Topic: Exploratory Data Analysis (EDA)

Measures of Variability - Part A

School of Mathematics and Applied Statistics

Measuring Variability: Motivating Example

Consider the following data sets: $\alpha = 7$

For each data set

• Mean =
$$\frac{385}{7} = 55 = \overline{x}$$

But the spread of the scores

Variability (spread) can be measured by:

- Variance σ^2 or s^2
 - uses all data values but is inflated by outliers
- Standard deviation σ or s
 - uses all data values but is inflated by outliers
- Range = maximum minimum = $x_{(n)}^{\downarrow}$ $x_{(1)}^{\downarrow}$ unreliable measure, depends on extreme values
- Interquartile range: $IQR = Q_3 Q_1$
 - spans middle ______ of data,
 - unaffected by outliers, ignores variation in tails

3/10

Variance and Standard Deviation

- The mean is used as a reference point. $\bar{\kappa} = 55$
- Consider the deviation from the *i*th point to the mean: $x_i - \overline{x}$
- Deviations may be positive or agetive
- Variance is based on the ________ deviations.
- We can also describe the difference in spread using a notion of average distance from the mean.
- This measure of variability is called the standard deviation.

Variance

Variance is based on the squared distances of individual data points from the mean.

Population Variance

Population Variance
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Sample Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- measurement is in squared units
- is never negative, and
- is only zero when all data values are identical
- s^2 is an unbiased estimator of σ^2 .

Standard Deviation

Standard deviation σ or s

- is the square root of the variance
- is measured in same units of measurement as data
- Population standard deviation

$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$

$$\sigma = \sqrt{\sigma^2}$$

Sample standard deviation

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$s = \sqrt{s^2}$$

• On calculator, enter data then use: 500 models

$$\sigma_n$$
 or xo

for
$$\sigma_n$$
 or σ_n or σ_{n-1} or σ_{n-1} or σ_{n-1} or σ_n or σ_n

Example

- Data set 1: 55, 55, 55, 55, 55, 55
- Data set 2: 47, 51, 54, 55, 56, 59, 63
- Data set 3: 39, 47, 53, 55, 57, 63, 71

	Median	Mean	SD	
Set 1	55	55		-
Set 2	55	55		
Set 3	55	55		

Discuss: What is the SD for Set 1? Why?

Exploratory Data Analysis

Exercise: What is the sample variance and standard deviation for Set 2 and Set 3? Calculate s^2 and s:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 \qquad s = \sqrt{s^2}$$

Data Set 2

Data Set 3

$$S_2^2 = \frac{1}{7 - 1} \times 162$$
$$= 27$$

Activity: Calculate Variance and SD cont.

Set 3.

ኢ :	76: -7	(2: - x) 2	
39	-16	256	
47	-8	44	
53	-2	4	
55	٥	0	
57	2	4	
63	8	64	
71	16	256	
		648 = Z (sc72)ړ

$$S_{3}^{2} = \frac{1}{7-1} \times 648$$

$$= \frac{108}{108}$$

$$= \frac{10.392}{10.392}$$

Set (Set 2 Set 3 S O 5-196 10-392

Exploratory Data Analysis Measures of Variability Part A 9 / 10

10 / 10

In R: Calculate mean, variance and sd

```
> Set2 <- c(47, 51, 54, 55, 56, 59, 63)
> mean(Set2)
[1] 55
> var(Set2)
Γ1] 27
> sd(Set2)
[1] 5.196152 

> Set3 <- c(39, 47, 53, 55, 57, 63, 71)
> mean(Set3)
[1] 55
> var(Set3)
Γ1 108
> sd(Set3)
[1] 10.3923
```

Exploratory Data Analysis

Measures of Variability Part A