## Caleb Logemann MATH 520 Methods of Applied Math II Homework 9

## Section 14.5

#5 Let  $Lu = a_2(x)u'' + a_1(x)u' + a_0(x)u$  with  $a_2' = a$ , so that L is formally self adjoint. If  $B_1u = C_1u(a) + C_2u'(a)$ ,  $B_2u = C_3u(b) + C_4u'(b)$ , show that  $\{B_1^*, B_2^*\} = \{B_1, B_2\}$ .

*Proof.* Consider the operators  $B_1^*\psi = C_1\psi(a) + C_2\psi'(a) = B_1\psi$  and  $B_2^*\psi = C_3\psi(b) + C_4\psi'(b) = B_2\psi$ . In order to show that  $\{B_1^*, B_2^*\}$  is adjoint to  $\{B_1, B_2\}$  it must be shown that

$$J(\phi,\psi)|_a^b = 0$$

whenever  $B_1 \phi = B_2 \phi = B_1^* \psi = B_2^* \psi = 0$ .

Therefore let  $\phi$  and  $\psi$  be chosen such that

$$B_1\phi = B_2\phi = B_1^*\psi = B_2^*\psi = 0.$$

First consider  $B_1\phi = B_1^*\psi = 0$ . These equations can be rewritten as

$$C_1\phi(a) = -C_2\phi'(a)$$

$$C_1\psi(a) = -C_2\psi'(a).$$

Multiplying these equations gives

$$-C_1 C_2 \phi(a) \psi'(a) = -C_1 C_2 \psi(a) \phi'(a)$$

or

$$\phi(a)\psi'(a) - \phi'(a)\psi(a) = 0$$

Note that this statement is still true if one of  $C_1$  or  $C_2$  is zero. If one of them is zero, then either  $\phi(a) = \psi(a) = 0$  or  $\phi'(a) = \psi'(a) = 0$ , which still gives

$$\phi(a)\psi'(a) - \phi'(a)\psi(a) = 0 - 0 = 0$$

Similarly with  $B_2\phi = B_2^*\psi = 0$ , it is possible to rewrite these equations as

$$C_3\phi(b) = -C_4\phi'(b)$$

$$C_3\psi(b) = -C_4\psi'(b).$$

Multiplying these equations gives

$$-C_3C_4\phi(b)\psi'(b) = -C_3C_4\psi(b)\phi'(b)$$

or

$$\phi(b)\psi'(b) - \phi'(b)\psi(b) = 0$$

Again if  $C_3$  or  $C_4$  is zero, then  $\phi(b) = \psi(b) = 0$  or  $\phi'(b) = \psi'(a) = 0$  which implies

$$\phi(b)\psi'(b) - \phi'(b)\psi(b) = 0$$

Now consider the boundary functional  $J(\phi, \psi)$ . The boundary function  $J(\phi, \psi)$  can be fully expressed as

$$J(\phi, \psi) = a_2(\phi'\psi - \phi\psi') + (a_1 - a_2')\phi\psi.$$

Since the differential operator is formally self-adjoint,  $a_1 = a_2$ , so this is equivalent to

$$J(\phi, \psi) = a_2(\phi'\psi - \phi\psi')$$

Now the condition  $J(\phi,\psi)|_a^b=0$  is equivalent to

$$a_2(\phi'(b)\psi(b) - \phi(b)\psi'(b)) - a_2(\phi'(a)\psi(a) - \phi(a)\psi'(a)) = 0.$$

Since we have already shown that  $\phi'(b)\psi(b) - \phi(b)\psi'(b) = 0$  and  $\phi'(a)\psi(a) - \phi(a)\psi'(a) = 0$  when the boundary operators are met. This condition is cleary met, when  $B_1\phi = B_2\phi = B_1^*\psi = B_2^*\psi = 0$ .

Therefore  $\{B_1^*, B_2^*\}$  is adjoint to  $\{B_1, B_2\}$  and since  $B_1 = B_1^*$  and  $B_2 = B_2^*$  this implies that  $\{B_1^*, B_2^*\} = \{B_1, B_2\}$ . In other words  $\{B_1, B_2\}$  is adjoint to itself. The purpose of this exercise is to show that a formally self-adjoint differential operator with boundary conditions of the form found in  $B_1$  and  $B_2$  forms a self-adjoint linear operator.

#8 When we rewrite  $a_2(x)u'' + a_1(x)u' + a_0(x)u = \lambda u$  as

$$-(p(x)u')' + q(x)u = \lambda \rho(x)u$$

the latter is often referred to as the *Liouville normal form*. Consider the eigenvalue problem

$$x^{2}u'' + xu' + u = \lambda u$$
  $1 < x < 2$   
 $u(1) = u(2) = 0$ 

(a) Find the Liouville normal form.

