tikz2d-fr

Quelques commandes simplifiées (fr) pour utiliser avec TikZ.

Version 0.1.1 - 28 Mai 2023

Cédric Pierquet c pierquet - at - outlook . fr https://github.com/cpierquet/tikz2dfr

- ▶ Définir des points par coordonnées.
- $\blacktriangleright\,$ Définir des points par transformations simples.
- ► Tracer des segments, avec option(s) de couleurs.
- ► Marquer des points.

 $\begin{array}{c} \text{ETEX} \\ \text{pdf}\text{ETEX} \\ \text{Lua}\text{ETEX} \\ \text{Ti}k\text{Z} \\ \text{TEXLive} \\ \text{MiKTEX} \end{array}$

Table des matières

Ι	His	storique	2
II	In	troduction	3
1	Le p	package tikz2d-fr	3
	1.1	Introduction	3
	1.2	Autres solutions	3
	1.3	Chargement du package, packages utilisés	3
II	I S	tyles et commandes	4
2	Tracé à main levée		
	2.1	Idée	4
	2.2	Utilisation basique	4
3	Définir des points par coordonnées		
	3.1	Commandes	5
	3.2	Clés, options et arguments	5
4	Définir des points par transformation		
	4.1	Commandes	7
	4.2	Clés, options et arguments	8
5	Trac	cer des segments	10
	5.1	Commandes	10
	5.2	Clés, options et arguments	10

Première partie

Historique

v0.1.1: Ajout d'une clé **([TaillePolice])** + Points définis par une transformation simple.

v0.1.0: Version initiale.

Deuxième partie

Introduction

Le package tikz2d-fr 1

1.1 Introduction

- Le package propose des commandes basiques francisées pour travailler sur des figures simples en 2D, à l'aide de $\mathrm{Ti}k\mathrm{Z}$ avec :

 - de quoi simuler un tracé à main levée;
 de quoi définir des points (et donc des nœuds) via nom/coordonnées/positionlabel;
 de quoi définir des points images par des transformations simples;
 de marquer des points (croix, disques);
 de quoi tracer des segments (enchaînés ou non) en spécifiant les couleurs éventuelles.
- On peut voir ce modeste package comme un maigre complément à TikZ et tkz-euclide 1 qui permet de faire énormément de choses en géométrie euclidienne.

Ainsi, les éventuel points (nœuds) créés par tikz2d-fr seront réutilisables dans toute commande classique de ${\rm Ti}k{\rm Z}$ ou de tkz-euclide.

On peut donc *utiliser* le package tikz2d-fr comme base de travail avant des choses plus poussées!

Autres solutions 1.2

À noter qu'il existe d'autres solutions graphiques, comme :

— PSTricks avec pst-eucl²;

— MetaPost avec ProfCollege et son environnement geometrie³.

Chargement du package, packages utilisés

Le package se charge, de manière classique, dans le préambule. Il n'existe pas d'option pour le package, et xcolor n'est pas chargé.

\documentclass{article} \usepackage{tikz2d-fr}

tikz2d-fr charge les packages suivantes :
— tikz, xstring, simplekv, xintexpr et listofitems;
— les librairies tikz.decorations et tikz.decorations.pathmorphing.
Il est compatible avec les compilations usuelles en latex, pdflatex, lualatex ou xelatex.

^{1.} https://ctan.org/pkg/tkz-euclide

^{2.} https://www.ctan.org/pkg/pst-eucl

^{3.} https://www.ctan.org/pkg/profcollege

Troisième partie

Styles et commandes

2 Tracé à main levée

2.1 Idée

L'idée est de proposer un style tout prêt pour simuler un tracé, en TikZ, à « main levée ». Il s'agit d'un style basique utilisant la librairie decorations avec random steps.

```
\tikzset{%
    mainlevee/.style args={#1et#2}{%
        decorate,decoration={random steps, segment length=#1,amplitude=#2}},
        mainlevee/.default={5mm et 0.6pt}
}
```

