Wydział	Imię i nazwisko	1	Rok	Grupa	Zespół
WI	Piotr Karamon		2	12	5
VV I	Hubert Kasprzycki				9
PRACOWNIA	Temat:				Nr ćwiczenia
FIZYCZNA	Dyfrakcja światła na szczelinie pojedynczej i podwójnej				
	<i>JJ</i> · · ·		F-JJJ	- F JJ	71
WFiIS AGH				- F · · · J · J	71
WFiIS AGH Data wykonania		Zwrot do popr.	Data oddania	Data zaliczenia	71 OCENA

1 Cel ćwiczenia

Pomiar natężenia światła w obrazie dyfrakcyjnym pojedynczej szczeliny i układu dwu szczelin. Wyznaczenie rozmiaru szczelin.

2 Wstęp teoretyczny

2.1 Dyfrakcja na pojedynczej szczelinie

Rozpatrujemy pojedynczą szczelinę o szerokości a. W celu obliczenia natężenie promieniowania obserwowanego pod kątem θ , szczelina zostaje podzielona na dużą liczbę odcinków, aby następnie zsumować pochodzące od nich fale cząstkowe. Zakładamy, że rozmiar kątowy obrazu dyfrakcyjnego jest mały (x << L). Rozkład natężenie światła I(x) wyraża się wzorem:

$$I(x) = I_0 \left(\frac{\sin\alpha}{\alpha}\right)^2$$
, gdzie $\alpha = \frac{\pi a}{\lambda} \sin\theta \approx \frac{\pi ax}{\lambda L}$ (1)

gdzie: λ – długość fali świetlnej

L – odległość między szczeliną a ekranem

Własności obrazu dyfrakcyjnego dla pojedynczej szczeliny można wyprowadzić badając powyższą funkcję. Minima natężenia światła odpowiadają jej miejscom zerowym.

$$x_{\min} = m \frac{\lambda L}{a}$$
, gdzie $m = \pm 1, \pm 2, \dots$ numer prążka dyfrakcyjnego (2)

W dobrym przybliżeniu maksima boczne odpowiadają maksimom funkcji $(\sin \alpha)^2$, które można wyraźić wzorem:

$$x_{\text{max}} = \left(m + \frac{1}{2}\right) \frac{\lambda L}{a} \tag{3}$$

2.2 Interferencja na dwóch szczelinach

Dla układu dwóch szczelin ich szerokość a stanowi znaczą część odległości między nimi d. Rozkład natężenia jest złożeniem dyfrakcji oraz interferencji, przez co wyraża się wzorem.

$$I(x) = I_0 \left(\frac{\sin \alpha}{\alpha}\right)^2 (\cos \beta)^2, \quad \text{gdzie} \quad \alpha \approx \frac{\pi ax}{\lambda L}, \quad \beta \approx \frac{\pi dx}{\lambda L}$$
 (4)

Prążki interferencyjne znajdują się w maksimach natężenia światła. Ich umiejscowienie wyraża wzór

$$x_{\text{max}} = m \frac{\lambda L}{d}, \quad \text{gdzie} \quad m \in \mathbb{Z}$$
 (5)

Maksymalne natężenie światła w prążkach interferencyjnych nie jest stałe, w przeciwieństwie do przypadku dwóch wąskich szczelin. Wynika to z występowania zjawiska dyfrakcji, przez co niewielką liczbę najjaśniejszych prążków można zaobserwować w okolicach środkowego maksimum dyfrakcyjnego, w rejonach bocznych maksimów prążki te są ledwo widoczne.

3 Aparatura pomiarowa

W skład układu pomiarowego wchodziły następujące elementy:

- 1. Laser czerwony o długości fali $\lambda = 650 \mathrm{nm}$
- 2. Przesłona metalowa zawierająca: szczelinę pojedynczą oraz podwójną.
- 3. Ekran zaopatrzony w fotodiodę, wraz z mechanizmem do jej przesuwania.
- 4. Układ elektryczny do pomiaru odczytów fotodiody.

