To prove this theorem, note that the existence and uniqueness of the solutions $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ mentioned in Theorem 7.4.4 are ensured by Theorem 7.1.2. It is not hard to see that the Wronskian of these solutions is equal to 1 when $t = t_0$; therefore $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ are a fundamental set of solutions.

Once one fundamental set of solutions has been found, other sets can be generated by forming (independent) linear combinations of the first set. For theoretical purposes, the set given by Theorem 7.4.4 is usually the simplest.

Finally, it may happen (just as for second order linear equations) that a system whose coefficients are all real may give rise to solutions that are complex-valued. In this case, the following theorem is analogous to Theorem 3.2.6 and enables us to obtain real-valued solutions instead.

Theorem 7.4.5

Consider the system (3)

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x},$$

where each element of **P** is a real-valued continuous function. If $\mathbf{x} = \mathbf{u}(t) + i\mathbf{v}(t)$ is a complex-valued solution of Eq. (3), then its real part $\mathbf{u}(t)$ and its imaginary part $\mathbf{v}(t)$ are also solutions of this equation.

To prove this result, we substitute $\mathbf{u}(t) + i\mathbf{v}(t)$ for \mathbf{x} in Eq. (3), thereby obtaining

$$\mathbf{x}' - \mathbf{P}(t)\mathbf{x} = \mathbf{u}'(t) - \mathbf{P}(t)\mathbf{u}(t) + i\left[\mathbf{v}'(t) - \mathbf{P}(t)\mathbf{v}(t)\right] = \mathbf{0}.$$
 (17)

We have used the assumption that $\mathbf{P}(t)$ is real-valued to separate Eq. (17) into its real and imaginary parts. Since a complex number is zero if and only if its real and imaginary parts are both zero, we conclude that $\mathbf{u}'(t) - \mathbf{P}(t)\mathbf{u}(t) = \mathbf{0}$ and $\mathbf{v}'(t) - \mathbf{P}(t)\mathbf{v}(t) = \mathbf{0}$. Therefore, $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are solutions of Eq. (3).

To summarize the results of this section:

- 1. Any set of n linearly independent solutions of the system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ constitutes a fundamental set of solutions.
- 2. Under the conditions given in this section, such fundamental sets always exist.
- 3. Every solution of the system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ can be represented as a linear combination of any fundamental set of solutions.

PROBLEMS

- 1. Prove the generalization of Theorem 7.4.1, as expressed in the sentence that includes Eq. (8), for an arbitrary value of the integer *k*.
- 2. In this problem we outline a proof of Theorem 7.4.3 in the case n = 2. Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be solutions of Eq. (3) for $\alpha < t < \beta$, and let W be the Wronskian of $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$.
 - (a) Show that

$$\frac{dW}{dt} = \begin{vmatrix} \frac{dx_1^{(1)}}{dt} & \frac{dx_1^{(2)}}{dt} \\ x_2^{(1)} & x_2^{(2)} \end{vmatrix} + \begin{vmatrix} x_1^{(1)} & x_1^{(2)} \\ \frac{dx_2^{(1)}}{dt} & \frac{dx_2^{(2)}}{dt} \end{vmatrix}.$$

(b) Using Eq. (3), show that

$$\frac{dW}{dt} = (p_{11} + p_{22})W.$$

- (c) Find W(t) by solving the differential equation obtained in part (b). Use this expression to obtain the conclusion stated in Theorem 7.4.3.
- (d) Prove Theorem 7.4.3 for an arbitrary value of n by generalizing the procedure of parts (a), (b), and (c).
- 3. Show that the Wronskians of two fundamental sets of solutions of the system (3) can differ at most by a multiplicative constant. *Hint:* Use Eq. (15).
- 4. If $x_1 = y$ and $x_2 = y'$, then the second order equation

$$y'' + p(t)y' + q(t)y = 0$$
 (i)

corresponds to the system

$$x'_1 = x_2,$$

 $x'_2 = -q(t)x_1 - p(t)x_2.$ (ii)

Show that if $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are a fundamental set of solutions of Eqs. (ii), and if $y^{(1)}$ and $y^{(2)}$ are a fundamental set of solutions of Eq. (i), then $W[y^{(1)}, y^{(2)}] = cW[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}]$, where c is a nonzero constant.

Hint: $y^{(1)}(t)$ and $y^{(2)}(t)$ must be linear combinations of $x_{11}(t)$ and $x_{12}(t)$.