2.2 Utilisation basique

Il s'agit ni plus ni moins d'un style TikZ à intégrer dans les tracés et constructions TikZ! Pour ce style, deux paramètres peuvent être précisés via $\langle mainlevee = \#1 \text{ et } \#2 \rangle$:

- $\langle \#1 \rangle$ correspond à l'option segment length (longueur des segments types);

 défaut $\langle 5mm \rangle$
- $\langle \#2 \rangle$ correspond à l'option amplitude (amplitude maximale de la $d\acute{e}formation$). défaut $\langle 0.6pt \rangle$

Les valeurs (mainlevee=5mm et 0.6pt) donnent des résultats – à mon sens – satisfaisants, mais l'utilisateur pourra modifier à loisir ces paramètres!

```
%la grille a été rajoutée pour la sortie
\begin{tikzpicture}
    \draw[thick,mainlevee] (0,0) rectangle (4,4);
\end{tikzpicture}

\begin{tikzpicture}
    \draw[thick,mainlevee=5mm et 2pt] (0,0) rectangle (4,4);
\end{tikzpicture}

\begin{tikzpicture}
    \draw[thick,mainlevee=10mm et 3mm] (0,0) rectangle (4,4);
\end{tikzpicture}
```


3 Définir des points par coordonnées

3.1 Commandes

Les commandes simplifi'ees et francis'ees disponibles sont :

- \DefinirPoint pour définir un point;
- DefinirPoints pour définir des points;
 MarquerPoint pour marquer (matérialiser) un point;
- $\verb|\MarquerPoints| pour marquer (matérialiser) des points.$

```
\begin{tikzpicture}[options tikz]
    %créer/placer/nommer un point
    \DefinirPoint(*)[clés]{noeud}{coordonnées}<label>
    %créer/placer/nommer plusieurs points, sans modification des labels !
    \DefinirPoints(*)[clés]{liste}
    %marquer un point
    \MarquerPoint[clés]{point}
    %marquer plusieurs points
    \MarquerPoints[clés]{liste}
\end{tikzpicture}
```

Clés, options et arguments

Les versions étoilées désactivent l'affichage des labels des points.

L'argument optionnel et entre [...] propose les (clés) suivantes (communes ou spécifiques) :

- (PosLabel) pour préciser la position (francisée) du label pour les points; défaut : (b)
- **30.1.1** (**TaillePolice**) pour spécifier la taille de la police du label;

défaut : (\normalsize)

— (StyleMarque) parmi $\langle x/o/+ \rangle$ pour spécifier le style de la marque des points;

défaut : (o)

- (Math): booléen pour afficher le label en mode math; défaut : (false)
- (TailleMarque) pour spécifier la taille de la marque des points (disque/croix);

défaut : (2pt)

— (Couleur) pour paramétrer la couleur. défaut : (black)

Les positions pour les labels des points sont francisées :

- $\langle \mathbf{b} \rangle$: bas
- ⟨h⟩ : haut
- $-\langle g \rangle$: gauche
- $-\langle d \rangle$: droite
- (hg): haut gauche

De manière un peu plus spécifique :

- le <label> pour la commande \DefinirPoint est optionnel, et est identique à {nœud};
- la {liste} pour la commande \DefinirPoints est à donner par exemple sous la forme A/xa,ya/poslabel B/alpha:r/poslabel

```
\begin{tikzpicture}
  \DefinirPoint{A}{0,0}
  \DefinirPoints{B/4,0/ C/3,2/}
  \DefinirPoints[Math]{H_1/-1,2.5/}
  \MarquerPoints{A,B,C,H_1}
  \end{tikzpicture}

  \[
  \text{M}
  \]
  \[
  \text{C}
  \]

A

\[
  \text{B}
  \]

\[
  \text{B}
  \]

\[
  \text{B}
  \]

\[
  \text{A}
  \]

\[
  \text{A}
  \]

\[
  \text{B}
  \]

\[
  \text{A}
  \]

\[
  \text{A}
  \]

\[
  \text{A}
  \]

\[
  \text{B}
  \]

\[
  \text{A}
  \]

\[
  \text{A}
```

```
\begin{tikzpicture}
  \DefinirPoints[DecalLabel=1pt,Couleur=blue,Math]{A/0,0/bg B/4,0/bd}
  \DefinirPoints[DecalLabel=1pt,Couleur=red,TaillePolice=\LARGE]{C/3,2/h}
  \MarquerPoints[StyleMarque=x,Couleur=violet]{A}
  \MarquerPoints[Couleur=orange]{B}
  \MarquerPoint[StyleMarque=+,Couleur=red]{C}
  \end{tikzpicture}
```

