

Home

Team

Additional Resources

A platform for COVID-19 analytics

covid19.edgebioinformatics.org

Coronavirus Standards Working Group

Home

Additional Resources

A platform for COVID-19 analytics

- As genomics is used for epi and biosurveillance of outbreak pathogens, it can help reveal where diagnostic assays/therapeutics may fail – thus we advocate for:
- ▶ 1) robust genomic data to be continually generated (even prior to outbreaks) to inform us of pathogen presence and diversity/evolution; 2) continuous tracking of mutations that may affect diagnostic assays and therapeutic targets; 3) automated re-design of assays and suggestion of alternative targets for therapeutic design

Home

Team

Additional Resources

A platform for COVID-19 analytics

Automated workflow providing SARS-CoV-2 genomes from FASTQ files

EDGE COVID-19

Karen Davenport

Mark Flynn

Jason Gans

Adán Myers y Gutiérrez

Bin Hu

Po-e Li

Chien-chi Lo

Elais Player

Migun Shakya

Yan Xu

Patrick Chain

Big thanks to Mike Wiley, Jason Ladner, Daryl Domman, Darrell Dinwiddie, Daesang Lee, and others for developing/using/providing feedback on initial workflows

Growth of deposited SARS-CoV-2 genomes in public repos

Modifications of scraper to accommodate changes on GISAID site

Tree/heatmap view of assay results

- Charité: probe with two mms (P1), reverse primer with one mm (P2)
 - ▶ P2 designed originally for SARS and SARS-like bat coronaviruses
- NIID assay designed against v1 of Wuhan-Hu-1 (genome modified 12 days later)
- Heatmap with tree can show evolutionary patterns of mismatches

Toward needed standards for outbreak genomics

- Poor metadata makes even high quality genomes less relevant
- Issues with genomes can mislead including evolution/diversity, diagnostics, etc.
- Many sequencing approaches/platforms and for any one:
 - many different pipelines, tools, parameters/cutoffs, decision trees results in less accurate interpretation of results
- Difficult for a number of labs to run any local analyses
- Difficult to obtain a high quality genome and to submit it to a public repo
 - What to do with gaps, low coverage, quasispecies variants, etc.

Automated workflow providing SARS-CoV-2 genomes from FASTQ files

The EDGE COVID-19 Workflow

Raw Data (FASTQ)

QC

FaQCs Porechop + Nanoplot **Options:**

- Primer Trimming (eg. ARTIC)
- Human host removal

Optional:

De novo Assembly

& Annotation

Reference genome

Reference annotation

Coverage track

Mapped reads

Consensus coverage

Variant Calling

BCFtools/VCFutils

- Mapping quality [60];
- max_depth [300x];
- minimum read depth [5];
- minimum number of alternate bases [3];
- minimum ratio of alternate bases [0.3];
- SNP within INT bp around a gap to be filtered [3];
- window size for filtering adjacent gaps [10];
- min P-value for end distance bias [0.0001];
- maximum fraction of reads supporting an indel [0.5];
- min P-value for strand bias [1e-10];

Reference Genome **Reads Mapping** BWA mem minimap2 **BAM** Consensus Genome Generation Consensus Genome (FASTA) Optional: Submission to GISAID

bioinformatics Automated workflow providing SARS-CoV-2 genomes from FASTO files EDGE COVID-19

The EDGE COVID-19 Workflow

Raw Data (FASTQ)

QC

FaQCs Porechop + Nanoplot **Options:**

- Primer Trimming (eg. ARTIC)
- Human host removal

Optional:

De novo Assembly

& Annotation

Reference genome

Reference annotation

Coverage track

Mapped reads

Consensus coverage

Variant Calling

BCFtools/VCFutils

- Mapping quality [60];
- max_depth [300x];
- minimum read depth [5];
- minimum number of alternate bases [3];
- minimum ratio of alternate bases [0.3];
- SNP within INT bp around a gap to be filtered [3];
- window size for filtering adjacent gaps [10];
- min P-value for end distance bias [0.0001];
- maximum fraction of reads supporting an indel [0.5];
- min P-value for strand bias [1e-10];

Genome **Reads Mapping** BWA mem minimap2 **BAM** Consensus Genome Generation Consensus Genome (FASTA) Optional: Submission to GISAID

