Kimia SKALU Tahun 1977

SKALU-77-51

Hukum Proust yang disebut ketetapan perbandingan menyatakan, bahwa ...

- A. jumlah massa sebelum dan sesuadah reaksi kimia adalah tetap (sama)
- B. setiap senyawa terbentuk oleh unsur-unsur yang bergabung dengan perbandingan berat yang tetap
- C. setiap senyawa terbentuk oleh unsur yang bergabung dengan perbandingan volume yang tetap
- D. setiap atom setiap unsur adalah tetap
- E. jumlah atom sebelum dan sesudah suatu reaksi ki mia adalah tetap

SKALU-77-52

Suatu hasil analisa dinyatakan dengan data sebagai berikut:

	Zat	pН		zat	pН
1.	Isi lambung	2	4.	Sari buah anggur	4
2.	Urine	6	5.	Isi usus (jeroan)	8
3.	Darah	7A	6.	Susu sapi	7

Urutan yang benar bagi naiknya keasaman zat-zat tersebut adalah ...

- A. 654321
- B. 246135
- C. 123456
- D. 536241
- E. 415623

SKALU-77-53

Reduktor yang sering digunakan secara besar-besaran untuk mereduksi bijih besi menjadi logamnya adalah ...

- A. Na
- B. Hidrogen
- C. Alumunium (Al)
- D. Karbon (C)
- E. Pt

SKALU-77-54

Bila suatu unsur radioaktif memancarkan sinar beta (β) maka unsur tersebut ...

- A. berat atom dan nomor atomnya tetap
- menjadi unsur yang pada sistem berkala tempatnya satu kotak di depan unsur asli
- C. menjadi unsur yang pada sistem berkala tempatnya dua kotak di depan unsur asli
- D. menjadi unsur dengan nomor atomnya bertambah satu
- E. menjadi unsur yang tidak disebut oleh pernyataanpernyataan di atas

SKALU-77-55

Ikatan antara atom-atom karbon dan hidrogen dalam molekul normal butana adalah ...

- A. ikatan elektrovalen
- B. ikatan polar
- C. ikatan kovalen
- D. ikatan semi polar
- E. ikatan koordinasi

SKALU-77-56

Garam Sianida (CaCN) adalah racun keras, untuk menghilangkan sifat racun dari NaCN ini dapat digunakan $Na_2S_2O_3$ karena ...

- A. NaCN diendapkan oleh Na₂S₂O₃
- B. NaCN diubah menjadi NaCNS yang tidak beracun
- C. NaCN diubah menjadi NaCNO yang tidak beracun
- D. NaCN diubah menjadi HCN yang menguap
- E. sebab-sebab yang lain daripada yang tersebut di atas

SKALU-77-57

Pada reaksi kesetimbangan:

 $A + B \leftrightarrows C + D$

kesetimbangan akan lebih cepat tercapai apabila ...

- A. zat A ditambah
- B. tekanan diperbesar
- C. volume diperbesar
- D. digunakan katalis
- E. suhu dinaikkan

SKALU-77-58

Kalau K = 39, Cl = 35,5 dan O = 16. Jumlah gram O_2 yang dibebaskan dari pemanasan 12,25 gram kalium klorat ialah

- A. 2,4
- B. 3,5
- C. 4,8
- D. 6,0
- E. 7,2

SKALU-77-59

Volume dari 1 grl N_2 dan H_2 pada tekanan dan suhu yang sama ialah ...

- A. berbanding lurus dengan berat atomnya
- B. berbanding terbalik dengan berat atomnya
- C. sama besar
- D. berbanding lurus dengan berat jenisnya
- E. tidak ada yang benar

SKALU-77-60

Penambahan sedikit air dalam larutan penyangga akan menyebabkan ...

