SpeechTeach

McMaster University
Department of Electrical & Computer Engineering

Raphael Capon, Veneta Grigorova, Hira Nadeem, Ben Raubvogel Group 13

Purpose

"To support speech therapists with an automated stutter recognition program which records patients speech and identifies stutter type and time."

What is a Stutter?

Stuttering: a speech disorder which results in the involuntary disruption of speech by repetitions, elongations, or inability to pronounce sounds.

Three types of stutters:

- Repetition
 - o Ex. "Hi my na-na-name is"
- Elongated
 - o Ex. "Hi mmm-my name is"
- Locked
 - o Ex. "Hi my [pause] name is"

Identifying a Stutter

1 2 3 4 5 6 7 and that's what sold me on Friuli.

Stuttering can be easily be identified by the waveform.

Research & Resources

- Speech and Stuttering Institute (Toronto)
- Anna Tandera, PhD at Holland Bloorview Kids Rehabilitation Hospital (Toronto)
- The Centre for Advanced Research in Experimental and Applied Linguistics (AERIAL) at McMaster
- Dr. Hassan Ashtiani, Machine Learning Professor in CAS McMaster

Challenges Identified

- Recording audio of patients
- Identifying stutters in audio
- Timestamping when the stutter occurs

Approach

- Create a detailed and easy to use Graphical User Interface (GUI)
- Train a machine learning model to identify stutters from recorded speech
- Train a machine learning model to identify when a stutter occurs from inputted speech

A Look at Machine Learning

Two goals

- 1. Identify if a stuttered occurred, and what type.
- 2. Identify where the stutter occured.

Selected Tools

- Scikitlearn
- Keras
- Tensorflow
- Praat-Parselmouth

ADD LOGOS

Understanding the Features of Speech

General Audio Analysis Techniques (time series, frequency domain)

- Time series analysis
- Frequency domain analysis

Specialized Speech/Audio Tools

- Mel Frequency Cepstral Coefficients (MFCC)
- Praat-Parselmouth API in Python
 - Speech features examples: Jitter, Shimmer, Voice Breaks

Image processing approach

- Convolutional Neural Network (CNN)
- Spectrograms

Data Set

A machine learning model is only as strong as its dataset

- Large data set
- Clean, normalized and sorted data
- Equal parts stuttered and non-stuttered data

Data collected from:

- FluencyTalkBank Adults with Stutter database
- Anna Tendara, PhD
- Google Form for non-stuttered data

Organizing the Data

- A data set of approximately 25 different patients, each speaking 14 sentences from a transcript
- Each sentence was notated based on type and time (s) of stutter instances
- Type
 - 1 = repeated
 - o 2 = elongated
 - o 3 = locked

X	Sentence (ID)							
	A	В	С	D	Е	F	G	Н
	Sentence (ID)	Start Time (s)	End Time (s)	Stutter Type	Notes			
	1	5.77	6		1 Repeated "m" i	n "remote"		
	1	10.76	12.2		1 Repeated "I" in	"little"		
	1	13.1	15.3		1 Repeated "r" in	"restaurant"		
	2	6.62	8		2 Elongated "w"	in "wine"		
	3	1.37	2.1		2 Elongated "f" in	"Fruili"		
	4	1.5	2		1 Repeated "f" in	"famous"		
	4	4.4	4.9		2 Elongated "i" in	"Italy's"		
	4	6.68	8		2 Elongated "w" i	in "wine"		
0	5	1	1.7		3 Locked on "prin	marily"		
1	5	2.12	3.1		3 Locked on "prin	marily"		
2	5	3.2	4.9		1 Repeated "m" i	n "primarily"		
3	5	8.1	9.9		3 Locked on "tha	t"		
4	6	1.6	2		1 Repeated "n" in	"Northeast"		
5	6	4	5.6		1 Repeated "I" in	"Italy"		
6	6	5.9	6.8		2 Elongated "f" in	"Frui <mark>l</mark> i"		
7	6	8.4	9.6		1 Repeated "r" in	"ranges"		
8	6	10.4	11.2		1 Repeated "r" in	"rugged"		
9	6	13.3	14.5		3 Locked on "bor	ders"		
0	6	15.3	16.7		3 Locked on "pla	cid"		
1	6	21.4	23.5		3 Locked on "in"			
2	7	0.15	0.7		1 Repeated "r" in	"Directly"		
3	7	4.07	5.75		1 Repeated "v" ir	"Venice"		
4	7	6.3	8.8		1 Repeated "just	a little" 3 times		
5	8	0.69	1.3		2 Elongated "b" i	n "beaten"		
5	8	5.08	6.12		3 Locked on "in"			
7	9	0	2.88		1 Repeated "s" in	"standing"		
В	9	4.85	6.67		3 Locked on "cro	ssroads"		
9	9	7.2	8.21		1 Repeated "b" in	"between"		
0	9	9.39	9.8		1 Repeated "w" i	n "Western"		
1	9	13.2	13.61		1 Repeated "j" in	"just"		
2	10		0	* 94	0			
3	11	5.22	6.69		1 Repeated "I" in	"overlay"		
4	11	7.07	8.9		1 Repeated "m" i	n "most"		
5	11	10.9	12.5		1 Repeated "s" in	"central"		
5	11	17.154	19.55		1 Repeated "is re	ead"		
	44	24.0	22.2		Looked on "En	.00"		