Reference

Consensus Genome Generation

Filter reads

SAMtools/Picard/Consensus

- 1. PCR duplicate removal
- 2. Mapping Quality (< 60)
- 3. Base Quality (<5 ONT; <20 Illumina)
- 4. BAQ (Illumina)

--> consensus BAM

Comparing EDGE COVID-19 results to deposited genomes

Identical SNPs in EDGE COVID-19 and gisaid/genbank genomes

EDGE Project Name	SRR	tech	SNPs (gisaid/gen bank)	SNPs (EDGE COVID-19)	SNPs match?
fda_illumina_shotg un	SRR11393704	Illumina	3	3	~
FDA_ILLUMINA_CAPTU RE	SRR11409417	Illumina	3	3	~
NEPAL- 61_ILLUMINA_PCR	SRR11177792	Illumina	1	1	~
TIGER_NY_ILLUMINA_A RTIC	SRR11587600	Illumina	6	6	~
USA_WI1_ONT_vero76	SRR11140749	ONT	1	1	~
HKU- 902a_ONT_SHOTGUN	SRR11178057	ONT	1	1	✓
WA-0711_ONT_PCR	SRR11637325	ONT	5	5	~
VIC07_ONT_ARTICv1	SRR11397722	ONT	5	5	V

EDGE Project Name	SRR	platform	indels (gisaid/genbank)	indels (EDGE COVID-19)	indels match?
FDA_ILLUMINA_SHOTG UN	SRR113937 04	Illumina	0	0	✓
FDA_ILLUMINA_CAPTU RE	SRR114094 17	Illumina	0	0	✓
NEPAL- 61_ILLUMINA_PCR	SRR111 <i>777</i> 92	Illumina	0	0	✓
TIGER_NY_ILLUMINA_A RTIC	SRR115876 00	Illumina	0	0	✓
USA_WI1_ONT_vero76	SRR111407 49	ONT	1	1	✓
<u>HKU-</u> 902a ONT SHOTGUN	SRR111780 57	ONT	0	1	X
WA-0711_ONT_PCR	SRR116373 25	ONT	0	0	✓
VIC07_ONT_ARTICv1	SRR113977 22	ONT	0	0	✓

Differences in indel between EDGE COVID-19 and GISAID/GENBANK

- In sample HKU-902a
 - EDGE COVID-19 added one indel
 - GISAID genome (EPI_ISL_434563) did not have any indels
- Deletion at position 29378
- 54% of 164X coverage show deletion events

Differences in Ambiguous bases (Ns) and gaps (ns)

- In WGS of SARS-CoV-2 from tiger
 - EDGE COVID-19 genome has **174nt Ns** and **268nt gaps** within the genome.
 - 174nt positions with coverage < 5
 - 251nt in 1 gap had 0 reads mapped
 - GISAID genome (EPI_ISL_420293) has **0 Ns** and **0 gaps**
- Why is the difference?
 - Threshold coverage less than five?
 - Gaps filled with reference genome?
 - 251 gap region nucleotide in GISIAD genome matches reference (NC_045512_2) 100%