Rysunek 1: schemat układu pomiarowego

Układ elektryczny do pomiaru I(x) składał się z następujących elementów:

- 1. Fotodioda
- 2. Woltomierz o pojedynczym zakresie pomiarowym $400~\mathrm{mV}$
- 3. Bateria zasilająca $2 \times 1,5 V$
- 4. Opornik regulowany dekadowy $10 \times 100\Omega$
- 5. Dodatkowe oporniki 1kV i 2kV

Rysunek 2: schemat układu elektrycznego do pomiaru natężenia światłą

4 Przebieg doświadczenia

- 1. Na początku sprawdzono połączenie układu elektrycznego z fotodiodą.
- 2. Fotodiodę ustawiona na maksimum główne, po czym zanotowano natężenie światła, jako wskazanie woltomierza.
- 3. Diodę przesuwano w pionie, za każdym razem notując wskazania woltomierza.
- 4. Laser wyłączono, a następnie zmierzono odległość szczeliny od ekranu.

Doświadczenie zostało powtórzone dla układu dwóch szczelin.

5 Wyniki pomiarów

5.1 Pojedyncza szczelina

- \bullet Odległość między szczeliną a ekranem $L=673\mathrm{mm}$
- Długość fali $\lambda = 650 \mathrm{nm}$

Tabela 1: Pomiary natężenia światła dla pojedynczej szczeliny.

Wyniki w dół			
x [mm]	I [j.u.]		
0	517		
-0,2	465,8		
-0,4	328,1		
-0,6	200,5		
-0,8	127,8		
-1	96,1		
-1,2	46,9		
-1,4	29,5		
-1,6	15,3		
-1,8	12,9		
-2	7		
-2,2	5,1		
-2,4	3,76		
-2,6	3,57		
-2,8	3,67		
-3	3,22		
-3,2	2,37		
-3,4	1,93		
-3,6	1,86		
-3,8	1,68		
-4	1,65		
-4,2	1,12		
-4,4	1,12 0,78		
-4,6	0,43		
-4,8	0,21		
-5	0,19		
-5,2	0,18		
-5,4	0,15		
-5,6	0,13		
-5,8	0,07		
-6	0,02		
-6,2	0,03		
-6,4	0,02		
-6,6	0,03		
-6,8	0,04		
-7	0,05		
	0,00		

	w górę
x [mm]	I [j.u.]
0	517
0,2	377
0,4	214
0,6	102
0,8	46,4
1	24,5
1,2	11,4
1,4	7,2
1,6	4,7
1,8	3,83
2	3,41
2,2	2,53
2,4	1,95
2,6	1,36
2,8	0,97
3	0,76
3,2	0,70
	0,7 0,6
3,4	0,6
3,6	· /
3,8	0,53
4	0,4
4,2	0,23
4,4	0,15
4,6	0,12
4,8	0,11
5	0,11
5,2	0,08
5,4	0,05
5,6	0,04
5,8	0,04
6	0,04
6,2	0,06
6,4	0,07
6,6	0,07
6,8	0,06
7	0,05
7,2	0,08
7,4	0,09
7,6	0,1
7,8	0,09
8	0,05
8,2	0,04
8,4	0,04
8,6	0,04
8,8	0,04
9	0,04
9,2	0,04
9,4	0,03
9,6	0,02

5.2 Podwójna szczelina

- \bullet Odległość między szczeliną a ekranem $L=673\mathrm{mm}$
- Długość fali $\lambda = 650 \mathrm{nm}$

Tabela 2: Pomiary natężenie dla podwójnej szczeliny. Pomiary zostały wykonane niesymetrycznie, znacznie więcej pomiarów jest dla x < 0. Jest tak dlatego, że pomiary były wykonywane w bardzo ograniczonym czasie oraz w dużym pośpiechu. Gdy stwierdziliśmy, że wystarczy nam pomiarów dla x > 0 wróciliśmy do położenia początkowego i zbieraliśmy dane dla x < 0 do momentu w którym nie skończył nam się czas.

Wyniki	w dół		
x [mm]	I [j.u.]	x [mm]	I [j.u.]
0	8,76	-3	1,64
-0,1	8,3	-3,1	· ·
-0,2	6,96	-3,1	1,21
-0,3	5,3		0,84
-0,4	3,81	-3,3	0,58
-0,5	2,48	-3,4	0,38
-0,6	1,49	-3,5	0,23
-0,7	1,05	-3,6	0,2
-0,8	1,06	-3,7	0,2
-0,9	1,55	-3,8	0,31
-1	2,37	-3,9	0,4
-1,1	3,43	-4	0,51
-1,2	4,46	-4,1	0,56
-1,3	5,29	-4,2	0,58
-1,4	5,94	-4,3	0,62
-1,5	5,13	-4,4	0,59
-1,6	4,25	-4,5	0,5
-1,7	3,04	-4,6	0,36
-1,8	1,83	-4,7	0,24
-1,9	1,04	-4,8	0,12
-1,9	0,6	-4,9	0,06
-2,1	0,47	-5	0,02
		-5,1	0,01
-2,2	0,57	-5,2	0,02
-2,3	0,91	-5,3	0,02
-2,4	1,38	-5,4	0,01
-2,5	2,02	-5,5	0,02
-2,6	2,52	-5,6	0,02
-2,7	2,73	-5,7	0,02
-2,8	2,57		
-2,9	2,17		

