Fundamentos de Análisis Matemático, MMA 2023-24.

Entrega 1

Nombre y apellidos: Gonzalo Ortega Carpintero

1. Se dice que la función $f: \mathbb{R}^N \to \mathbb{R}$ es Hölder de orden $\alpha > 0$ si existe una constante C de forma que

$$|f(x) - f(y)| \le C|x - y|^{\alpha}, \ \forall x, y \in \mathbb{R}^N.$$

Probar que si f es Hölder de orden α , con $\alpha > 1$, entonces f es constante.

- **2.** En \mathbb{R}^N , si el conjunto A no es medible Lebesgue, y s < N, probar que $\mathcal{H}^s(A) = \infty$.
- 3. Recordamos que la medida exterior de Lebesgue se define como

$$m^*(E) = \inf \left\{ \sum_{j \ge 1} \operatorname{vol}(B_j) : \{B_j\}_j \text{ cubrimiento por bolas de } A \right\}.$$

Definimos por otro lado la clase

$$\mathcal{B} = \{ A \subset \mathbb{R}^N : \forall \epsilon > 0, \ \exists \mathcal{O}, \ \text{abierto, tal que} \ A \subset \mathcal{O} \ \text{y} \ m^*(\mathcal{O} \setminus A) < \epsilon \}.$$

Probar:

- \mathcal{B} es una σ -álgebra en \mathbb{R}^N .
- \blacksquare \mathcal{B} coincide con la σ -álgebra \mathcal{A} obtenida por el teorema de Caratheodory.

SOL.:

1.

Demostración. Dados $x, y \in \mathbb{R}^N$ cualesquiera consideramos el segmento $[xy] \subset \mathbb{R}^N$. Podemos dividir dicho segmento en n subsegmentos de la forma $[x_{i-1}x_i]$ con $i \in [1, n]$ y $x_0 = x$, $x_n = y$, que cumplan

$$|x_i - x_{i-1}| = \frac{|x - y|}{n}.$$

Para cada subsegmento se tiene que verificar la propiedad de ser Hölder, luego

$$|f(y) - f(x)| = \left| \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \right| \le \sum_{i=1}^{n} |(f(x_i) - f(x_{i-1}))|$$

$$\le \sum_{i=1}^{n} C|x_i - x_{i-1}|^{\alpha} = nC \frac{|x - y|^{\alpha}}{n^{\alpha}} = C \frac{|x - y|^{\alpha}}{n^{\alpha - 1}} \underset{\substack{n \to \infty \\ \alpha > 1}}{\longrightarrow} 0.$$

Por tanto $\forall x,y \in \mathbb{R}^N, f(x) = f(y),$ teniendo que ser f una función constante.

Demostración. Supongamos que la medida de Hausdorff es finita $\mathcal{H}^s < \infty$, s < N. Si desarrollamos ahora tenemos que

$$\mathcal{H}^{N}(A) = \lim_{\delta \to 0^{+}} \inf \left\{ \sum_{j} (\operatorname{diam} E_{j})^{N} : A \subset \bigcup_{j=1}^{\infty} E_{j}, \operatorname{diam} E_{j} \leq \delta, \forall j \right\}$$

$$= \lim_{\delta \to 0^{+}} \inf \left\{ \sum_{j} (\operatorname{diam} E_{j})^{s+\epsilon} : A \subset \bigcup_{j=1}^{\infty} E_{j}, \operatorname{diam} E_{j} \leq \delta, \forall j \in 0 \right\}$$

$$\leq \lim_{\delta \to 0^{+}} C\delta^{\epsilon} * \lim_{\delta \to 0^{+}} \inf \left\{ \sum_{j} (\operatorname{diam} E_{j})^{s} : A \subset \bigcup_{j=1}^{\infty} E_{j}, \operatorname{diam} E_{j} \leq \delta, \forall j \right\}$$

$$= \lim_{\delta \to 0^{+}} C\delta^{\epsilon} * \mathcal{H}^{s}(A) = 0$$

para alguna constante C. Pero sabemos de clase que $\mathcal{H}^N(A) = C_n m^*(A)$ con $C_n \in \mathbb{R}^N$ constante y $m^*(A)$ la medida de Lebesgue en \mathbb{R}^N . Por tanto se tendría $m^*(A) = 0$ y A sería medible Lebesgue, entrando en contradicción. Por tanto, tiene que ser $\mathcal{H}^s = \infty$.

3.

Demostración. Para probar que \mathcal{B} es una σ -álgebra, basta comprobar que coincide con la σ -álgebra \mathcal{A} obtenida por el teorema de Caratheodory.

Para ello, empezamos tomando $A \in \mathcal{A}$, por lo que $\forall E \in \mathbb{R}^N, m^*(E \cap A) + m^*(E \cup A^c)$. Definimos $\mathcal{O}_{\epsilon} = \{x \in \mathbb{R}^N : d(x, A) < \epsilon\}$, conjunto abierto que satisface $A \subset \mathcal{O}_{\epsilon}$. Se tiene entonces que

$$m^*(\mathcal{O}_{\epsilon}) = m^*(\mathcal{O}_{\epsilon} \cap A) + m^*(\mathcal{O}_{\epsilon} \cup A^c) = m^*(A) + m^*(\mathcal{O}_{\epsilon} \setminus A).$$

Despejando obtenemos $m^*(\mathcal{O}_{\epsilon} \setminus A) = m^*(\mathcal{O}_{\epsilon}) - m^*(A) = 0$. Luego $A \in \mathcal{B}$.

Tomando ahora $B \in \mathcal{B}$, se tiene entonces que $\forall \epsilon > 0$, $\exists \mathcal{O}$, abierto, tal que $B \subset \mathcal{O}$ y $m^*(\mathcal{O} \setminus B) < \epsilon$, y tomando un conjunto $E \in \mathbb{R}^n$ cualquiera y usando que la medida de Lebesgue es una medida exterior tenemos

$$m^*(E \cap B) + m^*(E \cap B^c) = m^*(E \cap B) + m^*((E \cap \mathcal{O}^c) \cup (E \cap (\mathcal{O} \setminus B))$$

$$\leq m^*(E \cap \mathcal{O}) + m^*(E \cap \mathcal{O}^c) + m^*(E \cap (\mathcal{O} \setminus B))$$

$$\leq m^*(E \cap \mathcal{O}) + m^*(E \cap \mathcal{O}^c) + \epsilon \leq m^*(E) + \epsilon,$$

puesto que al ser \mathcal{O} abierto, $m^*(E \cap \mathcal{O}) + m^*(E \cap \mathcal{O}^c) = m^*((E \cap \mathcal{O}) \cup (E \cap \mathcal{O}^c))$. Como ϵ puede ser tan pequeño como se quiera se tiene entonces la condición suficiente para que ser medible Lebesgue $m^*(E) = m^*(E \cap B) + m^*(E \cap B^c)$, y por tanto $B \in \mathcal{A}$.