APPLICAZIONI di MATEMATICA A.A. 2006-2007

Traccia delle lezioni del 23 e 24 ottobre 2006

October 24, 2006

1 Residuo all'infinito

Ricordiamo la definizione di residuo all'infinito, introdotta la lezione scorsa.

Definizione. Sia f analitica per |s| sufficientemente grande, i.e. per |s| > R. Questo fatto implica che $s = \infty$ è una singolarità isolata per f oppure un punto di regolarità. Si chiama Residuo di f all'infinito, e si indica con $\text{Res}[f,\infty]$, il numero

$$Res[f,\infty] = -d_{-1}$$

dove d_{-1} è il coefficiente della serie di Laurent all'infinito, relativo al termine s^{-1} .

Quindi, ricordando la definizione dei coefficienti d_n , si ha

$$Res[f,\infty] = -\frac{1}{2\pi j} \int_{\Gamma} f(s) ds$$

dove Γ è una curva regolare (o generalmente regolare), semplice, chiusa, percorsa in senso positivo che contiene al proprio interno **tutte** le singolarità al finito di f.

 $\mathbf{2}^{\circ}$ Teorema dei Residui Sia f analitica in tutto il piano complesso eccetto un numero FINITO di punti $s_1, s_2, ... s_N$. Allora la somma di tutti i Residui, compreso il Residuo all'infinito, è nulla, ossia

$$Res[f,s_1] + Res[f,s_2] + \ldots + Res[f,s_N] + Res[f,\infty] = 0.$$

2 Formule per il calcolo del Residuo all'infinito.

Per quanto visto, il $\operatorname{Res}[f,\infty]$ è definito se e solo f è analitica per |s| sufficientemente grande o, EQUIVALENTEMENTE, se e solo se $s=\infty$ è una singolarità isolata per f oppure un punto di regolarità.

Il $\operatorname{Res}[f,\infty]$ non è pertanto definito quando $s=\infty$ è una singolarità non isolata (di accumulazione) per f.

Diremo poi che $s=\infty$ è uno zero di ordine p per f se f è analitica per |s| sufficientemente grande e

$$\lim_{s \to \infty} s^p f(s)$$
 esiste finito e non nullo.

Utilizzando la serie di Laurent all'infinito, si può provare che $s = \infty$ è uno zero di ordine p per f se e solo se lo sviluppo di Laurent all'infinito è del tipo

$$f(s) = \frac{d_{-p}}{s^p} + \frac{d_{-p-1}}{s^{p+1}} + \frac{d_{-p-2}}{s^{p+2}} + \dots, \text{ con } d_{-p} \neq 0.$$

Supponiamo ora che $\operatorname{Res}[f,\infty]$ sia definito. Allora:

1. se inoltre $s = \infty$ è uno zero almeno doppio per f,

$$Res[f,\infty]=0.$$

2. In generale, il calcolo del Residuo all'infinito (se definito) può effettuarsi tramite la formula

$$Res[f,\infty] = -Res[g(u),0],$$
 (1)

dove

$$g(u) = f(\frac{1}{u})\frac{1}{u^2},\tag{2}$$

la quale riconduce il calcolo del residuo all'infinito al calcolo del residuo al finito (in zero) della funzione "ausiliaria" g.

3 Esempi e Esercizi

♦ 1) Calcolare

$$I_1 = \frac{1}{2\pi j} \int_{\gamma} \frac{4}{(s-4)^2 s} ds,$$

dove $\gamma(t) = 5e^{jt}, t \in [0, 2\pi].$

Le singolarità della funzione

$$f(s) = \frac{4}{(s-4)^2 s}$$

sono s=0 (polo semplice) e s=4 (polo doppio). Sono entrambe interne a γ e quindi, per il primo Teorema dei Residui si ha

$$I_1 = \text{Res}[f, 0] + \text{Res}[f, 4].$$

Applicando il secondo Teorema dei Residui si ha anche

$$\operatorname{Res}[f, 0] + \operatorname{Res}[f, 4] + \operatorname{Res}[f, \infty] = 0$$

e quindi

$$I_1 = -\mathrm{Res}[f, \infty].$$

Poiché f ha in $s = \infty$ uno zero triplo, ne segue $\text{Res}[f, \infty] = 0$ e quindi

$$I_1 = 0.$$

♦ 2) Calcolare

$$I_2 = \frac{1}{2\pi i} \int_{\gamma} \frac{ds}{(s-1)(s-2)(s-3)(s-4)(s-10)},$$

dove $\gamma(t) = 5e^{jt}, t \in [0, 2\pi].$

Applicando il primo e secondo Teorema dei Residui, si ha

$$I_2 = \operatorname{Res}[f,1] + \operatorname{Res}[f,2] + \operatorname{Res}[f,3] \operatorname{Res}[f,4] = -\operatorname{Res}[f,10] - \operatorname{Res}[f,\infty].$$

