0513367_陳中堅 Project Introduction

				•						
1	County	ID for each county		Number of people with Dengue Fever confirmed exses)	Brettan Indea	Average Temperature (°C)	Maximum Temperature (PC)	Midmon Temperature (°C)	Relative Humeity (%)	Prospiration
2		County ID	Time	Deugne Cases	BI	Tare	lmsz	Tmin	Humid	Ртеср
3	Hualten	-1	1	U	0.5	1551	18,65/14286	14./1428571	15.1"	
4	Hushen	1	2	U	.0	1894	2155/14286	158	/5.43	
5	Hushen	1	3	U	0	12.3	2191428571	1/1	/6.43	
6	Hughen	1	4	U	0	0	18.6	13.77142857	79.7	
7	Hualien	1	5	0	0	1796	20,41428571	16,05714286	76.57	
8	Hualien	1	6	0	0	1824	21,371/12857	15.58571429	74.57	
9	Huslien	1	7	n	0	19.8	22,57142857	17.51428571	75.29	
10	Huslien	1	8	n	0.06	1964	22.24285714	17.57 42807	8.7	
11	Huslien	1	ą	n	0	19.53	22,65714286	17.37 42857	82.43	
17	Huslien	1	- 10	Û	0	21.5	24.44285714	18.77142857	80	
11	Huslien	1	11	Û	0.07	20.17	23,61423571	17,14285714	80.29	
14	Huslien	1	12	0	0	2134	24,5	18,67142857	76.86	
15	Huslien	1	13	0	0	1961	23,71423571	165	63.14	
16	Huslien	1	14	0	0	2041	24.2	17.52857143	69.40	
1/	Hustien	1	15	U	0.13	2326	2634285714	20,25714265	79.43	
18	Hushen	1	15	U	0.18	23.24	25.5	20,885/1429	79.40	
19	Hadren	- 1	1/	U	0.5	2549	21,4	20.5285/146	/8.14	
20	Hadren	1	18	U	.0	246	27,64285714	22.185/1429	/9.43	
21	Hadren	1	19	U	0.17	24.3	28.6	22.04285714	/5.43	
22	Hualten	1	20	U	0	2605	30	22/	14.14	
23	Hudlien	1	21	0	0	2527	28.82857 143	22.64285714	vate Window 75.29	

-	A	Ti	C:	тэ	TC	T.	C)	TI	1	п
1	ш.	Dengue	131	Tave	liumid	Precp				
2	Huslien	30								
3	Pinghang	1178	4 136305	24 82372	74 07245	5 818786				
1	Taoyuan	312		23.04558		5.558822				_
5	Taipei	558		23.54752						
6	Chinyi City					5 30 1800				
7	Chiayi Cou			23.9355						_
8	New Taiper		0.802842							
2	Mizoli	55			79 44726					
10	Nantou	53	1.21292	19.41899						_
11	Permin	43	1.44553	23.79556						
12	Hainchn Cit									
13	Hsinchu Co			23.09202						_
14	Yilson	31	0.403178	22.88928						
15	Taiching	486	1 459147							
10		23859		24,71491						_
17	Kachsiena	35972	3.92447	25.77742		5.743463				
18	Changhua	141	1 231912	23 06346						
19	Yulin	98	0.474522	21.35403						_
20	Tratura	44		24.76432						
21	Kaching	20	0.58023	22 8871	76 738	2 258				

R 2020

- Data Source
- Dengue case surveillance data: In Taiwan, dengue fever (台灣瘧疾)is classified as a notifiable infectious disease and suspected cases must be reported to a clinic for diagnosis within 24 hours.
- These data obtained from the web-based National Infectious Disease Statistics System (https://nidss.cdc.gov.tw/en/SingleDisease.as px?dc=1&dt=4&disease=061&position=1)und er the Notifiable Disease Surveillance System (NDSS) of the Taiwan Center for Disease Control.(from January 2012 to May 2019)

Introduction

According to the computerized database of the surveillance system by Taiwan Center for
 Disease Control (Taiwan-CDC) [29], in the period of 2006 to 2012, there were 10,094 confirmed cases of

dengue virus infections, or an average of about 1442 cases per year. However, from 2012 to 2018, the Taiwan-CDC recorded 63,471 confirmed cases of dengue, or an average of about 9067 cases per year. Thus, the annual average number of dengue cases has increased by 529% in the past seven years compared with the period from 2006 to 2012.