- 5. Show that the general solution of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)$ is the sum of any particular solution $\mathbf{x}^{(p)}$ of this equation and the general solution $\mathbf{x}^{(c)}$ of the corresponding homogeneous equation.
- 6. Consider the vectors $\mathbf{x}^{(1)}(t) = \begin{pmatrix} t \\ 1 \end{pmatrix}$ and $\mathbf{x}^{(2)}(t) = \begin{pmatrix} t^2 \\ 2t \end{pmatrix}$.
 - (a) Compute the Wronskian of $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$.
 - (b) In what intervals are $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ linearly independent?
 - (c) What conclusion can be drawn about the coefficients in the system of homogeneous differential equations satisfied by $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$?
 - (d) Find this system of equations and verify the conclusions of part (c).
- 7. Consider the vectors $\mathbf{x}^{(1)}(t) = \begin{pmatrix} t^2 \\ 2t \end{pmatrix}$ and $\mathbf{x}^{(2)}(t) = \begin{pmatrix} e^t \\ e^t \end{pmatrix}$, and answer the same questions as in Problem 6.

The following two problems indicate an alternative derivation of Theorem 7.4.2.

8. Let $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}$ be solutions of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on the interval $\alpha < t < \beta$. Assume that \mathbf{P} is continuous, and let t_0 be an arbitrary point in the given interval. Show that $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}$ are linearly dependent for $\alpha < t < \beta$ if (and only if) $\mathbf{x}^{(1)}(t_0), \dots, \mathbf{x}^{(m)}(t_0)$ are linearly dependent. In other words $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}$ are linearly dependent on the interval (α, β) if they are linearly dependent at any point in it.

Hint: There are constants c_1, \ldots, c_m that satisfy $c_1 \mathbf{x}^{(1)}(t_0) + \cdots + c_m \mathbf{x}^{(m)}(t_0) = \mathbf{0}$. Let $\mathbf{z}(t) = c_1 \mathbf{x}^{(1)}(t) + \cdots + c_m \mathbf{x}^{(m)}(t)$, and use the uniqueness theorem to show that $\mathbf{z}(t) = \mathbf{0}$ for each t in $\alpha < t < \beta$.

9. Let $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ be linearly independent solutions of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$, where \mathbf{P} is continuous on $\alpha < t < \beta$.

(a) Show that any solution $\mathbf{x} = \mathbf{z}(t)$ can be written in the form

$$\mathbf{z}(t) = c_1 \mathbf{x}^{(1)}(t) + \dots + c_n \mathbf{x}^{(n)}(t)$$

for suitable constants c_1, \ldots, c_n .

Hint: Use the result of Problem 12 of Section 7.3, and also Problem 8 above.

(b) Show that the expression for the solution $\mathbf{z}(t)$ in part (a) is unique; that is, if $\mathbf{z}(t) = k_1 \mathbf{x}^{(1)}(t) + \cdots + k_n \mathbf{x}^{(n)}(t)$, then $k_1 = c_1, \dots, k_n = c_n$.

Hint: Show that $(k_1 - c_1)\mathbf{x}^{(1)}(t) + \cdots + (k_n - c_n)\mathbf{x}^{(n)}(t) = \mathbf{0}$ for each t in $\alpha < t < \beta$, and use the linear independence of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$.

7.5 Homogeneous Linear Systems with Constant Coefficients

We will concentrate most of our attention on systems of homogeneous linear equations with constant coefficients—that is, systems of the form

$$\mathbf{x}' = \mathbf{A}\mathbf{x},\tag{1}$$

where **A** is a constant $n \times n$ matrix. Unless stated otherwise, we will assume further that all the elements of **A** are real (rather than complex) numbers.

If n = 1, then the system reduces to a single first order equation

$$\frac{dx}{dt} = ax, (2)$$

whose solution is $x = ce^{at}$. Note that x = 0 is the only equilibrium solution if $a \neq 0$. If a < 0, then other solutions approach x = 0 as t increases, and in this case we say that x = 0 is an asymptotically stable equilibrium solution. On the other hand, if a > 0, then x = 0 is unstable, since other solutions depart from it with increasing t. For systems of n equations, the situation is similar but more complicated. Equilibrium solutions are found by solving $\mathbf{A}\mathbf{x} = \mathbf{0}$. We usually assume that $\det \mathbf{A} \neq 0$, so $\mathbf{x} = \mathbf{0}$ is the only equilibrium solution. An important question is whether other solutions approach this equilibrium solution or depart from it as t increases; in other words, is $\mathbf{x} = \mathbf{0}$ asymptotically stable or unstable? Or are there still other possibilities?

The case n = 2 is particularly important and lends itself to visualization in the x_1x_2 -plane, called the **phase plane**. By evaluating $\mathbf{A}\mathbf{x}$ at a large number of points and plotting the resulting vectors, we obtain a direction field of tangent vectors to solutions of the system of differential equations. A qualitative understanding of the behavior of solutions can usually be gained from a direction field. More precise information results from including in the plot some solution curves, or trajectories. A plot that shows a representative sample of trajectories for a given system is called a **phase portrait**. A well-constructed phase portrait provides easily understood information about all solutions of a two-dimensional system in a single graphical display. Although creating quantitatively accurate phase portraits requires computer assistance, it is usually possible to sketch qualitatively accurate phase portraits by hand, as we demonstrate in Examples 2 and 3 below.