# 1º Trabalho - Estágio III

# Isaías Felipe Silva de Sousa Agosto de 2025

## 1 Introdução

A gestão de risco para fundos de pensão é uma prática crucial para garantir a segurança e a sustentabilidade financeira dos planos previdenciários, protegendo e gerindo os interesses dos participantes e com isso garantindo a solvência da entidade. Para cumprir com essas responsabilidades o atuário responsável precisa apontar as hipóteses certas precisamente para que tudo esteja de acordo e conciso. Uma das principais hipóteses é a tábua de mortalidade e com isso é necessário que o atuário selecione a tábua corretamente e que represente fielmente a realidade dos participantes do fundo, assim garantindo a solvência e o equilíbrio atuarial a longo prazo.

O fundo de pensão escolhido foi o ExecPrev da FUNPRESP do ano de 2021, no qual foi utilizada a tábua geracional RP2000, que teve sua aderência atestada por meio de estudo específico segundo a Demonstração Atuarial, onde 56,42% são homens e 43,58% são mulheres, a maior parte dos participantes tem um perfil etário jovem e sua concentração está entre as idades 36 e 40 anos. Diante dessas informações, o presente trabalho visa testar a aderência, pelo teste de hipótese Qui-Quadrado, de diferentes tábuas de mortalidade a uma população hipotética representada pelo fundo de pensão citado, afim de identificar o modelo que mais se adequa para a projeção dos passivos.

## 2 Metodologia

### 2.1 Construção da População Sintética

As informações necessárias foram obtidas no Relatório Anual de Informações de 2021 (RAI 2021) e da Demonstração Atuarial, onde foi encontrado as proporções por faixa etária e proporção por sexo. Diante dessas informações é possível simular uma população sintética segregada por sexo para dar continuidade ao estudo.

Apartir das informações obtidas inicia-se o trabalho em si, onde é usado a linguagem de programação Python para fazer as simulações e todos os cálculos necessários. Para possibilitar a reprodutibilidade do código seguindo uma aleatoriedade padrão foi usada a seed(123), essa semente garante que ao rodar o código novamente os números aleatórios gerados serão os mesmos. Com a proporção de sexo e a proporção por faixa etária dos participantes, foi gerado um número aleatório baseado no número de pessoas para faixa etária específica apartir do número de vidas especificado.

#### 2.2 Funções

#### 2.2.1 Função para Simular Vidas

Para a simulação da população em idade simples, foi utilizado o método random.randint do numpy, no qual gera números inteiros aleatórios dentro de um intevalo estipulado (idade inicial até a idade final da faixa etária) e com um tamanho definido (número de vidas naquela faixa etária).

#### 2.2.2 Função para Simular Mortes

Para a simulação de mortes foi utilizado o método random.binomial também da biblioteca numpy, onde ele irá gerar números aleatórios seguindo uma distribuição binomial. Este método é composto por 3 parâmetros que representam a quantidade de tentativas, a probabilidade de sucesso e a quantidade de vezes que irá tentar ter sucesso, no nosso caso, a quantidade de tentativas foi de 1 vez, então, para cada tentativa se tem a probabilidade de ocorrência e o tamanho que representa o número de vidas naquela idade, o resultado retorna quantidade de vezes que teve sucesso respeitando uma distribuição binomial.

#### 2.2.3 Função para Agrupar em Faixas Etárias

A função para agrupar os resultados obtidos em faixas etárias recebe um Data Frame que segrega todos os dados em faixas etárias pré-definidas, utiliza-se o método pd.cut da biblioteca pandas no eixo das idades para criar uma nova coluna com uma string da faixa etária estipulada para aquela idade, com essa nova coluna é utilizado o método groupby onde ele agrupa os dados pela coluna da faixa etária criada retornando assim um novo Data Frame com os dados representados por faixas etárias.

#### 2.2.4 Função para Realizar o Teste de Aderência Qui-Quadrado

Esta função recebe 2 parâmetros em formato de Data Frame, onde um deles é dos dados observados e o outro dos dados esperados a partir de uma tábua de mortalidade calculado utilizando a função de simular mortes. A função seleciona a coluna dos dados que nos interessa  $(d_x)$ , mortes por faixa etária, e realiza uma normalização para que a soma total de mortes esperadas seja igual à soma de mortes observadas. Esse ajuste é um pré-requisito para a correta aplicação do teste retornando a estatística e o p-valor.

#### 2.3 Modelos de Mortalidade Avaliados

Foram selecionadas as tábuas BR-EMSsb-v.2021, AT-2000 e CSO58 tanto para o sexo masculino quanto para o feminino. As tábuas foram selecionadas de modo aleatório simplesmente para servir de comparação para o teste de aderência neste trabalho.

