

Noções de Inferência Estatística Introdução aos Testes de Hipóteses

Noções de Inferência Estatística Introdução aos Testes de Hipóteses

Os **Testes de Hipóteses** são uma técnica de **Inferência** muito importante para realizar **comparações** dos dados amostrais com valores de referência ou dados de outras amostras.

Uma característica fundamental nos **Testes de Hipóteses** é a de realizar essas comparações considerando, além das medidas resumo, a **distribuição de probabilidades** do fenômeno estudado e as **incertezas** relacionadas a utilização de uma amostra.

Introdução aos Testes de Hipóteses

Por essa grande relevância, os **Testes de Hipóteses** estão muito presentes em nosso dia a dia, em aplicações como por exemplo:

Testes A/B

Comparação do efeito de duas campanhas diferentes de marketing.

Estudos Clínicos

Medicamento vs. Placebo,
Tratamento A vs.
Tratamento B.

Melhoria Contínua

Desempenho do novo processo vs. processo antigo.

Noções de Inferência Estatística Testes de Hipóteses Média de uma população

Teste de Hipóteses: Média de uma população

Uma empresa responsável por realizar testes de qualidade nas águas das represas que abastecem a região metropolitana da cidade de São Paulo coletou **100 amostras de água da represa Billings**. Após realizar a análise de pH, a empresa obteve os seguintes dados:

	NIO	рН		
Represa	Nº Amostras	Média	Desvio Padrão	
Billings	100	5,8	1,4	

Como a Legislação Brasileira define que apenas águas com o **pH entre 6 e 9 sejam utilizadas no abastecimento**, surgiu a seguinte pergunta:

Deve-se **suspender o fornecimento de água** das regiões abastecidas pela represa Billings?

Teste de Hipóteses: Média de uma população

Lembre-se: como estamos analisando **dados de uma amostra**, devemos utilizar corretamente as **técnicas de inferência** para tomarmos a **melhor decisão**. E neste caso, devemos utilizar os **Testes de Hipóteses** para realizar essa comparação corretamente.

	NIO	рН		
Represa	Nº Amostras	Média	Desvio Padrão	
Billings	100	5,8	1,4	

Como queremos **comparar a Média do pH** medido nas 100 amostras com um **valor de referência** e o histograma do pH se assemelha a uma **distribuição Normal**, o **Teste de Hipóteses** mais adequado é o

Teste de Hipóteses: Média de uma população

1º Passo: Definir as Hipóteses

A partir da pergunta que desejamos responder, definimos as hipóteses que serão testadas.

Teremos sempre:

H₀ ou **Hipótese nula**H₁ ou **Hipótese alternativa**

Para responder a pergunta se deve-se ou não suspender o abastecimento de água, precisamos saber se a **média do pH medido a partir das 100 amostras** é **estatisticamente** igual a 6 ou inferior a 6.

A **Hipótese Nula** sempre apresentará uma **igualdade**, pois é sob essa condição que calculamos a **estatística do teste**. Já a **Hipótese Alternativa** sempre apresentará uma **desigualdade**.

Dessa forma, teremos as seguintes hipóteses nula e alternativa:

 H_0 : O pH das águas da represa Billings é igual a 6, ou: **pH = 6**

 H_1 : O pH das águas da represa Billings é inferior a 6, ou: **pH < 6**

Teste de Hipóteses: Média de uma população

2º Passo: Calcular a estatística do teste

Cada Teste de Hipóteses possui sua própria estatística de teste, que é um cálculo realizado com os dados da amostra. Como utilizaremos o **Teste-t**, sua **estatística de teste** é definida pela equação abaixo:

$$T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S}$$

n: tamanho da amostra

 \overline{X} : média amostral

 μ_0 : média sob a hipótese H_0

S: desvio padrão amostral

Realizando o cálculo com os dados que obtivemos das 100 amostras, temos:

$$T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S} = \frac{\sqrt{100}(5,8 - 6)}{1,4} = -1,43$$

Teste de Hipóteses: Média de uma população

3º Passo: Calcular o p-valor

Cada estatística de teste possui uma distribuição de probabilidades. A partir dela e das hipóteses calculamos o p-valor, que é uma medida de quão plausível é H₀.

