Machine Learning for Graphs and Sequential Data Exercise Sheet 01 **Normalizing Flows**

Problem 1:

- (a) We consider the following transformations:

Are these transformations invertible?

- (b) We consider the transformation $f(z) = \begin{bmatrix} \sin(z_1) \\ \cos(z_2) \end{bmatrix}$ from $[a,b] \times [c,d]$ to $[-1,1]^2$. Under what conditions on a,b,c,d is this transformation invertible ?
- (c) We consider the tranformation f(z) = Az + b from \mathbb{R}^2 to \mathbb{R}^2 , where $A \in \mathbb{R}^{2 \times 2}$ and $b \in \mathbb{R}^2$. Under what conditions on \boldsymbol{A} and \boldsymbol{b} is this tranformation invertible?

Problem 2: We consider the following forward tranformation $f(z) = \begin{bmatrix} z_1 \\ e^{z_1}z_2 \\ |1+z_2|z_3+\sin(z_1) \end{bmatrix} = x$ from

 \mathbb{R}^3 to \mathbb{R}^3 . We assume a uniform base distribution $p_1(z) = U([0,2]^3)$. Evaluate the density $p_2(x)$ at the two points $\boldsymbol{x}^{(1)} = \begin{bmatrix} 1 \\ 2e \\ 3 + \sin(1) \end{bmatrix}$ and $\boldsymbol{x}^{(2)} = \begin{bmatrix} 2 \\ e^2 \\ 6 + \sin(2) \end{bmatrix}$.

Problem 3: We consider the following forward transformation $x = f(z) = \sum_{k=1}^{K} \sigma(kz)$ from \mathbb{R} to]0, K[with $\sigma(z) = \frac{1}{1+e^{-z}}$. We assume a Gaussian base distribution $p_1(z) = \mathcal{N}(0,1)$. We sampled one point from the base distribution $z^{(1)} = 0$. Compute the corresponding sample $x^{(1)}$ from the transformed distribution and evaluate its density $p_2(x^{(1)})$.

Problem 4: We consider the forward transformation x = f(z) = az + b from \mathbb{R} to \mathbb{R} where $a, b \in \mathbb{R}$ are learnable parameters. We assume a Gaussian base distribution $p_1(z) = \mathcal{N}(0,1)$. We observed three points $x^{(1)} = 0, x^{(2)} = 1, x^{(3)} = 2$. Compute the maximum likelihood estimate of the parameters a, b.