- A. perubahan pH larutan
- B. perubahan pK_a larutan asam
- C. tidak ada perubahan pH maupun pK_a
- D. perubahan pKa tetapi pH tetap
- E. perubahan pH tetapi pK_a tetap

SKALU-77-61

Dari pasangan-pasangan senyawa di bawah, mana yang mempunyai ikatan kovalen pada kedua senyawanya ?

- A. NH₃–KCl
- B. CO₂-BaCL₂
- C. H₂O-CCl₄
- D. NaCl-KBr
- E. HF-LiCl

SKALU-77-62

Senyawa yang mana yang optis aktif?

- A. n-butanol
- B. s-butanol
- C. t-butanol
- D. n-butana
- E. keempat senyawa di atas

SKALU-77-63

Andaikan suatu senyawa gas, XY2, hendak dibuat secara industri dari X₂Y₃ dan Y₂ yang kedua-duanya juga merupakan senyawa gas. Pembentukan XY2 berlangsung sesuai dengan reaksi : X_2Y_3 (g) + $\frac{1}{2}$ Y_2 (g) \leftrightarrows $2XY_2$ (g)

dimana reaksi dari kiri ke kanan berjalan secara endoterm. Untuk dapat menghasilkan XY2 sebanyak mungkin, maka persyaratan reaksi yang harus dipenuhi

- A. tekanan tinggi
- B. temperatur rendah
- C. temperatur rendah dan tekanan tinggi
- tekanan rendah dan temperatur tinggi
- tekanan tinggi dan temperatur tinggi

SKALU-77-64

Kalau kita mengetahui kalor pembentukan $Fe_3O_4 = +266$ kkal dan kalor pembentukan H_2O (uap) = +58 kkal, berapakah kalor reaksi reduksi

- $3 \text{ Fe} + 4 \text{ H}_2\text{O (uap)} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$
- 34 kkal
- B. 208 kkal
- C. 324 kkal
- D. 498 kkal
- E. tak ada jawaban yang benar

SKALU-77-65

Kalau 5 cc asam dari 0,1 N dapat dinetralkan oleh 10 cc larutan KOH (BM = 56), maka 1 liter larutan KOH tersebut mengandung ...

- A. 2,8 gram KOH
- B. 5,6 gram KOH
- 1,4 gram KOH C.
- D. 0,56 gram KOH
- E. 0,28 gram KOH

SKALU-77-66

Untuk reaksi NH₄OH ≒ NH₄⁺ + OH⁻. Diketahui tetapan kesetimbangan K = 1.81×10^{-5} . Bila 3,4 gram NH₃ dilarutkan ke dalam air sehingga volume menjadi 2 liter, maka konsentrasi NH4 dalam larutan adalah ...

(N=14, O=16, H=1,0)

- A. 1.81×10^{-5}
- $1,34\times10^{-3}$ B.
- $1,81 \times 10^{-1}$ C.
- $4,25 \times 10^{-2}$ D.
- $6,00 \times 10^{-3}$

SKALU-77-67

Diketahui reaksi kesetimbangan : N₂O4 ≒ 2NO₂

Konsentrasi mula-mula $N_2O_4 = 0.01$ M.

Apabila pada keadaan seimbang konsentrasi

 $NO_2 = 0.0010M$ dan $N_2O_4 = 0.0016$ M, maka tetapan keseimbangan pada 25°C ...

- A. $6,25 \times 10^{-1}$
- $1,19 \times 10^{-4}$ B.
- C. $8,62 \times 10^{-5}$
- D. $6,25 \times 10^{-1}$
- $3,90 \times 10^{-1}$

SKALU-77-68

Salah satu kelemahan dari sistem berkala ialah bahwa sistem ini berkala ini tidak memberikan indikasi apa-apa tentang kemungkinan bahwa unsur-unsur dapat membentuk lebih dari satu senyawa oksida. Dengan hanya berpegang pada sistem berkala, oksida manakah yang diharapkan dari unsur nitrogen (nomor atom = 7)?