A **estatística do Teste-t** possui uma **distribuição** de probabilidade **t-Student** com n-1 graus de liberdade. É essa distribuição que utilizaremos para calcular o **quão plausível** é a **hipótese nula**.

Além da distribuição da estatística do teste, usamos também a **hipótese alternativa**, pois **dependendo da desigualdade** definida, calcularemos regiões diferentes da distribuição t-Student.

H₁: <
Distribuição da Estatistica de Teste

p-valor

 $H_1: >$

Teste de Hipóteses: Média de uma população

3º Passo: Calcular o p-valor

Cada estatística de teste possui uma distribuição de probabilidades. A partir dela e das hipóteses calculamos o p-valor, que é uma medida de quão plausível é H₀.

Relembrando as hipóteses definidas:

 H_0 : O pH das águas da represa Billings é igual a 6, ou: **pH = 6**

 H_1 : O pH das águas da represa Billings é inferior a 6, ou: **pH < 6**

Como a hipótese alternativa foi definida como "<", calcularemos o **p-valor** na cauda esquerda da **distribuição** de probabilidade **t-Student** com 99 graus de liberdade.

Para o cálculo, vamos utilizar a função

DIST.T do Excel:

DIST.T(-1,43; 99; VERDADEIRO) = 0,078

Teste de Hipóteses: Média de uma população

4º Passo: Comparar e tomar decisão

Por fim, comparamos o **p-valor** com um **nível de significância** para concluir se **rejeitamos** ou **não rejeitamos** a hipótese **H**₀.

Agora vamos comparar o p-valor calculado de **7,8%** com a **Escala de significância de Fisher**:

Níve significâ	10%	5%	2,5%	1%	0,5%	0,1%
Evidêno contra	Margina	l Moderada	Substancial	Forte	Muito forte	Fortíssima

O valor de **7,8**% fica localizado entre "**Marginal**" e "**Moderada**", o que significa que as **evidências contra H₀ não são tão fortes**.

Como regra geral, compara-se o p-valor com o nível de significância de 5%:

- P-valor inferior a 5%: rejeição da hipótese nula (H₀)
- P-valor superior a 5%: não rejeição da hipótese nula (H₀)

Teste de Hipóteses: Média de uma população

4º Passo: Comparar e tomar decisão

Por fim, comparamos o **p-valor** com um **nível de significância** para concluir se **rejeitamos** ou **não rejeitamos** a hipótese H_0 .

Como o **p-valor** de **7,8%** é maior do que o **nível de significância** de 5%, podemos concluir então que **não existem evidências estatísticas suficientes contra H₀**, ou seja, não rejeitamos H₀.

Relembrando as hipóteses definidas:

 H_0 : O pH das águas da represa Billings é igual a 6, ou: **pH = 6**

 H_1 : O pH das águas da represa Billings é inferior a 6, ou: **pH < 6**

E como **não rejeitamos H**o, podemos dizer que **não existem evidências estatísticas** de que o pH das águas da represa Billings não seja igual a 6.

Portanto, **não é necessário suspender o fornecimento de água** das regiões

abastecidas pela represa Billings. JOAO ESTEVAN LEONCIO DA SILVA BARBOSA - jestevan12@gmail.com - CPF: 134.982.877-70

Estrutura dos Testes de Hipóteses

Os **4 passos** que acabamos de realizar constituem o método de aplicação dos **Testes de Hipóteses**, e serão sempre os mesmos para qualquer **Teste de Hipóteses**.

Entender o conceito de cada passo te possibilitará utilizar qualquer **Teste de Hipóteses**, afinal existem muitos, cada um adequado para atender uma necessidade de análise.

1º Passo: Definir as Hipóteses

A partir da pergunta que desejamos responder, definimos as **hipóteses que serão testadas**.

Teremos sempre:

H₀ ou **Hipótese nula**H₁ ou **Hipótese alternativa**

2º Passo: Calcular a estatística do teste

Cada Teste de Hipóteses possui sua própria estatística do teste, que é um cálculo realizado com os dados da amostra.

