1 Match Constraint Language

$$\begin{array}{ccc} \dot{\xi} & ::= & \top \mid ? \mid \underline{n} \mid \mathrm{inl}(\dot{\xi}) \mid \mathrm{inr}(\dot{\xi}) \mid (\dot{\xi}, \dot{\xi}) \mid \dot{\xi} \vee \dot{\xi} \\ \hline \dot{\xi} : \tau & \dot{\xi} \text{ constrains final expressions of type } \tau \\ & & \text{CTTruth} \end{array}$$

$$\overline{\top} : \tau$$
 (1a)

CTUnknown

$$\overline{?:\tau}$$
 (1b)

$$\frac{\text{CTNum}}{n: \text{num}} \tag{1c}$$

CTInl $\frac{\dot{\xi}_1 : \tau_1}{}$

$$\frac{\zeta_1 \cdot \tau_1}{\operatorname{inl}(\dot{\xi}_1) : (\tau_1 + \tau_2)} \tag{1d}$$

(1e)

 $rac{\dot{\xi}_2: au_2}{\operatorname{inr}(\dot{\xi}_2):(au_1+ au_2)}$

CTPair
$$\frac{\dot{\xi}_1:\tau_1}{(\dot{\xi}_1,\dot{\xi}_2):(\tau_1\times\tau_2)} \tag{1f}$$

CTOr
$$\frac{\dot{\xi}_1 : \tau \qquad \dot{\xi}_2 : \tau}{\dot{\xi}_1 \lor \dot{\xi}_2 : \tau}$$
 (1g)

 $\left|\dot{\xi} \text{ refutable}_{?}\right| \left|\dot{\xi} \text{ is refutable}\right|$

RXNum

$$\frac{}{\underline{n} \; \mathtt{refutable}_?}$$
 (2a)

RXUnknown

$$\frac{}{? \text{ refutable}_?}$$
 (2b)

RXInl

$$\frac{}{\operatorname{inl}(\dot{\xi})\operatorname{refutable}_?}$$
 (2c)

 ${\rm RXInr}$

$$\frac{}{\operatorname{inr}(\dot{\xi})\operatorname{refutable}_?}$$
 (2d)

RXPairL

$$\frac{\dot{\xi}_1 \text{ refutable}_?}{(\dot{\xi}_1, \dot{\xi}_2) \text{ refutable}_?} \tag{2e}$$

RXPairR
$$\frac{\dot{\xi}_2 \text{ refutable}_?}{(\dot{\xi}_1, \dot{\xi}_2) \text{ refutable}_?}$$
(2f)

$$\frac{\text{RXOr}}{\dot{\xi}_1 \text{ refutable}_?} \frac{\dot{\xi}_2 \text{ refutable}_?}{\dot{\xi}_1 \vee \dot{\xi}_2 \text{ refutable}_?} \tag{2g}$$

$refutable_?(\dot{\xi})$

$$refutable_{?}(\top) = false$$
 (3a)

$$refutable_{?}(\underline{n}) = true$$
 (3b)

$$refutable_{?}(?) = true$$
 (3c)

$$refutable_2(inl(\dot{\xi})) = true$$
 (3d)

$$refutable_2(inr(\dot{\xi})) = true$$
 (3e)

$$refutable_{?}((\dot{\xi}_{1},\dot{\xi}_{2})) = refutable_{?}(\dot{\xi}_{1}) \text{ or } refutable_{?}(\dot{\xi}_{2})$$
 (3f)

$$refutable_{?}(\dot{\xi}_{1} \vee \dot{\xi}_{2}) = refutable_{?}(\dot{\xi}_{1}) \text{ and } refutable_{?}(\dot{\xi}_{2})$$
 (3g)

Lemma 1.0.1 (Soundness and Completeness of Refutable Constraints). $\dot{\xi}$ refutable? iff $refutable_2(\dot{\xi}) = true$.

Proof. We prove soundness and completeness separately.

1. Soundness:

(1) $\dot{\xi}$ refutable? by assumption

By rule induction over Rules (2) on (1).

Case (2a).

(2)
$$\dot{\xi} = \underline{n}$$
 by assumption
(3) $refutable_2(\underline{n}) = true$ by Definition 3

Case (2b).

(2)
$$\dot{\xi} = ?$$
 by assumption
(3) $refutable_?(?) = true$ by Definition 3

Case (2c).

$$\begin{array}{ll} (2) \ \ \dot{\xi} = \mathtt{inl}(\dot{\xi}_1) & \text{by assumption} \\ (3) \ \ \mathit{refutable}_?(\mathtt{inl}(\dot{\xi}_1)) = \mathrm{true} & \text{by Definition 3} \end{array}$$

Case (2d).

$$\begin{array}{ll} (2) \ \ \dot{\xi} = \mathtt{inr}(\dot{\xi}_2) & \text{by assumption} \\ (3) \ \ \mathit{refutable}_?(\mathtt{inr}(\dot{\xi}_2)) = \mathrm{true} & \text{by Definition 3} \end{array}$$

Case	(2e)	
Case	(ze.	٠.

- (2) $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$ by assumption (3) $\dot{\xi}_1$ refutable? by assumption (4) $refutable_?(\dot{\xi}_1) = true$ by IH on (3)
- (5) $refutable_?((\dot{\xi}_1,\dot{\xi}_2))=$ true by Definition 3 on (4)

Case (2f).

(2) $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$ by assumption (3) $\dot{\xi}_2$ refutable? by assumption (4) $refutable_?(\dot{\xi}_2) = true$ by IH on (3) (5) $refutable_?((\dot{\xi}_1, \dot{\xi}_2)) = true$ by Definition 3 on (4)

Case (2g).

 $\begin{array}{lll} (2) & \dot{\xi}=\dot{\xi}_1\vee\dot{\xi}_2 & \text{by assumption} \\ (3) & \dot{\xi}_1 \text{ refutable}_? & \text{by assumption} \\ (4) & \dot{\xi}_2 \text{ refutable}_? & \text{by assumption} \\ (5) & refutable_?(\dot{\xi}_1) = \text{true} & \text{by IH on (3)} \\ (6) & refutable_?(\dot{\xi}_2) = \text{true} & \text{by IH on (4)} \\ (7) & refutable_?(\dot{\xi}_1\vee\dot{\xi}_2) = \text{true} & \text{by Definition 3 on (5)} \\ & & \text{and (6)} \end{array}$

2. Completeness:

(1) $refutable_{?}(\dot{\xi}) = true$ by assumption

By structural induction on $\dot{\xi}$.

Case \top .

(2) $refutable_{?}(\top) = false$ by Definition 3

Contradicts (1).

Case?.

(2) ? refutable? by Rule (2b)

Case \underline{n} .

(2) \underline{n} refutable? by Rule (2a)

Case $\operatorname{inl}(\dot{\xi}_1)$.

(2) $\operatorname{inl}(\dot{\xi}_1)$ refutable? by Rule (2c)

Case $\operatorname{inr}(\dot{\xi}_2)$.

(2) $\operatorname{inr}(\dot{\xi}_2)$ refutable? by Rule (2d)

Case $(\dot{\xi}_1,\dot{\xi}_2)$.

(2) $\mathit{refutable}_?(\dot{\xi_1}) = \mathrm{true} \; \mathrm{or} \; \mathit{refutable}_?(\xi_1)$	$\dot{\xi}_2$) = true by Definition 3 on (1)
By case analysis on (2).	
Case $refutable_{?}(\dot{\xi}_{1}) = \text{true.}$	
(3) $refutable_{?}(\dot{\xi}_{1}) = true$	by assumption
(4) $\dot{\xi}_1$ refutable?	by IH on (3)
(5) $(\dot{\xi}_1,\dot{\xi}_2)$ refutable $_?$	by Rule $(2e)$ on (4)
Case $refutable_{?}(\dot{\xi}_{2})={ m true.}$	
(3) $refutable_{?}(\dot{\xi}_{2}) = true$	by assumption
(4) $\dot{\xi}_2$ refutable?	by IH on (3)
(5) $(\dot{\xi}_1,\dot{\xi}_2)$ refutable?	by Rule $(2f)$ on (4)
$\mathbf{Case}\dot{\xi}_1 \lor \dot{\xi}_2.$	
(2) $refutable_2(\dot{\xi}_1) = true$	by Definition 3 on (1)
(3) $refutable_2(\dot{\xi}_2) = true$	by Definition 3 on (1)
(4) $\dot{\xi}_1$ refutable?	by IH on (2)
(5) ξ_2 refutable?	by IH on (3)
$(6) \ \ \dot{\xi}_1 \lor \dot{\xi}_2 \ \texttt{refutable}_?$	by Rule (2g) on (4) and (5)
$e = \dot{\xi}$ e satisfies $\dot{\xi}$	
CSTruth	(4.)
$\overrightarrow{e}\dot{\models} op$	(4a)
CSNum	(41)
$\underline{n}\dot{\models}\underline{n}$	(4b)
CSInl	
$e_1 \dot{\models} \dot{\xi}_1$	(4-)
$\overline{\mathtt{inl}_{\tau_2}(e_1)\dot{\models}\mathtt{inl}(\dot{\xi_1})}$	(4c)
CSInr	
$e_2 \stackrel{\cdot}{\models} \dot{\xi}_2$	(4d)
$\mathtt{inr}_{\tau_1}(e_2)\dot\models\mathtt{inr}(\dot{\xi}_2)$	(1 u)
CSPair	
$e_1 \models \dot{\xi}_1 \qquad e_2 \models \dot{\xi}_2$	(4e)
$(e_1,e_2)\dot{\models}(\dot{\xi_1},\dot{\xi_2})$	
CSNotIntroPair :	/ \\
$e ext{ notintro} \qquad \operatorname{prl}(e) \models \xi_1 \qquad \operatorname{prr}(e) \vdash \xi_1 \qquad \operatorname{prr}(e$	$\frac{(e) \models \xi_2}{} \tag{4f}$
$e \models (\dot{\xi}_1, \dot{\xi}_2)$,

CSOrL
$$\frac{e \models \dot{\xi}_1}{e \models \dot{\xi}_1 \lor \dot{\xi}_2} \tag{4g}$$

CSOrR
$$\frac{e \models \dot{\xi}_2}{e \models \dot{\xi}_1 \lor \dot{\xi}_2} \tag{4h}$$

 $\mathit{satisfy}(e,\dot{\xi})$

$$satisfy(e, \top) = true$$
 (5a)

$$satisfy(n_1, n_2) = (n_1 = n_2)$$
 (5b)

$$satisfy(e, \dot{\xi}_1 \lor \dot{\xi}_2) = satisfy(e, \dot{\xi}_1) \text{ or } satisfy(e, \dot{\xi}_2)$$
 (5c)

$$\mathit{satisfy}(\mathtt{inl}_{\tau_2}(e_1),\mathtt{inl}(\dot{\xi}_1)) = \mathit{satisfy}(e_1,\dot{\xi}_1) \tag{5d}$$

$$\mathit{satisfy}(\mathsf{inr}_{\tau_1}(e_2),\mathsf{inr}(\dot{\xi}_2)) = \mathit{satisfy}(e_2,\dot{\xi}_2) \tag{5e}$$

$$\mathit{satisfy}((e_1,e_2),(\dot{\xi}_1,\dot{\xi}_2)) = \mathit{satisfy}(e_1,\dot{\xi}_1) \text{ and } \mathit{satisfy}(e_2,\dot{\xi}_2) \tag{5f}$$

$$\mathit{satisfy}(\lVert \rVert^u, (\dot{\xi}_1, \dot{\xi}_2)) = \mathit{satisfy}(\mathtt{prl}(\lVert \rVert^u), \dot{\xi}_1) \text{ and } \mathit{satisfy}(\mathtt{prr}(\lVert \rVert^u), \dot{\xi}_2) \tag{5g}$$

$$\mathit{satisfy}(\{e\}^u, (\dot{\xi}_1, \dot{\xi}_2)) = \mathit{satisfy}(\mathtt{prl}(\{e\}^u), \dot{\xi}_1) \text{ and } \mathit{satisfy}(\mathtt{prr}(\{e\}^u), \dot{\xi}_2) \tag{5h}$$

$$\mathit{satisfy}(e_1(e_2),(\dot{\xi}_1,\dot{\xi}_2)) = \mathit{satisfy}(\mathtt{prl}(e_1(e_2)),\dot{\xi}_1)$$

and
$$satisfy(prr(e_1(e_2)), \dot{\xi}_2)$$
 (5i)

 $\mathit{satisfy}(\texttt{match}(e)\{\hat{rs}\},(\dot{\xi}_1,\dot{\xi}_2)) = \mathit{satisfy}(\texttt{prl}(\texttt{match}(e)\{\hat{rs}\}),\dot{\xi}_1)$

and
$$satisfy(prr(match(e)\{\hat{rs}\}), \dot{\xi}_2)$$
 (5j)

$$\mathit{satisfy}(\mathtt{prl}(e),(\dot{\xi}_1,\dot{\xi}_2)) = \mathit{satisfy}(\mathtt{prl}(\mathtt{prl}(e)),\dot{\xi}_1)$$

and
$$satisfy(prr(prl(e)), \dot{\xi}_2)$$
 (5k)

$$\mathit{satisfy}(\mathtt{prr}(e), (\dot{\xi}_1, \dot{\xi}_2)) = \mathit{satisfy}(\mathtt{prl}(\mathtt{prr}(e)), \dot{\xi}_1)$$

and
$$satisfy(prr(prr(e)), \dot{\xi}_2)$$
 (51)

Otherwise
$$satisfy(e, \dot{\xi}) = false$$
 (5m)

Lemma 1.0.2 (Soundness and Completeness of Satisfaction Judgment). $e \models \dot{\xi}$ iff $satisfy(e, \dot{\xi}) = true$.

Proof. We prove soundness and completeness separately.

1. Soundness:

(1)
$$e \models \dot{\xi}$$
 by assumption

By rule induction over Rules (4) on (1).

Case (4a).

- (2) $\dot{\xi} = \top$ by assumption
- (3) $satisfy(e, \top) = true$ by Definition 5a

Case (4b).

- (2) $e = \underline{n}$ by assumption
- (3) $\dot{\xi} = \underline{n}$ by assumption
- (4) $satisfy(\underline{n},\underline{n}) = (n = n) = true$ by Definition 5b

Case (4g).

- (2) $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$ by assumption
- (3) $e \dot{\models} \dot{\xi}_1$ by assumption
- (4) $satisfy(e, \dot{\xi}_1) = true$ by IH on (3)
- (5) $satisfy(e, \dot{\xi}_1 \lor \dot{\xi}_2) = satisfy(e, \dot{\xi}_1)$ or $satisfy(e, \dot{\xi}_2) = true$ by Definition 5c on (4)

Case (4h).

- (2) $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$ by assumption
- (3) $e \dot{\models} \dot{\xi}_2$ by assumption
- (4) $satisfy(e, \dot{\xi}_2) = true$ by IH on (3)
- (5) $satisfy(e,\dot{\xi}_1\vee\dot{\xi}_2)=satisfy(e,\dot{\xi}_1)$ or $satisfy(e,\dot{\xi}_2)=$ true by Definition 5c on (4)

Case (4c).

- (2) $e = \operatorname{inl}_{\tau_2}(e_1)$ by assumption
- (3) $\dot{\xi} = inl(\dot{\xi}_1)$ by assumption
- (4) $e_1 \models \dot{\xi}_1$ by assumption
- (5) $satisfy(e_1, \dot{\xi}_1) = true$ by IH on (4)
- (6) $satisfy(\mathtt{inl}_{\tau_2}(e_1),\mathtt{inl}(\dot{\xi}_1)) = satisfy(e_1,\dot{\xi}_1) = \text{true}$ by Definition 5d on (5)

Case (4d).

- (2) $e = \operatorname{inr}_{\tau_1}(e_2)$ by assumption
- (3) $\dot{\xi} = \text{inl}(\dot{\xi}_2)$ by assumption
- (4) $e_2 \models \dot{\xi}_2$ by assumption
- (5) $satisfy(e_2, \dot{\xi}_2) = true$ by IH on (4)

(6)
$$satisfy(\mathtt{inr}_{\tau_1}(e_2),\mathtt{inr}(\dot{\xi}_2)) = satisfy(e_2,\dot{\xi}_2) = \text{true}$$
 by Definition 5e on (5)

Case (4e).

(2)
$$e = (e_1, e_2)$$
 by assumption
(3) $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$ by assumption

(4)
$$e_1 \models \dot{\xi}_1$$
 by assumption

(5)
$$e_2 \models \dot{\xi}_2$$
 by assumption
(6) $satisfy(e_1, \dot{\xi}_1) = true$ by IH on (4)

(7)
$$satisfy(e_2, \dot{\xi}_2) = true$$
 by IH on (5)

(8)
$$satisfy((e_1,e_2),(\dot{\xi}_1,\dot{\xi}_2)) = satisfy(e_1,\dot{\xi}_1)$$
 and $satisfy(e_2,\dot{\xi}_2) = true$ by Definition 5f on (6) and (7)

Case (4f).

(2)
$$\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$$
 by assumption
(3) e notintro by assumption
(4) $prl(e) \models \dot{\xi}_1$ by assumption
(5) $prr(e) \models \dot{\xi}_2$ by assumption
(6) $satisfy(prl(e), \dot{\xi}_1) = true$ by IH on (4)
(7) $satisfy(prr(e), \dot{\xi}_2) = true$ by IH on (5)

By rule induction over Rules (21) on (3).

Otherwise.

(8)
$$e = \{ \| u, \| e_0 \| u, e_1(e_2), \text{prl}(e_0), \text{prr}(e_0), \text{match}(e_0) \} \}$$
 by assumption

(9)
$$satisfy(e, (\dot{\xi}_1, \dot{\xi}_2)) = satisfy(\texttt{prl}(e), \dot{\xi}_1)$$
 and $satisfy(\texttt{prr}(e), \dot{\xi}_2) = \text{true}$ by Definition 5 on (6) and (7)

2. Completeness:

(1)
$$\mathit{satisfy}(e,\dot{\xi}) = \mathsf{true}$$
 by assumption

By structural induction on $\dot{\xi}$.

Case
$$\dot{\xi} = \top$$
.

(2)
$$e \models \top$$
 by Rule (4a)

Case $\dot{\xi} = \bot, ?$.

(2)
$$satisfy(e, \dot{\xi}) = false$$

by Definition 5m

(2) contradicts (1) and thus vacuously true.

Case $\dot{\xi} = \underline{n}$.

By structural induction on e.

Case e = n'.

(2) n' = n

by Definition 5b on (1)

(3) $\underline{n'} = \underline{n}$

by Rule (4b) on (2)

Otherwise.

(2) $satisfy(e, \underline{n}) = false$

by Definition 5m

(2) contradicts (1) and thus vacuously true.

Case $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$.

(2) $\mathit{satisfy}(e,\dot{\xi}_1) \text{ or } \mathit{satisfy}(e,\dot{\xi}_2) = \mathsf{true}$

by Definition 5c on (1)

By case analysis on (2).

Case $satisfy(e, \dot{\xi}_1) = true.$

(3) $satisfy(e, \dot{\xi}_1) = true$

by assumption

(4) $e \dot{\models} \dot{\xi}_1$

by IH on (3)

(5) $e \dot{\models} \dot{\xi}_1 \vee \dot{\xi}_2$

by Rule (4g) on (4)

Case $satisfy(e, \dot{\xi}_2) = true.$

(3) $satisfy(e, \dot{\xi}_2) = true$

by assumption

(4) $e \models \dot{\xi}_2$

by IH on (3)

(5) $e \dot{\models} \dot{\xi}_1 \lor \dot{\xi}_2$

by Rule (4h) on (4)

Case $\dot{\xi} = \operatorname{inl}(\dot{\xi}_1)$.

By structural induction on e.

Case $e = \operatorname{inl}_{\tau_2}(e_1)$.

(2) $satisfy(e_1, \dot{\xi}_1) = true$

by Definition 5d on (1)

(3) $e_1 \stackrel{.}{\models} \dot{\xi}_1$

by IH on (2)

 $(4) \ \operatorname{inl}_{\tau_2}(e_1) \dot\models \operatorname{inl}(\dot{\xi}_1)$

by Rule (4c) on (3)

Otherwise.

 $(2) \ \mathit{satisfy}(e, \mathtt{inl}(\dot{\xi}_1)) = \mathrm{false}$

by Definition 5m

(2) contradicts (1) and thus vacuously true.

Case $\dot{\xi} = \mathtt{inr}(\dot{\xi}_2)$.

By structural induction on e.

Case $e = inr_{\tau_1}(e_2)$.

- (2) $satisfy(e_2, \dot{\xi}_2) = true$ by Definition 5e on (1)
- (3) $e_2 = \dot{\xi}_2$ by IH on (2)
- (4) $\operatorname{inr}_{\tau_1}(e_2) \dot\models \operatorname{inr}(\dot{\xi_2})$ by Rule (4d) on (3)

Otherwise.

- (2) $\operatorname{satisfy}(e,\operatorname{inr}(\dot{\xi}_2)) = \operatorname{false}$ by Definition 5m
- (2) contradicts (1) and thus vacuously true.

Case $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$.

By structural induction on e.

Case $e = (e_1, e_2)$.

- (2) $satisfy(e_1, \dot{\xi}_1) = true$ by Definition 5f on (1)
- (3) $satisfy(e_2, \dot{\xi}_2) = true$ by Definition 5f on (1)
- (4) $e_1 \stackrel{.}{\models} \dot{\xi}_1$ by IH on (2)
- (5) $e_2 \models \dot{\xi}_2$ by IH on (3)
- (6) $(e_1, e_2) \dot{\models} (\dot{\xi}_1, \dot{\xi}_2)$ by Rule (4e) on (4) and (5)

Case $e = (v, (e_0)^u, e_1(e_2), prl(e_0), prr(e_0), match(e_0) \{\hat{rs}\}.$

- (2) $satisfy(prl(e), \dot{\xi}_1) = true$ by Definition 5f on (1)
- (3) $satisfy(prr(e), \dot{\xi}_2) = true$ by Definition 5f on (1)
- (4) $\operatorname{prl}(e) = \dot{\xi}_1$ by IH on (2)
- (5) $prr(e) \models \dot{\xi}_2$ by IH on (3) (6) e notintro by each rule in Rules
- (7) $(e_1, e_2) \dot\models (\dot{\xi}_1, \dot{\xi}_2)$ by Rule (4f) on (6) and (4) and (5)

Otherwise.

- (2) $\operatorname{satisfy}(e,(\dot{\xi}_1,\dot{\xi}_2)) = \operatorname{false}$ by Definition 5m
- (2) contradicts (1) and thus vacuously true.

 $e \stackrel{\cdot}{\models_{?} \dot{\xi}} e \text{ may satisfy } \dot{\xi}$

CMSUnknown
$$\frac{\dot{e}_{=_{2}}?}{(6a)}$$

(21)

$$\frac{\operatorname{CMSInr}}{\operatorname{inr}_{\tau_{1}}(e_{2}) \models_{\gamma} \operatorname{inr}(\dot{\xi}_{2})} \qquad (6e)$$

$$\frac{\operatorname{inr}_{\tau_{1}}(e_{2}) \models_{\gamma} \operatorname{inr}(\dot{\xi}_{2})}{\operatorname{inr}_{\tau_{1}}(e_{2}) \models_{\gamma} \operatorname{inr}(\dot{\xi}_{2})} \qquad (6e)$$

$$\frac{\operatorname{CMSPairL}}{(e_{1}, e_{2}) \models_{\gamma} (\dot{\xi}_{1}, \dot{\xi}_{2})} \qquad (6d)$$

$$\operatorname{CMSPairR} = \frac{e_{1} \models_{\zeta} \dot{\xi}_{1}}{(e_{1}, e_{2}) \models_{\gamma} (\dot{\xi}_{1}, \dot{\xi}_{2})} \qquad (6e)$$

$$\operatorname{CMSPairR} = \frac{e_{1} \models_{\zeta} \dot{\xi}_{1}}{(e_{1}, e_{2}) \models_{\gamma} (\dot{\xi}_{1}, \dot{\xi}_{2})} \qquad (6f)$$

$$\operatorname{CMSOPAI} = \frac{e_{1} \models_{\zeta} \dot{\xi}_{1}}{e_{1} \models_{\zeta} \dot{\xi}_{1}} \qquad e_{2} \models_{\gamma} \dot{\xi}_{2}} \qquad (6g)$$

$$\operatorname{CMSOrR} = \frac{e_{1} \not\models_{\zeta} \dot{\xi}_{1}}{e_{1} \vdash_{\gamma} \dot{\xi}_{1}} \qquad e_{1} \not\models_{\zeta} \dot{\xi}_{2}} \qquad (6h)$$

$$\operatorname{CMSOIRDOINTO} = \frac{e_{1} \mapsto_{\zeta} \dot{\xi}_{1}}{e_{1} \mapsto_{\zeta} \dot{\xi}_{2}} \qquad (6i)$$

$$\operatorname{CMSOIRDOINTO} = \frac{e_{1} \mapsto_{\zeta} \dot{\xi}_{1}}{e_{1} \mapsto_{\zeta} \dot{\xi}_{2}} \qquad (6i)$$

$$\operatorname{CMSOINTOINTO} = \frac{e_{1} \mapsto_{\zeta} \dot{\xi}_{1}}{e_{1} \mapsto_{\zeta} \dot{\xi}_{2}} \qquad (6i)$$

$$\operatorname{maysatisfy}(\operatorname{inl}_{\tau_{2}}(e_{1}), \operatorname{inl}(\dot{\xi}_{1})) = \operatorname{maysatisfy}(e_{1}, \dot{\xi}_{1}) \qquad (7b)$$

$$\operatorname{maysatisfy}(\operatorname{inl}_{\tau_{2}}(e_{1}), \operatorname{inl}(\dot{\xi}_{1})) = \operatorname{maysatisfy}(e_{1}, \dot{\xi}_{1}) \qquad (7b)$$

$$\operatorname{maysatisfy}(\operatorname{inl}_{\tau_{2}}(e_{1}), \operatorname{inr}(\dot{\xi}_{2})) = \operatorname{maysatisfy}(e_{2}, \dot{\xi}_{2}) \qquad (7c)$$

$$\operatorname{maysatisfy}(\operatorname{inl}_{\tau_{2}}(e_{1}), \operatorname{inl}(\dot{\xi}_{1})) = \operatorname{false} \qquad (7d)$$

$$\operatorname{maysatisfy}(\operatorname{inl}_{\tau_{2}}(e_{1}), \operatorname{inl}(\dot{\xi}_{1})) = \operatorname{false} \qquad (7e)$$

$$\operatorname{maysatisfy}(e_{1}, e_{2}), (\dot{\xi}_{1}, \dot{\xi}_{2}) = \left(\operatorname{maysatisfy}(e_{1}, \dot{\xi}_{1}) \text{ and } \operatorname{maysatisfy}(e_{2}, \dot{\xi}_{2})\right)$$

$$\operatorname{or} \left(\operatorname{maysatisfy}(e_{1}, \dot{\xi}_{1}) \text{ and } \operatorname{maysatisfy}(e_{2}, \dot{\xi}_{2})\right)$$

$$\operatorname{or} \left(\operatorname{maysatisfy}(e_{1}, \dot{\xi}_{1}) \text{ and } \operatorname{maysatisfy}(e_{2}, \dot{\xi}_{2})\right)$$

$$\operatorname{or} \left(\left(\operatorname{not} \operatorname{satisfy}(e, \dot{\xi}_{1})\right) \text{ and } \operatorname{maysatisfy}(e, \dot{\xi}_{2})\right)$$

$$\operatorname{or} \left(\left(\operatorname{not} \operatorname{satisfy}(e, \dot{\xi}_{1})\right) \text{ and } \operatorname{maysatisfy}(e, \dot{\xi}_{2})\right)$$

$$\operatorname{or} \left(\left(\operatorname{not} \operatorname{satisfy}(e, \dot{\xi}_{1})\right) \text{ and } \operatorname{maysatisfy}(e, \dot{\xi}_{2})\right)$$

 $\textit{maysatisfy}(e, \dot{\xi}) = \! \textit{notintro}(e) \text{ and } \textit{refutable}_?(\dot{\xi})$

(7h)

Lemma 1.0.3 (Soundness and Completeness of Maybe Satisfaction Judgment). $e \models_? \dot{\xi}$ iff $maysatisfy(e, \dot{\xi}) = true$.

Proof. We prove soundness and completeness separately.

1. Soundness:

	•	•		
(1)	$e \models_{?} i$	ξ	by	assumption

By rule induction over Rules (6) on (1).

Case (6a).

- (2) $\dot{\xi} = ?$ by assumption
- (3) maysatisfy(e,?) = true by Definition 7a

Case (6b).

- (2) $e = \operatorname{inl}_{\tau_2}(e_1)$ by assumption
- (3) $\dot{\xi} = inl(\dot{\xi}_1)$ by assumption
- (4) $e_1 \models_{\gamma} \dot{\xi}_1$ by assumption
- (5) $maysatisfy(e_1, \dot{\xi}_1) = true$ by IH on (4)
- (6) $maysatisfy(\mathtt{inl}_{\tau_2}(e_1),\mathtt{inl}(\dot{\xi_1})) = true$

by Definition 7b on (5)

Case (6c).

- (2) $e = \operatorname{inr}_{\tau_1}(e_2)$ by assumption
- (3) $\dot{\xi} = inr(\dot{\xi}_2)$ by assumption
- (4) $e_2 \models_{\gamma} \dot{\xi}_2$ by assumption
- (5) $maysatisfy(e_2, \dot{\xi}_2) = true$ by IH on (4)
- (6) $maysatisfy(inr_{\tau_1}(e_2), inr(\dot{\xi}_2)) = true$ by Definition 7c on (5)

Case (6d).

- (2) $e = (e_1, e_2)$ by assumption
- (3) $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$ by assumption
- (4) $e_1 \models_? \dot{\xi}_1$ by assumption
- (5) $e_2 = \dot{\xi}_2$ by assumption
- (6) $maysatisfy(e_1, \dot{\xi}_1) = true$ by IH on (4)
- (7) $satisfy(e_2, \dot{\xi}_2) = true$ by Lemma 1.0.2 on (5)
- (8) $maysatisfy((\dot{\xi}_1, \dot{\xi}_2), (\dot{\xi}_1, \dot{\xi}_2)) = true$ by Definition 7f on (6) and (7)

Case (6e).

- (2) $e = (e_1, e_2)$ by assumption
- (3) $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$ by assumption

(4)	$e_1 \dot{\models} \dot{\xi}_1$	by assumption
(5)	$e_2 \dot{\models}_7 \dot{\xi}_2$	by assumption
(6)	$satisfy(e_1, \dot{\xi}_1) = true$	by Lemma 1.0.2 on (4)
(7)	$\mathit{maysatisfy}(e_2,\dot{\xi}_2) = true$	by IH on (5)
(8)	$\mathit{maysatisfy}((\dot{\xi}_1,\dot{\xi}_2),(\dot{\xi}_1,\dot{\xi}_2)) = true$	by Definition 7f on (6) and (7)
Case (6f).		
(2)	$e = (e_1, e_2)$	by assumption
(3)	$\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$	by assumption
(4)	$e_1 \dot{\models}_? \dot{\xi}_1$	by assumption
(5)	$e_2 \dot{\models}_2 \dot{\xi}_2$	by assumption
(6)	$\mathit{maysatisfy}(e_1,\dot{\xi}_1) = true$	by IH on (4)
* *	$\mathit{maysatisfy}(e_2,\dot{\xi}_2) = true$	by IH on (5)
(8)	$maysatisfy((\dot{\xi}_1,\dot{\xi}_2),(\dot{\xi}_1,\dot{\xi}_2)) = true$	by Definition 7f on (6) and (7)
Case (6g).		
(2)	$\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$	by assumption
(3)	$e \models_{\gamma} \dot{\xi}_1$	by assumption
(4)	$e \not\models \dot{\xi}_2$	by assumption
(5)	$\mathit{maysatisfy}(e,\dot{\xi}_1) = true$	by IH on (3)
(6)	$\operatorname{satisfy}(e,\dot{\xi}_2) = \operatorname{false}$	by Lemma $1.0.2$ on (4)
(7)	$\mathit{maysatisfy}(e,\dot{\xi}_1 \lor \dot{\xi}_2) = true$	by Definition 5c on (5) and (6)
Case (6h).		
(2)	$\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$	by assumption
(3)	$e \not\models \dot{\xi}_1$	by assumption
(4)	$e \models_{\gamma} \dot{\xi}_2$	by assumption
(5)	$satisfy(e, \dot{\xi}_1) = false$	by Lemma 1.0.2 on (3)
(6)	$\mathit{maysatisfy}(e, \dot{\xi}_2) = true$	by IH on (4)
(7)	$\mathit{maysatisfy}(e,\dot{\xi}_1 \lor \dot{\xi}_2) = true$	by Definition 5c on (5) and (6)
Case (6i).		
(2)	e notintro	by assumption
` '	$\dot{\xi}$ refutable?	by assumption
(4)	$\mathit{notintro}(e) = true$	by Lemma 4.0.1 on (2)
(5)	$\mathit{refutable}_?(\dot{\xi}) = true$	by Lemma 1.0.1 on (3)

(6)
$$\mathit{maysatisfy}(e,\dot{\xi}) = \mathsf{true}$$
 by Definition 7h on (4) and (5)

2. Completeness:

(1) $maysatisfy(e, \dot{\xi}) = true$ by assumption

By structural induction on $\dot{\xi}$.

Case $\dot{\xi} = \top, \bot$.

 $\begin{array}{ll} (2) & \textit{refutable}_?(\dot{\xi}) = \text{false} & \text{by Definition 3} \\ (3) & \textit{maysatisfy}(e,\dot{\xi}) = \text{false} & \text{by Definition 7h and} \\ & (2) & \end{array}$

Contradicts (1) and thus vacuously true.

Case $\dot{\xi} = ?$.

(2) $e \stackrel{\cdot}{\models}_?$ by Rule (6a)

Case $\dot{\xi} = \underline{n}$.

- (2) notintro(e) = true by Definition 7h of (1)
- (3) e notintro by Lemma 4.0.1 on (2)
- (4) \underline{n} refutable? by Rule (2a)
- (5) $e \models_{?} \underline{n}$ by Rule (6i) on (3) and (4)

Case $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$.

By case analysis on Definition 7g of (1).

Case $\mathit{maysatisfy}(e,\dot{\xi}_1) = \mathsf{true} \ \mathsf{and} \ \mathit{satisfy}(e,\dot{\xi}_2) = \mathsf{false.}$

- (2) $maysatisfy(e, \dot{\xi}_1) = true$ and $satisfy(e, \dot{\xi}_2) = tasse.$
- (3) $satisfy(e, \dot{\xi}_2) = false$ by assumption
- (4) $e \stackrel{\cdot}{\models}_? \dot{\xi}_1$ by IH on (2)
- (5) $e \not\models \dot{\xi}_2$ by Lemma 1.0.2 on (3)
- (6) $e \models_? \dot{\xi}_1 \lor \dot{\xi}_2$ by Rule (6g) on (4) and (5)

Case $satisfy(e, \dot{\xi}_1) = \text{false and } maysatisfy(e, \dot{\xi}_2) = \text{true.}$

- (2) $satisfy(e, \dot{\xi}_1) = false$ by assumption
- (3) $\mathit{maysatisfy}(e, \dot{\xi}_2) = \mathsf{true}$ by assumption
- (4) $e \not\models \dot{\xi}_1$ by Lemma 1.0.2 on (2)
- (5) $e \stackrel{.}{\models}_? \dot{\xi}_2$ by IH on (3)
- (6) $e \models_{?} \dot{\xi}_1 \lor \dot{\xi}_2$ by Rule (6h) on (4) and (5)

```
(2) refutable_?(inl(\dot{\xi}_1)) = true
                                                                     by Definition 7h of (1)
                 (3) \operatorname{inl}(\dot{\xi}_1) refutable?
                                                                     by Lemma 1.0.1 on (2)
                 (4) e notintro
                                                                     by Rules (21)
                 (5) e \models_{?} \operatorname{inl}(\dot{\xi}_1)
                                                                     by Rule (6i) on (4) and
                                                                     (3)
       Case e = x, \underline{n}, (\lambda x : \tau . e'), (e_1, e_2).
                 (2) notintro(e) = false
                                                                     by Rules (21)
                 (3) maysatisfy(e, inl(\dot{\xi}_1)) = false
                                                                     by Definition 7h on (2)
             Contradicts (1).
       Case e = \operatorname{inl}_{\tau_2}(e_1).
                 (2) maysatisfy(e_1, \dot{\xi}_1)
                                                                     by Definition 7b of (1)
                 (3) e_1 \stackrel{.}{\models}_{?} \dot{\xi}_1
                                                                     by Lemma 1.0.3 on (2)
                 (4) \operatorname{inl}_{\tau_2}(e_1) \dot{\models}_{\tau_2} \operatorname{inl}(\dot{\xi_1})
                                                                     by Rule (6b) on (3)
       Case e = \operatorname{inr}_{\tau_1}(e_2).
                 (2) maysatisfy(inr_{\tau_1}(e_2), inl(\dot{\xi_1})) = false
                                                                     by Definition 7e
             Contradicts (1).
Case \dot{\xi} = inr(\dot{\xi}_2).
     By structural induction on e.
       Case e = (||u|, ||e'||^u, e_1(e_2), \text{match}(e')\{\hat{rs}\}, \text{prl}(e'), \text{prr}(e').
                 (2) refutable_?(inr(\dot{\xi}_2)) = true
                                                                     by Definition 7h of (1)
                 (3) inr(\xi_2) refutable?
                                                                     by Lemma 1.0.1 on (2)
                 (4) e notintro
                                                                     by Rules (21)
                 (5) e \models_{?} \operatorname{inr}(\dot{\xi}_2)
                                                                     by Rule (6i) on (4) and
                                                                     (3)
       Case e = x, \underline{n}, (\lambda x : \tau . e'), (e_1, e_2).
                 (2) notintro(e) = false
                                                                     by Rules (21)
                 (3) maysatisfy(e, inr(\xi_2)) = false
                                                                     by Definition 7h on (2)
             Contradicts (1).
       Case e = \operatorname{inl}_{\tau_2}(e_1).
                 (2) maysatisfy(inl_{\tau_2}(e_1), inr(\dot{\xi}_2)) = false
                                                                     by Definition 7d
             Contradicts (1).
       Case e = \operatorname{inr}_{\tau_1}(e_2).
                 (2) maysatisfy(e_2, \dot{\xi}_2)
                                                                     by Definition 7c of (1)
```

Case $e = \{ \| u, \| e' \| u, e_1(e_2), \mathtt{match}(e') \{ \hat{rs} \}, \mathtt{prl}(e'), \mathtt{prr}(e'). \}$

Case $\dot{\xi} = \operatorname{inl}(\dot{\xi}_1)$.

By structural induction on e.

```
(3) e_2 \models_? \dot{\xi}_2 by Lemma 1.0.3 on (2)

(4) \inf_{\tau_1} (e_2) \models_? \inf(\dot{\xi}_2) by Rule (6c) on (3)
```

Case $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$.

By structural induction on e.

Case $e = ()^u, (e')^u, e_1(e_2), \text{match}(e')\{\hat{rs}\}, \text{prl}(e'), \text{prr}(e').$

- (2) $refutable_{?}((\dot{\xi}_{1},\dot{\xi}_{2})) = true$ by Definition 7h of (1)
 - (3) $(\dot{\xi}_1, \dot{\xi}_2)$ refutable? by Lemma 1.0.1 on (2)
 - (4) e notintro by Rules (21)
 - (5) $e \models_?(\dot{\xi}_1, \dot{\xi}_2)$ by Rule (6i) on (4) and (3)

 $\mathbf{Case}\ e = x, \underline{n}, (\lambda x : \tau.e'), \mathtt{inl}_{\tau_2}(e_1), \mathtt{inr}_{\tau_1}(e_2).$

- (2) notintro(e) = false by Rules (21)
- (3) $maysatisfy(e,(\dot{\xi}_1,\dot{\xi}_2))=$ false by Definition 7h on (2) Contradicts (1).

Case $e = (e_1, e_2)$. By case analysis on Definition 7f on (1).

Case $maysatisfy(e_1, \dot{\xi}_1) = \text{true} \text{ and } satisfy(e_2, \dot{\xi}_2) = \text{true}.$

- (2) $maysatisfy(e_1, \dot{\xi}_1) = true$ by assumption
- (3) $satisfy(e_2, \dot{\xi}_2) = true$ by assumption
- (4) $e_1 \models_? \dot{\xi}_1$ by IH on (2)
- (5) $e_2 = \dot{\xi}_2$ by Lemma 1.0.2 on (3)
- (6) $(e_1, e_2) \dot{\models}_? (\dot{\xi}_1, \dot{\xi}_2)$ by Rule (6d) on (4) and (5)

Case $satisfy(e_1, \dot{\xi}_1) = true$ and $maysatisfy(e_2, \dot{\xi}_2) = true$.

- (2) $satisfy(e_1, \dot{\xi}_1)$ by assumption
- (3) $\textit{maysatisfy}(e_2, \dot{\xi}_2)$ by assumption
- (4) $e_1 \dot{\models} \dot{\xi}_1$ by Lemma 1.0.2 on (2)
- (5) $e_2 \stackrel{\cdot}{\models}_? \dot{\xi}_2$ by IH on (3)
- (6) $(e_1, e_2) \dot{\models}_?(\dot{\xi}_1, \dot{\xi}_2)$ by Rule (6e) on (4) and (5)

Case $maysatisfy(e_1, \dot{\xi}_1) = \text{true} \text{ and } maysatisfy(e_2, \dot{\xi}_2) = \text{true}.$

- (2) $maysatisfy(e_1, \dot{\xi}_1)$ by assumption
- (3) $\mathit{maysatisfy}(e_2,\dot{\xi}_2)$ by assumption
- (4) $e_1 \models_? \dot{\xi}_1$ by IH on (2)
- (5) $e_2 \models_{?} \dot{\xi}_2$ by IH on (3)
- (6) $(e_1, e_2) \models_?(\dot{\xi}_1, \dot{\xi}_2)$ by Rule (6f) on (4) and (5)

$$e\dot{\models}^{\dagger}_{?}\dot{\xi}$$

e satisfies or may satisfy $\dot{\xi}$

CSMSMay
$$\frac{e \dot{\models}_{?} \dot{\xi}}{e \dot{\models}_{?} \dot{\xi}}$$
 (8a)

CSMSSat
$$\frac{e \models \dot{\xi}}{e \models_{?}^{\dagger} \dot{\xi}} \tag{8b}$$

 $\mathit{satisfyormay}(e,\dot{\xi})$

$$satisfyormay(e, \dot{\xi}) = satisfy(e, \dot{\xi}) \text{ or } maysatisfy(e, \dot{\xi})$$
 (9)

Lemma 1.0.4 (Soundness and Completeness of Satisfaction or Maybe Satisfaction). $e \models_{?}^{\dot{-}\dagger} \dot{\xi}$ iff $satisfyormay(e, \dot{\xi})$.

