Ciência de Dados e Big Data

Recuperação da Informação na Web e em Redes Sociais

PUC-Minas IEC | Pós-Graduação Lato Sensu

Zilton Cordeiro Jr.

Projeto Final

Segunda metade da aula

- O projeto final consiste em realizar um estudo da Web para um assunto real e de livre escolha.
 - > Exemplos: Automóveis, moda, música, imóveis...
- Será necessário
 - Coletar dados em texto de redes sociais e sites da Web
 - Analisar o conteúdo textual obtido
 - Analisar dados de relacionamentos entre usuários (i.e. nas redes)
 - Relatório final
- Data de Entrega
 - > 15° dia após a última aula às 23:59hrs

Busca Textual e Similaridade

Mineração da Web e Redes Sociais

Coleta de Dados

Mineração da Web e Redes Sociais

Mineração de Textos

Mineração da Web e Redes Sociais

Grafos - Redes Complexas

Network Mining

Indexação, Busca e Mineração em plataformas de Big Data

Volume de Dados

- Segundo a <u>Gartner</u>*: 2,2 milhões de terabytes de novos dados são criados todos os dias;
- A previsão é que até 2020 haja um total de 40 trilhões de gigabytes de dados no mundo.

^{*}A Gartner desenvolve tecnologias relacionadas a introspecção necessária para seus clientes tomarem suas decisões todos os dias.

^{*}Gartner é uma empresa de consultoria fundada em 1979 por Gideon Gartner.

- Pode ser entendido como:
 - ➤ a captura;
 - > o gerenciamento; e
 - > a análise de dados.
- Vai além de dados estruturados típicos, que podem ser consultados por sistemas de gerenciamento de banco de dados relacional.
 - Frequentemente são arquivos não estruturados:
 - Vídeo digital;
 - Imagens;
 - Dados de sensores;
 - Arquivos de log; e
 - Qualquer dado não contido nos registros com campos pesquisáveis distintos.

- ♦ Doug Laney deu uma definição para o Big Data com os três "V":
 - > Volume,
 - > Velocidade e
 - > Variedade.

Volume

- Existem muitos fatores que contribuem para o aumento do volume de dados armazenados e trafegados:
 - Dados de transações;
 - Armazenados ao longo de vários anos;
 - Dados de texto
 - Áudio ou vídeo disponíveis em streaming nas mídias sociais; e
 - A crescente quantidade de dados coletados por sensores.
- No passado o volume de dados excessivo criou um problema de armazenamento.
 - Mas, com os atuais custos de armazenamento decrescentes, outras questões surgem, incluindo:
 - Como determinar a relevância entre grandes volumes de dados?
 - Como criar valor a partir dessa relevância?

Velocidade

- Significa o quão rápido os dados estão sendo produzidos e o quão rápido os dados devem ser tratados para atender às demandas.
- Reagir rápido o suficiente para lidar com a velocidade é um desafio para a maioria das organizações.

Variedade

- Os dados de hoje vêm em todos os tipos de formatos:
 - Bancos de dados tradicionais;
 - Arquivos de texto;
 - o E-mail:
 - Medidores ou sensores de coleta de dados;
 - Vídeo;
 - Audio;
 - Dados de ações do mercado e transações financeiras.

- Veracidade
- Visibilidade
- Valor
- Variabilidade

Governança

Pessoas

Veracidade

- Termo cunhado pela IBM, considerado o quarto "V":
 - Representa a falta de confiabilidade inerente em algumas fontes de dados:
 - Medir os sentimentos dos clientes em mídias sociais é incerto por natureza, já que implicam uso do juízo humano.
 - No entanto, eles contêm valiosas informações.
- ☐ A necessidade de lidar com **dados imprecisos e incertos** é outra faceta de Big Data.
- Geralmente **resolvida** usando ferramentas e análises desenvolvidas para gerenciamento e **mineração de dados imprecisos**.
- É necessário **avaliar** as **inconsistências**, **incompletudes**, **ambiguidades**, latência e possíveis modelos de aproximação utilizados.
- Os dados podem ainda perder a vigência.
- ☐ **Verificar** se os **dados** são **consistentes** é extremamente necessário para qualquer análise de dados.

Visibilidade

- É a **relevância dos dados**. A organização está ciente de todos os dados que são gerados?
- Todos os dados gerados estão disponíveis?
- Os dados são, de fato, armazenados e ficam visíveis para os analistas de dados.

