

Focus for this lecture

VGG features

Speech

(Brief Explanation)

A quick primer on sound

https://www.youtube.com/watch?v=jveKIYyafaQ

Lets understand Sound Signal

$$f(t) = \sin(2\pi \cdot 39t) + 0.5\sin(2\pi \cdot 15t)$$

Example Sound Signal

$$g(t) = \begin{cases} 2 * \sin(2\pi \cdot 39t), 0 \le t \le 1/2\\ \sin(2\pi \cdot 15t), 1/2 < t \le 1 \end{cases}$$

Spectrogram

Spectrogram of a piecewise monochromatic signal.

Lighter color 2 greater DFT magnitude

Example Problem

- Sound waves (.wav files)
- 10 short commands ("zero", "one", "two")
- 1 sec duration
- 5000 samples (many people)

Representations

A: MFCC (Signal processing based; Classical)

Mel Frequency Cepstral Coefficients

B: CNN Based (Modern)

VGG Features on the Mel Spectrogram

Classical Feature (MFCC)

Sine wave (f= 20KHz)

Sine wave (f= 30KHz)

Sine wave (f= 40KHz)

Any wave is a combination of many sine NSE talent Any wave is a combination of many sine waves

Any wave is a combination of many sine Suse talent Any wave is a combination of many sine waves

Example Problem

- Sound waves (.wav files)
- 10 short commands ("zero", "one", "two")
- 1 sec duration
- 5000 samples (many people)

Utterance of the Word Zero

Utterance of the Word One

Utterance of the Word Two

Features from Mel Spectrogram

MFCC (Hand coded Classic Features)

VGG19-Features (Trained on Mel spectrograms)

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/

Example problem

VoxCeleb2

VoxCeleb2 contains over a million utterances for 6,112 identities.

Example problem

Performance on VoxCeleb

Accuracy	Top-1 (%)	Top-5 (%)
I-vectors + SVM	49.0	56.6
I-vectors + PLDA + SVM	60.8	75.6
CNN-fc-3s no var. norm.	63.5	80.3
CNN-fc-3s	72.4	87.4
CNN	80.5	92.1

Neural Networks + word2vec for text

Sentiment Classification (Positive / Negative)

Summary

- Data driven features are now effective for many data.
 - "Learn from some one else's data".
 - "Refine to your problem" (more later)
- Many recognition/classification tasks in the image and speech space are reachable.

Summary

Thanks!!

Questions?