3º Passo: Calcular o p-valor

Cada estatística de teste possui uma distribuição de probabilidades. A partir dela e das hipóteses calculamos o p-valor, que é uma medida de quão plausível é H₀.

4º Passo: Comparar e tomar decisão

Por fim, comparamos o **p-valor** com um **nível de significância** para concluir se **rejeitamos** ou **não rejeitamos** a hipótese **H**₀.

Teste de Hipóteses: Média de uma população

O que significa rejeitar ou não rejeitar H_0 ?

2 Hipóteses:

Culpado ou Inocente?

Levantamento:

Conjunto de provas (evidências)

Decisão:

Evidências suficientes Culpado

Não há evidências suficientes

Inocente

Noções de Inferência Estatística
Testes de Hipóteses
Média e Variância de duas populações

Teste de Hipóteses: Média de duas populações

A mesma empresa responsável pelos testes de qualidade nas águas das represas coletou agora **110 amostras de água da represa Guarapiranga**, realizou as mesmas análises de pH, e obteve os dados descritos na tabela abaixo:

	NIO	рН		
Represa	Nº Amostras	Média	Desvio Padrão	
Billings	100	5,8	1,4	
Guarapiranga	110	6,3	1,5	

O órgão de fiscalização suspeita que o pH das águas da represa Guarapiranga seja **superior** ao pH das águas da represa Billings, e solicitou a empresa um

JOAO ESTEVAN LEONCIO DA SILVA BARBOSA - jestevan 22 @gmail.com - CPF: 134.982.877-70

Teste de Hipóteses: Média de duas populações

Por estarmos trabalhando com **amostras** e querermos fazer a **comparação** dos valores dessas populações, precisamos utilizar os **Testes de Hipóteses** para dar uma **resposta confiável** para a pergunta: as águas da Guarapiranga possuem um pH superior as águas da Billings?

	Nº	рН		
Represa	Amostras	Média	Desvio Padrão	
Billings	100	5,8	1,4	
Guarapiranga	110	6,3	1,5	

Como o histograma das amostras da represa Guarapiranga também se assemelha a uma distribuição Normal, vamos utilizar o Teste-t para

Teste de Hipóteses: Média de duas populações

1º Passo: Definir as Hipóteses

A partir da pergunta que desejamos responder, definimos as hipóteses que serão testadas.

Teremos sempre:

H₀ ou **Hipótese nula**H₁ ou **Hipótese alternativa**

Para responder a pergunta precisamos saber se a média do pH da represa

Guarapiranga é estatisticamente maior do que a média do pH da represa Billings.

Como já sabemos que a **Hipótese Nula** sempre apresentará uma **igualdade** e a

Hipótese Alternativa uma desigualdade, definimos as seguintes hipóteses nula e alternativa:

 H_0 : O pH da Guarapiranga é **igual** ao pH da Billings, ou: $pH_G = pH_B$

 H_1 : O pH da Guarapiranga é **superior** ao pH da Billings, ou: $pH_G > pH_B$

Teste de Hipóteses: Média de duas populações

2º Passo: Calcular a estatística do teste

Cada Teste de Hipóteses possui sua própria estatística de teste, que é um cálculo realizado com os dados da amostra.

3º Passo: Calcular o p-valor

Cada **estatística de teste** possui uma distribuição de probabilidades. A partir dela e das hipóteses calculamos o **p-valor**, que é uma medida de quão plausível é H_0 .

No caso do **Teste-t para 2 populações**, o Excel possui a função **TESTE.T** que calcula a estatística de teste e o p-valor em apenas 1 passo.

pH Billings	pH Guarapiranga
4,59	7,88
5,64	5,43
3,28	6,52
4,63	6,75
6,93	7,11
7,30	7,23
7,89	3,95
ב רכ	ב מז

caudas: 1: unicaudal ou 2: bicaudal

tipo: 1: par, 2: variâncias iguais ou 3: variâncias diferentes

Em caudas, quando H₁ é "<" ou ">" escolhemos unicaudal, e quando H₁ é "≠" escolhemos **bicaudal**. Como o H₁ definido é ">", utilizaremos "**1**" para indicar a opção **unicaudal**. Já em tipo, indicamos qual o tipo do teste. A opção "par" não se aplica neste caso

(veremos mais adiante), mas vamos precisar escolher entre "variâncias iguais" e

Teste de Hipóteses: Média de duas populações

2º Passo: Calcular a estatística do teste

Cada Teste de Hipóteses possui sua própria estatística de teste, que é um cálculo realizado com os dados da amostra.