Valor

- A Oracle introduziu **valor** como um atributo na definição de Big Data.
 - Big Data é, muitas vezes, caracterizado por uma "densidade de valor relativamente baixa".
 - o Os dados recebidos na forma original, geralmente tem um valor baixo em relação ao seu volume.
 - Entretanto, um valor elevado pode ser obtido pela análise de grandes volumes destes mesmos dados.
 - As informações geradas devem produzir algum valor para as organizações.

Variabilidade (e complexidade)

- A <u>SAS</u> apresentou variabilidade (e complexidade) como duas dimensões adicionais para Big Data.
 - Variabilidade refere-se à variação nas taxas de fluxo de dados.
 - Muitas vezes, a velocidade de Big Data não é consistente e tem picos e depressões periódicas.
 - Complexidade refere-se ao fato de Big Data gerar ou receber informações através de uma multiplicidade de fontes.
 - Isso impõe um desafio crucial: a **necessidade de se conectar, integrar, limpar e transformar os** dados recebidos de diferentes fontes.

♦ Governança

- Ao decidir implementar ou não uma plataforma de big data, uma organização pode estar olhando novas fontes e novos tipos de elementos de dados nos quais a propriedade não está definida de forma clara.
 - o Por exemplo:
 - No caso de assistência médica, é legal acessar dados de paciente para obter insight?
 - É correto mapear as despesas do cartão de crédito do cliente para sugerir novas compras?
- Regras semelhantes regem todos os segmentos de mercado.
- Pode ser necessário redefinir ou modificar os processos de negócios de uma organização para que ela possa adquirir, armazenar e acessar dados externos.

Pessoas

- É necessário ter pessoas com aptidões específicas para entender, analisar os requisitos e manter uma solução de Big Data.
- Envolve conhecimento do segmento de mercado;
- Domínio técnico sobre as ferramentas de Big Data; e
- Conhecimentos específicos de modelagem, estatística e outros.

Indexação de Dados

Apache Lucene

- O Lucene contém apenas o núcleo do "motor" de busca.
- O usuário do Lucene deve adicionar estas funcionalidades.
- Para o Lucene não importa a origem dos dados, seu formato ou mesmo a linguagem em que foi escrito, desde que esses dados possam ser convertido para texto.
- ☐ Isto significa que o Lucene pode ser utilizado para indexar e buscar dados gravados em:
 - ☐ Arquivos;
 - Páginas web em servidores remotos;
 - Documentos gravados no sistema de arquivos local;
 - Arquivos textos;
 - Documentos Microsoft Word:
 - Documentos HTML ou arquivos PDF; ou
 - Qualquer outro formato do qual possa ser extraído informação textual.

- Solr: Ferramenta indexação e busca textual
- Criado em 2004 por Yonik Seeley como sistema de buscas do website da companhia CNET Networks
- Livre (open source). Doado para a Apache em 2006
- Baixa curva de aprendizado
- > Altamente escalável

Apache

REST-like API, configuração através de XML, sem necessidade de codificação

Quem usa o Solr

AT&T

Ticketmaster

Chegg

eBay

Magento

Comcast

Other Notable Users Instagram

Netflix

Disney

Internet Archive

IBM Websphere Commerce

MTV Networks

Buy.com

The Echo Nest

Adobe

SAP Hybris

Bloomberg

Travelocity

Lidando com os dados

- "Schemaless" Fácil para começar a utilizar (possível criar esquemas próprios)
- Campos adicionados dinamicamente
- Componentes de text mining como bag of words, stemming...
- Arquivos externos, como listas de sinônimos, stop words, e palavras protegidas

Interface de admnistração: localhost:8983

Solr - Busca (Query)

Solr - Busca (Query)


```
"facet counts": {
  "facet queries": {
    "Asian German": 3
  "facet fields": {
    "Category": [
      "Fast Food",
      "German Cuisine",
      "Asian",
```

Sorl - Busca

I http://127.0.0.1:8983/solr/docs_knime_shard1_replica1/select?q=late&sort=id+asc&start=2&rows=10&fl=Document_body_text+Tit

Consulta via URL

```
127.0.0.1:8983/solr/docs_knime_shard1_replica1/select?q=late&
"responseHeader": {
  "status":0,
  "OTime":2,
  "params": {
    "facet": "true",
    "fl": "Document body text Title Category",
    "sort": "id asc",
    "indent": "true",
    "facet.query": "Asian German",
    "start": "2",
    "q":"late",
    "facet.field": "Category",
    "wt": "json",
    "rows":"10"}},
"response": { "numFound": 6, "start": 2, "docs": [
```