Wyniki w górę				
x [mm]	I [j.u.]			
0	8,76			
0,1	8,11			
0,2	6,71			
0,3	5,2			
0,4	3,57			
0,5	2,37			
0,6	1,57			
0,7	1,2			
0,8	1,31			
0,9	1,93			
1	2,94			
1,1	4,17			
1,2	5			
1,3	5,3			
1,4	5,45			
1,5	5,4			
1,6	4,98			
1,7	4			
1,8	3,17			
1,9	2,34			
2	1,57			
2,1	1,94			
2,2	0,67			
2,3	0,71			
2,4	0,99			
2,5	1,54			
2,6	2,14			
2,7	2,82			
2,8	3,33			
2,9	3,62			
3	3,6			
3,1	2,93			
3,2	2,1			
3,3	1,32			

6 Opracowanie wyników

6.1 Pojedyncza szczelina

Rysunek 3: Pomiary natężenia światła dla szczeliny pojedynczej w skali liniowej.

Rysunek 4: Pomiary natężenia światła dla szczeliny pojedynczej w skali logarytmicznej.

Uzyskany wykres w bardzo znacznym stopniu odbiega od wykresu teoretycznego. Istnieje kilka możliwych powodów dlaczego wykres nie jest zgodny z wykresem teoretycznym:

- Efekty otoczenia: Zanieczyszczenia powietrza, może wpłynąć na wyniki dyfrakcji i doprowadzić do nieprawidłowych wykresów.
- Źle skonfigurowany woltomierz, którego odczyt służył za miarę intensywności światła.
- Błędy ze strony ludzkiej, złe spisanie pomiarów, pomyłki w procesie przesuwania fotodiody w pionie, dobranie złego zakresu na woltomierzu.
- Sama szczelina przez którą przepuszczane było światło, która mogła być uszkodzona.
- Złe ustawienie samej szczeliny w stosunku do ekranu, przez co jakość uzyskanego obrazu była zbyt słaba.

Tabela 3: Położenia maksimów i minimów natężenia światła dla pojedynczej szczeliny

Element obrazu dyfrakcyjnego	Położenie z lewej x_l [mm]	Położenie z prawej x_p [mm]	$x = \frac{x_p - x_l}{2}$ [mm]	Obliczona szerokość szczeliny <i>a</i> [mm]
1 minimum	-2,6	1,8	2,2	0,198840
1 maksimum boczne	-2,8	2	2,4	0,273406
2 minimum	-3,4	3	3,2	0,273406
2 maksimum boczne	-4	3,6	3,8	0,287796

Korzystając ze zmierzonych minimów oraz wzoru (2) wyznaczamy wzór na szerokość pojedynczej szczeliny a:

$$a = \frac{m\lambda L}{x_{\min}} \tag{6}$$

$$a_1 = \frac{1 \cdot 650 \text{nm} \cdot 673 \text{mm}}{2,2 \text{mm}} = 198,840 \mu \text{m}$$
$$a_2 = \frac{2 \cdot 650 \text{nm} \cdot 673 \text{mm}}{3,2 \text{mm}} = 273,406 \mu \text{m}$$

Tym razem korzystając ze zmierzonych maksimów oraz wzoru (3) wyznaczamy wzór na szerokość pojedynczej szczeliny a:

$$a = \left(m + \frac{1}{2}\right) \frac{\lambda L}{x_{\text{max}}} \tag{7}$$

$$a_3 = \left(1 + \frac{1}{2}\right) \frac{650 \text{nm} \cdot 673 \text{mm}}{2,4 \text{mm}} = 273,406 \mu \text{m}$$
$$a_4 = \left(2 + \frac{1}{2}\right) \frac{650 \text{nm} \cdot 673 \text{mm}}{3,8 \text{mm}} = 287,796 \mu \text{m}$$

Obliczamy wartość średnią a.

$$\overline{a} = \frac{a_1 + a_2 + a_3 + a_4}{4} = \frac{198,840 \mu \text{m} + 273,406 \mu \text{m} + 273,406 \mu \text{m} + 287,796 \mu \text{m}}{4} = 258,362 \mu \text{m}$$