- 1	Breteau Index	Аустадо Теппетацио (°G)	Maximum Temperature (°G)	Minimum Temperature (*G)	Relative Humidity (%)	Precpitation (mm)	Population (persons)	Population Density (per km2)
>	TAT	Tave	Tmax	Tmin	Tinmid	Precp	Pop	Pop_Den
7-8	O.:5	16.61	18.65714286	14./14285/1	/5./1	0.57	886704.9965	/2.//498/11
1	0	18.94	21.55714286	16.8	75.43	0.36	336676.9953	72.71998282
.5	O	19.8	21.91428571	17.1	76.43	2.4	336648.9965	72.72498711
6	O	U	18.6		79.71	5	336621	
7	0	17.96		16.05714286	76.57	1	336586.9948	
24	O	18.24			14:11	1.2	886552,9981	12.1
9	0	19.8		17.51428571	75.29	0.4	336518.9948	
10	0.06	19.64		17.57142857	81.71	9.58	336485	
11	U	19.53			82.43	7.21	336443.2422	
12	0	21.5	24.44285714	18.77142857	80	2.58	336401.4896	
133	0.07	20.17		17.14285714	80.29	3.57	886859.7422	
7-1	U	21.34	21.5	18.67142857	76.86	1.93	336318	
1.5	0	19.61	23.71428571	16.5	63.14	0.07	336276.263	
16>	O	20.41	24.2	17.52857143	69.48	1.5	886257.4887	
17	0.13	23.26		20.25714286	79.13	1.17	336196.9782	
18	0.18	23.24			79.43	7.2%	336136.4837	
19	0.5	23.49		20.52857143	78.14	5.33	336076	
20	0	24.67		22.18571429	79.43	5.36	336061.9991	
21	0.17	24.9		22.04285714		2.73	336047.9988	
22	0	26.03		22.7	71.11	1	336033.9991	72.6
23	O	25.27	28.82857143	22.64285714	75.29	8.64	336020	Activate Windov

- Analysis of this data is primarily intended to determine the geographic distribution of dengue cases across Taiwan's provinces.
- Simultaneously with the visualization of the density distribution of mosquito larvae, providing convincing proof of the leading cause of dengue fever, plus the influence of population density has led to the difference in rate as well as the number of cases between Taiwan's provinces.

Code

#code at kaggle #https://www.kaggle.com/lefe ulien/notebook0f66b16139 library(tidyverse) # metapackage of all tidyverse packages list.files(path = "../input") library(caret) install.packages("geojsonio") library("geojsonio") require("dplyr") require("stringr") require("data.table") require("ggplot2") require("maptools") require("knitr") require("kableExtra")

require("mapproj")

require("RColorBrewer")

