

The second Yamabé invariant with singularities

Mohammed Benalili and Hichem Boughazi

Dedicated to the memory of T. Aubin.

ABSTRACT. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. We suppose that g is a metric in the Sobolev space $H_2^p(M, T^*M \otimes T^*M)$ with $p > \frac{n}{2}$ and there exist a point $P \in M$ and $\delta > 0$ such that g is smooth in the ball $B_p(\delta)$. We define the second Yamabe invariant with singularities as the infimum of the second eigenvalue of the singular Yamabe operator over a generalized class of conformal metric to g and of volume 1. We show that this operator is attained by a generalized metric, we deduce nodal solutions to a Yamabe type equation with singularities.

1. Introduction

Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. The problem of finding a metric conformal to the original one with constant scalar curvature was first formulated by Yamabe ([9]) and a variational method was initiated by this latter in an attempt to solve the problem. Unfortunately or fortunately a serious gap in the Yamabe was pointed out by Trudinger who addressed the question in the case of non positive scalar curvature ([8]). Aubin ([2]) solved the problem for arbitrary non locally conformally flat manifolds of dimension $n \geq 6$. Finally Shoen ([7]) solved completely the problem using the positive-mass theorem founded previously by Shoen himself and Yau. The method to solve the Yamabe problem could be described as follows: let u be a smooth positive function and let $\bar{g} = u^{N-2}g$ be a conformal metric where $N = 2n/(n-2)$. Up to a multiplying constant, the following equation is satisfied

$$L_g(u) = S_{\bar{g}}|u|^{N-2}u$$

where

$$L_g = \frac{4(n-1)}{n-2}\Delta + S_g$$

1991 *Mathematics Subject Classification.* [].

Key words and phrases. Second Yamabe invariant, singularities, Critical Sobolev growth.

and S_g denotes the scalar curvature of g . L_g is conformally invariant called the conformal operator. Consequently, solving the Yamabe problem is equivalent to find a smooth positive solution to the equation

$$(1) \quad L_g(u) = ku^{N-1}$$

where k is a constant.

In order to obtain solutions to this equation, Yamabe defined the quantity

$$\mu(M, g) = \inf_{u \in C^\infty(M), u > 0} Y(u)$$

where

$$Y(u) = \frac{\int_M \left(\frac{4(n-1)}{n-2} |\nabla u|^2 + S_g u^2 \right) dv_g}{\left(\int_M |u|^N dv_g \right)^{2/N}}.$$

$\mu(M, g)$ is called the Yamabe invariant, and Y the Yamabe functional. In the sequel we write μ instead of $\mu(M, g)$. Writing the Euler-Lagrange equation associated to Y , we see that there exists a one to one correspondence between critical points of Y and solutions of equation (1). In particular, if u is a positive smooth function such that $Y(u) = \mu$, then u is a solution of equation (1) and $\bar{g} = u^{(N-2)} g$ is metric of constant scalar curvature. The key point to solve the Yamabe problem is the following fundamental results due to Aubin ([2]). Let S_n be the unit euclidean sphere.

THEOREM 1. *Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. If $\mu(M, g) < \mu(S_n)$, then there exists a positive smooth solution u such that $Y(u) = \mu(M, g)$.*

This strict inequality $\mu(M, g) < \mu(S_n)$ avoids concentration phenomena. Explicitly $\mu(S_n) = n(n-1)\omega_n^{2/n}$ where ω_n stands for the volume of S_n .

THEOREM 2. *Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. Then*

$$\mu(M, g) \leq \mu(S_n).$$

Moreover, the equality holds if and only if (M, g) is conformally diffeomorphic to the sphere S_n .

Amman and Humbert ([1]) defined the second Yamabe invariant as the infimum of the second eigenvalue of the Yamabe operator over the conformal class of the metric g with volume 1. Their method consists in considering the spectrum of the operator L_g

$$\text{spec}(L_g) = \{\lambda_{1,g}, \lambda_{2,g}, \dots\}$$

where the eigenvalues $\lambda_{1,g} < \lambda_{2,g} \dots$ appear with their multiplicities. The variational characterization of $\lambda_{1,g}$ is given by

$$\lambda_{1,g} = \inf_{u \in C^\infty(M), u > 0} \frac{\int_M \left(\frac{4(n-1)}{n-2} |\nabla u|^2 + S_g u^2 \right) dv_g}{\int_M u^2 dv_g}.$$

Let

$$[g] = \{u^{N-2}g, u \in C^\infty(M), u > 0\}$$

Then they defined the k^{th} Yamabe invariant with $k \in \mathbb{N}^*$, by

$$\mu_k = \inf_{\overline{g} \in [g]} \lambda_{k, \overline{g}} \text{Vol}(M, \overline{g})^{2/n}.$$

With these notations μ_1 is the Yamabe invariant. They studied the second Yamabe invariant μ_2 , they found that contrary to the Yamabe invariant, μ_2 cannot be attained by a regular metric. In other words, there does not exist $\overline{g} \in [g]$, such that

$$\mu_2 = \lambda_{2, \overline{g}} \text{Vol}(M, \overline{g})^{2/n}.$$

In order to find minimizers, they enlarged the conformal class to a larger one. A generalized metric is the one of the form $\overline{g} = u^{N-2}g$, which is not necessarily positive and smooth, but only $u \in L^N(M)$, $u \geq 0$, $u \neq 0$ and where $N = 2n/(n-2)$. The definitions of $\lambda_{2, \overline{g}}$ and of $\text{Vol}(M, \overline{g})^{2/n}$ can be extended to generalized metrics. The key points to solve this problem is the following theorems ([1]).

THEOREM 3. *Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$, then μ_2 is attained by a generalized metrics in the following cases.*

$$\mu > 0, \quad \mu_2 < \left[(\mu^{n/2} + (\mu(S_n))^{n/2}) \right]^{2/n}$$

and

$$\mu = 0, \quad \mu_2 < \mu(S_n)$$

THEOREM 4. *The assumptions of the last theorem are satisfied in the following cases*

If (M, g) in not locally conformally flat and, $n \geq 11$ and $\mu > 0$

If (M, g) in not locally conformally flat and, $\mu = 0$ and $n \geq 9$.

THEOREM 5. *Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$, assume that μ_2 is attained by a generalized metric $\overline{g} = u^{N-2}g$ then there exist a nodal solution $w \in C^{2,\alpha}(M)$ of equation*

$$L_g(w) = \mu_2 |u|^{N-2} w$$

such that

$$|w| = u$$

where $\alpha \leq N - 2$.

In ([5]), recently F.Madani studied the Yamabe problem with singularities when the metric g admits a finite number of points with singularities and smooth outside these points. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$, assume that g is a metric in the Sobolev space $H_2^p(M, T^*M \otimes T^*M)$ with $p > \frac{n}{2}$ and there exist a point $P \in M$ and $\delta > 0$ such that g is smooth in the ball $B_p(\delta)$, and let (H) be these assumptions. By Sobolev's embedding, we have for $p > \frac{n}{2}$, $H_2^p(M, T^*M \otimes T^*M) \subset C^{1-[n/p], \beta}(M, T^*M \otimes T^*M)$, where $[n/p]$ denotes the entire part of n/p . Hence the metric satisfying assumption (H) is of class $C^{1-[n/p], \beta}$ with $\beta \in (0, 1)$ provided that $p > n$. The Christoffels symbols belong to $H_1^p(M)$ (to $C^\alpha(M)$ in case $p > n$), the Riemannian curvature tensor, the Ricci tensor and scalar curvature are in $L^p(M)$. F. Madani proved under the assumption (H) the existence of a metric $\overline{g} = u^{N-2}g$ conformal to g such that $u \in H_2^p(M)$, $u > 0$ and the scalar curvature $S_{\overline{g}}$ of \overline{g} is constant and (M, g) is not conformal