Proof. We prove soundness and completeness separately.

1. Soundness:

(1)
$$e \models_?^\dagger \dot{\xi}$$

by assumption

By rule induction over Rules (8) on (1).

Case (8b).

(2) $e \models \dot{\xi}$

- by assumption
- (3) $satisfy(e, \dot{\xi}) = true$
- by Lemma 1.0.2 on (2)
- (4) $satisfyormay(e, \dot{\xi}) = true$
- by Definition 9 on (3)

Case (8a).

(2) $e \models_{?} \dot{\xi}$

- by assumption
- (3) $maysatisfy(e, \dot{\xi}) = true$
- by Lemma 1.0.3 on (2)
- (4) $satisfyormay(e, \dot{\xi}) = true$
- by Definition 9 on (3)

2. Completeness:

(1) $satisfyormay(e, \dot{\xi}) = true$

by assumption

By case analysis on Definition 9 of (1).

Case $satisfy(e, \dot{\xi}) = true.$

- (2) $satisfy(e, \dot{\xi}) = true$
- by assumption

(3) $e \models \dot{\xi}$

by Lemma 1.0.2 on (2)

(4) $e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}$

by Rule (8b) on (3)

Case $maysatisfy(e, \dot{\xi}) = true.$

(2)
$$maysatisfy(e, \dot{\xi}) = true$$

by assumption

(3)
$$e \models_? \dot{\xi}$$

by Lemma 1.0.3 on (2)

(4)
$$e \models_{?}^{\dagger} \dot{\xi}$$

by Rule (8a) on (3)

Lemma 1.0.5. $e \not\models ? \top$

Proof. Assume $e \models_? \top$. By rule induction over Rules (6) on $e \models_? \top$, only one case applies.

Case (6i).

(1) \top refutable?

by assumption

By rule induction over Rules (2) on (1), no case applies due to syntactic contradiction.

Therefore, $e \models_{?} \top$ is not derivable.

Lemma 1.0.6. $e \not\models ?$

Proof. By rule induction over Rules (4), we notice that $e \models$? is in syntactic contradiction with all the cases, hence not derivable.

Lemma 1.0.7. $e \not\models {}^{\dagger}_{?} \dot{\xi}_{1}$ and $e \not\models {}^{\dagger}_{?} \dot{\xi}_{2}$ iff $e \not\models {}^{\dagger}_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$

Proof. We prove sufficiency and necessity separately.

- 1. Sufficiency: to show $e \not\models {}^{\dagger}_{?}\dot{\xi}_{1} \lor \dot{\xi}_{2}$, we assume $e \models {}^{\dagger}_{?}\dot{\xi}_{1} \lor \dot{\xi}_{2}$.
 - $(1) \ e \dot{\models}_{?}^{\dagger} \dot{\xi}_{1} \lor \dot{\xi}_{2}$

by assumption

(2)
$$e \not\models {}^{\dagger}_? \dot{\xi}_1$$

by assumption

(3)
$$e \not\models {}_{2}^{\dagger} \dot{\xi}_{2}$$

by assumption

By rule induction over Rules (8) on (1).

Case (8b).

$$(4) \quad e \dot{\models} \dot{\xi}_1 \lor \dot{\xi}_2$$

by assumption

By rule induction over Rules (4) on (4) and only two of them apply.

Case (4g).

(5) $e \models \dot{\xi}_1$

by assumption

(6)
$$e \stackrel{.}{\models}_{?}^{\dagger} \dot{\xi}_1$$

by Rule (8b) on (5)

(6) contradicts (2).

Case (4h).

(5)
$$e \models \dot{\xi}_2$$

by assumption

(6)
$$e \models_{?}^{\dagger} \dot{\xi}_{2}$$

by Rule (8b) on (5)

(6) contradicts (3).

Case (8a).

$$(4) \quad e \models_{?} \dot{\xi}_1 \lor \dot{\xi}_2$$

by assumption

By rule induction over Rules (6) on (4) and only two of them apply.

Case (6g).

(5)
$$e \models_? \dot{\xi}_1$$

by assumption

(6)
$$e \models_{?}^{\dagger} \dot{\xi}_1$$

by Rule (8a) on (5)

(6) contradicts (2).

Case (6h).

(5)
$$e \stackrel{\cdot}{\models}_? \dot{\xi}_2$$

by assumption

(6)
$$e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{2}$$

by Rule (8a) on (5)

(6) contradicts (3).

The conclusion holds as follows:

(a)
$$e \not\models {}^{\dagger}_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$$

2. Necessity:

(1)
$$e \not\models {}^{\dagger}_{2} \dot{\xi}_{1} \lor \dot{\xi}_{2}$$

by assumption

We show $e \not\models \frac{\dagger}{?} \dot{\xi}_1$ and $e \not\models \frac{\dagger}{?} \dot{\xi}_2$ separately.

(a) To show $e \not\models {}^{\dagger}_{?} \dot{\xi}_{1}$, we assume $e \models {}^{\dagger}_{?} \dot{\xi}_{1}$.

(2)
$$e \stackrel{.}{\models}_{?}^{\dagger} \dot{\xi}_{1}$$

by assumption

$$(3) \quad e \dot{\models}_{?}^{\dagger} \dot{\xi}_{1} \vee \dot{\xi}_{2}$$

by Lemma 1.0.9 on (2)

Contradicts (1).

(b) To show $e \not\models {}^{\dagger}_{?} \dot{\xi}_{2}$, we assume $e \models {}^{\dagger}_{?} \dot{\xi}_{2}$.

(2)
$$e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{2}$$

by assumption

(3)
$$e \models_{?}^{\dagger} \dot{\xi}_1 \lor \dot{\xi}_2$$

by Lemma 1.0.9 on (2)

Contradicts (1).

In conclusion, $e \not\models {}^{\dagger}_{?}\dot{\xi}_{1}$ and $e \not\models {}^{\dagger}_{?}\dot{\xi}_{2}$.

Lemma 1.0.8. If
$$e \models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$$
 and $e \not\models_{?} \dot{\xi}_{1}$ then $e \models_{?} \dot{\xi}_{2}$

Proof.

$$(4) \quad e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{1} \vee \dot{\xi}_{2}$$

by assumption

(5)
$$e \not\models {}^{\dagger}_{?} \dot{\xi}_{1}$$

by assumption

By rule induction over Rules (8) on (4).

Case (8b).

(6)
$$e = \dot{\xi}_1 \vee \dot{\xi}_2$$

by assumption

By rule induction over Rules (4) on (6) and only two of them apply.

Case (4g).

(7)
$$e \models \dot{\xi}_1$$

by assumption

(8)
$$e \models_{?}^{\dagger} \dot{\xi}_{1}$$

by Rule (8b) on (7)

(8) contradicts (5).

Case (4h).

(7)
$$e \stackrel{\cdot}{\models} \dot{\xi}_2$$

by assumption

(8)
$$e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{2}$$

by Rule (8b) on (7)

Case (8a).

(6)
$$e \dot{\models}_{2} \dot{\xi}_{1} \vee \dot{\xi}_{2}$$

by assumption

By rule induction over Rules (6) on (6) and only two of them apply.

Case (6g).

(7)
$$e \models_? \dot{\xi}_1$$

by assumption

(8)
$$e \models_{?}^{\dagger} \dot{\xi}_{1}$$

by Rule (8a) on (7)

(8) contradicts (5).

Case (6h).

(7)
$$e \dot{\models}_? \dot{\xi}_2$$

by assumption

(8)
$$e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{2}$$

by Rule (8a) on (7)

Lemma 1.0.9. If $e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{1}$ then $e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{1} \vee \dot{\xi}_{2}$ and $e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{2} \vee \dot{\xi}_{1}$

Proof.

$$(1) \ e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{1}$$

by assumption

By rule induction over Rules (8) on (1),

Case (8b).

(2)	$e \dot{\models} \dot{\xi}_1$	
(3)	$e \dot{\models} \dot{\xi}_1$	$\vee \dot{\xi}_2$

(4)
$$e \models \dot{\xi}_2 \lor \dot{\xi}_1$$

(5) $e \models_{?}^{\dagger} \dot{\xi}_1 \lor \dot{\xi}_2$

(6)
$$e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{2} \vee \dot{\xi}_{1}$$

by assumption

by Rule (4g) on (2)

by Rule (4h) on (2)

by Rule (8b) on (3)

by Rule (8b) on (4)

Case (8a).

(2)
$$e \models_? \dot{\xi}_1$$

by assumption

By case analysis on the result of $\mathit{satisfy}(e,\dot{\xi}_2).$

Case true.

(3) $satisfy(e, \dot{\xi}_2) = true$

(4) $e = \dot{\xi}_2$

(5) $e \models \dot{\xi}_1 \lor \dot{\xi}_2$ (6) $e \dot{\models} \dot{\xi}_2 \lor \dot{\xi}_1$

(7) $e \models_{?}^{\dagger} \dot{\xi}_1 \lor \dot{\xi}_2$

(8) $e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{2} \vee \dot{\xi}_{1}$

by assumption

by Lemma 1.0.2 on (3)

by Rule (4h) on (4)

by Rule (4g) on (4)

by Rule (8b) on (5)

by Rule (8b) on (6)

Case false.

(3) $satisfy(e, \dot{\xi}_2) = false$

(4) $e \not\models \dot{\xi}_2$

(5) $e \models_{?} \dot{\xi}_1 \lor \dot{\xi}_2$

(6) $e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1 \vee \dot{\xi}_2$

by assumption

by Lemma 1.0.2 on (3)by Rule (6g) on (2)

and (4)

by Rule (8a) on (5)

 $\mathbf{Lemma\ 1.0.10.}\ e_1\dot\models^\dagger_?\dot{\xi}_1\ \mathit{iff}\ \mathtt{inl}_{\tau_2}(e_1)\dot\models^\dagger_?\mathtt{inl}(\dot{\xi}_1)$

Proof. We prove sufficiency and necessity separately.

1. Sufficiency:

(1)
$$e_1 \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1$$

by assumption

By rule induction over Rules (8) on (1).

Case (8b).

- (2) $e_1 \models \dot{\xi}_1$ by assumption
- (3) $\operatorname{inl}_{\tau_2}(e_1) = \operatorname{inl}(\dot{\xi}_1)$ by Rule (4c) on (2)
- (4) $\operatorname{inl}_{\tau_2}(e_1) \stackrel{:}{\models}_{?}^{\dagger} \operatorname{inl}(\dot{\xi_1})$ by Rule (8b) on (3)

Case (8a).

- (2) $e_1 \models_2 \dot{\xi}_1$ by assumption
- (3) $\operatorname{inl}_{\tau_2}(e_1) \models_{?} \operatorname{inl}(\dot{\xi_1})$ by Rule (6b) on (2)
- (4) $\operatorname{inl}_{\tau_2}(e_1) \stackrel{\dagger}{\models_2} \operatorname{inl}(\dot{\xi_1})$ by Rule (8a) on (3)
- 2. Necessity:

$$(1) \ \operatorname{inl}_{\tau_2}(e_1) \dot{\models}_{?}^{\dagger} \operatorname{inl}(\dot{\xi_1})$$

by assumption

By rule induction over Rules (8) on (1).

Case (8b).

(2) $\operatorname{inl}_{\tau_2}(e_1) \dot{\models} \operatorname{inl}(\dot{\xi_1})$ by assumption

By rule induction over Rules (4) on (2), only one rule applies.

Case (4c).

- (3) $e_1 = \dot{\xi}_1$ by assumption
- (4) $e_1 = \hat{\xi}_1$ by Rule (8b) on (3)

Case (8a).

(2) $\operatorname{inl}_{\tau_2}(e_1) \dot{\models}_? \operatorname{inl}(\dot{\xi_1})$ by assumption

By rule induction over Rules (6) on (2), only two rules apply.

Case (6b).

- (3) $e_1 \models_? \dot{\xi}_1$ by assumption
- (4) $e_1 \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1$ by Rule (8a) on (3)

Case (6i).

(3) $\operatorname{inl}_{\tau_2}(e_1)$ notintro by assumption

By rule induction over Rules (21) on (3), no rule applies due to syntactic contradiction.

Lemma 1.0.11. $e_2 \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_2$ iff $\operatorname{inr}_{\tau_1}(e_2) \stackrel{\cdot}{\models}_{?}^{\dagger} \operatorname{inr}(\dot{\xi}_2)$

Proof. We prove sufficiency and necessity separately.

- 1. Sufficiency:
 - $(1) \ e_2 \dot{\models}_?^{\dagger} \dot{\xi}_2$

by assumption

By rule induction over Rules (8) on (1).

Case (8b).

- (2) $e_2 \models \dot{\xi}_2$ by assumption
- (3) $\operatorname{inr}_{\tau_1}(e_2) \models \operatorname{inr}(\dot{\xi}_2)$ by Rule (4d) on (2)
- (4) $\operatorname{inr}_{\tau_1}(e_2) \stackrel{:}{\models}_{?}^{\dagger} \operatorname{inr}(\dot{\xi_2})$ by Rule (8b) on (3)

Case (8a).

- (2) $e_2 \models_? \dot{\xi}_2$ by assumption
- (3) $\operatorname{inr}_{\tau_1}(e_2) \models_{\tau_1} \operatorname{inr}(\dot{\xi_2})$ by Rule (6c) on (2)
- (4) $\operatorname{inr}_{\tau_1}(e_2) \stackrel{:}{\models}_{?}^{\dagger} \operatorname{inr}(\dot{\xi_2})$ by Rule (8a) on (3)
- 2. Necessity:
 - (1) $\operatorname{inr}_{\tau_1}(e_2) \stackrel{\cdot}{\models}_{\tau}^{\dagger} \operatorname{inr}(\dot{\xi}_2)$

by assumption

by assumption

By rule induction over Rules (8) on (1).

Case (8b).

(2) $\operatorname{inr}_{\tau_1}(e_2) \dot{\models} \operatorname{inr}(\dot{\xi}_2)$ by assumption

By rule induction over Rules (4) on (2), only one rule applies.

Case (4d).

- (3) $e_2 \models \dot{\xi}_2$ by assumption
- (4) $e_2 \dot{\models}_{?}^{\dagger} \dot{\xi}_2$ by Rule (8b) on (3)

Case (8a).

(2) $\operatorname{inr}_{\tau_1}(e_2) \models_{?} \operatorname{inr}(\dot{\xi_2})$ by assumption

By rule induction over Rules (6) on (2), only two rules apply.

Case (6c).

- $(3) \ e_2 \dot{\models}_7 \dot{\xi}_2$
- (4) $e_2 = \dot{\xi}_2^{\dagger}$ by Rule (8a) on (3)

Case (6i).

(3)
$$\operatorname{inr}_{\tau_1}(e_2)$$
 notintro

by assumption

By rule induction over Rules (21) on (3), no rule applies due to syntactic contradiction.

Lemma 1.0.12. $e_1 \stackrel{.}{\models}_{?}^{\dagger} \dot{\xi}_1$ and $e_2 \stackrel{.}{\models}_{?}^{\dagger} \dot{\xi}_2$ iff $(e_1, e_2) \stackrel{.}{\models}_{?}^{\dagger} (\dot{\xi}_1, \dot{\xi}_2)$

Proof. We prove sufficiency and necessity separately.

1. Sufficiency:

(1) $e_1 \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1$

by assumption

(2) $e_2 \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_2$

by assumption

By rule induction over Rules (8) on (1).

Case (8b).

(3) $e_1 \dot{\models} \dot{\xi}_1$

by assumption

By rule induction over Rules (8) on (2).

Case (8b).

 $(4) \ e_2 \dot{\models} \dot{\xi}_2$

by assumption

(5) $(e_1, e_2) \dot{\models} (\dot{\xi}_1, \dot{\xi}_2)$

by Rule (4e) on (3) and

(4)

(6)
$$(e_1, e_2) = \dot{e}_?^{\dagger} (\dot{\xi}_1, \dot{\xi}_2)$$

by Rule (8b) on (5)

Case (8a).

 $(4) e_2 \dot{\models}_? \dot{\xi}_2$

by assumption

(5) $(e_1, e_2) \dot{\models}_? (\dot{\xi}_1, \dot{\xi}_2)$

by Rule (6e) on (3) and (4)

(6) $(e_1, e_2) \dot{\models}_{7}^{\dagger} (\dot{\xi}_1, \dot{\xi}_2)$

by Rule (8a) on (5)

Case (8a).

 $(4) e_1 \dot{\models}_? \dot{\xi}_1$

by assumption

By rule induction over Rules (8) on (2).

Case (8b).

(5) $e_2 \dot{\models} \dot{\xi}_2$

by assumption

(6) $(e_1, e_2) \models_? (\dot{\xi}_1, \dot{\xi}_2)$

by Rule (6d) on (4)

and (5)

(7) $(e_1, e_2) \dot{\models}_{?}^{\dagger} (\dot{\xi}_1, \dot{\xi}_2)$

by Rule (8a) on (6)

Case (8a).

(5)
$$e_2 \models_? \dot{\xi}_2$$

(6) $(e_1, e_2) \models_? (\dot{\xi}_1, \dot{\xi}_2)$

by assumption

(6)
$$(e_1, e_2) \dot{\models}_? (\dot{\xi}_1, \dot{\xi}_2)$$

by Rule (6e) on (4) and (5)

(7)
$$(e_1, e_2) \stackrel{\cdot}{\models}_?^{\dagger} (\dot{\xi}_1, \dot{\xi}_2)$$

by Rule (8a) on (6)

2. Necessity:

(1)
$$(e_1, e_2) \dot{\models}_{?}^{\dagger} (\dot{\xi}_1, \dot{\xi}_2)$$

by assumption

By rule induction over Rules (8) on (1).

Case (8b).

(2)
$$(e_1, e_2) \dot{\models} (\dot{\xi}_1, \dot{\xi}_2)$$

by assumption

By rule induction over Rules (4) on (2), only one rule applies.

Case (4e).

$$(3) \ e_1 \dot\models \dot{\xi}_1$$

by assumption

$$(4) e_2 \dot{\models} \dot{\xi}_2$$

by assumption

$$(5) e_1 \dot{\models}_?^{\dagger} \dot{\xi}_1$$

by Rule (8b) on (3)

(6)
$$e_2 \dot{\models}_?^\dagger \dot{\xi}_2$$

by Rule (8b) on (4)

Case (8a).

(2)
$$(e_1, e_2) \dot{\models}_?(\dot{\xi}_1, \dot{\xi}_2)$$

by assumption

By rule induction over Rules (6) on (2), only three rules apply.

Case (6d).

(3)
$$e_1 \models_? \dot{\xi}_1$$

by assumption

(4) $e_2 \dot{\models} \dot{\xi}_2$

by assumption

(5) $e_1 \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1$

by Rule (8a) on (3)

(6)
$$e_2 \dot{\models}_{?}^{\dagger} \dot{\xi}_2$$

by Rule (8b) on (4)

Case (6e).

$$(3) e_1 = \dot{\xi}_1$$

by assumption

 $(4) \ e_2 \dot{\models}_{?} \dot{\xi}_2$

by assumption

(5) $e_1 \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1$

by Rule (8b) on (3)

(6) $e_2 \dot{\models}_{?}^{\dagger} \dot{\xi}_2$

by Rule (8a) on (4)

Case (6f).

(3) $e_1 \stackrel{\cdot}{\models}_{?} \dot{\xi}_1$

by assumption

 $(4) \ e_2 \dot{\models}_{?} \dot{\xi}_2$

by assumption

(5)
$$e_1 \stackrel{\cdot}{\models}_? \dot{\xi}_1$$

by Rule (8a) on (3)

(6)
$$e_2 \dot{\models}_{7}^{\dagger} \dot{\xi}_2$$
 by Rule (8a) on (4)

Lemma 1.0.13. Assume e notintro. If $e \models_? \dot{\xi}$ or $e \not\models \dot{\xi}$ then $\dot{\xi}$ refutable?

Proof.

(1) e notintro

by assumption

By case analysis on the premise, which is a disjunction.

Case $e \models_? \dot{\xi}$.

(2) $e = \dot{\xi}$

by assumption

By rule induction over Rules (6) on (2).

Case (6a).

(3) $\dot{\xi} = ?$ by assumption (4) ? refutable? by Rule (2b)

Case (6b).

(3) $e = inl_{\tau_2}(e_1)$

by assumption

By rule induction over Rules (21) on (1), no rule applies due to syntactic contradiction.

Case (6c).

(3) $e = inr_{\tau_1}(e_2)$

by assumption

By rule induction over Rules (21) on (1), no rule applies due to syntactic contradiction.

Case (6d), (6e), (6f).

(3) $e = (e_1, e_2)$

by assumption

By rule induction over Rules (21) on (1), no rule applies due to syntactic contradiction.

Case (6g).

(3) $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$ by assumption (4) $e \models_? \dot{\xi}_1$ by assumption (5) $e \not\models \dot{\xi}_2$ by assumption (6) $\dot{\xi}_1$ refutable? by IH on (1) and (4) (7) $\dot{\xi}_2$ refutable? by IH on (1) and (5) (8) $\dot{\xi}_1 \vee \dot{\xi}_2$ refutable? by Rule (2g) on (6)

and (7)

Case (6h).

$(3) \ \dot{\xi} = \dot{\xi}_1 \lor \dot{\xi}_2$	by assumption
$(4) \ e \not\models \dot{\xi}_1$	by assumption
(5) $e \models_{?} \dot{\xi}_2$	by assumption
(6) $\dot{\xi_1}$ refutable?	by IH on (1) and (4)
(7) $\dot{\xi}_2$ refutable?	by IH on (1) and (5)
(8) $\dot{\xi}_1 ee \dot{\xi}_2$ refutable?	by Rule (2g) on (6) and (7)
Case (6i).	
(3) $\dot{\xi}$ refutable?	by assumption
Case $e \not\models \dot{\xi}$.	
(2) $e \not\models \dot{\xi}$	by assumption
By structural induction on $\dot{\xi}$.	
$\mathbf{Case}\dot{\xi}=\top.$	
(3) $e \models \top$	by Rule (4a)
Contradicts (2).	
Case $\dot{\xi} = ?$.	
(3) ? refutable?	by Rule (2b)
Case $\dot{\xi}=\underline{n}$.	
(3) \underline{n} refutable?	by Rule (2a)
$\mathbf{Case}\dot{\xi}=\mathtt{inl}(\dot{\xi}_1).$	
$(3) \ \mathtt{inl}(\dot{\xi}_1) \ \mathtt{refutable}_?$	by Rule (2c)
$\mathbf{Case}\dot{\xi}=\mathtt{inr}(\dot{\xi}_2).$	
(3) $\mathtt{inr}(\dot{\xi}_2)$ $\mathtt{refutable}_?$	by Rule (2d)
$\mathbf{Case}\dot{\xi}=(\dot{\xi}_1,\dot{\xi}_2).$	
(3) $\mathtt{prl}(e)$ notintro	by Rule (21e)
(4) $\mathtt{prr}(e)$ $\mathtt{notintro}$	by Rule (21f)
By case analysis on the value of $\mathit{satisfy}(\mathtt{prl}($	$(e),\dot{\xi}_1) \text{ and } satisfy(\mathtt{prr}(e),\dot{\xi}_2)$

 ${\bf Case}\ {\bf true}, {\bf true.}$

(5) $satisfy(prl(e), \dot{\xi}_1) = true$ (6) $satisfy(prr(e), \dot{\xi}_2) = true$ (7) $prl(e) \dot{\models} \dot{\xi}_1$ (8) $prr(e) \dot{\models} \dot{\xi}_2$ by assumption by assumption by Lemma 1.0.2 on (5) by Lemma 1.0.2 on (6)

(9)
$$e \models (\dot{\xi}_1, \dot{\xi}_2)$$
 by Rule (4f) on (1) and (7) and (8)

Contradicts $e \not\models (\dot{\xi}_1, \dot{\xi}_2)$.

Case true, false.

(5) $satisfy(prl(e), \dot{\xi}_1) = true$ by assumption

(5) $satisfy(prl(e), \xi_1) = true$ by assumption (6) $satisfy(prr(e), \dot{\xi}_2) = false$ by assumption (7) $prr(e) \not\models \dot{\xi}_2$ by Lemma 1.0.2 on (6) (8) $\dot{\xi}_2$ refutable? by IH on (4) and (7) (9) $(\dot{\xi}_1, \dot{\xi}_2)$ refutable? by Rule (2f) on (8)

Case false, true.

(5) $satisfy(prl(e), \dot{\xi}_1) = false$	by assumption
(6) $satisfy(prr(e), \dot{\xi}_2) = true$	by assumption
(7) $\operatorname{prl}(e) \not\models \dot{\xi}_1$	by Lemma 1.0.2 on (5)
(8) $\dot{\xi}_1$ refutable?	by IH on (3) and (7)
(9) $(\dot{\xi}_1,\dot{\xi}_2)$ refutable?	by Rule $(2e)$ on (8)

Case false, false.

(5)
$$satisfy(\operatorname{prl}(e), \dot{\xi}_1) = \operatorname{false}$$
 by assumption
(6) $satisfy(\operatorname{prr}(e), \dot{\xi}_2) = \operatorname{false}$ by assumption
(7) $\operatorname{prl}(e) \not\models \dot{\xi}_1$ by Lemma 1.0.2 on (5)
(8) $\dot{\xi}_1$ refutable? by IH on (3) and (7)
(9) $(\dot{\xi}_1, \dot{\xi}_2)$ refutable? by Rule (2e) on (8)

Case $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$.

To show that $e \not\models \dot{\xi}_1$, we assume $e \models \dot{\xi}_1$ and obtain a contradiction.

$(3) e \models \dot{\xi}_1$	by assumption
$(4) e \dot{\models} \dot{\xi}_1 \lor \dot{\xi}_2$	by Rule $(4g)$ on (3)

Contradicts (2). Therefore,

(3)
$$e \not\models \dot{\xi}_1$$
 by contradiction
(4) $\dot{\xi}_1$ refutable? by IH on (1) and (3)

Similarly, to show that $e \not\models \dot{\xi}_2$, we assume $e \models \dot{\xi}_2$ and obtain a contradiction.

(5)	$e \dot{\models} \dot{\xi}_2$	by assumption
(6)	$e \dot{\models} \dot{\xi}_1 \lor \dot{\xi}_2$	by Rule $(4h)$ on (5)

Contradicts (2). Therefore,

(5) $e \not\models \xi_2$	by contradiction
(6) $\dot{\xi}_2$ refutable?	by IH on (1) and (5)
(7) $\dot{\xi}_1 ee \dot{\xi}_2$ refutable?	by Rule $(2g)$ on (4)
	and (6)

Lemma 1.0.14. If e notintro and $e \models \dot{\xi}$ then $\dot{\xi}$ refutable?

Proof.

To show $\dot{\xi}$ refutable, we assume $\dot{\xi}$ refutable, and obtain a contradiction.

- (8) e notintro by assumption
- (9) $e = \dot{\xi}$ by assumption
- (10) $\dot{\xi}$ refutable? by assumption

By rule induction over Rules (4) on (9).

Case (4a).

(11)
$$\dot{\xi} = \top$$
 by assumption

By rule induction over Rules (2), no case applies due to syntactic contradiction.

Case (4g).

(11)
$$\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$$
 by assumption

(12)
$$e \models \dot{\xi}_1$$
 by assumption

(13)
$$\dot{\xi}_1$$
 refutable? by IH on (8) and (12)

(14)
$$\dot{\xi}_1 \vee \dot{\xi}_2$$
 refutable? by ??

By rule induction over Rules (2) on (10), only one rule applies.

Case (2g).

(15)
$$\dot{\xi}_1$$
 refutable? by assumption

Contradicts (13).

Case (4h).

(11)
$$\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$$
 by assumption

(12)
$$e \models \dot{\xi}_2$$
 by assumption

(13)
$$\dot{\xi}_2$$
 refutable? by IH on (8) and (12)

(14)
$$\underline{\dot{\xi}_1 \vee \dot{\xi}_2 \text{ refutable}_?}$$
 by ??

By rule induction over Rules (2) on (10), only one rule applies.

Case (2g).

(15)
$$\dot{\xi}_2$$
 refutable? by assumption

Contradicts (13).

Case (4f).

$$(11) \quad \dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$$

by assumption

(12)
$$\operatorname{prl}(e) \dot{\models} \dot{\xi}_1$$

by assumption

(13)
$$\operatorname{prr}(e) \dot{\models} \dot{\xi}_2$$

by assumption

$$(14) \ \operatorname{prl}(e) \ \operatorname{notintro}$$

by Rule (21e)

(15)
$$prr(e)$$
 notintro

by Rule (21f)

(16)
$$\dot{\xi}_1$$
 refutable?

by IH on (14) and (12)

(17)
$$\dot{\xi}_2$$
 refutable?

by IH on (15) and (13)

By rule induction over Rules (2) on it, only two cases apply.

Case (2e).

(18)
$$\dot{\xi}_1$$
 refutable?

by assumption

Contradicts (16).

Case (2f).

(18)
$$\dot{\xi}_2$$
 refutable?

by assumption

Contradicts (17).

Otherwise.

(11)
$$e = \underline{n}, \operatorname{inl}_{\tau_2}(e_1), \operatorname{inr}_{\tau_1}(e_2), (e_1, e_2)$$

by assumption

By rule induction over Rules (21) on (8), no case applies due to syntactic contradiction.

Lemma 1.0.15. $\operatorname{inl}_{\tau_2}(e_1) \stackrel{:}{\models}_{?}^{\dagger} \operatorname{inr}(\dot{\xi_2})$ is not derivable.

Proof. We prove by assuming $\mathtt{inl}_{\tau_2}(e_1) \dot{\models}_{?}^{\dagger} \mathtt{inr}(\dot{\xi}_2)$ and obtaining a contradiction.

(1)
$$\operatorname{inl}_{\tau_2}(e_1) \stackrel{\cdot}{\models}_?^{\dagger} \operatorname{inr}(\dot{\xi_2})$$

by assumption

By rule induction over Rules (8) on (1).

Case (8b).

(2)
$$\operatorname{inl}_{\tau_2}(e_1) \dot\models \operatorname{inr}(\dot{\xi_2})$$

by assumption

By rule induction over Rules (4) on (2), no rule applies due to syntactic contradiction.

Case (8a).

(2)
$$\operatorname{inl}_{\tau_2}(e_1) \dot{\models}_{?} \operatorname{inr}(\dot{\xi_2})$$

by assumption

By rule induction over Rules (6) on (2), only one rule applies.

Case (6i).

$$(3)$$
 inl $_{ au_2}(e_1)$ notintro

by assumption

By rule induction over Rules (21) on (3), no rule applies due to syntactic contradiction.

Lemma 1.0.16. $\operatorname{inr}_{\tau_1}(e_2) \stackrel{:}{\models}_{?}^{\dagger} \operatorname{inl}(\dot{\xi_1})$ is not derivable.

Proof. We prove by assuming $\operatorname{inr}_{\tau_1}(e_2) \dot{\models}_{?}^{\dagger} \operatorname{inl}(\dot{\xi}_1)$ and obtaining a contradiction.

(1)
$$\operatorname{inr}_{\tau_1}(e_2) \stackrel{\cdot}{\models}_{?}^{\dagger} \operatorname{inl}(\dot{\xi_1})$$

by assumption

By rule induction over Rules (8) on (1).

Case (8b).

(2)
$$\operatorname{inr}_{\tau_1}(e_2) \stackrel{\cdot}{\models} \operatorname{inl}(\dot{\xi_1})$$

by assumption

By rule induction over Rules (4) on (2), no rule applies due to syntactic contradiction.

Case (8a).

$$(2) \ \operatorname{inr}_{\tau_1}(e_2) \dot\models_? \operatorname{inl}(\dot{\xi_1})$$

by assumption

By rule induction over Rules (6) on (2), only one rule applies.

Case (6i).

$$(3)$$
 $\operatorname{inr}_{ au_1}(e_2)$ notintro

by assumption

By rule induction over Rules (21) on (3), no rule applies due to syntactic contradiction.

Lemma 1.0.17. $e \not\models \dot{\xi}$ and $e \not\models \dot{\gamma}\dot{\xi}$ iff $e \not\models \dot{\gamma}\dot{\xi}$.

Proof. 1. Sufficiency:

 $(1) \ e \not\models \dot{\xi}$

by assumption

(2) $e \not\models ?\dot{\xi}$

by assumption

Assume $e \models_{?}^{\dot{}} \dot{\xi}$. By rule induction over Rules (8) on it.

Case (8a).

(3)
$$e \dot{\models} \dot{\xi}$$

by assumption

Contradicts (1).

Case (8b).

(3)
$$e \models_? \dot{\xi}$$

by assumption

Contradicts (2).

Therefore, $e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}$ is not derivable.

- 2. Necessity:
 - (1) $e \not\models \dot{\uparrow}\dot{\xi}$

by assumption

Assume $e \models \dot{\xi}$.

$$(2) \ e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}$$

by Rule (8b) on assumption

Contradicts (1). Therefore, $e \not\models \dot{\xi}$. Assume $e \models_{?} \dot{\xi}$

$$(3) \ e \stackrel{\cdot}{\models}_?^{\dagger} \dot{\xi}$$

by Rule (8a) on assumption

Contradicts (1). Therefore, $e \not\models {}_?\dot{\xi}$.

Theorem 1.1 (Exclusiveness of Satisfaction Judgment). If $\dot{\xi}$: τ and \cdot ; $\Delta \vdash e$: τ and e final then exactly one of the following holds

- 1. $e \dot{\models} \dot{\xi}$
- 2. $e \dot{\models}_? \dot{\xi}$
- 3. $e \not\models \dot{\uparrow}\dot{\xi}$

Proof.

(4) $\dot{\xi}:\tau$

by assumption

(5)
$$\cdot$$
; $\Delta \vdash e : \tau$

by assumption

$$(6)$$
 e final

by assumption

By rule induction over Rules (1) on (4), we would show one conclusion is derivable while the other two are not.

Case (1a).

(7)
$$\dot{\xi} = \top$$

by assumption

(8)
$$e \models \top$$
 by Rule (4a)
(9) $e \not\models ? \top$ by Lemma 1.0.5
(10) $e \models ? \top$ by Rule (8b) on (8)

Case (1b).

(7) $\dot{\xi} = ?$ by assumption (8) $e \not\models ?$ by Lemma 1.0.6 (9) $e \models_{?} ?$ by Rule (6a) (10) $e \models_{?}^{\dagger} ?$ by Rule (8a) on (9)

Case (1c).

(7)
$$\dot{\xi} = \underline{n_2}$$
 by assumption
(8) $\tau = \text{num}$ by assumption

By rule induction over Rules (14) on (5), the following cases apply.

Case
$$(14b),(14c),(14f),(14h),(14i),(14l),(14m)$$
.

$$(9) \ \ e = \{\}^u, \{e_0\}^u, e_1(e_2), \mathtt{prl}(e_0), \mathtt{prr}(e_0), \mathtt{match}(e_0) \{\hat{rs}\} \\ \text{by assumption} \\ (10) \ \ e \ \mathtt{notintro} \qquad \qquad \qquad \texttt{by Rule} \\ (21a), (21b), (21c), (21d), (21e), (21f) \}$$

Assume $e \models \underline{n_2}$. By rule induction over Rules (4) on it, no case applies due to syntactic contradiction on $\dot{\xi}$.

$$\begin{array}{lll} (11) & e \not\models \underline{n_2} & & \text{by contradiction} \\ (12) & \underline{n_2} \text{ refutable}? & & \text{by Rule (2a)} \\ (13) & e \models_? \underline{n_2} & & \text{by Rule (6i) on (10)} \\ & & & \text{and (12)} \\ (14) & e \models_? \underline{n_2} & & \text{by Rule (8a) on (13)} \\ \end{array}$$

Case (14d).

(9)
$$e = \underline{n_1}$$
 by assumption

Assume $\underline{n_1} = \underline{n_2}$. By rule induction over Rules (6), only one case applies.

Case (6i).

(10)
$$\underline{n_1}$$
 notintro by assumption Contradicts Lemma 4.0.6.

(11)
$$\underline{n_1} \not\models \underline{n_2}$$
 by contradiction

By case analysis on whether n_1 is equal to n_2 .

Case $n_1 = n_2$.

(12)
$$satisfy(\underline{n_1},\underline{n_2}) = true$$
 by Definition 5
(13) $\underline{n_1} \models \underline{n_2}$ by Lemma 1.0.2 on (12)

(14)
$$\underline{n_1} \stackrel{:}{\models}_{?} \underline{n_2}$$
 by Rule (8b) on (13)

Case $n_1 \neq n_2$.

$$\begin{array}{ll} (12) \;\; satisfy(\underline{n_1},\underline{n_2}) = {\rm false} & \qquad {\rm by \; Definition \; 5} \\ (13) \;\; \underline{n_1} \not \models \underline{n_2} & \qquad {\rm by \; Lemma \; 1.0.2 \; on} \\ (14) \;\; \underline{n_1} \not \models \frac{\dagger}{?}\underline{n_2} & \qquad {\rm by \; Lemma \; 1.0.17 \; on} \\ \end{array}$$

(11) and (13)

Case (1g).

(7)
$$\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$$
 by assumption

By inductive hypothesis on (5) and (6), exactly one of $e \models \dot{\xi}_1$, $e \models_? \dot{\xi}_1$, and $e \not\models_? \dot{\xi}_1$ holds. The same goes for $\dot{\xi}_2$. By case analysis on which conclusion holds for $\dot{\xi}_1$ and $\dot{\xi}_2$.

Case $e \models \dot{\xi}_1, e \models \dot{\xi}_2$.

$(8) e \dot{\models} \dot{\xi}_1$	by assumption
$(9) e \not\models {}_{?}\dot{\xi}_{1}$	by assumption
$(10) \ e \dot{\models} \dot{\xi}_2$	by assumption
$(11) \ e \not\models {}_{?}\dot{\xi}_{2}$	by assumption
$(12) e \dot{\models} \dot{\xi}_1 \lor \dot{\xi}_2$	by Rule $(4g)$ on (8)
$(13) \ e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1 \vee \dot{\xi}_2$	by Rule (8b) on (12)

Assume $e \stackrel{.}{\models}_{?} \dot{\xi}_1 \vee \dot{\xi}_2$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

(14) e notintro	by assumption
(15) $\dot{\xi}_1 \lor \dot{\xi}_2$ refutable?	by assumption
(16) $\underline{\dot{\xi}_1 \lor \dot{\xi}_2}$ refutable?	by Lemma 1.0.14 on (14) and (12)

(15) and (16) are in contradiction with each other.

Case (6g).

(14) $e \models_{?} \dot{\xi}_{1}$ by assumption

Contradicts (9).

Case (6h).

(14) $e \models_? \dot{\xi}_2$ by assumption

Contradicts (11).

(14) $e \not\models ?\dot{\xi}_1 \lor \dot{\xi}_2$ by contradiction

Case $e \stackrel{.}{\models} \dot{\xi}_1, e \stackrel{.}{\models}_? \dot{\xi}_2$.

(8) $e \models \dot{\xi}_1$ by assumption

(9) $e \not\models ?\dot{\xi}_1$ by assumption (10) $e \not\models \dot{\xi}_2$ by assumption

(11) $e \models_2 \dot{\xi}_2$ by assumption

(12) $e \models \dot{\xi}_1 \lor \dot{\xi}_2$ by Rule (4g) on (8)

(13) $e \stackrel{:}{\models}_{7}^{\dagger} \dot{\xi}_{1} \vee \dot{\xi}_{2}$ by Rule (8b) on (12)

Assume $e \stackrel{.}{\models}_{?} \dot{\xi}_1 \vee \dot{\xi}_2$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

(14) e notintro by assumption

(15) $\dot{\xi}_1 \vee \dot{\xi}_2$ refutable? by assumption

(16) $\underline{\dot{\xi}_1} \vee \underline{\dot{\xi}_2}$ refutable? by Lemma 1.0.14 on (14) and (12)

(15) and (16) are in contradiction with each other.

Case (6g).

(14) $e \models_{?} \dot{\xi}_1$ by assumption

Contradicts (9).

Case (6h).

(14) $e \not\models \dot{\xi}_1$ by assumption

Contradicts (8).

(14) $e \not\models ?\dot{\xi}_1 \lor \dot{\xi}_2$ by contradiction

Case $e \models \dot{\xi}_1, e \not\models \dot{\xi}_2$.

(8) $e \dot{\models} \dot{\xi}_1$ by assumption

(9) $e \not\models {}_?\dot{\xi}_1$ by assumption

$(10) \ e \not\models \dot{\xi}_2$	by assumption
$(11) \ e \not\models {}_?\dot{\xi}_2$	by assumption
$(12) \ e \dot{\models} \dot{\xi}_1 \lor \dot{\xi}_2$	by Rule $(4g)$ on (8)
$(13) \ e \dot{\models}_{?}^{\dagger} \dot{\xi}_{1} \lor \dot{\xi}_{2}$	by Rule (8b) on (12)

Assume $e \models_? \dot{\xi}_1 \lor \dot{\xi}_2$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

(14) e notintro	by assumption
(15) $\dot{\xi}_1 ee \dot{\xi}_2$ refutable?	by assumption
(16) $\dot{\xi_1} \lor \dot{\xi_2}$ refutable?	by Lemma 1.0.14 on
	(14) and (12)

(15) and (16) are in contradiction with each other.