Spectrograms

Spectrograms are a very useful tool for visualizing speech

- Gives a 3D perspective of time, frequency and intensity
- Plots generated using parselmouth

Sample Spectrogram

Spectrogram Visualization of Stuttering

Non-Stutter: Even delivery

Stutter: Clear repetition of a syllable

File Structure

The model receives the data in a file structure with sorted images.

Model Specifications

Hidden Layers

- 4 Convolution and MaxPooling layers.
- Several Activation, Dense, Flatten and Dropout layers.

Probability Function: Sigmoid

Output: [noStutter stutter]

Example: A stutter would be classified as
 [0 1]

Number of **Epochs**: 30

Sigmoid Function

Retrieved from https://towardsdatascience.com

Training Results

Performance

- 3 Models were trained (one for each sentence prompt).
- Consistently reported over 80% accuracy during training.
- Model struggled with user-generated recordings.
 - Potentially due to lack of consistency in recording equipment, signal processing or other factors.

Limitations from Data Set Size

• Reliable classification by stutter type was not possible given size of data set.

A Look at the GUI | Loading Files

- Load .wav files for plotting in the View tab.
- Read basic file properties (sample rate, channels, sample width etc.).
- Two files can be loaded for comparison.

A Look at the GUI | The Record Tab

The Record tab records audio and prepares it for analysis.

- 1. The user enters the desired name of the file they want to save to
- 2. The user clicks "Record Speech" button
- 3. The program records for 5 seconds
- 4. After recording stops, the speech-to-text transcript and the plot are displayed

A Look at the GUI | The Record Tab

Name # Title

A Look at the GUI | The View Tab

- 1. User selects type of information to plot.
 - a. "Chunks" of spoken text
 - b. Silences between spoken text
 - c. Peaks of the spoken text
- 2. "Play" and "Stop" buttons are provided for playback
- 3. "Analyze" function detects a stutter and displays the result
- 4. Secondary plot provided for comparing with another file

Ideal Functionality

- Improved accuracy (more training data).
- Stutter type classification
- Stutter event timestamping (using sequence to sequence prediction).
- Improved flexibility in the GUI.
- Improved computation time (approaching real-time)

How COVID-19 has Affected our Capstone

- Delay in receiving data to train the machine learning
 - Due to closures, our contact was unable to send us more audio samples in time for us to parse them and train the AI.
- Resistance in collecting own data
- Loss of access to in-person resources
- Inability to meet in person hindered collaboration
- Difficulty acclimating to new workflow
- Negative emotional health outcomes caused by stress

Test Plan / Demonstration

Pre-recorded Demo (Stutter):

- 1. Upload sample of stuttered speech (193_3, 218_10, 217_13) (do all three models)
- 2. Play file to demonstrate stuttered speech
- 3. Analyse speech to output classification
- 4. Show user spectrogram

Pre-recorded Demo (No Stutter):

- 1. Upload sample of non-stuttered speech(010_3, 017_10, 111_13) (do for all three models)
- 2. Play file to demonstrate non-stuttered speech
- 3. Analyse speech to output classification
- 4. Show user spectrogram

User Input Demo:

- 1. Record user input for speech (for all three sentences to test all three models)
- 2. Play file
- 3. Analyse speech to output classification
- 4. Show user spectrogram