to the round sphere. Madani proceeded as follows: let $u \in H_2^p(M)$, $u > 0$ be a function and $\bar{g} = u^{N-2}g$ a particular conformal metric where $N = 2n/(n-2)$. Then, multiplying u by a constant, the following equation is satisfied

$$L_g u = \frac{n-2}{4(n-1)} S_{\bar{g}} |u|^{N-2} u$$

where

$$L_g = \Delta_g + \frac{n-2}{4(n-1)} S_g$$

and the scalar curvature S_g is in $L^p(M)$. Moreover L_g is weakly conformally invariant hence solving the singular Yamabe problem is equivalent to find a positive solution $u \in H_2^p(M)$ of

$$(2) \quad L_g u = k |u|^{N-2} u$$

where k is a constant. In order to obtain solutions of equation (2) we define the quantity

$$\mu = \inf_{u \in H_2^p(M), u > 0} Y(u)$$

where

$$Y(u) = \frac{\int_M \left(|\nabla u|^2 + \frac{(n-2)}{4(n-1)} S_g u^2 \right) dv_g}{(\int_M |u|^N dv_g)^{2/N}}.$$

μ is called Yamabe invariant with singularities. Writing the Euler-Lagrange equation associated to Y , we see that there exists a one to one correspondence between critical points of Y and solutions of equation (2). In particular, if $u \in H_2^p$ is a positive function which minimizes Y , then u is a solution of equation(2) and $\bar{g} = u^{N-2}g$ is a metric of constant scalar curvature and μ is attained by a particular conformal metric. The key points to solve the above problem are the following theorems ([5]).

THEOREM 6. *If $p > n/2$ and $\mu < K^{-2}$ then equation2 admits a positive solution $u \in H_2^p(M) \subset C^{1-[n/p],\beta}(M)$; $[n/p]$ is the integer part of n/p , $\beta \in (0, 1)$ which minimizes Y , where $K^2 = \frac{4}{n(n-1)} \omega_n^{-2/n}$ with ω_n denotes the volume of S_n . If $p > n$, then $u \in H_2^p(M) \subset C^1(M)$.*

THEOREM 7. *Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. g is a metric which satisfies the assumption (H). If (M, g) is not conformal to the sphere S_n with the standard Riemannian structure then*

$$\mu < K^{-2}$$

THEOREM 8. ([5]) *On an n -dimensional compact Riemannian manifold (M, g) , if $u \geq 0$ is a non trivial weak solution in $H_1^2(M)$ of equation $\Delta u + hu = 0$, with $h \in L^p(M)$ and $p > n/2$, then $u \in C^{1-[n/p],\beta}$ and $u > 0$; $[n/p]$ is the integer part of n/p and $\beta \in (0, 1)$.*

For regularity argument we need the following results

LEMMA 1. Let $u \in L_+^N(M)$ and $v \in H_1^2(M)$ a weak solution to $L_g(v) = u^{N-2}v$, then

$$v \in L^{N+\epsilon}(M)$$

for some $\epsilon > 0$.

The proof is the same as in ([5]) with some modifications. As a consequence of Lemma 7, $v \in L^s(M)$, $\forall s \geq 1$.

PROPOSITION 1. If $g \in H_2^p(M, T^*M \otimes T^*M)$ is a Riemannian metric on M with $p > n/2$. If $\bar{g} = u^{N-2}g$ is a conformal metric to g such that $u \in H_2^p(M)$, $u > 0$ then L_g is weakly conformally invariant, which means that $\forall v \in H_1^2(M)$, $|u|^{N-1}L_{\bar{g}}(v) = L_g(uv)$ weakly. Moreover if $\mu > 0$, then L_g is coercive and invertible.

In this paper, let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. We suppose that g is a metric in the Sobolev space $H_2^p(M, T^*M \otimes T^*M)$ with $p > n/2$ and there exist a point $P \in M$ and $\delta > 0$ such that g is smooth in the ball $B_P(\delta)$ and we call these assumptions the condition (H) .

In the smooth case the operator L_g is an elliptic operator on M self-adjoint, and has a discrete spectrum $Spec(L_g) = \{\lambda_{1,g}, \lambda_{2,g}, \dots\}$, where the eigenvalues $\lambda_{1,g} < \lambda_{2,g} \dots$ appear with their multiplicities. These properties remain valid also in the case where $S_g \in L^p(M)$. The variational characterization of $\lambda_{1,g}$ is given by

$$\lambda_{1,g} = \inf_{u \in H_1^2, u > 0} \frac{\int_M \left(|\nabla u|^2 + \frac{(n-2)}{4(n-1)} S_g u^2 \right) dv_g}{\int_M u^2 dv_g}$$

Let $[g] = \{u^{N-2}g : u \in H_2^p \text{ and } u > 0\}$, Let $k \in \mathbb{N}^*$, we define the k^{th} Yamabe invariant with singularities μ_k as

$$\mu_k = \inf_{\bar{g} \in [g]} \lambda_{k,\bar{g}} Vol(M, \bar{g})^{2/n}$$

with these notations, μ_1 is the first Yamabe invariant with singularities.

In this work we are concerned with μ_2 . In order to find minimizers to μ_2 we extend the conformal class to a larger one consisting of metrics of the form $\bar{g} = u^{N-2}g$ where u is no longer necessarily in $H_2^p(M)$ and positive but $u \in L_+^N(M) = \{L^N(M), u \geq 0, u \neq 0\}$ such metrics will be called for brevity generalized metrics. First we are going to show that if the singular Yamabe invariant $\mu \geq 0$ then μ_1 it is exactly μ next we consider μ_2 , μ_2 is attained by a conformal generalized metric.

Our main results state as follows:

THEOREM 9. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. We suppose that g is a metric in the Sobolev space $H_2^p(M, T^*M \otimes T^*M)$ with $p > n/2$. There exist a point $P \in M$ and $\delta > 0$ such that g is smooth in the ball $B_P(\delta)$, then

$$\mu_1 = \mu.$$

THEOREM 10. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$, we suppose that g is a metric in the Sobolev space $H_2^p(M, T^*M \otimes T^*M)$ with $p > n/2$. There exist a point $P \in M$ and $\delta > 0$ such that g is smooth in the ball $B_P(\delta)$. Assume that μ_2 is attained by a metric $\bar{g} = u^{N-2}g$ where $u \in L_+^N(M)$, then there exist a nodal solution $w \in C^{1-[n/p],\beta}$, $\beta \in (0, 1)$, of equation

$$L_g w = \mu_2 u^{N-2} w.$$

Moreover there exist real numbers $a, b > 0$ such that

$$u = aw_+ + bw_-$$

with $w_+ = \sup(w, 0)$ and $w_- = \sup(-w, 0)$.

THEOREM 11. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$, suppose that g is a metric in the Sobolev space $H_2^p(M, T^*M \otimes T^*M)$ with $p > n/2$. There exist a point $P \in M$ and $\delta > 0$ such that g is smooth in the ball $B_P(\delta)$ then μ_2 is attained by a generalized metric in the following cases:

If (M, g) is not locally conformally flat and, $n \geq 11$ and $\mu > 0$

If (M, g) is not locally conformally flat and, $\mu = 0$ and $n \geq 9$.

2. Generalized metrics and the Euler-Lagrange equation

Let

$$L_+^N(M) = \{u \in L_+^N(M): u \geq 0, u \neq 0\}$$

where $N = \frac{2n}{n-2}$.

As in ([1])

DEFINITION 1. For all $u \in L_+^N(M)$, we define $Gr_k^u(H_1^2(M))$ to be the set of all k -dimensional subspaces of $H_1^2(M)$ with $\text{span}(v_1, v_2, \dots, v_k) \in Gr_k^u(H_1^2(M))$ if and only if v_1, v_2, \dots, v_k are linearly independent on $M - u^{-1}(0)$.

Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. For a generalized metric \bar{g} conformal to g , we define

$$\lambda_{k,\bar{g}} = \inf_{V \in Gr_k^u(H_1^2(M))} \sup_{v \in V} \frac{\int_M v L_g(v) dv_g}{\int_M |u|^{N-2} v^2 dv_g}.$$

We quote the following regularity theorem

THEOREM 12. [7] On a n -dimensional compact Riemannian manifold (M, g) , if $u \geq 0$ is a non trivial weak solution in $H_1^2(M)$ of the equation

$$\Delta u + hu = cu^{N-1}$$

with $h \in L^p(M)$ and $p > n/2$, then

$$u \in H_2^p(M) \subset C^{1-[n/p],\beta}(M)$$

and $u > 0$, where $[n/p]$ denotes the integer part of n/p and $\beta \in (0, 1)$.

PROPOSITION 2. Let (v_m) be a sequence in $H_1^2(M)$ such that $v_m \rightarrow v$ strongly in $L^2(M)$, then for all any $u \in L_+^N(M)$

$$\int_M u^{N-2}(v^2 - v_m^2) dv_g \rightarrow 0.$$

PROOF. The proof is the same as in ([3]). □

PROPOSITION 3. If $\mu > 0$, then for all $u \in L_+^N(M)$, there exist two functions v, w in $H_1^2(M)$ with $v \geq 0$ satisfying in the weak sense the equations

$$(7) \quad L_g v = \lambda_{1,\bar{g}} u^{N-2} v$$

and

$$(8) \quad L_g w = \lambda_{2,\bar{g}} u^{N-2} w$$

Moreover we can choose v and w such that

$$(9) \quad \int_M u^{N-2} w^2 dv_g = \int_M u^{N-2} v^2 dv_g = 1 \quad \text{and} \quad \int_M u^{N-2} w v dv_g = 0.$$

PROOF. Let $(v_m)_m$ be a minimizing sequence for $\lambda_{1,\bar{g}}$ i.e. a sequence $v_m \in H_1^2$ such that

$$\lim_m \frac{\int_M v_m L_g(v_m) dv_g}{\int_M |u|^{N-2} v_m^2 dv_g} = \lambda_{1,\bar{g}}$$

It is well known that $(|v_m|)_m$ is also minimizing sequence. Hence we can assume that $v_m \geq 0$. If we normalize $(v_m)_m$ by

$$\int_M |u|^{N-2} v_m^2 dv_g = 1.$$

Now by the fact that L_g is coercive

$$c \|v_m\|_{H_1^2} \leq \int_M v_m L_g(v_m) dv_g \leq \lambda_{1,\bar{g}} + 1.$$

$(v_m)_m$ is bounded in $H_1^2(M)$ and after restriction to a subsequence we may assume that there exist $v \in H_1^2(M)$, $v \geq 0$ such that $v_m \rightarrow v$ weakly in $H_1^2(M)$, strongly in $L^2(M)$ and almost everywhere in M , then v satisfies in the sense of distributions

$$L_g v = \lambda_{1,\bar{g}} u^{N-2} v.$$

If $u \in H_2^p(M) \subset C^{1-\lceil \frac{n}{p} \rceil, \beta}$ then

$$\int_M u^{N-2} (v^2 - v_m^2) dv_g \rightarrow 0$$

and

$$\int_M u^{N-2} v^2 dv_g = 1.$$

Then v is not trivial and nonnegative minimizer of $\lambda_{1,\bar{g}}$, by Lemma 7

$$h = S_g - \lambda_{1,\bar{g}} u^{N-2} \in L^p(M)$$

and by Theorem 8

$$v \in C^{1-\lceil \frac{n}{p} \rceil, \beta}(M)$$

and

$$v > 0.$$

If $u \in L_+^N(M)$, by Proposition 2, we get

$$\int_M u^{N-2} (v^2 - v_m^2) dv_g \rightarrow 0$$

so

$$\int_M u^{N-2} v^2 dv_g = 1.$$

v is a non negative minimizer in H_1^2 of $\lambda_{1,\bar{g}}$ such that $\int_M u^{N-2} v^2 dv_g = 1$.

Now consider the set

$$E = \{w \in H_1^2: \text{such that } u^{\frac{N-2}{2}} w \neq 0 \text{ and } \int_M u^{N-2} w v dv_g = 0\}$$

and define

$$\lambda'_{2,g} = \inf_{w \in E} \frac{\int_M w L_g(w) dv_g}{\int_M |u|^{N-2} w^2 dv_g}.$$

Let (w_m) be a minimizing sequence for $\lambda'_{2,g}$ i.e. a sequence $w_m \in E$ such that

$$\lim_m \frac{\int_M w_m L_g(w_m) dv_g}{\int_M |u|^{N-2} w_m^2 dv_g} = \lambda'_{2,g}.$$

The same arguments lead to a minimizer w to $\lambda'_{2,g}$ with $\int_M u^{N-2} w^2 dv_g = 1$.

Now writing

$$\int_M u^{N-2} w v dv_g = \int_M u^{N-2} v (w - w_m) dv_g + \int_M u^{N-2} w_m v dv_g$$

and taking account of $\int_M u^{N-2} w_m v dv_g = 0$ and the fact that $w_m \rightarrow w$ weakly in $L^N(M)$ and since $u^{N-2} v \in L^{\frac{N}{N-1}}(M)$, we infer that

$$\int_M u^{N-2} w v dv_g = 0.$$

Hence (8) and (9) are that satisfied with $\lambda'_{2,g}$ instead of $\lambda_{2,\bar{g}}$. \square

PROPOSITION 4. *We have*

$$\lambda'_{2,g} = \lambda_{2,\bar{g}}.$$

PROOF. The Proof is the same as in ([3]) so we omit it. \square

REMARK 1. *If $p > n$ then $u \in H_2^p(M) \subset C^1(M)$, by Theorem 9, v and $w \in C^1(M)$ with $v > 0$.*

REMARK 2. *If $p > n$ then $u \in H_2^p(M) \subset C^1(M)$ and $\lambda_{2,\bar{g}} = \lambda_{1,\bar{g}}$, we see that $|w|$ is a minimizer for the functional associated to $\lambda_{1,\bar{g}}$, then $|w|$ satisfies the same equation as v and by Theorem 9 we get $|w| > 0$, this contradicts relation (9) necessarily*

$$\lambda_{2,\bar{g}} > \lambda_{1,\bar{g}}.$$

3. Variational characterization and existence of μ_1

In this section we need the following results

THEOREM 13. *Let (M, g) be a compact n -dimensional Riemannian manifold. For any $\varepsilon > 0$, there exists $A(\varepsilon) > 0$ such that $\forall u \in H_1^2(M)$,*

$$\|u\|_N^2 \leq (K^2 + \varepsilon) \|\nabla u\|_2^2 + A(\varepsilon) \|u\|_2^2$$

where $N = 2n/(n-4)$ and $K^2 = 4/(n(n-2)) \omega_n^{2/n}$. ω_n is the volume of the round sphere S_n .