In order to find the Liouville normal form, the function  $a_2(x)$  must be strictly less than zero, so I will first rewrite this eigenvalue problem as

$$-x^{2}u'' - xu' - u = -\lambda u \qquad 1 < x < 2$$
$$u(1) = u(2) = 0$$

The functions p(x),  $\rho(x)$ , and q(x) can be found as follows.

$$p(x) = \exp\left(\int_{a}^{x} \frac{a_{1}(s)}{a_{2}(s)} \, \mathrm{d}s\right)$$

$$= \exp\left(\int_{a}^{x} \frac{-s}{-s^{2}} \, \mathrm{d}s\right)$$

$$= \exp\left(\int_{a}^{x} \frac{1}{s} \, \mathrm{d}s\right)$$

$$= \exp\left(\ln(s)|_{s=a}^{x}\right)$$

$$= e^{\ln(x) - \ln(a)}$$

$$= e^{\ln(\frac{x}{a})}$$

$$= \frac{x}{a}$$

$$\rho(x) = -\frac{p(x)}{a_{2}(x)}$$

$$= -\frac{x/a}{-x^{2}}$$

$$= \frac{1}{ax}$$

$$q(x) = a_{0}(x)\rho(x)$$

$$= (-1)\frac{1}{ax}$$

$$= -\frac{1}{ax}$$

Therefore the Liouville normal form of this eigenvalue problem is

$$-\left(\frac{x}{a}\phi'\right)' - \frac{1}{ax}\phi = -\lambda \frac{1}{ax}\phi$$

or

$$\left(\frac{x}{a}\phi'\right)' + \frac{1}{ax}\phi = \lambda \frac{1}{ax}\phi$$

(b) What is the orthogonality relationship satisfied by the eigenfunctions? The eigenfunctions of this linear operator satisfy an orthogonality relationship with respect to the weight  $\rho$ . In mathematical terms,

$$\int_{a}^{b} \phi_{n}(x)\phi_{m}(x)\rho(x) dx = \begin{cases} 0 & n \neq m \\ 1 & n = m \end{cases}$$

or

$$\int_{a}^{b} \frac{\phi_{n}(x)\phi_{m}(x)}{ax} dx = \begin{cases} 0 & n \neq m \\ 1 & n = m \end{cases}$$

(c) Find the eigenvalues and eigenfunctions. (You may find the original form of the equation easier to work with than the Liouville normal form when computing the eigenvalues and eigenfunctions.)

#10 Consider the Sturm-Liouville problem

$$u'' + \lambda u = 0 \qquad 0 < x < 1$$
  
 
$$u(0) - u'(0) = u(1) = 0$$

(a) Multiply the equation by u and integrate by parts to show that any eigenvalue is positive. First I will note a few useful facts, first since u(0)-u'(0)=0, this implies that u(0)=u'(0). Also if u is nontrivial this guarantees that  $\int_0^1 u^2(x) \, \mathrm{d}x > 0$ . Finally if u is a nontrivial solution then  $u'(x) \neq 0$  as u(1) = 0 makes any constant function is zero. This shows that  $\int_0^1 (u'(x))^2 \, \mathrm{d}x > 0$  as well.

Multiplying by u gives the following equation

$$uu'' + \lambda u^2 = 0.$$

Integrating both sides over [0, 1] gives

$$\int_0^1 u(x)u''(x) \, dx + \lambda \int_0^1 u^2(x) \, dx = \int_0^1 0 \, dx$$

This can be simplified using integration by parts

$$\int_0^1 u(x)u''(x) dx + \lambda \int_0^1 u^2(x) dx = 0$$
$$u(x)u'(x)\big|_{x=0}^1 - \int_0^1 (u'(x))^2 dx + \lambda \int_0^1 u^2(x) dx = 0$$
$$u(1)u'(1) - u(0)u'(0) - \int_0^1 (u'(x))^2 dx + \lambda \int_0^1 u^2(x) dx = 0$$

Since u(1) = 0 and u(0) = u'(0)

$$-u^{2}(0) - \int_{0}^{1} (u'(x))^{2} dx + \lambda \int_{0}^{1} u^{2}(x) dx = 0.$$

Since  $\int_0^1 u^2(x) dx > 0$ 

$$\lambda = \frac{u^2(0) + \int_0^1 (u'(x))^2 dx}{\int_0^1 u^2(x) dx} > 0.$$

- (b) Show that the eigenvalues are the positive solutions of  $\tan(\sqrt{\lambda}) = -\sqrt{\lambda}$ .
- (c) Show graphically that such roots exist, and form an infinite sequence  $\lambda_k$  such that  $(k-1/2)\pi < \sqrt{\lambda_k} < k\pi$  and

$$\lim_{k \to \infty} \left( \sqrt{\lambda_k} - (k - 1/2)\pi \right) = 0$$

First this graph shows that solutions to the equation  $\tan\left(\sqrt{\lambda}\right) = -\sqrt{\lambda}$  exist.