Case (6g).

(14)
$$e \models_? \dot{\xi}_1$$
 by assumption Contradicts (9).

Case (6h).

(14)
$$e \not\models \dot{\xi}_1$$
 by assumption Contradicts (8).

(14)
$$e \not\models {}_{?}\dot{\xi}_{1} \lor \dot{\xi}_{2}$$
 by contradiction

Case $e \models_? \dot{\xi}_1, e \models \dot{\xi}_2$.

(8) $e \not\models \dot{\xi}_1$	by assumption
$(9) e \dot{\models}_{?} \dot{\xi}_{1}$	by assumption
$(10) \ e \dot{\models} \dot{\xi}_2$	by assumption
$(11) \ e \not\models ?\dot{\xi}_2$	by assumption
$(12) \ e \dot{\models} \dot{\xi}_1 \lor \dot{\xi}_2$	by Rule (4h) on (10)
$(13) \ e \stackrel{\cdot}{\models}_{2}^{\dagger} \dot{\xi}_{1} \vee \dot{\xi}_{2}$	by Rule (8b) on (12)

Assume $e \stackrel{.}{\models}_? \dot{\xi}_1 \lor \dot{\xi}_2$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

(14) e notintro	by assumption
(15) $\dot{\xi}_1 \lor \dot{\xi}_2$ refutable?	by assumption
(16) $\dot{\xi_1} \lor \dot{\xi_2}$ refutable?	by Lemma 1.0.14 on
	(14) and (12)

(15) and (16) are in contradiction with each other.

Case (6g).

Contradicts (10).

Case (6h).

(14)
$$e \models_{?} \dot{\xi}_{2}$$
 by assumption

Contradicts (11).

(14) $e \models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$ by contradiction

Case $e \models_{?} \dot{\xi}_{1}, e \models_{?} \dot{\xi}_{2}$.

(8) $e \not\models_{?} \dot{\xi}_{1}$ by assumption

(9) $e \models_{?} \dot{\xi}_{1}$ by assumption

(10) $e \not\models_{?} \dot{\xi}_{2}$ by assumption

(11) $e \models_{?} \dot{\xi}_{2}$ by assumption

(12) $e \models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$ by Rule (6g) on (9) and (10)

(13) $e \models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$ by Rule (8a) on (12)

Assume $e \models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$. By rule induction over Rules (4), only two cases apply.

Case (4g).

(14) $e \models_{?} \dot{\xi}_{2}$ by assumption

Contradicts (8)

Case (4h).

(14) $e \models_{?} \dot{\xi}_{2}$ by assumption

Contradicts (10)

(14) $e \not\models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$ by contradiction

Case $e \models_{?} \dot{\xi}_{1}, e \not\models_{?} \dot{\xi}_{2}$.

(8) $e \not\models_{?} \dot{\xi}_{1}$ by assumption

(10) $e \not\models_{?} \dot{\xi}_{1}$ by assumption

(11) $e \not\models_{?} \dot{\xi}_{2}$ by assumption

(12) $e \models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$ by assumption

(14) $e \not\models_{?} \dot{\xi}_{2}$ by assumption

(15) $e \not\models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$ by assumption

(16) $e \not\models_{?} \dot{\xi}_{2} \lor \dot{\xi}_{2}$ by assumption

(17) $e \not\models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$ by assumption

(18) $e \models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$ by Rule (6g) on (9) and (10)

(19) $e \models_{?} \dot{\xi}_{1} \lor \dot{\xi}_{2}$ by Rule (6g) on (9) and (10)

Assume $e \models \dot{\xi}_1 \lor \dot{\xi}_2$. By rule induction over Rules (4), only two cases apply.

Case (4g).

(14)
$$e \dot{\models} \dot{\xi}_1$$
 by assumption

Contradicts (8).

Case (4h).

(14)
$$e \models \dot{\xi}_2$$
 by assumption

Contradicts (10).

(14)
$$e \not\models \dot{\xi}_1 \lor \dot{\xi}_2$$
 by contradiction

Case $e \not\models \dot{\uparrow}\dot{\xi}_1, e \models \dot{\xi}_2$.

(8)
$$e \not\models \dot{\xi}_1$$
 by assumption
(9) $e \not\models \dot{\xi}_1$ by assumption

(10)
$$e \models \dot{\xi}_2$$
 by assumption
(11) $e \not\models {}_{?}\dot{\xi}_2$ by assumption

(12)
$$e \models \dot{\xi}_1 \lor \dot{\xi}_2$$
 by Rule (4h) on (10)
(13) $e \models_{?}^{\dagger} \dot{\xi}_1 \lor \dot{\xi}_2$ by Rule (8b) on (12)

Assume $e \models_? \dot{\xi}_1 \lor \dot{\xi}_2$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

(14)
$$e$$
 notintro by assumption
(15) $\dot{\xi}_1 \lor \dot{\xi}_2$ refutable? by assumption
(16) $\dot{\xi}_1 \lor \dot{\xi}_2$ refutable? by Lemma 1.0.14 on

(14) and (12) (15) and (16) are in contradiction with each other.

Case (6g).

(14)
$$e \not\models \dot{\xi}_2$$
 by assumption

Contradicts (10).

Case (6h).

(14)
$$e \models_? \dot{\xi}_2$$
 by assumption Contradicts (11).

(14)
$$e \not\models {}_?\dot{\xi}_1 \lor \dot{\xi}_2$$
 by contradiction

Case $e \not\models {}^{\dagger}_{?}\dot{\xi}_{1}, e \not\models {}_{?}\dot{\xi}_{2}.$

(8)
$$e \not\models \dot{\xi}_1$$
 by assumption
(9) $e \not\models \dot{\gamma}\dot{\xi}_1$ by assumption

$(10) \ e \not\models \dot{\xi}_2$	by assumption
$(11) \ e \models_? \dot{\xi}_2$	by assumption

(12)
$$e \models_? \dot{\xi}_1 \lor \dot{\xi}_2$$
 by Rule (6h) on (11) and (8)

(13)
$$e^{\frac{1}{2}} \dot{\xi}_1 \vee \dot{\xi}_2$$
 by Rule (8a) on (12)

Assume $e \models \dot{\xi}_1 \lor \dot{\xi}_2$. By rule induction over Rules (4), only two cases apply.

Case (4g).

(14)
$$e \models \dot{\xi}_1$$
 by assumption

Contradicts (8)

Case (4h).

(14)
$$e \models \dot{\xi}_2$$
 by assumption Contradicts (10)

(14)
$$e \not\models \dot{\xi}_1 \lor \dot{\xi}_2$$
 by contradiction

Case $e \not\models {}^{\dagger}_{?}\dot{\xi}_{1}, e \not\models {}^{\dagger}_{?}\dot{\xi}_{2}.$

(8)
$$e \not\models \dot{\xi}_1$$
 by assumption
(9) $e \not\models \dot{\gamma}\dot{\xi}_1$ by assumption
(10) $e \not\models \dot{\xi}_2$ by assumption
(11) $e \not\models \dot{\gamma}\dot{\xi}_2$ by assumption

Assume $e \models \dot{\xi}_1 \lor \dot{\xi}_2$. By rule induction over Rules (4) on it, only two cases apply.

Case (4g).

(12)
$$e \models \dot{\xi}_1$$
 by assumption

Contradicts (8).

Case (4h).

(12)
$$e \models \dot{\xi}_2$$
 by assumption Contradicts (10).

(13)
$$e \not\models \dot{\xi}_1 \lor \dot{\xi}_2$$
 by contradiction

Assume $e \models_{?} \dot{\xi}_1 \lor \dot{\xi}_2$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

(14)
$$e$$
 notintro by assumption
(15) $\dot{\xi}_1 \lor \dot{\xi}_2$ refutable? by assumption

By rule induction over Rules (2) on (15), only one rule applies.

Case (2g).

(16)
$$\dot{\xi}_1$$
 refutable? by assumption

(17) $e \dot{\models}_{\gamma} \dot{\xi}_1$ by Rule (6i) on (14) and (16)

Contradicts (9).

Case (6g).

(14) $e \dot{\models}_{\gamma} \dot{\xi}_1$ by assumption

Contradicts (9).

Case (6h).

(14) $e \dot{\models}_{\gamma} \dot{\xi}_2$ by assumption

Contradicts (11).

(14) $e \dot{\models}_{\gamma} \dot{\xi}_1 \vee \dot{\xi}_2$ by contradiction

(15) $e \dot{\not\models}_{\gamma} \dot{\xi}_1 \vee \dot{\xi}_2$ by Lemma 1.0.17 on (13) and (14)

Case (1d).

(7) $\dot{\xi} = \inf(\dot{\xi}_1)$ by assumption

(9) $\dot{\xi}_1 : \tau_1$ by assumption

By rule induction over Rules (14) on (5), the following cases apply.

Case (14b),(14c),(14f),(14h),(14i),(14l),(14m).

(10) $e = \emptyset^u$, $(e_0)^u$, $e_1(e_2)$, $\operatorname{prl}(e_0)$, $\operatorname{prr}(e_0)$, $\operatorname{match}(e_0)\{f^*s\}$ by assumption

(11) e not intro by Rule (21a),(21b),(21c),(21d),(21e),(21f)

Assume $e \dot{\models} \inf(\dot{\xi}_1)$ By rule induction over Rules (4) on it, no case applies due to syntactic contradiction.

(12) $e \dot{\not\models} \inf(\dot{\xi}_1)$ by Rule (20)

(13) $\inf(\dot{\xi}_1)$ refutable? by Rule (6i) on (11) and (13)

(15) $e \dot{\models}_{\gamma} \inf(\dot{\xi}_1)$ by Rule (8a) on (14)

Case (14j).

(10) $e = \inf_{\tau_1} (e_1)$ by assumption

by assumption

(11) \cdot ; $\Delta \vdash e_1 : \tau_1$

$$(12)$$
 e_1 final

by Lemma 4.0.3 on (6)

By inductive hypothesis on (9) and (11) and (12), exactly one of $e_1 \models \dot{\xi}_1$, $e_1 \models_{?} \dot{\xi}_1$, and $e_1 \not\models_{?} \dot{\xi}_1$ holds. By case analysis on which one holds.

Case $e_1 \dot\models \dot{\xi}_1$.

 $(13) \ e_1 \dot{\models} \dot{\xi}_1$

by assumption

(14) $e_1 \not\models ?\dot{\xi}_1$

- by assumption
- (15) $\operatorname{inl}_{\tau_2}(e_1) \dot\models \operatorname{inl}(\dot{\xi_1})$
- by Rule (4c) on (13)
- (16) $\operatorname{inl}_{\tau_2}(e_1) \stackrel{\cdot}{\models}_?^{\dagger} \operatorname{inl}(\dot{\xi_1})$
- by Rule (8b) on (15)

Assume $\operatorname{inl}_{\tau_2}(e_1) \dot{\models}_{?} \operatorname{inl}(\dot{\xi}_1)$. By rule induction over Rules (6) on it, only two cases apply.

Case (6i).

- (17) $\operatorname{inl}_{\tau_2}(e_1)$ notintro
- by assumption

By rule induction over Rules (21) on (17), no case applies due to syntactic contradiction.

Case (6b).

- $(17) \ e_1 \dot{\models}_? \dot{\xi}_1$
- Contradicts (14).
- (18) $\operatorname{inl}_{\tau_2}(e_1) \not\models \operatorname{?inl}(\dot{\xi}_1)$

by contradiction

Case $e_1 \dot{\models}_? \dot{\xi}_1$.

 $(13) e_1 \not\models \dot{\xi}_1$

by assumption

(14) $e_1 \dot{\models}_{?} \dot{\xi}_1$

- by assumption
- $(15) \ \operatorname{inl}_{\tau_2}(e_1) \dot{\models}_? \operatorname{inl}(\dot{\xi_1})$
- by Rule (6b) on (14)
- $(16) \ \operatorname{inl}_{\tau_2}(e_1) \dot{\models}_?^\dagger \operatorname{inl}(\dot{\xi_1})$
- by Rule (8a) on (15)

Assume $\operatorname{inl}_{\tau_2}(e_1) \dot\models \operatorname{inl}(\dot{\xi}_1)$. By rule induction over Rules (4) on it, only one case applies.

Case (4c).

 $(17) \ e_1 \dot{\models} \dot{\xi}_1$

Contradicts (13).

(18) $\operatorname{inl}_{\tau_2}(e_1) \not\models \operatorname{inl}(\dot{\xi_1})$

by contradiction

Case $e_1 \not\models {}^{\dagger}_? \dot{\xi}_1$.

 $(13) \ e_1 \not\models \dot{\xi}_1$

by assumption

(14) $e_1 \not\models {}_?\dot{\xi}_1$

by assumption

Assume $\operatorname{inl}_{\tau_2}(e_1) \dot\models \operatorname{inl}(\dot{\xi}_1)$. By rule induction over Rules (4) on it, only one case applies.

Case (4c).

(15)
$$e_1 \dot{\models} \dot{\xi}_1$$

Contradicts (13).

(16) $\operatorname{inl}_{\tau_2}(e_1) \not\models \operatorname{inl}(\dot{\xi_1})$ by contradiction

Assume $\operatorname{inl}_{\tau_2}(e_1) \dot{\models}_{?} \operatorname{inl}(\dot{\xi}_1)$. By rule induction over Rules (6) on it, only one case applies.

Case (6i).

(17) $\operatorname{inl}_{\tau_2}(e_1)$ notintro by assumption

By rule induction over Rules (21) on (17), no case applies due to syntactic contradiction.

Case (6b).

(17)
$$e_1 \dot{\models}_? \dot{\xi}_1$$

Contradicts (14).

(18)
$$\operatorname{inl}_{\tau_2}(e_1) \not\models \operatorname{?inl}(\dot{\xi_1})$$
 by contradiction
(19) $\operatorname{inl}_{\tau_2}(e_1) \not\models \operatorname{?inl}(\dot{\xi_1})$ by Lemma 1.0.17 on
(16) and (18)

Case (14k).

(10)
$$e = \operatorname{inr}_{\tau_1}(e_2)$$
 by assumption

Assume $\operatorname{inr}_{\tau_1}(e_2) \dot\models \operatorname{inl}(\dot{\xi_1})$. By rule induction over Rules (4) on it, no case applies due to syntactic contradiction.

(11)
$$\operatorname{inr}_{\tau_1}(e_2) \not\models \operatorname{inl}(\dot{\xi_1})$$
 by contradiction

Assume $\operatorname{inr}_{\tau_1}(e_2) \models_{\tau} \operatorname{inl}(\dot{\xi}_1)$. By rule induction over Rules (6) on it, only one case applies.

Case (6i).

(12)
$$\operatorname{inr}_{\tau_1}(e_2)$$
 notintro by assumption
By rule induction over Rules (21) on (12), no case applies due
to syntactic contradiction.

(13)
$$\operatorname{inr}_{\tau_1}(e_2) \not\models \operatorname{?inl}(\dot{\xi}_1)$$
 by contradiction
(14) $\operatorname{inr}_{\tau_1}(e_2) \not\models \operatorname{?inl}(\dot{\xi}_1)$ by Lemma 1.0.17 on
(11) and (13)

Case (1e).

(7)
$$\dot{\xi} = \operatorname{inr}(\dot{\xi}_2)$$
 by assumption

(8)
$$\tau = (\tau_1 + \tau_2)$$
 by assumption
(9) $\dot{\xi}_2 : \tau_2$ by assumption

By rule induction over Rules (14) on (5), the following cases apply.

Case (14b),(14c),(14f),(14h),(14i),(14l),(14m).

$$(10) \ e = (\!()^u, (\!(e_0)\!)^u, e_1(e_2), \mathtt{prl}(e_0), \mathtt{prr}(e_0), \mathtt{match}(e_0) \{ \hat{rs} \}$$

by assumption

(11)
$$e$$
 notintro by Rule

(21a),(21b),(21c),(21d),(21e),(21f)

Assume $e \models inr(\dot{\xi}_2)$. By rule induction over Rules (4) on it, no case applies due to syntactic contradiction.

(12)
$$e \not\models \operatorname{inr}(\dot{\xi}_2)$$
 by contradiction (13) $\operatorname{inr}(\dot{\xi}_2)$ refutable? by Rule (2d)

(14)
$$e \models_? \operatorname{inr}(\dot{\xi}_2)$$
 by Rule (6i) on (11) and (13)

(15)
$$e \stackrel{:}{\models}_{?}^{\dagger} \operatorname{inr}(\dot{\xi}_2)$$
 by Rule (8a) on (14)

Case (14j).

(10)
$$e = \operatorname{inl}_{\tau_2}(e_1)$$
 by assumption

Assume $\mathtt{inl}_{\tau_2}(e_1) \dot\models \mathtt{inr}(\dot{\xi}_2)$. By rule induction over Rules (4) on it, no case applies due to syntactic contradiction.

(11)
$$\operatorname{inl}_{\tau_2}(e_1) \not\models \operatorname{inr}(\dot{\xi}_2)$$
 by contradiction

Assume $\operatorname{inl}_{\tau_2}(e_1) \dot{\models}_{?} \operatorname{inr}(\dot{\xi}_2)$. By rule induction over Rules (6) on it, only one case applies.

Case (6i).

(12)
$$\operatorname{inl}_{\tau_2}(e_1)$$
 notintro by assumption

By rule induction over Rules (21) on (12), no case applies due to syntactic contradiction.

(13)
$$\operatorname{inl}_{\tau_2}(e_1) \not\models \operatorname{?inr}(\dot{\xi}_2)$$
 by contradiction
(14) $\operatorname{inl}_{\tau_2}(e_1) \not\models \operatorname{?inr}(\dot{\xi}_2)$ by Lemma 1.0.17 on
(11) and (13)

Case (14k).

$$\begin{array}{ll} (10) & e = \operatorname{inr}_{\tau_1}(e_2) & \text{by assumption} \\ (11) & \cdot ; \Delta \vdash e_2 : \tau_2 & \text{by assumption} \\ (12) & e_2 \text{ final} & \text{by Lemma 4.0.4 on (6)} \end{array}$$

By inductive hypothesis on (9) and (11) and (12), exactly one of $e_2 \models \dot{\xi}_2$, $e_2 \models_{?} \dot{\xi}_2$, and $e_2 \not\models_{?} \dot{\xi}_2$ holds. By case analysis on which one holds.

Case $e_2 \models \dot{\xi}_2$.

(12)	$e_2 \models \xi_2$	by assumption
(10)	$\epsilon_2 \vdash \zeta_2$	by assumption

(14)
$$e_2 \not\models {}_?\dot{\xi}_2$$
 by assumption

(15)
$$\operatorname{inr}_{\tau_1}(e_2) \dot\models \operatorname{inr}(\dot{\xi_2})$$
 by Rule (4c) on (13)

(16)
$$\operatorname{inr}_{\tau_1}(e_2) \stackrel{:}{\models}_{?}^{\dagger} \operatorname{inr}(\dot{\xi}_2)$$
 by Rule (8b) on (15)

Assume $\operatorname{inr}_{\tau_1}(e_2) \dot{\models}_? \operatorname{inr}(\dot{\xi}_2)$. By rule induction over Rules (6) on it, only two cases apply.

Case (6i).

(17)
$$\operatorname{inr}_{\tau_1}(e_2)$$
 notintro by assumption

By rule induction over Rules (21) on (17), no case applies due to syntactic contradiction.

Case (6c).

$$(17) \ e_2 \dot{\models}_? \dot{\xi}_2$$

(18) $\operatorname{inr}_{\tau_1}(e_2) \not\models \operatorname{pinr}(\dot{\xi_2})$ by contradiction

Case $e_2 \models_{?} \dot{\xi}_2$.

(13)
$$e_2 \not\models \dot{\xi}_2$$
 by assumption

(14)
$$e_2 \dot{\models}_? \dot{\xi}_2$$
 by assumption

(15)
$$\operatorname{inr}_{\tau_1}(e_2) \dot{\models}_{?} \operatorname{inr}(\dot{\xi}_2)$$
 by Rule (6c) on (14)

(16)
$$\operatorname{inr}_{\tau_1}(e_2) \stackrel{:}{\models}_{?}^{\dagger} \operatorname{inr}(\dot{\xi_2})$$
 by Rule (8a) on (15)

Assume $\operatorname{inr}_{\tau_1}(e_2) = \operatorname{inr}(\dot{\xi}_2)$. By rule induction over Rules (4) on it, only one case applies.

Case (4d).

$$(17) \quad e_2 \models \dot{\xi}_2$$

Contradicts (13).

(18)
$$\operatorname{inr}_{\tau_1}(e_2) \not\models \operatorname{inr}(\dot{\xi_2})$$
 by contradiction

Case $e_2 \not\models {}_?^\dagger \dot{\xi}_2$.

(13)
$$e_2 \not\models \dot{\xi}_2$$
 by assumption

(14)
$$e_2 \not\models {}_?\dot{\xi}_2$$
 by assumption

Assume $\operatorname{inr}_{\tau_1}(e_2) = \operatorname{inr}(\dot{\xi}_2)$. By rule induction over Rules (4) on it, only one case applies.

Case (4d).

(15)
$$e_2 \dot{\models} \dot{\xi}_2$$

Contradicts (13).

(16)
$$\operatorname{inr}_{\tau_1}(e_2) \not\models \operatorname{inr}(\dot{\xi_2})$$
 by con

by contradiction

Assume $\operatorname{inr}_{\tau_1}(e_2) \dot{\models}_? \operatorname{inr}(\dot{\xi_2})$. By rule induction over Rules (6) on it, only one case applies.

Case (6i).

(17) $\operatorname{inr}_{\tau_1}(e_2)$ notintro

by assumption

By rule induction over Rules (21) on (17), no case applies due to syntactic contradiction.

Case (6c).

$$(17) \ e_2 \dot{\models}_? \dot{\xi}_2$$

Contradicts (14).

(18)
$$\operatorname{inr}_{\tau_1}(e_2) \not\models \operatorname{?inr}(\dot{\xi_2})$$
 by contradiction
(19) $\operatorname{inl}_{\tau_2}(e_1) \not\models \operatorname{?inl}(\dot{\xi_1})$ by Lemma 1.0.17 on
(16) and (18)

Case (4e).

(7)
$$\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$$
 by assumption
(8) $\tau = (\tau_1 \times \tau_2)$ by assumption
(9) $\dot{\xi}_1 : \tau_1$ by assumption
(10) $\dot{\xi}_2 : \tau_2$ by assumption

By rule induction over Rules (14) on (5), the following cases apply.

$$(11) \ e = ()^u, (e_0)^u, e_1(e_2), \operatorname{prl}(e_0), \operatorname{prr}(e_0), \operatorname{match}(e_0) \{ \hat{rs} \}$$

by assumption

(12) e notintro by Rule

(21a),(21b),(21c),(21d),(21e),(21f)

(13) e indet by Lemma 4.0.10 on

(6) and (12)

 (14) prl(e) indet
 by Rule (19g) on (13)

 (15) prl(e) final
 by Rule (20b) on (14)

 (16) prr(e) indet
 by Rule (19h) on (13)

 (17) prr(e) final
 by Rule (20b) on (16)

(18) prl(e) notintro by Rule (21e) (19) prr(e) notintro by Rule (21f)

(20) \cdot ; $\Delta \vdash \mathsf{prl}(e) : \tau_1$ by Rule (14h) on (5)

(21)
$$\cdot$$
; $\Delta \vdash prr(e) : \tau_2$ by Rule (14i) on (5)

By inductive hypothesis on (9) and (20) and (15), exactly one of $\mathtt{prl}(e) \dot{\models} \dot{\xi}_1$, $\mathtt{prl}(e) \dot{\models}_? \dot{\xi}_1$, and $\mathtt{prl}(e) \not\models ? \dot{\xi}_1$ holds. By inductive hypothesis on (10) and (21) and (17), exactly one of

 $\operatorname{prr}(e) \models \dot{\xi}_2, \operatorname{prr}(e) \models_{?} \dot{\xi}_2, \operatorname{and} \operatorname{prr}(e) \not\models_{?} \dot{\xi}_2 \operatorname{holds}.$ By case analysis on which conclusion holds for $\dot{\xi}_1$ and $\dot{\xi}_2$.

Case $prl(e) \dot\models \dot{\xi}_1, prr(e) \dot\models \dot{\xi}_2.$

(22) $\operatorname{prl}(e) \dot{\models} \dot{\xi}_1$	by assumption
(23) $\operatorname{prl}(e) \not\models ?\dot{\xi}_1$	by assumption
(24) $\operatorname{prr}(e) \dot{\models} \dot{\xi}_2$	by assumption
(25) $\operatorname{prr}(e) \not\models ?\dot{\xi}_2$	by assumption
$(26) \ e \dot{\models} (\dot{\xi}_1, \dot{\xi}_2)$	by Rule (4f) on (12) and (22) and (24)
$(27) e \stackrel{\cdot}{\models}_{?}^{\dagger} (\dot{\xi}_1, \dot{\xi}_2)$	by Rule (8b) on (26)
(28) $(\dot{\xi_1}, \dot{\xi_2})$ refutable?	by Lemma $1.0.14$ on
	(12) and (26)

Assume $e \models_{?} (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (6) on it, only one case applies.

Case (6i).

(29)
$$(\dot{\xi}_1, \dot{\xi}_2)$$
 refutable? by assumption Contradicts (28).

(30)
$$e \not\models ?(\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction

Case $prl(e) \dot{\models} \dot{\xi}_1, prr(e) \dot{\models}_2 \dot{\xi}_2.$

(22) $\operatorname{prl}(e) \dot{\models} \dot{\xi}_1$	by assumption
(23) $\operatorname{prl}(e) \not\models {}_?\dot{\xi}_1$	by assumption
(24) $\operatorname{prr}(e) \not\models \dot{\xi}_2$	by assumption
(25) $\operatorname{prr}(e) \dot{\models}_? \dot{\xi}_2$	by assumption
(26) $\dot{\xi}_2$ refutable?	by Lemma 1.0.13 on (19) and (25)
(27) $(\dot{\xi}_1,\dot{\xi}_2)$ refutable?	by Rule $(2f)$ on (26)
$(28) \ e \stackrel{\cdot}{\models}_{?} (\dot{\xi}_1, \dot{\xi}_2)$	by Rule (6i) on (12) and (27)
$(29) e \stackrel{\cdot}{\models}_{?}^{\dagger} (\dot{\xi}_1, \dot{\xi}_2)$	by Rule (8a) on (28)

Assume $e \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4), only one case applies.

Case (4f).

(30)
$$\operatorname{prr}(e) \models \dot{\xi}_2$$
 by assumption Contradicts (24)

(31)
$$e \not\models (\dot{\xi}_1, \dot{\xi}_2)$$

by contradiction

Case $prl(e) \dot{\models} \dot{\xi}_1, prr(e) \not\models \dot{\xi}_2^{\dagger}$.

(22) $\operatorname{prl}(e) \models \dot{\xi}_1$ by assumption (23) $\operatorname{prl}(e) \not\models \dot{\xi}_1$ by assumption (24) $\operatorname{prr}(e) \not\models \dot{\xi}_2$ by assumption (25) $\operatorname{prr}(e) \not\models \dot{\xi}_2$ by assumption

Assume $e \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4) on it, only one case applies.

Case (4f).

(26)
$$\operatorname{prr}(e) \stackrel{.}{=} \dot{\xi}_2$$
 by assumption Contradicts (24).

(27)
$$e \not\models (\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction

Assume $e \models_{?} (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (6) on it, only one case applies.

Case (6i).

(28) $(\dot{\xi}_1, \dot{\xi}_2)$ refutable? by assumption

By rule induction over Rules (2) on (28), only two cases apply.

Case (2e).

(29) $\dot{\xi}_1$ refutable? by assumption (30) prl(e) notintro by Rule (21e) (31) prl(e) $\dot{\models}_?\dot{\xi}_1$ by Rule (6i) on (30) and (29)

Contradicts (23).

Case (2f).

(29) $\dot{\xi}_2$ refutable? by assumption (30) prr(e) notintro by Rule (21f) (31) prr(e) $\dot{\models}_?\dot{\xi}_2$ by Rule (6i) on (30) and (29)

Contradicts (25).

(32)
$$e \not\models ?(\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction
(33) $e \not\models ?(\dot{\xi}_1, \dot{\xi}_2)$ by Lemma 1.0.17 on
(27) and (32)

Case $prl(e) \dot{\models}_? \dot{\xi}_1, prr(e) \dot{\models} \dot{\xi}_2.$

· · · · · · · · · · · · · · · · · · ·	
(22) $\operatorname{prl}(e) \not\models \dot{\xi}_1$	by assumption
(23) $\operatorname{prl}(e) \dot{\models}_? \dot{\xi}_1$	by assumption
(24) $\operatorname{prr}(e) \dot{\models} \dot{\xi}_2$	by assumption
(25) $\operatorname{prr}(e) \not\models {}_?\dot{\xi}_2$	by assumption

(26)
$$\dot{\xi}_1$$
 refutable? by Lemma 1.0.13 on (18) and (23)

(27)
$$(\dot{\xi}_1, \dot{\xi}_2)$$
 refutable? by Rule (2f) on (26)
(28) $e \models_?(\dot{\xi}_1, \dot{\xi}_2)$ by Rule (6i) on (12)
and (27)

(29)
$$e \stackrel{.}{\models}_{?}^{\dagger} (\dot{\xi}_{1}, \dot{\xi}_{2})$$
 by Rule (8a) on (28)

Assume $e \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4), only one case applies.

Case (4f).

(30)
$$\operatorname{prl}(e) \models \dot{\xi}_1$$
 by assumption Contradicts (22).

(31)
$$e \not\models (\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction

Case $prl(e) \dot{\models}_{?} \dot{\xi}_{1}, prr(e) \dot{\models}_{?} \dot{\xi}_{2}.$

(22) $\operatorname{prl}(e) \not\models \dot{\xi}_1$	by assumption
(23) $\operatorname{prl}(e) \dot{\models}_? \dot{\xi}_1$	by assumption
(24) $\operatorname{prr}(e) \not\models \dot{\xi}_2$	by assumption
(25) $\operatorname{prr}(e)\dot{\models}_?\dot{\xi}_2$	by assumption
(26) $\dot{\xi}_2$ refutable?	by Lemma 1.0.13 on

(18) and (23) (27)
$$(\dot{\xi}_1, \dot{\xi}_2)$$
 refutable? by Rule (2f) on (26)

(28)
$$e \models_{?} (\dot{\xi}_1, \dot{\xi}_2)$$
 by Rule (6i) on (12) and (27)

(29)
$$e \models_{?}^{\dagger} (\dot{\xi}_{1}, \dot{\xi}_{2})$$
 by Rule (8a) on (28)

Assume $e \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4), only one case applies.

Case (4f).

(30)
$$\operatorname{prl}(e) \dot{\models} \dot{\xi}_1$$
 by assumption Contradicts (22).

(31)
$$e \not\models (\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction

Case $prl(e) \dot{\models}_{?} \dot{\xi}_{1}, prr(e) \not\models_{?}^{\dagger} \dot{\xi}_{2}.$

- () ()	
(22) $\operatorname{prl}(e) \not\models \dot{\xi}_1$	by assumption
(23) $\operatorname{prl}(e) \dot{\models}_? \dot{\xi}_1$	by assumption
(24) $\operatorname{prr}(e) \not\models \dot{\xi}_2$	by assumption
(25) $\operatorname{prr}(e) \not\models {}_?\dot{\xi}_2$	by assumption
(26) $\dot{\xi}_1$ refutable?	by Lemma 1.0.13 on (18) and (23)
(27) $(\dot{\xi}_1,\dot{\xi}_2)$ refutable?	by Rule $(2f)$ on (26)
$(28) e \models_?(\dot{\xi}_1, \dot{\xi}_2)$	by Rule (6i) on (12)

(28)
$$e \models_? (\dot{\xi}_1, \dot{\xi}_2)$$
 by Rule (6i) on (12) and (27)

(29)
$$e \models_{?}^{\dagger} (\dot{\xi}_{1}, \dot{\xi}_{2})$$
 by Rule (8a) on (28)

Assume $e \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4), only one case applies.

Case (4f).

(30)
$$prl(e) \models \dot{\xi}_1$$
 by assumption Contradicts (22)

(31)
$$e \not\models (\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction

Case $prl(e) \not\models {}^{\dagger}_{2}\dot{\xi}_{1}, prr(e) \models \dot{\xi}_{2}.$

(22)
$$\operatorname{prl}(e) \not\models \dot{\xi}_1$$
 by assumption
(23) $\operatorname{prl}(e) \not\models \dot{\gamma}\dot{\xi}_1$ by assumption
(24) $\operatorname{prr}(e) \models \dot{\xi}_2$ by assumption
(25) $\operatorname{prr}(e) \not\models \dot{\gamma}\dot{\xi}_2$ by assumption

Assume $e \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4) on it, only one case applies.

Case (4f).

(26)
$$\operatorname{prl}(e) \stackrel{.}{\models} \dot{\xi}_1$$
 by assumption Contradicts (22)

(27)
$$e \not\models (\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction

Assume $e \models_2(\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (6) on it, only one case applies.

Case (6i).

(28)
$$(\dot{\xi}_1, \dot{\xi}_2)$$
 refutable? by assumption By rule induction over Rules (2) on (28), only two cases apply. Case (2e).

(29) $\dot{\xi}_1$ refutable?	by assumption
(30) $\mathtt{prl}(e)$ notintro	by Rule (21e)
(31) $\operatorname{prl}(e) \dot{\models}_? \dot{\xi}_1$	by Rule (6i) on (30) and (29)
Contradicts (23).	
Case (2f).	
(29) $\dot{\xi}_2$ refutable?	by assumption
(30) $\mathtt{prr}(e)$ notintro	by Rule (21f)
(31) $\operatorname{prr}(e) \dot{\models}_{?} \dot{\xi}_{2}$	by Rule (6i) on (30) and (29)
Contradicts (25).	
(32) $e \not\models ?(\dot{\xi}_1, \dot{\xi}_2)$	by contradiction
$(33) e \not\models \frac{\dagger}{?}(\dot{\xi}_1, \dot{\xi}_2)$	by Lemma 1.0.17 on (27) and (32)
$\operatorname{\mathtt{prl}}(e) \not\models {}_{?}^{\dagger} \dot{\xi_1}, \operatorname{\mathtt{prr}}(e) \dot\models_{?} \dot{\xi_2}.$	
(22) $\operatorname{prl}(e) \not\models \dot{\xi}_1$	by assumption
(23) $\operatorname{prl}(e) \not\models ?\dot{\xi}_1$	by assumption
(24) $\operatorname{prr}(e) \not\models \dot{\xi}_2$	by assumption
(25) $\operatorname{prr}(e) \dot{\models}_{?} \dot{\xi}_{2}$	by assumption
(26) $\dot{\xi}_2$ refutable?	by Lemma 1.0.13 on (19) and (25)
(27) $(\dot{\xi}_1,\dot{\xi}_2)$ refutable?	by Rule $(2f)$ on (26)
$(28) e \stackrel{\cdot}{\models}_? (\dot{\xi}_1, \dot{\xi}_2)$	by Rule (6i) on (12) and (27)
$(29) e = \dot{\xi}_{?}^{\dagger} (\dot{\xi}_{1}, \dot{\xi}_{2})$	by Rule (8a) on (28)

Assume $e \dot{\models} (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4), only one case applies.

Case (4f).

Case

(30) $\mathtt{prl}(e) \dot\models \dot{\xi}_1$ by assumption Contradicts (22).

(31) $e \not\models (\dot{\xi}_1, \dot{\xi}_2)$ by contradiction

Case $prl(e) \not\models \frac{\dagger}{?}\dot{\xi}_1, prr(e) \not\models \frac{\dagger}{?}\dot{\xi}_2.$

(22) $\operatorname{prl}(e) \not\models \dot{\xi}_1$ by assumption (23) $\operatorname{prl}(e) \not\models \dot{\xi}_1$ by assumption (24) $\operatorname{prr}(e) \not\models \dot{\xi}_2$ by assumption

(25)
$$\operatorname{prr}(e) \not\models {}_?\dot{\xi}_2$$

by assumption

Assume $e \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4) on it, only one case applies.

Case (4f).

(26)
$$\operatorname{prl}(e) \dot{\models} \dot{\xi}_1$$

by assumption

Contradicts (22)

(27)
$$e \not\models (\dot{\xi}_1, \dot{\xi}_2)$$

by contradiction

Assume $e \models_{?} (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (6) on it, only one case applies.

Case (6i).

(28) $(\dot{\xi}_1, \dot{\xi}_2)$ refutable?

by assumption

By rule induction over Rules (2) on (28), only two cases apply.

Case (2e).

(29)
$$\dot{\xi}_1$$
 refutable?

by assumption

$$(30) \ \operatorname{prl}(e) \ \operatorname{notintro}$$

by Rule (21e)

(31)
$$\operatorname{prl}(e) \dot{\models}_? \dot{\xi_1}$$

by Rule (6i) on (30)

and (29)

Contradicts (23).

Case (2f).

(29) $\dot{\xi}_2$ refutable?

by assumption

(30) prr(e) notintro

by Rule (21f)

(31) $\operatorname{prr}(e) \dot{\models}_{7} \dot{\xi}_{2}$

by Rule (6i) on (30)

and (29)

Contradicts (25).

(32)
$$e \not\models ?(\dot{\xi}_1, \dot{\xi}_2)$$

by contradiction

(33)
$$e \not\models {}^{\dagger}_{?}(\dot{\xi}_{1}, \dot{\xi}_{2})$$

by Lemma 1.0.17 on

(27) and (32)

Case (14g).

(11)
$$e = (e_1, e_2)$$

by assumption

(12)
$$\cdot$$
; $\Delta \vdash e_1 : \tau_1$

by assumption

$$(13) \cdot ; \Delta \vdash e_2 : \tau_2$$

by assumption

(14) e_1 final

by Lemma 4.0.5 on (6)

$$(15)$$
 e_2 final

by Lemma 4.0.5 on (6)

By inductive hypothesis on (9) and (12) and (14), exactly one of $e_1 \models \dot{\xi}_1, e_1 \models_? \dot{\xi}_1, \text{ and } e_1 \models \dot{\xi}_1 \text{ holds.}$

By inductive hypothesis on (10) and (13) and (15), exactly one of

 $e_2 \stackrel{.}{\models} \dot{\xi}_2$, $e_2 \stackrel{.}{\models}_? \dot{\xi}_2$, and $e_2 \stackrel{.}{\models} \dot{\overline{\xi}_2}$ holds. By case analysis on which conclusion holds for $\dot{\xi}_1$ and $\dot{\xi}_2$.

Case $e_1 \dot\models \dot{\xi}_1, e_2 \dot\models \dot{\xi}_2$.

(16) $e_1 \stackrel{.}{\models} \dot{\xi}_1$ by assumption

(17) $e_1 \not\models ?\dot{\xi}_1$ by assumption

(18) $e_2 \dot{\models} \dot{\xi}_2$ by assumption

(19) $e_2 \not\models ?\dot{\xi}_2$ by assumption

(20) $(e_1, e_2) \dot{\models} (\dot{\xi}_1, \dot{\xi}_2)$ by Rule (4e) on (16) and (18)

(21) $(e_1, e_2) \stackrel{\cdot}{\models}_{?}^{\dagger} (\dot{\xi}_1, \dot{\xi}_2)$ by Rule (8b) on (20)

Assume $(e_1, e_2) \models_?(\xi_1, \xi_2)$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

(22) (e_1,e_2) notintro by assumption

Contradicts Lemma 4.0.9.

Case (6d).

(22) $e_1 \models_? \dot{\xi_1}$ by assumption

Contradicts (17).

Case (6e).

(22) $e_2 \models_{?} \dot{\xi}_2$ by assumption

Contradicts (19).

Case (6f).

(22) $e_1 \models_? \dot{\xi}_1$ by assumption

Contradicts (17).

(23) $(e_1, e_2) \not\models ?(\dot{\xi}_1, \dot{\xi}_2)$ by contradiction

Case $e_1 \models \dot{\xi}_1, e_2 \models_? \dot{\xi}_2$.

(16) $e_1 \dot{\models} \dot{\xi}_1$ by assumption

(17) $e_1 \not\models ?\dot{\xi}_1$ by assumption

(18) $e_2 \not\models \dot{\xi}_2$ by assumption

 $(19) \ e_2 \dot{\models}_? \dot{\xi}_2$ by assumption

(20) $(e_1, e_2) \dot{\models}_{?} (\dot{\xi}_1, \dot{\xi}_2)$ by Rule (6e) on (16) and (19)

(21) $(e_1, e_2) \dot{\models}_{?}^{\dagger} (\dot{\xi}_1, \dot{\xi}_2)$ by Rule (8a) on (20)

Assume $(e_1, e_2) = (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4) on it, only two cases apply.

Case (4f).

(22)
$$(e_1, e_2)$$
 notintro by assumption Contradicts Lemma 4.0.9.

Case (4e).

(22)
$$e_2 \models \dot{\xi}_2$$
 by assumption Contradicts (18).

(23)
$$(e_1, e_2) \not\models (\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction

Case $e_1 \models \dot{\xi}_1, e_2 \not\models \dot{\xi}_2$.

(16)
$$e_1 \stackrel{.}{\models} \dot{\xi}_1$$
 by assumption
(17) $e_1 \not\models ?\dot{\xi}_1$ by assumption
(18) $e_2 \not\models \dot{\xi}_2$ by assumption
(19) $e_2 \not\models ?\dot{\xi}_2$ by assumption

Assume $(e_1, e_2) \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4) on it, only two cases apply.

Case (4f).

(20) (e_1, e_2) notintro by assumption Contradicts Lemma 4.0.9.

Case (4e).

(20)
$$e_2 \models \dot{\xi}_2$$
 by assumption Contradicts (18).

(21)
$$(e_1, e_2) \not\models (\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction

Assume $(e_1, e_2) \dot{\models}_?(\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

(22)
$$(e_1, e_2)$$
 notintro by assumption Contradicts Lemma 4.0.9.

Case (6d).

(22)
$$e_1 \models_{?} \dot{\xi}_1$$
 by assumption Contradicts (17).