3º Passo: Calcular o p-valor

Cada estatística de teste possui uma distribuição de probabilidades. A partir dela e das hipóteses calculamos o p-valor, que é uma medida de quão plausível é H₀.

No caso do **Teste-t para 2 populações**, o Excel possui a função **TESTE.T** que calcula a **estatística de teste** e o **p-valor** em apenas 1 passo.

pH Billings	pH Guarapiranga
4,59	7,88
5,64	5,43
3,28	6,52
4,63	6,75
6,93	7,11
7,30	7,23
7,89	3,95
ב רכ	ב מז

caudas: 1: unicaudal ou 2: bicaudal

tipo: 1: par, 2: variâncias iguais ou 3: variâncias diferentes

Para podermos escolher a **opção correta** correta, precisaremos fazer um **Teste de Hipóteses** para testar se as **variâncias do pH** das águas das duas represas **podem ser consideradas iguais**. Para isso, vamos fazer uma pausa neste teste de média e aplicar o **Teste-F** que é utilizado para avaliar se as **duas variâncias podem ser consideradas**

JOAO ESTEVAN LEONCIO DA SILVA BARBOSA - jestevan Leoncio da Silva

Teste de Hipóteses: Variância de duas populações

1º Passo: Definir as Hipóteses

A partir da pergunta que desejamos responder, definimos as hipóteses que serão testadas.

Teremos sempre:

H₀ ou **Hipótese nula**H₁ ou **Hipótese alternativa**

Como queremos saber exatamente se as variâncias do pH das águas das duas represas podem ser consideradas iguais, definimos as seguintes hipóteses nula e alternativa:

 H_0 : As variâncias do pH da Billings e Guarapiranga são **iguais**, ou: $Var_{pHG} = Var_{pHB}$

 H_1 : As variâncias do pH da Billings e Guarapiranga são **diferentes**, ou: $Var_{pHG} \neq Var_{pHB}$

Teste de Hipóteses: Variância de duas populações

2º Passo: Calcular a estatística do teste

Cada Teste de Hipóteses possui sua própria estatística de teste, que é um cálculo realizado com os dados da amostra.

3º Passo: Calcular o p-valor

Cada estatística de teste possui uma distribuição de probabilidades. A partir dela e das hipóteses calculamos o p-valor, que é uma medida de quão plausível é H₀.

No caso do **Teste-F**, o Excel possui a função **TESTE.F** que calcula a **estatística de teste** e o **p-valor** em apenas 1 passo.

pH Billings	pH Guarapiranga
4,59	7,88
5,64	5,43
3,28	6,52
4,63	6,75
6,93	7,11
7,30	7,23
7,89	3,95
ב רכ	ב מיז

TESTE.F(matriz 1 ; matriz 2) = 38,3%

O resultado da função **TESTE.F** foi **38,3%**. Como o **p-valor** indica o **quão plausível é H_0**, podemos antecipar que neste teste H_0 se mostra bastante plausível.

Teste de Hipóteses: Variância de duas populações

4º Passo: Comparar e tomar decisão

Por fim, comparamos o **p-valor** com um **nível de significância** para concluir se **rejeitamos** ou **não rejeitamos** a hipótese **H**₀.

Como o **p-valor** de **38,3**% é maior que o **nível de significância** de **5**%, podemos concluir que **não existem evidências estatísticas suficientes contra H_0**, ou seja, **não rejeitamos** H_0 .

Relembrando as hipóteses definidas:

 H_0 : As variâncias do pH da Billings e Guarapiranga são **iguais**, ou: $Var_{pHG} = Var_{pHB}$

 H_1 : As variâncias do pH da Billings e Guarapiranga são diferentes, ou: $Var_{pHG} \neq Var_{pHB}$

E como não rejeitamos H₀, podemos dizer que não existem evidências estatísticas de que a variância do pH das águas das duas represas não sejam iguais.