Let $[g] = \{u^{N-2}g : u \in H_2^p(M) \text{ and } u > 0\}$, we define the first singular Yamabe invariant μ_1 as

$$\mu_1 = \inf_{\bar{g} \in [g]} \lambda_{1,\bar{g}} \text{Vol}(M, \bar{g})^{2/n}$$

then we get

$$\mu_1 = \inf_{u \in H_2^p, V \in Gr_1^u(H_1^2)} \sup_{v \in V} \frac{\int_M v L_g(v) dv_g}{\int_M |u|^{N-2} v^2 dv_g} \left(\int_M u^N dv_g \right)^{\frac{2}{n}}.$$

LEMMA 2. *We have*

$$\mu_1 \leq \mu < K^{-2}.$$

PROOF. If $p \geq 2n/(n+2)$, the embedding $H_2^p(M) \subset H_1^2(M)$ is true, so

$$\begin{aligned} \mu_1 &= \inf_{u \in H_2^p, V \in Gr_1^u(H_1^2(M))} \sup_{v \in V} \frac{\int_M v L_g(v) dv_g}{\int_M |u|^{N-2} v^2 dv_g} \left(\int_M u^N dv_g \right)^{\frac{2}{n}} \\ &\leq \inf_{u \in H_2^p, V \in Gr_1^u(H_2^p(M))} \sup_{v \in V} \frac{\int_M v L_g(v) dv_g}{\int_M |v|^{N-2} v^2 dv_g} \left(\int_M v^N dv_g \right)^{\frac{2}{n}}. \end{aligned}$$

in particular for $p > \frac{n}{2}$ and $u = v$ we get

$$\mu_1 \leq \inf_{v \in H_2^p, V \in Gr_1^u(H_2^p(M))} \sup_{v \in V} \frac{\int_M v L_g(v) dv_g}{\int_M |v|^{N-2} v^2 dv_g} \left(\int_M v^N dv_g \right)^{\frac{2}{n}} = \mu$$

i.e

$$\mu_1 \leq \mu < K^{-2}.$$

□

THEOREM 14. *If $\mu > 0$, there exists conform metric $\bar{g} = u^{N-2}g$ which minimizes μ_1 .*

PROOF. The proof will take several steps.

Step 1.

We study a sequence of metrics $g_m = u_m^{N-2}g$ with $u_m \in H_2^p(M)$, $u_m > 0$ which minimize μ_1 i.e. a sequence of metrics such that

$$\mu_1 = \lim_m \lambda_{1,m} (\text{Vol}(M, g_m))^{2/n}.$$

Without loss of generality, we may assume that $\text{Vol}(M, g_m) = 1$ i.e.

$$\int_M u_m^N dv_g = 1.$$

In particular, the sequence of functions u_m is bounded in $L^N(M)$ and there exists $u \in L^N(M)$, $u \geq 0$ such that $u_m \rightarrow u$ weakly in $L^N(M)$. We are going to prove that the generalized metric $u^{N-2}g$ minimizes μ_1 . Proposition 3 implies the existence of a sequence (v_m) of class $H_1^2(M)$, $v_m > 0$ such that

$$L_g(v_m) = \lambda_{1,m} u_m^{N-2} v_m$$

and

$$\int_M u_m^{N-2} v_m^2 dv_g = 1.$$

now since $\mu > 0$, by Proposition 1, L_g is coercive and we infer that

$$c\|v_m\|_{H_1^2} \leq \int_M v_m L_g(v_m) dv_g = \lambda_{1,m} \leq \mu_1 + 1.$$

The sequence $(v_m)_m$ is bounded in $H_1^2(M)$, we can find $v \in H_1^2(M)$, $v \geq 0$ such that $v_m \rightarrow v$ weakly in $H_1^2(M)$. Together with the weak convergence of $(u_m)_m$, we obtain in the sense of distributions

$$L_g(v) = \mu_1 u^{N-2} v.$$

Step 2.

Now we are going to show that $v_m \rightarrow v$ strongly in $H_1^2(M)$.

We put

$$z_m = v_m - v$$

then $z_m \rightarrow 0$ weakly in $H_1^2(M)$ and strongly in $L^q(M)$ with $q < N$, and writing

$$\int_M |\nabla v_m|^2 dv_g = \int_M |\nabla z_m|^2 dv_g + \int_M |\nabla v|^2 dv_g + 2 \int_M \nabla z_m \nabla v dv_g$$

we see that

$$\int_M |\nabla v_m|^2 dv_g = \int_M |\nabla z_m|^2 dv_g + \int_M |\nabla v|^2 dv_g + o(1).$$

Now because of $2p/(p-1) < N$, we have

$$\int_M \frac{n-2}{4(n-1)} S_g(v_m - v)^2 dv_g \leq \frac{n-2}{4(n-1)} \|S_g\|_p \|v_m - v\|_{\frac{2p}{p-1}}^2 \rightarrow 0$$

so

$$\int_M \frac{n-2}{4(n-1)} S_g v_m^2 dv_g = \int_M \frac{n-2}{4(n-1)} S_g v^2 dv_g + o(1)$$

and

$$\begin{aligned} & \int_M |\nabla v_m|^2 dv_g + \int_M \frac{n-2}{4(n-1)} S_g(v_m)^2 dv_g \\ &= \int_M |\nabla z_m|^2 dv_g + \int_M |\nabla v|^2 dv_g + \int_M \frac{n-2}{4(n-1)} S_g(v)^2 dv_g + o(1). \end{aligned}$$

Then

$$\int_M v_m L_g v_m dv_g = \int_M |\nabla z_m|^2 dv_g + \int_M |\nabla v|^2 dv_g + \int_M \frac{n-2}{4(n-1)} S_g v^2 dv_g + o(1)$$

And by the definition of μ and Lemma 2 we get

$$\int_M |\nabla v|^2 dv_g + \int_M \frac{n-2}{4(n-1)} S_g(v)^2 dv_g \geq \mu \left(\int_M v^N dv_g \right)^{\frac{2}{N}} \geq \mu_1 \left(\int_M v^N dv_g \right)^{\frac{2}{N}}$$

then

$$\int_M v_m L_g(v_m) dv_g \geq \int_M |\nabla z_m|^2 dv_g + \mu_1 \left(\int_M v^N dv_g \right)^{\frac{2}{N}} + o(1).$$

And since

$$\int_M v_m L_g(v_m) dv_g = \lambda_{1,m} \leq \mu_1 + o(1)$$

and

$$\int_M |\nabla z_m|^2 dv_g + \mu_1 \left(\int_M v^N dv_g \right)^{\frac{2}{N}} \leq \mu_1 + o(1)$$

i.e.

$$(10) \quad \mu_1 \|v\|_N^2 + \|\nabla z_m\|_2^2 \leq \mu_1 + o(1)$$

Now by Brezis-Lieb lemma, we get

$$\lim_m \int_M v_m^N + z_m^N dv_g = \int_M v^N dv_g$$

i.e.

$$\lim_m \|v_m\|_N^N - \|z_m\|_N^N = \|v\|_N^N.$$

Hence

$$\|v_m\|_N^N + o(1) = \|z_m\|_N^N + \|v\|_N^N.$$

By Hölder's inequality and $\int_M u_m^{N-2} v_m^2 dv_g = 1$, we get

$$\|v_m\|_N^N \geq 1$$

i.e.

$$\int_M v^N + z_m^N dv_g = \int_M v_m^N dv_g + o(1) \geq 1 + o(1).$$

Then

$$\left(\int_M v^N dv_g \right)^{\frac{2}{N}} + \left(\int_M z_m^N dv_g \right)^{\frac{2}{N}} \geq 1 + o(1)$$

i.e.

$$\|z_m\|_N^2 + \|v\|_N^2 \geq 1 + o(1).$$

Now by Theorem 13 and the fact $z_m \rightarrow 0$ strongly in L^2 , we get

$$\|z_m\|_N^2 \leq (K^2 + \varepsilon) \|\nabla z_m\|_2^2 + o(1)$$

$$1 + o(1) \leq \|z_m\|_N^2 + \|v\|_N^2 \leq \|v\|_N^2 + (K^2 + \varepsilon) \|\nabla z_m\|_2^2 + o(1).$$

So we deduce

$$1 + o(1) \leq \|v\|_N^2 + (K^2 + \varepsilon) \|\nabla z_m\|_2^2 + o(1)$$

and from inequality (10), we get

$$\|\nabla z_m\|_2^2 + \mu_1 \|v\|_N^2 \leq \mu_1 ((K^2 + \varepsilon) \|\nabla z_m\|_2^2 + \|v\|_N^2) + o(1).$$

So if $\mu_1 K^2 < 1$, we get

$$(1 - \mu_1(K^2 + \varepsilon)) \|\nabla z_m\|_2^2 \leq 0(1)$$

i.e. $v_m \rightarrow v$ strongly in $H_1^2(M)$.