Case (6e).

(22)
$$e_2 \models_? \dot{\xi}_2$$
 by assumption Contradicts (19).

Case (6f).

(22)
$$e_1 \models_? \dot{\xi}_1$$
 by assumption Contradicts (17).

(23)
$$(e_1, e_2) \not\models ?(\dot{\xi_1}, \dot{\xi_2})$$
 by contradiction
(24) $(e_1, e_2) \not\models ?(\dot{\xi_1}, \dot{\xi_2})$ by Lemma 1.0.17 on
(21) and (23)

Case $e_1 \models_? \dot{\xi}_1, e_2 \models \dot{\xi}_2$.

(16)
$$e_1 \not\models \dot{\xi}_1$$
 by assumption
(17) $e_1 \models_? \dot{\xi}_1$ by assumption
(18) $e_2 \models \dot{\xi}_2$ by assumption

(19)
$$e_2 \not\models ?\dot{\xi}_2$$
 by assumption
(20) $(e_1, e_2) \dot\models ?(\dot{\xi}_1, \dot{\xi}_2)$ by Rule (6d) on (17) and (18)

(21)
$$(e_1, e_2) = \dot{\hat{e}}_1 (\dot{\xi}_1, \dot{\xi}_2)$$
 by Rule (8a) on (20)

Assume $(e_1, e_2) \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4) on it, only two cases apply.

Case (4f).

(22)
$$(e_1, e_2)$$
 notintro by assumption Contradicts Lemma 4.0.9.

Case (4e).

(22)
$$e_1 \dot{\models} \dot{\xi}_1$$
 by assumption Contradicts (16).

(23)
$$(e_1, e_2) \not\models (\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction

Case $e_1 \dot{\models}_? \dot{\xi}_1, e_2 \dot{\models}_? \dot{\xi}_2$.

(16)
$$e_1 \not\models \dot{\xi}_1$$
 by assumption
(17) $e_1 \dot\models_{?} \dot{\xi}_1$ by assumption
(18) $e_2 \not\models \dot{\xi}_2$ by assumption
(19) $e_2 \dot\models_{?} \dot{\xi}_2$ by assumption
(20) $(e_1, e_2) \dot\models_{?} (\dot{\xi}_1, \dot{\xi}_2)$ by Rule (6f) on (17)
and (19)

(21)
$$(e_1, e_2) \stackrel{\dagger}{\models}_{7} (\dot{\xi}_1, \dot{\xi}_2)$$
 by Rule (8a) on (20)

Assume $(e_1, e_2) \dot{\models} (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4) on it, only two cases apply.

Case (4f).

(22)
$$(e_1, e_2)$$
 notintro by assumption Contradicts Lemma 4.0.9.

Case (4e).

(22)
$$e_1 = \dot{\xi}_1$$
 by assumption Contradicts (16).

Case
$$e_1 \models_{?} \dot{\xi}_1, e_2 \not\models_{?} \dot{\xi}_2.$$
 $(16) \ e_1 \not\models \dot{\xi}_1$ by assumption

 $(17) \ e_1 \models_{?} \dot{\xi}_1$ by assumption

 $(18) \ e_2 \not\models_{?} \dot{\xi}_2$ by assumption

 $(19) \ e_2 \not\models_{?} \dot{\xi}_2$ by assumption

Assume $(e_1, e_2) \models_{(\dot{\xi}_1, \dot{\xi}_2)}.$ By rule induction over Rules (4) on it, only two cases apply.

Case (4f).

 $(20) \ (e_1, e_2)$ not intro

Contradicts Lemma 4.0.9.

Case (4e).

 $(20) \ e_1 \models_{?} \dot{\xi}_1$ by assumption

Contradicts (16).

(21) $(e_1, e_2) \not\models_{?} (\dot{\xi}_1, \dot{\xi}_2)$ by contradiction

Assume $(e_1, e_2) \models_{?} (\dot{\xi}_1, \dot{\xi}_2)$ by contradiction

Assume $(e_1, e_2) \models_{?} (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

 $(22) \ (e_1, e_2)$ not intro

Contradicts Lemma 4.0.9.

Case (6d).

 $(22) \ e_2 \models_{?} \dot{\xi}_2$ by assumption

Contradicts (18).

Case (6f).

 $(22) \ e_2 \models_{?} \dot{\xi}_2$ by assumption

Contradicts (19).

Case (6f).

 $(22) \ e_2 \models_{?} \dot{\xi}_2$ by assumption

Contradicts (19).

Case (6f).

Contradicts (19).

(23) $(e_1, e_2) \not\models ?(\dot{\xi}_1, \dot{\xi}_2)$

(24) $(e_1, e_2) \not\models {}^{\dagger}_{?}(\dot{\xi}_1, \dot{\xi}_2)$

(16) $e_1 \not\models \dot{\xi}_1$ by assumption

by contradiction

by Lemma 1.0.17 on (21) and (23)

(17)
$$e_1 \not\models ?\dot{\xi}_1$$
 by assumption
(18) $e_2 \models \dot{\xi}_2$ by assumption

(19)
$$e_2 \not\models ?\dot{\xi}_2$$
 by assumption

Assume $(e_1, e_2) \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4) on it, only two cases apply.

Case (4f).

(20) (e_1, e_2) notintro by assumption Contradicts Lemma 4.0.9.

Case (4e).

(20)
$$e_1 = \dot{\xi}_1$$
 by assumption Contradicts (16).

(21)
$$(e_1, e_2) \not\models (\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction

Assume $(e_1, e_2) \models_?(\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

(22)
$$(e_1, e_2)$$
 notintro by assumption Contradicts Lemma 4.0.9.

Case (6d).

(22)
$$e_1 \dot{\models}_? \dot{\xi}_1$$
 by assumption Contradicts (17).

Case (6e).

(22)
$$e_2 \models_{?} \dot{\xi}_2$$
 by assumption Contradicts (19).

Case (6f).

(22)
$$e_1 \dot{\models}_7 \dot{\xi}_1$$
 by assumption Contradicts (17).

(23)
$$(e_1, e_2) \not\models {}_?(\dot{\xi}_1, \dot{\xi}_2)$$
 by contradiction
(24) $(e_1, e_2) \not\models {}_?(\dot{\xi}_1, \dot{\xi}_2)$ by Lemma 1.0.17 on
(21) and (23)

Case $e_1 \not\models {}_?\dot{\xi}_1, e_2 \models_?\dot{\xi}_2$.

(16)
$$e_1 \not\models \dot{\xi}_1$$
 by assumption
(17) $e_1 \not\models \dot{\gamma}_1$ by assumption
(18) $e_2 \not\models \dot{\xi}_2$ by assumption
(19) $e_2 \models_{\dot{\gamma}} \dot{\xi}_2$ by assumption

Assume $(e_1, e_2) \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4) on it, only two cases apply.

(20) (e_1,e_2) notintro

by assumption

Contradicts Lemma 4.0.9.

Case (4e).

 $(20) \ e_2 \dot\models \dot{\xi}_2$

by assumption

Contradicts (18).

(21) $(e_1, e_2) \not\models (\dot{\xi}_1, \dot{\xi}_2)$

by contradiction

Assume $(e_1, e_2) \models_7 (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

(22) (e_1,e_2) notintro

by assumption

Contradicts Lemma 4.0.9.

Case (6d).

 $(22) \ e_1 \dot{\models}_? \dot{\xi_1}$

by assumption

Contradicts (17).

Case (6e).

 $(22) \ e_1 \dot{\models} \dot{\xi}_1$

by assumption

Contradicts (16).

Case (6f).

 $(22) \ e_1 \dot{\models}_? \dot{\xi_1}$

by assumption

Contradicts (17).

(23) $(e_1, e_2) \not\models ?(\dot{\xi}_1, \dot{\xi}_2)$

by contradiction

(24) $(e_1, e_2) \not\models \dot{?} (\dot{\xi}_1, \dot{\xi}_2)$

by Lemma 1.0.17 on

(21) and (23)

Case $e_1 \not\models {}^{\dagger}_? \dot{\xi}_1, e_2 \not\models {}^{\dagger}_? \dot{\xi}_2$.

 $(16) e_1 \not\models \dot{\xi}_1$ $(17) e_1 \not\models {}_?\dot{\xi}_1$

by assumption

 $(17) e_1 \not\models ?\xi$

by assumption

 $(18) e_2 \not\models \dot{\xi}_2$

by assumption

 $(19) \ e_2 \not\models {}_?\dot{\xi}_2$

by assumption

Assume $(e_1, e_2) \models (\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (4) on it, only two cases apply.

Case (4f).

(20) (e_1,e_2) notintro

by assumption

Contradicts Lemma 4.0.9.

Case (4e).

(20) $e_2 \dot{\models} \dot{\xi}_2$

by assumption

Contradicts (18).

(21)
$$(e_1, e_2) \not\models (\dot{\xi}_1, \dot{\xi}_2)$$

by contradiction

Assume $(e_1, e_2) \dot{\models}_?(\dot{\xi}_1, \dot{\xi}_2)$. By rule induction over Rules (6) on it, the following cases apply.

Case (6i).

$$(22)$$
 (e_1,e_2) notintro

by assumption

Contradicts Lemma 4.0.9.

Case (6d).

$$(22) e_1 \dot{\models}_? \dot{\xi}_1$$

by assumption

Contradicts (17).

Case (6e).

$$(22) e_2 \dot{\models}_? \dot{\xi}_2$$

by assumption

Contradicts (19).

Case (6f).

$$(22) e_1 \dot{\models}_? \dot{\xi}_1$$

by assumption

Contradicts (17).

(23)
$$(e_1, e_2) \not\models ?(\dot{\xi}_1, \dot{\xi}_2)$$

by contradiction

(24)
$$(e_1, e_2) \not\models {}^{\dagger}_{?}(\dot{\xi}_1, \dot{\xi}_2)$$

by Lemma 1.0.17 on

П

(21) and (23)

Definition 1.1.1 (Entailment of Constraints). Suppose that $\dot{\xi}_1 : \tau$ and $\dot{\xi}_2 : \tau$. Then $\dot{\xi}_1 = \dot{\xi}_2$ iff for all e such that $\cdot ; \Delta \vdash e : \tau$ and e val we have $e \models_{?}^{\dagger} \dot{\xi}_1$ implies $e \models_{?} \dot{\xi}_2$

Definition 1.1.2 (Potential Entailment of Constraints). Suppose that $\dot{\xi}_1: \tau$ and $\dot{\xi}_2: \tau$. Then $\dot{\xi}_1 \models_{?}^{\dagger} \dot{\xi}_2$ iff for all e such that $\cdot; \Delta \vdash e: \tau$ and e final we have $e \models_{?}^{\dagger} \dot{\xi}_1$ implies $e \models_{?}^{\dagger} \dot{\xi}_2$

Corollary 1.1.1. Suppose that $\dot{\xi} : \tau$ and $\cdot ; \Delta \vdash e : \tau$ and e final. Then $\top \models_{?}^{\dagger} \dot{\xi}$ implies $e \models_{?}^{\dagger} \dot{\xi}$

Proof.

 $(1) \ \dot{\xi} : \tau$

by assumption

(2) \cdot ; $\Gamma \vdash e : \tau$

by assumption

(3) e final

by assumption

(4)
$$\top \dot{\models}_{?}^{\dagger} \dot{\xi}$$

by assumption

(5)
$$e_1 \stackrel{.}{\models} \top$$
 by Rule (4a)
(6) $e_1 \stackrel{.}{\models}_? ^{\dagger} \top$ by Rule (8b) on (5)
(7) $\top : \tau$ by Rule (1a)
(8) $e_1 \stackrel{.}{\models}_? ^{\dagger} \stackrel{.}{\models}_?$ by Definition 1.1.2 of

(4) on (7) and (1) and (2) and (3) and (6)

Normal Match Constraint Language

 $\xi ::= \top \mid \bot \mid \underline{n} \mid \underline{\mathscr{M}} \mid \xi_1 \wedge \xi_2 \mid \xi_1 \vee \xi_2 \mid \mathtt{inl}(\xi) \mid \mathtt{inr}(\xi) \mid (\xi_1, \xi_2)$ ξ constrains final expressions of type τ

$$\frac{\text{CTTruth}}{\top : \tau} \tag{10a}$$

$$\frac{}{\bot : \tau} \tag{10b}$$

$$\underline{\underline{n}:\mathtt{num}}$$
 (10c)

$${\bf CTNotNum}$$

$$\underline{\mathscr{U}}: \underline{\mathsf{num}}$$
 (10d)

$$\frac{\xi_1 : \tau \qquad \xi_2 : \tau}{\xi_1 \wedge \xi_2 : \tau} \tag{10e}$$

$$\frac{\xi_1 : \tau \qquad \xi_2 : \tau}{\xi_1 \vee \xi_2 : \tau} \tag{10f}$$

CTInl

$$\frac{\xi_1:\tau_1}{\mathtt{inl}(\xi_1):(\tau_1+\tau_2)}\tag{10g}$$

$$\frac{\xi_2:\tau_2}{\operatorname{inr}(\xi_2):(\tau_1+\tau_2)}\tag{10h}$$

 ${\bf CTPair}$

$$\frac{\xi_1 : \tau_1 \qquad \xi_2 : \tau_2}{(\xi_1, \xi_2) : (\tau_1 \times \tau_2)} \tag{10i}$$

 $\overline{\xi_1} = \xi_2$ dual of ξ_1 is ξ_2

$$\overline{\top} = \bot$$
 (11a)

$$\overline{\perp} = \top$$
 (11b)

$$\underline{\overline{n}} = \underline{\varkappa}$$
 (11c)

$$\underline{x} = \underline{n}$$
 (11d)

$$\overline{\xi_1 \wedge \xi_2} = \overline{\xi_1} \vee \overline{\xi_2} \tag{11e}$$

$$\overline{\xi_1 \vee \xi_2} = \overline{\xi_1} \wedge \overline{\xi_2} \tag{11f}$$

$$\overline{\operatorname{inl}(\xi_1)} = \operatorname{inl}(\overline{\xi_1}) \vee \operatorname{inr}(\top) \tag{11g}$$

$$\overline{\operatorname{inr}(\xi_2)} = \operatorname{inr}(\overline{\xi_2}) \vee \operatorname{inl}(\top) \tag{11h}$$

$$\overline{(\xi_1, \xi_2)} = (\xi_1, \overline{\xi_2}) \vee (\overline{\xi_1}, \xi_2) \vee (\overline{\xi_1}, \overline{\xi_2})$$
(11i)

$e \models \xi$ $e \text{ satisfies } \xi$

 $\operatorname{CSTruth}$

$$\overline{e} \models \top$$
 (12a)

CSNum

$$\underline{n \models \underline{n}} \tag{12b}$$

CSNotNum

$$\frac{n_1 \neq n_2}{n_1 \models \cancel{p_2}} \tag{12c}$$

CSAnd

$$\frac{e \models \xi_1 \qquad e \models \xi_2}{e \models \xi_1 \land \xi_2} \tag{12d}$$

CSOrL

$$\frac{e \models \xi_1}{e \models \xi_1 \lor \xi_2} \tag{12e}$$

CSOrR

$$\frac{e \models \xi_2}{e \models \xi_1 \lor \xi_2} \tag{12f}$$

CSInl

$$\frac{e_1 \models \xi_1}{\operatorname{inl}_{\tau_2}(e_1) \models \operatorname{inl}(\xi_1)} \tag{12g}$$

CSInr

$$\frac{e_2 \models \xi_2}{\operatorname{inr}_{\tau_1}(e_2) \models \operatorname{inr}(\xi_2)} \tag{12h}$$

CSPair

$$\frac{e_1 \models \xi_1 \qquad e_2 \models \xi_2}{(e_1, e_2) \models (\xi_1, \xi_2)} \tag{12i}$$

Lemma 2.0.1. Assume e val. Then $e \not\models \xi$ iff $e \models \overline{\xi}$.

Theorem 2.1 (Exclusiveness of Satisfaction Judgment). If $\xi : \tau$ and $\cdot ; \Delta \vdash e : \tau$ and e val then exactly one of the following holds

1.
$$e \models \xi$$

2.
$$e \dot{\models} \bar{\xi}$$

Proof.

Definition 2.1.1 (Entailment of Constraints). Suppose that $\xi_1 : \tau$ and $\xi_2 : \tau$. Then $\xi_1 \models \xi_2$ iff for all e such that \cdot ; $\Delta \vdash e : \tau$ and e val we have $e \models \xi_1$ implies $e \models \xi_2$

2.1 Relationship with Incomplete Constraint Language

Theorem 2.2. $\top \dot{\models}_{?}^{\dagger} \dot{\xi} \text{ iff } \top \models \dot{\top} (\dot{\xi}).$

Theorem 2.3. $\dot{\xi}_1 \models \dot{\xi}_2 \ iff \ \dot{\top}(\dot{\xi}_1) \models \dot{\bot}(\dot{\xi}_2).$

Lemma 2.3.1. Assume that e val. Then $e \dot{\models}_{?}^{\dagger} \dot{\xi}$ iff $e \dot{\models} \dot{\top} (\dot{\xi})$

Proof.

We prove sufficiency and necessity separately.

- 1. Sufficiency:
 - (1) e val

by assumption

(2) $e \stackrel{\cdot}{\models}_{2}^{\dagger} \dot{\xi}$

by assumption

By rule induction over Rules (8) on (2).

Case (8b).

(3) $e \models \dot{\xi}$

by assumption

By rule induction over Rules (4) on (3).

Case (4a).

 $\begin{array}{ll} (4) & \dot{\xi} = \top \\ (5) & \dot{\top}(\dot{\xi}) = \top \end{array}$

by assumption

by Definition 30

(6) $e \models \top$

by Rule (12a)

Case (4b).

(4) $e = \underline{n}$

by assumption

(5) $\dot{\xi} = \underline{n}$

by assumption

(6) $\dot{\top}(n) = n$

by Definition 30

(7) $e \models \underline{n}$

by Rule (12b)

Case (4c).

- (4) $e = \operatorname{inl}_{\tau_2}(e_1)$ by assumption
- (5) $\dot{\xi} = \operatorname{inl}(\dot{\xi}_1)$ by assumption
- (6) $e_1 = \dot{\xi}_1$ by assumption
- (7) $e_1 \stackrel{\cdot}{\models}_{?} \dot{\xi}_1$ by Rule (8b) on (6)
- (8) $\dot{\top}(\mathtt{inl}(\dot{\xi}_1)) = \mathtt{inl}(\dot{\top}(\dot{\xi}_1))$ by Definition 30

By rule induction over Rules (18) on (1), only one rule applies. Case (18d).

- (9) e_1 val
- by assumption
- (10) $e_1 \models \dot{\top}(\dot{\xi}_1)$
- by IH on (9) and (7)
- (11) $\operatorname{inl}_{\tau_2}(e_1) \models \operatorname{inl}(\dot{\top}(\dot{\xi}_1))$
- by Rule (12g) on (10)

Case (4d).

- (4) $e = \operatorname{inr}_{\tau_1}(e_2)$ by assumption
- (5) $\dot{\xi} = inr(\dot{\xi}_2)$ by assumption
- (6) $e_2 \models \dot{\xi}_2$ by assumption
- (7) $e_2 = \dot{e}_2^{\dagger} \dot{e}_2$ by Rule (8b) on (6)
- (8) $\dot{\top}(inr(\dot{\xi}_2)) = inr(\dot{\top}(\dot{\xi}_2))$ by Definition 30

By rule induction over Rules (18) on (1), only one rule applies. Case (18e).

- (9) e_2 val
- by assumption
- (10) $e_2 \models \dot{\top}(\dot{\xi}_2)$
- by IH on (9) and (7)
- (11) $\operatorname{inr}_{\tau_1}(e_2) \models \operatorname{inr}(\dot{\top}(\dot{\xi}_2))$
- by Rule (12h) on (10)

Case (4e).

(4) $e = (e_1, e_2)$

by assumption

(5) $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$

by assumption

(6) $e_1 \models \dot{\xi}_1$

by assumption

(7) $e_2 \dot{\models} \dot{\xi}_2$

by assumption

(8) $e_1 \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1$

by Rule (8b) on (6)

 $(9) \ e_2 \dot{\models}_{7}^{\dagger} \dot{\xi}_2$

- by Rule (8b) on (7)
- (10) $\dot{\top}((\dot{\xi}_1, \dot{\xi}_2)) = (\dot{\top}(\dot{\xi}_1), \dot{\top}(\dot{\xi}_2))$
- by Definition 30

By rule induction over Rules (18) on (1), only one rule applies. Case (18c).

(11) e_1 val

by assumption

(12) e_2 val

- by assumption
- (13) $e_1 \models \dot{\top}(\dot{\xi}_1)$
- by IH on (11) and (8)
- (14) $e_2 \models \dot{\top}(\dot{\xi}_2)$
- by IH on (12) and (9)
- $(15) \quad (e_1, e_2) \models (\dot{\top}(\dot{\xi}_1), \dot{\top}(\dot{\xi}_2))$
- by Rule (12i) on (13)
- and (14)

Case (4f).

(4) e notintro

by assumption

Contradicts (1) by Lemma 4.0.12.

Case (4g).

(4) $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$

by assumption

(5) $e \dot{\models} \dot{\xi}_1$

by assumption

(6) $e \dot{\models}_{?}^{\dagger} \dot{\xi}_{1}$

- by Rule (8b) on (5)
- (7) $\dot{\top}(\dot{\xi}_1 \lor \dot{\xi}_2) = \dot{\top}(\dot{\xi}_1) \lor \dot{\top}(\dot{\xi}_2)$
- by Definition 30

(8) $e \models \dot{\top}(\dot{\xi}_1)$

- by IH on (1) and (6)
- (9) $e \models \dot{\top}(\dot{\xi}_1) \lor \dot{\top}(\dot{\xi}_2)$
- by Rule (12e) on (8)

Case (4h).

 $(4) \quad \dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$

by assumption

(5) $e \models \dot{\xi}_2$

by assumption

(6) $e \dot{\models}_{?}^{\dagger} \dot{\xi}_{2}$

- by Rule (8b) on (5)
- (7) $\dot{\top}(\dot{\xi}_1 \lor \dot{\xi}_2) = \dot{\top}(\dot{\xi}_1) \lor \dot{\top}(\dot{\xi}_2)$
- by Definition 30
- (8) $e \models \dot{\top}(\dot{\xi}_2)$ (9) $e \models \dot{\top}(\dot{\xi}_1) \lor \dot{\top}(\dot{\xi}_2)$
- by IH on (1) and (6) by Rule (12f) on (8)

. (-)

,

Case (8a).

(3) $e \models_{?} \dot{\xi}$

by assumption

By rule induction over Rules (6) on (3).

Case (6a).

(4) $\dot{\xi} = ?$

by assumption

(5) $\dot{\top}(?) = \top$

by Definition 30

(6) $e \models \top$

by Rule (12a)

Case (6b).

- $(4) e = \operatorname{inl}_{\tau_2}(e_1)$
- by assumption

(5) $\dot{\xi} = \operatorname{inl}(\dot{\xi}_1)$

by assumption

(6) $e_1 \models_{?} \dot{\xi}_1$

by assumption

(7) $e_1 \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1$

- by Rule (8a) on (6)
- (8) $\dot{\top}(\operatorname{inl}(\dot{\xi}_1)) = \operatorname{inl}(\dot{\top}(\xi_1))$
- by Definition 30

By rule induction over Rules (18) on (1), only one rule applies. Case (18d).

(9) e_1 val

- by assumption
- (10) $e_1 \models \dot{\top}(\dot{\xi}_1)$
- by IH on (9) and (7)
- (11) $\operatorname{inl}_{\tau_2}(e_1) \models \operatorname{inl}(\dot{\top}(\dot{\xi}_1))$
- by Rule (4c) on (10)

Case (6c).

(4)
$$e = \operatorname{inr}_{\tau_1}(e_2)$$
 by assumption
(5) $\dot{\xi} = \operatorname{inr}(\dot{\xi}_2)$ by assumption
(6) $e_2 \models_{?} \dot{\xi}_2$ by assumption

(7)
$$e_2 \stackrel{\dot{}}{\models}_{?}^{\dagger} \dot{\xi}_2$$
 by Rule (8a) on (6)

(8)
$$\dot{\top}(\inf(\dot{\xi}_2)) = \inf(\dot{\top}(\dot{\xi}_2))$$
 by Definition 30

By rule induction over Rules (18) on (1), only one rule applies.

Case (18e).

(9)
$$e_2$$
 val by assumption
(10) $e_2 \models \dot{\top}(\dot{\xi_2})$ by IH on (9) and (7)
(11) $\inf_{\tau_1}(e_2) \models \inf(\dot{\top}(\dot{\xi_2}))$ by Rule (4d) on (10)

Case (6d).

(4)
$$e = (e_1, e_2)$$
 by assumption
(5) $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$ by assumption
(6) $e_1 \models_? \dot{\xi}_1$ by assumption
(7) $e_2 \models \dot{\xi}_2$ by assumption
(8) $\dot{\top}(\dot{\xi}) = (\dot{\top}(\dot{\xi}_1), \dot{\top}(\dot{\xi}_2))$ by Definition 30
(9) $e_1 \models_? \dot{\xi}_1$ by Rule (8a) on (6)
(10) $e_2 \models_? \dot{\xi}_2$ by Rule (8b) on (7)

By rule induction over Rules (18) on (1), only one rule applies. Case (18c).

(11)
$$e_1$$
 val by assumption
(12) e_2 val by assumption
(13) $e_1 \models \dot{\top}(\dot{\xi}_1)$ by IH on (11)

(13)
$$e_1 \models \dot{\top}(\dot{\xi}_1)$$
 by IH on (11) and (9)
(14) $e_2 \models \dot{\top}(\dot{\xi}_2)$ by IH on (12) and (10)

(15)
$$(e_1, e_2) \models (\dot{\top}(\dot{\xi}_1), \dot{\top}(\dot{\xi}_2))$$
 by Rule (4e) on (13) and (14)

Case (6e).

(4)
$$e = (e_1, e_2)$$
 by assumption
(5) $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$ by assumption
(6) $e_1 \models \dot{\xi}_1$ by assumption
(7) $e_2 \models_? \dot{\xi}_2$ by assumption
(8) $\dot{\top}((\dot{\xi}_1, \dot{\xi}_2)) = (\dot{\top}(\dot{\xi}_1), \dot{\top}(\xi_2))$ by Definition 30
(9) $e_1 \models_?^{\dagger} \dot{\xi}_1$ by Rule (8b) on (6)
(10) $e_2 \models_?^{\dagger} \dot{\xi}_2$ by Rule (8a) on (7)

By rule induction over Rules (18) on (1), only one rule applies. Case (18c).

- (11) e_1 val by assumption
- (12) e_2 val by assumption
- (13) $e_1 \models \dot{\top}(\dot{\xi}_1)$ by IH on (11) and (9)
- (14) $e_2 \models \dot{\top}(\dot{\xi}_2)$ by IH on (12) and (10)
- (15) $(e_1, e_2) \models (\dot{\top}(\dot{\xi}_1), \dot{\top}(\dot{\xi}_2))$ by Rule (4e) on (13) and (14)

Case (6f).

- (4) $e = (e_1, e_2)$ by assumption
- (5) $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$ by assumption
- (6) $e_1 \models_{?} \dot{\xi}_1$ by assumption
- (7) $e_2 \models_? \dot{\xi}_2$ by assumption
- (8) $\dot{\top}((\dot{\xi}_1,\dot{\xi}_2)) = (\dot{\top}(\dot{\xi}_1),\dot{\top}(\dot{\xi}_2))$ by Definition 30
- (9) $e_1 = \dot{\xi}_1$ by Rule (8a) on (6)
- (10) $e_2 \stackrel{\dagger}{\models}_{?} \dot{\xi}_2$ by Rule (8a) on (7)
- (11) $e_1 \models \dot{\top}(\dot{\xi}_1)$ by IH on (9)
- (12) $e_2 \models \dot{\top}(\dot{\xi}_2)$ by IH on (10)
- (13) $(e_1, e_2) \models (\dot{\top}(\dot{\xi}_1), \dot{\top}(\dot{\xi}_2))$ by Rule (4e) on (11) and (12)

Case (6g).

- (4) $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$ by assumption
- (5) $e \stackrel{.}{\models}_{?} \dot{\xi}_{1}$ by assumption
- (6) $\dot{\top}(\dot{\xi}_1\vee\dot{\xi}_2)=\dot{\top}(\dot{\xi}_1)\vee\dot{\top}(\dot{\xi}_2)$ by Definition 30
- (7) $e \models_{?}^{\dagger} \dot{\xi}_{1}$ by Rule (8a) on (5)
- (8) $e \models \dot{\top}(\dot{\xi}_1)$ by IH on (1) and (7) (9) $e \models \dot{\top}(\dot{\xi}_1) \lor \dot{\top}(\dot{\xi}_2)$ by Rule (12e) on (8)

Case (6h).

- (4) $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$ by assumption
- (5) $e \models_? \dot{\xi}_2$ by assumption
- (6) $\dot{\top}(\dot{\xi}) = \dot{\top}(\dot{\xi}_1) \lor \dot{\top}(\dot{\xi}_2)$ by Definition 30
- (7) $e^{\frac{1}{2}}\dot{\xi}_2$ by Rule (8a) on (5)
- (8) $e \models \dot{\top}(\dot{\xi}_2)$ by IH on (1) and (7)
- (9) $e \models \dot{\top}(\dot{\xi}_1) \lor \dot{\top}(\dot{\xi}_2)$ by Rule (4h) on (8)

Case (6i).

- (4) e notintro by assumption
- Contradicts (1) by Lemma 4.0.12.

- 2. Necessity:
 - (1) e val

by assumption

(2) $e \models \dot{\top}(\dot{\xi})$

by assumption

By structural induction on $\dot{\xi}$.

Case $\dot{\xi} = \top$.

(3) $e \models \top$

by Rule (4a)

(4) $e \stackrel{\cdot}{\models}_{?}^{\dagger} \top$

by Rule (8b) on (3)

Case $\dot{\xi} = \underline{n}$.

(3) $\dot{\top}(\underline{n}) = \underline{n}$

by assumption

By rule induction over Rules (12) on (2), only one rule applies.

Case (12b).

 $(4) \ e = \underline{n}$

by assumption

(5) $\underline{n} \dot{\underline{\models}} \underline{n}$

by Rule (4b)

(6) $\underline{n} \stackrel{\cdot}{\models}_{?}^{\dagger} \underline{n}$

by Rule (8b) on (5)

Case $\dot{\xi} = ?$.

(3) $e \stackrel{\cdot}{\models}_?$?

by Rule (6a)

(4) $e \stackrel{\cdot}{\models}_{?}^{\dagger}$?

by Rule (8a) on (3)

Case $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$.

(3) $\dot{\top}(\dot{\xi}_1 \vee \dot{\xi}_2) = \dot{\top}(\dot{\xi}_1) \vee \dot{\top}(\dot{\xi}_2)$

by Definition 30

By rule induction over Rules (12) on (2), only two rules apply.

Case (12e).

(4) $e \models \dot{\top}(\dot{\xi}_1)$

by assumption

(5) $e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1$

by IH on (1) and (4)

(6) $e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1 \vee \dot{\xi}_2$

by Lemma 1.0.9 on (5)

Case (12f).

(4) $e \models \dot{\top}(\dot{\xi}_2)$

by assumption

 $(5) \ e \dot{\models}_{?}^{\dagger} \dot{\xi}_{2}$

by IH on (1) and (4)

(6) $e \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_1 \vee \dot{\xi}_2$

by Lemma 1.0.9 on (5)

Case $\dot{\xi} = \operatorname{inl}(\dot{\xi}_1)$.

(3)
$$\dot{\top}(\mathtt{inl}(\dot{\xi}_1)) = \mathtt{inl}(\dot{\top}(\dot{\xi}_1))$$
 by Definition 30

By rule induction over Rules (12) on (2), only one rule applies.

Case (12g).

(4)
$$e = \operatorname{inl}_{\tau_2}(e_1)$$
 by assumption
(5) $e_1 \models \dot{\top}(\dot{\xi}_1)$ by assumption

By rule induction over Rules (18) on (1), only one rule applies. Case (18d).

$$(6)$$
 e_1 val

$$(7) e_1 \dot{\models}_?^{\dagger} \dot{\xi}_1$$

(8)
$$\operatorname{inl}_{\tau_2}(e_1) \stackrel{:}{\models}_{?}^{\dagger} \operatorname{inl}(\dot{\xi_1})$$

Case $\dot{\xi} = \text{inr}(\dot{\xi}_2)$.

$$(3) \ \dot{\top}(\operatorname{inr}(\dot{\xi}_2)) = \operatorname{inr}(\dot{\top}(\dot{\xi}_2))$$

by Definition 30

By rule induction over Rules (12) on (2), only one rule applies.

Case (4d).

$$(4) \ e = \operatorname{inr}_{\tau_1}(e_2)$$

by assumption

(5)
$$e_2 \models \dot{\top}(\dot{\xi}_2)$$

by assumption

By rule induction over Rules (18) on (1), only one rule applies. Case (18e).

$$(6)$$
 e_2 val

by assumption

(7)
$$e_2 \dot{\models}_?^\dagger \dot{\xi}_2$$

by IH on (6) and (5)

(8)
$$\operatorname{inr}_{\tau_1}(e_2) \stackrel{\dagger}{\models}_{?} \operatorname{inr}(\dot{\xi}_2)$$

by Lemma 1.0.11 on (7)

Case $\dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2)$.

(3)
$$\dot{\top}((\dot{\xi}_1, \dot{\xi}_2)) = (\dot{\top}(\dot{\xi}_1), \dot{\top}(\dot{\xi}_2))$$

by Definition 30

By rule induction over Rules (12) on (2), only one rule applies.

Case (4e).

(4)
$$e = (e_1, e_2)$$

by assumption

(5)
$$e_1 \models \dot{\perp}(\dot{\xi}_1)$$

by assumption

(6)
$$e_2 \models \dot{\perp}(\dot{\xi}_2)$$

by assumption

By rule induction over Rules (18) on (1), only one rule applies. Case (18c).

(7) e_1 val

by assumption

(8) e_2 val

by assumption

$$(9) e_1 \dot{\models}_{?}^{\dagger} \dot{\xi}_1$$

by IH on (7) and (5)

$$(10) \ e_2 \dot{\models}_?^{\dagger} \dot{\xi}_2$$

by IH on (8) and (6)

(11)
$$(e_1, e_2) \stackrel{:}{\models}_? (\dot{\xi}_1, \dot{\xi}_2)$$
 by Lemma 1.0.12 on (9) and (10)

Lemma 2.3.2. $e \models \xi \text{ iff } e \models \bot(\xi)$

Proof. We prove sufficiency and necessity separately.

- 1. Sufficiency:
 - (1) $e \models \xi$ by assumption

By rule induction over Rules (4) on (1).

Case (4a).

- (2) $\xi = \top$ by assumption
- (3) $e \models \bot(\top)$ by (1) and Definition 31

Case (4b).

- (2) $\xi = \underline{n}$ by assumption
- (3) $e \models \dot{\perp}(\underline{n})$ by (1) and Definition 31

Case (??).

- (2) $\xi = \chi$ by assumption
- (3) $e \models \bot(\underline{n})$ by (1) and Definition 31

Case (??).

- (2) $\xi = \xi_1 \wedge \xi_2$ by assumption
- (3) $e \models \xi_1$ by assumption
- (4) $e \models \xi_2$ by assumption
- (5) $e \models \dot{\bot}(\xi_1)$ by IH on (3) (6) $e \models \dot{\bot}(\xi_2)$ by IH on (4)
- (7) $e \models \dot{\perp}(\xi_1) \land \dot{\perp}(\xi_2)$ by Rule (??) on (5) and (6)
- (8) $e \models \dot{\perp}(\xi_1 \wedge \xi_2)$ by (7) and Definition 31

Case (4g).

- (2) $\xi = \xi_1 \vee \xi_2$ by assumption
- (3) $e \models \xi_1$ by assumption

(4) $e = \dot{\bot}(\xi_1)$	by IH on (3)
(5) $e = \dot{\bot}(\xi_1) \lor \dot{\bot}(\xi_2)$	by Rule $(4g)$ on (4)
(c) $i(c)$	1 (r) 1 D C :::

(6) $e \models \dot{\bot}(\xi_1 \lor \xi_2)$ by (5) and Definition 31

Case (4h).

$(2) \xi = \xi_1 \vee \xi_2$	by assumption
$(3) \ e \stackrel{\cdot}{\models} \xi_2$	by assumption
$(4) e \dot{\models} \dot{\bot}(\xi_2)$	by IH on (3)
$(5) e = \dot{\bot}(\xi_1) \lor \dot{\bot}(\xi_2)$	by Rule $(4h)$ on (4)
(6) $e = \dot{\bot} (\xi_1 \lor \xi_2)$	by (5) and Definition
	31

Case (4c).

$(2) e = \operatorname{inl}_{\tau_2}(e_1)$	by assumption
$(3) \ \xi = \mathtt{inl}(\xi_1)$	by assumption
$(4) e_1 \dot{\models} \xi_1$	by assumption
$(5) e_1 \dot\models \dot{\bot}(\xi_1)$	by IH on (4)
$(6) \ \operatorname{inl}_{\tau_2}(e_1) \dot{\models} \operatorname{inl}(\dot{\bot}(\xi_1))$	by Rule $(4c)$ on (5)
$(7) \ \operatorname{inl}_{\tau_2}(e_1) \dot\models \dot\bot (\operatorname{inl}(\xi_1))$	by (6) and Definition
	31

Case (4d).

$(2) e = \operatorname{inr}_{\tau_1}(e_2)$	by assumption
$(3) \ \xi = \operatorname{inr}(\xi_2)$	by assumption
$(4) \ e_2 \dot{\models} \xi_2$	by assumption
$(5) \ e_2 \dot\models \dot\bot (\xi_2)$	by IH on (4)
(6) $\operatorname{inr}_{\tau_1}(e_2) \dot{\models} \operatorname{inr}(\dot{\bot}$	$L(\xi_2)$) by Rule (4d) on (5)
(7) $\operatorname{inr}_{\tau_1}(e_2) \dot\models \dot\bot (\operatorname{inr}_{\tau_1}(e_2))$	(ξ_2) by (6) and Definition
	31

Case (4e).

(2) $e = (e_1, e_2)$	by assumption
(3) $\xi = (\xi_1, \xi_2)$	by assumption
$(4) e_1 \dot{\models} \xi_1$	by assumption
$(5) e_2 \dot{\models} \xi_2$	by assumption
(6) $e_1 \dot\models \dot\perp (\xi_1)$	by IH on (4)
(7) $e_2 \dot{\models} \dot{\perp}(\xi_2)$	by IH on (5)
(8) $(e_1, e_2) = (\dot{\bot}(\xi_1), \dot{\bot}(\xi_2))$	by Rule (4e) on (6) and (7)

(9)
$$(e_1, e_2) \dot{\models} \dot{\bot} ((\xi_1, \xi_2))$$

by (8) and Definition 31

2. Necessity:

(1) $e \dot{\models} \dot{\perp}(\xi)$

by assumption

By structural induction on ξ .

Case $\xi = \top, \bot, \underline{n}, \underline{\varkappa}$.

(2)
$$e \dot{\models} \xi$$

by (1) and Definition 31

Case $\xi = ?$.

(2)
$$e \models \bot$$

by (1) and Definition

(3) $e \not\models \bot$

by Lemma ??

(3) contradicts (2).

Case $\xi = \xi_1 \wedge \xi_2$.

(2)
$$e \dot{\models} \dot{\perp}(\xi_1) \wedge \dot{\perp}(\xi_2)$$

by (1) and Definition

By rule induction over Rules (4) on (2) and only case applies.

Case (??).

(3)
$$e \models \dot{\perp}(\xi_1)$$

by assumption

(4)
$$e \dot{\models} \dot{\perp}(\xi_2)$$

by assumption

$$(5) \begin{array}{c} e \stackrel{\cdot}{\models} \xi_1 \\ (6) \begin{array}{c} e \stackrel{\cdot}{\models} \xi_2 \end{array}$$

by IH on (3)

by IH on (4)

$$(7) \ e \dot{\models} \xi_1 \wedge \xi_2$$

by Rule (??) on (5)

and (6)

Case $\xi = \xi_1 \vee \xi_2$.

(2)
$$e = \dot{\bot}(\xi_1) \lor \dot{\bot}(\xi_2)$$

by (1) and Definition

By rule induction over Rules (4) on (2) and only two cases apply.

Case (4g).

(3) $e \dot{\models} \dot{\perp}(\xi_1)$

by assumption

(4) $e \models \xi_1$

by IH on (3)

(5) $e \models \xi_1 \vee \xi_2$

by Rule (4g) on (4)

Case (4h).

(3) $e \dot{\models} \dot{\perp}(\xi_2)$

by assumption

(4) $e \models \xi_2$ by IH on (3)

 $(5) \quad e \stackrel{\cdot}{\models} \xi_1 \vee \xi_2$ by Rule (4h) on (4)

Case $\xi = inl(\xi_1)$.

(2) $e = \operatorname{inl}(\dot{\perp}(\xi_1))$ by (1) and Definition

By rule induction over Rules (4) on (2) and only one case applies.

Case (4c).

 $(3) e = \operatorname{inl}_{\tau_2}(e_1)$ by assumption (4) $e_1 \dot{\models} \dot{\bot}(\xi_1)$ by assumption

(5) $e_1 \stackrel{\cdot}{\models} \xi_1$ by IH on (4)

(6) $e = inl(\xi_1)$ by Rule (4c) on (5)

Case $\xi = inr(\xi_2)$.

(2) $e = \operatorname{inr}(\dot{\perp}(\xi_2))$ by (1) and Definition

By rule induction over Rules (4) on (2) and only one case applies.

Case (4d).

(3) $e = inr_{\tau_1}(e_2)$ by assumption

(4) $e_2 \dot{\models} \dot{\perp} (\xi_2)$ by assumption

(5) $e_2 \models \xi_2$ by IH on (4)

(6) $e \models \operatorname{inr}(\xi_2)$ by Rule (4d) on (5)

Case $\xi = (\xi_1, \xi_2)$.