Sorl - Indexação

Criação de índice

bin/solr create -c meu_novo_indice -d minha_nova_config -s 1 -rf 1 -p 8983

Executar

/opt/lucidworks-hdpsearch/solr/bin/solr create -c **meu_novo_indice** -d **minha_nova_config** -s 1 -rf 1 -p 8983

Sorl - Indexação

Requisição realizada...

```
Creating new collection 'meu_novo_indice' using command: http://10.0.2.15:8983/solr/admin/collections?action=CREATE&na
```

Sorl - Indexação

Em qualquer linguagem, basta enviar os documentos em json via método POST para:

http://127.0.0.1:8983/solr/NOME DO SEU INDICE/update/json/docs?commit=true

Sorl - Indexação

Sorl - Busca

GET - Busca (similaridade)

Em qualquer linguagem, basta acessar a URL e parâmetros (mesma URL que a interface gera):

http://127.0.0.1:8983/solr/NOME_DO_INDICE/select?q=%22great+food%22&wt=json&indent=true

Sorl - Busca

GET - Contagem de palavras

Em qualquer linguagem, basta acessar a URL e parâmetros (mesma URL que a interface gera):

http://127.0.0.1:8983/solr/NOME_DO_INDICE/select?q=*%3A*&wt=json&rows=0&facet=true&facet.field= text &facet.limit=80

ElasticSearch

- Servidor de buscas distribuído baseado no Apache Lucene.
- Disponibilizado sobre os termos Apache License.
- Desenvolvido em Java e possui código aberto liberado sob os termos da Licença Apache.

- ❖ O Elasticsearch realiza buscas por Índice Invertido:
 - No momento em que um documento é indexado, o Elasticsearch separa todos os seus termos em Tokens.
- Em seguida ele faz uma medição para definir quais tokens são relevantes, eliminando assim artigos, preposições, etc.
- O próximo passo do Elasticsearch é organizar os tokens em um índice e informar em cada token quais documentos contém esse token.
- Quando uma busca for feita ela agirá sobre esse índice invertido ao invés de vasculhar cada documento individualmente, procurando pelos termos buscados.
- Esse processo de indexação é o que torna o Elasticsearch um motor de busca em semi-tempo-real.

ElasticSearch

- O Elasticsearch suporta um grande volume de dados sem perder performance.
- Pode ser implementado em qualquer sistema independentemente da plataforma, por fornecer uma API REST.
- Ferramenta é altamente escalável, podendo ir de um servidor a muitos servidores simultâneos.

ElasticSearch: Utiliza?

Hortonworks Data Platform (HDP)

 É uma estrutura de código aberto para armazenamento e processamento distribuídos de grandes conjuntos de dados de várias fontes.

Hortonworks Data Platform (HDP)

Hortonworks DataFlow (HDF)

 É uma plataforma analítica de streaming escalável e em tempo real que ingere, organiza e analisa dados para obter informações importantes e inteligência prática imediata.

Hortonworks DataFlow (HDF)

Apache Spark

- É um sistema de processamento distribuído de código aberto usado normalmente para cargas de trabalho de big data.
- O Apache Spark utiliza o armazenamento em cache na memória e a execução otimizada para obter alta performance.
- Oferece suporte a:
 - Processamento geral de lotes;
 - Análise de streaming;
 - Machine Learning
 - Bancos de dados gráficos; e
 - Consultas ad hoc.

Anaconda (<u>download</u>)

- Distribuição de alta performance para Python, R e Scala
- Inclui mais de 100 bibliotecas e recursos necessários para projetos de Data Science e Machine Learning
- Jupyter Notebook, a IDE Spyder, NumPy, Pandas, Scikit-learn...

Jupyter Notebook (Já vem com o Anaconda)

- É uma aplicação (open source) que permite criar e compartilhar documentos com código dinâmico, visualizações e textos explicativos.
- Suporte a elementos HTML e executa no browser - bem melhor que em linhas de comando :-)

♦ Para iniciar o jupyter

Executa

jupyter notebook --ip=0.0.0.0 --port=8889

--NotebookApp.token="

Para iniciar o jupyter

```
[root@sandbox jupyter]# ./start_jupyter.sh
[I 22:07:22.837 NotebookApp] Serving notebooks from local directory: /media/sf_storage
[I 22:07:22.837 NotebookApp] 0 active kernels
[I 22:07:22.837 NotebookApp] The Jupyter Notebook is running at: http://0.0.0.0:8889/?
[I 22:07:22.837 NotebookApp] Use Control-C to stop this server and shut down all kerne
[W 22:07:22.869 NotebookApp] No web browser found: could not locate runnable browser.
[C 22:07:22.872 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
    http://0.0.0.0:8889/?token=e0a26df9852868d86915a049abf9153a2ca17ea46fa5f4dd
```

Colar o link no navegador

No navegador substituir 0.0.0.0 por 127.0.0.1

Python + Sorl: Busca

PySolr

Embora seja possível fazer buscas e interações via requisições REST (GET, POST), com a lib pysolr fica ainda mais fácil e conveniente!