Next consider the sequence  $\lambda_k = \left((k-1/2)\pi + \frac{1}{k}\right)^2$  meets these criterion. Note that  $\sqrt{\lambda_k} = (k-1/2)\pi + \frac{1}{k}$ . Clearly  $\sqrt{\lambda_k} > (k-1/2)\pi$  and  $\sqrt{\lambda_k} < k\pi$  as  $\frac{1}{k} < \frac{\pi}{2}$ . Also

$$\lim_{k \to \infty} \left( \sqrt{\lambda_k} - (k - 1/2)\pi \right) = \lim_{k \to \infty} \left( (k - 1/2)\pi + \frac{1}{k} - (k - 1/2)\pi \right)$$
$$= \lim_{k \to \infty} \left( \frac{1}{k} \right) = 0$$

- #14 If  $\{\psi_n\}_{n=1}^{\infty}$  are Dirichlet eigenfunctions of the Laplacian making up an orthonormal basis of  $L^2(\Omega)$ , let  $\zeta_n = \psi_n/\sqrt{\lambda_n}$  ( $\lambda_n$  the corresponding eigenvalue).
  - (a) Show that  $\{\zeta_n\}_{n=1}^{\infty}$  is an orthonormal basis of  $H_0^1(\Omega)$ .

*Proof.* First I will show that  $\zeta_n$  is an orthonormal set. In order to do this I will use that fact that

$$\int_{\Omega} \nabla u \nabla v \, \mathrm{d}x = \lambda \int_{\Omega} u v \, \mathrm{d}x$$

for any  $v \in H_0^1(\Omega)$  where  $\lambda$  and u are a Dirichlet eigenvalue and eigenvector pair for the Laplacian on  $\Omega$ .

Consider  $\langle \zeta_n, \zeta_m \rangle_{H_0^1(\Omega)}$ 

$$\langle \zeta_n, \zeta_m \rangle_{H_0^1(\Omega)} = \int_{\Omega} \nabla \zeta_n \cdot \nabla \zeta_m \, \mathrm{d}x$$
$$= \frac{1}{\sqrt{\lambda_n \lambda_m}} \int_{\Omega} \nabla \psi_n \cdot \nabla \psi_m \, \mathrm{d}x$$

Since  $\psi_m \in H_0^1(\Omega)$  and  $\psi_n$  an eigenfunction

$$= \frac{\lambda_n}{\sqrt{\lambda_n \lambda_m}} \int_{\Omega} \psi_n \psi_m \, \mathrm{d}x$$
$$= \frac{\lambda_n}{\sqrt{\lambda_n \lambda_m}} \langle \psi_n, \psi_m \rangle_{L^2(\Omega)}.$$

Since  $\{\psi\}$  already forms an orthonormal basis of  $L^2$ , so

$$=\frac{\lambda_n}{\sqrt{\lambda_n\lambda_m}}\delta_{nm}$$

where  $\delta_{nm}$  is the Kronecker delta. This shows that if n=m, then  $\langle \zeta_n, \zeta_m \rangle_{H_0^1(\Omega)} = 1$  and if  $n \neq m$ , then  $\langle \zeta_n, \zeta_m \rangle_{H_0^1(\Omega)} = 0$ . This shows that  $\{\zeta_n\}$  is an orthonormal set in  $H_0^1(\Omega)$ .

Now I will show that  $\{\zeta_n\}$  is a basis of  $H_0^1(\Omega)$ . In order to show that this is a basis, I will show that this set is complete in  $H_0^1(\Omega)$  or equivalently that the zero function is the only function orthogonal to the entire set. Therefore let  $u \in H_0^1(\Omega)$ , such that

$$\langle \zeta_n, u \rangle_{H_0^1(\Omega)} = 0$$

for all  $n \in \mathbb{N}$ .

$$0 = \langle \zeta_n, u \rangle_{H_0^1(\Omega)}$$
$$= \int_{\Omega} \nabla \zeta_n \cdot \nabla u \, dx$$
$$= \frac{1}{\sqrt{\lambda_n}} \int_{\Omega} \nabla \psi_n \cdot \nabla u \, dx$$