Portanto, devemos escolher a opção "2: variâncias iguais".

Teste de Hipóteses: Média de duas populações

2º Passo: Calcular a estatística do teste

Cada Teste de Hipóteses possui sua própria estatística de teste, que é um cálculo realizado com os dados da amostra.

3º Passo: Calcular o p-valor

Cada estatística de teste possui uma distribuição de probabilidades. A partir dela e das hipóteses calculamos o p-valor, que é uma medida de quão plausível é H₀.

Voltando a comparação das medias, sabemos agora que o tipo a ser informado é o 2: variâncias iguais.

pH Billings	pH Guarapiranga
4,59	7,88
5,64	5,43
3,28	6,52
4,63	6,75
6,93	7,11
7,30	7,23
7,89	3,95
ב רכ	ב מי

caudas: 1: unicaudal ou 2: bicaudal

tipo: 1: par, 2: variâncias iguais ou 3: variâncias diferentes

TESTE.T(matriz 1 ; matriz 2 ; 1 ; 2) = 0,7%

O resultado da função **TESTE.F** foi **0,7%**. Como o **p-valor** indica o **quão plausível é H_0**, podemos antecipar que neste teste H_0 se mostra pouco plausível.

Teste de Hipóteses: Média de duas populações

4º Passo: Comparar e tomar decisão

Por fim, comparamos o **p-valor** com um **nível de significância** para concluir se **rejeitamos** ou **não rejeitamos** a hipótese **H**₀.

Como o **p-valor** de **0,7**% é menor que o **nível de significância** de **5**%, podemos concluir que **existem evidências estatísticas suficientes contra H₀**, ou seja, **rejeitamos H₀**.

Relembrando as hipóteses definidas:

 H_0 : O pH da Guarapiranga é **igual** ao pH da Billings, ou: $\mathbf{pH_G} = \mathbf{pH_B}$

 H_1 : O pH da Guarapiranga é **superior** ao pH da Billings, ou: $pH_G > pH_B$

E como **rejeitamos** H₀, podemos dizer que **existem evidências estatísticas** de que a **média do pH** das águas da **Guarapiranga é maior** do que a **média do pH** das águas da **Billings**.

Noções de Inferência Estatística
Testes de Hipóteses
Média de duas populações pareadas

Teste de Hipóteses: Média de duas populações pareadas

Um outro **Teste de Hipóteses** bastante útil é o **Teste-t Pareado**, muito utilizado para avaliar as mesmas unidades observacionais em diferentes condições. Por exemplo:

- Pessoas **antes** e **depois** de um tratamento.
- Desempenho de máquinas antes e depois de um ajuste.
- Produtividade de colaboradores em home office e no escritório.

Ou seja, o objetivo é avaliar se a **diferença entre as médias** nas diferentes condições **é igual a zero**.

Teste de Hipóteses: Média de duas populações pareadas

Buscando reduzir custos e melhorar a qualidade de vida de seus colaboradores, uma empresa de atendimento decidiu fazer um **teste** para avaliar se a **adoção do home office** para os operadores produziria

Para o teste foram selecionados aleatoriamente 30 operadores que tiveram as médias das notas de avaliação (0 a 10) dos clientes registradas nos 2 locais de trabalho.

algum efeito negativo na qualidade dos atendimentos.

Com os dados obtidos, como podemos responder a pergunta: "Operadores trabalhando em home office possuem pior avaliação?"

	Nº Operadores	Avaliação dos clientes		
Local de Trabalho		Média	Desvio Padrão	
Escritório	20	7,8	1,2	
Home office	30	7,4	1,5	

Teste de Hipóteses: Média de duas populações pareadas

1º Passo: Definir as Hipóteses

A partir da pergunta que desejamos responder, definimos as hipóteses que serão testadas.

Teremos sempre:

H₀ ou **Hipótese nula**H₁ ou **Hipótese alternativa**

Para responder a pergunta precisamos saber se a média das notas dos clientes para os operadores trabalhando no escritório é estatisticamente maior do que a média das notas dos clientes para os mesmos operadores trabalhando em home office.

