Frühjahr 22 Themennummer 1 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

(a) Geben Sie eine mathematisch präzise Definition für die Stabilität einer Ruhelage x_0 einer autonomen Differentialgleichung x' = f(x) mit stetig differenzierbarer rechter Seite $f: \mathbb{R}^n \to \mathbb{R}^n$ an.

Im Folgenden betrachten wir die skalare autonome Differentialgleichung

$$x' = x \cdot \sin(x)$$
.

- (b) Geben Sie die Ruhelagen der Differentialgleichung an und entscheiden Sie, welche der Ruhelagen $\neq 0$ stabil sind.
- (c) Es sei ein $x_0 \in \mathbb{R}$ mit $0 < x_0 < \pi$ gegeben. Zeigen Sie, dass es eine eindeutige maximale Lösung x der Differentialgleichung mit $x(0) = x_0$ gibt, dass diese auf ganz \mathbb{R} existiert, streng monoton steigt und dass $\lim_{t\to +\infty} x(t) = \pi$ gilt.
- (d) Begründen Sie, z.B. mithilfe von (a) und (c), dass die Ruhelage 0 der Differentialgleichung instabil ist.

Lösungsvorschlag:

- (a) Eine Ruhelage x_0 heißt stabil, wenn für alle $\varepsilon > 0$ ein $\delta > 0$ existiert, sodass für alle $\xi \in B_{\delta}(x_0)$ die Lösung der Differentialgleichung zur Anfangsbedingung $x(0) = x_0$ mindestens auf $[0, \infty)$ existiert und $||x(t) x_0|| < \varepsilon$ für $t \ge 0$ erfüllt.
- (b) Die Ruhelagen sind genau die Nullstellen der rechten Seite, also alle $x \in \mathbb{R}$ mit x = 0 oder $\sin(x) = 0$. Das sind genau die ganzzahligen Vielfachen von π , d. h. alle $k\pi$ mit $k \in \mathbb{Z}$. Wir bestimmen die Ableitung der rechten Seite $f'(x) = \sin(x) + x\cos(x)$. Es gilt $f'(k\pi) = \sin(k\pi) + k\pi\cos(k\pi) = (-1)^k k\pi$ für alle $k \in \mathbb{Z}$. Mit dem Linearisierungssatz folgt, dass alle Ruhelagen x_0 mit $f'(x_0) < 0$ stabil sind, während alle Ruhelagen mit $f'(x_0) > 0$ instabil sind. Da die einzige Ruhelage mit verschwindender Ableitung die 0 ist, können wir aus dem Vorzeichen von $(-1)^k k$ sofort das Stabilitätsverhalten ablesen (Multiplikation mit π ändert das Vorzeichen nicht). Die Ruhelagen $k\pi$ mit k gerade und positiv oder k ungerade und negativ sind stabil; diejenigen mit k ungerade und positiv oder k gerade und negativ sind instabil. Da jede von 0 verschiedene ganze Zahl einem der vier Fälle entspricht, sind also alle Ruhelagen $\neq 0$ klassifiziert.
- (c) Die Strukturfunktion f ist steig differenzierbar, also lokal lipschitzstetig. Nach dem Satz von Picard-Lindelöf existiert zu jeder Anfangsbedingung genau eine maximale Lösung. Wegen $|f(x)| \leq |x| \cdot 1 = |x|$ bleibt das Wachstum weiter linear beschränkt und wir erhalten weiterhin globale Existenz jeder Lösung. Beides gilt natürlich auch insbesondere für Anfangswerte $x_0 \in (0,\pi)$. Weil die Strukturfunktion lokal lipschitzstetig ist, können sich verschiedene Lösungskurven nicht schneiden, also bleibt die Lösung zur Anfangsbedingung $x(0) = x_0$ für alle Zeiten zwischen den Ruhelagen 0 und π , d. h. es gilt $0 < x(t) < \pi$ für alle $t \in \mathbb{R}$. Daher gilt für die Lösung $x'(t) = x(t) \cdot \sin(x(t)) > 0$, weil sowohl x(t) > 0, als auch $\sin(x(t)) > 0$ für alle $t \in \mathbb{R}$

gilt (die Sinusfunktion nimmt auf $(0,\pi)$ nur positive Werte an). Weil die Ableitung strikt positiv ist, folgt bereits, dass x streng monoton wächst. Insbesondere existiert der Limes $\lim_{t\to\infty} x(t) \coloneqq \hat{x}$ und wegen $0 < x(t) < \pi$ muss $0 \le \hat{x} \le \pi$ gelten. Weil x streng monoton wächst, muss weiter $\hat{x} > x(0) = x_0$ gelten. Wir zeigen, dass $f(\hat{x}) = 0$ gelten muss, dann folgt nämlich $\hat{x} = \pi$, weil π die einzige Nullstelle von f auf $[x_0, \pi]$ ist. Angenommen dem wäre nicht so, d. h. $f(\hat{x})$ wäre strikt positiv (negativ ist nicht möglich). Weil f stetig ist, gibt es ein $\delta > 0$ mit $|x - \hat{x}| < \delta \Longrightarrow |f(x) - f(\hat{x})| < \frac{f(\hat{x})}{2}$ woraus insbesondere $f(x) > \frac{f(\hat{x})}{2}$ folgt. Wir finden nun ein $t_0 \in \mathbb{R}$ mit $t \ge t_0 \Longrightarrow |x(t) - \hat{x}| < \delta$ und daher auch $x'(t) = f(x(t)) > \frac{f(\hat{x})}{2}$. Das impliziert aber $x(t) = x(t) - x(t_0) + x(t_0) = x(t_0) + \int_{t_0}^t x'(s) ds \ge x(t_0) + (t - t_0) \frac{f(\hat{x})}{2}$ für $t \ge t_0$, was aber für $t \to \infty$ gegen ∞ divergiert, ein Widerspruch zu $x(t) < \pi$. Daher muss also $f(\hat{x}) = 0$ gelten und wir erhalten $\hat{x} = \pi$.

(d) Wir widerlegen die Stabilität mit der Definition in (a). Wir wählen $\varepsilon = 1$. Zu jedem $\delta > 0$ betrachten wir die Lösung der Differentialgleichung zum Anfangswert $x(0) = \min\{\frac{\delta}{2}, 1\}$. Nach (c) konvergiert die Lösung gegen π , erfüllt also ab einem $t_0 > 0$ die Ungleichung $|x(t) - \pi| < 1$, woraus x(t) > 2 und folglich $|x(t) - 0| \ge 1 = \varepsilon$ folgt. Daher ist 0 eine instabile Ruhelage.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$