Poiché la funzione integranda ha uno zero di ordine 5 in $s=\infty$, si ha Res $[f,\infty]$ =0. Inoltre, essendo s=10 polo semplice, si ha

$$\operatorname{Res}[f, 10] = \lim_{s \to 10} \frac{1}{(s-1)(s-2)(s-3)(s-4)} = \frac{1}{3024}$$

e quindi

$$I_2 = -\frac{1}{3024}.$$

♦ 3) Calcolare

$$I_3 = \frac{1}{2\pi j} \int_{\gamma} \frac{(s+1)\sin(1/s)}{s} ds,$$

dove $\gamma(t) = 5e^{jt}, t \in [0, 2\pi].$

L'unica singolarità della funzione integranda al finito è s=0, che è di tipo essenziale. In $s=\infty$ la funzione integranda ha uno zero semplice.

Applicando il primo e secondo Teorema dei Residui, si ha

$$I_3 = \operatorname{Res}[f, 0] = \operatorname{Res}[f, \infty].$$

Da (2) si ha

$$g(u) = \frac{1+u}{u^2} \sin u$$

e poiché u=0 è un polo semplice per g, si ha

Res
$$[g, 0] = \lim_{u \to 0} ug(u) = \lim_{u \to 0} (1+u) \frac{\sin u}{u} = 1.$$

Applicando la formula (1) si ottiene:

$$\operatorname{Res}[f,\infty] = -1.$$

Esercizi: Calcolare i seguenti integrali lungo le curve indicate:

$$I_4 = \frac{1}{2\pi j} \int_{\gamma} \frac{5s+1}{s^4+2} ds \qquad \gamma(t) = 6e^{jt}, t \in [0, 2\pi]$$

$$I_5 = \frac{1}{2\pi j} \int_{\gamma} \frac{4s^8+3}{s^9+1} ds \qquad \gamma(t) = 6e^{jt}, t \in [0, 2\pi]$$

$$I_{6} = \frac{1}{2\pi j} \int_{\gamma} \frac{se^{1/s}}{(s-1)(s-3)} ds \qquad \gamma(t) = 6e^{jt}, t \in [0, 2\pi]$$

$$I_{7} = \frac{1}{2\pi j} \int_{\gamma} \frac{se^{1/s}}{(s-1)(s-3)} ds \qquad \gamma(t) = 2e^{jt}, t \in [0, 2\pi]$$

Soluzione : $I_4 = 0$, $I_5 = 4$, $I_6 = 1$, $I_7 = 1 - e^{1/3}3/2$.

4 Funzioni analitiche e limitate

Teorema 1. Sia V un intorno di s_0 e sia f analitica e limitata in $V/\{s_0\}$. Allora il limite

$$\lim_{s \to s_0} f(s)$$

esiste finito.

Si osservi che tale proprietà non ha riscontro nell'ambito dell'analisi reale. Infatti, come è ben noto, per le funzioni reali di variabile reale la limitatezza di una funzione φ nell'intorno di un punto x_0 NON implica l'esistenza del limite $\lim_{x\to x_0} \varphi(x)$ [Ad esempio è sufficiente considerare la funzione $\varphi(x) = \sin(1/x)$, che è limitata in un intorno di s = 0, ma per la quale il $\lim_{x\to 0} \sin(1/x)$ non esiste]. Dal Teorema precedente si ha subito il seguente Corollario, che fornisce un'altra caratterizzazione delle singolarità eliminabili.

Corollario 1. Sia s_0 una singolarità isolata per f. Allora s_0 è eliminabile SE E SOLO SE f è limitata in un intorno di s_0 .

Teorema 2 (di Liouville). Sia f analitica e limitata in tutto il piano complesso. Allora f è costante.

Anche questa proprietà non ha riscontro nell'ambito dell'analisi reale. Ad esempio la funzione reale $\psi(x) = \sin x$ è limitata e sviluppabile in serie di potenze, ma non è costante!

Dal Teorema di Liouville si hanno poi le due seguenti conseguenze:

Corollario 2. Sia f priva di singolarità al finito e all'infinito. Allora f è costante.

Corollario 3 (Teorema fondamentale dell'algebra di D'Alembert) Ogni polinomio P di grado $n \ge 1$ ha almeno uno zero in C.

5 Esercizi

Per ciascuna delle seguenti funzioni, stabilire:

(i) se è applicabile il secondo Teorema dei Residui;

(ii) se esiste il residuo all'infinito e, in caso affermativo, calcolarlo.

$$f_1(s) = \frac{e^{1/s^2}}{\sin s^2};$$
 $f_2(s) = e^{1/s^2}(\sin s^2)$
 $f_3(s) = \sin(s^2 + s^4 + 3);$ $f_4(s) = \frac{\sin(s^2 + s^4 + 3)}{s - 3}.$