$\frac{1}{12}$, $\frac{1}$

txample: (DINON) can do that by multiplying It by an appropriate permutation monux 12: the right proof to choose is 8 so I need to innechange ear 1 and 3 in A A = 0 0 4 A 00 0 0 42 W Q Q O ٩ 0 20 V1 H 4 00 4 m 4 4 operations. Once I chosed the pivot I want to interchange the zous of A so to I want to choose a pivot in the first column so to minimize the # of have the pivot in that w o o 4 N ∞ 11 4 0 8 b t W W 4 00

Now I wont to multiply A_1 on the left by L_1 . L_1 is lower transvior, with ones on the main diagonal and entries on the first column, so to eliminate the first column of A_1 .

				7	1
		3/4	- 1/4	-1/2	1
		G	0	_	0
		O	_	0	0
		_	0	0	3
	ι				
	{	6	2	A	~
		4	_	W	4
-		٥	_	W	٩
		0	0		∞
	70				
				μ	
		6	0	0	~
		7/4	-3/4		٥ 4
		Q.		-3/2	هـ
		14 17/9	-5/4 -5/4	-1/2 $-3/2$ $-3/2$	00
	T			= A2	

Now I have to do the some thing to eliminate the 2nd zow of Az

0 (7/4) 9/4 17/4	15/4	$A_2 = 0 = -3/2$	8 P t 8
Second Tow	. 5/4 He workt proof is 7/4 so I need to change the parmon of the fourth and		I need to choose the proof in the 2^{nd} column.

the permutotion morrow P2 looks like this:

				P ₂
	0	0	0	
	0	_	0	0
	0	0	-	0
	t 0]	0	0	مه ' د
>	14 9/	14 -51	12 -3/2	٥
	7/4 9/4 17/4	-3/4-5/4-5/4	$0 = \frac{1}{2} = \frac{3}{2} = \frac{3}{2}$	∞
]]	
	0	0	0	∞
	-1/2	-3/4	7/4	υ
	-3/2 -3/2	-5/4 -	9/4 17/0	8
	-3/2			
		1	= A2	

Now I need to multiply As by a morax Lz of the some kind of Li, but with coefficients in the second solumn so to diminate the 2nd solumn of As

I multiply A4 by a permutotion morrow P3 so to have the privat - 6/4 in the aight position:

				<u>~</u>)
[6	0	0	_	1
	O (<u></u>	<u>-</u>	0	
	_	Q	0	0	
	0	_	O	Ò	
L			· A4 =)
(5	0	0	2	
	0	O	4/4	t	
	-2/4	4/9 -	9/4	9	
ζ. `	L 4/4 (£/2-	() /4	∞ 1	
		,	n As		

I need now to multiply As by a morux Ls so to eliminate the enry a:

		(<u>ر</u> ۲	
E			<u> </u>	_1
	0	0	O	
	0	0		O
	-1/3	_	0	0
	_	0	<u></u>	0
			· As	
			η	
	5	0 (0	~
	0	0	4/F	4
	0	t/9-	9/4	ڡ
	2/3	-2/7	17/4	4 0
		the decomposition	= U: this is	
		osmon	M: this is my morax U-foz	

the motus P for the decomposition is given by:

the motive L is lower transplac, with ones on the main diagonal and entries under it equals to the wefficients in L_1 , L_2 , L_3 0 0 0

$$L = \frac{1}{-1/2} \frac{1}{1} \frac{0}{0} \frac{0}{0}$$

$$\frac{-1}{4} \frac{3}{1} \frac{1}{1} \frac{0}{0}$$

Once you have P, L, U you can use Goussian elimination to solve Ax = B as we saw in the last turneral

2) Flops counting

Holding the entries of I vector:

$$\overline{X} \in \mathbb{R}^{n}$$
 $\overline{X} = [X_{1}, X_{2}, X_{3}, ..., X_{n}]$

· foctoral (n>2)

 $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$

 $| 1 \cap 2 |$ (becase the lost multiplication is always by $1 \mid 1$)

 $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ n=5 but I do 3 muth plumo

Motax - vegor multiplumon:

Anxn

XI n P

CJ = AJ1 · X, -> n flops

J is on the cow of A, k on the columns

CJ = CJ + AJK. XK -> 1 + 2 (n-1) flops

N N U |= n | 1 + 2n - 2 $=2\eta^2-\eta$

Polynomial interpotation using vardermonde motus

GNON A (1,2) B(1,4,2.2. I want to find the interpretation paymonial

 $Z(x) = Q_{\omega} + Q_{\perp}X + Q_{2}X^{2}$

polynomial of oborce 2 (I have 3 points,

10 final an at onal at I need to solve: VA = V where:

V is the vandezmande morrux

A is I are out a 2.7 (y comparents of my given points)

I hooks like this:

$$\begin{bmatrix} 1,0 & (1,0)^{2} & (1,1)^{3} \\ 1,4 & (1,4)^{2} & (1,4)^{3} \end{bmatrix}$$

So the system I need to solve to find ow, as and as us:

$$\begin{bmatrix} 1,0 & 1,0 & 1,0 \\ 1,4 & (1,4)^2 & (1,4)^3 \\ 1,7 & (1,7)^2 & (1,7)^3 \end{bmatrix} \begin{pmatrix} 0_{10} \\ 0_{11} \\ 0_{21} \end{pmatrix} = \begin{pmatrix} 2.0 \\ 2.2 \\ 1.6 \end{pmatrix}$$