['No próximo dia 28/03 será leiloado o trecho central e sul da Ferrovia Norte-Sul. Este corredor que cortará o Bra sil, cria uma nova espinha dorsal na logística de transporte de produção em nosso país, gerando uma série de benef ícios econômicos e sociais a todos os brasileiros. https://t.co/h92SsJr3oA'|

Banana (<u>Download</u>)

- Configuração de interfaces flexíveis que se conectam diretamente no Solr
- Inclui painéis que utilizam a poderosa biblioteca de visualizações em javascript D3.js

Banana

Já vem com Solr-HDP

http://127.0.0.1:8983/solr/banana/index.html

Mineração via HIVE (distributed storage using SQL)

http://127.0.0.1:9995

Zeppelin - Oferece uma camada que interpreta várias sintaxes como SQL, Scala, Cassandra e entre outros, além disso te permite criar visualização de dados rapidamente através dos resultados obtidos pelos interpretadores

Zeppelin (~ jupyter)

Já vem instalado na HDP com interpretadores que permitem rodar scripts direto na infraestrutura como %pyspark, %hive, %sql ...

Mineração via HIVE (distributed storage using SQL)

Mineração via HIVE (distributed storage using SQL)

Tutorial on Twitter Sentiment Analysis and n-gram with Hadoop and Hive SQL

https://gist.github.com/umbertogriffo/a512baaf63ce0797e175

Sobre tabelas ORC

https://br.hortonworks.com/hadoop-tutorial/using-hive-with-orc-from-apache-spark/

NIFI - O "KNIME" da HDP

Inicie o servidor NIFI no Ambari e acesse: http://127.0.0.1:9090/nifi/

Tutorial Hortonworks

Analyzing Social Media and Customer Sentiment with Apache NIFI and HDP Search

https://hortonworks.com/hadoop-tutorial/how-to-refine-and-visualize-sentiment-data/

A Disciplina - RI

Plano de Ensino

- Unidade 01: Conceitos de inteligência competitiva e coletiva, crowdsourcing e redes sociais. Recuperação da informação e Máquinas de busca. Desafios da Mineração na web e nas redes. Exemplos de Projetos da disciplina.
- ➤ Unidade 02: Algoritmos e soluções para problemas de busca e extração de informação da WWW. Ferramenta e prática de processamento textual e recuperação de informação.
- > Unidade 03: Tipos de coleta, arquitetura e componentes de coletores Web. Ferramenta e prática de coleta de dados na Web.

A Disciplina - RI

Plano de Ensino

- Unidade 04: Aprofundando na mineração de texto e linguagem natural. Algoritmos e soluções para a análise da informação presente nas redes sociais online e em sites de conteúdo. Ferramenta e prática de mineração de texto.
- ➤ Unidade 05: Caracterização de redes sociais: Tipologia, características e representações gráficas. Algoritmos estocásticos, análise de redes complexas. Ferramenta e prática de mineração de redes complexas.
- Unidade 06: Indexação, Busca e Mineração em plataforma de Big Data

A Disciplina - RI

Teórico e Prático

O conteúdo estudado será exercitado em práticas utilizando ferramentas de mineração de texto e busca.

As aulas práticas serão avaliadas e em cada prática uma tarefa deverá ser realizada de maneira autônoma. **40 pontos.**

O Projeto Final será formado por conceitos discutidos e aplicados nas aulas, com adaptações individuais para um caso de uso real. O resultado das tarefas práticas poderá ser reaproveitado. **60 Pontos**

Projeto Final

- O projeto final consiste em realizar um estudo da Web para um assunto real e de livre escolha.
 - Exemplos: Automóveis, moda, música, imóveis...
- Será necessário
 - Coletar dados em texto de redes sociais e sites da Web
 - Analisar o conteúdo textual obtido
 - Analisar dados de relacionamentos entre usuários (i.e. nas redes)
 - Relatório final
- Data de Entrega
 - > 15° dia após a última aula às 23:59hrs