Définir des points par transformation

Commandes 4.1

[0.1.1] Les commandes *simplifiées* et *francisées* disponibles sont :

- \ImagePoint pour définir un point par transformation;
- \ImagesPoints pour définir des points par transformation.

Les transformations disponibles sont (l'écriture mathématique sert à illustrer la syntaxe IATEX

- $$\begin{split} & \text{ les translations glissées } t(A) = A + k \times \vec{u} \,; \\ & \text{ les rotations } r(A) = A + \operatorname{rot}(\Omega, \theta) \,; \\ & \text{ les symétries centrales } s(A) = A + \operatorname{sym}(I). \end{split}$$

```
\begin{tikzpicture}[options tikz]
    %création des points utiles
    \DefinirPoint... \DefinirPoints
    %point défini par une transformation
    \ImagePoint(*)[clés]{formule}<label point>
    "", points définis par des transformations, sans modification des labels!
    \ImagesPoints(*)[clés]{formule \( \) formule \( \) \...\}
\end{tikzpicture}
```

```
\begin{tikzpicture}[options tikz]
    %création des points utiles
    \DefinirPoint...
    %point défini par une translation glissée
    \ImagePoint(*)[clés]{PtArr=PTDep+t(k,DebVect>FinVect)}
\end{tikzpicture}
```



```
\begin{tikzpicture}[options tikz]
    %création des points utiles
    \DefinirPoint...
    %point défini par une rotation
    \ImagePoint{PtArr=PTDep+r(centre,angle)}
    %point défini par une symétrie centrale
\end{tikzpicture}
```


\begin{tikzpicture}[options tikz]

%création des points utiles

\DefinirPoint...

\ImagePoint{PtArr=PTDep+s(centre)}

\end{tikzpicture}

4.2 Clés, options et arguments

Les versions étoilées désactivent l'affichage des labels des points.

L'argument optionnel et entre [...] propose les $\langle \mathsf{cl\acute{e}s} \rangle$ suivantes (communes ou spécifiques) :

- (PosLabel) pour préciser la position (francisée) du label pour les points; défaut : (b)
- **(TaillePolice)** pour spécifier la taille de la police du label;

défaut : (\normalsize)

— $\langle StyleMarque \rangle$ parmi $\langle x/o/+ \rangle$ pour spécifier le style de la marque des points;

défaut : (o)

- (Math) : booléen pour afficher le label en mode math; défaut : (false)
- (TailleMarque) pour spécifier la taille de la marque des points (disque/croix);

 $défaut : \langle 2pt \rangle$

— (Couleur) pour paramétrer la couleur. défaut : (black)

A

On donne par exemple A(0;0), B(4;1) et C(3;2) et on définit les points :

- D image de A par la translation de vecteur \overrightarrow{AB} ;
- E image de A par la translation de vecteur \overrightarrow{CB} ;
- F image de A par la translation-glissée de vecteur $2\overrightarrow{DB}$;
- G image de F par la translation de vecteur \overrightarrow{BD} ;
- K image de G par la rotation de centre F et d'angle 90°;
- L image de B par la symétrie centrale de centre C;
- H_1 image de A par la translation-glissée de vecteur $-0.5\overrightarrow{BA}$.

5 Tracer des segments

5.1 Commandes

La commande simplifi'ee et francis'ee pour tracer des segments est \TracerSegments .