Step 3. We have

$$\begin{aligned} & \lim_m \int_M (u_m^{N-2} v_m^2 - u^{N-2} v^2 + u_m^{N-2} v^2 - u_m^{N-2} v^2) dv_g \\ &= \lim_m \int (u_m^{N-2} (v_m^2 - v^2) + (u_m^{N-2} - u^{N-2}) v^2) dv_g. \end{aligned}$$

Now since $u_m \rightarrow u$ a.e. so does $u_m^{N-2} \rightarrow u^{N-2}$ and $\int_M u_m^{N-2} dv_g \leq c$, hence u_m^{N-2} is bounded in $L^{N/(N-2)}$ and up to a subsequence $u_m^{N-2} \rightarrow u^{N-2}$ weakly in $L^{N/(N-2)}$. Because of $v^2 \in L^{\frac{N}{2}}(M)$, we have

$$\lim_m \int (u_m^{N-2} - u^{N-2}) v^2 dv_g = 0$$

and by Hölder's inequality

$$\lim_m \int u_m^{N-2} (v_m - v)^2 dv_g \leq (\int u_m^N dv_g)^{(N-2)/N} (\int_m |v_m - v|^N dv_g)^{\frac{2}{N}} \leq 0.$$

By the strong convergence of v_m in $L^N(M)$, we get $\int_M u^{N-2} v^2 dv_g = 1$, then v and u are non trivial functions.

Step 4.

Let $\bar{u} = av \in L_+^N(M)$ with $a > 0$ a constant such that $\int_M \bar{u}^N dv_g = 1$ with v a solution of

$$L_g(v) = \mu_1 u^{N-2} v$$

with the constraint

$$\int_M u^{N-2} v^2 dv_g = 1.$$

We claim that $u = v$; indeed,

$$\begin{aligned} \mu_1 &\leq \frac{\int_M v L_g(v) dv_g}{\int_M \bar{u}^{N-2} v^2 dv_g} \\ &\leq \frac{\int_M v L_g(v) dv_g}{\int_M (av)^{N-2} v^2 dv_g} = \frac{a^2 \mu_1 \int_M u^{N-2} v^2 dv_g}{\int_M \bar{u}^{N-2} (av)^2 dv_g} \end{aligned}$$

and Hölder's inequality lead

$$\leq \mu_1 \int_M (u)^{N-2} (av)^2 dv_g$$

$$\leq \mu_1 \left(\int_M (u)^{N-2\frac{N}{N-2}} \right)^{\frac{N-2}{N}} \left(\int_M (av)^{2\frac{N}{2}} dv_g \right)^{\frac{2}{N}} \leq \mu_1.$$

And since the equality in Hölder's inequality holds if

$$\bar{u} = u = av$$

then $a = 1$ and

$$u = v.$$

Then v satisfies $L_g v = \mu_1 v^{N-1}$, by Theorem 12 we get $v = u \in H_2^p(M) \subset C^{1-\left[\frac{n}{p}\right],\beta}(M)$ with $\beta \in (0, 1)$ and $v = u > 0$,

Resuming, we have

$$L_g(v) = \mu_1 v^{N-1}, \quad \int_M v^N dv_g = 1 \quad \text{and} \quad v = u \in H_2^p(M) \subset C^{1-\left[\frac{n}{p}\right],\beta}(M)$$

so the metric $\tilde{g} = u^{N-2} g$ minimizes μ_1 . \square

4. Yamabe conformal invariant with singularities

THEOREM 15. *If $\mu \geq 0$, then $\mu_1 = \mu$*

PROOF. Step1

If $\mu > 0$. Let v such that $L_g(v) = \mu_1 v^{N-1}$ and $\int_M v^N dv_g = 1$ then

$$\mu_1 = \int_M v L_g(v) dv_g \geq c \|v\|_{H_1^2}$$

and v in non trivial function then $\mu_1 > 0$. On the other hand

$$\begin{aligned} \mu &= \inf \frac{\int_M v L_g(v) dv_g}{(\int_M v^N dv_g)^{\frac{2}{N}}} \\ &\leq \int_M v L_g(v) dv_g = \mu_1 \end{aligned}$$

and by Lemma 2, we get

$$\mu_1 = \mu$$

Step2

If $\mu = 0$, Lemma 2 implies that $\mu_1 \leq 0$, hence

$$\mu_1 = 0.$$

\square

5. Variational characterization of μ_2

Let $[g] = \{u^{N-2}g, u \in H_2^p(M) \text{ and } u > 0\}$, we define the second Yamabe invariant μ_2 as

$$\mu_2 = \inf_{\overline{g} \in [g]} \lambda_{2,\overline{g}} \text{Vol}(M, \overline{g})^{2/n}$$

or more explicitly

$$\mu_2 = \inf_{u \in H_2^P, V \in Gr_2^u(H_1^2(M))} \sup_{v \in V} \frac{\int_M v L_g(v) dv_g}{\int_M |u|^{N-2} v^2 dv_g} \left(\int_M u^N dv_g \right)^{\frac{2}{n}}$$

THEOREM 16. [1] *On compact Riemannian manifold (M, g) of dimension $n \geq 3$, we have for all $v \in H_1^2(M)$ and for all $u \in L_+^N(M)$*

$$2^{\frac{2}{n}} \int_M |u|^{N-2} v^2 dv_g \leq (K^2 \int_M |\nabla v|^2 dv_g + \int_M B_0 v^2 dv_g) (\int_M u^N dv_g)^{\frac{2}{n}}$$

Or

$$2^{\frac{2}{n}} \int_M |u|^{N-2} v^2 dv_g \leq \mu_1(S_n) (\int_M C_n |\nabla v|^2 + B_0 v^2 dv_g) (\int_M u^N dv_g)^{\frac{2}{n}}$$

THEOREM 17. [1] *For any compact Riemannian manifold (M, g) of dimension $n \geq 3$, there exists $B_0 > 0$ such that*

$$\mu_1(S_n) = n(n-1)\omega_n^{2/n} = \inf_{H_1^2} \frac{\int_M \frac{4(n-1)}{(n-2)} |\nabla u|^2 + B_0 u^2 dv_g}{(\int_M |u|^N dv_g)^{2/N}}$$

where ω_n is the volume of the unit round sphere

or

$$(\int_M |u|^N dv_g)^{2/N} \leq K^2 \int_M |\nabla u|^2 dv_g + \int_M B_0 u^2 dv_g$$

$K^2 = \mu_1(S_n)^{-1} C_n$ and $C_n = (4(n-1))/(n-2)$

6. Properties of μ_2

We know that g is smooth in the ball $B_p(\delta)$ by assumption (H) , this assumption is sufficient to prove that Aubin's conjecture is valid. The case (M, g) is not conformally flat in a neighborhood of the point P and $n \geq 6$, let η is a cut-off function with support in the ball $B_p(2\varepsilon)$ and $\eta = 1$ in $B_p(\varepsilon)$, where $2\varepsilon \leq \delta$ and

$$v_\varepsilon(q) = \left(\frac{\varepsilon}{r^2 + \varepsilon^2} \right)^{\frac{n-2}{2}}$$

with $r = d(p, q)$. We let $u_\varepsilon = \eta v_\varepsilon$ and define

$$Y(u) = \frac{\int_M \left(|\nabla u|^2 + \frac{n-2}{4(n-1)} S_g u^2 \right) dv_g}{(\int_M |u|^N dv_g)^{2/N}}.$$

We obtain the following lemma

LEMMA 3. [1]

$$\mu = Y(v_\varepsilon) \leq \begin{cases} \{(K^{-2} - c|w(P)|^2 \varepsilon^4 + 0(\varepsilon^4)) & \text{if } n > 6 \\ K^{-2} - c|w(P)|^2 \varepsilon^4 \log \frac{1}{\varepsilon} + 0(\varepsilon^4) & \text{if } n = 6 \end{cases}$$

where $|w(P)|$ is the norm of the Weyl tensor at the point P and $c > 0$.