(2) $e = (\dot{\perp}(\xi_1), \dot{\perp}(\xi_2))$ by (1) and Definition

By rule induction over Rules (4) on (2) and only case applies.

Case (4e).

(3) $e = (e_1, e_2)$ by assumption

(4) $e_1 \dot\models \dot\perp (\xi_1)$ by assumption

(5) $e_2 \dot\models \dot{\perp}(\xi_2)$ by assumption

(6) $e_1 \models \xi_1$ by IH on (4)

 $(7) \ e_2 \dot{\models} \xi_2$ by IH on (5)

(8) $e \models (\xi_1, \xi_2)$ by Rule (4e) on (6) and

(7)

3 Static Semantics

$$\begin{array}{lll} \tau & ::= & \operatorname{num} \mid (\tau_1 \to \tau_2) \mid (\tau_1 \times \tau_2) \mid (\tau_1 + \tau_2) \\ e & ::= & x \mid \underline{n} \\ & \mid & (\lambda x : \tau.e) \mid e_1(e_2) \\ & \mid & (e_1, e_2) \\ & \mid & \inf_{\tau}(e) \mid \operatorname{inr}_{\tau}(e) \mid \operatorname{match}(e) \{ \hat{rs} \} \\ & \mid & \|^u \mid (e)^u \\ \hat{rs} & ::= & (rs \mid r \mid rs) \\ rs & ::= & \cdot \mid (r \mid rs') \\ r & ::= & p \Rightarrow e \\ \underline{p} & ::= & x \mid \underline{n} \mid _ \mid (p_1, p_2) \mid \operatorname{inl}(p) \mid \operatorname{inr}(p) \mid (\|^w \mid (p)\|^w_{\tau}) \\ \hline (\hat{rs})^{\diamond} & = rs & rs \text{ can be obtained by erasing pointer from } \hat{rs} \end{array}$$

$$(\cdot \mid r \mid rs)^{\diamond} = r \mid rs \tag{13a}$$

$$((r' \mid rs') \mid r \mid rs)^{\diamond} = r' \mid (rs' \mid r \mid rs)^{\diamond} \tag{13b}$$

 Γ ; $\Delta \vdash e : \tau$ e is of type τ

$$\frac{\text{TVar}}{\Gamma, x : \tau \; ; \Delta \vdash x : \tau} \tag{14a}$$

TEHole

$$\frac{1}{\Gamma; \Delta, u :: \tau \vdash ()^u : \tau}$$
 (14b)

THole

$$\frac{\Gamma ; \Delta, u :: \tau \vdash e : \tau'}{\Gamma ; \Delta, u :: \tau \vdash (e)^u : \tau}$$
(14c)

TNum

$$\frac{}{\Gamma ; \Delta \vdash n : \mathtt{num}} \tag{14d}$$

TLam

$$\frac{\Gamma, x : \tau_1 ; \Delta \vdash e : \tau_2}{\Gamma; \Delta \vdash (\lambda x : \tau_1.e) : (\tau_1 \to \tau_2)}$$
(14e)

TAp

$$\frac{\Gamma; \Delta \vdash e_1 : (\tau_2 \to \tau) \qquad \Gamma; \Delta \vdash e_2 : \tau_2}{\Gamma; \Delta \vdash e_1(e_2) : \tau}$$
(14f)

TPair

$$\frac{\Gamma; \Delta \vdash e_1 : \tau_1 \qquad \Gamma; \Delta \vdash e_2 : \tau_2}{\Gamma; \Delta \vdash (e_1, e_2) : (\tau_1 \times \tau_2)}$$
(14g)

$$\frac{\Gamma ; \Delta \vdash e : (\tau_1 \times \tau_2)}{\Gamma ; \Delta \vdash \mathtt{prl}(e) : \tau_1} \tag{14h}$$

$$\frac{\text{TPrr}}{\Gamma; \Delta \vdash e : (\tau_1 \times \tau_2)} \frac{\Gamma; \Delta \vdash e : (\tau_1 \times \tau_2)}{\Gamma; \Delta \vdash \text{prr}(e) : \tau_2}$$
(14i)

$$\frac{\Gamma ; \Delta \vdash e : \tau_1}{\Gamma ; \Delta \vdash \operatorname{inl}_{\tau_2}(e) : (\tau_1 + \tau_2)} \tag{14j}$$

$$\frac{\Gamma ; \Delta \vdash e : \tau_2}{\Gamma ; \Delta \vdash \mathsf{inr}_{\tau_1}(e) : (\tau_1 + \tau_2)} \tag{14k}$$

TMatchZPre

$$\frac{\Gamma ; \Delta \vdash e : \tau \qquad \Gamma ; \Delta \vdash [\bot]r \mid rs : \tau[\xi] \Rightarrow \tau' \qquad \top \dot{\vdash}_{?}^{\dagger} \xi}{\Gamma ; \Delta \vdash \mathtt{match}(e) \{ \cdot \mid r \mid rs \} : \tau'} \tag{141}$$

 ${\bf TMatchNZPre}$

$$\Gamma; \Delta \vdash e : \tau \quad e \text{ final} \quad \Gamma; \Delta \vdash [\bot] rs_{pre} : \tau[\xi_{pre}] \Rightarrow \tau'$$

$$\frac{\Gamma; \Delta \vdash [\bot \lor \xi_{pre}]r \mid rs_{post} : \tau[\xi_{rest}] \Rightarrow \tau' \quad e \not\models \uparrow^{\dagger}_{?} \xi_{pre} \quad \top \dot\models^{\dagger}_{?} \xi_{pre} \lor \xi_{rest}}{\Gamma; \Delta \vdash \mathsf{match}(e) \{rs_{pre} \mid r \mid rs_{post}\} : \tau'}$$

$$(14m)$$

 $p: \tau[\xi] \dashv \mid \Gamma; \Delta$ p is assigned type τ and emits constraint ξ

PTVar

$$\frac{1}{x:\tau[\top] \dashv \cdot; x:\tau} \tag{15a}$$

PTWild

PTEHole

PTHole

$$\frac{p : \tau[\xi] \dashv \Gamma; \Delta}{(p)_{\tau}^{w} : \tau'[?] \dashv \Gamma; \Delta, w :: \tau'}$$

$$(15d)$$

PTNum

$$\frac{\underline{n}: \mathtt{num}[\underline{n}] \dashv |\cdot|;}{\underline{n}}.$$

PTInl

$$\frac{p:\tau_1[\xi]\dashv \Gamma;\Delta}{\mathtt{inl}(p):(\tau_1+\tau_2)[\mathtt{inl}(\xi)]\dashv \Gamma;\Delta} \tag{15f}$$

$$\frac{p: \tau_2[\xi] \dashv \Gamma; \Delta}{\operatorname{inr}(p): (\tau_1 + \tau_2)[\operatorname{inr}(\xi)] \dashv \Gamma; \Delta}$$
(15g)

$$\frac{p_1 : \tau_1[\xi_1] \dashv \Gamma_1; \Delta_1 \qquad p_2 : \tau_2[\xi_2] \dashv \Gamma_2; \Delta_2}{(p_1, p_2) : (\tau_1 \times \tau_2)[(\xi_1, \xi_2)] \dashv \Gamma_1 \uplus \Gamma_2; \Delta_1 \uplus \Delta_2}$$
(15h)

$$\frac{\Gamma; \Delta \vdash (p \Rightarrow e) : \tau[\xi] \Rightarrow \tau'}{\text{CTRule}} \qquad \begin{array}{c} r \text{ transforms a final expression of type } \tau \\ \text{to a final expression of type } \tau' \\ \frac{p : \tau[\xi] \dashv \Gamma_p; \Delta_p \qquad \Gamma \uplus \Gamma_p; \Delta \uplus \Delta_p \vdash e : \tau'}{\Gamma; \Delta \vdash p \Rightarrow e : \tau[\xi] \Rightarrow \tau'} \end{aligned} \tag{16a}$$

 $\frac{\Gamma ; \Delta \vdash [\xi_{pre}]rs : \tau[\xi_{rs}] \Rightarrow \tau'}{\text{CTOneRules}} \quad \begin{array}{c} rs \text{ transforms a final expression of type } \tau \\ \text{to a final expression of type } \tau' \end{array}$

$$\frac{\Gamma ; \Delta \vdash r : \tau[\xi_r] \Rightarrow \tau' \qquad \xi_r \not\models \xi_{pre}}{\Gamma ; \Delta \vdash [\xi_{pre}](r \mid \cdot) : \tau[\xi_r] \Rightarrow \tau'}$$
(17a)

CTRules

$$\frac{\Gamma ; \Delta \vdash r : \tau[\xi_r] \Rightarrow \tau' \qquad \Gamma ; \Delta \vdash [\xi_{pre} \lor \xi_r] rs : \tau[\xi_{rs}] \Rightarrow \tau' \qquad \xi_r \not\models \xi_{pre}}{\Gamma ; \Delta \vdash [\xi_{pre}]r \mid rs : \tau[\xi_r \lor \xi_{rs}] \Rightarrow \tau'}$$

$$(17b)$$

Lemma 3.0.1. If $p : \tau[\xi] \dashv \Gamma$; Δ then $\xi : \tau$.

Proof. By rule induction over Rules
$$(15)$$
.

Lemma 3.0.2. If \cdot ; $\Delta \vdash r : \tau_1[\xi_r] \Rightarrow \tau$ then $\xi_r : \tau_1$.

Proof. By rule induction over Rules
$$(16)$$
.

Lemma 3.0.3. If
$$\cdot$$
; $\Delta \vdash [\xi_{pre}]rs : \tau_1[\xi_{rs}] \Rightarrow \tau \text{ then } \xi_{rs} : \tau_1.$

Proof. By rule induction over Rules
$$(17)$$
.

Lemma 3.0.4. If $\Gamma : \Delta \vdash [\xi_{pre}]rs : \tau[\xi_{rs}] \Rightarrow \tau' \text{ and } \Gamma : \Delta \vdash r : \tau[\xi_r] \Rightarrow \tau' \text{ and } \Gamma$ $\xi_r \not\models \xi_{pre} \lor \xi_{rs} \ then \ \Gamma \ ; \Delta \vdash [\xi_{pre}](rs \mid r \mid \cdot)^{\diamond} : \tau[\xi_{rs} \lor \xi_r] \Rightarrow \tau'$

Proof.

- (1) $\Gamma : \Delta \vdash [\xi_{nre}]rs : \tau[\xi_{rs}] \Rightarrow \tau'$ by assumption
- (2) $\Gamma: \Delta \vdash r: \tau[\xi_r] \Rightarrow \tau'$ by assumption
- (3) $\xi_r \not\models \xi_{pre} \vee \xi_{rs}$ by assumption

By rule induction over Rules (17) on (1).

Case (17a).

- (4) $rs = r' \mid \cdot$ by assumption
- (5) $\xi_{rs} = \xi'_r$ by assumption
- (6) $\Gamma : \Delta \vdash r' : \tau[\xi'_r] \Rightarrow \tau'$ by assumption
- (7) $\xi_r' \not\models \xi_{pre}$ by assumption
- (8) $\Gamma : \Delta \vdash [\xi_{nre} \lor \xi'_r]r \mid \cdot : \tau[\xi_r] \Rightarrow \tau'$ by Rule (17a) on (2) and (3)
- (9) $\Gamma : \Delta \vdash [\xi_{nre}](r' \mid r \mid \cdot) : \tau[\xi'_r \lor \xi_r] \Rightarrow \tau'$ by Rule (17b) on (6) and (8) and (7)

$$\begin{array}{ll} (10) \ \Gamma \, ; \Delta \vdash [\xi_{pre}]((r' \mid \cdot) \mid r \mid \cdot)^{\diamond} : \tau[\xi'_r \lor \xi_r] \Rightarrow \tau' \\ & \text{by Definition 13 on (9)} \end{array}$$

Case (17b).

(4)
$$rs = r' \mid rs'$$
 by assumption

(5)
$$\xi_{rs} = \xi'_r \vee \xi'_{rs}$$
 by assumption

(6)
$$\Gamma : \Delta \vdash r' : \tau[\xi'_r] \Rightarrow \tau'$$
 by assumption

(7)
$$\Gamma : \Delta \vdash [\xi_{pre} \lor \xi'_r]rs' : \tau[\xi'_{rs}] \Rightarrow \tau'$$
 by assumption

(8)
$$\xi'_r \not\models \xi_{pre}$$
 by assumption

(9)
$$\Gamma : \Delta \vdash [\xi_{pre} \lor \xi'_r](rs' \mid r \mid \cdot)^{\diamond} : \tau[\xi'_{rs} \lor \xi_r] \Rightarrow \tau'$$
 by IH on (7) and (2) and (3)

$$\begin{array}{ll} (10) & \Gamma \; ; \Delta \vdash [\xi_{pre}](r' \mid (rs' \mid r \mid \cdot)^{\diamond}) : \tau[\xi'_r \lor \xi'_{rs} \lor \xi_r] \Rightarrow \tau' \\ & \text{by Rule (17b) on (6)} \\ & \text{and (9) and (8)} \end{array}$$

(11)
$$\Gamma : \Delta \vdash [\xi_{pre}]((r' \mid rs') \mid r \mid \cdot)^{\diamond} : \tau[\xi'_r \lor \xi'_{rs} \lor \xi_r] \Rightarrow \tau'$$
 by Definition 13 on (10)

Lemma 3.0.5 (Substitution). If $\Gamma, x : \tau ; \Delta \vdash e_0 : \tau_0 \text{ and } \Gamma ; \Delta \vdash e : \tau \text{ then } \Gamma ; \Delta \vdash [e/x]e_0 : \tau_0$

Lemma 3.0.6 (Simultaneous Substitution). *If* $\Gamma \uplus \Gamma'$; $\Delta \vdash e : \tau$ *and* $\theta : \Gamma'$ *then* $\Gamma ; \Delta \vdash [\theta]e : \tau$

Lemma 3.0.7 (Substitution Typing). If $e \rhd p \dashv \theta$ and \cdot ; $\Delta_e \vdash e : \tau$ and $p : \tau[\xi] \dashv \Gamma$; Δ then $\theta : \Gamma$

Proof by induction on the derivation of $e \triangleright p \dashv \theta$.

Theorem 3.1 (Determinism). If \cdot ; $\Delta \vdash e : \tau$ then exactly one of the following holds

- $1. \ e \ {\tt val}$
- $2. \ e \ {\tt indet}$
- 3. $e \mapsto e'$ for some unique e'

4 Dynamic Semantics

e val e is a value

$$\frac{\text{VNum}}{n \text{ val}} \tag{18a}$$

VLam

$$\frac{}{(\lambda x : \tau . e) \text{ val}} \tag{18b}$$

VPair

$$\frac{e_1 \text{ val} \qquad e_2 \text{ val}}{(e_1, e_2) \text{ val}} \tag{18c}$$

VInl

$$\frac{e \text{ val}}{\text{inl}_{\tau}(e) \text{ val}} \tag{18d}$$

VInr

$$\frac{e \text{ val}}{\inf_{\tau}(e) \text{ val}} \tag{18e}$$

e indet e is indeterminate

IEHole

$$\sqrt{\|)^u \text{ indet}}$$

IHole

$$\frac{e \; \mathtt{final}}{(e)^u \; \mathtt{indet}} \tag{19b}$$

IAp

$$\frac{e_1 \; \mathtt{indet} \qquad e_2 \; \mathtt{final}}{e_1(e_2) \; \mathtt{indet}} \tag{19c}$$

IPairL

$$\frac{e_1 \text{ indet} \qquad e_2 \text{ val}}{(e_1, e_2) \text{ indet}} \tag{19d}$$

IPairR

$$\frac{e_1 \text{ val} \qquad e_2 \text{ indet}}{(e_1, e_2) \text{ indet}} \tag{19e}$$

IPair

$$\frac{e_1 \; \mathtt{indet} \quad e_2 \; \mathtt{indet}}{(e_1, e_2) \; \mathtt{indet}} \tag{19f}$$

IPrl

$$\frac{e \; \mathtt{indet}}{\mathtt{prl}(e) \; \mathtt{indet}} \tag{19g}$$

$$\frac{\operatorname{IPrr}}{e \text{ indet}} \qquad \qquad (19h)$$

$$\operatorname{IInL} \qquad \qquad e \text{ indet} \qquad \qquad (19i)$$

$$\operatorname{IInR} \qquad \qquad e \text{ indet} \qquad \qquad (19j)$$

$$\operatorname{IInR} \qquad \qquad e \text{ indet} \qquad \qquad (19j)$$

$$\operatorname{IIMatch} \qquad \qquad e \text{ final} \qquad e ? p_r \qquad \qquad (19j)$$

$$\operatorname{IMatch} \qquad \qquad e \text{ final} \qquad e ? p_r \qquad \qquad (19k)$$

$$e \text{ final} \qquad e \text{ is final}$$

$$FVal \qquad \qquad e \text{ val} \qquad \qquad e \text{ indet} \qquad \qquad (20a)$$

$$Fladet \qquad \qquad e \text{ indet} \qquad \qquad e$$

$$notintro(\mathbb{Q}^u) = true$$
 (22a)

$$notintro(\langle e \rangle^u) = true$$
 (22b)

$$notintro(e_1(e_2)) = true$$
 (22c)

$$notintro(match(e)\{\hat{rs}\}) = true$$
 (22d)

$$notintro(prl(e)) = true$$
 (22e)

$$notintro(prr(e)) = true$$
 (22f)

Otherwise
$$notintro(e) = false$$
 (22g)

Lemma 4.0.1 (Soundness and Completeness of NotIntro Judgment). e notintro $iff\ notintro(e)$.

 $e' \in \mathtt{values}(e)$ e' is one of the possible values of e

$$\frac{e \text{ val} \qquad \cdot ; \Delta \vdash e : \tau}{e \in \text{values}(e)}$$
 (23a)

IVIndet

$$\frac{e \text{ notintro} \qquad \cdot; \Delta \vdash e : \tau \qquad e' \text{ val} \qquad \cdot; \Delta \vdash e' : \tau}{e' \in \text{values}(e)} \tag{23b}$$

IVInl

$$\frac{\mathtt{inl}_{\tau_2}(e_1)\ \mathtt{indet} \quad \cdot \ ; \Delta \vdash \mathtt{inl}_{\tau_2}(e_1) : \tau \quad e_1' \in \mathtt{values}(e_1)}{\mathtt{inl}_{\tau_2}(e_1') \in \mathtt{values}(\mathtt{inl}_{\tau_2}(e_1))} \tag{23c}$$

IVIni

$$\frac{\operatorname{inr}_{\tau_1}(e_2) \operatorname{indet} \quad \cdot ; \Delta \vdash \operatorname{inr}_{\tau_1}(e_2) : \tau \quad e_2' \in \operatorname{values}(e_2)}{\operatorname{inr}_{\tau_1}(e_2') \in \operatorname{values}(\operatorname{inr}_{\tau_1}(e_2))} \tag{23d}$$

IVPair

$$\frac{(e_1,e_2) \text{ indet } \quad \cdot ; \Delta \vdash (e_1,e_2) : \tau \quad e_1' \in \text{values}(e_1) \quad e_2' \in \text{values}(e_2)}{(e_1',e_2') \in \text{values}((e_1,e_2))} \tag{23e}$$

Lemma 4.0.2. If e indet $and \cdot ; \Delta \vdash e : \tau$ and $\dot{\xi} : \tau$ and $e \not\models \dot{\uparrow}\dot{\xi}$ then $e' \not\models \dot{\uparrow}\dot{\xi}$ whenever $e' \in \mathtt{values}(e)$.

Proof.

(1)
$$e$$
 indet by assumption
(2) \cdot ; $\Delta \vdash e : \tau$ by assumption
(3) $\dot{\xi} : \tau$ by assumption
(4) $e \not\models \dot{z} \dot{\xi}$ by assumption

By rule induction over Rules (1) on (3).

Case (1a).

(5)
$$\dot{\xi} = \top$$

by assumption

(6)
$$e \models \top$$

by Rule (4a)

(7)
$$e \models_?^\dagger \top$$

by Rule (8b) on (6)

Contradicts (4).

Case (1b).

(5) $\dot{\xi} = ?$

by assumption

(6)
$$e \stackrel{\cdot}{\models}_?$$
?

by Rule (6a)

(7)
$$e \stackrel{\cdot}{\models}_{?}^{\dagger}$$
?

by Rule (8a) on (6)

Contradicts (4).

Case (1c).

(5) $\dot{\xi} = \underline{n}$

by assumption

(6) $\tau = \text{num}$

by assumption

(7) \underline{n} refutable?

by Rule (2a)

By rule induction over Rules (19) on (1).

Case (19a).

(8) $e = (1)^u$

by assumption

(9) $()^u$ notintro

by Rule (21a)

(10) $\mathbb{D}^u \stackrel{\cdot}{\models}_? \underline{n}$

by Rule (6i) on (9) and

(7)

 $(11) \quad \textcircled{\parallel}^{u} \stackrel{\cdot}{\models}_{?}^{\dagger} \underline{n}$

by Rule (8a) on (10)

Contradicts (4).

Case (19b).

(8) $e = (e_1)^u$

by assumption

 $(9) (e_1)^u$ notintro

by Rule (21b)

 $(10) (|e_1|)^u \stackrel{\cdot}{\models}_{?} \underline{n}$

by Rule (6i) on (9) and

(7)

 $(11) \quad (e_1)^u \stackrel{\cdot}{\models}_? \underline{n}$

by Rule (8a) on (10)

Contradicts (4).

Case (19c).

(8) $e = e_1(e_2)$

by assumption

(9)
$$e_1(e_2)$$
 notintro

by Rule (21c)

$$(10) \ e_1(e_2) \dot{\models}_? \underline{n}$$

by Rule (6i) on (9) and

$$(11) \ e_1(e_2) \dot{\models}_{?}^{\dagger} \underline{n}$$

by Rule (8a) on (10)

Contradicts (4).

Case (19g).

(8) $e = \operatorname{prl}(e_1)$

by assumption

(9)
$$prl(e_1)$$
 notintro

by Rule (21e)

(10)
$$\operatorname{prl}(e_1)\dot{\models}_?\underline{n}$$

by Rule (6i) on (9) and (7)

(11)
$$\operatorname{prl}(e_1) \stackrel{\cdot}{\models}_{?}^{\dagger} \underline{n}$$

by Rule (8a) on (10)

Contradicts (4).

Case (19h).

(8)
$$e = prr(e_1)$$

by assumption

$$(9)$$
 prr (e_1) notintro

by Rule (21f)

(10)
$$\operatorname{prr}(e_1) \dot{\models}_{?} \underline{n}$$

by Rule (6i) on (9) and

(11)
$$\operatorname{prr}(e_1) \stackrel{\cdot}{\models}_? \underline{n}$$

by Rule (8a) on (10)

Contradicts (4).

Case (19k).

(8)
$$e = \operatorname{match}(e_1)\{\hat{rs}\}\$$

by assumption

(9)
$$match(e_1)\{\hat{rs}\}$$
 notintro

by Rule (21d)

(10)
$$\operatorname{match}(e_1)\{\hat{rs}\} \stackrel{.}{\models}_{?} \underline{n}$$

by Rule (6i) on (9) and

(7)

(11)
$$\operatorname{match}(e_1)\{\hat{rs}\} \stackrel{:}{\models}_? \underline{n}$$

by Rule (8a) on (10)

Contradicts (4).

Case (19d), (19e), (19f).

(8)
$$e = (e_1, e_2)$$

by assumption

By rule induction over Rules (14) on (2), no rule applies due to syntactic contradiction.

Case (19i).

(8)
$$e = inl_{\tau_2}(e_1)$$

by assumption

By rule induction over Rules (14) on (2), no rule applies due to syntactic contradiction.

Case (19j).

(8)
$$e = inr_{\tau_1}(e_2)$$

by assumption

By rule induction over Rules (14) on (2), no rule applies due to syntactic contradiction.

Case (1d).

(5) $\dot{\xi} = \text{inl}(\dot{\xi}_1)$ by assumption (6) $\tau = (\tau_1 + \tau_2)$ by assumption (7) $\dot{\xi}_1 : \tau_1$ by assumption (8) $\text{inl}(\dot{\xi}_1)$ refutable? by Rule (2c)

By rule induction over Rules (19) on (1).

Case (19a).

- (9) $e = \emptyset^u$ by assumption (10) \emptyset^u notintro by Rule (21a) (11) $\emptyset^u \models_? \text{inl}(\dot{\xi_1})$ by Rule (6i) on (10) and (8)
- (12) $\mathbb{Q}^u \stackrel{\cdot}{\models}_2^{\dagger} \operatorname{inl}(\dot{\xi_1})$ by Rule (8a) on (11)

Contradicts (4).

Case (19b).

- (9) $e = (e_1)^u$ by assumption (10) $(e_1)^u$ notintro by Rule (21b)
- (11) $(e_1)^u \stackrel{.}{\models}_? \operatorname{inl}(\dot{\xi_1})$ by Rule (6i) on (10) and (8)
- (12) $(e_1)^u \stackrel{:}{\models}_{?}^{\dagger} \text{inl}(\dot{\xi_1})$ by Rule (8a) on (11)

Contradicts (4).

Case (19c).

- (9) $e = e_1(e_2)$ by assumption (10) $e_1(e_2)$ notintro by Rule (21c)
- (11) $e_1(e_2) = \inf_{\hat{\xi}_1} (\dot{\xi}_1)$ by Rule (6i) on (10) and (8)
- (12) $e_1(e_2) \dot{\models}_?^{\dagger} inl(\dot{\xi_1})$ by Rule (8a) on (11)

Contradicts (4).

Case (19g).

- (9) $e = prl(e_1)$ by assumption (10) $prl(e_1)$ notintro by Rule (21e)
- (11) $\operatorname{prl}(e_1) \models_? \operatorname{inl}(\dot{\xi_1})$ by Rule (6i) on (10) and (8)
- (12) $\operatorname{prl}(e_1) \stackrel{:}{\models}_{?}^{\dagger} \operatorname{inl}(\dot{\xi}_1)$ by Rule (8a) on (11)

Contradicts (4).

Case (19h).

- (9) $e = prr(e_1)$ by assumption (10) $prr(e_1)$ notintro by Rule (21f)
- (11) $\operatorname{prr}(e_1) \dot{\models}_? \operatorname{inl}(\dot{\xi_1})$ by Rule (6i) on (10) and (8)
- (12) $\operatorname{prr}(e_1) \stackrel{\dagger}{\models}_{7}^{7} \operatorname{inl}(\dot{\xi}_1)$ by Rule (8a) on (11)

Contradicts (4).

Case (19k).

- (9) $e = \operatorname{match}(e_1)\{\hat{rs}\}$ by assumption
- (10) $match(e_1)\{\hat{rs}\}\ notintro$ by Rule (21d)
- (11) $\operatorname{match}(e_1)\{\hat{rs}\} \dot{\models}_{?} \operatorname{inl}(\dot{\xi}_1)$ by Rule (6i) on (10) and (8)
- (12) $\operatorname{match}(e_1)\{\hat{rs}\} \stackrel{:}{\models}_? \operatorname{inl}(\dot{\xi}_1)$ by Rule (8a) on (11)

Contradicts (4).

Case (19d), (19e), (19f).

(9)
$$e = (e_1, e_2)$$
 by assumption

By rule induction over Rules (19) on (1), no rule applies due to syntactic contradiction.

Case (19i).

(9)
$$e = \operatorname{inl}_{\tau_2'}(e_1)$$
 by assumption

(10)
$$e_1$$
 indet by assumption

By rule induction over Rules (14) on (2), only one rule applies.

Case (14j).

(11)
$$\tau_2' = \tau_2$$
 by assumption

(12)
$$\cdot$$
; $\Delta \vdash e_1 : \tau_1$ by assumption

(13)
$$e_1 \not\models {}_{?}^{\dagger} \dot{\xi}_1$$
 by Lemma 1.0.10 on (4)

(14) if
$$e_1' \in \mathtt{values}(e_1)$$
 then $e_1' \not\models \dot{\uparrow}\dot{\xi}_1$

by IH on (10) and (12) and (7) and (13)

To show if $e' \in \mathtt{values}(\mathtt{inl}_{\tau_2}(e_1))$ then $e' \not\models \begin{subarray}{c} \dagger \\ ? \end{smallmatrix} \mathtt{inl}(\dot{\xi_1})$, we assume $e' \in \mathtt{values}(\mathtt{inl}_{\tau_2}(e_1))$.

 $(15) \ e' \in \mathtt{values}(\mathtt{inl}_{\tau_2}(e_1)) \qquad \qquad \mathrm{by \ assumption}$

By rule induction over Rules (23) on (15).

Case (23a).

(16)
$$\operatorname{inl}_{\tau_2}(e_1)$$
 val by assumption

Contradicts (1) by Lemma 4.0.11.

Case (23b).

(16) $\operatorname{inl}_{\tau_2}(e_1)$ notintro by assumption

Contradicts Lemma 4.0.7

Case (23c).

(16)
$$e' = \operatorname{inl}_{\tau_2}(e'_1)$$
 by assumption
(17) $e'_1 \in \operatorname{values}(e_1)$ by assumption
(18) $e'_1 \not\models \dot{\uparrow}\dot{\xi}_1$ by (14) on (17)

(19) $\operatorname{inl}_{\tau_2}(e'_1) \not\models {}^{\dagger}_{?} \operatorname{inl}(\dot{\xi_1})$ by Lemma 1.0.10 on (18)

Case (19j).

(9)
$$e = \operatorname{inr}_{\tau_1}(e_2)$$
 by assumption

To show if $e' \in \mathtt{values}(\mathtt{inr}_{\tau_1}(e_2))$ then $e' \not\models {}^{\dagger}_{?}\mathtt{inl}(\dot{\xi}_1)$, we assume $e' \in \mathtt{values}(\mathtt{inr}_{\tau_1}(e_2))$.

(10)
$$e' \in values(inr_{\tau_1}(e_2))$$
 by assumption

By rule induction over Rules (23) on (10).

Case (23a).

(11) $\operatorname{inr}_{\tau_1}(e_2)$ val by assumption Contradicts (1) by Lemma 4.0.11.

Case (23b).

(11) $\operatorname{inr}_{\tau_1}(e_2)$ notintro by assumption

Contradicts Lemma 4.0.8

Case (23d).

(11)
$$e' = \inf_{\tau_1}(e'_2)$$
 by assumption
(12) $\inf_{\tau_1}(e'_2) \not\models_{\uparrow}^{\dagger} \inf(\dot{\xi}_1)$ by Lemma 1.0.16

Case (1e).

(5)
$$\dot{\xi} = inr(\dot{\xi}_2)$$
 by assumption
(6) $\tau = (\tau_1 + \tau_2)$ by assumption
(7) $\dot{\xi}_2 : \tau_2$ by assumption
(8) $inr(\dot{\xi}_2)$ refutable? by Rule (2d)

By rule induction over Rules (19) on (1).

Case (19a).

(9) $e = \emptyset^u$ by assumption (10) \emptyset^u notintro by Rule (21a) (11) $\emptyset^u \models_? \operatorname{inr}(\dot{\xi}_2)$ by Rule (6i) on (10) and (8)

(12)	$\ u \stackrel{\dagger}{\models}_{?}^{\dagger} ext{inr}(\dot{\xi_2})$	by Rule (8a) on (11)	
Contra	adicts (4).		
Case (19b)			
(9)	$e = (e_1)^u$	by assumption	
(10)	$(e_1)^u$ notintro	by Rule (21b)	
(11)	$(e_1)^u \stackrel{\cdot}{\models}_? \mathtt{inr}(\dot{\xi_2})$	by Rule (6i) on (10) and (8)	
(12)	$(e_1)^u \stackrel{\cdot}{\models}_?^\dagger \mathtt{inr}(\dot{\xi}_2)$	by Rule $(8a)$ on (11)	
Contra	dicts (4).		
Case $(19c)$	•		
(9)	$e = e_1(e_2)$	by assumption	
(10)	$e_1(e_2)$ notintro	by Rule (21c)	
(11)	$e_1(e_2)\dot\models_?\mathtt{inr}(\dot{\xi}_2)$	by Rule (6i) on (10) and (8)	
(12)	$e_1(e_2)\dot\models^\dagger_?\mathtt{inr}(\dot{\xi}_2)$	by Rule (8a) on (11)	
Contra	idicts (4).		
Case (19g)	•		
(9)	$e = \mathtt{prl}(e_1)$	by assumption	
(10)	$\mathtt{prl}(e_1)$ notintro	by Rule (21e)	
(11)	$\mathtt{prl}(e_1)\dot{\models}_?\mathtt{inr}(\dot{\xi_2})$	by Rule (6i) on (10) and (8)	
(12)	$\mathtt{prl}(e_1)\dot\models^\dagger_?\mathtt{inr}(\dot{\xi_2})$	by Rule (8a) on (11)	
Contradicts (4).			
Case (19h)			
(9)	$e = \mathtt{prr}(e_1)$	by assumption	
(10)	$\mathtt{prr}(e_1)$ notintro	by Rule (21f)	
(11)	$\mathtt{prr}(e_1)\dot{\models}_?\mathtt{inr}(\dot{\xi_2})$	by Rule (6i) on (10) and (8)	
(12)	$\mathtt{prr}(e_1) \dot{\models}_?^\dagger \mathtt{inr}(\dot{\xi}_2)$	by Rule (8a) on (11)	
Contra	adicts (4).		
Case $(19k)$			
, ,	$e = \mathtt{match}(e_1)\{\hat{rs}\}$	by assumption	
	$\mathtt{match}(e_1)\{\hat{rs}\}$ notintro	by Rule (21d)	
(11)	$\mathtt{match}(e_1)\{\hat{rs}\}\dot{\models}_{?}\mathtt{inr}(\dot{\xi}_2)$	by Rule (6i) on (10) and (8)	
	+		

by Rule (8a) on (11)

(12) $\mathrm{match}(e_1)\{\hat{rs}\} \stackrel{:}{\models}_?^\dagger \mathrm{inr}(\dot{\xi}_2)$

Contradicts (4).

Case (19d), (19e), (19f).

(9)
$$e = (e_1, e_2)$$

by assumption

By rule induction over Rules (19) on (1), no rule applies due to syntactic contradiction.

Case (19i).

(9)
$$e = inl_{\tau_2}(e_1)$$

by assumption

To show if $e' \in \mathtt{values}(\mathtt{inl}_{\tau_2}(e_1))$ then $e' \not\models {}^\dagger_? \mathtt{inr}(\dot{\xi}_2)$, we assume $e' \in \mathtt{values}(\mathtt{inl}_{\tau_2}(e_1))$.

(10)
$$e' \in \mathtt{values}(\mathtt{inl}_{\tau_2}(e_1))$$

by assumption

By rule induction over Rules (23) on (10).

Case (23a).

(11)
$$\operatorname{inl}_{\tau_2}(e_1)$$
 val

by assumption

Contradicts (1) by Lemma 4.0.11.

Case (23b).

(11)
$$\operatorname{inl}_{\tau_2}(e_1)$$
 notintro

by assumption

Contradicts Lemma 4.0.7

Case (23c).

$$(11) \ e'=\mathtt{inl}_{\tau_2}(e_1')$$

by assumption

(12)
$$\operatorname{inl}_{\tau_2}(e'_1) \not\models {}^{\dagger}_{?} \operatorname{inr}(\dot{\xi}_2)$$

by Lemma 1.0.15

Case (19j).

$$(9) e = \operatorname{inr}_{\tau_1'}(e_2)$$

by assumption

$$(10)$$
 e_2 indet

by assumption

By rule induction over Rules (14) on (2), only one rule applies.

Case (14k).

(11)
$$\tau_1' = \tau_1$$

by assumption

(12)
$$\cdot$$
; $\Delta \vdash e_2 : \tau_2$

by assumption

$$(13) \ e_2 \not\models {}_{?}^{\dagger} \dot{\xi}_2$$

by Lemma 1.0.10 on

(4)

(14) if
$$e_2' \in \mathtt{values}(e_2)$$
 then $e_2' \not\models {}_?\dot{\xi}_2$

by IH on (10) and (12) and (7) and (13)

To show if $e' \in \mathtt{values}(\mathtt{inr}_{\tau_1}(e_2))$ then $e' \not\models {}^\dagger_? \mathtt{inr}(\dot{\xi}_2)$, we assume $e' \in \mathtt{values}(\mathtt{inr}_{\tau_1}(e_2))$.

(15) $e' \in \text{values}(\text{inr}_{\tau_1}(e_2))$ by assumption

By rule induction over Rules (23) on (15).

Case (23a).

Case (1f).

$$\begin{array}{ll} (5) \ \dot{\xi} = (\dot{\xi}_1, \dot{\xi}_2) & \text{by assumption} \\ (6) \ \tau = (\tau_1 \times \tau_2) & \text{by assumption} \\ (7) \ \dot{\xi}_1 : \tau_1 & \text{by assumption} \\ (8) \ \dot{\xi}_2 : \tau_2 & \text{by assumption} \end{array}$$

By rule induction over Rules (19) on (1).

(9)
$$e = ()^u, (e_1)^u, e_1(e_2), prl(e_1), prr(e_1), match(e_1) \{\hat{rs}\}\$$
 by assumption
(10) e notintro by Rules (21)
(11) $prl(e)$ notintro by Rule (21e)
(12) $prr(e)$ notintro by Rule (21f)
(13) $prl(e)$ indet by Rule (19g) on (1)
(14) $prr(e)$ indet by Rule (19h) on (1)
(15) $\cdot : \Delta \vdash prl(e) : \tau_1$ by Rule (14h) on (2)
(16) $\cdot : \Delta \vdash prr(e) : \tau_2$ by Rule (14i) on (2)

By case analysis on the result of $\mathit{satisfyormay}(\mathtt{prl}(e), \dot{\xi}_1)$.

Case true.

(17)
$$satisfyormay(prl(e), \dot{\xi}_1) = true$$

by assumption

(18)
$$\operatorname{prl}(e) \stackrel{\cdot}{\models}_{?}^{\dagger} \dot{\xi}_{1}$$
 by Lemma 1.0.4 on (17)

By case analysis on the result of $satisfyormay(prr(e), \xi_2)$. Case true.

(19)
$$satisfyormay(prr(e), \dot{\xi}_2) = true$$
 by assumption

(20)
$$\operatorname{prr}(e) \dot{\models}_{?}^{\dagger} \dot{\xi}_{2}$$
 by Lemma 1.0.4 on (19)

By rule induction over Rules (8) on (18).

Case (8b).

(21) $prl(e) \dot{\models} \dot{\xi}_1$

by asssumption

By rule induction over Rules (8) on (20).

Case (8b).

(22)
$$prr(e) \dot{\models} \dot{\xi}_2$$
 by assumption

(23)
$$e \models (\dot{\xi}_1, \dot{\xi}_2)$$
 by Rule (4f) on (10) and (21) and (22)

(24)
$$e \models_{?}^{\dagger} (\dot{\xi}_{1}, \dot{\xi}_{2})$$
 by Rule (8b) on (23)

Contradicts (4).

Case (8a).

(22)
$$\operatorname{prr}(e) \dot{\models}_{\gamma} \dot{\xi}_{2}$$
 by assumption

(23)
$$\dot{\xi}_2$$
 refutable? by ?? on (12) and (22) (24) $(\dot{\xi}_1, \dot{\xi}_2)$ refutable? by Rule (2f) on (23)

(25)
$$e \models_? (\dot{\xi}_1, \dot{\xi}_2)$$
 by Rule (6i) on (10) and (24)

(26)
$$e \models_{?}^{\dagger} (\dot{\xi}_{1}, \dot{\xi}_{2})$$
 by Rule (8a) on (25)

Case (8a).

(21)
$$prl(e) \dot{\models}_? \dot{\xi}_1$$
 by assumption

(22)
$$\dot{\xi}_1$$
 refutable? by $\ref{eq:theorem}$ on (11) and (21)

(23)
$$(\dot{\xi}_1, \dot{\xi}_2)$$
 refutable? by Rule (2e) on (22)
(24) $e \dot{\models}_?(\dot{\xi}_1, \dot{\xi}_2)$ by Rule (6i) on (10)
and (23)

(25)
$$e \dot{\models}_{?}^{\dagger} (\dot{\xi}_{1}, \dot{\xi}_{2})$$
 by Rule (8a) on (24)

Case false.

(19)
$$satisfyormay(prr(e), \dot{\xi}_2) = false$$

by assumption

(20)
$$\operatorname{prr}(e) \stackrel{:}{\models}_{?}^{\dagger} \dot{\xi}_{2}$$
 by Lemma 1.0.4 on (19)

(21) if
$$e_2' \in \mathtt{values}(\mathtt{prr}(e))$$
 then $e_2' \not\models {}_7^{\dagger} \dot{\xi}_2$ by IH on (14) and (16) and (8) and (20)

To show if $e' \in \mathtt{values}(e)$ then $e' \not\models \frac{\dagger}{?} (\dot{\xi}_1, \dot{\xi}_2)$, we assume $e' \in \mathtt{values}(e)$.

(22)
$$e' \in \mathtt{values}(e)$$
 by assumption

By rule induction over Rules (23) on (22), only two rules apply.

Case (23a).

$$(23)$$
 e val

by assumption

Contradicts (1) by Lemma 4.0.11.

Case (23b).

(23) e' val

by assumption

(24)
$$\cdot$$
; $\Delta \vdash e' : (\tau_1 \times \tau_2)$

by assumption

By rule induction over Rules (18) on (23).

Case (18a).

(25)
$$e' = n$$

by assumption

By rule induction over Rules (14) on (24), no rule applies due to syntactic contradiction.

Case (18b).

(25)
$$e' = (\lambda x : \tau'.e'_1)$$

by assumption

By rule induction over Rules (14) on (24), no rule applies due to syntactic contradiction.

Case (18c).

(25)
$$e' = (e'_1, e'_2)$$

by assumption

$$(26)$$
 e_2' val

by assumption

By rule induction over Rules (14) on (24), only one rule applies.