- N_2O_4
- NO_2 B.
- C. NO
- D. N_2O E. N_2O_5

SKALU-77-69

Unsur ₁₉ K ³⁹ mempunyai konfigurasi ...

- A. $1s^2 2s^2 2p^6 3s^2 3p^5 3d^1 4s^1$
- B.
- 1s² 2s² 2p⁶ 3s² 3p⁵ 4d¹ 1s² 2s² 2p⁶ 3s² 3p⁵ 3d¹ 1s² 2s² 2p⁶ 3s² 3p⁵ 3d¹⁰ 4s² 4p⁶ 5s² 4d¹ 1s² 2s² 2p⁶ 3s² 3p⁵ 4s¹ D.

SKALU-77-70

Misalkan bijih besi mengandung 90 % Fe₂O₃.

Untuk memperoleh besi murni, oksida direduksi dengan CO. Untuk mendapatkan 1 ton besi murni maka berat bijih besi yang dibutuhkan adalah ...

- 1,59 ton Α.
- В. 2,54 ton
- C. 1,43 ton
- D. 2.86 ton
- E. 3,65 ton

SKALU-77-71

20 ml 0,1 larutan KOH dinetralkan dengan 20 ml 0,1 N larutan asam asetat. Penunjuk yang manakah harus digunakan?

- jingga metil (menunjukkan pada pH 3,1 4,4) A.
- B. merah metil (menunjukkan pada pH 4,2-6,2)
- C.. bromtimol biru (menunjukkan pada pH 6,0 – 7,6)
- fenolflatein (menunjukkan pada pH 8 –10) D.
- bukan salah satu dari penunjuk di atas

SKALU-77-72

Nama yang sesuai dengan aturan nama (nomenklatur) organik ialah ...

- 2-etil-3-metil pentana A.
- 2-isopropil-3-metil pentana
- 2,4,4-tribrom heksana C.
- 1,3-dimetil butana D.
- 3,5-dietil heptana E.

SKALU-77-73

Unsur-unsur radioaktif pada sistem berkala diketemukan pada bagian ...

- atas
- B. kiri
- C. bawah
- D. kanan
- E. tengah

SKALU-77-74

Pembuatan asam nitrat, HNO3, secara teknis berlangsung dalam tahap-tahap sebagai berikut:

- (a) reaksi antara nitrogen dan hidrogen, menghasilkan amoniak
- (b) oksidasi dari amoniak, menghasilkan nitrogen (IV) oksida dan air
- (c) reaksi antara nitrogen (IV) oksida dengan air memberikan asam nitrat dan nitrogen (III) oksida.

Secara teoritis, jumlah mol asam nitrat yang dapat dihasilkan dari satu mol nitrogen ialah ...

- A. 1,00 mol
- B. 1,33 mol
- C. 1,50 mol
- D. 2,00 mol
- E. 2,67 mol

SKALU-77-75

0,6 mol suatu zat kalau dilarutkan dalam 2 liter maka konsentrasinya tidak akan tepat menjadi 0,3 molar

SEBAB

Konsentrasi 0,3 molar harus berarti ada 0,3 mol zat yang terlarut dalam tiap liternya

SKALU-77-76

Suatu katalis tidak mempengaruhi tetapan suatu reaksi

SEBAB

Katalis hanya mempercepat tercapainya keadaan setimbang

SKALU-77-77

Pembakaran bahan bakar pada kendaraan-kendaraan bermotor dapat mengakibatkan polusi udara yang berbahaya bagi manusia

SEBAB

Pada pembakaran tak sempurna dari hidrokarbon terjadi CO yang beracun

SKALU-77-78

Pada reaksi Haber untuk amoniak, disamping tekanan tinggi, digunakan temperatur yang agak tinggi juga ($\pm 500~^0$ C) yang sebenarnya kurang baik

SEBAB

Kesetimbangan amoniak $N_2 + 3H_2 \leftrightarrows 2NH_3$ merupakan reaksi eksoterm

