PROBABILITY THEORY AND RANDOM PROCESSES (MA225)

 $\begin{array}{c} {\rm LECTURE~SLIDES} \\ {\rm Lecture~21~(September~27,~2019)} \end{array}$

Bivariate normal

Def: A two dimensional random vector $\mathbf{X} = (X, Y)$ is said to have a bivariate normal distribution if aX + bY is a univariate normal for all $(a, b) \in \mathbb{R}^2 \setminus (0, 0)$.

Theorem: If $\mu = E(\mathbf{X})$ and Σ is the variance-covariance matrix of \mathbf{X} , then for any fixed $\mathbf{u} = (a, b) \in \mathbb{R}^2 \setminus (0, 0)$, $\mathbf{u}'\mathbf{X} \sim N(\mathbf{u}'\mu, \mathbf{u}'\Sigma\mathbf{u})$.

Theorem: Let **X** be a bivariate normal random vector, then $M_{\mathbf{X}}(\mathbf{t}) = e^{\mathbf{t}'\mu + \frac{1}{2}\mathbf{t}'\Sigma\mathbf{t}}$ for all $\mathbf{t} \in \mathbb{R}^2$.

Remark: Thus the bivariate normal distribution is completely specified by the mean vector μ and the variance-covariance matrix Σ . We may therefore denote a bivariate normal distribution by $N_2(\mu, \Sigma)$.

Def: A two dimensional random vector \mathbf{X} is said to have a bivariate normal distribution if it can be expressed in the form $\mathbf{X} = \boldsymbol{\mu} + A\mathbf{Y}$, where A is a 2×2 matrix of real numbers, $\mathbf{Y} = (Y_1, Y_2)$ and Y_1 and Y_2 are i.i.d N(0, 1). In this case $E(\mathbf{X}) = \boldsymbol{\mu}$ and $\Sigma = AA'$.

Theorem: If $\mathbf{X} \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $X \sim N(\mu_1, \sigma_{11})$ and $Y \sim N(\mu_2, \sigma_{22})$.

Remark: The converse of the above theorem is not true.

Remark: If Cov(X, Y) = 0, then X and Y are independent.

Theorem: Let $\mathbf{X} \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ be such that $\boldsymbol{\Sigma}$ is invertible, then, for all $\mathbf{x} \in \mathbb{R}^2$, \mathbf{X} has a joint PDF given by

$$f(\mathbf{x}) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$
$$= \frac{1}{2\pi \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} \sqrt{1 - \rho^2}} e^{A(\mathbf{x}, \mathbf{y}, \mu_{\mathbf{x}}, \mu_{\mathbf{y}}, \sigma_{\mathbf{x}}, \sigma_{\mathbf{y}}, \rho)},$$

where

$$A = -\frac{1}{2(1-\rho^2)} \left\{ \left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho \left(\frac{x-\mu_x}{\sigma_x}\right) \left(\frac{y-\mu_y}{\sigma_y}\right) + \left(\frac{y-\mu_y}{\sigma_y}\right)^2 \right\}.$$