Case (14g).

$$(27) \cdot ; \Delta \vdash e_2' : \tau_2$$

by assumption

$$(28)\ e_2' \in \mathtt{values}(\mathtt{prr}(e))$$

by Rule (23b) on (12)

and (16) and (26) and

(27)

$$(29) \ e_2' \not\models {}_?^{\dagger} \dot{\xi}_2$$

by (21) on (28)

(30)
$$(e'_1, e'_2) \not\models {}^{\dagger}_?(\dot{\xi}_1, \dot{\xi}_2)$$

by Lemma 1.0.12 on

Case (18d).

(25)
$$e' = \operatorname{inl}_{\tau_2}(e'_1)$$

by assumption

By rule induction over Rules (14) on (24), no rule applies due to syntactic contradiction.

Case (18e).

$$(25) \ e'=\operatorname{inr}_{\tau_1}(e_2')$$

by assumption

By rule induction over Rules (14) on (24), no rule applies due to syntactic contradiction.

Case false.

(17) $satisfyormay(prl(e), \dot{\xi}_1) = false$

by assumption

(18)
$$\operatorname{prl}(e) \not\models {}^\dagger_? \dot{\xi_1}$$

by Lemma 1.0.4 on

(17)

(19) if
$$e_1' \in \mathtt{values}(\mathtt{prl}(e))$$
 then $e_1' \not\models \frac{\dagger}{?} \dot{\xi}_1$ by IH on (13) and (15) and (7) and (18)

To show if $e' \in \mathtt{values}(e)$ then $e' \not\models \frac{\dagger}{?}(\dot{\xi}_1, \dot{\xi}_2)$, we assume $e' \in \mathtt{values}(e)$.

(20)
$$e' \in values(e)$$
 by assumption

By rule induction over Rules (23) on (20), only two rules apply. Case (23a).

(21)
$$e$$
 val by assumption

Contradicts (1) by Lemma 4.0.11.

Case (23b).

(21)
$$e'$$
 val by assumption

(22)
$$\cdot$$
; $\Delta \vdash e' : (\tau_1 \times \tau_2)$ by assumption

By rule induction over Rules (18) on (21).

Case (18a).

(23)
$$e' = \underline{n}$$
 by assumption

By rule induction over Rules (14) on (22), no rule applies due to syntactic contradiction.

Case (18b).

(23)
$$e' = (\lambda x : \tau'.e'_1)$$
 by assumption

By rule induction over Rules (14) on (22), no rule applies due to syntactic contradiction.

Case (18c).

(23)
$$e' = (e'_1, e'_2)$$
 by assumption

(24)
$$e_1'$$
 val by assumption

By rule induction over Rules (14) on (22), only one rule applies.

Case (14g).

(25)
$$\cdot$$
; $\Delta \vdash e'_1 : \tau_1$ by assumption

$$\begin{array}{ll} (26) & e_1' \in \mathtt{values}(\mathtt{prl}(e)) & \text{ by Rule (23b) on (11)} \\ & \text{ and (15) and (24) and} \\ & & (25) \end{array}$$

(27)
$$e'_1 \not\models {}^{\dagger}_? \dot{\xi}_1$$
 by (19) on (26)

(28)
$$(e'_1, e'_2) \not\models {}^{\dagger}_{?}(\dot{\xi}_1, \dot{\xi}_2)$$
 by Lemma 1.0.12 on (27)

Case (18d).

(23)
$$e' = \operatorname{inl}_{\tau_2}(e'_1)$$
 by assumption

By rule induction over Rules (14) on (22), no rule applies due to syntactic contradiction.

Case (18e).

(23)
$$e' = \operatorname{inr}_{\tau_1}(e'_2)$$
 by assumption

By rule induction over Rules (14) on (22), no rule applies due to syntactic contradiction.

Case (19d).

(9)
$$e = (e_1, e_2)$$

by assumption

$$(10)$$
 e_1 indet

by assumption

$$(11)$$
 e_2 val

by assumption

(12)
$$e_1 \not\models {}^{\dagger}_{?} \dot{\xi}_1 \text{ or } e_2 \not\models {}^{\dagger}_{?} \dot{\xi}_2$$

by Lemma 1.0.12 on (4)

By case analysis on the disjunction in (12).

Case $e_1 \not\models {}^{\dagger}_? \dot{\xi}_1$.

$$(13) \ e_1 \not\models {}^{\dagger}_{?} \dot{\xi}_1$$

by assumption

By rule induction over Rules (14) on (2), only one rule applies. Case (14g).

(14)
$$\cdot$$
; $\Delta \vdash e_1 : \tau_1$

by assumption

(15) if
$$e'_1 \in \mathtt{values}(e_1)$$
 then $e'_1 \not\models {}^{\dagger}_? \dot{\xi}_1$

by IH on (10) and (14) and (7) and (13)

To show that if $e' \in \mathtt{values}((e_1, e_2))$ then $(e_1, e_2) \not\models \dot{?}(\dot{\xi}_1, \dot{\xi}_2)$, we assume $e' \in \mathtt{values}((e_1, e_2))$.

(16)
$$e' \in \mathtt{values}((e_1, e_2))$$

by assumption

By rule induction over Rules (23) on (16).

Case (23a).

$$(17)\ (e_1,e_2)\ { t val}$$

by assumption

Contradicts (1) by Lemma 4.0.11.

Case (23b).

(17) (e_1,e_2) notintro

by assumption

Contradicts Lemma 4.0.9.

Case (23e).

(17)
$$e' = (e'_1, e'_2)$$

by assumption

(18)
$$e_1' \in \mathtt{values}(e_1)$$

by assumption

$$(19) \ e_1' \not\models {}_?^{\dagger} \dot{\xi}_1$$

by (15) on (18)

(20)
$$(e'_1, e'_2) \not\models {}^{\dagger}_?(\dot{\xi}_1, \dot{\xi}_2)$$

by Lemma 1.0.12 on

(19)

Case $e_2 \not\models {}_{?}^{\dagger} \dot{\xi}_2$.

$$(13) \ e_2 \not\models {}^{\dagger}_? \dot{\xi}_2$$

by assumption

To show that if $e' \in \mathtt{values}((e_1, e_2))$ then $(e_1, e_2) \not\models \dot{?}(\dot{\xi}_1, \dot{\xi}_2)$, we assume $e' \in \mathtt{values}((e_1, e_2))$.

(14)
$$e' \in \mathtt{values}((e_1, e_2))$$

by assumption

By rule induction over Rules (23) on (14).

Case (23a).

(15) (e_1, e_2) val by assumption

Contradicts (1) by Lemma 4.0.11.

Case (23b).

(15) (e_1, e_2) notintro by assumption Contradicts Lemma 4.0.9.

Case (23e).

(15) $e' = (e'_1, e'_2)$ by assumption

(16) $e_2' \in values(e_2)$ by assumption

By rule induction over Rules (23) on (16).

Case (23a).

(17) $e_2' = e_2$ by assumption

(18) $e_2' \not\models {}_{2}^{\dagger} \dot{\xi}_2$ by (17) and (13)

(19) $(e'_1, e'_2) \not\models {}^{\dagger}_{?}(\dot{\xi}_1, \dot{\xi}_2)$ by Lemma 1.0.12 on (18)

Case (23b).

(17) e_2 notintro by assumption

Contradicts (11) by Lemma 4.0.12.

Case (23c), (23d), (23e).

(17) e_2 indet by assumption

Contradicts (11) by Lemma 4.0.11.

Case (19e).

(9) $e = (e_1, e_2)$ by assumption

(10) e_1 val by assumption

(11) e_2 indet by assumption

(12) $e_1 \not\models \frac{\dagger}{?} \dot{\xi}_1$ or $e_2 \not\models \frac{\dagger}{?} \dot{\xi}_2$ by Lemma 1.0.12 on (4)

By case analysis on the disjunction in (12).

Case $e_1 \not\models {}^{\dagger}_{?} \dot{\xi}_1$.

(13) $e_1 \not\models {}_{?}^{\dagger} \dot{\xi}_1$ by assumption

To show that if $e' \in \mathtt{values}((e_1, e_2))$ then $(e_1, e_2) \not\models \dot{?}(\dot{\xi}_1, \dot{\xi}_2)$, we assume $e' \in \mathtt{values}((e_1, e_2))$.

(14) $e' \in values((e_1, e_2))$ by assumption

By rule induction over Rules (23) on (14).

Case (23a).

(15) (e_1, e_2) val by assumption

Contradicts (1) by Lemma 4.0.11.

Case (23b).

(15) (e_1, e_2) notintro by assumption Contradicts Lemma 4.0.9.

Case (23e).

(15) $e' = (e'_1, e'_2)$ by assumption (16) $e'_1 \in \text{values}(e_1)$ by assumption

By rule induction over Rules (23) on (16).

Case (23a).

(17) $e'_{1} = e_{1}$ by assumption (18) $e'_{1} \not\models \dot{\uparrow}\dot{\xi}_{1}$ by (17) and (13) (10) $(e'_{1} e'_{1}) \not\models \dot{\uparrow}(\dot{\xi}_{1} \dot{\xi}_{2})$ by Lemma 1.0.12 e'_{1}

(19) $(e'_1, e'_2) \not\models {}^{\dagger}_{?}(\dot{\xi}_1, \dot{\xi}_2)$ by Lemma 1.0.12 on (18)

Case (23b).

(17) e_1 notintro by assumption

Contradicts (10) by Lemma 4.0.12.

Case (23c), (23d), (23e).

(17) e_1 indet by assumption

Contradicts (10) by Lemma 4.0.11.

Case $e_2 \not\models {}^{\dagger}_{?} \dot{\xi}_2$.

(13) $e_2 \not\models {}_7^{\dagger} \dot{\xi}_2$ by assumption

By rule induction over Rules (14) on (2), only one rule applies.

Case (14g).

(14) \cdot ; $\Delta \vdash e_2 : \tau_2$ by assumption

(15) if $e_2' \in \mathtt{values}(e_2)$ then $e_2' \not\models {}_? \dot{\xi}_2$ by IH on (11) and (14) and (8) and (13)

To show that if $e' \in \mathtt{values}((e_1, e_2))$ then $(e_1, e_2) \not\models \dot{\uparrow}(\dot{\xi}_1, \dot{\xi}_2)$, we assume $e' \in \mathtt{values}((e_1, e_2))$.

(16) $e' \in \mathtt{values}((e_1, e_2))$ by assumption By rule induction over Rules (23) on (16).

Case (23a).

(17) (e_1, e_2) val by assumption Contradicts (1) by Lemma 4.0.11.

Case (23b).

(17) (e_1, e_2) notintro by assumption Contradicts Lemma 4.0.9.

Case (23e).

(17) $e' = (e'_1, e'_2)$ by assumption (18) $e'_2 \in \text{values}(e_2)$ by assumption (19) $e'_2 \not\models \dot{}_{7}\dot{\xi}_{2}$ by (15) on (18)

Case (19f).

(9)
$$e = (e_1, e_2)$$
 by assumption
(10) e_1 indet by assumption
(11) e_2 indet by assumption
(12) $e_1 \not\models \uparrow_? \dot{\xi}_1$ or $e_2 \not\models \uparrow_? \dot{\xi}_2$ by Lemma 1.0.12 on
(4)

By rule induction over Rules (14) on (2), only one rule applies.

Case (14g).

(13) $\cdot ; \Delta \vdash e_1 : \tau_1$ by assumption
(14) $\cdot ; \Delta \vdash e_2 : \tau_2$ by assumption
By case analysis on the disjunction in (12).

Case $e_1 \not\models \uparrow_? \dot{\xi}_1$.

(15) $e_1 \not\models \uparrow_? \dot{\xi}_1$ by assumption
(16) if $e'_1 \in \text{values}(e_1)$ then $e'_1 \not\models \uparrow_? \dot{\xi}_1$ by IH on (10) and (13) and (7) and (15)

To show that if $e' \in \text{values}((e_1, e_2))$ then $(e_1, e_2) \not\models \uparrow_? (\dot{\xi}_1, \dot{\xi}_2)$, we assume $e' \in \text{values}((e_1, e_2))$ by assumption
By rule induction over Rules (23) on (17).

Case (23a).

(18) (e_1, e_2) val by assumption
Contradicts (1) by Lemma 4.0.11.

Case (23b).

(18) (e_1, e_2) not intro by assumption
Contradicts Lemma 4.0.9.

Case (23e).

(18) $e' = (e'_1, e'_2)$ by assumption
(19) $e'_1 \in \text{values}(e_1)$ by assumption
(20) $e'_1 \not\models \uparrow_? \dot{\xi}_1$ by (16) on (19)
(21) $(e'_1, e'_2) \not\models \uparrow_? (\dot{\xi}_1, \dot{\xi}_2)$ by Lemma 1.0.12 on (20)

Case $e_2 \not\models \uparrow_? \dot{\xi}_2$.

(15) $e_2 \not\models \uparrow_? \dot{\xi}_2$ by assumption

(16) if $e_2' \in \mathtt{values}(e_2)$ then $e_2' \not\models {}_?\dot{\xi}_2$

by IH on (11) and (14) and (8) and (15)

To show that if $e' \in \mathtt{values}((e_1, e_2))$ then $(e_1, e_2) \not\models \dot{?}(\dot{\xi}_1, \dot{\xi}_2)$, we assume $e' \in \mathtt{values}((e_1, e_2))$.

(17) $e' \in \mathtt{values}((e_1, e_2))$ by assigning the state of the state

by assumption

By rule induction over Rules (23) on (17).

Case (23a).

(18) (e_1, e_2) val

by assumption

Contradicts (1) by Lemma 4.0.11.

Case (23b).

(18) (e_1, e_2) notintro by assumption

Contradicts Lemma 4.0.9.

Case (23e).

(18) $e' = (e'_1, e'_2)$ by assumption (19) $e'_2 \in \mathtt{values}(e_2)$ by assumption

(20) $e'_2 \not\models {}^{\dagger}_{?} \dot{\xi}_2$ by (16) on (19)

(21) $(e'_1, e'_2) \not\models {}^{\dagger}_{?}(\dot{\xi_1}, \dot{\xi_2})$ by Lemma 1.0.12 on (20)

Case (19i).

(9)
$$e = inl_{\tau_2}(e_1)$$

by assumption

By rule induction over Rules (14) on (2), no rule applies due to syntactic contradiction.

Case (19j).

(9)
$$e = inr_{\tau_1'}(e_2)$$

by assumption

and (7) and (10)

By rule induction over Rules (14) on (2), no rule applies due to syntactic contradiction.

Case (1g).

(5) $\dot{\xi} = \dot{\xi}_1 \vee \dot{\xi}_2$ by assumption (6) $\dot{\xi}_1 : \tau_1$ by assumption (7) $\dot{\xi}_2 : \tau_2$ by assumption (8) $e \not\models {}_{2}^{\dagger} \dot{\xi}_{1} \lor \dot{\xi}_{2}$ by assumption (9) $e \not\models {}^{\dagger}_{?} \dot{\xi}_{1}$ by Lemma 1.0.9 on (8)(10) $e \not\models {}_{?}^{\dagger} \dot{\xi}_{2}$ by Lemma 1.0.9 on (8)(11) if $e' \in \text{values}(e)$ then $e' \not\models \frac{\dagger}{2} \dot{\xi}_1$ by IH on (1) and (2)and (6) and (9) (12) if $e' \in \mathtt{values}(e)$ then $e' \not\models {}^{\dagger}_{2} \dot{\xi}_{2}$ by IH on (1) and (2)

To show that if $e' \in \mathtt{values}(e)$ then $e' \not\models {}^\dagger_? \dot{\xi}_1 \lor \dot{\xi}_2$, we assume $e' \in \mathtt{values}(e)$.

$$\begin{array}{lll} (13) & e' \in \mathtt{values}(e) & \text{by assumption} \\ (14) & e' \not \models \frac{\dag}{?} \dot{\xi}_1 & \text{by (11) on (13)} \\ (15) & e' \not \models \frac{\dag}{?} \dot{\xi}_2 & \text{by (12) on (13)} \\ (16) & e' \not \models \frac{\dag}{?} \dot{\xi}_1 \lor \dot{\xi}_2 & \text{by Lemma 1.0.9 on} \\ (14) & \text{and (15)} \\ \end{array}$$

 $\theta:\Gamma$ θ is of type Γ

STEmpty
$$\overline{\emptyset : \cdot}$$
 (24a)

STExtend $\frac{\theta: \Gamma_{\theta} \qquad \Gamma; \Delta \vdash e: \tau}{\theta, x/e: \Gamma_{\theta}, x: \tau}$ (24b)

p refutable? p is refutable

 $\frac{\text{RNum}}{n \text{ refutable}_?} \tag{25a}$

REHole $\frac{}{\left(\!\!\left(\!\!\right)^w \text{ refutable}\!\right)^2} \tag{25b}$

RHole (25c)

 $\overline{(\![p]\!]_{\tau}^w \text{ refutable}_?} \tag{25c}$

 $\frac{\text{RInl}}{\text{inl}(p) \text{ refutable}?} \tag{25d}$

 $\frac{\text{RInr}}{\text{inr}(p) \text{ refutable}_?} \tag{25e}$

RPairL p_1 refutable? (25f)

 $\frac{p_1 \text{ refutable}_?}{(p_1, p_2) \text{ refutable}_?} \tag{25f}$

RPairR $\frac{p_2 \text{ refutable}_?}{(p_1, p_2) \text{ refutable}_?}$ (25g)

 $e > p \dashv \theta$ e matches p, emitting θ

$$\frac{\text{MVar}}{e \rhd x \dashv e/x} \tag{26a}$$

MWild

$$\frac{1}{e \rhd _{-} \dashv |\cdot|}.$$
(26b)

MNum

$$\underline{\underline{n} \rhd \underline{n} \dashv \cdot} \tag{26c}$$

MPair

$$\frac{e_1 \rhd p_1 \dashv \theta_1}{(e_1, e_2) \rhd (p_1, p_2) \dashv \theta_1 \uplus \theta_2}$$

$$(26d)$$

MInl

$$\frac{e \rhd p \dashv \theta}{\operatorname{inl}_{\tau}(e) \rhd \operatorname{inl}(p) \dashv \theta} \tag{26e}$$

MInr

$$\frac{e \rhd p \dashv \theta}{\operatorname{inr}_{\tau}(e) \rhd \operatorname{inr}(p) \dashv \theta} \tag{26f}$$

MNotIntroPair

$$\frac{e \text{ notintro}}{e \mid prl(e) \mid p_1 \mid \mid \theta_1 \quad prr(e) \mid p_2 \mid \mid \theta_2}{e \mid p(p_1, p_2) \mid \mid \theta_1 \mid \mid \theta_2}$$
 (26g)

e?p e may match p

$${\bf MMEHole}$$

$$\overline{e? (\!\!)^w}$$
 (27a)

MMHole

$$\frac{e?(p)_{\tau}^{w}}{e}$$

MMNotIntro

$$\frac{e \text{ notintro} \qquad p \text{ refutable}_?}{e ? p} \tag{27c}$$

MMPairL

$$\frac{e_1?p_1 \qquad e_2 \rhd p_2 \dashv \theta_2}{(e_1, e_2)?(p_1, p_2)}$$
 (27d)

 $\operatorname{MMPairR}$

$$\frac{e_1 \rhd p_1 \dashv \mid \theta_1 = e_2 ? p_2}{(e_1, e_2) ? (p_1, p_2)}$$
(27e)

MMPair

$$\frac{e_1?p_1 - e_2?p_2}{(e_1, e_2)?(p_1, p_2)}$$
 (27f)

$$\frac{\text{MMInl}}{e? p} \frac{e? p}{\text{inl}_{\tau}(e)? \text{inl}(p)}$$
 (27g)

$$\frac{\text{MMInr}}{e? p} \frac{e? p}{\text{inr}_{\tau}(e)? \text{inr}(p)}$$
 (27h)

 $e \perp p$ e does not match p

NMNum
$$\frac{n_1 \neq n_2}{n_1 \perp n_2} \tag{28a}$$

 ${\bf NMPairL}$

$$\frac{e_1 \perp p_1}{(e_1, e_2) \perp (p_1, p_2)} \tag{28b}$$

NMPairR

$$\frac{e_2 \perp p_2}{(e_1, e_2) \perp (p_1, p_2)} \tag{28c}$$

 ${\rm NMConfL}$

$$\frac{-}{\operatorname{inr}_{\tau}(e) \perp \operatorname{inl}(p)} \tag{28d}$$

 ${\rm NMConfR}$

$$\frac{}{\operatorname{inl}_{\tau}(e) \perp \operatorname{inr}(p)} \tag{28e}$$

NMInl

$$\frac{e \perp p}{\operatorname{inr}_{\tau}(e) \perp \operatorname{inl}(p)} \tag{28f}$$

NMInr

$$\frac{e \perp p}{\operatorname{inl}_{\tau}(e) \perp \operatorname{inr}(p)} \tag{28g}$$

 $e \mapsto e'$ e takes a step to e'

ITApFun

$$\frac{e_1 \mapsto e_1'}{e_1(e_2) \mapsto e_1'(e_2)} \tag{29b}$$

ITApArg
$$\frac{e_1 \text{ val} \qquad e_2 \mapsto e_2'}{e_1(e_2) \mapsto e_1(e_2')} \tag{29c}$$

ITAP

$$\frac{e_2 \text{ val}}{(\lambda x : \tau.e_1)(e_2) \mapsto [e_2/x]e_1} \tag{29d}$$

ITPairL
$$\frac{e_1 \mapsto e_1'}{(e_1, e_2) \mapsto (e_1', e_2)}$$
(29e)

$$ITPairR$$

$$\frac{e_1 \text{ val} \qquad e_2 \mapsto e_2'}{(e_1, e_2) \mapsto (e_1, e_2')} \tag{29f}$$

$$\frac{(e_1, e_2) \text{ final}}{\text{prl}((e_1, e_2)) \mapsto e_1} \tag{29g}$$

$$\frac{(e_1, e_2) \text{ final}}{\text{prr}((e_1, e_2)) \mapsto e_2} \tag{29h}$$

ITInl

$$\frac{e \mapsto e'}{\operatorname{inl}_{\tau}(e) \mapsto \operatorname{inl}_{\tau}(e')} \tag{29i}$$

$$\frac{e \mapsto e'}{\operatorname{inr}_{\tau}(e) \mapsto \operatorname{inr}_{\tau}(e')} \tag{29j}$$

ITExpMatch

$$\frac{e \mapsto e'}{\mathtt{match}(e)\{\hat{rs}\} \mapsto \mathtt{match}(e')\{\hat{rs}\}}$$
(29k)

ITSuccMatch

$$\frac{e \text{ final}}{\text{match}(e)\{rs_{pre} \mid (p_r \Rightarrow e_r) \mid rs_{post}\} \mapsto [\theta](e_r)}$$
 (291)

ITFailMatch

$$\frac{e \; \mathtt{final} \qquad e \perp p_r}{\mathtt{match}(e) \{ rs \mid (p_r \Rightarrow e_r) \mid (r' \mid rs') \} \mapsto \mathtt{match}(e) \{ (rs \mid (p_r \Rightarrow e_r) \mid \cdot)^{\diamond} \mid r' \mid rs' \}} \tag{29m}$$

Lemma 4.0.3. If $\operatorname{inl}_{\tau_2}(e_1)$ final $\operatorname{then} e_1$ final.

Proof. By rule induction over Rules (20) on $\operatorname{inl}_{\tau_2}(e_1)$ final.

Case (20a).

(17)
$$\operatorname{inl}_{\tau_2}(e_1)$$
 val by assumption

By rule induction over Rules (18) on (17), only one case applies.

Case (18d).

(18)
$$e_1$$
 val by assumption
(19) e_1 final by Rule (20a) on (18)

Case (20b).

$$(17)$$
 $\operatorname{inl}_{\tau_2}(e_1)$ indet

by assumption

By rule induction over Rules (19) on (17), only one case applies.

Case (19i).

(18) e_1 indet

by assumption

(19) e_1 final

by Rule (20b) on (18)

Lemma 4.0.4. If $inr_{\tau_1}(e_2)$ final then e_2 final.

Proof. By rule induction over Rules (20) on $\operatorname{inr}_{\tau_1}(e_2)$ final.

Case (20a).

(1) $\operatorname{inr}_{\tau_1}(e_2)$ val

by assumption

By rule induction over Rules (18) on (1), only one case applies.

Case (18d).

(2) e_2 val

by assumption

(3) e_2 final

by Rule (20a) on (2)

Case (20b).

(1) $\operatorname{inr}_{\tau_1}(e_2)$ indet

by assumption

By rule induction over Rules (19) on (1), only one case applies.

Case (19i).

(2) e_2 indet

by assumption

(3) e_2 final

by Rule (20b) on (2)

Lemma 4.0.5. If (e_1, e_2) final then e_1 final and e_2 final.

Proof. By rule induction over Rules (20) on (e_1, e_2) final.

Case (20a).

 $(1) (e_1, e_2)$ val

by assumption

By rule induction over Rules (18) on (1), only one case applies.

Case (18c).

(2) e_1 val	by assumption
(3) e_2 val	by assumption
(4) e_1 final	by Rule $(20a)$ on (2)
(5) e_2 final	by Rule $(20a)$ on (3)
Case (20b).	
(1) (e_1,e_2) indet	by assumption
By rule induction over Rules (19) on	(1), only three cases apply.
Case (19d).	
(2) e_1 indet	by assumption
(3) e_2 val	by assumption
(4) e_1 final	by Rule $(20b)$ on (2)
(5) e_1 final	by Rule $(20a)$ on (3)
Case (19e).	
(2) e_1 val	by assumption
(3) e_2 indet	by assumption
$\stackrel{\smile}{(4)}$ e_1 final	by Rule (20a) on (2)
(5) e_1 final	by Rule (20b) on (3)
Case (19f).	
(2) e_1 indet	by assumption
$\stackrel{\textstyle \cdot}{(3)}$ e_2 indet	by assumption
(4) e_1 final	by Rule $(20b)$ on (2)
(5) e_1 final	by Rule $(20b)$ on (3)
Lemma 4.0.6. There doesn't exist \underline{n} such	$that \ \underline{n} \ ext{notintro}.$
<i>Proof.</i> By rule induction over Rules (21) on syntactic contradiction.	\underline{n} not intro, no case applies due to $\hfill\Box$
Lemma 4.0.7. There doesn't exist $\operatorname{inl}_{\tau}(e)$	$such\ that\ {\tt inl}_{ au}(e)\ {\tt notintro}.$
<i>Proof.</i> By rule induction over Rules (21) or due to syntactic contradiction.	$\operatorname{inl}_{\tau}(e)$ notintro, no case applies \Box
Lemma 4.0.8. There doesn't exist $inr_{\tau}(e)$	$such\ that\ {\tt inr}_{\tau}(e)\ {\tt notintro}.$
<i>Proof.</i> By rule induction over Rules (21) or due to syntactic contradiction.	$\operatorname{inr}_{\tau}(e)$ notintro, no case applies \Box

Lemma 4.0.9. There doesn't exist (e_1,e_2) such that (e_1,e_2) notintro.

Proof. By rule induction over Rules (21) on (e_1, e_2) notintro, no case applies due to syntactic contradiction.

Lemma 4.0.10. If e final and e notintro then e indet.

Proof Sketch. By rule induction over Rules (21) on e notintro, for each case, by rule induction over Rules (18) on e val and we notice that e val is not derivable. By rule induction over Rules (20) on e final, Rule (20a) result in a contradiction with the fact that e val is not derivable while Rule (20b) tells us e indet.

Lemma 4.0.11. There doesn't exist such an expression e such that both e val and e indet.

Lemma 4.0.12. There doesn't exist such an expression e such that both e val and e notintro.

Lemma 4.0.13 (Finality). There doesn't exist such an expression e such that both e final and $e \mapsto e'$ for some e'

Proof. Assume there exists such an e such that both e final and $e \mapsto e'$ for some e' then proof by contradiction.

By rule induction over Rules (20) and Rules (29), *i.e.*, over Rules (18) and Rules (29) and over Rules (19) and Rules (29) respectively. The proof can be done by straightforward observation of syntactic contradictions. \Box

Lemma 4.0.14 (Matching Determinism). If e final $and \cdot ; \Delta_e \vdash e : \tau$ and $p : \tau[\xi] \dashv \Gamma ; \Delta$ then exactly one of the following holds

1. $e \triangleright p \dashv \theta$ for some θ

2. e?p

3. $e \perp p$

Proof.

(1) e final by assumption

(2) \cdot ; $\Delta_e \vdash e : \tau$ by assumption

(3) $p:\tau[\xi]\dashv \Gamma;\Delta$ by assumption

By rule induction over Rules (15) on (3), we would show one conclusion is derivable while the other two are not.

Case (15a).

(4) p = x by assumption

(5) $e \triangleright x \dashv e/x$ by Rule (26a)

Assume e? x. By rule induction over Rules (27) on it, only one case applies.

Case (27c).

(6) $x \text{ refutable}_?$

by assumption

By rule induction over Rules (25) on (6), no case applies due to syntactic contradiction.

 $(7) e^{2}x$

by contradiction

Assume $e \perp x$. By rule induction over Rules (28) on it, no case applies due to syntactic contradiction.

(8) e±x

by contradiction

Case (15b).

(4) $p = _{-}$

by assumption

(5) $e > \dashv$.

by Rule (26b)

Assume e? _. By rule induction over Rules (27) on it, only one case applies.

Case (27c).

(6) refutable?

by assumption

By rule induction over Rules (25) on (6), no case applies due to syntactic contradiction.

 $(7) e^{2}$

by contradiction

Assume $e \perp$ _. By rule induction over Rules (28) on it, no case applies due to syntactic contradiction.

(8) et_

by contradiction

Case (15c).

(4) $p = ()^w$

by assumption

(5) $e ? ()^w$

by Rule (27a)

Assume $e \rhd \oplus^w \dashv \theta$ for some θ . By rule induction over Rules (27) on it, no case applies due to syntactic contradiction.

(6) $e \triangleright \bigoplus^{w} \exists \theta$

by contradiction

Assume $e \perp \emptyset^w$. By rule induction over Rules (28) on it, no case applies due to syntactic contradiction.

$$(7) e \downarrow \oplus w$$

by contradiction

Case (15d).

(4)
$$p = (p_0)_{\tau'}^w$$
 by assumption
(5) $e ? (p_0)_{\tau'}^w$ by Rule (27b)

Assume $e \rhd (p_0)_{\tau'}^w \dashv \theta$ for some θ . By rule induction over Rules (27) on it, no case applies due to syntactic contradiction.

(6)
$$e \triangleright (p_0)^{\underline{w}} \dashv \theta$$

by contradiction

Assume $e \perp (p_0)_{\tau'}^w$. By rule induction over Rules (28) on it, no case applies due to syntactic contradiction.

(7)
$$e \perp p_0 p_{\tau'}^{\omega}$$

by contradiction

Case (15e).

$$\begin{array}{ll} \text{(4)} & p = \underline{n_2} & \text{by assumption} \\ \text{(5)} & \tau = \text{num} & \text{by assumption} \\ \text{(6)} & \xi = \underline{n_2} & \text{by assumption} \\ \text{(7)} & \underline{n_2} \text{ refutable}_? & \text{by Rule (25a)} \\ \end{array}$$

By rule induction over Rules (14) on (2), the following cases apply.

Case (14b),(14c),(14f),(14h),(14i),(14l),(14m).

$$(8) \ e = \emptyset^u, \langle e_0 \rangle^u, e_1(e_2), \operatorname{prl}(e_0), \operatorname{prr}(e_0), \operatorname{match}(e_0) \{ \hat{rs} \}$$
 by assumption
$$(9) \ e \ \operatorname{notintro} \qquad \qquad \operatorname{by \ Rule}$$

$$(21a), (21b), (21c), (21d), (21e), (21f)$$

$$(10) \ e ? \underline{n_2} \qquad \qquad \operatorname{by \ Rule} \ (6i) \ \operatorname{on} \ (7) \ \operatorname{and}$$

$$(9)$$

Assume $e
ightharpoonup \underline{n_2} \dashv \theta$ for some θ . By rule induction over it, no case applies due to syntactic contradiction.

(11)
$$e \triangleright n_2 + \theta$$
 by contradiction

Assume $e \perp \underline{n_2}$. By rule induction over it, no case applies due to syntactic contradiction.

(12)
$$e \perp n_2$$
 by contradiction

Case (14d).

(8)
$$e = n_1$$

Assume $\underline{n_1}$? $\underline{n_2}$. By rule induction over Rules (27) on it, only two cases apply.

Case (27c).

(9) $\underline{n_1}$ notintro

by assumption

Contradicts Lemma 4.0.6.

$$(10) \ \underline{n_1 ? n_2}$$

by contradiction

By case analysis on whether $n_1 = n_2$.

Case $n_1 = n_2$.

(11) $n_1 = n_2$ by assumption

(12) $\underline{n_1} \rhd \underline{n_2} \dashv \cdot$ by Rule (26c)

Assume $\underline{n_1} \perp \underline{n_2}$. By rule induction over Rules (28) on it, only one case applies.

Case (28a).

(13) $n_1 \neq n_2$ by assumption

Contradicts (11).

(14)
$$n_1 \perp n_2$$
 by contradiction

Case $n_1 \neq n_2$.

(11) $n_1 \neq n_2$ by assumption

(12) $n_1 \perp n_2$ by Rule (28a) on (11)

Assume $\underline{n_1} \rhd \underline{n_2} \dashv \theta$ for some θ . By rule induction over Rules (26) on it, no case applies due to syntactic contradiction.

(13) $n_1 \triangleright n_2 \dashv \theta$ by contradiction

$$\begin{array}{ll} (4) \ \ p = \mathtt{inl}(p_1) & \text{by assumption} \\ (5) \ \ \tau = (\tau_1 + \tau_2) & \text{by assumption} \\ (6) \ \ \xi = \mathtt{inl}(\xi_1) & \text{by assumption} \\ (7) \ \ p_1 : \tau_1[\xi_1] \dashv \Gamma \,; \Delta & \text{by assumption} \\ (8) \ \ \mathtt{inl}(p_1) \ \ \mathtt{refutable}_? & \text{by Rule } (25\mathtt{d}) \\ \end{array}$$

By rule induction over Rules (14) on (2), the following cases apply.

Case (14b),(14c),(14f),(14h),(14i),(14l),(14m).

$$(9) \ e = (\!()^u, (\!(e_0)\!)^u, e_1(e_2), \mathtt{prl}(e_0), \mathtt{prr}(e_0), \mathtt{match}(e_0) \{\hat{rs}\}$$

by assumption

(10)
$$e$$
 notintro by Rule

(11)
$$e$$
? $inl(p_1)$ by Rule (6i) on (8) and (10)

Assume $e \triangleright \text{inl}(p_1) \dashv \theta_1$ for some θ_1 . By rule induction over it, no case applies due to syntactic contradiction.

(12)
$$e \triangleright \operatorname{inl}(p_1) \dashv \overline{\theta_1}$$
 by contradiction

Assume $e \perp \text{inl}(p_1)$. By rule induction over it, no case applies due to syntactic contradiction.

(13)
$$e \perp int(p_1)$$
 by contradiction

Case (14j).

 $\begin{array}{ll} (9) & e=\mathtt{inl}_{\tau_2}(e_1) & \text{by assumption} \\ (10) & \cdot \; ; \Delta_e \vdash e_1 : \tau_1 & \text{by assumption} \\ (11) & e_1 \; \mathtt{final} & \text{by Lemma 4.0.3 on (1)} \end{array}$

By inductive hypothesis on (10) and (11) and (7), exactly one of $e_1 \rhd p_1 \dashv \theta_1$ for some θ_1 , e_1 ? p_1 , and $e_1 \perp p_1$ holds. By case analysis on which one holds.

Case $e_1 \triangleright p_1 \dashv \theta_1$.

 $\begin{array}{lll} (12) & e_1 \rhd p_1 \dashv l \theta_1 & \text{by assumption} \\ (13) & e_1 \not \sim p_1 & \text{by assumption} \\ (14) & e_1 \not \sim p_1 & \text{by assumption} \\ \end{array}$

(15) $\operatorname{inl}_{\tau_2}(e_1) \rhd \operatorname{inl}(p_1) \dashv \theta_1$ by Rule (26e) on (12)

Assume $\operatorname{inl}_{\tau_2}(e_1)$? $\operatorname{inl}(p_1)$. By rule induction over Rules (27) on it, only two cases apply.

Case (27c).

(16) $\operatorname{inl}_{\tau_2}(e_1)$ notintro by assumption Contradicts Lemma 4.0.7.

Case (27g).

(16) $e_1 ? p_1$ by assumption Contradicts (13).

(17)
$$\operatorname{inl}_{\tau_2}(e_1)$$
? $\operatorname{inl}(p_1)$ by contradiction

Assume $\operatorname{inl}_{\tau_2}(e_1) \perp \operatorname{inl}(p_1)$. By rule induction over Rules (28) on it, only one case applies.

Case (28f).

(18) $e_1 \perp p_1$ by assumption Contradicts (14).

(19)
$$\operatorname{inl}_{\tau_2}(e_1) + \operatorname{inl}(p_1)$$
 by contradiction

Case $e_1 ? p_1$.

(12) $e_1 \triangleright p_1 + \theta_1$ by assumption

(13)
$$e_1 ? p_1$$
 by assumption (14) $e_1 \checkmark p_1$ by assumption

(15)
$$\operatorname{inl}_{\tau_2}(e_1)$$
? $\operatorname{inl}(p_1)$ by Rule (27g) on (13)

Assume $\operatorname{inl}_{\tau_2}(e_1) \rhd \operatorname{inl}(p_1) \dashv \theta$ for some θ . By rule induction over Rules (26) on it, only one case applies.

Case (26e).

(16)
$$e_1 \triangleright p_1 \dashv \theta$$
 by assumption Contradicts (12).

(17)
$$\operatorname{inl}_{\tau_2}(e_1) \triangleright \operatorname{inl}(p_1) \dashv \theta$$
 by contradiction

Assume $\operatorname{inl}_{\tau_2}(e_1) \perp \operatorname{inl}(p_1)$. By rule induction over Rules (28) on it, only one case applies.

Case (28f).

(18)
$$e_1 \perp p_1$$
 by assumption Contradicts (14).

(19)
$$\operatorname{inl}_{\tau_2}(e_1) \pm \operatorname{inl}(p_1)$$
 by contradiction

Case $e_1 \perp p_1$.

(12)
$$e_1 \triangleright p_1 \dashv \theta_1$$
 by assumption
(13) $e_1 \stackrel{?}{\cdot} p_1$ by assumption
(14) $e_1 \perp p_1$ by assumption
(15) $\operatorname{inl}_{72}(e_1) \perp \operatorname{inl}(p_1)$ by Rule (28f) on (14)

Assume $\operatorname{inl}_{\tau_2}(e_1) \rhd \operatorname{inl}(p_1) \dashv \theta$ for some θ . By rule induction over Rules (26) on it, only one case applies.

Case (26e).

(16)
$$e_1 \triangleright p_1 \dashv \theta$$
 by assumption Contradicts (12).

(17)
$$\operatorname{inl}_{\tau_2}(e_1) \rightarrow \operatorname{inl}(p_1) \dashv \theta$$
 by contradiction

Assume $\operatorname{inl}_{\tau_2}(e_1)$? $\operatorname{inl}(p_1)$. By rule induction over Rules (27) on it, only two cases apply.

Case (27c).

(18)
$$\operatorname{inl}_{\tau_2}(e_1)$$
 notintro by assumption Contradicts Lemma 4.0.7.

Case (27g).

(18)
$$e_1 ? p_1$$
 by assumption Contradicts (13).

(19)
$$\underline{\operatorname{inl}_{\tau_2}(e_1) ? \operatorname{inl}(p_1)}$$
 by contradiction

Case (15g).

$(4) \ p = \mathtt{inr}(p_2)$	by assumption
(5) $\tau = (\tau_1 + \tau_2)$	by assumption
$(6) \ \xi = \mathtt{inr}(\xi_2)$	by assumption
$(7) p_2: \tau_2[\xi_2] \dashv \Gamma \; ; \; \Delta$	by assumption
(8) $inr(p_2)$ refutable?	by Rule (25e)

By rule induction over Rules (14) on (2), the following cases apply.

Case (14b),(14c),(14f),(14h),(14i),(14l),(14m).

(9)
$$e = \{ \| u, \| e_0 \|^u, e_1(e_2), \text{prl}(e_0), \text{prr}(e_0), \text{match}(e_0) \} \}$$
 by assumption

l--- D--1-

(10) e notintro by Rule

(21a),(21b),(21c),(21d),(21e),(21f)

(11) e? $inr(p_2)$ by Rule (6i) on (8) and (10)

Assume $e \triangleright \operatorname{inr}(p_2) \dashv \theta_2$ for some θ_2 . By rule induction over it, no case applies due to syntactic contradiction.

(12)
$$e \triangleright \operatorname{inr}(p_2) \dashv \theta_2$$
 by contradiction

Assume $e \perp inr(p_2)$. By rule induction over it, no case applies due to syntactic contradiction.

(13)
$$e \perp inr(p_2)$$
 by contradiction

Case (14k).

(9) $e = \operatorname{inr}_{\tau_1}(e_2)$ by assumption (10) \cdot ; $\Delta_e \vdash e_2 : \tau_2$ by assumption (11) e_2 final by Lemma 4.0.4 on (1)

By inductive hypothesis on (10) and (11) and (7), exactly one of $e_2 \rhd p_2 \dashv \mid \theta_2$ for some θ_2 , $e_2 ? p_2$, and $e_2 \perp p_2$ holds. By case analysis on which one holds.

Case $e_2 > p_2 \dashv \theta_2$.

 $\begin{array}{ll} (12) \ e_2 \rhd p_2 \dashv \theta_2 & \text{by assumption} \\ (13) \ \underline{e_2} \not \sim p_2 & \text{by assumption} \\ (14) \ \underline{e_2} \not \sim p_2 & \text{by assumption} \end{array}$

(15) $\operatorname{inr}_{\tau_1}(e_2) \rhd \operatorname{inr}(p_2) \dashv \theta_2$ by Rule (26f) on (12)

Assume $\operatorname{inr}_{\tau_1}(e_2)$? $\operatorname{inr}(p_2)$. By rule induction over Rules (27) on it, only two cases apply.