Aby uzyskać niepewność pomiarową \bar{a} użyjemy odchylenia standardowego (nie odchylenia standardowego średniej, ponieważ ilość pomiarów jest mała).

$$u(\overline{a}) = \sqrt{\frac{(a_1 - \overline{a})^2 + (a_2 - \overline{a})^2 + (a_3 - \overline{a})^2 + (a_4 - \overline{a})^2}{4 - 1}} = \sqrt{\frac{(198, 840\mu\text{m} - 258, 362\mu\text{m})^2 + (273, 406\mu\text{m} - 258, 362\mu\text{m})^2 + (273, 406\mu\text{m} - 258, 362\mu\text{m})^2 + (287, 796\mu\text{m} - 258, 362\mu\text{m})^2}{4 - 1}} = 35\mu\text{m}$$

Zatem niepewność rozszerzona $U(\overline{a})=2\cdot u(\overline{a})=70\mu\mathrm{m}$ Ostatecznie możemy zapisać

$$a = 258 \mu \text{m} \pm 70 \mu \text{m}$$

Jak widać niepewność naszego pomiaru jest wysoka, czego można się było spodziewać zważywszy na to jak bardzo nasz wykres odbiega od wykresu teoretycznego.

Tabela 4: Natężenia światła w maksimach bocznych. Natężenie światła w maksimum głównym: $I_o = 517[\text{j.u.}]$

Element obrazu dyfrakcyjnego	Natężenie z lewej I_l [j.u.]	Natężenie z prawej I_p [j.u.]	Natężenie względne doświadczalne $\frac{I(x_{\text{max}})}{I_o} = \frac{I_l + I_p}{2I_0}$	Natężenie względne teoretyczne $\frac{I(x_{\text{max}})}{I_0}$
1 maksimum boczne	3.67	3.41	0,00684	0,045
2 maksimum boczne	1.65	0.6	0,00217	0,0162

Obliczamy natężenie względne teoretyczne korzystając ze wzoru

$$\frac{I(x_{\text{max}})}{I_0} \approx \frac{1}{\pi^2 (m + \frac{1}{2})^2}$$

Dla 1 maksimum bocznego:

wartość doświadczalna
$$\frac{I(x_{\text{max}})}{I_0} = \frac{3,67 \text{j.u.} + 3,41 \text{j.u.}}{2 \cdot 517 \text{j.u.}} = 0,00684$$
 wartość teoretyczna
$$\frac{I(x_{\text{max}})}{I_0} \approx \frac{1}{\pi^2 (1 + \frac{1}{2})^2} = 0,045$$

Dla 2 maksimum bocznego:

wartość doświadczalna
$$\frac{I(x_{\text{max}})}{I_0} = \frac{3,67\text{j.u.} + 3,41\text{j.u.}}{2 \cdot 517\text{j.u.}} = 0,00217$$
 wartość teoretyczna
$$\frac{I(x_{\text{max}})}{I_0} \approx \frac{1}{\pi^2(2+\frac{1}{2})^2} = 0,0162$$

Dla obu maksimów wartość natężenia wynikająca z pomiarów wyszła kilkukrotnie mniejsza niż wartość wyliczona teoretycznie. Spowodowane jest to jak już wcześniej wspomnianym odbieganiem naszego wykresu od wykresu teoretycznego.

6.2 Podwójna szczelina

Rysunek 5: Pomiary natężenia światła dla szczeliny podwójnej w skali liniowej. Na wykresie poza punktami pomiarowymi oraz gładką krzywą znajdują się liczby całkowite -3, -2, -1, 0, 1, 2 które oznaczają numery maksimów.

Tabela 5: Położenia maksimów natężenia światła dla podwójnej szczeliny.

Numer	Położenie z	Położenie z	$x = \frac{x_p - x_l}{2}$	Obliczona
maksimum	lewej x_l	prawej x_p	. 4	odległość d
m	[mm]	[mm]	[mm]	[mm]
1	-1,4	1,4	1,4	0,312
2	-2,7	2,9	2,8	0,312
3	-4,3	brak danych	4,3	0,305