### 2.4 O Teste Qui-Quadrado

Para testar a aderência das tábuas selecionadas, foi utilizado o teste Qui-Quadrado:

$$X^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

•  $O_i$  - Resultados Observados;

•  $E_i$  - Resultados esperados.

As hipóteses para o teste foram definidas da seguinte forma:

- Hipótese Nula  $(H_0)$  onde não ha diferença significativa entre os óbitos observados e os óbitos esperados pelo modelo, isso significa que o modelo é aderente a população observada:
- Hipótese Alternativa $(H_1)$  onde existe uma diferença significativa entre os óbitos observados e os óbitos esperados pelo model, sendo assim o modelo não é aderente população observada.

O nível de significância estipulado foi de 0,05 ( $\alpha = 5\%$ ), onde ao realizar o teste iremos ter um p-valor que vai nos proporcionar tomar a decisão se rejeitamos ou não a hipótese nula ( $H_0$ ), para p-valor menor que  $\alpha$  rejeitamos a hipótese nula, para p-valor maior que  $\alpha$  não rejeitamos a hipótese nula.

Para realizar o teste foi feito um agrupamento das idades em faixas etárias da seguinte forma: 33-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99, 100+, formando assim 8 faixas etárias com 7 graus de liberdade (gl = k - 1).

### 3 Resultados

#### 3.1 Feminino

Tábela com resultados para teste de aderência Qui-Quadrado das tábuas do sexo feminino:

| Tábua             | Qui-Quadrado | p-valor    | Interpretação           |
|-------------------|--------------|------------|-------------------------|
| BR-EMSsb-v.2021-f | 20,1292      | 0,00529734 | A tábua não é aderente. |
| AT-2000 FEMALE    | 4,14777      | 0,762608   | A tábua é aderente.     |
| CSO58 FEMALE      | 13,1635      | 0,0682246  | A tábua é aderente.     |

Gráfico demonstrando as mortes observadas vs as mortes esperadas por faixa etária do sexo feminino para cada modelagem de mortalidade utilizado no trabalho.



#### 3.2 Masculino

Tábela com resultados para teste de aderência Qui-Quadrado das tábuas do sexo masculino:

| Tábua             | Qui-Quadrado | p-valor      | Interpretação           |
|-------------------|--------------|--------------|-------------------------|
| BR-EMSsb-v.2021-m | 12,9191      | 0,0741035    | A tábua é aderente.     |
| AT-2000 MALE      | 10,602       | $0,\!156947$ | A tábua é aderente.     |
| CSO58 MALE        | 153,905      | 6,13884e-306 | A tábua não é aderente. |

Gráfico demonstrando as mortes observadas vs as mortes esperadas por faixa etária do sexo masculino para cada modelagem de mortalidade utilizado no trabalho.



### 4 Conclusão

O presente estudo teve como objetivo principal avaliar a aderência de 3 modelos de mortalidade para uma população hipotética criada apartir de um fundo de pensão, utilizando o teste Qui-Quadrado como ferramenta de validação estatística. Os resultados obtidos demonstram que a escolha da tábua de mortalidade tem um impacto significativo no risco de longevidade, sendo crucial para a saúde financeira da entidade.

Para o sexo feminino a tábua AT-2000 Female apresentou o melhor desempenho com um p-valor de 0,762608, indicando uma alta aderência aos dados observados por ser maior que o  $\alpha\%$  estipulado de 0,05 ou 5%. Este resultado sugere que o perfil de mortalidade dos participantes do fundo selecionado para o presente trabalho tem uma alta aderência com a tábua de mortalidade AT-2000 Female. Ao contrario, a tábua BR-EMSsb-v.2021-f, que obteve um p-valor de 0,00529734, sendo este valor bem menor que o  $\alpha$  definido, demonstrando que estatisticamente esta tábua é rejeitada pelo teste realizado, demonstrando ser inadequada para ser usado com a massa de participantes do plano. Já a tábua CSO58 Female apresentou um p-valor de 0.0682246, ficando muito próximo do  $\alpha$  estipulado, mas ainda assim está dentro do intervalo de confiança e não é rejeitada a hipótese de que esta tabua pode ser utilizada, mas por estar muito próximo do  $\alpha$  deve-se tomar cuidado.

Para o sexo masculino, a tábua que melhor representa a população estudada é a AT-2000 Male, com um p-valor de 0,156947, onde dentre as 3 tábuas analisadas seria a mais

ideal para ser utilizada para representar as mortes dos participantes nos cálculos. Do contrário, a menos adequada para uso diante do teste realizado é a CSO58 Male, onde obteve um p-valor de 6,13884e-306 que rejeita a hipótese nula, sendo uma tábua não aderente a população estudada. A tábua BR-EMSsb-v.2021-m retornou um p-valor de 0,0741035 que torna a tábua aderente, porém deve se manter alerta pois o resultado foi muito próximo do  $\alpha$  estipulado, podendo está tábua ser um problema futuro.