Case (27c).

(16) $\operatorname{inr}_{\tau_1}(e_2)$ notintro by assumption Contradicts Lemma 4.0.8.

Case (27h).

(16)
$$e_2$$
? p_2 by assumption Contradicts (13).

(17)
$$\inf_{\tau_1} (e_2)$$
? $\inf(p_2)$ by contradiction

Assume $\operatorname{inr}_{\tau_1}(e_2) \perp \operatorname{inr}(p_2)$. By rule induction over Rules (28) on it, only one case applies.

Case (28g).

(18)
$$e_2 \perp p_2$$
 by assumption Contradicts (14).

(19)
$$\operatorname{inr}_{\tau_1}(e_2) \pm \operatorname{inr}(p_2)$$
 by contradiction

Case $e_2 ? p_2$.

$$\begin{array}{lll} (12) & \underline{e_2} \triangleright p_2 \dashv \theta & \text{by assumption} \\ (13) & e_2 ? p_2 & \text{by assumption} \\ (14) & \underline{e_2} \not p_2 & \text{by assumption} \\ (15) & \inf_{\tau_1}(e_2) ? \inf(p_2) & \text{by Rule (27h) on (13)} \end{array}$$

Assume $\operatorname{inr}_{\tau_1}(e_2) \rhd \operatorname{inr}(p_2) \dashv \theta$ for some θ . By rule induction over Rules (26) on it, only one case applies.

Case (26f).

(16)
$$e_2 \triangleright p_2 \dashv \theta$$
 by assumption Contradicts (12).

(17)
$$\operatorname{inr}_{\tau_1}(e_2)
ightharpoonup \operatorname{inr}(p_2) \dashv \theta$$
 by contradiction Assume $\operatorname{inr}_{\tau_1}(e_2) \perp \operatorname{inr}(p_2)$. By rule induction over Rules (28) on it, only one case applies.

Case (28g).

(18)
$$e_2 \perp p_2$$
 by assumption Contradicts (14).

(19)
$$\operatorname{inr}_{\tau_1}(e_2) \pm \operatorname{inr}(p_2)$$
 by contradiction

Case $e_2 \perp p_2$.

(12)
$$e_2
ightharpoonup p_2 \dashv \theta$$
 by assumption
(13) $e_2
ightharpoonup p_2$ by assumption
(14) $e_2 \perp p_2$ by assumption
(15) $\operatorname{inr}_{\tau_1}(e_2) \perp \operatorname{inr}(p_2)$ by Rule (28g) on (14)

Assume $\operatorname{inr}_{\tau_1}(e_2) \rhd \operatorname{inr}(p_2) \dashv \theta$ for some θ . By rule induction over Rules (26) on it, only one case applies.

Case (26f).

(16)
$$e_2 \triangleright p_2 \dashv \theta$$
 by assumption Contradicts (12).

(17)
$$\operatorname{inr}_{\tau_1}(e_2) \supset \operatorname{inr}(p_2) \dashv \theta$$
 by contradiction

Assume $\operatorname{inr}_{\tau_1}(e_2)$? $\operatorname{inr}(p_2)$. By rule induction over Rules (27) on it, only two cases apply.

Case (27c).

(18) $\operatorname{inr}_{\tau_1}(e_2)$ notintro by assumption Contradicts Lemma 4.0.8.

Case (27h).

(18) $e_2 ? p_2$ by assumption

Contradicts (13).

(19)
$$\operatorname{inr}_{\tau_1}(e_2)$$
? $\operatorname{inr}(p_2)$ by contradiction

Case (15h).

$$(4) \ \ p = (p_1, p_2) \qquad \qquad \text{by assumption}$$

$$(5) \ \ \tau = (\tau_1 \times \tau_2) \qquad \qquad \text{by assumption}$$

$$(6) \ \ \xi = (\xi_1, \xi_2) \qquad \qquad \text{by assumption}$$

$$(7) \ \ \Gamma = \Gamma_1 \uplus \Gamma_2 \qquad \qquad \text{by assumption}$$

$$(8) \ \ \Delta = \Delta_1 \uplus \Delta_2 \qquad \qquad \text{by assumption}$$

$$(9) \ \ p_1 : \tau_1[\xi_1] \dashv \Gamma_1 ; \Delta_1 \qquad \qquad \text{by assumption}$$

$$(10) \ \ p_2 : \tau_2[\xi_2] \dashv \Gamma_2 ; \Delta_2 \qquad \qquad \text{by assumption}$$

By rule induction over Rules (14) on (2), the following cases apply.

Case (14b),(14c),(14f),(14h),(14i),(14l),(14m).

$$(11) \ e = (\!)^u, (\![e_0]\!]^u, e_1(e_2), \mathtt{prl}(e_0), \mathtt{prr}(e_0), \mathtt{match}(e_0) \{\hat{rs}\}$$
 by assumption

(12) e notintro by Rule

(21a),(21b),(21c),(21d),(21e),(21f)

(13) e indet by Lemma 4.0.10 on

(1) and (12)

 (14) prl(e) indet
 by Rule (19g) on (13)

 (15) prl(e) final
 by Rule (20b) on (14)

 (16) prr(e) indet
 by Rule (19h) on (13)

 (17) prr(e) final
 by Rule (20b) on (16)

 (18) \cdot ; $\Delta \vdash prl(e) : \tau_1$ by Rule (14h) on (2)

 (19) \cdot ; $\Delta \vdash prr(e) : \tau_2$ by Rule (14i) on (2)

Assume $e \perp (p_1, p_2)$. By rule induction on it, no case applies due to syntactic contradiction.

(20)
$$e \perp (p_1, p_2)$$
 by contradiction

By inductive hypothesis on (15) and (18) and (9), exactly one of $\operatorname{prl}(e) \rhd p_1 \dashv \theta_1, \operatorname{prl}(e) ? p_1, \text{ and } \operatorname{prl}(e) \perp p_1 \text{ holds.}$

By inductive hypothesis on (17) and (19) and (10), exactly one of $\operatorname{prr}(e) \rhd p_2 \dashv \theta_2, \operatorname{prr}(e) ? p_2, \text{ and } \operatorname{prr}(e) \perp p_2 \text{ holds.}$

By case analysis on which conclusion holds for p_1 and p_2 . Note that we have already shown $e \perp (p_1, p_2)$.

Case $prl(e) \rhd p_1 \dashv \theta_1, prr(e) \rhd p_2 \dashv \theta_2$.

$(21) \ \operatorname{prl}(e) \rhd p_1 \dashv \theta_1$	by assumption
$(22) \ \underline{\mathtt{prl}(e)?p_1}$	by assumption
(23) $\underline{\operatorname{prl}(e) \pm p_1}$	by assumption
(24) $\operatorname{prr}(e) \rhd p_2 \dashv \theta_2$	by assumption
$(25) \ \underline{\operatorname{prr}(e)?p_2}$	by assumption
(26) $\operatorname{prr}(e) \perp p_2$	by assumption

by Rule (26g) on (12) and (21) and (24)

Assume $e?(p_1, p_2)$. By rule induction over Rules (27) on it, only one case applies.

Case (27c).

(28) (p_1, p_2) refutable? by assumption By rule induction over Rules (25), only two cases apply.

Case (25f).

(29) p_1 refutable?	by assumption
(30) $prl(e)$ notintro	by Rule (21e)
(31) $prl(e) ? p_1$	by Rule (27c) on (29)
	and (30)

Contradicts (22).

Case (25g).

(29) p_2 refutable? by assumption (30) prr(e) notintro by Rule (21f) (31) $prl(e) ? p_1$ by Rule (27c) on (29)

and (30)

Contradicts (22).

(32) $e?(p_1,p_2)$ by contradiction

Case $prl(e) \triangleright p_1 \dashv \theta_1, prr(e) ? p_2.$

$(21) \ \mathtt{prl}(e) \rhd p_1 \dashv\!\!\dashv\!\! \theta_1$	by assumption
(22) $prl(e) ? p_1$	by assumption
(23) $\operatorname{prl}(e) \perp p_1$	by assumption
(24) $prr(e) \rightarrow p_2 \dashv \overline{\theta_2}$	by assumption
$(25) \ prr(e) ? p_2$	by assumption
(26) $\operatorname{prr}(e) \perp p_2$	by assumption

Assume $e \rhd (p_1, p_2) \dashv \theta$. By rule induction over Rules (26), only one case applies.

Case (26g).

- (27) $\theta = \theta_1 \uplus \theta_2$ by assumption (28) $prr(e) \rhd p_2 \dashv \theta_2$ by assumption
- Contradicts (24).

(29)
$$e \triangleright (p_1, p_2) \dashv \theta$$
 by contradiction

By rule induction over Rules (27) on (25), the following cases apply.

Case (27a),(27b).

- (30) $p_2 = \langle \rangle^w, \langle p \rangle^w_{\tau'}$ by assumption
- (31) p_2 refutable? by Rule (25b) and Rule (25c)
- (32) (p_1, p_2) refutable? by Rule (25g) on (31)
- (33) e? (p_1, p_2) by Rule (27c) on (12) and (32)

Case (27c).

- (30) p_2 refutable? by assumption
- (31) (p_1, p_2) refutable? by Rule (25g) on (30)
- (32) $e ? (p_1, p_2)$ by Rule (27c) on (12) and (31)

Case $prl(e) \triangleright p_1 \dashv \theta_1, prr(e) \perp p_2$.

- (21) $prl(e) \triangleright p_1 \dashv \theta_1$ by assumption
- (22) $pr1(e) ? p_1$ by assumption
- (23) $prl(e) \perp p_1$ by assumption (24) $prr(e) \rightarrow p_2 \dashv \theta_2$ by assumption
- (25) prr(e); p_2 by assumption
- (26) $prr(e) \perp p_2$ by assumption

By rule induction over Rules (28) on (26), no case applies due to syntactic contradiction.

Therefore, vacuously true.

Case prl(e) ? $p_1, prr(e) \rhd p_2 \dashv \theta_2$.

(21) $\underline{\mathtt{prl}(e)} \Rightarrow p_1 \dashv \theta_1$ by assumption (22) $\underline{\mathtt{prl}(e)} ? p_1$ by assumption (23) $\underline{\mathtt{prl}(e)} \perp p_1$ by assumption (24) $\underline{\mathtt{prr}(e)} \Rightarrow p_2 \dashv \theta_2$ by assumption (25) $\underline{\mathtt{prr}(e)} ? p_2$ by assumption (26) $\underline{\mathtt{prr}(e)} \perp p_2$ by assumption

Assume $e \rhd (p_1, p_2) \dashv \theta$. By rule induction over Rules (26), only one case applies.

Case (26g).

(27) $\theta = \theta_1 \uplus \theta_2$

by assumption

(28) $prl(e) \triangleright p_1 \dashv \theta_1$

by assumption

Contradicts (21).

(29) $e \triangleright (p_1, p_2) \dashv \theta$

by contradiction

By rule induction over Rules (27) on (22), the following cases apply.

Case (27a),(27b).

(30) $p_1 = (v)^w, (p)^w_{\tau'}$

by assumption

(31) p_1 refutable?

by Rule (25b) and Rule

(25c)

(32) (p_1, p_2) refutable?

by Rule (25g) on (31)

(33) $e?(p_1,p_2)$

by Rule (27c) on (12)

and (32)

Case (27c).

(30) p_1 refutable?

by assumption

(31) (p_1, p_2) refutable?

by Rule (25g) on (30)

(32) e? (p_1, p_2)

by Rule (27c) on (12)

and (31)

Case prl(e) ? p_1 , prr(e) ? p_2 .

(21) $prl(e) \rightarrow p_1 \dashv \theta_1$

by assumption

 $(22) \ \operatorname{prl}(e) ? p_1$

by assumption

(23) $\underline{\operatorname{prl}(e) \perp p_1}$

by assumption

(24) $\underline{\operatorname{prr}(e)} \Rightarrow p_2 \dashv \theta_2$

by assumption

 $(25) prr(e) ? p_2$

by assumption

(26) $prr(e) \pm p_2$

by assumption

Assume $e \rhd (p_1, p_2) \dashv \theta$. By rule induction over Rules (26), only one case applies.

Case (26g).

(27) $\theta = \theta_1 \uplus \theta_2$

by assumption

(28) $prl(e) \triangleright p_1 \dashv \theta_1$

by assumption

Contradicts (21).

(29) $e \triangleright (p_1, p_2) \dashv \theta$

by contradiction

By rule induction over Rules (27) on (22), the following cases apply.

Case (27a),(27b).

(30) $p_1 = (||w|, ||p||_{\tau'}^w)$

by assumption

(31) p_1 refutable?

by Rule (25b) and Rule

(25c)

- (32) (p_1, p_2) refutable? by Rule (25g) on (31)
- (33) e? (p_1, p_2) by Rule (27c) on (12) and (32)

Case (27c).

- (30) p_1 refutable? by assumption
- (31) (p_1, p_2) refutable? by Rule (25g) on (30)
- (32) $e ? (p_1, p_2)$ by Rule (27c) on (12) and (31)

Case prl(e)? $p_1, prr(e) \perp p_2$.

- (21) $\underline{\operatorname{prl}(e)} \triangleright p_1 \dashv \theta_1$ by assumption
- (22) $\operatorname{prl}(e)$? p_1 by assumption
- (23) $prl(e) \pm p_1$ by assumption
- (24) $prr(e) \Rightarrow p_2 \dashv d_2$ by assumption
- (25) prr(e) p_2 by assumption
- (26) $\operatorname{prr}(e) \perp p_2$ by assumption

By rule induction over Rules (28) on (26), no case applies due to syntactic contradiction.

Therefore, vacuously true.

Case $prl(e) \perp p_1, prr(e) \rhd p_2 \dashv \theta_2$.

- (21) $prl(e) \rightarrow p_1 \dashv \theta_1$ by assumption
- (22) prl(e)? p_1 by assumption
- (23) $prl(e) \perp p_1$ by assumption
- (24) $prr(e) > p_2 \dashv \theta_2$ by assumption
- (25) $\underline{prr(e)}$; p_2 by assumption (26) $\underline{prr(e)} \perp p_2$ by assumption

By rule induction over Rules (28) on (23), no case applies due to syntactic contradiction.

Therefore, vacuously true.

Case $prl(e) \perp p_1, prr(e) ? p_2$.

- (21) $\operatorname{pr}_{\underline{1}}(e) \rightarrow p_{\underline{1}} \dashv \overline{\theta_{1}}$ by assumption
- (22) $prl(e) ? p_1$ by assumption
- (23) $prl(e) \perp p_1$ by assumption
- (24) $prr(e) \rightarrow p_2 + \theta_2$ by assumption
- (25) prr(e)? p_2 by assumption
- (26) $prr(e) \perp p_2$ by assumption

By rule induction over Rules (28) on (23), no case applies due to syntactic contradiction.

Therefore, vacuously true.

Case $prl(e) \perp p_1, prr(e) \perp p_2$.

(21) $prl(e) \rightarrow p_1 \dashv \theta_1$ by assumption

(22) $\underline{\operatorname{prl}(e)}$? $\overline{p_1}$	by assumption
(23) $\operatorname{prl}(e) \perp p_1$	by assumption
(24) $\underline{\operatorname{prr}(e)} \Rightarrow p_2 \dashv \overline{\theta_2}$	by assumption
$(25) \ \ prr(e) ? p_2$	by assumption
(26) $\operatorname{prr}(e) \perp p_2$	by assumption

By rule induction over Rules (28) on (23), no case applies due to syntactic contradiction.

Therefore, vacuously true.

Case (14g).

$(11) \ e = (e_1, e_2)$	by assumption
$(12) \cdot ; \Delta \vdash e_1 : \tau_1$	by assumption
$(13) \cdot ; \Delta \vdash e_2 : \tau_2$	by assumption
(14) e_1 final	by Lemma $4.0.5$ on (1)
(15) e_2 final	by Lemma $4.0.5$ on (1)

By inductive hypothesis on (9) and (12) and (14), exactly one of $e_1 \triangleright p_1 \dashv \theta_1$, $e_1 ? p_1$, and $e_1 \perp p_1$ holds.

By inductive hypothesis on (10) and (13) and (15), exactly one of $e_2
ightharpoonup p_2 \dashv \theta_2, \, e_2 ? \, p_2$, and $e_2 \perp p_2$ holds.

By case analysis on which conclusion holds for p_1 and p_2 .

Case $e_1 \triangleright p_1 \dashv \mid \theta_1, e_2 \triangleright p_2 \dashv \mid \theta_2$.

$(16) e_1 \rhd p_1 \dashv \theta_1$	by assumption
$(17) e_1 ? p_1$	by assumption
$(18) \underline{e_1 + p_1}$	by assumption
$(19) \ e_2 \rhd p_2 \dashv \mid \theta_2$	by assumption
$(20) \ \underline{e_2 ? p_2}$	by assumption
(21) $e_2 \perp p_2$	by assumption
$(22) (e_1, e_2) \rhd (p_1, p_2) \dashv \theta_1 \uplus \theta_2$	by Rule (26d) on (16)
	and (19)

Assume (e_1, e_2) ? (p_1, p_2) . By rule induction over Rules (27) on it, only four cases apply.

Case (27c).

(23) (e_1, e_2) notintro by assumption Contradicts Lemma 4.0.9.

Case (27d).

(23) $e_1 ? p_1$ by assumption

Contradicts (17).

Case (27e).

(23) e_2 ? p_2 by assumption

Contradicts (20).

Case (27f).

Contradicts (17).

(24)
$$(e_1, e_2) ? (p_1, p_2)$$
 by contradiction

Assume $(e_1, e_2) \perp (p_1, p_2)$. By rule induction over Rules (28) on it, only two cases apply.

Case (28b).

(25) $e_1 \perp p_1$ by assumption

Contradicts (18).

Case (28c).

(25) $e_2 \perp p_2$ by assumption

Contradicts (21).

(26) $(e_1, e_2) \perp (p_1, p_2)$ by contradiction

Case $e_1 \triangleright p_1 \dashv \theta_1, e_2 ? p_2$.

(16) $e_1 \triangleright p_1 \dashv \theta_1$ by assumption

(17) $e_1 \neq p_1$ by assumption

(18) $e_1 \perp p_1$ by assumption

(19) $e_2 \triangleright p_2 \dashv \theta_2$ by assumption

(20) $e_2 ? p_2$ by assumption

(21) $e_2 \perp p_2$ by assumption

(22) $(e_1, e_2) \vdash (p_1, p_2)$ by Rule (27e) on (16) and (20)

Assume $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$. By rule induction over Rules (26) on it, only one case applies.

Case (26d).

(23) $\theta = \theta_1 \uplus \theta_2$
(24) $e_2 \triangleright p_2 \dashv \theta_2$ by assumption

Contradicts (19).

(25) $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$ by contradiction

Assume $(e_1, e_2) \perp (p_1, p_2) \dashv \theta$ by contradiction

Assume $(e_1, e_2) \perp (p_1, p_2) \dashv \theta$ by contradiction

Assume $(e_1, e_2) \perp (p_1, p_2) \dashv \theta$ by assumption

Contradicts (19).

(26) $e_1 \perp p_1$ by assumption

Contradicts (18).

Case (28c).

(26) $e_1 \perp p_1$ by assumption

Contradicts (18).

Case (28c).

Contradicts (21).

(27) $(e_1, e_2) \pm (p_1, p_2)$	by contradiction
Case $e_1 \rhd p_1 \dashv \theta_1, e_2 \perp p_2$.	
$(16) e_1 \rhd p_1 \dashv \theta_1$	by assumption
$(17) e_{1} ? p_{1}$	by assumption
$(18) \underline{e_1 \perp p_1}$	by assumption
$(19) \ \underline{e_2 \triangleright p_2 \# \theta_2}$	by assumption
$(20) e_2 ? p_2$	by assumption
(21) $e_2 \perp p_2$	by assumption
(22) $(e_1, e_2) \perp (p_1, p_2)$	by Rule (28c) on (21)
	By rule induction over Rules (26)
on it, only one case applies.	, ,
Case $(26d)$.	
$(23) \ \theta = \theta_1 \uplus \theta_2$	
$(24) e_2 \rhd p_2 \dashv \theta_2$	by assumption
Contradicts (19).	
$(25) (e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$	by contradiction
	rule induction over Rules (27) on
it, only four cases apply.	
Case $(27c)$.	
$(26)\ (e_1,e_2)\ { t notintro}$	by assumption
Contradicts Lemma 4.0.9.	
Case $(27d)$.	
$(26) e_1? p_1$	by assumption
Contradicts (17).	
Case $(27e)$.	
$(26) e_2? p_2$	by assumption
Contradicts (20).	
Case $(27f)$.	
$(26) e_1? p_1$	by assumption
Contradicts (17).	
$(27) \ \underline{(e_1,e_2)?(p_1,p_2)}$	by contradiction
Case $e_1 ? p_1, e_2 > p_2 \dashv \theta_2$.	
$(16) \underline{e_1 \triangleright p_1 + \theta_1}$	by assumption
$(17) e_1? p_1$	by assumption
(18) $e_1 + p_1$	by assumption
$(19) \ e_2 \rhd p_2 \dashv \theta_2$	by assumption
$(20) e_2 ? p_2$	by assumption
$(21) \ \underline{e_2 + p_2}$	by assumption

(22)
$$(e_1, e_2)$$
? (p_1, p_2) by Rule (27d) on (17) and (19)

Assume $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$. By rule induction over Rules (26) on it, only one case applies.

Case (26d).

(23)
$$\theta = \theta_1 \uplus \theta_2$$

(24)
$$e_1 \triangleright p_1 \dashv \theta_1$$
 by assumption Contradicts (16).

(25)
$$(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$$
 by contradiction

Assume $(e_1, e_2) \perp (p_1, p_2)$. By rule induction over Rules (28) on it, only two cases apply.

Case (28b).

(26)
$$e_1 \perp p_1$$
 by assumption

Contradicts (18).

Case (28c).

(26)
$$e_2 \perp p_2$$
 by assumption Contradicts (21).

(27)
$$(e_1, e_2) \pm (\overline{p_1, p_2})$$
 by contradiction

Case $e_1 ? p_1, e_2 ? p_2$.

$$\begin{array}{lll} (16) & \underline{e_1} \triangleright p_1 + \theta_1 & \text{by assumption} \\ (17) & \underline{e_1} ? p_1 & \text{by assumption} \\ (18) & \underline{e_1} + p_1 & \text{by assumption} \\ (19) & \underline{e_2} \triangleright p_2 + \theta_2 & \text{by assumption} \\ (20) & \underline{e_2} ? p_2 & \text{by assumption} \\ (21) & \underline{e_2} + p_2 & \text{by assumption} \\ (22) & (\underline{e_1}, \underline{e_2}) ? (p_1, p_2) & \text{by Rule (27f) on (17)} \end{array}$$

and (20) ssume
$$(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$$
. By rule induction over Rules (26)

Assume $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$. By rule induction over Rules (26) on it, only one case applies.

Case (26d).

(23)
$$\theta = \theta_1 \uplus \theta_2$$

(24)
$$e_2 \triangleright p_2 \dashv \mid \theta_2$$
 by assumption

Contradicts (19).

(25)
$$(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$$
 by contradiction

Assume $(e_1, e_2) \perp (p_1, p_2)$. By rule induction over Rules (28) on it, only two cases apply.

Case (28b).

(26)
$$e_1 \perp p_1$$
 by assumption

Contradicts (18). Case (28c). (26) $e_2 \perp p_2$ by assumption Contradicts (21). (27) $(e_1,e_2) \pm (p_1,p_2)$ by contradiction Case $e_1 ? p_1, e_2 \perp p_2$. (16) $e_1 \triangleright p_1 + \theta_1$ by assumption (17) $e_1 ? p_1$ by assumption (18) $e_1 + p_1$ by assumption (19) $e_2 > p_2 + \theta_2$ by assumption $(20) e_2 ? p_2$ by assumption (21) $e_2 \perp p_2$ by assumption (22) $(e_1, e_2) \perp (p_1, p_2)$ by Rule (28c) on (21) Assume $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$. By rule induction over Rules (26) on it, only one case applies. Case (26d). (23) $\theta = \theta_1 \uplus \theta_2$ (24) $e_2 \triangleright p_2 \dashv \mid \theta_2$ by assumption Contradicts (19). $(25) (e_1, e_2) \supset (p_1, p_2) \dashv \theta$ by contradiction Assume (e_1, e_2) ? (p_1, p_2) . By rule induction over Rules (27) on it, only four cases apply. Case (27c). (26) (e_1,e_2) notintro by assumption Contradicts Lemma 4.0.9. Case (27d). $(26) e_2 \rhd p_2 \dashv \theta_2$ by assumption Contradicts (19). Case (27e). (26) $e_2 ? p_2$ by assumption Contradicts (20). Case (27f). (26) $e_2 ? p_2$ by assumption Contradicts (20). $(27) (e_1,e_2)?(\overline{p_1,p_2})$ by contradiction Case $e_1 \perp p_1, e_2 \rhd p_2 \dashv \theta_2$.

by assumption

(16) $e_1 \triangleright p_1 + \theta_1$

 $\begin{array}{lll} (17) & \underline{e_1} \nearrow p_1 & \text{by assumption} \\ (18) & \underline{e_1} \bot p_1 & \text{by assumption} \\ (19) & \underline{e_2} \rhd p_2 \dashv \theta_2 & \text{by assumption} \\ (20) & \underline{e_2} \nearrow p_2 & \text{by assumption} \\ (21) & \underline{e_2} \bot p_2 & \text{by assumption} \\ \end{array}$

(22) $(e_1, e_2) \perp (p_1, p_2)$ by Rule (28b) on (18)

Assume $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$. By rule induction over Rules (26) on it, only one case applies.

Case (26d).

(23) $\theta = \theta_1 \uplus \theta_2$

(24) $e_1 \triangleright p_1 \dashv \theta_1$ by assumption Contradicts (16).

(25) $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$ by contradiction

Assume $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$ by contradiction over Rules (2)

Assume (e_1, e_2) ? (p_1, p_2) . By rule induction over Rules (27) on it, only four cases apply.

Case (27c).

(26) (e_1, e_2) notintro by assumption Contradicts Lemma 4.0.9.

Case (27d).

(26) $e_1 ? p_1$ by assumption

Contradicts (17).

Case (27e).

(26) e_2 ? p_2 by assumption

Contradicts (20).

Case (27f).

(26) $e_1 ? p_1$ by assumption

Contradicts (17).

(27) (e_1, e_2) ? (p_1, p_2) by contradiction

Case $e_1 \perp p_1, e_2 ? p_2$.

(16) $e_1 \triangleright p_1 \dashv \theta_1$ by assumption (17) $e_1 ? p_1$ by assumption (18) $e_1 \perp p_1$ by assumption (19) $e_2 \triangleright p_2 \dashv \theta_2$ by assumption (20) $e_2 ? p_2$ by assumption (21) $e_2 \perp p_2$ by assumption (22) $(e_1, e_2) \perp (p_1, p_2)$ by Rule (28b) on (18)

Assume $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$. By rule induction over Rules (26) on it, only one case applies.

- (23) $\theta = \theta_1 \uplus \theta_2$
- (24) $e_2 \triangleright p_2 \dashv \theta_2$ by assumption

Contradicts (19).

(25)
$$(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$$
 by contradiction

Assume (e_1, e_2) ? (p_1, p_2) . By rule induction over Rules (27) on it, only four cases apply.

Case (27c).

(26) (e_1, e_2) notintro by assumption

Contradicts Lemma 4.0.9.

Case (27d).

(26)
$$e_2 > p_2 \dashv \theta_2$$
 by assumption

Contradicts (19).

Case (27e).

(26)
$$e_1 \triangleright p_1 \dashv \theta_1$$
 by assumption

Contradicts (16).

Case (27f).

(26)
$$e_1 ? p_1$$
 by assumption

Contradicts (17).

(27)
$$(e_1, e_2)$$
? (p_1, p_2) by contradiction

Case $e_1 \perp p_1, e_2 \perp p_2$.

$$\begin{array}{lll} (16) & \underline{e_1} \triangleright p_1 + \theta_1 \\ (17) & \underline{e_1} \stackrel{?}{?} p_1 \\ (18) & \underline{e_1} \perp p_1 \\ (19) & \underline{e_2} \triangleright p_2 + \theta_2 \\ (20) & \underline{e_2} \stackrel{?}{?} p_2 \end{array} \qquad \qquad \begin{array}{lll} \text{by assumption} \\ \end{array}$$

 $\begin{array}{ccc} (20) & e_2 : p_2 & \text{by assumption} \\ (21) & e_2 + p_2 & \text{by assumption} \end{array}$

(22)
$$(e_1, e_2) \perp (p_1, p_2)$$
 by Rule (28b) on (18)

Assume $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$. By rule induction over Rules (26) on it, only one case applies.

Case (26d).

- (23) $\theta = \theta_1 \uplus \theta_2$
- (24) $e_2 \triangleright p_2 \dashv \theta_2$ by assumption Contradicts (19).

(25) $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$ by contradiction

Assume (e_1, e_2) ? (p_1, p_2) . By rule induction over Rules (27) on it, only four cases apply.

(26) (e_1, e_2) notintro by assumption Contradicts Lemma 4.0.9.

Case (27d).

(26) $e_2 \triangleright p_2 \dashv \theta_2$ by assumption Contradicts (19).

Case (27e).

(26) $e_1 \triangleright p_1 \dashv \theta_1$ by assumption Contradicts (16).

Case (27f).

(26) $e_1 ? p_1$ by assumption Contradicts (17).

(27) (e_1, e_2) ? (p_1, p_2) by contradiction

Lemma 4.0.15 (Matching Coherence of Constraint). Suppose that $\cdot; \Delta_e \vdash e : \tau$ and e final and $p : \tau[\xi] \dashv \Gamma; \Delta$. Then we have

1.
$$e \models \xi \text{ iff } e \triangleright p \dashv \theta$$

2.
$$e \models_? \xi$$
 iff $e ? p$

3.
$$e \not\models {}^{\dagger}_? \xi \text{ iff } e \perp p$$

Proof.

(1) \cdot ; $\Delta_e \vdash e : \tau$ by assumption (2) e final by assumption (3) $p : \tau[\xi] \dashv \Gamma$; Δ by assumption

Given Lemma 3.0.1, Theorem 1.1, and Lemma 4.0.14, it is sufficient to prove

1.
$$e \models \xi$$
 iff $e \triangleright p \dashv \theta$

2.
$$e \models_? \xi$$
 iff $e ? p$

By rule induction over Rules (15) on (3).

Case (15a).

(4) p = x by assumption (5) $\xi = \top$ by assumption

1. Prove $e \models \top$ implies $e \triangleright x \dashv \theta$ for some θ .

(6)
$$e \triangleright x \dashv e/x$$
 by Rule (26a)

2. Prove $e \triangleright x \dashv \theta$ implies $e \models \top$.

(6)
$$e \models \top$$
 by Rule (4a)

3. Prove $e \models_? \top$ implies e ? x.

(6)
$$e \not\models ? \top$$
 by Lemma 1.0.5

Vacuously true.

4. Prove e? x implies $e \models_? \top$.

By rule induction over Rules (27), we notice that either, e?x is in syntactic contradiction with all the cases, or the premise x refutable? is not derivable. Hence, e?x are not derivable. And thus vacuously true.

Case (15b).

(4)
$$p = _$$
 by assumption

(5)
$$\xi = \top$$
 by assumption

1. Prove $e \models \top$ implies $e \rhd _ \dashv \theta$ for some θ .

(6)
$$e \rhd _ \dashv \cdot$$
 by Rule (26a)

2. Prove $e \rhd _ \dashv \theta$ implies $e \models \top$.

(6)
$$e \models \top$$
 by Rule (4a)

3. Prove $e \models_? \top$ implies e? _.

(6)
$$e \not\models ? \top$$
 by Lemma 1.0.5

Vacuously true.

4. Prove e? implies $e \models_{?} \xi$.

By rule induction over Rules (27), we notice that either, e?_ is in syntactic contradiction with all the cases, or the premise _ refutable? is not derivable. Hence, e?_ are not derivable. And thus vacuously true.

Case (15c).

(4)
$$p = \emptyset^w$$
 by assumption
(5) $\xi = ?$ by assumption
(6) $\overline{\xi} = ?$ by Definition 11

1. Prove $e \models$? implies $e \rhd ()^w \dashv \theta$ for some θ .

(7)
$$e \not\models$$
? by Rule (26a)

Vacuously true.

2. Prove $e \rhd ()^w \dashv \theta$ implies $e \models ?$.

By rule induction over Rules (26), we notice that $e \rhd ()^w \dashv \theta$ is in syntactic contradiction with all the cases, hence not derivable. And thus vacuously true.

3. Prove $e \models_{?}$? implies e? \emptyset^{w} .

(7) $e ? ()^w$

by Rule (27a)

4. Prove e? \mathbb{D}^w implies $e \models_{?}$?.

(7) $e \models_2$?

by Rule (6a)

Case (15d).

(4) $p = (p_0)_{\tau'}^w$

by assumption

(5) $\xi = ?$

by assumption

1. Prove $e \models ?$ implies $e \rhd (p_0)_{\tau'}^w \dashv \theta$ for some θ .

(6) $e \not\models ?$

by Rule (26a)

Vacuously true.

2. Prove $e \rhd (p_0)_{\tau'}^w \dashv \theta$ implies $e \models ?$.

By rule induction over Rules (26), we notice that $e \rhd (p_0)_{\tau'}^w \dashv \theta$ is in syntactic contradiction with all the cases, hence not derivable. And thus vacuously true.

3. Prove $e \models_?$? implies $e ? (p_0)_{\tau'}^w$.

(6) $e ? (p_0)_{\tau'}^w$

by Rule (27b)

4. Prove $e ? (p_0)_{\tau'}^w$ implies $e \models_{?} ?$.

(6) $e \models_?$?

by Rule (6a)

Case (15e).

(4) $p = \underline{n}$

by assumption

(5) $\xi = \underline{n}$

by assumption

1. Prove $e \models \underline{n}$ implies $e \triangleright \underline{n} \dashv \theta$ for some θ .

(6) $e \stackrel{.}{\models} n$

by assumption

By rule induction over Rules (4) on (6), only one case applies.

Case (4b).

(7) $e = \underline{n}$

by assumption

(8) $\underline{n} \rhd \underline{n} \dashv .$

by Rule (26c)

- 2. Prove $e \triangleright \underline{n} \dashv \theta$ implies $e \models \underline{n}$.
 - (6) $e \rhd \underline{n} \dashv \theta$

by assumption

By rule induction over Rules (26) on (6), only one case applies.

Case (26c).

- (7) $e = \underline{n}$ by assumption (8) $\theta = \cdot$ by assumption (9) $\underline{n} \models \underline{n}$ by Rule (4b)
- 3. Prove $e \models_{?} \underline{n}$ implies $e ? \underline{n}$.
 - (6) $e \stackrel{\cdot}{\models}_{?} \underline{n}$

by assumption

By rule induction over Rules (6) on (6), only one case applies.

Case (6i).

- $\begin{array}{lll} (7) & e \text{ notintro} & & \text{by assumption} \\ (8) & \underline{n} \text{ refutable}_? & & \text{by Rule (25a)} \\ (9) & e ? \underline{n} & & \text{by Rule (27c) on (7)} \\ & & \text{and (8)} \end{array}$
- 4. Prove $e ? \underline{n}$ implies $e \models_{?} \underline{n}$.
 - (6) $e ? \underline{n}$

by assumption

By rule induction over Rules (27) on (6), only one case applies.

Case (27c).

- (7) e notintroby assumption(8) \underline{n} refutable?by Rule (2a)
- (9) $e \models_{?} \underline{n}$ by Rule (6) on (7) and (8)

Case (15f).

 $\begin{array}{ll} (4) \ \ p = \mathtt{inl}(p_1) & \text{by assumption} \\ (5) \ \ \xi = \mathtt{inl}(\xi_1) & \text{by assumption} \\ (6) \ \ \tau = (\tau_1 + \tau_2) & \text{by assumption} \\ (7) \ \ p_1 : \tau_1[\xi_1] \dashv \Gamma \ ; \Delta & \text{by assumption} \end{array}$

By rule induction over Rules (14) on (1), the following cases apply.

Case (14b),(14c),(14f),(14h),(14i),(14l),(14m).

 $(8) \ \ e = ()^u, (e_0)^u, e_1(e_2), \mathtt{prl}(e_0), \mathtt{prr}(e_0), \mathtt{match}(e_0) \{ \hat{rs} \}$

by assumption

(9) e notintro by Rule

(21a),(21b),(21c),(21d),(21e),(21f)

1. Prove $e \models \mathtt{inl}(\xi_1)$ implies $e \rhd \mathtt{inl}(p_1) \dashv \theta$ for some θ . By rule induction over Rules (4) on $e \models \mathtt{inl}(\xi_1)$, no case applies due to syntactic contradiction.

Therefore, vacuously true.

2. Prove $e
ightharpoonup \operatorname{inl}(p_1) \dashv \theta$ implies $e \models \operatorname{inl}(\xi_1)$. By rule induction over Rules (26) on $e
ightharpoonup \operatorname{inl}(p_1) \dashv \theta$, no case applies due to syntactic contradiction.

Therefore, vacuously true.

- 3. Prove $e \models_? inl(\xi_1)$ implies e? $inl(p_1)$.
 - (10) $inl(p_1)$ refutable? by Rule (25d)
 - (11) e? $inl(p_1)$ by Rule (27c) on (9) and (10)
- 4. Prove e? $\operatorname{inl}(p_1)$ implies $e \models_{?} \operatorname{inl}(\xi_1)$.
 - (10) $inl(\xi_1)$ refutable? by Rule (2c)
 - (11) $e \models_{?} \mathbf{inl}(\xi_1)$ by Rule (6i) on (9) and (10)

Case (14j).

- (8) $e = \operatorname{inl}_{\tau_2}(e_1)$ by assumption
- (9) \cdot ; $\Delta_e \vdash e_1 : \tau_1$ by assumption
- (10) e_1 final by Lemma 4.0.3 on (2)

By inductive hypothesis on (10) and (9) and (7).

- (11) $e_1 \models \xi_1 \text{ iff } e_1 \rhd p_1 \dashv \theta \text{ for some } \theta$
- (12) $e_1 \models_{?} \xi_1 \text{ iff } e_1 ? p_1$
- 1. Prove $\operatorname{inl}_{\tau_2}(e_1) \dot\models \operatorname{inl}(\xi_1)$ implies $\operatorname{inl}_{\tau_2}(e_1) \rhd \operatorname{inl}(p_1) \dashv \theta$ for some θ .
 - (13) $\operatorname{inl}_{\tau_2}(e_1) \dot{\models} \operatorname{inl}(\xi_1)$ by assumption

By rule induction over Rules (4) on (13), only one case applies. Case (4c).

- (14) $e_1 \models \xi_1$ by assumption
- (15) $e_1 \triangleright p_1 \dashv \theta_1$ for some θ_1 by (11) on (14)
- (16) $\operatorname{inl}_{\tau_2}(e_1) \rhd \operatorname{inl}(p_1) \dashv \theta_1$ by Rule (26e) on (15)
- 2. Prove $\operatorname{inl}_{\tau_2}(e_1) \rhd \operatorname{inl}(p_1) \dashv \theta$ implies $\operatorname{inl}_{\tau_2}(e_1) \models \operatorname{inl}(\xi_1)$.
 - (13) $\operatorname{inl}_{\tau_2}(e_1) \rhd \operatorname{inl}(p_1) \dashv \theta$ by assumption

By rule induction over Rules (26) on (13), only one case applies. Case (26e).

- $(14) e_1 \rhd p_1 \dashv\!\!\dashv \theta$
- by assumption

(15) $e_1 \models \xi_1$

- by (11) on (14)
- (16) $\operatorname{inl}_{\tau_2}(e_1) \dot{\models} \operatorname{inl}(\xi_1)$
- by Rule (4c) on (15)

3. Prove
$$\operatorname{inl}_{\tau_2}(e_1) \dot{\models}_? \operatorname{inl}(\xi_1)$$
 implies $\operatorname{inl}_{\tau_2}(e_1)$? $\operatorname{inl}(p_1)$.

(13)
$$\operatorname{inl}_{\tau_2}(e_1) \dot\models_{\tau_2} \operatorname{inl}(\xi_1)$$

by assumption

By rule induction over Rules (6) on (13), only two cases apply.

Case (6i).

(14)
$$\operatorname{inl}_{\tau_2}(e_1)$$
 notintro by

by assumption

Contradicts Lemma 4.0.7.

Case (6b).

$$(14) e_1 \models_? \xi_1$$

by assumption

$$(15) e_1 ? p_1$$

by (12) on (14)

(16)
$$\operatorname{inl}_{\tau_2}(e_1)$$
? $\operatorname{inl}(p_1)$

by Rule (27g) on (15)

4. Prove
$$\operatorname{inl}_{\tau_2}(e_1)$$
? $\operatorname{inl}(p_1)$ implies $\operatorname{inl}_{\tau_2}(e_1) \models_? \operatorname{inl}(\xi_1)$.

(13)
$$inl_{\tau_2}(e_1)$$
? $inl(p_1)$

by assumption

By rule induction over Rules (27) on (13), only two cases apply. Case (27c).

(14) $\operatorname{inl}_{ au_2}(e_1)$ notintro

by assumption

by assumption

Contradicts Lemma 4.0.7.

Case (27g).

$$(14) e_1 ? p_1$$

(15)
$$e_1 \models_{?} \xi_1$$
 by (12) on (14)

(16)
$$\operatorname{inl}_{\tau_2}(e_1) \stackrel{.}{\models}_{?} \operatorname{inl}(\xi_1)$$
 by Rule (6b) on (15)

Case (15g).

(4)
$$p = inr(p_2)$$
 by assumption
(5) $\xi = inr(\xi_2)$ by assumption
(6) $\tau = (\tau_1 + \tau_2)$ by assumption
(7) $p_2 : \tau_2[\xi_2] \dashv \Gamma; \Delta$ by assumption

By rule induction over Rules (14) on (1), the following cases apply.