Korzystając ze wzoru (5) wyznaczamy wzór na odległość między szczelinami d:

$$d = \frac{m\lambda L}{x_{\text{max}}} \tag{8}$$

$$\begin{aligned} d_1 &= \frac{1 \cdot 650 \text{nm} \cdot 673 \text{mm}}{1.4 \text{mm}} = 312,4643 \mu \text{m} \\ d_2 &= \frac{2 \cdot 650 \text{nm} \cdot 673 \text{mm}}{2.8 \text{mm}} = 312,4643 \mu \text{m} \\ d_3 &= \frac{3 \cdot 650 \text{nm} \cdot 673 \text{mm}}{4.3 \text{mm}} = 305,1977 \mu \text{m} \end{aligned}$$

Obliczamy wartość średnią d.

$$\overline{d} = \frac{d_1 + d_2 + d_3}{3} = \frac{312,4643\mu\text{m} + 312,4643\mu\text{m} + 305,1977\mu\text{m}}{3} = 310,0421\mu\text{m}$$

Aby uzyskać niepewność pomiarową \overline{d} użyjemy odchylenia standardowego (nie odchylenia standardowego średniej, ponieważ ilość pomiarów jest mała).

$$u(\overline{d}) = \sqrt{\frac{\left(d_1 - \overline{d}\right)^2 + \left(d_2 - \overline{d}\right)^2 + \left(d_3 - \overline{d}\right)^2}{3 - 1}} =$$

$$= \sqrt{\frac{\left(312, 4643\mu\text{m} - 310, 0421\mu\text{m}\right)^2 + \left(312, 4643\mu\text{m} - 310, 0421\mu\text{m}\right)^2 + \left(305, 1977\mu\text{m} - 310, 0421\mu\text{m}\right)^2}{3 - 1}} = 4, 2\mu\text{m}$$

Zatem niepewność rozszerzona $U(\overline{d}) = 2 \cdot u(\overline{d}) = 8,4 \mu\mathrm{m}$ Ostatecznie możemy zapisać

$$d = 310,0 \mu \text{m} \pm 8,4 \mu \text{m}$$

Dla x=0 osiągane jest natężenie maksymalne równe $I_{\text{max}}=8,76$ j.u. Najbliższe x=0 minimum znajduję się w x=0.7mm jest ono równe $I_{\text{min}}=1,20$ j.u.. Stosunek tych wartości jest równy:

$$\frac{I_{\min}}{I_{\max}} = \frac{1,20 \text{j.u.}}{8,76 \text{j.u.}} = 0,137$$

Ta wartość jest miarą jakości obrazu interferencyjnego. Dla obrazu idealnego $I_{\min}/I_{\max}=0$, natomiast wartość $I_{\min}/I_{\max}=1$ oznacza zniknięcie prążków interferencyjnych. Otrzymana przez nas wartość zawiera się w przedziale (0,1) oraz jest bliska wartości 0, co oznacza, że jakość obrazu interferencyjnego była dość wysoka.

7 Wnioski

- 1. Światło istotnie ma charakter falowy, ponieważ ulega zjawiskom dyfrakcji i interferencji.
- 2. Przy przepuszczaniu przez dwie szczeliny następują dwa zjawiska na raz dyfrakcja i interferencja, przez co obraz tworzy serię kropek o różnych natężeniach.
- 3. Nasze pomiary oraz obliczenia związane z pojedynczą szczeliną zdecydowanie nie są zbyt zadowalające. Może być to spowodowane złą konfiguracją sprzętu pomiarowego m.in: lasera, szczeliny, układu do pomiaru natężenia światła. Warto również wspomnieć, iż przy wyprowadzaniu wzorów teoretycznych popełniane są pewne założenia, które nie konieczne mogły być prawdziwe w momencie gdy robiliśmy doświadczenie.

- 4. Wykres oraz obliczone wartości dla szczeliny podwójnej były już o wiele bardziej zadowalające. Udało nam się uzyskać wykres $I_{\text{światla}} = f(x)$ który jest zgodny z teorią. Wyliczona odległość między szczeliną oraz jej niepewność wydają się być sensowne. Przeprowadzone przez nas doświadczenie ukazuje falowy charakter światła, ponieważ jak każda inna fala ulega ono zjawisku dyfrakcji i interferencji.
- 5. Choć wykres $I_{\text{światła}} = f(x)$ jest podobny do teoretycznego to nadal trochę się od niego różni z kilku powodów:
 - $\bullet\,$ Detektor natężenia światła uśrednia funkcję I(x) na obszarze, z którego pobiera informacje,
 - W wyniku czego natężenie w maksimach ulega obniżeniu, a w minimach natężenie jest większe od 0.
 - Szczelina może być nierówna, a wiązka laserowa nie jest zupełnie równoległa.