Since  $u \in H_0^1(\Omega)$  and  $\psi_n$  is a Dirichlet eigenfunction.

$$= \frac{\lambda_n}{\sqrt{\lambda_n}} \int_{\Omega} \psi_n u \, dx$$
$$= \frac{\lambda_n}{\sqrt{\lambda_n}} \langle \psi_n, u \rangle_{L^2(\Omega)}$$

This shows that  $\langle \psi_n, u \rangle_{L^2(\Omega)} = 0$  for all n. Since  $\{\psi_n\}$  is already a basis of  $L^2$  this means that u = 0. Therefore  $\{\zeta_n\}$  is complete in  $H_0^1(\Omega)$  and thus is a basis of  $H_0^1(\Omega)$ .

(b) Show that  $f \in H_0^1(\Omega)$  if and only if  $\sum_{n=1}^{\infty} (\lambda_n |\langle f, \psi_n \rangle|^2) < \infty$ 

*Proof.* First I will do some manipulation on the given sum.

$$\sum_{n=1}^{\infty} \left( \lambda_n |\langle f, \psi_n \rangle|^2 \right) = \sum_{n=1}^{\infty} \left( \lambda_n \left| \int_{\Omega} f \psi_n \, \mathrm{d}x \right|^2 \right)$$
$$= \sum_{n=1}^{\infty} \left( \frac{1}{\lambda_n} \left| \int_{\Omega} f \lambda_n \psi_n \, \mathrm{d}x \right|^2 \right)$$

Since  $\psi_n$  and  $\lambda_n$  are an eigenfunction and eigenvalue pair for the Laplacian

$$= \sum_{n=1}^{\infty} \left( \frac{1}{\lambda_n} \left| \int_{\Omega} f \Delta \psi_n \, \mathrm{d}x \right|^2 \right)$$

$$= \sum_{n=1}^{\infty} \left( \frac{1}{\lambda_n} \left| \int_{\Omega} \nabla f \nabla \psi_n \, \mathrm{d}x \right|^2 \right)$$

$$= \sum_{n=1}^{\infty} \left( \frac{1}{\lambda_n} \left| \langle f, \psi_n \rangle_{H_0^1(\Omega)} \right|^2 \right)$$

$$= \sum_{n=1}^{\infty} \left( \left| \langle f, \psi_n \rangle_{H_0^1(\Omega)} \right|^2 \right)$$

$$= \sum_{n=1}^{\infty} \left( \left| \langle f, \zeta_n \rangle_{H_0^1(\Omega)} \right|^2 \right)$$

Now if  $f \in H_0^1(\Omega)$  then

$$\sum_{n=1}^{\infty} \left( \left| \langle f, \zeta_n \rangle_{H_0^1(\Omega)} \right|^2 \right) < \infty$$

and equivalently

$$\sum_{n=1}^{\infty} \left( \lambda_n |\langle f, \psi_n \rangle|^2 \right) < \infty.$$

If on the other hand

$$\sum_{n=1}^{\infty} \left( \lambda_n |\langle f, \psi_n \rangle|^2 \right) < \infty.$$

then

$$\sum_{n=1}^{\infty} \left( \left| \langle f, \zeta_n \rangle_{H^1_0(\Omega)} \right|^2 \right) < \infty$$

which implies that  $f \in H_0^1(\Omega)$ .

#15 If  $\Omega < \mathbb{R}^n$  is a bounded open set with smooth enough boundary, find a solution of the wave equation problem

$$u_{tt} - \Delta u = 0 \qquad x \in \Omega \quad t > 0$$
$$u(x,t) = 0 \qquad x \in \partial\Omega \quad t > 0$$
$$u(x,0) = f(x) \quad u_t(x,0) = g(x) \qquad x \in \Omega$$

in the form

$$u(x,t) = \sum_{n=1}^{\infty} (c_n(t)\psi_n(x))$$

where  $\{\psi_n\}_{n=1}^{\infty}$  are the Dirichlet eigenfunctions of  $-\Delta$  in  $\Omega$ .

#16 Derive formally that

$$G(x,y) = \sum_{n=1}^{\infty} \left( \frac{\psi_n(x)\psi_n(y)}{\lambda_n} \right)$$

where  $\lambda_n, \psi_n$  are the Dirichlet eigenvalues and normalized eigenfunctions for the domain  $\Omega$ , and G(x,y) is the corresponding Green's function in (14.4.96). (Suggestion: if  $-\Delta u = f$ , expand both u and f in the  $\psi_n$  basis.)