THEOREM 18. *If (M, g) is not locally conformally flat and $n \geq 11$ and $\mu > 0$, we find*

$$\mu_2 < ((\mu^{\frac{n}{2}} + (K^{-2})^{\frac{n}{2}})^{\frac{2}{n}}$$

and if $\mu = 0$, $n \geq 9$ then

$$\mu_2 < K^{-2}$$

PROOF. With the same method as in [1], this lemma follows from theorem 18. \square

7. Existence of a minimizer to μ_2

LEMMA 4. Assume that $v_m \rightarrow v$ weakly in $H_1^2(M)$, $u_m \rightarrow u$ weakly in $L^N(M)$ and $\int_M u_m^{N-2} v_m^2 dv_g = 1$ then

$$\int_M u_m^{N-2} (v_m - v)^2 dv_g = 1 - \int_M u^{N-2} v^2 dv_g + o(1)$$

PROOF. we have

$$\begin{aligned} & \int_M u_m^{N-2} (v_m - v)^2 dv_g \\ &= \int_M u_m^{N-2} v_m^2 dv_g + \int_M u_m^{N-2} v^2 dv_g - \int_M 2u_m^{N-2} v_m v dv_g \\ (15) \quad &= 1 + \int_M u_m^{N-2} v^2 dv_g - \int_M 2u_m^{N-2} v_m v dv_g . \end{aligned}$$

Now $(u_m^{N-2})_{m_N}$ is bounded in $L^{\frac{N}{N-2}}(M)$ and $u_m^{N-2} \rightarrow u^{N-2}$ a.e., then $u_m^{N-2} \rightarrow u^{N-2}$ weakly in $L^{\frac{N}{N-2}}(M)$ and $\forall \phi \in L^{\frac{N}{2}}$

$$\int_M \phi u_m^{N-2} dv_g \rightarrow \int_M \phi u^{N-2} dv_g$$

in particular for $\phi = v^2$

$$\int_M v^2 u_m^{N-2} dv_g \rightarrow \int_M v^2 u^{N-2} dv_g .$$

$\int_M u_m^{N-2} v_m dv_g$ is bounded in $L^{\frac{N}{N-1}}(M)$, because of

$$\int_M u_m^{N-2} \frac{N}{N-1} v_m^{\frac{N}{N-1}} dv_g \leq \left(\int_M u_m^N dv_g \right)^{\frac{N-2}{N-1}} \left(\int_M v_m^N dv_g \right)^{\frac{1}{N-1}}$$

and $u_m^{N-2} v_m \rightarrow u^{N-2} v$ a.e., then $u_m^{N-2} v_m \rightarrow u^{N-2} v$ weakly in $L^{\frac{N}{N-1}}(M)$. Hence

$$\int_M u_m^{N-2} v_m v dv_g \rightarrow \int_M u^{N-2} v^2 dv_g$$

and

$$\int_M u_m^{N-2} (v_m - v)^2 dv_g = 1 - \int_M u^{N-2} v^2 dv_g + o(1).$$

□

THEOREM 19. If $1 - 2^{-\frac{2}{n}} K^2 \mu_2 > 0$, then the generalized metric $u^{N-2} g$ minimizes μ_2

PROOF. Step 1.

We study a sequence of metrics $g_m = u_m^{N-2} g$ with $u_m \in H_2^p(M)$, $u_m > 0$ which minimizes the infimum in the definition of μ_2 i.e. a sequence of metrics such that

$$\mu_2 = \lim \lambda_{2,m} (\text{Vol}(M, g_m))^{2/n} .$$

Without loss generality, we may assume that $\text{Vol}(M, g_m) = 1$ i.e. that $\int_M u_m^N dv_g = 1$. In particular, the sequence of functions $(u_m)_m$ is bounded in $L^N(M)$ and there

exists $u \in L^N(M)$, $u \geq 0$ such that $u_m \rightarrow u$ weakly in L^N . We are going to prove that the generalized metric $u^{N-2}g$ minimizes μ_2 . Proposition 3, implies the existence of $v_m, w_m \in H_1^2(M)$, $v_m > 0$ such that

$$L_g(v_m) = \lambda_{1,m} u_m^{N-2} v_m$$

$$L_g(w_m) = \lambda_{2,m} u_m^{N-2} w_m$$

And such that

$$\int_M u_m^{N-2} v_m^2 dv_g = \int_M u_m^{N-2} w_m^2 dv_g = 1, \int_M u_m^{N-2} v_m w_m dv_g = 0.$$

The sequence v_m, w_m is bounded in $H_1^2(M)$, we can find $v, w \in H_1^2(M)$, $v \geq 0$ such that $v_m \rightarrow v$, $w_m \rightarrow w$ weakly in $H_1^2(M)$. Together with the weak convergence of (u_m) , we get in weak sense

$$L_g(v) = \widehat{\mu}_1 u^{N-2} v$$

and

$$L_g(w) = \mu_2 u^{N-2} w$$

where

$$\widehat{\mu}_1 = \lim \lambda_{1,m} \leq \mu_2.$$

Step 2.

Now we show $v_m \rightarrow v$, $w_m \rightarrow w$ strongly in $H_1^2(M)$. Applying Theorem 16 to the sequence $v_m - v$, we get

$$\int_M |u_m|^{N-2} (v_m - v)^2 dv_g \leq (2^{-\frac{2}{n}} K^2 \int_M |\nabla(v_m - v)|^2 dv_g + \int_M B_0(v_m - v)^2 dv_g) (\int_M u^N dv_g)^{\frac{2}{n}}$$

and since $v_m \rightarrow v$ strongly in L^2 ,

$$\begin{aligned} \int_M |u_m|^{N-2} (v_m - v)^2 dv_g &\leq (2^{-\frac{2}{n}} K^2 \int_M |\nabla(v_m - v)|^2 dv_g + o(1)) \\ &\leq (2^{-\frac{2}{n}} K^2 \int_M |\nabla(v_m)|^2 + |\nabla v|^2 - 2\nabla v_m \nabla v dv_g + o(1)). \end{aligned}$$

By the weak convergence of (v_m) , $\int_M \nabla v_m \nabla v dv_g = \int_M |\nabla v|^2 dv_g + o(1)$

$$\int_M |u_m|^{N-2} (v_m - v)^2 dv_g \leq (2^{-\frac{2}{n}} K^2 \int_M |\nabla(v_m)|^2 - |\nabla v|^2 dv_g + o(1))$$

and since

$$\int_M \frac{n-2}{4(n-1)} S_g v_m^2 dv_g = \int_M \frac{n-2}{4(n-1)} S_g v^2 dv_g + o(1)$$

we get

$$\begin{aligned} \int_M |u_m|^{N-2} (v_m - v)^2 dv_g &\leq 2^{-\frac{2}{n}} K^2 (\int_M |\nabla(v_m)|^2 - |\nabla v|^2 dv_g \\ &+ \int_M \frac{n-2}{4(n-1)} S_g (v_m^2 - v^2) dv_g + o(1)) \leq 2^{-\frac{2}{n}} K^2 (\int_M v_m L_g(v_m) - v L_g(v) dv_g + o(1)) \\ &\leq 2^{-\frac{2}{n}} K^2 (\lambda_{1,m} - \widehat{\mu}_1) \int_M u^{N-2} v^2 dv_g + o(1) \end{aligned}$$

