Homework 10

PB17000297 罗晏宸

December 26 2019

1 Exercise 34.5-1

子图同构问题取两个无向图 G_1 和 G_2 , 要回答 G_1 是否与 G_2 的一个子图同构这一问题。证明:子图同构问题是 NP 完全的。

解

2 Exercise 34.5-6

证明:哈密顿路径问题是 NP 完全的。

解

3 Exercise 35.2-4

在**瓶颈旅行商问题**中,目标是找出这样一条哈密顿回路,使得回路中代价最大的边的代价相对于其他回路来说最小。假设代价函数满足三角不等式,证明:这个问题存在一个近似比为3的多项式时间近似算法。

解

4 Problem 35-6 Approximating a maximum spanning tree

设 G=(V,E) 是一个无向图,其中的每条边 $(u,v)\in E$ 具有不同的权值 w(u,v)。对每个顶点 $v\in V$,设 $\max(v)=\arg\max_{(u,v)\in E}\{w(u,v)\}$ 是与顶点 v 相关联的最大权值边。设 $S_G=\{\max(v):v\in V\}$ 表示与各个顶点相关联的最大权值边的集合, T_G 表示图 G 的最大权值生成树。对任意的边集 $E'\subseteq E$,定义 $w(E')=\sum_{(u,v)\in E'}w(u,v)$ 。

- ${f a}$ 给出一个至少包含 4 个顶点的图,使其满足 $S_G=T_G$ 。
- **b** 给出一个至少包含 4 个顶点的图, 使其满足 $S_G \neq T_G$ 。
- \mathbf{c} 证明:对任意的图 G, $S_G \subseteq T_G$ 。
- **d** 证明:对任意的图 G, $w(T_G) \geq w(S_G)/2$ 。
- e 给出一个 O(V+E) 时间算法,用于计算 2 近似的最大生成树。

解

 \mathbf{a}

b

 \mathbf{c}

 \mathbf{d}

 \mathbf{e}

5 Exercise 34.4-7

给出一种 2-SAT 问题的多项式解法

解