Relembrando, a **Hipótese Nula** sempre apresentará uma **igualdade** e a **Hipótese Alternativa** uma **desigualdade**. Portanto definimos as seguintes hipóteses **nula** e alternativa:

 H_0 : As notas no Escritório são **iguais** as notas em Home Office, ou: $N_E = N_{HO}$

 H_1 : As notas no Escritório são **maiores** que as notas em Home Office, ou: $N_E > N_{HO}$

2º Passo: Calcular a estatística do teste

Cada Teste de Hipóteses possui sua própria estatística de teste, que é um cálculo realizado com os dados da amostra.

3º Passo: Calcular o nível descritivo

Cada estatística de teste possui uma distribuição de probabilidades. A partir dela e das hipóteses calculamos o p-valor, que é uma medida de quão plausível é H₀.

No caso do **Teste-t para 2 populações pareadas**, o Excel possui a função **TESTE.T** que calcula a **estatística de teste** e o **p-valor** em apenas 1 passo.

Operador	Escritório	Home office
1	8,9	6,9
2	8,3	9,8
3	6,4	7,9
4	8,5	9,6
5	6,2	6,3
6	7,2	5,7
7	6,6	7,0
Q	6.0	7 1

caudas: 1: unicaudal ou 2: bicaudal

tipo: 1: par, 2: variâncias iguais ou 3: variâncias diferentes

TESTE.T(matriz 1 ; matriz 2 ; 1 ; 1) = 12%

Em caudas, como o H_1 definido é ">", utilizaremos "1" para indicar a opção unicaudal.

Já em tipo, utilizaremos a opção "1" para indicar que as populações são pareadas.

Já sabemos que **p-valor** indica o **quão plausível é** H_0 , e neste caso, o valor calculado de **12%** indica que H_0 **é plausível**.

Teste de Hipóteses: Média de duas populações pareadas

4º Passo: Comparar e tomar decisão

Por fim, comparamos o **p-valor** com um **nível de significância** para concluir se **rejeitamos** ou **não rejeitamos** a hipótese **H**₀.

Como o **p-valor** de **12**% é maior que o **nível de significância** de **5**%, podemos concluir que **não existem evidências estatísticas suficientes contra H_0**, ou seja, **não rejeitamos** H_0 .

Relembrando as hipóteses definidas:

 H_0 : As notas no Escritório são **iguais** as notas em Home Office, ou: $N_E = N_{HO}$

 H_1 : As notas no Escritório são **maiores** que as notas em Home Office, ou: $N_E > N_{HO}$

E como **não rejeitamos H₀**, podemos dizer que **não existem evidências estatísticas** de que a **média das notas** dos operadores no **Escritório não seja igual** a **média das notas** dos mesmos operadores em **Home Office**.

Noções de Inferência Estatística Testes de Hipóteses Proporção de duas populações

Teste de Hipóteses: Proporção de duas populações

Com todos os esforços para combater o COVID-19, surgiram diversas iniciativas para desenvolver uma vacina eficaz para reduzir o impacto dos sintomas. Um laboratório em suas pesquisas chegou a duas estratégias viáveis:

- 1. Vírus enfraquecido
- 2. RNA mensageiro

Para decidir por qual estratégia seguir, realizou um estudo clínico com 87 pessoas distribuídas aleatoriamente entre as duas estratégias.

Com os resultados obtidos, como podemos responder: " Existe diferença na estratégia em

relação à proporção de sintomas graves?"

Estratógia	Nº	Sintomas	
Estratégia	Amostras	Graves	Leves
Vírus enfraquecido	38	16%	84%
RNA mensageiro	50	28%	72%

Teste de Hipóteses: Proporção de duas populações

1º Passo: Definir as Hipóteses

A partir da pergunta que desejamos responder, definimos as hipóteses que serão testadas.

Teremos sempre: H₀ ou **Hipótese nula** H₁ ou **Hipótese alternativa** Para responder a pergunta precisamos saber se a **proporção** de pessoas com sintomas graves tendo sido vacinadas com o **vírus enfraquecido (VE)** é **estatisticamente diferente** da **proporção** de pessoas com sintomas graves que foram vacinadas **com o RNA mensageiro (RNA)**.