By the fact $\widehat{\mu_1} = \lim \lambda_{1,m} \leq \mu_2$

$$\leq 2^{-\frac{2}{n}} K^2 \mu_2 (1 - \int_M u^{N-2} v^2 dv_g) + o(1)$$

Then

$$\int_M |u_m|^{N-2} (v_m - v)^2 dv_g \leq 2^{-\frac{2}{n}} K^2 \mu_2 (1 - \int_M u^{N-2} v^2 dv_g) + o(1)$$

Now using the weak convergence of (v_m) in $H_1^2(M)$ and the weak convergence of (u_m) in $L^N(M)$, we infer by Lemma 4 that

$$\int_M |u_m|^{N-2} (v_m - v)^2 dv_g = 1 - \int_M u^{N-2} v^2 dv_g + o(1)$$

then

$$1 - \int_M u^{N-2} v^2 dv_g \leq 2^{-\frac{2}{n}} K^2 \mu_2 (1 - \int_M u^{N-2} v^2 dv_g) + o(1)$$

and

$$1 - 2^{-\frac{2}{n}} K^2 \mu_2 \leq (1 - 2^{-\frac{2}{n}} K^2 \mu_2) \int_M u^{N-2} v^2 dv_g + o(1).$$

So if $1 - 2^{-\frac{2}{n}} K^2 \mu_2 > 0$ then

$$\int_M u^{N-2} v^2 dv_g \geq 1.$$

and by Fatou's lemma, we obtain

$$\int_M u^{N-2} v^2 dv_g \leq \underline{\lim} \int_M u_m^{N-2} v_m^2 dv_g = 1.$$

We find that

$$(16) \quad \int_M u^{N-2} v^2 dv_g = 1.$$

So u and v are not trivial.

Moreover

$$\begin{aligned} \int_M |\nabla(v_m - v)|^2 dv_g &= \int_M \left(|\nabla(v_m)|^2 + |\nabla v|^2 - 2\nabla v_m \nabla v \right) dv_g \\ &= \int_M |\nabla(v_m)|^2 - |\nabla v|^2 dv_g + o(1) \end{aligned}$$

and since $\int_M S_g (v_m^2 - v^2) dv_g = o(1)$, we get

$$\begin{aligned} \int_M |\nabla(v_m - v)|^2 dv_g &= \int_M v_m L_g(v_m) - v L_g(v) dv_g + o(1) \\ &\leq \mu_2 (1 - \int_M u^{N-2} v^2 dv_g) + o(1) \end{aligned}$$

Then, by relation (16)

$$\int_M |\nabla(v_m - v)|^2 dv_g = o(1)$$

and $v_m \rightarrow v$ strongly in $H_1^2(M)$. The same argument holds with (w_m) , hence $w_m \rightarrow w$ strongly in $H_1^2(M)$ and $\int_M u^{N-2} w^2 dv_g = 1$.

To show that $\int_M u^{N-2} v w dv_g = 0$, first writing and using Hölder's inequality, we get

$$\begin{aligned}
\int_M (u_m^{N-2} v_m w_m - u^{N-2} v w) dv_g &= \int_M (u_m^{N-2} v_m w_m - u_m^{N-2} v w_m + u_m^{N-2} v w_m - u^{N-2} v w) dv_g \\
&= \int_M u_m^{N-2} (v_m - v) w_m dv_g + \int_M (u_m^{N-2} v w_m - u^{N-2} v w) dv_g \\
&= \int_M u_m^{\frac{N-2}{2}} w_m [u_m^{\frac{N-2}{2}} (v_m - v)] dv_g + \int_M (u_m^{N-2} v w_m - u^{N-2} v w) dv_g \\
&\leq \left(\int_M u_m^{N-2} w_m^2 dv_g \right)^{\frac{1}{2}} \left(\int_M u_m^{N-2} (v_m - v)^2 dv_g \right)^{\frac{1}{2}} + \int_M (u_m^{N-2} v w_m - u^{N-2} v w) dv_g \\
&\leq \left(\int_M u_m^{N-2} (v_m - v)^2 dv_g \right)^{\frac{1}{2}} + \int_M (u_m^{N-2} v w_m - u^{N-2} v w) dv_g \\
&\leq \left[\left(\int_M u_m^{N-2} \frac{N}{N-2} dv_g \right)^{\frac{N-2}{N}} \left(\int_M |v_m - v|^N dv_g \right)^{\frac{2}{N}} \right]^{\frac{1}{2}} + \int_M (u_m^{N-2} v w_m - u^{N-2} v w) dv_g \\
&\leq \left(\int_M |v_m - v|^N dv_g \right)^{\frac{1}{N}} + \int_M (u_m^{N-2} v w_m - u^{N-2} v w) dv_g \\
&\leq \left(\int_M |v_m - v|^N dv_g \right)^{\frac{1}{N}} + \int_M (u_m^{N-2} v w_m - u_m^{N-2} v w + u_m^{N-2} v w - u^{N-2} v w) dv_g \\
&\leq \left(\int_M |v_m - v|^N dv_g \right)^{\frac{1}{N}} + \int_M (u_m^{N-2} v(w_m - w) + (u_m^{N-2} - u^{N-2}) v w) dv_g \\
&\leq \left(\int_M |v_m - v|^N dv_g \right)^{\frac{1}{N}} + \int_M ((u_m^{\frac{N-2}{2}} v)(u_m^{\frac{N-2}{2}} (w_m - w)) + (u_m^{N-2} - u^{N-2}) v w) dv_g \\
&\leq \left(\int_M |v_m - v|^N dv_g \right)^{\frac{1}{N}} + \left(\int_M u_m^{N-2} v^2 dv_g \right)^{\frac{1}{2}} \left(\int_M u_m^{N-2} (w_m - w)^2 dv_g \right)^{\frac{1}{2}} + \int_M (u_m^{N-2} - u^{N-2}) v w dv_g \\
&\leq \left(\int_M |v_m - v|^N dv_g \right)^{\frac{1}{N}} + \left(\int_M u_m^{N-2} v^2 dv_g \right)^{\frac{1}{2}} \left(\int_M |w_m - w|^N dv_g \right)^{\frac{1}{N}} + \int_M (u_m^{N-2} - u^{N-2}) v w dv_g.
\end{aligned}$$

Now noting that

$$\int_M u_m^{N-2} v^2 dv_g \leq (\int_M u_m^N dv_g)^{\frac{N-2}{2}} (\int_M v^N dv_g)^{\frac{2}{N}} < +\infty$$

and taking account of $u_m^{N-2} \rightarrow u^{N-2}$ weakly in $L^{\frac{N}{N-2}}(M)$ and the fact that $vw \in L^{\frac{N}{2}}(M)$, we deduce

$$\int_M (u_m^{N-2} - u^{N-2}) v w d\mu_g \rightarrow 0$$

hence

$$\int_M u^{N-2} v w d\mu_g = 0.$$

Consequently the generalized metric $u^{N-2}g$ minimizes μ_2 . \square

THEOREM 20. *If $\mu_2 < K^{-2}$, then generalized metric $u^{N-2}g$ minimizes μ_2*

