 2tT_{i-1}(t) - T_{i-2}(t) \text{ for } i \ge 2$ $|T_i(t)| \le 1 \text{ for all } |t| \le 1$

$$\tilde{T}_i(t) = T_i(\frac{t}{K}) \longrightarrow |\tilde{T}_i(t)| \le 1 \text{ for all } |t| \le K$$

$$p_n(t) = \sum_{i=0}^n c_i \cdot \tilde{T}_i(t)$$
 Compute with the Baby-step algorithm
$$> 2\sqrt{2n} + \frac{1}{2}\log_2 n + O(1)$$
 non-scalar multiplications

Hybrid Method

Compute $\cos\left(2\pi\frac{t}{2^r}\right)$ and use double angle formula

		# of scaling							
Degree	Depth	1		2	2	3			
		Degree	Depth	Degree	Depth	Degree	Depth		
76	7	49	6+1	31	5+2	24	5+3		
86	7	57	6 + 1	40	6+2	28	5+3		
96	7	65	7+1	45	6+2	34	6+3		
106	7	72	7+1	51	6+2	38	6+3		
116	7	80	7+1	57	6+2	43	6+3		
126	7	88	7+1	63	6+2	49	6+3		
136	8	94	7+1	70	7+2	55	6+3		

Table 3. Minimum degree of an approximate polynomials to ensure the same level of error bound for each number of scaling and corresponding depth consumption. (K = 12 and $\log_2 \epsilon = -10$)

Comparison with the Previous Work [CCS19]

Method	Degree	# of Scaling	Degree	Non-scalar	Depth	
		"	(After scaling)	Multiplication	-	
		0	74	24 (Alg 2)	7	
Ours	74	1	49	16+1 (Alg 2)	6+1	
		2	30	11+2 (Alg 2)	5+2	
[5]	119	-	-	20 (PS alg)	7	

Table 4. Comparison between our method and the previous work. [5] $(K = 12 \text{ and } \log_2 \epsilon = -10)$

[CCS19]: Chen, H., Ilaria Chillotti and Yongsoo Song, Improved Bootstrapping for Approximate Homomorphic Encryption, Eurocrypt, 2019.

RSA*Conference2020

Experimental Results

Performance of Basic Operations

	$\log q_i$	L	dnum	Enc	Dec	Mult	Rescale	
			1			773 ms		HEAAN-RNS
			4			$436 \mathrm{\ ms}$		
$N = 2^{16}$	45	23	6	103 ms	5 ms	487 ms	$60 \mathrm{\ ms}$	
			12			660 ms		
			24			958 ms		SEAL v3.3

Table 5. Performance of Our Full-RNS variant of HEAAN with 2¹⁵ slots

Bootstrapping Performance

	ns	Boot Time	Precision	After Level	Amortized Time
	2^0	$6.8 \mathrm{\ s}$	15.5	5	7.1 s
Param 1	2^1	$7.0 \mathrm{\ s}$	16.8	3	$3.5 \mathrm{\ s}$
	2^2	$7.5 \mathrm{\ s}$	15.0	3	1.87 s
Param 2	2^5	28 s	18.5	9	$0.87 \mathrm{\ s}$
	2^{10}	$37.6 \mathrm{\ s}$	15.3	7	$0.036 \; { m s}$
	2^{14}	$52.8 \mathrm{\ s}$	10.8	7	0.0032 s

Table 7. Performance of the bootstrapping in our scheme

ns: the number of slots

Precision :— $\log_2 e$, where e is average noise generated

Amortized Time: bootstrapping time per each slot

[CCS 19]: 158s

VS

[HHC 19]: 127s

[CCS19]: Chen, H., Ilaria Chillotti and Yongsoo Song, Improved Bootstrapping for Approximate Homomorphic Encryption, Eurocrypt, 2019.

[HHC 19]: Han, K., Seungwan Hong and Jung Hee Cheon, Improved Homomorphic Discrete Fourier Transforms and FHE bootstrapping, IEEE Access, 2019.

RSA*Conference2020

Appendix

Key Generation in Our Scheme

KSGen $(s_1, s_2, dnum)$. For given secret polynomials $s_1, s_2 \in R$, sample $(a'^{(0)}, \ldots, a'^{(k+L)}) \leftarrow U\left(\prod_{i=0}^{k-1} R_{p_i} \times \prod_{j=0}^{L} R_{q_j}\right)$ and sample an error $e' \leftarrow \chi_{err}$. Output the switching keys $\{swk_j\}_{0 \le j < dnum}$ as

$$\left(\mathsf{swk}_{j}^{(0)} = (b'_{j}^{(0)}, a'_{j}^{(0)}), \dots, \mathsf{swk}_{j}^{(k+L)} = (b'_{j}^{(k+L)}, a'_{j}^{(k+L)})\right) \in \prod_{i=0}^{k-1} R_{p_{i}}^{2} \times \prod_{i=0}^{L} R_{q_{i}}^{2}$$

where $b'_{j}^{(i)} \leftarrow -a'_{j}^{(i)} \cdot s_{2} + e' \pmod{p_{i}}$ for $0 \le i < k$ and $b'_{j}^{(k+i)} \leftarrow -a'_{j}^{(k+i)} \cdot s_{2} + [\hat{Q}_{j}]_{q_{i}} \cdot s_{1} + e' \pmod{q_{i}}$ for $0 \le i \le L$.