Case (14b),(14c),(14f),(14h),(14i),(14l),(14m).

$$(8) \ e = (\!()^u, (\!(e_0)\!)^u, e_1(e_2), \mathtt{prl}(e_0), \mathtt{prr}(e_0), \mathtt{match}(e_0) \{\hat{rs}\}$$

by assumption

(9)
$$e$$
 notintro by Rule

(21a),(21b),(21c),(21d),(21e),(21f)

1. Prove $e \models \operatorname{inr}(\xi_2)$ implies $e \rhd \operatorname{inr}(p_2) \dashv \theta$ for some θ . By rule induction over Rules (4) on $e \models \operatorname{inr}(\xi_2)$, no case applies due to syntactic contradiction.

Therefore, vacuously true.

2. Prove $e
ightharpoonup \operatorname{inr}(p_2) \dashv \theta$ implies $e \models \operatorname{inr}(\xi_2)$. By rule induction over Rules (26) on $e
ightharpoonup \operatorname{inr}(p_2) \dashv \theta$, no case applies due to syntactic contradiction.

Therefore, vacuously true.

- 3. Prove $e \models_{?} \operatorname{inr}(\xi_2)$ implies e? $\operatorname{inr}(p_2)$.
 - (10) $inr(p_2)$ refutable?

by Rule (25e)

(11) e? $inr(p_2)$

by Rule (27c) on (9) and (10)

- 4. Prove e? $\operatorname{inr}(p_2)$ implies $e \models_{?} \operatorname{inr}(\xi_2)$.
 - (10) $inr(\xi_2)$ refutable?

by Rule (2d)

(11) $e \models_? \operatorname{inr}(\xi_2)$

by Rule (6i) on (9) and (10)

Case (14k).

 $(8) e = \operatorname{inr}_{\tau_1}(e_2)$

by assumption

 $(9) \cdot ; \Delta_e \vdash e_2 : \tau_2$

by assumption

(10) e_2 final

by Lemma 4.0.3 on (2)

By inductive hypothesis on (10) and (9) and (7).

- (11) $e_2 \models \xi_2 \text{ iff } e_2 \triangleright p_2 \dashv \theta \text{ for some } \theta$
- (12) $e_2 \models_{?} \xi_2 \text{ iff } e_2 ? p_2$
- 1. Prove $\inf_{\tau_1}(e_2) \models \inf(\xi_2)$ implies $\inf_{\tau_1}(e_2) \rhd \inf(p_2) \dashv \theta$ for some θ .
 - (13) $\operatorname{inr}_{\tau_1}(e_2) \dot{\models} \operatorname{inr}(\xi_2)$

by assumption

By rule induction over Rules (4) on (13), only one case applies. Case (4c).

- (14) $e_2 \models \xi_2$ by assumption
- (15) $e_2 \triangleright p_2 \dashv \theta_1$ for some θ_1 by (11) on (14)
- (16) $\operatorname{inr}_{\tau_1}(e_2) > \operatorname{inr}(p_2) \dashv \theta_1$ by Rule (26e) on (15)
- 2. Prove $\operatorname{inr}_{\tau_1}(e_2) \rhd \operatorname{inr}(p_2) \dashv \theta$ implies $\operatorname{inr}_{\tau_1}(e_2) \models \operatorname{inr}(\xi_2)$.
 - $(13) \ \operatorname{inr}_{\tau_1}(e_2) \rhd \operatorname{inr}(p_2) \dashv \theta$

by assumption

By rule induction over Rules (26) on (13), only one case applies. Case (26e).

- $(14) e_2 \triangleright p_2 \dashv \theta$
- by assumption

(15) $e_2 \models \xi_2$

- by (11) on (14)
- $(16) \ \operatorname{inr}_{\tau_1}(e_2) \dot\models \operatorname{inr}(\xi_2)$
- by Rule (4c) on (15)
- 3. Prove $\operatorname{inr}_{\tau_1}(e_2) \models_? \operatorname{inr}(\xi_2)$ implies $\operatorname{inr}_{\tau_1}(e_2)$? $\operatorname{inr}(p_2)$.
 - $(13) \ \operatorname{inr}_{\tau_1}(e_2) \dot\models_? \operatorname{inr}(\xi_2)$

by assumption

By rule induction over Rules (6) on (13), only two cases apply.

Case (6i). (14) $\operatorname{inr}_{\tau_1}(e_2)$ notintro by assumption Contradicts Lemma 4.0.7. Case (6b). $(14) e_2 \models_{?} \xi_2$ by assumption (15) $e_2 ? p_2$ by (12) on (14) (16) $inr_{\tau_1}(e_2)$? $inr(p_2)$ by Rule (27g) on (15) 4. Prove $\operatorname{inr}_{\tau_1}(e_2)$? $\operatorname{inr}(p_2)$ implies $\operatorname{inr}_{\tau_1}(e_2) \models_? \operatorname{inr}(\xi_2)$. (13) $inr_{\tau_1}(e_2)$? $inr(p_2)$ by assumption By rule induction over Rules (27) on (13), only two cases apply. Case (27c). (14) $\operatorname{inr}_{\tau_1}(e_2)$ notintro by assumption Contradicts Lemma 4.0.7. Case (27g). (14) $e_2 ? p_2$ by assumption (15) $e_2 = \xi_2$ by (12) on (14) (16) $\operatorname{inr}_{\tau_1}(e_2) \dot\models_{\gamma} \operatorname{inr}(\xi_2)$ by Rule (6b) on (15) Case (15h). (4) $p = (p_1, p_2)$ by assumption (5) $\xi = (\xi_1, \xi_2)$ by assumption (6) $\tau = (\tau_1 \times \tau_2)$ by assumption (7) $\Gamma = \Gamma_1 \uplus \Gamma_2$ by assumption (8) $\Delta = \Delta_1 \uplus \Delta_2$ by assumption (9) $p_1 : \tau_1[\xi_1] \dashv \Gamma_1 ; \Delta_1$ by assumption (10) $p_2: \tau_2[\xi_2] \dashv \Gamma_2; \Delta_2$ by assumption By rule induction over Rules (14) on (1), the following cases apply. Case (14b),(14c),(14f),(14h),(14i),(14l),(14m). (11) $e = ()^u, (e_0)^u, e_1(e_2), prl(e_0), prr(e_0), match(e_0) \{\hat{rs}\}\$ by assumption (12) e notintro by Rule (21a),(21b),(21c),(21d),(21e),(21f)(13) e indet by Lemma 4.0.10 on (2) and (12)(14) prl(e) indet by Rule (19g) on (13) (15) prl(e) final by Rule (20b) on (14)

by Rule (19h) on (13)

(16) prr(e) indet

- (17) prr(e) final by Rule (20b) on (16) (18) \cdot ; $\Delta \vdash prl(e) : \tau_1$ by Rule (14h) on (1)
- (19) \cdot ; $\Delta \vdash \mathsf{prr}(e) : \tau_2$ by Rule (14i) on (1)

By inductive hypothesis on (9) and (18) and (15) and by inductive hypothesis on (10) and (19) and (17).

- (20) $\operatorname{prl}(e) \models \xi_1 \text{ iff } \operatorname{prl}(e) \rhd p_1 \dashv \theta_1 \text{ for some } \theta_1$
- (21) $\operatorname{prl}(e) \dot{\models}_? \xi_1 \text{ iff } \operatorname{prl}(e) ? p_1$
- (22) $\operatorname{prr}(e) \models \xi_2 \text{ iff } \operatorname{prr}(e) \rhd p_2 \dashv \theta_2 \text{ for some } \theta_2$
- (23) $\operatorname{prr}(e) \dot{\models}_{?} \xi_{2} \text{ iff } \operatorname{prr}(e) ? p_{2}$
- 1. Prove $e \models (\xi_1, \xi_2)$ implies $e \triangleright (p_1, p_2) \dashv \theta$ for some θ .

(24)
$$e \models (\xi_1, \xi_2)$$

by assumption

By rule induction over Rules (4) on (24), only one case applies. Case (4f).

- (25) $\operatorname{prl}(e) \models \xi_1$ by assumption
- (26) $\operatorname{prr}(e) \models \xi_2$ by assumption
- (27) $\operatorname{prl}(e) \rhd p_1 \dashv \theta_1$ by (20) on (25)
- (28) $\operatorname{prr}(e) \rhd p_2 \dashv \theta_2$ by (22) on (26)
- (29) $e \rhd (p_1, p_2) \dashv \theta_1 \uplus \theta_2$ by Rule (26g) on (12) and (27) and (28)
- 2. Prove $e \rhd (p_1, p_2) \dashv \theta$ implies $e \models (\xi_1, \xi_2)$.

$$(24) \ e \rhd (p_1, p_2) \dashv \theta$$

by assumption

By rule induction over Rules (26) on (24), only one case applies. Case (26g).

- (25) $\theta = \theta_1 \uplus \theta_2$
- by assumption
- (26) $prl(e) \triangleright \xi_1 \dashv \theta_1$
- by assumption
- (27) $\operatorname{prr}(e) \rhd \xi_2 \dashv \theta_2$
- by assumption
- (28) $\operatorname{prl}(e) \stackrel{\cdot}{\models} \xi_1$
- by (20) on (26)
- (29) $\operatorname{prr}(e) \stackrel{\cdot}{\models} \xi_2$
- by (22) on (27)
- (30) $e \models (\xi_1, \xi_2)$
- by Rule (4f) on (12)
- and (28) and (29)
- 3. Prove $e \stackrel{\cdot}{\models}_?(\xi_1, \xi_2)$ implies $e ? (p_1, p_2)$.
 - (24) $e \models_{?} (\xi_1, \xi_2)$

by assumption

By rule induction over Rules (6) on (24), only one case applies. **Case** (6i).

- (25) (ξ_1, ξ_2) refutable?
- by assumption

By rule induction over Rules (2) on (25), only two cases apply.

Case (2e).

- (26) ξ_1 refutable?by assumption(27) prl(e) notintroby Rule (21e)
- (28) $\operatorname{prl}(e) \stackrel{\cdot}{\models}_? \xi_1$ by Rule (6i) on (26) and (27)
- (29) prl(e)? p_1 by (21) on (28)

By rule induction over Rules (27) on (29), only three cases apply.

Case (27a),(27b).

- (30) $p_1 = (||)^w, (|p_0|)^w_{\tau'}$ by assumption
- (31) p_1 refutable? by Rule (25b) and Rule (25c)
- (32) (p_1, p_2) refutable? by Rule (25f) on (31)
- (33) e? (p_1, p_2) by Rule (27c) on (12) and (32)

Case (27c).

- $\begin{array}{ll} (30) \ p_1 \ {\tt refutable}_? & \ {\tt by \ assumption} \\ (31) \ (p_1,p_2) \ {\tt refutable}_? & \ {\tt by \ Rule} \ (25f) \ {\tt on} \ (30) \end{array}$
- (32) e? (p_1, p_2) by Rule (27c) on (12) and (31)

Case (2f).

- (26) ξ_2 refutable? by assumption (27) prr(e) notintro by Rule (21e)
- (28) $\operatorname{prr}(e) \dot{\models}_? \xi_2$ by Rule (6i) on (26) and (27)
- (29) prr(e)? p_2 by (23) on (28)

By rule induction over Rules (27) on (29), only three cases apply.

Case (27a),(27b).

- (30) $p_2 = \{ \}^w, \{ p_0 \}_{\tau'}^w$ by assumption
- (31) p_2 refutable? by Rule (25b) and Rule (25c)
- (32) (p_1, p_2) refutable? by Rule (25g) on (31)
- (33) $e ? (p_1, p_2)$ by Rule (27c) on (12) and (32)

Case (27c).

(30) p_2 refutable? by assumption (31) (p_1, p_2) refutable? by Rule (25g) on (30) (32) e? (p_1, p_2) by Rule (27c) on (12) and (31)

4. Prove
$$e ? (p_1, p_2)$$
 implies $e \models_{?} (\xi_1, \xi_2)$.

$$(24)$$
 $e?(p_1,p_2)$

by assumption

By rule induction over Rules (27) on (24), only one case applies. Case (27c).

(25) (p_1, p_2) refutable?

by assumption

By rule induction over Rules (25) on (25), only two cases apply.

Case (25f).

- (26) p_1 refutable?
- by assumption
- (27) prl(e) notintro
- by Rule (21e)
- (28) $prl(e) ? p_1$
- by Rule (27c) on (26) and (27)
- (29) $\operatorname{prl}(e) \dot{\models}_? \xi_1$
- by (21) on (28)

By rule induction over Rules (6) on (29), only three cases apply.

Case (6a).

- (30) $\xi_1 = ?$
- by assumption
- (31) ξ_1 refutable?
- by Rule (2b)
- (32) (ξ_1, ξ_2) refutable?
- by Rule (2e) on (31)
- (33) $e \models_{?} (\xi_1, \xi_2)$
- by Rule (6i) on (12) and (32)

Case (6i).

- (30) ξ_1 refutable?
- by assumption
- (31) (ξ_1, ξ_2) refutable?
- by Rule (2e) on (30)
- (32) $e \models_{?} (\xi_1, \xi_2)$
- by Rule (6i) on (12)
- and (31)

Case (25g).

- (26) p_2 refutable?
- by assumption
- (27) prr(e) notintro
- by Rule (21e)
- (28) $prr(e) ? p_2$
- by Rule (27c) on (26)
- and (27)
- (29) $\operatorname{prr}(e)\dot{\models}_?\xi_2$
- by (23) on (28)

By rule induction over Rules (6) on (29), only three cases apply.

Case (6a).

- $(30) \xi_2 = ?$
- by assumption
- (31) ξ_2 refutable?
- by Rule (2b)
- (32) (ξ_1, ξ_2) refutable?
- by Rule (2f) on (31)
- (33) $e \models_? (\xi_1, \xi_2)$
- by Rule (6i) on (12)
- and (32)

- (30) ξ_2 refutable? by assumption
- (31) (ξ_1, ξ_2) refutable? by Rule (2f) on (30)
- (32) $e \models_{?} (\xi_1, \xi_2)$ by Rule (6i) on (12) and (31)

Case (14g).

- (11) $e = (e_1, e_2)$ by assumption
- (12) $\cdot : \Delta_e \vdash e_1 : \tau_1$ by assumption
- (13) \cdot ; $\Delta_e \vdash e_2 : \tau_2$ by assumption
- (14) e_1 final by Lemma 4.0.5 on (2)
- (15) e_2 final by Lemma 4.0.5 on (2)

By inductive hypothesis on (14) and (12) and (9) and by inductive hypothesis on (15) and (13) and (10).

- (16) $e_1 \models \xi_1 \text{ iff } e_1 \rhd p_1 \dashv \theta_1 \text{ for some } \theta_1$
- (17) $e_1 \models_{?} \xi_1 \text{ iff } e_1 ? p_1$
- (18) $e_2 \models \xi_2 \text{ iff } e_2 \rhd p_2 \dashv \theta_2 \text{ for some } \theta_2$
- (19) $e_2 \models_{?} \xi_2 \text{ iff } e_2 ? p_2$
- 1. Prove $(e_1, e_2) \models (\xi_1, \xi_2)$ implies $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$ for some θ .

(20)
$$(e_1, e_2) \models (\xi_1, \xi_2)$$

by assumption

By rule induction over Rules (4) on (20), only two cases apply. Case (4e).

- (21) $e_1 = \xi_1$ by assumption
- (22) $e_2 \models \xi_2$ by assumption
- (23) $e_1 \triangleright p_1 \dashv \theta_1$ for some θ_1 by (16) on (21)
- (24) $e_2 \triangleright p_2 \dashv \theta_2$ for some θ_2 by (18) on (22)
- (25) $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta_1 \uplus \theta_2$ by Rule (26d) on (23) and (24)

Case (4f).

(21) (e_1,e_2) notintro

by assumption

Contradicts Lemma 4.0.9.

2. Prove $(e_1, e_2) \triangleright (p_1, p_2) \dashv \theta$ implies $(e_1, e_2) \models (\xi_1, \xi_2)$.

(20)
$$(e_1, e_2) \rhd (p_1, p_2) \dashv \theta$$

by assumption

By rule induction over Rules (26) on (20), only two cases apply. Case (26d).

- (21) $e_1 \triangleright p_1 \dashv \theta_1$ for some θ_1 by assumption
- (22) $e_2 > p_2 \dashv \theta_2$ for some θ_2 by assumption
- (23) $e_1 \models \xi_1$ by (16) on (21)

- (24) $e_2 \models \xi_2$ by (18) on (22) (25) $(e_1, e_2) \models (\xi_1, \xi_2)$ by Rule (4e) on (23) and (24)
- Case (26g).
 - (21) (e_1, e_2) notintro by assumption Contradicts Lemma 4.0.9.
- 3. Prove $(e_1, e_2) \dot{\models}_{?}(\xi_1, \xi_2)$ implies $(e_1, e_2) ? (p_1, p_2)$.
 - (20) $(e_1, e_2) \stackrel{.}{\models}_{?} (\xi_1, \xi_2)$ by assumption

By rule induction over Rules (6) on (20), only four cases apply.

Case (6i). $(21) \ (e_1,e_2) \ {\tt notintro}$

by assumption

Contradicts Lemma 4.0.9.

Case (6d).

- (21) $e_1 \stackrel{\cdot}{\models}_{?} \xi_1$ by assumption
- (22) $e_2 \dot{\models} \xi_2$ by assumption
- (23) $e_1 ? p_1$ by (17) on (21)
- (24) $e_2 > p_2 \dashv \theta_2$ by (18) on (22) (25) $(e_1, e_2) ? (p_1, p_2)$ by Rule (27d) on (23)
 - $(e_1, e_2) : (p_1, p_2)$ by Rule (27d and (24)

Case (6e).

- (21) $e_1 \models \xi_1$ by assumption
- (22) $e_2 \dot{\models}_? \xi_2$ by assumption
- (23) $e_1 > p_1 \dashv \theta_1$ by (16) on (21)
- $\begin{array}{lll} (24) & e_2 ? p_2 & \text{by (19) on (22)} \\ (25) & (e_1, e_2) ? (p_1, p_2) & \text{by Rule (27e) on (23)} \\ & & \text{and (24)} \end{array}$

Case (6f).

- (21) $e_1 \stackrel{\cdot}{\models}_? \xi_1$ by assumption
- (22) $e_2 \models_? \xi_2$ by assumption
- (23) $e_1 ? p_1$ by (17) on (21)
- (24) $e_2 ? p_2$ by (19) on (22)
- (25) (e_1, e_2) ? (p_1, p_2) by Rule (27f) on (23) and (24)
- 4. Prove (e_1, e_2) ? (p_1, p_2) implies $(e_1, e_2) \models_? (\xi_1, \xi_2)$.
 - (20) (e_1, e_2) ? (p_1, p_2) by assumption

By rule induction over Rules (27) on (20), only four cases apply. Case (27c).

(21) (e_1, e_2) notintro by assumption

Contradicts Lemma 4.0.9.

Case (27d).

$(21) e_1? p_1$	by assumption
$(22) e_2 \rhd p_2 \dashv \theta_2$	by assumption
(23) $e_1 \models_{?} \xi_1$	by (17) on (21)
$(24) \ e_2 \models \xi_2$	by (18) on (22)
$(25) (e_1, e_2) ? (p_1, p_2)$	by Rule $(6d)$ on (23)
	and (24)

Case (27e).

$(21) e_1 \rhd p_1 \dashv \theta_1$	by assumption
$(22) e_2? p_2$	by assumption
$(23) \ e_1 \dot{\models} \xi_1$	by (16) on (21)
$(24) \ e_2 \dot{\models}_? \xi_2$	by (19) on (22)
$(25) (e_1, e_2) ? (p_1, p_2)$	by Rule (6e) on (23)
	and (24)

Case (27f).

$(21) e_1? p_1$	by assumption
$(22) e_2? p_2$	by assumption
$(23) \ e_1 \dot{\models}_? \xi_1$	by (17) on (21)
$(24) \ e_2 \dot{\models}_? \xi_2$	by (19) on (22)
$(25) (e_1, e_2)? (p_1, p_2)$	by Rule $(6f)$ on (23)
	and (24)

5 Preservation and Progress

Theorem 5.1 (Preservation). If \cdot ; $\Delta \vdash e : \tau$ and $e \mapsto e'$ then \cdot ; $\Delta \vdash e' : \tau$

Proof. By rule induction over Rules (14) on typing judgment of e. For simplicity, we only consider two cases for match expressions here.

Case (141).

By rule induction over Rules (29) on (2).

Case (29k).

(6)
$$e' = \text{match}(e'_1)\{\cdot \mid r \mid rs\}$$
 by assumption
(7) $e_1 \mapsto e'_1$ by assumption

(8)
$$\cdot$$
; $\Delta \vdash e_1' : \tau_1$ by IH on (3) and (7)

(9)
$$\cdot$$
; $\Delta \vdash \mathsf{match}(e'_1)\{\cdot \mid r \mid rs\} : \tau$ by Rule (141) on (8) and (4) and (5)

Case (291).

(6)
$$r = p_r \Rightarrow e_r$$
 by assumption
(7) $e' = [\theta](e_r)$ by assumption

(8)
$$e_1 \triangleright p_r \dashv \theta$$
 by assumption

By rule induction over Rules (17) on (4).

Case (17a).

(9)
$$\xi = \xi_r$$
 by assumption
(10) \cdot ; $\Delta \vdash (p_r \Rightarrow e_r) : \tau_1[\xi_r] \Rightarrow \tau$ by assumption

(11)
$$p_r: \tau_1[\xi_r] \dashv \Gamma_r; \Delta_r$$
 by Inversion of Rule (16a) on (10)

(12)
$$\Gamma_r$$
; $\Delta \uplus \Delta_r \vdash e_r : \tau$ by Inversion of Rule (16a) on (10)

(13)
$$\theta: \Gamma_r$$
 by Lemma 3.0.7 on (3) and (11) and (8)

(14)
$$\cdot$$
; $\Delta \uplus \Delta_r \vdash [\theta](e_r) : \tau$ by Lemma 3.0.6 on (12) and (13)

Case (17b).

$$(9) \quad \xi = \xi_r \vee \xi_{rs}$$

$$(10) \ \cdot ; \Delta \vdash (p_r \Rightarrow e_r) : \tau_1[\xi_r] \Rightarrow \tau$$

(11)
$$p_r : \tau_1[\xi_r] \dashv \Gamma_r ; \Delta_r$$
 by Inversion of Rule (16a) on (10)

(12)
$$\Gamma_r$$
; $\Delta \uplus \Delta_r \vdash e_r : \tau$ by Inversion of Rule (16a) on (10)

(13)
$$\theta: \Gamma_r$$
 by Lemma 3.0.7 on (3) and (11) and (8)

(14)
$$\cdot$$
; $\Delta \uplus \Delta_r \vdash [\theta](e_r) : \tau$ by Lemma 3.0.6 on (12) and (13)

Case (29m).

(6)
$$rs = r' \mid rs'$$
 by assumption

(7)
$$e' = \operatorname{match}(e_1)\{(p_r \Rightarrow e_r \mid \cdot) \mid r' \mid rs'\}$$

by assumption

by assumption

by assumption

(8)
$$e_1$$
 final by assumption

(9)
$$e_1 \perp p_r$$
 by assumption

By rule induction over Rules (17) on (4).

Case (17a). Syntactic contradiction of rs.

Case (17b).

(10)
$$\xi = \xi_r \vee \xi_{rs}$$
 by assumption

(11)
$$\cdot : \Delta \vdash (p_r \Rightarrow e_r) : \tau_1[\xi_r] \Rightarrow \tau$$
 by assumption

$$(12) \cdot ; \Delta \vdash [\bot \lor \xi_r](r' \mid rs') : \tau_1[\xi_{rs}] \Rightarrow \tau$$

by assumption

(13)
$$\xi_r \not\models \bot$$
 by assumption

(14)
$$p_r: \tau_1[\xi_r] \dashv \Gamma_r; \Delta_r$$
 by Inversion of Rule (16a) on (11)

(15)
$$\Gamma_r$$
; $\Delta \uplus \Delta_r \vdash e_r : \tau$ by Inversion of Rule (16a) on (11)

(16)
$$\cdot$$
; $\Delta \vdash [\bot](p_r \Rightarrow e_r \mid \cdot) : \tau_1[\xi_r] \Rightarrow \tau$ by Rule (17a) on (11) and (13)

(17)
$$e_1 \not\models {}_{?}^{\dagger} \xi_r$$
 by Lemma 4.0.15 on (3) and (8) and (14) and (9)

(18)
$$\cdot$$
; $\Delta \vdash \mathtt{match}(e_1)\{(p_r \Rightarrow e_r \mid \cdot) \mid r' \mid rs'\} : \tau$ by Rule (14m) on (3) and (8) and (16) and (12) and (17) and (5)

Case (14m).

(1)
$$rs_{pre} = r_{pre} \mid rs'_{pre}$$
 by assumption

(2)
$$\cdot$$
; $\Delta \vdash \text{match}(e_1)\{rs_{pre} \mid r \mid rs_{post}\} : \tau$ by assumption

(3)
$$\operatorname{match}(e_1)\{rs_{pre} \mid r \mid rs_{post}\} \mapsto e'$$
 by assumption

(4)
$$\cdot$$
; $\Delta \vdash e_1 : \tau_1$ by assumption

(5)
$$e_1$$
 final by assumption

(6)
$$\cdot ; \Delta \vdash [\bot] rs_{pre} : \tau_1[\xi_{pre}] \Rightarrow \tau$$
 by assumption

$$(7) \cdot ; \Delta \vdash [\bot \lor \xi_{pre}](r \mid rs_{post}) : \tau_1[\xi_{rest}] \Rightarrow \tau$$

by assumption

(8)
$$e_1 \not\models {}_{2}^{\dagger} \xi_{pre}$$
 by assumption

(9)
$$\top \stackrel{\cdot}{\models}_{?}^{\dagger} \xi_{pre} \lor \xi_{rest}$$
 by assumption

By rule induction over Rules (29) on (3).

Case (29k).

(10)
$$e' = \text{match}(e'_1)\{rs_{pre} \mid r \mid rs_{post}\}$$
 by assumption

$$(11) e_1 \mapsto e_1'$$

By Lemma 4.0.13, (11) contradicts (5).

Case (291).

- (10) $r = p_r \Rightarrow e_r$ by assumption
- (11) $e' = [\theta](e_r)$ by assumption
- (12) $e_1 \triangleright p_r \dashv \theta$ by assumption

By rule induction over Rules (17) on (7).

Case (17a).

- (13) $\xi_{rest} = \xi_r$ by assumption
- (14) $\cdot : \Delta \vdash (p_r \Rightarrow e_r) : \tau_1[\xi_r] \Rightarrow \tau$ by assumption
- (15) $p_r : \tau_1[\xi_r] \dashv \Gamma_r ; \Delta_r$ by Inversion of Rule (16a) on (14)

by assumption

- (16) Γ_r ; $\Delta \uplus \Delta_r \vdash e_r : \tau$ by Inversion of Rule (16a) on (14)
- (17) $\theta: \Gamma_r$ by Lemma 3.0.7 on (4) and (15) and (12)
- (18) \cdot ; $\Delta \uplus \Delta_r \vdash [\theta](e_r) : \tau$ by Lemma 3.0.6 on (16) and (17)

Case (17b).

- (13) $\xi_{rest} = \xi_r \vee \xi_{rs}$ by assumption
- (14) $\cdot : \Delta \vdash (p_r \Rightarrow e_r) : \tau_1[\xi_r] \Rightarrow \tau$ by assumption
- (15) $p_r : \tau_1[\xi_r] \dashv \Gamma_r ; \Delta_r$ by assumption
- (16) $\Gamma_r : \Delta \uplus \Delta_r \vdash e_r : \tau$ by assumption
- (17) $\theta: \Gamma_r$ by Lemma 3.0.7 on (4) and (15) and (12)
- (18) \cdot ; $\Delta \uplus \Delta_r \vdash [\theta](e_r) : \tau$ by Lemma 3.0.6 on (16) and (17)

Case (29m).

- (10) $r = p_r \Rightarrow e_r$ by assumption
- (11) $rs_{post} = r' \mid rs'$ by assumption
- $(12) \ e' = \mathtt{match}(e_1) \{ (rs_{pre} \mid p_r \Rightarrow e_r \mid \cdot)^\diamond \mid r' \mid rs' \}$ by assumption
- (13) $e_1 \perp p_r$ by assumption

By rule induction over Rules (17) on (7).

Case (17a). Syntactic contradiction of rs_{post} .

Case (17b).

- (14) $\xi_{rest} = \xi_r \vee \xi_{post}$ by assumption
- (15) $\cdot : \Delta \vdash (p_r \Rightarrow e_r) : \tau_1[\xi_r] \Rightarrow \tau$ by assumption

$$(16) \ \cdot ; \Delta \vdash [\bot \lor \xi_{pre} \lor \xi_{r}](r' \mid rs') : \tau_{1}[\xi_{post}] \Rightarrow \tau \\ \text{by assumption} \\ (17) \ \xi_{r} \not\models \xi_{pre} \\ \text{by assumption} \\ (18) \ p_{r} : \tau_{1}[\xi_{r}] \dashv \Gamma_{r} ; \Delta_{r} \\ \text{by Inversion of Rule} \\ (16a) \text{ on } (15) \\ (19) \ \Gamma_{r} ; \Delta \uplus \Delta_{r} \vdash e_{r} : \tau \\ \text{by Inversion of Rule} \\ (16a) \text{ on } (15) \\ (20) \ \xi_{r} : \tau_{1} \\ \text{by Lemma } 3.0.2 \text{ on} \\ (15) \\ (21) \ \xi_{pre} : \tau_{1} \\ \text{by Lemma } 3.0.3 \text{ on } (6) \\ (22) \ \xi_{r} \not\models \bot \lor \xi_{pre} \\ \text{by Lemma } ?? \text{ on } (20) \\ \text{and } (21) \text{ and } (17) \\ (23) \ \cdot ; \Delta \vdash [\bot](rs_{pre} \mid p_{r} \Rightarrow e_{r} \mid \cdot)^{\diamond} : \tau_{1}[\xi_{pre} \lor \xi_{r}] \Rightarrow \tau \\ \text{by Lemma } 3.0.4 \text{ on } (6) \\ \text{and } (15) \text{ and } (22) \\ (24) \ e_{1} \not\models \frac{\dagger}{?}\xi_{r} \\ \text{by Lemma } 4.0.15 \text{ on} \\ (4) \text{ and } (5) \text{ and } (18) \\ \text{and } (13) \\ (25) \ e_{1} \not\models \frac{\dagger}{?}\xi_{pre} \lor \xi_{r} \\ \text{by Lemma } 1.0.7 \text{ on } (8) \\ \text{and } (24) \\ (26) \ \cdot ; \Delta \vdash \text{match}(e_{1})\{(rs_{pre} \mid p_{r} \Rightarrow e_{r} \mid \cdot)^{\diamond} \mid r' \mid rs'\} : \tau \\ \text{by Rule } (14m) \text{ on } (4) \\ \text{and } (5) \text{ and } (23) \text{ and} \\ (16) \text{ and } (25) \text{ and } (9) \\ \end{cases}$$

Theorem 5.2 (Progress). If \cdot ; $\Delta \vdash e : \tau$ then either e final or $e \mapsto e'$ for some e'.

Proof. By rule induction over Rules (14) on typing judgment of e. For simplicity, we only consider two cases for match expressions here.

Case (141).

 $\begin{array}{ll} (1) \quad \cdot \; ; \Delta \vdash \mathtt{match}(e_1) \{ \cdot \mid r \mid rs \} : \tau & \text{by assumption} \\ (2) \quad \cdot \; ; \Delta \vdash e_1 : \tau_1 & \text{by assumption} \\ (3) \quad \cdot \; ; \Delta \vdash [\bot](r \mid rs) : \tau_1[\xi] \Rightarrow \tau & \text{by assumption} \\ (4) \quad \top \models_{?}^{\cdot \dagger} \xi & \text{by assumption} \end{array}$

By IH on (2).

Case Scrutinee takes a step.

(5)
$$e_1 \mapsto e'_1$$
 by assumption

Case Scrutinee is final.

(5) e_1 final

by assumption

By rule induction over Rules (17) on (3).

Case (17a).

- (6) $rs = \cdot$ by assumption
- (7) $\xi = \xi_r$ by assumption
- (8) \cdot ; $\Delta \vdash r : \tau_1[\xi_r] \Rightarrow \tau$ by assumption
- (9) $r = p_r \Rightarrow e_r$ by Inversion of Rule (16a) on (8)
- (10) $p_r: \tau_1[\xi_r] \dashv \Gamma_r; \Delta_r$ by Inversion of Rule (16a) on (8)
- (11) $e_1 \stackrel{\cdot}{\models}_{?}^{\dagger} \xi_r$ by Corollary 1.1.1 on (5) and (4)

By rule induction over Rules (8) on (11).

Case (8a).

- (12) $e_1 \models_? \xi_r$ by assumption
- (13) e_1 ? p_r by Lemma 4.0.15 on (2) and (5) and (10) and (12)
- (14) ${\rm match}(e_1)\{\cdot\mid p_r\Rightarrow e_r\mid\cdot\}$ indet by Rule (19k) on (5) and (13)
- (15) $\operatorname{match}(e_1)\{\cdot \mid p_r \Rightarrow e_r \mid \cdot\}$ final by Rule (20b) on (14)

Case (8b).

- (12) $e_1 = \xi_r$ by assumption
- (13) $e_1 \rhd p_r \dashv \theta$ by Lemma 4.0.15 on (2) and (5) and (10) and (12)
- (14) $\operatorname{match}(e_1)\{\cdot \mid p_r \Rightarrow e_r \mid \cdot\} \mapsto [\theta](e_r)$ by Rule (291) on (5)

and (13)

Case (17b).

- (6) $rs = r' \mid rs'$ by assumption
- (7) $\xi = \xi_r \vee \xi_{rs}$ by assumption
- (8) $\cdot ; \Delta \vdash r : \tau_1[\xi_r] \Rightarrow \tau$ by assumption

(9)
$$r = p_r \Rightarrow e_r$$
 by Inversion of Rule (16a) on (8)

(10)
$$p_r : \tau_1[\xi_r] \dashv \Gamma_r ; \Delta_r$$
 by Inversion of Rule (16a) on (8)

By Lemma 4.0.14 on (2) and (5) and (10).

Case Scrutinee matches pattern.

(11)
$$e_1 > p_r \dashv \theta$$
 by assumption

(12)
$$\operatorname{match}(e_1)\{\cdot\mid p_r\Rightarrow e_r\mid rs\}\mapsto [\theta](e_r)$$
 by Rule (291) on (5) and (11)

Case Scrutinee may matches pattern.

(11)
$$e_1 ? p_r$$
 by assumption

(12)
$$\label{eq:pr} \mbox{ match}(e_1)\{\cdot\mid p_r\Rightarrow e_r\mid rs\} \mbox{ indet } \\ \mbox{ by Rule (19k) on (5)} \\ \mbox{ and (11)}$$

(13)
$$\operatorname{match}(e_1)\{\cdot\mid p_r\Rightarrow e_r\mid rs\}$$
 final by Rule (20b) on (12)

Case Scrutinee doesn't matche pattern.

(11)
$$e_1 \perp p_r$$
 by assumption

(12)
$$\operatorname{match}(e_1)\{\cdot \mid p_r \Rightarrow e_r \mid (r' \mid rs')\}\$$

 $\mapsto \operatorname{match}(e_1)\{(p_r \Rightarrow e_r \mid \cdot) \mid r' \mid rs'\}\$
by Rule (29m) on (5)
and (11)

Case (14m).

(1)
$$rs_{pre} = r_{pre} \mid rs'_{pre}$$
 by assumption

(2)
$$\cdot$$
; $\Delta \vdash \mathtt{match}(e_1)\{rs_{pre} \mid r \mid rs_{post}\} : \tau$ by assumption

(3)
$$\cdot$$
; $\Delta \vdash e_1 : \tau_1$ by assumption

(4)
$$e_1$$
 final by assumption

(5)
$$\cdot : \Delta \vdash [\xi_{pre}](r \mid rs_{post}) : \tau_1[\xi_{rest}] \Rightarrow \tau$$
 by assumption

(6)
$$e_1 \not\models {}_{2}^{\dagger} \xi_{pre}$$
 by assumption

(7)
$$\top \models_{?}^{\dagger} \xi_{pre} \lor \xi_{rest}$$
 by assumption

By rule induction over Rules (17) on (5).

Case (17a).

(5)
$$rs_{post} = \cdot$$
 by assumption

(6)
$$\xi_{rest} = \xi_r$$
 by assumption

(7)
$$\cdot : \Delta \vdash r : \tau_1[\xi_r] \Rightarrow \tau$$
 by assumption

$$(8) \quad r = p_r \Rightarrow e_r \qquad \qquad \text{by Inversion of Rule}$$

$$(9) \quad p_r : \tau_1[\xi_r] \dashv \Gamma_r ; \Delta_r \qquad \qquad \text{by Inversion of Rule}$$

$$(16a) \text{ on } (7)$$

$$(10) \quad e_1 \dot{\vDash}_{?}^{\dagger} \xi_{pre} \vee \xi_r \qquad \qquad \text{by Corollary 1.1.1 on}$$

$$(4) \text{ and } (7)$$

(11) $e_1 \stackrel{\cdot}{\models}_{?}^{\dagger} \xi_r$ by Lemma 1.0.8 on (10) and (6)

By rule induction over Rules (8) on (11).

Case (8a).

(12)
$$e_1 \models_? \xi_r$$
 by assumption
(13) $e_1 ? p_r$ by Lemma 4.0.15 on
(3) and (4) and (9) and
(12)

(15)
$$\operatorname{match}(e_1)\{\cdot\mid p_r\Rightarrow e_r\mid\cdot\}$$
 final by Rule (20b) on (14)

Case (8b).

Case (17b).

$$\begin{array}{ll} (5) \ \ rs_{post} = r' \mid rs'_{post} & \text{by assumption} \\ (6) \ \cdot ; \Delta \vdash r : \tau_1[\xi_r] \Rightarrow \tau & \text{by assumption} \\ (7) \ \ r = p_r \Rightarrow e_r & \text{by Inversion of Rule} \\ (8) \ \ p_r : \tau_1[\xi_r] \dashv \Gamma_r \ ; \Delta_r & \text{by Inversion of Rule} \\ (16a) \ \text{on} \ \ (6) \\ \end{array}$$

By Lemma 4.0.14 on (3) and (4) and (8).

Case Scrutinee matches pattern.

(9)
$$e_1 \triangleright p_r \dashv \theta$$
 by assumption
(10) $\operatorname{match}(e_1)\{\cdot \mid p_r \Rightarrow e_r \mid rs_{post}\} \mapsto [\theta](e_r)$ by Rule (291) on (4) and (9)

Case Scrutinee may matches pattern.

(9)
$$e_1 ? p_r$$
 by assumption

(10)
$$\operatorname{match}(e_1)\{\cdot\mid p_r\Rightarrow e_r\mid rs_{post}\}$$
 indet by Rule (19k) on (4) and (9)

(11)
$$\operatorname{match}(e_1)\{\cdot \mid p_r \Rightarrow e_r \mid rs_{post}\} \text{ final}$$
 by Rule (20b) on (10)

Case Scrutinee doesn't matche pattern.

(9)
$$e_1 \perp p_r$$
 by assumption

(10)
$$\operatorname{match}(e_1)\{\cdot \mid p_r \Rightarrow e_r \mid (r' \mid rs'_{post})\}\$$

$$\mapsto \operatorname{match}(e_1)\{(p_r \Rightarrow e_r \mid \cdot) \mid r' \mid rs'_{post}\}\$$
by Rule (29m) on (4)
and (9)

6 Decidability

 $\dot{\top}(\dot{\xi}) = \xi$

$$\dot{\top}(\top) = \top \tag{30a}$$

$$\dot{\top}(?) = \top \tag{30b}$$

$$\dot{\top}(\underline{n}) = \underline{n} \tag{30c}$$

$$\dot{\top}(\xi_1 \vee \xi_2) = \dot{\top}(\xi_1) \vee \dot{\top}(\xi_2) \tag{30d}$$

$$\dot{\top}(\mathtt{inl}(\xi)) = \mathtt{inl}(\dot{\top}(\xi)) \tag{30e}$$

$$\dot{\top}(\inf(\xi)) = \inf(\dot{\top}(\xi)) \tag{30f}$$

$$\dot{\top}((\xi_1, \xi_2)) = (\dot{\top}(\xi_1), \dot{\top}(\xi_2)) \tag{30g}$$

 $\dot{\perp}(\dot{\xi}) = \xi$

$$\dot{\bot}(\top) = \top \tag{31a}$$

$$\dot{\perp}(?) = \perp \tag{31b}$$

$$\dot{\perp}(\underline{n}) = \underline{n} \tag{31c}$$

$$\dot{\perp}(\xi_1 \vee \xi_2) = \dot{\perp}(\xi_1) \vee \dot{\perp}(\xi_2) \tag{31d}$$

$$\dot{\perp}(\mathtt{inl}(\xi)) = \mathtt{inl}(\dot{\perp}(\xi)) \tag{31e}$$

$$\dot{\perp}(\operatorname{inr}(\xi)) = \operatorname{inr}(\dot{\perp}(\xi)) \tag{31f}$$

$$\dot{\perp}((\xi_1, \xi_2)) = (\dot{\perp}(\xi_1), \dot{\perp}(\xi_2)) \tag{31g}$$

$$\begin{array}{c} \Xi \ \text{incon} \\ \hline \Xi \ \text{incon} \\ \hline \\ \Xi \ \text{incon} \\ \Xi \ \text{incon} \\ \hline \\ \Xi \ \text{incon$$

Lemma 6.0.1 (Decidability of Inconsistency). It is decidable whether ξ incon.

Lemma 6.0.2 (Inconsistency and Entailment of Constraint). $\bar{\xi}$ incon iff $\top \models \xi$

Lemma 6.0.3 (Material Entailment of Complete Constraint). $\xi_1 \models \xi_2$ iff $\top \models \overline{\xi_1} \vee \xi_2$.

Theorem 6.1 (Decidability of Entailment of Constraint). *It is decidable whether* $\xi_1 \models \xi_2$.