SKALU-77-79

Glisina tidak memutar bidang cahaya terpolarisasi

SEBAB

Glisina adalah zat asam aminio yang paling sederhana

SKALU-77-8

Reaksi $2Ag + Zn^{2+} \rightarrow 2Ag^{+} + Zn$, tidak mungkin dapat ber jalan dalam suatu sel elektro saja

SEBAB

Zn terletak di atas sebelum Ag dalam sel deret volta

SKALU-77-81

Lima gram N_2 direaksikan dengan 5 gr O_2 menghasilkan 10 grNO

SEBAB

Menurut hukum kekekalan massa, jumlah massa zat sebe-lum dan sesudah reaksi adalah tetap

SKALU-77-82

Larutan KCl 0,1 molar (dalam air) dan larutan gula 0,1 molar (dalam air) akan mendidih ada suhu yang sama

SEBAB

Setiap macam larutan dalam air dengan konsentrasi sama molar yang sama akan mendidih pada suhu yang sama

SKALU-77-83

Pada penentuan Cu²⁺ secara kuantitatif dalam suatu larutan dapat dipakai cara elektrolisa dengan elektroda-elektroda dari Pt

SEBAB

Seluruh ion Cu²⁺ akan mengendap sebagai Cu pada katoda dari Pt pada elektrolisa larutan garam cupri, bila Pt dipergunakan sebagai elektrodanya

SKALU-77-84

Aseton dapat mereduksi larutan Fehling

SEBAB

Aseton mempunyai gugus karbonil

SKALU-77-85

Jika suatu isotop radioaktif memancarkan sinar alpha maka nomor atomnya bertambah dengan 2

SEBAB

Sinar alpha terdiri dari inti helium yang bernomor atom

SKALU-77-86

HCl lebih kuat kesamaannya daripada HBr

SEBAB

Keelektronegatifan Cl lebih kecil daripada Br

SKALU-77-87

Unsur-unsur gas mulia diberi valensi nol

SEBAB

Unsur-unsur gas mulia tidak dapat membentuk senyawa

SKALU-77-88

Isotop 12C dan 13C mempunyai sifat kimia yang sama

SEBAB

Konfigurasi elektron 12C identik 13C

SKALU-77-89

Prinsip elektrokimia dipakai pada proses pemurnian tem baga. Pada proses ini logam tembaga murni dipakai sebagai katoda dan tembaga yang akan dimurnikan dipakai sebagai anoda. Keduanya berada dalam larutan tembaga (II) sulfat, hal ini dapat dilakukan

SEBAB

Perbedaan potensial dapat diatur sehingga hanya cukup bagi anoda untuk melepaskan ion tembaga ke dalam larutan, kemudian ion tereduksi menjadi logam yang menempel pada katoda sedangkan logam-logam perak dan emas tidak teroksidasi dan mengendap

SKALU-77-90

Suatu campuran es dan air yang diaduk baik, ada dalam kesetimbangan. Bila ke dalamnya ditambahkan sedikit es suhu tidak berubah

SEBAB

Pada kesetimbangan es ≒ air tidak dapat diterapkan azas Le Chatelir

SKALU-77-91

Untuk memisahkan ion Zn⁺⁺ dan ion Al⁺³, larutan yang berisi ion-ion tersebut dituangi larutan ...

- (1) KOH berlebih
- (2) Na_2CO_3
- (3) NaOH berlebih
- (4) NH₄OH berlebih

SKALU-77-92

Senyawa yang dapat bereaksi dengan I2 dan NaOH untuk menghasilkan Iodoform ialah ...

- (1) etanal
- (2) etanol
- (3) propanal-2
- (4) propanol-6

SKALU-77-93

Sebuah unsur dengan konfigurasi elektron (Xe) 4f¹⁴ 5d¹⁰ $6s^2 6p^1$ ialah ...

