

Physics Presentations of this Tutorial

Geant4 PHENIICS & IN2P3 Tutorial, 13 – 17 May 2019, Orsay

Marc Verderi LLR, Ecole polytechnique

Where will we look in the toolkit?

Main categories and directories involved:

- Processes:
 - geant4/source/processes
- Run
 - geant4/source/run

Overview of physics presentations

- Today, session IV:
 - This introduction
 - Two "technological-like" presentations:
 - > Physics list
 - > Physics overview, processes and cuts
- > Thursday & Friday, sessions VII & IX:
 - Actual physics content of Geant4:
 - "Standard" EM physics
 - > Low Energy EM physics
 - > Hadronic physics
 - The big catalogue of it

Projectile de Broglie Wavelength (fm)

Projectile Kinetic Energy (GeV)

Projectile Kinetic Energy (GeV)

Projectile Kinetic Energy (GeV)

Point-like interactions → Condensed history

- At theoretical level, interactions are « point-like »
- But interactions with low momentum transfer can occur MANY times
 - Essentially: with each atom "near" the particle path!

Point-like interactions → Condensed history

- At theoretical level, interactions are « point-like »
- But interactions with low momentum transfer can occur MANY times
 - Essentially: with each atom "near" the particle path!

 Modeling a very low energy (~eV) problem (eg: microdosimetry) requires each of these interactions to be followed to be accurate

Point-like interactions → Condensed history

- At theoretical level, interactions are « point-like »
- But interactions with low momentum transfer can occur MANY times
 - Essentially: with each atom "near" the particle path!

- Modeling a very low energy (~eV) problem (eg: microdosimetry) requires each of these interactions to be followed to be accurate
- But modeling a high energy problem (> keV) can't be done this way
 - would be far too slow! (at least for today's computers)
- Need to theoretically "sum up" interactions on a given path length...
 - ... to get the net effect of these on this path length
- This is the "condensed history" approach

Coping with complexity...

- > Physics complexity is large:
 - Lot of particle types
 - Lot of different particle-matter interaction types
 - > And which are totally different depending on energy
- > In a physics code package, we have to decide of
 - how we model the point-like physics interactions
 - how we model the condensed history and under what conditions
 - how we make all these working together
- > And we should think this in term of "use cases":
 - Use cases are determined by users : you !
 - HEP, medical, space, radioprotection, security companies, etc. have interest in some aspects

In the two next presentations

- > We present the physics modeling of Geant4
 - In its "technological" aspects
- > You don't necessarily need to know all of these
- > But you must have some understanding of it
 - For at least picking the physics options you need
- > Last but not least, as a toolkit, Geant4 is not "frozen"
 - You can always extend it in general
 - And extend it with your own physics code in particular
 - > In this case, the next two presentations are just a starting point!