Week 3: Identify Risk Factors for Infection

UPDATE

Thank you again for the previous analysis. We will next be publishing a public health advisory that warns of specific infection risk factors of which individuals should be aware. Please advise as to which population characteristics are associated with higher infection rates.

Your goal for this notebook will be to identify key potential demographic and economic risk factors for infection by comparing the infected and uninfected populations.

Imports

```
In [12]: import cudf
import cuml
```

Load Data

Begin by loading the data you've received about week 3 of the outbreak into a cuDF data frame. The data is located at ./data/week3.csv . For this notebook you will need all columns of the data.

```
In [13]: # Load all columns from the week 3 outbreak data into a cuDF DataFrame
week3_df = cudf.read_csv('./data/week3.csv')
```

Calculate Infection Rates by Employment Code

Convert the infected column to type float32 . For people who are not infected, the float32 infected value should be 0.0 , and for infected people it should be 1.0 .

```
In [14]: # Convert the 'infected' column to float32, setting values based on infection statu
week3_df['infected'] = week3_df['infected'].astype('float32').replace({0: 0.0, 1: 1})
```

Now, produce a list of employment types and their associated **rates** of infection, sorted from highest to lowest rate of infection.

NOTE: The infection **rate** for each employment type should be the percentage of total individuals within an employment type who are infected. Therefore, if employment type "X" has 1000 people, and 10 of them are infected, the infection **rate** would be .01. If employment type "Z" has 10,000 people, and 50 of them are infected, the infection rate

would be .005, and would be **lower** than for type "X", even though more people within that employment type were infected.

```
In [15]: # Group by employment type and calculate the infection rate
         infection_rates = (
             week3_df.groupby('employment')
             .agg({
                  'infected': ['count', 'sum'] # Aggregate functions for 'infected' column
             })
         # Rename columns for clarity
         infection_rates.columns = ['total_individuals', 'infected_count']
         # Calculate infection rate as the percentage of infected individuals
         infection_rates['infection_rate'] = infection_rates['infected_count'] / infection_r
         # Sort by infection rate from highest to lowest
         sorted_infection_rates = infection_rates.sort_values(by='infection_rate', ascending
         # Reset index for better readability
         sorted_infection_rates = sorted_infection_rates.reset_index()
         # Display the result
         print(sorted infection rates)
```

	employment	total_individuals	infected_count	infection_rate
0	Q	3802602	48505.0	0.012756
1	I	1556575	16116.0	0.010354
2	V	10098466	76648.0	0.007590
3	Р	3006149	18609.0	0.006190
4	Z	7161907	40498.0	0.005655
5	R, S, T	1669197	8997.0	0.005390
6	0	1843446	9741.0	0.005284
7	L	346470	1722.0	0.004970
8	G	3549465	17561.0	0.004948
9	N	1367137	6541.0	0.004784
10	М	2214336	10578.0	0.004777
11	K	1122406	5356.0	0.004772
12	Х	181988	826.0	0.004539
13	J	1180372	4650.0	0.003939
14	C	2653753	10301.0	0.003882
15	А	305755	1178.0	0.003853
16	B, D, E	486785	1837.0	0.003774
17	Н	1398342	4737.0	0.003388
18	F	2075628	6604.0	0.003182
19	U	12459115	2702.0	0.000217

Finally, read in the employment codes guide from ./data/code_guide.csv to interpret which employment types are seeing the highest rates of infection.

```
In [16]: code_guide_df = cudf.read_csv('./data/code_guide.csv')
```

```
# Display the contents of the DataFrame
print(code_guide_df)
```

```
Code
                                                         Field
0
                              Agriculture, forestry & fishing
1
    B, D, E
                              Mining, energy and water supply
2
          C
                                                Manufacturing
3
          F
                                                 Construction
          G
                Wholesale, retail & repair of motor vehicles
5
          Н
                                          Transport & storage
          Ι
6
                                Accommodation & food services
7
                                  Information & communication
          J
8
          Κ
                             Financial & insurance activities
9
          L
                                       Real estate activities
             Professional, scientific & technical activities
11
                            Administrative & support services
          0
12
                     Public admin & defence; social security
13
          Р
                                                     Education
14
                       Human health & social work activities
          Q
15 R, S, T
                                               Other services
                                                       Student
16
          ٧
                                                       Retired
17
18
          Χ
                              Outside the UK or not specified
19
          Υ
                                             Pre-school child
20
          7
                                        Not formally employed
```

Calculate Infection Rates by Employment Code and Sex

We want to see if there is an effect of sex on infection rate, either in addition to employment or confounding it. Group by both employment and sex simultaneously to get the infection rate for the intersection of those categories.

Display the resulting DataFrame
print(infection_rates_sex)

	employmen	ıt	sex	total individuals	infected_count	infection_rate
0		Ι	f	819431	12344.0	0.015064
1		Q	f	2954725	44164.0	0.014947
2		V	f	5502736	59713.0	0.010852
3	B, D,	Е	f	115888	924.0	0.007973
4		Т	f	913091	7075.0	0.007748
5		0	f	976302	7536.0	0.007719
6		Κ	f	494256	3792.0	0.007672
7		Μ	f	975240	7456.0	0.007645
8		J	f	322584	2466.0	0.007645
9		C	f	688196	5251.0	0.007630
10		Z	f	4382232	33430.0	0.007629
11		Р	f	2169494	16453.0	0.007584
12		F	f	266193	2017.0	0.007577
13		G	f	1682827	12715.0	0.007556
14		Α	f	82229	616.0	0.007491
15		Χ	f	77253	571.0	0.007391
16		Ν	f	633114	4678.0	0.007389
17		Н	f	258211	1907.0	0.007385
18		L	f	191242	1381.0	0.007221
19		Q	m	847877	4341.0	0.005120
20		Ι	m	737144	3772.0	0.005117
21		V	m	4595730	16935.0	0.003685
22		G	m	1866638	4846.0	0.002596
23		Р	m	836655	2156.0	0.002577
24		C	m	1965557	5050.0	0.002569
25		J	m	857788	2184.0	0.002546
26		0	m	867144	2205.0	0.002543
27		Z	m	2779675	7068.0	0.002543
28	R, S,	Т	m	756106	1922.0	0.002542
29		N	m	734023	1863.0	0.002538
30		F	m	1809435	4587.0	0.002535
31		Μ	m	1239096	3122.0	0.002520
32		Α	m	223526	562.0	0.002514
33		K	m	628150	1564.0	0.002490
34		Н	m	1140131	2830.0	0.002482
35	В, D,	Е	m	370897	913.0	0.002462
36		Χ	m	104735	255.0	0.002435
37		L	m	155228	341.0	0.002197
38		U	f	6073869	2001.0	0.000329
39		U	m	6385246	701.0	0.000110

Take the Assessment

After completing the work above, visit the *Launch Section* web page that you used to launch this Jupyter Lab. Scroll down below where you launched Jupyter Lab, and answer the question *Week 3 Assessment*. You can view your overall progress in the assessment by visiting the same *Launch Section* page and clicking on the link to the *Progress* page. On the *Progress* page, if you have successfully answered all the assessment questions, you can click on *Generate Certificate* to receive your certificate in the course.

Optional: Restart the Kernel

If you plan to continue work in other notebooks, please shutdown the kernel.

```
In [18]: import IPython
app = IPython.Application.instance()
app.kernel.do_shutdown(True)

Out[18]: {'status': 'ok', 'restart': True}
```