Definimos então as seguintes hipóteses nula e alternativa:

 H_0 : A proporção sintomas graves VE é **igual** a proporção sintomas graves RNA, ou:

 $p_{VE} = p_{RNA}$

 H_1 : A proporção sintomas graves VE é **diferente** da proporção sintomas graves

RNA, ou: $p_{VE} \neq p_{RNA}$

Teste de Hipóteses: Proporção de duas populações

2º Passo: Calcular a estatística do teste

Cada Teste de Hipóteses possui sua própria estatística de teste, que é um cálculo realizado com os dados da amostra. Para esta comparação utilizaremos o **Teste-Z para 2 populações**, que possui a seguinte **estatística de teste**:

$$Z = \frac{(\hat{p}_{VE} - \hat{p}_{RNA})}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{VE}} + \frac{1}{n_{RNA}}\right)}}$$

$$\hat{p} = \frac{\hat{p}_{VE} \cdot n_{VE} + \hat{p}_{RNA} \cdot n_{RNA}}{n_{VE} + n_{RNA}}$$

 \hat{p}_{VE} : proporção sintomas graves - vírus enfraquecido

 \hat{p}_{RNA} : proporção sintomas graves - RNA mensageiro

 \hat{p} : proporção geral de sintomas graves

 n_{VE} : número de pessoas - vírus enfraquecido

 n_{RNA} : número de pessoas - RNA mensageiro

Teste de Hipóteses: Proporção de duas populações

3º Passo: Calcular o p-valor

Cada estatística de teste possui uma distribuição de probabilidades. A partir dela e das hipóteses calculamos o p-valor, que é uma medida de quão plausível é H₀.

A estatística do Teste-Z para 2 populações possui uma distribuição de probabilidade Normal Padrão. E como a hipótese alternativa, foi definida como " ≠ ", então o p-valor será calculado somando as probabilidades nas duas caudas.

DIST.NORMP.N(-1,35; VERDADEIRO) = 9%

Multiplicando o **p-valor** calculado por 2, obtemos **18**%.

Noções de Inferência Estatística

Teste de Hipóteses: Proporção de duas populações

4º Passo: Comparar e tomar decisão

Por fim, comparamos o **p-valor** com um **nível de significância** para concluir se **rejeitamos** ou **não rejeitamos** a hipótese **H**₀.

Como o **p-valor** de **18**% é maior que o **nível de significância** de **5**%, podemos concluir que **não existem evidências estatísticas suficientes contra H_0**, ou seja, **não rejeitamos** H_0 .

Relembrando as hipóteses definidas:

 H_0 : A proporção sintomas graves VE é **igual** a proporção sintomas graves RNA

 H_1 : A proporção sintomas graves VE é **diferente** da proporção sintomas graves RNA

E como **não rejeitamos H₀**, podemos dizer que **não existem evidências estatísticas** de que a **proporção** de pessoas com sintomas graves **não é igual** nos 2 tipos de vacinas.

Noções de Inferência Estatística Testes de Hipóteses Revisão

Noções de Inferência Estatística

Aplicações dos Testes de Hipóteses

JOAO ESTEVAN LEONCIO DA SILVA BARBOSA - jestevan12@gmail.com - CPF: 134.982.877-70

Noções de Inferência Estatística Estrutura dos Testes de Hipóteses

Entender o conceito de cada passo te possibilitará utilizar qualquer **Teste de Hipóteses**, afinal existem muitos, cada um adequado para atender uma necessidade de análise.

1º Passo: Definir as Hipóteses

A partir da pergunta que desejamos responder, definimos as hipóteses que serão testadas.

Teremos sempre: H₀ ou **Hipótese nula** H₁ ou **Hipótese alternativa**

2º Passo: Calcular a estatística do teste

Cada Teste de Hipóteses possui sua própria estatística do teste, que é um cálculo realizado com os dados da amostra.

3º Passo: Calcular o p-valor

Cada estatística de teste possui uma distribuição de probabilidades. A partir dela e das hipóteses calculamos o p-valor, que é uma medida de quão plausível é H₀.

