Àlex Batlle Casellas

- 12. Si $A \subset \mathbb{R}^{m}$, demostreu que:
 - a) \mathring{A} és el conjunt obert més gran contingut en A. És a dir, si B és un obert dins A, aleshores $B \subset \mathring{A}$.
 - b) \bar{A} és el conjunt tancat més petit que conté A. És a dir, si C és un tancat que conté A, aleshores $\bar{A} \subset C$.

Resolució

- a) B és obert $\iff \mathring{B} = B \iff \forall p \in B \ \exists B_r(p) \subset B \implies \forall p \in B \subset A \ \exists B_r(p) \subset B \subset A \implies \mathring{B} \subset \mathring{A} \implies B \subset \mathring{A}.\Box$
- b) $\forall p \in \bar{A} \ (\forall B_r(p) \ A \cap B_r(p) \neq \emptyset) \implies \forall p \in \bar{A} \ (\forall B_r(p) \ C \cap B_r(p) \neq \emptyset) \implies \forall p \in \bar{A}, p \in \bar{C} = C \implies \bar{A} \subset C.\Box$
- **13.** Donats dos conjunts A, B, es defineix $A + B = \{x + y \mid x \in A, y \in B\}$. Suposeu A obert.
 - a) Demostreu que si $y \in B$, el conjunt $A + \{y\}$ és obert.
 - b) Demostreu que el conjunt A + B és obert.

Resolució

- a) $A + \{y\} = \{a + y \mid a \in A\}$. Com que la suma ha d'estar ben definida, sumar y al conjunt és anàleg a fer un desplaçament fixat de tot el conjunt A. Aquesta operació no modifica l'estructura d'A, doncs només el desplaça a una altra localització dins del conjunt ambient M, i els elements de la frontera d'A segueixen sense pertànyer a $A + \{y\}$. Per tant, sabent que Int A, Fr A, Ext A formen una partició del conjunt ambient per qualsevol conjunt A, segueix que $A + \{y\} = \text{Int}(A + \{y\})$, i per tant, $A + \{y\}$ és un obert. \Box
- b) Això ho podem veure utilitzant l'apartat anterior; $A + B = \{a + b \mid a \in A, b \in B\}$ és el mateix que la unió següent:

$$\bigcup_{y \in B} (A + \{y\}).$$

Com que $A + \{y\}$ és obert i és sabut que la unió arbitrària d'oberts és oberta, es dedueix que A + B és un obert.

- **15.** Demostreu que:
 - a) La intersecció d'un nombre arbitrari (finit o infinit) de subconjunts compactes de \mathbb{R}^n també és compacte.
 - b) La unió d'un nombre finit de subconjunts compactes de \mathbb{R}^n també és compacte.
 - c) La unió d'un nombre infinit de subconjunts compactes de \mathbb{R}^n pot no ser compacte. (Doneu-ne exemples).

1

Resolució

a) Com que ens trobem a \mathbb{R}^n , n'hi ha prou amb veure que la intersecció arbitrària de tancats és tancada (vist a teoria) i que la intersecció arbitrària de fitats és fitada.

Tancada. Vist a teoria.

- Fitada. Tenim un nombre arbitrari de conjunts fitats $\{A_{\alpha}\}, A_{\alpha} \subseteq M$. Sabem, com a propietat elemental de conjunts, que $\bigcap_{\alpha} A_{\alpha} \subseteq A_i \ \forall i$. Com que els A_i són fitats, existeix una bola $B_{r_i}(p_i)$, per algun $p_i \in A_i$ tal que $A_i \subseteq B_{r_i}(p_i)$. Per tant, sigui $B_{r_0}(p_0)$ la bola més gran que fita els conjunts A_i ; aleshores tenim $\bigcap_{\alpha} A_{\alpha} \subseteq A_i \subseteq B_{r_0}(p_0) \ \forall i$ i, per tant, $\bigcap_{\alpha} A_{\alpha}$ està fitat. \square
- b) Com que ens trobem a \mathbb{R}^n , n'hi ha prou amb veure que la unió finita de tancats és tancada (vist a teoria) i que la unió finita de fitats és fitada.

Tancada. Vist a teoria.

Fitada.

c)