- (1) mempunyai nomor atom 81
- (2) adalah unsur halogen
- berada dalam golongan III dalam sistem periodik (3)
- (4) adalah unsur transisi

SKALU-77-94

Antara gas CO dan gas CO2 dapat kita bedakan dengan jalan membandingkan ...

- reaksi terhadap O2 (1)
- pH dari masing-masing larutannya dalam air (2)
- efek dari aliran masing-masing gas ke dalam (3) tabung panas berisi CuO
- (4) efek dari pamnasan masing-masing gas

SKALU-77-95

Jika diketahui berat atom Ca = 40 dan berat atom Na = 23maka ...

- 10 gram Ca mempunyai jumlah atom yang sama (1) dengan 23 gram Na
- (2) berat 10 atom Ca lebih besar daripada berat 10 atom
- (3) 1 mol Ca lebih berat dari 1 mol Na
- (4) dalam 1 gram Ca terdapat jumlah atom yang lebih besar dari pada dalam 1 gram Na

SKALU-77-96

Reaksi redoks yang benar adalah ...

- $NO_3^- + 4H^+ + 3Ag \rightarrow NO + 2H_2O + 2Ag^+$ (1)
- $2MnO^{-} + 5SO_{2} + 2H_{2}O \rightarrow 2Mn^{2+} + 5SO_{4}^{2-} +$ (2)
- $3Cu + 2HNO_3 + 6H^+ \rightarrow 3Cu^{2+} + 4H_2O + 2NO$ (3)
- $Cr_2O_7^{2-} + 14H^+ + 6Cl^- \rightarrow 2Cr^{3+} + 7H_2O + 3Cl_2$ (4)

SKALU-77-97

Larutan Cu²⁺ 0,1 molar dan larutan listrik Ni²⁺ 0,1 molar masing-masing dielektrolisa. Kalau banyaknya listrik yang dialirkan kepada masing-masing larutan tersebut sebesar satu faraday, maka ...

- logam Cu dan logam Ni yang dibebaskan sama (1) banyaknya
- (2) atom-atom logam Cu dan Ni yang dibebaskan akan sama banyaknya
- (3) dalam proses elektrolisa ini hanya semata-mata terjadi reaksi reduksi dan tidak disertai reaksi oksidasi dari zat lain
- (4) logam-logam Cu dan Ni terbebaskan melekat pada katodanya

SKALU-77-98

Kesetimbangan A + B \rightleftharpoons 2AB – Q, Q = + a kkal, mempunyai ciri khas sebagai berikut ...

- jumlah molekulnya sebelum dan sesudah reaksi
- (2) dipengaruhi oleh perubahan tekanan
- (3) tidak dipengaruhi oleh perubahan suhu
- (4) tidak dipengaruhi oleh perubahan volume

SKALU-77-98

Pada reaksi kesetimbangan A + B $\stackrel{V_2}{\leftrightarrows}$ C + D

V₁ = kecepatan reaksi ke kanan

 V_2 = kecepatan reaksi ke kiri

K = tetapan kesetimbangan

Bila pada reaksi terebut ditambahkan katalis positif, maka ..

- V₁ akan bertambah besar (1)
- (2) V₂ akan bertambah besar
- (3) harga K tetap
- (4) V₁, V₂ bertambah besar dan K bertambah besar pula

SKALU-77-100

Minyak bumi mencemari perairan seluas 1000 km² membentuk lapisan setebal 0,2 mm. Berat molekul ratarata minyak bumi tersebut adalah 100. Rapat massanya 0,8 gr/cm³. Dengan menganggap bilangan Avogadro = 6×10^{23} jumlah minyak bumi yang mencemari peraran adalah ...

- $2 \quad \times 10^5 \ m^3$ (1)
- (2)
- $\begin{array}{cc} 2 & \times 10^5 \text{ ton} \\ 1,\!6 \times 10^9 \text{ mol} \end{array}$ (3)
- $1,2 \times 10^{33}$ molekul (4)