4º Passo: Comparar e tomar decisão

Por fim, comparamos o **p-valor** com um **nível de significância** para concluir se **rejeitamos** ou **não rejeitamos** a hipótese **H**₀.

O Método Científico é um processo utilizado para construção de conhecimento baseado em 5 principais etapas:

1. Definição de uma questão

Pode ser algo muito específico: "Por que o céu é azul?" ou algo mais aberto: "Como aumento as vendas em Dezembro?". Nesta etapa também são realizadas pesquisas para identificar experimentos já realizados e conhecimento já existente. Definir bem a questão é fundamental para o resultado do processo!

O Método Científico é um processo utilizado para construção de conhecimento baseado em 5 principais etapas:

2. Formulação de uma hipótese

Uma hipótese é uma **explicação** ou uma **tentativa de resposta** a questão definida no passo anterior. **Ela precisa ser testável**, ou seja, deve ser possível realizar um experimento que **comprove a hipótese formulada ou a contrarie**.

Fonte: https://xkcd.com/892/

O Método Científico é um processo utilizado para construção de conhecimento baseado em 5 principais etapas:

3. Previsão dos resultados

Antecipe o que acontecerá se a hipótese estiver correta. Podem haver várias previsões, e quanto mais improvável que uma previsão esteja correta apenas por acaso, mais convincente ela será caso se concretize. A evidência também é mais forte se a resposta para a previsão não for conhecida, pois evita o viés de retrospectiva.

Imagem: https://www.subpng.com/png-c40cr1

O Método Científico é um processo utilizado para construção de conhecimento baseado em 5 principais etapas:

4. Teste ou Experimentação

Planeje um experimento para investigar se o mundo real se comporta como previsto na etapa 3. Karl Popper recomenda que os cientistas tentem "derrubar" suas hipóteses. Além disso, deve-se tomar todo o cuidado com falhas que podem comprometer o resultado dos experimentos como erros de medida, vieses humanos entre outros.

O Método Científico é um processo utilizado para construção de conhecimento baseado em 5 principais etapas:

5. Análise dos resultados

Nesta última etapa deve-se **analisar os resultados da experimentação** e concluir se a hipótese definida na etapa 2 é refutada ou não. Se a **hipótese for refutada**, deve-se definir uma **nova hipótese**. Se os resultados da experimentação **suportam a hipótese atual**, mas as evidências não são fortes, deve-se **conduzir novos experimentos**.

Vamos praticar a utilização do Método Científico:

Um fabricante de automóveis quer descobrir quem é o público alvo para o seu novo modelo de veículo de passeio.

Com essa informação ele poderá concentrar seus recursos e esforços, e aumentar o volume de vendas de seu produto para as pessoas que realmente têm interesse na compra.

Exemplo de aplicação do Método Científico:

1. Questão

Quem é o público alvo para meu novo modelo?

2. Hipóteses

Por se tratar de um sedan espaçoso, imaginamos que o público alvo sejam famílias com 4+ pessoas

3.Previsões

Uma divulgação direcionada a esse público alvo aumentaria nosso volume de vendas

4.Experimentação

Divulgação do novo modelo em diversos meios, sem segmentar para o público alvo

5.Análises

Avaliar se os compradores estão caracterizados como famílias com 4+ pessoas

Resultados

Compradores com um perfil de famílias com 4+ pessoas

- Não há indícios contra a hipótese formulada: pode estar correta
- Se as evidências forem fracas (pouca diferença), podem ser necessários novos experimentos

Compradores sem um perfil muito definido

- Há indícios contra a hipótese formulada: provavelmente está equivocada
- Necessário reiniciar o processo a partir de uma nova hipótese

Principais vantagens da utilização do Método Científico em analytics:

- 1. Baseado em evidências empíricas e não em "achismos".
- 2. Permite replicação dos resultados por utilizar um processo estruturado.
- 3. É um **processo iterativo**, ou seja, as **respostas** para a 1ª questão podem gerar **novas questões.**
- Construção cumulativa de conhecimento, ou seja, a cada iteração novos conhecimentos são gerados.

Noções de Inferência Estatística

Método Científico aplicado a Dados

Uma abordagem bastante utilizada para organizar o processo de análise de dados é CRISP-DM.