Le fonctionnement de cette commande permet de définir les segments :

- sous la forme A/B C/D ... dans le cas de segments non forcément contigus;
- sous la forme A B C . . . dans le cas de segments *contigus* (avec possibilité de *fermer* le chemin).

```
%version liste de segments (AB) et (CD) et ...
\begin{tikzpicture}
  \TracerSegments[clés] < options tikz > {ptA/ptB ptC/ptD ...}
\end{tikzpicture}

%version suite de points (AB) et (BC) et ...
\begin{tikzpicture}
  \TracerSegments[Suite,clés] < options tikz > {ptA ptB ptC ...}
\end{tikzpicture}
\end{tikzpicture}
```

5.2 Clés, options et arguments

Concernant les clés, qui correspondent au premier argument, optionnel et entre [...] (certaines clés sont inactives dans certaines situations...):

- (Cap): type de *jointure* pour les segments individuels; défaut (round)
- (Join): type de *jointure* pour les segments enchaînés; défaut (miter)
- (Couleurs) : sous la forme (couleur unique) ou (liste,de,couleurs) (cohérente avec le nombre de segments!);

défaut (black)

- (Cycle): booléen pour préciser qu'on veut fermer le chemin; défaut (false)
- (Suite) : booléen pour préciser qu'on veut travaille avec des points enchaînés.

défaut (false)

Le deuxième argument, optionnel et entre <...> correspond aux options, en langage TikZ à passer à l'ensemble des segments.

Le troisième argument, obligatoire et entre {...} correspond à la suite des segments à tracer :

- sous la forme ptA/ptB ptC/ptD ... pour des segments individuels;
- sous la forme ptA ptB ptC ... (avec la clé (Suite)) pour des segments enchaînés.
- À noter que dans le cas d'une succession de segments ((Suite)) monochromes, cela revient à un chemin et donc ce sera la clé (Join=...) qui sera utile.

```
| \begin{tikzpicture} \ \TracerSegments[Suite,Couleurs={red,blue,green}]{0,0 4,0 1,3 0,0} \ \end{tikzpicture} \ \begin{tikzpicture} \ \TracerSegments[Suite,Cap=butt,Couleurs={red,blue,green}]{0,0 4,0 1,3 0,0} \ \end{tikzpicture} \ \begin{tikzpicture} \ \TracerSegments[Suite,Cap=rect,Couleurs={red,blue,green}]{0,0 4,0 1,3 0,0} \ \end{tikzpicture} \ \TracerSegments[Suite,Cap=rect,Couleurs={red,blue,green}]{0,0 4,0 1,3 0,0} \ \end{tikzpicture} \ \TracerSegments[Cycle,Suite,Couleurs=blue,Join=round]{0,0 4,0 1,3} \ \end{tikzpicture} \ \begin{tikzpicture} \ \text{TracerSegments}[Cycle,Suite,Couleurs=blue,Join=round]{0,0 4,0 1,3} \ \end{tikzpicture} \ \begin{tikzpicture} \ \text{Suite,couleurs=blue,Join=round} \ \text{TracerSegments}[Cycle,Suite,Couleurs=blue,Join=round]{0,0 4,0 1,3} \ \end{tikzpicture} \ \end{tikzpicture
```



```
\begin{tikzpicture}
    \DefinirPoints[DecalLabel=1pt]{A/0,0/bg B/4,0/bd C/3,2/h}
    \TracerSegments[Suite,Cycle,Couleurs={red,blue,green}]{A B C}
    \MarquerPoints[StyleMarque=x]{A,B,C}
\end{tikzpicture}
\begin{tikzpicture}
    \DefinirPoints[DecalLabel=1pt,Math]{A/0,0/bg B/4,0/bd C/3,2/h}
    \TracerSegments[Couleurs={yellow,red}]{A/B B/C}
    \TracerSegments[Couleurs=blue]{C/A}
    \MarquerPoints{A,B,C}
\end{tikzpicture}
                   \mathbf{C}
                          В
                                                        B
Α
                              A
```