PROOF. *Step1.*

We study a sequence of metrics $g_m = u_m^{N-2}g$ with $u_m \in H_2^p(M)$, $u_m > 0$ which attained μ_2 i.e. a sequence of metrics such that

$$\mu_2 = \lim_m \lambda_{2,m} (\text{Vol}(M, g_m))^{2/n}.$$

Without loss of generality, we may assume that $\text{Vol}(M, g_m) = 1$ i.e. $\int_M u_m^N d\mu_g = 1$

1.In particular, the sequence $(u_m)_m$ is bounded in $L^N(M)$ and there exists $u \in L^N(M)$, $u \geq 0$ such that $u_m \rightarrow u$ weakly in $L^N(M)$. We are going to prove that the metric $u^{N-2}g$ minimizes μ_2 . Proposition 3 and Theorem 8 imply the existence of $v_m, w_m \in C^{1-\lceil \frac{n}{p} \rceil, \beta}(M)$, with $\beta \in (0, 1)$, $v_m > 0$ such that

$$L_g(v_m) = \lambda_{1,m} u_m^{N-2} v_m$$

$$L_g(w_m) = \lambda_{2,m} u_m^{N-2} w_m$$

and

$$\int_M u_m^{N-2} v_m^2 d\mu_g = \int_M u_m^{N-2} w_m^2 d\mu_g = 1, \quad \int_M u_m^{N-2} v_m w_m d\mu_g = 0.$$

The sequences $(v_m)_m$ and $(w_m)_m$ are bounded in H_1^2 , we can find $v, w \in H_1^2$ with $v \geq 0$ such that $v_m \rightarrow v$, $w_m \rightarrow w$ weakly in H_1^2 . Together with the weak convergence of $(u_m)_m$, we get in the weak sense

$$L_g(v) = \widehat{\mu}_1 u^{N-2} v$$

and

$$L_g(w) = \mu_2 u^{N-2} w$$

where

$$\widehat{\mu}_1 = \lim \lambda_{1,m} \leq \mu_2.$$

Step2.

Now we are going to show that $v_m \rightarrow v$, $w_m \rightarrow w$ strongly in H_1^2 .

By Hölder's inequality, Theorem 13, strong convergence of v_m in L^2 , we get

$$\begin{aligned} \int_M |u_m|^{N-2} (v_m - v)^2 d\mu_g &\leq \|v_m - v\|_N^2 \leq K^2 \|\nabla(v_m - v)\|_2^2 + o(1) \\ &\leq K^2 \int_M |\nabla(v_m)|^2 + |\nabla v|^2 - 2\nabla v_m \nabla v d\mu_g + o(1) \end{aligned}$$

$$\begin{aligned}
&\leq K^2 \int_M |\nabla(v_m)|^2 - |\nabla v|^2 dv_g + o(1) \\
&\leq K^2 \int_M v_m L_g(v_m) - v L_g(v) dv_g + o(1) \\
&\leq K^2 \mu_2 (1 - \int_M u^{N-2} v^2 dv_g) + o(1)
\end{aligned}$$

and with Lemma 4

$$\int_M |u_m|^{N-2} (v_m - v)^2 dv_g = 1 - \int_M u^{N-2} v^2 dv_g + o(1)$$

then

$$1 - \int_M u^{N-2} v^2 dv_g \leq K^2 \mu_2 (1 - \int_M u^{N-2} v^2 dv_g) + o(1)$$

i.e

$$1 - K^2 \mu_2 \leq (1 - K^2 \mu_2) \int_M u^{N-2} v^2 dv_g$$

so if $1 - K^2 \mu_2 > 0$,

$$\int_M u^{N-2} v^2 dv_g \geq 1.$$

On the other hand since by Fatou's lemma

$$\int_M u^{N-2} v^2 dv_g \leq \liminf \int_M u_m^{N-2} v_m^2 dv_g = 1.$$

Then

$$\int_M u^{N-2} v^2 dv_g = 1.$$

and

$$\int_M |\nabla(v_m - v)|^2 dv_g = o(1)$$

Hence $v_m \rightarrow v$ strongly in $H_1^2 \subset L^N$.

The same conclusion also holds for $(w_m)_m$. \square

LEMMA 5. Let $u \in L^N$ with $\int_M u^N dv_g = 1$ and z, w nonnegative functions in H_1^2 satisfying

$$(20) \quad \int_M w L_g(w) dv_g \leq \mu_2 \int_M u^{N-2} w^2 dv_g$$

and

$$(21) \quad \int_M z L_g(z) dv_g \leq \mu_2 \int_M u^{N-2} z^2 dv_g$$

And suppose that $(M - z^{-1}(0)) \cap (M - w^{-1}(0))$ has measure zero. Then u is a linear combination of z and w and we have equality in (20) and (21).

PROOF. The proof is the same as that of Aumann and Humbert in [1]. \square

THEOREM 21. *If a generalized metric $u^{N-2}g$ minimizes μ_2 , then there exist a nodal solution $w \in H_2^p \subset C^{1-[n/p],\beta}$ of equation*

$$(22) \quad L_g(w) = \mu_2 u^{N-2} w$$

More over there exist $a, b > 0$ such that

$$u = aw_+ + bw_-$$

With $w_+ = \sup(w, 0)$ and $w_- = \sup(-w, 0)$.

PROOF. *Step1.* Applying Lemma 5 to $w_+ = \sup(w, 0)$ and $w_- = \sup(-w, 0)$, we get the existence of $a, b > 0$ such that

$$u = aw_+ + bw_-.$$

Now by Lemma 1, $w_+, w_- \in L^\infty$ i.e. $u \in L^\infty$, $u^{N-2} \in L^\infty$, then

$$h = S_g - \mu_2 u^{N-2} \in L^p$$

and from Theorem 12, we obtain

$$w \in H_2^p \subset C^{1-[n/p],\beta}.$$

Step 2. If $\mu_2 = \mu_1$, we see that $|w|$ is a minimizer to the functional associated to μ_1 , then $|w|$ satisfies the same equation as v and Theorem 12 shows that $|w| = w \in H_2^p \subset C^{1-[n/p],\beta}$ that is $|w| > 0$ everywhere, which contradicts the condition (9) in Proposition 3, then

$$\mu_2 > \mu_1.$$

Step3. The solution w of the equation (22) changes sign. Since if it does not, we may assume that $w \geq 0$, by step2 the inequality in (20) is strict and by Lemma (5) we have the equality: a contradiction. \square

REMARK 3. *Step1 shows that u is not necessarily in $H_2^p(M)$ and by the way the minimizing metric is not in $H_2^p(M, T^*M \otimes T^*M)$ contrary to the Yamabe invariant with singularities.*

References

- [1] B. Ammann, E.Hunmbert. The second Yamabe invariant, J. Funct. Anal., 235 (2006),2, 377-412.
- [2] T. Aubin. Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55 (1976), 269-296.
- [3] M.Benalili, H.Boughazi. On the second Paneitz-Branson invariant, Houston, J. Math.,36, (2010), 2, 393-420.
- [4] E.Hebey. Introduction à l'analyse non linéaire sur les variétés, Diderot Editeur Arts Sciences (1997).
- [5] F. Madani. Le problème de Yamabe avec singularités. Bull. Sci. Math. 132 (2008), 7, 575-591.
- [6] R. Shoen. Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differential Geom. 20 (1984), 2, 479-495.
- [7] R. Shoen, S.T.Yau. Conformally flat manifolds, Kleinian groupes and scalar curvature. Invent. Math, 9247-71, 1988.
- [8] N.S.Trudinger. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 32,3, (1968)
- [9] H.Yamabe. On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12 (1960) 21-37.

E-mail address: m_benalili@mail.univ-tlemcen.dz

Current address: Université Aboubekr Belkaïd, Faculty of Sciences, Dept. of Math. B.P. 119, Tlemcen, Algeria.