

PRODUÇÃO DE RADIAÇÃO EM JATOS RELATIVÍSTICOS EM NÚCLEOS ATIVOS DE GALÁXIAS

Luiz Augusto Stuani Pereira (luizstuani@uaf.ufcg.edu.br)

ESPECTRO ELETROMAGNÉTICO

ASTROFÍSICA MULTIMENSAGEIRA

NÚCLEO ATIVO DE GALÁXIA (AGN)

rest frame : isotropic emission

Beaming factor:

Observer frame: beamed

•
$$\delta = \frac{1}{\Gamma(1 - \beta cos(\theta))}$$

•
$$\theta = 1/\Gamma$$

CLASSES DE BLAZARES

- -Emissão de linhas largas no espectro óptico;
- -Eficiência na emissão de radiação do disco;
- -Acresção de matéria a taxas de Eddington;
- -Alta potência do jato e luminosidade de raios gama.
- -Fraca ou pouca emissão de linhas largas no espectro óptico;
- -Ineficiência na emissão de radiação do disco;
- -Acresção de matéria a sub-taxas de Eddington;
- -Baixa potência do jato e luminosidade de raios gama.

PRODUÇÃO DE RADIAÇÃO EM AMBIENTES ASTROFÍSICOS

PRODUÇÃO DE RADIAÇÃO EM JATOS RELATOVÍSTICOS

IMAGEM ELETROMAGNÉTICA DE BLAZARES

MODELOS DE EMISSÃO CONSIDERANDO UMA ÚNICA ZONA

EMISSÃO HADRÔNICA EM JATOS RELATIVÍTICOS - PRODUÇÃO DE NEUTRINOS

Colisão pp

EMISSÃO HADRÔNICA EM JATOS RELATIVÍTICOS - PRODUÇÃO DE NEUTRINOS

<u>Interação</u> <u>fotohadrônica/fotopíon (py)</u>

DENSE PHOTON FIELDS

$$p+\gamma \rightarrow p/n+\pi^{\pm}, \pi^0 \rightarrow 2\gamma+2\nu_{\mu}+\nu_{e}$$

100 TEV NEUTRINO -> 2 PEV PROTON

PRODUÇÃO DE RADIAÇÃO EM JATOS RELATIVÍSTICOS DE AGNS

MODELOS DE DISTRIBUIÇÃO DE ENERGIA ESPECTRAL (QUALITATIVO)

 Synchrotron self-Compton (SSC) or external Compton (EC) models

Proton synchrotron models (require large B')

Pion cascade models

More exotic hadronic models, for example:

ESPECTRO DE EMISSÃO DE AGN DEVIDO A PROCESSOS LEPTÔNICOS E HADRÔNICOS

ESPALAHAMENTO COMPTON INVERSO E DECAIMENTO DO PÍON NEUTRO SÃO OS PROCESSOS DOMINANTES NA FAIXA DE TeV

ESPECTRO DE EMISSÃO DE UM BLAZAR

PROPAGAÇÃO DE RAIOS GAMA

ATENUAÇÃO DO ESPECTRO DE RAIOS GAMA POR EBL

CASCATA INDUZIDA POR RAIOS GAMA

CASCATA INDUZIDA POR RAIOS CÓSMICOS

PACOTES OPEN-SOURCE PARA MODELAGEM DA DISTRIBUIÇÃO DE ENERGIA ESPECTRAL

	Particles Proce					Processes	ocesses						
Software	Sources	Approach	Thermal	Nor	n-Thermal	Leptonic				Hadronic	Hadronic Absorption	Temp. ev.	Emission Region
				e^{\pm}	p	Synch.	SSC	EC	Brems.	pp	$\gamma\gamma$		
naima	PWN, SNR, GRB	numerical	X	/	✓	✓	✓	√ (CMB)	✓	√ †	√ (EBL)	×	not specified
GAMERA	PWN, SNR, AGN microquasars	numerical	×	✓	/	1	1	✓ •	1	✓ †	√ *	✓ (only cool.)	multiple uniform
Jetset	jetted AGN, PWN microquasars, SNR	numerical	×	✓	1	1	1	1	1	✓ ‡	✓ (EBL)	✓ (acc. + cool.)	multiple uniform acc. + rad.
agnpy	jetted AGN	numerical	X	/	×	1	✓	√ *	X	X	✓ *	×	single uniform
BHJet	binaries, AGN	numerical semi-analytical	✓	✓	X	1	1	1	×	×	Х	X	whole jet
FLAREMODEL	synch. sources	numerical ray-tracing	✓	✓	X	1	1	X	X	×	X	✓ (only cool.)	single radial dep.

[†] pp interaction: computing only gammas from π_0 decay. [‡] pp interaction: computation of radiation from secondaries of charged pions (pairs evolved in time to equilibrium) and of ν spectra. [©] Full angular dependency of the Compton cross section: anisotropic electrons and anisotropic photon fields. * Full angular dependency of the Compton or $\gamma\gamma$ cross sections: anisotropic photon fields.

Physical Processes	Codes						
	AM3	ATHEVA	B13	LeHa-Paris			
electron synchrotron radiation	/	/	1	1			
synchrotron self-absorption	1	/	1	1			
electron inverse Compton scattering	/	/	1	/			
electron-positron annihilation	1	/	1	X			
photon-photon pair production	/	/	1	1			
triplet pair production	X	/	X	×			
proton synchrotron radiation	/	/	1	1			
proton inverse Compton scattering	/	X	X	X			
proton-photon pair production	1	/	1	1			
neutron-photon pion production	1	/	X	X			
kaon synchrotron radiation	X	/	X	X			
pion synchrotron radiation	1	1	X	Х			
muon synchrotron radiation	1	/	X	/			

AGNpy é um pacote Python open-source para modelar os processo radioativos em AGNs.

Representação esquemática dos módulos do AGNpy

Densidades de energia de diferentes campos de fótons gerados peo CMB, disk, BLR e anel de torus

Distribuição de energia espectral (SED) da fonte PKS 1510-089 ajustado com o agnpy.

AM³: MODELAGEM LEPTO-HADRÔNICA DE FONTES ASTROFÍSICAS

AM³: MODELAGEM LEPTO-HADRÔNICA DE FONTES ASTROFÍSICAS

AM³: MODELAGEM LEPTO-HADRÔNICA DE FONTES ASTROFÍSICAS

PACOTES OPEN-SOURCE PARA MODELAGEM DE FONTES ASTROFÍSICAS

Katu: https://github.com/hveerten/katu

LeHaMoC: https://github.com/mariapetro/LeHaMoC

AM3: https://am3.readthedocs.io/en/latest/

Jetset: https://jetset.readthedocs.io/en/latest/

AGNpy: https://agnpy.readthedocs.io/en/latest/

GAMERA: http://libgamera.github.io/GAMERA/

NAIMA: https://naima.readthedocs.io/en/latest/

Flaremodel: https://github.com/ydallilar/flaremodel

Bjet_MCMC: https://github.com/Ohervet/Bjet_MCMC

OBRIGADO PELA ATENÇÃO!