♦ ReleaseDate	◆ Sample Name	◆ SRA Study	♦ Library Name	Collection_Date
2020-04-18	SARS-CoV-2/Valencia003/human/2020/ES	ERP120836		
2020-04-18	SARS-CoV-2/Valencia004/human/2020/ES	ERP120836		
2020-04-18	SARS-CoV-2/Valencia005/human/2020/ES	ERP120836		
2020-04-18	SARS-CoV-2/Valencia008/human/2020/ES	ERP120836		
2020-04-18	SARS-CoV-2/Valencia006/human/2020/ES	ERP120836		
2020-04-18	SARS-CoV-2/Valencia007/human/2020/ES	ERP120836		
2020-04-30	DK/ALAB-HH-08/2020	ERP121327	DK/ALAB-HH-08/2020	2020-03-17
2020-04-30	DK/ALAB-HH-11/2020	ERP121327	DK/ALAB-HH-11/2020	2020-03-18
2020-04-30	DK/ALAB-HH-13/2020	ERP121327	DK/ALAB-HH-13/2020	2020-03-19
2020-04-30	DK/ALAB-HH-20/2020	ERP121327	DK/ALAB-HH-20/2020	2020-03-26
2020-04-30	DK/ALAB-HH-66/2020	ERP121327	DK/ALAB-HH-66/2020	2020-04-29
2020-04-30	DK/ALAB-HH-84/2020	ERP121327	DK/ALAB-HH-84/2020	2020-05-12
2020-04-30	DK/ALAB-HH-86/2020	ERP121327	DK/ALAB-HH-86/2020	2020-05-13
2020-04-30	DK/ALAB-SSI-108/2020	ERP121327	DK/ALAB-SSI-108/2020	2020-05-27
2020-04-30	DK/ALAB-SSI-109/2020	ERP121327	DK/ALAB-SSI-109/2020	2020-05-28
2020-04-30	DK/ALAB-SSI-129/2020	ERP121327	DK/ALAB-SSI-129/2020	2020-06-12
2020-04-30	DK/ALAB-SSI-132/2020	ERP121327	DK/ALAB-SSI-132/2020	2020-06-13
2020-04-30	DK/ALAB-SSI-158/2020	ERP121327	DK/ALAB-SSI-158/2020	2020-06-30
2020-04-30	DK/ALAB-SSI-163/2020	ERP121327	DK/ALAB-SSI-163/2020	2020-07-04
2020-04-30	DK/ALAB-SSI-164/2020	ERP121327	DK/ALAB-SSI-164/2020	2020-07-05
2020-04-30	DK/ALAB-SSI-166/2020	ERP121327	DK/ALAB-SSI-166/2020	2020-07-06
2020-04-30	DK/ALAB-SSI-167/2020	ERP121327	DK/ALAB-SSI-167/2020	2020-07-07
2020-04-30	DK/ALAB-SSI-395/2020	ERP121327	DK/ALAB-SSI-395/2020	2020-10-26

Matching genomes to SRA

True disease forecasting??

- Genomic data as of today
 - # of genomes in GISAID = 23,381
 - # of genomes* in GenBank = 2,435
 - # of SRA experiments = 5,385
- Most of these data are connected somehow, but can we connect them?
 - No specific feature in SRA experiment records that indicate if the genome has been deposited to either genbank or gisaid.
 - Best way is matching the Library Name with GISAID metadata, but not always consistent.

SRX8255490: Severe acute respiratory syndrome coronavirus 2

1 ILLUMINA (NextSeg 550) run; 362,448 spots, 106,7M bases, 39,5Mb downloads

Design: ARTIC V3 amplicons, Nextera XT library, minimap2 v2.17, ivar v1.2.1, samtools v1.10. Using minimap2, short reads mapped to SARS-CoV-2 NCBI accession MN908947.3. Using samtools, proper_pairs (samflag 2) mapping to MN908947.3 retained, unmapped reads (samflag 4) discarded (to filter out non-SARS-CoV-2 cDNA). Filtered reads submitted to NCBI

Submitted by: The Peter Doherty Institute for Infection and Immunity

Study: Severe acute respiratory syndrome coronavirus 2 Genome sequencing

PRJNA613958 • SRP253798 • All experiments • All runs show Abstract

Sample: SARS-Cov-2 VIC1273

SAMN14839002 • SRS6598939 • All experiments • All runs
Organism: Severe acute respiratory syndrome coronavirus 2

Library:

Name: VIC1273_illumina Instrument: NextSeq 550 Strategy: AMPLICON Source: VIRAL RNA Selection: PCR Layout: PAIRED

Runs: 1 run, 362,448 spots, 106.7M bases, 39.5Mb

Run	# of Spots	# of Bases	Size	Published	
SRR11695894	362,448	106.7M	39.5Mb	2020-05-06	

SRX8264257: Sample 32 1 ILLUMINA (Illumina MiSeg) run; 555,303 spots, 164,6M bases, 83Mb downloads Design: mutation detection Submitted by: Paragon Genomics Study: High sensitivity detection of SARS-CoV-2 using multiplex PCR and a multiplex-PCR-based metagenomic method PRJNA614546 • SRP253783 • All experiments • All runs show Abstract Sample: CHLA9 SAMN14829711 • SRS6602226 • All experiments • All runs Organism: Severe acute respiratory syndrome coronavirus 2 Library: Name: Sample 32 Instrument: Illumina MiSeq Strategy: AMPLICON Source: VIRAL RNA Selection: PCR Layout: PAIRED Runs: 1 run, 555,303 spots, 164,6M bases, 83Mb # of Spots **Published** SRR11704822 164.6M 83Mb 2020-05-06 ID: 10766238