Vorlesung Multidimensionale und Multimodale Signale, SoSe 2010

Sebastian Rockel (6095961) Vitali Amann (5788408)

26. April 2010

3. Übung (Abgabe: 28.04.2010, 8.30 Uhr, schriftlich)

1. Berechnen Sie $z_1+z_2, z_1-z_2, z_2-z_1, z_1\cdot z_2, z_1/z_2, z_1^*\cdot z_2, z_1/z_2^*$ für

Siehe Tabelle 1.

	$z_1 = 1 + j\sqrt{3}, z_2 = 1 - j$	$z_1 = 2 + 3j, z_2 = 3 - 5j$	$z_1 = 4 - 5j, z_2 = 4 + 5j$	$z_1 = j, z_2 = -2 - 4j$
$z_1 + z_2$	$2 + (\sqrt{3} - 1)j$	5-2j	8	-2 - 3j
$z_1 - z_2$	$(\sqrt{3}+1)j$	-1 + 8j	-10j	2+5j
$z_2 - z_1$	$-(\sqrt{3}+1)j$	1-8j	10j	-2 - 5j
$z_1 \cdot z_2$	$(1+\sqrt{3})+(-1+\sqrt{3})j$	-9-j	41	4-2j
z_1/z_2	$\frac{1-\sqrt{3}}{2} + \frac{1+\sqrt{3}}{2}j$	$\frac{21}{34} + \frac{19}{34}j$	$-1 - \frac{40}{41}j$	$-\frac{1}{5} - \frac{1}{10}j$
$\overline{z_1} \cdot z_2$	$(1-\sqrt{3})+(1-\sqrt{3})j$	-9 - 19j	41 + 40j	-4+2j
$z_1/\overline{z_2}$	$\frac{1+\sqrt{3}}{2} + \frac{\sqrt{3}-1}{2}j$	$\frac{21}{34} - \frac{1}{34}j$	1	$\frac{1}{5} - \frac{1}{10}j$

Tabelle 1: Lösungen zu 3.1

2. Gegeben sei eine periodische Funktion über die Zeit, wie lauten die Koeffizienten der *komplexen* Fourierreihe?

a)
$$f(t) = \sin(t)$$
 für $t \in (-\pi, \pi)$
 $a_0 = 0$; $c_1 = -\frac{1}{2}j$; $\bar{c_1} = \frac{1}{2}j$;

b)
$$f(t) = \cos(t)$$
 für $t \in (-\pi, \pi)$
 $a_0 = 0$; $c_1 = \frac{1}{2} = \bar{c_1}$;

c)
$$f(t) = \cos(2t)$$
 für $t \in (-\pi, \pi)$
 $a_0 = 0; c_2 = \frac{1}{2} = \bar{c_2};$

d)
$$f(t) = 1$$
 für $t \in (-\pi, \pi)$
 $a_0 = 2$; $c_k = 0 = \bar{c_k}$;

e)
$$f(t) = \sin(t) + \cos(t)$$
 für $t \in (-\pi, \pi)$
 $a_0 = 0$; $c_1 = \frac{1}{2}(1-j)$; $\bar{c_1} = \frac{1}{2}(1+j)$;

3. Gegeben seien die Fourierkoeffizienten einer Funktion über die Zeit. Wie lautet die Funktion?

Siehe Abbildungen 1, 2.

Abbildung 1: $s(t) = \sum_{k=1}^{n} b_k sin(kt) = \sum_{k=1}^{n} jke^{jkt} - jke^{-jkt}, b_{k=-2k}, n = 10$

Abbildung 2: $s(t) = 6cos(2t) - 4sin(2t) = (3+2j)e^{j2t} + (3-2j)e^{-j2t}$