Multiplication in Our Scheme

$$\frac{\text{Mult}_{\text{evk}}(\text{ct},\text{ct}')}{\left(\text{ct}'^{(j)} = (c_0'^{(j)},c_1'^{(j)})\right)_{0 \leq j \leq \ell}} \text{ and } \text{ct}' = \left(\text{ct}'^{(j)} = (c_0'^{(j)},c_1'^{(j)})\right)_{0 \leq j \leq \ell}, \text{ perform the following procedures and return the ciphertext } \text{ct}_{\text{mult}} \in \prod_{j=0}^{\ell} R_{q_j}^2.$$

1. For $0 \le j \le \ell$, compute

$$d_0^{(j)} \leftarrow c_0^{(j)} c_0'^{(j)} \pmod{q_j},$$

$$d_1^{(j)} \leftarrow c_0^{(j)} c_1'^{(j)} + c_1^{(j)} c_0'^{(j)} \pmod{q_j},$$

$$d_2^{(j)} \leftarrow c_1^{(j)} c_1'^{(j)} \pmod{q_j}.$$

Multiplication in Our Scheme

2. RNS-Decompose:

2-1. Zero-padding and Split: Let $\beta = \lceil (\ell + 1)/\alpha \rceil$,

$$d'_{2,j}^{(i)} = \begin{cases} d_2^{(j\alpha+i)} \cdot [Q']_{q_{j\alpha+i}} & \text{if } j\alpha+i \leq \ell \\ 0 & \text{otherwise} \end{cases}$$

for
$$0 \le i < \alpha$$
, $0 \le j < \beta$ and $Q' = \prod_{i=\ell+1}^{L} q_i$.

2-2. RNS-Decompose:

$$d'_{2,j}^{(i)} \leftarrow d'_{2,j}^{(i)} \cdot [\hat{Q}_j^{-1}]_{q_{j\alpha+i}}$$

for $0 \le i < \alpha$ and $0 \le j < \beta$ with $j\alpha + i \le \ell$.

3. Modulus-Raise: compute $\tilde{d}_{2,j} = \text{ModUp}_{\mathcal{C}_j \to \mathcal{D}_{\beta}}(d'_{2,j})$.

Multiplication in Our Scheme

4. Inner Product: compute

$$\tilde{\mathsf{ct}} = (\tilde{\mathsf{ct}}^{(0)} = (\tilde{c}_0^{(0)}, \tilde{c}_1^{(0)}), \dots, \tilde{\mathsf{ct}}^{(k+\ell)} = (\tilde{c}_0^{(k+\ell)}, \tilde{c}_1^{(k+\ell)})) \in \prod_{i=0}^{k-1} R_{p_i}^2 \times \prod_{j=0}^{\ell} R_{q_j}^2,$$

where $\tilde{\mathsf{ct}}^{(i)} = \sum_{j=0}^{\beta-1} \tilde{d}_{2,j}^{(i)} \cdot \mathsf{evk}_{j}^{(i)} \pmod{p_{i}}$ for $0 \le i < k$ and $\tilde{\mathsf{ct}}^{(k+i)} = \sum_{j=0}^{\beta-1} \tilde{d}_{2,j}^{(k+i)} \cdot \mathsf{evk}_{j}^{(k+i)} \pmod{q_{i}}$ for $0 \le i < \alpha\beta$.

5. Modulus-Down: compute

$$\begin{split} & \left(\hat{c}_0^{(0)}, \dots, \hat{c}_0^{(\ell)} \right) \leftarrow \mathtt{ModDown}_{\mathcal{D}_{\beta} \rightarrow \mathcal{C}_{\ell}} \left(\tilde{c}_0^{(0)}, \dots, \tilde{c}_0^{(k+\alpha\beta)} \right), \\ & \left(\hat{c}_1^{(0)}, \dots, \hat{c}_1^{(\ell)} \right) \leftarrow \mathtt{ModDown}_{\mathcal{D}_{\beta} \rightarrow \mathcal{C}_{\ell}} \left(\tilde{c}_1^{(0)}, \dots, \tilde{c}_1^{(k+\alpha\beta)} \right). \end{split}$$

6. Output the ciphertext $\mathsf{ct}_{\mathsf{mult}} = (\mathsf{ct}_{\mathsf{mult}}^{(j)})_{0 \le j \le \ell}$, where $\mathsf{ct}_{\mathsf{mult}}^{(j)} \leftarrow (\hat{c}_0^{(j)} + d_0^{(j)}, \hat{c}_1^{(j)} + d_0^{(j)})$ (mod q_j) for $0 \le j \le \ell$.

Baby-step Giant-step Algorithm

Algorithm 1 Baby-step Giant-step algorithm

- 1: **Input**: A polynomial of degree $n, p = \sum_{i=0}^{n} c_i T_i$.
- 2: Let m be the smallest integer satisfying $2^m > n$ and $l \approx m/2$.
- 3: Evaluate $T_2(t), T_3(t), \cdots, T_{2^l}(t)$ inductively.
- 4: Evaluate $T_{2^{l+1}}(t)\cdots,T_{2^{m-1}}(t)$ using the equation $T_{2i}(t)=2T_i(t)^2-1$.
- 5: Find polynomials q and r of degree $< 2^{m-1}$ which satisfy $p = q \cdot T_{2^{m-1}} + r$ in forms of a linear combination of Chebyshev basis.
- 6: Evaluate q(t) and r(t) recursively. (Repeat 5 with replacing p with q and r until the degree of the quotient and the remainder become smaller than 2^{l})
- 7: Evaluate p(t) with q(t), r(t) and $T_{2^{m-1}}(t)$.
- 8: Output : p(t)

Parameters Sets for Bootstrapping Performance Exp.

	L	dnum	N	$\log Q$	$\log Q + \log P$	Security
Param 1	19	10	32768	810	910	110.4
Param 2	27	7	65536	1270	1452	127.2

Table 6. Parameter Sets

Param 1: $\log q \approx 40$, $\log q_0 \approx 50$ **Param 2**: $\log q \approx 45$, $\log q_0 \approx 55$