require("sf")

```
path =
                      ggplot(data =
"../input/data-
deng-
                      taiwan.map) +
bi/plotTW.csv"
                        geom_sf(aes(fill =
df <-
                      NAME_2)) +
read.csv(path,
                       scale fill manual(name
h=T)
                      = "縣市區".
df <-
                                  values =
data.frame(df)
                       colorRampPalette(brewe
distill data <- df
                      r.pal(8, "Accent"))(22)) +
kable(distill dat
                       labs(title = "Taiwan
                      map")
summary(distill_
data)
                      print(distill data$ID)
taiwan.map <-
                      distill data$ID <-
st read("../input
                      as.character(distill_data$
/tw-map-
shp/gadm36_T
                      head(distill_data)
WN 2.shp")
print(taiwan.m
                      tmp <-
ap, n = 22
                       (min(distill_data$Dengue)
plot(taiwan.ma
p[1])
                      max(distill_data$Dengue
#plot(taiwan.m
ap[2:13],
                      tmp
max.plot = 12
plot(st_geometr
                      distill data$Dengue Nor
y(taiwan.map))
                      nalize <-
#plot(taiwan.m
                      (distill data$Denaue -
ap["NAME_2"],
                      min(distill_data$Dengue))
axes = TRUE)
st_geometry(tai
                       (max(distill_data$Dengu
wan.map)
```

```
my.taiwan.map <-
taiwan.map[c("NAME
_2", "geometry")]
my.taiwan.map$NAM
E 2 <-
as.character(my.taiw
an.map$NAME 2)
head(my.taiwan.map)
my.taiwan.map.data
left_join(my.taiwan.m
                                "red"),
ap, distill data,
c("NAME_2" = "ID"))
dim(mv.taiwan.map.d
                                revealization
ata)
aaplot(data =
my.taiwan.map.data)
 geom_sf(aes(fill =
Dengue Nornalize)) +
scale fill distiller(name
="Count", palette =
                                Inf)"),
"RdYIGn")
scale_fill_distiller(palett
                                "red"),
e = "Spectral", name =
                                         labels = c("0-1","1-2","2-3","3-4"))
"Dengue Cases")
```

```
my.taiwan.map.data$Dengue3 <-
cut(my.taiwan.map.data$Dengue,breaks = c(-Inf, 61,
501, 1001, Inf), right = FALSE)# divide into 4 section for
clearly revealization
ggplot(data = my.taiwan.map.data) +
 geom_sf(aes(fill = Dengue3)) +
 #scale fill distiller(name="Count", palette = "RdYIGn")
 #scale fill distiller(palette = "Spectral", name = "台灣瘧疾
Denguge Cases") +
 scale_fill_manual(breaks=c("[-Inf,61)", "[61,501)",
"[501,1e+03)","[1e+03, Inf)"),
            name = "Dengue Cases",
            values = c("lightyellow", "yellow", "orange",
           labels = c("0-60","61-500","501-1000",">1001"))
my.taiwan.map.data$BI3 <-
cut(mv.taiwan.map.data\$Bl.breaks = c(-Inf. 1, 2, 3, ...)
Inf),right = FALSE)# divide into 4 section for clearly
#BI is Mosquito larva density parameter
aaplot(data = mv.taiwan.map.data) +
geom_sf(aes(fill = BI)) +
# scale_fill_distiller(name="Count", palette = "RdYIGn")
scale fill distiller(palette = "Spectral", name = "Mosquito
larva density distribution")
ggplot(data = my.taiwan.map.data) +
 aeom sf(aes(fill = BI3)) +
 scale_fill_manual(breaks=c("[-Inf,1)", "[1,2)", "[2,3)","[3,
            name = "Mosquito larva density distribution",
            values = c("lightyellow", "yellow", "orange",
```

Project Questions

Where is the area with the most mosquitoes in Taiwan?

Which is the region with the most dengue cases?

Analysis the relationship between number of Dengue cases with mosquito density and provincial population density

Result analysis

- From the visualization graphs we can see the significant relationship between about Mosquito larva density and the number cases of Dengue, It also reveal an important relationship between cases of Dengue and population density with temperature of each Taiwan's province.
- We can see that BI, mosquito larval distribution density is an important parameter affecting the number of dengue cases in the regions. However, there are some exceptions. For example, the Miaoli area has a high density of mosquito larvae but the incidence is low, most likely because this is a sparsely populated area, there are many mosquitoes in the wilderness, so there is no Affect the dengue fever.
- Similarly, the Xinbei area with low mosquito density but high prevalence, it can only be explained because it's high population density.