醋酸电离平衡的温度影响及其热力学分析

1

书明新 郑雷鹤

提 要

不同湿度下HAC的电离平衡问题讨论,见报导不多。本文就HAC的电离平衡及与温度的关系作了进一步探讨研究。用热力学方法分析与讨论了K。~t曲线的形状及随HAC的电离平衡均有影响。

弱电解质的热效应一般不大,温度对其电离平衡的影响往往被忽略。因此,不同温度下 醋酸的电离平衡问题讨论得不多,下面的数据摘自现行高师无机化学数材^[1],它给出了不同温度下醋酸的电离平衡常数。

温度(C)	HAC电 离平衡常数(Ka) ×10~		
10	1.729		
20	1.753		
30	1.750		
40	1.703		
50	1.633		

由上述数据,可作出Ka一t图,见图一。

由图一不难看出,温度对Ka有两种不同的影响,且Ka-t曲线出现了一段平坦的部分为了更好地观察温度对Ka的影响,并确定平坦段的温度区间,需要温度间隔较短的数据。为此,我们测了一些数据,这些数据的温度间隔为1°C。我们所用的主要仪器有酸度计、510型超级恒温水浴、及自己设计安装的控制雕酸挥发的冷凝装置。下面是一组比较典型的数据。

温度(饣)	HAC溶液PH值	温度(℃)	HAC溶液PH值
10	2.70	28	2.59
11	2.58	29	2.60
12	2.56	30	2.61
13	2.55	31	2.62
14	2.55	32	2.62
15	2.55	33	2.63
16	2.55	34	2.65
17	2.55	35	2.66
18	2.54	36	2.68
19	2,54	37	2.70
20	2.52	38	2.71
21	2.52	39	2.72
22	2.52	40	2.74
23	2.52	41	2.75
24	2.52	42	2.75
25	2.53	43	2.77
26	2.55	44	2.78
27	2.58	45	2.78
		(IIAC SH	PEALO 00707M X

(HAC浓度为0.09707M)

由这组数据可作出PH-t图,见图=,曲线a.

该图与图一形状基本一致,平坦段出现在20℃~24℃之间。

由以上两个Ka一t图可以看出,Ka一t曲线有三个部分。i)在温度较低时,出现上升段。说明随温度升高,Ka值增大。ii)在某一温度区间出现平坦段,温度对Ka的影响很小;ii)在温度升高时,出现下降段。说明随温度升高,Ka值减小。

对温度升高时,醋酸电离平衡常数Ka的曲折变化,我们认为从热力学的角度去分析 比

较合理。

我们知道,醋酸的分子之间存在氢键。温度升高,则氢键破裂,醋酸成为自由的单个分子,这有利于醋酸的电离。因此,温度升高,Ka应增大。氢键的存在对Ka随温度变化的影响如图三中曲线1所示。

另一方面, 醋酸的电离反应

HAC ZH+AC

本身存在着热效应。查得有关物质的标准生成热数据为:

t. 1. 氢键的存在对 Ka的影响 2. Ka随温度的真实变化 3. 电离热效应对 Ka的影响 图三 (示意图)

• 38 •

 Δ H · f 298 K H A C (1) = -484.5 KJ/moe^[2] Δ H · f 298 K H + = 0 Δ H · f 298 K A C = -488.86 KJ/moe^[3]

故反应的热效应

1
H 2 298 K = $-488.7 - (-484.5) = -4.2$ (KJ)

可见,电离反应是放热的·升高温度不利HAC解离,Ka值减小。电离反应的热效应对Ka随温度变化的影响见图三、曲线3。

醋酸电离平衡常数 Ka随温度的真实变化(见图三,曲线2)显然是氢键和电离热效应 共同影响的结果,醋酸氢键的键能为20.29 KJ/mol^{L4}],与电离热效应相差不是很大,似乎 这两者的影响应互相低消,Ka一t曲线应是一条较为平坦的曲线。但事实上,在温度 较 低 时,醋酸分子大部分以氢键互相综合,氢键对 Ka一t曲线的影响与主导地位,曲线 出现上升 段,在某一温度区间内,氢键的破坏达到一定的程度时,氢键和电离热效应的影响基本上互 相抵消,Ka一t曲线确实出现了平坦段,当温度很高,达到某一数值(见图三中"t*")时 氦键完全破裂,电离热效应对 Ka的影响占绝对优势,温度升高,Ka值将下降,曲 线 出现 下降段。

从以上分析出发,可以断定,如果醋酸的浓度升高,则使醋酸分子间氢键完全破裂所需的温度(t*)将升高,平坦段必定会右移,于是,我们测试了溶度大小为0.9707M的醋酸溶液的PH值,下面是一组典型的数据:

温度(℃)	HAC溶液PH值	温度(℃)	HAC溶液PH值
1.1	2.80	30	2.69
12	2,79	31	2,69
15	2.72	32	2.70
16	2.70	33	2.70
17	2.69	34	2.79
19	2.68	35	2.70
20	2.68	36	2.70
21	2.68	37	2.71
22	2.66	38	2.74
23	2.65	39	2.76
24	2.64	40	2.78
2 5	2.63	41	2.79
26	2.63	42	2.80
27	2.63	43	2.80
2 8	2.63	44	2.81
29	2.68	45	2.82

• 39 •

由此作出PH—t图,见图二,曲线b。其平坦部分的温度区间为25℃~28℃之间,平坦部分确实右移了。

对于醋酸电离平衡的温度影响,以上我们的实验情况及一点解释。无论在实验还是在理论分析方面,要做到更加准确和全面,还需要进一步的探讨。

参考文献

- [1] 北京师范大学,华中师范学院、南京师范学院无机化学教研室,《无机化学上》 P₁₇₇人民教育出版社,1981年。
 - 〔2〕 《Lange's Handlook of chemistzg》11thed并按1cal=4.184J换算。
 - 〔3〕 武汉地质学院孙作为,李鹏九:《物理化学》P28,地质出版社1979年?
- 〔4〕 化学通报,1957年11月号,武汉大学化学系叶侨:《关于氢键的儿节问题)按1cal=4.184J换算,(此为苯中醋酸氢键的数据。)